diff --git a/data/part_3/0002152084.json b/data/part_3/0002152084.json new file mode 100644 index 0000000000000000000000000000000000000000..fb7a298095ab21e4f52db119efa65fd9afb728a4 --- /dev/null +++ b/data/part_3/0002152084.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"f9f08da855cb154df1989adbd49f8d81","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/869cf637-460a-4d6c-9b8d-9aabd167505f/retrieve","id":"648440395"},"keywords":[],"sieverID":"f7d4aae7-f8c5-4e33-b161-af5114627f98","pagecount":"47","content":"Implemented work and achievements for the period October 2013 to March 2014 for the Africa RISING project in Ghana and Mali are reported. Surveys to collect baseline data for farming systems analysis, household nutrition, nutritional status of children, pig and poultry production and pearl millet cropping systems were completed. Data were analyzed and reported. Farmer-participatory livestock and crop trials initiated during the first or second year of the project ended during the period. Data were analyzed and reports written. The field trials identified improved housing for backyard poultry and agronomic management practices and cereal (maize and sorghum, and millet), legume (soybean and cowpea) and vegetable varieties for intensive crop production. Modeling and Geographic Information Systems and remote sensing technologies will be used to extrapolate results from the field/plot level activities to wider recommendation domains and larger scales using modeling and GIS and remote sensing techniques. Quality seeds of cereals, legumes and vegetables were produced for multiplication and dissemination to farmers and future project activities. Group and individual training were conducted to strengthen the capacity of farmers and researchers and development partners. Project outputs were disseminated through farmers' field days and farmer field schools, exchange visits and video shows. Meetings of stakeholders, Project Steering Committee and Program Coordination Team meetings were organized during the period.As part of the Feed the Future Initiative, the United States Agency for International Development (USAID) is supporting an innovative multi-stakeholder agricultural research program, the Africa Research in Sustainable Intensification for the Next Generation (Africa RISING). The program's main objective is to identify and validate scalable options for sustainable intensification of key African farming systems to increase food production and improve livelihoods of smallholder farmers and at the same time conserve or improve the natural resource base.Africa RISING is a three-in-one, five-year research program launched in 2011. It brings together a wide range of research and development partners from the CGIAR and the national agricultural research and extension systems (NARES), farmers, input and output dealers and policymakers to develop management practices and technology combinations that use the farming systems research and extension approaches to better integrate crops (cereals, legumes and vegetables), livestock (including poultry), and trees and shrubs in mixed-farming systems with the aim of improving whole-farm productivity, nutrition and incomes of small-farm families without degrading the environment. It will also develop innovations that effectively link farmers to markets and input suppliers. The three projects are: Sustainable intensification of crop-livestock mixed farming systems in the Guinea-Sudan-Savanna Zone of West Africa -led by the International Institute of Tropical Agriculture (IITA);  Sustainable intensification of crop-livestock integrated farming systems in the Ethiopian highlands -led by the International Livestock Research Institute (ILRI); and  Sustainable intensification of cereal-legume-livestock integrated farming systems in East and Southern Africa -led by IITA. The International Food Policy Research Institute (IFPRI) is responsible for monitoring, evaluation, and impact assessment across all three projects.The program is organized around four research outputs that are logically linked in time and space, namely: 1. Situation Analysis and Program-wide Synthesis 2. Integrated Systems Improvement 3. Scaling and Delivery of Integrated InnovationThe first research output covers the activities that are necessary to ensure that project activities are able to characterize and stratify target communities effectively so that promising interventions are identified and inappropriate interventions rejected. The second is delivered via a broad approach of participatory technology development and/or identification. This requires projects to allow for the identification of existing sound practices within communities that might be more widely propagated, the adaptation of these and other exogenous innovations, and the more effective combination of innovations from multiple sources.The first two outputs will generate integrated technology combinations that are more effectively targeted on farmers' real development needs. This third output recognizes that, even where such technology combinations can be identified, the approaches used for scaling them out may not always be effective and seeks to redress this shortcoming. The fourth output, which relates to monitoring adoption and farmer preferences and assessing economic and environmental impact of the project activities, is the responsibility of IFPRI.Africa RISING is being implemented in 25 intervention communities in the three northern regions of Ghana (Fig. 1), and 10 villages in the Bougouni-Yanfolila and Koutiala districts of the Sikasso Region in southern Mali (Fig. 2). It is intended to result in spillover effects to other similar agro-ecological zones. The farming systems in the region are dominated by small-scale, resource-poor farmers whose livelihoods depend on rain-fed crop, livestock and crop-livestock farming systems. Main staple crops are cereals (maize, rice, sorghum, pearl millet), legumes (groundnut, cowpea, soybean, Bambara nut, pigeon pea), and vegetables (roselle, okra, pepper, onion, eggplant, tomato, amaranths, pumpkin). The cereals are either grown in pure stands or intercropped/rotated with the legumes and a variety of vegetables. Crop yields on farmers' fields are generally poor due to low and variable rainfall; drought; low and declining soil fertility; use of low yielding varieties; lack of quality seed of improved crop varieties and land preparation equipment; high cost of inputs and postharvest losses; labour constraints that lead to poor growing conditions (late sowing, sub-optimal plant populations, inadequate control of weeds, Striga, pests and diseases); and low use of organic or mineral fertilizers.Cattle, sheep, goats, pigs, chicken, guinea fowl, turkeys and ducks are reared for meat, milk, land preparation, transport, manure and cash. The animals are mostly managed under extensive and semiintensive systems with limited feed, shelter, health care and breeding management. Productivity of the animals is low due to inappropriate husbandry (feeding, health care, housing and breeding) practices that result in high mortality rates. Farmers have limited access to veterinary services and improved livestock breeds. In general, the crop and livestock enterprises are weakly integrated.Diets of most rural poor farm families are often dominated by the intake of basic staple foods (e.g. maize, rice, millet and sorghum) which are usually deficient in micronutrients such as vitamin A, iron and zinc needed to prevent malnutrition. The nutritional status of most farm households, especially pregnant women, breastfeeding mothers and children below 24 months of age, is therefore poor, leading to chronic malnutrition linked to low income, unsuitable food processing and feeding practices and iron deficiency.Farmers have limited access to input and output markets. Enabling institutions and policies are also lacking. Due to inadequacies of traditional promotional and scaling-up/out pathways, there is a large unmet demand for information and technology, especially by women. This has led to low adoption of improved technologies and best practices by farmers to reduce food insecurity, poverty and natural resource degradation.Participatory approaches are used to identify and implement activities to address the bio-physical and socio-economic constraints of the farming systems in the intervention communities in each region by multi-disciplinary research teams from ARI, AVRDC, FRI, IITA, ILRI, KNUST, MoFA, MoH, SARI and UDS. Similarly in Mali, activities are implemented by multi-disciplinary and multi-institutional partners such as AMASSA, AMEDD, AVRDC, CMDT, ICRAF, ICRISAT and MOBIOM. The activities are implemented on-farm and on-station. The on-farm activities consist of activities managed by researchers; researchers and farmers; and farmers only. In addition to comparing intensified practices with farmers' practices, the onfarm activities are used to demonstrate new technologies and/or a combination of technologies through farmers' field days, farmers' field schools and exchange visits. They are also used to train farmers, extension and research assistants. The on-station activities are mostly used by graduate students as part of their dissertation research to test and/or develop new technologies.Most of the activities are implemented at the plot or field levels. Nevertheless, results and outputs from the activities can be extrapolated to larger scales and bigger recommendation domains using modeling, Geographical Information Systems (GIS) and Remote Sensing techniques. For example, our preliminary GIS analysis showed that results from plot activities implemented at the Natodori intervention community in the Upper West region can be applied to other West African countries with similar agroecology and socio-economic environment -Nigeria (9%), Guinea (49%) and Cote d'Ivoire (34%). The baseline surveys in Mali and Ghana to be conducted by IFPRI are yet to be implemented. Therefore, the interdisciplinary research teams initiated own surveys to collect baseline data necessary for their research.Community mobilization and sensitization continued during the reporting period. The list of farmers or households interested in the project activities was revised in each community. A total of 1,783 farmers were interested, 41% of whom were female (Table 1). The first phase of a farming systems analysis in Ghana (Northern, Upper West and Upper East regions) and Mali (Bougouni and Koutiala areas) was completed by the Department of Plant Sciences of Wageningen University and Research Centre (The Netherlands) during the period. The objective of this first phase was to characterize farming systems in project intervention areas, to make farm typologies, and to find constraints and entry points for sustainable intensification and innovation at the farm level. It comprised four steps:1.Rapid characterization of farming systems by a survey.Detailed diagnosis of a representative subset of farms through a detailed survey.Model-based exploration of trade-offs and synergies within the farms, which results in set of alternative farm configurations that perform different in productive, economic and environmental performance indicators.Selection of a desirable farm configuration, as identified by the farmer and other relevant stakeholders on the basis of the performance indicators, for fine-tuning and redesigning the case study farm.The steps 2, 3 and 4 can yield suggestions and entry points for farming systems adjustments. Steps 3 and 4 were performed for the Ghana case study. The results showed a large variation in farm size and endowment in both countries. This observation stresses the need to consider farm typologies in targeting of technologies. Farms were grouped into farm types on the basis of structural and functional farm characteristics that reflect their size (surface area and livestock density), production orientation (subsistence or market) and income sources (on and/or off farm).In most regions the farmers cultivated 2-4 crops. Cereals (maize, sorghum and millet) and legumes (groundnut, cowpea and soybean) were the most important crops in Koutiala district in Mali, while cotton, sorghum and millet also occupied large areas. The crop yields reported by the farmers were extremely variable and often very low.Livestock numbers per farm differed greatly between the intervention communities within each country. Key livestock species kept were cattle, sheep, goats, domestic chickens and guinea fowl. Generally, livestock management was sub-optimal.The stated labor inputs per unit of area were variable but tended to decline with farm size. The percentage of female-headed households differed strongly between regions and was as low as 1-2% in the Northern region of Ghana, while in the Upper West and Upper East regions in Ghana on average 40-50% of the households were female-headed.The main constraints and critical points to sustainable intensification and innovation were identified as:• Household level farm productivity and on-farm income generation and returns to labor are low; in various cases food availability is insufficient during parts of the year.Women's representation in decision-making and ownership is often limited, although large differences between regions exist. Women indicated that the limited availability of food, clean water, options for sanitation and possibilities for education are important constraining factors. Moreover, limitations in opportunities for post-harvest storage and processing of farm products were reported.Limited or untimely availability of resources like seeds and fertilizers. Lack of improved crop varieties and animal breeds that are more productive or better adapted (e.g. early maturing and drought-tolerant). • Crop yields were low. Combined with the small farm areas and seasonality this resulted in food shortages in parts of the year. On the other hand, for cash crops the low productivity led to small volumes of produce for sales and income generation. Moreover, post-harvest storage losses are large in some cases.Problems with pest and weed control, in particular Striga, is an important issue.The management, storage and conservation of crop residues and animal manures were generally poor. As a consequence, the losses of organic matter and nutrients were probably large and availability of these organic resources for soil improvement was limited, which was reflected in low soil organic matter contents and soil fertility.The feeding of livestock was sub-optimal. Larger animals graze crop stubbles and rely on open and common areas for grazing. The management of grazing areas is often inadequate and availability of watering points can be limiting. Diseases are reported to affect animal performance negatively. As a result, the productivity levels of all types of animals kept on the farms (mainly cattle, goats, sheep, chickens and doves) was low.The access to training and advice on land preparation, crop cultivation, animal husbandry and farm management is often limited. In particular women indicated that possibilities for education were lacking.Farmers often reported being challenged by climatic conditions. These issues ranged from overall unfavorable conditions for agriculture, to variability and unpredictability, and trends of changes in climate.The following entry points for sustainable intensification and innovation at farm level were identified and analyzed: Manure can be stored anaerobically by covering with an impermeable sheet to reduce organic matter degradation, to avoid wash-out of nutrients in case of heavy rains and to avoid exposure to air so that ammonia volatilization is prevented. Crop residues could be harvested in a less mature stage of development and stored (conserved) in an appropriate way to preserve their feeding quality.The role of livestock on farms could be strengthened. This could contribute to nutrient cycling and the production of high-quality and high-value products.There is a strong need for education and training, and for the development of institutional arrangements and community-based organizations. These could support the development and implementation of many of the entry points mentioned above.A team of researchers from FRI, MoH and UDS led a survey on household nutrition. Five hundred and twenty two households from six intervention communities in the Northern (Cheyoli and Tibali), Upper West (Guo and Zuko) and Upper East (Bonia and Sabulungu) regions were interviewed. Data was collected on food consumption pattern, food frequency, dietary diversity, existing foods/food groups and their seasonal availability between October and November 2013. Green leaves of local vegetables were sampled from markets and farms in the Wa municipality and analyzed for micro-mineral (iron, copper, manganese and zinc) concentrations.Figure 3 shows food groups consumed by the households in the three regions. Consumption of milk, eggs and meat and meat products were very low. One reason for this is that households preferred to sell their livestock and livestock products for cash to meet family needs, e.g. to pay health and education bills. Similarly, fruit consumption was below 20% in all the regions. Legume consumption was highest in Upper East region and was around 60%, but the frequency of consumption is important to ensure adequacy.Figure 3. Food groups and percent of households consuming food groupThe micro-mineral concentrations in leaves of the traditional leafy vegetables varied among species (Table 2). The micro-mineral concentrations in some species were above the minimum requirements for humans, suggesting that promoting the consumption of the local leafy vegetables could improve dietary micro-mineral status in the communities. Research is warranted on integrated soil fertility management strategies to increase micro-mineral concentrations in the traditional leafy vegetables.The food frequency results showed that 91.2% (Northern Region), 94% (Upper East Region) and 91% (Upper West Region) consumed soybeans less than 3 times a week, while more than 60% (64.4%-88.9%) of households also consumed cowpea less than 3 times a week. The mean dietary diversity score of 4.6 out of 12 food groups differed significantly across the three regions. A higher score will indicate adequate food diversification, and hence a higher tendency to meet nutrient requirements. The results suggest the need for nutritional interventions to promote the consumption of protein source foods, green leafy vegetables and fruits. At present, most families take legumes in the form of dawadawa which is a condiment, and in isolated cases as gable, tubani and khebab. The farm-families were willing to take the needed protein from legumes, particularly soybeans, if they are taught to utilize it and are given the necessary processing equipment. This observation stresses the need for a value-chain approach for implementing project activities.Anthropometric data was collected on children up to 5 years in each household surveyed. The children were weighed and their heights were taken for the determination of their nutritional status. The World Health Organization (WHO) Anthro software was used to convert weight, height and age of child (months) into weight for age z score (WAZ), weight for height z score (WHZ) and height for age z score (HAZ). As per the agreed global standards, the following categories were used for the z-scores: Normal (Well nourished) = -1 to 0; Marginally under-weight/wasted/stunted or mildly malnourished = -2 to -1; Moderately under-weight/ wasted/stunted (Moderately Malnourished) = -3 to -2; Severely underweight/wasted/stunted (Severely Malnourished) = < -3.About 64% of children of 0-60 months were normal/well-nourished in the three regions (Table 3). More than 30% were marginally malnourished, whilst about 5% were moderately malnourished. The extent of malnutrition varied among the intervention communities (Fig. 4). It was relatively higher in the communities in the Northern Region than those in the Upper West and Upper East Regions. The results suggest that rigorous nutrition communication and promotion should accompany interventions aimed at improving household food security and incomes. Table 4 presents the levels of wasting, stunting and underweight among the children in the three regions. Averaged across regions, 72%, 43% and 45% of children aged 0-60 months were not wasted, stunted and underweight, respectively. The International Livestock Research Institute (ILRI) led a team of researchers from ARI, UDS, MOFA and KNUST in Ghana, and from ICRISAT, IER and AMEED in Mali to document existing and potential feed resources, current use and cost, and assessed gaps with respect to demands for ruminant (cattle, sheep and goats) production using the Feed Assessment Tool (FEAST).Table 5 presents constraints and opportunities for ruminant production in Ghana. Grazing and crop residues were identified as the key feed resources (Fig. 5).A similar study in six villages at Koutiala and Bougouni/Yanfolila in Mali showed that the key constraints to ruminant production were feed shortage, disease, restricted livestock mobility which hinders access to natural pasture, and housing. Therefore, livestock-related interventions should be multi-faceted including feed, animal health and housing. Grazing natural pasture accounted for 40-55% of the diet of ruminants (Fig. 6). Crop residues accounted for 20-35%, and naturally occurring and collected fodder accounted for 10-15% of the ruminants' diet. Common crop residues in the study sites included cereal (maize, sorghum, millet, rice) straw and bran, legume (groundnut and cowpea) hay, and cotton residues/byproducts (cotton grain residue, cotton seed cake). Availability and quality of these crop residues varied with season. The large part of the crop residues are normally fed to the household animals and/or sold, particularly groundnut haulm, while a small proportion is left on the field and burnt to improve soil fertility, according to the respondents.Based on area of land cultivated, the majority of the farmers were in small to medium categories (Table 6). Nearly all the households interviewed owned at least one draught animal or oxen which could be attributed to the need for animal power for cotton production (Table 7). In view of the importance of draught animal to the crop-livestock systems in Koutiala and Bougouni/Yanfolila, livestock interventions should address feeding strategies to improve the body condition of oxen in the late dry season/early wet season for field preparation. All households interviewed owned 5-25 small ruminants (sheep and goats) per household. The small ruminants are ready source of cash to meet emergency household need. Therefore, interventions to improve small ruminant production will be popular in the study sites. Two separate surveys were conducted by the University for Development Studies and the Kwame Nkrumah University of Science and Technology, respectively, to collect baseline information on the rural pig and poultry enterprise in selected Africa RISING intervention communities in Ghana. The objective was to determine major factors that affect production of rural pigs and poultry and find prospects for intensification and integration.Table 8 presents a summary of the results from the pig survey involving 114 households. Farmers had their starter stock from their neighbors. The major source of finance for farmers was from the sale of pigs. Farmers largely described housing, health and inadequate feed as major challenges. Mainly mud houses roofed with thatch are provided for pigs. According to respondents, there was a ready market for pigs. They sold mostly bigger/older pigs as and when the need arose. Middlemen, pito (local beer) brewers and butchers were the main buyers.Generally, respondents were not trained in pig production and records were not kept. There is need to develop affordable housing, formulate adequate but cheap diets, put in place good preventive health regimes and empower farmers with adequate knowledge and skills to facilitate integration of more intensive pig production with the other aspects of the farmers' agricultural enterprises.The baseline survey of 180 households showed that domestic chickens and guinea fowl kept under semiintensive management are the dominant species (Table 9). Most farmers provided mud-houses for their birds. Mating is uncontrolled, and brooding is mostly by the hens. Live birds are sold to generate cash for food, school fees or health bills. Key constraints to intensification of the poultry production system were: pests and diseases, high keet/chick mortality, predation, lack of technical know-how and feed shortages.Ashanti Black Pig tethered. Photo: A. LarbiAs part of understanding the cereal-legume cropping systems at the Africa RISING intervention communities, focused group discussions were organized in five communities (Nyangua, Samboligo, Gia, Bonia and Tekuru) in the Upper East Region by ICRISAT and SARI research teams. A total of 85 respondents (26 women and 59 men) participated.The discussions revealed various cereal-cereal and cereal-legume intercropping systems practiced by farmers in the Upper East Region (Table 10). The general practice is to interplant the component crops on the same row. Millet (especially early millet) is often planted first with the early rains before the other crops are planted later in a relay cropping system. Very little is known about improved and quality seed as a factor for yield increases, meaning that there is need for more awareness promotion on the benefits of quality seed. Therefore, no conscious effort is made at acquiring and using them. Productivity of the cereal-cereal systems has not been documented, meaning that farming systems research is required to intensify the millet-sorghum-legume cropping systems. The University for Development Studies conducted a study in Bongo District of the Upper East Region of Ghana to assess effects of improved housing on performance of chickens. Ten farmers (7 men and 3 women) were purposively sampled for the study. Three hundred male chicks (non-commercial strain) at 4 weeks of age were randomly allotted into 20 groups of 15 birds per group and assigned to two treatments using a randomized complete block design, with a farmer serving as a block. Treatment 1 or control was the traditional housing (i.e. partial confinement) and birds managed under the free-range system. Treatment 2 was the improved housing (i.e. confinement) and birds managed under the intensive system. Growth and mortality data were collected.The housed birds were 43.5% heavier than their free-range counterparts at 15 weeks of age (Table 11). This is because the housed birds had access to balanced diet ad libitum, unlike their free-range counterparts. The latter group had to scavenge for poor quality feed on the range with the occasional handful of grains supplied by the farmers. Mortality of housed birds was 19.5% lower than the control group. This could be due to better protection of the birds housed from adverse environmental conditions such as predation, accidents and contact with other diseased birds in the community.Economic evaluation showed that it was 46.2% more profitable to confine birds. Intensive rearing of poultry has been recognized as the surest way to improve productivity and profitability at the village level. However, this may require high initial capital outlay, which is often beyond the reach of most rural farmers. Thus any intervention in that respect must be combined with facilitation of access to financial support to farmers. Responses of extra-early (80-85 days), early (85-100 days) and medium (100-110 days) maturing maize varieties to different nitrogen levels were evaluated in a multi-locational trial for the second year. The trials were established on station at Manga (UER), Wa and Tumu (UWR), and Damongo and Nyankpala (NR). For each maturity group, a split-plot design with four replications was used. Main plots were five maize varieties and sub-plots were five nitrogen fertilizer rates (0, 40, 80, 120 and 160kg/ha N). Each 6row sub-plot measured 5.0m x 4.5m. Nitrogen was applied as urea in two equal doses. All plots received 60kg/ha P 2 O 5 as Triple Super Phosphate (TSP) and 60kg/ha K 2 O as Muriate of Potash (MOP) at planting. Days to tasseling, plant height and grain yield and 1000-grain weight were recorded.In all locations, the maize variety by N rate interaction was not significant for all the parameters recorded for all the maturity types. Maize variety significantly influenced grain yield at Manga and Damongo, and nitrogen use efficiency (NUE) at Wa and Manga (Table 12). For each maturity group and at each location, maize had highest NUE at 40kg/ha N and the least at 160kg/ha N. Varietal differences in grain yield could be due partly to differences in days to anthesis and tasseling, plant height, 1000grain weight and NUE.Grain yield of the three maize maturity types generally increased non-linearly in response to increasing nitrogen rates in all the locations (Fig. 7). Reduction in nitrogen use efficiency with increasing N fertilizer rate may be partly responsible for the quadratic responses. Overall, increase in N rates beyond 80kg/ha did not result in significant increases in grain yield in most sites. Nitrogen fertilizer rates between 80 and 120kg/ha may therefore be ideal to optimize maize grain yields. Cowpea grain yield on farmers' fields is below 500kg/ha due to lack of seeds of improved cultivars at affordable prices, high incidence of diseases and pests, and inappropriate agronomic practices. Applying insecticides can control pests and increase grain and fodder yields. However, few farmers use insecticides because they are costly and excessive use can harm the environment. Quantitative data on integrated soil fertility management effects on productivity of maize-cowpea rotations is limited.Trial 1 evaluated the effects of planting date, insecticide application and cowpea variety on grain yield using a split-split plot design with three replicates. Main-plots were two insecticide treatments (Fig. 8a, b), sub-plots were four planting dates (see legend in Fig. 8), and sub-sub plots were six cowpea cultivars (Fig. 8). The sub-sub-plots consisted of four rows; 5m long spaced 0.60m between rows and 0.20m between plants in a row.In Trial 2, the effects of four insecticide regimes on grain yield of six cowpea varieties were compared using a split-plot design with three replications. Main-plots were four insecticide spraying regimes listed in Table 13. Sub-plots were cowpea varieties used in Trial 1. The sub-plots consisted of 4 rows 5m long spaced 0.60m between rows and 0.20m between plants in a row.In both trials, agronomic (days to 50% flowering and maturity, number of pods per plant, number of seeds per pod, haulm and seed yields) and insect population data were collected from the two middle rows in each plot. Populations of thrips and Maruca vitrata were estimated from flower bud formation to 50% podding by bringing 20 flowers in alcohol to the laboratory to count the insects. Populations of pod-sucking bugs were estimated by counting nymphs and adults. Pod damage by pod-sucking bugs and Maruca were estimated from a sub-sample of 100 pods after harvest.Application of insecticide to control insect pests (Fig. 9b) resulted in significantly higher grain yields than no insecticide application (Fig. 9a). Grain yields were reduced significantly as planting was delayed from July to late August with the crop either sprayed or not sprayed. Spraying cowpea with insecticide once, twice or thrice during the growing season to control insect pests significantly increased grain yield in all cultivars (Fig. 9). It also reduced the population of insect pests and pod damage (Table 13).The results suggest that cowpea farmers in the NR and UER should plant their crops between mid-July and early August for better grain yields. Judicious and timely application of insecticide at flowering and full podding can provide adequate control of key pests. Varieties IT99K-573-1-1 and IT99K-573-3-2-1 have high potential for grain production in northern Ghana due to their resistance to Striga gesnerioides. Integrated soil fertility management effects on productivity of maize-cowpea rotations An Integrated Soil Fertility Management (ISFM) study was initiated in 2013 to evaluate the response of a maize-cowpea cropping system to organic (fertisoil) and inorganic fertilizers and Rhizobium inoculants. The 2013 cropping season was the set-up year and therefore it was not possible to measure rotation effect of maize following soybean that received different fertilizer treatments.The trials were conducted jointly conducted by SARI, IITA and KNUST researchers at Goriyiri (Nadowli district, UWR) and Bonia (Kassena-Nankan district, UER). The experimental design was a randomized complete block design with four replications and seven treatment combinations listed in Table 14.Rhizobium inoculants (5g/1kg of seed) and 1.5t/ha of fertisoil (organic fertilizer) were applied at planting. Recommended fertilizer rate was 25-60-30kg/ha as N, P 2 O 5 and K 2 O. The 60kg/ha P 2 O 5 as Triple Super Phosphate (TSP) and 30kg/ha K 2 O as Muriate of Potash (MOP) were applied at planting to plots that received P and K fertilizer. Plot size for each treatment was 4.5m x 5m. Plant height, days to 50% flowering, nodule number and weight, grain and stover yields, harvest index and 1000-grain weight was recorded. Farmers were actively involved in the planning, implementation, monitoring and evaluation processes.Cowpea pod and nodule numbers and yields of grain and haulm were significantly affected by soil amendment treatment at Goriyiri (Table 14). Grain yield was highest for the treatment that received a combination of inoculants, PK and fertisoil, and lowest for the treatment with inoculants and fertisoil only. This result seems to suggest some synergy between Rhizobium inoculation and PK fertilization.Grain yield was positively correlated with nodule weight (r=0.66), nodule number (r=085), pod number (r=0.84) seed number (r=0.63) as well as biomass production (r=0.98). A series of trials were conducted to evaluate options to intensify soybean production. Specific objectives were to demonstrate new soybean varieties to farmers; evaluate integrated soil fertility management effects on performance of soybean varieties in different environments; and determine farmer preferences for soybean varieties and ISFM technologies.Two trials were conducted using early-maturing (90-100 days) and late-maturing (100-115 days) soybean varieties. A split-plot design with four replications was used in both trials. Main plots were three early-maturing varieties listed in Table 15 in Trial 1, and five medium-maturing varieties listed in Table 15 in Trial 2. Sub-plots for both trials were five fertilizer treatments listed in Tables 14 and 15. The N, P and K rates were 25, 60 and 30kg/ha as N, P 2 O 5 and K 2 O, respectively. Nitrogen was applied as urea (46%N). Phosphorus was applied as Triple Super Phosphate (46%P 2 O 5 ) and K as Muriate of Potash (60%K 2 O). All fertilizers were applied in a subsurface band about 0.05m to the side of the soybean row. Plants were sown in July 2013. The early-maturing varieties were sown in six rows 5m in length and 0.6m apart, while the medium-maturing varieties were sown in six rows 5m in length and 0.75m apart. Distance between plants in a row was 5cm in all experiments with one seedling per stand. Weeds were controlled manually using a handheld hoe. Days to 50% flowering, plant height and grain yield were recorded. The two centre rows of each sub-plot were harvested at physiological maturity to determine grain and stover yields.The soybean variety and fertilizer treatment interaction was not statistically significant for any traits measured or calculated at Wa. Variety significantly affected days to flowering and stover yield of the early-maturing soybean varieties at Wa (Table 15). Stover yield of Anidaso was significantly higher than of Suong-Pungu. Rhizobium inoculation and NPK application had no significant effect on any of the variables.Anidaso had significantly more days to flowering, and higher grain and stover yields than Suong-Pungu at Bamahu (Table 16). Application of P and K fertilizer resulted in significantly higher stover yield compared to no fertilizer application. Suong-Pungu and TGX 1805-8F will be particularly useful in the drier areas in Upper East and Upper West Regions because they flower early. They could be used as a relay crop to early millet in Upper East Region. This will enable farmers to benefit from both millet and soybean cultivation in one season, particularly in Striga hermonthica-endemic and drought-prone areas.Results for the medium maturing soybean varieties are presented in Tables 17 and 18. At Wa, days to 50% flowering and grain yield varied significantly among the medium-maturing soybean varieties. Grain yield was highest for variety TGX 1834-5E or Afayak and lowest for variety TGX-1445-3E or Songda (Table 17), possibly due to the varietal differences in days to 50% flowering. Fertilizer and inoculation treatment significantly affected nodule weight and grain and stover yields. Grain and stover yields were highest with the combination of Rhizobium inoculation plus NPK fertilization and lowest when the seeds were neither inoculated nor fertilized. At Bamahu, variety had a significant effect on all the variables measured (Table 18). In contrast, Rhizobium inoculation and fertilizer application had no significant effect on any variable. Jenguma gave the highest grain and stover yields, while Songda gave the lowest.In conclusion, soybean early-maturing genotypes TGX 1805-8F and Suong-Pungu were found to have potential for grain production in drier areas due to their early flowering nature. Medium-maturing genotypes with potential for higher grain production were TGX-1904-6F and Afayak. Inoculation of seeds with Rhizobium in combination with NPK fertilizer would increase grain yields.In 2013, trials were carried out in 12 communities to evaluate a combination of variety and application of organic and inorganic fertilizers, including foliar fertilizers, in terms of soybean grain yield. The experimental design was a split-plot design arranged in randomized complete block with two improved varieties of soybean as the main plots and five integrated soil practices as sub-plots factor. Each community represented a replication. Each plot measured 5m x 4m with 2m alleys separating main plots and 1m alleys between sub-plots. Inoculated seeds of the two soybean varieties with Rhizobium at 5g of inoculants per 1kg seed were sown at 75cm by drilling except farmers' practice where no inoculation was done. Seedlings were later thinned to 5cm between plants in a row or 20 seedlings/m 2 with one plant per stand. The trial was conducted at Goriyiri (Nadowli district, UWR) and Bonia (Kassena-Nankan district, UER) using the same procedure outlined in section 2.3.2. The experimental design was randomized complete block design with four replications and seven treatment combinations listed in Table 17. Rhizobium inoculants (5g/1kg of seed) and 1.5t/ha of fertisoil (organic fertilizer) were applied at planting. Recommended fertilizer rate was 25-60-30kg/ha as N, P 2 O 5 and K 2 O. The 60kg/ha P 2 O 5 as Triple Super Phosphate (TSP) and 30kg/ha K 2 O as Muriate of Potash (MOP) were applied at planting to plots that received P and K fertilizer. Plot size for each treatment was 4.5m x 5m. Plant height, days to 50% flowering, nodule number and weight, grain and stover yields, harvest index and 1000-grain weight were recorded. Farmers were actively involved in the planning, implementation, monitoring and evaluation processes.Soybean plant height, nodule numbers and yields of grain and stover were significantly affected by soil amendment treatment in Goriyiri (Table 20). Grain and stover yields were highest when inoculants, PK and fertisoil were applied and lowest when no soil amendment was applied. At Bonia, the soil amendments had similar significant effect on the agronomic traits of soybean. Grain yield was highest with inoculation plus PK suggesting some synergy between Rhizobium inoculation and PK fertilization, and lowest when only Rhizobium inoculation was applied (Table 20). Soybean grain yield was positively correlated with plant height (r=0.60) and biomass production (r=0.82). Twelve lines of each of the medium-maturing and dual-purpose cowpea types were evaluated in separate trials using a randomized complete block design with three replications. Each plot measured 4m x 4m with 1m alleys between plots and 2m alleys between replicates. Seeds were sown at 75cm x 20cm apart and within rows respectively. Two seeds were sown per stand.Pre-emergence herbicide was applied immediately after sowing to control weeds. Weeding was done at 4 and 7 WAP. Cymetox Super (30g of Cypermethrin and 250g of Dimethoate of active ingredient per liter), a systemic and contact insecticide for the control of insect pest on a range of field crops and vegetables, was applied at the rate of 1.5l/ha for insect pest control. Cymetox Super was replaced with Lambda Super 2.5E.C (25g of Lambda-Cyhalothrin) in the three spraying regime during the third spray to prevent insects developing immunity to the first chemical.Grain yield of the medium-maturing (Fig. 10a) and dual-purpose (Fig. 10b) cowpea types varied significantly among the genotypes in all regions. Yields in the drier Upper East region were generally higher than the Northern and Upper West regions, possibly due to lower insect pest damage. Averaged across regions, medium-maturing genotypes IT07K-318-2, IT08K-150-2 and IT08K-180-7; and dualpurpose genotypes IT09K-321-21, IT09K-456 and IT08K-126-19 were identified to have potential for grain production in northern Ghana.Sixteen early-maturing soybean genotypes were evaluated at Botingli, Siriyiri and Samboligo in the NR, UWR and UER, respectively. The same number of medium-maturing genotypes was established in separate trials at Duko, Passe and Bonia in the NR, UWR and UER, respectively. In both trials, a randomized complete block design with three replications was used. Each plot measured 4m x 4m with 1m alleys between plots and 2m alleys between replicates. Seeds were drilled at 75cm apart and were later thinned to 20 seedlings per meter. Pre-emergence herbicide (Lumax 537.5 SE) was used at 4l/ha to control weeds whiles hand weeding was done 5-6 weeks after sowing. Days to 50% flowering, nodulation, pest and diseases, plant height at harvest, days to maturity, dry pod weight and grain yield were recorded.Grain yield varied significantly among the early-maturing (Fig. 11a) and medium-maturing (Fig. 11b) soybean genotypes in all the regions. Grain yield of the early-maturing genotypes was higher than the late-maturing in all regions, possibly because the rains started late and planting was delayed. Grain yield in the Upper East Region was generally lower than in the other regions probably due to the differences in the length of the growing season. Averaged across regions, soybean genotypes with potential for grain production were the early-maturing genotypes TGX-1990-55F, TGX-1990-57F and TGX-1990-37F; and the late-maturing genotypes TGX-1990-80F, TGX-1990-47F and TGX-1989-42. A team from ICRISAT and SARI established field trials at Tingoli, Sabulungo and Nyagli in the NR, UER and UWR respectively to evaluate the performance of 10 groundnut genotypes consisting of eight aflatoxin resistant lines from ICRISAT-Mali, one improved variety (Nkate-SARI) and a popular local variety (Chinese). Grain and haulm yields varied significantly among the groundnut genotypes (Fig. 12). The preliminary results showed that the farmer variety and the aflatoxin resistant genotypes ICGV-94379 and ICGV-91317 have potential for grain and fodder production, whilst the aflatoxin resistant genotype ICVG-91315 and the released variety NKATESARI have potential for fodder production.Figure 12. Grain and haulm yield of aflatoxin resistant groundnut genotypes at Sabulungo, Upper East Region, Ghana, 2013Eleven hybrids were compared with the commonly cultivated local sorghum in the area using an Alpha design at Manga in the UER. The hybrids were sown on ridges in six rows of 5m in length and 0.75m apart. Three seeds per hill were planted at 0.30m apart and later thinned to two plants per hill. Basal fertilizer (15:15:15) was applied at the rate of 38-38-38kg/ha as N, P 2 0 5 and K 2 O. Top-dressing was done 4 weeks after planting at the rate of 26kg/ha N using sulphate of ammonia. Data were collected from the two centre rows.Genotypic differences were detected for plant height, grain yield, and harvest index (Table 21). The shortest hybrid was IPSA1527530 while the tallest was Sewa. Mean grain yield was lowest for Soumalemba and highest for IPSA Golofing. Mean grain yields of Fadda, Yamassa and IPSA Golofing were 37-57% higher than the local variety Kadaga. Grain yield was positively correlated (r=0.94) with the harvest index (grain yield*100/total biomass). Grinkan Yerewolo and the local variety were the most preferred by farmers whilst IPSA156731 was the least preferred. Kadaga was preferred for its brown grain that is ideal for brewing Pito. The okra genotypes were planted at a spacing of 30cm between plants in rows 75cm apart, replicated two times with a plot size of 4m x 8m. Plant counts at two weeks after planting and at harvesting; plant height; days to 50% flowering and 50% fruiting; and number and weight of fruits were recorded.Fruit yield varied significantly among the okra genotypes (Fig. 13). Genotypes NOKH 1002, NB-55-Srivan, NOKH 1003, NOKH 1004, AAK, EX-makutopora and FV-Unn-manna were found to be early-maturing (50% flowering 40-50 days after planting); Sasilon, ML-OK-16, ML-OK-37, TZ-SMN-86, Kpora-napon and Kpora-nasong were of the medium-maturity type (attained 50% flowering after 50 days of planting); while genotypes ML-OK-16, ML-OK-10, P1496946, FV-Unn and FV-Kpazeya were late-maturing, i.e., attained 50% flowering after 60 days of planting.High yield, early maturity, multiple harvest frequency and drying quality were identified by farmers as the most important selection criteria, especially under irrigated dry season production. Other criteria included prolonged tenderness, fruit size, price, taste, fruit texture and tolerance to field stress. Based on farmer preference and performance, genotypes NOKH 1004, NB-55-SRIVAN, Sasilon and NOKH 1002 were selected for further evaluation on farmers' fields. Six tomato genotypes (Duluti, LBR7, LBR 16, LBR17, Tengeru 97 and Keneya) were evaluated on-station at Manga in the Upper East Region under rainfed condition using a randomized complete block design with three replications. Seeds were planted in June 2013 in rows 0.75m apart and 0.30m between plants within a row. Plant counts 2 weeks after planting and at harvesting; plant height at 4, 8 and 12 weeks; days to flower initiation; days to 50% flowering and 50% fruiting; number of fruits at 70, 80, 90 and 100 days after planting; and fruit size were recorded.Fruit yield varied significantly among genotypes (Fig. 14). Genotypes LBR 17, LBR 7, LBR 16 and Keneya were found to have potential for production under rain-fed conditions. Limited access to quality seed of improved varieties, partly due to non-availability of seeds at affordable prices, was listed by farmers as a major constraint to crop production during the community analysis in Ghana and Mali. Therefore, linkages were established with public and private sector partners to produce and/or multiply seeds -breeder, foundation and certified seeds. The objective was to increase the accessibility of farmers to quality seeds of improved varieties. The seed multiplication plots were also used to demonstrate new crop varieties and to train farmers on good practices for vegetable production.In Ghana, IITA scientists partnered with CRI to produce breeders' seeds; with GLDB to produce foundation seeds; and with the Seed Producers Association of Ghana, SARI and community-based seed producers to produce certified seeds of cereals and legumes (Appendix 1). In Mali, a team consisting of AVRDC and AMEDD staff produced seeds of three vegetable species (Appendix 2). The breeder seeds will be used for production of foundation seeds, whilst the certified seeds will be used for participatory research with farmers in the intervention communities.As stated in Section 1.3, participatory approaches are used to implement the project activities, disseminate new technologies and promote knowledge exchange. For example, the \"mother and baby\" approach was used to disseminate several technologies and combinations of technologies in Ghana and Mali. In Ghana, for example, the following combinations of technologies were demonstrated to more than 700 farmers: (i) maize varieties and fertilizer application; (ii) soybean varieties and integrated soil fertility management; and (iii) cowpea varieties and insecticide spraying regimes. Similarly, in Mali the approach was used to reach out to more than 500 farmers. Farmers Field Days and Farmers Field Schools were jointly organized by SARI and AVRDC on vegetable production for farmers from Azum-sapielga, Badu, Boku, Tekuru, Bonia, Tampezua, Mognori, Nyorigu, Manga and Nayorko communities in the UER in Ghana. More than 250 farmers participated (Table 22). The Ministry of Food and Agriculture organized six field days for over 1000 farmers to demonstrate several technologies in mother trials in NR, UER and UWR of Ghana.Farmers field day in UWR, Ghana, and Striga infested sorghum crop in UER, Ghana. Photos: A. LarbiIn Mali, ICRISAT in partnership with AMEDD and Access Agriculture, an international NGO, distributed \"Fighting Striga\" DVDs to Africa RISING action villages. They studied the early impacts of the distribution and use of the DVDs and videos on partner dynamics, farmer knowledge and experimentation in Mali, including in several Africa RISING villages. A contract was signed with the Cinema Ambulante Numerique for the evening large-screen viewing of five \"Fighting Striga\" videos in all Africa RISING villages.In Ghana, ICRISAT partnered with MoFA and Access Agriculture to produce 5,000 DVDs on \"Fighting Striga\" in the Kusaal, Frafra, Dagbaari and English languages. The video was launched in Tamale on 17 July. Three videos -\"Striga biology\", \"Grow row by row\", and \"Let's talk money\" -were shown in five Africa RISING intervention communities (Nyangua, Bonia, Tekuru, Samboligo and Gia) in UWR. A review and planning meeting was held in Tamale, Ghana, on 11 December 2013. From 3-5 February 2014, the annual review and planning meeting for Ghana and Mali was held in Bamako, Mali. Monthly partner meetings in the three regions of Ghana have been initiated to better coordinate and oversee the activities.An agricultural economist for the two IITA-led regional Africa RISING projects has been recruited as international staff and will start work out of the Tamale, Ghana office in April 2014. The Project Administrator resigned in November 2013. This position was merged with the Project Accountants' position. The communications specialist hired in November 2013 for the two regional projects resigned and will leave in April 2014. The position will be upgraded to allow recruitment of a highly qualified international staff member able to address the growing communication needs.A Memorandum of Understanding was signed with Heifer International, an NGO dealing with livestock related issues, in November 2013. The MoU with ACDI-VOCA expired in December 2013 due to the ending of the ADVANCE project. There is interest by both parties to renew the MoU should the project be extended for another phase.The Africa RISING West Africa project is co-located with the country office of the N2Africa and SARD-SC projects at the IITA premises in Tamale.The activity coordinator in Mali resigned from the partner institution, ICRISAT, early 2014. He has been replaced by a new staff member. This has been the second change in leadership of the Mali activities within 14 months, with associated implications for institutional knowledge and continuity of activities and relationships.The USAID ban on supporting government institutions in Mali has been lifted in October 2013. Therefore, the project can partner again with IER, a key national research partner.In the absence of data from the baseline surveys to be carried out by IFPRI, the different teams had to carry out a number of smaller surveys to inform their research activities. IFPRI has now made preparations to carry out the baseline surveys in April/May 2014 in both countries.The regional M&E officer, a consultant hired by IFPRI, resigned in January 2014 leaving the position again vacant and disrupting the collaboration with Africa RISING implementation partners in both countries.The USAID Mali Mission is investing approximately US$9,000,000 in large-scale technology dissemination to boost the sorghum and millet value chains in Sikasso and Mopti Regions of Mali. The Mission has asked ICRISAT to prepare a proposal for 36 months. Though funds will be channeled directly to ICRISAT, this project will become a component of Africa RISING with reporting to USAID through the Africa RISING Coordinator for West Africa. The Africa RISING regional management will be represented on the Management Committee of this new component. Start of activities is expected immediately.","tokenCount":"8004"} \ No newline at end of file diff --git a/data/part_3/0019302683.json b/data/part_3/0019302683.json new file mode 100644 index 0000000000000000000000000000000000000000..22c9b8e4a2fcfa78103a285d8c75d583490a3d50 --- /dev/null +++ b/data/part_3/0019302683.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"e7f3a8265de79aab1169636b00947b99","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/b0fb536a-d7bd-46d0-9bc6-46bb3762c255/content","id":"-623882590"},"keywords":["Heterodera avenae, Heterodera latipons, molecular Heterodera avenae","Hl -Heterodera latipons DW -Durum Wheat","W -Wheat"],"sieverID":"523c6281-8ff1-4cc9-b267-83569fed252b","pagecount":"9","content":"Morphological and molecular diversity among 11 populations of cereal cyst nematodes from different wheat production areas in Morocco was investigated using light microscopy, species-specific primers, complemented by the ITS-rDNA sequences. Morphometrics of cysts and second-stage juveniles (J2s) were generally within the expected ranges for Heterodera avenae; only the isolate from Aïn Jmaa showed morphometrics conforming to those of H. latipons. When using species-specific primers for H. avenae and H. latipons, the specific bands of 109 bp and 204 bp, respectively, confirmed the morphological identification. In addition, the internal transcribed spacer (ITS) regions were sequenced to study the diversity of the 11 populations. These sequences were compared with those of Heterodera species available in the GenBank database (www.ncbi.nlm.nih.gov) and confirmed again the identity of the species. Ten sequences of the ITS-rDNA were similar (99-100%) to the sequences of H. avenae published in GenBank and three sequences, corresponding with one population, were similar (97-99%) to H. latipons.Cereal cyst nematodes (CCN) form a group of several closely related species. Three species (Heterodera avenae, H. filipjevi and H. latipons) are among the economically most important cyst nematode pests of cultivated cereals (Smiley and Nicol 2009). Heterodera avenae is widely distributed in temperate wheat-producing regions throughout the world (Smiley and Nicol 2009). Heterodera latipons is found in the Mediterranean regions, eastern and northern Europe, the Middle and Near East, North and South Africa, Asia and North America (Greco et al. 2002;Abidou et al. 2005;Smiley and Nicol 2009), whilst H. filipjevi has been reported from eastern and northern Europe, Central and West Asia, the Middle East, the Indian subcontinent and North America (Rumpenhorst et al. 1996;Rivoal et al. 2003;Holgado et al. 2004). Earlier reports from Morocco mention only H. avenae as representative of the CCN. The nematode was detected for the first time in 1951 in an irrigated wheat (T. aestivum) field in the Gharb region (Ritter 1982). More populations of H. avenae were found during later surveys (Ammati 1987;Mokrini et al. 2009). In all of these Moroccan studies, cysts were identified using only morphological features; morphometrical and molecular identification were not considered.The taxonomy of the H. avenae group and its members has been the object of several review papers (Ferris et al. 1994;Handoo 2002). Species belonging to this group form a complex, and invade and reproduce only in roots of cereals and grasses (Subbotin et al. 1999). Within the H. avenae group, only minor morphological and morphometrical differences distinguish the species from each other (Subbotin et al. 1999). The increasing number of species in this group makes morphological and morphometrical identification more difficult because it is time consuming and requires appropriate skills (Subbotin et al. 2003). Nevertheless, accurate identification of members of the H. avenae group is needed as an initial step in designing effective control measures. This is especially important when searching for potential sources of host-plant resistance against Heterodera species (Dababat et al. 2015). Furthermore, rapid and accurate identification is highly significant for quarantine purposes. For these reasons, the development of molecular methods to identify members of the H. avenae group has been the goal of numerous studies. The internal transcribed spacer regions of ribosomal genes (ITS-rDNA) were found to be useful to differentiate species within the H. avenae group (Subbotin et al. 2000;Zheng et al. 2000). Additionally, the comparison of sequences of the ITS-rDNA region of unknown species with those published and deposited in GenBank has facilitated fast identification of most species of cyst-forming nematodes (Subbotin et al. 1999(Subbotin et al. , 2000)).Because Moroccan CCN have mainly been identified on the basis of their morphology very little information is available on the diversity and variability of their morphometrics and genetics. Only Subbotin et al. (2003) published three sequences of H. avenae from Morocco. To fill these gaps, we conducted a survey in the major wheat growing areas in Morocco with the following main objectives: (a) to collect, identify and compare both cysts and second-stage juveniles (J2s) of populations of CCN using morphological, morphometrical and molecular approaches including species-specific polymerase chain reaction (PCR) and sequencing of the ITS-rDNA expansion segments, and (b) to determine the phylogenetic relationships between these populations.Sampling was carried out during the wheat-growing season (May to June 2011) in four different regions representing the main wheat growing areas of Morocco. Soil and root samples were taken from 75 cereal fields. Sixty-nine samples were taken from wheat fields; the remaining six samples were obtained from barley fields. Samples were taken where wheat or barley plants showed chlorotic, yellowing leaves and poor growth. Each sample (soil and root) was composed of 15 subsamples randomly collected per field. Cysts were extracted from each soil sample using the modified Cobb decanting and sieving method (Cobb 1918). After extraction, cysts were stored at 4°C.Species identification was based on cyst vulval cone structures and measurements, as well as morphometric features of the J2s. The vulval cone of the cysts was cut and prepared for microscopic examination according to Hooper (1986). For each population, cones of 10 mature cysts were mounted in glycerine jelly. For each population, juveniles were obtained from the same cysts, killed by gentle heat (warming up enough to kill the nematode but not too long not to deform or destroy it), fixed in triethanolamine formalin solution (TAF), embedded in glycerol; permanent slides were made immediately. Ten J2s of the selected cyst populations were examined and measured using an Olympus BX51 compound microscope.For each population, a single J2 isolated from a single cyst was transferred into an Eppendorf tube containing 25 µl double distilled water (ddH 2 O) and 25 µl nematode lysis buffer [final concentration: 200 mM NaCl, 200 mM Tris-HCl (pH 8), 1% mercaptoethanol and 800 µg Proteinase K]. The tubes were incubated at 65°C for 1.5 h and at 99°C for 5 min, consecutively (Holterman et al. 2006). The extracted DNA suspension was stored at −20°C or used immediately for DNA amplification.The species-specific primers set AVEN-COI-forward (5'-GGG TTT TCG GTT ATT TGG-3') and AVEN-COI-reverse (5'-CGC CTA TCT AAA TCT ATA CCA-3') (Toumi et al. 2013a) together with the universal primers developed by Ferris et al. (1993), i.e. forward primer 5'-CGT AAC AAG GTA GCT GTA G-3' and the reverse primer 5'-TCC TCC GCT AAA TGA TAT G-3' , were used to detect H. avenae in the DNA extracts of 11 populations. Extracts that were not identified as belonging to H. avenae were used in a PCR with the species-specific primers set Hla-acti-F (5'-ACT TCA TGA TCG AGT TGT AGG TGG ACT CG-3') and Hla-acti-F (5'-ACC TCA CTG ACT ACC GAT GAA GAT TC-3') (Toumi et al. 2013b) along with the universal reverse primers (Ferris et al. 1993) to eventually characterise H. latipons.The PCR used to detect H. avenae was run as follows: 2 µl DNA extract (see above) were added to the PCR reaction mixture containing 21 μl ddH 2 O, 25 μl 2× DreamTaq PCR Master Mix (Fermentas Life Sciences, Germany) and 1 µM of each of the primers AVEN-COI (Toumi et al. 2013a) and Ferris et al. (1993). The ther mal cycler programme consisted of 5 min at 95°C, 30 cycles of 30 s at 94°C, 30 s at 58°C and 45 s at 72°C, followed by a final elongation step of 8 min at 72°C. For the detection of H. latipons, 2 µl of the DNA extract was added to the PCR reaction mixture containing 21 µl ddH 2 O, 25 µl 2× DreamTaq PCR Master Mix (Fermentas Life Sciences, Germany), and 1 µM of each of the primers Hla-acti (Toumi et al. 2013b) and Ferris et al. (1993). The programme of the thermal cycler consisted of 5 min at 95°C; 50 cycles of 30 s at 94°C, 45 s at 50°C and 45 s at 72°C, followed by a final elongation step of 8 min at 72°C.The ITS-rDNA region was amplified using the primers 5'-CGT AAC AAG GTA GCT GTA G-3' and 5'-TCC TCC GCT AAA TGA TAT G-3' (Ferris et al. 1993). The purification process was done as described by the manufacturer's instructions (Wizard  SV Gel and PCR Clean-Up System Kit, Promega). DNA from each sample was sequenced (Macrogen, Seoul, South Korea) in both directions to obtain overlapping sequences of both DNA strands. The sequences were edited and analysed using software packages Chromas 2.00 (Technelysium, Helensvale, QLD, Australia) and BioEdit 7.0.4.1 (Hall 1999). Finally, all sequences were blasted in GenBank (Sequin v. 9.00, http://www.ncbi. nlm.nih.gov/). Twenty-nine ITS sequences of H. avenae and H. latipons (13 new and 16 from GenBank) were aligned using Clustal W (Thompson et al. 1994) and visually checked. Differences between sequences were estimated using the DNA distance option provided by BioEdit sequence alignment editor (Hall 1999). The alignment was imported into the software package Mega 5.0; after checking 24 different nucleotide substitution models, the model with the lowest BIC score (Bayesian Information Criterion) was retained for constructing a 60% consensus Neighbour-joining tree. To determine statistical consistency of the classification, bootstrap analysis using 1,000 bootstrapped data sets was performed.The survey yielded 11 Heterodera populations (Table 1). Ten populations were monospecific for H. avenae and one for H. latipons.Mostly lemon-shaped, with a protruding neck and vulvar cone. Cyst wall -dark brown, bearing a zig- Bullae in all populations. The cyst of populations H01, H03, H07 and H08 -slightly bigger than other populations (Table 2).Body -cylindrical, head -slightly offset, tapering round tail tip. Stylet -strong with shallow anteriorly concave basal knobs. Body length -503 to 640 µm; stylet length -22.3-27.9 µm; anteriorly concave basal knobs. Lateral field with four incisures (Table 3).This species was detected in 10 populations (H01, H02, H03, H05, H06, H07, H08, H09, H10, H11). These populations were morphologically and morphometrically similar to populations described previously (Handoo 2002;Subbotin et al. 2003).The cysts (n = 10) had the following characteristics: lemon-shaped; cyst wall partially transparent, between light and dark brown; ridges with zigzag pattern. Bifenestrate vulval cone, body length without neck 590 μm (551 to 632 μm), body width -393 μm (310 to 490 μm), neck length -75 μm (65 to 90 μm), fenestra length -64 μm (60 to 72 μm) and width -21 μm (18 to 25 μm), underbridge length -96 μm (85 to 115 μm), vulval slit length -8 μm (7 to 9 μm), vulva bridge width -27 μm (24 to 33 μm), and bullae absent. The bifenestrate cysts with a strong underbridge and no bullae.The J2s (n = 10) had the following characteristics: cylindrical head slightly offset, round tail tip tapering.Compared with H. avenae bodies -slightly shorter and short hyaline terminal tail. Body length -445 μm (412 to 472 μm), body width -19 μm (19 to 21 μm), stylet length -24 μm (23 to 25 μm), four lateral lines, tail length -50 μm (46 to 54 μm), and hyaline terminal tail -28 μm (24 to 31 μm).Only one population of H. latipons was detected (Ain Jmaa, Saiss). The morphometrics and morphological characters corresponded to those reported by Handoo (2002).The H. avenae-specific primers PCR (AVEN-COI) amplified a band of 109 bp for 10 samples (H01, H02, H03, H05, H06, H07, H08, H09, H10 and H11) (Fig. 1). This means that out of 11 populations, 10 populations were molecularly identified as H. avenae. For the sample (one population) not identified as H. avenae, the H. latipons-specific primers (Hlat-act) amplified a specific band of 204 bp.A comparison of ITS-rDNA sequences of H. avenae and H. latipons populations among themselves and with sequences of Heterodera species available in GenBank is presented in Figure 2. The comparison confirmed the identification of the species using morphological features and species-specific PCR. Ten sequences of the ITS-rDNA were similar (99-100%) to the sequences of H. avenae published in Gen-Bank (AY148363, AY148364, AY148360, AY148359, AY148361, AY148362, AY148354, AY148358, AY148367, AY148368, AY148369) and three sequences (JQ319035, JQ319036 and JQ319037) were similar (97-99%) to H. latipons. On the basis of the topology of the calculated majority rule, 60% consensus Maximum Likelihood tree for all the Moroccan populations Fig. 2. The topology of the majority rule 60 consensus Maximum Likelihood tree for all populations studied with the addition of Heterodera populations obtained from GenBank based on the sequence alignment of the ITS-rDNA. For the list with the abbreviations of the population codes see Table 1 collected in the survey and the three Moroccon populations in GenBank (AY148367, AY148368, AY148369), Subbotin et al. 2003 and 16 Heterodera spp. from Gen-Bank, two major groups of Heterodera were revealed (Fig. 2).Two species, viz. H. avenae and H. latipons were detected during the survey of cyst nematodes in the major cereal-cultivating areas of Morocco. The latter species was detected for the first time in the country; it was found in a wheat field in Ain Jmaa (Saiss) (Mokrini et al. 2012). Previous surveys in the area had revealed the presence of H. avenae only (Ammati 1987;Mokrini et al. 2009). In this study, cysts of H. avenae were found only in wheat fields (Saiss, Chaouia and Zaers regions of Morocco) with two species of root-lesion nematodes (Pratylenchus penetrans and P. thornei) (Mokrini et al. 2016). However, the absence of cysts in barley fields is probably related to the rotation with vegetables or food legumes, practiced in these fields. Moreover, farmers in the main cereal growing areas of Morocco prefer to grow wheat, so fewer fields of barley were sampled, hence reducing the chances for detecting infestations with cysts. Both species were distinguishable easily on the basis of the cyst morphology. dollahi (2009) reported that the Indian populations of maize cyst nematodes were identified as H. zaea based on morphological and morphometric features. Species-specific primers for PCR have been developed to complement the traditional species identification of H. avenae (Toumi et al. 2013a;Yan et al. 2013) and H. latipons (Toumi et al. 2013b). Several genes were successfully used to identify many species of Heterodera (Subbotin et al. 1999;Yan et al. 2013). When using the species-specific primers developed for both H. avenae and H. latipons (Toumi et al. 2013a, b) we obtained the characteristic bands of 109 bp and 204 bp, respectively, confirming their morphological identification. This confirms the specificity of the primer sets.In addition to the morphology, morphometric, species-specific primers, the sequence comparison of the ITS region clearly separate the Moroccan H. avenae from H. latipons. This rDNA region has been commonly used to separate nematodes at the species level, including the genus Heterodera (Subbotin et al. 2003). The results reported here did not show any intraspecific polymorphism between Moroccan populations of H. avenae based on the ITS sequences. These results are in agreement with Baklawa et al. (2015) who found that H. avenae populations originating from different localities of Egypt clustered together in the same group and had high similarities to each other. However, polymorphism among different populations of both H. avenae and H. latipons had been reported previously (Subbotin et al. 1999;Madani et al. 2004). In our study, based on data of the ITS region, the Moroccan populations of H. avenae clustered with H. avenae populations from Europe and Asia. The data also confirmed previous results in the phylogram presented by Madani et al. (2004), in which a Moroccan population of H. avenae clustered with populations from France, Turkey and Israel. Moreover, the three H. latipons sequences from Morocco obtained from the same population were identical to each other and also to a sequence in GenBank from a H. latipons population from Jordan (HM560790). This is the first report providing the integrated morphometric, morphological and molecular characterization of cereal cyst nematode populations from Morocco. Further investigations are necessary to identify the pathotypes of the H. avenae and H. latipons populations of the Saiss, Gharb, Chaouia and Zaers regions of Morocco, as well as suitable resistance sources to be used in cereal breeding programmes.","tokenCount":"2618"} \ No newline at end of file diff --git a/data/part_3/0027732426.json b/data/part_3/0027732426.json new file mode 100644 index 0000000000000000000000000000000000000000..802a7761a9a0e98e9cbcf621ba9cb086a9fe9ba4 --- /dev/null +++ b/data/part_3/0027732426.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"d314d26ee5a33c726bbb7662efa1146a","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/01fc71ca-528b-4244-934f-cdb3eeed46b4/retrieve","id":"1890201049"},"keywords":["t '\"''\"","l • . ••¡5 /Ht' • yic• ld:","WI• J 't'","> r•rw r•.t 1 :ly :,t ('h :llnph i t•","¡ :tttd M .i:","u)",", ('J':,lJJ ••:•. l -b)",",,., :'-1(• x H-'/ , ? '","-","• x セ ᄋ M _ L @ la","t, n 11","._' • '1h Al.:> /'.rw.•d: •r-1.(•.-, ::pot f.' IW Com1n 3.1 ng/ml. the day of the last PGF2α injection than did cows with low progesterone levels (56 %).The fertility of estrus, induced with different analogues of prostaglandin was reported to be similar to that of estrus induced with PGF2α (Martinez and Thibier, 1984;Seguin, et al., 1985). However, El-Menoufy and Abdou (1989) reported that the estrus synchronization rate was higher in cows treated with cloprostenol (90 %) when compared to cows treated with prostaglandin (82%). Schams and Karg (1982) compared the luteolytic action of alfaprostol, cloprostenol, prosolvin and tiaprost in heifers and reported that there was difference among the various analogues concerning their luteolytic action on the CL.Wenzel, (1991) reported that a greater proportion of cows with unobserved estrus show luteolysis and behavioral estrus when treated with PGF2α and fenprostalene than cows treated with cloprostenol (Colazo, et al., 2002)..Use of PGF2α for synchronization of estrus had less success in Bos indicus when compared to Bos taurus (Hardin and Randel, 1982). Hansen, et al., (1987) reported that Brahman heifers required higher dose of alfaprostol than Brahman cows for synchronization of estrus. Interval to estrus after PGF2α is affected by age and breed (Burfening, et al., 1978) and season (Britt, 1979). (Britt, 1979) recorded the influence of season in response to PGF2α affects the estrous behavior and conception rate. They recorded a high conception rate when synchronization program was conducted during July (50 %) than in December (20 %).The effect of genotype (breed) on mounting activity and duration of expression of estrus were reported in many previous experiments. Plasse, et al., (1970) (Lamothe, et al., 1995), a good part due to genetics.The luteolytic action of PGF2α is used considerably as a drug for estrus synchronization and controlled breeding schemes with the objective to improve the reproductive performance of dairy cows. However, a proportion of failures occur, mainly cows not exhibiting estrus within the expected time period following the injection of PGF2α (Wenzel, 1991). The reasons for the failure of luteolytic action of PGF2α are reviewed below.Gynaecological examination by way of rectal palpation of ovary is often done to detect a mature CL before PGF2α administration (Wenzel, 1991). One major reason for decrease in the success of estrus synchronization following administration of prostaglandin is due to the unreliability of CL palpation by rectal examination (Ott, et al., 1986). The accuracy of rectal palpation in determining the presence or absence of mature CL has been reported by various authors (Watson and Munro, 1980;Mortimer, et al., 1983). Even though the handling serum (Vahdat, et al., 1979;Fahmi, et al., 1985) and plasma (Vahdat, et al., 1984) samples have been shown to affect progesterone assay results, the concentration of progesterone in plasma (Boyd and Munro, 1979), Serum (Mortimer, et al., 1983) or milk (Watson and Munro, 1980) was used as the standard against which palpation for the presence or absence of mature CL was judged. Ott, et al., (1986) showed that there was only 77 % agreement between diagnosis of CL by experienced palpator and the progesterone concentration. Further, they reported that identification of a CL by rectal palpation was 85 % accurate and no CL was false as many times as it was true. Whereas, Seguin, et al., (1978) and Dailey, et al., (1986) reported palpation error up to 6 % during identification of a CL by rectal palpation. Similarly, Kelton, et al., (1991) reported that the success of estrus synchronization depends on the accurate identification of a mature CL by rectal palpation.Another reason that affects the potential use of PGF2α in improving the pregnancy rate in the herd is due to the presence of often a very high number of cows in estrus at a given time after the administration of PGF2α for synchronized estrus, which reduces the estrus detection efficiency in the herd (Seguin, et al., 1985).It has been shown that there is a positive correlation between the level of progesterone in plasma (Lucy, et al., 1986;Folman, et al., 1990;Stevens, et al., 1993) or in milk (Dailey, et al., 1986) and the conception rate in PGF2α induced estrus indicating that the conception rate in cows following PGF2α injection has been positively correlated with the plasma concentration of progesterone that is reached during the days preceding the luteolysis (Folman, et al., 1990). Stevens, et al., 1993, observed that the efficacy of prostaglandin as luteolytic agent is reduced when it is administered along with GnRH.Another limiting factor in the use of PGF2α, is the variation in the duration of onset of estrus after the injection of the drug and estrus is not being precisely synchronized. This duration of onset of estrus following the injection of PGF2α ranges from 2 to 5 days in cattle (Watts and Fuquay, 1985;Dailey, et al., 1986). When PGF2α is administered to the cows having functionally mature CL, 85 to 95 % of the cows would be in estrus within Day 7 of injection (Macmillan and Henderson, 1983;Armstrong, et al., 1989;Folman, et al., 1990;Rosenberg, et al., 1990) and 70 to 90 % of these cows will exhibit the estrus on Day 3 to 5 after the injection of PGF2α (Ferguson and Galligan, 1993). This variation in the time of ovulation is the major obstacle, which causes substantially lower pregnancy rate per AI in timed insemination when compared to AI after a detected estrus induced by PGF2α in lactating dairy cows (Lucy, et al., 1986;Stevenson, et al., 1987;Archbald, et al., 1992).The synchronization protocols are measured by synchronization rate (the percentage of females detected in estrus compared with the total number treated), conception rate (the percentage of females becoming pregnant compared with those exhibiting estrus and inseminated during the synchronized period) and pregnancy rate (the percentage of females becoming pregnant compared with the total number treated) (Lucy, et al., 2004;Lamb, et al., 2006).The and West, respectively. The altitude of the district ranges from 1800 to 3200 m.a.s.l.(WOARD, 2014). The study site or tabia (Peasant association) was Baati May Mesanu.Farmers practice mixed farming system comprising crop, livestock, and agro-forestry sub-systems. Livestock husbandry is the main integral part of the farming system of the district (WOARD, 2014). According to the national agro-ecological zonation, the study area falls under the Central Cereal Production Zone, classified as wheat and barley production area with uni-modal rainfall pattern (USAID, 2000). The annual rainfall of the wereda varies from 350 to 650 mm while the rainfall pattern is erratic and unpredictable.Out of the total annual rainfall greater than half falls between July and August. The mean minimum and maximum temperature ranges from 8 to 25 0 C (WOARD, 2014).Atsbi Wemberta district is located in Eastern zone of Tigray National Regional State at 13 0 36' and 14 0 06' north latitude and 39 0 39' and 39 0 48' east longitude. Geographically, it is located between 13 0 46' -13 0 59' N latitude and 39 0 36'-39 0 42' E longitude (WOFP, 2014). The altitude ranges from 1900 -2460 meters above sea level.The study site or tabia (Peasant association) is Genfel. The livelihood of all inhabitants of the district fully depends on subsistent agriculture. The dominant types of agriculture in the district is mixed crop livestock farming system, but small scale rain fed crop farming is the main pillar of livelihood in the district. The area exhibits uni-modal type of erratic and unreliable rainfall distribution which occurs between June and August ranging from 350-450m.m. Besides to the major rain fed farming, irrigation is also practiced in some areas especially since 2005 due to the high attention given by the government to water harvesting and utilization (WOARD, 2014). Annual temperature varies from 17 -23 0 c maximum monthly average temperature is May/June, whereas the minimum temperature is in October and December (WOFP, 2014). The experimental animals includes a total of 240 local and crossbred cows (parity ranging between 1 and 5 and postpartum period > 60 days) and heifers having body weight above 230 kg were selected and used. Two breeds local (n= 120) and crossbred (n=120) were used. Their body condition score at the beginning of the experiment was 4 -6 on a scale of 1 to 9 which is 1=emaciated and 9=obese (Roche, et al. 2009). This body condition score was subjectively give to females to describe overall body condition, fat cover and flesh over the ribs, loin and tail head.From each three district one potential station (tabia) was selected purposively. 120 local and 120 crossbred cows and heifers were selected from the three districts. The animals were selected purposely based on availability of feed, body condition, age, health status and absence of pregnancy during synchronization. Pregnancy diagnosis was conducted using rectal palpation before starting the experiment to avoid the risk of abortion by PGF2α. Animals were diagnosed for the presence of any reproductive disorder clinically.Finally, 120 animals were assigned for single dose synchronization protocol, 60 for double dose synchronization protocol and the remaining 60 Animals for fixed time AI regime after double injection of the PGF2α hormone. Source: WOARD (Ganta-afeshum, Atsbiwemberta, and Kilte-awlaelo weredas, 2014).Multi-stage sampling techniques were applied in sample selection processes. In the first stage, the study areas comprising of three districts of the \"LIVES project\" were selected purposively on the basis of availability of local and crossbred of cows and heifers, long time experience in artificial insemination services, availability of feed, and accessibility of the weredas. Finally, sample size was determined by using the following formula. The sample size determination formula provided by Yemane (1967) to determine the required. In the second stage, from three district one potential tabia was selected purposively. In the third stage, 120 local and 120 crossbreds of cows and heifers were selected purposively from each district. Study subjects were purposively selected based on estrus synchronization through hormonal treatment is naturally and technically practical if and only if some pre-conditions or pre-requisite characters that must be fulfilled by the selected cows and heifers for estrus synchronization. The study design was experimental with two treatment groups running in three steps. In the first step, the two treatment groups that are local breed cows/ heifers and crossbred cows/heifers were selected on the basis of their suitability for estrus synchronization through hormonal treatments. In the second step, each treatment group was assigned in to single and double shot frequency of hormonal injections. In the third step, the single and double dose PGF2α protocols were sub grouped on the basis of breeding techniques as breeding at fixed time and breeding according to estrus detection.Experimental animals were randomly assigned to one of the two treatment protocols (1=single PGF2α injection; and 2=double PGF2α injection). Prior to the start of the experiment, reproductive organs of animals were palpated per rectum to confirm the reproductive stage, presence of mature corpus luteum and whether they were free from any obvious reproductive tract abnormalities.Animals allocated to protocol 1 (n=120) were injected (2ml) PGF2α (Synchromate, Bremer Pharma GMBH, Germany, 1 ml solution of Synchromate contains cloprostenol 0.263mg equal to cloprostenol 0.250mg,) intramuscular (IM) on Day 0. Animals were observed for any external symptoms of estrus (for example, clear vaginal discharge, mounting other cattle, allowing other cattle to mount them, and other related signs) after 24 hrs following the treatment. Animals allocated to protocol 2 (n=120) were injected (2ml) PGF2α (Synchromate) on Day 0, which was followed by administration of same dose of PGF2α (Synchromate) IM on day 14. Animals were observed for estrus expression after 24 hours of the second injection of PGF2α. Animals were recorded whenever observed in estrus with assigned value.The following figures illustrate the single and double dose injection and time schedule of synchronization protocols. The first group was given single administration of PGF2α IM and bred according to estrus. Whereas, the second group was injected with two doses of 2ml PGF2α IM each at 14 days interval, estrus was detected after second administration of PGF2α. In both treatment groups, animals were inseminated either following visual observation of heat signs and rectal palpation, or inseminated at fixed time (without heatSingle shot of PGF2α was given for 120 cows/ heifers (group 1) and double shot for 120 cows/heifers (group 2) based on body condition, parity level and pedigree information.Females from the experimental groups were synchronized with synthetic analogues of PGF2α (Synchromate) using the following experimental protocols:The first group was injected with intramuscular administration of a single dose of 500μgPGF2α, then detection of females in heat in the next 5 days and AI. The second group was injected with intramuscular administration of two doses of 500μg PGF2α each at 14 days interval, heat detection after the second dose of PGF2α and fixed time AI were used.Estrus synchronization in these cows and heifers was done by the exogenous administration of PGF2α. It is synthetic analogue of prostaglandin structurally related to PGF2α containing Cloprostenol sodium 0.263 mg equivalent to cloprostenol 0.250 mg/ml, manufactured by BREMER PHARMA GMBH GERMANY. The production and expiry dates were noted and has dose of 500 μg, i.e., 2 ml intramuscularly in cows. Rectal examination was done prior to administration of PGF2α to exclude the chances of pregnancy and to detect the presence of corpus luteum.To know more precisely the estrus onset, animals were monitored starting 24 hours after PGF2α administration 3 times a day (in the morning, at noon and late in the evening).Animals were artificially inseminated when they were detected in heat after single dose injection. In animals treated with two doses of PGF2α, heat detection were performed only after the second administration of PGF2α (Figure 2, middle). For double dose administration of PGF2α the animals were inseminated at fixed time (at 48 and 72 hours)and after estrus detection.The test was conducted using 10 to 20 ml of milk from 90 lactating dairy cows were collected to detect the level of progesterone (Zdunczyk et al., 2002) after AI technicians checks the presence of CL by rectal palpation to screen the lactating cow for synchronization from same cow. Milk samples were collected from clinically healthy udder and teats by hand milking of the four quarters after discarding the first milk drops (after fourth milk drop). For RPHDT no additives were added to the raw whole milk as the test was conducted at the farms immediately after collection. First, raw whole milk samples were shacked very well. Milk progesterone level was determined by shaking the entire milk sample and then sub-sampling 0.5 ml of whole raw milk. Sampling was done using separate pipettes for each cow. Then, Dipstick (P4 Rapid, Ridgeway Science Ltd, Gloucestershire, UK) was placed in to the test tubes containing sample and left for a maximum of 10 minutes, according to manufacturer's instruction.Findings were interpreted as: When the dipstick showed only one strong line indicates high progesterone level -the cow was not in heat, it may be pregnant or in its diestrous stage (luteal phase) and there was functional corpus luteum. Whereas, when the dipstick showed two strong lines indicates very low P4 level -the cow was definitely not pregnant and there was no functional corpus luteum. When the dipstick showed one strong top line and one faint line it means that low P4 level -the cow may be in its metestrous or proestrous stage (going out or approaching to estrus).Cows and heifers were observed for estrus signs at 24, 48, 72, 96, and > 96 hours and the number of cows and heifers with no response after hormonal treatment were considered as anestrus in each treatment group. The time interval from the PGF2α administration to the onset of estrus, for the females treated with a single dose of PGF2α and two doses of PGF2α at 14 days was recorded for cows and heifers that manifested heats at 24,48,72,96 and greater than 96 hours. Cows that exhibit estrus were artificially inseminated by experienced technician using frozen semen after PGF2α injection.The number of pregnant cows and heifers after artificial insemination was computed as a percentage of cows and heifers exhibiting estrus during the synchronized period in each treatment group. Pregnancy diagnosis was conducted by rectal palpation 60 days after AI.The percentage of females that became pregnant of those exhibiting estrus and inseminated during the synchronized period was evaluated after insemination at fixed time and after estrus detection in all experimental animals.PGF2α is only effective if administered between days 6 to 17 of the oestrous cycle when functional corpus luteum is available in one of the ovaries . By using RPHDT in milk of lactating dairy cows it is possible to evaluate the CL detection efficiency of artificial insemination technician (Dobson and Fitzpatrick, 1976;Friggens, et al., 2008).First AI technicians checked the presence of CL through rectal palpation to screen the lactating cows for synchronization. Then to perform comparative evaluation of the efficiency of AI technicians milk was collected from 90 lactating cows for 9 AI technicians and RPHDT dipstick was placed in to the test tubes containing sample and left for 10 minutes and the presence of CL was evaluated based on high or low P4 level (Colour of the dipstick).The independent variables of importance in this study were those variables which were thought to have influence on the dependent variables of the study. These include breed, body condition, parity, frequency of injection, time of heat expression and time of insemination of the sampled cows and heifers (Table 4).To analyze the effectiveness of fixed time AI and AI at detected estrus on the conception rate of cows and heifers, GLM called binary Logistic Model and expressed as odds ratio and 95% confidence interval.To analyze the ability of AI technicians to correctly classify the presence/absence of active corpus luteum as verified by RPHDT kit was analyzed using quadratic discriminant function, and there was an assumption of no equal covariance matrices among AI technicians and descriptive Statistics such as frequencies and percentages was applied.The statistical model used in this analysis was logistic regression model and expressed as:Where  πij is the probability of the presence of the event of interest (estrus response, duration of estrus response and conception rate) In all the comparisons, the level of significance was set at α< 0.05. Modelling was continued until all the main effects or interaction terms were significant according to the Wald statistic at P < 0.05.The Tigray national regional state science and technology agency health ethical review committee had been critically reviewed the proposal in the context of research ethics and conclude that, there is no ethical problem on the objectives and methodology of the proposal and authorized to implement the research project in the field work. The ethical clearance paper is attached in the appendix V. Among 120 cows and heifers synchronized using single shot injection of PGF2α, 84.2% (n=101) of them came to heat as visually observed and 15.8% (n=19) did not manifest heat. The estrus manifestation rate of the local and crossbreds treated with single injection of PGF2α were 78.3% (n=47) and 90% (n=54), respectively. Crossbred cattle was found higher proportion (90%) of estrus response than local breeds after single dose of PGF2α injection. The odds of estrus response in crossbreds were found to be 2.5 times more likely than local breeds (OR=2.5; 95%CI: 0.876, 7.066). The estrus expression rate of local and crossbreds treated with double dose PGF2α injection were 93.3% (n=28) for both breeds and 6.8 %( n=4) did not manifest heat.There was no significant difference between the local breeds detected in estrus compared to the crossbreds. Estrus expression rate of local and crossbred cows and heifers synchronized with single and double shot hormonal treatment programs are summarized in Fig. 3. Among cows and heifers placed under double dose PGF2α injection about 6.7% (n=4) of them did not manifest heat, where as 6.7% (n= 4) and 38.3% (n=23) of cows and heifers manifested heat at 24 and 72 hrs. respectively (Fig. 6). The analysis for single dose PGF2α injection and estrus manifestation showed that among 120 local and crossbred cattle, 24.2% (29), and 60% (72) of them manifested heat before 24hrs and after 72 hrs of PGF2α administration, respectively. However, the rest 15.8% Among 153 animals inseminated after treatment with single and double dose injection of PGF2α 62.7% (n=96) of them conceived, where as 37.2% (n=57) animals did not conceived. A total of five animals were sold from all experimental animals. The conception rate of the local and crossbreds animals inseminated after single and double dose injection of PGF2α were 59.6% (n=59) and 68.5 %( n=37) respectively. Higher proportion (68.5%) of conception rate was recorded among cows and heifers that received double injection. The odds of conception rate in cows and heifers that received double injection was 47% more likely to conceive compared with females that received single injection (OR=1.47; 95% CI: 0.732, 2.973). The conception rate of 73 local and 80 crossbreds treated with single and double dose injection of PGF2α were 61.6% (n=45) and 63.7% (n=51) respectively.The conception rate was higher in crossbreds (63.7%) than local breeds (61.6%). The odds of conception rate in crossbreds was 9% more likely to conceive than local breeds (OR=1.09; 95%CI: 0.567, 2.108).The result of the study also showed that, from 47 heifers and 106 cows synchronized using both protocols of PGF2α injection, 67% (n=31) and 61.3% (n=65), respectively, conceived. The odds of conception rate in cows was 19% less likely to conceive than heifers, (OR=0.81; 95%CI: 0.398, 1.679). Conception rate of local and crossbred cows and heifers synchronized with single and double dose hormonal treatment programs are summarized in Fig. 9. Among animals tested for progesterone level prior to synchronization using RPHDT 57%(51/90) had high progesterone level, while 43% (39/90) showed low progesterone level. Largely abundant, clear and watery mucus discharge was observed following treatment with PGF2α. Higher proportion (93.3%) of estrus response was measured among cows and heifers that received double injection. Even though, there was no statically significant, cows and heifers that received double injection was 2.6 times more likely to give estrus response compared with females that received single injection. Regarding breed there was no statistical significance recorded, the likelihood of crossbred cows and heifers to manifest estrus was higher. Remember the non-cycling and unhealthy cows will not generally respond to prostaglandin products.The result with single dose PGF2α obtained from this experiment is higher than other previous works reported by (Păcală, et al., 2009) from the 70 females with known estrous cycle hormonal stimulated with a single dose of PGF2α, 67.1% (n= 47) manifested heats.It is also higher than what was reported in Hawassa-Dilla Milk shed, SNNPR (76.1%) conducted in mass synchronization campaign (IPMS, 2011). Though this result seems a little bit lower comparing it with previous work in the region, that reported 100% for Adigrat-Mekelle Milkshed in Tigray (Tegegne, et al., 2012), This result obtained from single dose PGF2α injection is agrees with other previous works reported by (Macmillan and Henderson, 1983;Armstrong, et al., 1989;Folman, et al., 1990;Rosenberg, et al., 1990); who indicated that, PGF2α administration to cows with a functionally mature CL, 85 to 95% reached estrus within 7 days of treatment and (Ferguson and Galligan, 1993) Also reported cyclic animals treated with single PGF2α dose showed 70 to 90% signs of estrus 3 to 5 days after treatment. The single dose of PGF2α injection also agrees with the results of Murugavel and his colleagues (2010) who confirmed 70 to 90% estrus rate within 2 to 5 days when PGF2α was administered to cows with a functional corpus luteum. In this study, higher number of crossbred manifested estrus than local breed this is in agreement with Bo, et al., (2003) who reported poor estrus expression of Bos indicus breed in tropical environment. Further, higher estrus response rate of crossbred may be due to the higher care given for this group of animals such as giving good quality feed and close supervision by family members.Among animals treated with double dose PGF2α at 14 days interval 93% of them exhibited estrus, which is higher than the report of Păcală, et al., (2009), who reported 88.2% estrus expression rate. Enhanced estrus response was reported when PGF2α was given at the late, rather than early to middle stage of the luteal phase (Tanabe and Hann, 1984;Watts and Fuquay, 1985;Xu, et al., 1997). Since two treatments given 14 days apart ensures that most animals are in the late luteal stage (cycle Day 11 to 14) when they receive the second PGF2α dose (Folman, et al., 1990;Rosenberg, et al., 1990;Young, 1989). This practice resulted for a greater number of cows that have a maturing second wave dominant follicle capable of ovulating in response to a gonadotropin-releasing hormone (GnRH) induced lutenizing hormone (LH) surge than would a GnRH administration given at a random stage of the estrus cycle.It is noted that from total 120 cows received single dose of PGF2α majority (71.3%)showed estrus after 72 hrs. and 28.7% showed after 48 hrs. the present study was higher than Păcală, et al., (2009), 68% who reported cows exhibit heat after 72 hours with single dose PGF2α administration. Further, among 60 animals received two doses of PGF2α more than half (62.5%) animal's exhibit estrus after 72 hrs, where as 37.5% of them showed before 48 hrs. This is higher than the report of Păcală, et al., (2009), who record of 28.9% cows showed estrus before 48 hrs with double dose administration of PGF2α. In the present experiment, large number of animals from both experimental groups manifested heat after 72 hours of hormonal treatment. Estrus response to treatment was impressive, it might be due to strict follow up of the animals and technicians also participated in detecting estrus through palpation per rectum after day two of treatment, Selection of cows in good body condition and with functional corpus luteum was also crucial factor for such a good estrus response.From a total of (153) cows and heifers received PGF2α from both protocols a considerable portion (62.7%) conceived. Higher proportion (68.52%) of conception rate was found among cows that received double injection. Cows subjected to double injection were more likely to conceive compared to cows with single injection.The conception rate of the total animal treated with single shot injection was 59.6%(59/99). Findings were similar with some previous work done in Awassa milkshed 57.7 % (n=94) and 61.7 % (n=119) Adigrat milk shed (Tegegne et al., 2012).The conception rate result obtained from this experiment is extremely higher than the three years ' work ( 2011-2014) reported by Tigray Bureau of Agriculture and Rural Development (TBoARD, 2014) in collaboration with other stakeholders conducted a mass synchronization scheme addressing 58,676 cows and heifers, using single PGF2α injection in 33 weredas of the region. The mass synchronization results showed low performance with conception rates of 31.5% (TBoARD, 2014). Selection of cows with good body condition score, free from diseases and with functional ovaries, and close follow-up and proper heat detection might have contributed to the observed higher conception rates.The conception rate was higher in crossbreds (74.1%) than local breeds (63%) treated with double dose injection of PGF2α. The conception rate result obtained from this experiment were 68.5% (37/54) in agreement with 70.5% conception rate following second PGF2α administration reported by Xu, et al., (1997) in dairy cows.AI at detected estrus resulted in higher conception rate (68.52 %) than fixed time AI (48.9%) after double dose of PGF2α injection. where findings were statistically significant (OR=2.3; 95%CI 1.009, 5.107). This result in agreement with Lucy et al., (1986) has shown that cows receiving fixed time AI at 72 to 80 hours after a second injection of PGF2α resulted in pregnancy rates considerably lower (P < 0.05) compared to cows receiving AI at a detected estrus alone.From the findings of this study it can be inferred that fixed time AI has advantage of time saving for AI technician and the farmers, but the conception rate of fixed time AI is lower than insemination after detected estrus. This may be due to synchronization with PGF2αdoes not control the time of AI because estrus detection was still required. Low pregnancy rates related to timed AI following treatment with PGF2α may be explained by the variation in time of ovulation with respect to time of AI. This variation in time of ovulation may be due to the deviation in stage of the pre-ovulatory follicle at the time of PGF2α injection (Pursley, et al., 1997).Comparing the efficiency of Nine (9) AI technicians who participated on detection of active corpus luteum through rectal palpation with the Rapid Progesterone Heat Detection Test, the minimum and maximum numbers of cows misclassified were 1 and 6, respectively, with 36.6% coefficient of variation. On average one technician misclassified 4.6 cows out of 10 cows presented for corpus luteum detection. Seguin, et al., (1978) and Dailey et al. (1986) reported palpation error up to 6% during identification of a CL by rectal palpation. The result obtained from this experiment is extremely lower than the 77% agreement between diagnosis of CL by experienced palpator and progesterone concentration reported by Ott, et al., (1986). Similarly, they reported that identification of a CL by rectal palpation was 85 % accurate. Kelton, et al., (1991) also reported that the success of estrus synchronization depends on the accurate identification of a mature CL by rectal palpation.Prostaglandin based synchronization requires the presence of active CL on the ovary. The simplest method to detect CL on the ovary is rectal palpation during synchronization.This result indicated that rectal palpation to detect ovarian status needs experienced technician and vigorous training assisted with hormonal and visual aids (ultrasound imaging) before allowing less experienced AI technicians in ovary palpation. One major reason for the decrease in the success of estrus synchronization following administration of PGF2α could be due to the unreliability of CL palpation by rectal examination (Ott, et al., 1986). The accuracy of rectal palpation in determining the presence or absence of mature CL has been reported by various authors (Watson and Munro, 1980;Mortimer, et al., 1983). The concentration of progesterone in plasma (Boyd and Munro, 1979), Serum (Mortimer et al., 1983) or milk (Watson and Munro, 1980) was used as the standard against palpation to detect the presence or absence of mature CL was judged.This study has shown that PGF2α based estrous synchronization could be implemented under smallholder farmer's condition. The overall estrus response and conception rate in the study area was high. Crossbred cattle showed higher estrus response than local breed cattle, though findings did not vary significantly. Crossbreed cattle have been given Based on this study the recommendations were set as fellows,  The single dose PGF2α synchronization protocol should be implemented with great care on appropriate animal selection and management to get high estrus response rate and highly requires setting proper heat detection mechanisms to maximize the conception rate of the animals. Fixed time insemination after synchronization with double dose injection protocol of PGF2α was showed low conception rate. So, to go for higher conception rate, it is better to implement heat detection after double dose synchronization protocol. Strict and continuous supervision of heat detection should be done after 48 hours of hormonal injection, for animals synchronized using both single and double dose injection protocols. Hands on practice are needed using visual and hormonal aids for artificial insemination technicians to improve their expertise in corpus luteum detection. The use of RPHDT at farm level and at veterinary clinics should be implemented and encouraged to assist rectal palpation and avoid false diagnosis when rectal palpation alone is used. I have evaluated estrus response and conception rate of the synchronized animals but I will intend to evaluate the calving rate of the local and crossbreds cows. Model farmers and AI technicians will be trained on the application of RPHDT to diagnose their animals and animals in the farm or veterinary clinics to diagnose their reproductive stage. Pushing the government to introduce RPHDT and ultra sound particularly to the region as well as to the country. Providing refreshment training on detection of CL through rectal palpation by using RPHDT to AI technician based on my findings.","tokenCount":"10649"} \ No newline at end of file diff --git a/data/part_3/0054271988.json b/data/part_3/0054271988.json new file mode 100644 index 0000000000000000000000000000000000000000..41e5ec314feddf5067d0842b258400137befd1c9 --- /dev/null +++ b/data/part_3/0054271988.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"3bfc85cfe15e4d4cab1a6a8b15b4fcad","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/0cce0974-050f-4537-959c-113d392c3882/retrieve","id":"-1746780839"},"keywords":[],"sieverID":"22ba6702-4837-45c0-ac44-57d9b5a9ef1d","pagecount":"19","content":"Ecosystem Services (ESS) and biodiversity depend on the interaction of multiple ecosystem types at different temporal and spatial scales, which are characterized by dynamic and non-linear relationships (Birkhofer et al. 2015;Bennett, Peterson, and Gordon 2009). There are few analytical models which can integrate or link across these different scales, capture complex behavior of (agricultural) ecosystems, and evaluate agricultural systems at different scales, from farm level to global level (Balbi et al. 2015). Even simulation models, which take a more systems oriented approach, have often focused on isolated processes and rarely examined effects of agricultural practices in multiple ecosystems (Balbi et al. 2015;Barraquand and Martinet 2011).In order to inform decision-making regarding resource allocation and planning, it is important that analytic tools and methodologies integrate ESS in the analytic process. Analysis and information presented to policy makers for consideration of appropriate policies to promote sustainable practices should be based on approaches that allow the integration or linkage of evaluation across different scales. Such approaches can consist of methodologies that can combine different modeling techniques (Balbi et al. 2015). This includes the use of different types of data, including spatially explicit quantitative and semi quantitative data and expert opinion (Balbi et al. 2015).Against this background, under the CGIAR Research Program on Policies, Institutions, and Markets (PIM), Bioversity International convened the workshop Integrating Biodiversity and Ecosystem Services into Foresight Models\" to identify opportunities to enhance existing agricultural modeling capabilities to incorporate key ecosystem services, which affect sustainable agricultural productivity growth, and to support these modeling capabilities with relevant geospatial data from Bioversity and other sources. ESS considered are associated risks of pest/disease incidence, pollination, water quality and use efficiency, and soil health, which in turn are affected by agricultural crop diversity and other factors.The workshop held at Bioversity International in Rome, Italy, from 7 -8 May 2015 brought together a group of researchers and members of CGIAR centers, and other institutions who are interested in modelling biodiversity and ESS using geospatial data (see Annex 1 for a list of participants). The workshop focused on modeling at different scales: household/farm level, the agricultural sector level and the economywide level, in order to explore trade-offs and complementariness between productivity, nutrition and ESS.The workshop opened with a welcome address by Ann Tutwiler, Director General of Bioversity International, and Anita Regmi, Head of Development Impact Unit at Bioversity, followed by an introduction of participants. The workshop was organized into four main sections: i) presentation of availability and use of geospatial data ii) presentation of different economic models: household/landscape, partial equilibrium and general equilibrium models; iii) working groups on data/economic model followed by presentation of outcomes from these group discussions; and iv) final discussion (see Annex 2 for the full workshop agenda).Workshop sessions were divided in two types: presentations and group discussions. Presentations were aimed at familiarizing all participants with the different approaches of agricultural economic models and spatial data. After each presentation, participants had a chance to raise questions. Discussion groups contributed to developing a better perspective for the different agricultural economic models and data. Thus, participants were provided with a number of questions to guide the discussions.The first session had the objective to set the stage. Keith Wiebe (IFPRI) provided an update on the Global Futures and Strategic Foresight program, a CGIAR initiative led by IFPRI. Steve Prager (CIAT) discussed the current capabilities and needs for integrating biodiversity and ESS into foresight models.Session 2 consisted of three presentations related to the generation, availability and use of geospatial data. Alberto Zezza (World Bank) presented Geo-referencing in the Living Standard Measurement Study-Integrated Surveys on Agriculture (LSMS-ISA).LSMS is an open access household survey program focused on generating high quality data, improving survey methods and building capacity. This program has the aim of facilitating the use of household survey data for policy making. LSMS-ISA is focused on agriculture in Sub-Saharan Africa. Devra Jarvis (Bioversity International) briefly introduced Bioversity data compiled over 18 years of work (1996)(1997)(1998)(1999)(2000)(2001)(2002)(2003)(2004)(2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012)(2013)(2014)(2015) on measuring annual and perennial crop (fruit trees in Central Asia) diversity, in relation to their resilience to pests and diseases, on farms in many countries around the world. Celine Termote (Bioversity International) presented the agriculture biodiversity 4-cell assessment methodology used in all three CGIAR Systems CRPs and the related data collected by Bioversity using this methodology. Melanie Bacou (IFPRI) presented HarvestChoice, which is an open access platform that provides data on farming, cultural and socio-economic conditions with a particularly good coverage for Africa. Datasets are organized into a matrix of 10km x 10km grid cells. In addition, Harvest Choice offers interactive tools which are used for creating scenarios by manipulating and overlaying over 700 agricultural indicators (Harvest Choice 2015)Session 3 had two presentations related to the use of remote sensing to scale GIS analysis to larger geography. Chandra Biradar (ICARDA) and Michael Marshall (ICRAF) pointed out that remote sensing is a useful tool for assessing land cover change, as well as for scaling from farm level to landscape-level through the use of different spatial resolution images. It was mentioned that one of the biggest data gaps is the lack of socio-economic data in remote sensing.Session 4 focused on Partial Equilibrium Bio-Economic Modeling. The first presentation was on IMPACT model by Keith Wiebe (IFPRI). He introduced the IMPACT model, which is a global food policy model developed and maintained by IFPRI and widely applied to global projections on agricultural supply, demand and trade. IMPACT is used for ex-ante assessments of the long run impacts of changes in drivers of agricultural production and consumption such as socio-economic, technological and climate change. IMPACT currently includes 58 agricultural commodities and 320 food global production units, defined by the intersection of 159159 countries and 154 water basins. Scenarios are based on alternative assumptions about economic growth, population growth, technological change, climate change and other factors. IMPACT works at country or regional level and offers indicators of food security at national, regional and global levels. Regarding ESS and biodiversity, IMPACT currently is working only with land use and water management but the model is quite flexible, thus results can be linked with external models, such as soil and water assessment tools. IMPACT could also be linked with models of different scales. Future work envisaged with the model includes developing a nutrition model component and quality of diet indicators, as well as differentiating impacts at household group levels (such as rural/urban and poor/ non poor households).The second presentation made by Ulrich Kleinwechter (IIASA) introduced GLOBIOM, which is a partial equilibrium model of the world agricultural, forest and bioenergy sectors developed by IIASA. GLOBIOM covers 18 crops which represent 70% of cropland in 30 economic regions and up to 200,000 simulation units. In GLOBIOM, consumer and producer surplus are maximized following a spatial equilibrium modeling approach. GLOBIOM captures environmental aspects such as water, carbon sequestration, and land use, but not explicitly biodiversity. It is possible to incorporate ESS and biodiversity by using external data within the 200,000 simulation units. GLOBIOM can be linked with models of other scales. GLOBIOM worked with MIRAGE (CGE model) for biofuel studies, and EPIC (bio-physical model). Currently, the GLOBIOM team is working with IFAD to explicitly represent smallholder households in the model. For this purpose socio-demographic characteristics are taken into account.Session 5, presented the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) Model. Justin Johnson (University of Minnesota) gave a virtual presentation on this free and open source software suite developed with the aim of informing and improving natural resource management and investment decisions. InVEST consist of 18 different models for analyzing ESS: carbon, biodiversity, crop pollination, water, timber production, and others which have different data requirements. InVEST works at a household, landscape, watershed and national level. It has been used by academic institutions, international organizations (e.g. WWF, Nature Conservancy), private business and governments. The model is applied around the world, with a focus on North and South America, Africa and Asia. InVEST can provide different outputs (e.g. carbon sequestration) at different levels (e.g. household, farm), which could become inputs for bio-economic models, making it very useful for policy makers. With a view to the future, it is possible to develop and analyze future scenarios and associated impacts on ESS.Session 7 focused on Household/Landscape models. Walter Rossing (University of Wageningen) presented the Farm and Landscape IMAGES Model. IMAGES is a spatially explicit, GIS based land use optimization model, which employs the Differential Evolution optimization strategy and concepts of Pareto optimality. Similar to linear programming approaches, decision variables and objectives can be programmed for the single units. The model covers a wide range of crops and livestock. It has been applied in Europe, Latin America, Asia and Africa. ESS and biodiversity are incorporated through the landscape quality, as well as dietary diversity. Tradeoffs between nutrition, environment and productivity are analyzed with a farm level model, considering gross margin vs. nature value. It is possible to incorporate ESS/biodiversity (nature value), as well as other objectives. The output of these models can be used in PE and CGE models.Felix Bianchi (University of Wageningen) presented a discussion on Pest/Disease Modeling. The model generates maps of the potential for natural pest suppression by natural enemies of agricultural pests. The model is based on a landscape scale study in which parasitism rates have been assessed in cabbage crops in the Netherlands. Being a statistical model, its main shortcoming is that the ecological mechanisms underlying the analyzed phenomena are not captured. It was mentioned that the value of biocontrol through species interaction can reach 400 million USD/year. The household DAHBSIM model was presented by Guillermo Flichman (CIHEAM-IAAM). DAHBSIM is a household model with a dynamic recursive optimization approach and non-separability between production and consumption. The annual results are used as inputs for the following year (e.g. soil conditions). Production, consumption and labor allocation choices are made simultaneously. The model covers a wide range of annual crops, livestock and some perennial crops. The model is still a work in progress, but there is an empirical application in Malawi. DAHBSIM considers joint production functions, which means that a farm produces two or more products, such as a crop and externalities (e.g. carbon sequestration, erosion, Nleaching). Water, (type of) nitrogen and nutrition could be added as a constraint in the model. The presenter mentioned that it is possible to convert the analysis to a normative approach, thus allowing for the analysis of tradeoffs between nutrition, environment and productivity. ESS and biodiversity could be incorporated in the model through the effects of land use change and the multi-product production function. DAHSIM outputs can be used in PE and CGE models.Session 8 focused on General Equilibrium Modeling. David Laborde (IFPRI) gave a presentation about MIRAGE. MIRAGE is a global CGE model that has been developed to study trade policy scenarios, covering 140 regions. MIRAGE has been applied for studies of climate change and biofuels, and nutrition is added through external modules. There is some scope for incorporating ESS and biodiversity in MIRAGE. The model is calibrated under market-clearing assumption and exogenous factors can be changed to run scenarios: policy variables, technological shifters, and supply of factors of production. Tradeoffs between nutrition, environment and productivity can be analyzed at the sectoral aggregation level. It is relatively easy to incorporate ESS and biodiversity through external modules. MIRAGE could be linked to household models. The principal shortcoming of MIRAGE for the analysis of ESS and biodiversity is that the analysis is conducted at a high level of aggregation.Sherman Robinson (IFPRI) presented GLOBE, which is a \"standard\" global CGE model that has been calibrated using data derived from the GTAP database. The model is calibrated under a market-clearing assumption and exogenous factors can be changed to run scenarios. The presentation pointed out that partial equilibrium (PE) models are more appropriate for integrating greater details of biodiversity and ESS into the analysis. But the option to link CGE and PE models allow discussing the cross-sectoral national and global level policy implications of PE-level analyses.For the group discussions, workshop participants were split into four groups dealing with the four different topics. Group discussions during the first day dealt with Data (two groups) and Partial Equilibrium (PE) Models (two groups). On the second day of the workshop, the topics for group discussion sessions were Household/Landscape Models and Computable General Equilibrium (CGE) models, each discussed by two groups. Participants were provided with a number of questions to guide the discussions:1. What should be the objective of collaborative work in this area? 2. What are 3 concrete work streams which would accomplish this goal? 3. What geographic area or areas may be recommended for focus?  Consolidate what exists in terms of data and identify data gaps. Focus on methods for data integration. Working with national stakeholders could contribute to avoid data duplication. Bring together CGIAR case studies.Question 3: What geographic area or areas may be recommended for focus? Group 1 mentioned CGIAR priority countries, hotspots and major carbon emitters. Group 2 mentioned that it is important to assure that data collection has spatial and temporal overlap, with few places having deep data and a global coverage with wide data.Question 1: What should be the objective of collaborative work in this area? The main challenge is to link model outputs from PE scales to local/HH, or to link impacts of agricultural systems on ESS/biodiversity and to link the necessary data across scales. Options for addressing this challenge have to be identified. An option would be collaboration across model scales, for example using outputs from PE models in landscape models or household/farm level models. Another option would be the use of statistical approaches, e.g. from ecological modeling, to link PE model output to biodiversity and ESS.Question 2: What are 3 concrete work streams which would accomplish this goal? Identify PE model outputs that can be used to inform about ESS and biodiversity indicators and include a feedback mechanism between biodiversity and production. Establish a link between PE models and modeling approaches of other scales, e.g. landscape models, household models, or statistical ecological modeling.  Incorporate shocks into the system (ecological and economical), non-market values and genetic diversity into models.Question 2: What are 3 concrete work streams which would accomplish this goal? Work on ecological production functions, linking agrobiodiversity with ESS. Develop or look into current household/landscape dynamic models. Other suggestions were: integrate resilience concepts and parameters into the models, identify and integrate multiple resolutions of diversity and link ancillary population models for affected species groups (e.g. pests, predators, etc) to develop rules of thumb.Question 3: What geographic area or areas may be recommended for focus? Representative landscapes (under-studied ones). Across range of landscape structures (conversion) and management styles. Sentinel landscapes where Bioversity works (but some areas with no interventions to be able to assess impact of interventions).Question 1: What should be the objective of collaborative work in this area? Enhance the use of CGEs (and other models) to provide decision makers with relevant information on ESS, biodiversity and related socio-economic impacts. Look into complementarities between biophysical and CGE/PE models. CGE/PE models could be used to explore policy space to assess implications on farm level (top-down approach), as well as to feed changes in profitability or productivity from household/farm level models into CGE/PE models.Question 2: What are 3 concrete work streams which would accomplish this goal? CGEs require going beyond rural/farming households to include all the households, spill-over effects and capture externalities (positive or negative). Quantify and value (whenever possible) selected ESS. This work can be country specific with an effort to increase the coverage. This implies taking stock of existing work done, setting (adjusting) standards, elaborating a sound methodology for measurement and valuation, building a dataset, and disseminating as a public good.Question 3: What geographic area or areas may be recommended for focus? Start with one region (pilot).The workshop had aimed for the following outputs: Identify the next steps to link relevant data from Bioversity and other sources with ongoing modeling work. Narrow down and prioritize components from model enhancement consideration, together with relevant geographical area of consideration for all 3 scales of modeling efforts. Identify the next steps for developing concrete future program of work for integrating Bioversity and ESS into foresight models (see section 5).Sessions 2 and 3 focused on the generation, availability and use of geospatial data from Bioversity International, the Living Standard Measurement Study-Integrated Surveys on Agriculture (World Bank), HarvestChoice (IFPRI) as well as the options to scale from farm level to landscape through the use of different spatial resolution images. Open access satellite images and associated databases permit for remote sensing analysis of ESS where few data are available. During Session 6, two groups discussed about data. It was a consensus that an open access meta-database of available data should be developed, in a format that could be useful for the different types of models. For this purpose a consolidation of existing data is necessary, as well as the identification of data gaps and constraints.Participants agreed that the main challenges are to link model outputs from CGE/PE scales to local/HH or vice versa, to link impacts of agricultural systems on ESS/biodiversity and to link data across scales. It was suggested that CGE/PE models could be used to explore the policy space to assess implications at the farm level (top-down approach), and feed changes in profitability or productivity from HH/farm level models into CGE/PE models. Another recommendation was to look into complementarities between biophysical and HH/farm, landscape and PE/CGE models. Work on ecological production functions for linking agrobiodiversity with ESS, was another suggestion.Regarding the identification of relevant geographical areas, participants had different opinions. Group 1 in the Data session mentioned CGIAR priority countries, hotspots and major carbon emitters. Group 2 in the Data session mentioned that it is important to assure that data collection has spatial and temporal overlap, with few places having deep data along with a wider global coverage. The PE models groups considered that research could focus on a particular region based on considerations of data availability, priorities for CGIAR research (biodiversity hotspots) or on ESS of interest. The HH/Landscape model group considered to choose representative landscapes. Finally, the CGE groups mentioned the need to start with one region (pilot).There was general agreement among the participants that the workshop was very successful in bringing together different economic model approaches. As a principal result from the workshop, a consensus emerged that the following issues have to be addressed: The environmental services (ESS) of interest have to be clearly identified and key concepts of biodiversity and related variables have to be defined in order to develop a common language among the participants. Develop a methodology to identify the scale of ESS and time frame. For this issue, it was suggested to develop a typology of questions related to biodiversity and socioeconomic impacts, which may help guide future work. Develop a meta-database of available data in a format that could be useful for the different types of models.At the end of the workshop representatives from CGIAR's Standing Panel on Impact Assessment (SPIA) and FAO provided their reactions to the workshop discussions.The central messages of these participants were in line with the consensus emerging among most participants. It is necessary to make clear and show in foresight work that agrobiodiversity has a value and fulfils a purpose, and therefore has to be valued by society.  It is important to understand where biodiversity brings benefits and under which conditions its value is maximized. Biophysical aspects of biodiversity and its outputs (value) are not understood.  Lack of data and models to assess value of biodiversity is a limitation. Questions to answer:-What are the key biodiversity indicators? -Who's going to collect them? -What is the method for evaluating them? Answering these questions will help us to get on a pathway toward performing impact assessment related to biodiversity. It is necessary to complement quantitative model analyses with other, qualitative, types of validation (stakeholder consultations) because models tend to \"flatten\" scenarios, and they do not capture full richness of scenarios. During the workshop, distinction between biodiversity and ESS was often not clear.Precise concepts and definitions are needed. Payments for environmental services (PES) may need to be considered to examine to which extent they could be an additional source of income to contribute to food security. This, along with other instruments of providing incentives for preserving crucial ESS for the future, is an important new dimension. Benefit of this process is that a first step has been taken to fill the gap between biodiversity/ESS indicators and economic analysis. Developing a formal protocol/shared vision regarding the objects and objectives of analyses for consideration will be helpful. ","tokenCount":"3435"} \ No newline at end of file diff --git a/data/part_3/0062325161.json b/data/part_3/0062325161.json new file mode 100644 index 0000000000000000000000000000000000000000..83058db39e0e1abcde3a446a5f09ceabb6f071a4 --- /dev/null +++ b/data/part_3/0062325161.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"95f9eeeb5215fbc2acf34a0ed474e8bb","source":"gardian_index","url":"http://awm-solutions.iwmi.org/Data/Sites/3/Documents/PDF/Country_Docs/Ethiopia/watershed-management-in-ethiopia.pdf","id":"2089090285"},"keywords":[],"sieverID":"c246283f-55fd-4c6b-9ea2-63027fcf0149","pagecount":"2","content":"Ethiopia has a history of watershed management initiatives dating back to the 1970s. The basic approach has shifted from top-down infrastructure solutions to community-based approaches. There is now a supportive policy and legal framework in the form of policies that facilitate decentralized and participatory development, institutional arrangements that allow and encourage public agencies at all levels to work together, and an approach to natural resources that re ects local legislation and tenure practices.Evidence suggests that Ethiopia has not yet achieved the full potential of its surface and groundwater resources. Watershed management programs based on lessons learned over the past several decades o er new opportunities to reduce farmers' dependence on rain-fed, low-productivity subsistence agriculture, reverse land degradation and increase the level of water use and local participation in water management. The challenge is not one of \" nding solutions\" but negotiating solutions that are inclusive and equitable and steer the country towards its stated goal of making rural agriculture the basis of economic growth.AgWater Solutions researchers assessed watershed development activities in three locations to determine how management e orts can be scaled up across the country. Researchers visited six study sites, two each in Tigray, Amhara and Oromia (Figure 1).The two watersheds in each region were chosen to re ect one successful and one less successful watershed. The watersheds are located on the eastern side of each region where moisture shortage is a limiting factor and watershed degradation is high.Whilst there was sometimes considerable variation across watersheds, the overall economic and social status of the communities in the study areas improved following watershed interventions.Watershed size and hydrogeology play a critical role in management. In this study, macro-watersheds, such as the Abraha-Atsbeha watershed, performed much better on all performance indicators than smaller watersheds. Improvement of groundwater was more pronounced in watersheds with permeable geological formations (e.g., sandstone and colluvial deposits of Abraha Atsbeha).Land and crop productivity and additional area for cultivation increased over the years as a result of land rehabilitation activities, increased availability of water for supplementary or full scale irrigation and the introduction of new agronomic practices.Farmers have gained tangible economic bene ts (Table 1). The productivity gain of individual farms in the upstream areas are mainly from the in-situ rainwater conservation, while farmers in the downstream areas have increased access to irrigation water particularly from groundwater. In the lower reaches, farmers are able to cultivate two or more times a year because of higher water availability during the dry season.• Farm income increased on average by 50 percent;• Improvements in food security from 20 to 90 percent were reported; and • Access to health and education services increased by 20-50 percent and 50 percent respectively.This brie ng note summarizes the preliminary case study ndings for discussion and commentBased on a report by Gebrehaweria Gebregziabher These ndings and recommendations are preliminary and are reproduced here for the purposes of discussion. The AgWater Solutions Project welcomes all comments and suggestions. These should be directed to AWMSolutions@cgiar.org, please write \"Ethiopia\" in the subject line.• Informants identi ed the most urgent problems as land degradation and moisture stress, shortage of water, shortage of animal feed, ooding and sedimentation, human and animal health, and local management capacity.Various land rehabilitation and conservation measures are being employed (soil and water conservation structures, reforestation, gully treatment, area enclosures) along with water harvesting, rural water supply, and income diversi cation. Since a 'one size ts all' approach does not work, site speci c watershed development solutions should be identi ed that take into consideration local situations.• In terms of capacity building, managing watershed externalities within and outside a watershed requires cooperation among various stakeholders to build and strengthen institutions, social norms and regulations, and to develop systems of sharing responsibilities and bene ts. The country's watershed management policy needs revision to address land tenure and community rights issues.","tokenCount":"641"} \ No newline at end of file diff --git a/data/part_3/0063385508.json b/data/part_3/0063385508.json new file mode 100644 index 0000000000000000000000000000000000000000..2a6d01402b8edf5ed8b0d5ef9f8679c1fcb990f1 --- /dev/null +++ b/data/part_3/0063385508.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"1e8c5099ecbb62764f8027c29f9e8bb3","source":"gardian_index","url":"https://publications.iwmi.org/pdf/H_19734i.pdf","id":"1793134760"},"keywords":["PROBLEM DEFINITION 8 SYSTEM IDENTIFICATION 5","2","1 Terms of Reference 5","2","2 Relevant actors 5","2","3 Actors' objectives 5","2","4 Environment 5","2","5 Problem situation 5","2","6 System identification ANALYSIS OF CONSTRAINTS 8 OPPORTUNITIES 5","3","1 Window selection for analysis 5","3","2 The 'ideal research cycle' 5","3","3 Knowledge network analysis 5","3","4 Overall conclusions 5","3","5 Recommendations"],"sieverID":"7d1d90a2-6a9e-4389-a6ae-56df2812d3ca","pagecount":"48","content":"This report is the output of lhrce studins that were carried out under the Dutch funded project titled \"Managing Irrigation for Environmentally Sustainable Agriculture in Pakistan\". The overall objectives of this project are: i) to deve/op and implement a set of improved management strategies and techniques that can reduce the aggravating effects of irrigation on waterlogging and salinity; iiJ to expand the institutional capacity to efecfively manage the solt/tiorrs. wd iii) to maximize the role of farmers and rural communities in irrigation rnanagemetrf for increasirlg agricodtural production.In order to reach these objectives, collaboration with national partners is aimed for in all the research components of the project. It is assumed that 'success stories' cannot be achieved if national partners are not actively involved in or supportive to the innovation processes that are hoped to be achieved by the project. Nowadays IIMl's interest in participatory research methods is increased, In the hope to be able to enhance this collaboration.Rapid Appraisal ofAgricultural Knowledge Systems (RAAKS) entails participatory action research. The assumption underlying the RAAKS-methodology is, that agricultural innovation is not a straightforward, technical process. Instead, it is considered to be the outcome of social interaction between many stakeholders who are interdependent, but at the same time pursue their own strategic objectives. Studying development processes, using the RAAKS methodology, may help in improving the generation, exchange and utilization of knowledge and information for agricultural innovation. Therefore IlMl Pakistan choose this tnethodology, to study and better understand the present developments in the irrigated agriculture sector in Pakistan. Afler a RAAKS in April 1995, three studies of six months each were commenced by three Junior Researchers from The Netherlands and counterparts in November 1995. The start of the research went along with a RAAKS training in December, wherein many IlMl researchers and agency staff participated.The (intermediary) results of tho stirdies have not always been welcomed with enthusiasm. The inability to get the collaborators-to-be grouped around the discussion table voluntarily, was not seldom attributed to a lack of experience or unrealistic high expectations of this approach. For me. the strength of these three studies lies in the fact that throughout the study, the researchers were motivated and destined to reach their objective, that is to establish real participation andeven more -t o sensitize the potential for it. Their achievements should be seen as the result of an interactive process and of an approach that is characterized by a strong belief in the significance and necessity of real participation to realize sustainable development. The questions that logically follow from these studies are: what exactly do w e expect from collaboration and how can we get there?This report gives a detailed description of the different 'actors' that play a role in irrigated agriculture and their interests. The three action researches in various fields of irrigated agriculture, give a realistic impression of what one might expect of Inter-agency collaboration. The report shows that fighting for real participation is skating on thin ice. It demonstrates the extensive negotiations, the inevitable concessions that had to be made along the way and the agreed-upon starting points for change. I recommend this report to anyone who is concerned wilh irrigated agriculture in Pakistan and Its present developments.Cris H. de However, the separate studies contain sufficient information on the social environment to be read separately from Chapter 2. Chapter 2 could be used as a work of reference.Finally, it is emphasized that everything stated and written in this report is based on interpretation of qualitative information gathered during tlie research process by the RAAKS researchers. The outcomes of a RAAKS study are subjective. Therefore, this report does not represent an objective truth, but it reflects the valuable ideas and insights of all people involved in the studies. This report is a discussion paper and by no means a final statement. research, RAAKS comprises much more. In the three case studies conducted for IlMl Pakistan, the implication of introducing RAAKS was that all people involved in the FWAKS studies went through a joint, participatory learning process and they designed actions in order to solve the problem situations under scrutiny.FWAKS uses techniques (e.g. semi-structured interviewing and participatory observation) common in social science and, as in social science, the information gathered, the analysis of information, and conclusions are subjective. The conclusions are based on confronting and synthesizing views of different people. However, RAAKS does not stop here. The (intermediary) conclusions are only one step in an ongoing process of redefining the problem situation, coming to an understanding of the solutions, and taking consequent action. The goal of this process is to solve a common felt problem.This Chapter reflects on the RAAKS methodology as such and on the research process which is based on 'learning by doing' experiences of the RAAKS researchers in three RAAKS studies. First, the intentions, the analytical framework, and the procedural framework of RAAKS. which together shape the RAAKS methodology, are clarified.Secondly, an overview is given of the concepts and principles underlying RAAKS, followed by three operational objectives of RAAKS. Finally, an elaboration on some key issues that illustrate the RAAKS process in the three RAAKS studies is given.In The procedures and practicalities relate to the process of organizing the RAAKS research. Ideally, the study is carried out by a multi-disciplinary team consisting of persons with experience in applying R M K S and persons who are directly related to, and knowledgeable of, the problem situation and its socio-cultural environment.The procedures also include the collection of information. There are various ways to gather information (preceding the analysis of the problem situation): interviews, informal discussions, participant observation, project documentation and literature.After each important step in the analysis, it is essential to communicate the findings, and discuss them with all the parties involved. In this way, the necessary feedback is incorporated and validity is gained. By involving relevant people in the research, collective decision-making can be achieved on the basis of findings on issues related to, for example, the (change in) direction of the research. Thus, RAAKS seeks to stimulate a joint learning process among the people involved in the problem situation.Other procedural and practical issues include the allocation of staff, resources, facilities and time to the RAAKS research. Based on the intentions (read: expectations of all the parties) there is a discussion on the issues mentioned above. During the course of the research, the direction of the research might change, and therefore the demand on, for example, resources might increase. This calls for a renegotiation on issues that were agreed upon with the client. The main actor in this ongoing decision-making process is the client who has initiated the RAAKS study, defined the objectives (Terms of Reference) of the study, and can provide the necessary support.The analytical framework in RAAKS is represented in In the analytical framework, three phases are distinguished:Phase A: problem definition and system identification; Phase B: analysis of constraints and opportunities; and Phase C: action planning.Each phase comprises several 'windows'. Windows are analytical perspectives which help researchers to focus their attention on correlations between different sources of information and specific issues. Windows assist the researcher in addressing critical questions related to these correlations. The windows are applied and modified according to the situation under scrutiny. All windows comprise several tools that help the RAAKS researcher to systematically gather and process information. A tool is the practical way to address a particular window. As windows can be adapted and modified, also tools can be adjusted according to the questions the researcher wants to address.All windows in Phase A have to be addressed to ensure a proper definition of the problem situation. In Phase B, the researcher selects windows on the basis of criteria defined and justified within the given context. In Phase C. all windows have to be applied for an adequate action planning. Although the three phases are depicted in a sequential research process and time frame, it does not imply there is a linear sequence that should be followed. In practice, the researchers are always reviewing previous steps in the analysis, adjusting former conclusions, negotiating previous decisions, and formulating action among themselves and with the client.During the research process, concepts used by the researchers are constantly put to the test in real life situations. For example, the interpretation and definition of 'commitment' differs from one person to another. Therefore, it is useful and clarifying to define the concepts as used and interpreted by the RAAKS researchers in this report and, more important, during discussions with people involved in, and related to, the RAAKS studies. An overview of the most important concepts is given below.An Actor is anyone who plays a role in, and thus influences, the irrigated agriculture system. Actors may be individuals, groups or organizations.Commitment is an active interest in, and support for, reaching a specified goal through a (participatory) process. It is an engagement that restricts freedom of action; to bind oneself to a course of action. Active interest is expressed by taking initiatives to meet and discuss, by exchanging information, and keeping track of the process. Support can be both material (time, resources, facilities and knowledge) and social (giving feedback, appreciation of the research and research team). This means that a person (an actor) can contribute to the (research) process by giving either material or social support.Environmental (f)actors are those (f)actors, whose influence on the system cannot be controlled or assessed within the scope of the study.Facilitation is difficult to define Key characteristics related to facilitation are: inciting and supporting change; group and process coordination; negotiating; conflict management; monitoring and evaluation; communication with and between individuals or groups; training; awareness building; group dynamics/team building. etc. However, an individual person is not able to address all these elements, which pleads for a team of facilitators.Innovation is something new that requires and incites social change (change in ideas and actions).Participatory working is working together and collectively deciding on roles and rules for working. Everyone has herlhis own responsibility. Everyone can take the initiative, though coordination by someone may be necessary. For participatory working, there must be something common, like an issue, a problem, a purpose, or an interest.Involvement is achieved through communication and sharing resources (adapted from Training Workshop Report, 1996, p. 21). This implies:* being aware of one's dependence on others for solving a felt problem; making explicit individual interests; * trying to find a common interest; * defining a common objective; * expressing the willingness to compromise in order to reach the common objective; * expressing support for maintaining the process. and Process, outcome and output A process is a series of changes or events; a course of action; or a series of operations used in making something. An outcome is the (visible) result of an event or a process; in the case of research these are the findings. An output is the product of a process of mental or physical work, in the case of research, an output is, for example, the report.Realities are the different views people have of the environment in a problem situation, which is expressed in their behavior. The nature and number of solutions an actor perceives is restricted by hislher reality.A System is a representation of a part of the world we focus on. Within its imaginary boundaries, we look at activities and the interaction of people in order to understand mutual dependency. The decision to regard someone as an outsider or insider is based on how we perceive our influence on other people's behavior and vice versa. Drawing this boundary is a strategic decision.Terms of Reference, research questions and the analytical framework A Terms of Reference (TOR) are the specific objectives of a client translated in a task or an assignment. The specific objectives of the assignment are derived from a general (higher, long term) objective. The assignment is appointed to thb researchers. Often, a justification is given of how the assignment is related to the general objective (i.e. of a project). In order to design the research, the TOR is analyzed and specific research questions are deduced. Research questions specify what is to be studied. Defining and justifying how these questions can be answered is the basis for the analytical framework. The combination of the answers on the what. how and why questions is called the analytical framework.A Window is an analytical perspective that helps RAAKS researchers to focus their attention on correlations between different sources of information and speci fi c issues. Every window consists of several tools that help the researchers to gather and process information systematically.The RAAKS methodology is based on a set of principles of a scientific and philosophical nature. The underlying principles of RAAKS are summarized below (as presented by the RAAKS researchers during the RAAKS Exchange Workshop, February, 1996):1 Reality is subjective, constructed and interpreted by each individual; 2 The focus is on all people involved in a problem situation; 3 Goal of RAAKS is change towards improvement; into one picture; 7 On the basis of this picture, a common basis for understanding and action is created in order to make desired change possible; every little step towards this change is a collective responsibility and accomplishment; 8 RAAKS is a means, not an end; and 9 RAAKS provides only a framework and a number of methodological tools; it is the people using RAAKS who give meaning, content and value to this framework and tools. That is why the RAAKS manual will always remain a draft version.The three operational objectives of RAAKS comprise:1 To identify opportunities for intervention aimed at improving the way social actors organize themselves to achieve innovation;2 To create awareness among relevant social actors with respect to the constraints and opportunities which affect their performance as innovators or change agents; and3 To identify (potential) actors who (may) act effectively to remove constraints and make use of opportunities to improve innovative performance (adapted from RAAKS manual 1995: p. 19).Some characteristics of applying W K S 'in the field' are given to illuminate the theoretical picture of RAAKS that is sketched above. These characteristics are derived from the three RAAKS studies which provided insight in the practicalities of doing RAAKS.Box 1.1: Doing RAAKS in order to understand the process.Doing wid yoiiiy Ilttouyh RAAKS yoursclf is essential and imperative to a proper understanding of what is needed (conditions, environment, facilities, commitment). and what the opportunities and constraints are to applying the RAAKS methodology.Interviews are an impcrtant element of RMKS. In the first place, the RAAKS researcher conducts interviews to collect information related to the problem situation.These interviews tend to have the character of a meeting, which seems to originate from the fact that RAAKS is an action oriented research methodology, RAAKS researchers are always looking for opportunities to design actions for improvement of a problem situation. Meetings, as such, have a more 'problem solving' character than interviews. The distinction between a meeting and an interview in RAAKS is therefore artificial.RAAKS in the field requires a continuous 'feedback loop' to previous steps and decisions made in the research process. During the process of gathering information, the problem situation saems to become more detailed and complex. These insights and details could consequently prove that previous decisions need to be adjusted. Recalling and making explicit previous decisions is an important aspect of the RAAKS research process. Often, the client feels very uncomfortable with recalling decisions because it is perceived to be a drawback in the research. However, in the case of RAAKS, this cyclical process of coming back to previous steps and decisions is indispensable for obtaining the necessary insight in the problem situation. An example of a 'feedback loop' in decision making is the approximation of the problem situation at the end of phase A, after which the first 'loop' of the diagnosis is considered closed. However, it is also necessary that the RAAKS researcher is, and remains, flexible in addressing the initial Terms of Reference and research questions again. This clearly shows that defining a more workable and realistic definition of the problem situation, and thus redefining and scrutinizing the Terms of Reference is imperative to doing RAAKS in a proper way. Sometimes, as in the Bahawalnagar case, the Terms of Reference is finalized just before the final analysis starts. 'Looping' is a general feature of RAAKS; a phase is never completed. On the basis of new information, the researcher might decide to return to the previous phase.RAAKS is a participatory methodology which implies that the people engaged in the application of the RAAKS methodology work together. The process of working together is restricted by the limitations people face in terms of knowledge, time, resources and facilities. In all three RAAKS studies, the RAAKS counterparts faced a time constraint which, for example, resulted in the fact that in two cases the analysis in phase B was done by the RAAKS researcher alone. The RAAKS analytical framework appears to be quite fixed, but in practice the phases and windows comprising the framework can be applied in a flexible manner. The windows are not the sole analytical instruments to identify and subport opportunities for the solution of the problem situation. Through intensive discussions, the design of new windows, and the combination of existing windows, etc., the analysis gains in depth and the researchers gain more insight. A good example of the flexibility of the RAAKS methodology is derived from the RAAKS study in Hasilpur. in which an 'ideal research cycle' was designed and used as an analytical tool.The application of the analytical perspectives (the windows and tools) is difficult for all people involved in a RAAKS study. All RAAKS counterparts mentioned that they considered the RAAKS methodology to be useful, but that they were unable to apply and select the windows for the analysis. In other words, the principles of RAAKS are clear but when these principles have to be made operational in the windows, RAAKS looses its transparency.This chapter sets the social context for the three RAAKS studies. The social context can be divided into the actors and the environment in which the actors act. tn the first section, all of the actors who play a role in one or more of the RAAKS studies are presented. Every actor works in and/or for the irrigated agriculture system of Punjab.In the second section, the environment that influences the behavior of the actors is described. The environment is divided into: political and economic environment; sociocultural environment; Organizational culture and performance; and the physical environment. The researchers chose to compile this information in one chapter to avoid unnecessary overlap, and draw a comprehensive picture of the actors and the environment.Each actor is presented, firstly as an organizational entity and secondly, in terms of specific groups or designations. For each organization the overall objective(s) are defined. The description of the organizational structure is limited to that part of the organization which is relevant to the RAAKS studies. Furthermore, some striking characteristics and actualities regarding the organization are mentioned. Designation, tasks and activities of those individual actors involved in the RAAKS studies are specified in a table.IlMl is an autonomous, non-profit international research and training institute, supported by the Consultative Group on International Agricultural Research (CGIAR). IIMl's overall objectives are: 1) to generate knowledge to improve irrigation management and policy making in developing countries; 2) to strengthen national research capacity in the field of irrigation management; 3) to support the introduction of improved management and policy making. With its headquarters in Colombo, Sri Lanka, IlMl conducts research programs in many developing countries, many of which are situated in Asia. The tasks and activities of relevant actors in IlMl are specified in Table 2.1 to design and conduct research; to report and present research results.to support proper functioning of llMl (administration. transport, maintenance etc).to manage and coordinate field staff and activilies; to prepare fortnightly account statement and book keeping: to train and monitor field staff in data collection and analysis. report writing; to establish and maintain relations with line agency officials; to communicate with 2nd report to liMl Head Office; to manage administrative matters of field station; lo maintain communication with Head Office and line agencies; to train line agency field staff, to supervise students; to design TOR for students (occasionally); to receive and brief visitorslmissions.to collect and (partly) analyze data;% establish and maintain relations with farmers and line agency field staff; to train and guide newly recruited field staff and students; to support field team leader in adminisiralive matters; to process documentalion.The PID is the government agency that manages the irrigation system in the Punjab Province. The foundations for this management are rules and regulations that are for a large part based on the Canal and Drainage Act of 1873 (which was amended several times). The overall objective of the PID is to ensure the equitable distribution of water to the cultivators in the Punjab. The Department is headed by the Minister and the Secretary. PID officials frequently state that the high infiltration of politics as the main cause of the department's malfunctioning: 'the system is technically sound, but the system's management to coordinate donor funded projects (World Bank. USAID).to train newly recruited irrigation managers for the post of SDO: to train SDOs. XENs and SEs when they go for promotion.to supervise and monitor the work of Superintending Engineers, Executive Engineers and Sub-divisional officers by conducting monthly meetings; to handle administrative and financial matters concerning the management of the irrigation system in the Zone; to report to the Secretariat in Lahore; to maintain the IIMI-PID collaboration.:o supervise XENs to ensure that all activities In the Circle are carried 3ut [operation, maintenance. regulation and revenue collection); to .eport to CE.:o supervise SDOs; to supervise and ensure revenue collection; to ,eporl to SE and CE..o supervise the executive staff to operate. maintain and regulate the jistribution in his subdivision; report to XEN.o supervise the administration of the Lining Office for the Fordwah iastern Sadiqia (South) Irrigation and Drainage Project o picp;irc activities that are connected to the lining of irrigation canals: jupervise the work that is under construction, report to XEN Lining.The aclOrS arid llie envimnrnenlThe On-Farm Water Management Directorate (OFWM) was established in 1977. as a wing of the Department of Agriculture. Its overall objectives are: 1) to increase irrigation efficiency at the watercourse level; 2) to improve agricultural productivity through the provision of extension services on water management issues; 3) to stimulate the involvement of water users in improvement and maintenance of watercourses through establishment of Water User Associations (WUAs) From the onset OFWM has been provided funding, initially by the U.S. Agency for International Development (1976-'81), which was followed by funding from the World Bank, the Asian Development Bank and the OECF of Japan.* OFWM is target-oriented in the planning and evaluation of activities. Performance assessment is based on a preset number of watercourses to be lined within a specified time period. * There are no institutional links between OFWM and PAD Exterision at the field level. although both wings are engaged in extension activities.OFWM is currently conducting a pilot study within the Fordwah Eastern Sadiqia South (FES(S)) Project. The main thrust of this World Bank-funded project is to explore and develop possibilities for Participatory Irrigation Management (PIM) in Punjab. The overall objective of the pilot study is to organize and train farmers at watercourse and distributary canal level for the establishment of active and sustainable WUAs and Water User Federations (WUFs) at the watercourse and distributary level, respectively.In the FES(S) project area, rules for cost-recovery of lining have been changedrecently, due to budgetary constraints. Formerly water users had to pay 30% of costs after completion of lining activities. Now, this 30% (which will most probably be raised to 35%) has to be paid in advance. The consequence is a considerable reduction of applications for watercourse lining in the area. The target number of watercourses to be lined has been reduced as well.The department has recently introduced laser land levelling machines, which are located at demonstration plots and can be leased by farmers on a short-term basis. Laser levelling the land has been shown to substantially increase irrigation efficiency and crop productivity. OFWM has developed strong ties with IIMI, reflected in a constant information exchange, frequent (formal and informal) meetings and joint activities. One OFWM official is currently working on secondment for IIMI. with the main task lo further develop and keep record (i.c. documenting) of collaborative liaisons between IIMI. OFWM and other line agencies. Another OFWM official is mainly concerned with research on flow measuring devices and irrigation scheduling.The tasks and activities of relevant actors in OFWM are mentioned in Table 2.3 to coordinate and monitor social organizing activifies far the development of WUAs and WUFs in the command area of two distributaries. to siipervise administration and staff; to report to higher levels about progress; to communicate wilh donors and related agencies on field level; to convene meetings and field visits for visiting officials (i.e. donor missions).lo manage and coordinate field staff and administrative matters; to report to higher levels about progress; to coordinate lining activities in the field; to supervise the establishment of WUAs; to check on costrecovery of lining; to supervise extension activities in the field and on demonstration farm; to attend field meetings with farmers on organizational and lining issues. Technology is tested and will disseminate 'naturally' among farmers' community (demonstration effect). Problems of farmers and field staff are discussed fortnightly in T&V training sessions; * AE is characterized by strong links (in terms of communication of problems, information, etc.) among staff at field level, and weak links between field staff and higher-ups; There is no institutional link or coordination of activities between A€ and OFWM at the field level. Although both wings belong to the same Department and are involved in extension activities; A€ has a strong link with private input suppliers. Private input suppliers have their own demonstration plots and specific knowledge on their products. A€ is invited by private input suppliers to farmers' meetings in order to provide technical advice:A€ faces serious budgetary problems, which have a strong impact on the task performance of field staff in that they are not able to visit all of the contact farmers in their area; Monitoring and evaluation of task performance of field staff is weak;The majority of farmers are not able to follow the advice of AE due to resource constraints (unavailability of inputs); A€ is not problem-oriented because the agenda is set at higher levels. There are too many agents involved in the transfer of technology; A€ selects contact farmers on the basis of the following criteria: he should be interested; he should have some financial resources; his farm should be easily accessible, where everybody can see the demonstration; he should have a certain level of education (i.c. matrix). Branch which mainly deals with dissemination of research results; IWASRI is mainly coordinating and managing research on waterlogging and salinity, but is also actively involved in research projects (i.e. the Joint Satiana Pilot Project and FES(S) Project in Bahawalnagar); On an organizational level, IWASRI faces some financial constraints to work on projects involving participatory techniques. However, the WO projects mentioned above have adopted a participatory development approach with the assistance of UNDP and NRAP. * *ActionAid is an international non-governmental development organization working with the poorest communities in 20 countries throughout Asia, Africa, 'and Latin America.ActionAid Pakistan ( M P k ) is committed to helping the poorest communities in its development areas to improve their quality of life. Its overall objective is to facilitate the empowerment of the poor through the equitable development of human and natural resources. The participation of communities in identification, planning, management, implementation and evaluation of the project is a key factor in ActionAid's work. The Head Office is based in London. Characteristics and actualities * Private companies establish good relations with Agricultural Extension to earn credibility with the farmers for their products. In this way their sales increase; Input suppliers comprise: 1) large seed companies that visit the field. organize meetings, and take farmers to demonstration plots; and 2) local shop keepers that sell the inputs according to the demand; Prices of agricultural inputs are not fixed by the government. Artificial shortages are created by suppliers to increase prices. Black marketing is a common practice.*Farmers' overall objectives are: 1) to maximize and secure production of crops and livestock; 2) to adapt their knowledge base to the changing social and physical environment.Characteristics and actualities * Among farmers there is a diverse variety in caste, class, elhnicity, and land-holding;Farmers comprise a high variety of ownerslcultivators, ownerslnon-cultivators, tenants;* More than 80% of the farmers is illiterate;* There are constant tensions between farmers in the head of the distributary and tail enders; * Farmers collectively design the kachi warabandi (schedule of 'water turns).Cooperative societies' overall objective is to provide loans lo groups of farmers at a low interest rate for piirchasing inputs.Cooperatives are often one-man societies existing only on paper. The legal framework is used for personal interest only, Practically, only influential people make use of this facility.ADBP's overall objective is to provide loans to farmers for financing agricultural activities.Characteristics and actualities * Only influential farmers have access to this facility; ADBP is coordinated by PAD.This Section describes some characteristics of the political and economic, sociocultural, organizational and physical environment in which the studies were situated. These characteristics based on information from interviews, documents and personal experience have a strong impact on the problem situation and the actors involved.Influential people, who have resources, large social networks, status and (physical) power can direct government policies and their execution. Corruption is everywhere. In the job market, supply largely exceeds demand, especially in engineering. Higher degrees (MSc. PhD) or social connections are indispensabld for getting a job. Government posts often have first preference, because of status and job security (permanent contract, labor pool). There is a free market for agri-inputs, but prices for crops are fixed by the government. This has created an imbalance between costs and benefits of agricultural production. Agricultural productivity suffers from bad quality and unavailability of agri-inputs (seed, pesticides, fertilizer). Absence of fixed prices and reliable supplies for these inputs favor black marketing and skyrocketing prices during peak seasons of the farming cycle (artificial shortage). There are more than 20,000 national NGOs in Pakistan. An NGO can be a very profitable business. Innovation in the irrigated agriculture system largely originates from, and depends on, foreign funding and development agencies. World Bank, Asian Development bank and other international funding agencies attempt to direct government policy (i.e. through the introduction of Participatory Irrigation Management, Provincial Irrigation and Drainage Authorities). Provincial Irrigation and Drainage Authority (PIDA): something is going to change in the governmental configuration of irrigation system management, but no one knows when, what, or how. Speculations range from complete privatization of the system to no structural change at all (only a change of name). * * ** Society is strongly fragmented and hierarchical. Factions and hierarchical structures are based on caste, ethnicity. family, property (land), income. age and sex. In the farmers' community, collective action is hampered by heterogeneity in interests and social ties.Big landlords determine political and social relations within and between rural communities. Their power is based on family and caste ties, property and the (threat of) violence. This leads to an overall feeling of insecurity and distrust among people in every layer of society. More than 80% of the rural population are illiterate (for women the figure is even higher). Lack of education is seen as the main barrier to development. The illiterate community is not sufficiently aware of their democratic rights or the power of having a vote. Votes are collected by anyone who can offer incentives, has social standing, or is strong in rhetorics.To climb in the social hierarchy is a strong driving force for people. Ambitions are more focused on raising social status than on personal development.Social relations tend to have a competitive aspect. Being the best is reflected in the number of awards that can be won in sports, education and work. This feeds envy as opposed to solidarity. As the saying goes: \"I would like my neighbor's roof to come down, even if it falls on my own house.\" People tend to base their actions on material incentives or a clear short-term benefit (risk avoidance). Bigger landowners are usually not cultivators themselves. They live in urban areas and are often engaged in agri-business (marketing of agricultural products and inputs). The implementation of rules and regulations is hindered by political pressure. This leads, for example to a lack of accountability in task performance (superiors have no control over staff performance, for everyone can seek protection against * disciplinary sanctions from influential peers). 'Transfer trauma': in all government organizations, people can at any moment be shifted from one post or area to another. Any shift in the political arena (i.c. change of seats in provincial government) may lead to complete re-staffing of a department or office. This creates constant instability in the social and professional life of government staff. Government salaries are not in accordance with work load and responsibilities and generally, salaries do not cover costs of living. This induces people to seek illegal ways of earning income (rent-seeking); Briberylcorruption is a 'bad necessity'.Good task performance is not rewarded. This has a serious impact on a person's job satisfaction and their motivation to develop professionally. Openly criticizing someone's performance is uncommon and generally disapproved of, certainly if it pertains to a person senior in post or age. Criticism is often expressed in informal teasing remarks or jokes. (Un)official assignments from superiors can occur at any moment and have to be executed immediately. It is therefore difficult to plan activities and rely on any appointment. Appointments are usually cancelled (if at all) after the agreed date and time.Problems at the field level seldom have an effect on policy-making. Communication between field staff and higher levels is poor and irregular, limited to standard reporting and passing down assignments. Task performance and communications are frustrated by poor communication and lack of adequate transport facilities, as well as an insecure power supply. * Amendments in policy, planning and implementation within government departments can only be made at the top level (secretary and minister), not on lower levels in the hierarchical chain. The training was intended to provide the participants with the knowledge and incentives to form a RAAKS Action Team to conduct a RAAKS study. Unfortunately. there was no PlPD official present that IlMl was working with in the Bahawalnagar region. The TOR was subjected to the participants of the RAAKS Training Workshop, but apparently. the participants did not feel very much related to the TOR. The result was that no RAAKS Action Team had been formed when the workshop was concluded.Among the RAAKS researcher and the Field Team Leader, it was decided to form a RAAKS Action Team by arranging a meeting I workshop with the PIPD staff from the Bahawalnagar Circle. In the meeting the PlPD staff would be informed about the RAAKS methodology and asked to form the RAAKS Action Team. This meeting took place on January 23, 1996. Although the participants were formally invited and all invitations were personally confirmed, only one PlPD official attended the meeting. The other four officials were not present. By interviewing the one PlPD official that was present, it became clear that the other PlPD officials were not interested in the objective of the meeting. The outcome of the effort to build a RAAKS Action Team was considered a crucial step in the RAAKS research process because it showed !hat among the PlPD there was no commitment to form a RAAKS Action Team at that moment; more in general, this meant that there was no broad organizational commitment in PlPD for the RAAKS study; the only interest for the RAAKS study was a personal interest.These findings were presented to IlMl in the RAAKS Exchange Workshop on February 6. 1996 in Lahore. In the workshop it was decided that the three RAAKS researchers should deal with specific issues concerning the RAAKS study within the subcomponents. For the Bahawalnagar case, this resulted in a series of meetings at Bahawalnagar Field Station about the planning of the activities for 1996 and the integration of the RAAKS study in these activities. The people present in the meetings were: the Team leader, the Field Team Leader, the Systems Analyst and the RAAKS researcher. It was decided that the RAAKS study would be conducted by a team consisting of the Field Team Leader and the RAAKS researcher and that the activities of the RAAKS study should, as much as possible, coincide with the ongoing activities of the Field Team Leader.With respect to the TOR there has been ample debate between all of the parties involved throughout the RAAKS study. Finally, the RAAKS researcher formulated a TOR at the end of the research that covers the context and subject of the RAAKS study. This final TOR is:. ldentify possibilities to improve the //M/-P/f'D coNaboration for /MIS implemenfation in the Chishfian and Malik subdivisions and other future collaborative acfivitiesThe first actors that were identified were the invitees to the meeting on January 23.1996 in Bahawalnagar. These actors have been implicitly identified on the basis of the judgement of the Field Team Leader, who had already established contacts with them. This means that beforehand no criteria had been set. Afterwards. the implicit criteria can be deduced. These were: is the actor relevant (now or in the future) for: 1) Ihe IMlS implementation process; 2) Decision Support Systems in general; or 3) the IIMI-PIPD collaboration? Initially, only the actors in the Bahawalnagar Circle were considered relevant. Later on, just before the interviewing started, actors from the higher levels in the PlPD were added (see Box 3.1). These actors are located in the PlPD Secretariat in Lahore.Box 3.1: Actof identification process.The actor identification process depended for a large part on coincidence and already existing contacts:(1) The Systems Analyst (see actor list below) requested the RAAKS researcher to conduct interviews together with higher officials at the PIPD secretariat in Lahore This event led to the inclusion of these actors in the research. Because these 'coincidences' have a major impact on the direction of the research, it is important for a researcher to recognize them(2) Other actors were included because IlMl slaff had established contacts with them.In the list of actors below, more specific information is added to the actor descriptions of IlMl and PIPD in Chapter 2, Section 2.1. This information is particularly relevant to the Bahawalnagar case study. Among the actors in the list there are some actors (i.e.Working Group and Planning Group) that have not been described in Section 2.1.These actors are characterized extensively. In the list, all actors that have been interviewed, or officially met. are marked with (#).Punjab Irrigation Department, Bahawalnagar Circle (PIPD BWN)1. Sub-divisional Officer Malik Branch (SDO Malik) (#)collaborates with the IlMl Field Team Leader of Bahawalnagar Field Station to implement IMlS in the Malik Subdivision. He is a Mechanical Engineer and therefore is given personal training on Hydraulics and system management by the IlMl Field Team Leader. He encounters difficulty in collaborating with IlMl because of a lack of institutional support from PIPD. He resolves these difficulties by collaborating with IlMl on a personal basis (e.g. in his spare time). He is willing lo do this because he recognizes that he will develop professionally by collaborating with IIMI. For any officlal time investment in the IIMI-PIPD collaboration, he needs approval from his direct superior, Executive Engineer Sadiqia Division. He is critical on IMlS as a computerized DSS tool. ","tokenCount":"6611"} \ No newline at end of file diff --git a/data/part_3/0069055695.json b/data/part_3/0069055695.json new file mode 100644 index 0000000000000000000000000000000000000000..b60bb3284205b8116a6b6d68fee5caf1acf61ef8 --- /dev/null +++ b/data/part_3/0069055695.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"49c85609c83a12a8245814648a56c4ff","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/a3535ea4-dad3-4c8f-93ec-bf504aae4296/retrieve","id":"-973073400"},"keywords":[],"sieverID":"a72856d6-d690-488f-b6a1-18d3696be714","pagecount":"4","content":"La pomme de terre, une culture importante La pomme de terre (PDT) est la troisième culture la plus cultivée au monde pour l'alimentation humaine. C'est aussi l'une des cultures vivrières les plus rentables. Par conséquent, elle permet aux producteurs d'améliorer leurs conditions de vie (belles habitations, bonnes écoles pour les enfants, bons soins de santé, etc.). Elle est aussi une source importante de protéines, des vitamines, du potassium, ainsi que le fer et le zinc qui sont importants pour les femmes allaitantes et la croissance des enfants.Climat frais de l'ordre de 16-20°C A l'aide des mains, ramasser la fiente (environ 250 g à 400 g selon la fertilité du sol -3 à 5 t/ha) et l'épandre sur un mètre linéaire dans les sillons. De façon pratique, la fiente ou fumure prise aux deux mains d'adulte s'appliquera à 2-3 futur plants. Utiliser un mélange d'engrais NPK du type 13-13-21 et azotés du type 15-0-0 dans les proportions de 4/1 (500 kg pour le premier et 125 kg pour le second par hectare), soit 7,5 g appliqués à chaque plant à la plantation et l'autre dose de même quantité au premier buttage. Une capsule de fanta bien remplie correspond à la dose requise. Puis déposer les tubercules sur 30 -40 cm sur la ligne de plantation, soit l'équivalent de 1,7-2 t/ha de semences ayant un calibre de 30-45 mm. • Sur tiges : les tiges infestées sont affaiblies.• Fongicides dits de CONTACT (action en surface) comme Manga Plus, Mancozeb, Penncozeb, Balear, etc.• Fongicides dits SYSTEMIQUES (action partout) comme Orvego, Bonsoin, Ridomil, etc.Flétrissement bactérien • Bien attendre la mort naturelle du feuillage avant de procéder à la récolte pour avoir un rendement maximal ;• Eviter de faire la récolte quand il pleut ou quand le sol est trop humide ;• Utiliser une houe ou utiliser les mains pour déterrer les tubercules ; et• Laisser les tubercules au sol pendant un certain temps avant leur ramassage.A la récolte, les tubercules montrant des signes de pourriture se ramassent en dernière position.Le calibrage des tubercules commence au champ pour bien séparer les lots lors de la vente. Il importe de signaler que les différents calibres se vendent différemment.","tokenCount":"362"} \ No newline at end of file diff --git a/data/part_3/0083638898.json b/data/part_3/0083638898.json new file mode 100644 index 0000000000000000000000000000000000000000..fad2d8803b8495bb51397cc4b7602dbebc251880 --- /dev/null +++ b/data/part_3/0083638898.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"5b95059a9206f57b32899e9d85e11991","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/f7836348-e5cf-49ae-bd6a-7ff60223596b/retrieve","id":"553483831"},"keywords":[],"sieverID":"31ad542a-e28b-4e58-832e-80102ce5b929","pagecount":"46","content":"Despite decades of attention to agricultural development, food security and rural poverty, poverty and food insecurity remain, especially amongst rural dwellers in Asia, Africa and Central America. With climate change the challenges only increase and will further intensify as extreme events and variable weather patterns make small-scale production even more difficult.For any list of recommendations, leverage points or action points, the criticism can easily be that we have heard it all before. There are no silver bullets and some actions and strategies can have mixed outcomes, though nascent and yet-to-be-developed technologies could shift rural livelihoods, agriculture and the broader food systems in unexpected ways in the coming decade, both positively and negatively.Our thesis is that transformational change in rural livelihoods is needed for climate change adaptation, that this change needs to embrace the broader food system, and that these actions can have benefits in multiple dimensions beyond climate change adaptation: poverty, nutrition, employment and the environment. If transformational change is to be achieved, several elements will be needed in synergy, with less or more emphasis on particular elements, depending on context and considering household heterogeneity. Given that in many places there are at most 12 harvests left to achieve the Sustainable Development Goals (SDGs), urgency in the implementation of the actions under the following elements is imperative:• Firstly, and fundamentally, the policy and institutional environment needs to change, to provide appropriate incentives for transformational change. Policies that can generate or enhance risks should be avoided. Key objectives in the policy domain include promoting landscape planning and management, rethinking subsidies, making markets work, reducing risks in agriculture, improved water supply in the less humid zones, improved soil and water conservation, enhanced good governance in all sectors, tenure reform, and targeting the poorest of the poor with productive social safety nets and alternative options. In many cases policy action is required outside the agricultural sector and a much stronger focus on more localized enabling environments will be needed, such as rethinking of current financial incentive mechanisms for state budget allocation that discourage local authorities from implementing sustainable policies, policies on migration, policies that enhance environmental standards and law enforcement and promotion of participatory and gender-sensitive decision-making and free trade policies.• Secondly, appropriate climate-resilient practices and technologies need to be identified and further developed, and perhaps more importantly, scaled up. Technologies are highly context specific, but considering small-scale producers, some key areas for action are around solar micro-irrigation, technologies for high value commodities that link to changing urban markets (e.g., climate-smart dairy production, smallscale aquaculture, horticulture), nature-based solutions such as ecosystem-based adaptation, diversified systems that help manage climate risk, likely early winners in new technology such as alternative protein sources for humans and livestock, and food storage innovations. Stress tolerance in crops and livestock will be important, in particular for closing yield gaps in some of the world's poorest and most climatevulnerable regions, with more attention required for some of the lesser researched and lesser incentivized crops (e.g., in the African context: beans, cassava, millet, plantain/banana, potato and sorghum) and to pests and diseases. Greater focus on rural mechanization and post-harvest storage and processing relevant to small-scale producers can also be a boost to rural entrepreneurship. These technologies need to be identified based on local needs and need to be transferred to local people.• Thirdly, orders of magnitude more investments are required, however, these are largely expected to be from the private sector (e.g., role of large national and multinational corporations in adaptation not only through their potential to finance projects but also to develop technologies and innovative solutions) and driven by appropriate government policies, with investments coming from multiple sources used to leverage private investments, e.g., through de-risking agriculture. Innovation in financial models and in the use of climate finance is sorely needed. Index-based insurance is advancing rapidly and is likely to be an important risk mitigation option.• Fourthly, given that different agricultural value-chains and market configurations can provide big opportunities for rural producers, considerable attention needs to be focused on reshaping supply chains, food retail, marketing and procurement. This must address food loss and waste issues, shifts in consumption towards healthier diets, building the resilience of supply chains, and, most importantly, ensuring that supply chains link to small-scale producers and enhance rural employment opportunities.• Fifthly, we must realize the digital era for rural livelihoods, agriculture and food systems. Agriculture is behind other sectors in digitalization, and digital agriculture has the potential to revolutionize agriculture and supply chains. For example, two-way digital extension services integrated with weather advisories can change information flows to and from small-scale producers, and change how farmers respond to climate risk. Digitalization can also enhance local networking and increase rural employment opportunities.• Sixthly, and to address the issue that a strong private sector approach is being advocated, considerable attention needs to be given to empowering producer and consumer organizations, women, youth and marginalized groups such as indigenous communities to promote local action, strengthen negotiating power and increase access to resources. Local networking has been shown to have important positive consequences for climate adaptation. Capacity development must run through all the elements.Taken together, implementing these elements for action simultaneously would constitute a new approach to innovation and enabling it: co-creating new knowledge, \"renovating\" existing but as-yet under-utilized scientific and indigenous knowledge, and sharing knowledge between all stakeholders and levels in the food system, producers and consumers alike.Fostering transformation in rural livelihoods, agriculture and food systems will mean very different things for different sub-sectors of the rural population, where we recognize at least four livelihood types: \"stepping up\" (investing in agricultural assets, and purchasing at least some inputs or services); \"stepping out\" (accumulating assets that allow investments in or switches to new activities outside agriculture); \"hanging in\" (maintaining and protecting current levels of wealth and welfare in the face of threats of stresses and shocks; focused on subsistence or low-input agriculture), and \"food insecure\" (chronically food-insecure, some landless or reliant on casual agricultural or nonagricultural labour). Market approaches are likely to benefit those stepping up or stepping out, while for others-often the majority in many communities-food insecurity can increase, and the population of those hanging in could increase.Thus, we have to recognize differentiated pathways to adaptation-tailored to different sectors of the population often with multiple pathways in the same geography. We discuss five main pathways:1. Increasing market integration and/or consolidating land so as to step up 2. Climate-informed shifts in the farming system so as to step up 3. From landless to small-scale entrepreneurship (including highly intensive production on micro landholdings)4. Climate-informed productive social safety nets and nature-based solutions for those least integrated into markets 5. Exiting/reducing agriculture in the livelihood portfolio Some key interventions are shown in Table 1.Interventions for each pathway and the elements addressed #1. Increasing market integration and/or consolidating land so as to step up Pathways and interventions neededIn 2017, 3.4 billion people lived in rural areas, most in low (15%) and middle income (79%) countries i , many deriving their income from small-scale agriculture, including fishing and livestock raising. Globally, there are about 570 million farms, most of which (circa 500 million) are less than 2 ha, accounting for about 12% of the world's agricultural land. 1 Small and medium farms (≤50 ha) produce 51-77% of nearly all nutrients. 2 Poverty rates are higher in rural than urban areas (e.g., in 2013, 18.2% of rural residents and only 5.5% for urban residents were in extreme poverty, and food insecurity is also slightly higher for rural than urban residents. 3,4 This paper is focused on the rural poor with an emphasis on the developing world, many connected to the land, agriculture and ecosystem services; and vulnerable to a range of risks including climate change. The main objective of the paper is to advocate for actions and research-for-development that builds resilient and foodand nutritionally-secure rural livelihoods; and fosters differentiated and context-appropriate rural adaptation pathways.Rural conditions vary markedly across continents (Figure 1), and even within countries and districts. Most small and very small farms are in Asia, with sub-Saharan Africa (SSA) having a mix of small to large farms, and Latin America dominated by large and very large farms, but with smaller farms in Central America and the Andes. 5 Poverty is concentrated in SSA and South Asia, but high levels also found in Latin America and the Caribbean (LAC) regions with smaller farms. 6 Africa has the highest prevalence of undernutrition -21% of the population (256 million people), with Asia at 11% (515 million) and LAC at 5%. 7 Even though South America has lower numbers of undernourished the number did increase from 20.7 to 21.4 million between 2016 and 2017. 8 In Asia, rural areas were transformed through the Green Revolution through a process driven by state policies and R&D investments, mediated by markets and embracing small-scale producers. 9 This was matched by urbanization and emerging industries that allowed farmers to enter non-farm employment. 10 Initially most rural households were subsistence producers, but with better functioning markets and improved transport and communications in rural areas, households produced for the market as well as diversifying into non-farm activities to increase incomes. The Green Revolution contributed to widespread poverty reduction and averted hunger for millions of people but left some people behind, particularly those in marginal rainfed areas, and had several negative, unanticipated gender-related and environmental outcomes. 11 Other changes occurred and are continuing, such as the major increase in aquaculture.By contrast, rural transformation in LAC -where land distribution is bimodal (heavy concentrations of both small and large landholdings) -has been driven by investments in new technology and commercial opportunities that have benefitted large farms, rather than small-scale producers, resulting in persistent poverty of small-scale producers.In a study of 10,000 territories in 11 countries, only 12% of them experienced decade-long development dynamics that simultaneously resulted in economic growth, poverty reduction, and improved income distribution. 12 Some 29% had failed in all three dimensions. The authors identified five factors that facilitated development, factors demonstrating the important institutional dimensions of poverty alleviation: (i) level of equity in agrarian structures and natural resource governance structures; (ii) sectoral and organizational diversity of territorial economic structures and intensity of interactions among them; (iii) strength of linkages with dynamic markets external to the territory; (iv) presence of small/medium cities within or close to the otherwise rural territory; and (v) ways in which territories deal with large public investments.Positive developments depended on \"transformative social coalitions\" characterized by a convergence in vision by, and actions of, diverse social actors that are committed to sustained action over a long period of time.SSA deviates considerably from the Asian path of structural transformation. 13 Urbanization is proceeding slower than in Asia, because of the slow pace of industrialization, thus providing limited opportunities for leaving agriculture and entering non-farm employment. 14 However, the urbanization trend is still significant. Globally rural populations are expected to decline by 2050, while in SSA they are expected to increase, with further decreases i Retrieved from https://data.worldbank.org/indicator/SP.RUR.TOTL in farm size (Figure 2). Agricultural productivity in SSA remains low because of limited irrigation, variable rainfall, and impoverished and degraded soils, with producers unwilling to invest in new technologies due to high risks, poorly developed markets and insecure land tenure. Poor governance and pervasive inequality in the provision of services and incentives to women and certain marginalized groups also characterize SSA situation. National food demand is increasingly met by food imports. While farming (including pastoralism) provides a primary option for gainful employment, it may increasingly be unable to meetA. Mean farm size and B. percentage of population in multi-dimensional poverty in three global regions. 17,18 livelihood needs in the future, pushing many into lowreturn non-farm sectors. 15 Despite the differences amongst continents, there are also many similarities in the transformation processes underway. A common trend involves what has been termed deagrarianization (or deactivation when the process is not permanent but only temporary -see Shackleton and Hebinck 2018, for example). 16 Deagrarianization is characterized by diversification of rural livelihoods, increased agricultural and non-Note: The multi-dimensional poverty index is constructed from ten indicators across three core dimensions: health, education and living standards. agricultural wage labour, more commercialization of forest products, and temporary and permanent migration to new livelihood options in urban centres. 19 Historically, much migration, particularly for poorer migrants, has been seasonal, temporary, and remaining within rural areas. 20 These patterns are already changing, however, especially in SSA, with increasing migration from rural to urban centres, driven by various factors including climate change ii . 21 Employment in the areas from which migrants originate may be scarce, but the wage levels for poor migrants at their destination may be only marginally higher, and in addition may come with new risks. Deagrarianization is most advanced in LAC and much has been written about these trends in SSA, even though deagrarianization is least advanced in SSA (Figure 3). Specialization in on-farm activities continues to be common in SSA (on average practiced by 52% of households in the sample of Davis et al. (2017), compared with 21% in other regions). 22 However, cases of extreme deagrarianization, even in the absence of good alternatives, have taken place in some SSA regions, highlighting the need for livelihood options outside agriculture (Box 1).Despite the trend of deagrariainization, all three regions are still characterized by the persistence of small-scale producers. 23 Reasons are many and include (not all occur in the same place): (i) lack of alternative options; (ii) strong cultural ties to land; (iii) policies limiting land sales and land rental markets; (iv) subsidies to small-scale farming;(v) farmers holding onto small pieces of land that would by themselves be sub-livelihood in size, given households have other sources of income; (vi) smallholdings being productive relative to large units, e.g., for wet rice-based smallholdings in East Asia; (vii) emergence of small-scale or micro-mechanization and machine rental markets, and (viii) incorporation of local natural resource-based activities such as charcoal production into livelihood portfolios.Growth in rural populations (1990 -2017) in sub-Saharan Africa, South Asia and Latin America and the Caribbean.ii By 'climate change' we include climate variability, given the recognition that adapting small-scale producers to climate change requires developing resilience to the risks associated with natural climate variability.Given that anthropogenic forcing interacts with natural climate variability, producers experience climate change largely as shifts in the frequency and severity of extreme events, and in new weather patterns. Another commonality amongst regions, though predominantly an urban phenomenon, is rising obesity and diabetes, giving rise to the need to consider the whole food system and to promote diversified production systems that enhance nutrition. Although green revolution approaches have increased calorie consumption, dietary diversity decreased for many poor people, and micronutrient malnutrition persisted. 24 Policies tend to focus on staple crops, thus limiting growth in more nutrient-rich vegetables, pulses, legumes, and animal-source foods.The empirical relationships between incomegenerating strategies, diversification and welfare are not straightforward, and the speed and extent of deagrarianization globally depends on many factors, including agricultural potential, development in nonagricultural sectors, location in relation to infrastructure, markets and cities, changing values and ambitions amongst the younger generation, and household characteristics (especially those that help in overcoming barriers to entry into non-agricultural livelihoods). 25,26,27 As an example, with respect to location, Fafchamps and Shilpi (2002) find that in Nepal, agricultural wage employment is concentrated in rural areas close enough to cities to specialize in high-value horticulture, but not so close as to be taken over by unskilled 'urban' wage labour opportunities. 28 Davis et al. (2017) find that betteroff households have a higher participation in (and greater share of income from) non-farm activities. 29 Livelihoods in rural Eastern Cape are on new trajectories, with agricultural production declining markedly, though with some households specializing in more intensive home gardens. Many factors are influencing the shift, including reduced labour availability due to HIV/AIDS, increased risk associated with dryland cropping due to frequent poor seasons, and the availability of social security cash transfers. Higher level factors include lack of investment in communal lands and insecure land tenure. This is deagrarianization but without options to escape poverty, leading to entrenched rural poverty and loss of social capital including a rise in rural crime and drug use. This case may represent an extreme situation given South Africa's violent political history and marked inequality, although similar (but not as extreme) trends are also see in other parts of southern Africa.Abandoning farming in South Africa Multiple and inter-related risks impact rural dwellers' choices and livelihoods, and influence the potential of small-scale farmers and pastoralists to enhance wellbeing and food security. 33 Climate-related disasters impact poor countries, and poorer sectors of the population disproportionately. Climate shocks come in many forms: changes in seasonality, heavy storms and excessive rainfall, storm surges and salinization, flooding, droughts and extreme heat events. Other risks, some made worse by climate variability, include plant and animal pests and diseases, and price fluctuations of agricultural inputs and products. Small-scale producers also often face uncertain markets: unreliable input markets, transport bottlenecks, and gluts in production that drive prices down. Gains in ending hunger and malnutrition are being eroded by more frequent and intense climate extremes. 34 High vulnerability extends over 10.84 million km 2 , with some 1.11 billion inhabitants, covering large areas of SSA, South Asia and some pockets of LAC (Figure 4). Small-scale producers often face other types of risk too, such as those associated with poor health and nutrition, conflict and economic shocks, for example.Households deal with climate shocks through risk aversion behaviour prior to the shock and through responding to the shock. Risk aversion reduces the chances of breaking out of poverty, as households in risky environments are unwilling to invest in improved production practices and technologies. 35 Households tend to use practices tailored to more adverse conditions and are therefore unable to make the most of average growing seasons, let alone good seasons. Risk aversion extends beyond producers to institutions and market players, limiting investments in the development of agricultural value chains. With severe climate shocks, vulnerable households employ a range of strategies to cope, further increasing vulnerability, e.g., defaulting on loans, selling productive assets (e.g., livestock), removing children from school, reducing food intake, and exploiting natural resources.The above discussion focusses on households, but there are also a host of risks to the entire small-scale sector, such as urban bias in policy making, lack of policy support to small-scale producers, and shortfalls in institutional capacities and insecure tenure. 36 Small-scale producers are often at a disadvantage relative to large landholders, through policies affecting land, investment and agriculture. 37 In LAC small-scale producers need to be extremely organized in order to secure policy andAreas of High Agricultural Risk for Different Climate Hazards in Vulnerable Areas. investment support. 38 In parts of SSA there has been rising land consolidation, to the benefit of traditional authorities, decision makers and non-rural actors and to the detriment of small-scale producers. 39 Similarly, pastoralism has been put under increasing pressure as a result of sedentarization policies, usually to the detriment of pastoral livelihoods. 40 Policies promoting specific practices can increase risks. For example, interventions promoting intensification can be inappropriate, as intensification practices may be more impacted by climate than traditional practices. Intensification has resulted in some extremely negative social outcomes. It is argued that farmer suicides in India are largely a consequence of the push to intensified, commercialized agriculture. 41 Carleton (2017) identified increasing temperatures as a significant contributing factor. 42 While the reasons for farmer suicides are likely to be complex, it does appear that indebtedness due to efforts for intensification and commercialization of agriculture and the factors associated with it are important drivers of farmer suicides in India. 43,44 Dawson et al. ( 2016) demonstrate for Rwanda -generally seen as a positive example of agricultural development -that only a relatively wealthy minority were able to adhere to the modernization drive, and policies appear to be exacerbating landlessness and inequality (e.g., subsistence practices disrupted, local systems of knowledge, trade, and labour impaired, and land tenure security reduced). 45 Intensification technologiessuch as stress-tolerant varieties should reduce vulnerability, but if the new variety comes with greater costs or more labour, the reduced bio-physical vulnerability can be offset by increased socio-economic vulnerability. 46 Other potential challenges to rural livelihoods include the rising feminization of agriculture (Box 2), increased youth unemployment and poor health. Feminization, often the result of male out-migration, can leave the household with labour constraints (Box 3), but in some situations may help to decrease livelihood vulnerability. 47 Other places are seeing female out-migration, leaving the very young in the care of the elderly. 48 Feminization may result in a shift to other farming practices (for example, in many parts of rural Kenya, livestock are managed by men and crops by women), with possible negative or positive outcomes. Differential vulnerability, power imbalance and gender and class inequalities can be further entrenched in development and market initiatives. 49 Youth unemployment is recognized as a key problem, and in extreme conditions can lead to social unrest, rural crime and drug abuse (Box 1). Poor health, or at least reduced labour productivity, can be climate-induced because of extreme heat events. Climate, through flood events, is also influencing disease outbreaks such as cholera. But diseases unlinked to climate also wreak havoc on rural communities; an example is HIV/ AIDS and its implications for available labour (Box 1). Another potential risk relates to the commercial production of non-food crops, as is the case of sugarcane cultivation among small-scale farmers in Uganda. According to Mwavu et al. (2018), as a result of the expansion of this crop, the majority of households growing sugarcane in Uganda are cultivating fewer crop varieties, lack adequate and nutritious foods, and do not have enough income to purchase food. 50 The latter responds to changes in food systems, e.g. the demand of new types of foods with a smaller environmental footprint and better quality that has caused an excess of sugarcane production associated with lower incomes for farmers to purchase food.Changes in the food system, such as growing demand for new kinds of food and of better quality by an urbanizing population, the growing power of supermarkets, and consumer and advocacy demands for foods with lower environmental footprints, are both a risk to and an opportunity for small-scale producers. If unable to meet food system demands, small-scale producers will be sidelined by larger-scale producers and imports from other countries.There are many risks facing specific individuals, households and regions, such as political economy risks that might have negative impacts on local people, political instability, social conflicts (civil war), elite capture, corruption, poorly designed and poorly enforced laws. Much better understanding of how they may affect the transformation processes underway and the factors influencing those pathways, and the relationships between agricultural development initiatives, vulnerability and poverty, are essential if appropriate interventions are to be identified and taken to scale. Bryceson (2019) summarizes trends in gender and generational labour allocation using data from several countries. 51 Agricultural labour participation in the rural areas by age is shown below (panel A). Apart from in Ghana and Mali iii , women dominate agriculture throughout their life cycle. These patterns are broadly similar for urban agriculture. African women's agricultural effort continues to be primarily focussed on subsistence food production, achieving 20-30% lower agricultural productivity than men. This ''productivity gap\" may arise because women farm smaller plots than men and have lower resource endowments with respect to fertilizer, seeds and extension inputs. Social barriers and norms that act against the full and rightful engagement of women in productive work that is remunerated, rewarded, and incentivized adequately also explain this productivity gap.Male-female sex ratios of participation by age group, 2010s. Dark blue, overwhelmingly male; yellow, roughly gender balanced; dark red, overwhelmingly female.Contrast this with the rural non-agricultural sector (panel B), which is male-dominated in all countries other than the two most urbanized, Ghana and Zambia, where the youngest age group (15-24 years) were gender balanced or slightly female-biased. Along with labour and land contraction in many small-scale systems, female resource control and labour autonomy continue to be affected by male patriarchal attitudes. Older women tend to be left behind in the countryside, though they nevertheless provide an agrarian fallback for returned migrant family members and other members engaged in local non-agricultural occupations needing subsistence food support.Deagrarianization is a huge challenge for African governments seeking to create an enabling environment for their populations to achieve higher standards of living, reduced inequalities, and more resilient agriculture. With industry globally undergoing massive technological transformation, Africa will need to develop its own resolution to the dilemmas of adaptation, resilience building and rural livelihood opportunities in an era of both great uncertainty and potential.iii Mali presents significant differences with respect to other countries. The reason for the latter is that men's work has been always dominant in the rural sector of this country, both in agriculture and non-agriculture activities.Gender differentiation in African small-scale systems There has been undeniable progress in reducing rates of undernourishment and improving levels of nutrition and health over the last 40 years or so, although substantial regional and in-country differences remain. Nevertheless, the number of undernourished people is estimated to have increased to 821 million between 2015 and 2017. 58 At the same time there has been a rapid increase in the number of adaptation initiatives, particularly in African and lowerincome countries. 59 The overall progress of rural households in adapting to climate change is not easy to assess. One household data set that gives some insights are the baseline surveys carried out for the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) in its first two years, covering over 6000 households in target research sites in 21 lower-and middle-income countries. This dataset, while not strictly representative, constitutes a powerful set of case studies using identical data collection instruments across a wide range of situations. Thornton et al. (2018a) analysed these data using an extension of the livelihood aspirations framework of Dorward et al. (2009) to identify four household types: 60,61 The strength of the three-way relationship between weather and climate variability, agriculture and migration appears to depend on the country, the local context in which the analysis is carried out, and the methodology used. 52,53 The prevailing rate of internal migration in India is low, compared to other countries at similar stages of development. 54 Munshi and Rosenzweig (2016) argue that in the absence of well-functioning formal insurance and credit markets, smoothing of consumption (during shocks) happens through transfer from social networks. 55 Such social insurance could serve as a barrier against migration. The non-transferability of welfare benefits between states, and the existence of home state quotas in jobs and educational institutions, also act as constraints against inter-state migration in India.Weather and climate variability-induced agricultural distress can lead to rural-rural migration as well as short-term migration. The temporary migration of men in search of livelihood options has increased the role of women as cultivators and agricultural labourers. For example, Bhandari and Chinnappa Reddy (2015) showed for the hill state of Uttarakhand that little or no capital formation on farms managed by women of the migrant household, resulted in a significantly higher burden on women, by comparison to women of non-migrant households. 56 Pattnaik et al. ( 2017), through an analysis of 1981-2011 census data, reports an increasing trend of women working as agricultural labourers in most states. 57 They note that this adds to the existing heavy work load of most rural women and thus can be better described as \"feminization of agrarian distress\".Climate-and weather-induced agricultural distress, out-migration and feminization of agriculture: evidence from India• \"Stepping up\". Investing in agricultural assets over the last 10 years to expand the scale or intensity of existing activities, along with purchases of at least some inputs or services;• \"Stepping out\". Accumulating assets that allow investments or switches into new activities and assets; although they reported no productivity increase and no intensification investment over the last 10 years; earned income from non-agricultural activities had increased, not necessarily indicative of leaving agriculture altogether;• \"Hanging in\". Maintaining and protecting current levels of wealth and welfare in the face of threats of stresses and shocks; focused on subsistence or low-input agriculture, with a primary aim of lowering risks; not well linked to markets; not actively seeking to increase production;• \"Food insecure\". Agriculture-based but chronically food-insecure, with food deficits for more than five months annually; in a relatively precarious food security situation; some may be landless or reliant on casual agricultural or non-agricultural labour.The percentage of surveyed households of each type are shown in Table 2. 62 These aggregate data hide considerable variation: most communities contain mixtures of different household types, and some communities may be in rapid transition (for example, towards more market orientation).The proportion of households characterized as \"hanging in\" is high across all regions (57%), and the other households are on average equally split between the other three types.There are some large regional differences, however: East Africa has a high proportion of households that are \"food insecure\", while the sites in West Africa show the lowest rate of households that are \"stepping out\" and high rates of \"hanging in\". The rate of \"stepping up\" in South Asia is lower than might be expected, given the relatively higher rates of agricultural input use compared with East and West Africa. The sites in Latin America have the largest percentage of households characterized as \"stepping up\" and \"stepping out.\" The baseline data also show that many farmers in all regions have made changes in their farming practices in the last decade. These farming changes have been made for several reasons, but markets are one key driver of changes being made in cropping practices in all sites in East Africa, West Africa and South Asia, with factors related to climate also highly influential, along with land, labour and pest issues. In the great majority of cases, the changes that have been made to date are minor, such as changing planting dates and varieties.For one of the East African sites in Table 2 (northern Tanzania), however, a resurvey by Fraval et al. (2018) found that despite relatively high levels of poverty, 77% of households had made changes in farm practices in the three years since the CCAFS baseline survey. 63 There was little change in household incomes for the 60% of subsistence households in the sample, but some of the other households had managed to expand their cropping areas and increase crop and off-farm income (although the longer-term risks and costs that may be associated with such expansion are not yet known). The most substantial changes observed were related not to any specific agricultural intervention but more to changing personal circumstances and expanded rural-urban market linkages. This suggests that households in rural sites with good urban connections can be both agile and diverse. Similar changes were observed in central Tanzania, with rising incomes in this case being due in part to cultivation of sunflower as a cash crop. 64 Such dynamism makes it challenging to target appropriate agricultural interventions to build resilience, both because of the pace of change and because in many situations off-farm opportunities may be as or more attractive than agriculture.A further challenge lies in separating out the additional future challenges that may be posed by climate change on desired development outcomes.Just about all studies of rural adaptation and resilience building at local level highlight the importance of local context specificity in determining the appropriateness and performance of different agricultural interventions.The messages coming from assessments of the progress of rural small-scale producers in adapting to climate change and building their resilience are mixed: there some successes, but in general there is only limited evidence that small-scale farming is changing at the scale needed to enhance food security of significant proportions of the population: farmers may be changing their practices, but these (mostly relatively small) changes are not always effective in enhancing their food security or resilience (Box 4). 65,66,67,68 With respect to larger or more 70,71 In searching for commonalities in the enabling environment among the CCAFS sites with similar proportions of household types, collective action at the community level coupled with appropriate climate information provision and the active participation of local agricultural and nonagricultural organizations was found to be associated with higher levels of food security. Broader questions remain as to the nature of an enabling environment that can promote sustainable livelihoods and agricultural growth. There are many examples illustrating the nature and importance of the enabling environment.Case studies in villages in Zambia found substantial differences in the sources of agricultural growth and the resulting distributional effects, due to the complex interplay of national agricultural policy and price and climate volatility. 72 In a case study in rural India, unequal power relations between a company and farmers skewed the capture of benefits from contract farming towards the company, rendering participating households vulnerable to indebtedness and loss of autonomy over land and livelihood decisions. 73 Many pastoralists in Afar, in arid and semiarid Ethiopia, have moved to agro-pastoralism because of recurrent droughts and the government's sedentarization program. This is weakening indigenous institutions and cultural practices, and the likely impacts on future generations and Afar identity are very unclear. 74 The situation is the same for fisheries adaptation: on the one hand, institutional and legal barriers at the national level challenge adaptation objectives, but on the other, customary law can help to empower local communities to participate in resource management and the design and implementation of successful \"bottom-up\" adaptation strategies. 75 The fact is, to foster the changes needed in rural livelihoods at the scales required, a much stronger focus on more localized enabling environments will be needed if livelihood, national food security and adaptation goals are to be attained.The general picture of \"some progress in adaptation but not enough\" is confirmed by global studies. For example, a meta-analysis of the results from integrated assessment models shows that crop yield growth rates per year are already lagging; 1.2% per year globally, compared with the needed average of 1.8% per year. 76 National \"hotspots\", which combine production gaps (differences between supply and demand) with the severity of impacts of climate change on wheat, rice and maize, are shown in Figure 5. 77 For wheat, countries such as Ethiopia and South Africa show moderate production gaps with relatively small effects of climate change on production to the 2050s, once adaptation is factored in. These countries might then focus more on strengthening their food supply through trade and promoting incremental adaptation at local scales. In contrast, countries such as India, Pakistan and Peru have large wheat-consuming populations and need to address problems of likely substantial production gaps due to increasing demand coupled with large and negative climate change impacts on wheat yields. These countries may need to combine technology growth with transformative actions in terms of land use and high-yielding, stress-tolerant varieties, if they are to remain wheat secure from a self-sufficiency perspective. The situation is the same for maize in many countries of SSA and South Asia: increasing production gaps and substantial effects on maize productivity, highlighting the need for widescale transformative adaption in both commercial and smallscale sectors. But promoting adaptation and increasing resilience needs to be done in ways that are inclusive -a considerable challenge (see Box 2).Hotspots of climate change and differentiated adaptation responses Hotspots of climate change based on assessments of impacts after adaptation on crop yield at country scale for the 2050s and the production gap (the difference between estimated cereal demand in 2050 and current cereal supply). Countries included only if the cropped area >10,000 ha.Adaptation has been occurring at other scales too, including national policy. Under the Paris Agreement, adopted at COP 21 and signed by 180 Parties in 2015, countries are in various stages of preparing, communicating and maintaining their nationally determined contributions (NDCs) to adaptation and greenhouse-gas mitigation. Many NDCs include agriculture as a priority sector for adaptation (and mitigation). Nevertheless, many of them fail to acknowledge drivers of deforestation and degradation from large-scale commercial agriculture productions. 78 There is also a growing number of National Adaptation Plans and Climate-Smart Agriculture policies and programmes. All these are helping to create a favourable policy environment for climate action, although successful implementation of these policies and programmes will depend on access to appropriate levels of finance (including national civil society so that finance gets to the front line) and effective governance and institutional mechanisms. Countries also need to focus on cross-sectoral coordination, given that many of the incentives for climate action in agriculture will come from other sectors such as energy, finance and Maize information and communications technology (ICT). As for other scales, the current status of adaptation nationally is difficult to assess, given the lack of commonly agreed frameworks to track adaptation.There is also an adaptation agenda for agricultural service providers. Agribusinesses face several direct climate risks, with potential impacts on physical assets, production processes, depletion of natural resources, human resources and infrastructure. All these risks may affect business operations, profit and income. Schaer and Kuruppu (2018) provide several case studies of small and medium-scale enterprises adapting their business models and operations. 80 There is also growing interest in the role of large national and multinational corporations in adaptation, given their potential to finance climate-proofed projects, develop technologies and innovative solutions, and enhance the scale and cost-effectiveness of specific certain adaptation measures. 81 As indicated in previous sections, areas of poverty, food insecurity and extreme vulnerability remain entrenched, and current actions to adapt and build resilience are insufficient. Climate change and its associated extreme events, coupled with other changes operating in many places (such as demographic, urbanization, and sociocultural change), will only add to the problems faced by rural dwellers. How can the global community respond to such urgent and daunting challenges? We envisage nothing short of a transformation of rural livelihoods, agriculture and the broader food system. Transformation here refers to a significant redistribution (at least a third) in the primary factors of production (land, labour, capital) or the outputs and outcomes of production, within a period of 10 years (modified from Vermuelen et al. 2018). 82 This includes significant changes to the structure of landholdings, technologies and the use of them, capabilities of women and men, and the distribution and dynamics of the population and labour force. Such a transformation will generate multiple benefits, including education, nutrition, health, water and sanitation, and empowerment of women and youth, translating into transformed and thriving rural livelihoods and communities.If fundamental change is to be achieved, several elements will be needed in synergy, with less or more emphasis on particular elements depending on context. Actions to achieve this change will vary according to household heterogeneity and it is extremely unlikely that silver bullets exist, though technologies that are near-ready or in development could shift rural livelihoods, agriculture and food systems in unexpected ways in the coming decade, both positively and negatively. 83 Research will play a key role in advancing knowledge with respect to these technologies as well as in developing novel methods to insert these options into current food systems, and to better understanding what might affect their uptake to achieve transformation. Along with massive opportunities, there are massive risks too -in particular, ensuring that transformation leaves no-one behind and that all can benefit.Drawing on Dinesh et al. ( 2018), we set out six priority key elements that are crucial to trigger truly transformational change in rural livelihoods, agriculture and food systems under climate change (Figure 6). 84 Each element involves a range of actions and actors, outlined below. Accelerating action and progress probably means that the six elements should not work in an isolated manner but on the contrary should all be part of the conditions that need to be in place in order for positive change to take place. Urgency is mostly needed; actions need to be implemented in the near term.The proposed framework for transformation emerged from a process involving iterative discussions with various groups of stakeholders experts (Independent Steering Committee of CCAFS, Core ABC Farmer organizations, cooperatives and similar forms of collective action can reduce high transactions costs that can stimulate the participation of small-scale producers in markets. 90,91 Understanding the specific needs and contexts under which rural dwellers forge their livelihoods (including the most marginalized groups) becomes an imperative for successfully building resilient rural livelihoods. This implies that the rural voice should be at the centre of the discussion when promoting adaptation pathways. Farmers' need to organize, network and improve access to information to negotiate with industry and have their voices heard in decision-making processes.Capacity to adapt and management of threats amongst small-scale producers is often determined by personal networks which if not considered when designing strategies for adaptation to climate change could possibly exacerbate vulnerabilities. 92 Wise et al. (2014) and many other studies point to the importance of local institutions and networks in fostering climate action. 93 Social networks can enhance adaptation, especially at the community level, by building networks that are important for coping with extreme events. 94 Many of the technologies that could be implemented in the future will offer opportunities but also will pose threats to small-scale producers. Promoting joint actions by small-scale producers and their representatives through producer organizations, cooperatives, associations, enterprises, etc. will be key to enhance opportunities and reduce threats. One key challenge that must be acknowledged with respect to these representatives relates to their accountability. Sometimes, group leaders may not be true representatives of the groups that they are supposed to represent. It may thus be necessary to validate through participatory approaches that the real needs of the targeted groups are being addressed. 95 Globally, women make up almost 50% of the agricultural labour force and in general, women are more likely than men to be working in the agriculture sector. Rural women are in fact playing an increasing role in small-scale production in many regions as a result of out-migration of males and high levels of dependence on local natural resources. Women also experience greater financial and resource constraints as well as less access to information (including agricultural extension), thereby affecting their resilience. 96 Food and nutrition security of women and girls is also likely to be compromised. Given this, it has been argued that women are more likely to be vulnerable to climate variability impacts and therefore climate change will likely exacerbate existing gender inequalities.The increasing youth population in developing countries also poses challenges for climate adaptation. Seventy percent of African youth reside in rural areas and are employed in the agricultural sector. 97 Unemployment of 20%-45% of the youth population and engagement in livelihoods and enterprises which are affected by climate risks are widely identified as major challenges facing young people in developing countries. 98 Youth in rural areas derive their livelihoods from degraded natural resources and have limited access and control over productive assets, limited access to information and financial resources, and limited participation in household and farm decision-making, making them vulnerable to climate variability and weatherrelated shocks. 99 Given the above-mentioned challenges, actions are needed to create conducive enabling environments that encourage producers, business owners, researchers, investors and policy makers to innovate in ways that promote gender equality and youth opportunities. Advancing gender equality and youth opportunities is a priority, given the very high rates of unemployment among young people, women's prominence among people living in poverty, their lack of access to resources and power, and the disproportionate agricultural labour burden that women face (Box 2). Moreover, advancing gender equality will generate positive outcomes for rural livelihoods, and food and nutrition security: e.g., it is estimated that if women had the same access to productive resources as men, the yields on their farms could increase by 20-30%. Researchers should also expand the scope of the analysis in relation to gender and climate change. According to Djoudi et al. (2016), in climate change studies, gender is mostly handled in a men-versus-women dichotomy and little attention has been paid to power and social and political relations. 100 These analyses are key to develop specific actions that can promote gender equality under climate change and that can enhance opportunities for adaptation.The use of ICTs in agriculture and allied sectors is developing rapidly, though agriculture remains as the sector that is least digitalized. ICTs have a huge potential to revitalize rural livelihoods and agricultural extensions systems. Extension has long been facing decline and under-funding. Digitization promises to increase interaction among food system actors and amongst the rural community to improve efficiencies, reduce costs and enable better decisions in the context of climate change impacts, as well as contributing to disaster prevention and preparedness through early-warning systems of pest and disease outbreaks and extreme events (drought, flood, heatwave). If around 275-350 million farms gain access to mobile-based services by 2030, the total additional income generated would be in the range USD 100-200 billion driven by production increase and avoided losses. 101 The body of evidence is growing regularly, showing the ways in which digital innovations could improve the lives of rural people, and how the rapid growth of the internet and associated digital technologies such as mobile phones, have become a key element when it comes to providing the necessary information to farmers to promote transformative agricultural development. 102 Examples of efficiency gains are already occurring. In 2014, Colombian rice farmers saved USD 3.5 million in input costs by preventing 1,800 hectares of rice crop from being lost. These savings were the result of following CIAT recommendations based on big data analysis that advised farmers not to plant during the usual dates. 103 This example saw national and international researchers combining with local producers' organizations and extension staff to generate the information needed and implement appropriate actions based on it. Another example is \"Shamba Shape Up\", a reality TV series about new farming technologies and practices that regularly reaches 5 million viewers in 3 countries in East Africa. It generated more than USD 24 million of productivity benefits during its first three series. 104 Shamba Shape Up is the brainchild of an organization dedicated to the use of media for education and development. Its effectiveness arises from the wide range of actors involved: funders, people working in civil society organizations and the commercial sector, and national and international researchers, as well as small-scale producers and both rural and urban consumers. Another interesting example is \"Plantix\", a free mobile crop advisory app that uses machine learning for automated image recognition to diagnose plant diseases, pests, and nutrient deficiencies. This app is facilitated by ICRISAT and so far has been downloaded more than 6.2 million times. 105 Digitalization also has the promise of promoting networking amongst rural persons, helping to facilitate empowerment.If rural livelihoods, agriculture and food systems are to be transformed, existing climate-resilient practices and technologies will need to be scaled up, with researchers working alongside NGOs and the private sector to make much better use of the \"back catalogue\" of over 60 years of work on agricultural research for development in many lower-income countries. A range of relatively underresearched crops may have considerable substitution potential in different regions, as changing climates erode current crop suitability (Box 5), as well as contributing crop diversity that can have beneficial effects on household food self-sufficiency and food security (Box 6).At the same time, new technologies will need to be developed that deal with the multiple and often interacting stresses such as drought, floods, heat, and pest-weeddisease burdens, as weather becomes increasingly unpredictable and variable. There are several near-ready technologies that may have considerable effects on different parts of the food system in the coming years. These include alternative protein sources for food and feed such as plant-based animal food substitutes, algae, seaweed and insects, new food storage technologies based on biodegradable and micro-organism coatings, and vertical farming. 106 As important is closing the yield gaps that currently exist (e.g., implementing best management practices), even in the absence of climate change. Landscape management will be fundamental to address the climate change challenge as is the case of less humid zones, where water management and governance, with solar micro-irrigation can constitute a promising area for joining up energy and agricultural agendas (Box 7). Globally 20% of cropland is irrigated, but only 5% in Africa. Xie et al. (2018) estimated that irrigated area in the drylands of sub-Saharan Africa (SSA) -home to about 425 million people -can be expanded by 6-14 million hectares (nevertheless there is still debate in relation to the availability of water for irrigation), 84% of which is small-scale irrigation. 107 Greater focus on rural mechanization and post-harvest storage and processing relevant to small-scale producers can also be a boost to rural entrepreneurship.The \"big three\" (rice, maize and wheat) account for about 46% of the global cropped area and about 40% of calorie intake. These crops have received a great deal of attention in agricultural R&D. There are other crops that would benefit from much more R&D and market development attention, as some of them could be important substitution crops as climates change into the future (Table 3). They could also play a key role in on-farm crop diversification as an adaptation strategy. The table below shows a semi-quantitative evaluation of the potential role of different crops in climate change adaptation in different regions.\"Orphan\" crops under a changing climate ** Role in adaptation: how the crop may enhance adaptation. For \"maintain as staple\" crops, heat and drought traits will be important. For \"substitution\" crops, traits such as marketability / utilization, abiotic resistances and yield will be important.Sources: expert consultation led by Andrew Jarvis (CIAT); known impacts from http://ag-impacts.org/ estimatesearch/ and from Thornton and Cramer (2012). 108 Inspiring examples of the successful scaling-up of new technology do exist, e.g., stress-tolerant maize varieties in Africa iv . Examples demonstrate that when the appropriate conditions are in place (e.g., right incentives and political will), new technologies can be successfully implemented at scale. Climate and weather information at a range of lead times can enable producers and value-chain actors to better manage climate-related risks throughout the agricultural calendar, enhance adaptation via agricultural Farmers in Africa have long adapted to climatic and other risks by diversifying their farming activities. The relationship between farming diversity and food security is complex. Using survey data from more than 28,000 households located in 18 African countries, it has been shown that households with greater farming diversity are more successful in meeting their consumption needs, up to a certain level of diversity per ha cropland. More diverse farming systems can contribute to household food security, although the relationship is influenced by other factors such as the market orientation of a household, livestock ownership, non-agricultural employment opportunities, and available land resources. The greatest opportunities for diversification of food crops, cash crops, and livestock in Africa are found in areas with 500-1,000 mm annual rainfall and 17%-22% annual rainfall variability. At least 43% of African cropland is found in areas without these characteristics, and the ability of agricultural systems in such places to respond to climate change may be hampered. A shift in research and policy towards agricultural diversification options in such areas may be necessary to support such households, though it should be noted that the scalability of practices based on agricultural diversity is heavily influenced by their relative value compared with other viable options for climate change adaptation. 112Farming diversity influences food security in Africa diversification and enhance technology uptake. 110,111 Researchers are also working on a wide range of technologies that may have more transformational effects in the coming years: examples include vertical farming, plant-based meat and replacement protein sources for feed and food, including algae, seaweed and insects (some of these are already being marketed).Current levels of investment in climate action for agriculture and more broadly rural livelihoods will be insufficient to drive transformation. Innovative approaches India's Government is seeking to increase the use of solar energy up to 10% by 2020 by adding 100,000 megawatts of solar energy. Solar Power as a Remunerative Crop (SpaRC) is an on-going initiative led by IWMI that is connecting farmers to the energy market. Farmers participating in SPaRC are \"growing solar power\" as a remunerative \"crop\" by setting up solar panels. The energy generated by these farmers is being used for on-farm needs such as irrigation but at the same time is connecting farmers to markets via selling excess power back to the grid. This initiative is helping to accomplish the country's goals of addressing climate change, improving the sector's productivity, and achieving higher incomes for farmers. 113 In 2015, Ramanbhai Parmer, a small-scale farmer from Gujarat became the first \"sunshine farmer\" to sell energy back to the power grid from the solar panels that drive his water pump. Nationwide, IWMI estimates that approximately 11 million framers could benefit from this initiative. 114 Furthermore, Shah et al. (2018) argue that solar irrigation pumps has potential to unlock South Asia's perverse energy-groundwater nexus. 115 Nevertheless, there are some discussion in relation to the possibility of over-exploitation of ground water. 116Growing solar power in India iv Farm trials have demonstrated that climate resilient maize varieties produce 20% more crop than current commercial varieties in low-yield environments, and double in severe stress environments, such as the El Niño event of 2015−16. 109 will be needed to enhance investment flows, and these could include increasing private sector finance, impact investing and blended finance. At the macro level, enhanced investment flows can also result from more effective public investment in rural areas and agriculture to generate climate co-benefits -for example, by increasing the degree of climate smartness of the more than USD 600 billion in public agriculture support received by farmers every year v . This will require public investors to shift their focus towards de-risking and mobilizing private sector capital, and private investors to move away from the \"business as usual\" assessment of investment opportunities and focus on the long-term growth potential. The latter could provide robust arguments for private companies to comply with their commitments on sustainable practices (e.g., zero deforestation).The public sector plays a decisive role in improving incentives and reducing transaction costs for the private sector. In the case of agriculture, for example, actions such as reducing commercial costs, enabling policy frameworks to access finance, improving regulatory regimes for markets, and providing public goods services that help access the market, such as food security frameworks and national quality infrastructure are key elements when it comes to attracting finance from the private sector. A key element that exemplifies how public sector legal and fiscal frameworks have helped to attract private investment is the establishment of national investment laws under the basis of good practices and the establishment of regulations by which competition can be effective in agriculture markets including strengthening antitrust regulations. An example of this is represented by Kenya, where the elimination of the powers of the holders to veto the license of new tea factories allowed the entry of new competitors and facilitated investments in the sector, allowing farmers to receive 70 % of the higher prices at the farm door. 117 In addition to increasing the flow of capital at the macro level, financial instruments such as well-designed index insurance schemes can help protect producers' productive assets in the face of extreme climate events and promote the adoption of improved technologies and access to credit and market opportunities. Despite the large debate with respect to the implementation of index insurance and its ability to target small-scale producers, the introduction of indexed-based agricultural insurance in countries such as China, Mexico, Kenya and India shows much promise. 118 As noted in Section 2 above, agricultural producers and agribusinesses have to address a range of climate risks, all of which may have an impact on operations and income. Their transactions costs may be too high owing to inefficient regulatory systems, for example. Many millions of rural small-scale producers and value chain actors are unable to access the loans, insurance and credit they need, in part because banks and other financial intermediaries see the risks of investing as being too high. 119 Some smallscale producers may be able to rely on social networks for small loans and start-up cash or to benefit from microfinance loans. Financial institutions will need to play a much bigger role in the future in facilitating access to loans, grants and seed capital. The latter includes building the business case for investing in small-scale producers (Box 8), but also the implementation of approaches such as Maximizing finance for development which intends to understand and propose actions in relation to the limited space for private sector activity. Innovative business models such as TULAA where farmers get access to information, inputs and finance, lowering risk massively and helping farmers make better-informed decisions are also part of the solution. 120 There are several tools and mechanisms that can help small-scale producers to access loans, grants and seed capital, and more will be needed: soft loans or welltargeted subsidies, early-warning systems to better prepare for extreme weather events, funds coming from various sources de-risking large private sector investments. It is important to recognize that even though more investments are required, the current ones need to be used more efficiently. Pham et al. (2019) show that under some circumstances the problem is not having enough investment and funding for forest protection and adaptation activities. 121 The challenge is therefore to reduce inefficiencies born on high transaction costs due to lack of guidelines, overlapping in mandates, and unclear responsibilities amongst government agencies.v Even though this number refers predominantly to OECD countries, it can be argued that what is needed is a change in the state of mind of policy makers so that the public sector uses its resources targeting resilience and sustainability goals.Food supply chains in many developing countries are going through rapid transformation. These changes can be harnessed to contribute to lasting food systems transformation at scale and can be harnessed to the benefit of rural populations. For example, small and medium enterprises are driving change in many countries, installing processing and cold chain facilities that may underpin future resilience to climate change, and that could contribute to rural employment. In addition, the installment of granaries and food storage from good production years to buffer during drought -and the interplay with post-harvest losses has demonstrated an important role for managing climate risk and enhancing adaptation. 123 Reductions in post-harvest losses and in food waste throughout the supply chain is another opportunity that has the potential to deliver on food security objectives, while creating new job opportunities. The effects of these changes could substantially reduce the demand burden on agricultural systems, delivering large reductions in the environmental impacts of farming and fishing. A further benefit might be increases in the profit margins, incomes, savings and resilience of small-scale producers, while also creating new off-farm job opportunities. There are many factors at work that may drive big changes in value chains in the future, which can provide considerable opportunities for rural populations. Markets are developing Farmfit works on innovative tools for smallholder service providers to increase the efficiency, profitability and viability of service delivery and thereby of local value chains. By analysing over 40 smallholder service provider models across 20 countries, Farmfit has built evidence on best practices and key drivers for resilient and profitable smallholder farming. This has resulted in the development of a benchmarking database and business support functions for companies and banks that are willing to engage sustainably with smallholders.By building the business case for financial institutions and value chain actors, Farmfit aims to show private investors that a risky investment in smallholders can translate into meaningful financial returns and impact. For instance, Farmfit advices service providers on how to minimize the costs of servicing farmers, how to build a supportive enabling environment and how to improve access to a package of financial services, input provision and innovative technologies. The Farmfit Fund provides concessional finance and match-making services to co-fund the design, implementation, and monitoring and evaluation of scalable projects.Farmfit (case study taken from Millan et al. 2019) 122 in new ways as urbanization increases, urban demand is increasing for supermarket and fast food, and as incomes rise, ethical and human health concerns could radically alter the demand for different types of food. The evolution of different agricultural value-chains and market configurations can provide big opportunities for rural producers (youth, particularly) to become entrepreneurs, provided that appropriate market, institutional and financial innovations can be harnessed to contribute an enabling environment for such activities. A key challenge in reshaping value chains in ways that are inclusive of actors at different scales will be the effective involvement of multiple stakeholders across the private, public and nonprofit sectors to identify interventions; and then to build the institutional capacity of industry associations, market intermediaries, researchers, governments, civil society organizations and grassroots groups, to implement them. 124 The sixth element of Figure 6 is placed in the centre given its crucial role for incentivizing actions in all the five elements discussed above. Promoting and achieving resilient and food-and nutritionally-secure rural livelihoods, imply new forms of strategic planning, involving not only individuals from the government and society, but interrelated and inclusive partnerships between the public and private sector. It is important to recognize the need for an integrated approach where these enablers constitute the different pieces of a puzzle that if connected properly can make a huge contribution to building resilient rural livelihoods.Policy initiatives are needed to create a conducive enabling environment that encourages innovation, investment and action. All the pathways discussed in the next section require a strong commitment from the policy side to deliver on the appropriate interventions that will make these pathways both feasible and attractive. Targeted policies are needed to develop secondary and tertiary industries in rural areas, but more importantly to support producers to exit rural agriculture and engage with urbanization. At the same time, policies are required in order to incentivize investments in training and re-skilling of the workforce so that producers can engage in new activities such as agroprocessing and distribution and provision of farm inputs.Brown et al. ( 2017) argued that \"if trade restrictions proliferate, double exposure to both a rapidly changing climate and volatile markets will likely jeopardize the food security of millions\". 125 As trade effectively diversifies risk on a global scale and as it means less volatility in food prices, free and open trade should be considered as an adaptation option. Therefore, policies that promote free trade can create a conducive enabling environment for adaptation to take place. Recent Free Trade Agreements or new initiatives such as FLEGT are being promoted and adopted in lower-and middle-income countries and could potentially change how agriculture and forestry sectors operate. Nevertheless, it is important to consider that these initiatives can also come with the risk of exclusion of smallscale producers, women and marginalized groups.Since wrong policies can increase risks (e.g., under some circumstances, interventions promoting intensification can be inappropriate), the right policies and incentives need to be in place -not only agricultural policy but policy related to such issues as digital infrastructure, ease of doing business, landscape scale planning and land tenure, for example (Box 9 and 16). Creating enabling policies combined with institutional environments that facilitate regional and national policy implementation to build resilient and secure rural livelihoods are equally important. In this sense, an enabling environment to achieve transformation will include policies and institutions that generate the right incentives (e.g., the potential of realigning agricultural subsidies for fostering an enabling environment for more resilient agricultural systems), that open up opportunities for different adaptation pathways into the future, and that at the same time, foster a level playing field and ensure support for those left behind under appropriate right frameworks. Agricultural jobs are likely to change significantly in the future. Policy must anticipate and facilitate this fundamental change. Better targeting of public subsidies to incentivize private sector investment can be a game changer in financing the transformation of the rural world. World Bank studies demonstrate that subsidies often fail to promote resilient agricultural systems and lead to negative externalities including environmental damage; for example, environmental externalities arising from groundwater overdraft in the context of the power-irrigation nexus in parts of India. 126 Strong, good governance is needed at multiple levels acknowledging that pathways for adaptation will vary according to type of producers and specific contexts. This governance needs to be transparent, equitable and inclusive in its processes and outcomes, and should consider multiple time frames. Trade-offs will happen most of the time and therefore the importance of understanding them spatially, temporally and across different groups in society is key. 127 Power dynamics need to be addressed to promote resilient and food-and nutritionally-secure rural livelihoods. Understanding power dynamics of those stakeholders involved in the five different pathways described in Section 5 can help in the design of appropriate polices with adequate targets and to prioritize benefits to specific populations (most vulnerable, those deepest in poverty or consistently marginalized groups or landless). This could include supporting small-scale producers over larger, industrial farmers through targeted investments and extension. Other examples include establishing liveable wages and greater protections or workplace standards for landless farm workers or specifically targeting the poor with a package of support that includes training and microcredit as well as bundles of choices of appropriate technology to implement aquaculture and other small enterprise activities. In the face of unequal power dynamics, it is important to consider the risk of policy being set by those with power at the expense of those without. Policy processes need to engage a wide range of actors in rural areas, ensuring effective participation by marginalized groups. 128 Context-specific adaptation actions that consider household heterogeneity at all scales need to be implemented. These actions need to be tailored to geography, socio-economic and cultural conditions, agro-ecology and to the needs of different social groups, who should have a say in shaping the adaptation actions. One single pathway, technology or solution set will not drive transformation. This section of the paper presents a discussion on potential pathways for adaptation and transformation and presents some successful examples of positive changes. It should be noted that trade-offs may exist in relation to each of these pathways. Research will need to play a key role to contribute to understanding and quantifying them so that appropriate interventions can be implemented to reduce these trade-offs. Furthermore, these pathways may be operating simultaneously in specific situations, depending on location and context.The following represent plausible pathways (not all mutually exclusive and not exhaustive) that the global community should consider for promoting resilient and food and nutritionally secure rural livelihoods in the face of a changing climate: (1) increasing market integration and/or consolidating land so as to step up, (2) climateinformed shifts in the farming system so as to step up, (3) from landless to small-scale entrepreneurship, (4) climate-informed productive social safety nets and nature-based solutions for those least integrated into markets, and (5) exiting/reducing agriculture in the livelihood portfolio. These pathways were identified on the basis of a wide range of consultations with different experts, and are of course idealized -in the real world, they are they are complex, dynamic, continually unfolding and context specific. 130 Nevertheless, they do provide a useful mechanism for addressing at least some of the considerable heterogeneity of rural households in lowerand middle-income countries.This pathway is based on better integrating small-scale producers into agricultural markets and intensified production. Producers would grow their share of the market so they can reinvest in technologies that further enhance their productivity and competitiveness, and in many places in the world close the yield gap. Some of the key features of this pathway include increased access to credit and risk-reducing options such as insurance, access to appropriate technology, and appropriate institutional and physical infrastructure. Irrigation can significantly reduce risk in drought-prone areas, but economic, management and environmental conditions need to be satisfied. In some cases, diversification is also occurring to spread risks and make new market linkages. Most of these features depend on developing tools and mechanisms so that financial institutions can contribute to facilitate access to loans, grants and seed capital as discussed in the previous section in relation to innovative finance models.The Maya Biosphere reserve is located in Guatemala and covers over 50% of Petén state, connecting to protected areas in Belize and Mexico, making it one of the largest areas of tropical forest north of the Amazon. Before the creation of the reserve, logging companies would harvest timber and implement other aggressive colonialization programmes, causing degradation of the ecosystem. Nevertheless, with the development of a long-term model, local communities were granted concessions to sustainably harvest wood and non-timber forest products, integrating livelihood and conservation policies and therefore allowing them to meet their economic needs by improving local production systems. This example demonstrates the possibility of protecting natural resources while creating jobs and increasing incomes for families that provide sustainable forest products. 129Improving livelihoods through communal tenure rights in the Maya Biosphere Reserve, GuatemalaEvidence from eastern and southern Africa suggests that interventions aimed at facilitating small-scale organizations and improving access to better technologies and productive assets are key to stimulate small-scale market participation. 131 Farmer organizations, cooperatives and similar forms of collective action as well as ICTs can reduce high transactions costs that can stimulate the participation of small-scale producers in markets.Transaction costs can be reduced by farmer organizations taking over responsibilities such as input provision and distribution, bulking, grading, selling, processing and accessing agricultural extension. 132 Although most small-scale producers do sell a part of what they produce, this can rarely be classified as commercialized agriculture. In many cases, such households sell products to generate cash to buy the food that they cannot grow themselves without generating any profit. Unless these small-scale producers gain access to more land to generate surpluses for sale or mange to become high-value niche producers, for example, they will not become commercial producers.One way of achieving prosperity for these small-scale producers is through land consolidation (Box 10). This pathway involves land reforms with respect to tenure rights and land markets. An effective land market rental needs to be part of this pathway so that owners can get resources from renting their land and therefore could effectively remove themselves from direct involvement in agriculture. This pathway needs to be supported through increased access to credit, technology and infrastructure, though these would need to be a feature in facilitating many of the other pathways. 133 In some countries in LAC and SSA, for example, average farm sizes have continued to decrease through time, for reasons related to politics, culture and property rights. In such countries, the establishment of effective land rental markets will continue to face considerable challenges.Processes around land consolidation and land rental markets should not exacerbate the negative impacts of land-use change. Potential threats to biodiversity, protected areas and carbon sinks such as forest and wetlands associated to land-use change need to be considered and avoided.Mârșani is a commune located under the Romsilva Sadova forest district in Romania. This commune presents several challenges such as cumulative deforestation, overgrazing and sandy soils. The latter has led to widespread desertification and abandonment of lands in the region due to its low agricultural productivity. The Romanian government along with ALFO (Association of Local Forest Owners) has implemented a participatory land rehabilitation project, which seeks to redistribute these degraded lands amongst community members to help improve the environmental quality of the land and soil, along with creating economic benefits for local livelihoods. As a result, afforestation has taken place on 1100 ha of degraded land, benefiting over 980 owners who are receiving income from the sale of wood. In addition to stabilizing loose soils and adding productive value to the land, afforestation has also enhanced soil carbon stocks. This project has successfully tackled desertification, improved local livelihoods and contributed to climate change mitigation. 134Consolidating land and improving local livelihoods in RomaniaUnder some circumstances, the most appropriate pathway to promote resilient and food secure rural livelihoods is through fundamentally changing the farming system, including shifting to practices such as agroecology and other types of less input-intensive agriculture, shifting from crops to livestock (Box 11), shifting to different livestock types (Box 12), or shifting to different crops (Box 13), for example. Climate change can be one of the most important triggers for these changes.In the Langui region of Peru, rural livelihoods have transformed to a livestock-based economy in response to climate and market changes that have reduced farmers' harvests in recent years. Thus, these communities have reduced their activities for growing traditional staple crops and shifted to planting improved varieties of grasses for dairy production. This change has helped households to increase their resilience to climate changes and achieve more access to the growing dairy market. 135 Responding to climate change: shifting from crops to livestock in PeruA study conducted in the semi-arid northern Kenya provided scientific evidence to support the observation that increasing climate variability is threatening reliance on cattle. Because of this, the Borana community decided to shift from cattle to camel production. Camels present biological and physiological adaptations that help them cope with harsh environmental conditions. They drink less water compared with other livestock species and are able to go for many days without water. Studies have shown that the volume of milk produced by camels is six times that produced by indigenous cattle found in the dry lands. Given the advantages that camel production presents in terms of food security, response to climate variability and income generation, the government of Kenya is incentivizing camel production and starting to address production constraints such as disease, raiding and competition from other livestock. 136Responding to climate change: from livestock to camel production in northern KenyaDecisions on appropriate changes to the farming system will need to be informed by the development of new technologies that deal with multiple and interacting stresses (drought, floods, heat, pests, and diseases) and with options for risk reduction such as index insurance schemes. Training and information about new options, strong policy support and investments to shift farming systems and access to credit and infrastructure will be key to successfully transforming to new farming systems.Climate change is a big threat to the biological diversity of the Himalaya, affecting the livelihoods of those living in remote villages, as it the case for the population of the village of Manang. Because of changes in the climate such as increasing temperatures and irregular precipitation patterns, the Manang people have shifted their agricultural practices, turning from traditional fields crops such as buckwheat and barley to the production of vegetables and fruit trees that are able to grow under a milder climate. 137Responding to climate change: from buckwheat and barley to vegetables and fruit trees in western Nepalof the challenges such as market access and pest and disease control can be addressed appropriately. 139 Box 15 outlines a case study of horticulture on riverbanks. All such interventions need to be highly tailored to the specific needs, circumstances and type of resources of the households. 140 Another interesting option for landless communities is to raise livestock in areas close to cities. Because many livestock products are perishable and hard to move around, and because of limited refrigeration facilities in many parts of tropical Asia and Africa, this option is especially for those in close proximity to a good market. This option presents a two-dividend advantage: on the one hand, it can have a positive impact on childhood nutrition since studies have shown that children whose families own animals are healthier than children whose families do not; and on the other hand, raising animals can also allow families to make a good income by selling eggs and chickens, for example.During 2007-2009, aquaculture and related technologies were introduced to a total of 3594 resource-poor Adivasi households in Bangladesh. Baseline and end line surveys showed that household incomes of project participants rose significantly, because of increases in the proportion of households' aquaculture-related incomes: from 15% in 2007 to 30% in 2009. But the benefits of this transition were represented not only by an increase in incomes: the monthly frequency of fish, meat and egg consumption increased between 2007 and 2009 among project participants, showing positive results in relation to food and nutrition security among project participants. 141 Riverbank erosion is one of the adverse consequences of climate change. In countries such as Bangladesh, this leads to the accumulation of sand during the monsoon in rivers and along river banks (\"char\" areas). Pumpkin cultivation has been introduced, which is well suited to the shifting, sandy soils of chars. A public-private collaboration has been assisting landless people to cultivate pumpkins, providing technical knowledge about pumpkin cultivation, identifying suitable sandbars, learning digging and composting techniques, and pumpkin seeding. Thousands of landless people, both men and women, are now engaged in pumpkin cultivation in Rangpur district and becoming financially solvent as a result. There is more work to do to establish markets and value chains for pumpkin, but this is a potential adaptation that is attracting both public and private sector attention, as it could be widely replicated in other char regions of the country. 142Improving livelihoods: from landlessness and social marginalization to aquaculture in Bangladesh communitiesImproving livelihoods: from landlessness to pumpkins in riverbanks in BangladeshThis pathway considers small-scale entrepreneurship as options for landless households and those with very small areas of land. One example is small-scale aquaculture which can substantially improve the livelihoods of poor, marginalized and vulnerable communities. 138 In Bangladesh, aquaculture interventions resulted in significant increases in incomes, savings, and frequency of fish consumption among participating landless households of ethnic minority communities (Box 14). Another option is indigenous \"floating agriculture\", which may have considerable potential for providing landless people in river basins with a livelihood during floods and long-term waterlogged conditions. This can provide processing and marketing livelihood alternatives for landless people, as well as food production options, provided that some farming is incentivizing small-scale entrepreneurship through investment in technologies such as egg incubators to sell baby chicks to customers wanting to breed chickens. 143 This pathway requires a strong commitment from local to national institutions to promote and incentivize smallscale entrepreneurship. Landless households need to be specifically targeted by national institutions with a package of support that includes training and microcredit as well as appropriate bundles of choices of technologies. Major constraints for this pathway include insufficient knowledge in relation to specific technologies at all levels and the limited capacity of national institutions to function as service providers. 144Productive social safety nets (PSSN) can protect the livelihoods of chronically vulnerable and food-insecure populations from the increasing frequency and intensity of extreme climate events. Well-designed PSSN programs have proven potential to reduce costly household coping strategies in the face of climate shocks. Adaptive innovations, such as integration with credit, production inputs, agricultural extension and risk finance, increase the responsiveness of PSSN programs to climate shocks (Box 16). 145 As mentioned in the previous section, social networks can play a significant role in enhancing resilience, and therefore building networks can constitute an efficient safety net for coping with extreme events.Cash transfer income tools such as the Universal Basic Income (UBI, giving every member of society a regular cash transfer income) constitute interesting examples to promote this pathway. India, Finland, Brazil, Kenya and the Netherlands are trialling (or have trialled) this instrument as one of the possible ways to reduce the vulnerability of producers to food price volatility and climate phenomena.The rationale is that a basic income given individually, unconditionally and automatically to all food producers could enhance the bargaining power of producers vis-àvis other actors along the value chain such as commodity buyers, food processors and retailers. It could also provide a market closer to home for the products of smallscale market producers given that there would be more disposable income in poorer areas. In the long term this could lead to financially viable smaller farms. UBI could also have a positive impact on small-scale subsistence producers by allowing them to continue growing food for subsistence without having to generate excess production to generate cash income. It could thus lead to improved food security. 146 Characterized by semi-arid conditions with high rainfall variability, steep slopes and shallow soils, Tigray (northeastern Ethiopia) was the epicentre of the 1980s famine and faced another famine less than a decade ago. The landscape has been transformed and the area is now largely food self-sufficient. The region is now greener than it has been for 150 years. Keys to success have been collective action and local leadership, which have helped mobilize every able-bodied man and woman over 18 years to contribute at least 20 days of community labour to environmental rehabilitation -building stone terraces and other soil and water retention structures, digging wells and planting trees, for example. Free grazing and firewood collection have been heavily controlled, allowing natural regeneration of these exclosures, groundwater recharge in valleys and degraded land being turned into productive farmland. Over one million hectares of degraded land have been restored in East and Central Tigray alone and the region went from 40 hectares of irrigated land in the 1990s to 40,000 hectares today, allowing farmers to produce higher-value vegetables and fruits even in drought years. With appropriate policies and incentives, collective activities around productive social safety nets can lead to change happening both rapidly and at large scale. 147 Some of the success factors associated with this example are discussed in Vermeulen et al. (2018). 148 Large-scale \"greening\" in Tigray, north-eastern EthiopiaUnlike pathway #1, households in this category are unlikely to invest in significant external inputs, so attention needs to be given to low-input systems, nature-based solutions, and ecosystem and community-based adaptation. This would include techniques to improve soil and water conservation, use of drought-adapted varieties and breeds and agroforestry.Of equal importance would be to include indigenous knowledge in these initiatives, as it constitutes an invaluable basis for developing adaptation and natural resource management strategies in response to climate change.Biodiversity, ecosystems, and their services have become increasingly relevant to promote the consolidation of resilient rural livelihoods and could become an appropriate pathway for some small-scale producers (Box 17 One of the most exciting examples of protecting ecosystems as a way to promote resilient rural livelihoods can be found in Lempira in the southwestern part of Honduras. Before implementing the Quesungual system, most farmers in this region were using the slash-and-burn method of farming. As a consequence, crops were grown only for one to three years until the yields fell because of less moisture and fertility. Since these plots were not useful any more, farmers had to move to new plots and clear, burn and plant all over again observing the same results as in previous plots. This unsustainable practice was increasingly affecting resources and food security in the region.Small-scale farmers in Lempira came to understand that this practice was working against their interests and decided to implement the Quesungual agroforestry farming system, which was tailored to the biophysical and socio-economic conditions of their region. Through Quesungual farmers started to manage vegetation clearing it by hand and trees were preserved as providers of fruit, firewood, wood for furniture, and to provide a fresh microenvironment for their crops. As a result of the implementation of these very simple practices, small-scale farmers in the region started to evidence an increased in production, resilience and sustainability. Yields were almost doubling, less labor was required, the soil was retaining moisture better and humidity levels were improving enabling crops to respond better to regular droughts and minimizing the risk of landslides and erosion.In this way, small-scale farmers in Lempira were able to transition from a very unsustainable way of doing farming into a new system where farmers were getting more for less and at the same time were eating better with more nutritious foods.The Quesungual system: sustainable land management changing lives 149Under some circumstances and amongst some households, agriculture will not be the answer to achieve resilient rural livelihoods. A set of opportunities lies between completely exiting agriculture and reducing its weight in rural activities. For exiting agricultural production, it is important to consider the ability of different types of producers to generate enough income to ensure a meaningful livelihood. In addition, climate change may worsen the situation making farming non-viable in many areas, especially for coastal communities where sea level rise will increasingly bring adverse impacts such as submergence, coastal flooding and erosion and for semi-arid regions where cropping is already marginal and will become increasingly so. 150,151 In such cases, the only solution available to farmers might be transitioning out of agriculture and seeking alternative livelihoods through migration. Today the total number of international migrants, including those displaced by climate-related natural disasters, is 40 percent higher than in 2000, with numbers expected to exceed 400 million by 2050. 152 The Sendai Framework for Disaster Risk Reduction, the Paris Agreement and the 2030 Agenda for Sustainable Development have all highlighted the need for urgent action to address climate change's role as a driver of migration. It is imperative to identify where migration is a valid climate change adaptation measure and where such large-scale migration is likely to occur; and to develop the practical policy measures needed to support the future livelihoods of such migrants (Box 18). This is especially relevant considering the high levels of youth unemployment in many rural regions and the current relative lack of growth in off-farm opportunities, particularly in SSA. Thus, policies, resources and measures for exiting agriculture and supporting future livelihoods of migrants should be part of any climate and agricultural transformation strategy.Small-scale producers often already rely on multiple income sources. Another option for achieving resilient rural livelihoods is through reducing agriculture in the livelihoods portfolio and a plausible pathway in some places will be to develop more secondary and tertiary economic opportunities in rural areas. Examples of the latter could include improving the post-harvest value chain and other ancillary activities such as agro-processing, Over the past 20-30 years, the upper delta of the Mekong River in Vietnam has presented several changes with respect to rainfall patterns. The area is flooded annually, which enriches the soil but also poses a threat to the communities when floods are higher than usual. Nevertheless and despite an increase in rainfall, flood levels have decreased over the past 20-30 years given to changing rainfall patterns and water retention upstream of the Mekong River. Results from a survey performed in three villages in the region revealed that the vast majority of the population believes that rice yields have been negatively affected by changing rainfall patterns and changing flood regimes. Out-migration in these three villages has increased rapidly, particularly in the past 10 years. Some 60% of the households surveyed declared that at least one current member had migration experience. Interestingly enough, most migrants who left for long periods moved to places outside the Mekong Delta region, going mostly to industrial zones. According to this experience, migration has been a common alternative to these communities by which poor and landless households have used migrant savings and remittances to buy food and pay back loans.In the same manner, they have used this money to implement in situ adaptation activities such as diversification into non-farm activities, community based saving schemes, raising the foundation of houses, and investments in children's education so that they can find a better future working in economic sectors that are less sensitive to weather variations. This example highlights the importance of remittances in these migration processes as a mean of improving the financial situation of the households. In the case of the upper delta of the Mekong River, remittances improved the quality of the communities' livelihoods, became a source for starting new micro-scale projects, and allowed parents to pay for high quality education for their children. 153 Adapting through migration in the upper delta of the Mekong river and distribution and provision of farm inputs. In some situations, there will be opportunities around digital agriculture (see previous section), tourism, marketing of artisanal and non-timber forest products, and other services for rural populations such as energy farming.Engaging in these kinds of activities can increase household incomes and help boost agricultural productivity by increasing the ability to purchase agricultural inputs.Development policies and programs can generate incentives and capacities for rural households to participate in non-farm activities. Investments in general education and specific skills for non-farm activities, through the use of media for education (as in the example of \"Shamba Shape Up\") or through the establishment of technology information centers in rural areas to help to identify promising opportunities will be key to generate these incentives and capacities. Second, rural small-scale producers will persist as key food providers and agents of change for a while yet. The industrialization trajectory seen in other parts of the world in the nineteenth and twentieth centuries generated mass employment opportunities, but the pace of technological change in industry generally makes this trajectory unlikely in many parts of sub-Saharan Africa (and possibly Asia too) in the foreseeable future. It seems that Africa will need to navigate its own course -there will be plenty of uncertainty, doubtless, but plenty of potential too. Third, there has certainly been some progress in smallscale producers' adaptation, but it would appear to be insufficient for the challenges that lie ahead. It has long been recognized that the success or otherwise of pro-poor agricultural technologies and practices in leading to desired development outcomes depends heavily on local context. It is increasingly apparent that the enabling environment within which small-scale producers can thrive is also context specific because this environment is characterized by drivers at multiple levels: national and international policy as well as the local organizational landscape, for example. Fourth, adaptation actions, as envisaged in this paper link to many other areas where action is required, thus adaptation actions can also, and need to, address poverty, nutrition and employment challenges.Daunting food security challenges lie ahead. But some suggested actions for moving forward are listed in Table 5 in relation to the six transformation elements discussed in Section 4 and the interventions highlighted in Table 4. Taken together, Tables 4 and 5 outline specific actions and interventions that can contribute to rural transformation: in Table 4, using the lens of the five pathways described in Section 5 above; and in Table 5, using the lens of the six elements of the transformation framework presented in Figure 6.The underlying hypothesis of this paper, outlined in Section 4 above, is that if the severe challenges around food are to be overcome, then nothing short of a transformation of rural livelihoods, agriculture and food systems is required. Such transformation will have huge implications for rural populations; managing these implications in the pursuit of desired development outcomes will require a range of elements to be operating in synergy, with less or more emphasis on particular elements depending on context. This underlines both the importance and value of understanding transformation processes at different scales and the necessity of wide stakeholder participation and social inclusion in the pursuit of these development goals.Examples of actions needed to address the six transformation elements. These combine the interventions shown in Table 4 under each pathway with actions outlined in Section 4Empower producer and consumer organizations, women, youth and marginalized groups• Strengthen producer and consumer organizations and their networking• Use bottom-up approaches to help drive more effective implementation and scale up successful actions• Promote projects where farmers do their own testing of new seed varieties • Strengthen incentive structures for multi-and trans-disciplinary teams and innovative partnership models• Promote more effective public investment in agriculture to generate climate co-benefits• Promote and incentivize the use of well-designed index insurance schemes• Develop tools and mechanisms so that financial institutions can contribute to facilitate access to loans, grants and seed capital (e.g., soft loans or well-targeted subsidies, earlywarning systems to better prepare for extreme weather events, and heavy involvement of the private sector in providing financial inputs)Reshape supply chains, food retail, marketing and procurement• Promote the installation by small and medium enterprises of processing and cold chain facilities that may underpin future resilience to climate change• Incentivize reductions in post-harvest losses and in food waste throughout the supply chain• Build the institutional capacity of industry associations, market intermediaries, researchers, governments, civil society organizations and grassroots groups, to implement in order to reshape value chains towards sustainability Foster enabling policies and institutions• Develop and implement targeted policies to develop secondary and tertiary industries in rural areas, and to support producers to exit rural agriculture and engage with urbanization• Develop and implement actions and policies to incentivize investments in training and re-skilling of the workforce so that producers can engage in new activities such as agroprocessing, and distribution and provision of farm inputs• Develop and implement policies that go beyond agriculture and that consider issues such as digital infrastructure, ease of doing business, land tenure• Develop and implement actions and policies that foster a level playing field and that ensure support for those left behind (e.g., support for small-scale producers over larger, industrial farmers through targeted investments and extension; establishing liveable wages; universal basic oncome; workplace standards for landless farm workers; targeting the poor with a package of support that includes training and microcredit and bundles of choices of appropriate technology to implement aquaculture activities)• Develop and implement policies that provide the right incentives so that the private sector invests in rural transformation (e.g., reducing transaction costs, better targeting public subsidies, realigning public support to make agricultural systems more climate resilient).• Sam Bickersteth: Executive Director, The Rockefeller Foundation Economic Council on Planetary Health, Oxford Martin School• James Birch: Senior Programme Officer in Government Relations, Bill and Melinda Gates Foundation (BMGF)• David Howlett: Head of Policy, Global Resilience Partnership (GRP)• Morten Andersen Linnet: Research Policy Manager, Danish Agriculture and Food Council• Ueli Mauderli: Policy Advisor, Agriculture and Food Security, Federal Department of Foreign Affairs, Swiss Agency for Development and Cooperation (SADC)• Anand Patwardhan: Advisor to the Global Commission on Adaptation (GCA)• Janie Rioux: Agriculture and Food Security Senior Specialist, Division of Mitigation and Adaptation, Green Climate Fund (GCF) ","tokenCount":"15724"} \ No newline at end of file diff --git a/data/part_3/0083673831.json b/data/part_3/0083673831.json new file mode 100644 index 0000000000000000000000000000000000000000..2f4b9fca1e50059aabb87a317d32f5a13aad03e2 --- /dev/null +++ b/data/part_3/0083673831.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"1a2cb440544f67d21092480c31ddbe56","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/4848408f-1f64-435d-a0f5-e906b82e64f5/retrieve","id":"741373600"},"keywords":[],"sieverID":"05fe7d6e-057c-4599-af51-f29ec945d57b","pagecount":"6","content":"Fair dealing and other rights are in no way affected by the above. The parts used must not misrepresent the meaning of the publication. ILRI would appreciate being sent a copy of any materials in which text, photos etc. have been used.After the objectives of the meeting were highlighted, a brief introduction of ILRI's food safety work around the world was presented. Thereafter, an overview of the food safety work that ILRI is conducting in Zambia was given and meeting members offered some useful suggestions thereafter: Since pigs are a common site near fish piles at the harbour market, in some cases even found sniffing or even pinching the fish, cysticercosis research should be consideredThe next agenda item saw each meeting participant, in turn, giving a brief presentation on their food safety research interests and activities, highlighting what they feel are food safety issues and priorities in Zambia. Most abattoirs in Zambia have very poor hygiene standards and even have sick animals finding their way there Lack of Good Hygiene Practices in most abattoirs, lack of Cleaning protocols in most abattoirs, no separation of \"Clean\" from \"Dirty\" operations, HACCP would have too many Critical Control Points  Antibiotic and hormone residues Antibiotic residues in food can lead to antibiotic resistance and other harmful effects Antibiotic residues in animal-derived foods exceeding the WHO maximum residue levels have been extensively recorded in many African countries It has been reported that in some African countries prevalence of veterinary drug residues in foods of animal origin can be as high as 94%. Unfortunately, this data is not available in Zambia as far as antibiotics and hormones as growth promoters are concerned.A wide variety of diseases, including emerging diseases. The aquaculture industry in Zambia is growing but there is no information yet on which fish zoonoses are found here.Mining wastes are directly discarded into the Kafue River in the Copperbelt region, increasing the risk of fish and food poisoning.Fruitful discussions ensued on how best some impact can be made in food safety in Zambia  Crucial to take into consideration gender and power relations as well as social norms that may promote or compromise food safety  Baseline data need to be collected to understand current levels of contamination with toxic metals such as arsenic and mercury (and other things including mycotoxins, dioxins and organo-phosphates?)  Strengthen collaboration among food safety stakeholders in the country. It would be easier to influence policy makers that way  Increase food safety awareness, not only among consumers but also policy makers  Make use of risk assessment along value chains, even on a very small scale for a start, but can keep building upon it  Include more stakeholders such as local government in future meetings  Known standards and guidelines should be better utilised in Zambia, this will also help to highlight short-comings, however, small producers need help to meet standards, e.g. through safety certification assistance and consider what research is needed to inform standards in Zambia  Consider how ongoing intensification will affect antimicrobial resistance.There is an absence of estimates of the burden of foodborne disease in Zambia, in terms of both health and economic burden. This could be done relatively easily through modelling studies, although field studies would provide more convincing evidence. Policy makers and donors need to have this information in order to appreciate the need for investment in food safety.","tokenCount":"567"} \ No newline at end of file diff --git a/data/part_3/0088437125.json b/data/part_3/0088437125.json new file mode 100644 index 0000000000000000000000000000000000000000..302f2b6b2c47555199d7b1f9fa8837d9576aae60 --- /dev/null +++ b/data/part_3/0088437125.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"7e8766f77cf3ee8821fce954db58aeee","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/8fa3acc6-9e91-4616-94ee-5adc31d2de5a/retrieve","id":"763826782"},"keywords":["Biological control","entomophagy","nest mate recognition","weaver ant colony production","Oecophylla longinoda"],"sieverID":"16c3acfa-6187-4a53-ab18-d3d924136268","pagecount":"6","content":"Oecophylla ants are currently used for biological control in fruit plantations in Australia, Asia and Africa and for protein production in Asia. To further improve the technology and implement it on a large scale, effective and fast production of live colonies is desirable. Early colony development may be artificially boosted via the use of multiple queens (pleometrosis) and/or by adoption of foreign pupae in developing colonies. In the present experiments, we tested if multiple queens and transplantation of pupae could boost growth in young Oecophylla longinoda colonies. We found out that colonies with two queens artificially placed in the same nest, all perished due to queen fighting, suggesting that pleometrosis is not used by O. longinoda in Benin. In contrast, pupae transplantation resulted in highly increased growth rates, as pupae were readily adopted by the queens and showed high survival rates (mean = 92%). Within the 50-day experiment the total number of individuals in colonies with 50 and 100 pupae transplanted, increased with 169 and 387%, respectively, compared to colonies receiving no pupae. This increase was both due to the individuals added in the form of pupae but also due to an increased per capita brood production by the resident queen, triggered by the adopted pupae. Thus pupae transplantation may be used to shorten the time it takes to produce weaver ant colonies in ant nurseries, and may in this way facilitate the implementation of weaver ant biocontrol in West Africa.The arboreal weaver ants (Oecophylla smaragdina and O. longinoda) are territorial and prevent intruders from accessing their nests. They forage for arthropod prey including many different insect pests in the canopy of their host trees (Way & Khoo, 1992;Peng & Christian, 2006;Van Mele, 2008). According to Dejean (1991) a colony with 12 nests can capture approximately 45,000 prey items per year and may in this way suppress insect pest populations. of crops such as cashew nuts (Peng et al., 1995;Peng et al., 2004), citrus (Barzman et al., 1996) and mango (Sinzogan et al., 2008;Peng & Christian, 2005b). Therefore, Oecophylla is increasingly being utilized as a substitute to synthetic chemical pesticides as they are often equally or even more efficient in controlling pests and at the same time cheaper to use.Several recent studies on applied weaver ant research have been carried out in Asia and Australia on O. smaragdina, however, the life history and the behavior of the African O. longinoda is less well documented. Emerging markets for organic and sustainably-managed African fruit (mango, citrus) and nut (cashew) products (Van Mele & Vayssières, 2007) asks for more research and investment in O. longinoda in West Africa, as also here the economic potential is high. For example, Dwomoh et al. (2009) showed that O. longi-noda can be used to control pest hemipterans as effectively as insecticides in Ghanaian cashew plantation and were able to increase yields four-fold compared to plots without any control measures.On top of the high potential as a biocontrol agent, Oecophylla is also used as a commercial food product (Sribandit et al., 2008) -a tradition especially well developed in Thailand and other Southeast Asian countries (Van Huis et al., 2013). The double utilization of the ants has led to an increasing interest in the development of Oecophylla management. For the effective implementation of Oecophylla ants in pest management and ant farming, several aspects need to be considered.It is difficult to collect a queenright colony since the queen nest is well hidden in less accessible places (Peng et al., 1998). Established \"wild\" ant colonies produce several winged queens (flying ants) each year, which individually leave their colony and start new colonies alone. However, under natural circumstances, the mortality of these queens is high (> 99%) and they are therefore difficult to obtain. Furthermore, it takes, for the few survivors, approximately 2 years before their colony contains enough ants to be used for pest control (Vanderplank, 1960;Peng et al., 2004) or for ant larvae production (Offenberg & Wiwatwitaya, 2010). So far all implementation has been based on collection of wild colonies or natural establishment in orchards which also takes several years (Peng et al., 2005a).Therefore, to make the Oecophylla technology accessible to non-specialists and to implement it on a large scale, cheap production of live colonies in ant nurseries is needed. Artificial rearing of colonies from newly mated queens may lead to a stable and quick production of Oecophylla colonies (Krag et al., 2010) and improve the chances of a wide implementation.For an effective production of live weaver ant colonies in ant nurseries faster growth of young colonies is desired. Two different ways may be used to boost early colony growth. Firstly, Oecophylla (Peeters & Andersen, 1989) and other ant species (Bernasconi & Strassmann, 1999) are known to found new colonies with multiple queens (pleometrosis) in order to increase the probability of survival during the initial phase of colony development via a faster production of more workers. Secondly, the adoption of non-nestmate brood from other colonies may increase colony growth as several ant species are known to rob intraspecific brood from neighbor colonies and in this way accelerate colony growth by adding these robbed individuals to their worker force (Bartz & Hölldobler, 1982;Rissing & Pollock, 1987).It is not known if O. longinoda uses pleometrosis during colony founding nor is it known if they accept and adopt pupae transplanted from foreign colonies. In this study we tested if more than one queen could be merged in founding colonies of O. longinoda (pleometrosis) and we tested the effect of pupae transplantation on the growth of newly founded colonies.In a mango plantation in the Parakou area (09° 37' 01\"N/02° 67' 08\"E) of Benin 54 O. longinoda queens were collected after their nuptial flight with the use of artificial nests during the wet season in 2012. Artificial nests were made on 15 mango trees by rolling a single leaf together, fixing it with a plastic ring (1.3 cm in diameter) in the middle part and sealing the tip end with a paper clip. Nests were colonized by founding queens right after their nuptial flight as they constitute safe nesting sites (J. Offenberg, unpublished data). Nests were inspected 2-3 times a week and all queens were collected 1-3 days after their mating flight. At this developmental stage all colonies were composed of a single queen and her eggs, as no pleometrotic founded colonies were found. After collection, the queens and eggs were put into open cylindrical transparent plastic containers (Φ = 4.5 cm; height = 10.5 cm) with a mango leaf inside to increase humidity and sealed with mesh nylon materials at the open end.The brood transplantation experiment was divided into two sub-experiments; one where queens were kept individually with their brood and transplanted pupae, and a second where two queens were artificially merged into one colony to test for pleometrosis, as has been observed for O. smaragdina (Peeters & Andersen 1989;Offenberg et al., 2012a;Offenberg et al., 2012b).In the first experiment with single queen colonies, 30 fertilized queens were used, which were divided into three pupae transplantation treatments with 0 (control), 50 or 100 non-nestmate pupae being transplanted to each colony, resulting in 10 replicates per treatment. In the first six replicates pupae were transplanted to the queens 7-14 days after they were collected in the field whereas in the last four replicates, pupae transplantation took place the day after they were collected. Every time a new queen was collected in the field, it was sequentially allocated to one of the three treatments (i.e. the first mated queen no transplantation, the next 50 pupae transplantation, the third 100 pupae transplantation etc.).In the second experiment with two queens per colony, colonies were divided into two pupae transplantation treatments with 0 (control) or 50 non nestmate pupae being transplanted, respectively, and with five replicates per treatment (= 20 queens in total). In both experiments transplanted nonnestmate pupae were obtained from a single mature O. longinoda colony. During transplantation, each colony was transferred to a cylindrical transparent plastic vial (Φ = 8 cm and height = 5 cm) with a mango leaf and the relevant number of pupae placed inside the vial. All colonies were kept at ambient temperature ranging between 24.3 °C and 29.7 °C (mean 27.5 °C) on a table protected from intruding ants by placing each table leg in a tray with water. During the experiment, all colonies were provided a few drops of pure water every day to allow the queens to drink. After the emergence of the first imago workers drops of 20% sucrose water were provided to each colony every day. One week after emergence of imago workers, protein food in the form of canned cat food and fish was provided to all colonies ad libitum.The transparent plastic containers allowed daily inspection and counting of brood in their different developmental stages. The numbers of intrinsic eggs, larvae, pupae and imago workers (defined as the brood produced by the resident queens) and adopted workers, were counted 50 days after the pupae transplantation in all the colonies. At this point all adopted pupae and the oldest intrinsic brood had developed into imago workers. However, intrinsic imagines could be distinguished from adopted individuals due to the size difference between the pupae from the mature colony and the much smaller nanitic workers produced by the founding queens (Porter & Tschinkel, 1986;Peng et al., 2004). Based on the number of live adopted imago workers, the survival rate from transplanted pupae into imago workers was calculated [(no. of emerged workers / no. of transplanted pupae) x 100] and mean numbers of brood and pupae survival were compared with ANOVAs using JMP 8.0.1 statistical software. Due to the difference in the number of days from queens were collected until pupae were transplanted, the total number of days from queen collection until the experiment was terminated (50 days after pupae transplantation) was recorded for each colony and used as a covariate in the subsequent analyses.In the single queen experiment the survival from transplanted pupae into imago workers ranged between 88 and 96% (mean % survival and SD = 92.05 and 2.52) and was not significantly affected by transplantation rate (mean % survival and SD, 50 pupae = 92.4 and 2.45, 100 pupae = 91.7 and 2.66; ANOVA including development time as a co-factor, F (2, 17) = 1.1; p = 0.36) indicating that non-nestmate pupae were readily accepted by the queens and suggesting that pupae required no or only minimal amount of nursing.Fifty days after the transplantation, intrinsic imago workers were present in all colonies, however, with significantly more individuals in colonies with more pupae transplanted (F (2,26) = 147.1, p < 0.0001). The mean (SD) number of intrinsic workers was 31.2 (4.37), 44.8 (3.04) and 74.5 (8.25) in the colonies that received 0, 50 and 100 pupae, respectively (Table 1). Pupae transplantation also led to increased production of the remaining developmental stages of intrinsic brood. This was true both for the number of eggs, larvae, pupae, workers and their sum (p < 0.0001 in all cases) at the end of the experiment (Table 1). The average total intrinsic production in colonies without added pupae was 46.5 (6.33) individuals during the first 50 days of colony development. In comparison, 50 pupae transplantation led to a 70 % increase in the per capita queen production, and a 100 pupae transplantation led to 190% increase compared with no pupae transplantation (Fig 1). Thus, the transplanted pupae stimulated the fertilized queen's egg production and increased her brood production with approximately 1.4 and 1.9% per adopted pupae, respectively.In addition, the total colony size (all intrinsic brood plus adopted workers) was 46.5 (6.33), 125.2 (11.01) and 226.7 (15.32), respectively, in the colonies that received 0, 50 and 100 pupae. In comparison to the treatment without pupae transplantation, the total number of individuals increased 169% with 50 transplanted pupae and 387% with 100 transplanted pupae (Fig. 1). Thus, adopted workers led to a considerably increase in total colony size.In the second experiment with two queens in each colony, one of the queens, in all cases, killed the other before the emergence of imago workers from the transplanted pupae, suggesting that pleometrosis induced in the laboratory is not possible. It should, however, be noticed that we found 5 claustral colonies with two queens out of a total of 87 collected in 2013 (all the others being singly founded)(I. Ouagoussounon, Table 1: Mean (± SD) number of intrinsic brood (egg, larvae, pupae, imago workers and their total) produced by the resident queen in the colonies 50 days after the transplantation of pupae. unpublished data), suggesting that pleometrosis is sometimes used under natural conditions as also described by (Dejean et al.,2007). Because all queens were involved in fatal fights, no further analyses were conducted on this experiment.The results showed no difference in survival between queens receiving 50 pupae and queens receiving 100. Pupae in both treatments were readily accepted by the queen ants and more than 88% were reared to the imago stage. This means that potentially colonies may be boosted with even higher numbers of pupae and boosting can take place before the emergence of the first workers as a worker force is not needed for nursing. Offenberg et al. (2012b) and Peng et al. (2013) obtained similar results with a mean survival rate of 84%, when transplanting 30 and 60 non-nestmate pupae to O. smaragdina queens in Darwin, Australia. Also in that case survival was unaffected by transplantation rate. The same pattern may not hold true if larvae were transplanted instead of pupae as they need to be fed and groomed by members of the receiver colony. Larvae may well be accepted by receiver colonies, as described by Krag et al. (2010) for O. smaragdina, however, it is questionable if they can be added in high numbers as with pupae, because of their need for food, which is available in only limited amounts, especially in very young colonies with only a single queen and no worker force. A further advantage to colonies adopting pupae from mature colonies derives from the fact that young ant colonies, in order to reserve resources, produce only smaller and slimmer workers (nanitics) with an associated narrow task repertoire compared to older and larger colonies that produce larger major workers (Peng et al., 2004). After pupae transplantation the workers eclosing from the transplanted pupae are of a larger size as they originated from a mature colony. As a consequence these transplanted individuals may conduct wider tasks compared to the nanitic imago workers intrinsic to the young colonies. If larvae were transplanted these may turn into smaller imagines due to food shortage if they are transplanted prior to the determination point of their final size. This is not the case with pupae as they have already attained their final size. Krag et al. (2010) showed that O. smaragdina nonnestmate larvae showed chemical insignificance (i.e. were without colony specific odor) as they were adopted by colonies containing mature workers (but no queens). Subsequently it was found that also O. smaragdina pupae seems to be chemical insignificant and that the presence of queens in the colonies did not hinder adoption of foreign brood as transplanted pupae developed into imagines in queenright colonies (Offenberg et al., 2012b). From the present study we conclude that the same holds true for O. longinoda suggesting that chemical significance does not develop until beyond the pupal stage as also suggested by Lenoir et al. (2001), to be the case for other ant species. Also the present study shows that the presence of the maternal queen does not preclude adoption of foreign brood.The addition of pupae to the colonies did not only increase colony size with the numbers added. In addition, the transplantation of pupae stimulated the fertilized queen´s own egg production and thereby increased the intrinsic brood production of the colonies. Thus, the presence of brood at the pupal stage (or beyond), increased egg laying rates. This seems to be adaptive to queens as younger brood is associated with expenditures to the queens in terms of nursing time and food allocation, whereas pupae will soon eclose and develop into workers that can take over the nursing of brood and forage for food. This result follows the findings by Gibson & Scott (1990) and Offenberg et al. (2012b), showing that pupae increased egg laying in Camponotus spp. and O. smaragdina queens, respectively. On the other hand, other researchers have shown that only the number of late stage larvae is responsible for queen fertility in e.g. Monomorium pharaonis and Solenopsis invicta (Tschinkel, 1988;Børgesen & Jensen, 1995;Cassill & Vinson, 2007). This suggests that different mechanisms may operate in different ant species. Further, the triggering of an increased fecundity in the present study shows that egg laying rates in O. longinoda are plastic and can be manipulated via the presence of pupae and/or workers.In the present study, the total population size (all brood stages) in the colonies that received 0 pupae was 1.99 times higher (mean = 46.5 ± 3.6 SE) compared to the results obtained by Offenberg et al. (2012a) in the hapleometrotic colonies of O. smaragdina (mean = 23.3 ± 2.0 SE) after 68 days. This lower production in O. smaragdina was likely affected by the fact that the colonies in that study were transported under cold conditions at the start of the experiment which may have delayed their development. On the other hand, the total population size (all brood stages) after 68 days was 1.6 times higher in the pleometrotic O. smaragdina (Offenberg et al., 2012a) colonies (mean = 74.9 ± 10.5 SE) compared to the haplometrotic colonies in this study (mean = 46.5 ± 3.6 SE). This highlights the strong effect of multiple queens in founder colonies.Under natural circumstances, it takes approximately two years before a colony contains enough ants to be used for pest control (Vanderplank, 1960;Peng et al., 2004) as each colony is expected to occupy approximately 10 trees in the receiver plantation (Peng et al., 2004). This minimum colony size may be achieved more quickly by boosting the growth via pupae transplantation. In the present study colony size increased up to almost 5-fold in only 50 days and with only a single pupae transplantation event. Multiple transplantations with potentially even higher numbers of pupae being transplanted may lead to much higher boosting, considerably shortening the otherwise slow development to an acceptable colony size. Secondly, it is evident that the biological control efficiency of weaver ants depends on the density of the worker ants (Van Mele et al., 2007;Peng & Christian, 2005b, 2007). Thus, keeping high densities of O. longinoda is essential in biocontrol programs and may be accomplished by pupae transplantation during critical periods.This study suggests that queen right O. longinoda colonies accept foreign brood and that pupae transplantation facilitate colony growth. This knowledge may ease the implementation of the weaver ant technology in Africa where the ants can be used to control pest species on various crops. Future studies should test if the immediate presence of pupae will trigger higher egg-laying rate by the queen before the pupae emerge as workers. Also it would be interesting to test if pupae transplantation and the following higher numbers of larger workers will lead to the production of a larger intrinsic worker caste in receiver colonies compared to colonies that develops naturally.","tokenCount":"3221"} \ No newline at end of file diff --git a/data/part_3/0096955223.json b/data/part_3/0096955223.json new file mode 100644 index 0000000000000000000000000000000000000000..7ba51bceafaa55985afe56f1c43ddccdbb3edd4e --- /dev/null +++ b/data/part_3/0096955223.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c1406e00b2d5ab3a4ed5002b455c9fd0","source":"gardian_index","url":"https://publications.iwmi.org/pdf/H_9252i.pdf","id":"-2033856404"},"keywords":["7","2","2 La rentabilitd des investissements est","faible"],"sieverID":"c43c481f-0df4-431e-b318-db53bc10d632","pagecount":"309","content":"raisons du non-respect des calendriers de mise en place de la ridculture d'hive 6.2.3 Les causes des &arts des itiniraires techniques .lnstitut International du Management de I'lrrigation (IIMI). 1997. Analyse-diagnostic et performances de 5 perimetres irrigL:es autour de barrages au Burkina Faso, Rapport Final (Tome I) du Projet Management de I'lrrigation, IIMI, Ouagadougou, Burkina Faso, xiv + 253 pages + 6 annexes. ~~ ~ 7 5._-._____ X I 1 13 14 15 Leis rdgions de recherche ugricole IIU Burkina Faso L 'ugricerhure ii\"rigiide an Burkina Faso Lmprtncipaies ckrsses de soh an Burkina Faso R'etenrtes et barrages du Burkina Faso., Rdpantition gdographiqite dcs pet& pdrimdtres irrtguds par province Rdparlition par province des superjZcies des petits udrimdtres irrieuds autour de. 9 barraees La mise en oeuvre du Projet Managemelit de I'lmgation au Burkina Faso (PMI-BF) a ete rendue possible g r h au soutien financier de la Banque Africaine de Developpement (BAD). Ce projet a ete execute par I'lnstitut International du Management de I'lrrigation (IIMI) sous la tutelle du Ministere de I'Environnement et de I'Eau du Burkina Faso. L'IIMi/PMI-BF est tr& reconnaissant aux autorites burkinabe eta la BAD pour I'appui constant qu'elles ont apporte a la realisation du Projet.Un comite de coordination, compose de repr6sentants des principaux organismes impliques dans le developpement et la gestion cle I'agriculture et des ressources en eau, a suivi le deroulement du projet tout au long de son execution. Nous remercions les differents membres qui ont successivement siege au s i n du comite pour leurs soutiens et conseils. Nous tenons a souligner plus partiiulierement le concours du coordonnateur national du PMI-BF, Monsieur lbrahima PARE (Chef de Sewbe au sein de la Direction des Etudes et de la Planification (DEP) du Ministere de I'Environnemen;! et de I'Eau), qui a contribue a entretenir des liens efficaces entre les autorites nationales et le Projet durant toute son execution.Les travaux et les r6suItats du PMI-BF ont enormement beneficie des analyses critiques et des suQgestions pertinentes de la part lde Monsieur Charles ABERNETHY, pr6c6demment Directeur des Programmes de IYIMI. Loce de ses nombreuses missions d'appui au projet il a reussi a inculquer davantage de rigueur et d'objectivite dans tous les travaux entrwpris par le PMI-BF. Qu'il trouve ici I'expression de notre profonde gratitude.L'IIMVPMI-BF adresse dgalement ses remerciements sin&res aux organismes suivants dont la collaboration a et6 precieuse toui: au long de ses travaux :La Direction des Etudes et de la Plariification (DEP) du Ministere de I'Environnement et de I'EauLe Projet Management de I'lrcigation au B u r k i Faso (PM-BF) est iimnck par la Banque Africahe de IXveloppement (BAD) el exkcul6 sous la tutelle du b W e de l'Environnement et de FEau du Bmkina Faso avec l'lnstitut International du k g e m e n t de l'rrrigation (IIMI) c o m e agence d'exkcution L'objectif global du projet esl de ctcontribuer ii I'umiliorutiun des perjiirmances des ptitspirim2tres irriguis par la reclterche et lu diffusion d'innovutions sur le manugement de E'irrigution)). D'ure part, le travail du projet devait mettre en evidence les contraintes, techniques et h&e& au fonctionnenent et au de%eloppement de rigation. D'autre part, il devait permettre de degager des solutions adapt&, en vue d'une utilisation rationneue des ressources disponibles et d'assurer la Mennit6 des infrastructures, dont la mise en place nkcessite un effort financier consid6rable.Les principaux rt5sultats attendils du projet sont : la mise au point dime methodologie pour l'analyse du fonctionnement des p&im&tres irrigues et 1'6vaIuation de leurs performances ;. la inise en place des propositions concrttes et fiables d'amilioratm des performances portant sw : la gestion technique des reseaux de distribution d' eau ; la valorisation de I'irrigation ; l'utilisation des amenagenents ; l'organisation et l'efficaci t6 des transferts de responsabilites de gestion aux producteurs.la delinition d'un ensemL4e de recommandations techniques et socio-6conomiques de rehabilitation des p6rimtres autour des banages ; la mise en oeuvre d'un programme de formation, l.aspt: sur des actions hdividueUes et des cycles coflectifs, pour apondre am besoins d'une formation professiomlle ax& sur le management de l'iigatiori et, en particulier, sur l'exploitation et l'entretien des rekaux;. l'ilaboration et l'kdition d'im manuel pratique de gestion de I'igation en langues nationales A destination des producteurs et des responsables de la gestion des am6nagements au sein des organisations paysannes.En w e d'atteindrc ces objectik, les activitks du projet ont &e articulks autour de trok volets principaux, 6troitement lies, a savoir :. la recherche-diwloppemmt ;. les actions de formation et de developpement professionnel :la diffusion d'ii~ormation-co~~icationLe PMI-BF a eu pour cadre dintervention 5 petits p&i&tres irrigu6s autour des barrages reprbentant des caracteristiques dijfirentes sur les plans technique, socio-konomique et organisationnel.I x projet a kt6 executt! de 199 I i i 1997. Tout au bng de cette p&iode, le projet a pu f%re comaitre ses trawux et ses rksultats B tmvers la publication de nornbreux rapports, mirnuels, bulletins d'iormation, et communications d des &mimires et des congres (me liste conqdkte des rapports et publications est present& er annexe I).La r&hction des rapports h u u du projet a 6t6 rP& en dew temps. Dabord une s6ie de 3 rapports dits 'sectoriels' ont et6 r6dig&, r6sumant Ies r6sdtats obtenus respectivement dam les 3 domainer que sont l'agronomie, l'hydradique et la socio4onomie. Ensuite: est intervenue la r&dac%ion des rapports de syntht3se portant sur les grands volets mentiods plus haut (recherchedevebppement, formation, information-communication). Ces rapports de synthkse sont mnstitu& de d r u volumes intitulks c o m e suit : Tome I : A m l y s e -d ~s t i c et performances de 5 pirimetres irrigues autour de barrages au Burha Faso . Tome 2 : Activitds de Forrrration et InltbnilRtiorrComm~uiication Le prksent rapport (Tome 1) reprksente tuie sqntldse globale des travaux et des resultats de recherche-dkveloppement mt:n6s sir les 5 pkridtres d'6tude du PMI-BF. 11 decrit le projet et ses activites et prksente les Idsultats obtenus yuant au fonctionnenxnt rCel de ces amhagements, tnettant en evidence leurs forces et faiblesses. L'analyse des causes qui soustendent cet itat de fait a permis de fcn~miler des propositions el des slratkgies B nlettre en oeuvre pour adliorer leurs performances.Les 3 rapports sectoriels constituent des q p d i c e s au pr6senl document. Cependant, dans la rkdaction du present rapport de sy~~th$se, un effort particulier a ktk dkployk afin de produire un document qui soit autonome, pouvant &re exploit6 tout seul. L'iconomie du Burkina Faso, rays enclave de YAfrique de l'ouest de 274.000 kmz, est bade essentiellement sur l'agriculture. En e&t, ce secteur occupe p r b de 90 % de la population active et contribue pour plus de 40 % de son produit intkrieur brut (PIB) de US$ 300 par habitant (Banque Mondiale, 1995) ; aj-6 en termes de parit6 de pouvok d'achat (PPA), le PIB atteint US$770 par habitant.La population totale du pays est d'environ 10 millions de personnes. La croissance dhographique moyenne est de 2,7 %I par an et prbs de 50 % de la population a m o b de 15 ans. La densit6 de population est de 58 habitants au W en moyenne, mais peut varier de 19 habitants au km2 dans la region du Sahel 65 habitants par l u t ? sur le plateau central.Selon le nouveau dkoupage administratif du territoire intervenu en 1996, le pays compte 45 provinces, subdivides en d+artements, communes et villages (cf. carte administrative de la figure 1). Le processus de decentralisation en cours vise 8 renforcer les actions et les initiatives de d4veloppernent locales.Le potentiel de terres cultivaoles est d'environ 9 millions d'hectares, soit 33 % de la supedcie totale du pays. La superfi':ie cultivde (en pluvial et en irrigd) &ait est-B 3,7 millions d'hectares en 1992 soit 41 %# de la superficie cultivable (FAO, 1995) et ? I 3,96 millions d'hectares en 1997 (ADE, 1997) soit 44 % de la superficie cultivable.L'essentiel de la superficie emblade est localis6 dans les regions du centre (37 %) et de l'ouest (30 %). Les regions Est, Nord-Ouest et du Sahel totalisent 33 % de la superficie emblav6e (Fig. 2).L'agriculture pluviale comporte Ies cultures vivribres dont les principales sont le sorgho, le mil et le m& ainSi que les cultures de rente (arachide, coton, &same, ...).La production ck.6aJibre totale (Tableau 1) varie entre 2,4 millions et 2,5 millions de tonnes entre 1990 et 1994. Le sorgbo, le mil et Ie mab reprksentent 97 % B 99 % de cette production. Le sorgho, 8 lui seul, fournit environ 50 % de la production totale et le petit mil environ 35 %. Les statistiques ne sont pas tcujours disponibles sur les productions telles que les tubercules, les fruits et Mgumes et les autres produits non agricoles entrant dans I'alimentation.D'un point de we calorifique (SP/CPC, 1995), le regime alimentaire burkinab6 est compos5 de &r&ales (67 %), d'olbgineux (17 %0), de racines et tubercules (1 A 2%), des fruits et lkgumes (1 %), des produits de chaszle et de cueillette, des produits animaux et des produits halieutiques. La production des racines et tubercules est estimke B 107.000 tonnes par an, celle des produits halieutiques B 7.000 tonnes pour un potentiel de 12.500 tonnes et celles des ol6agineux A 63.000 tonnes.Le bilan ckr6alier global (codiontation entre l'oEe et la demande) 6volue en dents de scie (SPKPC, 1995) notanment dans lit p6riode avant 1990/91 durant laquelle il presentait des dkficits assez frkquents. Si le b h c6rhEer est globalement positif dans la p6riode de 199 1-92 B 1995-96 (Tableau 2), il cache cependttnt des disparites & I'intbieur du pays. Le developpement de I'irrigation au Burkina Faso date des annees '1960. Aujourd'hui on estime a 21.800 ha la superficie totale amenagee, soit 13,6 % du potentiel des terres irrigables de 160.000 ha (Ministere de I'Eau, 1995). Les perimetres en maitrise totale de I'eau comptent pour 15.400 ha, dont 3.900 ha pour le periiiittre sucrier au sud-ouest du pays et environ 4.000 ha menages a partir d'initiatives privees et consacrds generalement aux cultures niaraicheres et a I'arboriculture fruitihe. De plus, on estime a 6.400 ha les superflcies amenagees en maitrise partielle de l'em (bas-fonds). Le rythme moyen d'amenagement est d'environ 500 hdan, toute maitrise confondue.Le riz est la culture irriguee dominank, coumant plus de 50 YO des superficies cultivees. Viennent ensuite la canne a wcre (20 YO), des fruits et legumes (19 '36) et d'autres cereales (9 ' 36). Cette repartition des cultures irriguees est illustree par la figure 3 . La part importante du riz dans, les plans de culture releve d'une volonte de I'Etat de consacrer les pemetres qu'il amenage a la riziculture, en vue de reduire les importations et d'accroitre la production nationale.Conttrairement aux autres cerezles, la production rizicole est en hausse malgre sa faible part (3,6 % en 1995196) dans la production cerealiere (Tableau 3). La production rizicole annuelle est pasde de 48.000 tonnes en 1990/91 & 83.000 tonnes en 1995/96. Le taux d'autosuffisance en riz qui etait de 86,2 $6 dans les annees 1960 (Aouba, 1993) est tombe A 13,8% en 1990 pour ensuite remonter jusqu'A 50 % voire 100 % en 1994 (Tabkau 3)'. Suite a Is devaluation do F.CFA et a I'augmenration du prix du riz importe, la consommation nationale aurait diminue (de 10 & 12 kghabitiintlan 21 6 kghabitantlan environ) et les importations ont dgalemnent diminue de moitik (de 87.300 tomes en 1993 B 40.000 tonnes en 1994). Mais les consommations tout comme les importations ont augmente en 1995. Cette situation demontre I'intbrh de la riziculture dans la skculite alimentaire et la necessite &intensifier sa pratique, de mettre en valeur le potentiel amenage,sble afin d'accroltre sa production.Le riz irrigue contribue pour environ 75 9' 0 dans la production riationale du iiz. Son importance ira grandissante dans les annees a venir compte tenu de la dt$qadation des conditions climatiques qui vont compromettre sa production en pluvial dims certaines zones.Les cultures maraicheres et fruitieres iniguees qui representent l'essentiel des cultures d'exportation apres le coton, occupent une place importante dans I'economie nationale et jouent un r61e non negligeable dans I'tSquilibre de la ration dimentaire. Les perimetres en maitrise totale de l'eau sont g6neralement situes a I'avd ou a l'amont des barrages ou amenages a partir di: prise d'eau sur les cours d'eau pkrennes. On distiilgue donc les amenagements par derivation au fil de I'eau (ex Vallee du Kou), les amenagements avec irrigation par pompage (ex Vallte du Sourou) et les amenagements en aval des barrages avec irrigation gravitaire ou en arnoni avec pompage. Ce dernier type est tres developye au centre et a l'est du Burkina Les grands arnknagements sont locaiids dans les paflies Sud-Est (Bagre), Ouest (Vallk du Kou, perimetre sucrier de 13er4gadoiigou) et Nord-Ouest (Vallee du Sourouj dir pays. Certains sont places sous I'autorile des institutions specifiques : 1'Aut.orite de la Mise en Valeur de la Valke du Sourou (hMVS.1, la Maitrise d'Ouvrage de Bagre (MOB) et la Societe Sucriire de la Comoe (SOSUCO). 'LRs p6rimetres de I'AMVS et de la MOB sont des perirnexres dits de colonisation. Ces exploitants, deplaces 6 . partir d'un rayon pouvant a.tteindre quelques centaines de kiiurnetres, sont installes a proximite du perirnetre et se voient attribuer une superficie de 0,5 a 7 ha (2 a 4 fois plus grande que celle attribuke dms les petits pt.iini&tres) dans le p6ritri6tl-e el queiques hectares sur les t.erres hautes.L.e regime pluviometrique du Burkina Faso est sounis a i'interaction de deux principaies masses d'air dont fa surfacc: dc contact est appelee front intertropicale (FIT) ou equateur ndtt.orologique. I1 s'agit de : 0 Un alize continentntal issu d'une zone de haute pression de l'heniisphkre nord centre sur le Sahara et appeik \"Harmattan\". C'est un vent sec et chaud de secteur est ou nord-est ; * Un dize maritime issu du r m t r e de haute pression de Sainte-Helene situe dans l'atlantique sud et denomme \"b4ousson\".Le mouvement du F17' est a I'origine de la succession des saisons (seche et pluvieusej. On distingue une seule saison pliivieuse allant de Mai a Octobre. Les precipitations durent environ 3 mois au Nord, alors qu'au Suii, elles peuvent aller au dela de 6 niois ; leurs hauteurs varient dans le m2me sens d'environ 400 mm a 1000 mm.Le regime pluviometrique est caracterise par une grande variabilite spatio-temporelk: mauvaise repartition de la pluie dans la saison avec des '\"rrous\" ou \"poches\" de secheresse et variabilite interannuelle. C'est ainsi quc Ahergel et al (,1985), indiquent une descente des isohyetes 500 mm et 900 nun entre I960 et 1980 avec line accentuation duratit la periode dt: 1970 a 1980. Cette situation traduit une baisse generalisee de la pluviometrie a partil-de 1960.La duree de la periode humide, caracterisk par l'intervalle de temps durant lequel la pluviomiitrie atteint au inoins Ia valeur de I'evapotranspiration potentielie (ETP), varie de I mois au Nord-Est a 3-4 mois au Sud-Ouest.On distingue trois principales zones climatiques dont la dkterminntion est basf-e uniquement sur la pluviometrie annuelle la zone sud-souddnienne (900 a 1200 mni) , la zone nord-soudanienne (600 a 900 mm) , L a zone sahelienne (moins de 600 mm) d'echange cationique (CEC) et pauvreir en azote et en phosphore (Ilien, 1090). La baisse du taux de matiere organique, liee a la rapidite de la miniralisation, s'accompagne de ]'acidification des sols surtout lorsque ceux-ci sont sous culture. Corrolairement a I'acidific.ation, apparait I'aluminium &changeable toxique aux cultures a partir d'un certain seuil (Ouattara, 1991). A cette pauvrete chimique des sols s'ajoute la degradation de leurs proprietes physiques (porosite, cohesion, stabilite structurale, permeabiliti a I'eau) souvent aggravee par l'erosion.Le mode traditionnel de restaut.ation de la fertilitk des sols est la jachere. Cependant, elle est inexistante ou de courte duree: dans les zones ti forte pression foncike telle que le plateau central. La fertilisation organique est limit& par I'evacuation quasi-totale des pailles, la faible integration de I'elevage a I'agriculture et la non-maitrise des techniques modems telles que le compostage et la pratique des rotations.Le reseau hydroographique du Burkina Faso cornporte trois grands bassins principsux : le bassin des Volta. (Noire, Rouge, Blanche)' (178.000 kmz), le bassin de la Comok au Sud-Ouest (17.000 kmz) et le bassin du Niger au Nord-Est (79.000 hiz). L'ecoulenient de surface sur ces bassins est estime a environ 8 milliards de m3 par an en moyenne, mais avw une grande variabilite inter-annuelle. Les reserves d\"eau souterraines renouvelables sont estimees a environ 10 milliards de rn' par an avec une rttcharge d'environ 10 % de la precipitation nioyenne annuelle. Les terres irrigables sont situees le long des principaux cours d'eau. Ides cows d'eau perennes ne sont s h e s qu'au Sud-Oues! et au Nord-Ouest du pays ce qui oblige a recourir b la creation de retenues collinaires dans le reste du pays pour stocker une partie du volume d'eau ecoulee en hivernage et la rendre utilisable pour les besoins divers (domestiques, d'elevage, d'agriculture) en saison seche.Le Burkina Faso possede un nombre important de barrages-reservoirs. Les premiers ouvrages datent des annees 1920. C'est suite a la secheresse des annees 1970 que l'irrigntion autour des barrages a pris un essor important. En effet, les annees 1980 et 1990 ont vu la realisation de grands ouvrages de mobilisation de ressources en eau tels Sourou, Ragre et Kompienga ainsi que de nombreux barrages de petites et moyennes tailles.D'apres I'inventaire rhlisk par 11: Projet <( Bilan d'eau )i (Ministire de I'Eau, 1991) le nombre total de ces barrages est de 1.100 (Figure 5). L'essentiel de ces ouvrages est sit& dans les bassins des Volta (= 780) et du Nigei. (= 280). performances n'est pas bier1 maitrisee. En I'absence des suiv s, si;nrtout en ce qui concerne la gestion de I'eau (la ressoui'ce limitative), tant au :tiiveau du barrage qu'au niveau du reseati d'irrigation, I'kaluation obj xtive deli performance>; technico-6conomiques des amenagements devient hasardeuse. Par coiidquent, on ne saura pits si lea i bjectifs qui leur ktaient assiyes sont atteints. De plus, on n: sera pa!; en mesure de: deceler t i corriyer, a temps, d'eventuelles derives ou des dysfonctionnements.La figure 8 met egzlement en &videme la iilultjplicitc des structures clui interviennent dans le secteur hydro-agricole, av'x des champ:'; de coi ipetences, des priorites et des preoccupations varies. Cqendant, le savoir-faire ct les co npdtences requises ne sont pas toujours disponibles ou de I: esoin et ou ils peuvent il, re ut.iles. Cest ainsi que la gestion de I'eau des pkrinietres irrigues est 3ouvent laissde a la charge d'un e ipl.oitant-aiguadier supervisd par un eneadreur qui, bien que dominant les tectuliyum de procuetion agricole, ne niaitrise pas toujours la gestion et I'entretien des rtiseaux 8irrigaiic)n7 faute de formation adapt&.Une comp1ementari:e des st!wtures visanc des acti Jns concertees dans le domaine hydro-agricole est a rechercher et B mettre en place. La mi:e en application effective de la politique d'hydraulique agri:ole (cf Note de poliliq,~.~e d'hydri .uiique agricole, 1993) preconise une concertation plus etrcite ent.re ies h4inistkre. charges respectivement de I'Eau et de 1'Agiiculture, notamment dans le suiv. et l'kvaluation des perfc mances des amenagements.Les structures d'eiic:adr-emerk\\ techriiqique. et I~uurs dkm whes ont kvolud dans le temps. D'abord assurk par les s( 'cietds d'iriterventiori fi.,inqaises ivec I'appui de la radio rurale (organisation de clubs d'koute) I'eocadrement it etk cctifie en 1965 aux Organismes Regionaux de Developpenient JORD) ere& pout la cim nstance. Les ORD etaient des itablissements publics B earicttke industriel et comr:~eri.ial (E\"tC), Appuyds par des projets de developpement ils ont pu constmire cies mute.s, des bcoles et des formations sanitaires. 11s avaient en outre pour tales la facilitation de l'accbs au credit l'encadrement, l'organisation et la formation des prcrducteirrs. En I9S8, les OKD prirent 1 i dhomination C W A (Centres Regionaux de Promotion Ago-pastcirale) et a.ssuraient prati pement les memes r6les en tant que structure decent.raiisee du Ministiire de I' Agricukture, La 1 icune des C W A a ete le manque de cornpetences en matibr d'hydr;j.ulique et de gestion de :'eau devant assurer une gestion efficiente des am6nagemen:s hydro-agricoles. Des structure : paralleles aux CRPA, dites de gestion de terroirsi ayant tic:. approchi:s intdggrkes, virent le jou: (PNGT, PDRI, ... ).L,es CKPA sont devenus, en 1997, des etakdissementr publics a caractere administratif dknommes DK,9 (Directiotts Regionales de I' Agihlture). 1 m r s r6les se resumeront a des missions d'appui-conseilr;. ( k s mesmes s'inscrivent dans le wdre du desengagement de I'Etat avec transfert de responsiibilitks aiix organisations prtysannes.Une des grandes diflicultes de l'encadrement paystm reside dans les interventions disparate3 saris reelk cuncertatiou entre lea diffkrenies structi res d'encadrement et d'appui du monde rural.La fonction de c,)mmercialisation relevaiit de I' nitiative paysame est assurie itrdividuellement ou colleciivement par les orgakations p ysannes nlises sur pied sur les periinetres irrigues. Ce dernier texte a ($6 remplace par la loi No 014l94ADP du 23 Mai 1996 portant reorganisation agraire et foriciere au Burkina Faso. I! convien:. de souligner que la securisation fonci&e, objet de la RAF, ost consideree comme un enjeu m,ijeur pour une meilleure gestion des perimetres irrigues, en parallele iivec le traitsfert pwgressif des responsabilites aux producteurs et leurs organisittions. D'autre part, il exis te des textw specifiqur:s applic>.bles aux amenagernents hydroagricoles yui traitent des suiets tels les r:onditions d'attributiai des parcelles et la composition et les responsabilites des comites de gestion. Certains de ces m t e s ont dtk adoptes sans dewet d'application et d'autres soif restes au stade de projets. M.ds, dans leur ensemble ils sont perqus comme etant des teres qui ont force de loi.Toutefois, il a ete souligne qu'il y a lieu d'harmonise et de corriger les incoherences entre ces differents textes (I MI-PMLiBF, 1993).Dans ce cantexte socio-econornique, igalement domine par les impbatifs du programme d'ajustement stiucturel (PA!;), le gouvernement i h Burkina Faso, dans sa L.c.tirt' de yolifique de di.vebppern(?nl agrzcole [(LPDA), a aifiche sa volonte de diriger ses efforts, en priorite, sur la rehabilitation et I'ameliora tion des performance.# des perimetres existants tout en poursuivant, de maniere I'ro'oyessive, la creation de nou.reaux anienagements. Plusieurs justifications sous-tendent cctte volonte :La creation de pales de developpement dans les regons Ies plus ddfavorisees ; La responsabilisation dw organisations paysames dam la gestion de ces amenagements, parallelement au desengagement pntgressif de I'Etat.Dans le cadre du Programme d'Aiusteinent du Secteur Agricole (PASA), le Gouvernement a elabore, en 1993, une note de politique d'hy Iraulique agricole, definissant Ies principes et les orientations a court et moyen teme, ains; qu'un programme d'action en matiere d'amenagemetits hydro-agric,des au Burkina Faso Les orientations de cette politique portent sur les ~o i n t s suivants : organisation et gestion des perimetres, mise en valeur agricole, securisation fonciere, gestion des amenagements, gestion des ressourcm naturelles, oi,ganisatio n du suivi et de I't5valuation des pertornlances des amenagenients.Le programme d'action coiiporte notaniinent six elements qui concernent : la valorisation et I'exqension des grandr perimetres, la coasolid: ,tion des perimetres en amont et en aval des petits barrages, I'appui a I'irrigation pr:v&e, l'antbiagement de bas-fonds dans le sud-Quest du pays, la conservation drs eaux et des sols, un appui institutionnel pour le suivi de la politique et In coordination des pro;:ranimes en metiere d'h!,draulique agricole.On notera, en particulier, que la politique du Gouvemement relative au sous-secteur de I'hydraulique agricole contient des tiispositions favorables :IU developpement de ]'initiative pride. En effet, il est prevu un desengagement. progressif d.: I'Etat au profit des operateurs prives, des fonctions autres que celle il'orientation, cle suivi et de contr6le.C'est dans ce contexte de desengagement tle I'Etat, et pour tenter de repondre aux questions techniques et organisatior.nelles liees a la rehab:litation et a l'amelioration des performances des petit,s pdrimetres inigues autour des barraps que Ie Projet management de I'irrigation au Burkina Faso (PMI-RF,i a trouve un echo favoi able aupres du gouvernement du Burkina Faso et de la Ranque africainc: de developpement (BAED).A I'initiative de la RepresentZion Regionale de 1 ' I M pour l ' a q u e de I'Ouest et du Un Raabo conjoin1 no AN ~?U-O7IFPIEtllJIMESSRSIMAE/MACP a etk signe le 17 Janvier 1991 II porte \"creation, attribution composiiion et fonctionnement du comite de coordination du proje t de Recherche-Developpement en management de l'irrigation au Burkina Faso\"L'objectif global du projet est de contribuer a I'amitlior Ition des performances des petits perim&res irrip6s villageois, par la recherche et !a diffirsiort d'innovations sur le management de I'irrigation. Cet objectif s'inscrit dans le cadre des prio:itks gouvernementales visant la securite alinientaire du pays et corres2ond aux prkccupation i des bailleurs de fonds d'assurer la perennit6 des infrastructures, don: la mise en place necessite souvent un effort financier considerable En effet, le Gouvernenient considere que le diveloppement de l'irrigation doitCorrespondant au momrmt de la signature de la con\\ d o n a emiron 832 millions PCFA.jouer un rcik de plus en plus grand dans ses actions dt dkveloppement agricole et de production alimentaire.Les objectifs sphifiques sont, dt: : mettre en evidence, partir d'une approcbe p1u:idisciplinaire sur le terrain, les contraintes humaines et techniques m devve'loppement ~le: I'irrigation ; axee sur le management de I'irrigation et, en particuLer, sur I'exploitation el I'entretien des reseaux ; I26laboration et I'edition cl'un manuel pratique de gestition de l'irngation en langue nationale moore A destination des producieurs et dcs responsahles de la gestion cies amenagements au sein des xganisations paysannes.La recher~he-dheluppemeitt a et6 entreprise sur 5 petits perimetres (40-1 00 ha) presentant des caract6ristiques differentes sur 1es plans :.echnique, agronomique, sociokconornique ou organisationnel: cor'.ception simple ou avanc&ee, cultures pratiyuees, existence et fonctionnement de l'organisation .>aysanne, etc. L.e volet dc:vait mettre un accent particulier sur : l'anaiyse-diagnostic pluridiscipliiiaire de la situation des perini&tres trrigub retenus et la rnise en fornie et la diasion des recommandations pratiques , la mise au point d'une inel hodologie d'analyse-diagnostic rapide du fonctionnement d'un perimetre ; 0 les tests en vraie grandeur ~t les essais de gbneralisatmn.Le volet formation a interwe les cadres, le,s enmdreurs et les ploducteurs. Le programme a e?& axe surtout sur 1r:s techniques, methodes et principes du management de I'irrigation, c'est-a-dke sur les aspect., tant techniques qu'orgariisationnels du fonctionnement el de t'entretien des amenagemenis hydro-agncoles. Le volet formation devait pennettre d'amorcer une activitk permanente de formation au management de I'irrigation (inttbqant toutes les contraintes techniques, econondques, sociales et environnementales) a tous les niveaux, et ce i i partir des resultats de la reche-che-developpeinent ctu ii partir dc eeux des expbiences acquises par ailleurs. Les aceiviies exreprises dans ce volet coinportent des stages et etudes sur le terrain, des sessions de formation, des ateliers et &miriaires specialis& des visiies de terrains au Burkina Faso ou dans les tutres pays de la sous-reison. Le comite de c0oriiin;ltii)n est l'organe de dhcision du projet er statue s i x tout ce qui concerne le d&adement du projet, riotarninent le pliutrurig et l'exkution des programmes d'activitks, ies budgets er Ics coinptes, les rkgles de la gestion adndnistrative, comptable et finawiere, etc. Le conlit& etjt conipod de neuf merrrbres permanent.s tepressntant les principaux orgardsines impliqubs dwrs k d6veYtq)pement et la gestiun de l'agiculture le pays : Les etudes du projet IMVPMI-BF ont ete menees sur 5 amenagements hydroagicoles, a savoir, Mogtkdo (province du Ganzourgou), Itenga et Gorgo (Kouritenga), Savili (Bulkiemde) et Dakiri (Gnagna). Cer sites sont localises sur la figure 10. Dans cette section, nous nous imteressons en particulier aux parambtres suivants sur les sites de I'IIMI-PMVBF : la pluvicdtrie et I'kvapotranspiration potentielle (ETP), la temperature de Pair, I'insolation ou le rayonnement solaire, I'humidite relative de I'air et le vent. Les valeurs des ETP mensuellw pour chaque perimetre imgue ont ete interpolees a partir des valeurs moyennes mensueller, des ETP d'au moins deux stations synoptiques les plus proches du p6rimbtre. I1 s'agit des moyennes ponderees sur la base de la distance du perimetre des stations synoptiques considerees. Nous avons dil recourir a cette methode de calcul du fait que certains perimetres sont eloignes des stations synoptiques et m6me s'ils ne le sont pas, les series de donnees disponibles sont courtes.Des cinq perimetres &dies p a le PMI-BF, quatre (Gorgo, Itenga, Mogtedo et Savili) sont situes dans la zone climatique nord-soudanienne encadree par les isohyetes 650 et 1000 mm (Sivakumar & Gnoumou, 1987), tandis que le penmktre de Dakki est localise dans la zone sahelienne plus aride avec une pluviomtitrie annuelle inferieure a 650 m. , 1994). La duree relativement courte de la saison cdturale a Dakiri ne permet pas l'exploitation de cultures pluviales a cycle long.Les valeurs de 1'ETP pr6sentt:nt une evolution mensuelle similaire sur I'ensemble des sites avec, cependant, une legke sup6riorit~i de Dakiri par rapport aux autres sites. Au cours de la saison des pluies, m6me si FETP est plus fmble qu'en saison seche, elle n'est cornpensee par la pluie que pendant un a trois mois seulement, strlon le site considere. A Dalari, 50 YO de I'ETP (ETP/Z) sont compenses a partir de Juillet, tandis que sur les autres sites ils sont c o m p d s a pastir de Juin.En rkume, la pluviometrie est irreguliere et tres mal r6ppartie dans le temps et dans I'espace. Les deficits pluviom6triques sont assez frequents. A Dakiri, les conditions pluviometriques sont encore plus drastiques : c'est seulemmt au mois d'aofit que la pluviometrie compense l'ETP. La pluviom6trie moyenne annuelle y est Faible (513,8 nun) et prbente une tendance a la baisse plus marquee, Mais, durant la periode de 1991 A 1995, la pluviometrie, en hausse sur l'ensemble des sites, est superieure a la normale sauf it Dakiri.La temperature de I'air ambiant presente une variation journaliere et saisonniere :La saison s d e froide qui tlure de Novembre a mi-Fevrier. Au cours de cette saison, les temperatures minimales peiivent descendre jusqu'a 14OC tandis que les temperatures maximales peuvent atmindre 3 8 T a Dori (la station synoptique la plus proche du perimitresite de Dakiri). Les mois les plus froids de I'ann6e sont les mois de janvier (13,8\"C a Don), et de L'insolation joumaliere est diterminee par la durk joumaliere de l'ensoleillement. Sur I'ensemble des perimetres d'intervention de I'IIMI/PMI-BF, I'insolation annuelle est d'environ 3100 heures.L'humidite relative de I'air est l,i quantit6 de vapeur d'eau contenue dans 100 litres &air. En saison pluvieuse, l'humidite relative de I'air est superieure a 50 % sur tous les perimetres etudies par le projet, Elle atteint sa valeur maximale en Aofit, mois le plus pluvieux : 70 % a plus de 80 %. Sa valeur minimale est atteinte gheralenient en FBvrier : 28 % en moyenne a Mogtedo. La figure 13 presente la variation de ces paramt.h.es climatiques sus-cites, a Mogtedo. La connaissance de la nature d'un sol permet de daterminer son aptitude ou sa fertilite agronomique, de comprendre le niveau de production agricole dun s y s t h e de culture et d'envisager des ameliorations, si possible. Le Tableau 5 ci-apres presente les types de sols et leurs aptitudes culturales, des perimetres irrigues etudies par I'IIMI/PMI-BF. Les difficultes de deux ordres ont limite I'analyse pedologique des perimetres inigues: l'absence de repere devant permettre la superposition entre les cartes pedologiques et les plans de reseaux ; c le coDt eleve des analyses pe'dologiques qui n'6tait pas budgetise par le PMI-BF.Cette demiere difficulte a conriiderablement limite les preltivements d'echantillons de sols qui ont &e effectues sur les perimetres et les types d'analyses p6dologiques. A Mogtedo ]'etude sur la teneur en carbone et en matiere organique a porte uniquement sur la parcelle cornportant le dispositif lysimetrique. Les etudes physiques sur la texture, la structure, la densite apparente et les humidites carac:t&istiques ont ete effectuees sur un certain nombre de parcelles a Mogtedo et a Itenga (Annexe 11).Les resultats des &udes physiques ont confirme que les sols de Mogtedo et d'Itenga avec une texture tres fine a fine ; ceux d'Itenga sont argileux en surface et limonoargileux a moyenne dans les horizons inftkieurs. Cette h6terogeneite texturale a Itenga explique pourquoi la percolation est tres elevee sur certaines parcelles mdgre leur nature argileuse en surface.Btaient aptes a la riziculture. Les sols du p6rirnetre de Mogtedo sont generalement argileux Les diffkrents sols ci-dessus ennum6re.s dans le Tableau 5 sont en general pauvres en matiere organique (confirme par quel'ques analyses effectuees par le PMI-BF) a cause de l'exportation quasi-totale ou du brillis de la paille mais surtout de la faiblesse des doses de matiere organique apportee en rnaraichticulture, la riziculture beneficiant rarement d'apports de matiere organique, sauf sur le penmetre de Dakiri. L'integration de l'el6vage B I'agriculture est donc a encourager sur les perimetres inigues. La densite apparente des sols varie de 1,27 dans les 20 premiers cm a 1,70 a I'horizon 40 -60 cm. La reserve utile, varie, quant a elle, entre 115 et 215 Wrn.Sur chacun des cinq perirnetres d'etudes de I'IWPMI-BF, les attributaires de parcelles irriguees pratiquent, en hivernage, les cultures pluviales en plus des cultures imguees. 11 coexiste donc sur les perimetres deux systemes de cultures, a savoir le systeme de culture irriguee et le systeme de culture pluviale traditionnelle.La taille des exploitations agricoles en culture pluviale est tres variable. Des enquetes menbs par I'IIMLPMI-BF a Dakiri, Gorgo et Itenga, ont permis de se rendre compte de cette grande variabilite de la taille des exploitations agricoles. En effet, a Dakiri, les superficies agricoles familides varient entre 0,16 ha et 17 ha. A Gorgo elles oscillent entre 0,66 ha et 9,22 ha. A Itenga, elles varient de 0,88 ha ii 6 ha. Cependant, le Tableau 6 fait ressortir que la plupart des exploitations ont moins de 1 ha de superficie a Dakiri (43,s %), alors qu'a Gorgo et Itenga elles ont generalement une superficie sup6rieure a 1 ha. La superficie moyenne des champs pluviaux est de 1,64 ha A D,&ri, 2,26 ha a Itenga et 3,23 ha a Gorgo. La faiblesse de la taille des exploitations agricoles a Dakiri peut s'expliquer par le fait que ses exploitants sont de gros dleveurs, contrairement a l e m collegues de Gorgo et d'Itenga. Les cultures pluviales sont le sorgho, le mil, le mas, le niebe, l'arachide, le voandzou, la patate douce, le riz pluvial etc.. Le sorgho et le mil sont les principales productions qui entrent dans l'alimentation debase des explcmitants des differents perimetres. Les enqu&es menks par le projet ont revele que la producticln moyenne en ces denrees etait de 1545 kg a D a k i r i en 1993, 3560 kg a Gorgo en 1994, et 2270 kg a Itenga la m&ne annee. Les rendements correspondants sont 0,91 t/ha, 1,lS tlha et 0,89 t/ha. Si I'on se base sur la norme de consommation de 220 kg de cerealel, par personne et par an (CESS, 1991), les quantites cidessus mentionnks permettent de nciurrir respectivement 7 personnes a Dakiri, 16 a Gorgo et desherbage a lieu au moins 15 jours apres le semis. Le second desherbage se situe entre mi-Juillet et fin AoGt. Les recoltes s'effectuent entre mi-Octobre et mi-Novembre.La fertilisation organique est offectuee, le plus souvent, avant la saison pluvieuse. La &mure minerale est peu appliquk.Le materiel agricole utilise sur les parcelles pluviales est le m6me que sur les parcelles irriguees. I1 est rudimentaire car se resumant essentiellement a la daba (79,8 % des attributaires de parcelles irriguees a Dakiri). La culiure attelee est d'importance variable suivant le perimetre et se limite seulement au labour. Au re,yard de la nature de I'equipement agricole, il s'ensuit que les operations culturales sont manudlement executees la plupart du temps. D'apres les enqu6tes du PM-BF, on denombre par menage en moyenne 6 actifs agricoles a Dakiri, 9 B Gorgo et 5 a Itenga (Sory, 1995).La taille des parcelles varie d'un perimitre a l'autre. A Savili, toutes les parcelles ont chacune une superficie de 0,25 ha. A Dakiri et Itenga, elle est aussi plus ou moins uniforme. En effet a Dakiri 92 % des parcelles ont uue superticie de 0,16 ha et les 8 YO restantes ont chacune 0,OS ha. A Itenga la taille moyenne des parcelles est de 0,22 ha (coeficient de variation egale a 6 %). En revanche, a Gorgo, et surtout a Mogtedo, la taille des parcelles est tres variable (cf figures 14a et 14b). Les parcelles irriguees, en pourcentage relatif a la taille des champs pluviaux, ne representent que 9%, 7% et 8% respectivement a Dakiri, Gorgo et Itenga.A Mogtao, et dans une moindre mesure a Itenga, les abords du perimetre sont egalement exploites. A Mo&do, les superficies exploittes dans ces zones sont denviron 15 ha en riziculture de saison humide ; elles varient entre 30 et 35 ha pour les cultures maraicheres de saison seche (Dembele et al, 1994). En saison seche 1992/93, ces superficies valaient 2,l ha a Itenga, et etaient totalement occupees par les cultures maraicheres. Dans ces zones la taille des parcelles exploitees vane de 10 a 50 ares rizicultures et de 5 a 20 ares en rnaraichkulture. Les speculations maraichkres produites sont I'oignon, le gombo, le chou, la tomate, uniquement) En dehors du haricot ven les rendements et les productions en maraicheculture sont dificiles a cerner avec exactitude, compte tenu du fait que les productions sont le plus souvent vendues en petites quantites no11 pesees l'aubergine, l'ail, le piment, la carotte, le mais, la patate douce et le haricot vert (SaviliLe choix des amenagements retenus comme sites d'intervention du projet s'est opere a partir des criteres tels: le volume et la pkennite de la retenue, la superficie amenagee, l'anciennete de la mise en valeur, la prksence effective dune organisation des producteurs, le systeme de culture, la distance par rapport a un centre urbain, l'accessibilite, etc. afin de constituer un echantillon aussi represcmtatif que possible des petits perimetres autour des barrages.La figure 15 illustre la repartition des tailles des petits perimetres irrigues autour des barrages. On note que la majorite des penmetres ont une superficie inferieure a 20 ha. La superficie moyenne amenagee est de 45 ha. Dans la categorie des petits perimetres imgues autour des barrages, Mogt6do et Dakiri sont parmi les plus grands alors quci les trois autres perimetres-sites se rapprochent plus de la superficie moyenne de 45 ha. Par d e u r s , Mogtedo est l'un des plus anciens perimetres du pays, les plus recents des cinq sites du PMI-BF etant Itenga et Gorgo. En ce qui concerne la disponibilite des ressources en eau, la situation des sites est variable ; a Dakiri, le rapport entre la capacite de la retenue et la supeificie amenagee est de 93.390 m3ha tandis qu'a Gorgo ce ratio n'est que de 27.000 m3/ha. Tous les perimetres-sites du projet sont a vocation rizicole sauf Savili. 11s sont tous des perirnetres gravitaires a I'exception de Savili qui est de type californien (l'eau est pompee depuis le barrage pour alimenter le penmetre Situe en amont, les parcelles etant irriguees gravitairerntmt a partir de bornes-fontaines).Le Tableau 7 presente les caracteristiques principales des cinq sites dintervention du projet. I1 faut noter que l'amenayement de Dakiri est a 7 km de Mani, un centre commercial important que frequentent les commrqants de la ville de Pouytenga situee a 120 km environ. Le long du reseau d'irrigation se trouvent des ouvrages de regulation des debits dont:. 7 deversoirs giraudets sur le canal primaire ;, des deversoirs de decharge en fin de certains secondaires ;des deversoirs transversux dont un en t&e de canal primaire;des deversoirs lateraux tle securite sur le canal primaire et certains secondaires.Les ouvrages de repartition tle I'eau dans les secondaires sont constitues de modules a masques et de vannettes en ttbles. La population des localites environnant le site est estimk a 7101 habitants selon le recensement genbal de 1985 et est esscntiellement compost5 de mossis et de quelques peuhls.Finance par la FKDEA et I'OPEP, pour I'exploitation de 50 ha de riz en saison pluvieuse et 30 ha de cultures maraicheres en saison seche, I'amenagement de Gorgo n'a jamais connu de campagne mardchere ; cela dt3 a la non-realisation du rehaussement prt5vu de la digue du bamage, entrainant un manque considerable de volume deau et une absence de reception definitive de l'amenagement.Alors que la situation geograjphique du site a 16 km de Kouptla, grand centre commercial et carrefour international, constitue un atout tres important pour I'ecoulement des produits agricoles. Le perimetre dispose d'une pirite principale en remblai lateritique compacte de Le perimetre irrigue de Itenga a et6 realid par I'ONBAH dans le cadre des projets de I'autorite du LPTAKO-GOURMA sur financements des fonds OPEP et FKDEA. Le @rimewe en aval du barrage se presente en trois entitks distinctes (appel6es sous-perimetres ou blocs) relikes entre elles par des ponts-canaux tlu reseau principal d'imgation. I1 convient de signaler, pour terminer la presentation du site, la position strategique (favorable a I'ecoulement des produits agricoles) du site au carrefour d'e deux centres commerciaux que sont :-Koupela, carrefour international des grands axes routiers bitumes rejoignant le Togo, le Niger, le Benin, le Ghana et meme la C6te dIvoire ; et Pouytenga; 2\"\"\" commune de plein exercice de la province avec son marche de renommee internationale.- Le drainage exterieur est constitue dun ensemble de colatures de ceinture longeant le canal primaire et dont la configuration du perimetre en sous-perim&res a occasionne la realisation de 3 colatures d'une longueur totale de 3200 m. Ces colatures ont bheficie de quelques protections en perre maqonne aux droits des changements de direction, des points de rencontre ou de debouch6 de ces colatures dans I'emissaire, ainsi qu'a certains points de franchissement en dalots.Les ouvrages de regulation de la ligne d'eau dans le canal primaire et les canaux secondaires d'irrigation sont constitues de :-4 deversoirs giraudets, 2 transversaux pla&s a I'aval immediat des prises secondaires ainsi que 2 paniteurs fixes sur le canal primaire.6 deversoirs transversaux places a I'aval imrnaiat des prises en buses (pertuis de fond) en t&e des canaux secondaires.-Les ouvrages de repartition de leau aux secondaires et tertiaires sont constitues des vannettes en t6le \"tout ou rien\" et ce deversoirs ci-dessus evoques. Le perimetre de Savili est esser;tiellement mdraicher avec pour principale culture le haricot vert destine surtout a I'exportstion et en partie au marche national. La situation geographique du site facilite l'ecoulemerrt des produits vers les centres de trafic international que sont:-Koudougou, Chef-lieu de province a 42 km du site et possedant une gare ferroviaire SITARAIL, de la ligne Ouaga-Abidjan.-Sabou a 20 km, chef-lieu de departernent situe sur la nationale 1 (RNI), Ouagadougou-Bobo.perimetre maraicher de Savili, finance sur fonds FAC, est un perimetre semigravitaire situe en amont de retenue d'eau avec une station de pompage contenant 7 groupes motopompes alimentes en eau par un chmal d'amenee en terre de 150 m de long. La position actuelle de la station de pompage est le resultat de difficultes d'alimentation en eau du chenal survenues quelques mois seulement apres la realisation du perimetre. Les series chronologiques de performances compilees par le projet permettent de mettre en &idence des variations sa.isonnieres et imuelles, et d'identifier des tendances dans les performances des p&&res. Elles w e n t aussi de base de comparaison (par exemple, en termes des valeurs moyennes des indicateurs) des performimces des merents penm&res d'bde. Toutefois, il convient de souligner que la quantification des performances des perimetres d'etude n'a pas Be aisee. D'une part, la collecte et le traitement d'infonnations de base ont ete particulierement longs, etant donne l'absence des dispositifs de mesures et le manque de suivi systematique des penmetres irrigues. D'autre part, m6me dans les cas ou les donnees etaient enregistrbs, soit par les services d'encadrement, soit par l'organisation paysanne, elles se sont souvent revelees incompletes. Les interventions se limitent, tres souvent, a un constat des degradations des ouvrages. Par consequent, le Projet a di3 beaucoup s'investir dans I'elaboration et la mise en place des dispositifs adapt& (tant materiels que humains) de suivi. L'une des consequences de cette situation a ete le prolongemnet de la duree d'exkution du Projet, initialement prevue pour 4 ans. Cependant, cela a permis au projet de disposer d'un fonds d'itformation qui lui sert de base solide pour decrire les performances des perimetres irrigues, identifier des contraintes a leur bon fonctionnement et, enfin, elaborer des propositions d'amelioration.A travers dBerentes analyses, il a ete possible de degager les causes determinantes des performances observtes ; c'est-adire quels sont les facteurs qui contribuent a favoriser (ou a degrader) les performances ? Ensuitg des propositions d'amelioration des performances ont &e elaborees avec une evaluation objective, chaque fois que cela est possible, des coDts et des avantages de ces propositions, pour pouvoir se prononcer, enfin, sur la viabilite des amkgements hydro-agricoles.C'est une demarche qui a permis d'aboutir a I'elaboration d'un manuel m6thodologique de diagnostic et d'evaluation des performances des phimetres irrigues, un des resultats attendus du PMI-BF (IIMI-PMIBF., 1996).Comme souligne auparavant (Section 2.4), la gestion du projet a ete assuree a 2 niveaux : (i) un Comite de Coordination, et (ii) une Agence d'execution. Le dispositif operationnel du PMI-BF a ete coristitue aussi bien du personnel fonctionnaire (experts et techniciens) mis A la disposition du projet par l'administration, que du personnel contractuel (agent administratic specialiste en iwbrmation-communication, ingenieurs, stagiaires). L'organigramme du PMI-BF a deja ettb present8 sur la figure 9. Durant la periode de son execution, le PMI-BF a souffen des mouvements (mutations, departs en retraite) de son personnel. Les departs de certains inembres du personnel fonctionnaire, cense represent8 le noyau du dispositif operationnel n'ort pas ete combles dans les meilleurs delais, ou ne l'ont pas ete du tout, La figure 30 permet d'apprecier la duree de presence des differents agents du projet. Les activitks suivantes ont ete conduites durant cette periode :Etudes diagnostiques approfondies par application de la m&hodologie elaboree sur les sites de Mogtedo, Jtenga, Gorgo, Savili et Dakiri. Pour ce faire on a prodde a :l'installation des centrales automatiques d'acquisition de donnees de marque CR2M pour le suivi reigulier des hauteurs d'eau en t&e des canaux primaires ;le suivi de la repartition de l'eau dans les canaux, la redaction du rapport de synthise a mi-parcours et I'organisation de la mission d'dvaluation a mi-pa:cours.Durant cette periode les e t d e s suivantes ont ete men& en vue de renforcer l'analyse et de verifier certaines hypotheses : a L'etude de I'impact des ;systemes de cultures sur les cultures irriguees a Itenga et Gorgo, effectuee par un stagiaire dans le cadre de la preparation de son memoire de fin d'etude a I'Institul du Developpernent Rural (IDR) ;Le suivi routinier portant sur les consommations d'eau des perimetres d'etudes, la gestion de I'eau dans le reseau et a la parcelle ;La collecte de donnees supplementaires afin de calculer et completer les indicateurs de performances (superticies, productions, mise en place des cultures, ...) ;L'&ude sur l'entretien des amenagements hydro-agricoles et la redevance eau ; -L'organisation de l'atelier national sur \"les objectifs et les perfomances des petits penmetres inigues autour des barrages\".Cette periode a 6te marquee aussi par : L'organisation de I'atelier de fin de projet intitule \"Am6liorer les performances des perimetres irrigues\" ;La redaction de 4 manuels en langue nationale moor6 a I'intention des producteurs qui traite des differents themes en rapport avec le management de l'irrigation : Les activites menees sur un penmetre i m p 6 sont nombreuses et variees. 11 est commode, pour la clarte de I'analyse, de les regrouper sous des fonctions synthetiques (cf Methodologie d'evahation des peiformances, IMl-PMI/BF, 1996). Pour qu'une organisation qui gere un systeme imgue (OGSL) puisse &re consideree comme performante, c'est-a-dire, pour qu'elle puisse pr6tendre atteindre ses objectifs tout en satisfaisant les attentes de ses partenaires les plus importants, avw un niveau eleve d'eficience d'utilisation des ressources, elle doit pouvoir assumer correctenlent les six grandes fonctions suivantes : la gestion de I'eau et des infrastructures ; la gestion agronomique c:e la production ; la gestion financiere ; la gestion organisationne.!le ; le contr6le de I'impact social et environnemental ; 0 la gestion strategique (str ategie vis-a-vis du milieu kconomique environnant).Toutes les activites des sys:emes irrigues peuvent Stre reparties, harmonieusement et sans redondance, entre ces six fonctions. Les resultats et analyses qui suivent ont et6 present& dans la logique de cette repartition fbnctionnelle.Le rcile actuel de I'Etat dam la mise en valeur des perimetres a dfi &re reexamine dans le contexte du Plan d'ajustement stiucturel (PAS). C'est dans l'optique d'une redefinition des r6les et des responsabilites des acteurs de I'imgation que le Projet Management de I'Imgation au Burkina Faso s'est penche sur I'itnalyse et le diagnostic du fonctionnement hydraulique des petits amenagements autour des barrages. Le projet a opte pour une approche globale de la gestion de la ressource en eau disponible. Cette approche integre les 3 niveaux suivants : 0 la gestion du barrage-reservoir ; 0 la gestion du reseau d'irrigation ; 0 la conduite de l'irrigation h la parcelle.Cette approche globale aviut pour objectif &identifier et de quantifier les gains possibles de performance par une meilleure gestion hydraulique, ou par un meilleur calage du calendrier agricole. Ces economies wnt-elles suffisamment attractives pour esperer mettre en place de nouvelles regles de gestion plus performantes, mais aussi plus contraignantes ? Une utilisation rationnelle de l'eau necessite de prendre en consideration les caracteristiques de la culture conceniee, les facteurs physiques ( c h a t , sol, infiastructures) et les facteurs humains. Une bonne gestion de I'eau est aussi tributaire des competences en management des usagers pour la distribution equitable de l'eau, du niveau de communication entre ces usagers et du r6le qu'ils jouent dans le planning et la distribution de l'eau (Bhuiyan, 1992).L'analyse des courbes hauteurs-surfaces (H-S) et hauteurs-volumes (H-V) des retenues des sites d'etude a permis au PMI-BF d'emettre des doutes sur les capacites rklles de certaines d'entre elles. Pour lever les inquietudes des etudes bathymetriques fiirent realisees par le bureau d h d e s BERA' et mordrerent que les capacites des retenues de Mogtedo et d'ltenga etaient plus grandes que les valeurs presentkes dans les documents : 6.560.000 m3 au lieu de 2 900.000 m3 pour Mogtedo et 2.500.000 m' au lieu de 2.000.000 m3 pour Itenga. Le PMI-BF a egalement rectifie a la haiisse la capacite de la retenue de Gorgo (1.350.000 m3 au lieu de 1.175.000 m') (Annexe 111).Afin d'assurer une meilleure gestion de I'eau des retenues, il est alors important que les services competmts tels la DRH2 oeuvrent a foumir des donnees H-S et H-V fiables aux organismes et services intervenant en milieu rural. Pour les nouveaux amenagements, les courbes H-S et H-V devraient Stre wigneusement venfiks afin d'eviter des erreurs d'appreciations qui aboutiraient a des distorsions graves entre I'eau disponible et les utilisations envisagees.Les retenues-sites du PILII-BF tannaissent peu de problkmes de remplissage puisque trois d'entre eux deversent tous les ans, en g6neral entre mi-Juillet et mi-Aoat, et celui de Mogtedo deverse 8 annkes sur 10. St:ul le perimetre de Savili a une faible frequence de ddversement (6 annees sur 10).L'examen des taux de remp1issaE:e (TR) en fin de campagne agricole humide indiquent de faibles valeurs pour les retenues de (iorgo (45 %), Mogtbdo (63 %) et Dakiri (69 %), La retenue de Itenga prdsente un taux de rernplissage acceptable (87 %).Le taux remplissage dt:s retenues en debut de la saison seche sont adversement affectes par le dCmarrage tardif et l'etalement des campagnes de saison humide, de telle sorte que la partie de ces campagnes qui se derouie au dela de I'm& des pluies et des deversements devient longue et induit beaucoup i e pertes d'eau, surtout par evaporation. Cela se resent sur le taux d'exploitation des perimetres en contre-saison, surtout a Itenga (27,6 % en moyenne) ou la ressource en eau sert a la foiz pour I'agriculture et pour I'adduction d'eau potable qui est prioritaire. Le taux d'exploitation du perimetre (TEP)*' en saison seche demeure eleve a Mogtedo (moyenne de 98,9 %) t!t Dakiri (99,8 %) a cause de I'abondance relative de la ressource en eau. En effet la disponibilite relative en eau (rapport entre la capacite nette de la retenue et la superficie amenagee) est respectivement de 69.032 m3ha et 84.018 m3/ha, ce qui permet de rkliser aishent deux campagnes de culture.On peut donc, theoriquemtmt, accroitre le taux d'exploitation en saison seche par la mise en place precoce des cultures tie saison humide.Une these preparee au sein du PMI/BF (Dembele, 1995) montre, pour le cas de Mogtedo, la marge de manoeuvre pour I'augmentation du taux d'exploitation du perimetre en saison skhe. L'etude a ntkessite le mise au point d'un modele hydraulique de simulation des oscillations du plan d'eau de la r'etenue en saison humide. Ce modele integre dans son fonctionnement .un sous-modele hydrologic ue de calcul de la lame ruisselee ; les besoins en eau du riz.Des simulations des hauteurs d'eau de la retenue ont ete effectdes en utilisant le modele hydraulique. Plusieurs combinaisons de date de repiquage du ridsupeficie i m g u k ont kte realisees. Les resultats indiqueiit qu'aucune combinaison ne permet d'avoir une retenue pleine en fin de campagne. La combinaison la plus realiste qui a ete proposee est le repiquage du riz a la premiPre dtcade de juilllet pour une superficie irriguee de 120 ha. L'application de cette proposition permettra a la retenue de Mogtedo de conserver en fin de campagne, 8 annees sur 10, lcs 3/4 de son volume.Pour serer rationnellement les ressources en eau il est int&essant de connaitre le degre d'envasement des barrages. Malheureusement on note une carence d'etudes approfondies sur la question. L'execution correcte des ouvrages, leur entretien et maintenance, la discipline collective pour le respect des programmes de distribution de I'eau, la competence des usagers en gestion de l'eau sont, entre autres, ;want des facteurs qui influent sur la gestion rationnelle de l'eau. Or en ce qui conceme spec:ifiquement l'6tat des ouvragcs hydrauliques il y a eu rarement des plans de recollement pour verifier la conformite de leur realisation.Les valeurs obtenues pour l'indicateur Dg (dose globale d'irrigation) sur les sites d'intervention et consignees dam le Tableau 13 montrent que les doses globales apportees en saison humide (SH) sont superieures aux valeurs de reference etablies par le PMI-BF sur ses sites. pluie efficace avec les besoins des cultures en place.L'examen des dossiers de conception des petits p6timetres gravitaires au Burkina Faso montre qu'ils sont presque toujours co.nCus sur la base d'une rotation a I'interieure des blocs de secondaires, avec une distribution simultanee sur tous les secondaires a partir du primaire. Ce mode de distribution peut Stre appele type A (Mosselmans G. et al, cite dans Sally et Keita, 1996a). C'est ce mode qui a ete projete a Dakiri, Gorgo, ltenga et Mogtedo.Dans le systemme de type A (figure. 31), la distribution simultanee de l'eau aux canaux secondaires pennet de faire une reduction de la section du primaire apres chaque prise de secondaire (diminution de debit). On re,dise ainsi des Bconomies en matiere de terrassement, de revetement et de dimensionnement der. ouvrages sur le primaire. En revanche, les canaux et ouvrages doivent &re realids en reduisant au maximum les erreurs, pour que les r6percussions des prelevements d'eau en amont ne perturbent pas la distribution a l'aval.A titre d'exernple, le perimetre dit PLAINE de Mogtdo &ait equipe, a sa mise en exploitation en 1968, de 6 canaux sex:ondaires devant transporter chacun 20 Us. Le canal primaire admettait donc en tete 6 x 20 == 120 Ils (bien que surdimensionne a 180 Vs en w e de l'extension qui venait par la suite). Ainsi, apres chaque prise secondaire, la section du primaire diminue. Chacun des secondaires desstzt 5 a 9 canaux tertiaires. La superfcie du quartier hydraulique etant de 3 a une dizaine dhectares.Canal do fuite ----.-----Dans le type B (cf figure 3:!), la rotation se fait sur le canal primaire entre les canaux secondaires. Tous les canaux secor;daires ne sont donc pas mis en eau en meme temps. Le canal primaire peut avoir la m6me dimension sur toute sa longueur, quand le m&me nombre de groupes de secondaires sont mis en f:au simultanement Si I'on suppose des superficii:s de blocs secondaires, des types de sols, des cultures et des temps journaliers d'imgations egaux, les mains deau seront plus importantes dans le type B que dans le type A. En effet, les bescins en eau a satisfkire &ant les m h e s et la frequence des arrosages etant plus reduite dans Ie t,jpe B, il faut apporter un volume plus important a chaque arrosage.avec Tj =temps joumalier #irrigation ((en heures) ; et n(i) = nombre de jours d'imgation i(d8duction &ant faite des jours sans inigation : fhkdles, Nfi) = nombre total de jours dans la penode consid&&; manage, cultes divers ... ).Si l'on note T, q, et S, la phiode (entre deux arrosages), la main d'eau et la superficie du bloc secondaire pour le type A et T', q' et S', les memes parametres pour le type B, on a donc: Equation 2T' > T Ainsi, les terrassements seront plus importants dans le type B que dans le type A. En revanche, les ouvrages ponctuels, rrotamment les prises seront plus simples (pas besoin de regulation en general). En contre-saison, la necess te d'une organisation de la distribution de I'eau se fait plus sentir. Cependant, les tours d'eau ne sont pas rigoureusement suivis. De fait, certaines parcelles surtout celles situees en hauteur ou en queue de reseau ne sont pas convenablement alimentees en eau. Les frequences tl'imgation, variables durant le cycle de la culture, se situent autour de 4 a 14 jours (Figure 33). La mise en eau permanente du reseau d'irrigation et la destruction a certains endroits des vannettes (( tout ou rien )) au dep ut des tertiaires conduisent a une repartition aleatoire du debit du secondaire dam plusieurs tertiaires. Les debits des tertiaires sont egalement souvent repartis simultanement entre plusieurs parcelles. Les condquences du fractionnement des debits sont nombreux et portent sur : I'inefficacite de la distribution de I'eau ; l'insatisfaction des besoins en eau des cultures sur certaines parcelles ; la naissance de conflits entrt les producteurs qui veulent irriguer iw meme moment.Le morcellement des debits provoque egalement beaucoup de pertes d'eau par infiltration. Les debits mesures A la parcelle varient de 3 ir 8 11s en moyenne en hivernage et de 3 a 5 Us en contre-saison pour len parcelles d'une superficie moyenne de 0,16 a 0,25 ha. Le corollaire en est que le temps drrigation augmente considerablement : 2 a 6 heures en hivernage, 2 a 9 heures en contre-s,tison (tableau 16). 5.1. 4 La problkmatique de la maintenance dans le contexte de I'autogestion des petits pkrim6tres irriguks La maintenance des infrastructures hydro-agricoles au Burkina Faso demeure aujourd'hui, plus que jamais, une question centrale daw la gestion des p&knetres irrigues, existants et fiturs En effet, au moment ou I'Etat cherche a se llesengager de ces systemes, la responsabilisation effective des exploitants et de leurs organisatians quant a la prise en charge de la maintenance des infrastructures constitue une etape essentielle dans la mise en place d'une politique de dheloppement durable de I'inigation Le coat de I'hectare amenage en im-trise totale de I'eau atteint, de nos jours, 8 a 9 millions de FCFA (Ministkre de I'Environnement td de I'Eau, 1996) et ceci sans compter le coiit du barrage.LEtat, avec I'aide des partenaires au dheloppement, est souvent la seule entite capable d'investir dans ce domaine. Le recouvreinent des coats des infrastructures ainsi mises en place n'est pas recherche aupres des bineficiaires. En revanche, ils sont censes contribuer aux h i s d'entretien courant et de fonctionnement a travers des redevances \"calcxlies suy la bme de laproduction a un taux compris enire 5% et 15% en fonction du @pe dbmdnagement; ce tam estjxd par Ibrgane de gestim du perimetre\" (Article 5 de I'amexe au cahier des charges sur I'exploitation des penmetres hydro-agricoles, Aofit 1990).Or, a l'heure actuelle, on constate que la maintenance des petits perimhes irrigues laisse a desirer. Un certain flou semble regner quant a la repartition des responsabilites vis-a-vis de la maintenance. Par consequent, les exploitants semblent peu motives, sans doute convaincus que, non seulement la crhtion de l'amhagement mais aussi leur entretien incombent au seul gouvernement. Cependant, les degiits importants subis par beaucoup de phim6tres irrigues suite aux pluies exceptionnelles de I'hivmge 1994 ont montre les limites de I'Etat pour venir en aide mx &&es sinistres et effectuer les reparations requises.Ce chapitre fera le point de la hation relative a la maintenance des penmetres d'etude du PMI-BF. PLutat que de faire un invsntaire des defauts et des dysfonctionnements physiques rencontres sur les perim&res inigues, fious voulons aborder la problhatique de la maintenance en termes organisationnels et financiers, particulihement du point de vue de la capacite des organisations paysannes a faire face a des depenses de maintenance.Faute de suivi rwlier de leurs performances, il est dficile d'obtenir des renseignements objectifs sur l'dtat de fonctionnement tles p&imetres irriguis. Par condquent il n'est pas toujours possible de dtkeler des dysfonctionnenients en temps opportun pour pouvoir y rem6dier avant que ce ne soit trop tard. Souvent, la n k s s i te de la maintenance n'est ressentie qu'a I'issue d'une situation de total blocage; des degradations mineures ne sont prises en compte que lorsqu'elles commencent a poser de graves dangers au pkrimetre e t a la production agricole. En voici quelques exemples :A Mogtkdo, en 1991, au cours des investigations du PMI-BF sur les difficultes dabentation du canal primaire, environ 5 m3 de sable grossier ont &e sortis du bassin de la tour de la prise d'eau, l'alimentation du canal p d r e du p&im&re s'est trouvk ameliork par la suite.A Dakiri, la prise d'eau ri%e droite a vu sa vanne bloquk a mi-chemin de parcows, rouillee par manque de &,sage p&iodique, entrainant des fuites d'eau vers I'aval.A Savili, les groupes molnpompe et la station de pompage n'ont pas fait l'objet d'entretien regulier; en 1994, soit 10 ans apres leur installatioQ on a observe que 3 des 7 groupes motopompe dtait en panne (Yonli, 1994). De plus, aucun renouveflement n'est envisage malgre qu'actudlement, elles ont largement d + & leur durk de fonctionnement d'environ 10.000 heures chacune.A Itenga, les degits survtmus au canal secondaire n03, dont les abords aaient depourvus de laterite de protection, ont sen4 d'exemple des cons6quences nefastes de I'appropriation des emprises des ouvrages du r h pour I'agrandissement des parcelles. D'autres exemples de deficitli d'entretien courant rencontres sur les perim&m d'etude du PM-BF existent des canaux secondaires foitement envases (ex. a Dakiri, certains endroits presentent des d6p6ts boueux de 15 a 20 I : m d'@aisseur), rauisant ainsi leur capacite de transport ;des parois de canaux &tonnes dthnunies de toute protection suite a l'erosion de la latkrite et exposant ainsi les parois a un effondrement sous le moindre poids qui lew sera applique ;des d&haussements du perre mapme du talus amont des digues des barrages, exposant ces dernieres aux erosions pin les vagues des eaux du barrage ; des pistes impraticables et irnpropres ii la circulation.Cependant, il convient de noter que les restitutions des diagnostics, les visites d'khanges et les formations organis6es par le PMI-E:F a l'intention des producteurs et des tigents dencadrement ont contribue a dhontrer l'importanct: de l'entretien des amenagements. Quelques ameliorations ont &e observks, surtout concernant le desherbage et le curage des canam, ainsi que quelques actions de r i f d o n (ex. recharge de terre de protection des canaux). Mais c'est surtout suite aux dkg2ts importants provoques par les inondations de 1994 que les actions Ies plus tangibles ont pu &re observ6es.L'ensemble des faits constates SIX le terrain nous permettent $observer que les conditions favorisant une maintenance operatjonnelle des m e t r e s i n i p e s sont encore mal rhnies. Cette situation resulte, notamment, du manque de clarte dans la repartition des responsabilites quant A la maitrise et a la maintenance des amenagements hydro-agricoles. En effet, sur le plan institutionnel, il n'est pas toujours possible de situer a m pdcision les responsabilites relatives a la maintenance des infrastructures de ces perim&es. Pourtant, dans le cadre de son desengagement de la gestion directe des amenagements hydro-agricoks I'Etat doit notamment se prononcer, de fqon Claire, sur les modalites et la durk de son interventi'm sur les pbrimetres irrigu&, En resume, des insuflisances, doilt certaines peuvent &re jug& majeures, sont constat& dam les petits p e d e s higues. Des reparations et d'autres ameliorations ne sont pas eEectivement r&alisks, faute de moyens (ex. le renouvellement des groupes motopompes du p h t r e de Savili, les r6parations des digues de protection B Gorgo; MogtMo~-et -Dakiri .et la r6paration de la prise rive droite a Dalciri). NI l'Etat, ni les organisations paysannes n'ont pu intervenir d m t les 5 dernihes annks, de madre consequente, pour neutraliser ces indsances sur les p&im&tres d'etudes.Les etudes de I'IIMI/PMI-BF ont aussi mis en 6vidence de nombreux autres problhes lies a des defauts de maintenance. M h e s'ils lie presentent pas d'dure alarmante pour le moment, ces problemes peuvent rapidement s'aggraver s'ils ne sont pas comges a temps.La maintenance est censk &e assuree par les fonds issus de la collecte des redevances, qui representent \"la contribution de I'eqdoitant aux frais de fonctionnement et amortissement du p&im&re impe\" (Article 5 de I'antiexe au cahier des charges sur I'exploitation des peh&res hydro-agricoles, Aofit 1990) Mais, Jans la pratique, cette contribution ne couwe, au miem, que l'entretien courant car aucun rembou~~ment des investissements n'est demand6 aux organisations bdneficiaires L'examen de ce tableau 18 montre que le ratio des charges institutionnelles par rapport aux produits bruts et aux revenus varie d'un p&n&tre a I'autre. Ces charges representent I,% a 8,1% de la valeur brute de la production, qui est assez loin de la fourchette 5% a 15% p&onis& par le cahier de charges sur I'exploitation des penm&res imgues. En tame de revenus, les charges institutionndes representent 2,4% a 13,'9Y0.Si on admet que la production iGcole de la saison humide 1994/95 a &e a@kct& par les inondations, on pourrait s'attendre a ce Ip'en temps normal, ces ratios soient encore plus bas. Par ailleurs, il faudra souligner que (en dehors de Mogtedo), meme dam les perim&res ou on pratique une campagne de contre-saison, la redwance eau n'est applqu6e qu'une seule fois dans l'annee.C'est dire a quel point le relhement du montant de la redevance eau serait une possbitb wr certains sites. Les cofits des r6parations sont, en genkral, infbrieurs aux montants annuels collectes au titre de la redevance eau. Sur le perimhe de Mogtedo nous constatons une certaine regularite, due peut-&re a I'iige de I'arnenagement. Le perimitre de Savili, situe en amont du barrage, ne connait pas les problemes de rupture de digues de protection auxquels les p&im&res gravitaires en aval des barrages doivent faire face; les depenies enregistrks sur ce site ne concement que les reparations efffectuks sur les groupes motopompes. On note qu'en 1994/95 les coriis de reparations effectu6es sont nettement suptineurs, meme au rnontant thbrique dii au titre des redevances. Afin de pouvoir faire face a de telles situations, plusieurs options s'ofient am organisations paysannes . realiser une maintenance pkentive reguliere afin d'kviter que les problemes mineurs s'aggravent et atteignent des proportions trop onereuses ; ameliorer la collecte des redevances en prkoyant, par exempie, de l'appliquer en contre-&son dans les cas appropri6s, et en adoptant des mesures adapt& dmcitation et de coercition ;gerer rationnellement les ftmds ainsi collectes (ex. les reserver exclusivement a l'entretien) , contracter des pr&s aupres dcls institutions financieres.Dans la section 6.1.3.1., on emminera la possibilite de revoir les bases de calcul des redevances pour les rendre plus pres du c d t pr6visionnel de I'entretkn annuel.Le projet s'est penche sur la dei:ermination de valeurs optimales de debits d'equipement pour le dimensionnement des reseaux d irrigation.Le parametre hydraulique de hase pour le dimensionnement d'un reseau d'irrigation gravitaire est le debit d'huipement qe (lxprime en l/s/ha) calcule a partir du debit fictifcontinu de pointe qfcp (exprim6 lui aussi en Vs/ha) qui correspond au debit qui, s'il h i t delivre 24 heures sur 24 dans le reseau d'irrigation, permettrait, apres deduction de toutes les pertes d'eau, de satisfaire en penode de pointe les besoins en eau des cultures sur une supwficie de 1 ha. Mais dans la pratique, le reseau #irrigation ne fonctionne generalement qu'un certain nombre d'heures Tj dans la journee. Le debit d'huipement qe represente alors la valeur de qfcp augmentee de maniere a ce que les besoins en eau des cultures continuent a &re satisfaits en peGode de pointe (de demande maximal':. en eau) en un temps journalier d'irrigation limite a Tj: la percolation au niveaii de la parcelle bartie de I'eau d'irrigation non utilisable par les racines) ; cette valeur, dkerrninee par la cellule agronornique a I'issue de ses mesures sur les sites d'btude, se ::he autour de 3 mm/j ; la formule de calcul de I'ETo (Penman, Turc ou Bac d'evaporation) dont celle de Penman (la plus utilisk) semble la mieux indiquk pour ses nombreux parambtres tenant compte de tous Its aspects mfluant sur ETo , le type de spkulation oii les assolements (riz ou marakhage).Le temps journalier d'inigation Tj dont la valeur actuelle sur les perimetres imgues d6passe de loin la valeur conceptuelle de 10 heures en riziculture et 9 heures en maraichage (cf. figure 34) ; Le nombre total de jours N(i) dans la periode consider& 0 Le nombre de jours dirrig,%tion n(i) a I'int6rieur de la periode N. Le faible taux d'equipement en materiel agricole cornpromet la bonne rblisation des operations comme le labour, la inise en boue et le planage qui conditionnent le bon developpement des plantes par la cniation d'un environnement favorable a I'homogen&e de la r6partition de I'eau et des fertilisants et au developpement racinaire.Le menage est compose soit de la famille nucleaire (pere, mere et enfants) soit de plusieurs familles vivant ensemble dans des concessions et ayant la m8me unite de production. A ce noyau familial peuvent se joindre des parents, des allies ou des enfants adoptifs. Le nombre moyen d'effectifs par menage est de 12 personnes a Dakiri, 15 a Gorgo et Le travail agticole est essentiellement founti par la main-&oeuvre masculine, 79 % en culture pluviale et 94,7 YO en culture irriguee. On remarque que la femme contribue plus en culture pluviale qu'en culture iniguee (21 % contre 5,3 %). Cela est dii au fait qu'en terres hautes la femme intervient dans I'execution de toutes les operations culturales (Figure 35). Alors qu'en culture imguee elle intervient dans I'execution des operations culturdes exigeantes en main-d'oeuvre. Ces operations cultiirales sont la mise en boue et le planage, le repiquage, le desherbage et la recolte (cf figure 36).Cependant, a Dakiri ou certaines femmes sont attributaires de parcelles imguees, la contribution de la femme est plus impcrtante : 83,4 Yo du temps de travail total sur la parcelle de la femme attributaire et 43,4 YO sur la parcelle de I'epoux lorsque le couple est atttibutaire de parcelles (IIMI-PMIBF, 1995).Une enqu6te menee aupres d'uii echantillon de 10 exploitants sur les temps de travail de chaque operation culturale en hivernage 1994 a Itenga a permis d'estimer a 4033 heures de travail dont 530 heures passees sur la parcelle irriguee et 3503 heures sur les parcelles pluviales. Mais lorsque I'on ramene CI:S chiffres a l'hectare, on constate que la riziculture imguee est plus exigeante en main-d'oeuvre (2347 heures par hectare) que les cultures pluviales (1471 heuredha). Une etude menee par Ie Projet Sensibilisation (1991b), a Tamassogho, p&imetre situe dans la province du Sanmatenga au Nord du Burkina, mentionnait 2607 heurefia pour la riziculture irriguee et 838 heuredha pour les cultures pluviales. Dembele (1988) avait obtenu 2300 heures/ha pour la riziculture iniguee a Mogtedo.Les &carts entre les temps de travaux d'un perim&re a I'autre peuvent &re dus au niveau de maitrise des techniques culturales, a la motivation des exploitants a s'investir sur des Pacelles de petite taille, au degre de cornpettion entre I'agriculture pluviale et l'agriculture i r f i p k et a la disponibilite en materiel agricob:. Cependant, les exploitants consacrent quotidiennement plus de temps sur les terres hautes (6,5 heures en moyenne par jour) que sur le perimetre (4 heures en moyenne) (cf. figures 35 6% 36).En tenant compte de la durea: de la campagne d'hivemage et de la disponibilite en maind'oeuvre familiale, on estime qu'un rxploitant et les actifs dont il dispose doivent travailler tous les jours et 6 heures en moyenne par jour pour mener a bien l'ensemble des activites agricoles. Mais compte tenu du fait que certaines activites ne peuvent pas s'etaler de faqon lineaire dans le temps, il apparaft que la main d'oeuvre familiale est insuffisante aux periodes de forte sollicitation (semis, repiquage, desherbaye, rkolte). Cette situation oblige I'exploitant soit a prioritiser ses activites (mise en place des cultures pluvides avant la riziculture), soit a faire appel a la main d'oeuvre salariee mais surtout la main d'oeuvre communautaire.Pour mieux 6tayer cette andye, la main d'oeuvre disponible (MOD) a &e rapportee BU temps de travail requis (TTR). Si le rapport MODRTR est inf&ieur a 1, cela veut dire que la maind'oeuvre est insuffisante pour la redimtion de l'operation en question ; c'est la zone des goulots d'etrandement (figure 37). Si le rapport est supckieur a Rappelons que la vocation premiere des penmetres 6tatiques au B u r h a Faso est la production rizicole. L'Etat, dans la visee de I'autosuffisance en riz et de la reduction de sa dependance vis-a-vis de I'exterieur, a focalise sa politique de developpement des cultures irriguees sur la filiere nz. Les exjdoitants, organises en cooperatives, se voient concede I'amenagement avec obligation de produire du riz en hivernage et liberte de choix des speculations en saison seche.C'est ainsi que sur quatre des 5 sites, hormis Savili oh il s'agit du haricot vert (cultive uniquement en contre-saison), le riz est la principale culture. Elle occupe la quasi-totalite des superficies amenagees pendant la campagne d'hivernage. En revanche, pendant la contresaison, les spkulations pratiquees different d'un perimetre a l'autre, notamment en fonction de la disponibilite de la ressource en eau et des conditions du marche. Ainsi, dans les perimetres oh la ressource en eau est un facteur limitant, aucune mise en valeur n'est possible en contresaison (cas de Gorgo), ou seulement une petite portion de la superficie est consacrk aux cultures maraicheres (cas de 1tenga:i. Sur les deux autres perimetres, le riz reste la culture dominante meme en contre-saison (cas de Dakiri), a moins que ce ne soit le riz et des cultures mara?chBres cultives en contre-&son (cas de Mogt6do). Sur ce dernier perimetre la proportion de la superficie consacree au riz en contre-saison est croissante au fil du temps.L'organisation paysanne doit en principe jouer le r6le de facilitateur pour la fourniture en intrants (semences, engrais, pesticides) ses membres.Les principales varietes de ri:c cultivees sont la 4456 (a Itenga et a Gorgo) et la IET 2885 (a Dakiri). A Mogtedo, en plus de celles precitees, une diversite d'autres varietes (Gambiaka, variete de 160 jours adaptee aux zones inondees, TOX 728-1, la variete dominante actuellement, etc.. .) sont utilisees.En maralch6culture les varietks locales sont predominantes. On observe neanmoins les vari6tes ameliorees suivantes : violet de Galmi pour I'oignon, Roma pour la tomate, KK Cross pour les choux.Le choix des varietes de riz est souvent d6pendant de leurs caracteristiques organoleptiques, de leur productivite, mais aussi de leur adaptabilite aux conditions hydriques des parcelles (cas de la Gambiaka). Quant aux especes maraicheres, leur choix est tributaire du debouch6 existant, de la capacite de negotiation des exploitants et de leur organisation et des prix pratiques sur le marche.Le fait marquant est que les semences (de riz et des espkes maraicheres) sont rarement renouvel6es exception faite du pkrimktre maraicher de Savili oh tous les deux ans de nouvelles semences de haricot vert sont achetees en France afin d'6tre multipliks par les paysans. Recemment (en 1994) I'IIMVPMI-BF a aide les cooperatives de Itenga et de Gorgo a s'approvisionner en semences de riz auprks de I'INERA. Durant la meme annee et sous l'impulsion de l'IIMI/PMI-BF, la cooperative de Mogtedo a achete 200 kg de semence de base de la variete TOX 728-1 aux fins de multiplication par des paysans semenciers. Mais L'experience n'a pas 6te une reussitc: totale, consequence des degtits causes au riz sur les parcelles semencieres par les fortes pluies de 1994 qui ont occasionne I'engorgement de la moitie du perimetreLes engrais utilises sur les penmetres imgues sont I'Uree 46 et le melange NPK dont la formule peut varier selon la source d'approvisionnement. Ordinairement le NPK foumi par la SOFITEX est de type 14.23.14, ce qui lui a valu l'appellation engrais coton car destine spkifiquement a la culture cotonniere. La DIMA est le principal foumisseur d'engrais et les cooperatives s'en approvisionnaient par l'intennediaire des CRPA. Actuellement les CRPA ne jouent plus ce r6le d'intermckiiaire. 1.e deuxieme circuit d'approvisionnement est celui des livreurs privbs, qui parfois fournissent des produits de qualite douteuse.Pour ce qui concerne les pestici'des, on distingue trois circuits d'approvisionnement : 0 Le canal des CRPA qui abrit'e en leur sein les services de la protection des vegetaux dits '%bases phytosanitaires\". Celles-ci recommandent aux CRPA la nature des produits a stocker ; ces produits &ant par la suite vendus aux cooperatives. Mais si les prospections des agents des bases phytosanitaires revelent que le seuil de nuisibilite des ravageurs esi: atteint, les bases phytosanitaires peuvent faire de traitements gratuits a partir di: leur stock de produits.Le circuit des maisons comnierciales agreees est egalement utilise directement par certaines cooperatives telles celle de Mogtedo 0 La voie des livreurs infonnels, la plus dangereuse car c'est dans cette voie que l'on retrouve la plupart des produits perimes Le principal probleme que les organisations paysannes rencontrent est celui de la mobilisation des fonds (fonds de roulemmt) pour l'achat en temps opportun des intrants Les projets d'irrigatlon prevoient, pendant la phase de mise en valeur des amenagements, un fonds de roulement destine a couvrir les differents kais de la premibe campagne Par la suite ce sont les redevances d'eau (la principale source de revenus des cooperatives) et la marge sur la vente ties intrants qui servent a prefifinancer les campagnes Lorsque ces redevances ne sont plus payees les cooperatives eprouvent des difficultes d'approvisionnement, surtout en engrais , elles refusent parfois de rendre le service engrais aux debiteurs. C'est le cas de la cooperative de Dakiri ou le t a w de livraison des quantites d'engrais demandees etait de 37 % pour I'Uree et de 52 % pour le NPK en 1994.Les doses recommandks par la recherche agronomique sont de 300 kgha de NPK et de 100 kgiha d'Uree en riziculture d'hivernage (150 kg/ha en saison seche) ; elles sont de 400 kg/ha de NPK et de 150 kgha d'Urtie pour la culture du haricot vert (a Savili). A Savili, il n'y a pas de concordance entre les doses vulgarides par les services d'encadrement technique (350 kg/ha de NPK et 250 kgha d'Uree) et par le groupement des producteurs (400 kdha de NPK et 360 kgha d'Uree).La fertilisation du riz ne se fait pas selon les normes preconisees par la recherche agronomique, notamment sur les perimetres de Mogtedo et de Dakiri. Les doses d'engrais sont quelquefois faibles (cf Tableau 23), soil a cause des difficult& d'approvisionnement par les cooperatives (cas de Dakiri) soit parce que les quantites repes par le paysan sont fractionnees entre les cultures irriguees (d'hivemge et de contre-saison) et les cultures pluviales. Certains exploitants diminuent volontairement les doses d'engrais dans le souci de rauire leurs charges de campagne. Par contre sur la plup:irt des perimetres, la tendance est a I'apport de l'urk en exces dans le but d'augmenter la production (c'est surtout le cas de Savili pour le haricot vert) ou parce que les quantites livrees ne tiennent pas compte de la relative variabilite des superficies pour lesquelles la conhsion peut exister entre les superficies brutes et les superficies nettes emblavks (cas d'Itimga). Certaines cultures telles que la tomate et l'aubergine peuvent se pratiquer durant toute I'annee a condition de faire un bon clioix de varietes adaptees et de mieux contrciler les ennemis et maladies. Si en tenne de productiviti de la terre, le semis precoce est conseille pour la plupart des cultures, il faut reconnaitre que leur echelonnement dans le temps n'est pas une mauvaise chose en soi, car il permet d'eviter la surproduction sur le marche, la mevente et le pourrissement des produits d'une part, et de recuperer, a travers des prix plus interessants, ce que I'on perd en production d'autre part.L'intensite culturale moyenrle des 5 sites etudes par le PMI-BF (de 1991/92 a 1994/95) est de 160,7 % (Figure 38). Cette valeur est superieure a celle couramment admise au niveau nationale (1 50 %). Elle cache cependant une grande heterogeneite. Les perimetres de MogtMo et de Dakiri realisent des intensites culturales de 200 %. L'intensite culturale a MogtMo depasse quelques fois 200 YO a cause des extensions spontanees realisks par les exploitants au-dela de l'amenagemen,: officiel. Lorsqu'on ne considere que le perimetre formel dit \"plaine\" on constate que I'inten:,ite n'est pas aussi elevee car les exploitants preferent pratiquer les cultures maraicheres sur les pourtours du perim&re ou les sols legers sont plus aptes a ces cultures. -En realite, sur les phimetres ou la riziculture est pratiquk en contre-saison (Mo@&io et Dakiri) les rendements moyens en riz de cette saison sont plus elevds que ceux d'hivemage lorsque I'on considere la m6me periode de suivi. Niknmoins, on notera que, pour la campagne d'hivemage 1994, les rendements de riz sur tous les sites, sauf Itenga, ont connu une baisse significative par rapport aux valeurs moyennes. Ceci est dij am fortes pluies tomb& durant juiuet et aoclt 1994 qui ont occasionne des degiits (inondations, ensablement de certaines parcelles) sur les perimtres. Le maintien, a un niveau relativement stable, des rendements a Itenga en 1994, s'explique par le caractere beaucoup plus temporaire des inondations des parcelles sur ce site.Bien que ces rendements soieni superieurs a ceux obtenus au niveau national (4,s T/ha) une amelioration est a rechercher car le potentiel des varietes utilisees (6 a 7 Tha) est encore loin a atteindre. De plus les \"vieux\" penmetres de Mogtedo et de Dakiri ont les rendements les plus faibles et caracterises par une baisre tendancielle.Quant aux autres cultures maraicheres, leurs rendements sont presentes dans le Tableau La viabilite des petits p6rimetres irrigues est ktroitement I& a la capacite des organisations paysannes a se prenclre en charge et se developper. Pour une organisation paysanne, la viabilite doit Stre analysee tant du point de w e de l'ethique cooperative, qui met I'accent sur la personne, que du point de w e du profit. En effet, dans le contexte economique present ou 1'Etat cherche a se desengager de la gestion directe des pkrimetres imgues, le profit doit &re substantiel afin d'assurer au moins le fonctionnement normal de I'organisation et en meme temps la maintenance de l'outil de production, a savoir I'amenagement hydro-agricole.Ainsi, pour apprehender la viabilite dun petit perimetre irrigue, nous allons considerer 3 niveaux :1. Niveau familial : exploitation de la parcelle individuelle ou familiale. 2. Niveau de l'organisation pilysanne elle-mi5me : gestionnaire du pkrimetre 3. Niveau de I'Etat : maitre d'ouvrage des amenagements hydro-agricoles.Chacun de ces 3 niveaux doit &re satisfait du profit qu'il tire de I'agriculture imguee. Les exploitants des perimetres irrigues pratiquent deux types d'agriculture : L'agriculture pluviale qui est l'occupation traditionnelle ; les exploitants y accordent la priorit6 pendant la saimn humide a cause : a) de la periodicite des pluies (opportunite a exploiter) ; et b) de I'importance que revbtent les cereales locales dans I'alimentation de la farnille en milieu rural ; L'agriculture imguee Les tableaux 29 a 3 1 presentent des exemples d'analyses comparatives des productions provenant des deux types d'agriculture (pluviale et irriguee). Ces analyses sont basees sur les enqueks men& aupres des exploilants des perimetres irrigues de Dakiri, de Gorgo et d'ltenga.On peut en tirer les conclusions suivantes : . La production des cultures pluviales est plus importante (53 a 81 % de la Production ckeahere totale) que celle issue des parcelles imguees et represente un taux de satisfaction des besoins alimentaires familiaux de 59 % a Dakiri, 94 % a ltenga et 100 % a Gorgo ; le deficii etant comble griice aux revenus dkgagees de la parcelle iniguee.La parcelle imguee, qui ne represente qu'environ 10 % de l'exploitation agricole fmiliale, contribue pour Line part importante a la constitution du revenu familial surtout dans les zones telles que Dakiri ou l'agriculture pluviale est fortement eprouvh par les aleas cliniatiques : 11,3 YO du revenu familial a Gorgo, 25 Au niveau du perimetre de Mogtedo, on distingue deux categories d'exploitants. La majorite (85 %) d'exploitants (Mogt&io I) possede une parcelle imguee de 0,2S ha, cultivee entierernent en riz pendant l'hivernage et emblavee a environ 50 % en contre saison, en riz et en cultures maraich6res. Le reste des exploitants (15 %) constituent un groupe privilegie (Mogtedo I ) qui disposent de superfi8:ies inigables, dans la plaine ahsi qu'en hors-plaine. Un exploitant privilegie moyen dispose d'environ 0,65 ha irrigables, avec 1 ou 2 parcelles dans l'amenagement et des superfcies hors-plaine en plus, irrigukes par pompage a partir du reseau &irrigation. On estime que l'exploita,%t cultive le riz sur toute la superficie de 0,65 ha en hivernage et consacre environ 0, 50 Les meillems rbsultats, tant sur le ,plan du revenu B l'hectare que de la rbmutdration de la journee de travail sont obtenus par les cxploitants de Savili. 11s font du maralchage (haricot vert) qui est une culture B haute valeur ajoutke, bien que sur une seule campagne et malgre des charges relativement importantes.Les exploitants de Dakki et de Itenga viennent respectivement en deuxieme et troisieme positions apres Savili en t'xmes de revenu net annuel par hectare. Ceci peut s'expliquer par le fait que les rendenients de riz paddy en hivernage Itenga sont eleves (superieur a 6 tha) et qu'en contre-saiiron les exploitants y cultivent des cultures maraicheres qu'ils arrivent a commercialiser sans trop de difficultes. I1 faudra souligner que la disponibilite des ressources en eau du barrage de Itenga ne favorisent pas la riziculture en contre-saison ; les exploitants font du maraichage sur environ 30 % de I'amenagement. En revanche, a Dakiri, la capacite de la retenue d'eau est d'une importance telle qu'elle permet deux cultures de riz par an ; le maraichage est tres peu pratique ici, faute de circuits fiables d'ecoulement.La journee de travail est mieux remuneree a Savili et a Itenga car les valeurs des productions et les revenus sont interessimts et les temps de travaux sont relativement faibles.Cependant, dans la realite, il existe des difficultes de conservation, de manutention et de commercialisation des produits maraichers, notamment sur le p&im&n: de Dakiri et, dans une moindre mesure, sur ceux de Mogtedo et de Itenga. Par consequent, la plupart des exploitants pref6rent la riziculture, meme en contre-saison, lorsque la resource en eau le permet (cas de Dakiri et Mogtedo).Mais au dela de la realisation de la securite alimentaire, ]'irrigation revst-elle un caractere social ou 6conomique au regard des definitions suivantes proposees par le PMI-BF ? 0 L'irrigation a un objectif \"social\" lorsque I'exploitation des parcelles imguees ne permet pas une occupation permanente, normalement remunkree, de l'exploitant et ne constitue qu'un compl6meiit aux productions des cultures pluviales L'irrigation a un ohjectg \"economique \" lorsque l'exploitation des parcelles irrigubes justifie d'une occupation permanente et normalement remuneree de l'exploitant et des actifs familiaux, et deggrlge des revenus permettant a la fois I'autosuffisance alimentaire de la famille et un surplus capitalisable. L'irrigation permet, ainsi, le developpement d'une entreprise viable et devient un facteur d'intensification du systeme de production.La skparation nette des deux iiermes (social et Bconomique) est difficile car toute irrigation rev& un objectif a la fois social et Bconomique ; ils I'ont et6 purement dans un but de classification des perim&res.On constate a travers les deux definitions que le deuxieme type de p6rimetre a d'avantage de chance d'stre viable dans la mesure ou il (a) favorise l'intensification par une facilite d'acces aux facteurs de produclion moderne et (b) permet d'agrandir la capacite des exploitants a supporter des charges plus elevees notamment de redevance d'eau pour favoriser un meilleur entretiedmaintenance des perimetres. La perennisation du systeme de production (inFrastructures hydrauliques, sols, . ..)ainsi favoris&.Le passage du type social au type iconomique est possible :Pour les penmetres existantii, en favorisant les reorganisations fonciires mais de maniere transparente en confonnite avec les lois et les regles de gestion. Ces rearrangements effectuks de fagon informelle a Mogtedo ont permis I'emergence d'une categorie d'exploitanis dits \"privilegies\" (environ 15 YO des exploitants detenant des parcelles d'une ruperlicie totale de 0,65 ha) qui ont pris une dimension economique.Pour les nouveaux amenagemlms, par I'attribution de parcelles de taille relativement grande (au moins 1 ha avec possibilite d'exploitation en double-campagne) a des personnes physiques ou morales ou a des opkrateurs economiques (telles que prevues par la Reorganisation Agraire et Fonciere, RAF de 1991) conscientes de la necessite d'une organisation pwfonnante de la production.L'examen des comptes d'exploitiition des exploitants indique que la quasi-totalite des penmetres etudies par le PMI-BF ont un objectif \"social\" car les revenus nets annuels sont de 43.066 FCFA a Gorgo, 97.029 FCFA ; i Dakiri, 100.729 FCFA a Itenga, 184.179 FCFA a Savili, 80.727 FCFA a Mogt6do I (exploitants types disposant de 0,25 ha) et 329.785 FCFA a Mogtedo 11 (exploitants privilegies) , seul ce demier peut &re considkre de type \"economique\".Les tableaux 34 et 35 donnent un aperqu de la situation financiere des 5 sites d'etu.de En 1993/94, le resultat des 5 cooptkatives etait positif en dehors de Dakiri ; la moyenne etait de 14.000 FCFA/ha (Tableau 35). La situation est encore plus catastrophique en 1994/95 OU les resultats ont ete affectes (resultats c,egatifs sauf a Mogtedo et Savili) principalement par les effets des inondations de la saison pluvieuse 1994.Pour illustrer les difficultes financieres des coopkratives prenons I'exemple de Savili qui enregistre un resultat positif plus de 2 fok superieur aux autres perimetres. Une etude men& par le PMI-BF a estimb le coGt de rehabili1:ation de la station de pompage de Savili a 900.000 FCFNha. Or, sur 8 ans d'activite agricole (1987)(1988)(1989)(1990)(1991)(1992)(1993)(1994)(1995) la cooperative a accumule 275.000 FCFAiha (actifs realisables et disponibles;,, soit une moyenne de 34.000 FCFNhdan. A ce rythme il lui faudra plus de 20 ans pour porivoir reunir la s o m e necessaire.De cette d y s e on en dbduit aishent que la cooperative, laissee a elIe-mGme pour la resolution de ce probleme, ne s'en sortira jamais. 11 faut alors une action rigoureuse de l'exterieur. L'Etat, mattre d'ouvrage et prlrfois maTtre d'oeuvre, supporte les investissements initiaux lies a la plupart des am6nagemmts qui sont, par la suite, attribues a des paysans et leurs organisations. En retour il se doit de juger de la profitabilite des amenagements notamment par l'analyse de la rentabilite financiere des capitaux investis.Malheureusement des etudes systhatiques de ce genre ne sont pas toujours effectuees apres la concession des amenagements aux organisations paysannes.Une &ude de cas que le PMI-BF ,k pu realiser concerne le perimdre maraicher de Savili dont le coiit d'investissement etait de 160 millions de FCFA. L'instrument d'analyse utilise est le taux de rentabilite interne (TRI) en &on de sa plus grande facilite d'interpretation par rapport aux autres approches. Le TRI iridique la remuneration de l'investissement calcult en pourcentage. I1 peut &re compare au t a w d'interet du marche decidant ainsi de la nkessite de l'investissement .Trois hypotheses d'analyses portant sur plusieurs scbnarios d'evolution des productions de haricot vert ont ete utilisees (cf, Rappclrt sectoriel Socio-Econodque du PMI-BF).L'analyse de sensibilite permet de faire les constats suivants : 0 Si la production annuelle augmente de 30 % puis baisse de 5 % lorsque le rendement de 7 T/ha est atteint (hypothese I) le TRI est de 9,16 %.130 Si la production annuelle aui;mente de 30 % jusqu'en annee 9 puis de 5 %a par an jusqu'a ce que l'intensite culturale atteigne 150 % (en annee 18) et reste constante jusqu'en annk 25 (hypothese 111) le TRI est de 13,68 %.La conclusion que I'on tire de cette etude est que la rentabilite de la production du haricot vert est toujours assuree quelque soit le cas de figure (hypothese I, I1 ou 111). Evidemment, l'intensification de la production en w e d'assurer une stabilite voire une augmentation des rendements actuellem'mt atteints est une condition sine qua non de cette rentabilite L'augmentation de l'intensite culturale passe par une meilleure gestion de l'eau et un bon calage des calendriers de culture. Dans le contexte actuel de Savili ou ban nombre de motopompes sont en panne et ou I'etat tlu reseau d'inigation occasionne beaucoup de pertes de charges il semble difficile de remplir cette condition sans une rehabilitation. Or, les kudes du PMI-BF montre que la cooperative lie peut pas supporter seule cette rehabilitation bien qu'elle genere un resultat positif En ce qui concerne les autres cultures irriguees notamment le riz, elles contribuent, a n'en pas douter, a l'atteinte des objectifs ti'autosuffisance et de securite alimentaires cerealieres et a I'equilibre de la balance commerciale.Par consequent ies amenagemenl s hydro-agricoles demeurent un enjeu economique important pour I'Etat.La comptabilite est une technique qui sert a enregistrer, classifier et recapituler les evenements financiers dans une coop6rative. Son but est de donner des informations en vue dkablir la situation financiere de I'orgnjlisation en fin d'exercice. Compte tenu de cette importance de la comptabilite la tiche doit &re assumee par des competences requises.La personne ressource chargee de la comptabilite est d&.ign& au sein du Conseil dAdministration de la cooperative La sede comp6tence requise est de savoir lire et ecrire en frangais ou en langue nationale (moore) Cornpte tenu du fait qu'aucune formation n'a 6te donnee a ces cooperatives en matike de gestion comptable, la tiche de ses \"comptables\" se limite a I'enregistrement des informations relatives aux transactions monetaires . achats des intrants et placement auprks des exploitants, collectes des credits et des redevances, ventes.I1 faut noter ici que la cooperative de Mogtedo, avec l'appui du Projet \"Sensibilisation\" a regu une formation en gestion. Cependarit, cet atout n'a pas permis de resoudre le probleme de la gestion comptable.Les supports ut=s se composent c o m e suit :1 cahier de placement des intrants : c'est a partir du m h e cahier que Yon procae A la rkcupbration des cr6dits intrants et de la redevance eau ; 1 cahier de caisse ;Les reGus et factures, les lrxdereaux d'expidition ;. Les autres informations telles les achats, les ventes, les stocks ne sont pas toujours consign& dans des cahiers spkifiques. Pour les collecter il Gut passer par des entretiens avec le \"comptahle\" et s'aider de tout autre papier qu'il a ii sa disposition.Le tableau 36 suivant prbsente la situation sur nos 5 sites d'6tudes. Cette section est largetnent inspiree de!; contributions de 'Lour6 (1993) et de Ou6draogo (1993) aux acles du sdminaire-atelier \"@el envivonnement pour le dkveloppemcnt de l'imgation au Burkina Faso\", tenu du 01 au 03 Fkrier 1993. Dune maniere ghkrale, les systelnes fonciers coutumiers fonctionnaient bien au moment ou il y avait abondance de terres. L'6volution dhographique a cree des situations qui ont eprouvk profondbent les structures foncieres colitumieres. De nombreux probl6tnes sont ainsi apparus qui ont ~$5 amplifies par le fait colonial, les ptatiques religieuses et le phhomene urbain. Du point du w e des populations, la legislation foncike etait le plus souvent synonyme de depossession. LEtat avait besoin d'asseoir sa maitrise absolue sur les terres, soit pour la mise en oeuvre de projets de dheloppement en inilieu rural, soit pour octroyer des titres fonciers de propriete censds garantir la s6curii6 des investissements.Les autorites coutumieres sont rapidement apparues c o m e de ventables pouvoirs concurrentiels vis-a-vis de I'Etat en matike de gestion fonciere. Concurrence dautant plus insupportable que I'essentiel du tenitoire rehait du regime des coutumes fonci&es. L a politique de 1'Etat a donc kte de renforcer ses pr6tentions au monopole foncier et a nier la d e u r des droits Compte tenu du desmt6ressemeiit de la population vis-a-vis de l'amenagement (faible pression demographique, adhesion cbligatoiie a la coop&aive, travaux a effecner ...) les conditions &attribution ont &e peu restridves. h s s i les premiers attributaires, les plus entreprenants, ont pu Mneficier de superficies importantes regrcupant plusieurs parcelles. Ces premiers attributaires vont Mneficier des conditions p&culi&ement .mmtageuses. ns vont dktenir des supdcies importantes en cumulant les parcelles dam le p e ~t r e et hors p&im&re. Ils ne sont que 38 en 1967. 11s formeront, par la suite, l'essentiel de ce que nous avow appele les \"exploitants privile&S\". 11s monopoliseront le pouvoir de la coophative et, par une politique de capitalisation et d'investissement, vont dkvelopper des entreprises economiques et prendre, au sein du penmhe et du village, une assise sociale de plus en plu3 grande.Art. En 1979, rm&e no BI2AGRI-EIJCAB fixe les conditions &attribution et &exploitation des terres. I1 faut &re cultivateur, tirer I'eswntiel de ses revenus de la production agricole et avoir participe personnellemnt aux travaux. Cr: s r@es nouvelles vont presider, a MogtMo, a I'attribution des extensions.En 1984/1985, parait la loi SUT la .reorgmisation agraire et fonciere, les delegues des comites de d&se de la rholution (CDR) participent aux conseils d'administration des coop6ratives. De nouveaux textes reglementant les conditians d'attribution des parcelles apparaissent. Dans cet esprit, Ic bureau de la coophtive a pro&e, en 1986, des mesures d'assainissement foncier, en l i t a n t les supeficies (moins de 0,SO hectare) et le nombre des parceUes octroy6es (1 parceUe par attnbutaire). Cette phiode marque le trilnsfert de la maitrise du fancier des administrations aux responsables paysans (assistes des representants locaux des pouvoirs publics). Ces mesures vont donner lieu a des restructurations fonciires legales ou arbitraires, sans pour autant toucher au monopole des \"anciens\" qui, forts du soulien des pouvoirs coutumiers locaux, continuent d'asseoir leur main-mise sur le fonctionnement du pikimetre. b) Le foncier sur les autres pirim&tres L'espace cultivable que constitue un pfxim&tre inigue represente un enjeu consikble dans des redons ou la densite demographique est forte, ou la degradation des sols due a m pratiques culturales extensives s'accroit, oh le ri sque: pluviom6trique grandit, ou les activites pastorales font pression sur les activites agricoles, enh, oil I'agriculture est l'activite principale de la population.Avec la construction des anxhagments, les anciens occupants des lieux ont perdu leur terre. La parcelle irriguee qu5ls repivent (en pnonte) constitue un elhent indispensable de subsistance. La parcelle irriguke est reconnue comme une source non ndgligeable de revenus complementaires m&ne si sa t d e reduite n'autorise pas un repli total des activites sur cette parcelle. La d&ention d'une parcelle irriguke represerite un enjeu social et hnomique indiscutable. A Dakiri, pour environ 742 exploitants actuels, il y a une \"liste d'attente\" de 250 producteurs demandeurs de parcelles.Les textes de la RAF de 1984/85 ont permis de dkentraliser, au niveau local, la maitrise du foncier. Dans le cas des 4 sites du projet coticemes par ces textes (Dakiri, Itenga, Gorgo, Sadi), la distribution des parcelles s'est rMs& dam des pfxiodes de flou politique et juridique, ce qui a permis aux responsables locaw de disposer d'une certaine marge de manoeuvre dans I'application de la reglementation en la matiere. Ceci explique I'onmipresence des pouvoirs coutwniers dans les processus de distribution et d'attribution des terres amenagees. En regk genbale, le foncier est we zone d'incertitude et, par consequent, determine la structure du pouvoir au sein de l'amenagement.Par exemple, a Dakiri, les prucelles ont &e attribubs en 1984 sur la base du degr6 de participation a w travaux de construction d'es canaux (0,16 ha lorsque le paysan a partic@ a la construction des m u x secondaires et tertiaires et 0,08 ha quand it a participe Uniquement a la construction des tertiaires). b u n exploitant n'a le droit de vendre, louer ou &r sa parceUe a une tierce personne. En r&dite, le Chef du viUag: exerce un pouvoir quasi-exclusif sur I'attribution des parcelles.A Itenga, un respnsable adminiatratif, jouissant kgalernent d'un statut social et politique au sein de la communautk rurale traditionnde, nhnissait tous les atouts lui permettant de maitriser le re@me foncier de l'amenagement. ll est en mesure d'evaluer les sanctions et les retraits de parcelles et d'iiuencer la redistribution des parcelles liberees pour diverses raisons 5.4.2 L'organisation sociale au sein des pkimiitres irriguks La viabilite d'une organisation paysanne (examinee dans le chapitre prkedent) depend aussi de sa capacite a s'organiser et a assurer d'autres fonctions telles la gestion administrative, la gestion comptable et financiere, le cclntrble de I'impact social et environnemental, la gestion strategique, ... Le bon niveau d'instruction de I'organe dirigeant et l'application effective des textes reglementaires sont des conditions necessaires pour assurer une meilleure gestion et une bonne productivite agricole.Sur les 5 sites, 3 sont toujours au stade de groupement pr6coopdratif (GPC) apres 5 a 12 annees de mises en valeur (Gorgo, Itenga et Savili). Les differentes organisations ont donc respecte les textes en ce qui concerne la composition du bureau ou du conseil d'administration (cf. Art. 25 et 103 du statut ghkral de groupements pre-cooptkatifs et societes t:ooperatives au Burkina Faso). Cependant la duree du mandat qui est de 2 ans selon le mEme statut n'est pas respecte au niveau de certaines d'entre elles (Savili, Itenga). Ce non-respect est dC au fait que le bureau ou le conseil d'administration n'est qu'un transfert du pouvoir coutumier local sur la plaine irriguee.En effet, sur les 5 sites, les membres du bureau de 3 d'entre eux sont choisis sur la base des criteres coutumiers. Tant que d'autres attitudes ne viennent pas ternir la prise en compte de ces valeurs traditionnelles, I'organisati,m fonctionne bien. En exemple on peut citer le perimetre de Gorgo ou le bureau a ete unanimement reconduit en 1993. En revanche, il anive aussi parfois que le poids de ces valeurs traditionnelles cause des \"grincements de dents\" dans l'application du reglement interieur. L'effort foumi par les partenaire!; exterieurs est non seulement a encourager, mais il faut surtout inciter les organisations eller-rn6mes a financer les activites de formation. C'est ainsi qu'en 1995 le pkrimetre de Mogtedo a finance la formation en alphabetisation de 30 de ses membres a un coct de 302.400 F.CFA. Sur les 30 exploitants, 17 ont 6te admis au test final de formation.Par ailleurs, on constate qu'aucun': action n'a ete engagee quant a la sensibilisation a la protection de l'environnement. C'est l'owasion ici d'attirer I'attention des differents acteurs des p6rimetres irrigues (producteurs, Etat, ONG, etc.) sur la necessitb de la protection de la nature, cax I'implantation d u n amenagement peut provoquer des perturbations de I'ecosysteme.Les perimbtres sont decoupes en blocs ou zones correspondant a des biefs d'un ou plusieurs secondaires avec a leur t6te un responsable de bloc, de zone, etc. dont le r6le est de superviser toutes les activites (entretien du reseau, suivi des travaux de repiquage, ..) qui se dkoulent au niveau de leur zone de respsnsabilitk. Les responsables de zone sont egalement charges de propager, au besoin, les dates des assemblees generales (AG). En plus des responsables de zone, il existe a Gorgo, Itenga et Savili des commissions specialisees composees de 3 a 7 membres charges d'appuyer le CA dans I'execution de tbhes specifiques : gestion de I'eau, entretien du reseau, pesee des recoltes, recuperation de credit, repiquage, approvisiomement en intrants, contrble de la divagation des animaux et parfois labour. La remuneration des commissiws specialisees, qui releve de la decision de chaque cooperative, est rarement faite sauf a Savili ou la commission des peseurs par exemple reqoit 3 FCFA par kilogramme de haricot vert pcsee.Une organisation comporte des acteurs ou partenaires aussi bien internes qu'externes qui entretiennent entre eux des relations dont la nature conditionne la cohesion du groupe et le bon fonctionnement de I'organisation. Les relations au sein d'une organisation ne wnt pas naturelles. Elles impliquent la reconnaismnce de rapports de force entre les differents acteurs, et de dependance de certains par rapport a d'autres.L'elaboration et I'analyse des sociogrammes (annexe V) a permis de constater, malgre les differences entre les perimktres, l'existenze de quelques points communs qui sont les suivants :De fawn globale, il y a une bfmne relation de travail entre les differents acteurs du perimetre.Le comite de gestion dont le r61e est d'examiner l'ensemble des problhes de la vie du perimetre (encadrement, entretien, gestion et commercialisation) est en faible relation de travail avec les conseils d'administration, c'est-a-dire qu'il n'y a presque pas de rencontre entre les deux groupes d'acteurs.Les relations ponctuelles de travail entre les conseils d'administration et 1'0NBAH veulent dire tout simplement (que ce denier est consulte et mame sollicite en cas d'extrsme necessite. En exemple on peut citer les va-et-vients du bureau de la precooperative de Gorgo auprb de I'ONBAH, suite aux degfits provoques par la saison d'hivernage exceptionnelle de 1994. La cooperative de Dakiri egdement a sollicite I'intervention de l'ONBAH pour la reparation de sa digue de protection, endommagee par les eaux de pluie de la mbme annee.Quant aux particularites des sites on peut citer I'exemple patent du perimetre de Mogtedo ou il existe une relation conflictuelle de travail parallelement a la bonne relation de famille entre les exploitants types d'un c6te et les exploitants dits privilegies de I'autre. La coexistence de ces relations est possible en ce sens que de nature, entre les paysans il existe deja une emulation. Avec la possibilite d'obtention de plusieurs parcelles, des uns au detriment des autres, cette emulation est maintenant aiguiske, materialistie publiquement et s'exprime sous forme de conflit quant a I'approvisionnement en eau.Le conflit entre les exdoitants Woes el les exdoitants priviI6gi6s : I'exemale de Moetkdo La rationalite des exploitants privilegies est basee sur une logique d'investissement et d'augmentation de leur productivite. Lew position dans l'menagement leur permet d'obtenir les rnoyens de rediser ces fins. En effet, c:n monopolisant l'eau de maniere efficace et rapide, en se soustrayant aux contraintes et aux charges de l'amhagement, ils disposent d'une certaine libertk d'initiative sur la terre et sur 1'r:au. Celle-ci va leur permeitre une exploitation plus rentable et la vente de leurs produits au moment opportun, en dehors des penodes de vente des autres exploitants. Cependant, ils detieimnent un pouvoir illegitime dam l'amenagement. Ils savent que leur comportement n'est pas conforme aux regles collectives de l'menagement. D'autre part, attributaires sur la plaine, i ds sont egalement dependants du bureau et soumis a l'incertitude de I'application des mesures reglementaires. Menacks, leur strategic est defensive. Elle consiste a faire valoir leurs droits sur la plaine (anciennete, paiement de la redevance eau).Par leur attitude critique vis-a-vis du bureau, ils visent a maintenir implicitement le pouvoir institutionnel de leurs confreres clans certaines limites et dans son r6le de prestataire de services.Les exploitants types souhaitent, avant tout, conserver leur parcelle qui leur assure la skurite alimentaire. Bien qu'ils subissent un certain nombre de contraintes dans l'amenagement et sont victimes du pan.age inequitable de I'eau, ils ne peuvent s'opposer ouvertement au bureau Ils sont donc resignes vis-a-vis du bureau, mais font sentir, de faqon biaisee, leur hostilite (ex. non particlpation aux assemblkes geneales). Parallelement, majoritaires sur la plaine, ils aeontent vifdemment les exploitants hors plaine pour faire valoir leurs droits bafoues dans les delits de I'eiiu et s'arrangent avec I'aiguadier pour une irrigation aux heures irregdieres.Cette opposition entre les exploitants permet au bureau d'eviter d'etre la cible de I'une ou l'autre des categories d'exploitants i :t de maintenir le pouvoir du groupe d'exploitants minoritaires dans certaines limites Ce jeu de pression autour de l'eau entre ces trois categories d'acteurs constitue le systeme de regulation sociale du perimetre. Le pouvoir de chacun est delimit6 par le pouvoir de I'autre. Cepenclant, sur ce systeme, les exploitants du perimetre ont peu de prise. L'objectif global de l ' h d e \"gerue\" est d'hdier les interactions entre les relations genre et la performance de l'agriculture imguee. Plus spkiiquement, il s'agit de verifier si I'attribution des parcelles aux femmes : (a) influence la performance du peritnetre irriguee, et (b) am6liore les conditions de vie des fmmes. L'etude a 8x1 pour cadre le perim&re de Dakiri ou, contrairernent a la plupart des amenagements hydro-agricoles de Burkina Faso, l'attribution des parceUes a ete faite individuellernent au sein du menage. La participation active aux travaux pr6paratoires de la plaine constituait la seule condition pour b&@ficier d'une parcelle. Ainsi, hommes comme femmes pouvaient, en pnncipe, obtenir une parcelle. A Dakiri, il y a 60 femmes (soit 8% du total des attributaires) qui en ont ainsi wu. Les erloux de la plupart d'entre eUes sont egalement attributaires de parcelles.Le r&s de l'attribution de pm~lies a u femmes relbent de jugernents a priori d o n lesquelles la femme, faisant partie d'un menage, ne peut beneficier, en plus de I'homme, d'une parcelle, ce qui provoqumait des frustrations des demandeurs en attente de parcelles et que r n h e si elle en beneficitit, il se poserait un probleme de main d'oeuvre tant sur sa parcelle que sur celle de son mari. De m b e on pense que la produdvite de la femme serait farile cornpte tenu de ses occupations mbgeres.La particularite que p r k n t e le perim&re de D a h ofie une possib~l6 de v6rifler ces id& et ainsi devduer un nouveau mode d'atrribution des parcelles, qui cowit l'homme et la femme comme beneficiaires. L'6tude a tente d'analyser les &ets de cette m&hode d'attribution, en cornparant les menages ou seul I'homme est attributaire avec ceux ou I'homme et la femme (ou bien les femmes) sont atbibutaires. Cette cotnparaison est faite par rapport (a) a m rendements des parcelles; (b) aux contributions en main-d'oeuvre des differents mernbres d'un foyer; (c) a la repartition des revenus provenant des parcelles. L'organisation intra-foyer de l'agriculture, et plus spkifiquement, la division des devoirs responsabfites entre hommes et femmes, est utilistk comme refkenw debase qui permet de cmmprendre pourquoi les cultivateurs et cultivatrices font ce qu'ils font.La m6thodologie choisie pour cette h d e comprend la recherche documentaire et les enqu&es de terrain La recherche documentaire a permis de faire un hventaire des do&s existantes sur la zone, d'une part, et d'sutre part, sur les relations genre en milieu rural, d'une maniere genkale, et en particulier sur les p&im&res imgub. Pour les enquaes du tmah (entretiens semi-directifs et individuels), 11:s donnees provenant du diagnostic social de Dakiri ont &ti utiliskes pour tirer un khantillon d'uni: soixmtaine de personnes dont des couples attributaires, des couples dont l'6pcmx seul est attirbutiure, des couples dont I'kpouse est la seule attributaire, et des attributakes veuves. De plus, des entmtiens ont 6te menes avec un chef de terre, a611 de mieux cerner le s y s t h e foncier traditionnel Gulsnace, avec des responsables du bureau de la cooperative; avec des chefs de bloc; et avec I'encadreux CRPA. Par ailleurs, afin de comprendre les changements intervenus dans la zone, des vieilles personnes dont cinq hommes et trois femmes ont &e entendues. Chaque m h g e g e e sa production a sa guise: femmes, enfants, chefs de mhages, etc. Les marmites sont egalernent &parks suivant le nombre de twinages dans la concession; chacun est devenu independant.La production de mil n'est plus concentrk sur les champs collectifs. Maintenant, les femmes aussi cultivent du mil dans leurs champs iidividuels, un changement qui, d'aprks quelques habitants, est dO aux conditions climatiques de plus en plus d6favorables obligeant les femmes aussi, a cultiver des & t a l e s afm de garantii une prod,uction suffisante pour nourrir la famile. LRS h o m e s demandent aux femmes de cultiver plus de mil que d'arachide, a h de pouvoir les aider en cas d'insuffisance de ceredes. Chez les ferr,mes, la superficie des champs de &reales est toujours superieure a celle des champs d'arachides. De nos jours, la contribution en c6ciales des femmes au menage represante 16 % a 25% de la production des champs collectifs.La priorite, en ce qui conceme I'emploi de main-d'oeuvre farrdliale, est toujow accord& aux champs collectifs. C'est en travaillant sur les champs familiaux que la femme \"gage\", en quelque sorte, le droit de travailler sur s m propre champ. Les jours que les femmes peuvent se consacrer a travailler s u r leurs propres chimps sont appel6s les \"jom de femmes\" et sont sujets de negociations entre l'6poux et l'6pouse (011 bien les epouses). Le Tableau 39 ci-dessous montre les dflerentes ententes entre epoux et +ouseii qui sont le resultat des negociations entre eux.Tableau 39. La ''jours de femmes\" Le tableau 40 montre l'importance des contributions en main-#oeuvre des femmes pour la production cer&di&e. Elles consacrent, au total, 63,3 jours (soit 39% du total), tandis que les h o m e s contribuent pour 60 jours (soit 37 % du total). La contribution en main-d'oewre des I44 edants est egalement considkable : 41 jcurs, soit 24% du total. Cependant, le nombre moyen de jours de travail par actif est plus eleve chez: les homes.Au champ familial, tous les memtlres de la famille prennent part aux semis. Les menages possdant du mat6riel agricole labourent leurs champs avant l'operation de semis. L'homme et le tils aTne labourent le champ pendant que le!; f e m e s et les enfmts le &ment (dans l'espace de temps de 3 jours a une semaine). Quand le champ de I'&Joux est seme en totalite, les co6pouses (dans le cas des mhages polygames) s'entraiden.: pour semer leurs champs respect& de mil, ou bien chacune le fait de son c6ttc. L'arachide est semke plus tard que le mil, c'est une speculation exclusivement feminine dans laquelle les hammes n'interviennent qu'a la recolte.L'entretien des champs familiaux se fait durant deux p6riodes de sarclage. Pour le premier sarclage, tous les membres de la famille apportent leur contribution. Le deuxieme sarclage exige moins de main-d'oeuvre familiale. Le nombre exact de jours que les femmes doivent consacrer a contribuer a rentretien des champs W i a u x est negocie entre epom et epouses. A titre d'exemple, voici le temps de participation des femmes tie quelques mhages aux travaux de sarclage, en rapport avec le nombre total de jours de travail. Pour la rkolte de mil des champs dt: femmes, toute la main-d'oeuvre familiale est presente.Ace niveau, L'homme terrasse les tiges; la femme, les enfants et ses co-6pouses recoltent les epis. La propnetake de la r h l t e la rassemble puis la fait transporter A domicile, en charrette, par I'6poux ou les enfants, ou bien par des chmetiers. Ls. recolte des arachides est faite exclusivement par les femmes. Chacune la fait de son c6te avec ses. enfants, surtout les fiUes.En ce qui conceme les parcelles irrigukes, la preparation des p+ii&es est rkalisk, pour la plupart, par les hommes, que ce soit pour eux-mi?mes ou pour leurs Muses. Parfois, ce sont egalement les grands tils qui preparent les p6pinieres de leurs parents, et quelques femmes le font elles-m&nes. Pour le repiquage de leurs pwcelles, en plus de la main d'oeuvre f a d d e , preque tous les exploitants se font aider par les mernbres exterieurs de leur menage. Pour la circonstance, un repas est off& a m travailleurs. Le repiquage est la seule tfiche qui mobilise tous les membres actifs du menage, et elle est exhut& en une ou deux joudes. Dans les menages ou plusieurs membres ont des parcelles, la parceUe de l'6poux est repiquk avant celle de I'6pouse, qui s'effectue quelques jours apres. La plupart des 6pouses non-attributakes ne prennent pas part au repiquage.Pour Pentretien des parcelles irriguks, les femmes attributaires et leurs 6poux s'entraident mutuellement lors du deshefbage. Dans certains m h g e s , chaque partenaire travaille seul de son c6tk. N o d e m e n t , 1'6poux finit toujours avant I'epouse puce qu'il peut mobiliser plus de maind'oeuvre familiale. D m d'autres mdmges, la femme finit chaque operation sur la parcelle de 1'6poux avant la sienne. En genkal, les femmes travaillent avec leurs enfants sur leurs propres parcdes, tout comme en grande culture. Dans les m h g e s ou la femme ne poss&le pas de parcelles, son intervention sur la parcelle de l'epoux a lieu au repiquage.La recolte des cultures irrigukes s'effectue nosmalement apes celle des cultures pluviales.Presque tous les membres d'un menage, y compris les enfants, y prennent part. Les hommes et Ies plus grands garqons rhltent les javelles de riz pendant que les femmes et les enfants les regroupent en gerbes et les transportent hors de la percelle. Les acti~tes post-recolte (le battage et le transport) sont redisks par tous 1es membres. Le vannage est du ressort des femmes, qUi font appel aux voismes et aux autres femmes de leur Concession. Dans le cas des femmes non-attributaires, elles rqoivent une quantite de riz (une demi-tine a une tine). Les attributaires ne repivent nen, car elles wont aid& a leur tour. Cependant, le niveau de remplisiiage des retenues des differents sites en fin de la saison humide (l'indicateur TR), est generalenient faible (TR < 0,90). Ceci est dii a la mise en place tardive des cultures en saison humide, el: a une utilisation inefficace des eaux de pluie.L'kvaporation du plan d'eau repreiiente une perte tres importante surtout pendant la penode au-dela de la fin de la saison des pluies. En zone soudano-sahdienne I'evaporation au niveau d'un plan d'eau, entre Octobre et Avril, est estim6e en moyenne a 6,5 mm/jour (Pouyaud, 1979). Dans le cas du barrage d'Itenga, a partir de la courbe hauteurs-surfaces de la retenue et en fonction des volumes d'eau preleves pour I'imgation du p&im?tre et des volumes pomp& pour l'approvisionnement des communes de Kc'upda et de Pouytenga, on estime la perte par evaporation entre le ler Octobre et le 30 Avril a plus tie 60 % de la capacite totale du reservoir, soit 1,s million m3.Les volumes preleves pour l'adduction d'eau potable peuvent devenir tres importants lorsque les barrages sont situb a proximite de centres urbajns ne disposant pas d'autres ressources en eau mobilisables a cet effet. L'approvisionnement en eau potable des populations et des cheptels est une priorite par rapport aux besoins dc: I'igation et, avec la croissance demographique, on peut s'interroger sur l'avenir agricole de certains amhagements (cas de Loumbila ou le perimke inigue a du hre abandonne en raison des pr5levements prioritaires destinb a alimenter la vile de Ouagadougou). Dans le cas du barrage dltenga, qui sert a I'adduction d'eau potable (AEP) des communes de Koupela et Pouytenga, Ic:s consommations humaines et pastorales en 1995 sont estimkek a environ 700.000 m3 par an dont 380.000 m3 pendant la saison siche (Octobre -Avril) ou il n'y a plus de renouvellement de la ressoiirce. Ce prehement de saison skhe represente, en 1995, 15 YO du volume de la retenue (cf Annexc: VI). Toutes les previsions d'amenagement de la plaine de Mogtedo ont 6te basees sur cette disponibilite de 2.900.000 m3. Une reconstitution de la cDurbe hauteurs-volumes par un leve bathym&nque de la cuvette du barrage a &e r&dis& en 1992 dans le cadre de I'hde technique de la protection du deversoir du barrage de Mogt6do. Cette csperation fait apparaTtre une capacite de stockage de la retenue de 6.560.000 m3.Les resultats obtenus par le projet et present& dans le tableau 12 (Section 5.1.1.3.) appellent quelques commentaires. En effet selon ce tableau, Dakiri serait en train de se combler en raison d'environ 2 % de son volume initial par an, qui lui donnerait une duree de vie autour de 50 ans (mais, il faut adrnettre que der; doutes subsistent sur le volume reel de ce barrage). Deja, on constate que des barrieres des dCp6ts solides, observables en fin de campagne de contre-saison, empechent l'alimentation sen eau de la prise de l'amknagement. Une campagne de leves topographiques, pour cerner lc: volume reel de ce barrage, est souhaitable en w e d'une bonne planification et utilisation de la ressource en eau L'envasement ne semble pas &re un probleme a Gorgo et Itenga (0,6 % et 0,2 % de la capacite totale des retenues par an), du rnoins pour I'alimentation en eau de la prise d'irrigation. Lors de l'avant-projet d'adduction d'eau de la ville de Pouytenga, les bureaux d'etudes 1. Kriiger AS et COW1 Consult (1989) ont fait des simulations (a partir du modele de GULLY) qui leur ont permis d'avancer 500 ans comme duree de comblement du barrage de Itenga, ce qui est proche du resultat que nous avons obtenu. Une certaine credibilitt! peut alors &re accordee aux chiffres du Tableau 12 qu'il stocke. C'est ainsi que le deversoir de securite a Mogtedo reste toujours menace de rupture, et le confortement de la zone instable immediatement en aval du barrage de Itenga inacheve Supposons que I'on confie a I'organisation paysanne la gestion du droit d'acces a Feau de la retenue, conformhent a un cahier de charges definissant les modalites d'acch a m berges par les differentes categories d'usagers. Une telle siluation contribuerait, a la fois, a renforcer les finances de I'organisation paysanne, a inciter les producteurs a mieux valoriser I'eau et partant, augmenter la production nationale Par exemple, si les exploitants spontanes paient ce droit d'acces a l'eau et s'acquittent egalement des obligations hahituelles des membres de I'organisation paysanne, cela renforcerait les liens entre les Werents Ip-oupes d'usagers car tout le monde tirera profit de l'amenagement Uexistence d'un tel cadre collectif qui regroupe tous les utilisatem du barrage contribuerait, en plus, a la protection de I'en ironnement immediat, la maitrise du ruissellement et de I'erosion des sols et, eniin, a la prise charge effective de la maintenance de Pouvrage L'elaboration et la diffision de textes juridiques adaptes constituent des prealables importants, en vue de favoriser cette demarche D'autre part, de nombreux problemes techniques releves par le PMI-BF tels le non-respect des calendriers culturaux, les insuffisance, dans l'entretien des canaux et la non-adoption des consignes relatives aux pratiques cuIturdi% trouver~ent probablement un debut de solution si chaque producteur devait chercher a exploiter les ressources en eau et en terre d'une maniere aussi productive que possible, a h de recouwir scln investissement personnel 6.1.2 La gestion de l'eau dans le rkeall d'irrigation et a la parcelleMosselmans (1991, cite dans Sally et Kelta, 1996a) met en exergue quelques raisons qui peuvent expliquer ce genre d'evolutioii : le mauvais fonctionnement du re!ieau consecutif a des emeurs de conception ou de rialisation ; l'extension du p&imetre ; le changement du calendrier culturd. On congoit faoilement qu'une fois l'amenagement realise, la marge de manoeuvre pour changer les dimensions des canaux et ow-ages soit plutcit reduite. Pour ne pas entrainer une diminution du debit d'equipement, on prefiire souvent opter pour unc augmentation du temps d'arrosage. Cest ce qui s'est passe a Mogtedo, Gorgo et Dakiri. A l'origine les projets prevoient 10 heures de temps joumalier d'arrosage. Les enregistrements du PMI-BF montrent qu'on irrigue en moyenne 12 heures et souvent plus par jour actuellement (tout au moins en saison seche, en sajson de pluie le tour d'eau ne semble pas strict).On peut considerer le cas de Mogtkdo. I1 y a eu une tentative de compensation de la diminution du dkbit d'bquipement suite a I'irugmentation des superficies desservies par certains secondaires (portions de pistes grignotees, certaines parcelles rattachees a ces secondaires contrairement a ce qui etait prevu), par une augmentation de 2 h du temps joumalier d'inigation.Les calculs eEectues pour le bloc secondaire 1 par le PMI-BF montrent que l'augmentation de la superficie est telle que les besoins en pointe des cultures ne peuvent stre satisfaits par une augmentation de 2 h du temps joumalier d'arrosage.Une reflexion similaire peut etre bite avec les autres blocs secondaires de Mogt6do On se rend alors compte que seuls SZ et Sg Deuvent &re irrigues convenablement en 12 heures de temps. Par ailleurs, un raisonnement analogue peut Stre mene, sur la base des debits, pour les autres sites.On trouve sans doute la une cles causes d'apparition d'extensions hors perimetre, cherchant a s'approvisionner en eau a l'encontre du programme d'arrosage etabli. De meme, des extensions spontanees, en voulant sz! servir de I'eau de manike anarchique, peuvent Stre a l'origine des perturbations du programmt: de distribution de I'eau.Pour Gorgo, perimetre mis en culture seulement pendant la saison des pluies, le probleme est moins lourd de consequences, sauf en fin de campagne (Octobre, Novembre).A Dakiri la repercussion de la reduction de la fiequence des arrosages (modification du tour d'eau) explique peut-&re, surtout erL saison seche, la valeur de l'indicateur RWS de l'ordre de 1,40 (la reference optimale etant de IIWS= 2,3 pour 50 YO a 100 YO de superficie emblavee en riz en saison seche). Cela laisse entendre que les besoins ne sont, pas combles a I'optimum.On pourrait penser qu'un rendement moyen meilleur aux 4,6 t/ha actuels peut &re obtenu par une meilleure adaptation du tour d'eau ail debit de prise maximum actuel(555 lis).Les consequences des modifications des tours d'eau ont souvent ete nefastes a la bonne gestion de I'eau et la vie du perimetre. Ces consequences sont : Un fractionnement de la main d'eau entre plusieurs irrigants induisant des debits unitaires derisoires aux parcelles de 3 a 8 Ils en saison humide et de 3 a 5 Us en saison sechecf Tableau 44 des valeurs de RGP (Ratio de gestion de l'eau a la parcelle)et de longues heu1.e~ d'irrigation journalieres allant de 2 a 6 h en saison humide et de 2 a 9 h en saison s k h e (Tableau 45); parfois m6me des irrigations nocturnes (cas frequent a Dakiri) sans aucune surveillance. Une insatisfaction des besoins en eau des cultures sur certaines parcelles. En effet si certaines parcelles repivent tles irrigations trop rapprochees et trop abondantes depassant largement les besoiris du riz et, par consequent, entrainent un gaspillage d'eau par drainage (cas des parcelles sans difficultes d'irrigation situees tres souvent en t&e de canal secondaire ou tertiaire), d'autres parcelles, situees en hauteur ou en queue de reseau, ne sont pas suffisamment alimentks en eau, ce qui se traduit sur ces parcelles par une baisse de la productivite de la terre Une baisse du taux d'exploitation en saison seche (cas typique du perimktre formel de Mogtedo) liee a I'impossibilitt d'exploiter certaines parcelles par suite de l'inaccessibilite de I'eau.Un decouragement des explcitants suivi dun abandon de la surveillance de I'irrigation a des enfants novice!; afin de vaquer a d'autres occupations; ces derniers laissent deborder l'eau des casiers rizicoles.Une situation conflictuelle entre les producteurs qui veulent iniguer au m8me moment.Enfin I'apparition d'exploitants spontanes aux abords du p&irn&tre formel pour contribuer a sa derive totale.Les productions agricoles realisees sur les sites par m3 d'eau (PbIr) pour la riziculture sont generalement faibles (cf Tableau 42) par rapport a la valeur de reference 0,6 kg/m3 proposee par I'IIMVPM-BF (cf. methodologie d'evaluation des performances et de diagnostic des systemes irrigues, 1996). Les causes probables de ces faiblesses dans les valeurs de PbIr sont a rechercher au niveau des productionsles volumes d'eau prkleves etant dans des proportions globalement acceptablesou les calendriers culturaux, les doses d'engrais, les types de sol.Quant aux valeurs des productions par m3 d'eau preleve (VPbTr), il est facile de constater qu'en dehors des cultures a haute ~ialeur ajoutee (ex. haricot vert a Savili), les valeurs sont en deGa de la reference proposee (80 FCFA/m3).En dehors des saisons de pluies ou I'abondance des ressources incite a des livraisons d'eau tous azimuts, on constate que les clebits livres en t&e de reseau primaire d'irrigation ne depassent gu&e 50 % des capacites nominales des prises ; cela en depit du fait que 80 YO a 90 YO des superficies sont emblavees en cont1.e-saison.Les raisons a un tel phenomene sont :Les parcelles mises en valuer en saison seche sont eparpillees sur tout le perimetre au lieu d'ktre regroupees le plus pres possible de la prise d'eau pour favoriser une distribution efficiente de l'eau.Une certaine difficulte pour I'aiguadier et les exploitants d'adapter les debits en t&e de reseau aux superficies embktvees, et surtout aux parcelles en irrigation. 0 La relative faiblesse de la charge deau exploitable au niveau du barrage en periode seche fait que les debits delivrtis a la prise d'eau restent faibles bien que celle-ci soit ouverte au maximum. L'insuffisance d'organisation stir les perimetres irrigues pour la gestion de l'eau d'irrigation se fait sentir au niveau de l'indicateur \"Suivi du Tour d'Eau\" ou, en dehors de Savili (site a irrigation par pompage) le:; tours d'eau sont rarement respectes. Les raisons sont, d'une part, le manque ou I'insuffisance de sensibilisation et de formation et d'autre part, des problemes de conformite dans la realisation ou d'absence d'ouvrages de transport et de repartition de I'eau. Plnie + inlaatton -EvapotranspirationL'etat physique des reseaux de drainage sur les sites laisse a desirer En effet, les drains sont bouches, ma1 entretenus ou tout simplement inexistants, ayant ete recuperbs par certains exploitants pour agrandir leurs parcelles. Une meconnaissance, voire un manque d'application des itineraires techniques en la matiere, ont souvent induit une absence de drainage des parcelles rizicoles sur les perimetres d'etudes, meme durant les campagnes agricoles humides consacrees uniquement a la rizicultureLes raisons socio-konorniques ktoquees dans la section traitant du non-respect des calendriers culturaux sont, entre autres, a la base des phdnomenes observes tels la faiblesse des debits, I'insuffisance ou l'exces des doses dirrigation, les pertes d'eau par drainage (mais parfois il faut admettre que cette eau de drainage est reutilisee pour d'autres cultures [ riziculture de bas-fond en hivernage et cultures maraicheres en contre-saison le long des drains ou en aval du perimetrel comme c'est le cas a MogtCdo et a Itenga).La conception des ambagement,s. Certains sols juges inaptes a la riziculture lors de la conception et longeant les ouvrages principaux de prise d'eau (cctete morteu et canal primaire comme c'est le cas ii Mogtedo) sc'nt par la suite mis en valeur de faqon spontank par des exploitants ; ce qui perturbe le programme de distribution de I'eau.Les facteurs physiques et organisationnels. Le mauvais etat des canaux (ex. enherbement des tertiaires) et des drains resulte de l'insuffisance ou de l'absence d'un entretien planifie. Re plus, I'absence de drains a cwtains endroits (agrandissement des parcelles par incorporation des drains) rende difficile le 'drainage des parcelles inondees. Cette situation est le reflet du manque d'esprit cooperatif des exploitants et de la defaillance des organisations paysannes en matiere d'application des textw reglementaires pour faire respecter les consignes. Quelquefois, c'est le clapet anti-retour et l'exutoire des eaux qui fonctionnent mal (cas de Dakiri et de Gorgo).Par ailleurs, les contraintes topogr,nphiques (position des parcelles en basse ou haute toposequence, affaissement localid des cmaux secondaires ou contre-pente des tertiaires), resultant de l'absence de nivellement pendant l'amenagement et des imperfections de realisation des ouvrages hydrauliques (notamment les tertiaires dont la confection est laissee a l'initiative des paysans), engendrent des difficultes d'irrigation sur les parcelles situees en hauteur, I'inondation des parcelles basses et la faiblesse de debits sur les parcelles situees en queue de reseau.L'encadrernent technique (en particulier les agents techniques qui sont les interlocuteurs directs des organisations paysannes et des exploitants) soufie du manque de competence en hydraulique et en gestion de l'eau. Cette lacune se repercute sur les capacites de gestion efficiente de I'eau par les exploitants,. 6.1.3 La maintenance des pCrim6tres irriguis L'Etat, avec l'appui de ses partermires au dheloppement, a beaucoup investi dans la rhlisation des barrages et des amenagernents hydro-agricoles au Burkina Faso. Pour ce qui concerne les petits pkrim&res imgues autour des barrages, le nombre d'attributaires qui ont l'avantage de bengcier des ressources az eau mobilisks et des infrastructures ainsi realiskes s'elherait a environ 20.000 personnes. C'es personnes constituent donc un groupe relativement privil&gie, ayant awes a un important outil de production dont beaucoup d'autres paysans ne beneficient pas. Par consequent, est-il equitable que l'hnomie nationale continue a les subventionner financierement ? En revanche, il ne faudra pas non plus que, faute de tout appui, I'amenagement, mis en place a gands fiais par le pays, s'effondre.Les contraintes qui limitent les interventions de I'Etat deviennent de plus en plus importantes. Les ressources externes semblent moins evidentes a mohiliser que par le pas&. On remarque m b e une r6ticence a invest? davantage dans les amenagements hydro-agricoles chez certains bailleurs de fonds qui considQent que les investissements pr6c&ts, juges chers, n'ont pas produit les resultats escomptes.Face a de telles considerations, le demgagement de I'Etat et la responsabilisation des organisations paysannes semblent s'impom comme remedes. Or, le desengagement de 1'Etat suppose, notamment, une prise en charge, par les organisations paysannes, des frais de fonctionnement et d'entretien des amenagiments. Cette perspective constitue l'idee de base qui sous-tendra la discussion de cette section. Le miit de realisation du perhem: de Itenga a &e evalue a 6.000.000 FCFA/ha (coiit du ajustement des coiits pour tenir compte de la devaluation du Franc CFA en Janvier 1994. Le montant de la redevance selon cette aplnoche est de 30.000 FCFA/ha/an (en supposant un amortissement lin6aire de 10% sur une durk de vie de 20 ans). barrage non compris), d'apres une analyse du dossier d'execution de lhmenagement, et apres ~ I Pour Gorgo, nous utiliserons 2 hypotheses de cofit pour le calcul de redevances: I (a)Gorgo I, bask sur un coat a lbectare de 6.000.000 FCFA (identique a Itenga); (b)Gorgo 11, b& sur un coiit de 3.000.000 FCFA/ha, obtenu a partir du dossier de rappel d'offre detaille (APD) avec actualisation des cotlts pour la situation apres d&duation; le montant de la redevance sera alois de 15.000 FCFA/ha.Tableau 48. Montants mobilisables selon la nouvelle approehe de calcul des redevances D'apres ce tableau, on remarque une progression des montants mobilisables, compares aux valeurs r&llement collectkes (cf Tableau I!)), si les taux de collecte moyens sont maintenus. On note egalement une augmentation sensible des redevances payables par l'exploitant indMduel.Examinons maintenant ['impact de cette hausse de redevances sur les revenus des exploitants:-Sur le penmare de Itenga, les charges institutionnelles (c'est-a-dire les redevances em plus les cotisations) passent de 35Y0 de la valeur brute de la production a 5,1%; en temes des revenus nets, elles passmt de 4,Yh a 7,1%.-Sur le perimhe de Gorgo, le ratio des charges institutionneUes a la valeur brute de la production passe de 8,l% a 13,1% (ou a 8,5% pour le scenario Gorgo 11). Pour ce qui est des revenus nets, le ratio passe (de 13,9?4 a 22,6% (ou 14,6% pour le cas Gorgo 11).I1 faut noter qu'aucune redevance n'esf appliquee sur le -&re de Itenga en contre-saison bien qu'environ 30% de la superfrcie soit exploit& pendant cette periode. Par contre, aucune mise en valeur des parcelles n'est possible a Gorgo t:n contre-saison, a cause du manque d'eau.Ces resultats montrent que la fixation du montant des redevances doit tenir compte des specificites de chaque site, tant au niveau de la nature et des cofits d'entretien qu'au niveau de la capacite de paiement des exploitants concemes;. Le Tableau 49 nous permet de coq~arer la capacite des organisations paysannes a faire face aux degats cauds par les pluies exceplionneUes de I'hivernage 1994, en utilisant les deux approches de calcul de la redevance (la pratique actuelle et I'approche alternative).Tableau 49. Redevance eau et capacitt de prise en charge des dCgtits diis aux inondations de la campagne 1994/1995Ce tableau rhele que le @rimhe de Itenga a pu faire face aux montants des deg&ts. Qusnt au p6rimktre de Gorgo, seulement quelque,s travaux d'urgence y ont ete accomplis. Pour le reste, la question demeure PO& : qui va intervenir ? Par ailleurs, il faut noter que le miit des rkparations plus consistantes a kte estime a 28.146.95Cl FCFA (devis ONBAH).Cependant, on se rend compte que l'approche alternative permet une meilleure prise en charge r n h e de certains deggts importants. I1 faut aussi noter que le montant des redevmces n'est pas forcement 6gd au montant des dkpenses d'entretien effectivement engagkes chaque arm&, les besoins 6nanciers pour I'entretien peuvent '%re inferieurs ou peuvent depasser les montants collectes suivant les ann&s. Dans ce denier cas, 'on peut s'interroger sur les actions a entreprendre si, en depit de leurs meilleurs efforts, les reiisources internes des organisations paysannes restent insuffisantes pour faire face a certaines situxtions exceptionnelles. D'autre part, les analyses ci-haut pennettent de se rendre a I'6vidence que, malgre les taux de collecte &eves, il serait hasardeux pour les organisations paysannes de developper une trop forte dependance vis-a-vis de la redevmce comnie seule source de revenus ,La notion de la redevance eau et son utilisation n'ont pas toujours fait l'objet d'une attention particdiere sur les perim&res imgues. Les efforts se sont plutdt focalises sur l'organisation de la production q* pour l'administration representait un tremph pour ses actions immediates . encadrement technique (principalement agticole), placement et rkuperation de credits. Des aspects lies a l'entretien de l'outil de production, qui est le perimetre lui-mhe, n'ont par beneficie du m6me degre d'attention. Aussi, aucune action rigoureuse pour sensibiliser et preparer les utilisateurs a la prise en charge de I'entretien et la p&ennisation de l'amhgernent n'a &e amor&.Dam la situation actuelle, les orpnisations paysannes arrivent, en gheral, a mobiliser suffsamment de resources hanci&res pour couvrir leurs depenses de fonctionnement et pour effectuer des petits travaux de maintenance. En revanche, eUes ne semblent pas avoir la capacite de constituer des fonds adeqwts pour pouvoh. realiser de gros travaux de maintenance ou envisager la rehabilitation ou la modemisation de leur penmitre De plus, la pr6paration et la publication des comptes et des bilans financiers par les organisations paysannes restent tres alkatoires, compromettant leurs possibilitks d'obtenl des prcts aupres des institutions 6nanciims Par consequent, elles se trowent inhitablemert dans une situation de dependance vis-a-vis de I'Etat, des ONG ou des projets de developpement externes pour la mise en oeuwe de ces demieres actions Les etudes du PMI-BF ont mis en hvidence de nombreux problhes lies a des dgauts de maintenance, problemes qui risquent de s'aggraver s'ils ne sont pas com& en temps opportun.L'mplitude de ce deficit de maintenance ne pas &re &on& avec prtkision. Mais, en se basant sur les c d t s de reparations a effectuer suite aux inondations de I'hivernage 1994, on peut l'estimer actuellement a environ 200.000-250.000 FCFA par hectare, en moyenne.La contribution des producteurs, au titre des redevances et des charges institutionnelles de l'organisation paysanne, varie entre 2% et 7% de la valeur brute de la production et entre 3% et 13,5% en terme de la valeur nette de la production. Le rapprochement de ces chiffres avec l'importance de I'outil de production utilise m,ontre qu'ils sont susceptibles d'amdioration.L'hter& de revoir le montant des chiuges comme la redevance afin de les rapprocher aux cotits reels d'entretien des p h e t r e s a ete examine par le PMI-BF. Les analyses realivies par le projet suggerent qu'une redevance && a 10% de I'amortissement annuel des infrastructures permettrait aux organisations paysannes de mobiliser des fonds substantiels pour pouvoir faire face meme aux degts d'une certaine envergure, la totalite des montants coilectes n'&ant pas forcement depenvie tous les am. Cette approche merite d'&e &nee en s'appuyant sur les expkiences rides du terrain d'un echantillon plus grand des perinetres.Les charges ne doivent pas a r e 6 x k s a un niveau trop eleve, susceptible de dhurager les producteurs. L'identification du plafond de ,:ontribution aux charges de fonctionnement et aux investissements divers, (c'est-a-dire le seuil au-dela duquel la motivation des producteurs baisserait, I'intensite culturale et les depenses en intrants omme men cent a regresser) doit chercher a concilier les coats d'entretien et la capacite de paiement des producteurs, tout en tenant mmpte des specificites de chaque site et des points de we des beiciaires.Or, les enqu&es du projet ont revele qifil n'y a presque pas de parcelles inoccupks dans les p&im&es, mis a part celles qui ont des probkmes spkifiques d'igation. Les taux d'exploitation en hivernage avoisinent les 100%. Par ailleurs, il est apparu qu'il existe des listes (formelles ou infomelles) de personnes qui souhaiteraient tifoir a d s aux parcelles iniguks. Tous ces facteurs sernblent indiquer que les taux actuels des redevances ne sont pas trop eleves et qu'une augmentation ne risquerait pas de s'accompigner d'une baisse de I'intensite d'exploitation des dnagements.Toutefois, il convient de rappeler que: l a redevances ne sont pas les seules sources de revenu des organisations paysannes. Eiles rec'resentent un peu plus que la moitie de leur revenu global. Le reste provient des benefices rhlis6s i~ travers la fournitwe d'mtrants aux producteurs et la commercialisation des produits. Les organisations doivent Stre encouragbs a poursuivre et a dkelopper &vantage ces derniers types d'irutiatives en we de diversifier leurs strategies de mobdisation des ressources financieres. 4) egales, pliis le debit d'equipement (9.) d'un perim&re est faible, plus il y a de possibilites de disposer de quartiers hydrauliques a superficies plus importantes (Sq = q/qe; Sq etant la supeficie du quartier hydraulique). Ce qui pourrait se traduireselon la topographie du sitepar un nombre plus reduit de canaux secondaires (figure 40B). Mais la topographie du site pourrait Stre telle, qu'on aboutisse a des longueurs de canaux secondaires plus importantes (figure 40C) et, par consequent, des cocts plus eleves par canal secondaire. II est donc diflicile d'apprecier directenlent la repercussion, sur le coGt total du reseau d'irrigation, de I'augmentation de longueur des canaux secondaires revStus. Du Tableau 51 il ressort que la diminution en volume de d6blai au km de canal serait de 30 % (1-580/850) quand le d&it d'equipement passe de 5 Vdha a 3 lidha, pour un menagement de superficie 50 ha. Admettons que les autres materiaux de construction du canal (beton de proprete et de revstement, remblai compacte ...) varient clans le in&% rappint 30% que le volume des deblais (Figure 41). Dc plus, si l'on suppose que le canal primaire entre pour 20%2 dans le coiit total de l'ha amenage, alors I'adoption d'un qe de 3 lidha F'ennettrait d'economiser 0,30* 0,20 = 6 % du coirt de l'ha pour chaque kilom&i-e de canal primaire. Bien entendu, une telle option ne s:era pas possible pour un plan de culture riZ de saison hunuderiz de saison seehe dans la zone consideree.Les pratiques culturales de I'exploitant tiennent compte de plusieurs facteurs dont ses objectifs specifiques (la production, les revenus, . . .), sa situation particuliere (position dans la famille, pouvoir decisionncl ...) et des atouts et contraintes physiques, economiques, sociaux et m6me Bducatifs du milieu. Les raisons de \"adoption ou non des techniques culturales sont, de ce fait, a la fois d'ordre organisationnel et socio-economique.Les raisons de la mauvaise exkution des operations culturales se situent aussi bien en amont qu'au niveau de la production. Les difiicultes en amont sont imputables tant aux organisations paysannes et a l'encadrement technique qu'aux exploitants individuels. Les organisations paysannes ont quelquefois des dificultes d'approvisionnement en intrants (semences, engrais, pesticides) et en materiel agricole qui s'expliquent par des problemes de gestion et de mobilisation de fonds et d'acces au credit agncole. Les institutions bancaires ont des exigcnces que les organisations paysannes ne remplissent pas toujours. Les CRPA, qui servaient de relais entre les deux institutions, est de moins en moins sollicites par suite des difticultes financieres et des reorientations strategiques de ces CWA'. Faute de materiel adapte, les operations telles que le labour, ;a mise en boue et le planaye sont ma1 realisees. De plus, I'insufiisance en intrants ne permet pas de respecter les doses recommandees, surtout en contre-saison ou les sources d'approvisicnnement font douter de la qualite des produits (pesticides et engrais).Certaines autres dificultes sont inherentes aux exploitants et a leurs strategies de production. Dans le souci de gagner du tenps a consacrer aux autres activites (agricoles ou non), le desherbage est souvent defectueux et les modalites d'application des engrais (dates el fractionnement) ne sont pas toujours respectees. De plus, les quantites d'engrais destinees aux cultures irriguees sont souvent morcelies er.tre celles-ci et les cultures pluviales. I h point de vue de I'exploitant individuel, l'agriculture irriguee apparait comme une activite complhmentaire a l'agriculture pluviale. En effet, la production et lcs revenus tires de l'exploitation des parcelles irriguees de 0,15 a 0,2S ha attribuees aux exploitants ne leur permettent pas de nourrir leur famille. L.a production varie de 750 a 1000 kg de paddy et les revenus varient de 30.000 70.000 F par campagne de riziculture. Pour faire face a leurs besoins alimcntaires en cereales estimiis a 2640 kgan (sur la base d'une consommation cerealierc de 220 kg/an/personne selon 11: CI14SS, 1991, et d'un effectif moyen de la famille de 12 personnes), les exploitants sont alon, contraints de pratiqucr, parallelement a la riziculture d'hivernage, dcs cultures pluviales strict8:s (sorgho, mil, mais, riz pluvial ...) et la riziculture de bas-fonds. La situation est quelque peu iimelioree si I'exploitant arrive a faire des cultures (riz ou maraichage) en contre-saison.Les cultures irriguecs viennent se ccgreffern sur les cultures pluvides sans que les moyens dc production pdormants suivent immediatement le pas. Les paysans se trouvent done confrontes a des systemes de production lourds, de sorte que le planning de leurs activites (agricoles et autres) s'en trouvc perturbe ; ils sont done obliges d'opercr un choix qui privilegie l a cultures pluviales qui constituent la base de leur alimentation.Cette competitivite technique eiitrc I'agriculture pluviale et I'agriculture irriguee est renduc plus aigue par l'insuffisance de la main-d'oeuvre familiale (5 a 8 actifs par menage) aux ptkiodes de pointe, la faiblc capacite d'mploi de la main-d'oeuvre salaxiee ( 5 % de la maind'oeuvre requise) et le faible niveau d'equipemcnt en materiel agricole performant. En eRet leu pourcentages des exploitants qui utiliserlt la charrue a traction animale pour le labour sont de 15% et 30% rcspectivement a Dakiri c!t Mogtedo et de 60 a 70 % a Itenga et Gorgo. Le tracteur est raremcnt utilise sauf a Savili Les autres operations sont executees manuellement a I'aide doutils rudimentaires. En plus, Ir,s femmes representent environ 50 YO de I'effectif des familles, mais la contribution de la main d'oeuvre feminine aux activites agricoles, notamment celles de la parcellc irriguee, ne couvre que S % du temps de travail requis. ]254 mm) were measured with a standard 30 cm ruler. Only substrate loosely arranged on the riverbed were measured. Three angles of individual substrates (boulders, cobble, coarse gravel) were measured.Velocity and depth measurements were carried out with an OTT MF pro at each biotope sampled.The handheld OTT MF pro unit's sensor uses a magnetic-inductive current to accurately determine stream velocity. Depth in meters is measured first, after which velocity (m/s) measurements are taken at a depth of 20%, 60% and 80% below the water surface.Substrate composition was calculated from the number of measured gravel-cobble-boulder substrates, and sand-fine gravel substrate was estimated. The abundance of algae at each biotope was visually estimated. In the marginal vegetation biotope, plant species were identified where possible, and abundance rated from 1 to 5, with 1 being rare and 5 very abundant.The snail abundance and density were also analysed in the survey by sampling randomly within the site area, using a standard aluminium sieve. Snails were preserved in ethanol to be identified, measured, and counted. Snail parasite infection was investigated by collecting at least 100 individuals per species if possible. Individual snails were exposed to a light source for one hour and screened for the presence of cercariae under a stereomicroscope for three consecutive days, whereafter they were dissected and examined for trematode infections.Fish community structures were evaluated at all sites surveys in the upper Limpopo catchment. All sites had water and or at least refuge pools where fish were sampled. Sampling methods selected to samples fish were appropriate to the type of habitat being evaluated. Deep habitats were sampled using active seine (drag) nets, and cast nets and passive fyke nets (only in the main stem where time allowed). All wadable habitats were sampled using electrofishers (generator set up and Samus) and running (6m) seines. All fish were collected using fine mesh landing nets and kept alive in buckets and keep nets/traps in situ. Fish collected were identified to species, measured and released back into the river where they had been collected. Due to the pioneering nature of this survey, voucher fish samples were collected for each species per main segment of the catchment. Additional genetic samples and voucher photographs were collected. During the survey > 6000 fish were processed representing >37 species. Diversity and abundances of fishes varied throughout the basin and preliminary findings suggest that the reaches of the main stem Limpopo River and larger tributaries that are seasonal and or have been exposed to recent floods included highly mobile adults who have migrated into these reaches. The data demonstrates the importance of perennial tributaries and links between these tributaries and the mainstem. The population, community and movement information collected during the survey is suitable to meet the objectives of the fish part of the study for these sites including: determine the present ecological state of fish communities,  evaluate the flow, quality and habitat drivers of fish communities, and  characterise environmental preferences of fishes to contribute to the risk assessment for eflow determination in the study.The Limpopo River provides a wide range of ecosystem services which include supporting services, provisioning services, regulating services, and cultural services (Table 2.3). Ecosystem services are the benefits provided to people, both directly and indirectly, by ecosystems and biodiversity. This includes human use of products from the river e.g medicinal plants, food products, etc. and the functions ecosystems perform that are used and valued by human societies, such as the provision of clean water. Such services are linked to the functionality of ecosystem processes in terms of achieving the environmental objectives of river basins. The Limpopo Basin provide cultural, regulating, and supporting services that contribute directly and indirectly to recreation, aesthetics values of the catchment and maintenance of fisheries. The water resources of the Limpopo Basin, also plays a role in sustaining freshwater-dependent ecosystems e.g riparian zone which provide services to local communities for reed grass. Ecosystem services observed CROC-A24J-ROOIK Site is upstream associated with a number of commercial farms. The main ecosystem services are provisioning (water for irrigation in the farms for vegetables and cash crops, water supply to municipality and communities). Supporting services are also important for the life cycle of many fish species in the river which depend on the natural variability in the river flow.A number of commercial farms are found around this site and most with instream irrigation pump houses. Some parts of this site are used for cultural and spiritual rituals. Flow is regarded as an important attribute in this site for water supply to the farms and for the cultural rituals as some rituals only take place at high flow.MATL-A41D-WDRAAI The main ecosystem service in this site is commercial irrigated agriculture mainly for cash crops which prefer dry conditions e.g. tobacco and beans.The farms are allocated about 200l/sec to irrigate 120 ha. Subsistence fishing is also an important ecosystem service in this part of the catchment .The site is situated within the Limpokwena nature reserve and the main ecosystem services are the aesthetics services from ecotourism and provisioning of water for farm irrigation within the reserve MOGA-A36D-LIMPK The Mogalakwena River system was identified as a floodplain system, which is attributed for fishing, farming services and enhancement of water quality with the removal of phosphates as well as by removing nitrates and toxicants. The water is also used for household and small hold agriculture.Ecosystem services observed LIMP-A71L-MAPUN This site is within the Mapungupwe Transfrontier park shared by Zimbabwe, and South Africa. In South Africa, the main ecosystem services are the maintenance and refugee for fish as a variety of fish species depends on the natural variability in river flows in this site and maintaining the site for aesthetics(tourism). However, this site has competing ecosystem services demands as the rural villages in Zimbabwe also derive provisioning ecosystem services which include water for domestic use, fishing and practise spiritual baptism.The site is downstream of the Musina town. This is an important part of the catchment that supports the population from Musina for water provisioning, fishing and agriculture. Community members fish a number of species in this site which includes Tilapia, Carp and Tigerfish. Further downstream of this site, subsistence and commercial irrigation farming (tomatoes, beans) in downstream villages(Masisi) is common. Fresh produce shops around the Masisi village rely on groundwater (adverts for groundwater drilling). Cultural and spiritual ecosystem services were observed in this part of the catchment as burnt candles from these rituals were observed. This site is also used to harvest medicinal plants.The site is within the Kruger National Park, the flow regime at this site is important to maintain the site's aesthetics which is an important feature for the Outpost Lodge tourists. It also supports the delivery of a range of different provisioning services such as clean water and supporting services which is maintaining aquatic plants and fish habitats within the Kruger parkThe site is within the Kruger National Park, so it is most important for tourists' attraction (aesthetics) as it is along a tourist road to camping sites. The site also supports fish diversity.The site is within the Kruger National Park, site is upstream of villages and commercial farms. The main ecosystem services in this part of the catchment is the maintenance of the area' aesthetics and provision of irrigation water downstream.LETA-B83A-LONEB Site within the Kruger National Park close to the Lonely Bull Trail which starts from Mopani Rest Camp and is conducted in the large wilderness area between the Letaba low water bridge and the Mingerhout dam along the Letaba River. The site is important for maintenance of the area's aesthetics for eco-tourism.Site is within Balule nature reserve, the main ecosystem service in this site is maintenance of the area's aesthetics for tourists' attraction, maintenance and supporting of river' riparian zones and instream biodiversity.Ecosystem services observed OLIF-B73C-MAMBA Site is at Mamba Kruger national park and the main ecosystem services are to support and maintain the ecosystem for conservation and aesthetics for tourist attraction.GLET-B81J-LRANC Site is in the Groot-Letaba River, upstream of the Kruger National park. This site is downstream of Seloane community which use the river for fishing, abstract commercial and subsistence agriculture irrigation water. The riparian vegetation is over-utilised, mainly for firewood, fence construction, furniture, medicinal purposes and food.LIMP-Y30F-CHOKWE In this part of the catchment, the river's flow is mostly important for crop irrigation. This site is within a community who fish, fetch water and practise subsistence farming. This site is in the lowest part of the Limpopo Basin, which means it is a sink region. Very close to the site most communities wash their cars and tents. This was very common around riffles areas.ELE-730C-SINGU At this site, communities were mostly rural and mostly used the river to collect water and wash their clothes. Flood plain subsistence farming was also common and use of riparian woody plants to fence their crops from cattle. The site is also prominent for spiritual and cultural baptismsThe site is also within a rural community. The river is mostly used to irrigate their household gardens and water for their households. Cultural and spiritual baptism was also most prominent around pool areas. Some community members harvest some trees for medicinal purposes and for household firewood. Livestock riparian grazing (goats and cattle) was most common around this site and around the flood plains. In areas where the flow is low, communities created depression holes around the floods plains for their livestock to get drinking water.This site was close to rural communities which use the riparian zone to irrigate their subsistence farming and graze their livestock around the riparian zone (cattle, donkey). This site also has an off-stream cattle dipping area. The bulk of the population of the catchment is resourcepoor smallholder farmers. These farmers live at the margins of economically sustainable agriculture.Contributors: Angelica Kaiser, Gordon O'BrienAnthropogenic activities, climate change, land transformation, unsuitable and unsuccessful law enforcement of biodiversity and natural habitats are degrading river systems (Allan et al. 2005;Ashton 2007Ashton , 2010;;Dudgeon et al. 2006;Vaughn 2010). The loss of biodiversity and ecosystem functionality reduces the ability of aquatic ecosystems to provide the essential ecosystem services human communities rely on (Daily 2000;Deksissa, Ashton and Vanrolleghem 2003;Hooper et al. 2005;Loreau et al. 2001;Vaughn 2010). The threat to human water security and biodiversity are well correlated (Vörösmarty et al. 2010), thus it is important to find a balance between human use and ecosystem protection (Nel et al. 2007).There is a trade-off between the protection of river ecosystems and the use of the ecosystem services that they provide. Monitoring aquatic ecosystems is one of the tools used in their protection, as it allows for environmental degradation to be detected and measured (Levin, Woodford and Snow 2019). It is thus important to monitor river systems to ensure that a healthy ecosystem is maintained (Rodríguez et al. 2006). Three approaches can be used to monitor ecosystem health: 1) Biotic and abiotic indicators, 2) measuring ecosystem resilience to understand its capacity to change, 3) the identification and management of risk variables to mitigate threats to ecosystem health (Ganasan and Hughes 1998;Karr 1991;Rapport 1989). The preferred approach is using indicators (physical, chemical or biological) to monitor ecosystem health (Rapport 1989). Chemical indicators have limitations in that it does not account for anthropogenic-induced changes such as habitat loss (Whitfield and Elliott 2002b). Physical indicators, on the other hand, do not take into consideration chemical changes that are likely to have a negative impact on the river system's biota. Biological monitoring is the preferred method because anthropogenic-induced changes both physical and chemical can be detected. After all, organisms respond to changes (Rapport 1989).The community structures and attributes of fishes have widely been used as ecological indicators in the assessment of the integrity of Riverine ecosystems (Kleynhans 1999;Kotze 2002;O'Brien 2013). Some of the benefits of using fish as ecological indicators are primarily due to their wide swimming ability, various trophic levels, long lifespan, convenient sampling, identification in the field, and high public awareness value (Whitfield and Elliott 2002b). In particular, the use of various assessment methodologies including community metric measures (biological indices) and established community structure assessment methodologies that are based on the attributes of fishes are widely incorporated in the management of local and international freshwater ecosystems (Karr 1981;Kleynhans 1999;Kotze 2002).The first fish-based biological index (The index of Biotic Integrity (IBI)) was developed in the United States of America in 1981 (Karr 1981;Simon 1998). This index uses fish assemblages to evaluate the water environment which reflects the physical (habitat), chemical and biological conditions of aquatic ecosystems (Karr 1981). Indices developed for developed countries cannot be used for rivers in developing countries like Africa because the objectives of the indices fail due to unforeseen impacts associated with developing countries (Hocutt et al. 1994;Hocutt, Bally and Stauffer 1992). For example, in developing countries, many local communities depend on rivers for food and water but growing industries are deteriorating water quality and quantity in these river systems (Hocutt et al. 1994). Additional problems of the IBI in Africa is that it requires historical and ecological data which are not always available (Hocutt et al. 1994;Kleynhans 1999), and the equipment and running costs are too expensive (Kleynhans 1999). This led to the development of the Fish Assemblage Integrity Index (FAII) with the purpose \"to measure biological integrity of a river-based on attributes of the fish assemblage's native to the river\". It is the assessment of fish communities to changing environmental conditions either through direct measurements or inferred from the availability and condition of habitat at each site (Kleynhans 2007). In 2007, FAII was updated to the Fish Response Assessment Index (FRAI) which was developed to strengthen the relationship between cause and effect (Kleynhans and Louw 2007).The limitations of FRAI is that it is a rapid assessment, the tolerances and preferences are opinions based (expert opinions and inferred knowledge), the impact of alien and extra-limital freshwater fish species are only negative (habitat and predacious behaviour) and are not recognised for their potential of being good indicators of ecosystem health (Kennard et al. 2005;Molony 2001). To establish clear cause and effect relationships between stressors entering and impacting the ecosystem, however, the use of a community metric measure in isolation is limited and more indepth assessments such as the use of multivariate statistical assessment methods are recommended (O'Brien and Wepener 2012). A Redundancy Analysis ordination technique (RDA) allows for the direct interpretation of the community structures of fish in terms of the taxa obtained during detailed surveys. Furthermore, when combined with Monte Carlo permutation testing, the statistical significance of the hypothesised differences in the community structure can be tested (Van den Brink et al. 2003). This approach allows the habitat drivers of change in fish community structures of riverine ecosystems to be statistically evaluated. The use of multiple validated lines of evidence (LoE) to evaluate the wellbeing of the ecosystem is considered the best scientific practice as it provides a greater level of certainty. Each LoE is perhaps not completely robust by itself but when integrated with other lines of evidence, the uncertainty of the outcomes are generally reduced.The Limpopo River Basin is one of the most important basins in southern Africa and is known for its rich biodiversity (genes, species and ecosystems), a wide variety of landscapes and people and contains several centres of endemism (Petrie et al. 2014). Unfortunately, the basin is also one of the most water-stressed river basins in sub-Saharan Africa (Ashton and Dabrowski 2011;Baker and Greenfield 2019;Dabrowski et al. 2015;Kemp et al. 2014Kemp et al. , 2016;;Malakane 2019;Marr, Mohlala and Swemmer 2017;Matlou, Addo-Bediako and Jooste 2017;Pollard and Retief 2017;Rasifudi et al. 2018;Riddell et al. 2019;de Villiers and Mkwelo 2009). The vulnerability of the Limpopo River Basin is that it is mostly semi-arid, with a highly variable climate and is periodically exposed to severe droughts and floods. The basin is diversified in its land-use patterns, ecosystems, social, economic and governance systems. The water resources have been over-subscribed, agriculture is dependent on rainfed water, livelihoods are based on climate-sensitive natural resources, half of the population is poor and live in rural conditions and there are insufficient public and private resources to deal with poverty and shocks (resources shortage and climate change risks) (Petrie et al. 2014;Trambauer et al. 2014;Zhu and Ringler 2012). The political fragmented nature of the Limpopo basin has pushed biologists away from working in the basin ( Van der Waal and Bills 2000).O' Brien (2013) was the first study to consider fish on a regional scale in the Limpopo River Basin. This study conducted an FRAII assessment, used multivariate statistical techniques to investigate the fish community structure and conducted a fish flow habitat assessment index (FFHA) with available hydrology and hydraulic data. The results of the study showed that the fish communities are in a moderately modified ecological state which could be due to the drought experienced in the year of sampling (O'Brien 2013). The absence of fish species tolerant to low flows and altered water quality suggest that this system is heavily impacted by anthropogenic activities (O'Brien 2013). As there is a large understanding of how anthropogenic changes/environmental changes affect the basin we will get a better understanding of how to flow and non-flow related variables to affect the basin and the fishes within. Deteriorating water quality, altered flows, and habitat destruction have been identified as drivers of change for fish communities (O'Brien 2013). Invasive species and climate change have also been identified as drivers of change (Rankoana 2016).This study aimed to determine the overall state of fish communities in the Limpopo River Basin. The multiple LoE used in this study included Fish Response Assessment Index (FRAI) (Kleynhans and Louw 2007) and Multivariate statistics (Redundancy Analysis). The multivariate analysis was used to validate the FRAI results and to provide insight into what the main drivers of change were.The project and procedures were sanctioned by the ethical committee of both SANParks (ref: 012/16) and the University of Mpumalanga Animal Science Research Ethics Committee (project number NAS044/2019).Eighteen sites were selected in the Limpopo River Basin (FIGURE 3.1). The sites were selected based on historical data available (EWR studies conducted at the site previously), sites on the tributaries and the Limpopo River main stem, sites in Botswana, Mozambique and Zimbabwe, and to include sampling in protected areas (Kruger National Park, Mapungubwe National Park, Greater Limpopo Trans frontier Park. Each site was divided into different efforts based on the habitat and velocity depth classes (TABLE 3.1) as proposed by Kleynhans et al. (2007). Fish communities were sampled at the different sampling sites in the Limpopo River Basin in May and June of 2021. There was no available water at the UMZI-Y20C-BEITB site and thus no fish community data were collected. Historical data from 2012 were used to fill in any gaps in available data. Fish communities were sampled using various active (cast net, running seine net, electrofisher, generator, angling techniques) and passive (fyke nets) sampling methods based on different habitats available (Oliveira et al. 2014). The diversity, abundances, and size (standard length) of sampled fish were documented as catch per unit effort along with the associated habitat variability. This included three depths (mm) and velocities (m/s) measurements per unit effort measured with a transparent velocity head rod (TVHR: Ground truth Consulting, Hilton KwaZulu Natal), the substrate distributions (%) (percentage silt, mud, and, gravel, cobble, boulders, bedrock) were estimated per unit effort based on the classification of Fouché (2009) and Rowntree et al. (2000)(TABLE 3.2), and cover types were identified (undercut bank, substrate, depth, marginal vegetation, aquatic vegetation, overhanging vegetation, roots, other) and their extent estimated and scored as adapted from Fouché (2009) and Kleynhans (2007)(TABLE 3.3). At each site, the surfaces water samples were collected from the water column with 1L polypropylene (PP) bottle as described by Musselman (2012). These samples were analysed at Northwest University. The constituents included calcium (Ca), chloride (Cl-), potassium (K), magnesium (Mg+), sodium (Na), ammonium nitrogen (NH4+-N), nitrate-nitrogen/nitrite nitrogen (NO3--N/ NO2--N ), orthophosphate (PO43-) and sulphates (SO42-) and chlorophyll a. Physiochemical water quality variables including temperature (°C), pH, dissolved oxygen (mg/L), oxygen saturation (%) and electrical conductivity (µS/cm2) were measured in situ at each sampling site in the different sites. The measurements were taken using an Extech DO610 Exstik li Dissolved oxygen, pH and conductivity kit.The present ecological state of the Limpopo River Basin was determined through the fish response assessment index (FRAI) I and II (Kleynhans 2007). The DWS has developed the FRAI approach which is a multiple-criteria decision analyses model in Microsoft® (Kleynhans 2007;Kleynhans and Louw 2007). The eight-step process of the FRAI methodology was used to obtain a modelled and adjust FRAI scores (FRAI I), the target and scenario FRAI scores (FRAI II), score each metric, and asses which altered driver component contributed to the ecological state obtained at each site. and Ter Braak 2003;O'Brien, Swemmer and Wepener 2009). Fish sampled data and species ordination were overlain with environmental variables to determine the drivers of shift in the fish community structures of the Limpopo River basin.In this study direct or constrained analyses were undertaken which involves overlaying captured variance of the explanatory environmental variables onto fish sample and taxa ordination diagrams.The linear response mode used to achieve this is a redundancy analysis (RDA), a derivative of principle component analyses (PCA) using the Canoco version 4.5 software package (Ter Braak, 1994). Data sets used in this assessment is the same fish data from 16 sites collected during April to June 2021 survey. Because abundance data were available, the data were transformed using a Log X+2 -transformation (Van den Brink et al., 2003).During the survey from April to July 2021, 134 sampling efforts were carried out which resulted in the collection of 6387 fish from the 17 sites selected for the study (TABLE 3.4). There was no available water at the UMZI-Y20C-BEITB site and thus no fish community data were collected. Thirtyseven of the expected 77 different species were collected during the survey. LIMP-A41D-SPANW was the site with the highest abundance of fish (total: 2125) and SHAS-Y20B-TULIB was the site with the lowest abundance of fish (total: 50). LIMP-A63C-LIMPK was the site with the highest diversity of fish species (20 fish species) followed by LEPH-A50H-SEEKO, LIMP-A71L-MAPUN and OLIF-B73C-MAMBA with 18 different fish species at each of these sites. SHAS-Y20B-TULIB (3 fish species) and ELEP-Y30C-SINGU (6 fish species) had the lowest diversity of fish present.Oreochromis mossambicus (16 sites), Clarias gariepinus (14 sites), Chiloglanis paratus (11 sites), Enteromius trimaculatus (11 sites), Labeo molybdinus (11 sites), Labeo cylindricus (10 sites) were collected at most of the sites. Chiloglanis paratus (n=2198), O. mossambicus (n=991), Micralestes acutidens (n=836), and L. molybdinus (n=536) were the most abundant fish species caught during the survey. Chetia flaviventris (n=1), Enteromius bifrenatus (n=1), Chiloglanis swierstrai (n=1), and Carnax herberi (n=1) were the least abundant fish species caught.The proximity of LIMP-Y30F-CHOKW to its river mouth and estuary led to the detection of species associated with these habitats namely, C. herberi and Hippichthys spp and Glossogobius giuris. Glossogobius giuris were also collected at ELEP-Y30C-SINGU, LETA-B83A-LONEB, LIMP-A71L-MAPUN, LUVU-A91K-OUTPO, SHIN-B90H-POACH.The invasive species caught were Gambusia affinis (3 sites, n=17), and Cyprinus carpio (2 sites, n=1).Possible O. mossambicus and Oreochromis niloticus hybrids were also recorded at 10 of the sites. No catchment scale migrators (Anguilla bengalensis, Anguilla mossambica) expected to be, were collected during the survey. Locals did mention catching Anguilid eels in the past. Oreochromis mossambicus was the only species with the IUCN category above least concerned that were sampled during the survey. Other species with a vulnerable (Enteromius motebensis), near threatened (Enteromius sp. 'Waterberg'), endangered (Enteromius treurensis, Serranochromis meridianus) and critically endangered (Kneria sp. 'South Africa') were not collected.The FRAII scores obtained indicate that there is a noticeable and significant change in the community structure of the Limpopo River Basin (TABLE 3.5). The explanatory data obtained for each site showed that substrate, habitat cover features, and depth and velocity classes differed between sites (TABLE 3.6). Over the study period, one site (MATL-A1D-WDRAAI) were in a class B/C, five sites were fair, moderately modified (Class C), seven sites were poor and largely modified (Class D), four sites were in a class C/D. The FRAI score obtained for LUVU-A91K-OUTP is most likely caused by sampling error, based on the minimal threats identified and the better fish community structure obtained with a later survey (September, Robin Peterson). During the present study, the main impacts that caused such low FRAI scores were but not limited to, barriers, water quality, altered flows and overexploitation. The sites closer to anthropogenic activities were in a poor state whereas sites within Kruger National Park had an improved present ecological status.Overall, there was a significant difference (p=0.001; There was a significant difference (RDA test, p<0.001) between the fish community structure and the different velocity depth classes (Figure 105). The different velocity depth classes explained 98% of the variation seen in the fish community structure. Fast shallow (FS; p=0.001) and Slow shallow (SS; p=0.008) velocity depth classes were significantly different and accounted for most of the variation seen in the fish communities.There was a significant difference between the fish community structure in relation to their preferences for different substrate types (Figure 106). The different substrate types explained 76.3% of the variation seen in the fish community structure. Of all the substrate types, sand accounted for the greatest variation in fish community structure (RDA test; F=5.91, p=0.001). Chiloglanis paratus, Labeo molybdinus, Labeo cylindricus and Labeobarbus marequensis were closely associated with cobbles, boulders and bedrock. Tilapia sparrmanii, Oreochromis mossambicus, Enteromius paludinosus and Carnax herberi were associated with mud. Enteromius trimaculatus were associated with gravel. There was a significant difference between the fish community structure in relation to their preferences for different cover types (Figure 107). The different covers features explained 61.3 % of the variation seen in fish community structure. Of all cover features substrate accounted for the greatest variation in fish community structure (RDA test; F=6.97, p=0.001). Chiloglanis paratus, Labeo molybdinus, Labeo cylindricus were associated with the substrate as a cover feature. Enteromius annectens, Micralestes acutidens and Synodontis zambezensis were associated with roots and depth as cover features. The variation (77.9%; Figure 108) in water quality were found to be a significant influence on fish community structure (RDA test; p=0.001). Electrical conductivity accounted for most of the variation (RDA test, F=3.60,p=0.002). Chiloglanis paratus, Labeo molybdinus, Labeobarbus marequensis were associated with lower pH values. Of the expected 77 species only 37 species were collected during this survey (TABLE 3.4). The overall ecological integrity of the Limpopo River Basin is altered and ranges from a largely natural/moderately modified (Class B/C) state to a largely modified (Class D) state. These results can be attributed to the existence of water-related stressors, including altered flows, poor water quality, altered habitats and other stressors including alien invasive species and human disturbance to wildlife impacts. Multivariate statistics and FRAI scores were used to unpack the impacts and drivers of the fish community structure (Evans et al. 2021;O'Brien, Swemmer and Wepener 2009;Wepener et al. 2011). Knowledge of the drivers of these fish communities is required to sustainably use and protect the fish in the basin and the rivers that they occur in.Thirty-seven fish species were captured from 17 sites sampling sites. Thirteen of these species were uncommon where less than ten individuals were observed per species. This study was not targeting specific threatened species but rather focused on the broad-scale understanding of fish community integrity across the Limpopo River Basin. Although attempts were made to collect a representative sample of all species by effectively sampling all available habitat types, the absence of some of the fishes from the assessment may reflect inadequate sampling effort. Species not captured were however likely rare, if not absent. In the present study G. affinis (sites = 3, n = 17), C. carpio (sites = 1, n = 2) and possible O. mossambicus and O. niloticus hybrids (sites = 10) were recorded. This hybridisation is one of the main threats affecting the indigenous O. mossambicus which led to the change of the conservation status to 'near threatened' in 2007 (Cambray and Swartz 2007). In addition to this, O. niloticus outcompetes O. mossambicus because of their similar niche space (Cambray and Swartz 2007;Weyl et al. 2020). It is suspected that O. niloticus is spreading through Southern Africa due to aquaculture and anglers (Ellender and Weyl 2014;Weyl et al. 2020). Gambusia affinis has a strong impact on the vital rates of native fish populations (Howe et al. 1997;Lawler et al. 1999;Segev, Mangel and Blaustein 2009). C. carpio causes habitat destruction, change water clarity and are competition to native fish species (Parkos, Santucci and Wahl 2003;Roberts et al. 1995;Weyl et al. 2020;Zambrano et al. 2006). Previous studies have reported Micropterus salmoides in the Limpopo River Basin, but no individuals were caught in the rivers during this survey (Kimberg et al. 2014;De Moor 1996;Weyl et al. 2020). The extent to which invasive species affect the fish communities in the basin is unclear. The ecological effect of invasive species can be severe and range from behavioural shifts of native fauna to the restructuring of food webs and the extinction of species (Rahel 2000;Vander Zanden and Rasmussen 1999). The invasion potential is of concern in the Limpopo River Basin. There is a need for conservation management to remove of invasive species and control the further spread in the Basin.Oreochromis mossambicus was the only species with the IUCN category above least concerned that were sampled during the survey (IUCN 2021). Additional expected species with conservation status that were not collected include: E. motebensis (vulnerable), Enteromius. sp. 'Waterberg' (near threatened), E. treurensis, S. meridianus (endangered) and Kneria sp. 'South Africa' (critically endangered) were not collected (IUCN 2021). Enteromius motebensis was expected to occur in the Notwane, Marico and Crocodile Rivers (DWS 2014;Skelton 2001). This species is moderately intolerant to modified water quality (DWS 2014) and have a negative spatial association with M. salmoides (Kimberg et al. 2014). Altered water quality is a known impact that affects the Crocodile (Keller 1960;Preez et al. 2018;Roux, S.P., Oelofse 2010). Similarly, E. treurensis was expected to occur in the Lower Olifants river but is highly intolerant to altered water quality (DWS 2014). The absence of S. meridianus, and Kneria sp. requires further investigation.Oreochromis mossambicus (n=991, site=16), C. paratus (n=2198,site=11) and L. molybdinus(n=536, site=11) were found at most of the sites and occurred in the highest abundance (TABLE 3.4). C. paratus and L. molybdinus are moderately intolerant to no flow conditions and moderately intolerant to modified water quality (DWS 2014). They are substate specialists and require mostly fast flows, however, L. molybdinus does prefer slow deep habitats (DWS 2014;Skelton 2001). The absence of these species at 6 of the sites are attributed to or in the combination of the absence of preferred habitat (ELEP-Y30C-SINGU, LIMP-Y30F-CHOKW, SAND-A71K-R508B, SHIN-B90H-POACH, SHAS-Y20B-TULIB), altered flows (MOGA-A36D-LIMPK, LIMP-Y30F-CHOKW, ELEP-Y30C-SINGU), and altered water quality (ELEP-Y30C-SINGU, SAND-A71K-R508B).Labeobarbus marequensis is a good indicator species for aquatic ecosystems (Burnett 2013;Ellender, 2008;De Villiers andEllender 2008a &2008b;Impson, Bills and Wolhuter 2007;O'Brien and De Villiers 2011) The low occurrence (sites= 9, n=262) of this species across the Limpopo River basin is of concern. This species is sensitive to anthropogenic activities that cause changes in the condition of rivers. It is particularly sensitive to dam building, altered flows, pollution and siltation (Benejam Vidal 2008;Fouché 2009;Impson, Bills and Wolhuter 2007). This can indicate how altered flows, pollution and river connectivity have impacted the basin.Anguillids were absent in this study which raises concerns about the connectivity of the rivers in the Limpopo River Basin. These species are migratory catadromous species (Bruton, Africa and Davies 1987;Hanzen et al. 2019;Skelton 2001;Whitfield 1998), with four species found in the Limpopo River Basin; A. mossambicus, A. marmorata, A. bicolor and A. bengalensis (Hanzen et al. 2019). The increase in populations and anthropogenic activities in the basin cause an increased demand for water (Petrie et al. 2014). This leads to the building of additional impoundments for water security and continues to add pressure on aquatic ecosystems.The overall habitat integrity in the Limpopo River Basin is in a fair, moderately modified state. The water in the Limpopo River Basin has been oversubscribed which caused the Limpopo River Basin to approach water resource closure (Petrie et al. 2014). Overexploitation and the natural semi-arid variable climate of the Limpopo River Basin have changed the river from a strong-flowing perennial to a weakly-flowing perennial river (Nhassengo, Somura and Wolfe 2021). Individual fish species have evolved different life histories and strategies to survive and are dependent on the available physical habitats and different flow regimes (Baumgartner et al. 2014;Gehrke et al. 1995;Humphries, Koehn and Alison 1999;Poff et al. 2010;Tedesco et al. 2008).For most of the sampling sites, the water quality was in a good range. The sites associated with urban and agricultural land uses had elevated salt and fertiliser-derived nutrients. Evidence of eutrophication occurred at LIMP-A41D-SPANWERK, CROC-A24J-ROOIK, SHAS-Y20B-TULIB. Nutrient pollution causes a decline in biodiversity, through both a loss in species and through increased dominance of certain primary producers (Barker 2006;Cardinale 2011;Nie et al. 2018).Zinc was in a \"poor\" classification at MATL-A41D-WDRAAI, LEPH-A50H-SEEK, MOGA-A63D-LIMPK, LUVU-A91K-OUTPO, and SHIN-B90H-POACH. Zinc along with mercury, cadmium, copper, and lead are the most important heavy metal pollutants that affect the aquatic environment and health of fish (Authman et al. 2015). These metals accumulate in fish tissues (Authman et al. 2015) posing a risk to fish and the human communities that rely on them. The main target of Zinc toxicity is in fish gills where it disrupts the Ca2+ uptake (Authman et al. 2015;Niyogi and Wood 2006). The other endpoints of toxicity included mortality, growth retardation, respiratory and cardiac changes, and inhibition of spawning (Authman et al. 2015).The major sources of sedimentation input in this study were agriculture, urban development and instream barriers (bridges, weirs, culverts) as found in other studies (LBPTCT 2010;FAO 2004). There is a strong relationship between riparian vegetation, instream habitat and community structure in aquatic ecosystems (Cruz, Miranda and Cetra 2013;Dala-Corte et al. 2016). The degradation of riparian zones and wetlands, lowers the water table, causes bank erosion and increases the turbidity of the water (Kori and Mathada 2012). This alters the available habitats resulting in changes in the fish community structure (Dudgeon 2000).The different velocity depth classes had a significant influence on the fish community structures (Figure 105). Hydrological variability influences the physical habitat of riverine systems and thus shapes the structure and diversity of aquatic fauna and flora communities (Cattanéo 2005;Kleynhans 2007;Poff and Allan 1995;Vidal 2008). Fish have evolved different life-history stages and strategies to adapt to the availability of physical habitats and are thus dependent on different flow regime requirements to complete their lifecycles (Gehrke et al. 1995;Humphries, Koehn and Alison 1999;Poff and Zimmerman 2010;Tedesco et al. 2008). A reduction in water velocity would result in a shift of the fish community structure towards limnophilic or semi-rheophilic species. Fish species correlated with the high-velocity flow (L. marequensis, L. molybdinus, L. cylindricus, C. paratus) would shift to species associated with slow-flowing water (O. mossambicus, Enteromius spp., Coptodon rendalli, Tilapia sparmanii, C. gariepinus) (Lamouroux et al. 2006;Poff et al. 1997;Propst and Gido 2004;Richter et al. 2003). For example, at MOGA-A63D-LIMPK and SHAS-Y20B-TULIB the fish community structure consisted only out of pool loving species (TABLE 3.4There was a significant difference between the fish community structure in relation to their preferences for different substrate types (Figure 106). The presence of gravel, cobbles and boulders are ecologically important because several fish species occurring in the Limpopo River basin rely on these substrates for breeding and feeding (Skelton 2001). C. paratus, L. molybdinus, L. cylindricus and L. marequensis showed preferences for cobbles, boulders and bedrock associated with fast velocities. Chiloglanis paratus in the Shashe river associate with Phragmites bed because of the absence of any structured substrate (Marshall 2010). Cichlid species (T. sparrmanii, O. mossambicus) were more associated with mud and sand in slower velocities. Reduced flows create habitats that are more associated with sand and silt and may decrease the occurrence of species reliant on faster flows associated with structured substrates. Reduced flows cause sediments deposition which inundated the substrates. Resulting in the loss of ecologically important substrates which are no longer useful as cover features for fish (Bunn and Arthington 2002;Kleynhans 2007). Loss of these substrates could result in fish community shifts and reduced abundances (Bunn and Arthington 2002;Hall, Jordaan and Fris 2011;Poff et al. 1997). The main sources of sedimentation in rivers are agriculture, urban development, forestry and sand mining (Dugan et al. 2010;Mcintyre et al. 2016;Waters 1995). Most of the sites sampled during this survey had commercial farms, overgrazing, dirt roads and urban areas around the sites. This resulted in sedimentation at CROC-A24J-ROOIK, LIMP-A63C-LIMPK, GLET-B81J-LRANC, OLIF-B73H-BALUL, MOGA-A63D-LIMPK, and LEPH-A50H-SEEKO. The confluence of the Shashe river with the Limpopo River results in sand deposits as observed at the LIMP-A71L-MAPUN site. The increase in sand mining in the Limpopo River Basin (South Africa and Botswana) cause an increase in sedimentation which poses a large risk to the fish communities (FAO 2004).There was a significant difference between the fish community structure in relation to their preferences for different cover features (Figure 107), though not as much as the other environmental variables as it only accounted for 61.3% of the variation. One of the main drivers in the community structure were substrates as a cover feature. Species like C. paratus, L. molybdinus, L. cylindricus associate with the substrate as a cover feature. Whereas species like Enteromius annectens, M. acutidens and S. zambezensis associate with roots and depth as cover features.Different fish species and life stages have different preferences for the availability of cover features (Allouche 2002). Cover structures have three main functions; protection against predators, visual isolation reducing competition and hydraulic shelter (Allouche 2002;Pusey and Arthington 2003;Skelton 2001). Habitat complexity influences the community composition in aquatic ecosystems (Jackson, Peres-Neto and Olden 2001) because it provides a wide range of niche space, decreasing niche overlap and increasing diversity (Beisel, Usseglio-Polatera and Moreteau 2000;Downes et al. 1998;Huston and DeAngelis 1994;Smith, Jonhston and Clark 2014).The variation in water quality was a significant driver of the fish community structure (Figure 108). Electrical conductivity as a water quality parameter was one of the main drivers in the community structure. Run-off from agricultural activities can result in increased conductivity in water (Namugize, Jewitt and Graham 2018;Walser and Bart 1999). High levels of conductivity can have a detrimental effect on fish communities (de Sousa et al. 2014;Thompson, Brandes and Kney 2012;Walser and Bart 1999). Enteromius eutaenia, Enteromius lineomaculatus, Chiloglanis pretoriae, C. swierstrai, Opseridium periguel are species expected in the Limpopo River Bain which are intolerant to modified water quality (DWS 2014). During this survey, E. lineomaculatus were collected at LUVU-A91K-OUTPO and MATL-A41D-WDRAAI. This species had a weak association with any of the water quality parameters. Labeobarbus marequensis, C. paratus, Labeo congoro, L.cylindricus, L. molybdinus, M. acutidens are fish expected in the Limpopo River Bain that are moderately intolerant to water quality (DWS 2014). Most of the sites sampled during the survey had at least four of these species present except for ELEP-Y30C-SINGU, LIMP-Y30F-CHOKW, MOGA-A63D-LIMPK, SHAS-Y20B-TULIB, SAND-A71K-R508B. Of these sites mentioned above the in-situ water quality range were in a good range (LIMCOM 2013) except for the SAND-A71K-R508B site. Agricultural, industrial, urban and informal settlements are land-use activities found around these sites which have the potential to compromise the water quality. The absence of desired habitats and the presence of no-flow conditions (SHAS-Y20B-TULIB and MOGA-A63D-LIMPK) could additionally explain the absence of species. Poor water quality results in the decline of fish species, this is due to both the intolerances of fish species and a decline in their food sources (DWAF 1996;Bilotta and Brazier 2008). Altered water quality can cause an increase in the presence of invasive species because they are often more tolerant to deteriorated and polluted waters (Bunn and Arthington 2002;Dudgeon 2014;Gao et al. 2019).Of the 17 sites sampled in the Limpopo River Basin seven of the sites were in a \"largely modified\" state (Ecological Category =D), five were in a \"moderately modified state\" (Ecological Category =C), four were in a C/D ecological category and only one site was in a B/C ecological category TABLE 3.5).It is concerning that none of the sites were in a mostly natural state (Ecological category = B).Agricultural activities were the predominant land use activities that occurred around most of the sites. This has an impact on the habitat availability (sedimentation and erosion) (Carpenter et al. 1998;Quinton et al. 2010), water quality (pesticides, herbicides, fertilisers, and leachates) and quantity (Rosegrant, Ringler and Zhu 2009) which are important drivers of fish communities. In addition to agricultural activities, the treated and partially treated effluents from wastewater treatment works, urban areas, industrial and informal settlements have impacted sites like the SAND-A71K-R508B, OLIF-B73C-MAMBA, and CROC-A24J-ROOIK. The poor water availability at site SHAS-Y20B-TULIB and MOGA-A63D-LIMPK may have contributed to the lack of references species.Especially those that prefer flowing water (L. marequensis, L. molybdinus, L. cylindricus, C. paratus)and that have migratory requirements (L. marequensis, Anguilla spp., Labeo spp.) (DWS 2014;Skelton 2001) Most of the sites have impoundments (weirs, dams low water bridges) either upstream or downstream (ELEP-Y30C-SINGU, GLET-B81J-LRANC, LETA-B83A-LONEB, LIMP-A63C-LIMPK, MOGA-A63D-LIMPK, OLIF-B73H-BALUL, SHAS-Y20B-TULIB). This has an effect on the flows (Anania 2015) and migration ability of fish species which both have negative effect on fish biodiversity (Dudgeon et al. 2006;Grill et al. 2019). Flow alterations affect the habitats, sediment deposition, migration and life history cues such as recruitment and growth of fish (Bunn and Arthington 2002;Hall, Jordaan and Fris 2011;Poff et al. 1997). Fish have evolved different life-history stages and strategies to adapted to the availability of physical habitats and are thus dependent on different flow regime requirements to complete their lifecycles (Gehrke et al. 1995;Humphries, Koehn and Alison 1999;Poff et al. 2010;Tedesco et al. 2008). More than 100 fish species that require some form of migration for their survival in South Africa (Bok et al. 2007;O'Brien et al. 2018;Whitfield and Elliott 2002). The presence of invasive species could have had an additional impact on the ecological integrity of the fish community. Invasive species are more tolerable to unfavourable conditions such as increase in temperature and flow modifications (Bunn and Arthington 2002;Dudgeon 2014). At the LUVU-A91K-OUTPO site the ecological category of a C was under estimated because of high flows which limited sampling effort and was not attributed to large modification of habitats. O'Brien (2013) obtained the same ecological status for fish at the sites which overlapped with this study (LIMP-A41D-SPANW=C, LIMP-A71L-MAPUN=C/D, SHIN-B90H-POACH=D, LIMP-Y30F-CHOKW=C). This implies that there was neither an improvement nor a worsening of the ecological status of the fish communities at these sites. Rivers that remain in Classes D and E have serious consequences on the resilience of the river systems, which threatens the health of fish communities (Evans et al. 2021).The fish communities of the Limpopo River Basin are presently in an altered state. All sites contain species that were modified from expected fish communities. Anthropogenic activities that occur throughout the basin and cumulate in many parts of the basin caused this altered state. Deteriorating water quality, altered flows, habitat destruction, barriers and invasive species are drivers of change for fish communities in the Limpopo River Basin (O'Brien 2013). However, more work is needed to understand the less abundant species or those species that were absent due to sampling effort.Multivariate analyses showed that changes in velocity-depth classes, substrate type, cover features and water quality variations were significantly drivers of fish communities. Alteration of flows affect these variables, and in turn affect the community structure. Fish communities are indicators of ecosystem integrity because of their predictable responses to anthropogenic disturbances (Wepener et al 2008). Multimeric indices like FRAI are used to monitor anthropogenic disturbances and are able to identify the drivers of fish communities. The FRAI scores showed that all the sites were in a moderately to largely modified state during this study period. This is primarily because of the loss of habitat and unsustainable use of freshwater. The water in the Limpopo River Basin has approached water resource closure. Continued overuse without an increase in protection of freshwater systems will result in a loss of structure (biodiversity and physical ecosystem features) and function (ecosystem process and services) of ecosystems and will have socio-economic consequences. If management actions or laws are not implemented soon, a decrease in biodiversity both in this study and global freshwater systems will continue. The increased modification of natural environments will continue to cause a decline in fish communities' resilienceThe only way of ensuring water security is to manage water resources under worst case future scenarios (Vörösmarty et al. 2010). Aquatic ecosystem management has failed to evolve from binary presence/absence type monitoring towards more dynamic ecosystem process-based techniques. These techniques have the capacity to manage ecological functionality in the absence of sufficient flows. There is a need to evolve the capacity of water management authorities in Limpopo River Basin, so that they can deal with changing environments, increases in water demand and shortages of supply. This study was prompted by recognition that the Limpopo River is stressed due to overutilisation. The challenge is determining the water flow requirements to ensure sufficient water for a perceived sustainable functioning ecosystem (focused on the need of a functional natural environment), while meeting ecosystem services (focused on the needs of people). Meeting such requirements is to be achieved for all people in the basin across human demarcated country boundaries.Aquatic macroinvertebrates are one of the components used in this study as responsive indicators of different flow conditions. Insects have been around since the Ordovician Period (485 -444 million years ago) and have evolved and adapted to the environmental conditions which they were exposed to ever since (Engel 2015). These adaptations include droughts and flooding events in riverine ecosystems (De la Fuente et al. 2018). The aquatic macroinvertebrate community would therefore respond to changes in natural flow conditions. When there is an understanding of the requirements of individuals species throughout their life cycles, such information builds knowledge of community responses to changes biotic and abiotic conditions. to determine which invertebrate taxa are present in the different available biotopes (flow, depth, substrate, hydraulic biotopes, vegetation);  to determine aquatic invertebrate abundances within quantifiable biotopes to better understand habitat preference to the lowest possible classification (i.e., genus or species level); and  to determine present stream conditions using existing classification tools.In this report, the ecological conditions based on present and previous surveys are presented for each site sampled. Detailed habitat preferences based on collected data will be presented once all taxa have been identified to the lowest possible taxonomic level and counted.The Limpopo System drains a surface area of 416 296 km2, encapsulating South Africa, Botswana, Zimbabwe, and Mozambique (Food and Agriculture Organisation 2004). A large portion of the basin flows through arid regions with low rainfall, so the catchment is affected by both physical and economic water scarcity. For this study, the bulk of sites were sampled in the main Limpopo River and its tributaries (Error! Reference source not found.), since biological data is relative scarce despite the size of the catchment.A total of seventeen sites were surveyed for this report, of which two were surveyed in September 2020, and A review of relevant ecological data was undertaken (Dickens et al. 2020). Key sources of information include previous ecological studies conducted: Field surveys for this report was carried out during September-October The following pictures clearly illustrate the nature of each site from an invertebrate assessment point of view, showing the biotopes sampled. Spot measurements of selected water quality variables were taken at each site using portable field meters. The following variables were measured: conductivity (µS/cm); Oxygen (% and g/L); water temperature (°C); and pH. Water samples were also collected infield for chemical analysis. These results are discussed in a separate section but will be referred to where relevant. Where possible data are compared to previously available data to determine whether there are significant changes.Quantitative data are collected by sampling specific demarcated areas within different hydraulic biotopes, substrates, depths, vegetation types, and velocities. The habitat in each demarcated area were measured and then described in terms of velocity, depth, substrates, and hydraulic biotope.The aquatic macroinvertebrates encountered and collected within each demarcated area are then identified to the lowest possible taxonomic level and counted to determine preferences of species and communities.In the stone biotopes, coarser gravel (15 -64 mm), cobble (64 -254 mm) and boulders (>254 mm)were measured with a standard 30 cm ruler. Only substrate loosely arranged on the riverbed was measured. Three angles of individual substrates (boulders, cobble, coarse gravel) were measured. This was to quantify substrate as accurately as possible. The measurements of stones were expressed as area and as a percentage of the square sampled. This provides an indication of surface roughness, and hence provides a rough indication of available cover.Velocity and depth measurements were carried out with an OTT MF pro at each biotope sampled.The handheld OTT MF pro unit's sensor uses a magnetic-inductive current to accurately determine stream velocity. Depth in meters is measured first, after which velocity (m/s) measurements are taken at a depth of 20%, 60% and 80% below the water surface. This information is used to calculate turbulence and provides insight with species-genus abundances on microhabitat preferences.Substrate composition was calculated from the number of measured gravel-cobble-boulder substrates, and sand-fine gravel substrate was estimated. The abundance of algae at each biotope was visually estimated. In the marginal vegetation biotope, plant species were identified where possible, and abundance rated from 1 to 5, with 1 being rare and 5 very abundant. Aquatic macroinvertebrates were collected in different perceived comparable biotopes selected at each sampling site. An area of 40 cm x 40 cm was sampled for each biotope-effort. For stones in current and gravel in current biotopes, a surber sampler with dimensions of 40 cm x 40 cm and mesh size of 500 µm2 were used. In the vegetation and gravel-sand-mud biotopes, and area of 40 cm x 40 cm was demarcated and sampled with a standard SASS-net (30 cm x 30 cm, mesh size 1mm2). All the invertebrates sampled were collected and preserved in ethanol (70%) for further off-site identification and counting. Identification is still ongoing and is attempting to key taxa sampled to the lowest resolution possible.Aquatic macroinvertebrate data was mainly collected in six biotopes, representing SASS5 biotopes (where available) in the form of stones in and out of current, marginal vegetation in and out of current, and gravel-sand-mud in and out of current. The MIRAI (Macroinvertebrate Response Assessment Index) was applied to the data to interpret Ecological Condition of the macroinvertebrate community at each site. The MIRAI is a rule-based model developed by DWAF (Thirion, 2008) considering current limited knowledge of water quality, flow preference, and habitat requirements of invertebrates at family level. The method integrates the currently known ecological requirements of the invertebrate taxa on family level in a community or assemblage to their responses to modified habitat conditions. Distances to sites, fences, locked gates, and searching for landowners meant arriving late at some of the sampling sites, limiting data collection time. At sites with a high diversity of habitats, several habitats could not be sampled due to limited time on site.Sampling following high flows events can produce misleading results, with the hydroperiod of inundated areas mostly unknown. Low taxa diversity would be expected in areas which experienced a brief period of inundation, compared to areas with an extended period of inundation.In this study sampling was focused on quantifying the habitat sampled and identifying the invertebrates in each biotope to the lowest possible taxonomic level (i.e., species level) where possible. Therefore, all the invertebrates sampled are collected with the aim of counting individuals to provide better insight into taxa preferences on genus or species level. To still be able to determine ecological conditions with existing models, in this case MIRAI, SASS5 biotopes were sampled within the SASS time-area limit as much as practically possible.Identification to the lowest possible level takes time, as do the counting. At the time of this report, invertebrate samples were still being identified and counted to be analysed and the information are therefore not incorporated into this report.MIRAI uses \"expert\" input to determine stream conditions. In this report data collected drive ecological status output to determine conditions instead of expert opinion. MIRAI results for all available SASS data were calculated using a standard format to improve consistency and reduce subjectivity.The model also uses \"expert opinion based\" reference conditions to which collected data are compared. Changes in the reference list can potentially have considerable influence on the ecological category. Where limited data is available, reference conditions may change considerably as more information is gathered. This possibly explain differences in Ecological Classes presented in this report at some of the sites compared to those presented in the LIMCOM 2013 report.Results are presented for each site in sequence from highest (drainage basin sequence) in the system to lowest. Results per site are presented in terms of in situ discharge and water quality (TABLE 4.6), instream habitat (TABLE 4.7), and aquatic macroinvertebrates (TABLE 4.8). The variety of habitats were compared to potential habitats (see TABLE 4.3), and expressed as a percentage (i.e., Habitat Heterogeneity). Area sampled (i.e., a combination of the depth, width, length of each sampling effort) was calculated for each of the biotopes.Low habitat heterogeneity was encountered at: the Rooibokkraal site in the Crocodile River (turbulence, hydraulic, substrate, and marginal vegetation)  the Mogalakwena (velocity, turbulence, hydraulic and marginal vegetation)  Limpopo River at Mapungubwe (depth, hydraulic, substrate, and marginal vegetation), and  The Sand (depth, velocity, turbulence, substrate, and marginal vegetation) High habitat heterogeneity was encountered in the Limpopo River at the two sites upstream from the Sasha confluence, A41D-SPANW, and A63C-LIMPK, and the Olifants River at Mamba and Balule. At the Luvuvhu River site, habitat heterogeneity was high, but areas with deeper strong flows with stable substrates were not wadeable.Ecostatus results per site, based on the available data is included for each site. The table below summarises results for the June 2012, April-May 2021, and June 2021 sampling events.Conditions were predominantly categorised as moderately impaired (C-class), with poor conditions in 2021 encountered in the Mogalakwena River. Flow was restricted to a trickle in the Mogalakwena despite most other tributaries in the region experiencing high to moderate flows. Lack of flow in April 2021 is the main driver of poor conditions in the Mogalakwena.The ecostatus in the Shingwedzi River in 2021 was categorised as largely natural to moderate, despite the relative low number of taxa encountered. The reference or expected taxa is low, therefore reflecting relatively good conditions. Flow-depth data were not collected at the Shashe and Umzingwani sites (SHAS-Y20B-TULIB and UMZI-Y20C-BEITB) by the team during a July 2021 field survey. Budget constraints and Covid regulations only allowed for a small team with limited data collection time.The site in the Crocodile River on Rooibokkraal is located the highest up in the basin, and is just above the Marico-Crocodile confluence, which is the start of the Limpopo River. The Crocodile River at the Rooibokkraal site was categorised during the April 2021 survey as moderate to largely impaired (C/D class), but thereafter, based on Ecostatus, the Limpopo River \"improves\" slightly to moderately impaired (C-class). At the sites sampled in the mainstem Limpopo River, the moderately impaired category (C-class) is then maintained all the way to the Chokwe site in Mozambique.Habitat conditions naturally change in a river system from source to sea, with one of the main changes being substrates dominated by cobble-boulder to gravel-sand-mud. At the Mapungubwe site in the Limpopo River, there is a dramatic chance in substrate composition when compared to the Limpokwena site. In the Limpopo River at the Limpokwena site there is an abundance of bedrock-boulder and cobble-gravel biotopes, but at Mapungubwe downstream from the Shashe River confluence, dominant substrates are sand-gravel. This dramatic change in habitat influence the aquatic macroinvertebrate community composition, but where there are stable substrates in flowing water, taxa expected in cobble-boulder-bedrock substrates are still present. For example, in a tree-branch embedded in the sand with relatively fast to moderate velocity, the Epehemeroterans Tricorythidae and Oligoneuridae was present and abundant. Where there was one cobble in flow amongst sand-gravel, there were Hydropsychidae and Tricorythidae present in low abundance. This suggests that the limitations in physical habitat in the Limpopo River at Mapungubwe was driving abundance and presence for Tricorythidae, Oligoneuridae and Hydropsychidae, rather than water quality. The same was encountered at the furthest downstream site on the Limpopo (Chokwe), where Tricorythidae was present in a submerged branch in a flowing side channel.The sites where the ecostatus was categorised as largely impaired (Mogalakwena) or moderately to largely impaired (Lephalale) are tributaries of the Limpopo, where flow conditions were dramatically altered.The Shashe and Mzingwani streams in Zimbabwe are listed as naturally seasonal sand-bed rivers with highly variable rainfall (Van der Waal 1997), with species associated with these systems being potentially well adapted to survive with no surface flows and the apparent availability subsurface flows (Van der Waal 1997).In the Olifants River, sampled during low flow in September 2020 and high flow in May 2021, there was a dramatic change in algal cover on substrates, and community composition within the in substrates in current. Tricorythidae, which was absent during low flow as nymphs, were extremely abundant during high flow. The exotic snail, Thiaridae: Tarebia granifera, was the most abundant taxa in every biotope sampled during low flow but was scarce during high flow. Both these responses are most likely driven by both flow and water quality, but this needs to be determined with supportive empirical evidence. The dominance of Tarebia granifera during low flow conditions provides some insight into what could be expected when low flow conditions are maintained. MoreContributors: James MacKenzie, Stacey GerberDuring April and May of 2021, 14 sites were surveyed and sampled along the main channel of the Limpopo River and some of its tributaries within South Africa. In June 2021 two assessments were conducted in Mozambique, the Limpopo River and the Elefantes, and the Sashe River in Zimbabwe was assessed during July of 2021. The biophysical survey for riparian vegetation at each site consisted of site and riparian zone delineation, determination of the present ecological status (PES) for riparian vegetation, and determination of indicator / environment links in order to determine Environmental Flows for riparian vegetation and definition and parameterisation of endpoints for inclusion in risk analyses using PROBFLO. This report outlines the ecostatus component of the assessment.5.2 METHODS: In situ data collection was conducted with the use of cross-section transects perpendicular to flow. Cross-section locations were determined by on-site geomorphologist and riparian vegetation specialists. As far as possible, sites were placed across single or less complicated channels, perpendicular to flow and included vegetation species that represented flow-dependant community compositions (woody and non-woody).Data collected along cross-section transects were assessed within a 1m 2 area from the base of the staff as a standard and included both biotic and abiotic data. Biotic data was vegetation-related and abiotic data included substrate, geomorphic feature, hydraulics, hydrology, water chemistry, ecotoxicology and elevation.Cross-sections were surveyed using a Leica TCR403 Power total station (FIGURE 5.1). Intervals of recorded points along transects depended upon the variation of topography and vegetation composition along transects. During the setup process, permanent markers (benchmarks) were created in order to ensure future replication of transects. Benchmarks were created in the form of steel pegs inserted into the ground, pegs inserted into the base of large trees or drilled markers on large boulders, bedrock or infrastructure. The purpose of the benchmarks was to allow for the linking of future cross-section profiles to this study. In some cases, sites had been previously surveyed, therefore existing benchmarks were utilized in order to link historical cross-section data to transects surveyed during this study. Several of the sites surveyed during this study were also surveyed in a study that took place in 2012. Some of these sites therefore had existing benchmarks that were utilized in order to link current data to the previously recorded profiles. These data was very useful as it allowed us to identify changes that took place over the nine-year period. Chokwe on the Limpopo River, Mozambique is an example of this (Figure 5.2). One such benchmark was recorded with current data, the benchmark in the form of a corner wall (Figure 5.3). With the use of previously recorded GPS coordinates, photographs and descriptions, we were able to identify the exact locations of the start and end of the previously recorded transect as seen in Figure 5.2 below. Vegetation: Plant species were identified along cross-sections along with individual height and abundance (if woody classification) and cover percentage (if non-woody classification). The relative height of individual plants was recorded along transects with the use of a Leica TCR403 Power total station so that the relative elevation of the individual could be linked to water level and discharge values.Algae: In addition to vegetation data, the percentage cover of algae was also recorded for additional data relating to in-stream conditions. The location was also recorded with the use of a Leica TCR403 Power total station for the determination of relative elevation according to water level and discharge values. Discharge: Discharge was measured using the OTT MF Pro handheld device and a SonTek, M9 River Surveyor. The MF Pro handheld device was utilized by default unless conditions were unfavourable (unwadable or unsafe) to do so. The accuracy of the M9 River Surveyor was limited when water depth was <0.3m. Under conditions where channel depth ranged <0.3m and >1m, channels were divided into sections and assessed with both the MF Pro and River Surveyor. Total discharges calculated by the separate devices were then added together in order to determine the total discharge. The correct usage of a SonTek, M9 River Surveyor includes a minimum of 4-6 runs, perpendicular to flow in order to determine the most accurate calculation of total discharge for a site or section. Preferably, runs were recorded in pairs, including the recording of discharge from Left to Right bank and then again from Right to Left bank (or visa-versa). Once the minimum number of runs were recorded, an average of the total discharge was utilized as the accepted discharge value.Substrate characteristics: Dominant substrate was determined visually at each point along the transect and expressed as percentage cover. Substrate definition was according to the modified Wentworth classification of substrate types by size (Wentworth, 1922). This was also recorded in association with each individual vegetation point recorded along cross-sections in order to determine plant species substrate preferences.Water quality: Water quality data will be applied to statistical analysis for individual plants and also community compositions at each of the study sites in order to determine whether water quality is a driving factor in riparian vegetation species and community composition. Components that were tested included; pH, temperature, turbidity, sulphate, ammonium, nitrates, nitrites, phosphates, chlorides, COD, thorium, magnesium and calcium. The Present Ecological State (PES) of riparian EWR zones was assessed using the Riparian Vegetation Response Assessment Index (VEGRAI) level 4 (Kleynhans et al., 2007), with simplification to 2 broad zones: the Macro-channel bank and the Macro-channel valley (floor). Since all VEGRAI assessments are relative to the natural unmodified conditions (reference state) it is necessary and important to define and describe the reference state for each site. This is done (in part) before going into the field using historic aerial imagery, present and historic species distributions, general vegetation descriptions of the area, any anecdotal data available, knowledge of the area and comparison of the site characteristics to other comparable sections of river that might be in a better state. Armed with this information the reference (and present state) is quantified on site whereby the assessor reconstructs and quantifies the reference state from the present state by understanding how visible impacts have caused the vegetation to change and respond.Impacts on riparian vegetation at the site are then described and rated. It is important to distinguish between a visible / known impact (such as flow manipulation) and a response of riparian vegetation to said impact. If there is no response by riparian vegetation, the impact is noted but not rated since it has no visible / known effect. This is often the case with water quality for example. Ratings of impacts are as follows: No Impact = 0Once the riparian zone has been delineated, the reference and present states has been described and quantified (aerial cover is used) and a species checklist for the site has been compiled, the VEGRAI metrics are rated and qualified. Table 5.1 outlines metrics that were assessed and Table 5.2 outlines the categories that may be the outcome. Rip ZoneThe Crocodile River was a single confined channel at the site, mostly dominated by alluvial features, with consolidated banks and unconsolidated within-channel deposits of sand and gravel (open and vegetated). Banks were dominated by tall trees and shrubs, mostly riparian, but with some terrestrial species, flood benched were mixed woody and non-woody and alluvial bars were dominated by non-woody grasses and sedges and some with reedbeds. Alien vegetation was limited to annual weed species. Dominant species included Cynodon dactylon, Phragmites mauritianus, Panicum maximum, Combretum erythrophyllum, Vachellia gerardii, Ziziphus mucronata and Gymnosporia senegalensis. A schematic profile with associated vegetation and geomorphic features is shown in Appendix B (1) and a list of species observed at site is shown in Appendix B (2).The site occurs along sub-quaternary A24J-00324. This sq was assessed as a category D overall (largely modified; DWS, 2014), but riparian zone continuity was moderately modified, and riparian zone modification was also moderate. The majority of the impacts were thus instream and flow related.In , 2009). This can be used as an indication that at least the banks were historically dominated by dense woody vegetation, notably Acacia (now Vachelia). The present state still reflects this mostly, with an overall PES score of 64.2% (category C, which is moderately modified from reference conditions). The table below outlines a summary of the PES ratings, score and ecological category of zones, and provides most notable reasons for the perturbation.The site occurs along sub-quaternary A41D-00206. This sq was assessed as a category C overall (moderately modified; DWS, 2014), but riparian zone continuity was only slightly modified, and riparian zone modification was moderate. The majority of the impacts were flow related.The present state still reflects this mostly, with an overall PES score of 70.8% (category C, which is moderately modified from reference conditions). The table below outlines a summary of the PES ratings, score and ecological category of zones, and provides most notable reasons for the perturbation.PES SCORE AND CATEGORY WITH MAIN REASONS FOR THE SCORE.The Limpopo River, at the Spanwerk site, was a single confined alluvial dominated channel that flowed into a natural hydraulic control forming a bedrock anastomosing section (dyke) with resultant upstream pool or slower-flowing, deeper areas. As a result, the vegetation was more complex and diverse. Generally, the marginal zone was dominated by a mix of non-woody, well vegetated alluvial areas (mostly Cyperus longus, Cynodon dactylon and Digitaria eriantha along upstream banks or at mid-channel bar edges) and spares bedrock-controlled areas with scattered sedge (C. longus The site occurs along sub-quaternary A41D-00217. This sq was assessed as a category D overall (largely modified; DWS, 2014), but while riparian zone continuity was also largely modified, and riparian zone modification was moderate. The majority of the impacts were flow related.Woody vegetation cover appears to be stable over the last 70 years (compare 1953 to 2005, Figure below) but some has been removed for agricultural lands. The present state however has an overall PES score of 62.0% (category C/D, which is moderately to slightly more modified from reference conditions). The table below outlines a summary of the PES ratings, score and ecological category of zones, and provides most notable reasons for the perturbation.HISTORICAL AERIAL PHOTOGRAPHS SHOWING TEMPORAL CHANGES.PES SCORE AND CATEGORY WITH MAIN REASONS FOR THE SCORE.The Lephalala River, at site, was a single confined channel mostly dominated by alluvial features, with consolidated banks and unconsolidated within-channel deposits of sand and gravel (open and vegetated). Banks were dominated by tall trees and shrubs (some creeping shrubs), mostly riparian, but with some terrestrial and alien species, flood benched were mixed woody and non-woody and alluvial bars were dominated by non-woody grasses and sedges and some with linear reedbeds. Alien vegetation was common, especially along unconsolidated alluvial deposits, but was mostly limited to annual weed species (Notably Xanthium strumarium and Datura innoxia. The most notable impacts resulting in the ecostatus score, as observed at site: well established woody component, some tall trees colonising valley features such as bars suggests reduced flooding frequency and/or magnitude. Alien species presence at the site was mostly annual weeds but with some established perennial aliens such as Mellia azedarach. Some vegetation clearing along banks and at some locations to the river was evident, mainly for installation and access to water pumps, but also for agriculture beyond the banks and livestock and fishermen access to the active channel. Abundant green benthic algae also suggests elevated nutrient loading is possible. The water column was green at the time of sampling. The site was heavily browsed and grazed by goats and to a lesser degree donkeys. The goats came and went in a continuous stream throughout the day, browsing and grazing on almost every species they could reach. Very distinct browse lines were additional evidence of this feeding pressure. As a result of this intense feeding, trampling and traffic in the rivers and adjacent riparian zones, little to no new recruits were noticed. The only species that did not seem affected were the Hyphaene and Vachellia species. These were the only two species noted that had new recruits. Further damage that was noted was damage to the bark of large trees, suspected goats rubbing up against the trees causing damage.Human movement through the area was also high but to a lesser degree than the goat pressure.Humans moved in and out of the river to fetch water for nearby crops that were planted within the riparian zones. These farms were mostly very small and seemed to have low impact in comparison.Children also moved in and out of the area playing in the sand and the water. The most notable impacts resulting in the ecostatus score, as observed at site: reduced flows and floods have facilitated an increase in woody cover in the valley floor, notably Faidherbia albida, whose cohorts along the active channel suggest less frequent and smaller floods. Some vegetation removal due to roads, fence lines and the weir. Invasion by alien species was mostly limited to annual weeds, but these were widespread and dense, particularly within the valley bed. Benthic green algae in the channel suggests nutrients may have increased but this could also be due to less/lower flows.24 April 2021 67.8Cutting and burning of Croton was extensive and intensive on the floodplain of the left bank. Wood was used for animal enclosures and building of rural housing.There was in intensive and extensive Xanthium invasion on the right bank in the lower and upper zone. Larger indigenous trees were present however Xanthium overtook entire undercover area in large masses. None of this was noted on the left bank. The right bank also had less goats, infrastructure and human traffic so this may be a contributing factor. There were also very small amount of new recruits of Argemone in the channel. These were the only species noted growing within the sandy channel (most of which was try, with a small, narrow trickle of water that did not flow).Within the main channel there was almost no flow and had intensive and extensive algae in the water. The water also smelt of sewerage. The fish team also found very low abundances and diversity in the river. A possible reason for no now recruits was the fact that surface water was very far from lower done and consisted of only coarse sand, whereas the riparian vegetation belt consisting of the largest and most prevalent individuals were mostly growing on fine sands.The present state has an overall PES score of 48.2% (category D, which is largely modified). The table below outlines a summary of the PES ratings, score and ecological category of zones, and provides most notable reasons for the perturbation.PES SCORE AND CATEGORY WITH MAIN REASONS FOR THE SCORE.The Mogalakwena River, at site, was a seasonal (with many weirs), single confined channel mostly dominated by alluvial features, with consolidated banks and unconsolidated within-channel deposits of sand and gravel. Banks were dominated by tall trees and shrubs, clearly riparian, with a distinct treeline and require strongly seasonal flows or permanent pools. The site occurs along sub-quaternary A63D-00034. This sq was assessed as a category C overall (moderately modified; DWS, 2014), but riparian zone continuity was only slightly modified, and riparian zone modification was moderately modified. The majority of the impacts were flow related (quantity).From 1955 to 2018 there has been an overall increase in woody vegetation cover although multiple changes are evident with some areas reducing woody cover. Tributaries have a noticeable increase (see figure below). The present state has an overall PES score of 76.4% (category C, which is moderately modified from reference conditions). The table below outlines a summary of the PES ratings, score and ecological category of zones, and provides most notable reasons for the perturbation.HISTORICAL AERIAL PHOTOGRAPHS SHOWING TEMPORAL CHANGES.PES SCORE AND CATEGORY WITH MAIN REASONS FOR THE SCORE.The Limpopo River, at the Limpokwena site, was a complex channel, multiple thread in places, with some backwater areas and mixed alluvial / bedrock in nature. The riparian zone was intact with both lateral and longitudinal connectivity being good and with browsing and grazing pressure likely near natural. Some lee bars and other allivual deposits (notable unconsolidated allivia) were invaded by alien weed species, notably X. strumarium and D. innoxia. The most notable impacts resulting in the ecostatus score, as observed at site, was the reduction and regulation of flow. Many weirs occur along this reach with extensive irrigation. Bank and flood feature denudation from severe grazing and trampling pressure which has led to erosion in some places. Some alien species presence but limited to annual weeds. Filamentous green algae severe which suggests possible elevated nutrients. The site occurs along sub-quaternary A63C-00033. This sq was assessed as a category D overall (largely modified; DWS, 2014), but riparian zone continuity was only slightly modified, and riparian zone modification was moderately modified. The majority of the impacts were flow related (quantity).The present ecological state has an overall PES score of 71.1% (category C, which is moderately modified from reference conditions). The table below outlines a summary of the PES ratings, score and ecological category of zones, and provides most notable reasons for the perturbation. The most notable impacts resulting in the ecostatus score, as observed at site were bank and flood feature denudation from severe grazing and trampling pressure which has led to erosion in several places. Some alien species presence but limited to annual weeds. The site occurs along sub-quaternary A71L-00005. This sq was assessed as a category C overall (moderately modified; DWS, 2014), but while riparian zone continuity was also moderately modified, and riparian zone modification was only slightly modified. The majority of the impacts were flow related (quantity).Comparing 1955 to 2019 there appears to be some channel migration within the macro-channel valley, but the position and density of trees appears to be largely unchanged The most notable impacts resulting in the ecostatus score, as observed at site, were the reduction in flows, which while known, do not appear to illicit a response from the vegetation since the channel floor is wide and sandy and it's unlikely that a more established marginal zone would have developed under reference flows.Removal of vegetation is small, limited to tourist roads and is mainly caused by wildlife, presumably in near natural densities, although some bank erosion (scouring) has occurred. Some nutrient loading may be prevalent sine the water column had high levels of algae. Invasion by alien plant species was relatively high but limited to annual weed species, particularly along flood features and to a lesser degree banks. This site was equally affected by goats and donkey feeding pressure, however donkeys seemed in larger abundances here in addition to the goats. Similar pressures were noted with little to no new recruits and water quality was just as bad, with a terrible sewerage smell to the water with intensive algae compositions. Here however tiny amounts of Ludwigia and Ishaemum were noted but in very small quantities. Some other species were present here too that seemed not to be affected by feeding pressure, including Nicotiana and Cassia. Ziziphus was also noticed here but it was unclear as to whether they were affected by feeding pressure as they were in such low abundances at the site. This site also contained large Schotia individuals but did not notice any new recruits. There were also very low abundances of P. mauritianus. Grazing lawns of Cynodon were maintained by donkeys who we noticed grazing on these small patches.The present state has an overall PES score of 50.9% (category D, which is largely modified). The table below outlines a summary of the PES ratings, score and ecological category of zones, and provides most notable reasons for the perturbation.PES SCORE AND CATEGORY WITH MAIN REASONS FOR THE SCORE.The Sand River, at site, was a single alluvial channel. Banks were gentle, merging into the upland and dominated by mostly terrestrial woody shrubs and trees (notably V. tortilis), but with some ripariuan indicators (P. violacea, C. imberbe, S. brachypetala and F. sycomorus). The macro-channel valley was undulating, with denuded alluvial high flow and flood channels, with dense vegetation on alluvial deposits, mainly sedges (C. sexangularis) and shrubs (Pluchea dioscoridis) but with some tree recruitment in places (F. albida). The active channel was narrow and with substrate covered by algae, lined by sedges and shrubs in places, otherwise open. The presence of Cyperus sexangularis near the active channel suggests the river is seasonal. A schematic profile with associated vegetation and geomorphic features is shown in Appendix B (1).The site occurs along sub-quaternary A71K-00019. This sq was assessed as a category B overall (Largely natural; DWS, 2014), riparian zone continuity was only slightly modified, and riparian zone modification was also largely natural. The majority of the impacts were flow related (quantity).From 1937 to 1987 there was an increase in tree density and coverage and then a reduction to 2020 where tree cover and density was less than in 1937. The channel does however appear to be stable (figure below). The present state has an overall PES score of 78.3% (category B/C, which is slightly modified from reference conditions). The table below outlines a summary of the PES ratings, score and ecological category of zones, and provides most notable reasons for the perturbation.HISTORICAL AERIAL PHOTOGRAPHS SHOWING TEMPORAL CHANGES.PES SCORE AND CATEGORY WITH MAIN REASONS FOR THE SCORE.The Levuhvu River, at site, was a single confined channel mostly dominated by alluvial features, with consolidated banks and unconsolidated within-channel deposits of sand and gravel (open and vegetated), and with an extensive gravel / cobble point bar downstream of the site. Looking upstream from the site the channel was single, bank full and with tall trees to the water's edge.Looking downstream the channel rounded a gravel /cobble point bar with some shrub (P. dioscoridis) and flood-damaged trees (F. albida, Syzygium gerardii). The most notable impacts resulting in the ecostatus score, as observed at site included some vegetation removal for roads, fences and people and livestock access was observed, and some invasion by alien plant species, particularly along the macro channel valley, although the majority were annual weed species. 5.3.13 Olifants River @ Mamba (OLIF-B73C-MAMBA):The marginal zone was dominated by non-woody Ranunculus baurii, Schoenoplectus brachyceras and Phragmites mauritianus. At the transect location, the active channel consisted of four splits (as depicted in satellite image above). The splits in the channel were a result of the build-up of sand bars dominated by sand, cobble and bedrock.The lower and upper zones were dominated by a non-woody component (same as species mentioned above), including Gomphocarpus fruticosus. Woody component was dominated by Nuxia oppositifolia and Breonadia salicina. There was evidence of scouring of channel bank in the upper zone as a result of the 2000 and 2012 flood events. A schematic profile with associated vegetation and geomorphic features is shown in Appendix B (1). The site is mostly natural in terms of riparian vegetation but with some presence of alien annual weeds. The site occurs along sub-quaternary B73H-00311. This sq was assessed as a category C overall (Moderately modified; DWS, 2014), while the riparian zone continuity and riparian zone modification were largely natural. The majority of the impacts were flow related (quantity).From 1944 to 2021 there appears to be a slight increase in woody bank vegetation cover which may be due to individual growth or reduced flooding disturbance, but along in-channel features there has been a loss of woody vegetation cover (figure below). The present state has an overall PES score of 66.5% (category C, which is Moderately modified). The table below outlines a summary of the PES ratings, score and ecological category of zones, and provides most notable reasons for the perturbation.HISTORICAL AERIAL PHOTOGRAPHS SHOWING TEMPORAL CHANGES.PES SCORE AND CATEGORY WITH MAIN REASONS FOR THE SCORE.The marginal zone was dominated by alluvial soils and bedrock, controlled by bedrock with alluvial deposits. The zone was well grassed and supported Phragmites clumps. Main cause of PES:The site had been heavily scoured from recent flood disturbance making it difficult to discern vegetation responses, but flood features supported high densities of alien weeds and remnant pockets of Sesbanea punicea persisted on consolidated features. PES SCORE AND CATEGORY WITH MAIN REASONS FOR THE SCORE.The Groot Letaba River, at site, was a braded channel with both bedrock and alluvial areas, making for complex habitats and diverse vegetation. The Macro-channel banks were dominated by taller tress, mostly P. violacea and Senegalia nigrescens, with terrestrial gasses and shrubs and high densities of agricultural weeds (X. strumarium). Flood benches were dominated by a shrub/grass mixture, mostly G. senegalensis and Sprobolus fimbriatus. In the macro-channel valley, scattered Nuxia oppositifolia were associated with bedrock core bars upstream of the riffle areas where sand deposits occurred. Main cause of PES:The site had been heavily scoured from recent flood disturbance making it difficult to discern vegetation responses, but flood features supported high densities of alien weeds and remnant pockets of Sesbanea punicea persisted on consolidated features. The site occurs along sub-quaternary B81J-00219. This sq was assessed as a category C overall (Moderately modified; DWS, 2014), while the riparian zone continuity and riparian zone modification were largely natural. The majority of the impacts were flow related (quantity).From 1938 to 1996 woody cover and density steadily increased and was then noticeably reduced by 2021, presumably from flood scouring during the 2000 floods (Error! Reference source not found.).The present state has an overall PES score of 70.4% (category C, which is Moderately modified). The table below outlines a summary of the PES ratings, score and ecological category of zones, and provides most notable reasons for the perturbation.HISTORICAL AERIAL PHOTOGRAPHS SHOWING TEMPORAL CHANGES.PES SCORE AND CATEGORY WITH MAIN REASONS FOR THE SCORE.5.3.16 Letaba River @ Lonely Bull (LETA-B83A-LONEB):The Letaba River, at the \"Lonely Bull\" site, was a wide, braided type channel with a clear but not dense woody riparian zone along the banks and sparse and clumped, mostly non-woody vegetation scattered across the macro-channel valley. Tall bank species included C. megalobotrys, P. violacea, C. imberbe and Trichilea emetica. Vegetated bars along the active channel were mostly covered by creeping grass, Notably C. dactylon and Ishaemum fasiculatum with patches of reeds disturbed by floods and grazed. Nuxia oppositifolia shrubs formed woody \"islands\" scattered across the macrochannel floor and surrounded some backwater or pool areas. A schematic profile with associated vegetation and geomorphic features is shown in Appendix B (1). Main cause of PES:The site had been heavily scoured from recent flood disturbance making it difficult to discern vegetation responses, but flood features supported high densities of alien weeds and remannt pockets of Sesbanea punicea persisted on consolidated features. The site occurs along sub-quaternary B83A-00235. This sq was assessed as a category C overall (Moderately modified; DWS, 2014), while the riparian zone continuity and riparian zone modification were largely natural. The majority of the impacts were flow related (quantity).From 1965 to 2019 there appears to have been an increase in woody cover and density, particularly along tributaries (figure below). The present state has an overall PES score of 71.3% (category C, which is Moderately modified). The table below outlines a summary of the PES ratings, score and ecological category of zones, and provides most notable reasons for the perturbation.HISTORICAL AERIAL PHOTOGRAPHS SHOWING TEMPORAL CHANGES.PES SCORE AND CATEGORY WITH MAIN REASONS FOR THE SCORE.The Elefantes River, at Massingir, was a sinuous, braided and confined channel mostly dominated by alluvial features, with consolidated banks and unconsolidated within-channel deposits of sand and gravel (open and vegetated) with some backwater and pool areas that were deeper than the main channel and with silt over sand. The macro-channel floor was extensive, alluvial and mostly nonvegetated or with scattered small trees or shrubs. The macro-channel bank was steep, and dominated by tall riparian trees. Secondary channels were characterized by Phragmites mauritianus and Schoenoplectus corymbosus. Deep pool areas along secondary channels had thick layers of fine sand deposits which support marginal and aquatic vegetation such as Ludwigia adscendense, Main cause of PES:The site had been heavily scoured from recent flood disturbance making it difficult to discern vegetation responses, but flood features supported high densities of alien weeds and remannt pockets of Sesbanea punicea persisted on consolidated features. The present state has an overall PES score of 59.9% (category C/D, which is moderately to slightly more modified). The table below outlines a summary of the PES ratings, score and ecological category of zones, and provides most notable reasons for the perturbation.PES SCORE AND CATEGORY WITH MAIN REASONS FOR THE SCORE.The Shingwedzi River, at site, was mixed bedrock and alluvial and mostly with no marginal vegetation or scattered pockets of low shrub or sedge. Banks were well wooded in places, notably near or associated with deeper pools, possibly perennial pools. The mixed bedrock / gravel riffle areas supported a notable population of Gomphocarpus fruticosus but this areas was also influenced by the confluence of a small tributary to the Shingwedzi. The extensive gravel flood bench was sparse mostly unvegetated by with some shrub. Notably Gymnosporia senegalensis, a species associated with seasonal or drier conditions. Main cause of PES:The most notable impacts resulting in the ecostatus score, as observed at site, are extensive agricultural activities on the macro channel banks, floodplain and upper zone valley features, wood and reed removal and invasive alien weed species on flood features. The site occurs along sub-quaternary B90H-00145. This sq was assessed as a category B overall (Largely natural; DWS, 2014), riparian zone continuity was largely natural, and riparian zone modification was also largely natural. The majority of the impacts were flow related (quantity).From 1942 to 2016 in-channel pools seem to have expanded / deepened, but woody vegetation density and distribution appears stable along the main channel and has increased slightly along smaller tributaries (figure below). The present state has an overall PES score of 83.0% (category B, which is largely natural). The table below outlines a summary of the PES ratings, score and ecological category of zones, and provides most notable reasons for the perturbation.HISTORICAL AERIAL PHOTOGRAPHS SHOWING TEMPORAL CHANGES.PES SCORE AND CATEGORY WITH MAIN REASONS FOR THE SCORE.The Limpopo River at Chokwe was mostly a single channel within an expansive channel bed dominated by alluvial features, with consolidated gentle-sloping banks. Banks were dominated by tall trees (Mostly Ficus sycomorus) and shrubs, mostly riparian, but with some terrestrial species, flood benches were mostly unvegetated or non-woody and alluvial bars were dominated by nonwoody grasses and sedges and some with reedbeds. Shrubs such as Pluchea and Faidherbia albida saplings were scattered within. Some areas were characterized by silt over sand with no vegetation but usually near areas where aquatic vegetation was common within the water column. The marginal zone was either non-vegetated or characterized by dense overhanging reed. Secondary channels were a mixture of sandy beds or reeds, variously scant. Backwater pools areas were characterised by slower flowing water and dominated by dense aquatic vegetation, mainly Ludwigia adscendence, Commelina africana and Nymphae nouchali.Alien vegetation was limited to annual weed species, but these were common, dense and dominant on alluvial flood features. In places, flood features and channel banks were heavily disturbed by a myriad of vegetable gardens. A schematic profile with associated vegetation and geomorphic features is shown in Appendix B (1). The site is mostly natural in terms of riparian vegetation but with some presence of alien annual weeds, particularly where flood disturbance occurs. Main cause of PES:The most notable impacts resulting in the ecostatus score, as observed at site, are intense and extensive agricultural activities on the macro channel banks and upper zone valley features, and invasive alien weed species in high densities on flood features. 2010) as a range of characteristics, goods and services generated by ecosystems that are of benefit to human well-being. This definition shows that people derive these 'benefits' from ecosystems. The MA categorized ES into provisioning (food, fresh water, fuel); regulating (water purification, climate regulation); cultural (recreation, spirituality); and supporting services (nutrient cycling, soil formation), which are important for the production of all other ecosystem services. Supporting and regulating services are often combined as their functions and processes can be interdependent. All these different categories of ecosystem services are linked to human livelihoods and ecosystems functions. Ecosystem services that benefit human livelihood can be both directly and indirectly. Direct use, includes human use of products from the river e.g. medicinal plants, food products, etc.) and indirectly include functions ecosystems perform that are used and valued by human societies, such as the provision of clean water. Such indirect services are linked to the functionality of ecosystem processes of river basins.The following table shows the different ecosystem services observed in different parts of the Limpopo River Basin. Ecosystem services observedSite is upstream associated with a number of commercial farms. The main ecosystem services are provisioning (water for irrigation in the farms for vegetables and cash crops, water supply to municipality and communities). Supporting services are also important for the life cycle of many fish species in the river which depend on the natural variability in the river flow.A number of commercial farms are found around this sites and most with instream irrigation pump houses. Some parts of this site are used for cultural and spiritual rituals. Flow is regarded as an important attribute in this site for water supply to the farms and for the cultural rituals as some rituals only take place at high flow.The main ecosystem service in this site is commercial irrigated agriculture mainly for cash crops which prefer dry conditions e.g. tobacco and beans. The farms are allocated about 200l/sec to irrigate 120 ha. Subsistence fishing is also an important ecosystem service in this part of the catchment .LIMP-A36C-LIMPK The site is situated within the Limpokwena nature reserve and the main ecosystem services are the aesthetics services from ecotourism and and provisioning of water for farm irrigation within the reserveThe Mogalakwena River system was identified as a floodplain system, which is attributed for fishing, farming services and enhancement of water quality with the removal of phosphates as well as by removing nitrates and toxicants.The water is also used for household and small hold agriculture.Site is within the Mapungupwe Transfrontier park shared by Zimbabwe, and South Africa. In South Africa, the main ecosystem services are the maintenance and refugee for fish as a variety of fish species depends on the natural variability in river flows in this site and maintaining the site for aesthetics(tourism). However, this site has competing ecosystem services demands as the Shashe village in Zimbabwe also derive provisioning ecosystem services which include water for domestic use, fishing.Site is downstream of the Musina town. This is an important part of the catchment that supports the population from Musina for water provisioning, fishing and agriculture. Community members fish a number of species in this site which includes Tilapia, Carp and Tigerfish. Further downstream of this site, subsistence and commercial irrigation farming (tomatoes, beans) in downstream villages(Masisi) is common. Fresh produce shops around Masisi village, rely on groundwater (adverts for groundwater drilling). Cultural and spiritual ecosystem services were observed in this part of the catchment as burnt candles from these rituals were observed. This sites is also used to harvest medicinal plants.Ecosystem services observed LUVU-A91K-OUTP The site is within the Kruger National Park, the flow regime in this site is important to maintain the site's aesthetics which is an important feature for the Outpost Lodge tourists. It also supports the delivery of a range of different provisioning services such as clean water and supporting services which is maintaining aquatic plants and fish habitats within the Kruger parkThe site is within the Kruger National Park, so it is most important for tourists' attraction (aesthetics) as it is along a tourist road to camping sites. The site also supports fish diversity.The site is within the Kruger National Park, site is upstream of villages and commercial farms. The main ecosystem services in this part of the catchment is the maintenance of the area' aesthetics and provision of irrigation water downstream.OLIF-B73H-BALUL Site is within Balule nature reserve, the main ecosystem service in this site is maintenance of the area's aesthetics for tourists' attraction, maintenance and supporting of river' riparian zones and instream biodiversity.Site is at Mamba Kruger national park and the main ecosystem services are to support and maintain the ecosystem for conservation and aesthetics for tourists attraction GLET-B81J-LRANC Site is in the Groot-Letaba River, upstream of the Kruger National park. This site is downstream of Seloane community which use the river for fishing, abstract commercial and subsistence agriculture irrigation water. The riparian vegetation is over-utilised, mainly for firewood, fence construction, furniture, medicinal purposes and food.In this part of the catchment, the river's flow is mostly important for irrigation. This site is within a community who fish, fetch water and practise subsistence farming. This site is in the lowest part of the Limpopo Basin, which means it is a sink region.Based on the different ecosystem services observed from the different sites along the Limpopo as presented in Table 6.1, the basin' ecosystem services can be categorised into; cultural, regulating, provisioning and supporting services as shown in Table 6.2. The river's flow contributes directly to the maintenance of aesthetics value, fisheries, provisioning of products and raw material, educational/research and cultural use of the river as categorised and described in Table 6.2. The provisioning ecosystem services identified in the basin include: irrigation agriculture water, fishing, sand mining, grazing of livestock along riparian area, and use of riverine trees for medicinal purposes.The provisioning services were the most commonly observed ecosystem services in the catchment because of their tangible nature. Abstraction of irrigation water for commercial agriculture is the most prevalent provision ecosystem services in the most upstream parts of the basin from the headwaters to Mogalakwena River. Irrigation has been identified as the major water use in the Limpopo basin (Qwist-hoffman,2013). The provisioning of water for irrigation within the Limpopo River Basin is supported by natural and built infrastructure(dams), as most of the commercial farms have dams to store irrigation water in the most upstream parts of the catchment. According to LBPTC (2010), there are over 160 major dams in South Africa within the Limpopo River basin with storage capacities ranging between 10 Mm³ and 100 Mm³. FAO, ( 2004) reports that, run-of-river abstractions for irrigation are most common along the main stem of the Limpopo River, in the South African side of the basin with increase in irrigation water abstractions in the dry season. Nhassengo, Somura and Wolfe, (2021) attributed the dams and over abstraction of water upstream to water shortages in the lower catchments, affecting downstream ecosystems and people with a high socio-economic dependence on these basin's ecosystems. As a result, the Limpopo River which was initially a perennial river in Mozambique, is sometimes dry as a consequence of the abstractions and this has a major effect on the provision of ecosystem services in the Lower parts of the basin.Besides using the Limpopo River water for commercial irrigation, most of the rural communities adjacent to river systems in the basin rely on the river for provisioning of water for subsistence livelihoods like agriculture . The irrigation water is supplied through irrigation schemes or individually. The Chókwè irrigation scheme is the largest irrigation scheme in Mozambique and several irrigation schemes in South Africa along the Groot Letaba. Based on field visits and observation in the Groot-Letaba most of the subsistence farmers pump less than 200 litres of water for a hectare of land under irrigation. Water from the different parts of the basin is drawn through canals and water pumps. Along the Groot-Letaba River, the Prieska 17km water canal diversion supply subsistence irrigation water to all the communities' farms adjacent to the Groot-Letaba River.The provision of water for subsistence agriculture irrigation in the catchment provides food security, income generation and alleviate poverty which are all important for human well-being (FAO 2004).Observation from the field also showed that, downstream of Musina town along the Sand River site, communities from the Masisi village irrigate their subsistence farms (tomatoes, beans). Most parts of the river along the Chokwe site in Mozambique, are filled with sand and communities abstract water from wells in the sand beds along the river banks to irrigate their household gardens and for water supply. The fresh produce are major sources of income for the communities. However, the high abstraction of irrigation water upstream leaves the downstream parts of the catchment most of the time dry and the communities downstream of the basin vulnerable as they do not have sufficient coping mechanisms to cushion them against the threats of low flow (Qwist-hoffman, 2013). As a result, on average, subsistence farmers in the basin only produce enough food to feed their families adequately for less than 8 months of the year (Cunguara and Darnhofer, 2011). Surface water for irrigation and households in the basin is conjunctively used to sustain the water quantity and quality requirements of users in the catchment.Livestock production in the basin is both socially and financially important to smallholder farmers in the Limpopo River basin. Based on observation, the most common livestock are cattle and goats which usually graze along the basin rivers' banks. During community interactions the residents highlighted that cattle and goats are most preferred because of their high returns. Most of the livestock farmers openly graze as opposed to buying fodder which is expensive. In some parts of the catchment e.g. Mapungupwe where South Africa and Zimbabwe share the river, the river is mostly used for predominately livestock (riparian zone grazing) and domestic use.Subsistence fishing is another provisioning service that is common in the basin. Along the GLET-B81J-LRANC site, Sand River and Chokwe sites smallholder fisheries were observed and the most preferred fish species were clarius gariepinus, tilapia and carp. The fishers used different fishing techniques and in summer they can get about 200 fish of more than 200 mm in length. The local communities fish for food and income. However, there are other parts of the catchment where recreational fishing takes place. However, the fishing in the Groot Letaba is a regulated activity with only neighbouring community members allowed to fish in the designated fishing sites. According to fishers found in the Groot Letaba and Sand River fishing sites, fishing in the area is usually preferred in summer as they are likely to find more fish compared to winter. The fishers characterised winter fishing as high effort but with low fish catch rate which renders the activity time consuming.The river systems long the Limpopo basin also provide households with goods and services that are not related to crop production but are used for building, medicinal plants and household fuel. In the middle part of the catchment in Gwa-Selwana the community harvest the Mimusops zeyheri which is called nhlantswa in Xitsonga and mmupudu (Northern Sotho) to treat gastritis diseases. According to Du Preez et al., (2003) and Amusa, ( 2009), the roots of Mimusops zeyheri are of ethnomedicinal use to treat ulcers and wounds. Mimusops zeyheri is mostly found in the Limpopo province and other areas towards the north of South Africa, in rocky hillsides, riverine boundaries and in dry open woodland and bushveld (Du Preez, 2003;Palgrave 2002).Besides using the plants for medicinal use, some plant found along the rivers' riparian zones are harvested for firewood. Evidence from the field showed that villages around the Shashe River, Groot-Letaba River and Chokwe harvest some trees for household firewood. Observation from the field also showed that sand mining is prevalent in some parts of the basin. Sand mining was observed downstream of site GLET-B81J-LRANC along the Groot-Letaba River. The sand mining takes place along the river bank and it is sold to local communities for building their houses.Regulating services are those ecosystem services that regulate water flow, maintain biodiversity, nutrient recycling and bank stability. These services control runoff and pollutants which could be distractive.In the Limpopo Basin, flood plains, wetlands and river's riparian zone play a major regulating service to the river's ecosystems. The Mogalakwena River system was identified as a floodplain system. The majority of the ecological services provided by the Mogalakwena River floodplain are important for the enhancement of water quality with the removal of phosphates as well as by removing nitrates and toxicants from neighbouring agriculture farms. Also vegetation alongside rivers, may remove some of these anthropogenic inputs before they enter systems, thus ameliorating these damages. Elevated loads of nutrients from commercial farms and suspended sediments entering reservoirs lead to algal blooms and increased turbidity, increasing the costs of potable water supply. So, the floodplains and wetlands work as sinks for waterflow and nutrients. Turpie et al., (2017) explains that, wetlands have a sink capacity, which includes water stored in saturated soils. The Mogalakwena's flood plain which is close to site MOGA-A36D-LIMPK is of relatively level alluvial made of sand or gravel adjacent to the river channel which also works as a sink which regulates flow.According to Marneweck and Batchelor (2002) the floodplains regularly work as sinks for water overflows during floods and periods of high rainfall in the catchment.The River basin's flow also plays a role in sustaining and supporting freshwater-dependent habitats e.g riparian zone and flood pans which are breeding grounds for biodiversity. The riparian zones play an important role as nursery areas for riparian vegetation. The Limpopo and the Luvuvhu rivers has a number of landscape features such as the riverine, riparian floodplain, floodplain grassland, river channels and flood pans which all provide food, shelter and nesting sites to a large number of bird and aquatic species. The pans are important as a stopover for migratory water birds in the basin. There are 31 flooded pans supported by river flows of the Limpopo River and Luvuvhu, and the flood pans provide food, shelter and nesting sites to a large number of bird species making the site a biodiversity hotspot in the basin. Nhassengo, Somura and Wolfe, (2021) explains that the variation of hydrological regimes in the river systems is vital to support biodiversity and aquatic ecosystem integrity in these hotspots. According to Ramulifho et al., (2019) all elements of a river's flow regime (i.e., magnitude, frequency, duration, timing) are important in structuring and supporting aquatic communities. The area surrounding the confluence of the Mutshindudi and the Luvuvhu River is also regarded as a diversity hotspot for fish and invertebrates which is supported by constant river flow from these systems. However, the biodiversity of this hotspot is under threat due to diminishing instream habitat.Different parts of the Limpopo Basin's ecosystems are recognised for their aesthetics, spiritual, educational, cultural and recreational values. CSIR, (2003) reported that, the various conservation areas in the Limpopo Basin cover an area of 57 538 km2 , and most of this is in South Africa. The protected areas serve as areas of research and tourist attractions.6.5.1 Ecotourism, research and education.In the middle of the Limpopo River, the sites are predominately within protected areas, thus the main ecosystem services are to maintain the area's aesthetics, riparian zone and for tourist attraction. In the Kruger National Park, the Luvuvhu, Letaba, Olifants and Sabie-Sand are important river systems that support the Kruger National Park ecosystem for ecotourism and to improve the park' aesthetics. Observation from sites in the Kruger National Park showed that, the rivers' flow regimes are important to maintain the area aesthetics which is an important feature for tourists' attraction. The Limpopo / Shashe River confluence is a great tourist attraction area. According to SANPARKS (2019) the confluence uniquely integrates with the Mapungubwe Cultural Landscape, Vhembe Biosphere and Greater Mapungubwe Transfrontier Conservation Area to increase the area's aesthetics and attract tourists. This area has become an important conservation area in the Limpopo River as it links both river banks.Beyond tourism and aesthetics values, some parts of the Limpopo basin are important for scientific research and education. Several studies to understand the biodiversity and ecosystems of the Limpopo basin have taken place, in most parts of the basin e.g Livuvhu, Letaba, Olifants Rivers. Scientists and students derive educational value and knowledge about the riverine ecosystems that exists and can be enjoyed by future generations in the basin.Villamagna et al., (2013) explains that the typical flow of ecosystem services is from upstream where they are produced to where they are received by beneficiaries. Figure 6.1Simple illustration of how provisioning service flows in the basin catchment (Bagstad et al., 2013) illustrate how ecosystem services flow within space. Ecosystem services benefits flow across the Limpopo Basin from upstream to downstream, locally or interregional inundated with several sinks (e.g. dams, pollution, drought). Interregional flows are defined as flows between countries, which is between the riparian countries in this case. Based on observation, the provisioning ecosystem services flow in the basin is influenced by several barriers or sinks leading to their degradation and absorption upstream and limited flow to downstream users. The basin provisioning services source location (ecosystems that generate an ecosystem service carrier) are mostly in different parts of the basin with raw water provisioning source locations mostly upstream. The upstream in this basin also have several provisioning ecosystem services' sinks e.g dams (features that can absorb, degrade) as most of water upstream is used for commercial irrigation. These sinks (dams and other pressures) limit the quantity available for \"downstream\" users and the ecosystem services flow paths are blocked by these sinks. FAO-SAFR ( 2004) reported increases in water demand and abstraction in the upper parts of the catchment due to increasing irrigation water demands which led to major shortages in the lower reaches especially in the dry season. According to Chapman and Parker, (2014) river flow in most parts of the basin is at risk, and this will have a major impact on the delivery of flow dependent ecosystem services. According to USAID (2013) ecosystem services in most parts of the basin are threatened by reduced flow as a result of increase in temperature. In this case, increased temperature, is identified as the \"sink\" as it reduces water flow a carrier for other provisioning ecosystem services e.g. fish.Literature also shows that the Limpopo River' flows frequently cease during drought periods mainly in the middle and lower reaches of the river, thus ecosystem services available vary per season (Ashton et al., 2001). Drought is a sink as it depletes the water flow which is detrimental to the flow of ecosystem services. There have been reported severe water shortages in the lower parts of the basin which have negatively affected downstream ecosystems and delivery of ecosystem services.At most of the sites, there is major competition between uses and ecosystem services in the basin.In the upper reaches of the catchment (Lephalale, Marico) irrigation and commercial agriculture competes with smallholder livelihoods like fishing, subsistence agriculture. In the middle parts of the basin (Levhuvhu, Mogalekwena, Olifants) cultural services(eco-tourism) are the most common and compete with small holder provision services e.g fishing , household water use. In the lower reaches of the basin (Chokwe), the major competition is between irrigation and subsistence water use and fishing. Most of the rural local communities rely on the ecosystem services for subsistence needs, food security and livelihood activities. However, their degree of dependency differs across communities and regions, with very high dependence in Mozambique and Zimbabwe. Magombeyi, Taigbenu and Barron, (2013) reported uneven distribution of wealth, resources and opportunities across the basin and identified Botswana and South Africa as more advanced with their economic development compared to Zimbabwe and Mozambique. Theses socio-economic differences were identified as a major contributor to the uneven capacity to utilize the resources in the basin.Based on interactions with communities, there has been loss of ecosystem services at some sites e.g. Chokwe and Groot-Letaba where unpredictable low flows were identified as the main reason for loss of ecosystem services affecting their livelihoods. Communities along the Groot-Letaba explained that they have experienced some periods of water shortage during their agriculture growing season which have resulted in lower-than-expected yields. This is also reported by Nhassengo, Somura and Wolfe, (2021) who interviewed local communities in the Chokwe area and identified declines in water quality, water shortages between August and November as the major reasons for loss of ecosystem services like fishing and agriculture. Since these rural communities are highly dependent on the basin ecosystem goods and services, changes in the supply of these services would have major impacts on the sustainability of local livelihoods, and human well-being.8 DATA APPENDICESBelow is the data describing the water quality as it affects the invertebrates, the instream habitat and the invertebrate diversity and health.Flow conditions were high, and the water colour olive green. Instream habitat was limited to gravel beds, mud, and sand. Marginal vegetation was limited to reeds (Phragmites sp.). Hydraulic biotopes were represented by shallow riffles, deep and shallow runs, backwater pools, and eddies. Photographs taken at the site are included in FIGURE 4.1.Water at the time of sampling was categorised as cool alkaline freshwater. The pH and dissolved oxygen levels were elevated at the time of sampling, but more data is required to determine the extent. Water quality samples analysed indicated elevated levels of phosphates and potassium. Conditions was rated as moderately to largely impaired. The highest percentage of SASS rated sensitive taxa was recorded at the A2CROC-ROOIB site during April 2021, with flow sensitive taxa present but not dominant.Taxa associated with slow and stagnant waters dominated, followed by moderate to fast flows. Most taxa were associated with the vegetation biotope, followed by cobble-gravel and sand mud.Flow conditions were visually rate as high, and the water colour clear with a slight green tint.Instream habitat was diverse, with bedrock, boulders, cobble, gravel, sand, mud, silt substrates all in abundance, with a variety of stream velocities (68% - Cobble was dominant in the Effort 1 and 2 biotopes (6.7% and 5.1%) but occupied only 7% and 3% of the total area sampled, which is considered low (Table 8.13). Conditions were rated as moderately impaired. Sensitive taxa are present, but some expected sensitive taxa (e.g., Heptageniidae, and Tricorythidae), were absent. Taxa considered tolerant dominated the stream community, which could also be related to available habitat. Rheophilic taxa were present and dominant in the flowing portions of the stream. Historical results for the stream also indicate low SASS scores for a 2008 survey.Flow conditions were visually rate as high, and the water colour was visually rated light to greenish brown. Instream habitat was rated as moderate to low, with boulders, cobble, and bedrock abundant downstream from the weir, but sand-mud and less often gravel dominant further downstream. Velocity-depth categories were well represented below the weir, but variety diminished further downstream. The marginal vegetation was dominated by reeds, with sedges and grasses present but very limited. Site photographs are included in FIGURE 4.4.Water at the time of sampling was categorised as cool circum-neutral freshwater, with elevated phosphorus (PO4). The electrical conductivity (85.7 mS/m) was elevated compared to historical data (Dickens et al. 2020). Conditions were rated as moderately impaired. Taxa considered sensitive were represented in the total sample, while flow sensitive taxa were present but not abundant.Flow was restricted to a trickle close to the weir wall, with no areas with any visible flow. The water colour was clear, with substrates at the site dominated by bedrock, cobble, gravel, and sand. Instream habitat was rated as low due to the lack of hydraulic biotope and flow-depth diversity.There was no marginal vegetation at the site, linked to recent bank scouring during high flows and the now absent flow. Site photographs are included in FIGURE 4.6.Water at the time of sampling was categorised as cool-warm circum-neutral subsaline water, with elevated nutrients, sulphates, sodium, magnesium, and calcium. Conditions were rated as largely impaired. One flow sensitive taxon, Trichoptera: Hydropsychidae, was surviving the available flow, but its speculative whether it will complete it life cycle. Other expected flow sensitive taxa were all absent. No SASS-rated sensitive taxa were present.Flow was visually rated as very low, and very shallow over sandy substrates. Instream habitat was rated as low due to the lack of substrate other than sand, hydraulic biotope, and flow-depth diversity. High quantities of algal growth, with marginal vegetation absent. Measured discharge on 23 July 2021 was 0.000 m 3 /s, representing no change from the natural median for July.8. Taxa encountered were those expected in stagnant pools with sand-muddy substrates. The zero surface flow conditions appear to be natural for this time of the year, with taxa present adapted over millennia to survive these conditions.Flow was visually rated as moderate, mainly shallow over sandy substrates. The water colour was light brown, with cobble limited, fine gravel to coarse sand dominant, and silt-mud-sand dominating slower flowing portions. Instream habitat was rated as low due to the lack of substrate, hydraulic biotope, and flow-depth diversity. Marginal vegetation was present but limited. Site photographs are included in FIGURE 4.7.Water at the time of sampling was categorised as warm alkaline freshwater, with elevated ammonium, and dissolved oxygen. Water temperature is linked to dominantly the shallow streambed, and it's likely that temperature fluctuate as a result. Conditions was rated as moderately impaired. Flow sensitive taxa were present but limited to suitable habitats which were severely limited. SASSS rated sensitive taxa were present but not dominant. A branch sampled in current produced several individuals of the Ephemeropterans Tricorythidae and Oligoneuridae. No Hydropsychidae were encountered.Flow was visually rated as a trickle (<30 cm width) with floating algae over shallow sandy substrate.Coarse sand was dominant, with bedrock boulders present but not submerged. Instream habitat during sampling was rated as low due to the lack of substrate, hydraulic biotope, and flow-depth diversity. Measured discharge on 25 July 2021 was 0.000 m 3 /s, representing no change from the natural median for July.8.1.9.1 Instream Habitat Sampling efforts were restricted to sandy-mud-silt substrates. Filamentous green algae were also sampled on the shallow sand bed. Marginal vegetation was absent. Habitat heterogeneity was rated low.A7LIMP-MAPUN Discharge (m 3 /s) 0.000* Taxa encountered were those expected in stagnant pools with sand-muddy substrates. The zero surface flow conditions appear to be natural for this time of the year, with taxa present adapted to survive these conditions.Flow was visually rated as very low, predominantly shallow over sandy substrates. Water in the stream was categorised as warm, alkaline and subsaline. The water colour was clear to light brown, with cobbles limited, large boulders present, fine gravel to coarse sand dominant, and silt-mud-sand dominating slower flowing portions. Instream habitat was rated as low due to the lack of hydraulic biotope, and flow-depth diversity. Stream conditions were categorised as moderately impaired. Taxa diversity was relatively low, with sensitive taxa mostly absent. Flow sensitive taxa were scare and dominated by two Hydropsychidae species. Impaired conditions are attributed to limited instream habitat linked to subsaline conditions, with low flow-velocity-depth habitat and substrate diversity.Flow was visually rated as very high, with high availability of stable substrates restricted to deep areas during this high flow sampling event. Water in the stream was categorised as cool-warm alkaline freshwater. The water colour was clear to light brown, with cobbles-boulders the dominant habitat. Instream habitat was rated as high, and the inundation period of wadeable habitat unknown. Site photographs are included in FIGURE 4.9.A7SAND-R508B Although the cobble-gravel-boulder substrates were present and abundant, a large quantity was embedded in a bed of sand-gravel, therefore the lower volume occupied. Flow was visually rated as very high, with high habitat diversity. Water in the river during the 2021 survey was categorised as cold-cool alkaline freshwater. The water colour was clear to brownish, with cobbles-boulders, bedrock, gravel, and sandy substrates abundant. Instream habitat diversity was rated as high (68% -Table 8.50).8.1.13.1 Water Quality Measures water parameters in the 2020 and 2021 survey suggested elevated pH, while electrical conductivity levels decreased when compared to the upstream site, B7OLIF-MAMB1. There is also in increase in nutrients between the Mamba and Bulule sites. Most of the stone biotopes were sampled upstream from the bridge. in the channel, but this biotope was not sampled. Cobbles, gravel, and sand were very dominant, with a high variety of hydraulic biotopes, velocities, and depth classes. Habitat heterogeneity at the site is high (68% -Table 8.50). The bridge causes an impoundment when overtopping, resulting in deposition in the upstream channels. Loose cobble-gravel-boulder substrates are therefore present, but most is embedded within a layer of sand-gravel-cobble.Aquatic macroinvertebrate information was supplied by SANPARKS from their Kruger National Park Rivers Biomonitoring Programme. Information was also collected from the Freshwater Biodiversity Information System (FBIS). Additional information is available for the Balule site on Molluscs (Oberholzer & van Eeden, 1967;De Kock et al. 2002;De Kock & Wolmarans 2010), Hirudinea (Oosthuizen 1991), and Decapoda (Pienaar 1961;Taylor 1990). Sampling dates for available information is included in Table 8.52. Reference conditions are made up of all the available data for the Balule site and supplemented with taxa listed for the PESEIS Reach (B73H-00311) (Department of Water and Sanitation, 2014). encountered in 1987 and 1988 surveys (Taylor 1990). Old empty shell of Potamididae were picked in the deposition flood bench near the site. Cover for aquatic invertebrates in the gravel-sand dominated streambed was limited (Table 8.66), with most taxa encountered in the marginal and aquatic vegetation biotopes. Flow was visually rated as low, with moderate habitat diversity. The water colour was light brown to clear, with sand-gravel substrates dominant. A rapid downstream from the bridge culverts provided some bedrock substrate in moderate to fast flows. The rest of the substrates in the channel was dominated by coarse sand-gravel. The water during the 2021 survey was categorised as cool, alkaline freshwater. Instream habitat diversity was rated as moderate (59% - ","tokenCount":"22932"} \ No newline at end of file diff --git a/data/part_3/0294725020.json b/data/part_3/0294725020.json new file mode 100644 index 0000000000000000000000000000000000000000..d3e10c54dae891ba9c7d081d36a11460bd61bfa3 --- /dev/null +++ b/data/part_3/0294725020.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"cb6ac17200f289a63789a3e92b7b1363","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/b59d5e3c-061f-4263-ba4c-75b3a9c578a9/retrieve","id":"1855813341"},"keywords":[],"sieverID":"c17088e8-1a05-49a1-a72d-ac5bec5e3ffa","pagecount":"48","content":"Without question, agricultural training and capacity building are now back on the development agenda. In recent years, a number of very infl uential initiatives have pointed out the critical role of agricultural S&T in poverty alleviation, food security, and broad-based economic growth. Given the changing global, regional and national R&D context ILRI's most signifi cant challenge is to provide a sharply focused high quality research and outreach programs including capacity strengthening that support food and agricultural innovations in developing countries by enhancing their capacity to improve the livelihoods of the poor and marginalized people and constituencies which depend on their livestock as the primary asset. ILRI strongly believes that building capacity within the livestock innovation system is critical for broad based sustainable development and economic growth.The spirit of this revised strategy is to continue to carry out training and capacity strengthening and promote learning compatible with ILRI's research priorities and outputs and develop implementation of programs to do so in ways that strengthen, mobilize and sustain its partners capacities. The important strength of this strategy is that the preparation process was participatory, all inclusive, demand driven and is based on fi ve sub-regional training needs assessment studies of the livestock sector completed in 2007. The proposed strategy provides the fl exibility to develop targeted programs based on the priorities and it explicitly recognizes the inherent diversity in the capacity development needs. Systematic efforts are also made to identify gaps in both technical as well as soft skills needed to implement an effective, effi cient and impact oriented capacity strengthening program. The important departure is the explicit recognition of the need for ILRI to reorient its capacity strengthening activities to 'changing institutes' by 'changing individuals' rather than the latter alone as has been in the past. In addition to supporting the current research portfolio of ILRI, every effort will be made to address the emerging issues and contemporary challenges facing the livestock innovation systems in the developing countries and the associated capacity needs. To keep the strategy relevant and dynamic it will be updated periodically to refl ect the changing circumstances and needs of our partners.ILRI would like to thank the WK Kellogg Foundation and the ASARECA-AAARNET for the partial funding support provided. The contribution of Prof Carl K Eicher to the development of this strategy is also acknowledged and very much appreciated.I also would like to congratulate Dr Anandajayasekeram, the Manager of CaSt and his team for their efforts in developing this strategy. We look forward to your support and input in the successful implementing of this strategy.Director, Partnerships and Communications ILRIInternational Livestock Research Institute (ILRI) is one of 15 future harvest centres, which conduct food and environmental research to help alleviate poverty and increase food security while protecting the natural resource base. Building on three decades of experience, ILRI works at the crossroads of livestock and poverty by bringing high quality science and capacity building to bear on poverty reduction and sustainable development. As part of its researchbased outreach and capacity strengthening, ILRI assists its partners by offering opportunities for long-and short-term training for researchers and development practitioners.Capacity building is a core priority of ILRI because of the important role it plays in economic growth and development as well as addressing the rapid changes in the bio-physical, socio-cultural, technological and policy environments of the agricultural innovation systems in the developing as well as the developed world. To ensure that ILRI is well-positioned among capacity building organizations, it commissioned a CCER (Centre Commissioned External Review) on capacity strengthening in 2004. Despite ILRI's recognized success stories, the review concluded that the current capacity strengthening activities of ILRI are not directly related to the needs of ILRI's partners. The review recommended that the Capacity Strengthening Unit (CaSt) should expand its operations. The 2006 CGIAR System-Wide Evaluation of the Impact of Training in CGIAR Centres also identifi ed a number of capacity strengthening issues that need to be addressed. Further, the 2006 External Programme and Management Review (EPMR) of ILRI recommended that ILRI should not only make its Capacity Strengthening activities explicit and measurable in program design, but also should report results on its training programs and follow-up activities.ILRI's new livestock research and development strategy calls for the joint development of the capacities of a broader range of partners and stakeholders, including governmental organizations (GOs), non-governmental organizations (NGOs), civil society organizations (CSOs), farmers organizations, private sector agencies, and consumers. ILRI needs to develop a capacity strengthening strategy that includes, innovative, strategic, long-term partnerships with NARS and other collaborators in the livestock based innovative system. This revised capacity building strategy has been prepared as a response to these identifi ed needs and emerging challenges. The strategy is missionoriented, participatory and demand-driven. It has been shaped by the internal and external needs of the various stakeholders, as well as the rich experience of past capacity strengthening activities of ILRI and other CGIAR centres. This document outlines the medium-term strategy of the Capacity Strengthening Unit (CaSt). The strategy addresses the concerns of ILRI management, CCER, EPMR, the CGIAR System-Wide Evaluation of the Impact of Training.Any strategy development process is based on four essential components: the analysis of the environment, including opportunities and threats; evaluation of the current status to identify strengths and weaknesses; assessment of the client needs and the participation of the stakeholders to validate the output and outcome of the process and priorities. This strategy sets out the need for capacity strengthening activities, discusses the strengths and weaknesses of CaSt's current activities and emerging opportunities and outlines the strategic objectives to be pursued for the coming years which draw lessons in a learning by doing manner. To keep the strategy relevant and dynamic, it will be updated periodically to refl ect the changing circumstances.Since its inception, the capacity strengthening efforts of ILRI (and its predecessors ILCA and ILRAD) have contributed to human and institutional development. But declining core funding has resulted in reducing the size and scope of capacity strengthening activities which are now largely integrated into donor-restricted project funding. This has made it diffi cult to maintain high quality training programs. This approach does not allow ILRI to adequately address the priority needs of its partners. In fact the weakest NARS may have a double disadvantage since they neither have the capacity to formulate fundable projects nor to pay for training. The recent internally-commissioned external review concluded that the current activities of ILRI are neither large enough nor responsive enough to meet the needs of its partners in the developing world. ILRI's new R&D (research and development) strategy calls for new programs to be jointly developed with a broad range of stakeholdersgovernmental and non-governmental organizations, civil society organizations, farmer organizations, private sector agencies and consumers. The CCER review urged ILRI to develop a capacity strengthening policy and strategy to guide the activities of the CaSt unit.The most recent EPMR noted that CaSt activities were not suffi ciently connected with ILRI's research. It recommended that ILRI should make capacity strengthening activities explicit and measurable in its research program design.In many countries, there is increased pressure to undertake livestock research in such a manner that the output is benefi cial to resource-poor farmers. Increasingly, there is a need for ILRI to reorient its capacity strengthening activities to 'changing institutes' by 'changing individuals', rather than the latter alone as has been in the past.Why is there a renewed interest in capacity strengthening? Without question, agricultural training and capacity building are now back on the development agenda. There is now a common agreement in the development community that without adequate human, scientifi c and institutional capacity, the Millennium Development Goals cannot be realized. Five reasons help explain the renewed debate and growing importance of training and capacity strengthening within ILRI.The lack of capacity has been a major limiting factor in a wide range of • development programs and initiatives that have failed in the past (NEPAD 2002;FAO 2003;Swaminathan 2003;Eicher 2004;IAC 2004 In a rapidly changing world, the R&D systems in developing countries • are confronting new and increasingly complex challenges such as global warming, the use of bio-fuels, the livestock revolution and changing paradigms. Because of calls for market-driven development, the architects of the dominant public extension, research and education models in both Africa and Asia are being challenged to look for less costly models including partnership to serve emerging needs.The growing recognition that research, extension and educational institutes • must go beyond developing and disseminating new crop and livestock technologies to farmers and must focus on agricultural diversifi cation, rural employment, and helping farmers gain access to biotechnology (Pingali 2007), as well as participation in value added chains in national, regional and export markets.with the developmental impacts of their investments. ILRI is also moving away from output to outcome measures to assess its performance.The critical issue is the systematic assessment of research outputs to outcomes to broader developmental impacts and the needs of partnership and capacity building along those outputs to impact pathway. It is absolutely necessary that all stakeholders along the innovation chain have the necessary expertise and skills to effectively contribute to the innovation process. Often the capacity of our partners has been one of the major constraints to achieve the ultimate developmental impacts of ILRI. This calls for strengthening the capacity of our partners-a mandate of the CaSt unit.In recent years, a number of very infl uential initiatives have pointed out the critical role of agricultural S&T in poverty alleviation, food security and broad-based economic growth. Capacity building is one of the cross-cutting issues identifi ed as a priority in the Comprehensive Africa Agricultural Development Programme (CAADP) in the New Partnership for Africa's Development (NEPAD). The action plan of the Sirte Declaration of African Union also identifi ed the development of human resource potential in the continent through education, training, skills development and exchange of expertise as a priority area for action by the Department of Rural Economy and Agriculture (Economic Commission for Africa 2005). The action plan of FARA (Jones 2005) requires investment in education, building centres of excellence, capacity building, and institutional reforms as potential areas for addressing capacity constraints in SSA. Currently, FARA is initiating two specifi c programs (BASIC and SCARDA) to address the critical capacity needs of SSA countries. In addition there are other CGIAR centre initiated capacity strengthening activities such as Go-FAU. ILRI could actively participate and contribute to these initiatives, as they apply to the livestock innovation systems.Capacity is the engine for enhancing performance. Capacity strengthening can be defi ned as the process by which individuals, groups, organizations, and societies increase their ability to perform core functions, solve problems, defi ne and achieve objectives, and understand and deal with their development in a sustainable manner. There are three interlinked dimensions of capacity building: individuals, organizations and communities. Personal capacity calls for individuals to be empowered to contribute effectively to the organizational goals. Organizational capacity deals with public, private and civil organizations and enables them to attract fi nancial assistance and human capital and put it into productive use to achieve the overall goals and purpose. The capacity of communities is often referred to as social capital and it encompasses organizations, relationships and customs that shape the quality and quantity of social interactions. Growing evidence shows that social capital is critical in empowering communities to demand services and promote decision making that inspires people to undertake collective action to address their needs. Although we recognize the importance of capacity building at all levels, given its mandate and resources, ILRI believes that it can make an effective contribution directly at individual and organizational levels and indirectly at the community level.Each year, the World Bank publishes a voluminous report on a critical development problem such as poverty, health or the environment. The title for the 2008 report is World Development Report, Agriculture, 2008(World Bank 2007). Agriculture's role in promoting development is analysed in the 2008 report because of empirical evidence of the 'special powers' of agriculture in reducing rural and urban poverty.Turning to the critical question of whether GDP growth originating in agriculture can reduce rural poverty, the World Bank (2007) report on agriculture in 2008 assembled data from all types of developing countries and found that 'GDP growth originating in agriculture is at least twice as effective in reducing poverty as GDP growth originating outside agriculture' (World Bank 2007, 6). In China, aggregate growth originating in agriculture is estimated to have been 3.5 times more effective in reducing poverty than growth originating outside agriculture. More recently in Ghana, rural households accounted for a large share of a steep decline in rural poverty, induced in part by agricultural growth (World Bank 2007).What does this new and compelling evidence about agriculture's 'special powers' mean for the CGIAR and ILRI? The answers are derived from recent research:The CGIAR should stay the course and continue producing international • and regional public goods that have a proven track record in reducing rural poverty and contributing to development.Both technological and institutional innovations can spur agricultural • growth. For example, it is well known that rapid agricultural growth in India in the 1960s and 1970s was fuelled by technological innovations.By contrast, in China, institutional innovations such as replacing the communal system with private farms and the pursuit of market liberalization were responsible for a major decline in rural poverty over the past two decades. Learning opportunities are offered within these broad research areas as well as other emerging issues and challenges (see section V and Annex 1 for more details).The capacity strengthening unit (CaSt) of ILRI is designed to build and strengthen the scientifi c knowledge and technical capacity for NARS scientists, technicians and policymakers and other relevant stakeholders in the livestock innovation system in developing countries. The objective of the Capacity Strengthening (CaSt) unit is to contribute to the mission of ILRI, through strengthening the capacity of individuals, organizations and systems to apply the skills and resources to accomplish their goals, satisfy the needs of the stakeholders and to improve the performance and impact of the livestock sector.ILRI's capacity building initiatives are based on the following fi ve principles:Broad participation and a client-driven agenda; • Building on local capabilities; • On-going learning and adaptation; • Long term commitment and partnerships; and, • Integration of activities to address complex problems. • ILRI is not a university nor a training college and therefore guards against providing courses which could be offered by other institutions. The strength and advantage that ILRI presents for learning is its strong research base.Training at ILRI stresses practical work (both in the fi eld and laboratory), team/ group work, experiential learning, and personal development.ILRI offers individual and group training courses. Both are aimed at largely building the capacity of individuals. Some of the group training may be in an organizational context but this is not very systematic. However, there are also some recent capacity building activities within projects (ASARECA Livestock Network, Biosciences for Eastern and Central Africa, and the Improving Productivity and Market Success of Ethiopian farmers project in Ethiopia) that are meant to enhance ILRI's ability to strengthen both institutional as well as individual capacities.This type of training is focused on harnessing the skills and abilities of individuals to contribute to the realization of developmental goals, which may include improved livestock management systems and enhanced research outputs and outcomes. ILRI has fi ve categories of individual trainees; Attachment Associate, Student Associate, Technical Associate, Research Fellow, and Graduate Fellow.are university or polytechnic students who come to ILRI for a period of up to three months as a requirement of their course.ILRI identifi es opportunities for work attachments and relays this to any enquiring institution.• Student Associates are young students from either developed or developing countries (usually doing their fi rst degree), who work on an established ILRI research program for a period of up to six months.Applications may be made by individuals but must be endorsed by their university.are technical or scientifi c staff from the NARS who come to ILRI at the request of their employer for a period of up to six months. The candidates' employer includes a statement of the techniques or methods the trainee is to learn.are staff scientists of universities and research institutes in developing countries, who undertake non-degree related training on research issues and methodologies for a period of up to 18 months. Nominations should come from the employer of the applicant.are mostly NARS employees undertaking MSc or PhD studies, who are required to work on a project related to existing ILRI research protocols for a period of up to three years. ILRI scientists identify projects within their existing or planned research protocols that are suitable for Graduate Fellows. ILRI strives to select the best and most appropriate applicant (considering both academic excellence and their ability to further ILRI's collaboration and research goals).Group training ILRI's group training programs are focused on the staff of the national livestock innovation system; particularly those working with ILRI associated networks and institutes with a mandate to train livestock scientists and policymakers.Group training courses are often offered in close collaboration with national and regional partners who have the mandate to pursue learning and capacity strengthening. The training of trainers is also used to build capacity. ILRI offers three categories of group training courses:Core Courses are focused on building soft skills across program boundaries to enhance the effectiveness, effi ciency and performance of R&D investments. ILRI's partners are encouraged to adopt/adapt these courses for their own use.Program/project Courses are aimed at scientists and trainers who are involved with ILRI associated research themes. Course content is specifi c to the purpose and objectives of a particular research program, and is designed and implemented jointly by CaSt and the respective program.Network Courses are targeted and tailor made for network partners. They are often initiated by a specifi c network and implemented by CaSt. Depending on the need, the network may decide to provide training on topics related to the mandate of ILRI but often specifi cally dealing with the purpose and objectives of the network.In the past, CaSt activities were mainly focused on individual higher degree training for post-graduate students, but recently the focus is also on building capacity of institutes and organizations.One of the key elements in the development of a strategy is to critically examine existing programs and to maintain the strengths while trying to eliminate weaknesses. The strengths and weaknesses of the current capacity strengthening activities of ILRI are summarized below. To support capacity strengthening activities in the fi eld of livestock-related sciences, ILRI is well placed to provide opportunities for:Developing country scientists work with ILRI colleagues in applying cutting • edge science to contemporary livestock problems.Building professional connections between scientists in the national • agricultural innovation systems.Through cutting edge research, ILRI produces information and materials for • tertiary agricultural education institution in developing countries.The BecA hub based at ILRI in Nairobi has excellent facilities for capacity • strengthening for research and support staff from our partner institutes in biosciences.Thus ILRI is well placed to identify new partners and develop new modes of interactions with them, while at the same time working closely with traditional partners who seek to strengthen their research and capacity strengthening activities.A number of weaknesses have been identifi ed in ILRI's current capacity strengthening program (CCER 2005). These are summarized below:The most critical weakness is reduced core funding for capacity • strengthening activities. There is a lack of policy guidance and defi ned targets for CaSt. The existing • training manual was produced in 1996. Despite ILRI's collaboration with many universities in developing • countries, there is little follow up with students because of budget and time constraints.The limited number of ILRI scientifi c staff available to cope with increasing • demand for supervision of graduate students.For example, one ILRI scientist in Addis Ababa is currently supervising the research of 15 MSc students.The important issue here is to see how ILRI's outputs lead to tangible and measurable outcomes. In order to achieve this there is a need for partnership and capacity building not only to generate the outputs, but also along the output impact pathway. The innovation systems and value chain approach adapted by ILRI will enable us to address this gap. One of the key elements in the preparation of a strategy is the analysis of the environment, including opportunities and threats. Any element from the external environment that can benefi t the output and performance should be considered as an opportunity and must be known and exploited. Any element that can partially or totally interfere with performance and outcome should be seen as a threat and must be avoided to reduce their impact. Opportunities and challenges are two sides of the same coin.Over the years, the R&D arena has seen a number of paradigm changes and transformation and there are a number of emerging issues that pose new challenges to research and development practitioners. Some of the key changes that will have a profound effect on the priorities of ILRI's capacity strengthening activities are: changing R&D paradigms and demand for soft skills; changing organizational landscape and subregional initiatives; technological advances in biotechnology and ICT; trade, market liberalization and emerging agri-food system; emerging diseases in the changing livestock systems; intensifi cation of mixed crop-livestock production system, vulnerability and environmental sustainability of the livestock production systems; food retail revolution; climate change and its implications to livestock production systems, the growing global environmental concerns and the increasing emphasis on bio-fuel (see Annex 1 for more details) Given the changing context, ILRI's most signifi cant challenge is to provide a sharply focused, high quality research and outreach programs (including capacity strengthening) that support food and agricultural innovations in developing countries by enhancing their capacity to improve the livelihoods of the poor and marginalized people and constituencies which depend on their livestock as the primary asset. Since ILRI is the only CGIAR centre working on the livestock based production systems, this will open up new agendas and opportunities for research, capacity strengthening and outreach activities of ILRI based on its comparative and competitive advantage.VI What is new about ILRI's approach? Although ILRI's mandate is global, the priority regions for ILRI's CaSt activities are sub-Saharan Africa and Asia. Expansion into Asia is justifi ed on a number of grounds: there are lots of poor livestock dependent people in those regions; and there are considerable benefi ts from learning across Southeast Asia, South Asia and SSA. One of the opportunities is that the Asian livestock systems are much more closely linked to market demand and a more dynamic environment. Supporting capacity development requires context-specifi c and indepth understanding of existing capacities at the individual, organizational and societal levels. There is a growing awareness that ILRI needs to continue to provide a variety of training types, themes and delivery modes to suit the heterogeneous needs of its partners. While recognizing this diversity to be cost effective, it was decided in 2007 to conduct a livestock training needs analysis of fi ve subregions: West Africa (CORAF region), Eastern and Central Africa (ASARECA region), Southern Africa (SADC region), South Asia and Southeast Asia. The objectives of these fi ve need assessment studies are to establish the gaps and to identify the priority capacity strengthening activities to be facilitated and/or undertaken by CaSt in SSA, Southeast Asia and South Asia. ILRI recognizes that there are other national and regional players strengthening the capacity of the actors in the national livestock innovation systems. ILRI wants to reinforce and add value to the on-going national, regional and global initiatives by using innovative partnership and networking arrangements. The important strength of this strategy is that it is based on fi ve subregional training needs assessment studies of the livestock sector completed in 2007.In four of the fi ve subregions, the fi ndings of the initial needs assessment studies were presented and validated through multi-stakeholder workshops during September-October 2007. In addition, the key elements of CaSt's proposed strategy were also presented during these workshops to ensure that the strategy preparation process is participatory, all inclusive and demanddriven.The proposed strategy provides the fl exibility to develop targeted programs for the fi ve subregions based on the priorities identifi ed and it explicitly recognizes the inherent diversity in the capacity development needs. The strategy preparation process also benefi ted from the experiences of past successful capacity strengthening efforts of the CGIAR systems (Anandajayasekeram 1993(Anandajayasekeram , 2007)). Systematic efforts are made to identify gaps in both technical as well as soft skills needed to implement an effective, effi cient, relevant and impact-oriented capacity strengthening program.Another feature of this proposed strategy is that it explicitly attempts to integrate the core competencies of ILRI based on its research (the supply side); the needs of our partners (the demand side) and the broader communication and knowledge management with the activities of CaSt as shown in Figure 1. It is important to note that the primary clients of ILRI's capacity strengthening activities are our external partners.In a nutshell, the proposed strategy is based on the mission and mandate of ILRI, current status of the R&D capacity of the fi ve subregions, needs of the collaborating partners while giving adequate consideration to heterogeneity, issues raised by the training impact study of CGIAR and emerging challenges, as well as the recommendations of the CCER and EPMR reports. Finally, the key elements have been reviewed and shaped by the participants of the multistakeholder groups. In that sense, the process employed by CaSt is unique. A strategy is a course of action, chosen from a number of possibilities to reach the long-term vision and mission of the institute and the unit. It is important to ensure that the proposed CaSt Strategy should be consistent with ILRI's mission and core values. The spirit of this strategy is to continue to carry out training and capacity strengthening and promote learning compatible with ILRI's research priorities and develop implementation of programs to do so in ways that strengthen, mobilize and sustain its partners' capacities. The major shift in emphasis is building the necessary critical capacity within the various institutes (building capacity to build capacity) to achieve the desired outcomes of ILRI's and its partners R&D investments. This chapter outlines the guiding principles in the development and implementation of the strategy of CaSt; goals and purpose and the strategic objectives to be achieved.The goal of ILRI is 'By positioning itself at the crossroads of livestock and poverty and by bringing to bear high quality science and capacity building, ILRI and its partners will reduce poverty and make sustainable development possible for poor livestock keepers, their families and the communities in which they live.'One of the major guiding principles in the planning of ILRI's strategy to 2010 is to strengthen the capacity of ILRI and its partners to contribute to identifi ed research themes and priorities. Hence, the current themes and emerging issues that are considered to be ILRI priorities determine CaSt's strategic agenda and priorities. Consistent with ILRI's vision and strategy, the development and implementation of CaSt strategy and capacity strengthening activities will effectively contribute to ILRI's research agenda and core capabilities.A number of additional principles guide the development and implementation of the proposed strategy. These are summarized in Box 1.The overall mission of the Capacity Strengthening unit is to strengthen the capacity of the livestock R&D community to contribute to the mission of ILRI to achieve livestock-mediated poverty alleviation.The purpose is to strengthen ILRI's and its partners' capacity to apply skills and resources toAccomplish Within the broader framework of ILRI's strategy to 2010 and the proposed Medium Term Plan, the fi ve strategic objectives to be pursued by the Capacity Strengthening unit are outlined in this section.Currently, the majority of ILRI's capacity strengthening activities are linked to its research base and this arrangement is expected to continue. The current role of CaSt in project planning and implementation is passive and reactive; with very little or no input in the planning, and implementation process. In the future, CaSt will play a pro-active role and will actively participate in the design stage, to assist in the explicit identifi cation of capacity strengthening activities and outputs, ensure that adequate resources are allocated for implementation and that mechanisms are put in place for quality assurance and feed back with relevant training-related outputs produced and widely disseminated. Where relevant CaSt will directly participate in the design and implementation of capacity strengthening activities. In developing and disseminating the training related outputs CaSt will work very closely with the other units of the Department of Partnerships and Communications and the broader knowledge management system within ILRI.Capacity strengthening is a continuous and dynamic process. The long-term solution to address this need for continuous capacity strengthening is to develop sustainable capacity within the relevant organizations mandated to build capacity of those stakeholder groups engaged in the livestock innovation systems. ILRI can contribute to short-run capacity building, but in the longrun, building national capacity should be the responsibility of the local, national and regional institutes. This proposed strategy focuses on four sets of interrelated activities which can contribute to sustainable capacity building.In recent years, there has been a renewed interest in and commitment to regional and subregional approaches to research and development of those regions of the world. CaSt will identify an existing institute, network, livestock capacity hub in each of subregion with a mission, mandate and willingness to make a long-term commitment to build capacity in its own subregion. Partnerships will be developed to use these 'hubs' for ILRI's capacity strengthening activities in each of the subregions. ILRI will also facilitate development of and access to a pool of national and regional experts in implementing its training activities, providing space for ILRI to work on emerging issues and challenges.ILRI recognizes that learning institutions can make a signifi cant contribution in building the capacity of the next generation of R&D practitioners. To be relevant, the curricula of these institutes should respond to emerging challenges and needs. Therefore, research results will be converted into learning outputs and disseminated to the learning institutions to facilitate the integration into the learning curricula of universities, colleges and farmer training institutes. This will enable real life research results, lessons and best practices to be effectively integrated in the formal education curricula. Supporting local learning institutes is strongly justifi ed as the most sustainable road to impact.Given its limited resources, it is not feasible for ILRI to be directly involved in training the various stakeholder groups. One effi cient way to address this issue is to train the trainers. This will create not only a sustainable capacity, but also an effi cient multiplier effect. ILRI will focus on facilitating the development of training materials (regional and international public good) and training the trainers. Subsequently, ILRI will focus on facilitating the implementation, monitoring, evaluation, and assessment of the impacts of these initiatives. Opportunities will also be provided for South-South collaboration, sharing of experiences and development of best practices. This could be achieved in collaboration with other CGIAR Centres, advanced research institutes and northern universities. ILRI will contribute to the livestock component of these on-going/planned initiatives.The outputs of this strategic objective will contribute to the generation of regional and global public goods.The revolution of ICT technologies and increased access to them by (some) developing countries is enabling a variety of new approaches to capacity building and knowledge sharing. Thus emphasis will be placed on distance education and e-learning activities using multi-media. This will be accomplished in close collaboration with other ILRI's units and external partners involved in such activities. ILRI will continue to provide a variety of training types, themes and delivery modes to suit the heterogeneous needs of its partners and subregions. However, it is also important to note that e-courses have been known to be very demanding on staff time and generally unsuited to subjects with strong practical content.Activities related to this strategic objective will use a two-pronged approach:Existing materials: ILRI has developed a number of training-related outputs. Efforts will be directed towards updating the available material and placing them in the public domain for wider adoption and use. The potential candidates are: dairy technology, forage seed production, milk hygiene and processing, diagnosis of tick borne diseases.The contemporary livestock-related issues and other changing paradigms require both technical and soft skills in a number of areas.CaSt will bring ILRI researchers and other collaborators together to conduct research-based capacity strengthening and learning events including distance education programs-to design and produce publicly available learning modules and develop information networks that support higher education institutions and other stakeholders involved in the livestock based innovation systems.Currently, ILRI is conducting a number of individual and group training programs as outlined in section four.Post-Graduate Training will continue to be a priority activity; as it contributes signifi cantly to the research agenda of ILRI and to the regional human resource pool. Post-graduates form a multifaceted input to CaSt by their multinational background, and support an increase in post-doctoral graduates in its development of North-South relationships. ILRI believes that while the total number of graduates could be slightly increased, the major change should be increasing global geographic representation and advancing the strategic goal of building relationship between national livestock innovation systems (NLIS) and ILRI. This group should form the core for future collaborative research with ILRI's partners. Thus as suggested by CCER, every effort will be made to expand and diversify (both in terms of geography, and the number) the graduate training programs at ILRI. This will have signifi cant implications in terms of funding for fellowship programs, but ILRI will try to fi nd innovative ways to mobilize the additional funding required. Another limiting factor for expansion of this program is the already stretched capacity to supervise graduate students.All of the fi ve subregional needs assessment studies identifi ed the need (see Box 2) for developing soft skills to complement the scientifi c knowledge to enhance the contribution of research to development. The West African needs assessment study recommended that ILRI should resuscitate the old, highly successful ILCA training program and short courses offered during the 1970s and 1980s and use past trainees as partners for ILRI's capacity building and outreach programs. In addition, training in new areas are also needed to address the emerging issues and challenges within the livestock sector.The livestock training needs assessment report for East and Central Africa (September, 2007) identifi ed the highest need for training research staff in post-confl ict countries such as Burundi, Rwanda, Congo and Southern Sudan. A number of soft skills were identifi ed as the major gap in the region. Planning and priority setting, participatory research methods, monitoring, evaluation and impact assessment were rated highest in importance (by 90-100% of respondents) followed by strategic planning, intellectual property right policy, interaction of crop-livestock-water and innovation systems perspective and implications to R&D (identifi ed by 80-90% of the respondents).The livestock training needs assessment report for South Asia (August, 2007) highlighted the fragmented nature of the existing capacity building efforts in the subregion. More than 80% of the respondents rated the following additional skills as extremely important in group training programmes for South Asia: strategic planning, facilitation skills, monitoring, evaluation and impact assessment; planning and priority setting, gender analysis, scientifi c writing and effective communication. These observations were also confi rmed by the training needs assessment studies conducted in Southeast Asia and SADC regions. Thus, every efforts will be made to devolve the responsibilities of implementing some of the on-going group training activities to our subregional and national partners (ILRI playing a facilitating and catalytic role) while ILRI focusing its energy to develop and implement new 'fl agship' courses in collaboration with ILRI's strategic partners both in the North and South.Accountability, transparency and impact orientation is one of the guiding principles in the development and implementation of the capacity strengthening strategy of ILRI. The recently concluded evaluation and impact of training in the CGIAR identifi ed a number of issues with respect to monitoring and evaluation of training activities and made several recommendations. The CCER report suggested that ILRI implement an on-line mechanism to monitor the career of former alumni as a source for establishing impact and partnership for collaboration. EPMR also noted that in the most recent Medium Term Plan (ILRI 2007), CaSt activities are not connected with research.This strategic objective will address some of these concerns and will aim to establish a need based, functional M&E system for CaSt which will allow us to track resources allocated as well as the outputs and outcomes of capacity strengthening activities, assure quality and provide the necessary feed back to learn from experiences.Capacities are developed within individuals and organizations through learning processes and the acquisition of new knowledge, skills and attitudes. The results of capacity development efforts are best measured by observing changes in behaviour and performance of people and organizations. Monitoring and evaluating of capacity development are of critical importance to ensuring that capacity development initiatives are cost-effective and lead to improved performance. Self assessment is an important aspect of the evaluation process. Self-assessment involves an organization's managers, staff, and stakeholders in the evaluation process, identifying strengths and weaknesses, and then applying fi ndings to set new directions (Horton et al. 2003).There are two types of learning that occur as a result of the carefully planned evaluations: an evaluation can yield specifi c insights and fi ndings that can change practices to build capacity; and those who participate in the entire process learn to think more systematically about their capacity to further learning and improvement. Thus, capacity strengthening efforts need to clarify objectives and be monitored and evaluated. Every evaluation of a capacity strengthening effort should contribute to the capacity development of our partners and ultimately to the performance of ILRI. resources. In practice, this process of priority setting involves a combination of supply and demand oriented methods, intensive consultation with various stakeholders and vigorous resource mobilization program. Given the fact that different regions and countries are at different stages of economic and organizational development and institutional reforms; diversity will be given due consideration in setting the unit's strategic agenda and priority activities.Building critical mass in post-confl ict countries and smaller NARS with weak R&D capacity will also be given high priority in capacity strengthening.The implementation of the proposed strategy will expand the activities of CaSt considerably and require additional fi nancial and human resources. Current resources of CaSt are grossly inadequate to effectively implement the proposed strategic plan. Therefore, one of the key activities of the unit for the immediate future is mobilization of additional resources.It is unrealistic to expect signifi cant increase in unrestricted funding support to implement the various activities proposed in the strategic plan. Therefore CaSt will have to identify innovative means to mobilize the additional resources. CaSt is planning to develop a number of collaborative proposals, and aggressively mount a resource mobilization campaign to support the proposed expansion of activities. Separate proposals will be written to support the activities of the proposed subregional hubs, and the expansion and diversifi cation of the graduate fellowship program. CaSt will also work very closely with ILRI staff at the design stage so that resources are ear-marked for Capacity Strengthening related activities within the projects.Currently CaSt is staffed with one full time international staff supported by the equivalent of three nationally recruited administrative support staff. Implementation of CaSt activities is largely based on expertise from other ILRI staff and ILRI's partners. The CCER report proposed the following staffi ng as critical minimum for the unit. The training administrator can also handle the monitoring and evaluation responsibilities. Initially CaSt will depend on visiting scientists and junior professional offi cers but as the program of activities evolves, there is a need to recruit additional staff.Flagship courses to support livestock innovation systems ILRI's predecessor ILCA had a track record in running highly successful 'fl agship' courses in the 1970s and 1980s to support the livestock production systems. Currently ILRI in collaboration with other CGIAR centres and ARIs are implementing a limited number of fl agship training courses. Good examples include the collaboration with Swedish University of Agricultural Sciences to strengthen the skills of scientists teaching students in animal breeding and genetics and the collaboration between ILRI and IFPRI/ISNAR division in running a course on monitoring, evaluation and impact assessment of R&D investments.Given the emerging challenges, greater demand in the future is nevertheless foreseen for specialized short courses, individual's non degree and higher degree training. Potential candidates for short fl agship courses for the next two to three years include: climate change; implication and adaptation strategies for the livestock sector; participatory veterinary public health approaches for disease surveillance and control; crop-livestock-water interactions; livestock policy analysis and management of networks and partnership for R&D within the livestock innovation system. All fi ve subregional needs assessment also concluded that there is a greater demand for the 'soft skills' to complement the scientifi c knowledge in effectively implementing R&D programs within the livestock sector. Given the multidisciplinary nature of most of these tasks, CaSt activities will be designed and implemented in collaboration with other CGIAR centres and Northern/Southern universities. Here ILRI will focus on the special considerations with respect to the livestock related issues.To be successful it is important to build the activities of CaSt based on experience. Although considerable past experience exist in many areas identifi ed in the strategic plan; some initiatives may require experiential learning as part of the implementation process. Most new programs of CaSt will include researchers, policy makers, and practitioners operating at global, national, regional and subregional levels. While recognizing the need for launching CaSt program in all fi ve regions identifi ed one or more pilot programs will be used to generate best practices and revise other ongoing programs.Despite the fact that ILRI's mandate is global in nature; the focus of CaSt will be on SSA and Asia where rural poverty is still a major issue. Thus, initially CaSt will focus on developing one subregional hubs in each continent. Building such facilities in other three subregions will benefi t from experiences and lessons learned from these two pilot programs.Other potential candidates for pilot case studies will include capacity building in post confl ict countries, establishing e-learning and distance education courses; and ARI-ILRI partnership in graduate fellowship programs. Documenting, synthesising and disseminating such experiences will be given a high priority in implementing the proposed plan.EPMR recommended that ILRI should make capacity strengthening activity of ILRI explicit and measurable in research program design and report research results for both training and follow-up activities.The CaSt unit is committed to institutionalizing a comprehensive need based planning, monitoring and evaluation system for the capacity strengthening activities of ILRI. This will include periodical review of priorities, externally and internally commissioned program management reviews, and regular impact assessment studies. The lessons learned through the refl ective monitoring and evaluation will be used to enhance the effectiveness and effi ciency of future CaSt activities.Using the available data and the experiences of others as the base, CaSt will develop a fully functional monitoring evaluation system for the unit. To facilitate this process, learning objectives should be written explicitly into all new projects with adequate resources and suitable monitoring and evaluation procedures.An effective communication mechanism to widely distribute the outputs, lessons learned and best practices in CaSt as it relates to the livestock innovation system is vital to enhance the outcome and impact of ILRI's investments in research based capacity strengthening. Effective use of the available information and communication technology is essential in this process. The CaSt unit in close collaboration with the other units of Partnership and Communication will develop and implement initiatives to effectively communicate its outputs within a broader knowledge management and communication system of ILRI.Finally the Medium Term Plan (MTP) and the annual work plan of CaSt will be guided by the strategic objectives set out in this document and the priorities identifi ed by the subregional needs assessment studies. However, the actual portfolio of activities in any given times will be largely determined by the availability of additional resources. The MTP will also clearly identify the expected outputs and outcomes of CaSt activities.There are a number of emerging challenges confronting the livestock sector that may offer new opportunities for ILRI's research based capacity strengthening. Some of the key challenges are outlined and discussed below.Changing paradigms and demand for soft skills •The policy and institutional context in which agricultural research and innovation occurs have changed dramatically. Rapid changes are taking place in the structure and authority of governments, the global economy, the structure of the farming sector, and in the global and local food industries and retail businesses. The institutional landscape is also changing dramatically. For example, civil society, farmer organizations and NGOs are playing important roles in agricultural R&D. Cross-sectoral linkages (such as water, health, energy and education) are becoming more important. The agricultural sector is expected to play a signifi cant role in poverty alleviation and food and nutrition security, while protecting the environment. With reduced funding, the agricultural R&D system is forced to raise questions about their continuing relevance, approaches, accountability and impact. Funding research for support services can no longer be separated from the broader development questions.The reform agenda in R&D debates include: redefi nition of the role of government in agricultural R&D; decentralization and privatization of agricultural R&D activities; broader and active stakeholder participation in service provision; networks and partnerships; and new funding arrangements such as the separation of fi nancing from service provision and research execution and changing the funding base to competitive funding. Given the sweeping reforms that are taking place, the R&D systems are facing a transition period in which they will need to restructure themselves, confront new demands, and adjust to new political, scientifi c, institutional, and economic environments.Managing this complex environment requires a range of skills, tactical planning and shifts in paradigms. Since independence of much of SSA, a number of paradigm shifts have occurred within the R&D arena. These include farming systems perspective; participatory research methods (including action research); the Agricultural Knowledge and Information System (AKIS); rural livelihoods; Agri-Food systems/value chain; knowledge quadrangle; 'Doubly Green Revolution' and innovation systems perspective (including networks and partnerships).There is a growing realization that while agricultural research is necessary, it is not suffi cient to create the innovation capacity needed to achieve the needed economic growth in many countries. The innovation process involves not only research, but also a wide range of other activities, actors and relationships associated with the creation and transmission of knowledge and its productive use (Hall et al. 2006).The reality of the new agriculture is characterized by the emergence of new players, needing to respond rapidly to changing conditions, often in increasingly knowledge intensive sectors. While traditional agricultural research organizations still have a role to play in providing some of this knowledge, what is now required is a much more fl exible arrangement in which dense networks of entrepreneurs, farmers, research and training and policy organizations interact and respond to new circumstances. New skills are required to work with partners in multi-stakeholder process and networks. These reforms and paradigm shifts have great potential in enhancing the signifi cance and effi ciency of agricultural research but in practice, their success will depend on how well they are applied and modifi ed to the diverse local conditions (Chema et al. 2003;Eicher 2007). The application of these various concepts and procedures requires additional skills on the part of the various stakeholders. These changing perspectives offer both challenges and opportunities for ILRI's capacity strengthening efforts.In recent years, there has been renewed interest in regional and subregional approaches to agricultural research and development in the developing world. The subregional agricultural research and co-ordination has changed considerably over recent decades. Networks are more successful at sharing information than jointly identifying and putting into practice regional research programs on approved regional priorities. However, reaching agreement on regional priorities has been diffi cult as countries continue to pursue self-suffi ciency in those fi elds of agricultural R&D in which they feel weak (IAC 2004). This regional approach to R&D and the emerging new partnerships calls for different types of skills in developing and implementing research programs.Biotechnology has provided unparalleled prospects for improving the quality and productivity of crops, livestock, fi sheries and forestry. Conventional biotechnologies have been around for a long time, while genetic modifi cation (GM) technologies have emerged more recently. GM technologies are making rapid progress worldwide. Africa lacks capacity and resources to move biotechnology research forward. Countries have not yet developed proper legislative frameworks on bio-safety of GM organisms (Eicher et al. 2006).The revolution in ICT technologies and increased access to them in developing countries is enabling new approaches to capacity building and knowledge sharing. E-learning, for example, can be a valuable complement within many kinds of training and learning activities alongside other forms of face to face delivery, experimental learning etc. Specifi c e-courses can also be suitable for certain kinds of learners and for certain kind of contents.Without question it is necessary to improve the capacity of public sector R&D organizations to assess the risks and benefi ts to harness and deploy new agricultural technologies. The BecA hub based at ILRI/Nairobi provides excellent facilities for strengthening capacity for research and support staff from NARS in the area of bio-sciences. This will facilitate the use of more advanced bioscience technologies in NARS.To address the expected climate change challenges and impact on livestock sector, R&D must play a major role in increasing the adaptive capacity of the most vulnerable groups in different regions. Climate change could alter geographical production patterns as well as the deterioration of the natural resource base due to scarcity of water and rising temperature. Pressure on resources will lead to degradation of land, water and animal genetic materials. Climate change will also affect parasites like the tsetse fl y and parasitic diseases such as malaria. A major challenge is to ensure that livestock growth opportunities do not marginalize smallholder producers and other poor people dependent on livestock for their livelihoods.Climate change both infl uences and is infl uenced by agricultural systems. The negative effects of climate variability and projected climate change will be felt predominantly in the tropics and subtropics, which are areas of interest to ILRI. The Inter Governmental Panel on Climate Change (IPCC) have concluded that although SSA produces less than 4% of the world greenhouse gases, the regions diverse climates and ecological systems have already been altered by global warming and will undergo further damage in the years ahead. The Sahel and other arid and semi-arid regions are expected to become even drier. A third of Africa's people already live in drought-prone regions and climate change could put the lives and livelihoods of an additional 75-250 million people at risk by the end of the next decade (United Nations Department of Public Information 2007). It is crucial to mitigate GHG emissions from agriculture and to increase carbon sinks and enhance adaptation of agricultural systems to climate change impacts. Research and development efforts can play a signifi cant role in responding to the challenges of climate change by mitigating and adapting to climate-related production risks in the livestock based farming systems. This will require further research and capacity strengthening.Trade, market liberalization and emerging agri-food system • Emerging market liberalization, trade reforms and globalization are transforming national and regional economies and the farming sector. Global and national food systems are increasingly being driven by consumer interests, changing consumption patterns, quality and safety concerns, and the infl uence of transnational corporations and civil society organizations.In the recent past, there have been structural changes in livestock production systems in many parts of the world. Structural changes in the livestock sector have signifi cance for social equity, the environment and public health. It has been estimated that substantial growth in livestock production will occur in most of the developing world.Managing the emerging complex environment requires a range of skills, tactical planning and shift in paradigms. These changing perspectives offer both challenges and opportunities for ILRI's capacity strengthening efforts.Rapid rise and economic concentration, supermarkets and a shift towards non-price competition and the development of new forms of (contractual) relationships between suppliers and buyers, can either squeeze small producers out of certain markets or can offer new sources of income and market improvement in the quality and safety of food. In order to take advantage of this emerging situation, the capacity of stakeholders need to be enhanced along the value chain (Tschirley 2006).Approximately 75% of emerging diseases are transmitted between animals and human beings; the increasing demand for meat increases this risk of transmission. Serious socio-economic consequences occur when diseases spread widely within human and animal populations. Even small-scale animal disease outbreaks can have major economic repercussions in pastoral communities.Control of zoonotic diseases requires training and strengthening of coordination between veterinary and public health infrastructure. Identifying emerging infectious diseases within the livestock sector and responding effectively to them requires enhancing epidemiologic and laboratory capacity and providing training opportunities.Building sustainable capacity for innovations in emerging zoonotic disease surveillance and control by institutionalizing, harmonizing and targeting participatory veterinary public health approaches at national, subregional and continental levels is another challenge confronting livestock R&D practitioners. This is an area of vital concern for ILRI.Greater concern for environmental sustainability, vulnerability and risk • In the recent past, there have been structural changes in livestock production systems in many parts of the world. Structural changes in the livestock sector have signifi cance for social equity, the environment and public health. It has been estimated that substantial growth in livestock production will occur in most of the developing world.The anticipated intensifi cation of smallholder production systems, emerging diseases, changing climatic conditions and market requirements are expected to impact the environment and contribute to greater vulnerability and risks of the smallholder production system. This calls for new skills in risk and vulnerability assessment as well as market assessment.Bio-fuel/bio-energy •In the recent past bio-energy has received considerable public attention. Rising costs of fossil fuels, concerns about energy security, increased awareness of climate change all contribute to its importance. The economics of bio-energy, particularly the positive or negative social and environmental externalities, depend on the source of biomass, type of conversation technology and on local circumstances.Many questions in development of bio-fuels will require further research. Complementary efforts are needed in the areas of policies, capacity building, and investments to facilitate a socially, economically, and environmentally sustainable food, feed, fi bre and fuels economy that benefi ts rural communities and society.A number of studies have reported that gender inequality in education and employment have a negative impact on economic growth. It has also been shown that the absence of gender balance impacts much more on economic growth rates than on overall income inequality (Klasen 2007). Large gender gaps in education and employment opportunities still remain a central constraint on pro-poor growth. Gender inequality is an issue in all countries, but the nature, extent and effect of gender inequality differs greatly by regions. In most of sub-Saharan Africa and South Asia, the contribution of women to pro-poor growth is particularly constrained by gender inequality. Poverty alleviation requires special focus on poultry and goats, the livestock species kept by women and vulnerable groups. ILRI should focus its attention on gender balance and gender focused capacity strengthening.Managing this complex environment and challenges requires a range of skills, tactical planning and shifts in paradigms.","tokenCount":"9249"} \ No newline at end of file diff --git a/data/part_3/0302335786.json b/data/part_3/0302335786.json new file mode 100644 index 0000000000000000000000000000000000000000..6c515e4a47714186e0c61bcdde9a39ccd2b36b30 --- /dev/null +++ b/data/part_3/0302335786.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"9039f3ef32f84d34a546b96f2a16fa54","source":"gardian_index","url":"https://data.worldagroforestry.org/api/access/datafile/:persistentId/?persistentId=doi:10.34725/DVN/SQA0DU/ZRSSIK","id":"848789414"},"keywords":[],"sieverID":"5dd9d4ed-09ab-4589-a706-f62065087eb9","pagecount":"10","content":"Soil respiration (SR) plays an important role in the global carbon cycle. The widespread and continued conversion of tropical forests to plantations is expected to drastically alter CO 2 production in soil, with significant consequences for atmospheric concentrations of this crucial greenhouse gas. In Southeast Asia, rubber plantations are among the most widespread monoculture tree plantations. However, knowledge of how SR differs in rubber plantations compared to natural forests is scarce. In this study, surface CO 2 fluxes and soil CO 2 concentrations (at 5 cm, 10 cm, 30 cm and 70 cm depths) were measured at regular intervals over a one-year period along slopes at three sites in paired natural tropical forests and mature rubber plantations. Annual surface soil CO 2 fluxes were 15% lower in the rubber plantations than in natural forest. This difference was due to substantially lower SR during the dry season in rubber plantations compared to natural forest. During the wet season, SR did not differ significantly between rubber plantations and natural forests. In rubber plantations, soil moisture increased from lower and middle to upper slope positions, but this did not significantly impact SR. Throughout the year, net CO 2 production per unit volume in the topsoil (2.5-7.5 cm) exceeded by 2-3 orders of magnitude net CO 2 production in the subsoil (7.5-50 cm). However, CO 2 originating from 5 cm depth and below in both land cover types could only explain up to 30% of the aboveground measured CO 2 flux, indicating that > 70% of the total CO 2 respired and emitted to the atmosphere originated from the uppermost few cm of the soil. Net CO 2 production at different soil depths did not differ significantly between rubber plantations and natural forests. Our results indicate that SR characteristics in mature rubber plantation and natural forest were broadly similar, although dry season soil surface CO 2 fluxes were lower in rubber plantations. However, further information on the drivers of CO 2 production in the uppermost topsoil layers which are responsible for most CO 2 emissions is needed to understand the extent to which these results are generalisable.Soil respiration accounts for up to 80% of total terrestrial respiration and is the largest flux of CO 2 from terrestrial ecosystems to the atmosphere (Hanson et al., 2000;Raich et al., 2002). Processes in the soil that contribute to the emission of CO 2 into the atmosphere include respiration of heterotrophic and autotrophic microorganisms and roots (Hanson et al., 2000;Schlesinger and Andrews, 2000). Compared to forests in other climate zones, tropical forests have the highest soil respiration rates (Raich and Potter, 1995) but at the same time act as an important sink for CO 2 due to their high productivity (Ahlström et al., 2015). The worldwide conversion of tropical forests into agricultural land therefore has critically important consequences for the global carbon cycle (Drescher et al., 2016;Yang et al., 2016) as well as numerous other negative impacts on ecosystem services.In Southeast Asia, large areas of rain forest have been converted into rubber plantations, which were estimated to account for 84% of total global rubber plantation area in 2012 (Ahrends et al., 2015;Warren-Thomas et al., 2015). Through further expansion the area of rubber monoculture plantations is predicted to reach 4.3-8.5 million ha by 2024, in order to meet the global demand for natural latex (Warren-Thomas et al., 2015). This land use conversion has significant environmental consequences such as declines in regionally important biodiversity (Warren-Thomas et al., 2015), reduced annual water discharge (Ziegler et al., 2009), and increased soil erosion (Liu et al., 2016). Regarding soil nutrient cycling, rubber plantations have been shown to reduce leaf litter input, fine root biomass, carbon stocks and soil microbial activity (de Blécourt et al., 2013;Martius et al., 2004;Pransiska et al., 2016;Sahner et al., 2015;Zhang et al., 2013;Abraham and Chudek, 2008) and therefore most likely have reduced SR in comparison to natural forests. However, the number of studies on annual SR in rubber plantations is low (Fang and Sha, 2006;Satakhun et al., 2013;Zhou et al., 2008).Over the past 50 years, rubber has become an increasingly common crop in areas previously thought unsuitable for rubber cultivation, i.e. regions with distinct dry and wet seasons and in montane regions (at elevations above 300 masl and on slopes > 15°) (Ahrends et al., 2015;Warren-Thomas et al., 2015). In Xishuangbanna prefecture, Yunnan province, the area covered by rubber plantations increased to 22% (424,000 ha) of the total land cover in 2010 (Xu et al., 2014). Most of the rubber plantations in this area are on sloping land of up to 24°i ncline and 900 m elevation. Rubber plantations at higher elevations and on steeper slopes are not profitable (Ahrends et al., 2015;Yi et al., 2014). This topography causes gradients of soil physical and chemical parameters, such as soil moisture and soil organic matter distribution that in turn can result in differing soil respiration rates along the slope (Garrett and Cox, 1973;Hanson et al., 1993;Kang et al., 2003). However, only a few studies have investigated the effect of topography on soil respiration in tropical regions (Epron et al., 2006;Fang et al., 2009;Li et al., 2008;Takahashi et al., 2011;Wood and Silver, 2012) and to our knowledge no one has studied the impacts of topography on soil respiration in rubber plantations. In order to be able to upscale SR measurements from landscape to regional levels and on an annual scale, it is essential to improve our understanding of the temporal and spatial patterns of SR in complex topographic landscapes. Furthermore, landuse conversion from tropical forest to a monoculture plantation will most likely differently affect CO 2 production at different depths. It is therefore essential to analyze CO 2 production at various soil depths in these different land cover types in order to explain differences in soil CO 2 emissions that are measured aboveground.In this study, we compared annual SR in tropical natural forests and mature rubber plantations on land converted from natural forest in Xishuangbanna, China. Furthermore, we investigated the effect of slope position (upper, middle and lower) in rubber plantations and forests. Through CO 2 concentration measurements in soil air at different soil depths we aimed to identify net CO 2 production at different depths for the two land cover types and different topographic positions.The study was conducted in the Naban River Watershed National Nature Reserve (22°04′-22°17′ N, 100°32′-100°44′ E) in the Dai Autonomous Prefecture of Xishuangbanna, Yunnan Province, China. The area has a tropical monsoon climate with distinct dry (November-April) and wet seasons (May-October). The annual mean temperature is 19 °C and the annual precipitation is 1490 mm (Xu et al., 2005). Three different sites were chosen for the monitoring: Mandian (22°07′ N, 100°40′ E), Manlü (22°08′ N, 100°41′ E), and Manfei (22°09′ N, 100°41′ E). All sites were at an elevation ranging between 600 and 800 masl, and at slopes between 22 and 28°. For all sites, lower slopes were steeper than higher slopes. The distance between the sites was between 5 and 10 km. At every site, one natural tropical seasonal rain forest and one rubber plantation were chosen in close proximity (distance < 1 km). During our study, from November 2014 to November 2015, mean annual temperature was 21.1 °C and annual precipitation was approximately 1320 mm, of which the majority (1050 mm) fell during the wet season. Climatic data were obtained from a local weather station in one of the three sites (Mandian; Fig. 1).The sizes of the rubber plantations were 1 ha-2 ha, as is typical for this region, with an approximate length of 150-200 m. In each site and land cover type, three plots (10 m diameter) were established along the topographic gradient: upper slope, middle slope and lower slope. The difference in elevation between 2 plots was around 25 m. All plots were selected at least 20 m away from the forest edge to avoid edge effects. Soils of all sites were Ferralsols, according to FAO classification. Rubber plantations were first established in this nature reserve in 1970 after forest clearance and the age of the rubber plantations in this study was 20-25 years at the time of the observations. Sampling sites in this study were selected based on similar land use history and management practices. Management practices in rubber plantations include terrace establishment, fertilization, pest control, removal of understorey vegetation and rubber tapping. The terrace benches in the rubber plantations were constructed using a hoe. The mean tree spacing is 2.5 m in a row, and 6 m between rows. According to the local farmers, rubber plantations were fertilized with 45% compound fertilizer (N-P-K = 15-1-15) at a rate of 1.5 kg per tree in July. Rubber trees in this area are severely affected by powdery mildew disease. To control this disease, 10 kg ha −1 of 99% sulphur powder was applied once during January to March. Herbicides (30% glyphosate) were applied at a rate of 6 kg ha −1 twice a year in July and December and there was no groundcover throughout the year. Rubber trees are tapped after they are 6-7 years, and farmers tap from April to October, according to the onset and ending of the rainy season. Rubber latex is harvested every second day.The tropical monsoon forests had tall emergent trees of up to 40 m height with epiphytes, lichens and a rich herbaceous layer. Forests in this region can have over 100 tree species per hectare and dominant trees families include Burseraceae, Annonaceae and Euphobiaceae (Cao and Zhang, 1997). In the rubber plantations, mean tree height was 20 m.SR was measured using a closed dynamic system. Every plot was equipped with three PVC collars, 20 cm in diameter and 20 cm in height, that were installed haphazardly in September 2014; but at least 2 m away from trees. The collars were driven 5 cm into the soil. SR measurements were performed from end of November 2014 until November 2015. Measurements were made twice a month during the year. For each measurement, the collars were manually closed with a plastic lid and connected to a portable infra-red gas analyzer (LI-8100, LI-COR, Lincoln, Nebraska, USA). Air was circulated in this closed system by a pump at a constant flow rate of 0.5 l min −1 and the CO 2 concentration inside the chamber was logged every 10 s for a period of 5 min. CO 2 fluxes were calculated from linear regressions of increasing CO 2 concentrations.CO 2 concentrations in the soil profile were measured monthly over 1 year from November 2014 to November 2015. In September 2014, in each plot 4 gas probes were installed horizontally at 5, 10, 30, and 70 cm soil depths (Fig. S1). The probes were made up of plastic cylinders 54 cm in length and an inner diameter of 1.7 cm. In the backmost 10 cm the cylinders were perforated by drilling holes (∅ 3 mm), thereby allowing free gas exchange between the cylinder volume and the soil atmosphere. The part with the holes was covered by a stainless steel mesh sleeve (45 μm mesh width) to exclude soil and soil macrofauna from the cylinders. Cylinders were closed on both sides and two gas impermeable PUE tubes (inner diameter 1.5 mm, capillary volume depending on length but < 3 ml) were inserted into the cylinder at the end without the drill holes. The tubes were cut to a length so that they poked out of the forest floor up to a height of about 20 cm after the installation pit was refilled. Luer lock adapters (MedNet) with a lid (MedNet) at the protruding end of the capillaries permitted the connection of a syringe (Volume: 100 ml) via a three-way stopcock (MedNet). Air samples were taken with a syringe from the probe and stored in 200 ml multi-layer foil sampling bags (LB-101, Dalian Delin Gas Packing Co., Ltd., CN) that were evacuated prior to sampling. Samples were transferred to the laboratory and analyzed for CO 2 concentrations with a gas chromatograph (GC; HP 6890, Agilent Technologies, Inc., Santa Clara, CA) at the Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences.Net turnover R N of CO 2 (nmol cm −3 d −1 ) in the individual depth layers was calculated from mass balances of diffusive fluxes according to the following equation (Goldberg et al., 2008):The left-hand expression in parenthesis represents the diffusive flux of CO 2 at the upper boundary, the right-hand expression at the lower boundary of a layer (D A : apparent diffusion coefficient in soil, ΔC CO2 / Δx: concentration gradient at upper or lower end of segment, z: thickness of the layer). The diffusion coefficients D A for CO 2 in the soil were obtained using the temperature corrected gaseous diffusion coefficient (Massman, 1998) and a correction function α(a) = a 2 ϕ −2/3 (α: correction factor at air content a, ϕ: soil porosity; Jin and Jury 1996). Volumetric gas content was derived from total porosity and volumetric water content. In each plot, data loggers (Hobo U30) were installed for daily monitoring of soil water content (SWC) and soil temperature (ST). SWC (S-SMC-M005) and ST sensors (S-TMB-M002) were permanently installed at 5, 10, 30, and 70 cm depth. Data were logged in 30 min intervals and daily averaged.Soil samples were collected from each plot once during wet (21st September 2014) and dry season (23rd March 2015). At each plot, 10 samples were taken with an auger (2.5 cm diameter) from 0 to 10 cm and in the wet season additional from 10 to 20 cm depth and bulked into one sample for analysis. One part of the bulked soil was air-dried at room temperature prior to physical and chemical analysis and the other part was frozen at −20 °C prior to NO 3 − and NH 4 + analysis. Soil samples were sent to Biogeochemical laboratory, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences. All physical and chemical analysis stated below followed the protocols from the National Forest Service of China (1999). Soil particle size was examined by the pipette method which fractionated into clay (0-0.2 mm), silt (0.2-0.5 mm) and sand (0.5-2 mm) according to the USDA classification system. Soil pH was measured potentiometrically at a soil:water ratio of 1:2.5 in H 2 O. Organic matter (OM) was quantified by oxidation with a potassium dichromate solution in sulfuric acid (H 2 SO 4 -K 2 Cr 2 O 7 ). Organic carbon (OC) was calculated using the formula OM = OC × 1.724. Total nitrogen (TN) was measured using a CN Analyzer (Vario MAX CN, Elementar Analysensysteme GmbH, Germany). Total phosphorus (TP) was digested with perchloric acid and hydrofluoric acid (HClO 4 -HF) solution and determined using an inductively coupled plasma atomic emission spectrometer (iCAP6300, Thermo Fisher Scientific, U.S.A). Cation exchange capacity (CEC) was exchanged with 1 M ammonium acetate (CH 3 COONH 4 ) (pH = 7.0) and tested by auto Kjeldahi unit (K370, BUCHI Labortechnik AG, Schweiz). Available nitrogen was measured as ammonia (NH 4 + -N) and nitrate (NO 3 − -N) concentrations in 2 M KCl extracts and concentrations were determined using a continuous flow analyzer (Auto Analyzer 3, SEAL Analytical GmbH, Germany).For the soil bulk density and porosity measurement, we used a cylindrical metal sampler of 100 cm 3 . 5 samples were taken per plot at the following depths: 0-5 cm, 5-10 cm, 25-30 cm, 65-70 cm. Soil samples were oven dried at 105 °C to calculate bulk density with constant volume. For the porosity measurement, we used the twice-infusion method (Liu, 1996), and oven-dried the soil samples at 105 °C for the calculation of total porosity.All analyses were conducted using R version 3.3.1. To assess significance, we calculated 95% confidence intervals (CI) of estimated parameters. If the CI did not overlap zero, we concluded the effect was significant at the 95% confidence level. In the results section of this paper, CIs are expressed on the original scale of the variable concerned (i.e. transformed variables were back transformed) to four significant digits. Note that for categorical variables the effect size is the difference of the group mean from the reference group mean (not the absolute value of the mean) and for continuous variables it is the slope.We characterised the difference among plots in terms of soil temperature, soil moisture content and soil chemical and physical properties. For soil temperature and soil moisture content we used the daily mean values and used linear mixed models with plot and day as grouping variables, and land cover and slope position and their twoway interactions as fixed effects. To examine the differences in soil chemical and physical properties between land cover types, we used linear models. NO 3 − data were square-root transformed.We used linear mixed models to identify parameters that significantly impacted SR, CO 2 turnover and calculated SR. SR values were log transformed, while for CO 2 turnover which had positive and negative values, we square-root transformed the absolute values. We defined sampling occasion and plot or collar as grouping variables. Season, slope position, land use type, soil depth and all two-way interactions of these factors were treated as fixed factors. Season was treated as a block term, as the dataset covers only one year.For model simplification, we used a likelihood approach based on the Akaike information criterion (AIC). To avoid over parameterizing models, we started with the main effects, and added and subtracted parameters until we arrived at the most appropriate model. Models with a ΔAIC of < 2 were considered equivalent. We checked model fit by plotting the standardized residuals against the fitted values and checked the normality of the residuals and random effects. If there was an obvious trend in the standardized residuals, we allowed the error variance to vary among levels of the fixed effect factors and selected the model with the best fit. In the results, we provide marginal R 2 (R 2 m) that is the variance explained by the fixed factors alone, as well as conditional R 2 (R 2 c) which is the variance explained by both fixed and random factors.In order to show the interrelated effects of soil water content and soil temperature on SR, we used the model suggested by Lang et al. (2017) that included ST, SM and a quadratic SM term:From the parabolic relationship between SWC and SR, we calculated the optimum level of SWC for SR as -c/2d, with c and d as fitted parameters in Eq. ( 2).Soil texture was clay-loam in the natural forest sites and clay in the rubber plantations (Table 1). The rubber plantations had significantly higher clay content (42-47%) compared to the forest sites (30-33%; CI: 9.736-17.94). Soil bulk density did not differ significantly between the different slope positions or land cover types, with values ranging between 1.05 to 1.26 g cm −3 (Table 1). Soil pH in 0-10 cm in the natural forests ranged from 5.5 to 5.8 and was significantly higher than pH in the rubber plantations with values of 4.9-5.0 (Table 2, CI: −0.9754 to −0.2124). SOC was higher during the wet season and in the upper slope position (CI: 1.036-7.298) as compared to the middle and lower slope in both rubber plantations and natural forest in the dry season, but did not differ significantly between the two land use During the investigation period from November 2014 to November 2015, daily mean air temperature ranged from 9.8 °C to 28.7 °C and was significantly higher in rubber plantations as compared to natural forest (CI: 0.4190-1.143). Daily mean relative humidity ranged from 56.1% to 100% and was significantly lower in rubber plantations (CI: −0.4037 to −0.3503). Mean soil temperatures at 5 cm soil depth ranged from 11.7 °C to 26.5 °C (Fig. 2) and were significantly higher in rubber plantations (CI: 0.3718-1.120), with mean annual values of 21.3 ± 0.2 °C in rubber plantations and 20.2 ± 0.1 °C in natural forests, but did not differ significantly between different slope positions. At 10 cm depth, ST ranged from 12.5 °C to 26.4 °C and was significantly higher in rubber plantations than in natural forests (CI: 0.3275-1.124). Similarly, at 30 cm depth ST ranged from 13.9 °C to 26.3 °C, and was also significantly higher in rubber plantations than in natural forests (CI: 0.3350-1.354). At 70 cm depth ST ranged from 16.1 °C to 25.6 °C but did not vary significantly among land use types. Rubber plantation soils were significantly wetter throughout the year compared to natural forest at all depths (5 cm CI: 0.0269-0.0758; 10 cm CI: 0.05889-0.1015; 30 cm CI: 0.06093-0.1031; 70 cm CI: 0.06775-0.1324). At 5 cm depth, annual mean SWC was 0.26 ± 0.04 m 3 m −3 in the rubber plantations and 0.21 ± 0.05 m 3 m −3 in the natural forests (Fig. 2).Particle size distribution and bulk density at 0-10 cm and 10-20 cm depths in rubber plantation and natural forest sites along a slope gradient. There were no significant differences for the listed parameters between different slope positions.Soil Soil respiration rates in both land use types showed the same seasonal pattern: Mean SR rates were lowest from January to March (NF: 1.9 ± 0.2 μmol m −2 s −1 to 2.6 ± 0.6 μmol m −2 s −1 ; RP: 1.6 ± 0.2 μmol m −2 s −1 to 2.1 ± 0.4 μmol m −2 s −1 ). During the dry-wet season transition period, from March to May, SWC and ST increased, followed by an increase in SR (Fig. 2). This increase in SR was observed for both natural forest and rubber plantation and across the different slope positions, with mean increases of 90% and 140% respectively.The optimal model for SR (R 2 C = 0.4447, R 2 m = 0.2717) retained just season (block effect), land use type and the interaction between season and land use as fixed effects (Fig. 3). During the wet season both SR and the variance in SR were higher, especially after the July measurement taken 3 days after fertilization. Therefore, we modeled the error variance separately for each season. Mean annual SR in rubber plantations was 15% less than in natural forests (land use effect, CI: −0.6812 to −0.9063; land use:season effect CI: 1.045-1.276) (Fig. 3). Variation in SR in both land cover types was significantly associated with ST (CI: 1.085-1.106), and marginally correlated with SWC (CI: −0.9612 to 3.459). The model we used to show the influence of SWC on temperature-driven SR (Eq. ( 2); Lang et al., 2017) did not give significant results for the annual (Fig. S2) and wet season data in RP. Therefore, we used only the dry season data in order to compare both land cover types. In the dry season, the model explained 62% of the variation in SR in RP and 63% of the variation in SR in NF (Fig. 4, Table 3). Due to the parabolic relationship between SWC and SR, we were able to calculate the optimum level of SWC in RP (0.27 m 3 m −3 ) and NF (0.21 m 3 m −3 ).Mean CO 2 concentrations at 5 cm soil depths were always above ambient concentrations (491-553 ppm, Fig. 5) with the highest values recorded at the end of the wet season. Throughout the year CO 2 concentrations in all plots increased from 5 cm to 70 cm depth, with the highest mean value in the subsoil being 19,500 ppm (Fig. 5). CO 2 turnover calculations (Table 4) showed that CO 2 production in both land use types was always one to two orders of magnitude higher at 2.5-7.5 cm depth compared to 7.5-20 cm and 20-50 cm.Net CO 2 turnover data were over-dispersed and had both positive and negative values, so we square root transformed the absolute values. In addition, variance in the data increased with CO 2 turnover, so we modeled the error variance separately for each depth and slope position. The optimal model retained all two-way interactions although many were not significant and the proportion of the variance explained by the model was relatively low (R 2 C = 0.1985, R 2 m = 0.1950). CO 2 turnover declined significantly with depth (7.5-20 cm, CI: −751.4--58.96; 20-50 cm, CI: −794.2 to −97.78). Net CO 2 production rates were also significantly higher in upper slope positions (CI: and dry season (right) soil CO 2 emission in rubber plantation and natural forest (grey boxes). Data include all plots of the respective land cover type, since no significant difference existed between different slope positions. The portion of CO 2 derived from 5 cm soil depth to atmosphere (as calculated by CO 2 diffusion from 5 cm depth to atmosphere) is shown by the white boxes. Asterisks indicate significant differences in mean soil CO 2 emissions between rubber plantation and natural forest (* p < 0.05; ** p < 0.01).3.532-537.6), as compared to lower slope positions. Replacing season with SWC resulted in minor improvement in the explanatory power of the model (R 2 C = 0.2062, R 2 m = 0.2026, including ST terms did not improve the model), but further simplification was not possible.Fig. 3 shows the contribution of the diffusive fluxes calculated from the CO 2 concentrations at 5 cm soil depths to the aboveground CO 2 emission from soil. In contrast to the total SR rate measured aboveground, CO 2 diffusive fluxes from 5 cm to atmosphere were not significantly affected by season. Accordingly, the contribution of CO 2 derived from 5 cm soil to the total soil respiration was substantially higher in the dry season for both natural forest and rubber plantation (24 and 29%, respectively) than in the wet season (20 and 24%, respectively).The contribution of the diffusive fluxes calculated from the CO 2 concentrations at 5 cm soil depths to the aboveground CO 2 emission from soil (square-root transformed) was not significantly associated Rubber with land use type or slope position, but was marginally significantly associated with SWC (CI: −0.03564 to 33.87).In this study we found that mean annual SR in the rubber plantation sites (1.23 ± 0.03 kg C m −2 yr −1 ) was 15% lower than in natural tropical forest sites (1.45 ± 0.05 kg C m −2 yr −1 ). The annual soil CO 2 emission rates in rubber plantations measured in this study are within the range of those reported by the few other studies that have measured SR in rubber plantations (0.68-2.02 kg C m −2 yr −1 ; Fang and Sha, 2006;Ishizuka et al., 2005;Lang et al., 2017;Satakhun et al., 2013;Zhou et al., 2008). Reported annual SR rates in seasonal tropical forests in SE Asia range from 1.58 to 2.56 kg C m −2 yr −1 (Hashimoto et al., 2004;Ishizuka et al., 2005;Sheng et al., 2010;Takahashi et al., 2011). Hence, our results are lower than these emission rates. However, they are substantially above the SR rates reported for primary tropical forests in our study region (Xishuangbanna, China): 0.72-1.01 kg C m −2 yr −1 (Fang and Sha, 2006;Lang et al., 2017;Sha et al., 2004). Lower SR in tropical forests in Xishuangbanna compared to other SEA tropical forests is likely a result of lower annual temperature and rainfall (Li et al., 2010;Tan et al., 2010).The difference in annual SR rates between the two land cover types was solely driven by SR differences during the dry season, with substantially lower SR in rubber plantations compared to the natural forests. The most likely explanation is defoliation of the rubber trees in our study area, which occurs annually during the dry season. Typically, leaf yellowing or reddening starts in November and rubber trees shed senescent leaves for about 1-2 weeks between the end of January and middle of February (Wu et al., 2016). Plant photosynthesis has been identified as an important controlling factor for soil rhizosphere CO 2 efflux (Fu and Cheng, 2004;Kuzyakov and Cheng, 2001). Furthermore, Chairungsee et al. (2013) found that almost 100% of fine roots in a rubber plantation in Thailand stopped growing during the dry season. With the onset of the wet season, root growth quickly resumed again, showing that the fine roots had not died. Respiring less C conserves energy when defoliation has limited the supply of photosynthates to the roots. In natural forests, where few plant species shed leaves (Li et al., 2011), root respiration is most likely reduced to a lesser extent than in rubber plantations.As reported in other studies in tropical seasonal forests (Akburak and Makineci, 2013;Bréchet et al., 2009;Cleveland et al., 2010;Davidson et al., 2000;Kosugi et al., 2007;Moyano et al., 2012), the SR in both land use types showed a clear seasonal pattern with SR rates in the warm wet season accounting for 60% (natural forest) and 70% (rubber plantation), respectively, of the annual soil CO 2 emissions. Mean annual, wet and dry season CO 2 turnover rates in nmol cm −3 d −1 at the respective soil depths in rubber plantation and natural forest. For both land-use types annual turnover rates in 2.5-7.5 cm were significantly higher in the upper slope position than the lower slope position. Different letters indicate significant differences (p < 0.05) between different soil depths. No significant differences existed between forest types and seasons. During the transition from the dry to the wet season (March-May), soil moisture and temperature increased, which was accompanied by increasing soil respiration rates in both land cover types. Numerous studies in the past on a wide range of ecosystems have shown that among the different chemical and physical factors influencing SR, temperature and soil moisture are the two main governing parameters (Davidson et al., 1998;Davidson and Janssens, 2006;Fang and Moncrieff, 2001;Lloyd and Taylor, 1994;Orchard and Cook, 1983). Both abiotic factors (SWC and ST) govern CO 2 production and thereby emissions by affecting microbial activity and decomposition processes in soils (Curiel Yuste et al., 2007;Franzluebbers, 1999). SWC furthermore determines diffusivity and therefore the speed of the gas transport to the atmosphere (Moldrup et al., 2003). Commonly, soil respiration increases with temperature and is highest at SWC close to field capacity, whereas it decreases on both sides of the optimum (Howard and Howard, 1993).Optimum SWC was higher in rubber plantations (0.27 m 3 m −3 ) compared to natural forest (0.21 m 3 m −3 ). Soil texture is an important determinant of the point at which SR is neither limited by a lack of soil moisture nor excess soil moisture (Wood et al., 2013). The rubber plantations in our study had significantly higher SWC than the natural forest, displaying up to 0.12 m 3 m −3 greater SWC during the dry season, when differences were most pronounced. Our observation that rubber plantations had higher levels of SWC year-round and a higher optimum SWC level for SR can both be explained by the higher clay content in the rubber plantation soils. SWC is known to have a linear correlation with soil clay content, although the smaller pore sizes result in a more negative matric potential (Balogh et al., 2011).The difference in clay content could also explain, why the rubber plantations in this study did not have decreased SOC contents, as has been reported for rubber plantations compared to natural forest (e.g., Blagodatsky et al., 2016;de Blécourt et al., 2013). SOC stocks and clay contents are positively correlated (McGrath et al., 2001;van Noordwijk et al., 1997), since clays increase the inaccessibility of SOM in soil aggregates, therefore hindering decomposition of SOM (Gunina and Kuzyakov, 2014). In accordance with our findings, Powers et al. (2011) showed that higher clay contents reduced C loss after conversion from natural forest to plantation. The consistent higher clay content in the rubber plantations in all our three study sites compared to the natural forest sites can be explained by the site selection of rubber farmers. Farmers likely prefer clayey soils for their increased nutrients and SWC, as SWC is also linked to latex production (Samarappuli et al., 2014). This difference in soil texture between the two land cover types is therefore not biased by the site selection in our study, but a result of farmer selection that has so far not been a focus of studies on this type of land use conversion. Further deforestation and conversion to rubber (and other crop) plantations is likely to entail shifts to forest soils that are increasingly less suited to agriculture. With regards to soil C stocks and C cycling, the non-random patterns of deforestation with respect to soils is an important research question that needs to be addressed in future studies.Slope position in our study significantly affected soil moisture in the rubber plantations. We found the highest SWC on the upper slope position. Previous studies in tropical forests reported on both, higher soil moisture on lower slopes compared to upper drier slopes (Epron et al., 2006;Tsui et al., 2004), and the opposite with highest soil moisture on upslope positions (Takahashi et al., 2011;Wood and Silver, 2012) as in our study. Our soil physical parameters (soil texture, soil porosity) could not explain why SWC was highest on upper slopes in the rubber plantations. Therefore, the difference in SWC between the different slope positions can only be explained by the increasing incline from lower to upper slopes. However, this difference in soil moisture apparently did not affect SR. In natural forest in our study neither soil moisture nor SR were affected by slope position. In contrast, Epron et al. (2006) showed a close relationship between SR and topography in a tropical rain forest in French Guinea along a 25-35 m elevation gradient, with increasing SR from the wet bottomlands to the better drained upper slopes. However, Fang et al. (2009) also did not find a significant correlation between SR and slope position along a transect with 25 m elevational change in a tropical forest in Southern China. They concluded that factors other than SWC must have stronger impacts on soil CO 2 emissions. In our study, in the wet season none of the analyzed soil parameters differed between slope positions in both land use types, although in the rubber plantations during the dry season, C and N concentrations were higher at the wetter upper slope position. Anyhow, the topographical range in our study with a total elevation range of 60 m is representative for natural forests and rubber plantations in our study sites.Although we did not find significant differences in SR between different slope positions, slope position nevertheless had significant impacts on CO 2 turnover in soil, with higher net CO 2 production in the topsoil of upper slopes compared to lower slopes. Further studies with higher spatial resolution are necessary to investigate the effect of slope position. However, we can conclude from our results that topography needs to be taken into account to obtain representative data for the whole landscape.Soil CO 2 concentrations in our rubber plantation and natural forest sites followed the same pattern as observed in other tropical forest soils (Davidson et al., 2004;Hashimoto et al., 2004) with increasing concentrations at increasing depth. However, measured soil CO 2 concentrations are a result of soil CO 2 production and its transport through the soil profile (soil gas diffusivity). Calculation of net CO 2 turnover showed that CO 2 production did not differ between both land cover types, even though soil CO 2 concentrations were higher in rubber plantations. These higher CO 2 concentrations despite similar CO 2 production are a result of higher SWC in the rubber plantations, which reduced soil gas transport (Millington, 1959;Moldrup et al., 2003). Furthermore, calculated net CO 2 production per volume was up to three orders of magnitude higher in the topsoil than the soil below, down to a depth of 70 cm.Our study is the first that compares net soil CO 2 production in rubber plantations with net soil CO 2 production in natural forest. Rubber plantations tend to have lower levels of fine root density (Sahner et al., 2015) and a lower abundance and diversity of microorganisms compared to natural forests (Abraham and Chudek, 2008;Martius et al., 2004). These differences might be expected to result in lower net CO 2 production in rubber plantations along the soil profiles. However, this was not the case in our study. Therefore, the difference in SR rates between natural forests and rubber plantations measured aboveground is due to higher SR rates in the shallow topsoil layer (0-5 cm) and the leaf litter in the natural forest. Aboveground litter decomposition has been shown to contribute up to 37% to soil respiration in tropical forests (Li et al., 2004, Valentini et al., 2008;Zimmermann et al., 2009). But there are high uncertainties due to huge variances between existing studies. In contrast to the CO 2 flux measured on top of the soil, the calculated CO 2 efflux derived from 5 cm soil depths did not vary between seasons. This shows that the observed seasonality effect (i.e., temperature and moisture) on SR is solely due to seasonal dynamics in the top few centimetres of the soil, where the majority (> 70%) of the soil emitted CO 2 was produced.Soil respiration can be used as a bioindicator of soil health. Deforestation has been shown to reduce microbial respiration in the long term through a reduced supply of organic carbon inputs to the soil. Additionally, the management practices after deforestation affect the microbial activity, with less intense management practices generally resulting in higher microbial activity. Therefore, the relatively small differences (15%) in soil respiration between natural forest and rubber plantation, and the similar levels of soil organic carbon found in the two different land cover types in our study together suggest that forest conversion to rubber plantations in Xishuangbanna, China, has relatively little effect on soil CO 2 emissions in the long term. However, in order to better understand these results, it is particularly important to further investigate soil respiration in the shallow topsoil layer (0-5 cm) and leaf litter, as our results indicate that these layers contributed over 70% to mean annual soil respiration.","tokenCount":"6334"} \ No newline at end of file diff --git a/data/part_3/0315117038.json b/data/part_3/0315117038.json new file mode 100644 index 0000000000000000000000000000000000000000..5f8f315adfff26b6b6de3851de4fc568548d8230 --- /dev/null +++ b/data/part_3/0315117038.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"0b1ad7411d262b1ad16e01ab4b3a6868","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/bacb2685-04db-4572-9f75-7b55dba8b01e/retrieve","id":"-703075857"},"keywords":["theory-based evaluation","policy process evaluation","middle-range theory","biofortification"],"sieverID":"5672130d-5b15-4fa9-8e03-a608a458284d","pagecount":"38","content":"in 1975, provides research-based policy solutions to sustainably reduce poverty and end hunger and malnutrition. IFPRI's strategic research aims to foster a climate-resilient and sustainable food supply; promote healthy diets and nutrition for all; build inclusive and efficient markets, trade systems, and food industries; transform agricultural and rural economies; and strengthen institutions and governance. Gender is integrated in all the Institute's work. Partnerships, communications, capacity strengthening, and data and knowledge management are essential components to translate IFPRI's research from action to impact. The Institute's regional and country programs play a critical role in responding to demand for food policy research and in delivering holistic support for country-led development. IFPRI collaborates with partners around the world.While the key role that policy plays in sustainable development has long been recognized, rigorously documenting the influence of research on policy outcomes faces conceptual, empirical and even political challenges. Addressing these challenges is increasingly urgent since improving policy is at the heart of the structural transformation agenda in international development. This paper describes the use of a new evaluation method-outcome trajectory evaluation (OTE)-to explore the influence of HarvestPlus, a large and complex research for development program focused on improving nutrition through agriculture, on a specific policy outcome, namely the establishment of crop biofortification breeding programs in national agricultural research institutes in Bangladesh, India and Rwanda. By building on both evaluation and policy process theory, OTE seeks to improve the rigor of policy influence evaluation by ensuring that the evaluation covers all factors that are hypothesized to influence policy outcomes, not only those factors targeted by the program. By systematically considering all factors that potentially contribute to policy change, the approach reduces the risk of overstating program influence on an observed policy outcome.The objectives of the paper are to describe a new approach to understanding and evaluating policy outcomes, provide an example of its use in a specific context, and reflect on some advantages and disadvantages of the approach that may be relevant to potential users. The paper is organized as follows.Section 2 describes the HarvestPlus program and Section 3 presents the OTE approach. Section 4 summarizes the key findings of the evaluative review and Section 5 reflects on the approach. Section 6 concludes with recommendations for program implementers, evaluators, and for further research.CGIAR and national agricultural research and extension systems (NARES) have collaborated on crop improvement programs for decades. 1 Starting in the late 1990s, CGIAR breeders began looking at the potential for breeding to increase the micronutrient concentration in staple crops (a.k.a. biofortification) in an effort to contribute to a reduction in micronutrient malnutrition, also known as hidden hunger. In 2003, the HarvestPlus program was established to work on biofortification at the CGIAR system level. 2Once technical feasibility was established, the focus moved to breeding and testing varieties in practice and then to disseminating the varieties at scale and institutionalizing biofortification in national and international programs and policies. In 2016, four researchers behind biofortification were awarded the World Food Prize (World Food Prize Foundation).From the beginning, HarvestPlus also invested systematically in understanding, estimating and tracking the impact of biofortified crop varieties on nutrition outcomes. The goal was to build an evidence base to convince not only the agricultural community but also the public health nutrition community that biofortification could be a cost-effective nutrition intervention (Bouis and Saltzman 2017;Johnson et al. 2017). Initial ex ante economic impact studies (Meenakshi et al. 2010) were followed by nutritional efficacy studies, by studies of factors affecting uptake by producers and consumers, by effectiveness studies and ultimately, by documenting the dissemination, adoption and consumption of biofortified varieties at scale (see for example Saltzman et al. 2017;HarvestPlus 2014;HarvestPlus 2019).HarvestPlus' initial core research areas-crop breeding, nutrition, impact and policy, and reaching end 1 For the purposes of this paper, CGIAR and HarvestPlus are used interchangeably to describe the work with NARES on breeding programs for biofortified crops. HarvestPlus was established as a joint venture between two CGIAR Centers, the International Food Policy Research Institute (IFPRI) and the International Center for Tropical Agriculture (CIAT), in 2003. HarvestPlus is part of the CGIAR Research Program (CRP) on Agriculture for Nutrition and Health (A4NH) and is based at IFPRI. HarvestPlus' crop research and breeding work draws on the expertise and resources of partner CGIAR Centers for breeding the respective biofortified crops, which for the focus of this evaluation are the International Rice Research Institute (IRRI), (zinc rice for Bangladesh), the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), (iron pearl millet for India), and CIAT (iron beans for Rwanda).2 https://www.harvestplus.org/ users-were increasingly complemented by efforts designed to build capacity, establish partnerships, jump start dissemination, and engage with and influence policy. 3 Consistent with Renkow (2018, p. 2), policy was broadly understood to include different types of policyoriented outcomes to which CGIAR research contributes:• Changes in laws and regulations governing economic incentives in agriculture or natural resource management-for example, agricultural, macro, trade, nutrition/health, and environmental policies;• Creation of institutions-for example, the formation of the Ethiopian Commodity Exchange or the agreement between India, Nepal, and Bangladesh to share rice varietal evaluation data among their respective countries to facilitate more rapid release and commercialization; Over the course of the program, HarvestPlus sought to influence policy outcomes from all these categories, from influencing regional and national agricultural and nutrition policies (Baral and Birol 2020;HarvestPlus no date;Foley et al. 2021) to contributing to the establishment of a definition for biofortification under Codex Alimentarius (Bouis and Saltzman 2017;Saltzman et al. 2017) to mainstreaming breeding for nutrition in CGIAR (Rijsberman 2014;Baral and Birol 2020).As mentioned earlier, the most recent phase of HarvestPlus' program was focused on scaling up biofortified varieties in target countries. To achieve this HarvestPlus worked with and supported breeders in NARES to develop, test, and release biofortified varieties. For biofortification breeding to become sustainable, these programs would need to become institutionalized meaning that they were no longer special projects funded by external donors but rather core parts of the national breeding strategies and programs. This is the outcome that the CRP on Agriculture for Nutrition and Health (A4NH), led by IFPRI, sought to assess when it commissioned an evaluative review of HarvestPlus' contribution to the development of national biofortification breeding programs in Bangladesh, India and Rwanda (Douthwaite 2021). 4 Since HarvestPlus funding to the programs ended in 2018, it was possible to assess the status of those programs, three years later in 2021.Influencing policy is important for development, in particular sustainable development and structural transformation, however documenting policy influence is hard. This is not because it is hard to know whether a policy change occurred, but rather because it is difficult to determine what factors led to the change. Quantitative methods for impact evaluation use statistical approaches to make causal claims, however, they require large sample sizes which are usually not possible in the case of policy influence.Thus, qualitative or theory-based approaches are often recommended (White and Phillips 2012).Theory-based approaches to evaluation are based on the program's theory of change (ToC) in order to draw conclusions about whether or how the program's activities led to the observed outcomes. While there is no explicit \"control\" against which to compare outcomes, the approach recognizes the need for a counterfactual and emphasizes the importance of considering alternative explanations for an observed outcome that are beyond the program's hypothesized contributions. Examples of theory-based approaches to evaluation include process tracing (Beach and Pedersen 2019) or contribution analysis (Mayne 2012).We have identified two shortcomings to the use of theory-based approaches in policy evaluation. Firstly, theories of change used in theory-driven evaluations are usually built from 'stakeholder theory' -the implicit or explicit ToCs held by those close to the program (Donaldson 2007;Breuer et al. 2015). Putting this theory at the centre of an evaluation risks overestimating the causal power of the program and underestimating other causal factors. As a result, some evaluators prefer more inductive approaches that do not start with theory (Carden 2009;Van Wessel 2018), for example outcome harvesting (Wilson-Grau 2019). Secondly, Scriven (1994), one of the best-known critics of theory-driven evaluation, argues that most evaluators lack the ability to develop a good ToC to evaluate because doing so requires state-of-theart subject matter expertise.To address these issues, this study uses a new hybrid approach called outcome trajectory evaluation (OTE, Douthwaite et al. forthcoming). OTE is hybrid in the sense that it uses both existing, published theory and stakeholder theory. The approach was first developed in an outcome evaluation carried out for the CRP on Roots, Tubers and Bananas (RTB) and A4NH (Douthwaite 2020;Douthwaite et al., forthcoming).OTE is based on two core concepts. The first is the idea that outcomes, such as the establishment of a biofortification breeding program, are not single, one-off events, but rather are generated and sustained over time by an interacting and co-evolving system of actors, knowledge, technology and institutions. The second key concept in OTE is the idea of middle-range theories (Pawson 2010;Pawson 2013) that are positioned between universal social theories and more location-and context-specific program theory and/or ToC. Middle-range theories apply to clusters of similar programs and can therefore help develop program ToCs that are comparable at cluster level, and so can aid cross-case learning and insight. A number of broadly-applicable theories exist in the policy realm (Sabatier 2007) that have been simplifiedand described such that policy advocates and evaluators: 1) can choose which will best help their understanding and navigation of the policy processes in which they are involved (Stachowaik 2013; Resnick et al. 2018); and, 2) can specify them so as to function as middle-range theories applicable to clusters of projects. In the case of an evaluation of policy influence, starting with an existing policy process theory and adapting it to the specific program context can ensure that the evaluation is rooted in accepted understanding of how policy influence happens and that it considers the contributions of a program through this lens. The subsequent middle-range theory developed in the specification process can be used in subsequent evaluations of similar projects, saving the respective evaluators from the need to develop a ToC from scratch. Instead, their task is to use evidence and stakeholder theory to challenge, validate and/or further specify the selected middle-range theory, and in so doing alleviating the two constraints identified above.Operationalizing OTE in an evaluation involves six steps which are described below for the case of the HarvestPlus study. Before describing the steps, we briefly describe the focus and scope of the evaluative review.The main evaluation question addressed using OTE was how and to what extent did HarvestPlus contribute to the establishment and implementation of sustainable biofortification breeding programs in Bangladesh, India and Rwanda. 5 The outcome trajectories to be described, modeled and evaluated are the establishment and implementation of three biofortification breeding programs, namely:• Zinc rice in Bangladesh with the Bangladesh Rice Research Institute (BRRI);• Iron pearl millet (IPM) in India with the All India Coordinated Research Project on Pearl Millet (AICRP-PM); and• Iron beans in Rwanda with the Rwanda Agriculture and Animal Resources Development Board (RAB).These 'crop x country' combinations were selected by HarvestPlus. The idea was to look at mineral crops (iron and zinc) in different crop x country contexts. In all cases, the programs were considered successful, and it was felt that sufficient information would be available on which to base the study. Details on how trajectories were constructed, including selection of interviewees, is described below in Step 2.Step 1: Select existing theory to focus description and understanding of the respective outcome trajectories Accordingly, the first step in the evaluative review was to select an existing theory to provide a framework to help construct and make sense of the three outcome trajectories (crop x country breeding programs) and the contexts in which they operated. We chose an existing middle-range theory that was interpreted by Stachowiak (2013). The theory proposes that changes in policy-related outcomes occur during windows of opportunity, which help champions successfully connect two or more components of the policy process. The components are the way a problem is defined; the policy solution to the problem;and the politics surrounding the issue (Stachowiak 2013;Zahariadis 2008). Windows of opportunity are moments when progress can be made. They can be created by natural events such as pandemics, droughts, or earthquakes. They can also be changes in government, budget cycles, or landmark meetings and summits held as part of ongoing national, regional, and global processes. Policy windows are often short in duration and may or may not be predictable.The attraction of using a middle-range theory specified and adapted from a similar previous study was that it allowed us to learn from and build on it. We would be able to use the results to identify the specific strategies that had proven useful to achieve outcomes numbered 1 to 3 (Shift in social norms, change in capacity, strengthened support base) in Figure 3.1, in different contexts for different types of policyrelated outcomes (i.e., establishment and functioning of biofortification breeding programs in three countries). Our expectation was that this would make our modified version of Figure 3.1 more broadly generalizable for future outcome evaluations of policy-oriented outcomes of CGIAR and partner research. Step 2: Identify and describe the outcome trajectory that has led to the respective biofortification breeding programs being in existence Desk review and key informant interviews began in June 2021 to develop timelines for the three respective outcome trajectories, based on interviews and reviews of available data, reports and online publications (Douthwaite 2021). Included in the data gathering was a detailed review of project documents carried out by HarvestPlus staff so as to identify:• The investments made into the respective breeding programs over the study period, including but not limited to investments in technical capacity;• The main outputs of the breeding programs in terms of the release of new biofortified varieties and provision of breeding material to other breeding programs; and In developing the timelines, we wove together information from interviews, reports and papers provided by HarvestPlus, and web-based keyword searches, to build a picture of the respective outcome trajectories. The lead author interviewed a total of 18 people about the three cases, six on zinc rice, six on iron beans, three on iron pearl millet and three on all three cases. Interviewees were largely suggested byHarvestPlus on the basis of being the most knowledgeable and representing a variety of perspectives.They represented organizations involved in the respective biofortification breeding programs and/or were individuals knowledgeable of the broader value chain context in which the breeding programs existed.Interviews were recorded and detailed notes made of them. Anonymized, detailed referencing was used to establish an audit trail such that facts and assertions made in the report could be checked back to their sources. Where pieces of data did not appear to fit, further clarification was sought and understanding adjusted.Our approach was essentially a case study one in which understanding flowed from rich, thick picture descriptions of events gleaned from interviews in particular. We used the middle-range theory shown in Figure 3.1 as the 'theory of the case' (Rule and John 2015) to help focus inquiry as we built annotated timelines of the three respective outcome trajectories. Specifically, we looked for manifestations of the three immediate outcomes -outcomes 1 to 3 shown in Figure 3.1 -together with the events and processes that may have contributed, which were recorded on the timeline, together with notes with regard to their significance (see for example Figure 3.2).Source: Douthwaite 2021, p. 39.Step 3: Validate the outcome trajectory timelines with key stakeholdersThe evaluator sent out the annotated outcome trajectory timelines for each case to the respective interviewees to validate, challenge and add to the timelines. The annotated timelines were adapted based on this feedback.Step 4: Identify specific strategies used to achieve the immediate outcomes, adapt and validateBased on the annotated timelines, the rich, thick description from interviews, and document review, we identified the specific strategies used to achieve the general strategies shown in Figure 3.1, i.e., the boxes linked to outcomes numbered 1 to 3 in the figure. For example, the specific strategies related to 'communication' were: (1) consumer marketing using print, radio, TV and social media and (2) field demonstrations and field days and shows. These two strategies were used in all three cases. The result is a complete list of specific strategies, and how they map-or not-to general strategies (Figure 4.1 lists the specific strategies and shows how they map onto the general strategies).Secondly, we adapted the generic descriptions of the immediate and intermediate outcomes to apply to the three cases (see Figure 4.1). For example, we refined the description of immediate outcome 3 'strengthened support base' from 'more enabling political and financial environment to support to the policy solution' to 'more enabling political and financial environments to support biofortification breeding programs alongside other efforts to disseminate and promote adoption.'The evaluation team (the lead evaluator, plus the two evaluation managers, all co-authors of this paper) organized a workshop on 23 September 2021 for interviewees to validate, challenge and add to the specific strategies mapped onto the general strategies.Step 5: Use the validated timelines and three-case ToC to answer the evaluation questionFor each outcome trajectory, the evaluator used the conceptual framing, the case-specific timelines, the adapted ToC, notes from the in-depth interviews, and information from the document reviews to answer the evaluation question.Step 6: Subject the draft report to review for fact and inference checking before finalizing A first draft of the full evaluative review was provided to the evaluation managers 13 October 2021 to coordinate a review process to check facts and the legitimacy of inferences made. Comments and suggestions from reviewers outside the evaluation team were collated and considered. The changes made and not made were recorded and explained. The final evaluation was published in the following month (Douthwaite 2021).Key information on HarvestPlus activities in each country, including outcomes achieved, is summarized in Table 4.1. In all three, the policy-oriented outcome sought was a national biofortification breeding program established in each country for each crop. HarvestPlus funding for IPM in India was much higher than for iron beans in Rwanda and zinc rice in Bangladesh. The difference is that funding was distributed among 30 organizations, including State Agricultural Universities (SAUs) and private sector seed companies.As described under Step 4, three data sources -the timelines, interviews and document review -were used to adapt and specify the middle-range theory (Figure 3.1). This was done by systematically looking across the data sources for evidence of the use of specific strategies that contributed to the general strategies shown in Figure 3.1. This was a deductive process, driven to a large extent by the evaluator's understanding of how change happens, built on three decades of experience. To help reduce the risk of confirmation bias, the specific strategies identified were validated with the people interviewed, and modified accordingly.It is important to note that outcome trajectory actors, including HarvestPlus, may not have understood that they were employing those strategies at the time. However, looking back, in the evaluator's view, and validated by key participants, the specific strategies do a plausible job of explaining how HarestPlus, and other trajectory actors, contributed to the implementation of the respective general strategies.We made some adaptations to the general strategies, to better match the findings:• Under 'strengthened support base,' we added 'advocacy' as a strategy to create more enabling political and financial environments for the breeding, dissemination and adoption of biofortified crops.• Under change in capacity: 'building formal and informal capacity for advocacy' is considered as one strategy. 'Training' is replaced with two general strategies: 'building capacity for advocacy;' and, 'building technical capacity among breeders and value chain actors.'• Reworded the two strategies-'champions taking advantage of policy windows' and 'driven by coalitions sharing common vision' as 'advocating for enabling policies' and 'holding events to generate policy windows,' respectively, as better descriptions of what happened in practice.The mapping of specific strategies onto general strategies onto immediate outcomes is shown in Table 4.2. The first column of the table shows the general strategies, organized by the immediate outcomes to which they contribute. The second column shows the specific strategies that map onto the general strategies. The third column specifies the cases that used the specific strategies and the fourth column provides links to summaries of the findings related to the specific strategies found later in the text. The full findings are provided in the evaluative review report (Douthwaite 2021). Taken together Figure 4.1 and Table 4.2 can be considered as a ToC of how HarvestPlus contributed to achieving the outcomes in the three cases. The ToC can serve as middle range theory for future outcome evaluations of similar projects, and so on. In this way, middle range theory offers a way to accumulate insight and learning from one evaluation to the next. The finding relates to the specific strategy that of \"funding biofortification breeding in national programs\" which in turn maps onto the general strategy of \"funding support.\" Funding support is one of two general strategies shown to contribute to immediate outcome 3: strengthened support base, in the RTB-A4NH middle-range theory shown in Figure 3.1. If evidence is not found, or if the strategy does not apply to the cases, this is also noted as a finding. We consider in turn how the specific strategies, identified and validated in Step 4, worked to bring about the three immediate outcomes across the three cases. The order in which the specific strategies are presented depends on the general strategies they map onto, which in turn depends on the immediate outcomes the general strategies map onto as shown in Table 4.2. Figure 4.1 shows that the immediate outcomes influence each other and can happen at the same time. In the same way, it can be assumed that the general and specific strategies influence each other and may have happened simultaneously.Summaries of findings with respect to specific strategies are given throughout the following text, to help provide an indication of where links between findings exist. More details of the individual findings can be found in Douthwaite (2021).Finding 1: HarvestPlus funded national partners to undertake biofortification breeding starting in 2009 in the three respective countries. Without this funding, it is highly unlikely that the biofortification breeding programs would have ever been set up.Finding 2: Once the biofortified varieties were approved for release, HarvestPlus subsidized the price of biofortified seed to allow greater farmer access in Rwanda and Bangladesh. While initially very successful in Rwanda, this led to a gap in the market when the indirect HarvestPlus subsidy was removed, and criticism that HarvestPlus should have worked to support value chain actors rather than become one itself. However, if HarvestPlus had been less interventionist, it may not have achieved such high adoption levels in a such a short period of time. In Bangladesh, HarvestPlus also initially guaranteed a market for a portion of the private sector production and subsidized the price for any seed that the private sector marketed directly to consumers.Finding 3: HarvestPlus took different approaches to engaging with other trajectory actors depending on the size and governance structure of the country. In India, to reach the states growing pearl millet, HarvestPlus worked through the umbrella of ICAR's AICRP-PM, a consortium of 12 SAUs involved in breeding pearl millet. HarvestPlus also worked through the ICRISAT-led PMHPRC that included 30 seed companies. In Rwanda, HarvestPlus could have worked through the long-established International Center for Tropical Agriculture (CIAT)-led Pan-Africa Bean Research Alliance (PABRA) network, but chose instead to work directly with RAB, taking a more interventionist approach to ensure rapid iron bean seed distribution and uptake in Rwanda.Finding 4: In Rwanda, HarvestPlus supported the development of a specification for iron beans to be used as part of iron bean seed certification. In India, the program was party to the decision by AICRP-PM to set the threshold of 42 ppm of iron and screen all new hybrid IPM candidate varieties to equal or exceed the level before promoting to the next level of testing and approving their release. HarvestPlus supported the varietal release process in Bangladesh and Rwanda by helping to implement and fund necessary multi-locational trials and their analysis.Finding 5: Biofortification and the three case crops are supported in policy documents in all three countries. Perhaps not surprisingly, the direct contribution of HarvestPlus to the policy process appears to have depended on the size of the country. In India and Bangladesh -two large countries -the main policy conduits were the national lead organization for biofortification, that is, ICAR's AICRP-PM for India and BRRI for Bangladesh. In Rwanda, a much smaller country in which the HarvestPlus intervention was much more significant, HarvestPlus appears to have had more direct influence, together with RAB.Promotion of iron beans are supported more often and more specifically in Rwanda's policy documents than in the other two countries.Finding 11: As with the previous finding, the general strategy did not apply to the three cases.Biofortification had been established globally as a solution to micronutrient malnutrition prior to 2009, in part through HarvestPlus running a 'gold standard' effectiveness study on orange flesh sweetpotato in Mozambique and Uganda and the resonance the results found, manifest in the Copenhagen Consensus ranking biofortification as the fifth best investment to tackle the world's most pressing development issues.Finding 12: At country level, the most important step to establish biofortification as a viable solution to micronutrient malnutrition in the minds of trajectory actors was to breed and distribute biofortified crops and demonstrate that farmers and consumers would find them acceptable (more in Finding 17). Of the three cases, the first release of an approved biofortified variety was in Rwanda in 2010. One of the five varieties released, MAC-44, went on to become the most widely distributed high iron climbing bean variety in the region.Finding 13: In India, HarvestPlus and the Global Alliance for Improved Nutrition (GAIN) commissioned the global consultancy firm Dalberg to carry out a commercialization assessment (Dalberg 2019).Although it was too late to influence the establishment of the breeding program, it was potentially relevant to its sustainability. The report estimated that by 2024, about 60 percent of on-farm consumption and 85 percent of rural and urban consumption will be of varieties with greater than 42 ppm of iron. The fact that all 17 of the pearl millet varieties released through government channels since 2017 have greater than 42 ppm of iron supports the estimate. HarvestPlus' own global baseline to qualify as IPM is 47 ppm of iron and the breeding target is 77 ppm of iron. In India, the baseline and breeding targets are currently 42 ppm and 72 ppm of iron, respectively.Finding 14: The barrier to commercialization identified in the Dalberg report that no competitive biofortified alternatives exist for farmers using open-pollinated varieties (OPVs) would appear to be at odds with the launch and promotion of the Dhanashakti OPV by HarvestPlus as the first IPM, which performed better than the variety it was bred from. Moreover, the adoption of IPM reported byHarvestPlus was largely of this variety. Adoption of nine hybrid varieties supported by ICRISAT/HarvestPlus, was delayed by difficulties in licensing public sector-bred varieties to the private sector, a high-level issue that deserves further attention. The value of ICAR's relatively low iron threshold of 42 ppm may be to signal that the government seed system will set more and higher thresholds in two or three years and seed companies would do well to start breeding accordingly. HarvestPlus' approach was very successful in providing iron bean seed to farmers. By 2018, an estimated 420,000 farmers were growing iron beans with 15 percent of the population of Rwanda eating them. This took place in the context of a very low seed replacement rate among bean farmers. However, becoming a large institutional buyer and then leaving the market created, or at least led to the return of, a number of seed value chain issues, not least poor communication between institutional buyers and seed producers and the high cost of certified seed, unaffordable to most farmers.Finding 16: HarvestPlus supported at least four efficacy trials in the three cases, carried out either by Cornell University or the Swiss Federal Institute of Technology. Only two studies provided links to published results, both of which found significant positive health effects. Of the other two studies, no mention of their existence was found in the information HarvestPlus has made easily available online. In contrast, much mention is made by HarvestPlus of the two positive studies, to help frame biofortification as an effective solution to hidden hunger.Finding 17: In each case HarvestPlus conducted adoption studies in part to document and understand the popularity of the respective biofortified crops. In all three cases, multiple studies were conducted in each country and adoption rates varied from one study to the next. For example, in Bangladesh, published estimates in 2018-2019 of farmers who had ever grown zinc rice ranged from 250,000 to 500,000 to 1.5 million. In Rwanda, published papers and reports were more in agreement that about 15 percent of the population was eating iron beans in 2018, a level of adoption that is an order of magnitude higher than in Bangladesh or India.Finding 18: While field demonstrations, field days and shows were important communication and awareness building strategies in all three cases, how they were run and by whom differed from country to country in terms of the role of the public versus the private sector, and the level of direct engagement by HarvestPlus.Finding 19: HarvestPlus employed consumer marketing using print, radio, TV and social media in all three cases. As with the previous finding, the specific strategies used varied from case to case.Bangladesh made most use of print media and television. India relied heavily on the private sector, and on one company in particular. In Rwanda, much of the marketing happened in local markets, helped by celebrity endorsement.The starting assumption that outcomes emerge from a system -an outcome trajectory -to which HarvestPlus contributed, proved useful. It helped broaden the scope of the review and in countering the tendency to assign too much causal power to the program being reviewed, rather than the system to which the program contributed.OTE encourages the evaluator to look at the broad range of factors that might have influenced the outcome. This was certainly important in this evaluative review. In the original proposal for this study, the desired focus was on the role of capacity building in the NARES, what would have been one set of strategies relevant to only one immediate outcome that contributed to setting up the biofortification breeding programs. Instead, in the end, by using OTE, the evaluative review results unpacked specific strategies HarvestPlus used that were relevant to three immediate outcomes that influenced the outcome of interest.Using an existing theory also identified some generalizable findings. For example, identifying and building the capacity of \"champions\" is often considered an essential part of policy influence. HoweverHarvestPlus does not appear to have used that strategy to support the establishment of NARES-led biofortification breeding programs. A possible interpretation is that for types of policy influence that are more technical in nature, people who are already considered experts (e.g., crop breeders) can be more effective in this role and just need more venues in which to exert their existing influence. They may already have good 'soft skills' without having been trained in them, nor even knowing they possess them.Another possible interpretation is that the enabling environment was already primed or aware that micronutrient malnutrition was a problem and biofortification was a potential solution. Even if it wasn't explicitly employed for this policy change, HarvestPlus had engaged champions in complementary outcome trajectories that had a positive effect on this outcome trajectory (Douthwaite 2020).In a case like HarvestPlus, with a long history of careful monitoring, evaluation, learning, and impact assessment (MELIA) activities , information was available with which to assess the outcomes. The systematic way that the program went about building its research, advocacy and MELIA agenda over time resulted in the production of information that was relevant for this case. In addition, the amount of information available online made it easier for the evaluator to corroborate information given by interviewees, and vice versa.OTE is for looking backwards, and is probably best to use in cases where the trajectory is long and somewhat complex. Program evaluators should invest in OTE when it is needed to make the case and where there is an opportunity for lessons that can be generalized. For programs that are not ongoing for multiple years without interruptions or lack the thorough documentation and evidence generation modelled by HarvestPlus, OTE could be more challenging.A shortcoming of the approach is that it doesn't necessary allow us to say whether all strategies were necessary. It might have been possible for HarvestPlus to achieve the outcomes with fewer strategies, however as noted above most of the strategies were not undertaken for the purpose of this policy outcome but rather for other outcomes. Therefore, questions related to \"cost effectiveness\" are not necessarily relevant in OTE.Having said that, there are lessons from OTE for future studies focused on other outcomes. For example, the issues identified with incomplete or inconsistent findings from efficacy or adoption studies emphasizes the importance of being transparent about reporting results because it could have consequences beyond simply accounting for those results to the immediate stakeholders in the studies.The study conclusions (Douthwaite 2021, p 34 -36) show that OTE was able to answer three questions relating to contribution: how did the program contribute, was the contribution necessary and was it sufficient? An OTE approach begins with the premise that program outcomes emerge from an outcome trajectory made of up of more than the program. Hence it will nearly always find that program contribution was insufficient.This paper describes the experiences of using OTE to assess the contribution of HarvestPlus to the establishments of NARES biofortification breeding programs. Use of the method resulted in a much broader and more detailed understanding of the program's contribution than would have been the case if the study had focused only on the most proximate program activities, namely building capacity of NARES breeders and programs.The paper also identifies advantages and disadvantages of OTE, including where it might best be used and how it could be improved.","tokenCount":"5701"} \ No newline at end of file diff --git a/data/part_3/0337232163.json b/data/part_3/0337232163.json new file mode 100644 index 0000000000000000000000000000000000000000..be2d0ab0bcc4e2aab3abb56fee0e5527297f116e --- /dev/null +++ b/data/part_3/0337232163.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"e2679d81bce38556cded34c6d28d7d40","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/36ba7a04-9b8e-4e6f-941b-d40c040c934e/retrieve","id":"-1760886357"},"keywords":["genomic-assisted breeding","molecular markers","pedigree information","rapid-cycle recurrent genomic selection","wheat","genomic prediction","GenPred","shared data resources"],"sieverID":"928a6da4-0e47-44fe-8383-3ee9b8b402d9","pagecount":"10","content":"Genomic selection (GS) in wheat breeding programs is of great interest for predicting the genotypic values of individuals, where both additive and nonadditive effects determine the final breeding value of lines. While several simulation studies have shown the efficiency of rapid-cycling GS strategies for parental selection or population improvement, their practical implementations are still lacking in wheat and other crops. In this study, we demonstrate the potential of rapid-cycle recurrent GS (RCRGS) to increase genetic gain for grain yield (GY) in wheat. Our results showed a consistent realized genetic gain for GY after 3 cycles of recombination (C 1 , C 2 , and C 3 ) of bi-parental F 1 s, when summarized across 2 years of phenotyping. For both evaluation years combined, genetic gain through RCRGS reached 12.3% from cycle C 0 to C 3 and realized gain was 0.28 ton ha −1 per cycle with a GY from C 0 (6.88 ton ha −1 ) to C 3 (7.73 ton ha −1 ). RCRGS was also associated with some changes in important agronomic traits that were measured (days to heading, days to maturity, and plant height) but not selected for. To account for these changes, we recommend implementing GS together with multi-trait prediction models.The widespread adoption of genomic selection (GS) in plant and animal breeding has strongly been driven by new sequencing technologies that generate abundant and inexpensive molecular markers (Meuwissen et al. 2001;Bernardo and Yu 2007;Lorenzana and Bernardo 2009). GS significantly increases prediction accuracy over marker-assisted selection for low heritability traits (de los Campos et al. 2009Campos et al. , 2010Campos et al. , 2012;;Crossa et al. 2010Crossa et al. , 2011Crossa et al. , 2013Crossa et al. , 2014Crossa et al. , 2017;;González-Camacho et al. 2012, 2016;Heslot et al. 2012Heslot et al. , 2014;;Pérez-Rodríguez et al. 2012;Riedelsheimer et al. 2012;Windhausen et al. 2012;Zhao et al. 2012;Hickey et al. 2014;Dreisigacker et al. 2021). GS involves predicting breeding values that comprise the parental average (half the sum of the breeding values of both parents) and a deviation of Mendelian sampling. GS can therefore be applied in 2 different contexts: (1) predicting additive effects in early generations of a breeding program such that a rapid selection cycle with a short breeding interval (i.e. GS at the F 2 level of a bi-parental cross) is achieved (Crossa et al. 2014) and (2) predicting the genotypic values of individuals where both additive and nonadditive effects determine the final commercial value of the lines (i.e. lines established in a sparse multi-environment field evaluation). Gaynor et al. (2017) clearly suggested separating the use of GS for parental selection or population improvement for crosses based on breeding values from product development that consists of testing lines and deriving varieties based on total genetic values. Gholami et al. (2021) emphasized that plant breeders traditionally focus on product development, rather than identifying parents for new crosses. In other words, plant breeders have been more inclined to use total genetic values comprising the complete genetic contribution to the phenotype than the additive genetic value necessary for line improvement and crossing of new parental lines.The International Maize and Wheat Improvement Center (CIMMYT, https://www.cimmyt.org) has explored GS as a new applied breeding tool since 2009 (de los Campos et al. 2009;Crossa et al. 2010Crossa et al. , 2019Crossa et al. , 2021;;Dreisigacker et al. 2021). Genomic estimated breeding values (GEBVs) are routinely implemented and used as a decision tool by breeders. Studies at CIMMYT have evaluated using GEBVs for germplasm that have not been included in trials, for applying GS in early selection to shorten cycle time, and for using sparse testing (Atanda et al. 2022). CIMMYT has also built the basis for a more informed screening of novel allelic diversity in germplasm collections by genotyping a substantial part of the available accessions from its gene banks (Sansaloni et al. 2020;Martini et al. 2021). Extensive studies utilizing the GEBVs of traits from wheat germplasm bank accessions (Crossa et al. 2016) were performed to explore its potential for harnessing genetic resources (Gholami et al. 2021;Martini et al. 2021). The practical application of GS has been studied and applied based on the individual breeder's decision. However, most recently, there has been a clear focus on shortening the breeding cycle by advancing and selecting lines quickly up to the F 4 and F 5 generations, sparse testing these lines at several locations (some belonging to the target population of environments already defined), and recycling them based on total genetic values.The CIMMYT Global Maize Program has been highly successful in achieving important genetic gains in bi-parental populations in drought environments (Beyene et al. 2015(Beyene et al. , 2019)). Gains were achieved from significant decreases in the breeding cycle, and just as importantly, hybrids from lines developed using GS have proved to be productive, high yielding, and stable across several drought and optimal environments. The achievements reported by Beyene et al. (2015Beyene et al. ( , 2019) ) concluded that genetic gain in maize hybrids developed with GS was remarkable, considering the commercial checks used in the studies were the best in the multienvironment trials. Beyene et al. (2015) concluded that \"the average gain observed under drought in our study using GS was two-to four folds higher than what has been reported from conventional phenotypic selection\". Moreover, Zhang et al. (2017) designed rapid-cycle recurrent GS (RCRGS) of multi-parental crosses with important significant gains per cycle in tropical maize in Mexico.The CIMMYT Global Wheat Program started implementing GS as a routine breeding tool in 2013, and, since then, has made important contributions by developing and testing several new genomeenabled prediction models (Dreisigacker et al. 2021) including G × E interaction and multi-trait, multi-environment genome-based predictions. For decades, CIMMYT wheat breeders have been using a standard pedigree system for crosses, which makes it possible to accurately predict breeding values based on the additive relationship matrix (A) and its incorporation in the statistical analyses of multienvironment trials by modeling G × E interaction with the factor analytic model as shown in Crossa et al. (2006) and Burgueño et al. (2007). These authors concluded that epistatic interaction in wheat is important, and it is necessary to correctly assess additive, additive × additive, additive × environment, and additive × additive × environment interactions in wheat breeding. Pérez-Rodríguez et al. (2012) assessed the predictive ability of linear and nonlinear models on the marker effects using highdensity genotypic data in wheat. The linear models were Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B, whereas the nonlinear models were the reproduced kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). It was found that the 3 nonlinear models had consistently better prediction accuracy than the linear regression specification. Pérez-Rodríguez et al. (2012) concluded the importance of epistasis in wheat and coincided with the results of Crossa et al. (2006) and Burgueño et al. (2007) using the additive relationship matrix A. The results also agreed with Gianola et al. (2006), Long et al. (2010), andGonzález-Camacho et al. (2012), which concluded that nonparametric treatment of markers may account for epistatic effects not captured by linear additive regression models and seemed to be useful for predicting quantitative traits with different complex underlying gene action under varying types of interaction in different environmental conditions.Early GS studies utilizing CIMMYT wheat datasets have already shown that molecular markers increased genome-wide prediction abilities over the pedigree-derived models (de los Campos et al. 2009;Crossa et al. 2010). Furthermore, when molecular markers and pedigree information are jointly considered, the prediction abilities are slightly, but consistently, superior to the marker or pedigreederived models on their own. The CIMMYT Global Wheat Programhas not yet applied GS at early breeding stages for population improvement. Nevertheless, as early as 2009, an extensive proof-of-concept experiment was established with the objective of incorporating genomic predictions for increased grain yield in an early breeding generation (Bonnett et al. 2022) to compare the realized response to selection based on 3 prediction models. Experiment 2 in the study of Bonnett et al. (2022) compared the predictive ability of the different GEBV calculation methods in F 2 using a set of single plant-derived F 2:4 lines from randomly selected F 2 plants. Results showed a significant positive correlation between the observed yield of F 2:4 lines and the predicted yield GEBVs of F 2 single plants based on the nonlinear RKHS method. For the first time in wheat, results showed the potential for the application of GS in early generations of wheat breeding and the importance of using the appropriate statistical model for GEBVs calculation.Based on the initial results of Bonnett et al. (2022), a second RCRGS experiment was established. The main objective of this study was to perform 3 genomic-assisted recurrent selection cycles in the greenhouse based on a training population of F 4 lines and to estimate realized genetic gains for grain yield in each cycle and across cycles.The training population (C 0 ) consisted of 1,609 F 4 lines derived from 14 F 2 families, which were based on 16 parents from the CIMMYT spring bread wheat breeding program. Eleven F 2 families comprised 94 to 95 F 4 lines and 3 F 2 families included 186 to 190 lines. F 2 individuals were genotyped with the Infinium iSelect 90K SNP genotyping array (Wang et al. 2014) and genotype calling was performed using GenomeStudio Software v2011.1 (https://www.illumina.com). The F 2 individuals were phenotyped as F 4 lines at the Campo Experimental Norman E. Borlaug (CENEB) in Ciudad Obregón, northern Mexico. The F 4 trial was sown as an augmented block design with 2 replications, including the line \"BORLAUG100 F2014\" as a repeated check. The phenotypic data included grain yield (GY, ton ha −1 ), days to heading (DTH, days), and plant height (PH, cm). Agronomic traits (DTH and PH) were only measured in one replication. Best linear unbiased estimators (BLUEs) for GY were assessed for all genotypes. A numerical relationship matrix (A) derived from the pedigree was also available for all individuals in the training set. This relationship matrix was computed by the \"coefficient of parentage (COP)\" using the BROWSE software (McLaren et al. 2000(McLaren et al. , 2005)).In cycle 0 (C 0 ), the 10 highest yielding lines of 6 F 4 families each were selected as parents to form cycle 1 (C 1 ). The 6 F 4 families were selected based on several criteria: their rank in GY (BLUEs) in the training population, GY heritability, and the estimated genomic prediction ability within and between F 4 families. The agronomic traits (DTH and PH) were not considered when making selections. The 60 selected F 4 lines were planted in the greenhouse on 3 different dates (3 pots with 6-7 plants per F 4 line at each date). C 1 was formed by intermating the F 4 s (Fig. 1). Six crosses were performed within each selected F 4 family (36 crosses) and 10 crosses between 11 pairs of F 4 families (110 crosses), which were chosen based on the average genomic prediction ability between them. Each F 4 family was used in intercrosses at least 3 times. The F 1 seed of each cross was harvested and threshed to form C 1 .In C 1 , 136 F 1 s were planted at 2 different dates in the greenhouse (1 pot with 3 plants per F 1 at each date). DNA was extracted from bulked tissue and shipped to TraitGenetics GmbH, Germany, for genotyping with the Illumina 20K microarray (https://www. traitgenetics.com). GEBVs were calculated for all 136 F 1 s. The top 26 C 1 F 1 s were selected and intermated to form the cycle 2 (C 2 ) population. Like C 1 , crosses were performed within and between families (19 and 69 crosses, respectively), C 2 F 1 seed of each cross was harvested and threshed. In C 2 , the recombination protocol was repeated. The top 29 C 2 F 1 s were intermated to form cycle 3 (C 3 ). The number of F 1 s planted per cycle, the number of parents selected for next cycle recombination, and the number of crosses performed are shown in Fig. 1. After C 2 recombination, C 3 F 1 were genotyped and GEBVs calculated, but they were not recombined.After recurrent selection, 32 to 35 F 1 s from each cycle (C 1 to C 3 ) were selfed to derive F 6 lines. Not all F 1 s within a selection cycle had sufficient seed for selfing. Therefore, a distributed set of F 1 s was chosen. The GEBVs of the selfed F 1 s ranked between 1 and 58 in each cycle, and about 50% of F 1 s were used in recombination, while the residual F 1 s were not crossed (Supplementary Table 1). F 1 s were advanced to the F 4 breeding generation in the greenhouse via \"selected bulks.\" Residual F 1 seed was planted in trays in the greenhouse, and several visually \"good\" spikes were bagged to derive F 2 seed. This advancement procedure was repeated up to the F 4 generation. F 5 seed was harvested and planted for seed multiplication at CIMMYT in El Batan, Mexico, in 0.5 m plots; plant offtypes were eliminated.A total of 118 lines were field tested together with the cv. \"BORLAUG100 F2014\" as standard check for 2 crop cycles (2020-2021 and 2021-2022) at CENEB. The lines were grown in 2 trials of 60 entries (59 lines + check) in an incomplete block design with 2 replications. The evaluations were conducted under optimal conditions, i.e. 500 mm of irrigation water, mechanized and chemical control of weeds, diseases, and pests. The 240 plots were of dimension 2.8 × 1.6 m and sown at a seed rate of 120 kg ha −1 . The same agronomic traits as in the training population were measured, GY, DTH, and PH, in addition days to maturity (DTM). Lines included 101 F 6 lines derived from the recurrent GS cycles and 17 of the 60 C 0 parents and the check. Means of GY BLUEs of each recurrent selection cycle were compared, and differences were determined using the least significant difference (LSD at 5% significance). The heritability of the trials was estimated from the variance components using the equation:with r = number of replications, e = number of environments (years), σ 2 = error variance, σ 2 g = genotypic variance, andAs described above, the initial training population was genotyped with the Infinium iSelect 90 K SNP genotyping array for wheat and the recurrent selection F 1 plants with the lower-density Illumina Infinium 20 K wheat SNP array. A total of 7,815 markers overlapped between platforms. We imputed missing marker genotypes at random according to allele frequencies and subsequently removed monomorphic markers and markers with a minor allele frequency smaller than 0.05. After this quality control, 7,139 markers were available for further analysis. The 101 derived F 6 lines were also genotyped with the Illumina Infinitum array (TraitGenetics) to compute the genetic diversity maintained in each selection cycle.We considered 4 different prediction models to fit the training population for selecting the best parents to be crossed and initiate Downloaded from https://academic.oup.com/g3journal/article/13/4/jkad025/7005387 by guest on 20 June 2023 the RCRGS as well as for selecting the best F 1 s in each recurrent cycle: (1) the genomic best linear unbiased prediction model (GBLUP), ( 2) GBLUP including the pedigree information (P + GBLUP), (3) Reproducing Kernel Hilbert Spaces with Kernel Averaging (RKHS-KA) method, and (4) Reproducing Kernel Hilbert Spaces with Kernel Averaging and Pedigree (P + RKHS-KA). While all models were computed, selections during the RCRGS scheme were based only on Model 4.For the prediction (GEBV) and selection of the best parental candidates for the next cycle, we focused on (1) assessing additive effects by including the pedigree (P) information (numerator relationship matrix) and thus emphasizing between family variance, and (2) including genotypic values of individuals where both additive and nonadditive are included on the genomic information (RKHS-KA). Using pedigree and marker information together has been successful in decreasing the interval cycle at the early stages of population improvement (Crossa et al. 2017;Bonnet et al. 2022).The GBLUP model has become widely used in genomic prediction (e.g. Endelman 2011). The model can be written as:where y is a vector with the response variable of dimension n × 1 (phenotypes), μ is an intercept, 1 is a vector of ones, u ∼ N(0, σ 2 u K) corresponds to the random effect of wheat lines, σ 2 u is the variance parameter associated to the wheat lines, and K = MM ′ /p is a genomic relationship matrix derived from markers (e.g. Lopez-Cruz et al. 2015) with M the matrix of markers centered and standardized by columns and p the number of markers, e ∼ N(0, σ 2 e I) the vector of random error terms, with σ 2 e the variance parameter associated to the error, and I denotes the identity matrix.The pedigree + molecular marker model takes into account the pedigree information of the wheat lines represented by the numerical relationship matrix (A) and the genomic relationship matrix derived from markers described before (Eq. 1). The full genetic model is:where a ∼ N(0, σ 2 a A) is the vector of additive random effects for wheat lines whose variance-covariance matrix is obtained from the numerator relationship matrix (A) derived from the coefficient of co-ancestry between the wheat lines and σ 2 a is a variance parameter associated with the additive relationship matrix derived from pedigree information and the rest of the terms has been described before.The Gaussian kernel commonly used in genomic prediction is Pérez-Rodríguez et al. 2012), where d ii ′ is the distance based on markers between individuals i, i ′ (i = 1, …, n), the bandwidth parameter controls how fast the covariance function drops as a function of the distance. The estimation of the bandwidth parameter is computationally demanding and to overcome this problem, de los Campos et al. (2010) proposed to fit a model that includes several kernels, each one with its own bandwidth parameter. The RKHS-KA with 3 kernels is given by:where) and e distributed independently, with 3 different Gaussian kernels computed with bandwidth parameters h 1 = 1 5m , h 2 = 1 m , h 3 = 5 m , with m that corresponds to the median squared Euclidean distances between lines without including the diagonal entries (Pérez-Rodríguez and de los Campos 2014), σ 2 u1 , σ 2 u2 , σ 2 u3 corresponds to variance parameters associated to u 1 , u 2 , u 3 respectively. The rest of the terms has been already described.This model is an extension of model ( 3) where we include a random effect to take the additive relationship matrix derived from pedigree into account, the model is given by:where all terms have been described previously and a ∼ N(0, σ 2 a A) distributed independently from u 1 , u 2 , u 3 , and e.Models ( 1)-(4) were fitted using the \"BGLR\" statistical package (Pérez-Rodríguez and de los Campos 2014) using the R Software (R Core Team 2018).Based on the genomic data, we computed Nei's standard genetic distance D (Nei 1972) between the 60 parents in C 0 and the phenotypically evaluated F 6 lines from the different selection cycles C 1 , C 2 , and C 3 . Principal component analysis (PCA) was performed to assess the genetic relationship between lines. The matrix of genetic distances and PCA were generated with the packages \"adegenet\" and \"ggplot2\" using the R Software (R Core Team 2018).The average GY of the evaluated F 4 families in the training population ranged from 5.91 to 7.23 ton ha −1 (Table 1). Low-to-high GY heritability was observed in the F 4 families, with an h 2 of 0.01 for family 8 (WAXBI/3/ATTILA*2/PBW65*2// MURGA) to an h 2 of 0.73 for family 4 (NELOKI//KACHU/ KIRITATI). To select the parents for rapid cycle recombination, we implemented random cross-validation within and between the F 4 families. Prediction abilities using the P + RKHS-KA model within the families were significantly higher than between the families but varied widely. The highest prediction ability within families was 0.496 for family 12 (MUTUS*2/JUCHI/6/COPIO) and, between families, it was 0.310 for family 3 (NELOKI//KFA/ 2*KACHU). We further assessed the COP between families. Mean COPs had an overall lower range compared with prediction abilities, the most distinct family being family 2 (NELOKI/ WAXBI) with a value of 0.483 (Table 1). Out of the 14 F 4 families, we selected 6 families (families 2, 3, 4, 11, 12, and 13) with the overall highest GY heritability and good prediction ability within and between families. The 10 highest-yielding F 4 lines of each family were selected as parents in C 0 (Supplementary Table 2). The average GY of the 10 F 4 lines per family varied, Downloaded from https://academic.oup.com/g3journal/article/13/4/jkad025/7005387 by guest on 20 June 2023 with 2 families each showing higher, medium, and lower GY when compared to all families.F 1 individuals in each recombination cycle were predicted using the entire training population, which was not updated throughout the study. GEBVs calculated using the P + RKHS-KA model ranged from 6.42 to 7.50 ton ha −1 among F 1 s across cycles. The mean of the GEBVs constantly increased with each cycle from 6.71 ton ha −1 in C 0 to 7.20 ton ha −1 in C 3 , with an average increase of 0.16. GEBV means between cycles were, however, not always significantly different (Supplementary Table 3). This steady increase of GEBVs was not apparent for the F 1 individuals that were selected as parents and the individuals that were selected to be advanced to F 6 for yield evaluation (Supplementary Tables 1-3). In both sets of selected lines, the mean GEBVs were slightly lower in C 2 compared to C 1 and increased again in C 3 . In recombination cycle C 2 , the smallest number of F 1 s was generated, and the selected sets of parents and individuals advanced included only 30-40% of the total number of F 1 s, which might explain this result.In addition to the P + RKHS-KA model, which was the only model applied for the selection of parents in each recombination cycle, GEBVs using the RKHS-KA model without the numerical relationship matrix A and the standard GBLUP model with and without A were calculated to corroborate the correlation between GEBVs of different models in an RCRGS setting (Supplementary Table 3). The GEBVs of the 3 additional models showed very similar trends across the recombination cycles regarding the P + RKHS-KA model, while the significance between cycles varied. Interestingly, the GEBVs of the models without A showed lower predicted GY values and lower and nonsignificant means in cycle C 3 compared to cycle C 1 for the selected parents and the individuals that were advanced. The P + GBLUP model predicted the highest yields. The correlations between the GEBVs of the models were positive and ranged on average from 0.32 to 0.94. The correlations were highest in C 0 (0.91) and declined in the subsequent cycles. Correlations also declined in the selected subsets of F 1 s in comparison to the entire F 1 population.Four groups of entries derived from C 0, C 1, C 2 , and C 3 and the repeated check were used for field evaluation at CENEB across 2 crop cycles. The mean GY for each cycle and the average gain per cycle are shown in Fig. 2 and also presented in Table 2. Overall, GY in the trial was slightly lower in Year 1 (2020-2021), reaching 7.42 ton ha −1 , but not significantly different from Year 2 (2021-2022) with an average of 7.51 ton ha −1 (Table 2). In Year 1 and over the 2 years combined, the entries of the base selection cycle C 0 , (using 17 out of the 60 initial parents) had the lowest GY, with an average of 6.88 ton ha −1 across years. The same 17 parents revealed an average GY of 7.31 ton ha −1 in the original training population, which was the same as the 60 initial parents used in C 0 (7.31 ton ha −1 ) and higher than the average GY (6.71 ton ha −1 ) across all entries in the training population (1,609 entries). In Year 2, C 0 entries showed a higher GY average than C 1 and C 2 entries (Table 2).In both years, the performance of the 35 C 3 entries surpassed the GY of all the other cycles. The average GY among C 3 entries was 7.73 ton ha −1 in both years and across years. The higher GY in C 3 was not significant in Year 1 but in Year 2 and for both years combined.The average gain per cycle for each year and combined across years ranged from −0.39 ton ha −1 to 1.47 ton ha −1 . Across both years, the realized genetic gains were 0.28 ton ha −1 , with the highest gains in C 1 followed by C 3 and C 2 .In the training population, genetic correlations of PH, DTH, and DTM with GY were in general low (−0.07, 0.11, and 0.02, respectively) and high levels of indirect selection were not expected. The effects of GS on the unselected agronomic traits PH, DTH, and DTM are presented in Supplementary Table 4. All 3 traits were only evaluated in one replication in each of the yield trials. Some plots showed segregation for one of the traits, likely since lines were derived from selected bulks. On average, lines flowered Across recombination cycles, GS on average shortened the growing cycle of the selected lines. In Year 2, no significant differences were observed between recombination cycles. Across both years combined, DTH and DTM decreased by 2.8 and 1.5 days with respect to cycle C 0 , including the subset of the initial parents.During the first recombination cycle, GS produced significantly taller plants (on average 3.7 cm from C 0 to C 1 ), while in the subsequent cycles, PH slightly increased, but with no significant change. For all 3 traits, C 0 showed nonsignificant values compared to the check.The genetic diversity in each of the selection cycles computed by Nei's standard genetic distance is displayed in Table 3. The overall mean genetic distances within and between cycles were very similar. Mean genetic distances between the initial parents in C 0 were higher than between the F 6 lines in each recombination cycle, but mean distances between the F 6 lines did not significantly decline from cycle C 1 to C 3 . The largest genetic distance was observed between the group of C 0 parents and the F 6 lines in C 3 . Principal component analysis at a 2-dimensional scale depicted 3 groups for the initial 60 parents (Fig. 3). The 2 smaller groups (groups 1 and 3) each comprised the 10 selected parents of one F 4 family (families 2 and 12). The larger group (group 2) included the parents of the 4 additional F 4 families (families 3, 4, 11, and 13) characterized by their common parent \"KACHU.\" Lines in each of the selection cycles follow approximately the same, but wider patterns driven by intercrossing.Accelerating the genetic progress of major cultivated crops such as wheat, maize, and rice is necessary to increase production in response to the global food crisis (Bentley et al. 2022). In autogamous crops, bulk and pedigree methods of breeding, which are based on inbred line selection, are commonly used in genetic improvement programs. These methods, however, produce limited novel combinations of genes in a breeding population. Recurrent selection promotes recombination and produces novel combinations of genes in a breeding population, but it requires accurate single-plant evaluation. GS, which can predict the breeding value of individuals based on their marker genotype, provides the potential to give a higher reliability of single-plant evaluations and to, therefore, be effective in recurrent selection. In this study, we implemented RCRGS in bi-parental spring wheat populations of CIMMYT spring bread wheat to evaluate its feasibility and estimate potential realized genetic gain. RCRGS was applied for GY in Our results showed a consistent genetic gain for GY when summarized across 2 years of phenotyping. Genetic gain varied in percentage per cycle and in individual years and was not significant from C 1 to C 2 . The highest gain was revealed from C 0 to C 1 and the lowest from C 1 to C 2 . For the 2 years of phenotyping combined, genetic gain reached 12.3% from C 0 to C 3 and realized gain was 0.28 ton ha −1 per cycle. This genetic gain was slightly higher than expected from the GEBVs reported in each selection cycle, with an estimated realized genetic gain of 0.26 ton ha −1 . These differences in genetic gain are anticipated and might be explained by additional G × E interactions during field evaluation, as well as other factors for example the choice of the prediction model and the genotyping platform. GEBVs indicated a slight decline for GY from C 1 to C 2 for the F 1 individuals that were selected as parents and advanced to F 6 . However, this decline was not apparent for the observed GY in field evaluations in Year 1 and across the 2 years combined, while in Year 2, GY was lower in C 1 and C 2 .To further compute the realized genetic gain per year (ton ha −1 year −1 ), it is necessary to account for the number of cycles per year (2-3 cycles per year in this study) and for the time from the initial cross to the last cycle (theoretically 3.5 years from F 1 development to the harvest of the C 3 F 6 lines in this study, but extended to 5 years as 2 cycles were repeated due to logistical constraints). Therefore, given that GY from C 0 (6.88 ton ha −1 ) to C 3 (7.73 ton ha −1 ) increased by 12.3%, the average genetic gain of 0.28 t/ha per cycle is equivalent to 0.187 ton ha −1 year −1 [i.e. (3 • 0.28)/5] under our conditions and equivalent to 0.242 ton ha −1 year −1 under optimal theoretical conditions. Crespo-Herrera et al. (2017) analyzed genetic gain in CIMMYT Elite Spring Wheat Yield Trial in a period of 8 years from 2006-2007 to 2014-2015 and across 426 international locations classified in 3 target populations of environments. The highest genetic gain reached 0.102 ton ha −1 year −1 in optimally irrigated environments relative to a widely grown cultivar \"ATTILA\" and 0.044 ton ha −1 year −1 relative to several local checks. Mondal et al. (2020) reported the grain yield progress in CIMMYT spring bread wheat over 50 years determined in field trials during 5 crop seasons performed at CENEB under simulated field conditions. The highest genetic gains per year accounted for 0.035 and 0.031 ton ha −1 year −1 under irrigated and rainfed (limited drip irrigation) conditions, respectively. Therefore, the shortterm genetic gain from RCRGS observed in the populations used in this study (0.187 ton ha −1 year −1 ) is higher (up to six times) than observed in previous CIMMYT studies under phenotypic selection, which, however, were longer-term studies between 8 and 50 years and were achieved in national trials in the case of Crespo-Herrera et al. (2017). The results we obtained reinforce the results by Bonnett et al. (2022) and highlight the potential of GS-assisted recombination at early breeding generations for achieving high genetic gain for GY.Our study presents the second empirical report of RCRGS in wheat and the first for a complex trait such as GY. In a previous study, Veenstra et al. (2020) reported the improvement in nutritional quality of wheat via recurrent GS. The authors determined the realized genetic gain from GS for wheat grain fructan content by applying truncated selection (TS) and optimized contribution selection (OCS). GS led to a 25 ± 12% and 24 ± 6.4% increase in wheat grain fructans using TS and OCS, respectively. OCS showed a simultaneously greater retention of genetic variance and lower inbreeding levels.High rates of inbreeding per breeding cycle with GS have been observed in simulations and empirical studies (Jannink et al. 2010;Rutkoski et al. 2015;Lin et al. 2017;Gorjanc et al. 2018). Rutkoski et al. (2015) found significant increases in inbreeding after 1 and 2 cycles of GS when compared with C 0 , significantly greater than the expected value under random genetic drift for all populations. Several methods to control the rate of inbreeding have, therefore, been proposed, including OCS (Meuwissen 1997) or optimal cross-selection (Gorjanc et al. 2018), in the population improvement context to improve selection and crossing plans. In this study, we only used TS and did not specifically consider maintaining genetic diversity in our crossing plans. Genetic diversity declined comparing cycle C 0 with the subsequent recombination cycles but was well maintained from cycle C 1 to C 3 . Thus, our results only partially agree with the findings reported in earlier studies with a reduced genetic variation. Zhang et al. (2017) reported similar results deploying rapid-cycle GS in multi-parental tropical maize populations, with a slightly narrowed genetic diversity only during the last GS cycles (C 3 and C 4 ). In this study, we balanced crosses within and between bi-parental F1s for each recombination cycle, generating 3 times more crosses between bi-parental F1s than within F1s, which we propose to be a reason that genetic diversity remained at a similar level throughout recombination cycles.RCRGS was associated with a change in agronomic traits that were measured (DTH, DTM, and PH) in our study. Lines in cycle C 3 had a shorter crop cycle, and lines in cycles C 1 to C 3 were taller. We, therefore, suggest that selection should be applied through a selection index to optimize selection of multiple traits. Each additional trait added to a selection index usually takes away some of the selective pressure that can be applied to other traits. Furthermore, tradeoffs exist between progress in one trait versus others. Nonetheless, several recently published studies show an increase in the prediction accuracy of genomic multi-trait selection over genomic single-trait selection (Montesinos-López et al. 2016, 2019). It will be important to further investigate multi-trait selection to optimize the predictive power of RCRGS.We calculated GEBVs based on the nonlinear Gaussian kernel function, including the relationship matrix A (P + RKHS-KA) for the selection of new parents in each cycle. We favored this model because it demonstrated a significant positive correlation between observed yields of F 2:4 lines and predicted GEBVs of F 2 single plants in the study of Bonnett et al. (2022). The predictions of F 2 s in Bonnett et al. (2022) derived from crosses between inbreds that were part of the training population showed very little to no correlation between models. In contrast, the correlation of GEBVs derived from different models in this study was positive and still moderate after 3 cycles of recombination. Models including the pedigree information predicted higher yields and genetic gain calculated from the GEBVs in each selection cycle. These were closer to the observed realized genetic gain than models only using the marker information, which underlines our previous results that when molecular markers and pedigree information are considered jointly, prediction abilities are slightly but consistently superior to the marker or pedigreederived models alone (de los Campos et al. 2009;Crossa et al. 2010).Rapid generation advance or speed breeding can achieve up to 6 generations by year for spring wheat (Watson et al. 2018) with adequate infrastructure and trained staff in place. In this study, we achieved 3 to 4 crop cycles per year by taking several practical considerations in the RCRGS scheme into account. A very fast crop cycle provides only a short time from planting to flowering. In an RCRGS breeding scheme, breeding teams need to acquire DNA from seedling tissue, receive genotypic data, and run the statistical models to make parental predictions prior to the plants reaching the flowering stage, demonstrating a logistical challenge that requires careful planning and good communication within the team and with external genotyping providers, which are regularly used in public breeding programs. In addition, for repeated crossing in recombination cycles, male and female parents need to be sown at 2 to 3 different dates, to match the flowering of the selected parents. This extends the length of the greenhouse cycle, and some crosses might fail, making a full standardization of the scheme (with a constant number of crosses and offspring) difficult. Also, greenhouse-grown plants in pots are usually smaller and produce less seed. For the 3 recombination cycles in this study, the seed of the F 1 individuals was limited in several cases. Being potential new parents, F 1 s were sown at 3 dates for subsequent crossing, and insufficient seed remained for selfing. It could, therefore, be recommended to apply GS at the F 2 or F 3 breeding generation to bypass the limited amount of seed for selfing (Gorjanc et al. 2018). We performed 3 recurrent GS cycles and evaluated derived lines at the end of the experiment. In a 2-part strategy as suggested by Gaynor et al. (2017), selected plants should be advanced directly for product development. This implies that recurrent cycles in the greenhouse must be aligned to the crop cycles of product development in the field. Overall, these and other logistical constraints remain a barrier to the practical application and implementation of RCRGS for many breeding programs.Different GS strategies are likely to be relevant in individual breeding programs and each program must determine which strategy is the best choice. This will be specific to the biological specificities of a crop, the breeding organization itself, and its economic context. Wheat breeding programs tend to use GS to control for G × E interaction, predicting the total genetic values of individuals, where both additive and nonadditive effects determine the final commercial value of the lines. Practical implementation of rapidcycling GS strategies in wheat is still lacking and our study shows the potential of RCRGS to increase genetic gains for GY. Further work is needed to evaluate and optimize these GS strategies in wheat and other crop species in order to support the acceleration of current breeding progress.","tokenCount":"6426"} \ No newline at end of file diff --git a/data/part_3/0358481203.json b/data/part_3/0358481203.json new file mode 100644 index 0000000000000000000000000000000000000000..166daad34aac902f68284d4c9ad9dba241c073fb --- /dev/null +++ b/data/part_3/0358481203.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"62e8de6c4221617599b56e2986394212","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/a3b95bc0-5534-48cc-81ea-20e2a4141578/retrieve","id":"-877042776"},"keywords":[],"sieverID":"3cd3fcf6-ad9b-4223-97ba-61906b5e2e4a","pagecount":"5","content":"This list consists of an initial set of characterization and evaluation descriptors for breadfruit utilization. These, together with passport data, will form the basis of the global accession level information system being developed by the Bioversity-led project, Global Information on Germplasm Accessions (GIGA). It will facilitate access to and utilization of breadfruit accessions held in genebanks. Additional descriptors may be added later if information becomes available.Record the average weight of at least three fruitsObserve three fruits at least, and record which shape best describes them Observe five leaves and record the average number of lobesObserve five leaves and record the predominant degree of dissection 1 Leaf entire (no dissection) 2Leaf slightly dissected on upper half 3Leaf moderately dissected on upper half 4Entire leaf moderately deeply dissected 5Leaf deeply dissected 6Leaf deeply dissected with wide spaces between lobesObserve five leaves and record the texture that best describes them 1 Glossy 2 DullRecord the average seed number of three fruitsRecord the average of five male inflorescences Key access and utilization descriptors for breadfruit genetic resourcesRecord the average of five male inflorescencesFruiting time/time of maturity ","tokenCount":"182"} \ No newline at end of file diff --git a/data/part_3/0367997756.json b/data/part_3/0367997756.json new file mode 100644 index 0000000000000000000000000000000000000000..7488a506e0bd990f90e4f1dd3e9bf44eb539bf85 --- /dev/null +++ b/data/part_3/0367997756.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"4fc853b8a02167e6e65a6baffd7097cc","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/0bdfa1fc-84d0-4d0f-b76e-6a081ba7d95b/retrieve","id":"113559080"},"keywords":[],"sieverID":"b9504eea-a939-4632-950f-936e03adb788","pagecount":"82","content":"El Centro Internacional de Agricultura Tropical (CiAt) agradece a las directivas y profesionales de la Asociación de Productores y Comercializadores de Pitaya y Otros Productos Agrícolas Tropicales (Asoppitaya), y a los asociados productores de aguacate Hass vinculados a la organización, por su disposición y compromiso en la construcción de un modelo empresarial que ayude a incrementar su participación en el mercado nacional e internacional, así como a facilitar el establecimiento de alianzas con empresas comercializadoras presentes en la región.De forma particular, agradecemos a Sandra Milena García y Ana Lucía Román de Asoppitaya, y a los expertos en comercialización de aguacate Hass Julián Duque y Germán Fernández, por contribuir con sus conocimientos, opiniones y experiencias, para la estructuración de este documento. Por último, expresamos gratitud con el Sistema General de Regalías, la Gobernación del Valle del Cauca, la Universidad Nacional de Colombia, sede Palmira, y los colabores del CiAt que apoyaron a los autores de este documento; en especial a las profesionales y los profesionales Alejandra Gálvez, Erika Mosquera, Natalia Gutiérrez y Mark Lundy. De acuerdo con las estadísticas de Faostat (2019), entre 2010 y 2017 la producción mundial de aguacate mostró una tendencia de crecimiento equivalente al 6,4 % anual, con un índice de exportación promedio del 28 % del total de aguacates producidos cada año. Esto quiere decir que el incremento de las exportaciones mundiales en el período enunciado fue cercano al 15,3 % anual. A manera de ejemplo, en 2017 se registró una producción mundial de 6,1 millones de toneladas de la fruta, de las cuales se transaron en el mercado internacional 2,1 millones de toneladas.Según Arias, Montoya y Velásquez (2018), estas proyecciones de un mercado internacional en constante crecimiento también se evidencian en el incremento del consumo per cápita aparente de la fruta, el cual viene ascendiendo a una tasa promedio del 3,5 % anual; perspectiva que favorece los intereses económicos y comerciales de los países productores, que ven oportunidades de generación de ingresos en todos los eslabones de la cadena de valor. Por lo anterior, se han integrado al mercado mundial del aguacate, liderado por México, otros países con capacidad productiva y comercial que pretenden dar respuesta a la constante evolución de la demanda (Belda, 2017).En cuanto a las expectativas cercanas, se prevé que en la región asiática el consumo se incremente en la medida en que la fruta encuentre aceptación entre los nuevos consumidores. Respecto a los mercados actuales, Estados Unidos, destacado por ser el principal importador de aguacate, se proyecta con una demanda que oscila entre 1 y 1,2 millones de toneladas para el 2020 (Arias, Montoya y Velásquez, 2018).Las circunstancias descritas no han sido ajenas para los empresarios colombianos del sector agrícola, razón por la cual el país ha pasado de ser un importador de la fruta a un proveedor que se abre paso en los mercados extranjeros. Así lo evidencian las estadísticas de comercio exterior, en las que se vislumbra el impacto del aguacate en la economía agraria nacional debido al acelerado aumento, en términos de volumen, de la presencia del fruto de origen colombiano en el escenario internacional desde 2013 y 2014.Así, Colombia pasó de exportar 1760 t de aguacate en 2014 a dirigir 30.009 t hacia Europa en 2018, en especial a Países Bajos, España, Reino Unido y Bélgica (Trade Map, 2019). En síntesis, en el período de tiempo enunciado, las exportaciones de la fruta han mantenido un crecimiento promedio del 126 %; panorama que explica la ampliación de áreas sembradas y la participación de nuevos actores en la cadena productiva nacional.Entre los retos que Colombia debe asumir para continuar figurando como un país referente en la producción y exportación de aguacate Hass, se encuentran: 1) el control de plagas, debido a las características geográficas y climáticas del trópico; 2) la búsqueda de la calidad del fruto respecto a sus competidores en el ámbito global y 3) la asociatividad vista como la necesidad de constituir un gremio sólido de productores y comercializadores (Díaz, Ardila y Guerra, 2019). Con respecto a este último punto, y como estrategia hacia la efectiva participación de Colombia en el entorno internacional, es necesario trabajar en la articulación de las empresas exportadoras -nacionales y extranjeras-que se han sumado al ejercicio comercial con los productores de aguacate Hass de las diferentes zonas productivas del país. Esta tarea requiere esfuerzos de los sectores público y privado, así como de las agencias de desarrollo y demás actores de la cadena, dado que la competitividad de la misma debe ser el resultado de un proceso de responsabilidad compartida.Acerca de la base productiva, el cultivo ha despertado el interés no solamente de grandes agricultores, sino también de un gran número de pequeños y medianos productores, algunos con desventajas comparativas en términos de capacidad financiera, acceso a tecnologías, asistencia técnica y participación en el mercado. De ahí la importancia del papel que juegan las organizaciones de base campesina en el eslabón primario, como medio para superar las barreras del sector y buscar la inclusión social del agricultor como un agente económico activo en la economía.De lo anterior, se concluye la relevancia de la asociatividad para la generación de impactos sociales y económicos en los siguientes sentidos: 1) a nivel de cadena, por cuanto se requiere del trabajo coordinado de todos los actores (es decir, de los involucrados en la agregación de valor a la fruta y de aquellos que desde la institucionalidad cumplen diferentes roles en beneficio de la agricultura en general); 2) entre organizaciones de productores y comercializadores dispuestos a participar de programas de valor compartido, y 3) entre los productores individuales, en especial quienes ejercen la agricultura a pequeña escala, a fin de ser más competitivos en un escenario en el que su participación es importante para alcanzar las metas comerciales del país.De forma integral, los negocios inclusivos \"han emergido como un concepto y una práctica que busca crear oportunidades de mercado, en condiciones justas, para los pequeños productores\" (Hurtado et al., 2018, p.75). No obstante, en el proceso de participación e involucramiento en un negocio inclusivo, los agricultores pueden encontrar problemáticas que demandan soluciones de colaboración empresarial y de innovación para garantizar la generación de valor (Van Haeringen y De Jongh, 2010). Por esta razón, es necesaria la interacción de una serie de circunstancias que viabilicen el establecimiento y, más aún, la operatividad eficiente de relaciones comerciales incluyentes. En tal sentido, para Lundy et al. (2014), el éxito de los negocios inclusivos depende de la intersección de las siguientes tres dimensiones: 1) agricultores con habilidades, capacidades y organización para dar respuesta al mercado formal; 2) compradores dispuestos a replantear sus políticas en beneficio de los pequeños productores y 3) un entorno favorable que, desde las políticas públicas y el accionar de los entes cooperantes, contribuya a que los negocios prosperen.En el Valle del Cauca, el planteamiento de sistemas asociativos que promueven la sinergia entre los propósitos comerciales y la equidad social del sector agrícola resulta ser un reto constante, en cuanto que es preciso desafiar aspectos que van desde la capacidad operativa y financiera del pequeño agricultor para atender los requerimientos del mercado hasta la disposición de trabajar en equipo y visualizar su actividad como un proyecto empresarial más allá de un medio de subsistencia. Respecto a la cadena de aguacate Hass, la fluctuante dinámica comercial entre productores independientes, organizaciones de agricultores y empresas exportadoras que hacen presencia en el departamento aún no permite visibilizar vínculos estables entre los actores nombrados.Con el objetivo de apoyar a una organización de productores en este proceso de fortalecimiento, de tal manera que, a corto plazo, logre consolidar alianzas estratégicas fundamentadas en la inclusión, este documento presenta los resultados de una investigación realizada en el transcurso de 2019, la cual se fundamentó en la implementación de la metodología LiNK. Esta presenta herramientas para evaluar modelos de negocio frente al funcionamiento de cualquier cadena de valor en general y proponer planes de mejoramiento factibles de rediseño durante su ejecución.Consecuentemente, entre los ítems que hacen parte de la estructura del documento se encuentran: 1) la descripción de las herramientas que conforman la metodología LiNK; 2) los resultados derivados de su implementación, después un proceso participativo de construcción, revisión y validación con los integrantes de una organización de productores; 3) los principales \"cuellos de botella\" identificados en su funcionamiento, y 4) la formulación de un plan de desempeño que responde a las necesidades de mejora en términos administrativos, técnicos, comerciales y comunitarios.Con este propósito, se realizó un proceso de búsqueda de una asociación que pudiera responder a la creciente dinámica de un mercado en expansión e insertarse a mediano o largo plazo entre los actores que interactúan en el comercio exterior. Así, se analizaron aspectos propios del contexto organizacional, técnico y comercial de las organizaciones identificadas en el Valle del Cauca. Esto ofreció un panorama de sus capacidades para trascender del eslabón productivo al comercial, en especial en el ámbito internacional. También fue relevante el apoyo de otras entidades como Asohofrucol, así como la mirada crítica de las exportadoras ubicadas en el departamento, quienes, con antelación al desarrollo de este estudio, habían tenido la oportunidad de interactuar con los productores agremiados en asociaciones.Dado que Asoppitaya es una organización de base asociativa con experiencia en: 1) adopción de procesos de certificación agrícola; 2) gestión de proyectos de desarrollo a nivel departamental; 3) producción y exportación de pitaya amarilla; 4) manejo logístico de frutas tropicales para el mercado nacional y 5) gestión comercial, fue considerada como la idónea para evaluar su modelo empresarial y planear una ruta hacia la exportación del aguacate Hass que producen sus asociados.Es importante enunciar que este documento hace parte de una serie de entregables del proyecto \"Incremento de la competitividad sostenible en la agricultura de ladera en todo el departamento, Valle del Cauca, occidente\", coordinado por la Universidad Nacional de Colombia (UNAL), sede Palmira, y financiado por el Sistema General de Regalías (Sgr) -entre 2017 y 2019-. En este, el CiAt asumió el compromiso de analizar modelos empresariales en tres cadenas productivas del subsector frutícola (aguacate, piña y mora), para proponer estrategias viables de generación de valor compartido, sustentadas en la inclusión social de productores de pequeña escala del Valle del Cauca.Además de la organización de productores de aguacate Asoppitaya, los resultados aquí presentados se lograron gracias a la participación de la Universidad Nacional de Colombia, sede Palmira, a través del apoyo brindado por los jóvenes investigadores adscritos al proyecto.• Desarrollar alternativas de organización eficientes, en la etapa de distribución, que faciliten la participación de Asoppitaya en mercados globales con base en un adecuado modelo empresarial. • Proponer estrategias de mejoramiento al modelo empresarial de Asoppitaya, dirigidas a incrementar su participación en la cadena productiva de aguacate Hass en el Valle del Cauca.El planteamiento de acciones de mejora para el desempeño organizacional de Asoppitaya requirió del previo mapeo de los actores que interactúan con la asociación, de la definición participativa de su oferta de valor y del análisis de las posibles causas que han dificultado el establecimiento de relaciones comerciales estables con los compradores que hacen presencia en el territorio departamental. Para ello, se utilizaron las herramientas administrativas contenidas en la metodología LiNK 2.0 (Lundy et al., 2014), la cual ha sido implementada y validada, en numerosos estudios de caso alrededor del mundo 1 , por empresarios y organizaciones de productores de diversas agrocadenas tales como cacao, amaranto, lácteos, miel, hortalizas, entre otros.La descripción de las herramientas y el propósito por el cual fueron utilizadas en este estudio de caso se describen a continuación (ver tabla 1).Tabla 1. Herramientas propuestas por la metodología LINK 2.01 Mapeo de la cadena: esta herramienta permite identificar de forma gráfica los diferentes actores que interactúan con la organización, reconocer el flujo de información que trasciende entre los eslabones de la cadena de distribución y representar el camino que transcurre un producto en su proceso de agregación de valor entre la producción y la comercialización.2Modelo de negocio: esta herramienta, desarrollada por Alexander Osterwalder e Yves Pigneur, permite comprender la naturaleza del negocio, es decir, la forma por la cual se crea y oferta valor. Para esto, es necesario definir con claridad los siguientes aspectos: los segmentos de mercado de interés, los canales de comunicación y distribución apropiados, los recursos y actividades clave en el desarrollo del negocio, los principales aliados de la organización, la estructura de costos que soporta la actividad comercial y la forma en la que se generan ingresos.3Principios para modelos de negocio incluyentes: dado que los fundamentos teóricos de esta metodología permiten contextualizar: el grado de cooperación entre actores (por ejemplo, en eventos de riesgo), la eficacia del mercado respecto a la inclusión de la base productiva, el acceso equitativo a servicios del sector y la participación conjunta de proveedores y compradores en la generación de procesos de innovación, la integración de agricultores a pequeña escala en una dinámica de cadena en la que se espera surjan lazos de relacionamiento entre compradores y vendedores puede ser analizada.4Ciclo de prototipo: hace referencia a un instrumento que debe obtenerse a partir del análisis y planteamiento de soluciones a las brechas identificadas en el mapeo de la cadena, el modelo de negocio y los principios de inclusión, con el fin de puntualizar acciones, objetivos de desempeño y metas estratégicas en un plan de mejoramiento, el cual debe ser revaluado de forma periódica para optimizar continuamente el modelo de negocio.Fuente: adaptado de Lundy et al. (2014).La construcción del presente reporte requirió la realización de una visita de diagnóstico y seis talleres con productores de aguacate Hass vinculados a la organización, el equipo técnico o su gerente. Dado que en el presente estudio de caso no se cuenta con un aliado comercial, fue necesario realizar dos entrevistas con expertos en comercialización de la fruta 2 .Por otra parte, durante la fase inicial del proceso, con el objetivo de conocer los requisitos de proveeduría exigidos a las asociaciones de productores por parte de los compradores, se realizaron reuniones con exportadoras radicadas en el departamento. Paralelamente, también se entrevistaron líderes asociativos a fin de comprender el punto de vista de los proveedores. Las principales conclusiones de estas jornadas de trabajo se presentan en los ítems posteriores.En Colombia, las organizaciones del sector solidario se identifican por su carácter asociativo y son referenciadas como entidades sin ánimo de lucro (ESAL). De acuerdo con Otero (2012), las denominadas organizaciones solidarias, las cuales reúnen en su clasificación a las cooperativas, fondos de empleados, asociaciones mutuales, fundaciones, corporaciones, organismos comunales, grupos de voluntariado y asociaciones campesinas, se subdividen en dos grupos: de economía solidaria y solidarias de desarrollo.A partir de lo anterior se puede establecer que las asociaciones agropecuarias y campesinas pertenecen al grupo de las solidarias de desarrollo. Citando a Penrose (2007), las características que definen el propósito, estructura y actividad central de estas organizaciones de productores, y que las diferencian de otras formas de acción colectiva rural son:1) Para ser sostenibles en el tiempo deben proporcionar a sus integrantes servicios orientados a un negocio, es decir, que además de cubrir los gastos es necesaria la generación de ingresos, por lo que estas no deben considerarse como medios de canalización de recursos comunitarios, en los que se anteponen los objetivos sociales a los empresariales. 2) Su funcionamiento, control y posesión es atribuida a sus integrantes, lo que excluye la participación de agentes externos, salvo los casos en los que existan razones que justifiquen lo contrario. 3) Con la finalidad de incrementar la competitividad en el desarrollo de su actividad productiva y participar en el mercado, deben ser organizaciones de comercialización colectiva.Lo anterior contraria lo enunciado por la Dirección de Impuestos y Aduanas Nacionales (DiAN) (2020), para quien este tipo de organizaciones tiene como \"principal fuente de ingreso los dineros recibidos por parte de personas naturales, jurídicas o entidades públicas en representación del Estado, por medio de las donaciones\". En efecto, muchas de ellas enfocan sus esfuerzos hacia la canalización de recursos, y no a la persecución de objetivos empresariales, lo que que implicaría el ejercicio de actividades administrativas y comerciales para la generación de beneficios económicos, tal como lo hacen las empresas con ánimo de lucro. Dado que esto representa un reto para los productores y las organizaciones que los agremian, es posible que tarden años en dar cumplimiento a los parámetros que los llevarían a participar de forma efectiva en el mercado y generar ingresos para sus asociados. Acerca de la forma de administración, en cumplimiento del Artículo 40 del Decreto 2150 de 1955, esta es definida como parte de los estatutos antes de la constitución legal, dado que se deben determinar sus facultades y limitaciones. En consecuencia, los órganos de administración (p. ej. la asamblea, la junta directiva o el concejo de administración) y la representación legal (p. ej. el presidente, el vicepresidente, el gerente, el director y el suplente) son determinados por cada organización según lo que considere conveniente para el desarrollo de su razón social, al igual que el resto de su estructura organizacional. Es común que, al interior de cada asociación, se establezcan subgrupos de trabajo denominados comités, con los cuales se espera distribuir los compromisos administrativos, ambientales, comerciales, productivos y de gestión institucional.Con el fin de explorar algunas características clave relacionadas con la comercialización del aguacate Hass producido en el Valle del Cauca, se realizaron acercamientos con líderes o representantes de las asociaciones de productores, las cuales habían sido reconocidas por el equipo técnico del proyecto. Como resultado, este ejercicio permitió identificar las principales empresas comercializadoras que hacen presencia en el departamento y que han realizado procesos de negociación con pequeños productores de aguacate que integran las organizaciones de base social y productiva del campo vallecaucano. Además, fue posible visualizar la poca estabilidad de las relaciones comerciales que se establecen entre estas organizaciones de productores y las empresas exportadoras. Esto, según lo expresado por los agricultores, depende de varios aspectos, entre los que se destacan los siguientes: 1) la oscilación de los precios en el mercado, lo que los ha llevado a evaluar, en cada cosecha, las diversas alternativas propuestas por las empresas comercializadoras; 2) el incumplimiento de los tiempos de pago pactados en las negociaciones; 3) las diferencias técnicas de trazabilidad relacionadas con la calidad de la fruta pre y poscosecha, y 4) la pausada adopción de los procesos de certificación. Este último restringe las posibilidades de construir relaciones estables para quienes aún se encuentran en proceso de adecuación de predios y cultivos, en pos de la normatividad nacional e internacional.De forma general, se identificaron al menos tres tipos de actores en el eslabón comercial: el mercado nacional, las comercializadoras que dirigen la fruta al mercado internacional y los intermediarios que se encargan de acopiar aguacate Hass para realizar negociaciones al por mayor. Respecto a las exportadoras y plantas de empaque de aguacate Hass ubicadas en el Valle del Cauca, Pacific Fruits y Frutales Las Lajas son las referentes en el escenario departamental. No obstante, en el eslabón de comercialización de la cadena productiva, ejercen un importante papel algunas empresas ubicadas en otras regiones del país, pues demandan gran parte de la fruta cosechada en el departamento. Las referenciadas por los líderes de las asociaciones de productores del Valle son las siguientes:• Arcángel Miguel International S.A.S (La Tebaida, Quindío) • Frugol S.A.S (Medellín, Antioquia) • FLP (multinacional con presencia en Ecuador, Perú y Colombia [Caldas]) • Green Fruit Avocados (multinacional con presencia en México y Colombia) • Green Super Food (multinacional con presencia en Colombia y Brasil) • Hass Diamond Co. (Dos Quebradas, Risaralda) • Verd Fruits (Envigado, Antioquia) La capacidad productiva de cada una de las organizaciones de productores del departamento y los canales de distribución o compradores con quienes se han relacionado se detallan a continuación:3 La información registrada en este ítem ha sido el resultado de entrevistas realizadas a líderes asociativos (ver anexos).Esta asociación, ubicada en el municipio de Palmira, cuenta con 12 productores que realizan diversas actividades agrícolas y se encuentran organizados en comités de trabajo. En cuanto al cultivo de aguacate, según lo informado por sus integrantes, cuentan con 830 árboles en predios comunitarios, con edades que oscilan entre los siete y ocho años. Respecto a la comercialización de la fruta, han establecido una alianza de proveeduría de 200 kg/semanales con la cadena de almacenes La 14.Entre los 141 asociados de esta organización se encuentran 31 productores de aguacate (Hass y Papelillo) en un área de 12 ha. La asociación se organiza a través de un plan colaborativo, el cual consiste en que en un solo predio se desarrollan diversos cultivos de varios asociados, quienes pueden vincularse entre ellos para establecer nuevos proyectos productivos (p. ej. cultivos de plátano, aguacate, lulo) o pecuarios. A comienzos de 2018, el cultivo de aguacate llevaba entre dos y tres años de establecido. En cuanto a las ventas, las cosechas obtenidas son vendidas a comercializadores independientes, quienes se encargan de acopiar fruta para empresas exportadoras.La organización agremia productores de pitaya, granadilla y aguacate. Respecto a esta última fruta, los compradores en el mercado nacional son los almacenes de cadena Éxito y las plazas de mercado mayoristas de Bogotá y Medellín. En cuanto al aguacate de calidad exportación, se han realizado algunos ejercicios de venta con empresas como Árcangel Miguel, Frutales Las Lajas, Green Super Food y Verd Fruit.Hasta finales de 2019, la Asociación de Productores de Frutas y Verduras del Corregimiento de El Villar (Asovillar), del municipio de Ansermanuevo, contaba con un total de 89 cultivadores de granadilla, plátano y aguacate Hass. De este último cultivo, 6 agricultores establecieron (en años anteriores) cerca de 160 ha; En relación con la distribución y venta de la fruta, los productores se han dirigido al mercado nacional, en especial a través de la empresa Mercasa, ubicada en Pereira.En la Asociación de Productores del Campo (Asprocampo), la cual agremia agricultores de diferentes líneas productivas, se encuentran 33 productores de plátano y aguacate Hass. Entre todos suman un área aproximada de 6,8 ha del cultivo frutal, con árboles que oscilan entre los 6 y 8 años de edad. En 2018, la comercialización de esta fruta se realizó con Frutales Las Lajas. En 2019, se efectuaron ventas de aguacate de calidad exportación con la empresa FLP a través de Corpoversalles; y con el apoyo de la Red de Asociaciones de Productores del Valle (Red del Nova) vendieron la fruta en el mercado interno.Entre quienes hacen parte de la Asociación de Productores de Plátano y Frutas de El Cairo (Asproplatca), se encuentran 20 productores de aguacate Hass, con cultivos de una edad promedio de 5 años, en áreas individuales que oscilan entre 0,5 ha y 1 ha. Antes de 2019, estos agricultores lograron realizar ventas de la fruta con calidad exportación a las empresas Frugol S.A.S y Pacific Fruits, además de explorar otras alternativas para el mercado nacional; y para finales de 2019, efectuaron ventas con las exportadoras FLP y Green Fruit.Para enero de 2019, la asociación representaba a 80 productores de aguacate, entre estos 45 con cultivos de la variedad Hass (cada uno con áreas entre 1 y 10 ha). Al finalizar el año, y debido al interés colectivo por el cultivo, esta última cifra ascendió a 60 agricultores. De este modo, los integrantes de la asociación estiman que entre todos cuentan con al menos 350 ha de área sembrada y, aunque no poseen registros individuales de producción, aseguran que los rendimientos productivos de la zona pueden variar 7 t/ha y 15t/ha en cada cosecha.En cuanto a las ventas, entre los compradores que realizaron negociaciones con los productores agremiados en Corpoversalles, se encuentran Frutales Las Lajas, FLP y Hass Diamond Co. En este sentido, es importante resaltar que las labores de gestión comercial son realizadas por el comité técnico del grupo asociativo.Para el mes de enero del 2019, la Asociación de Horticultores y Fruticultores de Palmira (Frutipalmira) contaba con 37 agricultores de diversos productos agrícolas, entre estos, cuatro con árboles de aguacate (300 de Hass y 200 entre las variedades Choquette y Reed). En general, los productos que cultivan los integrantes de la asociación son vendidos en un local comercial ubicado en la galería de Palmira.La fundación, ubicada en el corregimiento de Tenjo del municipio de Palmira, representa a 43 asociados que trabajan bajo el esquema de comités. Para finales de 2019, la organización contaba con 30 productores de diversas variedades de aguacate, entre las que se encuentran Hass, Choquette y Lorena. En cuanto a la variedad Hass, los productores reportaron un total de 9 ha (el 70 % de los cultivos), con un promedio de edad de siembra cercano a los 2 años. Al no tener altos volúmenes de producción, la fruta es comercializada en mercados agroecológicos, tiendas, conjuntos residenciales en Palmira y en algunos supermercados, como Cañaveral y Comfandi.La Fundación Para el Desarrollo de Argelia (Fundea) cuenta con 35 asociados, organizados en tres comités de trabajo (técnico, comercial y de crédito), quienes cultivan diversas variedades de aguacate en un área de 100 ha. Los productores comercializan la fruta destinada para el mercado nacional a través de la empresa Aurora Fruit -creada por algunos asociados con el propósito de apoyar el proceso comercial de la asociación-. En cuanto al aguacate Hass, aunque presentó problemas de calidad, se logró trabajar en el mejoramiento productivo de 25 ha, en las cuales se encuentran cultivos con edades cercanas a los 8 años, e iniciar procesos de negociación con empresas como Frutales Las Lajas, Hass Diamond Co. Finalmente, durante 2019, se lograron negociaciones con las exportadoras FLP y Pacific Fruits.La Asociación de Productores y Comercializadores de Pitaya y Otros Productos Agrícolas Tropicales (Asoppitaya) fue creada el 15 de septiembre de 2001, como resultado de un proyecto de grado presentado por Sandra Milena García y José Evelio Villa en la Universidad Antonio Nariño para optar por el título en pregrado de Comercio Internacional. La decisión de trabajar con la pitaya amarilla surgió debido a la potencial demanda de la fruta a nivel internacional versus un bajo nivel de oferta dispersa. Ante este panorama, fue necesario agrupar productores dispuestos a trabajar con este cultivo y apoyarlos en el constante proceso de fortalecimiento de sus capacidades productivas. Así, la asociación inició su trabajo con 25 agricultores en el municipio de Roldanillo.En la actualidad, cuenta con 120 asociados que, además de pitaya amarilla, cultivan otras frutas tropicales como aguacate Hass y granadilla, en zonas rurales de los municipios de Roldanillo, Río Frío, Trujillo, El Dovio y Bolívar. Esto con un enfoque de producción limpia, en predios que se encuentran en pisos térmicos entre 1200 y 1850 m. s. n. m. Algunos agricultores han logrado certificarse bajo los lineamientos de las buenas prácticas agrícolas (BPA), cumplir con los requerimientos para registrarse como predios exportadores ante el iCA e incluso obtener certificados de validez internacional como Global g.A.P 5 .En relación con sus planteamientos estratégicos, las siguientes son sus declaraciones de visión y misión (ver figura 1) Fuente: elaboración propia.Acerca del mercado, Asoppitaya ha realizado exportaciones de pitaya amarilla a España, Singapur, Indonesia, Canadá, Alemania y Hong Kong, por lo cual espera aprovechar estas experiencias para futuras exportaciones de aguacate Hass. Por el momento, mientras explora el mercado de esta fruta y genera el debido aprendizaje técnico y logístico, dirige la producción al mercado nacional o la vende a las empresas exportadoras que hacen presencia en el departamento. Sin embargo, para la organización no ha sido posible concretar alianzas comerciales estratégicas con estas. Debido a la ausencia de vínculos estables entre la asociación y los compradores de la fruta, las herramientas de la metodología LiNK fueron trabajadas únicamente con los integrantes de la organización. En esta sección del documento se presentan los resultados obtenidos.Cabe señalar que la organización oferta varias frutas tropicales (en especial, aguacate Hass, pitaya amarilla y granadilla), dirigidas a diferentes segmentos de mercado, tanto en el ámbito nacional como internacional, razón por la cual el contenido de este documento hace énfasis en el aguacate Hass como unidad de análisis y diseño de estrategias, sin dejar de lado las demás unidades estratégicas de negocios de la asociación.El mapeo de la cadena de valor corresponde a la primera herramienta de la metodología LiNK 2.0 (Lundy et al., 2014) y es considerada la base fundamental para el análisis de cadenas de valor (Springer-Heinze, 2018). El objetivo principal es realizar una descripción estructural del sistema socioeconómico en la cual se desenvuelve la cadena analizada, mediante la identificación de relaciones e interconexiones entre los diferentes actores involucrados. De modo análogo, se busca facilitar la comprensión del flujo de productos, servicios, información y pagos, así como también identificar los puntos de apalancamiento para mejorar la cadena (Lundy et al., 2014). A partir de lo expuesto se identifican tres dimensiones:1) Actores directos: son aquellos que se encuentran inmersos de manera directa en el proceso productivo y toman posesión del producto o servicio en uno o más eslabones de la cadena. 2) Actores indirectos: son los encargados de prestar servicios operativos y de dar apoyo a los actores directos de la cadena, con el fin de facilitar el desarrollo de esta; además, no toman posesión del producto o servicio, razón por la cual no asumen riesgos directos. 3) Influencias del entorno: son aquellas fuerzas externas pertenecientes al entorno en el que se desenvuelve la cadena y tienen la capacidad de influir en el desarrollo de la misma. Entre estas se pueden identificar influencias de tipo económico, político, ambiental y sociocultural.Para el caso específico de Asoppitaya, estas dimensiones de relacionamiento se observan en la figura 2 y se explican después de la misma:Mercado nacional:• Grupo Éxito Figura 2. Mapeo de la cadena de valor de aguacate Hass de Asoppitaya, 2018Fuente: elaboración propia.El primer eslabón se relaciona con la proveeduría de insumos y material vegetal. Con respecto a los agroquímicos y las herramientas necesarias para el cultivo de aguacate Hass, los productores recurren a los almacenes agropecuarios más cercanos según su ubicación geográfica. Por lo general, estas unidades de suministro se ubican en las cabeceras municipales de Roldanillo, Río Frío, Trujillo, El Dovio y Bolívar.Otros actores importantes en este eslabón son los proveedores del material vegetal. De acuerdo con lo expresado por los agricultores agremiados en Asoppitaya, dado que el aguacate Hass debe cultivarse de tal forma que pueda ser exportado, es necesario adquirir las plántulas en viveros registrados ante el iCA (ver tabla 3). Sin embargo, según lo afirmado por los productores, esta medida no garantiza que no se presenten inconvenientes con el cultivo en la etapa productiva, a causa de las afectaciones que puede sufrir el material en la fase de propagación. El eslabón de producción está compuesto por 54 agricultores dedicados al cultivo de aguacate Hass y Lorena. En relación a la variedad Hass, 17 agricultores poseen cultivos en edad productiva, de los cuales 7 de ellos han logrado, con el acompañamiento del equipo técnico de Asoppitaya, registrar sus predios ante el iCA y obtener las certificaciones BPA y Globalg.A.P, con el fin de garantizar la idoneidad de los procesos de producción de una fruta apta para exportación.El eslabón de comercialización primaria corresponde a dos tipos de mercado que son atendidos según la variedad y la calidad de la fruta. Los canales de distribución del aguacate dirigido al mercado nacional, al igual que el de las demás frutas tropicales ofertadas por Asoppitaya, son las plazas de mercado de Medellín y Bogotá, y los almacenes de la cadena del Grupo Éxito, Cañaveral y Comfandi en el Valle del Cauca. Por otra parte, la fruta con características adecuadas para el mercado internacional es vendida a empresas exportadoras. Sin embargo, dada la inestabilidad comercial de la organización, se citan las empresas con las cuales, hasta el momento, han realizado alguna venta de aguacate Hass: Frutales Las Lajas, Arcángel Miguel (Quindío), Verd Fruits y Green Super Food. Cabe destacar que en este eslabón también se ubican los intermediarios que llegan a las zonas de producción en busca de acopiar fruta para terceros.• 6.1.En este grupo se sitúan aquellos que prestan servicios u ofrecen apoyo a los actores directos. En la cadena de valor de Asoppitaya se destacan los siguientes:La entidad de mayor referencia para los cultivadores de aguacate Hass es el iCA, dado que tiene la responsabilidad de velar por la inocuidad de los productos de origen vegetal, lo que incluye la ejecución de programas de control en viveros, almacenes de insumos agrícolas y cultivos. En el caso de los predios con registro exportador, la entidad vigila el cumplimiento de la normatividad fitosanitaria, la cual depende del país objetivo.Los certificados Globalg.A.P son requeridos para quienes se interesan en exportar frutas como el aguacate Hass, ya que proporcionan un marco regulatorio de verificación y control de buenas prácticas agrícolas con aceptación internacional. Entre los organismos de certificación de esta normatividad ubicados en Colombia se encuentran los siguientes (Globalg.A.P, 2019a):• Fundación Natura Certificación -NaturaCert (Bogotá) Las entidades de servicios financieros, referenciadas por los productores de aguacate por ofrecer líneas de crédito especiales en el sector agropecuario, son el Banco Agrario (a través de Finagro) y el Banco Mundo Mujer; mientras que, a nivel de asociación, las entidades con las que se han relacionado son Bancolombia y Davivienda.Los actores directos de cualquier encadenamiento productivo interactúan con otros actores para ser partícipes de proyectos de desarrollo, adherirse a capacitaciones o programas de formación, participar en procesos de investigación, acceder a servicios de asistencia técnica, recibir acompañamiento organizacional, entre otros. Para los integrantes de Asoppitaya, los organismos que bajo las funciones descritas han aportado al desarrollo productivo y empresarial de la asociación son los siguientes (ver tabla 4): Participación en escuelas de campo (ECAS), en las cuales se han abordado temas como el manejo de bioinsumos y microorganismos.Participación en capacitaciones técnicas.Fortalecimiento organizacional, asistencia técnica y entrega de insumos (como beneficiarios del Plan Integral de Fruticultura -PiF).Secretaría de Agricultura, Ambiente y Pesca Acompañamiento y participación de proyectos productivos.CVC Participación de proyectos productivos y de fortalecimiento organizacional.Procolombia Asesoría en procesos de comercialización.Participación en proyecto de investigación, asesoría técnica y organizacional.Fuente: elaboración propia.• 6.1.A continuación, se describen algunos factores del entorno que influyen en la cadena productiva del aguacate en el Valle del Cauca y se destacan aquellos aspectos que intervienen en la secuencia de producción y comercialización del aguacate Hass de Asoppitaya. En particular, los factores ambientales, biológicos y tecnológicos hacen referencia a las condiciones específicas de las zonas donde es posible encontrar cultivos de aguacate en propiedad de los asociados de esta organización. Por otro lado, los factores económicos, de mercado, legales y socioculturales fueron analizados desde una perspectiva más amplia, por involucrar variables, externas nacionales o internacionales, que impactan en toda la cadena. Así, la información aquí presentada se construyó gracias a lo manifestado por los productores durante los talleres, reuniones o visitas de campo 7 , y fue complementada con información secundaria.Según los productores, uno de los factores ambientales que más repercusiones tiene sobre las labores de cosecha son las precipitaciones. Por lo general, en el cuarto trimestre del año, la temporada de lluvias se cruza con la cosecha y, bajo estas circunstancias, se ven obligados a extremar las medidas de precaución para disminuir o evitar el porcentaje de pérdidas.Lo anterior se debe a que el incremento de la humedad relativa expone a todo tipo de frutales a una mayor propensión de patógenos durante su desarrollo. Esto afecta las cosechas a tal punto que los daños pueden ser visibles hasta la poscosecha, o cuando las frutas se encuentran en los mercados de destino. En cuanto a su prevención, los agricultores deben asegurar la circulación de aire en los árboles a través de las podas, y optar por el control biológico o químico, según el manejo de cada cultivo en particular (Hernán Manjarés Agudelo 8 , comunicación personal, 20 de diciembre de 2019).Aunque el exceso de humedad es perjudicial para el cultivo, lo es también su déficit. La falta de humedad en el suelo es uno de los factores que ocasionan la disminución de nutrientes disponibles para las plantas y, por ende, se afectan los rendimientos productivos (Hernán Manjarés Agudelo, comunicación personal, 20 de diciembre de 2019). Por esta razón, los productores identifican la disponibilidad hídrica como un factor determinante para el desarrollo de las plantas y la obtención de frutas de buena calidad.Según los productores, en temporadas de altas precipitaciones aumenta la incidencia de enfermedades, y en las épocas de déficit hídrico se incrementan los costos de producción, puesto que se torna necesaria la aplicación de agua por medios artificiales. En este aspecto, es preciso resaltar que entre el 90 % y el 95 % de la producción de Hass se cultiva utilizando únicamente el agua de lluvia (SAC, 2020). Es por esto que la variación en los ciclos pluviales, tras las alteraciones climáticas, repercute en la programación de siembras y en el desarrollo del cultivo.Los productores también indican que es importante darle un manejo sostenible al componente biológico del suelo. En su criterio, la aplicación de organismos benéficos y de materia orgánica son prácticas que mejoran las características físicas y químicas de este recurso, aumentan la eficiencia de los fertilizantes y disminuyen la incidencia de enfermedades en raíces, causadas por desequilibrios entre microorganismos.Para los agricultores, el suelo tiene gran importancia en la determinación de zonas óptimas de cultivo y se convierte en un factor limitante en la elección de los sitios de siembra. Esto se debe a que el aguacate Hass, al igual que otros frutales como la papaya y la piña, es sensible a condiciones de anegamiento o saturación hídrica, y es por ello que pueden presentarse problemas de sanidad (Moreno y Fischer, 2014). Por lo expuesto anteriormente, se deduce que los mejores suelos son aquellos con un arreglo físico adecuado para facilitar el drenaje y el movimiento del agua (Jaramillo, 2002).Múltiples limitantes en términos de adopción y empleo de tecnología impactan en el óptimo desarrollo del cultivo de aguacate Hass. Para los asociados de Asoppitaya, entre las necesidades tecnológicas que deben solucionar para mejorar sus procesos productivos se encuentran las siguientes:• Participación en procesos de transferencia de tecnología y de recepción de extensión rural para adquirir nuevos conocimientos que permitan la interpretación de análisis de suelos y foliares, así como la creación de planes adecuados de nutrición vegetal. • Adopción de sistemas de manejo integral del recurso hídrico por medio de la instalación y el uso de sistemas de riego o fertirriego. • Implementación de alternativas para el transporte interno de la finca, tanto de los insumos hacia los lotes como de la fruta a las bodegas de poscosecha, para garantizar la inocuidad y calidad del producto. • Capacitación en el manejo y calibración de equipos de fumigación, identificación de ingredientes activos e interpretación de fichas de seguridad de los agroquímicos, en vista de que existe desconocimiento en el manejo seguro de plaguicidas.Las principales enfermedades que identifican los productores por afectar el cultivo y repercutir en su economía agraria son: la pudrición de raíz ocasionada por Phytophthora cinnamomi (Peronosporales: Peronosporaceae), la antracnosis causada por Colletotrichum gloeosporioides (Sordariomycetes: Glomerellaceae), el secamiento de ramas y la mancha foliar atribuida al hongo Pestalotia sp., y la mancha angular del fruto ocasionada por Pseudocercospora purpurea (Mycosphaerellales: Mycosphaerellaceae).En cuanto a las plagas, según los agricultores de Asoppitaya, en las zonas de producción se encuentran las siguientes: \"el pasador de fruto\" Stenoma catenifer (Lepidoptera: Oecophoridae), \"el barrenador de semilla\" Heilipus lauri (Coleóptera: Curculionidae), \"el cucarrón marceño\" Astaena pygidialis (Coleoptera: Melolonthidae), \"el chinche\" Monalonion velezangeli (Hemiptera: Miridae), \"el barrenador de las ramas\" Copturomimus perseae (Coleoptera: Curculionidae), \"los trips\", del orden Thysanoptera, ácaros e insectos escamas 9 .La producción, procesamiento y comercialización del aguacate -al igual que el de cualquier producto agrícola para consumo humano o animal-deben dar respuesta a una serie de normas impuestas por organismos de control nacional e internacional, y, según cada caso, adoptar parámetros de certificación de aceptación global (ver figura 3). Tal como se expuso en el mapeo de actores, el organismo encargado de velar por la sanidad agropecuaria y la inocuidad agroalimentaria en el país es el Instituto Colombiano Agropecuario (iCA). Como parte de sus funciones, se encarga de la prevención, vigilancia y control de riesgos fitosanitarios de las especies animales y vegetales; de las acciones de erradicación y manejo de plagas y enfermedades; del control técnico de la producción y comercialización de insumos agropecuarios, entre otras (iCA, 2008). Además de esta entidad, intervienen en la expedición de leyes otros organismos entre los que se encuentran el Ministerio de Salud y Protección Social (Minsalud), el Instituto Colombiano de Normas Técnicas (Icontec) y el MADr. En general, para la producción, procesamiento y comercialización de productos agrícolas como el aguacate, este conjunto normas (resoluciones, decretos, ordenanzas, entre otros) hace referencia a los siguientes aspectos: a) En la fase de instalación del cultivo: las normas establecen requisitos para las etapas de producción, almacenamiento y comercialización del material de siembra. b) En el desarrollo del cultivo: las ordenanzas dictan disposiciones para el manejo adecuado de plaguicidas, la implementación de las BPA, el control fitosanitario de los cultivos (en lo que respecta al aguacate, con énfasis en las plagas cuarentenarias), y el registro de predios de vocación exportadora. c) Para el procesamiento y comercialización: los aspectos de calidad organoléptica y sanitaria que aseguran la inocuidad de los alimentos para consumo en fresco o procesado se incluyen en normas de buenas prácticas de manufactura o de fabricación (BPM/BPF) y, con estas y otras disposiciones, se abordan temas de procesamiento, clasificación, empaque y embalaje.A este grupo de normas se suman las reglamentadas por el iCA y el Ministerio de Comercio, Industria y Turismo (Mintic) para el registro de las plantas exportadoras y la solicitud de autorización como exportadores de frutas y verduras. Para el caso particular del aguacate, existen dos normas adicionales: la especificación normativa disponible End094 del Icontec y la norma Codex Stan. 197-1995 de la Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). d) Para la participación del comercio internacional: debido al propósito de exportación con el que se cultiva el aguacate Hass, además de las exigencias contenidas en la normatividad colombiana para los productos agrícolas, los actores de la cadena deben ceñirse a los lineamientos establecidos por las autoridades fitosanitarias de los países importadores. Además, algunos mercados requieren que los exportadores de productos agrícolas cuenten con certificaciones de validez internacional.Como se ha socializado en otras secciones de este documento, la norma exigida por el mercado para la exportación de aguacate Hass hacia Europa es la Globalg.A.P. No obstante, es cada vez más común la solicitud de otras certificaciones o sellos que avalen las buenas prácticas ambientales y sociales, entre estas:• Rain Forest Alliance Certified: sello que certifica el cumplimiento de normas de sostenibilidad ambiental, social y económica (Rain Forest Alliance, 2019). • Smeta por sus siglas en inglés, Auditoría de Comercio Ético de Miembros de Sedex: metodología para auditar prácticas empresariales responsables relacionadas con los aspectos de trabajo, la ética empresarial, el medio ambiente, la salud y la seguridad (Sedex, 2019). • Spring: sello que certifica criterios de gestión sostenible del agua (Globalg.A.P., 2019b).En lo que respecta a Estados Unidos de América, la entidad del Departamento de Agricultura (USDA) que tiene a cargo el control fitosanitario fronterizo es la Agencia de Inspección de Sanidad Animal y Vegetal (Aphis, por sus siglas en inglés). Es su competencia el establecimiento de los parámetros de admisibilidad para la importación del aguacate colombiano. Al respecto, Díaz, Ardila y Guerra (2019) afirman que los requisitos de ingreso de la fruta a este mercado son bastante exigentes en términos técnicos, de tiempo y de inversión, razón por la cual gran parte de los productores y exportadores a nivel global optan por dirigirse a otros destinos. Normatividad aguacate como fruto fresco (Codex Stan. 197-1995).Especificación normativa Icontec para el aguacate variedad Hass ( 094 de 2018).Reglamentación de empaque de aguacate ( 1248-2).Empaque de alimentos (Res. 683 /2012 Minsalud).Clasificación, empaque y embalaje de frutas y demás productos agrícolas ( 1291, 3542, 5422 y Res. 224 de 2007 del ).Buenas prácticas de manufactura (Decreto 3075 de 1997). *se excluyen las demás normas impuestas por las autoridades sanitarias de los países importadores.Fuente: elaboración propia con base en CiAt (2018). Imagen de línea gráfica: Vertex42.com (2017); Iconos: flaticon.com (s.f).El mercado de exportación de mayor importancia para el aguacate Hass colombiano se encuentra en Europa. En 2018, los principales destinos hacia dicho continente, según el valor de las exportaciones, fueron: Países Bajos, Reino Unido, España, Bélgica, Francia y Alemania (Corpohass, 2020). Según los promedios mensuales de importación de la fruta, este conjunto de países abarcó el 77 % del total exportado hacia Europa durante ese año.Si bien una parte importante de la producción nacional de Hass se destina al mercado interno, la alta dependencia de las condiciones y las fluctuaciones por parte de los mercados europeos afecta de manera significativa el desempeño del sector en todo el territorio nacional. De ahí los esfuerzos de múltiples instituciones y del Gobierno por lograr la apertura de nuevas rutas comerciales para la fruta, entre las que se encuentran China, Japón y Corea del Sur (SAC, 2020). A lo largo de 2018, la oferta en los países mencionados estuvo dominada por Chile, Perú y Sudáfrica, quienes llegan a satisfacer hasta el 48 % de la demanda europea (ver figura 4). Como se observa en la figura 4, durante 2018 la participación colombiana más baja en los mercados europeos fue entre los meses de mayo a octubre (entre el 2-3 %), temporada en la cual cerca del 50 % de la oferta fue provista por Perú y Sudáfrica. Lo anterior cobra sentido teniendo en cuenta los períodos de cosecha de los países mencionados. Por ejemplo, se estima que el 90 % de la producción peruana se da en este tiempo (Prohass Perú, 2020), mientras que en Colombia muy pocas zonas se encuentran en producción durante la misma temporada (Pavas, 2015). La alta oferta en estos meses estuvo acompañada de una caída de los precios, los cuales, en promedio, no superaron los USD 2,7/kg.Para el mismo año, el período de mayor participación de Colombia en el mercado europeo inició aproximadamente en octubre y finalizó en abril. En este tiempo, el principal competidor del país, y quien absorbió cerca del 30 % del mercado, fue Chile. Además, se registró una participación similar a la colombiana proveniente de Marruecos, Israel y México (ver figura 4). La demanda europea, en dichos meses, fue baja en comparación con el período de mitad del año analizado antes. Muestra de ello es que el volumen importado en promedio fue de 61.000 t. Con respecto al precio, vale la pena dividir la temporada en dos: entre octubre y diciembre, y lo que sucedió entre enero y abril. Si bien el precio de la fruta para estos períodos se incrementó levemente, dicho aumento fue mayor en el primer cuatrimestre y registró un precio unitario promedio de USD 3,25/kg; mientras que, al finalizar el año, la fruta fue vendida un dólar por debajo, es decir, a USD 2,26/kg (ver figura 5).De manera particular, según lo afirmado por los agricultores de Asoppitaya, la producción de Hass en el Valle del Cauca alcanza su pico en la cosecha de final de año. Si se suma la reducción de precios internacionales al aumento de la oferta exportable, los precios de compra internos sufren un doble impacto hacia la baja. Lo anterior implica que las compras nacionales se concentren en los segmentos productivos más competitivos y que, por esta razón, garanticen homogeneidad y alta calidad de la fruta, por las exigencias frente a sus competidores extranjeros. En este caso, los pequeños productores con certificaciones para exportar, dada su heterogeneidad y demás características productivas, serán más susceptibles a ser excluidos de la base de proveeduría, y, por tanto, más sensibles ante los precios. Lo anterior se refuerza con la proliferación reciente de unidades productivas de mediano y gran tamaño que se han desarrollado en el país, las cuales suplantan de manera gradual a los pequeños productores no especializados (Imbert, 2015). La presencia del aguacate Hass colombiano en Estados Unidos de América -el principal consumidor de Hass a nivel mundial-creció en un 300 % entre 2018 y 2019. Para el primer año, fueron enviadas desde Colombia 346 t por un valor de USD 660.000 (USD 1,9/kg), mientras que en el siguiente año se enviaron 1405 t, las cuales sumaron un valor de USD 3,5 millones (USD 2,5/kg) (Corpohass, 2020). Lo anterior augura un panorama positivo para las exportaciones colombianas de la fruta y, si bien aún son numerosos los desafíos para ingresar a dicho mercado, se deben reconocer los avances en términos del nivel de calidad de la producción para cumplir con estándares internacionales, la producción certificada y el incremento de las cantidades cosechadas (Imbert, 2015).La importancia y la fuerza que ha adquirido la agroindustria aguacatera en el país, en los años recientes, invita a considerar los posibles efectos adversos respecto de la masificación del cultivo en términos ambientales y socioeconómicos. Si bien el análisis de los impactos de esta industria ha sido poco documentado a nivel mundial, algunos esfuerzos se identifican en países como México, Chile y Kenia. En el país azteca, por ejemplo, es preocupante la relación entre el rápido cambio de coberturas forestales (bosques de pinos, robles y encino) y la apropiación de bosques comunales con plantaciones de aguacate (Barsimantov y Navia Antezana, 2012). De manera particular, según Bravo et al. (2009), en el estado de Michoacán se reconocen como impactos negativos ambientales de la producción de Hass: la deforestación asociada, la afectación en el sistema hidrológico, el elevado uso de agroquímicos, la mayor presión sobre los bosques para obtener madera empleada en el empaque y transporte del fruto, entre otros. Mientras que, a nivel social, se han presentado conflictos por parte de los aguacateros tras los intentos de privatización de predios.Una de las problemáticas chilenas relacionadas con el cultivo de Hass tiene que ver con los conflictos sociales por el uso de los recursos hídricos. Este es el caso de La Ligua, valle andino en el centro-norte de Chile, abordado por Budds (2008). La autora describe que con la reforma agraria, realizada entre la década del 60 y mediados de los 80, fueron distribuidas las aguas superficiales entre los grandes, medianos y pequeños agricultores, mientras que las aguas subterráneas permanecieron disponibles, hasta que fueron adquiridas a través de derechos privados. La expansión de plantaciones permanentes de frutas para exportación, donde predomina el aguacate (gracias al desarrollo de nuevas tecnologías de irrigación y disponibilidad de tierras en secano a los costados del valle), ha llevado al incremento en el valor de los derechos sobre el agua subterránea, que excluye a los pequeños productores y promueve el uso ilegal del recurso.Para Colombia, estos casos deben ser abordados y analizados en profundidad y, de este modo, extraer de ellos lecciones que se incluyan en estrategias integrales para el desarrollo de políticas y ordenamientos territoriales de la producción de Hass. Cabe destacar que una parte importante de los cultivos de la fruta se ubican en el cinturón de los Andes, entre los 1600 y 2400 m. s. n. m., debido a la adaptación del Hass a las condiciones agroecológicas en dichos territorios y a la concentración de abundantes fuentes de recursos hídricos (Imbert, 2015). Hasta la fecha, en el país hay poca documentación sobre los conflictos socioambientales en torno al aguacate, y esta solo se concentra en experiencias anecdóticas, basadas en denuncias y testimonios de ambientalistas y de la sociedad civil. Específicamente, se habla de plantaciones en zonas no aptas, deforestación, disminución de abejas por el uso de agroquímicos y restricciones en la movilidad de campesinos aledaños a grandes plantaciones de empresas extranjeras (El Tiempo, 2018; Jiménez, 2019).Esta herramienta, sustentada en una plantilla de nueve módulos propuesta por Osterwalder y Pigneur (2011), define la lógica o estrategia del negocio de una organización en los siguientes aspectos:1) El/Los segmento/s de mercado que atiende la empresa.2) La propuesta de valor, por medio de la cual responde a los requerimientos de sus clientes.3) Los canales (de comunicación, distribución y venta). 4) La relación con los clientes (según los segmentos de mercado que atiende). 5) Las fuentes de ingresos (derivadas de la propuesta de valor). 6) Los recursos clave (o activos necesarios para ofrecer la propuesta de valor). 7) Las actividades clave. 8) Las asociaciones o relaciones clave. 9) La estructura de costos que soporta el modelo de negocios.De esta lista de elementos, la propuesta de valor describe el conjunto de productos o servicios que una empresa promete para determinados segmentos de mercado. En lo esencial, representa los factores diferenciales de una empresa respecto a su competencia, dado que indica el valor de su oferta que, en términos cuantitativos y cualitativos, puede satisfacer los requerimientos de los compradores. Desde esta perspectiva, la determinación de la propuesta de valor también es útil para conocer qué tan diferentes e innovadores son los bienes o servicios de la empresa en el ámbito empresarial en el que interactúa.Cabe considerar que, en algunos casos, gran parte del valor agregado del bien o servicio que ofrece una empresa no está bajo su control, por cuanto depende de sus proveedores. Este análisis permite reconocer la relevancia de estos actores en cualquier cadena de abastecimiento. Así, con el objetivo de cumplir con los requisitos de los compradores o clientes finales de un producto, es importante trabajar con los proveedores no solo en la generación de procesos comerciales, sino también en el desarrollo de relaciones de cooperación que se vean reflejadas en el incremento de la calidad de los productos que suministran.Como respuesta a lo expuesto, la metodología LiNK permite realizar un análisis de la propuesta de valor \"en doble vía\", es decir, hacia el cliente y hacia el proveedor, para lo cual es necesario contar con actores dispuestos a diseñar modelos empresariales incluyentes. En este estudio de caso en particular, al no tener un aliado comercial para Asoppitaya, el análisis de las distintas propuestas de valor partió de las siguientes perspectivas: a) desde los productores hacia la asociación, b) desde la organización hacia los productores, y c) desde la organización de productores hacia los compradores que destinan la fruta para los mercados nacional e internacional (ver figura 6).Productores agremiados en Asoppitaya Asoppitaya Comercializadoras de frutas Figura 6. Modelos de negocios que requieren ser analizados en la implementación de la metodología LINK En todos los casos, la metodología LiNK incluye algunos cuestionamientos que guían los ejercicios participativos (ver figura 7): A continuación, se presentan los resultados obtenidos, después de haber realizado una serie de talleres con los productores de aguacate agremiados en Asoppitaya y con los líderes de esta asociación:• 6.En esta parte del documento se presenta el modelo de negocio desde la perspectiva de los productores de aguacate Hass hacia Asoppitaya, como su principal cliente en el canal formal de venta (ver figura 9). La razón es que los asociados comercializan gran parte o la totalidad de su producción a través de la asociación. Entre las necesidades que tiene esta figura asociativa frente al fruto se encuentran las siguientes: 1) la producción de una fruta libre de trazas, lo cual implica el cumplimiento de protocolos técnicos previos a la cosecha (así como durante el desarrollo del cultivo), en los que se incluye la utilización de los insumos permitidos para controlar plagas y enfermedades, y respetar los períodos de carencia; 2) realizar una preclasificación y prelavado en finca; y 3) el cumplimiento de un porcentaje mínimo de materia seca, el cual es determinado y exigido por las empresas exportadoras antes de iniciar la cosecha. Respecto a este último punto, el contenido de materia seca de la pulpa del fruto influye en el índice de madurez de cosecha que, a su vez, es un indicador de calidad y un parámetro de decisión en la recolección (Escobar, Rodriguez, Cortes y Correa, 2019).Por otra parte, los clientes de la fruta comercializada a través del canal informal son los intermediarios de la zona, quienes la acopian y la venden en el mercado nacional. Según lo expresado por los productores, recurren a este canal de distribución cuando se presentan determinadas situaciones de incertidumbre en el mercado formal, por ejemplo, cambios significativos en los precios de la fruta dirigida al mercado internacional, o cuando no se concretan acuerdos por parte de Asoppitaya y las empresas exportadoras. Para los productores, estos escenarios aumentan las probabilidades de incurrir en pérdidas económicas al poner en riesgo la cosecha, razón por la cual algunos deciden negociar su producción de forma independiente (incluso con las exportadoras).Esta fragilidad en los procesos de negociación pone en peligro no solo la rentabilidad económica de los pequeños y medianos productores que derivan sus ingresos del cultivo de aguacate Hass, sino también los procesos de asociatividad adelantados por la organización. Ante estos escenarios, Asoppitaya trabaja para conformar un comité de comercialización en el que se aborden estrategias de choque cuando alguna negociación fracase, se distribuya la labor de conseguir socios comerciales y se acompañe el proceso de negociación con los empacadores.El segundo bloque de la plantilla de modelo de negocio aborda la propuesta de valor que ofrecen los asociados a sus clientes. Esta se compone de características tangibles e intangibles del producto. En primer lugar, se produce fruta de diversos pesos y calidades, según la siguiente clasificación informada por los agricultores: de primera, con más de 180 g de peso y con las características para el mercado exterior; de segunda, entre los 120 g y 180 g destinada al mercado interno; y de tercera, con un peso entre 90 g y 120 g. En promedio, el calibre del aguate Hass producido en la zona está entre 18 y 20. La tabla 5 muestra la correlación existente entre el peso y los calibres en la variedad Hass.Asimismo, los asociados realizan un proceso de preselección y prelavado en finca antes de enviar la fruta al centro de acopio de la organización o a la empresa empacadora. Dentro de los protocolos de producción de Hass acordados entre el equipo técnico de la asociación y los productores, se incluye el manejo responsable del medio ambiente, por lo cual ellos incorporan entre sus prácticas la utilización de microorganismos favorables para mantener la calidad de los suelos. Del mismo modo, emplean bioinsumos durante una determinada fase del cultivo, los cuales no solo ayudan a conservar el equilibrio de los ecosistemas, sino que favorecen la producción de frutos inocuos y libres de trazas. En segundo lugar, y en relación con lo mencionado anteriormente, las características intangibles incluyen la oferta de una fruta sana y confiable para todo tipo de consumidor (nacional o internacional). El cumplimiento de la propuesta de valor tiene como base un conjunto de actividades clave y actitudes que hacen posible producir aguacate Hass con las características mencionadas. Además del prelavado y preselección del producto que se realiza en finca, es de vital importancia el cumplimiento de las recomendaciones técnicas para garantizar la calidad del fruto. Esto implica el compromiso y la honestidad por parte del productor para llevar un registro de las aplicaciones de insumos y respetar los períodos de carencia. Los asociados son conscientes del riesgo que enfrenta el proceso de exportación si se llegan a encontrar trazas o residuos de químicos en la fruta. En consecuencia, reconocen la necesidad de iniciar procesos de certificación y cumplir con los estándares para acceder y posicionarse en los mercados extranjeros. Por esta razón, adelantan cambios relacionados con la innovación y tecnificación del cultivo, y con la búsqueda de la certificación Global g.A.P. en un trabajo conjunto con Asoppitaya.En línea con lo anterior, entre los recursos clave con los que cuentan los agricultores, y que les permiten crear y sostener la propuesta de valor, se encuentran: 1) los bioinsumos para la fertilización y el control de plagas y enfermedades, 2) el conocimiento y la experiencia en el cultivo (la cual se promedia entre los seis y ocho años), 3) las certificaciones en Global g.A.P. y predio exportador del iCA, y 4) los lotes de producción. Sobre el último aspecto, la mayoría de los asociados son propietarios de la tierra donde se desarrolla el cultivo.Pese a los avances descritos, los productores no cuentan con una estructura de costos que les permita identificar el punto de equilibrio de la inversión en el cultivo y el precio mínimo en el cual debería venderse la fruta. Aquellos con más experticia en el tema son quienes están certificados en Global g.A.P 10 . Sin embargo, debe tenerse en cuenta que la mayor parte de los cultivos aún se encuentran en etapa de crecimiento.En cuanto a los trayectos y canales de distribución, es preciso revisar el recorrido de la fruta. El primer trayecto inicia en el predio, desde los lotes de producción cosechados hasta un lugar de almacenamiento o bodega de acopio temporal (con la cual deben contar los productores con registro exportador del iCA y certificados en Global g.A.P.), en la que los aguacates son dispuestos en canastillas. En el caso de los productores ubicados en la vereda Bélgica del municipio de Roldanillo, estos llevan la fruta hasta la escuela de esta zona rural (en camionetas de tracción doble que le cobran al productor entre COP 20.000 y COP 30.000 por recorrido), donde es recogida en camiones enviados por Asoppitaya. Con respecto a los agricultores de las veredas de Trujillo y Morabito en el municipio de Roldanillo, o de las zonas rurales de otros municipios, la asociación planea rutas de recolección por cosecha y establece puntos de acopio convenientes según la ubicación de los lotes.En referencia a los medios de comunicación utilizados entre los agricultores y la asociación, cuentan con un grupo de WhatsApp en el que se abordan temas relacionados con el cultivo, se resuelven dudas y se informa a los asociados sobre las reuniones o temas de interés. Además de este medio, es común intercambiar información mediante comunicaciones telefónicas, mensajes de texto o de forma personal a través de reuniones.Acerca del relacionamiento entre las partes, este se encuentra regulado por los estatutos en los que se dictamina el objeto social y la naturaleza gremial de la asociación. Por otra parte, en este conjunto de normas que reglamenta la operatividad de Asoppitaya, se consignan los roles, derechos y deberes de sus integrantes. Pese a esto, se evidencia incumplimiento y poca participación en actividades de capacitación y toma de decisiones por parte de una porción de los asociados, por lo que se ralentizan los procesos asociativos.Para finalizar, bajo este esquema de negocio, los agricultores reconocen como aliados o socios clave a tres grupos de actores: 1) los almacenes que suministran los agroquímicos y las herramientas necesarias para el desarrollo de los cultivos, y los viveros registrados ante el iCA, en los que es posible encontrar material vegetal de calidad fitosanitaria con el respaldo técnico de la entidad de control; 2) las diferentes entidades que brindan servicios de apoyo o capacitación al sector primario, entre las que destacan Asohofrucol, Agrosavia, el SENA y la Gobernación del Valle; esta última puso en marcha, desde 2017, el Plan Integral de Fruticultura (PiF) del cual han participado como beneficiarios; y 3) las entidades bancarias que tienen líneas de crédito para el sector agropecuario como el Banco Agrario y el Banco Mundo Mujer.Figura 8. Jornada de trabajo con integrantes de Asoppitaya para la definición de modelos de negocio. Identificar la oferta de valor en doble vía requiere, en primera instancia, reconocer quiénes son los clientes y socios clave de una empresa y, a partir de esto, enfocarse en los demás componentes del modelo de negocio, para entregar un producto o servicio con verdadero valor a quienes contribuyen desde el rol de proveedores o a quienes actúan como compradores.Para el caso de Asoppitaya, dentro de las figuras de socios clave se encuentran, en primer lugar, sus asociados. Esto, dado que es relevante el papel de la organización como representante de 120 pequeños productores que cultivan, además de frutas como aguacate, granadilla, maracuyá, melón, papaya, pitaya y sandía, otros productos agrícolas entre los que se encuentran la berenjena y el maíz dulce. Para la organización, sus integrantes soportan la oferta productiva, es decir, la capacidad de respuesta ante las necesidades de los compradores y las características intrínsecas de las frutas de las que dependen las negociaciones. En lo que concierne al aguacate (como se ha expuesto en otras secciones del documento), es cultivado por 54 productores, de los cuales 17 tienen cultivos en edades productivas y, entre estos, 7 se encuentran certificados bajo los parámetros de finca de Globalg.A.P.Cañaveral, en la cual se tiene codificación para aguacate, pitaya, sandia, maíz y papaya) y plazas de mercado, en especial las centrales de abasto de Bogotá y Medellín.A continuación, se describen los demás componentes del modelo de negocio de Asoppitaya desde dos perspectivas: la primera, hacia sus principales socios clave, y, la segunda, hacia sus clientes.La figura 10 presenta la propuesta de valor desde la perspectiva de la asociación hacia sus asociados, en particular, aquellos que producen aguacate Hass 11 . En esta dirección del modelo empresarial, la propuesta de valor de Asoppitaya se fundamenta en características que han sido consideradas de gran importancia por parte de los pequeños productores, dado el contexto competitivo en el que se desenvuelve la cadena de aguacate Hass en el departamento. Entre estas particularidades, se encuentra la experiencia y amplia trayectoria de la organización en el manejo y comercialización de frutas tropicales como la pitaya, la cual ha comercializado en el mercado nacional e internacional desde hace 18 años. Esta ventaja le ha permitido posicionarse de forma diferencial frente a otras asociaciones de productores del departamento, en la medida en que es considerada como un caso exitoso.Se debe agregar que la oferta de valor de la organización hacia sus asociados incluye la gestión comercial para la venta conjunta del aguacate Hass y de los demás productos agrícolas, la administración de un fondo rotatorio que iniciará su funcionamiento en 2020 y la formulación y gestión de proyectos de desarrollo productivo. Estos han permitido que los asociados accedan a diversos servicios como la asistencia técnica, si bien, por ahora, de forma temporal. Este último aspecto demanda una solución rápida y eficaz, dado que el acompañamiento frecuente al productor de aguacate Hass se considera de vital importancia para el desarrollo adecuado del cultivo y crucial en temporada de cosecha. Ante esta situación, las acciones de Asoppitaya se han encaminado a suplir el requerimiento a través del personal técnico con el que cuenta. Sin embargo, debido a la limitada capacidad institucional para este rubro, no ha sido posible satisfacer la demanda y realizar visitas frecuentes a los predios para asegurar el monitoreo del cultivo.Otros servicios que obtienen los productores a través de la gestión institucional de Asoppitaya son: 1) ser beneficiarios de proyectos productivos regionales que realizan contribuciones de herramientas e insumos para el desarrollo del cultivo; 2) la certificación de algunos predios bajo los lineamientos de Global g.A.P. (en concreto, 11 asociados cuentan con esta certificación: 7 producen aguacate Hass, 3 trabajan con pitaya y 1 con granadilla); y 3) la participación en capacitaciones y procesos de formación, con el apoyo de instituciones educativas como el SENA y el Intep, las cuales están habilitadas en la acreditación del conocimiento (p. ej., en temas técnicos como las BPA, el manejo de bioinsumos para el control de trazas, los procesos de certificación, entre otros).Con respecto al relacionamiento entre la asociación y los asociados, este se caracteriza por fundamentarse sobre el reconocimiento de la interdependencia, una comunicación frecuente y respetuosa, y una buena disposición para escuchar y aclarar inquietudes. Por otra parte, dado que la propuesta de valor de la asociación corresponde, en esencia, a la prestación de servicios, los canales empleados para su divulgación son las vías de comunicación oral. Dicha información se transfiere a través de asambleas anuales y reuniones convocadas mediante un grupo de WhatsApp, mensajes de texto, llamadas telefónicas y mensajes voz a voz. Debido al gran número de asociados, se planifican reuniones por núcleos de productores según su cercanía geográfica.En relación con los canales de recolección de la fruta durante las temporadas de cosecha, se programan rutas por grupos de productores organizadas de acuerdo con la ubicación geográfica de los predios, los puntos de acopio que se concreten en las zonas de producción, la cantidad de fruta a ser cosechada y el número de asociados que se hayan comprometido a comercializar la fruta a través de la asociación. Como medio de transporte, se contratan camiones que, con una frecuencia semanal durante la época productiva, llegan hasta los puntos de recolección colectiva acordados o, en su defecto, hasta los lotes de producción.La fruta recolectada puede llevarse a un centro de poscosecha ubicado en la cabecera municipal de Roldanillo o enviarse a alguna empresa exportadora para su venta final. En el primer escenario, la organización asume el costo del transporte. En el segundo caso, el lugar de recolección y otras variables dependen de la negociación con las exportadoras.En cuanto a los recursos clave con los que cuenta Asoppitaya para transferir su propuesta de valor hacia los asociados, estos son: un equipo humano capacitado para brindar asesoría técnica a los productores y desempeñar labores administrativas y comerciales en el funcionamiento de la organización, un centro de acopio adecuado para el almacenamiento, tratamiento y empaque de la fruta, y una sede administrativa, la cual está en comodato desde hace 10 años con la Alcaldía Municipal de Roldanillo.Lo anterior y los demás gastos de la organización son sustentados a partir de los ingresos obtenidos por concepto de: 1) el recaudo de la cuota mensual de cada asociado 12 , la cual está reglamentada en los estatutos de la asociación y tiene un valor de COP 30.000/mes; 2) el margen de ganancia por la labor de comercialización (en el caso del aguacate esta proporción es cercana al 25 %); 3) la gestión de proyectos y apalancamiento de recursos que van dirigidos a la realización de las inversiones necesarias para mejorar la tecnificación del cultivo y adelantar procesos de certificación; 4) la recaudación de la cuota de membresía que corresponde a un salario mínimo mensual legal vigente (Smmlv) y se paga una sola vez al ingresar a la asociación. No obstante, este rubro es variable y poco significativo, dado que depende del número de nuevos miembros que se adhieran a la figura jurídica asociativa.Para finalizar, los principales costos que debe asumir la organización para entregar su propuesta de valor a los asociados son de carácter comercial y operativo. Entre estos es posible especificar, en orden de importancia: el costo de la fruta, los servicios de transporte y los gastos del personal (técnico, comercial y administrativo). Figura 10. Plantilla de modelo de negocio desde Asoppitaya hacia sus productores asociadosFuente: elaboración propia.El modelo de negocio representado en la figura 12 sintetiza la oferta de valor de Asoppitaya hacia sus clientes, es decir, describe los elementos que le permiten cumplir con los requerimientos de los compradores de frutas.Al representar una comunidad de productores de frutas tropicales que obtienen el sustento de sus familias del ejercicio de la agricultura a pequeña escala, la oferta social de Asoppitaya es para sus integrantes el factor más importante de su propuesta de valor. Dentro del conjunto de proposiciones que diferencian esta organización de otras con objetos sociales similares y que buscan participar en el suministro de frutas tropicales para el mercado internacional, se destaca la experiencia en el asesoramiento al productor para la implementación y mantenimiento de protocolos y normas técnicas con miras a la obtención de certificaciones nacionales o globales. En el mismo sentido, el equipo humano de Asoppitaya cuenta con la capacidad técnica para realizar labores de seguimiento a los cultivos y verificar el uso de prácticas productivas sostenibles, de acuerdo con los estándares decretados por las entidades de control o los organismos de certificación.Dirigido a otro segmento de mercado, Asoppitaya ofrece el servicio de maquila y de preparación de exportaciones a productores con clientes en el exterior que tienen la capacidad de suministro, pero que desconocen los procedimientos del mercado al que pretenden ingresar (p. ej., el alistamiento de la fruta, la logística de exportación, entre otros). En cuanto a los clientes del mercado nacional, Asoppitaya les ofrece, además de precios competitivos, fiabilidad en el suministro de volúmenes constantes durante los períodos acordados y, de igual modo que con los productores para el mercado internacional, experticia en la selección y clasificación rigurosa de las frutas según lineamientos técnicos y organolépticos.Dar respuesta a los clientes, al tiempo que se genera valor al interior de la organización, requiere del siguiente conjunto de actividades clave que se desarrollan con los asociados, los comités de trabajo, los clientes y las instituciones de apoyo:1) Con los asociados: para ofrecer frutas de calidad competente en el mercado, Asoppitaya debe asegurarse de trabajar de la mano con el agricultor. Sin embargo, como se expuso en el anterior modelo de negocio, al no contar con suficiente flujo financiero para prestar el servicio de asistencia técnica de forma permanente, realiza un proceso de acompañamiento enfocado en temas específicos según cada productor y su cultivo. Por esta razón, debe recurrir a la cooperación institucional para cubrir la mayor parte del servicio a través de proyectos. Otra labor que se realiza con el apoyo de los productores es el pronóstico de las cosechas.Esto con la intención de cuantificar la oferta -a partir del volumen de frutas que se espera obtener en cada cosecha y de la evaluación de la calidad (p. ej., de la materia seca en el caso del aguacate Hass)-y programar las rutas de recolección. 2) En Asoppitaya: las ventas sustentan a la organización en su conjunto, es decir, tanto a los productores asociados como a los profesionales encargados de la funcionalidad administrativa, técnica y comercial. Consecuentemente, la gestión comercial, que incluye el monitoreo de los precios, el análisis del mercado a nivel regional, nacional e internacional, la búsqueda de clientes y el seguimiento de las negociaciones son procesos estratégicos para la organización. 3) Con los clientes: Asoppitaya atiende dos segmentos de mercado, el primero, aquellos con quienes comercializa la fruta a escala nacional; el segundo, aquellos que exportan para el mercado internacional. En ambos casos, el proceso de acercamiento inicia presentando la organización: visión, misión y función social. Una vez se concreta el negocio, se vuelve tangible con el establecimiento de acuerdos en los que se definen las especificaciones de calidad y cantidad, la duración del convenio, la logística de recolección y entregas, entre otros. En este punto es relevante para Asoppitaya realizar acciones de seguimiento durante y después de la venta.En referencia a los canales de distribución, la responsabilidad del transporte depende de cada negociación. Para cuidar el producto desde los cultivos hasta el lugar de entrega acordado con el comprador, se toman las medidas necesarias de embalaje y transporte para obtener el menor número de pérdidas poscosecha. Por lo general, las frutas son dispuestas en cajas o canastillas según el requerimiento de cada comprador y transportadas en camiones. Por ejemplo, para el mercado nacional se realizan entregas semanales de aguacate Hass: cada canastilla pesa en promedio 18 kg y contiene mallas de la fruta con un peso de 500 g cada una.Conscientes de la necesidad de utilizar las tecnologías de información y comunicación para relacionarse con los grupos de interés de la organización (clientes potenciales, instituciones del sector agrícola, sociedad en general, entre otros), Asoppitaya se esfuerza por darse a conocer a través de su página web, divulgar notas importantes de los eventos que lidera o en los que participa mediante las redes sociales, y mantener comunicación constante con sus clientes por medio del correo electrónico. Con respecto a los canales de comunicación tradicionales, se recurre a las llamadas telefónicas y a la comunicación personal según cada situación particular.Los recursos clave de Asoppitaya que le permiten transferir su propuesta de valor son los siguientes: 1) un equipo de trabajo con experiencia en gestión comercial, asesoría técnica al productor, administración y operaciones de agroindustria consecuentes con el régimen de las buenas prácticas de manufactura (BPM). En este aspecto, la organización promueve la participación laboral de las mujeres con el fin de contribuir a su autonomía económica. 2) Recursos físicos que le permiten desarrollar sus actividades administrativas, técnicas y comerciales de forma operativa. Estos son: un centro de poscosecha certificado en Globalg.AP., una sede administrativa y equipos de planta y oficina que facilitan el desempeño de la organización como comercializadora de frutas. Por último, 3) activos intangibles que se suman al conocimiento y habilidades del recurso humano, como un software 13 que permite realizar seguimiento a los costos de una línea productiva desde el cultivo hasta la logística de distribución; además del goodwill ('buen nombre') de la asociación, dado que se destaca por sus certificaciones (Globalg.A.P., BPM y HACCP) y por su experiencia como organización de base social exportadora de pitaya.En cuanto a los egresos del modelo empresarial, además de los gastos administrativos, de ventas y financieros, la organización debe asumir los costos del personal operativo que realiza las labores de selección y clasificación, el valor pagado a los productores por las frutas y los salarios de los técnicos que realizan trabajo de campo.Por otra parte, la fuente de ingresos en este modelo de negocio es el margen de intermediación que se deriva de la compra y venta de las frutas tropicales. En relación con el aguacate (Hass y Lorena), durante 2018 y 2019 se comercializaron a través de la asociación 4521 kg de fruta dirigidos al mercado internacional y 40.900 kg para el mercado nacional. El precio promedio pagado al productor fue de COP 2100/kg, mientras que del precio de venta fue de COP 2800/kg, por lo cual el margen de utilidad osciló alrededor del 25 %.El modelo evidencia que en el caso de la pitaya la utilidad es mayor. Sin embargo, en 2019, al no contar con suficiente producción de la fruta de calidad exportación, se compraron tan solo 1306 kg, a un precio promedio de COP 6500/kg, y el valor por unidad de venta se aproximó a los COP 9.300/kg. En este caso, se estima un margen de ganancia cercano al 30 % sobre el precio de compra 14 .Figura 11. Jornada de trabajo con integrantes de Asoppitaya para la definición de modelos de negocio. 27-07-2019Fuente: Díaz L.( 2019). Figura 12. Plantilla de modelo de negocio desde Asoppitaya hacia sus clientes Fuente: elaboración propia.Más que un concepto, la inclusión ha sido considerada como un medio para afrontar la inequidad social y productiva en Colombia. Como ejemplo, en 2015 la Misión para la Transformación del Campo planteó una serie de estrategias al Gobierno nacional para que fueran incluidas en los próximos programas, planes y políticas públicas. Entre estas estrategias se encuentra la denominada inclusión productiva, con la cual, según el DNP (2015), se espera que los pequeños productores -dedicados tanto a actividades agropecuarias, piscícolas y pesqueras como a las no agropecuarias-mejoren sus posibilidades de acceso a activos productivos, mercados, servicios y bienes públicos. Esto, con la claridad de que alcanzar dichos propósitos depende de aspectos como: el acompañamiento prolongado a las comunidades, la integralidad de las intervenciones, la participación comunitaria, la asociatividad y la orientación hacia el mercado.En específico, acerca de la inclusión productiva en actividades agropecuarias, esta concepción del desarrollo rural se enfoca en las siguientes líneas prioritarias para el desarrollo de la estrategia: 1) acceso a tierras; 2) acceso a tecnologías y a buenas prácticas agrícolas y empresariales; 3) comercialización; 4) fortalecimiento de la asociatividad; 5) disponibilidad y manejo del agua; 6) acceso a servicios financieros en las zonas rurales, y 7) gestión integral de riesgos (DNP, 2015). En concordancia, el actual Plan Nacional de Desarrollo 2018-2022 se articula con las proposiciones enunciadas y contempla la inclusión productiva de los pequeños productores del sector agropecuario entre los objetivos y estrategias que buscan dinamizar el desarrollo y la productividad rural en Colombia (DNP, 2019).En el marco de lo expuesto, la tercera herramienta de la metodología LiNK contribuye al análisis de modelos de negocios desde la perspectiva de la inclusión, partiendo de la revisión de seis principios (ver tabla 6). Estos son análogos a los objetivos y estrategias que se persiguen como país, desde las acciones del Gobierno nacional para contribuir al cierre de las brechas del campo colombiano, en aspectos como la promoción de alianzas entre actores de los encadenamientos productivos, la búsqueda de una dinámica comercial incluyente, el acceso equitativo a servicios y tecnología, entre otros.A partir de una mirada sistémica de la relación comercial, es posible reconocer el valor de la interdependencia entre los actores. Además, permite evaluar la forma en la que se establecen metas comunes para resolver problemas sociales y comerciales.Se refiere a la integración de las metas de mercado de los productores y compradores, bajo criterios de calidad, precios competitivos, bajos costos de transacción y suministro estable.En este concepto se engloba la interdependencia de las partes y los aspectos que fundamentan el relacionamiento comercial, entre ellos, los riesgos comerciales que se comparten frente a las posibles eventualidades y la determinación de estándares de compra y venta.Este principio hace referencia al acceso de los actores a diferentes servicios como los financieros, de información, del mercado, a la transferencia tecnológica, entre otros, que podrían mejorar la calidad de los productos, así como la seguridad alimentaria de los productores y la huella medioambiental.El desarrollo inclusivo de innovaciones en productos, servicios y procesos requiere del involucramiento de los productores y busca construir valor comercial para permanecer de forma competitiva en mercados dinámicos.El principio consiste en la evaluación de modelos de negocio incluyentes, a través de la incorporación de indicadores y planes de monitoreo a medida. Por lo general, estos principios se aplican a modelos empresariales que describen el previo relacionamiento de un grupo de productores, un agente asociativo y un comprador. De este modo, existe la posibilidad de observar, desde cada uno de los roles de una cadena productiva, el nivel de inclusión que los actores están poniendo en juego en su relacionamiento.Dado que para este estudio de caso no se cuenta con una empresa compradora, se entrevistaron expertos en comercialización de aguacate Hass en el Valle del Cauca, con el objeto de analizar, bajo los lineamientos de los principios de inclusión, las causas que han dificultado el establecimiento de relaciones estables entre organizaciones de productores como Asoppitaya y las empresas exportadoras de la fruta en el departamento. Del mismo modo, con la finalidad de contar con parámetros de comparación, se entrevistó -con un cuestionario semejante-a la gerente de la asociación de productores.Como recurso de investigación se recurrió a la entrevista, por cuanto es una herramienta cualitativa que permite conocer diferentes perspectivas, para luego triangular la información recopilada según las coincidencias en los aportes. Los resultados obtenidos son los siguientes:• 6.3.1. Principio 1: colaboración entre actoresBajo este principio se evaluaron tres condiciones fundamentales: la coincidencia de los objetivos que los compradores y vendedores esperan alcanzar con el desarrollo de sus operaciones, la resolución conjunta de problemas y el reconocimiento de la interdependencia en las relaciones comerciales (ver tabla 7). Acerca del primer aspecto, tanto Asoppitaya como los representantes de la industria exportadora concuerdan en la importancia del factor social. Por un lado, la asociación pretende contribuir al desarrollo económico de los agricultores al acortar la distancia entre estos y el eslabón comercial; y, por otro, los compradores muestran interés en realizar negociaciones con productores que puedan ser aliados a largo plazo.Por lo que se refiere a los propósitos ambientales, las partes tienen claridad sobre las precisiones globales que requiere el ejercicio de una agricultura sustentable a nivel medioambiental, así como ética en relación con la sociedad campesina. Es claro también que estas prácticas deben certificarse en el mercado con el respaldo de estándares o normas diseñadas para tal fin. No obstante, debido a la falta de recursos económicos, tan solo 7 agricultores agremiados a Asoppitaya cuentan con el certificado Globalg.A.P, lo que resulta ser una limitante para los compradores que, aunque encuentren fruta con parámetros de exportación, no pueden comprarla por ausencia de estos requisitos, con lo que esta debe destinarse al mercado nacional, lo que tiene como consecuencia que los agricultores no perciban los ingresos esperados.En cuanto a los objetivos comerciales, los actores coinciden en que la prioridad es dar cumplimiento a los compradores más próximos. En el caso de Asoppitaya, son las exportadoras que, a su vez, tienen clientes en el exterior. No obstante, estas pretensiones no son trabajadas de forma conjunta debido a la ausencia de lazos comerciales estables.El siguiente aspecto de este principio trata de la resolución de problemas de forma coordinada entre las partes. Al respecto, las acciones conjuntas se enfocan muy poco en la determinación de acciones de respuesta ante eventualidades que puedan presentarse, en cambio, se enfatizan en el establecimiento de acuerdos y parámetros de negociación (p. ej. forma y tiempos de pago, volúmenes y calidades, devoluciones, entre otros), y en la realización de labores de monitoreo en campo -a través de la asistencia técnica-a fin de verificar el estado del cultivo y la calidad de las frutas. Pese a lo anterior, conviene subrayar que, tanto desde la perspectiva de Asoppitaya como de los expertos en comercialización, se reconoce una alta dependencia actual entre las partes.Tabla 7. Perspectiva de Asoppitaya y expertos en comercialización de aguacate Hass con respecto al principio de colaboración entre actoresDesde la perspectiva de la gerencia de ASOPPITAYASociales: como organización de base, Asoppitaya acorta la cadena de abastecimiento entre el comprador y el agricultor; acto que, a juicio de la gerencia, contribuye a la persecución de objetivos sociales del sector empresarial. Ambientales: acorde con los objetivos de los compradores, el manejo de los cultivos se realiza bajo los lineamientos de las BPA y los requisitos internacionales de búsqueda de la sostenibilidad.Comerciales: la organización se adapta a los requisitos técnicos y de calidad comercial otorgados por los compradores (p. ej., contar con el registro de predio exportador otorgado por el iCA y la certificación Globalg.A.P).Sociales: existen comercializadoras del sector que muestran interés por la búsqueda de agricultores que puedan convertirse en aliados comerciales a largo plazo. Estas, algunos casos, cuentan con programas de desarrollo de proveedores PDP. Ambientales: los protocolos de exportación de la fruta son exigentes, por cuanto se requiere que los proveedores cuenten con certificaciones de producción agrícola sostenible, a la vez que aseguren prácticas sociales responsables. Entre estos se encuentran los lineamientos de: Globalg.A.P, la rAS (Red de Agricultura Sostenible) y Rain Forest Alliance.Comerciales: los comercializadores se abastecen de la fruta con el objetivo de satisfacer las necesidades y requisitos de clientes en el exterior, con estándares de calidad comercial que deben ser trabajados con los proveedores.• De forma conjunta con los compradores se determinan los términos de negociación, a fin de prever situaciones que puedan afectar el proceso comercial. • En casos de incumplimiento (por parte de los compradores) en los tiempos de pago pactados, la organización ha actuado con paciencia y transmite la información de las expectativas de recaudo a los productores. • Cuando la fruta no cumple con las condiciones de calidad requeridas, los compradores realizan devoluciones que la organización acepta. Esto se traduce en una oportunidad de mejora para posteriores despachos.• Con el fin de evitar inconvenientes con la calidad de la fruta, las comercializadoras hacen seguimiento al cultivo desde la precosecha. Así, deben asegurarse de medir la materia seca, la maduración de la fruta y realizar análisis de laboratorio (en caso de ser necesario). De igual modo, con el fin de apoyar al productor para la obtención de buenos resultados en el cultivo, algunas comercializadoras disponen del servicio de asesoría o asistencia técnica. • Los tiempos de pago son acordados antes de la cosecha. Según los expertos, debido a la dinámica de las exportaciones, es común que los proveedores reciban un avance con la entrega de la fruta, y posteriormente el saldo. • En cuanto a los volúmenes, pueden existir diferencias entre la producción estimada y la real. En este caso, el comprador debe encargarse de buscar más proveedores de la fruta.Desde la gerencia de Asoppitaya se reconoce la total dependencia operativa, tanto de los agricultores en la proveeduría de la fruta como de las comercializadoras internacionales y los canales de distribución nacional.A juicio de los expertos en comercialización de aguacate Hass, en la actualidad, gran parte de la fruta exportable proviene de cultivos de pequeños y medianos productores. No obstante, la proporción entre cultivos propios y necesidades de abastecimiento varía para cada empresa exportadora.Fuente: elaboración propia con base en entrevistas con la gerencia de Asoppitaya y con expertos en comercialización de aguacate Hass.• 6.El segundo principio de la metodología LiNK evidencia las brechas que existen entre proveedores y compradores de aguacate Hass en el Valle del Cauca (ver tabla 8). La inestabilidad de las relaciones comerciales, que se limitan a ejercicios de compra y venta en temporadas de cosecha, muestra una deficiente integración de la base productiva en la cadena de abastecimiento, la cual aún no genera un valor equitativo para todos los actores, en especial para las organizaciones de productores como Asoppitaya.De acuerdo con lo expresado por los expertos en comercialización, es más factible que las exportadoras generen vínculos a mediano y largo plazo con productores independientes que se ajustan a las exigencias del mercado. Sin embargo, debido a la creciente llegada de nuevos actores a la cadena productiva departamental, desde la producción hasta la venta, algunos agricultores que cumplen con los requisitos del mercado prefieren evaluar las diversas propuestas de compra que surgen en las temporadas de cosecha antes de establecer compromisos de largo alcance.En el caso específico de Asoppitaya, según lo informado desde la gerencia, pese a los esfuerzos por consolidar alianzas con empresas exportadoras, la baja coyuntura entre las partes ha impedido dar respuesta a los aspectos que dificultan los nexos comerciales. En consecuencia, la organización confronta la incertidumbre ante futuras negociaciones. Esta situación afecta las posibilidades de la asociación para vincularse de forma permanente a la cadena, por lo que han decidido conformar un comité de gestión comercial que apoye la búsqueda de compradores.Tabla 8. Perspectiva de Asoppitaya y expertos en comercialización de aguacate Hass con respecto al principio de vínculos efectivos con el mercado Desde la perspectiva de la gerencia de AsoppitayaAsoppitaya no ha logrado consolidar relaciones comerciales de larga duración.El motivo es que durante los procesos comerciales se han encontrado con situaciones negativas que los han llevado a continuar la búsqueda de compradores. Ejemplo de estas situaciones son: diferencias en la liquidación de la fruta con respecto a lo acordado, tardanzas en los pagos y mermas en el pesado.Según lo expresado por expertos en comercialización, es más común que las exportadoras logren establecer acuerdos con pequeños y medianos productores que con organizaciones o grupos asociativos. Esto sucede porque los agricultores (en su gran mayoría) buscan vender las frutas de forma individual.Para la gerencia de Asoppitaya, entre las variables que más han dificultado el establecimiento de relaciones estables con los compradores se destacan las siguientes: la tardanza en los pagos, la ausencia de comunicación durante el proceso de cobro y la incertidumbre acerca de la posibilidad de realizar negociaciones posteriores.De acuerdo con lo expresado por expertos en el eslabón comercial, algunos productores evitan los compromisos de una alianza estable a fin de tener la oportunidad de escuchar múltiples ofertas de compra basadas en el precio. Del mismo modo, existen agricultores que pactan su producción con más de un comercializador, con el objeto de evaluar las ventajas y desventajas de cada negociación.Otro aspecto que afecta de forma significativa el establecimiento de alianzas es la calidad. Esto se da puesto que puede existir intención de establecer procesos comerciales conjuntos, pero, en algunas ocasiones, los productores no cumplen con la calidad requerida para el mercado internacional.Fuente: elaboración propia con base en entrevistas con la gerencia de Asoppitaya y con expertos en comercialización de aguacate Hass.• 6.\"La gobernanza se refiere al establecimiento, monitoreo y cumplimiento de las reglas formales o informales a lo largo de la cadena o al interior de una organización o de una relación comercial\" (Lundy et al., 2014, p.93). Por consiguiente, bajo este principio se analizaron aspectos relacionados con la determinación de los requisitos técnicos y comerciales exigibles para la producción de aguacate Hass, así como el conocimiento y manejo de los riesgos en los que incurren las partes durante el ejercicio de sus actividades (ver tabla 9).Con respecto al primer punto, las partes coinciden en afirmar que, por lo general, con antelación a las cosechas, los compradores dan a conocer a los agricultores las especificaciones técnicas requeridas por el mercado internacional, a través de los técnicos de campo. Esto último, con la intención de concluir en procesos exitosos de negociación, según los procedimientos de cada empresa, para lo cual estas características suelen consignarse en fichas técnicas o en acuerdos comerciales.Puesto que, además de la comunicación formal o informal de parámetros, la gobernanza transparente y consistente requiere del monitoreo de las operaciones que lleven a su cumplimiento, según los expertos en comercialización, es común que se establezcan acciones de verificación de las prácticas productivas por parte de los compradores. En este aspecto, Asoppitaya realiza visitas técnicas a los predios productivos para corroborar el cumplimiento de las buenas prácticas agrícolas, dado que, hasta el momento, no han pactado el suministro del servicio técnico con ningún comprador.Por otra parte, como resultado de las entrevistas realizadas, es posible afirmar que existen procesos de transferencia del riesgo comercial a causa de la calidad poscosecha de la fruta, una vez que esta llega a los puertos de destino, dado que es complejo predecir el nivel de pérdidas que pueda tenerse a causa del transporte de la fruta durante su exportación, la heterogeneidad en la maduración u otros aspectos. En concreto, algunas exportadoras han definido sistemas de pago que les permiten realizar avances a los productores, y dejar un último pago sujeto a la liquidación final de la fruta por parte de los compradores en el exterior.Tabla 9. Perspectiva de Asoppitaya y expertos en comercialización de aguacate Hass con respecto al principio de gobernanza transparente y consistenteExisten dos tipos de requerimientos: los generales y los particulares. Los primeros hacen referencia a las condiciones mínimas de producción, almacenamiento y transporte que aseguran la calidad e inocuidad de las frutas tanto para el mercado nacional como para el internacional. En cuanto a los requisitos particulares, las comercializadoras suministran la información relacionada con las condiciones de calidad y normatividad específica que se deben cumplir para lograr dar paso a la negociación. Con esta base, el equipo técnico de Asoppitaya selecciona los predios que cumplen con los requisitos y se encarga de hacer seguimiento a los cultivos.Las especificaciones técnicas requeridas para la compra de la fruta son comunicadas a los agricultores a través del personal designado por las comercializadoras para estar en contacto con ellos. Estos aspectos pueden estar contenidos en fichas técnicas que detallan los requerimientos mínimos exigidos por las entidades de control y el mercado internacional.Los productores y las exportadoras comparten riesgos en el proceso comercial a causa de la calidad de la fruta. Por esta razón, algunas comercializadoras pagan un porcentaje de avance al inicio de la negociación, y el saldo restante, después de verificar la calidad final del aguacate Hass en los destinos de las exportaciones.Entre las modalidades de pago a proveedores, algunas empresas trabajan \"a liquidación\", es decir, que después de realizado el envío, se espera su llegada al puerto de destino para verificar el estado de la fruta y realizar la liquidación a los productores. Por esta razón, los comercializadores deben ser exigentes en los procesos de seguimiento del cultivo y de acompañamiento al productor.Fuente: elaboración propia con base en entrevistas con la gerencia de Asoppitaya y con expertos en comercialización de aguacate Hass.• 6.3.4. Principio 4: acceso equitativo a servicios \"El acceso a servicios es un componente clave para asegurar la participación de productores de pequeña escala en los mercados\" (Lundy et al., 2014, p.95). En el caso del aguacate Hass, además del servicio de asistencia técnica que orienta a los productores en el manejo adecuado del cultivo, es necesario el continuo acceso a servicios de capacitación, financiamiento, transferencia tecnológica, información del mercado, participación en proyectos de desarrollo rural, entre otros. A partir de esta conceptualización, con el análisis de este principio de inclusión se buscó identificar los servicios a los que han accedido los agricultores de Asoppitaya, para luego compararlos con los que, de acuerdo con los expertos en comercialización, ofrecen algunas empresas exportadoras (ver tabla 10).Según la gerencia de Asoppitaya, parte de los servicios enunciados llegan a la organización o a sus integrantes a través de los actores indirectos que participan de la cadena productiva y no por parte de los compradores, dado que aún no se ha consolidado alguna relación a mediano o largo plazo.Con respecto al papel de la organización como gestora institucional de servicios para sus asociados, es importante destacar el rol facilitador que se ejerce desde la dirección. Además, estas labores de gestión institucional se encuentran incluidas en el plan estratégico, con el fin de mejorar en aspectos sociales e incrementar las capacidades empresariales de la organización y de cada agricultor.Desde otro punto de vista, los expertos en comercialización expresan que el acompañamiento técnico es un servicio negociable, en la medida que el vínculo comercial se fortalece y se generan verdaderos acuerdos estratégicos de alianza. De esta manera, es posible reducir los riesgos del productor y favorecer el proceso de exportación.Tabla 10. Perspectiva de Asoppitaya y expertos en comercialización de aguacate Hass con respecto al principio de acceso equitativo a serviciosAsoppitaya no ha accedido a servicios de apoyo por parte de los compradores de la fruta.A través del personal en contacto con los productores, algunas empresas brindan acompañamiento técnico al cultivo.Fuente: elaboración propia con base en entrevistas con la gerencia de Asoppitaya y con expertos en comercialización de aguacate Hass.• 6.3.5. Principio 5: innovación incluyente Esto, con el objeto de lograr una mayor eficiencia como proveedores de la fruta y de ampliar las posibilidades de participación en el mercado.Con base en las apreciaciones de los expertos, la integración de los proveedores en procesos de innovación depende, en gran medida, de la evolución de las alianzas que se establezcan y de los programas de desarrollo productivo que cada empresa exportadora implemente.Tabla 11. Perspectiva de Asoppitaya y de expertos en comercialización de aguacate Hass con respecto al principio de innovación incluyente Desde la perspectiva de la gerencia de AsoppitayaCon el fin de mejorar de modo continuo la posición de Asoppitaya en el mercado del aguacate Hass, a la vez que pretende aportar a la sociedad agricultora a la que representa, la organización aprovecha la experiencia en la aplicación de normas de certificación para acompañar a los productores en el proceso de implementación de prácticas sustentables.Este aspecto diferencia a Asoppitaya de otras organizaciones de base social y productiva.Las acciones de inclusión que realizan las comercializadoras, con el fin de colaborar con los productores, difieren, en cada caso, según los acuerdos pactados en las negociaciones, en las cuales pueden acordarse, por ejemplo, asesorías técnicas o capacitaciones.Fuente: elaboración propia con base en entrevistas con la gerencia de Asoppitaya y con expertos en comercialización de aguacate Hass.• 6.3.6. Principio 6: medición de resultados Dado que para Asoppitaya no existen relaciones comerciales estables, la organización no ha participado de la estructuración de planes de trabajo conjunto con alguna empresa exportadora. Como consecuencia, no cuenta con instrumentos de medición que le permitan monitorear (de la mano de un comprador) el progreso en su desempeño como proveedor de la fruta. En un contexto general, cada actor de la cadena determina sus indicadores o métodos de seguimiento para evaluar el cumplimiento de metas en diversos aspectos (ver tabla 12).Tabla 12. Perspectiva de Asoppitaya y expertos en comercialización de aguacate Hass con respecto al principio de medición de resultadosDesde la perspectiva de la gerencia de AsoppitayaAsoppitaya verifica la evolución de sus procesos comerciales a través de los volúmenes de venta.Cada empresa maneja una metodología de seguimiento y control diferentes. Así, las comercializadoras pueden contar con indicadores que midan aspectos tales como la productividad, la cantidad de frutos cuajados, el nivel de podas, las raíces productivas, entre otras. En cuanto a las labores de seguimiento, pueden contar con indicadores que determinen el nivel de compras versus las labores realizadas por los asesores en campo.Fuente: elaboración propia con base en entrevistas con la gerencia de Asoppitaya y con expertos en comercialización de aguacate Hass.La metodología LiNK expone que un prototipo es un modelo de negocio deseado. Para alcanzar ese estado ideal, es necesario diseñar un plan de desempeño que dé respuesta a las brechas del modelo empresarial. Estos \"cuellos de botella\" resultan de la revisión del mapeo de la cadena, los modelos de negocio desde sus diferentes perspectivas y los principios de inclusión. A partir de este razonamiento, se analizaron las brechas resultantes de la implementación de la metodología y, como resultado, se plantearon algunas oportunidades de mejoramiento. Estas se encuentran condensadas en un plan de trabajo que revela un camino para la periódica reestructuración en las ofertas de valor de Asoppitaya hacia sus proveedores o clientes.En esta sección del documento se presentan, por una parte, las brechas de la organización con respecto a sus componentes de producción, de mercado, de trabajo asociativo y de crecimiento económico y, por otro lado, el plan de desempeño que resulta de las oportunidades de mejora, que buscan contrarrestar las consecuencias de las brechas.• 6.4.1. \"Cuellos de botella\" y oportunidades de mejoramiento para AsoppitayaEn un ejercicio participativo, que contó con la presencia de los integrantes de Asoppitaya, se identificaron las principales dificultades y retos a los que se enfrenta la organización y se definieron algunas acciones de mejora (ver tabla 13). Diseño, socialización y transferencia de protocolos técnicos para el manejo de los frutales, con el objetivo de estandarizar prácticas y propiciar el uso adecuado de agroinsumos, a partir de las particularidades nutricionales y organolépticas de las frutas tropicales cultivadas en la región.Gestión de capacitación en los siguientes temas técnicos:• MiC (manejo integrado de cultivos) por etapas o fases de desarrollo • Cosecha y poscosecha • Podas • Nutrición • Manejo del suelo y del recurso hídrico • MiPE (manejo integrado de plagas y enfermedades) • Manejo y calibración de equipos • Registro de prácticas de manejo • BPA (buenas prácticas agrícolas) Promover la instalación de cultivos tecnificados y la ampliación del área productiva a través del apoyo de equipo técnico y gestión institucional.Inconstancia en la prestación del servicio de asistencia técnica a los asociados.Al no contar con suficiente capital de trabajo, la asistencia técnica depende de los proyectos de desarrollo rural en los que participe la asociación.Ausencia de elementos de transferencia tecnológica y de información para el manejo de los cultivos (p. ej., en las labores de poda y fertilización).Desarrollar el contenido programático de los temas de las capacitaciones y las prácticas de asistencia técnica.Prestar servicio de asistencia técnica a través de la asociación o con el apoyo de entidades del sector.Alta dependencia de las lluvias durante el desarrollo del cultivo de frutas tropicales.El desarrollo floral y las cualidades nutricionales de los cultivos frutales dependen, en gran parte, de los factores agroclimáticos. De este modo, la productividad se ve afectada por los cambios bruscos de temperatura.Disminución del índice de rendimiento de los cultivos y posibles pérdidas en la etapa de cosecha.Gestión institucional en busca de:• Plantear metodologías para el manejo del recurso hídrico y la implementación de métodos de riego. • Evaluar las necesidades hídricas de los cultivos en la zona. • Diseñar y establecer métodos de captura o cosecha de agua.La compra de material vegetal de aguacate en viveros no otorga garantías de calidad fitosanitaria para el productor.Existen dificultades para identificar un adecuado material de propagación, inclusive cuando es adquirido en viveros comerciales registrados.Los agricultores identifican problemas propios de la fase propagativa durante las etapas posteriores del desarrollo de los cultivos. En consecuencia, deben realizar resiembras e incurrir en pérdidas económicas.Gestionar la construcción e instalación de microcámaras térmicas para el material de siembra.Incertidumbre sobre la oferta a causa del desconocimiento de las proyecciones de producción.Ausencia de planificación agrícola de la asociación y de un sistema de seguimiento de los índices de producción, rendimientos y calidad, a partir de las proyecciones de cosecha y las entregas de la fruta.Dificultad de llevar a cabo procesos de gestión comercial a partir de información imprecisa.Diseñar y poner en marcha un sistema de registro grupal de la producción, proyección de volúmenes de entrega, rendimiento, tiempos de cosecha y calidades.Desconocimiento de los costos de producción de los cultivos de frutas tropicales.• La mayor parte de los agricultores de aguacate Hass cuentan con plantaciones jóvenes (entre 1 y 8 años de edad), por lo que desconocen los rendimientos en cada etapa del cultivo. • En todos los cultivos, los productores tienen diversas prácticas de manejo, por lo que desconocen el valor promedio de las inversiones.El desconocimiento de valores promedio de inversión dificulta el establecimiento de precios y las negociaciones.Determinar una estructura de costos por cada cultivo y validar los hallazgos con los registros de gastos de los productores.Utilizar un software que permita registrar y actualizar los costos de producción en campo.Algunos agricultores no implementan los aspectos normativos exigidos para la exportación.Para algunos agricultores, factores como el desconocimiento, la falta de capital para la adopción de tecnologías, la necesidad de orientación técnica o el temor al cambio en las prácticas de manejo, justifican la baja adopción de normas de calidad exigidas por el mercado internacional.Frutas con calidad de exportación deben ser destinadas al mercado nacional debido a la ausencia de requisitos de exportación.Acompañar a los productores en la búsqueda de certificados (registro iCA de predio exportador, BPA y Globalg.A.P).Dificultades para el establecimiento de relaciones comerciales a mediano y largo plazo con exportadores de la región o del país.Para el caso del aguacate Hass, las oscilaciones del mercado dificultan las relaciones comerciales, dado que los exportadores manifiestan sus intenciones de alianza únicamente en épocas de cosecha. En el caso de la pitaya, aunque la organización cuenta con un portafolio de clientes exportadores, la disminución del tamaño de la fruta no les permite cumplir con sus requerimientos.• Afectación de los precios pagados al productor. • Incremento de fruta para el mercado nacional. • Disminución de los ingresos derivados del ejercicio comercial.Emplear la experiencia en la exportación de pitaya para exportar aguacate Hass a través de la asociación.Búsqueda de alianzas comerciales a mediano y largo plazo (en los mercados nacional e internacional).Participar en eventos de promoción (p. ej., ferias comerciales y ruedas de negocios) a nivel nacional e internacional.Desaprovechamiento de frutas tropicales con calidad para el procesamiento industrial.Parte de la fruta que se descarta en los procesos de clasificación para el mercado nacional e internacional cuenta con la calidad necesaria para ser industrializada. Sin embargo, por el momento no se encuentra una agroindustria interesada en estos excedentes.Bajas posibilidades de que el productor reciba ingresos por los descartes de la fruta.Desarrollo de productos agroindustriales con potencial en el mercado nacional.La acción asociativa no representa igual compromiso para todos los asociados.La estructura asociativa de Asoppitaya no es eficiente en términos de cooperación colectiva, sentido de pertenencia y búsqueda de objetivos comunes entre la organización y sus asociados.Deserción o desafiliación de asociados. Limitado recaudo de cuotas de participación y reducción del número de asociados. Venta de productos por fuera de la organización.Dificultades en el desarrollo de acciones colectivas.Realizar actividades de integración con el asociado para: El planteamiento de una perspectiva de largo alcance y el establecimiento de compromisos y propósitos. Mostrar la importancia de la asociatividad frente a la dinámica del sector agrícola.Iniciar el funcionamiento de los comités técnico, comercial, administrativo y financiero, y realizar un seguimiento de sus acciones.Oportunidades de mejora Reducción paulatina de las utilidades anuales de la organización durante los últimos períodos contables.Los márgenes de utilidad operativa se han visto disminuidos a causa de la obtención de frutas no exportables, las ventas individuales por fuera de la organización, las alzas de los precios logísticos y los incrementos en los costos de operación.• Retracción de las exportaciones. • Bajos márgenes de utilidad. • Disrupción de la participación en el mercado.Integración de los comités técnico, comercial, administrativo y financiero en las labores de gestión de mercados.Incrementar las ventas a través de la exportación.Los productores y la organización carecen de suficientes recursos económicos para ampliar su participación en el sector frutícola.La organización requiere capital de trabajo para recuperar el equilibrio patrimonial y mejorar la gestión operativa.• Desequilibrio patrimonial. • Baja disponibilidad de activos corrientes. • Bajo acceso a servicios financieros y productivos.Participar en proyectos de desarrollo social, organizacional, productivo y económico que faciliten el acceso a servicios de apoyo a la base productiva a través de alianzas institucionales.Capitalizar y operar el fondo rotatorio de autogestión.La organización no cuenta con sede propia para el cumplimiento de sus labores sociales y comerciales.Las oficinas de la organización y el centro de acopio se encuentran en calidad de tenencia, bajo la modalidad de comodato.Dificultad para realizar inversiones locativas que contribuyan a incrementar el valor de los activos de la organización.Adquirir una oficina y un centro de acopio de propiedad de Asoppitaya.Alta dependencia económica de monocultivos.Las tendencias del mercado han desplazado cultivos que tradicionalmente podían contribuir a mejorar la economía del pequeño productor.El pequeño agricultor se enfrenta a los riesgos que trae consigo el comportamiento global del mercado de los productos agrícolas que han adoptado como monocultivos.Sugerir un portafolio de posibles cultivos aptos para su establecimiento en la zona y con potencial de mercado.Altos costos de los agroquímicos necesarios para el manejo de los cultivos.Los agroquímicos, que buscan reducir los riesgos asociados a las plagas y enfermedades en la actividad agrícola, representan un alto porcentaje de la inversión en el establecimiento y mantenimiento de los cultivos (aguacate Hass, granadilla y pitaya).Impacto en la generación de ingresos provenientes de la actividad agrícola, en este caso, de la producción y venta de aguacate Hass, granadilla y pitaya a cargo de pequeños productores.Contar con una bodega de agroquímicos de la asociación -manejada desde el fondo de autogestión-, en donde sea posible encontrar productos de uso permitido para los cultivos y con mejores precios para el agricultor.Fuente: elaboración propia.El plan de desempeño diseñado para Asoppitaya parte del establecimiento de objetivos que, desde los aspectos organizacionales, administrativos, comerciales y comunitarios, contribuirán al fortalecimiento de la organización de productores (ver tabla 14). Con estas bases, se acordaron estrategias y acciones para el mejoramiento de la oferta de valor de la asociación a corto, mediano y largo plazo.Tabla 14. Objetivos del plan de desempeño de AsoppitayaIncrementar la capacidad de producción sostenible de frutas tropicales con calidad de exportación, el fortalecimiento de la transferencia tecnológica, el mejoramiento de los rendimientos de cada cultivo y el conocimiento de prácticas adecuadas, según los requerimientos del mercado.Incrementar los volúmenes de venta de la organización en el mercado nacional e internacional de frutas tropicales.Incentivar la inclusión y la asociatividad como estrategias de desarrollo rural y competitividad.Incrementar los ingresos y las utilidades de la organización y de sus asociados.Fuente: elaboración propia.En consenso, los integrantes de la organización de productores plantearon, para cada uno de los objetivos definidos y \"cuellos de botella\" identificados, las acciones que deberán ejecutar para mejorar sus procesos internos y, de forma consecuente, incrementar sus niveles de competitividad y ampliar su oferta de valor (ver tabla 15).Tabla 15. Plan de desempeño de Asoppitaya (2020 -2030)Incrementar la capacidad de producción sostenible de frutas tropicales con calidad de exportación, el fortalecimiento de la transferencia tecnológica, el mejoramiento de los rendimientos de cada cultivo y el conocimiento de prácticas adecuadas, según los requerimientos del mercado. La organización no cuenta con sede propia para el cumplimiento de sus labores sociales y comerciales.Adquirir oficina y centro de acopio de propiedad de Asoppitaya.Instalaciones físicas de propiedad de la organización.Instalaciones físicas de propiedad de la organización.Estrategia Desarrollar alternativas de disminución de costos de producción e incremento de los ingresos de los productores.Alta dependencia económica de monocultivos.Sugerir un portafolio de posibles cultivos aptos para su establecimiento en la zona y con potencial de mercado.N. o de asociados con diversidad de cultivos.Al menos 5 productores han adoptado nuevos cultivos de los sugeridos en el portafolio.Gerencia Equipo técnicoIncrementar los ingresos y utilidades de la organización y de sus asociados.Oportunidades de mejora Indicador Meta Tiempo ResponsablesBuscar alternativas de mercado nacional e internacional con el apoyo de la estructura organizacional.Altos costos de agroquímicos necesarios para el manejo de los cultivos.Contar con una bodega de agroquímicos de la asociación -manejada desde el fondo de autogestión-, en la que sea posible encontrar productos de uso permitido para los cultivos y con mejores precios para el agricultor.Bodega asociativa de sumos y herramientas.1 bodega asociativa de agroinsumos y herramientas.2021 Gerencia Comité comercial Estructura de costos Fuente: elaboración propia.No basta con consignar o proponer en un plan de desempeño una serie de objetivos, estrategias y actividades que deberían ejecutarse en pos de la competitividad de un modelo empresarial. La utilidad del ejercicio es evidente bajo el condicional de su ejecución. Para esto, es preciso que tanto los actores directos como los indirectos de la cadena se responsabilicen de algunas acciones. Respecto a la intervención del CiAt como aportante en la resolución de las brechas de Asoppitaya (a través del proyecto del Sgr), se realizaron las siguientes actividades:En la agricultura, los costos de producción se encuentran determinados por diversas inversiones que el productor debe asumir según el sistema productivo que adopte. Por ejemplo, el material vegetal adecuado para el establecimiento del cultivo, los agroquímicos necesarios para las actividades de fertilización y manejo de plagas y enfermedades, la mano de obra requerida desde el inicio de su proyecto productivo y durante sus diferentes fases de desarrollo, la tecnología que debe implementar, la adecuación de la unidad productiva conforme a las normativas exigidas por las entidades de control y del mercado, el transporte de insumos y del producto cosechado, entre otros.En lo que refiere al aguacate, se realizó un taller con algunos agricultores ubicados en la vereda Bélgica del municipio de Roldanillo, con el propósito de consensuar las prácticas de manejo del cultivo de la variedad Hass 15 . Para ser específicos, fue necesario recurrir a proyecciones de producción según los referentes de quienes habían iniciado la recolección de la fruta, dado que la edad promedio de los cultivos se encuentra entre los 7 y 8 años, es decir, cuando los árboles han alcanzado su adultez e inician una fase de estabilización productiva 16 . Por este motivo, aún no se cuenta con registros del volumen de producción que pueden alcanzar en la zona los árboles frutales en pleno desarrollo. Entre los parámetros definidos para el análisis de los costos de producción se tuvieron en cuenta los siguientes:• Área mínima de siembra: 1 ha • Densidad de población: 204 árboles • Distancia de siembra: 7 m x 7 m • Sistema productivo: agricultura convencional • Estimación del ciclo de vida: 20 años 17• Fase de establecimiento y desarrollo: entre 1 y 3 años • Fase de adultez o productiva: a partir del año 4De acuerdo con la información suministrada por los agricultores, durante los primeros tres años del ciclo de vida del cultivo se estima que la inversión pueda alcanzar los COP 23.460.252, distribuidos en los diferentes rubros de inversión. Dado que el agricultor debe esperar hasta el cuarto año para a obtener frutos de los árboles (aunque en bajos volúmenes), este valor es amortizado y distribuido en las etapas posteriores del ciclo biológico, de tal manera que pueda conocerse un costo aproximado de unidad de medida (kg). Cabe aclarar que este ejercicio no incluye el costo financiero (por concepto de intereses) en la inversión inicial (ver tabla 16). Fuente: elaboración propia. 17 a) Con el objetivo de calcular, no se tuvo en cuenta el efecto proyectado de la inflación, por lo que las cifras conservan los precios constantes de 2019. b) La proyección del ciclo de vida en años fue determinada por los agricultores.Dados los supuestos del costeo y el racionamiento para la determinación del conjunto de desembolsos periódicos, se concluyó que un pequeño productor de aguacate Hass incurre en gastos por un valor cercano a los COP 173.161.152 durante 20 años. Se calcula que, al menos, el 35 % se destina a la mano de obra para la adecuación del terreno, siembras, resiembras, fertilización, control de arvenses, manejo de plagas y enfermedades, podas, cosechas y demás actividades propias del mantenimiento del cultivo. De lo anterior, 165 jornales corresponden a la fase de establecimiento y 1268 jornales a la etapa productiva 18 .En relación a los insumos, aunque las prácticas de manejo del cultivo se encuentran aún en proceso de estandarización, los agricultores llegaron a un consenso acerca de la inversión en fertilizantes y en productos de manejo fitosanitario, a partir de la determinación de los agroquímicos más utilizados y las cantidades que se requieren según los parámetros de análisis establecidos. Así, este rubro representa un 42 % de la inversión necesaria.Es preciso considerar algunos gastos que deben asumirse de forma periódica, como la realización de análisis de suelos, la adquisición o reposición de herramientas o equipos, el costo predial (en proporción al área determinada para el cultivo), entre otros. Por esta razón, los productores lo consideran un 19 % del total de la inversión. Por último, el 4 % restante corresponde a los costos de ventas y se representan principalmente en el transporte de la fruta.Además de los costos globales, para el productor es importante conocer los costos por unidad de ventas, por cuanto fue necesario proyectar la producción anual. Con el objetivo de calcular se consideró un porcentaje de pérdidas del 5 % en cosecha y poscosecha, y un rendimiento promedio de 14 t/ha a partir del séptimo año y hasta el final del período costeado, para un total esperado de 210 t. Con respecto a estos planteamientos, cabe señalar que los rendimientos productivos son variables a causa de factores agroclimáticos, prácticas de manejo, sistemas de producción, entre otros.Aún más incierto que proyectar la producción es estimar las posibles utilidades del cultivo y el área mínima rentable, ya que estas dependen, en gran medida, de las fluctuaciones del mercado nacional e internacional, la calidad de la fruta, los rendimientos de las plantaciones y el cumplimiento de los requerimientos comerciales por parte de cada agricultor. Con estas salvedades y la experiencia que hasta el momento había tenido Asoppitaya, se proyectó un 40 % de la producción anual para el mercado de exportación, con un precio promedio de COP 2500/kg; y un 60 % para el mercado nacional, a un precio de COP 1750/kg.Bajo los supuestos establecidos, el área frutícola mínima rentable (AFMr) 19 requerida para generar COP 1.656.232 20 mensuales es de 1 ha para un cultivo de aguacate, en un período de plena producción (es decir, a partir del séptimo año). En términos financieros, este proyecto indica rentabilidad, por cuanto del flujo de caja se obtiene una tasa de retorno de la inversión (tir) equivalente al 26 %.La gerencia de Asoppitaya adoptó el plan de desempeño, presentado en este documento, como parte del plan estratégico con el cual la organización espera alcanzar su visión en el año 2030. En consecuencia, los objetivos, las metas, los indicadores y las estrategias del plan de desempeño fueron pensados a partir de las proyecciones económicas, organizativas y técnicas de la asociación, en función de su plataforma estratégica.Con la intención de buscar un comprador dispuesto a implementar la metodología LiNK de la mano de Asoppitaya, el equipo profesional del CiAt acompañó a la organización en la búsqueda de un aliado comercial ubicado en el Valle del Cauca, con el cual se pudiera canalizar la cosecha de 2019. El ejercicio no arrojó resultados positivos y fue necesario que la gerencia de la organización negociara con empresas exportadoras fuera del departamento. No obstante, además de avanzar en las actividades de gestión comercial plasmadas en el plan de desempeño, este ejercicio resultó en un proceso de recopilación de información útil para Asoppitaya y para la construcción del presente documento.En el Valle del Cauca son pocas las plantas empacadoras y las empresas exportadoras de fruta. Sin embargo, están presentes en el mercado empresas de otras regiones del país. Por parte del CiAt, se entrevistaron empresarios o representantes de las empresas Pacific Fruit, Frutales Las Lajas y King Fruits, con el fin de plantear la posibilidad de trabajar conjuntamente en la implementación de la metodología LiNK, a la vez que se lograra un acuerdo comercial con Asoppitaya 21 . Sin embargo, pese a la intención manifestada por parte de los compradores, se presentaron situaciones que dificultaron el establecimiento de acuerdos comerciales.En particular, para el caso de Pacific Fruit, debido a la edad de los cultivos no era posible que los asociados de Asoppitaya pudieran garantizar al menos tres toneladas por entrega provenientes de una misma unidad productiva. Este requerimiento de la exportadora es un método que contribuye a la realización de controles de calidad por lotes de producto a través de la trazabilidad y, de ese modo, a minimizar los inconvenientes de la maduración no homogénea en los puertos de destino. Por otra parte, otro requisito de la empresa son los certificados con los que, en el caso de Asoppitaya, no cuenta gran parte de sus asociados.En cuanto a Frutales Las Lajas, manifestaron interés en la realización del proceso, ya que uno de sus propósitos era trabajar con proveedores que pudieran conocer las etapas de selección, clasificación, tratamiento, almacenamiento y despacho de la fruta. Esta receptividad tuvo la finalidad de proporcionarles, de manera transparente, la información necesaria sobre los motivos de rechazo o aceptación del aguacate, así como también tener elementos para las negociaciones y fortalecer la confianza entre los agentes. Sin embargo, debido a la rotación del personal a cargo de la asistencia técnica, social y comercial con los productores, la empresa se vio en la necesidad de posponer el acuerdo.Por último, los agentes comerciales de la empresa King Fruits Company también mostraron disposición para implementar la metodología LiNK con el acompañamiento del CiAt. Sin embargo, la empresa realizó cambios en la conformación de su equipo comercial y posteriormente enfrentaron inconvenientes con la comercialización de la fruta. De este modo, tampoco fue posible establecer una alianza con Asoppitaya.Promover el desarrollo competitivo del sector agrícola es uno de los principales propósitos de los actores indirectos que interactúan con la base productiva y las organizaciones que la representan. Con esta intención, el CiAt participó en el desarrollo de algunas acciones contenidas en el plan de desempeño de Asoppitaya, las cuales fueron expuestas en el ítem anterior. Esta sección del documento permite evidenciar los módulos del modelo de negocio y de los principios de inclusión que fueron impactados con estas acciones de intervención institucional (ver tabla 17).Tabla 17. Impactos en el modelo empresarial de Asoppitaya con la implementación de la metodología LINK Asoppitaya permitió el acompañamiento del CiAt en la búsqueda de aliados comerciales dispuestos a implementar metodologías de inclusión social con productores de pequeña escala.Fuente: elaboración propia.De las generalidades de la cadena productiva del aguacate Hass en Colombia y el Valle del Cauca:• La demanda de aguacate Hass se incrementa año tras año a nivel mundial. En los últimos cuatro años, países como Estados Unidos de América aumentaron su tasa de consumo. Según la Asociación de Productores y Empacadores y Exportadores de Aguacate de México (Apeam, 2019), desde 2013 el consumo per cápita anual en este país pasó de 0,5 kg a más de 3,5 kg. Del mismo modo, las importaciones de la fruta crecieron en los Países Bajos, Francia, España y Reino Unido. A la lista se suman otros países del continente asiático, entre los que se destacan Japón y China (en particular, la región administrativa especial de Hong Kong) (Trade Map, 2019). • Tras el fenómeno mundial por el consumo de este superalimento, se abren ventanas de oportunidad para la producción nacional, la cual está compuesta por pequeños y medianos productores, empresas comercializadoras nacionales y multinacionales -algunas de ellas con cultivos propios en el país. En el caso del Valle del Cauca, se encuentran las tres tipologías, diferenciadas por el tamaño de los cultivos, el grado de tecnificación, el cumplimiento de estándares de calidad de la fruta y certificaciones frente a la responsabilidad ambiental y social en el proceso productivo. • El departamento del Valle del Cauca cuenta con ventajas competitivas para el desarrollo de este cultivo de apuesta exportadora, ya que posee recursos hídricos, suelos aptos y vocación agrícola. Además, existen tres plantas empacadoras de aguacate Hass (Pacific Fruits, Frutales Las Lajas y King Fruit), buenas vías de comunicación de primer y segundo orden, y cercanía de las zonas de producción al puerto de Buenaventura. • La promoción de modelos de negocio inclusivos es una estrategia prometedora para la cadena de aguacate Hass en el Valle del Cauca. Asimismo, representa una necesidad de aprendizaje para fortalecer la capacidad de participación de la cadena departamental en el mercado nacional e internacional. Esta apuesta, sin duda, debe ser impulsada por los actores de la cadena y por quienes la rodean, para propiciar espacios que faciliten su articulación. • La oportunidad de consolidar la participación del aguacate Hass vallecaucano en el mercado internacional presenta grandes desafíos, en especial, para los pequeños y medianos productores, que requieren de acompañamiento para obtener las certificaciones, la calidad y el volumen para atender las exigencias de los mercados. Este escenario es una alternativa de alto potencial gracias a la dinámica internacional de la demanda de la fruta.Al encontrarse en una etapa temprana de exportación nacional, es posible aprovechar este momento para la generación de modelos de negocio inclusivos como una estrategia de crecimiento económico en esta cadena productiva, en la que los pequeños y medianos productores puedan ampliar su mercado, y obtener mejores precios con la menor intermediación. Este tipo de modelos empresariales promueve una mejora en el incremento de sus ingresos. • Como ejemplo de los resultados positivos que pueden derivarse del trabajo articulado en una cadena productiva, es preciso resaltar la experiencia de México -el mayor proveedor de aguacate Hass en el mundo-, que luego de 30 años de arduo trabajo y esfuerzo con los distintos actores de la cadena del aguacate, logró cumplir con las rigurosas barreras técnicas impuestas por su principal comprador, el mercado estadounidense. Se estima que el costo de satisfacer los estrictos procedimientos fitosanitarios de los Estados Unidos, les cuesta a los productores y empacadores mexicanos alrededor de USD 110.000 anuales (Bredahl, 2001).A pesar de la conquista de este mercado, el gobierno mexicano continúa trabajando por consolidar al país como una potencia exportadora de la fruta, a través del establecimiento de esquemas para el control fitosanitario y el impulso logístico para llegar a nuevos países del continente europeo y asiático. Con este propósito, en la Planeación Agrícola Nacional 2017-2030 se incluyó al aguacate como un cultivo estratégico para la economía nacional. En este plan, el Gobierno mexicano propone una visión de futuro para la cadena, a fin de plantear un modelo de desarrollo agrícola que facilite la integración de los servicios de investigación, innovación, transferencia y adopción de tecnología, financiamiento y participación en proyectos estratégicos (SAgArPA, 2017). • El camino recorrido por México para el posicionamiento de su aguacate Hass en el mundo es un referente para Colombia. En este sentido, se destacan los avances que en materia de control fitosanitario realiza el Gobierno con el apoyo del iCA y de los actores de la cadena a nivel nacional. Por ejemplo, en la elaboración de un protocolo de inspección para plantas empacadoras con el fin de garantizar que el registro fitosanitario, realizado por el iCA en estas instalaciones, disminuya el riesgo de embarcar fruta con plagas y enfermedades cuarentenarias. Con esto se espera reducir los tiempos logísticos, de inspección y mejorar la competitividad del sector aguacatero nacional (iCA, 2019b). Otro logro alcanzado fueron las modificaciones en los requisitos de exportación, aprobadas por el Servicio de Inspección de Plantas y Animales de EE.UU. (Aphis, por sus siglas en inglés).Entre estas se encuentran las siguientes (COrPOHASS, 2019):-La reducción del tiempo (de seis a dos meses) para declarar sitios de producción como libres de barrenadores, los cuales son objeto de regulación. -Aislamiento de 100 m alrededor de los puntos de detección de las plagas cuarentenarias, sin suspender las exportaciones del lugar de producción. En caso de tener dos o más detecciones, el lugar quedará inhabilitado por dos meses hasta que se encuentre libre de las plagas. -Aprobación de la figura de Proveedor Autorizado de Servicios, lo que permite la generación de alianzas estratégicas público-privadas para realizar acciones de vigilancia con una mayor cobertura y eficiencia en los resultados. -Aprobación del Sisfito HASS como herramienta para almacenar la información fitosanitaria que soporta las exportaciones de aguacate Hass.De las particularidades de Asoppitaya como estudio de caso:• Como resultado del análisis del modelo empresarial de Asoppitaya y de la implementación de la metodología LiNK, se logró establecer una ruta que busca la futura participación de estos pequeños productores de aguacate Hass en los mercados globales. Este camino se desagrega en los propósitos comerciales del plan de mejoramiento con el que la asociación espera, en un principio, continuar vendiendo el aguacate Hass a los exportadores de la región, luego maquilar en plantas de empaque que le faciliten el aprendizaje del proceso exportador y, por último, dar paso a la exportación directa. Para lograr este propósito, Asoppitaya debe trabajar en los siguientes aspectos: 1) fortalecer sus procesos internos y mejorar el funcionamiento de su estructura organizacional; 2) promover la estandarización productiva y la implementación de las buenas prácticas agrícolas; 3) evaluar periódicamente la calidad de la fruta y adoptar métodos de trazabilidad desde el cultivo hasta el comprador; 4) ampliar el número de productores certificados en predio exportador y Global g.A.P. para incrementar su capacidad de suministro; 5) buscar nuevos aliados comerciales y 6) diseñar estrategias que le permitan acrecentar el capital de trabajo necesario para ingresar y mantenerse en el comercio internacional. • Si bien existe intencionalidad por parte de los productores en cumplir con las exigencias del mercado y la disposición de los compradores para establecer relaciones comerciales de larga duración, hay \"cuellos de botella\" que causan desintegración entre los segmentos de producción y comercialización; en especial, con las asociaciones de base agrícola campesina. Este tipo de organizaciones promueven proyectos para beneficiar a sus integrantes y tienen capacidad productiva grupal. Sin embargo, presentan problemáticas que parecen favorecer a los productores independientes con capacidad de inversión para cumplir con las especificaciones y los volúmenes de suministro requeridos por las exportadoras. Entre estos problemas se encuentran: dificultades de asociatividad, baja adopción de procesos de certificación, heterogeneidad en su producción, falta de recursos de capital, baja coordinación para la comercialización colectiva y la priorización de los objetivos sociales sobre los empresariales. En el caso particular de Asoppitaya, esta asociación ha vivenciado dificultades que le han impedido integrar, de forma efectiva, al pequeño productor de aguacate Hass con el mercado de exportación. Esto se hizo evidente durante el desarrollo de la investigación y el análisis del estudio de caso. Por ejemplo, tras la aplicación de los seis principios de inclusión de la metodología LiNK se presentaron los siguientes hallazgos: Principio 1 -Colaboración entre actores: los representantes de las empresas exportadoras y Asoppitaya reconocen que existen coincidencias en la búsqueda de objetivos sociales, ambientales y comerciales entre las partes. Ambos actores buscan contribuir al desarrollo económico y social de los productores y, a su vez, consolidar una relación de abastecimiento a largo plazo. Sin embargo, la ausencia de lazos comerciales estables impide trabajar sobre acciones concretas o en la ejecución de un plan estratégico conjunto que persiga dichos objetivos. Una causa probable del fenómeno descrito es que la cadena del aguacate Hass sea relativamente nueva en el departamento, al igual que los actores que la componen. Por consiguiente, se requiere de tiempo para fortalecer los vínculos comerciales, así como para crear un alto nivel de confianza, comunicación y conocimiento de los involucrados.Principio 2 -Vínculos efectivos con el mercado: una de las dificultades que presenta Asoppitaya es la inestabilidad de las relaciones comerciales, que hasta la fecha no han trascendido más allá del ejercicio económico de compra y venta en temporadas de cosecha. Desde otra perspectiva, los expertos en comercialización mencionan que existe una mayor facilidad en el establecimiento de acuerdos de compra con pequeños y medianos productores independientes que con organizaciones o grupos asociativos. De acuerdo con lo manifestado por los productores de la cadena departamental, esto puede deberse a las siguientes circunstancias: por parte de las exportadoras, algunas incumplen con los términos pactados en las negociaciones (p. ej., con los tiempos de pago); y, por parte de la oferta, existe un gran número de pequeños agricultores que no ha implementado las normas requeridas por el mercado internacional. De este modo, los pocos actores del eslabón productivo que cumplen con los requisitos de la demanda, tienen la posibilidad de evaluar las diferentes alternativas del mercado en las épocas de cosecha. Principio 3 -Gobernanza transparente y consistente: uno de los principales hallazgos de este principio tiene que ver con los riesgos comerciales que, según las particularidades de cada negociación, comparten exportadoras y proveedores cuando condicionan el último pago a la verificación de la calidad de la fruta en los mercados de destino. En el caso de Asoppitaya, estas eventualidades han representado obstáculos y, a la vez, le han otorgado elementos para mejorar sus procesos comerciales. Ante la ocurrencia de estas situaciones, Asoppitaya y los expertos en comercialización coinciden en que las especificaciones técnicas requeridas por el mercado internacional son revisadas con antelación al establecimiento de acuerdos. Por lo tanto, los compradores y los vendedores pueden realizar acciones de seguimiento en virtud del convenio para minimizar las probabilidades de incumplimiento (p.ej., en calidades o volúmenes). Sin embargo, estas labores de asesoría al productor no se realizan con periodicidad (excepto en las temporadas de cosecha).Con el fin de mitigar los impactos negativos de la disminución de ingresos a causa de las pérdidas en los puertos de destino, es necesario reforzar los procesos de seguimiento de los cultivos y el acompañamiento al pequeño productor por parte de la organización que los agremia y de las empresas exportadoras, de tal forma que tengan acceso a este servicio con mayor periodicidad y logren minimizar riesgos. Al respecto, los actores pueden solicitar apoyo del iCA, por ser esta la entidad encargada de vigilar los riesgos sanitarios y biológicos de las especies vegetales en el país. Principio 4 -Acceso equitativo a servicios: dada la connotación exportadora de la fruta, que exige competitividad en un escenario internacional, es necesario garantizar que todos los involucrados en la cadena productiva del aguacate Hass del departamento (en donde se incluye Asoppitaya) tengan acceso a servicios de capacitación, asistencia técnica, participación de proyectos productivos, información de la cadena y procesos de investigación, entre otros; los cuales son necesarios para ser competentes desde los eslabones que representan. En cuanto a la prestación de estos servicios en el modelo empresarial estudiado, estos son brindados por las entidades públicas y privadas que conforman su entorno, es decir, por los actores indirectos. No obstante, estas entidades también deben atender las demandas de servicios de otras organizaciones pertenecientes a las diferentes cadenas productivas del departamento.A causa de lo anterior, es preciso que desde la institucionalidad se continúe fomentando el establecimiento de relaciones incluyentes de los pequeños productores de la fruta con las empresas exportadoras, a fin de implementar metodologías o programas de desarrollo de proveedores o de generación de valor compartido.Principio 5 -Innovación incluyente: tras las dificultades para establecer alianzas comerciales de largo alcance en la comercialización del aguacate Hass con calidad de exportación, Asoppitaya no ha realizado procesos de innovación conjunta con ningún comprador de esta fruta.La innovación como herramienta de mejoramiento se encuentra inmersa en los procesos internos de Asoppitaya. Un ejemplo de ello es el acompañamiento al agricultor en la implementación de normas para obtener el registro iCA de predio exportador y las certificaciones de BPA y Globalg.A.P. Atendiendo la dimensión participativa, se han creado comités de trabajo que serán encargados de los procesos administrativos, técnicos y comerciales. Con esta última estrategia, la organización está involucrando a los asociados en su operatividad y en la atención de requerimientos a nivel productivo y comercial. Los resultados de estas acciones individuales podrían potencializarse mediante el trabajo coordinado entre la organización de productores y un aliado comercial interesado en desarrollar modelos de negocios inclusivos que puedan brindan mayor soporte a los procesos de innovación y desarrollo. Principio 6 -Medición de resultados: por parte de Asoppitaya, la evolución de sus procesos comerciales es medida a través de los volúmenes de venta. Del mismo modo que cada empresa comercializadora establece mecanismos de seguimiento a los resultados que esperan obtener de las alianzas con proveedores y clientes. Este es un ejemplo del modo en el que, en la actualidad, funcionan las relaciones comerciales entre agricultores y empresas compradoras, en las cuales no hay mecanismos de seguimiento que sean acordados de forma conjunta.Cadena de valor: corresponde a una serie conectada de organizaciones, recursos y fuentes de conocimiento involucrados en la creación y entrega de valor al consumidor final (Lundy et al., 2014).Las organizaciones de la cadena se encuentran interrelacionadas por una serie de transacciones de negocios en las que el producto pasa desde la producción primaria hasta el consumidor final a través de una serie de eslabones (Springer-Heinze, 2018).\"Cuello de botella\": se refiere a los puntos críticos, problemas o restricciones que limitan o dificultan la operatividad eficiente de un proceso o sistema, lo cual afecta la competitividad o condiciona la capacidad en una o varias de las operaciones, etapas o eslabones que lo componen.Ciclo de prototipo: \"proceso de aprendizaje interactivo que permite mejorar continuamente el modelo de negocio y probarlo en el cambio\" (Lundy et al., 2014).Modelo de negocio: es la estrategia que, descrita en nueve módulos, plantea las bases sobre las cuales una empresa crea, proporciona y captura valor. Esta descripción abarca las cuatro principales áreas de un negocio -clientes, oferta, infraestructura y viabilidad económica-y refleja la lógica de generación de ingresos (Osterwalder y Pigneur, 2011).\"son las relaciones comerciales entre una empresa privada y un grupo (formal o informal) de productores, en las que tanto el comprador como el vendedor generan valor social, económico y ambiental para mantener a largo plazo una interdependencia rentable\" (Lundy et al., 2014).En el mismo sentido, de acuerdo con Cecodes (2017) corresponden a iniciativas empresariales económicamente rentables, ambiental y socialmente responsables, que en una lógica de mutuo beneficio incorporan en sus cadenas de valor a comunidades de bajos ingresos y mejoran su calidad de vida.Planeación estratégica (PE): es una herramienta de gestión para apoyar la toma de decisiones de las organizaciones en torno al quehacer actual y al camino que deben recorrer en el futuro para adecuarse al dinamismo del entorno y lograr eficiencia, eficacia y calidad en los bienes y servicios provistos (Armijo, 2009, p. 5).Propuesta de valor: \"corresponde al conjunto de productos y servicios que crean valor para un segmento de mercado específico\" (Osterwalder y Pigneur, 2011, p. 22).Tabla 22. Cuestionario realizado a vendedores y compradores de aguacate Hass, diseñado para el estudio de caso de Asoppitaya con base en la herramienta tres de la metodología LINKPrincipio 1: Colaboración entre actores 1 ¿Sus objetivos comerciales, sociales y ambientales coinciden con los de sus clientes? (Explique la respuesta).¿Sus objetivos comerciales, sociales y ambientales coinciden con los de sus proveedores? (Explique la respuesta).2 ¿De qué manera colaboran con los clientes para la resolución de problemas que surjan del proceso de comercialización? (p. ej. calidad de la fruta, tiempos de pago o entrega, volúmenes, porcentaje de descarte, etc.) ¿De qué manera colaboran con sus proveedores para la resolución de problemas que surjan del proceso de comercialización? (p. ej. calidad de la fruta, tiempos de pago o entrega, volúmenes, porcentaje de descarte, etc.) ¿A través de qué mecanismos comunica a sus proveedores los requisitos que debe cumplir la fruta para exportación? ¿Quiénes acceden a estos flujos de información? 7 ¿Existen mecanismos para compartir el riesgo con los compradores?¿Existen mecanismos para compartir el riesgo con los vendedores?Principio 4: Acceso equitativo a servicios 8 ¿A cuáles servicios de apoyo provenientes de los compradores tiene acceso la asociación y qué requisitos deben cumplir para acceder a ellos? (asistencia técnica, información de mercados, financieros, etc.) ¿Qué servicios de apoyo brinda a los proveedores y cuáles son los requisitos para acceder a ellos? (asistencia técnica, información de mercados, financieros, etc.)Principio 5: Innovación incluyente 9 ¿Qué innovaciones aplica o ha aplicado la asociación para atraer y mantener a sus compradores, y para mejorar su posición en el mercado? ¿Qué innovaciones usted aplica o ha aplicado para atraer y mantener a sus proveedores, y para mejorar su posición en el mercado? 10 ¿Cuál es el proceso que lleva a cabo para diseñar e implementar dichas innovaciones? ¿Cuál es el proceso que lleva a cabo para diseñar e implementar dichas innovaciones?Principio 6: Medición de resultados 11 ¿De qué manera mide y evalúa sus progresos en el establecimiento de relaciones comerciales con empresas exportadoras? ¿De qué manera mide y evalúa sus progresos en el establecimiento de relaciones de proveeduría?Fuente: elaboración propia.","tokenCount":"23514"} \ No newline at end of file diff --git a/data/part_3/0377177260.json b/data/part_3/0377177260.json new file mode 100644 index 0000000000000000000000000000000000000000..7baff0fbf021dafd373e78efdf18b303527b46ef --- /dev/null +++ b/data/part_3/0377177260.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"af020682d69dca485f6de09a416b41ed","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/795249e4-3d5f-4026-aecb-ef7737395b4b/retrieve","id":"1078251243"},"keywords":[],"sieverID":"cd51633c-116e-4115-8c82-52bb6bcff4b0","pagecount":"9","content":"Millions of small-scale farmers efficiently supply the great majority of the meat and milk market in Africa. Surging demand for livestock products (the \"livestock revolution\") is an unprecedented opportunity for setting poor farmers on pathways out of poverty, but to gain maximum benefit they must be able to produce safe food of acceptable quality. Currently, most smallholder livestock products are sold in informal markets where conventional regulation and inspection methods have failed and where private or civil sector alternatives have not emerged: as a consequence, most livestock-derived food products contain high levels of hazards. Quantitative risk-based approaches for assessing and managing food safety offer a powerful new method for reducing the enormous health burden imposed by food borne disease, while taking into account other societal goals such as pro-poor growth. However, application to food safety problems in Africa has been limited. We discuss some of the constraints and a new approach which can help overcome these: Participatory Risk Analysis, and give examples of its current application in west, east and south Africa (R RA AS SP PA A, , 8 8 (S) : 3-11). K Ke ey y --W Wo or rd ds s: A An ni im ma al l --S Sa af fe et ty y --F Fo oo od d --R Ri is sk k a an na al ly ys si is s --P Pa ar rt ti ic ci ip pa at ti io on n --I In nf fo or rm ma al l. . R Ré és su um mé é A Al li im me en nt ts s s sa ai in n, , A Al li im me en nt ts s é éq qu ui it ta ab bl le es s : : A An na al ly ys se e p pa ar rt ti ic ci ip pa at ti iv ve e d de es s r ri is sq qu ue es s p po ou ur r l l' 'a am mé él li io or ra at ti io on n d de e l la a s sé éc cu ur ri it té é d de es s a al li im me en nt ts s p pr ro od du ui it ts s e et t v ve en nd du us s d da an ns s l le e s se ec ct te eu ur r i in nf fo or rm me el l e en n A Af fr ri iq qu ue e s su ub b--s sa ah ha ar ri ie en nn ne e Les millions de petits producteurs offrent efficacement la viande et le lait à la majorité de la population en Afrique. La forte demande en produits animaux (révolution de l'élevage) est non seulement une opportunité sans précédent pour les paysans dans leur processus de sortie de la pauvreté, mais pour maximiser leurs bénéfices, ils devraient être capables de produire des aliments sûrs et d'une qualité acceptable. Aujourd'hui, la plupart des produits vendus dans les marchés informels où les méthodes conventionnelles réglementaires et d'inspection ont échoué et où les alternatives du secteur privé ou civile n'ont pas émergé. Comme conséquence, les denrées d'origine animale contiennent des niveaux élevés de dangers. En prenant en compte les objectifs sociaux émergeant comme le pro-pauvre, l'approche quantitative du risque utilisée dans l'évaluation et la gestion de la sécurité des aliments offre une nouvelle méthode robuste dans la réduction du fardeau des maladies imposées par les pathologies d'origine alimentaire. Pourtant, l'application aux problèmes de la sécurité alimentaire est très limitée en Afrique. Nous discutons de certaines des contraintes et les nouvelles approches : Analyse Participative des Risques qui pourraient aider à juguler ces problèmes et donner des exemples d'applications en Afrique de l'Ouest, Est et Sud. M Mo ot ts s--c cl lé és s : : A An ni im ma al l --S Sé éc cu ur ri it té é --A Al li im me en nt t --A An na al ly ys se e d de e r ri is sq qu ue e --P Pa ar rt ti ic ci ip pa at ti io on n --I In nf fo or rm me el lPopulation increase, urbanization and changing consumption habits are driving the so-called Livestock Revolution in which millions of small-scale farmers, many of them women, supply the surging demand for livestock products [11]. Most meat, milk, eggs, and fish is sold in informal markets where food safety regulation and inspection has failed and alternatives have not emerged. The result is high levels of unsafe food amongst poor consumers and increasing threats of constrained access to higher value markets for small-scale producers. In short, the food we consume is neither safe nor fair. Safer food can generate both health and wealth for the poor, but attaining safe food and safe food production in developing countries requires a radical change in food safety assessment, management and communication. This review paper traces key issues of food safety in sub-Saharan Africa and argues that while risk analysis is in general linear and a promising approach it requires adaptation to the context of informally marketed food in poor countries.In developing countries, incomes are low, governments weak, and enforcement of regulation poor; as a result, the informal sector is large, accounting for 39% of GDP [16]. Previously undervalued, the informal sector is now recognised as an important provider of employment and engine of economic growth. During the 1970s and 1980s, the informal sector was widely defined as unregulated economic enterprises or activities [27]. Recent definitions have expanded to include small businesses, employment without worker benefits or social protection (both inside and outside informal enterprise); own account workers; unpaid family workers (in informal and formal enterprises); and members of informal producers' cooperatives [30]. In the food sector, informality has the additional meaning of escaping any systematic sanitary inspection [5] and tax payment. In Africa, agriculture, petty trading of agricultural products, and selling food have always been largely informal activities. By these definitions, most food in Africa is produced, processed, and sold in the informal sector. For example, in Kenya, Uganda, and Mali, raw milk produced by smallholders and sold by vendors or small-scale retailers, accounts for an estimated 80%, 90%, and 98% of marketed milk in each country, respectively [8], [42]. This isan important source of income not only for small-scale producers (e.g. 600,000 farm households in Kenya) but also for intermediaries along the milk value chain such as transporters, hawkers and processors (365,000 intermediaries in Kenya) [49]. Food processing and vending is especially important for women: in Ghana and Mali, small-scale processors, exclusively female, produce a wide range of products including: ghee, soft cheese, hard cheese, fermented milk, yoghurt, and porridge [48]. Qualitative studies in east and west Africa showed the importance of informal sector production to poor households and how this varies by gender: In Bamako women are gradually marginalized in dairy sector and develop resilience to sustain their livelihood [48] while in Ibadan, Nigeria, men reared livestock to solve immediate problems like paying school fees or medical expenses, purchasing foodstuffs and paying house rent while women discussants said that they reared livestock to assist their husbands in feeding the household in times of hardship [41].As a rule of thumb, all studies that have looked for problems in informally marketed food have found them Food-borne disease is one of the most important health problems in developing countries. Responsible for an estimated 2 billion annual episode of gastrointestinal disease each year (18), as much as 70% of deaths among children under 5 are linked to biologically contaminated food and water (51). In countries where detailed attribution data exists, most of the burden of food-borne disease is the result of zoonotic pathogens (35). For example, of the nine most important cultureconfirmed pathogens in the USA, seven have an animal reservoir and more than 75% of identified illness is caused by just three zoonotic, food-borne pathogens: Salmonella spp., Listeria monocytogenes, and Toxoplasma gondii. Between 1998 and2002, most (69%) food-borne disease outbreaks with an identifiable vehicle were caused by animal-source foods. Poultry was the food most often implicated (25%) but beef, pork, shellfish and finfish were also important, each causing over 10% of the total. In the United Kingdom a similar pattern is seen. There, food safety authorities have developed a method for estimating the relative risks associated with specific foods, dividing the number of cases due to a specific food (as derived from their outbreak database) by the estimated total servings of that food consumed in a year. In the four years from D. GRACE et al 1996 to 2000 most illness was attributed to eating poultry (30%), complex foods (27%), and red meat (17%)(2).The impacts of food-borne disease include fatalities in vulnerable groups (e.g. malnourished infants and people with HIV/AIDS) and, in 2-3% of cases, severe and disabling long-term effects such as joint disease, kidney failure, cardiac, retinal and neurological disorder. The latter chronic sequelae, of which many policy-makers are unaware, probably represent a greater health and economic burden than the acute disease [33]. Evidence is growing that in developing countries, ill health can not only be a personal and household tragedy, but a major factor in causing and perpetuating poverty [13].All of above studies focused on the identification of hazards in animal-source foods, but did not estimate the impacts of the hazards in terms of human sickness and death. Without this information it is difficult for decision makers to rationally allocate resources for risk management. Furthermore, identification of hazards has led to media scares and consequent loss of confidence in livestock resulting in dramatic drops in consumption with negative impacts on the livelihoods of those engaged in the food value chain and consumer nutrition.Hence, the need for approaches that identifies risk to human health rather than the presence of hazards, and which include risk management appropriate for poor producers and other intermediaries. For example, studies on milk in East Africa found that although zoonotic hazards were present in as much as 1% of household milk samples, infections in people were at least two orders of magnitude less common [23].Consumers' widespread practice of boiling milk dramatically reduced the risk of disease, while the small volumes of milk produced and handled per informal sector agent decreased risk of cross-contamination.Another study on Cryptosporidium parvum, a zoonosis whose main reservoir is cattle, found that the major source of risk was not from consuming milk or direct contact with cattle but rather from eating vegetables [22].examples show how common-sense management which focuses on controlling the level of zoonotic hazards in milk and other foods may not have much effect on decreasing the risks to human health whereas other approaches that focus not on the hazard but on the risk to human health and its sources may be more fruitful. These 'command and control' regulations might be justified if they were demonstrably effective in improving food safety. However, this may not be the case. A study on peri-urban dairying in Kampala, found that farmers' who (incorrectly) believed that urban dairying was legal, were more likely to carry out risk mitigating procedures such as use of metal milk containers and washing with hot water and disinfectant [21]. This paradoxical effect of food safety legislation was also found in a Brazilian study of the meat sector: the rationale being that illegality chills investment, blocks access to information on, and reduces social incentives to follow good practices [5].Faced with this complex challenge of high levels of hazards in informal food ,but little understanding of the risks these represent to human health along with the empirical evidence that small scale food production and processing is an important pathway out of poverty and that existing food safety regulation is often ineffective and anti-poor, we argue new approaches are needed.Historically, hazards associated with livestock and animal-source foods were managed through 'command and control' regulation involving inspection of production, transformation and sale backed with litigation in the event of harm. This approach was increasingly unable to deliver food safety, as demonstrated by highly-publicized tragedies (such as the E. coli outbreak in USA in which four children died and the BSE epidemic in the UK) [3]. This led to a shift in approach from compliance with procedures enforced by external inspection to selfmanagement of risk by empowered organizations. Riskbased approaches brought new insights and are now standard for food-safety issues in developed countries, as well as being the basis of rules governing international trade in food products and are endorsed by the Food and Agriculture Organisation (FAO), World Health Organisation (WHO) and World Animal Health Organisation (OIE). One of the first risk-based methodologies was Hazard Analysis Critical Control Point (HACCP), a structured approach to assessing potential hazards, deciding which points are critical to safety, monitoring these and taking specified remedial action in the event of deviations [29]. HACCP is widely recognized as an effective and economically efficient approach to food safety control in food processing operations, predominantly because it is based on risk assessment and process control rather than end-product testing: it is starting to be applied to traditional food production systems in developing countries and preliminary results are encouraging [52]. Microbial risk assessment (MRA) is an emerging tool for evaluating the safety of food and water supplies; it takes a systems and pathway approach (farm to fork) allowing an assessment to be made of the health risk to the population of interest from specific pathogens, foods or pathogen/food combinations [20]. For the last decade risk analysis has convincingly dominated food safety and trade in animals and animal products. It offers a science-based, structured, transparent method for answering the questions that matter to policy makers and public alike: Is this food safe? Is the risk big and important? What efforts are appropriate to reduce the risk? Risk analysis has three components: risk assessment, risk management, and risk communication (Figure 1). The first step is risk assessment, which provides both an estimate of harm and the probability of harm occurring.To be useful, risk assessment must be followed by action to mitigate those risks which are unacceptable to stakeholders. Risk management uses pathway approaches (from stable to table) and probabilistic modelling to identify critical control points and apply strategies to remove or minimise risk. The third component and integral component of risk analysis, is risk communication -the iterative process ofcommunicating risk to those affected by it and incorporating their feedback into risk assessment and management Risk analysis offers a new approach to managing food safety. Not only is it more effective at decreasing risks, but it can also be a bridge joining food safety and livelihood concerns. The first component of risk analysis, risk assessment, generates an estimate of negative health impacts of a hazard as well as the likelihood of their occurrence. This information can then be compared with economic data on the costs and benefits of smallholder production and marketing (including externalities such as income opportunities for poor women or environmental degradation from abattoirs), and the costs and benefits of risk mitigation. This allows decision-makers to set appropriate levels of protection based on evidence rather than anecdote and subjective preference. Moreover, the focus on a 'farm to fork' pathways approach allows the identification of risk mitigation points along the food value chain. This can help identify interventions that maintain market access for smallholders. Risk analysis is also compatible with the development aims of African governments as shown by a recent regional conference in which African countries, recognising the importance of food safety and their limited capacity to assure it, called for a risk analysis approach and capacity building at national level [17]. Quantitative microbial risk analysis (QMRA) is a new discipline but it is grounded in the disciplines of chemical and toxicological risk analysis which were developed around the middle of the last century. The first papers applying these methods to the problem of human health risks from exposure to pathogens were published in the 1970s [19] and since then the methods have been extensively applied to problems of food and water safety [14], [26].Like all dominant ideas, risk analysis is not without its critics. These vary from those who think risk analysis is a sound methodology but requires some improvements, to those who regard it as deeply flawed and liable to abuse.In the latter category, are some citizens groups that oppose a particular industry or decision and frequently criticize the methods and results of risk assessment. They argue that risk analysis is overly quantitative and reductionist and doesn't take into account people's legitimate concerns and that information emerging from risk assessments are meaningless or invalid. Some go even further, believing that risk assessment is part of a conspiracy organized by agro-business. While many of these concerns refutable on technical grounds, this does not address the underlying fears and concerns that lead many to reject, for example, vaccines, genetically modified foods, pasteurized milk or fluoridated water. This is partly a problem of lack of trust in authorities and is symptomatic of exclusion of stakeholders from decision making and power. Based on previous analysis and research, we believe that incorporating participatory methodologies can improve stakeholder engagement in risk analysis. Since their introduction in the 1970s, participatory methods and techniques have become central tools for community development and have been applied in a variety of contexts and sectors. They are promoted on the basis that they are more effective, more sustainable and less costly and more ethical in their inclusion of the poor in the planning and decisions that affect them [15], and have been extensively used by in livestock research. Sophisticated participatory methods acknowledge power imbalances, vested interests and incentives and employ methods such as stakeholder analysis, outcome mapping and various participatory tools such as power mapping and triangulating with different groups to better incorporate viewpoints while preventing capture of the agenda. Another objection to risk analysis, which is commonly encountered in discussions with food safety experts in developing countries, is that risk analysis is a method for making improvements at the margins. That is, when food standards are already quite high it may be useful, but at the very low levels of hygiene and safety found in the informal sectors of most poor countries, attention should focus on basic hygiene and good practices. Although there is some merit in this, we have earlier in the paper argued that without a structured, systematic and riskbased decision making process, stakeholders may make decisions which are obvious, but wrong. It has been long known that people are very poor at assessing probability and risk [44], [50]: to highlight just a few of the commonly identified biases we exaggerate spectacular but rare risks and downplay common risks (food poisoning versus cancer); we underestimate risks we feel in control over and overestimate those we can't control (microbial hazards versus chemical hazards in food); and we are more concerned by visible, dramatic signs (cysticercosis Safe Food, Fair Food: Participatory Risk Analysis for improving the safety of informally produced and marketed food in sub Saharan Africa versus salmonella in pork). We occasionally hear that in countries which are food insecure, food safety cannot and should not be a priority. This attitude is being replaced with a more holistic perspective that sees food security and food safety as inter-dependent. However, there is a plausible case that attitude towards risk depends upon stage of social development. In Risk Society, BECK [6] argued that modern science and technology have created a society in which the creation of wealth has been overtaken by the production of risk; the primary concerns of \"industrial\" or \"class\" societies -the production and equitable distribution of wealth -have been replaced, he said, by the quest for safety. In the former risk is seen as natural or intrinsic while in the latter risk is often viewed as man-made or extrinsic. The implication is a) the current attitude towards food safety in post-industrial societies is often dysfunctional even for them and b) this is not a model which it will be useful to extend to developing countries.Despite these objections, in rich countries risk analysis iscurrent best practice and the keystone of both domestic food safety regulation and international trade. However, its use in developing countries has been limited. In particular, it has not been applied to the domestic markets where most poor people sell and buy food, yet where levels of hygiene and safety are lowest, and vulnerability to food-borne disease highest. The failure to put risk analysis into practice, despite support from the highest levels, has been attributed to lack of appropriateness for developing country circumstances [24]. Microbial risk assessment originated in the very different context of food-production in developed countries. These systems tend to be large-scale, high-volume, mechanised, standardised, and well-documented, while developing countries have diverse, non-linear, shifting, and data-scarce systems in which formal and informal (or traditional) food supply systems co-exist and overlap; views of various stakeholders on food safety objectives diverge; there is low consumer willingness or ability to pay among consumers for improved food quality, and low enforcement capacity. It is hardly surprising that radical adaptation is needed for risk-based approaches to work in these environments. Recent years have seen much interest in adapting risk analysis for developing countries. In Africa, two research groups are currently working on this: one at the Centre Suisse de Recherches Scientifiques en Cote d'Ivoire and the other at the International Livestock Research Institute in Kenya.The project aims to support intensifying livestock production by improving the management of safety of livestock food products, thus maximising market access for the poor dependent on livestock while minimising the food borne disease burden for poor consumers, by adapting the risk-based approaches successfully used for food safety in developed countries and international trade to domestic informal markets where most livestock products are sold. The main strategies are: building capacity in risk analysis through post graduate training linked to proof of concept studies; winning-over key decision makers through participation in project activities; raising awareness of stakeholders through workshops and generation and dissemination of research results on food safety. A central concept of the project is that capacity building is only effective when people get the chance to put their knowledge and skills into practice. Hence the project links training in Participatory Risk Analysis with proof of concept studies that not only build core capacity in risk analysis but produce evidence that can convince decision makers of the value of this approach. Table 1 shows the research topics being covered; the projects range from risk assessment to management to communication and include quantitative and qualitative (including participatory methods). Multidisciplinarity and transdisciplinarity are key to this newapproach to risk analysis: anthropologists, economists, sociologists, microbiologists, veterinarians and food chain stakeholders have all been involved in these projects. Although the project is still in the implementation phase some interesting research results are already emerging, as the following examples show. A study on game meat sold by street food vendors in South Africa found microbiological quality was adequate: a reminder that even though there are often problems in informal markets they can deliver safe food. It also showed that although price was the most important criterion for poor consumers around half were also concerned over meat freshness, a proxy for safety [28]. A study on brucellosis in peri-urban Nairobi found that although brucellosis was present, the risk to human health was very low because of the universal practice of boiling before consumption. However, consumption of fermented unboiled milk was identified as a potentially risky practice requiring further investigation [38]. A study on home produced dried meat in South Africa found that changing consumer preferences (for moister meat) was driving changes in processing (to increase moisture content). This means that previous understanding of the safety of dried meat and existing regulations are no longer relevant. The results generated, though with wide margins of error and limitations to generalisation, represented a major improvement on the pre-existing situation, where stakeholders had essentially no information on the harms present in informally marketed foods and base regulations on practices at best on the presence of hazards and more commonly on the basis of opinion and tradition. The case-studies mentioned in this paper,though not yet completed, support the hypothesis that risk-based approaches may be a useful way of addressing food safety problems in informal markets. However, these approaches will need continued adaptation, testing and dissemination.","tokenCount":"4089"} \ No newline at end of file diff --git a/data/part_3/0380973057.json b/data/part_3/0380973057.json new file mode 100644 index 0000000000000000000000000000000000000000..db6aad5ba8c139a48d2c0f56b9df6a360319fcec --- /dev/null +++ b/data/part_3/0380973057.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"3375133bc11347dad599a93915786b56","source":"gardian_index","url":"https://dataverse.harvard.edu/api/access/datafile/:persistentId/?persistentId=doi:10.7910/DVN/MHG945/PRQNGV","id":"-1125725028"},"keywords":[],"sieverID":"490391dd-ab6e-4d31-a505-59bd25bc6492","pagecount":"9","content":"Comment administrer le rappel alimentaire de 24 heures ouvert? Il s'agit ici d'un rappel alimentaire qualitatif qui vise à recueillir les informations sur les aliments consommés la veille par les individus sans pour autant mesurer ou estimer les quantités réellement consommées par ces derniers.L'administration de ce type de rappel utilisera 4 des 5 étapes souvent recommandées dans la méthodologie standard (une des étapes étant réservée à l'estimation des portions et quantités consommées, ce qui n'est pas le cas ici). Les informations recueillies seront notées dans les Tableaux 1 et 2 ci-dessous. Remarque :Il est important que l'enquêteur puisse avoir une bonne connaissance des aliments et plats cuisinés dans la localité de l'enquête de manière à aider la femme participante à se rappeler certains ingrédients connus, qui sur le fait de l'exercice du rappel peuvent être oublié.L'enquêteur demandera alors à la mère si les ingrédients qu'elle cite sont suffisants et si lui en connait que cette dernière a oublié, il pourrait lui demander si elle n'en a pas utilisé. Aussi, les informations recueillies au moyen des focus group discussions (FGDs) pourraient s'avérer très utiles ici. L'enquêteur devrait donc les avoir en sa possession avant l'administration du questionnaire.L'enquêteur pourrait aussi faire un travail en amont de collecte des principales recettes utilisées dans la localité de l'enquête et s'en servir UNIQUEMENT pour aider la femme participante à se rappeler des détails. Ici, il faut se rappeler très vite que la mère lors de son rappel a mentionnée qu'à 16H, qu'elle avait mangé de la patate douce à chair orange vendu par une femme du village. On reproduit donc cette information dans le rappel du fils. Elle reconnait aussi qu'elle a mangé le fruit sec du baobab juste après le repas de midi et qu'elle en a aussi donné une bonne part à son fils qui était là avec elle. On peut aussi par exemple apprendre que l'enfant a eu à prendre du Coca-cola chez les voisins avec deux bonbons au caramel. On va ajouter ces informations en bas de la liste du tableau ci-dessus. Le Coca-cola et les bonbons sont des produits manufacturés dont la mère ne connait pas la composition ou les ingrédients. Dans ce cas-là, il faut juste mettre le nom de l'aliment et ne pas remplir la colonne (c) des ingrédients ; toutefois, il faut compléter la source de l'aliment. Dans ce cas-ci, les aliments ont été offert par le voisin, donc la source sera « 4 ».On reporte le tout dans le tableau ci-dessous en précisant la source de chaque aliment et ingrédient utilisé. Ici, les repas principaux ont été pris avec la mère, donc on reporte sur la fiche de l'enfant les informations détaillées déjà collectées chez la mère. Si l'enfant avait eu à manger d'autres plats différents de ceux de la mère, on devait recueillir les informations sur les ingrédients utilisés dans ce cas-là.","tokenCount":"477"} \ No newline at end of file diff --git a/data/part_3/0392889356.json b/data/part_3/0392889356.json new file mode 100644 index 0000000000000000000000000000000000000000..002ebea0f0021af088a95db9d657cc58b40b126d --- /dev/null +++ b/data/part_3/0392889356.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"170bec1d91369b514bd4afb47a77b1fc","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/27929215-782c-475d-9b4d-866f39c2ea22/retrieve","id":"868853022"},"keywords":["Climate change","food systems","food security"],"sieverID":"89322368-d575-48a5-bc67-7a7357e56b28","pagecount":"42","content":"Feeding and nourishing a growing and changing global population in the face of rising numbers of chronically hungry people, slow progress on malnutrition, environmental degradation, systemic inequality, and the dire projections of climate change, demands a transformation in global food systems. Policy change at multiple levels is critical for catalysing an inclusive and sustainable transformation in food systems; global and regional policy are transformative only insofar as they are translated into ambitious national action with adequate support, including both public and private investment.Three areas of policy change show potential to be catalytic: 1) reducing emissions and increasing resilience, 2) tackling food loss and waste, and 3) shifting diets to promote nutrition and sustainability. Trade-offs mean a multi-sectoral approach to policymaking is needed, while inequalities in food systems necessitate transparent, inclusive processes and results. Gender inequality, in particular, must be addressed.Transformation demands participation and action from all actors.Our global systems are failing to deliver basic food and nutrition needs while exacting a heavy environmental cost. The number of people facing chronic hunger has increased in the last few years, progress to reduce stunting and wasting is slow, and overweight and obesity is a growing challenge everywhere, creating a heavy, double or triple burden for most countries. Precise estimates vary depending on what sectors are included in the calculation, but 'food systems' account for as much as 30 percent of greenhouse gas emissions. Nearly a third of the food produced is lost or wasted, resulting in lost income, lost nutrients, wasted resources, and significant greenhouse gas emissions. Looking ahead, global food systems are expected to feed and nourish a growing global population with diets shifting toward higher consumption of animal products as incomes increase. As food system value chains contribute to global warming, they in turn become increasingly vulnerable to its impacts. The Intergovernmental Panel on Climate Change (IPCC) has been clear that climate change will impact all aspects of food security.Systemic inequality, including in food systems, traps nearly a billion people in poverty, hunger, and malnutrition, and leaves billions vulnerable to climate change.While there are over 750 million producers and 7 billion consumers, there are far fewer actors in between (processors, wholesalers, retailers) and even fewer who wield significant power in food systems and markets. Women in particular face systemic inequality within food systems in terms of equal access to land, credit, and extension training, reflecting broader inequalities in society. In poor households, they are often responsible for homestead agriculture, making them the 'guardians' of household food security. In some societies, women are not recognized as 'farmers,' so services and technologies are not designed to meet their needs. They bear a disproportionate labor burden, often in the form of unpaid care work, leaving little or no time to expand their income generation activities, to seek further education, or to participate in decisionmaking processes.While the number of chronically hungry people increased in the last two years, it did fall in the early part of the 21st century. Technological advances reduced the drudgery of agricultural work, but access to technology is unequal. In many countries, progress resulted in safer food supplies and reduced the share of household budgets spent on food. However, even in countries where progress has been made, poverty, hunger, malnutrition, and obesity still exist, and food prices do not reflect the true environmental and social costs of food.The challenge is significant and the goals the global community has set itself are ambitious. In 2015, countries adopted the 2030 Agenda for Sustainable Development and its 17 Sustainable Development Goals (SDGs). SDG 2 pledges to end hunger and malnutrition and achieve food security, while SDG 13 and the Paris Agreement commit actors to building resilience and adaptive capacity and keeping the increase in global temperatures below 2 o C and, ideally, below 1.5 o C. All seventeen SDGs reflect the interdependence of environmental, social, economic, and political dynamics and many goals depend on or impact food systems. Achieving any one goal is not possible without progress on the others and yet in the short term, progress may entail trade-offs among them.Feeding and nourishing a growing and changing global population in the face of current challenges and the dire projections of climate change demand a transformation in global food systems. No transformation can succeed without a robust effort to tackle and redress unequal power dynamics in food systems. The challenge we face and the goals we have set demand sustainable, resilient, climate smart, inclusive food systems that deliver affordable, culturally appropriate, healthy diets for all, today and tomorrow. To achieve these goals requires policy that will bring about genuinely transformative change.For a genuine transformation in food systems, policy has to remove barriers and provide incentives to shape the behaviour of actors. Policy for transformation must foster a level playing field, facilitate equitable access to resources, and ensure that the heavy lifting is done by those best able to bear the costs, while ensuring transparency and accountability. It must also mobilize and direct resources, both private and public, to priority areas.To create systems that promote sustainability, growth, equity, and resilience, policy change is needed beyond agriculture, as food systems cut across most sectors.National policy plays a critical role in shaping food systems and must reflect varying contexts, resources, and capabilities. Subnational policy is needed to address local challenges, catalyse citizen action, and demonstrate the potential for scaling out and up. Global and regional policy frameworks capture commitments and standards for national and local action, which must then be translated into regional, national, and local initiatives with policy coherence to ensure coordination. National and local policy priorities in turn shape countries' engagement in multilateral processes. Figure 1 illustrates this complexity of scales and actors. Without effective coordination, communication, and collaboration, the multiple scales and actors that shape global food systems policy can lead to chaos: conflicting approaches, elite capture of benefits, and an entrenchment of poverty, hunger, and malnutrition. Policy coherence means policies are mutually reinforcing, create synergies that help achieve common objectives, and avoid or minimize duplication, contradiction, or negative consequences in other policy arenas. Transformation implies there will be trade-offs among different actors in food systems and will require that policy does not forget those left behind. There will also be trade-offs among economic, social, and environmental goals. Furthermore, in the face of unequal power dynamics in food systems and political processes, there is always the risk of policy being set by those with power at the expense of those without. Policy making for transformation must, therefore, be grounded in a commitment to equity and sustainability. Policies themselves must be inclusive, and policy processes must engage the wide range of actors in food systems, ensuring effective participation by marginalized groups.While the concept of food systems has gained significant traction in global dialogues, policy appears to lag. Governments have not set policy and strategy to address food systems specifically, but rather tackle particular issues, challenges, or actors within food systems, like agriculture or nutrition, farm support or marketing regulation. This piecemeal approach is much like chipping away at an iceberg. Below, we highlight examples of policies that show potential to catalyse transformation in one or more areas. This paper is not intended to be exhaustive but to share ideas and stimulate discussion of the opportunities and the imperatives for facilitating a transformation in food systems grounded in sustainability and equity.A food system includes growing, harvesting, processing, packaging, transporting, marketing, consuming, and disposing of food and food-related items by numerous food system actors, all influenced by drivers and processes determining how these activities are performed. Activities by actors in food systems result in outcomes (Figure 2) that feed information back to environmental and socioeconomic driving forces. Food systems are a continuum, and no classification can fully account for the huge diversity within each type. Multiple food systems co-exist within any given country. Typologies are useful because they illustrate the complexity of food systems and allow researchers and policy makers to consider the diversity within systems when designing policies and interventions.For a food systems approach to be effective, those using it must be mindful that food systems are dynamic and comprise multiple actors with multiple motives who face a range of policy, market, social, technological, and biophysical environments and other drivers that influence their activities. The 2017 High Level Panel of Experts Report on Nutrition and Food Systems (HLPE) classifies food systems as modern, mixed, and traditional. Each considers the food supply chain and food environment and classifies countries based on dietary energy in the food supply, the extent of urbanization, food affordability, and food-based dietary guidelines. iii The HLPE is one of many such classifications and reflects the underlying reality that there is a great deal of diversity among different kinds of food systems. All such classifications imply there are different challenges and therefore different priorities for where, when, and how policy can catalyse change. While the HLPE classification does not take into account greenhouse gas emissions or climate vulnerability, it remains a useful device for framing policy considerations. Food systems, including the consumption patterns that drive production, have a considerable role to play in mitigating climate change and are at the same time highly vulnerable to its impacts. We identify three areas where policy could: 1) reduce greenhouse gas emissions and increase resilience in food systems, 2) tackle food loss and waste, and 3) shift diets to promote nutrition and sustainability. We also reflect on several cross-cutting policy considerations to address inequality, unequal power dynamics, and trade-offs in food systems.Mitigation and adaptation measures will need to respond to the unique physical, Investment and policies for extension can also address issues of equity and equality, including equal access to services for men and women.Beyond extension and provision of information to enable adoption of practices, regulatory and financial policy can incentivise actions and behaviours to increase resilience and/or reduce greenhouse gas emissions in food systems. Carbon pricing can serve as both a market-based and regulatory approach to shaping practices. Applied across food systems, carbon pricing can address emissions beyond the farm and along the supply chain, including in transport and energy sectors. In 2008, ten north-eastern states in the USA implemented a carbon cap and trade system to reduce their carbon dioxide (CO2) emissions from the power sector by 10% by 2018. In the first two years, the Regional Greenhouse Gas Initiative (RGGI) -the first mandatory GHG emissions trading system in the United States -generated USD 789 million through the auctioning and direct sale of CO2 emissions allowances. xvi Good governance and a level playing field are a critical foundation for the success of these financial and regulatory approaches. Land tenure is a prerequisite to incentivize the adoption of practices that can not only reduce emissions and increase resilience but also improve the health (and value) of land. The 'greening of Sahel' in Sub-Saharan Africa has been, in part, a response to improved land tenure policies, such as the policy in Niger that repealed a colonial era law on government ownership of trees. xvii Similarly, inclusive market access is critical, particularly for small-scale food producers, to source inputs and sell the surplus from increased productivity. In The Climate Resilient Farming (CRF) Program (New York, USA) xix aims to support farmers to reduce greenhouse gas emissions from agriculture and to build the resilience of their farms in the face of a changing climate. Before the CRF, farmers using an Agricultural Environmental Management (AEM) framework to plan for and address environmental risks could access funding only related to water quality issues.The CRF program expands support to farmers to address both climate risks and GHG emissions, providing cost sharing for farms who complete an AEM Plan to adopt new technologies and practices such as manure storage covers. This kind of program helps farmers to address needs they have identified and provides opportunities to capitalize on potential synergies by supporting approaches that address both mitigation and adaptation needs.The NAMA Café (Costa Rica) xx . Costa Rica's Nationally Appropriate Mitigation Actions (NAMAs) for the coffee sector -NAMA Café -is part of a wider effort to attain carbon neutrality by 2021. This collaboration between the public, private, financial and academic sectors aims to reduce GHG emissions and improve resource use efficiency in the coffee sector, targeting the entire value chain from farmers to exporters. Support to coffee plantations and coffee mill operators includes capacity building and awareness raising to increase technical knowledge of low-carbon production; market studies to facilitate access to markets for differentiated coffee at favourable prices; and financial support and incentives, such as partial guarantee for low interest credit, Costa Rica's payment for environmental services systems, and subsidies for capital investment to facilitate adoption of practices and technologies. The NAMA's ten-year goal is to reach the entire coffee production area and set the stage for expansion to different agricultural systems and other sectors.The Women Extension Volunteer Approach (Ghana) xxi . In Ghana, women farmers account for over 70 percent of total food production and are responsible for household nutrition. xxii Women farmers receive only a fraction of the inputs and support their male counterparts receive. xxiii This pilot program aimed to provide affordable extension delivery systems and increase service coverage to women farmers in remote areas. As a collaboration between the Ministry of Food and Agriculture and the Voluntary Service Overseas Ghana, xxiv the initiative continues to have the support of VSO Ghana and local and national MoFA staff members. VSO hopes to expand the program to more communities and regions in Ghana. Given the importance of women in agriculture in middle and low-income countries, no policy can claim to be transformative without explicitly addressing gender.The Agricultural Sector Development Support Program (Kenya) xxv scales up a participatory scenario planning approach to disseminate annual weather forecasts and enable farmers, governments, and other actors to jointly formulate action plans. This approach, developed by CARE, brings together multiple stakeholders, including the Kenya Meteorological Department as well as community members, to discuss available weather forecasts and local experience with past weather patterns. Together, stakeholders develop actionable scenarios. The approach not only builds the capacity of community members to access and interpret weather information, but also brings together scientific and local knowledge and enables collective development of climate resilient plans and advisories, thus promoting good governance and inclusivity.The policies highlighted are not necessarily ground-breaking but represent approaches that need significantly more investment and scaling up -approaches that reach farmers directly and that meet the needs they identify in the face of climate change.These policies can also capitalize on techniques, information, and practices that address both adaptation and mitigation. They might also tap into the tremendous potential of technology, such as mobile phone apps, to engage with small-scale farmers. xxvi In all policy, gender needs continued emphasis to ensure the differential roles and needs of men and women are addressed.Policy to further reduce emissions and build resilience would include supply chain approaches to address emissions and resilience beyond the farm and reflect the continuum from production to consumption and the role of consumption as a significant driver of production. Governments might consider price premiums for products with environmental benefits. For instance, organic agriculture is rapidly expanding but currently occupies only 1% of global cropland. At least one studyshows that despite lower yields, organic agriculture can be significantly more profitable than conventional agriculture. Moreover, with its environmental benefits, organic agriculture can contribute a larger share in sustainably feeding the world. xxviiFrom a regulatory perspective, governments might also institutionalise supply chain sustainability requirements that some private sector actors have voluntarily adopted. xxviii These requirements, as regulatory mechanisms, send a clear signal to food systems actors of government priorities regarding the sustainability of food systems.Tackling food loss and food waste requires integrated, cross-sectoral action along the food supply chain and policy interventions that address the drivers of unsustainable production and consumption practices. Measures for tackling food waste can be 1) information-based (e.g. social campaigns), 2) market-based (e.g. subsidies or lower prices for blemished or 'imperfect' produce xxix ), 3) regulatory (e.g. legal requirements to donate surplus foods), 4) voluntary commitment (e.g. undertaken by companies or university campuses), and 5) 'nudging' (e.g. choice architecture such as putting healthy food choices within easy reach and providing take-home food bags and controlling portion size in restaurants). xxx Food loss in mixed and traditional food systems occurs mainly in the field, postharvest, and during transport. There are hundreds of studies showing how simple, low-cost technologies reduce such losses, as well as child malnutrition and selfreported food insecurity, and increase household income. Wide-scale adoption, however, has not materialized and is often hampered by market distortions, such as a lack of investment incentives or a lack of financial services products tailored to farmers to purchase storage equipment.The Fight Against Food Waste Law (France) xxxi bans stores larger than 4,305 square feet from throwing away unsold food and makes it compulsory to donate it to charities and food banks. Failure to comply can result in fines of up to €75,000 or two years' imprisonment. This legislative step, passed unanimously, has the potential to cut food waste and benefit low-income households. The French food waste law, with its concrete legal consequences, is the first of its kind in the world, making the country a leader in the movement against food waste. Early experience indicates that food donations are higher in quantity and quality. By focusing on large supermarkets, the law targets a key pivot point in the food supply chain where waste occurs.The Resource Efficiency, Reducing Food Waste, and Improving Food Safety Resolution (European Parliament) xxxii urges a coordinated policy response to tackle food waste, including agreed definitions, measurement methodologies, and consideration of binding targets for European member states. The resolution calls on member states to take action now to achieve an EU-wide reduction in food waste of 30 percent by 2025 and 50 percent by 2030. The resolution further asks the Commission to update the list of foods exempt from \"best before\" labelling and to propose changes to establish tax exemptions on food donations. While work remains to translate the resolution into policy, it shows promise, given the variety of measures included for tackling food waste.The This makes coordination between donor-funded initiatives and national policy important, in order to build capacity of government institutions rather than create parallel structures and to foster long-term sustainability of programs.Food systems must respond to climate change and, at the same time, deliver on food and nutrition security. There is a real need for more national policies across all three food system types that support diets for both people's health and planetary health, including diets rich in diverse plant foods, moderate intake of animal-source foods, and low consumption of ultra-processed foods.Policies that shape food environments to help consumers make healthy choices and improve nutrition knowledge are critical. Easy-to-understand, front-of-pack labelling of both human health and environmental health information can be transformative and effective for many consumers. Policies must also shape the food supply. Action is needed to reverse the trend of the growing supply of a few crops and foods that are harmful to dietary quality and the environment and instead increase productivity and support for a diversity of food items often missing in diets, namely vegetables, fruits, and legumes. Policies and investment should support farmers, particularly in traditional food systems, to diversify production. In the face of climate change impacts, climate-proofed infrastructure and transportation are critical to protect the safety and nutritional value of perishable foods and reduce food loss and waste.Public campaigns can promote understanding of the need to incorporate sustainability into dietary guidelines. Beyond informing consumers about healthy food choices, dietary guidelines signal a government's stance on the latest dietary advice and serve as the foundation for information on food and nutrition policies and programs within a country. Furthermore, the food and beverage industry often responds to changes in dietary guidelines by reformulating products to meet new consumer demands. xxxviFinally, dietary guidelines provide a beacon to align diet policy with agriculture policy in sustainable ways that do not overextend the natural resource base and limits.As our examples for modern food systems show, this marks a new area for dietary guidelines and shows how mechanisms in the public health domain can be used to convey sustainability information. 'Fair trade' and organic package labelling is indicative of a move in the same direction.Dutch Dietary Guidelines (2015) xxxvii recommend people eat no more than 500 grams of meat per week and of that no more than 300 grams should be red or 'high carbon' meat. The new guidelines are a good example of evidence-based policy.The limit on meat consumption was based on 29 systematic reviews of English language meta-analyses in PubMed summarizing randomized controlled trials and prospective cohort studies on nutrients, foods and food patterns, and the risk of 10 major chronic diseases. The authors of the guidelines also make it explicit that, \"Limiting meat consumption is also desirable from an ecological perspective…For fish consumption, it is recommended…[that fish] are cultivated in an environmentfriendly manner…to limit the food-related ecological burden, measures are also needed in the production lines.\" xxxviiiThe Law on nutritional composition of foods and their advertising (Chile) xxxix mandates food package labelling on foods high in sugar, fat, and salt and restricts marketing of these foods. Nutrition experts applaud the law, while the private sector argues that it is too strict and that the Ministry of Health has not been clear regarding the logistics of implementing the law and did not consult with industry before enacting the law. xl While the Chilean labelling law has drawn criticism from industry, the labelling policy gives consumers the information they need in a very clear format. It also targets actors in the food system with significant market power. While rigorous evaluation studies have not been conducted yet, the early sense is that the policy is shifting consumer and industry behaviour substantially. xliThese policy examples illustrate the promising nature of promoting environmentally sustainable diets. While dietary guidelines can serve as a signal to consumers and the food industry, they remain voluntary, and leave a question of how best to shift consumer behaviour, particularly around something as individual and culturally embedded as food. Addressing healthy diets, let alone sustainable diets, will require significant effort to raise awareness to inform consumers and to shift food industry approaches. Labelling laws so far do not address environmental considerations, but by merging certification schemes (organic, fair trade, sustainable) with health labelling, climate-smart labelling systems could provide multiple benefits for consumers and the planet. The examples cited also focus largely on the food environment and on public campaigns about diet. While consumer demand can shift the food supply, a transformation in food systems calls for policy that also directly targets and promotes more diversified and sustainable food production, including a reduction in the heavy reliance on rice, wheat, and maize as food staples.As noted above, inequality and unequal power dynamics in food systems shape who is hungry and malnourished and who is more vulnerable to climate change. Similarly, transformations in food systems will entail trade-offs among actors and goals. Therefore, policy must address these inequalities and improve governance to ensure that those left behind now are not left further behind in a transformation.Food systems policy cuts across multiple sectors, from agriculture and health to water and land to transport and energy to markets and gender. A whole-of-government approach enables discussion across these sectors. Engaging relevant ministries in policy making also supports more effective budgeting and management of trade-offs between sectors. Collective, coordinated effort across ministries can foster a shared sense of goals and an awareness of the value of each ministry's contribution, sobudgeting is less about competing for resources and more about finding synergies.Like multi-sectoral policy making, multi-level policy helps avoid conflicts, overlaps and duplications. Multi-level policy processes, from municipal to subnational to national, can facilitate scaling up of successful municipal policies.The experience of Peru in reducing child stunting demonstrates the value and potential impact of multi-sectoral, multi-level policy planning and implementation.After nearly a decade of little to no progress, between 2005 and 2010, child stunting in Peru dropped by five percentage points overall and ten percentage points in rural areas. An IDS paper xlii argues that the critical factors in Peru's success under its coordinated National Strategy for Combating Poverty and Chronic Child Malnutrition, CRECER, included 1) the high-level leadership of the Office of the Prime Minister, 2) the horizontal coordination across numerous ministries and alignment of social programs with the national nutrition strategy, 3) the vertical integration of national, regional, and municipal government efforts, and 4) donor support and civil society advocacy for the first three. xliiiIn designing policies to address transformations toward low-carbon, climate resilient, equitable food systems that deliver food and nutrition security for all, trading off some level of achievement of one goal for another will be inevitable. This requires negotiation and making tough choices about priorities. The advantage of a food system perspective is that it allows for evaluation of how specific actions or decisions could affect people or dynamics, and what trade-offs are central to making decisions about moving toward more sustainable trajectories. xliv What we need are new tools for visualizing trade-offs and synergies of proposed actions and innovations across all goals set by food system actors and new ways of communicating food system complexity. These tools need to include food system assessments and metrics to evaluate food status with respect to societal goals together with tools to simulate food system innovations and their effects. Only then can informed debate take place about choices and the costs societies are willing to make, not just for reaching one goal, but across all societal goals for food systems transformation. xlvIn the face of unequal power dynamics in food systems, policy processes need to be transparent and inclusive. Effective participation, particularly of those most affected by policies and consistently marginalized, requires conscious action and targeted investments. Without genuine participation, policy can entrench or exacerbate existing inequalities. Policy processes can support consultation to engage communities. Such processes can help build the capacity of governments and citizens to work together to identify and formulate policies in priority areas.Policymakers need to be mindful that power shapes who benefits from any given food system. Applying a power lens to policy requires analysis of who a policy may benefit or harm, how policy can level the playing field, and how those left behind can be supported. And it demands acting on that analysis to craft progressive policies. While reality seldom achieves this ideal, if designed to do so, global and regional policies can offer guidance and to some extent accountability.Addressing inequality and power dynamics determines how a policy is targeted or In the face of climate stresses and trade-offs, social protection can keep vulnerable populations from falling further into poverty and ensuring minimum access to food, but it is not sufficient to counter inequality nor will it end hunger and malnutrition.Leveraging policy to redress inequality and unequal power dynamics in food systems requires pushing back on the vested interests who benefit from the asymmetries in food systems. This may be uncomfortable, but it is imperative if we want to see a genuine transformation in food systems.While policy change at local and national level is critical for transformations in food systems, change at a global level is needed to establish core principles and set standards, collective goals, and directions for national and local transformations.The International trade plays a major role in shaping the food environment and is perhaps even more fraught with difficulty than global climate policy. It does, however, present challenges that food system policy makers must at least acknowledge. Trade greatly increases the diversity and range of products available, as well as lowering their cost.But competition from producers in other countries can make governments reluctant to raise environmental or health standards for their own food producers. International agreements to phase out particular pesticides and to limit greenhouse gas emissions are a good start on ensuring that all producers compete on a level playing field.International trade rules can also recognize the right of countries to restrict imports based on differences in production methods (process standards) where there is a legitimate environmental aim and efforts have been made to involve all principal suppliers. But, as with multilateral climate change policy, negotiating international agreements is time-consuming and challenging. In the absence of global policy, national, unilateral border measures to enforce a domestic environmental policy are highly contested (e.g. use of border carbon adjustments in the case of climate policy).Policymakers will need to grapple with developing international trade rules to clarify the circumstances in which 'environmental tariffs' can be justified.A good starting point might be OECD's Working Paper on Climate Change and Trade Policy Interaction. xlvi The working paper \"…examines the implications of regional climate governance for international trade and conversely the implications of regional trade governance for climate change action.\" Chapter 5 outlines ways in which regional agreements can further contribute to achieving both trade and climate change goals and points to several knowledge gaps. First, although information about environmental provisions related to climate change is available, it is not always clear what the effect is of such provisions in practice, and second, although there are many ways in which climate change considerations could be incorporated into regional trade agreements, their feasibility in practice remains unclear.A transformation in food systems requires investment by both public and private entities. Policies discussed above can signal government priorities for investment, but policy is also needed to mobilize finance, incentivize and de-risk investment, and ensure finance reaches those who need it most.While policy is needed to incentivize and de-risk investment across food systems, existing finance, such as farm subsidies, can be re-targeted to support and promote transformation in food systems. Worldwatch Institute reported xlvii that agricultural subsidies totalled an estimated USD 486 billion in the top 21 food-producing countries in the world. Some of that money could be redirected to incentivize farmers to adopt adaptation and mitigation measures. Subsidized crop insurance, for instance, could promote sustainable, resilient practices by providing insurance premium rebates for farmers who undertake beneficial practices; incentivizing improved soil management practices, diversified crops, and manure management; or writing soil health requirements into insurance policies.The policies we cite demonstrate the challenge of catalysing transformation in food systems through policy change. In some ways, new policy is not needed: some of the policy examples show that long-standing approaches like improving extension services have great potential to address challenges in food systems under a changing climate. What is lacking is adequate investment, implementation, and equitable approaches. For those challenges that are emerging or about which awareness is increasing, policy needs to catch up. Examples around food waste and sustainable diets reveal policy makers' growing willingness to tackle issues with hard hitting policy or to take on more intractable challenges that require changing consumer behaviour.This innovation and boldness is encouraging. However, by and large, the policies we cite are focused on specific challenges often in a particular sector. As the need for transformation in food systems grows, so too must the realization that food systems policy will be imperative. The range of actors, activities, outcomes, and drivers that interact to shape food systems -including who benefits and who does not -are myriad, complex, and at times contradictory. Food systems policy may not be easy but only through multi-sectoral and inclusive processes and policies can a true transformation be achieved. The examples we give are a starting point for discussion of challenges, opportunities, and priorities. The considerations we offer around tradeoffs and equality are fundamental to inclusive, resilient, and sustainable food systems.No two food systems will follow the same path toward transformation. The dynamics within any given food system are unique, the challenges vary, and priorities for action will differ. One country or municipality may be ready to adopt a holistic approach that brings numerous stakeholders together for open dialogue about tough choices. Others, in the face of trade-offs, may sequence policy change to first address chronic hunger and poverty or to close the gap between men and women farmers or small-scale and large-scale producers. Yet keeping a food systems approach in mind is important to ensure awareness of longer-term trade-offs and to craft policy that not only responds to today's challenges but also anticipates tomorrow's. Different food systems also demonstrate different capabilities and responsibilities. Layering current and historic greenhouse gas emissions onto the characteristics of food systems can inform the differentiated priority actions that some countries must take, particularly with regard to mitigation of greenhouse gas emissions.While we have endeavoured to include a variety of policies regarding several critical issues, we have also strived for an approachable, brief paper intended to spark discussion. Undoubtedly, there are more examples of policy to support transformation and some issues warrant further discussion. We have not covered but are aware of the importance of policy to de-risk or to incentivize investment for a transformation in food systems. Deeper analysis of policies would also likely uncover challenges or areas for improvement in the policies we highlight. We have also aimed for a balance between bold action and realism.Transformation in food systems under a changing climate -to ensure food and nutrition security for all, today and tomorrow -will demand action from all actors.Policy change can guide and catalyse that action but requires political and public will and a shift in mindsets toward a more collective and shared approach. The challenge we face is significant, but so is the imperative to address it.","tokenCount":"5590"} \ No newline at end of file diff --git a/data/part_3/0403426264.json b/data/part_3/0403426264.json new file mode 100644 index 0000000000000000000000000000000000000000..c6f73166cc4d2bbd570098e12312e9772fb46c0a --- /dev/null +++ b/data/part_3/0403426264.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"2ec51fe788e1cfd47424838f8bf936d9","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/4c970492-e288-4b6e-850b-bbeed6c576f6/retrieve","id":"1656439329"},"keywords":[],"sieverID":"996d9072-159f-45ad-9401-412e6a9e94fe","pagecount":"3","content":"Fiche descriptive de l'outil 1. Objectif : comprendre et décrire comment les semences d'une nouvelle variété ou d'une nouvelle qualité sont distribuées aux agriculteurs-utilisateurs à partir de leur source, c'est-à-dire à partir d'un projet (dons, essai de démonstration) ou d'un Multiplicateur décentralisé (DM). © Centre international de la pomme de terre pour le compte de la RTB • Août 2024 Cette publication est autorisée à être utilisée sous la licence internationale Creative Commons Attribution 4.0. Avis de non-responsabilité : Ce document a pour but de diffuser les recherches et les pratiques concernant la production et l'utilisation des racines, tubercules et bananes et d'encourager le débat et l'échange d'idées. Les opinions exprimées dans les articles sont c elles de l'auteur ou des auteurs et ne reflètent pas nécessairement la position officielle de RTB, du CGIAR ou de l'institution éditrice.4. Résultats de l'outil : une compréhension claire des liens entre les acteurs clés du système semencier 5. Participants à l'atteinte des résultats : les utilisateurs mentionnés ci-dessus, ainsi que les décideurs, les lobbyistes, les bailleurs de fonds 6. Taille minimale de l'échantillon : l'outil identifie les liens entre les acteurs dans un système des semences. On peut établir un lien entre un minimum de 2 acteurs. Plus on identifie liens, plus la vue d'ensemble du système des semences est précise. Les études portant sur le traçage des semences qui donnent des résultats significatifs et sont encore réalisables sur le plan de la collecte de données nécessitent une représentation de 50 à 500 sondés. À cet égard, les petits échantillons permettent de visualiser un système de semences à un petit niveau (par exemple, le village ou le district), contrairement aux grands échantillons qui sont utiles du point de vue national ou même au-delà des frontières.7. Ressources a. Nombre de personnes : 1 à 2 personnes b. Matériel : outil d'enquête numérique, logiciels de transport, R ou Excel c. Expertise : il est important que les recenseurs qui collectent les données parlent la langue locale et comprennent les termes agronomiques clés tels que les types de variétés. Par ailleurs, les chercheurs qui analysent les données doivent savoir comment traiter les données de réseau dans R. L'on peut analyser les données provenant de petits échantillons avec d'autres logiciels tels qu'Excel même si ce processus peut s'avérer difficile avec de grands ensembles de données. Si l'étude de traçage des graines constitue la base d'une Analyse des réseaux d'impact, il convient de saisir les données dans R.","tokenCount":"410"} \ No newline at end of file diff --git a/data/part_3/0433457064.json b/data/part_3/0433457064.json new file mode 100644 index 0000000000000000000000000000000000000000..6307b16178fbf7b87503cb84a831eacd11bc6c00 --- /dev/null +++ b/data/part_3/0433457064.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"86ada9ed1f8c59c8c7a951807a10ce36","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/5a3ad3c7-a38d-4fff-b40b-d1e68432322b/retrieve","id":"-1906281750"},"keywords":[],"sieverID":"c7ad99d5-d00c-4be7-8695-14e97a4366d1","pagecount":"13","content":"The applications of modern biotechnology to crops are in:• Improved diagnosis of pests and diseases • Tissue culture/micropropagation techniques • The construction of transgenic plants with improved yields, disease, pest, and stress resistance, and/or nutritional quality • The use of genetic markers, maps, and genomic information in marker-assisted and gene-assisted selection and breeding.The use of monoclonal antibodies and nucleic acid technologies has improved the specificity, sensitivity, and ease of diagnosis of plant pests and pathogens. These new diagnostics have also greatly assisted in the study of the ecology of pests and diseases, their more rapid identification in quarantine, and in the propagation of disease-free planting material.Tissue culture and other in vitro micropropagation technologies provide a practical means of providing disease-free plantlets of current varieties with significantly improved yield gains by the removal of pests and pathogens. Micropropagation, when linked with new diagnostics, has been especially useful in vegetatively propagated crops such as sweet potato and banana and for the rapid propagation of tree species. Tissue culture is also a critical step in the construction of transgenic plants by enabling the regeneration of transformed cells containing a novel gene.The application of biotechnology to agriculturally important crop species has traditionally involved the use of selective breeding to bring about an exchange of genetic material between two parent plants to produce offspring having desired traits such as increased yields, disease resistance, and/or enhanced product quality. The exchange of genetic material through conventional breeding requires that the two plants being crossed be of the same, or closely related, species. Such active plant breeding has led to the development of superior plant varieties far more rapidly than would have occurred in the wild due to random mating.Traditional methods of gene exchange, however, are limited to crosses between the same or closely related species. It can take considerable time to achieve desired results, and frequently, genes conveying desirable traits do not exist in any closely related species. Modern biotechnology, when applied to plant breeding, vastly increases the precision and reduces the time with which these changes in plant characteristics can be made, and greatly increases part3rev.p65 5/2/2000, 2:20 PM the potential sources from which desirable traits can be obtained. The application of recombinant DNA technology to facilitate genetic exchange in crops by transformation techniques has several features that complement traditional breeding methods. The exchange is far more precise because only a single specific gene that has been identified as providing a useful trait is being transferred to the recipient plant. There is no inclusion of ancillary, unwanted traits that need to be eliminated in subsequent generations, as often happens with traditional plant breeding. There has been some debate over the transfer of antibiotic marker genes with the single trait gene, and considerable research has now gone into eliminating the antibiotic marker genes from the final products prior to commercial use. Better still is to use markers that do not require antibiotics, such as new sugar-based markers.The technical ability to transfer genes from any other plant or other organism into a chosen recipient means that the entire span of genetic capabilities available among all biological organisms has the potential to be genetically transferred or used in any other organism. This markedly expands the range of useful traits that ultimately can be applied to the development of new crop varieties.The use of genetic markers, maps, and genomic information will improve both the accuracy and time to commercial use of single and polygenic traits in plant breeding (for example, the use of marker-aided selection in breeding for disease resistance in rice is illustrateded in Box 5).The present major technical limitation on the application of recombinant DNA technology to improving plants is insufficient understanding of exactly which genes control agriculturally important traits and how they act to do so. This is the constraint that can be addressed through studies of plant genomes, as an aid to crop improvement.The rapid progress being made in genomics should greatly assist conventional plant breeding, as more functions of genes are identified and able to be manipulated. This may enable more successful breeding for complex traits such as drought and salt tolerance. This would be of great benefit to those farming in marginal lands worldwide. Breeding for such complex traits has had limited success with conventional breeding in the major staple food crops.Another important trait of great potential benefit to smallholder farmers would be apomixis. This is the ability to propagate plants asexually through seed. This would confer the benefits of hybrid vigor without the need to purchase new seed each season. Research is underway by scientists at CIMMYT, Mexico, working with other collaborators in France and the USA, to identify the genes conferring this trait.Substantial commercial cultivation of the first generation of new genetically improved plant varieties commenced in the mid-1990s. In 1999, approximately 40 million hectares of land were planted worldwide with transgenic varieties of over 20 plant species, the most commercially important being cotton, corn, soybean, and rapeseed (James 1999). These new crop varieties are planted in Argentina, Australia, Canada, China, France, Mexico, South Africa, Spain, and, predominantly, Marker-assisted selection is the application of molecular landmarks-usually DNA markers near target genes-to assist the accumulation of desirable genes in plant varieties. There are many reasons why molecular markers are useful in plant breeding. Improved disease resistance in rice is a good example.Bacterial blight is a widespread disease in irrigated rice-growing areasand can cause widespread yield loss. The incorporation of host-plant resistance through conventional breeding has been the most economical means of control, and has eliminated the need for pesticides. There are now over 20 genes available for use in rice improvement, but not all of these genes are equally effective in different environments. The pathogen eventually overcomes the resistant gene. Using conventional approaches the plant breeder must be continually adding and changing genes just to maintain the same level of resistance. Breeding effort spent in \"maintenance\" is a potential loss to gains in other traits.A more sustainable system can be developed by deploying more than one resistance gene at a time. The challenge is to find the right combination of genes and put them into varieties most suitable for local production. When two or more genes are incorporated into a variety it is called \"gene pyramiding.\" Up to four genes for bacterial resistance have been pyramided in rice, and there is evidence that collectively they are more effective than would be ascribed to their additive effects. Because each gene may mask the presence of another gene, it is difficult to pyramid more than two genes by conventional breeding and selection; but it can be done with molecular markers.Over the past several years, scientists at the International Rice Research Institute and its national partners in the Asian Rice Biotechnology Network have applied DNA marker technology to address the bacterial blight problem. First, DNA markers are used to tag nearly all the bacterial blight resistance genes in available genetic stocks. Second, DNA markers are used to describe the composition of pathogen populations unique to each region. This parallel analysis of the host and the pathogen has enabled scientists to determine the right combination of genes to use in each locality.In Asia, a number of resistance genes (Xa4, xa5, Xa7, xa13, Xa21), all with molecular tags, have been introduced in various combinations into locally adapted varietiesThe Asian Rice Biotechnology Network is promoting sharing of these elite lines and gene pyramids from different countries with other countries in Asia. This will allow the useful marker-assisted selection products to be rapidly disseminated through collaborative field testing across the region.Marker-assisted selection has delivered some of the promises of biotechnology, and there are other examples of use in rice. The impact of new selection techniques will continue to be significant, particularly in an increasingly intellectual property-conscious environment. Marker technology is based on knowledge of endogenous DNA sequences; this has important practical implications, as the rice genome will be completely sequenced by an international effort, led by the Rice Genome Research Program of Tsukuba, Japan. As long as there is a public commitment to maintain all rice sequences in the public domain, useful genes for marker-assisted selection should be readily accessible to national and international rice breeding programs. Thus, because of their relative simplicity, easy integration into conventional breeding, and minimal background intellectual property, DNA marker technology and marker-assisted selection are expected to be strong driving forces in crop improvement in the future.Ken Fischer, Hei Leung and Gurdev Khush (International Rice Research Institute, Philippines) part3rev.p65 5/2/2000, 2:20 PM the area is in emerging economies. The value of the global market in transgenic crops grew from US$75 million in 1995 to US$1.64 billion in 1998.The traits these new varieties contain are most commonly insect resistance (cotton, maize), herbicide tolerance (soybean), delayed fruit ripening (tomato) and virus resistance (potato). The main benefits of these initial varieties are better weed and insect control, higher productivity, and more flexible crop management. These benefits accrue primarily to farmers and agribusinesses. There are also economic benefits accruing to consumers in terms of maintaining food production at low prices. Benefits also accrue to the environment through reduced use of pesticides, and the reduction in carcinogenic mycotoxins caused by fungal contamination in food crops.Other crop/input trait combinations presently being field-tested include virus-resistant melon, papaya, potato, squash, tomato, and sweet pepper; insect-resistant rice, soybean, and tomato; disease-resistant potato; and delayed ripening chili pepper. Research is aimed at modifying the oil content (rapeseed), increasing the amount and quality of protein (maize), or increasing vitamin content (rice) (James and Krattiger 1999).Much greater emphasis is now being given to improving the nutritional value of foods. There also is work in progress to use plants such as corn, potato, and banana as bio-factories for the production of vaccines and biodegradable plastics.Genes and gene combinations selected in the past in nature and by humans will re-main a vital source for germplasm improvement. They need to be conserved in seed banks, and in situ where possible and desirable. Genomics can play a key role in the characterization and conservation of genetic resources. It can be used to determine which genes and chromosome segments are duplicated, which are unique, and how easy it will be to recreate the various combinations of chromosome segments in modern plant breeding programs (Flavell 1998).Comparative genetics can enhance exploitation of genebank collections. The CGIAR has an opportunity to become an important player in the field, by exploiting its own comparative advantages of germplasm management and enhancement and its international network of research centers and collaborators. The location of the Centers and their international network of collaborators coincide well with the centers of origin of the world's major food crops (see Map). Jointly, the CGIAR, national programs, and advanced laboratories now have an historic opportunity to work together to make optimal use of new developments in science, for the molecular characterization of agriculturally important species and their wild relatives amongst plant, livestock, and microbial genetic resources to achieve their goals.The application of comparative studies to enhance the use and management of plant germplasm collections was the focus of an international workshop in The Hague in August 1999. The major finding was that the CGIAR centers must take advantage now of the latest technologies in genomics research to apply comparative genetics to the germplasm collections that they hold in trust (System-Wide Genetic Resources Program 1999).The principal conclusions from the workshop were that:• Comparative genetics can provide the most precise, unambiguous and comprehensive tool for germplasm characterization • Cross-species comparisons will allow identification of the germplasm sources of superior, potentially optimal genetic sources for specific traits. Comparative genetics will provide a multilateral flow of knowledge between major and minor crops • CGIAR centers need to take the initiative to develop comparative genetics research for several crops, including cereals, roots/tubers, and legumes • Use of comparative genetics will help reposition CGIAR genebanks for the future and enhance use of germplasm in crop improvement programs • The strong comparative advantage of CGIAR centers to conserve, phenotype, and use germplasm should be linked with expertise in comparative genetics existing in many laboratories worldwide. This will require innovative investment and institutional arrangements • Additional investment by the CGIAR in comparative genetics and bioinformatics will ensure that the results and benefits are available as international public goods.The initial potential of comparative genetics may best be demonstrated with traits where gene action is simple and well understood, such as resistance to some pests and diseases, submergence tolerance, starch accumulation, nutritional qualities, phosphate uptake, resistance to soil toxicity, weed competitiveness, and flowering response. Comparative studies may facilitate:• The systematic search for useful genes that contain these traits in germplasm accessions without having to discover the genes for each crop • Identification of genetic resources containing useful genetic combinations • Understanding of the genetics underlying important traits • Better understanding of the structure of biodiversity that will enhance management of germplasm collections.Comparative genetics provides the potential for trait extrapolation from a species where the genetic control is well understood, and for which there are molecular markers, to a species that has a limited amount of information. Rice, for example, is regarded as a model for cereal genomics because of its small genome. The similarity of cereal genomes means that the genetic and physical maps of rice can be used as reference points for the exploration of the much larger and more difficult genomes of the other major cereal crops, and be applied to the minor cereals. Conversely, decades of breeding work and molecular analysis of maize, wheat, and barley can now find direct application in rice improvement. These studies are much more advanced for cereals than for roots/tubers, and legumes. This reflects the large public and private sector investments in the rice genome project, coordinated by Japan. This has recently been strengthened by the decision of Monsanto to donate its knowledge on the rice genome to the public sector effort. Other investments on the maize and wheat genomes in Europe and North America are making rapid progress.The opportunities to apply comparative genetics now are furthest advanced in the cereals in which considerable research investment has already been made.Investment in other agriculturally important species, especially for tropical crops such as cassava, banana, and food legumes, is limited. Without significant investment in the immediate future, the research gap between the CGIAR centers, national research institutes, and advanced laboratories already heavily involved in comparative genetics will widen. Collaboration with advanced laboratories is essential to exploit fully the potential of comparative genetics on all the agriculturally important species.The CGIAR centers have gathered a huge resource of phenotypic data through the germplasm collections and the crop improvement and international testing programs conducted over the past 30 years. Research in molecular biology, genome sequencing, functional genomics, and comparative genetics are producing large amounts of new genomic data. Bioinformatics is essential for the management, integration, and analysis of phenotypic and genomic data if the promise of molecular biology for genetic improvement is to be realized.New discoveries in comparative genetics indicate a high degree of conservation of genetic material across the genomes of many species. This applies in terms of gene order and gene structure and has important implications for the ability to translate findings in molecular biology in one species to others. This process will not be possible unless the bioinformatics tools are also compatible across species.Numerous research projects worldwide are collecting genomic data. These are often made available for bioinformatic analysis in public databases. The task of linking these data resources, integrating the CGIAR' s own contributions, and analyzing the products is too great for any one CGIAR center to handle. People with skill and experience in this new and rapidly changing field are rare and dispersed.The CGIAR centers have a unique role to play in the design and deployment of a bioinformatics system for use by the international centers and their collaborators. CGIAR centers need to work together and with advanced research institutes and NARS partners to develop, deploy, and extend an integrated bioinformatics system for the major food crops. This will require new investments, new skills, and innovative organizational arrangements that cut across traditional commodity, discipline, and Center responsibilities.Three groups of technical constraints need to be overcome to improve livestock productivity in the developing world. These relate to improvements in genetic potential, part3rev.p65 5/2/2000, 2:20 PM 23 health, and management practices, including nutrition. In some cases these constraints are specific to tropical and subtropical environments, such as specific diseases and stresses. In others, the constraints are shared by industrial and developing countries.Infectious diseases of livestock not present in the industrial countries, and for which there are as yet no sustainable means of control, present a formidable barrier to increasing the efficiency of livestock productivity in developing countries.Disease is one of the major factors contributing to poor productivity of livestock in developing countries. In sub-Saharan Africa, animal losses due to disease are estimated to be US$4 billion annually, approximately a quarter of the total value of livestock production.Tsetse fly-transmitted trypanosomosis and tick-borne diseases are the most important disease problems in developing countries. Therapeutic agents are available for some of these diseases, but problems remain. Chemotherapy, based on the use of trypanocides, has problems due to toxicity, residues in milk and meat, and the excretion of large quantities in feces that are then applied to crops. Some of the trypanocides are potential carcinogens and would not be licensed for use in industrial countries. Intensive application is creating drug-resistant organisms.Current drugs have been in use for over 30 years. The problem of drug resistance is becoming acute in some regions, and the likelihood that new drugs will be developed is low due to development costs and lack of return on investment. Vaccination offers a potentially more effective and sus-tainable method of disease control (Morrison 1999), but technical challenges remain to be resolved.There has been limited success in exploiting the genetic potential of indigenous livestock breeds to resist disease and environmental stresses and to better utilize the available natural feed resources. Further improvements in livestock genotypes now need to relate more to the quality of the final product and the efficiency of its production rather than simple increases in quantity. Improvements in animal health are moving from interventions at the level of the individual animal to interventions at the herd and flock health level, with a focus on prevention rather than treatment and subclinical rather than clinical disease. Vaccines play an important role in disease management by developing herd immunity to target diseasesThe main applications of new biotechnologies to livestock are in the areas of genetic improvement, reproductive technologies, and animal health. These new technologies speed up the reproductive process in animals and enable the more efficient selection of breeds with improved productivity. Animal genome projects are also shortening the gene discovery process and demonstrating many potential applications where the manipulation of the genome may be useful in livestock improvement.The fundamental differences in reproduction between plants and animals are reflected in the significant differences in the costs and efficiency of effecting production increases through breeding programs. These differences favor investments in crop rather than livestock breeding and for short-term rather than long-term returns.Phenotypes of commercial livestock breeds that are highly productive in temperate climates and intensive production systems do not realize their production potential in subtropical/tropical production systems. This is due to a number of factors including dietary constraints, adaptability to local environmental conditions, and susceptibility to disease.National structures in developing countries, whether public or private, have often been unsuccessful in commercially exploiting the production capacities of indigenous livestock, which are adapted to the local environment and diseases, by selective breeding or some form of crossbreeding with exotic genotypes. This has been due to the need for long-term investment in such breed improvement programs and their complexity of management, especially when only small numbers of livestock are present on individual farms. Performance recording schemes are difficult to initiate and maintain, making breeding, selection, and expansion of improved livestock an expensive and inefficient process (Doyle 1993).Advances have been made in overcoming the genotypic constraints to increased production efficiency. Improvements have been made both in genetic characterization at the molecular level, and in technology to expand rapidly the available numbers of improved genotypes. In molecular characterization, linkage maps of sufficient resolution for use in breeding improvement schemes based on marker-assisted selection are now available for cattle, pigs, poultry, and fish. These maps are being refined, and the process of identi-fying molecular markers with desirable biological and commercial traits is under way. The applications of these technologies to fish are illustrated in Box 6.Another example of the use of molecular markers has been in tracing the origins of different cattle breeds. Genomes contain the history of the origin and evolution of the different cattle breeds and modern molecular techniques have been used to rapidly decipher their story (Bradley and others 1996;Hanotte and others 2000).The physical location of individual genes on chromosome maps is also well advanced. The rapid development of both linkage and physical maps of the genomes of domestic livestock is a clear example of how the large investment in basic biology (the construction of genetic maps of mouse and humans) can effectively and economically be captured to the benefit of domestic livestock improvement.The International Livestock Research Institute (and previously the International Laboratory for Research on Animal Diseases) has been involved for the past decade in a worldwide collaborative effort to create and improve the genetic maps of the bovine genome and to identify markers associated with genetic resistance to trypanosomosis. The use of such maps will significantly reduce the generation time for developing improved breeds, as compared to conventional breeding procedures based solely on phenotype selection. The determination of genetic distances, together with genetic maps, also will increase the effectiveness of measures for conservation of endangered livestock species by allowing characterization at the genetic rather than phenotypic level.The application of comparative genomics between breeds and species may mean that such selection strategies in one part3rev.p65 5/2/2000, 2:20 PM 25 species/breed may be more easily adapted to that of other species/breeds, when looking for similar traits. However, because of the high cost, genomics technology is presently being applied more to the lucrative markets, breeds, species, and production environments of the industrial world than to the needs of livestock improvement in the developing countries.This is because of present lack of funding, the low commercial value of the breeds, lack of effective conventional breeding programs in developing countries, and the requirements to conduct selection in the relevant production environments due to high genotype x environment effects in animal breeding.The applications of biotechnology to fisheries and aquaculture offer the prospect of increasing the efficiency of protein production, and the speed of conversion of feed to protein. They may also enable economically efficient protein production in enclosed aquaculture, and reduce problems of effluent disposal (see Box 6 for applications). The feasibility of developing and using transgenic species of fish is being explored by several research institutes and companies in the fisheries and aquaculture sectors on various species including tilapia and salmon. It is anticipated that there will be an increase in the number of species and strains into which genes are introgressed, and the number of gene constructs available for transgenesis (governing biological functions in addition to growth) will also be increased. Transgenesis may become a cost-effective means of enhancing indigenous species important to one or a few countries and not covered by international breeding efforts. Sex manipulation (for example the production of all male populations of fish, especially tilapia) is also an active area of research, designed to avoid the detrimental production effects of early maturation and cessation of growth. In carp species, however, all-female populations are required. It is also anticipated that sex reversal will be used more widely in breeding programs to increase the speed of production of inbred lines. Haploid fish will be important for similar reasons.A wide range of new molecular diagnostic techniques is being developed for applications such as disease diagnosis, sexing of juvenile fish, and for assessing progeny relationships in large populations of fish raised together to reduce environment-specific variations in production. Other techniques include tissue culture, or other manipulations of embryos or embryonic cells, for the isolation of viruses, bacteria, and fungi pathogenic to fish. Technology exists for the creation of transgenic livestock including mammals, birds, and fish. Practical applications of the technology are presently restricted to production of human biological pharmaceuticals in the milk of sheep. Small herds of transgenic animals are likely to be able to produce sufficient quantities of high-value biological products, such as pharmaceuticals, in the immediate future. There has also been work on the creation of transgenic lines of virus-resistant poultry, which contain a modified virus gene that confers disease resistance. A similar strategy has proved useful to introduce virus resistance in plants.In the future, transgenic pigs may be used as a source of tissue and organ transplants to humans, provided safety and ethical concerns are met. The major health issue for review and research at present is the possible trans-species movement of viruses from pig tissue to humans.The impact of transgenic animals on animal breeding and production is presently limited by the dearth of single gene traits in livestock, and the fact that the propagation process of a transgene in an animal population is relatively slow (Cunningham 1999). There is also a risk that the desired gene may not be inherited by subsequent generations or may be turned off in the offspring from a transgenic animal.If desired genes controlling a trait can be identified and transferred, their expression physiologically controlled and the trait is heritable, then a quantum leap in improvements in livestock productivity can be envisaged.There is potential to find genes for disease tolerance and other adaptive traits such as heat tolerance in wildlife and transferring these to domestic livestock. In disease resistance, for example, this would have greater impact in developing than in industrial countries.There are possible opportunities for the developing countries, through the analysis of the genomes of their unique animal genetic resources, to identify genes encoding traits that may be of benefit to both developing and industrial countries. Although the animal genetic resources in developing countries are plentiful, they have not been tapped to any great extent. The characterization of these genetic resources may offer opportunities for developing countries to benefit from their appropriate use and agreed benefit sharing (FAO 1999).Molecular technologies are also applicable to the study of livestock parasites and other pathogens. They provide effective means for identifying, isolating, characterizing, and producing molecules that can be used to induce protective responses against the parasite (Morrison 1999). The new technologies can also be used to generate products and gene sequences, which can form the basis of improved diagnostics. They also provide effective means of elucidating the metabolic pathways of pathogens that confer drug resistance or drug sensitivity on these organisms. Genetic markers are increasingly being used to identify with part3rev.p65 5/2/2000, 2:20 PM 27 greater precision the species, subspecies, and types of pathogenic agents. Recombinant or genetically modified pathogens also offer new approaches to vaccine delivery, as does direct injection of DNA into animals.Disease, however, is the result of the interactions of two genomes -the pathogen and the host. To exploit the new technologies, particularly for the development of vaccines and for the exploitation of disease resistance traits, it is important to understand the biology of the pathogen as well as the host.The use of vaccines in disease control has the advantage of using an already existing domestic animal gene pool. From a management/breeding point of view this is logistically easier to consider as a disease control strategy than using marker-or gene-assisted selection to breed disease-resistant strains of improved domestic animals. Vaccines developed using traditional approaches have had a major impact on the control of the epidemic viral diseases of livestock, such as foot-and-mouth disease and rinderpest. There are many other important diseases, notably parasitic diseases, for which vaccines have not been developed successfully.Rapid advances in biotechnology and immunology over the last two decades have created new opportunities to develop vaccines for parasitic diseases. Initial optimism in the early 1980s that vaccine products would quickly emerge from applications of recombinant DNA technology has not been fully realized. Subsequent experience has demonstrated that, unlike traditional approaches to vaccine development, effective exploitation of recombinant DNA technology requires knowledge of the target pathogens and the immune responses they induce, as well as an understanding of how those immune responses can be manipulated. Such information was lacking in the early 1980s. There has been a series of fundamental discoveries in immunology that have led to a detailed understanding of how the immune system processes and recognizes pathogenic organisms, and the different ways that infections are controlled by immune responses. This new knowledge is directly relevant to all stages of vaccine development, from identification of the genes or proteins that need to be incorporated into a vaccine, to the design of a vaccine delivery system that will induce a particular type of immune response. These advances, coupled with further developments in the application of DNA technology, now provide a strong conceptual framework for the rational development of new vaccines (Morrison 1999).Two main approaches are being pursued to develop vaccines using recombinant DNA technology. The first of these involves the deletion of genes that are known to determine virulence of the pathogen, thus producing attenuated organisms (nonpathogens) that can be used as a live vaccine. This strategy is presently more appropriate for viral and bacterial diseases than for protozoan parasites. Attenuated live vaccines have been developed for the herpes viruses that cause pseudorabies in pigs and infectious bovine rhinotracheitis in cattle.The second strategy is to identify protein subunits of pathogens that can stimulate immunity. This is the preferred approach to many of the more complex pathogens. It requires knowledge of the Live attenuated vaccines stimulate immune responses similar to those induced by the parent pathogen, and usually provide long-lasting immunity. Vaccines using killed organisms require incorporation of adjuvants (agents that enhance immunitygiving characteristics), and the immune responses they induce are usually more limited and of shorter duration than with live vaccines. Advances in biotechnology have provided a number of alternative vaccine delivery systems for subunit proteins that overcome these shortcomings and offer some of the advantages provided by live vaccines. Two of the most promising approaches are the use of attenuated organisms as live vectors and vaccination with DNA (Morrison 1999).Live-vectored vaccines involve the incorporation of a gene encoding a subunit protein into the genome of an attenuated organism, which itself may be in use as an attenuated vaccine. The protein is then produced when the organism replicates in the animal.A vaccine containing a rabies virus gene has been used to protect foxes against rabies and its use has resulted in the eradication of rabies from northern continental Europe.The use of DNA for vaccination is based on the discovery that injection of genes in the form of plasmid DNA can stimulate immune responses to the respective gene products. This occurs as a result of the genes being taken up and expressed by cells in the animal following injection. Stimulation of immune responses and partial protection have been reported for a number of pathogen genes in livestock species, but none of these has yet led to a fully effective vaccine. The live vector and DNA vaccination systems are amenable to further manipulation to enhance the immunity-conferring characteristics of the gene products. Experimental studies have demonstrated that these systems have enor- New vaccines are likely to be produced against some or all of the major animal diseases, given the necessary scientific and financial resources. The complexity of the problems that are being addressed should not be underestimated. The opportunities presented by advances in biotechnology can only be exploited effectively if there is a thorough understanding of the biology of the target pathogens and the diseases they produce. The new technologies allow detailed studies on the two interacting genomes, the pathogen and the host, the identification of genes essential for causing infection and disease and thus the identification of targets for vaccine development.Vaccine development for domestic livestock could benefit from technology spillovers from vaccine development for humans because the same research concepts and approaches can be applied, albeit to different pathogens. Public-private sector cooperation emerging in the eradication of polio, and in the search for a malaria vaccine, may yield innovative research cooperation models and knowledge that could be applied to vaccine development and delivery for the benefit of smallholder livestock producers in the developing world. ","tokenCount":"5429"} \ No newline at end of file diff --git a/data/part_3/0436993777.json b/data/part_3/0436993777.json new file mode 100644 index 0000000000000000000000000000000000000000..6379de658ac4bb3b2b2156d72a5dd71eced37ca0 --- /dev/null +++ b/data/part_3/0436993777.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"b30da1eefcf2043d573ef010b7087abc","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/56530751-c997-4cd0-91b1-b8017625729e/retrieve","id":"1623659325"},"keywords":["livelihoods","indigenous peoples","forest governance","payments for environmental services","social capital"],"sieverID":"e9fd7e7b-0187-4756-82d7-90c7a0d42f1b","pagecount":"8","content":"Los territorios indígenas bribri y cabécar de la Alta Talamanca en el sureste de Costa Rica, constituyen una región estratégica desde el punto de vista del uso y de la conservación de los recursos forestales y de la diversidad cultural. Los medios de vida de la población local se basan, en gran medida, en el capital natural que sostienen sus actividades agroforestales y en el capital social local reflejado en múltiples formas de organización local y relaciones con el mundo externo. Con el fin de identificar las barreras que limitan el mejoramiento de los medios de vida y proponer elementos para removerlas, se estudió el papel de la gobernanza forestal y los arreglos institucionales correspondientes entre indígenas y agentes externos en Alta Talamanca. Se realizaron entrevistas semiestructuradas (n=34) a informantes claves, tales como representantes de las organizaciones indígenas locales y de las instituciones de cooperación externa, en combinación con observación participante y análisis de información secundaria. Se identificaron cinco arreglos institucionales: 1) Consejo Directivo Indígena, plataforma donde convergen varias organizaciones locales, las cuales toman decisiones relacionadas con los recursos forestales e intervenciones externas; 2) Comité Local Forestal de Talamanca como foro para la coordinación entre organizaciones locales y gubernamentales que velan principalmente por el control de la tala y comercialización ilegal de madera; 3) pagos por servicios ambientales financiados por Fonafifo para la conservación de bosques y manejados por las Asociaciones de Desarrollo Integral de Alta Talamanca; 4) Comité Coordinador del Proyecto Captura de Carbono que acordó procedimientos y métodos de ejecución de este proyecto y 5) la Red Indígena de Turismo, la cual impulsa la formación de emprendedores indígenas como operadores de etnoturismo. Si bien varios de estos arreglos buscan controlar prácticas adversas e incentivar prácticas adecuadas para la gestión de los recursos forestales en Alta Talamanca, aun persiste el problema de la tala y comercialización ilegal de madera. Se concluye que se requiere mayor coordinación entre las organizaciones locales y los actores externos en los diferentes niveles de toma de decisión para que la gobernanza forestal en la Alta Talamanca sea más efectiva.Palabras clave: Medios de vida, indígenas, gobernanza forestal, pagos por servicios ambientales, capital socialThe Bribri and Cabécar indigenous territories of Alta Talamanca in southeastern Costa Rica constitute a strategic region from the point of view of the use and conservation of forest resources and cultural diversity. The livelihoods of local people are largely based on the natural capital their agroforestry activities sustain and on the local social capital reflected in their many forms of local organization and relations with the outside world. In order to identify the barriers to improving their livelihoods and proposing actions for their removal, we studied the role of forest governance and appropriate institutional arrangements between indigenous people and external agents in Alta Talamanca. Semi-structured interviews were conducted (n = 34) with key informants, including representatives of local indigenous organizations and foreign cooperation agencies, combined with participant observation and analysis of secondhand information. We identified five institutional arrangements: 1) Indigenous Steering Council, a platform that convenes several local organizations for making decisions related to forest resources and external interventions; 2) Talamanca Local Forest Committee as a forum for coordination between local and governmental organizations that mainly monitor logging and the illegal timber trade; 3) payments for environmental services funded by FONAFIFO for forest conservation, managed by the Integral Development Associations of Alta Talamanca; 4) Carbon Capture Project Coordinating Committee that makes agreements regarding procedures and methods of implementation for this project; and 5) Indigenous Tourism Network, which promotes the training of indigenous entrepreneurs as ethno-tourism operators. While several of these arrangements seek to control harmful practices and encourage good practices for the management of forest resources in Alta Talamanca, there is still the problem of illegal timber logging and trafficking. We conclude that greater coordination is required between local organizations and external actors at different decision-making levels to make forest governance in Alta Talamanca more effective.Los territorios indígenas bribri y cabécar tienen relevancia en el contexto nacional e internacional para la conservación de los recursos naturales por cubrir diferentes biomas y por su localización estratégica limítrofe entre el sureste de Costa Rica y el noreste de Panamá. Sus territorios abarcan la Reserva Biológica Hitoy Cerere y el Parque Internacional La Amistad (PILA) sector Caribe; también forman parte de la zona de amortiguamiento del PILA, del Corredor Biológico Mesoamericano (CBM), de la Reserva de la Biosfera La Amistad (RBA) y del Corredor Biológico Talamanca Caribe (CBTC).En la Alta Talamanca, Costa Rica, los recursos forestales cumplen un papel importante en la conservación de la biodiversidad local (Orcherton 2005), en la complejidad estructural de los sistemas agroforestales (Deheuvels et al. 2011) y en el mantenimiento del capital natural como base de los medios de vida de las familias indígenas (Whelan 2005). Aunque para las autoridades indígenas el manejo sostenible de sus recursos ha sido una prioridad (Suárez 2001), aun persisten varios problemas que afectan los recursos forestales; entre ellos, la sobreexplotación de los recursos naturales (Dahlquist et al. 2007), el cambio de uso del suelo (Whelan 2005), la apropiación de terrenos por parte de personas no indígenas (Guevara y Vargas 2000) y el incremento de la población en el Valle de Talamanca (BID 2003, Suárez 2001). Todos estos factores inciden en la disponibilidad y calidad de los recursos forestales.En Costa Rica, la política de descentralización, la legislación nacional y los compromisos con convenios internacionales han propiciado un marco institucional dentro del cual las organizaciones indígenas y externas han establecido relaciones multifacéticas que inciden en la gestión de los recursos naturales (Borges 2004). Por ejemplo, los bribris y cabécares han conformado organizaciones civiles (generalmente asociaciones de desarrollo integral, ADI) con el propósito de defender sus derechos y tomar decisiones con respecto a sus territorios y, en especial, a sus recursos naturales. Además, hay organizaciones externas (organismos internacionales y organizaciones gubernamentales y no gubernamentales) que ofrecen alternativas de desarrollo con el fin de mejorar la productividad de sus productos básicos (cacao, banano y plátano) y la oferta de servicios ambientales (mediante ecoturismo y pagos por servicios ambientales), con el fin de conservar los recursos naturales y abastecer las demandas por productos agroforestales en el mercado nacional e internacional.Entre los recursos naturales se destacan los recursos forestales en los bosques y los sistemas agroforestales por su alta importancia en los medios de vida de las poblaciones indígenas. Así, se han establecido una serie de arreglos institucionales definidos por las organizaciones indígenas y externas que, en su conjunto, constituyen la gobernanza forestal en Alta Talamanca. Por ejemplo, entre las ADI y organizaciones externas hay arreglos que buscan mediar entre los intereses locales y externos con respecto a los recursos forestales en los territorios indígenas (Candela 2007). Estos arreglos pueden contribuir al mejoramiento de los sistemas agroforestales donde hay árboles maderables (Altieri 2004) y a la gobernanza forestal. Sin embargo, se desconocen los efectos (positivos y negativos) de estos arreglos sobre el uso y la conservación de los recursos forestales en Alta Talamanca.Mediante esta investigación se buscó identificar los principales arreglos institucionales entre las organizaciones indígenas y externas y sus efectos sobre la gestión de los recursos forestales en Alta Talamanca y la forma de maximizar estos efectos mediante mejoras en la gobernanza forestal.mARCo ConCEPtuAL Y mEtoDoLóGÍCo Para entender el papel de los arreglos institucionales relacionados con la gobernanza forestal en Alta Talamanca es necesario comprender la diversidad de las estrategias de vida de los indígenas bribris y cabécares, manifestada en diferentes dotaciones y usos de los activos de medios de vida (capitales natural, humano, social, físico y financiero). Uno de los capitales más importantes en los territorios ha sido el capital social (Whelan 2005, Candela 2007); por ello, se identificaron las organizaciones indígenas locales y sus lazos con organizaciones externas, tanto gubernamentales como no gubernamentales, que inciden en el uso y conservación de los recursos forestales. Los arreglos institucionales entre las diferentes organizaciones inhiben o facilitan el ejercicio de las capacidades y de las decisiones de individuos y familias (Ellis 2000) y definen el acceso a bienes comunes, los derechos de uso, el desarrollo de mercados y el manejo de conflictos (North 1991, Varughese y Ostrom 2001, Jütting 2003, Prins 2005).Para identificar los arreglos institucionales relacionados con la gobernanza forestal y sus efectos, se realizaron entrevistas semiestructuradas a informantes claves (representantes de 21 organizaciones: nueve indígenas y doce externas), seleccionados según su liderazgo en las organizaciones y sus responsabilidades en cuanto a la gobernanza forestal; se seleccionaron hombres y mujeres indígenas y no indígenas. Se buscó conocer el tipo de relacionamiento entre las organizaciones indígenas y externas y, específicamente, las oportunidades y amenazas en dicha relación en cuanto al uso y la conservación de los recursos forestales. Además se aplicó el método de observación participante durante talleres, asambleas y otros eventos con la finalidad de indagar sobre las relaciones entre los actores. Esto permitió la elaboración de preguntas acerca de formas de alianzas, mecanismos y procesos de operación en cuanto a los arreglos institucionales. Dada la posible subjetividad en las respuestas de los informantes, se trianguló la información con la observación participante y el análisis de información secundaria.La jurisprudencia de Costa Rica en materia de desarrollo comunitario, indígenas y recursos naturales, junto con el compromiso del país con convenios internacionales, ha establecido o ratificado varias disposiciones, las cuales han incidido en la gobernanza forestal en Alta Talamanca. Entre ellas están la Ley de Desarrollo de la Comunidad (1967), la cual otorga funciones legales a las ADI; la Ley Indígena de 1977 y el Convenio 169 de la Organización Internacional del Trabajo (OIT), que reconoce los derechos de los pueblos indígenas en cuanto a organización y autonomía frente al resto de la sociedad. Además, existen varios arreglos para el uso y la conservación de los recursos forestales; entre ellos, la Ley Forestal (1995) que incluye la participación de la sociedad civil en la gestión de los recursos naturales y la prohibición del cambio de uso de suelo en bosques, y el Reglamento de aprovechamiento de madera en territorios indígenas (Decreto Ejecutivo No. 27800 del 16 de marzo de 1999), el cual establece la gestión conjunta entre las ADI y AC 4 para el aprovechamiento de árboles caídos o en pie en terrenos sin cobertura boscosa, con fines domésticos. Según el decreto, solamente se pueden eliminar y/o aprovechar 3 árboles ha -1 año -1 por inmueble. Por otro lado, la Procuraduría General de la República prohíbe extraer y comercializar madera fuera de los territorios indígenas, y solo permite la comercialización de productos procesados.A continuación se resumen los cinco arreglos principales según el siguiente esquema: surgimiento, actores involucrados (indígenas y no indígenas de organizaciones locales, nacionales e internacionales), propósitos y actividades realizadas para lograrlos, así como elementos que fueron funcionales y las dificultades encontradas en su implementación.Entre 1994 y 2001, el proyecto Desarrollo Sostenible de las Reservas Indígenas de Talamanca y Protección de los Parques Nacionales de Talamanca (Sector Atlántico) y Cahuita (proyecto Namasö 5 ) logró que el Consejo Directivo Indígena de Alta Talamanca alcanzara visibilidad. Durante el periodo del estudio, este Consejo se encargaba de la administración de los bienes donados por el proyecto y los ingresos provenientes de la ebanistería, también donada por Namasöl. Un aspecto importante que definió la visión del Consejo fue el convenio establecido entre la Fundación Iriria Tsöchök (responsable del manejo de recursos financieros) y las organizaciones indígenas coejecutoras del Proyecto Namasöl: Aditibri (Asociación de Desarrollo Integral de los Territorios Indígenas Bribris) y Aditica (Asociación de Desarrollo Integral de los Territorios Indígenas Cabécares). Mediante ese convenio se definió el funcionamiento del Consejo para el uso racional de los recursos forestales. El Consejo articuló a las organizaciones indígenas existentes en ese momento, en torno al ejercicio de liderazgo y control de los territorios indígenas. Dentro del Consejo se tomaron decisiones relacionadas con el aprovechamiento y manejo de la madera, control de las propuestas de desarrollo de agentes externos con lo cual se garantizaba la defensa de los derechos indígenas.En cuanto al control del aprovechamiento de la madera, desde el año 2003, la Unidad Ambiental de Aditibri se ha encargado de avalar e inspeccionar los trámites para la corta de árboles (máximo 25 permisos de corta mensual). Los guardarrecursos (dos personas) se trasladan a las fincas para verificar que se cumpla con las normas establecidas por la ley y las definidas por el Consejo y su junta; entre ellas: • Ser indígena • Vivir dentro de los territorios indígenas de Alta Talamanca 4Las AC (las áreas de conservación) son los componentes territoriales del Sistema Nacional de Áreas de Conservación (SINAC), el cual forma parte del Ministerio de Energía, Medio Ambiente y Telecomunicaciones (MINAET).• Los árboles destinados a la corta deben ser de especies sin amenaza de desaparición, ubicados en lugares alejados de las fuentes de agua o en sistemas agroforestales dentro de los límites de la finca del solicitante.Estos consejos funcionan a nivel de cada comunidad; su función ha sido la de autorizar pequeñas cortas. La coordinación entre los Consejos de Vecinos y las ADI ha permitido la de toma de decisiones que ha funcionado en la práctica. El Consejo opera como una organización que permite el aprovechamiento de los recursos naturales y organiza actividades sociales dentro de las comunidades, establece sanciones y resuelve problemas de cierta magnitud. Cuando no los puede resolver, los pasa a Aditibri y esta, a su vez, a los tribunales de justicia, si no logra resolver el conflicto. El papel del CLFT en el control de los recursos forestales en el cantón de Talamanca ha sido relevante, pues se ha ocupado de los conflictos de intereses originados entre la demanda por madera y la protección de la fauna silvestre y de especies forestales de interés particular. El CLFT busca mediar entre los objetivos de los productores y la jurisprudencia costarricense relacionada con la conservación y el manejo de los recursos naturales. Entre las tareas que el Comité desempeña están: recibir y tramitar denuncias relacionadas con el incumplimiento de la Ley; avalar y proponer alternativas de solución en materia forestal; solicitar rendición de cuentas sobre permisos forestales para hacer posible la asignación de los pagos por servicios ambientales (PSA).A pesar de las múltiples actividades del Comité para controlar el cumplimiento de las leyes ambientales, su labor se ha visto limitada por factores como la dificultad para aplicar sanciones a partir de la legislación vigente; el funcionamiento centralizado de los tribunales correspondientes en la capital; la falta de recursos económicos para realizar investigaciones que orienten a las instancias de decisión en materia ambiental.El Programa Ecomercados del Fondo Nacional de Financiamiento Forestal (Fonafifo) ha operado con recursos donados por la Fundación para la Protección del Ambiente y un préstamo del Banco Mundial, mediante convenio firmado con el Gobierno de Costa Rica. Como parte del interés del Banco Mundial por el mejoramiento de los medios de vida de los indígenas, Fonafifo otorgó los incentivos económicos a las ADI de Alta Talamanca a través del PSA para la conservación de Talamanca (Figura 1).Cada año, entre el Fonafifo y las ADI se celebran nuevos contratos para la protección de diferentes áreas de bosque. Las ADI pueden recibir varios pagos por diferentes contratos, pero el monto asignado a cada contrato depende de criterios presupuestarios del Fonafifo.Por sus servicios, las ADI de Alta Talamanca han pagado regularmente al regente del CBTC el 10% del monto anual, aunque según el reglamento del Fonafifo debiera pagarse el 18%.Las ADI de Alta Talamanca definieron las áreas a someterse al programa PSA, según criterios establecidos por los miembros del Consejo Directivo Indígena. Antes se someter un territorio a la consideración de Fonafifo, los propietarios de las áreas deben haber manifestado su aceptación de ingreso al Programa. Aunque las dos organizaciones indígenas hacen parte del mismo arreglo, los beneficios y la distribución de los fondos han dependido de las decisiones tomadas por cada organización, según la magnitud de su sistema operativo (Aditibri) y las necesidades de inversión identificadas en las comunidades y familias más pobres (Aditica).Pese al avance logrado con esta experiencia, aun no se ha concretizado un mecanismo diferenciado para los pueblos indígenas en materia de servicios ambientales.Durante los años 2004 y 2005, estas organizaciones no participaron del incentivo debido a que los territorios indígenas bribris y cabécares aparecían legalmente bajo un solo título de propiedad. Fue necesario hacer estudios técnicos para la delimitación de las áreas y tramitar títulos de propiedad para cada grupo indígena. En el año 2005, en la junta directiva de Aditibri se dio una división interna por el tema del PSA y, entonces, ese año no se logró concretar un contrato con Fonafifo.El Banco Internacional para la Reconstrucción y el Desarrollo, como administrador de donaciones del Gobierno de Japón y a través del Banco Mundial otorgó, mediante convenio con el gobierno de Costa Rica, una donación para la realización e implementación del Proyecto Captura de Carbono y Desarrollo de Mercados Ambientales en Cacaotales y Otros Sistemas Agroforestales Indígenas en Talamanca (2004Talamanca ( -2006)).Este proyecto fue ejecutado por el CATIE y otros socios, e involucró a diversos actores en los ámbitos local, nacional e internacional. La meta del proyecto era diseñar una estrategia para el establecimiento del mercado regional de carbono capturado en sistemas agroforestales de cacao multiestratos.La alianza entre el CATIE y Minaet permitió el diseño, elaboración e implementación del Proyecto en forma conjunta con las organizaciones indígenas locales (Aditibri, Aditica, Acomuita) y una organización regional (Acicafoc), mediante convenios subsidiarios. La consolidación de este proyecto incluyó una carta de entendimiento entre Minaet y CATIE y dos convenios (CATIE con ADI-Aditibri y ADI-Aditica y CATIE con Acomuita). Se nombró un Comité Coordinador del Proyecto (CCP), integrado por estas organizaciones, el cual tenía como propósitos el mejoramiento de la coordinación de las acciones entre todos los actores, la gestión para asegurar el logro de los resultados esperados y la participación de sus miembros en la planeación y administración del Proyecto. Durante las reuniones se compartieron y discutieron los presupuestos asignados, de manera que hubiera transparencia en la administración. El papel de los proyectos en Alta Talamanca ha sido importante en la dinamización de los roles y las reglas de juego. A través de la conformación de arreglos interinstitucionales se han aplicado herramientas participativas y modelos de cogestión mediante diferentes estrategias.En el sector Atlántico del PILA, The Nature Conservancy (TNC) identificó prácticas agrícolas y forestales incompatibles con la conservación de la biodiversidad y la preservación de sitios arqueológicos, como amenazas para la conservación según la Planeación Ecorregional Centroamericana. Por ello, desde el año 2004, TNC apoyó la conformación de la Red Indígena de Turismo, la cual se compone de organizaciones que han operado de manera informal, movilizando a los turistas que desean interactuar con la cultura indígena. La Red ha reunido a los grupos de las comunidades bribris -en especial de la comunidad de Yorkín-para coordinar, gestionar, asesorar, desarrollar y controlar la actividad turística en el territorio; a la vez, mantiene una relación cercana con Aditibri como autoridad territorial.TNC y AFE (Asociación Finca Educativa) firmaron una carta de entendimiento con el fin de diseñar una estrategia de intervención que abarcara la promoción, fortalecimiento institucional, capacitación y elaboración de planes de negocios para mejorar los servicios que ofrecen y la capacidad de recepción de turistas. La legalización de los grupos comunitarios como operadores de turismo ha sido una condición importante para los donantes y para el reconocimiento de la Red en el ámbito internacional.Desde la perspectiva de la conservación, este enfoque se ha centrado en la creación de alternativas productivas basadas en recursos naturales y paisajes que sustentan los medios de vida locales. Se identificaron los retos que enfrentan las organizaciones indígenas; entre ellas, la introducción de nuevas formas de organización ajenas a su cultura, la débil organización a nivel de las comunidades que incide en la poca participación en la toma de decisiones y la descoordinación entre diferentes instituciones responsables de la implementación de las políticas ambientales.En Costa Rica, la normativa ambiental y de desarrollo comunitario ha fomentado el control de los recursos naturales por parte de actores locales (Ferroukhi et al. 2001). En Alta Talamanca, los arreglos institucionales relacionados con la gobernanza forestal juegan un papel importante en la aplicación de esta normativa, así como en el reconocimiento de los derechos indígenas y la distribución de los costos y beneficios de los incentivos y proyectos (Poteete y Ostrom 2004). Sin embargo, algunos de estos arreglos se han manifestado en formas no tradicionales de control sobre los recursos naturales (Borges 1997), ante todo cuando se trata de problemas que sobrepasan los límites del territorio indígena.A nivel nacional, a pesar de que se disponen de incentivos para las plantaciones forestales, existe desabastecimiento de madera debido a normativas que han incidido en la reducción de plantaciones forestales, han desestimulado la industria forestal, han reducido el manejo de bosques naturales con fines maderables, y han limitado la respuesta de control de las AC sobre la corta ilegal (OET 2008). Como consecuencia, los territorios indígenas de Alta Talamanca y las áreas protegidas, como el PILA, están sufriendo una fuerte demanda local por madera, lo que pone en peligro el capital natural y los medios de vida de las familias indígenas. La madera que se comercializa en forma clandestina ha sido uno de los problemas principales para los líderes indígenas, ya que afecta los intereses de las organizaciones indígenas y varios de los capitales de la comunidad: en cuanto al capital social, la legitimidad del control sobre sus recursos naturales; en cuanto al capital físico y financiero, el crecimiento de la ebanistería en Süretka, y en cuanto al capital natural y financiero, el empobrecimiento de los recursos forestales de los usuarios directos.El Consejo Indígena ha constituido un arreglo institucional, aunque no permanente, que ha contribuido en crear convergencias entre las organizaciones indígenas locales en aspectos forestales, ambientales, políticos y de sostenibilidad financiera. Además, ha cumplido un papel importante como administrador de la ebanistería, a través de la cual y en articulación con la Unidad Ambiental de Aditibri, contribuye al control de la comercialización ilegal de madera dentro de los territorios bribri y cabécar de Alta Talamanca, en coordinación con el CLFT. Este último ha constituido un elemento permanente en la gobernanza forestal de carácter formativo y coercitivo, que no ha generado incentivos económicos a sus involucrados, pero sí conocimiento y fiscalización de los problemas ambientales, principalmente en cuanto a la tala y comercialización ilegal de madera, la legislación relacionada con temas forestales y el manejo de sanciones preestablecidas en los procedimientos legales.El PSA para la conservación de bosques ha contribuido al capital financiero y social de las organizaciones indígenas (ADI) y ha permitido cubrir los costos de la regencia forestal bajo el mismo esquema. Sin embargo, no ha tenido incidencia directa en el uso y control de los recursos forestales en los territorios debido a que muy pocas veces se realizan inspecciones y, las pocas que ha habido, consistieron en observar el mantenimiento de los carriles que delimitan las áreas sometidas a PSA. Los proyectos que operaron a corto plazo (2 a 4 años con posibilidades de extensión) tuvieron amplia cobertura en cuanto a capacitación y asistencia técnica. Entre otros propósitos, buscaron el mejoramiento de los productos y servicios provistos por los sistemas agroforestales y bosques más cercanos a los poblados indígenas y, de esta manera, incidieron en los capitales natural, físico, humano, social y financiero. Sin embargo, los PSA y los proyectos no tuvieron incidencia directa en las decisiones relacionadas con el aprovechamiento y la comercialización de los recursos forestales.Por su parte, las familias indígenas de Alta Talamanca se encuentran en la disyuntiva de decidir entre participar en el mercado ilícito de madera o captar los incentivos por la conservación de sus bosques y sistemas agroforestales, lo cual implica ajustarse a las normas establecidas por los entes gubernamentales, hacer más productivos sus sistemas e insertarse en las cadenas de valor.Las organizaciones externas, entre ellas ONG, entes gubernamentales y organismos internacionales, han fomentado un sistema de incentivos y control de los recursos naturales en Alta Talamanca mediante el involucramiento directo de las organizaciones indígenas locales (ADI) en los territorios indígenas de los bribris y cabécares. Sin embargo, los esquemas de jurisprudencia, incentivos y control no han sido suficientes ni adecuadamente articulados para frenar la tala y comercialización ilegal de la madera y mejorar los medios de vida de la población local.El Consejo Directivo Indígena y el Comité Local Forestal de Talamanca se han destacado por su papel en el control de la tala y comercialización ilegal de madera a nivel local y cantonal, respectivamente. Por su parte, los proyectos Captura de Carbono y Turismo Indígena han promovido la conservación y el uso de los recursos forestales a través de capacitación, asistencia técnica e investigación. Lo que hace falta para un control más efectivo de la tala y comercialización ilegal de madera en los territorios indígenas son mecanismos adecuados para la toma de decisiones articulada entre las organizaciones indígenas y externas a nivel local (familias indígenas), territorial y nacional (gobierno y sector forestal).En la actualidad existe una demanda insatisfecha por recursos forestales en Alta Talamanca, pero aun así las familias indígenas involucradas no perciben beneficios económicos interesantes. Como primer paso, es importante revisar cuáles formas de aprovechamiento y comercialización de madera deben ser consideradas ilegales. Por ejemplo, existen barreras legales para el aprovechamiento y procesamiento de los recursos forestales provenientes de los sistemas agroforestales en Alta Talamanca; no obstante, este impedimento no se fundamenta en datos científicos sobre posibles amenazas a la conservación, ni considera los efectos adversos sobre el bienestar de las familias locales. La extracción y comercialización que debe ser considerada como ilegal debe incluir la madera aprovechada en bosques naturales cuya extracción no considera los controles socioculturales y la realizada por personas o empresas ajenas a los territorios indígenas.Promover mayor participación en la toma de decisiones por parte de las familias y los líderes indígenas y fortalecer los mecanismos y reglas de juego informales, propias de la forma de uso y manejo de los recursos naturales de estos grupos. Esto permitiría un mayor grado de apropiación y la construcción de capital social dentro de las comunidades locales, entre ellas y con los agentes externos.Para robustecer la gobernanza forestal en los territorios indígenas se requiere mejorar la coordinación interinstitucional entre organizaciones indígenas y externas, el manejo y la resolución de conflictos, y el reconocimiento de los derechos indígenas en los diferentes niveles de gobernanza (local, nacional, regional). Si las decisiones en todos los niveles se basan en la apreciación realista de los principales problemas, será más fácil identificar cuáles soluciones podrían darse a través de mecanismos transitorios (p.e. proyectos) y cuáles requieren el uso y fortalecimiento de mecanismos locales que suelen ser más duraderos e integrales.Es preciso un sistema efectivo de sanciones para contrarrestar la tala y comercialización ilegal, como otra cara de la moneda de los incentivos forestales para las buenas prácticas. Finalmente, será importante investigar el uso cultural de los bosques por las familias indígenas como estrategia de conservación. Suponemos que allí hay un potencial inexplorado que permitiría construir relaciones ganar-ganar entre el aprovechamiento y la conservación de los recursos forestales en Alta Talamanca.Se requieren estudios sobre los sistemas de manejo de los recursos forestales por parte de los grupos indígenas para definir cuáles formas deben ser consideradas ilegales o ilegítimas por sus efectos adversos en términos ambientales y socioculturales, así como aquellas prácticas benignas para las cuales se deben eliminar las barreras legales. También es necesario determinar los volúmenes y valores de las especies maderables de alto valor comercial y menos conocidas que están siendo aprovechadas y comercializadas en los territorios indígenas de manera legal e ilegal para establecer la oferta de recursos forestales.Al Proyecto Captura de Carbono por su colaboración en el trabajo de campo. Al programa IGERT (Integrative Graduate Education and Research Traineeship) de la National Science Foundation of the United States, por el financiamiento del estudio. Al grupo de investigadores de doctorado de la Universidad de Idaho (USA) por sus contribuciones. A todos los indígenas de la Alta Talamanca que nos permitieron indagar sobre el manejo de los recursos naturales.BIBLIoGRAFÍA CItADA","tokenCount":"4681"} \ No newline at end of file diff --git a/data/part_3/0475931190.json b/data/part_3/0475931190.json new file mode 100644 index 0000000000000000000000000000000000000000..07c9474840ffc1bf1665d9a07df1cb3ce90bbb05 --- /dev/null +++ b/data/part_3/0475931190.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"f325c6ea419651235692fcb2fca301bc","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/500182da-2455-4f21-8411-2ad0dfc30482/retrieve","id":"208505550"},"keywords":[],"sieverID":"6a439b82-b364-4f5b-8768-11eef55e72db","pagecount":"16","content":"Academic institutions are well positioned to use a range of ICT delivery channels The agricultural sector can make good use of the private sector's creativity Using animated videos to deploy educational content to teach low-literate farmers 4-8 November 2013 Kigali, Rwanda www.ict4ag.org for inclusive agriculture the digital springboard More than mobile Guest editor Contents http://ictupdate.cta.int This license applies only to the text portion of this publication.A cross the African, Caribbean and Pacific group of states (ACP), almost 200 million people make their living directly from agriculture, most of them in sub-Saharan Africa. Many of these are smallholder farmers, representing some of the world's poorest people. Living outside urban centres, smallholder agricultural workers are hard to reach with services like agricultural extension support and formal financial services. ICTs can help to mitigate these gaps. Mobile offers a portable and relatively inexpensive communication mechanism which can be used to access information and financial transactions for previously underserved people. GSMA Intelligence estimates that almost 50% of the developing world population owned a mobile phone in the first quarter of 2015. However, mobile need not act in a vacuum. Creating mobile services that are strengthened by alternative media channels such as TV, radio and increasingly the internet can only expand the addressable market for much-needed services.There are three key areas where smallholder farmers are typically underserved and where mobile phones can play an important role.First, mobile phones can help to address agricultural workers' information deficit. Smallholders rely on traditional sources of knowledge about crops, livestock, marketing and weather, which might not be easy to access and are often not reliable.Agricultural value-added services (Agri VAS) can help to overcome this challenge. In Tanzania, for example, mobile operator Tigo, a grantee of the GSMA mFarmer initiative, delivers agronomy information alongside market prices and short-term weather forecasts through its Tigo Kilimo service. The service had around 400,000 registered users in December 2014.Mobile can also help to tackle supply chain inefficiencies: poor logistics and weak infrastructure in rural areas can cause waste of agricultural produce and other resources. Business-tobusiness (B2B) solutions like Syngenta's Farmforce allow agricultural businesses to manage the relationships and transactions with their smallholder suppliers via feature phones (SMS) and smartphones (apps), while increasing standards and efficiency of production and improving traceability through the supply chain.Finally, mobile can facilitate access to financial services. Farmers do not always have ready access to capital, which makes it difficult for them to invest in new farming technologies.Mobile financial services (MFS) can offer loans, interest-bearing savings and e-subsidies for fertilizers, which target smallholders. Mobile agriculture insurance could reduce the risks associated with agricultural production, such as changing weather patterns and harsh weather events.Driving adoption of mobile money in the rural market is a new and promising area for mobile operators, which also means that few examples of best practice are currently available in this space. However, mobile operator Vodafone are forging the way with Connected Farmer in east Africa, using M-Pesa to enable farmers to save and invest.Mobile agriculture has contributed successfully to the current developments in ICT4Ag sector. This issue's guest editors predict further impact in the sector if crosschannel partnerships in ICT4Ag projects are achieved.Benjamin Kwasi Addom (addom@cta.int) is ICT4D programme coordinator at CTA in Wageningen, the Netherlands.Daniele Tricarico (daniele.tricarico@gsma.com) is mAgri market insights manager, and Tegan Palmer (tpalmer@GSMA.com) is mAgri business intelligence manager. They both work at the GSMA in London, United Kingdom.The GSMA deployment tracker follows 124 live mobile agriculture (mAgri) services worldwide. Early mAgri services were predominantly in South Asia, with the first African services launching in 2008. The number of mAgri service launches began to increase in 2009, and peaked in 2013 with 27 mAgri services launched that year. The majority of the services in these regions are business-to-consumer (B2C) services providing information on local weather, market prices for agricultural products and information on crops and livestock.In the four GSMA focus regions (sub-Saharan Africa, South Asia, Latin America and the Caribbean) there will be an estimated 47 million potential Agri VAS users at the end of 2015. Fifty-seven percent of these users, or 27 million, are in South Asia. Sub-Saharan Africa represents close to 16 million potential Agri VAS users. Latin America and the Caribbean follow with just over four million. As mobile operators and VAS providers focus more on underserved rural areas, the number of Agri VAS users is expected to almost double, from 47 million in 2015 to over 90 million in 2020, representing growth of 14% per year in this five-year window.According to GSMA Intelligence analysis, India is the largest market globally with an addressable market of 22 million Agri VAS users in 2015.After India, the most potential lies in East Africa: Kenya, where GSMA is tracking 19 Agri VAS and Agri mobile financial services (MFS), and Ethiopia both have around two million estimated users.In ACP states, two markets to watch are Ghana and Haiti. Ghana has benefited from the presence of pan-African technology and content providers like Esoko, whose services target smallholder farmers. If more operators embrace the mobile agriculture opportunity, the country could reach close to two million Agri VAS users by 2020. There is great potential for mobile to address the poverty challenge in Haiti. Mobile penetration approaches 75% of the population and over 50% of the active labour force work in agriculture. Mobile services targeting the rural population could play an important role in increasing agricultural productivity, which to date is extremely low with cereal yield at just over one ton per hectare.GSMA's experience suggests that services are scaling more rapidly in those markets where the content ecosystem is more advanced. Public investment and public-private partnerships are becoming essential tools for extending connectivity, services and information. Partnerships between mobile operators, Agri VAS providers, content providers and government institutions, as well as agri-businesses and other value chain players, are fundamental to create these ecosystems. However, such partnerships are often complicated to broker, as different players bring different objectives to the table.Ongoing activity at the Technical Centre for Agricultural and Rural Cooperation (CTA) in Wageningen, the Netherlands to build an Apps4Ag Database reveals a wide range of ICT solutions using ICT channels outside mobile such as video, radio, web, and animations. The initiative shows the highly diverse nature of ICT applications with little coherence in their development process, resulting in huge overlaps in the services offered in some areas and leaving gaps in others. Instead of maximising their target audience by leveraging several channels, most VAS focus on the power of a single channel to reach their users.As within the mobile agriculture ecosystem, partnerships between ICT providers are not always easy: differing time scales, competition for resources, and clashes in organisational values and culture can inhibit these relationships. However, a CTA conference in October 2014 suggested that the outlook was hopeful for cross-channel ICT4Ag products. There is a willingness to collaborate between different channels to increase impact. Participants resolved to explore new ways to partner and generate learnings and insights that can be shared with the broader community.Inspiration can be taken from projects outside of ICT4Ag, such as BBC Janala. This service driven by BBC Media Action combines a TV soap opera with a mobile learning platform across all the major network operators, as well as online and via printed resources. By offering a variety of channels BBC Janala has reached 28 million users, relying on a number of valuable partnerships with mobile network operators and content providers. Brokering partnerships between different organisations can be challenging, but where it can be achieved the potential impact for end users is greater. ◀If you wish to deliver agriculture extension information to rural farmers, an audio-based solution may be your most effective option, particularly if you are trying to reach the more marginalised or vulnerable farmers. Both Literacy Bridge and Farm Radio International (FRI) have been using audio to reach farmers for seven years and 35 years, respectively. FRI delivers audio content through its network of radio station partners, while Literacy Bridge does the same through its Talking Book device, a robust audio device designed to deliver health and agriculture recordings to rural villages.Most of the world's poorest farmers have never had the chance to attend let alone complete basic education and are therefore illiterate. Not only does this mean they cannot read, but they are also unable to take notes when they have the rare opportunity to learn from an extension visit. Many literate farmers in oral cultures also prefer to learn through audio compared with video or text. FRI and Literacy Bridge both create audio recordings of expert interviews as well as peer endorsements, songs, stories and dramas. Providing the same information in a variety of audio forms helps farmers to understand and retain more than through a single format.When delivering this sort of audio content it is critical to get feedback and ideas from farmers. One of the ways FRI does this is by creating radio programmes that include a period of time for listeners to call and text-in to engage in a discussion with the agriculture experts or participate in radio polls. Literacy Bridge's Talking Books do not allow for this type of live discussion. Instead they allow farmers to record their questions and comments, which are reviewed monthly to guide future content. The Talking Book also captures usage statistics to allow Literacy Bridge and its partners to see exactly which messages are most popular and which communities are most engaged.Running a successful agriculture education programme requires more than great technology and content. FRI and Literacy Bridge both work with community listener groups to engage listeners and promote group discussion. This is also a forum for the occasional need for a visual display. However, in oral cultures, visual display is far less important for most topics than in other cultures.In some programmes, such as Literacy Bridge's collaboration with UNICEF in Ghana, Talking Books loaded with seasonally applicable content are provided to each and every household in a village for one week every month. This allows men, women, and children to listen and learn when their time allows. The approach has consistently demonstrated four to eight hours of listening per family each week. However, this type of programme has additional expenses compared to group engagement.If the majority of your target audience owns a smartphone, providing audio over smartphone along with video enhancements would be worth exploring, but there are a few challenges to this approach. Smartphones must be kept charged in villages without electricity. Smartphones also have a limited volume that most groups strain to hear in the typical outside village listening environment. But the biggest problem with smartphones today is that many organisations are trying to reach people who do not already own them, and the cost of equipping each person with a smartphone is many times the expense of either radio or Talking Books.Feature phones are much more commonly owned, but they have additional drawbacks. Mobile phone programs typically use content one minute in length. This can be enough to disseminate a concept, but is no substitute for the depth of instruction that one can achieve through a 10-or 20-minute interview or drama. There are three reasons typically given for why mobile voice content does not go much beyond one minute: the perminute cost of a voice call, the administration of the billing schemes used by mobile network operators and the usability concerns from listeners after holding a phone to their ear for more than a few minutes.In addition, while phone ownership may be relatively high across a district, one will find that the most marginalised people are the ones who do not own their own mobile phone. This is why the government of Ghana's 2010 census showed that only 11% of women in rural areas of the northern half of the country owned their own phone. Even today, many women rely on the use of their husband's phone, which inherently leads to reduced access to knowledge delivered over a mobile phone.In time, many of these issues will slowly be resolved and more and more audio content produced today for radio and Talking Books will be repurposed for mobile phones. But for hundreds of millions of people today, these realities have made radio and Talking Books a much more usable and cost-effective solution. ◀Cliff Schmidt (cliff@literacybridge.org) founded Literacy Bridge in 2007 in Seattle, United States.Bartholomew Sullivan (bsullivan@farmradio.org) is radio & ICT specialist at Farm Radio International, Arusha, Tanzania.Soon audio content produced for radio will be more efficiently repurposed for mobile phones.Given the high illiteracy rates of smallholder farmers in developing countries and their lack of access to timely and relevant information for improved agricultural productivity, development agencies have been exploring the audiovisual medium to augment the impact of extension services targeted at this group. Although broadcast television, a trusted tool of traditional extension systems, has proven reach, the viewers' ability to connect with and actually use the information beamed at them can be limited. The need to give voice to and involve the community in content production and the distribution process for extension services to be truly impactful paved the way for the participatory video approach, an approach which empowers the community to create and share the information they require.Digital Green has found that mediated screenings of localised videos can transcend the limitations of oldschool extension systems in terms of generic one-size-fits-all content and sub-optimal communication skills of the extension agents. An evaluation conducted by Microsoft Research India in 2009, entitled Digital Green: Participatory Video for Agricultural Extension found that facilitated or mediated video viewing can motivate farmers to adopt new agricultural practices for about one-tenth of the cost of traditional extension services.Localising videos is a way of encouraging communities to try new ways of treating seeds or ditching commercial pesticides. Digital Green's videos feature community members who typically belong to the same district as the viewers, demonstrating best practices in their own fields and homes, adding to the credibility of the messaging. The video screenings are mediated by trained community members who help to improve the audience's recall of the messages shared. These videos are produced on low-cost equipment by community members, so the videos are of, by and for the community.The approach goes beyond videos, encouraging the community to cocreate knowledge. Farmers are more likely to adopt solutions they are a part of. The approach must respond to community feedback, channelling data and feedback received from the community at the individual level (during video screenings) into the video production and screening and dissemination processes and overall programme performance.Along with details like name and gender, the farmers' attendance at video screenings, interests, queries, comments and any impact on their behaviours as a result of adopting a new practice or technology are recorded. The farmers share their thoughts freely, from the videos they would like to watch to the viewing experience to the challenges they face in their daily routines. This feedback is used to inform further iterations of not just the videos, but also of essential background processes such as storyboarding, the messaging or even the way a screening is organised.This community-driven content production and delivery process can be effortlessly integrated with existing public and private extension services, using functional local forums and units such as farmers' groups and women's self-help groups. Frontline agricultural and health workers who are part of existing development interventions can be trained to use community-sourced videos as job aids to change behaviours. The approach is fluid enough to converge with other ICT channels such as community radio, mobile messaging and interactive voice response (IVR) systems, laying the foundation for potential integrated ICT-supported extension and knowledge exchange systems with superior reach and depth of information on agricultural best practices. The video channel can be used to inform farmers of scheduled radio broadcasts, which in turn reinforce the practices promoted through the videos, while IVR allows farmers who have watched a video to share comments and queries, receiving a call back with relevant answers, vetted by experts.Technology in itself, though, is not the solution for development issues. It can at best magnify human intent and capability. Digital Green's approach has been successful only through partnerships with organisations that already engage with farmers, where its technology helps improve the efficiency of their efforts and broadens the participation of the communities that they work with. It is thus critical for Digital Green to identify the right organisations to partner with -those that have existing community networks and extension services at scale, are engaged with a cadre of frontline workers and provide linkages to resources required for the promoted practices. For such a communitycentric learning approach to work, it is also essential to identify and engage with key influencers, local individuals who are respected and trusted within the community, who will go on to feature in the videos as 'actors' promoting best practices or serve as mediators screening the videos and catalysing discussions which could improve behaviours impacting the community's well-being. ◀ Rikin Gandhi and Aishwarya Pillai explain how video-based learning can encourage communities to be co-creators of knowledge and not just passive recipients.Rikin Gandhi (rikin@digitalgreen.org) is chief executive officer at Digital Green in New Delhi, India.Aishwarya Pillai (aishwarya@digitalgreen.org) is deputy director of communications at Digital Green in New Delhi, India.O ne of the United Nations Millennium Development Goals is to eradicate hunger, with agriculture being a major pillar of this objective. Subsistence farmers in developing countries still lack access to agricultural information, however, a problem that is further complicated by the fact that many are low-literate learners who often speak different languages. The resources for addressing these issues, in relation to the magnitude of the problem, are miniscule. However, there are global changes occurring that may impact how knowledge can be shared with low-literate learners. The advent of Bluetooth® and video-capable cell phones, along with other video-capable devices in the global marketplace, has given rise to a variety of new strategies, including two broad-stroke approaches to develop educational content: live-action filming and animations. Even better, these approaches do not compete with each other: they are potentially highly complementary strategies to help deliver solutions.The problems of educating subsistence farmers on improved agricultural techniques are vast compared to the financial resources available. So we must find ways to involve more players in the process of creating and deploying content related to agricultural best practices. The individuals and groups in this process can be broadly identified as 'insiders' and 'outsiders' . The insiders include those who are professionally involved full-time or even part-time in international development and have financial support. The 'outsiders' include those that can assist others in their or other communities, but are not financially supported or primarily focused on international development. These 'outsiders' could be small NGOs or volunteers. The 'outsider' community is vast and has been a traditionally untapped resource. So the question is, how do we connect the 'insiders' and 'outsiders' in an efficient and cost-effective manner to create and share useful content for subsistence farmers?Animations emerge as a logical strategy to 'connect the dots' of people globally, in order to develop efficient and cost-effective content. Online interaction makes it possible to create scripts, storyboards, animations and voice-overs cost effectively in different languages. Animations can be entertaining and easily comprehensible, but most importantly they get around cultural and generational barriers. Once created, the content can be made available for organisations to use with target groups from highly divergent places, cultures and languages. In addition, content can be easily modified for new situations through online interactions of partners across the globe.Scientific Animations Without Borders (SAWBO) is an ongoing 'rethink' of how to bring together these 'insider'Julia Bello-Bravo and Barry Robert Pittendrigh outline an emerging strategy to connect local and global experts to create and deploy educational content for low-literate learners in the form of animated videos.and 'outsider' groups to benefit end users. SAWBO relies largely on expert volunteers from around the globe to make sure its animations are accurate. Once created, animations are made freely available through multiple online and offline platforms. The organisation's approach also democratises access to information by making it available to all.Diverse individuals and organisations have used these animations in their programmes and their deployment pathways. One example is a young man who lives in Burkina Faso. He downloaded animations onto his cell phone, which he then used to show the videos to farmers, who were able to understand and adopt the techniques shown in the animations.SAWBO has also worked with larger NGOs, academic institutions and government organisations to create and deploy content. The organisation's animations have also been used on TV stations. Recently, SAWBO released the Deployer App for select Android devices. It allows users connected to the internet to find and access videos from the programme's complete library of animations, download videos one at a time, and store them on their cell phones for easy Bluetooth® transfer when the user is offline and in the field.Although there is an emerging global community creating live-action and animated agricultural educational videos, the resources available to create such content are insufficient, especially if one considers the global needs of subsistence farmers. In the future, the 'outsiders' and the 'insiders' will be concentrating on ways of getting these diverse groups to work together to come up with solutions that address these needs. ◀ Julia Bello-Bravo (juliabb@illinois.edu) and Barry Robert Pittendrigh (pittendr@illinois.edu) are co-director and director, respectively, of Scientific Animations Without Borders at the University of Illinois at Urbana-Champaign, United States. The ICT4Ag sector is still very much in its early stages. We are all still learning about what works best, and that means experimenting with products and business models. As we experiment, however, we need to make sure we are planning for long-term success, which means creating business models that are both sustainable and scalable. Sustainability is about making enough money to survive -ideally this is revenue from farmers, agribusinesses, or other private sector stakeholders, and not long-term funding from donors. Scalability is ensuring there are sufficient revenuegenerating customers for your product, and that you can reach them in a cost-effective manner.Most of the products that I see in the market today can be defined as either direct-to-farmer (the majority of products) or business-to-business (a growing segment). The direct-to-farmer model was the focus for many of the first generation of ICT4Ag products -many of which were donor or NGO driven, focused more on farmer impact than on sustainability and scalability. Direct-to-farmer products are exciting because of the large potential customer base, but very few businesses have been able to translate that potential into reality, even those with clear value and low costs. I think we will see more experimentation with alternative revenue models (those that do not depend on farmers paying for the service). The models that look at monetising farmer data and integrating digital financial services are some of the most exciting.Business-to-business models targeted at agricultural business are starting to get more attention now. These businesses are often better positioned to understand and quantify the value of ICT solutions (e.g. transparency, visibility, farmer loyalty and cost of sourcing), and thus can justify paying for them. Even for ICT4Ag providers who are most interested in farmer data and farmer relationships, a B2B solution can be a great starting point -as agribusiness enrol their farmers in your platform, you are expanding your farmer user base. Per-farmer acquisition costs in this model are much lower than large-scale marketing and education campaigns.Much of the donor and NGO-driven efforts have focused on direct-to-farmer models -typically providing agronomy content, weather content, or market prices directly to farmers for a small fee or for free. Private sector players are a bit more varied -you have mobile network operators that are offering a similar direct-to-farmer content product, and are banking either on direct revenue from the product (via subscription or per-piece fees) or are looking for indirect benefits linked to their core business (e.g. more subscribers, stickier SIMs, mobile money transactions, reduced churn and increased average revenue per user). You also have private sector players using B2B models targeting businesses in the value chain -we have seen Farm Force, mFarm, Connected Farmer and others play in this space.The reality is there are very few clear winners yet in the ICT4Ag space -few businesses that have achieved scale and sustainability. I think that many of the products that eventually succeed will be the result of PPPs -private sector owning the IP/product and contributing funds, donors contributing additional funds to buy down the risk, and NGOs providing initial technical assistance and field staff.The key is to have the private sector involvement at the outset and to ensure they contribute a sufficient portion of the funding -by having skin in the game, they will be incentivised to develop and own the business model.How can business models increase the scale, sustainability and impact of ICT4Ag-enabled services? I think we need to be more creative about how we go to market. It is easy to get excited about the large numbers of underserved farmers, but they can also be a challenging customer to acquire and monetise. We need to think about other value-chains actors, particularly businesses that will more easily understand the value of ICT solutions and have money to pay, and think about how to create products that serve their needs while also providing value to farmers. If we can leverage existing market actors to register farmers (by providing them value for doing so), we can drive down our farmer acquisition costs dramatically.I am also excited about the possibilities for integrating digital financial services into ICT4Ag products. Digitising value-chain payments should be a quick-win -simply by moving existing cash payments onto mobile money or digital platforms, we can increase transparency and safety for businesses and farmers, and decrease costs of sourcing. We also drive transactions, which is a core revenue stream for mobile network operators and financial institutions. We should also look at integrating savings, credit, and insurance products that are leveraging mobile phones, as they can drive financial inclusion for farmers.We also need to think through how to monetise the data we collect on farmers. An ad-based business model is probably not feasible in most markets today, but there are other ways to monetise data, some of which could have incredibly positive impacts for farmers. If we think about sharing ag-payment data with financial institutions, we have the potential to make those farmers creditworthy and drive financial inclusion for millions. Obviously we must be vigilant about misuse and privacy concerns, and I expect the industry as a whole to actively address this. ◀Michael Elliott (melliott@tns.org) is TechnoServe regional programme director of the Connected Farmer Alliance covering Kenya, Tanzania, and Mozambique.The web is becoming an increasingly strong channel for reaching users. Studies show that there are more than one billion websites online and more than 550 websites created worldwide every single minute. Though mobile is progressing quickly, the web seems here to stay. In terms of the web channel's usability and functionality, some of the strong arguments for growth are the fact that the web is cross-platform and can be accessed from any device, as long as a web browser is available. It can also integrate and map important volumes of information on a single screen. It can resize and adapt to any screen, whether on a tablet or smartphone.It also supports the functions of intermediaries such as agricultural extension officers, international development and NGO field staff, representatives of farmer organisations as well as some progressive farmers. These intermediaries use the web to optimise their information exchange with end users, most of whom are illiterate. Their use of the web also supports the argument that ICTs are not here to replace the human aspect of extension but to complement it. Indeed, an ongoing activity at the Technical Centre for Agricultural and Rural Cooperation (CTA) in the Netherlands to build an Apps4Ag Database reveals a wide range of ICT solutions that combine the web with other channels such as video, SMS and radio.Examples of the use of web with other channels for agricultural information exchange include: • Advisory services to inform farmers about good agricultural practices. CTA, in collaboration with eLEAF, are using the web (e.g. FieldLook, a custom web portal for growers and crop management advisors) in combination with SMS to support extension services delivery for theThe web: a thing of the past, or here to stay?How relevant and useful are web tools for ICT4Ag today? Are they on their way out, or on the contrary, is the web a nucleus from which other channels spread?Gezira Irrigation Project in Sudan. On the other hand, several powerful search engines on the web are enabling easy access and exposure to a wealth of agricultural information. Searches may result in useful tools, such as Garden Planner, iCow or mFisheries.Since the creation of the first web page in the 1990s, the tools and environment used to develop web content has not stopped improving, and this has allowed a high and increasingly easier level of linkages and integration of many types of content, such as audio, video, photo and maps, and services.Thinking web, you will get more with less: more information and services from a single universal platform; more information in a single screen (no intermittent scrolling); more types of content in a unified environment and a single graphical screen. Web applications keep working: no matter what device you use, you will always get more clients, even if they are using different platforms. For now at least, the web is here to stay. ◀ Sanjay Sembhoo (sembhoo@gmail.com) is an extension officer at the Agricultural Research and Extension Unit Mauritius.Andrianjafy Rasoanindrainy (andrew.raso@gmail.com) is a systems engineer-cum-permaculture trainer and the initiator of the Ecovillage Madagascar Network.Benjamin Kwasi Addom (addom@cta.int) is ICT4D programme coordinator at CTA in Wageningen, the Netherlands.Is the web still a relevant environment for communicating agricultural information to users? Or is it doomed to collapse in the future -to be replaced by other channels? The question we raise is about the interest and relevance of web tools, applications and services (simply called web solutions) for agriculture today.Timely access to critical information and knowledge has become a necessity to sustain competitive levels of agricultural production. Traditionally, farmers have relied on extensionists, NGOs and traders to acquire agricultural know-how. However, due to the limitations of this traditional approach -the frequency, cost, quality and timeliness of interactionsfarmers' expectations are rarely met. To fill this gap, people are turning to new ICTs to provide farmers with tailormade information, mostly via the internet.This turn of events has witnessed the emergence of several agricultural information management systems (AIMSs) in the past decade. This seems to be the result of initiatives and efforts undertaken by development agencies and the private sector trying to improve production and market conditions of agricultural stakeholders.Other key factors to have triggered this development include the availability of new, cheaper devices combined with internet access. entrepreneurs highly focused and deliberate in their efforts.For entrepreneurs with a passion for agriculture, ICT4Ag is a stimulating and satisfying new and organic evolution of the agricultural sector. We have entered an era in which a variety of technologies have become available to educate and support farmers, enabling them to increase productivity and income. For an agricultural information service such as iCow, which predominantly relies on ICT4Ag over mobile phones, this has been an interesting space because partners from both agriculture and technology need a period of time to acclimatise before either can understand cross-over innovations like iCow.The iCow application uses SMS, video and web as direct channels, but the iCow model incorporates partners who use other channels for ICT4Ag, including radio and TV. The iCow platform provides a one-stop shop for farmers that enables them to build their agricultural knowledge of specific topics through service subscriptions. This reservoir of knowledge also increases their agricultural acumen and provides them with 24/7 access to experts and expertise. And the iCow platform sends farmers pertinent reminders about their livestock needs.When N'Kalô, an initiative by RONGEAD to improve the marketing of agricultural products in West and Central Africa, begun developing its information and advisory service, it had to think hard about the kind of information it was able to provide and whether people were interested enough in it to buy it. Providing agricultural prices, for example, would not be difficult, but few people are willing to pay money for agricultural prices. So N'Kalô decided to develop a new kind of market information: market intelligence.Once N'Kalô decided what to bring to agricultural stakeholders, it began to think about what the most suitable andThe private sector is well placed to contribute to the agricultural sector through its creativity and passion in partnership with other players in the sector.affordable technology would be to convey the information. You have to keep in mind that farmers, even if they know how to use mobile phones, are not used to codes and apps. So that means adapting the technology and cost to your target audience.N'Kalô partnered Orange Côte d'Ivoire to develop an easy way of proving farmers with agricultural information. They only needed to send the name of their region to subscribe to the service. N'Kalô, aware of which crops are grown in a given region, then sent them information about those crops only. After one month, subscribers receive a message with a proposal for automatic renewal.The main challenge now is to increase the network of partners to generate more information about agriculture in Côte d'Ivoire. Another challenge is mobile sector regulation. N'Kalô is currently not allowed to advertise, even though more and more services and input providers who want to take advantage of its network of 23,000 subscribers. The focus now is to improve the subscriber network.The best way to have a lasting impact in the agricultural sector is by understanding the problems facing farmers and designing simple but effective solutions to these problems. That is where the private sector can help. It knows how to make these solutions cost effective. It knows how to make them work in real time for an affordable price for the end user as well. And perhaps most crucially, these solutions have to be driven by consumer demand. ◀ ICTs offer opportunities to introduce new services and increase the reach of these and existing services to a larger population, in particular in the agricultural value chain. The private sector, driven by entrepreneurs, is well placed to convert these opportunities. In particular, it can contribute in three areas: sustainability, creativity and passion.Entrepreneurs thrive on success. Failure rarely pays. Success rests on sustainability, and sustainability results in value-added services with longevity. The value and hence sustainability of a service ultimately depends on the end user. If the product is deemed to have no value, users simply will not pay for it. In the private sector, goods and services are usually exchanged through the transfer of money. Essentially, this is no different in ICT4Ag. A farmer, like any customer, is more likely to part with cash if there is a worthwhile return. The name of the game is demand and supply of value, in ICT4Ag as elsewhere.The private sector brings entrepreneurial creativity and out-ofthe-box thinking to ICT4Ag valueadded services. Entrepreneurs seek to solve problems in unique and innovative ways. This approach, used in ICT4Ag, is creating new ways of finding scalable solutions for old problems. It is in the nature of entrepreneurs to see beyond what is immediately visible and join the dots across multidisciplinary sectors, combining technology and agriculture, to cite one example. The entrepreneurial way of thinking is different than institutional or public sector thinking, and has the potential to be a real game changer in the agricultural sector.Entrepreneurs are often fuelled by passion and persistence. This volatile mix is a great driver of innovation, and entrepreneurs generally have a longterm holistic approach to problems that they are passionate about fixing. Being answerable to bankruptcy makes Julien Gonnet (jgonnet@rongead.org) is ICT expert at RONGEAD in Lyon, France. Su Kahumbu Stephanou (su@greendreams.co.ke) is CEO of Green Dreams in Nairobi, Kenya.Agricultural extension services refer to organisations that support people engaged in agricultural production. These services play a major role in disseminating knowledge, technologies and agricultural information to improve livelihoods in rural areas. Agricultural information resource centres, agricultural shows, demonstration farms and plots are all important sources of knowledge. Investments in agricultural extension services generally compare favourably with those made in agricultural research, which suggests its importance in overall agricultural development. All the more reason, then, to continue to warm authorities to the idea of e-extension, which is a more efficient alternative to traditional extension because it maximises the use of ICTs.The Agricultural Information Resource Centre (AIRC) in Kenya is a semi-autonomous government agency. Set up in 1996, the centre's primary role was to provide agricultural information through media channels such as radio and video and the distribution of printed technical materials. The centre also provided extension skills training to farmers, extension staff and other stakeholders. Recent educational AIRC videos have been uploaded to YouTube for easy access and have attracted 2,580 subscribers and over 700,000 viewers, mainly from Kenya, Canada, the United States and India. AIRC's website also provides technical digital material and is connected to several national andThe authors discuss the public sector's efforts to introduce e-extension at the county level in Kenya.Grace Agili (graceagili@yahoo.com) is director of the Agricultural Information Resource Centre (AIRC) in Nairobi, Kenya.Stephen Rono (ronosteve@yahoo.com) works in information acquisition and processing at AIRC. international credible sources of agricultural information.The former ministry of agriculturenow the State Department of Agriculture -started an e-extension project in 2013 to use ICTs to make extension service delivery more efficient and effective. Since then, AIRC staff have teamed up to develop an e-extension training curriculum that uses Web2forFDev tools and mobile apps to adopt ICT innovations in agricultural development. The manual was then used to train frontline extension workers, and by June 2014, more than 600 staff had been trained and equipped with e-extension kits comprising a smartphone, a minilaptop and a modem.Since Kenya adopted a new constitution in 2010, agricultural extension services have been devolved to the county level, while policy formulation has been left in the hands of the national government and AIRC. AIRC conducted an assessment in March 2015 to gauge e-extension adoption in various counties. The assessment showed that county politics undermined e-readiness in these counties to adopt e-extension services.To begin with, the main agenda of political authorities in Kenya's counties is re-election in 2017. They tend to prefer infrastructure development projects -ones that are physically tangible for citizens-such as roads, cattle dips, agri-business industries and the provision of farm inputs. These kinds of 'hardware' projects are given priority over more intangible 'software' projects and technology transfer services, such as extension services and farmers' field days. The prospect of reelection means that funds are often directed to these physically tangible projects. Indeed, most of the county staff interviewed complained that they were demoralised because they lacked the facilities to implement their extension work plans. Some staff were trained in e-extension, however, and learned how to use Web2forDev tools and innovative and cost-effective means of reaching out to farmers. This approach has reduced the overall cost of extension in their respective wards. One such extension worker is Daniel Kefa, who has made a name for himself by using Twitter to communicate with extension staff and farmers. He is an agricultural officer in Nakuru county and has overcome the odds by using social media tools to provide sorely needed agricultural extension services in the area. His success has not come easy, however. He has to contend with a lack of internet bundles and the low awareness among farmers on the use of mobile apps to access extension services.The most notable change in the staff that received training in e-extension is a different attitude towards adopting ICTs in their daily work. Perhaps not surprisingly, those who did not receive training in e-extension were apathetic towards the initiative. There were exceptions. Viginia Gitau, senior chief agricultural officer in a sub-county in Nakuru county embraced the concepts of the initiative and is learning about e-extension tools from her trained colleagues. She has even started to incorporate these tools in her activities, especially during field days.The results of the assessment complement previous studies on e-readiness, which showed that implementing e-extension not only requires physical infrastructure and technical expertise but also psychological readiness. In other words, the public sector has to assess how people across the entire agricultural extension value chain perceive and respond to e-extension, and invest in creating the right mindset to welcome e-extension in their communities. ◀ Shaun Ferris (shaun.ferris@crs.org) is director for agricultural livelihoods at Catholic Relief Services, Baltimore, the United States.Shaun Ferris discusses how different technologies have transformed the way NGOs work in communities affected by poverty and injustice.T echnology is rapidly changing methods, support systems and the way NGOs work with communities and their service providers. This transformation is creating new opportunities in communities around the world, changing the day-to-day lives of many people affected by poverty and injustice, as they gain access through mobile devices to a wide range of digital information and services. Technology is also driving a new era of evidence-based decision making and accountability for development organisations enabled by faster, more accurate data collection, analysis and dissemination. Powered by technology, NGOs can strengthen project delivery, gauge impact, and improve programming across the NGOs over time.Not many local businesses in emerging economies could support new apps and ICT4D innovations 15 years ago, apart from telecom companies. Governments were just beginning to explore the benefits of technology, and so infrastructure to support the ICT community was limited. In the following decade, mobile phone usage exploded across the developing world. Inspired by the tech transformation in the industrial world, NGOs began experimenting with technology and this led to a great deal of pilot testing. Most ICT products tested in the 2000s were experimental, offered free of charge and were proof of concept rather than setting out products with a clear client base and business model.Therefore, few ideas were sustainable or ready for commercialisation. Scaling ideas with merit also proved difficult, as costs in ICT usage outside of the capital cities was often prohibitively expensive, investments were short term and ability to pay for the new services was weak. That situation is changing, as infrastructure is gaining momentum along with the strong economic growth in many emerging economies and local IT talent is emerging. Examples such as the use of voice communications, and the rapid rise of mobile money has had a profound change in the way people do business across Africa.NGOs who once attempted to build their own products are now working to establish partnerships with both external and local IT business firms. This blend of experience, capital, knowledge and localised business solutions is giving rise to a new generation of products, entrepreneurs and services. Such partnerships are also exploring new business models. Some of these are free and support critical public sector services, whereas other services that support rural enterprise initiatives are shifting from free-to fees-based models.Similarly the NGO world is also working more closely with government sectors and the private sector, to strengthen local systems to support areas such as input supply, natural resource management, early warning systems and market development. Each of these players work in their area of expertise and are increasingly linking their operations through some form of technology, which may support improved supply chain operations, better mapping, decision support tools, communications and more rapid information gathering.Catholic Relief Services (CRS), the humanitarian agency of the Catholic community in the United States, uses ICTs to improve the way it designs and implements programmes. In the agricultural sector, CRS has been building its understanding of the ICT4Ag space for the past 7-8 years.It has found that pilot testing is an essential part of the learning process, making it possible to match technologies to specific types of projects. CRS is developing tools to harness technology to help farmers and farmer extension services gather information, develop decision support tools, map their work and monitor business performance. For example, farmers are given e-vouchers which they can use to purchase seeds to help them replant their fields. Mobile devices and cloud-based services make it possible to register beneficiaries, seed vendors, provide bar-coded vouchers and report on vendor payments.CRS also works with field agents to support farmers to improve their market performance. Using Farmbook, a field-based business app that was built and tested at the request of a consortium of NGOs working in the Southern African Agro-Enterprise Learning Alliance, in this process, field agents learn new marketing and business skills using an e-learning platform. They record farmer business plans using a digital business ledger, and a monitoring tool enables them to record their activities.Real-time market prices and weather updates are provided to farmers via text messages. In central Niger, CRS reported prices of peas and beans to farmers and in the Philippines, text messages delivered coffee and cacao prices which led to a 13% gain in revenue. Access to this information helps farmers to decide when and where to sell.CRS emphasises the importance of working closely with all the actors in the technology to client eco-system, taking the time to listen and share the successes and failures that it encounters in its networks. Technology is already helping to transform the way people work in agriculture, and by further integrating digital systems into the way the sector works, better services will be delivered to communities in the future. ◀Academic institutions play a key role in addressing the challenges facing the agricultural sector.A cademic institutions play a key role in addressing the challenges facing the agricultural sector by providing science-based content and understanding how to best use the diverse range of ICT delivery channels.Every night, a billion people go to sleep hungry, and 70% of these are small-scale farmers and their families. Lack of credit and access to markets and information often lie at the core of their problems. To try and fix these problems, millions of dollars are provided each year not only to help poor farmers, but also to protect the environment and promote broad economic development.What may not always be clear is that universities like the University of California, Davis, and The University of the West Indies (The UWI) in St Augustine, Trinidad, play an enduring role in global development. Today these universities are focusing on using ICT4Ag to address the vexing challenges of food security and the environment by expanding information access and connecting small-scale farmers and fishers, vendors, markets, policy-makers and natural resource users.Universities provide long-term threads of disciplinary and crossdisciplinary research that underpins agriculture policy, best practice and programming. In many cases, they have research, education and outreach mandates at all levels. The establishment of the World Food Center at UC Davis and the rebranding of UWI's Faculty of Food & Agriculture (FF&A) with existing units such as the Cocoa Research Centre are examples of the type of institutional commitment many universities make to contribute globally. These facilities work to improve food access, reduce poverty and protect our fragile environment.Focusing on agriculture, UC Davis has worked with over 100 countries to strengthen technical, extension and information development and delivery services. Many recent initiatives involve ICTs. For example, in response to the often-observed farmer knowledge gaps, UC Davis has established online information repositories such as e-Afghan Ag (see page 11 in this issue), e-China Apple and e-Pak Ag. Indeed, 'content is king' is the catchphrase -these information assets are developed to provide credible, relevant information to those helping farmers. Several related activities have worked to understand how to best use the diverse range of possible ICT delivery channels. The principles of effective communication leading to behaviour change so developed are then shared to strengthen national capacity and information delivery.In addition to a long and rich tradition of research and extension by UWI FF&A, the university's computing and information technology (DCIT) and electrical and computer engineering (ECNG) departments have developed a variety of ICT applications for agriculture and fisheries. DCIT has applied intelligent decision support around agriculture data in the development of AgriNeTT, a mobile application for small-scale farmers to enhance crop management, for example. The Caribbean ICT Research Programme (CIRP) in ECNG has developed the mFisheries suite of mobile applications for at-sea safety, navigation, a virtual marketplace, and various information and communications services using different media. CIRP is also collaborating with the Caribbean Network of Fisherfolk Organizations on the use of multimodal web channels for regional engagement with the ultimate aim of participatory governance.We have identified successful underlying principles for ICT interventions for farmers and fishers. While these principles may not appear particularly new to those working in the ICT field, they are all essential for success. For example, programmes need to start by clearly knowing their audience's needs. Information must be widely available and is best delivered through multiple channels appropriate to the audience. The information needs to be clearly, concisely and attractively packaged so that it delivers evident and compelling value at a logical and aspirational level. Underlying all this is the need for trust -trust in the message and the messenger. Delivery is not a 'fly-in fly out' activity. Local partnerships with trusted intermediaries are critical for longterm success.Universities play a key role in the ecosystem of agents necessary to address the many challenges faced by the agricultural sector. While their unique strengths lie in areas such as teaching, training, research and analysis, operationalising interventions requires a great many other agencies whose strengths lie in complementary areas. Partnerships within the ecosystem are essential. For example, while some partners can promote joint knowledge resources at the target group level, others can facilitate greater interaction with target groups. These target groups themselves must be key partners in the provision of ongoing feedback essential to improving the tools, materials and delivery channels. Improved strategies and channels for building relationships and engagement amongst partners are essential for synergy, efficiency and increased impact. ◀ Mark Bell (mozbell@ucdavis.edu) is director of the International Learning Center, College of Agricultural and Environmental Sciences at the University of California, Davis.Kim Mallalieu (kim.mallalieu@sta.uwi.edu) is leader of the Communication Systems Group, at The University of the West Indies, St Augustine, Trinidad.F armer organisations (FOs) play a key role helping farmers in Africa and Asia to empower themselves. They give poor and illiterate farmers a voice. One thing all FOs have in common is their commitment to a common aim and their effort to maintain continuous contact with members. The effectiveness of an FO depends on its having a strong communication channel. While traditional means of communication are important, technology has a major role to play in enhancing the scale of services that FOs can offer to their members. Indeed, ICT4Ag can be a major enabler for FOs.Despite the key role that FOs play in the lives of their members, farmers still face several challenges, which, once removed, will go a long way to improving their lives. Access to timely and relevant information in villages, many of which are remote and inaccessible, is expected to empower rural citizens. Increasing awareness and knowledge through information on government schemes and welfare measures can improve the quality of living in rural areas. FOs have been striving to address these issues but often through conventional means. ICTs are a sure-fire way to complement, and in many situations surpass, the effectiveness of conventional means.FOs can deliver ICT-based services. The situation would be win-win for all: farmers would benefit from being able to use the services. FOs would find a means to engage more deeply with their constituents, while service providers would benefit from having achieved their basic objective.One recent successful initiative is the Indian Farmers Fertiliser Cooperative Limited (IFFCO). The IFFCO cooperative has more than 40,000 cooperative societies as members. IFFCO's estimated reach is thought to be 50 million farmers, who own IFFCO through the share contribution system of their respective societies, as well as the consumers of the fertilizers produced by IFFCO's various plants.Apart from distributing quality fertilizer to farmers through the cooperative societies, IFFCO also organises various promotional activities so that farmers can learn about the latest technology in agriculture.To more effectively leverage technology for the benefit of farmers, IFFCO launched a joint venture called IFFCO Kisan Sanchar Ltd (IKSL) in 2007 with Star Global Resources and Bharti Airtel. IKSL's mission is to empower Indian farmers by converting the ubiquitous mobile phone into a powerhouse of knowledge. IKSL uses mobile phone technology to provide timely agro-advisory services to farmers to improve income and yield and reduce cost and wastage. The agricultural advisories are provided as voice messages in local languages to ensure that even illiterate farmers can benefit from the services.The IKSL model is based on the idea of engaging with farmers by showing them how to use their mobile phones in two new ways. The 'PUSH' approach ensures that farmers receive the latest relevant updates. The information is provided in the form of one-minute voice messages in the pertinent localdialect. These voice messages are provided free of charge to IKSL Green Card subscribers. The 'PULL' approach enables farmers to call a helpline for extra information about the data they have been provided with or seek solutions for their specific problems. This example shows how farmer organisations have managed to effectively use ICT4Ag provided by a service provider.In Kenya, the Eastern Africa Farmer Federation (EAFF) is working on bringing together different service providers providing various mobile applications on different aspects of the different value chains for the purposes of creating complete clusters of these providers. In partnership with a private investor, EAFF have embarked on developing a virtual platform similar to the one run by IFFCO for the purpose of linking farmers to both input and output markets as well as making them access credit and insurance products tailor-made for them. EAFF has already developed a prototype and is currently planning a pilot phase that will initially start in Kenya targeting the rice and maize value chains.Once the pilot is finalised, and after its analysis and evaluation, EAFF plans to roll it out commercially with a target of more than 100,000 farmers in the first year. EAFF intends to continuously engage IKSL and is organising an exchange visit to IKSL to learn first-hand how they make their mobile platform work and use their expertise to make EAFF's platform work as well. Technology has the potential to unleash a revolution in the agriculture sector, especially because it will transcend the architecture of fragmentation that is characteristic of smallholder agriculture in Africa and Asia, and develop a financial history of the farmers, thereby making them creditworthy. ◀ Subrahmanyam Srinivasan (ssrinivasan.iksl@iffco.in) was CEO of IFFCO Kisan Sanchar in India 2009-2015.Stephen Muchiri (infoj@eaffu.org) is CEO of the Eastern Africa Farmers Federation, Nairobi, Kenya.Farmer organisations are an ideal medium for delivering ICT-based services to improve farmers' incomes, and expand their marketsThe Rudi Multi Trading Company, supported by the Self-Employed Women Association (hence SEWA-RUDI), is a marketing company in India of rural farm produce, such as spices and staples, procured directly from farmers and processed, packed and marketed by rural women. The company uses a unique supply chain model of procurement, processing, packaging and distribution for its products through a rural self-help group of women. This model has been creating substantial employment opportunities for rural women.SEWARUDI also internally rotates the rural producer groups that it uses in order to enhance the quality, capacity and efficiency of production through the use of better technology. SEWARUDI currently distributes its products to 14 districts in Gujarat, India. It sells products through a rural distribution network of women called Rudiben. This system reduces incidental expenses, increases the availability of good quality products to rural consumers, eliminates middle men and improves the livelihoods of underprivileged people in rural areas.Rudi Multi Trading and SEWA are also involved in a number of events. Ananta, for example, puts the skills and talents of poor rural female artisans under a broader spotlight, which helps these women to convert their traditional skills into a means of livelihood. KVIC, the Khadi and Village Industry Commission, is charged with planning, promoting and implementing programmes for the development of Khadi (hand-spun and hand-woven cloth) and other village industries in rural areas in coordination with other development agencies.Visit the URL below for more information on SEWARUDI's work. ➜ http://goo.gl/URy0F8The BEAM Exchange BEAM stands for Building Effective and Accessible Markets. The BEAM Exchange is a 'one-stop shop' for sharing knowledge and learning about market systems approaches for reducing poverty. By improving the impact and effectiveness of programmes that use these approaches, BEAM can help create jobs, raise incomes and improve access to basic services. BEAM uses a variety of tools, such as its website, a variety of different social media networks, workshops and events, to support practitioners in the field of development cooperation who work with business -helping them to fight poverty by making markets work better for poor people. Another aim is to tap into the strength of the growing market systems community -a global network of policy decision-makers, programme advisors, consultants and implementers -who share their professional knowledge and experiences with each other. BEAM's scope includes sectors where marketoriented strategies are still new and emerging (such as health, education, sanitation and energy services), as well as the more established sectors of agriculture and financial services. ➜ http://goo.gl/ZYvdZxThe Agribusiness Innovation Challenge is organised by ICCO, an international Dutch development organisation, and is being facilitated by Enviu and FIT Uganda Ltd.The aim is to attract innovative agri-business models that can substantially improve the quality of life of smallholder farmers in Uganda. The main focus lies on agri-tools and technologies that have already been proven in similar contexts, but which lack a sustainable business model or successful implementation in Uganda.These existing agri-businesses can address any issue in the value chain that holds back smallholder productivity and profitability in both crops and livestock. A challenge running from 29 May to September 2015 will attempt to find suitable entrepreneurs and ideas. The top 3 businesses will be awarded cash prizes to roll-out their business models to the tune of 20,000, 10.000 and 5,000 euros respectively. For more details, visit the URL below. ➜ http://goo.gl/BpIqFlDispatches from the Consom'Acteurs film festival T he Consom'Acteurs film festival held in Ouagadougou from 1 to 3 May, initiated by the Burkina Faso Association of Agricultural Journalists and Communicators (ABJCA) aimed to arouse people's interest in food and agriculture. Documentary films to arouse the interest and awareness of the people of Burkina Faso regarding issues related to food and agriculture: that is the venture initiated by a film festival called Consom'Acteurs held from 1 to 3 May 2015 in Ouagadougou. Consom'Acteurs is a contraction of two French words: consommateurs (consumers) and acteurs (actors). The concept is a vehicle for the idea that today, more than ever, each citizen of Burkina Faso must question his or her consumption in order to become a genuine contributor to the development of our country.This first edition of the festival comprised four screenings followed by discussions, four thematic panels and tasting sessions with dishes made from local agricultural products. One of the films, Paysans d'ici et d'ailleurs blues sans frontières, draws a parallel between realities experienced by farmers in two Burkina Faso villages and farmers in Luxembourg. It shows that farmers in both places go through the same hardships and feel the same attachment to the land.In the case of Burkina Faso, the film reveals that more and more young people are leaving life on the farm, which no longer appeals to them. 'I don't want my child to be a farmer. ItThe first Consom'Acteurs film festival turned food and agriculture into popular topics of discussion among young people in Burkina Faso.Inoussa Maïga (maiga.inou@gmail.com) is director of MediaProd and president of Burkinabé Association of Agricultural Journalists and Communicators in Ouagadougou, Burkina Faso. would be much better if he became a teacher or a nurse, ' says one woman farmer in the film. 'This reflects the true mentality of our parents today, of those of us who have been to school, of you journalists, and of the students. It's only when you've failed in everything else that you go back to agriculture, ' says Souleymane Ouédraogo regretfully, former directorgeneral for the promotion of the rural economy. And so this raises the crucial question: how can we make the occupation of farmer more attractive in Burkina Faso in order to attract and keep young people in the profession?In search of change Paul Taryam Ilboudo, chairman and CEO of the Société Agropastorale et de Services, says that 'farming is a job for both the present and the future. I believe that is how we can work things out. If young farmers manage to produce, be self-sufficient and have a surplus, and market their goods, then they'll be able to make money. They can use this money to improve their houses, thereby providing work for village builders, and install solar panels, which will provide work for young village engineers. It is through agriculture that we will be able to provide jobs for our young people, and that is how we will be able to pave the way for our future, ' Ilboudo added.Souleymane Ouédraogo is convinced that young people need something novel in agriculture. 'If they have to practice subsistence farming like our parents used to, young people will not turn to agriculture. Youngsters need something else. That is why we now have to accept that the world has changed and that young people need to move towards entrepreneurship. We have to create the conditions for farming to become a real business for young people, ' according to the researcher.Yennenga Kompaoré, a young entrepreneur working in the field of communication, believes that young people need more inspiration. 'We need to be inspired, to have people alongside us, opposite us, who motivate us through the pertinence of what they do, ' she says. Kompaoré never misses an opportunity to call on the people of Burkina Faso to employ their skills in the service of the rural environment. 'In my view, farming is not just a matter of being in a field with a tractor. Those who, after their studies, work in a bank, in insurance, marketing or aeronautics, who are managers in certain institutions, can all use their skills on behalf of the rural environment and small farmers.The Consom'Acteurs film festival is intended to turn food and agriculture into popular topics of discussion. This first edition was a huge success, due in large part to the public debate it inspired. For ABJCA, the gamble paid off. The association brought in 10 communication and journalism students who took part in reporting and providing on-line coverage of the event. These students and the young professionals involved in ABJCA have thus become genuine agents for change. They have been encouraged and enriched by the organisation of this festival.And that is not all. A film report and radio shows on the festival are being produced in several local languages. These tools will be broadcast as part of a campaign following the festival to provide further support of the Consom'Acteurs concept. For real change in agriculture in Burkina Faso, it is imperative that every citizen takes action, working to promote the occupation of the farmer and to encourage increased consumption of local agricultural products. ◀","tokenCount":"10581"} \ No newline at end of file diff --git a/data/part_3/0499463561.json b/data/part_3/0499463561.json new file mode 100644 index 0000000000000000000000000000000000000000..0060b4c0c21061facd0f9618c2efd3a7e13e6c90 --- /dev/null +++ b/data/part_3/0499463561.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"f15e0f6a7a5d51d50c7bba77b7dd4745","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/9cff15d9-2c58-40ea-be28-874e9083bde0/retrieve","id":"-574010830"},"keywords":[],"sieverID":"c6d0bcae-0492-4b83-84cd-7fa5bd66ba94","pagecount":"24","content":"The Sustainable Intensification of Mixed Farming Systems Initiative aims to provide equitable, transformative pathways for improved livelihoods of actors in mixed farming systems through sustainable intensification within target agroecologies and socio-economic settings.Through action research and development partnerships, the Initiative will improve smallholder farmers' resilience to weather-induced shocks, provide a more stable income and significant benefits in welfare, and enhance social justice and inclusion for 13 million people by 2030.Activities will be implemented in six focus countries globally representing diverse mixed farming systems as follows: Ghana (cereal-root crop mixed), Ethiopia (highland mixed), Malawi: (maize mixed), Bangladesh (rice mixed), Nepal (highland mixed), and Lao People's Democratic Republic (upland intensive mixed/ highland extensive mixed).The Transforming Agrifood Systems in South Asia Initiative (TAFSSA)is a CGIAR Regional Integrated Initiative to support actions that improve equitable access to sustainable healthy diets, improve farmers' livelihoods and resilience, and conserve land, air, and water resources in South Asia.Note: This document is a compilation of six extension leaflets on cultivation of different fodder crops, fodder management and use of green fodder for goat production in the Mid-Hills of Nepal.The leaflets (in Nepali language) were distributed to participants of trainings on the topic in Surkhet and Khotang districts organized by the Sustainable Intensification of Mixed Farming Systems Initiative in June-July 2023. The training participants included farmers as well as local government (ward) representatives, and agricultural/livestock technicians from the respective municipalities.Teosinte / Makaichari (Euchlaena maxicana) About the crop: Teosinte is an important summer fodder crop. It is an annual and non-legume crop like maize. The plant grows up to 3 meter high. The foliage is succulent, nutritious and contains about 8% crude protein. The recommended variety of Teosinte is \"Makaichari 1\".Teosinte is mainly grown as a summer fodder but can be cultivated throughout the year. As a summer crop it is sown in March -April, whereas as in winter, it is sown in September -October. The recommended seed rate is 1.5 kg/ropani 1 .The land should be ploughed 2-3 times, and the weeds and clots should be removed. Application of compost manure at the rate 1000 kg/ropani during the last ploughing is recommended for higher yield.Seed can be broadcasted evenly in the field or sown in rows with 50 cm row to row distance.Teosinte can be cut multiple times.• 1 st cut: ~60 days after sowing (DAS),• 2 nd cut: ~30 days after the 1 st cut (or 90 DAS) and • 3 rd cut: ~30-45 days after the 2 nd cut (or 120-135 DAS). Across the three cuts, the total green fodder yield is about 3 metric tons/ropani.To produce seed, the plant should be left to flower after the first harvesting of fodder and/or the seed sowing should be delayed by one month. Teosinte bears inflorescences and it takes about 120 days for seed ripening. The average seed yield is ~50 kg/ropani.Teosinte fodder can be used for all kinds of animals like cattle, buffaloes, and goats. teosinte is used as green fodder; it is very palatable. The green fodder can also be preserved as silage. However, being a non-legume teosinte alone doesn't meet the nutritional requirements for optimal growth and production of the animal. A mixture of teosinte and legumes like cowpea, stylo or forage-peanut should be offered in the fodder mixture at the rate of• 2/3 parts of teosinte and• 1/3 cowpea / stylo / other legumes. If the legume fodder is not available, supplementation of concentrated feed is needed, which increases the cost of feeding. Cowpea is grown successfully in warm climates in the Terai and Mid-hills of Nepal. It requires well-drained loamy soil. It does not tolerate water logging conditions as well as prolonged drought. Similarly, it does not tolerate severe cold and frost.The most popular variety of cowpea is \"Fodder Cowpea\" 2 introduced from India but not officially registered in Nepal.Cowpea can be grown both in summer and winter season. As a summer fodder cowpea is sown in May -June, whereas as in winter, it is sown in October -November. The recommended seed rate is 2 kg/ropani.The land should be ploughed 2-3 times, and weeds and clots should be removed. Being a legume, cowpea does not require a heavy dose of manure; however, for good yield compost manure at the rate 500 kg/ropani should be mixed into the soil thoroughly during the final land preparation.The seed should be broadcasted evenly in the field or sown in rows with a row-to-row distance of 25 cm. cowpea can be grown either as a sole crop or as intercrop with teosinte, sorghum, or maize.Harvesting and fodder yield: Cowpea grown as green fodder can be cut twice:• 1 st cut: ~60 days after sowing (DAS) and • 2 nd cut: ~30 days after the 1 st cut (or 90 DAS). On average the cowpea fodder yield is about 2 metric tons/ropani.When growing cowpea for seed production, sowing should be delayed by one month or the plant should be left to flower after the first harvest. The cowpea plants bear pods and take about 120 days for seed ripening. Average seed yield is ~30 kg/ropani.Cowpea fodder is liked by all kinds of animals like cattle, buffaloes and goats including pigs, fish, and poultry. Cowpea can be used as cut and carry green fodder as well as grazed in situ. However, cowpea fodder should be offered mixed with other non-legume fodders like teosinte, sorghum, maize, napier and/or straws. As it is a legume with high protein content, solo feeding of cowpea may create nutritional problems to the livestock. For the optimal animal growth and production, a mixture of cowpea and non-legumes like teosinte should be offered with a ratio of 1/3 cowpea and 2/3 of non-legume fodder crop. Oat can be grown in all geographic regions of Nepal from the Terai to the mountain regions. Further it can be grown in a wide range of soils but the most suitable are well drained loamy soils.Recommended varieties: Different varieties of oat are recommended depending on the agro-ecological region. The recommended varieties for Terai and Mid-hills are \"Kamdhenu\" and \"Amritdhara\", whereas for the high mountains the recommended varieties are \"Ganesh\" and \"Parwati\".Oat is propagated from seeds. As a winter season fodder it is sown during the months of September and October. If sown late the fodder yield may be reduced. The recommended seed rate is 5 kg/ropani.The land should be ploughed 2-3 times and weeds and clots should be removed. To ensure good germination sufficient moisture is needed.The seed can be broadcasted evenly in the field or sown in rows with a row-to-row distance of 25cm. Oat can be sown as a solo crop or in mixtures with other winter legumes like vetch or lucerne (alfalafa).Oat as a fodder crop is ready to harvest 50-60 days after sowing (1st cut). A second cut can be harvested after about one month from the first cut. The total green fodder yield of oat is about 1 metric ton/ropani.If oat is grown for seed production, the green fodder should not be harvested. When the kernels are ripe, the whole plant should be harvested and threshed for seed collection. The seed should be sun dried and stored in a dry place. The average seed yield is ~40 kg/ropani.Oat can be used as fodder for all kinds of animals like cattle, buffaloes and goats and sheep. It can be used as green fodder or can be preserved as a silage or hay. Being a non-legume oat alone doesn't meet the nutritional requirements of the animals. For an optimal growth and production, a mixture of oat fodder and legumes like vetch, stylo or forage-peanut should be offered. The ratio of the mixture should be 2/3 parts of Oat and 1/3 parts of the legume crop. If the legume fodder is not available, supplementation of concentrated feed is needed, which may increase the cost of feeding. Climate and soil: Vetch can be grown in all geographic regions of Nepal from the Terai to the mountains up to an altitude of 2500 m above sea level. The most suitable soil is well drained loam.Agricultural Research Council (NARC) in 2017, is a suitable variety of Vetch for Terai and Mid-hills. The usual seed rate is 1 kg/ropani.As a winter season fodder vetch is sown during the months of September and October.The land should be ploughed 2-3 times and weeds and clots should be removed. Adequate moisture in the field during sowing is crucial for good crop establishment.The seed is to be broadcasted evenly or sown in rows with 25 cm distance between the rows. Vetch can be sown as a solo crop or mixed with other winter non-legumes like oat.Vetch is ready to harvest 50-60 days after sowing. A second harvest can be cut about one month after the first cut. Total green fodder yield is ~1 metric ton/ropani.For seed production, the fodder should not be harvested. When the seed pods ripen, the whole plant should be harvested and threshed to collect the seed. Average seed yield is ~40 kg/ropani.Vetch fodder is liked by all kinds of animals like cattle, buffaloes, goats and sheep including pigs and fish. Vetch can be used as green fodder or can be preserved as silage or hay. As Vetch is a legume with higher protein content, solo feeding of may create nutritional problems to the livestock. Thus, it should be offered mixed with other non-legume like green oat fodder, napier and/or straws, The optimal ratio is 1/3 of vetch and 2/3 of non-legume fodder crop. Napier grass (Pennisetum purpureum)About the crop: Napier grass is a perennial fodder similar to sugarcane. Once planted it gives green fodder yield up to 8-10 years. napier is a high yielding nonlegume fodder crop, that contains about 8% crude protein.Napier requires warm climate and can be grown in from the Terai to the mountain regions of Nepal. In the mountains, during the cold season, the crop remains dormant and when temperature rises, the plants start to re-grow again. The most suitable soil is well drained loam. Napier can be planted on the bunds of fields and ponds, terrace risers, riverbanks, roadsides, and other waste lands.The recommended variety of napier for the Terai and Midhills is \"Hathigans-1\". Recently a hybrid giant napier (also referred to as Super Napier) variety called \"Packchong\" has been introduced in Nepal from Thailand and is increasingly popular among the farmers.The best season for planting napier is the rainy season during the months of June -July. Where irrigation is available, napier can be planted throughout the year.The land should be ploughed 2-3 times and weeds and clots should be removed. Napier is a heavy feeder, thus a dose of compost manure of 1000 kg /ropani should be applied thoroughly in the field during the last ploughing. Planting method: Napier is propagated vegetatively via stem cuttings (or alternatively also via root spitting):1. The stem cuttings (also called setts) are harvested from the mother plants by cutting mature branches with 3 nodes.2. The setts are planted in the prepared seedbed at a 45° angle; 1 m apart from each other. While planting, two nodes have to be buried under the soil and one node has to remain above the ground. A total of 2000 setts /ropani are required.Napier is a multi-cut species that can give up to 8 cuttings a year. The first harvest of the green fodder can be harvested three months after planting. While harvesting, the stems should be cut 15 cm above the ground, so that the plant produces rhizomes from the basal parts. The subsequent harvests can be cut approximately every 45 days; in this way napier can be harvested up to 8 times in a year, however this depends on availability of water for the plant to grow. Napier is a high yielder that can give up to 10 metric tons of green fodder per ropani of land. Hybrid napier varieties are higher yielding than common Napier.Napier can be used for all kinds of animals like cattle, buffaloes, and goats. It can be used as green fodder or preserved as a silage or hay. Being a nonlegume Napier alone doesn't meet the nutritional requirements for optimal animal growth and production. A mixture of napier and legumes like stylo or forage-peanut should be feed. The ratio for the mixture should be 2/3 parts of napier and 1/3 stylo or another legume. If the legume fodder is not available, supplementation of concentrated feed is needed, which may increase the cost of feeding.Other perennial fodders like Seteria, Broom, etc. can be cultivated in a similar way to napier grass. Recommended variety and seed rate: \"Palpa Stylo\" is the recommended variety.The usual seed rate is 250 g/ropani.Sowing season: Under rain-fed conditions stylo is to be sown in the months of June -July. Where irrigation is available, it can also be sown in March -April (summer) and September. -October (winter).The land should be ploughed 2-3 times and weeds and clots should be removed before broadcasting the seed. As a legume, stylo does not need additional manure. If cultivated in slopy, barren, infertile, and/or afforestation sites, instead of ploughing the entire area, the most suitable sites can be selected as small patches of convenient sizes. The seed bed can be prepared using hand tools before broadcasting the seed.Stylo can be cut up to 4 times per year.• 1 st cut: ~70-80days after sowing (DAS),• 2 nd . 3 rd and 4 th cut: ~45 days after the previous cut Across the four cuts, the total green fodder yield is about 5 metric tons/ropani. Due to its deep root system, stylo remains comparatively green in winter when the native grasses dry out.For seed production, after the first harvest of green fodder, the crop should be allowed to set seed. When the seed is ripe it can be collected in a bucket by shaking the branches with a small stick; alternatively, the whole plant can be harvested and threshed. Stylo produces ~10 kg of seeds per ropani.Stylo fodder can be used for all kinds of animals like cattle, buffaloes, and goats. It can be used green fodder or can be preserved as a silage or hay. The plant residue after seed collection is also very nutritious and can be offered to cattle and goats. Like for other legumes stylo fodder should be offered mixed with non-legume fodder like napier and/or straws, as solo feeding of may create nutritional problems to the livestock. For the optimal animal growth and production, a mixture of 1/3 stylo and 2/3 of non-legumes should be feed.Other perennial fodders like Desmodium can be cultivated in a similar way to stylo. About the crop: Ipil-ipil is a popular leguminous fodder species. The foliage of this tree is highly nutritious and contains 27-34% of crude protein.Ipil-ipil is a tropical -sub-tropical tree species, suitable for the Terai and Mid-hills of Nepal.The best season for sapling transplanting is June -July. If irrigation is available, the saplings can be transplanted in any season of the year.The recommended species for Terai and Mid-hills is \"leucocephala\", while for the high hills it is \"diversifolia\". The Ipil-ipil seeds or seedlings are planted maintaining about 250 plants per ropani keeping them at least one meter apart. About 250 gm seed is adequate for one ropani depending on germination rate.For normal cultivation, the land is ploughed 2-3 times and weeds and clots should be removed. As a legume, Ipil-ipil does not need additional manure. If Ipil-ipil is planted in barren and slopy land, patch plantation in pits is recommended.Planting methods: Ipil-ipil is propagated from seed as well as saplings.During the rainy season ipil-ipil can be sown directly in the field. As the seed coat is hard, hot water treatment 3 is recommended to ensure good germination. Transplanting 3-5 months old nursery raised saplings is recommended to ensure a good plant stand. Plant (or seed) spacing: one meter between plants and 1-2 meters between rows; on slopy land the saplings should be planted in a pit of about 30*30*30 cm. Ipil-ipil can be successfully established on bunds, terraces, roadsides, riverbanks, barren, infertile, and slopy land as well as afforestation sites.The foliage of ipil-ipil can be harvested starting from a tree age of nine months, once the plant is ~1.5 m tall. Thereafter harvesting of foliage can be performed every 45 days; thus, an established ipil-ipil crop can be harvested six times a year. Ipil-ipil has a high coppicing and regeneration ability, the production of foliage is higher in coppiced plants than those left to grow naturally. Under well managed conditions with good soil fertility and assured irrigation, ipil-ipil can give up to 25 metric tons of green fodder per ropani in a year.Ipil-ipil plant start to bear flowers at the age of six months and the seed pods mature within a year. Ipil-ipil bears new flowers simultaneously with the ripening of seed pods. Collect ripe seed pods manually to avoid that they burst and seed scatters. On an average an Ipil-ipil plantation can produce 10 kg/ropani of seed.The foliage of Ipil-ipil can be used for all kinds of animals like cattle, buffaloes, and goats. However, it contains a secondary substance known as Mimosine, which may be harmful to young animals and sheep. Ipil-ipil can be used green or in the form of powdered dried leaves, mixed with gruels. Like other leguminous crops Ipil-ipil foliage should be offered mixed with non-legumes at a ratio of 1/3 Ipil-Ipil to 2/3 non-legume crop (e.g. napier grass). Its higher percentage of protein may create a nutritional problem to the livestock if feed on its own. About the crop: Flemingia, known as \"Bhatmase\" in Nepali, is a popular leguminous fodder tree. The foliage is highly nutritious and contains 15-24% of crude protein.Flemingia requires warm climate and can be planted in the Terai and Mid-hills of Nepal. The growth of flemingia is vigorous when planted along irrigation channels or the bunds of fishponds as it requires adequate moisture to thrive.The best season for transplanting flemingia is in the rainy season during the months of June -July. If irrigation is available, saplings can be transplanted in any season of the year. Alternatively, flemingia seed can be sown directly in the field.The common flemingia variety is used as a fodder crop. A total of 250 saplings or 250 gm of seed is required for one Ropani of land.Normally the land is ploughed 2-3 times and weeds and clots should be removed. However, if flemingia is planted in barren and slopy land, patch plantation in pits is recommended.Flemingia is best propagated by planting saplings. The saplings are grown in the nursery and are ready for transplanting when they reach ~10-12 cm height within 45 days from sowing. Plant (or seed) spacing: one meter between plants and 1-2 meters between rows; on slopy land the saplings should be planted in a pit of about 30*30*30 cm. Ipil-ipil can be successfully established on bunds, terraces, roadsides, riverbanks, barren, infertile, and slopy land as well as afforestation sites.Like Ipil-ipil, the foliage of flemingia can be harvested starting from a tree age of nine months, once the plant is ~1.5 m tall.Thereafter harvesting of foliage can be performed every 45 days; thus, an established flemingia plant can be harvested six times a year. Flemingia has a high coppicing and regeneration ability, the production of foliage is higher in coppiced plants. Under well managed conditions with good soil fertility and irrigation, flemingia can give up to 25 metric tons of green fodder per ropani in a year.Seed production: Flemingia starts bearing flowers at the age of six months and seed pods mature within a year. Average seed production is about 10 kg/ropani.Flemingia foliage is used as fodder for all kinds of animals like cattle, buffaloes, sheep and goats. It can be used green or in the form of powdered dried leaves, mixed with gruels. As for other leguminous crops, flemigia foliage should be offered mixed with non-legumes at a ratio of 1/3 flemigia to 2/3 non-legume crop (e.g. napier grass). Its higher percentage of protein may create a nutritional problem to the livestock if feed on its own.Silage Why producing silage.Green fodder is the most ideal feed for cattle and buffalos, but it is not always available in sufficient quantities throughout the year. In the absence of green fodder, cattle and buffaloes are often fed with paddy & wheat straw, which are low quality feed, while still quite pricy. In the absence of green fodder or fresh tree foliage, conserved forage is a good alternative to ensure appropriate nutrition of livestock especially during the dry season.One way to conserve green fodder is by producing silage. When making silage the green fodder is conserved in a succulent stage without affecting the nutritional value of the fodder. Recently, in Nepal, silage is becoming popular among commercial dairy farmers as it is cheaper and more nutritious than paddy straw.a) Suitable crops:The most suitable fodder crops for silage production are maize, teosinte, sorghum, napier grass and other non-leguminous crops, which are sweet in taste and have a high carbohydrate content. Legume fodder crops like berseem and vetch, which have high protein content, are not suitable for silage production. Further, fodder crops with hollow stems like oat are not suitable either. b) Harvesting stage of fodder:To produce silage the crop should be harvested at flowering stage, as this is when nutrient content is optimal. Silage quality is low when made from fodder harvested when mature due to its high percentage of fibre content. c) Wilting of fodder:To obtain good quality silage the green fodder should contain 60-65 percent of moisture. As freshly cut green fodder contains a higher amount of moisture (80% or more), after harvesting the fodder should be wilted for 4-5 hours in the sun. Important: The chance of decay of the produced silage is high if the moisture of the fodder is too high. d) Chaffing of fodder:The fodder should be chopped in pieces of about 2-2.5-centimetre length with the help of Chaff-cutter or fodder chopper. e) Containers for silage production:To make silage a special container is required to create airtight conditions for the chaffed fodder; such a container is called \"Silo\". A silo can be made in a soil pit, concrete trench, metal tower, or plastic bags. i.A pit silo is made in a field, close to the cattle shed, the site should be well drained compact soil and free from rainwater runoff. Size: 2 meter deep by 2 meter wide, while the length can be adjusted according to the need. One cubic meter of pit silo contains about 400 kg of green fodder. Fermented silage contains only half the moisture of fresh green fodder; thus 10 tons of green fodder yield 5 tons of silage (=~12.5 cubic meter; for which the pit length would have to be a little more than 3m). The pit silo is to be layered from all sides with plastic (50-micron thickness) prior to filling and covered with it too. ii.A trench silo is made of a concrete trench erected in the field. Size: 2-2.5 meter wide by 2 meter deep; with the length adjusted according to the need. The trench silo is to be covered with plastic (50-micron thickness). iii.Plastic bag silo: Plastic bags of 50-micron thickness of the preferred length are used for silage production. f) Filling of the silo and fermentation of the fodder:Independent from which type of container is used to produce silage, the chaffed fodder is packed into the pit, trench, or bag and compressed to remove all air and create anaerobic conditions. The silo should then be closed tightly to prevent any air and sunlight to enter otherwise the silage will spoil (rotting, decomposing). Good compression of the fodder is crucial for producing good quality silage. g) Completing the fermentation and silage quality:The fermentation process requires three weeks. Thereafter feeding of the silage can start. Be careful to always close the bag or silage pit tightly, after removing the required amount for feeding, to minimize air entry. As long as it is kept airtight silage can be stored up to one year. Good quality silage has an acidic taste, an alcoholic aroma, is green in colour and pH is 3.5-4.2.Almost all nutrients found in the green fodder are conserved in the silage. Silage is consumed by all kinds of livestock; it can be fed to all kind of ruminants as an alternative to green fodder or dry plant residues. Up to 50% of the diet of high yielding dairy cattle or buffalo can be covered by feeding silage, that is about 20 kg of silage per day. Never feed spoiled (foul smelling, black in colour or mouldy) silage. Hay is the dry form of green fodder; it is a way to preserve and store the fodder for use during times of shortage. Traditionally, hay is prepared in mountain regions from native grasses to store fodder for the wintertime. This hay is called \"Gajyo\" in the local language.To produce hay the green fodder is harvested, dried and thus conserved. In this way the nutrient content of the green fodder is concentrated \\ as the moisture content of the green fodder is reduced to less than 15 percent during drying. As it is dry, hay can be stored for a longer period.The following points need to be considered when making hay.Hay can be prepared from all kinds of forage species, however, fodder crops with soft and hollow stems are most suitable for hay making. Further leguminous crops that cannot be conserved as silage but are crucial for a balance diet of the livestock should be conserved as hay. if it is not possible to always have some fresh green fodder of these crops. Fodder crops with thick stems are not suitable for hay production. A good and nutritious hay can be made from mixed fodder species for example oat and vetch. Oat is rich is carbohydrate and the vetch (legume) is rich in protein.Goats are herbivore animals, feeding on grasses and foliage. They can survive and reproduce even with low quality feed. The stomach of the goat has four chambers, one of which contains rumen bacteria, these rumen bacteria can digest low quality fibrous food and convert into essential nutrients required for physical growth and production.Traditionally, goats are raised grazing on fallow cropland and forest, feeding on natural grasses and tree foliage. Most of these native herbaceous species are non-legumes and are low in nutritional value. These forage species grow fast within a short period, and contain a higher percentage of fibre, with low protein percentage (6% or lower).Similarly, local fodder tree species grow slowly, are low yielding in edible foliage, and contain various kinds of secondary substances too. The overall feed value and the digestibility of these foliage is low. Thus, goats raised under traditional systems, grow slowly, with low production.To meet the optimum growth rates and body weight gain, local goat herds can be supplemented with additional grains like maize, soybean, and grain by-products. On the other hand, the use of food grains and pulses as supplementary feed for goats competes with human food security, increasing the production cost too. As an alternative goats should be raised on fodders, which are nutritious, much cheaper and have the potential to grow successfully even on degraded land such as stylo, desmodium, ipil-ipil and others. An experiment carried out to estimate the body growth rate of local goats found that a herd raised on native foliage gained body weight at a rate of 45 g/day (16.4 kg in a year). The same goat herd when fed with nutritious fodder legume gained body weight at a rate of 100 g/day (36.5 kg/year) (McTaggart & Wilkinson, 1981 4 ). This shows that the body weight gain of local goats can be doubled if nutritious fodder is offered. Green fodder crops are the most nutritious and economical fodders for goats and other ruminants. Different fodder species vary in nutritional value; non-legume grass (like oat, teosinte and napier) contain 8-9% protein, whereas legume fodders (like cowpea, vetch and stylo) contain 16-24% protein, with a digestibility (TDN) of 70-75%.The market price of the green fodder is Rs 2-3/kg depending on the type. On dry matter basis, 5 kg of green fodder is equivalent to 1 kg of dry matter (average moisture percentage is 80% in green fodder); thus, 5 kg of green fodder worth Rs 15 is equivalent to 1 kg of concentrated feed 5 (worth Rs 100). Generally, goats and other ruminants do not require supplementary feeding if green fodder is offered in a balanced mixture of legumes & non-legumes (1 part of legumes and 2 parts of non-legumes) without reduction in body weight. Nutritious fodder can be grown on the farm. Table 6.1 summarizes potential fodder crops for goats in different agro-ecologies of Nepal. Goat production based on green and nutritious forage is the most economical, healthy, profitable, and sustainable practice. The green fodder supplies all essential nutrients required for animal growth and production. A balanced diet enhances body growth, improves meat quality, increases milk yield, improves reproduction, and ensure good health.Area required for fodder-based goat production.An adult local Khari goat requires one kilo of dry matter per day, which is equivalent to 5 kg green fodder. Thus, an adult Khari goat requires about 2 metric tons of green fodder per year. Cultivation of mixed fodder crops in one ropani of land can yield ~7.5 metric tons of green fodder and browse materials (Table 6.2). For the cultivation of fodder, the 5 Concentrated feeds are prepared in factories mixing grain by-products like rice/wheat brans, maize flour, soybean cakes, fish meal, minerals, and vitamins. Most of the raw materials needed for these feed mixtures are imported to Nepal from overseas; for example, 60-70% of maize, 90-100% of soybean cakes, and fish meal are imported. This concentrated feed, contain 14-16% protein, and 65-70% Total Digestible Nutrients (TDN). The present market price for this feed is Rs. ~100/kg. About 250 g of feed/day for an adult goat.","tokenCount":"4993"} \ No newline at end of file diff --git a/data/part_3/0522694449.json b/data/part_3/0522694449.json new file mode 100644 index 0000000000000000000000000000000000000000..6eedd918abeaef1a56fd5301701af8e7a70900d2 --- /dev/null +++ b/data/part_3/0522694449.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"ce60e1ec639a9f9259a265573480eaf5","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/1f221097-cdfb-46a4-928b-d5b05be8ab88/retrieve","id":"-1730008424"},"keywords":[],"sieverID":"451b69ee-fdab-43f8-8bb7-830b8564b79a","pagecount":"25","content":"Vector: Citrus greening disease Only an estimated 2 to 6% of all cargo entering a country can be effectively screened (Work et al., 2005Establishes an area as \"free from\" a given P&D.Trade and quarantine purposes.Detects and diagnoses all pests, not just those that are regulated. Increase coordination in high-consequence disease detectionThe GSS would function though five interconnected networks (i)Diagnostic labs network• Promote and extend standardized diagnostic protocols already used by the regulatory sector (IPPC),• Network diagnosticians with regional experts to promote faster and more accurate results and standardized information management and reporting.• Coordinated by \"regional hubs\" that support the \"spoke\" diagnostic labs in a region, focusing specifically on diagnostic labs and extension services in LICs.• Contribute to update and coordinate existing standard operating procedures for diagnostics, sampling methods, and surveillance approaches.• Regional hubs located at six CGIAR Centers in collaboration with RPPOs and the IPPC, to facilitate consensus with regional partners.Germplasm Health Units located at 11 CGIAR centers across the globe ","tokenCount":"161"} \ No newline at end of file diff --git a/data/part_3/0538017551.json b/data/part_3/0538017551.json new file mode 100644 index 0000000000000000000000000000000000000000..c8ac8b83014c389fddd2aeb78743d579ca620e88 --- /dev/null +++ b/data/part_3/0538017551.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"e58c868725a0a063dd74f7a6e87caada","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/2af249c9-abac-4274-8fec-0ba448c5d32d/retrieve","id":"1171811425"},"keywords":["FAO)","Namayani Rapey Edward (Pastoral Women's Council","Tanzania)","Mounir Louhaichi (ICARDA","Tunisia)","Pius Loupa (COPACSO","Uganda)"],"sieverID":"9108949a-b03a-47a5-8cfb-576ecfa8ec3d","pagecount":"110","content":"Pastoralists was produced by a team led by the author and secretariat of the United Nations Convention to Combat Desertification (UNCCD), in collaboration with supporting and contributing partners, and in consultation with key stakeholders and experts. It was made possible through the generous financial support of the European Union.GLOBAL LAND OUTLOOK Thematic Report on Rangelands and Pastoralists Preface Pastures, meadows, and rangelands are more often perceived as resource and land frontiers that have yet to be exploited -and are of little value until they are transformed by human hands. The term \"development\" is often taken to mean human action, agricultural development, destruction of natural habitats, draining of wetlands, or urban development. Rangelands are often referred to as arable land, a sign that planners see them as better \"developed\" when transformed than when left in their natural state.When we destroy a forested area, we talk about deforestation. Seeing a 100-year-old tree fall rightly generates a great deal of emotion. On the other hand, the conversion of rangelands -even those that are several hundred years old -is done in \"silence\" and generates little public reaction. Rangelands are as little appreciated as their users are integrated into our societies. Marginalised, pastoralists and livestock breeders find it hard to influence development policies. They are voiceless, powerless, and generally, a minority in the political and administrative machinery. Although estimated to number half a billion souls, they are sometimes classified as indigenous peoples or as societal outsiders.Rangelands are extensive ecosystems that provide biodiversity and support rural livelihoods, yet they are threatened by land degradation, climate change, and land conversion. Their importance cannot be overstated in our collective pursuit of sustainable development and planetary stability; however, they have long been underappreciated in global environmental discourse.Therefore, I am delighted to introduce the Global Land Outlook thematic report on rangelands and pastoralists. It reflects our commitment to reduce and reverse desertification and land degradation, and build drought resilience through sustainable land management that can improve the well-being of millions of people worldwide. As part of the UNCCD's ongoing efforts to support Sustainable Development Goal (SDG) 15 and Land Degradation Neutrality (LDN), this report aims to set a solid foundation for sustainable management and restoration practices in close collaboration with the pastoralists and communities that reside, manage, and depend on rangelands. It showcases the importance of respecting pastoral heritage, cultures, and traditions, and highlights their role in protecting and restoring rangeland resources for current and future generations.By recognising the intrinsic value of rangelands and the irreplaceable role of pastoralists in preserving them, we are acknowledging the interconnection between ecosystem and human health and well-being. Responsible land governance, smart and targeted investments supported by policies and measures that value and protect rangelands and their communities are vital. Healthy, well-managed rangelands help combat desertification and climate change while delivering food, water, shelter, and economic opportunities. Sustainable rangeland management practices enhance resilience and the capacity of communities and ecosystems to withstand the pressures and shocks of global change. As we witness the alarming decline of species worldwide, the preservation of rangeland biodiversity is integral to our broader nature conservation efforts.In anticipation of the International Year of Rangelands and Pastoralists (IYRP) in 2026, this report serves as a catalyst for global awareness and action. It analyses numerous case studies and good practices from around the world, drawing on the experience and lessons learned, and advocates for a new paradigm to inspire governments, donors, and other stakeholders to prioritise rangeland health in cooperation with local communities. Through these collaborative efforts and a commitment to shared responsibility, we can preserve these rich cultural landscapes for the benefit of people, nature, and the climate. In 2022, the United Nations declared 2026 the International Year of Rangelands and Pastoralists (IYRP) and named the Food and Agriculture Organization (FAO) as the lead UN agency for its implementation. The IYRP aims to raise awareness and advocate for healthy rangelands and sustainable pastoralism, and to promote capacity building and responsible investment in favour of the pastoral livestock sector.The idea to commemorate rangelands and pastoralists was spearheaded by Mongolia in collaboration with the International Support Group (ISG). Thanks to Mongolia's vision, we have an opportunity to redefine the narrative surrounding rangelands and pastoralist communities, and to collectively shape a sustainable future for our planet. As the Co-Chair of the ISG for IYRP2026, I view the GLO Thematic Report on Rangelands and Pastoralists as among the first steps towards these aims.By shedding light on the challenges we face in preserving and managing rangelands globally, and recommending ways to help alleviate and address them before it is too late, this report offers policymakers, practitioners, and communities alike a pathway to support the well-being of rangelands and pastoralist communities and cultivate a sustainable future.Pastoralism has a much lower overall environmental footprint than other forms of livestock production, as it works with nature not against it. But its share of the global market for meat and milk products is far outstripped by intensively farmed operations. Efforts are underway to reduce the environmental footprint of intensive livestock farms, but unfortunately all too often the pastoralist is also thrown into the same policy basket as the intensive farmer. The IYRP aims to unpack this basket -to show that pastoralists and their rangelands are different and can be even more sustainable with the right approaches to dedicated and targeted policies and investments.The IYRP aims to raise awareness as well as encourage more knowledge generation, building on the traditional and local knowledge of pastoralists. Already well in advance of 2026, the ISG, consisting of over 300 organisations and associations, has created new scientific evidence and global maps, and established platforms for cooperation. It recently released a Science Review of Land Degradation Neutrality that complements and strengthens the findings and recommendations of the GLO report and offers positive policy options at national and international levels that could have immediate impact.• Facilitate women-led, women-driven, and women-only initiatives, groups, and institutions (along with mixed gender ones) to ensure that women's voices are heard and respected -and to activate their contribution to all dimensions of sustainable development in the rangelands.• Establish trusted institutions and mechanisms to manage wildlife and resource conflicts, resolve territorial and land tenure disputes, reduce inequalities in access and benefit sharing, and negotiate trade-offs and leverage synergies for the benefit of rangelands, their communities, and society-at-large.Economic Dimension: National and sub-national authorities can take measures to support the economic viability of extensive livestock production and the livelihoods they support through flexible long-term investments and incentives, including context-appropriate strategies and programmes that link markets and value chains to sustainable rangeland production systems, and support efforts to:• Create innovative economic and financial mechanisms that are accessible to rangeland stakeholders, incentivise good management practices, provide decent work, stimulate market participation, and increase investments in sustainable pastoralism from public and private sources while avoiding adverse consequences for rangeland communities.• Develop market and value chain strategies and action plans that support economic livelihoods and income diversification -and expand innovative and profitable opportunities for rangeland communities engaged in extensive livestock production.• Promote adaptive investment and risk management tools, such as livestock and drought insurance, resource pooling and sharing, and community credit schemes, to better manage risks and uncertainties in a creative but economically sound manner.• Conduct economic valuations of rangeland ecosystem services to better understand their contribution to people, nature, and climate, to help inform rangeland policies, planning and programmes, and to attract donor funds, private sector investments, and public sector allocations for sustainable rangeland management and restoration. GLOBAL LAND OUTLOOK Thematic Report on Rangelands and PastoralistsRangelands play a central role in achieving Land Degradation Neutrality (LDN) and contributing to local, national, and global sustainability agendas. Rangelands operate as complex social-ecological systems with critical values, processes, goods, and services. 1 Rangelands and their host ecosystems (e.g., drylands, grasslands, savannahs) have co-evolved with human communities whose food security, livelihoods, and cultural identity directly depend on the resources and opportunities that they provide. 2 The United Nations designated 2024 as the International Year of Camelids (e.g., camels, llamas, alpacas, vicuñas, guanacos), a way of life for millions of pastoralists in dryland and mountainous rangelands around the world. Subsequently, the United Nations declared 2026 the International Year of Rangelands and Pastoralists (IYRP) to raise awareness and promote increased investment in the sustainable management and restoration of rangelands, while recognising and supporting pastoralist communities and their significant contribution to sustainable development. 3 The IYRP designation underscores the importance of healthy rangelands and sustainable pastoralism to achieve the Sustainable Development Goals (SDGs), specifically target 15.3 to halt desertification and reduce land degradation supported by national LDN commitments under the United Nations Convention to Combat Desertification (UNCCD). Healthy rangelands are also critical to fulfil the commitments and targets under the Convention on Biological Diversity (CBD) and the United Nations Framework Convention on Climate Change (UNFCCC).As part of the global effort to combat desertification, land degradation and drought, the UNCCD's Global Land Outlook Thematic Report on Rangelands and Pastoralists (\"the report\") puts forward an integrated conceptual framework that is aligned with the LDN approach 4 and offers flexible pathways to improve rangeland conservation, management, and restoration outcomes. The case studies presented in the report point to the need for greater policy support, increased investment, and partnerships at all levels and across all relevant sectors.The report focuses on the relationship between rangelands and their human communities, most notably pastoralists, but also other land users that manage rangeland resources sustainably under a purposeful and regenerative management approach. The underlying premise is that this approach can be scaled up and out to protect rangelands and their functions, 5 as well as to accelerate progress towards many SDG targets, 6 Global Biodiversity Framework (GBF), 7 United Nations Decade on Ecosystem Restoration 2021-2030, 8 and the Paris Agreement.The report explores the complex environmental, social, and economic dimensions that link rangelands and local communities. It describes the important role and untapped potential of pastoralism and extensive livestock management systems to contribute to a just transition, climate resilience, and more equitable rural development, recognising that many of the challenges confronting rangelands originate beyond local communities and are not under their control.Drawing on case studies submitted from around the world, the report offers new perspectives on how pastoralism can contribute to more effective rangeland governance and stewardship and examines the potential for replicability and scalability. It draws on a diversity of approaches (e.g., territorial, ecosystem, cultural) and initiatives (e.g., global, national, local), supported by policy, implementation, and investment frameworks, to conserve, sustainably manage, and restore rangelands.The report also reflects on lessons learned to improve the design, planning, implementation, and finance for future rangeland initiatives. The relationship between rangeland health and management practices is addressed with a Driver-Pressure-State-Impact-Response (DPSIR) perspective, analysing both positive and negative impacts as well as addressing synergies and trade-offs. It concludes that local, multi-actor, transdisciplinary, adaptive, and inclusive approaches can be effective in improving the health and productivity of rangelands and safeguarding the livelihoods and cultural values of their communities.This first chapter provides an overview of the report, its theory of change, and key definitions and explanatory notes.The second chapter aims to characterise rangelands, pastoralism, and the challenge of environmental degradation by analysing the drivers and responses within an enhanced conceptual framework to guide strategies and actions. Drawing on case studies, scientific literature, and other knowledge sources, the third chapter offers a historical perspective and reflects on the lessons learned to improve the quality and performance of rangeland and pastoralist projects and programmes. The fourth chapter includes snapshots for 10 regions of the world which are illustrated with case studies at different scales. The fifth chapter describes existing initiatives that promote and support rangelands and pastoralists around the world. The sixth chapter includes conclusions and additional guidance to support policymakers and other stakeholders in designing and implementing policies, projects, and programmes that protect and enhance rangeland health.The report encourages a rethink of the conceptual framework currently applied to combat desertification and degradation in rangelands through an increased focus on the management practices employed in pastoralist and extensive livestock systems. It draws attention to pathways for improved policies, planning, implementation, and monitoring, with guidance for policymakers and other stakeholders on how to improve rangeland health under a sustainability framework with its three integrated dimensions. The report hopes to catalyse action at different scales to optimise rangeland benefits through sustainable production systems and value chains. The strategic approaches presented in the report can help create the appropriate enabling environment, mobilise resources (through incentives and investments), and improve the quality and outcomes of interventions that target rangelands and their inhabitants (Figure 1).The report applies elements of adaptive management models to improve rangeland planning and interventions based on a systemic and iterative decision-making approach, meaningful stakeholder engagement, sustained finance, and long-term monitoring. This approach can be supported with transition scenarios that integrate strategic, tactical, operational, and monitoring protocols that account for trends and feedback loops. 9 The report introduces a robust conceptual framework to help better integrate rangeland and pastoralist initiatives into the different levels and scales of decision making. Integrated land use planning and landscape management are relevant tools and most effective when they recognise the main features of pastoralism, such as mobility, multifunctionality, diversity, adaptability, resource pooling (reciprocity and exchange), and the non-exclusive use of different and often variable natural resources. GLOBAL LAND OUTLOOK Thematic Report on Rangelands and PastoralistsThe report focuses on land use and management practices in rangelands, acknowledging the diversity of their host ecosystems and biomes grazed and browsed by livestock and wildlife. This section introduces and defines key terms and concepts used in the report, some of which may engender differences in interpretation around the world, across disciplines, and among practitioners. 11Land use is defined as the purposes and activities (primarily grazing and browsing in rangelands) through which people interact with land in these grass-dominated terrestrial ecosystems. 12 Land cover refers to the character of the elements located on the surface of the land, either biophysical (e.g., vegetation, grasses, shrubs, trees) or artificial (e.g., buildings, livestock shelters, energy infrastructure). Land conversion or transformation, referred to as land use change or land cover change, is a major global challenge resulting from socioeconomic transitions including agricultural expansion, urbanisation, and consumer demand, among other factors. 13 Land management is any process or activity by which humans allocate or transform land resources for specified uses and goals, such as to generate social, environmental, or economic benefits. 14 Sustainable land management (SLM) implies the use of land resources to meet changing human needs while safeguarding their long-term health and productive potential, including the maintenance of their environmental functions. 15 In the report, SLM in the rangelands is referred to as sustainable rangeland management (SRLM) which can be described as a knowledge-based process that integrates social, economic, and ecological principles into rangeland policies and practices. 16 Explanatory Note: The report acknowledges that pastoralist activity always has human intelligence behind decision making and planning for the protection and use of available resources (whether it is a single herder deciding the daily itinerary or a community moving from winter to summer pastures). Accordingly, the report considers all pastoralist systems as land management systems. The decision to not allow grazing or restrict other land uses (whether temporarily or permanently) is also understood as a form of land management. Abandonment is considered a discontinuation of land management typically resulting from the loss of rangeland functions and services. 17Integrated land use planning (ILUP) involves designing and implementing the most appropriate land use strategies and practices based on systematic assessments of social, economic, and environmental conditions. 18 The purpose of ILUP is to map and assign a mosaic of compatible land use types for a given territory in a way that is socially just and desirable and economically viable, while safeguarding ecological functions and the provision of ecosystem services for current and future generations. ILUP is an important enabling factor for the efficient and effective implementation of SRLM and restoration activities. The capacity and flexibility of ILUP instruments can allow for the combination of sustainable pastoralism and other rangeland uses within a given landscape which can promote both diversification in pastoralist production systems and the use of adaptive land management practices 19 to boost community and ecosystem resilience under rapidly changing conditions.Land degradation in the rangelands is defined as a deterioration in land condition (i.e., reduced biological and economic productivity) typically caused by direct human interventions (e.g., overgrazing, mining) or indirect drivers (e.g., anthropogenic climate change, socioeconomic transitions). Land degradation can be expressed as the persistent or long-term reduction or loss of ecosystem goods and services, 20 which reduce biological productivity, ecological integrity, and/or economic values. Land degradation in the rangelands is a serious concern that impacts both people and nature and contributes to climate change. 21 Land degradation in arid, semi-arid, and dry subhumid areas is known as desertification.Land degradation neutrality (LDN) is defined as \"a state whereby the amount and quality of land resources necessary to support ecosystem functions and services and to enhance food security remain stable, or increase, within specified temporal and spatial scales and ecosystems\". 22 LDN directly responds to SDG target 15.3 by seeking a balance between land degradation and restoration through continuous improvement in management practices, while considering trade-offs and synergies with other SDGs. The UNCCD endorsed LDN as a primary vehicle to drive the implementation of the convention and embraced LDN in the vision of its 2018-2020 Strategic Framework. 23 Ecosystem restoration is defined as the process of assisting the recovery of degraded, damaged, transformed, or destroyed ecosystems to reinstate their ecological processes, functions, and services. 24 The United Nations is supporting the Decade on Ecosystem Restoration (2021-2030), along with GBF target 2, in an attempt to recover lost biodiversity habitat and ecosystem services, and to mitigate and adapt to climate change while enhancing food security and creating livelihood opportunities. 25 The inherent synergies among these targets and commitments make rangelands an optimal ground for developing adaptive approaches that maximise the full suite of benefits for people, nature, and climate. 26 Explanatory Note: While the focus of non-agricultural land restoration has been primarily on forests, the report recognises the need and potential to restore rangeland ecosystems, such as grasslands, savannahs, or shrublands. Interest in restoring these ecosystems is growing rapidly and has become a priority for the UN Decade on Ecosystem Restoration. 27 The report applies the principles and standards of ecosystem (or ecological) restoration, which strive to conserve or regenerate the full suite of rangeland functions and services. 28 However, many afforestation projects in the rangelands have raised serious concerns and intense debate. 29 The report strongly maintains that the transformation of rangelands into forests or tree plantations should be avoided unless scientifically justified by the historic, ecological, and socioeconomic characteristics of the targeted area. 30 Differentiating between \"rangelands\" and \"grasslands\" can be controversial. Both terms are often used as synonyms, 31 although their many nuances are subject to debate. The report defines rangelands as natural or semi-natural ecosystems grazed by livestock and/or wild animals. Their vegetative cover is comprised of grasses, forbs, bushes, and shrubs, and may include open forests and agroforestry systems. Rangelands are considered complex social-ecological systems 32 whereby their natural resources provide a broad range of goods, services, and values that must be considered in baseline and functional assessments. 33 Many rangelands are found in the drylands, which are characterised by water scarcity typically with an Aridity Index below 0.65. 34 Other important rangelands include mountain and tundra biomes that host pastoralist systems with high-value cultural and natural heritage (e.g., reindeer herding in the Arctic, domesticated camelids in the Andes).Grasslands are defined as ecosystems dominated by grasses or grass-like plants, 35 although they can contain trees or other woody vegetation as in the case of shrublands, woody grasslands, open forests, or savannahs. 36 Grasslands are ecosystems of remarkable biodiversity. 37 In addition to natural grasslands determined by climate and soil types, secondary grasslands can arise as a consequence of land use change or other human activities. 38 The extent and degree of ecological integrity and human intervention (e.g., seeding, mowing, fertiliser use) influence grassland characteristics. Old-growth or ancient grasslands, encompassing rich, biodiverse grasslands, savannahs, and open woodlands, 39 tend to maintain higher ecological values. 40 At the other extreme, monospecific seeded grasslands indicate the transformation of vegetative cover and resemble cultivated land more than a natural ecosystem.Explanatory Note: The report utilises \"grasslands\" as an ecosystem concept, primarily defined by vegetation cover, while the term \"rangelands\" is employed as a land use and land management concept within the conceptual framework (Figure 6). Rangelands, considered by some as a cultural ecosystem, are primarily defined by their use for grazing (by livestock, semi-domesticated animals, or wildlife) or the gathering of feed, whether potential or actual. 41 They often comprise a mosaic of land uses and ecosystems, such as grasslands, savannahs, shrublands, drylands, deserts, steppes, mountains, and open forests, as well as agroforestry and silvopastoral systems. 42 Grazing systems are livestock-based production systems that integrate grazing practices with the management of soil, water, and biodiversity resources within a specific socioeconomic context. 43 Pastoralist systems are based on mobile grazing animals under nomadic, transhumant, or sedentary management systems. 44 Pastoralism encompasses the extensive production of livestock, using pasture or browse as the main source of feed. 45 This definition is expanded in the report to include any extensive rangeland production system that dynamically manages livestock and land resources to optimise economic, social, and environmental benefits. 46 Beyond livestock production, pastoralism encompasses cultural identity, knowledge pools, traditional institutions, and landscape heritage that shape the way of life for these rangeland communities. 47 Some common terms used to describe pastoral systems and their features around the world include transhumance, nomadism, and animal husbandry. 48Explanatory Note: The report employs \"pastoralism\" as a comprehensive term, encompassing the entire range of extensive livestock production systems in the rangelands, including those that use rangelands as part of agropastoral, silvopastoral, or agroforestry systems. Where pastoralism is used under a more restrictive scope, this is clearly indicated in the text. In addition, some grazing systems are not considered pastoralism (e.g., grazed crops, intensive pasture systems) and are outside the scope of the report.Pastoralists refer to the individuals, households, and communities that practice pastoralism. Pastoralists raise sheep, goats, cattle, horses, donkeys, pigs, camels, yaks, llamas, alpacas, semi-domesticated species (e.g., bison, caribou, reindeer), or harvest from wild species (e.g., vicuña). Some poultry systems, based on ducks or chickens, can also be considered pastoralism in certain contexts.Pastoralist systems are widely distributed, from the arctic to the tropics, often with herds of mixed species and breeds in the same production unit. Pastoralist communities tend to manage their land, water, and other natural resources in a sustainable, independent, and flexible way, often governed by rights to common resources and traditional or customary arrangements that safeguard rangeland health. Pastoralist livelihoods are diverse and subject to stressors, risks, and uncertainties due to global change impacts, including climate change and socioeconomic transitions. 49 Traditionally, pastoralists have overcome these constraints, which have become increasingly more challenging, with resilience strategies and adaptive capacities. 50 Explanatory Note: The term \"pastoralist\" used in the report is often not recognised by pastoralists themselves, who may prefer to self-identify with other terms, such as herders, shepherds, ranchers, producers, farmers, or other terms customary in their respective countries and cultures. The report fully acknowledges all these identities and the diversity that underpins them but adopts the use of pastoralist as a comprehensive term to facilitate a global perspective and approach.Pastoralist systems and their management practices drive sustainable livestock production that is compatible with other land uses that respect ecological integrity and prioritise the functional health of rangelands. Pastoralist systems can merge with agricultural production systems (agroforestry and agropastoralism), 51 or other systems that integrate trees into livestock production for shade and shelter (silvopastoralism) 52 and for grazing in forests and woodlands (agrosilvopastoralism). 53Land governance concerns the rules, processes, and structures through which decisions are made about access to land and its use, the way those decisions are implemented and enforced, and the way in which competing interests are managed. Rangeland governance refers to the relationships between formal and informal institutions, and their policies, rules, and practices that shape human and environmental interactions on those lands. 54 The responsible and inclusive governance of rangelands constitutes the foundation of many initiatives driving collective action to conserve, sustainably manage, and restore them. 55 The meaningful participation of all stakeholders is a key enabling factor that can be enriched with information exchange, tenure security, polycentric institutional arrangements, and adaptive management systems. 56 ©Double Zanzano GLOBAL LAND OUTLOOK Thematic Report on Rangelands and Pastoralists Rangelands cover 80 million square kilometres, over 54 per cent of the terrestrial surface, constituting the largest land cover/ use type in the world. Of this, 78 per cent (~ 62 million square kilometres) occur in the drylands, mainly in the tropical and temperate latitudes (Figure 2). Drylands are characterised by their hyper-arid to sub-humid climates, indicating different degrees of water scarcity with aridity indices ranging from 0.05 to 0.65, respectively. 57 Many temperate rangelands which experience water scarcity are often considered de facto drylands. 58Indicative map of global rangelands according to ecoregions 59Rangelands are highly diverse, both biologically and culturally, and occupy a range of biomes and ecosystems (Table 1). They support the livelihoods of approximately 2 billion people, 60 with a multiplicity of uses and management systems that demand tailored contextspecific approaches. 61 Rangelands support pastoralist and extensive livestock production systems, primarily based on grazing, browsing, and pasture management, which are often the only sustainable type of land use in the rangelands.According to the Rangelands Atlas, livestock production systems in rangelands cover 67 million square kilometres or 45 per cent of the global land surface, almost half of which is situated in drylands.Rangelands generate 16 per cent of global food production and 70 per cent of feed for domesticated herbivores, most significantly in Africa and South America. 62 Livestock provide food security and generate income for the majority of the 1.2 billion people living under the poverty threshold in developing countries. Rangelands provide high-quality, animal-sourced proteins that directly contribute to the nutrition and health of their inhabitants. 63 While pastoralism offers significant potential for poverty reduction and more resilient livelihoods, 64 indigenous peoples, pastoralists, agropastoralists, and other rangeland communities remain among the poorest and most marginalised people in the world. 65 Rangelands can be managed for a multitude of economic, social, and cultural values that are supported by ecosystem health and functionality. 67 This includes vital ecosystem services -from local to global -from provisioning and regulating to cultural and supporting services. Many scientific publications highlight the effectiveness of pastoralist practices in preserving and managing those services. 68 Provisioning services, such as food, feed, forage, water, and fibre, are widely recognised, however, rangelands and their biodiversity can be managed to deliver other goods and services, such as nutrient/water cycling, carbon sequestration, animal/human health, recreation, and ecotourism.In terms of supporting services, rangelands hold exceptional biodiversity values, including habitat for numerous mammals and endangered species, representing one-third of all global biodiversity hotspots. 69 Protected areas in the rangelands currently cover 9.5 million square kilometres or 12 per cent of the global rangelands. Additionally, many rangelands are managed under other effective area-based conservation measures (OECMs), an approach where longterm conservation and high-value biodiversity areas are prioritised. 70 With respect to regulating services, rangelands comprise about 30 per cent of the global carbon pool, 71 72 and account for most of the interannual variability in the global carbon sink. 73 As stewards of the rangelands, pastoralists go beyond livestock production to safeguard critical ecosystem services, establishing a clear link between effective biodiversity conservation and pastoralism.The value of cultural services, such as identity and heritage, within rangelands is also noteworthy. They are home to 24 per cent of all languages and host numerous world heritage sites in recognition of their unique landscapes and cultures and the wealth of traditional knowledge -a critical source of information to scale up SRLM and restoration practices. 74 As in the past, rangelands continue to shape the culture and value systems, knowledge and world visions, and sense of purpose for pastoralists and other rangeland communities.Pastoralism and extensive livestock rearing in rangelands are widely distributed throughout the world. Currently, pastoralism is practised in more than 100 countries and supports about 200 million households with herds that total nearly a billion animals and account for about 10 per cent of the world's meat production. 75 With the limited use of external inputs, pastoralists manage the soil, water, and biodiversity to produce subsistence and value-added goods, such as dairy, meat, wool, and leather. Many of these products offer significant entry points for their participation in new markets that reward more sustainable value chains.The effective governance of rangelands requires an improved understanding of their dynamics, carrying capacities, and the future demand for their goods and services. There has been a recent shift from the unsustainable demand for the tangible or market goods produced in the rangelands, to policies and regulations that recognise and value the wider range of services they provide to people, nature, and climate. 76 The challenge is to ensure that supply and demand are balanced in a sustainable manner, which includes addressing the synergies and tradeoffs under transdisciplinary and multi-actor frameworks.While there are different understandings of rangeland degradation, 77 they all point to the persistent loss and deterioration of rangeland health which is manifested in their reduced capacity to deliver ecosystem goods and services. Unsustainable land and livestock management practices, together with climate change and biodiversity loss due to land conversion, are among the direct drivers of rangeland degradation. Additional drivers which lead to rangeland degradation and fragmentation include tenure insecurity, conflicts over water and grazing boundaries, policies that incentivise the overexploitation of rangeland resources, and trends in market behaviour. 78 Land degradation poses a significant threat to rangelands and their communities, taking a heavy toll on pastoralists by undermining their access to the natural resources needed to sustain their livelihoods. Rangeland degradation reduces income, productivity, and mobility which have negative implications for human and animal health, with the potential of conflict over increasingly scarce land and water resources. These impacts are differentiated across households, communities, and regions, disproportionately affecting marginalised or disenfranchised groups, such as women, youth, and indigenous communities.Rangeland degradation can also have far-reaching impacts due to hydrological disturbances, becoming a source of sand and dust storms which can increase animal mortality and reduce health and productivity in the wider landscape. The shortsighted use and management of rangelands typically result in:i. the fragmentation or loss of vegetation cover ii. declining soil fertility due to soil erosion, salinisation, alkalinisation, compaction, and crusting;iii. water scarcity and moisture fluctuations; iv. the loss of biodiversity above and below ground; or v. any combination of these. The indirect drivers fuelling rangeland degradation are demographic shifts and the rapidly increasing demand for food, water, fibre, fuel, metals, and minerals. These pressures are often exacerbated by: i. weak or ineffective governance, ii. poorly implemented policies and regulations,iii. the lack of investment in rangeland communities and sustainable production models. 81 These are virtually the same drivers contributing to land degradation and land use change occurring across all biomes and ecosystems of the world. The paradox is that efforts to increase food security and land productivity have converted millions of hectares of rangelands for crop production, aggravating land degradation processes and resulting in decreasing yields (Figure 3).There are notable disparities in the assessments of land degradation which estimate its degree and extent globally. Land degradation is difficult to measure objectively, as it is seen as a mix of biophysical and socioeconomic factors which are often viewed subjectively. 82 Estimates of rangeland degradation have changed over time, reflecting the progress made in the understanding of rangeland dynamics and indicators, assessment and monitoring tools, and management practices in the land use sector. 83 Nonetheless, there are still critical gaps in the knowledge and data related to economic valuation, carbon pools, water cycle regulation, and shrub encroachment, to name a few.The first global rangeland assessment conducted in the early 1990s found that 73 per cent of the world's rangeland area was degraded. 84 This was widely contested due to the lack of field data needed to accurately verify rangeland degradation. In the last few decades, there has been a strong push to adopt a more holistic assessment approach which integrates the use of indigenous and traditional knowledge. 85 More recent estimates of rangeland degradation have declined significantly, 86 with some indicating that about 20 per cent of rangelands are experiencing negative trends, but experts are now concerned that these assessments may significantly underestimate the actual loss of rangeland health and productivity. 87 According to the Food and Agriculture Organization of the United Nations (FAO), up to 35 per cent of grasslands are at risk of degradation, with other rangelands showing significant risk at 26-27 per cent. 88 90 and the FAO System for Earth Observation Data Access, Processing and Analysis for Land Monitoring (SEPAL) project, 91 have given a sharper focus on monitoring land degradation trends and highlighting rangeland health as a key global priority.Another way to assess rangeland health relies on the experience and involvement of pastoralists and other rangeland users. The Participatory Grassland and Rangeland Assessment (PRAGA) is a methodology developed by FAO and the International Union for the Conservation of Nature (IUCN) and financed by the Global Environment Facility (GEF). PRAGA aims to assess rangeland health according to the management objectives of local land users and is based on a combination of scientific, indigenous, and local knowledge. It is designed to support decision making with actionable information and data that can help guide policy and action to halt degradation and restore rangeland health and productivity (Figure 4).A global framework can assist countries and communities when designing a monitoring and evaluation approach for SRLM and restoration that is specific to local circumstances. Assessments can be organised according to the key underlying factors of degradation, and integrated into a conceptual framework that addresses social-ecological processes in rangelands. Like human health, 92 rangeland health is impacted by many causes and has symptoms that are particular to the context and circumstances. A comprehensive framework to assess landscape functions can be used to monitor degradation and restoration, such as the methodology designed by the United States Department of Agriculture, which involves creating indices based on simple field indicators that reflect the key attributes of rangelands ( While there is not one assessment methodology that would be uniformly applicable to all situations, there are sufficient common elements to begin monitoring under a flexible global framework that is tailored to different contexts. The rangeland health framework constitutes a steppingstone in the process to build a conceptual framework that addresses the challenges and envisions solutions as demonstrated by the Driver-Pressure-State-Impact-Response (DPSIR) model 95 which addresses complex challenges at the interface of society and the environment (Figure 5). 96Rangelands are associated with their actual or potential use for grazing and, thus, primarily characterised as managed lands. Raising livestock is an important, but not exclusive, activity in the rangelands which can offer a mix of social, economic, and environmental benefits. The multifunctionality of rangelands is seen as a desirable outcome which demands sound management practices and committed people implementing them. 97 The report emphasises the development and operationalisation of policy, planning, and implementation mechanisms under an umbrella of sustainable management approaches. This is reflected in the conceptual framework where the elements and relationships shaping rangelands are organised in an interactive way, pointing to multifunctional approaches that link rangeland health and specific management systems (Figure 6).The framework shows how pastoralists and rangelands are intimately linked within the same social-ecological system and points to the need for a systemic approach to understanding and managing rangelands. Beyond just land users, pastoralist communities have been, and still are, considered stewards of the rangelands. 98 They bear the ultimate responsibility for, and consequences of, their management practices. While the participation of other land users and stakeholders in rangeland governance is important, pastoralists must be prioritised as shareholders with the capacity to sustainably manage and restore rangelands.It is this complex network of relationships occurring in diverse political and social environments that ultimately shapes the use and management of rangelands.Addressing land governance challenges opens the scope of interventions to the whole territory and to all stakeholders involved, often seen as a prerequisite for achieving the national and global objectives addressed in the report. 99 The conceptual framework, complemented with the DPSIR model, underpins the global effort to protect rangelands and contributes to the effectiveness of initiatives at national and local levels. As many rangelands share common features, multi-scale approaches and context-specific interventions will help refine a global conceptual framework. In addition to generic strategies and approaches, case studies and good practices can also help inform specific response measures, management systems, and governance approaches used by various initiatives (Chapter 4).Driver Using examples from all regions of the world, the report demonstrates the untapped potential of rangeland projects and programmes to provide multiple co-benefits for people, nature, and climate (Chapter 4). Evidence suggests that successful SRLM and restoration projects and programmes have several common elements:i. informed, targeted, and sustained finance;ii. meaningful participation of all relevant stakeholders in the assessment, planning, design, implementation, monitoring and evaluation stages;iii. establishment of clear goals and measurable ecological and socioeconomic objectives; 101 iv. space for innovation and adaptive management;v. focus on governance, enabling environments, and supporting policies;vi. use of qualitative and quantitative data, indicators, and other information for monitoring, evaluation, and communications.Even when these elements are contained in SRLM and restoration projects and programmes, the specific challenges and complexities of rangelands and pastoralism result in an alarmingly high rate of failure. 102 This is not unique to rangelands, especially considering the unequal power dynamics associated with land and natural resources that often marginalise many rural communities. As with nature conservation and rural development, rangeland users and managers must be proactive, undertake systematic analyses, and implement strategies that learn from these failures rather than seeking to mechanically replicate actions that may have been successful in very different contexts. 103 The systematic analysis of rangeland projects and programmes was common during the 1990s and 2000s, 104 105 106 107 but has since diminished significantly with a few notable exceptions. 108 109 110 Despite recent efforts to support and implement new rangeland and pastoralist initiatives, 111 there is still limited evidence on the main constraints and bottlenecks. While there is increasing public attention and scientific literature devoted to the contextual and conceptual understanding, much less has been reported on the technical aspects. This chapter addresses both the underlying concepts and the technical aspects of rangeland and pastoralist projects and programmes while providing a critical historical perspective and offering pathways of action that can enhance the success of current and future policies, projects, programmes, and investments.History provides an obvious first step to understand the various challenges that limit the success of rangeland and pastoralist projects and programmes. While perspectives on pastoralism, rangelands, and rural development have evolved considerably over the past 50 years, current initiatives tend to perpetuate common misconceptions. In the 1950s and 1960s, livestock and rangeland initiatives were focused primarily on technical improvements in production systems (e.g., industrial breeds, forage production, groundwater extraction, veterinary care) with the exclusive aim of modernisation that overlooked the value of pastoralist livelihoods and management systems.In the 1970s, pastoralism began to gain increased global recognition. However, attention was still centred on how to transform pastoralist livelihoods through settlement and modernisation. For many new nation states, government priorities, much like those of their colonial predecessors, were focused on efforts to assert their authority, secure borders, and reduce conflict. Investments were directed towards improving infrastructure, technical assistance with animal health, industrial livestock production methods, and marketing as part of an overall strategy of intensification. 112 In the last decades of the 20th century, rangeland management gradually shifted its approach with more projects and programmes that created grazing reserves, reduced herd sizes, promoted cooperatives, and improved land governance and tenure security. In general, the scientific understanding of rangeland functioning improved, while many outdated colonial perceptions receded. This paradigm shift had important implications for SRLM and restoration which have yet to be fully realised, especially with regard to poverty, decent work, and environmental sustainability.Since the 2010s, methodologies, analytical tools, and good practices have advanced but have not matched the pace of improvements in the conceptual understanding and frameworks for action. Land and livestock managers involved in rangeland and pastoralist initiatives need practical applications that respond to these new, updated frameworks. 113 While it is increasingly popular to design and promote community based SRLM and restoration projects under adaptive approaches, 114 many historical flaws and challenges remain (Table 3). 115 3. Learning from the past, planning for the future States continue to try and control pastoral lands, especially in border or conflict areas, where pastoralists previously moved freely. At the same time, the most substantial investments are aimed at projects and programmes that convert rangelands into large-scale irrigated agriculture, tree plantations, renewable energy projects, and even protected areas. Legal frameworks, development plans, and private investments are driving these land use changes, while land grabs and the free, prior, and informed consent for investment in pastoral areas are often ignored or given only token attention. 116 As a result, pastoralists and other rangeland stakeholders are often excluded, distanced from their land and cultural identity, or forced to abandon their traditional livelihoods.The report emphasises two key means to address the shortcomings of the past. The first is that pastoralism and extensive livestock production need to be fully integrated into projects and programmes to improve rangeland health. 117 While pastoralism is not the only human activity on rangelands, it is often the most critical one to consider. Failure to do so can reduce the efficiency and effectiveness of rangeland initiatives that aim to boost their health and productivity, 118 such as those focused on rural development, 119 nature conservation, 120 or ecosystem restoration. 121 A conventional approach to SRLM and restoration is often inefficient and even counterproductive, such as when a project employs measures to conserve biodiversity without considering livestock production. 122 Strategies that overlook the role of grazing and instead focus on other practices (e.g., exclosures, seeding, beekeeping) are often insufficient to adequately address the degree and extent of rangeland degradation. 123 124 125 It is important to recognise that pastoralism can directly and indirectly accelerate progress towards land and ecosystem restoration targets, such as by enhancing ecological connectivity through the preservation of traditional transhumance routes.The second key means to address shortcomings is to create synergies between nature/climate goals and integrated management-based approaches that seek to improve food security, livelihoods, and sustainable production in rangelands. These approaches are not only compatible but complementary as they both draw on recognised SRLM and restoration principles and prioritise the participation, rights, and knowledge of indigenous peoples and local communities. A flexible and context-specific management approach can help minimise trade-offs and maximise returns on limited investments.The potential shortcomings analysed below can help inform rural development and ecosystem management initiatives even though they do not specifically address the multifunctionality of rangelands or pastoralism. A lack of focus on rangelands or pastoralism does not mean that they should be ignored. In some cases, they serve to highlight misguided strategies that could yield more benefit through improved design and implementation.One means to improve the way rangelands and pastoralist initiatives are formulated is to ensure that a fit-for-purpose conceptual framework is applied at all stages of the project cycle.A fit-for-purpose conceptual framework offers a starting point to improve project and programme design through a holistic perspective on rangelands and pastoralismone that is adapted to local realities by ensuring inclusive and meaningful participation as well as the institutional arrangements that support collaboration and cooperation during all phases of the project cycle. Each element of the framework (e.g., land uses, ecosystems, stakeholders, institutions, production systems, cultural norms) can be mapped and acknowledged within the local context to provide a comprehensive baseline assessment. 126 Project design and funding proposals must increasingly recognise the role of pastoralists and their rangeland management practices.FAO and International Fund for Agricultural Development (IFAD) have developed three strategies to overcome these shortcomings and create a minimum standard for sustainable pastoralism: 127 i. develop national development strategies and action plans that recognise and support pastoral systems;ii. avoid policies and investments that undermine pastoralism;iii. improve land governance and tenure security to enfranchise pastoralist communities while recognising their diversity as a valuable asset. 128In addition to conceptual failures, the poor quality of technical interventions is another leading cause of disappointment in many rangeland initiatives. The analysis of common technical flaws has been arranged according to the project life cycle: i. conducting baseline assessments;ii. design and planning;iii. implementation; iv. monitoring and evaluation. 129 ©EnvatoExternal drivers and pressures are frequently identified as threats to the success of a project, however insufficient knowledge of the status and dynamics of the rangelands targeted for intervention is a significant constraint. A poor baseline assessment can seriously weaken the design of rangeland and pastoralist projects which make them unlikely to be well adapted to the realities on the ground. This may be due to a lack of actionable data (e.g., gender-disaggregated), a disregard of local knowledge when planning new initiatives, or power dynamics that lead to subjective analysis and misinformation that perpetuates biases and narrow interests (Table 4). Another potential cause of project failure results from poor choices in the design stage which leads to a weak operational plan. Table 5 lists and elaborates upon factors which could be addressed with alternative choices at the start of the project, while others are unavoidable but still need to be considered. One example refers to partner selection. The lack of reliable partners (e.g., local authorities, NGOs/CSOs, private sector) can undermine project success if roles and responsibilities are unclear or there is a lack of critical stakeholder consultations during the design and planning stage.Another refers to the need for clear project objectives, such as production, performance, and productivity, to guide operational plans and meet the aspirations of rangeland producers and pastoralist communities. The choice of project or programme scale is instrumental to prevent mismatches between biophysical interventions and socioeconomic goals as well as to address resilience trade-offs across scales. 130 In addition, sustained finance, institution building, and developing a solid evidence base need to be fully considered in the design and planning stage. 131 The lack of capacity for evaluation and monitoring is often a challenge for many project managers and implementing agencies. Project evaluations frequently highlight deficiencies in understanding the local context as well as the capacity and flexibility of local stakeholders to implement off-the-shelf measures which can involve balancing risk taking and risk aversion. Monitoring and evaluation protocols tend to be ad hoc or have a low profile in the operational plan of many rangeland initiatives. This underscores the importance of research applications to improve information flows that increase the capacity for adaptation through contingency plans and risk management strategies. Participatory approaches to monitoring and evaluation should be explored whenever possible (Table 7).Many of the shortcomings in rangeland projects and programmes can be addressed systematically by using a checklist developed from the tables above. Most urgent is the need for a coherent conceptual framework to help guide their design, implementation, and monitoring. The next chapter provides brief insights into rangeland and pastoralist initiatives from around the world that can help strengthen that framework. The case studies point to different strategies and approaches that spotlight the diversity of rangelands and pastoralist systems. While many of these projects and programmes are underfunded and rarely acknowledged, their efforts to overcome challenges and constraints are an inspiration and a rich base of evidence to guide other SRLM and restoration initiatives. This chapter is divided into 10 sections roughly corresponding to regions of the world. Each section starts with an introduction, followed by a regional analysis supported by national and sub-national case studies. Each section concludes with an overview of rangeland degradation trends and a discussion on the key issues considered most significant in advancing the SRLM and restoration agenda.This chapter contains case studies submitted by diverse stakeholders (contributors are listed in the acknowledgements) who responded to a request by the UNCCD secretariat to submit their experiences related to rangeland management and pastoralism. The call for contributions was opened to all UNCCD stakeholders, including national focal points, in February 2023 along with a submission template. A total of 65 case studies from 39 countries were received as well as numerous global and regional initiatives (Chapter 5). After an initial review, each contributor was asked to provide additional references, data, and photos or to clarify specific issues. No effort was made to validate, complete, or update the information provided in the submissions. In the end, 55 case studies were selected to provide a representative balance between regions, countries, and approaches. Contributors were also asked to review the final text of their case study.The case studies are presented here with due respect to the original content and style, offering insights into a wide range of design, implementation, and monitoring approaches. Statistical data and maps displayed were extracted from referenced publications and supported by scientific evidence, fully recognising that this information could be outdated or differ from official sources. While not reflecting the full status or breadth of rangeland policies or interventions in countries or regions, the case studies demonstrate a diversity of strategies and methodologies that address many of the specific drivers, pressures, impacts, and solutions highlighted throughout the report. The report refrains from evaluating their performance, measuring their success, or criticising their approaches. The references provided allow the reader to explore further details and draw their own conclusions.East Africa is characterised by expansive drylands, which occupy nearly 75 per cent of its land surface, ranging from 20 per cent in South Sudan to 99 per cent in Eritrea. Pastoralism is the predominant land use, with these communities representing a significant proportion of their populations. Pastoralism produces almost 90 per cent of the livestock and animal products consumed in the region, contributing to GDP in Ethiopia (19 per cent), Kenya (13 per cent), Uganda (8 per cent) 132 Pastoralist communities constitute a range of culturally and linguistically diverse groups which is reflected in their varied production systems, livestock species and breeds, and the use of natural resources and external inputs. Nonetheless, they share a common livelihood strategy whereby mobile pastoralism relies on extensive common lands, decentralised decision-making that accounts for diverse voices and interests, and often employs opportunistic strategies to cope with scarcity. 135 For example, traditional tenure systems favour communal access and priority of passage to move herds between key resource areas.East African rangelands are widely acknowledged for their cultural and biodiversity values. Pastoralists and their livestock have played a large role in shaping the ecology of the rangelands through their grazing, mobility, and fire management practices. 136 137 These activities influence vegetation and tree cover by controlling shrub encroachment and protecting wildlife habitat. Since pastoralism emerged as a land use system in sub-Saharan Africa more than 5,000 years ago, natural resource management and herding strategies have modified ecosystems to such an extent that, in many cases, the removal of pastoralism would be detrimental to biodiversity conservation efforts. The linkages between biodiversity and pastoralism call for an integrated conservation strategy that fully considers the needs and rights of pastoralists, 138 while recognising that wildlife populations in many rangeland areas are experiencing drastic declines due to land degradation, land use and climate change. 139 East African rangelands are undergoing a significant shift towards a better recognition of their multiple benefits and values, unleashing demand to acquire, control, and invest in these lands. 140 While this transformation is helping to reverse decades of underinvestment and marginalisation, 141 governments and investors now see these rangelands as development frontiers with abundant land and resources, 142 with major actors investing in the construction of ports, pipelines, roads, solar/wind farms, and monoculture plantations. These large-scale investments, which are often part of wider commercial and development strategies, can offer opportunities to reduce poverty and increase the resilience of rangeland communities. Unfortunately, many of these investments tend to disrupt traditional management practices and ignore customary land rights.Pastoralist representation in politics and governance does exist in some countries, such as Ethiopia, Kenya, and Uganda where parliamentary bodies have been established and enjoy different levels of formalisation. However, policies at the national level rarely support mobile pastoralist livelihoods, but instead promote sedentary and \"modern\" livestock production systems even though many civil society and nongovernmental organisations have long been advocating for the interests of traditional mobile pastoralists. 143 Addressing rangeland challenges in East Africa requires coordinated action to design and sustain finance to implement SRLM and restoration initiatives at regional, national, and local levels (Figure 8). Rangeland productivity and economic diversification can only be addressed by strengthening critical linkages within social-ecological systems. Integrating locally adapted management practices, agricultural technologies, and extension services have the potential to simultaneously target SRLM, food security, and improved livelihoods. 144 For example, ecotourism in rangeland and pastoralist areas can be a driver for economic diversification in East Africa. There have been significant efforts to formulate both regional and national policies (Table 8).Cause The harmonisation of existing policies and practices and their integration into agricultural and rural development priorities would be a key step, already initiated by some countries, to ensure effective and sustainable management of rangeland resources in the region. It is important to note that cross-border coordination and synergies are generally lacking even though many countries share multiple pastoralist communities (Figure 9).Silvopastoral and agrosilvopastoral systems are widespread in East Africa. Pastoralism has proven invaluable in the development of agroforestry projects and programmes by combining mobility with the community management of rangeland resources. 147 Silvopastoralism can be an effective strategy to restore East African rangelands and savannahs by increasing the number of trees/shrubs and the services they provide, not only in terms of fodder, but also fruits, fuelwood, gums, and resins. 148 The overarching objective of SRLM is to ensure equitable access to rangeland resources and manage them sustainably (Figure 10).Cross-border clusters in the IGAD region 149 Rangeland-related national policies and strategies in the IGAD region 146 The rangeland and pastoralism agenda in East Africa has benefitted from regional processes, like the African Union's Policy Framework for Pastoralism 151 and the IGAD transhumance protocol, 152 both of which provide a strong foundation for improved policy and programming. The Pretoria Declaration on Economic, Social and Cultural Rights in Africa, 153 adopted by the African Commission on Human and Peoples' Rights in 2004, recognised the importance of respecting tenure rights and access to land, while the Framework and Guidelines on Land Policy in Africa 154 and other African covenants support the key role that land policy plays in achieving many SDGs. In 2019, the UNCCD published the GLO Thematic Report on East Africa, 155 presenting several case studies on LDN that specifically address the risks of insecure tenure for financial investments and project implementation. It outlines regional participatory governance initiatives in East Africa and highlights the need for advances in innovative funding mechanisms for rangelands and pastoralism.In 2019, the UNCCD published the GLO Thematic Report on East Africa, presenting several case studies on LDN that specifically address the risks of insecure tenure for financial investments and project implementation. It outlines regional participatory governance initiatives in East Africa and highlights the need for advances in innovative funding mechanisms for rangelands and pastoralism.Objective Participatory Land Use Planning in Pastoral Areas 156 While pastoral rangelands tend to be collectively managed and governed by customary institutions, land use often transcends administrative boundaries. Pastoral areas may be remote and large, and often \"vacant\" for long periods. The Participatory Land Use Planning (PLUP) initiative is designed to address cross-boundary planning challenges, keeping rangelands under appropriate management schemes (Figure 11). PLUP agreements strengthen reciprocal relations, collective tenure arrangements, and good governance, helping to prevent and resolve conflicts between land users at different scales -across villages, districts, counties, and even countries. PLUP has developed joint village participatory planning in Tanzania, 157 in one district in Ethiopia, 158 and in pastoral counties in Kenya. 159 The PLUP processes demand significant resources, capacities, technical support, time and expertise for the analysis and assessment of options. A village-level plan is likely to need detailed soil and vegetation studies which are often mandatory as in Tanzania. PLUP provides skilled facilitators and advanced representation mechanisms, often through grassroots and other social organisations, that engage users at the core of decision making. PLUP typically starts with the participatory mapping of rangeland resources, land uses, management practices, and governance regimes. PLUP offers a flexible way to accommodate the complexities of collective land use (e.g., tenure, shared resources, movement across boundaries, risk mitigation and sharing). All pastoralists (men and women, young and old) are included in PLUP processes, building their capacities as needed.PLUP in East Africa was developed under supportive legal frameworks and helped to facilitate the development of new policies, such as in Tanzania. It is also co-designed with governments and can readily be applied to pastoralist areas, particularly in complex situations where conventional land use planning may hinder mobility and traditional access to resources. The benefits are numerous, most notably that local pastoralist communities experience increased tenure security and governments have fewer land use conflicts to resolve. GLOBAL LAND OUTLOOK Thematic Report on Rangelands and PastoralistsAnother example of a regional approach is provided by the East Africa Rangelands Assessment, which evaluates projects and programmes with a focus on communitybased rangeland management. The assessment is the result of a collaboration between the United States Forest Service and the Northern Rangelands Trust in Kenya.Ethiopian rangelands comprise about 62 per cent (767,000 square kilometres) of the country's land area. The central highland mass shapes the country, rising from 1,000 to over 1,700 metres. 160 Almost 75 per cent of the land is categorised as drylands. While low altitude rangelands have sparse vegetation, they still host 26 per cent of the total livestock and produce over 90 per cent of legal exports of live animals. 161 Pastoralism supports the livelihoods of an estimated 20 million people and produces 80 per cent of the total annual milk supply in Ethiopia. 162 Rangeland livestock production is affected by shrub encroachment, uneven grazing, and drought. 163 While feed shortages are typically compensated for by standing hay, haymaking, and crop residues, rangeland degradation continues to reduce feed and water availability and increase livestock disease and loss. 164 Borana households adapt to this situation by keeping more goats, sheep, and camels instead of cattle. Afar pastoralists are shifting from grazers to browsers, and engaging in initiatives focused on bush clearing, revegetation, and soil and water conservation. Ethiopia is a pioneer in using traditional enclosures as a tool to improve rangeland conditions, 165 and implementing innovative approaches to investments in SRLM and restoration, 166 as evidenced by the Pastoralist Livelihoods Initiative. 167The Pastoralism is the main source of livelihood for millions of people residing in Kenya's drylands, which occupy 80 per cent of the country. Kenya's pastoral sector has an economic value of over USD 1.1 billion 169 and plays a critical role in the nation's food and nutritional security: annual meat consumption was estimated at 553,200 tonnes, of which pastoral meat contributed about 28 per cent. 170 The Government of Kenya has made ambitious commitments to restore rangelands, among other ecosystems and landscapes. In cooperation with national and international non-governmental organisations, they have implemented diverse initiatives and processes to respond to the growing challenges facing rangelands. conservation and restoration efforts, as well as to compile and share experiences, practices, and solutions. The action group will assess and monitor rangeland health for multiple targets and commitments (e.g., LDN, Bonn Challenge, UN Decade on Ecosystem Restoration) and help catalyse action for enhanced resilience, policy support, diversification, and financing. 172 Other organisations, such as the Northern Rangelands Trust, 173 are developing rangeland strategies within their conservancies. 174 Their long-term vision is to stabilise and improve the productivity of rangelands that underpin the pastoralist economy, reduce competition for water and grazing resources, and improve forage for livestock and wildlife. Kenya has been a leader in developing Participatory Rangeland Management initiatives.The collection of Kenyan rangeland initiatives also includes the use of technological approaches, some of which are led by the International Atomic Energy Agency (IAEA), which emphasises the need to continue investing in research and innovation to regenerate rangelands. One IAEA project is assessing the impact of mutated forages on the performance of smallholder dairy cows in droughtprone areas. Using nuclear techniques, they produced two Brachiaria grass varieties with higher productivity and tolerance to drought. This can ensure a better supply of forage for livestock, especially in drier periods, while its relatively high nutritional content and digestibility can improve livestock productivity and health. The findings from this project could be shared with other African countries prone to drought conditions. all stakeholders are involved in decision making; the second uses this engagement to generate and process information to improve land use and management. As a result, rangelands, pastoralists and their land rights can be protected through a deliberate planning process that involves all types of community members. PRM aims to improve the condition of rangelands and simultaneously engage communities in their governance.Mapping, which gives a comprehensive picture of resources, users, and management systems, is a key first step in the process. 175 This empowers and inspires community members through a better understanding of the different uses and interests within the same resource base. 176 However, before starting a PRM process, it is important to align with policy and legal frameworks by working closely with local and national governments. The effort continues with the development of the tools and strategy that will guide the process. The participatory stages follow a logical framework which can be adapted to sub-national and local levels (Figure 12). PRM targets multiple stakeholders, prioritising equality and the full and meaningful participation of women and youth (e.g., by increasing women's leadership positions). 177 PRM also ascribes to the One Health approach, 178 which can be reproduced in other African countries as explained in two short documentary films. 179 180 Tanzanian rangelands cover one third of the country's surface, about 61 million hectares which are extensively used under pastoralist or agropastoralist systems. Only 3 per cent of the 3.7 million households in Tanzania are pastoralists, and 7 per cent are agropastoralists, representing approximately 370,000 households or 2.2 million people. Rangelands in Tanzania are an important resource for the country's economy, supporting approximately 16 million cattle, 12 million goats, and 3.5 million sheep, and producing an estimated 335,000 tonnes of meat for the domestic market.Tanzanian rangelands hold significant heritage and cultural values and are widely known for their rich biodiversity and unique ecosystems and habitats for many endemic, rare, or endangered species. These values generate significant revenue for the nation through ecotourism and other investments in nature conservation. 181 Accordingly, there is widespread concern about the loss and degradation of Tanzanian rangelands. 182 Wildlife numbers are falling, and land degradation is considered the main contributor to their decline. The alienation of pastoral lands by state and private interests is also a significant factor. 183 The Government of Tanzania and development and grassroots organisations are devising new initiatives to help the country address these challenges. These include gender responsive projects and programmes where, for example, local organisations provide baseline assessments on gender inclusion and participation.The Pastoral Women's Council (PWC) is a non-profit membership organisation based in northern Tanzania that promotes gender equality and community development through the empowerment of Maasai women and girls. 184 With over 6,500 members, at least 75 per cent of whom are women and youth, the PWC is inclusive of minority and underprivileged groups (e.g., single mothers, orphans, widows, people with disabilities). The PWC is an active member of FAO's WeCaN community of practice and leads numerous projects to support their rights and voices, economic empowerment, and access to quality social services.Livestock production systems in Tanzania are generally shared equally among men and women, although specific tasks and responsibilities vary across communities. Generally, men oversee cattle and goats, while women assume responsibility for animal reproduction, milking, and small livestock, in addition to domestic chores. This division of responsibilities is typical in the Kilwa Masoko district. In contrast, Bukoba men are responsible for stall feeding and milking, while women watch the calves and fertilise crops. In Kilimanjaro, Chagga women and girls assume responsibility for milking and fodder harvesting, and care for sheltered animals. In Maasai communities, women care for calves and sick animals, milk cattle, distribute milk, and process skins, while men manage the herds. In the Tanga and Morogoro regions, women are responsible for agriculture, small livestock, and dairy activities.In the Mvomero, Kongwa, and Lushoto districts, widows can own large livestock, while married women are limited to poultry and smaller livestock. Rural pastoralists in the Arusha region depend on rangelands and clean water to sustain their semi-nomadic cattle herding lifestyle. Women often gain supplementary income by selling milk, firewood, produce, and handicrafts. Due to livestock losses and food insecurity, these communities are often faced with difficult choices; men are forced to migrate in search of employment, while women are left behind with little or no means of support. This scenario, found throughout the world, increases women's already vulnerable situation and places greater burdens on them with respect to food production, in addition to their household responsibilities.The PWC addresses this situation through land restoration and climate action plans at the village level, 185 which engage both communities and local governments, and conduct training and awareness raising campaigns. After training, selected women's groups assume responsibility for the supervision and implementation of the primary activities: creating grass banks, improving grazing schedules, providing food aid during droughts, building dispensaries, fencing water sources, rehabilitating water systems, and protecting and building water points and irrigation systems -reducing the burden on women to provide food and water for their families.At present, 27 pastoralist villages in Ngorongoro, Monduli and Longido districts of the Arusha region have submitted plans to the district government and have begun to implement them. Following implementation, communities evaluate progress and provide feedback. A Climate Action Committee monitors and holds relevant actors accountable for implementation progress. The PWC has been successful in building social capital by facilitating women's groups and other key stakeholders to meaningfully engage in rangeland restoration. The PWC members also collaborate with the Tanzania Meteorological Agency to forecast the timing and location of rainfall. Over USD 900,000 has been allocated in support of these plans, and many communities have enacted local by-laws for them.In the Miombo-Mopane rangelands and woodlands, FAO assessed the value of regenerating tree cover within croplands for agroforestry purposes. The aim was to understand the implications of tree cover loss on farmland productivity and assess the potential value of its regeneration. The assessment revealed increases in crop yields and agricultural diversification, including silvopastoralism and beekeeping. Subsequent recommendations suggested that future research and policy actions to promote agroforestry practices would improve food security and inspire investment from public sources, communities, and farmers. 186 Additionally, the Government of Tanzania has developed guidelines for the sustainable management and utilisation of rangelands. 187 International initiatives, such as The Restoration Initiative, 188 have launched rangeland restoration projects that apply integrated management approaches and deliver multiple co-benefits for people, nature, and climate.This project supports SRLM by developing participatory village land use plans and participatory land use management teams, drawing on guidelines from the National Land Use Planning Commission. It is built upon collaboration between public and private bodies, with funds primarily provided by IFAD and international donors. SRLM planning on sites adjacent to four villages has secured 120,000 hectares of grazing land for livestock keepers and an additional 162,880 hectares for approximately 1,000 households.The SRLM approach used has enabled communities to develop their own land use and management plans. The planning process starts with participatory mapping, 190 offering a leading role to women who often have in-depth spatial knowledge on rangeland resources and their use.Participatory maps are quick to produce, easy to use and reference, and can be incorporated into joint village land use plans. They display a community's historical and cultural association with the land and inform negotiations on resource sharing, such as agreements on the use of forest, water bodies, and rangelands. Planning is completed with the establishment of land users' institutions and the issuance of certificates of customary rights of occupancy that convey secure tenure.The first-ever group certificates were issued to a livestock keeper's association with the support of joint village land use planning. A commitment of time and investment is necessary to formalise the documents as legally binding by-laws which are approved by the district council and registered by the government. Land dispute resolution often accompanies participatory planning, especially in villages experiencing unresolved conflicts. 191 External facilitation can help balance power and prevent abuse and other risks while providing guidance, empowerment, and compensation.Rangelands cover 44 per cent of Uganda's total land area, sustaining 80 per cent of the livestock herd and 90 per cent of the cattle. Pastoralism is the dominant activity in Uganda's rangelands, accounting for 4.5 per cent of GDP and contributing to 70 per cent of employment generated by the agricultural sector. 192 Pastoralists represent 35 per cent of the total population, with 64 per cent of them classified as poor.Many of Uganda's challenges can be traced back to land and economic policies originating in the colonial era, which focused more on performance than on ecological functions and services. Current policies and practices continue to harm rangeland health, specifically those encouraging forced settlement, land conversion, privatisation, and fire exclusion. Investments in SRLM and restoration initiatives will require a national dialogue and roadmap for implementing land reforms that are guided by local participatory frameworks.The Right to Food: The Pasture Seed Model 193 194 This initiative aimed to build the capacity of pastoralists and stakeholders to expand their pastures while advocating for strengthened land rights. Action at the local level is focused on increasing pasture seed production and promoting restoration through community seed banks.In collaboration with communal land associations, it has established demonstration sites as well as Pasture Growing Groups to cultivate pasture gardens, harvest and store seeds, and create seed banks. This empowered these associations at the state level to advocate for pastoralist rights and rangeland corridors that serve both livestock and wildlife. These efforts supported the implementation of the rangeland management and pastoralism policy and helped to establish the Uganda rangeland policy working group and a sub-regional platform for community pasture seed conservation and preservation in Karamoja. Eritrea's landscape is characterised by a south-to-north chain of high mountains crossing the country, separating the central highlands from the eastern and western lowlands. Pastoral and agropastoral production systems are the major land uses, although the highlands host mixed irrigation and rain-fed crops. 196 Rangelands, encompassing bush and grasslands, account for over 60 per cent of the land surface. 197 Eritreans living in the lowlands depend on livestock, which hold cultural importance as a sign of wealth and social prestige. The country hosts 1.9 million cattle, 6.8 million sheep and goats, 319,000 camels, 518,000 horses, and some 1.1 million poultry. Livestock production is based on the grazing of natural pastures predominantly in the semi-arid rangelands. Pastoral production systems are slowly gaining more recognition with greater investment in pastoral projects since the late 20th century, but with relatively limited success to date.This initiative promotes a bottom-up approach to sustainable livestock management and the restoration of grazing land in Eritrea. It relies on community knowledge and priorities to plan actions for mobile pastoralists and small-scale farmers.It applies a participatory approach involving influential people, administrative officers, religious leaders, and grassroots organisations (with a mandatory representation of 30 per cent women). Placing communities at the centre of implementation creates a sense of ownership and lays the foundation for local institutions to carry on after external support stops.Pastoralists are carefully integrated into the project to capture their firsthand experience with respect to seasonal movements and the differentiated roles and responsibilities of diverse pastoral groups. Activities target households as the basic operational and decision making units and facilitate informal arrangements on resource access and movement among those units. Despite the considerable benefits expected, meaningful involvement in planning, implementation, and monitoring is difficult without strong pastoralist organisations and collaboration with other groups.Land degradation in East Africa threatens people's livelihoods and rural stability, severely affecting terrestrial ecosystems in Tanzania (51 per cent), Malawi (41 per cent), Ethiopia (23 per cent), and Kenya's (22 per cent). 198 Poor rural communities, who directly depend on agriculture and natural resources, are disproportionately affected. The costs of land degradation are high; in Kenya, the International Monetary Fund estimates that it reduces GDP by around 3 per cent. 199 The main causes of land degradation in the region point to centralised agricultural growth and rural development policies that are incompatible with the complex dynamics of East African ecosystems, contributing to soil exhaustion, decreased fertility, and increased erosion. Deforestation, overgrazing, and unsustainable land management practices (e.g., land clearing, fuelwood extraction) also contribute to rangeland degradation. Many rural communities find it increasingly difficult to adapt to the internal stress and external shocks and pressures that are impacting local production systems and accelerating degradation. 200 The case studies from East Africa demonstrate the important role of stakeholder participation, and the need to improve policy frameworks, bridge knowledge gaps, and empower local communities. Participatory, bottom-up approaches are seen as central to the effectiveness of SRLM and restoration initiatives. Effective participation schemes and multi-actor platforms must first be promoted, accessible, resourced, and given a safe space to operate within appropriate timeframes. Then skilled facilitation can assist communities to plan and effectively implement rangeland actions supported by expert guidance, conflict management mechanisms, and technical support.East African countries also demonstrate the central role of policy frameworks in developing the enabling environment to better manage and restore rangelands. Several countries are revising their policy and legal frameworks to ensure equitable and impactful pastoral initiatives. Transboundary issues can often occur and should be addressed early in the project cycle and converted into an opportunity for regional sustainable development.Data and information on pastoralism represents another critical gap which needs to be filled to improve rangeland management in East Africa. This knowledge gap has resulted in many policies and initiatives that lack baseline analysis or are based on generic solutions that are not fit-for-purpose. The case studies point to a need to increase the knowledge pool on rangelands, including basic data on how and when rangelands are used. A collaborative knowledge base co-created by researchers, practitioners, and pastoralist communities would significantly enhance good practices to take full advantage of synergies and minimise the trade-offs among competing land uses while responding to global change and technological advances.The most relevant climate feature of West Africa is the latitudinal rainfall gradient, with the hyper-arid areas of the north Sahel barely receiving 100 millimetres while the humid south coast experiences over 5,000 millimetres of precipitation each year. Between these zones, arid, semi-arid, and sub-humid grasslands and savannahs represent the diversity of West African rangelands: 201 202 desert, Sahelian savannah, Sudanian savannah, and forest-savannah mosaic. 203 While rainfall is highly variable, especially in the areas of the Sahel with short and irregular rainy seasons and prolonged droughts, temperatures tend to be uniformly high. West African rangelands (excluding deserts) cover around 2.9 million square kilometres or 56 per cent of the Sahel region. 204 Pastoralism is widespread in West Africa. Mobile pastoralists follow long mobility routes, crossing multiple countries from the edge of the Sahara to the coast. Nomadic and transhumant pastoralists account for approximately 13 per cent of the West African population which include the Tuareg, Fulani, Maures, and other ethnic groups (Figure 13). marketing channels dealing in animal products generate thousands of secondary jobs; in Burkina Faso, these were assessed to be equivalent to 60,000 full-time jobs.Rangelands are of great concern as West Africa is particularly vulnerable to climate impacts and socioeconomic transitions. 205 Governments and investors are increasingly interested in rangelands, primarily due to discoveries of oil and minerals and the growing demand for landbased commodities. Large-scale land acquisitions target pastoral areas, especially those with greater accessibility and subsidised infrastructure, 206 generating insecurity and triggering violent conflicts which significantly impact community and rangeland health in West Africa ( The instability and forced displacement caused by jihadists and other extremist group have forced many herding communities to seek shelter in refugee camps or move to urban areas. Conflict between herders and farmers related to land use have intensified in some countries, especially Nigeria. The COVID-19 pandemic and the closure of borders in transhumance areas exacerbated conflict and worsened tensions. 210 Multiple, consecutive crises over the last 50 years have greatly impacted pastoralism, 211 directly and steadily reducing food, water, and energy security. 212A sustainable future for rangelands based on the legitimate aspirations of livestock producers demands a sensible regional approach. Several organisations that support pastoralism have emerged, advocating for the rights and interests of these communities. 213 This project introduces policy and economic instruments to encourage adaptive herd management to improve production and commercialisation by: i. strengthening national livestock institutions;ii. enhancing livestock value chain performance;iii. preventing and managing crises, reducing conflict, and building peace. The majority or 58 per cent of the Senegalese population are engaged in agriculture and 36 per cent in livestock keeping. Livestock production has been more stable than crop production in recent decades due to persistent drought and locust outbreaks. Livestock generates about 36 per cent of agricultural GDP and 3.7 per cent of total GDP (1994-2000); 68 per cent of households (90 per cent in rural areas) manage livestock herds. Small ruminants dominate the sector, primarily sheep, which are managed under a traditional extensive or mixed farming systems (pastoralist or agropastoralist). 236 The value of rangelands and livestock to the economy, livelihoods, nutrition, and ecosystem services is likely to continue to increase in the coming decades. Projected trends in rangeland productivity, both in crop farming and livestock systems, can be used to design integrated SRLM and restoration strategies that enhance climate adaptation in the agricultural sector. 237 Senegal is leading on adaptation initiatives based on agroforestry approaches that simultaneously provide for mobile pastoralism and settled agropastoralism, tailoring specific tools that were developed from participatory processes in Fatick and other locations in the Ferlo region. West African countries have significant potential to achieve their LDN commitments. 244 The region has advanced knowledge systems and good practices that have been validated at the local level which can help scale up SRLM and restoration initiatives to adapt to climate change. Rangelands, with their water regulation services and potential for renewable energy, can generate additional financial opportunities to support agroforestry and pastoralist initiatives. West African countries have set achievable LDN targets, but their success will depend on the mobilisation of innovative finance and technical support along with an inclusive green economy approach based on the sustainable value chains and more secure land rights for vulnerable and disenfranchised groups.The case studies in West Africa have common themes: the remarkable diversity among pastoralist cultures, strategies, and production systems; the unique roles and responsibilities assigned to pastoralists; and the need for conflict management, rule of law, and enforcement mechanisms.The multiplicity of pastoral systems is at the core of SRLM, and West Africa reveals the capacity of these systems to cope with starkly different social-ecological conditions. West Africa is a region where a variety of ecosystems, multiple interests, and diverse production systems intersect to generate effective strategies to address rangeland challenges in the region (e.g., how to manage open-access lands or coexist with croplands). The fair and equitable designation of stakeholder roles and responsibilities remains an important consideration.Land degradation is often linked to management activities which often puts the greatest burden on local communities to respond. They have been contending with changing conditions for generations, ensuring their survival and wellbeing from variable resources and managing rangelands under extreme conditions. Baseline assessments often lack an empirical foundation, leading to project or programme design that is not aligned to the reality of West African rangelands. 245 Many SRLM and restoration initiatives fail due to incomplete knowledge or ignorance of adaptation strategies employed by local livestock producers. 246 As the conceptual framework shows, conflict is a transversal issue affecting rangeland management and governance. Although the situation in West Africa is often viewed simply in terms of herder-farmer conflicts, there are complex social and biophysical factors which make it difficult to apply a single lens when designing and implementing solutions. Some regions have been more successful than others at addressing conflict by combining participation and governance tools in collaboration with state or local authorities. This can involve reverting back to the traditions of mutually beneficial cooperation between pastoralism and crop farming that were practiced for many generations, but which are now hidden beneath the media headlines of violence and conflict. 247The Middle East and North Africa (MENA) region is a vast area of nearly 9 million square kilometres, home to 420 million people from 20 countries across two continents along the Mediterranean Sea, Red Sea, and Persian Gulf. Rangelands cover at least 303 million hectares (excluding deserts) ranging from the Dead Sea depression (417 metres below sea level) to Mount Damavand (5,610 metres above sea level).The region is predominantly comprised of dryland ecosystems, characterised by Mediterranean arid and semi-arid climates, low and erratic rainfall, and large deserts and hyper-arid zones. 248 It is the most water scarce region in the world and highly vulnerable to drought and other climate change impacts. Dry forests, rangelands, and deserts predominate. Camels are highly adapted to these desert environments and play a crucial role in grazing ecosystems across the Middle East. Their ability to consume thorny bushes and coarse vegetation makes them effective grazers in harsh, arid landscapes. Arable land is scarce and occupies only 5 per cent of the region while rangelands occupy wide areas in most countries.Livestock economies are strategic assets, 249 representing the primary form of rural savings for households and communities that help increase resilience and reduce vulnerability to external shocks, 250 while providing income for rural communities and for women in both urban and rural areas. 251 Addressing the challenges of rangelands and pastoralism in the MENA region require coordinated actions that are appropriate to the biophysical and socioeconomic contexts for each production system and their specific management practices (Table 10).Currently, the MENA region lacks coordinated action to address rangeland challenges. However, international initiatives, such as the Great Green Wall, 255 the WeCAN community, and project HERD, 256 are advancing SRLM and restoration activities with financial and technical support. FAO and others are recommending the revival of agroforestry strategies to avoid further degradation and improve land stewardship. 257 Accordingly, several MENA countries have enacted policies and state measures to overcome these challenges by enforcing existing pastoral and rangeland laws, updating governance institutions, and fostering participatory, multistakeholder platforms. The MENA region is leading the recovery of traditional rangeland management systems, such as Hima and Agdal, implementing silvopastoral and agroforestry schemes, promoting diversification and multifunctionality, and employing other pastoralist management tools (e.g., mobility, multi-species herds, improved value chains). 258 National approachesMorocco has 53 million hectares of pastoral land, of which nine million are in forests. 259 The country hosts a variety of terrestrial ecosystems, making it one of the most diverse in the Mediterranean region. 260 Rangelands, the main source of income for pastoralists in arid or semi-arid zones, have been increasingly affected by urban expansion, large-scale plantations, desertification, climate change, and pollution.In the southeast of the High Atlas and throughout the Lesser Atlas Mountain ranges, rangeland degradation has generated tension and conflict. 261 The government is trying to address this situation through an evolving legal framework targeting silvopastoral sector benefits, drawing on the experience of forestry development and pastoral improvement projects. Morocco's silvopastoral strategy establishes principles and general rules that govern forest and pastoral areas and the mobility and management of grazing livestock. 262 A national consensus on the silvopastoral sector is reflected in state-led coordination and multistakeholder consultations which contributed to the development of the strategy. However, practical applications of the strategy and the development of a legal framework is subject to many social-ecological constraints. Access to forests, which is only permitted to pastoralists under certain circumstances, is one key constraint. \"Use-rights holders\" is a customary right for tribes and communities linked to forest domains; these special entitlements include the right to graze their domestic livestock but not to cut trees or branches. However, in many cases, these rights are not respected or enforced.The Jmaâ, the traditional institution that organises a douar or village of mobile pastoralists, traditionally manages pastoralist use of local rangelands for grazing within specified limits and agreements with other douars. Although the authority of the Jmaâ is usually acknowledged at the local level, the lack of state recognition has often led to the abuse or over exploitation of rangeland resources. In the case of the douar Taouraoute, a village association was created to have a more formal role in the management of local resources and the power to enforce disciplinary actions for malpractice at the local level.This initiative has promoted close collaboration between the Jmaâ and the douar association while also strengthening their legal status and enforcement capacities. The douar association acts as an interface between the Jmaâ, the local authority, and foresters, ensuring that management decisions are made at the local level. The Jmaâ assembly limits the forest grazing rights of outsiders and absentee owners, and can establish rules, such as banning the cutting of branches to feed livestock. With support from the Ministry of Agriculture, Fisheries, Rural Development, Water and Forests, the douar association is legally authorized to communicate with foresters and local authorities and deputised to issue fines for trespassing or non-compliance. Egypt encompasses one million square kilometres of mostly arid and desert land. Its 80 million inhabitants live and work in only 4 per cent of the country, concentrated along the Nile River and its fertile agricultural lands. Arable land is mostly irrigated, with agropastoralism practiced by both small and large farmers along the Nile delta.Rangelands are typically at the margins of these farmlands and in desert environments used by semi-nomadic and nomadic pastoralists. Egypt raises 8.6 million large ruminants (cattle and buffalo); goats and sheep, of which there are 3 million each, are raised mainly in Upper Egypt, the Nile Delta, and the desert rangelands. Nomadic pastoralists keep camels (1.2 million) under extensive management for milk, meat, and transport. 277 Currently, there are no policies that directly support pastoralism nor are there specific strategies and action plans for SRLM and restoration. However, some pioneering initiatives have been rolled out and continue to deliver positive outcomes.The Matrouh Resource Management Project (MRMP) promotes participatory planning and the sustainable management of rangeland resources in the Matrouh Governorate of Egypt. Other countries in the MENA region have also promoted strategies and programmes to protect and restore rangelands and promote pastoralism and extensive livestock farming. The Arab Centre for Studies of Arid Zones and Dry Lands (ACSAD) coordinates an initiative on rangeland management that aims to balance grazing animals and the productivity of pastures through a scientific approach, including field measurements and monitoring, the development of appropriate technologies, and the selection of plant species and locations for revegetation and rangeland improvement. 282 Relevant information is being collected and published for the benefit of the MENA region with an integrated vision of pastoralism that can integrated into agricultural and environmental policies.More than one half of all land and one quarter of arable land in MENA is considered degraded, with estimates rising from 40 per cent in 1991 to 70 per cent in 2012. In 2012, an estimated 20 per cent of the population lived on degraded lands, mostly in marginal areas with poverty rates of up to 50 per cent. 283 Although interrelated factors are contributing to rangeland degradation, water scarcity, climate change, and extreme events (e.g., drought, wildfires, landslides, sand and dust storms) are driving the negative trends in rangeland health. Shortsighted land and water management practices, insecure land tenure, weak governance, and violent conflicts come together to fuel degradation and forced migration. Millions of refugees and displaced people have abandoned their lands due to the loss of soil and water resources, causing an exodus with serious economic and political implications that affect the region and the world.Several MENA countries have highlighted the important role of rangelands in both their LDN targets and Nationally Determined Contributions (NDCs). These commitments include special consideration of silvopastoralism to strengthen the contribution of rangelands to climate adaptation and mitigation. Some countries have successfully rehabilitated large areas of rangeland; however, long-term success will depend on the effective management of limited water resources. In the past two decades, numerous projects and programmes, including multi-country and long-term initiatives (e.g., Great Green Wall) and smaller initiatives (e.g., Acacias for All 284 in Tunisia), have put a spotlight on the urgent need to reduce and reverse land degradation in the MENA region.The MENA region is one of the most vulnerable to desertification, land degradation, and drought. Many SLRM and restoration initiatives focus on key development issues in the rangelands, from climate change adaptation policies and the impact of migration trends to partnering with traditional institutions, limiting overgrazing, and improving water management. Some countries in the region are at the forefront of state-led action to address rangeland health in the Global South.Social and demographic trends, specifically forced migration, are putting unprecedented pressure on rangelands and pastoralist communities. Men leave in search of better economic opportunities, while women and youth stay behind often without the legal and financial tools to manage the land or even their households. This lack of agency and heightened vulnerability increases poverty and marginalisation in many already vulnerable population groups. There are a number of traditional institutions sustainably governing and managing rangelands that are making a remarkable contribution to SRLM and restoration outcomes (e.g., Hima, Agdal), but which still require more recognition and support. 285 While cultural identity issues are well recognised, the economic and social value of livestock is often overlooked in MENA region. For example, projects tend to neglect that pastoralists will invest their savings in livestock as it is considered more stable and secure than cash. This is an important understanding that will influence project design and success.Overgrazing is a major concern in pastoralist initiatives as it is considered a main driver of land degradation in the region. One misconception is that supplementary feed at subsidised prices is a solution to reduce overgrazing. On the contrary, this often leads to overstocking and immobility which is the root cause of land degradation. Overgrazing is typically caused by animals confined to limited patches of land (whether by fences, water availability, shelter, or production needs) and not by mobile grazing animals even if the latter are more numerous. Rotational grazing is one proven technique that can support higher densities of livestock while improving ecological functions and services. 286 Carefully planned investments and innovative financial tools can be employed to support locally adapted, mobile, rotational approaches to safeguard the health and productivity of the rangelands. Finally, integrated water resource management is a critical tool for enhancing SRLM and restoration outcomes. The MENA region has promoted notable projects and programmes targeting water harvesting and use in rangelands, which have the potential to be replicated in other regions and encourage a pastoralist-friendly approach to water management.The Central Asia and Mongolia (CAM) region hosts some of the most striking rangelands in the world, from great deserts, such as the Gobi, Karakum, and Kyzylkum, to the high mountain ranges of the Altai, Tien Shan, and Pamirs, and the wide steppes, foothill plains, and temperate grasslands.As rangelands account for 60 per cent of the total area, pastoralism is a fundamental economic activity in the region. Livestock herding accounts for between 10 and 45 per cent of national GDP in CAM countries and supports the livelihoods of nearly one third of the region's population. 287 Over 171 million herds graze these rangelands which are characterised by high temporal and spatial variability of resources that require seasonal livestock mobility. Mobile pastoralism is the only viable agricultural activity in these arid lands, 288 which in some cases, can be complemented by agropastoral systems where conditions allow. Both production systems were historically governed by ©UNCCD customary property rights or more recently collectivised state-managed systems. Today, long-distance mobility and seasonal transhumance are usually only available to wealthy, large-scale producers, while poorer pastoralists adapt by pooling community labour, practicing agropastoralism, or diversifying their income through off-farm work. 289 The collectivisation process in some CAM countries (especially the former Soviet republics but not Mongolia) challenged the institutional and customary frameworks of pastoralists by promoting sedentarisation or forced settlement. Some pastoralist collectives from Mongolia and other areas have continued to herd in traditional ways, demonstrating that their knowledge and skills can be an effective means to achieve SRLM and restoration outcomes.The fall of the Soviet Union triggered a series of national decollectivisation processes, transferring livestock ownership and control over rangeland resources to families and private owners as part of a transition to more open economies.This transition is still underway in most countries, with some shifting their approach to encourage opportunities for investments targeting the rangelands. As the demand for pastoral products increases so do producer incomes from the sale of meat and dairy products as well as value-added and certified sustainable commodities, such as cashmere and wool. 290 Land governance and tenure security have been key determining factors in the choice of management practices in the CAM region. 291 In this century, there have been major policy adjustments, and several CAM countries are now progressively adopting and implementing rangeland strategies that are more supportive of pastoralists and their livelihoods. Mongolia, championing the IYRP 2026 and its implementation, has made significant advances in the recognition of herder communities and the allocation of communal management contracts. Other countries in the region have appealed to multilateral and bilateral donors and private sector investors to support projects and programmes focused on rangelands and pastoralists. 292There are several regional projects and programmes on LDN, SRLM, and ecosystem restoration that are active in the CAM rangelands promoting collaborative approaches to natural resource management.Resilient Landscapes in Central Asia 293 Resilient Landscapes in Central Asia (RESILAND CA+) Tajikistan Tajikistan has 3.3 million square kilometres of mountain pastures, comprising 87 per cent of its total land area. 305 Summer pastures in the uplands are used between June and August; winter pastures are in the valleys; and pastureland in and around villages are used throughout the year.Agriculture is the main source of livelihood, supporting 50 per cent of the country's population. In the early 1990s, livestock production shifted from an intensive, state-supported system (based on winter feed distributed from centralised sources) to one that solely relies on rangeland resources for animal nutrition.This radical shift drastically reduced performance and income, triggering increased feed and forage demand, and further disrupting traditional management practices. 306 The latter remains a critical production strategy for poor rural households, with 50 per cent of the population living below the poverty line, up to 78 per cent in the Khatlon region. Agriculture in Kyrgyzstan employs 29 per cent of all labour in the country, mostly in small-scale food production. Over 400,000 business units and over 700,000 rural households produce more than 95 per cent of the total agricultural output. 312 The traditional practice of nomadic pastoralism remains. There are 375,000 small family farms in Kyrgyzstan of which about Mongolia spans 1,564 million square kilometres, with an average altitude of 1,580 metres above sea level. Over 70 per cent of the land area is comprised of rangelands, 323 which span ecological zones from high mountains to steppes and deserts. Almost 300,000 herders, approximately 10 per cent of the population, practice pastoralism herding over 71 million livestock, including sheep, goats, cattle, horses, and camels. The livestock sector produces almost 83 per cent of total agricultural output, an important component of the Mongolian economy, both in terms of GDP (13.0 per cent) and employment (25.9 per cent). 324 Mongolian nomadic pastoralism has evolved in a context of risk and uncertainty, efficiently using scarce resources to produce food, manure, hides, and fibres. Transhumance pastoralists move between regular seasonal camps and distant pastures to better adapt to shock-prone environments (e.g., dzud occurring in 2023/2024 winter with catastrophic rates of animal loss) 325 and overcome climate, market, and disease risks. These risks and recuring hazards (e.g., sand and dust storms, drought) contribute to desertification and pose serious challenges to human and animal health not to mention the devastating loss of livelihoods and stress on the wider social-ecological system.In Mongolia, rangelands remain state-owned but are primarily managed by community-based organisations, such as pasture user groups, community support groups (nukhurluls), and cooperatives, that guarantee exclusive rights to winter and spring camps. Land Degradation Neutrality in Central Asia and MongoliaThe processes of land degradation in the CAM region are complex and have not yet been fully assessed and understood. 331 Some of the main drivers are related to decollectivisation and agricultural intensification processes which have weakened land rights, converted rangelands, expanded irrigation schemes (that provide fodder for increasing livestock numbers), and increased grazing pressures, especially near settlements. Water management is a frequently overlooked factor, with issues such as overuse (to increase land productivity), poor water infrastructure, a lack of monitoring, and nominal technical capacity among water users. 332 Recent attention on the rangelands tends to overlook pastoralist communities and their economies in favour of mining concerns and intensive farming schemes. In Kazakhstan and Turkmenistan, the recent exploitation of oil and gas reserves is reconfiguring national economies and policy agendas. In Tajikistan, Kyrgyzstan, and Uzbekistan, large-scale cotton, wheat, and horticultural projects have attracted increased investments in irrigation and rural settlements. 333 These developments are increasing water scarcity, soil erosion and salinisation while converting and further fragmenting rangelands to the detriment of pastoralist communities. 334 Kazakhstan, Uzbekistan, and Mongolia have committed to achieving their LDN targets. 335 336 In 2018, under the framework of the Bonn Challenge, Kazakhstan, Kyrgyzstan, Tajikistan, and Uzbekistan pledged to bring over 2.5 million hectares into restoration by 2030 and adopted the Astana Resolution to promote regional cooperation in combatting land degradation ( Concerns about the design and application of rangeland initiatives remain. Addressing overgrazing, overstocking, and rangeland degradation with supplementary fodder may actually increase land conversion and water scarcity to produce fodder crops. Similarly, the promotion of exotic or improved breeds without a proper analysis (of their adaptability, robustness, or mobility aptitude) diverts attention from the need to protect and improve local, well-adapted pastoralist breeds, as recognised by the Sustainable Cashmere Platform.Another important finding from the region: synchronising the number and rotation of grazing animals with ecological and meteorological cycles in the rangelands can be a key determinant of SRLM and restoration success. Mobile pastoralism and seasonal movements offer a viable approach to better preserve the health and productivity of rangelands. Accordingly, the management practices of nomads and transhumant people should be fully integrated into rangeland initiatives -flexible corridors, open-access rangelands, seasonal pastures, water access and other infrastructure to enhance livestock mobility.Globally, there is a lack of rangeland-adapted economic tools that encourage sustained investment. The case studies from the CAM region point to several innovations that promote changes in value chains that can support SRLM and restoration activities. These initiatives can significantly improve incomes and need to be encouraged and upscaled, keeping in mind their accessibility to local communities. It is clear that other innovative financing mechanisms will be needed to sustain regenerative rangeland management activities when projects or programmes end.European rangelands, as in other parts of the world, are the result of co-evolution between human communities and natural ecosystems. These complex land management systems are often embedded in mosaic landscapes of grasslands, croplands, woodlands, and settlements, which are closely interlinked and managed as social-ecological systems that support the provision of key ecosystem services. 339 Historically, traditional management involved planned grazing calendars and stocking rates, controlled shrub encroachment (using fire, mowing, and grazing), and other activities such as tree planting, hay storage, and built infrastructure. Today, the value of European rangelands and biodiversity habitats still very much depend on these management practices. 340 ©jjfarquitectos European landscapes are undergoing change, reflecting global trends, regional processes, and national priorities. 341 The main drivers of rangeland degradation include urbanisation, land abandonment, shrub encroachment, agricultural expansion, and the development of renewable energy uses. 342 343 These pressures are context-specific and vary across the continent where land abandonment is highest in Eastern Europe, the Mediterranean, and the mountains, while agricultural encroachment is most evident in the lowlands. 344 Statistics do not disaggregate by specific livestock production systems, a major knowledge gap that results in a lack of recognition and legal differentiation among producers. Animal products in Europe are increasingly supplied through intensive industrial systems which require fodder and supplementary feed. Preventing the further conversion of rangelands and upscaling sustainable use based on grazing and multifunctionality will be key to safeguarding European landscape values. Some have proposed a continent-scale plan to recognise and mainstream extensive livestock systems to help secure the multiple benefits and values in Europe's rangelands. 345 In 2020, European Union (EU) countries used around 157 million hectares of land for agricultural production, 38 per cent of its total land area. 346 Around 34 per cent of this land is permanent pasture, including rangelands categorised as farmland, and 19 per cent is identified as woody pasture.This is a relatively conservative estimate that does not include many woodlands and shrublands that are used in extensive livestock production systems.The Common Agricultural Policy (CAP) is the legal framework supporting agricultural production and regulating produce markets in the EU. Financial support from the CAP is given to extensive livestock farming and pastoralism, but at levels that are not proportionate to their social and environmental benefits. As a result, pastoralism fails to compete favourably with other farming systems, and extensive livestock systems continue to be abandoned. 347 Currently, the CAP does not recognise pastoralism as a priority for production, rural development, or SRLM and ecosystem restoration.Certain EU environmental policies provide nominal support for extensive livestock systems by explicitly recognising their role in nature-based solutions and biodiversity conservation. For example, the European Green Deal and \"Farm to Fork\" strategy focus on reorienting food production towards environmentally and climate-friendly practices, raising expectations for increased support to pastoralism. Likewise, the EU Forestry Strategy emphasises the value of agroforestry and silvopastoralism in afforestation and reforestation activities. 348 Nevertheless, farm economies continue to be driven by markets and the CAP which favour intensification and industrialisation. 349 The link between pastoralism and protected areas (e.g., Natura 2000) still needs to be fully operationalised 350 to formalise the role of pastoralism, its infrastructure and common grazing lands in protected areas and OECMs. 351 Livestock with its European Support Group, are helping to advance a regional approach. A more enlightened EU attitude towards pastoralism can have significant influence in raising awareness and reforming policies in European countries that are not members of the EU. In 2016, total livestock production in Spain reached a value of EUR 16,377 million, approximately 35 per cent of agricultural GDP and 1.7 per cent of total GDP. Livestock production has shown an overall pattern of growth in Spain since 1961. While the numbers of cattle, pigs, and poultry exhibit a constant upward trend, sheep and goats, the main species raised in pastoralist systems, have declined significantly in recent years. There are no official records of extensive livestock farmers or disaggregated farm data on pastoralism in Spain. 376 Transhumance is still practiced in Spain, mainly by traditional pastoralists. Although there is no official data, the Transhumance in Spain: White Book estimated in 2012 around 30,000 cattle and 50,000 sheep and goats annually perform long transhumance between regions, with significantly higher numbers when short distance movements are included. 377 The Feast of Transhumance has been celebrated annually in Madrid for 30 years, and a consolidated support movement advocates for transhumant farmers. The role of transhumance in Spanish landscapes and culture has been promoted and highlighted; Spain is party to the application to the United Nations Educational, Scientific and Cultural Organization (UNESCO) to recognise transhumance as Intangible Cultural Heritage. 378 The main asset to facilitate transhumance is the 125,000 kilometres of drove roads, occupying 450,000 hectares of land which have been legally protected since 1995. 379 Old transnational agreements and livestock routes still link Spanish pastures with those in Portugal, France, and Andorra. However, the legal framework needs to be updated to recognise and differentiate these extensive systems and provide for specific support schemes The Livestock Farmers Network (Ganaderas en Red or GER) is a network of female extensive farmers, a first in Spain and Europe. The network strengthens the links between pastoralists and rangelands, acknowledging that the territory sustaining these women is also dependent on them. Most GER women come from small family farms in rural territories.As pastoralist women are often isolated, this network aims to establish a mutual support group where they can share feelings, veterinary issues, natural remedies, and market concerns. Its main objective is to give voice to herder women in a safe space where they are heard and respected. Together, the women manage an operation that has already achieved great advances, such as the convening of meetings with several government ministries, initiating collaboration, and attracting greater media visibility. 389 Their motto -\"Invisible Alone, Invincible Together\" -embodies a participatory network based on social capital, flexible online tools, shared governance, continuous training, and strong communication and advocacy plans. Annually, the GER operates with a budget of just EUR 40,000, pointing to its potential for replication to empower other pastoralist women, make their work visible, or to develop a network of networks linking territories and pastoralist women.The application of new tools and technologies in the rangelands has been widely tested in Spain. New projects promote pastoralism to control vegetation under power lines and on renewable energy farms. 390 In many urban areas, pastoralists manage open areas and parks, and even former mining and industrial sites. 391 Numerous initiatives in Spain focus on pastoralism-driven wildfire prevention, 392 High Nature Value farming, 393 biodiversity habitat management, 394 and territorial food systems. 395 The use of GPS to monitor livestock 396 has been the subject of intensive research, including behavioural analysis to detect predators, 397 daily grazing patterns, 398 disease-driven movement alteration, 399 and virtual fencing. 400 Portugal has a surface area of 89,000 square kilometres located in the southwest part of the Iberian Peninsula. The country has high bioclimatic variability, with a Mediterranean climate that is influenced by both the Atlantic Ocean and the continental mainland. Almost 40 per cent is agricultural land (20 per cent of which are pastures) and 38 per cent is forest land, including Montados and silvopastoral areas. 401 Portugal has 2.2 million sheep across 52,000 farms, with approximately 80 per cent focused on meat production and 20 per cent on dairy production. There are around 423,000 goats across 32,000 farms, most of which consist of very small flocks. 402 In 2011, cattle were estimated at 1.5 million. There are two extensive cattle systems that still use indigenous breeds and traditional grazing techniques: one based on small herds of suckler cows in the north and centre, the other based in the Montados and large-scale farms in the South. 403 In the 20th century, the state-run afforestation of common rangelands, wildfire suppression, and agricultural abandonment resulted in a sharp decline in mountain grazing and hay meadows. Rangeland forage productivity also declined will the loss of perennial grasses and the spread of invasive species. The false assumption that rangelands were unproductive and should be afforested pushed many pastoralists into poverty and put local breeds at risk, while dramatically increasing the risk of wildfire. Today, the Portuguese mountain rangelands are in a steady state with a low level of ecosystem service provision.The LIFE Maronesa project aims to restore the productivity and Temple Grandin cattle handling, GPS trackers, soil amendments, organic production). The combination of prescribed fire and herbivory pressure tends to increase plant cover and favour perennial grasses that are able to sustain more domestic herbivores. 405 Grass residues produce stable forms of soil organic carbon and are fundamental to the recovery of soil health. These mountain areas are becoming more productive and able to sustain more cattle for a longer period with fewer inputs, increasing herder resilience to market fluctuations. Pastoralists are empowered to manage their landscapes, balancing traditional practices and local knowledge with innovations that they themselves validate. The project has a web platform that allows stakeholders, government, and producers to visit the site virtually. 406Located at the foot of the Alps, Austria is comprised of 84,000 square kilometres of land. Forests cover 42 per cent of its surface area and are increasing; in certain areas, forests cover up to 90 per cent leading to landscape homogenisation. 407 Farmland amounts to 3.2 million hectares, of which 1.4 million are arable land and 1.7 million are permanent grassland. Cropland in Austria has decreased over the last 50 years by 860,000 hectares while one-third of historical alpine grassland has become forested or converted into residential areas. 408 About 50 per cent of the total permanent grassland is used extensively with low stocking rates and is cut or grazed once or twice a year. 409 Since almost 60 per cent of Austria's agricultural area is grassland, meat and milk production are significant activities. There are 1.9 million cattle raised by 55,000 farmers accounting for EUR 765 million in 2020 and representing 21 per cent of livestock production. 410 There are two main cattle farming systems: industrialised beef production, with feedlots in the lowland agricultural regions; and small dairy cattle farming in the mountane grasslands. Austria's Alpine regions host about 70 per cent of the 40,600 dairy farms, most of which depend exclusively on grazing, some under difficult and extreme conditions (Figure 17).Sheep and goat farming in Austria has become increasingly important. In 2020, there were around 378,000 sheep and 82,700 goats on a total of 23,688 farms, mostly by part-time farmers. This sector is an important source of additional income for small-scale alpine farms. 411 Forest grazing is also an important but controversial activity. While grazing in public forests was a common traditional practice, it has been banned in certain areas to boost tree regeneration.Natural pastures cover 1.9 million hectares or around 25 per cent of the land surface of Georgia. The pastoral system remains nomadic in some regions, with the use of high pastures in summer and lowlands in winter. 412 Most Georgian pastures are owned by the state and used under a regime of free access. While privatisation is a common trend in arable lands, montane and dry pastures have remained largely untouched by land tenure reforms. More secure tenure for pastoral and communal land has the potential to increase much-needed investments from users, donors, and the state. 413The European Innovation Partnership on Agriculture (EIP-Agri) provides a platform and funds Operational Groups to bring together different actors to advance innovation in the agricultural and forestry sectors. The Pasture Innovation Operational Group is dedicated to finding pathways to improve adaptive pasture management which is attracting renewed interest. These pastoralist models are targeted by the \"Pasture Innovations\" project which focuses on rangelands with difficult operating conditions. 415 It addresses animal management, health, and welfare in mountain environments, especially for small grazing ruminants with a higher incidence of grass-borne parasites. This project aims to restore and sustainably manage degraded pasturelands in three municipalities in Georgia.Implemented with funding from the GEF for a total budget of USD 1.8 million, the project has established PUUs which represent small farmers and mobile pastoralists, especially women, and support both Municipal Pastureland Management Plans and sustainable land use practices. The project has also produced essential knowledge products, such as publicly accessible maps. 417 The project follows the \"Scientific Conceptual Framework for Land Degradation Neutrality\" as well as GEF guidelines that stress the need for responsive policy and legal frameworks, a multistakeholder platform, and integrated land use planning. 418 The National Pastureland Management The challenge of combatting desertification remains relevant in the arid zones of the Russian Federation (e.g., Kalmykia, Stavropol, Astrakhan, Volgograd, Rostov). 419 The Volgograd region, one of the most affected, requires the adoption of agroforestry measures in an area of 200,000 hectares, including anti-erosion measures (61,896 hectares), sand dune stabilisation (58,227 hectares), protection of arid pastures (69,642 hectares), and riparian interventions (7,816 hectares). 420 The Russian Federation has a long history of field interventions to protect agricultural land, including many ambitious projects implemented since the 1940s: 421• Plan of protective forest plantations (1948-1953) • Black Lands and Kizlyar Pastures desertification combat (1986-1996) 422• Activities to combat desertification in the Commonwealth of Independent States (1995-2000)• Prevention of agricultural lands retirement from agricultural turnover through agroforestry, phytomeliorative and cultural measures (2014-2020)• Support for the implementation of state programmes in the field of land reclamation (2021-2030)• Protection and conservation of agricultural lands from wind erosion and desertification and chemical reclamation.In Other non-EU countries have made commitments to LDN. Southeastern and Balkan countries have assessed their status and commitments in the context of FAO's regional action programmes. 433 Research in Russia has shown how the concept of LDN has evolved in the country to embrace the concepts of sustainable land use and rangeland management. 434 ©EnvatoThe European case studies show how pastoralism remains important in the developed countries, as part of their heritage, sustainable production, and the preservation of natural and cultural values. They raise important concerns, including the legal status of pastoralists and other shared challenges with the developing countries: the co-creation and application of knowledge, engagement of multiple stakeholders through rangeland initiatives (e.g., Land Stewardship), and the role of developed countries in supporting global efforts to adopt and scale up SRLM and restoration.European cultural heritage and traditional knowledge constitute valuable assets to combat desertification and land degradation. They have been used to develop multifunctional, multistakeholder approaches, combining pastoralist systems with complex land use schemes that offer a range of solutions. Research and the co-creation of knowledge and their innovative applications point to new development pathways. For example, urban and periurban grazing is attracting new attention as part of local and regional food system transformation, as are grazing practices that control vegetation on public lands, renewable energy parks, and abandoned industrial sites. 435 Several drivers, pressures, and impacts in Europe are shared with rangelands and pastoralists in the developing countries. The most prevalent are rangeland conversion due to urbanisation, agricultural expansion and afforestation, renewable energy production, shrub encroachment, and poor governance. Increasing wildfire risk is another concern, often associated with the abandonment of grazing and other traditional agroforestry activities and fuelled by climate change. Grazing management provides critical tools to control vegetation, reduce fuel loads, and prevent the most severe impacts. Wildfire prevention offers promising investment opportunities to recover and promote extensive livestock farming in high-risk areas.Clearly, the EU has the ambition and capacity to support other countries through funding, research, and the application of new technologies. Innovative approaches to promote SRLM and restoration by linking rangeland producers with consumers are being explored. EU policies require national commitments, social movements, and the political will to create an enabling environment for pastoralism to thrive.This includes the need for an overarching policy framework that legally defines and differentiates pastoralism from intensive farming, supports research and innovation in the sector, and promotes participatory governance systems with effective representation of pastoralists and the meaningful integration of their expertise and perspectives.The South Asian sub-continent ranges from humid tropical and semi-arid to temperate and alpine climate types, covering 15 agroecological regions. Indian rangelands occupy about 121 million hectares, from the Thar Desert to the alpine meadows in the Himalayas. The area used for grazing is estimated at around 40 per cent of the total land surface of India, including grasslands (17 per cent), and forests (23 per cent). Around 70 per cent of rangelands are in the temperate region, however, a large share (~100 million hectares) is considered underutilised, including degraded forest lands, land unsuitable for crop production, ravines, and wastelands. 436 Pastoralists inhabit all parts of India with conservative estimates suggesting that there are 13 million people belonging to 46 communities, 437 with other estimates as high as 35 million. 438 Mobile pastoralists remain important in the country, from mountains to lowlands and deserts, practicing both horizontal movement patterns in the dryland regions and vertical movement patterns in the mountains, and engendering significant diversity in extensive livestock production systems. 439 These include nomadic and seminomadic communities, transhumant, agropastoral, and agroforestry systems that help preserve their cultural heritage and sense of responsibility over their animals and the rangelands. Pastoralists generally rely on common lands to graze yaks, buffaloes, cattle, sheep, goats, camels, and pigs; they also use forests, fallow land, stubble and post-harvest fields.Pastoralists have been widely marginalised in Indian public policies and discourse, often resulting in insecure tenure rights and access to their pool of common resources. 446 The future for Indian pastoralists will depend on the recognition of their land and tenure rights and improved access to markets.Camel herders face a particularly difficult situation, as demand for draft and transport animals has declined and there are relatively few marketing options for their products (Figure 18).Livestock in pastoralist systems in India 447 ©Envato Despite the relative absence of policy and financial support, pastoralism has shown itself to be remarkably resilient in many parts of the country. The movement in support of pastoralists has greatly increased throughout South Asia with domestic political repercussions and a notable international presence. Indian organisations, such as SEVA, 448 the Centre for Pastoralism, 449 and the Desert Resource Centre, 450 are prioritising their work on land rights and advocacy. The Centre for Pastoralism is currently producing an atlas on Indian pastoralism to map traditional grazing routes. 451The desert bioregion of India, including Rajasthan, parts of International conservation organisations, such as IUCN and the World Wildlife Fund (WWF), have long supported extensive livestock production in India. The concern about the health of grasslands, savannahs, and drylands has boosted interest in preserving and restoring these actively managed ecosystems. In addition to promoting scientific management-based approaches to restore grasslands, 453 these organisations advocate for pastoralist communities to stop their marginalisation and ensure that their leadership and traditional knowledge are recognised and utilised in SRLM and restoration projects and programmes. Their efforts reinforce a synergetic approach that links pastoralism to biodiversity conservation.Pastoralist movements have gained attention throughout South Asia. The development of the South Asian Pastoral Alliance 454 is supported by the FAO and the World Alliance of Mobile Indigenous Peoples (WAMIP) with active representation from India, Afghanistan and Nepal, and collaboration with Bangladesh and Bhutan. The alliance is mapping rangeland and pastoral organisations and will use this information to mobilise and connect pastoralist communities with NGOs/CSOs to influence policies and decision-making. India has approximately 120 million hectares of degraded land caused by water erosion (82 million hectares), wind erosion (12 million hectares), chemical contamination (25 million hectares), and physical degradation (1 million hectares). 456 Most of the degraded land is considered arable (104 million hectares) and crop losses due to water erosion alone are estimated to be USD 3.5 billion dollars.India is deeply committed to achieving its targets on LDN and ecosystem restoration. The government has launched or reinvigorated several LDN-related programmes, including the National Afforestation Programme, Green India Mission, and Watershed Development Component. 457 Jointly, these programmes are expected to help restore 26 million hectares. 458 The Desertification and Land Degradation Atlas of India is an important resource to help identify and overcome the many challenges. 459 Although grasslands are considered threatened ecosystems in India, they have been virtually overlooked in environmental conservation and ecosystem restoration policies in favour of forestry-based interventions, which includes converting natural grasslands into plantation forests or other uses. 460 Less than 5 per cent of India's grasslands fall within protected areas, and the total grassland area declined from 18 to 12 million hectares between 2005 and 2015. 461 Fortunately, there is a gradual shift towards recognition of the social-ecological role of rangelands and pastoralism, and India has recently taken a more encouraging approach. 462 In 2022, the Department of Animal Husbandry and Dairying and the Department of Fisheries requested that 12 states focus government schemes on the welfare of pastoralist communities, and provide assistance to pastoralists under the National Livestock Mission, Animal Husbandry Infrastructure Development Fund, and Rashtriya Gokul Mission which focuses on sustainable dairy production.The South Asian case studies present innovative pathways to improve rangeland management, notably emphasising the role of livestock and multifunctional rangelands in delivering socioeconomic benefits to pastoral communities. The sense of stewardship and responsibility demonstrated by pastoralists around the world, is particularly pronounced in Indian rangeland communities. Animal health and welfare are priorities that are deeply embedded in their cultural and religious heritage, setting an example for other extensive livestock production systems. The One Health approach is a critical step in this direction, with its roots in the pastoralist cultural legacy that links animal, land, and human health.With respect to enhancing multifunctionality in the rangelands, the need for certified bio-fertilisers in organic farming is increasing the value of animal manure, a natural by-product that can offer additional income for extensive livestock farmers. This helps promote a circular, holistic approach to land management with a key role for mobile livestock in the transfer of fertility between lands to improve food production and the delivery of other ecosystem goods and services. This section is primarily devoted to China which hosts that greatest extent of pastoral areas in the world. A case study from Thailand is included to show how pastoralism extends well beyond the northern latitude rangelands into the tropical and sub-tropical regions. The Government of China has developed consecutive five-year plans to balance grassland protection and use, which commenced in 2011 and is currently in its third period (2021-2025). The central government has invested over USD 21 billion to implement the policy, covering a grassland area of 253 million hectares in 13 provinces.Pastoralists are encouraged to reduce grazing intensity through government subsidies for exclusion areas in heavily degraded grasslands (USD 16 per hectare per year) and stock reduction in lightly degraded grasslands (5 USD per hectare per year) for an average of USD 210 per family per year. The central government formulates the policy and project scope and supplies funds while local governments and departments of grassland are responsible for subsidy allocation and supervision.This initiative promotes sustainable agriculture practices among the Lua and Karen communities, who are predominantly small-scale farmers. It recognises and protects the rights of indigenous communities to access and manage their natural resources, including pastures.By supporting seed banks and other community based initiatives, traditional crop varieties are being preserved. 470 Local pastoralists are also involved as they face significant challenges in accessing land and natural resources due to land grabbing, land use change, and natural resource conflicts.Pastoralists in Thailand are involved through the promotion of policies and programmes that support their land and resource rights, including the demarcation and registration of pastoral lands, recognition of customary tenure systems, and provision of legal support and advocacy services. The process of implementation includes legal recognition of the rights of the Lua and Karen communities to their traditional knowledge and lands. A multistakeholder platform was established to provide a safe space for dialogue and collaboration. At the same time, communities are trained in sustainable agriculture practices, establishing seed banks, and breeding indigenous livestock, as well as building community knowledge and skills, drawing on modern research and promoting exchanges with other communities.The initiative applies a gender-responsive approach and puts Lua and Karen traditional knowledge at the centre of the effort to secure their rights to access and sustainably use their ancestral lands. This has helped to promote the rights of indigenous communities and traditional land management practices in the region. The success of this initiative highlights the importance of a holistic approach to promoting sustainable agriculture and protecting the rights of indigenous communities.The China case studies highlight the overarching role of the state and local administrations in promoting, developing, and upscaling SRLM and restoration activities. National policy and legal frameworks and local authorities are often determinant factors in rangeland governance. States, with their different levels, departments, and institutions, can channel investment, provide financial tools, and improve tenure security to support rangeland initiatives. They are also fundamental in raising awareness and giving legitimacy to pastoralist livelihoods. However, top-down measures that lack local participation on state-owned or statemanaged lands have often proven ineffective in achieving the expected SRLM and restoration outcomes. Direct interventions to improve rangeland health must be driven by local communities and individual pastoralists to deliver the desired results. Rather than achieving a balance between top-down and bottom-up approaches, the main challenge is realising a clear and fair distribution of responsibilities within the hierarchy of decision making processes involving rangelands and pastoralism, and that local communities receive the funding and technical support they need.Rangelands cover 33 per cent of the total land area of South America and are distributed across regions with diverse biophysical and socioeconomic conditions. Climatically, they range from arid to sub-humid, with the mean annual precipitation ranging from approximately 150 to 1,500 millimetres. 471 Local conditions, such as soil quality, temperature variations, elevation differences, and topography, present further variability that shapes the vegetation and wildlife in these regions (Figure 19).Woody plants are important features in South American rangelands, ranging from scattered dwarf shrubs to an open but almost continuous canopy of bush and small trees.The result is a mosaic of different rangelands, including grasslands, shrublands, savannahs, dry open forests, and hot and cold deserts. Savannahs cover around 2.29 million square kilometres in South America, representing between 8 and 10 per cent of their global extent. Rangeland distribution and characteristics today are the result of a complex interplay of ecological conditions, land uses, and disturbance regimes. 472 South American rangelands include 605 million hectares of tropical, temperate, montane, desert, and flooded grasslands, savannahs, and shrublands. 473 At altitudes of 3,000-4,500 metres, the high plains of the Andean mountains span Peru, Bolivia, Chile, and Argentina and are home to the Puna biome and camelid-based pastoralism. East of the Andes, an arid landscape dominated by rangelands extends from the Chaco's northern reaches in Paraguay to Patagonia in southern Argentina through part of Rio Grande do Sul in Brazil, the Campos in Uruguay, and the Pampas of Argentina. Grasslands occupy an area of nearly 70 million hectares and have the greatest diversity of grasses on Earth: around 3,000 vascular plants, of which 450 grasses and 150 legumes, serve as forage for domestic grazing animals. This area also provides feed for 43 million cattle and 14 million sheep reared in intensive production systems. 474 Brazilian rangelands in the northwest include the Cerrado and Caatinga biomes, covering 35 per cent of the Brazilian territory or 2.8 million square kilometres.South American rangelands support a variety of grazingbased livestock systems, from shearing wild vicuñas, herding llamas and alpacas in the highlands, shepherding sheep and goats in drylands, and rearing cattle in rangelands across the continent. Mobile pastoralism is actively practiced in four countries: Argentina, Bolivia, Chile, and Peru. 475 In Argentina and Chile, pastoralism occurs in marginal areas where communities exploit environmental and economic niches. In Bolivia and Peru, pastoralism is an important economic activity and dominates the cultural landscape. Ranching systems contribute substantially to rural economies in many countries (e.g., Brazil, Argentina, Uruguay) and South America is leading the development of modern silvopastoral systems. 476 477Map of the main South American rangelands 478 Historically, South American consumption of animal products (meat and dairy) has been greater than other developing countries and is expected to continue increasing. 479 The livestock industry has experienced a growth of over 30 per cent during the last two decades. There are approximately 570 million livestock units on the continent, and over 80 per cent graze on rangelands. Globally, the region contributes over 25 per cent of the beef supply and 10 per cent of the milk supply. 480 The relationship between livestock production and environmental degradation in South America has raised serious concerns in recent years. A first concern is the role of livestock and feed crops in the complex patterns of deforestation which have been acute in recent decades. As much as 40 per cent of the South American landmass is estimated to have been deforested in a historical process that continues to date. An intense period of conversion of dry and wet forests occurred from 2000 to 2010 with between 1 and 4 million hectares of net forest loss per year. 481 Eighty per cent of the deforestation has resulted from converting natural forest ecosystems into cropland for soybeans and pastures for extensive cattle production, particularly in the moist and humid areas. 482 Deforestation rates have slowed somewhat over the past 15 years but are still high. Between 2015 and 2020, Latin America and the Caribbean lost almost 3 million hectares of forest per year, the second highest total for any region of the world. 483 Land conversion, drought and other climate impacts, and socioeconomic transitions are increasing rangeland degradation in South America. Cropland expansion from 2001 to 2013 (44 million hectares) was less than the expansion of pastureland (97 million hectares). 484 Even so, the conversion of forests into pastures remains a serious concern in Brazil, Argentina, Paraguay, Bolivia, and Chile, with similar trends occurring in Central America. 485 The environmental impact of deforestation in South America is concerning in terms of carbon storage 486 and biodiversity loss. 487 In terms of livelihoods, small-scale livestock producers are often displaced or become increasingly dependent on abandoned cropland and marginal soils just a few years after forests are cleared. 488 Few countries monitor deforestation and land degradation drivers in a systematic manner and coordinated action across the region has been limited.Faced with the multifaceted challenges of displacement and rangeland degradation, many pastoralist communities are seeking to empower themselves and reshape the narrative. Most support for pastoralists comes from the communities themselves with some engagement of universities and research institutions. The Red Pastoramericas 489 builds on these community initiatives by bringing together small-scale livestock producers from different countries, participating in the FAO Pastoralist Knowledge Hub, and leading the Southern America Regional Support Group of the IYRP.Related initiatives, such as REDD+, are supporting country efforts to prevent deforestation and forest degradation while others at the regional level are often led by academic institutions and conservation organisations that have adopted multi-country approaches.The Rangelands account for two-thirds of Argentina's land area and significantly contribute to its agricultural production, biodiversity, and cultural identity. The effects of mountain ranges and regional air mass movements create varied climates and a diverse array of rangeland and forest biomes, with arid and semi-arid drylands comprising around 69 per cent of the rangelands (Table 13).Pastoralism in Argentina, especially in the Gran Chaco region, descends from the traditional practices of indigenous groups that were later adopted by settlers from Europe. It is now largely practiced by indigenous communities and Criollo people of mixed descent. They keep llamas, sheep, goats, cattle, and horses to produce meat, dairy, wool, cashmere, and handicrafts. According to the Chaco Network, based on the 2018 national census, 30,000-35,000 of the indigenous and Criollo people are pastoralists, mainly in the regions of the Puna altiplano, Gran Chaco, and Northern Patagonia. Pastoralist activity, in its wider sense, is also practiced by some families in provinces like La Rioja and San Juan, as well as in the western provinces near the Andes Mountain range (Figure 20).Pastoralists play a significant role in Argentine agriculture and society, 493 contributing up to about 0.6 per cent of the GDP, increasing to 1.4 per cent when subsistence values are included. It represents an important economic activity that is critical to the food security and livelihoods of millions of small-scale producer households. 494 Argentina has historically received significant interest from academics and researchers focused on its rangelands and pastoralist activities which is not matched by government policies and financial support. New initiatives, such as the rangeland alliance (Alianza del pastizal) are exploring collaborative ways to advance the preservation of these landscapes. 495 The National Observatory of Land Degradation and Desertification was created in 2012 by a conglomerate of academic and government institutions to establish a national network for biophysical and socioeconomic assessment and monitoring of land degradation. 500 501 Currently, 23 pilot sites and almost 200 experts are monitoring land degradation, helping to implement participatory SLM practices, publishing the results, and issuing recommendations for policymakers. 502 The observatory is currently supported by specific projects and a collaboration among the public and scientific-technological sectors. It aims to offer a better understanding of the link between producers, livestock, and the land, and to promote tenure security and sustainable practices among local producers, small nomadic herders, and large companies. Through participatory processes, the co-construction of knowledge, and the engagement of local stakeholders, the projects adapt research methodologies to the local context, and specifically address gender inequality, farm size, and power dynamics.The Puna ecosystem supports one of the most long-lived and culturally distinct social-ecological systems in the and other camelids, 508 pastoralist production systems, 509 and the ecology of the Puna system. 510 © CIAT / Neil PalmerPasture areas are the main land use type in Brazil. Grassland ecosystems, including savannahs, are prevalent in all biomes. 511 They are the dominant vegetation type in the Cerrado, Pampa, and Pantanal, and occur as enclaves in the Caatinga, Atlantic Forest, and Amazon. Overall, grasslands cover approximately 27 per cent of the territory. They are mega biodiverse regions that are considered among the most endangered ecoregions due to high rates of conversion and the lack of protected areas. 512 These grassland ecosystems receive little public attention and are often undervalued even by conservation initiatives (Figure 21). 513 Brazil produces 16 per cent of the world's beef valued at around USD 7.6 billion in 2019. One-third of the agribusiness GDP (USD 81 billion) is generated by cattle, a sector that employs 3 million people in rural areas. 514 There are a total of 264 million cattle and 17.4 million sheep, accounting for 1.4 per cent of world production. 515 In the last 35 years, around 45 million hectares of new pastures were added to Brazil's portfolio of agricultural lands. During the same period, an estimated 64 million hectares were deforested, while 18 million hectares of native pastures were converted to arable farming and forestry or lost to hydrological projects. Currently, 70 per cent (37 million hectares) of pastureland in the Amazon is the result of deforestation. 516 One-third of the current pasturelands in the Cerrado and Atlantic Forest biomes are attributed to deforestation processes. Since 2010, 10 million hectares of pastures and 4 million hectares of croplands have replaced natural vegetation and ecosystems, with cattle ranching encroaching on indigenous territories and protected areas. 517 The economic valuation of drylands in the Cerrado shows that the costs of climate impacts may be as high as USD 133 billion by 2050, and losses to agricultural productivity are estimated at USD 105 billion by 2050. 518 This analysis points to policy and market failures on valuing and protecting rangelands, the insufficiency of carbon and other finance schemes, and the need for innovative marketbased instruments and opportunities to halt rangeland transformation and ensure the provision of ecosystem services, including through the reform of land ownership.The Cerrado is the second largest biome in South America, with over 2 million square kilometres (24 per cent of Brazil's territory), encompassing lands from 11 states. The traditional communities of the Cerrado retain vital knowledge of their landscape, including the nutritional, medicinal, and commercial value of non-timber forest products. Over 150 species of edible fruit, nuts, and seeds are currently being collected and marketed under community based production chains which can add significant value to the local economy.The Cerrado Alive Initiative builds local capacity through small agro-extractive activities, SLM, and improved governance led by local or traditional communities.With USD 6.6 million committed, Cerrado Alive has a 10-year strategy to influence policy, attract finance, engage with new markets, and strengthen governance while enhancing research, knowledge, management, and communication.The project supports community based organisations of smallholder farmers engaged in the harvesting of baru, pequi, and buriti fruits, as well as golden grass production chains.Other traditional communities and stakeholders, such as the babassu coconut breakers, are also engaged. Brazil's National Determined Contribution (NDC) recognises that restoring forests and recovering degraded pasturelands are core strategies for climate change mitigation. Accordingly, the NDC has committed to recover 15 million hectares of degraded pasturelands, restore 12 million hectares of native vegetation, and create 5 million hectares of integrated agrosilvopastoral systems by 2030. 523 A large body of evidence points to the importance of sustainable livestock management for maintaining high levels of biodiversity and other ecosystem services.Research is currently assessing how SRLM and restoration approaches, which consider both grazing and fire as valuable management tools, can boost key ecosystem services such as carbon storage. 524 There are many parallels in land degradation processes across South American countries. Degraded areas constitute a significant percentage of each country's territory with deforestation as the main driver while declining soil carbon stocks and biological productivity are also prevalent in all biomes (Table 14).The expansion of crop and pastureland remains a primary cause of forest loss across South America, with drylands experiencing the highest rates of deforestation. The direct drivers include infrastructure and agricultural expansion, intensive cattle ranching, forestry, aquaculture, drought, wildfires, and mining. The indirect drivers include population growth, socioeconomic transitions (i.e., consumer demand, markets, prices, subsidies), and shortsighted policies and programmes.Rangeland degradation is a widespread threat in South America. With high conversion rates in recent decades, it was estimated in 2008 that around 15 per cent of the grasslands have been lost or fragmented. 525 Livestock production systems have been steadily intensifying due to the augmented use of fodder in feedlots and increased stocking rates. Land use change is also contributing to the intensification of livestock systems throughout South America, with Brazil's Cerrado and Caatinga and the Rio de la Plata basin most affected. 526 South American countries have promoted action to address this challenge via national and sub-regional projects and programmes. International cooperation is often key to their success, with organisations, such as GEF, the EU (Zona de Integración del Centro Oeste de América del Sur [ZICOSUR]), the World Resources Institute, and IUCN, contributing to conservation and restoration initiatives (e.g., Ecosystembased Adaptation, Bonn Challenge Initiative 20x20). To date, most of these initiatives have focused on forests and deforestation, pointing to the need for more attention to rangelands when designing and implementing LDN, SRLM, and restoration activities.Total area (km2) Extent of land degradation in South American countries 527 ©CIAT / Neil PalmerSeveral critical issues arise in the context of rangeland degradation in South America, including the relationship between pastoralism and deforestation, resource conflicts between ranching and mobile pastoralism, and the untapped potential of agroforestry and silvopastoral approaches. Forest loss resulting from land conversion to cropland is significant in the region, 528 but the role of livestock and grazing in deforestation requires greater scrutiny at the local level. Cattle ranching for export has been a direct driver of forest clearing while the expansion of soy production on pastureland is an indirect driver that can force herders to move towards forest land. 529 As regards the tension between ranching and mobile pastoralism, the latter is often perceived to generate conflicts as free-range livestock can sometimes damage crops, seedlings, infrastructure, restoration areas, etc. But, at the same time, pastoralism suffers the most when their routes, grazing reserves, and infrastructure are encroached upon. Mobile pastoralism, livestock ranching, agropastoralism, and agroforestry schemes can coexist, share resources, and be mutually synergistic if planning and governance structures are effectively supported by the state and all relevant stakeholders are meaningfully engaged.The design of initiatives aiming to improve rangeland health must address these complex relationships and ensure coexistence and coherence between legitimate activities. Integrated land use planning, participatory governance, and the provision of tenure security must be both flexible and pragmatic to effectively scale SRLM and restoration projects and programmes. Pastoral mobility should always be considered as a critical management feature to help balance grazing pressures in rangelands, particularly when overstocking is a permanent or seasonal problem. Mobility guarantees that set asides and resting periods can be enforced and that rangelands have the capacity to recover from external pressures, such as climate change.Adaptation to climate change is a key concern of many pastoralist communities, which have forced some of them to migrate or significantly alter grazing regimes. Policy frameworks and pastoral strategies targeting small-scale producers, rural development, and rangeland health can help ensure food security, secure legitimate land rights, and promote the adoption of SRLM practices. More equitable legal, regulatory, and implementation frameworks would enhance collaboration between the different rangeland stakeholders and create the space to address conflict and plan for the long-term. Some South American rangeland initiatives are showing promise by expanding agroforestry schemes, restoring indigenous and traditional management systems, or designing and implementing innovative hybrids such as silvopastoralism. As in other parts of the world, the scientific paradigm in North America has been shifting towards the recognition of rangelands as complex social-ecological systems. This allows for a better understanding of their ecological dynamics to inform management practices, although complex social factors still tend to be neglected. 533 The integration of social sciences to improve the holistic understanding of rangelands is both a challenge and an opportunity welcomed by the North American rangeland scientific community.There is a shared commitment to adopt and scale SRLM and restoration practices in North America. Invasive species are a major challenge to all New World rangelands, and sustainable grazing is one cost-effective mechanism to control their proliferation. The increased competition for water resources also influences rangeland use, especially in the desert and dryland regions, often resulting in tension or conflict. Despite these challenges, academics and practitioners are drawing more attention to rangelands with the goal of improving grazing practices and creating new opportunities for SRLM.At the country level, Mexico's priorities are focused on improving tenure security, reducing fragmentation in common use rangelands, promoting participatory governance, better access to markets, and adapting to climate change impacts, such as persistent and intense drought. 534 In contrast, land conversion is of most concern in the United States and Canada, alongside invasive species and frequent drought. Nature conservation projects are also addressing rangeland challenges by reevaluating their approaches and interventions. 535 For example, there are efforts to reintroduce bison, the largest native herbivore almost eradicated in the late 1800s, as an important asset to rangeland management, food sovereignty, and the cultural identity of indigenous peoples in the United States and Canada. 536 Currently, there are about 420,000 bison grazing public, private, and tribal lands in the United States helping to recover the health of old-growth rangelands. 537 Canada hosts around 13.2 million hectares of grazed lands, including those in forests. The Canadian prairies stretch for about 1,800 kilometres from southeastern Manitoba to northwestern Alberta. Currently, there are around 11.4 million hectares of grasslands, most of which is still considered natural. Historically, grasslands covered area of 61 million hectares before being converted to oilseed and grain crops. Many of these grasslands can be managed by extensive grazing systems, although they are confronted with significant challenges, such as growing food and feed demand, shrub encroachment, irregular grazing, and mining and infrastructure development. 538 In Canada, there are approximately 3.7 million beef cattle and 1 million dairy cattle, distributed among approximately 40,000 and 9,000 farms, respectively. In 2021, there were 1.1 million sheep distributed across 3,600 farms. 539 About 1.9 million hectares of Canada's rangelands are Crown lands or managed by the Prairie Farm Rehabilitation Administration which was dissolved in 2009 when its programmes were merged with the Agri-Environment Services Branch. 540 Crown land is managed by departments within each province and there is no national extension service.Canada's Living Labs Program seeks to promote naturebased solutions to rangeland production challenges. 541 Each Living Lab across Canada is comprised of a scientific advisory team and a suite of private ranches and farms. Each producer has baseline data collected which informs any change in management practices (e.g., rotational/ seasonal grazing, innovative water use system) that are monitored over the long term. This is in effect a national extension program using private operators and lands as the research sites which then employs peer-to-peer learning as an effective tool for upscaling SRLM. Living labs could be an example for the rest of the world.The In the United States, rangelands comprise about 308 million hectares, 31 per cent of the total land area. Over half of the rangelands are found in the 19 states west of the Mississippi river. They offer a variety of goods and services, with food and fibre production as the predominant economic uses of the 20th century. 544 The conversion to croplands is the primary threat to the central grasslands, along with shrub encroachment. In one year (2020), approximately 730,000 hectares of rangelands were converted to croplands in the Great Plains. 545 In 2020, the United States had 5.2 million sheep, including 3.8 million breeding sheep distributed across more than 100,000 farms. There were 2.6 million goats, and over 93 million beef and 9.4 million dairy cattle across 700,000 farms, ranches, and feedlots. 546 Cattle graze over 248 million hectares, representing 27 per cent of the total land. 547 23).There are many community based and collaborative rangeland management initiatives across the western United States (e.g., Malpai Borderlands Group, Altar Valley Conservation Alliance). These have contributed to significant advances in adaptive rangeland management with knowledge co-creation efforts that engage ranchers, conservationists, land management agencies, and researchers in co-designing and co-implementing innovative grazing practices. 551 552 Much of the support for pastoralism in North America is provided through extension services as well as research and academic institutions working directly with producers and grassroots organisations. The three countries support national research organisations and have a well-developed system of colleges and universities with rangeland management and related disciplines. People from both Mexico and the United States, representing universities and grassroots organisations, have been actively involved in the global movement to support rangelands and pastoralism. 553In the northern Great Plains, over 70 per cent of native grasslands are privately owned, with most managed by cattle ranchers. Currently, ranch viability is threatened by narrow profit margins and fluctuating markets which are driving livestock producers to transition to crop production. 556 At the same time, more ranchers are selling their operations to large commercial interests, leading to declining local populations and public services in rangeland communities.Grassland wildlife has also suffered due to habitat loss and fragmentation.The Grasslands This initiative supports a group of small-scale farmers to produce certified organic meat in the municipalities of Janos, Casas Mexico has an intricate land tenure system with historical bonds between communal lands and a combination of public and private ownership. 574 The ejidos are common lands outside human settlements or towns used for cattle grazing or orchards. There are almost 32,000 ejidos and local communities, with over 5.6 million ejidatarios (coowners) that manage over one-half of the country's land. Another 15 per cent are privately owned and managed, and the remaining 5 per cent is owned by the government. About 66 per cent of them graze cattle on pastures and, to a lesser degree, sheep and goats under extensive and free-range systems which have been associated with land degradation. 575 The ejido system was transformed into private ownership in the 1990s, increasing fragmentation and over exploitation of pastures. The current situation demands farsighted policies and practical tools to improve the management of common grazing lands. 576This initiative provides specialist advice on regenerative grassland In Mexico, official sources recognise that at least 12 per cent of its territory is experiencing severe or extreme soil degradation, 578 and 59 per cent is affected by some degree of degradation due to land use change, deforestation, grazing pressures, climate change, and poor soil management. Unprecedented human migration is leading to the development of \"urban belts of poverty\" in the city suburbs and to regional transboundary movements that are generating social and political conflicts. 579 The National Forestry Commission conducted the first national study utilising indicators of land degradation and desertification. 580 Mexico has embraced participatory approaches that have a strong emphasis on the involvement of civil society, particularly the rights of indigenous peoples and local communities. The Program for Sustainable Rural Development 2020-2024 includes commitments to reverse land degradation and incentivise sustainable agricultural practices for small-scale farmers. 581 In the United States, land use change during the last 50 years was driven by multiple social and economic factorspopulation growth and demographic shifts -that are increasing the demand for \"frontier land\" and shaping their management practices. Between 1982 and 2012, over 17 million hectares were converted from their natural state; cropland increased by nearly 1.6 million hectares while at the same time land designated in the Conservation Reserve Program decreased by over 3.2 million hectares. 582 Nevertheless, the soil health movement is working to restore soil organic matter in all production landscapes and the ecosystem restoration agenda has generated considerable research and efforts to slow and reverse land degradation trends. 583 Discussion SRLM and restoration initiatives to preserve and recover oldgrowth ecosystems is a priority in North America, especially native grasslands and deserts. Common rangeland challenges, such as conversion, transformation, and homogenisation, are being addressed through regenerative livestock farming, rotational grazing, and other pastoralist schemes which benefit local producers and rangeland health. Nature conservation approaches in Mexico and the United States have adopted SRLM to achieve biodiversity goals through the engagement of livestock producers.As sustainable and resilient food systems is becoming a priority and a lever for transforming rangeland policies and programmes, initiatives led by research institutions, extension systems, and livestock producers in the United States and Canada are seeking to reconnect food production to the intrinsic value of nature and its contribution to people. The recognition of rangelands as sources of sustainable, healthy, and nutritious food is a first step to influencing urban and global consumer demand in ways that promote the sustainable value chains linked to rangeland management practices.Responsible and inclusive governance of communal rangelands, as with the Mexican ejidos, contributes to the success of many rangeland and pastoralist initiatives around the world. The quest is on to find socioeconomic pathways that facilitate secure tenure rights, collaborative management, and adaptive investments to ensure the long-term viability of rangeland resources. Traditional pastoralist systems offer a valuable source of ideas, tools, and implementation mechanisms to improve the way common lands are managed worldwide.This section provides three case studies from Southern African countries and one from Australia to highlight some rangeland issues that have not yet been fully addressed in the report.Transhumant pastoralist communities of southern Angola traditionally held gatherings of chieftains and community leaders to discuss the management of commonly held pastoral resources. These traditional management systems centred around retaining livestock in remote mountainous areas during the rainy season (to allow for local crop farming) and bring them back to the lowlands during the dry season (to allow rangelands to recover). In recent times, resource conflict and mismanagement (e.g., livestock intrusion into croplands during the growing season) have led to the breakdown of this management model and its governance arrangements. 584 The Jango Pastoril approach, underpinned by the Green Negotiated Territorial Development Methodology, 585 consists of reviving traditional pastoral forums to encourage SRLM and improve local livelihoods. The process of restoring these forums began with consultative meetings and trainings, followed by the reconstitution of five pastoral forums (Jango Pastoril). With administrative and community support, each Jango Pastoril produced SRLM plans which included the creation of grazing reserves. The five plans were then combined into a comprehensive plan to safeguard the main transhumance routes served by the RETESA project. 586 FAO and government specialists supported the planning process and provided technical support, monitoring, and feedback. Municipal and communal administrations cocoordinate the organisation and logistics of the Jango Pastoril and endorse their decisions. The Jango Pastoril is seen as trusted institution which positively impacts the daily lives of people in these communities. Another objective is to produce communal management plans for the rehabilitation of rangelands that engages relevant stakeholder in design and implementation activities -from species selection, seed collection, and the establishment of nurseries to identifying and executing revegetation projects as well as their maintenance and monitoring. By entering into communal agreements and producing management plans that improve access to local resources, these communities have shown a unified front against the conversion and privatisation of rangelands.The Forestry Land-use Restoration (FLR) Project is part of the WWF initiative, \"KAZA arise\", which aims to reverse land degradation in the Kavango-Zambezi Transfrontier Conservation Area of southern Zambia by promoting farmerled regenerative practices in the rangelands. 587 This initiative engages small-scale farmers and traditional leaders and challenges the assumption that protected areas will naturally regenerate with nominal protection. 595 In addition, the benefits to producers from using the NACP products and extension services to make better climate decisions is estimated to be worth an average USD 16.5 million per year.This last set of case studies show the importance of understanding risks and vulnerabilities, and how to design and finance appropriate response measures on threatened rangelands while ensuring sustained benefits for pastoralists and livestock producers.Successful rangeland initiatives must be based upon inclusive participatory processes before, during, and after implementation -from planning and design to monitoring and evaluation. Rangeland projects and programmes must set clearly defined socioeconomic objectives so as not to inadvertently raise expectations regarding income generation or agricultural performance. Innovative financial approaches to scale up SRLM and restoration initiatives must account for the trade-offs and compensate for the risks taken by pastoralists and rangeland communities.Rangeland and pastoralist projects and programmes have evolved considerably since the late 20th century. The case studies presented in this chapter show clear advances in responsible and inclusive governance and the application of community based approaches. In South African countries, traditional management outcomes have informed policy decisions, attracted private investment, and revived customary rangeland institutions.This chapter describes some of the high-profile organisations, institutions, and networks that support the conservation, sustainable management, and restoration of rangelands, particularly those focused on the cultural, social, and economic aspects of nomadic, transhumant, and other mobile pastoralists as well as agropastoralists, silvopastoralists, and other grazing communities.Global processes and commitments are critical to build momentum and assist countries in creating the enabling environments for SRLM and restoration activities in the pursuit of multiple co-benefits, including improved livelihoods, climate change mitigation and adaptation, and biodiversity conservation (Table 15).LDN commitments can help bridge the gap between environmental and socioeconomic approaches to rangeland management and restoration. The UNCCD secretariat and the Global Mechanism established the LDN Target Setting Programme to assist countries with baseline assessments and response measures needed to achieve LDN by 2030. Over 130 countries have committed to set their LDN targets with the aim of mobilising resources and political will for implementing transformative projects and programmes. The UNCCD and its partners provide strategic guidance, practical tools, and capacity building to enhance national efforts to avoid, reduce, and reverse land degradation, including through SRLM and restoration practices. 596 Other global institutions, such as FAO and IUCN, have adopted the LDN approach and its response hierarchy (avoid/reduce/reverse land degradation) while promoting participatory methodologies for monitoring and assessing rangeland health. 597 The Participatory Rangeland and Grassland Assessment Methodology (PRAGA) 598 can be used to assess the health and status of rangelands and identify cost-effective options to strengthen the capacity of local and national actors. FAO Acknowledging a continent-wide need for a framework that A global policy approach that integrates rangelands and forestry is being promoted by FAO's Committee on Forestry Working Group on Dryland Forests and Agrosilvopastoral Systems. 604 This statutory body is focused on mainstreaming agroforestry as a key tool for sustainably managing drylands and promoting initiatives, such as the Summer School, that are aligned with the IYRP, SRLM, food security, and ecosystem restoration agendas. One initiative solely dedicated to sustainable pastoralism, the PASTRES Programme, 605 has produced reports on policy frameworks in Europe, 606 sub-Saharan Africa, 607 West Asia and North Africa, 608 and Asia. 609 They published a book on pastoralism and development, 610 which strongly advocates for the adoption of a new policy narrative on pastoralist systems as critical global infrastructure. 611National authorities generally determine who has the right to use and access rangeland resources. In many countries, commonly owned or managed rangelands -including those controlled by states and local authorities or customarily managed by indigenous peoples-constitute the most powerful means to safeguard pastoralist livelihoods.The United Nations and international organisations have promoted diverse and complementary initiatives to help improve tenure security in rangeland and pastoralist environments. 612 In 2012, the FAO Committee on World Food Security endorsed the Voluntary Guidelines on the Responsible Governance of Tenure of Land, Fisheries and Forests. 613 The FAO supports the operationalisation of these guidelines and helps to establish multistakeholder platforms 614 at national and sub-national levels, including in countries with sizeable rangelands, such as Mongolia, Kenya, Tanzania, and Mauritania.Improving tenure security is seen as a critical step to achieve LDN in many parts of the world. 615 616 The Parties to the UNCCD recognise that more secure land tenure for pastoralists is an important contributing factor to the success of LDN, SRLM and restoration initiatives. 617 618 619The ILC 620 has been promoting the Rangelands Initiative 621 to build a global network and work programme to increase tenure security for local rangeland users through the improved implementation of enabling policies and legislation. The initiative includes a global and three regional components, each bringing together organisations and creating networks of diverse stakeholders and experts. 622Rangelands are best understood as social-ecological systems which require cultural sensitivities in each specific context to harness synergies, balance different interests, and negotiate equitable trade-offs.The League for Pastoral Peoples 623 was founded in 1992 to provide relief to Raika camel pastoralists in India during an acute crisis where herd numbers declined drastically in response to grazing bans. The League currently supports pastoralist societies and other small-scale livestock keepers around the world through research, technical support, advisory services, and advocacy. It has published a series of informative studies, \"Accounting for Pastoralists\", that analyse the socioeconomic condition of pastoralists in different countries, 624 including Mozambique, 625 Spain, 626 , Iran, 627 Uganda, 628 Kenya, 629 India, 630 Germany, 631 and Argentina. 632 An interactive pastoralist map depicts over 800 pastoralist groups worldwide offering easy access to basic knowledge on pastoral ways of life (Figure 24). 633 Grassroots organisations are instrumental in amplifying the voices of pastoralists. IFAD has developed a toolkit for engaging with pastoralists, 642 and the Coalition of European Lobbies for Eastern African Pastoralism (CELEP) 643 brings together grassroots organisations to lobby for pastoralism in East Africa. FAO's Pastoralist Knowledge Hub (PKH) is a multistakeholder platform for pastoralist organisations and international partners to ensure that their voices are prominent in global policy dialogues and knowledge-sharing fora. 644 FAO provides technical and logistical support and dedicated staff to the more than 50 international organisations actively engaged as PKH partners (Figure 25). 645 The interdependence between humans, land resources, and biodiversity in rangelands and pastoralist environments has created a diverse cultural landscape with unique values and identities. 650 UNESCO recognises many pastoral landscapes as World Heritage sites. 651 The current list of UNESCO World Heritage Sites includes mobile pastoral systems in Europe, the Middle East, Central Asia, the Himalayas, and the Sahel, as well as southern Africa, celebrating the value and diversity of cultures and livestock systems around the world. 652 UNESCO also acknowledges the importance of these systems through the development of a global strategy to support agropastoral cultural landscapes. 653 The FAO has recognised certain pastoralist systems as Globally Important Agricultural Heritage Systems (GIAHS), 654 where communities are intricately entwined with their territorial, cultural, and agricultural landscapes. Some examples highlight the links between pastoralists and crop farmers, such as in Morocco's eastern territories, the Thale Noi Wetland Buffalo Pastoral Agro-Ecosystem in Thailand, and the agrosilvopastoral system of the mountains of León in Spain. The FAO has designated 74 heritage systems in 24 countries with a significant presence of pastoralism, including agrosilvopastoral systems. Some organisations and institutions are using traditional and social media to celebrate the rich cultural heritage of rangelands and disseminate information on pastoralist issues and movements. The Perspectives on Pastoralism Film Festival, 657 promoted by CELEP, aims to increase global awareness of pastoralist livelihoods and sustainability challenges in the rangelands through film and the arts. 658Gender is an important aspect of the pastoralist movement highlighted by the IYRP Working Group on Gender and Pastoralism in its first position paper. 659 Various international organisations have made advances in integrating genderresponsive perspectives and approaches into rangeland and pastoralist initiatives, 660 661 and into related research being conducted throughout the world. 662 663 Several global initiatives specifically support women pastoralists networks and gender responsive approaches to LDN, SRLM, and restoration projects and programmes. 664 The Global Gathering of Women Pastoralists, 665 held in 2010 in Mera (Gujarat), India and hosted by the Maldhari Rural Action Group, 666 brought together over 100 women from herding communities in 32 countries and issued the Mera Declaration. 667 This communique offers guidance on the application of a gender lens to project interventions, encouraging the formal education of pastoralist girls and discouraging their engagement in unpaid manual labour. 668As the understanding of rangeland ecology continues to grow so has the awareness of the need for biodiversity conservation to safeguard the multiple benefits provided by healthy and productive rangelands, grasslands, and savannahs around the world.The WWF and its partners have spearheaded a multi-actor initiative, the Global Grasslands and Savannahs Initiative (GGSI), 669 to seek consensus on the human, biological, and economic importance of these ecosystems. It seeks to convene influencers and experts, advocate for and share information on good management practices, and has produced guidelines to spur action to protect, sustainably manage, and restore grasslands (Table 16). The GGSI is developing GrassBank, a global database of information on grasslands and savannahs across WWF's network of expertise and knowledge, systematising and making it available to improve the GGSI strategy and global action plan to conserve and restore grassland ecosystems.The Sustainable Forest Management Impact Program on Dryland Sustainable Landscapes, 670 focuses on enhancing the global environmental benefits through an agroecosystem-focused landscape perspective. Funded by the GEF in the amount of USD 104 million, with over USD 800 million in co-financing, this programme is assisting 11 countries across Africa and Asia to promote ecosystem restoration and rehabilitation, fostering the enhanced resilience of food production systems, and improving landscape-dependent livelihoods. The traditional ecological knowledge and cultural heritage of pastoralist communities represent an important share of the evidence base on rangelands. In addition to local and traditional knowledge, it is important to consider the role and importance of local norms, values, and visions.In the Australian context, important Aboriginal values (e.g., kinship, country, lore, dreaming) have been incorporated into land management practices that promote resilient socialecological systems. 684 Taking advantage of all forms of knowledge can help support bottom-up initiatives and improve the way rangelands are managed, as well as inform the design of more effective policies and investment strategies for the rangelands. 685 One challenge is to find the most appropriate methods to generate and transmit knowledge so that it improves practitioner competence and confers new skills. With this aim, educational exchanges and peer-to-peer learning among pastoralists from around the world could contribute to the co-creation of tools that address shared challenges and help collect and systematise SRLM and restoration good practices.The Global Database on Sustainable Land Management Some global initiatives bring together pastoralists and rangeland managers from different regions and provide opportunities to exchange practical knowledge and expand the vision of practitioners, as demonstrated by the PKH and other collaborations. Hosted by FAO, the WeCaN Nurturing Community of Knowledge Practice for Women in dryland forests and agrosilvopastoral systems 687 is a platform for women's empowerment in dryland regions -offering them a safe space to connect, share best practices, have their voices heard, and engage in knowledge-sharing events and trainings, while developing advocacy and gender-mainstreaming skills. WeCaN members are focal points from grassroots and women's organisations, NGOs/ CSOs, and other stakeholder groups committed to genderresponsive approaches in dryland areas. The platform also links national and regional networks to share knowledge and experiences via South-South cooperation.The Rangeland and pastoralist communities across the world share many of the same socioeconomic and financial challenges. While global funding mechanisms, such as the Green Climate Fund (GCF) and GEF, can support rangeland restoration and sustainable pastoralism projects, 698 the lack of strong project proposals and robust evaluation protocols can limit financing opportunities. The proportion of funds directed to rangelands remains quite small in comparison to other ecosystems. In 2012, the IUCN commissioned IFAD to create a standard that development banks and other financial mechanisms could use to determine good investments in pastoralism. 699 While the report provides guidance and clear pathways to improve rangeland health, there remains a need for improved standards and accountability for rangeland investments. Funding needs to be more flexible as economic data is often limited and tends to undervalue the real contribution of rangelands and pastoralism to livestock production, overall agricultural output, and rural development. This data gap means that economic decisions on rangelands (e.g., conversion to other land uses) are made under assumptions that may be neither rational nor efficient. 700 Economic assessments of pastoral production systems, such as the FAO study on the Economics of pastoralism in Argentina, Chad and Mongolia, 701 the GIZ Economics of Land Degradation Initiative, 702 and the IUCN Global Review of the Economics of Pastoralism 703 clearly demonstrate that pastoralism has a broad array of tangible and intangible values that should not be ignored.The production and marketing practices of pastoralists warrant unconventional financial tools. Cash is not the only form of currency used by pastoralists, who often view livestock as a measure of wealth. Production is not steady or predictable as it is influenced by environmental and climate risks and by mobility and distance to markets. 704 Pastoralists have adapted their economies accordingly and follow alternative models that rely on few external inputs and tend to capitalise on opportunities which are often linked to social activities (e.g., proximity to markets, annual celebrations, religious festivals). These communities also invest heavily in social capital to build mutual support networks that offer safety nets to cope with extreme conditions or events.Multifunctionality, diversified and value-added products, and sustainable management practices have great potential to scale concurrently with the development of stronger and more resilient supply chains. 705 In this regard, targeted investments can contribute by: (i) strengthening and expanding value chains for rangeland products based on their quality, demand, and small environmental footprint;(ii) incentivising the protection and delivery of essential ecosystem services (e.g., payments for soil, water, biodiversity, carbon); and (iii) promoting tailored insurance and risk management schemes. 706In 2023, the IUCN began implementing the Sustainable Investments for Large-Scale Rangeland Restoration Increased investment in rangelands and pastoralism will require financial tools and instruments that economically empower pastoralists while respecting their culture, land rights, and management practices. Targeted financial flows can start by enhancing human and social capital (e.g., boosting health, education, infrastructure) and connecting pastoral people and rangeland services with value chains and markets. Some investment opportunities for SRLM and restoration include: (i) information technology for extensive livestock production; (ii) rangeland-adapted infrastructure (e.g., mobile abattoirs, collective processing facilities) and livestock health services; (iii) sustainable value chains for food and fibre; and (iv) insurance and riskprevention mechanisms. 708 As rangelands provide critical ecosystem services, investments can also be linked to direct payments, carbon and biodiversity markets, wildfire prevention contracts, vegetation control in protected habitats, management area leases, etc. 709 Some donors consider pastoralism a priority for direct investment, such as projects targeting financial resilience in African pastoralist communities funded by bilateral donors and multilateral development institutions (e.g., ILRI-CGIAR, World Bank, USAID, UKAid). United Nations entities, such as the UNCCD and FAO, have intensified their capacity building work in support of sustainable pastoralism to explore new sources of funding for transformative projects and programmes. The World Bank is mobilising funds in the Horn of Africa, 710 through the DRIVE project, 711 with USD 572 million in private capital to help pastoralists acquire drought insurance, increase savings, access digital accounts, and attract additional investment in pastoral areas. Many of these initiatives are still being designed, tested, and piloted, pointing to the need to accelerate efforts to increase investments in SRLM and restoration.In many rangeland contexts, inclusive and responsible governance is the ultimate enabler by which land degradation can be avoided, reduced, and reversed, and by which SRLM and restoration activities can be sustained in the long term. Improving rangeland governance entails strengthening the decision making capacity of local communities and enhancing their social capital to work together as a group to achieve common objectives.In November 2022, the ICCA Consortium organised a workshop to create a global initiative to support pastoralists' territories in implementing their self-determined priorities and plans. 713 The workshop, \"Rangelands and Pastoralism: The adoption of responsible and inclusive land governance and respect for intellectual property rights constitutes an aspiration for many initiatives targeting rangelands and pastoralism. International organisations, such as FAO 714 and IUCN, 715 have promoted participatory models of rangeland management that can shape a new future for the governance of these territories. These models prioritise meaningful stakeholder participation to help secure pastoralist land rights, incorporate gender and equity considerations, manage natural resource conflicts, and prevent encroachment and abuse.In 2022, the United Nations General Assembly declared 2026 the International Year for Rangeland and Pastoralism (IYRP), 716 based on a proposal by the Government of Mongolia. The IYRP aims to connect heterogeneous elements and reinforce the many commitments and actions taken by organisations and institutions to support rangelands and pastoralist communities. The declaration of the IYRP elicited a wave of enthusiasm across the world, including strong support by more than 100 governments and 240 organisations. 717 The IYRP is leading an unprecedented collective effort to coordinate global action on behalf of rangelands and pastoralist communities, highlighting their role in responding to global change and achieving sustainable development and ecosystem restoration goals. While FAO will take the lead on implementation of the IYRP, 718 a network of governments, civil society, research organisations, and international institutions has already been organised to begin work (Figure 26).The The collective effort to promote the IYRP is being assembled through a wide coalition of partners structured around the International Support Group (ISG-IYRP). The ISG-IYRP is a network of individuals and organisations that supports the roll out of the IYRP, including its website and archives, and implements different activities, working groups, and promotional events. The ISG-IYRP is governed by two cochairs, a global coordination group, and thematic working groups (e.g., land degradation, afforestation, biodiversity, gender, mountains, water). The ISG-IYRP is decentralised with 11 regional support groups, a communications team, and a mailing list for the dissemination of information and activities. 720 Educational, creative, and cultural activities are also a priority for the IYRP. A presentation video 721 and a collection of images and stories from pastoralists worldwide are posted on the IYRP website. The website also centralises and disseminates all forms of information around the IYRP celebration, including news, events, knowledge resources, videos, and communications materials. 722 The Rangelands Gateway stores the information and resources generated by the IYRP activities. 723 The IYRP is inspired by a vision that fully recognises the heterogeneity, diverse needs and aspirations of rangeland communities and advocates for capacity building and responsible investment in the pastoral livestock sector. Pastoralist communities and grassroots organisations are the real champions of the declaration and will play a leading role in the design and implementation of the IYRP programme of activities being organised across the 12 themes or priority issues, each to be highlighted monthly throughout 2026.Beyond the celebration of rangelands and pastoralism, beyond the emergence of global and regional initiatives, beyond raising awareness of the value of pastoralists and their homelands -the IYRP offers a unique opportunity to reach a global consensus on the pathways of action by which rangelands should be protected, managed, and restored. The declaration of the IYRP has already spurred numerous alliances and networks, new dialogue spaces and multistakeholder platforms, and collective actions to advance SRLM and restoration initiatives as a costeffective contribution to all three dimensions of sustainable development.©EnvatoThe conversion and loss of rangelands is done in silence and attracts little public attention. Often marginalised or considered outsiders, many pastoralist and rangeland communities are unable to influence the policies and programmes that directly impact their food security, livelihoods, and cultural identity. They are voiceless and powerless and represent a small minority in the political and administrative machinery that governs development and investment decisions in the rangelands.Pastoralist livelihoods and cultures around the world are under threat from shortsighted policies, weak governance, and economic incentives that undermine their production systems. Pastoralists are broadly defined as extensive livestock farmers, herders, and ranchers -whether indigenous or not -whose way of life is closely linked to the health and productivity of rangelands. Up to 500 million people across the world practise this form of animal husbandry. Yet, in many regions, they have little recourse to address the conversion, fragmentation, and degradation of rangelands.Rangelands operate as complex social-ecological systems with critical values, processes, goods, and services. They are diverse, multifunctional, and encompass a wide variety of ecosystems (e.g., drylands, grasslands, savannahs) that have co-evolved with human communities. Covering over 50 per cent of the Earth's land surface, rangelands are comprised of grasses, herbaceous plants, and shrubs that are grazed by livestock and/or wildlife. In addition to meat, dairy, fibre, and other animal products, rangelands and their biodiversity underpin critical ecosystem services from local to global scales (e.g., nutrient/water cycling, carbon sequestration, animal/human health).Despite the extraordinary diversity and intrinsic value of rangelands and pastoralist systems, they rarely feature in global policy discussions or national development priorities. Rangelands provide important environmental, social, and economic benefits that are often taken for granted, in part due to the lack of understanding of their extent, condition, use, value, and diversity. While there are many threats to rangeland health, one is the imbalance in the supply and demand for animal forage which leads to overgrazing, invasive species, and bush encroachment as well as the increased risk of drought and wildfires.Pastoralism and extensive livestock production systems are deeply rooted in the rangelands and often the most effective means to protect, sustainably manage, and restore rangelands. Appreciating that food and fibre production is the most common economic use of rangelands, sustainable grazing is a proven, cost-effective management approach to enhancing their health, productivity, and resilience. Traditional and regenerative grazing practices can often mimic natural processes that build soil organic matter, increase water retention, sequester carbon, conserve biodiversity, and reduce the spread of invasive species.Greater political attention and informed investments are urgently needed to safeguard and improve the health and productivity of the rangelands and their inhabitants. This report offers insights and guidance on the policy and operational frameworks and other enabling factors for attracting greater attention and investments in sustainable rangeland management projects and programmes. Illustrated with case studies and good practices from around the world, it highlights the critical role of pastoralist communities in the planning and implementation of rangeland initiatives that deliver benefits in all three dimensions of sustainable development. One of the key findings of the report is that the health of rangelands and pastoral communities are co-dependent, and that integrated response measures to combat degradation are needed across all three dimensions of sustainable development.Figure 27 adapts the Stockholm Resilience Centre's \"SDG wedding cake illustration\" to frame the report's key pathways of action.National and sub-national authorities can design and implement legal and operational frameworks that align rangeland management and pastoralist livelihoods with the Sustainable Development Goals (SDGs), fully considering the environmental, social, and economic dimensions, and support efforts to:• Endorse and enact national laws and regulations that are aligned with international treaties, obligations, and commitments that support the diversity, resilience, and multiple values of extensive livestock systems and rangeland ecosystem services.• Recognise and enforce legitimate land rights, respect the unique circumstances and needs of rangeland communities (e.g., mobility, transhumance, communal governance), and nurture their participatory role in the conservation, sustainable management, and restoration of rangelands.• Facilitate multistakeholder platforms and networks for research and learning, knowledge co-creation and exchange, and monitoring and evaluation -and to create accessible databases and repositories that collect and disseminate information on rangelands and pastoralist systems.Additional guidance: Give rangelands and pastoralists their due priority in regional and national policies, legislation, strategies, and investment plans so that they can assume their rightful place in governance and land use planning for the future. Prioritise integrated agriculture, forestry, biodiversity, and climate change strategies by utilising agroforestry, silvopastoral, and other multifunctional approaches that boost rangeland health and productivity. Strive to optimise a mosaic of different but compatible land uses in the rangelands by preserving the critical role of herbivores and extensive livestock production while taking advantage of synergies with forestry, beekeeping, herb collection, hunting, ecotourism, renewable energy, nature conservation, and climate mitigation and adaptation.National and sub-national authorities can take measures to support the ecological integrity, connectivity, and functioning of rangelands through conservation, sustainable use, and restoration activities that safeguard and enhance the multiple benefits they provide to societies and economies, and support efforts to:• Reduce and avoid rangeland conversion resulting from inappropriate land uses (e.g., crop monocultures, tree plantations, afforestation) that diminish the diversity and multifunctionality of rangelands, especially on indigenous, pastoral, and communal lands.• Adopt and support pastoralism-based strategies that directly address the natural and human-induced drivers of rangeland degradation, such as biodiversity loss, climate change, overgrazing, soil erosion, invasive species, drought, and wildfires.• Design and implement nature conservation measures that reduce and halt biodiversity loss (above and below ground) by harnessing synergies with pastoralist practices and extensive livestock production systems that boost rangeland health, productivity, and resilience.• Integrate climate change mitigation and adaptation measures into sustainable rangeland management plans and programmes (or vice versa) to increase carbon sequestration and storage while enhancing the adaptive capacity of rangelands and their communities.Additional guidance: Optimise livestock mobility, herd size and composition, rotational grazing, and other adaptive management tools targeting SRLM to balance production and consumption under regenerative landscape approaches. Address the sources of wildlife conflict and promote coexistence by managing livestock and wildlife interactions and devising mutually beneficial solutions for rangeland communities and wild animals. Adopt pastoralism-based strategies and practices to reduce the risks and impacts associated with drought, wildfires, sand and dust storms, overgrazing, and invasive species. Avoid largescale tree-planting projects and programmes on natural grasslands and savannahs that have the potential of disrupting or destroying intact ecosystems.National and sub-national authorities can take measures to build social capital in rangeland communities through participatory governance and adaptive management approaches that promote gender equality, social cohesion, and trusted institutions to foster collective action, and support efforts to:• Provide capacity building, skills training, and technical support to build the human and social capital needed for collective action that safeguards rangeland health and livelihoods, with particular attention to mobility, genderresponsiveness, and social inclusion.• Support rangeland and pastoralist associations and networks that celebrate and defend their cultural heritage and values, increase connectivity and social services, and ensure the provision of human resources and expertise needed for responsible and inclusive rangeland governance.• Facilitate women-led, women-driven, and women-only initiatives, groups, and institutions (along with mixed gender ones) to ensure that women's voices are heard and respected -and to activate their contribution to all dimensions of sustainable development in the rangelands.• Establish trusted institutions and mechanisms to manage wildlife and resource conflicts, resolve territorial and land tenure disputes, reduce inequalities in access and benefit sharing, and negotiate trade-offs and leverage synergies for the benefit of rangelands, their communities, and society-at-large.Additional guidance: Promote the co-creation of knowledge and innovation by integrating scientific research, indigenous knowledge, traditional practices, technological advances, and empirical evidence within multi-disciplinary and multi-actor platforms and networks. Monitor rangeland conditions, dynamics, and trends based on field studies, Earth observations, and other remotely sensed data to improve project or programme design and the capacity for adaptive management. Employ advisory and extension services to test and validate the strategies, technologies, and practices that build the human and social capital needed for SRLM and restoration. Celebrate pastoralism and rangelands by honouring their communities as well as their unique heritage and cultural traditions that link together rangelands around the world.National and sub-national authorities can take measures to support the economic viability of extensive livestock production and the livelihoods they support through flexible long-term investments and incentives, including context-appropriate strategies and programmes that link markets and value chains to sustainable rangeland production systems, and support efforts to:• Create innovative economic and financial mechanisms that are accessible to rangeland stakeholders, incentivise good management practices, provide decent work, stimulate market participation, and increase investments in sustainable pastoralism from public and private sources while avoiding adverse consequences for rangeland communities.• Develop market and value chain strategies and action plans that support economic livelihoods and income diversification -and expand innovative and profitable opportunities for rangeland communities engaged in extensive livestock production.• Promote adaptive investment and risk management tools, such as livestock and drought insurance, resource pooling and sharing, and community credit schemes, to better manage risks and uncertainties in a creative but economically sound manner.• Conduct economic valuations of rangeland ecosystem services to better understand their contribution to people, nature, and climate, to help inform rangeland policies, planning and programmes, and to attract donor funds, private sector investments, and public sector allocations for sustainable rangeland management and restoration.Additional guidance: Provide direct incentives to adopt and scale SRLM and restoration practices while reducing and eliminating harmful subsidies that undermine pastoralism, encourage the conversion of rangelands, increase herd sizes beyond the carrying capacity of the land, or otherwise harm their ecological integrity. Encourage investors, donors, and the private sector to make use of flexible and innovative tools and instruments that target the economic development of rangelands with the potential to generate benefits across all dimensions of sustainable development, especially in terms of food security and poverty reduction.Rangelands offer a broad array of sustainable development opportunities that are often undermined or compromised by shortsighted economic, social, and agricultural policies. Systemic approaches are clearly needed to conserve, sustainably manage, and restore rangeland health, recognising that pastoralism and extensive livestock practices are often the most effective means to deliver optimal outcomes for rangeland economies and societies.Governments, investors, and communities should consider new development and investment pathways that put rangelands and pastoralists front and centre -fully engaging with indigenous people, women, youth, and other population groups at risk. Multistakeholder platforms can play a critical role in upholding the rights of pastoralists and rangeland communities by improving tenure security, building trusted institutions, and encouraging participatory land use planning.Donors should look beyond the traditional recipients of funding in rangeland contexts to allocate resources that support initiatives that deliver multiple co-benefits for people, nature, and climate. As the case studies demonstrate, proven and costeffective governance and management practices can avoid, reduce, and reverse rangeland degradation while safeguarding pastoralist livelihoods, culture, and heritage.The United Nations Convention to Combat Desertification (UNCCD) recognizes that addressing and reversing land degradation is one of the key sustainable development priorities for many countries, particularly in the developing world. In response, the UNCCD secretariat produces strategic communications publications under the brand of the Global Land Outlook (GLO) to facilitate insights, debate, and discourse on a transformative vision for land management policy, planning and practice at various scales.The aim of the GLO is to communicate and raise awareness of evidence-based, policy-relevant information and trends to a variety of stakeholders, including national governments formulating their responses to commitments to better manage and restore land resources, including the SDGs and associated targets, such as Land Degradation Neutrality (LDN). The evidence presented in the GLO reports demonstrates that informed and responsible decision making can if more widely adopted help to reverse the current worrying trends in the state of our land resources.All GLO reports and working papers, can be found at: https://www.unccd.int/resources/global-land-outlook/overviewPlatz der Vereinten Nationen 1 D-53113 Bonn, Germany Tel: +49 (0) 228 815 2873 www.unccd.int","tokenCount":"30833"} \ No newline at end of file diff --git a/data/part_3/0549850203.json b/data/part_3/0549850203.json new file mode 100644 index 0000000000000000000000000000000000000000..e6e6217641af66460d69c488b0ac5ae3a9913c6c --- /dev/null +++ b/data/part_3/0549850203.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c761501524901a223953571d6d5f7d34","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/e0e1ee11-d252-4405-bf44-d3143094e27c/retrieve","id":"-2065190929"},"keywords":["50 focal persons of CGIAR Institutions/Centers in SEA (Bioversity","CIAT","CIFOR","CIP","ICRAF","IRRI","IFPRI","ILRI","IWMI","WorldFish)","MARDs' Departments","National/Local partners and selected NGOs and donors Nguyen Viet Hung ILRI VN Country Representative"],"sieverID":"57f44823-e57a-4b96-a52e-889d5689f6ef","pagecount":"24","content":"For more than four decades, CGIAR CGIAR Institutions/Centers (i.e., CIFOR, CIAT, ICRAF, IRRI, ILRI etc.) have been collaborating with Vietnam. CGIAR is a global partnership engaged in agricultural research for development, whose work contributes to the global effort to address poverty, hunger and malnutrition and environmental degradation. Carried out by 15 Centers of its Consortium, CGIAR carries out R4D work in close partnership with hundreds of partners across the developing world, including Vietnam. After the first Vietnamese scientist studied in a Center in the 1960s, several CGIAR Institutions/Centers signed a Memorandum of Agreement with Vietnam that laid the foundation for succeeding decades of close R4D collaboration. During 1990s-2000s, CGIAR Institutions/Centers established their offices in Hanoi to support further collaboration. Along with this, Vietnam (through MARD) and CGIAR Institutions/Centers have worked hand in hand in areas of sustainable farming systems, developing technologies to enable farmers, mainly smallholders, in improving their crop and livestock production, managing natural resources and adapting to climate change.In this context, MARD has requested IRRI to convene a CGIAR coordination meeting with CGIAR Centers on 6 November 2015 with the following objectives:1) Update MARD on the current activities and plans of CGIAR Institutions/Centers in Vietnam.2) Familiarize MARD with the various Vietnamese institutions working with the CGIAR Institutions/Centers.3) Explore approaches and mechanisms to facilitate complementation, synchronization and integration of CGIAR activities with MARD policies, plans and programs.The meeting was designed to liaise with targeted participants who have a good understanding of MARD research needs/priorities and the capacity of CGIAR in Vietnam. Participants were key members of CGIAR's institutional partners who hold management functions. The meeting brought together officials and representatives from CGIAR Centers, MARD, its Department and key research institutes and universities. Other partners from selected donors and NGOs also attended the meeting (The list of participants is in annex).The morning session was co-chaired by the Vice-Minister Le Quoc Doanh (in charge of international collaboration and crop production) and the IRRI DG Dr Robert Zeigler and the afternoon session by the Minister Cao Duc Phat and Dr Zeigler.Dr. Chu Van Chuong -Vice Director of ICD -introduced the participants and briefly mentioned the meeting's rationale, objectives and expected outputs.Vice Minister Le Quoc Doanh and Dr. Robert Zeigler gave the welcome and opening remarks:Vice Minister Doanh mentioned CGIAR's presence and work in Vietnam and MARD's wish for CGIAR's continued commitment and investment in developing a joint strategic partnership plan with MARD for research for development activites in line with the Agricultural Sector Restructuring Plan for 2016-2020. He expected that this formal meeting is an opportunity to discuss MARD's interests and to explore further strategic research collaboration between CGIAR and MARD in Vietnam.On behalf CGIAR Centers, Dr. Zeigler described the long, fruitful history of collaboration during the last succeeding decades between CGIAR with Vietnam. He also mentioned the contribution of CGIAR Centers in in Vietnam in the past, especially the contribution of IRRI in rice varietal improvement (rice breeding, germplasm material exchange, varietal releases), resource management, and capacity building. He acknowledged the request of MARD's leadership to develop a long-term partnership plan between MARD and CGIAR in agricultural research for development and how this could be integrated in the strategies/policies of Vietnam. He trusted that the coordination meeting would lead to taking the current MARD-CGIAR collaboration to a new level that will benefit the development of the agriculture sector and rural areas in Vietnam.1. After the presentation providing an overview of the CGIAR, 10 CGIAR's Centers (Bioversity, CIAT, CIFOR, CIP, ICRAF, IRRI, IFPRI, ILRI, IWMI, WorldFish) successively gave an overview of current research activities in Vietnam. They presented centers' objectives, projects/research programs (what and where they are implementing the CRPs and projects), partners (local and International) they are working with in Vietnam.Currently, 2 Centers (CIAT, ILRI) have their regional/country office and 3 Centers (ICRAF, CIFOR, IRRI) have country offices in Vietnam. Five other Centers (Bioversity, CIP, IFPRI, IWMI, WorldFish) have implemented their activities in Vietnam but they don't have offices. In the end of 2014, IRRI was officially recognized as an international organization operating in Vietnam. IRRI also supported Vietnam developed it's rice re-structuring masterplan. Earlier this year, CIAT and ILRI had a regional partnership meetings to refine their research priorities in the country.2. MARD's representative from Department of Planning (DOP) and Department of Science, Technology, and Environment (DOSTE) gave a presentation on \"Master plan of agricultural sector development in the period 2016-2020\" and \"Scientific research orientation of MARD in the period 2016-2020\". These agencies also proposed the priorities and identified areas of MARD-CGIAR collaboration in Vietnam.Most of the areas are from the Agriculture Restructuring Plan of Vietnam (ARP), focusing on:Sustaining the growth of the agriculture sector; raising the efficiency and competitiveness by increasing productivity, quality, and added values; satisfying the demands of consumers in Vietnam and boosting exports.Improving income and living standards of rural residents, ensuring food and nutrition security in both the short term and the long term basis, and contributing to the reduction of poverty.natural resource management, reducing negative impacts on the environment/climate change, utilizing environmental benefits, raising capacity for risk management, enhancing disaster preparedness, increasing forest coverage to 45% by 2020; and contributing to the National Green Development Strategy.3. After the presentations, the plenary discussion focused on drafting the areas of collaboration and needs proposed by MARD and capacities and interests offered by CGIAR Centers. The points discussed were the main areas of common interest and focused on smallholders or/and large producers.During the discussion, VM Minister Le Quoc Doanh mentioned some main key points of achievement, difficulties and development orientation of the agriculture sector in the next period.In the period 2000 -2015, the output value of agriculture, forestry and fisheries continued to increase with agricultural GDP growth rate of 3.4% / year. The structure of agricultural production has gradually shifted to the higher efficient sector which is associated with market demand. From 2000-2015, the share of seafood rose from 16% to 22% while the share of cultivation and livestock declined from 80% to 75% of the total value of production. Exports in agriculture, forestry and fisheries reached $ 30.8 billion with 9 groups netting more than USD 1 billion (2 seafood groups: catfish and black tiger shrimp; 7 crop product group/goods: Coffee, rice, cashew nut, rubber, fresh and processed vegetables and fruits, pepper, cassava and cassava products).Despite these impressive achievements and substantial contributions to national food security, poverty reduction, trade and social stability, Vietnam has not benefited fully from its potential and advantages in the agricultural sector. The agricultural production in Vietnam is still described as low with unstable profitability; low-quality products; insignificant value addition; high rate of postharvest losses; intensive natural resource, misuse of fertilizers, plant protection drugs and veterinary medicines, imbalance and depletion of natural resources and low value and competitiveness.-Increase investments in development and application of agricultural science and high technology to raise the efficiency and competitiveness by increasing productivity, quality, and added values of centralized/targeted product group/goods; -Promoting investments in science, technology including research and application of new seeds, fertilizers, plant protection products, agricultural machines and processing (focus on national products: rice, mushroom & medical mushroom, catfish & processed-catfish products).-Creating mechanisms and feasible incentives to establish \"commodities producing regions\" and \"large-field model\", and integration of the whole value chain from production, processing, trade promotion and market development.-Besides large-scale agriculture development, small farmers will be supported to integrate local and regional supply chain.-Linkages among stakeholders in agricultural production: not only provide incentives for enterprises to associate with farmers in production but also requires new efforts to build and strengthen the discipline in linkage models, to improve the awareness, responsibility and capacity of the farmers in applying advanced technologies and participating in business activities as well.MARD proposed CGIAR research to address:1. Breeding new rice varieties with high-yielding, high quality, pests/diseases tolerance and unfavorable environmental conditions-resistance (especially drought-tolerant, floodingtolerant and salt-tolerant rice varieties).2. Sustainable and intensive farming practices to reduce input costs, save material and raise higher income for rice farmers.3. Breeding short-growth corn, vegetables, and bean varieties with high-yielding, pests/diseases resistance.4. Technical solutions, high-tech production processes to increase productivity and quality of some major fruit trees (mango, mangosteen, longan, litchi, orange, grapefruit ...) for exporting.1. Conserve and develop indigenous animal genetic resources;2. Enhance/strengthening competitiveness of small-scale producers/farmer in market;3. Enhance the value-added in chain of livestock production (from breeding, feeding, raising technology, animal cage/house, veterinary and waste disposal/management);4. Address constrains in food safety and hygiene and improve the quality of livestock products;5. Mitigate/minimize air/water pollution and reduce GHG emissions from livestock; Forestry 1. Genetic conservation of rare timber tree species with high economic and scientific value; international exchange of genetic resources; 2. Investigation of infield resources, management and development of potential use of the water surface from rivers, lakes, reservoirs (hydroelectric, irrigation) for aquaculture (integrated management approach).3. Science-based practices to propose an income-expenditure counting-method for forming the fund the protection or regeneration of marine resources.4. Planning and management of regional fisheries development.5. Analysis and forecast of market's demand and supply and factors of international/global integration for aquaculture development (preferably MRD).CGIAR Centers also proposed/added some more areas in collaboration that was not listed in the identified areas from MARD:1. Only focusing only technical aspect, gender and social inclusive has not been paid attention properly across the R4D projects/programs -> collaboration in gender research in agriculture & rural development.2. Due to a long time of focusing only on increasing quantity (yield, productivity), nutrition has not been guaranteed and nutritional imbalances remain issues in Vietnam -> collaboration in nutrition security.3. Agricultural growth in Vietnam is based on intensive natural resource, misuse of fertilizers, plant protection drugs and veterinary medicines -> collaboration in biosecurity, assurance of food safety and hygiene.4. In order to achieve economic targets, agricultural production causes adverse environmental effects, imbalance and depletion of natural resources (soil, groundwater, surface water, minerals, biodiversity, etc.). Weaknesses in the management of water resources and agricultural residues also cause increasing pollution and greenhouse gas emissions -> collaboration in mitigation of risks in environmental management of agriculture production and climate-smart agriculture.5. Diseases on crops and livestock are becoming more complicated while plant protection and veterinary control have not been adequately invested -> collaboration in developing pest and diseases early-forecast/warning systems, and epidemic surveillance systems.After the presentations, the discussion focused on exploring areas of collaboration and needs proposed by MARD and capacities and interests offered by CGIAR Centers. The following points were discussed: (1) what would be possible areas of collaboration between CGIAR Centers and MARD for the following years? (2) What are possible joint activities to facilitate complementation, synchronization and integration with MARD plans, programs, and policies?Three discussion groups with MARD and other partners within MARD's institutional have outlined the following priority areas of interest/collaboration:(The list of each group member is in annex 1)","tokenCount":"1791"} \ No newline at end of file diff --git a/data/part_3/0553822855.json b/data/part_3/0553822855.json new file mode 100644 index 0000000000000000000000000000000000000000..8e155a5310fc129aaa6f95fccf5f0d925d9facde --- /dev/null +++ b/data/part_3/0553822855.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"83d4d351d4480ca91041ed440a74b90a","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/1191b02d-67f9-4fe2-90f6-d58463de6448/retrieve","id":"-1964184458"},"keywords":[],"sieverID":"6e1cd9a4-265d-4eae-b838-da5532c134cd","pagecount":"5","content":"In Vietnam, 1 Must 5 Reductions (1M5R) is certified by a Presidential decree (532-QD-TT-CLT) as the national policy to promote best management practices in lowland rice cultivation. The use of 1M5R focused on reduction of seed and pesticide inputs. This management reduced the production costs by 23% reducing the production by 203 US$/ha per season, and generating 19% additional income, 175 US$/ha more. The adoption of this technology was 28% more beneficial compared to farmers who did not follow 1M5R.In Vietnam, the best practice package of 1 Must Do, 5 Reductions developed during the Irrigated Rice Consortium (led by IRRI) Phase IV was promoted by the The RICE-projects CORIGAP (Closing rice yield gaps in Asia) and the Agricultural Competitiveness Project (ACP) of the World Bank. The ACP was extended to the Mekong Delta in November 2012 and rolled out in 2013. In 2013, data collected from just eight provinces in the Mekong Delta (MKD) indicated that 34,500 farmers participated in training and an estimated 240,000 farmers were implementing 1 Must Do, 5 Reductions over 300,000 hectares. The economic model had estimated 425,000 hectares for adoption nationally by 2016, for a benefit of US$27 million for the period 2013-16. These estimates are not for mean impact per farmer reached and were very conservative at 5% input cost reduction. Given that 70% of the projected area had adopted the technologies already in 2013, and a 10% input cost reduction is assumed, then on average the 240,000 Vietnamese farmers would benefit by $160 each per crop or $128/hectare. This is conservative because no yield increase is assumed. To further elucidate the benefits of 1M5R, IRRI and its partners in Vietnam conducted a household survey of among farmers in Can Tho province in the MKD and established replicated production-scale field trials of 1M5R.We demonstrated that application of 1M5R with clear limits for input use can substantially improve the sustainability of rice production in the Mekong Delta in Vietnam through reducing inputs that can have environmentally negative impacts (i.e. fertilizers and pesticides). In the treatment fields, mean total production cost per season fell by 23% (203 USD ha−1) and mean net income increased by 19% (175 USD ha−1), resulting in a 28% increase in the benefit: cost ratio. Five of eight farm-level SRP indicators showed an improvement in sustainability performance, whilst yield, labor productivity and water productivity were maintained. Farmers implementing GAP and SFLF management approaches were slightly more sustainable than CNV farmers, although there is scope for further improvement, especially with regards to reducing rice seed and pesticide application rates. We propose possible strategies to increase adoption of more sustainable crop management practices in the MKD.• https://tinyurl.com/y2on2hf6 The intensification of rice production in the Mekong delta (MKD) has helped to address food security in Vietnam and in the region. However, the overuse of inputs coupled with the rising production costs are making it increasingly difficult for smallholder rice farming in the MKD to remain economically and environmentally sustainable. Thus, there is a widely recognized need to improve the sustainability of rice cultivation in the delta. Since 2003, the Vietnam Ministry of Agricultural and Rural Development has led several initiatives to improve rice crop management practices in the MKD, including the 'One Must Do, Five Reductions' (1M5R) integrated technology package and the 'Small Farmer Large Field' (SFLF) model. Under the SFLF model, some contract farming with high-quality rice exporters in MKD are also based on Good Agriculture Practice (GAP) standards, such as GlobalGAP and VietGAP, that farmers must follow for accreditation.As part of an adaptive research platform, we conducted a household survey of GAP (VietGAP and GlobalGAP), SFLF and conventional (CNV) farmers in Can Tho province in the MKD and established replicated production-scale field trials of 1M5R, with an emphasis on further reducing seed and pesticide inputs by applying limits on their use. We assessed the sustainability performance of 1M5R and the three different management approaches for rice production (i.e. GAP, SFLF and CNV) over two rice cropping seasons using eight farm-level Sustainable Rice Platform (SRP) performance indicators.We demonstrated that application of 1M5R with clear limits for input use can substantially improve the sustainability of rice production in the MKD through reducing inputs that can have environmentally negative impacts (i.e. fertilizers and pesticides). In the treatment fields, mean total production cost per season fell by 23% (203 USD ha−1) and mean net income increased by 19% (175 USD ha−1), resulting in a 28% increase in the benefit: cost ratio. Five of eight farm-level SRP indicators showed an improvement in sustainability performance, whilst yield, labor productivity and water productivity were maintained. Farmers implementing GAP and SFLF management approaches were slightly more sustainable than CNV farmers, although there is scope for further improvement, especially with regards to reducing rice seed and pesticide application rates. We propose possible strategies to increase adoption of more sustainable crop management practices in the MKD.","tokenCount":"813"} \ No newline at end of file diff --git a/data/part_3/0562474340.json b/data/part_3/0562474340.json new file mode 100644 index 0000000000000000000000000000000000000000..f7e0cbe69413df9b3aac600d90fea78bafc8542e --- /dev/null +++ b/data/part_3/0562474340.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"4bf453c8dd0a43b41184e173d0a12f3d","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/20257c4b-9271-4f38-acda-47e1bf9db7d0/retrieve","id":"679805664"},"keywords":[],"sieverID":"28a5c2cd-f708-4ca6-b963-3dc0547ec42f","pagecount":"32","content":"This study examines the evolution of public policy and institutions shaping the agrifood systems in Haryana, India, from 1850 to the present. Public policy is conceptualized as representing state intent (Narain 2018; Dye 2002); in the context of this study, this includes a historical review of public policy spanning the colonial as well as postcolonial eras. Institutions are conceptualized as regularized practices, norms, and codes of conduct that structure repeated human interactions (North 1990). Thereby, in this study, institutions refer to both statutory (enforced and legitimized by the state) and non-statutory (legitimatized by sources other than the state) institutions.1.Present-day Haryana, a part of the Punjab Province during British rule, was discriminated against in matters of agricultural development by the British administration, as the people from this area had participated in the First War of Independence in 1857.The mahalwari land revenue system used here during the British period was oppressive and rendered the local population impoverished and indebted.The irrigation systems constructed by the British in the region were limited to protecting it from famine and social unrest; therefore, these systems were characterized by low irrigation intensities. The introduction of green revolution technology in the 1960s presented new challenges for protective irrigation systems because the existing low intensity irrigation design was inadequate to meet farming demands, especially for farmers who wanted to pursue productive irrigation. 4.The green revolution led to monocropping in favor of wheat and rice in the state. This practice was supported by the state's procurement policy as well as policies on flat-rate electricity pricing and subsidies for tube wells.Research note 15 December 2023Haryana is a state in northwest India, first recognized as a separate state in 1966. Though it was one of the major cradles of the Indian green revolution, it is currently undergoing a structural transformation and plays a key role in the industry and service sectors of the country. This note describes how policies and institutions shaping the state's agrifood systems have evolved between 1850 and the present.This study aims to describe the evolution of policies and institutions that have shaped agrifood systems in Haryana. During the colonial period, this mainly included the state's land revenue policy and policies for the expansion of arable land and irrigation.In the postcolonial period, this refers to forms of state intervention such as the continued expansion of arable area and irrigation, the introduction of green revolution technologies, policies for participatory irrigation management, and the state response to the COVID-19 pandemic. Agrarian institutions, such as systems of water rights and land tenure, and norms of cooperation and collective action, however, exist at a very micro level. This study seeks to capture elements of continuity and discontinuity between the colonial and postcolonial periods with regard to policy and institutions. It focuses on public policy (legitimized and enforced by the state) as well as micro-level statutory and non-statutory institutions (such as the system of water rights, allocation, and distribution) that underpin the state's agrifood systems.The study draws primarily on a review of the relevant published literature, archival material, and a few key informant interviews. Key informant interviews (KIIs) were conducted mainly to validate and update some of the findings from the literature review. The relevant literature was selected using a snowballing technique. Given that the state's agrarian institutions operate at a micro level, this study draws on several micro-level case studies to show how such institutions have manifested and evolved. The initial search for pertinent literature was used to identify further literature to be reviewed to build a coherent storyline.The geography of present-day Haryana was captured by the East India Company on December 30, 1803, from Daulat Rao Sindhia. It then became a part of the Delhi Province under what was then known as the North-Western Province (NWP). The people of Haryana played a significant role in the first war of independence in 1857, resulting in many casualties. After the British suppressed the mutiny, the Nawab of Jhajjar, the Raja of Ballabhgarh, and Rao Tula Ram of Rewari were deprived of their territories. These were handed over to the rulers of Nabha, Jind, and Patiala of the Punjab Province as a reward for their loyalty to the British Empire (Sharma 2016). Thus, Haryana was separated from NWP and tagged to Punjab in February 1858.Consequently, the region became the sociocultural backyard of Punjab and was discriminated against in matters of development (Amrohi 2013;Sharma 2016;Parshad 2018). The fact that the people of Haryana had participated in the mutiny of 1857 was key in influencing British attitude and policy toward the state -the British took a hostile stand. On the one hand, they followed a repressive land revenue policy, and on the other, they accorded a low priority to the development of agriculture in the region. The state was seen mainly as a source of supply for soldiers for the British army and for draught animals. Haryana remained a part of Punjab (first under the administrative control of Punjab Province from 1858 to 1947 during British colonial rule, and then later as part of the Indian state of Punjab postindependence) until November 1966, when it came to be recognized as a separate state.The British introduced three distinct land revenue assessment systems in India -the zamindari settlement (permanent settlement) in Bengal; the ryotwari settlement in Madras and Bombay, and the mahalwari system in North India (Parshad 2018). Haryana witnessed the mahalwari system, where the settlement was made directly with the village community, or mahal (estate), under the instructions of a settlement officer, who would fix the land rent to be paid by the peasants with the help of a lambardar (village headman). The lambardar was solely responsible for all recommendations, the survey of lands, the preparation of records relating to land rights, the settlement of land revenue and demands in the mahals, and the collection of land revenue.A detailed account of the land revenue policy in the region is provided by Amrohi (2013), Singh (2012), andParshad (2018). During colonial rule, land revenue was one of the key revenue sources for the government and was used by the imperialistic power to secure its colonial ambitions. However, the land revenue policy followed by the British in Punjab was different from that of the rest of India. Besides, even within Punjab, the land revenue policy followed was different for south-eastern areas in Punjab (present-day Haryana).\"The experience of the south-eastern region under British Rule was both qualitatively and quantitatively different from that of the Punjab province as a whole. The process of agricultural expansion, which marked the entire region, and had a significant impact on all aspects of life, was somewhat absent in this part of the region. The continued backwardness and underdevelopment of the tract, despite overall economic development, brought about a situation with its own specific problems and variations peculiar to south-eastern areas alone\" (Amrohi 2013, 18).While the land revenue was fixed at 40% for India as a whole, it was approximately 50% in Punjab. Since south-eastern areas in Punjab were further discriminated against, land revenue was collected stringently. The land revenue extracted from Punjab increased periodically. Between 1817-1818and 1861, it increased 182%, 24% between 1860-1861and 1900-1901, and 20% between 1900-1901and 1931-1932(Amrohi 2013). Among all the districts in Punjab, Karnal contributed the most toward land revenue as a percentage of net income.Land revenue was a tax that the peasantry had to pay even under extreme circumstances, and it remained a compressing burden for the peasantry throughout the colonial period (Amrohi 2013; Sharma 2016; Parshad 2018). They were expected to pay their dues by the appointed time under stringent conditions, as defaulting on land revenue meant loss of land ownership. No excuses were accepted with regard to nonpayment of revenue.Consequently, land revenue became a major reason for farmer debt.The land revenue demanded from the south-eastern areas of Punjab rose steadily between 1860 and 1932 (Amrohi 2013). For instance, the total land revenue demand in 1860-1861 was 41 lakh rupees, which increased to 53 lakh rupees in 1900-1901 and further to 73 lakh rupees in 1931-1932, i.e., a 30% increase between 1860-1861 and 1900-1901 and a 37% increase between 1900-1901 and 1931-1932. Overall, the demand for land revenue increased by 85% between 1860-1861 and 1931-1932. In 1860, the highest revenues were collected from Gurgaon (11.5 lakh rupees), followed by Rohtak and Karnal (approximately 9 and 8 lakhs rupees, respectively). Comparatively, Hissar and Delhi paid less (approximately 4 lakhs rupees each), and Ambala and Sirsa paid the least (2 lakhs rupees each).On account of its political positioning and participation in the first war of independence of 1857, the region's agricultural development was not prioritized by the colonial state (Amrohi 2013; Parshad 2016). It was mostly seen as being only suited for the supply of draught animals to the rest of Punjab and other parts of the country. Animal husbandry emerged as a subsistence-level economic activity, yet it never reached commercial proportions because the emphasis was on draught cattle rather than dairy cattle or the commercialization of dairy products. Over time, the region became impoverished and emerged as a major recruiting ground for the British Indian army, which was the only source of employment and sustenance under conditions of economic stagnation and backwardness.In addition to the repressive land revenue policy, two other colonial policies affected the agrifood system in the south-eastern areas of the Punjab Province. These were the expansion of arable land and the construction of irrigation systems. Between 1850 and 1970, a steady expansion of arable land took place all over North India, including presentday Punjab, Haryana, Delhi, and Chandigarh (Richards et al. 1985). The expansion of cultivable land was accompanied by the loss of woodlands. Though most of this expansion occurred during 1850-1890, amounting to a total increase of 28%, the expansion continued until 1970, adding another 16% of cultivable land. The districts on the desert fringe (especially Mahendragarh between 1890 and 1970) and the plains experienced the greatest growth (with Karnal, Jullundur, Patiala, and Sangrur showing the highest rates of expansion).While clearing new lands for plowing was the most common investment in agriculture in the colonial period, irrigation works, leading to land reclamation, were another (Richards et al. 1985). Some canals that were dug by the British were beneficial to the areas that constitute present-day Haryana (Kumar and Dangi 2018.). For instance, the Western Yamuna Canal, built by Sultan Feroz Shah in the fourteenth century, was renovated in 1886 since most parts of the canal had fallen into disuse. In 1868, another big canal irrigation project (Sirhind Canal) was launched by the British. This canal was planned to take water from the Sutlej and irrigate the districts of Hissar, Haryana, Ludhiana, and Ferozepur of the Punjab Province. Similarly, the Sirsa Branch Canal was dug during 1885-1895.The construction of these canals had an important effect on altering the local cropping patterns. For instance, the canals built by the British in the villages around Kakroi in Sonipat had an impact on agricultural production (pers. comm. Pratik Mishra, postdoctoral Research Associate, Lancaster Environment Center, Lancaster, England, United Kingdom, September 27, 2023). Because the water in the region was brackish, only chana (chickpea) and other millets or lentils were cultivated early on. However, with the building of the canal networks during the British time, there was enough water to even grow sugarcane.Genesis and Historical Evolution from the Colonial to the Postcolonial Period Apart from the expansion of arable land, the other element of continuity between the colonial and postcolonial periods was the construction and expansion of irrigation systems. Just as elsewhere in India, these constructions in areas of present-day Haryana were guided by the concept of protective irrigation (Jurriens andWester 1995a, 1995b;Mollinga 2003), which was part of the phase of planned economic development. This highlighted the continuity in state policy. Yet, the actual practice of protective irrigation evolved historically both during the colonial and postcolonial periods. This, on the other hand, represented the discontinuity in state policy.Another element of discontinuity was in terms of the relationship and compatibility between farming practices and the design assumptions of the protective irrigation systems. Till the British period, the state's protective irrigation systems functioned as intended. However, after the colonial period and the introduction of green revolution technology, there was a mismatch between the goals of protective irrigation and those of farmers, who now wanted to engage in productive irrigation. This created ideal conditions for institutional evolution on how water rights were realized in practice, pointing to a distinction between the concretization of water rights and their materialization.As opposed to productive irrigation systems, which match water availability from irrigation systems with the crop water requirements (and also the dominant practice worldwide), protective irrigation systems are designed to meet only part of the total crop water requirements. They have specific technical, organizational, and institutional characteristics. Appreciating the concept of protective irrigation, the foundation for which was laid during the colonial period, is essential in understanding the present agrarian context of Haryana and in assessing the performance of canal irrigation systems. Technological and institutional evolution within protective irrigation systems continues to characterize agrifood systems in the state.The fundamental idea behind the concept of protective irrigation during the British period was to spread the water thinly over a large area and reach out to a large number of farmers rather than meet the entire crop water requirements of only a few (Jurriens andWester 1995a, 1995b;Mollinga 2003). This was to prevent famine and political unrest and to encourage the cultivation of cash crops. The principle of protective irrigation has been adopted in India since the middle of the nineteenth century (Jurriens and Wester 1995a) and developed by the British administration at a time when the subcontinent frequently faced famines.Initially, irrigation was intended to benefit as many people as possible with a small but sufficient amount of water to protect them from total crop failure. This was in accordance with two of the official British development objectives for India: protection from famine and maintenance of political security. However, when protective irrigation systems were first built in India, colonial authorities did not use the term \"protective irrigation.\" Instead, the land with protective irrigation was referred to as \"area protected.\" It was not the same as an irrigated area as an area was considered protected even when only a part of it received water. In the 1860s, in Punjab, it was considered enough if 42.5% of the surface area received water. Thus, when an area was \"protected\" by irrigation, it meant that water was available for at least 42.5% of the surface area and there was sufficient water to guard it against famine and crop failure. It did not imply that there was enough water to irrigate all the crops of a particular holding.In the last quarter of the nineteenth century, however, protective irrigation acquired a second meaning when such systems came to be distinguished from productive irrigation systems (Jurriens and Wester 1995a;Mollinga 2003). In the first half of the nineteenth century, irrigation schemes were designed with the goal of maximum return with minimum investment. This approach proved to be quite profitable as capital expenditure could yield a return of up to 69.5% (Whitcombe 1983and Stone 1980cited in Bolding et al. 1995). These irrigation systems came to be referred to as productive irrigation systems. However, after 1860, when the Crown assumed direct control of India from the East India Company (Mollinga 1998), certain changes were introduced that had implications for irrigation development.This period also witnessed changes in the manner in which public works were financed. An independent public works department was established, and the irrigation policy underwent a change following the report of the Indian Famine Commission .In its report, the Indian Famine Commission drew attention to the benefits of irrigation in preventing famine. It defined the general policy that the British Government should adopt in dealing with famines (Narain 1922) and emphasized the need to anticipate famines and be prepared for them. It recommended that the government take direct measures to prevent famine and provide relief. The proposed solutions included expanding irrigation and railways and promoting the diversification of occupations.As a result, protective irrigation works came to play an important role during British rule. According to Narain (1922): \"Famines have been frequent under British rule, but thanks to the chain of protective railways, and the great irrigation works, they do not cause so much suffering now as they did in the past. Very great progress has been made in famine protection and famine relief\" (243). He continues:\"It would be difficult to overestimate the value to the country of these fine systems of irrigation works which may be said, with some slight reservations in respect of the Cauvery works in Madras, to have been entirely created by the British Government within the last eighty years. They irrigate annually over 11 million acres and completely protect from famine an area, which, except in the Madras and Orissa deltas, may be said to vary from two to four times the area annually irrigated. In some parts, as in Sind, there can be no cultivation, and therefore no population, without canal irrigation. In others, the effect of the works in maintaining or raising the level of the sub-soil water, on which the well irrigation depends, is of the utmost value and importance. The value of the crops irrigated by the canals in a single year is about equal to the whole capital cost of the works, and in years of famine, the produce of the irrigated area, being largely available for transport to distressed tracts, becomes an important item in the general food supply of the country\" (Report of the Indian Irrigation Commission 1901-1903cited in Narain 1922, 290). This notion of protective irrigation remained in use till 1964, when the benefit/cost (B/C) ratio was introduced as an investment criterion. Since then, it has not been used to indicate a formal category of irrigation scheme as intended by the Indian Famine Commission. In the 1990s, protective irrigation came to acquire a third meaning, indicating a form of irrigation that had certain technical, organizational, and socioeconomic characteristics specific to drought-prone areas of the subcontinent (Jurriens and Landstra 1989). The technical characteristics of protective irrigation systems involved spreading the water thin over a large area and a number of farmers. Farmers were expected to cultivate crops that required less water. Further, water was rationed based on available supplies. A supply-orientated approach implied that these systems were characterized by low irrigation intensities and high duties [1] (Jurriens and Landstra 1989). The intensity of irrigation in many systems was often less than 100% (Tilak and Rajvanshi 1991). By restricting irrigation by canals to a part of the irrigable areas, and by further limiting cultivation in those parts to one crop per year, the water was spread over a large area. Fine-tuning supply to demand, which is done to maximize yield, was not the objective. The supply-orientation approach resulted in maintenance costs being kept low (as these systems were unproductive systems and yielded little revenue). Such an approach also required fewer regulating devices for controlling water levels between the source (such as a weir or a dam) and the outlet command areas at the farmers' level (Mollinga 2003). 1996). Besides, the supply-oriented approach of protective irrigation systems fit well with the top-down organizational structure of the irrigation department and was based on the principle of an upward flow of information and a downward flow of instructions.Another organizational characteristic was the institutional system of water rationing, which appeared to operate as a system of designed scarcity (Jurriens et al. 1996). This system of rationing scarce water supplies took the form of warabandi irrigation in northwestern India and Pakistan, shejpali in western India, and localization in South India (Mollinga 2003). Warabandi is a system of water allocation in which water is allocated to farmers in proportion to the size of the land-holding; shejpali is a system of water allocation in which farmers make applications for water and these are sanctioned based on water availability in the reservoir. A detailed discussion of these systems follows in subsequent sections of this study.According to Jurriens andWester (1995a, 1995b), the protective irrigation schemes in India under British rule functioned more or less satisfactorily. This was because of several reasons. First, the population was smaller; second, agricultural production was mostly at the subsistence level, given the initial objectives of the irrigation system; and third, overall, production capacities had improved from what had been before the introduction of irrigation. Therefore, low irrigation intensities and agricultural yields were acceptable because they did offer protection from famine.After independence, however, the situation changed somewhat drastically. From the 1960s onward, the population explosion triggered a shortage of food and fiber. The situation was exacerbated due to several droughts during the monsoon period in the early years of planned economic development. Attaining selfsufficiency in food production became imperative for the newly independent India. With agriculture beginning to be remunerative for the rural population, farmers tried to increase production by irrigating more. Programs to improve seeds, fertilizers, pesticides, and marketing had a considerable impact on production, especially after the introduction of higher-yielding varieties (HYVs) in the 1960s. The net outcome was an increased demand for water, which the protective irrigation systems were not designed to fulfill. This created conditions for an institutional evolution of the supplyconstrained irrigation systems of the north, including the warabandi system, which is still prevalent in Haryana.Warabandi is a form of protective irrigation prevalent in present-day Haryana and much of northwest India and Pakistan. As a system of water allocation, warabandi covers an area of approximately 24 million hectares (mha) in India and Pakistan (Bandaragoda 1998) [2].The genesis of the warabandi system stemmed from a process of trial-anderror allocation of water to farmers during British times (van Halsema 2002). It is a supply-based system where water is divided among landowners according to the size of their landholdings (Malhotra et al. 1984;Malhotra 1988;Berkoff 1990;Bandaragoda 1998;Narain 2008aNarain , 2008b)). Thus, water rights are defined in terms of a time schedule to receive water. This is an interesting and important dimension of the irrigation and agrarian context of the state and warrants a detailed discussion for three main reasons. First, most discourses on water rights and market creation (see, for instance, Anderson and Snyder 1997) assume volumetric definitions of water rights. Second, in mainstream discourses on irrigation and agrarian reforms in the country, the definition of water rights itself has been a blackbox. Third, a detailed understanding of how water rights are defined and materialized has conceptual significance in that it has the potential to impart a sociotechnical perspective on water rights, drawing attention to how the definition and materialization of rights is shaped by an interface of technology and institutions (Narain 2008a(Narain , 2008b)). Water rights are embedded in the design of irrigation systems in the state and do not exist in a sociotechnical silo.At the tertiary level, water is allocated to farms through ungated proportional modules, which draw a fixed allocation of water from the main and secondary systems. Farmers are expected to take this fixed discharge of water on the assigned date and time of the week as specified in the warabandi schedule prepared by the state's irrigation department. The distributaries are supposed to operate at full supply level (FSL). This basis of a water right is sanctioned under the Haryana Canal and Drainage Act of 1974.In principle, the warabandi system is not designed to be flexible in terms of duration, rate, and frequency of irrigation (Narain 2003a(Narain , 2003b)). The distributaries are designed to be operated at FSL, and water is drawn through fixed, ungated structures such as the adjustable proportionate module (APM) or open flume at the tertiary or chak (outlet or watercourse) level. Every farmer is assigned a specific time and date of the week when he is entitled to take the full flow of water flowing from the distributary. Calculations are based on 168 hours in a week. If there are, for instance, 168 hours in a chak, the allocation time for each acre is one hour, meaning an acre will get an irrigation turn of one hour. The amount of water allocated to a watercourse is calculated according to a predetermined, scheme-wide water allowance and the size of the area commanded by the watercourse.In practice, however, farmers work within the constraints of the warabandi system such that it operates as a quasi-demand-based system. As noted, the designed low irrigation intensities and high duties worked well till the period of colonial rule. However, this connection was broken in the post-independence era, especially with the introduction of the green revolution, which demanded the timely application of specific quantities of water in combination with HYVs of seeds and other agricultural inputs such as pesticides and chemical fertilizers. A conflict emerged between the goals of protective irrigation that was in practice and productive irrigation, which the farmers wanted to follow. Farmers started pursuing various strategies at the individual and group levels to reconcile the goals of protective irrigation with those of productive irrigation. An analysis of these strategies helps us understand the institutional evolution in the mediation of the 'designed scarcity' in the agrifood systems of the state and draws attention to the role of social capital in shaping the adaptive capacity of the state's farmers.The most detailed account of these strategies is provided by Narain (2003aNarain ( , 2003b)), which is based on an ethnographic study of two villages in the Rohtak and Jind districts of the state. One of the most prevalent practices observed among farmers was the exchange of allocated time turns for irrigation. The pucka warabandi (formal warabandi schedule made by the irrigation department) schedule for each outlet is prepared by the irrigation department. The legal basis of sanction is Section 55 (A) of the Haryana Canal and Drainage Act of 1974. The schedule specifies the day, time, and duration each week when a farmer is entitled to receive a prespecified quantity of water. Since such a specification may be inadequate for farmers to meet their crop water requirements, it is reconciled by exchanging or accumulating irrigation turns with other farmers to make the water right more effective. For instance, if a farmer's turn to irrigate is from 9 am to 9:15 am on Monday, but he finds that the water allocated to him during that period is insufficient, he may borrow 15 minutes from another farmer and perhaps another 15 minutes from another farmer, with a promise to return the 'turns' in the future. This way, he accumulates 45 minutes over his allotted time to irrigate at a stretch, which makes the water right more effective.It is important to note that time exchanges are prohibited under the Haryana Canal and Drainage Act of 1974. However, they are followed widely and legitimized based on bhaichaara, which translates to 'a form of brotherhood or fraternity.' Bhaichaara represents a form of social capital that is mobilized to overcome the constraints posed by the designed scarcity created by the warabandi system as a form of protective irrigation. Bhaichaara is an organic institution in that it is socially embedded.Respondents describe bhaichaara as giving up an individual good for a larger good; the term is used in various contexts, such as a bhaichaara panchayat, which refers to a form of local governance parallel to the statutory panchayat. There is an element of reciprocity in these time exchanges, captured by the expression commonly used to describe them: \"bhai ka diya, bhai ka liya\" (taken from brother, returned to brother) (Narain 2003a(Narain , 2003b)). As a consequence, bhaichaara-based time exchanges have become integral in shaping the adaptive capacity of farmers in response to a regime that is scarce by design.Though water rights are defined by the state, they are realized through normative systems outside the state. This is evident in the distinction between policy and practice of water rights as well as water allocation and distribution.Statutory and nonstatutory bases of legitimacy equally shape water access in the warabandi system, pointing to the existence of legal pluralism (von Benda Beckmann, 2001) 2003b). Accumulating timeshares is a particularly common strategy for farmers with very small landholdings, such as one acre or half an acre. For instance, if farmers A, B, and C have one acre of land and 15 minutes each to irrigate, they exchange and accumulate their turns such that each farmer gets 45 minutes to irrigate at a stretch. Time exchanges also cut across seasons. For instance, if, in the kharif season, farmer A has sown paddy and farmer B has sown sorghum, farmer A, who has a greater crop water requirement, borrows an irrigating turn from farmer B. In the rabi season, if farmer B has sown wheat, and has an extra water requirement, he takes his allowance back from farmer A. It is common for tailenders, who are usually deprived of a fair share of water due to head-tail differences, to skip irrigation in one season (kharif) and accumulate water shares so that one crop can be grown in the rabi season. In kharif, they concentrate on crops such as sorghum, millet, and cotton as they consume less water and also because farmers rely on the rains for kharif cultivation.The practice of time exchanges also cuts across tholas (ancestral family units), though it is more common among members of a thola who own adjacent pieces of land to swap allotted irrigation time across outlets as well as seasons.The institutionalization of time exchange, albeit informal, is attributable to 1) the design features of the canal irrigation systems that allocate water scarcely in relation to the crop water requirement; 2) welldefined water rights that have a basis under the Haryana Canal and Drainage Act of 1974; 3) the rigidity in the water allocation schedule and the small size of landholdings, which lead to short duration irrigation turns, making irrigation impractical and inefficient; and 4) the existence of plural legal repertoires (Narain 2003a(Narain , 2003b)).The study of time exchanges in the agrifood systems of Haryana points to an institutional evolution within a sociotechnical context of protective irrigation that has its roots in the colonial period but was shaped further with the spread of the green revolution technology in postcolonial India in response to the measures taken to overcome the agricultural stagnation created during the colonial rule.It is equally interesting to learn how the institution of time exchange works in relation to other institutional arrangements in agriculture, such as tenancy arrangements (Narain 2003a(Narain , 2003b)). When a landowner gives the land out to be tilled under a tenancy arrangement (theka), the arrangement is inclusive of the water rights share of the land. It is a common practice among small landowners in Haryana to take land on theka from other farmers. Larger farmers also give out their lands on theka in smaller parcels or fragments to more than one small farmer at once or simultaneously cultivate their lands and those of other farmers. Water rights, in these contexts, are maintained under sajedaari arrangements, wherein the landowner provides the piece of land and its concomitant share of water. The landowner and the tenant contribute equally to the agricultural inputs and share the produce equally. This arrangement is known as addha, literally meaning 'half-half.'Haryana, what can their study contribute to the neoliberal discourse on market creation? Narain (2003aNarain ( , 2003b) ) notes two different types of sale of water rights -one where the farmer sells off his water right share for an entire year when not intending to irrigate from the canal, and the other, when he sells a specific turn, for instance, for a week, when he does not need to irrigate in that turn. The rate varies depending on the demand; during the summer, this could be INR 200 per hour [3], and during the winter season, it is in the range of INR 100-150 per hour (Narain 2003a).However, time swapping is a more common practice than selling it because lending a timeshare creates the basis for future entitlement. Once a farmer lends his timeshare to another, the latter is under an obligation to return it. Since farmers would typically sell their turn only after meeting their requirements and obligations, Narain (2003a) posits that the possibility of vibrant water markets emerging under warabandi irrigation is very thin. This supports the results of other empirical studies on market creation in surface irrigation, such as those of Bauer (1997), who investigated the functioning of water markets in Chile after the creation of the National Water Code of 1987 and found the functioning of the water markets to be sluggish.Other strategies for increasing control over irrigation, over and above time exchanges, have been digging tube wells, pilfering water along the canal, or applying for rice shoots [4] (Narain 2003a(Narain , 2003b)). Though it is common to supplement canal water irrigation with groundwater, farmers typically wait for the canal, as canal water is much cheaper. However, if a farmer needs to irrigate outside his schedule, he tends to pump groundwater. The farmer may still pump groundwater if he feels that his water entitlement is inadequate relative to his requirement. According to Narain (2003a) there is a tendency among farmers who buy groundwater for irrigation to dig their own tube wells to have even greater control over groundwater availability. Groundwater sale and purchase conditions vary, depending on the relationship between the buyer and the seller. It is often sold at a rate of INR 40 per hour. Alternatively, the buyer may provide the seller with the required amount of diesel. A third arrangement is a contractual annual arrangement where the seller provides groundwater at the rate of INR 1,000 per acre per annum. Tailenders rely more on groundwater irrigation on account of seepage losses. They buy groundwater from sellers closer to the head reaches where the groundwater is less saline owing to its proximity to the canal; seepage from the canal washes down some of the salts.An analysis of these forms of transactions points to the diversity of farmer responses to a regime of designed scarcity in the state's agrifood systems and also to the variety of institutional arrangements shaping farmers' access to groundwater. Though the literature on warabandi irrigation is extensive, there are few detailed ethnographic studies other than Narain (2003aNarain ( , 2003b) that offer insights into the actual irrigation practices in the state. Studies of warabandi irrigation in Pakistan also offer similar analyses and could be referred to for additional insights [5].Participatory irrigation management (PIM) is an important dimension of the agrifood systems of Haryana that helps trace the evolution of irrigation policy in the state. In the late 1990s, it emerged in response to the global trend of transferring the management of irrigation systems to farmers. (Narain 2003a). The main role accorded to WUAs under policies for PIM was the lining of the water courses and the maintenance thereof. Interestingly, the irrigation department never came to be identified as a direct actor in the formation of WUAs.Several criticisms were made regarding the policies for PIM in the state. The first critique was the limited potential for reform through the formation of WUAs (Narain 2003a). This related to the technological context in which the policies for PIM were meant to be implemented. The prevalence of warabandi as a sociotechnical system comprising a certain physical infrastructure and corresponding institutions for water resource allocation (and not just as an institutional system of water rationing) in itself limited the potential for reform of the irrigation systems through PIM. Warabandi, as explained in earlier sections of this study, is a supply-driven system in which irrigators receive fixed supplies of water that are supposed to be appropriated in the time slots allotted to them as per the warabandi schedule. Users have a very limited role in the overall operation of the system. They are mere recipients of predetermined, fixed quantities of water. This is in contrast, for instance, to the shejpali system of Maharashtra, where there are several operational implications in terms of receiving water applications, sanctioning applications, and then releasing water through gated pipe outlets. The operational implications of the shejpali system are such that it has the potential for reform by transferring these functions from the irrigation department to the water users. The same cannot be said about the warabandi system of irrigation.State policy for the formation of WUAs further tended to deepen the effects of agrarian structures and social relations. Field studies show the domination of the WUA decision-making processes by the local village elite (Narain 2003a). A study of the organizational dynamics of the day-to-day functioning of WUAs in a watercourse in a village in the Rohtak district (Narain 2003a) draws attention to how the day-to-day functioning was dominated by three individuals who held positions of power and misused the WUA's financial resources. Other members complained of a lack of access to essential information regarding the functioning of the WUA. The three individuals were further able to evade accountability to other members due to their elite position in the village hierarchy and networks. The study, guided by an ethnographic approach and based on a prolonged period of observation and immersion in the site, found that the three individuals were bound by strong ties of friendship. The study is useful in demonstrating the social embeddedness of collective action shaped by social and power relations. There were conflicts inside the WUA that were socially embedded, i.e., they were reflective of other conflicts in the community. When the WUA was formed, it was done by choosing the eldest member from each thola, revealing the socially embedded and patriarchal nature of institutions for collective action.Another critique of the PIM strategy in Haryana was that it shifted the responsibility for irrigation system management to the farmers at the tertiary level when the main management challenges, such as poor functioning and maintenance and water thefts, were situated at levels above the outlet (Narain 2003a). It was argued that if irrigation reforms were to be meaningful in the context of Haryana, such reforms would have to be carried out above the outlet, at the level of the main system, where the more critical management challenges persisted. This led to explicit demands for reform of the main system, i.e., at the main canal and the distributary level rather than at the outlet or tertiary level. This drew attention to earlier debates in canal irrigation reforms about managing blind spots in canal irrigation (Wade and Chambers 1980).The term 'green revolution' is used to refer to the increase in cereal production experienced in a few developing countries as a result of the change in agricultural technology during the 1960s and 1970s (Parayil 1992). A discussion on the green revolution is central to that of agrifood systems in Haryana because the state was one of the cradles of the green revolution in the country and has remained a major contributor to India's food basket. The introduction of the green revolution lifted Haryana out of the trap of agricultural neglect and stagnation that had been characteristic of the period of colonial rule in the state.There was an international policy and institutional context within which the green revolution technology was introduced in India. Prior to the green revolution, Indian agriculture was characterized by subsistence farming and rudimentary markets for agriculture (Parayil 1992). A stagnation in agricultural productivity culminated in a near-famine situation in the 1960s. The imperatives of feeding one-fourth of the global population on just onesixteenth of the land area presented an important challenge.Agriculture had languished during the colonial period, characterized by disastrous droughts, relatively little technological change, and sluggish land reforms (Shetty et al. 2014). Modern agricultural technology was used during the British administration mainly to boost the production of exportable cash crops such as cotton, tea, coffee, jute, rubber, and spices. India was regularly struck by famine, the most acute of which was the Bengal famine of 1943. Against this backdrop, food security emerged as a dominant agenda for independent India. The first five-year plan strongly emphasized agricultural rehabilitation along with irrigation, fisheries, animal husbandry, and market development. Due to widespread drought from 1965 to 1966, India imported food grains from the United States under the PL-480 scheme. Unexpectedly, however, the United States decided not to export wheat to India due to domestic circumstances. This incident paved the way for launching a green revolution in India.This was also the time when semidwarf varieties had already been developed in China (for rice) and Mexico (for wheat). India's first HYV of rice, known as Jaya, was introduced in 1968. In wheat, Lerma Rojo 64 A and Sonora 64 were introduced directly from Mexico. Later two more varieties, Sharbati Sonara and Kalyan Sona, were released for cultivation. The introduction of these HYVs of seeds, along with appropriate government policies providing essential inputs, market facilities, and credit, sought to revolutionize Indian agriculture.The introduction and widespread adoption of green revolution technology in India had three distinct phases (Parayil 1992). The first phase (1952)(1953)(1954)(1955)(1956)(1957)(1958)(1959)(1960)(1961)(1962)(1963)(1964)(1965) was characterized by the development of a new and indigenous agricultural research system. In 1952, India signed its first contract with the United States Agency for International Development (USAID) university. In the mid-1950s, the Indian government sought the support of the Ford and Rockefeller Foundation and USAID to establish a high-quality graduate school at the Indian Agricultural Research Institute (IARI) in New Delhi.The second phase (1962)(1963)(1964)(1965)(1966)(1967) was marked by the overhaul and reform of the agricultural bureaucracy in India to facilitate the diffusion of HYVs in the domestic agrarian system. This required a reform of the agricultural institutions and commodity committees that had been established by the colonial administration. In 1962, Indian scientists successfully tested an HYV of Mexican wheat under Indian environmental conditions. An HYV of rice was tested in 1964. These HYVs were introduced for the first time in the Indian market during the 1965-1966 growing season.The third phase (1965)(1966)(1967)(1968)(1969)(1970)(1971)(1972)(1973)(1974)(1975) was marked by the change in agricultural practice as a result of the introduction of HYVs. Farmers began to adopt the new technology extensively, beginning with the 1965-1966 growing season. Agricultural productivity increased steadily until 1975 (Parayil 1992). Thereafter, the increase in productivity began to level off. By this time, farmers in different parts of India had achieved a two-to three-fold increase in agricultural yields compared to the 1965 base. Agricultural productivity began to register considerable growth again in the mid-1980s, which some analysts attribute to a second green revolution.Within the state of Haryana, the period of the green revolution saw a further expansion in the net sown and irrigated areas as well as a change in the cropping pattern. The task of clearing land in the state for agriculture had been initiated in the pre-colonial period, intensified during British rule, and continued until the early 1970s (Kumar and Dangi 2018;Richards et al. 1985). The introduction of the green revolution technology in Haryana influenced the cropping pattern and encouraged a move toward monocropping. However, the green revolution also came to be associated with severe long-term negative environmental consequences, such as a fall in the water table levels and diminishing soil productivity. Besides, it had a limited regional spread in the state, being confined mainly to the districts of Kurukshetra and Karnal. The net sown area in Haryana was approximately 78% in 1966-1967, and it increased to over 81% in 1990-1991(Singh 2000). During the same period, cropping intensification increased with a significant expansion in the areas that had more than one crop per year; in the 30 years between 1950-1951 to 1980-1981, this increased from 11% to 42%, and again to 53.6% in 1990-1991. Given the legacy of protective irrigation (discussed earlier in this study), this increase in cropping intensities did not agree with the low intensities of the protective irrigation systems that were in place as introduced during British rule. As land use intensity increased, the area of land under irrigation also increased -from approximately 61% in 1984-1985to 73% in 1990-1991(Singh 2000)).A significant impact of the new agricultural technology on the state was a change in the cropping pattern. In this context, new agricultural technology implies the use of HYVs of seeds, timely irrigation, and application of pesticides and chemical fertilizers. A shift in the cropping pattern was observed for both Kharif and Rabi crops. Monoculture emerged as the dominant cropping system.For instance, during Kharif, there was a shift away from jowar (sorghum) and bajra (pearl millet) toward rice. Likewise, wheat replaced barley and gram during Rabi. This change in the cropping pattern is attributed mainly to an expansion of irrigation facilities (Singh 2000), though farmers had also developed a preference for HYV seeds and more remunerative crops such as wheat and rice. Nonetheless, barley and gram continued to be grown in the rainfed areas of the state.Overall, following the introduction of the green revolution technology, rice (Oryza sativa) and wheat (Triticum) replaced pulses, bajra, and jowar (syricum) as dominant food crops, while cotton (Gossypium) emerged as the key cash crop. The yields of rice and wheat in the state increased considerably from 1965-1966to 1992-1993(Singh 2000)). For instance, the Gurgaon district recorded the highest compound growth rate of 5.22% for wheat during 1986-1995.In recent years, however, the two dominant crops, rice and wheat, have faced severe constraints in terms of their sustainable productivity (Sharma and Mukhopadhyay 1999). The major challenges to rice productivity are inadequate irrigation due to a decline in the water table and poor discharge of tube wells; inadequacy of canal water supplies; poor quality of groundwater; and increasing problems of salinity and alkalinity. Other challenges to rice productivity are declining soil fertility due to the depletion of major-and micronutrients (nitrogen, phosphorus, and zinc), which is attributed to the continuous rice-wheat cropping system; deterioration of the physicochemical soil conditions due to tillage and puddling; imbalanced use of fertilizers; delayed and prolonged transplanting of rice; excessive cultivation of basmati rice (which is susceptible to diseases and insect pests but cultivated nevertheless as it is remunerative); heavy losses due to diseases, insect and pests such as bacterial leaf blight, stem-rot, false smut, leaf folder, and stem-borer.The major constraints to the productivity of wheat come from the late plantation of wheat (10%-15% until December 25; 40% after December 25); the presence of weeds; reduced soil fertility with regard to both major-and micro-nutrients and soil organic matter; increase in soil salinity/alkalinity, especially in the western districts; and the rising problem of disease in popular varieties such as HD2329 and HD 2285. In addition, rust and heavy incidence of leaf blight are also identified as other constraints hampering the productivity of the crop.Over time, the green revolution technology in Haryana has come to be associated with serious negative environmental effects. Large parts of the land are affected by desertification, soil salinity, waterlogging, floods, and droughts due to deforestation-induced excessive soil erosion resulting from inappropriate agricultural practices. Besides, in India, the use of agrochemical fertilizers is the highest in Haryana (Singh 2000). There is an imbalance in the nitrogen, phosphorus, and potassium (NPK) consumption ratio in rice and wheat crops. While the use of potassium is also lower in this region, a clear trend has been observed in the accumulation of nitrates in groundwater, reaching toxic levels.A major challenge has been the declining water table level, given the over-exploitation of groundwater. As much as 95%-98% of the areas under rice and wheat cultivated have to be irrigated, and irrigation from groundwater accounts for about 60%-65% of the total irrigation requirement, and the remaining is met through canals (Singh 2000). This excessive exploitation of groundwater has had a severe impact on the groundwater levels. Several districts in the ricewheat growing regions have recorded a decline in the water table in the range of 3-10 meters. For instance, the water table has dropped by 10 meters in Kurukshetra, 5 meters in Karnal and Panipat, and 3 meters in Ambala, Yamunanagar, and Kaithal (Singh 2000).A consistent decline in the groundwater table poses serious challenges to the sustainability of the green revolution. In Haryana, the impact of groundwater depletion is apparent in high tube well-density districts such as Panipat and low tube well-density districts such as Mahendragarh (Banerji and Meenakshi u.d.). This is attributable to the increased popularity of paddy and, to a certain extent, sugarcane, both of which have seen significant expansion in acreage since the 1980s. The popularity of the wheat-paddy combination is largely due to the credible output-price support system prevalent in the state through which the government is committed to purchasing grains that are offered it at the minimum support price. The cultivation of the post-monsoon waterintensive paddy crop has also been spurred on by the availability of subsidies for tube wells, subsidized diesel, and flat-rate electricity prices. The prevailing argument regarding the issue of groundwater depletion is focused on the increasing adoption of the wheat-paddy combination resulting from state policies that support minimum prices and various subsidies. However, in this discussion, the technological context of irrigation has been left unexplored and ignored. The boom in tube well irrigation and the subsequent fall in water table levels must be seen against the backdrop of the protective irrigation systems that were introduced in the state by the British designed to meet a fraction of the water requirements for crops and not aligned with the demands of the green revolution technology.Joshi and Tyagi (1991) compared the sustainability of the green revolution period (1972-1973 to 1979-1980) with that of the post-green revolution period (1980-1981 to 1987-1988) and found that in areas endowed with good-quality groundwater, such as the districts of Karnal, Kurukshetra, and parts of Jind, the resource was being over-exploited. On the other hand, regions with poor-quality groundwater, such as the districts of Hissar, Rohtak, and other parts of Jind, reported an overall rise in the water table rather than excessive groundwater extraction. Both these scenarios are undesirable for the sustainability of agriculture. Rice-wheat rotation is generally followed in good water quality zones, whereas cotton-wheat is practiced in most of the poor-quality groundwater areas. Sugarcane is a common crop in both instances.In their study, Joshi and Tyagi (1991) focused on four crops: rice, wheat, cotton, and sugarcane. They examined the compound rates of growth of production, area, and yield for the sample crops and concluded that in the majority of the districts of the state, the growth rate of production had had slowed down during the postgreen revolution period; the rates of yield had either become stagnant, negative, or insignificant. Their study further showed that crop substitution and reclamation of degraded soils contributed to the increase in the production of rice and wheat during the post-green revolution period; yet this contribution was rather slow and inadequate to compensate for the fall in the growth rate since the green revolution period, that is, the period of the green revolution associated with increases in agricultural growth rate.In general, the production and profitability of rice and wheat shrunk in the post-green revolution period. Similarly, the acreage of cotton declined, and sugarcane did not show any encouraging results either. Deteriorating soil health and stagnating technological innovation since 1966 were identified as the key constraints impacting production. Although fertilizer consumption had increased and irrigated areas expanded, the rates of growth of yield had slowed down. High private profitability of rice, along with state incentives on inputs and better output support prices, were responsible for acreage gains, that is, increases in the area under rice cultivation, in the Punjab and Haryana.Haryana, Karnal and Kurukshetra districts were dominated by tube well irrigation, and the area under tube well irrigation increased in both these districts over time (Joshi and Tyagi 1991). Since Jind, Hissar, and Rohtak had poor-quality groundwater, canal irrigation was the predominant source of irrigation in these districts. The overexploitation of groundwater in Karnal and Kurukshetra (as previously discussed) resulted in a drop in groundwater levels. The irrigation requirement of rice for this region is 130 cm/ha, while that of wheat is about four times less. Therefore, rice accounts for approximately 35% of the total irrigation requirement in Haryana (Joshi and Tyagi 1991). The canal seepage in these districts offsets some of these effects; otherwise, the water table level would have been even lower. In Karnal, the water table level fell from 4.8 meters in 1974 to 7.7 meters in 1989; in Kurukshetra, it fell from 7 meters to 10.7 meters during the same period.As a result of the economic and ecological factors described above, the state experienced fatigue from the green revolution (Shetty et al. 2014). Consequently, the regions where the benefits of the green revolution were harnessed in abundance faced the challenges of land degradation, yield plateauing, and a deceleration of their compound growth rate. At the same time, there was a regional imbalance in the spread of the green revolution in the state; it remained confined to Karnal, Kurukshetra, and their neighborhood, where the effects on agrarian relations and the agricultural wage rate were also more pronounced than elsewhere (Bhalla 1976).An important consequence of the introduction of the green revolution technology was a shift toward the cultivation of wheat and paddy. As high as 95% of the total cultivable area came under the rice-wheat cropping system (Sendhil et al. 2015). The share of rice in the total food grain production of Haryana increased sharply from 50% in 1966-1967 to more than 90% (Sendhil et al. 2015). In the preceding sections of this study, we have highlighted the factors that have led to stagnant or plateauing yields of these crops in recent years. In addition, several recent studies have emphasized the adverse impacts of climate change on agricultural production.Rice, a Kharif crop, is expected to be impacted more by the variability in rainfall, while wheat, which is grown in Rabi, is more likely to be affected by random variations in minimum temperature. Wheat is also likely to be affected by climate change-induced terminal heat stress, while rice will be affected by temperature and water availability (Sendhil et al. 2015). In general, changes in solar radiation, temperature, relative humidity, and precipitation have been shown to affect crop yield, crop mix, cropping system, scheduling of field operations, grain moisture content, and, subsequently, farmer income. In addition, increasing rainfall and its erratic pattern will lead to more cloudy days, causing further yield reduction. Aggarwal (2008) analyzed the historical trend in rice and wheat yields in the Indo-Gangetic plains using archival data, fertility experiments coupled with conventional field experiments, and crop simulation models and found that rice yields over the last three decades show a declining trend, which may be partly related to the gradual change in weather conditions in the last two decades. Similarly, Kumar et al. (2019) found that an increase in rainfall and extreme temperatures negatively impacted rice production in Haryana. They also confirmed that an increase in maximum temperature was detrimental to rice and wheat.Farmers in Haryana are experiencing and are aware of a changing climate in terms of fluctuating temperatures and increasingly erratic rainfall. In their study, Aryal et al. ( 2018) identified excess heat at critical stages of crop growth, depletion of groundwater, waterlogging and excess moisture, and strong wind and storms as major climate risks. Erratic rainfall has had a severe impact on wheat production. During the harvest period, rainfall can cause waterlogging in the fields, which loosens the roots of wheat plants. This results in significant production loss as the roots are no longer able to support full growth (Aryal et al. 2018) 2020) have argued that a wheat production system that can reduce the vulnerability of wheat to damage caused by climatic risks can significantly reduce the farmers' loss as well as the government's economic burden. They also found that in Haryana, many farmers already followed the conservation agriculturebased wheat system (CAW) [7], which incurred less damage from untimely excess rainfall compared to the conventional tillage-based wheat production systems (CTW). Ironically, during the extreme climate event in 2014-2015, when the Haryana government compensated only those farmers whose crop yield loss was greater than 30%, it ended up disincentivizing farmers using CAW, as their losses were less than those using conventional practices. Therefore, Aryal et al. (2020) argue that compensation policies should also factor in wheat production practices rather than focus only on the percentage of actual loss. Their study concluded that learning and communication were the most crucial factors enabling CAW adoption. Therefore, providing support to agricultural education programs for farmers should be a priority for policymakers beyond focusing solely on input subsidies and credit.Designing an appropriate strategy to communicate scientific evidence to farmers, reshaping compensation policies, and strengthening local extension institutions are essential in enabling farmers to adapt to the negative effects of climate change on crop production. At the local level, farmer-to-farmer communication was found to be a critical factor in promoting technology adoption. CAW was adopted as a climate risk coping measure by farmers who learned climate change adaptation through their own experience and the experience of their neighbors. An earlier study (Aryal et al. 2016) compared wheat yield in good and bad years and found that CAW performed better than CTW. during both periods. Since farm mechanization is high in Haryana, the study found that CAW can cope better than CTW in extreme rainfall conditions during the wheat season. In a study of four villages in the Sohna district of Gurgaon, farmers reported a declining rainfall trend after 1982-1983, as well as the disappearance of the monsoon period (Narain 2023). Earlier, the rainfall was spread evenly across the four monsoon months from July to October. Now, farmers report only sudden and sporadic rains. Changing climatic patterns, particularly the current pattern of shorter winters and longer summers, are said to affect the viability of the wheat crop. According to Narain (2023), farmers complained that they needed a longer winter period for the wheat crop to mature. Similarly, in the Rabi harvest season of 2023, untimely rains caused the wheat crop to wilt. This meant a higher wage rate for labor engaged in harvesting wheat; it went up from 8 mann for harvesting one acre of wheat crop to 10 mann for this cycle [8]. This way, illtimed rains played a role in raising the cost of the harvest of the crop.Overall, climate change has a significant impact on agriculture, yet, it affects landlords and tenants differently, creating a differential vulnerability between them. Many landowners give land out to till on a contractual arrangement called kannbatai, wherein the tenant pays a preagreed amount to the landowner upfront. If the crop fails due to climate vagaries, the tenant bears the loss (Narain et al. 2016). Further, the geographical location of agricultural fields plays a critical role in shaping the differential vulnerability of tillers. For instance, lands located in low-lying areas or a depression are vulnerable to being flooded in times of high rainfall (Narain et al. 2016).A parallel body of literature has emerged on the impact of climate change on agriculture in peri-urban contexts. This literature focuses on how urbanization and climate change impact peri-urban agriculture. As flagged earlier, farmers in peri-urban areas such as Gurgaon have already complained about shorter winters, longer summers, declining frequency of rainfall, , and the disappearance of the chaumasa (four-month monsoon period) (Narain et al. 2016;Narain and Singh 2017) as a result of climate change. In the Sadrana village of Gurgaon, farmhouses popping up in the vicinity of agricultural fields intensified competition for groundwater; small and marginal farmers who could not afford the high costs of groundwater extraction were left chasing the water table. They responded by either leaving the land fallow or using sprinkler irrigation systems, given that the soil was sandy and the terrain was undulating (Narain 2014).Peri-urbanization and the changing and emerging rural-urban flows of water also have the potential to impact peri-urban agriculture. In the Budhera village of peri-urban Gurgaon, one impact of the in-flowing wastewater canal that carried the urban waste of Gurgaon was that farmers started cultivating wheat and paddy. Narain and Singh (2017) found elaborate norms of cooperation among irrigators in using wastewater; they cooperated by taking turns to irrigate. They contributed labor and capital for the construction of furrows for carrying wastewater to the fields. The reliance on wastewater as a source of irrigation has increased with changes in precipitation patterns. Irrigators wait for the monsoon for paddy irrigation, and if there is no rain or deficient rain when irrigation is needed, they resort to wastewater irrigation. A wide variety of technologies have been used to appropriate wastewater for irrigation: a pipe outlet at the bed of the canal, diesel and electric pump sets, and pump sets attached to tractors.There is considerable evidence that the state's farmers have the potential to self-organize for collective action in response to adapt to the combined effects of urbanization and climate change (Narain and Singh 2017;Mishra and Narain 2018). In Budhera, this is evident through the effort pooled to provide labor for digging furrows to transport water from a wastewater canal to the fields. Irrigators install a pipe outlet along the banks of a wastewater canal to collect wastewater. For the use of this service, they pay a nominal fee to the irrigation department annually. However, the wastewater is used by a large number of irrigators, as much as one km away from the wastewater canal and the pipe outlet. These farmers contribute labor to dig a furrow and cooperate in taking turns to irrigate from the wastewater canal. It is important to note that this practice is followed among irrigators and not necessarily among landowners.The basis of cooperation here is physical proximity rather than a unit of social organization such as caste. These cooperative initiatives are legitimized based on bhaibandi (brotherhood), which denotes a sense of cooperation and collective identity. It is somewhat akin to the notion of bhaichaara, which provides a legitimization to time exchanges under the warabandi system (Narain 2003a(Narain , 2003b)). In Budhera, the collective response in terms of cooperating in the use of wastewater is a response to the absence of an irrigation canal serving the region, the presence of saline groundwater, and changing precipitation patterns. With restrictions on the inter-district movement of people and resources, harvest operations became directly dependent on the supply of labor, equipment, and inputs at the local level and on the state's pre-existing agricultural marketing arrangements. The government of Haryana responded proactively to the situation by leveraging its market infrastructure and agent network to pursue a staggered procurement plan during the lockdown. This greatly eased congestion and the strain on the state's resources (Ceballos et al. 2020). Wheat procurement at mandis was delayed, with only 100 farmers entering the mandi per day, divided over one shift each in the morning and afternoon. Nonetheless, efforts were made to reach all farmers through existing databases and the commission agent network. The number of mandis increased from 477 to 2,000, and nearly 500,000 farmers (approximately 61% of the farmers) who had registered for the procurement system were able to sell their produce through this mechanism.Ceballos et al. ( 2020) did a comparative study of 1,275 farmers growing wheat in Haryana and 240 farmers growing black gram in Odisha during the COVID-19 period. Farmers in both states had adjusted the timing of their harvest. In Haryana, farmers reported harvesting earlier (11%) or later (32%) than normal. Since the harvest window only began in April, as it typically does, wheat farmers could not harvest and sell their crops before the lockdown was imposed. However, key informant interview (KIIs) respondents in the study reported that since the wheat crop had reached maturity later than usual, and it is a hardy crop, the timing of the harvest could be adapted to the availability of inputs and procurement, limiting economic losses. However, 41% of the farmers in Haryana reported having to spend more on harvest than usual due to the lockdown, with 25% of the farmers incurring higher labor costs and 23% spending more on machinery, likely due to reduced availability.During the lockdown, labor would have moved back to the home states, including Odisha. In principle, this would have increased wages in Haryana (due to deficit supply) and reduced wages in Odisha (due to surplus supply) (Ceballos et al. 2020). In contrast, the study found that farmers did not spend more on wages but rather on transport, food, and accommodation arrangements for their laborers during the lockdown. In addition, farmers in Haryana had the option of shifting to mechanized alternatives, which were not available to farmers in Odisha. In both states, most farmers (61% and 74%, respectively) were not able to sell their produce immediately upon harvest and had to store it for future consumption or sale. In Haryana, postharvest losses related to these delays remained limited: 85% of the sample respondents reported no storagerelated losses. The KIIs conducted during the study indicated that this was due to the effective storage facilities in Haryana that allowed farmers to safeguard their produce. None of the respondents had to sell the produce below the minimum support prices.The study found that, in Haryana, overall, the mechanized farming system and existing public procurement institutions, which helped the state government implement a timely and sound procurement process during the lockdown, prevented widespread losses in farm income. On the other hand, the absence of such institutions, combined with labor-intensive practices in Odisha, resulted in crop and income losses for many farmers in the state.When we look at the evolution of policy and institutions in the agrifood systems of Haryana across the colonial and postcolonial periods, we notice elements of continuity as well as discontinuity.The elements of continuity are seen mainly in the expansion of arable land and irrigated areas. The construction of canal irrigation systems started in the state in medieval times. During British rule, it evolved into the construction of protective irrigation systems. The philosophy of protective irrigation continued to guide the expansion of irrigated areas in the postcolonial period as well. However, the element of discontinuity is reflected in how the protective irrigation systems came to be conceptualized.The meaning of protective irrigation evolved over time. During the colonial period, protective irrigation emerged as a strategy to secure colonial rule by preventing famine, stalling social and political unrest, and securing the production of cash crops. The rationale for the construction of protective irrigation systems was strongly influenced by the recommendations of the famine and irrigation commissions, both of which proposed the construction of protective irrigation systems as a means of preventing famine. In the postcolonial period, protective irrigation came to be understood as a form of irrigation with specific organizational and technical characteristics, mainly suited to drought-prone areas. Its technical characteristics were represented by the intended irrigation intensities, capacity factors, and allowances. Until the end of the British period, these systems worked more or less as designed. The low irrigation intensities that were the basis of their design matched the cropping choices of the farmers.A massive expansion of arable land occurred during the colonial period, though this exercise had already begun during the medieval period. This expansion continued well into the postcolonial period of planned economic development and illustrates yet another element of continuity between colonial and postcolonial periods. However, by the 1970s, it was no longer possible to expand arable land, and the emphasis thus shifted from expanding cultivable land to improving agricultural productivity. This shift in emphasis represents an element of discontinuity in state policies between the colonial and postcolonial periods. Another significant element of discontinuity was the shift from cash crops of the British period to food grains postindependence. Both these shifts were necessitated by factors such as widespread famines and the massive expansion of arable areas that had occurred during British rule.A strong element of discontinuity is also evident in the working of the canal irrigation systems. Designed similar to the protective irrigation systems, these systems worked as intended during the colonial period. However, in the postcolonial period, their low irrigation intensities proved to be inadequate. With the introduction of HYV seeds and the policy of minimum support prices for food grains, farmers wanted to increase the production of wheat and paddy. A switch to monocropping was a significant effect of the introduction of the new agricultural technology; as much as 95% of the net sown area in the state had a wheatpaddy combination. Farmers wanted to pursue productive irrigation, seeking to maximize the production per unit of land, while protective irrigation sought to maximize production per unit of water.This conflict between the objectives of the farmers in response to the combined effects of the introduction of the new agricultural technology and the policies for input subsidies and minimum support prices led to the emergence of new technological and institutional responses in the state's agrifood systems. The farmers' technological responses ranged from the digging of tube wells and the use of rice shoots to water thefts along the canal. Their institutional responses took the form of innovative practices such as time exchanges. Time exchanges represent institutional evolution in the agrifood systems of Haryana at the interface of multiple legal repertoires. They are shaped by an intersection of both statutory law (which defines water rights in terms of the time for taking water sanctioned by the Haryana Canal and Drainage Act of 1974) and normative systems (such as those of bhaichaara, which have a strong social sanction).While considering the policy and institutional evolution of the agrifood systems of Haryana, or for that matter, anywhere else in South Asia, it is necessary to pay attention to the technological context within which such evolution happens. This study adopted a sociotechnical lens to explore the institutional evolution in Haryana's agrifood systems, drawing attention to the relationship between technology (irrigation infrastructure) and the institutions (forms of water allocation and distribution) (see also Kloezen and Mollinga 1992).The postcolonial literature on agrifood systems in the state has been dominated by discourses focused on the green revolution. The early narratives on the green revolution flag its impacts on increasing food security in the state; the latter narratives point to the consequent diminishing of soil productivity and the declining water table levels. The increase in the productivity of rice and wheat reached a plateau, the effects of which were further aggravated by climate change. Haryana emerged as a major cradle of the green revolution and an important contributor to the nation's food security, largely in response to the shift toward monocropping -i.e., the cultivation of wheat in Rabi (winter) season and paddy in the Kharif (monsoon) season. Though the procurement policy of the state is often blamed for encouraging farmers to grow water-intensive crops, thereby aggravating the stress on the groundwater table, it has been an important factor, along with the mechanized nature of the state's agriculture, in reducing the vulnerability of farm incomes to the effects of the COVID-19 pandemic.Haryana is currently in the midst of a structural transformation. From being the cradle of the green revolution, it is now being repositioned as a major center for industry, outsourcing, and real estate. This has implications for the nature of agriculture itself and necessitates a stronger focus on the dynamics and processes characterizing peri-urban agriculture in the years to come. This will include examining the implications of changing access to water and land; the emerging norms of cooperation or conflict around land and water; the diversity in the sources of irrigation; and the emergence of new institutional arrangements in periurban agriculture.","tokenCount":"11898"} \ No newline at end of file diff --git a/data/part_3/0564874222.json b/data/part_3/0564874222.json new file mode 100644 index 0000000000000000000000000000000000000000..3ff9c81ff303a5bf889a958e8c9e2b16de17e573 --- /dev/null +++ b/data/part_3/0564874222.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"4c1cc613ce02220fd82008fe49dcf7d6","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/a574f10c-a756-43f5-b73d-d029ffd0a450/retrieve","id":"-2111887534"},"keywords":[],"sieverID":"e1b6a928-1d3c-4d3c-83cb-e3ae3928e667","pagecount":"20","content":"Key Achievement 1. SAH was successfully adapted from potato seed in Argentina. BASICS trained 42 technicians (including 17 women). Two SAH units produced over 600,000 plantlets and are now working on pencil stems. SAH is being rolled out in other countries too.The project management wanted to meet as a team, but COVID-19 travel restrictions made this impossible. So, this meeting was held virtually with 48 people logging in from the Bolivia, Canada, Nigeria, Peru, Tanzania, the UK and USA. The meeting consisted of ten sessions, most of which included question and answer sessions.The Building an Economically Sustainable Integrated Cassava Seed System in Nigeria (BASICS) project began in 2016 and formally ends on 30 June 2020. The project has made progress in demonstrating that commercially viable production and sale of breeder, foundation and certified seed is possible. Furthermore, the project has established a strong basis for building a sustainable seed system by developing building blocks across the seed value chain. This meeting had the following objectives: 1. To identify the achievements and lessons learned in each of the project components; 2. To identify the shortcomings in each component (what would I do differently, knowing what I know now?), remaining challenges and ideas to overcome them; 3. To assess and discuss the challenges and progress made in integrating the components into an integrated seed system and identify ways integration can be improved; 4. To assess and discuss the commercial sustainability of the seed system and identify options to promote its sustainability and further scaling; and 5. To make plans for the publication of the findings and lessons learned during BASICS-1• BASICS created a functioning, formal seed system for cassava in Nigeria, the world's largest cassava producer. • Commercial entities were set up for breeder and foundation seed (GoSeed & Umudike Seeds). • The Rapid Multiplication Technique (RMT) was adapted for cassava, with Semi-Autotrophic Hydroponics (SAH) labs producing hundreds of thousands of plantlets and allowing for realtime inventory management. • Village Seed Entrepreneurs (VSEs) are profitable, especially larger ones who also derive profits from roots. • There is a functional network of commercial seed producers.• There is demand for certified seed and interest in the 3-2-1 voice response system.• Processors are willing to invest in cassava seed units.• Created a functional seed certification system for cassava, in coordination with the National Agricultural Seeds Council (NASC). • Piloting third-party certification for cassava, to be applied to other crops in Nigeria.• Outgrowers are willing to pay for stems, and demand creation trials (DCTs) can help identify the most suitable varieties to scale out the model to other processors. • The BMGF (Bill & Melinda Gates Foundation) has approved a second phase of BASICS.• Breeder Seed Component (BSC)-improve access to tissue culture, mechanization, better market intelligence. • BSC should coordinate breeding and demand creation trials and involve stakeholders in variety naming. There is a need to expand use of ICT tools. • Produce foundation seed closer to VSEs; explore virtual options to manage VSEs.• Enhance involvement of processors in DCT. Ensure sustainable access to early generation seed (EGS), adapt PLM to be profitable for different types of processors. • Use the seed flow map to plan annual seed production.• Coordinate the SAH material into a seed system and seasonality.• Prepare to mitigate cassava brown streak disease with training and diagnosis.Lessons from BASICS can be applied to other crops, such as yam and sweetpotato by, for example, improving rapid multiplication, certification, and marketing. If a processor doesn't have a source of seed in-house, the Cassava Seed Tracker can help connect market players.BASICS project management unit -CGIAR Research Program on Roots, Tubers and Bananas (RTB)The original charitable purpose is still valid. Develop a sustainable cassava seed value chain with commercialized production and sale of cassava planting material.The strategy includes linking breeders with two new companies that produce breeder and foundation seed (GoSeed and Umudike Seeds). BASICS created two new types of certified seed producers: village seed entrepreneurs (VSE) and the processor-led model (PLM). Breeder seed is planted to produce foundation seed, which is used to grow certified seed and sold to farmers. These links create a value chain: money flows back in the opposite direction, communicating demand for seed of particular varieties to breeders. This doesn't happen if you give the seed away for free.Achievements. The PMU successfully coordinated the BASICS project. (See the following sessions by the respective components for details on their achievements.) The components worked well together, in an organized, coordinated fashion, to create a formal seed system for cassava in Nigeria, the world's largest producer of the crop.Way forward. RTB played a key role developing the concept for Phase 2 of BASICS. Phase 2 is appropriately transitioning to direct leadership by the International Institute of Tropical Agriculture (IITA), but BASICS is still part of RTB in the broader sense. This workshop is a key moment in transition, drawing lessons from Phase 1 to make Phase 2 even better and to ensure its sustainability.• Improve access to tissue culture for SAH and international germplasm exchange. • Work across RTB crops to build business case.• Increase mechanization to make labor more efficient and reduce production costs.• Improve weed management of seed fields.• Conduct more market research.Coordinate advanced breeding trials, on-farm testing, and demand creation trials for improved awareness and end-user feedback ahead of the variety release. Involve stakeholders in variety naming. Increase use of digital tools to integrate the value chain, for example, Seed Tracker, Cassava Business Connector, e-Commerce sites.Breeders have some varieties in their inventory that have little demand. These varieties had to be aggressively marketed. When breeders have better information about market demands, they can make better forecasts on production amounts. SAH helps to scale up clean seed. Once you have a box of SAH plantlets it can be cut six times or more and be continually propagated. You don't need to go back to the tissue culture plants unless you break the cycle. When you stabilize a new variety, you need to go back to start from tissue culture. It may be helpful to go back to tissue culture periodically.Regarding the breakeven point, the SAH plantlets are expensive, about ten cents per plantlet. Further cost reductions are possible through innovations in the production practices.Varieties should have names that are easy to remember, but such names must be acceptable across communities. The UMUCASS system of naming was proposed, but not adopted. IITA and the The SAH lab in the DR Congo is the largest in AfricaNational Root Crops Research Institute (NRCRI) will continue to work on this topic. Varietal naming is controlled by the varietal release committee.Key Achievement 1. Cassava seed was profitably commercialized. 186 VSEs were engaged, trained, and mentored in six states. VSEs established 700 ha of fields over four seasons and 90% passed certification. Profit was $1,000/ha for stems and roots in one season, and $1,600/ha for ratooned fields over two seasons. Third-party certification field inspection was piloted by NASC.Key Achievement 2. Commercial seed producers have been organized as a functional network. The apex union has an office manager, and office staff trained in field management, marketing and record keeping. The union has a constitution, bylaws and a gender-balanced set of leaders.Key Achievement 3. Demand was increased for certified cassava varieties by using over 100 market day promotions, 3-2-1 messaging, 150 demo plots, a website (www.cassavastems.org) and advertisements such as radio spots, promotional bags, billboards, and flyers. Over 40,000 bundles of certified seeds of seven varieties were sold in three seasons, from over 2,000 ha of VSE fields. SAH plantlets were planted directly in the field to produce 120 bundles of stems.• Select VSEs in clusters for better management and peer learning/support and do not aim to spread them throughout the whole state for ensuring coverage. • Only engage business-minded VSEs.• Select over 40% female VSEs and more mid-size VSEs.• Do more market day promotions and promote 3-2-1 messaging.• Reduce transport distances by producing foundation seed with GoSeed & Umudike Seeds in project states. • Innovate on virtual learning options for VSE capacity building, including Seed Tracker.• Encourage VSEs to provide other extension services.Recommendations. Introduce new varieties on a regular basis. Locate foundation seed production closer to VSEs. Scale up third-party certification. Create a wider network of seed producers for peer learning, support and competition.3-2-1 is an interactive voice response system run by the Viamo company. The user dials 321 from an Airtel phone network and is taken to various menus, including family planning. Under agriculture there is rice, cassava, cowpea, and other crops. Under cassava, if someone requests stems, the person who answers the call can send them to the nearest VSE. The first information will be ready in June.At market promotion days, CRS distributes flyers about the varieties and directs customers to the VSEs. The flyer has the addresses of VSEs. Catholic Relief Services (CRS) are reducing marketing expenses from the project while innovating with the VSEs to lower costs. Some states have demo plots.The profits listed in the presentation are from the top 50% of VSEs. Some are not business minded and they drop out. Most VSEs grow seed and roots and can produce 300 bundles per ha while maximizing revenue from both ends. In stem-only fields it is hard to increase the number of bundles produced. Less than 10% of seed purchases are from government; most are from farmers, farmer groups, or some agencies.Last year GoSeed and Umudike Seeds made a presentation to VSEs in Benue, so they are becoming linked into a network. Transporting seed 600 km from GoSeed in Ibadan or 300 km from Umudike to Benue cannot be done in a sustainable way. It is too expensive to take the SAH plantlets directly to the field. If foundation seed can be produced closer to Benue, (e.g., in Kogi) it would reduce the travel distance. • The reason to believe in this model is less about clean seed, and more about farmers getting new varieties quickly. Processors know that yield degrades slowly. • The business model is driven by differential starch revenue by variety.Recommendations. Leverage the DCTs to enhance variety adoption by processors and farmers. Engage processors in varietal selection, DCT design and implementation. Ensure sustainable access to early generation seed by demand planning and coordination between GoSeed, Umudike Seeds and processors. Encourage PLM design innovation.You don't need a high-cost, expat manager for the seed unit. Local managers can be trained. For direct labor costs at the nursery level, FMN assumed $800 per ha. But on a commercial side, it is half that amount. Those costs will be highly variable.Each processor has a different system with outgrowers. The new seed has an added cost, but profitability is not driven by stem sales. Where the processors provide stems to outgrowers, the cost of the stems can be deducted from the price of the roots. The outgrower does not need to pay cash for stems. The outgrowers may be willing to pay for stems if farmers have discussed it with the processor. The DCTs play a big role in selecting the right varieties. Some outgrowers for FMN are willing to pay for stems, if new varieties are attractive to the market. Some processors want to buy some seed and can support varietal launches. They are interested in the level of starch and dry matter and are willing to pay for these traits.The PLM can be attractive if processors have an irrigated nursery to produce planting material for the dry season to moderate the cost of roots. BASICS could engage processors better in the DCTs to scale the messaging. You can also produce pencil stems to get SAH to the field. This process is similar to what Flour Mills did with their nursery, but it is a more high-density way to produce.• We needed a better grip on the pipeline of production.• We said \"CST will do this at the touch of a button\" but it was not up and running. • More innovation to upscale SAH.• Improve contracting basis for QSC delivery. In Nigeria, inspectors had backgrounds in education, agriculture, and other fields. They must be willing to accept relatively modest fees. Nigeria has had two workshops, a learning lesson, and a walk-through a field being certified. The seed producers must pay the certification costs, as is done now in Tanzania.The minister burning fake seed to symbolize the importance of certified cassava seedCan CST be used for compliance and as a business connector? Sometimes entrepreneurs want to bend the rules a bit and there can be a conflict of interest. CST was developed as a modular platform, with different functionalities built into it (e.g., compliance and business). The business data is confidential. In BASICS, it is all in the same platform, but it is becoming independent. The certification part does not interact with the commercial part.GoSeed is learning how to transplant pencil stems without substrate. Such a breakthrough would provide many stems. SAH does survive in the field, but the plants are tender. You need a shaded area for light protection. The cassava pencil brings something to the field that is stronger. A wellfunctioning SAH can transplant 5,000 plants in a day. The batches can be big enough to establish a field over a few days.• During project design ensure a clear ownership of activity and links budgeting to activities.• Should have gone with larger VSEs.• Do market research on actual demand for seeds and varieties.• Farmers don't buy for cleanliness, because cassava is hardy. Farmers buy seed to get a variety.Recommendations. Work more with processors, including smaller ones who can help identify varieties they want. Populate the seed flow map at the beginning of seed system projects.Establish clear ownership of activities and budgeting for activities; some activities are done by different components. DCTs are done under PLM, but some parts were managed by BSC and this created some gaps. Variety combination had some gaps, like in the first year we had no control variety. The tables showed starch and productivity, but the data across seasons was confusing and inconclusive. There was an issue of VSE model for which NRCRI didn't have a budget.With the seed map, people sit down and populate it; this helps the players and the integration. So, the VSE will not fall short of foundation seed, and it helps NASC to plan for their resources needed for certification. The seed map is a simple Excel tool. Filling it in as part of a planning session should not take too long, but this will be a worthwhile exercise that will prevent gaps in the seed chain.There needs to be sustained advocacy to enhance the use of certified seed as a government regulatory push is required to move the stakeholders away from the informal markets of dubious quality seed while complementing it with a market pull through demonstration of value for money for purchasing certified seeds.If you do not know in one year what amounts will be needed for varieties A, B and C, just plan it: 40%, 40% 20%. Even if demand drops, and if you commit 10,000 bundles and only sell 5,000, that is only a risk of $5,000. If we had more seed, more would go to the farmers. Be bolder and take a risk.There are physical seed markets in the planting season. If some surveyors go there to collect data on what was sold by whom and at what price, that would help us map the whole seed market size and demand trends.What changed 1. We evolved from \"clean seed\" to insisting on NASC certification. All seed must be certified, not just cassava. NRCRI is no longer giving seed away for free.Umudike Seeds.VSEs.The SAH laboratory facility is a game changer. The network of seed producers was expanded.• Continue to backstop Umudike Seeds.• Enhance research for enabling technologies for sustainable seed systems.• Streamline seed production of other RTB crops: yam, sweetpotato, cocoyam. Moving from tissue culture to SAH, following NASC guidelines.• Cluster VSEs in areas with locational and agro-ecological advantages.• Create innovation platforms of cassava stakeholders where VSEs will play key role.What changed 1. Digitalization of seed certification services and operations. CST exposed NASC to digital advantages. NASC started digitalizing all operations, using CST for registration and certification.In line with international best practices, the NASC upgraded its certification process and began certifying cassava breeder seed. The NASC molecular facility successfully tested cassava samples from breeder seed fields.NASC began using certification agents trained and licensed by NASC as authorized by the amended seed act of 2019. Eighteen professionals identified with CRS to pilot third-party certification of cassava, with scope to expand to other crops.Seed Production with GoSeed and Umudike Seeds.Act 2019 provides for third-party certification, e-certification, breeder seed standards, and recognition of vegetative propagation for seed certification.• Digitalize fully all operations.• Commercialize molecular diagnostics facility by introducing tests for different crops.• Include all crops in third-party certification.• Set up standards for other vegetatively-propagated crops.• Prioritize seed systems of other orphan crops (e.g., yam, ginger).• Transform the Nigerian seed sector into a leading seed industry in Africa.Teams discussed business, scientific publications and communications with a view to develop an integrated, sustainable seed system for cassava. All institutional representatives provided twominute updates on what has been done and what is in progress.IITA has planned various scientific publications, including ideas on: 1) SAH; 2) certified seed; 3) DCT and CMD's impact on yield, according to symptomatic and asymptomatic plants; 4) for the first time, properly discuss the cassava seed cycle and the advantages of starting seed from tissue culture; 5) CST; and 6) user guides, EGS production, stem production, and a manual on CST application, and good agronomic practices.Social media promotes through the IITA website and GoSeed. IITA Radio is now broadcasting and promoting technologies of interest farmers. There is a new YouTube channel on IITA youth in agribusiness and regular blogs posts. We are focusing on awareness workshops.Six peer-reviewed papers are being prepared. Three of them will be merged to produce a paper entitled, \"Assessment of certified commercial cassava seed production in Southeast and South-South Nigeria: determinants of participation, challenges, supply and demand gaps.\"Other manuscripts from the Breeding Component are being prepared, as well as training materials and social media materials.The website www.cassavastems.com publishes CRS outputs. We also plan to have a virtual end of project meeting in June. A field book is being updated. Radio jingles continue to play on local stations. A documentary on VSEs is available on CRS YouTube channel. We continue to disseminate outputs through the CRS agricultural community of practice, a global group in 90 countries.There are some papers in the pipeline on the nuclear work. A Ph.D. student is working on a paper on certified seed, which will serve as his or her thesis.Context has submitted a business manual as its final document and hopes that IITA will be able to disseminate this information. Context will have a blog post to introduce its toolkit.Fera is writing a scientific publication. Also, in NRCRI, there is a publication in the works on viruses. Fera will present it again in Zambia. Fera has other diagnostic kits on CMD that can be branded and used. There is another kit on brown streak that can also be branded.The acknowledgments of publications must include the OPP project number and acknowledge support from the BMGF. BMGF generously funds the open access publication of review articles, but you must register through Chronos system.BASICS brought in Wageningen University to study the seed buying behavior by farmers. RTB is editing a book with Springer on innovations in RTB food systems and could feature BASICS in one of the chapters. It was suggested to have media communications frequently, perhaps every month, and to develop YouTube clips. Bringing in different stakeholders for communication efforts was deemed important, and physical communication, such as branding with T-shirts is important in a project aimed at changing behavior.By Alfred Dixon and Lateef Sanni -IITA Capitalizing on the achievements of the BASICS project (2016-2020), the Bill & Melinda Gates Foundation (BMGF) graciously funded the commencement of Phase II under the overall leadership and responsibility of IITA.Budget: $14,325,899Duration: 5 years (60 Months)1. Ensuring integration of breeding and seed system activities.New cultivars from cassava breeding programs are integrated into seed systems in a manner that facilitates their marketing, production, sales, and uptake. We appreciate the intellectual framework that RTB provided for what a viable commercial seed system would look like. Can we turn that vision into a reality? You all made tremendous progress. BASICS 2 needs some consolidation, some fine tuning. Cassava is a slow growing crop, so it takes some time to work out the wrinkles. During this meeting we focused on BASICS, and Nigeria, the world's largest producer of cassava. In Tanzania, we have made good progress, guided by Lauren Good, who started on that team before he joined the BMGF.BASICS model… we need to get breeder, foundation and commercial seed all going. CRS in Nigeria did a good job of showing us that VSEs can work. The model is possible, and farmers will pay for cassava seeds. Where do VSEs get their material? We need to shore that up. Going up from foundation to breeder seed, we have seen IITA and NRCRI founding new companies. Experimenting with cassava pencils is a great way to produce breeder seed. There may be entrepreneurs out there ready to produce this seed. That would be great. It is good that GoSeed and Umudike are producing breeder seed.We had the regulatory framework to ensure quality control and Fera helped with that. We know that brown streak will come. We must keep it out of the seed system. RTB, the International Potato Center (CIP), Graham, Michael, Hemant… you have been flexible and kept this ship floating. Each component lead has done a great job. We learned that quality of seed is not as important as variety, so we need to release new varieties. The purpose of the BASICS project is to develop a sustainable cassava seed value chain in Nigeria, characterized by the commercial production and dissemination of cassava planting material. The project envisages benefits to farmers and the industry through higher returns from the use of clean planting material of superior stem quality that are made accessible to farmers at the right time and at an appropriate price.","tokenCount":"3718"} \ No newline at end of file diff --git a/data/part_3/0587768148.json b/data/part_3/0587768148.json new file mode 100644 index 0000000000000000000000000000000000000000..00c75e65c3869083eb6eb5bbda4486eb885ef8f6 --- /dev/null +++ b/data/part_3/0587768148.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"9cad2d64f14d616e9efc29371e7ecd14","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/964bb62a-5c40-4b57-8774-1d80d0e8aced/content","id":"1482968964"},"keywords":[],"sieverID":"f18591ae-9010-4cf8-a39e-9921a800885a","pagecount":"10","content":"Bangladesh Journal of Agricultural Research Editor-in~Chief is a quarterly journal highlighting original M. Shahidul Islam, Ph. D contributions on all disciplines of agricultural research conducted in any part of the globe. A \" t Ed\"t The 1st issue of a volume comes out in SSOCla e 1 ors .'March, the 2nd one In June, the 3rd one In M. A. Satter, M. Tech.September and .the 4th one in December.0 The same data must not be presented in both tables and graphs.Address for .Correspondence 0 Drawing should be in Chinese ink. The Editor (Technical) scale of figure, where required, may be BARI, Joydebpur, Gazipur 1701, Bangladesh indicated by a scale line on the drawing itself.Rate of Subscription 0 Phot°8.raphs must be on glossy papers Taka 50.00 per copy (home) ~ 0 References should be alphabetically US $ 10.00 per.copy (abroad) arranged conforming to the style of the journal. 0 A full paper exceeding 12 typed pages and a short communication exceeding eight typed pages will not be entertained.Cheques, Money Orders, Drafts or 00 Authors get no complimentary copy Coupons, etc. should be issued in favour of of the journal. Twenty copies of the Director General, Bangladesh reprints are supplied free of cost to the Agricultural Research Institute author (s) ~i i' ~' Bangladesh Agricultural Research Institute ~ . l' Joydehpur, Gazipur 1701, BangladeshAgricultural machinery plays an important role to reduce drudgery of farm work as well as to sustain crop production at economic level. In the recent years, the number of power tillers is increasing day by day due to its versatile use in tilling, pumping, threshing, husking and transporting. Studies indicate that there is no alternate way to minimize labour shortage at peak crop season without using farm machinery.Crop establishment using bed planting system is a new technique in the farming system of Bangladesh. Generally farmers grow potato and some vegetables in beds. Bed planting system was originally developed in Mexico's Yaqui Velly, where more than 90% of farmers had adopted the practice. In the northwest of Mexico, where high yielding irrigated wheat is commonly rotated with soybean and the farmers increased crop yield dramatically by using this practice in the last decade (Meisner et al., 1992). Raised bed cultivation facilitates more optimum planting time provided by more timely field access because of better drainage and through new opportunities to reduce crop turn-around time by re-use of the same bed (Sayre, 2003). This system has many advantages, such as it reduces seed rate, ISenior Scientific Officer (Agric. Engg.), WRC, Dinajpur, 2CIMMYT NRG Agronomist, Bangladesh, 3Dir~ctor, WRC, Dinajpur, 4Chief Scientific Officer, WRC, Dinajpur and 5Senior Scientific Officer, IWM, BARI, J oydebpur, Gazipur 170 I, Bangladesh.increases crop yield, requires less water, imparts higher nitrogen use efficiency, reduces problem of crop lodging, etc over the conventional system (Hobbs et ai., 1997). The research findings showed that the benefits of the raised bed planting systems .with furrow irrigation compared with conventional flat planting with flood irrigation were saving water 30% by changing from flood to fuaow irrigation and also eliminated the formation of crust problem on soil surface (Fahong et ai., 2003). Th~ permanent raised bed irrigated planting system for wheat and other crops that is being develoed in Mexico and elsewhere may finally provide a coherent technology to extend marked tillage reductions with appropriate management of crop residues for surface irrigated production system including those where wheat is a major crop (Sayre and Hobbs, 2003). Manually bed forming is a laborious and time consuming operation. So, it will be very helpful for the farmers, if they are provided with a mechanical device which can perform bed making and seeding operations at a time. Therefore, this programme was undertaken to develop and evaluate the performance of a shovel type bed former with seeding arrangement on a toolbar frame. The whole unit will be attached to a power tiller for wheat, mungbean and maize cultivation.Terefore, the objectives of this study were: i. to develop and fabricate a shovel type bed former with seeding aaangement, ii. to make necessary aaangements for hitching the toolbar frame to a power tiller, iii. to test the performance of the bed planter for wheat, maize and mungbean cultivation.A tool bar frame was constructed with locally available mild steel materials. A pair of shovel type furrow opener was made and fitted to the tool bar frme. A bed shaper was also constructed and attached behind the furrow opener. A seed box with a metering device was also attached to the frame. The seed metering device was operated by a chain sprocket mechanism, which transmitted power from the tiller wheelbase. The bed planter was hitched to the power tiller. Detailed specifications are given in Table 1. The bed planter was tested at the experimental farm of Wheat Research Centre, Dinajpur for wheat, mungbean and maize cultivation in the year 2002. The bed planter was o~erated in the tilled soil. There could be two lines for wheat, two lines for~ Data collection: The following data were collected during the test. Regional Network of Agricultural Machinery (RNAM) test code was followed to collect the data.i) Depth of seed placement (cm), ii) Travel speed (km/hr), iii) Effective field capacity (ha/hr) , iv) Field efficiency (%), v) Fuel consumption (l/hr), vi) No. of plants/m2, vii) Yield/m2. of the six seed delivery tubes. The seeder was operated on a pre-measured 20m run, seeds collected through tubes were weighed separately and the total seed weight was also noted. This method was repeated by acceleration and decelaration of the lever of seed meter until the desired seed rate obtained.The seed rate was determined through calculation by using the following equation (Michael and Ojah, 1978).Where, Sd = Seed rate (kg/ha) W s = total wt. of seed (g) Am = measured experimental area, m2B. Travel speed: Two standing sticks fixed pre-measured distance. At the time of sowing, fixed distance passing time was recorded by stopwatch and simple calculation was done. RNAM test code was followed to collect data.Where, S = travel speed (krn/hr). d = pre-measured distance, m t = recorded time (sec)C. Theoretical field capacity: Theoretical field capacity was calculated as follows (Kepner et ai., 1987).Where, TFC = theoretical field capacity (ha/hr) W = width of t~e seeder (m) S = travel speed (krn/hr) D. Effective field capacity: It is the actual field coverage of the seeder per unit time. Effective field capacity was calculated as follows (Kepner et at. 1987).Where, EFC =. effective field capacity (ha/hr) A = total area sown by the machine (ha) T = Total recorded time (hr) E. Field efficiency: It is the percentage of the ratio of effective field capacity and theoretical field capacity (Kepner et al., 1987).. Field efficiency, Fe = ~ x 100Where, Fe = Field efficiency (%)F. Fuel consumption: The fuel tank was filled and re-filled before and after the sowing operation, respectively. Re-filled quantity was taken as the fuel consumption. The effective field capacity (0.10 ha/hr) of the planter was comparatively low for wheat sowing due to the lower travel speed compared to that of mungbean and maize sowing. Similarly the field efficiency of the machine was also higher (83.0%) during mungbean and maize seeding. This may be due to the use of the bed planter after modification in mungbean and maize sowing. It was observed from the field monitoring that growth of mungbean and maize on the bed were not hampered by excess rainfall. During the whole growing period, maize plants were not lodging in bed system. Fuel consumption of the machine was the same, at 1.2 lit./hr as normal tilling operation of the power tiller. Applied seed rates of wheat, mung bean and maize cultivation were 100., 30 and 20 kg/ha, respectively (Table 3), which were less than the recommended rate in conventional method. Depth of seed placement and line to 'line distance can be adjusted according to the agronomic requirement.Plant establishment in the machine sown plots were same as the conventional one. Yield of wheat, maize and mungbean on beds were comparatively high than that of conventional once. Cost curve was drawn according to the farm mechanization planning (Anonymous, 1991). Cost curve of yearly use of the machine is shown in Fig. 4. Cost per hectare utilization of the machine decreased as the cultivated land increased. It was estimated that 13 ha of land utilization is the break even point of the machine. Based on the results obtained in the field tests, following conclusions may be drawn:i) An efficient low cost toolbar frame with multicrop seed metering mechanism can be assembled with the frame.ii) Bed formation and seeding operation can be done in one operation by bed planter.iii) The bed planter can be used for ~heat, mungbean, maize cultivation successfully.iv) The toolbar can easily be hitched with power tiller. I","tokenCount":"1464"} \ No newline at end of file diff --git a/data/part_3/0606103185.json b/data/part_3/0606103185.json new file mode 100644 index 0000000000000000000000000000000000000000..4cdf97ee448bcb2e05643b7c4d6328568810fd50 --- /dev/null +++ b/data/part_3/0606103185.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"0d61d8c8f4db15c613dffda2dcf224d4","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/2866fa95-f1ce-44c9-a684-efb3e631c961/retrieve","id":"-1364401512"},"keywords":[],"sieverID":"cf8d0b6b-1faa-4f5a-9254-fd8f106f5d60","pagecount":"2","content":"The International Center for Tropical Agriculture (CIAT) does envision this possibility and is conducting a pilot-scale project in several areas of Colombia that mainly aims to develop low-cost innovative systems to produce bioethanol (fuel alcohol), biodiesel, and pure vegetable oil that will generate rural employment while protecting the environment by reducing air pollution. The project's interinstitutional team, under the leadership of CIAT researcher John Loke, has made important advances in the area of biofuels. John is firmly convinced that it is possible to produce biofuels by tapping numerous energy crops of the tropics and their wastes and by involving small producers so that they produce raw alcohol of low purity that will serve as input to refineries that produce high-quality fuel alcohol.The Federation of Plantain Producers of Colombia (Fedeplátano) also participates in this project, and has already initiated the pre-market production of bioethanol based on coffee wastes in the country's coffee-growing region. Two prototype plants are currently being validated, one in Valle del Cauca and the other in Quindío. Another plant is mobile and can be strategically used to train producer associations anywhere in Colombia.\"The successful management of the prototype plant by Fedeplátano triggered a proposal to set up the same system in Tanzania (Africa)\", highlighted Silverio González, the Federation's President. This innovative way of producing bioethanol will be useful for farmer associations in Latin America, Africa, and Asia.Project activities include the establishment of castor bean (Ricinus communis) and Jatropha curcas, popularly known as physic nut or the tuba-tuba plant, both shrubs of the Euphorbiaceae family that produce between 1,600 and 3,400 liters biodiesel or pure vegetable oil (also a biofuel) per hectare per year. This alliance involves farmer groups represented by Fedeplátano in Colombia and producers of J. curcas in Tanzania, supported by researchers of CIAT and the Colombian Corporation for Agricultural Research (CORPOICA) as well as by experts of Diligent Energy Systems B.V., a Dutch company that facilitates the access to biofuel production with a farmer participatory approach.\"The production plants proposed are relatively small-scaled; they use renewable energy sources as well as new waste transformation and management techniques as biogas\", says Sanna Hogervorst, researcher of the University of Wageningen, who has been involved in the process. One of the new developments is the transportation of raw material in liquid form, facilitating its transfer in regions with poor road infrastructure.Over an 8-month period, different yeasts and enzymes that could be used to produce bioethanol from different raw materials have been evaluated at CIAT laboratories. Although sugarcane is a traditional source to produce this biofuel, according to experts it is also economically and technically feasible to obtain biofuel from cassava, sweet potato, banana, and coffee in regions not suitable for cane production.Several farmer associations have already expressed their interest in this project in view of the low investment costs in prototype plants. Funding was obtained to build two more processing plants, including demonstration-scale plants, and to establish energy crops at CIAT's headquarters in Palmira and at CORPOICA's facilities in Montería, with the support of Colombia's Ministry of Agriculture and Development, the Latin American and Caribbean Consortium to Support Cassava Research and Development (CLAYUCA), and other entities.Contact: Bernardo Ospina (b.ospina@cgiar.org), phone: +57 (2) 4450000, ext. 3159, Cali, Colombia.","tokenCount":"537"} \ No newline at end of file diff --git a/data/part_3/0623023127.json b/data/part_3/0623023127.json new file mode 100644 index 0000000000000000000000000000000000000000..404a6a9fde2106165380de44ea558e6710a3502f --- /dev/null +++ b/data/part_3/0623023127.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"4c2b5a9f1c7daa5b03f30738ba7281ac","source":"gardian_index","url":"http://ciat-library.ciat.cgiar.org/Articulos_Ciat/2015/SB_211_C3_I594.pdf","id":"-2110885506"},"keywords":[],"sieverID":"b74bd71a-5679-43a5-a7b5-3db29aeced66","pagecount":"258","content":"Cassava has been an important food crop in many countries in Asia, • especially in times of food shortages due to war or other serious calamities. Presently, it remains an important source of food in sorne countries, while in others it is now mainly used for onfarrn animal feeding, for small-scale processing into a wide range of food products, or for industrial processing into commercial animal feed, starch, and many starch-derived products. As incomes ha ve risen sharply in most countries in Asia during the past 10-20 years, demand for cassava products have also risen, mainly because people can afford to consume more meat and milk, and they require more starch for food, paper and textiles. More recently, demand for cassava roots has also markedly increased due to its use as a feedstock for production of fuel-ethanol.To meet this increasing demand, and in response to higher prices, farmers are trying to either expand their cassava growing arca or to increase their yields -or both. Arca expansion is often possible only by planting cassava on ever steeper slopes, thus exacerbating soil losses due to erosion. Research conducted in Colombia and in severa! Asían countries during the 1980s and early 90s has clearly shown that cultivation of cassava on slopes may result in more serious erosion than that of other crops, due to the crop's wide spacing and slow initial growth. This research also showed that severa! simple agronomic and soil conservation practices could be used to markedly reduce erosion. However, these practices were seldom being adopted by farmers, as most farmers were either not aware of the seriousness of the soil Josses due to eros ion, did not know what to do to reduce erosion, or considered the recommended practices impractical, too costly or time consuming, and without providing much immediate economic benefits.It seemed that more widespread adoption of these practices could only be achieved by working directly with farmers, using a farmer participatory approach in research and extension. In 1993 the Nippon Foundation in Tokyo, Japan, agreed to fund a 5-year project, to be implemented by CIA T's Cassava Program in Asia, aimed at developing and using a farmer participatory research (FPR) methodology to enhance the adoption of more sustainable cassava production practices that would increase yields while also protecting the soil from degradation by nutrient depletion anci/or erosion. The first phase of the project, from 1994 to 1998, was conducted in el ose collaboration with• cassava researchers in China, Indonesia, Thailand and Vietnam. During this phase the FPR methodology was developed and tested in 2-3 pi1ot sites in each country. Towards the end of this phase farmers had tested and selected new high-yielding varieties, improved intercropping systems, balanced fertilization and effective soil erosion control practices, and sorne had started to adopt these practices in their cassava production fields. Encouraged by these results, the Nippon Foundation agreed to fund a second phase, from 1999 to 2003, to be implemented in China, Thailand and Vietnam, with the aim to rapidly expand the project to more pilot sites in order to reach many more farmers and achieve more widespread adoption of the farmer-tested and selected practices. This was largely achieved -in sorne cases way beyond expectation -but in sorne arcas the adoption was slow, or only temporary while the project staff made regular visits, but discontinued when the project moved on to other sites. The objective of this End-of-Project Workshop, held in Thai Nguyen, Vietnam, in Oct 2003, was to review the activities, the results and achievements of the project, and to discuss which aspects were successful and wh ich were less so, and why. Although the publication of the Workshop Proceedings was delayed, it is hoped that the various papers presented at the Workshop, and here included, are still useful in sumrnarizing the methodology that was developed, the results obtained and the impact achieved, while also indicating the lessons leamed, and the reasons for sorne failures. This will hopefully help in the successful execution of similar projects in the future.1 want to take this opportunity to thank the many researchers, extensionists, govemment officials and farmers who participated in the project and who worked enthusiastically together to make it successful. 1 particularly want to thank the Nippon Foundation for their long and very generous fmancial support and their encouragement of the project. Working together we were able to help many farmers improve their livelihoods, and to contribute to the use of more sustainable cassava production systems in Asia.Usually, after 2-3 years of testing in FPR trials farmers had dec ided on the most suitable practi ces. Project staff then helped thc farmers find the necessary varieti es or other inputs like appropriate fertilizcrs to implement the selccted technologies on thcir fields.To enhance the further dissemination of those selected practices, the project used severa! FPE melhodologies. s uch as organizing cross-visits of farmers from one village to another; field days, either during the crop cycle or at harvest; FPR training courses for farmcrs and local extension workers; and in somc cases the setting up of community-based sclf-help groups, in Thailand called \"Cassava Developmcnt Vi llages\". T he imple mentation of the project was greatly facilitated by working with thesc a lready organized groups rather than with individual farmers. In addition, the project madc a video/CD about the FPR approach in Thailand and published severa( FPR manuals and extension booklcts about erosion control and other improved practices in the various local languages.During the past two decades, the standard of urban li ving in Southeast Asían countries has progrcsscd rapidly, while that of the rural community has lagged behind.Tbis is particularly true in areas that are marginal for crop production. These areas tend to have constra ints, such as acid infcrtile soils, a long dry season, and steep slopes that exacerbate thc problem of soil erosion. Under these conditions cassava is a popular crop because it will tolcrate long periods of drought and produce reasonable yields on soils too acid or infertile to sustai n the growth of other food crops. Moreover, in Asia cassava does not suffer from any seri ous diseases or insect pests and thus requires no pesticides or other purchased inputs with the possible exception of ferti lizers. Cassava is an ideal crop for poor farmers becausc it can produce both human food and animal feed with the expenditure on ly of family labor. Thus, cassava can be an importan! food securi ty crop, a source of in come i f fed to pigs or so ld for the production of an ima l feed or starch.In many countries in Asia, cassava has a lready been transformed from a subsistence to an industrial crop, a trend that is like ly to continue. This change has benefited not onl y cassava farmers but also small-scale proccssors, traders and consumers. In sorne countries. particularly Thailand, cassava has become an important sourcc of fo reign exchange.Cassava is seldom grown as the only crop in the fa rming system. lt is mainly grown in monoculture in Thailand, but is usually intercropped with upland rice, maizc and grain legumes in Indonesia, with maize or peanut in Vietnam, China, and the Philippines, or under coconut palms in India, Philippines and Indonesia. I n northem Vietnam and southem China cassava roots are the principal ingredient for on-farm pig feeding, proceeds from which constitutes the farmer's main source of cash income. Manure from pigs can be retumed to ficlds for maintaining soil producti vity.Govemments in Asia recognize the importa nt role cassava plays in food security and in the alleviation o f poverty. Still, there re mains a perception that the crop depletes soil nutrients and is a cause of erosion. Rcsearch has shown, however that cassava extracts less nutrients fro m the soil than most other food crops (Howeler,199 1 ). Nevertheless, when the crop is grown continuously on the same land without inputs of manure or fe rtilizers, soil nutrients will evcntua!!y be depleted and productivity wi!l dec line, as is true for a ll crops. In some areas the problem is alleviated by bush-fallow rotations, but where such rotations are not possible, farmers need to apply animal or green manures, or chemical ferti lizers to maintain yie ld . Soils are mainly susceptible to crosion during the initial stage o f the crop befo re the canopy closes and rain impacts directly o n the soil ( Putthaeharoen et al., 1998).C IA T holds the world's largest collection of ca sava gem1plasm, which forms the basis for a comprehensive breeding program. New vari cti es w ith higher yie ld potential, higher starch content, improved plant type, and greater resistance to pests and disease , have been developed. Since 1983 , the C IAT Cassava program in Asia has worked with natio nal cassava breeding programs selecting fro m clones and sex ual seed trans ferred from C IA T, and crossing these for better local adaptation. Thirty eight cassava vari eties containing genetic materia l from C IA T ha ve now been released in Asia. These are g rown on about 1,250,000 ha (35% of total cassava area) . Similarly, there has been an acti ve and collaborative research program on the crop 's nutrient requircments, fertilization and soil management.Most countries in Southeast Asia now have an active cassava research program with many of the staff having received training at C IA T in Co lombia. These scientists formed an Asian Cassava Research etwork, which organizes workshops, determines research priorities and distributes funds for collaborati ve research. In most countries research is not c losely integrated with extens io n ac ti vities. except in Thailand which has an exten ion service for cassava and also a prívate sector o rgan ization, the Thai Tapioca Development lnstitute, which trains farmcrs in production practices and produces and distributes planting material ofhigh-yielding varieti es (Vankaew el al., 2008).Research has shown that nutrient depletion and erosion can be serious problems when cassava is grown as a monocrop on infertile soils and on sloping land. Judicious application of manure or chemical fertilizcrs will permit continuo us cassava production at hig h levels of yield without soil nutrient depleti on ( Howeler, 1996). Similarl y, soil and crop management practices have been developed that will minimize erosion w hen cassava is grown on s lopes (Howeler, 1987(Howeler, , 1994(Howeler, , 1995(Howeler, , 1998a(Howeler, , 1998b;;Kawano and Howeler, 1997). These practices include minimal land preparation, contour ridging. ferti lizer application, mulching, intercropping, and vegetati ve contour barriers to reduce run off and enha nce deposition of suspended soil behind these barriers. While most of thcse practices are effective in reduc ing erosion, they are not widely adopted by farmers because they require monetary or labor inputs and do not necessari ly provide short-term benefits in terms of hig her yields or incomes.lt was concluded that farmer adoption of soil conservation practices can only be achi eved if technologies are developed and adapted together w ith fam1ers, taking into account farmers' specific needs and conditions, any short-tenn bene fits to the farmer, and long-term benefits to society (Ashby el al. , 1987;Fujisaka, 1991 ). Thus, in 1994, a new approach to the development of sustainable cassava production practices was initiated through a farmer participatory research (FPR) project \" lmproving the Sustainability of Cassava-based Production Systems in Asia\" funded by the Nippon Foundation in Japan.The advantage of the FPR approach is that when fam1ers. researchers. and extension staff work together developing ncw varicties and productio n practices, they are more likely to do rc levant research reflecting farmers' needs and priorities and develop successful technologics. Farmers bcnefit from better access to information and planting materials of new varieties. Other farmers benefit from new technologies disseminated directly by other farmers (farmer-to-farmer extension). When fanners are empowered to make their own decisions and do their own experiments, they will innovate to improve their conditions. NIPPON FOUNDATION PROJECT (1994-1998) 2The first phase of the Nippon foundation funded FPR project was conducted from 1994 to 1998 by CIA T in collaboration with national research and cxtension organizations in Thailand. Vietnam, Indonesia and China. Characteristics of thc si tes and details of trials conducted have becn reported (CIA T, 1994(CIA T, , 1995(CIA T, , 1996(CIA T, and 1997;;Howeler, 1998c). Farmcrs in pilot sitcs sclected and tcsted options for soil conservation that they had seen in demonstration plots. Aftcr 2-3 years of testing they generally selected one or two practices that were most effective in controlling erosion. They also selected and multiplied new cassava vari eties, and tested new intercropping systems and fertilization practices. By 1997 participating farmers began adopting practices such as contour ridgi ng or contour hedgerows of vetiver grass, Tephrosia candida or Gliricidia sepium in thcir fields. In 1998, more participating farmers as well as neighbors and neighboring communities were adopting these well-adaptcd and uscful new tcchnologies. Thus. a sound basis had been established to widely disseminate these technologies.Thc FPR approach was testcd with various modifications in the tour countries. The basic approach is that researchers and extension staff work with fanners at the village leve! to diagnose farmers' needs and plan research that addresses those needs. In Phase 1, this research has usuall y been based on treatments farmers had seen in demonstration plots. Farmers decide on the types of trials and select thc treatments of most interest to them. Farmers conduct the FPR trials with help from rcsearchers or extcnsion staff. Thc results are evaluated through participatory methods, discussed, and trials are continucd or new trials planncd until farmers have identified the best solutions to their needs. Farmers then extend thesc practices to the rest of their fields, making adjustments until the technologies are appropriate for larger areas. Incentives are kcpt toa minimum; farmers do the research for their own benefit and they themsclves become the owners of the technology. In the futurc. these experi enced farmers will become a valuable resource in the transfer of new technologies to other farmers and communities.An essential feature of FPR is that researchers and extension workers acccpt and feel comfortable with the approach. In 1994 an introductory coursc on FPR methodologies was held in Thailand for project researchers and cxtension staff of the four countries. In 1997 and1998, in-country Training-of-Trainers courses in FPR were held in each of thc four countries. A total of 127 researchers and cxtcnsion staff were trained and given practice in FPR methodologies (Howeler, 2007a).During thc 1 ' 1 phase of the projcct a total of 495 FPR trials were conducted by farmers in thc four countries (Howeler. 2007a). Most farmers liked to test new varicties, rcsulting in 163 FPR variety trials; in addition, farmcrs conducted 191 erosion control trials, 106 fcrtilizer trials and 35 intercropping trials.Usually, improved crop management practiccs evaluated in FPR trials resulted in clear economic and environmental benefits as illustrated by the example shown in Table l . App lication of fertilizers, cspecially those hi gh in N and K and low in P, w ith or without fa rmyard manure, produced high cconomic retums. The more vigorous growth obtained with ferti lizer application also reduced erosion. In general, intercropping with pcanut produced the hi ghest net income, except in vcry dry arcas ofThailand and East-Java of Indonesia, where mungbean or maize were thc pre fcrred intercrops, respective ly. lntercropping with peanut was also effective in reducing erosion. However, the most e ffecti ve practice in reducing erosion at most sites was the use of contour hedgerows of vetiver grass. Further, the grass did not compete much with nearby cassava plants.The results of these FPR trials have been rcported in more detail in the C IA T Annual Rcports for 1994Rcports for , 1995Rcports for , 1996Rcports for , 1997Rcports for and 1998;; in the Progress Reports to the Nippon Foundation, as well as in various reports prcscnted at the 6 1 h Regional Cassava Workshop he ld in Ho Chi Minh c ity, Vietnam in Fcbruary, 2000 (Howeler, 2001 ), and at the 7 1 h Regional Workshop he ld in Bangkok, Thai land in October, 2002 (Howeler, 2007a).Thc sclection of soil conservation practiccs is highly site-specific and depends on particular local conditions and farmers ' traditional practiccs. Practiccs modified by farmers to their own conditions are more likely to be adopted. Thus, at thc end of the 1\" 1 phase of the project sorne farmcrs had started to adopt new varieties, improved fertilization. erosion control practices (where needed) and intercropping ( ll owcler, 2001 ). PROJECT (1999PROJECT ( -2003) ) The long-term goal is to increase the living standards of small farmers and to improve agricultura! sustainability in less favored arcas of Asia by improving the productivity and stability of farming systems where cassava is an important crop.The project purpose is to dcvelop, togcther wi th fanners, efficient and effective integrated crop and soil management practices that optimize fann productivity and contribute to the sustainability of cassava-based cropping systcms.i) To develop, with fanners, improved crop management practices that increase productivity and maintain the soil resource in smallholder fanns where cassava is a principal crop, ii) To disseminate new technologies at the local, provincial, national and international lcvels. iii) To support national institutions in conducting strategic and applied research in cassava production that w ill overcome constraints identified at the farm leve!, iv) To explore and test new and innovative FPR methodologies fo r technology dcvelopment and dissemination that are suited to special needs and conditions in cach Jocati on, v) To strengthen the fanner parti ci patory resea rch capacity in nati onal institutions and in selected farming communities, and vi) To develop procedures for monitoring the impact of new technologics developed through FPR. These objectives are inter-related and have been pursued concurrently.The methodology used in Phase li of the project basically followed that used in Phase 1, but with greater diversity of FPR approaches to match needs. As the project progresscd. increasingly greater emphasis was givcn to the dissemination and adoption of improved soil managemcnt practiccs to other farmers, to strengthening of national institutions in participatory approaches to technology development, in order to achieve widespread adoption of improved varieties and production prac tices. This in turn would lead to increased yields and income, thus improving the living standards of farmers.As in the first phase, the second phase of the project was coordinated by the CIA T-Bangkok office and implemented in collaboration with national research and extension institutions. The Nippon Foundation had suggested to Jimit the number of countries involved to Thailand and Vietnam -mainly beca use of their greater institutional capacity -but agreed to the more limited involvement of China. In Indonesia only a small number of long-tenn research trials were conducted in two locations, but no FPR activities were continued. Table 2 shows the countries and institutions that participated in the first and second phase of the project. In the second phase this included three research institutes in Hainan (CATAS), Guangxi (GSCRJ) and Yunnan (AHVSY) provinces ofChina; in Thailand this included three research (DOA and LDD) and extcnsion (DOAE) institutes, one university (KU). and the semi-private Thai Tapioca Development lnstitutc (TTDI). In Vietnam this included three universities (TNUAF. HUAF and AFUrfD) and three research organizations (VASI, NISF and lAS). Appendix 1 shows the names ofthe principal collaborators in the project.Jn China and Vietnam each institution conducted sorne research as well as FPR and FPE activities in an area not too far from their own institute; this was usually done in collaboration with district (county) or subdistrict officia ls and extensionists (in China, the Bureau ofScience and Tcchnology at provincial, district or county levcl).Table 2. 1 nstitutions colla bo ra ting with C IA T in the first a nd second phase of the Nippon Founda tion project .of the threc countries to review the previous year's results and decide how the project would be implemented. by which institution, where and when. Similarly, the training eourses and field days would be planned whenever possible. These meetings were usually chaired by the country coordinators, i.e. Dr. Tran Ngoc Ngoan in Vietnam, andMr. Preecha Suriyaphan ( 1999-2000) and Mr. Watana Watananonta (200 1-2003) in Thailand; they coordinated the importan! activities among the various institutes in their country and organized the training courses. Tables 3, 4 and 5 show the various activities and sites where the project was implemented from 1999 lo 2003 in China, Thailand and Vietnam, respectively, while Tables 6, 7 and 8 show the details and exact loeation of each project si te, while Figure 1 shows their location on a map. In generaL the number of training courses and the number of sites where the projcct was implemented far exceeded those deemed possible at the beginning of the project. For instance, the total number of project si tes planned in 1999, to be implemented by 2003. was 15 si tes in Thailand and 16 sites in Vietnam (Tab1es 2 and 3 of 1st year's Activities Report), while in reality the project managed to extend to 33 sites in Thailand and 34 sites in Vietnam (Tables 7 and 8). This increased activity was possible because of the excellent collaboration of researchers and extensionists in the national institutions, as well as the active and enthusiastic involvement of officials and extensionists at provincial, district and subdistrict (or commune) levels. Moreover, local officials and fam1ers from neighboring villages or districts participating in the field days often requested to become involved in the project during the following year. Thus, the number of project si tes snowballed way beyond what was originally considered possible. In many cases, the national govemment (in Thailand) and provincial or district govemments (in China and Vietnam) provided additional funds to contribute to the implementation of specific parts of the project.3.4 Devclopment of lnterinstitutional and Farmer Participatory Model.The fanner participatory approach used in the first phase of the project, and with minor modifications continued in the second phase, can be visualized by the conceptual framework shown in Figure 2. lt depicts how researchers, extensionist and fanners work together to develop new technologies. test these out with farmers to select the best practices to be adopted. However, the inputs of researchers diminish and those of fanners increase as one moves around the circ1e from strategic and applied research at the top right through farmer testing to adoption at the top left. The extensionist play a crucial bridging role between researchers and fanners which continues throughout the process, from prob1em identification, devclopment of technical components, testing with fanners, selecting and scaling-up to dissemination and adoption. In most activities all actors play a role, but in different capacities and at different leve1s of involvement. Researchers tend to contribute their specialized knowledge about soi1s and crops, extensionists have special communi cation skills and can fit technology components into the local farming system, while farmers contribute mainly with their knowledge of fanning practices and local conditions as well as their keen awareness of the economic consequenees of various technology options. The knowlcdge and experience of all participants complement each other to work together towards achieving a comrnon goal.A more detailed model, specific to this project and developed during the first phase, is shown in Figure 3 . lt shows the various steps in the process. During the first phase, most activities centered around the right si de of the c irc1e, i.e. problem identification and Farmer Participatory Researeh (FPR). During the second phase of the project the emphasis gradual ly shifted from FPR to Farmer Participatory Extens ion (FPE) in order to reach more farmers and achieve widespread adoption of new varieties and improved practices. These two components, roughly corresponding to the right and the left side of the circle in Figure 3, are part of the same continuum, oftcn called Farmcr Participatory Technology Development and Dissemination (FPTDD). This model is particularly useful for testing new technologies such as varieties, fertilization, erosion control practices etc. While sorne technologies can be demonstrated an0.05). Howcver, the daily weight gain of pigs fed 45 and 60% ECR in the dict were 4. 5 and 7.6% higher, respectively, than thc control diet (Fig ure 1). Thc feed conversion ratio (FC R) of pigs fed 45 and 60% ECR in the diet were 5.5 and 4.5% lower, respcctively, while the feed costs per kg gain wcrc 15.5 and 18.3% lower, respectively, than those ofpigs fed the control diet (Fig ure 2) .The present study has shown that under vi llage conditions, ensiled cassava roots (ECR) can be used up to 45 to 60% of DM in the diet of pigs without affecting the animals' health or overall performance. lt also resulted in a 15.5-18.3% reduction in fecd cost when thc diet was carefully balanced. Fresh !caves of cassava (Ba Trang variety) were collected at time of root harvest and spread out on the floor sorne hours or overnight for wilting. The leaves were separated from thc stems and petio les, chopped into small pieces (2-3 cm), mixed with 0.5% salt and additives: rice bran, cassava root meal at 5 and 10% levels, and fres h cassava grated roots at four different levels: 20, 30, 40 and 50% (frcsh basis). The eight treatments were: l . Cassava leaves + 5 % rice bran 2. Cassava lea ves + 1 O % rice bran 3. Cassava leaves + 5% cassava root meal 4. Cassava !caves + 1 O % cassava root mea) 5. Cassava )caves + 20% fresh cassava roots (fresh basis) 6. Cassava !caves + 30 % fresh cassava roots (fresh basis) 7. Cassava leaves + 40 % fresh cassava roots (fresh basis) 8. Cassava Jea ves + 50 % fresh cassava roots (frcsh basis)The ensi led cassava leaves (ECL) were analyzed for dry matter (DM), crude protein (CP) and hydrogen cyanide (HCN) at 30, 60 and 90 days after ensili ng. The analysis was done in the University laboratories from 12/2002 to 3/2003 .The inclusion of the additives such as rice bran or cassava root meal at levels o f 5 and 10%, or fresh cassava roots at 20, 30, 40 and 50% (on fresh weight basis) is meant to mainta in good quali ty silage for at Jeast tive months. The DM content of the silage using diffcrcnt additives varied from 26.4-33%, while the CP content varied from 19.8-27.5% (as DM) at 90 days after ensiling (Table 2). The HCN content of ECL decreased very quickly from the first day to 30 days and then continued to decrease from 30 to 90 days; the HCN content was on ly about 20-28% of the initiallevel at 90 days after ensil ing. An FPR trial on the effect of using 15% (as DM) of ensiled cassava leaves in the diet of growing pigs on performance conducted by farmers in Huong Van commune in 2001 showed that using a 15% of DM inclus ion of ECL in the pigs' ration did not affect the growth ratc but reduced feed costlkg gain by 25 .62% (P0.05). However daily weigh gain of pigs fed 16% ESP and ECL in diet were 7.8 and 6.3% higher, respectively, than the CLM diet (Figure 3). Using 16% ensiled cassava leaves (ECL) or dry cassava leaf mea! (CLM) in the diet of growing pigs (as DM) had no statistically significan! effect on live weight gain (L WG) or feed conversion ratio (FCR), but reduced the feed cost by 12-1 6%, as compared to pigs fed a diet containing 16% ensiled sweet patato vines (ESP). Results of another FPR tria! on the effect of methionine supplementation in the diet of growing pigs containing 45% of DM from cassava (30% DM from ECR and 15% from ECL) is shown in Table 4. The data in Table 4 indicate that supplementing with 0.05 or 0.1% DL-methionine in diets containing 45% ensiled cassava (30% ECR+ 15% ECL) increased the daily weight gain and reduced the feed cost. Supplementation with 0.1% methionine in the diet of these pigs was highly economic.Similar findings were also reported by Nguyen Thi Loe and Le Khac Huy (2003) who found that supplementation with DL-methionine at 0.2% level in ensiled cassava roots-based diets of F 1 (MC x L W) fattening pigs improved the 1ive weight gain, daily gain, feed conversion ratio and feed cost.Communes Ensiling is a convenient way of preserving the nutritional value and reducing the toxicity of fresh cassava roots and lea ves. In Central Vietnam, ensiling is the best method of preserving cassava, as the harvest of cassava roots coincides with the rainy season. The technique is simple, cbeap and suitable for the conditions of farmers. FPR is the best method to develop and transfer tecbnologies with farmers. The number of farmers that adopted the use of ECR and ECL in the diets of pigs increased in Hong Ha and Huong Van communes from 2000/01 to 2003/04, indicating the effectiveness of the farmer participatory approach in Central Vietnam. CONCLUSIONS AND RECOMMENDA TI ONS • Ensiling cassava lea ves with either rice bran or cassava root meal at 5 or 10%, or with fresh grated cassava roots at levels of 20-50% (on fresh weight basis) produced good quality silage that could be stored for up to five months. • Under village conditions using 20-60% ECR in the diets (as DM) of growing pigs increased the live weight gain (L WG), decreased the feed conversion ratio (FCR), and reduced feed cost by 7.3-18.3% . • Using a 13-15% of DM inclusion ofECL in the pigs' ration containing 30% ECR (as DM) as replacement for sweet patato vines and partial replacement of fish meal in diets of growing pigs did not significantly effect the growth rate, but reduced feed costlkg gain by 12-26.83%. • Supplementation with 0.1 % methionine in diets containing 30% ECR and 15% ECL of growing pigs improved the performance of these pigs. • Ensiled cassava leaves can be used as a supplemental source for feeding pigs.The use of diets based on ensiled cassava roots (ECR) and ensiled cassava leaves (ECL) can bring economic benefits to farmers, cspecially those raising pigs in Central Vietnam.Conducting FPR trials with farmers to identify the most appropriate preservation methods of cassava roots and leaves by e nsi ling, is the best method to dcvclop and trans fer thcsc technologies to farmers. 141 production in South Vietnam, wherc an cstimated 600 ha are now planted w ith new cassava varieties, use ba lanced fertilizer application and good weed contro l.In South Vietnam, cassava (Manihot esculenta Crantz) was an importan! food crop, which occupied about the fifth position in tenns of area planted, after rice, maize, sweet pa tato and vegetables. It was ma inly grown by fanners in marginal arcas, characterized by poor soil quality, especially in sloping areas and in tropical climates with mean monthly temperatures of about 26.3-28.9°C, and rainfall ranging from 3.3 mm to 384.4 m m in a month (Figure 1 ). Cassava is produced throughout the country but is more importan! in southem Vietnam than in the north. In 2001 the total cassava planted arca was about 163 ,600 ha and the average yield was 11.30 t/ha (Vietnam Govemment Statistics). Recently, cassava in South Vietnam has become a cash crop because the region now has more than 30 starch factories, while it is estimated that more than 500 households are also processing cassava into starch and other products.Results of the nation-wide cassava survey conducted in 199 1-1 992 showcd that the majar constraints were low cassava yie lds and low economic retums in cassava production arcas of South Vietnam. This is due to lack of new technologies to improve soil ferti lity and reduce soil losses by erosion, which has resulted in seri ous soil degradation; and lack of new cassava varieties with high y ield and high starch content (Pham Van Bien el al., 1996).From 1998 till 2003, Fam1er Partic ipatory Research (FPR) in South Vietnam was carried out in collaboration with C IA T and with financ ia( support from thc N ippon Foundation in Japan. In South Vietnam the FPR project was implemented by Hung Loe Agr icultura! Research Center (HARC) and by the University of Agriculture and Forestry (UAF).The objecti ves of the research are to develop appropriately crop and soi1 management practices for more sustainable cassava-based cropping systems in South V ietnam.Therefore, the research was focused on:1) Developing new technologies for the sustainable production of cassava grown on sloping and nutrient poor soil by rcducing erosion and preventing soil degradation.2) Selection, introduction and dissemination of new cassava varieties with high yield, high starch content and adapted to the environments in South Vietnam.In early 1999, the project started by preselccting sorne villages in Dong Nai, Tay Ninh and Binh Phuoc provinces, as wcll as in Ba Ría-Vung Tau province as the pilot si tes for implementing thc FPR methodology. Sorne villagcs in Binh Long district of Binh Phuoc province and in Quang Ngai province were a lso selected as additiona l sites.To implemcnt the FPR methodology the following activities were carried out: l. Diagnostic surveys were conducted in the pilot si tes using RRA and PRA methods, in order to find out the problems, limiting factors and solutions. The tools uscd included villagc transects, bio-resources mapping, stakeho lder analysis, gender analysis, village mapping, crop calendars ... etc. -Eros ion control: so il eros ion control by using different types of soil and crop management practices.-Cassava intercropping: to select the cropping pattem giving the highest yields and ccono mic retums, to enhancc soil fertility, and to reduce soil degradation.-Cassava weed control by herbicide application and the use ofplastic mulch: to select the kind of herbicide and plastic, the best time and quantity to apply for controlling wccds in cassava fields in the rainy season.-Fertilization: to determine thc bcst rates ofNPK to obtain high yields and economic benefits on Haplic Acrisol and Ferrasol soils.-Cassava varietal selection: to select new cassava varieties with high yield and high starch content, short duration and for multi-purpose use, and adapted to the conditions of farmers in South Vietnam. 4. Farmers, technicians and extension workers received training before conducting the trials. Farmer ficld days werc also organized to visit the demonstration plots for selecting good treatments, and at harvesting time to discuss and evaluate the results of thc FPR trials and to identif)r the most promising treatments for the next year.Based on the results of previous research on erosion control we established an experimcnt wi th various soil and crop management practices at Hung Loe Agricultura) Research Center, while two demonstration plots with 16 treatments were cstablished on about 8-20% slope in Tay Hoa vi llage, Thong Nhat district, Dong Nai province, and in Dong Xoai town, Binh Phuoc province. These plots showed various altematives for growing cassava on slopes, and farmers could select the most promising treatments during the farmers' field day at harvest. After conducting these demonstrations, 17 FPR erosion contro l trials were conducted by fa rmers in Dong Tam village, Dong Phu district, Binh Phuoc province, and in Suoi Rao village, Chau Duc distr ict, Ba R ia-Vung Tau province from 2000 to 2003. The results ofthese trials, shown in Table 1, indicate that in Dong Tam village of Binh Phuoc province, planting cassava w ith hedgerows of Paspalum atratum or vetiver grass reduced the soil loss by erosion and gave the highest cassava y ields and net income. Similarly, Table 2 shows that in Suoi Rao villagc of Ba Ria-Vung Tau provi nce planting cassava with con tour hedgerows of veti ver grass or Paspalum atratum reduced the soil loss and produced high yields and net income. In both locations these two treatments had the hi ghest farrners' preference. In South Vietnam cassava is genera ll y intercropped w ith legumes and other economic crops; th is is practiced in about 30-40% of the tota l area of cassava production (Pham Van Bien et al., 1996).Loe Agricultura! Research Center since J 992. The results of ten years indicatc that cassava intercropped w ith peanut and cassava grown w ith hedgerows of Leucaena /eucocephala and Gliricidia sepium as alley crops gave the higher cassava root yie lds and net income.These cropping systems a lso retumed the highest amount of grcen man ure for improving soil ferti lity and reduc ing soil degradation ((Nguycn Huu Hy et al., 1995;1998;2000;and 2007).The RRAs and PRAs conducted in the pilot sites indicatc that the mos t common systems of cassava intercropping in South Vietnam are interplanti ng cassava with peanut, mungbean, maize and cowpea.Based on the results of previous research in Hung Loe Agricultura! Research Center and the constraints identifíced for cassava intercropp ing in farmers' fí clds by RRA, farmers conducted 20 intercropping tria ls in An Vien village, Thong hat district, Dong Nai province; in Dong Tam village, Dong Phu district, Binh Phuoc province; and in Suoi Rao and Son Binh villages, Cbau Duc district, Ba Ria-Yung Tau province. 4,426,000/ha labor for maize production (21.4 man-days) 533,000/ha labor in hedgerow planting (8 man-days) 200,000/ha Note: hedgerows of Paspalum atratum and vetiver grass also produced 10.31 and 6.90 t!ha of cut forages, respective! y.The results, shown in Tables 3 to 7, indicatc that in most of the pilot si tes cassava intercropping with grain legumes such as peanut was tbe most suitable cropping system, while this also gave a higher net income than other treatments. The results of intercropping trials conducted on grey sandy loam soil in Suoi Rao of BaRia-Yung Tau province indicate that intercropping cassava with maize gave the lowest net income (Tables 5 and 6).Intercropping trials conducted on grey podzolic soil of An Vien village, Tbong Nbat district, Dong Nai province, showed that the planting of one row of peanut grown between two rows of cassava gave the highest net income as compared with cassava monoculturc or the inter-planting of two rows of peanut between two rows of cassava (Table 7).Two on-farm fertilizer trials were conducted in An Yien village, Thong Nhat district, Dong Nai province, and in Hao Duoc vi llage, Chau Thanh district, Tay Ninh province in 1999. The results of these trials gave farmers sorne ideas about the response of cassava to fertilizers. In both si tes the response of cassava to different levels of N, P and K was not clear in the first year. The application of 120 kg N, 20 P20 s and 120 K20/ha or 60 kg N, 40 P 2 0 5 and 120 K 2 0/ha gave the highest cassava root yields and economic returns (Nguyen Huu Hy el al., 2007).From 2000 to 2003, 26 FPR fertilizer trials were conducted by farmers in An Vien village, Thong Nhat district, Dong Nai province; in Dong Tam village, Dong Phu district, Binh Phuoc province as well as in Suoi Rao village, Cbau Duc district, Ba Ria-Yung Tau province. The results of these trials, shown in Tables 8 to 12, indicate that the response of cassava to fertilizers on the fanners' fields depend on thc type of soil and the rates of the applied fertilizer. On poor soils in An Yien village the application of 80 kg N+ 40 PzOs+ 80 K 2 0/ha and 40 kg N+ 40 P 2 0 5 + 80 K 2 0 /ha + 5 t/ha manure gave the highest yields and economic retums. But in the rather fertile soil in Suoi Rao village the application o f 40 kg N+ 40 P 2 0 5 + 80 K 2 0/ha with and without farm-yard manure gave the highest cassava root yields and net income. In most sites the farmers' preference was higher for treatments 2 or 3 than for treatment 1 . Based on the results of previous rcsearch on the use of herbicides and plastic mulch for weed control at Hung Loe Center, and on-fann research conducted in An Vien village, Thong Nhat district, Dong Nai province, and in Hao Duoc vil lage, Chau Thanh district, Tay Ninh province in 1999, nine FPR weed control trials were conducted by farmers in An Vien, vi llage, Thong Nhat district, Dong Nai province. The results of these trials (Tables 13 to 15) show that the pre-emergence herbicide Dual (metolachlor) could control most of the weeds in cassava fields and gave higher economic retums. This is also more convenient in places where there is a lack of labor. Also, weed control by using plastic mulch to cover the soil gave higher cassava yields and made harvesting easier even in the grey podzolic soil, but it markedly increased the cost of production.In 1999 five national cassava variety trials (NVT) were conducted in An Vien and Xa Doi 6 1 villages, Thong Nhat district, Dong Nai province. The results of these trials indicate that most of the new varieties, i.c. KM 98-5 , KM 98-1, SM 93.7-26, KM 94 and KM 99-4, had higher root yie1ds and starch contents than the local varieties. In order to sclcct the best varicties for release, new cassava varieties werc selccted from these NVT trials and tested in 22 FPR trials conducted by fam1ers: 14 trials in Dong Tam and Minh Lap vi llages in Dong Phu and Binh Long districts, Binh Phuoc province, and eight trials in Suoi Rao and Son Binh villages, Chau Duc district, Ba Ria-Vung Tau province. The results of these trials, shown in Tables 16 to 21 , indicate that in Dong Tam and Minh Lap villages two varieties, i.e. KM 98-5 and KM 94, gave high yields and had high levels of farmcrs' preference. But in eight FPR trials in Suoi Rao and Son Binh villages five varieties, i.e. KM 94,KM 146 and KM 9 123 gave high yields and had hig h levels of farmers' prefercnce. In genera l, s ix new varieties and KM 94 were widely ad opted in these sites. From 1999 to 2003, the project was working together with 43 1 households in South Vietnam and released five types of new technologies; these were adopted in the FPR pilot sites in a total area of 296.4 ha (Table 23). Among the new technologies, new cassava varieties with high yield and starch content were adopted in most of the sites. Beside that, the project had a significant effect on cassava production in South Vietnam, where the new technologies on soil erosion control, intercropping cassava with legumes, chemical fertilizer application, chemical weed control and new varieties were adopted in an estimated 600 ha. l . To conduct fa nner participatory research it is important to select the right villages (pilol sites) where the main cropping system is based on cassava, and where the net income o f most of the households in the village come mainly from cassava production. 2. To work with farmers, to encourage lhem to test vari ous technologies and select those that are most suitable for their own conditions; this will enhance adoption and increase their cassava yields. 3. To achieve the adoption of new technologies requires that researchers, extension workers, local govemment officials, traders and farmers work together to strengthen the proj ect. 4. By working together, researchers and fa rmers leam from each other, and also leam by themselves.Table 23. Adoption of new tecbnologies in cassava-based cropping systems in FPR pilot sites in South Vietnam (2000Vietnam ( -2004)). Lessons Iearned from multi-lateral cooperation • Cooperation between scientists, producers, processors and government officials can promote cassava production very fast (from self-supply to commercia1 production); the yield may increase by 1 00% or more; the production area of new varieties increased many-fold ; farmers' income from cassava production also increased.• 158 lntegration of national programs with international projects is very effective in scaling up cassava production in more sustainable ways by applying diversified techniques and making most use of the know-how and resources of all partners Multi-lateral cooperation provides conditions for multi-location testing, which is a very useful too! in technology transfer.Problems remainedCassava starch processing factories seem not to have a long-term and integrated plan in terms of raw material supply, so there is no plan to invest in the application of more sustainable technologies for cassava, and the links between processors and scientists are still weak Cassava producers (farmers) benefit a little, but most ofthe added value is obtained from the processed commodity• The cassava starch price is not stable in intemational markets; that reduces the processor' s willingness to sign contracts with farmers, and the farmers hesitate to invest in cassava production• Govemment officials should pay more attention to support cassava producers; for example, by taking necessary measures to reduce risks and to harmonize cassava production so as to keep demand and supply in balance.• Sustainable technologies for cassava production (high yielding varieties, balanced ferti lization, intercropping, erosion control, etc.) have brought about economic and environmental benefits, and should be promoted • Integration of national programs with international projects can mobilize more know-how and resources of all partners, hence providing more opportunities for rapid progress and greater success • Participation of four groups (scientists, farmers, processors and governrnent officials) proved to be very effective, and their cooperation should be further promoted • lt is requested that the government pay more attention to helping salve the remaining constraints to promote sustainable cassava production in Vietnam. During the 5-year second phase of the project, farmers in 99 pilot si tes in the three countries conducted a total of 1, 154 FPR trials, mostly testing new varieties, eros ion control measures, fertilization, intercropping, weed control, plant spacing and pig feeding.From the FPR variety trials farmers selected the most suitable variety for their particular location. The most commonly adopted variety in both Thailand and Vietnam was KU-50, in Vietnam called KM 94. Sorne other improved varieties were also selected because of better adaptation to specific local soil or climatic conditions, or for different end uses, such as eating varieties versus industrial varieties.With respect to erosion control measures, farmers in Thailand overwhelmingly selected the planting of vetiver grass contour hedgerows, while in Vietnam farmers often selected vetiver grass as the most effective measure, but adopted the planting of Tephrosia candida. Paspalum atratum or pineapple, because these were easier to plant and had secondary uses. About 30% of farmers also adopted contour ridging, which can be quite good for erosion control (if slopes are not too steep) and may also increase yields or facilitate planting and harvesting.From FPR fertilizer trials farmers realized the beneficia! effect of applying modest amounts of animal manure (5-10 t/ha) in combination with chemical fertilizers high in N and K, such as 80N-80K20 or 80N-40P 2 0 5 -80K 2 0. In Thailand where farmers use mostly compound fertilizers, there was a shift away from 15-15-15 to fertilizers like 15-7-18, if and when those were available on the local market.Cassava farmers in Thailand also became interested in trying out different green manures and different ways ofmanaging these within their cassava cropping system, either by planting before cassava and incorporating the green manure into the soil before planting cassava, or planting cassava first, interplanting the green manure between cassava rows and pulling up and mulching the green manure after 1 \\4-2 months. These practices have sofar been adopted in only a few places.By the end of the project in late 2003, farmers in 24 villages in Thailand had planted a total of 145 km ofvetiver grass hedgerows, practically al! had adopted one or more ofthe recommended new varieties, about 80-100% were using chemica1 ferti1izers, but almost none had adopted intercropping, mainly beca use of limitations of labor and frequent crop failures of intercrops.In Vietnam the number of households adopting various new technology components increased year by year, reaching a total of 15,000-20,000 households in or near 15 of the o1der pi lot sites. New varieties were adopted by the greatest number of households and over the largest area, covering at 1east 7,000 ha in or near those pilot si tes. A nation-wide survey indicated that new varieties were being planted in about 92,500 ha corresponding to 35-40% of the tota l cassava area in 2002. Better fertilization and erosion control measures had been adopted in about 600 ha each, while intercropping was practiced by many farmers but covering only a total of 160 ha. In the pi1ot sites ofthree districts ofHue province over one thousand households had rai sed about 3,370 pigs fed with si1age of cassava roots and leaves. The increase in cassava yield and additional pig meat resulting from the adoption of these new technologies was valued at 2.2 million US dollars per year in those 15 pilot sites.In China farmers tested mainly new varieties. Out of many prom1smg breeding lines farme rs in one vi llage in Hainan selected two lines and these were later re1eased as recommended varieties under the names of SC 5 and SC 6. Once released these two vari eties spread rapidly and now cover about l ,300 ha in Hainan. In the majar cassava growing province of Guangxi, two recently released varieties, G R 911 and GR 891, as well as two o\\dcr ones, SC 124 and Nanzhi 199, are now planted in about 16,000 ha. lt is estimated that in all of China new varieties are now planted in o ver 30,000 ha covering about 8% of the total cassava area. Soil conserva !ion practices ha ve been tested extensively in FPR tria ls in Hainan, but have been adopted in only very small areas. lnterestingly, many farmers, especially in sorne areas of Guangxi, are now planting cassava on plastic mulch, whích not only increases yields and income but also seems cffective in reducing erosion. This nccds further research.In arder to estímate the economic benefit of all cassava research and extension activities (not only of thi s project) in China, Thailand and Vietnam, we can look at the overall effect of the adoption of new varieties and production practiccs on yield. According to FAO data, cassava yields in China over the past ten years increased 0.79 t/ha with an approximate value of 5.4 million US do llars; in Thailand yields increased 5.49 t/ha (40%) w ith a total value of 123 million US dollars; while in Vietnam yie lds increased 5.84 tlha (69%) resulting in an additional income for cassava fa rmers in the country valued at 54.3 million US dollars per year. For a ll of Asia yields increased 3.68 t/ha (28%), resulting in additional income for cassava farmers valued at 318 million US dollars per year. By far the greatest yield increases occurred in Thailand and V ietnam where the project was most actively involved. Although it is impossible to say for certain how much the Nippon Foundation project has contributed to these yield increases, there is no doubt that the direct involvement of severa] thousand farmers in testing, selecting and adopting Iocally-su itable varieties and practices, and their participation in field days and training courses have made a significan! contribution.Thc lmpact Assessment conducted at the end of 2003 concluded that new varieties wou ld probably have been disseminated equally well w itho ut the partic ipatory approach, and that fertilizer adoption is high ly dependen! on each farmer' s purchasing power. The adoption of more balanced fertilization, of soi l conscrvation practices and intercropping, whilc notas widespread as that of new varieties, was significantly higher for those farmers that had participated in the project as compared to non-participants. The use of a fam1er participatory approach as a novel new way of deve loping and disseminating new technologies together with farmers, was enthusiastically embraced by those participating directly in the project; thi s may eventually become more accepted as a useful approach in mainstream national programs w ith hopefully a long-lasting and positive effect. The working together of researchers and extensionists from various national and intemational institutions, and the opportunities provided by the project to participate in national and intemational train ing courses, workshops or sc ientific meetings havc enriched the capacities of many indi vidua ls, and this will undoubtedly lead to improved effi c iency in their institutions to the benefit of poor farmers and to the s ustainable development of their countries.Farmers are inte rested in testing new techno logies only if those technologies promise s ubstantial econo mic benefits over the ir traditional practices. Thus, strateg ic and applied research need to continue to produce and select still better varie ties, better production practices and new uti lization options .B esides the continuing e fforts to breed and select new high-y ielding and h igh starch varieties, mainly by cassava breeders in national programs with sorne input fro m C IAT headquarters in Colombia, colla borative researc h in the area of agronomy and soil management contin ued .Table 1 list the topics a nd institutions that were invol ved in this research from 1999 to 2003. Initially this research concentrated on integrated and long-terrn soil fertility maintenance through the application ofN, P and K as well as Ca, Mg and micronutrients in chemical fertilizers; the selection and management of green manure species; intercropping and alley cropping; and the combined use of animal manures and fertilizers. Other tapies included the identification of effective and practica! soil conservation measures and the seleetion of hedgerow speeies with mínimum eompetitive effeet on nearby cassava. Later tapies included weed control and land preparation practiees, as well as the identifieation of varieties and management practices to optimize the produetion of cassava leaves as a souree of protein for animal feeding.Results of this researeh ha ve been published in CIA T's Annual Reports for 1999 to 2003 and have been presented at the 7th Regional Cassava Workshop held in Oet 2002 in Bangkok. The more than 70 PowerPoint presentations were copied on CDs and distributed to all collaborating and participating institutions. The full papers have been published as the Proceedings of this Workshop (Howeler, 2007). Both the PP presentations and the pdf file of the Workshop Proceedings are available on the web at www.eiat.egiar.org/asia cassava/index.htm Only a few examples and salient results of the strategic and applied research eonducted as part ofthe second phase ofthe Nippon Foundation project are presented here:Long-term NPK trials were continued in four locations, one each in north and south Vietnam, one in Hainan island of China and one in southern Sumatra of Indonesia. Figure 1 shows the effect of annual applications of various levels of N, P, and K on the yield and stareh content of two varieties during the 16th year of continuous cropping in Hung Loe Center in south Vietnam. It is clear that, similar to most other locations, the main yield response was to the application ofK, while there were minar responses to the application of N and P and mainly in the higher yielding variety SM 937-26. The combined application of 160 kg N, 80 P 2 0 5 and 160 K 2 0/ha increased yields from about 8 to 36 t/ha. Figure 2 shows the absolute and relative response to application of N, P and K as well as the change in P and K status of the soil during the entire 16-year period. Initially there was no signifant response to any nutrient as the organic matter, P and K levels were still adequate and root yields were relatively low. With the introduction of new higher yielding varieties in the 4th year, the root yields increased and nutrient depletion, especially K, increased, leading to an ever more pronounced response to K application. Even after 16 years soil-P remains above the criticallevel, which explains why there was only a minor P response.Table 2 shows the effect of combining various rates of farm-yard (pig) manure (FYM) with chemical fertilizers, in this case N and K, in Thai Nguyen University in north Vietnam. Without manure or fertilizers the yield was only 3.25 t/ha; with the application of only 80 kg N and 80 KzO/ha yields increased to 15.4 7 t/ha; with a high rate of 15 tlha of manure it was 13.11 t/ha, while the combined application of 10 tlha of manure with N and K produced the highest yield of 18.70 t/ha. However, the combination producing the highest net income was 5 t/ha of manure with 80 kg N and 80 K 2 0/ha. From this and other tria ls it is clear that farmers can increase yields and income by reducing their application of p1g manure as long as it is combined with adequate levels of N and K in chemical fertilizers. Cassava Height Leaf life Hl Gross Fert. Product. root yield at 8 at 3 income 2 > costs 2 > costs 3 > Net in come (tJha) months months ------------(' 000 dong/ha )---------- - 3 shows the first 5-year results of a green manure experiment conducted in Khaw Hin Som station in Chachoengsao, Thailand. In this case all green manure species were intercropped between cassava rows and planted one month after planting cassava; they were pulled out and mulched two months later. Highest average yields were obtained when cassava was planted without green manures but ferti lized with either 75 or 25 kg/rai of 15-7-1 8 ferti lizers. All green manures, but especially Mucuna and Crotalaria juncea reduced cassava yields due to competition for light, nutrients and water. Among the various green manures, mungbean and Canavalia ensiformis were the least competitive intercrops. lt was expected that the beneficia! effect of green manures wi ll increase over time, but the data indicate that that was not the case. 1.4 Long-term effect of contour hedgerows on yield and soilloss by erosion Figure 3 shows the long-terrn effect of contour hedgerows of vetiver grass and Tephrosia candida on relative cassava yields and soil loss as compared to the check plot without hedgerows; data are average values from two FPR erosion control trials conducted for ten consecutive years in north Vietnam. Although the results are rather variable, there is a clear trend that both types of h edgerows caused a 20-40% increase in cassava yields and reduced soil losses by erosion to 20-30% of those in the check plots without hedgerows. Vetiver grass was generally more effective in reducing soil losses than Tephrosia, firstly because the grass is more effective in filtering out suspended soil sediments, and secondly because Tephrosia hedgerows need to be replanted every 3-4 years, in contrast to vetiver grass which is more or less perrnanent. While farrners claim that Tephrosia improves the ferti lity of the soil more so than vetiver grass, the data show that vetiver increased cassava yields more than Tephrosia, probably by reducing losses of top soil and fertilizers and improving water infiltration and soil moisture content. Figure 4 shows simi\\ar results from a soil erosion control experiment conducted for ten consecutive years on about 15% slope at Hung Loe Center in south V ietnam. In this case, contour hedgerows of vetiver grass, Leucaena and Gliricidia all increased cassava yields as compared to the check plot without hedgerows; they also decreased soil losses by erosion. Leucaena and veti ver grass were the most effective in increasing y ields while veti ver was the most effective in reducing erosion. Similar to the data from north Vietnam in Figure 3, the effectiveness in controlling erosion increased over time. After the 4th year, the soil loss with veti ver hedgerows was only about 20-30% of that without hedgerows. These data corroborate those in Tables 26 and 31 bclow that hedgerows ofvetiver grass are among the most effecti ve ways to control erosion; they also indicate that the effectiveness of all types of hedgerows in creases o ver time.Table 4 summarizes the results of variety trials for leaf production conducted in two of four locations in Thailand for two consecutive years. In these trials cassava stakes were planted vertically at 30 x 30 cm, and young tops were cut off at 20 cm from the ground at about 2 Y2, 4 Y2, 6Y2, 9 and 12 months after planting (MAP), wh ile cassava roots were also harvested at 12 MAP. The harvested tops, inc luding leaves, petioles and green stems, were chopped up, sun and oven dried, weighed fresh and dry and a samp le was analyzed for protein content. Table 4 shows that sorne varieties produced over 13 t/ha of dry \" leaves\" (this includes petioles and young stem) which contained over 2 t/ha of crude protein. This is 2-3 times higher than a good crop of soybeans! E ven after four cuts of 1eaves sorne varieties still produced over 20 t/ha of fresh roots with more than 18% starch. Using an estimated (low) price of 24 bahtlkg leaf protein, it was found that the two recommended varieties, KU 50 and Rayong 90 as well as the breeding lines CMR 41-11 1-129 and C MR 41-42-3 produced the highest net in comes due to the hi gh y ie1ds of both roots and lea ves.Other experiments on fertilizer ratcs, p1ant spacing, frcquency and height of cutting indicate that: a. highest dry leaf yields were obta ined with 600 kg N/ha combined with either 150 or 300 kg P 2 0 5 and 150 or 300 kg K20/ha, but that highest net income was obtained w ith 300 kg N, O P 2 0 5 and 150 K20/ha (Table 5).b. Highest dry leaf and protein yields werc obtained at a plant spac ing of 30 x 30 cm, but highest fres h root yields and net incomc were obtained at 60 x 60 cm (Table 6).c. Cutting heig ht at 15 , 20 or 25 cm above the soil had little effect on leaf yield, but cutting at 25 cm produced the highest root yield, starch content and net income. d. Cuning at 2 Yz-month intervals produced highest leaf and protein yields as well as net income but cutting at 3-month intervals produced highest root yields (Ta ble 7). 8 and 9 show the number and types of FPR tria ls conducted in 2003/04 in the various pilot sites in Thailand and Vietnam, respectively , while Table 10 summarizes the same data for China, Thailand and Vietnam fo r the en tire second phase of the project. In China, especially in the final two years, the emphasis was ma inly on testing and disseminating new cassava varieties in Hainan and Guangxi, and on pig feeding in Yunnan. In both Thailand and Vietnam the initial c mphasis was on tcsting new varieties, erosion control practices and fertilization, but in later years farmers a lso wanted to test animal and green manures (mainly in Thailand), intercropping (mainly in Vietnam), weed control, plant spacing, leaf production and pig feeding ( on ly in Vietnam). The number of FPR trials increased markedly during the first four years, but decreased again in the 5 1 h year, especially in China due to the outbreak of SARS. Over the course of fi ve years about 1,150 FPR trials were conducted in farmers' ficlds, including 200 crosion control trials. This has made many farmers acute ly aware of th e scriousness of soil erosion on their own fields; they also saw how it can be prevented and this has led to widespread adoption of soil conservation measures in cassava fields (see Section 4 below). Although not all trials produced useful results, from this large number oftrials, conducted under so many different conditions of slope, rainfall, soil typc and cropping practices, a wealth of data was obtained that can illucidate the relative effectiveness of various practices in controlling erosion as well as the ir effect on yield (see Tables 26 and 31 below) At time of harvest, a field day was organized for part!c!pating and nonpracticipating farmers from the village and nearby communities, as well as local officials and extension workers. Usually, the central part of each plot had been harvested, either early in the moming or the day before, leaving heaps of cassava roots with a sign indicating the yield in each plot. Farmers and officials received a paper with all tria! lay-outs and treatments. They then visited each tria! and evaluated the different treatments. Later in the 8 174 da y, the average yie lds of treatrnents in each type of tri a l were presented together with their gross income, production cost and net income. These were discussed after w hich fa rmers voted for the most preferred treatments by raising hands. From this the farmers could select new treatments to be tested in FPR trials next season, or they could try the selected treatmen ts on parts of their production field. T hrough these field days, farmers themselves selected the most suitable practices, and both the knowledge and planting material of new varieti es, intercrops or hedgerow species would spread, both in the village and 10 neighboring villages. A few examples of results of different types of FPR trials are shown in Tables 11-20. A ftcr 2-3 years of testing of various options in FPR trials, slowly narrowing down thc number of best options, farrners started to adopt sorne of the tested varieties or practices on their bigger production fields. In sorne cases they made adaptations so as to make the practices more suitable on a larger scale. For instance, in Thailand farmers planted contour hedgerows of veti ver grass on their fields, but left enough space between hedgerows (usually 30-40 m) to facilitate land preparation by tractor. In sorne cases, especially in Vietnam, farmers planted hedgerows on plot bordcrs rather than along contour lines. This reduces thc amount of land occupied by hedgerows, but also reduces their effectiveness in controlling erosion.While contour hedgerows of vetiver grass are usua lly the most effective in reducing soil losses by erosion in experiments and FPR trials conducted in small plots on a uniform slopc, when this practice is scaled up to a larger production field the results are sometimes disappointing. In areas of rolli ng terrain large amounts of runoff water may accumu late and run down-slope in natural drainage ways. The force of the water is likely to wash out vetiver grass recently planted a long the contour across the drainage way, and this may result in serious gully erosion. Attempts to repair these gullies by placing sand bags or other obstac les across them have usually failed as these obstacles too are washed away. O ver the past few years farmers and project staff ha ve experimented inforrnally with ways to reduce the speed of water in these gullies. They fo und that it is most effective to place a row of soil-filled plastic ferti lizer bags across the gully in line but slightly below the washed out vetiver hedgerow. The bags need to be secured in place by pounding bamboo stakes into the soil behind them (Figure 5). Once eroded soil is deposited in the gull y abovc thc soil bags, vetiver grass can be planted in this moist and fertile sediment. When the vetiver grass is well-established across the gully and in line w ith the rest of the hedgerow, this will further slow the speed of runoff water resulting in further deposition of sedimcnts in the gully above the vetiver hedgerow. This allows weeds to reestablish in the gully bottom protecting the gully from further erosion. With the next plowing along thc contours, parallel to the hedgerows, the gully w ill generall y be filled up again with soi l, while the hedgerow prevents further gully forrnation (Figure 5). In sorne sites in Thailand, terraces of up to a meter height were forrned w ithin two years by the placing of soil bags and planting of vetiver hedgerows across the gully. This local adaptation of the traditional contour hedgerow system markedly increased its effecti veness under real field conditions. At the beginning of the project in 1994 none of the project staff, both from CIA T and in national programs, had any experience in farmer participatory methodologies. Thus, the project started with a one-week Training-of-Trainers (TOT) course on farmer participatory methodologies with staff from CIA T and others with more experience presenting their ideas. After lengthy discussions about methodologies, and practice sessions in the classroom and with farmers in the field, most participants felt more or less comfortable with this new approach and were willing to test it out in their own countries.This initial course in English was followed by severa) TOT in-country courses for researchers and extensionists of national programs taught partially in English (with translation) and partially in the native language by resource persons from that country. Project staff that had participated in the first phase and had gained experience with the methodo logies then served as resource persons in subsequent TOT courses for staff joining in the second phase. By that time, manuals on farmer participatory approaches had been prepared in Chinese, Thai and V ietnamese, making the teaching more efficient. Table 21 shows the tota l number of training courses conducted during the first and second phase of the project. After trammg of project staff in TOT courses, focusing mainly on tools and methodologies used in participatory diagnoses, in the implementation of FPR and FPE as well as in participatory monitoring and evaluation (PM&E), the emphasis shifted to training of local extension workers together with key farmers from each pilot site. By inviting one subdistrict extension worker together with two farm leaders from a project site in that subdistrict it was hoped that this three-man (or women) team could form a local \"FPR team\" that would work together in teaching others in the community to conduct FPR trials or adopt new technologies. Although these \"FPR teams\" were never formalized as such, the people that had participated in these FPR training courses would oftentimes lead the village as coordinators of the FPR trials oras officers on the Administration Committee ofthe \"Cassava Development Villages\".At the end of the project in 2003, about 726 people had participated in FPR training courses organized and funded by the project, of which about 200 were researchers and extensionists and about 400 were farmers and local extension workers (sorne people participated in more than one course). These training courses were extremely important to create a cadre of people with knowledge and experience in farmer participatory methodologies and to motivate people to work enthusiastically in extending the project to more and more sites. Similarly, the training of local extensionists and farmers was not only useful in extending knowledge about FPR and cassava production technologies, but also to motívate and empower local extension workers and key fanners to work together as a team for the benefit ofmembers ofthe community.To facilitate training in FPR methodologies and to hand out material that can serve as a reference for researchers, extensionists and farmers who have participated in these courses, the following training materials were prepared, mostly in the local language: l. Video/CD: The use of farmer participatory research to develop and extend the use of soil conservation practices in cassava growing areas of Thailand (in Thai and English) by: Department of Agricultura! Extension, Bangkok, Thailand 2. CD: Cassava resources development and research on preventing soil erosion and soil loss using cassava contour hedgerows in Honghe district, Yunnan, P.R. China (in Chinese) by: Honghe Regional Animal Husbandry Station, Mengzhe, Yunnan, China 3. Training Manual: Farmer Participatory Research; Methods and Tools; Planning FPR Trials (in Thai) by: Department of Agricultura! Extension, Bangkok,Thailand 4. Training Manual : Farmer Participatory Research (in Vietnamese) by: Tran Ngoc Ngoan, Thai Nguyen Univ., Thai Nguyen, Vietnam 5. The Nippon Foundation Project to Control Erosion in Cassava Fields (in Vietnamese) by: Tran Ngoc Ngoan, Thai Nguyen Univ., Thai Nguyen, Vietnam 6. Cassava Varieties and Cultural Practices -FPR Project Trafning Manual (in Chinese) by: Li Jun, Guangxi Subtropical Crops Research lnstitute, Nanning, Guangxi , P.R. China h Regional Cassava Workshop. This paper, as well as many others written by cassava agronomists in national programs, reviews cassava agronomy research conducted over the past 20-30 years in Asia. They are published in the same Proceedings.The second monograph on FPR and FPE Methodologics used in the project, will probably not be published as the topic is rather similar to the recent publication \"Developing Agricultura] Solutions with Smallholder Farmers: How to Get Started with Participatory App roaches\" by Peter Home and Wemer Stur, published as the third in the C!AT in Asia: Research for Development Series (ACIAR Monograph No 99). This publication has been translated into many Asían languages.Another cffective way to disseminate knowledge about the farmer participatory methodology used in the project and the results obtained, is to launch a project website. This website was prepared in August 2002. Its web address is: www.ciat.cgiar.org/asia cassava/index.htm. The website has numerous downloadable publications and serves as a general source of information on various cassava production aspects. The website is also linked to the Nippon Foundation website as well as that of CIA T in Asia: www.ciat.cgiar.org/asia/indcx.htm.Reports on various aspects of thc project, both research results and about the FPR methodologics uscd, ha ve been presented at many scienti ftc meetings, workshops and symposia. Most of these were published. Appendix 2 shows the list of publications resulting from the 2nd phase of the project.Adoption of new technologies is a gradual process; it is a lso influenced by the activities of various govemment and non-govemment organizations as well as by social, política! and economic forces both within and beyond the village. For instance, the amount of fertilizers applied by Thai cassava farmers depends to a large extent on the cassava price received in the previous year; this price is determined by intemational markets for coarse grains and sugar, which are beyond the farmers ' control. It is also difficult to measure adoption beyond the actual pilot sites (usually village or commune) and to know whether it was entirely or only partially a result of the project.In China the first phase of the project, conducted only in Hainan province, concentrated on the testing of new varieties, eros ion control and fertilization. In the second phase, the emphasis shifted to testing mainly new varieties and sorne erosion control (in Hainan and Guangxi provinces), and to the feeding of ensiled cassava leaves and roots (only in southem Yunnan province) (Table 10).FPR variety trials conducted in Kong Ba village in Hainan in 1995-1998 resulted in the farmer selection of the breeding lines ZM 9057 and OMR 33-10-4 because of good adaptation, high yield and resistance to strong winds (typhoons). In 2002 these two lines were officiaJiy released as recommended varieties under the names of se 5 and se 6, respectively. In addition, CATAS in Hainan al so relea sed SC 8013 and SC 8002, both from crosses made at CATAS, while GSCRI in Guangxi released the high yielding varieties GR 891 and GR 911. Two other varieties, SC 124 released in the 1980s by CATAS, and Nanzhi 199, released in the early 1990s by the South China Institute of Botany (SCIB) in Guangdong, became popular new varieties in Guangxi.Due to the rapid expansion of FPR variety trials to many sites in Hainan and Guangxi during the second phase, these new varieties are now spreading throughout the cassava growing regions of these two major cassava growing provinces. The importan ce of cassava in Guangdong province, once the major producer, has been declining and little is known about the area still being planted and the varieties used. Thus, Table 22 is at best an estímate of the extent of adoption of new varieties in the five cassava growing provinces of China. According to these data, new varieties are now planted in about 30,000 ha or approximately 8% of the total cassava growing area in China. This is likely to increase substantially as cassava is becoming a majar industrial crop in Guangxi and Hainan provmces. FPR erosion control trials conducted in Hainan from 1995 to 1998 showed mainly thc effcctiveness of vetiver grass hedgerows in reducing soil 1osses. Demonstration plots conducted for many years at CATAS al so indicated the effectiveness of hedgerows of vetiver grass, Clitoria ternateo. Cassia rotund((olia and Tephrosia candída in reducing erosion and increasing cassava yields (Huang Jie et al., 2008). Of these various options, only vetiver grass hedgerows were adoptcd by a few farmers and in a very limited arca (less than 5 ha), mainly because of lack of planting material and the labor involved in transporting and planting the vegetative material. The search for cheaper solutions, such as sccd-propagated hedgerow species, contour ridging and closer plant spacing should continuc, as these options are more likely to be adopted.While FPR fertilizer trials conductcd in Kongba village in Hainan showed a substantial response to application of chemical fertilizers, few farmers in that village adopted this practice; they preferred to open new Jand for cassava on the higher slopes and lea ve the rest in fallow rotation or convert to rubber plantations. Both at CATAS in Hainan and at GSCRI in Guangxi long-term fertilizer trials indicated the importance of applications of K and N, respectively, for maintaining high cassava yields. lt is not clear, however, to what extent improved fertilizer practices have been adopted by farmers.Farmers in sorne parts of China have traditionally intercropped cassava w ith maize, peanut, and watermelons. To increase the yiclds of watermelon, many farmers started to cover the soil with plastic sheets to reduce weed growth, increase soil temperature in early spring and reduce evaporation. With cheap plastic available on the market this was a highly profitable practice. Now they have adopted the same practice for cassava grown in monoculture. In 2002, in one subdistrict (town) of Wuming county in Guangxi, about 25% of cassava was grown on plastic mulch . Apparently, the increased cassava yields obtained and the reduced need for weeding more than compensates for the cost of the plastic. This practice is now being investigated in replicated on-station trials -an example of farmer-toresearcher extension!In Thailand both the govemment and the prívate sector (through TTDI) are actively involved in cassava research and extension, including the training of cassava farmers. From 1993 to 2000 TTDI trained about 30,000 cassava farmers and distributed about 40 million stems o f new varieties, free of charge to these farmers (Banyat Vankaew et al. , 2008). In addition, from 1993 to about 1998 the Thai government spent over US$1 million pcr year for the multiplication and distribution of new high-yielding cassava varieties. This has resultcd in the rapid spread of new vari eties; in 2002/03 these covered about 1 mi Ilion ha or 98% of the total cassava arca in the country (Table 23). Thus, in Thailand many farmers in thc pilot sites had already adopted new varieties before the Nippon Foundation project started; but, they may have changed from one new variety to another as a result of FPR varicty trials conducted as part of the project. For instance, in Baan Khlong Ruam in Sra Kaew province farmers in 1993 planted mainly Rayong 90 while presently they plant mainly Rayong 5 (Table 24) as the latter variety was only released in 1994 and tested as part of FPR trials from 1995 to 1998. Similarly, in Thaa Chiwit Mai, farmers in 1995 (before the project) planted mainly the local variety Rayong 1 but changed to KU 50 after testing in FPR trials. Data collected from a Participatory Monitoring and Evaluation (PM & E) conducted in four project sites in Aug 2002 (Tables 24 and 25) indicate that in 2002 one hundred percent of the cassava area in those tour si tes were planted with new varieties (Watananonta el al., 2008). lt is very difficult, however, to know to what extent the adoption of new varieties was due to the project, as new varieties were also adopted by farmers al! over the country (see Section 5 on Impact Assessment below).According to a survey conducted by DOAE, in 1992 only 46% of cassava farmers in Thailand applied chemical fertilizers. In 1999/2000 a similar survey of \"advanced\" cassava farmers conducted by TTDI indicate that between 44 and 80% of farmers applied chemical fertilizers to most fields. Recent data from the Dept. of Agric. Statistics of Thailand indicate that in 2001 66.4% of the cassava area was fertilized, but that this decreased to 56.2% in 2002. The PM&E project survey (Table 24) indicates that at the start of the project most farmers either did not apply chemical ferti1izers or applied small amounts of 15-1 5-15 compound ferti1izers. In 2002, however, according to the PM&E in four project si tes, chemica1 ferti1izers were app1ied in 79 to 100% of the cassava area in those sites (Table 25). In most sites this was still 15-1 5-15, but farmers also applied more and more 13-13-2 1 or other compound fertilizers high in N and K and 1ow in P. These ferti1izers are more appropriate for cassava, but are still not widely available on the market. Klakhaeng el al., 1995;Rojanaridpiched et al., 1998;Ojjice of Agric. Economics, 2000;NE Tapioca Trade Assoc. 2003.Presently, more and more farmers are applying animal manures, mostly chicken manure as this is becoming more avai1able as a result of the booming pou1try industry (at least before the outbreak of bird flu in early 2004). But its use is still rather limited, probably no more than 10-20%. Farmers in sorne areas are also becoming interested in testing and planting green manures, such as Canavalia ensiformis, Crotalaria juncea, mungbean and cowpea. Sorne ofthese were tested in FPR trials (see Table 17). When the green manures are intercropped and planted at the same time as cassava, the yield of cassava is usually reduced due to strong competition (see Table 3). But when the green Source: Watananonta et al .. 2008.manures were planted one month after cassava and pulled up 1-2 months later, the competition was less and cassava yields sometimes (but not always) increased. Tables 24 and 25 indicate that green manures were planted in only two of the four sites surveyed in 2002; in those sites green manures were planted in 15 and 50% of the cassava area and most farmers preferred Canavalia as it is well adapted to poor and acid soils, is drought tolerant, easy to plant and less competitive as compared to other species (see Table 3).Although 23 FPR intercropping trials were conducted in Thailand in 2001 and 2002, this technology component was almost universally rejected by Thai farmers, mainly because it is too labor intensive, interferes with mechanized weed control, and intercrop yields are very much affected by either drought or excess rainfall; in addition, many intercrops have serious pest anci/or disease problems. While the potential economic benefits from intercropping can be high (see Table 19), most farmers are not willing to spend the labor and money required and then risk crop fai lure. Intercropping with pumpkin might be attractive, but the marketing of large amounts beco mes a serious problem.As most cassava in Thailand is grown on very gentle slopes, usually between O and 10%, erosion would normally not be a problem. However, most cassava soils are very light textured (sandy loams or loamy sands) and are very low in organic matter (0-l %); these soils have thus poor aggregation, which makes them very susceptible to erosion. Moreover, yearly land preparation with disk plows has resulted in the formation of a very compacted plow !ayer at 20-25 cm below the soil surface, which impedes interna) drainage. Thus, after heavy rains, the top soil becomes quickly saturated and excess water runs down the slope causing both sheet and gully erosion. Also, the large size of land holdings allows water to run freely over long distances resulting in water concentration and strong currents in natural drainage ways. This can result in very severe gully erosion.In Thailand 33 FPR erosion control trials were conducted in the 1st phase and 41 in the second phase of the project (see Table 10 and Table 14). After testing severa) ways to control erosion, farmers generally narrowed this down to contour hedgerows of either lemon grass or vetiver grass. While lemon grass has sorne commercial value, its r .-eting in large quantities is difficult; moreover, it is less drought tolerant than vetiver gras:.. fhus , almost 100% of farmers in Thailand selected vetiver grass hedgerows as the most suitable soil conservation practice. The fact that the Royal Family and most government organizations al so promote the use of vetiver for soil and water conservation has certainly intluenced that selection. In any case, many farmers in the project sites have adopted the planting of vetiver grass hedgerows, especial ly since the vegetative planting material was usually provided free of charge and LDD staff helped in setting out contour li nes. Table 24 indica te that there were no vetiver hedgerows planted before the start of the project, but that this soil conservation practice was used in 20-55% of the cassava area in the four sites surveyed in 2002. In Baan K.hlong Ruam the area with vetiver hedgerows reached 46% in 1995 but decreased to only 29% in 2002; some had been destroyed by tractor drivers during fand preparation, as these hedgerows interfere with straight-line and/or up-and-down land preparation. Nevertheless, the number of households adopting these soil conservation practices increased year by year (Figure 6). In 2003 about 145 km of vetiver hedgerows had been planted, covering about 580 ha in 20 project sites (Wilawan Vongkasem et al., 2008). While this is a major accomplishment and far exceeds initial expectations, it still corresponds to less than 0.1% of the total cassava growing area in Thailand. Obviously, not all cassava areas have an erosion problem, but both Jow soil fertility and soil erosion were listed as some of the most serious problems in cassava cultivation by farmers participating in training courses at TTDI (Banyat Vankaew et al., 2008)..g 1000 \"' ?: The strong govemment support for planting vetiver grass has no doubt contributed greatly to the relatively rapid adoption of this technology; however, it could well have impeded the search for, and adoption of, other soil conservation options that are almost equally as effective and cheaper to establish, such as con tour hedgerows of seed propagated species like Paspalum atratum, Brachiaria brizantha and possibly Tephrosia candida (or other leguminous species).Using data from many erosion control experiments, demonstration plots and FPR trials conducted in Thailand from 1994 to 2003, it was found (Table 26) that on average hedgerows of vetiver grass and Paspalum were almost equally effective in reducing erosion (by 42 and 47%, respectively), while both reduced cassava yields about lO%. Closer plant spacing reduced erosion only slightly (12%), but increased yields by 16%, while con tour ridging reduced eros ion 31% and increased yields 8%. Lack of fertilizer application did not significantly reduce yields in FPR trials (only 4%) but markedly increased erosion by 140%. Thus, the adoption of more or better fertilizer use and closer plant spacing, almost universally adopted by farmers for economic reasons, may actually have contributed more to erosion control than any of the \"soil conservation\" practices adopted as a direct result of the project. In the future, it would be recommended to test the use of vetiver grass mainly for control and repair of gullies (Figure 5), and hedgerows of Paspalum atratum or Brachiaria brizantha variety Toledo for control of sheet erosion in the upper parts of the landscape (all except the drainage ways), all combined with contour ridging, closer plant spacing and the combined use of animal manures and chemical fertilizers high in N and K. 27 shows how the number of households in the pilot sites adopting the various technology components increased over time, with most farmers adopting new varieties. This is partially due to the testing in FPR variety trials, but is also due to the planting of new vari eties by non-participating farmers in or near the pilot si tes. According to the RRA ' s conducted in 1994 in Pho Yen and in 1999 in Son Duong districts, the average cassava yields ofthe local variety Vinh Phu were 8.5 and 3.7 t!ha, respectively. ln 2002/03 (Table 28), the average yield of the same variety but w ith improved practices were 24.5 and 18.4 tlha in the project si tes of the same two districts. With the adoption of new varieties, i.e. KM 95-3 and KM 98-7 in Pho Yen and KM 94 in Son Duong, yields further increased to 30.3 and 36.0 tlha, respectively. Thus, in Son Duong the adoption of new varieties and improved practices (mainly more balanced fertili zati on) increased yields nearly ten times, while in Pho Yen yie lds increased about 3.5 times. In 2003/04, new varieties (KM 94) had been planted in 56.5 ha in seven communes in Son Duong district, out of a total of about 400 ha of cassava in the district, in Pho Yen in 2003 new varieties had been planted in 51 .3 ha in six communes, out of a total of about 650 ha of cassava in the district (other communes may also have planted new varieties, but complete data is not avai lable). Tran Ngoc Ngoan (2008) reported that in Vietnam, KM 94 (= KU-50 from Thailand) is the most widely adopted new variety; it is by far the most popular variety in almost all regions ofVietnam except in parts ofThai Nguyen province where farmers have adopted KM 98-7 and KM 95-3 , in Hue province where farmers prefer the more edible variety KM 98-1 (=Rayong 72 from Thailand), and in Binh Phuoc province where KM 94 is now being replaced by KM 98-5 which tends to produce higher yields.Besides varieties, most farmers in the Vietnam pilot sites also adopted a more balanced fertilization, i.e. they combined the traditional practice of applying 5-1 O t/ha of pig manure (FYM) with chemical fertilizers high in N and K (such as 40N-20P 2 0 5 -80K 2 0 !93 or 80N-80K 2 0) as these combinations usually produced highest yields and net income in the FPR fertilizer trials (see Table 15). Although the number of households applying fertilizers to cassava did not increase as much as expected (Table 27) as most farmers already applied FYM with sorne (mainly P) ferti lizer, the leve! of application increased and the nutrient balance is now more appropriate as a result of the project. Table 29 shows that adoption of more balanced fertilization on average increased yields from 21.4 to 30.5 tlha, or a 43% increase over the traditional farmer's practice. The adoption of new varieties increased cassava yields more than the adoption of any other technology component, including improved fertilization. Table 27 shows that the number of households adopting soi l conservation practices -mostly the planting of contour hedgerows of Tephrosia candida, vetiver grass, Paspalum atratum and pineapple -increased from 62 in 2000 to 83 1 in 2003. These practices wcre used in 6 12 ha of cassava in the project pilot sitcs (Table 30). In sorne sites these hedgerows had bccn in place for 5-8 years, whilc in many others they had been recently establishcd. Average results from many FPR tria ls and demonstration plots indicatc that in Vietnam contour hedgerows of vetiver grass incrcascd cassava yields about 13-1 5%, while those of Tephosia increased yie lds 5-I 0%; soil losses by erosion decreased 49-52% by veti ver grass and 36-5 1% by Tephrosia hedgerows (Table 31 ). Hedgerows of Paspalum atratum increased yields 12% and decreased erosion 50%, about the same as veti ver grass hcdgerows; pineapple was a1so similarly e ffccti ve in decrcasing erosion (52-56% ) but had basically no cffect on yield. Contour ridging and intercropping w ith peanut both increased yiclds by about 6% and decreased soillosses by 30% and 19%, respective ly. 30 indicate that adoption of soil conservation practices in all sites in Vietnam increased yields from 13.5% in 2000 to 23.7% in 2002. Table 30 also shows that the gross income, both per ha and per household, as a result of the adoption of soil conservation practices also increased very markedly over time. Results from both FPR trials and on-station research also indicate that the beneficia! effect of con tour hedgerows in terms of increasing yields and decreasing erosion increases over time (Figures 3 and 4). This is mainly because contour hedgerows, almost independent of the species used, will result in natural terrace formation , which over time reduces the slope and enhances water infiltration, thus reducing runoff and erosion. Well established hedgerows also become increasingly more effective in trapping eroded soil and fertilizers. Unfortunately, most FPR erosion control trials are conducted for only 1-2 years at the same site, so farmers do not quite appreciate the increases in beneficia! effects that accrue over time. This, coupled with the fact that planting and maintaining hedgerows requires additional labor (and sometimes money for seed or planting material) while hedgerows take sorne land out of production and have initially little beneficia! effect on yield, has hampered the more widespread acceptance and adoption of these soil conservation practices.Nevertheless, adoption of soil conservation practices increased markedly from 2002 to 2003 (Table 30), partially because more farmers had seen the effectiveness of contour hedgerows in FPR trials, but also because the extension office in Van Yen district of Yen Bai province distributed 12 tonnes of free seed of Tephrosia candida and Paspalum atratum so as to encourage farmers to control erosion when planting cassava on steep slopes. Thus, in the spring of 2003 at least 500 km of double hedgerows of Tephrosia or Paspa/um were planted in this district alone, covering 300-500 ha. This, combined with the use of new varieties (mainly KM 94), better fertilization (60N-40P 2 0 5 -80K 2 0) and intercropping with peanut, increased average cassava yields in the district from about 1 O t/ha to 30 t/ha.Table 27 shows that the number of houscholds adopting intercropping -roainly with peanut and, to a lesser extent, black bean (= black cowpea) -increased from 127 in 2000 to 4,250 in 2003. The very largc increase in adoption from 2002 to 2003 is due to a marked increase in the number of project sites, but is also due to the rapid expansion of intercroppcd cassava in Van Yen district of Y en Bai province due to the distribution of seed of a ncw high-yiclding peanut variety (LD-7) by the district cxtension office.A lthough thc small size of farm holdings and the abundancc of labor in rural areas (especially in the north) of Vietnam favor very intensive crop production, including intercropping, this practice is still not so widespread. One reason is that intercropping oftentimcs (but not always) decreases the yield of the main crop (Tables 29 and 31); secondly, it requires considerable extra labor for planting, harvesting and post-harvest handling as well as money for buying the seed (0.3 mil. VND/ha), while weather conditions as well as pests and diseases make intercropping very risky. While intercropping can markedly increase gross and net income (Tables 18 and 19), man y farmers are reluctant to invest in this practice beca use of the high risks involved.Table 27 al so shows that thc number of households adopting cassava root and leaf silage for feeding pigs increased markedly from practically zero in 2000 to 1,172 households in 2003, mainly in the pilot sites of Hue province in central Vietnam. In 2003, 1, 172 households adopted this practice raising 3,370 pigs, which resulted in additional gross income of 145.5 mil. VND (US$ 9,400), or 0.124 mil. VND ($8.00) per household. The use of cassava silage has mainly an effect on reducing feed costs (Table 20) and may thus increase net income more than gross income.A good example of the extent of adoption of various technology components over time is shown in Table 32 for Tien Phong commune in Pho Yen district of Thai Nguyen province, as well as the impact of this adoption on net income from cassava per ha and for the total community. This commune was selected as a suitable pilot site when the project commenced in 1994. At that time, according to the RRA, about 115 households planted cassava, cv Vinh Phu. on a total of 50 ha with an average yield of 8.5 t/ha. This produced a net incomc of 0.47 mil. VND!ha or 23.50 mil. VND for thc whole commune. After conducting many FPR trials in 1995-1999 far mers started to adopt new varieties, intercropping, more balanced fertili zation and soi l conservation practices (i n small areas only, as most fields are rather flat). Over the years, more and more households adopted these new technologies in ever largcr areas resulting in marked increases in yields, both of the local variety Vinh Phu and the new varietics. In 2003 new technologies had been adopted in a total of about 32 ha with an average yield of 36 tlha. Net income per ha increascd from 0.47 mil. VND in 1994 to about 14 mil VND in 2003, while total net income from cassava in the community increased from 23.5 mil VND ($2,350) in 1994 to over 450 mil. VND ($29,200) in 2003. Thus, during the 1 0-year period, the net income from cassava in the community increased in dollar terms more than ten times even though the area under cassava may have decreased from 50 to about 32 ha. This has had a profound effect on the standard of living of fanners in this commune. The impact is probably less pronounced in other sites mainly because of a shorter duration of involvement in the project and thus less adoption of new technologies. With time similar beneficial effects can be expected in many othe r communities in Vietnam. 33 summarizes the extent of adoption of new cassava technologies in 15 pilot sites in Vietnam in 2003 and the resulting expected increase in gross income due to higher y ie lds obtained. Although balanced fertilization produced the highest yields, it was not adopted over a very wide area. New varieties were most adopted resulting in the greatest increase in gross income. The total increase m gross income due to new techno logies was estimated at 2.2 mili ion US dollars or $96.03 per household. The extent of adoption of specific technologies on a country-or continent-wide basis is almost impossible to determine. Nevertheless, surveys conducted in Thailand, Vietnam and China indicate the approximate extent of adoption of new varieties (Table 34). Information from RRAs, the Vietnam cassava survey of 199 1/92 as well as published data in Thailand can give an average value for the area under cassava per household. Assuming that any one household has completely replaced their traditional cassava variety with new higher yielding varieties, we can get an idea about the mínimum number of households in each country which planted new varieties. According to the data in Table 34 at least 90,000 farmers in China, about 350,000 in Thailand and 7 18,000 in Vietnam or a total of at least 1.16 million farmers have benefited from planting new higher yielding varieties in these three countries. While it is impossible to say to what extent the Nippon Foundation project contributed to this rapid adoption of new varieties in Asia (Figure 7), it is probably fair to say that the project made a considerable contribution, either directly by conducting FPR trials with farmers, organizing field days and training courses, but also indirectly through the publication of booklets, pamphlets, as well as newspaper articles and TV. In Vietnam at least 15,000 fanners in 15 pi1ot sites have adopted new technologies, in Thailand at least 1000 farmers are members of \"Cassava Development Villages\" and in China over 700 farmers participated in FPR or regional training courses. Thus, it is likely that our target of benefiting at least 8000 farmers by this project was achieved, and probably surpassed by a considerable margin.Another way of estimating the monetary benefits of adoption of new cassava technologies would be to look at the yield trends in the three countries where the Nippon Foundation project was most active. Figure 8 shows the average cassava yields in India, Thailand, China, Indonesia and Vietnam from 1994 to 2003, i.e. the ten-year period corresponding to the Nippon Foundation project. Yie1ds in all countries have increased, but the rate of increase was rather low in India, China and Indonesia, and very high in Thailand and Vietnam. From 1994to 2003 yields in Thailand increased from 14.28 to 19.30 t/ha, a 40% increase corresponding toan annual rate of increase of 3. 78%; during the same period yields in Vietnam increased from 8.44 to 14.28 tlha, a 69% increase corresponding to an annual rate of increase of 6.02%, while in a11 of Asia yields increased from 12.93 to 16.61 t/ha or at an annual rate of 2.81 %. In Thailand cassava yields have increased steadily since 1995, a few years after sorne of the high yielding varieties were released and started to be adopted (Table 23). In Vietnam the same thing happened but only about five years later. In China the process has barely started with only about 8% coverage of new varieties, versus about 50% in Vietnam and 1 00% in Thailand. Yields in China are expected to in crease substantially, especially in Guangxi and Hainan provinces where the project has been quite active in developing and disseminating new varieties. Table 35 shows the impact of these yield increases on gross income in China, Thailand and Vietnam as well as for all of Asia, based on F AO data. During the past ten years yields in China increased 0.79 tlha (our Chinese colleagues insist that those data are incorrect and that both the area under cassava and the yield increase is actually much higher), in Thailand 5.49 tlha, in Vietnam 5.84 t/ha, and in a11 of Asia 3.68 t/ha. Considering the area under cassava in 2003 and the average price of fresh roots, it is possible to calculate the annual additional gross income from the increased cassava yields as compared to ten years ago. For China this was calculated to be 5.35 million, for Thailand 123.42 million and for Vietnam 54.30 million US dollars. In addition, Thai farmers received a price premium for planting varieties with higher starch content, which is not included in these calculations. For Asia as a whole the yield increase of 3.68 t/ha corresponds to an extra 3 18 million US dollars in the pockets of cassava farmers every year. If we estima te that there are about 8-1 O million cassava farmers in Asia, this means that the increased cassava yields provided about $30-40 extra income per family as compared to ten years ago. In Thai1and this may be as high as $350.-; in many countries it will be much less than $20.-. This is not insignificant considering that the net farrn income in NE Thailand is $375.-per year; in other countries it is much lower. T he economic benefits of the proj ect continued to increase in subsequent years, as both cassava yields and area planted increased while in many countries in Asia thc cassava root price nearly doubled between 2003 and 2007. 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 Year 21 In addition, farmers also benefited from higher prices dueto higher starch content In Vietnam the official govemment policy ten years ago was to maintain the area under cassava constant but increase yields. In fact, both area and yields have increased substantially, resulting in a 112% increase in cassava production since 1994. Ten years ago their were no medium-to 1arge-scale starch factories and most cassava was used either for human consumption or on-farm pig feeding. In 2003 there were 24 medium-to large-scale factories in operation and another 18 in the planning or construction stage. In much of Asia cassava has been transformed from a food-security crop to an important industrial crop, used mostly for production of starch and animal feed, both for domestic use and export. Many national and provincial govemments now consider cassava as an ideal vehicle for rural development: the crop is easy to grow, tolerates poor soils and long droughts, has no diseases or pests, requires little in terms of inputs or infrastructure and has multiple enduses, providing both rural and urban employment. While many social, political and economic factors determined that change, the dedicated and hard work of our collaborators in the N ippon Foundation project -researchers, extension workers and farmers -surely contributed to this development. Moreover, without the sustained and generous financia} support from the Nippon Foundation, as well as the technical and methodological support from CIA T this would not ha ve been achieved . It is a case of many people working together towards a common goal: to enhance the sustainability of cassava cropping systems whi le increasing the livelihood of poor farmers.In order to determine what impact the implementation of the Nippon Foundation proj ect has had on the adoption of new cassava varieties and various production practices and the subsequent effect on cassava yields and income, an Impact A ssessment study was conducted by an outside consultant, Dr. Tim Purcell, using funding generous1y provided for that purpose by SPIA (the CG 's \"Standing Panel on Impact Assessment\"), in collaboration with the CG's System-wide Participatory Research and Gender Analysis (PRGA) program at C IA T. The study started in Oct 2003, coinciding with the End-of-Proj ect Workshop, in order to discuss the methodology to be used with various proj ect collaborators. Selection of appropriate and representative sites and the design of questionnaires were discussed between Tim Purcell, N ina Lilj a of PRGA and Reinhardt Howeler, project coordinator. lt was agreed that the study would collect data in four project sites each in Thai1and and Vietnam, both from \"participating\" and \"non-participating\" farmers, in \"project\" and nearby (within 1 O km) \" non-project\" villages 3 . Data would be collected from l) govemment ofticials in the subdistrict; 2) from interviews of focus groups of about 20 farmers each in project and non-project villages; and 3) from a questionnaire filled out by farmers in the focus groups, both for their own family as wcll as for two neighbors. Thus, data were collected from officials in eight sites (in addition, similar data from subdistrict offices from all project sites was solicited by mail), from focus groups in 16 villages, and from survey forms from 832 households. The field work was conducted by Tim Purcell in collaboration with staff from DOAE and DOA in Thailand, and from lAS, TNUAF and NISF in Vietnam during Nov-Dec 2003. The final report entitled \" Integrating Germplasm, Natural Resource, and lnstitutional Innovations to Enhance lmpact: the Case of Cassava-Based Cropping Systems Research in Asia\" was submitted to ClA T in April 2004. The 81 page report is supplemented with 215 tables and 26 figures for a total of over 500 pages. The Executive Summary is included in Appendix 4.Tables 36 and 37 show the number of participating and non-participating farmers (out of 832) and the percentage of farmers, respectively , that had adopted specific technologies in the eight selected project sites in Thailand and Vietnam. The last three columns show whether there were statistically significant differences between \"participating\" and \"non-participating\" farmers. Sorne important conclusions are as follows:l. Overall, chemical fertilizers were adopted by 84% of fa rmers, new varieties by 69%, contour ridging by 30%, contour hedgerows by 30%, and intercropping by 3 7% of surveyed farmers. 2. There were no statistically significant differences bctween participating and nonparticipating farmers in the adoption of new varieties, but there were high ly significan! differences in the adoption of contour ridging, planting of vetiver, Tephrosia (in Vietnam only) and Paspalurn hedgerows, intercropping, and the application of chemical fertili zers and animal or green manures. In general, a larger percentage of participating than non-participating farmers had adopted new technologies, including new varieties (though the latter was not significant). 3. In Thailand, 100% ofparticipating farmers and 87% 4 ofnon-participating farmers had adoptcd new varieties; in Vietnam, this was 48 and 45%, respectively.4. Since new vanet1es spread nearly equall y among parttc!pating and nonparticipating farmers and well beyond the project sitcs (all over the country in case of Thailand), the use of an FPR approach may not be essential as standard training and extension approaches seemed to be equa lly effective. Still, testing new varieties in FPR trials is an excellent way to get farmers interested in testing other tec hnologies as well. Moreover, from the results of FPR trials farmers may select certain \"new\" varieties that are particularly suitable for their own conditions, such as KM 98-7 and KM 95-3 in Pho Yen district in north Vietnam (Table 28). In China, sorne of the officially released varieties now promoted by the extension service were actually selected by farmers from their FPR trials. S. The use of an FPR approach seems to be particularly useful to en hance the adoption of practices with no-or little immediate benefits, such as erosion control measures and green manuring. The benefi cia! effects of these practices tend to accrue over time and are not clearly visible except when demonstrated in small plots side-by-side with the loca l practice. 6. Among soil conservation prac tices, about an equal percentage of farmers adopted contour ridging as conrour hedgerows (of any type), while slightly over 50% of farmers did not adopt any soil conservation measures. The FPR project was particularly successful in enhancing the adopti on of vetiver grass hedgerows in Thailand and Tephrosia or Paspalum hedgerows in V ietnam. However, it is also clear that these technologies did not spread widely beyond the immediate project sites indicating that the dissemination of these practices was not very successful. Adoption of vetiver grass in Thailand was partia lly a result of the promotion of this technology by the Royal Family and most government institutions. The adoption of Tephrosia and Paspalum atratum in Vietnam was also largely due to the distribution of free seed. Without these or other incenti ves it is unlikely that many fa rmers would have adopted these hedgerow technologies. 7. Fertilizers were widely adopted, but whethcr or not farmers adopt and how much fertilizer is applied depends largely on the econom ic status of the farmers; for that reason, adoption is not very di ffe rent between participating and non-partic ipating fa rmers (not significan! in Vietnam). However, many participating farmers in both Vietnam and Thailand changed the type o f fertilizers they applied, increasing the levels ofN and K and decreasing that of P as a result of FPR trials. 8. Adoption of intercropping has been very limited, especially in Thailand; only in a few sites cassava is intercropped w ith maize or green manures. In Vietnam intercropping w ith peanut was the most wide ly adopted (35%) and this was significantly higher among partic ipating than non-participating fanners. 9. Adoption of a ll technology components as well as changes in cassava yields over the course of the project were highly dependent on si te characteristics. lO. Cassava yields increased significantly more for participants than non-partic ipants (Figure 9); this change was mainly due to participation in FPR traini ng courses. lt is like ly that the knowledge gained in these courses contributed to s ignifican! increases in cassava yields. 11. Amang all surveyed farmers, cassava yields in Thailand increased fram 20.11 t/ha befare the project ta 24.04 t/ha after the project. In Vietnam yields incrcased fram 14.92 t/ha befare the praject ta 22.35 t/ha after the praject. These are significant y ield incrcases abtained aver a relatively shart time (2-8 years) af participatian (ar nat) in the praject. Hawevcr, in bath Thailand and V ietnam cassava yields cauntry-wide alsa increased significantly aver the past five years 5 (Figure 9), indicating that the project may have had a direct effect on the yields of participating fanners as well as an indirect effect an yields nation-wide. But many ather factars, such as site characteristics and wealth status af farmcrs were significan! determinants afyield. 12. Univariate analysis indicate that y ields increased significantly by the adaptian of new varicties, sail canservation practices and intercropping; whether or nat fertilizers had been adopted (not the leve! of fertilizers applied) had a significan! effect only on cassava y ields after the praject but not on the change in yield. In multivariatc analyses, hawever, the change in cassava y ields was significantly determined anly by site effects and participation in the praject; amang cassava technologics only the adaption of new varieties had a s ignificant effect on yield after thc project, while the effccts af soil canservatian practices, fertilizcrs or intercropping an yield were not s ignifican! as these effects are partially obscured by other factors such as site effects and wealth status ofthe household. Thus, in general terms. participation in the projec t had a significan! effect on the extent of adoption of soil conservation practices, intcrcropping and fertilizer use, but not on the adoption of \"new varieties\"; most likely it had an e ffect on the selection of a particular _variety. Adoption of new varieties and chemica l fertilizer use was widespread, but this was achieved mostly by traditional extension approaches used by various govemment institutions; fertilizer adoption was largely determincd by the available financia( resources of each household . Soil conservation measures and intercropping practices were not widely adopted beyond the pilot si tes as the perceived benefits did not always justify the costs and labor involved.Based on the results of the lmpact Assessment a farm-leve l decision mode l was formulated by Dalton et al. (2005) to calcul ate the benefits of the project by type of beneficiary and by village. Also, the interna( rate of retum ( IRR)) of the project was calculated at 20% during the project's implementa! ion phase, and 34.1% if the bene tits are extrapolated to an additiona l five years; if spillovcr cffects are included, the IRR reached 49.2% ( Dalton et al., 2005).Another study (Calkins and Yu Thi Thao, 2005) looked at the institutional impact of the Nippon Foundation Project in Thai land and Vietnam. While the authors concluded that the project was highly successful, both agronomically and institutionally, they showed quite marked differences among countries and institutions in the fac tors responsible for the perceived impacts of the FPR project.From the implementation and results of thc sccond phase of the N ippon Foundation project the fo llowing conclusions and lessons can be drawn: l . To achieve w idespread adoption of new technologies, as many farmers as possible should be involved in conducting FPR tria ls, participating in tield days and in training courses; this can only be achieved by the active collaboration of many research institutions, universities, and extension oftices, at national, provincial, district and subdistrict levels. This a llows the project to extend rapidly to many sites. Active and enthusiastic participation of the local extension workers are crucial for the success of the project. 2. Trai ning of project staff in FPR methodologies is not only essential to impart knowledge about the various tools and methods, but a lso to motívate people to work enthusiastically w ith and for the benetit of fa rmers.and cassava production techno logies was an effecti ve way to exchange knowledge and experiences between farmers from vari ous regions, and to encourage farmers to experiment, to innovate and to draw the ir own conclusions. 4. The conducting of FPR erosion control tria ls on their own tields a llowed farmers to see the actual soil losses as a result of erosion, and th at simple agronomic practiccs can markedly reduce erosion. Partic ipating in these trials and in trai ni ng courses were the determinan! factors in the adoption of soil conservation measures. 5. Most farmers are not aware or not concemed about soil erosion and may not be in terested in conducting FPR erosion control tria ls. The simultaneous testing of other technology components such as ncw varieties, fertil izer practices and intercropping that are like ly to have more immediate benctits is a good way to get farmers involved in testing soil conservation measures as well. Only the whole package of \"improved\" practices (including soil conservation measures) w ill ha ve an immediate beneficia! effcct on income. 6. The beneficia! effects ofvarious hedgerow technologies bccame apparent only after sorne time. As such, sorne erosion control experiments should be continued for many years to show the long-term effect on terrace formation and increased yields to visiting farmers and extension workers. 7. Besides hedgerows, there are other \"soil conservation\" measures, such as closer plant spacing, balanced fertilization (including animal ancl/or green manures) and contour ridging, that are effective in reducing erosion and may be more easily adopted by farmers. 8. Vetiver grass contour hedgerows is one of the most effective ways to control crosion and the grass nevcr becomes a wced. However, its establishment from vegetative planting material is slow and costly. For that reason vetiver grass should be used strategically only in those arcas where it is most needed, i.e. across natural drainage ways or gullies; this may require the use of sand bag barriers for initial establishment. Hedgerows of seed-propagated species such as Palpalum alratum, Brachiaria brizantha or Tephrosia candida, can be planted more quickly and cheaply, and these will serve well in the higher and convex parts of the landscape. 9. Every agricultura! research and extcnsion institution, both national and intemational, has its own arcas of strength as well as weaknesses. By pooling their strength and working togethcr they can become more effective in solving problems which con tribute to the development of thc country and will benefit poor farmers. CIA T and all collaborators in this project gratefully acknowledge the long and generous financia! contributions from the Nippon Foundation which was so importan! for the success of this project.In addition to key informant interviews and focus group discussions, the field team surveyed 832 farm households across Thailand and VietNam using PRRA Survey forms.Any impact assessment exercise is difficult due to thc multitude of interaction effects and the difficulties in assigning causality and impact to any particular intervention. In the case of the CIA T cassava project it is made difficult due to the multiple paths of intervention that have been employed. The CIA T cassava breeding program from Cali has been working separately from the CIAT cassava project in S.E. Asia. Although gem1plasm from the breeding program has been distributed through the cassava project, it has also been disseminated directly and indirectly to national research institutions within S.E. Asia and then distributed through the various national extension agencies. While the cassava project has been working with sorne of these national research institutions and sorne of these national extension agencies, it has not been working with all of them, and not in al! sites where these extension agencies are promoting cassava technologies.As such, there are impacts due directly to the CIAT cassava project, directly to the CIA T cassava breeding program, and directly to the national research institutions and extension agencies. Acting in concert with these direct impacts is an overarching network of collaboration between the different agencies and with the CIA T cassava project.While this occurs with the physical technologies being promoted (varietal as well as hedgerow material), it is also the case with the \" knowledge\" technologies being promoted (fertilizer use, nutrient requirements, soil conservation concepts, cassava management methods etc), as well as with the mechanism of transfer and extension; the FPR and FPE approach.lt is important to note that this study does not evaluate the impact of the CIA T Cassava breeding program, the national research and extension institutions, or the CIA T Cassava Project operating as a capacity building and network-facilitating institution . The so/e purpose of this study is to evaluate the direct impact the CIA T Cassava Project has had on the adoption of cassava technologies by farmers in the project sites.In the context of the multitude of impact sources, it is difficult to evaluate the impact of the approaches and the technologies being promoted when the non-project villages are also potentially benefiting from improved extension techniques and improved technologies through the actions of the national extension services. Nevertheless, there are severa\\ broad \"conclusions\" that come out of the impact assessment exercise; see the tables below:The adoption of new cassava varieties has been widespread; both due to the actions of the CIA T cassava project as well as through national research and extension organizations acting in concert with the project as well as through their own extension programs. The fact that the adoption of the new varieties has occurred through standard extension programs, and using standard extension methodologies, calls into question the necessity of the FPR and FPE approaches in promoting the adoption of new varicties per se. Farmers are well aware of the \" benefits\" arisi ng from increased yields and will always choose a higher yielding variety -everything else being equal.However, the use of FPR and FPE approaches is still val id and necessary for other purposes, and should not be discounted.Firstly, it is rare that two varieties differ only in their y ields. There are other factors such as starch content, growth habit, suitability for different uses (food or starch) as well as processing characteristics (such as thickness of peel , number of roots, ease of harvesting, breakabili ty of the root, etc.). Farmers may prefer one variety in one site due to their management practices and yet reject that variety in another s ite precisely for the same characteristics that made it desirable in the first site.Secondly, FPR and FPE approaches are necessary to demonstrate intangible benefits, or non-productivity benefits arising from particular cultivation practi ces; soil erosion control and green manure intercropping are good examples of these. Due to the long gestation periods between intervention and impact in the case of soil erosion control, farmers may not appreciate the extent of soil loss and the effect on soil fertility that comes with particular unsustainable practices.The yields from improved varieties have been substantially above those of traditional varieties. However, on-station research trials ha ve indicated that the yield poten tia! of both types is not all that different. This contrasts greatly with the results of FPR trials which demonstrate vast differences in yields. There are two main reasons for this. Firstly, it is unclear that vari etal tri als have been done in isolation of improved management versus traditional management. Too often results are presented showing differences in y ields between traditional varieties and traditional practices versus improved varieties and improved practices. This is a false comparison and does nothing to identify the critica! factors underlying yield changes.Secondly, when attempts have been made to compare varietal differences with the same management system (represented often by the same level of fertilizer application), the results show that the yields of the traditional varieties are significantly below the improved varieties. Again, this result is different from that obtained by yield potential trials on research stations; given enough inputs traditional varieties have the potential to produce just as high a yield as improved vari eties. It is clear that the yield response curves for improved and traditional varieties are different, however, data on what those response curves are is seriously lacking. Ultimately, the true comparison of profitability of cassava production from local versus improved varieties should be carried out by comparing retums to investment, not comparing yields at identical costs.On an aggregate basis, soil conservation adoption has been rather high; given that not all sites have steep enough slopes to warrant soil conservation measures. Adoption is significantly higher amongst participants compared to non-participants (particularly those less so in Viet Nam. Despite higher retums from an intercrop system, most farmers do not wish to reduce their cassava yields in retum for increased benefits from intercropping. The labor effort and cost of establishing intercrops, while on a partial budget basis economical, does not counter the increased risk from intercrop failure and the seasonal labor constraints impacting on labor availability for intercrop establishment. In Viet Nam the results are slightly different, with more farmers adopting intercropping technologies, particularly groundnut and beans. With limited land area, farmers in Viet Nam are more willing to undertake intercropping than their Thai counterparts.Fertilizer adoption has been quite high, both in terms of chemical fertilizer as well as organic fertilizer (farm yard manure and green manure). In Thailand more proj ect participants have adopted fertilizer than non-participants, while in Viet Nam there is no significan! difference in the number of people adopting fertilizer. The actual quantities of fertilizer used in Viet Nam are higher for participants, while in Thailand the opposite is true. Given the widespread adoption of fertilizer, there is sorne concem as to the impact of the project on fertilizer adoption. While the analysis does seem to indicate that being a participan! in the project does mean that you are more likely to apply fertilizer, discussions with farmers indicated that the primary motivation has been increasing incomes. Considering the high leve! of fertilizer adoption amongst non-participants, and the general increase in incomes for all farmers over time (particularly in Viet Nam), there is a concem that the impact of the project on adoption of fertilizer may not be all that significan! (in comparison with an income effect). This is not to deny that the project has had a significant impact on fertilizer adoption -it clearly has -but rather to question the relative importance of such an impact.While there is a question as to the relative importance of the proj ect impact on adoption of fertilizer, and the leve! of fertilizer applied compared with an income effect, it is clear that the project has had sorne significan! etTect on the type of fertilizer applied. Until farmers were educated as to the appropriate nutritional balance needed for cassava, they were happy to apply increasing quantities of phosphate-based fertilizers, or compound NPK fertilizers, rather than taking into consideration cassava requirements for nitrogen and potassium as well as micronutrients such as zinc. ln terms of extension of this knowledge, it is unclear whether conventional extension services could have achieved success due to the limited number of cassava specialists amongst national extension services.Poverty and gender play a role in the adoption of cassava technologies and changes in land area and cassava yields. Although the cassava project was not aimed at gender equality or poverty alleviation per se, the differential adoption of cassava technologies does illustrate that wealthier households are more likely to adopt new technologies (whether they be cassava or any other crop) than their poorer counterparts. Richer households and maleheaded households are likely to have higher yields. If the project had exclusively targeted poor female farmers the indications are that there wou\\d have been less impact than has been observed. Critically, the FPR approach self-selects farmer-researchers who are more willing to take risks and experiment, and have enough land to set aside for trials. This group of farmers is less likely to be found amongst the poorer and disadvantaged sections of the community. ","tokenCount":"46563"} \ No newline at end of file diff --git a/data/part_3/0644684170.json b/data/part_3/0644684170.json new file mode 100644 index 0000000000000000000000000000000000000000..47f39334dc585dc17c7d4a3bf8a09daf57226610 --- /dev/null +++ b/data/part_3/0644684170.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"99cc66f2481d21471d89ba56af9d7cae","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/24079bae-442d-459e-adbe-ea248377acbf/retrieve","id":"-372597931"},"keywords":["organic waste bioconversion","black soldier fly (BSF)","rearing temperature","development","growth","longevity","fecundity"],"sieverID":"18c21583-d8bf-44f9-9913-3036a3f3478f","pagecount":"14","content":"Rapid population growth and urbanization, continued economic growth, shifts in dietary patterns towards more animal source foods are major challenges that sub-Saharan Africa is currently facing. These challenges exert a high demand on agricultural production. Insect species such as the black soldier fly (Hermetia illucens) have been identified as potential alternatives for the traditional protein sources used in livestock feed due to their rich nutrient content and the fact that they can be reared on organic side streams. However, black soldier fly larvae are very sensitive to external environments such as temperature and rearing medium. Currently, little is known about the combined influence of temperature and organic waste streams that are readily available in the urban environments of sub-Saharan Africa. Therefore, the aim of this study was to investigate the influence of temperature and organic waste streams on the development of black soldier fly larvae reared on two different organic substrates, i.e., brewers' spent grain and cow dung. The results show that black soldier fly larvae reared on brewers' spent grain were more efficient and tolerated a wider range of temperatures in comparison with those reared on cow dung.In 2014, 54% of the world's population resided in urban areas, while in 1950, this number only constituted 30%; by 2050, two-thirds of the world's population will live in urban areas [1]. In particular, urban populations in sub-Saharan Africa (SSA) are projected to increase by 115% from today's figures, from 170 to 360 million, in the next 15 years [1]. As a result, it has been estimated that the global food supply will need to increase by 60% in order to meet the demand of the global population, which is expected to reach 10 billion people by 2050 [2]. Rapid urbanization and the growing human population are coupled with continued economic growth, as well as shifts in dietary preferences towards favoring more animal source foods (ASFs) [3][4][5][6]. Therefore, it is not surprising that both the production and consumption of ASFs in the developing world are forecasted to increase sharply [2]. However, this increase represents a major challenge due to the high ecological footprint associated with the production of meat and dairy products [7][8][9][10][11]. In addition, the level of productivity of many agricultural systems in the developing world is still quite low in terms of the efficiency of land and water resource use [12]. On the other hand, the level of malnutrition associated with insufficient protein consumption in developing countries is still very high [13][14][15][16][17]. Moreover, the costs of livestock production, such as poultry farming, in the developing world are increasing mainly because of the high feed costs, now more than 70% of the production costs [18][19][20]. The use of food ingredients in livestock feed production that are also directly consumed by humans, such as fish and soybean, create a food-feed competition, leading to further increases in ingredient costs and consequently to higher feed costs [19]. Moreover, the massive expansion of soybean cultivation has put pressure on land availability, especially in the tropics, often leading to deforestation and other negative effects for the environment [21]. Therefore, access to affordable feed is significant for more profitable and affordable poultry production.The current combination of inefficient production and unsustainable consumption patterns points to the need to adopt cost effective production systems, in which alternative protein sources for animal feed with lower ecological footprints are used in order to achieve more sustainable agricultural production and improved food security while safeguarding the already fragile ecosystems and natural resources in the developing world [22,23]. Mass-produced insects have emerged as some of the promising alternatives, as some species can be reared on various types of organic waste, including poultry, pig, and cattle manure, as well as on coffee bean pulp, vegetable residues, catering waste, municipal organic waste, straw, dried distillers' grains with solubles (DDGS), and fish offal [24][25][26][27]. Among the insect species identified as alternative ingredients for animal feed are the black soldier fly (BSF) Hermetia illucens L. (Diptera: Stratiomyidae), the common house fly Musca domestica L. (Diptera: Muscidae), and the yellow mealworm Tenebrio molitor L. (Coleoptera: Tenebrionidae) [28][29][30][31]. In addition, insects contain high amounts of energy, fatty acids, micronutrients, and especially proteins [32][33][34]. For instance, BSF larvae, which have been used as an accepted feed ingredient for poultry, pigs, and a number of fish and shrimp species, contain about 35-49% crude protein (CP) and 29-35% fat and have an amino acid pattern comparable to fishmeal [35][36][37][38].Insects are known to inhabit a wide variety of environments, including extreme ones, due to their adaptive behavioral and physiological mechanisms [39]. However, these tolerance mechanisms are not well understood [39]. Moreover, insects, along with other ectotherms, depend largely on ambient temperatures to regulate their metabolism and development rates [40]. Forecast modeling suggests that due to climate change, insects inhabiting more temperature-versatile geographic regions will survive elevated temperatures, while those inhabiting regions where little temperature variances occur will experience a decline in their populations as global warming proceeds [41,42]. BSF, originally traced back to the Americas, is currently known to be found in tropical, as well as temperate, regions across the globe [34]. Various studies have looked into the effects of different diets on laboratory-reared BSF [34,[43][44][45][46], as well as the influence of temperature on the development and survival of BSF larvae using laboratory-prepared diets [47]. Other studies have investigated the influence of organic waste streams as rearing substrates on the development and survival of BSF larvae [25,[48][49][50]. Yet, most of these studies were carried out with the aim of understanding and developing BSF larvae large-scale production systems in the developed world, where indoor climate-controlled facilities can be easily established. However, to the best of our knowledge, no study so far has investigated the combined influence of urban organic waste stream-based diets and temperature on the development and survival of BSF in the developing world context.Therefore, this study sought to investigate the influence of temperature on selected life-history traits of BSF reared on two different and readily available urban organic waste streams in the urban environment of a large city in SSA. This comparison allowed us to determine which of the two organic waste streams performs best, as well as the accompanying optimum temperatures. Information from this study is important for improving rearing methods in SSA, as well as for creating cost-effective and environmentally sustainable alternative livestock feeds that can buffer the impact of climate change, especially for small-scale livestock producers who are not connected to international feed markets and local feed producers who can neither afford nor implement sophisticated climate-controlled production facilities.The study was carried in the laboratories of the International Centre for Insect Physiology and Ecology (icipe), in Nairobi, Kenya.The tested substrates, cow dung (CD) and brewers' spent grain (SG), were both sourced locally. Fresh CD was collected from Farmers Choice slaughterhouse in Kahawa West in Nairobi; the bovines originated from different ranches in Kenya where they had been raised on natural grassland. SG was sourced from Tusker House, Kenya Breweries Ltd. off Thika Road in Nairobi after the fermentation of the barley in the beer production process. The substrates were chosen based on their availability in Nairobi with a view of their potential future use for large-scale industrial BSF larvae production. Fresh CD and SG substrates were oven dried at 60 • C for 48 h and then stored for subsequent experiments in a refrigerator at −20 • C.The stock population of BSF populations was maintained at the insectary in icipe. Adult BSF were housed in an outdoor, metal-framed cage with 1.5 mm screen mesh (1.8 × 1.8 × 1.8 m) with direct access to daylight to encourage mating. The flies were supplied with water to prolong their life. Corrugated cardboard and some SG were placed within the cage to attract adult females for oviposition. The colony was maintained in the insectary for over 8 generations before use in this experiment.First, 10 batches of eggs were collected from the stock colony and placed into smaller containers (15 × 9.4 cm) containing an oviposition substrate of moist-to-liquefied SG (100 g). Each setup was closely monitored 3 times a day to ensure egg hatching. After hatching, 100 3-5-day-old larval instars were transferred into different, clear, plastic, 500-mL containers with the 2 test substrates, CD and SG. Each container contained 100 g of the test substrate, which was mixed with water to achieve a moisture content of 70% by weight [51]. The experiment was conducted in incubators (MIR-554-PE, Sanyo/Panasonic cooled incubators, Osaka, Japan) with air humidity of 70% and a photoperiod of 12L: 12D. Each substrate was subjected to different temperature treatments of 15 • C, 20 • C, 25 • C, 30 • C, and 35 • C. Each substrate-temperature treatment was replicated 5 times and was aerated daily to ensure that the substrate was thoroughly turned and well moisturized.Each treatment was monitored daily, and the duration of the larval development was recorded. The recording of larval development stopped when all the larvae reached the prepupal stage. The prepupae were removed, weighed, and placed individually in separate, labeled, 35-mL plastic cups filled with moist sawdust. Each cup with the prepupae was covered with a breathable lid and returned to its respective temperature regime for daily monitoring and subsequently recorded for the numbers of puparia formed. Further, adult emergence was monitored daily. Upon emergence, 10 2-day-old adults (5 males and 5 females) from every replicate per substrate-temperature treatment were transferred into a cage (40 × 40 × 40 cm) and allowed to mate for 24 h at their respective temperatures. Thereafter, an oviposition device with a small bowl of moist chicken manure and 2-3 cardboards were placed in each cage to provide sites for oviposition. A 10% sugar solution in water was provided daily in a vial through a filter paper inserted into the vial's lid. The laid egg batches were recorded, and the numbers of eggs per batch were counted under a microscope. The adult flies' longevity was recorded daily until all the caged flies were dead. The collected data were subjected to Levene's test for normality, followed by a two-way analysis of variance (ANOVA) using the general linear model (GLM) procedure. Where significant differences existed, Tukey Honest Significant Difference (HSD) or Least Significant Difference (LSD) post hoc was used to separate the means at the p < 0.05 level. For temperature-driven models, a parametrized square function [52] was fitted to the developmental time stage-specific data of the insect. The linear model expressed below evaluated the relationship between BSF developmental times and temperatures [51]:where b is the temperature for the minimum development time and c is the minimum development time.Both temperature and substrate type significantly influenced BSF larval development, with the SG-fed BSF larvae needing significantly less time to reach prepupal stage in the temperature treatments tested. The time needed for larval development decreased gradually with the increasing temperatures and was the shortest at 30 • C for the SG-fed larvae and 35 • C for the CD-fed larvae (Table 1). The CD-fed BSF needed 24%, 63%, 64%, and 65% less time at 20 Prepupal weight was significantly influenced by both temperature and substrate type, with the SG-fed BSF larvae weighing more than those fed with CD. Prepupal weights increased with the increasing temperatures, with the prepupae reared on CD substrate weighing the most at 30 • C, while those reared on SG were heaviest when reared at 25 • C and 30 • C (Table 2). At their heaviest (30 • C), the weight of the CD-fed prepupae increased by 33%, while that of the SG-fed prepupae increased by 20% in comparison with their lightest weight (15 • C). On the other hand, the weight of the SG-fed prepupae was 51%, 38%, and 46% greater than that of the CD-fed prepupae at 15 Pupal developmental time differed significantly across different temperatures for BSF pupae previously reared on both substrates. The pupal developmental time decreased gradually with increasing temperatures and was shortest at 35 • C and 30 • C for prepupae reared on CD and SG substrates, respectively (Table 3). Pupae reared on SG needed significantly less time to emerge as adults than those reared on CD. For instance, pupae reared on CD needed 28%, 70%, 72%, and 74% less time at 20 The longevity of BSF adult flies was significantly influenced by both temperature and substrate type, with BSF adults previously reared as larvae on SG living significantly longer than those previously reared on CD (Table 4). Longevity decreased with increasing temperatures, with all BSF adults irrespective of their larval rearing substrate living the longest at 15 • C. For instance, the longevity of BSF adults previously reared on CD at 20 Both temperature and substrate type significant affected the number of eggs laid or oviposited by adult BSF (Table 5). BSF adults obtained from larvae previously reared on both CD and SG produced more eggs at higher temperatures and the most eggs at 30 • C. However, at 35 • C, egg production by adult BSF previously reared on both CD and SG declined by 27% and 39%, respectively. The eggs produced by flies derived from the SG substrate produced 34% more eggs than those derived from the CD substrate at 30 • C. 6). For the pupae, the mean minimum development time was estimated to be 45 days (range 39.4-50.6 days) at 32.8 • C (range 39.1-50.9 • C) (Figure 1b, Table 7). The mean temperature threshold for SG-fed pupae was not significant. 6). For the pupae, the mean minimum Temperature has proven to be a key factor in the development and survival of insects [53]. Moreover, it is well established that BSF larvae are sensitive to their external environments and that temperatures influence their development and survival [47,54]. On the other hand, temperature and nutrition interact to affect key life-history traits in insects, such as maturity, development rate, reproduction, and survival [55]. Several studies looked into the influence of either laboratory-reared diets at a constant temperature or organic side streams as feeding substrates on life-history traits of BSF larvae [44][45][46][47]56]. However, no previous study investigated the combined influence of temperature and urban organic waste material as rearing substrates in a developing world context. Those waste streams, cow dung and spent grain, were readily available in Nairobi, Kenya, and are arguably also available in other megacities in the developing world. We measured the influence of five different temperatures and two organic waste streams on the fitness of BSF larvae as a proposed alternative protein source for livestock feed. We measured the duration of development of immature BSF larvae, as well as BSF prepupae weights. We recorded significantly faster durations for BSF larvae and heavier weights for BSF prepupae reared on SG compared with those reared on CD even at the low temperatures of 15 • C and 20 • C. The development times of BSF immatures reared on both substrates decreased with increasing temperatures. The weights of BSF prepupae increased with increasing temperatures and were the heaviest at 25 • C and 30 • C.Several factors may have contributed to the differential development observed between the two rearing substrates. The most important contributing factor was the difference in the quality of the nutritional content between the rearing substrates. Several studies emphasized the importance of nutritional components, such as proteins and carbohydrates, in the development of insect larvae [57][58][59]. Therefore, we assume that SG better provided the BSF immatures with the nutritional resources and energy required to complete their development stage faster. This observation is supported by findings of Harnden and Tomberlin [60], who recorded faster development for BSF larvae reared on a grain-based diet in comparison with those reared on an animal tissue diet at 32.2 • C. Meneguze et al. [27] also reared BSF larvae on SG but recorded faster durations in comparison with what we report in this study. Yet, on the other hand, we noted heavier weights for BSF prepupae reared on SG than Tomberlin et al. [43] in a similar study. The main reasons for these discrepancies are differences in methodologies and experimental set-ups, as well as varying temperatures at which the BSF larvae were kept. Another factor that may have influenced the overall development of BSF could be related to its phenotypic plasticity. Phenotypic plasticity is the ability of an individual organism to alter its phenotype or to modify developmental events in response to changes in environmental conditions, allowing it to maintain high fitness regardless of the environmental variability [61,62]. Phenotypic plasticity permits organismal diversification within species without having to couple it with speciation through the evolution of environment-specific responses in phenotype expression [62]. The stock colony from which we obtained the BSF eggs was housed in an outdoor insectarium subjected to light cycles and temperature regimes reflective of the seasonality in Nairobi. Zhou et al. [63] collected BSF strains from three different climatic regions in the USA and China, reared them under identical conditions, and showed that they could reveal strikingly different BSF life-history traits. They attributed such differential development to the phenotypic plasticity of BSF. Further studies are needed to verify whether phenotypic plasticity in BSF is exclusively influenced by the environment or may also be genetically determined.Food availability and access to nutritional resources are other crucial factors affecting larval and adult life history traits [64,65]. For instance, the weight of BSF prepupae reared on CD in our study were lighter than those recorded by Myers et al. [56] for prepupae reared on a similar type of substrate. While Myers et al. [56] provided the larvae with fresh increments of CD on a daily basis, we opted for a lump sum amount of CD at the start of our experiment. Unlike fresh incremental diets, materials in lump sum diets age with time, leading to reduced amounts of nutritional components, such as proteins and carbohydrates, which are crucial for the development of insect larvae [57][58][59]. Facing such reductions in nutritional components, larvae refer to compensatory feeding, leading to faster development times and reduced weight gains [66,67]. This is also corroborated by Sheppard [68], who observed an optimal development of BSF reared on fresh CD provided at low increments. The consistency and physical texture of the rearing substrates used in our study may also have affected the results. Although, we did not specifically test the consistency and physical texture of the rearing substrates, it was visually evident during our experiments that CD was quite thick in texture and therefore may have limited the BSF immatures' mobility and access to the little amount of nutrients available, consequently affecting their life-history traits. Most importantly, the chemical composition of cow dung has been extensively summarized by Azevedo and Stout [69] and Graber [70], showing a high fiber ratio of about 27% and a proportionately lower percentage of protein. A complex set of factors influence the extent to which fiber will be digested by BSF, including the physical state of the cow dung, the level of intake, and the amount of readily fermented nutrients (i.e., carbohydrate and protein) in the ration. Moreover, cow dung constituent of largely non-nutritive elements and the variability of BSF ability to break down fiber might explain the considerable variation observed using the two substrates regardless of the rearing temperature. On the other hand, brewer's spent grain has been found to contain several essential nutrients, which are crucial for BSF growth. Couch [71] reported a proximate constituent of over 20% crude protein, about 6% ether extract, over 15% crude fiber, and 4% ash in brewer's spent grain. This is further supported by the National Research Council NRC [72], which reported that spent grain contains 25.3% crude protein (CP), 6.3% crude fat, and around 2080 Kcal/Kg of metabolizable energy and that spent grain is also a good source of B vitamins, thus rendering it a good potential substrate in BSF production. The use of spent grain in BSF diet compared with cow dung might be the reason for the improvement in the body weight gain of BSF prepupae, which translates to an increased profit margin. We did not conduct any tests on the influence of temperature and diet on food ingestion or substrate reduction, as our objective was to test the influence of temperature and diet on the development of BSF in terms of development duration, weight, longevity, and fecundity. However, based on our visual observations, BSF consumed SG more efficiently than CD, indicating that waste reduction might also be influenced by the nutritional quality, texture, and moisture content of the substrate.Pupation, a complex process involving significant morphological and physiological transformations, is essential for holometabolous insects [73]. Therefore, we additionally measured the duration of pupation, as well as the adult longevity and fecundity, as affected by the previously experienced temperature and substrate regimes. Adult emergence took longer at lower temperatures and was significantly shortest at 25-35 • C and shorter for BSF previously reared on SG than those reared on CD at those temperatures. The relationship between temperature and adult emergence observed in our study is not uncommon in insects. For instance, Telles-Romero et al. [73] studied the effects of four temperature regimes (18 • C, 20 • C, 25 • C, and 30 • C) on the West Indian fruit fly Anastrepha obliqua and found a decrease in the duration until adult emergence with increasing temperatures. Moreover, moist sawdust, the pupation substrate used in our study, may have also collectively accelerated the developmental time of pupae to adult emergence. Our results are further supported by Holmes et al. [48], who also observed low pupal mortality, a higher proportion of adult emergence, and increased adult longevity when using wood shavings and concluded that such a pupation substrate significantly enhances BSF development. The reason for this is most likely the high moisture content (70%) and low compaction density of wood shavings, which facilitates pupation and the emergence of BSF [48].Adult longevity significantly decreased with increasing temperatures, with BSF adults derived from larvae previously reared on SG recording higher longevity. This confirms our previously stated assumption regarding the influence of the nutritional content of the rearing substrate, as well as access to nutritional resources, on larval and adult life-history traits and explains why we observed -even at a similar temperature range (25-30 • C)-shorter adult longevity in comparison with Myers et al. [56], who also reared BSF on CD. However, they noted greater longevity in adults that were previously fed with higher increments of fresh CD as BSF larvae. Moreover, because adult BSF do not feed and only consume water, exposing them to high temperatures will cause dehydration leading to an increased mortality rate and reduced lifespan [44]. BSF fecundity was highest at 30 • C and was significantly affected by the type of substrate fed to the larvae. The higher weight gain recorded at the prepupal stage is likely to translate into larger adult body size in both males and females [74]. Several studies have reported that larger-sized females lay more eggs due to their greater energy reserves [74]. Although we did not measure the size of the BSF females, the fact that the females that emerged from larvae reared on SG had significantly higher fecundity compared with those from CD, could clearly point in this direction.Our study is the first to provide information regarding the influence of temperature on the life history of BSF reared on two diets readily available in urban SSA. Such information is necessary for developing BSF potential in the developing world, both as a tool for the bioconversion of organic waste and as an alternative protein source in feed stock. Our results demonstrate that both temperature and substrate type significantly influence the development, longevity, and fecundity of the flies. Black soldier flies needed less time to develop on higher temperatures during their immature and pupal stages, while adults' longevity decreased at higher temperatures. Similarly, BSF reared on spent grain outperformed the ones reared on cow dung by surpassing them in weight and requiring less time to develop. Regardless of the waste stream used, BSF production systems have to be designed in a manner that provides BSF with adequate access to fresh nutritional content. Also, considering that the BSF could be used to feed livestock that are part of the human food chain, it is important to assess the potential risks associated with contamination by pathogens and the bioaccumulation of heavy metals. Moreover, the influence of the rearing substrate influenced the fecundity of adult flies, with the ones reared on spent grain as larvae producing more eggs, underlining the importance of the nutritional quality of the rearing substrate. Considering that BSF is produced for feed and not only for the purpose of organic waste recycling, this interesting information suggests the need to introduce starter-culture production facilities with customized rearing substrates for the production of BSF eggs as compared with organic waste recycling facilities. Hence, future research should focus on the development of adapted technologies in terms of the following: (1) rearing temperatures, (2) feeding methods, and (3) substrate hygiene and safety measures for small-to medium-scale industrial mass production systems of insects, such as BSF, into which commonly available urban organic waste streams can be fed. The availability of such production systems would considerably lower the cost of livestock feeds and consequently would make animal protein more affordable for the growing urban populations in SSA, thereby improving food security and nutrition, especially for women, children, and other vulnerable members of society.","tokenCount":"4238"} \ No newline at end of file diff --git a/data/part_3/0658857687.json b/data/part_3/0658857687.json new file mode 100644 index 0000000000000000000000000000000000000000..4265926403784800b30f81fe1acb7b96997ccc45 --- /dev/null +++ b/data/part_3/0658857687.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"982352453a6a032f689b35ad5dc4ac53","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/bf4ef516-b2ce-4b93-9575-15db93984708/retrieve","id":"402817044"},"keywords":[],"sieverID":"76f43e8c-6805-42de-82b3-0ea243155c76","pagecount":"12","content":"• Findings from the scoping studySearch terms \"Women's empowerment\", \"masculinities\", \"gender norms\", \"agency\" \"Power relations\", \"Rural masculinities\" \"male involvement in agriculture\" Content scope -Agricultural domains -Food security, nutrition and assets control and managementLiterature with a global perspective, Sub-Sahara Africa, South & Southeast Asia, local focus on Uganda.Peer reviewed open access journal articles 2021))• Ambler et al ( 2021) & their work is on Facilitating women's access to an economic empowerment initiative in Eastern Uganda -empowerment as a 'process' by which \"those who have been denied the ability to make strategic life choices acquire such an ability\".• Power within-power to decide -acting in groups (Santoso et al (▪ Few studies that explicitly highlight & use the concept \"Masculinities\" -social expectations that define who a man is in particular contexts (Bonatti et al 2019; Cole et al 2015, )• Socially constituted, -context specific • Variations (toxicity, progressive behaviour, supportive men/husbands, couple collaborations -rural masculinities/agricultural masculinities…)• Hierarchy▪ WE Empowerment in relation to men: Both FAO, IFAD and WFP (2020) and Sraboni and others (2014) hint on the notion of empowerment in relation to men, even when this concept has historically been used in relation to women.▪ Using WEAI to measure women's empowerment in Bangladesh, Sraboni and others (2014, p. 21) argued \"[this] analysis has shown that the areas in which men and women are disempowered are quite different, with the implication that, depending on local context, different programmes and policies will need to be put in place to empower women and men alike\".▪ Masculinities and femininities closely connected -influence each other.Addressing one without the other creates tensions in HH relations (Bonatti et al 2019)Findings: WE & Masculinities linked ","tokenCount":"275"} \ No newline at end of file diff --git a/data/part_3/0662362881.json b/data/part_3/0662362881.json new file mode 100644 index 0000000000000000000000000000000000000000..2f5db7f16d0036e4264124be221e93fb264fec1a --- /dev/null +++ b/data/part_3/0662362881.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c069ff54fedc785bcbaf3d4ab43d03f1","source":"gardian_index","url":"https://www.cifor.org/publications/pdf_files/Books/Guide-PFES-EN.pdf","id":"-1966219953"},"keywords":[],"sieverID":"2f6e303f-9e19-4927-bb6f-24d73e89f828","pagecount":"28","content":"We would like to thank all funding partners who supported this research through their contributions to the CGIAR Fund. For a full list of the 'CGIAR Fund' funding partners please see: http://www.cgiar.org/our-funders/ Any views expressed in this publication are those of the authors. They do not necessarily represent the views of CIFOR, the editors, the authors' institutions, the financial sponsors or the reviewers.The Government of Vietnam and donors have launched numerous programmes and policies to support vulnerable communities' livelihoods, nutrition and agency and to cope COVID-19. Payment for Forest Environmental Services (PFES) has a potential role in contributing to the government policy mix to address Covid-19 impacts. This research guideline was developed by Center for International Forestry Research to answer three research questions: 1. What impacts has Covid-19 had on forest dependent communities, particularly women and youth, in Vietnam? 2. What have been the impacts of PFES on women's livelihoods, nutrition and agency before and after Covid-19? 3. How can PFES and future forestry policies be implemented to better achieve their social goals, including gender equity, and support local livelihoods?To answer these research questions, we combined both qualitative and quantitative methods:1. Literature review: We reviewed policies and reports on PFES and policies supporting local communities, women and youth in coping with Covid-19 in order to identify current problems, narratives, discourses and solutions related to gender that these policies and projects aim to address. Group meetings will be held in each village for the following two groups:• Male groupEach group will consist of 9-12 randomly selected people and villagers that agree to take part in the meetings/study.Meetings should be organized in a comfortable environment without government officers or heads of villages presence.Researchers should inform villagers that they can stop and leave the meeting at any time.The facilitator starts the FGD and thanks participants.The facilitator gives a summary of the project, project staff, the objectives and content of the meeting. The facilitator explains that this group meeting is voluntary and based on the consent of all participants.The facilitator explains in detail the content of the FGD, procedures and time, and encourages participants to ask questions.The objectives of this step are to: i) understand comprehensively the history of the village; ii) understand the main events and projects that occurred in the village, including the PFES programme; iii) determine the impacts of PFES and other projects on socioeconomic life and the environment of the village.After this step, based on collected information, we will conduct an in-depth investigation to understand changes in the environmental, livelihood and social events of the village.Note: Participants may not exactly remember the timing of each event (e.g., when PFES first started). In this case, remind them of a big event (a serious drought or forest fire) then ask how long before or after PFES appeared in relation to these events.Main questions used in this step include:• When was your village founded? Cut out 12 pieces of cardboard and write the names of 12 participants, one on each piece. On the A0 paper, write three columns, titled: Poor household, Medium household, Wealthy household.Pick each card and discuss with a group how they would like this household to be placed in the Table . Facilitate the discussion amongst villagers and let the villagers themselves put the paper in the column they want. Then ask villagers why and what criteria they used to classify these households in different groups.They may, for example, consider having a home with a mode of transportation or arable land as a criterion for distinguishing between poor, average, and wealthy households. These criteria may be different from the criteria of the poverty standard being applied; however, it is important to understand these criteria to capture the local situation (see tables below).Record the criteria for poor household classification at the bottom of the page, then together draw the ladder chart showing the poverty escape strategy of the household (see Nguyen Thi Lan Nguyen Thi Lan Hong Thi My Hanh Hong Thi My Hanh The main questions for SWOT analysis are:• What are the strengths of PFES?• What are the weaknesses of PFES?• What are the opportunities for PFES?• What are the risks of PFES? Continue asking until they reach the 'wealthy' level, then stop (about 5-6 times = 5-6 steps. On the ladder chart, ask whether they think they have escaped poverty and to what extent they think that the household is actually wealthy. ","tokenCount":"734"} \ No newline at end of file diff --git a/data/part_3/0668517931.json b/data/part_3/0668517931.json new file mode 100644 index 0000000000000000000000000000000000000000..28f315cc025bf63ea26e1fac4f4a7991e1a1aaeb --- /dev/null +++ b/data/part_3/0668517931.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c77221de17b16e35d3608ae2325b633d","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/7db901ad-7235-4cff-81ca-0c0b52c806ec/retrieve","id":"-764890975"},"keywords":[],"sieverID":"5c4b24bd-ae63-4aad-8977-8853ec2e2589","pagecount":"32","content":"Institut internatianal d' agricu lture trapicale f-f>i~ © IITA 2001 L' IITA autorise 10 reproduction de ceHe publication a des fins non lucratives .Participation des agriculteurs a la recherche et au developpement : technique de recensement et de resolution de problemes S. Schulz Les themes de recherche prioritaires sont identifies grdce Ce (tape r : Les objec~Fs de la reunion de resolution des problemes sont les su ivants : Historique de I'IITA L'i nstitut international d' ogriculture tropicale (IITA), etobl i en 1967 en tant qu 'i nstitut international de recherche agri cole a pour responsobilite d'accroitre Les gu ides de recherche de I' IITA sonl deslines \" de grande disseminolion d ' informalion sur loul d omain des acliviles de rech erche menees par I' IITA el pl us parliculiinemenl en mali,;,es des nouvelles lechnalogies . lis visenl \" un grand publ ic qui reside surloul en Afrique subsaharienne, y compris les chercheurs agronomes, les enseignanls, les slag ia ires, elles vulgarisaleurs .Pour 10 lisle camplele des gu ides de recherche, veuillez conlacler I' IITA .","tokenCount":"177"} \ No newline at end of file diff --git a/data/part_3/0671545654.json b/data/part_3/0671545654.json new file mode 100644 index 0000000000000000000000000000000000000000..71abe857c9f52ac601e3b607d1aadc9b02081b2a --- /dev/null +++ b/data/part_3/0671545654.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"0a1fab837245be8bedc108450fc3d7f1","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/0525e1ce-b822-461b-909d-db1ff86e0838/retrieve","id":"-1354927955"},"keywords":[],"sieverID":"a1d0c0fc-0dd8-4376-ab44-c1bd6b6ad1d4","pagecount":"4","content":"Gender and social inequalities are deeply entrenched within our global agrifood systems. This limits the potential of womenespecially those from agriculture-dependent communities -to be empowered to build social, economic and technological resilience to climate change. Women co-developing and co-designing solutions is essential to successfully transforming agrifood systems in a climate crisis.Structural gender inequalities such as harmful norms, unequal responsibilities and restrictive masculinities make women particularly vulnerable to shocks and stressors such as climate change, conflict, state fragility and pandemics. Although gendertransformative approaches mitigate these inequalities and can boost climate resilience among women, substantial inequalities persist.Socio-technical innovations targeting climate resilience are not adequately designed or bundled to encourage uptake by women, nor are they diffused at the pace or scale required for system transformation. Social protection systems often fail to address constraints faced by women, and agrifood system governance structures often significantly disfavor them. More research is needed on how to address these constraints and transform agrifood systems to reduce gender inequality.This objective will be achieved through:• Promoting gender transformative approaches targeting structures that create social inequalities by reducing normative constraints that limit women's capacity to build economic resilience to climate change challenges. • Co-designing and testing bundled innovations for women's empowerment as partners and drivers of climate change solutions, by identifying context-specific social and technical innovations that lead to equal uptake of and benefits for women, men and youth in agrifood systems.• Enabling gender-responsive social protection by co-designing and testing how social protection and complementary programs can inclusively address gender inequality and poverty, build resilience and support women in mitigating and adapting to effects of climate change.• Encouraging inclusive and responsive governance and policies whereby women, youth and marginalized groups are consulted and heard in the process of making policies and investments, including those related to climate change.This Initiative will work in Bangladesh, Ethiopia, India, Kenya, Malawi, Mali, Nigeria and United Republic of Tanzania as a priority and will explore work in two additional focal countries: Egypt and Vietnam.Proposed three-year outcomes include:1. National agencies, civil society organizations and CGIAR Initiatives in at least two low-and middle-income countries target normative constraints that limit the capacities of women food system actors to build economic resilience to climate change challenges using gender-transformative approaches. 2. Learning Labs nested in other CGIAR Initiatives and downstream partners in two low-and middle-income countries, together with this Initiative, identify and model diverse scenarios for bundling climate-smart technologies to empower women to be partners and drivers of climate change solutions. 3. Stakeholders involved in social protection programs -including governments, international NGOs, UN agencies and donors -across at least three low-and middleincome countries use this Initiative's evidence to understand how social protection systems can be better leveraged to boost rural women's climate resilience and reduce gender inequality. 4. Government, NGOs, civil society organizations and/or private sector actors in at least three low-and middle-income countries use learning and guidance from the Initiative to better understand how social innovations, organizational strategies and government and private-sector policies can increase the voice and agency of women in agrifood system governance and their resilience to climate change.Projected impacts and benefits 1 include:Women, youth and other vulnerable groups become proactive agents of agrifood systems transformation, benefiting from enhanced agency in policy dialogues, greater participation in the co-design of innovations and programs, and a better ability to demand, access and control use of services and technologies, contributing to gender equality, empowerment and greater resilience to climate change for 3.5 million women.Inclusive take-up of climate-smart food production technologies, gender-responsive social protection to support women's food access and production, and strategies to increase women's voice and agency in climate-relevant nutrition and health services remove barriers to equality and elevate women's vital roles, both as entrepreneurs and producers of healthy foods and as decision-makers and consumers for their own and other household members' diets and health, benefiting 4.6 million people.Addressing gendered barriers to emerging from poverty and offering women opportunities to build resilience to climate change contributes to addressing key drivers of poverty and lack of livelihood opportunities and jobs in the context of climate change in target and focal countries, benefiting 5.6 million people.Women are empowered beyond accessing and using climate-smart technologies, moving towards designing and driving such technologies that include social protection and transformative solutions for 3.3 million people. Women are equipped to contribute to the development and implementation of genderresponsive actions beyond national adaptation plans and nationally determined contributions in the different target countries.Implementation of tried and tested socio-technical innovation bundles, which include digital support, enhanced decision-making, participatory development and application of context-specific strategies, has a positive impact on the status and management of natural resources in target sites, bringing 738,000 hectares under improved management.1 Projected Benefits are a way to illustrate reasonable orders of magnitude for impacts which could arise as a result of the impact pathways set out in the Initiative's Theories of Change. In line with the 2030 Research and Innovation Strategy, Initiatives contribute to these impact pathways, along with other partners and stakeholders. CGIAR does not deliver impact alone. These projections therefore estimate plausible levels of impact to which CGIAR, with partners, contribute. They do not estimate CGIAR's attributable share of the different impact pathways.The For more details on this Initiative, visit the Initiative website.Header photo: Female farmers attending an information meeting on solar pumps in India. Photo by C. de Bode/CGIAR.","tokenCount":"889"} \ No newline at end of file diff --git a/data/part_3/0671676469.json b/data/part_3/0671676469.json new file mode 100644 index 0000000000000000000000000000000000000000..4a3a7aba275c486b5cdb6bedf96e7720ddc456e8 --- /dev/null +++ b/data/part_3/0671676469.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"dc189e077ca9812cc9334be3b44f78c8","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/45e0c3ff-af14-46f8-b5dc-5391d8681eed/retrieve","id":"-1770068502"},"keywords":[],"sieverID":"d880acdf-0172-4619-9894-1e44f5f1745d","pagecount":"12","content":"Increasing formal employment for youth and women is a key goal of the Forsa pilot graduation intervention and Egyptian government policy in general. As detailed in Forsa evaluation reports, matching Takaful beneficiaries with jobs in the private sector is a major challenge from the perspective of households. In this policy note, we examine the challenges from the perspective of potential employers. We review literature of the market failures that may contribute to difficulties with job matching in rural Egypt and present results from a small telephone survey of Forsa employers.High rates of informality are one of the most persistent challenges prevailing in the Egyptian labor market. Stable full-time private sector employment is relatively rare, especially for youth and women. Informal work continues to be highly prevalent, despite informal workers expressing the least job satisfaction in the Egypt Labor Market Panel Survey (ELMPS) and preferring a stable job with tenure (Assaad, Al-Sharawy, and Salemi 2019;The World Bank 2020). As of 2020, 56 percent of all workers in Egypt worked in the informal sector and another 17 percent had irregular employment (World Bank 2020). Seventy percent of jobs are created by micro-firms (1-5 employees) which are typically unregistered and unlicensed enterprises and lack the capacity to offer formal employment with written contracts and social insurances (The World Bank 2020).Both youth and women struggle at finding decent work. The youth unemployment rate of 17.5 percent is considerably higher than the average unemployment of 7.4 percent in 2021 (The World Bank 2021d). The female unemployment rate decreased from 25 percent in 2015 to 15.6 percent in 2021 (The World Bank 2021c), yet the share of women working is still small due to very low and falling rates of labor force participation. The share of female population ages 15 and older in the labor force decreased from 23 percent in 2015 to 15 percent in 2021 (The World Bank 2021b). Only 32 percent of women work inDecember 2023the private sector compared to 52 percent of men, and only 8 percent in the formal private sector (Amer, Selwaness, and Zaki 2021).At the same time, wages in the Egyptian private sector are low and slow to adjust to inflation. The mean formal private sector wage stayed at 2,500 EGP from February 2020 till June 2021, during which period there was an inflation rate of around 7 percent (Assaad et al. 2022). This is an urgent concern as inflation rates picked up again in 2023 and expectations of future inflation remain high.We review recent literature on market frictions and policy choices in the Egyptian labor market that may explain the patterns described above. A traditional explanation for the weakness of the private sector in Egypt has been the long dominance of the public sector. In recent years, however, public sector jobs have become scarcer, so this is likely no longer the main explanation. Based on 2018 ELMPS survey data, public employment accounted for only 5 percent of youth employment compared to one third of the oldest age group (Barsoum and Abdalla 2020;Amer, Selwaness, and Zaki 2021).One hypothesis for persistent low wages is that labor productivity is simply low. Despite high educational attainment, firms report that employees do not have the skills they need. This may be explained by both poor education quality and mismatch between educational content and skills demanded by the labor market.According to the 2019 Global Competitiveness Report, Egypt ranked 109th out of 140 countries on ease in finding skilled employees, and 136th in finding the right skill sets of graduates (Schwab 2019).An ECES survey of \"Manufacturing Sector Future Needs and Actual Labor-Related Problems in Egypt\" in 2019 revealed that low labor productivity and skill mismatch are two of the most dominant challenges facing private sector employers in all sectors, especially for technicians, machine, and assembly workers and that the education system does not teach soft skills which are also important in the workplace (ECES 2022). Other research based on employer surveys has also found that graduates of both secondary and postsecondary general and vocational schools lack both technical and soft skills needed by employers (Alattas and Alimam Haga 2022).The World Bank's Human Capital Index project calculated based on test scores that 11 years of schooling in Egypt is only equal to 6 years of education in a good quality educational system and that an adult coming out of the Egyptian educational system is only 49 percent as productive. The educational quality may improve over time as recent reforms have been implemented such as collaboration with private sector firms to develop and administer the new computer-based graduation system in education (IFC 2020).The difficulty in finding skilled employees increases costs for firms as employers are then forced to compensate for the low educational outcomes by implementing training programs.On the other hand, the declining female employment and labor force participation rates do not appear to relate to lower productivity as women surpassed men in educational attainment during the same period (Assaad 2015;Constant et al. 2020).In recent years, economic growth in Egypt was primarily led by capital intensive industries, such as construction and petroleum. Investment and growth and thus also job creation in labor-intensive industries such as manufacturing and tourism, by contrast, has been minimal (Said and Zaki 2023). In addition to being capital intensive, the construction sector creates primarily seasonal or temporary jobs, which increases underemployment. In the construction sector, 65 percent of employment is informal private waged work outside of establishment and the share has increased by 15 percent from 2008 to 2017 (Amer, Selwaness, and Zaki 2021).Formal jobs in the private sector tend to be concentrated in urban metropolitan areas and established industrial zones. By contrast, a large under-employed labor force in Egypt is located in remote, rural areas working in seasonal and irregular jobs in agriculture. More than half of Egypt's population is still located in rural areas and agriculture employs around 26 percent of the labor force (Amer, Selwaness, and Zaki 2021). Job seekers in these areas, especially women, are unwilling to accept manufacturing jobs given the long and costly commutes (Assaad 2015;Constant et al. 2020). Informal wage earners inside and outside of establishments work on average five and 14 hours less than formal workers per week, respectively (48 and 39 hours vs. 53) and have more freedom to choose locations convenient to their residence (Assaad et al. 2022).The main explanation in the literature for the low and dropping female labor force participation rate is that female reservation working conditions are generally not met by private sector jobs. Long working hours, long commutes, and the higher risk of harassment coupled with the burden of childcare and household work being mostly on the woman, cause the reservation conditions for women to work in the private sector to be rather high (Assaad 2015;Constant et al. 2020).Long commuting distances are perceived to pose a safety hazard for women. Women are not likely to migrate for employment and reside away from home for prolonged periods of time compared to men and they report more frequent incidences of sexual harassment and violence (Constant et al. 2020;ECES 2020). To circumvent this mobility issue, some efforts have been exerted by employers to provide gender-separated transportation options, especially in the textile sector where there has traditionally been a high share of women in the labor force (Constant et al. 2020).Concerns about sexual harassment not only discourage female employment in the case of long-distance commutes but can also discourage women working in alongside men in a small workplace with few or no other female colleagues. This is a potential reason why women tend to be more represented in medium and large enterprises compared to micro enterprises; larger workplaces with female colleagues offer a sense of protection from unwanted male attention or harassment (Assaad 2015;Barsoum, Rashed, and Hassanie 2009).A final working condition concern for women is the lack of flexible work arrangements or childcare support (Assaad 2015;Constant et al. 2020;Nazier and Ramadan 2016). On average, full-time working hours in the formal private sector are around 53 hours per week compared to 41 in public wage work. At the same time, women spend from 28 to 91 hours on direct and indirect care work per week depending on their marital status and the age of their children (Assaad et al. 2022), which is equivalent to at least another full-time job. Studies showed that men were three times more likely to engage in work that requires more than 48 hours of work per week, which affects women's participation as employers' expectations are fueled by men's willingness to work for more than 40 hours per week (Amer, Selwaness, and Zaki 2021).From the employers' side, employers are disincentivized from hiring women who are in the phase of starting a new family as they will require costly benefits and employment discrimination laws are not enforced. Benefits for mothers include 90 days paid maternity leave and workplaces with at least 100 female employees must establish a nursery school or childcare facility (Law No. 12 2003 Promulgating Labor Law). Employers are also reluctant to hire females in jobs that require some skill accumulation due to the risk of marriage and childcare interruptions (Assaad 2015).Another plausible hypothesis which has been less explored in the literature on Egypt is information asymmetries regarding wage growth. The high share of workers in the informal sector may reflect preferences for the higher entry-level wages offered compared to the formal sector. Job seekers in Egypt are described as focused on short-term benefits of higher wages offered by informal and unstable jobs in constructions compared to low paying formal sector jobs in the manufacturing industry even though the long-term benefits would appear to be higher from formal sector employment (Amer, Selwaness, and Zaki 2021).In Mexico, the private sector similarly tends to offer low entry-level salaries, however researchers note that while informal sector wages do not grow over time, formal sector employers offer substantial wage increases of 40 percent over the first year. A study of the impacts of offering a six-months wage incentive found significant impacts on permanent formal sector employment, suggesting that overcoming initial high discount rates can change preferences between formal and informal sector (Abel et al. 2021).The Forsa program, launched in 2021 by the Egyptian Ministry of Social Solidarity, has been designed as an economic inclusion program to graduate beneficiaries of Takaful and Karama to economic selfreliance by enabling them to engage in wage employment or small productive enterprises. The International Food Policy Research Institute (IFPRI) in collaboration with the Ministry of Social Solidarity (MoSS) conducted a baseline survey in January-February 2023 to ask partnering employers about their hiring practices. The analysis of survey responses provides a picture of the current labor market challenges faced by the private sector in Egypt.Out of 49 enterprises listed as FORSA Phase 1 partnering employers, 26 enterprises participated in the survey, forming a 53 percent response rate. The sample responses were collected via a phone-call survey conducted by \"Athar Impact\" consulting agency with the hiring representative of each establishment.Enterprises in the sample are located in seven governorates: eight enterprises in Cairo, six in Sharqiyah, four in Qalyubiyah, four in Minya, three in Giza, three in Faiyum, and one in El Behera. Only five enterprises are located in rural areas, mostly in Minya, with one exception in Qalyubiyah. Most sample enterprises work in the field of agriculture (5 enterprises), food services (5) and textile production (4).The remaining twelve enterprises are equally represented in the fields of security and protection, manufacturing, finance, insurance, and employment services as well as in healthcare services. All sample enterprises are private sector enterprises with no public ownership and all are mid to large size firms. Sixteen enterprises have less than or equal to 500 employees on site, while the remaining ten enterprises have from 500 to 3,500 employees.A large part of the survey questions was designed to be asked twice, once for medium-skilled workers and once for low-skilled workers. We define medium-skilled work as work that generally requires a more complex skill set compared to low-skilled work. The skill set can be acquired through a certain level of education, training, or experience. Some examples of medium-skilled work would be administration work, call center customer service, sales representationetc. Low-skilled workers, however, typically do repetitive tasks that can be learned in a short period of time and do not require a high level of education or years of experience.Our survey provides some evidence consistent with the theory of low labor productivity being a constraint on job matching.When asked about the most pressing hiring challenges they are facing, the most frequent response from employers was wages being insufficient rather than difficulty finding candidates with the needed skills (see Figure 1 below). Obviously, this raises the question of why employers are unable to raise wages to meet market expectations. When asked directly about the reasons, some respondents attributed the difficulty to the inability to afford higher salaries either due to country's economic situation and the rapidly rising inflation or due to being a smaller firm and not part of a larger establishment like some competitors.When asked directly about the skills demanded for low-skilled and for medium-skilled employees, the most frequently cited skills are literacy and soft-skills (see Figure 2 below). Surprisingly, employers do not seem to put much emphasis on computer skills, calculations and working with numbers or specific technical skills even for medium-skilled employees. The emphasis on literacy points to a potential source of low labor productivity in older generations. According to CAPMAS figures, illiteracy rates in young generations stands at only 6.5 percent, but is 57 percent in the oldest age group. Interestingly, while only 37 percent of FORSA household survey respondents described themselves as illiterate, 63 percent stated that they do not read any documents, such as bills, instruction manuals, newspapers…etc. This may point to a large gap between illiteracy as understood most broadly and functional literacy that would be useful on a job.Our survey supports the hypothesis that a major driver of unemployment in Egypt is geographic mismatch as all employers surveyed were based on urban areas in spite of the Takaful beneficiaries that Forsa aims to target being primarily in rural areas.Firms also frequently agreed that employee retention is a challenge (80 percent of firms) and after low wages, working conditions and transportation difficulties were the primary reason for employees leaving.Based on FORSA household survey results, the average lowest monthly wage Forsa participants were willing to accept for a formal full-time job was 26 percent higher if a 50 km commute is required (Shabrawy et al. 2022). The employers survey results also confirm that workplace conditions are challenging for women balancing work and family commitments. While on average one in three employees is female in the sample enterprises, the distribution differs widely by location, field of activity, establishment size and skill-level occupations.For 20 of the 26 employers in the survey, full-time hours are defined as more than 40 hours per week, mostly between 42 and 56 hours. On top of that, only 7 enterprises reported allowing part-time arrangements and more than half of those enterprises define part-time hours as between 40 and 42 hours per week. The long part-time hours can explain the low level of female share in part-time employment in the sample (27 percent as opposed to 30 percent in full-time work). Additionally, when asked about the benefits provided by the firms, the two most frequently provided benefits are the traditional pension plan and health insurance, and none specified any form of childcare support as is shown in Figure 4, except for one company that mentioned providing one hour off per day for breastfeeding mothers.Also consistent with the hypothesis that women are primarily concerned about working conditions, our study finds that female employment is concentrated in large enterprises, in particular sectors of the economy, and in medium-skilled work. Women represented 47 of medium-skilled jobs compared to only 25 of low-skilled jobs. This result is persistent across all fields of activity, firm locations, and firm sizes as As summarized in Figure 6, low shares of female employees tended to be common in agriculture and manufacturing, while higher shares of females were reported by textile firms and hospitals. In general, firms located in Lower Egypt also tended to have higher shares of female employees than those in Upper Egypt.We also see some evidence that women are less likely to be employed than men conditional on applying. In low skilled occupations, employers reported that 35 percent of job applicants are women, while only 25 percent of currently hired are female. For medium skilled jobs, women are applicants are less disadvantaged, with 43 percent of job applicants compared to 47 percent of employees.Employers in our sample on average reported a large potential for wage growth with years spent working in the specified position. Most of the differential between low-skilled and medium-skilled job wages actually comes in terms of wage growth rather than starting salary. On average, medium-skilled workers have a similar starting salaries to low-skilled workers (2,955 EGP vs. 2,875 EGP and 2,971 EGP vs. 3,128 EGP for the most recent hired employee), however, their average typical maximum salaries are considerably higher (8,056 EGP vs. 5,250 EGP). Notably, even low-skilled workers can almost double their salaries if they stay in the job long enough for maximum promotions. Some sectors show higher salary growth than others in the sample (see Figure 7 below): limited salary growth can be seen in the textile production and healthcare sectors for example (notably, the same sectors with the highest share of female employees). Most enterprises across all fields offer wages that are lower than 3,923 EGP, the average minimum acceptable wage for Forsa beneficiaries. This indicates that currently in 2023, a full-time job with 40 hours of work per week and a long commute that pays less than 4,000 EGP per month will not be attractive enough for beneficiaries to prioritize the formal job over other choices, such as household work or informal jobs. This is especially true since full-time hours are defined by most employers as between 42 and 56 hours per week.However, the employers survey does show that there are opportunities to improve the prospects for moving rural Takaful beneficiaries into wage employment via Forsa by better aligning with the current labor market:  Provide support for literacy and soft skills, including linking Forsa with existing literacy programs for Takaful beneficiaries. Address commuting costs directly by either subsidizing transportation or working more with employers in rural areas. Address concerns of women for safe working conditions by supporting childcare and/or transportation and assigning groups of women together  Provide information to participants about potential for wage growth.","tokenCount":"3107"} \ No newline at end of file diff --git a/data/part_3/0682484254.json b/data/part_3/0682484254.json new file mode 100644 index 0000000000000000000000000000000000000000..646cb5fb20e5596e9968925d86a7b391bf069385 --- /dev/null +++ b/data/part_3/0682484254.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"3a9239d942c4462ee889625fa40f71c7","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/4a8d3a22-49b1-4ce5-bb8a-f08aa81f1ca3/retrieve","id":"-1443724493"},"keywords":[],"sieverID":"b0a2555d-3274-4cd5-8f93-dac8e62bfb5e","pagecount":"12","content":"Length: Approximately 4,350 km long; headwaters in the Tibetan Plateau of the Himalayas; flows through three provinces of China then through Myanmar, Lao PDR, Thailand, Cambodia and Viet Nam to the South China Sea.There are few other places in the world, perhaps none, with such intensive dams development as the Mekong Basin.The major tensions in the Mekong revolve around dams and other infrastructure development and the shift from economies based on agriculture and primary production to manufacturing, industry and services.The main protagonists in this debate are governments, dam financiers, developers and operators, NGOs and civil society. Within each group there are multiple, often conflicting, perspectives. Much of the debate revolves around costs and benefits and issues of governance and transparency. Sek on g River Se sa n R iv e rCPWF's goals in the Mekong sought to ensure that reservoirs would be:1. Managed in ways that are fairer and more equitable to all water users.2. Managed and coordinated across cascades to optimize benefits for all.3. Planned and managed to account for environmental and social needs.4. Used for multiple purposes besides hydropower alone.5. Better governed and the benefits better shared. A scaled approach: local, catchment and basin.A robust and evolving research-for-development approach.Three regional Mekong Forums on Water, Food and Energy, and hundreds of workshops.A wide variety of impact pathways that saw changes in the ways dams were managed and monitored.One Using participatory rural appraisal, the team conducted consultations at the national, district and community level and identified gaps in information, coordination, compensation and resettlement. Solutions mainly took the form of communication tools and feedback mechanisms.Because government officials and civil society worked on solutions together, the outcomes are both practical and sustainable.There are plenty of protocols and safeguards for Mekong dams written into national policy and legislation. The World Commission on Dams offered guidelines, as does the International Hydropower Association in their hydropower sustainability protocol. Several CPWF Mekong projects directly address transparency and governance by promoting dialogue among and between government ministries and departments, dam operators and civil society.Transparency is a critical ingredient in hydropower planning. Protocols and safeguards are vital to implementing and monitoring dams. As hydropower development progresses, it will no longer be enough to address the impacts of a single dam in a localized area. A recent CPWF study on flood control challenges for large hydroelectric reservoirs showed that reservoirs in tropical climates present more challenging conditions for flood control than faced by dam operators in temperate climates.Using modeling tools, researchers illustrated how in the Nam Theun 2 reservoir a combination of mechanical failure and human/management error could result in water level conditions that would constitute an extreme hazard. In a contrasting scenario, the timely opening of spillway gates, combined with capability to release water from all gates at full capacity, allowed for reservoir levels to stay well within the safe range and allowed for a significant reduction in downstream flood discharge. Such research suggests the growing need for attention to management of cumulative impacts and an emerging role for river basin committees for emergency communications capability between dam operators and downstream stakeholders.The cumulative impact of dams will become an increasingly important issue. Hydropower development must be coordinated across cascades and political boundaries.Wetlands are essential to the livelihoods of poor people throughout the world and the Mekong is no exception. They are also central to the ecological productivity of riverine systems. Hydropower dams radically alter the local hydrology and often diminish the extent of existing wetlands thereby jeopardizing the livelihoods of the rural poor. A CPWF research paper conceptualizes creating wetlands in reservoirs that have a large drawdown zone. Such reservoirs often have relatively limited diversity of aquatic habitats and their productivity is limited by the rather barren shoreline areas in the drawdown. The team proposed developing permanent wetlands within the drawdown area through the construction of small dykes below the full supply level that would retain water as the water level falls and be recharged with water during the wet season filling of the reservoir. Such created wetlands would contribute to greater habitat diversity and allow areas for fish spawning and growth and hence increase the productivity of the reservoir and could also be used as more conventional fishponds for enhancing livelihood opportunities.A field trip was organized as a collaboration between the Theun Hinboun Power Company (THPC), a major supplier of hydroelectric power in Lao PDR, and two CPWF projects to carry out an initial survey of the possible locations where wetlands might be constructed. After the trip, surveyors and irrigation engineers from THPC developed designs for the dykes and spillways at five of the locations, together with cost estimates that have proven to be extremely useful.Rainwater harvesting, drip irrigation, conservation agriculture, farmer field schools. These and many other technologies are generally well known and known to work in many places under varied conditions. The barrier is always changing the way people think about using these technologies and involving the right partners. In the example to the left, the participation of the Theun Hinboun Power Company was a key factor.There are numerous agricultural and water-related technical applications that can contribute to livelihoods, recreation and environmental enhancement, thereby creating opportunities and increasing the benefits from hydropower development.The ecological productivity of reservoirs can be improved. In the Mekong, one of the major concerns is how to mitigate the impact of dams on fish migrations. Most of the existing work on fish passes has been done in temperate climates on only a few species such as salmon. One CPWF Mekong project is breaking new ground in research on fish passes for large numbers of tropical species. A Lao university researcher observing fish in a barotrauma chamber, where they will be subjected to a rapid pressure change similar to what they would experience as they pass downstream through a hydro turbine. Photo: Garry ThorncraftHydropower can be multi-purpose. Relatively simple strategies can result in more benefits to more people and the environment. During consultation meetings, the provincial and local authorities expressed concerns about their lack of experience in dealing with hydropower companies and in managing resettlement and compensation processes. People in communities upstream and downstream of the dam site expressed concerns about how to deal with the dam's impacts, especially in terms of coping with changes to their livelihoods. Few of the affected citizens had actually seen a hydropower dam, reservoir, or a resettlement village, and did not really know what to expect.At the Lao study site, the team observed and documented communities in the process of resettlement and struggling to re-establish their livelihoods in a new village. The team began to explore ways to facilitate exchanges between the stakeholders in Cambodia and their counterparts in Lao PDR through study tours.At the program level, CPWF Mekong has created six stakeholder platforms. Through these, a variety of notable outcomes have emerged. In China, the concession holder for the Lancang, having learned of the International Hydropower Association's hydropower sustainability assessment protocol through CPWF, has decided to implement the protocol at two of its dams. Similarly, an independent power producer in Lao PDR that participated in CPWF's stakeholder platforms has engaged with CPWFsupported experiments to improve the livelihoods of resettled people through integrated rice and fish farming systems. In Vietnam, the Yali Falls dam has agreed to experiment with short duration millet varieties cultivated in the drawdown zone of its reservoir. Platforms are a basis for obtaining knowledge and new ideas, thereby yielding changes in behavior.Two of the project partners, a national NGO and a government ministry, organized an exchange of provincial and district authorities, NGO staff and community members from Stung Treng Province to the Theun-Hinboun Expansion hydropower project in Laos. The group visited the dam site and resettlement villages and met with company staff and Lao authorities involved in hydropower dam development.As a result of the exchange, the participants from Stung Treng now have a much better knowledge of that will help them cope with the changes likely to result from new dams. Participants are able to talk more confidently about hydropower issues and are committed to sharing what they learned with their peers. Selected outcomesHydropower at the scale and scope of development in the Mekong is unprecedented and there is much yet to be learned. Four years is a too short a period to expect major outcomes in terms of changes in knowledge, attitudes and skills. Progress towards long-term goals can best be measured in small steps. The outcomes shown here are just some of the small steps indicating that change is taking place.Reservoirs will be managed in ways that are fairer and more equitable to all water users. Villagers trained to conduct research to catalog and value their resources.Reservoirs will be managed and coordinated across cascades to optimize benefits for all.Sustainable hydropower curricula development with Ubon Ratchathani University in Thailand.A new catchment strategy for the Nam Theun-Nam Kading River Basin Committee.Reservoirs will be planned and managed to account for environmental and social needs.Hydropower Sustainability Assessment Protocol trailing at two major Chinese dams. Artificial wetlands construction in partnership with IWMI and Theun-Hinboun Power Company.Reservoirs will be used for multiple purposes.Reservoir fisheries may be more productive than the dominant narratives suggest. Drawdown zone agricultural solutions at Yali Falls.Multiple uses for small-scale irrigation weirs and groundbreaking research on fish ladders.Reservoirs will be better governed and the benefits better shared.Providing informal fora for China to engage south of the border. An emerging IWRM multi-stakeholder platform in Cambodia.CPWF dialogues and forums have created a new way to discuss hydropower and associated research.Photo: Ian TaylorThe CGIAR Challenge Program on Water and Food was launched in 2002. The CPWF aims to increase the resilience of social and ecological systems through better water management for food production (crops, fisheries and livestock). We do this through an innovative research and development approach that brings together a broad range of scientists, development specialists, policy makers and communities, in six river basins, to address the challenges of food security, poverty and water scarcity.The CPWF is part of the CGIAR Research Program on Water, Land and Ecosystems. WLE combines the resources of 11 CGIAR centers and numerous international, regional and national partners to provide an integrated approach to natural resource management research. ","tokenCount":"1698"} \ No newline at end of file diff --git a/data/part_3/0688361881.json b/data/part_3/0688361881.json new file mode 100644 index 0000000000000000000000000000000000000000..55a1157452927e4cf9f59f7096136b7e22e883df --- /dev/null +++ b/data/part_3/0688361881.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"891cfb00422329047592f4eeffa549d7","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/dc7d034e-e0f6-4717-966c-34f81fd639b1/retrieve","id":"-971943764"},"keywords":[],"sieverID":"223f71a4-7567-43e5-9663-d50828a50d19","pagecount":"4","content":"n contrast to cross-breeding, genetic transformation allows for enhancement of one trait in a variety while retaining other desirable traits or attributes. Host varieties can be hybrids bred by scientists or endemic types maintained by farmers. Varieties that are popular among farmers are those whose traits or attributes are appreciated by farmers. Inserting a gene into a host variety that is already popular among farmers will increase the transgenic variety's chances of being successful.The large number of distinct banana varieties grown on farms in Uganda suggests that insertion of transgenes into more than one background will be necessary for generating a broad-based impact on the productivity of the banana sector. Scientists at the National Agricultural Research Organization (NARO) have identified several varieties for initial transformation assays in order to represent the range of genomic and use group diversity found among clone sets in Uganda. Each transformation event, however, has an associated cost. In addition, transforming too many varieties within one genomic group could contribute to genetic uniformity for the trait and vulnerability to pathogens that overcome the resistance imparted by the genetic transformation. Choices will need to be made about the host variety or varieties into which the transgene will be inserted. In turn, the choice of host variety will affect the distribution of benefits among communities and farmers within communities.This point can be illustrated using an economic model to analyze the determinants of farmer demand for planting material from seven potential host cooking-banana varieties and then generate two pieces of information related to demand. Taking Nakitembe-the most widely grown variety in the major banana-producing areas of Uganda-as an example, first, client prototypes are identified by comparing the characteristics of farm households with high and low predicted demands for the variety. This exercise illustrates how the choice of host planting material can have social consequences. Second, changes in total industry demand for planting material of a genetically transformed host variety are simulated (a) when resistance traits are inserted, with varying degrees of effectiveness, and (b) when other supporting public investments are made in extension, market infrastructure, and education. The simulation demonstrates how the magnitude of the payoff resulting from research investment depends crucially on other types of investments.Policy Research Institute (IFPRI) and was also a senior economist with the International Plant Genetic Resources Institute (IPGRI) at the time this research was conducted.Promising Crop Biotechnologies for Smallholder Farmers in East Africa: Bananas and MaizeThe seven varieties chosen for the analysis include two that are both widely grown and targeted for assays (Mbwazirume and Kibuzi), one that is widely grown but not targeted for assays (Nakitembe), and four that are targeted but not widely grown (Nakinyika, Enjagata, Kisansa, Mpologoma). Mbwazirume is the most extensively grown variety in high elevation areas, and Nakitembe is the most extensively grown in areas of lower elevation.Farmer demand for planting material includes a decision to use the material and a decision about the scale of use. Findings demonstrate that for banana varieties, both consumption and production attributes play prominent roles in these decisions. Given that the majority of farm households in Uganda consume bananas grown on their own farm as a staple food, farmers' opinions about the cooking quality of different varieties explain a great deal about which varieties they choose to grow and how much of each they grow. Clearly, the importance of bananas as a food staple is one reason why NARO has targeted cooking varieties for transformation. In addition, results demonstrate that farmers grow less of varieties that are more susceptible to biotic pressures, such as black Sigatoka disease or weevils. Hence, the resistant planting material now under development by NARO is likely to be attractive to them.Both the social and economic characteristics of farm households determine their demand for planting material. Larger households and households with a higher proportion of dependents grow more banana plants to meet their immediate consumption requirements. More experienced and educated farmers also tend to grow more banana plants in their groves. Women have at least as great a role as men in decisions related to banana production and use, and almost complete control over cooking-related issues. More frequent contacts with extension agents appear to induce farmers to grow more banana stands, perhaps due to the acquisition of better knowledge about each variety and production management practices. Greater numbers of banana stands per farm household are also found in low elevation areas, the historical locus of banana production in the country, where population densities are higher and plantations are more heavily beset by pests and disease. Wealthier households with more cash income grow fewer mats of cooking varieties. Better-off farmers either purchase cooking bananas to meet their consumption needs, or they substitute other foods for cooking bananas. As expected, larger banana groves are associated with larger numbers of banana stands. Greater availability of banana planting material of different varieties reduces the demand for any specific variety, which is reflected in the smaller numbers of stands planted to particular banana types. Households located farther from markets grow more banana stands, meeting their immediate household consumption needs through their own production. Farmers appear to respond to increases in the farmgate price and better market infrastructure by planting more banana stands and selling more bunches.To illustrate the possible social consequences of scientific innovation and supporting investments on farmer \"clients\" or potential adopters, the characteristics of farm households with high and low predicted demand for transgenic planting material were compared. For example, inserting resistance to black Sigatoka into Nakitembe would effectively target larger households with more dependents, who are poorer in cash transfers, livestock, and housing. These target households manage larger farms with a lower share of land allocated to banana groves. They tend to spend more time reaching banana markets, although they are not more distant from them, perhaps because of poor transport or road quality. These households are concentrated in the central region, the historical locus of banana production, where disease pressures and population densities are high, but urban markets are more developed. The results are consistent with our hypothesis that transgenic cooking varieties are a potentially pro-poor application of biotechnology.No differences in the profiles of farm households most likely to use transgenic planting material are evident when gene insertion alone is undertaken. However, when gene insertion is accompanied by other investments, differences in market participation emerge, with a lower proportion of households participating as net sellers and a higher proportion engaging as buyers. This is perhaps driven by on-farm specialization that, coupled with reduced transaction costs, may generate differential participation in markets.Simulations using the economic model demonstrate the relationship between changes in the effective resistance to biotic pressures and demand for planting material. Figure 1 illustrates this relationship when a single resistance gene (black Sigatoka) or multiple resistance genes (black Sigatoka and weevils) have been successfully inserted into suitable banana genotypes, as well as when gene insertion is supported by public investments. Public investments considered in the figure are those related to market access, improvements in human capital, and dissemination of information dissemination. Values in Figure 1 represent total aggregate demand, although they are lower bound estimates because they are based on major banana plots only.For a crop affected by a complex of biotic pressures, the marginal effect on expected demand for planting material will be much greater (in this case, close to a 50 percent increase in the total number of plants) when two or more resistance genes are successfully inserted and jointly expressed. However, these findings depend on farmers' ability to perceive the yield advantages of the resistant varieties. In practice, even if a gene-imparting resistance to a disease or pest is inserted and expressed, farmers may not perceive its effects, since disease or pest incidence tends to vary across banana plantations, and the mechanisms underlying some biotic pressures (such as weevils) are better understood than those underlying others (such as black Sigatoka, a more recently introduced disease). Where necessary, perceptions and understanding of losses from pests and plant disease can be enhanced by educating farmers. Public investments in education, extension, and market infrastructure can help to overcome impediments to the use of new varieties, thereby reinforcing the positive effect on variety demand induced by genetic improvement. About half of the shift in demand for a variety is attributable to the farmgate price response, with education and extension having a smaller, though important, influence on the magnitude of this shift. Shortening the time taken for a variety to get to the market has an offsetting but minor effect, by enabling farm families to purchase food rather than produce it. Improvements in market signals, such as price differentials that capture quality differences across banana bunches, could stimulate farmers to sell more at the market, with important implications for rural development. Improvements in road infrastruc-ture or better means of transportation would have a smaller relative effect than prices on the overall demand in the short term.","tokenCount":"1486"} \ No newline at end of file diff --git a/data/part_3/0694249974.json b/data/part_3/0694249974.json new file mode 100644 index 0000000000000000000000000000000000000000..ac2b73b7d6d1ebec2d7f2eeea0ad755985e3ca85 --- /dev/null +++ b/data/part_3/0694249974.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"8df65a609bcdc7c1aba85969fa506695","source":"gardian_index","url":"https://dataverse.harvard.edu/api/access/datafile/:persistentId/?persistentId=doi:10.7910/DVN/GLGMJT/VGYBC4","id":"-1239183086"},"keywords":[],"sieverID":"7df78721-02ce-4e70-9ca0-5cc57546c4dd","pagecount":"34","content":"Good morning/afternoon. I am ________ from the Data Analysis and Technical Assistance Limited (DATA), a Research organization based in Dhaka. Together with the International Food Policy Research Institute (IFPRI), we are conducting an evaluation of a BRAC's A&T project in this area. We want to talk with you about the health status of mother & child of your area. We will ask you some questions related to your jobtime commitment, motivation, self-efficacy, satisfaction and supervision. Also questions related to IYCF and nutrition knowledge, training exposure and socioeconomic status. The information that you will provide us will be used to set up a good health program in this community and in similar settings in other parts of the world.We are inviting you to be a participant in this study. We value your opinion. You will only be identified through code numbers. Your identity will not be stored with other information we collect about you. Your responses will be assigned a code number, and the list connecting your name with this number will be kept in a locked room and will be destroyed once all the data has been collected and analyzed. Any information we obtain from you during the research will be kept strictly confidential. We will use approximately 1 hour of your time to collect all the information. There will be no cost to you other than your time. Your participation in this research is completely voluntary. You are free to withdraw your consent and discontinue participation in this study at any time. You also have the right to refuse to answer specific questions. There will be no risk as a result of your participating in the study.The International Food Policy Research Institute (IFPRI) and DATA are jointly conducting this survey. Your participation will be highly appreciated. The answers you give will help provide better information to policy-makers, practitioners and program managers so that they can plan for better services that will respond to your needs.The researcher read to me orally the consent form and explained to me the purpose of this survey. I agreed to take part in this research voluntarily. I understand that all information given by me will not be disclosed, that I am free to discontinue participation at any time if I so choose, and that the investigator will gladly answer any question that arise during the course of the research. Today we would like to ask you some questions about your job and about child nutrition. First, we would like to talk about your job itself. We would like to know some things about the kinds of activities you do, and the amount of time it takes for you to do them. Please be ensured that all this information will be kept confidential. How many months ago did you last sell Pushtikona?[___][___] Months ago (current month=0)Why Have you read any article on infant and young child feeding issues?Yes ,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Instruction for Interviewer: Show PHOTO on each TVC one by one, and collect responses for each TVC. Now, I will show you photos of a TV advertisement to remind you about the content of that TV advertisement. ","tokenCount":"521"} \ No newline at end of file diff --git a/data/part_3/0721631578.json b/data/part_3/0721631578.json new file mode 100644 index 0000000000000000000000000000000000000000..6b0cbc2c4f3d63f917a6ad45252c2a84ab5aae75 --- /dev/null +++ b/data/part_3/0721631578.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"407f1bc4f29bc50d340039191504d04b","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/8e6241af-009f-4f70-a3f6-133658b32995/retrieve","id":"-1042678212"},"keywords":[],"sieverID":"2dc6b373-5780-449b-95eb-fcadea0460cb","pagecount":"46","content":"RTB is vigorously pursuing collaboration with other AFS-CRPs both where their commodities form an integral part of RTB cropping systems, such as legumes intercropped with cassava (with DCL), or where RTB crops contribute as companions in another AFS, such as potato as a rotation crop with rice (with RICE). This type of collaboration forms a key element of FP2-FP4.In addition, broader collaboration with other AFS-CRPs, guided by FP5, is planned at the livelihood level; considering, for example, transitions into more diverse sets of enterprises and inter-household linkages at the community and landscape levels. To leverage best practices across CRPs and greater contribution to SRF targets, as well as stimulate interdisciplinary research, RTB will link with all GI-CRPs:  Policies, Institutions and Markets (PIM) for complementary approaches to value chain analysis and development  Agriculture for Nutrition and Health (A4NH), with shared evidence base and advocacy for adoption of RTB varieties with higher levels of micronutrients  CCAFS, models, and metrics for climate-sensitive breeding, and pest and disease modeling under climate change scenarios  Water, Land and Ecosystem (WLE) for wastewater utilization linked to cassava processing, and for integration into improvement of ecosystem services. FP5 and the other AFS-CRPs (i.e., DCL, FISH, MAIZE, RICE, WHEAT, LIVESTOCK, and FTA) open a new space for collaboration where RTB crops can be rotations, intercropped, or used as sources of feed. FP1 will interact closely with the Genebanks and Genetic Gains Platforms to best utilize new technologies, sources of genetic diversity, information, and databases to enhance breeding programs. Likewise, the cluster on gender-equitable development and youth employment in FP5 (CC5.3) will work closely with the genderbe implemented to understand key constraints and opportunities affecting the differential participation of women and men in RTB value chains and technology innovation. It will seek ways to make participation more equitable and effective, leading to larger scale development outcomes. Foresight, as well as ex-ante and ex-post studies, will instill an impact culture to better align RTB research with outcomes and ensure value for money. FP5 will guide and backstop the implementation of the \"AFS innovation and scaling fund\", which facilitates systems integration among FPs and with other AFS-CRPs.All FPs contain one or more crosscutting clusters; FP5 is predominantly crosscutting. Under FP5 research is conducted to develop new tools and methods jointly with other clusters. They provide methodological support to and spaces for shared learning with other clusters, both inside the same FP and across other FPs.Flagship and cluster business cases were laid out during 2014/15 and subjected to an intensive external review process in May/June 2015. Detailed feedback informed the feasibility of each cluster and their integration into FPs as well as the RTB program structure as such. Although reviewers found business cases generally solid, they drew attention to gaps and inconsistencies that led to ongoing reformulation of the cluster and FP descriptions and their incorporation into this proposal. The reviews (1) highlighted the absence of a sweetpotato cluster in FP2, with all other crops represented (this was subsequently included in the current version of this flagship); (2) pointed up the need to take a broader approach in FP4, considering the contribution of RTB crops as healthy functional foods; and (3) proposed that FP3 be framed so as to better reflect the broader work on crop management aspects. coordinating platform to share and synthesize knowledge on how gender inequalities affect agri-food systems, and to understand the approaches and tools required to improve equitable access to RTB innovations.Annex 6 gives further details of collaboration between RTB and other CRPs and the new CGIAR-wide proposed platforms.A key dimension in the SRF and the CGIAR second-phase portfolio is the increased integration across the CRPs and a strengthened ability to work with a wide range of partners and stakeholders in achieving key development goals. RTB is fully committed to and will designate funding for site integration countries of highest priority, linked to a proposed \"AFS innovation and scaling fund\" (see Section 2: FP5) for RTB crops.Site integration meetings were held in the final quarter of 2015 for countries identified as highest priority (++ Site) and in 2016 for second-level priority (+ Sites). It is important to bear in mind that these priority countries are not intended to exclude other countries that are also critical for RTB deliverables. RTB is setting up a \"AFS innovation and scaling fund\" for Phase II that will support collaboration across CRPs at different levels of scale, with a particular focus on the site integration countries. RTB's PMU has worked closely with each of the prioritized site integration processes (see Table 6), providing co-funding and designating RTB focal points across all participating centers. These processes represent an opportunity to:Support dialogue and engagement with partners and stakeholders to understand and align with the national priorities and actions (i.e., demand for RTB research and also evidence-based advocacy where national priorities are inappropriate).Get closer to RTB partners in the CGIAR system (i.e., other CGIAR centers, CRPs) for strengthening collaboration across crops/commodities and with the relevant GI-CRPs in that country.Identify specific opportunities for integration into other CRPs where RTB could move ahead (e.g., work on sweetpotato silage or cassava waste utilization with LIVESTOCK).Provide input to organize an inventory of interventions by geography in the country and explore possibilities of focusing efforts in particular sites where co-location, shared services/research activities, and even staff could make sense. Provide a space to link impact pathways of RTB with those of the other CRPs.Under RTB, the expertise of CGIAR and French organizations that had been dispersed across individual centers was brought together to exploit several comparative advantages: (1) scientific capacity in human resources and research infrastructure; (2) individual center's capacity to act as conveners and facilitators across national boundaries, and as an \"honest broker\" to assemble a broad range of public, private, and development organizations; and (3) access to well-characterized global germplasm collections of major RTB crops. Phase I built on this comparative advantage by establishing a common umbrella to expand partnerships and capacity for crosscutting synergistic work relating to (1) their status as crops of the poor and the implications for poverty reduction and nutrition; (2) predominant roles of women in value chains;(3) vegetative propagation as related broadly to seed systems and to breeding systems; and (4) commonalities in post-harvest management, including transportation, storage, and processing.RTB, as a program with high scientific capability and global outreach in developing countries, has a comparative advantage and key pivotal role in integrative research generating international public goods, which would otherwise not be delivered by NARES, nongovernmental organizations (NGOs), universities, Strong collaboration by RTB with BRAC, an international NGO based in Bangladesh for implementation of potato and sweetpotato projects. They also provide a common NGO platform through which RTB also collaborates with AAS and Worldfish and other organizations operating in Bangladesh.Even before the Consortium-driven integration process, RTB through CIP has been a member of a CGIAR coordination group linked to their common implementation of Feed the Future projects. Outside of meetings convened through USAID, RTB has also participated in multi-lateral coordination meetings led by the biggest CGIAR Centers (Worldfish and IRRI). CIP has worked with Worldfish to expand the area of the OFSP and vegetables to integrated homestead systems involving fish ponds.Currently CIP is the only RTB Center operating in Bangladesh. We are coordinating with CIAT about possibilities of expanding work on potato and SP to cassava, which is a small but potentially growing part of the agri-food systems.Within There is also a Roots and Tubers Working Group that aims to strengthen the coordination and harmonization of roots and tubers-related interventions -both development and emergency related interventions -that will result in the adoption of common standards and approaches that will strengthen the root and tuber sub-sector over time and therefore improve the well-being of poor smallholder farmers. Through this initiative it is proposed that Working Group will contribute to both increased production and productivity and therefore result in increased household income and improved food and nutrition security.Some key activities to date include: Creating a database of our major partners/collaborators The Roadmap for agricultural and economic growth in Ethiopia is spelt out in the Government's vision was launched in during the last quarter of 2015 through the Growth and Transformation Plan II. The CGIAR should continue to align its programs to that. In addition there are already big ongoing programs led by the Government like the Sustainable Land Management (SLM) to which the CGIAR is already a major player. Following the launch of GTP II there have been a lot of national consultation meetings organised by several of CGIAR partners working on the alignment to GTP II. A good example are the meetings organised by the Agricultural Transformation Agency (ATA) and the Rural Economic Development and Food Security Sector Working Group (RED&FS) to discuss different pillars under GTP II. A number of CGIAR Centers participated in these consultations based on subject matter. The months of October-December were a busy time in Ethiopia.The CGIAR national consultation focused on strengthening mechanisms of engagement and seeking ways to better align to national priorities. One of the key recommendations was the need to establish a joint CGIAR-national agriculture research system collaboration and communication mechanism. This mechanism, it was recommended, would establish a permanent secretariat for joint planning, sharing of findings, and monitoring and evaluation.The other areas of collaboration were: the development of joint research proposals, sharing of equipment and resources, streamlining policy engagement, and improving opportunities and modalities of capacity development. The need to facilitate access to laboratory facilities was also highlighted as key. These goals could be achieved through enhanced joint research implementation and supervision.This meeting was fully supported by ILRI and the Livestock and Fish CRP. When contacted most Centers had no budgets to support this meeting. We risked not holding the meeting if the Lead Center had not taken action. This is a gap that thecommittee has raised in the previous meetings and asked every Center and CRP to seek further clarification from DDGs, CRP Directors and the CO on the way forward. More details on the Ethiopia national consultations can be found on the GCARD3 website.Next steps: In our last meeting on the 16 th of February we reflected on the December meeting and the follow on focused group meetings by individual CRPs. We further tried to clarify amongst ourselves what we understood site integration to mean?We agreed that so far the CRPs' priorities were well aligned with those of the GTP II and ATA's priorities. This is very promising for upcoming collaboration.We plan to purposely use the GTP II language in our engagements with the national processes and/or document through a flyer how CGIAR is contributing to GTP II.Furthermore we are aiming to identify what each CRP is seeing as the current situation and then the future situation in terms of site integration in Ethiopia from the perspective of the 10 elements which were highlighted in the guidelines, and to turn all that information into a narrative that also looks at collaboration initiatives and at ideas for future integration based on pipeline plans and projects.We were planning for a day's meeting for a smaller group to synthesize this material and write the site integration plan. At the time we discussed this we were not sure what is the level of details the CO is expecting for these plans?We also plan to continue the process of refining the mapping of CGIAR work in Ethiopia.No information available Attendance of the first national consultation event, organized by IITA and held in Abuja, Nigeria 16 th /17 th November 2015. At this, represented RTB. This was the first meeting and focusedpredominantly on interactions with national partners including the Ministry of Agriculture.Work between IITA and ILRI on use of cassava peel for livestock feed is an example of interactions between RTB and Livestock CRP.In the future, the most likely avenue of collaboration maybe between RTB and MAIZE and DCL particularly with regard to systems level research.Most likely areas are the forest/savanna transition zone (around Ibadan) where yam and cassava based systems can be found alongside maize.There is likely to be considerable scope for the involvement of a range of other actors within Nigeria including policymakers, NARS (eg NRCRI) and Universities.An implementation plan has been developed which will involve detailed discussions with stakeholders including research donors and development agencies.Regina Kapinga (IITA)The Tanzania CGIAR country collaboration and site integration process is coordinated by a CG-Tanzania Site integration process group composed of representatives from: CG centres and CRPs have to understand the national strategies as elaborated in the Tanzanian Agricultural Sector Development Program (ASDP) Phase II. This implies that both CG centres and/ CRPs, when preparing the proposals that include Tanzania, should ensure to access the ASDPII documents for references so that where possible align the activities with the identified national priorities. IITA therefore as a lead focal centre, in January this year, was invited to participate in a 5-days national ASDPII prioritization workshop whereby we worked closely with the Ministry officials and other key stakeholders to identify key areas of focus by the country. The documents from this exercise, have been shared with all the CG site-integration focal persons to share with their respective directors and teams for consideration when developing the draft proposals. It is expected that before final submissions, some of the NARS reps. will get an opportunity to provide input on the proposals which include Tanzania to ensure alignment.We are also currently striving to jointly develop and implement projects that have multiple commodities and disciplines. An example we plan to emulate is that of AFRICA RISING project which although is led by IITA, it has other implementing centres which include-ICRAF, CIAT, ICRISAT, IITA, ILRI, AVRDC, and CIMMYT respectively. These together with various national R4D partners in the country, are demonstrating a good example of collaboration and integration. AFRICA RISING project, is using a common set of research sites and staff from various centres are participating in the implementation the project. In the pipeline is the new CGIAR-FARA-African Development Bank's Africa-wide initiative on FEEDING AFRICA. This potential project known as Technologies for African Agricultural Transformation (TAAT), will implement the scaling up and out of the proven technologies from the CG-centres to about 20 African countries. Tanzania, is one of the focus countries for TAAT project which again will provide an opportunity for about 13 CG centres to work together and alsoTechnologies for African Agricultural Transformation (TAAT), will involve Tanzania as a focus country. This will bring together 13 CG centers in addressing a diverse set of R4D targets. Work on all of the RTB crops will be incorporated into this initiative. Site integration work will have a major influence on this, since local partners will drive the prioritization process.There are currently no specific geographical sites that have been identified for CRP collaboration through the site integration process. This will happen at a later stage. Most of the discussion at the site integration meeting focused on the link between the government of Tanzania and CG centres. Further partnerships will be identified once more practical planning begins.The site integration process in Tanzania is being led by Regina Kapinga, and James Legg represented RTB during all meetings and will provide feedback to RTB on how the process is progressing. CG centers have previously worked well together in Tanzania.partner with the governments and other agencies from the selected focus countries. On 11-15 April, IITA in collaboration with AfDB, will convene in Nigeria, a TAAT awareness regional consultative workshop which will be attended by several CGIAR centres, development partners, sub-regional organizations and several national stakeholders from various countries.Regarding the sharing of the CGIAR facilities, IITA -Tanzania office, already is hosting three CG centres-CIP, IRRI, and ILRI. AGRA although not a CG centre is hosted by IITA. ICRAF and Africa Rice centres are located in the neighbouring areas which also makes it easy for consultation and effective use of the CG facilities. Our site-integration process group will regularly communicate via emails and where possible organize meetings at least once every six months. Co-funding of these meetings will be explored and explored. Plans are also under way, to discuss the possibility of organizing a CG-NARS national awareness workshop aimed at popularizing to the new government, our best-bet technologies for scaling-up and out using the internally-sourced resources. Therefore, the workshop will strategically target the policy & decision makers, private sector and other key players for resource mobilization. The selected technologies for popularization should have been tested and proven for potential to reach and impact millions of beneficiaries in Tanzania.Dindo Campilan, CIAT Nine CRPS and 10 Centers have participated in the Vietnam planning for CGIAR country coordination. A national stakeholders' consultation workshop was organized in December 2015, with over 70 participants representing: 1) research institutes and government agencies, 2) universities, 3) NGOs-private sector agencies and associations, 4) international organizations and donors, and 5) CGIAR staff.Stakeholders agreed on an eco-regional framework to facilitate incountry collaboration and site integration. The target regions are: 1) Northwest, 2) Northeast, 3) Red river delta, 4) North centralFor the first meeting, there were 8 non-CG stakeholders associated with RTB representing NARI, NGO's and private sector. CRP-RTB was presented by Bioversity, CIP and CIAT scientists. The CG community in Vietnam is already regularly interacting and coordinating. Interactions between CRP-RTB and CCAFS to shares experiences on cassava crop management in Climate Smart Villages (CSV's).  Interactions between CRP-RTB and L&F on the use of sweetpotato and cassava as animal feed.Define steps taken so far (March 2016) to establish national level engagement with other CRPs towards site integration Define plan and schedule through which your CRP will provide relevant elements for development of CGIAR site integration in this country coast, 5) Central highlands-south central coast and southeast, and 6) Mekong river delta. In addition, integrating CRPs with national and local development plans was considered a key dimension of country collaboration. For each region, the stakeholders identified: 1) development priorities as set by government policymakers/decision-makers, 2) key research gaps which are recommended for the CGIAR to address, and 3) potential partners for specific research and development initiatives.Between December 2015 and March 2016, CRPs/Centers also engaged in bilateral discussions on specific collaboration needs and opportunities. Several CRPs also organized their respective country/regional planning and consultation events.A follow-up meeting by the CGIAR Vietnam team was held on 7 March, with 8 CRPs and 7 Centers represented. The 8 participating CRPs re-confirmed that Vietnam is a target country for CRP2 proposals. As next step, it was also agreed that subnational targeting will be undertaken for higher-resolution site integration plans, i.e. within each agro-ecoregion. A draft agenda for the 10element site integration report was prepared. The proposed action items are to be shared with CRPs, for them to indicate their suggested priorities as well as intent for co-financing/cost-sharing.The country collaboration/site integration efforts in Vietnam is coordinated through: 1) core team with representatives from CRPs/Centers having physical (office) presence in Vietnam, and 2) working group with representatives from all CRPs/Centers planning to undertake activities in Vietnam for CRP2. CIAT provides overall leadership, with ICRAF as co-lead Center. In each eco-region, a lead Center and supporting CRP/s have also been identified and agreed upon. Interactions between CRP-RTB and HT on system's research.  Interactions between CIAT and CIP scientists concerning methods for impact assessment.  Planning and collaboration between CIP and CIAT in the FoodStart+ project (IFAD / EU funded), involving sweetpotato and cassava.  Regular science seminars between all Vietnam-based CG centers during so-called \"brown bag seminars\".  Shared office facilities between CG and CRP's in basically two hubs (recently ILRI moved to the UN building). Beyond key coordination and communication mechanisms that were identified during the last internal CGIAR team meeting, several project / possible CRP2 activities between CRPs were identified:  RTB-CCAFS: (i) testing of RTB technologies (erosion control, varieties, etc.) in CSV's, (ii) climate suitability models and forecasting for RTB crops;  RTB-A4HN: (i) food systems research and role of RTBs for income generation / human nutrition;  RTB-Livestock: (i) use of cassava waste and sweet potato for animal feeding;  RTB-PIM: (i) inclusive value chain of RTB crops; The main production zones of RTB crops themselves do generally not overlap within Vietnam. Yet, some geographical sites where cassava research and CRPs overlap have been identified (see below). Opportunities for potato, sweet potato and banana R&D needs to be further identified. The sites where RTB clearly overlaps with other CRPs are:  RTB-CCAFS: Yen Bai province (north-east region of Vietnam).Here CIAT/RTB has a history of cassava work (including cassava management, varietal testing) while CCAFS have established a CSV (Ma Village). Also possible benchmark site for the new \"livelihoods at scale\" FP of RTB.Define steps taken so far (March 2016) to establish national level engagement with other CRPs towards site integration Define plan and schedule through which your CRP will provide relevant elements for development of CGIAR site integration in this country  RTB-Livestock: Dak Lak province (central highlands region of Vietnam). Here CIAT/RTB (with ACIAR funding) is working on cassava value chain research while the Livestock-CRP is working on pig husbandry. There is an opportunity to link. Also possible benchmark site for the new \"livelihoods at scale\" FP of RTB. Bioversity, CIP and CIAT have participated in the two meetings indicated Each CRP focal point in Vietnam has made a presentation of the CRP2 content, FPs and likely relevant areas for implementation. The content was consulted with CRP / CG center management. The main contributions from CRP representatives and national stakeholders is reflected in the integration plan. We are foreseeing the establishment of an RTB in-country hub hosted by CIAT Hanoi office. RTB researchers from CIAT and CIP are already co-located in the same office, while discussions are under way for a Bioversity banana scientist to be posted in the same office.Placeholder until meting to be held March 16 th No meeting for site integration has been yet held in Cameroon. However I had the opportunity to attend the DRC site integration meeting organized in DRC. In DRC I discussed extensively with Manning-Thomas, Nadia (CGIAR Consortium) who was facilitating this meeting in DRC. In consultation with other CGIAR Centres (IITA, CIFOR, Bioversity) we decided to organize the Cameroon meeting on 16 March 2016. The following institutions are expected to attend this meeting: IITA, CIFOR, Bioversity, ICRAF, IRAD, AVRDC, MINFOF, MINEF, Universities of Yaounde1, IBAYSUP, CRESA.Prior to this meeting, the CGIAR centers based in Cameroon were already working together in projects such as Sentinel Landscapes. ICRAF, CIFOR and Bioversity developed joint teams and worked together on institutional mapping of a landscape, socio-economic characterization and land degradation surveillance.For ICRAF as more most of research activities are covered by FTA, Scientists focussed their activities that are linked to CRP6.1,CRP6.2,CRP6.3,CRP6.4,and CRP6.5 They \"represent\" Bioversity in the case of banana plantain and IITA in the cases of yam and cassava. All RTB activities, except cassava, were mapped along with other CRP activities There has probably not much explicit site integration activity. Some of the Jumpstarting project sites are at the Dryland System benchmark sites. We seem to be the only ones there. Additionally, CRP RTB (CIP) has offices in the research institutes, CSIR-CRI and SARI where these crops are mandated with the national program.Our NIRS analytical lab is used occasionally and somewhat informally to analyze samples of most of the RTB commodities.In addition to IWMI, Africa Rice, Bioversity, IFPRI, and IITA were the centers most engaged with the exercise. IITA had a number of CRPs represented. We agreed that we should be thinking about new W3 and bilateral opportunities. Pointed out on several occasions the importance of RTB in the national diet = #1. However, we recognized that most of current CRP engagement is in the north of the country where donors are putting most of their money, but where cassava and bananas tend to be less important.There was general agreement, that one of the most promisingDefine steps taken so far (March 2016) to establish national level engagement with other CRPs towards site integration Define plan and schedule through which your CRP will provide relevant elements for development of CGIAR site integration in this countryNational Consultation workshop with the Centres/CRPs. Over 60 people from different stakeholder categories participated in the event. The workshop revealed how the integrated efforts of the CGIAR Centres can actually complement national priorities and those of other partners, towards agricultural transformation in Ghana. Following MoFA's presentation on the national priorities for driving Ghana's Shared Growth and Development Objectives, the participants identified and discussed key themes that could be the CGIAR strategic focus in Ghana. The themes identified were consistent with the preliminary findings from the review done by the SC. The workshop participants also suggested ways of working effectively together (internal integration) and with local partners (external integration). The workshop further provided insight on tracking the progress and impact of the integrations as well as the coordination mechanism to sustain the Site Integration Process.Next steps are: (i) finalise the site integration plan with the information gathered during the workshop; (ii) engage in regular consultation and exchange with the national partners through their representation in the steering committee and (iii) sharing information at national platforms. The SC agreed that sharing of information, as well as collaboration in joint activities and resource mobilisation is paramount to strengthen our integration. Collaboration will commence on the identified themes and with a joint visit to the National Development Planning Commission of Ghana.opportunities for CG centers would be the new ADB program and that we should position ourselves very deliberately for that. We also agreed to look for other opportunities as they arise. Key NGOs, universities and donors (SNV, Canada, Netherlands, USAID, UDS, KNUST) were present at the meeting. Specific geographical sites: An activity map will be prepared Each center has a set of long-term public and private sector partners from research, business and development. However, at the national workshop there has been very little turn-out from business (1) and development (1) partners as well as from donors (only Australia). Next steps:  Make sure that meetings are not overrepresented by CGIAR staff (70%)  Better target potential partners with a concrete action plan  To implement effective collaboration coordination has to go beyond large workshops only attended by the well-known partners. Activities like trade fairs and proactive communication directly to stakeholders and potential scaling partners. So far very little, but further coordination will follow in the process of developing the site integration plan which will be submitted by the end of April. All RTB flagships have activities in Kenya and will be mapped into the site integration plan and furthermore we will identify potential collaborative actions. The process of coordination has generally been delayed by the CRP proposal writing process with all CGIAR centers.National consultation meetings 22 nd /23 rd March We had our small meeting with CGIARs. We set up a date for the National consultation for the 22nd and 23rd of March. We hired aDefine steps taken so far (March 2016) to establish national level engagement with other CRPs towards site integration Define plan and schedule through which your CRP will provide relevant elements for development of CGIAR site integration in this country local consultant to assist with the preparation. The other consultant the fees/honorarium is still under negotiation. We are now working on all logistics. The information on CRP will be ready before the end of this month.Arun Joshi (CIMMYT) Sugden Fraser (IWMI)The process of site integration in Nepal was initiated on November 9, 2015 by organizing a meeting of all CG centres working in Nepal. The site integration steering committee was formed (with one member from each CG/CRP centre). This included CIMMYT, IWMI, Biodiversity Int, IFPRI, IRRI, CIFOR and ICARDA. CCAFS was included in the subsequent meeting. Two meetings were held on 4 th and 30 th December to share information on work being done by each centre in Nepal and to plan for a stakeholder consultation meeting which was organized at Kathmandu on 11 January 2016.The purpose of the stakeholder meeting was three-pronged: to design the integrated research agenda, to consolidate CGIAR centres, and to coordinate with national actors and strengthen the coordination, collaboration and alignments with partners in line with national priorities and policies. More than 60 participants, representing 34 national institutions participated. The cost of this meeting was shared by all centres.A joint presentation on activities being undertaken by all CG centres on various CRPs in Nepal was presented and two discussion sessions were held. The first one focused on better alignment of current CGIAR research activities, whilst the second one on targeting stakeholders' needs. Opportunities for further alignment of CG programs and CRP integration were identified through shared goals, activities and increased partnerships. The minutes were prepared along with one pager blog and submitted to CGIAR. Consultation with representatives of partners and beneficiary groups where they aim to deliver outcomes at scale, including governments, NGOs, farmer organizations, processors and others along the value chain, and, ultimately, consumers. The coordinated commitments in different ecologies can beDefine steps taken so far (March 2016) to establish national level engagement with other CRPs towards site integration Define plan and schedule through which your CRP will provide relevant elements for development of CGIAR site integration in this countrygoing forum and expand it further to achieve the CGIAR site integration goals.Next steps: We will be setting up a full secretariat to assist in organising the workshop and all the invited participant will get invitation letters by 11th March, 2016. Next review meeting will be on 18th March, 2016 to review the plans and progress for the workshop preparations  The main workshop meeting to be held on 29th, March 2016. This meeting will gather stakeholders views and then utilizing the recommendation to work on the site integration plan that will be finalized by end of April, 2016.We will be posting all the minutes to the CG sites in the next two weeks.rooms. We expect that we shall be utilizing same implementing partners when possible to implement our projects on the ground. We are being requested by donors to actively lobby the government as one CGIAR body when we want to influence polices. So far we have had 5 site coordination meetings 4 for planning and one a joint meeting with donors. IITA and CIP staffs are always represented. We are planning to fund the site integration forum through the centers contributions and CIP and IITA will contribute.The current site integration committee has two members from all the centers in Rwanda (CIP, CIAT, IITA, and ICRAF (1)). CIP being the lead center chairs all the meetings and is responsible for convening meetings and other activities. We have also welcomed Humid and Tropics site coordinator from Rwanda Agricultural Board to be part of the Forum organizing committee. After the forum we will then plan on the future activities and the role each center will play.Eldad Karamura (Bioversity)The site integration process in Uganda is jointly chaired by Bioversity and CIP on a 2-year rotational basis, with Bioversity starting in 2016. A steering committee involving all the 8 CGIAR centres present in Uganda (Bioversity, CIAT, CIP, ICRAF, IFPRI, IITA, ILRI, and IWMI), was formed and held its first meeting on January 27, 2016. At that meeting the 1st Consultation Stakeholder meeting was fixed for 9 March 2016. All centres agreed to share the costs of the stakeholder consultation workshop. A second Steering Committee meeting was held on 11 February 2016, following which the chair and co-chair visited some key NARS stakeholders such NARO-Uganda DG and Makerere University. CIAT member consulted with the Uganda National Farmers' Federation, while the IWMI member consulted with teams in the Ministry of Finance. These consultation helped to collect secondary data and afforded us opportunities to interact with key stakeholders. The steering committee resolved that the first stakeholder workshop be co-hosted with the National Agricultural RTB participation in the national consultation through Bioversity, CIP and IITA. Initial discussions started with the NARS presenting their national R & D priorities while the CG presented theirs in Uganda. In the issuing discussions, it emerged that the NARS need to consult widely in their constituency while the CG need to develop their vision, mission, and other strategic objectives for Uganda in order to have meaningful discussions.Both the NARS and CG entities agreed that this is going to be a continuous process of engagement. It is also perceived as multilayered with different partners along the value chains in the food agri-business; must include policy and environment advocacy partnerships RTB and Humidtropics strong collaboration. A key number of research outputs and processes jointly produced. There are many examples of successful inter centre/CRP collaboration such as HarvestPlus, CIALCA, Banana Xanthomonas Wilt, etc from whichDefine steps taken so far (March 2016) to establish national level engagement with other CRPs towards site integration Define plan and schedule through which your CRP will provide relevant elements for development of CGIAR site integration in this country agendas to more effectively contribute to the objectives and targets set by the Strategic and Results Framework of CGIAR and also to align the CRPs research agenda with national agricultural priorities in Zambia.From the workshop, the participants identified key elements that would lead to successful site integration, the key elements are summarised under the headings of: core values, administration and management, technical, communication and resource mobilisation in the workshop report. Furthermore, participants identified key activities that would be required to bring about site integration and which areas they would like to proceed in partnership with the CGIAR and CRPs. The Zambian National Agriculture Investment Plan (NAIP) provided a basis for the discussions and is key in ensuring the alignment of the research and development priorities in the Zambia agricultural sector goals.The key issues identified for site integration included the following: whole concept of site integration and the new thinking of CGIAR under the Second Phase of the CRPs. The critical next steps were agreed on and it concludes the following among others  Incorporation of the workshop inputs and agreed actions into the CRP proposal  Implementation of the ideas identified and discussed during the workshop  Feedback on the high level meetings to follow and decisions on Zambia Site Integration.  Developing a plan for site integration and soliciting buy-in No site has been identified yet. Collaboration mostly with private sector, such as investors who are called by the government to diversify the agriculture It is planned a high level meetings to follow and decisions on Zambia Site Integration There has not been pre-existing mechanisms where the CRP has been involved in to coordinate across centers/CRPs in-country","tokenCount":"5774"} \ No newline at end of file diff --git a/data/part_3/0723687450.json b/data/part_3/0723687450.json new file mode 100644 index 0000000000000000000000000000000000000000..a492041269f2be6626549cb5fa85f8e0aa64c616 --- /dev/null +++ b/data/part_3/0723687450.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"7044810c8a38e39816164a449b9aecfd","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/1e9a1f07-ae55-4dc7-95f2-d84d9996a5af/retrieve","id":"-1577596715"},"keywords":[],"sieverID":"1c6e80f9-e005-4990-a72b-28a002fa15e4","pagecount":"8","content":"To capture disruptions and coping strategies in Myanmar's crops trade sector, a phone survey was conducted in August 2022 with a sample of 359 commodity traders in 14 states and regions.Crop traders are important actors in the mid-stream of Myanmar's food supply chains serving as the essential link between farms and food processors, exporters, commodity exchange centers, and urban food markets. Disruptions in the mid-stream brought on by political instability and COVID-19 will likely have an impact on both farmers and urban consumers through market access and crop pricing. This is the eighth Research Note in a series that has monitored the impacts of COVID-19 and political instability on crop traders in Myanmar through telephone surveys since May 2020. This Research Note presents results from 359 interviews conducted between August 24 th and September 5 th , 2022 including (i) general and major disruptions caused by the political crisis (ii) perceived impacts resulting from transportation restrictions and recent changes in foreign currency regulations; (iii) changes in crop prices, trading volumes, transport costs, and fuel prices; (iv) detail on credit lent out to farmers and credit taken in by traders.The sample covers 111 townships in 14 states and regions (Figure 1). Traders from Shan State comprise the largest share in our sample (32 percent) followed by Magway (17 percent), Sagaing (17 percent), and Mandalay (15 percent). Wholesalers who purchase, store, grade, and sell commodities account for nearly three quarters of the sample. The other quarter is brokers and agents who facilitate crop transactions on commission. We split the two groups in the analysis and compare contemporary data from 2022 to recalled data from 2021. Results are shown as percentage changes. We asked crop traders a series of questions on different disruptions faced in the 30 days prior to the interview to evaluate the effect of the pandemic and political instability over time. As in the March survey, transportation disruptions were pervasive in August with increased transportation costs (89 percent) and high prices of fuel (85 percent) being the highest reported disruptions (Figure 2). Reflecting the national fuel shortage, the share of traders reporting difficulty in accessing fuel increased by 35 percentage points in August (59 percent) relative to March (24 percent). Traders also continue to experience high levels of mobility restrictions due to checkpoints, curfews and other regional directives as conflicts arise in remote parts of the country and local authorities strengthen administrative controls.Banking and finance disruptions in August were mostly similar to March with the exceptions being an increase in demand for credit out from farmers, and a decline in issues receiving payment for crops sold. Collecting repayment from credit lent to farmers and difficulties paying farmers for crops are reported by about one quarter of the traders.On April 3, the Central Bank of Myanmar set the exchange rate at 1,850 MMK per USD and required that local banks and other holders of foreign currency convert their deposits and oversea transmittances into Myanmar kyat. Several changes to this regulation were made over the months leading up to August, most recently setting the reference rate at 2,100 MMK and exempting certain international companies and corporations. The large discrepancy between CBM reference rate and informal market rates was a serious financial blow to importers and exporters while the iterations of the orders created uncertainty in the markets.When we asked our traders if foreign currency regulations caused disruption, only twelve percent directly cited the regulation as the problem. However, our sample contains very few traders that are directly involved in exports. The traders that reported disruptions from the currency regulations reported increases in operating costs, crop prices, and fuel prices along with a decline in exports. In separate questions, 14 percent of all traders said they changed the types of crops they traded as a result of the currency regulations, and the regulations were a common reason cited for changes in prices (Figure 5 Disruptions to electricity and communications show large declines since March. However, we added a question in the August survey to directly ask about difficulties finding crops to buy. Strikingly, half of the traders reported this as an issue.As a follow-up to these disruptions, we further asked traders to identify the most significant problem that they are facing. Transportation disruptions again are the most common (Figure 3), particularly for wholesalers that are more often responsible for moving crops. Even for brokers, transportation costs and restrictions account for over half of all responses. Banking disruptions are a lesser problem, cited by less than 10 percent of both traders and wholesalers. Reported costs of fuel and transport have increased by 113 percent and 98 percent respectively over the year to August 2022 (Table 2). Among the traders using transport, nearly a third of traders had trouble contracting transport services, whereas two thirds of traders had difficulties accessing fuel.When probed on how they plan to cope with fuel shortages and high prices, the most popular option among both wholesalers and brokers was to cut non-essential fuel expenses. Using more hired transport was the second most preferred coping mechanism. Cash transactions continue to dominate crop trading; 94 percent of crop sales were in cash, along with 75 percent of crop purchases, and 91 percent of brokerage fees payments. In-person bank transfers for buying crops have increased noticeably over the past year to 23 percent of transactions.Despite the documented disruptions to finance and business, only 5 percent of wholesalers and 7 percent of brokers reported a decline in the value of credit lent out (Figure 4). A quarter of wholesalers had similar lending to last year, while 21 percent reported an increase in value and 49 percent did not have any credit lent out in either year. Most of the traders who have lent out expect to be fully repaid in 2022, though 17 percent do not expect to ever be fully repaid. Few traders took in credit or loans in August 2022, but among those that did most had similar or higher values than one year prior. 49 percent of traders who have borrowed credit expect to repay in 2022, and 27 percent of them expect to repay in 2023. Traders reported large price increases for all crops in August 2022 relative to 2021 (Table 3). Prices of sesame, which is exported and pressed into oil for local consumption, increased by about 50 percent. Protein rich chickpeas, also consumed locally and exported, increased by about 60 percent. Substitution effects likely affect both crops as consumers shift away from high priced oils and animal proteins. Groundnut, which is exported, pressed into oil, and high in protein has seen the largest price increase of about 80 percent. Prices of rice, far and away the most important crop for consumers and also an important export crop, have also risen by 41 percent. Maize prices continued their rising trajectory on the back of strong export demand to Thailand. The rapid MMK depreciation is a large factor in the price increases, especially for crops strongly linked to export markets. Exchange rates in August 2022 and August 2021 show that MMK lost 25 percent of its value against the USD and 10 percent of its value against the Thai Baht at the CBM official rates, but the MMK lost 51 percent against USD at the informal parallel exchange rate. At the official exchange rate, the year-on-year price increases for groundnuts and rice in Myanmar far outpace global markets while maize price changes are slightly below the global changes (Figure 5). However, at the informal exchange rates (the more accurate market value of the kyat), USD maize and rice prices have declined year-on-year though groundnut prices are still above last year. The widening gap between domestic and international market prices for maize and rice (both exported in large quantities) aligns with rising transport costs along with trade or market disruptions. Groundnuts differ from maize and rice as a smaller share of production is exported, and domestic demand has increased substantially following broad disruptions in the edible oil markets. As a follow-up to crop price questions, traders were asked what they thought to be the main reasons behind the price changes (Figure 6). Transportation charges (72 percent), political instability (68 percent), and increased fuel prices (65 percent) were the main reasons given for price changes, while one third of traders cited the foreign currency regulations and a lower area of crops planted.Source: Traders phone survey-August 2022 round Finally, we asked crop traders to rank the level of security that they perceived as well as presence of conflicts in their communities and displacement during the past 30 days. The share of respondents reporting their safety as insecure and very insecure has climbed by 14 percentage points in the Dry Zone since the March round while perceived insecurity slightly dropped in other regions. Conflicts and displacements show small increases compared to five months ago. Overall, disruptions of various forms have reduced traders' financial status as the reported months of survival on savings have reduced by 33 percent from an average 15 months in March to 10 months in August. With the main monsoon marketing season beginning, higher crop prices are a positive for farmers as they try to recover higher production costs. However, high food prices are a burden for consumers, with potential impacts on food security.Overall, Myanmar's crop trade sector appears to be competitive and resilient in the face of multiple disruptions and policy changes. Still, transportation costs and disruptions continue to affect inter-regional trade and drive a wedge between producer and consumer prices, with large welfare costs for the country.Finally, unstable export and foreign exchange policies create uncertainty in the market for imported and exported commodities with negative effects on both producers and traders.","tokenCount":"1622"} \ No newline at end of file diff --git a/data/part_3/0723822330.json b/data/part_3/0723822330.json new file mode 100644 index 0000000000000000000000000000000000000000..482fe9c92d9612bdf7ab097a00d3d70757c90a46 --- /dev/null +++ b/data/part_3/0723822330.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"07545863c6c6561e6939f383769f0fa8","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/0f3e4edb-aa4a-4026-be27-4f640bd58de5/retrieve","id":"1928496110"},"keywords":[],"sieverID":"7501da36-5330-4c69-ac5c-e6aba424c195","pagecount":"11","content":"Les pays ACP mettent de plus en plus l'accent sur la contribution du secteur de la pêche au développement national. Dans certains pays, c'est le développement des activités de pêche à petite échelle qui est privilégié ; dans d'autres, c'est le développement de la transformation locale à plus forte valeur ajoutée liée aux activités de pêche industrielle ou semi-industrielle ; tandis qu'ailleurs l'accent est placé sur l'amélioration de l'accès pour le poisson pêché dans les zones économiques exclusives (ZEE) nationales.Les règles d'origine sont encore un point très litigieux dans le secteur de la pêche. Même si certains accords avec les pays ACP ont accordé des concessions en autorisant l'approvisionnement global pour certains produits, ils ne sont pas généralisés à travers les différents pays ACP, et les concessions n'ont pas été appliquées à un plus large éventail de produits de la pêche.Par ailleurs, vu l'application plus stricte par l'UE des normes sanitaires et phytosanitaires (SPS) et des exigences de sécurité des denrées alimentaires, cellesci jouent un rôle majeur pour obtenir un accès au marché efficace, en particulier pour les pêcheries artisanales des pays ACP.Néanmoins, l'UE reste le principal marché pour les exportations de poisson des pays ACP, même s'ils ne représentent qu'environ 11 % des importations de poisson de l'UE (à l'exception du poisson mise à jour octobre 2013 Pêche ACP-UE : accès au marché et commerce Ce potentiel crée de nouvelles opportunités commerciales pour le développement structurel des secteurs de la pêche ACP.Le débat sur la réglementation future pour l'organisation commune du marché pour les produits de la pêche s'est poursuivi tout au long de 2012/13. La politique de pêche de l'UE se focalise de plus en plus sur la durabilité, des efforts étant en cours pour lier les exigences de durabilité à l'accès au marché de l'UE, aussi bien en termes de durabilité environnementale que sociale. Les préoccupations grandissantes en matière de durabilité, cependant, peuvent soumettre l'élaboration des politiques à des pressions divergentes, exercées par des intérêts concurrents dans le secteur de la pêche européen. Bien que l'aquaculture joue un rôle de plus en plus important dans le commerce mondial de poisson (environ la moitié de ce commerce), le secteur est relativement sous-développé dans les régions ACP. Les investisseurs européens et chinois investissent cependant de plus en plus dans le développement de l'aquaculture dans les pays ACP.Il demeure par conséquent plusieurs questions liées à l'accès au marché qui inquiètent les gouvernements ACP, mais de nombreux domaines d'action potentiels pourraient renforcer la contribution du secteur de la pêche au développement économique national.Changements d'orientation des politiques des pays ACP en 2012/13 ","tokenCount":"430"} \ No newline at end of file diff --git a/data/part_3/0733446351.json b/data/part_3/0733446351.json new file mode 100644 index 0000000000000000000000000000000000000000..187d50ac767a2cf896269c6b9793f37d68c6a768 --- /dev/null +++ b/data/part_3/0733446351.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"ab0ff8059444aac1bde398fb370c7a90","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/a96b5e10-c77c-48d6-9880-b7edbef4ee2a/retrieve","id":"-430440871"},"keywords":[],"sieverID":"e55f2a55-8ab8-4a07-aac3-22276732d71d","pagecount":"56","content":"ILRI works with partners worldwide to help poor people keep their farm animals alive and productive, increase and sustain their livestock and farm productivity, and find profitable markets for their animal products. ILRI's headquarters are in Nairobi, Kenya; we have a principal campus in Addis Ababa, Ethiopia, and 14 offices in other regions of Africa and Asia. ILRI is part of the Consultative Group on International Agricultural Research (www.cgiar.org), which works to reduce hunger, poverty and environmental degradation in developing countries by generating and sharing relevant agricultural knowledge, technologies and policies.List of Tables iiiAbbreviations ivBackground 1The role of livestock in developing countries 1Actions needed for conservation and development of sustainable livestock breeding programmes 2Human capacity building required 4The ILRI-SLU capacity building project: A novel approach 7Project concept and objectives 7Funding 10List of Tables Table 1. Countries visited by ILRI-SLU project team Since 1999, the International Livestock Research Institute (ILRI) in partnership with the Swedish University of Agricultural Sciences (SLU) have been providing capacity building on the sustainable use of Animal Genetic Resources (AnGR) through the novel approach of \"training the trainers\".Scientists from 46 developing countries in Sub-Saharan Africa and Asia have been trained on animal breeding and genetics developments, implementation of breeding strategies, and on teaching and communication methods.Livestock accounts on average for about 30% of the agricultural GDP in developing countries, yet the productivity of many livestock populations is inadequate due to a complexity of factors. The genetic variability between and within species and breeds is largely unexploited at the same time as a continuous loss of genetic diversity takes place. Livestock productivity must increase to meet the projected demand for doubled meat and milk production within a few decades in developing countries, while minimizing environmental impact. These challenges require highly skilled people to lead the development in the desired direction. Unfortunately, developing countries suffer from a shortage of trained people, not least in the area of animal breeding and genetics, both at research and higher education institutions and in organizations responsible for livestock development.It is in this context that the ILRI-SLU project has developed its philosophy of \"training the trainers\" to effectively multiply knowledge and concepts to new generations of students, researchers and policy makers. This synthesis report provides insights and reAE ections on the project's outputs and outcomes, and informs on the ways forward in terms of further investment in developing and strengthening human capacity in the Å eld of AnGR.The role of livestock in developing countries Domestic livestock production is crucial for sustainable agricultural production systems and for future food security and poverty alleviation in developing countries.\"Livestock contribute 40% of the global value of agricultural output and support the livelihoods and food security of almost a billion people\" (FAO, 2010). The livestock sector is one of the most dynamic sectors of the agricultural economy. It has expanded rapidly in recent decades and the demand for livestock products is expected to continue growing strongly, driven by population growth, rising afAE uence and urbanization (FAO, 2009).The World Bank Development Report (World Bank, 2008) and FAO Report on the State of Food and Agriculture: Livestock in the Balance (FAO, 2009) clearly indicate that farm Animal Genetic Resources (AnGR) play a crucial and multi-faceted role in supporting agricultural production systems in developing countries. AnGR contribute to livelihoods by providing nutrients, draft power, socio-cultural needs of households and communities, and food security (Rege et al., 2011). Within these countries, a diversity of species and breeds is found, however, their potential has neither been fully explored nor exploited. In addition, outputs from individual animals are kept low due to harsh climates, inadequate feed resources, diseases, inappropriate breeding practices, unfavourable policies and poor infrastructure (Seré et al., 2008).The demand for domestic livestock as a food source in developing countries, dubbed the livestock revolution (Delgado et al., 1999a;Delgado et al., 1999b) is still increasing more rapidly than production levels. This provides a real need for information and understanding of AnGR, with a shift in emphasis from increasing the number of animals to improving the productivity per animal, so as to lessen their impacts on the environment, and control competitions with the human population (Philipsson and Okeyo, 2006;Rege et al., 2011). The Global Plan of Action, as internationally agreed upon in the Interlaken Declaration (FAO, 2007b), stresses the need for improved productivity and long-term breeding strategies to enable sustainable management of livestock.The livestock revolution in developing countries is projected to continue beyond 2020 and will increasingly drive world markets for meat, milk and feed grains to ensure favourable growth, poverty alleviation and preservation of the environment. Public investments that facilitate economic, sustainable, and small-operator forms of marketoriented livestock production are required (Delgado et al., 2001).Approximately 20% of the world's livestock breeds, most of which are only found in developing countries are currently under threat of extinction. No effective conservation programs are in place for more than 75% of these threatened breeds. FAO emphasises the need to conserve the world's biological diversity, including farm AnGR, for present and future use (FAO, 2007a(FAO, , 2007b)). However, conservation is not enough. The livestock populations must continuously improve their productivity by means of both genetic and management interventions to meet future demands of food while minimizing the environmental impact.In 2001, FAO invited all member countries to submit reports on the status and trends of their animal genetic resources; the current and potential contributions of farm animals to food, agriculture and rural development; and the state of national capacity to manage these resources; and provide priority action lists (FAO, 2007a). The reports submitted demonstrated the signiÅ cant and irreplaceable contribution of farm animal biodiversity to food security and development of nations. It was, however, also clear that the full potential of AnGR was far from being realized and conÅ rmed the serious erosion of genetic diversity in both developed and developing countries.Three broad groups of threats to AnGR distinguished in the State of the World AnGR (FAO, 2007a) were: i. unfavourable livestock-sector trends: economic, social and policy factors; ii. disasters and emergencies; and iii. epidemics and lack of disease control measures. In addition, within developing countries, the breeding and crossbreeding of high-yielding exotic livestock breeds with indigenous livestock breeds, though with the intention of increasing productivity, has contributed to the erosion of indigenous genetic resources and loss of some breeds (FAO, 2007a;Hanotte et al., 2010;Rege et al., 2011). However, opportunities do exist for utilizing more productive genotypes in developing countries, so long as such genotypes are better matched to prevailing production systems (Philipsson and Okeyo, 2006;Rege et al., 2011).Databases and systems for inventory, characterization, conservation, monitoring of population trends and threats, as well as evaluation and genetic improvement of the AnGR are currently either non-existent or inadequate in developing countries (Kosgey et al., 2011). Supportive and effective institutions, policies and infrastructure are highly needed. Solutions to the various challenges within countries will only come from people within these countries ready to make a difference.The livestock sector in developing countries requires renewed attention and investment from the agricultural research and development communities and robust institutional and governance mechanisms that reAE ect the diversity within the sector.The sector can contribute more effectively to improving food security and reducing poverty, but policy measures are required to ensure that it does so in ways that are environmentally sustainable and safe for human health (FAO, 2009).Based on the SoW AnGR report of the FAO(2007a) four strategic priorities for action were identiÅ ed and adopted into the Global Plan of Action for AnGR (Box 1).Box 1: Sustaining socio-economic growth in developing countries in the backdrop of recent economic challenges for nations dependent upon agriculture demands a dynamic human capital: knowledgeable, AE exible, innovative, passionate and able to adapt technologies to local realities (Adipala et al., 2009). However, many developing countries lack the technical, physical, institutional and sustainable Å nance and human resource capacities to design and implement conservation and breeding programs for AnGR (Rege et al., 2011).Limited trained personnel-both in terms of numbers and in skills-are also a major impediment (Mwai et al., 2005).The pace of global scientiÅ c progress and development of new knowledge increase rapidly -not least in animal breeding and genetics. Each graduate with either a BSc, MSc or PhD degree must continuously update his/her knowledge and skills (Figure 1). Possibilities for continuing education and refresher training courses (not just for students, but also for faculties) are even more critical to developing countries, where access to the Internet and scientiÅ c journals is often quite limited. Developing countries need to devote attention to establishing and building up the relevant institutions in order to increase the impact of agricultural productivity and achieve sustainable use, development and conservation of AnGR. In addition, the development of innovative platforms to support and disseminate technology generation, and a strong human resource base are required to \"spur\" innovation (Adipala and Blackie, 2010;Batte et al., 2010;FARA, 2010). Greater investments to \"link research, education and outreach to development activities\" are required (FARA, 2010). Developing countries need to adopt and implement appropriate policies and effective regulatory frameworks, as well as build and strengthen the required human capacity (CAADP; FAO, 2007b;FARA, 2010). The intensiÅ cation of human capital development for agricultural research development by means of regional capacity strengthening and scaling up of initiatives is paramount for these countries to be able to implement changes that would facilitate their progress in addressing the Millennium Development Goal (MDG) of halving poverty by 2015 (UN Millennium Project, 2004).One of the most cost-effective ways of creating the critical mass of trained individuals required in any Å eld is to implement programmes within the developing countries, responding to the situation and needs of both the existing and the perceived future industry. National universities and agricultural research institutes are the primary source of current and future generations of researchers, teachers, extension personnel and policy makers and are therefore the 'engines' in capacity building for sustainable food production in developing countries. The Å eld of Animal Breeding and Genetics (ABG), notably sustainable breeding programmes and conservation of AnGR, needs to be given greater emphasis in university curricula. Additionally, methods of teaching need increased attention as students often Å nd ABG difÅ cult to understand. National Agricultural Research Scientists (NARS) need opportunities to strengthen both their subject knowledge and their didactic skills.A prohibitive factor to consider in training students and the continued education of their teachers is that most university literature is produced in and for the developed part of the world, and is not adapted to issues relevant for low input systems often found in developing countries. There is thus also a great need for development of course materials adapted to the tropics and prevailing developing country situations.To promote a sustainable and improved use of AnGR in developing countries, ILRI (International Livestock Research Institute) -in collaboration with SLU (Swedish University of Agricultural Sciences) and supported by Sida (Sweden) -launched a project in 1999 aiming at strengthening higher education (teaching and research) in ABG. The project activities and the achievements from the start to 2010 are presented in this report.The ILRI-SLU capacity building project: A novel approachThe project \"Capacity Building for Sustainable Use of Animal Genetic Resources in Developing Countries\" is an integrated component of the ILRI research agenda on improving management of AnGR, and the SLU agenda for human capacity development.It also provides opportunities for collaboration with and strengthening of NARS institutions and scientists in the area of ABG and in communication and teaching skills (Malmfors et al., 2002;Mwai et al., 2005;Ojango et al., 2009).The main concept of the ILRI-SLU project is based on the principle 'Training the Trainers', primarily targeting national university lecturers and researchers in developing countries who are actively involved in teaching and supervising research in ABG.Training the trainers is assumed to have a large impact because each teacher/researcher given refresher training within the project should, with the improved knowledge, awareness and skills, reach out to a large number of students, and also to colleagues, in their home institutions. The effect is thereby effectively multiplied (Figure 2).One of the greatest advantages of \"training the trainers\" is that it contributes towards sustainability by creating a pool of regional experts who can take the training further incorporating regional perspectives. Today's university students are tomorrow's researchers, lecturers, animal breeders and policy makers: through enhancing the knowledge base of trainers, students will be better equipped to rise to the challenge of the need to effectively utilize AnGR within their countries.The overall aim of the ILRI-SLU project and approach is to contribute to food security and poverty alleviation, speciÅ cally by achieving the following objectives:1) Strengthen subject knowledge and skills of NARS scientists in teaching, research and supervision of animal breeding and genetics;2) Strengthen communication skills of these teachers and researchers;3) Catalyze curriculum development, review of course contents, and use of new and expanded teaching methods in university education; The project commenced in 1999. In the same year, FAO received the mandate from the Commission on Genetic Resources for Food and Agriculture to support a country-driven state of the world process, leading to the launch in 2007 of the State of the World's AnGR (FAO, 2007a) and the adoption of the Global Plan of Action for Animal Genetic Resources (FAO, 2007b) by all FAO member countries. An overview of the project model is presented in Figure 3.By design, the ILRI-SLU project had a regional focus i.e. Sub-Saharan Africa (SSA -divided into East-South and West-Central sub-regions); South-East Asia (SEA); South Asia (SA); and Latin America (LA). Unfortunately, language constraints in Latin America (Spanish and Portuguese) made it prohibitively expensive to include that region in the project. Focus was put on the African and Asian regions with a possible re-visiting of the Latin American region at a later date. An advantage of the ILRI-SLU capacity building model is that once reÅ ned it can be replicated and extended to a number of different disciplines in the Å eld of scientiÅ c research and study.Funding for this project was provided by the Swedish International Development Cooperation Agency (Sida), a government agency under the Ministry of Foreign Affairs, Sweden.Sida´s goal is to contribute to making it possible for poor people to improve their living conditions (http://www.sida.se/English/). In order to solve the major challenges of our era -poverty, environmental degradation, and conAE ict -great collaborative efforts are necessary. The speciÅ c pathways to achieve this include support of economic growth and reforms, research, education and health, human rights and democracy, and humanitarian aid, as well as long-term sustainable use of natural resources and protection of the environment.Sida's task is to create conditions conducive to change and sustainable development, while partner countries remain responsible for their own development. Sida thus contributes resources and develops skills and competence and its activities span a wide variety of Å elds. The agency is characterized by a holistic approach, clarity and adaptability.The way in which Sida provided the funding for the capacity building project for sustainable use of AnGR in developing countries was unique in the following aspects:It allowed ILRI to expand its research agenda on AnGR with a related capacity building program in partnership with SLU;Long-term outlook, providing an opportunity for adequate planning and follow-up;Flexibility, allowing the team to make innovative changes depending on the needs identiÅ ed in various countries. Flexibility also enabled the team to make changes to schedules when countries were faced with challenges beyond the control of the project (e.g., the tsunami in Asia; violence in Kenya);Adoptability, the generic principle 'training the trainers' and strategy adopted by the team could serve as a model to be applied by any CGIAR centre or research institution;Provided opportunities for enhancing partnerships through shortterm exchanges and visits, and support for graduate students;Joint teaching and research on projects that addressed the ILRI agenda and involved SLU scientists.\"In comparison to other projects, this project is con¿ gured as a long-term project with a monitoring and evaluation component. This is highly appreciated as it allows for learning within the project. I think in future, outcome and impact monitoring will become even more important.\"Box 2:Comment on ProjectThe ILRI-SLU capacity building project was designed to directly target NARS scientists in developing countries who are responsible for research on and training of animal breeding and genetics.Much emphasis was given to planning activities to involve the target groups in each region from the beginning, and to assess conditions with regard to AnGR, human capacity, higher education, research and farm practices.A questionnaire was the Å rst tool used to solicit information and interest in the project from higher education institutions and research institutes. Within each of the three-targeted regions (SSA, SEA, SA), questionnaires were sent to all institutions in each country involved in post-graduate training (MSc, PhD) and research in animal breeding and genetics (ABG). These questionnaires covered a broad range of topics related to ABG (i.e., number and qualiÅ cations of the teaching staff, courses and course contents, teaching methods and materials, availability of lab facilities and computers for teaching, and number of students, etc.).In addition to the questionnaire, the project team carried out a number of \"groundtruthing\" country visits to further enhance their understanding of the local production systems and assess the real AnGR needs and requirements of the higher education institutions and research institutions. Countries visited are listed in Table 1. The responses from questionnaires and information gleaned during country visits were collated and used to inform the subsequent development of the training activities and materials.From the questionnaires and country visits to Sub-Saharan Africa, Southeast Asia and South Asia, constraints in AnGR training that were identiÅ ed are presented in Box 3. It should be noted, however, that every constraint listed is not relevant for every country included in the planning activities.Further details on the design and format of planning activities are outlined in an earlier report on the project by Mwai et al. (2005).Following the country visits, a three-day planning workshop was organised for each region. Participants were the key individuals in positions of authority in AnGR from the regional countries, the FAO regional representative and the ILRI-SLU project team. Through a facilitated process, the ILRI-SLU project provided equal opportunities for workshop participants to contribute to the regional planning and supported their travel and accommodation. The purpose of the planning workshops was to:Assess the strengths and weaknesses, and opportunities and constraints of higher education institutions and research institutions in AnGR within the target regions; Training course on animal genetic resources and communicationThe regional three-week training courses for university teachers and researchers facilitated by the core project team were pivotal for success of the ILRI-SLU AnGR capacity building project. The courses provided the means for creating awareness about the needs and strategies for improving higher education and research in the Å eld of AnGR in developing countries. To ensure the courses were regionally responsive, representatives from regional organizations working on AnGR were invited to present on-going activities, areas of need and opportunities available within each region. The FAO AnGR team also actively participated and provided information on their AnGR related activities and the intergovernmental processes involved, particularly on how they link to speciÅ c countries and regions, including the areas that need collaboration.Objectives for the training course are presented in Table 2.In order to achieve the objectives, the courses were carefully structured and comprised the following contents:1. The importance and role of AnGR for sustainable agriculture in developing countries;2. Characterization of indigenous farm animal genetic resources and design of sustainable breeding programs;3. Methods for genetic and statistical analysis in teaching and research;4. Computer exercises: use of software, databases and internet searches;5. Group project work on the design of programs for conservation and sustainable use of indigenous breeds; 6. Field visits; Additionally, the interactive approach adopted provided unique opportunities for discussion and exchange of ideas and experiences.The countries represented in training courses from the targeted regions over the years are presented in Figure 4. Venues for the courses and the numbers of participants trained are presented in Table 3. National as well as regional cooperation on both educational and research aspects on AnGR was promoted, as in most cases scientists from both a university and a research institute of the same country participated in each course.Course evaluations show that the participants found the training course to be very useful, giving it an overall rank of 8.5 out of 9 points (Table 4) Core to the AGTR are Modules on:1. Global perspectives on animal genetic resources for sustainable agriculture and food production;2. Improving our knowledge of tropical indigenous animal genetic resources;3. Sustainable breeding programmes for tropical farming systems; The AGTR also has links to many other information sources on and related to AnGR, including the Domestic Animal Genetic Resources Information System (DAGRIS: http://dagris.ilri.cgiar.org) and the Domestic Animal Diversity Information System (DAD-IS: http://dad.fao.org). A high quality and accuracy of the contents of the AGTR is assured through an external review process by subject matter specialists. The Å rst version of the AGTR was released as a CD in October 2003. It included the Å rst versions of the Å ve training modules, case studies and breed information focused on livestock breeds mainly in Africa and to a small extent in Asia. It also included a few exercises, two video clips and a library of 50 documents. Links were given to some relevant web-resources. The CD was distributed free of charge to institutions carrying out teaching and research on ABG in Africa and Asia, and to all participants of the ILRI-SLU courses and workshops.The second version of AGTR, released in 2006, was more expansive and comprehensive than Version 1. It was made available both as a CD and on the Web, and included additional information for Asia as well as for Africa. In general, modiÅ cations to Version 2 included: updating the core modules 1-4 with new and relevant information in ABG, and adding sections on teaching & science communication to module 5; new case studies and information on livestock breeds from Asia; several maps on the global distribution of livestock, and poverty levels; increased exercises, examples on statistical analyses and compendia; an additional 65 documents to the library; more terms in the Animal Genetics Glossary. Two thousand copies of Version 2 CD of the AGTR were produced and distributed to participants in ILRI-SLU activities, institutions carrying out teaching and research on ABG developing countries and other users.Version 3 was launched in November 2011 on a fully Web-enabled platform, which allows for direct online revisions and content comments by authors. A CD version of AGTR 3 will be prepared in 2012. SigniÅ cant changes have been made to the content of the Modules. All of the case studies in Version 2 were reviewed by external reviewers and subsequently revised, and new case studies have been added. Software manuals for word processing and presentation have been updated, and an example of using the statistical software 'R' (freely available) has been added. Other sections of the AGTR have also been improved by providing direct links to the Web on maps where available, and extending the library to a total of 121 documents. Links to other relevant web resources with special emphasis on those that are available at no cost, have been revised and updated. The greatly enhanced multimedia section now includes links to Å lm and clips by ILRI, as well as pictures of numerous livestock breeds. Further additions have been made to the Animal Genetics Glossary to cover 121 terms, and links have been made to a Glossary developed by INTERBULL.In order to monitor the project's progress and impacts on AnGR related activities within the regions targeted, follow-up of individual course participants are carried out using questionnaires and workshops for feedback. The questionnaires cover aspects on teaching, research and networking.Two types of workshop were organized:A) Follow-up Workshop for previous course participants after about three years to share the experiences, impacts and outcomes from the training course; discuss the next key strategic steps that need to be taken to enable improved/optimal utilization of AnGR; identify priority areas for research teaching and curriculum development; and explore opportunities for future collaboration. To date, three such workshops have been held, one for Sub-Saharan Africa, one for South East Asia, and one for South Asia. Numbers of participants and venues are presented in Table 3. B) Regional Outreach Workshop focusing on institutional issues and development of innovative frameworks for sustainable use of AnGR. Outreach workshops involve a broad group of stakeholders in AnGR within a region together with participants from the ILRI-SLU training courses.The objectives are to:Collate and share information on institutional programmes related to AnGR and animal identiÅ cation and recording, and identify priority interventions to improve utilization of AnGR Identify opportunities for collaborative research to support and transform development, working with both national and regional institutions to deliver sustainable livestock breeding services.In 2007, a workshop was held to share experiences of the on-going project and to discuss future directions and possible collaborations for capacity building in AnGR, and in 2009 an outreach workshop was held for East and Southern Africa.For purposes of this document, outcomes refer to the extent and kinds of impact the project has on its participants with impact being measured by the amount of change in behaviour, attitude, skills, and knowledge of project participants.Many of the project's outcomes are a direct result of the collaborative processes that are at the very heart of the ILRI-SLU AnGR project. Given its numerous and diverse partners -ILRI, SLU, FAO and NARS in Sub-Saharan Africa, South Asia and Southeast Asia -the project has developed a targeted training programme with resources primarily designed for use in developing countries, but also contribute to broadening the knowledge base on AnGR of scientists in more developed countries.The ILRI-SLU AnGR capacity training program at the time of this report has provided training to 138 university lecturers and researchers across 46 countries in Africa and Asia.The outcomes of the ILRI-SLU project are graphically presented to show the principal components and their interactions to achieve the ultimate goals of sustainable utilization of animal genetic resources for enhanced food security and improved livelihoods in Figure 6.The ILRI-SLU project contributes to two CGIAR priorities: (1C) the conservation of indigenous livestock and (5A) capacity building and knowledge management.As a result, the project has strengthened the knowledge of livestock genetics in most developing countries in SSA and South and South-East Asia, as well as provided tools to teach and communicate the subject matter of AnGR in a powerful and effective manner. As a result of the knowledge gained from the AnGR training, participants report improved research proposal writing and development of more competitive proposals. They also report greatly improved scientiÅ c communication skills evidenced by more papers being submitted and more papers being accepted for publication. Several participants have also been awarded for good oral presentations and posters. Additionally, following the training courses participants have been increasingly involved in research projects as researchers, co-ordinators and supervisors. There has also been an increased enrolment in PhD programs by course participants (Table 5).The AGTR, primarily developed to consider knowledge adapted for use in developing countries, has been extensively used by many scientists, both course participants and their colleagues. It has been used for teaching purposes as well as for advice on research and as guidelines for development of livestock breeding policies and conservation and breeding programmes. The resource has also been adopted as the key animal breeding course material for courses on Tropical Animal Production in the developed part of the world.given access to this resource to many more people and institutions worldwide. Numbers of visits to the website since 2006 are presented in Table 6. The largest proportion of site visits so far is from the United States and European Countries. Site visits from developing countries are expected to increase dramatically as internet connectivity in these areas improves. Access of the AGTR as a CD has added to the value of the resource in countries with limited internet connectivity. Through the free access to the training resource and materials included the project contributes substantially to the knowledge sharing on AnGR and methods for their sustainable use at the global level. Thus, it actively promotes actions expressed by the CGIAR as essential for agricultural developments.An objective of the project was to stimulate knowledge sharing and networks within regions. By linking NARS and university lecturers from different countries in the training courses, three virtual regional networks have been subsequently established:1. Afrib Breeders in Africa 2. IAGRA in Southeast Asia 3. South Asia Genetic Group.These animal breeding and genetics networks were created by the project participants to share knowledge and facilitate the development and review of collaborative proposals on the characterization, conservation and design of breeding schemes for improved livestock productivity and use.Researchers and university lecturers in many developing countries across Africa and Asia are utilizing their new knowledge and skills from the ILRI-SLU training programme and information from the AGTR to re-design their training courses, to inAE uence their national livestock policies, and to develop breeding programs for livestock improvement in their countries. In addition, many university participants returned to their home institutions and revised or updated their ABG course syllabi. For example, the curricula in animal genetics at the University of Nairobi and at the University of Bhutan have been completely revised. University lecturers also implemented more student activating teaching methods, such as use of visuals, group discussions, computer exercises, case studies, study visits and project work. This resulted in increased interest in animal breeding among their students and improved examination results At the regional level, another major outcome is the formation of new collaborations between universities within regions, for example, in eastern Africa to harmonize their post-graduate courses in ABG. As a result of the ILRI-SLU capacity building program, university lecturers from the countries involved in the program have taught ABG at different universities within and outside of their own countries. Individual scientists have also had one-month long exchange visits to ILRI where, through working with the ILRI-SLU scientists, their skills in writing and data analysis have been further strengthened. These exchange visits have also resulted in new case studies for the AGTR from the South and South East Asia region and increased breed information from different regions.Exposure to the capacity building concept and methodology of the ILRI-SLU project has also inAE uenced how NARS and regional organisations organize their own capacity building initiatives. For example, the Forum for Agricultural Research in Africa (FARA) adopted the ILRI-SLU approach as a model for a FARA initiative known as 'Building African ScientiÅ c and Institutional Capacity' (BASIC). There are numerous possibilities for other CGIAR centres and partners to adapt this approach in other Å elds of scientiÅ c research.Collaboration and involvement of the FAO AnGR Branch in various ILRI-SLU training courses and workshops helped to increase the effectiveness of communicating various regional needs for improving AnGR utilization. This has enabled participants to be exposed to both global issues and the work of FAO, as well as allowing FAO ofÅ cers to learn about the activities of NARS from several regions in the world and to integrate this practical experience in FAO's work. Interactions served to strengthen inter-institutional partnerships and pro-active participation by ILRI, SLU and the FAO in joint activities related to the Global Plan of Action (GPA) for AnGR (FAO, 2007b;FAO, 2007b).In the regional ILRI-SLU-FAO Workshop held in 2009 for East and Southern Africa in collaboration with the East African Community, the participants were sensitized on the GPA and jointly developed a regional map of activities that could well lead to the desired GPA outcomes. This map is presented in Appendix of this report.As many of the project participants come from the university and research Å elds, FAO's participation has also strengthened the link between education, research and policy making (the National Coordinators for AnGR). FAO has maintained contact with NARS scientists by inviting them to join the Domestic Animal Diversity Discussion Group (DAD-Net), and to subscribe to the journal of Animal Genetic Resources: http://journals.cambridge.org/action/displayJournal?jid=AGR. As a result, many NARS scientists now actively contribute to the discussion network and submit papers to the journal. Participants from the training course also take an active role in sharing information from their regions in various international fora and are pro-active in online e-mail discussions and conferences on AnGR co-ordinated by DAD-Net, FAO.A number of NARS scientists trained in the ILRI-SLU project have contributed as members of their National Consultative Committees to the development of country reports for the State of the World AnGR Report, and to national activities on the strategic management of AnGR. Currently, a number of countries are in the process of preparing national strategies and action plans, which is yet another opportunity for these scientists to apply their enhanced knowledge and experience to advance efforts to manage AnGR in their respective countries.The relationship with FAO has greatly assisted in improving the understanding among the participants' institutions of the challenges faced by FAO in mobilizing people in different countries to take action due to the FAO mandate of working with governments.Many previous course participants have reported their experiences from using the new knowledge gained at the courses held or by the contacts established through course participation. A few of these experiences and concrete actions are reported in Box 4 and Box 5. Training the trainers on subject issues mixed with training on science communication and teaching methodologies has been strategically important in order to effectively transfer new or basic knowledge to students as well as to various stakeholders of AnGR in easily understood ways, may it be orally or written for different types of audiences.Linkages between universities and research institutions in the same developing country are often weak or non-existent, due to various reasons. It was, however, a striking experience to see how the dialogue at the courses between scientists of the two types of institutions was improved by just establishing personal contacts.A change of attitude to make better use of existing resources is essential. Change may be supported by policies for easy implementation of joint training courses and transfer of credits (partnerships between institutions); also a supportive environment is mandatory to facilitate research as part of teaching; and research carried out must reAE ect real needs and thus mainly be demand driven.More people in the developing countries still need to be trained and better informed on issues related to AnGR. The projects' training programme was limited to only a few people per country for each course, and usually one of them represented a university and one a research institution. Many of the trained scientists were subsequently promoted to senior administrative positions, as a result of their increased knowledge. This movement away from active teaching and research into administrative roles means that they have a great opportunity to strategically improve the conditions for academic training and research for development.New generations of animal geneticists must, however, continuously be trained.In several countries it was evident that the institutional capacity to absorb or to facilitate the application of new techniques learnt by participants was limited. In particular, access to facilities to enable active research by university faculty staff is important to improve.For greater impact and more effective utilization of available resources within countries, institutional learning and skills in adaptive leadership should be factored into future programmes.At the international level, increased resources are being allocated to facilitate the implementation of the Global Plan of Action for AnGR. However, in developing countries there is still a huge need of trained scientists to lead the development of livestock resources to meet future food and agriculture demands. Sustainable solutions will only come from trained people within these countries ready and prepared to make a difference. A future challenge for the ILRI-SLU project is to adopt a long-term perspective, linking research agendas with what society needs for development. In particular, the following opportunities comprise major areas for consideration:In order to beneÅ t from the past activities, some previous project course participants showing leadership ability (\"champions\") should be utilized and equipped for future roles as regional trainers of trainers. There is need to organize workshops for these \"champions\" to support the dissemination of information and knowledge acquired through their training at both a local and regional level. IdentiÅ ed champions need support and guidance in establishing linkages to locate and tap into the necessary resources to support their activities. This is a critical component of the 'training of trainers' concept in order to enhance the multiplier effect and impact of the program.Outreach workshops targeting national and regional institutions representing animal breeding responsibilities, including implementation of the Global Plan of Action (GPA) for AnGR, are needed to bring together broad groups of stakeholders in AnGR with previous ILRI-SLU course participants. These could serve to: identify opportunities for collaborative research to deliver sustainable livestock breeding services; collate and share information on institutional programs related to AnGR and animal identiÅ cation and recording; and, identify priority interventions to improve utilization of AnGR.Inventory and analysis of case studies that can be taken as models for future developments, i.e. lessons learnt from success stories in different regions. Case studies must continually be sought from all of those involved in the project's training courses and workshops, as well as from the wider scientiÅ c community. Examples of case studies include: identifying appropriate genotypes for the various environments; strategies for improving breeds; recording of phenotypes, environments and genotypes; databases and Bio-banks; and conservation needs.There is need to apply new information technologies and data base systems for effective use of information on individual farm animals and at farm level. Actors along the value chain in AnGR should be mapped in order to understand the nature and dynamics of the organizational culture. This could be achieved through consultative processes including actors from the education sector, research organizations, extension services, the private sector, and policy makers. It is also important to respond to the capacity needs, i.e. develop and build the capacity of targeted actors.ABG between groups of 3-5 countries in a region, as well as initiating several joint PhD courses using models such as the NOVA Program, which has successfully been practised among the Nordic countries for several decades (http://www.nova-university.org/). This would require cooperation and mobility between institutions and within regions in higher education in animal genetics and breeding. In conjunction, the curricula for higher education institutions in developing countries should be adapted to address the future demands of the industry and knowledge society, while enhancing the attractiveness and visibility of ABG. Collaborative research projects developed are anticipated to promote dialogue, exchange of experiences and understanding between people and cultures.Improving communication of the science required for sustainable use of AnGR in developing countries. This implies improved communication skills for a variety of audiences, including NGOs, scientists and extension staff; it also implies improved content, i.e. strategies of improving AnGR. This could be implemented through targeted training on science communication for scientists and extension agents. The ILRI-SLU project team members and partners play an important role in enhancing communication skills and knowledge brokering by assuming responsibility for the collation, storage and dissemination of AnGR information (Box 6).\"This project is particularly important, as it is the only international project focusing on capacity building in issues related to animal genetic resources. Thus the project supports the national implementation of the Global Plan of Action for Animal Genetic Resources. Its continuation, in the current or modi¿ ed shape, would be much appreciated. FAO's Animal Genetic Resources Branch stands ready to be associated with any further capacity buildings in this ¿ eld.\" The landscape in developing countries is constantly changing and thus capacity requirements and needs must be adaptive.There are, however, both existing and emerging opportunities that if exploited could greatly impact the capacity for sustainable utilization of AnGR in developing countries (Box 7).Advances in computerization, communications and information technology.Regional platforms that facilitate information sharing and resource mobilization (ASARECA, SADC, AU-IBAR, RUFORUM, FARA and SAARC).The Global Plan of Action (GPA) for animal genetic resources.Increased co-operation among higher education institutions and research institutions within developing countries.Box 7:Emerging opportunities for developing Capacity in AnGRAn exciting and challenging future lies ahead for the ILRI-SLU project, a project that has already made great inroads into strengthening AnGR in developing countries through its innovative programme and the stimulation of knowledge sharing and networks within selected regions. At the country level, partners have already used their newly acquired knowledge and skills to inAE uence national and international policies and dialogue. Exposure to the project's capacity building methodology has also inAE uenced how NARS and regional organisations conduct their own capacity building initiatives. CGIAR centres and partners could easily adapt this approach for building the capacity of NARS in other subject areas.To beneÅ t from the past experiences a further development of the capacity building model should be attained. This should capitalize on previously trained scientists, and stimulate networking and collaboration at the regional level in research and education, thereby addressing societal needs for improved livelihoods where improvement of existing AnGR will play an increasingly important role for future food security.","tokenCount":"6833"} \ No newline at end of file diff --git a/data/part_3/0750631077.json b/data/part_3/0750631077.json new file mode 100644 index 0000000000000000000000000000000000000000..7f7d97f77ce794b787ca1b4994f9090e108c0323 --- /dev/null +++ b/data/part_3/0750631077.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"1217e27f8b00dc40bd1016ed8a7e7209","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/b9826b25-ccc3-4efe-8ef9-edb0c897490b/retrieve","id":"1463512808"},"keywords":[],"sieverID":"d6b0b6b3-e123-49c6-9317-60601124709f","pagecount":"1","content":"1. Conduct a survey to assess adoption of small mechanization technologies by different social groups in the highlands of Ethiopia.2. Conduct focus group discussions (FGDs) to assess the influence of mechanization on household gender roles and tasks in selected project sites.3. Conduct on-farm trials to (a) assess crop productivity and gross margin gains derived from using direct seeding, and (b) assess soil quality. One on where to source equipment is already drafted in English.Translation to local languages by 28 February 2022.• One journal paper. Under review (Journal of Crop Improvement).-Final project report.-To be submitted by 30 April 2022.Small mechanization technologies (Photo Credit: CIMMYT /Walter Mupangwa)","tokenCount":"105"} \ No newline at end of file diff --git a/data/part_3/0754678426.json b/data/part_3/0754678426.json new file mode 100644 index 0000000000000000000000000000000000000000..34d99585ef882320db68f8a4b75507b4cc864502 --- /dev/null +++ b/data/part_3/0754678426.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"d3f06b7a8458ba329020a8634f1e9fa1","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/8e42648b-22a3-46fc-b567-0cabf40c99a1/retrieve","id":"-498242034"},"keywords":[],"sieverID":"994f56cc-e00d-4555-824b-f79cacfcf2e3","pagecount":"13","content":"e objective of this study was to investigate the feasibility of a computer vision system (CVS) for assessing the contact angle of frying oil. e oil was used to fry carbohydrate-and protein-based foods for 40 h, and the oil was collected for measuring free fatty acids (FFA), peroxide value (PV), total polar materials (TPMs), and FOS reading (dielectric constant). e results showed that FFA linearly increased with frying time (R 2 > 0.95) while the polynomial correlation between TPMs and FOS reading as a result of time was observed (R 2 > 0.97). e contact angle obtained from CVS was highly correlated with all chemical qualities (R 2 > 0.94), except PV. In addition, the contact angle models could be used to adequately predict FFA, TPMs, and FOS reading of frying oil (R 2 > 0.91). is result suggested that the image processing technique through CVS could be an appropriate alternative to chemical analysis, especially for small-and medium-scale industrial frying.Deep-frying is one of the most common cooking processes to achieve desirable product attributes and is widely applied in small-, medium-, and large-scale industries. By this process, the food is submerged in hot oil at temperatures that range from 150 to 190 °C. In the presence of moisture and oxygen during frying, a number of chemical reactions continuously occur such as lipid oxidation, hydrolysis, polymerization, and ssion of the frying medium [1]. ese reactions produce various chemical products such as free fatty acids, conjugate diene/triene, peroxides, alcohol, aldehydes, ketones, and cyclic compounds [2], which can deteriorate the functional and sensory quality of both fried products and oils [3]. Many of these compounds have been shown to have adverse e ects on human health [4] such as metabolic alterations [5,6], atherosclerosis [7,8], hypertension [9], coronary heart disease [7], and cancer [10]. us, evaluating the quality of frying oil through reliable methods is very important for public health and economic concerns.ere are physical and chemical indicators that have been developed and used to evaluate the quality of frying oil. In cases of street vendors and restaurants, visual inspection based on physical changes of color, foaming, odor, and smoking is widely used [11]. However, this method is not reliable, and those physical parameters may manifest only when the oil has already become hazardous to be reused [12]. For commercial enterprises, chemical indicators, such as free fatty acids (FFA), anisidine value (AV), peroxide value (PV), and total polar materials (TPMs), are mostly applied as these methods are more decisive to assess the quality of frying oil [13,14]. Many fried-food industries in ailand always use FFA as a fast indicator to discard the oil; however, this method only re ects hydrolytic changes [15]. Although TPM analysis is more accurate in explaining the quality of frying oil [16], measuring polar compounds is complicated, time-consuming, and requires highly skilled personnel as well as the high investment cost of chemical agents, which is not fully acceptable for use at industrial scales. Other chemical methods might have low sensitivity and applicability and be discriminatory in investigating the quality of frying oil [17].Presently, some methods such as Fourier transform infrared (FTIR) [18,19], nuclear magnetic resonance (NMR) [20], low-field nuclear magnetic resonance (LF-NMR) [21], fluorescence spectroscopy [22], and gas/liquid chromatography [23] have been developed as alternative techniques to measure the quality of frying oils. ese methods are very accurate and require low quantities of hazardous solvents, but the equipment is very expensive. Some test strip kits such as 3M ™ oil quality test strips (3M, USA) and MQuant ™ (Merck KGaA, Germany) have also been introduced as an easy and rapid test to monitor the level of FFA; some drawbacks of this method are that such strip is single-use only, it might be more expensive in long-term application when compared to some of the scientific options, and the color change of the strip sometimes is affected by the oil color, resulting in underestimation and/or overestimation of values when compared to the titratable acidity method [24]. In addition, some digital testers such as Testo 270 (Testo Inc., Germany) and Ebro FOM 310 (Ebro ® Electronic GmbH, Germany) have been developed for measuring the TPMs based on changes in the dielectric constant of the frying medium. However, Chen et al. [25] observed that some results from these testers were nearly 6 times higher than those of the standard method. e computer vision system (CVS) is one of the most promising techniques that have potential in many areas of quality prediction, especially color evaluation [26,27]. CVS basically consists of a standard illuminant, a digital camera, and computer hardware and software. Vithu and Moses [28] and Bhargava and Bansal [29] reported that CVS provides a less expensive and more versatile way to evaluate the quality of foods compared to human inspection or conventional measurement equipment. From our preliminary study, the CVS method was applied to measure the color of frying oils.e correlation between color parameters obtained from CVS and colorimeter and the correlation between hue (H * ) obtained from CVS and chemical qualities (FFA, PV, TPM, and dielectric constant) were investigated (Table 1). Due to the liquid depth and the background effects, low linear and nonlinear correlations were observed, particularly in PV values. Based on this result, the viscosity changes of frying oil due to the formation of surfactants were then considered as they influence the wettability of oil on horizontal and flat solid surfaces. e wettability is usually explained by the static contact angle (θ) between liquid and solid interaction. As presented in Figure 1, a contact angle of less than 90 °indicates that the wetting of the surface is favourable and the liquid spreads over the solid surface, whereas a contact angle higher than 90 °generally means the wetting of the surface in unfavourable, so forming a compact liquid droplet [30]. Measuring the contact angle through the CVS method might be an option to explain the quality of frying oil. A study of Rossi et al. [31] showed that the contact angle obtained from a digital video microscope was suitable to use as an index of overall oil degradation. Nonetheless, the digital microscope has a limitation due to its lack of flexibility in industrial applications when compared to the digital camera, especially in small-and medium-scale enterprises.erefore, the objective of this study was to assess the feasibility of using CVS with a digital camera for static contact angle measurement, and the correlations between contact angle and chemical qualities of oil used in frying of carbohydrate-and protein-based foods were investigated.Prefried French fries (carbohydratebased food) were purchased from Siam Macro ( ailand) Co. Ltd., Bangkok, ailand, whereas prefried chicken nuggets (protein-based food) were obtained from Bangkok Produce Merchandising Co. Ltd., Saraburi Province, ailand. All materials were frozen at −10 °C before use and brought to the temperature of −4 °C for 24 h before frying experiment. Refined palm olein was used as the frying medium and was supplied by Morakot Industry Co. Ltd., Bangkok, ailand.2.2. Frying Protocols. About 5 L of frying oil was placed in a 12-L commercial electric batch fryer (model RF 85 Roller Grill, Ramita Co. Ltd., Bangkok, ailand) with temperature control. e oil was preheated to 175 ± 5 °C for 15 min. Every 10 min, French fries (150 g) at an initial temperature of −4 °C were fried for 5 min. e fried samples were then lifted out of the oil, and the oil was kept at 175 °C for the rest of the cycle even if food materials were being unloaded. e gap between each cycle provided time for preparation of the next batch and allowed the temperature of the fryer to build backup. e frying experiment was held for 5 continuous days with frequent frying of 8 hours per day. Each experiment involved a total number of 240 frying cycles (48 cycles/day).Every day at intervals of 4 and 8 h, about 50 mL of frying oil sample was collected while fresh oil was not added during frying. In the beginning of each day, the oil was not filtered and about 500 ml of fresh oil was added before the frying process to keep the oil level constant.e collected oil samples were kept in closed and dark containers and sealed to prevent oxidation. en, the samples were cooled in a dark room at ambient temperature for 1 h. Afterwards, the samples were kept at −4 °C until further FFA, PV, TPM, and FOS reading analyses. e leftover oil was kept in the pot, covered with a fryer cover, and left overnight at ambient temperature. A similar frying protocol was used for the protein-based food. e frying experiment was performed in triplicate.e percentage of FFA was analyzed using the AOCS procedure Ca 5a-40 [32]. Brie y, 1 g of oil sample was weighed and then 10 mL of 95% ethanol and a phenolphthalein indicator were added to the Erlenmeyer ask. e mixture was shaken and immediately titrated with 0.1 N NaOH solution until a consistent pink color remained for 30 sec.e PV value was analyzed by AOCS procedure Cd 8-53 [32]. In brief, a known measured weight of the sample was dissolved with 30 mL of mixed chloroform: acetic acid (3 : 2, v/v). Subsequently, 1 mL of saturated potassium iodide solution was added to react with the sample for 3 min. e sample was then titrated with 0.1 N standard sodium thiosulfate using starch solution as an indicator.e percentage of TPMs in the oil sample was analyzed using AOCS o cial method Cd 20-91 [32]. A glass column with 35 cm length and 2.1 cm diameter was used for chromatography, and a mixture of petroleum and diethyl ether (87 : 13, v/v) was prepared as an eluent. About 2.5 g of sample was loaded into the packed column, and the nonpolar fraction was eluted. e content of TPMs was calculated as the mass fraction of the total polar compounds in the oil sample.e dielectric property of oil samples was measured using the food oil sensor (model NI-2C, Northern Instrument Co., MN, USA). e instrument was rstly balanced to zero with the fresh oil, and a few drops of the fresh oil or test oil were placed into an open test cell that had a heater and temperature controller. Subsequently, the fresh oil was removed from the instrument cup with soft tissue paper and each oil sample was added in the cup to measure the change in dielectric constant. All the chemical tests were done in triplicate.System. An image acquisition system consists of four basic components: illumination, camera, hardware, and software. To avoid direct re ection, a black wooden box 30 × 37 × 25 cm 3 was equipped with two daylight uorescent lamps (model T5, Sylvania, Havells Sylvania ( ailand) Co., Ltd., ailand) with a color temperature of 3500 K, power of 9 W, voltage of 42 V, current of 0.17 A, length of 13.5 cm, and color rendering index up to 90% at the base of the box (Figure 2). e distance from the base to the oor was 40 cm. e lamps were switched on 10 min before image acquisition. In addition, a digital camera (model 550D, Canon Marketing ( ailand) Co. Ltd., ailand) with a full resolution of 1280 × 720 pixels was used.About 30 ± 0.3 mg of the oil sample was dropped on the glass surface at the temperature of 25 °C using a uid dispenser (model TS250, Techcon, OK International Co. Ltd., USA). To avoid contamination, the glass surface was previously cleaned with ethanol and allowed to dry for 1 min before using [31]. Glass was chosen as it is a relatively nonwetting surface with oil at setting temperature, making the contact angle measurement feasible. However, glass surface might not be appropriate when the oil was dropped at high temperature as the oil droplet can spread over the surface. In this case, polytetra uoroethylene (PTFE or Te on) surface is highly recommended [33]. e dispenser was controlled by the vacuum pump with a power of 0.25 hp (model TG-1, Tiger, Tirawat Air Compressor Co. Ltd., Bangkok). e distance between the tip of the syringe and glass surface was 0.3 cm. e camera lens was horizontally aligned with the glass surface, and the distance between the camera lens and sample was 20 cm. e capturing process was manually performed in the VDO mode with 25 frames per sec, shutter speed of 1/50, and ISO sensitivity of 160. To minimize the deviation of contact angle during dropping process, the VDO mode was selected instead of taking in the photo mode. For each oil sample, 10 di erent droplets were taken.e VDO le was opened with a VLC media player, and twenty-ve images were classi ed (Figure 3). e last image was selected as the dropped oil completely fell from the syringe. e digital image was converted to the grayscale mode, and then, the median and Roberts lters were applied to emphasize drop contour. Subsequently, the algorithm (Figure 4(c)) was developed to analyze the contact angle of dropped oil, and the analysis was done using the open CV software (version 2.1, Git Hub Inc., Russia). As could be seen in Figure 4(a), the position of \"c\" was moved at every pixel until the area of the \"acd\" triangle was covered (Figure 4(b)).ereafter, the contact angle (CA) was calculated.e regression analyses were conducted using Microsoft Excel. Data were analyzed using SAS software (Ver. 9.0, SAS Inst., Cary, NC, USA), and significance was determined at the 5% probability level. Furthermore, the complete data set was randomly divided into calibration (50%) and validation (50%) sets. Coefficients of determination (R 2 ) were calculated for evaluating correlations between contact angle and chemical qualities of frying oil. e mean absolute percentage error (MAPE) was used to evaluate the model performance as determined by the following equation:where P exp is the experimentally observed parameters, P pre is the predicted parameters, and N is the number of observations.Qualities. e results showed that all chemical qualities of oil being used to fry carbohydrateand protein-based foods increased with frying time (Figure 5). ese are similar to a study of Santos et al. [34] and Udomkun et al. [35] who studied the change of frying medium during frying of potatoes and chicken nuggets, respectively.e highly linear relationship between FFA and frying time was observed (R 2 > 0.95), while polynomial correlation was found in TPMs and FOS reading (R 2 > 0.97) (Table 2). At the end of 40 h, the FFA content increased by 87% for carbohydrate-based foods and 89% for proteinbased foods (Figure 5(a)). An increase of the FFA value can be explained by the effect of hydrolytic degradation of triacylglycerols caused by water vapor being released from the inside and surface of the food. e change of FFA content could be also caused by further oxidation of secondary products produced during frying [36]. When considering the thermal oxidation through PV values, it could be seen that the level of PV fluctuated over the frying period (Figure 5(b)). However, it should be noted that these primary oxidation products such as FFAs, conjugated diene/triene, and hydroperoxides rapidly break down into secondary or tertiary oxidation products such as alcohols, aldehydes, conjugated dienoic acids, epoxides, and ketones [14,37,38]. For example, fatty acids in frying oil could be oxidized to form hydroperoxides and then undergo an intramolecular reaction, leading to the formation of a cyclic compound such as cyclohexene.is degraded product may be further oxidized to form benzene, which in turn reacts with a C4 compound to form naphthalene and other polycyclic aromatic hydrocarbons [39]. erefore, the total accumulation of PV in the frying medium can be greatly underestimated. Naz et al. [40] stated that the formation and accumulation rates of lipid oxidation products depend on frying temperature, heating time, frequency of frying, exposure to oxygen, and presence of antioxidants and prooxidants. Lynch et al. [41] suggested that measuring of malondialdehyde (MDA) or 4-hydroxynonenal (4-HNE)the major aldehydes occurring in the secondary oxidation process-might be a good indicator for evaluating the oxidation process of frying oil as these aldehydes can form adducts with proteins and may have implications for protein stability and functionality.TPM is normally used as an indicator to describe the formation of all oxidized and dimerized products such as oligomeric triacylglycerols, dimeric triacylglycerols, oxidized triacylglycerols, diacylglycerols, and FFAs [42,43]. In this study, the TPM value quickly increased during the first 24 h of frying (Figure 5(c)). At the end of 24 h, the TPM value increased by 90% for carbohydrate-based and 83% for protein-based foods, and the increasing rate was less than 15% when the food was being fried from 24 to 40 h. Considering the changes of dielectric constant as measured by the FOS reading, the result showed that the FOS reading value also increased with frying time (Figure 5(d)). e FOS reading increased by 62% for both carbohydrate-and protein-based foods. Fritsch et al. [44] and Innawong et al. [14] mentioned that an increase in dielectric properties of frying oils is a result of TPM accumulation during frying.is is in agreement with a study of Wegmüller [45] who reported the linear correlation between FOS reading and polar components of frying oil.To compare the effect of food type on oil degradation, the result did not clearly show different trends between carbohydrate-and protein-based foods, especially in TPM and FOS reading values. PV values seem to be higher in the carbohydrate-based food when compared to the proteinbased food. is result might be ascribed to the intensive sorption of oxidized products in French fries [46]. On the other hand, Koh and Surh [38] reported that carbohydrate-rich food has higher starch content when compared to other food groups and starch was shown to form hydrophobic helical structures which can entrap hydrophobic substances, resulting in the lower lipid oxidation rate. In the case of protein-based foods, peroxy radicals and hydroperoxides-the primary oxidation products-are known to react with thiol, sulphide, disulphide, and primary amine group of proteins [46], therefore inhibiting the occurrence of thermo-oxidized products.ese results are in agreement with a study of Koh and Surh [38] who exhibited the less difference of lipid oxidation products (hydroperoxides, malondialdehyde, and nonvolatile aldehydes) between carbohydrate-rich (grains and root-based products) and meat (pork and chickenbased products) groups. While the level of lipid oxidation products was found to be highest in the fish group, they explained this phenomenon to the release of polyunsaturated fatty acids in fish during frying process.Qualities.e result showed that the contact angle of oil droplets obtained from both carbohydrate-and protein- based frying decreased with frying time and a high linear relationship was found (R 2 > 0.94) (Figure 6). An increase of frying time from 0 to 40 h resulted in a 19% decrease of the contact angle of carbohydrate-based frying, while a decrease of 21% was found in protein-based frying. is result is consistent with the formation of oxidative and hydrolytic degradation compounds, causing a reduction of food-oil interfacial tension and a concurrent contact angle reduction [31,33].Likewise, a highly linear relationship between contact angle and FFA was found (R 2 > 0.93), whereas a polynomial correlation was observed between the contact angle and other chemical parameters (TPMs and FOS reading) with R 2 > 0.95 (Figure 7 and Table 3). When validating the regression models of FFA, TPMs, and FOS reading (Figure 8), it could be seen that the contact angle value obtained from CVS was found to be satisfactory for predicting the experimental data (R 2 � 0.91-0.95 and MAPE � 9. 25-15.18). Based on the results, it clearly indicates that the contact angle provides greater correlation with chemical qualities than the color value obtained from CVS (Table 1). is correlation is in agreement with Rossi et al. [31] who reported a significant relationship between the contact angle and oxidative-hydrolytic reaction of oils. A study of Rossi et al. [31] found a reduction of contact angle with frying time due to the effect of surfactant compounds such as monoacylglycerols and diacylglycerols, which cause a reduction in food-oil interfacial tension; a similar trend to this study was also observed.e prediction of FFA, TPMs, and FOS reading from the contact angle value obtained from CVS technique was highly possible. e changes of contact angle due to the formation of thermo-oxidative compounds is a promising technology, which can be applied as a simple, inexpensive, and reliable tool to predict and control chemical qualities of frying oil. However, the drawback of this technique is limited by temperature during measurement as it influences the interfacial tension between liquid and solid surfaces. Future work should include different types of frying medium and building CVS with a temperature control. In order to get more variables for improving prediction models, the geometrical information of the oil droplet is still required. In addition, a change of contact angle as a result of thermal polymerization can influence the amount of oil absorbed by the food during frying and postfrying. erefore, the physical principles governing the contact angle and oil uptake of products should be considered. ese will be more useful for a wide range of fried-food industries.","tokenCount":"3515"} \ No newline at end of file diff --git a/data/part_3/0772687267.json b/data/part_3/0772687267.json new file mode 100644 index 0000000000000000000000000000000000000000..65d25c7de712e4b1a1c1264f31728670cc88794b --- /dev/null +++ b/data/part_3/0772687267.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c24f3f98624b6badcb12ee4292c9016b","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/276e2db3-6640-45d8-97c4-2a162c24c93c/retrieve","id":"-1579132879"},"keywords":[],"sieverID":"a66ab7d1-9d4e-4ad6-8161-3dc229fbf5e7","pagecount":"24","content":"ii Bioversity International is an independent international scientific organization that seeks to improve the well-being of present and future generations of people by enhancing conservation and the deployment of agricultural biodiversity on farms and in forests. It is one of 15 centres supported by the Consultative Group on International Agricultural Research (CGIAR), an association of public and private members who support efforts to mobilize cutting-edge science to reduce hunger and poverty, improve human nutrition and health, and protect the environment. Bioversity has its headquarters in Maccarese, near Rome, Italy, with offices in more than 20 other countries worldwide. The Institute operates through four programmes: Diversity for Livelihoods, Understanding and Managing Biodiversity, Global Partnerships, and Commodities for Livelihoods.Financial support for Bioversity's research is provided by more than 150 donors, including governments, private foundations and international organizations. For details of donors and research activities please see Bioversity's Annual Reports, which are available in printed form on request from bioversity-publications@cgiar.org or from Bioversity's Web site (www.bioversityinternational. org).The geographical designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of Bioversity or the CGIAR concerning the legal status of any country, territory, city or area or its authorities, or concerning the delimitation of its frontiers or boundaries. Similarly, the views expressed are those of the authors and do not necessarily reflect the views of these organizations.Eighteen months on, Bioversity International and Malaysian universities organized a oneday workshop on 1 July 2011 in Serdang, Malaysia to review Malaysia's progress in implementing the Tsukuba Action Plan. The meeting, entitled 'Plant genetic resources education in Malaysia: Ways forward', brought together representatives of five universities from Peninsular Malaysia, including MSc students. Staff from Bioversity International's Headquarters and APO Regional Office also attended, as did Crops For the Future (CFF), and the Platform for Agrobiodiversity Research (PAR). The specific objectives were to:• Review PGR and agrobiodiversity education activities in Malaysia since the regional workshop in Tsukuba in 2009. • Develop action plan and recommendations for the further integration of PGR and agrobiodiversity in higher education in Malaysia • Foster national and regional networking in support of PGR and agrobiodiversity education.The participants noted that enhancing agrobiodiversity education is well aligned with recent regional initiatives:• The Suwon Agrobiodiversity Framework was adopted during the International Symposium on 'Sustainable Agricultural Development and Use of Agrobiodiversity in the Asia-Pacific Region' in the Republic of Korea on 13-15 October, 2010. The framework observes that 'Capacity development is needed at individual, systemic and institutional levels', and that 'Continuing education in the national systems is important, due to promotion or transfer of well-trained staff'.• The Crops For the Future (CFF) is an international organization responsible for the promotion of neglected and underutilized plant species (NUS), hosted by Bioversity International, Malaysia. CFF is committed to enhancing public awareness and facilitate access to information, policy advocacy and capacity building on NUS. It collaborates with the Crops for the Future Research Centre (CFFRC), a new venture between the Government of Malaysia and the University of Nottingham Malaysia Campus.Bioversity International reported that several new learning materials of relevance to PGR and agrobiodiversity education in the APO region have recently been published, all available online, including:• Crop genebank knowledge base • E-learning course on pre-breeding for effective use of plant genetic resource • Forest genetic resources training guide • Learning module on the International Treaty on Plant Genetic Resources for Food and Agriculture • Training manual on spatial analysis of plant diversity and distribution.Each participating university then gave an update on their recent activities in PGR and agrobiodiversity education. The Tsukuba Action Plan has certainly had an impact in Malaysia. Universities have revised many courses, and introduced some new ones guided by the Action Plan. While this positive trend was duly noted, issues regarding both content and delivery continue to demand attention to ensure quality and relevance of education. During the plenary discussion a number of observations, suggestions and recommendations were made:• Competencies and relevance: Programmes need to better respond to needs in the job market, including in the private sector. Hands-on experiences need to be strengthened in many programmes and more innovative learning methods are called for. Feedback from students and alumni is important for enhancing quality of education. • Curriculum development: Although PGR and agrobiodiversity elements are incorporated in many programmes, there are gaps. A suggestion was made to introduce courses on neglected and underutilized species (NUS) at all universities. Bioversity was requested to bring all national stakeholders together in a forum to enhance networking and discuss content and delivery. • Institutional aspects: There is a proliferation of faculties and programmes related to agriculture at various universities in Malaysia, which presents both opportunities and challenges. Coordination and synergies among universities can be enhanced and information sharing improved. Scholarships need to be made available.Southeast Asia has several regional networks or relevance to PGR and agrobiodiversity education. The plant genetic resources (PGR) upon which humankind depends for its agriculture and food systems are shared across countries and regions. Seeds and germplasm have travelled far and wide, creating a rich diversity in domesticated plants that is the backbone for agriculture today and in the future. It is therefore appropriate that higher education on PGR and, more broadly, agrobiodiversity takes a regional view. This brief report summarizes the proceedings of the workshop, presents Malaysia's progress in implementing the Tsukuba Action Plan and informs on further needs for strengthening PGR and agrobiodiversity education in the country.The general objective of the 1-day workshop, 'Plant genetic resources education in Malaysia: Ways forward', was to contribute to enhancing the quality and relevance of plant genetic resources and agrobiodiversity education in Malaysia. The specific objectives were to:• Review PGR and agrobiodiversity education activities in Malaysia since the regional workshop in Tsukuba in 2009. • Develop action plan and recommendations for the further integration of PGR and agrobiodiversity in higher education in Malaysia • Foster national and regional networking in support of PGR and agrobiodiversity education. Plant genetic resources (PGR) education is crucial for the conservation of agricultural biodiversity and for breeding improved varieties that increase agricultural production and improve the quality of our food basket. By equipping graduates with adequate theoretical knowledge and practical skills, PGR education help countries respond to challenges such as food and nutritional security for growing populations, threats of climate change, and sustainability of agroecosystems.Bioversity International and University of Tsukuba, Japan invited scientists, PGR experts, and university professors in East and Southeast Asia and Oceania to a regional workshop on 17 -19 November 2009 at the University of Tsukuba. A key question was how to revitalize PGR education in the region, and make it relevant to society's needs. The workshop observed, among others, that PGR programmes and courses in the Asia, Pacific and Oceania (APO) region attract only a limited and declining numbers of graduate students. Two factors behind this trend stand out: a perception among students of limited career opportunities for PGR graduates, and a reduction in scholarships available for such studies. The resulting paucity of capacity may potentially constrain the region's plant breeding programmes. There is a need to make undergraduate students better aware of the MSc PGR programmes and informing potential employers of the benefits of hiring graduates of such programmes.Universities also reported other constraints, including high costs of maintaining laboratories, lack of continuity of programmes due to low enrolment, an orientation of the PGR programmes towards the public sector, and a failure to capture opportunities in the private sector. The latter is linked to the PGR programmes' current focus on conservation and diversity assessment, which may not be priorities of the private sector.To keep the programmes and courses running in spite of a low demand, universities find it crucial to collaborate and share resources. One successful strategy is teaching PGR courses within other existing programmes. For example, Universiti Kebangsaan Malaysia has attracted students from other graduate programmes, who elect PGR courses as part of their degrees. More such innovative approaches to PGR education are called for.The Tsukuba workshop developed an Action Plan on enhancing PGR education in East and Southeast Asia and Oceania, which covered five areas of intervention: Course enhancement, Degree enhancement, Short courses, Networking, and Awareness. Implementing these recommendations is largely a matter for concerned universities, with support from Bioversity International (Rudebjer et al 2010).The raising profile of agrobiodiversity in the Asia-Pacific region was clearly demonstrated at an international meeting in the Republic of Korea on 13-15 October, 2010, on 'Sustainable agricultural development and use of agrobiodiversity in the Asia-Pacific Region'. The meeting was organized by the Asia-Pacific Association of Agricultural Research Institutions (APAARI), in partnership with the Rural Development Administration (RDA), Suwon, Republic of Korea, Bioversity International, the Global Forum for Agricultural Research (GFAR) and a range of international centers. This broad institutional platform provided guidance on how to address the region's challengesalleviating poverty, assuring food and nutrition security, environmental sustainability as well as the emerging challenges of climate change -through the conservation and use of genetic resources for food and agriculture.The resulting Suwon Agrobiodiversity Framework (APAARI 2010) proposes an integrated approach to ensure the continued availability of critical genetic resources. It emphasizes the need to build on current partnerships and eco-regional experiences. It recommends bringing together the different elements of genetic resources: microbes, crops, trees, livestock and microbes. It also points at the need to combine research disciplines including genetics, agronomy, socio-cultural and economic aspects.Seven focus areas for research and development were identified:1. Studies to enhance use of genetic resources through 'subset approaches' (manageable subsets of germplasm collections), and enhancing research on certain underutilized crops and their wild relatives 2. Pre-breeding and participatory plant breeding to enhance utilization of genetic resources in crop improvement programmes 3. Strategies and technologies to enhance in situ and ex situ conservation through use 4. Assessment of agrobiodiversity richness and status relative to economic, social and cultural (traditional knowledge) factors 5. Inter-disciplinary studies on ecosystems services for agriculture that agricultural landscapes, forests and wild ecosystems provide 6. Information systems and tools for data exchange 7. Supportive policies, laws and strategies to enable enhanced PGR exchange and use.To facilitate implementation of the Suwon Agrobiodiversity Framework, the conference also identified a set of Areas of Regional Collaboration, one of which is 'Strengthening agrobiodiversity capacity, education and public awareness'. Essentially, this recommendation was an outcome of the above-cited Tsukuba workshop. Among others, the Suwon meeting pointed out that: Crops for the Future (CFF), a new international organization based in Malaysia, emerged in 2009. Building on the achievements of its predecessor organizations, the Global Facilitation Unit for Underutilized Species (GFU), previously based in Rome, and the International Centre for Underutilized crops (ICUC) in Sri Lanka, CFF aspires to provide a platform for concerted action by stakeholders in neglected and underutilized species (NUS). With its goals of enhancing public awareness, facilitated access to NUS information, policy advocacy and capacity building, CFF strives to be a service provider for the global NUS community. Rather than 'running its own show' CFF invites the NUS community to take ownership in its strategy setting and action. In addition to its global function, the new CFF's secretariat at Bioversity International's APO office provides a platform for knowledge sharing and capacity building on agricultural biodiversity in the APO region.On occasion of the recent 2 nd International Symposium on Underutilized Plant Species, in Kuala Lumpur, the Crops for the Future Research Centre (CFFRC) was officially launched by the Prime Minister of Malaysia on 27 July 2011. CFFRC, a venture between the Government of Malaysia and the University of Nottingham will be located in Semenyih, adjacent to the University of Nottingham Malaysia Campus. The new centre, which is exclusively dedicated to research and development of NUS, is the largest of its kind. It represents an investment by the Government of Malaysia to the tune of some US$ 40 million covering the construction of the centre and its operation for the first 7 years, after which the centre should become self-sustaining.CFFRC and CFF will closely coordinate their work. CFF will continue to focus on its role as an information platform and international facilitator. It will be locally strengthened through the brain power and opportunities of the research centre, whose principal mission is to remove the constraints along the value chain from genetic characterization to markets that limit the role of so many underutilized crops. The emergence of CFFRC provides bright perspectives for regional capacity building in terms of degree and group training.Dr Leocadio Sebastian, Bioversity International's Regional Director, welcomed the participants and thanked them for accepting Bioversity's invitation to the workshop. He indicated that the workshop was a follow-up to the regional workshop that was held at the University of Tsukuba, Japan in 2009. He enumerated the five priority areas identified during the regional workshop and urged participants to consider possible actions that can be implemented in Malaysia. Dr Sebastian also updated the participants on the recently concluded 2 nd International Symposium on Underutilized Plant Species held in Kuala Lumpur, Malaysia on 27 June -1 July 2011. He reported that the conference recognized the importance of integrating knowledge and information about underutilized crops in PGR courses and programmes.Mr Per Rudebjer, Bioversity International, welcomed the participants and appreciated their willingness attend at a busy time of the year. He noted that this opportunity to meet with Malaysian universities came very timely, one and a half year after the regional workshop at in Japan. He especially welcomed the students to this meeting, point out the importance of their feedback for enhancing the quality and delivery of educational programmes. The participants then introduced themselves, giving a quick overview of their job position and institutional affiliation.In his overview, Mr Rudebjer pointed out the importance of PGR education for the ex situ and in situ conservation of agrobiodiversity, for pre-breeding and breeding, and for mobilization genetic resources in production systems. Such education needs to cover both commodity crops and NUS. It should consider formal and informal seed systems. It is important to the implementation of policies such as the Convention on Biological Diversity (CBD) and the International Treaty on Genetic Resources for Food and Agriculture. More often than not, curricula need to be reviewed to develop relevant PGR and agrobiodiversity competence in students.Mr Rudebjer then summarized the results of the 2009 Tsukuba Workshop. This regional meeting reviewed universities' experiences from teaching PGR courses and programmes. It reported on views and feedback from PGR stakeholders, including employers and students. The participants from nine universities and three research institutes provided a regional and international outlook on the conservation and use of PGR. Current issues confronting the teaching of PGR and agrobiodiversity were analysed. Finally, the workshop participants developed a shared understanding of the way forward, captured in the Tsukuba Action Plan.The Tsukuba meeting pointed out a number of constraints in the delivery of PGR and agrobiodiversity education in the APO region:• Few graduate students enroll in PGR Master's programmes. This was linked to a perception of limited career opportunities for PGR graduates and a reduced availability of scholarships • Education programmes tend to focus more on conservation than on use of genetic resources • There are issues of research quality due to insufficient time allocated to research in some MSc programmes • High costs of maintaining laboratories • Lack of continuity of programmes due to low enrolment • Needs and opportunities in the private sector are not sufficiently captured in higher education on PGR.Participants in the Tsukuba meeting then outlined strategies for curriculum change:• Integrating PGR and agrobiodiversity in general agriculture programmes • Using a range of possible 'entry points' to start teaching agrobiodiversity topics in relevant courses and programmes • Enhancing and broadening MSc PGR programmes • Marketing PGR courses in other programmes to increase the number of students taking those courses (successfully applied at Universiti Kebangsaan Malaysia) • Collaboration and sharing of resources.The key output of the conference was an Action Plan for advancing PGR and agrobiodiversity education in SEAsia. The Tsukuba Action Plan identified and prioritized actions in the following five areas: course enhancement, degree enhancement, short courses, networking, and awareness. Eighteen months on, this one-day meeting was convened to review Malaysia's progress in implementing the plan.Finally, Mr Rudebjer introduced a number of learning resources that recently have become available including:• The Crop Genebank Knowledge Base, provides easy access to knowledge and best practices for genebank management of selected crops, and to many aspects of general genebank management. It accessible online at http://cropgenebank.sgrp.cgiar.org/ • Training manual on spatial analysis of plant diversity and distribution, intended for scientists and students who work with biodiversity data and are interested in developing skills to carry out spatial analysis. The tool uses geographical information system (GIS) applications with a focus on diversity and ecological analyses.In Session 2, each participant gave an update on the respective university's recent activities in PGR and agrobiodiversity education.Universiti Kebangsaan Malaysia (UKM)Prof. Dr. Wickneswari RatnamThe MSc PGR programme at UKM has a yearly enrolment of 20 students, with an intake of 10 students per semester. Recommendations from the Tsukuba meeting have been duly noted and follow-up actions have been taken to enhance the content. The scope of the programme has been broadened by introducing new courses on biotechnology and genetic enhancement. Renaming of courses was also done in conjunction with a revision of some courses' content. Students have now been given an option to extend the programme by one to two semesters to allow more flexibility and time for research. The Tsukuba Action Plan has certainly had an impact in Malaysia. Universities have revised many courses, and introduced some new ones guided by the Action Plan. While this positive trend was duly noted, course enhancement regarding both content and delivery continues to be important. During the plenary discussion a number of observations, suggestions and recommendations were made:Competencies and relevance:• Relevant education requires focus on developing skills that the job market needs • Hands-on experiences need to be strengthened in many programmes. Innovative case studies, problem-based learning (i.e classroom discussions) and other experiential learning methods could get more space • Quality of education needs attention. Several approaches to receive feedback on educational quality were discussed including feedback from students and their associations, and from alumni via tracer studies and alumni networks • Plant breeders and taxonomists (including forest taxonomists) are 'endangered species', indicating the need for developing capacity in these areas.• A general observation was that PGR and agrobiodiversity elements are incorporated in many programmes. Still, the knowledge of PGR fundamentals can be weak. • Course enhancement will require attention to both content and delivery methods.The meeting proposed that Bioversity should bring all national stakeholders together in a forum to enhance networking and discuss content and delivery. The participants in the meeting suggested that there is need to increase awareness and publicity of the various PGR courses in the country. The website of the Regional Cooperation in Southeast Asia for Plant Genetic Resources (RECSEA-PGR) (http://www.recsea-pgr.net/) was suggested to host such publicity.Paul BordoniThe Objectives of the Platform for Agrobiodiversity Research (PAR) are:• To support the development of an adequate agrobiodiversity knowledge base through collating, synthesizing and disseminating agrobiodiversity knowledge, making available the relevant tools and practices that support improved use of agrobiodiversity, and identifying areas where information is lacking and new knowledge is needed.• To identify ways in which agrobiodiversity can contribute to addressing some of the major global challenges faced today (e.g. environmental degradation, poverty alleviation, climate change, water quality and scarcity, and new global disease threats) by making available the information and options that ensure the contribution of agrobiodiversity in these areas.• To identify and facilitate relevant new and innovative research partnerships, that strengthen multidisciplinary and participatory agrobiodiversity research, and involve work on different agro-ecosystem components (such as livestock, crops, soils, pollinators, etc.) and contribute to building agrobiodiversity research capacity, particularly in the developing regions.PAR is actively building up a community of practice also by offering Web 2.0 services that enhance communication and foster networking (http://agrobiodiversityplatform.org). One of the instruments that could prove useful to this group of Malaysian universities is a Web-based tool for collective document writing. In order to use this tool one will need to become a member, by registering at the 'Community Area' of the PAR website.The Platform, which has its Secretariat hosted by Bioversity International, is eager to raise awareness about agrobiodiversity and invites contributions to the newsletter and blog posts. We encourage universities to use PAR as an opportunity to connect to other groups of stakeholders.As part of Bioversity's Global Partnership Program (GPP), PAR participates in the shaping of policies developed by international bodies such as the Convention on Biological Diversity (CBD), the Intergovernmental Platform on Biodiversity and Ecosystem Service (IPBES) and others. It provides an avenue and opportunity for contributing to and influencing the formulation of policies developed in these forums. ","tokenCount":"3470"} \ No newline at end of file diff --git a/data/part_3/0797078853.json b/data/part_3/0797078853.json new file mode 100644 index 0000000000000000000000000000000000000000..04a59d2f529ff1f94375e2eea474d916bdd8977c --- /dev/null +++ b/data/part_3/0797078853.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"0255325b0fd69cc9b4c63ea4928f592f","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/13e0c4a1-60c3-4c67-8c49-549508a7c1ad/retrieve","id":"-1287459951"},"keywords":[],"sieverID":"496e0b30-ab52-459b-bcb0-3e4b605b3ca2","pagecount":"14","content":"While there is consensus on the need to promote agricultural development in Africa to achieve food security and use agriculture as an engine of growth, there is a lively policy debate on appropriate policies to achieve this goal. In the past two decades, there has been a revival of policies that favor government support to agriculture in Africa, especially in the form of input subsidies. Such policies have remained highly controversial, reflecting a long-standing dichotomy in agricultural development policy between those who consider subsidies as essential to increase agricultural productivity and those who criticize such state-focused policy instruments and favor market-oriented approaches. In the literature, agricultural policy choices have mainly been analyzed using models that capture economic or political interests. Some studies have focused on policy beliefs to explain the dichotomy, but what has not received much attention is the use of language in agricultural policy discourses, in spite of increasing evidence that narratives matter for policy-making. To address this gap, we combine the Advocacy Coalition Framework with Narrative Policy Analysis to examine agricultural policy discourses in Senegal. Applying a cluster analysis to coded transcripts of in-depth interviews with policy stakeholders, we identified two opposing advocacy coalitions and labelled them ''agricultural support coalition\" and an ''agricultural support critique coalition\". An analysis of the argumentative structure of the narratives of each coalition revealed interesting differences: while the agricultural support coalition told a range of straight-forward stories that explain how government support, such as input subsidies, addresses the problem of low agricultural productivity, the opposing coalition formulated their stories mostly in the form of critiques rather than telling equally straight-forward counter-stories. Based on the analysis, we examine possible metanarratives, which take arguments of both coalitions into account and may have the potential to overcome the long-standing dichotomy in agricultural development.Since the 2000s, there has been renewed interest among African governments, development organizations, civil society, and the scientific community in promoting agricultural development in Africa. Such renewed interest is evident in the Comprehensive Africa Agriculture Development Programme (CAADP), the Alliance for a Green Revolution in Africa (AGRA), and the New Alliance for Food Security and Nutrition in Africa (NAFSN). Yet, disagreements exist regarding the policy instruments that should be used to promote agricultural development in Africa. What role should the government play? Are input subsidy programs an effective strategy to increase agricultural productivity? Do small-scale farms have development potential or is supporting them ''romantic populism\"? Such questions have remained contested among policymakers and analysts for a long time (see, e.g., Harrigan, 2003;Jayne, Govereh, Mwanaumo, Nyoro, & Chapoto, 2002;Collier, 2008;Deininger & Byerlee, 2012;Jayne & Rashid, 2013).In his seminal work on ''Development Dichotomies\", Paul Streeten (founding editor of World Development) highlighted the fundamental divisions in ideas and beliefs that he observed among development economists. To name just two, there is the division between those who believe ''bigger is better\" and those who believe ''small is beautiful\" (Streeten, 1983, 355ff). Likewise, there is a division between ''pedants\", a term Streeten used to refer to those ''who tend to advocate models that have, by their standards, worked: export orientation, reliance on market forces, and reduced interventions by the central government\" and what he called ''utopians\", a group that wants to ''experiment with a wide range of institutional arrangements\" and ''passionately dislikes precision both in analyzing what exists today and in drawing up the blueprints of their ideas for a better society in the future!\" (Streeten, 1983, 359-360).With regard to agricultural development, such dichotomies exist, as well. In particular, there is a divide between those who believe in state-led approaches and those who believe in marketled approaches to promote agriculture. This dichotomy featured prominently in seminal writings about the political economy of agricultural policy, such as Bates (1981) ' ''Markets and States in Tropical Africa\", Krueger (1996) ''Political Economy of Agricultural Policies\", Van De Walle (2001) ''African Economies and the Politics of Permanent Crisis\" and Jayne, Govereh, Mwanaumo, Nyoro, and Chapoto (2002)'s ''False Promise or False Premise\". The debate remains important for agricultural policy-making to date. In Malawi, for instance, Harrigan (2003) found a dichotomy between a belief in ''state minimalism and pricism\" that opposed input subsidies (Harrigan, 2003, 848) and a belief in ''structural revisionism\" that accepted subsidies and other government interventions (Harrigan, 2003, 850). Likewise, a study by Mockshell and Birner (2015) conducted in Ghana and Uganda points to a dichotomy in policy beliefs between donors and domestic policy-makers regarding agricultural policy choices.In explaining contested agricultural policy choices, the early quantitative literature focused on the economic interests of different groups and the resulting incentives of politicians to stay in power. The role of ideas and ideology was not considered. As Binswanger and Deininger noted in their 1997 review of this literature: ''It is not clear to what extent ideas and ideologies are used to bring about political and policy changes, rather than to merely legitimize policies that would have been adopted anyway because of interest group pressure. Nor is it clear to what extent ideas and ideologies facilitate the spread of specific policy mixes across countries. The literature on agricultural policies and agrarian relations does not address these issues. Further research is needed.\" (Binswanger & Deininger, 1997).Since then, the economic models to explain agricultural policy choices have become more complex, e.g., to capture the influence of regime types; but the role of ideas and ideologies has continued to play a minor role (see reviews by Binswanger & Deininger, 1997;De Gorter & Swinnen, 2002;Swinnen, 2010;Anderson, Rausser, & Swinnen, 2013). Only few quantitative studies have been published that included ideas or ideologies as an independent variable that may influence policy choices. An example is Olper (2007), who found evidence that political orientation (left-wing versus rightwing) influences agricultural policy choices, but the relation was found to be complex and influenced by other factors, such as land inequality.In the qualitative literature on agricultural policy change, the role of ideas and ideology has received relatively more attention. This applies both to the early literature, which identified, for example, ''African socialism\" or the ''Washington consensus\" as factors influencing agricultural policy choices (see review by Birner & Resnick, 2010), and to the more recent literature. An example of the latter is a study by Resnick, Haggblade, Babu, Hendriks, and Mather (2018), who used the Kaleidoscope model of policy change, which explicitly takes ''norms, biases, ideology and beliefs\" into account. Applying this model to analyse agricultural policies in Zambia, the authors concluded that these factors influenced the government's input subsidy program (Resnick, Haggblade, Babu, Hendriks, & Mather, 2018, 115). Another example is the study by Mockshell and Birner (2015) quoted above, who used the Advocacy Coalition Framework developed by Jenkins-Smith and Sabatier (1994) to identify how ideas and policy beliefs influence agricultural policy choices in Uganda and Ghana.The political science literature suggests that it may also be important to study how the use of language influences policymaking. According to this literature, it matters for political outcomes how ideas and beliefs are formulated in the public discourse and what argumentative strategies are used to defend particular ideas and beliefs. A prominent example of this position is the book ''The Argumentative Turn in Policy Analysis and Planning\", edited by Fischer and Forester (1993, 1), who pointed out: ''What if our language does not simply mirror or picture the world but profoundly shapes our view of it in the first place?\" Research that followed this quest for an ''argumentative turn\" has employed various types of discourse analysis to study the way in which language is used in argumentative processes to influence policy outcomes (Fischer & Gottweis, 2013). A policy field where this research has produced particularly interesting insights is environmental policy. For example, researchers were able to identify how different actors influence environmental policy choices by imposing a particular framing of an environmental problem, thus influencing ''what can and cannot be thought\", thus delimiting the range of possible policy options (see review by Hajer & Versteeg, 2005, 177-178). More recently, the analysis of narratives is also finding its way into mainstream economics, as the recent book ''Narrative Economics\" by Nobel Prize winner Robert Shiller (2019) indicates.In the literature on agricultural policy processes, there are still relatively few empirical studies that have adopted this research agenda and aimed to identify how the use of language influences agricultural policy choices. One example is a study by Erjavec and Erjavec (2015), who analysed the discourses associated with different directions in the reform of the Common Agricultural Policy of the EU. Feindt and Kleinschmit (2011) examined how the framing of the outbreak of mad cow disease (BSE) in the German media influenced a far-reaching change in agricultural policy in Germany in the early 2000s. With regard to agricultural policymaking in developing countries, discourse analyses have been conducted to identify the ideas and policy beliefs of different actors (Birner, Gupta, & Sharma, 2011;Mockshell & Birner, 2015), but studies that focus specifically on the argumentative structure of agricultural policy discourses have been relatively scarce. The present paper aims to address this gap in the literature by conducting an empirical analysis of agricultural policy processes in Senegal, which combines the application of the Advocacy Coalition Framework (ACF) with the Narrative Policy Analysis approach developed by Roe (1991Roe ( , 1994)). The ACF is used in this paper to identify the main policy themes that dominate the debate about agricultural development and to identify the groups of actors (advocacy coalitions) who share similar ideas and policy beliefs (as in Mockshell & Birner, 2015). On this basis, Narrative Policy Analysis is applied to examine the use of language by the different advocacies by examining how they formulate their ideas and beliefs and how they argue against each other in the policy process.Narrative Policy Analysis makes it possible to identify the ''stories\" that different actors tell, and to examine the argumentative structure of these stories. As pointed out by Roe (1994, 36), a story ''has a beginning, middle, and end (or premises and conclusions, if cast as an argument) and revolves around a sequence of events or positions in which something is said to happen or something is said to follow.\" Narratives thus ''have the objective to get their hearers to assume or do something\". (Roe, 1994, 37). A key insight of Narrative Policy Analysis is that ''stories commonly used in describing and analysing policy issues are a force in themselves, and must be considered explicitly in assessing policy options\" (Roe, 1994, 2). Narrative Policy Analysis also shows that narratives are often treated as continuing to have explanatory power even if some assumptions on which they are based have come into doubt (Roe, 1994, 37). Thus, as demonstrated by our case study of Senegal, the analysis of policy narratives contributes to a better understanding of why ''development dichotomies\" continue to persist in spite of efforts to overcome them, e.g., by promoting evidencebased policy learning.The paper is structured as follows. The next section outlines the key concepts of the AFC and the Narrative Policy Analysis approach. In Section 3, the dynamic agricultural policy landscape in Senegal, the case study country, is presented. Section 4 describes the quantitative and qualitative research methods used in this study. The results are presented in Section 5 and discussed in the Section 6. Conclusions are drawn in Section 7.As explained in the introduction, this study combines the Advocacy Coalition Framework (ACF) developed by Jenkins-Smith and Sabatier (Jenkins-Smith & Sabatier, 1994;Weible & Sabatier, 2017) with the Narrative Policy Analysis approach developed by Roe (1994). The ACF was developed to analyze policy subsystems consisting of different policy coalitions, in which members of each coalition share ideas and policy beliefs (Jenkins-Smith & Sabatier, 1994). The concept of policy beliefs is fundamental in the ACF as the formation of coalitions depends on shared beliefs. Policy beliefs refer to implicit theories about how to achieve certain goals, views on the effectiveness of policy instruments, value priorities, and perceptions of important causal relationships (Jenkins-Smith & Sabatier, 1994;Majone, 1980). They are seen as causal drivers for political behavior (Weible, Sabatier, & McQueen, 2009, 122). In a policy subsystem, the coalition members with similar beliefs interact and engage in a significant degree of coordination to influence policy (Elgin & Weible, 2013;Weible, Sabatier, & McQueen, 2009). A broad range of policy actors consisting of government officials, interest groups, researchers, and private sector actors concerned about a policy problem form beliefs about possible solutions and coordinate their activities in a policy subsystem (Weible, 2007).A central concept in the AFC is policy-oriented learning, which is defined as ''enduring alternations of thought or behavioral intentions that result from experiences and which are concerned with the attainment or revision of the precepts of the belief system of individuals or of collectives\" (Jenkins-Smith & Sabatier, 1994, 182;Jenkins-Smith, Nohrstedt, Weible, & Sabatier, 2014, 198). Achieving cross-coalition learning depends on the extent to which policy actors perceive a threat to their core policy beliefs (Jenkins-Smith, Nohrstedt, Weible, & Sabatier, 2014, 199). An intermediate level of conflict increases the likelihood of cross-coalition learning, as opposing coalitions are threatened just enough to attend to the issues and remain receptive enough to new information (Jenkins-Smith, Nohrstedt, Weible, & Sabatier, 2014, 199). Conflicting policy beliefs among coalitions in a policy subsystem can be mediated by policy brokers to facilitate cross-coalition policy learning (Jenkins-Smith & Sabatier, 1994;Jenkins-Smith, Nohrstedt, Weible, & Sabatier, 2014). The aim of promoting policy-oriented learning is to facilitate policy change, which can be measured by the extent to which alterations deviate from previous policies, e.g., by revisions of existing programs, termination of programs, or the launching of new programs (Jenkins-Smith, Nohrstedt, Weible, & Sabatier, 2014).While the AFC framework offers an important tool to identify and analyze the role of policy beliefs in the policy process, the framework does not focus on the way in which language is used to express policy beliefs and how the use of language, specifically the argumentative structure, may contribute to the change in policy beliefs and policy learning. Combining the AFC with a framework that addresses this aspect appears useful. As Shanahan, Jones, and McBeth (2011, 536) observe, ''stakeholders use words, images, and symbols to strategically craft policy narratives to resonate with the public, relevant stakeholders, and governmental decision makers, with the aim of producing a winning coalition.\" There are different approaches to analyze narratives, which are divided into two categories (Jones & McBeth, 2010, 333ff): (1) structuralist approaches, which typically involve a quantitative analysis of the structure or format of narratives; and (2) poststructuralist approaches, which employ qualitative methods and focus understanding towards ''how meaning is developed and assigned\" (Jones & McBeth, 2010, 334). As mentioned above, this study applies Roe (1994) Narrative Policy Analysis, which falls into the category of post-structuralist approaches. This approach has been selected, because the focus of this paper is placed on understanding dichotomies in agricultural development policy and Roe's Narrative Policy Analysis is considered to provide ''the most fully articulated methodology for the use of narratives in policy controversies.\" (Jones & McBeth, 2010, 335). Moreover, the framework has been developed to study policy problems that are characterized by uncertainty, complexity, and polarization. Uncertainty and complexity follow from the intricacies of the problem and/or the interrelatedness with other policy issues, while polarization refers to the concentration of groups around extremes in the policy issues (Roe, 1994, 2). As the persistence of dichotomies (see Section 1) indicates, these features play an important role in agricultural development policy.The Narrative Policy Analysis approach involves the following four steps (Roe, 1994, 2ff). The first step is to identify those narratives that dominate the issue in question and match the definition of a story indicated above, that is having a beginning, a middle and an end. The second step is identifying those narratives that do not conform to the definition of a story (non-stories) and those narratives that are counter-stories. The latter also have a beginning, middle and end, but they are formulated in such a way that ''they run counter to the controversy's dominant policy narratives\" Roe, 1994, 3). A typical type of a non-story is a critique, which ''never tells its own story-its point-by-point rebuttal does not have its own argument, its own beginning, middle, and end-and serves only to raise doubts that the critique itself cannot answer\" (Roe, 1994, 40). Critiques alone, however, are not sufficient to induce policy change. As Roe (1994, 40) observes: ''Refutation of a decision-maker's argument for action doesn't mean you have taken away her or his perceived need to act. Rather, displacing a discredited narrative requires an equally straightforward narrative that tells a better story\". To understand the dichotomies in agricultural development policy and examine how they are translated into actual policy, it is therefore essential to identify both critiques and counter-stories. The third step in Roe's approach is to generate a ''meta-narrative\", which takes aspects of the dominant stories and counter-stories into account and aims to turn the prevailing polarization ''into another story altogether\" (Roe, 1994, 4). The fourth step is to examine if and how the meta-narrative recasts the issue in a way more amenable to decision-making. However, regarding steps 3 and 4, one needs to take into account that not all controversies have a policy-relevant meta-narrative (Roe, 1994, 4). The concept of the meta-narrative is particularly interesting when combining Narrative Policy Analysis with the ACF, because such meta-narratives could play an important role in policy learning across advocacy coalitions.In the following, we will apply these concepts to better understand how different narratives influence policy formulation and policy outcomes in the context of a developing country, taking Senegal as an example.Since Senegal won its independence in 1960, agricultural development policies have been central to the Senegalese economic development agenda. Yet, annual growth in the agricultural value added has been erratic (below 5 percent in recent years) and characterized by declining performance in total cereal production and in land productivity (USD 160/hectare) and labor productivity (0.5-0.9 ha/worker) (Mockshell, 2016, 4). Overall, the sector remains underdeveloped and confronts numerous challenges (Stads & Sène, 2011). This situation is particularly disturbing for the Senegalese economy because the country heavily depends on agriculture, which supports the livelihood of most of its rural population. Owing to these challenges, the sector has witnessed several policy reforms aimed at promoting its development. The policies of the post-independence (1960-1980s) era were characterized by state investment in the provision of agricultural inputs and credit, and by regulating the output market (Masters, 2007;Oya, 2006). However, because of the fiscal crisis and management challenges, state interventions were abandoned in the early 1980s (Oya, 2006). This period marked an ideological shift from state interventionist agricultural policies to market sector-led polices. There was a move toward liberalization of the agricultural input and output markets through the ''Nouvelle Politique Agricole\" (new agricultural policy) launched in 1984 (Oya, 2006). Apart from the presence of international financial institutions and other donor organizations coming into the agricultural policy arena, there was an inflow of private sector enterprises, non-government organizations, and civil society organizations in the policy arena.The limited success in transforming the Senegalese agricultural sector (post-Nouvelle Politique Agricole era) led, in the 2000s, to initiating a consultation process involving multiple stakeholders to develop the ''Loi d'Orientation Agro-Sylvo Pastorale\" (LOASP -Agro-sylvo pastoral act) (Resnick & Birner, 2010). The LOASP was a grand vision for the agricultural sector and aimed at providing a strategy to modernize the sector and reduce rural poverty (Oya, 2006;Resnick & Birner, 2010). The LOASP was complemented by the ''Grande Offensive Agricole pour la Nourriture et l'Abondance\" (GOANA-Great Agricultural Offensive for Food and Abundance) launched after the 2008 food crisis, which aimed at improving domestic food production, reducing food importation, and attaining self-sufficiency. Under the GOANA, state subsidies covered the provision of irrigation facilities, fertilizer (50 percent reduction in price), and seeds (75 percent reduction in price) that was a U-turn from the Nouvelle Politique Agricole mentioned earlier (Stads & Sène, 2011).The ''Programme National d'Investissement Agricole\" (PNIA-Program of Agricultural Sector Investment) was the next agricultural development policy document of Senegal, covering an implementation period of 2011-2015. It was developed through a multi-stakeholder consultation process involving national policymakers, donors, and civil society organizations. It reflected the diverse policy interests in the agricultural policy subsystem (Government of Senegal, 2012). In particular, it aligned itself with the Comprehensive Africa Agriculture Development Programme (CAADP) (Plan d'investissement, (n.d.)). Similar to the initial agricultural development program, the PNIA also aimed at promoting economic development, achieving food security, and reducing poverty by 2015 (Government of Senegal, 2012). Although the PNIA was the output of a broad stakeholder consultation process with eight policy objectives, it is generally silent on the policy instruments to be used to realize the outlined policy objectives (Plan d'investissement, (n.d.)).This section starts with a description of the research study design, followed by an explanation of the empirical research methods that were applied.The study combines both the ACF and Narrative Policy Analysis to identify policy beliefs and understand their role in shaping agricultural policy processes and policy choices. To identify the current actors in the agricultural policy subsystem and examine their narratives, a stakeholder mapping exercise was conducted, which was complemented by key informant interviews in Senegal and by a search through policy publications. The main actors were then categorized into four generic interest groups: think tanks, knowledge providers, donors, and government policy-makers. To examine the underlying narratives of the agricultural policy choices in Senegal, in-depth interviews with policy stakeholders were conducted. After every interview, the respondents were asked for additional respondents involved in the policy process, taking into consideration the qualitative research principle of ''completeness\" (covering the broad spectrum of actors) and ''dissimilarity\" (respondents with diverse perspectives) (Blee & Taylor, 2002). A total of 27 indepth interviews (see Table 1) and two participant observation workshops were undertaken. Data triangulation was employed to check for internal validity (see Golafshani, 2003).The in-depth interviews with stakeholders were conducted using a semi-structured interview approach. This follows the recommendation of Roe (1994, 158-162) to use open-ended questions without prompting the respondents to facilitate free expression. The interview questions comprised five broad initial questions: (1) What are the challenges affecting the agricultural sector? (2) What are the opportunities existing in the agricultural sector? (3) What is the vision for the agricultural sector? (4) What policy instruments are important for transforming the agricultural sector (5) What is the role of the different policy actors in transforming the agricultural sector? Twenty-three in-depth interviews were recorded with the consent of the respondents. The interviews lasted for an average duration of one hour, and most interviews were conducted in French, with four in English. All recorded interviews were transcribed verbatim for further analysis.The data analysis process consisted of a content analysis of the transcripts and a two-step cluster analysis. The analysis aimed at examining the narrative polarizations through cluster analysis and applying content analysis to determine the storyline.All transcripts were uploaded into the NVivo 10 software for a detailed content analysis of each transcript 1 . The five broad interview questions (see above) were used to guide the content analysis. Two independent researchers who had regular discussions during the coding process to check for inter-coder reliability conducted this analysis. The categories consisted of challenges affecting the agricultural sector, vision of the agricultural sector, role of the actors, and the policy instruments. A total of 25 policy themes relating to the agricultural policy debates were identified in the transcripts of the respondents. In this analysis, labels were applied to describe recurring policy themes. For example, the label ''rainfall-dependent agriculture\" describes a policy theme, which focuses on the problem that agricultural production systems mainly rely on natural rainfall and are characterized by low productivity because of the absence of irrigation technologies. As indicated above, the researchers identified those policy themes without prompting or using leading questions (see Appendix A for details). The identified policy themes were grouped according to constraints affecting the agricultural sector and agricultural policy instruments.Transformation of the qualitative data into a quantitative data set was carried out to identify the advocacy coalitions and policy actors (see Section 2 for explanation). The first step was the coding of the interviews (cf. Auerbach & Silverstein, 2003). The coding of interviews in this paper builds on an approach designed by Birner, Gupta, and Sharma (2011) for analyzing the political economy of agricultural policy reforms in India. The transformation into quantitative data followed an approach developed by Mockshell and Birner (2015). Each policy theme identified in the content analysis (coding) was assigned a binary value (1 = yes was assigned if the policy theme appeared in the policy narrative of a respondent and 0 = no was assigned otherwise).Subsequently, a two-step cluster 2 analysis was conducted to explore how the policy actors' cluster around the policy themes identified from the in-depth interviews. Cluster membership was determined and cross-tabulated, using an identification number (stakeholder identification variable) for each interviewed stakeholder. The cluster analysis served to identify the number of advocacy coalitions and their composition, based on shared policy themes.After determining the advocacy coalitions and the policy actors who constitute them, Roe's Narrative Policy Analysis approach (cf. Section 2) was applied to identify and analyze different types of narratives in the interviews held by the policy actors. For this purpose, the policy themes identified as described above were examined with regard to their narrative structure in order to identify stories, non-stories (such as critiques), counter-stories and metanarratives. The analysis of the policy themes showed that they fall into the following groups: (1) Policy themes that refer to constraints affecting the agricultural sector, which are possible beginnings of stories and counter-stories; (2) policy themes that describe policy instruments and their effects, which are possible middles and ends of either stories or counter-stories; and (3) policy themes that were formulated as criticism of policy instruments and therefore, fall into the category of critiques (non-stories).The broad interview questions on challenges affecting the agricultural sector, policy instruments, and vision of the agricultural sector were used to guide this analytical process. For example, a respondent's ''fertilizer input subsidy narrative\" was identified from the interview transcript as follows: The story starts with the problem of depleting soil quality affecting agricultural productivity (beginning of story). Fertilizer input subsidy provision is recommended for improving soil quality (middle of story). Providing a fertilizer input subsidy would contribute to improving soil nutrient and agricultural productivity. This will increase farmers' income and promote agricultural and rural development (end of story). The results are described in the results section, using direct quotes for illustration. In addition, the results are summarized in the form of tables in the Appendix B.The analysis of policy themes did not reveal any metanarratives in the transcripts of the interviewees. Therefore, the results presented in Section 4 are based on the first two steps in the four-step approach of Narrative Policy Analysis (see Section 2):(1) the identification of dominant stories, and (2) the identification of critiques (non-stories) and counter-stories. The remaining two steps, that is (3) identifying meta-narratives and (4) assessing them are conducted as part of Section 5, where potential meta-narratives are discussed that could serve for policy-learning.Based on the policy themes identified in the data analysis, this section presents how the agricultural policy ideas and policy beliefs were expressed in the form of storylines. The section starts with describing findings regarding the advocacy coalitions and their composition before presenting the findings regarding their narratives.Based on the results of the cluster analysis, two advocacy coalitions were identified. They are labeled as ''agricultural support\" and ''agricultural support critique\", because these terms reflect predominant types of narratives of the respective coalitions. Table 2 shows the advocacy coalitions and the stakeholders that form the two coalitions. A total of 17 stakeholders belong to the agricultural support coalition, which is dominated by actors from government ministries and agencies (except the finance ministry), academia, and interest groups. The six remaining policy actors belong to the agricultural support critique coalition. These coalition members come from international financial institutions, think tanks, research organizations, and academia.The results of the cluster analysis are displayed in Appendices C and D. A silhouette 3 measure of 0.6 (cluster results) > 0.5 (average measure) provides a basis for accepting the cluster groupings of the two advocacy coalitions. This implies that the agricultural support narratives and the agricultural support critique narratives are not the same for the two advocacy coalitions (''agricultural support\" versus ''agricultural support critique\") but are similar within the same advocacy coalition. The next section examines the narratives of the two advocacy coalitions. Source: Authors' compilation.2 A two-step cluster determines the cluster number automatically compared to Kmeans and hierarchical clustering in which the number of clusters must be specified in the analysis.Based on the detailed analysis of interview transcripts, 63 different narratives were identified in the agricultural support coalition, while 24 narratives were identified in the interviews of the agricultural support critique coalition. The next section presents the policy narratives of the two coalitions.The narratives of the agricultural support coalition focus primarily on low agricultural productivity coupled with other agricultural sector constraints, and on instruments to overcome these constraints. In these narratives, the agricultural sector is characterized by low productivity and there is a need to address this problem. The proponents of this coalition construct the agricultural support narratives in a ''cause and effect\" style. At the beginning of the story, the narratives identify problems of poor soil fertility, low input quality, high costs of inputs, unavailability of appropriate technologies, and rainfall-dependent agriculture as fundamental constraints contributing to low agricultural productivity (see Table 3). As a solution to this problem, the middle of the narratives highlight the potential benefits of government investment in modern farm inputs, irrigation facilities, and the provision of input subsidies (for fertilizer and seed) to increase agricultural productivity. Moreover, import protection was recommended to facilitate the development of the domestic market. At the end of the narratives, such policy instruments are said to contribute to poverty reduction, increase farm income, provide employment for youth, improve food security, and promote rural and economic development. The following sections analyze these agricultural support narratives in more detail.A recurring theme in the narratives of the agricultural support coalition was the role of poor soil quality and low fertilizer application in contributing to low agricultural productivity. This problem was explained in a cause-effect fashion by the inability of farmers to purchase fertilizer and other complementary inputs due to high cost, quality problems, and insufficient quantities on the market. This type of narrative can be illustrated by the following quote from a farmers' organization representative: ''There are no good seeds . . . so seeds come from everywhere, everyone brings what he wants. The ISRA [i.e. Institut Sénégalais de Recherches Agricoles -Senegalese Institute of of Agricultural Research] was helping farmers, but for about 10 years now we do not have certified seeds. If we don't have good seeds, we cannot have a good harvest . . . also there is the problem with depleting soil nutrients and we need fertilizer (R1) 4 .\" A government official expressed this concern as follows: ''Besides that, there is also a problem of availability of certified seeds, thus germination is not always guaranteed (R19).\" To address these problems, the agricultural support coalition recommended a fertilizer and seed input subsidy to improve soil quality and increase productivity. This recommendation was linked to the argument that farmers are poor and unable to access agricultural inputs from the market. Hence, these narratives have a very systematic ''problem and solution\" plot. The findings suggest that these narratives have high acceptability across different stakeholders, as evidenced by the wide range of actors and frequency at which such narratives were identified (see Table 3). In the view of the proponents of agricultural support, subsidies for fertilizer and seeds will contribute to increasing soil fertility, and therefore to increasing agricultural productivity and food security. These were typical ends of the respective narratives.This narrative highlights the dependence of Senegalese agriculture on rainfall, which is also seen as a major factor contributing to low agricultural productivity (see Table 3). A government official expressed this concern as follows: ''Currently, our agriculture is confronted with climatic hazards, especially in the Northern region, which affects agricultural productivity (R6).\" Similarly, a representative of a farmers' organization mentioned that ''now The ''number of respondents\" indicate the number of actors who mentioned the policy theme at least once. The ''frequency of occurrence\" refers to the total number of time the policy theme was mentioned. N = 23. Source: Authors' compilation from in-depth interviews.there are other factors of production such as water because if 90% of our agriculture depends mainly on natural rainfall, then this is a haphazard type of agriculture (R3).\"The rainfall-dependence narrative was often framed in a broad climate change context by the agricultural support coalition. The strategic reference to a global phenomenon seems to increase the acceptance and credibility of the rainfall dependency narrative. Coalition members also pointed to the limited exploitation of the Senegal River and other natural water sources, emphasizing that there is an ''under-exploitation of water resources\". Similar to the case of the soil depletion narrative, the agricultural support coalition members emphasized the role that government can play through construction of irrigation facilities to support agricultural production. A respondent stated: ''We have the state; it has an important role to play in terms of providing irrigation (R8).\" In the view of the coalition, such interventions will enable farmers to increase crop cultivation throughout the year.The use of the ''hoe and cutlass\" instead of modern farm equipment was a recurring theme among the members of the agricultural support coalition, as indicated by the high frequency of this policy theme (see Table 3). This narrative refers to the low use of improved technology as a major constraint to increasing agricultural production. In this narrative, the current farming system is depicted as ''primitive\" and characterized by the use of a ''hoe and cutlass.\" The solution is seen in the need to ''modernize\" the agricultural production system through the use of tractors. The drudgery in using hand tools (e.g. hoe and cutlass) for farming and the inability of farmers to purchase tractors are the dominant policy themes in this narrative. Members of the agricultural support coalition associated the use of primitive farming equipment with the unavailability of tractors and other modern inputs. A government official described the problem as follows: ''The government supports producers, but this is not adequate . . . the state is currently reviewing its policies to support producers in this direction, but this is insufficient, especially equipment relating to tractors (R6).\" A representative of a farmers' group expressed this point as follows: ''The government should support the manufacturing of new farm machines and sell them to farmers as factories that manufacture these machines are not available . . . also the government has to train our artisans so they can produce some parts since this will make the prices affordable for farmers (R22).\"The agricultural support coalition also associated a perceived disinterest of youth in farming and the migration of rural people to urban areas with a lack of modernization in farming. As one respondent said: ''. . . we cannot feed the nation without agriculture. Agriculture in most cases can bring many jobs for young people if we take care of it properly. Many young people do not have jobs today and agriculture can help create jobs for them. It can bring development and reduce poverty if conditions are favorable and we have the right tools to work (R1).\"For the agricultural support critique coalition, two types of narratives were identified, following the approach outlined in Section 2: critiques (which are non-stories as they do not have beginning, middle and end) and counter-stories, which provide alternatives to the solutions that are criticized.Although the agricultural support critique coalition identified similar fundamental problems affecting the agricultural sector as did the agricultural support coalition (Table 4), their narratives were mostly critiques: They emphasized that the prevailing agricultural input subsidy programs were ineffective and inefficient. The arguments focused on the need for efficient use of limited resources, unsustainable input subsidy policies, and the distributional challenges of input subsidies. A typical example of a critique is the following statement expressed by an official: ''There are problems of resource allocation, when you take a sector like agriculture, much of the resources have been directed to subsidies of seeds and fertilizer but we have very low productivity, impacts are still low. We spend this large amount of money, which could have been invested in building irrigation facilities . . . there is a huge potential to develop agriculture in the Kédougou region but the financial resources are not forthcoming; the priorities are mainly targeted toward seed and fertilizer subsidies (R15).\"The argument that input subsidies might crowd out private investment is a similar critique, which is directed against government input subsidy programs. According to the members of the agricultural support critique coalition, fertilizer inputs are private goods that require private investment rather than government investment. Another critique is based on the argument that government investment in fertilizer creates a disincentive for private investment. A representative of a research organization expressed this concern as follows: ''The government should avoid crowding out investment. That is if the government invests in places where the private sector should invest. I, as a private person, I am not going to have any incentive to invest, because the government is already doing what I should do. For example, providing fertilizer to farmers, fertilizer is something I should buy normally if my activity is profitable. If the government is providing fertilizer, where am I going to invest my money? So, government spending should bring a crowding in effect and not a crowding out effect (R20).\"The problem of poor targeting was another concern in the narratives of the agricultural support critique coalition. In the view of the coalition members, fertilizer and seed subsidies are diverted to benefit government officials, and they mostly benefit large-scale farmers rather than small farmers and thus make input subsidy policy options ineffective policy instruments for agricultural development. In the view of some opponents of government input subsidies, such support measures are mainly implemented for political Government resources should be invested in infrastructure (e.g. road, rail, research, etc.) 3 9The ''number of respondents\" indicate the number of actors who mentioned the policy theme at least once. The ''frequency of occurrence\" refers to the total number of time the policy theme was mentioned. N = 23. Source: Authors' compilation from in-depth interviews.reasons. A policy researcher said: ''Many governments are taking such a subsidy approach; they are politically efficient but not economically efficient. The distribution is in a political way but not an economic way (R20).\" As indicated in Section 2, critiques are not sufficient to displace a prevailing narrative. What is required is an ''equally straightforward narrative that tells a better story\". (Roe, 1994, 40). The analysis of the discourse showed that the agricultural support critique coalition had relatively few such counter-stories. The most prominent one had the following argumentative structure: In view of the problems affecting the agricultural sector (beginning of the counter-story), the government should strengthen the agricultural credit market (middle of the story), so that farmers can access inputs and increase productivity while the problems of government subsidy programs can be avoided (end of the story). An example of this counter-story is the following statement by a representative of a donor organization: ''Why don't you (government) develop a strong agricultural credit market, so that farmers can go there and access this credit at a subsidized rate, this will allow the fertilizer and seed market to develop rather than government intervention . . . in any case there is really much to do in terms of funding and it needs to be more rational for greater efficiency in the long run. Try to set up an efficient financial system that will replace these agricultural subsidies that dry the budget of the Ministry of Agriculture out, but do not provide any expected results (R21).\" The provision of public infrastructure (e.g. road, railway, research and development) was another issue of critique. According to a respondent, ''there is a lack of investment by small farms, that is why we do not see any outcome (results) on the ground.\" As reflected in the statements, the coalition emphasized the need for the private sector to lead investment rather than government input subsidy provisions. Their main argument was that public sector finance crowds out private sector investment.As highlighted in the introduction, the main goal of this paper was to contribute to a better understanding of the narrative foundations of prevailing dichotomies in agricultural development policy. Combining the ACF with Narrative Policy Analysis, the paper aimed to identify the coalitions of actors associated with different positions regarding these dichotomies and to analyze the stories, critiques and counter-stories that they tell. In this section, we will discuss the relevance of the narratives for policy-making and the potential role that meta-narratives could play for policy learning.As the results of the analysis show, the narratives of two advocacy coalitions reflect, as expected, the major dichotomy in agricultural development policy that exists between those who believe in state-led approaches and those who believe in market-led approaches. The narratives of the agricultural support coalition emphasize the need for strong government support, especially by providing input subsidies, while the narratives of the agricultural support critique coalition demonstrate a preference for market-oriented policies. Thus, the study confirms the earlier findings regarding this dichotomy quoted in the introduction (Bates, 1981;Krueger et al., 1991;Van De Walle, 2001;Jayne, Govereh, Mwanaumo, Nyoro, & Chapoto, 2002;Mockshell & Birner, 2015).The narrative analysis presented in this paper shows that two advocacy coalitions that represent this dichotomy use rather different argumentative strategies. The agricultural support coalition tells a range of stories that explain why government support is necessary and how such support will address the problems of low agricultural productivity. In contrast, the coalition that promotes market-based approaches formulates mostly critiques of government subsidies. In the interviews conducted for this study, there was clearly a lack of what Roe (1994, 40) called ''an equally straightforward narrative that tells a better story.\" Only two of the policy themes identified in the transcripts could be identified as counter-stories, while five policy themes were critiques.Possible reasons for the lack of counter-stories include the following: Both coalitions shared the view that low agricultural productivity is the major problem facing the agricultural sector. This problem makes a good beginning of a government subsidy story, but it does not make a good beginning for a market-oriented story, because it is well established in the agricultural economics literature that market failures are wide-spread in agriculture and contribute to the problem of low productivity (see, e.g., Binswanger & Rosenzweig, 1986;Morris, Kelly, Kopicki, & Byerlee, 2007). Hence, it is not easy to construct a straightforward story that explains how market-oriented policy instruments can address the problem. If market failures are caused by government intervention, as in the case of crowding out of private companies by fertilizer subsidies, it is unavoidable to formulate a market-oriented argument in the form of a critique. There are market-oriented narratives that are not critiques, but they are not as straightforward as the subsidy story. An example is public investment, e.g., in road infrastructure, which is often required to support the development of markets. Investment in roads does not directly lead to higher agricultural productivity. This effect can only be expected to occur as a consequence of a chain of causes and effects, such as the following: Better transport infrastructure leads to new marketing opportunities, which lead to higher prices for output or lower prices for inputs, which then provide incentives to farmers to increase productivity. This is a more complex story than the subsidy story, as it depends on additional assumptions. Moreover, even this story is often told in connection with a criticism of current policies. In many African countries, a considerable share of the agricultural budget is dedicated to subsidies (cf. Birner et al., 2018). Therefore, proponents of the market-oriented story often argue that subsidies need to be reduced to make resources available for investments in infrastructure and other public goods.Reference to other countries was not prominent in the narratives of the respondents. However, even if respondents would refer to international experience, members of the agricultural support coalition are likely to maintain a competitive edge. Industrialized countries have a strong track record of heavily supporting agriculture (Anderson & Masters, 2009) and, thus, do not serve as examples for a good story on how agricultural productivity can be increased without government support.Overall, the findings suggest that the agricultural support coalition has ''a better story\" as far as the structure of their narrative is concerned. This does, of course, not imply that their story is better in a normative sense that is in the sense that the prescribed policies are indeed better suited to reach their intended goals than the policies suggested by the agricultural support critique coalition. Moreover, since the number of respondents was limited, the findings cannot be generalized. It is also difficult to compare the findings of this study with the literature, since narrative analyses in the field of agricultural policy are scarce, as indicated in the introduction. However, a discourse analysis on agricultural policies conducted in two different countries, Ghana and Uganda, indicated that proponents of market-oriented policies there often formulated their arguments in the form of a critique of prevailing government policies, as well (Mockshell & Birner, 2015). Hence, for future research, it appears justified to pay more attention to the narrative foundations of development dichotomies and study how proponents of different positions tell their stories.Even though it was beyond the scope of this paper to conduct an analysis of how the different narratives influence actual policy choices, evidence suggests that the agricultural support coalition has gained policy influence in recent years. Government initiatives presented in Section 3, such as the ''Loi d'Orientation Agro-Sylvo Pastorale\" (LOASP) and the Grande Offensive Agricole pour la Nourriture et l'Abondance\" (GOANA) provide smallholder farmers with subsidized fertilizer and other forms of government support (Stads & Sèn, 2011). Such programs have become rather popular in the past decade, not only in Senegal, but also in other African countries (Jayne & Rashid, 2013). The World Bank's project ''Distortions to Agricultural Incentives\" showed that many developing countries did not only stop taxing their agricultural sector during the past decades, they have actually started to subsidize it. The widely popularized fertilizer input subsidy program in Malawi and the global food price crisis of 2008 are often cited as catalysts of the resurgence of input subsidies and the spread to other countries (see Jayne & Rashid, 2013). It would be an interesting topic for further research to analyze how international narratives of the Malawi fertilizer subsidy program have influenced the narratives in other countries, such as Senegal. In 2007, the New York Times praised the program on its title page as follows: ''Ending Famine, Simply by Ignoring the Experts\" (Dugger, 2007). The narrative in this article was a straightforward story: Hunger prevailed in Malawi due to poor soil quality contributing to low productivity (beginning), the fertilizer subsidy increased production (middle) and the hunger was overcome (end). As the title of the story indicates, the article also dismissed the critics of such input subsidies. The Malawi fertilizer story was not only told in the popular press, it also had strong supporters among development economists, most notably, Jeffrey Sachs, one of the most outspoken proponents of fertilizer subsidies in the international development community. In 2009, he and his colleagues published a paper that praised the Malawi case as a splendid example of the ''Africa Green Revolution\" (Denning, Kabambe, Sanchez, Malik, Flor, Harawa, & Sachs, 2009, 7).International financial and development organizations have been largely critical of such subsidy policies. This is not surprising considering their position in the development dichotomy. Anderson and Masters (2009, 63), for example, describe the fact that developing countries moved from the taxation of the agricultural sector to subsidizing it as ''overshooting\" and criticize it as follows: ''In response to rural poverty and inequality, many countries start protecting agriculture soon after they stop taxing it. This imposes large costs on consumers and slows national economic growth\" (Anderson and Masters, 2009, 63). These ideas and beliefs are also echoed in the donor policy environment, and making input subsidies and other government-supported programs a less favorable policy choice (Dugger, 2007;Harrigan, 2003). For the agricultural critique coalition, the historical failure of some past donor funded initiatives (e.g., agricultural tractor service programs), high transaction costs, and governance challenges associated with implementing input subsidy programs in Africa have been the narrative foundation of the prevailing ideas and beliefs (see Daum & Birner, 2017).In spite of their critique, donor organizations often co-finance input subsidy programs under budget support or under initiatives such the investment plans of the Comprehensive Africa Agricultural Development Program (CAADP), which do not necessarily specify for what types of policy instruments the funds are being used (Mockshell & Birner, 2015, 10). Hence, in spite of criticizing such policies, they alternatively work with governments and jointly develop strategies to make such policy instruments more effective. A meta-narrative might be helpful to reach this goal, as will be discussed in the next sub-section.As outlined in Section 2, Roe (1994) narrative policy involves the generation of a ''meta-narrative\", which turns the polarization into a new story that includes aspects of both the dominant stories and the counter-stories. This is step 3 in Roe's framework, following the identification of dominant narratives (step 1) and of counternarratives and non-stories (step 2). One also needs to examine whether the meta-narrative facilitates political decision-making (step 4). As Roe (1994, 6) points out: ''Meta-narratives [. . .] come about in very different ways: some are created, others are preexisting, some have to be discovered, and others just aren't there.\"In case of the agricultural policy dichotomy analyzed here, a concept was created that had the potential of a meta-narrative: ''market-smart subsidies\". This concept was elaborated by a group of World Bank authors in a book entitled ''Fertilizer Use in African Agriculture\" (Morris, Kelly, Kopicki, & Byerlee, 2007). The book has elements of the agricultural support narrative, as it explains the need for an increased use of fertilizer in Africa. It also has elements of the agricultural support critique, as it concludes, after a detailed review of the evidence, that past subsidy programs were expensive and had questionable benefits (Morris, Kelly, Kopicki, & Byerlee, 2007, 43). The book identified market-smart subsidies as a component of a possible solution to the fertilizer problem. Market-smart subsidies were defined as temporary subsidies that are designed in such a way that promote rather than undermine the development of fertilizer markets, e.g., by using fertilizer vouchers. Morris, Kelly, Kopicki, and Byerlee (2007) did not develop a straightforward narrative to promote market-smart subsidies, they rather portrayed them as an option that ''may be justifiable on a temporary basis\" (Morris, Kelly, Kopicki, & Byerlee, 2007, 124). The 2008 World Development Report on ''Agriculture for Development\" also referred to market-smart subsidies, but it also did so in a rather precautionary style: ''Market-smart fertilizer subsidies can be justified, but the conditions for using them efficiently are demanding.\" (World Bank, 2007, 152). Still, with regard to step 4 in Roe's framework (see above), the concept of market-smart subsidies had clear recommendations for policy-makers (see Morris, 1994, 103ff). Subsidy schemes that can be labelled ''market-smart\" have, indeed, been implemented in several African countries. A recent review by Jayne, Mason, Burke, and Ariga (2018) found that such subsidies had a limited effect on productivity, partly because the market-smart principles were ''watered down or overturned during implementation\" (Jayne, Mason, Burke, & Ariga, 2018, 11). Thus, it appears that neither of the two coalitions fully embraced market-smart subsidies, and they did not become the basis of a powerful meta-narrative that could promote policy-oriented learning across the two coalitions.What are other potential candidates for a meta-narrative, which have better prospects to help bridging the gap in agricultural development dichotomies? This is a question for future research. One candidate can be found in the conclusions of the review by Jayne, Mason, Burke, and Ariga (2018, 11): ''Going forward, a much more holistic approach is needed in most instances to sustainably raise agricultural productivity in Africa.\" The narrative analysis presented in this paper suggests such a meta-narrative is promising, because the agricultural support coalition identified a wide range of issues that need to be addressed beyond fertilizer in order to increase productivity, such as access to better seeds, access to finance and use of appropriate farm equipment. It is evident from basic agronomic principles that access to fertilizer alone will have a limited effect on agricultural productivity, as long as other constraining factors are not addressed. Recent empirical research indicates that other factors, such as weed management, have been rather neglected in improving crop productivity (see, e.g., Scheiterle, Häring, Birner, & Bosch, 2019). Therefore, it might be useful if representatives of both coalitions engage in developing a convincing and mutually agreed meta-narrative on holistic approaches to improve agricultural productivity, which could serve as a basis for policy-oriented learning.Paul Streeten wrote ''Development Dichotomies\" in 1983 out of concern that persistent dichotomies had led to the decline of development economics, leading even to ''news of its death\". He explained that he discussed the dichotomies ''to show either that the alternatives were wrongly posed or that only a doublepronged attack will achieve the objective\" (Streeten, 1983, 36). He concluded his article by offering a reconciling perspective on the various dichotomies that prevailed in development economics at the time. As shown in this paper, reconciling perspectives on the dichotomies that prevail in agricultural development policy today have remained scarce. This paper suggests that there is a need to develop a reconciling perspective on a real-world problem that is crucial for economic development in Africa: low agricultural productivity. The dichotomy regarding this problem has led to a deadlock: on the one hand, policy makers continue to implement input subsidy programs that have limited effect in increasing agricultural productivity, but are supported by a strong narrative. This narrative is not only told by domestic policy-makers, who are often accused of having inferior political motives for implementing such policies, it has also been supported by some prominent development economists. On the other hand, agricultural economists and members of international development organizations continue to criticize such input subsidy policies, based on available evidence, but they have not succeeded in establishing a strong counterstory or a convincing meta-narrative on what should actually be done to increase agricultural productivity. Paying more attention to the narrative foundations of development dichotomies may help to overcome this deadlock.Public investment into infrastructure such as roads, railways, research, etc.Note: Italicized phrases are direct quotes.Source: Authors' compilation from in-depth interviews.Auto-clustering results ","tokenCount":"9139"} \ No newline at end of file diff --git a/data/part_3/0812385815.json b/data/part_3/0812385815.json new file mode 100644 index 0000000000000000000000000000000000000000..788ab8afa12ad1ed15647fda4c368c0acf3c9667 --- /dev/null +++ b/data/part_3/0812385815.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"a9cea1af70a35a8cfa2cf438dfb8fb54","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/57c160db-eda0-4055-a5f0-71648f151ddf/content","id":"-343742824"},"keywords":["Wheat","Triticum","hybrid","heterosis","yield"],"sieverID":"3a19b322-ceb5-41fd-91a2-0fb296a5c0cf","pagecount":"7","content":"Heterosis has contributed to productivity gains in several crops like maize, rice, sorghum, cotton etc. Wheat breeders have largely been unsuccessful to take advantage from this technology at commercial level. Lack of commercial level yield heterosis is regarded as a major reason for this failure as compared to other technical barriers like difficult pollination control and seed production. The allopolyploidy nature of wheat endows even wheat purelines with a fixed intergenomic heterosis which perhaps is the foremost reason for lack of classical yield heterosis in wheat. The coming together of three diverse but functionally similar genomes causes differential gene expression among several other outcomes and leads to a diploid behaving self-sustaining intergenomic hybrid. A long history of highly successful pureline breeding and shortage of nicking parents are other two reasons responsible for failure to realize commercial level heterosis in wheat. Molecular biology tools now make it possible to dissect the phenomenon of heterosis into detectable Mendelian factors to tailor nicking parents to develop commercially sustainable wheat hybrids. This review probes the reasons for the absence of commercial-scale heterosis in wheat.Commercial exploitation of hybridity has been one of the greatest achievements of crop improvement research. Heterosis increases commercially utilizable yields in farmers' fields, leading to higher productivity and income levels. Farmers and breeders, especially for crosspollinated crops like maize, have shifted emphasis from open-pollinated varieties to hybrids to gain from the technology. Shull (1952) defined heterosis as \"the interpretation of increased vigour, size, fruitfulness, speed of development, resistance to disease and to insect pests, or to climatic rigors of any kind manifested by crossbred organisms as compared with corresponding inbreds, as the specific results of genetic unlikeness in the constitution of the uniting parental gametes.\" Heterosis has been studied extensively in maize because of (1) a large expression in terms of yield, (2) extensive exploitation in maize, and (3) ease of pollination control.Wheat, on the other hand, employs cleistogamy in a relatively small flower, making pollination control extremely difficult. Single-plant and small-plot estimates have reported a wide range of yield heterosis in wheat (Singh et al., 2010), however, economically sustainable hybrid exploitation at farmer field level is still limited.WHAT EXPLAINS HETEROSIS? Shull (1908Shull ( , 1909) ) observed that when maize plants were selfed, their vigor and grain yield declined, but when two inbred lines were crossed, both vigor and grain yield increased and even exceeded the mean of the two parents. These reports established the concept of heterosis breeding, and efforts have been made since then to use the phenomenon to benefit all crop plants.The International Maize and Wheat Improvement Centre (CIMMYT) convened an international congress in 1998 on heterosis breeding to take stock of the application of hybrid technology to different crops, including wheat. One essential characteristic of heterosis is that it happens only when hybridity brings together different alleles originating from different parents into one genotype. There have been several explanations for the phenomenon of heterosis: a) Dominance hypothesis: Heterosis is the joint action of multiple loci, with favorable allele being either partially or completely dominant (Bruce, 1910;Keeble and Pellew, 1910;Jones, 1917;Collins, 1921). b) Overdominance hypothesis: Heterosis occurs due to overdominant gene action at many loci (East, 1936;Hull, 1945;Crow, 1948).Heterosis arises because of epistatic interactions between non-allelic genes (Richey, 1942;Schnell and Cockerham, 1992). d) Quantitative genetic explanation: Researchers have employed both first-degree and second-degree statistical estimates to explain heterosis (Hallauer and Miranda, 1981) and both provided a clear answer about the relative importance of various types of gene actions involved in expression of heterosis. Falconer and Mackay (1996) gave a quantitative genetic expression for heterosis in terms of gene effects. Heterosis for a cross between two populations was equal to \"hy 2 \", where \"h\" is the genotypic value of the heterozygote cross and \"y\" is the difference in gene frequencies of two parental populations. According to this concept, the first critical component determining extent of heterosis is the genotypic value of a heterozygote at any given locus, and it would be dependent on interallelic or within-locus interaction at a locus, namely, dominance or overdominance. Also, when \"hy 2 \" is summed over all loci affecting the trait under consideration, non-allelic interactions would also be accounted for. Therefore, the quantitative expression draws its strength from all three above hypotheses.The second crucial component is the difference in gene frequency, meaning how diverse two parental populations are or how diverse the parents are. Therefore, two \"Ds\" viz., -diversity, reflected in differences in gene frequency, and desirability, measured as \"h\" summed over all loci contributing to the trait under study will decide whether the trait will manifest heterosis or not. A similar analogy was put forward by Fu and Dooner (2002) on the basis of DNA sequencing data in maize. They suggested that different maize lines often lack different functional genes. When a nicking pair of lines is crossed, the lines complemented each other's weaknesses, bringing in the two \"Ds,\" and heterosis results.Physiological and molecular diagnosis: Developments in molecular biology enabled molecular dissection of heterosis. Quantitative trait locus (QTL) analyses have begun to further our understanding of heterosis by breaking it down into Mendelian factors and studying their modes of inheritance (Yuan et al., 2012;Hua et al., 2003;Li et al., 2001). However, the relative importance of different genetic phenomena explaining heterosis varies from system to system and trait to trait. One important outcome of several such studies is that heterosis can be defined by a limited number of Mendelian factors. Though an association between QTLs and heterosis has been shown, cloning and further utilization are yet to be accomplished (Lippman and Zamir, 2007). Lack of genetic colinearity at gene level has also been proposed as a reason for heterosis. Gene deletions causing lack of colinearity are also said to be functionally compensated by duplicate copies elsewhere in the genome (Fu and Dooner, 2002). However, a hemizygous complementation of these gene deletions by the other genome leads to heterosis in a hybrid.Altered gene expression in a hybrid, as a result of two genomes coming together, has been proposed as another molecular regulatory mechanism causing heterosis. Song et al. (2009) proposed differential protein expression as a cause of heterosis in wheat. A total of 49 of approximately 900 protein spots expressed differentially in seedling leaves in a hybrid between common wheat and spelt wheat. Of the 49 differentially expressed proteins, 30 were involved in metabolism, signal transduction, energy, cell growth and division, disease defense mechanism and secondary metabolism. Song et al. (2009) postulated that these protein differences were involved in diverse physiological pathways that might be responsible for observed heterosis. Wang et al. (2006), observed differential expression in roots for 27.52% of 990 fragments among hybrids and their parents at the jointing stage and concluded that this differential expression was important for heterosis in root system traits. However, Bottley et al. (2006) observed differential transcriptional silencing of up to 27% of genes in leaves and about 26% of those in roots, in which one (and rarely two) members of a set of three homoeoalleles were not present in the cDNA (complementary DNA) of either roots or leaves. They failed to detect a trend in their study of 236 single-copy genes, each of which mapped to one locus of the three homoeologous chromosomes, but the phenomenon of differential transcriptional silencing definitely hints at some method of genome/ allele compensation. On the other hand, Feldman et al. (2012) discovered that non random intergenomic silencing occurred only for about 10% of the genes and that for most other genes, the extra copies were making a favorable effect through positive intergenomic interactions. Gu et al. (2004) compared a sequence of a 307 kb physical contig covering the high molecular weight (HMW) glutenin locus from the A genome of durum wheat (Triticum turgidum [T. durum] AABB) with the orthologous regions from the B genome of the same wheat and the D genome of the diploid wheat Aegilops tauschii. Based on sequence comparison, they concluded that hexaploid wheat might have more than one tetraploid ancestor, further supporting allelic diversity contributing to intergenomic heterosis.Heterosis was first reported in wheat by Freeman (1919) for plant height. Since then, there have been several reports on heterosis in wheat since then. The whole subject of hybrid wheat was reviewed by Pickett and Galwey in 1997 and more recently by Singh et al. (2010). A few successful hybrids have been reported by the private sector, for example in Europe and India (Saaten, 2013;Mahyco, 2013); however, even the hybrids currently available in market offer the best economic advantage only under less than optimum growing conditions. This has been observed in several other studies (Sharma and Tandon, 1995;Solomon et al., 2007).The question remains why wheat breeders are unable to bring together best of the two \"Ds\" to develop profitable commercial hybrids. Wheat is the third most important cereal crop in the world, and perhaps the number one cereal consumed directly as food by humans. A number of reasons have been suggested for the lack of a commercial hybrid, including the absence of economical, sustainable hybrid seed production and the absence of a high enough level of heterosis to compensate for the costs involved in seed production and thus become a profitable option for farmers and seed companies. This paper focuses on the reasons for the absence of commercial-scale heterosis.Pickett and Galwey (1997) concluded that the most serious technological barrier to the development of a successful commercial wheat hybrid is the absence of adequate heterosis. They argued that if the benefits of hybrid varieties were sufficiently attractive, other difficulties could be overcome by researchers, as is evident from several promising recent reports on male sterility and seed production systems (Song et al., 2013;Titan and Meglic, 2011). Three key factors limit yield heterosis in wheat: multiple genomes, the long history of wheat breeding, and the lack of nicking parents.Polyploids are organisms that contain two or more sets of Sharma 6665 basic chromosomes. Allopolyploids contain doubled interspecific genomes, meaning that hybrid vigor and heterozygosity are permanently fixed like in wheat, Brassica napus, and Geum urbanum (Vandepitte et al., 2011). Polyploids often not only exceed the diploid progenitors' phenotypes but also exhibit phenotypes not existing in diploid progenitors. Some of these traits either contribute to heterosis or confer adaptation to new ecological niches. The advent of molecular tools (Aversano et al., 2012) offers opportunities to explore the molecular effects of polyploidization. These allopolyploids allow heterosis-causing interactions between homoeologous genes on different genomes, much like between different alleles of one gene, causing heterosis in heterozygote diploid genotypes (Figure 1). In allopolyploids, such interactions occur even in genotypes (Figure 1a), and thus they are supposed to have fixed heterosis.Polyploids are in fact very successful as about 70% (Masterson, 1994) of flowering plants are polyploids, and about 75% of those are allopolyploids (Grant, 1981;Brochmann et al., 2004). Allopolyploids are formed spontaneously either by crossing unreduced gametes of the participating species or by chromosomal doubling of the interspecific hybrid. Some allopolyploids, such as Brassicas (UN, 1935), evolve through multiple origins involving reciprocal crosses, whereas others, like wheat (Salamini et al., 2002), are formed by a single or a few hybridization events. It is interesting to note, however, that some allopolyploids, like cotton, are still able to have highly successful commercial hybrids over and above their allopolyploid character, while we are still struggling to achieve full scale commercial hybrids in wheat. Having understood the role of desirable diversity in realizing commercial heterosis, it is critical to assess whether there is sufficient desirable allelic diversity in wheat or its inadequacy itself has become a limiting factor.Wheat, being an amphiploid, has three genomes and is therefore considered to be a natural hybrid. This multiplegenome ancestry perhaps increases wheat's ecological amplitude and evolutionary success (Meimberg et al., 2009) and gives it a very wide agro-climatic adaptability.The allopolyploidization in wheat causes genome restructuring, including sequence elimination from the parental genomes, which appears to be dictated by parental genomes, ploidy level, and sequence type (repetitive, low-copy, or coding) and affects preferentially the larger parental genome (Bento et al., 2011). This elimination phenomenon was found to be non-random and reproducible and augmented the differentiation of homoeologous chromosomes, providing the physical basis for a diploid-like meiotic behaviour (Ozkan et al., 2002). This process also prevented intergenomic recombination, ensuring full fertility and permanent heterosis between alleles of different genomes (homoeoalleles). However, polyploidization causes some degree of intergenomic homoeologous gene silencing and differential gene expression and perhaps contributes and subscripts label different alleles of a gene. to intergenomic heterosis (Mochida et al., 2003). It possesses fixed heterosis resulting from homoeologous alleles on its three homoeologous chromosomes, which in fact is even better than classical heterosis, as the latter has only two genes at each locus (Figure 1a). When two such hexaploid wheat lines are crossed, the fixed intergenomic heterosis is considered to be one of the reasons for low classical heterosis. The presence of three homoeologous alleles (homoeoalleles) in any pure line already imparts enough hybridity to benefit from the phenomenon of heterosis, and a classical cross, which brings in six homoeoalleles at each locus, perhaps fails to bring in enough desirable hybridity across all loci to endow the resultant hybrid with a significantly higher commercial-level heterosis over and above the fixed intergenomic one in best commercial cultivars (Figure 1b). Developments in molecular biology are now allowing investigations into fixed heterosis employing specially constructed amphiploid populations using their diploid progenitors (Abel et al., 2005;Bansal et al., 2012).It can be argued that centuries of wheat breeding have already accumulated three diverse desirable alleles at most loci and that a gradual improvement in this direction is under way in all conventional breeding programs around the world. A collection of 9,000 gene-associated single nucleotide polymorphisms were used to study a worldwide sample of 2,994 hexaploid wheat landraces and modern cultivars to detect regions of wheat genome subject to selection during improvement (Colin et al., 2013). The study revealed that ancestral variation has been used extensively, selection likely acting on multiple functionally equivalent alleles. Can we really conclude that this long-term selection accumulated different but functionally similar alleles over decades, further enhancing intergenomic heterosis within wheat?While maize has a heterozygous balance, wheat has a homozygous balance, meaning there are no deleterious alleles in pure lines. However, this does not rule out the dominance model as an explanation of heterosis at some loci in wheat. The dominance model (Bruce, 1910;Jones, 1917) postulates that inbred parents contain deleterious or inferior alleles at several loci, inhibiting overall good performance, and that these are dominated by superior dominant alleles from the other parent in a hybrid, resulting in a superior performance. Wheat can be a little different in that there might not be deleterious alleles in a pure line (because there is no inbreeding depression), but there could be inferior alleles (decreasers in case of quantitative traits) in one parent and superior alleles (increasers in case of quantitative traits) in the other parent, which, when brought together, result in a superior performing hybrid.For example, for a thoroughly investigated locus like HMW glutenin subunits (HMW-GS), Ribeiro et al. (2011) reported a total of 56 patterns in a set of 134 hexaploid wheat accessions in Portugal. For the three loci Glu-A1, Glu-A2, and Glu-A3 of HMW-GS, they discovered 4, 10, and 6 alleles, respectively. This type of not-yetinvestigated allelic variability for other economically important traits in different genomes has been utilized by breeders over centuries and has been accumulated in pure lines conferring a high level of intergenomic heterosis to present-day wheat cultivars. This also implies that it is theoretically possible to accumulate all possible desirable alleles to get pure lines as highyielding as a hybrid. This theoretical possibility might have been turned into a reality by centuries of wheat improvement work throughout the world, and even if this has been partially achieved, it would explain lack of frequent commercial-level heterosis in wheat (Figure 1). This was somewhat supported by Cui et al. (2002) when they found only 11.14% heterosis in 20 intervarietal Sharma 6667 hybrids compared to 111.39% in interspecific hybrids involving spelt wheat, highlighting the importance of interspecific gene transfer to broaden the common wheat gene pool for further yield improvement, including heterosis exploitation. A potential useful introgression from T. tauschii has been suggested (Mohammadi et al., 1999), and this possibility was demonstrated by Snape and Parker (1985) when they successfully combined yield-determining alleles dispersed between two parents in one inbred line.It is understood that yield is a complex trait-the sum of several qualitative and quantitative traits-and yield heterosis cannot be fully explained by the oversimplified hypotheses that have been put forward by several researchers. One certain requirement for any commercial heterosis is the presence of genetic differences in the two parental lines (East, 1936); however, diverse parents will not always yield heterosis (Solomon et al., 2007).Choosing the right parental combination is central to achieving heterosis. Overdominance (Shull, 1908;East, 1936;Crow, 1948) and pseudo-overdominance (Semel et al., 2006) models can definitely explain heterosis happening at several loci, even in a crop with homozygous balance like wheat. Overdominance postulates interallelic interaction as the cause of heterosis at some loci, whereas pseudo-overdominance results from complementation of two or more linked dominant and recessive alleles in repulsion, in which the dominant and recessive alleles are located on opposite homologues of the two genes acting as overdominance.Since heterosis is a genome-wide expression, and one model explaining heterosis for one locus does not preclude other models explaining heterosis for other loci, different models might explain different locus-specific heterosis expressions. These different genetic models, therefore, only explain different temporal and/or spatial changes in gene regulatory network caused by hybridity (Omholt et al., 2000). However, it needs to be realized that the unique intergenomic hybridity of bread wheat also fixes all forms of non additive heterosis available in the three constituent genomes (Figure 1a). A simple estimate of diversity does not necessarily mean that parents will be heterotic. The allelic constitutions of the three constituent genomes of both the parents need to nick well to give a commercial heterosis over and above the heterosis already fixed in the two parents (Figure 1b). Most studies estimating diversity using molecular markers (El-Zanaty et al., 2013;Chen et al., 2010;Solomon et al., 2007;Zhan et al., 2006;Dreisigacker et al., 2005;Zhang et al., 2003;Corbellini et al., 2002;Xu et al., 2002) concluded that this simple diversity estimate was unable to predict the heterotic potential of the identified parents.Heterosis is a powerful tool benefitting several important crops with yield advantages ranging from 15 to 50%. Wheat breeders have naturally been interested in exploiting this option. A molecular deciphering of the phenomenon of heterosis will definitely help explain the lack of commercial-level heterosis in wheat. Any phenotype, especially those involved in commercial heterosis, involves multiple quantitative traits expressed sequentially or simultaneously during development. A molecular dissection will relate genome-wide tempospatial gene expression data with the relevant phenotypes. Zachary et al. (2006) proposed a \"phenomics\" platform to measure multiple traits in the context of high-resolution QTL mapping as a tool to dissect heterosis into its fundamental components. QTL mapping in both rice (Hua et al., 2002(Hua et al., , 2003;;Li et al., 2001;Luo et al., 2001;Xiao et al., 1995;Yu et al., 1997) and maize (Stuber et al., 1992) have broken down heterosis into Mendelian factors displaying inheritance as hypothesized in classical models of dominance, overdominance, and epistasis. The central idea remains to identify the responsible markers/QTLs/phenomena and then select the right type of parental combinations to maximize heterosis. QTL mapping/cloning approach can be effective in identification of heterosis-causing Mendelian factors and heterotic parental combinations in a multigenomic amphiploid like wheat. What is therefore needed is substantial basic research to determine causes of yield heterosis in wheat and then identify right type of parental combinations.","tokenCount":"3294"} \ No newline at end of file diff --git a/data/part_3/0815771578.json b/data/part_3/0815771578.json new file mode 100644 index 0000000000000000000000000000000000000000..28b73f2655b738699b093ff5dec2f64ee1bf3d12 --- /dev/null +++ b/data/part_3/0815771578.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"aac4e6d0412e8b5e76f0747c1018f71f","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/0025fcfe-dde6-442d-b58f-97e135395048/retrieve","id":"-2122796689"},"keywords":["45","00 AM 10","12","00 AM 10","39","00 AM 11","06","00 AM 11","33","00 AM 12","00","00 PM 12","27","00 PM 12","54","00 PM 1","21","00 PM 1","48","00 PM 2","15","00 PM 2","42","00 PM 3","09","00 PM 3","36","00 PM 4","03","00 PM 4","30","00 PM 4","57","00 PM 5","24","00 PM 5","51","00 PM CO"],"sieverID":"939221f5-8b0f-46f2-b7ae-c4c712fd0357","pagecount":"24","content":"• 2.3 billion people worldwide (900 million in sub-Saharan Africa) rely on traditional biomass-lack clean cooking fuels ➢ inefficient and incomplete combustion of traditional biomass is associated with household air pollution (including PM & CO) ➢ 390,000 annual premature deaths in SSA and 4 million globally (higher than the combined fatality by HIV AIDS, Malaria and TB globally), mostly affecting women and children (IEA…WHO, 2020). ➢ women and children also take the burden of collecting firewood ➢ contributes to deforestation, soil degradation and erosion ➢ contributes to climate change through black carbon emissions and, when the biomass used is harvested unsustainably, through net CO 2 emissions. • Annual global cost of cooking with dirty fuels is USD 2.4 T: USD 1.4 T for health; USD 0.8 T for women's lost of productivity and USD 0.2 T for climate problems (ESMAP, 2020).Challenges-lack of proper sanitation and organic waste management including livestock manure• Sanitation and organic waste management are problems in many sub-Saharan Africa countries • According to WHO, an estimated 779 million people in Sub-Saharan Africa lack essential sanitation services, including 208 million who still \"practice open defecation\" • 125 million tonnes of municipal solid waste (MSW) was generated in Africa in 2012, which is expected to double by 2025 (UNEP) • More than 90% of waste generated in Africa is disposed of at uncontrolled dumpsites and landfills • On average, 13% of MSW generated in Africa is plastic and 57% is organic waste • Organic waste is responsible for 6% of total GHG: 3 times the global emissions from aviation or it would be the world's third largest emitter.Biogas (anaerobic) digesters -circular economy • The 24h average CO concentration in most firewood kitchens exceeded the WHO limit, while in most biogas kitchens, it was significantly lower than the WHO limit 30 minutes average CO trend biogas and firewood kitchens• The 30-minute average CO concentration in most firewood kitchens exceeded the WHO limit, while in most biogas kitchens, it was significantly lower than the WHO limit • The level of pathogens in manure significantly reduced after biodigester treatment, with Fecal coliform decreasing by 86.9% -99.1% and Total coliform by 75.0% -71.7%. • Five non-toilet connected and one toilet-connected digester users had no detectable fecal coliform was found after biodigester treatment. • Toilet-connected biodigesters significantly improve household sanitation through daily manure cleaning and feeding to digesters, reducing odors from manure and enhancing toilet durability, privacy, and cleanliness. • Pathogen levels in manure dramatically decrease post-digestion, with Fecal coliforms reduced by 86.9 -99.1% and Total coliforms by 75.0 -71.7%. • Women save 8 hours per week by using biogas from reduced cooking time and cleaning pot, reallocating time to agricultural and social activities. • Biogas use markedly lowers indoor air pollution: PM2.5 and CO levels in biogas kitchens are well below WHO and Ethiopian standards, in contrast to firewood kitchens. • Biogas users experience fewer occupational health issues like back pain from improved cooking posture.• Biogas adoption leads to a 33-40% reduction in fuelwood/charcoal use, yielding significant cost savings.• The return on investment for biodigesters is approximately 3.7 years, factoring in savings from energy, biofertilizer, and durable toilets. • Current 6m³ digesters offset 3-5 tons of CO 2 e annually, qualifying for the carbon market.• Adoption of biodigesters reduces chemical fertilizer usage by 50%, enhancing nutrient recycling.","tokenCount":"554"} \ No newline at end of file diff --git a/data/part_3/0818287951.json b/data/part_3/0818287951.json new file mode 100644 index 0000000000000000000000000000000000000000..cb5e84458dc038964223f4d6c223dab10d830107 --- /dev/null +++ b/data/part_3/0818287951.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"85c24b56a391d24bff36cc19bbeb66be","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/9e4ed6b1-d16e-4a01-8bee-55f501595c54/retrieve","id":"-1263108296"},"keywords":[],"sieverID":"fc692cb8-79da-469b-88ab-1bffba1d422f","pagecount":"208","content":"Assessment of the small ruminants production systems was conducted in four selected representative rural kebeles, namely, Woheni Durebetie, Woyenema Ambaye, Denbun and Boko Tabo in Burie Woreda to assess the farmers' traditional small ruminants management practices, to identify and prioritize the constraints of the small ruminants production systems. The study was carried out through informal and formal surveys in the selected kebeles. The farmers interviewed in the informal survey were selected purposively and for the formal survey, by systematic random sampling method. In addition, sheep/ goat flocks in the grazing fields were selected randomly and body weight (BW) (using hanging scale), sex and age (by dentition) of the animals were measured and recorded. Farmers in the study area rear sheep for two main purposes, for cash income and home slaughter on festivals. On average, one household had 3.7±2.46 heads of sheep (n = 127). There were two sheep breeds in the study kebeles, Washera and Horro. The mean body weight of sheep in the flock was 21.6±9.34 kg (n = 1211). From the current survey result, it was evident that there were more Washera sheep (98%) in Woheni Durebetie Kebele and more Horro sheep (92%) in Boko Tabo Kebele in Burie Woreda. As farmersSecondly, I would like to thank my advisors Dr Solomon Melaku and Dr Azage Tegegne for their contributions in reviewing as well as suggesting valuable comments and advices during the research proposal and the draft thesis writing process. I also thank Dr Eshetie Dejenie for his contribution at the planning stage of this study. I would like to express my gratitude to Ato Tekeba Eshetie (former ALRC Center manager) and Dr Yigzaw Dessalegn (Burie Woreda IPMS Coordinator) for their contribution in providing vehicles and giving valuable advice during the study. I greatly appreciate Ato Derejie Fekadu, Holetta Agricultural Research Center researcher, for his straightforward and immediate help in doing the laboratory analysis of the feed samples. Without his help the feed samples chemical analysis would have taken several months to finish. The contributions of Ato Amare Mekonnen and Ato Samson T/ Mariyam in providing the necessary data of Burie Woreda is crucial for the success of this study. I finally thank Burie Woreda Agricultural and rural development office workers who participated in this study. I specially thank Ato Sentayehu, Ato Asemare and Ato Yermedachew Fentie for their help during the study. I would like to express my heartfelt gratitude to the farmers in Woheni Durebetie, Woyenema Ambaye, Denbun and Boko Tabo Kebeles for their time devotion and providing the necessary data for this study.Those farmers in Arebesi, Tiya Tiya and Sertekez Kebeles deserve special thanks as they allowed us to use their animals and resources willingly and devoted their time and energy for the on-farm feeding trials.x Burie Woreda, these constraints should be given more emphasis in research and development activities that are going to be undertaken in the area. The goat production system in the study area is similar in several respects to the sheep production system.Two on-farm feeding trials were conducted in Arebesi, Tiya Tiya and Sertekez kebeles in Burie Woreda. The objectives of the trials were to evaluate the weight change performance of the lambs when they were fed urea treated wheat straw and concentrates, to estimate the economic feasibility and to assess farmers evaluation of these feeding practices. The lambs used in the trial were all local breeds (Washera, Horro and crossbreds) and of male sex. The animals used in the grazing and wheat straw feeding trial had an initial body weight of 20.8±3.88 kg (n = 18) and 23.3±4.37 kg (n = 32) and an initial age of 8.7±1.68 months (n = 18) and 10.2±1.84 months (n = 32), respectively. The wheat straw that was used for the trial was treated with 5% urea. The following treatments were used in the trials. In the grazing trial, farmers' traditional fattening practices and grazing plus 200 g concentrate mix supplement. In the wheat straw feeding trial, untreated wheat straw plus 200 g concentrate mix and urea treated wheat straw plus 200 g concentrate mix supplement. The concentrate mix consisted of 75% groundnut cake (150 g) and 25% wheat bran (50 g). A completely randomized design was employed for the onfarm feeding trials. At the end of the feeding trials, farmers' were interviewed individually and in a group to evaluate the results of the feeding trials. Economic analysis was done using partial budget analysis. The trials were conducted for 86 days. The experimental animals consumed almost all the concentrate feed mix offered to them during the trials.The animals' consumption of urea treated and untreated wheat straw was very low, 52.8 g and 7.4 g per day, respectively. There was no difference (P>0.05) on final BW and daily BW gain between the treatments in the wheat straw feeding trial. But, in the grazing trial, there was a difference (P<0.05) on final BW and daily BW gain between the treatments.The animals in the concentrate supplemented treatment and the control group had a mean final BW of 24.6 kg and 21.9 kg and a mean daily BW gain of 43.6 g and 12.9 g per day, respectively. Supplementation of groundnut cake and wheat bran mix to grazing sheep was feasible based on partial budget analysis also. Furthermore, this treatment was selected to be the best by farmers' evaluation and has a potential for adoption by farmers. Hence, this feeding practice can be scaled up to be widely used in the study area.Smallholder farmers predominate in developing countries and they are entirely dependent on agriculture for their livelihoods (Dixon et al., 2001). About 76% of the poor in developing countries live in rural areas and two-thirds of the rural people in these countries keep livestock (Owen et al., 2005). In Ethiopia, more than 80% of the human population depends on agriculture for their livelihoods (Azage, 2005) Generally, technical and non-technical constraints limit animal productivity in Ethiopia (EARO, 2001d). Among the technical constraints, poor nutrition both in quantity and quality, diseases and low genetic potential for higher production hinder animal productivity in the country. Currently, feed is the main constraint limiting livestock productivity in the country (Alemayehu, 2005). There is seasonal fluctuation in feed supply both in quantity and quality. Feed shortage and nutrient deficiency are common during the dry season both in the highlands and the lowlands of the country (Alemayehu, 2005).Various factors contribute to the low feed supply to livestock. Grazing lands are decreasing in area (Alemayehu, 2005). Poor soil fertility and unreliable and seasonal rainfall limit the amount of feed obtained from these areas (EARO, 2001a). Crop residues are also low in nutritive value. The use of improved forages by smallholder farmers is not common. Utilization of agro-industrial by-products is limited to urban and peri-urban areas.Currently, livestock depend on natural pasture and crop residues as their main feed resource in the country (Alemayehu, 2005). The quality and quantity of feed produced from the natural pasture is low (EARO, 2001b). According to this source, a mean annual yield of 4.2 ton DM per hectare can be obtained from the natural pasture. In addition, the critical nutrient lacking in natural pasture was noted to be CP during the dry season. The same source reported that in January the CP content of the natural pasture was about 2002). According to the same source, urea treatment also improves palatability of these feed materials. Above all, urea is easy to handle and cheaper to purchase than any other material available for crop residue treatment (Preston, 1986). Other than improving the nutritive value of crop residues, urea treatment has several other advantages such as killing harmful microbes, pests and weed seeds. Hence, it enhances crop production. It also retards mold growth and destroys parasite eggs (Tingshuang et al., 2002).Small ruminant population of Ethiopia is one of the largest in Africa (IBC, 2007). Most of the small ruminants population of the country is kept by smallholder farmers and small ruminants production in the country is traditional (EARO, 2001a). Improvement in small ruminants productivity can be achieved through identification of production constraints and introduction of new technologies or by refining existing practices in the system. In Ethiopia, the small ruminant production system in different agro-ecological zones is not studied fully and farmers' needs and production constraints have not been identified (EARO, 2001a). Assessment of the small ruminants production system and identification and prioritization of the constraints of production is a prerequisite to bring improvement in small ruminants productivity in the country. Prioritization of the production constraints is essential as it helps to use the scarce resources efficiently. Understanding the production system helps to design appropriate technologies which are compatible with the system.On-farm testing of new and improved practices is also important as solutions to constraints are location specific and several factors affect the adoption of these practices in the system (ILCA, 1990). In addition, various income sources for farmers should be assessed as they affect production and productivity (Low, 1989). In general, assessment of the production system is important to plan development and research activities and bring improvements in productivity. In Burie Woreda, small ruminants production and marketing systems are not studied and precisely known and constraints are not identified and prioritized. In addition, improved animal feeding practices and their biological, social and economic feasibility to be adopted by smallholder farmers have not been tested in the woreda.Hence, assessment of the small ruminants production and marketing systems and testing of new and improved feeding practices are necessary in the woreda in order to achieve improvements in small ruminants productivity. Therefore, this study was conducted with the following objectives.Objectives:1. To assess the small ruminants production and marketing systems and to identify and prioritize the constraints in Burie Woreda, 2. To evaluate the effect of feeding urea treated wheat straw and groundnut cake and wheat bran mix supplementation on BW change of lambs, 3. To estimate the economic feasibility and to assess farmers evaluation of these feeding practices 4. To assess the on-farm birth weight and growth performance and mortality and causes of mortality of lambs.Several decades ago the performance of livestock in Africa was poor (ILCA, 1990). Many factors have contributed for the poor performance of livestock in Africa. Among the factors, failure to understand the situation of small scale farmers is included. It is believed that farming systems research will provide such knowledge. According to Low (1989), farming systems is a new approach to developing technologies that will be widely adopted by small scale farmers in developing countries. A farming systems research was developed because technologies developed on-station in developing countries were not adopted by small scale farmers (Low, 1989). Lack of adoption of technologies was that they were developed without adequate knowledge of the small scale farmers' circumstances.Farmers' circumstances are determined by both physical and social factors. According to Low (1996), knowledge of farmer circumstances and objectives is essential to evaluate and design appropriate technologies to small scale farmers.Livestock systems research has several phases (ILCA, 1990). It includes the descriptive/ diagnostic phase, the design phase, the testing phase and the extension phase. In the descriptive phase, the production system of each identified target group is described using secondary data and informal survey. In this phase, target groups for which intervention is needed and factors which limit production and income will be identified. Generally, constraints are identified through secondary data and informal surveys. Sometimes, further in-depth studies are necessary using formal surveys.To begin agricultural research activities adequate knowledge of the farming system is necessary (Roeleveld and Broek, 1996). At the beginning knowledge of farmers, farming conditions and constraints faced by farmers is crucial. To achieve this result, information must be collected and analyzed. The process of description, analysis and research planning is commonly known as the diagnostic phase (Roeleveld and Broek, 1996). This phase includes secondary data collection and analysis, informal and formal surveys.According to Roeleveld and Broek (1996), the informal survey is used to confirm and complement the initial understanding of the system developed based on secondary data.Informal surveys are conducted through direct observations and interviews with farm families and key informants. The main technique in informal surveys is the open ended interview with farm families and key informants using a checklist. Formal surveys provide a quantitative basis for conclusions drawn during earlier phases. In addition, it is used to redefine target groups (recommendation domains) and to test hypotheses about relationships (Roeleveld and Broek, 1996). The main technique in formal surveys is structured interview using a questionnaire.The success of the Green revolution in South East Asia led many people to believe that it can be repeated in tropical areas (Mettrick, 1993). The failure to produce further Green revolutions provoked the question why it was not possible to many researchers.According to Mettrick (1993), reviewing past research results, it is believed that even though the improved technologies that were generated were technically sound, they were not relevant to the objectives and socio-economic circumstances of small-scale farmers. In addition, in some cases, they were not appropriate to the agro-climatic conditions of the area. Technologies were inappropriate to farmers' circumstances because researchers had inadequate knowledge or even interest in the circumstances of small scale farmers (Mettrick, 1993). Researchers were technology oriented rather than problem oriented. In addition, fragmentation of research and disciplinary isolation led researchers only to look at small parts of the farming system without taking into account linkages in the system.Furthermore, researchers blanket recommendation is inappropriate as it does not take into account the diversity of farmer circumstances.According to Mettrick (1993), small farmers do not have the capacity to identify and communicate their needs to the researchers. Hence, it makes necessary to assess the farming system by researchers. If researchers failed to do these activities; farmers' aspirations, management practices and constraints to production will be based on common sense of the researchers rather than analysis of the farming system. This eventually leads to the generation of technologies which are not appropriate to the small scale farmers. This practice expends the financial budget resources of a country in vain.According to Low (1989), in addition to farm activities attention should also be given to non-farm non-market production (investment and consumption) as they indirectly affect farm production. It was observed in some African countries that farmers preferred to adopt the less labour demanding practices even though they understand that additional labour input using practices increased productivity and income. In some cases farmers valued leisure more than the gains they could get from improved practices with additional labour input. Studies highlighted that household members in rural areas spend their time for nonfarm non-market production activities especially women (Low, 1989). Hence, the significance of technologies will decrease if they compete for the time of household members who are responsible to do such activities. According to Low (1989), off-farm employment opportunities in an area have a significant impact on on-farm productivity. It is believed that neighbouring farmers with differing off-farm employment opportunities will have differing inclinations on on-farm activities and productivity.Ethiopia has an estimated sheep and goat population of 20.73 and 16.3 million, respectively (CSA, 2006). From the total number of sheep about 74% are females and 26% males. From the total number of goats, about 70% are females and 30% males.According to Teferra and Abaye (1995), about 70% of the livestock population of the country is found in the highlands and the rest, 30% is found in the lowlands. Ethiopia's contribution of livestock and livestock products to the world market is low. This is mainly due to the low productivity of almost all livestock species in the country (Seyoum and Zinash, 1989).There are 3 livestock production systems in the country (Teferra and Abaye, 1995). These are crop-related livestock production system, pastoralist production system and private and commercial oriented parastatal production system. The latter production system covers only a minor portion of the production system. Native pasture, crop residues and stubble grazing are the main feed resources in the crop-related livestock production system. In the highland mixed crop-livestock sub-system, the land is intensively cultivated (EARO, 2001a). Average landholding in these areas is small. In addition, sheep and goats are kept in small to medium sized flocks. Small ruminants in these areas are largely scavengers.They depend on natural pasture, stubble or crop residues as their feed resources.In Ethiopia, the small ruminant production system in different agro-ecological zones is not studied fully and farmers' needs and production constraints have not been identified (EARO, 2001a). According to Markos (2006), there are two sheep production systems in the country. These are the traditional smallholder management system and the private commercial and parastatal production system. Under the traditional subsistence smallhoder management system, there are three sub-systems. These are sheep-barley or sheep production system, mixed crop-livestock system and pastoral production system.The traditional subsistence smallholder management system is the most common one in the country. But the parastatal and commercial production system represents a minor portion of the sheep production system in the country. The sheep production in the country is based mainly on indigenous breeds. There are several sheep production constraints in the country. These include feed scarcity, inadequate utilization of indigenous sheep breeds, transport and infrastructural problems, paucity of market information and lack of trained personnel and absence of recording (Markos, 2006).Marketing includes all activities from the producer to the final consumer (ILRI, 1995). It also includes processing and distribution systems. Smallholder producers in Africa are producers as well as consumers of their own produce. According to the above source, producers will be some distance away from consumers. Producers may also be highly dispersed. The produce from these smallholder producers needs to be assembled and transported to the consumers. The nature of producers affects the nature of marketing and distribution processes. Without markets, areas must maintain diversified activities to produce their own basic needs and other materials (ILRI, 1995). In the presence of a market an individual can specialize in one activity and sell the surplus in order to purchase his basic needs and other materials. A region should specialize on the basis of a comparative advantage. A comparative advantage exists when a region can produce a good, relative to the price of other goods, more cheaply than another region. In livestock production, comparative advantage is a result of agro-ecological conditions particular to that region making it suitable to certain specialized activities (ILRI, 1995). In this case, those regions with a given agro-ecological base will produce that good more cheaply than another region.Markets for a given commodity can be categorized by the number of sellers and buyers in a market (Muturi et al., 2001). The theoretical extremes are perfect competition (many sellers and many buyers) to monopsony/ monopoly. In perfect competition a single buyer or seller can not influence the price of a commodity. According to Muturi et al. (2001), the assumptions for a perfect market never hold true in the real world. The assumptions for a perfect market include many buyers, many sellers and perfect information freely available to sellers and buyers. To assess the efficiency of a marketing system, the typical approach is the structure, conduct and performance analysis (Muturi et al., 2001). Structure refers the number of players; conduct, the degree of competition and performance, the margins involved in the marketing process. To assess the marketing system efficiency, it is necessary to study the market chain of a given commodity from production to the final consumption.The difference between the price a producer receives and the price the consumer pays for a commodity is termed the marketing margin (Muturi et al., 2001). Margins are a measure of the efficiency of a marketing system. According to Muturi et al. (2001), all things equal, the smaller the margin the more efficient the marketing machinery. In the absence of processing, cost for transport, cost of storage, loss in transport and storage and trader's margin (return to his management, labour and capital) affect the marketing margin. The trader's margin is affected by the degree of competition on market and the efficiency of market information flow. The less competition there is and the less transparent the market due to less information flow the higher the chances are the trader to increase his margin (Muturi et al., 2001). This is achieved by paying less to the sellers and demanding higher prices from consumers, or both these two actions. Information is expensive and its flow is not perfect.According to Amir and Knipscheer (1989), selling animals on market where there are several buyers is advantageous to the producers. Competitive bidding among buyers assures the producers of getting the best price for their animals. Unless the results of increased animal production can be marketed successfully, a new animal production technology will not be useful to the producers (Amir and Knipscheer, 1989). Famers evaluate production in terms of the costs and labour needed to sell their goods. Successful animal production technologies are those that increase production and increase profit. Countries. This is due to the meat produced from this animals is organic in nature and the meat is of good taste (Belachew and Jemberu, 2003).There are several feed resources for livestock in Ethiopia. (Ranjhan, 1997). This characteristic of crop residues affects intake and animal productivity. Generally, there is variation in chemical composition and digestibility between and within crop residues. According to Ranjhan (1997), crop residues are poor in minerals and vitamins content. As crop residues are low in nutritive value, growth performance, milk production and reproduction of animals based on these feed materials will be low. Hence supplementation of CP, readily fermentable energy sources and minerals is essential to bring better animal performance using crop residue based diets (EARO, 2001b).According to EARO (2001c), Ethiopia is the second largest producer of wheat. According to the same source, wheat is one of the cereal crops grown between 1500 to 3200 masl.The most suitable area falls between 1900 to 2700 masl. Wheat ranks 5 th in area of production in the country after tef, maize, barley and sorghum and in total grain production, it ranks 4 th after maize, tef and sorghum (EARO, 2001c). In productivity per hectare, wheat ranks 2 nd following maize. Wheat is one of the cereal crops which are believed to contribute for the country's food grain self-sufficiency. Gojjam is one of the important bread and durum wheat growing areas in the country.Wheat is the second major crop grown in Burie Woreda after maize (IPMS, 2007). Bread wheat is a recently introduced crop in the woreda. Its production is expanding year to year both in area coverage and amount of grain production. Farmers in Burie Woreda grow one improved variety of bread wheat called kubsa (HAR 1685). This variety is preferred by the farmers in the area as this variety has white grain colour, yields better and fetches good prices on market. According to IPMS (2007), out of the total area devoted for cereal crop production in 2005/6 production year (28,881 ha), 6,514 ha was devoted for wheat production in rain-fed crop production in Burie Woreda. This figure puts wheat in the second rank in area of production following maize (12,175 ha). According to the above source, wheat grain production is second in amount following maize grain production. As wheat is widely grown in the woreda, wheat straw production is also high in the woreda.Wheat straw is poor in nutritive value. It has low CP content and low digestibility.According to McDonald et al. (2002), the nutritive value of wheat straw is very poor but the digestibility of wheat straw can be improved through chemical treatment. As the amount of wheat straw produced in the highland kebeles of Burie Woreda is comparable with maize stover production, wheat straw was selected and used in the on-farm feeding trial.Fattening is the deposition of unused energy in the form of fat within the body of the animal (Perry et al., 2003). The objective of fattening is to make the meat tender, juicy and of good flavour. Fattening increases the requirement for protein to promote good digestion. Fattening animals are usually full fed because the energy which is beyond the maintenance requirement is available for fattening. In general, growth is a much cheaper form of gain than fattening. Body weight gain in growth is in the form of protein and bone while in fattening it is in the form of fat. About 2.25 times as much net energy is required to form a kg of body fat as is required to form a kg of body protein (Perry et al., 2003).Young animals make more efficient and less expensive gains than older animals since their gain is in the form of growth. On the other hand, older animals are fattened more easily than younger animals. In older animals a larger part of the energy consumption is available for fattening. To get rapid gains, surplus supply of nutrients beyond maintenance requirement is needed by fattening animals. But nutrient requirement for fattening depends on the age of the animals. Young animals require more protein, vitamins and minerals than mature animals during fattening (Perry et al., 2003). More supply of nutrients is important to get rapid gains. In addition, rapid gains shorten the fattening period and so it decreases the cost of labour and other expenses.According to Ranjhan (1997) The authors concluded that supplementation of wheat bran, noug seed cake or their mix improved feed conversion efficiency, total DM intake and growth performance. Based on partial budget analysis, supplementation of 300 g (201 g NSC + 99 g WB) per day was recommended as profitable when there is capital scarcity or 300 g noug seed cake per day, when there is no capital scarcity for the producers.A study conducted to evaluate the fattening performance of goats using varying hay to concentrate ratios (groundnut cake, brewer's dried grain and wheat bran) revealed encouraging results in supplementing goats with concentrates (Asnakew, 2005).According to the above source, goats supplemented with concentrates showed significant final and average daily BW gain than the control group (hay alone). Based on the economic analysis of the feeding practice, 50% concentrate level was recommended as profitable if capital is not a constraint. Generally, based on the fattening performance, carcass characteristics and economic analysis of the feeding practice, the diet containing 20% concentrate level was recommended as the optimum for feedlot fattening of goats.According to Simret (2005), a study conducted to evaluate the effect of wheat bran and groundnut cake on performance of Somali goats, final and average daily BW gain of the concentrate supplemented groups was significantly higher (P<0.05) than the control group.On average, the concentrate supplemented groups gained in the range of 39.9 -44.7 g/ day. On the other hand, the goats in the control group on average lost 30.2 g/ day. In this study, the author recommended 200 g concentrate mix (25% wheat bran and 75% groundnut cake on Dm basis) as economical. In general, based on previous research, there is a recommended level of concentrate supplementation to sheep fattening. The studies were done on growth performance of Horro sheep. From these on station studies, supplementation of 300 -400 g/ day of maize grain and noug cake in a 50:50 mix is recommended (EARO, 2001a).Burie Woreda is located between 10˚15′N and 10˚42′29″N and between 36˚52′1″E and 37˚7′9″E in Amhara National Regional State, Ethiopia. The selected kebeles were Woheni Durebetie (Dega), Woyenema Ambaye (Woina Dega), Denbun (Woina Dega) and Boko Tabo (Kolla). Small ruminant population, human population and area of these kebeles are given in Appendix Tables 4, 5 and 6. To calculate the feed balance in the study area the mean number of livestock species owned by a HH was converted into TLU (ILCA, 1990) (Appendix Table 11). One TLU is the equivalent of one bovine animal of 250 kg BW.Farmers for the interview were selected purposively from the selected kebeles (Woheni Durebetie, Woyenema Ambaye, Denbun and Boko Tabo). For key informant interviews, kebele administrators and religious leaders were selected and interviewed. For individual interviews, farmers who are involved in sheep production and from various economic statuses (poor, medium and rich (based on resident farmers' evaluation)) were selected and interviewed. During key and individual interview selection, those farmers who lived in the area for several years were selected and interviewed. For the group interview, farmers from different age, economic status and gender were included.For the informal survey, checklist covering breeds and breeding, feeds and feeding, disease and disease control and production constraints and solutions to the constraints identified as perceived by the farmers was prepared for the study (Appendix 3). The interviews were done by a group of interviewers. One person conducted the interview and the others took notes based on the response of the farmer(s). During the interviews, clarification was asked by the interviewer and the note takers on points which were not clear and those points which needed further clarification. At the end of the interviews constraints to sheep production were first listed down. After that priorities were set using pair-wise ranking method for each kebele and single list ordinal ranking method for the woreda (ARARI, 2005). In addition, solutions for the problems identified were asked from the producers. Generally, interviews for sheep and goat production were done separately.That is different individual, key informant and group interviews were conducted to study the two production systems (Appendix Tables 2 and 3). This was done because there was a difference in sheep and goat production and ownership in the study area. At the end of the field work, during the evenings, notes taken during the day time were summarized in a group by the field team group discussion. Based on the data taken during the field work, the real farmers' responses were recorded in the summaries, which were later discussed with a group of farmers to confirm the correctness of the information. Based on the group response, corrections to the summaries were made and the initial final report was prepared based on these processes.To assess the nature of the flock structure, data were collected from each kebele during the informal survey field work. Flocks in each kebele were randomly selected in the grazing fields and each and every animal in the flock was caught, measured and the data were recorded. Data on sex, age, heart girth, BW and breed (not applicable for goats) of each sheep/ goat was taken and recorded. Body weight of the animals was measured using hanging scale. Age of the animals was estimated based on observation of their dentition (Girma and Alemu, 2008).During the informal survey process, observations were made in the selected study kebeles.Observations were made on randomly selected households and communally owned resources (grazing lands, water sources, etc). In each randomly selected farm, in the presence of the owner, sheep houses, their cleaning, tethering of animals and the materials from which they were constructed from were observed and recorded. In communally held resources, observations were made together with development agents (DAs) in the kebeles and the nature and condition of the grazing lands, water resources and herding of animals.In addition, photographs were taken and discussions with the farmers in their respective areas were undertaken and the data were recorded.Based on the informal survey result, questionnaire was prepared and pretested (Appendix 4). For the goat production formal survey, the sheep production questionnaire was used with minor modifications. The formal survey was conducted on the same kebeles that were used for the informal survey study. Farmers interviewed were selected from the kebele list by systematic random sampling method. Enumerators from each kebele were selected and trained on data collection. The constraints for sheep production were prioritized using single list weighted category based ranking method (ARARI, 2005).Data on reason for sheep/ goat sale, disposal outlets and frequency, age and sex of disposed animals and time of disposal were collected. Market linkages were assessed through secondary data and informal survey. In addition, three markets namely Derequa, Burie and Kuche (Appendix Figure 21) were selected and used for the study in the woreda. From the selected markets, price of sheep/ goat traded was recorded on the basis of size and sex group on selected market days. Sample sheep/ goats were selected from each class (age and sex group) and were weighed. Origin, destination and mode of transport were also recorded. In addition, on the selected market places informal interviews were conducted to assess the nature of sheep and goat sellers and buyers in these market places. Based on these data, questionnaires were developed for sheep/ goat sellers and buyers (Appendix 5 and 6). On the selected market places and on selected market days, sellers and buyers were selected randomly from the market and were interviewed. In addition, traders in each market place were selected and interviewed during the study at what price they bought sheep/ goat in one market, in which market place they sold the animals and at what price they sold the animals at these market places.As wheat production was not the dominant crop in selected kebeles used for the survey other kebeles were selected for the on-farm feeding trials. Three kebeles, namely, Arebesi, Tiya Tiya and Sertekez kebeles were selected based on availability of wheat straw, sheep population, climate and accessibility (Appendix Figure 2). All the kebeles selected fall in the Woina Dega agro-climatic zone of the woreda.Before selecting participating farmers, the residents of each selected kebele who had sheep and wheat straw were gathered for a brief orientation about the trial. Farmers who were willing to participate, representative of the area and fulfill the criteria set (ownership of adequate experimental animals, wheat straw, willingness to participate in the data collection until the end of the experiment, etc) were selected to participate in the on-farm feeding trial. The concentrate feed supplements, animal health care fees, urea and other materials required for urea treatment (plastic sheet, watering can, etc) and the feeding trial were provided by ALRC (Andassa Livestock Research Center), whereas experimental sheep, wheat straw and labour for urea treatment were provided by the participating farmers. In addition, at the beginning of the study, farmers were trained how to manage and feed the animals during the trial period. The animals selected and used from the participating farmers were local breeds and of male sex. In the grazing trial, there were 12Washera, 4 Horro and 2 crossbred sheep. In the wheat straw feeding trial, there were 28 Washera, 2 Horro and 2 crossbred sheep. The lambs used in the grazing and wheat straw feeding trials had an initial age of 8.7 months (n = 18, SD = 1.68) and 10.2 months (n = 32, SD = 1.84), respectively. The initial BW of the animals is given in Tables 42 and 43.Those animals which were in good health and body condition were selected and used in the trial.The wheat straw was treated with 5% urea. To treat 100 kg wheat straw, 5 kg urea and 80 liters of water was used (Preston, 1986: Chenost andKayouli, 1997;Tinshuang et al., 2002). After applying the urea solution to the wheat straw and thorough mixing, the straw was placed in a pit with a dimension of 1.5 m 3 (1 m X 1.5 m X1 m; width, length and depth). The floor, walls and top of the pit were covered with plastic sheets and a thin layer of crop residue and soil was applied at the top. The urea treatment was done in February 2008. The pit was left undisturbed for two months. After two months, the pit was opened and the daily feed offer (urea treated wheat straw) was taken out daily from the pit and allowed to ventilate (about 12 hours) to disperse the free ammonia and was fed to the experimental animals. Due to the presence of rain, the urea treated straw was put out of the pit and were put into large plastic bags, compressed, made air tight by binding the mouth of the plastic bags with a string and put into the house of the farmer and were fed to the animals.There were two experiments per each kebele. In each selected kebele (except Sertekez kebele, as it was difficult to get farmers with adequate resources for the trials), 8 farmers having two intact rams were selected for each experiment. All the selected animals for the experiment were weighed with hanging scale and heart girth measured at the beginning of the preliminary period. A completely randomized design was employed for the two onfarm trials. Treatments were allocated to the experimental units randomly using a lottery method. At the beginning, based on random allocation of treatments, farmers were informed to which animal to supplement the experimental feed during the trial (Grazing experiment). There were 8 replicates per treatment in each kebele (except Sertekez kebele). The treatments are the following:T1. Farmers practice (Grazing plus farmers' traditional fattening practice (Supplementation of food leftover, atella and maize grain every three/ four day's interval))T2. Grazing + 200 g concentrate mix (75% groundnut cake (GNC) + 25% wheat bran (WB))B. Wheat straw feeding experiment T1. Untreated wheat straw + 200 g concentrate mix (75% GNC + 25% WB)T2. Urea treated wheat straw + 200 g concentrate mix (75% GNC + 25% WB)The rams used for the trial were treated for internal parasites (Albendazole (300 mg/ head) and Fasinex (250 mg/ head)) and were vaccinated against three locally common diseases (Anthrax (0.5 ml/ head), pasteurellosis (1 ml/ head) and enterotoxaemia (1 ml/ head)) at the beginning of the trial. They were not treated for external parasites as the problem was not common in the area. Other management practices were the same as farmers' traditional practices in the area. But the management practice of farmers during the trial was observed and recorded during the trial. The experimental animals were offered groundnut cake and wheat bran mix daily according to the treatments. They were offered 200 g concentrate feed (75% GNC + 25% WB) per head per day during the trial period.The concentrate feed consisted of 75% groundnut cake (150 g) and 25% wheat bran (50 g) based on the results of Getnet (1998). The concentrate feeds were purchased from the local market. The animals were fed concentrate feeds individually. The experimental sheep in the wheat straw feeding trial were offered 500 g wheat straw per head per day based on their initial body weight. All the experimental sheep were also offered water and common salt ad libitum.The feeding trials were conducted for 86 days after 14 days of adaptation to the treatment feeds. The trials were conducted from May to August 2008. Feed offered and feed refusal of wheat straw and concentrate supplement mix were weighed and recorded every week by the data collectors in each kebele throughout the trial period. Daily average feed intake was estimated as the difference between the amount of feed offered less the feed refusal based on the data that were collected every week. The BW of the experimental sheep was measured every week and recorded.Samples of feed offered were collected (urea treated and untreated wheat straw) every week from each participating farmer. Samples of concentrates were collected from the concentrate feed distributed to the farmers. The samples collected were saved in plastic bags. Feed samples (wheat straw) for each treatment from each kebele were mixed thoroughly to reduce the chemical analysis cost and sub-samples were taken for laboratory analysis at the end of the trial. The samples were sun dried, ground (Osuji et al., 1993) and laboratory analysis was done. Samples were analyzed for DM, ash and CP according to AOAC (1980). Neutral detergent fiber (NDF), acid detergent fiber (ADF) and acid detergent lignin (ADL) were analyzed according to Van Soest and Robertson (1985). In vitro digestibility of the feed samples was also done (Tilley and Terry, 1963).At the end of the feeding trial, farmers' were interviewed individually and in a group to evaluate the results of the feeding trial. Farmers were asked on their opinion about animal performance, future adoption of the feeding practice using their own resources, constraints encountered during the trial and their selection of the best treatments. In the group interviews, non-participating farmers who were neighbours of the on-farm feeding trial participating farmers were included in the discussion.Economic analysis was done using partial budget analysis (Upton, 1979). Price of concentrate feed mix, estimated buying and selling market prices of animals, price of urea and labour cost for urea treatment were recorded and used for the analysis. For labour cost, first the average of each kebele was calculated and then the average of the three kebeles was calculated and used for the analysis. From the data collected, net income (NI) and marginal rate of return (MRR) were calculated using the following formulas.1. NI = TR -TVC 2. ∆NI = ∆TR -∆TVC 3. MRR = ∆NI/ ∆TVC*100The study was conducted for 6 months in three representative kebeles of the woreda, namely, Woheni Durebeite, Woyenema Ambaye and Boko Tabo. One kebele was excluded due to the illness and absence of the data collector from the area. From each kebele 20 farmers having 5 or more breeding ewes were selected randomly. Breeding females in each selected kebele and household were identified and recorded in a data recording format including their colour, sex, age and breed together with their owner's data (name, sex, age, etc) and they were given ID numbers. In the selected farms, animals born, date of birth, their sex and type of birth were recorded and the animals born were identified by their own colour, sex, breed and their dams ID and their owner's data. The BW of lambs born was taken in the first 24 hours after birth and after that at 2 weeks interval during the study. Mortality of lambs and causes of mortality were recorded. In addition, the total number of sheep present in each household every week, sheep loses, causes of sheep loses, purchasing practices and feeding, disease control and housing practices of each farmer were recorded by data collectors every week in each kebele.The data collected from the formal survey of the four kebeles, on-farm trials and the market data were analyzed through descriptive statistics (landholding per HH, sheep number per HH, percentages, etc) and analysis of variance (land holding per HH, mean livestock holding per HH, body weight of animals, number of animals offered for sale per one market day per market place, price of animals per head/ kg, number of animals brought for sale per one seller per market day, ADG, birth weight, growth rate, feed intake and number of sheep lose per HH) using SPSS statistical software (SPSS 12.0, 2003). For the on-farm trials, initial BW was used as a covariate in the analysis of variance. The following models were used for the data analysis (Desta, 2001; Montgomery, 2001):1. Assessment of the production system:Y ij = the response of the j th HH in the i th kebele µ = grand mean t i = effect due to the i th kebeleY ij = the response of the j th sheep in the i th market µ = grand mean t i = effect due to the i th market ε ij = random error effect 3. On-fam feeding trial a. Grazing experiment The study area is characterized by mixed crop/ livestock system. Even though the system is mixed crop/ livestock system, the farmers give more emphasis to crop production in the study area. Most of the farmers in the area have land for crop production. On average, land holding per household in the area is 1. 1). There is land scarcity in the study area for crop production, especially in the highland kebeles. From the informal survey result (Appendix Tables 2 and 3), it is evident that land holding per household is declining as human population in the area is increasing and as households are giving land to their mature and landless siblings. Most of the area in the lowland kebele is not suitable for crop production even though the area is large compared with the available human population (Appendix Table 4 and Appendix Figure 6).Renting land and share cropping of land are common in the area. Those farmers who have no oxen, female headed households, sick farmers and those farmers who are old-aged either rent or share crop their land. Most of the youth (newly established households) in the area are landless. Share cropping is more common than renting land in the area.Landless farmers who rear livestock are disadvantaged in the area. There is feed scarcity in the area as the grazing land especially in the highland kebeles is very small in area and is overgrazed (Appendix Table 4; Appendix Figures 12 and 13). The land owning people have private grazing lands (29%) to feed and supplement their animals during feed scarcity periods (during the rainy season). But the landless farmers have no opportunity to practice this. Almost all the area of the landholding, especially in the highland kebeles is devoted to crop production, but some farmers have a small area of private grazing land (0.04 ha) from their own landholdings. Fallowing of land is not practiced in the area, especially in the highland kebeles as there is land scarcity. But farmers practice crop rotation each year. In the lowland kebele, those farmers who have more land practice fallowing the land usually for one year only. The following crops are grown in each kebele in descending order of importance. Maize, finger millet, barley, tef and wheat in Woheni Durebetie kebele;Maize, finger millet, tef, barley and wheat in Woyenema Ambaye kebele; Maize, wheat, finger millet, beans and tef in Denbun kebele; Maize, sesame, pepper, tef and haricot bean in Boko Tabo kebele.There are several constraints in crop production. Pests and diseases are the main ones.There is pest problem on maize, finger millet, tef, beans, potato, pepper in the highland kebeles and sesame in the lowland kebele. In addition, there are diseases on wheat, maize and beans. Low soil fertility and rain shortage in some cases are also common problems.In Woheni Durebetie kebele farmers were beneficial by growing potato. Currently, as the crop is being affected by disease/ pest (the root of the plant), growing potato in the area is decreasing. Lack of improved seeds and fertilizers are also common problems in the study area. Farmers grow improved varieties of maize, wheat and pepper in the area. The maize varieties they use in the highland (BH-660) and in the lowland (BH-540) kebeles are different. Among the improved crops grown in the study area, maize is widely grown and expanding.Soil fertility is declining in the area. The soil is being eroded every year by rain water. In addition, there is no fallowing and the land is cultivated and cropped every year. Manure addition on the crop land has also decreased in the area due to fear of theft of cattle during the night in the rainy season. So, farmers carry manure from their home and apply it on their own crop land. Farmers apply both chemical fertilizer and manure (compost) to keep the fertility of the soil. They also practice physical ways of soil fertility maintenance.The farmers in the study kebeles rear different types of livestock. Cattle, sheep, goat, horse, donkey, mule and chicken rearing is common in the area. Farmers also keep bee colonies. The livestock population in each study kebele and average livestock holding per household is given in Tables 2 and 3 Generally, feed shortage is blamed for the entire decline in cattle productivity. There are communal and private grazing lands in the study kebeles. The area of the communal grazing lands differs from kebele to kebele and even it differs within one kebele (Appendix Table 4). The area of the private grazing lands is very small. On average, one household has 0.04 ha of private grazing land. In addition, from the total households in the study kebeles only 29% of the households have private grazing lands.Assuming that the communal grazing lands are equally utilized by all the households found in the area and these lands being distributed to the households equally, one household in the study area will have 0.2 ha of communal grazing land.Most of the farmers in the area rear sheep especially in the highland kebeles. Both land owners and landless farmers rear sheep in the area. Most of the farmers want to increase Generally, livestock production is one of the main activities in the area. There are several constraints in livestock production in the area. In all the study kebeles livestock diseases, feed shortage and lack of adequate veterinary service are the main constraints. In addition, water shortage especially in the lowland kebele, labour shortage as children spend most of their time at school and financial shortage and lack of modern knowledge to rear animals are also the constraints in the area in a decreasing priority. In all the selected and study kebeles there is no veterinary clinic available so farmers go to neighbouring kebeles to get their sick animals treated.In relative terms (based on the residence farmers evaluation), farmers can be grouped into poor, medium and rich farmers based on their resources. This categorization is important as there is a difference in sheep management between the poor and the rich farmers (sheep fattening, sheep sale, housing, etc). The main resources which determine these categories are the size of land and the number of livestock owned. A farmer who is considered rich in the highlands will not meet the criteria of a rich man in the lowland. For instance, a rich man in the highland kebeles may not have the same area of land of a rich man in the lowland kebele. The lowland farmers have more land per household than the highland farmers (Table 1). Farmers get cash income from grain, livestock and livestock products sale. In addition, trees (eucalyptus, in the highlands) and vegetables are also minor cash income sources in the area. Farmers spend the cash income for basic needs purchase, purchase of seed and fertilizer, oxen, breeding animals and for paying the rent for their land. Small-scale trading in livestock and hired labour work within the kebele and in towns are the main off-farm activities in the area.Farmers in the area rear sheep for two main purposes. They rear sheep mainly to get cash income and for home slaughter on festivals. This is also true in most parts of Ethiopia 4 and Figure 1). The proportion of the breeds in each study kebele is different ( χ 2 = 1031.9, P<0.05) (Table 4). Currently, Horro breed is being introduced to the highland kebeles and Washera breed to the Kolla kebele.In addition, there is a sheep type which is a crossbred between Horro and Washera in the study kebeles of the woreda (Appendix Figure 11). The sheep breeds in the Woina Dega kebeles (Woyenema Ambaye and Denbun) are a mix of Horro, Washera and crossbreds.The proportion of the sheep breeds in each kebele is given in Figure 1 and Table 4. From the current study of the flock structure, about 69.5% are females and 30.5% are males in the flock (Table 5). Male animals are either sold or slaughtered at home and their number is less in the flock. Female animals are retained at home for breeding purposes.From the flock structure, it is evident that there are more young animals in the flock during the study (Figure 2). Flock structure is dynamic in nature. So, the period in which the data were collected may have contributed to this result. As farmers sell young male sheep during festivals and as the date in which the data were collected is between New Year and Easter, this may have contributed for the presence of more young animals in the flock. Farmers cull both male and female animals. They have their own criteria for culling. For males, Horro rams are not preferred in the highland kebeles. Black coloured and poor conditioned and small sized males are not preferred in all places. These sheep types are culled at an early age. They will be sold or slaughtered. For females, black coloured, old aged, poor conditioned and those females which do not produce adequate milk for their new born lambs and those ewes which have long lambing interval are culled. Those female animals which give birth to small or poor conditioned lambs are culled after lambing one or two times. Unlike the Horro rams, Horro ewes are preferred for rearing in the highland kebeles, especially for crossbreeding purposes.Selection of animals for rearing is common in the area. Farmers have their own criteria for selection of animals. The selection criteria used for male and female animals is different.For males, colour, body size and tail type are given the most emphasis for selection.Hence, males with large body size, brown body colour and having white patches on their forehead, legs and tip of the tail are selected. Males of big body size, long body length and fat tailed types are the most preferred. Those males with white and off-white colour are also preferred. In all areas black coloured males are not preferred. In the highland kebeles, Horro males are not preferred. For females, there is a difference in the criteria for selection used in the study kebeles. In all areas, farmers select female sheep based on their colour, body size, breed, reproductive performance and milk yield for the new born lamb. Its pedigree is also considered when the female is a home grown one. Hence, females with large body, brown and white colours or a mix of them are preferred. In the Kolla kebele, farmers prefer Horro ewes and in the Woina Dega kebeles they prefer crossbred females.But in the Dega kebele farmers prefer Washera breed. Those ewes which give birth to twins and triplets are also preferred by farmers. But twins have a high rate of mortality and less growth rate than single born lambs (Gatenby, 1986). So, selection of females based on this criterion is not recommended. For female selection, colour of the sheep is not as strict a criterion as male selection.The main feed resources for sheep production in the study area are natural pasture and crop stubble grazing (Table 9). This is also true in other parts of the country. According to Alemayehu (2005), livestock are fed entirely on natural pasture and crop residues at present in the country. According to the same source, studies estimated that natural pasture Farmers give boiled salt water for newly lambing ewes to make them produce more milk for their newly born lambs. The nutritive value of salt is low except in providing minerals to the animals. Generally, there is no supplementation of better quality feeds to ewes before and after giving birth and lambs before and after weaning. They only depend on grazing and their dam's milk, respectively. About 46% of the respondents encountered feed shortages in sheep production in the area.Feed shortage occurs in the dry season from February to May and in the rainy season, from July to end of October as most of the area will be covered by crops. As there is feed shortage problem during the rainy season in the highland kebeles, some farmers have allocated private grazing lands from their landholdings to their livestock and they supplement feed to their animals from these grazing lands (Table 11). Farmers either graze their animals on these grazing lands or mow the grass and supplement the animals at home. Feed supplementation from private grazing lands is usually practiced from July to end of October. Feed supplementation from private grazing lands is done for all livestock species especially to cattle. In addition, supplementing maize leaves, maize stalks having no cobs and weeds from maize fields is also practiced in the highland kebeles of the study area during this period (Table 12). From field observation in the study area, farmers' responses and their feed shortage coping mechanisms and estimation of the feed production from various sources per household less estimation of the feed requirement of the available livestock species per household in the highland kebeles, it is evident that there is feed shortage problem in the highland kebeles (Table 13, 14, 15 and 16). On average, there is a deficit of 0.7 ton DM per year per household. According to Lulseged and Hailu (1985), a study conducted on the carrying capacity of natural pasture, the authors recommended that if there is no concentrate feed readily available, the medium stocking rate (10 sheep/ ha = 1 TLU) is optimum for year round grazing. In the highland kebeles of the study area, one household on average has 0.2 ha natural pasture and 3.7 TLU. Hence, for optimum productivity of livestock in the area, one household should share about 3.7 ha of natural pasture for year round grazing. So, currently the livestock in the study area may certainly depend on stubble grazing and crop residues. Generally, the crop residues are poor in nutritive value. The quality of the available feeds in the study area is generally poor (Table 12).Optimum livestock productivity depends on the quantity and quality of feeds fed to the animals. Milk production, meat production, draft power generation, reproduction and disease resistance largely depend on better nutrition of the animals. Hence, as there is feed scarcity both in quantity and quality in the highland kebeles of the study area farmers are mainly keeping livestock by feeding nearly at maintenance level and hence little or no productivity from the animals kept. The available communal grazing land in Woyenema Ambaye kebele is lower than Denbun kebele (Appendix Table 4) and the communal grazing lands in Woyenema Ambaye kebele are overgrazed (Appendix Figure 12). Sheep disease is the main problem in Woyenema Ambaye kebele. In addition, the number of sheep death per HH in Woyenema Ambaye kebele is greater than Denbun kebele (Table 20) and the mean body weight of the sheep in different age groups is also lower than other kebeles (Appendix Table 7). This may be due to serious feed shortage problem in this kebele or inbreeding. The net stocking rate in Woyenema Ambaye kebele is 59 TLU per ha while in Denbun Kebele it is 12 TLU per ha (Table 2 and; Appendix Tables 4 and 11).Net stocking rate is the actual number of TLU per ha of land that is specifically allocated to grazing (ILCA, 1990). According to Solomon and Gemeda (2002), a 1% increase in inbreeding coefficient has resulted in a decrease in body weight of lambs. In addition, dam inbreeding has a significant (P<0.05) effect on survival to yearling. Optimum performance from livestock can be achieved through feeding better quality and adequate quantity of feed which is beyond maintenance requirement of the animal. Hence, this condition must be stressed in the study area and farmers in the area should feed their sheep better quality and adequate quantity of feed for better productivity of their animals. According to Kebreab et al. (2005), lack of livestock products in developing countries is not due to lack of livestock number. But it is mainly due to feed shortage in both quantity and quality and its inefficient utilization. According to Zinash and Seyoum (1991), integration of forages with crop production can be an option to reduce the feed shortage problem. In addition, improvement of the quality of the cereal straws and strategies that aim at increasing feed availability will reduce the feed deficit in the area. given in a continuous manner, on daily basis. In addition, farmers give more emphasis to anthelminitics rather than better feeding. Some farmers in the highland kebeles believe that feeding food left over to fattening sheep for sale has adverse effects. They believe that if they sell food leftover fed sheep they will become poor. Farmers in the area use different types of sheep houses. Sheltering sheep in the main house is predominant in the area (58%) followed by sheep houses constructed attached to the main house (33%). In some cases a separately constructed sheep house (9%) is also found in the area. Sheep houses are made of locally available materials. It is advantageous to build sheep houses from locally available materials as it lowers costs of production. The type of material used for wall construction of sheep houses is different in the highland and the lowland kebeles. The wall is usually made of eucalyptus tree wood in the highland kebeles and lowland tree wood in the lowland kebele. The wall is usually plastered with mud in the highland kebeles and plastering with mud in the lowland kebele is not usually common as the ambient temperature in the area is high. In all places, the roof is usually made of corrugated iron sheet (90%). In some cases, it is made of grass (9%). The floor in the dry season is usually earth (70%) but in some cases stone (23%) and wooden paved floors (7%) raised from the ground are available (Table 17). Wood and stone paving of floors is usually practiced during the rainy season when the floor gets moist and dirty.During this period, earth, stone and wooden paved floors have values of 52%, 36% and 12%, respectively, in the area (Table 17). In all places, sheep houses are well ventilated.This condition is important to remove heat, moisture and pollutants (ammonia) from the house.Cleaning The house type and its conditions affect animals' health and productivity. About 90% of the farmers have corrugated iron sheet roofed sheep houses and 9% of the farmers have grass roofed sheep houses. There is no adequate cleaning of sheep houses when they are separately constructed. From observations made during the informal survey, it was evident that most of the sheep houses are not cleaned daily. Hence, the floors are not clean and dry. This may be a better place for disease causing organisms to multiply and proliferate.In addition, in some cases the floor is not flat, smooth and sloping and has protruding stones and surfaces. Protruding stones may injure the animals and predispose them to diseases and infections. Corrugated iron sheet roofed houses may predispose the animals to cold stress and respiratory diseases especially during the rainy season. Farmers utilize the manure of sheep for crop production.There is no separation of animals in the house at night. All age and sex groups dwell together. This has adverse effects on controlled mating and maintenance of improved genotypes on-farm (EARO, 2001b). But in most cases, newly born lambs (50%) and fattening sheep (22%) are separated from the adult animals. Some farmers tether adult sheep and others allow them to move freely in sheep houses at night. This depends on the type of house adopted by the farmer.Sheep diseases are the main constraints for sheep production in the area. Based on the informal survey result, foot rot, streptothricosis, pasteurellosis, orf and internal parasites are the main sheep diseases in the area. Especially pregnant and lactating ewes in the highland kebeles are affected by diseases. When animals get sick farmers get most of the animals treated at public vet clinics. About 80% of the farmers take their sick animals to vet clinics, 15% of the farmers treat the animals using modern drugs themselves and about 3% of them treat the animals' using traditional medicine (Table 19). Treating animals using modern drugs is common in the lowland kebele. The sources from which farmers buy drugs mainly are private vet clinics. Medication of sick sheep using modern drugs by famers is true especially in the lowland kebele as the public vet clinic is very remote to them (Table 19). Farmers treat their animals using modern drugs themselves to avoid animal losses. They believe that trying to cure the animal using modern drugs is better than none trying and death of the animal. Farmers who practice medication using modern drugs have no training or education on the profession. This practice encourages the development of disease resistant microbes in animal health. For pasteurellosis, they smoke the animals with cow dung, donkey dung, pea straw or cactus wood. For foot rot, they pierce the swelling area of infection with pointed materials and get the pus out and wash the area with salt water. They also cut the ears and noses of the sick sheep with razor blade for infectious diseases.Farmers encounter animal deaths due to diseases every year. On average, one household lost 0.7 heads of sheep (n = 127, SD = 1.32) the previous year (Table 20). There is no difference (P>0.05) in the number of sheep deaths per HH per year. But the figure for Woyenema Ambaye is greater than the other kebeles (Tables 20, 49 and 50). This may be due to lack of feed and inbreeding in the sheep flock as the number of male sheep found in this kebele is lower than the others (Tables 5 and 7; and Appendix Table 4 and 7). In addition, the number of sheep loss per HH in Boko Tabo kebele is also higher. This may be due to the utilization of modern drugs by farmers (60% of the respondents), low dosage utilization or the development of drug resistant microbes in animal health (Tables 19 and 20). There is a difference between breeds in disease resistance. Horro sheep is believed to resist diseases better than Washera (59% of respondents). Due to this reason farmers in the highland kebeles are now rearing more Horro sheep and their crossbreds. Farmers deworm their animals frequently. About 95% of the farmers deworm their ewes every year. About 80% of the farmers deworm their ewes 2 to 4 times per year in the study area. They buy the drugs from public vet clinics (59%), private vet clinics (17%) or groceries (9%).Farmers believe that giving anthelminitics frequently improves the sheep condition and productivity. They also believe that giving anthelminitics prevents the animals from infectious diseases. Due to this reason giving anthelminitics to animals by some farmers is done beyond recommended rates. There seems to be a relationship between disease occurrence and feed scarcity and nutrient deficiency period in the area. Feed and nutrient deficiency occurs from July to end of October and again from February to May. Sheep in the area get sick during these periods.This may be due to low feed intake and nutrient deficiency which predisposes the animals to low disease resistance. In addition, during feed scarcity period the sheep may consume the locally available poisonous plants and this may predispose them to diseases and death (Gatenby, 1986). In the lowland kebele, sheep are mainly sick from August to November and many sheep die during this period in the area. In the highland kebeles, sheep mainly get sick and die in September and October. Farmers can prevent animal death and morbidity through better nutrition of their animals to some extent.Based on farmers' opinion veterinary services given in all kebeles are not adequate. Not only sheep but also other livestock species will be treated when they get sick. Taking sick animals to remote vet clinics will take time on-foot and expends farmers' time and labour in vain. In addition, during peak labour months farmers spend most of their time in crop production. So, when animals get sick during this time farmers retain the animals at home to save labour and time. In addition to the above problems, farmers say that drugs are not usually available when they take sick animals to the rural vet clinics. Men are usually responsible to get sick animals treated in vet clinics.The (Gatenby, 1991). In the rainy season the animals stay from 8 AM -6 AM in grazing lands. Children especially males usually herd sheep in grazing fields. There are predators to sheep in the study area. In some places the number of predators has increased. This case is true in Boko Tabo and Woheni Durebetie kebeles. In Woheni Durebetie kebele the regeneration of forests in the area is blamed for the predators increase in number. Farmers want to hunt predators and prevent animal loses but they fear that legal measures will be taken against them.Sheep rearing is one of the main cash income sources for the farmers in the study area.There are three sheep market places in the Woreda. These are Derequa, Burie and Kuche (Appendix Figure 19). According to the results of this study, there is price variation per kg of sheep every two weeks. On average, there was a market price of 10.8 Birr per kg of BW during the study period (Table 22). There is variation in price per head between the two sexes. Females fetched better prices than males (296.6 vs. 271.6 Birr per head). In addition, there is variation in price per kg between the two breeds found in the woreda. But, this variation does not have the same pattern for the two breeds in all the three market places. So, it is not safe to say one breed fetches higher prices than the other breed. But, it is evident that due to the preference of Washera sheep by consumers on market, farmers in the lowland kebele are currently starting to rear Washera sheep.There is a difference in market price of sheep per head in the three market places. But, this difference is not statistically significant (P<0.05) (Table 22). There is a difference (P<0.05) in price per kg of sheep sold among the three markets. In general, sheep marketed in Burie market have higher prices followed by Kuche market. This may be due to their location, found in a relatively urban area, road and transport access. There is difference in the number of sheep brought per one seller in each market place in Burie Woreda. In addition, the sex and breed composition of the sheep brought for sale is also different. On average, for the three market places, one seller brings 2.6 heads of sheep (n = 314, SD = 1.87) at one time for sale on market (Table 23). The number of sheep brought for sale per person is higher (P<0.001) for Burie market compared to Derequa and Kuche markets. From this total number, 1.5 heads (SD = 1.57) are males and 1.1 heads (SD = 1.25) are females. In addition, from the 2.6 heads of sheep brought for sale on market 1.9 heads are Washera, 0.6 heads are Horro and 0.1 heads are crossbreds. There is difference in the breed composition of sheep brought for sale in the three market places by sellers. In Derequa market place, about 97% of the sheep brought for sale are Washera breed, whereas in Kuche market place, about 76% of the sheep brought for sale on the market are Horro breed. This means there are more Washera breed for sale in Derequa market place and Horro breed on Kuche market place. (2001), a good flow of market information makes commodity prices competitive and results in fair distribution of benefits to producers, traders and consumers. Some of the sheep sellers in the study area get market price information mainly from traders or their neighbors. There is no public market information source in the area to the producers, traders or consumers in general. This case reduces the marketing system transparency and efficiency. This condition may increase the marketing cost and this in turn reduces the amount of money the producers get from the buyers.The buyers on the market places are mainly farmers (56%), hotel and other food catering owners (21%), civil servants (13%), sheep traders (3%) and others (7%) (Appendix Figure 20). Purpose of sheep buying from the market places by sheep buyers is given in Table 24. The sheep traders buy sheep from Burie Woreda market places and sell them on Burie market (Burie Woreda), Mankussa market (Jabi Tehinan Woreda) and Shendi Market (Womberma Woreda). Sellers usually transport the animals from the market of origin to the next selling market place on foot. So, there is no cost for transportation except the labour cost for driving the animals to these markets. From the survey result and the data available there is no clear pattern in the flow of animals from Burie Woreda markets to distant and large markets found in bigger towns. In Burie Woreda, sheep traders buy sheep from different places and sell almost all of them within the woreda market places. Hence, a market chain which links the smallholder producers to large urban consumers and processing plants is non-existent.The market places where farmers buy and sell sheep are different. Farmers usually go to remote and rural market places for sheep buying that are found in other woredas where market prices for sheep are lower. Farmers buy sheep from these market places for trading or breeding purposes. On the other hand, farmers sell sheep in the nearby and urban market places where market prices are better. It seems that there is no woreda or regional boundary that limits sheep marketing in the study area. In most cases, sheep are going in from neighbouring areas into the woreda for marketing. In some cases, they also go out of the woreda to Shendi (Womberma woreda) and Mankussa (Jabi Tehinan Woreda) market places.To the three market places found in Burie Woreda, farmers from the woreda and neighbouring woredas bring sheep on these market places for sale (Figure 3 and Appendix Figure 20). About 80% of the sheep sellers in Burie Woreda sheep market places come from within the woreda. On the other hand, farmers from Womberema Woreda (9%), Tilili Woreda (6%), Sekella Woreda (3%) and Jabi Tehinan Woreda (1%) bring sheep for sale to the three sheep market places found in the woreda (Figure 3 and Appendix Figure 20). The remaining 2% of the sheep sellers come from Banja Shekudad, Gemeja Bet, Assuming all the animals brought for sell to the market to be sold and the estimated profit per head (31.4 Birr), one trader may get 139.6 Birr per one market day.There are several sheep marketing constraints in the woreda. There is no market information service (current prices, long-term prices, characteristics of buyers and their preferences) for the producers, traders and consumers. There is also lack of market infrastructure. The market places are not fenced and they do not have facilities. Farmers encounter several problems during sheep selling on markets. Low market prices in some months of the year, forged Birr and remote market places especially to the lowland people are the main ones. Farmers say that the current sheep market prices are generally good and encouraging when the prices are compared with several years before. Good market price is an opportunity for the sheep producers in the area. In the sheep markets there is no weighing or grading of animals to be sold. Buyers and sellers judge the sheep they buy/ sell through physical observation only. This is a disadvantage especially for sellers. There is no precise method to know the quantity (in kg) as well as the quality (fat or lean meat) of produce sold or bought. As there is no grading system on the market places of sheep in the area, this will affect the production of quality sheep and sheep productivity in the smallholder system. For the sheep buyers, higher market prices and buying sick sheep are the main problems. Generally, sheep buyers complain that quality sheep on market is not available for slaughter as well as for breeding purposes.Farmers buy few materials for sheep production from the market. They mainly buy salt (73% of respondents) and anthelminitics (80% of respondents) for their sheep. In addition, some farmers buy noug seed cake (7%) and drugs for medication of their sheep when the animals get sick. In general, buying agro-industrial by-products for sheep production is not common. Farmers generally depend on the naturally available feed resources for sheep production in the study area.There are several sheep production constraints in the study area (Table 25 and 26 The sheep production constraints have been prioritized in the woreda based on their severity in the area (Table 25). Hence, sheep diseases, lack of adequate veterinary service and feed and nutrient shortage are the main sheep production constraints in the study area in descending order of importance. There is a difference in the priority of constraints in the formal and informal surveys (Tables 25 and 26). This may be due to farmers' poor understanding of the main constraints and their relationships with productivity of the animals. From the informal survey result, it was evident that there is feed shortage problem in the highland study area. Farmers selected sheep diseases as the first priority problem in the formal and informal survey results. But for the feed shortage, it is 3 rd in priority in the informal survey and 8 th in the formal survey result. This may have resulted from poor understanding of the importance of the constraint and its relationship with productivity and health of animals, a result of poor analysis during their response in the formal survey by sheep rearing farmers. Burie Woreda is one of the main maize and wheat producing woredas in the region.Integration of forage legumes with these crops in the area is feasible. Hence, undersowing forage legumes together with these crops is possible. This practice increases both forage production and soil fertility in the area. As soil fertility is declining, maintaining soil fertility is important for crop production. The socio-economic feasibility of integrating forage crops with cereals should be studied further. According to Gemechu et al. (1991), intercropping Rhodes grass or desmodium in maize has no effect on maize grain yield. In addition, by intercropping Rhodes grass and desmodium a mean dry matter herbage yield of 14 t/ ha and 9.33 t/ ha was obtained, respectively. This practice saves labour when compared with sole forage planting in addition to increasing forage yield. Assuming the same forage crops, practices and environmental conditions in the study area, if farmers practice growing Rhodes grass or desmodium they can obtain 6.2 ton or 4.1 ton DM forage per year per HH, respectively, from their maize field (0.4 ha per HH) only. This practice alleviates the feed shortage problem in the highland study area. In addition, if farmers grow forage legumes they not only increase feed production but also the soil fertility of their crop land. According to Daniel (1996), intercropping/ undersowing forage legumes of the genera Trifolium and Vicia and multipurpose tree legumes such as sesbania and Chamaecytisus species can be incorporated into wheat based farming systems to maintain wheat yields and to improve the quality of crop residues as livestock feed.According to this source, introduction of leguminous fodders into mixed farming sytems will increase soil fertility, crop yield, roughage quality and make the system more sustainable. According to Tekleyohannes and Worku (2000), clover and alfalfa can be undersown simultaneously with barley for better forage yield without significantly reducing barley grain yield. In addition, vetches can be undersown with barley after 30 days of barley planting for better barley grain and forage yield.Growing improved forage crops on private grazing lands is another option. This can be practiced in the highland kebeles of the woreda. If forage seeds are available farmers are willing to allocate land for forage production. This condition increases forage production as improved forage crops are better in dry matter production than indigenous ones.According to Alemayehu (2002), many indigenous forage species have low productivity or digestibility. According to this source, local grasses have low palatability, poor productivity and inadequate nutrient to maintain the animals. On the other hand, improved grasses have better productivity, palatability and nutrient composition. There are several improved forage grasses and legumes with proven characteristics that can be used for forage production program in Ethiopia (Alemayehu, 2002). Utilization of improved forage species available in the area (sesbania) and other indigenous fodder trees is essential.Supplementation of improved forage crops should be strategically done during feed and nutrient scarcity periods. To implement such practices, the socio-economic feasibility of these practices should be studied further in the study area. In addition to improved forage crops, utilization of the locally available agro-industrial by-products is another alternative.Farmers rear goats in the study area for the purpose of home consumption and for sell and 27). This may be due to the difference in age composition of the flocks, environmental effect or differences in genotype (Appendix Table 10). The BW of animals in different age and sex groups is given in Appendix Table 9. The mean body weight of the goats in the current study is lower than that reported in FARM-Africa (1996) (48.4±9.9 kg for males and 33.0±6.0 kg for females).The goat types found in the study area are classified within the same group, the Western Highland goat type is found in the area. There may be a difference between the highland and lowland goat types. This is evident from their BW differences and phenotypic characteristics (Table 27; Appendix Figures 14,15,16 and 17).Farmers usually get their first breeding goats buying from the market (77%), gift from parents/ relatives (8%) or buying from their residence kebeles. Most farmers now rear their own goats and some of the farmers rear other farmers' goats for benefits to be gained through rearing and tending the animals. From the current study result, females (75%) are more in number in the flock (Table 28). This is comparable with the result of FARM-Africa (1996). It is reported in this source that about 27% of the animals in the flock are males and 73% are females in the flock of Western highland goats. From the females, those females which are mature predominate in the flock (Table 28). For males, young males predominate in the flock. This may be due to the purpose of goat production in the area. As the main objective of goat production in the area is for sale and home slaughter, most of the males are slaughtered or sold at young age. Females predominate in the production system as they are retained for breeding. Farmers castrate goats for fattening purposes. About 36% of the farmers practice male goat castration. They use either traditional or modern way of castration of animals. The age of the animals to be castrated is 17.8 months (n =27, SD = 8.00). Farmers cull breeding animals that are not suitable for production. They cull both male and female animals. Farmers have different criteria for culling male and female goats. Goat owners usually cull males which are short, black coloured, poor conditioned and old aged ones.For females, if the goat has no milk for the new born, short, poor conditioned, and old aged the animals are usually culled. If the goat gives birth to poor conditioned kids it will be culled after giving birth 2 or 3 times. Those females which abort or are sick are also culled. Black coloured females are also culled. Both male and female animals that are culled are sold on market or home slaughtered. Farmers practice selection of animals for rearing in the area. They select both male and female animals. For male selection, body size and colour and for female selection, reproductive performance is given the most priority. For male selection, traits such as polledness, body length and body size are used. In addition, colour is an important criterion for selection of males. Hence, farmers select males that are white; brown; white and black mix; brown and white mix. Black colour males are not selected. In addition, poor conditioned males are not selected also. In some places, colour is not given much emphasis as a criterion for selection of male goats.For female goats, those which are good conditioned, reproduce more frequently, big sized, large bellied, long bodied, pedigree is seen if the female is home produced. In addition, those female goats which give birth to 2 or 3 kids at a time are selected. Those female animals which give birth to big kids and the kids that grow fast are selected. For females' selection, colour is not a strict criterion as male selection. In addition, farmers say that females having long ears are good for rearing, because they give birth to big kids and they give more milk to their kids. In addition, females with large and wider ears are considered There is feed shortage (browse) problem for goats in the area especially in the highland kebeles. About 29% of the respondents encountered feed shortage in the study area. In general, there is feed shortage problem in the dry season from March to May. During this time the leaves of browse species will shed and there will be less leaves to be consumed by the animals. In addition, in the rainy season, as the crop land will be covered with crops, goats will be confined to browse species found in grazing lands. The browse species found in the grazing lands are limited in amount and do not supply the required amount of feed to the animals. Feed is abundant for goats in the area from November to January.About 25% of the farmers in the study area fatten goats. Fattening goats takes several months. It takes on average 12.2 months (n = 20, SD = 10.22). The goat being fattened grazes with the flock in the day time and it will be supplemented feeds at home in the evenings or in the mornings. The amount and frequency of supplementation differs from household to household. It depends on the socio-economic status of the farmers. Most of the farmers supplement maize grain, beans and atella to fattening goats. Salt is usually supplemented. In addition, food leftover and noug seed cake are also supplemented to the fattening animals by some farmers. The grains to be supplemented will be boiled or roasted and salt added before feeding it to the fattening animals. According to FARM-Africa (1996), supplementation of castrates with roasted beans is common in the study area. Supplements are more often given to fattening animals.The starting age for the male animals to be fattened is 19.2 months (n = 19, SD = 10.57).Farmers usually deworm the animals to be fattened before or during fattening. About 27% of the respondents deworm the goats they fatten. The animals to be fattened are usually selected (27%) and castrated (27%). The goats are usually castrated at 17.8 months (n = 27, SD = 8.00). Farmers most usually select animals for fattening if they buy the animals from the market. Home grown animals are not usually selected. Farmers use different house types. These are housing in the main house, house attached to the main house and a separately constructed goat house. Many people use the separately constructed goat house to keep their goats at night in the study area (Table 31). If the animals are housed in the main house, the room will be separated and partitioned by walls made of locally available materials. Farmers house all sex and age groups together. But bucks (5% of respondents), fattening goats (16% of respondents) and kids (64% of respondents) are usually separated. Some farmers tether goats at night and others do not.Generally, if the animals are housed in the main house they are usually tethered. Farmers use locally available materials to build goat houses. The roof is usually made of corrugated iron sheet (72%), and the wall in the highlands is made of eucalyptus tree and it is usually plastered with mud. Some farmers have a goat house with a roof made of grass (25%). The wall of the lowland goat houses is made of lowland woods similar to sheep houses and it is not usually plastered with mud as the ambient temperature in the area is very high. The floor is usually made of earth and some times it is made of wood or stone. The floor in the dry and rainy season is usually different. In the dry season, there is more earth floor (43%) and in the rainy season, stone (17%) and wood floor (59%) types increase in number.During the rainy season about 21% of the farmers adopt earth floor.Farmers clean goat houses regularly. They clean goat houses more frequently during the rainy season than the dry season (Table 32). In addition, the highland HHs clean goat houses more frequently than the lowland HHs. In the lowland kebele, some farmers do not clean goat houses during the dry season. Farmers in the highland kebeles do not clean goat houses on Sundays and other observant days. If goats are housed in the main house the house is usually cleaned daily. Women and children are usually responsible to clean goat houses. Farmers utilize the goat manure for crop production. Adding goat manure on crop land is practiced in all the study kebeles. Foot rot, skin disease, internal parasites, pasteurellosis and diarrhea (with blood stained) are some of the main goat diseases in the area. There is also abortion problem. When goats get sick farmers in the highland kebeles take their animals to the veterinary clinics. But in the lowland kebele, farmers medicate the goats using modern drugs themselves (75%).Farmers usually do not get their animals vaccinated. Traditionally used medicine for goat treatment is the same as sheep. Most of the kids born in the dry season survive in the study area. Kids born in the rainy season do not usually survive. This is due to diseases and predator loss.Farmers slaughter goats in different occasions. About 57% of the respondents slaughtered goats at home the previous year. On average, one household slaughters 0.9 heads of goats (n = 75, SD = 0.98) per year. Farmers usually slaughter goats on Easter, Christmas and before the fasting period of Easter (Lent). Goats are slaughtered occasionally before and after fasting periods (Easter, August), on weddings and when the household feels to slaughter animals for home consumption and in some occasions on Hidar Mikayiel and Hamelie Abo. They slaughter males mostly at young age. Females at young age, sterile females or old females are also slaughtered occasionally. Sometimes fattened goats are also slaughtered. Rarely, there is no colour preference for the goats that are going to be slaughtered at home. In some cases, farmers rear goats but they do not slaughter and consume goat meat. According to FARM-Africa (1996), there is a cultural taboo in goat meat and milk consumption in Gojjam.Herding of goats is common in the study area (69% of the respondents). In the highland kebeles, the farmers herd their goats year round. But herding in the dry season is not as intensive as the rainy season. In the lowland kebele, farmers only herd goats during the rainy season from May to end of November. The main purpose of herding of goats is to avoid crop damage by animals and to avoid animal losses through theft, predator and straying. All age and sex groups of goats are herded together. There is group and private herding of animals in the area. Farmers usually herd in a group in the rainy season from May to end of October (27%). In group herding, households ranging from 5 to 13 will participate in one group herding. In one group herding, the number of animals tended together in one group ranges from 20 to 120 animals. Farmers usually herd privately (43%) in the dry season from November to end of April. During the dry season herding of goats in the lowland kebele is not common. Tending and watering of goats is the responsibility of children. Peak labour period in the study area is usually from May to end of December. During this time planting crops, weeding and harvesting of crops is done and hence, there is serious labour shortage problem to tend the animals (51% of respondents). The slack period is from February to end of April.From the livestock species reared by famers, goat sell is one of the cash income sources in the study area. Generally, farmers employ different market places for buying and selling goats. They buy goats from remote rural and cheap market places. But they sell goats on nearby and expensive market places which are found in towns. In most cases, goats that are going to be sold on market are trekked from the farmers' residence to the market places on foot. Men are usually responsible for goat selling on markets. The goat market places in the woreda are the same as sheep market places. These market places are Derequa, Burie and Kuche (Appendix Figure 19). The average number of goats offered per one market day per each market place is given in Table 33. On average, one household sells 1.7 heads of goats (n = 75, SD = 1.72) per year. From the total number of goats sold per household per year about 81% of the goats are sold on market and the rest are sold within the residence kebeles of the farmers. Based on the average market goat price per head from the three market places (240.7 Birr per head), one household on average gets 409.2 Birr per year from goat sell. The mean price of goats per head and per kg is given in Table 35. Generally, farmers usually sell male goats at young age. This age group is demanded on market and fetches better prices for the owners. This may be due to the meat quality of the young goats which are very demanded by consumers on market. The number of female goats sold per household is greater than the number of male goats sold. This may be due to culling and selling of old female goats on market. On the other hand, farmers buy goats for breeding or slaughter purposes. On average, one household buys 0.2 heads of goats (n = 75, SD = 0.61) per year.Goat sellers sell goats on market for various reasons. On average, one goat seller brings 2.3 heads of goats (n = 69, SD = 1.36) to the market for sale at one time. From this total number 0.8 heads are males and 1.4 heads are females. Most of the sellers on market are farmers. Hence, most of the sellers sell goats on market to get cash income for home expenditure (46% of respondents). This number is followed by goat traders who sell for profit (39% of the respondents). About 10% of the goat sellers sell goat to buy other goats for rearing or slaughter purposes (Table 34). The cash income per head a household obtains from goat sell is less than that of sheep sell in the area. In addition, there is deforestation and depletion of vegetation cover in the area which depletes the browse available for goats. Hence, these two conditions seem to reduce the number of goats and goat producers in the highland kebeles of the study area. Due to this reason, there is a shift from goat production to sheep production in the study area. In some cases, farmers completely sell the available goats due to labour shortage or predator problems. In areas where browse is available, the goat production in the area should be assisted with better marketing system so as to make the goat production in the area sustainable.The market price for goats fluctuates during the year. Market prices for goats is low in February, March, June, July, August, September, October, November and December. It is high during Easter, Christmas and at the start of Lent. The market price per head and per kg of goat sold during the study period on the three market places is given in Table 35.The current goat market price is high when it is compared with the price 5 or 10 years ago and better price (P<0.05) per kg is obtained at Kuche than at Derequa and Burie markets.There are different buyers of goats on market. The main buyers on markets are farmers (85%), hotel and other food catering service owners (11%) and civil servants (4%). It is evident that goat traders are mostly farmers themselves. The main sellers on goat market places are farmers (83%) and goat traders (16%). From the total number of goats traded on market about 48% are home reared and 52% are brought from other market places by traders and are sold for profit. Goat sellers bring goats for sale from different woredas into Burie Woreda market places.Most of the goat sellers come from Burie Woreda (78%). Goat sellers from Tillili Woreda (9%), Sekela Woreda (7%), Womberma Woreda (4%), and other places (1%) come to the three market places found in Burie Woreda for goat selling. In addition to the goat producers in Burie Woreda, traders bring goats from different market places to sell goats in Burie Woreda market places. In Derequa market place traders bring goats from Ashefa, Dembecha, Jiga (Jiga woreda), Fenote Selam (Jabi Tehinan woreda) and Sekela market places. In Burie market place, traders bring goats from Tilili, Merawi, Durebetie, Dangella, Burie, Robit (Tilili woreda) and Ashefa market places. In Kuche market place, marketing. There are also few traders of goats compared with that of sheep. This may be due to the low number of goats traded on market and the low demand for goats in the area.The goat marketing system needs improvements to make the producers more beneficial.Hence, improvements in market information system, grading system for animals on sale, market infrastructure development and creation of a new market chain to potential market places by potential traders is necessary. This improvement conditions should be studied further and their feasibility precisely known. Better marketing system in the woreda will make the goat producers more beneficial and the goat production in the area more sustainable.Goat producer farmers buy different materials from the market for their goats. Most of the farmers in the area buy salt (69% of the respondents) and anthelminitics (92% of the respondents) for their goats. Occasionally, some farmers buy drugs (Ampicillin, Penicillin and Oxytetracycline) for the treatment of sick goats. Buying drugs for sick goats' treatment is especially practised in the lowland kebele. Some farmers (9% of the respondents) buy noug seed cake for their goats.There are several constraints in goat production in the study kebeles of the woreda. These are goat diseases, feed shortage (browse), predators, lack of adequate veterinary service, theft, marketing, money shortage, abortion, water shortage, external parasites and lack of modern knowledge in goat production. From all the goat production constraints identified, goat diseases, lack of adequate veterinary service, feed (browse) shortage, predators and marketing problem are the main goat production constraints in the study area (Tables 37 and 38). There is a difference in the priority of constraints in the formal and informal surveys (Tables 37 and 38). This may be due to farmers' poor understanding of the main constraints and their relationships with productivity of the animals. The severity of the constraints differs from kebele to kebele. The constraints have their own causes and consequences in the area. The predators in some kebeles (Woheni Durebetie and Boko Tabo) have increased in number. This is due to the regeneration of forests in some areas.Goat owners do not take their goats to these areas and browse their animals fearing loss of animals by predators. Feed shortage occurred due to the cultivation of grazing lands and the deforestation of most of the forest areas. Feed shortage occurs especially during the rainy season as the crop land will be covered by crops and the available browse for goats from the grazing lands will be limited.For the disease problem, farmers need veterinary service to be given in their residence kebeles. For the feed shortage problem, farmers are willing to allocate land for growing improved forage crops. For this purpose, farmers need the supply of forage seeds. The cultivation of the grazing land should be banned. Forest areas should be conserved. In addition, awareness creation on forage production should be done. For the predator problem, farmers want the government to allow them to reduce the number of predators by hunting in some places. For the financial shortage problem, farmers need credit to be given to them. Especially the poor need credit to purchase and rear goats.The wheat varieties from which the straw was obtained for the on-farm feeding trial were different. The wheat variety from which the straw was obtained in Arebesi kebele is local variety. The wheat variety from which the straw was obtained in Tiya Tiya and Sertekez kebeles is HAR 1685. As the straw used for the on-farm feeding trial was derived from different wheat varieties in the study area, there will be a difference in their nutritive value. This is evident in their different chemical composition and in vitro digestibility values (Table 39). This difference is not assumed to be from variety difference alone and hence environmental factors may also have contributions on these values (i.e. soil fertility, etc). The in vitro digestibility of organic matter of the untreated wheat straw ranged from 50.3 to 50.5% and that of the urea treated wheat straw ranged from 47.9 to 53.5% (Table 39).These figures are higher for the untreated wheat straw when compared with Getahun's (2006) report (48.4%). The digestibility of the urea treated wheat straw is lower than that reported by the same author (63.2%). This may be due to differences in variety, lignin content and other environmental factors which affect digestibility.The animals in all the treatment groups (grazing and wheat straw experimental groups) consumed almost all the concentrate feed supplement (wheat bran and groundnut cake mix) that was offered to them. Consumption of the urea treated and untreated wheat straw was very low (Table 40). This may be due to the quality of the wheat straw offered to the animals. Urea treatment was not that much effective in increasing straw intake. In some cases consumption of urea treated wheat straw also declined. On the other hand, there was little or no consumption of untreated wheat straw in most cases. The nutrient intake of animals in the trial is given in Table 41. The animals gained BW during and at the end of the trial period. There was a significant final BW difference between the two groups (the concentrate supplemented and the farmers' traditional practices (supplementation of food leftover, atella and maize grain every three/ four days interval) at the end of the trial period (Table 42). The concentrate supplemented ones performed better (P<0.05) than farmers' traditional practices. This may be due to the frequency of supplementation and the high nutritive value of the concentrate feed supplement (WB + GNC) offered to the experimental animals compared with the feed farmers traditionally supplement to their fattening sheep. Hence, concentrate supplementation is effective in inducing more BW gain in the treatment group of sheep than the farmers' traditional practices (control). In this study the concentrate supplemented animals gained on average 43.6 g per day which is higher (P<0.05) from the control group (12.9 g per day) (Table 42). In another study, there was also a significant average daily BW gain (P<0.05) in goats that were supplemented with wheat bran and groundnut cake when compared with the unsupplemented ones (Simret, 2005). The author reported that the animals that were supplemented 200 g concentrate feed per day gained on average 39.9 g/ day. In the current study, the animals gained on average 43.6 g per day. This value is greater than the value reported by Simret (2005). This may be due to the difference in the animal species and nutritive value of the feeds used in the trial. In addition, the nutritive value of the feed available on the grazing lands was better during the trial, rainy season.It is observed that supplementation of goats on the lower (200 g) and the highest level (400 g) is not statistically significant (P>0.05) in BW gain and carcass parameters (Simret, 2005). The author recommended that supplementation of 75% groundnut cake and 25% wheat bran at the lowest level (200 g) as economical.In the wheat straw feeding trial, the animals gained BW during and at the end of the trial.There was no significant difference (P>0.05) in final BW between the two groups (Table 43). There was also no significant difference (P>0.05) between the two groups in ADG and total BW gain at the end of the trial. There was no effect due to variety of wheat (P>0.05). There was no interaction effect (P>0.05) between urea treatment and wheat variety. The mean body weight change of the animals every week in the wheat straw feeding experiment is given in Figure 5. Farmers generally evaluated this feeding trial as good. They have observed BW gain and body condition change in the animals which were supplemented with wheat bran and groundnut cake mix. From farmers' evaluation, the wheat bran in the concentrate feed mix is blown away by the animals' breathing when animals start to feed on the concentrate feed mix and enters into the animals' nostrils. This made the animals to cough and sneeze while eating the concentrate feed. This condition was mentioned as a drawback for the concentrate feed mix by farmers. Farmers believed that the amount of feed given to the animal per day is too much so it should be reduced. If it is too much they say it will not be suitable for the animals' health. The fear may stem from the traditional fattening practices.In the traditional fattening practice farmers feed concentrates to the animals in small amounts with some days interval. The farmers believed that the cause of disease (pasteurellosis) is too much concentrate feed supplement to the animals. They also believe that concentrate feed supplementation should not be given daily. It should be at every third or fourth day interval. They believe that supplementing animals with concentrate feed more frequently is not good for the animals' health. Daily feeding of concentrate supplements is not practiced in the farmers' traditional fattening practices.Disease was the main problem during the trial. Some of the experimental animals were sick of disease (pasteurellosis). Sick animals were treated for the disease in the nearest veterinary clinics. Farmers say that additional anthelminitics was necessary during the trial. This is because they deworm the fattening animals several times when they fatten animals traditionally. They believe that giving anthementics several times during fattening improves the animals' condition. In addition, they believe that the animals used in the trial should have been castrated. They also believe that castration of animals will have increased their BW gain. The uncastrated animals used in the trial were observed in mating female animals during the trial so that this would have adversely affected their BW gain. According to Demissie et al. (1989), a study conducted using Horro sheep to assess the effect of castration on their growth and development at different levels of concentrate supplementation (330 and 250 g per head per day), there was no significant effect of castration on final BW and average daily gain at the lower level of supplementary concentrate feeding (250 g). But, the results also showed that intact sheep gained more (144 g vs 75 g) per day than castrated ones at the higher level of concentrate feeding (330 g). Generally, the authors concluded that sheep that are going to be fattened for slaughter should remain intact unless there are special reasons for castration. According to McDonald (2002), the quantities of nutrients to produce ova and spermatozoa by mammals are very small and of little significance. Hence, it is concluded by the authors that nutrient requirement for spermatozoa and ova production are inappreciable compared with the requirements for maintenance and for processes such as growth and lactation. But the energy expenditure for mating, running with the mate and the time spent during this process without consuming feed is not considered in these studies.To make the farmers adopt the feeding practice, the concentrate feeds used for the trial should be available in the area. It is difficult to the farmers to bring the concentrate feeds individually from remote areas and feed their animals. For the concentrate feeds, a marketing system should be established in the study area. Some farmers also said that they have problems to adopt the feeding practice due to financial shortage. They are unable to buy sheep and concentrate feeds for sheep fattening. So, credit should be available to the farmers to alleviate the financial problem of the poor to buy sheep and the necessary inputs for sheep fattening. In addition to these factors, to make the farmers adopt this feeding practice, awareness creation through training is essential that concentrate feeding on daily basis at the recommended rate is not harmful. Generally, inadequate veterinary service in the study area and the concentrate feeds unavailability are the two main factors which determine the adoption of the feeding practice. Hence, not only for the adoption of new feeding practices but also for all the livestock species farmers' rear, adequate veterinary service provision is necessary to the farmers in the study area.The grazing plus wheat bran and groundnut cake concentrate mix feeding practice is socially acceptable. Many farmers wanted to participate in the feeding practice. They were also eager to participate if there was a second term feeding trial. In addition, farmers took the remaining concentrate feed from the trial very interested and in competition. On the contrary, farmers do not socially accept feeding indoors in the case of urea treated wheat straw and concentrate feeding. Some believe that it is immoral and irreligious to keep animals restricted at home from movement when feeds are available outside.Farmers generally evaluated this feeding trial as less effective. The animals consumed almost all the concentrate feed mix offered to them. Farmers have observed BW change and body condition change on the animals at the beginning of the feeding trial. From the current study, intake of both the untreated and urea treated wheat straw was very low (Table 40). Some farmers considered the urea treated wheat straw as poisonous. During the trial some of the trial animals were sick of pasteurellosis. They were treated for the disease. Disease was the main problem during the trial.Farmers in this group were not feeding their animals according to the recommendations made at the beginning of the trial. Farmers fed the concentrate feed supplement, treated/ untreated wheat straw, water and common salt to the animals. They fed wheat straw (urea treated and untreated) and also grazed the animals on grazing fields, whenever they were not supervised. So, feeding urea treated wheat straw alone with concentrate supplements indoors is not feasible in the area considering farmers' beliefs and social feasibility. Rather feeding animals urea treated wheat straw together with grazing and concentrate feed supplements seems to be feasible considering farmers' traditional fattening practices and social feasibility. In the one hand, feeding animals indoors entails labour input. On the other hand, feeding and fattening animals indoors is not traditionally common in the study area. This trial is not similar to the farmers' traditional fattening practices. So, to bring indoor feeding practice using urea treated wheat straw alone with concentrate feed supplements will take time to make it really feasible in the system. Generally, the labour input that is used to treat the wheat straw with urea, the labour input in indoor feeding and animal management and the amount of extra BW gain that will be achieved by urea treatment compared with the control group (untreated wheat straw) will determine the adoption of this practice.Generally, the probability of adoption of concentrate feed (GNC + WB) supplementation to grazing animals is more probable compared to the urea treated wheat straw and concentrate feed supplementation. Farmers have observed better body condition in the animals that were in the grazing plus concentrate feed supplementation group. Hence, those farmers who participated in the urea treated wheat straw feeding trial evaluated the wheat straw feeding trial as less effective based on their animals performance. Sick animals got treated in their respective veterinary service areas. There was almost no supplement offered to the growing lambs during the study. They depended on their dam's milk only.There were 458 sheep at the beginning of the study (Table 45). Among these, 366 were females and 92 were males. One household on average had 7.63 heads of sheep (n = 60, SD = 2.58) at the beginning of the study ( taken. Record for one lamb was not taken. Among the 117 lambs 46 were males and 66 were females. From the total lambs born (117), the sex of the 5 lambs was not recorded. There is birth weight difference among the agro-climatic zones. Lambs born in the Dega kebele have higher birth weight (2.9 kg) followed by the Woina Dega kebele (2.4 kg) (Table 48). There is a difference (P<0.001) in birth weight of lambs among the three agroclimatic zones. This may be due to breed and environmental factors (nutrition of dams, etc). In addition, the Horro breed which is found in the kolla kebele usually gives birth to twins (48% of the lambs born), but the Washera breed which is found in the Dega kebele usually gives birth to single lambs (87% of the lambs born). According to Markos (2006), single lambs have higher birth weight than multiples. In another study (Kassahun, 2000), single born lambs were heavier than twin born lambs. Many factors affect growth rate. The most important are feeding level, genotype, sex, health and management (Gatenby, 1991). According to Gatenby (1991), ram lambs grow faster than ewe lambs whether or not the diet is restricted. On a given diet, ewe lambs get fatter than ram lambs. Mean growth rate per day of male and female lambs up to 112 days of age is given in Table 47. There is no significant difference (P>0.05) in growth rate between the two groups. According to Gatenby (1991), males grow faster than females.There is no difference (P>0.05) in growth rate of lambs between the two breeds (Table 49). Washera and Horro lambs grew 108.9 g and 117. lambs have a BW of 2.9 kg and 15.0 kg at birth and at weaning, respectively. In addition, the breed on average has a weight gain of 134 g per day from birth up to weaning. This difference from the current result may be due to nutrition of the dam or other environmental factors during the study.There was no mortality of lambs during the study. But there was mortality of adults. There is no adult sheep mortality difference (P>0.05) due to diseases among the agro-climatic zones within the six months. There is more sheep mortality in the Dega and Woina Dega kebeles than the Kolla kebele (Tables 50 and 51). There is high sheep mortality per household (0.5 heads) in the Woina Dega kebele followed by the Dega kebele (0.4 heads).Sheep mortality per household in the Kolla kebele is lower (0.3 heads of sheep) than other agro-climatic zone kebeles. This may be due to breed and environmental factors (differences in feed availability, housing and ambient temperature, etc) that affect the animals' health. From the informal survey result, it was observed that as the sheep breed in the highland kebeles (Washera) is currently susceptible to diseases and dies more frequently, farmers in these kebeles are crossbreeding Washera breed with Horro breed. Assessment of the small ruminants production systems were conducted in Burie Woreda to assess the management practices, identify and prioritize the constraints of the traditional small ruminants production systems. For this study four representative rural kebeles were selected purposively and the study was conducted in these selected kebeles in the woreda. The main feed resources for sheep in the area are natural pasture and stubble grazing. In addition, most farmers supplement salt and atella (a local beer residue) to their animals.The communal grazing lands are small in area and they are overgrazed. There is feed shortage problem both during the dry and rainy seasons. In addition, the quality of the available feed resources is poor in nutritive value. The CP content of most of the available feeds is below maintenance requirement. Based on feed production and feed requirement per HH per year for the available livestock, there is a deficit of 0.7 ton DM per HH per year in the highland kebeles. According to farmers' evaluation, the veterinary service evaluation of the feeding practices. The sheep selected and used for the trial were local breeds (Washera, Horro and crossbred) and of male sex. The wheat straw was treated with 5% urea. A completely randomized design was employed. Treatments were allocated to the experimental units randomly using a lottery method. The trial animals were offered 200 g concentrate feed per head per day according to the treatments. The concentrate feed consisted of 75% groundnut cake (150 g) and 25% wheat bran (50 g). Feed offered and feed refusal were weighed and recorded every week. At the end of the feeding trials, farmers' were interviewed individually and in a group to evaluate the results of the feeding trials. Economic analysis was done using partial budget analysis. The trials were conducted for 86 days. The experimental animals consumed almost all the concentrate feed mix offered to them. Their consumption of urea treated and untreated wheat straw was very low (52.8 g vs 7.4 g per day). In the grazing trial, there was a difference (P<0.05) on final BW, BW change and daily BW gain between the treatment and the control groups. The sheep in the two groups had a final BW of 21.9 kg and 24.6 kg; a total BW change of 1.1 kg and 3.7 kg; and a daily BW gain of 12.9 g and 43.6 g per day, respectively. Supplementation of grazing animals with concentrate feed (GNC + WB) is feasible biologically (on-farm evaluation), economically (partial budget analysis) and socially based on farmers assessment. In the wheat straw feeding trial, there was no difference (P>0.05) on final BW, total BW change and daily BW gain between the treatment and the control group. In general, feeding grazing animals with groundnut cake and wheat bran mix has a high probability of adoption in the area.Monitoring of sheep flocks was conducted in Woheni Durebetie, Woyenema Ambaye and Boko Tabo kebeles to assess the on-farm birth weight and growth performance and mortality and causes of mortality of lambs. From each study kebele, 20 farmers having 5or more breeding ewes were selected purposively and participated in the study. In the selected farms, lambs born, date of birth, their sex and type of birth were recorded. The birth weight of the lambs born was taken in the first 24 hours after birth and after that every 2 weeks interval during the study. The study was conducted for 6 months. Birth weight of male lambs (2.6 kg) was greater (P<0.001) than female lambs (2.1 kg). The Dega agro-climatic zone lambs were heavier (P<0.001) (2.9 kg) than the Woina Dega (2.4 kg) and Kolla agro-climatic zone lambs (1.2 kg) at birth. Washera lambs had heavier (P<0.05) birth weight (2.8 kg) than Horro lambs (1.8 kg). There was no difference (P>0.05) in growth rate between Washera (108.9 g) and Horro lambs (117.9 g) when the two breeds are compared at 112 days of age. In addition, there was no difference (P>0.05) in BW between the two breeds at 112 days of age (15.2 kg vs 14.7 kg). These results indicated that Horro lambs had a lower birth weight than Washera lambs, but Horro lambs had similar growth rate with Washera in the first 112 days of age when the two breeds are compared within their respective environments.To alleviate the possibility of inbreeding and to maintain the productivity and genetic diversity of animals there should be maintenance of more male animals on-farm.As farmers practice crossbreeding Washera with Horro in the area there should be proper breeding system in the area to maintain and conserve the available breeds.As there is severe feed shortage problem, especially in the highland kebeles, increasing feed production both in quantity and quality and utilization of the available feed resources efficiently should be given more emphasis as it affects animal health, productivity and survival.In the goat production, as the market prices for goats are lower improvement in market information and linking the available markets with potential market places in the region through a new market chain, feed supply and predator control should be given more emphasis to make the goat production sustainable.Adequate veterinary service should be provided to the farmers in the area.Those farmers who treat sick animals buying drugs from the market should be made aware of the consequence of their activities and should be prohibited.Generally, to bring improvements in small ruminants production in Burie Woreda, small ruminant diseases, lack of adequate veterinary service and feed and nutrient shortage constraints should be given due emphasis in research and development activities that will be undertaken in the study area.Supplementation of grazing sheep with concentrate feed mix (75% GNC + 25 % WB at 200 g level) can be extended to the farmers to be widely used in the study area.To confirm the current results of the on-farm growth performance of lambs further studies are needed involving more animals in the study area. ","tokenCount":"20135"} \ No newline at end of file diff --git a/data/part_3/0822599255.json b/data/part_3/0822599255.json new file mode 100644 index 0000000000000000000000000000000000000000..aa26e3744620bbb934b96d2a824c2899cd6060ff --- /dev/null +++ b/data/part_3/0822599255.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"a99db5afb406cde66529470338fad986","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/a4efcb56-40eb-4561-b5f6-20ebf3e67fb5/content","id":"-119538160"},"keywords":[],"sieverID":"8c7cbe7d-26f9-4960-a13e-b494909d99ac","pagecount":"7","content":"We describe here the protocols followed by CIMMYT at the MLN Screening Facility, Naivasha, Kenya, for culturing and increase of inoculum for MLN-causing viruses (MCMV and SCMV) in eastern Africa, followed by phenotyping of maize germplasm against MLN (under artificial inoculation with MCMV + SCMV) or for individual viruses (MCMV or SCMV) under controlled (nethouse) conditions.Purified MCMV and SCMV isolates (from Kenya) are stored at -80 0 C, and are also maintained in separate greenhouses, with monthly checks on virus purity.Mother cultures of MCMV and SCMV isolates are maintained separately, and the inoculum is increased under controlled conditions, as described below:• The two viruses (MCMV and SCMV) are maintained separately on susceptible maize hybrids in different greenhouses where strict quarantine measures are observed to avoid cross contamination. • Fill at least 10 pots with sterile soil, add diammonium phosphate fertilizer (DAP) and sow each with 5 seeds from a susceptible commercial maize hybrid in each of the greenhouses. These plants will be ready for inoculation two weeks after planting when the plants are at 2-3 leaf stage. • From the stock inoculum source (previously tested to confirm virus purity), harvest a few leaves infected with of each of the two viruses. • Grind leaves infected with the single virus (confirmed through ELISA) in a mortar and pestle separately in cold, freshly prepared 0.1M phosphate buffer (pH 7.0) in the ratio of 1:10 (1g leaf material: 10ml buffer) and sieve the sap using cheese cloth. Carborundum dust (600 mesh) is added to the extracted sap to create microscopic injuries to the plant leaves for the virus to effectively infiltrate. • The young seedlings are inoculated mechanically at the 4 th leaf stage by gently rubbing the sap on all the leaves using fingers. A piece of cheese cloth can be wrapped on the inoculating fingers to increase the friction while rubbing. • The excess Carborundum is rinsed with distilled water immediately after inoculation.Note: It is advisable to have each of the MLN-causing viruses (MCMV/SCMV) inoculated on different days or by a different person to avoid any cross-contamination. • Symptom development should be visible about 6 days post-inoculation (dpi) for SCMV, and within 10 dpi in case of MCMV/MLN, starting from the inoculated leaves, but with symptoms more intense on newly emerging leaves. Symptom expression is most prominent within two weeks after inoculation. • The presence of the viruses can be confirmed serologically by ELISA two weeks after inoculation.Routine testing for quality control is conducted every two weeks to ensure no possibility of crosscontamination. • A weekly spray regime in the greenhouse with systemic insecticides at the recommended rates is maintained to reduce the presence of insect-vectors.Notes:• Plant a susceptible maize hybrid in two separate greenhouses (one for MCMV, and another for SCMV) at a density of 50 seeds/0.2m 2 in potting trays. If possible, maintain SCMV culture on a variety resistant to MCMV, and MCMV culture on a variety resistant to SCMV to avoid cross-contamination. Maintain cultures on moderately susceptible materials to maintain virulence of the culture. • Harvest SCMV-infected and MCMV-infected leaves separately after 3 rd week of 1 st post inoculation (10 th leaf stage), cut into 2-inch (5 cm) pieces, and grind in a mortar and pestle in buffer (1g of leaf tissue: 5ml of buffer). Obtain the extract (infectious sap) directly from mortar or by centrifuging for 2 min at 12,000 rpm. • Add 0.1g of Carborundum per 5ml of SCMV or MCMV extract (infectious sap) and inoculate the susceptible host plants at 1-or 2-leaf stage by mixing and rubbing infectious sap onto the leaves between fingers.• The material in the greenhouses should be ready for harvesting six weeks after inoculation. 1.26 g • Dissolve in 1 lt distilled water • For field inoculation, 6 kg of infected leaf material is required inoculating one hectare of maize plants, following the protocol described in the Section 2.4. • The inoculum with MCMV + SCMV (1:4) is transferred into mist blowers (motorized power sprayers) that dispense the inoculum at high pressure.• Planting of each of the test entries is done on 3m rows, with a spacing of 75 cm x 25 cm (13 hills per row). Two seeds are sown per hill, but later thinned to one plant per hill. • Along with test entries, plant appropriate resistant and susceptible checks.• The first inoculation is done at 28 days after planting or when the crop is at 4-6 leaf stage.• While inoculating, the person with proper personal protective equipment (PPE) walks along inter-row alleys and spraying seedlings by quickly moving the spray nozzle back and forth, perpendicular to the row to get a 'whipping' action (as if the plants are under a strong wind). • While the motorized power sprayer is operated by one person, another person guides the action (to avoid skipping any row or plant). • A second inoculation is conducted seven days after the first, to ensure there are absolutely no escapes from inoculation. • Standard agronomic practices are followed to encourage good plant growth; however, no insecticides are sprayed during incubation and post-incubation so as to encourage sufficient disease spread in the field through vector transmission.• Beginning two weeks after the second inoculation, plants are scored for the MLN severity on a weekly (inbred lines) or bi-weekly (hybrids) basis. • Disease Incidence: Number of plants out of total number of plants in each plot displaying MLN symptoms.Note: The score is given on a plot basis; however, for some high-precision experiments like fine-mapping or marker validation trials, similar scale is followed but on an individual plant basis. ","tokenCount":"931"} \ No newline at end of file diff --git a/data/part_3/0828420224.json b/data/part_3/0828420224.json new file mode 100644 index 0000000000000000000000000000000000000000..328cc2d152aaeb200e870c8832460e143a2e804c --- /dev/null +++ b/data/part_3/0828420224.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"70109f4dc762690b167db2d17bc20bb8","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/70f11fb8-42ca-417a-86ba-9f3b4a7ace98/retrieve","id":"-739815474"},"keywords":[],"sieverID":"1ae5c303-dbe0-4d47-8447-2d9902bde4c9","pagecount":"10","content":"are therefore higher for the latter than for 8 .decumbens. Harvest costs depend basically on the method used for harvesting, and are highest in the case of manual harvesting of A. gayanusseedwhich is more labor demanding. Mechanical harvesting is cheaper in both grass species. but 1.7 times higher seed yields are obtained with manual harvesting. Thus, the final comparison between harvesting methods has to be done in terms of the price at which seed can be produced in each instance, and not just on the basis of production costs.Table 90 shows the mínimum price which could be charged for the seed to maintain the target 10% IR R.Prices can be substantially lowered through the use of manual harvesting, but this method can only be used in small areas dueto high labor requirements. For a given harvesting method, economies of scale are minimal. The largest reduction in seed price can be achieved by obtaining sustained high seed yields. Using the 8.decumbens crop for seed production during five instead of three years would have almost no effect on seed price, as shown in Table 91 . Moreover, it is likely that seed yields wi\\1 decrease over time and/ or more fertilizar will be required; thus the impact of longar crop duration might be to increase rather than decrease production costs.~ rr;::. /-;~\\. ! Severa! experiments have been established at CIAT-Quilichao to serve as a basis for training on research methodology on pastura evaluation, and on methodology relatad to regional trials on adaptation of tropical pastura species to aci E2> E3> E4. The indices are similar for all environments with the exception of E4, which has the lowest diversity ranking. The richness in E2 relative to E4 reflects the fact that the same number of maize classes was derived from a smaller number of maize samples in E2.The two evenness indices (Berger-Parker and Shannon Evenness) give similar rankings for the environments (E2> E4> E1> E3), which suggests that environments with good infrastructure have a higher evenness than those with poor infrastructure. Given similar levels of infrastructure, environments with a GP of 80 days seem to be more even in the distribution of their maize populations than those with a GP of 140 days.The Simpson and Shannon diversity indices, which express both richness and evenness in a single indicator, rank environments as follows: E2>E1>E4>E3. Compared to the rankings based on the Margalef index, the rankings based on Simpson and Shannon are different for GP. Although the environments with a GP of 80 days have more diversity than those with a GP of 140 days, within each GP the environments with good infrastructure (and higher evenness) rank more highly for diversity than environments with poor infrastructure (and lower evenness).The fact that different indices rank environments differently illustrates the many dimensions of diversity, which are not necessarily positively correlated. Although the findings shown in Table 4 are qualitative, the patterns suggest that the potential for agricultural productivity may influence the richness of the crop populations grown in an area, while market integration may affect the evenness with which crop populations are distributed. The interaction of both factors (productivity potential and market integration) translates into different levels of diversity.In many cases the ranking of environments by diversity index is based on small quantitative differences. The jackknife method described earlier provides a statistical basis for comparison. Figure 3 presents the 95% confidence intervals for each of the indices.There are no statistical differences among the four environments for the Margalef index of richness, although environments with a GP of 80 days have a higher mean than those with a GP of 140 days. Based on the Shannon Evenness index, E2 is statistically different from all other environments, with a higher mean. Although there are no other statistical differences among the remaining three environments, E4 has a higher mean evenness than the remaining two. The mean of the Simpson index for E2 is also statistically significantly different from that of E3. This finding is consistent with the qualitative rankings for this index, in which E2 is the highest and E3 the lowest. The Shannon index shows no statistical differences by environment, although the mean is highest in E2. At a 90% rather than 95% level of confidence, the mean of E2 is statistically different from that of E3 (not shown).The major result that emerges from this comparison is that environments with the most contrasting agroecological and socioeconomic traits (E1 and E4) are not statistically different from each other in terms of any of the diversity indices employed in this study. The analysis does not support the hypotheses that either the potential for agricultural productivity or the development of infrastructure is associated with maize diversity. This result holds despite the fact that distinct classes of maize are grown in each environment. This finding suggests that some indices may overstate the concern for loss of genetic resources in such areas. As shown by other studies, there may be reasons why farmers continue to grow a range of maize populations despite economic change (in other words, there may be reasons for de facto maize conservation) (Brush 1995;Brush and Meng 1998;Perales 1998). It is important to remember, however, that the study region is primarily rainfed and the maize populations grown in all environments are predominantly local. The range of variation among the environments in the study region does not include areas with widespread use of irrigation and extensive adoption of improved varieties. Over a wider range of opportunity costs for farm labor or consumer preferences, would these results hold? How many farmers are needed to effectively conserve a set of maize populations in situ? These questions cannot be answered in the context of this study.E2 emerges as statistically different from the other environments, showing higher levels of diversity according to several of the indices. The few farmers who grow maize in E2 maintain a rich set of maize populations, and these populations are distributed more evenly than in other environments, leading to differences in both the Simpson and Shannon indices. Given the lack of difference among other environments, the superior diversity found in E2 suggests that there may be an association between diversity and the interaction of productivity potential and availability of infrastructure. This result suggests hypotheses for future work on regional patterns of maize diversity. For example, GP may influence the richness of the maize classes grown, while the availability of infrastructure may affect their relative abundance.Although E2 is the environment with the greatest maize diversity, it is also an environment in which many farmers have abandoned maize production. While only 26 of 40 farmers sampled in that environment grew maize in the survey year, all or almost all farmers sampled in the other environments grew maize. One possible interpretation of this finding can be offered. In any area with increasing market development, the opportunity cost for farmers' labor will rise until it reaches a threshold above which farmers will no longer allocate any resources to maize production. Since the value of labor in the production system of a farm household is defined by the assets and other conditions specific to each household-including the value household members attach to special maize foods-not all farmers in a zone will reach this threshold value at the same time. Those who have not reached the threshold will continue to grow maize, maintaining roughly the same total number of classes as in other environments because there is a minimum set that satisfies their household requirements for special foods, fodder, and other maize needs. Cash income from other sources may effectively subsidize maize production in environments that are more marginal for growing maize, enabling households to continue producing the crop they value for non-commercial reasons. In a related study with this same data set, the most significant factors affecting the shares of area that farmers allocated to their maize varieties were related to the taste of tortillas or special foods (Smale, Bellon, and Aguirre 1998). Such characteristics are not usually traded on local markets in rural areas.Comparatively speaking, farmers in E2 grow more classes per sampling effort, and the relative abundance among the classes is greater. The uniqueness of an environment like E2 merits further research.The richness, evenness, and rarity of maize landraces in an area are attributes of interest for planning and implementing any effort to conserve maize genetic resources. Given that E2 had the highest diversity and was statistically significantly different from the other environments, one might think that similar areas should receive high priority for collecting materials for ex situ conservation or serving as sites for in situ conservation. The fact that many farmers in E2 have abandoned maize production and that the number of samples per maize class was the smallest in this environment suggests, however, that this type of environment may not be the best candidate for genetic resource conservation. The diversity present may be high but fragile. Patterns in the qualitative data, although not statistically significant, show that E1 had a high level of richness, including rare maize types, and had many samples per class (i.e., it had redundancy). Therefore, it may be better to give higher priority to environments such as E1 for ex situ and in situ conservation. In any case, our results suggest that GP-as an indicator of potential for agricultural productivity-could be helpful in defining and prioritizing sites for genetic resource conservation.Landraces were the dominant class of maize in all four environments studied. Different diversity indices ranked environments differently, highlighting the many dimensions of diversity, which are not necessarily positively correlated. No statistically significant differences were apparent between the environments with the most contrasting agroecological and infrastructural conditions. However, significant differences were found between environments when there was an interaction between the two types of factors. The data indicate that productivity potential may influence the richness of the maize populations in an area while the availability of infrastructure may affect their evenness. These findings suggest hypotheses for future work on the regional patterns of maize diversity. Information on these two factors can be helpful in designing ex situ as well as in situ conservation efforts.","tokenCount":"5457"} \ No newline at end of file diff --git a/data/part_3/0859892757.json b/data/part_3/0859892757.json new file mode 100644 index 0000000000000000000000000000000000000000..82c24c0be1d6c19f36fc0f26c334e796b753b321 --- /dev/null +++ b/data/part_3/0859892757.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"61118207b30798a8a3eb7f49e07f54ab","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/47ea4b64-7e99-44c5-aabc-370d5a629672/retrieve","id":"1637579449"},"keywords":["seed systems/farmer","seed systems/formal","seed intervention/formal development","seed intervention/community development","seed guidance handbook/genetic diversity","seed guidance handbook/institutional capacity building seed systems/farmer","seed systems/formal","seed guidance handbook/technology transfer","seed guidance handbook/genetic diversity","seed guidance handbook/institutional capacity building","seed intervention/community seed systems/farmer","seed systems/formal","seed assessment/security seed systems/farmer","seed systems/formal","seed guidance handbook/institutional capacity building","seed intervention/community development","seed guidance handbook/genetic diversity seed systems/farmer","seed systems/formal","seed guidance handbook/genetic diversity","seed guidance handbook/institutional capacity building","seed guidance handbook/technology transfer Malawi","seed systems/farmer","seed intervention/community","seed guidance handbook/institutional capacity building Southern Sudan","seed intervention/seed vouchers and fairs","seed security assessment/disaster","seed systems/formal","seed intervention/community development","seed guidance handbook/institutional capacity building Uganda","seed guidance handbook/development Uganda","Rwanda","Burundi","DRC","seed guidance handbook/technology transfer","seed guidance handbook/genetic diversity"],"sieverID":"006808c4-88c9-47a8-a772-66f58bc0fdef","pagecount":"29","content":"This report presents a conceptual framework for supporting community management of agrobiodiversity. It indicates that sustainable community management of agrobiodiversity should be based on farmers' needs and priorities. It recognizes three entry points for the support of community management of agrobiodiversity: at the community, institutional and policy levels. Contents include, among other themes:Role of crop genetic diversity Role of local and formal seed system in plant genetic resource management Community management of crop genetic diversity Necessary support to community in management of agrobiodiversity Shaping favorable socioeconomic and policy environments 2This paper is based on interviews among personnel working with local, national and international organizations involved in emergency agricultural restoration following Hurricane Mitch in Honduras. The paper shows that coordination between relief organizations and local communities was generally weak in seed-relief programs.Most organizations also found it less time consuming and risky to distribute varieties already certified and promoted, and which had broad adaptation in marginal areas, than to multiply and distribute local varieties. Further, the paper depicts how institutions designed their interventions without a serious assessment of local seed security or seed-management practices and how the varieties distributed did not always respond to the considerable variations in ecological, economic and social conditions found in Honduras. Seed supply, rather than seed demand, seemed to be the driving force behind seed-related activities. The document highlights some of the forces at work that promote seed security systems. It describes the concept of seed security and spells out possible strategies to achieve seed security goals. These strategies include protecting local diversity, strengthening the seed-supply sector at the national and regional levels, and effecting government policies that promote such security. This paper gives a detailed analysis of issues relevant to seed production and distribution. It also examines important linkages between seed-supply systems and other services available to farmers in the region. It suggests that there are alternative strategies for policymakers that can be adopted according to the prevailing conditions in each country.Among other themes, it includes: SSA farming systems (agroecological and socioeconomic conditions and natural resource management)The status of the agricultural sector in the region Seed and food security and their linkages in sub-Saharan Africa Seed-supply systems (informal and formal and in between) Constraints faced in the development of the seed-supply sector and suggestions for future improvement of the seed-supply system in the region Descriptors: Mozambique, groundnuts and cowpeas, seed systems/relief, seed systems/farmer, seed intervention/seed and tools, seed intervention/fairs and vouchersUsing the case study of the Mozambique floods in 2000, the author contrasts the impact of relief seed, local seed markets and traditional seed systems on peanut and cowpea diversity. The first section provides the background information about the disaster area (biophysical situation and its farming systems). The author elaborates and compares the methods used to assess crop diversity, their results and their implication on the choice of seed-intervention approaches (seed and tools and seed fairs and vouchers). Although crop losses were extensive in Yorito, most farmers were able to secure a harvest of at least one major crop, and many of those who had lost all their beans had access to local seed sources. No bean varieties were lost in Yorito as a result of Mitch. Conversely, as improved varieties that were previously unavailable were provided, such aid augmented the local gene pool. However, the authors describe how the seeds provisioned were of a narrow genetic base (due to the low variation in the varieties distributed). Taking the differences in agroecological and socioeconomic variables between communities and households into account, the seeds provisioned were not appropriate for all farmers. This report reviews community seed banks and categorizes them into community seed exchanges, organized seed banks, seed-savers' networks and ceremonial seed banks. Each is considered with regard to the two primary objectives of seed banks -farmer seed security and biodiversity conservation -and their relative merits and problems are discussed. The report highlights those areas where our knowledge is still scanty and recommends future studies aimed at improving their applicability and relevance to the farming community. The authors depict, in particular, the issues of (a) how best to work with existing seed-banking practices and (b) how to resolve the conflicting requirements of varietal conservation and the socioeconomic needs of farmers. Descriptors: Somalia, Mozambique, seed systems/farmer, seed systems/formal, seed systems/relief, seed assessment/disaster, seed intervention/formal, seed intervention/vouchers and fairsThis paper outlines a methodology to help agencies better determine whether or not relief seeds are needed by farmers affected by disaster. The article proposes the development of a seed-system profile (SSP) to understand both the socioeconomic and agroecological aspects of farmer seed systems and presents a five-step framework for assessing seed systems in disaster situations. The authors further explain how a better understanding of farmers' seed systems facilitates the development of relief and rehabilitation interventions that effectively enhance the resilience and reduce the vulnerability of these systems. The contents include: Present approach to assessing seed needs Seed-systems profile (SSP) Assessing the need for seed-system support in a disaster situation Suggestions for practical applicationsEmergency Seed Aid in Kenya: Some Case Study Insights from Lessons Learned during the 1990s. Pages 329-342.Descriptors: Kenya, seed systems/farmer, seed systems/formal, seed systems/relief, seed assessment/disaster, seed intervention/development This article reviews the effectiveness of seed-aid distribution in Kenya during the 1990s. It analyzes internal processes and effects, i.e., the performance of the aid itself. It also analyzes external processes and effects, i.e., how the seed-aid intervention affected farmers' broader agricultural management strategies. The author argues that repeated seed aid has been promoted to lessen the effects of \"acute\" stress, drought, while Kenyan farmers, in practice, have been experiencing much wider, \"chronic\" problems with the seed system. The article ends by discussing the diagnosis of seed systems, constraints and opportunities. The distinction between acute and chronic seed-system stress is demonstrated and the range of interventions appropriate to each are outlined.Remington T., Maroko J., Omanga P., Charles E. and S. Walsh 2002 Getting off the \"Seeds-and-Tools\" Treadmill with CRS Seed Vouchers and Fairs. Pages 315-329.Descriptors: Africa, seed intervention/seed and tools, seed guidance handbook/technology transfer This paper presents a framework for assessing seed security for seed-system analyses or diagnoses. It also describes an alternative approach to free distribution (the so-called \"seedsand-tools\" approach) in agricultural recovery, which combines the distribution of seed vouchers with the organization of seed fairs attended by a range of seed sellers and voucher holders. The paper presents an ex post evaluation of the effectiveness of seed vouchers and fairs and closes with a discussion of the opportunities and challenges ahead. Three conceptual principles of seed security are elaborated: seed availability, seed accessibility and factors associated with seed utilization. The article discusses:The persistent reliance on the formal seed sector on agricultural recovery from disasters Using a seed-security assessment framework for better seed-system diagnosis CRS seed vouchers and fairs: methodology and overview Ex post evaluation of CRS seed vouchers and fairs using the seed-security framework ","tokenCount":"1146"} \ No newline at end of file diff --git a/data/part_3/0888642893.json b/data/part_3/0888642893.json new file mode 100644 index 0000000000000000000000000000000000000000..ea992bc26c12a07f9571134ab211307aaa2f2531 --- /dev/null +++ b/data/part_3/0888642893.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"97dad14f414e3e4c9e16c59f2b4b96ae","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/18390b0e-2c2c-43a9-b493-c55384327862/retrieve","id":"-1043805670"},"keywords":[],"sieverID":"f794ecb2-53c3-4fa0-91af-6cd9e138ef87","pagecount":"8","content":"CGIAR is a global partnership that unites organizations engaged in research for a food-secure future. The CGIAR Research Program on Livestock provides research-based solutions to help smallholder farmers, pastoralists and agro-pastoralists transition to sustainable, resilient livelihoods and to productive enterprises that will help feed future generations. It aims to increase the productivity and profitability of livestock agri-food systems in sustainable ways, making meat, milk and eggs more available and affordable across the developing world. The Program brings together five core partners: the International Livestock Research Institute (ILRI) with a mandate on livestock; the International Center for Tropical Agriculture (CIAT), which works on forages; the International Center for Agricultural Research in the Dry Areas (ICARDA), which works on small ruminants and dryland systems; the Swedish University of Agricultural Sciences (SLU) with expertise particularly in animal health and genetics and the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) which connects research into development and innovation and scaling processes.ATTRIBUTION. The work must be attributed, but not in any way that suggests endorsement by ILRI or the author(s).For any reuse or distribution, the licence terms of this work must be made clear to others. Any of the above conditions can be waived if permission is obtained from the copyright holder. Nothing in this licence impairs or restricts the author's moral rights. Fair dealing and other rights are in no way affected by the above. The parts used must not misrepresent the meaning of the publication. ILRI would appreciate being sent a copy of any materials in which text, photos etc. have been used.Editing, design and layout-ILRI Editorial and Publishing Services, Addis Ababa, Ethiopia.Cover photo-Aichi J Kitalyi ECI Africa Citation:Lyatuu,E., Nguluma, A., Kitalyi, A., Komwihangilo, D., Mashingo, M., Msuta, G., Kelya, N. and Urasa, A. 2021. The African Dairy Genetic Gains (ADGG) Data platform has been developed to enable collation, evaluation and feedback of phenotypic and genomic data from dairy animals in Africa. The platform provides an opportunity to revolutionize dairy production in Africa. Using information and communication technologies (ICT) including mobile phone-based data capture and information sharing, data on productivity from different farming systems is captured, collectively stored and evaluated to inform decisions in dairy productivity from the farm to the national policy level. The data platform has been designed and tested among livestock producers in Tanzania and Ethiopia, priority countries for dairy improvement under the CGIAR Research Program on Livestock (CRP-Livestock).To support adoption and scaling of the platform for decision-making at the national level, a workshop was organized with key stakeholders in Tanzania who have been involved in a national dialogue on improving dairy productivity in Tanzania in collaboration with the CRP-Livestock and the ADGG project partners. The main objective of the workshop was to demonstrate the functionality and potential outputs from the new ADGG data platform and facilitate its broader use by the different stakeholders.Stakeholders in the dairy sector of Tanzania were engaged and identified through a series of dialogue interactions. Both government and private sector stakeholders were identified and sensitized through a consultative process on the vision of the ADGG platform. Central in engagements related to the ADGG platform were the national government line ministries supporting livestock production, the Tanzania Livestock Research Institute (TALIRI) and the National Artificial Insemination Centre (NAIC). From the private sector, stakeholders included cooperatives, private companies and service providers in Kilimanjaro and Arusha regions of Tanzania. A total of 62 stakeholders participated in the workshop (54 in person and 6 online) as outlined in Table 1. The presentation on the ADGG project provided information on the project objectives, geographical coverage, achievements to date and areas requiring further attention. This was followed by a comprehensive demonstration of data capture and the functionality of the ADGG data platform. Questions on the functionality of the platform were addressed directly during the demonstration.Four breakout groups were formed involving the following categories of stakeholders:i. Farmers (small-l, medium-and large-scale),Dairy cooperatives and milk processorsInput suppliers and service providersIn each group, participants discussed their observation from the demonstration of the ADGG platform and their perceived benefits through its adoption. Groups outlined the three most important attributes of the ADGG platform and what stood out for each of them from the demonstration. They also gave suggestions on ways to improve engagement of stakeholders in the use of the digital platform and ensure its long-term sustainability.(Photographs by E. Lyatuu, ILRI)Opening speech from RAS-Kilimanjaro Presentation on ADGG progress Group discussions Presentations from group discussions","tokenCount":"735"} \ No newline at end of file diff --git a/data/part_3/0910537924.json b/data/part_3/0910537924.json new file mode 100644 index 0000000000000000000000000000000000000000..f1019ec88554c29b63c787fa0046038427f16705 --- /dev/null +++ b/data/part_3/0910537924.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"796be85c208e200eb0236617db0e4888","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/13158ae5-15da-4617-bb85-b3a2a21fa6e3/content","id":"-645774955"},"keywords":[],"sieverID":"2eda3a16-a72a-4d8a-a531-9fbe52946aea","pagecount":"27","content":"Facing the world challenges of crop production, responsibly & sustainably, the relevance of plant breeding is unquestionable! Many studies estimating the importance of plant breeding, e.g. (CALDERINI; SLAFER, 1998; BRANCOURT-HUMEL et al., 2003).According to Mackay et al. (2011), in the United Kingdom (∼58 years), for wheat and barley, without crop improvement, yield could ↓.. Bernardo (2010).The purpose of breeding trials is to predict the performance of the entries to select the best ones for the next cycle.The precision of these trials is given by its capacity to detect differences in breeding values of the evaluated entries High precision is needed to ensure the detection of small differences in these breeding values.This precision is determined by the SE between any pair of means, which depends on the control in between plot error.& .Naive solution: Increasing the number of replicates usually increases precision (but not economically feasible)Set of actions aimed at controling local variability:• Experimental Design; including several prior actions taken before the planting trial• Statistical Analysis; and comprising procedures after data collection.• Feed Back. surrounding retrospective evaluations, optimization . . .Note on good research! \"Good researcher\" considers several experimental practices such as:• uniform soil preparation;• pest control;• homogeneous application of any treatment (fertilization, irrigation); and• precise measurements.It is assumed that this actions are considered by the researchers.Information on relatives can improve the analysis. . . What is the genetical relatedness between entries for the optimality of block definition?\"The knowledge on relatedness may imply that the optimal design is out of the class of optimal design for unrelated treatments\" (BUENO FILHO; GILMOUR, 2003)Other aspects:• Rows-Columns (a.k.a. α × α) can be evaluated to control variability in both directions; and• Need for studies regarding the precision of such designs for stress environments.(drought and/or low N input)Some physical & chemical soil properties are known to be responsible for yield differences.texture, moisture, cation exchange capacity, salinity and macronutrients, (Adamchuk et al. (2004), for review)Currently, the use of proximal and/or remote sensing devices are becoming increasingly more important to map the spatial variability• Assisting the researcher while delineating size, direction and position of the trial; and• Use of those informations as covariable in the analysis. (next section)An appropriate analysis of a variety trial comprises a set of a posteriori actions aiming at decreasing the magnitude of the error term, decreasing the SE between any two variety means.The 3 main types of a posteriori actions that can be taken are:• Control of soil heterogeneity patterns;• Use of covariables; and• Incorporation of additional information.(not covariables)Source: Cartoon Guide of Statistics.In spatial analysis framework, the correlations between plot residuals follows a distribution considering the physical distances between them.It is the most important posterior action that accounts for heterogeneous soil variability.This provides the adjustment of the trial in all directions, and ensures:• Precise estimation of the SE of difference between any variety pair; and• That the rank of the varieties in the trial is closer to their true (unknown) rank.Specially important to account for heterogeneity under stress conditions (drought and/or low N inputs).After designing the experiment, there is some source of variation that inflate the error term which can be account for by a covariable.A covariance analysis is the correct way of incorporating an unexpected variation not accounted for in the trial design.Other kinds of additional information can be used to improve precision, such as:• Environmental information;• Indirect plant measurements; and• Genetic information.(pedigree and/or markers)Variables related to climatic conditions during the vegetative, flowering and grain-filling periods, such as:• Temperature (average, max. and min.);• Precipitation;• Solar radiation, etc.. . . plant properties, associated to the plots, provided by proximal and/or remote sensing devices can be incorporated into the statistical model.(details given later)Thereby, these approaches may improve the precision of comparisons between any pair of means.These external covariables may be useful for explaining the G × E interaction.FHRB Toledo | (13 / 26)The proximal and/or remote sensing technologies can play an important role in identifying plant properties whithin plots.Provides faster and precise measurements, being helpful while the crop is still growing.It is important to study how stable they are and understand how and which indirect measurements can improve the precision for the target trait.In addition to other challenges, e.g. logistic, calibration, labor skills with the devices, etc.The inclusion of genetic information in the analysis has been found to increase the precision of field trials (BERNARDO, 2010).Both Pedigree and/or Molecular information estabilish a covariance among entries and should be incorporated into the model to improve precision.These informations are very useful specially for increasing the precision of estimates of unobserved entries which is based on information from relatives.Genes, Genomes and Genetics 3( 5) :1903-1926 (2013).• Genotyping technologies;• Statistical approaches;• Multitrait GW selection; and• Long-term results.Hard Task ( ): the breeding of a single cultivar for the whole world! Keep in mind wide adaptation, superiority and homegeneity for agronomic traits, abiotic & biotic resistance/tolerances in order to address 10 6 ha of very diverse growing conditions . . . In these sense, statistical analysis (BSU) → tolls/approaches to deal with theSubdividing global areas based on water availability, soil type, temperature, farmers technology, stress conditions, consumer preference and end-use quality.This methods provides an approximated solution to problems with inherent probabilistic structure or not, through sampling experiments.It allows addressing problems for which the time to evaluate exact solution is unfeasible.Avoiding deep explanations (see http://polymer.bu.edu/java/java/montepi/), it is easy to find π by simulation. A naive R program can be: A recurrent selection scheme was employed during 5 cycles, repeated 100 times, with:• Varying the number of loci for each trait, the correlation between them and 2 .• Evaluation of 300 F 2:5 progenies with 20 plants each;• Top 25 are selected for trait A and under 3 alternatives:- 1.5 0 1 2 3 4 5 q q q q q q Trait A ESIM q q q q q q Trait B ESIM 0 1 2 3 4 5 q q q q q q Trait C ESIM q q q q q q Trait D ESIM q q q q q q Trait A Smith q q q q q q Trait B Smith q q q q q q Trait C Smith −0.5 0.0 0.5 1.0 1.5 q q q q q q Trait D Smith −0.5 0.0 0.5 1.0 1.5 q q q q q q Trait A Trait A 0 1 2 3 4 5 q q q q q q Trait B Trait A q q q q q q Trait C Trait A 0 1 2 3 4 5 q q q q q q Trait D Trait ASince its introduction in quantitative genetics, several topics were addressed and are increasing since then (see Sorensen (2009) for reviews).• Easy to handle in complex situations;(especially adept at handling high-dimensional data, when )• Posterior means are ML for any sample size;(avoid any asymptotic aproximtion for hypothesis test)The choice for Bayesian approaches are much more pragmatic than ideological 6 Building Bridges .• Consulting on demand;• Sharing Vignettes regarding common analysis;• Short courses about R, and programming;• Development of R packages; and• Scientific consortia (partnerships).& .Last words . . .I think topics are up to date, but an ideal outline of the real needs of biometrical works at requires a deep understanding of the main lines of its activities worldwide.I wish to thank for the opportunity . . . Thank you indeed! Suggestions and Questions?","tokenCount":"1228"} \ No newline at end of file diff --git a/data/part_3/0915300256.json b/data/part_3/0915300256.json new file mode 100644 index 0000000000000000000000000000000000000000..aff03965092fd83c1d148122c9a1bac4cf8689ac --- /dev/null +++ b/data/part_3/0915300256.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"30fc1327664dc0aa8b5247b34e4494a7","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/28b6a30f-edaa-43bb-bc47-fed283dad8a7/retrieve","id":"-1013565806"},"keywords":[],"sieverID":"641b646b-1ac6-49d8-bf47-03738b55f6f1","pagecount":"3","content":"hile the agricultural productivity benefits of utilizing new germplasm have been widely documented (Evenson 2001;Alston, Norton, and Pardey 1998), some controversy remains about the economic justification for expanding existing collections of crop genetic resources. Concerns persist that germplasm collections are underutilized (Wright 1997) and therefore of questionable economic value. Does infrequent \"use\" of genebanks in crop breeding programs imply that accessions in genebanks have little economic value? Are seed banks really \"seed morgues\"?This study was motivated by criticisms that because plant breeders seldom \"use\" genebank accessions directly in their breeding programs, there appears to be little justification for maintaining collections. The approach builds on earlier work by Evenson and Gollin (1997), examining more closely the relationship between genebank activities and crop improvement. A search theoretic framework invoked previously for the cases of sugarcane breeding (Evenson and Kislev 1976) and the pharmaceutical industry (Simpson, Sedjo, and Reid 1996) was applied to the analysis of genebank decisions with actual data from searches for new sources of disease and pest resistance. Findings shed some light on the optimal size of collections and on the circumstances in which large genebanks have economic value.Economic principles dictate that a search should proceed until the expected gains from searching an additional accession are outweighed by the additional costs of the search. The expected gains are defined as the product of two factors: (1) the discounted stream of future benefits from finding the trait and (2) the change in the probability of success from searching one more accession, where the probability of success is the chance of finding an accession with the desired trait in a search of a given size.Three specific questions on genebank management are answered with numerical experiments on data from past searches and wheat variety diffusion in regions of the developing world. 1 The first case, about the Russian wheat aphid, demonstrates that the probability of finding a targeted trait is extremely sensitive to the frequency distribution of the desired trait among the accessions searched. This distribution in turn depends on the breadth and size of the collection from which the materials are drawn and the distribution of the trait in the underlying plant population. The rarer the source of new resistance, the larger the search needed, and by implication, the larger the collection. A Brief 8, page 1What Is a Genebank Worth? problem of global importance clearly warrants a large search effort, implying a collection of large size.As in any analysis of the benefits from crop improvement, the discounted stream of future benefits depends on how long it takes for plant breeders to transfer the new source of resistance into the variety, the time it takes for the new variety to pass regulatory hurdles, the magnitude of the \"problem\" to be resolved, and the popularity of the new variety among farmers. The variety's popularity in turn depends on how well adapted it is to local production conditions, how heterogeneous these conditions are, and other constraints farmers face in purchasing seed or related inputs. In the \"problem\" of coping with yield lost to diseases or pests, the crop breeding process is a race for the development and release of varieties with novel sources of resistance against evolving strains of plant pathogens or pests. The time value of money-or the perspective of the research investor-is a critical parameter in projecting the magnitude of the benefits.The second experiment illustrates the value of specialized knowledge concerning the \"location\" of resistance in the collection. The capacity to focus or target a search generally has large payoffs. A priori knowl-edge that accessions from a given geographical area (in the case of Russian wheat aphid, Iranian landraces 2 ) are likely to be more resistant to a pest dramatically reduced the search size required and increased the expected net benefits from the search (Figure 1). What is the basis of this knowledge? It may be held by a few experts or by public databases.The third experiment indicates why plant breeders avoid tapping categories of genetic resources that are \"raw\" or unimproved and incompletely characterized. Resistance to Septoria leaf blotch is far more common among accessions of emmer wheat than among elite breeding lines, but the costs of evaluating emmer and transferring resistance into materials that are ready for release to farmers is high. This case shows that it may be efficient not to focus on the accessions known to be more resistant if the relative cost of moving this resistance into varieties that can be rapidly released and adopted by farmers is high.This study clarifies some essential points about the valuation and utilization of genebanks. First, the empirical examples suggest strongly that large genebanks have substantial economic value for agricultural crops such as wheat. Wheat is an intensively bred, major world cereal crop. There are occasional situations in which the chances of finding a trait are slim and the economic payoff to discovery is great. These are the situations from which large collections derive their value.There are other occasions when the trait of value is found in a tiny subset of the world's collections of genetic resources, such as a set of landraces from a particular geographic location. Although they may be searched rarely, there are reasons for storing them \"unused\" for years. Most importantly, the casual observation that plant breeders reach into their own collections more frequently than they Probability of finding resistance Dollar costs and benefits demand unimproved materials from genebanks in no way implies that the latter have no value. Certainly survey evidence shows that the crossing blocks of plant breeders themselves hold significant genetic reserves (Brennan et al. 1999;Rejesus, Smale, andVan Ginkel 1996), andDuvick (1984) has argued that the genetic base of elite germplasm provides more useful diversity of traits than is often assumed. For reserves held in banks, however, short-term payoffs may be modest while long-term payoffs are great, especially when considering the multiple traits for which the same accessions can be searched.While genebank managers can attend to the content of their collections and their management, it is clear that many factors outside their control determine the magnitude of the economic benefits from finding and transferring traits into crop varieties. In some cases, forecasts of future benefits can be grounded on past calculations of benefits and patterns of variety diffusion. As argued in Brief 7, however, the use of economic principles (e.g., marginal benefits equals marginal costs) in deciding which accessions to keep or discard is not so straightforward as it may seem. The range in total discounted net benefits from searching for and finding a new source of resistance to Russian wheat aphid was enormous-more than $165 million-warranting a search that was larger than the total number of wheat landraces in the CIMMYT genebank.","tokenCount":"1120"} \ No newline at end of file diff --git a/data/part_3/0923077337.json b/data/part_3/0923077337.json new file mode 100644 index 0000000000000000000000000000000000000000..9681876040c0bff1bb2cc788f22bd8870d0f74e1 --- /dev/null +++ b/data/part_3/0923077337.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"2924937e78c59118d20ce7aced35d227","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/7b429065-11ff-45bc-9312-118e05f2749b/content","id":"85326059"},"keywords":[],"sieverID":"4f2581e6-3f0f-4c17-b826-f556386b33b6","pagecount":"10","content":"Cowpea (Vigna unguiculata) is a versatile legume with diverse nutritional and nutraceutical properties that serve as a food security and medicinal crop for millions of households across Africa. An efficient protocol was developed to propagate shoot tip and cotyledonary node explants from six cowpea breeding accessions in vitro on Murashige and Skoog (MS) basal media supplemented with either banana extract, coconut water, orange or tomato juice. Micropropagation performance was compared to MS medium supplemented with B5 vitamins. A total of 500 plantlets were obtained in vitro across treatments and MS basal media supplemented with tomato juice had the highest micropropagation performance (154 plantlets), followed by banana extract (112 plantlets), orange juice (107 plantlets), and coconut water (82 plantlets). Three accessions (AGRAC 216, TA, and Asontem) were found to be the most amenable to in vitro propagation using plant-derived extracts. Overall, this study successfully established that plant-derived extracts can support in vitro cowpea propagation in the absence of synthetic plant growth regulators.Cowpea (Vigna unguiculata) is an annual, herbaceous, warm-season crop that belongs to the Fabaceae family (Maréchal et al. 1978;OECD 2016). Globally, the total land area estimated for cowpea cultivation is about 12.3 million hectares with an annual dry grain production of about 7.2 million metric tons (FAOSTAT 2020a, b). Africa accounts for 95.2% of the total acreage production, of which Nigeria leads as the world's leading producer and consumer (FAOSTAT 2020a, b). Cowpeas play an essential role in most farming systems as a result of their ability to curb erosion, fix atmospheric nitrogen, and contribute to soil fertility via decay of its residues especially for subsequent cereal crop rotations (Coba de la Peña 2012; Ron 2015). In terms of health, they are mainly cheap sources of dietary protein, relatively low in fat and rich in minerals and vitamins (Carneiro da Silva et al. 2018). Cowpeas can be boiled and eaten as whole meals, or ground into whole or composite flours for the preparation of baby foods, or used as garnishes (Gómez 2003). Its leaves and green pods are used for treatment of diseases such as ulcers and measles among several others (Abebe and Alemayehu 2022). Consequently, this legume has been endorsed as \"high-quality proteins\" with the sole purpose of decreasing high incidences of nutritional malnutrition to \"shift the world unto a more sustainable path\" (UNDP 2020). In Sub-Saharan Africa, millions of people rely on cowpea as a principal component of their daily meals and is widely cultivated by small-scale farmers (Enyiukwu et al. 2018;Langyintuo et al. 2003;Singh et al. 1997).Recently, the supply of cowpea has been unable to meet high consumer demands due to an inadequate supply of clean (specifically disease-free) seeds as planting materials for farmers, as well as limited mass propagation of improved cowpea cultivars for consumers. To curb these problems, researchers worldwide have identified tissue culture technology as an efficient tool to enable the mass propagation of improved cowpea cultivars and provide clean planting materials for use by farmers (Aragao and Campos 2007;Hussain et al. 2012;Sani et al. 2015;Suman 2017).To upscale the production of cowpea using tissue culture, especially in Sub-Saharan Africa, several challenges need to be addressed, including the high cost of synthetic plant growth regulators, delays in product importation, and inaccessibility of these products in local markets. These serve as major drawbacks for laboratories with limited resources especially in developing countries (Datta et al. 2017).To address these barriers, we aimed to develop new protocols for reducing costs without compromising on the quality of cowpea propagules propagated (Datta et al. 2017;Klerk et al. 2008). We tested the use of readily available, lowcost plant-derived extracts as substitutes for synthetic plant growth regulators and compared their propagative performance. Here we report results from the in vitro propagation of six cowpea breeding accessions using shoot tip and cotyledonary node explants cultured on MS media supplemented with four different plant-derived extracts (coconut water, orange juice, tomato juice, and banana extract). The objective of the study was to determine which plant-derived extract best supports cowpea in vitro propagation and which genotypes and explant types was best-suited to in vitro propagation with organic additions. This can be used for mass propagation of clean cowpea planting materials and plant genetic transformation.Six (6) cowpea accessions (REC 64, Asontem, AGRAC 216, Tintinwa A, Tintinwa B, Songotra) were obtained from the WACCI gene bank, University of Ghana for use in this study.One hundred and seventy-five (175) seeds per accession were surface sterilized with 0.1% mercuric chloride and two drops of Tween-20 for 5 min, then rinsed three times with sterile distilled water. The surface sterilized seeds were incubated for 1 week on the germination medium of Murashige and Skoog basal salts (Phytotechlab) and 30 g/l sucrose (Central Drug House) after which the shoot tip and cotyledonary node explants were excised and cultured on the different propagation media under a laminar flow hood. A Completely Randomized Design (6 accessions × 5 treatments) was used and 5 seeds per treatment were cultured and replicated six times.Explants were transferred to different propagation media constituted of 100 ml/l of the blended and sieved plantderived extracts (coconut water, banana extract, orange juice, or tomato juice) prepared from fresh fruits in the laboratory (Table 1), sucrose, and Murashige and Skoog basal medium (Sigma). Murashige and Skoog supplemented with B5 vitamins and sucrose served as the control propagation medium. All prepared media was solidified with 6 g/l phytagel and adjusted to pH 5.8 ± 0.5 before autoclaving at 121 °C for 20 min at 15 PSI. All culture conditions were set at a 16-h photoperiod with a temperature of 25 ± 1 °C and light intensity of 3000 Lumens.After 14 days, well-rooted plantlets were removed from culture vessels and any media adhering to them washed off with tap water. They were then placed in 350 cc containers containing sterile potting soil complete with additional fiber (Primasta) in the acclimatization chamber, and well misted with water before being covered with propagator lids. Over the subsequent 2 weeks period, misting was reduced gradually, and the chamber opened fully before plantlets were transferred to the greenhouse in containers with dimensions of 30 cm × 20 cm × 25 cm for full maturation and production of seeds.The days to shoot formation, number of shoots per explant, shoot length, number of leaves per explant, days to root formation, root number per explant, root length, plant height, and stem girth were recorded daily between the hours of 7:00 and 16:00 GMT for two weeks after the culture of explants.All statistical analysis was conducted using the GenStat Analytical Package Twelfth edition. The significant differences between the observed means per plant-derived extract treatment and genotype were determined using analysis of variance (ANOVA) and Duncan's Multiple range test and where significant differences were present, the F-protected least significant difference (F-protected LSD) was used to separate them.The six accessions tested responded differently to in vitro culture on the germination media. At the end of the first week, it was observed that five (AGRAC 216, REC 64, Asontem, TB, and TA) out of the six accessions were amenable to in vitro growth. At the end of two weeks, the rate of germination for the cowpea cultivar Songotra was 17.14%. See germination data in supplementary material.Explants of the germinated accessions also responded differently to the MS media fortified with different plant-derived extracts. It was observed that full plantlet regeneration of the various explants on MS medium supplemented with tomato juice and banana juice was obtained on the third day of in vitro culture (Fig. 1). At the end of week one, explants cultured on MS medium supplemented with orange had regenerated into full plantlets whiles those on MS medium supplemented with coconut lasted 14 days. It was observed that injuries caused at excision on the shoot tip explant and cotyledonary node explant of the six cowpea accessions resulted in callus formation amidst the formation of roots for the explants cultured on MS media supplemented with coconut juice.At the end of the experiment, 500 clean cowpea plantlets were fully propagated. These plantlets were placed in acclimatization chambers for two weeks. The acclimatization survival rate was 95%. Total humidity inside the chambers was maintained for 1 week after which it was gradually reduced before the transfer of plantlets to the greenhouse where they produced normal growth (Figs. 2, 3). The table below shows in further detail the genotypes, type of media, and percentage of cowpea plantlets obtained from each of the explants (Table 2). The performance of each cowpea accession was determined by comparing the survival rate of the various explants in the MS media supplemented with different plant-derived extracts against the control. The total survival rate = total number of survived explants/ total number of explants cultured) × 100%. NR equals no regeneration. A total of 30 explants were tested for micropropagation in each genotype × media treatment. Thus, five (5) explants were cultured per dish and a total of six replicates for each explant. The following were observed: Overall, the cotyledonary node explant recorded the highest survival rate than the shoot tip explants cultured (see survived plantlets in supplementary material). In addition, it is deduced from the analysed data that the shoot tip and cotyledonary node explants of AGRAC 216 were the most amenable to growth in the MS media supplemented with varying plant-derived extracts. Collectively, Tintiwa A came second after AGRAC 216 in terms of the total number of explants regenerated on the different media for both shoot tips and cotyledonary node explants. This was followed by Asontem, Tintiwa B, Songotra, and Rec 064 for shoot tips, with Rec 064 having greater micropropagation than Songotra for cotyledonary nodes (Table 2).Additionally, significant differences for selected growth parameters number of leaves, number of shoots, plant height, root number, and root length were observed between the explants of the various cowpea accessions cultured on the different propagation media respectively (Fig. 4). AGRAC 216 cultured on MS media supplemented with tomato juice recorded the highest plant height average for shoot tip and TB did the same for cotyledonary node explants on MS media supplemented with coconut water. Both explant types, however, recorded Songotra cultured on the control medium as having the least plant height average. TB and AGRAC 216 were the most efficient in terms of the number of roots produced for the different explants type cultured on MS media supplemented with banana extract. There was no direct correlation observed for root number and root length for explants of the various genotypes. The absent bars for the genotypes indicates no regeneration (Fig. 4).Furthermore, significant differences were observed for the performance of the various propagation media based on selected parameters (Fig. 5). Tomato juice recorded the least significant difference for days to shoot formation, for root length of the shoot tip explants however the opposite is observed for the cotyledonary node explants. MS media supplemented with orange juice displayed the least significant difference for root length of shoot tips whiles MS media supplemented with Banana recorded the highest efficiency for cotyledonary nodes. The absent bars for the performance parameter indicates no significant difference. Furthermore, the variables on the error bars indicate significant differences in performance for both genotype and media. Cowpeas are essential leguminous crops that contribute immensely to the achievement of food security in developing and underdeveloped countries (UNDP 2020). To boost production and optimize the cost associated with the application of tissue culture tehnology for cowpea improvement via in vitro culture, low-cost tissue culture media options that allow the use of plant-derived extracts as replacements for synthetic plant growth regulators are employed (Akter et al. 2007;Datta et al. 2017).The germination and in vitro propagation trends observed in the present study for the cowpea genotypes Rec 064, Songotra, and TB could presumably be due to the general recalcitrance of legumes such as cowpea to in vitro manipulation (Bakshi and Sahoo 2013;Somers et al. 2003).The cotyledonary node explants were reported to have the highest survival rate than shoot tip explants. This observation agrees with the findings of (Adesoye et al. 2010;Chaudhury et al. 2007;Raji et al. 2008;Solleti et al. 2008) who opined that cotyledonary nodes were the most efficient and gave the best results for multiple shoot induction.All the plant-derived extracts supported the micropropagation of cowpea and this response could be explained by the amounts of vitamins, minerals, and plant growth regulators present in the extracts. Though \"undefined\" because the exact amount of each constituent is unknown and variable each extract, these supplements are reported to contain plant growth regulators coupled with some nutrients that support explant growth in plant tissue culture systems (Caplin and Steward 1948;Saad and Elshahed 2012). Majority of the time, the amount of auxin to cytokinin in plant culture media determines the type and extent of organogenesis present in a culture (Saad and Elshahed 2012;Skoog and Miller 1957). The performance of the control media could be explained by the very low concentrations of plant growth regulators present in the medium (Gamborg et al. 1968;Murashige and Skoog 1962).MS basal media supplemented with tomato juice was determined as the best and most efficient plant-derived extract that supported cowpea in vitro propagation. This observation agrees with the findings of Ayanlola et al. (n.d.) and Norhayati et al. (2011) who reported on the successful regeneration of cowpea varieties Ife brown and TVU 943 and shoot regeneration of Celosia spp. respectively on MS media supplemented with tomato juice. Furthermore, MS media supplemented with banana extract was second in terms of shoot formation for the various cowpea genotypes. This is in line with the findings of Norhayati et al. (2011) who reported that MS basal media supplemented with banana extract came second to providing the best growth rate for in vitro shoot regeneration of Celosia spp. It was also deduced from the results of the study that MS media supplemented with orange juice induced both shoot and root formation for explants in culture. This observation is confirmed by the findings of Ubalua et al. (2015) who posited efficient shoot and root formation of cocoyam using orange juice. Finally, MS basal media supplemented with coconut water came forth as the best plant extract that supported cowpea micropropagation due to delayed root formation of the cowpea genotypes. This observation could be explained by the very high levels of cytokinin and low amounts of auxins present in coconut water compared to the other plant-derived extracts (Klerk et al. 2008;Kuraishi and Okumura 1961).Significant growth rate differences were observed for plant height, root length, shoot number, shoot length and root number of the various genotypes on the different supplemented media. Explants' responses to the various in vitro propagation media differed one from the other presumably due to differences in genetic compositions (Brar et al. 1999) and varied absorption rates of nutrients and hormones contained in the media (Chee 1995;Drew et al. 1993). Gibberellins are responsible for the elongation of plants (Torres 1989) and all the plant-derived extracts used in this study contain gibberellins (Garmendia et al. 2019;Ge et al. 2007Ge et al. , 2008;;Khalifah 1966;Radley and Dear 1958;Srivasta and Handa 2005). However, the significant increase in plant height of shoot tip and cotyledonary node explants in the growth media supplemented with tomato juice and coconut water respectively suggests an increased concentration of gibberellins in both juices. The number of roots formed can be attributed to the high amount of auxin present in the extracts. The works of Hu et al. (2015) and Klerk et al. (2008)imply a higher number of auxins in bananas, hence the most efficient for the highest root numbers and root length for the different explant types. From this study, MS basal media supplemented with tomato juice, banana extract, or orange juice could be utilized in further cowpea tissue culture works since they provided optimum growth conditions. Furthermore, protocols that involved the use of MS basal media supplemented with coconut water could be improved further to provide optimum growth conditions for the cowpea genotypes in culture. In addition, AGRAC 216, TA, and Asontem proved to have high amenability to growth in MS media supplemented with plant-derived extracts. They could be optimized for further tissue culture works on cowpea that involves the use of plant-derived extracts.Cowpea can undergo successful in vitro propagation on MS media supplemented with varied plant-derived extracts by optimizing efficient tissue culture media and protocols. Based on regeneration efficiency in descending order, tomato juice, banana extract, orange juice, and coconut water best-supported cowpea growth in vitro. Based on organ development, tomato juice-promoted early shoot and root development. Banana extract and orange juice came second and third respectively followed by coconut water. Additionally, cowpea genotypes AGRAC 216, TA, and Asontem were most amenable to in vitro manipulation in MS basal media fortified with plant-derived extracts. Furthermore, the cotyledonary node explants were the most receptive to in vitro culture. While there may be high variations in the quality and quantity of growth-promoting factors in the various plant-derived extracts as a result of the non-standardization of juices and extracts, the findings from this study will encourage tissue culture laboratories with fewer resources to conduct similar research using efficient but less expensive approaches. Finally, the mass production of clean cowpea plants within the shortest possible time using this approach would allow farmers to meet high consumer demands all year-round whiles keeping the spread of infection plants to the barest minimum. This would lead to an increased yield and higher profits from sales for local farmers and contribute towards the achievement of food security in developing and underdeveloped countries. Furthermore, these micropropagation media can be utilised in cowpea transformation works worldwide.","tokenCount":"2925"} \ No newline at end of file diff --git a/data/part_3/0934538429.json b/data/part_3/0934538429.json new file mode 100644 index 0000000000000000000000000000000000000000..6958645a067cad2daf90f3b7fa947b040296120f --- /dev/null +++ b/data/part_3/0934538429.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"1b5fcb421c1ee235ba852353ad063e5f","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/8aabac66-9f0f-4f27-a84b-24444b026560/retrieve","id":"1830056697"},"keywords":[],"sieverID":"70c4dc9f-6f88-4d50-80d6-1a07cb0ebc7b","pagecount":"12","content":"This electronic document has been scanned using optical character recognition (OCR) software and careful manual recorrection. Even if the quality of digitalisation is high, the FAO declines all responsibility for any discrepancies that may exist between the present document and its original printed version.1. Livestock production in sub-Saharan Africa is unevenly distributed in relation to the effective demand for meat. The bulk of the slaughter stock is produced in the arid and semi-arid zones which contain about 60% of the ruminant biomass (Jahnke, 1982). These zones are far from major population centres which have a high effective demand for meat. Consequently, slaughter stock have to be moved over great distances to centres of consumption or ports of export (e.g. over 2000 km from northern Mali to Abidjan in Ivory Coast). Figure 1 shows the flow of livestock-from areas of production to areas of consumption and/or export.2. The livestock marketing system plays an important role in enabling livestock to move from areas of surplus to those of deficit. Its efficiency determines (a) the income of livestock producers and hence the level of offtake, and (b) the consumer price of meat and hence the level of consumption. The more efficient the marketing system is in minimising the costs of moving animals, the better it can stimulate both consumption and production.3. This paper examines a number of areas where appropriate government policies * would increase the efficiency of livestock marketing systems in Africa.4. For most African countries the cheapest method of transporting livestock is trekking, and consequently it remains the method which is most widely used. Moving of livestock by rail and truck is limited by both the availability of adequate infrastructure and the high relative costs. Many African countries do not have a clear trek route policy. Trek routes have by and large been established by custom, not by law; nor are they sufficiently marked. Conflicts over rights of way arise between drovers and agriculturalists during the growing season when trek cattle damage crops (Ariza-Nino et al, 1980). The ensuing controversy and litigation cause considerable delays which increase the cost of marketing. An exception to this is Togo where the traditional trek routes were officially confirmed by a decree in 1937 which is still in force (Sullivan and Josserand, 1979). In Botswana trek routes are not gazetted. However, there is a deliberate policy at both district and central planning levels to leave a corridor of at least I km wide along the trek routes within which no permanent settlement is allowed. Where trek routes have to pass through densely populated and cultivated areas before reaching the Botswana Meat Commission (BMC) abattoirs, the policy has been to provide holding grounds with facilities for moving cattle by trucks. 5. A clear government policy establishing well defined and demarcated trek routes, within which livestock have the right of way, will facilitate and hence increase the efficiency of moving livestock to markets.6. Another problem of moving livestock on the hoof is the inadequate provision of grazing and water along established trek routes. These can be severely limiting during dry seasons and result in severe loss of condition by the time animals reach their destination. The problem is being gradually relaxed via development projects, particularly those financed by the World Bank (e.g. in Botswana, Kenya, Mali etc.) in the 1970s. However, there is still considerable room for improvement, especially in West Africa, in providing holding grounds at the end of trek routes (Ariza-Nino et al, 1980).7. As livestock move from areas of production to centres of consumption over long distances, they change hands several times. The traders and intermediaries engaged in livestock marketing appear unnecessarily numerous. There is therefore a tendency for some governments to try to limit their numbers through licensing. However a number of studies - Abdalla (1974) in the Sudan; Mariam and Hillman (1975) in Ethiopia; Staatz (1979) in Ivory Coast; Ariza-Nino et al (1980) in West Africa: and Reusse (1982) in Somalia -have shown that these intermediaries and traders perform essential tasks, such as providing market information, concluding sales, guaranteeing credit transactions, and that the livestock marketing systems move animals through the market chain from producers to consumers with remarkable efficiency. 8. While licensing is required for taxation and other purposes, a policy of using this instrument to control the number of traders in the marketing system should be avoided. As Ansell (1971) observed for Botswana and Mariam and Hillman (1975) for Ethiopia, this tendency can introduce monopsonistic practices in the system. For example in 1968/69, Ghana denied trading licences to non-Ghanian livestock traders, and this had disastrous effects on the supply of meat to consumers.9. Many African governments attempt to control live animal and meat prices by (a) fixing minimum prices per unit of liveweight which slaughterhouses and butchers can pay, and/or (b) fixing wholesale and retail meat prices which they can receive. The presumed intention of these price controls is to limit the margins of traders and butchers and thus protect both producers and consumers from exploitation. 10. Although there are legal provisions for the frequent review of these prices, this is seldom done. Few governments in Africa have the analytical and administrative resources or the political will to alter the gazetted prices as market conditions change. As a result, the prices remain fixed despite radical shifts in market conditions arising from seasonal changes in supply and demand, changes in transport costs etc. A good example of this is provided by Zaire. Maximum producer, wholesale and retail prices for livestock and meat were fixed by the government in February 1973. They remained unchanged until May 1976. Meanwhile, actual producer prices had risen by 40% and retail prices by 100%. The only price which remained fixed at the official controlled level was that paid by traders for animals they bought from government ranches.11. In most African countries the controlled prices are totally or partially ignored by all parties; examples are Sudan (Abdalla, 1974) and Kenya (Matthes, 1979). In countries where price controls are enforced the result is often a shortage of meat which leads to black market operations, and in the end consumers pay higher prices than would otherwise be the case, e.g. in Tanzania (Farris and Stokes, 1976) and Uganda (FAO, 1980).12. When fixed retail prices are maintained below market prices, an income transfer from the farmer to the urban consumer takes place. It also discourages the farmer from improving productivity or expanding production. Furthermore, it encourages illegal exports in countries which share a 'cattle-shed' with their neighbours. Livestock movements across the borders of Tanzania, Kenya, Somalia and Ethiopia in response to price differentials often take place in large numbers and their existence is well known.13. In many African countries parastatal organisations are actively engaged in the livestock marketing system. These parastatals are normally abattoirs with a monopoly over the export of meat or in the wholesale sector of the meat trade (eg. BMC in Botswana, KMC in Kenya and SOMBEPEC in Mali). Other parastatals have also been established to stimulate livestock trade and promote the stratification of the industry (e.g. the Livestock marketing Division in Kenya), or to regulate the livestock marketing systems by offering competition to private traders.14. The experience of parastatals in Africa has been mixed. Firstly, there are well managed parastatals which have fulfilled their objectives. Examples are the Zimbabwe Cold Storage Commission, the Malawi Cold Storage Company and the Botswana Meat Commission. Almost invariably such parastatals have held monopoly powers in some part of the marketing chain and while they may not incur financial losses. the extent to which a lack of competition allows them to operate at higher costs than they otherwise could represents an additional cost to the system. They encounter enormous financial difficulties when their monopoly powers are withdrawn.15. Secondly, there are parastatals which have accomplished their objectives but with colossal inefficiency and cost. Examples are the Tanzania Meat and Livestock Company, and the Livestock Marketing Division and KMC in Kenya. The intervention of KMC in Kenya ameliorates the depressing effects on farmers' incomes, which result from the seasonality of offtake or when large numbers of livestock in poor condition are offered for sale during drought. The supply of cattle to KMC is at present very seasonal and many of the cattle it buys are in such poor condition that they can only be processed into canned beef. Within the marketing system KMC provides a floor price for the lowest grades of animals, and is in fact the only outlet available for many animals which are in such poor physical condition that they would be very difficult to sell elsewhere. However, KMC would be unable to provide this service without government subsidy. Finally, there are those parastatals which have failed to achieve their objectives and have in addition incurred substantial losses. A classic example of this is the Meat Marketing Board of Ghana which managed to completely destroy the livestock marketing system in the country (Sullivan and Josserand, 1979).16. The major reasons for the failure of parastatal agencies in general are (a) poor management, (b) undue political interference and (c) counterproductive price control measures. In the area of livestock marketing price controls have had very undesirable effects. In countries where live animal and meat prices are controlled at unrealistic levels, it is only the parastatals which are effectively made to comply with the controlled prices. Invariably, this forces them to buy dear and sell cheap with disastrous financial results. 17. On balance, the potential damage caused by failures far outweighs the good achieved by the successes. If states feel the need to directly participate in livestock marketing systems for one reason or another, an appropriate policy would be that parastatals are run under commercial conditions and that they are subsidized only for non-business-like transactions specifically requested by the state, such as the purchasing of livestock during drought periods.18. In the past governments in Africa have intervened in various ways in order to regulate and increase the efficiency of the marketing system. These interventions have ranged from the control of livestock and meat prices to the outright purchase and sale of animals and meat. Experience however shows that the scope for increasing efficiency lies neither in attempts to regulate and control the market participants, nor in efforts to control prices, nor in the creation of parastatals but rather in facilitating the operations of the market participants and instituting measures which reduce their costs.19. The effect of government policy instruments in the form of (a) taxes, licences.. and cesses, (b) procedures required for the movement and export of livestock, (c) controlled prices, and (d) direct state interventions through parastatals in livestock and meat marketing, need to be assessed periodically. Policies adversely affecting the efficiency of the marketing system need to be reviewed and streamlined with the view of reducing market costs and stimulating the livestock industry. 20. Using licences as an instrument to control the number of participants in the market should be avoided. It tends only to decrease the level of competition and hence to increase traders' margins. Care should be taken that taxes and cesses imposed on marketed livestock do not unduly increase prices at terminal markets.21. In some countries the procedures required for obtaining permits for the movement and export of livestock are cumbersome and costly. Streamlining these in order to reduce the time that traders have to spend chasing permits will reduce marketing costs. Efforts to stamp out unofficial levies will also help improve the efficiency of the marketing system. 22. Controlled prices for live animals and meat do not seem to be effective instruments for protecting the interest of producers and consumers. Most commonly they have only succeeded in introducing distortions into the market. These interventions have often resulted in the spawning of black markets and the redirection of the flow of livestock away from established markets and in bringing financial losses on government organisations which tend to be the only enterprises to observe the controls fully.23. When parastatals or other government agencies engaged in livestock and meat marketing are run efficiently, they can increase competition and stimulate the marketing system. Unfortunately, success stories are the exception rather than the rule. As stated above, livestock marketing systems in Africa are fairly efficient, except under certain circumstances such as drought or when there are large seasonal fluctuations in supply. The evidence also indicates that the inefficiencies are most severe in situations where governments have directly intervened. This implies that governments should refrain from direct interventions in livestock marketing systems, and that they should concentrate on policies that direct efforts and resources into effecting measures which will relax constraints that participants in the system cannot remove. These include (1) improving the infrastructure of livestock marketing; (2) streamlining procedures for the movement and export of livestock; (3) the provision of market information through the mass media e.g. on volume of livestock traded at major markets and, if possible, average prices by sex, age, and species; (4) regulating the standards of products and services; -and for those countries exporting livestock and livestock products -(6) negotiating favourable trade agreements in export markets; and (7) the proper alignment of taxes and foreign exchange rates to promote exports.","tokenCount":"2201"} \ No newline at end of file diff --git a/data/part_3/0938736046.json b/data/part_3/0938736046.json new file mode 100644 index 0000000000000000000000000000000000000000..e7aeebfbd1cd104905e60d76938505b36f5a4de6 --- /dev/null +++ b/data/part_3/0938736046.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"accdcd3ff06e693cdebb581aa2c4a393","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/45006754-eb74-4595-91ee-7a69b277ced7/content","id":"-440813185"},"keywords":[],"sieverID":"309d0e39-c7cb-4094-b567-36391de91d05","pagecount":"31","content":"CIMMYT -the International Maize and Wheat Improvement Center (www.cimmyt.org) -is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR Consortium and leads the CGIAR Research Programs on Maize and Wheat. The Center receives support from CGIAR System Funders, national governments, foundations, development banks and other public and private agencies.The International Maize and Wheat Improvement Center (CIMMYT) came about at a time of both trouble and triumph for developing country agriculture. In the early 1960s, stagnating food production, made worse by bad weather, aroused fears of mass starvation across South Asia. The region's plight fueled concerns of a global food crisis. But within just a few years, the spread of high-yielding wheat varieties forced the specter of famine into retreat. The victory inspired new faith in the power of science to banish hunger for good. This is the story of what CIMMYT and its partners have achieved in the 50 years since then, and of how they've translated research into tangible benefits for farmers and consumers. The story includes as well a forward look to new troubles and triumphs that await us in the years to come.The Green Revolution andbeyond (1966-1991) The miracle seeds for Asia had been developed in Mexico by wheat breeder Norman Borlaug. Later they were sent, literally by the boatload, to India and Pakistan for widespread testing with farmers. This new wheat formed the centerpiece of national Campaigns against Hunger, which gave rise to the Green Revolution.The radical changes that swept Asia´s agriculture grew from the pioneering work of national and international programs nurtured by the Government of Mexico and the Rockefeller Foundation over two decades. Borlaug and his team met their original aim of boosting Mexico´s food production and bolstering its research capacity. As an unexpected bonus, they learned to breed widely adapted, diseaseresistant wheat that can thrive across many diverse locations. The new wheat saved millions of Asian consumers from chronic hunger.These results provided the proof of concept for CIMMYT´s founding in 1966 as an international center, with support from Mexico together with the Rockefeller and Ford Foundations. The idea behind its creation was to consolidate and extend the gains already accruing in Asia. The idea proved so compelling that in 1971 donors agreed, at the urging of the World Bank, to establish the Consultative Group on International Agricultural Research (CGIAR). Its purpose was to secure financial support for CIMMYT and other international centers over the long term.CIMMYT inherited from its predecessor organizations an abiding commitment:End the scourge of hunger by working with developing countries to boost wheat and maize production, while building local capacity to confront future threats to these crops.CIMMYT also inherited the ideas and attitudes that Borlaug, the 1970 Nobel Peace Prize laureate, believed were critical for making good on this commitment:A conviction that hunger and poverty are not inevitable, that applied science can ultimately defeat them.• A sense of urgency about solving farmers' problems through hard work done in collaboration with national partners.From the outset, CIMMYT has cultivated this way of thinking in every single member of its staff. And with each passing year and decade, it has stood firm in its commitment to combat hunger through collaborative research. The Center has embraced new commitments as well -convinced that more productive and sustainable maize and wheat systems, especially if they empower both women and men, can contribute to overcoming poverty and preserving Nature´s Endowment.The Green Revolution bought time for CIMMYT to mount a global effort for wider gains in the fight against hunger. The Center´s early work followed from a series of scientific masterstrokes that had made this revolution possible.One was Borlaug´s use of dwarfing genes from a Japanese line called Norin 10 to alter the structure of his new wheats. The resulting semi-dwarfs were much shorter than farmers´ traditional varieties and had stronger stems. When farmers applied fertilizer to semi-dwarf wheat, the added nitrogen went mostly to grain production, more than doubling yield. Traditional varieties, in contrast, just grew taller and tended to fall over, resulting in lost grain.Another masterstroke was the use of \"shuttle\" breeding to speed the development of wheat disease resistance. Named after shuttle diplomacy in the Middle East, it began as a logistical innovation. By growing and selecting wheat at two contrasting locations in Mexico each year, scientists were able to double the pace of wheat breeding. But then they realized that, by exposing wheat to different climates and disease pressures, shuttle breeding produced a surprising side-effect. It greatly broadened the crop´s adaptation. A technique that was intended to save time thus made it possible for farmers in many diverse settings and locations to grow the new wheats.CIMMYT built the world´s first longterm global wheat program around these breakthroughs. To exploit the full potential of broadly adapted semidwarfs, Center scientists established a system of international wheat \"nurseries,\" consisting of seed of the best lines. They distributed these massively across the developing world -eventually delivering 2,500 sets of 30 distinct nurseries each year to essentially all wheat breeding programs worldwide. The nurseries gave national partners a way to test a wide array of wheat crosses and select the best performers under local conditions for use as parents in further crosses or eventual release as varieties. The data these scientists delivered in return provided feedback from major wheat growing areas worldwide, which contributed vitally to the development of new generations of wheats for wide distribution.In the meantime, CIMMYT maize scientists found different ways to reach similar ends.Lacking an effective dwarfing gene, they reduced the crop´s plant height through long-term selection. For this purpose, they formed a maize population called Tuxpeño Crema I, containing the best samples, or \"cream,\" from one of Mexico´s most productive races. As in wheat, the result, after 15 cycles of selection (two per year), was a dramatic increase in yields.Because maize is grown under highly diverse conditions -from sea level to elevations of more than 3,000 meters and from the equator to temperate zones -developing a few widely adapted varieties for all types of growing conditions was not an option. Instead, CIMMYT scientists formed several dozen broad-based populations (like Tuxpeño), which contained a selection of the most valuable maize genetic resources, especially from Latin America. Like their counterparts working on wheat, maize scientists also established an international testing scheme. It made the improved populations (and hundreds of experimental varieties derived from them) widely available to national partners and gleaned vital data for further maize improvement.Long before CIMMYT´s inception, maize experts in the USA and elsewhere had already shown that hybrid vigor gives a powerful boost to maize yields. Productive hybrids result from controlled mating of two distinct and carefully selected inbred parents, as distinct from the maize plant´s natural sexual habit of \"open pollination.\" Center scientists judged in the 1970s that the conditions of most developing countries were not yet ripe for hybrid development. This requires strong seed industries, able to produce and disseminate large quantities of hybrid seed year after year. Also, growing conditions must be good enough -with adequate rainfall, soil fertility, and pest control -to justify farmers´ purchase of hybrid seed. In most places, this simply was not the case.Instead, the CIMMYT Maize Program put its effort into the development of openpollinated varieties or OPVs. Yielding better than traditional varieties, these offered smallholder farmers the critical advantage of using their own seed to plant the next maize crop. In many tropical and subtropical maize growing regions, the improved populations from which new OPVs were derived also provided breeding stocks for an eventual maize hybrid revolution in the developing world.As CIMMYT scientists studied trial data and gained more on-the-ground experience, they began to realize that broad adaptation in maize and wheatCIMMYT at 50: Keeping Our CommitmentsWheat leaf showing symptoms of stripe rust (also known as yellow rust).improvement has its limits. To better satisfy local needs, they began tailoring improved germplasm to fit conditions in specific categories of environments.To this end, they decentralized crop research through new types of partnerships -for example, on maize breeding in Zimbabwe and winter wheat improvement in Turkey.Shaping improved maize and wheat to different environments involved major efforts to confront multiple crop diseases, mainly through genetic resistance. Some of these diseases, like stem, leaf, and stripe rust of wheat, cause damage globally, while others, such as maize streak and corn stunt, are limited to specific regions.Borlaug´s first order of business in Mexico during the 1940s was to curb wheat stem rust, a global threat dating back to ancient times. His efforts were so successful that, for several decades, no further outbreaks of stem rust occurred anywhere in the world. Yet, CIMMYT wheat scientists could never lower their guard. The rust fungi can mutate into new races that overcome current genetic resistance, multiplying and spreading at an explosive rate.To prepare for such a surprise attack, the scientists constantly tested improved wheat for its reaction to artificially induced stem rust and searched for new sources of resistance. They also focused more on leaf and stem rust -accumulating several partial resistance genes, which resulted in a highly durable, slow-rusting response in wheat. At the same time, they tackled new threats from the barley yellow dwarf and Karnal bunt diseases.The CIMMYT Maize Program confronted multiple pathogens as well and with remarkable success. These were mainly regional problems, like downy mildew in Southeast Asia, maize streak virus in Africa, and corn stunt in Central America. The big push for genetic resistance to major diseases helped stabilize maize and wheat yields. And this reinforced farmers´ confidence in the new varieties and crop management practices. Nonetheless, during the 1970s, CIMMYT wheat scientists became worried that improved varieties had reached a plateau in yield potential, following the big jump brought about by the semi-dwarfs in the 1960s.In the hope of getting past this plateau, they began to explore large-scale crossing between spring and winter wheats. The idea was to combine useful genetic diversity from both types to enhance their performance. This required a major logistical and scientific effort to overcome the natural barriers to crossing between these distinct wheat gene pools. These achievements in maize and wheat improvement gave the developing world some of the most remarkable demonstrations of the power of science it had ever witnessed. Particularly satisfying was the major role that national scientists had played in making it all possible.From the start, CIMMYT viewed and conducted its research as a collaborative endeavor. Partnerships linking international and national organizations served as the main vehicle of scientific discovery and technical change, leading to development impact. Center partnerships are reinforced by bonds of collegiality and friendship between scientists, resulting from long days of shared labor at experiment stations and in farmers´ fields.A key corollary of CIMMYT´s orientation to collaborative science is its commitment to strengthening national research capacity. The collaborative achievements of CIMMYT´s early years demonstrated the huge payoff from global efforts to strengthen maize and wheat research capacity. They also underlined the value of plant genetic resources for crop improvement.Wheat scientists at CIMMYT and elsewhere had obtained the well-collected and conserved resources of this crop from North America and other locations with relative ease. Maize scientists, in contrast, had to build a stock of genetic resources basically from scratch. This required systematic collection of traditional landraces and crop wild relatives in all the major maize-producing areas of Mexico and other Latin American countries.In the rush of the 1970s to develop improved varieties, CIMMYT scientists gave little time or priority to close study of maize and wheat genetic resources. By the mid-1980s, however, their thinking had changed. This was partly because of concern about the erosion of genetic resources in farmers´ fields. Hundreds of potentially valuable \"landraces\" were giving way to the spread of modern varieties or being eliminated by urbanization and other forces. New interest in conserving, studying, and using maize and wheat genetic resources was also spurred by emerging challenges in crop improvement.To intensify the search for genetic solutions, CIMMYT took up responsibility in 1985 for more active stewardship of globally important collections of maize and wheat genetic resources. Eventually, the Center´s germplasm collections were to become the largest of their kind, safeguarding more than 150,000 wheat lines and over 27,000 maize samples.One early payoff from the germplasm collections was the discovery of maize By the mid-1980s, CIMMYT scientists had done much to boost maize and wheat yields and stabilize them through disease resistance. The time had come to bring work on even tougher problems to fruition. At the top of the list was drought. It affects both crops but especially maize, which is grown mostly by smallholder farmers dependent on rainfall.In an early search for solutions, Center maize scientists had already assembled a population called Tuxpeño Sequía (Drought) in 1975 and begun selecting for traits believed to be associated with better performance under stress. In the 1980s, physiology research confirmed that the most important trait for making maize tolerant to drought is the interval between anthesis (in the tassel or male flower) and silking (of the ear or female flower). Maize is especially vulnerable to drought at flowering. Its natural reaction is to prioritize male flowering and delay female flowering. While increasing the chances of survival, this \"macho\" behavior means bad news for grain production. By mid-decade, Tuxpeño Sequía had undergone years of selection (eight cycles, to be precise) for reduced anthesis-silking interval (or ASI) and fewer barren plants. This gave it a 30 percent yield advantage over non-tolerant maize under drought.Other studies using a wide range of maize germplasm -from landraces to modern hybrids -showed the same thing.Reducing ASI proved highly effective for improving drought tolerance, with the bonus of better yield under favorable conditions as well. Using cycle 8 of Tuxpeño Sequía and other droughttolerant materials, researchers formed several new populations, which served as a valuable source of drought tolerance for maize improvement.Meanwhile, CIMMYT scientists had reached a surprising conclusion about drought tolerance in wheat. Ironically, some of the modern semi-dwarfs, though developed under irrigation, also did well under drought. Those derived from crosses between spring and winter wheat did even better. To improve on this outcome, Center researchers embarked on a collaborative program with the International Center for Agriculture in the Dry Areas (ICARDA). Focusing on durum wheat (used to make pasta and unleavened bread), researchers made good progress by crossing droughttolerant landraces with modern wheat and selecting at a wide range of dry locations. Another of the Center´s scientific long shots was intended to turn a 19th century botanical oddity into a commercially viable alternative cereal. This is triticale, which resulted from crossing wheat with rye and whose name derives from the scientific nomenclature for these crops (Triticum and Secale). While initially showing poor yield and grain quality, the novel crop offered distinct advantages in acid and alkaline soils, highlands and dry areas. By the mid-1980s, its limitations had been overcome, resulting in high-yielding triticale varieties that complement wheat in marginal environments. In parallel with efforts to develop winter triticale in Europe, CIMMYT focused on a spring-sown version for the developing world.A third venture launched in the 1980s responded to the rapidly-expanding consumption of wheat products among consumers in the lowland tropics. The climate there is generally too warm and humid for wheat production. Unable to grow their own wheat, tropical countries were importing grain in large quantities and at great expense. In an effort to relieve this economic burden, CIMMYT wheat breeders began working on heat tolerance and tropical diseases. Without realizing it then, these scientists were laying the groundwork for eventual efforts to adapt the crop to the impacts of climate change in major wheat-growing regions, particularly South Asia´s vast Indo-Gangetic Plains.A quick account of the Green Revolution and later advances may give the mistaken impression that it was all about plant genetics. In fact, what this work really demonstrated is the powerful scientific synergy that can result when different disciplines work together toward shared ends.Getting disease resistance into new maize and wheat varieties, for example, would have been impossible without the meticulous field and laboratory work of plant pathologists. Physiologists shed light on how certain traits contribute to improved plant performance. By creating specialized labs to mass rear insect pests, entomologists fulfilled a critical requirement for breeding resistance. QPM resulted from a close working alliance between maize breeders and cereal chemists. Without seed health experts, international testing of improved germplasm would quickly have run into trouble. And systematic testing for industrial quality ensured that wheat improvement always took into account consumer preferences.Some of the tools and expertise that CIMMYT incorporated into maize and wheat improvement proved vital for making better use of plant genetic resources. Tissue culture and embryo rescue techniques, for example, helped overcome the natural reproductive barriers between the domesticated crops and wild species related to them. By thus facilitating \"wide crosses,\" these early biotechnology techniques enabled scientists to tap into new sources of genes for traits like disease resistance and salt tolerance.Collectively, CIMMYT´s specialized labs and other facilities demonstrated the strategic value of advanced tools for highquality science. And this anticipated later efforts to give cutting-edge techniques from molecular biology and related fields a central role in opening up new possibilities for crop improvement.Some agricultural disciplines helped CIMMYT bring into sharper focus the microscopic aspects of maize and wheat improvement. Two other fields -agronomy and social science -reinforced the macro perspective of Center research.Agronomists went into action from the outset of the 1960s Campaigns against Hunger. Their first priority was to develop a standardized package of practices that would enable farmers in India and Pakistan to maximize yields from the new semi-dwarf wheats. Once CIMMYT was operating and improved maize and wheat varieties had begun spreading to other countries, Center agronomists fanned out across the developing world. Working closely with national programs, they addressed the crop management challenges of many different environments. Without the resulting changes in farmers´ traditional practices, the Green Revolution would not have taken off. It embodied the combination of new varieties and improved agronomy, a fact often overlooked.Later, social scientists were called to address criticism about undesirable side effects of the Green Revolution. One was a perception that the new wheats mainly benefited large-scale farmers, who were better able to afford fertilizer. Findings on this issue showed that the semi-dwarf varieties were actually scale neutral. While big farmers generally did adopt them first, smallholders quickly followed suit.During the late 1970s and early 1980s, agronomists and social scientists joined forces to address another major concern about new maize and wheat technology. In many places, sizeable yield gaps had emerged, meaning that the technology´s actual performance in farmers´ fields was falling well short of the potential yields demonstrated in experimental plots. To help close the gaps, CIMMYT developed on-farm research methods (it was among the first organizations to do so) and worked hard to make them standard practice in national programs.While offering farmers a close-up look at new practices, the methods also gave researchers a better understanding of farmers´ circumstances and preferences. This in turn helped guide the design of technologies such as improved flintgrained maize varieties for southern Africa, which women farmers prefer for their greater suitability for pounding into flour. In several countries (Ghana and Zambia, for example), where research and extension formed strong partnerships, on-farm research improved effectiveness in diagnosing and solving problems. But in the 1980s, when donor investment in agronomy and extension systems began to decline, this approach lost momentumonly to be rediscovered decades later during a new food crisis.By the early 1990s, CIMMYT and its partners had amply fulfilled an essential precondition for achieving development impact. They had made huge progress in developing and disseminating improved germplasm, farming practices, and associated information. While sensing they were on the right track, they couldn´t be absolutely certain, until the Center conducted its first major systematic impact study, extending assessments carried out in the 1970s and 1980s.Of the 1,300 wheat varieties that national programs had released since 1965, the percentage resulting in some way from CIMMYT research rose steadily, leveling off at about 75 percent during the 1980s. The corresponding figure for improved maize varieties and hybrids released during the same period was about 50 percent.By 1969, just a few years after CIMMYT´s founding, semi-dwarf varieties were already planted on 8.4 million hectares in developing countries. Afterwards, the semi-dwarfs continued to spread at a rate of about 2 million hectares per year. In the 1980s, they were planted on an additional 20 million hectares. By 1990, the total area had reached nearly 50 million hectares.In the early stages of the Green Revolution, adoption of semi-dwarfs under irrigation boosted yields of spring wheat by an average of 35 to 40 percent. For about two decades afterwards, their yield potential continued to increase by an average of 1 percent annually. Farmers in irrigated areas captured a large share of the gains because of their generally good crop management and slow but steady replacement of older improved varieties with new ones.For maize, the results were less dramatic but still quite important. In 1990, varieties containing CIMMYT germplasm were planted on nearly 8 million hectares, or 13 percent of developing countries´ total maize area. Improved varieties commonly showed a yield advantage of 5 to 15 percent, roughly the same as for improved wheat in production areas dependent on rainfall.Perhaps the single most important finding of CIMMYT impact studies in the early 1990s was that wide adoption of improved varieties had delivered enormous economic benefits to consumers. Dramatic productivity increases led to steadily declining grain prices -at an annual rate of more than 2 percent from the 1970s onwards. This put more money in consumers´ pockets, better enabling the poor to meet other basic needs -more diverse diets, education, and health care.If ever a research organization had earned the right to rest on its laurels, then arguably it was CIMMYT at 25, together with the Center´s many partners. Yet, this is not what they did. Any sense of triumph the scientists felt was dampened by concern about the Green Revolution´s unfinished business. Whole countries and regions had been bypassed. There was still a lot more work to do.But many international agencies and national governments interpreted the situation rather differently. Breathing a collective sigh of relief, they concluded from steadily declining food prices that global food security was under control. For them, the thrill of the Green Revolution was gone, and so, for the most part, were the worries that had made it necessary in the first place. Other developments unfolding on the world stage further undermined support for agriculture. After the disintegration of the Soviet Union in 1989, for example, donors were obligated to prioritize aid for eastern Europe and the former Soviet republics of Central Asia and the Caucasus.A new priority to which donors gave increased attention in the 1990s was the environment. The sustainability paradigm resonated strongly with CIMMYT scientists. By the mid-1980s, they had realized that to sustain agricultural intensification in South Asia would require a new approach centering on practices that conserve soil and water. This was also essential for dealing with stagnant agricultural productivity in Africa. Center scientists were particularly heartened by growing international support for the conservation and sustainable use of biodiversity. They also realized that fulfilling the sustainability vision requires not only better management of natural resources but improved livelihoods for the rural people who depend on these resources.Waning support for agriculture as a whole, however, posed a challenge. Funding for research became tight and shifted increasingly to a project basis. CIMMYT responded to these circumstances with creativity, flexibility and perseverance.Incorporating sustainability concerns into all aspects of its work, the Center embarked on a new generation of projects. These reflected CIMMYT´s abiding commitment to the fight against hunger but also its revised vision of agriculture as the central global arena for combatting environmental degradation and rural poverty.From a thorough review of CIMMYT´s research agenda, it was evident that the Center´s work had already contributed importantly to environmental preservation and had the potential to do much more. Economic analysis underlined the landsaving effect of the uptake of modern wheats in favorable irrigated areas of South Asia. With traditional technology, farmers would have had to bring 40 million hectares of additional land under cultivation to produce the same amount of wheat harvested using semidwarf varieties.Clearly, a major challenge for CIMMYT and its partners was to sustain productivity growth in these favorable environments. That meant drastic changes in resource management together with continued increases in yield potential, disease resistance and other traits. The idea was to curb resource degradation in favorable areas, while also further reducing pressure on marginal production areas and other fragile rural ecologies, like tropical forests.One key point of internal contention was the priority CIMMYT should assign to maize and wheat improvement for marginal production areas, where temperatures are higher, soils less fertile, and irrigation more limited. After all, new technologies were spreading and productivity improving more slowly in those areas, making it hard to show good returns on investment. Nonetheless, CIMMYT opted to give marginal lands high priority for two main reasons.First, the Center judged that, even under optimistic scenarios, productivity increases in the favorable environments would be insufficient for grain production to keep pace with global growth in consumer demand. And second, CIMMYT scientists were convinced that, despite the difficulty of improving productivity in marginal lands, this was essential for improving the livelihoods of the large numbers of rural poor inhabiting these places.Eminent research leader M.S. Swaminathan, known as the Indian father of the Green Revolution, became one of the most ardent and influential advocates of the new sustainability agenda. He called it the Evergreen Revolution. Given the complexity of the task, however, coupled with declining support for agriculture, the important advances that followed can perhaps better be described as \"Green Evolution.\"Tackling drought and other mortal enemies of maize As breeding for stress tolerance continued, researchers moved quickly to get the new varieties into farmers´ hands. For this purpose, they adopted a well-known participatory approach involving \"mother-baby trials.\" Using the system initially in Zimbabwe, researchers mobilized hundreds of farmers to test stress-tolerant maize, sharing the results and providing feedback both to researchers and their communities. Within a few years, the mother-baby trial system was being applied on a regional scale. This involved hundreds of trials annually and led soon to the release of Better wheat for marginal landsCIMMYT breeders had already worked for years on adapting wheat to marginal conditions. As a result of this effort, in which crosses between ancestral and modern wheats played a key role, yield potential rose more rapidly in marginal than favorable areas -3 percent annually compared to 1 percentduring the two decades prior to 2000. Veery wheats proved to be particularly well adapted. To further enhance performance in marginal lands, Center researchers focused sharply on tolerance to both heat and drought.As in maize improvement, the effort was aided by new insights from physiology. By the mid-1990s, research had confirmed that better yields under heat stress are closely associated with lower temperatures under the crop canopy (referred to as canopy temperature depression, or CTD). Since CTD can be easily measured, the technique showed considerable promise for efficient selection of heat tolerance.Other results from this research pointed to new ways of breaking the wheat yield ceiling -an important goal regardless of the environment. By the mid-1990s, years of painstaking work had resulted in the development of a wheat line called Buitre, which combined various physiological traits shown to be associated with higher yield potential. About a decade later, lines derived from crosses between wheat and one of its wild relatives, goat grass, proved capable of 30 percent higher yields under severe drought.CIMMYT scientists were well aware that genetic resources can supply the stress tolerance genes needed to enhance crop production in marginal lands. For this reason, improved conservation and use of these resources became a central pillar of the Center´s work on sustainable agriculture.The Center´s maize collection already harbored a large share of the crop´s genetic diversity in Latin America. But other important resources were held, often under poor conditions, in national genebanks across the region. To avoid irretrievable losses, researchers embarked on a major project to rescue collections in 14 countries. By 1996, some 7,000 maize samples had been renewed. The International Seed Treaty, approved in 2001, provided a much needed framework for such efforts, creating new arrangements under which international seed collections are held in trust for humanity and made available to any entity worldwide for research and other uses. Center maize researchers did not limit their attention to ex situ maize conservation, however. Taking advantage of the Center´s location in Mexico, at the center of maize diversity, they also embarked in the mid-1990s on a major study of in situ conservation or farmer management of maize landraces. This work recognized that the landraces are not static but continue to evolve, as farmers adopt new varieties, cross them, and select for particular characteristics. The project studied and supported this important process by tracking gene flows and providing farmers with training in seed selection and storage.The value of germplasm bank collections depends in large part on breeders´ success in finding effective ways to use genetic resources. One such mechanism for wheat involved \"synthetic\" linesthe result of crosses between durum wheat and goat grass. These crosses reenact or mimic the original cross that occurred in nature 10,000 years ago, resulting in wheat domestication and ancient forms of bread wheat. Synthetic wheats provided new sources of genes for higher yields, resistance to various diseases and tolerance to drought and saline soils. They also provided a ready means of transferring desirable qualities from wild species to improved wheats. In search of ways to make better use of maize diversity, researchers began using sophisticated models in 2001 to identify materials with high potential for refinement through pre-breeding.Expansion of CIMMYT´s work on crop genetic resources went hand-in-hand with concerted efforts to incorporate new tools from biotechnology into maize and wheat improvement. It was thus no coincidence that a major expansion of CIMMYT´s Applied Biotechnology Center was completed at the same time as the new Wellhausen-Anderson Plant Genetic Resources Center in 1996.Even before then, the Maize Program had begun exploring the potential of transgenics. This work centered on the Bt gene from the soil bacterium Bacillus thuringiensis, which controls the production of proteins conferring insect resistance in transgenic plants. By the mid-1990s, Bt cotton and maize had been approved for release in the USA, and CIMMYT geneticists had achieved successful expression of the Bt gene for resistance in borers. Despite the controversy surrounding transgenics, the Center persisted in this work, convinced that the enormous benefits of insectresistant maize for Africa would far outweigh the risks.When controversy about transgenic maize arose in Mexico, CIMMYT scientists screened the landraces in its maize collection to ensure that no transgenics were present and made the results publicly available. Showing complete transparency and respect for the right of governments and the public to make informed decisions about new technologies, CIMMYT proactively communicated about its transgenic projects. Several countries in the region sought access to transgenic technologies, and safety assessments showed no negative effects of Bt maize on human or animal health.The watershed moment for this workand for biotechnology in Africa generallycame during 2004, with the launch of a new biosafety greenhouse in Kenya. In 2005, Kenyan researchers planted the first insect-resistant transgenic maize on Kenyan soil in confined field trials. This was the first genetically modified maize to be grown in sub-Saharan Africa outside of South Africa.In early 2004, CIMMYT´s Wheat Program also took the historic step of planting a small trial of genetically engineered wheat in a screenhouse at Center headquarters, following strict biosafety procedures. Encouraging preliminary results gave rise to a follow-up trial, focused on combining drought tolerance derived through transgenics with conventional sources of this trait. A year later, the first-ever field trial of transgenic wheat was sown in Mexico. Transgenic plants stayed green longer under drought, while showing cooler canopy temperatures and better developed roots. 1For non-specialists, biotechnology is often synonymous with transgenics. But it encompasses other, noncontroversial techniques as well, notably the use of molecular markers. Starting in the mid-1990s, CIMMYT geneticists put these tools to work for multiple purposes.Molecular marker-assisted selection for disease resistance in wheat, for example, proved capable of cutting by nearly half the time involved in developing resistant varieties through conventional selection. Large-scale molecular genetic fingerprinting of maize and wheat also became a reality at CIMMYT. This enabled curators of the Center´s germplasm bank to assess the uniqueness of genetic resources more efficiently. In addition, DNA fingerprinting helped identify desirable genes and incorporate them more quickly into improved varieties.New biotechnology applications proved cumbersome in wheat because of the crop´s complex genetic makeup. Nonetheless, by 1999, wheat geneticists were using molecular markers to select for resistance to barley yellow dwarf. Soon afterwards, they carried out gene mapping for resistance to various wheat diseases. By 2004 they had identified molecular markers linked to several genes for resistance to leaf rust, helping broaden the crop´s defenses against the disease.Against this background, CIMMYT rapidly embraced the new field of plant genomics, when it emerged at the turn of the century. The Center created a bioinformatics unit to help analyze the huge amounts of data generated by genome sequencing. It also moved quickly to lay the groundwork for genomics applications, focusing particularly on drought and other stresses. This work received a strong boost from the CGIAR Generation Challenge Program, which CIMMYT hosted from the program´s start in 2003. In addition, the Center joined a cereal genomics initiative linking various CGIAR centers with US universities. It also entered into partnerships with multinational firms, aimed at accelerating the use of genomics tools for crop improvement. These steps put CIMMYT at the forefront among public breeding programs in applying biotechnology.In keeping with its strong commitment to building national capacity, CIMMYT shared its evolving biotechnology expertise with partners. During the late 1990s, for example, the Center helped create the Asian Maize Biotechnology Network (Ambionet). Focusing initially on the development of aluminum toxicity tolerance and later on drought tolerance, the network served as a platform for training and other support in the use of molecular markers.A CIMMYT laboratory technician cuts the endosperm from maize seed for DNA extraction.Given scarce resources for agronomy research, CIMMYT partnered with national research programs and universities to counteract worrisome trends in crop productivity, notably in South Asia´s Indo-Gangetic Plains. The rice-wheat rotation practiced across this regional food basket covers a total of 12 million hectares and provides staple grain for more than 300 million people. Extensive surveys of the system conducted in the early 1990s documented a steady decline in the productivity of both crops.To help address this and similar problems elsewhere, CIMMYT established a group for research on natural resource management in 1993. A year later, it helped set up the Rice-Wheat Consortium for the Indo-Gangetic Plains (RWC), which built on prior collaboration by bringing together two CGIAR centers with national partners in five countries. Responsibility for overall coordination alternated between CIMMYT and the International Rice Research Institute (IRRI).From the start, RWC stood out as a model of ecoregional partnership. It provided a framework for diverse actors-researchers, farmers, input suppliers, farm implement manufacturers, and extension experts -to share ideas and products. The consortium also served as a focus for training, workshops, and other knowledge-sharing activities, such as traveling seminars. Without the innovation network that resulted, it is hard to imagine how resourceconserving technologies could ever have been disseminated over such a large area.Initially, RWC focused on promoting zero tillage, which conserves moisture and reverses soil degradation. By 1999, the practice was being applied on about 70 percent of the wheat area in Bangladesh. By 2002, it had spread to more than 200,000 hectares in South Asia. Within another year or so, this figure had risen to about 1.3 million hectares, and by 2006, it was at 2.0 million.In southern Africa, SoilFertNet was created in response to the seemingly intractable problem of soil fertility decline in Malawi, Mozambique, Zambia and Zimbabwe. Partners worked together to identify and promote best-bet technologies for organic and inorganic fertilizer use, such as planting grain legumes or green manures in association with maize. For the development and spread of knowledge-intensive technologies like these, far-flung and inclusive partnerships, involving the use of farmer participatory methods, seemed especially important.Zero tillage opened the way for introducing other resource-conserving practices in wheat. One key innovation involved sowing rows of seed into long, flat soil beds. A narrow furrow between each bed carries irrigation water and allows tractor entry for operations such as weeding. Devised originally by US wheat farmers, the practice was then introduced in Mexico and later South Asia. It soon caught on in Northwest India and Pakistan, and later spread to China and other countries.Research from South Asia showed that bed planting, in addition to improving crop yields, lowers production costs by 30 percent through lower use of irrigation water, fewer tractor passes and more efficient fertilizer use. It also requires far less seed than traditional tillage and can accommodate several crops grown in complex relays and rotations. Particularly when permanent beds are used and crop residues are left on the soil, the practice improves soil fertility and structure, while reducing erosion. Another key advantage of resource-conserving practices is that by reducing the time between harvest of one crop and planting of the next, they enable farmers to grow an additional crop.A recurring feature of reports on this work are anecdotes from farmers who have tried the new practices. At first, neighbors laughed at them for \"ruining\" their land. But invariably, the innovators had the last laugh, when their neighbors came back a few years later, eager to learn how they too could grow much more food with far less water, fertilizer and fuel.Smallholders figured prominently among the pioneers, including thousands in India´s Uttar Pradesh State, who had missed out on the Green Revolution. Because introducing resource-conserving technologies is relatively complex compared with the adoption of improved seed, wide adoption took years of training and persistent engagement with farmers and other actors. In 2009, CIMMYT soil scientist Ken Sayre became the first-ever recipient of the Louis Malassis International Scientific Prize, awarded by France´s Agropolis Foundation, for two decades of work dedicated to promoting resource-conserving technologies. This was research for sustainability in actionthe very essence of Green Evolution.Latin America is also a productive laboratory of innovation in natural resource management, as illustrated by farmers´ use of bed planting in Northwest Mexico. Since the mid-1990s, CIMMYT has made a sustained effort to ensure that such practices take root across the region.In 1994, the Center helped establish a network on reduced or conservation tillage in Mexico. It also began research on the use of this practice in El Salvador and neighboring countries to sustain maize productivity on sloping soils. CIMMYT scientists contributed as well to the spread of zero tillage on about 300,000 hectares in Bolivia´s eastern lowlands. By 1999, research on this practice for maize and wheat had thoroughly demonstrated its multiple biophysical benefits in many parts of Mexico.Adoption of resource-conserving practices gained considerable momentum, opening the way for new rounds of innovation. One path led to conservation agriculture, which combines the principles of zero tillage, leaving crop residues on the soil and efficient crop rotations. Another pointed to new practices for fine-tuning the application of nitrogen fertilizer, starting with wheat in Northwest Mexico. This approach promised to lower production costs and reduce environmental damage caused by leaching of nitrate into the water table and nitrous oxide emissions.For CIMMYT´s work on crop improvement and natural resource management, tools made possible by the emerging Information Revolution proved highly useful. In 1993, the Center created the International Wheat Information System to facilitate decisions about breeding. That same year, the Maize Program developed its Agricultural Data Management System and began using geographic information systems (GIS) to guide research on crop management.New tools and uses for them proliferated. In the mid-1990s, for example, the Genetic Resources Information Package for Wheat was developed. Without such information, said one researcher, germplasm is \"just a pile of seed.\" As the development of drought-tolerant maize geared up in Africa, GIS maps were developed to show which locations require maize varieties that escape drought through early maturity and which require drought tolerance at flowering. An important next step was to make such tools more readily available to national partners -a purpose served by the Africa Country Almanac, for example. Meanwhile, information technology got more sophisticated -as with remote sensing to aid the development of sustainable cropping practices and a computer modeling tool designed to simulate decisions about wheat breeding.While focusing sharply on its sustainability agenda, with emphasis on reducing poverty and environmental degradation, CIMMYT warned repeatedly that the world´s hold on food security was tenuous at best. In the wake of the Asian financial crisis of 1998, for example, Center economists asserted that in Asia particularly, any sense of complacency about wheat supplies was misplaced, despite high grain stocks and low prices. CIMMYT leaders and researchers did not spend a lot of time preaching this message in policy fora, however. Instead, they demonstrated the Center´ views on food and nutritional security concretely through forceful actions.One of these grew from a renewal of interest in QPM. When national partners got the chance to evaluate QPM hybrids, they often liked what they saw.Recognition of QPM with the World Food Prize in 2000 further piqued their interest. By 2004, QPM varieties had been released in 25 countries of Africa, Asia and Latin America. Ethiopian researchers even tried incorporating QPM into the country's unique injera bread, while farmers in Nicaragua used the enriched maize for chicken feed and in China to fatten pigs more quickly.Against this background, CIMMYT researchers were receptive to a new approach for strengthening nutritional security referred to as \"biofortification.\" Its aim was to combat widespread and debilitating micronutrient deficiencies in human diets (the cause of \"hidden hunger\") by breeding crops for increased content of iron, zinc and provitamin A. Such crops would usefully complement other approaches, such as vitamin supplements and dietary diversification.To make biofortification work, CIMMYT set out in search of genetic variability for higher micronutrient content. Preliminary results suggested it was to be found mainly in landraces and wild relatives. Synthetic wheats came in handy once again, this time to transfer genes for higher zinc into improved bread wheat. The CGIAR HarvestPlus Challenge Program, launched in 2004, provided a strong framework for this work, involving nine crops and multiple international centers.Another series of actions through which CIMMYT underlined the urgent necessity of shoring up fragile food supplies centered on countries in dire straits. In many of these trouble spots, security of every sort had been compromised, including food and nutritional security.First came the Seeds of Hope initiative for Rwanda. The genocide of 1994 and ensuing conflict gave rise to fears that lost seed supplies would lead to a major famine on top of the tragedy from which the country was already suffering. In response, CIMMYT and other CGIAR centers embarked on a large-scale seed relief effort. They resorted to a similar formula in the aftermath of Hurricane Mitch, which hit Honduras and Nicaragua in 1998 (prompting the Seeds of Hope project), and following East Timor´s bloody independence conflict (Seeds of Life in 2002).CIMMYT undertook longer term initiatives in response to the agricultural crisis that emerged in Central Asia and the Caucasus after dissolution of the Soviet Union. The region struggled with its transition from state-owned farmers to the new market-oriented agriculture. CIMMYT and its partners aimed to jump-start economic growth by renewing research systems and raising wheat productivity. The results were especially encouraging in Kazakhstan, where farmers widely adopted modern wheat varieties and resource-conserving technologies.The Center was also well positioned to help reinvigorate agriculture in Afghanistan, after the Taliban were removed from power in 2001. In a country where maize and wheat cover 80 percent of the total area sown to annual crops, CIMMYT´s training, seed supplies and community-based approach for testing and selecting new varieties and practices proved extremely valuable.Through this and other work under diverse conditions, CIMMYT built strong expertise in using participatory methods to improve local production and postharvest handling of seed. This work was informed by insights from major studies of the developing world´s maize seed industry, conducted in the mid-1990s and again about a decade later. They helped the Center define how it could contribute to making seed systems more effective in collaboration with the private sector and civil society. In Bangladesh, for example, CIMMYT researchers successfully applied a wholefamily training approach, helping rural people benefit from dramatic increases in maize production. In the process, they used gender analysis to address inequities in decision making and technology transfer. Since Bangladesh is the world´s most densely populated country, this experience shed much light on the future of developing country agriculture generally. The researchers brought a strong gender perspective to work in Nepal as well, where they promoted participatory selection of wheat varieties and community-based production of maize seed.Bringing food security within reach (2007)(2008)(2009)(2010)(2011)(2012)(2013)(2014)(2015)(2016) To any astute observer of agriculture familiar with the food crisis that had preceded the Green Revolution of the 1960s and 1970s, the series of shocks that began to hit the global food system about a decade ago must have seemed eerily familiar -only worse.The first sign of trouble came in 2006, with the outbreak of wheat stem rust epidemics in Ethiopia and Kenya. Caused by a new rust strain -Ug99, which scientists had identified 7 years before in Uganda -these were the first epidemics of the disease the world had witnessed in four decades. Most of the modern wheat varieties that had kept rust at bay were useless against Ug99. The danger was that it would spread to Asia and wreak havoc with the region´s grain supplies.The stem rust scare set off alarm bells, which began to awaken opinion leaders around the world from years of complacency over agriculture. Another severe blow to the global food system in 2007 and 2008 had an even more sobering effect. In the first major food crisis since the 1960s, grain prices in global markets jumped to 80 percent over their 2005 levels. This sparked food riots in 60 major cities across the developing world, starting in CIMMYT´s host country.The prescient words of Norman Borlaug´s 1970 Nobel Peace Prize speech hit home once again:If you desire peace, cultivate justice, but at the same time, cultivate the fields to produce more bread; otherwise, there will be no peace.Within a year, good harvests had brought prices down, but they remained well above their pre-2005 levels. Agricultural economists insisted that the crisis was not a fluke but rather signaled the start of a new era of food price volatility. Indeed, by 2012, two more major grain price spikes had occurred. It was probably no coincidence that the Arab Spring took place at a time of rising wheat prices in North Africa and the Middle East.Ongoing price volatility resulted from a combination of factors, including historically low grain stocks (reflecting the inability of productivity growth in developing countries to keep pace with demand), intense competition between food and biofuel uses of grain, frequent episodes of extreme weather and growing concern that climate change would make matters far worse. In 2007, studies of major maize and wheat production areas suggested that climate change impacts would significantly reduce crop yields, unless farmers could be supplied with more resilient varieties. Another study in 2014 found that rising temperatures are already affecting wheat production. It further concluded that every 1 degree Celsius increase in mean temperature translates into wheat losses of 6 percent in the regions affected.In response to the emerging crisis, international support for agriculture increased and food security was restored to its rightful place on the development agenda. Leading figures in the CGIAR centers embarked on a campaign of advocacy, action and public awareness. Meanwhile, CGIAR´s governance bodies undertook far-reaching organizational reforms. To some observers, this may have seemed odd, like giving the ambulance a tune-up right in the middle of an emergency. But in fact, CGIAR needed to be at its best to help fix the broken global food system. CGIAR reforms gave rise to a set of global research programs, which channeled the work of CIMMYT and 14 other centers into more concerted efforts to strengthen food and nutritional security, reduce poverty, confront climate change and halt natural resource degradation. Given the importance of the major cereals in achieving these aims, one entire program focused on wheat (uniting the efforts of CIMMYT, ICARDA, and 200 partner organizations) and another on maize (bringing together CIMMYT and IITA with their many partners).After nearly two decades of green evolution, CIMMYT was exceedingly well prepared to lead and contribute. Through the MAIZE and WHEAT Programs (which were officially launched in 2012) and in the run-up to them, the Center´s collaborative work registered many new achievements. These demonstrated convincingly that, with more concerted efforts, food security can be brought within reach. Center scientists contributed importantly to this end through other CGIAR research programs as well, dealing with climate change, policies, and nutrition in agriculture.An enormous challenge lies ahead: to achieve a 60 percent increase in the production of maize and wheat as well as other staples, so that it keeps pace with the rapidly rising demand of a global population expected to exceed 9 billion by 2050, while helping reverse the degradation of natural resources.CIMMYT and its partners will fall short of their goals, unless they can change the pervasive lack of gender equity in developing country agriculture. While accounting for 43 percent of the global agricultural workforce, women have limited access, compared with men, to resources and services that are essential for enhancing productivity.To begin closing this gap, research must find effective ways to make technical innovations more gender responsive. This means empowering both women and men through approaches such as appropriate mechanization and participatory variety selection. To this end, both the MAIZE and WHEAT research programs have framed gender strategies, commissioned external gender audits and are incorporating the findings into their plans for targeting research and achieving impact.One key observation from the audits is that the programs are most successful in addressing gender-specific needs where scientists on the scene possess the knowledge and skills needed to incorporate gender into their research. In Nepal, for example, MAIZE scientists are using a gender equity and social inclusion approach to strengthen community-based production and marketing of maize seed. As a result, women´s associations have been sufficiently empowered to negotiate pre-planting contracts with private companies for seed production.The challenge now for MAIZE and WHEAT is to translate such individual project performances into program-wide approaches that improve women´s access to agricultural inputs and other resources, while creating new roles for them as knowledge brokers through training.A scoping study on gender and equity in wheat systems of the Indo-Gangetic Plains revealed formidable obstacles to these goals, starting with the general lack of recognition for women´s vital role in agriculture. But the study also drew attention to a \"vibrant social architecture\" that can do much to reduce gender and social exclusion. MAIZE and WHEAT researchers can help by linking their research more closely with the efforts of development agencies to strengthen the local partnerships, networks and alliances that make up this social architecture.In preparation for a new era of impactoriented research, CIMMYT secured support for major new initiatives and the renewal of vital facilities. In 2010, for example, a program called MasAgro (for Modernization of Traditional Agriculture) got underway in Mexico. It encompasses an ambitious effort to raise wheat yield potential, genomic analysis of genetic resources on an unprecedented scale (in search of traits such as heat tolerance), and massive dissemination of improved maize varieties and resource-conserving technologies for maize and wheat systems across the country. A top priority for wheat scientists in recent years has been to get a grip on the new stem rust threat. In 2007, they launched the Global Rust Initiative. By that time, Ug99 had spread across the Red Sea to Yemen. The new initiative monitored the pathogen´s advance, began developing locally adapted, resistant varieties, and put in place a global seed testing and distribution system. Norman Borlaug, in the last 2 years of his long and extraordinary life, gave this work vocal support and exerted considerable influence on its behalf.Because they are Ug99 hotspots, Ethiopia and Kenya have shouldered much of the burden for resistance screening. A facility was set up for this purpose in Kenya and, within a few years, more than 20 resistant lines had been identified and disseminated worldwide. Eleven resistant wheat lines entered Kenya´s National Performance Trials and two were released in 2011. By 2016, more than 70 Ug99-resistant varieties had been released worldwide.At the time Ug99 was identified, 90 percent of the global wheat crop was susceptible to it. To bolster farmers´ best defence against the pathogen, scientists have concentrated on reinforcing national capacity to produce and deliver seed of resistant varieties. Before long, six countries of Africa and Asia were producing enough Ug99-resistant seed (grown mostly by farmers) to cover at least 5 percent of their wheat area -the minimum required, in case of a stem rust outbreak, to multiply enough resistant seed during one season to supply a country's entire wheat area. By 2013, the sophisticated RustTracker system was in operation, covering 38 countries.While contending with the stem rust threat, scientists must also now confront new outbreaks of wheat blast. This intractable disease was first detected in Brazil during 1985 and by the 1990s had spread to millions of hectares. Fears that it would eventually reach Asia were fulfilled in 2016, when researchers confirmed a severe blast infection in Bangladesh. Through nearly three decades of research on this disease, CIMMYT scientists had already developed some tolerant cultivars. But all of the wheat varieties currently grown in Bangladesh are susceptible. The urgent tasks at hand are to develop new resistant varieties and other control measures, while gaining a better understanding of disease occurrence in Asia -all of which will be facilitated by the global Wheat Blast Consortium, which CIMMYT helped set up in 2011.Maize scientists are contending with new disease threats as well. One is maize lethal necrosis (MLN), which was first reported during 2011 in Kenya (where it claimed 10 percent of the maize harvest) and soon spread to six neighboring countries. Using a special facility established in Kenya with CIMMYT support, private seed companies and national research programs began screening their best lines and hybrids for resistance. A quarantine facility was set up in Zimbabwe during 2015 to prepare for possible spread of MLN into southern Africa.The other threat comes from the tar spot complex, an emerging disease of maize in Mexico and Central America. It too elicited a rapid response from CIMMYT and its partners, resulting in the development of several resistant hybrids and the identification of resistant landraces for smallholders in remote regions.Fending off multiple disease disasters in different regions of the developing world is a job that CIMMYT performs extremely well. This work demonstrates with particular clarity why having the Center as an international ally is so vital for maize and wheat producing countries in the developing world.Over the years, CIMMYT has become quite good at a lot of other things, too. And this is evident from the formidable array of new technologies that the Center and its partners have been able to mobilize through the MAIZE, WHEAT, and other CGIAR programs. Especially prominent in the brief inventory that follows is the continuing flow of hardy crop varieties and smart practices that give farmers a fighting chance in the face of heat, drought, and other stresses.A global study on the impacts of international collaboration in wheat research during 1994-2014 found that varieties derived from the work of CIMMYT and ICARDA cover more than 100 million hectares. The yearly value of the additional grain produced ranges from US$2.2 to $3.1 billion (in 2010 dollars) per year. With annual funding of $30 million, this represents a return of investment of 73:1 to 103:1.A new generation of wheat lines crossed and selected on the basis of their superior physiological traits has shown a 10 percent yield advantage over other improved wheats in international trials. The lines provide proof of concept for a novel approach that builds on revolutionary developments in phenomics. Involving the use of techniques such as remote sensing of plant temperature, this approach seeks to discover gene combinations that improve heat and drought tolerance.Faster paced, more precise crop breeding -CIMMYT maize researchers will soon complete a set of big data and informatics tools, which they expect to increase the pace of genetic gain for key traits. The new tools greatly facilitate the use of data coming from high-throughput genome sequencing and phenomic analysis. In parallel efforts, the scientists have also deployed molecular markers for valuable traits, such as resistance to maize streak, and also used them to enhance the efficiency of double haploid selection, an approach that cuts the time required for variety development. WHEAT supports precision phenotyping in Ethiopia, India, Kenya, Tunisia and Uruguay and will establish more of these to screen for key traits.Drought-tolerant maize for Africa -By 2015, more than 200 tolerant hybrids and OPVs had been released in 13 countries and were being sown on an estimated 2.3 million hectares, benefiting nearly 6 million rural households with a total of 30 to 40 million people. A 2009 ex ante impact study projected that these varieties would generate cumulative economic benefits worth nearly US$1 billion during 2007-2016.Demand for maize used mainly as livestock feed is expected to increase enormously in the coming decades. But regional production is unlikely to keep pace unless farmers have heat-tolerant varieties that can withstand climate change impacts. Twenty new maize populations are undergoing molecular marker-assisted selection in Asia for improved performance under heat stress.Testing and adoption of QPM has continued around the world. Among the most recent converts is Bhutan, where, in addition to delivering nutritional benefits, QPM provided the genetic solution to a devastating disease outbreak. Crop biofortification has also advanced and prospered. After a decade of development, the first high-zinc wheat variety was released in Pakistan during 2015. Five African countries have released maize varieties rich in provitamin A, and seed was also supplied to West African nations affected by the Ebola outbreak.have seen much further progress in the spread of practices that can make South Asia´s rice-wheat rotation more efficient and more resilient in the face of climate change. This builds on decades of painstaking effort to promote practices such as zero tillage and permanent bed planting. The use of another resourceconserving practice, precision laser land leveling, has spread to more than 1.5 million hectares, according to a 2014 study. This practice enables farmers to lower their use of irrigation water by 30 percent, while raising the yields of wheat, rice, and other crops by 6 percent. Small-scale mechanization -For as long as CIMMYT has promoted resourceconserving technologies in South Asia and elsewhere, Center scientists have provided technical backstopping for private-sector manufacturing of appropriate machinery, such as the zero-tillage multi-crop planter. In recent years, this work has evolved into a broader effort to facilitate technological change and reduce drudgery (especially for women) through small-scale mechanization. CIMMYT has introduced the two-wheeled tractor from Bangladesh, for example, to Ethiopia, Kenya and other African countries, where the use of conventional tractors and implements has stagnated or even declined. A key challenge for this work in Africa and other regions is not just to identify or develop machinery that matches farmers´ needs but to devise commercial models for making it widely available to empower both men and women.All of the innovations described above are a result of CIMMYT´s global research networks, which it nurtures both from headquarters and through its various regional programs. Within this wide framework, the Center has shown remarkable success over the years in making the maize and wheat sectors of specific developing countries more dynamic. This is the result of concerted action to strengthen local scientific capacity and international collaboration.According to a recent study on the benefits of CIMMYT´s partnership with China, for example, this work has added as much as 10.7 million tons of grain -worth US$3.4 billion -to national wheat output. Similar collaboration in Ethiopia, sub-Saharan Africa´s biggest wheat producer, has helped the country more than double its production in a decade, mainly through the adoption of higher yielding, disease-resistant varieties together with improved cropping practices and more supportive policies.The Center has also undertaken major efforts to revitalize agricultural innovation in Pakistan. One recent result consists of nutritionally enriched maize hybrids, which reduce the need for imported hybrids while helping combat high levels of stunting in children.CIMMYT technician Michael Kimani at work on DNA molecular analysis of maize breeders' samples in a laboratory run jointly by CIMMYT and the Kenya Agricultural and Livestock Research Organization (KALRO).According to conservative estimates, CIMMYT´s collaborative work generates annual benefits for farmers and consumers worth as much as US$4 billion, far exceeding the investment. This is a very encouraging outcome from 50 years of dedicated, problem-solving research. As the Center realized 25 years ago, however, even such large development impact provides no grounds for complacency. This lesson has been further reinforced by the recent return of price volatility to the global food system and the negative impacts of climate change on agriculture.In the wake of the 2008 food price crisis, CIMMYT scientists have registered many new research achievements that bring food security within reach, despite formidable challenges. Now is the time to build momentum in maize and wheat science, so that it can help developing countries meet those challenges successfully and banish hunger and poverty for good. With this in mind, CIMMYT has prepared an appealing and proactive strategic plan for the period 2017-22.Subtitled \"Improving Livelihoods through Maize and Wheat Science,\" the strategy paints a troubling picture of the world today, in which political instability and mass migration are made worse by fragile food systems and fraying environments. But the strategy also projects a positive vision of the role CIMMYT can play in making the world far better for farmers and consumers.To this end, CIMMYT will pursue five strategic goals centering on research impact, genetic gains, stress-tolerant varieties, sustainable intensification, and nutritional and processing quality. The Center´s research will contribute importantly to CGIAR´s strategic goalsimproving food and nutrition security, reducing poverty and improving natural resource management -and is also highly relevant to many of the Sustainable Development Goals (SDGs) approved in late 2015 by the General Assembly of the United Nations.The strategy goes on to explain how CIMMYT will maximize the development impact of its research, with emphasis on scientific excellence, organizational efficiency, strong partnerships and consolidated efforts to strengthen national research capacity. Next, the plan sets out key objectives that will guide institutional priorities. Finally, it explains how the Center will go about funding and implementing the strategy, monitoring progress and periodically adjusting its course.CIMMYT´s new strategic plan draws together multiple threads of research that reach far back into the Center´s 50-year history. Prominent among these are the ongoing battle against maize and wheat diseases, remarkable successes in reducing these crops´ vulnerability to drought and heat, pioneering efforts to enhance their nutritional value, the unceasing quest for valuable genes in germplasm collections, potent applications of new tools from biotechnology and informatics and the hard slog to promote resource-conserving practices that are essential for sustainable intensification. Together, these threads provide the necessary scientific support for making maize and wheat systems more productive, sustainable and resilient, offering better livelihoods for the billions of people who depend on them.The strategy contains relatively new elements as well, which derive from recent work and show great promise for strengthening the central threads of CIMMYT´s research. One of the newer aspects is a focus on maize and wheat agri-food systems, encompassing whole value chains -from the genetic makeup of these crops to the management of resources on which their production depends and the nutritional quality of the products that land on consumers´ plates. This perspective will better orient research not only for solving specific problems but for changing whole systems, so they deliver more for people while taking less from the land.Other new elements in CIMMYT´s strategic plan consist of various cross-cutting threads, which can help extend the reach and development impact of Center science. One cross-cutting task involves the application of big data analytics to unlock genetic diversity, accelerate genetic gains, and enhance the power of decision support. With the aim of making this support readily available to farmers and extension workers, Center scientists will build on current work with new information and communications technologies to provide real-time, site-specific advice on crop management and other issues, while also opening up new channels for feedback. In a determined effort to remove gender gaps that hinder progress across the maize and wheat agri-food chains, CIMMYT will ensure that gender analysis is a regular feature of its field research and will develop tools and guidelines for reducing gender differences with respect to the control of assets, access to information and participation in decision making.The Green Revolution of the 1960s and 1970s, as stated early on in this document, bought time for CIMMYT to create some of the necessary conditions for a more definitive triumph over chronic hunger in developing countries. Any rigorous assessment of the Center´s work over the last 50 years must conclude that it invested this time (and donor funding) very wisely, yielding a wealth of results that represent hope for the approximately 800 million people who are still desperately poor and hungry. CIMMYT is well prepared for this new test and will deliver on its commitments until the job is done.","tokenCount":"11023"} \ No newline at end of file diff --git a/data/part_3/0946686319.json b/data/part_3/0946686319.json new file mode 100644 index 0000000000000000000000000000000000000000..e9198c0fdefe41ccf98bcfbd266949837e35b64d --- /dev/null +++ b/data/part_3/0946686319.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"84d32325af0ccd9eb62cc31d9f7cc4e7","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/adfc79fc-aaa6-4d55-917c-21787a4814e8/retrieve","id":"1801925477"},"keywords":[],"sieverID":"03f19c97-02f7-421d-9c5f-61e609f3d51e","pagecount":"2","content":"Water scarcity and land degradation strongly affect the livelihoods of millions of households in Sub-Saharan Africa. Water for agriculture -used to grow the food and feed that people and animals need -consumes 70 to 90% of the all water used in the region. To meet the needs of growing populations, we need to reverse land degradation and improve water productivity. We need to produce more food with less water.One promising way to raise productivity and incomes and enhance resilience in the Ethiopian highlands is to better target or 'match' promising technologies (or whole strategies) with particular environments. This helps to overcome the limited success and impact of many past agricultural development efforts that often adopted 'blanket' approaches without sufficient understanding of local landscapes.This decision to focus on improved targeting and scaling out of agricultural interventions in highland Ethiopia is driven by several important developments: First, government, donors and civil society increasingly emphasize that money spent in R&D must bring a lasting impact to the lives of the rural poor and minimize land and water degradation.Second, many relevant rain-fed technologies and approaches are not achieving their full potential impact, mainly because of low levels of adoption.Third, improving rainwater productivity is coming to be recognized as a very important dimension that influences if and how small-holders can participate in new markets.Fourth, there is a lack of coordination among the many initiatives and projects generating technologies and good practices for farmers in the Blue Nile Basin. The impacts of all these development interventions, in terms of improving the lives of the rural population and modes of farming and productivity are very low.As these interventions are typically technology-oriented and are not supported by effective policies and institutions, the anticipated goal of reaching poor communities and improving their livelihoods has not been yet achieved.Fifth, there is a gap in linking research and development and in addressing landscape challenges through integrated approaches. This project will identify the conditions -biophysical and institutional -that favor the use of particular sets of practices and it will scan the landscape to find out where else these conditions prevail. That is, the project will help identify the 'conditionality' under which different recommendations are successful. \"The project will undertake baseline assessment of biophysical and socio-economic conditions in the Blue Nile Basin. Factors such as topography, soil types, cultivated area and crop yield, water access, availability and productivity will be taken into account alongside farming systems, livelihood zones, and other socioeconomic characteristics. We will identify and characterize promising rainwater management interventions -from in situ water management to small scale irrigation and drainage systems -that currently exist in the area, matching them to conditions on the ground and identifying 'best-bet' interventions and scenarios. Suitability maps of higher impact interventions will be produced and spatial recommendation domains defined. We expect to be able to identify, prioritize and select interventions that have higher potential impact with respect to agricultural productivity.\"The project deliverables include: ","tokenCount":"487"} \ No newline at end of file diff --git a/data/part_3/0954912626.json b/data/part_3/0954912626.json new file mode 100644 index 0000000000000000000000000000000000000000..21be329799cc4efb685ebda439572db9f9f1e523 --- /dev/null +++ b/data/part_3/0954912626.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"ac7a538e83c609d3b32a7c2196c972f8","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/a4f410da-d863-4b7c-b22c-ffc78914f294/content","id":"783697797"},"keywords":[],"sieverID":"004bcc62-4e9a-480a-86e8-be5a4316b905","pagecount":"1","content":"1) Expand methodological approaches to unpack assumptions about men's and women's seed demand, decision-making, and purchasing behaviors:• Intrahousehold studies • Inclusive farmer-managed trials • Field experiments around seed choice 2) Identify the relevance of consumer traits (e.g. traits related to processing, cooking, and storage) and, where relevant, develop related breeding targets 3) Explore incentive structures for breeders, seed companies, and retailers to orient products and services with gender intentionalityThe road ahead for gender-responsive maize breeding BACKGROUND: Gender-responsive varietal development is seen as an important path to closing gender gaps in uptake of new maize varieties, which is hoped to reduce inequalities between men and women farmers. As such, maize breeders are urgently seeking evidence of gender-based differences in trait and varietal preferences. Evidence on such differences remains murky, suggesting the need for reflection on the gender and maize breeding research agenda.Our review of research on gender-differentiated crop preferences finds: • methodological inconsistencies that limit the ability to draw conclusions on gender-based differences in maize preferences • reliance on methods where women's preferences and needs are detached from context and realities (e.g., choice experiments) • entrenched but untested assumptions about the gender dynamics of maize production and seed choice • unresolved operational challenges related to integrating gender into maize breeding pipelines • an incomplete understanding of men's and women's relative preferences and needs for improved maize varieties","tokenCount":"226"} \ No newline at end of file diff --git a/data/part_3/0957341475.json b/data/part_3/0957341475.json new file mode 100644 index 0000000000000000000000000000000000000000..27467d03276610a1894aa669c4b0d4a2508143b5 --- /dev/null +++ b/data/part_3/0957341475.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"73b50312832fa7003e1c3e33d4e8a7f9","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/ea2c42da-1a84-43cb-944c-39e486bfc3b7/content","id":"-1639023827"},"keywords":["Zero-tillage","Agricultural productivity","Technical efficiency","Stochastic frontier analysis","Bihar JEL codes O13","Q55"],"sieverID":"63d4c08f-c636-4f0f-9487-71afcd012e56","pagecount":"19","content":"In controlled-condition field trials across South Asia, zero-tillage (ZT) has demonstrated considerable scope for enhancing wheat productivity in the Indo-Gangetic Plains (IGP) while using less energy and irrigation water. However, studies that quantify the impact of ZT in farmers' fields are scarce, especially in the less productive and densely populated Eastern IGP, an area that the Indian government is targeting for investment to address current and future food insecurity. Furthermore, a recent global meta-analysis has questioned the yield benefits of ZT, especially when permanent soil cover with crop residues is not maintained. To assess the realworld performance of ZT wheat in Eastern India, we quantified the productivity impact of current ZT practices in the State of Bihar, based on a random sample of 1000 wheatgrowing households, stratified by ZT adoption status. Cobb-Douglas stochastic production frontiers estimated the effect of ZT on wheat output while controlling for potential selection bias between ZT users and non-users regarding crop management. In contrast to the global meta-analysis, we found that the prevailing ZT practices without full residue retention led to a robust yield gain over conventional-tillage wheat across different agro-ecological zones, amounting to 498 kg ha −1 (19 %), on average. The economic benefit from ZT related yield increase and cost savings in wheat production amounted to 6 % of total annual income among sampled households. We conclude that ZT users reap substantial benefits, and that ZT technology could play a major role in making Bihar selfsufficient in wheat. To increase access to the technology among smallholders, an expansion of the network of ZT service providers is essential and can be supported through targeted policies and development interventions.Enhancing the productivity of the rice-wheat cropping systems in the Indo-Gangetic Plains (IGP) is of utmost importance for ensuring food security for more than 20 % of the global population (Erenstein et al. 2008;Chauhan et al. 2012). The Eastern Indian state of Bihar is a net importer of wheat with 868,000 MT purchased against a base of production of just over 5 million MT in 2010-11 (Paulsen et al. 2012). With an average of 2.14 MT ha −1 over the five-year period 2008/09-2012/13 (MoA 2013), Bihar has the lowest wheat yields in the IGP. Coupled with the highest population growth rate in India (MoHA 2013) and increasing per-capita wheat consumption (Paulsen et al. 2012), the gap between consumption and production is poised to widen in this densely populated state of 104 million people (MoA 2013) without concerted efforts to enhance agricultural productivity. Furthermore, the regions that currently supply wheat to Bihar, such as the Northwestern state of Punjab where wheat yields averaged 4.59 MT ha −1 over the same five-year period (MoA 2013), have comparatively little scope for further boosting yields (Aggarwal et al. 2004). Exacerbating this scenario, there are strong imperatives in Northwestern India to reduce water resource utilization in agriculture to arrest the dramatic declines in groundwater levels that are undermining the sustainability and environmental footprint of production (Humphreys et al. 2010). In recognition of the pervasive yield gaps that characterize the Eastern IGP along with a wealth of under-developed water resources (Aggarwal et al. 2004;DoA 2008), Indian policy makers have turned their attention to meeting both state-level and national foods needs through intensification in the East through programs such as 'Bringing the Green Revolution to Eastern India (BGREI)' (http://bgrei-rkvy.nic. in). Nevertheless, a variety of factors contribute to the current scenario of low yields in the East. Identifying technical entry points and strengthened support systems for innovation that will contribute to agricultural intensification in a manner that is environmentally sustainable, socio-economically tenable, andjust as importantly -broadly scalable among smallholders presents a formidable challenge.In many researcher-managed field trials across South Asia, zero tillage (ZT) with and without residue retention ('conservation agriculture' implies ZT with residue retention) has demonstrated considerable agronomic and economic benefits, while improving the environmental footprint of agriculture by reducing energy costs and improving soil and water quality (Erenstein and Laxmi 2008;Chauhan et al. 2012;Gathala et al. 2013;Mehla et al. 2000). In ZT wheat, agronomic factors leading to productivity advantages are related to (i) timesavings in crop establishment, allowing earlier sowing and, hence, reducing risks of terminal heat stress during the grain-filling phase; (ii) better control of weeds, such as Phalaris minor; (iii) better nutrient management; and (iv) water savings (Gathala et al. 2013;Mehla et al. 2000). Based on on-farm trials in Haryana, Mehla et al. (2000) estimated a ZT induced yield gain of 15.4 %, which they attributed to timely sowing (9.4 %) and enhanced fertilizer-and water use efficiency, as well as weed suppression (6.0 %). Despite such regional examples that demonstrate the yield advantages of ZT in the irrigated production ecologies of South Asia, the role of ZT and conservation agriculture as foundational technologies for sustainable intensification has recently been drawn into question by a global meta-analysis of paired comparisons of crop yields in ZT and conventionally tilled production systems (Pittelkow et al. 2014). The authors conclude that ZT tends to only have yield benefits in rainfed systems and must be combined with residue retention and crop rotation for these benefits to accrue. In the dominantly irrigated wheat production systems of Bihar, retaining soil cover is currently not within the reach of most farmers due to the technical limitations of the most commonly used ZT seed drills that are unsuitable for sowing crops in fields with high levels of loose crop residues. Moreover, rice straw is an important feed source for livestock in the mixed agricultural systems that predominate in the Eastern IGP.ZT wheat is the most widely adopted resource conserving technology in the rice-wheat systems to date, especially in the Northwestern Indian IGP (Derpsch et al. 2010). The prevailing ZT practice uses a zero-till drill attached to a relatively small four-wheel tractor 1 to sow wheat directly into unplowed fields with a single pass (Erenstein and Laxmi 2008). The typical ZT drill opens 6-13 narrow slits using inverted-T openers to place both seed and fertilizers at a depth of 7.5-10 cm (Mehla et al. 2000). In contrast, conventional-tillage (CT) practices in wheat typically involve 'intensive tillage with multiple passes of the tractor to accomplish plowing, harrowing, planking, and seeding operations' (Erenstein and Laxmi 2008). Since tractor ownership in Bihar is confined to relatively large farmers only, 2 the vast majority of farmers depend on tillage or ZT service providers who are typically farmers themselves and usually demand payment at the time of the service. While the farm-level impacts of ZT have been well documented in some parts of the world, such as Australia (e.g., D'Emden et al. 2008) and Brazil (Bolliger et al. 2006;Casao et al. 2012), studies that quantify the impacts of ZT practices in farmers' fields in the IGP are scarce. At the same time, ZT wheat cultivation in the IGP is unique in the sense of being usually followed by transplanted rice in puddled fields, making the ZT practice discontinuous across seasons, which reduces the potential of inferring insights from other parts of the world (Erenstein and Laxmi 2008;Derpsch et al. 2010). The few existing farm-level impact studies are confined to the Northwestern IGP (Krishna and Veettil 2014;Erenstein et al. 2008), but are lacking for the less productive and highly populated Eastern IGP where ZT is a relatively new practice (Erenstein et al. 2008).To help validate best-bet recommendations for sustainably enhancing wheat productivity in the Eastern IGP, the objectives of this paper are (1) to quantify the productivity impact of current ZT wheat practices as compared to CT wheat practices, (2) to quantify the productivity impact of early sowing of wheat, and (3) to estimate farmers' technical efficiency (TE) in wheat production and identify efficiency determinants. The article contributes to the existing body of literature in several aspects: (1) it provides evidence on ZT productivity impacts in farmers' fields in the Eastern IGP based on a large random sample of farm households; to the best of our knowledge this is the first such assessment; (2) it uses a methodologically rigorous approach to estimate the yield effect of ZT while controlling for potential selection bias between ZT users and non-users regarding crop management; (3) it estimates the effects of ZT and early sowing of wheat separately and differentiated by agro-ecology; (4) it differentiates between the ricewheat system and other wheat-based cropping patterns; (5) it estimates TE in wheat cultivation, compares TE between CT and ZT wheat plots, and identifies efficiency determinants, which is of high policy relevance in its own right.Research area, sampling procedure, and data collection Agriculture is the main occupation in Bihar with almost 81 % of its population engaged, whereas its contribution to State domestic product is merely 42 % (DoA 2008). Paddy, wheat, pulses, maize, potato, sugarcane, oil seeds, tobacco and jute are the principal crops grown. Although Bihar is endowed with good soil, sufficient rainfall and abundant groundwater, its agricultural productivity is one of the lowest among Indian states (DoA 2008). The research area is composed of six districts where the Cereal Systems Initiative for South Asia (CSISA) has focused research and out-scaling activities for sustainable intensification technologies since 2009 (www. csisa.org). Using a cluster sampling approach, data were collected in a random sample of 1000 farm households from August to October 2013, whereby the sample was stratified by ZT adoption status. In a first step, 40 villages were randomly selected out of 87 villages with at least 10 ZT users in the target districts, as documented by CSISA. Hereby, the number of research villages per district is proportionate to the distribution of eligible villages, resulting in three research villages each in Begusarai, Lakhisarai and Vaishali districts, six villages each in Buxar and Samastipur, and 19 villages in Bhojpur district. Since reliable household lists were not available, a brief census survey was conducted in each selected village to elicit households' main occupation and ZT adoption status to permit sample stratification. As a last step, 10 ZT users and 15 non-users were randomly selected among all wheat growing farm households in each village. This stratified sampling approach is justified since the objective of the paper is not to assess ZT wheat adoption rates, but the performance of ZT technology at the farm household level. Given the relatively low current level of adoption, 3 we had to ensure an adequate size of the adopter sub-sample through stratification, which is a common and recommended procedure (cf. Deaton 1997: 13).Data were collected from household heads 4 by a team of 18 professional enumerators through structured interviews. To minimize data entry errors, electronic questionnaires with extensive skip and validation rules were used. Information was elicited about households' asset endowment and rice and wheat growing practices at farm and plot level. Furthermore, we assessed the household head's level of risk aversion using a set of self-assessment and hypothetical yield scenario questions. The comprehensive questionnaire led to an average interview time of 2.5 h; to avoid respondent fatigue, interviews were usually completed in two sessions.Based on soil characteristics, rainfall, temperature and terrain the agricultural ministry of Bihar has identified four major agro-ecological zones in Bihar (DoA 2014): the North Alluvial Plain (Zone I), the North-East Alluvial Plain (Zone II), the South-East Alluvial Plain (Zone III-A) and the South-West Alluvial Plain (Zone III-B). We use this classification for a sub-division of the research districts by agro-ecological zone, whereby we differentiate between (1) Vaishali, Samastipur and Begusarai (falling within Zone I), (2) Bhojpur and Buxar (Zone III-B), and (3) Lakhisarai (Zone III-A).There may be systematic differences between ZT users and non-users regarding the agro-ecological conditions they operate in, as well as the type and level of input use and the management thereof. To derive an unbiased estimate of the effect that current ZT practices have on farmers' wheat yields, differences in agro-ecological conditions, input levels, and input management must be controlled for at the same time, allowing a ceteris paribus interpretation of ZT effects. We achieved this by estimating a stochastic frontier production function for wheat based on plot-level data from the 2011/12 and 2012/13 rabi seasons.A production frontier represents the maximum output attainable for a given set of inputs and a given production technology (Farrell 1957). Failure to attain the frontier output implies the existence of technical inefficiency. However, especially in developing country agriculture, empirical data may be heavily contaminated by statistical noise due to measurement errors, variability in climatic and edaphic conditions, or affliction of crops with pests and diseases. Unlike Data Envelopment Analysis (DEA) that attributes any deviation from the frontier output to inefficiency (cf. Seiford 1996), stochastic frontiers accommodate statistical noise. The stochastic production frontier was independently proposed by Aigner et al. (1977) and Meeusen and van den Broeck (1977)) and is defined as follows:where Y = Quantity (or value) of output of the i-th firm. F(•) = Suitable production function. X = Vector of input quantities. β = Vector of parameters to be estimated. V = Random error term. U = Non-negative error term representing technical inefficiency.V is a random variable, assumed to be independently and identically distributed as N (0, σ v ). U, which accounts for systematic departures from the frontier, i.e. technical inefficiency, is assumed to follow a particular one-sided distribution. A number of different distributions have been proposed in the literature, namely the half-normal and exponential (e.g. by Aigner et al. 1977), the truncated normal (Stevenson 1980), and the two-parameter Gamma distribution (Greene 1990). The technical efficiency (TE) measure for the i-th household TE i = exp(−U i )∈[0,1] is the ratio of the observed output and the maximum attainable output at the frontier. The maximum likelihood (ML) estimation of equation (1) yields estimates of β and γ where γ ¼ σ 2 U =σ 2 ∈ 0; 1 ½ , andHence, the model separates the residuals into a normally distributed random error and a one-sided error term reflecting technical inefficiency; the latter is related to input management and measures the degree to which a farmer was able to obtain the maximum possible output for a given vector of inputs. Based on observable factors, the model thus controls for potential selection bias between ZT users and non-users by accounting not only for differences in input levels, but also for differences in input management. We acknowledge that our estimation approach does not control for unobservable factors that may potentially cause selection bias. An instrumental variable approach that would correct for unobservables could not be implemented due to lacking instruments for the ZT adoption variable. However, we mitigate this limitation by including a measure of the household head's level of risk aversion as an inefficiency determinant, which typically remains an unobserved factor (see the description of variables below).A number of empirical studies, such as Pitt and Lee (1981) and Kalirajan (1981) have investigated the determinants of technical inefficiency by regressing the efficiency estimates on firm-specific characteristics in a second-stage analysis. However, this approach is inconsistent in its distributional assumptions: in the first stage, the efficiency effects are required to be independently and identically distributed (Jondrow et al. 1982), whereas in the second stage they are assumed to be a function of firm-specific factors, which implies that they are not identically distributed. Kumbhakar et al. (1991) and Reifschneider and Stevenson (1991) noted this inconsistency and specified Stochastic Frontier models in which the inefficiency effects were defined to be explicit functions of firm-specific factors, and all parameters were estimated in a single-stage ML procedure. Battese and Coelli (1995) extended this approach to accommodate panel data. In their model, the TE effects, U, are obtained by truncation (at zero) of the normal distribution with mean μ it and variance σ 2 U , such that μ it =Z it δ, where Z it is a vector of firm-specific explanatory variables, and δ is a vector of parameters to be estimated. The present study applies the Battese and Coelli (1995) model to derive unbiased estimates of the yield effects of current ZT practices in Bihar.The Stochastic Frontier for wheat has a Cobb-Douglas type functional form and is specified as follows:where ln Y = Natural logarithm (ln) of the output. i = Household index (i = 1,…, 968). t = Time index (t = 1, 2). β = Vector of parameters to be estimated. ln X k = ln of the input vector. D m = Vector of dummy variables unrelated to ZT or ES. ZT cz = Vector of dummy variables indicating use of zerotillage, differentiated by cropping system (c) and agroecological zone (z).ES sz = Vector of dummy variables indicating early sowing, differentiated by season (s) and z.V = N (0, σ v ) distributed random error term. U = Non-negative error term representing technical inefficiency.The non-negative error component is specified as a function of potential household-specific determinants of technical inefficiency:where δ = Vector of parameters to be estimated.Z r = Vector of potential inefficiency determinants. W = N (0, σ u ) distributed random variable, where σ u is defined such that U it ≥ 0.The Stata 13 software package (www.stata.com) was used to obtain ML estimates of the model parameters.Table 1 provides the definitions and summary statistics of all variables contained in the model. The logged quantity of wheat harvested is the dependent variable, and the logged quantities of land, labor, and capital inputs are explanatory variables. Due to the log-log model specification, the coefficients on the logged input variables are interpreted as partial production elasticities, indicating the percentage change in output for a onepercent increase in the respective input factor. Apart from continuous input factors relating to land, labor, and capital, the regression model contains a number of dummy variables to account for differences in agroecological zones, soil type, irrigation management, wheat variety used, and seed replacement. Their definitions are straightforward and can be gleaned from Table 1.The inclusion of the following variables necessitates some explanation: herbicides and pesticides were only applied in 16 % and 7 % of observations, respectively. It may be that cases with and without such inputs differ with regard to weed and pest pressure, thus potentially affecting yield. The dummy variables Herbicides used and Pesticides used account for this potential effect and avoid biased parameter estimates on continuous variables measuring herbicide and pesticide expenses (cf. Battese 1997). Furthermore, we found that harvest and threshing practices, especially the use of a combine harvester versus manual harvesting and threshing, differed significantly between ZT users and non-users; at the same time, they potentially affect the dependent variable through varying harvest-and threshing related losses and have important implications for labor use. Therefore, we controlled for different harvest and threshing practices using dummy variables (whereby the use of a drum thresher is the base practice) and limited the labor input variable to all pre-harvesting activities.Regarding crop establishment, the base technology is CT wheat with broadcast sowing. To estimate the effect of ZT on wheat yield, the model contains respective dummy variables. To derive a reliable estimate of the effect in the prevailing rice-wheat cropping system, we differentiated the case where ZT wheat is preceded by rice (variable ZTW-rice, 92.3 % of ZT observations) and the case where ZT wheat is preceded by any other crop (ZTW-other, 7.7 %). While the former represents a discontinuous ZT system with soil puddling (85.6 % of cases) or dry tillage (14.4 %) in the kharif rice component, the latter can include ZT also during the kharif season. We further accounted for the case where a ZT drill was used for line-sowing (LS) of wheat after soil tillage (Line-sown, 10.9 % of observations). To allow the yield effects of ZT and line-sowing to vary between agro-ecological zones, we included respective interaction terms. The fact that ZT facilitates earlier sowing of wheat and, therefore, helps to avoid yield depression due to terminal heat stress has been emphasized in the literature (Erenstein and Laxmi 2008;Chauhan et al. 2012;Gathala et al. 2013;Mehla et al. 2000). Part of the yield effect of ZT has typically been attributed to an advancement of sowing times (e.g., Mehla et al. 2000). To be able to disentangle the yield effects of early sowing and ZT, dummy variables account for whether or not wheat was sown before December 01; alternatively, November 15 was tested as cut-off date for early sowing, but the data did not support any statistically significant effect on wheat yields for the years represented in our sample. Again, we included respective interaction terms with agroecological zone dummy variables. We also allowed the effect of early sowing to vary across seasons to accommodate potential variations in rainfall and temperature.To test the robustness of our regression results, we estimated models that differed in their level of aggregation of the capital input variable and ZT and LS effects: Model 1 uses the total non-labor 5 capital input and overall ZT and LS effects as explanatory variables; Model 2 uses the aggregate capital input variable, but differentiates ZT and LS effects by agro-ecological zone; finally, Model 3 differentiates physical inputs of seed and nutrients, monetary inputs for herbicides and pesticides, and the sum of remaining non-labor capital inputs (variable Partial non-labor capital input) to gain insights into the partial production elasticities of more specific input factors; it also estimates zone-specific ZT and LS effects.All model specifications contain the same set of potential inefficiency determinants (Z r in Eq. 3) which are based on Bravo-Ureta and Pinheiro's (1993) review of the empirical literature on farm-specific determinants of efficiency in developing country agriculture, and our own considerations. The variable Female controls for potential gender-related TE effects; however, the sample includes only 22 observations from a total of 14 femaleheaded households. A relatively high level of education (Higher education) is expected to have a positive effect on TE since it greatly facilitates the acquisition and processing of information related to agricultural production. We hypothesize farmers' level of risk aversion to affect the level of input use, but also input management; for instance, at a given level of production risk, the quality of weed and pest control and irrigation may decline with increasing risk aversion that aims at reducing losses in terms of efforts spent in vain. The Risk aversion index was constructed by Principal Component Analysis and measures risk aversion on the basis of self-assessment questions and preferences of hypothetical yield scenarios that vary in the level and variability of yields. 6 We included Cultivated area as a potential efficiency determinant, for whose effect there exists conflicting evidence in the literature (Alvarez and Arias 2004). Since, ceteris paribus, farmers with very limited land resources may have incentives to increase yields through meticulous crop and input management, we expect an inverse relationship with TE. The variable Wheat-specialized indicates whether or not at least half of the cultivable area was allocated to wheat during the rabi season. Specialization was hypothesized to have a positive effect on TE because labor resources and expertise can be focused on the cultivation of one main crop. The possession of a Mobile phone facilitates farmers' exchange of ideas and experiences with respect to their crop management practices and is therefore hypothesized to enhance TE; the same rationale applies to the inclusion of a variable indicating participation of the household head in the Farmer's association. Finally, agricultural extension services provide advice and information to farmers to improve their technical competence in farming operations. Thus, Extension access, as measured by respondents' subjective rating, is expected to have an efficiency enhancing effect. The inclusion of the household head's age as potential inefficiency determinant was tested, but led to convergence problems of the ML estimator. Note: HH = Household; ZTW = Zero-tillage wheat; CT = Conventional tillage 1 For ease of interpretation, summary statistics are provided for the unlogged variablesComparison of household and farm characteristics between zero-tillage users and non-users across agro-ecological zonesFor our analysis to yield meaningful results, we needed to account for systematic differences in agro-ecological conditions and farming systems across the research area. As outlined above, the research area is composed of three agroecological zones, as classified by the Department of Agriculture of Bihar (DoA 2014). All analyses excluded 28 households (2.8 % of the sample) for which the data collected were judged to be unreliable. 7 Apart from the household head's level of education, all the characteristics shown differ significantly across zones, indicating the potential importance of a zone-wise differentiation of the analysis. Overall household income was higher in Zone 3 than in the other zones (Col. 1), and, at 88 %, a significantly larger share was derived from agriculture than in Zone 1 (66 %) and Zone 2 (60 %; Col. 2). On the average, at 5.5 acres, farms in Zone 3 were approx. 57 % larger than in Zone 1 (3.5 acres) and 77 % larger than in Zone 2 (3.1 acres; Column 4). Consequently, the areas allocated to wheat during rabi season and to paddy during kharif season were significantly larger in Zone 3, whereby the mean paddy area also differed significantly between Zone 1 (0.7 acres) and Zone 2 (2.8 acres; Cols. 6 and 7). At 32 %, the area share allocated to paddy was significantly smaller in the 'upland' Zone 1 than in the 'lowland' Zones 2 and 3 at 89 % and 98 %, respectively (Col. 9). Consequently, income from paddy production 8 accounted for only a very minor share of total household income in Zone 1 (5 %), whereas its contribution was substantial in Zone 2 (29 %) and Zone 3 (39 %; Col. 11). The area share allocated to wheat also differed between the zones, being highest in Zone 2 at 82 % and lowest in Zone 3 at 59 % (Col. 8).The comparison of ZT users and non-users across the entire sample reveals significant differences with respect to all the characteristics listed. In particular, ZT users' household income exceeded that of non-users by 138 %, on the average (Col. 1), whereby the share derived from agriculture was 10 percentage points higher (Col. 2). At almost 9 years of schooling, the level of formal education of ZT users exceeded that of non-users who had spent only 6.7 years at school on average (Col. 3). Consistent with the much higher household income, at 4.9 acres, the farm size of ZT users was approximately 78 % larger than that of non-users, at 2.7 acres (Col. 4). Plot size is a factor that may directly influence the adoption of ZT: while the main agricultural plot averaged 1.1 acres on farms of nonusers of ZT, it was approx. 84 % larger (2.0 acres) on ZT users' farms (Col 5). The same finding applies to the average size of all plots cultivated, which amounted to 1.0 acres and 1.8 acres, respectively. These systematic differences between users and non-users of ZT, which are statistically highly significant also in the comparisons within Zone 1 and Zone 2, 9 highlight the need of controlling for potential selection bias between the two groups when estimating ZT yield impacts.Comparison of conventional-tillage and zero-tillage wheat production and profitability across agro-ecological zones Table 3 displays major production characteristics and profitability indicators of wheat cultivation in the research area. The data are based on the households' main CT and/or ZT wheat plot and are means across rabi seasons 2011/12 and 2012/13. Not all households grew wheat in both seasons, resulting in unbalanced panel data. Table 3 differentiates between agroecological zones and, within zones, compares conventionaltillage wheat (CTW) with zero-tillage wheat (ZTW). As in Table 2, the table displays two levels of mean comparisons:(1) comparisons across the overall zone-specific means (in bold), using superscript letters to indicate diverging zones, and (2) comparisons between CTW and ZTW within agroecological zones and across the entire sample.Column 1 of Table 3 shows that wheat yields differed significantly among all three agro-ecological zones, with yields in Zone 1 being the highest at 2.90 Mg ha −1 , on the average, and yields in Zone 3 being the lowest at 2.23 Mg ha −1 . Yields in Zone 2 averaged 2.63 Mg ha −1 . In Zone 2 farmers used a higher seed rate (Col. 2) than in the other two zones. Total capital and total labor input differed substantially between all three zones, being highest in Zone 1 and lowest in Zone 3 (Cols. 8 and 9). Farmers in Zone 3 applied only 47 % of the capital and 54 % of the labor that farmers in Zone 1 used. The observed input intensity gradient is reflected in the average crop establishment expenses (Col. 3), fertilizer expenses (Col. 4) and, to a lesser extent, herbicide expenses (Col. 5).The difference in fertilizer expenses is particularly pronounced, showing that, while farmers spent 5130 INR 10 ha −1 and 4620 INR ha −1 in Zone 1 and Zone 2, respectively, none of the sample farmers in Zone 3 used any mineral fertilizer in wheat. As a consequence of the lower input intensity, Zone 3 farmers attained a level of gross margin from wheat production that is not statistically significantly different from that of Zone 1 farmers (Col. 10), although the yields obtained were 24 % lower, on the average. At 23,800 INR ha −1 , the average gross margin from wheat in Zone 2 was significantly lower than that in Zone 1, at 27,400 INR ha −1 . However, when we compare the returns to labor and capital (Cols. 11 and 12), which are the most relevant economic criteria in labor and capital constrained smallholder farming systems, we find that there is no statistically significant difference between Zone 1 and Zone 2, as Zone 1 farmers achieved a higher yield and gross margin only by applying higher levels of capital and labor. Due to their much lower input intensity, Zone 3 farmers achieved substantially higher returns to labor and capital than their counterparts in the other two zones.Turning to the comparison between CTW and ZTW, across the entire sample there exist statistically significant differences in all of the production and profitability indicators listed. On the average, ZTW plots produced a yield gain of 202 kg ha −1 (7.7 %) over CTW plots (Col. 1) while using 12.3 kg ha −1 (8.8 %) less seed (Col 2). ZT reduced crop establishment costs 11 by 1539 INR ha −1 (45.9 %), on the average (Col. 3). Although herbicide and pesticide expenses were significantly higher on ZTW plots as compared to CTW plots (by 126 % and 184 %, respectively), the absolute amounts were low, so that total capital input was 2225 INR ha −1 (15.2 %) lower on ZTW than on CTW (Col. 8). This is also despite the fact that ZTW plots received a slightly higher number of post-sowing irrigations (2.15) than CTW plots (1.96; Col. 7). As a consequence of higher yields and lower input costs, ZTW plots yielded a gain in gross margin of 3250 INR ha −1 (13.7 %) compared to CTW, on the average (Col. 10); returns to capital were increased by 1.22 INR INR −1 , representing a gain of 52.1 % (Col 12). In addition to the observed differences in monetary benefits, farmers used 76 manhours ha −1 (30.3 %) less labor on ZTW plots (Col. 9), driving up returns to labor by 243 INR manhour −1 (140.5 %) compared to CTW plots (Col 11). However, as with all findings in this descriptive comparison, this difference must not be attributed to the use of ZT per se. Most of it is due to systematic differences in harvest and threshing practices between ZT users and non-users, highlighting the need to control for selection bias between the two groups when quantifying the yield effect of ZT: at 28.6 %, the use of combine harvesters in the rabi season 2012/13 was approx. three times as widespread among ZT users as among non-users (9.3 %; chi-square test significant at P < 0.001). Likewise, only 8.2 % of ZT adopters threshed their crop manually, as compared to 16.2 % of non-adopters (chi-square test significant at P < 0.01). Similar differences apply to the rabi season 2011/12. If one considers preharvest activities only, the difference in labor use is reduced by 64 % to 27 manhours ha −1 (Col. 9).As indicated in Table 3, not all of the differences mentioned are statistically significant in the within-zone comparisons, especially in Zone 3. The within-zone trend, however, is consistent with the overall findings, and the lack of statistical significance is likely to be caused by the relatively small sub-sample of 77 CTW plots and 47 ZTW plots in Zone 3.As mentioned in the model specification section above, part of the yield effect of ZT has typically been attributed to an advancement of sowing times (e.g., Mehla et al. 2000). Figure 1 displays the distribution of sowing times in the three agro-10 Indian Rupees. 1 USD = 66.5 INR (Sept . 2013). 11 These include machinery and labor costs for soil tillage and sowing or the costs associated with direct seeding using a ZT drill (in most cases a hired service); they do not include the cost of seeds. ecological zones of the research area, differentiating CTW plots and ZTW plots. Recall data were collected at a weekly time resolution, leading to four weekly time slots per month (w1, …, w4) across the period October through January. The figure shows that the distribution of wheat sowing times varied across agroecological zones: in Zone 1 the distribution was relatively compact and had a single peak around the second and third week of November. In the low-lying zones 2 and 3, the distribution was more dispersed and shifted towards December; moreover, the distributions in Zone 2 and, more clearly, in Zone 3 were characterized by two peaks, whereby extensive waterlogging was a likely major reason for the late-sowing peak. In none of the zones did we observe an obvious systematic difference in sowing times between CTW and ZTW. However, in Zone 1, the share of ZTW plots sown before November 08 (28.2 %) and November 15 (62.4 %) was significantly higher than that of CTW plots (18.9 % and 49.8 %, respectively; P < 0.05). Also in Zone 3 we found weak statistical evidence of a larger proportion of ZTW plots being established before November 15 (17.0 %) than is the case with CTW plots (6.4 %; P < 0.10). No significant differences were found in Zone 2. Because of the lack of a clear association of sowing time and crop establishment practice, in the following section we estimate the yield effects of ZT and early sowing independently of each other.As was demonstrated above, there are systematic differences between ZT users and non-users regarding farm size, education, and wealth. Therefore, the differences identified between CTW plots and ZTW plots may partly or entirely be caused by differences in the level and management of inputs between ZT users and non-users, rather than being attributable to the ZT practice per se. As elaborated in the methodology section, we estimated stochastic production frontiers for wheat to derive unbiased estimates of the yield effects of ZT and early sowing.Variance Inflation Factors (VIFs) were calculated to check for potential multicollinearity among the explanatory variables. Mean VIFs range from 2.40 in Model 2 to 2.89 in Model 3. Myers (1990) suggests that a value of 10 should not be exceeded for individual VIFs. Values around this threshold are attained only for the AgZone1 dummy variable (ranging from 11.41 in Model 1 and 12.63 in Model 3) which is relatively highly correlated with the early-sowing dummy variable for the 2012/13 rabi season (Pearson correlation coefficient 0.70). However, the fact that the respective earlysowing dummy is statistically significant in both specifications demonstrates that there is no problem of inflated standard errors due to multicollinearity.For agricultural production, constant returns to scale (CRS) are expected (cf. Heady and Dillon 1961;Battese and Broca 1997), i.e., a doubling of all input factors (including land) should entail a doubling of output. With respect to a production function this means that all partial production elasticities should sum up to one. All model specifications fulfill this condition, i.e. joint tests on the respective regression coefficients clearly fail to reject the null-hypothesis that their sum equals one.Table 4 presents the parameter estimates of the production functions for Models 1 through 3. The models are based on plot-level data with respect to the largest CTW plot or the largest ZTW plot cultivated by a household. The data cover rabi seasons 2011/12 and 2012/13, leading to multiple observations per household. The estimation of the standard errors in the regression models accounts for clustering at the household level.As expected, the aggregated Models 1 and 2 yield highly significant partial production elasticities for the land, labor, and capital input variables; the magnitude of the elasticities is approx. 0.63, 0.11, and 0.28 for land, labor, and capital, respectively. In the disaggregated Model 3, the elasticities on the land and labor input variables are slightly smaller since the disaggregated capital related variables explain a larger share of variance in the output variable than the aggregated capital input variable. With the exception of pesticide expenses, all continuous input variables have positive partial production elasticities, and all but the one of nitrogen input are statistically significant. An explanation for its insignificance is that almost all respondent farmers applied substantial quantities of urea, so that the observed variation of this input is located around a relatively high level where its marginal effect may be close to zero. This is not true in the case of phosphorus and potassium, whose coefficients are small but statistically highly significant. The coefficient on herbicide expenses is positive and statistically significant, whereby the dummy variable Herbicides used controls for those 84 % of cases in which no herbicides were applied at all; without the latter, the coefficient on Herbicide expenses would be downward biased. No (positive) effect of pesticide expenses is supported by the data. With respect to the dummy explanatory variables, the results are consistent across model specifications. None of the variety-related variables are statistically significant, whereas most other explanatory variables are. The magnitude of the coefficients is very similar between Models 1 and 2, both of which use the aggregated capital input specification, and deviate somewhat in the disaggregated Model 3. Important findings are the positive effect of newly purchased seed as compared to farmer-saved seed, and the positive effects of pre-sowing irrigation and at least two postsowing irrigations. Ninety-six percent of observations are based on irrigated wheat, and the negative coefficient on the Irrigated dummy implies that the remaining 4 % of rainfed wheat must be grown under extraordinarily favorable conditions. The negative signs on the variables indicating the use of herbicides and pesticides imply that these agrochemicals were applied in cases of substantial, yield-reducing weed and pest pressure. Furthermore, it is interesting to note that, compared to using a drum thresher (the base threshing method in the model), the use of a combine harvester results in an estimated yield gain of 8-9 % across model specifications, which indicates a significant reduction of harvestand threshing related losses. Statistically significant soil related dummy variables in Models 1 and 2 become insignificant when seed rate and nutrient application are controlled for in Model 3.Of particular interest are the effects of ZT and early sowing on wheat output, which are displayed in the second part of Table 4. All statistically significant coefficients are in bold, showing a robust positive yield effect of the current ZT practice, overall and differentiated by agro-ecological zone. The magnitude of the effect is similar across all models, especially as far as the prevailing ZT wheattilled rice system is concerned. For this system, Model 1 indicates an overall yield gain of ZT wheat as compared to CT broadcast wheat of 17.4 % 12 (P < 0.001), with the 95 % confidence interval extending from 11.2 % to 24.0 %. The estimates for individual agro-ecological zones range from a minimum of 14.7 % for Zone 2 in Model 2 to a maximum of 24.7 % for Zone 3 in Model 2. The estimated ZT-induced yield gain is even larger in the non-rice cropping system, with an overall estimate of 36.4 % (P < 0.001). For Zone 1, the estimates are highly significant and consistent across Models 2 and 3 at approx. 39 %. For Zone 2, the respective variable controls for one single observation and is, therefore, not significantly different from zero. In Zone 3, all ZT wheat observations are based on ricewheat cropping systems.When we estimate the effect of ZT without differentiating rice and non-rice cropping systems, we arrive at an average yield gain of 19.0 % (P < 0.001). Relative to the average yield of CT wheat of 2620 kg ha −1 (cf. Table 3) this results in an estimated absolute gain of 498 kg ha −1 , or INR 5959 when valued at the average output price received. How do these findings compare to the observed yield difference of only 202 kg ha −1 in our sample? Both our regression analysis and controlled trials measure the effect of ZT ceteris paribus, i.e. keeping all other yield influencing factors constant. However, Table 3 illustrates that input use differs significantly between CTW plots and ZTW plots. Both capital and labor inputs are significantly lower on ZTW plots. In part, this can be attributed to the ZT technology (e.g., cost and labor savings in crop 12 Calculated as 100*[exp(0.1605) -1], which is the correct interpretation of the marginal effect of an intercept dummy variable in a model with a logged dependent variable (see Giles 2011). establishment), but it is also likely due to selection bias caused by systematic differences between ZT users and nonusers regarding their farm and household characteristics (cf. Table 2). Figure 2 below illustrates the conceptual relationship between estimated and observed yield gains due to ZT, using a schematic representation of production frontiers for CTW and ZTW. 13 With respect to line-sowing of wheat after CT, the overall yield effect is estimated to be negative in Model 1. However, the disaggregated Model 3 reveals a more differentiated picture, namely a statistically weakly significant yield gain of 8.7 % in Zone 1 and a yield depression of 21.4 % in Zone 2. The negative yield effect of line-sowing may be related to untimely tillage in waterlogged areas: among 59 cases of line-sowing in Zone 2, wheat was sown before November 15 in 44.1 % of cases, whereas the share of CT broadcast wheat and ZT wheat sown before that date was only 16.7 % (chi-square test significant at P < 0.001).The effect of early sowing of wheat is not as straightforward as that of ZT. Across model specifications, the yield gain due to sowing before December 01 is consistently estimated at 16-19 % for Zone 1, both for the 2011/12 and 2012/13 rabi season. For Zone 3, a large yield gain of approx. 28 % is estimated for the 2011/12 rabi season, whereas there was no significant effect in the 2012/13 rabi season. For Zone 2, regression coefficients are consistently negative, but not significantly different from zero.As indicated in the methodology section, the stochastic frontier model employed allows the derivation of technical efficiency (TE) estimates and the identification of efficiency determinants. Table 5 presents the TE related modeling results, which are consistent across the three specifications. The bottom part of the table shows that the estimated mean levels of TE are very similar, ranging from 74.8 % to 75.8 %. The comparison of CTW plots and ZTW plots shows no difference in the average level of TE. Hence, on the average, wheat yields could be increased by approximately one-third both on CTW and ZTW plots if the management of the currently used inputs was optimized, i.e., without increasing the level of inputs (cf. the graphical representation in Fig. 2 above). For a correct interpretation of the efficiency determinants in Table 5 it has to be kept in mind that the dependent variable is the onesided error term reflecting technical inefficiency. Therefore, positive signs indicate TE reducing factors and negative signs TE enhancing factors. Consistently across all specifications and confirming our hypotheses elaborated in the methodology section, we find TE to increase if wheat is the main crop during the rabi season, as indicated by an area allocation of at least 50 % to the crop; furthermore, there is weak evidence that better access to agricultural extension enhances TE 13 Conceptually, we argue that, due to its biophysical implications, ZT changes the agricultural production process per se, potentially leading to a shift in the production frontier, rather than affecting the technical efficiency of a given production process. Nevertheless, we also tested a model specification that includes a ZT dummy variable as an efficiency determinant, rather than as an explanatory variable in the production function.The model shows a statistically significant efficiency enhancing effect of ZT, but yields a substantially lower log likelihood value than the specification with the ZT dummy included in the production function, indicating a superior fit of the latter specification. (statistically significant in Models 1 and 3). On the other hand, there is strong evidence that TE decreases with increasing farm size and with increasing levels of risk aversion.Our estimated ZT induced wheat yield gain of 498 kg ha −1 in farmers' fields is in line with findings from field trials: in seven on-station trials conducted in the Eastern IGP, the average ZT induced yield increase in wheat amounted to 15 %, or 460 kg ha −1 in absolute terms (Erenstein and Laxmi 2008); at 490 kg ha −1 , the average yield gain reported from on-farm trials in Bihar is also very similar to our estimates of what farmers achieve with their own management (Dhiman et al. 2003). Since the yield benefits associated with ZT have been established ceteris paribus with factors such as differences in time of planting and fertilizer use controlled for in the analysis, the causal mechanisms for the estimated yield gains are likely to be associated with soil related factors. Intensive tillage typically increases evaporative losses of soil water (Schwartz et al. 2010), which in turn can reduce early plant growth under deficit irrigation conditions. Further, the higher levels of soil porosity and surface roughness following tillage increase the total volume of water applied with the first irrigation (Erenstein et al. 2007), which can result in growth reductions associated with wet field conditions and processes such as denitrification and root stunting.It is useful to consider if ZT wheat might have carry-over effects on other crops in the annual rotation. In the prevailing ricewheat cropping system in the research area, transplanting of rice seedlings into puddled soil is the most common practice (85.6 % of cases in this study). Since puddling for rice significantly degrades soil structure, it is unlikely that soil physical improvements induced by ZT wheat will persist following puddling operations (see Gathala et al. 2013). Also, wheat is generally harvested in late March to early April with rice establishment occurring in June through early July, with dates varying from year to year depending on monsoon onset. Hence, there is little chance that wheat planting date changes will affect rice planting dates. On the other hand, if ZT rice or non-puddled machine-transplanted rice become more prevalent, the soil quality changes achieved with ZT wheat would more likely persist and have an influence on the rice crop. Similar principals are evident in our data, with a greater ZT-induced yield gain in non-rice cropping systems where puddling is not practised (i.e. especially in Zone 1), a result that is consistent with Gathala et al. (2013) who had similar findings in the Northwestern IGP when wheat followed maize.Apart from tillage practices in the non-wheat component of the cropping system, the extent of crop residue retention potentially affects yields, both with and without tillage (Lal 2006; Erenstein and Laxmi 2008). With respect to residue management, we do not find significant differences between ZT users and non-users; approx. seventy percent of farmers in both groups retained some residues of the previous crop (typically rice). As residues are widely used as fodder, cases with complete residue retention are rare, but burning (11 %) or complete removal (5 %) are also not very common. As the extent of residue retention is difficult to quantify in a household survey, this factor is not considered in our analysis.Regarding the effect of early sowing of wheat (before December 01) to avoid terminal heat stress, our estimates vary across agro-ecological zones and years. Not finding any positive effect of early sowing in the low-lying Zone 2 is plausible, given that this area tends to be affected by waterlogging during November, and operating tractors under wet field conditions may cause soil compaction and, consequently, countervailing yield reductions. However, the consistently positive estimates for Zone 1 indicate that farmers are achieving substantial benefits from earlier sowing in well-drained areas. In this zone, the potential of ZT to facilitate an advancement of wheat sowing times should be better harnessed than is currently the case (cf. Fig. 1), requiring the identification of potential constraints to earlier sowing in this area as a first step.To put our ZT induced yield benefit estimate into perspective, the economic gain of INR 5959 ha −1 from the yield increase of 498 kg ha −1 alone translates into a 4.9 % increase in the total annual household income of the average sample household. 14 When considering the cost savings in crop establishment and additional expenses for herbicides that are likely attributable to the ZT technology 15 (using sample means as displayed in Table 3), the economic gain increases to INR 7334 ha −1 and constitutes a 6 % increase in total household income. If, for illustrative purposes, one assumed full ZT wheat adoption in Bihar with its current wheat production of approximately 5 million MT (Paulsen et al. 2012), a 19 % yield increase would translate into a production increase of 950,000 MT, exceeding total wheat imports into Bihar, which were 868,000 MT in 2010/11 (ibid.). These results suggest that broad-scale adoption of ZT technology could play a major role in making Bihar self-sufficient in wheat. Hereby, it must be emphasized that ZT adoption hinges on the availability of service providers as tractor and ZT drill ownership is economically not tenable for the large majority of farmers. With public and private sector partners, CSISA has supported the emergence of ZT service providers among tractor owners by facilitating the purchase of ZT drills and conducting technical trainings since 2009. Consequently, the number of documented ZT service providers in Bihar increased from 17 in the 2010/11 rabi season to 1624 in 2014/15, servicing a total of approximately 44,700 acres. In the near and medium-term, achieving broad-scale ZT adoption will be contingent on the success of additional development efforts to increase the number of ZT service providersespecially in districts where a critical mass of small entrepreneurs has not yet formed. Furthermore, we find that only 32 % of non-users in our sample are aware of the ZT technology. Hence, increasing the number of service providers has to go hand in hand with large-scale information campaigns to raise farmers' awareness of the technology.In the context of the dominantly irrigated wheat production systems of Bihar without adoption of 'full' conservation agriculture (i.e. ZT in combination with soil cover from crop residues), we conclude that farmers reap substantial yield and monetary benefits from ZT practices, both in upland and lowland ecologies. The practicality of early sowing of wheat varies across agro-ecological zones due to temporal differences in soil drainage, which needs to be considered when targeting extension messages. Nevertheless, our findings imply that the potential of ZT to facilitate an advancement of wheat sowing can be exploited in well-drained areas. Furthermore, the efficiency analysis indicates considerable scope to increase yields through better management of current levels of inputs, e.g., by improving the timing of field operations, with the caveat that there may be binding constraints that limit the ability of farmers to achieve the same level of TE in all fields. Additional work is required to identify the root causal factors of these inefficiencies and to prioritize differentiated intervention points matched to the needs of different farm types. To increase the number of ZT beneficiaries in the densely populated Eastern IGP and, hence, contribute to enhancing wheat productivity and food security in an environmentally sustainable manner, an expansion of the network of ZT service providers is required as tractor and drill ownership is not a tenable goal for most capital-constrained small and medium-sized farms. Furthermore, efforts are needed to raise farmers' awareness of the ZT technology and to reduce the observed scale bias in its use, which is likely to be caused by the fixed costs associated with service provision in dispersed fields. Business models that include demand aggregation and service coordination may help overcome this bias by reducing 14 (1) INR 5959 ha −1 * 0.9312 ha (2.3 acres average wheat area, cf. 15 As the dependent variable in our model is physical yield, rather than profit, expenses related to hiring labor do not feed into the capital input variable. Depending on the land-to-labor ratio and opportunity costs, farmers may choose to exchange family labor for hired labor; what feeds into the model is labor input per se. Therefore, the labor input for crop establishment (with or without tillage) is accounted for by the model, but not the cost associated with hiring a respective service or accomplishing the task using own machinery. Hence, the cost savings in crop establishment have to be treated as an additional benefit. While herbicide use varies widely among farmers, we assume here a technology-inherent difference which needs to be accounted for. transaction costs. Scale bias may also lessen with time as the number of service providers increases, and competition makes the providers less selective in marketing their services.On the whole, this study provides strong evidence that ZT for wheat provides tangible and significant yield and economic benefits to adopters across a range of production ecologies and socio-economic settings in the Indian State of Bihar, while reducing environmental externalities commonly associated with extensive tillage. ZT technology could play a major role in making Bihar self-sufficient in wheat. Hence, BGREI and other development initiatives in the region should continue to provide an enabling environment for the accelerated spread of ZT as an important element of sustainable wheat intensification in Eastern India.","tokenCount":"9061"} \ No newline at end of file diff --git a/data/part_3/0972765939.json b/data/part_3/0972765939.json new file mode 100644 index 0000000000000000000000000000000000000000..96ccc396e9bab26d2e5ba8d1ae2ba6c03abf759a --- /dev/null +++ b/data/part_3/0972765939.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"05f7b44965151169c34619ac222f4220","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/67cfefcb-1a56-47a7-ab20-0421ee74f970/retrieve","id":"-915009786"},"keywords":[],"sieverID":"4eea1371-ac72-4fdf-9881-19e6ebbe4a79","pagecount":"12","content":"Maize is the most productive and one of the leading economically important cereal crops in Ethiopia. However, its benefits are found to be compromised by current and future risks associated with climate change and variability. The outlined climate change impacts are expected to be witnessed across maize growing areas.• By 2035, Belg rainfall is projected to increase in some FSRP districts while decreases in others. The changes range from -47 to 21 mm and its variability lies between 9 and 42%.• Meher rainfall will increase in most FSRP districts, and the changes range from -8 to 189 mm and changes in its variability lie between -1 and 29%.• During Meher season, the average daily maximum temperature (T max ) will increase by 0.84-1.39 0 C while the average daily minimum temperature (T min ) will increase by 1.13-1.52 0 C . During Belg, T max will increase by 1.12-1.42 0 C while T min will increase by 1.41-1.73 0 C across maize producing FSRP districts.• General tendencies of more extreme rainfall and wetness in both seasons are projected.• Hot days and hot nights will increase, and diurnal temperature ranges will shrink.• About 10 -50% of maize growing areas have been affected by high drought conditions during the recent past.Shifts in major climatic variables in space and time will affect maize production and marketing followed by several unwelcomed socio-economic consequences.Stakeholders of the maize value chain at all levels need to take the following proactive actions (Figure 1) towards a climate-resilient maize value chain in Ethiopia. Maize is the leading cereal crop in Ethiopia in terms of production and productivity and the second in terms of area coverage. It accounts for 33% and 21% of all cereal production and total land area covered with cereals, respectively. The maize-based farming systems in Ethiopia cover 2.56 million hectares and its production doubled in less than two decades. Main maize producing areas (Figure 2) include the semi-arid lowland, semi-arid moist highland, warm sub-moist lowland, moist sub-humid lowland, tepid humid mid-highland, and moist highland agroecological zones (AEZs).Production area increased from 1.1 to 2.56 million hectares, harvested yield increased from 1.6 to 10.5 million tons, and productivity increased from 1.5 to 4.2 ton/ha during 1995 to 2021. All these gains are attributed to notable commitments by government extension system, research institutions, seed enterprises, and other partners.Although the crop exhibited the greatest productivity gains, it remains to be vulnerable to the impacts of climate change and variability. Interventions are therefore needed to maximize recent gains, enhancing access to markets and documenting knowledge on current and projected climate change impacts. The agroecological zones (AEZs) approach was used as a spatial unit of analysis for the study.Major maize producing AEZs were selected from the Spatial Production Allocation Model (MAPSPAM) and areas that grow more than 100 hectares per 100 km2 were included in the analysis. Then, FSRP target districts were mapped over the major maize growing AEZs.Daily rainfall and temperature data were taken from open-access portals and spatial distributions of baseline and future changes in rainfall, temperature, and climate extremes were examined using standard approaches. Climate variables that define change and variability were analyzed using globally accepted indices, coefficients, and thresholds. All FSRP districts except Goba and Chire will experience increases in Meher season rainfall in the 2035 period (Figure 3a). Meher season rainfall changes range from -8 to 189 mm and variabilities lie between -1 and 29% (Figure 3b). Belg season rainfall is projected to decline during the 2035 period in most FSRP districts with minor increments in few districts. The changes will generally range from -47 to 21 mm and its variability lies between 9% and 42%.Increases in Meher season rainfall in the future would favor flooding, soil erosion, damage on roads, reduced grain supply, poor quality products, and high prices. Decline in Belg season rainfall implies intermittent drought, reduced yield and limited supply including high prices. High seasonal rainfall variabilities would complicate planting time decisions, alter soil moisture availability, and eventually affect yield. Daily maximum and minimum temperatures in all maize producing agroecological zones and FSRP districts are projected to increase in both Meher and Belg seasons. Maximum temperature will increase by 1.13 to 1.52°C while minimum temperature will increase by 0.8 to 1.39°C during Meher (Figure 3c and 3d). During Belg, maximum temperature will increase by 1.41 to 1.73°C, while minimum temperature will increase by 1.12 to 1.42°C. Diurnal temperature ranges will decline in all maize producing AEZs in the range of 0.02°C in warm sub-moist lowland to 0.41°C in tepid humid mid-highland areas.Number of tropical nights will show a notable increase in some FSRP districts (Menge, Adagn Ager, Dibate, Godere and Bure), a modest increase in a few areas (Lay Armachiho, Mana Sibu and Damiru), and little or no change in the rest of FSRP districts (Figure 4a). Hot days will highly increase in Adagn Ager, Menge and Dibate, modestly increase in Lay Armachiho, and show little or no change in the rest of the FSRP districts (Figure 4b). Diurnal temperature ranges will slightly decline in all FSRP districts except in Fogera, Lay Armachiho and Laelay Maychew (Figure 4c).High daytime and night temperatures in both Meher and Belg seasons would hasten crop growth, accelerate grain filling rate, favor pest incidence including aflatoxins, exacerbate terminal moisture stress, and compromise product quantity and quality. Increases in tropical nights would increase respiration and affects yield amount and grain quality. Increase in hot days would increase evapotranspiration, stress plant growth, and increase incidence of crop pests, eventually compromising product quality and prices. The increase in tropical nights will favor high dark respiration leading to lower and poor quality yield, increase heat load of transported products that will lead to rapid deterioration and spoilage. Moreover, it will result in poor quality grain that reduces processing efficiency and consumer preferences. Increases in hot days would cause heat stress, frequent explosion of tires during transportation, rise in product price and lead to lower consumer acceptance. Consecutive wet days (CWDs) are projected to increase in Meher season in all FSRP districts and AEZs during the 2035 period. However, CWDs will remain almost unchanged during the Belg season. Wet days, heavy rainfall days, and very heavy rainfall days will increase in all maize growing FSRP districts except in Chire and Robe districts. Simple daily intensity index exhibits mixed changes (Figure 5). Increases in wet days, heavy and very heavy rainy days would result in flash floods, waterlogging conditions, incidence of crop pests, and damages to market infrastructure. Intra-seasonal drought conditions in maize producing agroecological zones and FSRP districts during the 2035 period will be more pronounced during the Belg season. This is mainly due the combination of relative increase in consecutive dry days, reduction in consecutive wet days, and increases in daytime and night temperatures. Dry conditions would limit crop water availability; affect vegetative growth and eventually quantity and quality of harvests including prices.Losses and damages associated with climate change demand urgent, proactive and well-coordinated actions. Key institutions and most importantly the Ministry of Agriculture and its sub-national extensions, the National Meteorological Institute, research and academic institutions, seed enterprises, private sector stakeholders including financial and marketing agents, and other development allies are expected to take the following actions to ensure a climate-resilient maize value chain in Ethiopia.1. Advancing climate-smart maize advisory services: the impacts of climate change at all stages of the maize value chain in different contexts necessitate a climate service knowledge portal that is accessible to and owned by multiple stakeholders, down-scaled, automated, user-friendly, and crop-specific. This climate knowledge outlet will also serve as a hub for generating, testing, documenting, exchanging, applying, monitoring, and continuously improving knowledge on maize-climate interactions and selection of technologies, advisories, and warnings applicable to different stages and contexts of the maize value chain.fluctuations in intensity of rainfall and temperature, seasonality, length of growing period, and increases in extreme events will continue to complicate existing challenges; hindering availability and limiting choices of crop varieties. Researches on maize therefore need to focus on climate-adaptive research aiming to release maize varieties that suit different climate variables in space and time. This policy brief and the entire research work was financed by the Global Center for Adaptation (GCA). Various experts from the Ministry of Agriculture and CGIAR staff in Addis Ababa participated in the consultative workshop and provided important suggestions that helped improve the quality of the document. This policy brief is also supported by the Accelerating Impacts of CGIAR Climate Research for Africa (AICCRA), a project that helps deliver a climate-smart African future driven by science and innovation in agriculture and is supported by a grant from the International Development Association (IDA) of the World Bank.","tokenCount":"1446"} \ No newline at end of file diff --git a/data/part_3/0981078758.json b/data/part_3/0981078758.json new file mode 100644 index 0000000000000000000000000000000000000000..0ee8013e6de98f3df6c6e3cd1080481e0cfae2bc --- /dev/null +++ b/data/part_3/0981078758.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"decdcd7c42d589ef332d03a044ce2c73","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/86bf4b00-0477-436e-9592-aed69f190e24/content","id":"1859262152"},"keywords":[],"sieverID":"57368d6d-d24e-45e8-a1dc-4fb40e50b976","pagecount":"15","content":"Key message Intracellular factors differentially affected enzyme activities of N assimilation in the roots of maize testcrosses where alanine aminotransferase and glutamate synthase were the main enzymes regulating the levels of glutamate. Abstract N is a key macronutrient for plant growth and development. Breeding maize with improved efficiency in N use could help reduce environmental contamination as well as increase profitability for the farmers. Quantitative trait loci (QTL) mapping of traits related to N metabolism in the root tissue was undertaken in a maize testcross mapping population grown in hydroponic cultures. N concentration was negatively correlated with root and total dry mass. Neither the enzyme activities nor metabolites were appreciably correlated between the root and leaf tissues. Repeatability measures for most of the enzymes were lower than for dry mass. Weak negative correlations between most of the enzymes and dry mass resulted likely from dilution and suggested the presence of excess of enzyme activities for maximal biomass production. Glutamate synthase and alanine aminotransferase each explained more variation in glutamate concentration than either aspartate aminotransferase or asparagine synthetase whereas glutamine synthetase was inconsequential. Twenty-six QTL were identified across all traits. QTL models explained 7-43% of the variance with no significant epistasis between the QTL. Thirteen candidate genes were identified underlying QTL within 1-LOD confidence intervals. All the candidate genes were located in trans configuration, unlinked or even on different chromosomes, relative to the known genomic positions of the corresponding structural genes. Our results have implications in improving NUE in maize and other crop plants.Communicated by Michael Gore.After hydrogen, carbon, and oxygen, nitrogen (N) is the most abundant element in plant tissues. Nearly all of it is derived from the synthetic fertilizers applied to the soil. Variable proportions of the applied soil N are lost to the environment by leaching and denitrification. Leached N flows into the streams and rivers, and eventually into the ocean, supporting algal growth. Excessive algal growth forms \"dead zones\", for example, in the Gulf of Mexico, by depleting oxygen in the water, and thus asphyxiating life (Goolsby and Battaglin 2000). Annual delivery of nitrate from the Mississippi river to the Gulf has nearly tripled in the last half century. The size of the dead zone of the Mississippi delta varies depending upon the frequency and the intensity of precipitation in the catchment area of the Mississippi river.One approach to reduce N loss from the soil is to improve N use efficiency (NUE) of maize. NUE, which in cereals has been defined as the ratio of grain produced per unit of soil N, can be subdivided into two main components: N acquisition efficiency (total plant N/soil N) and N utilization efficiency (total grain yield/total plant N) (Moll et al. 1982;Dhugga and Waines 1989). A comprehensive understanding of N metabolism at the genetic level could provide new avenues to improve NUE in maize (Trucillo Silva et al. 2017).The model pathway for N reduction and incorporation of reduced N into organic molecules has been well described (Yemm and Folkes 1958;Lea et al. 1990; Lea and Miflin 2010;Plett et al. 2016;Trucillo Silva et al. 2017) (Fig. 1). Nitrate is reduced to nitrite by nitrate reductase (NR) in the cytoplasm, followed by reduction of nitrite in the plastids to ammonium by nitrite reductase (NiR). Ammonium thus generated is coupled to glutamate by glutamine synthetase (GS). Another enzyme, glutamine-2-oxoglutarate aminotransferase (GOGAT) or glutamate synthase, then converts glutamine back to glutamate, producing an additional glutamate from 2-oxoglutarate, thereby initiating the conversion of inorganic N into organic form. This pair of reactions is referred to as GS-GOGAT cycle. Asparagine synthase (ASN) produces asparagine and glutamate from glutamine and aspartate. Glutamate serves as an amino group donor for the formation of other amino acids, a reaction catalyzed by different amino transferases. For instance, alanine aminotransferase (AlaAT) catalyzes the amino group transfer to pyruvate to form 2-oxoglutarate and alanine, while aspartate aminotransferase (AspAT) forms 2-oxoglutarate and aspartate after transferring the amino group of glutamate to oxaloacetate. Following N assimilation, glutamate, asparagine, glutamine and other amino acids are transported via vasculature to the growing organs. Alternatively, they can be stored as vegetative storage proteins, which can aid plant growth during the periods of N deficiency (Dhugga et al. 2007).Mapping quantitative trait loci (QTL) is a routine in plant genetic investigations and breeding programs. The procedure relies on differences among the trait means of genotypes at a marker locus (Bernardo 2010). The precision in the identification of a QTL is important for the success of further studies, for instance, identification of candidate genes and positional cloning (Remington et al. 2001). That precision in the estimation of the QTL position, referred to as resolution, varies depending on several factors, such as recombination frequency, marker density and population size (Yu et al. 2011).Much of the current commercial maize germplasm originates from seven progenitor lines, including B73 and Mo17 (Mikel and Dudley 2006). Both inbred lines differ in their response to N fertilization (Balko and Russell 1980) and are parents of the IBM (intermated B73 × Mo17) mapping population (Lee et al. 2002). After ten rounds of random mating, 360 doubled haploid (DH) lines were generated from the IBMSyn10 population (Hussain et al. 2007), which had a higher-resolution for mapping that could be directly associated to the physical map established for the B73 inbred (http://www.maize seque nce.org).Several studies have shown association between QTL and N-metabolism related enzymes (Bertin and Gallais 2001;Hirel et al. 2001;Limami et al. 2002;Zhang et al. 2010Zhang et al. , 2015;;Liu et al. 2012;Trucillo Silva et al. 2017). We previously described the mapping of various enzymes of N metabolism in the leaf tissue of maize testcrosses (TCs) derived from the IBMSyn10-DH lines and an elite inbred, grown in hydroponics. In this study, we present the mapping of enzymes and metabolites related to N metabolism in the root tissue, and relate those observations to the preceding study of N metabolism in the shoot tissue. This is the first QTL analysis for N-metabolism related enzymes and metabolites in maize roots, particularly in a TC population.From the cross between IBMSyn10-DH lines and an elite inbred (PEI), property of DuPont Pioneer, 176 TC genotypes were generated and used in this investigation. The IBM-Syn10-DH population consists of a set of DH lines derived from a population after ten generations of random mating from the cross between B73 × Mo17 (Hussain et al. 2007).The same experimental design as described previously was used (Trucillo Silva et al. 2017). Each TC genotype was germinated in autoclaved paper rolls and sterilized water, and subsequently grown under hydroponic conditions. Ten tanks (i.e., sets) containing appropriate growth media were planted with 264 seedlings per tank. In every set, 22 genotypes were grown, and each genotype was replicated 12 times. Two genotypes (B73 and Mo17 each crossed to the PEI) served as controls, and were included in every set and replication.The growth media consisted of MgSO 4 •7H 2 O 0.5 mM, KH 2 PO 4 0.5 mM, Fe-EDTA 0.1 mM, FeEDDHA 0.1 mM, Ca(NO 3 ) 2 •4H 2 O 1.25 mM, KNO 3 2.5 mM, Na(OH) O and 50 mM KCl) in a total of 400 L solution per hydroponic tank. The pH was maintained between 5.9 and 6.1 as described in Garnett et al. (2013). A flux density at the canopy level of ~ 500 µmol m −2 s −1 was supplied at 14 h (25 °C) day: 10 h (20 °C) night cycle. The plants were randomized in the tank every 5 days to guard against the position effects. Two weeks after planting, the six most representative uniform plants of each genotype (based on root and shoot development), were selected and transplanted into another hydroponic tank with same media.When plants reached V4 stage (Abendroth et al. 2011), usually 4-5 weeks from planting, 4-5 cm of the primary root from six plants were collected and stored at − 80 °C while the rest of the plant tissues were dried for 12 days at 48 °C.The V4 stage of development was selected for assays because inter-plant shading became a factor after this. The potential border-row effect was mitigated by randomizing the plants more than once during their growth (Tuberosa et al. 2002).All the biochemical assays were performed as previously described (Trucillo Silva et al. 2017). Activity of eight enzymes related with the N-metabolism pathway was determined in root samples of each genotype. The set of enzymes included NR, NiR, GS, GOGAT, AlaAT, ASN, AspAT and PEPC, and specific protocols were adapted by K. Dhugga, R. Abbaraju and L. Fallis and described in Plett et al. (2016). GS, GOGAT, Asp AT and PEPC assay protocols were adapted from Gibon et al. (2004), NR from Lea et al. (1990), NiR from Bourne and Miflin (1973), ASN from Joy and Ireland (1990), and AlaAT protocol was modified from Ashton et al. (1990). Metabolites nitrate and glutamate were measured as byproducts of enzyme reactions. All measurements were determined by the absorbance of each biochemical reaction compared to known standards using a spectrophotometer (Spectramax Plus 384 Microplate Reader, Molecular Devices).Plant tissues were weighed and analyzed for N content by combustion analysis as described by DeBruin et al. (2013). Based on root biomass dry weight (RW) and percentage of N measurements (N r ), total amount of N present in root (TN r ) tissues was calculated. In addition, N ratio was estimated as the ratio between total amount of N present in shoot tissues (TN s ) and TN r . The analysis of shoot dry weight (SW), TN s and N s is presented in Trucillo Silva et al. (2017).Statistical analysis was implemented in R statistical program (RCoreTeam 2014) as described in Trucillo Silva et al. (2017). Ggplot2 (Wickham 2010) and GGally (Schloerke et al. 2014) R packages were used for initial analysis of the raw data. First, a univariate analysis, where a single variable is fitted in a model, followed by a multivariate approach, where multiple variables are analyzed simultaneously, was performed to comprehend the relationship among the variables. Then, based on a jackknife resampling strategy, outliers in the dataset were identified as described in Trucillo Silva et al. (2016). The main procedure consists on fitting a statistical model n times, systematically omitting one observation from the dataset, followed by the prediction of random effects for a subset of the most consistent genotypes each of the n times. The mixed model was fitted with ASReml R package (Butler et al. 2007) and correspondent mixed model equations were solved for the prediction of random effects and estimation of fixed effects.The statistical model can be represented as follows:where y denotes a n × 1 vector of observed response values, b is a p × 1 vector of fixed effects, X is a n × p design matrix, u is a q × 1 vector of random effects,Z is a n × q design matrix, and e being the error term.The following assumptions were used: E (u) = 0, E (e) = 0, Cov (u, e) = 0, and Var (u) = G and, Var (e) = R. The G matrix had a compound symmetry structure on the genotype levels and R matrix is a diagonal matrix with different values for each set, allowing non-constant variance across sets. The response variable was the activity of the enzyme and the metabolite concentration, respectively. Set, the light replicate and plate were included as fixed effects in the model (where replicate and plate are nested in a set), and the check genotype effect was included as a continuous covariate. Finally, the genotype was included as a random effect in the linear model. Several genotypes were discarded depending on the trait (e.g., for both AlaAT and NR five genotypes were removed). Furthermore, one and four complete sets of data were removed for glutamate and nitrate, respectively, due to the contamination of samples and very low accuracy in the estimations.Significance of genetic variance was calculated based on log-likelihood ratio test by comparing models with and without the TC random effect. Correlations were calculated among BLUP values for each pair of traits and significance was adjusted after the Bonferroni correction for multiple comparisons. Repeatability was derived from variance estimations from ASReml. The variance components were estimated for each different set. As a result, different values of repeatabilities were estimated and partial estimates were y = Xb + Zu + e, averaged. Path coefficient was performed as described by Wright (1921) andTrucillo Silva et al. (2017).The studied traits followed Gaussian distribution as judged from the similarity of mean and median values along with skewness estimates (Supplementary Material 1).TC materials were genotyped with 5306 single nucleotide polymorphism (SNP) markers by the Beijing Genomics Institute. Physical and genetic positions of the markers were determined and genetic maps were created with R/qtl (Broman et al. 2003). Recombination fractions were estimated and the Kosambi mapping function was implemented to calculate genetic map distances (Kosambi 1944). In addition, mapping distances were adjusted to compare the results with previous investigations. The expansion factor was determined based on the following equation: ∝ = j 2 + (2i − 1)∕2i, where j corresponds to the number of generations of intermating including the two generations for generating the F 2 , and i is the number of inbred generations after intermating (Teuscher et al. 2005).The real map was 11,265.25 cM and map distances were reduced by a factor of 6.5 to estimate the adjusted F 2 map. The final adjusted map was 1733.12 cM length with an average spacing between markers of 0.33 cM, while the maximal spacing between markers was nearly 7 cM, on chromosome 6. With regard to physical distance, the length of the total genome was 2051.75 Mb, with the biggest gap between markers of 69.80 Mb length (located on chromosome 2). On average there was a marker positioned every 400 Kb.QTL Cartographer (Basten et al. 2002) was utilized to detect associations between phenotypes and genotypes. Singlemarker analysis, linear regression analysis and composite interval mapping (CIM) was implemented. Zmap (model 6) was performed for CIM, using the ten most significant marker cofactors identified by forward and backward regression. QTL were scanned at intervals of 1 cM and at every marker while cofactors located within a window of 10 cM of the scanned position were excluded from the analysis. To determine LOD score thresholds of 5%, and significant QTL, 1000 permutations were performed for every trait. Two nearby QTL were considered as different when LOD peaks were localized 20 cM or greater apart. Effects of QTL are expressed relative to the B73 allele, where an effect with a positive sign represents an increasing allele from B73 and the one with a negative sign denotes an increasing allele from Mo17.Multiple interval mapping (MIM) analysis was performed by fitting previously identified QTL from CIM analysis, and parameters were re-estimated and positions refined. All pairwise interactions between QTL in every model were examined for each trait. The significance was determined based on the information criterion: IC (k) = − 2 (log (L) − kc (n)/2), where the penalty function corresponds to: c (n) = log (n) and a threshold of 0.0 was used (Basten et al. 2002). The proportion of the total phenotypic variance associated with each model was estimated.Candidate genes annotated on corresponding 1-LOD QTL confidence interval regions were examined from MaizeGDB (Lawrence et al. 2008) and Phytozome (Goodstein et al. 2012). Those candidate genes directly related to N-metabolism based on descriptions in model species, such as rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana), were proposed for further studies. Several other candidate genes may be promising candidates for further investigations, including transcription factors; however, they were not considered due to the difficulties to ascertain a direct relationship with N-metabolism in maize based on available descriptions.Shoot and root dry mass, respectively, explained 83 and 17% variation in total plant biomass as determined by path coefficient analysis, which mirrors the actual, average proportion of the two components of the plant across all the TC at 86 and 14% (data not shown). The coefficient of variation (CV) was, respectively, 26.2, 19.3, and 19.9% for the root, shoot, and total biomass. A relatively lower CV of 13.4% for the root/shoot ratio implies that partitioning of dry matter between these two plant parts was less variable than the total dry matter accumulation itself.Root dry mass exhibited a negative, logarithmic relationship with N concentration, with an R 2 of 0.51 (Fig. 2). Shoot N concentration did not correlate with shoot or total dry mass (data not shown). Root N concentration in fact was also negatively correlated with the shoot dry mass and total dry mass with R 2 values of 0.35 and 0.39, respectively, which is not surprising because shoot/root ratio was less variable than either of these traits as discussed earlier. This implies that the roots of the rapidly growing plants retained less N, pointing to a limitation of sink in the shoot for the absorbed N. Apparently, N acquisition, unlike dry matter formation, was not a limiting factor in plant growth. A limitation in dry matter deposition seemingly limited dilution of N in the dry matter, which is manifested in a negative correlation between these two traits. These results are from the plants grown under non-limiting N levels, however, where the 1 3 root surface was continuously bathed with nitrate. N uptake could become limiting, particularly under low soil N, where a depletion zone develops around the root, particularly during the peak period of transpiration.ASN and NR had higher activities on a protein basis in the leaves than in the roots, GOGAT was similar between these two tissues, but the activities of the remaining enzymes were higher in the roots at varying levels with NiR being approximately four-fold more active (Fig. 3). Nitrate concentration on dry mass basis was higher in the shoot, implying its efficient transport from the root to the shoot tissue. Glu was more abundant in the roots than in the leaves, suggesting significant nitrate reduction in the roots (Fig. 3).Enzyme activities and metabolite concentrations were poorly correlated between the root and the shoot tissues (Fig. 4). The highest correlation coefficient, 0.26, was observed for tissue N concentration. These results imply that the enzymes for N metabolism operate independently in the root and shoot tissues. It is possible that the leaf enzymes are primarily reflective of dry matter deposition, and root enzymes of maintaining N absorption and transport; the relative proportions of these two components in the plant are 84 and 16%, respectively. Furthermore, the reduction of nitrate in the roots may be a mechanism to maintain a favorable electrochemical potential gradient for its continued uptake.Regression of root and shoot dry matter on each of the enzyme activities revealed a weakly negative relationship for all but two of the enzymes (Table 1). GS explained the most variation, 9%, whereas AspAT and NR each explained approximately 4% of the variation in root dry mass. For the shoot dry mass, AspAT, ASN, GOGAT, NiR, GS, and AlaAT explained 9.5, 7.5, 6.6, 4.7, 4.6, and 3.3% variation, respectively. Of these, AspAT, NiR, and ASN subsumed the variation explained by GOGAT, GS, and AlaAT as indicated by the direct and indirect contributions of each of the enzymes (Trucillo Silva et al. 2017). These observations point to the dilution effect of cell expansion on the cellular contents and suggest that excess capacity for enzyme activities is reflective of metabolic homeostasis to maintain biomass productivity.Repeatability, also referred to as broad-sense heritability in forward selection, is a measure of consistency of a trait among the plants (replicates) of the same TC (Fig. 5). All traits were measured on the same plants grown in the same hydroponic culture system under controlled light and temperature (Table 2). Since the standard error of replicated assays from each plant was negligible, repeatability provides a measure of consistency of different traits among plants in each line. Nitrate concentration and ASN in the shoot tissue were the most and least consistent traits, respectively. Nitrite reductase (NiR) in the leaves was the most consistent enzyme although NR was a close second. PEPC was more uniform in the roots than in leaves, which could be because the light-inducible form in the leaves is the main enzyme for C4 photosynthesis and responds to small changes in light availability. The plants were in close proximity to each other and slight interference from variable shading was unavoidable. The root PEPC was perhaps more stable because its role is primarily anaplerotic, that is, to fix CO 2 released by respiration into oxaloacetate using phosphoenolpyruvate as the other substrate to support amino acid formation (Fig. 1).Nitrate concentration was less variable among plants in the leaves than in the roots, which suggests that roots likely respond to feedback from the leaves for free N status, and thus adjust nitrate absorption to maintain homeostasis in the leaves, where most of it is reduced. This could particularly be the case because nitrate concentration was higher in the leaves than in the roots (Fig. 3).Despite wide variation in repeatability among the enzymes of N assimilation, both root and shoot biomass were more uniform among the plants sampled for analysis (Fig. 5). Since the plants were selected for uniformity by rejecting the outliers (see Materials and Methods), the root and shoot dry masses are relatively uniform.Glutamate is a key amino acid in N assimilation as it constitutes the entry step of inorganic N into organic form (Trucillo Silva et al. 2017). A path coefficient diagram depicting the direct and indirect effects of various enzymes toward the cellular glutamate concentration is shown in Fig. 6. In the leaf tissue, AlaAT alone explained 58% of the variation in glutamate, suggesting a key role in maintaining the intracellular concentration of this amino acid (Trucillo Silva et al. 2017). No single enzyme was as strongly correlated with glutamate in the roots, however, perhaps because roots act more as conduits for nitrate uptake but not for primary N assimilation. AlaAT alone still explained 10% of the net variation in glutamate level, but GOGAT was just as important, explaining 11% of the variation (Fig. 6). AspAT and ASN each explained 4% variation in the glutamate level. GS was inconsequential in determining glutamate level, which implies that glutamine, a substrate for glutamate regeneration along with α-ketoglutarate (Fig. 1), was not a limiting factor in the root-cell glutamate level (Fig. 6). A limitation of carbon skeletons because of their utilization in dry matter deposition in expanding cells might favor N cycling between glutamate and alanine (C/N ratio 3) than between glutamate and aspartate (C/N ratio 4) (Trucillo Silva et al. 2017). This pattern appears less prominent in the roots, perhaps because they are not the primary sites of carbon fixation, N reduction and assimilation (Fig. 6). Pairwise correlation coefficients for all the traits are shown in Supplementary Material 2. Of all the pairwise correlations, 31% were highly significant (p value < 0.001). All significant correlations between enzyme activities, enzymes and metabolites, and between metabolites were positive.Twenty-six QTL were identified across all the traits. Five QTL were detected on one chromosome, 7, whereas only one was identified on chromosome 8 (Fig. 7). AlaAT-3 and AspAT-2 were the only QTL that overlapped their respective 1-LOD CI on chromosome 10. The number of QTL varied for different traits, ranging from only one for some traits (GOGAT and NR) to four for NiR (Fig. 7).A majority of the QTL, 19, explained less than 10% of the genetic variance. Six QTL explained 10-25%, while one explained > 25% of the variance. The QTL which accounted for the highest amount of variance (31.5%) and presented the highest LOD score (23.4) was for PEPC-1, located on chromosome 5. For that QTL, the B73 allele had a negative effect (− 23.78 µmole NADH/min/mg protein). Furthermore, for 70% of all QTL detected across traits, B73 alleles had negative additive effects. For certain traits, for example, AspAT, GOGAT, and GS, B73 alleles exhibited only a negative effect, however, for ASN QTL, B73 alleles had positive effects (Table 3).Confidence intervals (CI 1-LOD) for QTL ranged from 1.04 to 24.46 cM (0.16-3.76 cM adjusted distance) length, with an average of 7.79 cM (1.2 cM adjusted distance). Those CI correspond to 0.2-21.1 Mb in physical distance, with a mean CI length of 2.46 Mb (Table 3).First order epistatic interactions between QTL identified previously by CIM were not significant for any of the traits, thus epistatic digenic effects were excluded from genetic models. Even though 43% of the total variance was explained in PEPC by fitting two QTL in an MIM model, other genetic models captured less than 10% of the phenotypic variance, such as for ASN, GOGAT, GS and NR (Table 4). On average, multiple QTL models explained 15.1% of the variance when two QTL were included in each of the models.An average of 63 genes were annotated underlying QTL 1-LOD regions, with CI regions containing between six and 376 genes. Only a subset of the putative genes could be associated to N-metabolism pathway based on their descriptions in model species. The most promising genes were GRMZM2G028574, GRMZM2G111225, 5). Each of them was associated with a putative function relevant to NUE. Examples are PEPC, nitrilase, aspartate kinase, glutathione synthetase, aspartate kinase, arginine decarboxylase, phosphofructokinase, arogenate dehydratase, phosphopyruvate hydratase, phosphoribosyl transferase, and last two genes as S-adenosyl-methionine-dependent (SAM)-methyltransferase, respectively. In agreement with our earlier study on the leaves of this population (Trucillo Silva et al. 2017), all the QTL identified in this study are located on a different position to the known genomic location of each corresponding structural gene. For example, GS QTL were identified on chromosomes 7 and 9 at physical positions 158.15 and 23.85 Mb in this study, whereas GS1 and GS2 locus are located in chromosomes 1, 2, 4, 5, 9 (between 146.06 and 146.07 Mb), and 10, based on the following nearest loci on the IBM2 2008 Neighbors map, respectively. The candidate genes identified within the QTL regions might affect the enzyme activities in a trans-acting regulatory manner as previously described, most likely through metabolic pathways as all the genes are non-regulatory in nature (Zhang et al. 2010). The candidate genes we identified are located on chromosomes 1, 2, 3, 4, 6, and 7. No candidate genes related to N metabolism were identified underlying QTL for ASN, GS, NiR, PEPC, nitrate, and glutamate. Previously, we reported the genetic and biochemical analyses of shoot enzymes and metabolites in a TC mapping population (Trucillo Silva et al. 2017). In this report, we focus on the root tissue of the same population.Variable repeatabilities for various enzymes and metabolites both for root and shoot tissues provide a window into the stability of each of these traits within a line (Fig. 5). Despite the fact that a controlled environment was used (light intensity, nutrients, and temperature) in which the testcrosses were grown to the maximum extent possible, repeatability for a majority of the biochemical traits was generally less than 50% both in the roots as well as in the leaves (Fig. 5). Higher repeatability for the root and shoot dry mass than most of the enzymes suggests that enzyme levels can fluctuate to maintain metabolic homeostasis such that dry matter deposition is maintained. A slight negative correlation between dry mass and enzyme activities suggests that the enzyme amounts are maintained above the threshold for optimal biomass production (Table 1). Nevertheless, variation for repeatability highlights how a trait can vary significantly among plants of the same genotype grown in a controlled environment. These observations are significant in that they imply that environmental variation may be difficult to control under the field conditions regardless of measures taken. Increasing the number of replications and years or locations for testing genetic variants could help reduce the chances of false positives.A lack of correspondence between the enzyme activities of the root and shoot tissues suggests that metabolism in these tissues is optimized for different functions, apparently for dry matter accumulation in the shoot and nutrient absorption and transport in the root.Even though numerous QTL associated with enzymes involved in N-metabolism were identified in previous studies (Agrama et al. 1999;Limami et al. 2002;Canas et al. 2012), only a few investigations were based on a representative and high-resolution mapping population, such as Zhang et al. (2010) and(2015). The performance of most traits in maize in the inbred lines is weakly, if at all, correlated with their hybrid (Hallauer et al. 2010). Yet, only a few studies have focused on mapping in testcross populations (Bertin and Gallais 2001;Gallais and Hirel 2004). Furthermore, we used TC derived from the IBMsyn10 population, which represent a higher recombination frequency, and thus narrower intervals of the identified QTL. To account for the higher recombination rate, we used a platform with 5303 SNP markers.As reported in previous studies, the activity of enzymes investigated, constituents of the N-metabolism pathway (except PEPC, which is a member of the primary C-metabolism), seem to be co-regulated (Zhang et al. 2010;Trucillo Silva et al. 2017). Hence, a positive correlation between enzyme activities, as well as within metabolites concentration, was expected and our observations confirmed it. Significant correlations between enzyme activities and metabolites were also positive (Supplementary Material 2).In comparison to previous studies (Zhang et al. 2010;Trucillo Silva et al. 2017), in which leaf tissue was investigated, determination of root enzyme activity was more prone to sample to sample variation, mainly because, unlike the leaf where the same position could be sampled from each plant, root lengths were more variable, as reflected in final samples. Performance of assays on six replications per genotype ensured that the repeatability measures are quite similar between the root and leaf enzymes (Fig. 5).A few of the QTL identified in this study were found to be in analogous positions as in previous detected NUErelated QTL on leaf tissues (Trucillo Silva et al. 2017). For instance, a root QTL associated with ASN located on chromosome 5, corresponds to leaf QTL for PEPC, nitrate and GOGAT (LOD peak values identified 2, 4 and 7 adjusted cM apart, respectively). In agreement with Zhang et al. (2010), a QTL for AlaAT was detected on chromosomes 4, about 5 cM away from the detected position in this study. Nonetheless, most of the QTL reported in other maize studies (Agrama et al. 1999;Hirel et al. 2001;Canas et al. 2012), which failed to co-locate, were greater than 20 cM away or even on different chromosomes compared to the QTL identified in this investigation. For example, QTL for GS activity were determined on chromosomes 7 and 9 in this study, whereas on chromosomes 4 and 5 in a previous study (Canas et al. 2012).A lower number of QTL was identified per trait compared to previous investigations on leaf tissues (Zhang et al. 2010;Trucillo Silva et al. 2017). This suggests that similar traits are differentially regulated in roots and leaf tissues. The power to identify a QTL depends on the magnitude of the QTL effect and the size of the segregating population (Beavis 1998). Because a large number of small-effect QTL segregating in the genome were expected, and due to the size of the segregating population (176 individuals), only a subset of the total number of QTL was expected to be identified. Moreover, in comparison to Zhang et al. (2010), the number of QTL detected were most likely affected by the six additional rounds of random mating before fixing the lines that constituted the IBMsyn10-DH population. It is possible that the QTL previously detected in large linkage blocks, might have been separated into several smaller-effect QTL after further recombination events occurred. Therefore, the power to detect a QTL, each with a very small effect, would be expected to be lower. Another difference between the two studies is the use of inbred versus hybrids for mapping QTL. Little evidence of common QTL detection between inbred per se and TC progeny has been found in previous investigations (Beavis et al. 1994;Schon et al. 1994). It is possible also that some of the QTL identified in the inbred lines could have been masked in heterozygous form.As previously reported by Trucillo Silva et al. (2017), the MIM results across traits suggest that there might be several undetected small effect QTL responsible for the rest of the genetic variation, for example, for PEPC and ASN, two QTL explained 42.5 and 8.1% of the variance, respectively. The sum of the effect of numerous QTL, each with small marginal effect, plus any type of epistasis which they might be involved in, should account for all the unexplained genetic variance in the MIM QTL models. It has been established that epistasis can make a large contribution to the genetic regulation of complex traits (Carlborg and Haley 2004). However, statistically significant first order epistasis between identified QTL was not detected. Likewise, no significant epistasis between QTL was detected in a recent study based on the maize nested association mapping (NAM) population, which included the parents of this population (B73 and Mo73) (Zhang et al. 2015).From a total of 60,000 annotated genes across the maize genome, a limited number was identified under 1-LOD QTL intervals. One of the genes, GRMZM2G368398, an oligopeptide transporter, was also identified in a previous meta-QTL investigation of candidate genes for NUE in maize (Liu et al. 2012). An additional gene (GRMZM2G053958), which codes for NAD(P)-binding Rossmann-fold superfamily protein was proposed as a candidate gene in a recent investigation based on C and N metabolism in the NAM population (Zhang et al. 2015). In this study, 13 candidate genes associated with N-metabolism are suggested for further studies. GRMZM2G028574 and GRMZM2G473001 are annotated as PEPC genes. GRMZM2G111225 is annotated as a nitrilase enzyme, which catalyzes the hydrolysis of nitriles to carboxylic acids and ammonia, and is implicated in auxin biosynthesis in maize (Park et al. 2003). GRMZM2G166366 and GRMZM2G136712, code for aspartate kinases, which catalyze the phosphorylation of aspartate to for β-aspartyl phosphate, and is responsible for the first step in the biosynthesis of the amino acids lysine, methionine, and threonine (Azevedo et al. 1992). GRMZM2G155974 catalyzes the addition of glycine to γ-glutamyl-cysteine, generating glutathione. Glutathione is a key water-soluble antioxidant, which represents the storage form and long-distance transport form of reduced sulfur (Zagorchev et al. 2013).1 3 GRMZM2G374302 codes for arginine decarboxylase, a key enzyme involved in polyamine biosynthesis that decreases in concentration under N-deficiency conditions (Amiour et al. 2012). In addition, GRMZM2G409131 catalyzes the phosphorylation of d-fructose 6-phosphate to fructose 1,6-biphosphate, the entry point into glycolysis (Plaxton and Podesta 2006). GRMZM2G466543 codes for arogenate dehydratase, a gene that functions in the final steps of the aromatic amino acid pathway that produces two essential amino acids, tyrosine and phenylalanine, which initiate lignin formation, releasing ammonium as a byproduct that is again absorbed by the GS/GOGAT cycle (Holding et al. 2010). GRMZM2G481529 is a cytosolic enolase or phosphopyruvate hydratase and is described as a metalloenzyme responsible for the conversion of 2-phosphoglycerate to PEP, necessary for sucrose synthesis from pyruvate in C4 plants (Karpilov et al. 1978). GRMZM5G817058 is a phosphoribosyltransferase and acts in amino acid metabolism by catalyzing the first step in the biosynthesis of histidine (Morot-Gaudry et al. 2001). Finally, GRMZM2G575696 and GRMZM2G580894, both S-adenosyl-l-methionine (SAM)-dependent methyltransferases, are responsible for transferring methyl groups from the methyl donor SAM to N, oxygen, sulfur, and C atoms of several biomolecules, such as DNA, RNA, histones, and other proteins. These modifications may affect the expression of a wide variety of genes involved in signaling, nuclear division, and metabolism (Bobenchik et al. 2011).Enzymes for N metabolism exhibit relatively low repeatabilities as compared to dry mass, suggesting they might be overexpressed in the cells under normal N possibly to maintain biomass accumulation through metabolic homeostasis.Poor or no correlation between the root and leaf enzymes and metabolites signifies the importance of studying these two tissues separately. Mildly negative correlations between dry mass and tissue N concentration as well as between the enzymes and dry mass appear to arise from a lack of dilution of cellular contents because of constraints on cell expansion, which, in turn, might arise from factors other than N that limit dry matter formation. Glutamate synthase and alanine aminotransferase were the key enzymes in regulating the cellular levels of glutamate. Our high-throughput assays pave the way to study the enzymes and metabolites of N utilization at field scale.Author contribution statement KSD, ML, and ITS conceived and designed the experiments, carried out data analyses, and wrote the manuscript. ITS, HKRA, and LPF performed the laboratory analyses, HL provided molecular marker information. All authors revised and approved the final manuscript.","tokenCount":"6086"} \ No newline at end of file diff --git a/data/part_3/0982587354.json b/data/part_3/0982587354.json new file mode 100644 index 0000000000000000000000000000000000000000..0f27e42c398afe1d10b8033d0de5b81b97fab5c1 --- /dev/null +++ b/data/part_3/0982587354.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"5e80ef0fea0c607ae4d02b10e31a1c91","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/e21fd89b-3f7c-4aba-a1af-0898a77f077e/retrieve","id":"2005854471"},"keywords":[],"sieverID":"4a6ad63c-bc14-4e36-9e9e-12ff3957e7c5","pagecount":"8","content":"Appropriate technological solutions together with empowering social environment are the basic requirements for ensuring food and livelihood security under the emerging scenario of growing climate risks. Studies by various scientists (Farnworth et. al., 2017;Das et. al., 2015;Chayal et. al., 2013;Waris and Viraktamath, 2013;Dev, 2012;Gosh, 2010) also identified the importance of gender empowerment in agriculture and have found the gender gap in agriculture in India. Through capacity building programs, CIMMYT-CCAFS is aiming to foster Climate Smart Agriculture (CSA) and related activities to women farmers so that issue of knowledge gap between men and women involved in farming is addressed. Similarly a recent workshop was organized to further enhance the role of women in decision making.The workshop objectives were to:1. Adoption of climate smart technologies among women farmers to increase decision making by getting engaged in farm budgeting and agri-allied activities 2. Entrepreneur skill development on post-harvest technologies (namely grain storage, fodder management), livestock management (feeding, milking, milk processing etc.), market knowledge (on raw produce and processed product from farming) and value creation (processing and branding), thereby translating it into income source. At the Inaugural, Dr. RBB Singh, Director, NDRI, referred to sensitization of the technologies through these workshops for knowledge dissemination and enhanced learning. There has been tremendous increase in milk production to meet the population growth rate. Technology intervention has been limited due to scattered milk production wherein women play major role in dairy rearing and livestock management to keep milk production uptake. Dr. ML Jat, Principal Scientist, CIMMYT, stated \"World Bank suggests an increase in agriculture production by 20% with empowered women\" which necessitates optimum utilization of youth and women capacity. Added decision making role and involvement in terms of farm budgeting, household and farm, will derive socio-economic returns to society. Need to reduce post-harvest losses and diversification was also addressed for which sessions are organized in the training. He strongly emphasized upon technology adoption and highlights the adverse effects of residue burning, farm budgeting to enhance household decision making of women Dr. PC Sharma, Director, CSSRI, elucidated given changing climate and erratic rainfall, the adversities faced in agriculture and thus role of land and water management by involving women. He emphasized the climate smart an agriculture practice enhances the nutritional quality of grains and straw. The animal feed on that will definitely produce good quality milk which results in quality products that can be preserved for longer time. Not only milk production but value addition like dairy products (namely Cheese, Paneer, Khoya, sweets, etc.) and initially linking with market at small scale level is required. Coming together in groups and gradually formalizing will set platform for economic returns. Practical training on high quality products will be provided in the workshop to build capacity of women farmers.Dr DK Gosain heavily focused on importance of milk preservation and said that farm families should value add the farm products so that their products will be sold at higher prices and women should work in groups in order to get best results.Dr. HS Jat, Sr. Scientist, CIMMYT, graced all the participants for attending the event and presented vote of thanks. To give a boost to the workshop, the associated women farmers already practicing climate smart technologies shared their experiences and how they look forward for this training to make then self-sustainable and respected. \\ Participants were taught importance of crop-dairy farming system and its interconnections and functional relation between different components of farming systems. Also how farm families should add value to the farm products so that their products can be sold at higher prices along with potential market scope of their value added products Practical sessions were organized for skill development to meet competitive market of existing established sellers.Knowledge of modern techniques in livestock management provided in order to increase income and yield of household. Methods to increase shelf life of dairy, grains, fruits and vegetables was disseminated to prevent food spoilage before disbursed for markets.Need based training and knowledge dissemination was targeted for efficient utilization of workshop. Thus, pre-workshop questions were asked about their current knowledge and aspired learnings. The workshop was targeted as per the deemed essential components to be addressed to meet learning aspirations. After the workshop, feedback was collected to record their knowledge gain and future desired learnings. Systematic synthesis and analysis of data collected was done to capture the feedback in most efficient manner. Forms were evaluated and scoring was given.Primarily the participant data was distributed based upon their personal characteristics of education and age. This was highlighted to create the prospect women farmers which can be targeted as progressive women farmers for scaling. For instance a young educated women farmer is more likely to adopt technologies given required trainings From the above data we can observe that 68 percent female farmers in the training were already using some kind of climate smart techniques at their farms. Sixty five percent of them are using green seeker based nitrogen application while 61 percent female stated that they use turbo happy seeder for wheat sowing. Thirty nine percent farmers among them use nutrient expert based fertilizer application and twenty seven percent use direct seeded rice method. Fourty five percent among them practice habit of keeping lekha jokha of their agriculture activities and 39 percent do practice crop rotation practice by either shifting to maize or growing legumes. To understand how the workshop helped in improving knowledge there was pre and post analysis done. Increase of knowledge was calculated in percentage terms, as given in figure 3.Figure 3. Knowledge increase of the participants after the training.Further analysis of the data showed that their knowledge about climate smart technologies (green seeker, nutrient expert, farm budgeting, turbo happy seeder, DSR, crop diversification) increased from 48 to 77 percent. Market related knowledge (knowledge about potential markets for their products, preparation of farm products before it reaches market, strategy for marketing farm products, market linkage with firms ventures) increased from 25 to 68 percent, whereas understanding of post-harvest technologies (e.g. preservation of dairy and farm products, importance of moisture content of grain, better handling practices for farm products to seek high prices for better quality products and contributing in value chain systems) increased from 43 to 77 percent. Among the participants 77 percent felt an increased knowledge and understanding of dairy products processing.With the previous interventions made, we have observed a reasonable existing knowledge base about CASPs and CSVs. But with the new approach towards crop-dairy farming systems and market, there is observed additional interest among women farmers towards management of agriculture and its allied activities. With the advanced and women friendly techniques, they are getting inclined towards adoption of CSAPs such as nutrient expert, greenseeker and other activities. These not only will improve thier role in houselhold income but also build their capacity for entrepreneur development may be individually or in groups. To capitalize the women labor force in most efficient manner, the only way to make them equipped with necessary knowledge and trainings through such initiatives at various public-private levels. ","tokenCount":"1169"} \ No newline at end of file diff --git a/data/part_3/0997221827.json b/data/part_3/0997221827.json new file mode 100644 index 0000000000000000000000000000000000000000..69aed3a17cb5d1bdc805df76d45733daeccfc7d4 --- /dev/null +++ b/data/part_3/0997221827.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"6f97c66e60d946d01583ffc37166a96e","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/3d5128c8-61af-49d3-baa4-38421a817c82/content","id":"-385472035"},"keywords":[],"sieverID":"440505e9-0a0c-4636-8aa2-a5bc45f595ac","pagecount":"12","content":"Harvesting in maize production is one of the activities that requires the greatest investment of time and physical effort for those who perform it manually. The existence of specialized machinery for this particular activity is focused on the medium and high production sector, who usually use tractors or high-powered self-propelled machines. However, small maize producers in Mexico face the problem that sometimes do not have the capacity for timely harvesting and cannot rely on service providers who tend to prioritize large extensions and with machine far too large to enter in small plots. In response, a maize mini-combine harvester prototype for a Dongfeng® two-wheel tractor with 15 hp of power was developed.This report describes the development process and tests conducted both in the mechanical workshop and in a field with maize crop. Performance parameters such as work capacity, fuel consumption, mechanical damage to harvested grain and losses due to corn grain dispersion in the field were determined. The favorable results show the developed mini-combine harvester as an option to mechanize the harvesting activity, using power sources according to the working surfaces, which is also reflected in the low fuel consumption compared to medium-power agricultural tractors.La cosecha en la producción de maíz es una de las actividades que requiere mayor inversión de tiempoEn sistemas de producción de pequeña escala la actividad de cosecha se realiza de manera manual, dicha actividad no requiere de una herramienta especial, sin embargo, si supone un gran requerimiento de mano de obra y esfuerzo físico, en promedio se requiere de 25-30 días para concluir el trabajo en una superficie de una hectárea. Además de ser una tarea fatigosa es un proceso intermedio para obtener el producto final que es el grano, la actividad de desgrane es la continuación y por la cual se requiere de más tiempo y esfuerzo. La mecanización de la labor de cosecha y el desgrane ofrece a los agricultores la oportunidad de ampliar el volumen de producción, a través de una mayor capacidad de trabajo, aunado a esto los tiempos de cosecha pueden ser mejor atendidos.Las cosechadoras autopropulsadas en el mercado son demasiado grandes para la superficie de los pequeños productores, una cosechadora de 1 hilera puede aprovecharse efectivamente hasta en 20 hectáreas, mientras que una maquina con cabezal que abarque varias hileras requiere de varias decenas de hectáreas para ser económicamente efectivo. Otro de los factores que condiciona la adopción de tecnologías de mecanización es la perdida de granos en el campo, estas pérdidas están estimadas en un 3-5% respecto a la cosecha total, sin embargo, en condiciones adversas pueden alcanzar hasta el 15%. Un problema común de las superficies de pequeñas dimensiones mecanizables, es la espera de un maquilero de la región, el cual da preferencia a superficies de grandes dimensiones, dejando al último las más pequeñas o la más alejada. Actualmente en el país no se cuenta con un equipo de estas características y con las ventajas que representa para la mecanización de la cosecha en predios de pequeñas dimensiones. Si bien se conoce de equipos fabricados en países como China, estos no cumplen con todas las características para obtener el grano y otros son fabricados con propósitos científicos y requerimientos especiales haciendo la herramienta muy costosa.El desarrollo local de dicho prototipo permite continuamente realizar pruebas en campo y adecuar la herramienta a las condiciones reales del país. El diseño flexible del prototipo permitirá al usuario utilizarlo como una desgranadora en sitios en donde las condiciones del terreno no sean aptasLa máquina se conforma de varios sistemas que en conjunto trabajan para obtener el producto final, grano de maíz limpio, en la Imagen 1 se observa el flujo de trabajo, el cual inicia con (A) la orientación y guía de cada planta hacia los deflectores y posteriormente su la separación de la mazorca del resto de la planta, la siguiente sección (B) consiste en el traslado de la mazorca cae dentro del contenedor hacia los martillos para la separación del grano y olote, una criba deja pasar solamente el grano a una segunda cavidad (C) que traslada el grano hacia un extremo donde se separa el tamo e impurezas antes de caer al contener de almacenamiento.La máquina es accionada por un motor Diesel de 15 hp de un tractor de 2 ruedas, a través de poleas y correas, una división de la potencia se realiza para el accionamiento de los distintos sistemas que conforman el prototipo y por otro lado el accionamiento para el avance del conjunto. En la Tabla 1 se indican las características técnicas del tractor utilizado y del prototipo de cosechadora. Los sistemas que conforman el prototipo se describen a continuación: Cabezal de corte: Ubicados en la parte frontal de la máquina, tienen como objetivo el corte de la base de la planta, así como la separación de la mazorca. Un mecanismo compuesto por 2 rodillos que giran en sentidos opuestos, la alimentación de los rodillos se realiza simplemente con el avance de la maquina y con ayuda de un par de deflectores que dirigen la parte central de la planta hacia dichos rodillos.Imagen 2. Sistema de alimentación del prototipo de mini-cosechadora para maíz. 1) Deflectores que guían la planta al centro, 2) Rodillos separadores de mazorca Sistema de desgrane: De cilindro con rotor de flujo axial compuesto en 2 secciones, la primera traslada las mazorcas provenientes de los cilindros separadores hacia la segunda sección donde una serie de martillos golpean y separan el grano del olote. El grano traspasa la carcasa perforada del cilindro trillador mientras que la paja es conducida a otra salida en la parte extrema.Imagen 3. Sistemas de procesamiento de las mazorcas, A) entrada de material, B) cilindro desgranador, C) cóncavo con perforaciones para dejar pasar el grano, D) eje sinfín para transporte de grano hasta la salidaTransporte: Un eje sinfín transporta y eleva el grano proveniente del sistema de trilla y lo conduce hacia unas paletas que permiten aún más elevar el grano y pasar por una sección en U.Limpieza: En la última sección de recorrido del grano se ubica un sistema de ventilación que conduce aire a presión en dirección perpendicular a la caída o flujo de grano, poco antes de llegar al depósito de almacenamiento.Complemento del sistema de corte ya que, al arrancar las mazorcas, los rodillos avientan el rastrojo hacia la parte inferior de la máquina. Una serie de cuchillas son las encargadas de picar el rastrojo y evitar en la mayoría de los casos que se acumule demasiado material.Imagen 4. Eje rotativo con cuchillas encargado de desmenuzar la planta de maíz una vez que se ha separado la mazorcaLa prueba de funcionamiento del sistema de desgrane se realizó en las instalaciones del taller colaborador, ubicado en Texcoco, Estado de México, con la finalizad de conocer el comportamiento de un nuevo sistema de separación de grano del olote, estabilidad de la transmisión por cadenas, verificación de velocidades de rotación del cilindro, el movimiento del material en el sinfín de transporte y flujo del material de desecho. En el taller se definió el espacio de trabajo en el cual la máquina trabajaría de manera estática, se colocó una lona con la finalidad de recolectar el grano que se dispersa durante el proceso, también se colocaron recipientes en la salida principal y en la salida de olote. La prueba consistió en 2 condiciones de trabajo relacionadas con la velocidad de rotación del mecanismo de desgrane, la primera a 720 rpm y la segunda a 590 rpm. Se realizaron 3 repeticiones para cada condición de trabajo. Cada repetición consistió en la alimentación del sistema de desgrane con 125 mazorcas con hoja como se muestra en la Imagen 5, la humedad de la mazorca utilizada fue de 12.7%. Se recolectó el grano resultante del proceso de desgrane en 3 puntos principales: 1-salida principal de grano, 2-salida de olote y 3-granos dispersos. Para determinar el flujo de descarga de grano a la salida principal se obtuvieron 3 muestras por repetición que consistió en la recolección de grano durante 20 segundos. Estas últimas muestras se ocuparon para determinar el contenido de humedad en el grano, daño mecánico, así como la calidad de limpieza del material procesado.Imagen 5. Prueba estática para determinar perdida por dispersión y daño mecánico de los granos de maíz a 2 velocidades de rotación del cilindro trillador. A) Espacio para recolección de semillas dispersas, B) Recolección de material en las diferentes salidasEl comportamiento del nuevo sistema fue bueno, el material es procesado adecuadamente y se mantiene un flujo constante en la entrada del desgranador. El orificio de salida de olote inicialmente expulsa grano, pero al acumularse más material la salida de grano se minimiza, el olote y paja termina por salir de manera lenta. El sinfín de transporte trabaja de manera eficiente y no se observó salida de material por las uniones. Respecto a las velocidades de trabajo evaluadas, se elige la opción de 720 rpm ya que además de los resultados mostrados en la tabla anterior, también se obtuvo menos impurezas en la caída principal (2.9 %) a diferencia de 4.4% obtenidos en el régimen de trabajo de 590 rpm. El flujo de entrega de grano en la salida principal fue de 26.4 g/s y 33.2 g/s para la primera y segunda condición de trabajo respectivamente.El desempeño del prototipo es adecuado al régimen de alimentación de mazorcas establecido, no se tiene bloqueos en ningún componente, el porcentaje de material que se pierde en la salida de olote debe minimizarse, colocar una compuerta que evite que el grano sea arrastrado puede ayudar, ya que se observó que la mayor perdida se da al iniciar el proceso de desgrane.La evaluación en campo se llevó a cabo en la estación experimental El Batan del CIMMYT, en la parcela de pruebas se estableció el cultivo de maíz hibrido denominado AZ-154 de la empresa PROSEMA. El rendimiento del grano se determinó a través de 5 muestras, secciones de 3 m de longitud y 0.75 m de ancho (área de 2.25 m 2 ) fueron seleccionadas para obtener mazorcas y posteriormente el grano, esta actividad se realizó antes de la cosecha mecánica con el prototipo, además, con este material se obtuvieron algunas características como dimensiones generales, masa y relación grano mazorca. En la parcela se delimitó una superficie conformada por 20 hileras de cultivo establecidas en camas angostas de 0.75 m de ancho y 50 m de largo. Un total de 20 recorridos con la en accionamiento para cosechar el maíz fueron realizados, y para cada uno de ellos se obtuvieron los datos de tiempo consumido desde la parte inicial de la cama hasta la última planta cosechada, con estos valores se obtiene la capacidad efectiva de la máquina. El grano obtenido de la salida principal fue recolectado en sacos separados para cada una de las hileras cosechadas con la finalidad de obtener muestras para grano limpio, cantidad de material no deseado y daño mecánico provocado por el cilindro desgranador. El combustible consumido por la actividad se determinó con el método del tanque lleno, al final de la prueba se rellenó de combustible con una probeta hasta llegar al nivel inicial, se tomó registro de la cantidad ocupada. Una vez finalizada la tarea de cosecha, se procedió a realizar un muestreo en campo para determinar la perdida de grano disperso en la parcela asumiendo que está perdida corresponde a la salida de olote, las muestras se tomaron en 2 ubicaciones, en la parte superior de la cama y en el fondo, para esta actividad se utilizó un marco de 0.5 m x 0.5 m colocadas de manera aleatoria, se recolecto el grano situado dentro de dicho marco para obtener posteriormente su masa. Para para determinar la cantidad de grano por mazorcas perdidas en campo se tomaron muestras en 5 puntos de la parcela cada una con área de 4.5 m 2 , se levantaron las mazorcas y posteriormente fueron desgranadas para obtener la masa del grano.Imagen 6. Evaluación en campo. A) Prototipo finalizado, B) Prototipo durante el recorrido de cosecha de una hilera de maízLas dimensiones promedio de la mazorca fueron, 135.3 mm de largo y 41.4 mm de diámetro, un peso promedio de 114.8 g por mazorca y una relación grano/mazorca de 0.83. La humedad del grano en el momento de la cosecha fue de 8%. El muestreo de rendimiento de grano dio como resultado 6.2 ton/ha. Los vientos de la temporada provocaron alrededor de un 22% de acame de las plantas, esta situación dificultó la actividad por lo que además del operador de la maquina se ocupó además una persona encargada de levantar las plantas acamadas y dirigirlas a la entrada del cabezal de corte, algunas plantas no lograron levantarse y fueron desmenuzadas junto con la mazorca, lo que incrementó la perdida de grano. En la Imagen 7 se muestra la distribución de las pérdidas de acuerdo con la ubicación del muestreo.Las variaciones en los valores de perdida de grano por dispersión en la parcela pueden atribuirse a que en ocasiones no se presenta un flujo continuo de material o en otros casos el operador realizó una pausa en el avance para que el sistema de desgrane no se saturara. Con el prototipo desarrollado es necesario invertir alrededor de 22 horas para cosechar un área equivalente a 1 hectárea a una velocidad promedio de 0.61 km/h, sin embargo, este tiempo puede llegar hasta 34 horas debido a los virajes por cabeceras o tiempos para ajustes. En esta ocasión se ocuparon a 2 personas para dicha actividad, como se mencionó anteriormente, la situación de acame del cultivo hizo necesaria esta intervención, la perdida de mazorcas esta también relacionada estrechamente con esta situación aunado al rebote que se tiene sobre los cilindros de separación que hacen que la mazorca salga disparada en lugar de dirigirse hacia la entrada del sistema de desgrane. El daño mecánico provocado es mínimo, y el porcentaje de impurezas (paja y tamo) en el producto final es de alrededor del 2%.La evaluación en campo se llevó a cabo satisfactoriamente, se obtuvieron parámetros de desempeño que permitieron identificar mejoras, entra las cuales destacan incluir elementos que dirijan eficientemente las mazorcas hacia la entrada del sistema de desgrane y no sean expulsadas y abandonadas en el terreno ya que el porcentaje de perdidas fue muy grande. El sistema de limpieza también deberá mejorarse, ubicar un ventilador a la salida principal con el propósito de eliminar impurezas y tener mejor calidad en el material de entrega.-Se ha desarrollado una herramienta para agricultores de escala de producción pequeña, no existe tecnología al menos en el país que tenga las características por lo que se considera innovador -Los materiales y mecanismos diseñados para este implemento agrícola son fácilmente reproducibles. El propósito de la simplicidad también es el bajo requerimiento de mantenimiento y la facilidad en la reparación y reemplazamiento de piezas -Se recomienda continuar con las pruebas en campo debido a la variabilidad que se puede encontrar en distintas zonas de producción de maíz, como pueden ser; pendiente del terreno, densidad en el cultivo, altura de la mazorca, etc.El prototipo de Mini-cosechadora seguirá en desarrollo, es conveniente realizar pruebas más extensas para determinar factores como durabilidad de componentes, efecto de las vibraciones, entre otros. A continuación, se indican las acciones futuras para el año 2024.Meses del año 2024 1 2 3 4 5 6 7 8 9 10 11Cosecha de maíz en lote dentro del CIMMYT (posiblemente diciembre del 2023) X Implementación de mejoras en el sistema de limpieza X X X Evaluar en al menos 2 localidades del sureste del país para determinar su funcionalidad y aceptación por parte de productores de pequeña escala X X X Generar un documento científico para diseminar la tecnología desarrollada X X X X","tokenCount":"2624"} \ No newline at end of file diff --git a/data/part_3/1005128487.json b/data/part_3/1005128487.json new file mode 100644 index 0000000000000000000000000000000000000000..e4ef95463bb8329f567572b49a6d6e45d22a0388 --- /dev/null +++ b/data/part_3/1005128487.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"eb740f350d2996a7050dad6e8e88cfa0","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/836adbbe-507e-41f6-a3ec-91c2adc841bb/retrieve","id":"-771337144"},"keywords":[],"sieverID":"051dfafb-0df3-40b1-b38a-c722a45f628f","pagecount":"4","content":"The International Livestock Research Institute (ILRI) in East and Southeast Asia has chosen Vietnam as its regional hub for research and investment. ILRI has several research projects targeting the Mekong region, making Vietnam a logical choice for the location of its regional office, and ILRI's long-term plan and commitment to sustain the gains from its engagement with its Vietnamese partners makes Vietnam one of its important action area countries.ILRI has been working with partners in Vietnam since 1999. By 2006, the institute had already established its presence in the country and was hosted by the Ministry of Agriculture and Rural Development (MARD). In 2007, ILRI established its own office and gradually increased its research portfolio and personnel in Vietnam.ILRI in Vietnam works on significant research topics that include animal health and food safety, adaptation to risks of climate change, emerging infectious diseases, improved feeds and forages, animal genetics and livestock value chains. This portfolio is closely aligned with ILRI's regional strategy, which highlights two key priority themes for research: (1) sustainable intensification of mixed crop-livestock systems and ( 2) mitigation of risks inherent in changing agricultural systems. As part of the CGIAR Consortium, ILRI in Vietnam participates in CGIAR Research Programs (CRPs) that take place in Vietnam and the Mekong region, such as Livestock and Fish (L&F), Integrated Systems for the Humid Tropics (Humidtropics), Climate Change, Agriculture and Food Security (CCAFS) and Agriculture for Nutrition and Health (A4NH).In Vietnam, ILRI partners with a number of institutions, such as the government ministries, universities, national research institutes and other development agencies, to plan and implement the research programs.Led by ILRI, the CGIAR Research Program on Livestock and Fish (L&F) aims to sustainably increase the productivity of small-scale livestock and fish systems to generate livelihoods and make meat, milk and fish more available and affordable. Smallholder pig systems in Vietnam are one of its target value chains globally, where it aims for a thriving, inclusive pig sector that is environmentally sustainable, efficient and consumer friendly. The program has begun to address development challenges by working in the areas of animal health, genetics, feeds and forages, value chain transformation and sustainable innovations. To date, L&F in Vietnam's outcomes include capacity building among partners, uptake of productivity-enhancing technologies/strategies and influencing market actors to help them reduce risks and comply with changing demand and standards.Vietnam pig sector model (VPM) upgrading (2013)(2014)(2015) This project has been updated with new data and run policy simulations. It continues to restructure the model using revised parameters of demand and supply, to introduce a transition equation to capture the dynamics of scaling up and to inform growth trajectories and their distributional implications. Key findings from the VPM have contributed significantly in shaping the development of the recent policy on restructuring of the livestock sector to 2020.This scoping study evaluates the potential of integrated indigenous pig systems and value chains to improve livelihoods and safe pork consumption for poor ethnic minority smallholders in the Central Highlands of Vietnam. The study is centred in Dak Lak, where indigenous pig breeds are kept by ethnic minority groups. The Livestock and Fish CRP is funding this project.This project assesses the changes that affect environmental, economic and social relationships between livestock breeding, agriculture and rural territories. It also conducts a systemic approach of livestock-ecosystem relationships that are documented at the farm, the territorial and the value chain levels. It is funded by the French National Research Agency (ANR).Global Environmental Facility (GEF) project on AnGR (2009)(2010)(2011)(2012)(2013)(2014)(2015) Conservation through utilization of animal genetic resources This project aims to develop breeding tools for use in lowinput livestock production systems, cost-benefit analysis tools for comparing breeding programs for different indigenous breeds and populations and analytical frameworks for assessing policy and marketing options for farm animal genetic resources. It is funded by GEF Asia.Integrated Systems for the Humid Tropics (Humidtropics;2014-2016) Central Mekong Flagship This area-based project aims to result in improved livelihoods for smallholder farming communities in the Central Mekong region (northwest Vietnam, central Vietnam and northern Thailand for 2014; Cambodia, southern Laos and Myanmar for 2015-2016). For each action site, value chain assessments, extrapolate analyses and situational analyses, among others, were conducted in 2014. For 2015-2016, baseline surveys, intervention analyses and more detailed value chain analyses will be carried out.Priority area 1: Sustainable intensification of mixed crop-livestock agricultural systems This priority area includes the following: (i) croplivestock system integration and productivity, which focuses on forages and crop residues; (ii) conservation and utilization of animal genetic diversity in the region through market-driven models of production; and (iii) value chain and market development for smallholder participation and productivity.","tokenCount":"766"} \ No newline at end of file diff --git a/data/part_3/1014547109.json b/data/part_3/1014547109.json new file mode 100644 index 0000000000000000000000000000000000000000..0737c5e81c8f5a142ada9580f9d121d2708a505e --- /dev/null +++ b/data/part_3/1014547109.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"b0a0bc27104ddc10359124c4c49a8017","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/f7b1a115-4a7b-4447-a8a1-69c08e34e0cd/content","id":"52050115"},"keywords":[],"sieverID":"4273450d-421d-4b11-9943-15c604eeae2a","pagecount":"42","content":"mientras el autor gozaba de una beca en el CIMMYT para pr,parar IU tesl. de doctorado. El autor desea agradecer a Derek Byerlee, Carl Pray, Wlllls Peterson y dos c.olaborador.. anónlmol del CIMMYT por IUS comentarlos. las opiniones expresadas en este documento son exclusivo del autor y no reflejan necesarIamente las pollUcas del CIMMYT ni deIISNAR.En este documento se describe la relación que existe entre el sector público y privado en la investigación y la producción de semilla de maíz en México y Guatemala. El estudio se concentra en las Instituciones públicas de investigación agrlcola y en las compal\"ltas locales y multinacionales de producción de semilla. Se enfatiza la importancia de las normas Institucionales que afectan la interacción de los sectores público y privado. El tamaFlo del mercado, las actividades de investigación del sector público y las pollticas de reglamentación se identifican como elementos fundamentales que determinan el grado de participación de las empresas privadas productoras de semilla en la investigación. Tales compaí'lfas incrementan día a dla sus actividades de Investigaci6n en México y Guatemala. En México, las empresas multinacionales se muestran muy activas y las locales no, en tanto que en Guatemala sucede exactamente lo contrario. La complementariedad entre la investlgacl6n y produccl6n de semilla pública y privada es más fuerte en Guatemala que en México. La evidencia preliminar que se presenta en este estudio indica que durante 1987 los agricultores comerciales de México y Guatemala obtuvieron casi todos los beneficios derivados de la Investigación sobre variedades mejoradas e hlbridos de malz, cuando estos materiales rinden por lo menos un 20% más que las variedades existentes empleadas por los agricultores.Cita correcta: R.G. Echeverrla. 1990. Inversiones públicas y privadas en la investigación sobre ma(z en México y Guatemala. Documento de Trabajo 90/03 del Programa de Economia del CIMMYT. México, D.F.: CIMMYT. La Investigación en maíz y la producción de semilla en Guatemala Organización Producción de semilla Inversiones públicas y privadas en la investigación Distribución de los beneficios derivados de la investigación Resumen y conclusiones 33 Bibliografía 2 Figura 1. Interacciones de los sectores público y privado en la Investigación y producción de semilla de malz.Figura 2. Distribución de los beneficios derivados de la investigación realizada por el sector privado. Figura 3.Superficie cultivada, rendimiento y producción de malz en México, 1945-87. Figura 4.Regiones de México en las que operan las compafllas multinacionales privadas. Figura 5.Organización de la industria mexicana de semilla de marzo Figura 6. Producción de semilla certificada de marz en México por parte de los sectores público y privado, 1970-88. Figura 7.PrincIpales reglones productoras de malz en Guatemala. UnnMS~~sDe~rtmentmAgrlro\"uM Inisterio de Agricultura de Estados UnidosEn los aflos 80 se observó un rápido crecimiento de las inversiones de compat'ifas nacionales y multinacionales en investigación agrlcola y multiplicación y comercialización de semilla en el Tercer Mundo, sobre todo en cuanto se refiere a los hlbridos de malz. En los paIses en desarrollo. donde el sector público ha tenido un rol primordial en la investigación agrlcola y la producción de semilla, la creciente participación del sector privado en estas áreas plantea una serie de complejas preguntas. ¿En qué medida debe permitirse que las empresas privadas efectúen investigación y comercialicen semilla en los pálses en desarrollo? ¿Qué factores determinan si una compaflla privada toma o no la decisión de Invertir en actividades de Investigación en un pals determinado? ¿Cuál serIa el efecto distributivo de una Inversión semejante? ¿Qué puntos de Interacción existen entre los sectores público y privado y qué tipo de relación entre estos sectores serIa más beneficiosa para los productores y consumidores?SI se tienen en cuenta los diversos convenios Institucionales bajo los cuales funcionan las empresas públicas y privadas de Investigación y producción de semillas en los distintos paIses. no pueden hallarse respuestas sencillas y generales a estas preguntas. En este documento se estudian algunos de los problemas antes mencionados analizando las relaciones que existen entre el sector público y el privado en dos paIses con experiencia en investigación en malz realizada por compafllas privadas: México y Guatemala, un pafs grande y uno pequeflo. El objetivo general de esta comparación es el de determinar qué se puede aprender de interés para aquellos paIses que se están abriendo a las Inversiones del sector privado en Investigación y producción de semilla de mafz.El primer paso para comprender las funciones desempefladas por los sectores público y privado en la investigación y producción de semillas es Identificar los tipos de actividades a los que se dedica cada uno de los sectores. En el caso del malz en los paIses desarrollados, el sector público lleva a cabo casi toda la Investigación básica en áreas tales como la blologla y la genética y también realiza Investigación sobre fltomejoramlento para crear lineas endogámicas. El sector privado. que en Estados Unidos se ha especializado en la producción y comercialización de semilla de hfbrldos (Sprague 1980), efectúa Investigación sobre hrbrldos. Unas cuantas compafllas privadas Importantes crean sus propias lineas endogámicas. Como los hfbrldos poseen las caracterlstlcas de un secreto comercial. las empresas privadas tienen grandes Incentivos para Invertir en la investigación sobre hlbrldos de malz. El suministro de germoplasma mejorado y de lineas endogámicas por parte del sector público hace que exista competencia dentro de la Industria, ya que casi todas las compafllas pequeflas de semillas dependen de las lineas creadas por el s8ctor público. En este sentido. la Investigación gubernamental complementa y estimula la Investigación privada.En cierta medida. las funciones desempefladas por los sectores público y privado en los paIses en desarrollo son semejantes a las que realizan en los paises desarrollados.' Gran parte de la preocupación acerca de las actividades de los sectores público y privado surge de preguntas sobre los tipos de tecnologla hacia los que cada sector elige dirigir sus recursos y. por lo tanto, sobre quién se beneficia de los esfuerzos de cada sector. Por ejemplo, sila8 empresas comerciales de semilla S8 concentran en las reglones agrlcolas más favorecidas y en los agricultores comerciales que pueden adquirir sus productos. es posible que la Investigación realizada por el sector privado Consultar Ruttan y Pray (1987) para una descripción de la investlgactón efectuada por el sector privado en Asia y de Obschatko, Plnelro y Jacot. (1986) para un análisis de actividades semejante. realizadas en Am6rlca latina.aumente lA br~r.ha que existe entre .105 agricultores de mayores Ingresos y los más pobres. Este problema tiene graves Implicaciones en cuanto a la elección de estrategias de Investigación por parte de los programas públicos nacIonales, que tal vez deseen dirigir BUS esfuerzos a reglones y tipos de agricultores menos atractivos para el sector privado.Aspectos básicos de la interacción de los sectores público y privado En la Figura 1 se muestran las principales Interacciones entre los sectores público y privado de la Investigación y la producción de semilla de marzo Los miembros más Importantes de esta relación son centros de investigación(nacionales e internacionales), empresas públicas productores de semilla, d+pendenclas públicas encargadas de la reglamentación, compan/as privadas (nacionales e Internacionales) y agricultores.La Investlgación en ma/z llevada a cabo por los centros internacionales de Investigación agr/cola (IARCs) no tiene por objeto crear variedades definitivas que se adapten a condiciones locales especlflcas; por ejemplo. el Centro Intemacional de Mejoramiento de Maiz y Trigo (CIMMMYT) crea germoplasma experimental adaptado a diferentes mega ambientes, que se distinguen por las caracter/stlcas ecológicas, extensión de la temporada de cultivo. incidencia de enfermedades y p1ag8l. Yotros factores (CantreIl1986). Los programas del seator público en los palses en desarrollo tIenen prioridad para solicitar germoplasma del CIMMYT. Otras organlzaolones, tanto públicas Figura 1. Interacciones de los sectores público y privado en la Investigación y producción de _milla de malz. como privadas, reciben semilla de acuerdo con las existencias que haya en el momento; las solicitudes de semilla se atienden por orden de llegada (asimismo, las empresas privadas deben pagar los costos de envio). El CIMMYT se guia por las pollticas nacionales que limitan o rigen la distribución de semIlla entre las organizaciones de un pals, dando por sentado que las autoridades correspondientes proporcionan una declaración por escrito de tales polltlcas.Un aspecto de la relación entre las Instituciones internacionales y nacionales de investigación y las companias de semillas que suele pasarse por alto es el tipo de agricultor al que dan servicio las Instituciones públicas y las privadas. El lucro es el objetivo primordial de una empresa privada, por ende, las companlas productoras de semilla se especializan en cultivos que justifiquen los programas de Investigación y desarrollo, es decir, cultivos en los cuales puedan \"aproplarse\" por lo menos una parte de los beneficios derivados de la investigación. Los hibrldos constituyen un buen ejemplo: las empresas privadas pueden conservar el secreto comercial y recibir un beneficio sin protección legal. Esta preferencia privada por ciertos cultivos significa que se necesita el sector público para realizar la Investigación en los cultivos que no le Interesan al sector privado. Aun cuando exista una Industria privada de semilla para ciertos cultivos, es posible que la Investigación pública sea necesaria a fin de producir variedades para determinadas regiones y/o grupos de agricultores.La mayoria de los paises cuenta con programas gubernamentales de investigación en malz. Por lo común, una compaflia paraestatal de producción de semilla, como en el caso de México, o una empresa local de semilla, como en Guatemala, multiplica y comercializa los productos de la Investigación pública (una nueva variedad, linea endogámica o hibrldo). Algunas empresas locales de producción de semilla realizan su propia Investigación en malz, para lo cual por lo general utilizan los resultados de la investigación del sector público o de las compafllas multinacionales. Muchas compat'llas locales operan como concesionarias de empresas multinacionales o tienen \"jolnt ventures\" con éstas. Las \"jolnt ventures\" son un ejemplo de complementarldad dentro del sector privado, ya que la multinacional proporciona la mayor parte de la capacidad de Investigación y la compat'lla local somete a prueba las varledades y comercializa la semilla. En el Cuadro 1 aparece una lista de algunos de los factores que afectan la Inversión del sector privado en actividades de Investigación en malz en 108 paises en desarrollo.Las empresas multtnaclonales llevan a cabo su propia investigación y comercializan directamente la semilla, ya sea a través de \"JoInt ventures\" o de concesionarios. Durante los últimos 20 anos, varias compat'llas Intemaclonales privadas de gran ta~o que se dedican a la producción de semilla han aumentado en forma directa las exportaciones de semilla de malz. Desde 1960 las exportaciones de semilla de malz de Europa y Estados Unidos al resto del mundo aumentaron en forma constante y para mediados de los afias 80 se exportaban cada afio 15,000 t de la Comunidad Económica Europea y 35,000 t de Estados Unidos. A una densidad media de siembra de 20 kgIha, la semilla exportada servirla para sembrar 2.5 millones de hectáreas de marzo Según cálculos recientes, el efecto de esta transferencia directa de tecnologla sobre los rendimientos es muy grande en los paises templados (es preciso observar que cerca de la mitad --37 millones de hectáreas-o de la superficie cultivada con malz en los paIses en desarrollo se clasifica como templada).2El malz hlbrldo es quizá el mejor ejemplo, por lo menos en cuanto se refiere a la teconologla biológica, de la participación del sector privado en la Investigación agrrcola. También constituye un buen ejemplo de cómo se usan diferentes tipos de semilla en distintas reglones. En el Cuadro 2 se presenta la superficie mundial de malz que se 2 Consultar Echeverrla (1988) para un análisis más general de la relaclón que existe entre la Investigación pública y privada y también para un análisis del efecto que tienen sobre la productividad del malz en 50 pal..., de 1981 a1985.sl~mbr;:¡ r,on dlf~rp.ntp.s tipoS de semilla. 3 Una terc~m parte de la superficie mundial cultivada con maíz se siembra con la semilla producida por los propios agricultores, el 63% con hibrldos y sólo el 4% con variedades de polinización libre (VPL) mejoradas. Los paises en desarrollo, que representan el 59% de la superficie mundial que se siembra con malz, sólo siembran el 51% de dicha superficie con tipos de semilla mejorada. Esta cifra desciende al 37% si se excluyen tres productores Importantes (China, Brasil y Argentina). En consecuencia, una gran parte de la 3 En CIMMYT (1987) puede encontrarse una revisión a nivel mundial de los aspectos económicos de la producción de semilla de malz en los paIses en desarrollo.Cuadro 1. Factores que determinan la inversión del sector privado en la Investigación en malz en los paises en desarrollo.Tamafto del mercado A nlVl'~1 nRclonAl, grAn n(.mAro rl~normAS in1;fifllr,jn,,~I\"1c; rlpfínen la interacción enfre los s~ctores público y privado.En algunos casos esta Interacción puede ser restringida, como sucede en México donde todas las variedades e hlbrldos producidos por el Instituto Nacional de Investigaciones Forestales. Agrícolas y Pecuarias (INIFAP) deben pasar a la Productora Nacional de Semillas (PRONASE) para que ésta lleve a cabo la multlpllcacl6n y comerclall-zaci6n de la semilla. En otros casos, como en Guatemala. no existen las paraestatales y las companlas locales distribuyen las Hneas y variedades creadas por las instituciones públicas. En Argentina y Chile. empresas locales y multinacionales se encargan de casi toda la Investigación y comercialización de semilla de malz.Los Institutos nacionales de Investigaci6n y las compat'1fas privadas productoras de semilla pueden Interactuar por lo menos de cuatro maneras diferentes:1) Las organizaciones públicas pueden evaluar los materiales creados por las companlas productoras de semilla.2) Estas campanlas pueden obtener o pagar regaifas por semilla fundacl6n creada por el sector público.3) Las empresas privadas pueden financiar algunas actividades de Investigación del sector público.4) Los clentlflcos suelen pasar de un sector a otro.Los sectores público y privado también se relacionan a nivel de polltlcas agropecuarias. Incluyendo leyes relativas a la semilla. reglamentos comerciales y fijación de precios de Insumas y productos. Estas pol/tlcas gubernamentales afectan la Importancia relativa que se confiere a las distintas fuentes públicas o privadas de semilla. a la disponibilidad de semilla y a su costo. Los aranceles y otros tipos de restricciones pueden afectar el movimIento de germo• plasma de un pals a otro. SIn embargo. un obstáculo mucho más importante para la adecuada transferencia de tecnologla es con frecuencia la InsuficiencIa o Ineficacia del sector público en crear la capacidad de Investlgacl6n agrfcola necesaria para adaptar germoplasma a las condiciones agrocllmátlcas locales.En el caso de la Investigación realizada por el sector público. es evidente que el principal beneficiario es el productor (o el consumidor. si un producto tiene demandainélastica). En cuanto a la InvestigacIón realizada pbr el sector privado. ciertas personas sostienen que las companlas productoras de semillas se aproplan de la mayor parte de los beneficios (Barkln y Suárez 1983). En la Figura 2 se presenta la distribuci6n de los beneficIos entre compat'lras privadas productoras de semilla y los agricultores. suponiendo que la demanda de marz es perfectamente elástica. es decir. que el Incremento de la produccl6n sustituye las importaciones y no afecta los precios del marzo El valor agregado por la producción y la dlstrlbuci6n de semilla menos el costo de la Investigación, determina los beneficios obtenidos por las compal'lfu productoras de semilla.\" los beneficios que obtienen los agrlcultores dependen del valor del mayor rendimiento derivado del empleo de hlbridos menos el incremento en el costo de la semilla. la variable clave que determina la distribución de los beneficios entre una companla productora de semilla y el agricultor es el precio de la semilla hlbrlda en relacl6n con el Incremento del rendimiento. En una Industria competitiva. la competencia generada por el sector público deberla controlar el nivel de las utilidades de las compatU.s produotoras de semillas.4 Como los beneficios y los costos.e producen en diferentes periodos, 8ste valor debe descontar.e e valor presente neto.México es el centro de origen del malz, el cultivo más importante del pals, que abarca el 40% (cerca de 8 millones de ha) de la superficie cultivada. En 1986, México era el cuarto productor de malz a nivel mundial, después de Estados Unidos, China y Brasil (FAO 1987). México posee un largo historial de participacl6n pública en la industria de semilla tanto a nivel de la produccl6n como de la Investlgacl6n, y ha sido sede del CIMMYT desde la fundacl6ndel Centro en 1966.Si bien la Industria mexicana privada de semilla de malz existe desde hace més de 20 aflos, s610 en la última década Increment6 en forma sustancial sus actividades de Investlgacl6n y comerclallzacl6n. Gracias a la proximidad de México con Estados Unidos. siempre ha existido un Importante comercio de semilla. Como las compafllas estadounidenses productoras de semilla Investigan y comercializan en México. el sector privado Ideal no está tan desarrollado como en otros Importantes paises productores de malz de América latina como Argentina y Brasil.Todos estos factores hacen que México resulte un caso interesante para estudiar las Interacciones Institucionales que se producen en el ámbito de la Investlgaci6n en malz, asl como los factores que determInan la Inversión privada en este ramo. -costo de la semilla hlbrlda en comparacl6n con la semilla propia F.I r.A~O de Gllntl\"mAla. rlnndp. sólo se cultivan con maíz 650,000 ha. es muv difl;lrp.nte. las compat'lIas extranjeras no participan directamente en la investigación, sino que producen semilla a través de \"joint ventures\" con empresas locales. Vale la pena analizar la complementariedad desarrollada entre las compatiias locales y el instituto de investigación del gobierno, el Instituto de Ciencia y Tecnología Agrícolas (ICTA).Los datos del Cuadro 3 son indicadores seleccionados de las industrias mexicana y guatemalteca de malz. Según las estimaciones del autor, la superficie de malz que se cosechó en México en 1987 fue 7.8 millones ha, de las cuales 1,150,000 ha se sembraron con semilla de híbridos y 850,000 ha con semilla certificada de VPL. El volumen total de semilla certificada que se sembró en México fue de 40,000 t, de las cuales 37,000 t se produjeron en el pals y 3.000 t se importaron de Estados Unidos (USDA n.d.).En Guatemala, se cosecharon 650,000 ha de maíz en 1987 con un rendimiento medio de 1.71 tlha. La superficie total sembrada con híbridos y VPL certificadas fue de 106,000 ha o 16% de la superficie total cultivada con malz.Alrededor de 71,000 ha se sembraron con semilla de hlbridos, en su mayor parte en las tierras bajas tropicales del sur del pals. Las VPL certificadas se sembraron en 35.000 ha. La cantidad de semilla comercial plantada durante 1987 fue de 1,800 t, constituida por 1,200 t de semilla de híbridos y 600 t de semilla de VPL.En México, el marz es un cultivo básIco de subsistencia que se cultiva sobre todo en condiciones de temporal (secano) y está bien adaptado a las diferentes condiciones ecológicas del pals. 5 Cerca del 75% de la producción anual se emplea en la alimentación humana, 20% en la alimentación animal y producción de semilla y solo el 5% como Insumo Industrial. El malz y el frijol constituyen las principales fuentes de alimento del sector de bajo Ingresos de la población mexicana.5 Para una revisión de la historia del malz en México, consultar la Secretaria de Agricultura y Recursos Hidráulicos (1982).Cuadro 3. El malz en México y Guatemala, indicadores seleccionados, 1987.Superficie cosechada (000 ha) Rendimiento (tlha) Producción (000 t) Importaciones de maiz (000 t) Superficie sembrada con semilla mejorada (%) Superficie sembrada con VPL certificadas (%) Superficie sembrada con semilla hibrlda (%) Semilla comercial sembrada (000 t) Semilla sembrada de VPL certificadas (000 t)Semilla hlbrlda sembrada (000 t) 3 2 1 O+--\"\"'T\"-....,--r_-\"T'\"\"-\"\"'T\"-....,--r_-\"T'\"\"-... 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 2__- ------------------ 1945 1950 1~1980 1965 1970 1975 1980 1985 1990 ClIf'riro 4. OrQ;mlzAclones dedicadas a la investigación y a la producción de semilla de malz en México, 1987.Producción Nota: Se entiende por Invest/gaclón el mejoramiento genético básico y aplicado y el mejoramiento de cultivos en general; no se Incluye la prueba de variedades. Producción de semilla significa la multiplicación y distribución de semilla certificada de malz de cualquier tipo. ya sea que se trate de hlbrldos o de VPL.propiAS Inr:tAln\"¡,.,nA!'; Nn p.xi~tp. mllchil int~gr¡~cifln ~ntrp lo~institlltos dI\" ínve~tiqAci6n rlp.1 o:;ector público y entre las dependencias gubernamentales de Investigación y los productores de semilla. Por ejemplo, ellNIFAP entrega sus materiales únicamente a PRONASE para que ésta los multiplique.Una ley mexicana aprobada en 1961 creó el marco legal necesario para el desarrollo de la industria privada de producción de semilla (Diario Oficial 1961). Las compañías productoras de semillas Iniciaron la Investigación y la producción de semilla de maíz en México a mediados de los años 60. Antes de que entrara en vigor dicha ley, las compat'lías privadas importaban semilla sobre todo de Estados Unidos. Desde mediados de los sesenta a mediados de los ochenta dos tipos de empresas privadas, nacionales y multinacionales, comenzaron a producir semilla en el país y a dar servicio a mercados que antes eran atendidos por el sector público, y también se convirtieron en importantes distribuidores de semilla importada.Durante los últimos diez at'los, las empresas privadas se han ido trasladando hacia el sur del pals. Casi todas las companlas multinacionales están presentes en Tamaulipas cerca de la frontera con Estados Unidos (Figura 4), donde la semilla híbrida creada en Texas es adecuada para las condiciones agrocllmátlcas que prevalecen en esa zona de México. Esta reglón cuenta con sistemas de riego y el 70% de la superficie cultivada se siembra con hlbrldos simples. La segunda región Importante donde se encuentran las compat'lias multinacionales es Jalisco, una reglón semltroplcal de altitud media, y el estado con mayor producción de malz en toda la República. Ciertas multinacionales están extendiendo sus operaciones más al sur, hacia el ambiente de tierras bajas tropicales del estado de Chiapas. La Figura 5 resume los distintos aspectos de la organizaci6n de la industria mexicana de semilla de marz que se mencionaron anteriormente. El punto fundamental de la figura es que las compaflras privadas locales (un elemento clave de toda industria de semilla) llevan a cabo muy poca investigación y tratan de competir con las empresas multinacionales sin tener acceso a los materiales derivados de la investigaci6n del sector público.Los datos que aparecen en la Figura 6 muestran la cantidad estimada de semilla certificada de malz que produjeron los sectores público y privado en México de 1970 a 1988. 8 El volumen total de produccl6n de semilla se Incrementó más de cinco veces de principios de 1970 a fines de 1980, de menos de 10,000 t en 1970 a 50,000 t en 1988. Las tendencias de la produccl6n de semillas resultan un tanto sorprendentes. quizá a causa de los efectos combinados de la varlacl6n del clima y la falta de consistencia de las estadistlcas.7 De hecho. no existe ninguna polltlca de la Industria de semilla que defina la relación que existe entre las actividades de la Investlgacl6n y de la produccl6n de semilla de los sectores público y privado (McMullen 1987).8 Las estadlstlcas mexicanas sobre producción de semilla son Inconsistentes. Las cIfras presentadas en la Figura 6 son las mejores 8 estimaciones de que se dispone, derivadas de los datos proporcionados por PRONASE. SNICS y la Asociación Mexicana de Semilleros (AMSAC).Figura 5. Organización de la Industria mexicana de semilla de malz.---------+ il>n Pf~qllef\\a e!';cal:'l 'l'JP emr'~nn Sil propia spmíll::l y no semilla comercial. En casi todos los demás cultivos (excepto el frijol y el ajonjolf) se emplea semilla mejorada, y la partlclpacl6n del sector privado en el mercado de semilla mejorada es mayor en el caso de otros cultivos que en el del malz (Cuadro 5). El sector público tuvo una participaci6n del 60% en un total de 40,000 t de semilla de malz que se calcula se produjeron en 1987, mientras que las compañías privadas produjeron casi toda la semilla certificada de sorgo. algod6n y soya y cerca de la mitad de la semilla certificada de trigo y arroz (por lo general todos estos cultivos se producen con niveles muy altos de insumos). 60Fuente: SNICS (1987); Serrano (1987) y entrevistas efectuadas por el autor.Nota: la estimación de la producción de semilla en 1988 se calculó sobre la base de la superficie sembrada para producir semilla en 1987.Cuadro 5. Participación del sector público en la producción de semilla certificada en México, 1984-88. F.n Mlaxlco, los prpdos rte la semilla de mAfz varian de acuerdo con el tipo c1e semilla. la regl6n y la fuente (Cuadro 6). En término medio, PRONASE y las compaí'lfas locales productoras de semilla venden la semilla de h/brldos dobles al doble que la semilla VPL. En 1987, los precios de las empresas locales fueron un 40% más altos que los de PRONASE. El precio de la semilla de hlbrldos dobles producida por las multinacionales fue el doble del precio de las campanlas locales. De acuerdo con estos precios y empleando la cifra de US$100 como el precio de una tonelada de grano, la relaci6n de precios entre la semilla de h/brido doble y el grano fue de 6 en el caso de la semilla de PRONASE, 9 para la semilla producida por las campan/as locales y 18 para la semilla de las multinacionales.La calidad y los costos de producci6n explican en parte estas diferencias. Por lo general los agricultores consideran que la semilla producida por el sector público es de menor calidad que la producida por las empresas privadas. Por otra parte, la mayorla de las empresas locales y PRONASE no tienen gastos de Investlgacl6n y. por ende, sus costos de produccl6n son más bajos que los de las companias multlnaclonales. 9Inversiones públicas y privadas en la investigación En 1987, el presupuesto anual para la investlgaci6n en maiz de 25 empresas privadas cuyo personal se entrevist6 en este estudio fue de 1,700,000 dólares (Cuadro 7). lo cual implica 113,000 d61ares por estacl6n experimental y 61,000 dólares por c1entiflco.El presupuesto estimado para la investigaci6n en maiz dellNIFAP fue de menos de la mitad del presupuesto total del sector privado, pera el mismo número de estaciones de Investlgacl6n y más de tres veces el número de clent/flcos. El sector privado dedica 52,000 d61ares más por clentfflco al ano que el sector público. lO Como se menclon6 anteriormente. esta comparación no refleja el hecho de que ellNIFAP y las empresas privadas no realizan el mismo tipo de Investlgacl6n. El sector público se dedica a áreas tales como el mejoramiento del cultivo y la Investlgacl6n básica sobre ma/z además del mejoramiento, en tanto que el sector privado concentra sus esfuerzos en la investlgacl6n sobre el f1tomejoramlento aplicado. Además, las cifras correspondientes al sector público no Incluyen los gastos fijos generales.9 A fin de analizar las diferencias reales entre los precios de la semilla, se requieren datos sobre el rendimiento potencial de las variedades de PRONASE. las empresas locales y las multinacionales, pero ••ta Informacl6n no puede obtenerse con facilidad. 10 En este caso, \"sector público\" significa INIFAP, ya que no se dispone delnformacl6n sobre los erogaciones de las universidades en la Investlgacl6n en marzo De cualquier manera, estas erogaciones son pequenas sI se las compara con las deIINIFAP. Como se explica en el Cuadro 7, nota f, las cifras correspondientes al presupuesto d. Investlgacl6n dellNIFAP están posiblemente subestimadas. Cuadro 6. Preclol de la lemllla de ma'z (US$/kg) en México, 1987. Fuente: Entrevistas con personal de las companfas productoras de semilla y de PRONASE, 1987. I A'1 Invflr'llnnnc; rríVAdAS \"ln la Investlg:tdñn en mnfz pUAden finalizarse en el contexto dA los factores qUA delflrml• nan la Inversión en Investigación que se estudiaron en la primera sección de este documento. El mercado de la semilla mejorada de malz (40.000 t en 1987) representa sólo el 26% de la superficie total que se cultiva con malz.Los directivos de las compaf'llas productoras de semilla calculan una superficie potencial para las variedades mejoradas de maíz de alrededor del 50% de la superficie total cultivada actualmente. usando las variedades que ya existen. O sea. alrededor de ao.ooo t de semilla certificada que equivale aproximadamente a un mercado de semilla de marz de la misma magnitud que el del resto de América Latina sin contar Brasil. En consecuencia. el tama/\"lo del mercado mexicano constituye un importante elemento en la decisión de una empresa productora de semilla de Invertir en la investigación en malz. El hecho de que PRONASE posea el 60% del mercado de semilla mejorada de malz, es un factor Importante en la determinación de la participación en el mercado a que pueden aspirar las empresas privadas productoras de semilla.En el pasado, las politlcas gubernamentales no favoreclan la investigación por parte del sector privado. Al parecer. a fines de los a/\"los 80 se eliminaron casi todas las restricciones sobre las actividades del sector privado. Hoy en dia se conceden permisos para realizar Investigaciones a todas las empresas interesadas, se autorizan con rapidez las Importaciones de semilla, las empresas pueden ser de propiedad extranjera en su totalidad (en lugar del 49% máximo de propiedad extranjera que se exigla en el pasado) y, al parecer, también está aumentando la conciencia general sobre la función que puede llegar a desempe/\"lar el sector privado. (No obstante, según fuentes del sector privado, el procedimiento para la aprobación de variedades continúa siendo un problema.)'1 11 El CCVP evalúa durante tres al'l08 e/ rendimiento y la resistencia a las enf9rmedades de las variedades propuestas para su liberación y. después de ese periodo, aprueba o rechaza la liberación de las mismas. EIINIFAP selecciona las variedades potenciales para el CCVP. Las empresas privadas productoras de semilla pagan 40 dólare. anuales por localidad para que .. lleve a cabo esta evaluación. La preocupación de estas campanlas es que los datos obtenidos de las evaluaciones tienen poco valor porque las variedades no se clasifican en rangos, los materiales testigo no se especifican y no se proporciona ninguna Información sobre la resistencia a las enfermedades en las localidades donde se lleva a cabo la selección.Cuadro 7. e Incluye la8 pequenas empresas regionales de producción de semilla.f Calculado usando una cifra suministrada por ellNIFAP de 9.000 dólares anuales por clentfflco. Esta estimación 88 baja ya que Incluye sobre todo salarlos y no costos operativos ni gastos fijos generales. g 35 del total de 89 clenUflcos de malz son f1tomeJoradores.Como 10<: rf'('i4'>n'~s CAmhio,; h::ln ',,\"oírlo IJO efe-cto rm<:itivo f'n el sector privarlo. ~f'! hA Incn:~mentadode manera sustancial la Investigación en maiz que realizan las compañlas multinacionales con recursos derivados de las ventas locales y, en algunos casos, de las ventas realizadas fuera de México a América Central. Algunas de las empresas más importantes tienen presupuestos anuales de investigación superiores a los Ingresos que se obtienen con la venta se semilla, lo cual indica que la investigación se considera una inversión con un alto indice de rendimiento. Si esta tendencia continúa, y dado el tiempo necesario para evaluar y liberar nuevas variedades, es posible que dentro de unos diez afias la industria mexicana de producción de semilla de malz sea muy diferente de lo que es hoy en dla.Como las empresas privadas poseen una participación del 40% en el mercado de la semilla comprada, la semilla producida por estas compal'llas se siembra en menos del 10% de la superficie total que se cultiva con malz. Las reglones donde se vende semilla producida por empresas privadas suelen caracterizarse por fincas más grandes y mayor empleo de Insumas que las demás regiones donde se cultiva marzo Por lo tanto, las empresas privadas dan servicio a las regiones mejor dotadas donde suelen encontrarse los agricultores de mayor escala. En México esto equivale a las zonas irrigadas o de mediana altitud del norte y occidente del pals.En general. la producción de maiz en México depende más de la superficie cosechada que del rendimiento; sin embargo, existen Importantes diferencias regionales en cuanto al rendimiento. En 1986. el 15% de la superficie total contaba con riego (Cuadro 8). La mayor parte de la reglón irrigada se encuentra en los estados del norte. en especial Tamaullpas. que guarda gran semejanza con las regiones malceras de Texas. Estado8 Unidos, en cuanto Cuadro 8. Distribución del área de malz cosechada e irrigada, y de A fin de complementar la actividad del sector privado desde un punto de vista social, la Investigación efectuada por el sector público podrla dirigirse hacia las reglones no irrigadas o de tierras altas donde se encuentra la mayor parte de las agrtcultores en pequena escala. No existe Información actualizada sobre la participación del sector público en Investigación y producción de semilla por reglones. Na obstante. sabemos que en las anos 70 el 54% de las variedades de malz liberadas por PRONASE estaban destinadas a las zonas irrigadas y el 42% a reglones can altitudes de menos de 1,200 m sobre el nivel del mar (Cuadro 9). Cuadro 9. Número de variedades de malz producidas por el sector público para zonas de riego y de temporal y para diferentes altitudes, México, 1968-78. r-omo r,p mp,ndonó nntF!S, eyi5tp.l::J ~pncia A pensnr qlJF! las r.ompafli,,~prori'l,..torA~na semilla son lAS principales beneficiarlas de la investigación realizada por el sector privado (Barkin y Suárez 1982 y 1986). Los datos que se presentan en el Cuadro 10 dividen los beneficios derivados de la investigación del sector privado entre los agricultores y las compat'\\las productoras de semilla en 1987. Se trata de indicadores preliminares correspondientes a un alío y no de un estudio histórico de rendimiento sobre la inversión, ya que no todos los costos ni todos los beneficios se calcularon o descontaron a través de una serie de alías. Se estimó que las utilidades obtenidas por las campanlas productoras de semilla fueron de 3.2 millones de dólares (entrevistas realizadas por el autor en 1987), lo cual representa, en término medio, un margen de utilidad del 16% sobre los 20 millones de dólares obtenidos de las ventas realizadas en 1987.Los beneficios obtenidos por los agricultores al sembrar variedades producidas por el sector privado varian de acuerdo con la cifra empleada para determinar las diferencias de rendimiento que existen entre estas variedades y las variedades que existlan antiguamente. Según fuentes de la industria de semillas una estimación realista del Cuadro 10. Beneficios obtenidos por los agricultores y las companlas productoras de semilla de las variedades mejoradas de malz procedentes del sector privado, México, 1987.Incremento estimado del rendimiento respecto a las variedades existentes de los agricultores 20% 30% 400k 1. 15,000 I de semilla vendidas por las empresas prIvadas (lomado de la Figura 6) a una densidad de sIembra de 20 kglha. 2. 15,000 t de semilla vendidas por las empresas privadas (tomado de la Figura 6) a un precio medio de US$O.45/kg en el caso de las VPL, de US$1.45/kg para los hlbrldos dobles y de US$2.30/kg para los hlbrldos simple. (lomado del Cuadro 8). 3. ( 2) -(costos de produccIón de la empresa). ObtenIdo de entrevistas del autor con el personal de las empresas productoras de semilla, 1987.4. De entrevistas efectuadas por el autor, (1987) al personal de la Secretaria de Agricultura y Recursos Hidráulicos (SARH) y de las companlas productoras de semilla.5. (4) .. (porcentaje de Incremento del rendimiento de la semilla mejorada). Obtenido de entrevistas realizadas por el autor al personal dellNIFAP y de las compalílas productoras de semilla. 6. [( 5)-( 4)] x (precio de' grano. US$100/t). 7. 20 kglha US$1.5/kg. 8. ( 6) -( 7), sin tener en cuenta el costo de otros Insumas, tales como el fertilizante. 9. ( 8) x (1). inrrpm':lntn (jol rpn(jirni..ntn p~t~rr;'l pn pi nrden (jpl ~n°/... Fn 1:' 1 Cl/adro 10 se presentA lA rlir.tribuci6n de los beneficios suponiendo un aumento del rendimiento del 20%. 30% Y 40% respecto a las variedades empleadas anteriormente por los agricultores. Con un incremento del 20% en el rendimiento. se calcula que los beneficios obtenidos por los agricultores ascienden a US$1 O/ha; con un incremento del 30%. a US$30/ha, un total de 22.5 millones de dólares; y con un incremento del 40% en el rendimiento. los beneficios son de US$50/ha, con lo cual los beneficios totales obtenidos por los agricultores alcanzan la cifra de 37.5 millones de dólares. Los beneficios que aparecen en el Cuadro 10 están subestimados. ya que se emplea la cifra de US$100/t como el precio del grano y no se descuenta el costo de la semilla de las variedades que solían usar los agricultores. 12 Con incrementos del 30% y 40% en el rendimiento. los agricultores obtuvieron una parte sustancial de los beneficios generados por la Investigación del sector privado.Las cifras presentadas, aunque inexactas, indican que los agricultores que adquieren semilla certificada obtienen un beneficio mayor que las compañlas productoras de semilla aun cuando el incremento real del rendimiento sea del 20%.13 El sentido común económico nos sel'lala que los agricultores no comprarfan semilla certificada si no obtuvieran alguna ventaja de ello.La investigación en maíz y la producción de semilla en Guatemala En Guatemala, cerca de 525,000 ha se cultivan con maíz como cultivo único y 12,000 ha se siembran con mafz mezclado con frijol u otros cultivos. El malz se produce sobre todo en las regiones centro occidental. oriental y de la costa sur del pals (Figura 7). Existen tres diferentes áreas de cultivo del malz (CIMMYT 1981):1) Tierras bajas tropicales con una altitud de menos de 1,300 m sobre el nivel del mar, donde los hfbridos y las variedades se siembran en una temporada de cultivo de 120 dfas;2) Zonas de altitud media entre los 1.300 y 2,000 m sobre el nivel del mar, y 3) Tierras altas con altitudes de más de 2,000 m sobre el nivel del mar, donde la temporada de cultivo es de más de 190 dfas.La Figura 8 muestra las tendencias de la superficie, el rendimiento y la produccl6n de malz en Guatemala de 1949 a 1986. Durante ese periodo, la producción de mafz creció a un índice medio anual de 2.7%, en su mayor parte debido a que el rendimiento medio creció de 0.68 tlha en 1949 a 1.74 tlha en 1986, un fndice de crecimiento de 2.5%. La superficie sembrada con mafz no ha sobrepasado las 700,000 ha durante todo el periodo y ha experimentado un fndica de crecimiento anual de solo 0.4%.En la Figura 9 se enumeran las principales organizaciones de Investigación y producci6n de semilla de malz en Guatemala. El instituto nacional de investigación agrícola, ICTA, es un organismo público semiautónomo creado en 1973.'4 Los programas nacionales de Investigación de México y Estados Unidos, el programa regional del CIMMYT y la Industria de semilla de malz de El Salvador (una de las industrias de semilla más desarrolladas de la regl6n), ejercen una Importante Influencia en la investigación sobre maíz que se lleva a cabo en Guatemala. La oficina del programa regional del CIMMYT para América Central y el Caribe se encuentra en Guatemala. Además de ofrecer apoyo técnico directo a los programas nacionales de la región y allCTA en particular. el CIMMYl organiza talleres anuales sobre la Industria de la semilla en los cuales los representantes de los sectores público y privado estudian problemas relacionados con la tecnologra de la semilla y las relaciones que existen entre la investigación y las pollticas de producción de semilla.La investigación efectuada por el IClA se organiza en torno a zonas agroecológicas especificas y tiene por objeto la creaci6n. prueba y transferencia de tecnologras para los pequeflos agricultores. Él sistema posee dos caracterrstlcas Importantes para el presente análisis: La primera son las unidades de valldacl6n socioecon6mlca y tecnológica. La unidad soctoecon6mica efectúa encuestas agroeconómicas antes de que ellClA ponga en marcha 14 Para un análisis delimpaeto dellCTA en la productividad agrlcola en Guatemala. consultar McDermott y Bathrlck (1982). Figura 7. Principales reglones productoras de malz en Guatemala.In InvAr:lIl1nf\"lón pn 'lnA nl/t'>I/n r\"'flIÓn: In I/nirlnrl rl~vnlldndón tocnol6n1cfl r,nmplA tl pn,'.hn. fin ni nlvAI rlfllnr; finCAS. las tecnologlas creadas en las estaciones experimenlHles. Es evidente que ente sistema aumenta las posibilidades de producir tecnolog/as adecuadas para grupos específicos de agricultores. Un ejemplo de este tipo de tecnolog/a son las VPL e hibridos de ma/z de alto rendimiento producidas por eIICTA.La segunda caracteristica importante del sistema de investigación dellCTA es que el sector privado participa en la producci6n de semilla certificada de las variedades creadas por el Instituto. El maíz constituye el mejor ejemplo de complementaridad entre ambos sectores. El ICTA vende semilla fundación y libera semilla básica a las empresas locales bajo un sistema de pago de regallas. También brinda a los productores de semilla un servicio de procesamiento de semilla y somete a prueba las variedades creadas por el sector privado. junto con sus propias lineas, en diferentes localidades.La mayor parte de la semilla de maíz producida por las compañías locales es resultado de su propia investigación o de la del /CTA. El mercado de semilla comercial está constituido por tres empresas principales: Cristlanl-Burkard, con una participación del 70% en el mercado de semilla de ma(z y Superb y Seminal, con un 10% cada una; el 10% restante se reparte entre e/lCTA (8%) Y otras pequet'las compat'llas productoras de semilla. la Crlstlanl-Burkard. que tuvo su sede en El Salvador de 1955 a 1981, opera en toda América Central desde SU$ nuevas oficinas centrales en Guatemala. la compa\"'ia cuenta con su propio programa de Investigación en ma/z y también tiene una concesión para vender semilla de Ploneer; alrededor del 30% de su germoplasma de maiz procede dellCTA. la principal actividad de Superb. que desde hace 15 at'los distribuye semilla de marz desde El Salvador, es la comercialización de semilla. en tanto que Seminal se especializa en la investigación. En 1985 Superb comenzó a comercializar los materiales dellCTA producidos por Superb y Seminal. Superb compra semilla fundación allCTA y tiene un programa conjunto de investigación con TACSA. una compania local del sur de México. puesto que en Guatemala la producción de semilla es una actividad combinada de ambos sectores. Por ejemplo, de un total de 1,800 t de semilla de malz producidas durante 1987, ellCTA sólo produjo 100 t.Durante los últimos 10 at'los se cuadruplicó la producción de semilla certificada de maiz. A mediados de los at'los 70. ellCTA inició su estrategia de producción conjunta con productores privados de semilla. En 1978. se Importaban de El Salvador 1.350 t de semilla de hrbridos, pero para fines de los 80, casi toda la semilla de malz se producia en Guatemala. Cerca del 70% de esta semilla es de híbridos. Las fuentes empresariales Indican que los hibrldos comerciales que se someten a prueba hoy en dla poseen un rendimiento 20% mayor que el de las mejores lineas comerciales que se encuentran ahora en el mercado. Según las mismas fuentes. estos hlbrldos comerciales rinden a su vez 30% más que las variedades antes existentes. Estas cifras set'lalan que es muy posible que el rendimiento del malz en las reglones que se siembran con semilla comercial experimente un fuerte Incremento durante los pr6xlmos 10 a\"os.En el Cuadro 11 se muestran los precios de la semilla en Guatemala durante 1987. la diferencia entre los precios de la semilla de las VPL y de los hlbrldos es, en promedio. s610 US$0.15/kg. Además. a un precio de US$l OO/t. la proporci6n de los precios semilla /grano de los hlbrldos es de 7.5. 19n 197819n 197919n 198019n 198119n 198219n 198319n 198419n 198519n 198619n 1987 Mo Mo Inversiones púhlirRC; y privadas en la invec;tigAr.ión En 1987, el presupuesto combinado de las dos empresas privadas que realizan investigación fue de la mitad del presupuesto del ICTA (Cuadro 12). Estas compañias gastan 90,000 dólares en dos estaciones y cuatro cienUflcos.En 1987, el tCTA tenía nueve científicos dedicados a la investigación en mejoramiento de malz en seis estaciones experimentales.Es posible que se haya subestimado el presupuesto anual del Instituto para la Investigación en marz, ya que solamente representa el 7% del presupuesto de investigación del ICTA y 3.6% de su presupuesto global (que incluye investigación y otros gastos). Stewart (1985) informa que en 1980-82 al maíz le correspondra el 11 % del presupuesto de investigación.' 5 Los ingresos que recibe el ICTA por la liberación de variedades de malz y servicios relacionados con la misma (venta de semilla fundación, regalías sobre semilla básica y procesamiento de semilla) constituye una cuarta parte del presupuesto anual de investigación sobre maíz. No. de clentlflcos e En GIJnlAm~l:l. In Inlpmf\"r.jrm rll1loc; c:~M()rf':lS p(,hlir.o y rrívArln p.n la Invp.stigAdón ~ohr~mar7 e~sllmamente productiva. Hace 15 afias, el sistema de investigación publico recomendaba que los agricultores sembraran semilla de malz hibrido creada por las empresas salvadorel'las. Hoy en día, el ICTA ofrece una amplia gama de VPL e hrbrldos de alto rendimiento creados por su programa de investigación. Los agricultores reconocen la semilla vendida con el logotipo del ICTA como un producto de excelente calidad, sin importar el tipo de semilla de que se trate. Esta apreciación es resultado en parte del método de investigación en fincas seguido por ellCTA y de la Interacción del Instituto con las empresas locales.Las compafifas locales se benefician de la investigación efectuada por el ICTA utilizando la semilla básica producida por el Instituto para crear sus propias lineas, o multiplicando la semilla fundación del ICTA y comercializándola con sus propias etiquetas y compitiendo en cuanto a la calidad. Las empresas locales negocian con ellCTA sus estrategias de Investigación y producción de semillas, en el entendimiento de que la complementarldad es sumamente beneficiosa para ambas partes. En Guatemala no existe una ley sobre semilla; como la Industria de la semilla es pequet'ía, aparentemente los dos sectores están de acuerdo en que no la necesitan .16A pesar del reducido tamal'lo del mercado de semilla de maíz. las pollticas y regulaciones de la Investigación Impuestas por el sector público proporcionan incentivos suficientes para que las empresas privadas deseen Invertir en la investigaci6n y producci6n de semilla en Guatemala. Una parte importante de estos Incentivos es la posibilidad de usar los resultados de la Investlgacl6n efectuada por el sector público a bajo costo. En pi (;1 mnrn 11; <:p. mllP<;tm 1:1 fnrm:1 pn 'lIJe <;P. distrihl 'Y\"\" 11)$ benpfidos (iprivrlrlnc:; rlp 11' 1 invp,c;tigacinn f'nlre los agricultores y las compañías productoras de semilla de Guatemala. Se estima que las utilidades procedentes de la venta de semilla en 1987 ascendieron a 1.2 millones de dólares con un precio medio de la semilla de US$0.68/kg.Las utilidades de las empresas locales fueron de 300,000 dólares, alrededor del 2S% de las ventas de semilla.En experimentos efectuados con maíz en toda Guatemala, Córdova (1984) encontró que el rendimiento aumentaba cerca del 90% si se usaban tecnologias mejoradas, ya que el rendimiento obtenido con tecnología tradicional era de 1.6 tlha y el obtenido con tecnología mejorada era de 3 tilla. La mejor calidad de la semilla explicaba dos terceras partes de ese incremento, en tanto que otros insumas eran responsables de la otra tercera parte. Córdova (1984) estima también que, en los campos de los agricultores, los híbridos y las VPL mejoradas rinden en término medio 35% más que las variedades de los agricultores. La claslflcacl6n de las reglones se basa en los metlos sobre el nivel del mar (msnm). VPL • variedad de pollnlzacl6n libre, FC • cruza entre miembros de una familia, OC • cruza doble y VC -cruza de variedades.1\\1 1t'Jllrll '1\"P pn Mfllfirn. pn GtI;:¡t\"'mr:tln In~C1grirlJltnrp!,: rnmprciales que arlqtliprpn spmillft mejorada reciblpron tinA gran parte de los beneficios generados por la investigación el1 1987 (más que las empresas privadas y los agricultores no comerciales). El sector público guatemalteco realiza la mayor parte de la Investigación y las empresas locales lIévan a cabo casi toda la comercialización. La ausencia de empresas paraestatales de semilla y la existencia de variedades producidas por el sector público han ejercido una influencia positiva en el desarrollo de las compañras locales. Además, como una compañía posee una gran participación en el mercado de semilla de marz, puede capturar la mayor parte de los beneficios derivados de la investigación. Por consiguiente, la estructura del mercado constituye un factor adicional importante en la decisión (a tomar por una compar\"lra privada) de invertir en investigación en marz en Guatemala. La inversión del sector privado en investigación y producción de semilla responde a las fuerzas del mercado y, por ende, está orientada a las utilidades. Son dos los factores básicos que afectan las utilidades esperadas de las compañías productoras de semilla: el tamaño del mercado y las politicas del sector público. Algunas de las variables que afectan la magnitud del mercado de semilla de maíz son la superficie que se siembra con malz, el rendimiento, la densidad de siembra y los costos de producción, así corno el tipo de agricultor y la estructura del mercado. Algunos ejemplos de las políticas del sector público que afectan las inversiones del sector privado en Investigación incluyen el alcance de las actividades del sector público en cuanto a la investfgación y a la producción de semilla y las regulaciones del comercio. En México, la inversión del sector privado en la investigación en maíz está determinada por la magnitud del mercado de semilla y por las políticas impuestas al sector privado. En el caso de Guatemala, la estructura del mercado de semilla de maíz y las políticas del sector público respecto a la investigación parecen ser los principales factores en la determinación de la inversión del sector privado en investigación.El tamaño del mercado mexicano ofrece una buena oportunidad de expansión de la investigación y producción de semilla por parte del sector privado en el futuro cercano, puesto que sólo el 15% de la superficie total que se cultiva con maíz se siembra con híbridos y 11 % con variedades mejoradas. La cantidad de semilla comercial de maiz que se siembra representa alrededor del 20% de toda la semilla de malz que se planta. Durante los últimos 10 anos se han reducido en forma considerable las regulaciones mexicanas impuestas a la investigación y el comercio. El gran tamaño del mercado y la eliminación de regulaciones han favorecido la expansión de la investigación realizada por el sector privado. En este contexto, las empresas multinacionales amplian con rapidez sus actividades de investigación. En 1987, las compañías privadas tuvieron una participación del 40% en la producción de semilla comercial de maíz. Las inversiones en investigación fueron de más de 1.5 millones de dólares. Sólo dos empresas tocales realizan investigación, pero poseen una participación reducida en el mercado de semilla y al parecer la competencia de las multinacionales y de PRONASE restringen sus actividades.Sólo el 11 % de la superficie de malz que se costtchó en Guatemala en 1987 se sembró con semilla de hrbrldos y sólo el 5% con variedades mejoradas. El mercado estimado para las variedades mejoradas e hibridos es de menos de 2,000 t. Si bien la superficie absoluta que se siembra con maíz es pequeí'la en comparación con la de México, la estructura del mercado en Guatemala atrae la inversión del sector privado en actividades de Investigación. La complementaridad creada entre las compal'lIas locales que producen semi/la y el lelA constituye un elemento fundamental del rápido crecimiento de la Industria guatemalteca de semilla de malz. Una pregunta Importante relacionada con esta Interacción de los sectores público y privado es cuán lejos debe llegar esta situación, teniendo en cuenta el reducido número de empresas que compiten en el mercado guatemalteco de semilla de maiz y el hecho de que los grandes agricultores comerciales son los que más se benefician de la semilla mejorada.La evidencia suministrada por Guatemala indica que, cuando el mercado de semilla de mafz es pequeño, el efecto combinado de una gran actividad de investigación por parte del sector público y la entrega de los resultados de dicha investigación a la industria favorece la investigación por parte del sector privado. Un mercado de mayor magnitud, como es el caso de México, brinda incentivos suficientes para que las empresas privadas de producción de semilla se muestren interesadas en realizar investigaciones sin depender de los organismos locales de inv~c;tÍ(l~df)n ,¡\"', c:p.r.tnr p(,hlir.() La~compal'lfac: <11 lP. pllPrl\"n p.mprender tnlec: nctividnrle~rjp Invf'lstiqAción !;on lAS multinacionales que ya cuentan con SUS propios programas de investigación o que tienen acceso a esos programas en otros parses.la relación que existe entre los sectores público y privado en cuanto a la investigación sobre fltomejoramlento y a la producción y distribución de semilla mejorada, es un elemento clave en el desarrollo de una industria de semilla. No obstante, el efecto de esta relación es tal vez mayor en las regiones agrrcolas más favorecidas. La evidencia preliminar que se presenta en este estudio Indica que en 1987 los agricultores comerciales de México y Guatemala fueron los que más se beneficiaron de la Investigación en variedades e hrbridos mejorados de marzo Por definición, los agricultores comerciales constituyen el mercado de las empresas privadas. Como el sector privado desarrolla y da servicio a las regiones más favorecidas, la investigación del sector público puede concentrarse en las VPL e hrbrldos no convencionales18 para las regiones menos favorecidas. Si se ponen estos materiales a disposición de las empresas productoras de semilla para su multiplicación y distribución, aumentará la difusión de semilla de mejor calidad entre los agricultores más pequet'los y menos comerciales.Una forma de fortalecer la Interacción que existe entre los organismos públicos y privados en cuanto a la Investigación y la producción de semilla de marz en México consiste en eliminar las restricciones Institucionales que Impiden que las companras locales y las asociaciones de productores tengan acceso al germoplasma desarrollado por el sector público. Una relación más estrecha entre eIINIFAP, PRONASE, las companras locales y las asociaciones de productores harra posible que el sector privado mexicano local compitiera con mayor eficiencia con las companlas extranjeras. la Industria mexicana de semilla de marz podrra avanzar aún más si se estrecharan los lazos entre el INIFAP y PRONASE en cuanto a la Investigación y la producción de semilla, ya que en ocasiones estos organismos actúan en forma independiente y sufren problemas de coordinación que obstaculizan la rápida transferencia de los resultados de la Investigación a los agricultores. La amplia diversidad de cultivos para los que debe producir semilla y el gran tamano de PRONASE también limitan, en algunos casos, la posibilidad de producir y suministrar productos de alta calidad.El objetivo primordial de brindar respaldo gubernamental a las compal'lías privadas que producen semilla mediante la liberación de germoplasma y la prueba de variedades, consiste en crear una industria de semilla eficaz. A fin de crear una industria semejante, los precios de la semilla fundación y la semilla básica y los precios de los servicios de prueba deben reflejar el costo total que Implica proporcionarlos. Por otra parte, tampoco deberlan dlstorslonarse los precios de la semilla de las empresas paraestatales, ya que la semilla subsidiada de las paraestatales significa una competencia desleal para las compal'llas privadas que producen semilla, una reducción de sus ventas y, por lo tanto, de sus actividades de investigación.","tokenCount":"9093"} \ No newline at end of file diff --git a/data/part_3/1027851194.json b/data/part_3/1027851194.json new file mode 100644 index 0000000000000000000000000000000000000000..07a9f03dd87185c9b6cfa177cdec0d0012cd412b --- /dev/null +++ b/data/part_3/1027851194.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"7c82d8efc285d9249f1e8df9acc9aa2d","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/706cfc7e-8d1c-4520-bbca-fbbe7707df99/retrieve","id":"-906332189"},"keywords":[],"sieverID":"7f8aef93-a90a-42f4-9d15-21beadc82705","pagecount":"4","content":"Background information Farming communities in developing countries often lack the infrastructure to sufficiently safeguard their perishable produce from deterioration before it can be sold. Depending on the local settings, completely different technical, logistic, or infrastructure options might be proposed to prevent deterioration. Specifically for milk, which is obviously prone to rapid bacterial spoilage when left uncooled, several interventions have been suggested and implemented over the years to improve the situation. Notably in Kenia and Ethiopia, various NGOs have installed refrigeration units at collection points near central roads where electricity is available. Alternatively, various off-grid cooling options have been technically developed to prevent spoilage for part of the milk production already at the farms.In Ethiopia, 98% of the milk is produced by smallholder farmers (Getahun et al., 2019). On average, in peri-urban areas, farmers possess 3.8 cows, which produce about 17 liters of milk per day (Vernooij et al., 2010). Part of this production is collected and transported to milk factories, where the milk is pasteurized or further processed into yogurt, butter or cheese for upper-class consumers in larger cities.One of these factories is the Zagol milk factory, located in Sululta, a one-hour drive north of Addis Ababa, the capital of Ethiopia. The factory has a maximum pasteurization capacity of 1000 litre per hour, but it currently processes only 2000-3000 litres a day. The milk and other dairy products from the factory are sold in Addis under the brand name Zagol. According to the factory, the product demand is sufficiently large to sell more than the current production allows for. The challenge for the factory, therefore, is to increase its supply of milk by improving the milk collection process.The storage at smallholder farms, the collection of milk and the transport to the factory are commonly done at ambient temperature. As a result, only the morning milk is collected, because only then is the time between milking and arrival at the factory short enough to prevent quality loss. Nevertheless, a part of the milk arriving at the factory is still not suitable for further production and will be rejected due to its low quality.Dairy accounts for 6.8% of total FLW worldwide and 10.2% of the associated GHG emissions (Guo et al., 2020). This makes saving in the dairy sector relevant to reducing GHG emissions on a worldwide basis. However, in Ethiopia, rejected milk is not thrown away but used for the production of fermented local products such as ergo, ayib, butter and whey (Andualem and Geremew, 2014). For this reason, this milk cannot be seen as waste. In Ethiopia only about 1.6% of milk is wasted, mainly by spillage (Lore et al., 2005). In this light, it is to be expected that the GHG emissions related to collecting milk will increase rather than decrease, although in favour of economic growth and improved product quality.The goal of this study was to determine the best cooling scenario to prevent milk rejection and increase the milk collection potential for a milk factory in Ethiopia.Setup of this study This study combined a quality models with locally realistic logistic scenarios as a practical way to assess the feasibility of various options. The analysis addresses four common criteria when evaluating the implementation of these scenarios: (1) the effect on the potential yield of good quality milk; (2) the cost-effectiveness; (3) the effect on total greenhouse gas (GHG) emissions; and (4) the technical feasibility and practical and economic consequences. This way of comparing scenarios can hopefully contribute to better implementation of interventions that can genuinely improve the lives of smallholder farmers and stimulate economic growth for them.Policy advice based on this study The applied combination of a simple model, economic analysis and the effect on GHG emissions gives valuable information on the effectiveness and limitations of different scenarios for improving the supply chain. This can help to successfully apply a scenario and thereby the economic development of a specific region.Main findings from this study The developed milk quality model shows that the rejection rate for milk collected in Ethiopia is largely dependent on the time between milking and cooling. Only improving farm hygiene will not reduce the rejection rate of evening milk to acceptable levels. The analysis of the scenarios (table 1) shows that cooling is essential for preventing rejection of collected evening milk in the area of the Zagol milk factory. For the morning milk, cooling is currently less beneficial, but only when the time between collection and arrival at the factory is limited. Including economics (table 2), the best scenario can be expected with a cooling centre where farmers offer their milk twice a day. The additional collection cost for milk will be just below USD 0.01/L above the current price for morning milk, and this depends on the amount of milk the farmers are offering. However, as it is expected that farmers will not be willing to deliver the evening milk to the chilling centre themselves at night, an additional collecting system is probably needed to increase the milk supply. This would result in higher costs and a risk of rejection at the factory gate. Furthermore, when a collection system can be set up, a chilling centre has reduced added value. Therefore, with a collection system at farms for the evening milk, the milk can be better brought directly to the factory. The rejection rates in that case are still significant. However, they can be reduced by limiting the collection time. Another benefit for this scenario is that it can be introduced on a small scale with limited financial risk. In addition, the off-grid chiller scenario, where the rejection rate is reduced to zero, can be started as a small project with limited risk. Compared to a farm collection system, the collection cost for this scenario is much higher. However, this scenario is the only one where a reduction of GHG emissions is expected. If a grid extension was established, the cost for on-farm cooling would be much lower, compared to the solar-power-driven cooler. The drawback is that proper training would be necessary to get sufficiently high cooling rates for the evening milk, in order to prevent rejection at the collection point in the morning.Except for solar power-driven cooling on the farm, all scenarios have higher GHG emissions than the current situation. Although they have only little impact, as the additional GHG emissions account only for 0.2-2.2% of the GHG emissions of primary production. ","tokenCount":"1068"} \ No newline at end of file diff --git a/data/part_3/1052156825.json b/data/part_3/1052156825.json new file mode 100644 index 0000000000000000000000000000000000000000..8d1e5bf144ac78842eb84f0326af6d2cb533e530 --- /dev/null +++ b/data/part_3/1052156825.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"ee3a28ce5bd8991611cf22b3ccc8f3e8","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/f34bc758-a4d1-4a0e-a702-8eb6a43a4fc0/retrieve","id":"294449314"},"keywords":[],"sieverID":"95869d6b-c55f-4849-b4b0-1e950a4ca211","pagecount":"3","content":"In 2023, the world experienced its hottest year since records began in 1850. The world also approached the critical 1.5 degrees Celsius above preindustrial The rise in temperatures manifested in extreme heat, drought, wildfires, intense rainfall and flooding.• Climate-related shocks were the main drivers of food insecurity in 18 countries, where almost 72 million people faced high levels of food insecurity. This was an increase from 2022 (12 countries with 56.8 million acutely food insecure people in need of urgent humanitarian assistance).• Twelve of the 18 countries are in Africa, with 47.8 million people requiring urgent assistance. Five of the countries are in Latin America and the Caribbean, with 12.2 million. While in Pakistan, 11.8 million people faced high levels of acute food insecurity primarily due to weather extremes.• Out of 41 remaining food crisis countries, weather extremes were considered the secondary driver in 12 and the tertiary driver in 15 of them. Weather extremes can also drive displacement and are known to impede voluntary returns for refugees and internally displaced people -as livelihoods at the place of origin may be lost, and competition for resources can limit livelihood opportunities at the site of displacement.• Around 51 million people were in IPC/CH Phase 2 (Stressed) in 11 out of the 18 countries (with data disaggregated by phase) where weather extremes were the main driver of acute food insecurity. Meaning people were vulnerable to more severe levels of acute food insecurity if they faced another shock.• The Horn of Africa experienced below average rainfall for three consecutive years, affecting both long rains and short rains (ending May 2023). This led to the worst drought conditions in nearly 40 years -affecting rangeland, water resources and in turn crop and livestock production.These messages were formulated by members of the GNAFC, in collaboration with the HDP Nexus Coalition, and coordinated through the efforts of CGIAR.April 2024• The El Niño phenomenon drove many of the weather extremes seen in 2023, bringing hotter and drier than normal conditions across much of East Africa, Central and Southern Africa, and in Latin America and the Caribbean. El Niño reached its peak intensity in late 2023 through to mid-2024.• In Central and Southern Africa, 12 million people faced high levels of acute food insecurity across seven countries -primarily due to the impact of dry conditions on crop production, and destruction caused by flooding from Cyclone Freddy in March 2023.• In Asia, Cyclone Mocha caused widespread destruction of farmlands, impacting over three million people in Myanmar alone.The number of people in IPC/CH Phase 3 (Crisis) or above in countries covered by the GRFC -with extreme weather events as the primary driver of food insecurity -more than doubled between 2018 and 2023. 71.9 million people across 18 countries in 2023 compared to 28.6 million people across 26 countries in 2018.• Acute food insecurity is rarely driven by a single shock or hazard, but rather by the interaction between multiple shocks and underlying poverty, institutional structural weaknesses, and other vulnerability factors.• Weather extremes -such as severe storms, floods or droughts -can lead to displacement by disrupting livelihoods and creating competition for resources, in both the areas of origin and displacement.• The interconnectedness of food, land, and water systems with ecosystem services plays a vital role in sustaining agricultural livelihoods.• Climate-related hazards threaten and affect local populations differently, both directly and indirectly, depending on their exposure and vulnerability.• Various factors shape decision-making processes and resource entitlementsincluding historical context, socio-political dynamics, cultural norms, economic conditions, and environmental or renewable natural resources wealth.• Responses to climate threats can lead to cooperation or conflict, as well as instances of maladaptation or successful climate adaptation and resilience, influenced by context-specific circumstances.• The impact of behavioural patterns on the functionality of food, land, and water systems -as well as on vulnerability to climate threats and the knowledge and resilience capacities of individuals and communities -is significant.April 2024• Strengthen mechanisms for data collection and generation to better understand the interconnections among food insecurity, conflict, and climate change. This involves employing real-time data collection practices and context-specific sampling to support preventative and anticipatory measures against emerging crises. Enhanced data capabilities will enable stakeholders to identify trends and correlations, thereby guiding effective advocacy, policymaking and programming.• Implement comprehensive risk assessments and ensure conflict sensitivity within programming, to better prevent, anticipate and reduce risks and impacts. By integrating these assessments, organizations can design context-based and adaptable interventions that drive climate resilience and sustain peace efforts -building on existing community-led adaptation and resilience actions while supporting conflict resolution.• Align policies related to climate change and adaptation with transformative food system interventions across the rural-urban continuum, creating synergies between environmental sustainability and food security. By adopting a multi-risk and food systems policy approach, governments and organizations can address root causes of food insecurity and climate risks, leading to sustainable solutions benefiting people, nature, and the climate. This systemic approach comprehensively tackles the complexities of multiple climate risks and impacts within food systems, encompassing production, distribution, and consumption dynamics. Emphasizing inclusivity in decision-making processes fosters climate-sensitive and equitable solutions, benefiting both rural and urban populations, including displaced people and host communities.• Take concrete actions to de-risk investments in countries affected by climate extremes, improve countries' resilience capacities to prevent, anticipate, absorb, adapt and transform, and increase financial support through customized investment modalities. This strategy can involve boosting climate finance dedicated to the agricultural sector in fragile settings, as well as displaced and at-risk-of-displacement populations. To achieve this, it is crucial to include more and accessible finance mechanisms for fragile countries adaptation, and addressing loss and damage in agrifood systems. By leveraging public and private sector expertise and resources for investing in multiple climate risk and impact solutions -including insurance mechanisms and social protection -we can unlock avenues for reducing the impacts of climate change on food systems in fragile contexts.• Climate shocks and stresses are increasingly driving displacement, which is linked to food insecurity. Based on monitoring climate-induced displacement, enhancing an understanding of how community-based inclusive approaches -including locallyled adaptation -can alleviate the impacts of climate change-induced displacement and its ramifications for food security. These approaches empower local communities to proactively address the challenges posed by climate-related events, thereby reducing displacement risks. Communities can harness traditional indigenous knowledge to develop robust strategies for adapting to changing environmental conditions while minimizing displacement. Emphasizing inclusivity not only fosters social cohesion but also empowers communities to mobilize resources effectively, and support vulnerable groups. This approach ultimately safeguards food security amid environmental uncertainties, with communities driving their own resilience and adaptation efforts.","tokenCount":"1093"} \ No newline at end of file diff --git a/data/part_3/1064360921.json b/data/part_3/1064360921.json new file mode 100644 index 0000000000000000000000000000000000000000..6f7f9a9932bb5dcf33d840718596ceffbed466f7 --- /dev/null +++ b/data/part_3/1064360921.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"8a41ce3712f2624195704e08ac46e777","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/803490a8-bc83-4960-9bbd-3b1022acec83/retrieve","id":"585766071"},"keywords":[],"sieverID":"e8bc3205-bdab-4c1f-91d6-8e4dea0407de","pagecount":"6","content":"The first step in the breeding of clonally propagated crops, crossings, is to produce botanical seeds. Each botanical seed has a unique genetic makeup qualifying it as a potential new variety. From this point onwards, there will be further genetic change in the plant/vines arising from the botanical seed apart from natural mutations. Gruneberg et al. (2007) designed a scheme tailored to release improved varieties in a shorter timeframe than conventional breeding, known as the 'Accelerated Breeding Scheme' (ABS) (Fig 1). The ABS for sweetpotato considers that temporal variation of testing environments equals to spatial variation of testing environments in the early stages of a breeding program. In the ABS, all clones derived from true seeds are, therefore, planted simultaneously in several environments and selection is conducted from the first year of testing. The principle of the ABS for clonally 2016 SEP Expanded and Sustained Uptake of the Accelerated Breeding Scheme (ABS) ApproachThe most important constraints to sweetpotato production in Sub-Saharan Africa (SSA) are shortage of high quality planting material and lack of improved OFSP varieties. The conventional breeding approach followed for decades by breeding programs starts with population development (generation of genetic variation through production of botanical seed) and ends with selection of the ''best'' individuals in the breeding population and variety release. This conventional breeding approach illustrated in Fig. 1 takes 7 to 8 years to release a variety. From our findings and the pressure to make a difference in farmers' lives faster, variety release via the 'conventional' breeding scheme is no longer adequate.Reaching 10 million African households by 2020 Observation trials (OTs) commence in the second year by simultaneous planting of all genotypes in the seedling nursery in two to four distinct environments using non-replicated 1 meter plots (3 plants). The Near Infrared Spectrometer (NIRS) is employed to rapidly assess the selected clones for quality traits -including beta-carotene, iron, zinc, protein, starch and sugars (Fig 2). The selected genotypes with satisfactory root yield, form, taste, flesh color and other agronomic data are promoted to preliminary yield trials (PYTs) and subsequently advanced yield trials (AYTs) during the second year. PYTs and AYTs have bigger plot sizes and replicated across environments to assess storage root yield, above ground biomass and storage root quality in years 2 and 3. Multi-location trials (MTs) as well as on-farm trials are simultaneously carried out in the third year across diverse locations for the selected genotypes. Following this scheme, all the crucial agronomic data necessary for cultivar release is available by end of year four. 3. Storage root yield (SRY), total biomass, dry matter (DM), beta-carotene, iron (Fe) and zinc (Zn) content, and starch of sweetpotato bred varieties from an orange-fleshed breeding population that was evaluated at four sites (Angonia, Chokwé, Gurué and Umbeluzi) in Mozambique, 2009 to 2011.From the selection process carried out during the first cycle trials -64 best clones emerged from the 59 AYTs and were tested in MTs and on-farm trials at the main agricultural stations and their neighbouring villages in four distinct environments (Fig 4). In the second cycle, 76 best clones were selected for MTs and on-farm trials at Umbeluzi, Chokwe and Gurue including their neighbouring villages.The experimental design for the MTs was randomised complete block design (RCBD) with four replicates; net plots had four rows each row with 23 plants. The measured traits were storage root yield (t/ha); dry matter (%) and beta-carotene (mg/100gDW); cooked taste (scale of 1 -5 where 1 = very bad, 2 = bad, 3 = average, 4 = good and 5 = excellent); virus and weevil damage as well as vine vigor. In all the analysis, a principal component was conducted to ensure all attributes used in the selection process were accounted for.The agronomic performance across multilocation sites of the G2 and G3 varieties are presented in Tables 3 & 4 respectively. Purple-fleshed varieties showed high anthocyanin and suitable sensory quality equal or even better than that of the cultivar checks (Chingova and Jonathan). Melinda had the largest total (27.1 t/ha) and marketable (21.1 t/ha) storage root yield across environments among the G2 varieties. Tio Joe and Erica showed the highest beta-carotene content and above average taste. Jane and Amelia had the best taste among the G2 varieties. z Dry matter content (DM, %) was calculated using dry weight as a percentage of fresh weight by taking a sample of about 100 g after bulking three roots and oven drying at 70o C for 72 hours. y Harvest index was computed as a percentage of root yield over biomass yield (Root yield/root yield + vine yield).x Root cooking taste (COOT1) with the aid of a 1-5 scale, where 1 = very bad, 2 = bad, 3 = average, 4 = good and 5 = excellent.It is of note that since 2009, national programs in Burkina Faso, Kenya, Malawi, Mozambique, Rwanda, Uganda and Zambia have released improved sweetpotato varieties following the ABS. Thus, even though the method is management and resource intensive, national programs with grant funds of approximate 60,000 USD/ year were able to successfully apply ABS.Notable differences are in dry matter content among the breeding cycles (Table 5). G3 has significantly higher dry matter than the other two generations. The beta-carotene content and the starch levels are also higher in G3 than the other generations.","tokenCount":"884"} \ No newline at end of file diff --git a/data/part_3/1064788337.json b/data/part_3/1064788337.json new file mode 100644 index 0000000000000000000000000000000000000000..6be22123fe6ecc41548ed5934c514aa43657d3dd --- /dev/null +++ b/data/part_3/1064788337.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"7d2ed34faeb62809f8489ed520c08ee2","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/24093cf9-e630-4df2-b621-858f3f502d51/retrieve","id":"1941903439"},"keywords":[],"sieverID":"83350d1b-aa96-492c-a2e6-2c9688efa7ff","pagecount":"8","content":"Renovar los paisajes rurales para mejorar la seguridad alimentaria y los medios de vida L os servicios ambientales son los múltiples servicios que todas las personas recibimos de los paisajes -desde alimentos nutritivos y agua limpia hasta la regulación del clima y la recreación al aire libre.Naciones Unidas puso por primera vez a los servicios ambientales en el centro del debate sobre políticas ambientales en su Evaluación de los Ecosistemas del Milenio, publicada en 2005. Desde entonces, varios esfuerzos mundiales, como la Iniciativa de la Economía de los Ecosistemas y la Biodiversidad, han resaltado el enorme valor de estos servicios en un esfuerzo para fortalecer el argumento para detener su deterioro.El reto ahora es avanzar del debate y las grandes cifras a la acción en el terreno, lo cual en parte es cuestión de evaluar más de lleno el valor económico y social de los servicios ambientales en relación con las prioridades nacionales. Después de todo, decir que algo es un \"servicio\" tiende a restarle importancia a su valor real. Debemos entonces mostrar evidencia contundente de que estos servicios se pueden preservar y mejorar eficazmente mediante enfoques que integren innovaciones tecnológicas, institucionales y políticas.La agricultura está especialmente supeditada a los servicios ambientales -incluidos los recursos fitogenéticos, la fertilidad del suelo y el agua dulce -pero también genera servicios clave (como la producción de alimentos), ejerciendo al mismo tiempo mayores impactos negativos sobre los servicios ambientales que cualquier otro uso de la tierra, en especial en los trópicos. Por estas razones, existe una necesidad apremiante de mejorar el manejo de los servicios ambientales y obtener de ellos mayores beneficios para el bienestar humano.En respuesta, el Centro Internacional de Agricultura Tropical (CIAT) ha emprendido una nueva iniciativa estratégica llamada Ecosystem Action, que moviliza la investigación en apoyo de importantes iniciativas encaminadas a renovar los paisajes rurales.La degradación de la tierra y los costos ocasionados a nivel mundial han alcanzado niveles inaceptables. La única medida asequible ahora es invertir en la restauración de la tierra, creando así beneficios para millones de hogares rurales en los países en desarrollo y para el resto de nosotros que dependemos de los servicios ambientales que las familias campesinas ayudan a mantener.En décadas recientes, la degradación del paisaje se ha acelerado a un ritmo desenfrenado que supera de 30 a 35 veces los índices históricos.El costo de la degradación de la tierra ha llegado a US$490 mil millones un costo mucho más alto que el de revertirla.por año, • 10-15 millones de hogares rurales de escasos recursos podrían beneficiarse de los mercados para la conservación de la biodiversidad,• 25-50 millones se beneficiarán de los mercados de carbono, • 80-100 millones de la protección de cuencas hidrográficas, • y 5-8 millones de la restauración de paisajes escénicos.La credibilidad de la iniciativa Ecosystem Action del CIAT se apoya en una trayectoria sólida de logros, gracias a la colaboración con diversos socios en la investigación para el desarrollo. Durante los últimos años, los científicos han demostrado que las perspectivas ecológicas se pueden emplear eficazmente en la agricultura, lo que permite generar beneficios significativos para las personas y el medio ambiente. A continuación, una breve descripción de algunos casos informativos.Una mano a la naturaleza: Restringir las plagas invasivas en AsiaLos entomólogos estuvieron entre los primeros pensadores sistémicos en la investigación agrícola moderna, demostrando el enorme impacto que un enfoque ecológico puede tener en la investigación sobre cultivos de primera necesidad. Un logro que vale la pena mencionar en particular involucra el control biológico del piojo harinoso de la yuca, una plaga de insectos que en décadas recientes ha llegado a África proveniente de su zona de origen en América del Sur y últimamente ha aparecido también en el sureste de Asia, con consecuencias devastadoras. La propagación del piojo harinoso de la yuca forma parte de una amenaza creciente a nivel mundial para las economías y los ecosistemas por parte de las especies invasivas.Investigaciones en el Instituto Internacional de Agricultura Tropical (IITA) y el CIAT han demostrado que la forma más segura e infalible de restringir esta plaga es mediante la liberación de una avispa parásita, que coevolucionó con el piojo harinoso en América del Sur y mantiene a la plaga bajo control de una manera natural. Esta estrategia ha funcionado bien en África, permitiendo ahorrar miles de millones de dólares en insumos alimenticios, y fue aplicada hace algunos años en Tailandia.En respuesta a la reciente aparición del piojo harinoso en Indonesia, científicos de la Universidad Agrícola de Bogor liberaron cerca de 3.000 avispas durante septiembre de 2014, con apoyo del CIAT y la Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). Esta es la primera fase de un esfuerzo para superar una amenaza mayor para el segundo producto de primera necesidad más importante del país después del arroz.El trabajo sobre el piojo harinoso de la yuca encaja dentro de una iniciativa mayor de control biológico en la región que incluye modificaciones sencillas en los sistemas de cultivo para hacer más abundantes y efectivos los enemigos naturales de las plagas.Una de las razones principales para la lenta adopción de enfoques ecológicos para el manejo de la tierra es que sus beneficios económicos inmediatos a menudo no brindan incentivos lo suficientemente fuertes para que la población rural cambie sus prácticas tradicionales. Este es el caso de la agricultura de conservación en las tierras altas alrededor del lago Fúquene en la región central de Colombia. Si bien ofrece beneficios claros en comparación con la producción agropecuaria tradicional en términos de la calidad del agua, la agricultura de conservación tan solo genera modestas ganancias en la productividad. En respuesta, se creó un fondo rotatorio para brindar crédito a los agricultores dispuestos a ensayar la agricultura de conservación.En un esfuerzo novedoso para abrir estas puertas en Perú, el Ministerio del Ambiente (MINAM) y varios socios están promoviendo mecanismos para la distribución equitativa de los beneficios económicos provenientes de servicios vitales provistos por diversos ecosistemas del país. El esquema se basa en una nueva ley aprobada por el Congreso peruano y la Rama Ejecutiva en junio de 2014, que se está implementando en la actualidad.El trabajo de MINAM en el novedoso esquema de retribuciones se originó de un proyecto piloto llevado a cabo en la cuenca del río Cañete, con apoyo del Programa de Investigación de CGIAR sobre Agua, Paisajes y Ecosistemas (WLE) a través del CIAT. Un aporte clave de la investigación fue determinar el valor de los sistemas ambientales, en especial el agua, para una variedad de sectores, incluido el agrícola. La buena noticia es que los usuarios de este recurso reconocen claramente su valor y están dispuestos a contribuir financieramente a su preservación.Buscando formas de implementar el esquema de retribución, MINAM y el CIAT encontraron una opción viable con ayuda del Fondo Internacional de Desarrollo Agrícola (FIDA). El FIDA ha acordado aportar capital de arranque para la creación de un fondo en fideicomiso y además cubrir gastos operacionales. Los usuarios del agua en la parte baja de la cuenca ahora tienen una forma de hacer contribuciones voluntarias. Las comunidades en la parte alta de la cuenca ya están aplicando al fondo para apoyar proyectos centrados en la conservación de paisajes rurales y la restauración de tierras degradadas.Algunos enfoques en paisajes resultan de la fusión de saberes tradicionales con nuevas perspectivas de la ciencia. Tal es el caso de Quesungual, un sistema agroforestal desarrollado originalmente a principios de los noventa por la FAO con organizaciones comunitarias y de agricultores en Honduras.Quesungual incluye diferentes clases de árboles distribuidos en la tierra agrícola a una densidad de hasta 1.000 por hectárea. Las raíces actúan como anclas, estabilizando las laderas, minimizando la erosión del suelo y mejorando la absorción de nutrientes de capas más profundas del suelo. La mayoría de los árboles se podan a intervalos regulares y los esquejes verdes se usan como mantillo para proporcionar nutrientes y retener la humedad -dando a los cultivos cierta protección cuando no llueve. Esto además contribuye a aumentar la materia orgánica en el suelo, lo cual fomenta la actividad biológica y el ciclaje de nutrientes al tiempo que mejora la estructura del suelo.Algunos de los árboles se mantienen tan pequeños que es difícil distinguirlos en los cultivos de maíz y sorgo que los rodean. Otros se dejan crecer lo suficientemente grandes para proveer madera y frutos. Además de capturar el dióxido de carbono, muchos de los árboles en el sistema fijan nitrógeno, mejorando así la fertilidad del suelo. El resultado general es un sistema más confiable y productivo -así llueva o brille el sol.Quesungual, un sistema ya bien establecido en Honduras, se ha difundido y mejorado aún más en El Salvador y Nicaragua como resultado de esfuerzos coordinados por el CIAT. Estudios preliminares sugieren que el sistema podría funcionar igualmente en otras zonas de los trópicos subhúmedos.Partiendo del modelo que se ha desarrollado en Perú y otros países de América Latina, Kenia pronto experimentará los beneficios mutuos que se dan cuando las sociedades comparten la responsabilidad de mejorar los servicios ambientales. El medio por el cual la sociedad keniana logrará este propósito es el Fondo de Agua Tana-Nairobi, el primero de su clase en África. Puesto en marcha en marzo de 2015, el Fondo fue desarrollado por The Nature Conservancy (TNC) a través de un esfuerzo colaborativo con socios de los sectores público y privado, incluido el CIAT, en la parte alta de la cuenca del río Tana.Esta es una importante zona de captación de agua para la capital de Kenia y suministra energía hidroeléctrica para gran parte del país. Durante las pasadas 3 décadas, ha experimentado cambios rápidos, como consecuencia de una densidad demográfica en aumento y pobreza arraigada. El uso insostenible de la tierra agrícola, las canteras cerca de los ríos y otras actividades han dado pie a altos niveles de escorrentía y erosión del suelo, generando altos costos para los usuarios de los abastecimientos de agua en la parte baja.Mediante un desarrollo bien dirigido de prácticas de manejo sostenible de la tierra, el Fondo de Agua trabajará para reducir la erosión y la sedimentación en las cuencas de la parte alta predominantemente rurales, asegurando así que los residentes urbanos de la parte baja perciban buena calidad de agua potable, así como suministros adecuados de agua para la generación de energía hidroeléctrica. Parte de la función del CIAT en este esfuerzo es monitorear los impactos actuales del Fondo y orientar decisiones acerca de las opciones para lograr un mejor manejo de la tierra.Con base en gran parte de experiencias pasadas, el CIAT está emprendiendo nuevos proyectos que constituyen los bloques de construcción de la iniciativa Ecosystem Action. Algunos de ellos aportan una perspectiva ecosistémica para trabajar sobre tecnologías agrícolas específicas -por ejemplo, la introducción de forrajes tropicales en diversos sistemas de cultivo -con el propósito de lograr aumentos en la productividad, al igual que beneficios ambientales. Otros proyectos abordan temas ambientales de una manera más directa e integral pero con énfasis particular en servicios (como polinización, ciclaje de nutrientes y retención de agua) que son críticos para fortalecer la seguridad alimentaria y nutricional, reduciendo al mismo tiempo los impactos ambientales de la intensificación agrícola.Con el apoyo del Gobierno alemán, por ejemplo, el CIAT y diez organizaciones socias han emprendido un esfuerzo importante en la Amazonia colombiana y peruana, a través del cual las comunidades rurales desarrollarán y ensayarán prácticas de uso sostenible de la tierra que mejoren sus medios de vida y los servicios ambientales y fortalezcan las capacidades locales para sobrellevar el cambio climático. Otro proyecto apoyado por Alemania en Malawi y Tanzania está ayudando a restaurar la tierra degradada, creando a su vez nuevas oportunidades de ingresos para las mujeres con base en los servicios ambientales. Una contribución importante de la investigación es argumentar la necesidad de inversión identificando y cuantificando servicios clave.Todos los proyectos del CIAT relacionados con servicios ambientales contribuyen significativamente a los Programas de Investigación globales de CGIAR. Estas contribuciones son el resultado de nuestros esfuerzos colaborativos con más de 70 organizaciones socias para desempeñar las cinco actividades descritas a continuación mediante un enfoque integrado que funciona en distintas disciplinas científicas.Asegurar el compromiso de la población rural y la sociedad en su conjunto para mejorar los servicios ambientales requiere que demostremos cómo los paisajes rurales generan estos servicios. Bajo un proyecto financiado por el Reino Unido, por ejemplo, científicos del CIAT están usando una combinación de métodos cuantitativos y participativos en colaboración con universidades europeas y socios en Colombia, Malawi y Perú para documentar la importante función de los servicios ambientales en el fortalecimiento de la seguridad alimentaria y nutricional de las comunidades rurales.Si las inversiones en los servicios ambientales realmente generan o no los retornos esperados depende de la efectividad de las diferentes prácticas de uso de la tierra adoptadas por la población rural. El CIAT ha desarrollado una amplia gama de soluciones sostenibles a lo largo de décadas de investigación en el manejo de cultivos, suelo y tierra en los trópicos. En la actualidad, los científicos del Centro están llevando el trabajo un paso adelante evaluando la amplia gama de beneficios que resultan de prácticas sostenibles para aportar mejores recursos de información y dirigir mejor las inversiones en materia de servicios ambientales. En África, este trabajo plantea el reto especial de encontrar incentivos más fuertes para que la población rural de escasos recursos adopte prácticas sostenibles de uso de la tierra.Para ayudar a traducir el compromiso ambiental en acción colectiva, los científicos deben poner sobre la mesa de negociación información cuantitativa sólida sobre el valor socio-económico de los servicios ambientales y sobre los efectos de la agricultura en ellos. Una contribución clave de la investigación en la cuenca del río Cañete de Perú (ver página 4) fue generar esta información, que brinda una base para determinar los incentivos necesarios para proteger los servicios ambientales en los paisajes agrícolas. Nuestra investigación abordará además los impactos del cambio climático en estos servicios.Ser capaz de visualizar los servicios ambientales es esencial para poder darles un mejor manejo. Para ello, el CIAT y sus socios están diseñando herramientas y métodos más eficientes para cuantificar y mapear los servicios ambientales en los paisajes rurales. En una nueva iniciativa del Programa WLE de CGIAR que involucra a Kenia, Perú y Tanzania, por ejemplo, estamos desarrollando herramientas novedosas que, por primera vez para la ciencia, integran la modelación de los cultivos con la de los servicios ambientales. Cuando se utilicen en la planeación participativa con pequeños agricultores y otros, estas herramientas contribuirán a mejores decisiones de inversión, generando así ganancias en la productividad, mejores servicios ambientales y mayores beneficios, en especial para las mujeres y los grupos marginados.La iniciativa Ecosystem Action del CIAT es un componente central de la nueva estrategia del Centro para construir un futuro eco-eficiente en la agricultura tropical. Nuestra meta es ayudar a intensificar la producción de alimentos de manera sostenible y mejorar los medios de vida rurales, reduciendo a su vez la huella ambiental de la agricultura mediante un uso prudente, tanto a nivel económico como ecológico, de los recursos.Las tecnologías mejoradas de producción son necesarias pero no suficientes para lograr este propósito. Estas deben ser parte de un enfoque integrado que también genere las innovaciones institucionales y políticas requeridas para establecer sistemas de producción sostenibles. Este es el tipo de enfoque que el CIAT busca a través de la iniciativa Ecosystem Action, con una visión de un nuevo rol para los agricultores y otras personas de zonas rurales como guardianes y proveedores de servicios ambientales vitales a cambio de una compensación justa por parte de los sectores de la sociedad que se benefician de estos servicios.Al tiempo que trabaja en proyectos colaborativos en países seleccionados, Ecosystem Action participará en distintas iniciativas mundiales que han surgido recientemente. Una es la Plataforma Intergubernamental de Biodiversidad y Servicios Ecosistémicos (IPBES, por sus siglas en inglés), que se estableció al reconocer las funestas consecuencias de la degradación de los ecosistemas y la pérdida de biodiversidad. Este nuevo órgano tiene el potencial de atraer importante atención científica y política sobre la degradación de los ecosistemas, justo como el Panel Intergubernamental de Expertos sobre Cambio Climático (IPCC) lo hizo con otra amenaza emergente para los medios de vida humanos.Con este fin, el IPBES reunirá evidencia científica para apoyar decisiones sobre políticas para el manejo y restauración de los ecosistemas -una tarea para la cual los científicos del CIAT están bien preparados para contribuir. El Centro también buscará colaborar en un nuevo estudio sobre agricultura y alimentación emprendido por la Iniciativa de la Economía de los Ecosistemas y la Biodiversidad, que esclarecerá los intrincados nexos entre la agricultura, especialmente la producción a pequeña escala y los servicios ambientales.A través de estos esfuerzos, científicos del CIAT y sus socios lograrán un conocimiento amplio del estado del arte de la prestación de servicios ambientales -conocimiento que luego puedan aplicar a importantes iniciativas para restaurar la productividad en las tierras degradadas y detener el descenso de los servicios ambientales a nivel nacional y mundial.Desarrollar mecanismos financieros innovadores para lograr una distribución más equitativa de los costos y beneficios de los servicios ambientales mejorados es un paso inicial crítico para mejorar su preservación y manejo. Sin embargo, para los investigadores y sus socios para el desarrollo, esto es solo el comienzo de un proceso que busca asegurar la implementación efectiva de estos mecanismos. El CIAT ya brinda este apoyo a través de una labor de investigación con el Ministerio del Ambiente de Perú y ha emprendido este tipo de trabajo en otros países (como Kenia) en donde se están estableciendo nuevos mecanismos financieros.","tokenCount":"2933"} \ No newline at end of file diff --git a/data/part_3/1070185712.json b/data/part_3/1070185712.json new file mode 100644 index 0000000000000000000000000000000000000000..1d30e2f854fbdd55c254af676f79637e235efb29 --- /dev/null +++ b/data/part_3/1070185712.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"fde190c6f10ee03b86a4d836ba1ea397","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/93c118bc-5f21-4fef-b423-bda235bb7503/content","id":"1218517431"},"keywords":["Agricultural situation","Seed industr y","Seed production","Food security","Marketing","Production costs","Distribution costs","Private sector","Public sector","Farmers","Farming systems","Dry farming","Crop husbandry","Kenya AGRIS category codes: E16 Production Economics F01 Crop Husbandry Dewey decimal classification: 338.17"],"sieverID":"67f6e742-37a4-4e13-9d2c-fecd27fbc0e6","pagecount":"30","content":"CIMMYT® (www.cimmyt.org) is an internationally funded, nonprofit, scientific research and training organization. Headquartered in Mexico, CIMMYT works with agricultural research institutions worldwide to improve the productivity, profitability, and sustainability of maize and wheat systems for poor farmers in developing countries. It is one of 16 food and environmental organizations known as the Future Harvest Centers. Located around the world, the Future Harvest Centers conduct research in partnership with farmers, scientists, and policymakers to help alleviate poverty and increase food security while protecting natural resources. The centers are supported by the Consultative Group on International Agricultural Research (CGIAR) (www.cgiar.org), whose members include nearly 60 countries, private foundations, and regional and international organizations. Financial support for CIMMYT's research agenda also comes from many other sources, including foundations, development banks, and public and private agencies.Future Harvest® builds awareness and support for food and environmental research for a world with less poverty, a healthier human family, well-nourished children, and a better environment. It supports research, promotes partnerships, and sponsors projects that bring the results of research to rural communities, farmers, and families in Africa, Asia, and Latin America (www.futureharvest.org).® International Maize and Wheat Improvement Center (CIMMYT) 2003. All rights reserved. The opinions expressed in this publication are the sole responsibility of the authors. The designations employed in the presentation of materials in this publication do not imply the expression of any opinion whatsoever on the part of CIMMYT or its contributory organizations concerning the legal status of any countr y, territory, city, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. CIMMYT encourages fair use of this material. Proper citation is requested.Even though impressive productivity gains have been achieved in many areas of Kenya with high agricultural potential (in maize, wheat, and horticulture sub-sectors), these impacts have not been replicated in the semi-arid midlands. Climatic, soil, and institutional factors are thought to have constrained the development of seed production, distribution, and trade in dryland crops (other than Katumani Composite B maize seed). Since 1989, the agriculture sector has been largely liberalized, resulting in greater private sector participation in the trade of farm inputs. Voluntary agencies and nongovernmental organizations (NGOs) now play an increasingly important role in provision of agricultural extension and other services. This study was carried out during 1997/98 to gauge the extent to which these developments have affected farmers' access to improved varieties of dryland crops and to obtain a better understanding of the seed sector in the region.Sample surveys on three separate groups-seed users, seed producers, and seed traders-were carried out during 1998 using structured questionnaires. Basic units of observation were smallholder households (both as consumers of seed and those who produce crops as distinct seed enterprises) as well as seed traders. The findings from an informal survey conducted in four semi-arid districts (Kitui, Machakos, Makueni and Mwingi Districts) from December 1997 to February 1998, were used to guide sample surveys, including site selection, sampling, development of questionnaires, and general preparation of the fieldwork.The seed users survey showed that farmer's own seed constituted the most important source of seed, followed by government agencies such as KARI, NGOs, and small businesses known as agrovets (smallscale retail businesses set up by local entrepreneurs). The average amount of seed purchased per smallholder was small (about 2-10 kg/household). High prices (1-6 times the price of local seed), unavailability of appropriate varieties, and low quality were mentioned as constraints to the use of improved seed. The most effective mode of providing seed to smallholders was the \"seed loan\" approach, where farmers are loaned small amounts of seed that they have to repay at the end of the season. These repaid loans are then passed on to other farmers in the area. This method is popular with NGOs and voluntary agencies.The seed producers survey indicated that smallholder seed farmers produced high quality seed and realized higher prices and gross margins from their seed crop than regular crops. However, low yields and high costs were the main problems.The seed traders survey showed that the number of traders and the range of varieties sold have increased considerably over the last 10 years. The quality of personnel was high and they could offer advice on seed use. High supply prices, low demand by farmers, and stiff competition were cited as major constraints to expansion of trade.The data indicated that there was an active market for various types of seed in the area. There was considerable trade in seed of basic grains and horticultural crops, with 71%, 20%, and 6% of farmers reporting having purchased seed of improved varieties of vegetables, maize, and food legumes, respectively. Some farmers also reported purchasing seed of local varieties of maize and food legumes. However, the quantities of seed purchased were low, especially for vegetables and food legumes. Purchases of seed appeared to have been influenced by factors other than price. Low quantities of vegetable and horticultural seed reflected low seed rates associated with vegetable crops and the ceiling on the amount of produce that can be marketed. The amount of grain legume seeds purchased for planting during the short rainy season of 1998 was low. There was some evidence that knowledge about new varieties can spread among farmers relatively quickly, as was the case of Pioneer Hybrid seed.As the quantity of seed handled through local trade is a small proportion of the seed farmers used, the study recommends matching farmers' requirements with varieties that are developed. Breeders of dryland crops should offer farmers a choice between open-pollinated, self-pollinated, and hybrid varieties. Training should also be provided to build and strengthen farmers' capacities to produce seed on-farm. Further research and improved institutional arrangements should be pursued, to reduce high production and distribution costs.The \"seed loans\" model was found to be effective in making seed available to many farmers. It is recommended that this approach be strengthened. Some aspect of transfer of information on farm-level seed management should be tied to the \"loan\", and feedback on seed performance should be tied to the \"repayment\".The objectives of development, production, and provision of seed to smallholders in this region should be set out unambiguously. Given that the farmer's principal source of seed is his/her own farm and that small amounts of seed of improved varieties are brought into the farming systems, the following ordering of the objectives is suggested.♦ The first objective should be the introduction of improved varieties into smallholder farming systems in the area.♦ Varietal development programs at KARI, IARCs, universities, and (possibly) the private sector should supply basic seed to public/voluntary sector agencies for further bulking.♦ Voluntary sector agencies and the private sector should assist with farm level seed shortages.♦ The private sector should be encouraged to participate in seed bulking, distribution, and trade and, eventually, varietal development.The This study was carried out in 1997/98 to identify and characterize the main players in the seed industry in the semi-arid region, to document features of seed production and distribution, and to identify ways in which liberalization of the Kenyan economy influenced the farm inputs sector. The study focused on linkages between all participants in the seed market, promotion by extension services, and research processes that generate new plant varieties at Katumani. The insights gained through this study will contribute to the evolution of institutional research and development policy affecting production and distribution of quality seed for smallholders in the region.A number of improved dryland crop varieties were developed for smallholders in the region between 1960-90. The Katumani Composite B maize variety, which was released in 1968 and bulked and distributed by the KSC, was widely adopted (Tiffen et al. 1994). Several improved varieties of pigeon peas, cowpeas, beans, dolichos lablab, green and yellow grams, cassava and sweet potatoes, sorghum, and millets had been developed by 1981. However, few farmers were able to access seed of these improved varieties because of the absence of a formal bulking and distribution system. Program ended, and private sector participation ceased. Some program activities were continued, however, with different approaches. The last phase of DFRDP involved \"lending\" farmers small amounts of seed. Farmers bulked this seed, \"repaid the loan\" in kind and keep the remainder. The repaid seed was \"lent on\" to other farmers. This method was also popular with NGOs in the area.The community based seed multiplication and distribution project (Njoroge et al. 1999) succeeded the DFRDP. Under this project, smallholders were identified and were helped to produce seed for their own use and for sale to other farmers in the community (Omanga et al. 1999). Farmers were provided with starter seeds and information to manage seed crops. Seeds produced were packed into 500-gram packets and sent to local seed traders, who sold them to farmers in their area. The projects mentioned above contributed to the establishment of institutional arrangements for multiplication and distribution of quality seed for crops that did not interest the private sector.However, none of the approaches mentioned above survived the respective donor programs.Rainfall is bimodal in the semi-arid region; with an average seasonal rainfall of 250-400 mm. Interseasonal rainfall variation is large with coefficient of variation ranging between 45-58% (Keating et al. 1992). Evapo-transpiration rates are high and exceed rainfall most of the year, except November.Major soils developed on basement rocks (gneisses), quartzite, and plio-pleistocene bay sediments.Predominant soil types include alfisols, acrisols, ferralsols, vertisols, and andasols (Jaetzold and Schmidt 1983).The region is served by around 8,100 km of roads over approximately 54,000 km 2 . More than 83% of these roads are in a poor state of repair. By the time of the study survey in 1997, this proportion had increased substantially because of rain damage. Telecommunications services and electricity are available in major towns only. A variety of tools and implements can be purchased in many outlets and maintained and serviced through networks of local artisans. The Kenya Farmers Association (KFA) stocks and retails farm inputs such as seeds, fertilizers, pesticides, and fungicides through a network of branches and sub-agencies in major town centers. Local traders and cooperative societies in main market centers also trade in farm inputs. There are at least 236 cooperative societies in the region. Loans can be obtained from the Agricultural Finance Corporation, cooperatives, and commercial banks. However, most smallholders do not have access to these credit facilities.In 1989, the government of Kenya abolished price and other controls on trade in farm inputs (Nyoro 1996). Consequently, neither the Kenya Farmers Association nor any other corporation enjoys a monopoly over farm inputs trade. Agrovets (small-scale retail businesses set up by local entrepreneurs following the liberalization of farm inputs trade) now handle an increasing portion of the trade in farm inputs. In 1995, there were no fewer than 102 small enterprises in the market centers in Machakos District (DAO Machakos 1996).Background information was assembled from secondary sources, key informants, and expertopinions. An informal survey was carried out from December 1997 to February 1998 in four of five Districts-Kitui, Machakos, Mwingi, and Makueni-that fall within the Regional Research Mandate The seed users survey examined farmers' sources and characteristics of seed they use as well as constraints to increased use of improved seed. Interviews were conducted with heads of households. These included information on personal attributes, resource endowments, and seed acquisition by quantity, type, source and price, as well as problems of seed acquisition. The sampling procedure used was designed to maximize coverage of agro-ecological and socioeconomic variation in the district. A three stage sampling procedure was adopted. Sublocations were selected from a list of all administrative sub-locations in Machakos Districts. Then, a random sample of 194 smallholdings was drawn from a list of households in villages in each sublocation. The survey was carried out over February-April 1998.The seed producers survey focused on farmers participating in the community based seed bulking project (CBSBP) to obtain information on the viability of such schemes. A random sample of 50 smallholders was selected from the 500 participating in the CBSBP, in nine administrative divisions in Machakos and Makueni Districts. This sample was reduced to 49 because one farmer could not participate. Information was collected on personal attributes, production costs, yields, and prices.This survey took place during the long rains (LR) season of 1998.Information on the extent to which formal trade meets farmers' needs for seed, and factors that restrict this trade, were the focus of the seed traders' survey. This survey looked at the number of traders entering or leaving the seed business and reasons for this, retail and wholesale price changes, quantities of seed bought and sold, and how these were affected by seasonality. A questionnaire was designed and administered to a randomly selected sample of 48 seed traders in the area from a list of 102 seed traders provided by the District Agricultural Office in Machakos.The survey was conducted during July and August 1998.To understand forces that propel production, distribution, and use of seed, it is necessary to characterize the seed sub-sector according to organizational (formal or informal), functional (production, processing, transporting, retailing), or institutional criteria (public, private or voluntary sectors). Many different players are active in this sector (Bett et al. 1999). The KSC and KARI are dominant formal institutions that undertake varietal development, seed production, and distribution. The extension service of the Department of Agriculture undertakes dissemination of information about type, availability, handling, and planting procedures. Voluntary organizations supplement these efforts through seed multiplication, distribution, and extension services. The informal sector, made up of smallholders working within the community, handles the bulk of seed used in the semi-arid region. The formal sector handles improved seed varieties whereas the informal sector handles local seed varieties. These roles overlap to varying degrees.The major roles of public sector agencies in the seed industry are seed production, quality control, There has been rapid growth in NGO participation in seed provision to smallholders (Tripp 1997). In semi-arid areas, NGOs provide seed to smallholders as part of their poverty alleviation strategy.World Vision, Action Aid, and the African Medical Research Foundation (AMREF) are some major international NGOs active in the area.World Vision identifies needy households and trains them to select maize seed, pigeon peas, cowpeas, beans, and sorghum, with the assistance of research institutes such as KARI and ICRISAT.The African Medical Research Foundation buys seed from KARI and distributes it to women's groups on credit. Women's groups that benefit from AMREF \"seed loans\" are trained in seed Despite the freeing of farm inputs trade from government controls, the private sector has been reluctant to embrace production of dryland crop seeds. The KSC, the Oil Crops Development Corporation (OCDC), East African Seed Company (EASC) and the Western Seed and Grain Company (WSGC) are among the few firms that participate in the production of dryland crop seeds (Kimenye 1999). However, the amount of seed produced by these companies is small. On average, the combined annual production for cereals and grain legume seed was about 1,000 tons and 750 tons, respectively (Kimenye 1999), enough for approximately 18,000 ha of grain legumes and 40,000 ha of cereals. Low and erratic demand and difficulties of enforcing contracts with farmers producing seed were cited as reasons for low production. A summary of the main players in the seed subsector in the semi-arid region is presented in Table 1. Just over half (54%) of respondents in the seed users survey were male. Seed sources for these households included own saved seed, local market, seed traders, government (either through the Drought Recovery Program or the Ministry of Agriculture), neighbors, and other farmers. The most important source of seed was farmer 's own seed (51%) (Table 2). Seed traders and public sector agencies were also important sources, accounting for about 15% and 10%, respectively. To ensure a more effective mechanism for production of dryland crops, the NDFRC, in collaboration with partners, has been experimenting with options to involve smallholders in schemes to produce seed for their own use and for sale. A survey of 49 smallholders who participated in the community based dryland seed bulking project (CBSBP) was carried out to facilitate understanding of the economics of smallholder seed production and other issues that may be significant.The CBSBP was launched in 1997 to address farmers' needs for quality dryland crop seeds. Improved varieties of grain legumes and cereals, officially released by the Ministry of Agriculture, were included in this program (Table 4). Farmers were advised to implement recommended practices to maximize yields. Recommendations for land preparation, planting time, plant densities and spacing, timely weeding, protection against diseases and insect pests, fertilizer and manure application, harvesting and post-harvest treatment operations were developed for each crop (Omanga 1998, Njoroge et al. 1999). World Vision distributed the seeds to divisions in Makueni Districts. During the crop-growing period, extension staff followed up with visits to ensure that proper practices were followed.Both research and extension staff inspected the crop at flowering and maturity stages. The expected target of producing 18,000 kg was not realized due to drought and insect pest damage. Only 180 mm of rainfall fell, and there was a serious outbreak of aphids that \"blackened\" the leaves and pods of grain legume crops. At least 54,325 kg of seed was produced during the short rainy season of 1997/8.In the long rainy season of 1998, 500 farmers were organized into groups of 30-50 farmers. Each group contracted or rented a store for use by members, organized seed production, planned and implemented related activities, purchased inputs, and marketed seed that they produced. The need to strengthen training of these farmers in seed production techniques was recognized. Transfer of skills through visits, demonstrations, field days, and workshops was carried out. The criteria for membership to the CBSBP were ownership of an ox-plow, capability to acquire necessary inputs, and ability to read and understand labels and leaflets. Another requirement was that the farmer was able to set aside at least 0.4 ha for seed production and to exercise isolation as stipulated. Table 5 presents the characteristics of seed producers who participated in the CBSBP.A wide range of age and income sub-categories was represented in the sample. Although income from non-farm sources in 1997 was comparatively high, the majority (55%) of respondents were primarily farmers. A significant proportion were part-time farmers who worked in business (15%), services (13%), and crafts (8%).Seed producers in the CBSBP were advised to follow recommended practices for obtaining good yields and prices. The survey indicated that the standard of crop management was relatively high.For example, inorganic fertilizers and pesticides were used. Field inspections were staggered over the growing period across farms. These \"in the field\" inspections were carried out at grain filling, podding, and silking stages. Roguing was performed as recommended.Five crops were chosen for inclusion in the analyses: maize, pearl millet, beans, cowpeas, and sorghum. Pre-harvest production costs are presented in Table 6. Typically, seed accounts for a relatively small proportion of production cost. However, for crops with high seed rates like common beans, seed can be a significant proportion of total production costs. Accordingly, seed cost was included in the analysis although seed was either obtained from the farmer's own farm or other sources without direct payment. Fertilizers (for maize) and labor (for beans, pearl millet and cowpeas) represented the highest costs. Seed costs for beans also represented a large proportion of pre-harvest production costs. The fixed inspection fee of KSh 1,000/ha translated into 3-10% grossmargin of the farmer's seed enterprise. Typically, maize seed production in Kenya is four times more profitable than commercial maize production (Nyoro 1996). One motivation for this study was to assess the extent to which such performance measures can be replicated for smallholder seed producers in the semi-arid region.Performance of seed enterprises within smallholder farming systems could be a useful indicator of financial viability of the schemes such as CBSBP. The performance of seed enterprises was assessed using data obtained from the seed producers' survey. Indicators were yield, price, and grossmargins. Smallholders' non-seed crops formed the benchmark for this assessment. The results are presented in Table 8. Average yields of cowpea seed crops fell slightly short of the expected yield under similar management and weather conditions. Yields of all other seed crops were below expectation by large margins. Comparing seed and non-seed crops, there were no striking differences in yields of maize, pearl millet, and sorghum. There were, however, large differences between yields of seed and nonseed crops for beans and cowpeas. The fertilizers applied in the case of beans, and effective pest control in the case of cowpeas, may account for this difference. The prices for seed and non-seed crops shown in Table 8 were actually paid to farmers. Seed prices were consistently higher than non-seed prices. The gross margin for sorghum was negative because of high costs and low prices.Gross margins for seed maize and cowpeas were substantially higher than corresponding non-seed crops. Most of this difference can be attributed to high seed prices (2 and 4 times for cowpeas and maize, respectively). Low yields and high costs appear to have eroded the difference between bean seed and the corresponding non-seed crop.Maize seed sold for four times the price of maize grain (Table 8). Yields for seed and non-seed maize were roughly the same but seed production costs were higher for seed maize -16.5 KSh/kg (or 24,881 KSh/ha, land costs not included). The gross margin of maize seed production is twice that of non-seed maize. Gross margins were also high for pearl millet and cowpea seed but less for beans and negative for sorghum, which received a very low price that season.Yields of seed crops were generally higher than non-seed crops, indicating higher standards of management. Although prices for seed crops were substantially below corresponding commercial seed prices, they were considerably higher than non-seed crop prices. This suggests that market opportunities for this type of seed exist. Based on gross margins as indicators of profitability, it was shown that four out of five seed crops were more profitable than the corresponding non-seed crops.Both pre-and post-harvest costs were high. Expenditure on fertilizer dominated pre-harvest costs, while packaging, threshing, and transportation expenses dominated post-harvest costs. It should be noted that the use of high-cost inputs, such as fertilizers and pest control agents, in crop production is not common among farmers, given the high risk that characterizes farming in the region. Thus, the continuation of these practices may not be guaranteed beyond the termination of donor support for the project. As mentioned earlier, large-scale farms were contracted to produce seeds of dryland crops in the past. The per-unit transport and storage costs for smallholders participating in the CBSBP represented just under 11% (for large-scale farms, the proportion was 8%) of total cost. The share of seed growers' costs as a proportion of total cost was lower (67%) for the seed production scheme (based on large-scale farm characteristics described earlier), than for CBSBP farmers (78%). Seed processing costs, however, were lower for CBSBP farmers than large-scale farmers (Muhammad et al. 1999). Seed produced for the CBSBP was transported to Katumani for processing while seed produced by large-scale farmers was sent to the Hortiseed Company in Nairobi for processing. Evidence from Zimbabwe suggests that while smallholders generally obtain low yields and need close supervision if contracted as seed producers, they are more inclined to accept lower prices for seed that has not been processed than large-scale farmers (Tripp 2000). If smallholder seed growers are clustered in close proximity to each other, as was the case with CBSBP, the unit cost of supervision and seed assembly can be reduced. A potential problem associated with seed production by smallholders is the temptation to sell seed for immediate payment (Kimenye 1999, Tripp 2000).As Gisselquist and Grether (2000) observed, deregulation of farm inputs trade can lead to significant increases in the range and quality of inputs available to farmers. As noted earlier, the Government of Kenya started to implement reforms in many sectors of the economy over the period 1989-1996. This shift in public policy yielded a number of significant results for the farm inputs sector in general and the seed sub-sector in particular. Multinational companies, such as Pioneer and Cargil, and local firms, such as the Oil Crop Development Company (OCDC), the East African Seed Company (EASC), and the Western Seed and Grain Company (WSGC), entered the seed market as producers and traders (Ndambuki 1998, Ng'ang'a 1998, Kimenye 1998, Kimenye 1999). According to Ochuodho et al. (1999), there are 31 registered seed companies in the country. Kenya Seed Company multiplies and distributes maize and small amounts of sorghum and beans. Kimenye (1999) reported that the EASC, OCDC, and WSGC produced relatively small amounts of seed and sold little to smallholders; local and foreign NGOs were their main customers. All reported low and erratic demand in the smallholder sub-sector. At the local level, numerous agrovet businesses, established by small-scale entrepreneurs, are now major suppliers of commercial seed and fertilizers.While some farmers in the region buy maize seed from a variety of sources, attempts to incorporate seed of improved varieties of other dryland crops into this distribution and trade network on a commercial basis have met with little success. Several factors have been hypothesized as constraints to private sector involvement in seed trade in the region. These include high costs of production, low and unreliable yields, and high transaction costs. Weak and unreliable demand is also believed to constitute a major constraint to the development of private trade in dryland crops. This lack of demand is attributable to farmers' preferences for recycled seed, lack of funds to purchase seed, lack of information about performance of varieties, distant and unreliable seed sources, and high prices. Non-availability of seed, when required by farmers, also undermines demand for improved seed varieties. Because private sector involvement in commercial seed trade is weak, the task of introduction of improved varieties and distribution of quality seed has been left to public and voluntary sectors. This may not be appropriate for two reasons. First, distortions in price determination and resource allocation are likely to be introduced.Secondly, current seed distribution activities in the region rely on external support and this is not sustainable.In 1996, it was estimated that there were at least 102 small businesses engaged in the seed trade in market centers throughout Machakos District (DAO Machakos 1996). This number did not include many small rural retailers who also stock small amounts of seed. The main seed outlets, however, were the KFA, Timsales Limited, Maathai Enterprises, and Ngelani Agrovet, which are all based in Machakos Town. At the time of the survey, KFA and Timsales had scaled down trading activities considerably. Information in this section pertains to the sample of 48 businesses in Machakos District engaged in the farm inputs trade.Most seed traders are male (77% men), relatively young (mean age 37), fairly well educated (average 13 years in formal education), and enjoy additional income from non-trading sources (an average of KSh 116,000/year). More than three-fourths (89%) had non-trading income during 1997. The most frequent income sources were farming (52%), clinical services (17%), and consultancy (10%). The non-trading occupations of seed traders were also telling-just under half were farmers (48%), while veterinarians and consultants comprised 26% and 14%, respectively.Seed trading businesses were relatively young (mean number of trading years was 5.5). Most (92%)were established over the last eight years, i.e., following the liberalization of farm inputs trade, with almost a quarter established during 1996. Seed was by no means the only item of trade. Other items were pesticides (89%), fertilizers (87%), animal feed (81%), pharmaceuticals (40%), animal drugs (20%), farm produce (15%), and household goods (15%).14 This suggests that there is an active market for local and improved varieties of maize and beans.Although the Pioneer Hybrid maize variety was new in the area, 3% of farmers purchased this seed.The amount of seed purchased by smallholders, and prices they paid during the short rainy season of 1997/98, are presented in Table 10. The average amounts of seed purchased per smallholder were relatively low. The largest amounts were for local maize (33 kg) followed by improved maize (12 kg).The average amount of Pioneer Hybrid maize seed purchased was 1.7 kg. The price of improved seed of some other crops, such as pigeon peas, was also only slightly higher than local seed of the same crops. This may indicate either that performance was not significantly better or that farmerswere not willing to pay more for these improved varieties. According to most seed traders, the number of suppliers has increased over the last 10 years (81% of the respondents) but the seed availability of these suppliers has actually decreased (64%) (Table 13). Other major changes observed by most traders are the increased number of seed customers (74%) and an increase in price (91%). Most traders think there has been no change in the profit margin The evolution of the seed industry in the semi-arid region of Kenya can be divided into several Seed production costs and supply prices were high and a major constraint to the development of local seed trade. Further research to reduce production costs and institutional arrangements that can reduce production and distribution costs should also be explored.The study indicated that the \"seed loans\" model has been effective in making seed available to many farmers. It is recommended that this approach be pursued and refined. Some aspect of transfer of information on farm-level seed management should be tied to the \"loan,\" and feedback on seed performance should be tied to the \"repayment.\"The study did not permit data collection for the analysis and modeling of appropriate seed pricingscenarios. An appropriately designed study addressing this shortcoming should be conducted.","tokenCount":"4931"} \ No newline at end of file diff --git a/data/part_3/1072267503.json b/data/part_3/1072267503.json new file mode 100644 index 0000000000000000000000000000000000000000..06cae0e883f6efbe52d6e1ff27037b29597d6c9f --- /dev/null +++ b/data/part_3/1072267503.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"eae0369548661bdb35e6dccdee71fb66","source":"gardian_index","url":"https://publications.iwmi.org/pdf/H0013667.pdf","id":"2119069285"},"keywords":[],"sieverID":"afa70a13-6a5c-4a7d-a08f-72ddecf95aa0","pagecount":"40","content":"The present paper is a follow-up of IIMI Working Paper No. 21 by Vander Velde and Johnson (1992). It analyzes the tubewell data collected by IIMI-Pakistan over a period of 4 years. While the main emphasis remains on the operation of private tubewells, public tubewell and canal water supplies are included in the analysis to give a more comprehensive picture of the conjunctive use environment, a characteristic of most of the irrigated areas of the Punjab, Pakistan.The analysis of the data for two channels, Mananwala Distributary and Karkan Minor, confirms the importance of groundwater use in irrigated agriculture in the Punjab. Private tubewells increase the irrigation water supply available to farmers and also play a stabilization role to mitigate the (unpredictable) fluctuations of the canal water supply. The specially high dependance on groundwater supplies at the tail of the system increases problems associated with secondary salinization in these areas.The impact of technical and economic factors on private tubewell operation is analyzed. The costs of tubewell operation, directly related to the source of power, is the major factor influencing the operation of private tubewells. The relative importance of electric tubewells, with lower operation and maintenance (O&M) costs, explains most of the differences in groundwater use between watercourses. The level of canal water supply and the quality of the groundwater influence groundwater pumpages only marginally.Non-tubewell owners, mainly small farmers who cannot afford the purchase of a private tubewell, have access to the groundwater resource via a market for groundwater. Most of the time, the price of tubewell water in this market is solely determined by the O&M costs of the tubewell of the seller. Water from electric tubewells, which have low O&M costs, is sold most in this groundwater market. The concluding chapter highlights the importance of the dissemination of research results and of a proper monitoring of the conjunctive use environment. It also discusses relevant issues for further research on the management of the conjunctive use environment in Pakistan. vii 1.How do farmers currently manage the groundwater resources (magly via private tubewell operation) ?Table 1 .Table 2 .Agriculture in Pakistan is directly dependant on the Indus Basin Irrigation System. Sixteen million hectares are irrigated by a huge network of canals and distributaries dating back to the British times, along with more traditional systems as the ones found in Baluchistan or North-West Frontier Province. Groundwater is also extensively used for irrigation, within or outside the surface water distribution system.Despite favorable resources (land and water), the Indus Basin Agricultural System does not perform as expected. Yields have been far below their potential and stagnant over the past 20 years for three of the four major crops grown in Pakistan: wheat, rice and sugarcane (Siddiq 1991). Reasons of disappointing performances of the irrigatedagriculture system are numerous and complex. The \"twin menace\" of waterlogging and salinity, however, is often cited as a major constraint for the agricultural production.In 1989, the International Irrigation Management Institute (IIMI) started a project in Pakistan titled Managing Irrigation Systems to Minimize Waterlogging and Salinity Problems and funded by the Government of the Netherlands. The overall objective of this five-year project is:to devise plans for the management of irrigation systems which are expected to lead to the mitigation of problems related to salinity and high water tables.A further objective of the project is to field-test these management interventions, to monitor their impact, to evaluate their benefits and identify costs and opportunities for implementation on a wider scale.Analysis of data collected during the first years of the project has confirmed the importance of problems associated with the inequitable distribution of canal irrigation water: watercourses at the head of distributaries draw a larger amount of water than their design shares whereas watercourses at the tail of the distributaries receive a very low canal water supply. Moreover, the unreliability of the canal water supply increases as one moves from the head to the tail of the distributaries and the watercourses command areas.To overcome the problem in part, farmers have invested in tubewells to tap groundwater resources and to increase their irrigation water supply as well as their control over this supply. However, new problems have appeared due to the rapid increase in the number of tubewells in most of the canal command areas. IIMI research has shown that part of the salinity constraining agricultural production in the irrigation system is related to the use of groundwater of doubtful quality. This secondary salinity represents a more recent (and increasing) phenomenon than salinity related to waterlogging.The present study focuses on the operation of tubewells within a conjunctive environment and addresses issues related to the following three questions:...What is/would be the impact of the current management of groundwater resources on agricultural sustainability ?The impact of the distribution of canal water and of groundwater characteristics (mainly water quality) on tubewell characteristics, density and operation, will be the major aspects of the study, based on data collected in Mananwala Distributary Command Area (channel offtaking from Upper Gugera Branch of the Lower Chenab Canal). Socioeconomic aspects are included as well in our analysis. The management of tubewells by farmers and their participation in water markets will be the last point considered in this study. Finally, proposals for a better management of the groundwater resources within a conjunctive environment will be presented and discussed.The Lower Chenab Canal, a century-old canal offtaking from the Chenab River at Khanki Head Works, has a design capacity of 307 curnecs. It is bifurcated at Sagar Head into two branch canals, the Upper Gugera Branch Canal and the Main Line Branch Canal. The design discharge of the Upper Gugera Branch Canal is 170 cumecs. On the left side of this canal, a link canal, Qadirabad-Baloki (QB) Link Canal with a design discharge of 510 cumecs, runs parallel to the Upper Gugera Canal for 45 km. On the right side of Upper Gugera Canal, 8 distributaries of different sizes (with a design discharge ranging from 0.23 cumecs to 5.1 cumecs) takeoff up to its 37th km and supply canal water to the area of the Farooqabad Subdivision of the Upper Gugera Division.Mananwala Distributary is the largest of these 8 distributaries. It takes off at 27.9 km from Sagar head (RD91) and has a length of 45 km. With a design discharge of 5.1 cumecs, it irrigates a Culturable Command Area (CCA) of 26,800 ha through 121 outlets (see map in Appendix I). Three minors, namely Karkan Minor, Mitu Minor and Litan Minor, offtake from Mananwala Distributary. Mitu and Litan minors are both relatively small channels with a design discharge of 0.28 curnecs and 0.17 curnecs, respectively. Karkan Minor has a higher design discharge (2.01 cumecs) and includes a Subminor named Kotla Subminor. Karkan Minor offtakes at 23.2 km (RD.76) from the head of Mananwala Distributary and has a total length of 25.7 km. It has 39 outlets which serve 9,400 ha of CCA, with an additional area of 859 ha supplied by Kotla Subminor. The whole distribution system is being built with earthen nonlined channels.A gated structure controls the water flows entering the Mananwala Distributary. The head of Karkan Minor, located at a trifurcation point of Mananwala (RD.76), is a proportional distribution structure. It has not been provided with a gate. A permanent Head Gauge Reader (gate keeper) is employed to regulate the surface water flows at Mananwala head. Under the orders of the Sub-Divisional Officer (SDO), Farooqabad, he adjusts the gates to increase or decrease the discharge into the distributary to cope with the changes in water levels in the main canals or to take into account downstream conditions (like breaches along the distributary or problems of tail supplies).For the Provincial Irrigation Department operating and maintaining the system, the operational objective is to run the distributaries and minors at 100 percent of their authorized discharge in order to provide an adequate supply to the tail parts of the irrigation system. The discharge at the head of the distributary (or minor) should not be less than 70 percent of the design discharge to avoid siltation in the channel and its long-term negative effect on the canal water supply. The outlets of a specific distributary or minor have been designed to receive (at least in theory) the same quantity of water per hectare of CCA. Below the outlet, canal water is shared among farmers following a predefined rotation (of a 7or 10-day period) of water turns called warabandi. The designed yearly cropping intensities for Mananwala Distributary and Karkan Minor are 50 percent and 70 percent, respectively.The analysis of the current operation of the irrigation system has shown, however, that the discrepancies between the design and the current situation of canal water supply are quite high. The inequity in the distribution of canal water along Mananwala Distributary and Karkan Minor, head outlets being favored against tail outlets, has now been well documented by IIMI-Pakistan research (see, for example, Vander Velde 1990; Kijne and Vander Velde 1990 or Van Waijjen 1992) and appears to be a lastingphenomenon (see Van Waijjen 1992).Moreover, farmers located in tail watercourse command areas face a highly variable and unreliable canal water supply. Poor maintenance resulting in silt accumulation and the importance of illegal imgation along the head reaches of the canal are the main reasons to explain the poor performance of these two channels. The performance at the tail of Karkan Minor is comparatively better than at Mananwala tail, certainly due to the better physical condition of this minor and its higher water duties (see Van Waijjen 1992).It is interesting to compare design cropping intensities with the actual ones for the sampled areas. With cropping intensities' for the Kharif and the Rabi seasons of 55 percent and 69 percent, respectively, for Mananwala Distributary and 54 percent and 73 percent for Karkan Minor, the area shows a much higher land-use intensity than designed (yearly values of 50 percent and 70 percent respectively). The main reason of the discrepancy between design and actual figures lies in the fact that surface irrigation supplies are supplemented by groundwater pumped by public and private tubewells in all the watercourses offtaking from Mananwala Distributary and Karkan Minor.Falling into the Salinity Control and Reclamation Project 1 (SCARP 1) area, public tubewells have been installed in most of the watercourses of the command area of Mananwala Distributary and Karkan Minor, 20 to 30 years ago. A few commands, however, do not have public tubewells anymore (see Appendix 11, characteristics of sample watercourses) due mainly to the recent SCARP Transition Pilot Project (STPP). In the context of this pilot project, public tubewells (sometimes only the bore) have been transferred to farmers/group of farmers or simply closed down.Mananwala command area is located in the wheat-rice ecological zone of Punjab. Within the most frequent rotation of wheat and rice, other crops like sugarcane, fodder, vegetables and pulses have been included in the cropping pattern leading to an average yearly cropping intensity of 120-130 percent for the area. Cotton is sometimes present as well, mostly in the middle watercourse command areas of Mananwala Distributary. Although fodder and vegetables do not cover a large part of the land cultivated, their economic importance in the farming systems has been fully recognized. Moreover, these crops represent a real interest for the irrigators, using part of the interseasonal water supplied by canals.The average farm size in the area is around 3 -4 ha and this has been decreasing over the past years, following a general trend observed for the whole Province. The impact of this land fragmentation on irrigation water use efficiency has not been well-documented. However, while the number of small holdings increases, farmers without any possibility to invest in private tubewells are also becoming more and more numerous. Alternative sources for these small farmers to complement their public supplies would be more and more needed.Differences between large and small farms are quite important in terms of use of inputs and access to various resources. Large farms will use comparatively more hired permanent and casual labor, more improved inputs (weedicides, pesticides, seeds) and will have a better access to institutionalized credit. No significant difference, however, seems to exist between large and small farms in their access to different sources of irrigation water (see Khan et al. 1990).Waterlogging and its associated salinity have long been major problems in the area. Farmers reported a flood about 30 years ago as a major reason for waterlogging. With the introduction of public tubewells and the development of private tubewells, water tables have been significantly lowered. Salinity, however, is still a major constraint faced by farmers and related now to the use of poor quality tubewell water (see Kijne and Vander Velde 1990).The problem is particularly acute in the tail ares of the distributary as presented in Figure 1 giving the average electrical conductivi$ (EC) of the groundwater pumped as a function of the distance between the head of Mananwala Distributary and the outlet of sample watercourses from Mananwala Distributary and Karkan Minor. To cope with salinity, farmers have adapted new farming practices, including specific salt tolerant crops (Kalar Grass especially in Karkan Minor Command Area and/or Jantar) in their cropping pattern, favoring appropriate crop rotations, using chemicals to reclaim soil, changing the management of their irrigation water, etc. The availability of good-quality irrigation water and/or the financial capacity of the farm or its access to short-term credit are, however, key aspects to be taken into account in evaluating the potential of the farmers to reclaim saline soils with a given reclamation practice (see Strosser 1990).The electrical conductivity (EC) is used in this study as a parameter for expressing groundwater quality. Other criteria as the residual sodium carbonate content (RSC) and the sodium absorption ratio ( S A R ) have not been included in this analysis. The trend is however similar for these two criteria as for the EC values showing a decreasing groundwater quality from the head to the tail of the distributary command area.Seven watercourses in Mananwala Command Area and 7 watercourses in Karkan Minor Area have been selected by IIMI for the collection of data on surface water and groundwater and form our basic sample. The sampled area is equal to approximately 1,770 ha (12 percent of the area) for Mananwala Distributary and 1,410 ha (15% of the area) for Karkan Minor. At some points of the analysis, data collected for other watercourses have been included to gain a more complete picture of the situation.Private tubewells of sample watercourses have been monitored since 1989 for different periods of time. Hours of operation, hours sold or given to other farmers, discharge and groundwater qualities form the main data set which will be used for this study. Emphasis will be given to two seasons, Kharif (summer season) 1990 and Rabi (winter season) 1990-91. The characteristics of the tubewells (location, source of power, type of pump, etc.) have been collected through a private-tubewell census of whole watercourse command areas. This information was complemented during the Rabi 1992 season by interviews of tubewell owners to understand their management and their participation in groundwater markets. Some of the methods used to collect private tubewell information are described and discussed in Appendix III.Data on surface water have been collected at distributary and watercourse levels. Crop surveys for a few sample watercourses have been conducted as well in order to estimate the impact of the current pattern in water supply on the agricultural production. In 1992, 100 farmers of 30 watercourses were interviewed to gain a better understanding of the farming system in the area and of the constraints faced by farmers for their agricultural production.Secondary data used in this study have been provided by the Irrigation Department (characteristics of the irrigation system, cropping intensities at watercourse and distributary levels, operation of the public tubewells) and by WAPDA (characteristics of public tubewells and groundwater qualities).The next chapter will give a picture of the tubewells in the area and this looks first at the development and operation of public tubewells before focusing on the private tubewells which are far the most important both in terms of number of tubewells and in terms of quantity of water supplied to farmers for irrigation purposes. Mananwala Distributary and Karkan Minor fall within the area of the first Salinity Control and Reclamation Project Large and deep public tubewells were installed here in the early sixties at the head of the watercourse command areas. The water pumped by the public tubewells, operated by the Provincial Irrigation Department staff, is mostly mixed with canal water. The turns for the use of public tubewell water are the same as defined by the canal water warabandi.All the public tubewells are electric tubewells, with an average bore depth of 90 meters (or 300 feet) and an average discharge of 55 Vs (or 1.9 cusecs). The main difference between public tubewells is their water quality, ranging from 0.9 dS/m to 2.42 dS/m for public tubewells located in Mananwala commands and from 0.9 dS/m to 4.1 dS/m for the ones located at the head of Karkan watercourses. For both channels, public tubewell water quality is decreasing from the head to the tail of the canals, following the general trend presented in the second section of the previous chapter for the average EC calculated for sample watercourses.The performance of these public tubewells was good at the beginning of the project, adding a significant amount of irrigation water to the already short canal water supply. The life of most of these public tubewells, however, has been much shorter than expected and their performance rather low. The low level of maintenance and management of these public tubewells (despite the huge amount of money allocated by the Government of Pakistan to their Operation and Maintenance. See Anson 1983) is the main factor explaining the decreasing performance of SCARP tubewells. Data collected by the Tubewell Wing of the Provincial Irrigation Department for the whole SCARP-I area, for example, show that the average utilization rate 3 for SCARP-I public tubewells has decreased from 70 percent in 1960 to less than 45 percent in 1985. Because of this, the Government of Pakistan has decided to disengage from groundwater resources exploitation and transfer that responsibility to the private sectors through a SCARP Transition Project.The utilization rate is the ratio of the average daily hours of operation for a given period divided by 20 hours. Twenty hours (giving a utilization rate of 100%) are assumed to be the maximum a tubewell can be operated per day, with the 4 remaining hours required for maintenance, repairs, etc.Data on public tubewell operations collected in the sample area confirm that the utilization rate for public tubewells is rather low and close to 50 percent. The deterioration of the discharge of the public tubewells is the second factor to be considered in their decreasing performance. On average, the design discharge of a public tubewell was 70 I/s or 150 percent more than the design discharge of the surface water outlets. Now, with an average of 55 I/s, public tubewells supply 20 percent less water than originally designed for a given number of hours of operation. The lowering of the water table is certainly one factor explaining the decrease in the public tubewell discharges.The variability within the public tubewell population is however large as presented in Figure 2, the utilization rate varying from 20 percent only (Mananwala Watercourse 114R) to slightly less than 90 percent (Karkan Watercourse 11L)The performance of the public tubewells is slightly better in Karkan area (55%) than in Mananwala area (45%) for the whole year and also for most of the months of 1990-1991. The difference between the public tubewells of the two channels is particularly significant during Kharif. The variability over time, however, is higher for Karkan public tubewells. While Mananwala public tubewells have a lower performance in terms of utilization rate (and quantity of water supplied), the reliability of their water supply seems to be better than for Karkan ones. No clear explanation has been found for the difference in operation of public tubesells of the two areas .No correlation was found between the quantity of canal water supplied to the sample watercourses or the water quality of the public tubewells and the utilization rates (used as a proxy of performance). Cooperation among farmers within a watercourse and relations between operator and farmers would be important aspects to be considered in an in-depth analysis of the performance of public tubewells.PRIVATE TUBEWELL DEVELOPMENT.. The decreasing performance of the public tubewells, that currently supply only 40 percent of the quantity of water they were designed for, is certainly one of the factors that had a positive impact on the development of private tubewells in the area. This development started in the mid-sixties in Mananwala and Karkan commands, well before the start of the SCARP Transition Pilot Project. The private tubewell development remained slow for the first 15 years. The average number of private tubewells per watercourse command area was lower than 2 until 1980. A dramatic increase took place during the eighties (see Figure 3). There were 75 private tubewells in 1985 (2.2 tubewells/100 ha of CCA) and 225 in 1990 (or 7 tubewells/100 ha of CCA) in the sample area of 14 watercourses of Mananwala Distributary and Karkan Minor. The highest increases in the number of private tubewells have taken place in 1987 and 1989, with 40 (+ 30%) and 32 (+ 20%) private tubewells, respectively, installed during these years. The similar development for head and tail watercourses is an interesting one because they face a completely different canal water supply in terms of quantity and reliability. The comparison between the reaches of the sample watercourses themselves, however, did not show any significant difference between the development of private tubewell in head, middle and tail reaches of the watercourses.It is interesting to note that the installation of private tubewells is mainly undertaken during Kharif when crop water requirements are at their peak (more than 50% of the tubewells have been installed during the months of May, June and July). Unexpected shortages of water, most likely to appear during this period, could be the factor pushing farmers to invest in tubewells at this time of the year.About 50 percent of the tubewells are driven by diesel engines, both high and slow speed. Thirteen percent of the tubewells are electric and 37 percent are Power-Take-Off (PTO) tubewells operated by tractors. The average bore-depth calculated for each source of power does not show any significant difference among power sources 4 (see Table 1). PTO tubewells have, on average, a higher discharge than electric and diesel tubewells. But this difference was not found to be significant either.Table 1. Bore-depth and discharge of private tubewells per source of power.31 261 1 DieselThe decision to purchase a tubewell with a specific source of power is influenced by the investment capacity of the purchaser, his potential tubewell water use (related to his cropping pattern and the supply of irrigation water from other sources), the presence of electric lines in the neighborhood, tractor ownership, etc. Electric tubewalls are found in only 8 of our sample watercourses, at the head and at the tail of Mananwala Distributary and at the head of Karkan Minor.Farmers with large landholdings, for example, choose electric tubewells with comparatively high investment costs but with low operation costs while medium-size farmers would opt for a diesel tubewell. Tractor owners prefer generally PTO tubewells (with the lowest investment costs) but consider it as a temporary arrangement in order to stage investment costs. They often convert their tubewells into diesel or electric tubewells to avoid the competition between tractor use for tubewell operation and for other farm activities, and to decrease their tubewell operation costs.The analysis of the bore-depth location-wise has shown that there is no trend in bore-depth from the head to the tail of the canals.The aggregated tubewell density is equal to 7.6 tubewells per 100 ha (1992) for the sampled areas of the two channels.' Private tubewell density is on average higher for Mananwala watercourses than for Karkan watercourses, with 9.7 and 5.2 tubewells, respectively, per 100 ha of CCA for the two channels. Canal water allocations, higher for Karkan Minor than for Mananwala Distributary, could explain this difference. However, comparisons between the current canal water supply of the two canals show that, although Karkan Minor is better off than the equivalent tail of Mananwala Distributary, there is no significant difference between the canal water supplied to Mananwala Distributary and Karkan Minor. Differences in cropping pattern (a lower percentage of the area under rice crop in Karkan Command Area) could be one factor explaining differences in tubewell density. However, the relationship between cropping pattern and tubewell density is rather complex. It is not clear whether crops and their expected economic returns influence the decision of farmers to invest in private tubewells or whether the installaticin of private .tubewells provides further opportunities to grow crops like rice which not only have high water requirements but would in turn impact on the cropping pattern. It is expected that in the present dynamic economic and physical environment faced by farmers, the two causal relationships coexist.Differences in tubewell density among watercourses are relatively high, ranging from 1.5 tubewelIs/100 ha for Karkan 56R watercourse to nearly 14 tubewells/100 ha for Mananwala Watercourse 71R as presented in Figure 4. Figure 4 does not show any clear correlation between tubewell density and position along the distributary (used as a proxy of the canal water supply). Several environmental (water table depth, groundwater quality) and economic factors influence the installation of private tubewells by farmers, sometimes in opposite directions. The average tubewell density for the whole area is equal to 6.9 private tubewells for 100 ha of CCA, quite similar to the average intensity calculated for the 14 watercourses.A simple regression analysis was performed to correlate tubewell density at a watercourse level with the average groundwater quality and the average Delivery PerfoAance Ratio (DPR)6 calculated for each season or for the year. The best linear relation was found between tubewell density and the average EC as given below.' This relation shows the negative impact of groundwater quality on the tubewell density for the sample watercourses. The analysis also showed the negative relationship between average DPR and tubewell density as would be expected: with a higher DPR (thus a better canal water supply), farmers have less incentives to invest in private tubewells. However, this correlation was not significant at a 10 percent probability level. The absence of a significant relationship between the density of private tubewells and the supply of canal water has also been highlighted by Murray-Rust and Vander Velde (1992). They did not find any apparent relation between the installation of private tubewells and the location along the distributary, used in their paper as a proxy for the level of the canal water supply.The negative impact of both average EC and average DPR would explain why no real trend in tubewell density is found from the head to the tail of Mananwala Distributary for example. The increasing EC values and the decreasing DPR play opposite roles, their marginal impacts on the tubewell density compensating each other. At this stage, the analysis with a larger number of watercourses with their tubewell densities and average EC would be needed to further substantiate there results.Sixty-five percent of the private tubewells are owned by individuals. Out of the 35 percent of tubewells owned by shareholders, the majority is the property of several members of the same family (usually brothers). The information available on the ownership status of tubewells for Karkan Minor shows that there are more tubewells on a share basis in the middle and tail command areas than at the head end. The Mananwala data set, however, did not confirm this trend. Although the percentage of single owners is lower for diesel tubewells (see Table 2); the difference was not statistically significant (Chi2 test).The average DPR is used as a proxy for the exact quality of canal water supplied to a specific watercourse. It is expected to be a better proxy than the position along the distributary or the RD number of the watercourse. A few tubewells are abandoned every year. In the sample areas of Karkan Minor, for example, seven tubewells have been abandoned. The main reasons reported by farmers and observed in the field are physical or technical (bore failure, unsuitable water, improper tubewell location, etc.). However, social and economic factors have to be considered as well. Conflicts among shareholders of a single tubewell, for example, can lead to the abandonment of the tubewell. The problem of credit and cash availability for buying expensive spare parts is another reason for private tubewells to be abandoned.The highest utilization rate for the 12-month period considered has been recorded for an electric tubewell located in Mananwala 24R watercourse command area: this tubewell has been operated 5,500 hours equivalent to a utilization rate of 77 percent. However, it can be considered as an exception, the average utilization rate calculated for the 223 private tubewells of the sample watercourses being less than 10 percent (9.4%) ! 124 tubewells (or 55% of the sample) have a utilization rate lower than 5 percent and 52 tubewells (or 23% of the sample) between 5 percent and 10 percent. The frequency distribution of utilization rates per source of power highlights that while most of the PTO and diesel tubewells have utilization rates lower than 10 percent, electric tubewells show a more homogenous frequency distribution between 10 percent and 70 percent (see Figure 5).With a less skewed frequency distribution, electric tubewells have, on average, a much higher yearly utilization rate (40%) than diesel (6%) and PTO tubewells (3% only). The utilization rate is also higher for tubewells with multiple ownership than for tubewells with one single owner. A regression analysis for 143 private tubewells gives us the relation between the number of hours of operation for the 12-month period as a dependant variable and the source of power and the ownership status as independent variables. The linear relation found is given below.Where Hours : hours of operation for the 12-month period.Power : dummy variable, equal to 1 for electric tubewells and equal to 0 otherwise. Owner : dummy variable, equal to 1 if single owner and equal to 0 otherwise.(RZ: 0.53; number of observation = 143; degrees of freedom = 140; all coefficients significant at 5% probability level)The estimated coefficients explain that, on average, electric tubewells &ill be operated 1,675 hours more than diesel and PTO tubewells. The higher utilization rate of electric tubewells was expected (but perhaps not with this amplitude), due to their lower O&M costs (see for example, Kuper and Strosser 1992). < l o % 20% 30% 40% SO% 60% 70% >70%Utfilzatlon rate (In %)Tubewells belonging to shareholders will be operated 200 hours more than tubewells belonging to a single owner. The difference remains, however, quite small. Although the number of users is much higher for the former, the number of hours of operation remains quite low, certainly due to the fact that the size of the landholdings of the shareholders is smaller than that of single tubewell owners. The difference between the operation of tubewells belonging to single owners and shareholders is more significant for diesel tubewells than for electric and PTO tubewells.The period of the year is an important factor influencing the operation of private tubewells. Private tubewells operate more during Kharif, when crop water requirements are high. Differences between months are important, from less than 20 hours in April (equivalent to a utilization rate of 3%) to nearly 120 hours in August (utilization rate of 20 percent). The comparison between locations shows that, on average, tubewells are operated more in Mananwala Command than in Karkan Command. This trend is valid for every month but November as presented in Figure 6.Differences between the two areas could be related to the higher percentage of electric tubewells, the higher percentage of rice and the lower public tubewell utilization rate in Mananwala command area than in Karkan area. However, the canal water supply, similar for Mananwala Distributary and Karkan Minor, does not explain differences in the operation of the private tubewells from the two areas.Large differences in tubewell operation exist from one watercourse to the other. For Mananwala Distributary (see Figure 7), tubewells located within head and tail reaches of the distribute are operated more than those located at the middle reach of the distributary. Watercourse 24R, with more than 2,500 hours of operation per tubewell per year represents a real exception in our watercourse sample. On the other side of the scale, tubewells located within 114R watercourse command are operated less than 200 hours per year. A similar but less clear trend is found for Karkan sample watercourses from the head to the tail. As for the tubewell density, it is difficult to explain differences between watercourses by differences in canal water supplies. It appears, however, that the lower utilization rate of private tubewells in the middle reach is related to the higher percentage of PTO tubewells with very high operating costs while electric tubewells with low operating costs and a higher utilization rate are located in head and tail watercourses. There is a strong correlation between the percentage of tubewells from different power sources and the average operation of tubewells. In our sample, 85 percent of the variation in average tubewell operation per watercourse is explained by different percentages of electric tubewells in the sample watercourse command areas.Regression analysis showed that there was an inverse (but nonsignificant) relationship between operation and groundwater quality of a specific tubewell. As shown in Figure 8, the quality of tubewell (EC as a proxy) water plays the role of a constraint limiting the operation of private tubewells. When the groundwater quality is low (high EC values), tubewells do not operate for more than a certain limit, this limit decreasing when EC values increase. When the groundwater quality is high (low EC values), tubewell owners do not consider it as a constraint and other factors explain differences in tubewell operation. A similar but stronger trend is observed when considering only Karkan Minor tubewells with average lower groundwater qualities. For tail watercourses of Karkan Minor, a significant and inverse relationship exists between water quality and tubewell operation, explaining more than 25 percent of the differences recorded in the operation of private tubewells. Canal water supplies have an impact on the operation of private tubewells in the different watercourses. However, the main factors explaining differences in private tubewell operation are the source of power of the tubewells and the cropping pattern (thus the crop water requirements) of a specific area. The correlation between these two variables (source of power and cropping pattern) is recognized but its nature (which one influence the other ?) is not yet clear.The conjunctive use of canal water and tubewell water is considered in the next chater, by aggregating surface water and groundwater supplies at watercourse level. To be able to analyze the conjunctive use at a micro-level (farm or area served by a specific tubewell), a more in-depth analysis would be needed, which goes beyond the scope of this present study and the available data set. Tubewell location and source of power, localized cropping pattern and tubewell density, and supply of canal water considering water losses within watercourse command areas, would be important factors to be taken into account.Canal irrigation has become insufficient to meet the present-day water requirements of increased cropping intensities. Therefore, farmers are left with no choice but to supplement the surface supplies with groundwater. The growth of groundwater utilization which started, some 3 decades back, at a very slow rate, has now become an overwhelming part of the total irrigation water.For the sample command areas of Mananwala and Karkan the share of groundwater was more than 60 percent of the total irrigation supplies during Kharif 90 and Rabi 90/91 seasons. While the groundwater supplies for Kharif are 65 percent higher than for Rabi, it is interesting to note that the ratio of groundwater to surface water supplies remained the same for the two seasons. Differences exist between the two channels, Mananwala Distributary and Karkan Minor, and between watercourses supplied by these two canals.First, the total quantity of irrigation water allocated to the CCA is higher in Mananwala area than in Karkan area (see Figure 9). With similar cropping intensities for the two areas, the main explanations for this difference would be a higher percentage of rice crop in Mananwala area and the lower groundwater quality in Karkan area limiting private tubewell operation.Second, with a rather regular canal water supply over time,g the main changes in the total quantity of water supplied to the two areas are related to the operation of tubewells. When looking at the percentage of irrigation water coming from the different sources the same trend over time is found for the two channels. August and September, the period of the year with the highest crop water requirements due to the rice crop, are the months with the highest share of groundwater supply (around 80% and 60% of the total supply for Mananwala and Karkan) and private tubewell supply (65% and 40% of the total supply for Mananwala and Karkan). April, harvesting time for wheat crop, is the month with the lower share of groundwater and lower private tubewell supply.Third, private tubewell water supplies and groundwater supplies have a greater importance in terms of percentage of the total irrigation water supplies in Mananwala Distributary than Karkan Minor Area. The difference is particularly significant for Kharif, with groundwater supplies amounting to 70 percent of the total supply in Mananwala Command versus only 45 percent in Karkan Command. The lower average groundwater quality in the earlier area would be one reason why farmers in the Mananwala Area use their groundwater resources more intensively.The significantly lower canal water supply of the January-February period is due to the closure of the canal irrigation system for its annual maintenance by the Provincial Irrigation Department. Month (year 1990/9 1 )The variation between watercourses is relatively high, in terms of total quantity of irrigation water used by farmers as well as in terms of relative share from the three different sources, particularly for Kharif. Differences in cropping intensity and in percentages of cropped area under rice and orchards partially explain differences among watercourses.It is difficult to find a significant trend in the quantity of irrigation water supplied by the three sources from the head to the tail of the channels. For example, the quantity supplied to Mananwala 143R is higher than that supplied to Mananwala 43R of the head reach of the canal. Differences between watercourses are mainly related to differences in cropping pattern and in the source of power of private tubewells (as explained in the previous section).The relative importance of private tubewell supplies decreases from the head reach to the middle reach of the two channels and then increases again towards the tail area as shown in Figure 10 for Kharif 1990.\" There is no trend for the aggregated groundwater supply (public and private tubewells) mainly due to the high variability of the public tubewell performance from one location to the other. The high percentage of groundwater use at the head is related to the higher utilization rates of private electric tubewells, while at the tail, it is related to both the presence of electric tubewells and the extremely low canal supply. Mananwala 143R is an extreme case where the total irrigation water is supplied by tubewells during Kharif.\" Watercourses at the tail of Karkan have a relatively high percentage of their supplies coming from canal water, due to a better performance of Karkan tail compared to Mananwala tail as reported by Van Waijjen (1992). Another extreme situation is Karkan 36R watercourse where private tubewells (all FTO) have not supplied any water during the two seasons considered. The relatively good performance of the public tubewells of this area could explain that tubewell owners did not need to supply their crop with expensive private tubewell water.Irrigation water supply data collected by IIMI for 4 Mananwala watercourses and for 5 consecutive seasons (from Kharif 89 to Kharif 91) are presented in Appendix 4. For Mananwala 121R, with a very low area under rice crop during Kharif and a relatively good canal water supply, private tubewells are mostly used to mitigate undesirable fluctuations in the public (canal and public tubewells) irrigation water supply and thus to play a stabilization role. In the other watercourses with a higher discrepancy between crop water requirements (more rice) and the public water supplies, the primary role of private tubewells is to increase the total quantity of irrigation water (it is specially clear for Mananwala 24R and Mananwala 143R), the stabilization process?aking a secondary role.During the Rabi season, canal water performs slightly better for this watercourse with 4 percent of the total irrigation water supply.The share of groundwater supplies in Mananwala 24R has been constant for the Kharif seasons (close to 75%) while an increase (from 52% in 89/90 to about 70%'\"in 90/91) has been reported for the Rabi seasons. With similar rainfall for these seasons, changes in the relative profitability of crops with different crop water requirements could explain changes in groundwater use. For Mananwala 121R, the share of groundwater has decreased, from 52 percent of the total in Kharif 89 to 42 percent for the next two seasons. The Rabi seasons have seen the opposite trend, the percentage of the groundwater increasing from 15 percent to 42 percent of the total irrigation water supply. The growing importance of vegetables in this part could be the main reason for these changes but several seasons would be needed to further assess this trend. For the whole period, the tail command area (Mananwala 143R) has received more than 95 percent of its imgation water from groundwater resources.As described in the previous section, groundwater quality has an impact on the tubewell intensity and the operation of private tubewells. In the context of the sustainability of the agriculture in the area, however, not only the quality of one specific source (in this case private tubewells) but also the average quality of irrigation water applied by the farmers to their crops\" has to be considered.The average EC values have been calculated for the sample watercourses and aggregated for the two canal areas. The average EC values for Kharif and Rabi seasons are respectively 1.11 dS/m and 1.07 dS/m for Mananwala and 0.89 dS/m and 1.14 dSlm for Karkan. Differences from one season to the other follow changes in the percentage of groundwater out of the total quantity of imgation supplied to the two canals. At this aggregated level, values calculated are all lower than (but close to) the 1.15 dS/mI3 limit which is used as an acceptable limit for the irrigation water supply.The comparison between values calculated at watercourse level for the two seasons shows that average EC values are higher during Kharif than during Rabi for all but one of the Mananwala watercourses, Watercourse 121R (see Figure 11). For Karkan Minor, half of the watercourses follow the same trend. A higher EC value for Kharif is found for watercourses that record a high percentage of the area under rice. The highest EC values, much higher than the acceptable 1.15 dS/m, are found for the three tail watercourses of the two channels. With 2.09 dS/m and 2.02 dS/m for Kharif and Rabi, respectively, Mananwala Watercourse 141R has the worst position regarding irrigation water quality.The timing of the application of water of different qualities at different critical growth stages of the crops would also be an important aspect to be included in the analysis. It has not, however, been included in the present study. Watercourse number I Kharif Rabi IWith higher losses to be accounted for canal water than for tubewell water, the average EC values of the irrigation water available at the root zone of the crops are expected to be even higher than the values calculated at a watercourse level and presented in this paper. Moreover, if the 0.7 dS/m value proposed by the Food and Agriculture Organization is used instead of the 1.15 dS/m adopted by the Punjab Agriculture Department, the average irrigation water quality (EC in our case) is problematic for as many as 11 watercourses out of a total of 14 !The comparison between watercourses highlights that where canal water supplies are comparatively better (watercourses from the head and middle reaches of the canals), farmers are in a position to maintain their average irrigation water quality within an acceptable range. When surface water is not available anymore, farmers have to pump tubewell water, whatever its quality, in sufficient quantities to irrigate their crops and to be able to live with their farming activities. An interesting aspect is the EC values for the first head watercourse of Mananwala Distributary 24R, higher than what could be expected. Although this watercourse has a good canal water supply, farmers use their electric tubewells intensively leading to an EC value of 0.8 dS/m for their irrigation water.The mixing of canal and tubewell water is of particular importance in view of the potential hazard of soil salinization resulting from marginal groundwater quality. Most of the tubewell owners from the head reach of the distributary did not report a need to mix the two types of water. At the tail watercourses, however, where farmers would need to mix their tubewell water of poor quality with a certain amount of canal water, farmers use their tubewell water alone most of the time because canal water is not available in appropriate quantities or not available at all. Problems of secondary salinization and their negative impact of agricultural production are expected to be much more acute in these tail areas.The problem of the quality of the groundwater does not only concern tubewell owners in Mananwala Distributary and Karkan Minor areas. Beside using tubewell water on their own land, tubewell owners sell water to other farmers in our sample watercourse command areas.Most of the tubewell owners are not heavily involved in water sale and still use the bulk of the pumped water on their own fields. When asked whether they would supply tubewell water to their crops or sell it to needing farmers, nearly all of the tubewell water sellers reply that the first priority would be given to their own fields. However, the low number of purchasers per tubewell and the usually low utilization rate of the private tubewells allow most of the tubewell owners to sell water when demanded.The percentage of tubewell owners selling water is higher for the middle watercourses than for the head and tail watercourses as illustrated in Figure 12. What is interesting is that the percentage of tubewell owners selling water is inversely related to the quantity of tubewell water supplied to the different watercourses. Tubewell owners, who operate their tubewells intensively to irrigate their own crops, would have less opportunities to sell water to potential purchasers.The number of hours sold per tubewell is influenced by the source of power. Electric tubewell owners participating in water sales sell, on average, more water than diesel and PTO tubewell owners. Differences in prices between the three sources of power mainly explain these differences (see price analysis below). However, it is not clear yet whether the higher level of water sales benefits a higher number of farmer-purchasers or not.Data analyzed to answer issues related to water markets have only been collected in Mananwala sample watercourses.Most of the water sales are paid for in cash in thearea, at the time of the use of water or at the end of the season after the harvest of the crops. Only one case of sharecropping, involving a payment in kind, has been found in our sample of tubewell water transactions. What is interesting is that this sharecropping arrangement was used only for rice, much more dependant on irrigation, whereas tubewell water sold for irrigation of other crops (mainly wheat and cotton), was paid for in cash.Prices of tubewell water are highly variable from one tubewell to the other. Over time, for a given season or even a year, however, prices remain constant. Relative changes of the water scarcity over a season (due to changes in crop water requirements and the variability of water supply from public sources) are not translated into changes in tubewell water price. The lower transaction costs could be one factor explaining a fixed price over time. Few tubewell owners reported differences in prices from one buyer to the other. Most of the time, these differences are related to blood or landlord-tenant relationships.Tubewell owners rarely include investment costs in fixing the price of water but, contrary to the expectation, they seem to do it mainly when public irrigation water is more abundant (a larger set of data would be needed, however, to assess the significance of this statement). Differences in prices from one tubewell to the other are mainly explained by differences in O&M costs. The presence of electric tubewells selling water at a comparatively lower price seems to have an influence on the price of water sold by owners of adjacent PTO and diesel tubewells.Tubewell discharge and source of power have been used as a proxy of the O&M costs and correlated with the price of tubewell water sold. The relation between these variables has been estimated for 75 tubewells selling water and is presented below. The positive correlation between price and discharge of the tubewell is according to what one could expect. Those owning tubewells with high discharges supply a higher quantity of groundwater per hour of operation and thus can ask a higher price from their purchasers. The negative sign of the estimated coefficient before the dummy PS translates the lower price charged by electric tubewell owners, due to their lower costs of O&M (Rs. 10 less on average than for diesel and PTO aggregated). Some farmers of Mananwala Distributary Command Area report that groundwater salinity has an impact on the price of tubewell water. However, the quality (EC) of the groundwater did not prove to have a significant impact on the price of tubewell water.Other factors (competition between tubewell owners related to a localized tubewell density, lining of watercourse increasing the number of potential purchasers, canal water supply along the watercourse, etc.) influence the price of water as well (it has to be noted that the R2 of the above equation is only equal to 0.33).Research undertaken by IIMI in another location in South Punjab (Strossz and Kuper 1993), for example, shows that the local density of private tubewells and the delay in paying the purchased water (equivalent to a short-term credit) are factors considered while setting the price of water. Meinzen-Dick and Sullins (1993) report an additional fee of Rs. 4 to Rs. 6 per hour in Faisalabad Area as a normal practice to cover the wear and tear on the engine. New data would be needed to further understand how farmers set their water prices in Mananwala Distributary Command Area.Analysis of data collected in Mananwala Distributary and Karkan Minor Area has confirmed the importance of groundwater in the current irrigation environment of Pakistan. Public tubewells are no longer in a position to supply an adequate and reliable groundwater supply and most of the groundwater is provided by private tubewells. The role of the groundwater pumped by private tubewells for irrigation purposes is particularly important where farmers grow crops with high water requirements (such as rice) and where tubewell owners have installed electric tubewells with comparatively low operation costs.The supply of groundwater by private tubewells has in fact two roles: first, to increase the imgation water supply and second to mitigate unpredictable fluctuations in the surface water supply. The second role seems to be predominant in the case of tubewells with high operation costs (PTO tubewells) and relatively good canal water supply as is the case for the middle watercourses of Mananwala Distributary. When canal water supplies are large and costs of operation of tubewells low (as in Mananwala 24R), the predominant role of the tubewells is to increase the irrigation water supply, and the role of tubewells for stabilizing the imgation water supply becomes secondary. For the tail watercourses, with hardly any canal water supply, tubewells are operated to provide imgation water as needed by the farmers for their farming system.In the context of the unreliability of the canal water'supply and the stabilization role of the groundwater supplied by private tubewells, the relative overinvestment in private extraction devices as well as the low utilization rate of private tubewells have a certain rationale. Private tubewells are not operated as a separate unit but are included within the decision-making process of a farmer for his entire farming system. The stabilization role of the tubewells is a very important one, private tubewells being the equivalent of an insurance taken by the farmers to reduce their risk related to the unreliable canal (or public) water supply.The dependance on groundwater supplies, especially at the tail of the canal irrigation system, increases problems related to secondary salinization in these areas. Tail watercourses have, on average, a lower irrigation water quality than head and middle watercourses, due to a poorer surface water supply as well as to a lower groundwater quality.15 For three watercourses out of 14, the irrigation water EC calculated at a watercourse level was higher than the limit of 1.15 dS/m adopted by the Punjab Agriculture Department. Using the EC threshold (0.7 dS/m) proposed by the Food and Agriculture Organization, the irrigation water quality is problematic in 11 sample watercourses.Farmers of these watercourses are under a serious threat for the sustainability of their agriculture. Although groundwater quality has a negative impact on tubewell density and constrains tubewell operation, farmers at the tail of the system do not have any choice apart from pumping brackish water to irrigate their crops and cultivate their land. In other watercourses, average EC values close to 1 suggest that secondary salinization could be avoided but only with an appropriate conjunctive management (over space and over time) of the different sources of irrigation water.-l5 IIMI's research work in other areas has shown that the decreasing head-to-tail trend in groundwater quality could not be generalized to all secondary canals.Of course, individual farmers are worse off than,.one would expect on the basis of the average figures. In fact, farmers face a variable environment within watercourses, with different canal water supply and variable qualities of tubewell water.Results reported by Murray-Rust and Vander Velde (1992) suggest that farmers, operating relatively close to a Relative Water Supply16 of 1, manage their water with some precision, adjusting their tubewell water supply to the canal and public tubewell supplies. With these values of Relative Water Supply and the problem of groundwater quality, the authors conclude, however, that it is not surprising then that secondary salinity is building up rapidly in tail areas with no water allocated by farmers for leaching of salts. Long-term monitoring of the irrigation practices of sample farmers, however, would be needed to establish the trend in secondary salinity related to the use of irrigation water of different qualities.Another important issue which has not been addressed in this paper is related to the water table depth and the sustainability of groundwater extraction. Data collected by IIMI since 1989 at two reaches of Mananwala Distributary show that lowering of the water table seems to be a regular phenomenon over time.\" In the long run, a decline in the groundwater level would increase pumping costs (especially for the tail farmers where depletion of the aquifer seems to be slightly faster) thus decreasing the demand for groundwater over time. This process would continue until the system reaches a steady state. The impact of this process, however, could be severe for small tubewell owners and small farmers and would have an impact on the agricultural production as well. The slower private tubewell development observed in the area for the last few years could have its origin in the depletion phenomenon of the water table.\"Problems of groundwater quality and water table depletion not only concern tubewell owners but nearly every farmer who purchases tubewell water. Water markets give access to groundwater resources to non-tubewell owners (mainly smaller farmers) and thus improve the equity in groundwater s u p ~l y . ' ~The supply of canal water (and its impact on the demand for extra irrigation water ?) and the tubewell power source have an impact on the development of water transactions among farmers. Prices paid by farmers are much higher than prices paid for canal water through the water rates or abiana suggesting that there could be a potential for increase in canal water charges, if canal water supply is made more reliable. Defined as the ratio of the water supply to the demand.A similar conclusion is found in the study on private tubewells undertaken by NESPAWSGI for the Government of Pakistan (Government of Pakistan 1991a). According to their data, the groundwater resources have already been overmined in Sheikhupura District where Mananwala Command Area is located.The exceptionally high rainfall which has affected the country in 1992, has, however, partly recharged the aquifer as shown by more recent IIMI data, highlighting the impi3tance of water table monitoring over a long period of time. Khan et al. (1990) report that 48 percent to 60 percent of the farmers of the project and non-project areas were purchasing private tubewell water. i) ii)iii)The \"without project\" situation of the SCARP,.Transition Pilot Project (STPP) (Government of Pakistan m 1985) was based on a 3 percent yearly increase in the number of private tubewells for the period 1985-1988. The trend in tubewell development before 1985 presented in this paper for Mananwala Area suggests that much higher figures for the annual tubewell growth rate could have been used at the project appraisal stage. Most of the private tubewell development would have happened anyway without the STPP. Thus, the use of the 3-percent figure has led to an over-estimation of the economic indicators calculated for the STPP.The actual tubewell density used in the second SCARP transition project (Government of Pakistan 199 la) is 2.1 private tubewells per 100 ha of CCA, much lower than the average 7.6 value for 14 watercourses or the 6.9 value calculated for the 26,800 ha of Mananwala Command Area. Thus, figures related to the current pumpage by private tubewells have been under-estimated by at least 50 percent. If the expected target of 10 new private tubewells per public tubewell abandoned is reached, it will accelerate groundwater depletion in the area.Groundwater depletion has already been reported in the area in the study undertaken by NESPAK for the Government of Pakistan (Government of Pakistan 1991b). In their study, however, no PTO tubewell has been included. Thus, the problem of groundwater depletion in the area has been underestimated by 25 percent and would be even more acute than presented in this study.Although water table and salinity are not directly related anymore as it was in the past (they were usually named the twin menaces), they are variables from the same conjunctive use environment and thus need to be monitored. With the importance of secondary salinization and the decline in water tables, a serious monitoring of the conjunctive use environment has to be included in the agenda in the context of a sustainable agriculture. Although important variables are already monitored by several institutions in Pakistan, the lack of coordination among institutions and their narrow approach of the conjunctive use environment are serious constraints for an efficient monitoring (Murray-Rust and Vander Velde 1992). Moreover, in the present situation, private tubewell data are not collected by any public agency. Murray-Rust and Vander Velde (1992) propose three items for further research on conjunctive use, i.e., to determine realistic critical limits for surface water/groundwater ratios at different water qualities; to develop a model to predict salinity changes over time; to analyze factors other than water quality and location that affect farmer cropping choices in a conjunctive-based irrigated agriculture.With 85 percent of the variation in tubewell operation explained by the percentage of electric tubewells (with lower O&M costs) in a specific command area, the present study suggests that economic variables (O&M costs, landholding size, etc.) have to be included in further work on tubewell O&M on farmer cropping choices and on environmental issues (water-table depletion, secondary salinization) directly related to tubewell operation and conjunctive use. It suggests also that a farm (or tubewell owner) level analysis would be required (and perhaps more appropriate) to further understand conjunctive use management by farmers and its impact on secondary salinization.The impact of water markets on the agricultural production and on the environment (especially secondary salinization and water table depth) would have to be assessed as well. More research is needed to compare water markets and their impact on the quality of irrigation services offered to farmers (in terms of quantity, equity, reliability) with other ways of water allocation (as public tubewells or tubewells with multiple ownership). The first step in the collection of tubewell data is a tubewell census of the sample watercourse command areas selected as basic sample units. Basic tubewell characteristics are collected through field visits and interviewing tubewell owners. The use of maps (canal patwaries or chukbandi maps) facilitates a clear identification and location of the private tubewells. Owner's name, location of the tubewell (distributay name, watercourse, square and kilu [field] numbers. Vander Velde and Johnson 1992. Appendix A.), date of tubewell installation and investment costs, bore depth, source of power, etc., are the main characteristics collected during the tubewell census.Several methods exist to measure tubewell discharges. The quickest one is the trajectory method, giving a good estimate of the discharge when the tubewell delivery pipe is strictly horizontal and pipes are fully filled by the flow of water. An L-stick with a fixed Y-axis length gives an X-axis value directly proportional to the discharge. Flumes (earthen watercourse) and current meters (lined watercourses) can also be used to measure discharges. Comparisons between fluming and trajectory methods have shown that differences are not significant and that the less timeconsuming trajectory method can be confidently used.The source of power influences the choice of the method used to collect private tubewell operation.For electric tubewells with WAPDA electric meters in working conditions, a calibration of the meter (number of electric units for one hour of operation) gives the possibility to convert the reading of electric units into number of hours of operation. A regular calibration of the meter is however needed (at least once a month or after any major change in the motor size or suction pump setting).(ii) For diesel tubewells, a vibration meter (small device recording the period of vibration) can be installed on the delivery pipe or preferably on some parts of the engine. The use of this device with other sources of power has been found less successful.(iii) Interviews of tubewell owners have been used to collect the number of hours of operation for two types of tubewells : PTO tubewells, and electric tubewells with WAPDA electric meters in poor working conditions.Tubewell owners and key informants (numberdur or village head-man, WAPDA officials,etc.) are interviewed to gain a better understanding on the management of private tubewells. Regular interviews of the tubewell owners (for the number of hours sold or their O&M costs) are complemented by specific topic-oriented interviews to answer particular questions (for example their strategy regarding water sales) pertaining to groundwater management.Piezometers have been installed in specific locations for a regular monitoring (monthly measurements) of changes in the water table depth. For the quality of the groundwater, two methods have been used: a complete analysis of groundwater samples in certified laboratories (Directorate of Land Reclamation, Irrigation Department, Lahore, for example) or a direct measurement in the field using an EC meter. The second method has the advantage of being rapid and gives instantaneous results. ","tokenCount":"10655"} \ No newline at end of file diff --git a/data/part_3/1073398829.json b/data/part_3/1073398829.json new file mode 100644 index 0000000000000000000000000000000000000000..fae6b8b80fd7284d35dc4a686c0afa443c605d9b --- /dev/null +++ b/data/part_3/1073398829.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"60ee081d8e3656803109e9ec1e9c09b0","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/c6274348-7485-4974-88fa-6d46cb33502d/retrieve","id":"-385436549"},"keywords":["Land Degradation & Development Manuscript ID LDD-17-1232.R1 stoichiometry, Isometric, coupling, soil, carbon isometric coupling","miombo","woodland","soil carbon","stoichiometry 41 42 elemental imbalances, deterioration of soil structure, acidification and salinization (Lal, 2015)"],"sieverID":"45e4185a-46e3-4c61-960f-197bbe649d98","pagecount":"33","content":"The International Center for Tropical Agriculture (CIAT) believes that open access contributes to its mission of reducing hunger and poverty, and improving human nutrition in the tropics through research aimed at increasing the eco-efficiency of agriculture.CIAT is committed to creating and sharing knowledge and information openly and globally. We do this through collaborative research as well as through the open sharing of our data, tools, and publications.. On the other hand, lack of quantitative information on soil structural degradation and 74 nutrient limiting conditions has been one of the main obstacles for designing sustainable land 75 management practices in southern Africa. Therefore, the objectives of this study were to (1) quantify 76 the risk of soil structural degradation and (2) determine the variation in soil stoichiometry and nutrient Soil sampling and analysis 97 Soil samples were collected using the Africa Soil Information Service (AfSIS) and LDSF protocol 98 (Vågen et al. (2015) from 4468 plots across the 29 sites. A hierarchical random sampling approach 99 (Figure 1b) was employed used where a sentinel site of 100 km 2 area was selected, and within each 100 sentinel site 16 clusters of 2.5 km x 2.5 km were created. Within each cluster ten plots measuring 101 1000 m 2 each were randomly laid. Each plot had four subplots had an area of 100 m 2 . A Global 102Positioning System was used to navigate to sampling plots, once a plot was located, the central 103 position of the plot (referred as the central subplot, c) was marked (Figure 1c). From the center-104 point of the plot, a distance of 12.2 meters was measured to the upper slope position using 105 measuring tape and the center of the subplot was marked as subplot 3. Subplots 1 and 2 were offset 106 at 120 degrees from subplot 3 (Tamene et al., 2016). The radius of each subplot was 5.64 m, which 107 gives approximately 0.01 ha area.Soil samples were collected from the 0-20 cm and 20-50 cm soil depths from the center of each 109 subplot. A composite sample of 500 g (from the four subplots) was taken from the 0-20 cm and 20-110 50 cm depths separately, which amounted to a total of 320 samples per site. Each soil sample was air 111 dried to constant weight and sieved using a 2 mm sieve (Vågen et al., 2015). Near infrared (NIR) and 112 mid infrared (MIR) spectroscopy analyses of all the soil samples were done in the ICRAF laboratory 113 in Nairobi. This method was chosen due to the large number of samples and the time and resources 114 constraint. Reference analysis was carried out using wet chemistry for samples from plot 1 of each 115 cluster, which constituted about 10% of the samples. The wet chemistry results were used for 116 calibration of NIR and MIR models. S2). The St is an important indicator of 127 degradation and the sufficiency of SOM to maintain soil structural stability (Pieri, 1992). Here, St 128 was calculated as proposed by Pieri (1992) for the top 0-20 cm and 21-50 cm depths and lower depths 129 separately:SSI St ≤5% indicates a structurally degraded soil due to extensive loss of SOC; 5% < SSI St < 7% 132 indicates a high risk of structural degradation; and St > 7% indicates low risk (Pieri 1992).The SOC content is considered as a 'universal indicator' of soil fertility, overall quality and a ). The C:P ratio also plays an important role in the availability of P for plant uptake. At low C:P 153 ratios, bacteria mobilize more P thus enhancing plant P uptake. At high C:P ratios microbial biomass 154 P becomes stable as bacteria immobilize P, and this reduces P availability for plant uptake (Zhang et 155 al., 2018). Low C:P ratios are often interpreted as indications of C limitation relative to P in a given 156 LUC. Globally, a C:N:P ratios of 186:13:1 seems to be a well-balanced ratio for soils (Cleveland & 157 Liptzin, 2007;Wang et al., 2014). In order to determine whether SSISt, SOC, N, P and the C:N:P:S stoichiometry of bulk soils vary 161 with LUC and climate, a linear mixed modelling procedure was applied using soil depth, LUC and 162 climate as fixed effects and plot as the random effect. Model parameters and their 95% confidence 163 intervals (95% CI) were estimated using the restricted maximum likelihood method. For statistical 164 inferences, the 95% confidence intervals (CI) were used to complement P. Means were judged to be 165 significantly different from one another if their 95% CI were non-overlapping. Since inferences based 166 on the mean alone can be misleading if the probability distribution of responses is not known, the 167 cumulative probability distributions of St, SOC, N, P, S and the stoichiometric ratios were relationship between C and N has been shown to be isometric in soil samples (Yang et al., 2010). In 175 order to determine whether or not such relationships exist, regression analysis was conducted taking 176 the logarithms of SOC (%), total N (%), available P (%) and S (%) in the top 20 cm soil following (RMA) regression was performed in preference to ordinary least square regression (OLS) because of 179 its superior performance in situations where both variables were measured with error. RMA is also 180 preferred over OLS when neither variable can be regarded as dependent or independent (Warton et 181 al., 2006). Any significant relationship that approached isometry (slope = 1) was interpreted as an 182 indication of close coupling (parallel impoverishment or enrichment) of soil N, P and S with SOC.The slopes were compared using their 95% CLs to establish whether or not the LUCs significantly 184 differ in the degree of coupling between N, P and S with SOC. The frequency distributions of St, SOC, total N, available P and S concentrations and C:P and N:P 192 ratios were positively skewed, and their median values were much lower than their means (Figure 193 2). Across the 29 sites, significant variation was observed in St (Figure 3a), SOC (Figure 3b), total 194 N (Figure 3c), available P (Figure 4a), S (Figure 4b), SOC stocks (Figure 4b) and stoichiometric 195 ratios (Figure 5). Across 4468 sample plots, there was a 52% likelihood of severe soil structural 196 degradation (St ≤ 5%). A further 27% of the sampled plots also had high risk of structural 1). Across the sample plots, SOC stocks in the 0-20 soil depth were 202 significantly correlated with total N (r = 0.937; P <0.0001) and S (r = 0.765; P <0.0001) but not 203 with available P. sufficient for SOC to maintain structural stability. The probability of structural degradation was 208 higher in shrubland and woodland compared to cropland and grassland (Table 1). Average values of 209 St also significantly varied with LUC (Figure 6a) and climatic zones (Figure 7a). Only 3 out of the 210 29 sites had St was significantly higher than 7 (Figure 3a). In the 0-20 cm depth, St was significantly 211 lower on crop land than on grassland and bushland (Figure 6a). It was also significantly higher on 212 arid sites than on humid sites at both 0-20 and 21-50 cm depths (Figure 7a). St showed significant 213 negative correlation with grazing land (r = -0.373; P = 0.047).The regressions analysis of SOC, N and S revealed highly significant (P<0.0001) linear relationships 217 with slopes close to 1 (Table 2). The RMA slopes of the regression of SOC on N and S were ≥1 218 indicating isometric (near isometric) relationships. Near isometric relationships were also revealed 219 between total N and S in all LUCs. The slopes for the regression of SOC on available P were also not 220 significantly different from 1 except on cropland (Table 2), where P appears to have been decoupled 221 from SOC. The 0-20 cm depth had significantly (P<0.001) higher SOC concentrations than the 21-50 cm depths 225 across LUCs (Figure 6b) and climate zones (Figure 7b). On average SOC was higher in grassland and 226 cropland than in all other LUCs (Figure 6b). The probability of SOC concentrations being less than 227 the critical value of 1.5% was highest (φ = 0.63) in woodland and lowest in grassland (φ = 0.42) soils(Table 1). The highest value of SOC stocks (63 Mg/ha) was recorded in grasslands in humid areas 229 whereas the lowest (24.5 Mg/ha) was in cropland in arid areas (Table S3). Across LUCs, SOC stocks 230 were extremely low (<30 Mg/ha) in arid sites.Concentrations of total N significantly varied with soil depths, LUCs and climate zones; 232 concentrations being higher in the 0-20 cm than 21-50 cm depth across LUCs (Figure 6c) and climates 233 (Figure 7c). N limitation occurred with greater probability (φ) in woodland (φ = 0.99) and forestland 234 (φ = 0.97) than in cropland (φ = 0.92) and grassland (φ = 0.90) (Table 1).Soil available P concentrations significantly (P<0.001) varied with soil depth, LUC (Figure 236 6d) and climate (Figure 7d). Spatial variability in P concentrations was much higher (CV = 157%) 237 compared total N and S concentrations (CV = 67-68%). The probability of available P concentrations 238 falling below the critical value was highest in shrubland (0.78) and lowest (0.59) in cropland soils 239 (Table 1). Available P concentrations were significantly higher on cropland than forest land (Figure 240 6d) and on subhumid sites than on arid sites (Figure 7d).Soil sulphur S concentrations significantly varied with LUC (Figure 6e) and climate (Figure 242 7e) but not with soil depth. Grassland soils had significantly higher S concentrations compared to all 243 other LUCs (Figure 6e). Among the LUCs, woodland soils had the highest probability (0.86) of 244 containing S concentrations below the critical value of is 10 mg/kg (Table 1). The S concentrations 245 were also significantly lower on semiarid and arid sites than humid sites (Figure 7e). uses, but it did not significantly differ among the other LUCs (Figure 6f). Among the climatic zones, 252 arid sites had significantly (P<0.001) lower C:N ratios than semiarid, subhumid and humid sites.(Table 3; Figure 7f).The C:P ratio were generally higher in the 21-50 cm depth than 0-20 cm (Figure 6g).Grasslands had significantly higher C:P than all other LUCs (Figure 6g). Humid and subhumid sites 256 had higher C:P ratios than arid sites (Figure 7g). The N:P ratios significantly varied with soil depth,LUC and climatic zones. Generally, the 21-50 cm depth had higher N:P ratios than the 0-20 cm depth 258 (Figure 6h). Grasslands had significantly (P<0.001) higher N:P ratios than all other LUCs (Figure 259 6h). Arid sites had significantly lower N:P ratios than subhumid and humid sites (Table 3Table 3).The C:N:P and C:N:P:S ratios in the top 20 cm varied with LUC and climatic zones (Table 261 3Table 3). Among the LUCs, the highest C:N:P ratio was recorded in grassland (191:12:1) and the 262 lowest in woodland (120:7:1) (Table 3Table 3). The highest C:N:P:S ratio was recorded on cropland 263 and the lowest in shrubland (Table 3Table 3). The N:P and N:S ratios were significantly positively 264 correlated with SOC (Table S4). The C:P and N:P stoichiometric ratios were also significantly 265 positively correlated with soil clay, silt and S contents (Table S4). than in woodland and forestland across southern Africa. This novel but seemingly counterintuitive 273 finding has plausible explanations. Although cultivated soils are often believed to be more degraded 274 in comparison to forestland, the risks of soil structural degradation were higher in forestland than in 275 cropland. Contrary to our initial hypothesis, SOC and total N concentrations were also lower in 276 woodland and forestland than in grassland and cropland across southern Africa. This finding is 277 consistent with empirical evidence from elsewhere that C levels in intensively managed agricultural 278 and pastoral ecosystems can exceed those under native conditions (Six et al., 2002). The higher 279 SOC and N concentrations on crop land could be linked to nutrient addition from fertilizers and 280 manure, and nitrogen fixing trees planted on crop land.The lower SOC and total N concentrations recorded in woodland and forestland in the study 282 area may be attributed to various factors. First, tree roots being long-lived and coarser than typical 283 grass roots may contribute less to SOM than grass roots (Post & Kwon 2000, Guo & Gifford 2002).The extensive rooting systems of grasses and phytolith accumulation in grassland protects SOM (Chidumayo & Kwibisa, 2003). Similarly, a study on a subhumid savannah site in Zimbabwe 294 revealed 40-50% increase in C stocks due to fire exclusion compared to annual burning (Bird et al., 295 2000).The N and S concentrations were tightly coupled, and their limitations were more widespread 297 in woodland and forest land than grassland. This is probably because tree species in southern mineral fertilizers and organic amendments leading to higher yields and SOC content. In that regard, 338 investment in N fertilizer and manure could be targeted to soils currently having low C stocks, for 339 example, those degraded due to long periods of cropping. These soils are usually strongly depleted 340 in SOC and the sink is nearly empty so that C inputs are more likely to be translated into additional 341 storage more quickly (van Groenigen et al., 2017).On grassland, controlled grazing and reseeding with nitrogen N fixing trees and herbaceous 343 fodder legumes can speed SOM build-up. Since most African rangelands are now over-stocked, more 344 emphasis should also be placed on improving grazing management in communal grazing areas.In woodland and forest land, an urgent need is to slow down the rate of conversion to cropland.This is particularly important to mitigate the release of carbon from the soil and biomass into the 347 atmosphere (Scholes, 1996). According to Scholes (1996) if half of the carbon in the top 30 cm soil 348 and all the carbon in woody biomass were released in just half of the existing miombo woodland, the 349 mean rate of release would be around 0.2 Pg C per year, which is over 20% of the global carbon practices. This controversy is a result of a discord between official fire policies and indigenous fire 354 management practices (Sileshi & Mafongoya, 2006). Low-intensity, early and patchy burning has 355 been recommended to reduce the detrimental effect of fire on forests and soil function (Chidumayo 356 & Kwibisa, 2003;Ryan & Williams, 2011). ","tokenCount":"2400"} \ No newline at end of file diff --git a/data/part_3/1078272826.json b/data/part_3/1078272826.json new file mode 100644 index 0000000000000000000000000000000000000000..7e620012a07a3bcc90c3ec9c00d351b3a5d467a0 --- /dev/null +++ b/data/part_3/1078272826.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"e230096716e07d9b47ed8064f4b15103","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/b0f26c55-7230-4013-adae-319cdec4ac75/retrieve","id":"-1478928993"},"keywords":[],"sieverID":"d9b97866-84a7-4b46-8157-c3366ec4eab9","pagecount":"129","content":"Press run: 300 cop/es Pr¡l/Jed in Cf>lombia /\":ot'ember i9B6 CIAr (Cettfro Inlanacwna/ de Agricultura Tropical). /986. Workshop an the C(¡ribbean CoOperUIII.'f Rice Rl,!seorck Net\\\\ ork. Proceet/mgs 01 a workshop heid m Jhe Dommfcan l?l!puhhc. 2(j~24 AUgt/5! 1984. CaH Colombia. 128 p. l. Rice -Productio-n -Caribbean area ~ Congresses and conventJons. 2. Rice -Caribbean arca -Congresses and conventions. 3. Caribbean Cooperative Rice Researcn ~etwúrk_ L Instituto Superior de Agricultura (Dominit:an Republic) lt Dominican RepublLc. Secretaria de Estado de Agricultura, fIJ. United Nations. Economic Commission fOf Latln Amem:a and the Caríbbcan. Regional Headquarters. Centro [nternaclonal de Agricultura Tropical. Cover: farmer removing rICe seedlings from a tradttlOnal nursery In the Dominican Repubhc. Photo: Emllto :vrart!nez.Leovigildo Bello' Ladíes .nd gentlemen, Of all lhe crops ríce has received lhe híghesl and most continuous support from the Dominican Government duriog tbe past few years beca use of ils great importanee in lhe diet of the Dominioan peoplo. The importanee of ríce in lhe Domínican diet is easily shown by the high per cap ita consumption which, in 1980, reached 54.8 kIlograms.To satísfy local demand without having to Import, the Dominican Government implemented ambitíous plans in the area 01 research and technology transfer which have allowed the country to reach the goal 01 self-suffíciency during the past three year •.The plans brought abou! significant inerenses in bmh production and produetívity: in 1983 the tolal rice production increased 25 pereent over that of 1981 aud 1982 even though the area planted Over lhe 1981-1983 period ínereased only 9 pereen!. These figures show Iha! yields have inereased signífieantly wilh a national average of 3.91 tons per hectare in 1983.This suecess has been the result of the dedicatioll of a11 the agronomists involved ín research (an area in which work has been carried out sfnce 1962), the transfer of new technologies. the promolion of rice in the eountry, and the political necessity to reduce as quickly as possible our hígh impor! levels.It should be pointed out that the rice shortage existed des pite Ihe faets Ihal this erap occupied 33.8 perecnl of the arca dedicated to food erops; Ihat the public agricultural sector maintained an adequate supply and distribution system for machinery, implements, and other agrieultural i-Vorkshop on ¡he Caribhean Coopcrataf RICf' Reseatch Netwvrk inputs for rice cultivation; and lhar the Agricultural Bank of the Dominican Republic devoted 77.6 pereen! of it510an5 to rice cultivalion.These figures are necessary fOf understanding lhe importance of rice production improvement for the country and the Dominican governmenL The majar objective ofthe government is to consolidate theinfrastructure of rice produclion in arder to ensure a national supply of rice capable of salisfying the demand of lhe Dominican people and settling lhe political discussion over the desirability of rice imports. This is a particularly bright occasian. Bright beca use by slarting this Workshop on the Caribbean Cooperative Rice Research Network, we are camplying wÍth the mandate of a símilar aetivily held in Port-of-Spain, Trinidad and Tobago, io 1983. On lhal occasion the directors of agricultural research of the member countdes of the Commirtee for Development and Cooperaríon in lbe Caribbean (CDCC) recommended the creatlon of a network tú facilitate cooperative research in areas of cammon ínterest, stressing that research eooperation should be given high príority.We open Ihis Workshop and welcome the participation of representatives from member countries ofCDCC, lhal is, rice specialists from Belize, Cuba, Dominican Republic, Guyana, Haiti, Jamaica, Suriname, and Trinidad and Tobago. The major obíeelives of this Workshop are to present detailed proposals for the guidance of cooperative activilies and lo present specific policy measures necessary for their implementation according 10 the guídelines giveo by the Uniled Nalians Ecanomie Commission for Latin America and lhe Caribbean (UNECLAC) whose regional headquarters are in Port-of-Spain, Trinidad and Tobago. UN ECLAC's guidelines are not mere whims of sorne specíalists bUl are the results of detailed field studles on rice research conducted in each riceproducing country within the geographical area of the CDCC, Those analyti.aJ sludies. lhen, serve as the basic documentalion for the discussions of this Workshop, Jn addition, we have an importanl documenl, prepared by the organizers and sponsors of this inlernalional Workshop, and whieh summarízes the rice situatian in Ihe Caribbean countries.On behalf of the Dominican \"Concentración Nacional\" government, lhe Secretaria de Eslado de Agricultura. and in my own name, 1 welcome aH the professionals and rice specialists lo the hospitable Dominican land. 1 would also like to take advantage of this opportunilY 10 stress the importance of your work in lhe consolidation and development of the The reahzalÍon ofthis meeting brings me a grcat sense of salisfaclíon. It was only in September, 1983, at a meeting with lhe permancnt secretaries of agriculture and the direetors of agricultural rescarch, when the settíng up of a Caribbean cooperative rice research network was recornmended. The objectives ofthe network were lO collaborate on research problems of eommon interest, and to facilitate consultations and exchange ofinformalíon between scientísts. The faets that all lhe rice-producing countríes of the Caribbean shauld have decided to partieipale in this Workshop and lhe proposed network, and that various agencies had cooperated in the organlzation of thls activity can be cons1dered as achievements, albeit the fir't step •. Paddy has to be delivered by the farmers to the Board's eenters in Punta Gorda, Big Falls, Toledo, Belmopan, and Belize City. If the rice is delivered elsewhere, farmers are eharged $BO.02 (US$O.Ol) per pound for freight and handling. The maximum premium price paid to producers is $BO.26 (US$O.13)/lb.The Belize Marketing Board se lis milled rice at a priee of $BO.50/1b. Table 5 shows the amount of rice purehased and sold by the Marketing Board during the period [1981][1982][1983]. A reduetion can be seen in the amount of rice sold by the Marketing Board, deereasing from 1503.3 t in 1981 to 763.4 t in 1983. Beeause per cap ita rice eonsumption eontinues to be 22.7 kilogram per year it appears that people are buying their rice from other sources. It is thought that there has been an increase in demand for Mexican rice, particularly after the devaluation of the Mexican currency which has made Mexican rice cheaper to importo Table 4. Prices (in SB)a per kilogram ror rice paddy aecording to percent or moisture content, Belize Marketing Board, 1983.Moisture content J8.0 J 7.9 -17.0 16.9 -16.0 15.9 -15.0 14.9 -14.0 13.9 -13,0a. [x¡:hange Tate $B2.00 = US$I. OO (Nov. 1994) Ihe Mayas or mechanized, t:uder the milpa system rice is planted as a cash crop and the Mayas rarely cal it. Milpa rice represenls aboul one-fourth of Ihe total rice produced in Belize and is regarded as Ihe best quality rice produced in the country,The milpa system is described by the Mayas as a piece 01' bushland, cleared and burnl, planted wilh maize, followed by a crap 01' beans in the dry season, and then allowed to relum to bushland,The milpa is started in January wilh a clearing oC Ihe fores!. After the undergrowth has been dried for one or two monlhs, the arca is bumt belween the end of April and the tirst par! of May, The Maya farmer normally elears 2,8 ha ofwhich 2 ha are planted with maíze and 0.8 ha with rice.Planting begins by mid-May by making a hale with a ,tick and throwing the seeds into it. The seeds usedare saved from the previous crop and it has been estimated by lhe Toledo Rural Developmenl Project (TRDP) thal a planting density of27 kg/ha of seed is used, Old American varielies such as \"Bluebonnet 50\" are cornmonly used.'All cultural practices are done by hand although some farmers use hand threshers provided by the Departmenl of Agriculture, The cropping calendar and praduction cosls are shown in Figure 3 and Table 6, It can be noticed thal harvesting begins in Seplember when rainfall ís still high, Such conditions affect the moisture content of the grain at harvest which in its turO affects the selling price.As indicated in Table 6, production cosls are estimaled as $B496,59 (US$248.29)/ha, With an average productivity of 2 tlha the cost to produce a kg of paddy is SB0.25 (US$O, 12) whích indicates thal milpa farmers make a profit in rice growing-they even make a profit when selling at the minimum guaranleed price of SBO.l4 (US$O.07)/lb or $B0308 (US$O.15)/kg.---- Mechanized upland rice IS beíng encouraged by the government in order tú take ttdvantage 01 the large extents of uncultivated areas and good climalÍc condilions. Ibis type of croppíng system would pUl the country in a rice-cxporting position-probabiy exporting to the Caribbean rice market. Mechanized rícc farms are larger than mílpa farms, having aa average size of 40 ha.Ihe cropping calendar ís s¡mílar to thar followed by the mí/pa system, but activities 5uch as, clearing, planttng, and harvesting are mechanized, and inputs such as fertilizers. herbicides, and insecticídes are used.In Toledo District tlle machínery used is usually hired from the Department of Agriculture at subsidized prIces. Charges per hectare range ,-,-,-,-< , ,-,- from $B740 (US8370) 10 SBl480 (USS740) for land clearing, SBllO (USS55) for plowing; $B69 (USS34,50) for harrowing; and $BI1O (USS55) for harvesting. These charges are estímates, assuming average efficiency since services are charged per hour.Table 7 shows costs ol' produetíon for farmer Adolfo E, Norales of Punla Gorda, Toledo, and indicares that total costs were $BI293,34 (USS646,67)1ha of which abolll 50 pereent were machinery eharges, The farmer produced 3500 lb/acre (3900 kg/ha), Ihat ¡s, he produced a kg of padd} at Ihe cost of $BO.33 (US$O, 16), In order 10 make a profit he would have to seU paddy with a maxirnum moisture eOnJent uf 17,9 percent al $BO.l6 (USSO,Qg)/lb, or $B0.352 (US$O, 1 76)1kg, Tú do thal harvesling would have lo be delayed, thus bringing problems ofshattering and weeds, Mos! farmer> plant the variety CICA 8 but the available seed is heavily contaminated with red rice, Red rice problems are so serious that farmers use a piece of land for only a maximum of three years and then use new Jand to avoid red rice jnfC~tatlOn,Rice research was maínly the responsibility of Bíg Falls Ranch, bu' they nave had to scale 11 do\\'-'n be\\:ause of financial con.straints. The variety CICA 8 was released-based on theír trials, Currently lhere are two Caricom Farms Limiled is a project which imends lo establish pilol rice farms in central and nonhern Belize. They are current!)' conducting sorne agronomie research and are working lO eSlablish seed-producing farms, A Guyanese agronomist is conducting rice rcsearch, but as he must also carry out research on crops other than rice. rice research i5 vety limtted.There Ís no rice extension service as such, ahhough there is ¡nterest for Iocatíng a rice extension agent in Toledo. To date technology transfer to Red rice infestaríon caused by poor secd qualíl y ís one of Ihe major constraints to increased rice productwn, particularly Ir the product 15 aimed for the external markeL Ir secd qualíty ís not improved new nce fields run the risk of being contaminated by red rice.The marketing system and, in particular, the moisture-content requm:ments contribute to poor milling performance and tu incrcased weed infcstutions. in the fields and in commercialized rice. The drying. milling, and storage capacities of the Belize Marketing Board need to be Íncrcased in order 10 encourage rice production and cxportation.The use 01' a single va riel} (CICA 8) and/or varieties oflhe same cyele causeS a glut at harvest time and consequently harvesting under poor condüions. Germpiasm cvaluation is needed to identify varÍetles with differenl maturity c\\ eles. hígher yield pOlential. aud which could be harvcsted in the drycr months.The Department oí' Agriculture has recognized that thcre ís a lack of traÍned staff for supponing increases in rice farming. At least two agronomist5 are needed to be tfained in both research and production. Regional collaboration (ould help 10 overcome this and other above-menHoned constraints-in parw.:ulac thc tdentification of germplasm suited to Belizean ecologjcal, chmatic, and farming conditions.Alfredo Gutiérrez Yam\\ ami J(ué ,-\\1anil1C:: Grillo\"\" Cuba Ís localed in lhe Caribbeau and Ís lhe Jargesl islaud oflhe region \"ilh an afea uf 114.000 square kilometres. Agriculture is olle oí' the m05t important sectors ofthe c0untry'~ econom:y; rice is one oftne most popular cereals in the Cuban diet and is grown fol' 10caJ consumption. h is a profitable crop and (he production costs per ton of paddy rice are eslimaled al Cub$140 lo CubSI50'.The poliey ror the devdopment 01' the rice indusrry is ba~ed on improving rice production by íncreasing tbe yields. Sce Table 1 for informatían about area, prodUClion, prodUClivilY, .nd induslrial ylelds during 1981 aud J9g2, and Table 2 for milling yidds m 1981 and 1982. The harvesled rice is handled and milled by lhe branches of lhe Minislry of Food Industry.There are three minÍstries ínvolved in rice production and marketing: Agriculturc, food. and Internal Cornmerce. The Ministry ol' Agriculture produces the rice and sells ir to the MinistfY of Food which tUfOS it over to lhe processing plants at a selling prlee of Cub$206/t. This priee !S corrected after milling, depending on the content of whole grains and broken grains. Granma. With the exception of temperature, the cHmatic factors are favourable 10 rice production throughout the year, Temperatures are lower duríng lhe period from November to March, specifically during December to February when nighl temperamres are lowesl, and can affeet the rice crop during the reproductive stage even provoking steriHty.Therefore the rice-planting caJendar in the western provinces i5 from December to Ju!y and in lhe eastern provine es it ís from Decomber lO mid-AugusL Therc are stgnifícant dífferences in yield according to plantingdates: the December to January plantíngs are more productivo than those of July te August. The rice crop cycle afso varies according to the month ofplanting (TabJe 3). Varieties and seed production. There are four varieties grown commercially in lhe country: J-104, IR 880, Caribe 1, and Naylamp, AII are improved semidwarfs, The Minislry of Agriculture produces and certifies all secd categories through a prograrn lhat assures lhat all commercial fields are planted with good quality seed. ThlS program iovolvos several steps: fírst, original and basic seeds are produced by experíment stations; second, regístered and cértified seeds are produced by a specializcd enterprise which sends the seeds to other enterprises; and third, each of these entcrprises has a farm whkh speciaiizes in certitied seed multiplication. These farm); obtain a second generatlon which is then used for commercia.l produetion.The certifieation of each seed category and the supcrvísion of each area of production ís lhe responsibthty 01' a group 01 spcclaltsts who are lhe counterparts of those spedalists producing the secus.Land preparation. There are four method::. used in land prt:paratiüneach of them with differcnt obje<.:tlves. They are dr:-, dry~di~mrec;ion, dry-puddling, and puddling-double-cropping, They represen< 50, 20, 20, and 10 percent of the ricc-production area respectivd).Dry-Iand preparalion is used lo assure plan! establishment during ¡he dry season. 11 glV¡;;~ the highest yiclds, Thi~ methoo 1I1volve~ surface harrowing (c.\\-.:ept in areas whcre \\veed p()pulation~ are <.kn~e énough 10 require plowing), eros!; harro\\ving, applicalion of feruIJzerli, and smoothing and compacting the ¡and wlth a roller before and after sowing. Sowing ís done by drills in ero,\" form, Dry-disinfectwo land preparatlOn ¡, u).,eu JI! arca~ heavil) ¡nfesred b) varietal mixtures or highly compctltivc \\\\'ceu~, LanJ [S preparcd dr J and levies are built. \\Veeds are induced tú genninatc hy lrngatlOn or rain and then are controlled by nonselecttvc herbi(.'ides. Séed~ are broadca~ted 0\\ tr clear water.Dry-puddling Jand preparation is used to assurc p[ant estab!l~hment during the wet season. During the dry season dry plowing, fertiiiz3Iion, and the construction 01' levies are carried out. During the wet sea.':>on the fields are tlooded and the soil is continuously puddled lO controlthe weed.'> a.1d to level tne flelds. Seed is broadcasted over standing water.Puddlíng-double-eropping is (he method applied 10 allow a second erap during the year in the same land arca. It involves the rcstoration of damaged levíes and conlÍnuous puddling-ídentieal to ¡he technology 01' dry puddling, S(}\\\\ing. The method~ uscd ror sowmg are by ffiechaniled drlllo.., In dry prepart:u area~ and b~ aaial broatk:aqing in arca..., prcpared by {he drydlsinfcction, dry-puddllng, and puddhng-uoubk-aopping melhod~L \\\\ ecd control, pests. and diseascs, \\\\'eed control i~ preemcrgenl for aggrc\".)jvc gra~~es and pO:-.temcrgent ;'or grasscs, ()-pcuj( c(le, and broadk,-1\\ed \\\\'ceu:.. Al! applicatiní1s <.lce ' appn 1 ximatcly 65 pt::n..:ent un\"' alr~ad;. under cultivation. The rcmuming area rt'qulrc~ extcn~ht' urulI1agl' anu ¡rrigatiun fat;ilitíé'\" (ju:vana i::. divldeJ InlO ten aJm¡nl~tratJvL' reglOtls. Síx ofthc~e ~hare thé (\"ou;.,1<11 p¡ain~ in \\\\ hH:h fin' production ís concentrated. Thc 3(.;reage a\\ullabh: rn lhe :;'1\\ n,'gion~ and the pen.'t;ntagc occupíed b} rict: are prc:-.enteJ in T able l.R¡¡;e in (iu:.ana dat\\.'\", hack In thc I.'arl;. Economic perspective. Rice is one of Guyana's three major expon prudu<.:b-the üthers. are sugar and bauxite\" Rice and sugar dorninate the agncuhura! sector and represent approxímately 44 percent of total exp()fb. Rice at:counted for 27.3 perrent of the total export of rhese two commodítíes during the period 1977-1%1 (Table 2).Reside being one of (he maJor foreign ct up tü adminish:r the ri¡;c 1tHju~tr;.. lhe Guyana Rice Expon Hoard~ tht' Guyana Ri¡;c MiUing Corporalion; and the f\\atlOnal Rice Gradmg Authority.In addition it has bet:n Jcc:id:::d that. a~ 01' J January 1994. thc re!)carch and o.!cn~¡()n a;,;tivjtJe~ ofthc G RE should be placed under the M¡nl~try 01' Agriculture to be later tran:-.ferred tu the proposed ;.Jational Agricultural Rescarch In~t¡tutt' whcn it is e~tablishedj.Purchasing. proccssing, and marketing. Thc GRB pUfchascs whatevcr quantlt~ of paddy or miIJed rice o!Tered to it at pnccs fixed according lo grades.Pnce~ for padd y and rice boughr hom farmcr:-; arc determincd according to a GRB's recúmmt:ndalion Whl~h ¡s bast,;d 011 a\\dilablc information on production <:ost:., Thc RIcé': A<.:t 1 01: Cümmiuec. the Mifll~tQ of Agrlculture\" and the RICe Produ<:er~' A;.¡::,ouatlon arc ¡nvolved 111 th~ gathcringuflhat infu[marion. The GRB\\ rcéornmendation 15 revü:v.cÓ b) GLJYSTAC bm the final appro\\\"al is gl\\'\\:'11 by thc (abineL The pritcs ror padí.J~ and mtlled rice are :::stabhshed by grade anJ \\aricta! grouping. TJw. cncoufages farmen; lO produce a high quality producL A.~ a COl1:.cQucllce, , 1 prémium prlcc ¡;-, paid rol' paddy anó mlllcd riél' produccd fr,)!11 nn\\ HnprO\\ ed \\.aridic:, (Tabk~ .3 and ..:t). The GRB's rniJling capacity is abollt 50 pereent of that uf the private milis (Table 5) but it control> more than 50 pereent 01' lhe mliling operations 01 the ríce industry This can be attributed lO the faet that the privately owned milIs are not fully operationaJ ando in addition, lack the Most of Guyana's rice for expor! is distributed in the Caribbean area-Jamaica and Trinidad and Tobago usually capture between 50 lo 85 perceo! oftolal exports (Table 8). The mas! important category of export rice is while rice 01' Ihe firs! quality (White A). lt is exported in bulk. The GRB generally receives ver}' favourable prices whieh normally are higher than world market prices becáuse of: government-to-government negotiations; transport costs that make Guyana prices very competitive for neighbouring eountries; [he benefit provided by the 15 pereent subsidy. cornrnon in the external tariff; antl45 pereent ofthe rice is packaged-lhis represents an íncre-ase in prices of 9 to ] 7 percent over bulk rates.Aeeording to present trends it appears thal Guyana is losmg its tradítional rnarkets, especíally the Jamaiean market. Besides aeeeplíng more reasonable terms of purchase [rom other sources, Jamaica and Trinidad and Tobago are consolidating lheir own effons in rice produc-(ion.Farm size and yield. A large proportlon o[ rice is grown by medium-sized and small farmers. Seventy-three pertenl ofthe farms are 15 acreS (6.1 ha) or Iess and 17 peroent are between 15 and 25 acres (6. I 10 10.1 ha) (T able 9). The 1978 Rural Farm Household Survey revealed that lhese two groups together produeed a littlc over 60 pereent of all rice-lhe former group contributed approximately 45 percent of total production. While total paddy productlOn fluctuated over the period 1970-1983, wilh productian reaching a peak in 1977 (Figure 1), paddy yield per hectare rcmained relatively stable in the early seventies. A gradual increase in yield per hecrare was observcd from 1974 to 1983 (Table lO). This is attributed mainly to improved water control in sorne areas and rapid im:rease in the aereage put under improvcd h.gh-yielding varielies (Table 11).Crópping s~s!ems. Almos! all the rice erap is monocuIture. Guyana's cquitable temperature (mean annual temperature ranges between 20 and 29\"C) and seasonal rainfall have given rise to a cropping pattern in which approx.mately 44 pereent 01' ¡he available rice laud is double-cropped and around 18 pereent is single-cropped (Small, 1982).Generallya larger acreage is cultivated in the secand crop (Figure 2), but the importance 01' the first crúp has tncreased through time and now contríbutes to approx.mately 40 to 45 percen! of total rice production.The two harvests are delineated by the wet seasons during which the crops are eSlablished. The Jirst erap is planted during !he shorter ofthe wet seasons from mid-November tú January and 15 harvested in March and ApriL The longer rainy period begins in May when the second crop is es!ablished. Harvesting is usually achieved in September and October (Figure 3). Acreage harveued in rne first and second (mps, 1968-1983. One acre = 0.4047 ha.(mm) Cultural practice •. In Guyana wetland culture is practíced-primarily for ils advanlage in weed control. Normally, afler harvestíng, Ihe crop residues are burn! and plowing .Iart. ímmedíalely. The tield is Ihen !looded, puddled, and leve/od. Pregermínated seed is sown 48 10 72 hours laler. The tield may or may nol be drained after sowing. If il is, re!looding i. practiced 5 10 7 day. after drainag •.Based on soil ferlility slUdies, recommendatíons have been made lO farmers 10 apply nitrogen (N) and phosphorus (P) at rales of 60 kglha ofN and 13.2 kg/ha of P. These quanlitíes are applied in Iwo or Ihree spiil lVorhho(! on Ihe (anhbcon (ooperfif!w.' R¡( I RCINiH h \\'({h orA applications-the [irst apphcation with all the P and approximately 20 kg/ha of N 21 days afler sowing.Among the more economically importan! inseet pests is the paddy bug (Deba/u! poeti/us) which causes both quantitative and qualitative loss.s. The leafmioer (Hydrel/ia spp.) and the heartworm (Rupella albínella) are also of imporlanoe, espeeially in years when environmen!al conditions seem to promote reproduction and infestatioo.Rice blast (Pyricularía oryzae) is the most significant of the foliar diseases. Brown leaf SpOI (He/minlhasporium aryzae) is of lesser consequene •.Crap losses due lo blasl varies with loeation, season, and variety. AH Ihe present cornmercial varieties range from moderateiy susceptible to susceptible. However, farmers can continue lo plant Ihese varieties beca use tbe majorily of rice lands are in ciose proximity to Ihe Atlantie and ¡herefore to its ocean breezes which reduce infection. Inland areas are more severely hit, espeeially during tbe second erap. Farmers practice .hemical control at early slages of symplom recognition.There is a high inciden •• of grass weeds and Cyperaceae, especially in locations with inadequate irrigation and poor cultural practices. Maraina grass (lschaernum rugosum) lS the major weed, followed by jussia (Fimbristylis mi/iacea), Broad-Ieaved \\\\eeds, especially aquatic anes, can seriously limit productlon if adeq uate control rneasures are n01 taken.Production cosls. As seen in Table 12, Ihe total eost of production per heetare is on the average 0$773 (US$187.62l'. However, for every 140 pOlinds harvested Ihe eosts are 0$6.65/ha (thal io, for every 63.64 kg the COSls are US$1.6I/ha). lflhe average yield is 3. Ríce production ¡;:usts~ Guyana.1982. A number of improved vaneties ha ve becn developed including S, T, N, Champion, and RUSlíc. RUSlíc occupies more Ihan 50 pereenl of the lotal acreage under rice cultivarion in Guyana.Since úne of the basle characterist1cs of improved varieties is their requirement for high levels 01 fertilizalian in arder to develop their high-yieJding pOlential, there is a need [or thorough studies on varieta! response to fertilízers. InveStlgatlOns ¡nelude the type offertilizer to be applled, rate of applicalÍon, number of spli! applications, and time uf applicaliuns. Because optimum fertilizer requircments are determined from these studies. final recornmendations to farrners must a]50 take into aecount their ability to buy the fertilizers. Work In the plam protection program 15 concentratcd on the effectlve and economü.: control oC ínsects, di.seases, and weeds. It ineludes the evaluation of chemical products available for commercíal use in order to ictemify the rnost suitable anes in tenns 01' effectiveness, econorny, and protection to both users and environment. The minimum effective rates and best times for application are aJso determjned. \\\\/atcr management studies are conducted primarily te mvestigate the effeets 01 water depths on weed conlrol and plant growth. Type and seq uence of land preparation and their effects in weed control are a)50 ,tudied.Extension services. The industry is assisted by an extension tea m operating in each 01' the different rice-growing regions. These teams are responsible for the transfer of new lechnology to rice farmers and lar working in close coilaboration with the farmers to identify production problems and to advise 00 corrective measures. The teams must be engaged, in their respectíve reg¡ons~ in the ficld testing of new varietjes l fertilizers, pestíddes, water management practices, and land preparatjon recommendations developed by the Rice Research Station. InformatÍon resultlng from these tests i5 used in the formulation of recornmendations for Ihe different regions. fertility, and seed production. An achievement of their work so far has becn lhe identification of a high-yielding variety for commercial produrtion. This variety, Díwani, is: resistant to blast. produces consistently higher yíelds rhan present ccmmereial varieties and appears to be widely adapted to stress conditions. Future research areas. One major area for future research is the development of systems capable DI' maintaining or even improving yields while redueing production costs. This research eould involve the following activities:varietal improvement, induding the selertion and development of varielies with moderare high-yield potemials but requiring lower fenilizor input', and rhe seleclion and development of varieties resistant or tolerant to major inseet pests and diseases;Studles on the more efficient use of fertiHzers;Studies on the biological fixation and utilization of nitrogen in rice fields, for example, by blue-green algae or Azolla;Studies to reduce land prepararion cosrs by evaluating tillage operations and new agricultura) impkments;Studies on more effectlve water management practices;Studies of rhe impac! of land prepararíon and waler management pra¡;:tices on weed population and their control; and Development of new systems to improve cultural practtces in order to maintain yield and quality and limit the use of pesticides.It can be said that Guyana has the potential and the capacity to increase its rice production. This 15 shown by the drainage and irrigation systems developed primarily for rice cuhivation such as the Tapakuma lrrigation Projee! and !he Mahaíca-Mahaicony-Abary Agricultural Developmen! Aulhorily (MMAI ADA), Ir ís also expecled ¡hat when rice research is included wirhin rhe proposed National Agricultural Research Institute, il will be intensified in order 10 support a viral and growing industrv. , . Agriculture is a very imponant component ofthe Haitian economy: it i5 the main source of foreign exchange and rhe means of employrnent for 61 pereent af lhe active populatian (lA mili ion), lt accupies 907,800 hectares, lhat is, 32,6 percent al lhe eountry, Farms are very small-in faet 71 pereen! of Ihe farms have an area of less lhan one \"carreau\" (1.29 ha) and only 0.3 percen! are over 10 carreaux (Table 1),In 1971 lhe Gross Domestic Product (GDP) ofthe Republic of Haíti was 1;S$167,58 millíon and in 1978 it incrcased to USS186,9 million, However, the eontributíon ofrhe agricultural sector ro the GDP decreased from 47,7 ro 40.5 percent. This reductíon was due lo the lower growlh rate of agriculture when compared wíth orher sectors of the economy, Paddy rice is milled in more than 200 smalI mílls distributed throughaut the rice-growing regíons of lhe country and in two state milis located in lhe Artibonite Valloy. The traditional\"pilon 1 \" is also used. The two state mills are adminislered by Ihe Organisme de Oéveloppemenl de la Vallée de l'Artibonite (OOV A). They handl. only 2.5 pereent of national rice production (about 1755 1). The remaining 97.5 perecnl of paddy is milled by private milIs. and depending on Ihe region, by the tradilional \"pilan \". These lasl IWO ways of milling rice handled ah out J 17,000 t of paddy in 1981.Tbe state milis buy superior' paddy rice al US$OA4/kg and ordinary' paddy rice at lJS$O.31/kg. After processing OOV A seHs lhe milled rice al US$O.92/kg for superior and US$O.79/kg for ordinary. The rice milled by OOV A is usually sold to state sI ores which tbeu distribule il lO supermarkets, retailcrs, and consumers.Mosl rice is sold in the markets ofl'Estere, Ponte Sondé. and Jean Oenis at different prices according to Ihe monlh ofthe year and accordingto lhe type ofrice. Farmers come to the market to discuss prices with middlemen in arder to seU under favourable conditions. Figures 1 and 2 give an idea of priee variaríon in Ihe market of ¡'Estere.The price of rice is almost twice tha! of corn and sorghum which explains tbe higber consumption of lhe Jatter Iwo erops (Table 5).The Haitian Government is very interested in promoting tbe developroent of rice cultivation in traditíonal rice-growing areas and conse-L The \"piJon\" works cn ¡he morrar and pestle prmclple m whwh ¡he rice 1 .. pouncled by a wQooen po!e. 2. Variet¡es :-.tGG, Starbonnet, and Qu¡squeya. 3. Vaneties MCJ~3, MCI~65, CICA 8, and ehla Seng. Rice in Haiti is an indieator of water availability. Rice can be found wherever a souree of water for l100ding is available or in swampy arcas.Produclion areas, Thero are soven major rice-growing zones in Ihe eountry (Table 6). The Artibonite Valley, with 42.000 ha, represents more than 80 percent of national rice production. The rainfall pattems of two zones in Ihe VaUey are shown in Figure 3 Cropping systems. The mos! common crapping systems in Ihe Artibonile ValIey are shown in Figure 4. It shows thal some farmers can obtain ¡hree crops per year by using early malurity variel;es. However, Ihe adoption of this practice is limited by lhe faets Ihat Ihe least mistake can be catastrophic and Ihat rat control is nece,sary.In genera), farmers obtain two crops per year-the mast important ane occurring from June to December. Arter the second rice crop sorne farmers grow an upland crop such as onions, beans, tomato, sweet potato, or melon-th. mos! popular being sweet potato.The quantity of seed used varíes between 65 and 125 kglha according 10 variety and scason. The use of nurseries is a must but, despite ODVA's efforts, farmers continue to plant pregerminated seed, without usíog canteros'. Transplanting is done when seedlings are 25 to 45 days old, depending on the cycle úfthe variety used. The relationship between the nursery area and the transplanted area varies between 1:25 and 1:20.Varíeties and seed production. A large number of rice varieties are planted in the Artibonite Valley, most of which have picturesque names (Table 7). The variety with the highest demand in the local market beca use of its good cooking quality is Dawn-commonly called Mme. Gougousee (MGG). Encouraged by ils high market prices farmer. continue 10 plant it wherever it can be developed, despite ilS being very susceptible to poor drainage and having a low-yield potemial.The variety Quisqueya was selecled locally frOIn a cross belween MGG aud Chia Seng and developed al the experimental farm in Maugó. It has been recently released with lhe obJective of increasing yields since il can yield froro 5to 6 llha in les s than 120 days and ils cookingquality is similar 10 lhal of MGG. Haitian farmers obtain their rice seeds frorn either lheir last crop or [rom seed producers, The seed production process JS as follows: baslc seed 15 produced by ODV A at the experimental farm in Maugé anel then it is multipiied by farmers in the statc farms \"Deseaux\" and \"Trois Bornes\", Certified seed is processed and distributed by ODVA's seed technicians. Occupying fírst place in ODVA's seed program is the variety MGG (Tables 8 and 9).During 1982-1983 in the Artibonite Valley the tOlal area planted in rice was 45,000 ha. From January to Juno 19,000 ha were planted and fram July to December 26,000 ha (ODV A, Rapport Annuel, 1983). Iffarmer, were to use only the improved seed produeed by ODVA at a denSlly 01' 75 kgiha, only 4.4 percent 01' thc area (about 2000 ha) would be covered.ODV A sells certifled seed of superior varieties at US$O.57/kg and ordinary varieties al USSO.48/kg. ODV A also huy' seed from lhe farmers andpays them a premium priee 01' USSO.04/kg above ¡he fixed prices of commercial paddy (U$$0.48 superior and US$0.35 ordinary).Land preparation 3.d eultoral practices. Rice-growing land is prepared by hand, with lhe aid of a hoe. This i5 done tWlee on wet soils with a two-to-three weeks imerval. Dry land preparation is rare or nonexistent, Quantity ítlC\"'e\",'-\",'-,,-'dl() '4• \" 0.11 al'r~', I 70 adC~ lOO ;,q\" tI. 15u \\q. \" 300 \"q, \" ~:¡iJO ~q. Jt )00 ::.y, ti ::00 ,q :1. 300 ::'4• JI.JüO \"\"l. ft, (Instituto Imeramericano de Cooperación para la Agricultura) Consultant V¡úan Chin, has been conducting fertilizer trial:; on different soils, Sorne testing is being carried out with a mechanical transptanter which is expected to improve yields withollt requiring further improvements in land preparation.The majO!' researoh inlerest 01 BRUMDEC is to generate a technology for peat soil. They have been Irying lo identify a variet} thal would perform well under these conditions. So far the variety Labelle appears to be the bes! and Juma 58 appears to have so me pOlenlial.The agronomists working at Meylersfídd bave also set up fertilizer trials to identify the best ferolizer treatments for their conditions.Rice m Jamaü:a 79 Extension is rclated to lhe thn:e projcd\\. BRUMOlC'::, fílldmg~ are informally discus&cd with the members nf lhe othr.:r projecb. Meykr\\field is a spccial proJect a~ far as extensiOl1 l~ Lom::erned, The.? hayc \\elcctéd a group ofsmall farmers and are teachíng them to work \\Virh nc\\\\' technolügy in the expectation that once the educated farmer leave:. Me~lersfietd he wtll extend the new technology lO other farrncr.s.Because the pO!Hical atmosphere favors the expan)íon of m:e cu!ti\\ alion.[he dcmand for agronomisb trained 111 rlec producllon wil! ¡ncrea~e, crr.:aung lhe urgent need ro tnlln :-.everal agronomi~b quíckly.Lana prcparation i~ aho a problem\" With tlle exccption of Meyiersfield and parts 01' BR!:MDEC, rice land, are not pruperly leveled to give maximum return in terms of yields and efficiclll:::-of hU(jbanary practices There are also problem ,oils \",eh as peat on both BRüMDEC and Meylersfield. More resean:h is needed lO adapt appropríate varietics tú properly utiJize these arcas.The pnce 01' JSO.25/lb paid to farmers fOl padd, has remained unchanged for the last fl\\\"L year~ ana IS now under review. Most probably the price will innease, otfering an incentive for ¡ncrcased production on more prívate lands.The govcrnment polie} un rice í~ lO inl'reasc productlün 10 ~t•if-sunJi.:I(,IH';y, This entails meeting a target Df approximately 60,000 tons ofrice annually, Al present rice yields on the major projects average 3000 lb/acre (3369 kg/ha) per clOp 01' paddy. It has beco shown that \\\\Í!h improved technoloy such as land levelíng, a target of 4000 lb/acre (4500 kgiha) per crop of paddy can be achieved in Ihe near future. Al Meylersfleld 6300 lb/acre {7076 kgiha} has been achieved. T o obtain an average of 4000 lb/acre and a final production of 60,000 tons an area of 10.117 ha is necessary! assuming a 60 percent recovery ol' milled rice and two crops a year on the same land area.Land is now lhe most limilrng of the components of production. New areas with available water and potential for rke cultiva!Íon are: 3439 ha in Sto Elizabeth (BRUMDEC and private); 688 ha in SI. Calherine (private Workshop nn ¡he Coy/Mean COOpf!rá!lvt: Rice ReSeGrch Nefwork and Amity Hall); and 971 ha in Westmoreland (Meylersfield and prívate), The mosl imporlanl orlhese areas are in SI. Elizabelh, Ihe Lower Morass, and sorne lands of Ihe Hollan Sugar Estate, It is eslimated thal approximately 2000 ha will be available for growing rice when IhlS area is developed, More than two-thirds (7122 ha) ofthe land required lO meet the presenl self-sufficiency larget has Iherefore be_n idenlified along with its water supplies,The growing 01' nce on a large scale also opens up the passíbility for inleresling crap rotations, especially wilh legume erops, Soybean seems to be rhe most promising of the legumes as it cnjoys an assured markel and r_quires similar equipment lo thal of rice, Being a legume, soybean wí11 .Iso enhance soil fertility in rice areas, However, soybean is best suited for large scale production, On small acreages, therefore, olher legumes such as lhe red kidney bean will need lo be used in the rotalion, On the other hand, Jamaica has beeu growing vegetables for the North American wínler markel and could lherefore grow lhem in rolation with flce and so enhance the profitability ofthe farms.Loca] rice production as an import substitute will save foreign exchange for Jamaica, As lhe foreign exchange cost of growíng rice locally is a fraclíon of what il is lo purchase rice from abroad, it is advisable that Jamaka aims at íncreasing 1tS local rice production. Currently rice exports inelude brown, milled, broken, and parboíled rice grades. Exportíng paddy is not permitted by the government. rer capita rice consumptíon is ~5 kg.The rlee market is not weH organized. Sorne millers have rIce export licenses and operate within the imernational market independently. This situation 01' course is not desirable and the government is trying lO coordinate the rice exports. Probably in rhe near 1'uture the responsibility for rice exports wiU be taken over by lhe export organízation SUREXCO (Suriname Export Company). lts members will inelude the government, private exporters, and farmers organizations.The most important market for Suriname's milled rlee is the Eurapean Econornic Cornmunity (EEC) in general and the Netherlands in particular.Government policies. The Suriname government is planning to in crease the rice production area. At the mornent there are being implemented three major proJcel> totaling an area of about 24,000 ha. Caleulating by means ol' anuual proJections. in 1990 Suriname 's total rice production area will be aboUl 64.000 ha ¡Table 3).It ha~ long-ferm plum, to bring under cultivation 12,500 ha of new land and shall be pan of a total rice operation that will include drYlOg and miHing facilities. lts objective will be tu dIvide the land into plots of an average slze of 20 ha to be worked on a cooperative basis.The second largesr project is LOC located in the Commenwijne District and will cover 3300 ha.The Saramacca District also plans to ¡nerease its rice produerion acreage from 3900 ha ro 8300 ha. and a worsening economy al the farm leveL Table 4 shows lhe not returns for the three types of rice farms: small farms, middle-sized farms, and estate farms,About 95 percent of the rice cultivation in Suriname is grown under irrigated conditions. In the interior of the country subsistence farmers produce rice under upland conditions. Most ofthe irrigation water used in the Nickerie District comes fram the Nanni Swamp Rescrvoir by means of gravity, River water is a1so pumped up lo flood lhe rice ficlds,Varieties and seed production. There are three commercial varieties at the moment-Camponi, Diwani, and Elooi (rabie 51, Genetíc and ba,ic ,cedsRice in SuriMme 85 There is only one seed production station in Suriname, managed by the SML However, there are sorne companies which seU rice secd, but of ver}' poor quality becáuse there are no quality controls. The pricc ror thi:i kínd of secd is abou! Sur .f.0.50 (US$O. l 5)/kg whieh is 15 cen!, lower !han lhat of the SML So\"ing. Farmers begin to prepare thcir land for sowing as ~oon as thc rains start There are tVrO rainy scasons in Suriname: the main one begins ín mid-April and lasts until the end of August and rhe second one begins in December and lasl' until míd-Februar) (Figure 1). There are. hawever. sorne farmers who do not take into account the rainy seasons and plant the year round.This obvlously causes all kind5 01' problems al harvest such as 10\\0\\' yields. poor quality, and the underuse of facilities for harvesting, transpon, and drying regardless of theír capadties. Because there ¡s a shonage of irrigar ion \\\\ater, cspedalIy in the set'ond season, a sowing rice schedule would be very helpfuL AII comrncrcial rÍl..:e planting 15 done by direcI sowing of pregcrminated seed and floodll1g lhe fields ro a deplh of abour 15 cm. Afrer sowing rhe water is draíned as soon as possible by building sorne channels, if netes.sary. frum the lower parts of the fields.Large esta tes use airplanes for sowing whHe small farmers sow manually.l\\ormallya seed density 01' 120 kg/ha is used, bUl when 5eed is of poor quahty a higher density is recommended. wheeled or tracked tractors. To obtain a nat seedbed a heavy beam is drawn over the fields. If necessary, snails are controlled befare ~owing.Weed control, pests, and diseases. There are sorne very noxious grasses which are controlled with propanil (3 to 4 litres/ha). Red rice is controlled by repeated plawing. Far braad-Ieaved weeds and sedges 2,4-0 amine (0.5 10 1.0 litre/ha) is lised.Insecticides are used for inseet pests like 5'podoplera spp .. Hydrellia spp., Sogatodes spp., stem borers, and stink bugs. Spraying insecticides and herbicides is normally done by airplanes, but small farmers al so use back-bomb sprayers and mist sprayers. The concentrations of the pesticides used in Suriname are tested by local research.All fungu~ tliseases known Jn Surinamc ha ve already becn idcntifíed, but umil no\\v It has not beco neces::.ary to control them bccause the economK' damage the) UlUSC j:. flot high-the rc:,istance of flec varíelie~ lO fungal disease;-, Ís normally stable. The \"hoja blanca\" discase is also prebcnt but its incidence is not slgnificanL Bacterial diseases are not known.Fertilízation. For rice production usuall}' nitrogen fertilizers. onlyare used, especial1y urea. Experiments have indicated that there is linte 01' no response to phosphorus and potasium applications.A rotal amounr 01' 250 to 30n kg/ha 01' urea i, topdresscd in thrce applícations. The fim applícation is broadcasted on drained I!clds. The sccond and the third applications are aIso broadcasted bUl under flooded conditions\" The time of applkation and the amount lO be broadcasted' have been determined by long~term rcsearch. OIl Jarge estates broadcasting ís done by airplanes \",hile smal! farme\", broadcast by hundo Han'esting, drying, and storage. Harvesting is normally done 35 days after flowering, when the grains have a mOlsture content of about 20 10 22 percent. With the exception of upland rice, all rjce 15 harvcsted with combine harvcsters. During rhe rne¡,;hanization oI' rice production ~everal brands of (:ombine harvester21 \\Vere tried out and the most suitable brands for local conditions were identified.Two or three weeks before harvesting the fields must be drained, othendse the harvc~ter may slip or beco me stllck in the mud, resulting in heavy harvcst losses, The harvestcd paddy is transported injute bags or in bulk to the dryer,.There are two lypes of dr:yers-the bind drycr which is locally madc and the caIumn dryer whlch is imported from U.S.A. or Germany. The bind dryer works with a lov.¡;r volumc and requires more time than the coJumn dryer. Diesel oil is normally used in thc burners,The paddy i& dried tu a moisturc conrent nf U to 14 perccnt.After drying the paddy lS stored in two types oi' silo,,; one 15 nat and horizontal \\\\ íth a concn:tc t100r and lite other is vertical. consisting of a eylindcr with metal or concreté \\valls. Storage ins~cts are usuaHy controlled.Production costs, With the exceptíon of Iand, labor, seed, and water aH input s are jmported, Labor in Suriname is extremely expenstvc) conse-q¡,emIy increasing production costs. Table 6 shows the production eosts for the small farmer, The production costs for middle-sized farms are slightIy Iower while those for large-seale farming are the IowesL Water management. Water is ont: of thc most important factors in rice cllltivation both for the physiological prücesses and for controlling weeds and pests. To obtain better water management rhe fields mus[ be leve!. Timing is abo very important and can be better achieved if farmers use índi, idual pumps, Therc are lWü major water sources-the Nanní Rescrvoir which distnbutes \\\\ ater by gravity and the rivers from whi<:h water is pumped up.Jn the near ruture another v.ater suppJy wiU be available lhrough lhe r\\'111!tipurpose Coramijn Canal Project. Water [rom lhe Corantijn River wíll be pumped up and guíded through a canal of 65 km loward the ríce area' ofN ickerie, Whcl1 lhi, proJcct ís finished 12,500 ha of ríceland will be added to the present rÍl.:c !\":ultivation arca.Rice research used to be done on a small scale by the Agrlcultural Experiment Statiol1 at Paramaribo. This research, however, was often interrupted because of a lack 01' research workers, \\\"-'Jith the introduction of mechanization the SML focused it5 research actÍvities on mechanized rice production of a large scalc, The results. however, were also applicable 10 medium-sízed and smaU farming. Researeh is condueted in two Ioeátions-the Príns Bernhard Polder (sods and fertilizers and breeding) and Wagemngen (plan! pro!ectíon). From 1970 researen al the SMl.. has been ,Iighlly redueed.In 1978 the government started a research project {POR} that \\Vas primaril, direeted toward ,mal! farming.At lhe moment there are not enough facilitÍcs available to ~et up a broad-based ríce research program in Suriname. Howcver, the breeding prograrn and the researeh on plant prolection are fully equipped. The best loeation for al! rice researeh would be the Prins Bernhard Polder. wherc the rice research and breeding station 01' the SML is located. Thc total area ot the Polder is about800 ha and there are sorne facilities already availabl. to begin a worthwhile researeh program.Because rice research in Suríname takes place in dífferent tOca1l0n5 and by differcnt organizations it 15 important 10 c.:oordinate rescareh undcr olle single natíonal rice rcsearch institutlon in order to achieve an efficiem use of the available research capadt)'. In addition. tllere woulo be better control of the overal! operatlOfls for from tillage ro marketing. At present a project is being developed along these tines, There is also a project on rice seed productlon and Its profits would cover the research <.:osts, bUl no lcgislation has beeo deveioped yce One of the principal problems 01 eslabhshing 01 a hroad research program is tú find qualified personneL Such persormel in Suriname often ¡cave the ficld 01' research because 01' higher salaries offered by other employers, Foreign experts normally leave Suriname aftcr at:quiring the experience lhey sought. The Suriname government needs to raisc the salaries of researchers jf it is to keep them ln its cmpJoy on a permanent basis.Ronald Borrol\\' and Ruar Ganpu¡** Trinidad and T obago tS a country formcd by t\\\\O islands and is a membcr 01' the British e ommonwealth with an estimated population of 1.2 millian in 1983. The major ethnlc groups in the population include East Indians and African dcs(>endants. Thc cJucationallevel ofthe peopJe i5 ver)' high with le\" than 10 perccm illiteraey.Since most rke is grown ln Trinidad, üüs work will focus 011 that island. Trinidad is located between latitudes I()°05' and 10°50 north and longitudes 61\"00' and 61\"55' west and ha, an area of 1~68 square miles (438,812 hectares). In 1972,62. I pereent 01' the land was under forest and natural vegetat;on, 15A percent under tree erop', 12A pereent under field crops, and 10,1 perccm were built-up areas. The main trce crop was cacao (8.3 pen:ent) while rlce oCí:upied 1.5 percent 01' the area.The number nf people employed in agricuhure de crea sed from 24 percen! m 1970 to I 1 percent in 1980 (Figure 1), probably be,ause 01' the development 01' the 011 industry and the resulting ¡nereases in wages.Rice growing in Trinidad has always becn assoclated with smaJI farmers (Table 1) ol' the East Indian ethn;e group. Local production has becn djfficult to estimate aecurate]y beca use most of the rice produced 1S consumed at home. lt has been estimated that 15 to 60 pen.:ent of local production ís consumed bj' lhe farmer and his family and that the contríbution oflocaJly produced rice to [he total consumption changed from 45 pert'cnt (1363 t) in Read by '1 hom:!, v\\\" ,\\ (¡¡n\" D¡r~\"(tur (11 Rr.,,,,ar ... h. (ar;.,n¡ Rice imports íncluding bu1k and packaged rice lar the period 1973-1981 are 1i'ted in Table 2. The value of rice import' inereased from 1'1'$27 miUion (US$II.25 millioo)' in 1978 to TTS37 million (USSI5,42 million) in 1980 which represented 0.5 pereent 01 total imports and raoked fourlh on the list of imponed food ilems after meal and meat prodllcls (lA pereent), milk (0.9 pereeol). aod wheat (0.8 percent),Local rice production used tú be sent to more than 200 small miUs untíl 1977 when the government de¡jded to centralize rice milling in a big rice mili in Carlseo Field near Chagllanas, 1'his mili was baught from a Colombian smelting campany and has a capacity of 4 ton5 per hour. 1 n the períod 1977-1980 it processed an average of 1250 t per yeaL A rice dryer wíth a capacity al' 33,6 t/he was abo oblamed but lt has not been properly instaUed yet.The physical opcration of the mili is thc rC1>ponsibílity of the Fietd Engineeríng Divísion of the MínÍstry of Agriculture. Padd:-j5 delivered 10 the mili by the Central ~tarketiog Ageoey (CMA) whíeh buy' il from the farmers. The CMA has several trading braoehes \"here paddy is dehvered by the farmces in bags and is thcn transported to intermediate storage facilities in Chaguaramas.lo 1980 [armer> were paid a guaeanlecd priee of1'T$1.21 (USS0.50)/kg and recentll' this has beco incrcascd lo TT31.961 US$O.~2), Howevcr, there are complaiolS that payment takes too long after delivering the paddy and that CMA receives the paddy only on availabllity of storagc space. In 1980 ¡he Ministry of Industry and Cornmeree approved to grant distrihutors a price oITT$O. 7.1 (US$O.}())/kg. The Ministry abo authorized a priee 01 TUO.73 (USSO.30)/kg lor lmported bulk rice and TTSI.52 (USSO.63 )/kg for imported packagcd ríce. Th~ retail pritc of rice \\Vas fjxed at TT$O.81IUSS033)/kg iu 19S0 \"ud ln 1982 it was inercascd to TT$1.30 (USSO.54)/kg.Consldcríng the priccs qUQted it can be !:icen that rice consumption js hlghly sub\"dízed. U\"ng the data fmm 1%0, estimating a rice yield of60 pereent, anó addíng the eost 01' TTSO.145 (USSO.06) for handling and processlng. the totaJ sub;>.!dy to th.: con::.umer amQUnIs to TT$L35 (US~O.56)/kg.The present per capita consumption of rice is approximately 45 kg, a level higher than thc desired consumptlon levds.. This is apparently due to the subsidized cünsumer price v.hich rcsults in a retail price being relatively cheaper than that for other locally grown nops intended to substitute rice as a major stareh component ín the local diet I Figure 2). The government 01' Trinidad and Tobago has been well awarc 01' the importancc of rice as a staple food for thc people and the danger oI' depending on foreign supplies. partü:ularly after the im:rease in prlee uf importcd rice in 1972-1973. Consequently it has becn trymg to increase local ri<:e production by the following ways: lncrcasing the arable land suitable for paddj produ¡;tion by initiating sorne devdopmental \\vorks sut:h as repairing and constructing urainage and irrigation facilities in the Caron!; Fishing Pondo and ~ ariva areas:Provicting farmers with sccds of new and improved high-yielding rice ;aneties al the subsidized priec orTT$O.62 íliSSO.25)/kg: Subsidizing land preparatíon COSb by operating a tractor pooJ at El Reposo-Sangre Grande and al Río Claro al prí«s of TT$20.00 per acre (USS20.58/ha) for plowing. 1T$15.00 per acre íUS$15.44/ha) for levelíng, and TTS J 5.00 per acre í üSSI5.44/ha) fol' banking;.Making the CMA purchase ric.;e at a minimum guaranteed price; ?roviding fUllÓ' to .he Caroni Ríce Pilo! Projee! 10 evaluate a híghly met;.;hanlLeo rke-cropping system; Estabhshmg a Rice Company 01 Trinidad in 1982 lo promole and administer all aspects of rice production and marketing; and Providíng agrícultural credí! through lhe Agrícultural Development Bank.Howcver, farmers' respun:-.c tu these m.:asures has not met w1th expectations.Rice growing in TrInidad can be dassified as rainfcd iowland since planting is done during the wct season in flood-prone areas near swamps (Figure 3). Most rice is transplanted from nursefles that are established at the beginníng ofthe raíny season !May, Eigurc4) usíng about 113 kg/ha of sced. Secdlings are transplanted 10 puddlcd soil when they are 35-days old.The soltb-are mainly dassified in groups Al (deep hydromorphic soils with restricted internal drainage) and A4 (deep alluvial soíls with restricted internal drai'lage). The high clay content (swamp elay, sandy elay alluvial. and silty clay alluvial) and restricted drainage brings flooding during mast of Ihe cropping season. The fields are harvested in October lo December when the soil is slÍlI saturated or flooded which, logether with the likelihood of rains. causes deJays Ín threshing-even after rice has been cut-and the delivery of fairly wet paddy 10 lhe mili. Being a traditional system ol' raínfed cultívation. most operations, with the exceplÍon of land preparalÍon, require labor inputs. Abaut 70 percenl ofthe total cost ofproductíon is attributable to labor cOSlS. Fertilizers and chemícals are not widely used and seeds of tested and improved cultívars and seleetions are at presen! used 00 about 35 pereen! of holdings.A possible ahernative for promü[ing upland rice production with a minimum of capital investment ¡s the rationalization nI' the use af existing ~ugar cane lands Of abandoned trce crop farms. This is not to forgo the rc<,'lamation of former :-,wamp land bU! would increase acreage faster with fe\\\\ér capitai resources.Active consideratíon 1S being given to the reluctance on the part of forma rÍcC' growers to revive production and to rhe disinclination of younger farmers to coter rice production because of the lower levels ol' profil compared with other foad craps and other forms of production. Moreover, It appcars that this may be attributable to a socioeconornic problcm whích was and still is a major factor in the stagnation oflocal food (.;rop production.Tu allcviate this problem it ¡S envlsaged that a coooperatlve etfort between resean:h and cxtension activities will be devefoped to indude the sociological aspects of food crop production.The maln constraint to increased rice production is that farmers are drifnng awa} from thcir land. This has resulted in a signifi<:ant decrease of acreages of rice and other rood crops , . . :ultivation. Among the different a\"'tíons suggested b~ several report~ ro reven~e this trend are the improvement of drainage and lrrigation sy~tems, the organization of land tenure, improvmg CMA 's effiuency, and finishmg work on the rice milI.Most report), agn:c rhat ir rh,;c growing is 10 cominllC, mechanization is a must. However, farm sizc secm:-. io indJ(;ate that only with smaH machJnery \\-vil! thc problcm of dependlng on scarce and expensive labor be solved, The governml2'nt has rherefore initiated work on hand threshers and although the,;. reduce apprOXlmately one-third of rhe labor requlred for harvesting, labor 15 stil! required for cuttH1g and transporttng the paddy under adverse \\\\.orkmg conditlons.The Carom 1975 Ud, RICe Pílot Proje,t í, working on a híghly mechanilcd opcratton which indudes direct sowing and combimng. ffo\\\\ever, this rcquircs more rcsearch and tramed pcrsonncl 1n the short tcrnL In t1ood-prone are;a<¡ to mechí:ini7~ harvesting would require the de\\ elopment of a timerable tha! allü\\\\'':i harvcstingduríng the drier months, The possíbllHy of planung improved photoperJod-sensitive varieties is bemg evaluated. The Caribbean region ineludes the group of islaods seattered in the Caribbean Sea which extends [rom the southem eoas! of the State of Florida lo the norlhern eoast of South America. There are three ::ontinental countries which. for historical reasons. are also considered as par! of Ihe Caribbean; Suriname and Guyana on Ibe nonh coasl of Soulh America and Belize in Central America.Language barriers have Iradilionally reslricted eoIlaboralion amongthe differenl eounlries of the region. The Englísh-speaking countries have considerable experience in mutual coHaborative activities whereas Dutch~, French-, and Spanish-speaking territorios normally relale with eounlries outside the region.Ecnnomic activity is dnmínated by mining and agrieulture wilh the tourJsm sector representing an important source of foreign currency in SOrne countries. The agricultural sector has been dominated by the sugar ~ane erap, partícularly in the larger islands.Although not all the Caribbean countr;e, are traditional rice-growing areas, most do consume fice as a staple food. This repon describes the general characteristlc5 of those rice~growing areas which jnclude Belize, Cuba, Dominican Republic, Guyana, Haití, Jamaica, Suriname, and Trinidad and Tobago. It surnmarizes the principal constraints to increased productivity in the region.The area planted with rice varies considerably between different countries. ranging from a maximum of 146,000 hectares in Cuba to a minimum of 450 The tlrst model is followed by Guyana, Haiti, Jamaica, aud Suriname. Tbe organizatian. re.ponsible are, re.pectively, Guyana Rice Board (GRB), Organizalion for the Development of Artibenite VaUey (ODVA), Black River Upper Moras. Devclopment Corporation (BRUMDEC), and the Foundation for Meehanized Agriculture (SML). Guyuna and Suriname are trying to reorganizc their research program by, in the case of Guyana, establtshing a national research institute which would inelude rice within its acttvities ando in the case 01' SUrlname, organizing a national rice institute.The second model is followed by Cuba and lhe Dominican Republic.Although rIce research is specífically carried oul by Estación Central de Investigación Arrocera (ECIA) in Cuba and Centro de Investigaciones Arroceras (CEDIA) in Ihe Dominican Republic, the organization within Ihe Ministry of Agriculture permits constaO! inleraclion among al1 rice workers by either having the station under the Dirección de Arroz (Cuba) or concentrating all rice worker. in Ihe same place (Dominican Republic).Belize and Trinidad and Tobago do no! have a rice research group as such. Belize has Ihe British~run Toledo Research and Development Project (TRD P) which is engaged in rice researeh but ils future is not very c1ear. In Ihe past Big Fall. Ranch (a private company) carried oul ríce research, bUI financial diffículties have severely reduced its contributions.Agricultural research in Trinidad and Tobago is very well organized but rice has not been a priority research area, Rice research has been carried out by Ihe Cereal DlvlSion ofthe Central Slation with very liule personnel and resources, As far as research capabHity and experience are concerned, the Caribbean countries can be divided into two groups: Ihose havíng an organized ríce improvement program for more than ten years ,Cuba. Dominiean Republic, Guyana, and Suriname) and those beginning to develop Iheir research programs (Belize, Haití, Jamaica, and Trinidad and Tobago). Wilhin the lírs! group Guyana is having problems main!aining ils program, largely becaus. of staff changes and lack of resources. Indeed, Guyana can be con,idered a specíal case as far as staff improvement is concerned.Agricultural production depends on several components w hich íoterael to bríng higher 10,000 ha) and grapes (from ~ 3000 to > 5000 ha) cultivation between the early 1990s and 2013 (Damonte 2019) has considerably accelerated water demand and consequently created a water crisis in this region, which is classified as hyper-arid zone according to the United Nations Environmental Program (UNEP) aridity index (AI) (e.g., Sohoulande et al. 2022).Compared to the grapes, hence, asparagus has played a superior role in driving up water use in Ica, due to its large total production area and naturally high-water demand. Asparagus requires between 15,000 and 17,000 m 3 of water per ha and year (Fernández-Escalante et al. 2020), which is about 25% more than grapes (Schwarz and Mathijs 2017).The Ica-Villacurí Aquifer supplies ~ 88% of the total water used in the region and ~ 75% of the agricultural production depends on it (ANA 2015). There was a heavy increase (~ 150%) in annual groundwater extraction, from 225 hm 3 in 2002 to 550 hm 3 in 2009, which coincided with the expansion of asparagus and grape crops (ANA 2015). In 2004, groundwater extraction of 315.8 hm 3 from this aquifer overexploited its recharge rate of 252.3 hm 3 by 63.5 hm 3 . By 2013, groundwater extraction reached 409.3 hm 3 (Schwarz and Mathijs 2017). This estimate is lower than the 550 hm 3 reported for 2009 (ANA 2015), but still 62% above the recharge rate (Schwarz and Mathijs 2017). As shown in Fig. 1, the increase in asparagus production goes hand in hand with the decline in the water table. Thus, the booming asparagus cultivation has pushed the water balance in Ica into an unsustainable state during a concernedly short period.According to various studies, following the ATPA introduced in the early 1990s, five interrelated mechanisms might have been involved in the acceleration of groundwater scarcity in Ica as an unexpected result of the agroindustry development in generating foreign currency in Peru:First, groundwater resources are overexploited for the large-scale production of non-traditional export crops, particularly asparagus and grape, and associated population growth in Ica.Second, large-scale producers benefitted most from exporting high-value luxury crops thanks to an institutional framework created by the government in order to foster economic development (Schwarz et al. 2016). Such reforms led to the establishment of different institutions, policies, laws, certificates, and agreements that: (i) facilitate access to natural resources, most importantly land and water; (ii) build new and promote existing export infrastructures; (iii) improve the quality of crops for meeting international standards; (iv) attract both foreign and domestic investors; (v) lower the tax burden for agricultural export companies; and (vi) secure a stable international market demand by signing new free trade agreements (FTAs) with other partners 1 3(most notably the U.S., the EU, and China) that, for example, reduced the tariffs for the Peruvian fresh asparagus from 66% to 1990 to 3.4% in 2011 (Schwarz et al. 2016). These structural economic adjustments for agricultural export-led growth focused on the agroindustry. Clear evidence is the World Bank's Structural Adjustment Program which has granted multimillion-dollar loans to the Peruvian asparagus industry since the 1990s. This program was supposed to consider environmental and social issues, but has seemingly failed; particularly in the context of water conservation in Ica. It has also favored the development of large-scale, export-oriented, and foreign companies, but not small, poor, and domestic producers. This has led to substantial increases in social inequalities and a significant deepening of poverty for local farmers at the bottom of the social structure in Ica (Martin-Preve and Kim 2015), e.g., smaller farmers cannot afford, or face regulatory constraints, to deepen their wells once they dry up (Fernández-Escalante et al. 2020).Third, acting towards sustainable economic growth has laid the foundation for dramatic water scarcity in Ica just after a few years. Massively expanding already available or new agricultural land for growing crops for export has intensified pre-existing pressures on water availability. In the search for additional water resources, the agricultural export companies decided to: (i) purchase the dilapidated wells that were successively restored; (ii) purchase land with pre-existing wells for transferring the rights of extraction; and (iii) drill new underground wells (Damonte et al. 2014;Damonte and Boelens 2019). In Ica, consequently, the groundwater level declined up to 1.5 m per year during 1968-2009, and in some spots dropped to more than 100 m below the surface (ANA 2012). To slow down such overexploitation of the aquifer and restore its sustainability, in 2005, the regional government banned the drilling of new boreholes. On different occasions, the National Water Authority (Autoridad Nacional de Agua or ANA) endorsed, renewed, and reinforced this ban. However, the ANA has experienced serious challenges in monitoring and approving the operations of the main groundwater extractors, who successfully stabilized their position as the key economic and political actors in Ica (Damonte 2019).Fourth, a coalition between the leading agricultural export companies, government institutes, and local leaders has enabled the agribusiness elite in Ica to consolidate and sustain almost unlimited access to groundwater. It encompasses three different dimensions of power: (i) economic capacity for acquiring land, groundwater, and advanced technologies to generate profit from production; (ii) advanced technical knowledge and know-how and (iii) coercive capacity in the form of physical violence, discrediting the reputation of individuals or impeding government attempts for monitoring and regulating groundwater extraction (Wåhlin 2018;Damonte 2019). The agribusiness elite has established control over both surface and groundwater resources in Ica in order to increase crop (mostly asparagus and grape) production regardless of environmental concerns.Fifth, the booming of asparagus production and processing has generated considerable employment opportunities in Ica. Although the wage of labor in such agricultural export activities is about 30% higher than that on the local farms, there still exists high social inequality. The relatively higher wages have encouraged poor laborers and farmers to migrate from the Peruvian Highlands, called Altiplano, to Ica, increasing its population by 190% between 1981 and 2017 (Damonte et al. 2014;Damonte 2019). About 80% of the people settled in the urban and peri-urban areas, significantly increasing drinking water demand that intensified water scarcity along with the expansion of agricultural exports. The present drinking water supply system in Ica (EMAPICA) does not ensure equal access: It provides 12-h service during a day to upperclass areas and only a couple of hours to mostly poor neighborhoods. The deterioration of drinking water quality has also posed public health challenges such as anemic, chronic, and acute diarrheal diseases (Wåhlin 2018).Fig. 1 Trends in annual asparagus area harvested and groundwater table levels in the two main aquifers underlying the Ica region in Peru (Sources: Gómez and Flores 2015;Moore 2017;Fernández-Escalante et al. 2020). For each year, the lowest and highest levels of the groundwater table are indicated by the lower and upper bars, respectively, while the mean level is by the filled circleIn the context of supply-side drug eradication policies, the cultivation of profitable cash crops was encouraged about 30 years ago through the ATPA to provide an alternative legal economic opportunity for cocaine producers and transit countries in the Andean region (Buxton 2015;USITC 2018). Triggering favorable FTAs, this strategy not only caused a boom in the cultivation of water-hungry asparagus but also attracted poor agrarian laborers from different parts of the country (including the so-called Cocaine Valley) to the hyper-arid environment of Ica in Peru. Accordingly, poverty levels are lower in the Ica region than in the Altiplano, but already existing freshwater scarcity got exacerbated through the groundwater overexploitation for irrigation. Hence, the supply of drinking water is limited, and consequently, people are exposed to diseases caused by contaminated water (Wåhlin 2018). This seriously threatens not only SDG6 (\"Clean Water and Sanitation\") but also SDG1 (\"No Poverty\"), since freshwater resilience (Rockström et al. 2014) plays a key role in agricultural export development, one of the main pillars of Peruvian economic growth.As a mid-term intervention in water-related factors for achieving water security (Irannezhad et al. 2021), sustainable irrigation expansion can assure sufficient freshwater resources required for human activities (rights to water) and nature (rights of waters) (Jenkins et al. 2021). The term \"sustainable irrigation\" indicates a situation in which freshwater consumption does not surpass freshwater availability while protecting both freshwater storage and environmental flows (Rosa et al. 2020). In response to significant increases in competition for freshwater in the hyper-arid environment of Ica, moving towards sustainable irrigation expansion needs to swiftly emerge in adopting both efficient (EITs) and water-saving (WSITs) irrigation technologies. The EITs ensure irrigation freshwater availability along with effective low-volume irrigation technologies, while the WSITs employ traditional as well as household-and communitybased approaches to conserve freshwater in agriculture (Rouzaneh et al. 2021). In its sustainability risk management, particularly in Ica, Peru can learn many lessons from semi-arid or arid countries like Israel and China in which different EITs and WSITs, respectively, have revolutionized the agricultural sector (e.g., Saini et al. 2021) by supporting sustainable irrigation expansion. For example, Peru can particularly increase agricultural water use efficiency in the Ica region by breeding more drought-resistant asparagus or practicing supplementary instead of full irrigation techniques for asparagus production.In Peru, the agricultural export miracle is becoming endangered by its own success. The Ica region in Peru is the best empirical evidence for the negative externalities of unconscious alternative development strategies. Accordingly, socio-environmental fragility or collapse (Falkenmark et al. 2019) in arid regions with high economic dependency on the cultivation of high-value but water-intensive crops should be added to the unintentional consequences resulting from the overwhelming focus on economic growth policies. This is an important reminder for governments that national, regional, and international agribusiness expansion agreements (like ATPA), as a profitable alternative development strategy, must also consider both rights to water and rights of waters, particularly in arid and semi-arid regions. Hence, careful interdisciplinary and transdisciplinary research is required to comprehensively assess both direct and cascading environmental, economic, and social concerns about the alternative development strategies, especially for agricultural sustainability in different parts of the world. Such a conscious rethinking of the agribusiness expansion policies and agreements could successfully act towards achieving the SDG1 (\"No Poverty\") and SDG6 (\"Clean Water and Sanitation\") (UN 2015), particularly in the Andean region.Funding Open Access funding provided by University of Oulu including Oulu University Hospital.","tokenCount":"2428"} \ No newline at end of file diff --git a/data/part_3/1146932563.json b/data/part_3/1146932563.json new file mode 100644 index 0000000000000000000000000000000000000000..347fd5fbc84d4add2a865f3575d73e48abebdb3a --- /dev/null +++ b/data/part_3/1146932563.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"5c09663fcf963df90e6b7c933bdee874","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/5fbd58d8-cb6f-478e-917d-b23f7d91ee7b/retrieve","id":"-1098377338"},"keywords":[],"sieverID":"7f406185-b593-4371-bff5-d73c2efb1edd","pagecount":"1","content":"In the last 30 years, Uganda has had a massive growth in pig popula9on, and currently has the highest per capita consump9on of pork in East Africa (3.4 kg year --1 ). About 90% of the pigs in Uganda are produced in smallholder farms under typical crop-livestock systems, even in the peri--urban seHng. The present study aimed to characterize the pig feeding systems, in terms of the use of local feed resources and gender roles.Thirty--five focus group discussions (FGD), with 10 farmers per group on average, using a semi--structured checklist, and a household baseline survey (HBS) with a structured ques9onnaire were carried out in 35 villages of three districts (Kamuli, Masaka & Mukono). Twenty--five represent the rural and 10 the peri--urban value chains (VCs). A total of 352 and 376 farmers par9cipated in the FGD and HBS, respec9vely. Par9cipa9ng farmers were selected using stra9fied random sampling based on gender from the list of all pig farmers in the villages under study.Materials and methodsResearch into use• The main feeding constraints iden9fied by farmers are: dry season fodder shortages, high cost of commercial feeds, price fluctua9ons of feed ingredients and poor quality of purchased feeds. • Crop residues, forages and kitchen lelovers represent 70--75% of the total diet, with slight varia9ons along the year. Crop residues are replaced by forages and weeds during the crop growing seasons (March--May & Sept -Dec) (Fig. 1). • Sweet potato vines are the most preferred forage for pigs, regardless of VC domain; cassava leaves was the second most preferred in the rural VCs, while yam leaves occupied that posi9on in the peri--urban seHng (Table 1). • Feed collec9on is mainly done by women and children, but the role of men and hired labor becomes more significant in urban seHngs (Fig. 2). Women and children are also the most involved in feeding pigs.Pigs fed on sweet potato vines","tokenCount":"311"} \ No newline at end of file diff --git a/data/part_3/1152331577.json b/data/part_3/1152331577.json new file mode 100644 index 0000000000000000000000000000000000000000..3ddb3aad80a4328e079f963d83c2702b484339df --- /dev/null +++ b/data/part_3/1152331577.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"1ad12f484e3528471163e933449734b3","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/cb4eb7a5-9c8e-47e6-9a6e-d041fc2b8cc8/retrieve","id":"1216564170"},"keywords":[],"sieverID":"2c73bcba-3d7f-4cc9-87a0-e4000e75d938","pagecount":"4","content":"Technology for Vegetable Production T he Learning and Practice Alliance (LPA) approach is used with farmers who are engaged in water harvesting efforts. Groups of stakeholders come together to innovate, share experiences, and scale-up good practices using a common platform. The groups are usually composed of different stakeholders: implementers, policy and decision makers, researchers and private sector actors, operating at various levels, who would normally be working in isolation from one another, but have joined hands through a joint platform to address common sector challenges. The premise of the LPA approach is that addressing complex sector problems in a sustainable manner requires the involvement of all the stakeholders in the problemsolving process and focus on developing local knowledge to support local solutions.Drip laterals (60 m length) having either 60 cm or 30 cm emitter spacing manufactured by Selam (a private enterprise in Addis) were provided to the five farmers. The spacing of the emitters can vary, depending on the type of vegetables raised. For example, tomatoes require an emitter spacing of 60 cm, while onions need only 30 cm or below. The number of laterals varied from farmer to farmer based on the area under irrigation. Locally made water storage tanks or, in this case study, oil barrels having a 200-liter capacity, were used to store water extracted from the water-harvesting ponds. The storage barrel was placed about 1 m above the ground surface in order to gain sufficient gravitational energy for drip emitters to discharge the required amount of water uniformly along the laterals. The laterals were directly connected to the barrels. One drip lateral can be used alternatively for different rows of tomatoes and onions. The farmers were required to fill the barrels before starting irrigation, to check the uniformity of water discharged by emitters, and to clean clogged emitters.Since the variation in plant spacing requires different numbers of drip laterals, onions and tomatoes were purposely selected and used as test crops on each plot of the participant farmers. The plot sizes varied from farmer to farmer. Sandy clay soil was the dominant type of soil in the demonstration sites.The amount of water applied per irrigation was determined by the soil water available prior to irrigation using the feel method. Initially,Farmers who have water harvesting structures at Aliyu Amba area in Ankober District, North Shewa administrative zone were consulted to request their participation in demonstrating the gravitydrip irrigation side by side with the can application method during the dry season of 2004 and 2005. Five volunteer farmers were selected. Including those farmers, a Farmers Research Extension Group (FREG) composed of 20 farmers (6 were women), development agents in the kebele, and researchers as facilitators was established.The FREG members were trained on the concept and procedures of FREG and the characteristics and application of the gravity-drip irrigation technology. To facilitate wider promotion and enhance group learning, the FREG members came together during seedbed preparation and the laying out of the drip system, seedling stages, development stages, and maturity stages to learn from each other on the application and utilization of the technology. Farmer-managed demonstrations and promotion of the drip technology was carried out on five farmers' plots. On the other hand, other farmers who cultivated tomatoes and onions were advised to use cans so that the outputs could be compared with those obtained from the drip application methods. Finally, field days were held to share the lessons and introduce the technology to other farmers and experts in the nearby kebeles. were 6.29 tons for tomatoes and 1.43 tons for onions in a hectare of land (Table 2). The drip method has also shown better water productivity than the can method. Under the on-farm situation, average water productivity of tomatoes was 0.38 kg/L and 0.21 kg/L while that of onions was 0.09 kg/L and 0.08 kg/L for drip and can applications, respectively.Partial cost and benefit analysis was done by considering only variable costs such as labor and value of water in the locality between drip and can methods. Costs related to fertilizer and seed varieties were uniform for both methods. The results indicated that the benefit obtained from the drip system was much better than the can method (Table 3). Despite the low price of onions (1.50 birr/kg) and tomatoes (1.00 birr/kg) during the harvesting season, the drip marginal rate of return, which was 451.18% for tomatoes and 138.27% for onions, was higher. Users of the drip technology would obtain a return of 4.5 birr and 1.4 birr from tomatoes and onions by investing 1 birr. From the partial budget analysis, one can easily realize that tomatoes can give smallholder farmers a much higher return than onions, in a short period of time, if they apply gravitydrip technology packed with local water storage.Drip irrigation is a very simple technology to use. Often, farmers do not allocate large sizes of plots (e.g., not more than 1,000 m 2 ) for vegetables as the labor costs are higher compared with costs of other field crops. As a result, the labor required for cultivating vegetables on small plots was less and its drip investment cost was affordable to the average farmers. Producing vegetables that demand less labor for cultivation using the drip system pays back quickly. Both its direct benefits and the amount of water and labor saved by using it make the drip technology far preferable to the can method. Therefore, drip irrigation system needs to be considered in household irrigation programs and should be scaled out among smallholder vegetable farmers, along with the development of a market in the supply of drip laterals and technical skill support from experts to facilitate application.the participant farmers demonstrated the shape of the squeezed moist soil under different soil moisture content. They were oriented to apply water when they obtain the similar shape of sample moist soil squeezed at critical water content. All farmers who used drip and can methods were told to record the amount of labor and water applied and the yield obtained from their plots, so that costs and benefits can be compared.Evidence on farmer-managed on-farm demonstrations (Gizaw and Tegenu, 2008) indicated that using low-cost gravity-drip irrigation reduced the total amount of irrigation water required, by 24.23 m 3 and 22.51 m 3 per hectare of land for tomatoes and onions, respectively, compared with the can irrigation method (Table 1). The amount of water saved could have been used to irrigate tomatoes on an additional area of approximately one-third of a hectare using drip systems. Moreover, using the drip irrigation system, 79 and 97 person-days per hectare labor on average was saved over the can method for tomato and onion production, respectively. Sometimes, depending on the condition of water availability and lift from water-harvesting structures, the labor requirement for the drip method was slightly more than that of the can method. The tomato and onion producers would thus reduce labor cost per hectare by 3,000-4,000 birr and 3,800-4,800 birr, respectively. As a result, the opportunity cost of labor for drip-using households increases.Using the gravity-drip irrigation method, applying 214 m 3 and 72 m 3 irrigation water to 1 ha during the growing season provided 20 and 27 tons of onion and tomato marketable yields in that order. However, using the can method, the equivalent to total yields of 18.4 tons for onions and 20.5 tons for tomatoes per hectare were obtained by applying the respective amounts of 237 m 3 and 96 m 3 irrigation water. In addition to the amount of water saved by the drip system, a considerable yield advantage was obtained using the drip system compared with the can irrigation method. The mean yield advantages by using drip irrigation ","tokenCount":"1280"} \ No newline at end of file diff --git a/data/part_3/1155095256.json b/data/part_3/1155095256.json new file mode 100644 index 0000000000000000000000000000000000000000..4342e04a9c807987c3ff220eb703cf6dfd1bc37f --- /dev/null +++ b/data/part_3/1155095256.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"b2849c7b485136244067d616e6887de0","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/1f055ce8-255b-48d9-a0e0-2d9fd9500f60/retrieve","id":"-708591978"},"keywords":[],"sieverID":"90e80d0b-f559-4f5c-9b4b-67f614dad144","pagecount":"22","content":"a presentation on Topics, concepts, and theories related to innovation scaling. The strands of theories were presented.This report summarizes key insights and outcomes from a \"Science of Scaling\" retreat held 18-19 March 2024. The retreat was organized by Wageningen University under Work Package 6 of the CGIAR Regional Integrated Initiative on \"Ukama Ustawi: Diversification for Resilient Agribusiness in East and Southern Africa\" and hosted by the International Livestock Research Institute (ILRI) in Nairobi, Kenya. The retreat served as a platform for in-depth discussions on advancing the current understanding of the science of scaling and exploring new theories and methods. The meeting also created a starting point for peer-to-peer learning and exchange on the science of scaling.In recent years, the CGIAR scaling community has seen significant growth, leading to notable advancements in both the science and practice of scaling. This expansion has been accompanied by the uptake of new scaling approaches by new Initiatives within CGIAR and the broader System organization. The drive to advance innovation scaling serves as an important catalyst for success in East and Southern Africa (ESA), aligning with the core principles of the CGIAR 2030 Research and Innovation Strategy. However, the process of scaling innovations is inherently context-specific and complex, necessitating the need for action research and use of science in continuous learning to help align with the evolving user needs.CGIAR's science of scaling activities have their origins in the CGIAR Research Program on Roots, Tubers, and Banana (RTB) and have since been carried forward under the CGIAR Regional Integrated Initiative Ukama Ustawi. Significant decisions regarding research themes, modalities, and fundraising strategies were made during a workshop held in Kigali, Rwanda, in April 2023. The science of scaling retreat in Nairobi aimed to foster deeper interactions among peers in the field and explore innovative directions in scaling theories and methodologies. Below are the specific objectives of the workshop.1. Getting to know each other and build a science of scaling network/ cohort.Inspiring one another in exploring new directions in scaling science theory and methods.3. Creating a starting point for peer-to-peer and group learning and deepening exchange on the science of scaling.The science of scaling workshop brought together scientists, scaling experts, and PhD candidates. The workshop had a total of 18 participant from various organizations, including the University of California at Davis, Wageningen University & Research, the African Centre for Technologies Studies (ACTS), other CGIAR partners, including ILRI, International Water Management Institute (IWMI), International Food Policy Research Institute (IFPRI), Alliance of Bioversity and CIAT (ABC), and the International Potato Centre (CIP) (see Annex 2).Jan Low presented the scaling trajectory of the orange-fleshed sweet potato (OFSP) developed by CIP, highlighting its potential impact on human health. She emphasized that even a minor alteration in the food system could result in significant improvements in health outcomes. In Africa, the prevailing sweet potato varieties were predominantly white-fleshed, but OFSP emerged as a promising solution to address Vitamin A deficiencies. This was particularly relevant for sub-Saharan Africa (SSA), where 48% of children under 5 years old suffer from Vitamin A deficiency. Key nuggets from Jan's presentation follow.1. Scaling takes time and commitment. She emphasized the need for a significant investment of time and commitment over an extended period (Figure 1).Scaling takes questioning conventional wisdom. For instance, sweetpotato cultivars with deep yellow or orange-fleshed roots were believed to be rejected in many developing countries in favour of white or cream-fleshed types having little or no provitamin A activity. However, her pilot work in Kenya among 20 women's groups (1995)(1996)(1997) revealed that the colour orange was attractive and well-liked. The challenge was not the colour but rather the texture of the sweet potato. Local varieties have high dry matter content (>28%) while OFSP has low dry matter content and were considered watery by adults but were loved by children.Innovations should be context specific: She noted the need to go out in the field and observe to understand context-specific needs for the innovation to scale. For instance, in 2002, varieties bred in Peru all collapsed under the sweetpotato virus disease (SPVD) pressure when brought to SSA, which necessited that sweetpotatoes be bred in Africa for Africa.Scaling alongside research to address emerging bottlenecks. Scaling efforts must run parallel to ongoing research endeavors to tackle emerging bottlenecks effectively. 1. Understanding scaling as individual adoption: This narrative is derived from the Adoption and Diffusion Theory/Technology Uptake models / Theory of Planned Behaviour / Knowledge Attitude Practice.Understanding scaling as diffusion processes.Understanding interdependencies between people: scaling in configurations and networks. 1) vertical: e.g. behavior of value chain actors, 2) horizontal: e.g. peers, community members, 3 domains: e.g. multiple spheres of action.Scaling as overcoming collective action.5. Scaling from a system multi-level perspective (MLP) perspective. Scaling and system change arising from intermediation processes in innovation systems / platforms. The whole is more than the sum of the parts.6. 'Niche management' interventions preparing the ground for system change and scaling.Aspects to consider while scaling.• Understanding social learning as a condition for system change / scaling.• Scaling is not inherently good: It is likely to foster new forms of inclusion / exclusion. It may have undesirable consequences at other levels. Therefore, Innovation packages must be adapted to user categories and context.• Scaling as 'shifting everyday conversations' -altering the potential for system change to happen.• Scaling Readiness: Scaling strategies need to consider packages of core and complementary innovations / changes.• GenderUp: Scaling as anticipating relevant diversity: likely to be intersectional / cut across dimensions.• Collaborative research as a vehicle for social learning, system change and innovation development.• What new topics and lines of thinking can we pursue?• What new/other concepts and theories may be useful for that? Why?Three significant concepts in scaling discussed by the team include scale jumping, scale bending, and scaling down. Scale jumping involves the extension of political power from one level to another, such as from local to national or from national to global arenas. Scale bending refers to the deliberate challenge to established assumptions regarding political activities and their associated scales, often through actions aimed at undermining existing arrangements and finding alternative mechanisms to address constraints faced by local communities. Scaling down entails the localization of higher-level strategies to align them with local cultural and place-based contexts, often involving the engagement of local actors by higher-level stakeholders to ensure effective implementation (Gebreyes et al., 2021). These concepts elucidate the complexities of decision-making and implementation across different scales of governance and action.The discussion highlighted the complexity of scaling innovation as a social process. Discussions unpacked the complexities of decision-making and implementation across governance and action scales. Theories like feminism, power theory, institutional theory, practice theory, and structure-agency dualism were explored to understand scaling as a social phenomenon. \"Living labs\" emerged as a promising approach, emphasizing the importance of ongoing learning at all levels -from policy to implementation.Suggested research questions.• How can social theory make scaling more effective?• What social theories are relevant to the scaling community?• How do we analyze what is going to happen (ex-ante)?Artificial intelligence (AI) can be used in monitoring and evaluation in organizations to understand the effects of scaling. Through AI-powered tools and algorithms, organizations can automate processes, analyze vast amounts of data to derive actionable insights, and optimize decision-making. Additionally, AI enables personalized experiences and solutions, facilitating customization at scale. Furthermore, AI-driven predictive analytics can anticipate future trends and demands, enabling proactive and adaptive strategies for scaling innovation effectively.• How can AI be an enabler for scaling?• How can AI be used for scaling?• What are the opportunities for youth in using AI for scaling?Achieving sustainable scaling involves addressing several critical factors. First, maintaining a long-term perspective amid a series of shortterm projects is essential. Second, fostering collaboration with the public sector for coinvesting in scaling innovations. By establishing partnerships and aligning objectives, public and private entities can leverage their respective resources and expertise to drive sustainable scaling initiatives. Lastly, enabling demand-driven scaling requires organizations to closely engage with end-users and stakeholders throughout the scaling process. By understanding their needs, preferences, and challenges, organizations can tailor solutions to effectively address demand and ensure the sustained adoption and impact of innovations.• How can organizations maintain long-term horizons in a sequence of short-term projects?• How can researchers get the public sector to co-invest in scaling innovations?• How can researchers and practitioners enable demand-driven scaling?Photo 1: Science of scaling retreat participants introduction session.Sentiments refer to the overall attitudes, emotions, and opinions that individuals or groups hold towards a particular topic, idea, or entity. Understanding the dynamics of power, influence, and persuasion within political contexts can inform strategic decision-making and enhance the effectiveness of scaling efforts.Leveraging the power of influencers, including individuals, organizations, or communities, can significantly amplify the reach and impact of scaling initiatives. Engaging with influencers who possess credibility, authority, and a strong following can help in mobilizing resources, building networks, and driving change on a scale. Moreover, tapping into political communications expertise and theories can provide valuable insights into navigating complex socio-political landscapes and effectively communicating the importance and benefits of scaling to diverse stakeholders.• What qualities, ingredients, elements are required to shift public opinion and energies towards scaling?• How to leverage the power of influences for scaling.• Political communications expertise.Systems thinking for research for development involves a methodological approach that acknowledges and analyzes the complexity and interconnectedness of various factors within a development context. It focuses on understanding the underlying structures, relationships, and feedback loops that influence development processes and outcomes. This approach recognizes that development challenges are often multifaceted and dynamic, involving diverse stakeholders, environments, and socioeconomic factors.Aspects to consider nested systems, understanding how innovations flow through MLP, the need to simplify to make it applicable in complex systems, the need for public systems to drive systems change, put the money where the mouth is, understanding the difference between the intent and implementation gap and aspects that are needed to achieve sustainable scaling strategies.What are relevant applications of systems thinking for research for development in organizational development, monitoring and evaluation (M&E) and in innovation development?Private sector experiences offer valuable insights and strategies in areas such as innovation, market analysis, and efficiency management, which can be adapted and applied within CGIAR and non-profit organizations to enhance their effectiveness and sustainability.• Bring private-sector experts to CGIAR/nonprofit organizations to provide insights on what works.• Select test and validate methods that are used by private sector.• Need to work on aspects of mindset change, culture, incentives, systems, data, analytics, and decisionmaking criterion.• What do agricultural innovations have to learn from private-public scaling innovations models?• What are the interdependencies and dynamics between scaling research, agribusiness, and private finance?Understanding the upstream-downstream impacts and effects on scaling involves analyzing how interventions and innovations at one stage of the value chain or system affect subsequent stages. By comprehensively assessing both upstream and downstream factors, organizations can identify potential bottlenecks, leverage points, and opportunities for scaling initiatives to achieve broader impact and sustainability.Some important aspects include: the need to understand end user demands, existing blind spots, the need for continuous systems learning, capacity development and educating donors on downstream needs, accounting for political and institutional cultural dynamics.Research question: How do funders, researchers and practitioners bias affect their ability to generate scalable innovations for vulnerable populations? What are the gender and social inclusion aspects in enhancing better delivery of innovations?Gamification serves as a valuable component within a toolkit aimed at comprehending the experiences of diverse stakeholders. By integrating gamification, one can better anticipate real-life behaviors, gain insights into people's decision-making processes, and experiment with various scenarios. Its interactive nature offers a platform to test different situations, enhancing our understanding of human behavior in a simulated environment.• What key success factors or barriers can serious gaming reveal?• For what kind of scaling challenges is gamification relevant?• How can gamification support ex-ante decision making?• In what contexts is gamification relevant?Figure 2 below summarizes key theories and concepts from the group discussions. Erin Mcguire made a presentation on methods. She mentioned methods can be categorized and allowed participants to discuss existing methods they had used under each category (See Table 1)1. Nature of data e.g., qualitative, quantitative data.Objective of the research e.g. exploratory studies.Empirical or theoretical approaches.Report back on methods.Qualitative data, quantitative data, mixed methods.Literature review, exploratory through serious gaming.Approach (empirical, theoretical)Innovation histories, institutional experiments, longitudinal discourse analysis, interaction analysis, action research, stakeholder analysis, discourse analysis, inventory analysis of innovations, ex-ante analysis, outcome mapping, outcome harvesting, conversational methods e.g., GenderUp, Actor Network Theory, Impact assessments.Q method, living labs and codesign approaches, serious games, Delphi method, content analysis, focused group discussions, surveys, key Informant Interviews, case studies. Marc Schut facilitated a session on prioritization, utilizing insights gathered from the preceding discussions.Participants collaboratively identified and ranked topics, methods, and theories that merited in-depth exploration during the second day of the workshop. Figure 3 below shows the top ranked topics and methods.Figure 3: Prioritized methods and topics.The following aspects were cited to have worked well. Good facilitation, the facilitation was mainly done through conversation with minimal use of power point slides. Participants also appreciated the group work activities. Group discussions facilitated the emergence of new ideas and collaboration and exchange of ideas among workshop participants. Participants also cited that they were happy to learn about other people's work on scaling across various initiatives within the CGIAR and across other institutions. Participants also mentioned they liked the emerging science of scaling research agenda and the potential to concretize this into a community where people can continuously interact.Participants highlighted areas for improvement, noting that the presentations contained dense and new information, particularly challenging for those less familiar with social sciences and more focused on scaling practice. They emphasized the importance of structuring methods and theories into priority areas and facilitating discussions on converging methods applicable to scaling work. Day 2 began with a recap of the previous day's discussions. The team then moved into in-depth discussions based on the topics, methods and theories prioritized in day 1. The teams were organized into three rounds for focused engagement, structured as follows.Round 1: Upstream-downstream dynamics, AI and private-sector engagement in scaling Round 2: Gamification and comparative case analysis Round 3: Discourse analysis and literature review 3.1. Session1: Report back on theories and methodsThe team discussed various topics essential for promoting the uptake of science-based innovations in the private sector (Figure 4). These include identifying motivators and effective incentives for such uptake, assessing the benefits for smallholder farmers and investors who take up the risk associated with innovation scaling. A critical aspect involved defining suitable \"private sector typologies\" for scaling. This categorization aims to identify small and medium enterprises (SMEs) best positioned for different scaling pathways. Additionally, the group explored investment frameworks tailored for each pathway within the agri-food sector. Finally, the discussion highlighted the potential of optimizing emerging technologies like mobile-based financial services to support smallholder enterprises.Scaling innovations in Africa requires a multi-pronged approach. Public-private partnerships fueled by diverse funding options are key, alongside navigating regulations for consumer protection without hindering innovation. Additionally, it is important to balance regulation with consumer demand, and recognize the unique challenges of scaling in Africa. This would also entail discerning differences between actual and perceived risks in agrifood investments and developing comprehensive impact measurement frameworks for informed decision-making in this domain.• What are the key motivators and effective incentive mechanisms for encouraging private sector uptake of science-based innovations?• How do smallholder farmers (downstream) or investors (upstream) benefit from startups and SME uptake of science-based innovations?• What typologies of private sector entities are most appropriate for the scaling of science-based innovations?• What investment frameworks of the financial sector exist for agrifood sector and what investment framework exists to direct investments into agriculture/food systems?• What is the potential of agrifood tech startups in driving sustainable agrifood systems development?• What are the policy implications for fostering a culture of innovation within the private sector?• What is the potential of the agribusiness ecosystem to encourage the uptake of science-based innovations? What formal links exist in the literature between science-based innovation and uptake by agribusiness?• How can emerging technologies such as mobile based financial services be best fitted to the requirements of smallholder enterprises?• What can we learn from other markets and sectors on the uptake of science-based innovations? • What types of funding exist and how to they rank with regards to their potential to increase uptake of science-based innovations?• What consideration prevails for private sector scaling packaging as opposed to public?• What are the most successful PPP frameworks from within and beyond food systems that can be replicated and what can we learn?• How does the business model and value proposition of the agri food tech SME change as a result of the uptake of science-based innovations and how does that uptake affect smallholder farmers that they serve?• What criteria are there for investments in food systems by private and by public and what are their similarities and differences? What are the differences between taxation and subsidies in effectiveness of scaling science-based innovations?• What impact measurement framework (e.g. for social and environmental) exists and how do they inform investment decisions?• How does access to financial services and markets for different groups impact inclusive private sector scaling of science-based innovations?• What are the relative roles of regulation and consumer demand to responsible private sector scaling of science-based innovations?• How do consumer norms affect responsible scaling of science-based innovations?• Unicorn or Zebra? What way forward for Africa's scaling of science-based innovations? OR how can expectations for investment into food systems in Africa be right-sized?• What is the role of free advice in private sector uptake in science based?• What nonfinancial risk exists that could have a financial solution?• How is actual risk in agrifood investments in innovation differ from perceived?• Consider the work of United States Agency for International Development (USAID) on private scaling pathways and map out their work/model and experience.• Consider the ASAT tool to implement a decision tree that has branches on private sector and could be integrated in the oversight of this topic.• This is a topic whereas the theory/science of scaling needs to work closely with practice examples given its wide application. Review the scaling methodology review what exists, e.g. the ILRI Scaling Strategy and other.• The Scaling Community of Practice has a subgroup that would be useful to connect toThe group discussed core concepts while thinking about upstream-downstream dynamics. These include bias, perception, power dynamics, and system learning as fundamental to understanding both upstream and downstream aspects of research and implementation processes. Upstream refers to spaces where power often resides, involves decision-making by actors who shape research agendas. Integrating end users in upstream processes and holding consultation meetings at the country level for integration is important in closing the upstream-downstream gap. There's a need for a formal institutional setup to facilitate discussions on research agendas. Downstream, refers to spaces where implementers and users play pivotal roles in the implementation of research findings and innovations.CGIAR should prioritize emphasizing locally led agendas and innovation, recognizing the importance of grassroots initiatives in driving sustainable development. To achieve this, it is essential to map what is happening within initiatives and understand how they align with local needs. Case studies from each impact area can serve as a springboard for CGIAR to delve deeper into the perspectives of end users and intermediary stakeholders. Analyzing these studies will reveal how CGIAR's involvement aligns with the goals of these stakeholders, including national partners. This approach provides valuable insights for refining CGIAR's engagement strategies to maximize impact. A practical starting point can be by analysing insights from CGIAR's listening sessions, the organization can tailor its approach to better align with the evolving needs of governments and partners. This data-driven approach ensures CGIAR's activities directly address stakeholder priorities, fostering stronger collaborations and maximizing impact.In addition, CGIAR can play a pivotal role as a broker in connecting the global agenda with the National Agricultural Research Systems (NARS) agenda. Instead of taking an extractive approach to data extraction and a top-down approach to scaling innovations, CGIAR should engage NARS stakeholders at the table and understand their goals. This involves understanding the landscape in terms of needs, mapping resources and skills, and aligning the two effectively.An important aspect in discourse analysis is understanding communicative utterances and ways of talking as performative, strategic, and politically significant at micro or macro levels. Dominant discourses, narratives, and frames coexist with alternative ones, and analyzing their dynamics over time is integral to this analysis. Such analysis is often accompanied by content analysis, which can take quantitative forms like semantic network analysis or qualitative approaches. Together, these methods provide insights into the complexities of discourse and its political implications. The team explored four forms of discourse analysis applicable to scaling research: Discourse analysis, narrative analysis, conversation analysis, and frame analysis, as depicted in Figure 5 below.Conversation analysisFigure 5: Forms of discourse analysis.Discourse analysis examines the language and social practices that shape meaning within a particular context, while narrative analysis focuses on the structure and content of stories to uncover underlying themes and patterns. Conversation analysis delves into the sequential organization of talk to understand how interactions unfold in real time. Frame analysis, on the other hand, investigates the underlying structures of thought that shape interpretations and guide actions within a given discourse or narrative.Photo 4: Interactive session to foster connections.1. Increased opportunities for these kinds of analysis in the context of scaling, arising from availability of big data (text, social media) plus ways of analysing them (e.g. Artificial Intelligence).How particular discourses go to scale, and become dominant, as a condition for solutions/innovations to scale. This is research on how and why discourses/conversations and sentiments/opinions shift, and the triggers for that.Research on how discourses about scaling shift and change (e.g. how more or less attention for responsible scaling arises).What interventions / triggers might be relevant to change discourses/opinions/ etc.Q1. can discourse analysis be used ex-ante. Can we influence discourse.A. We talked about how discourse can be influenced. We need to understand what triggers discourse change to know how to influence discourse.The team discussed comparative case study as a methodology to explore various dimensions of scaling initiatives. This approach entails investigating unintended consequences and inclusivity within different contexts, shedding light on how these factors interrelate. Explore the relationship between inclusivity and unintended consequences, providing insights into their dynamics and potential impacts. Furthermore, there is a need to assess the cost-effectiveness of scaling efforts, offering valuable insights into the efficiency and practicality of different approaches.In terms of methodological considerations, several key steps are essential. Firstly, defining the case and its boundaries is crucial, involving outlining the project scope, type, duration, and technology utilized. Following this, select a case based on predefined criteria, ensuring relevance and comparability. Next, determine the analytical lens through which the cases will be examined. Additionally, evaluate whether the case represents a \"black box\" or explanatory model to help in understanding the depth of analysis required and the level of transparency within the case studies.Research Questions:• What is inclusivity at each stage?• Define unintended consequences and whose objectives are considered.• Identify winners and losers.• Can a case study have no unintended consequences?Dimensions of Responsible Innovation:• Define responsible innovation.• Assess inclusion of different partners.• Examine consequences of partnerships.• Identify stakeholders excluded due to lack of inclusivity.The research components include research design, methods, data collection, and data analysis. Integrating literature reviews and expert interviews within project boundaries enhances alignment with defined scopes, while interviewing authors can provide deeper insights. Additionally, a meta-analysis can be used to explore possibility and assess feasibility. Exploring other potential applications, such as analyzing CGIAR's relationship with national partners, requires assessing demand to ensure relevance and impact.Utilizing AI within the innovation development and dissemination cycle offers a powerful means of enhancing intelligence. It involves contextualizing AI within the specific needs of the task at hand and addressing issues of data governance, including ownership and equitable benefits. Whether the research is intended for CGIAR or broader scientific endeavors, the overarching goal is to ensure that AI serves the public good, providing valuable insights and innovations that benefit society.• How can AI systems facilitate or hinder the scaling of innovations?• Adapting AI technologies to suit the specific context of scaling in Africa.The group explored the challenges and opportunities of building AIs for scaling and studying existing AIs, considering feasibility, relevance, and target audience. As shown in Figure 6 below. Proposing stages of innovation/scaling and addressing intelligence needs at each stage, showcasing the potential of AI tools in agriculture.Identify intelligence needs at each stage Focusing on CGIAR innovation packages.AI support for better, faster, and cheaper intelligence Analyzing intelligence requirements to overcome bottlenecks.Enhancing human intelligence for decision making. Example: Analyzing the functionality of existing AI tools in agricultureExploring AI solutions to facilitate scaling. Highlight the potential of AI in addressing scaling challenges in Africa and advocate for collaborative efforts with other partners for successful implementation.The breakout session on literature reviews provided an insightful discussion on the spectrum of literature review methodologies, ranging from structured, systematic approaches to more flexible, unstructured styles. Each approach carries its own set of advantages and disadvantages, crucial for researchers to consider based on their specific needs.Structured/Systematic Reviews are rigorous and aim to minimize bias through well-defined methods:• Advantages: They provide comprehensive coverage, allow for replicability, and often result in high credibility of findings.• Disadvantages: These reviews can be time-consuming and often require extensive resources to gather and analyze data.• Unstructured Reviews offer flexibility and adaptability:• Advantages: They allow for a broader exploration of a topic and can adapt to new findings or theories as the review progresses.• Disadvantages: There is a higher risk of bias, and it can be challenging to ensure that the coverage of literature is comprehensive and systematic.The session also covered various tools and methods for organizing literature, such as SciWheel, NVivo, EndNote, and creating a code tree using key concepts. These tools assist in the management and analysis of literature, each offering unique features that cater to different aspects of conducting a literature review.Discussion on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) model highlighted its role in defining inclusion and exclusion criteria, which is critical for making the scope of a literature review manageable. 'Playing' with these criteria allows researchers to tailor their literature search to be as broad or as narrow as necessary, thus optimizing the review process.The session underscored the need for a dedicated webinar on literature review techniques, especially given the number of PhD students who will undertake this task as part of their proposal development process. Such training would provide valuable guidance on choosing the appropriate review type, using organizational tools effectively, and applying models like PRISMA to streamline their review process.Photo 5: Interactive session exploring how team members perceive various topics related to the science of scaling.Gamification, as discussed in the breakout session, serves as a vital component within the broader realm of experience design. Its application within research and institutional frameworks offers multiple benefits that enable a deeper understanding of complex scenarios. The session highlighted several ways in which serious gaming challenges conventional thinking and promotes empathetic and strategic insights.The use of serious games is particularly effective in:• Challenging Assumptions and Biases: It encourages questioning of the usual methods and institutional norms, providing alternative approaches that can lead to significant innovations.• Empathy Building: Through role-playing, participants can experience the perspectives of others, fostering a deeper understanding of diverse viewpoints and conditions.• Exploring Power Dynamics: Games can simulate environments where power relationships are examined and potentially reconfigured, offering insights into dynamics often overlooked in traditional research settings.• Anticipating Behaviors: Gaming scenarios help predict real-life decision-making by mirroring potential responses to various situations.• Understanding Decision Implications: They aid in comprehending the consequences of choices, providing a safe space to explore complex decision-making scenarios and their trade-offs.A key question addressed was how CGIAR could leverage serious gaming to enhance its research and development outcomes. The integration of serious gaming into CGIAR's methodologies could lead to more innovative solutions and effective strategies in dealing with global challenges. Furthermore, there exists a community of CGIAR colleagues, such as Mirja Michalscheck of IWMI in West Africa, who have experience with serious games, indicating a robust foundation for expanding these initiatives.Opportunities for collaboration include linking with academic institutions such as Wageningen University, which hosts a specialized Games Hub: https://www.wur.nl/en/article/wur-games-hub.htm. This could enhance the technical and theoretical aspects of game design and application in research, benefiting CGIAR's objectives.While the advantages of integrating serious gaming are substantial, considerations around the costs and resources required were noted. The development and implementation of games demand both financial investment and expert knowledge, which must be balanced against the expected outcomes.Marc Shut led the session on the next steps, aiming to determine the necessary actions for maintaining cohesion within the science of scaling team while fostering contributions to new knowledge and ideas in the scaling domain. During this session, participants reflected on four key themes: 1) scientific publications, 2) other publications, 3) virtual events, and 4) in-person events. The following section outlines the feedback gathered from the participants.1. Organize a scaling conference invite donors, CGIAR, practitioners.Organize workshops with partners.Attend the CGIAR scaling week-have a session at the CGIAR scaling week.Organize another annual science of scaling retreat.Organize write shops.6. In person webinars.Suggestions were made on maintaining communication through a WhatsApp group and utilizing a live Dropbox for sharing resources. Other options included the need to enable joint resource mobilization. Capacity development was discussed, focusing on extending training support to junior researchers and newcomers in scaling initiatives. Additionally, suggestions were made to support the development of PhD proposals and encourage senior researchers to involve junior counterparts in publishing.During the final session led by Marc, participants shared their feedback. They expressed a strong desire for the establishment of a science of scaling team, emphasizing the importance of continuous engagement to share experiences and insights. The PhD candidates expressed their satisfaction in being part of a network of researchers and practitioners dedicated to the science of scaling, indicating their willingness to collaborate and seek mentorship from experienced researchers. Additionally, the team deliberated on understanding the vision and goals of the science of scaling team, as well as its strategic positioning within the upcoming (P25) portfolio 2025. Furthermore, there was discussion about aligning this team with the global scaling Community of Practice (CoP). ","tokenCount":"5055"} \ No newline at end of file diff --git a/data/part_3/1164753380.json b/data/part_3/1164753380.json new file mode 100644 index 0000000000000000000000000000000000000000..95f3644aa30d3bc566f0b715c5c227c9004b8438 --- /dev/null +++ b/data/part_3/1164753380.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"6a2c562fc45cea1d9a94a668eca85d48","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/1f4666f2-d6e0-4a50-9507-87190dcbafeb/content","id":"-532935032"},"keywords":[],"sieverID":"09cf4d35-132a-4e92-aac7-02e37225c6e9","pagecount":"352","content":"El propósito del IFPRI, es identificar y analizar estrategias alternativas sobre políticas nacionales e internacionales para satisfacer de manera sostenible las necesidades alimentarias del mundo en desarrollo, con énfasis particular en los grupos más pobres en países de bajos ingresos. Los programas de investigación del IFPRI reflejan una colaboración a nivel mundial con gobiernos e instituciones públicas y privadas interesadas en incrementar la producción alimentaria y estrategias para combatir la pobreza. Los resultados de las investigaciones, se hacen llegar a los formuladores de políticas, oficiales gubernamentales, agencias internacionales, administradores, analistas, investigadores, y todos aquellos interesados en las políticas alimentarias y agrícolas nacionales e internacionales. El IFPRI es miembro del Grupo Consultivo de Investigación Agrícola Internacional (CGIAR), asociación de 16 centros internacionales de investigación, los cuales reciben apoyo de varios gobiernos de países industrializados, organizaciones internacionales y fundaciones.Los editores desean agradecer a todas las personas que contribuyeron al éxito de este esfuerzo colaborativo. La Escuela Agrícola Panamericana en el Zamorano (EAP) proporcionó un sitio ideal para el trabajo intelectual e interactivo del taller de planeación por medio de sus instalaciones en el Centro Kellogg. El Centro de Políticas Agrícolas de la EAP, bajo el liderazgo de Nelson Montoya, se responsabilizó de los arreglos locales del taller, con el apoyo administrativo de Orlando GarcÍa. Hercilia Romero sirvió de relatora. Agradecemos también las contribuciones al programa del Dr. Mario Contreras, Director de Proyección de Zamorano, y al Dr. Jorge Moya, Jefe del Departamento de Economía Agrícola.Primeramente deseamos reconocer el liderazgo del Comité Organizador del Grupo de \"Análisis de Políticas sobre Desarrollo Sostenible en las Laderas\", el cual se ve conformado por Byron Miranda y Víctor del Angel del I1CA; Edmundo Castro, Nelson Montoya y Juan Leos Rodríguez, todos de universidades miembros de REDCAPA; Gustavo Saín, del CIMMYT y Sara Scherr del IFPRI. El Dr. Roduel Rodríguez contribuyó a la organización del taller en Honduras. El apoyo administrativo de Lourdes Hinayon de IFPRlIWashington y Nolvia Lagos de IFPRIIIICNHonduras es muy apreciado.Aparte de los miembros del Comité Organizador, otros expertos en investigaciones sobre políticas sirvieron de revisores externos de las ponencias preparadas para este taller. Extendemos nuestra apreciación al Profesor Alain de Janvry, Dr. Gilles Bergeron, Dr. Mauricio Bellón, Dr. Eugenio Diaz-Bonilla, Dra. Karen Dvorak, Dr. James Garrett, Dr. David Lee, Dr. Robin Marsh, Dr. Prabhu Pingali, (otro CIMMYT), Dr. Steve Vosti.Estamos especialmente agradecidos a las Fundaciones Ford y Rockefeller, al Gobierno de Holanda y la BMZ por su apoyo financiero para la realización de este esfuerzo colaborativo y la publicación de este libro.En los últimos años, uno de los temas centrales del trabajo del Instituto Internacional de Investigaciones sobre Políticas Alimentarias (lFPRI) y del Instituto Interamericano de Cooperación para la Agricultura (I1CA) ha sido el desarrollo agrícola sostenible. En México y en América Central parte del trabajo de nuestras instituciones se ha concentrado en la problemática de desarrollo en las regiones de laderas, en un intento por solventar los desafíos presentados por la pobreza, el bajo crecimiento económico y la acelerada degradación de los recursos naturales. Además de los avances técnicos que se necesitan para un manejo sostenible de los recursos en las regiones de laderas, es necesario tomar en cuenta la implementación de políticas nacionales y locales para proporcionar un ambiente provechoso para los esfuerzos de desarrollo. Una de las dificultades para la formulación de políticas adecuadas ha sido la relativa falta de recursos para las investigaciones sobre políticas llevadas a cabo dentro de la región misma con relación a los anteriores temas. Entre agosto de 1996 y febrero de 1997, el IFPRI y el I1CA con vocaron una serie de talleres con colegas de la Red de Capacitación en Políticas Agrícolas (REDCAPA), la Red de Socioeconomía, el CIMMYT, y otras instituciones en la región, para discutir la situación actual relativa a la problemática de políticas para desarrollo sostenible en laderas y estrategias para fortalecer la investigación regional sobre estos temas.Resultados de estas actividades colaborativas incluyen los ensayos publicados en este volumen sobre la situación en las laderas mesoamericanas, resultados de la investigación sobre casos selectos, análisis de las prioridades de investigación sobre políticas, y estrategias para mejorar el impacto de la investigación. Además, se ha formulado una propuesta para una iniciativa regional a modo de fortalecer la investigación sobre políticas de desarrollo sostenible en las laderas. El IFPRI Y el I1CA se han comprometido a cooperar con investigadores en la región para apoyar esta iniciativa y la investigación sobre políticas para promover el desarrollo sostenible en las laderas mesoamericanas.En los últimos años ha surgido un fuerte interés por parte de los investigadores de Centro América y México, por la investigación sobre políticas para el desarrollo sostenible y el manejo de los recursos naturales (MRN) en las laderas de la región. Esto refleja una' preocupación creciente por la amenaza de la degradación ambiental en estas zonas, y por el futuro económico y social de sus pobladores rurales bajo el nuevo régimen del ajuste estructural. Se considera que las políticas sectoriales-relacionadas con la generación y difusión de tecnología; la infraestructura física; las instituciones privadas, civiles y públicas; la agricultura; manejo de bosques, áreas protegidas, yagua; sistemas de derechos a la propiedad y recursos naturales--influyen mucho sobre el manejo de los recursos no solo al afectar las entidades públicas pero también al tener un impacto sobre los productores agrícolas y los pobladores rurales. Muchos esfuerzos de reforma de políticas se han iniciado. La investigación puede jugar un papel valioso en este proceso, al documentar y analizar los patrones actuales en las laderas, y la magnitud del impacto de diferentes instrumentos.El nuevo interés en la investigación sobre políticas para el desarrollo sostenible en áreas de laderas se puede ver en el auge de nuevos programas y proyectos que han surgido en los últimos años, y en la creación de nuevos institutos de investigación y consultorías dedicadas al tema. Han surgido también iniciativas para promover la colaboración regional en la investigación sobre políticas. Entre estas iniciativas se encuentra la Red de Instituciones Vinculadas a la Capacitación en Economía y Políticas Agrícolas en América Latina y el Caribe (REDCAPA), una asociación de universidades y centros de estudio en América Latina y el Caribe, con varios miembros en México y América Central oficialmente instituida en 1993. También, la Red de Socioeconomía promovida por el Centro Internacional para el Mejoramiento del Maíz y el Trigo (CIMMYT) ha empezado recientemente a enfocarse mas en la investigación de campo relacionada con la agricultura sostenible, particulannente en las laderas.El Instituto Inter-Americano de Cooperación para la Agricultura (nCA) fue reorganizado en 1995 con el fin de darle un mayor enfoque al desarrollo sostenible. El nCA también inició en 1995 el proyecto Regional Desarrollo Institucional para la Producción Agrícola Sostenible en las Laderas de América Central, auspiciado por el Gobierno de Holanda,.con intervenciones en Honduras y el Salvador a nivel nacional, y en el nivel local en cuatro micro cuencas. Varios donantes, como los Gobiernos de Suiza y Holanda, y las Fundaciones Ford y Rockefeller, están apoyando esfuerzos de base para el desarrollo sostenible en laderas, incluyendo la promoción de redes de organizaciones, en varios países de la región.Los Centros Internacionales de Investigación Agrícola se han orientado mas a los problemas de las áreas marginales y frágiles, con un enfoque en México y Centroamérica sobre las laderas y un énfasis en el papel de las políticas. El CIMMYT ha promovido el diálogo sobre las políticas para promover la adopción de las tecnologías para la agricultura sostenible. El Centro Internacional de Agricultura Tropical (CIAT) y el CIMMYT iniciaron un proyecto de investigación en tecnologías agrícolas en laderas en 1994 con actividades en Honduras y Nicaragua, que abarcan estudios de las políticas que afectan la adopción y organización campesina. El Instituto Internacional de Investigaciones sobre Políticas Alimentarias (IFPRI), con la colaboración del nCA, inició en 1994 un proyecto de investigación sobre políticas para desarrollo sostenible en laderas, con actividades en Honduras y Guatemala.Sin embargo, la capacidad para la investigación sobre políticas de recursos naturales orientada a las laderas es aún bastante débil, con una escasez de investigadores, con limitados recursos financieros en las instituciones nacionales, y limitadas oportunidades de muchos investigadores para fomentar la interacción profesional con otros con los mismo intereses. Para explorar alguna estrategia para fortalecer la comunidad de investigadores en la región, IFPRI inicio en 1995 un proyecto sobre el tema con apoyo financiero de las oficinas regionales de las Fundaciones Ford y Rockefeller. REDCAPA y el CIMMYT se interesaron en el proyecto y formaron, con IFPRI e nCA, el Comité Organizador de la iniciativa.Para conocer la situación mejor, el proyecto produjo un directorio de individuos e instituciones en Mesoamérica involucrados actualmente en la investigación sobre políticas para el desarrollo sostenible en laderas, sus actividades, y las Iimitantes mas importantes en su trabajo. Los resultados de este estudio son resumidos aquí en el capítulo de Alex Coles, y el directorio será diseminado con el apoyo de I1CA.Un taller de planeación se llevó a cabo del 4 al 7 de febrero de 1997, en el Centro Kellogg de la Escuela Agrícola Panamericana de Zamorano. Los 38 participantes, provenientes de todos los países de Mesoamérica, también llegaron desde los Estados Unidos, Canadá y Holanda. Las 25 instituciones de investigación representadas incluyeron universidades, centros de investigación independientes, instituciones del gobierno; y organizaciones no gubernamentales. El grupo fue multi-disciplinario, con economistas, geógrafos, antropólogos, especialistas en análisis de políticas, otros científicos sociales, expertos en ciencias agrícolas y ecológicas, y un agricultor dirigente de la asociación de gremiales campesinas centroamericanas. Anexo 1 tiene la lista completa de participantes.En el taller se presentaron ensayos comisionados, que en forma revisada se han incluido en este volumen. En ellos se discuten las políticas relacionadas al desarrollo en las laderas, incluyendo la problemática, las prioridades de investigación, y metodología de investigación. También se discutieron estrategias de colaboración inter-institucional en la investigación de políticas, para evitar la duplicación de esfuerzos y tener un impacto más influyente sobre la formulación de políticas. Se identificaron las prioridades para fortalecer la capacidad regional para la investigación sobre políticas, en la educación post-grado, el pensum académico, y las metodologías. También se identificaron mecanismos para mejorar el intercambio de información entre investigadores, entre investigadores y actores de políticas, y en el acceso de investigadores a datos básicos.Las recomendaciones se sintetizaron en una estrategia preliminar para un nuevo Grupo de Análisis sobre Políticas para Desarrollo Sostenible en las Laderas, que esta incluido como el ultimo capitulo de este libro. La primera reunión del nuevo Grupo se organizó durante la XLIII Reunión Anual del Programa Cooperativo Centroamericano para el Mejoramiento de Cultivos y Animales (PCCMCA) en la ciudad de Panamá el 17-21 de marzo de 1997. El grupo fue reconocido oficialmente por la Asamblea de la Sociedad del PCCMCA y sus principales acuerdos registrados en el Acta de la referida Reunión Anual.Este libro, co-auspiciado por el IFPRI, el nCA, el CIMMYT, la REDCAPA, y el Zamorano, lo estamos publicando para apoyar a estos esfuerzos colaborativos. Consideramos que los ensayos reflejan perspectivas claves y esclarecedoras sobre la problemática de desarrollo sostenible en las laderas de Mesoamérica y sobre el proceso necesario para llevar a cabo las investigaciones en políticas en el nuevo ambiente político, social y económico de la región. Esperamos que el libro contribuirá al debate actual sobre estos temas, y que inspirará a los investigadores de la región a fortalecer su compromiso con la investigación aplicada sobre políticas y a la colaboración regional. En el sur de México y Centro América, ias áreas de ladera sustentan una parte considerable de la población y de la producción agrícola y forestal, y un conjunto de recursos naturales esenciales para la provisión de agua, biodiversidad y recursos ambientales. El patrón de desarrollo en las laderas en el futuro tendrá un impacto significativo sobre el crecimiento económico, el bienestar social y las condiciones de los recursos naturales en la región. Sin embargo, los mismos procesos de desarrollo-la intensificación y comercialización agrícola, el desarrollo de infraestructura, la utilización de recursos naturales para sostener a las poblaciones urbanas y la agroindustria--amenazan a los ecosistemas de las laderas ya su capacidad productiva a largo plazo (Castro, este volumen; Leonard, 1987;Lindarte y Benito, 1991;Posner y McPherson, 1982; Scherr y Neidecker-Gonzales, este volumen).Esfuerzos para promover un desarrollo mas sostenible en áreas de ladera han comenzado a operacionalizarse en todos los países de la región, por medio de programas de asistencia técnica gubernamental/ no gubernamental, el desarrollo de nuevas tecnologías y acción de base a nivel de la comunidad (Neidecker-Gonzales y Scherr, eds., 1997;Stewart y Gibson, 1995). Pero el marco de políticas en las anteriores décadas, tanto a nivel nacional como local, no fue explícitamente diseñado para enfrentar esta problemática. Dichas políticas no han promovido el éxito y difusión de los esfuerzos de desarrollo sostenible, ni han creado un ambiente provechoso para resolver los conflictos apremiantes entre diferentes usos y usuarios de los recursos naturales en las laderas (Duron y Bergeron, 1996;Leonard, 1987;López-Pereira, Scherr y Mendoza, 1996).La última década ha visto un proceso de reforma extensiva de políticas como parte del ajuste estructural en toda Mesoamérica, con impactos profundos sobre el papel del gobierno en relación a la agricultura y el manejo de recursos naturales 'Por el término \"laderas\" nos referimos a áreas donde el manejo de la tierra se ve afectado significativamente por la presencia de pendientes moderadas (12-30%) a tuertes (mas de 30%). El término incluye a áreas planas Que torman parte de sistemas de ladera. En el sur de México y Centroamérica. la mayoría de las regiones de ladera son habitadas por campesinos o grupos indígenas...... ..17 ..(véase Sain y Lopez-Pereira, este volumen). Pero en general, las reformas legislativas y normativas, y los programas de desarrollo relacionados con el MRN en la agricultura de laderas, no estaban cimentadas en los resultados de análisis científicos. Aún hoy faltan datos básicos sobre quién produce qué producto bajo qué condiciones ecológicas, y sus efectos económicos, ambientales y sociales. También faltan análisis--basados en datos empíricos y no supuestos--sobre los factores causales de las tendencias actuales y el impacto de las políticas sobre ellos. Para llenar este vacío, se necesita promover un mayor esfuerzo de investigación científica sobre las políticas mas relevantes para el manejo de recursos naturales en las laderas, y promover la utilización de los resultados de la investigación en los debates sobre políticas.Este libro surgió de una serie de discusiones sobre este tema, entre investigadores de varias entidades nacionales e internacionales que están involucrados en la investigación sobre políticas en Mesoamérica (véase los antecedentes en el Prólogo). El volumen explora los temas prioritarios de la investigación sobre políticas para el desarrollo sostenible en las laderas. También discute los retos sobre cómo diseñar, implementar y diseminar los resultados de este tipo de investigación en políticas, y cómo fortalecer a la comunidad regional de investigadores. En este capítulo introductorio se resume la naturaleza de estos retos y se revisan la estructura y contenido del libro.En segundo lugar, una amplia gama de \"instrumentos de política\" específicos, a nivel nacional, sub-regional o local, afectan de manera directa o indirecta las opciones y decisiones de los usu~ios de los recursos naturales. Las políticas macroeconómicas y de comercio exterior (por ejemplo, tasas de cambio que afectan el mercado de productos de exportación o impuestos sobre importaciones) afectan el marco general para tales decisiones. Pero usualmente no se pueden diseñar ni implementar dichas políticas para que tengan efectos específicos sobre el MRN o sobre las laderas. Otros instrumentos sí pueden ser formulados (por lo menos teóricamente) para tener efectos específicos, como las políticas de precios (por ejemplo, los subsidios agrícolas o la tarifa por consumo de agua); las políticas de organización estatal (por ejemplo, la descentralización de servicios públicos); las políticas de tecnología (como las prioridades de investigación técnica o la asistencia técnica a los agricultores); los derechos de propiedad y regulaciones sobre recursos (como la tenencia de la tierra o regulaciones de corte de árboles); o inversiones públicas (como la infraestructura rural).En los debates actuales en la región sobre los objetivos y los instrumentos de política para promover desarrollo sostenible en las laderas, se carece de la información que se necesita para decidir su dirección y contenido, las prioridades y la aplicación necesaria. La investigación sobre políticas puede proveer tal información.¿Qué se quiere decir por \"investigación sobre políticas\"? Una definición indica que \"la investigación sobre políticas constituye la recolección y análisis sistemático de información sobre el diseño, implementación o resultados de las decisiones sobre políticas y programas públicos\". Va mas allá de la investigación socioeconómica en general, al examinar la interacción entre los procesos socioeconómicos y las políticas públicas. Un tipo de estudio documenta la efectividad, la eficiencia o los impactos de políticas pasadas o actuales, usando métodos retrospectivos o datos provenientes de un monitoreo efectuado a largo plazo. Otro tipo busca identificar los \"puntos claves\" estratégicos en la política, para alcanzar objetivos específicos. Un tercer tipo de estudio intenta predecir la efectividad futura, eficiencia o impacto de opciones alternativas de políticas. (Delgado, 1994;véase también Dunn, 1994y Garrett e Islam, 1996). Un elemento importante puede ser la identificación de las perspectivas de los pobladores y otros actores e incorporarlos en los análisis.En la investigación aplicada, hay varios paradigmas sobre el tipo de enlace entre el investigador, los formuladores de política, y los actores de desarrollo (por ej., véase Barry, este volumen;Heineman, RA., et al., 1990). Sin embargo, hay que distinguir cuidadosamente entre el \"proceso político\", y la \"investigación sobre políticas\" la cual proporciona información sobre las opciones alternativas de políticas y sus efectos probables sobre varios factores. Así, el papel de la investigación sobre políticas no es el de ser un actor político (aunque algunos investigadores seleccionan jugar este papel también). Su función, más bien, es la de proveer información y análisis relevantes para informar mejor a los participantes en el debate político, ya sea información a corto plazo sobre el diseño de instrumentos de políticas específicas, o estrategias a largo plazo sobre las políticas fundamentales de desarrollo.Investigación Sobre el \"Triángulo Crítico\"Ciertamente existe una larga y distinguida historia de la investigación sobre políticas en Centro América y México. En general, sin embargo, estos trabajos se han implementado con un enfoque macroeconómico, o sobre sectores específicos como la agricultura, la silvicultura, el agua, la nutrición. Ha habido poco trabajo que analiza de forma simultánea los tres vértices de lo que Vosti y Reardon (1997) llaman el \"triángulo crítico\" de desarrollo sostenible: el bienestar social, la condición de los recursos naturales y la productividad económica. El reto es entender los intercambios entre los tres aspectos, y buscar políticas, instituciones y tecnologías para hacer los tres objetivos del triángulo crítico más compatibles. Para hacerlo, se debe conocer mucho más acerca de los vínculos entre crecimiento agrícola, pobreza, el uso de los recursos naturales y los factores que condicionan estos vínculos, dentro de las diversas zonas agroecológicas y socioeconómicas, y bajo diferentes regímenes de políticas.Tal tipo de investigación está surgiendo en la región. Hasta ahora han predominado los estudios relacionados con la tecnología de producción, como ser la documentación de su contribución a la producción, la protección del medio ambiente, y el alivio de la pobreza, y evaluaciones sobre las políticas que afectan la adopción de tecnologías específicas. Hay mucha investigación sobre los procesos y la dinámica social rural (la migración, la nutrición, los efectos agregados del ajuste estructural, etc.) y obviamente estos factores pueden tener impactos cruciales en las laderas.Además, intelectuales de Centro América y México han proporcionado liderazgo en la conceptualización del desarrollo sostenible (por ej., nCA, 1991;Gallopín, et al, 1991;Kaimowitz, 1996), el análisis científico de prácticas de agricultura y forestería sostenible (en centros de investigación como CATIE Yla Organización de Estudios Tropicales), y de indicadores de sostenibilidad (Winograd 1995) Se han efectuado trabajos excelentes en la región en el desarrollo e implementación de métodos de \"investigación rápida\" en el análisis de políticas y planeación relacionado con el manejo de recursos naturales, usando datos ya disponibles, informantes claves y grupos de enfoque (por ej., Johnston y Lorraine, 1994).Pero son pocos los trabajos de investigación en donde se distinguen los procesos y resultados en las laderas de los procesos en los valles, a pesar de las diferencias en el contexto social y político, en las limitantes y oportunidades presentadas por la ecología diversa y a veces frágil en las laderas, y en las externalidades presentes. Es todavía raro que se vaya mas allá de los efectos económicos o sociales para investigar y medir (no simplemente asumir) los enlaces y efectos de estos con el manejo y condición de los recursos naturales y la productividad agrícola. Las alternativas institucionales (para la producción; el mercadeo; los derechos de agua, bosque y tierra; la regulación y monitoreo ambiental), a nivel local, muniCipal y nacional han sido poco tratadas desde la perspectiva del triángulo crítico, y usualmente no con métodos de investigación rigurosos y empíricos. La escasez de datos oficiales de censos y encuestas, además de la dificultad de ligar los datos que sí existen con variables geográficas, dificulta aún más la tarea.Otro reto para la investigación sobre políticas de manejo de recursos naturales en laderas es metodológico. Existe ya una rica \"colección de herramientas\" para el análisis de políticas, provenientes de las disciplinas de economía agrícola/forestal, economía de recursos naturales y ambiente, geografía, sociología, antropología ecológica y económica, y ecología política. Incluye métodos cualitativos (Patton 1990), cuantitativos (Sadoulet y de Janvry 1995), 2L participativos (Chambers 1983), geográficos (Aldendorfer y Maschner 1996), y modelos bioeconómicos (Deybe 1994). Pero aún falta por hacer una adaptación y prueba de tales métodos para aplicarlos a los problemas de manejo de recursos sostenibles en laderas, desde la perspectiva del triángulo crítico. Scherr, Pender y Bergeron (este volumen) ilustran la problemática en el ejemplo de su estudio en las laderas de Honduras.De hecho, los estudios sobre desarrollo sostenible en laderas han sido limitados. Se ven impulsados principalmente desde afuera por los bancos internacionales de desarrollo, las ONG internacionales, o los donantes, y son implementados mas comúnmente por investigadores ajenos a la región o por medio de consultorías privadas. Desafortunadamente, la consultoría como institución no es una herramienta para fortalecer a la nueva generación de jóvenes investigadores como lo es la universidad; las consultorías tampoco se relacionan íntimamente con el proceso político, de la misma forma en que lo puede hacer un centro de estudios de política gubernamental o no-gubernamental. Las consultorías tampoco brindan incentivos para servir como eje o sostener un programa de investigación a largo plazo, o sobre temas que no están \"de moda\" entre los que financian la investigación. La privatización de la información, y la falta de distribución pública de los resultados de muchas consultorías también debilitan el debate sobre políticas.Durante los talleres sobre investigación en políticas en Mesoamérica, los participantes en las discusiones compartieron la visión de que existe una brecha entre la alta demanda y necesidad de realizar investigaciones empíricas orientadas a contestar preguntas sobre las estrategias e instrumentos de políticas, y la falta de recursos para hacerlo dentro de la región. Se identificó la importancia de promover una participación mas activa de los investigadores y analistas de políticas, conjuntamente con actores de base, la sociedad civil, y el gobierno, para el desarrollo democrático de un nuevo marco de políticas (véase el último capítulo de este volumen).Entonces, ¿cómo se puede reforzar a las instituciones públicas para que lleven a cabo estas tareas, y cómo se puede brindar una contribución pública a la investigación privada? El grupo concluyó que, en general, la comunidad regional de investigadores (profesionales en las universidades, los centros de investigación, las agencias del gobierno y las consultorías) necesita de mayor capacitación en métodos de análisis, mas oportunidades e incentivos para la investigación del campo, mayor financiamiento, mayor acceso a la literatura y a bases de datos claves--todos elementos que se consideran necesarios para producir trabajo de primera calidad (Babu, 1996a;1996b). Identificaron a la colaboración interinstitucional regional como una vía potencialmente ventajosa para alcanzar estos objetivos.Zeller, Mataya e Islam (1997) definen los objetivos de tal fortalecimiento de la siguiente manera: \"asegurar que los sistemas de investigación...tengan suficientes recursos humanos para definir las prioridades de investigación, manejar e implementar un programa de investigación, poder solucionar problemas en las áreas de investigación sobre políticas; y crear un ambiente de auto gestión por todo el sistema. [También] poder generar apoyo financiero doméstico y un grupo estable de científicos nacionales\" (pág. [3][4].Alcanzar una masa crítica de investigación de alta calidad sobre políticas para desarrollo sostenible en las laderas requiere de toda una estrategia para fortalecer la capacidad regional en análisis sobre políticas y el papel de los investigadores en los debates, vinculando la realidad local con la realidad política nacional.En apoyo a esta meta, los editores de este libro esperan alcanzar tres objetivos:1. Definir, e ilustrar por medio de estudios de caso, los nuevos retos para la formulación de políticas para el desarrollo sostenible en las laderas que han surgido con los cambios estructurales en la economía, las nuevas oportunidades económicas que se ofrecen en las laderas, y el reconocimiento de las amenazas ambientales 2. Explorar los retos metodológicos para llevar a cabo investigaciones sobre políticas que efectúen un análisis económico/social/ambiental integrado orientado por el concepto de \"desarrollo sostenible\"; y 3. Sintetizar la experiencia dentro de la región para diseñar estrategias efectivas para organizar la investigación y promover oportunidades colaborativas, y para aumentar el impacto de las investigaciones sobre el debate nacional y regional de políticas.El libro se enfoca sobre el proceso de transformación en el uso y manejo de los recursos por pobladores en las comunidades agrícolas y forestales de ladera, y los instrumentos de política que actualmente, o potencialmente, afectan a las decisiones tomadas por ellos, los representantes del estado, los negociantes de productos de ladera y otros que inciden en tal transformación. Hay otros temas y políticas importantes para el desarrollo en laderas que no se tratan aquí, por límites de espacio; algunos de estos temas incluyen el desarrollo forestal industrial, la minería, la contaminación industrial de aguas, la construcción de infraestructura, y los servicios sociales.Los capítulos a continuación representan varias perspectivas sobre el tópico de investigaciones en políticas para el desarrollo sostenible en Mesoamérica. En esta sección, se ofrece una breve reseña y bosquejo de los temas centrales de cada una de las ponencias.Los capítulos iniciales del libro (2-6) ilustran la complejidad del tópico y sugieren temas de investigación y consideraciones de metodología para el diseño de la investigación.En el capítulo 2, Sara Scherr y Oscar Neídecker-Gonzales presentan un marco para examinar los alcances y los potenciales para desarrollo sostenible en las laderas de Mesoamérica. Argumentan que ciertos factores en el desarrollo regional actual se prestan a una nueva oportunidad para inversión en las laderas, como las reformas en políticas agrícolas, cambios demográficos, nuevos mercados, mayor valoración de los recursos naturales, el desarrollo de nuevas tecnologías, y la paz civil. Revisan las direcciones de cambio en el manejo de tierras en laderas durante los últimos 25 años. Indican que aunque la producción de granos básicos ha experimentado un crecimiento errático asociado con la degradación de recursos, han emergido nuevas tecnologías para la intensificación sostenible que parecen ofrecer opciones rentables para este sub-sector. Enfatizan los procesos de diversificación e innovación técnica e institucional que han comenzado en las laderas, en los sectores de café, leche, cultivos no-tradicionales, agroforestería y forestería comercial, y en el manejo de recursos para reservas locales, cuencas hidrológicas y áreas protegidas. Concluyen con una discusión de la necesidad de formular políticas que reflejan la diversidad de vías de desarrollo en las laderas, lo que requerirá de un mayor esfuerzo de investigación empírica en la región. provocó un aumento de las superficies cultivadas en tierras de menor potencial de producción, usando sistemas extensivos de producción. En México, donde se implementaron políticas de fomento a la producción, la producción interna creció a un ritmo mucho mayor, aunque el consumo aumento mucho también.En el capítulo 5, Ruerd Ruben, Paul van den Berg, Maarten Siebe van Wijk y Nico Heerink exploran el potencial de aumentar la productividad de la producción de maíz en laderas por medio de nuevas tecnologías que requieren menos insumos externos y protegen mejor los suelos y el agua. Examinan varios métodos que se pueden utilizar para el análisis económico de tales tecnologías con el propósito de informar la política, y defienden el uso de las funciones de producción en el estudio de caso. Comparan la rentabilidad del frijol abono, un cultivo de cobertura, con la de fertilizantes químicos como fuente de nutrimentos en 75 hogares campesinos en Copán, Honduras. Concluyen que el frijol abono es mas rentable en parcelas con suelos mas pobres y en fincas mas grandes (en esta región, las fincas de laderas), mientras que en las fincas pequeñas y las áreas de valle mejor vinculados con el mercado, el fertilizante químico da mejores resultados. Es notable que otras características del hogar y de la finca no afectaron al resultado. El frijol abono produjo mas nitrógeno que el fertilizante, pero su utilidad fue limitada por la escasez de fósforo. Los autores recalcan la importancia de los mercados de factores de producción, además de los precios relativos de insumos y productos, al condicionar el desempeño y aceptabilidad de las tecnologías. Sugieren que los procesos a largo plazo de \"minifundización\" y mayor integración comercial no favorecen una extensión significante del uso de mucuna.En el capítulo 6, Sara Scherr, John Pender y Gilles Bergeron discuten las dificultades metodológicas de analizar e investigar las interacciones entre producción agrícola, el manejo de los recursos naturales y el bienestar social, y el impacto de las políticas sobre ellos. Retos particulares son cómo manejar la complejidad de los determinantes de MRN, c()mo analizar la variación espacial y temporal de los impactos, cómo analizar las interacciones a diferentes escalas, y cómo incorporar las perspectivas de actores locales. Ilustran dicha problemática y presentan una estrategia metodológica en un estudio de la evolución del manejo de suelos, bosques yagua entre los años 1970s y 1990s en las laderas de la Región Central de Honduras. El estudio intentó documentar cómo los cambios importantes de población, mercados y políticas a nivel regional se transformaron en cambios locales en instituciones y mercados, y cómo estos, a su vez, afectaron las decisiones de individuos y de grupos sobre el MRN, y el efecto consecuente sobre el bienestar, la productividad y las condiciones de los recursos. De esta experiencia, los autores sugieren algunas implicaciones para el fortalecimiento de la capacidad en investigación sobre políticas en MRN y agricultura. Se sobresalta la importancia de conceptualizar claramente la pr9blemática, la importancia de la investigación interdisciplinaria, y el potencial de integrar varias herramientas de medición y análisis cuantitativos y cualitativos (como los sistemas de información geográficas, los métodos participativos, las encuestas y los modelos computarizados).Los ensayos en la segunda sección del libro (7-10) tratan de las restricciones y potenciales de organización institucional para llevar a cabo las investigaciones. Sugieren algunas estrategias y políticas de investigación que pueden servir de guía para una próxima generación de investigadores en políticas para desarrollo sostenible.En el capítulo 7, Deborah Barry, argumenta que los cambios recientes en la región--el ajuste estructural, la liberalización económica y la democratización--cambian fundamentalmente la estrategias relevantes para la investigación sobre políticas. Han desaparecido la mayoría de los instrumentos de política agrícola que existían en el pasado (p.ej., créditos subsidiados), y hay una ausencia relativa de instrumentos de política para manejo de recursos naturales en la agricultura. Además hay múltiples actores gubernamentales y no-gubernamentales que tienen un impacto sobre el manejo de recursos. Hay poco entendimiento de las interrelaciones entre los factores que afectan el manejo de recursos y sus efectos. Concluyen que, en este ambiente, la investigación y análisis aplicado sobre políticas requiere de nuevas modalidades para influir al diálogo de políticas y el comportamiento de los productores, las instituciones locales, y otros actores. Indican la importancia de establecer un marco global para analizar e interpretar los procesos de MRN, y de entender la sociología de la formulación de políticas. Subrayan que participar en la investigación como socios ayuda a los actores a reflexionar sobre los temas y lleva a que la investigación conteste las preguntas que mas preocupan a todos los actores, o los temas que mas limitan su rango de acción. Los autores ilustran estos principios con estudios de caso de dos proyectos en El Salvador--uno sobre la problemática nacional de recursos naturales, y uno que apoya a las instituciones locales para examinar sus propios problemas de MRN y desarrollar políticas locales apropiadas.En el capítulo 8, David Kaimowitz y Anuar Murrar presentan una cronología analítica de la colaboración regional en Centroamérica en la investigación de políticas rurales desde los años 70 al presente. Examinan en detalle la experiencia de doce iniciativas colaborativas durante el período. Notan que la colaboración regional ofrece oportunidades reales para el análisis comparativo entre países, una masa crítica de discusión, la creación de iniciativas regionales de políticas, y economías de escala. Pero advierten que nada garantiza que estas ventajas se llevarán a cabo de hecho. Concluyen que para que una iniciativa regional logre el impacto deseado, debe responder a necesidades sentidas por los investigadores y por los actores sociales centroamericanos; promover la formación de investigadores centroamericanos; estimular la realización de la investigación primaria; partir de iniciativas ya existentes; mantener un balance cuidadoso entre países; y tener una coordinación fuerte, pero no imponente.En el capítulo 9, ALexander CoLes examina el estado actual de la investigación regional sobre políticas para MRN en relación con la agricultura. Aunque ha habido un auge en actividades de análisis de políticas sobre recursos naturales y agricultura, se encuentra limitada actividad en los institutos y centros de investigación regionales o nacionales. Coles describe brevemente los proyectos, programas de posgrado y redes regionales que existen, y analiza sus aspectos positivos y sus debilidades. Se observa un énfasis en el trabajo actual sobre las políticas de desarrollo y promoción de tecnologías para la agricultura sostenible, pero mucho menos que documente empíricamente las relaciones entre el manejo de recursos naturales en la agricultura de laderas y políticas específicas de diferentes sectores estatales o macroeconómicos. Los investigadores en los institutos nacionales indicaron la necesidad de mayor capacitación en análisis del tipo que vincule el conocimiento sobre producción agrícola, manejo de recursos naturales, y procesos socioeconómicos. También, faltan acceso a datos secundarios y a literatura profesional sobre aspectos críticos de la agricultura y _11\\ _ manejo de recursos en las laderas. Muchos se sienten aislados y se entusiasmaron por las oportunidades ofrecidas por las redes.Los participantes en el taller de Zamorano reconocieron esta problemática de la capacidad regional en la investigación, y discutieron los problemas y las oportunidades para fortalecerla. En base a estas discusiones, se elaboró un plan global de acción para un nuevo Grupo de Análisis de Políticas para el Desarrollo Sostenible en Laderas, que luego fue desarrollado en la reunión anual del PCCMCA (véase el Prologo). En el capítulo 10 se presenta este Plan Global. Sus rubros principales son desarrollar a la investigación colaborativa; proporcionar apoyo institucional a las redes ya existentes; apoyar la publicación de los resultados de la investigación; desarrollar la capacidad de comunicación, y fortalecer la capacitación para la investigación sobre políticas.Se espera que la experiencia y las lecciones ofrecidas por los autores de este volumen sobre las prioridades de investigación, la metodología para análisis conjunto de los elementos del triángulo crítico, y los elementos para una organización efectiva para la investigación--sirvan para motivar y alimentar este esfuerzo.La región de Mesoamérica~l sur de México y Centro América 4 -se ve dominada físicamente por sus laderas (Mapa 1). En Centro América las proporciones de superficie clasificadas como tales varían apenas de 73% en Costa Rica, hasta 95% en El Salvador, para un promedio ponderado de 79% en el total de la región. (Ver Cuadro 1). El Cuadro 2 ilustra la importancia de las laderas en la producción agrícola y forestal, de acuerdo con estimaciones hechas por expertos de la región. Más del 60% de la tierra para la agricultura y ganadería del istmo Centroamericano se encuentra en zonas montañosas. Por su parte, más del 50% de los bosques también se encuentra en laderas (Lindarte y Benito 1991, pág. 168). De las laderas nacen las fuentes de agua para las ciudades, el riego, la industria, y la energía hidroeléctrica, y muchas de las reservas de biodiversidad de la región. Además, los asentamiento de poblaciones de bajos recursos se concentran en regiones de laderas en Mesoamérica.Es lógico que una agricultura productiva en áreas de ladera puede servir como una base para la diversificación en agro empresas, el desarrollo de micro industrias artesanales y servicios que contribuyan al desarrollo y empleo local y que reduzcan la presión sobre los recursos causada por la agricultura extensiva y migratoria. Las nuevas tecnologías para intensificación sostenible de la agricultura, la ganadería y la silvicultura bajo condiciones de pendientes fuertes, de relativamente bajo costo, ofrecen oportunidades antes no anticipadas para desarrollar una agricultura de alto valor en estas áreas. Los retos tecnológicos, institucionales y políticos para alcanzar la anterior visión han sido definidos por muchos observadores (Saín, Tripp y Brenes, 1995;López-Pereira, Scherr y Mendoza 1995;Miranda, 1997;nCA, 1991). Aunque este potencial no se ha realizado a una escala amplia, los procesos de intensificación, expansión del mercado, e innovación tecnológica e institucional en las áreas de ladera son prometedores. 5• Los paises analizados en este ensayo incluyen, en Centro América, a Costa Rica, El Salvador, Guatemala, Honduras y Nicaragua, yen el sur de México, a los estados de Chiapas, Oaxaca y Guerrero., En varios paises asiáticos y africanos se han aprovechado mucho más los recursos de laderas para contribuir al desarrollo local y nacional. Se han desarrollado tecnologías especiales para condiciones en donde predomina la pendiente, y que soportan una densidad de población mucho mayor que lo que se encuentra en las laderas de Mesoamérica. Se han experimentado con formas institucionales que reconocen a usuarios múltiples de recursos en estas áreas, y se han hecho cambios en el marco de políticas nacionales y locales para promover un mayor desarrollo en estas zonas (Scherr, Jackson y Templeton 1995;Sollema y Stollz, eds. 1994 l. En Mesoamérica también hay potencial para replicar estos logros.La siguiente sección de este ensayo discute cómo las nuevas posibilidades para el desarrollo sostenible en las laderas han surgido como resultado de los cambios en las condiciones demográficas, socioeconómicas y tecnológicas, y a causa de cambios en el marco de políticas.. La tercera sección presenta una reseña histórica de los cambios en el manejo de las tierras de ladera, incluso la incipiente difusión de prácticas mas sostenibles. La cuarta sección describe la diversidad de condiciones y oportunidades en las laderas que demandan de una política diferenciada para promover el desarrollo sostenible.En el pasado, existían importantes restricciones para el desarrollo agrícola en las laderas. Estas limitantes incluían el aislamiento y falta de infraestructura, la falta de acceso a mercados e insumos y la marginalidad política. En general, faltaban tecnologías y condiciones económicas en la región adecuadas para promover la intensificación sostenible en áreas de alta pendiente. La silvicultura fue organizada para beneficiar el sector público y los intereses comerciales fuera de las laderas, no a la población local. ¿Qué factores han cambiado en la reglOn para ofrecer nuevas oportunidades y retos económicos para la producción agrícola en las laderas? Entre los factores mas importantes notamos la reordenación de las políticas agrícolas nacionales, los cambios demográficos, los nuevos mercados para productos de laderas, mayor atención a los recursos naturales, el desarrollo de nuevas tecnologías apropiadas para las laderas, y la paz civil.De los años 1950 a los inicios de los 70s, la política nacional en los países de Mesoamérica promovió el desarrollo basado en las exportaciones, inicialmente las exportaciones tradicionales de café y plátano, pero luego incluyendo al algodón, azúcar, y carne. Predominaban las actividades en fincas y agro-negocios grandes, y en los valles (Williams, 1986). En los años 70, en reacción a los problemas económicos internacionales y los problemas sociales domésticos, se empezó a dar énfasis a políticas de seguridad alimentaria. Se definió un papel activo del estado, incluyendo subsidios de crédito e insumos, inversiones públicas en infraestructura, precios de garantía y subsidios al consumidor de los granos básicos. Se promovieron las tecnologías de la Revolución Verde, principalmente en las mejores tierras agrícolas, pero también con programas de asistencia técnica dirigidos a los pequeños propietarios, con cobertura selectiva en las laderas (por ejemplo, véase Rodríguez, 1996, para el caso de Honduras). Al mismo tiempo, se intento promover el desarrollo de los sectores no agrícolas.En la década de los 80, los desequilibrios estructurales de las economías se llevaron a una grave crisis económica. La moneda se sobrevaloró en todos los países. Esta época también corresponde con un período de conflictos civiles que afectaron a la economía general y en algunos casos, las economías locales en áreas de laderas. En la segunda mitad de la década, se inició el ajuste estructural. Se devaluaron las monedas y disminuyó mucho el papel del estado, exponiendo las economías mas al mercado internacional. Saín y López (este volumen) describen la cronología por país. El ajuste trajo mejoras en los términos de intercambio para la agricultura en general, que a su vez se vio afectada por el Tratado de Libre Comercio y el Mercado Común Centroamericano (Reca y Díaz Bonilla, 1997).Esta nueva situación promovió oportunidades para la exportación de algunos productos de alto valor, como piña, melón, flores. Pero ha tenido efectos mixtos para los granos básicos (véase Saín y López en este volumen para más detalles). La marcada caída del. apoyo gubernamental para la agricultura y el aumento en el precio de insumos importados, ha tenido un impacto negativo sobre las áreas que antes habían recibido ayuda de estos programas.El reducido enfoque de inversión pública sobre el sector agrícola refleja también el papel reducido de la agricultura en la economía. Entre los años 1970 al presente, la proporción de la agricultura en el producto interno bruto (PIB) de los países de Mesoamérica, con la excepción de Nicaragua, bajó notablemente (Cuadro 3). Muchos formuladores de política ahora ven a otros sectores como \"fuentes motrices de crecimiento económico\" para el futuro. Esto implica la necesidad de una nueva estrategia de política agrícola en el futuro, que esté basada no tanto en subsidios del gobierno, sino en las oportunidades de los mercados y en la sociedad civil. Actualmente, se están desarrollando nuevas instituciones einiciativas nacionales y regionales (Trejos y Pomareda, 1991), mientras a nivel local hay experimentación con la descentralización del estado y nuevos papeles para las organizaciones no gubernamentales (ONG) en el desarrollo agrícola. Sin embargo, el marco legislativo y de regulacién, y el patrón de gastos públicos rurales tendrán un papel crítico en la dirección y efectividad del sector, incluso en las laderas.Las condiciones demográficas desde 1970 también han creado nuevas demandas y oportunidades para el desarrollo agrícola sostenible en las laderas. Históricamente, los procesos de desarrollo agrícola y ganadero en los valles en Centro América han contribuido mas a la expulsión de la población hacia las laderas, que a la absorción productiva de mano de obra dentro de las laderas (Williams 1986, pág. 166, Dunkerley 1988, pág. 179). Mientras que la tasa de crecimiento urbano en Centro América ha sido alta (variando de 2.8% en el Salvador a 5.4% en Honduras), también ha habido crecimiento rural significativo, de 1.7% en El Salvador y Nicaragua a 2.4% en Guatemala. Aunque en México el crecimiento promedio anual entre 1965 y 1995 fue de 3.7% en la zona urbana y solamente .6% en la zona rural, en los estados del sur el crecimiento rural fue mayor (Banco Mundial, 1995). Así, a pesar de las tendencias recientes de acelerada urbanización y posibles reformas en los mercados de tierras en los valles, es probable que la población total en las áreas de ladera de Mesoamérica seguirá creciendo en las próximos décadas.Este crecimiento rural,. conjuntamente con los cambios en área bajo producción agrícola, han provocado cambios en la densidad de población rural. El Cuadro 4 compara tres medidas de densidad de población rural. Dada la proporción limitada de área bajo cultivos en esto países montañosos, la medida convencional-población rural por km2-tiene poco sentido para análisis de presión sobre la tierra, pero sí ilustra las altas tasas de crecimiento rural en Centro América, sobre todo en Costa Rica, Guatemala y Honduras. La presión de población sobre la producción de alimentos se indica por el número de habitantes rurales por km2 de tierra arable, que aumentó notablemente en todos los países con la excepción de El Salvador y México.El número de habitantes por km2 de tierra agrícola (de acuerdo con Lindarte y Benito, 1991, estas tierras incluyen los cultivos anuales, cultivos perennes y pastos) es un mejor indicador de la presión de población hacia la intensificación agrícola y el desarrollo de mejores sistemas de manejo de recursos naturales. Un estudio comparativo internacional extenso mas de 50 de áreas de laderas tropicales, encontró evidencia de la transformación hacia paisajes mas sostenibles-por medio de innovaciones tecnológicas e institucionales--en donde los niveles de densidad rural eran de mas de 100 habitantes por km2 (Templeton y Scherr, 1997). Desde esta perspectiva, se considera que en Nicaragua la presión es todavía relativamente baja. Esto sugiere que hay pocos incentivos todavía para que los agricultores intensifiquen e inviertan en la calidad de sus suelos, o en el desarrollo de nuevas organizaciones o regulaciones para la protección de recursos. En Honduras y Costa Rica, la presión de población indica que existen condiciones que potencialmente podrían promover una transición significativa de sistemas extensivos de producción hacia los mas intensivos. En Guatemala y El Salvador, las densidades de población han subido a niveles que sugieren, desde la perspectiva internacional, que existen los incentivos para la intensificación y la inversión en la productividad y protección de los suelos y otros recursos naturales. Dado el patrón de distribución de la tierra en Mesoamérica, la presión de población en muchas zonas de laderas en los demás países también son tales que hay necesidad y circunstancias mas conducentes para la inversión en sistemas de producción mas sostenibles y productivas.Obviamente, este resultado optimista no es nada seguro. Templeton y Scherr (1997) enfatizan la importancia de las condiciones de los mercados, las tecnologías disponibles, las condiciones agroecológicos locales, los factores institucionales y las políticas en condicionar los impactos del crecimiento de la población. Pero, a menos, debe haber mayores oportunidades en el futuro para promover un mejor manejo de las tierras y otros recursos que en el pasado.Los mercados para productos de ladera han crecido notablemente. Primero, existe una creciente demanda por productos agrícolas y forestales, resultado de la urbanización y el crecimiento de la población rural, juntos con el crecimiento economlCO, la liberalización del comercio intraregional centroamericano, y la disminución del bosque natural que antes proporcionaba los productos forestales. Han surgido importantes oportunidades en las laderas para productos de mayor valor, como la leche y los productos hortícolas, frutícolas y agroforestales. A medida que la población urbana sigue aumentando, habrá todavía mas demanda para la tierra de los valles para usos de urbanización, infraestructura, e industria. En algunos países, este proceso potencialmente aumentará la demanda para tierra agrícola en las laderas El potencial comercial de las laderas también ha expansionado en las ultimas décadas--y seguirá creciendo--por las inversiones en la infraestructura de comunicación y transporte. Aunque son todavía inadecuadas en muchas áreas, han transformado el potencial comercial para grandes áreas en las laderas. El mejor acceso aumenta la competitividad entre intermediarios, y el poder de negociar de los productores, para que reciben una mayor parte de la ganancia. Lo que todavía falta son las instituciones locales desarrolladas para proveer los servicios de este comercio.Otro cambio importante en el contexto para desarrollo en las laderas ha sido un mayor reconocimiento de la importancia económica y social de los servicios ambientales que proveen. Mas importante es el recurso de agua, que tiene su fuente principal de formación en las regiones de laderas y montañas. La creciente urbanización y el desarrollo industrial resultan en un mayor uso de agua en las ciudades, y la generación de luz hidroeléctrica requiere de provisión adecuada de agua y control de la tasa de sedimentacíon. El ecoturismo ha aumentado la importancia de la estética de los paisajes y ha presentado conflictos con usos productivos de las laderas.Para proteger y manejar estos recursos, en el pasado se crearon políticas para excluir la población rural de estos recursos. Pero no funcionaron bien aún cuando la población era mas baja, y mucho menos con una creciente población. Proteger a los recursos hace aún mas importante una estrategia de desarrollo sostenible para las laderas.Han habido iniciativas políticas importantes en el área de los recursos naturales. A nivel regional, la Alianza para el Desarrollo Sostenible (ALIDES) fue establecida por los Presidentes de Centro América en 1994 (Segura 1997). También, el IICA inauguró un nuevo programa de Desarrollo Sostenible, y se han desarrollado iniciativas de investigación agrícola internacional dirigidas especialmente a las laderas (véase el capítulo por Coles). La Comisión Centroamericana de Ambiente y Desarrollo (CCAD) fue establecida en 1990, conformada por los Ministros de Recursos Naturales y Ambiente.Todos los países de la región también han iniciado procesos de reformas en las leyes y regulaciones, y la estructura de gobierno para los recursos de agua, bosque, fauna, etc. En muchos casos se ha descentralizado el control sobre recursos al nivel local. Han habido iniciativas innovativas, como el canje de deuda nacional por conservación (Debt for Nature Swap) en Costa Rica.En los últimos 25 años, la región del sur de México y Centro América ha sido un líder internacional en el desarrollo de inversiones y prácticas de manejo sostenible de agricultura y recursos naturales. Ejemplos importantes incluyen los agroforestales desarrollados por programas de CATIE y las universidades mexicanas, y el desarrollo de tecnologías de bajos insumos por parte de ONGs para regeneración de tierras agotadas. Los centros de investigación agrícola nacionales e internacionales han desarrollado variedades de maíz, café y otros cultivos adaptados a las condiciones de ladera. Este ha sido un período de experimentación, tanto para los proyectos de desarrollo y extensión. Se han aprendido importantes lecciones sobre las tecnologías y métodos de difusión apropiados a las condiciones variantes en la región. También se ha experimentado mucho con sistemas de manejo de agua y bosque, y con instituciones locales para el MRN como la reforestación comunitaria, y el ecoturismo (véase ejemplos en Castro, este volumen y Neidecker-Gonzales y Scherr, 1997).Todavía no se observa en el campo una amplia adopción de estas tecnologías nuevas. Pero las nuevas condiciones demográficas y económicas, junto con el entendimiento más refinado de los potenciales y restricciones, hacen ahora más factible y rentable su uso y difusión.Las guerras civiles en Mesoamérica afectaban particularmente a las áreas marginales de laderas, donde a menudo vivían los sectores más pobres. El fin de las guerras 6 deja mucho mas espacio para •la actividad económica en estas regiones.Al mismo tiempo. ahora existe la promesa de lograr una mejor representación política y un mayor respeto para los derechos humanos para las poblaciones marginadas en las laderas. Aunque no parece haber mucho espacio político para reforma agraria a gran escala, hay posibilidades de mejorar el persistente problema de la ilegalidad en acceso a tierra por medio de mejoras en los mercados de tierras, nuevos sistemas de impuestos sobre la tierra, y bancos de tierra para apoyar a los campesinos en compras de tierras.En los años sesenta, la agricultura campesina de ladera en Mesoamérica típicamente se caracterizaba por una finca mixta, con producción de subsistencia en granos básicos y comercialización del excedente. En México, El Salvador y Guatemala, también había producción de café a pequeña escala, y en áreas de alta densidad de población, sistemas de minifundio que se enfocaron principalmente en los granos básicos. Frecuentemente vendían su mano de obra a los grandes terratenientes de café o en los valles; también buscaban trabajo fuera de la zona rural y hasta fuera del país. El bosque estaba bajo dominio público, con concesiones a compañías privadas para el corte comercial de madera, y restricciones al acceso de comunidades locales a sus necesidades de subsistencia (Dunkerley 1988, págs.179-2ü 1) • El período mas agudo de violencia rural era en los años 1975-79 en Nicaragua, 1980-87 en El Salvador, yellos 80s en Guatemala. La violencia en el sur de México surgió a principios de los 90. Panamá sufrió económicamente a raíz de la intervención militar durante la administración Bush. Costa Rica ha sido relativamente estable.En las últimas décadas han habido cambios significativos en el manejo de las tierras agrícolas y forestales en las laderas de Centro América y México. Los procesos de crecimiento demográfico y apertura de mercados han creado una situación muy dinámica y fluida en las laderas. Los pobladores se han visto forzados a reaccionar a una marcada disminución en el tamaño promedio de las fincas, una disminución en la disponibilidad de tierras para barbecho, la desaparición del bosque en muchos lados como fuente de leña y otros productos de subsistencia, y la introducción de nuevos cultivos e insumas. Las laderas se han integrado todavía mas a los mercados nacionales de productos y factores de producción (mano de obra, tierra, capital, etc.).Desde la perspectiva de la sostenibilidad, han ocurrido cambios que no solamente han llevado a un deterioro marcado de los recursos naturales y un proceso de empobrecimiento. Notamos especialmente los procesos en algunas áreas donde la deforestación ha sido acelerada, el deterioro en la calidad de pastos ha aumentado, la erosión de suelos en tierras continúa debido a la inadecuada protección, y los rendimientos de granos básicos se han estancado.Pero también, hay evidencia de cambios que han llevado a efectos económicos, sociales o ecológicos positivos. Ofrecen oportunidades por una alza significativa en el ingreso del productor o usuario del recurso (o por ser productos de mayor valor o por mayor productividad) y compiten efectivamente con productores de valle. Tienen características económicas y organizativas que permiten su aprovechamiento por agricultores de escasos recursos. Y su manejo respeta los guiones para prod!1cción estable bajo condiciones de laderas: aumentan la cobertura del suelo; controlan el flujo e infiltración de agua; aprovechan efectivamente los \"nichos ecológicos\" en el paisaje; y minimizan el cultivo del suelo, protegiendo y reforzando la capa orgánica (Jackson y Scherr, 1996).En esta sección, se analiza brevemente los cambios mas importantes y los avances en manejo sostenible, y los retos que aún persisten 7•.Los granos básicos siguen siendo de suprema importancia para la seguridad alimentaria rural en Mesoamérica, aún cuando las comunidades se especializan en otras actividades productivas para sus ingresos monetarios (Scherr, et al. 1996). Su futuro presenta la cuestión de política sectorial de mayor importancia y mayor debate dentro de la región.Un grupo de expertos estimó que en el año de 1990, un 75% del área total sembrada en granos básicos en Centro América se encontraba en las laderas 8 (Lindarte y Benito, 1991). Las laderas del sur de México (principalmente en Chiapas, Oaxaca y Guerrero) producen menos del 10% del total mexicano de granos básicos; pero esto probablemente representa más que toda la producción de laderas de Centro América.Saín y López (este volumen) detallan que la producción de granos básicos entre 1960 y 1984 creció a un ritmo de 2.8% por año en Centro América, y solo a 1.8% por año en México; mientras entre 1985-96, creció a solo 1.8% por año en Centro América y 4.9% por año en México. De 1980/82 a 1990/92, la producción por persona apenas fue estable (Cuadro 3). Casi todo el aumento en la mayoría de los países en Centro América fue por expansión en área (y disminución de rendimientos en Honduras y Nicaragua). En México y Costa Rica, y a menor escala en El Salvador y Guatemala, el alza fue como resultado de mayores rendimientos. De acuerdo con los autores, las diferencias aparentan ser debido a distintas políticas de apoyo al sector.La extensificación documentada en la producción de maíz en Centro América sigue siendo preocupante, desde el punto de vista económico, social y ambiental. Con el aumento en los precios de fertilizante con relación a los precios de granos básicos, los fertilizantes sólo se pueden usar en los sistemas más • Tradicionalmente. en la recolección de datos agricolas no se distinguía entre áreas de laderas y de valle, ni áreas de producción por nivel de pendiente. Algunos estudios oficiales recientes. por ejemplo en Honduras y El Salvador. han empezado a recolectar tal información, lo cual ayudara mucho aclarar la importancia económica de la producción en laderas. productivos y lucrativos y en donde se cuente con fuentes de ingreso para comprar los fertilizantes.Sin embargo, se han introducido o \"desarrollado en México y Centro América, desde los años 80, nuevas prácticas que promuevan conjuntamente la recuperación y conservación de suelos en pendientes y alzas en los rendimientos de granos básicos. Estas prácticas incluyen varias formas de terrazas inertes, barreras y cercas vivas, cultivo al contorno, labranza mínima, cultivo en callejón, cultivos de cobertura, compost, uso de mulch, líneas de desechos, manejo integrado de plagas, riego de pequeña escala, abono orgánico, la no quema, etc. (Dvorak, 1996). Son, en general, mucho menos costosos establecer que las obras de conservación tradicionales. Además, pueden contribuir a la productividad. Por ejemplo, algunas inversiones y prácticas potencialmente crean las condiciones para una utilización efectiva de materia genética mejorada y un uso mas eficiente del fertilizante inorgánico aplicado. Otros pueden mejorar la calidad, capacidad productiva, y valor económico de la tierra.Hasta el momento el área de utilización de estas prácticas es limitada. Su costo, en términos de mano de obra, dinero en efectivo y tierra, así como su efectividad en controlar el movimiento de agua y suelo en pendientes y suelos diferentes, varía mucho. Su adopción y la rentabilidad son afectados por condiciones de mercadeo (el nivel y variabilidad de precios de productos e insumos, su estructura); mercados de factores (el precio y acceso a mano de obra, tierra y capital); la intensidad general en el uso de tierra; e instituciones y servicios gubernamentales y en la comunidad.Pero estudios recientes demuestran la promesa económica (Cuadro 4). En casos como Guaymango, El Salvador, y en ciertas partes en donde el CIMMYT se encuentra haciendo investigaciones en México, el número de productores es bastante alto. En la región Central de Honduras, se han reportado aumentos en rendimientos de granos básicos de 700 kg. por hectárea a 2000 kg. por hectárea, mas de 220 por ciento, con algunas prácticas. Además, parece que hay mucha latitud para la adaptación y la innovación local (Bunch 1995).El café es el único de los grandes productos de exportación de la región que proviene principalmente de las laderas, por razones climáticas. En contraste al desarrollo errático del sector de granos básicos, el sector de café ha sido una fuente significativa de crecimiento económico en las laderas de algunos países.La producción de café para exportación fue establecida en Mesoamérica en el siglo pasado, se expansionó hasta los 1920s y luego se estabilizó. En 1975, el precio mundial de café experimentó una alza aguda que provocó otro periodo de expansión en área plantada, hacia áreas mas marginales. Las Figuras 2, 3 Y4 muestran, por país, los cambios en el nivel de producción, el área bajo producción, por reducir el uso de pesticidas, y para reducir la contaminación de agua causada por las plantas despulpadoras de café.La gran expansión ganadera en Centroamérica y México ocurrió durante los años 60s y 70s, impulsada por los mercados de carne y leche, y los subsidios para la conversión a pastos y las políticas de tierra. En los años 80s y 90s, los mercados se debilitaron y bajó la población de ganado y el área en pastos, con una reforestación en algunas áreas. El sector se miraba dominado por los ganaderos a gran escala en Guatemala y Panamá; y por los de tamaño medio en Honduras y Nicaragua. Los ranchos \"pequeños\" controlaban 43% del ganado de Honduras (en fincas con 50 has); un tercio en Costa Rica y Panamá (50 has) 42% en Nicaragua (70 has); y 30% en Guatemala (92 has) (Kaimowitz, 1996).Pero el desarrollo ganadero se vió concentrado en las tierras bajas de la región. Sólo una minoría del hato nacional se concentraba en las laderas. A pesar de ser un eje secundario, la expansión ganadera tuvo efectos importantes en las laderas. Los pastos de ladera (incluyendo los bosques de pino donde se pastorea debajo de los árboles) servían en la época de lluvias para pastoreo de ganado del valle. Así, los terratenientes de ladera (como en los valles) expulsaron a los campesinos que antes rentaron tierras para su milpa (Williams 1986). En otros casos, los campesinos alquilaban a otros los pastos de su comunidad. Así, aunque no existen datos firmes para distinguir el crecimiento en área de pastos en los valles y las laderas, un grupo de expertos regionales estimó que en 1990,58% de los pastos en Centroamérica se localizaban en las laderas (Lindarte y Benito, 1991). Estos procesos contribuyeron al aumento de la densidad de población humana en los asentamientos de ladera, y consecuentemente a la deforestación para nuevas milpas y la intensificación de la producción de granos básicos en comunidades donde ya no había tierra desocupada.Mientras tanto, la escasez de pastos ha reducido la importancia de la ganadería de pequeña escala para muchos productores en laderas. En lugares donde la ganadería continúa, se ha especializado su producción, con posibilidades de mayor tecnificación. Hay desarrollo incipiente de sistemas agroforestales para producción de forraje para bovinos en áreas de pastizales limitados (Current, 1995). Los crecientes mercados urbanos crearon oportunidades para la producción intensiva lechera y de ganado menor a pequeña escala. En algunos lugares (especialmente en Costa Rica y México) esto ha sido una fuente importante de crecimiento económico en laderas, donde muchas veces las condiciones climáticas son mas favorables que en los valles. Poca atención se ha pagado a mejorar el manejo de los pastos en laderas, a pesar de problemas comunes de compactación, de vegetación y erosión. Aunque las tasas de degradación por hectáreas son menores que en algunas parcelas de cultivo agrícola, su efecto global sobre las cuencas es frecuentemente mayor debido al área extensa bajo pastos.Con el crecimiento de la demanda urbana y de exportación, ha venido evolucionando la producción de productos no tradicionales de alto valor, como hortalizas de invierno, frutas, nueces, frutas tropicales exóticas, plantas ornamentales y flores. Investigadores como Thrupp, et al. (1995), Tucker (1992), y Stonich (1992) han descrito el potencial prometedor de los productos no tradicionales. Tienen ventajas especiales para productores de pequeña escala, como utilizan pequeñas parcelas, usan rotaciones que contribuyen a la sostenibilidad; generan empleos; y tienen ciclo corto.El Cuadro 5 resume las actividades de exportación no tradicional en el año 1990; desde entonces han aumentado mucho (Annis, 1992). Es importante notar que la mayoría de estos cultivos se pueden producir en condiciones de ladera, y para muchos, el ambiente para la producción en ladera es superior a las condiciones en los valles. Sin embargo, los programas de promoción de los productos no tradicionales se han dirigido mucho mas a los valles por sus mejores enlaces comerciales. La expansión de la producción hortícola y frutícola por campesinos y pequeños propietarios en las laderas ha ocurrido con un mínimo de apoyo público. Mas bien ha sido una respuesta espontanea al incentivo en la alza de los precios, particularmente por los productores localizados cerca de los mercados, con acceso a fuentes de agua para riego en la estación seca, y con experiencia previa con la comercialización de productos hortícolas (Bergeron, et al. 1996;Pender y Durón, 1996).En Guatemala y Costa Rica, existe considerable exportación de productos no tradicionales hacia los Estados Unidos y Europa. Pero la mayoría de los productos de ladera en los demás países se dirigen hacia los mercados nacionales, en parte porque el mercadeo internacional requiere de muchos requisitos y papeleo complejo y faltan programas de apoyo en las laderas. Sin embargo, ha aumentado la compra por comerciantes de otros países de los productores pequeños. Todavía hay serios problemas con el acceso a crédito, conocimientos técnicos, mercadeo, etc. que limitan la difusión de estas actividades--y se presentan amenazas potenciales de la acaparación de tierras aptas para la horticultura, o captura del mercado, por grupos acaudalados.Una ventaja ambiental de la producción de productos hortícolas por campesinos de laderas, es la tendencia a concentrar los recursos productivos en los mejores suelos e invertir para protegerlos (o mejorarlos), lo que permite la reducción del área total cultivada. Por las buenas ganancias, permiten a los agricultores capitalizar la inversión en la conservación. Resulta que muchas prácticas de conservación inicialmente introducidas para los granos básicos son mas adoptadas en parcelas hortícolas. Hay problemas crecientes ambientales relacionados con la contaminación de agua por pesticidas, la escasez de agua por el sobre riego, y a veces la deforestación a los lados de los ríos, como ha sido el caso también en los valles (véase, por ejemplo, Bergeron, et al. 1996). Hay varios ejemplos de programas para promover la horticultura orgánica y el uso de métodos de riego mas eficientes en su uso de agua. Procesos para mediar los conflictos entre productores y entre comunidades sobre distribución de agua son incipientes, especialmente en proyectos de protección de cuencas hidrológicas importantes.La agroforestería ha surgido como una opción apropiada para las laderas, con ventajas especiales en las áreas de mayor pendiente. La integración de mas árboles en los sistemas de producción agrícola (para rompevientos, cobertura de suelos contra el impacto de las lluvias, barreras vivas contra la erosión, sombra, fijadores de nitrógeno) puede reducir la vulnerabilidad ecológica de estas áreas. Muchos de los sistemas agroforestales reducen las operaciones de labranza y controlan el movimiento del agua y suelo. El alto valor de los productos de madera y otros productos, en zonas que han sufrido mucha deforestación, contribuye a los ingresos de las fincas. Se pueden plantar árboles en \"nichos\" de la finca no apropiados para cultivo o de menor fertilidad, y así mejor utilizar el espacio. En algunos casos, la producción intensiva de madera, frutas, resina u otros productos puede substituir la producción agrícola marginal, y ofrecer mayores beneficios económicos y ambientales.Un estudio reciente documentó mas de 70 proyectos en Centro América y el Caribe promoviendo la agroforestería, de los cuales una proporción alta fue dirigida a una agricultura o silvicultura mas sostenible en las laderas. Un análisis económico detallado de 56 tecnologías agroforestales en 21 proyectos demostró que la mayoría fueron rentables, y 40% fueron mas de un 25% más rentables que el uso alternativo mas cercano de la tierra (véase Cuadro 7). Los productos mas importantes eran la leña, el carbón y los postes, y en Costa Rica la madera en troza. La auto-suficiencia en estos productos fue una motivación importante para la mayoría de los productores, aunque en siete proyectos los mercados locales eran importantes. En 12 proyectos, se producía para mercados urbanos e industriales. El análisis de sensibilidad mostró que los factores mas sensibles eran los rendimientos y precios de los productos, luego el costo de la mano de obra. La rentabilidad fue poco sensible al precio de los insumos comprados.Los aspectos de política considerados mas importantes por los proyectos y por los agricultores eran la estructura institucional para mercadeo de productos de los árboles (información, monitoreo, calificación, estándares), modificaciones de regulaciones que restringen el mercadeo de producto forestales provenientes de fincas, servicios públicos de apoyo a los esfuerzos de extensión de ONG e incorporación de agroforestería en el proceso de planificación nacional. La seguridad de tenencia era importante, pero no necesariamente la titulación (Current, Lutz and Scherr,1995).De los 19 millones de hectáreas en bosque en Centro América (Segura, et al 1997), un 56% se localizan en las laderas (Lindarte y Benito, 1991). Puesto que una gran parte (11 millones de hectáreas) se han designado como áreas protegidas (de cuencas o de biodiversidad), hay una gran potencial subutilizado en los bosques de pino y latifoliado para desarrollo forestal. Actualmente, hay altos niveles de importación de madera, y bajos niveles de exportación. Los sistemas de explotación forestal en las laderas de Mesoamérica siguen usando tecnologías y sistemas de manejo que son ineficientes, de baja productividad, destructivas, y poco sostenible. La calidad del bosque es pobre debido a los altos niveles de erosión debajo de los arboles. También, una proporción significativa de la conversión de bosque a otros uso ha sido estimulada y financiada por el sector comercial a gran escala. Por este motivo,. en Costa Rica y El Salvador hay tasas de reforestación significativas.Sin embargo, las oportunidades para desarrollo sostenible en laderas se extienden también a nuevos sistemas de manejo para los productos forestales comerciales. Ha habido mucha experimentación en México y Centro América con diversos modelos de la silvicultura social o comunal, promovidos por el Plan de Acción Forestal Tropical de Centro América (desde 1989-90); el programa-de las Naciones Unidas de \"Bosque, Arbol, Pueblo\", y muchos proyectos bilaterales con el gobierno, universidades y ÜNGs.En los bosques de pino con producción de resina, se han creado y fortalecido a las cooperativas de resineros, mejorando los métodos de recolección para proteger el valor del árbol para madera, y mejorando el procesamiento y mercadeo. También en los bosques de pino, se han organizado cooperativas para la reforestación y el manejo forestal, para la producción de madera y la manufactura de productos de madera.Hay ejemplos muy prometedores, en términos de producción forestal e ingresos locales, como el proyecto MAFüR en Honduras y el Proyecto Trifinio en la frontera entre Honduras y El Salvador (Neidecker-Gonzales y Scherr, 1997). Los programas de incentivos financieros en Costa Rica para la reforestación a gran escala han sido muy efectivos (si no siempre necesarios; véase Current, 1995), junto con la regeneración natural como resultado de la bajada en la rentabilidad de mantener pastos para la ganadería (Kaimowitz, 1996). Se buscan mecanismos para que las comunidades que viven en el bosque se beneficien mas por la actividad de los concesionarios industriales. Además, varios proyectos exploran el potencial para que los pobladores ganen mayores ingresos por la recolección y manejo de productos no-maderables forestales (por ej., Clay 1995).Las reformas legislativas forestales en la última década privatizaron muchos derechos forestales, liberalizaron a mercados de productos forestales, y proporcionaron mas derechos de extracción y manejo forestal a las comunidades rurales e indígenas. Aunque en muchos casos los derechos legales al bosque todavía pertenecen legalmente al estado o al municipio, una prueba de manejo sostenible confiere derechos temporales a los miembros de la comunidad.Los bosques de reserva local también son importantes, pero no para su producción comercial. Su propósito es la provisión de bienes y servicios básicos de la comunidad, incluyendo para reservas de madera de construcción, postes y leña; para pastoreo de ganado, y para la protección de fuentes locales de agua. Por ejemplo, resultados preliminares de investigaciones por IFPRI en la región central de Honduras, indican que en 85% de las comunidades tenían establecidas tierras reservadas solamente para la colecta de productos forestales, donde no se permitía el cultivo. De estos, algunos permitieron acceso solamente a los pobladores de la comunidad; otros dejaron entrar gente del mismo municipio. Había mucha diferencia de comunidad a comunidad en el rango de productos protegidos. En esa zona, el gobierno municipal juega un papel central en la formulación de regulaciones y la resolución de conflictos relacionado con los bosques y el agua entre las comunidades. Hay muchos proyectos en la región que apoyan a las comunidades en reforestar reservas forestales comunales o municipales degradadas, y en establecer las normas de uso y protección (por ej., proyecto de SANAA y LUPE en Honduras, Neidecker-Gonzáles y Scherr 1997).Una de las funciones claves ambientales de las laderas es la protección de las cuencas hidrológicas. Sirven para la provisión de agua de suficiente cantidad y calidad para el consumo humano, el uso urbano-industrial y para asegurar un flujo de agua (con un mínimo de sedimentación detrás de las presas) para la producción de energía hidroeléctrica. Hay grandes proyectos de protección de cuencas en todos los países (financiados principalmente con fondos internacionales) que tratan de influir sobre el manejo de tierra, bosque yagua de los pobladores. Presenta el reto de promover un manejo adecuado de recursos no solamente a nivel de parcela, sino a nivel de paisaje.Las laderas de Mesoamérica representan un área de biodiversidad extraordinaria, por la diversidad y complejidad de sus paisajes (Dinerstein, et al., 1995). El asentamiento extensivo de las laderas ha amenazado los recursos y hábitats de alto valor ecológico. La delineación de áreas protegidas se aceleró durante los años 80s y 90s, y ahora varía de l % del territorio nacional en El Salvador a mas de 12% en Costa Rica. Un manejo sostenible de las cuencas y zonas amortiguadoras de los parques y áreas protegidas pueden aumentar el nivel de protección de su biodiversidad especial, afecta la presión para migración hacia las zonas protegidas, y crear condiciones que extienden el hábitat para ciertas especies.En el manejo de cuencas y de zonas amortiguadoras hay interés público en un manejo sostenible de recursos naturales por los agricultores y otros usuarios de recursos, que va mas allá de las necesidades para producción sostenible a nivel de finca o comunidad. Estos intereses han sido usados muchas veces para justificar a programas de conservación de suelos y bosques que promovían agresivamente o requerían el uso de tecnologías y sistemas de manejo que no eran rentables al productor. Bajos niveles de adopción o abandono de prácticas en tales programas en el pasado son parcialmente responsables por la reputación negativa que tienen estos programas.Ahora, una estrategia alternativa se está usando, al promover intervenciones que ofrecen beneficios privados, aunque sean un poco menos efectivos desde el punto de vista técnico conservacionista. Hay un nivel mucho mas alto de participación de comunidades e individuos en la selección de actividades y sistemas de manejo, que lleva a un impacto más sostenible (véase, por ej., Brenes; el caso de nCAlLA))ERAS reportado en Barry, Cuéllar y Miranda en este volumen; y JDB 1995). Mientras esto refleja un avance significativo, deja muchos aspectos no resueltos. La cuestión sobre todo es cómo se pueden desarrollar las tecnologías y crear las condiciones institucionales, económicas y políticas bajo las cuales prácticas de conservación y mejoramiento de recursos son rentables para la mayoría de los usuarios. Para los casos en que esto no es factible, se necesitan buscar mecanismos por medio de los cuales los beneficiarios urbanos con buen manejo puedan transferir recursos a las comunidades en laderas, para compensarlos por un manejo adecuado. Con la reforma de muchas políticas de precios sobre los recursos naturales (por ejemplo, las tarifas de agua; el costo cobrado para la concesión forestal comercial) sería posible contemplar tales transferencias (Segura et al., 1997).Una visión de desarrollo sostenible en las laderas toma en cuenta y aprovecha la diversidad de condiciones ecológicas, culturales y socioeconómicas en las laderas. Implica que deben existir políticas que sean suficientemente flexibles para acomodar la iniciativa local, pero que brinden un marco normativo a una escala sub-regional o nacional. No hay un número infinito de \"vías de desarrollo\", pero sí hay distintas vías--en función de sus oportunidades y restricciones--que tienen diferentes características económicas, ambientales y sociales que requieren de políticas diferentes. 9 Los formuladores de política deberán proponer estrategias flexibles que reconozcan y tomen en cuenta esta diversidad.Hacia Una Tipología de Laderas Los componentes mas importantes de la diversidad son la capacidad productiva--la cual está basada en variaciones ecológicas como topografía, clima y suelos; y la variación social--principalmente, la población, pero también los sistemas de producción, la distribución de recursos y el nivel de institucionalidad.La productividad natural en las laderas es variable. En El Salvador, la mayoría de los suelos en laderas son buenos y profundos; en Costa Rica, se estima que 50% de las laderas son de buena calidad para la agricultura (ver Cuadro 1). En los demás países, sin embargo, la mayoría de los suelos son mas limitados para la producción agrícola y forestal. La pendiente aumenta el riesgo de la erosión y contribuye a la mal absorción del agua, potencialmente afectando a las cuencas hidrográficas de las cuales dependen las ciudades y la industria. Esto no implica que no se pueden aprovechar las tierras intensivamente; más bien, ilustra que dichas tierras requieren de manejo cuidadoso y de inversiones para mejorar y 9 Por ejemplo, en la región central de Honduras. se identificaron (inicialmente por análisis de datos secundarios, y luego por una encuesta de comunidades) cinco vfas de desarrollo distintos entre 1975 y 1995. La vía de intensificación hortlcola se ve afectada mas por las políticas de precios, debido a su acceso a mercados urbanos.La vla de extensificación de granos básicos se ve afectada mas por las políticas de extensión (Pender, Durón y Scherr, 1997). La vía de expansión cafetalera dependía de cambios en polftica pública de mercadeo y asistencia técnica.proteger el recurso para ser remunerables y sostenibles (Scherr, Templeton, Jackson 1995).El sistema óptimo de utilización de sutdo no es determinado solamente por sus características agroecológicas, sino también por las necesidades de los usuarios; la sostenibilidad del sistema dependerá no de la intensidad con que se utiliza el recurso, sino en las prácticas de manejo que acompañan tal uso. Por ejemplo, las tecnologías de producción apropiadas van a depender no solamente de la situación ecológica, pero también de las dinámicas demográficas locales. El Cuadro 8 contrasta unas prácticas de conservación que son económicas y adoptables bajo diferentes niveles de aplicación de insumo de mano de obra y otros factores. En áreas de alta densidad de población el papel de derechos de acceso y uso de recursos tienen que ser diferentes a los derechos en áreas de población escasa. Los sistemas óptimos en cada tipo de ladera van a ser compatibles con la capacidad de inversión local y acceso a capital. La capacidad local de organización va a determinar, en parte, las posibilidades técnicas e institucionales de desarrollo. La presencia de infraestructura de transporte y comunicación ofrece muy distintas posibilidades de desarrollo a diferentes áreas de laderas; buenos mercados pueden proveer el incentivo para la inversión en sistemas sostenibles hasta en áreas de suelos pobres (Templeton y Scherr, 1997;Kaimowitz, 1997).En base a los componentes principales, se puede desarrollar una tipología funcional de las laderas, que permite orientar los instrumentos de políticas. La tipología sugerida en el Cuadro 9 es muy preliminar. Hay que construir y probar una tipología mucho mas detallada, basada en la investigación empírica. Todavía faltan datos básicos sobre los patrones espaciales de producción en las laderas, sus niveles de productividad, y su asociación con cambios en la calidad de los recursos. Además, hay documentación empírica sobre las ventajas comparativas de diferentes áreas de laderas (actuales y potenciales), relativas a los valles y a los socios en el comercio internacional. Este análisis debe tomar en cuenta el efecto de futuras inversiones públicas y avances tecnológicos (Bergeron y Scherr, 1997).Una vez desarrollada la tipología, se puede identificar las oportunidades y los factores limitantes para cada clase de situación. Se pueden identificar posibles vías de desarrollo sostenible, y las tecnologías, instituciones y políticas que bajo estas condiciones crean los incentivos para la adopción de sistemas de manejo de tierras sostenibles.Las políticas sectoriales y locales juegan un papel clave para promover el éxito y la difusión generalizada de sistemas de desarrollo sostenible en las laderas. Saín y López (este volumen) y el CIMMYT sugieren políticas de extensión, subsidios e inversión pública para promover el manejo sostenible de granos básicos de mayor rentabilidad. Investigaciones del IFPRI en comunidades de granos básicos en la zona central de Honduras, indican que mejoras en comunidades de granos básicos requieren de investigación aplicada, asistencia técnica, desarrollo de infraestructura y servicios sociales. Los programas de ajuste estructural y conservación, así como el crédito, tienen mejor impacto en zonas hortícolas y de café, en donde la infraestructura y asistencia técnica brindan mejores rendimientos. Se necesitan instituciones locales para el manejo de agua y educación para uso adecuado de químicos. Tucker (1992, pp.128-134) propone una serie de políticas específicas para promover la adopción por los productores pobres de los productos no tradicionales. A corto plazo, recomienda la creación de programas de crédito para pequeños productores, la descentralización de los servicios de extensión; la regulación de prácticas de negocio de compañías de exporte para prevenir la discriminación y prácticas de oligopolio; abrir las finanzas publicas agrícolas a la inspección pública, y eliminar incentivos de impuestos de exportación para compañías grandes. A largo plazo recomienda el mejoramiento de los caminos, los fletes de camiones, la electrificación y la telecomunicación; reforma de ministerios de agricultura y reformas agrarias, mejor educación para las poblaciones más pobres y aisladas y técnicas de planificación familiar.Una descripción y diagnóstico detallada de las políticas forestales en Centroamérica, por país, muestra la importancia de los cambios, y al mismo tiempo las restricciones que todavía influyen al sector y el impacto de las políticas macroeconómicas y de otros sectores sobre la silvicultura. Segura, Kaimowitz y Rodriguez (1997) arguyen que la modernización del sector forestal requiere valorar adecuadamente los bienes y servicios del bosque, pagar los servicios ambientales, diseñar las políticas por un proceso participativo y democrático, fortalecer los servicios forestales mediante arreglos institucionales, trabajar conjuntamente con la cooperación internacional, y fortalecer la cooperación horizontal. Una agenda amplia de investigació!1 en políticas para la silvicultura social ha sido definido (Alfaro, et al 1994;Utting, 1993).De esta forma hemos presentado algunos de los rubros principales para un desarrollo sostenible en laderas. Pero la importancia relativa de diferentes políticas, y el nivel y secuencia de intervención para diferentes vías de desarrollo en laderas, no se ha determinado. Hace falta un esfuerzo organizado para investigar los procesos y resultados de cambio en áreas especificas, y su sensibilidad a la acción de política a diferentes niveles.La visión del desarrollo sostenible busca el desarrollo en las laderas como objetivo central, considerando a los habitantes locales como elemento esencial de una explotación sostenible y adecuada de los recursos naturales. En lugar de orientar las políticas principalmente hacia la protección de las cuencas y recursos naturales para el beneficio de las poblaciones urbanas y de los valles, o a la generación de divisas para el desarrollo nacional, esta visión promueve la generación interna de ingresos locales, ampliamente distribuidos, a través del desarrollo de sistemas de producción compatibles con el ambiente particular y diferenciado de las laderas (Bergeron y Scherr, 1997).El potencial productivo agrícola/forestal de la ladera, como el valor de su capital natural, han sido subestimados. Dadas las nuevas condiciones económicas que experimentan los países de Mesoamérica, las regiones de laderas ofrecen una fuente de crecimiento económico potencialmente importante. Además, al enfocarse en los productores de pequeña escala y los trabajadores rurales, esta estrategia contribuye al alivio de la pobreza y la equidad, la integración nacional, y a bajar el riesgo de inseguridad alimenticia nacional. Para alcanzar este objetivo, se requiere de mayor información técnica, mayor esfuerzo organizacional, mayor inversión pública y privada, y un marco de políticas que apoye los distintos procesos en diferentes vías de desarrollo. ---------------------_. -\"\"\"T'\"\"\"T\"\"\"ooy-T'\"\"'1r-'T-'T\"\"\"T\"\"...,....-r-......--.-\"\"\"T'\"\"\"T\"\"\"ooy-T'\"\"'1r-'T-'T\"........, o ,.. Temas y prioridades de investigación sobre el manejo de los recursos naturales en las laderas de México y CentroaméricaIOEdmundo Castro es un economista con el Centro internacional en Política Económica para el Desarrollo Sostenible (CINPE) de la Universidad Nacional Autónoma de Heredia, Costa Rica (UNA).La región de México y Centroamérica ha experimentado una alta degradación de los recursos naturales en las JJ.ltimas décadas. Las tasas de deforestación y erosión de suelos en las laderas, causadas por la actividad humana, son elevadas, sobre todo en las áreas de ladera. Asimismo, la pobreza, la desnutrición y el escaso nivel de ingreso son característicos en la región y se agudizan día con día.Las políticas del pasado han sido insuficientes para contribuir a un desarrollo sostenible de las laderas. En relación a la política agraria de la región, sobresalen aquellas que dieron incentivos a la promoción de exportaciones, la diversificación y la modernización agrícola para un sistema de producción de mercado en la producción organizada de grandes empresarios ubicados en valles y tierras fértiles. La visión fue una de ganancias a corto plazo y maximización del ingreso. En esta estrategia de desarrollo estaban ausentes los otros dos objetivos del \"triángulo crítico\" de desarrollo sostenible--el bienestar social y el manejo sostenible de los recursos naturales (Vosti y Reardon 1997) Muchas de las políticas del pasado no consideraron la importancia del pequeño productor de laderas en el proceso de desarrollo, ni han reconocido su notable participación en la oferta de productos agrícolas de consumo interno. Han habido programas para promover la producción de granos básicos, pero sólo en el caso de la producción de café ha habido esfuerzos organizados para brindar una inversión significativa para el desarrollo del potencial productivo de las laderas. La mayoría de los esfuerzos han ocurrido en favor del desarrollo de la actividad agrícola de zonas planas; usando tecnologías intensivas en uso de capital y con miras a un mercado no tradicional en manos de empresarios grandes y organizados. Ha habido una carencia de políticas claras hacia la protección del bosque, del suelo y del agua, y políticas que favorecieron la colonización masiva de ecosistemas de ladera con vocación limitada para la agricultura o ganadería convencional, y en muchos casos, con mayor valor potencial para la producción de agua o bosque o como reservas ecológicas.Es necesario revisitar al conjunto de políticas sectoriales, y asesorar sus efectos sobre las comunidades y los recursos de ladera. Sin embargo, identificar las estrategias y los instrumentos de política mas eficaces para un desarrollo sostenible de laderas no es tan fácil. Hacerlo requerirá un esfuerzo sostenido y enfocado de investigación sobre políticas, para proporcionar a los que deciden e implementan las políticas, modelos realistas sobre el comportamiento de los diferentes actores de laderas y datos empíricos confiables sobre los impactos socioeconómicos y ambientales de su comportamiento y de los instrumentos de política que se piensan usar.El objetivo de este documento es explorar los retos para un desarrollo sostenible en las áreas de laderas de la región, y las prioridades para investigación sobre políticas. Primero, se introducen algunas de las características sociales, económicas y ambientales. Luego, se analizan los retos para lograr el desarrollo sostenible de las laderas, y el tipo de instrumentos de políticas que se piensan implementar. Finalmente, se identifican los vacíos y prioridades de investigación en políticas. Se ilustran algunos conceptos con ejemplos de Costa Rica.Las áreas de laderas en Centro América y el sur de México no solamente predominan en términos-de área y superficie, sino también en su importancia social, económica y ambiental. El Cuadro 1 resume algunos indicadores claves para los países de la región (Leonard, 1987;López-Pereira et al., 1996;Winograd, 1995;Moreno, 1994;BID 1995;Banco Mundial 1994). BID, 1995;Banco Mundial, 1994;Leonard, 1986;L6pez-Pereira, 1996;Winograd, 1995. La información social indica que la mayoría de los países presentan problemas extremos de tipo social, salvo en ciertos índices para México, Costa Rica y Panamá. El crecimiento poblacional promedio de 3% anual para México y Centroamérica sobrepasa el valor promedio de 1.8% registrado para Latinoamérica (Winograd, 1995). El nivel de pobreza rural de la región también supera el promedio de Latinoamérica. Se considera que aproximadamente el 90% de la población de El Salvador, Honduras, Nicaragua y Guatemala se encuentra sumido en la pobreza, y entre 17 y 32% de la población de El Salvador y Honduras no posee siquiera las necesidades básicas de alimentación yagua (Leonard, 1986). En términos generales, la e~ucación, la desnutrición y la mortalidad infantil son sumamente elevados para Guatemala y Nicaragua, y se registran problemas graves de acceso al agua potable en El Salvador y Nicaragua. Se estima que todos estos problemas sociales se encuentran con mayor frecuencia y seriedad en las áreas marginadas de laderas.Aunque el Cuadro 1 indica que la agricultura no predomina en el Producto Interno Bruto de los países, y que existe una fuerte tendencia a la urbanización, la producción agrícola sigue siendo la base de vida para una proporción significativa de la población.La población económicamente activa en la agricultura es numerosa, en relación a los niveles promedio de América Latina.El papel de las laderas en la agricultura es mucho mayor de lo que es comúnmente reconocido, por su área, su contribución a la producción de granos básicos, su importancia en la producción forestal y de café (véase Scherr, este volumen). El istmo centroamericano alberga más del 60 % de la tierra para la agricultura y la ganadería en zonas montañosas, donde se ubican también el 50% de los bosques. La situación varía mucho entre países, con la mayor importancia de laderas en El Salvador y Honduras, y mucho menos en Panamá (Leonard, 1986; nCA, 1991).La producción de gr.anos básicos en la región se debe en más de un 50% al esfuerzo de pequeños productores ubicados en áreas de laderas, donde se localizan más del 80% de las tierras destinadas a la producción de granos básicos, sobre todo en Guatemala, El Salvador y Honduras (López- Pereira et al., 1996). Se estima que un 75 % del área del cultivo de trigo en Guatemala y entre un 80 a 90% del área del cultivo de maíz en Panamá, Costa Rica y Nicaragua se produce en laderas. Del área de café de la región, 75 a 95% es producida en las laderas.La mayoría de productores de laderas están íntimamente integrados en el sistema comercial, y como productores y consumidores. Se sigue dependiendo de producción propia para asegurar la seguridad alimenticia, mientras avanzan los procesos de diversificación y especialización en los productos vendidos. En general, el uso de insumos agrícolas y los niveles.de rendimientos son bajos (Saín y Lopez-Pereira, este libro).Los problemas ambientales más importantes para las zonas de laderas son la deforestación, la erosión de suelos y el deterioro de cuencas hidrográficas, y amenazas a la biodiversidad únicamente localizada en la región. En los últimos 15 años Centroamérica ha reducido las tierras bajo bosques en un 30%; estos bosques han sido convertidos en tierras agrícolas y ganaderas sujetas a procesos de fuerte depreciación (Leonard, 1986;Repetto 1992). Para 1992 solamente el 28 % del territorio estaba ocupado por bosques (López-Pereira et al., 1996). Panamá aún cuenta con un gran porcentaje de su tierra cubierta por bosque en donde se distingue la riqueza ecológica del área del Darién, mientras que en El Salvador la cobertura boscosa es prácticamente inexistente. Por otro lado, mientras en Costa Rica se hacen esfuerzos para reducir la deforestación y fortalecer el sistema de áreas de conservación, en Nicaragua y México se continúa con un proceso de deforestación muy acelerado (I1CA, 1991;Trigo, 1991).Alrededor del 30% de los suelos de la región se consideran muy quebrados y de laderas y, por lo tanto, inapropiados para la producción agrícola y ganadera. Para 1972 un el 45 % de las tierras salvadoreñas se consideraban degradadas, y en 1985 un 30% de las tierras guatemaltecas. De igual manera se registran en México cerca de 200 millones de hectáreas de suelo con problemas de erosión para el año 1972 (López-Pereira et al., 1996;Leonard, 1986;nCA, 1991;Sunkel y Gligo, 1980;Winograd, 1995).Las pendientes de la región y la alta precipitación son factores que contribuyen a la degradación de cuencas, lo cual impacta negativamente a la sociedad como un todo (Pasos, 1994;I1CA, 1991). La sociedad requiere de un flujo constante de agua que debe ser retenida y fluida constantemente, manteniendo normas de calidad y cantidad exigida por los poblados ubicados principalmente en los valles (ALACEA, 1996). Algunos países de Centroamérica presentan cuencas comunes, lo que dificulta la planificación del desarrollo (Leonard, 1986;Infonne Sobre el Desarrollo Mundial, 1992). Por ejemplo, la cuenca del Río Lempa tiene impactos de sedimentación de materiales provenientes de Honduras y depositados en El ~alvador. La degradación de las cuencas es un proceso que está ocurriendo en todos los países; con la pérdida de cobertura boscosa se reduce la retención del agua, la que a su vez es considerada como el componente esencial de la estructura del agroecosistema (Sunkel y Glico 1980) En el Cuadro 2 se encuentra un listado de las principales cuencas de Centroamérica, identificando el tipo de deterioro más sobresaliente. Como se puede notar, el mayor deterioro desde el punto de vista de la erosión de suelos y la pérdida de biodiversidad en las cuencas se presenta en Honduras, Panamá y Costa Rica. En el resto de los países es también marcado el número de cuencas consideradas como críticas, pero que carecen de infonnación actualizada sobre el nivel de depreciación de su capital natural y social (Chacón ei al 1991;IlCA 1991). La zona de Mesoamérica se considera como una de las áreas del mundo con mayor biodiversidad, y la variación de microcIimas que se encuentra en las laderas y montañas los hacen centros ecológico~importantes. Todos los países han creado y empezado a implementar legislación de Areas Protegidas, pero con éxito limitado en protección. Como indica el Cuadro 1, Costa Rica ha hecho mayores esfuerzos, al desarrollar el Sistema Nacional de Areas de Conservación (SINAC) con lo que se está protegiendo cerca del 35% del territorio nacional, incluyendo un gran número de microcuencas y laderas frágiles, susceptibles a la erosión (MIRENEM 1990;I1CA, 1991;Trigo, 1991).El desarrollo de las laderas requiere, por lo tanto, de la armonización de aspectos agroecológicos en lo referente a la producción, así como del desarrollo institucional involucrando los sectores públicos y privados para que el pequeño productor ejerza un papel activo en el proceso de desarrollo (I1CA, 1991). La autosuficiencia de los sistemas de producción campesina parece ser el punto de partida para el desarrollo de la economía rural como requisito para entrar en un proceso de producción excedentaria (CLADES, 1993). La experiencia en otras zonas de laderas tropicales del mundo sugiere que, para lograr el desarrollo sostenible de las laderas, se deben asumir retos tecnológicos, institucionales yen la misma formulación de políticas (ver Cuadro 3):Debe tomarse en cuenta que la gran diversidad de pendientes y microclimas con diferentes intensidades de lluvia en la región dificulta el desarrollo de tecnologías para la producción (Leonard 1986;Pasos 1994;CLADES 1993). Sin embargo, el desarrollo de tecnologías para el manejo sostenible de las laderas debe responder a las necesidades locales, de tal forma que sea del interés del productor y a la vez incorpore su experiencia y opinión.Hay oportunidades de combinar los avances de la tecnología moderna con la experiencia tradicional, haciendo adaptaciones locales de acuerdo a las lll!'l!IItlll! __lll!!lll!lll!lIIIlIII&JL _ _lIII?f_lIII __ -MfNWM rr?~4.\" ~.~• •~ffiYi@t~~Wm condiciones agroecológicas. Un ejemplo es el de los productores de las laderas de Zarcero, en Costa Rica (Vieira 1996;ALACEA 1996), quienes utilizan variedades mejoradas de hortalizas y aportan sus nutriment9s en forma orgánica utilizando estiércol y otros residuos orgánicos de la localidad. Otros ejemplos son nuevas tecnologías agroforestales, silvopastoriles y forestales desarrollados en Costa Rica por CATIE Yotros, que estabilizan las parcelas agrícolas de pendiente, mientras producen ingresos importantes (Current, 1996).Mientras tanto, se necesita desincentivar el uso de aquellas tecnologías importadas y costosas no aptas para pequeños productores ni para condiciones de ladera. En este caso se puede citar la utilización de maquinaria agrícola, tal como tractores costosos y arados de disco que muchas veces se utilizan para arar el suelo a favor de la pendiente, favoreciendo la compactación del suelo y su pérdida por escorrentía. Un ejemplo notable de esta práctica se encuentra en algunas laderas de la región de Tierra Blanca en Costa Rica (Vieira 1996) El reto institucional para un desarrollo sostenible en laderas es crear y apoyar instituciones que se ajusta a las condiciones de ladera y que tampoco es del alcance del pequeño productor. Hay tr~s aspectos críticos para apoyar a la capacidad productiva en la ladera. Primero, para que se pueda superar el nivel de subsistencia, se necesita capacitar al productor para que pueda tomar mejores decisiones y organizarle para mejorar su productividad.Segundo, hay oport\\)nidades de transformar la producción tradicional de laderas de pequeños productores en producción organizada, mediante el encadenamiento vertical y horizontal de productores e instituciones de gobierno, para penetrar en el mercado y en la agroindustria. El cultivo del café y la caña de azúcar en algunas regiones de Costa Rica ha permitido superar el nivel de subsistencia cuando se ha trabajado en forma organizada por medio de cooperativas de pequeños productores ubicados mayormente en laderas. Por ejemplo, la cooperativa COOPEAGRI El General ha sido muy importante en el desarrollo de las laderas del Cantón de Pérez Zeledón en Costa Rica (Granados 1996).El tercer factor institucional crítico para promover una producción sostenible en la agricultura, ganadería y forestal, es asegurar el derecho a la propiedad y el acceso legal al uso de la tierra a productores que no la poseen, o a aquellos que la poseen pero carecen de seguridad a largo plazo o titulación legal (USAIDI WRI 1993).Al mismo tiempo, es esencialla creación de empleo rural no agrícola como estrategia para reducir la presión de la población hacia los recursos naturales en aquellas áreas sensitivas a la degradación de recursos naturales. En Costa Rica el desarrollo del turismo ecológico ha significado una fuente de empleo rural no agrícola significativo y a la vez un incentivo para la protección de áreas con belleza escénica y potencial turístico. La protección y manejo sostenible de las áreas de conservación de Costa Rica ha sido una fuente de empleo rural no agrícola importante. Tenemos como ejemplo el Area de Conservación de Guanacaste (ACG 1994) 3.3 Retos de formulación de políticas para el desarrollo del sector Para apoyar el desarrollo sostenible en las laderas, se necesitan varios tipos de políticas sectoriales. La formulación de políticas de uso de la tierra debería responder a las características de los agroecosistemas de tal manera que se puedan incentivar medidas de protección ambiental en áreas ecológicamente frágiles y adaptar las actividades agrícolas o forestales de acuerdo al grado de pendiente y a su capacidad de uso. Considerando que los suelos de la región son predominantemente de vocación forestal, se justifica incentivar la producción forestal y la reforestación. mediante el establecimiento de plantaciones forestales y la protección del bosque en áreas consideradas frágiles. Desincentivar la ganadería extensiva en áreas frágiles a la erosión, lo mismo que actividades agrícolas que no sean permisibles técnicamente para determinados tipos de laderas. Los efectos de los incentivos para la expansión de la ganadería en Costa Rica se pueden notar en la degradación de las laderas de Puriscal y Pérez Zeledón (Ramírez y Maldonado 1988;SINADES 1997;nCA 1991). La necesidad de un reordenamiento territorial es vital para la toma de decisiones relacionadas con el desarrollo de políticas de conservación y uso del suelo. En Costa Rica, el Ministerio de Planificación (MIDEPLAN) por medio de la comisión TERRA (Comisión de Ordenamiento Territorial) promueve el ordenamiento del uso del territorio del país, de manera que sirva de apoyo a un desarrollo sostenible en alianza con la naturaleza (MIDEPLAN 1997).Políticas son necesarias para ayudar e incentivar a la población rural de laderas a mejor utilizar y mejorar sus recursos. Algunas experiencias de la región han demostrado que en laderas degradadas se puede mejorar la productividad de los suelos mediante la incorporación de cultivos mejorados y de técnicas de producción en las que no se pierda el suelo de las laderas. La inversión en mejoras de la tierra para regresar la fertilidad (proceso restaurador) debe considerarse como un reto de política económica (Ramírez y Maldonado 1988;SINADES 1997). La gran diversidad climática y microclimática de las cuencas y microcuencas de la región retan a los decisores a la promoción de la diversificación agrícoLa. Aquellos cultivos sembrados en forma asociada, además de representar un reducción en el riesgo de mercadeo, demuestran reducir el ataque de plagas y enfermedades por la presencia de enemigos naturales.Estimular el desarrollo de infraestructura en aquellas laderas que pueden soportar ecológicamente una mayor presión humana parece ser un reto político importante, al igual que la regulación en la construcción de carreteras en áreas consideradas de alto riesgo ambiental. El desarrollo de la infraestructura vial en Costa Rica ha sido acompañada con deforestación y degradación de cuencas.Mejorar el índice de desarrollo humano debería considerarse dentro de los objetivos más importantes de la política social de los gobiernos a fin de reducir la desnutrición, el analfabetismo, la mortalidad infantil y la carencia de vivienda. Estos, además de ser retos políticos importantes, son la realidad que margina cada vez más el sector (Winograd 1995). El desarrollo humano de las comunidades rurales requerirá de políticas que guíen a los productores y los convierta en actores sociales organizados de mayor peso (Candanedo 1997).Hasta cuando hay acuerdo político sobre los retos identificados en la sección anterior (10 cual no ha sido alcanzado todavía), la selección y diseño de instrumentos de política específicos requiere consideración cuidadosa. Muchas veces, los objetivos deseados no se cumplen por falta de entendimiento de su impacto práctico sobre los productores o sobre los que están implementando la política.Hay un número de instrumentos e incentivos que pueden servir para inducir a los productores de laderas a que continúen y mantengan sus sistemas de producción, o bien para interferir indirectamente en sus decisiones hacia el sistema que se desee implementar. o hay que olvidar que quienes toman la decisiones finales a nivel microeconómico son los productores y usuarios de los recursos naturales locales (ALACEA, 1996;Ellis,1993).Algunos instrumentos han sido utilizados con éxito y podrían tomarse en cuenta en el desarrollo de las laderas (ver Bruce, 1994;Clemens y De Groot, 1994). Un mejoramiento en elfuncionamiento de los mercados para los productos agrícolas puede contribuir a un mejoramiento en los precios recibidos por los productores. Este incremento en precios y por lo tanto en los ingresos del agricultor, podría hacer que el productor adopte prácticas de conservación con la intención de obtener mayor productividad y garantizar su autoconsumo. Si el ingreso aumenta, el productor podrá optar por medidas de conservación en forma sostenida.Los incentivos alimenticios podrían considerarse como un sustituto del empleo fuera de finca y, como las medidas de conservación de suelo son intensivas en utilización de mano de obra, esto permite, que la mano de obra familiar pueda destinarse a prácticas de conservación. La asistencia técnica especializada es un componente importante en la conservación ya que los técnicos pueden convencer a los productores acerca del uso de tecnologías y de prácticas alternativas. Fuente: Adaptación de López-Pereira et al 1995 en Rodríguez, R (1996).La titulación de la tierra y la seguridad al productor de que es dueño de su parcela es uno de los incentivos más importantes para que el productor tome decisiones de conservación del agroecosistema a largo plazo. La organización comunal donde los productores sientan el incentivo para el desarrollo comunal mediante la adopción de prácticas de conservación y así la comunidad pueda generar la base social y el consenso para que sea incluido en los programas de desarrollo.A nivel nacional las políticas de incentivos deberían discriminar en contra de aquellos que provocan erosión de suelos como lo fueron el crédito subsidiado para la expansión ganadera y el aumento en el valor de la tierra cuando ésta se transformaba de bosque a pasturas en áreas frágiles. Algunos instrumentos tales como el crédito, los precios de productos e insumos, la investigación agrícola, las restricciones de mercado y las políticas del pasado, han desmotivado a los productores a utilizar prácticas de conservación e inversión en el mejoramiento del suelo (Bruce, 1994). Sin embargo, también se han identificado instrumentos que podrían utilizarse con algún éxito para la sostenibilidad del suelo en las laderas (CIernens y De Groot ,1994).La provisión pública de infraestructura, como por ejemplo en carreteras, electricidad, salud y centros de acopio, puede utilizarse para desarrollar áreas rurales que presentan riqueza de recursos y a la vez poca fragilidad socioambiental. Asimismo, una reducción en la infraestructura podría desmotivar la producción y el crecimiento poblacional en áreas frágiles.La investigación en políticas puede contribuir información útil a los decisores e implementadores de las políticas sobre la selección y diseño de los instrumentos e incentivos discutidos en la sección anterior. El objetivo de estas investigaciones debe ser influir sobre los decisores acerca de la forma en que deben interactuar la economía, la ecología en la región y el nivel de recurso humano requerido por los ecosistemas de las laderas. Algunos de los vacíos de SOSTENIBLE EN LAS LADERAS MESOAMERICANAoS ! U JI IllII .Ji ! información que mas se necesitan llenar para la formulación de políticas en laderas, incluyen:Investigar las perspectivas mismas de los productores en áreas marginales. ¿Cuál es el tipo de desarrollo que el productor ahora desea? ¿Hasta qué punto desea el productor superar el nivel de subsistencia? Cual es el tipo de organización que desea? Hay que explorar como se integra su racionalidad ante los esquemas de globalización.Desarrollar una base de datos (inventario) confiable que ofrezca información cuantitativa de la cantidad de activos naturales producidos y no producidos, y de la depreciación (agotamiento y degradación) de recursos naturales. Esta base de datos será indispensable para el desarrollo de la investigación en la región y para utilizarlo como indicador de cambio del capital natural.Desarrollar investigación específica en los ecosistemas de laderas a fin de entender y calcular las limitaciones ecológicas (capacidad de carga J3), y cómo este concepto se puede integrar con la racionalidad del productor, para decidir acerca del nivel de artificialización energética que puede soportar el ecosistema y políticamente hacia la presión poblacional que puede soportar el ecosistema a largo plazo. Los políticos y los investigadores necesitan reconocer que la racionalidad socioeconómica y agroecológica de la región requiere de un modelo de desarrollo que sea coherente con la realidad de las laderas.Evaluar el impacto de las políticas macroeconómicas actuales y del pasado, y su racionalidad para responder a las condiciones socioeconómicas y agroecológicas de las laderas.\" La capacidad de carga se refiere al nivel de cambios que el productor puede ocasionar en el ecosistema sin que este pierda su capacidad potencial de sostener la actividad agrícola! forestal y se mantenga por si solo sin ayuda de otro sistema (Sunkel y glico 1980;Odum 1986).Identificar y probar el impacto en los pequeños y medianos productores de las laderas de instrumentos de política económica (incentivos, desincentivas) que puedan tener efectividad en el uso sostenible de los recursos naturales.Realizar estudios ecológicos-económicos tendientes a valorar los bienes, funciones y servicios que ofrecen las laderas y las áreas protegidas a la sociedad. Esta valoración servirá para justificar socialmente las políticas de conservación de las laderas.Investigar en el campJ) del desarrollo tecnológico para identificar y valorar las tecnologías a usar en laderas y aquellas políticas que favorezcan su utilización por productores de laderas. Este desarrollo deberá considerar la importancia del conocimiento local y los avances de la tecnología moderna.Investigar cuál es el tipo de institucionalidad, nivel de organización y etapas requeridas por los pequeños productores y los gobiernos locales para el desarrollo de la empresa agrícola de laderas, para que ésta pueda competir en el marco de la globalización y penetrar además en la agricultura y el mercado de exportación no tradicional. Tópicos relevantes incluyen también el tipo y contenido de educación que se necesita en las laderas, la relación y responsabilidades respectivas del sector público y privado, y políticas para promover y fortalecer a las empresas agrícolas en laderas.Hay esfuerzos en todos estas temas que actualmente desarrollan las instituciones de investigación en México y Centroamérica (las Universidades, los ONGs, los centros regionales como nCA y CATIE, Y los centros internacionales como IFPRI y CIMMYT), en que se identifica la problemática regional desde diferentes ángulos. Sin embargo, los países de la región no poseen capacidad financiera para el desarrollo adecuado de la investigación, ni la implementacion de los resultados Los donantes deben por lo tanto reconocer que el desarrollo de las laderas va a depender en gran medida de los recursos financieros que ellos destinen y de la fonna en que estos recursos financieros sean canalizados por las instituciones responsables (nacionales e internacionales). El apoyo y nacional e internacional deberá centrarse en el desarrollo de programas de investigación y proyectos que persigan el desarrollo sostenible en la región, y enfatizar en el desarrollo institucional, humano y tecnológico requerido para la sostenibilidad de la calidad de vida en las áreas de laderas. A pesar de la gran diversidad climática, topográfica y biológica, se puede encontrar gran similitud en la problemática general de las áreas de laderas. Se nota que la degradación socioeconómica y ambiental se agudiza conforme crece la población, la que a la vez presiona sobre la utilización de recursos naturales básicos provenientes del bosque y del suelo. Limitantes de tipo institucional y político han enfocado el desarrollo agrícola hacia sistemas de producción que no se ajustan a la modalidad de desarrollo económico, ecológico y social de las laderas.Los problemas de insostenibilidad de los agroecosistemas son evidentes por lo que se requiere de una acción política inmediata y del apoyo internacional para continuar y fortalecer la investigación y la institucionalidad en éstas áreas frágiles de gran importancia en la producción para el autoconsumo y el mercado interno de los países. Se percibe la necesidad del fortalecimiento institucional en la región, no sólo en el desarrollo de la investigación, sino también en la puesta en práctica de un modelo de desarrollo diferente y acorde con la realidad de las laderas.La organización campesina y el fortalecimiento local se perfilan como retos políticos e institucionales importantes. En este documento se han identificado grandes retos de diversos tipos, y se ha dado especial énfasis a las prioridades de desarrollar investigación en políticas específicas para laderas. Esto, por supuesto, requiere del esfuerzo, la voluntad política y el apoyo de instituciones nacionales y de donantes para continuar avanzando hacia un estilo de desarrollo apropiado para las áreas marginales de la región.Capítulo 4.Gustavo Saín y Miguel López-Pereira 14 \" Los autores son, respectivamente, Investigador principal, Centro Internacional para el Mejoramiento del Marz y el Trigo, México, y Presidente, ECOHON Consultores, Honduras.En las últimas décadas y especialmente en los últimos cinco a diez años, la producción de granos básicos 15 en Centro América y México se ha visto fuertemente afectada por importantes cambios de índole política, social y económica. La creciente integración de las economías, el fin de los conflictos internos, y la implementación de programas de ajuste estructural son los principales eventos que han afectado las tendencias del consumo y producción de granos básiCos en la región.Estos eventos no sólo han influido sobre la economía en general, sino que han definido y todavía están definiendo la forma en que se desenvuelve la agricultura en los países de la región. En particular, la reducción o eliminación completa de programas de estímulos a la producción, la reducción de barreras al comercio, la liberalización de los precios de insumos y productos, la desregulación de la tasa de cambio de la moneda, el control de la inflación y la reestructuración de los sistemas de investigación agrícola entre sector público y privado han sido determinantes de la forma cómo se producen y cómo se producirán en el futuro los granos básicos en la región. Más aún, el creciente y visible deterioro de los recursos naturales ha resultado en una mayor preocupación a nivel social de la necesidad de promover sistemas de producción y de uso de los recursos más sostenibles y benignos al ambiente.El impacto de estos factores sobre las tendencias de la producción, consumo e importaciones de maíz en Centro América y México revela una historia diferente para ambas regiones. El Cuadro 1 señala que en Centro América, hasta mediados de los años 80, tanto la producción y el consumo de maíz crecieron a una tasa similar. Sin embargo, a partir de 1985, el consumo de maíz en la región creció a una tasa mucho mayor que la que creció la producción. La brecha resultante fue llenada con importaciones. Por esa razón el volumen de las importaciones de granos básicos en general y de maíz en particular aumentó notablemente a partir de esa fecha.\" Por granos básicos se entiende, según el pafs, a una combinación de todos o algunos de los siguientes productos: marz, frijol, arroz y sorgo o maicillo (también trigo en México).n México, por el contrario, hasta mediados de los años 80, el consumo de maíz creció a una tasa mayor que aquella de la producción, pero a partir de 1985, y a diferencia del caso de Centro América, la tasa de crecimiento de la producción aumentó de tal manera que superó al creéimiento del consumo. Como consecuencia el ritmo de crecimiento de las importaciones fue negativo durante ese período.El exceso de la demanda doméstica sobre la oferta interna ha sido parcialmente atribuida a factores tales como el crecimiento de la población, el crecimiento del ingreso per cápita, y el crecimiento del nivel de urbanización (Byerlee 1986, Huddleston 1984. CIMMYT 1984) por el lado de la demanda, y a un estancamiento en la productividad del cultivo por el lado de la oferta. Aunque estos factores no son directamente atribuibles al impacto de las políticas impulsadas por los programas de ajuste estructural, en este trabajo se presenta la hipótesis de que el conjunto de políticas relacionadas a la fase de estabilización del ajuste, (devaluación de la moneda, reducción de aranceles y tarifas, reestructuración del crédito público y reducción del gasto público) tuvo como impacto agregado en Centro América, una aceleración en el crecimiento de la demanda doméstica de maíz y una desaceleración de la tasa de crecimiento de la oferta interna, mientras que en el caso de México, las políticas implementadas de fomento a la producción parecieran haber resultado en aumentos sustantivos en la oferta interna suficiente para compensar el crecimiento en la demanda.En este trabajo se pretende presentar la situación actual de la producción de maíz en Centro América y México en el contexto de los cambios políticos y económicos que están ocurriendo en la región; y describir los posibles factores relacionados con la política económica que afectan la estructura de consumo y producción de maíz en la región.Dada la disparidad entre ambas regiones, el análisis se realiza en forma separada para Centro América y México, sin embargo en algunos casos se usa la expresión Centro América y México (CAyM) para referirse a los países 7 de los países de Centro América y México en forma conjunta. En otros casos se usa el término Mesoamérica para referirse a la región comprendida por los países de Centro América y la parte sur de México.El trabajo se organiza de la manera siguiente. En la segunda sección se presenta en forma resumida el contexto económico en el cual se desenvuelve la producción de maíz en la región Y. se identifican los principales instrumentos de política económica que afectan la economía de la producción de maíz en Centro América y México. En las secciones tercera y cuarta se analizan las tendencias en el consumo y en la producción de maíz poniendo énfasis en sus componentes. En la quinta sección se analizan los principales factores que afectan la producción de maíz, mientras que la sexta y última sección presenta un resumen, conclusiones y reflexiones para estudios de mayor profundidad.Dado que los granos básicos en general, y el maíz en particular son productos comerciables, sus 'propios precios internacionales así como de sustitutos cercanos en consumo y próducción como también de los insumos usados en su producción juegan un papel importante en la economía del cultivo. Muchos cambios en las tendencias pueden tener su origen en cambios en las tendencias de los precios internacionales. La política económica seguida por los países de la región de C.A. yM a partir de los años 80 tiende a encadenar los precios domésticos a los precios internacionales para que estos últimos sirVan de referencia en la asignación de recursos. Por esto, es importante examinar qué ha pasado con los precios a nivel del mercado mundial del maíz, del trigo (sustituto en consumo), del sorgo (sustituto en producción), y del fertilizante.La Figura 1, muestra que el precio en moneda constante del maíz en el mercado internacional caen casi constantemente durante los años 70 y buena parte de los 80. Sin embargo a partir de 1987 los precios se estabilizan y muestran una leve tendencia a la alza. La evolución de los precios de trigo y sorgo relativos al precio del maíz (Figura 2), muestra que durante los años 80 Ylo que va de los 90, el trigo se ha encarecido respecto al maíz en los mercados internacionales, mientras que el sorgo se mantiene mas o menos estable. Finalmente, la Figura 3 muestra la evolución de los precios internacionales relativos del nitrógeno y del fósforo dos nutrimentos ampliamente utilizados en la producción de maíz en la región. En ambos casos la tendencia es estable, es decir que los precios internacionales de ambos nutrimentos disminuyeron casi a la misma tasa que lo hizo el maíz. Sin embargo, el precio relativo del P comienza a declinar que a partir de 1987, como resultado de la estabilización del precio del maíz.Durante la década de los 70, se implementó un política económica destinada a favorecer al sector de producción de granos básicos dentro del contexto de la seguridad alimentaria. En particular, se creó la banca de fomento que proveyó créditos a tasas de interés subsidiadas (muchas veces negativas), se fomentó la participación del estado en la comercialización de insumos y productos mediante los cuales se compraban los productos a precios de garantía (superiores a los equivalentes internacionales) y se vendían insumos a precios subsidiados. Sin embargo, al mantener una moneda sobrevalorada (precio de la divisa por debajo de su nivel de equilibrio) los países favorecieron las importaciones y desincentivaron las exportaciones agrícolas.Como consecuencia de las políticas implementadas durante la década pasada, la década de los 80 se caracterizó por la grave crisis económica que debieron enfrentar los países como consecuencia de los desequilibrios estructurales de sus economías. En la segunda mitad de este período comienzan a implementarse una serie de medidas de política económica destinadas a corregir las deficiencias estructurales conocidas como programas de ajuste estructural (PAE) y programas de ajuste sectorial (PAS). En forma simplificada, (para una discusión mas amplia véase, por ejémplo, Pomareda Benel, 1992) los PAE YPAS, tienen como principales objetivos corregir los desequilibrios en la balanza de pagos; reducir o eliminar la inflación interna; fomentar una mayor eficiencia económica, y un mayor crecimiento económico con equidad y distribución del ingreso. Para ello, los programas ponen énfasis, entre otras, en tres tipos de políticas (Byerlee y Saín 1991): i) disminución o eliminación de las tarifas y controles en el comercio internacional; ii) disminución o eliminación de los subsidios a los consumidores; y la equiparación de los precios domésticos pagados a los productores con los equivalentes mundiales; y iii) devaluación de las tasas reales de cambio (TRC) La implementación de estos programas se realiza en forma paulatina. Wattel y Ruben (1992), reconocen tres fases. Durante los 80 se implementaron dos de ellas. La primera, una fase de financiamiento donde se pone énfasis encubrir el déficit en las balanzas de pago de los países mediante el otorgamiento de créditos. La segunda, una fase llamada de estabilización monetarla y cambiarla, que se caracteriza por la devaluación real de las tasas de cambio, la reducción de la masa monetaria para reducir la tasa de inflación, y la reducción del crédito privado y público. Mientras que la tercera fase se implementa durante la década de los 90. Esta fase, denominada de estabilización fiscal, tiene como objetivos principales, la reducción del déficit fiscal (deuda interna) mediante la reducción del gasto público y la mejora en la recaudación impositiva; y la mejora de la eficiencia económica global mediante la reducción de la intervención estatal en la economía.La década de los 90 también se caracteriza por la integración de bloques regionales de comercio y la apertura comercial. En Centro América finalizan casi todos los conflictos militares internos (lucha armada) aunque persisten y se agudizan los conflictos sociales. En la región sólo perdura el conflicto armado en el sur de México, donde se desarrolla la lucha de los sectores más pobres, especialmente los indígenas, por acceso a la tierra y a un desarrollo más equitativo. 16 Finalmente, existe una atención mucho más pronunciada hacia el establecimiento de programas de desarrollo económico que promuevan la conservación del ambiente (recursos naturales).El Cuadro 2 muestra el grado de avance en la ejecución de las fases de los programas de ajuste estructural en la región de c.A. yM. Aunque todos los países comenzaron con la primera fase del ajuste al comienzo de la década de los 80, El Salvador, fue el primer país en c.A. donde se implantó la fase de estabilización monetarla y cambiarla. Los demás países implementaron esta etapa entre 1984 y 1988. Sin embargo, todos los países de la región se encuentran en una etapa relativamente avanzada de los procesos de ajuste a sus economías. Los gobiernos parecen estar más conscientes de la necesidad de hacer los aparatos públicos más eficientes y de controlar las variables macroeconómicas a niveles realistas y sin distorsiones.,. Para una breve resella de los orígenes de la guerrl¡l de Chiapas, ver Cattaneo 1994.Todos los países de la región son signatarios de los acuerdos de la Ronda Uruguay del GATT y miembros de la Organización Mundial del Comercio (OMC). Como tales, los países se han comprometido a eliminar gradualmente las barreras no arancelarias para el comercio, establecer tarifas claras de importación y exportación, eliminar subsidios a la producción y, en general, abrir sus economías al libre comercio. Con respecto al sector agropecuario, las consecuencias principales de las reformas han sido la eliminación de casi todos los subsidios a los insumos y los precios de garantía de los productos, una orientación exportadora de productos tradicionales y no tradicionales, la reducción de barreras al comercio internacional, la retirada del estado del sector de granos básicos tanto de la comercialización como en la fijación de precios. En este último caso el comercio internacional está controlado por bandas de precios para la importación.Se estima que por impacto de la Ronda Uruguay los precios internacionales de maíz aumenten alrededor de 10 a 15% como consecuencia del aumento en el comercio mundial. Otra consecuencia de la firma de la Ronda Uruguay con implicaciones potenciales para la forma en que se llevara a cabo la generación y difusión de variedades mejoradas de maíz es la nueva estructura legal sobre derechos de propiedad intelectual. Los países se mueven desde estructuras con derechos de propiedad sobre el germoplasma inexistentes o muy atenuados a estructuras de derechos de propiedad más restrictivas como leyes de derechos de los obtentores y protección plena de patentes. En el supuesto de que estos cambios continúen, es probable que en el futuro se reduzcan los flujos de germoplasma, así como los incentivos para que los investigadores compartan información y materiales. Además, la tendencia creciente hacia la globalización de muchas economías nacionales sugiere que los países pueden competir en el futuro por los mercados de exportación, en vez de compartir la meta común de autosuficiencia alimentaria. Esto, a la vez, puede reducir el ámbito de la colaboración mutua entre países asociados a los programas de investigación conjunta.En el caso particular de México, la firma del tratado de libre comercio (TLC) con Estados Unidos y Canadá sirvió de punto de partida para impulsar varios programas destinados a revisar los mecanismos de control de precios al productor y consumidor y fomentar los ingresos (productividad) del sector productor (Martínez y Quezada, 1995).Todos estos factores pueden hacer necesario reformular las reglas bajo las cuales se llevan a cabo proyectos colaborativos de investigación como el Programa Regional de Maíz, o el Programa Regional Cooperativo de Frijol deban adoptar nuevas medidas a fin de garantizar que las nuevas tecnologías (semillas) alcancen a los peqlleños agricultores de escasos recursos.Durante los años 70 y comienzo de los 80 los países de CAyM mantuvieron una política de precios internos del maíz por arriba de los precios internacionales. El Cuadro 3 muestra que a comienzo de los 80 todos los países de la región mantenían un coeficiente de protección nominal (CPN)17 superior a la unidad. Esta tendencia se mantenía aun cuando se eliminaban las distorsiones existentes en la tasa de cambio. producción agrícola, la promOClOn de las exportaciones de productos no tradicionales y la importación de granos básicos.Los Cuadros 4 a 8 muestran en forma resumida y visto a través de los principales indicadores económicos, que el desempeño de las economías entre los países de la región ha sido diverso.En general, las economías de Panamá, Costa Rica, Guatemala y El Salvador, parecen ser las más estables, mientras que la economía nicaragüense ha sido la más afectada durante el período 1979-95. Los efectos positivos de la finalización de los conflictos armados internos han ayudado también al crecimiento de las economías de El Salvador y Nicaragua. En Guatemala recién se están firmando los últimos acuerdos para poner fin a la guerra interna que ha azotado al país por tres décadas. A pesar de esta lucha armada, Guatemala ha sido tradicionalmente una de las economías más fuertes de la región. El conflicto interno de Nicaragua parece ser el que más afectó a la economía, la cual presenta un período de casi 15 años de retroceso. Sólo en años recientes es que la economía nicaragüense parece haber salido de ese estancamiento. Las secuelas de la devaluación del nuevo peso todavía se sienten en México después de varios períodos de relativa estabilidad y crecimiento. Es interesante notar que Honduras, que no tuvo conflicto armado interno directo, presentó niveles de crecimiento aceptables hasta principios de la década de 1990. Luego vinieron los primeros programas de ajuste estructural en 1990 y 1994, Yla crisis de energía de 1994, que han afectado mucho a la economía. En varios aspectos, la economía hondureña está sufriendo los efectos principales del comienzo de los programas de ajuste que los otros países experimentaron en años anteriores (inflación, ajuste de la tasa de cambio, reducción de la tasa de cambio, etc.), y se espera que la economía tenga un mejor desempeño en el mediano plazo.En la actualidad, un factor que está afectando a todas las economías de la región es el peso de la deuda externa (Cuadro 8). Para 1993, la deuda externa conjunta de los países de Centro América alcanzó los 30,000 millones de dólares, casi el 90% del PNB de ese año. Los países con mayores problemas en este rubro son Nicaragua, Honduras y Panamá, en los cuales la deuda es ya mayor que el PNB. En contraste, la deuda externa de El Salvador parece estar bajo control, ya que representa solamente el 28% del PNB, lo cual le permite disponer de recursos valiosos para el desarrollo de la economía. Aunque la deuda externa de México es una de las más elevadas de toda América Latina, su monto representa todavía una porción relativamente baja del PNB. El efecto primordial de este servicio de la deuda en el sector agrícola, especialmente en la producción de granos básicos, es que obliga a los gobiernos a reducir la inversión en programas sociales y en apoyos a la producción de productos para consumo interno.El consumo total de maíz es el agregado de dos componentes principales,18 el consumo humano directo, y el consumo indirecto a través de su uso en la preparación de alimentos balanceados para la alimentación animal (principalmente carne de pollo, huevos y cerdos). En Centro América se usa el maíz blanco para consumo directo mientras que el maíz amarillo es usado principalmente para consumo indirecto De esta manera, el crecimiento del consumo total de maíz ocurre como resultado del balance del crecimiento de ambos componentes. A continuación se analizan los factores que han contribuido a estos desplazamientos especialmente los cambios en precios del maíz en relación a aquellos de un sustituto cercano en el consumo l9• En el caso del consumo humano directo, el producto que ha actuado como sustituto cercano del maíz blanco, producto producible internamente, es principalmente el trigo, producto importado que no se produce internamente en la región 20 , y sus derivados harina y pan. En el caso del consumo indirecto. el producto que compite con el maíz en la composición de la dieta de los alimentos balanceados es el sorgo, el cual, como el maíz es producido internamente 21.JI Además de estos dos componentes, la utilización total incluye otros usos como semilla, uso en la industria, desperdicios etc. Para CA estos otros usos no son importantes y representan menos del 10% del total. Por el contrario, en México el uso en la industria representa una parte importante del consumo total.,. El producto Jse comporta como sustituto del producto i, si existe una relación directa entre la demanda por i y el precio de Jrelativo al precio de i. Es decir, si el precio de Jaumenta en relación al de i, entonces la demanda por.La Figura 4 muestra la evolución del consumo directo de maíz en c.A. entre 1961 y 1992. Hasta 1984 el consumo oscila alrededor de los 78 y 83 kg. por habitante por año manteniendo una leve tendencia decreciente. A partir de 1985 comienza a aumentar oscilando entre 83 y 90 kg. por habitante por año. Dos factores importantes en la determinación del consumo son el nivel de ingreso de la población y los precios de productos sustitutos.La Figura 5 muestra la evolución del ingreso per cápita medido por el producto nacional bruto per cápita (pnb) en C.A. Las tendencias entre ambas variables parecieran indicar una relación inversa entre el ingreso per cápita y el consumo directo de maíz. Durante 1971 y 1984, período de alto crecimiento del ingreso per capita en la región, el consumo directo de maíz declinó, mientras que, a partir de 1985 cuando el ingreso per cápita se estanca, el consume directo mantiene una tasa creciente aunque a un ritmo lento.Además del nivel de ingreso, otro factor que influye en los niveles de consumo es el precio relativo de sustitutos cercanos. Los precios relativos juegan un papel importante en la sustitución de distintos productos alimentarios, sobre todo entre los alimentos básicos producidos localmente, como el maíz, y los alimentos importados como el trigo y sus derivados.Dadas las políticas implementadas durante la segunda fase del ajuste estructural, tales como la devaluación real de la moneda, la eliminación o reducción de los subsidios al consumo de pan, y la reducción de los programas de ayuda como la PL-480, es de esperar que los precios al consumidor del trigo y sus derivados aumenten respecto al maíz y por lo tanto el consumo de trigo y su importación disminuya. Sin embargo, la escasa evidencia empírica a nivel de Centro América muestra que este no es el caso aunque sí para México en donde además de devaluar la moneda, se retiraron los subsidios (Cuadros 9 y 10). En general el precio del pan relativo al maíz ha bajado. Sin embargo, se debe tener en cuenta que en este descenso de los precios relativos del pan también desempeña un papel la caída de los ingresos reales de la población, la cual tendrá un impacto mayor en productos como el pan, que tienen una mayor elasticidad ingreso que el maíz. Tampoco la evidencia sobre el consumo e importación de trigo a la región parece apoyar la hipótesis de una disminución de su consumo (Figura 6).Recientemente, un nuevo factor que puede haber contribuido a desplazar la demanda de maíz para consumo humano es el creciente uso de maíz blanco para su procesamiento industrial y especialmente la producción de harina de maíz. La creciente urbanización de la población ha provocado una mayor demanda por productos procesados. La instalación de fábricas para la producción de harina de maíz y otros productos derivados del maíz, no se ha hecho esperar. Existen ahora medianos y grandes productores comerciales de maíz en toda la región, que producen bajo contratos con estas plantas procesadoras (principalmente de origen Mexicano). En Costa Rica, por ejemplo, la superficie de maíz ha aumentado de nuevo en años recientes después de su casi total desaparición, gracias a los contratos que estas compañías procesadores realizan con los productores. En estos contratos, la compañías le garantizan un precio mínimo a los productores y les pagan por adelantado parte del contrato para la compra de insumos (López-Pereira, Borge y Benítez 1996). Por las preferencias de la población de Mesoamérica por el maíz blanco cuya producción es limitada en otras regiones (el comercio internacional de este tipo de maíz blanco es muy limitado), este factor puede representar un incentivo poderoso para incrementar la productividad de maíz en la región.El nivel creciente de las importaciones de c.A., que en su mayoría son de maíz amarillo, hace pensar en un más que proporcional aumento en el consumo indirecto de maíz como insumo en la fabricación de concentrados para la alimentación animal. La Figura 7 muestra claramente esta tendencia. Hasta 1984, el consumo de maíz para la confección de alimentos balanceados creció a la tasa de 3.4% por año, mientras que a partir de 1985 el consumo indirecto aumentó a una tasa de 4.5% por año.En este caso, la demanda de maíz es una demanda derivada, por lo que además de su propio precio y de aquellos de productos sustitutos intervienen también factores involucrados en la demanda final del producto al cual contribuye a su producción, en este caso carne de pollo, huevos y carne de cerdo. La Figura 8 muestra el notable crecimiento del consumo y producción de carne de pollo en C.A. Aunque ambas variables crecieron durante el período 1975-86, es a partir de 1987 cuando la tasa de crecimiento realmente se dispara. Dado que el maíz y el sorgo son los principales componentes (en volumen) del alimento concentrado necesario para este tipo de industria, la demanda por ambos granos aumentó proporcionalmente.Los volúmenes de maíz y sorgo utilizados en la elaboración de los alimentos balanceados dependen fundamentalmente de la disponibilidad interna de sorgo y sus precios relativos. Ambos productos proveen esencialmente energía a la dieta. En un país como Panamá, con poca producción de sorgo, este producto prácticamente no se utiliza en la composición de los alimentos, mientras qué el maíz conforma el 64% del volumen de la ración típica (Sain et al. 1992). Por otro lado, en El Salvador, un país con una producción relativa alta de sorgo, la relación entre los granos en la composición típica de la dieta fue de aproximadamente 70% maíz y 30% sorgo hasta 1986 y luego la proporción se revirtió con el sorgo aumentando su participación relativa en la composición de los alimentos (Figura 9).La fuerte demanda por estos granos y la posibilidad de sustitución entre el maíz y el sorgo ha estimulado la producción de este último cultivo ayudado por recientes incrementos en la productividad y rentabilidad de este cultivo relativos al maíz (Sanders y López- Pereira 1996). Por ejemplo, en Nicaragua y Honduras existen grandes plantaciones de sorgo cultivado con alta tecnología, en contratos con las compañías productoras de concentrados. Como consecuencia de esta \"mini-revolución\" tecnológica en la producción de sorgo, especialmente en Honduras, El Salvador y Nicaragua (Sanders y López- Pereira 1996) el crecimiento de la superficie cultivada con sorgo supera al crecimiento de las áreas cultivadas con maíz (Barkin et a1.1990). Al mismo tiempo, esta tendencia en el uso del sorgo para la fabricación de concentrados ha aliviado un poco la presión sobre el uso de maíz para este fin; cantidades relativamente mayores de maíz se encuentran en la actualidad disponibles para consumo humano directo.1 Sin embargo, en la industria de alimentos no sólo existe sustitución entre maíz y sorgo, sino también entre ambos tipos de maíz: amarillo (importado) y blanco (producido localmente). La Figura 10 ilustra la relación entre el nivel de producción y la composición porcentual de ambos tipos de maíz en la ración. Aunque los datos son escasos parecieran indicar que el nivel de las importaciones de maíz amarillo en un período determinado depende de la producción doméstica de maíz blanco en años anteriores. Así, la caída de producción interna de los años 81 y 82 es seguida de un aumento considerable de las importaciones de maíz amarillo durante 1983 y 1984.Las tendencias en los componentes básicos de la producción, superficie cultivada y rendimiento, señalan también una historia diferente para Centro América y México. El Cuadro 11 muestra que el estancamiento en el crecimiento de la producción de maíz en C.A. en los últimos 11 años se debe básicamente al estancamiento de la productividad. Aunque con variaciones entre los países, para C.A. como un todo hasta 1984, el crecimiento de la producción estuvo basado en el crecimiento del rendimiento. A partir de ese año, la tasa de crecimiento de los rendimientos se estancó y en algunos países se redujo. En México, por el contrario, la tasa de crecimiento de la productividad aumentó considerablemente entre ambos períodos considerados, esto aunado a un crecimiento moderado de la superficie cultivada contribuyó a la excelente tasa de crecimiento de la producción de maíz en ese país.Comparadas con América Latina y el mundo en general (Cuadro 12), las tasas de crecimiento tanto de la producción como de los rendimientos de México en los últimos 10 años son superiores a aquellas de América Latina y el mundo. La producción en c.A. creció a una tasa superior que la del mundo en general pero menor que la de América Latina. Sin embargo a diferencia de las demás regiones comparadas, el crecimiento de la producción en C.A. se realizo a expensas del incremento de la superficie cultivada mientras que en México, en América Latina como en el mundo, la producción creció gracias a incrementos substanciales en los rendimientos, y muy poco al crecimiento de la superficie.Examinando las tendencias a nivel de país individual (Cuadro 13) se puede observar que a excepción de Costa Rica y Panamá 22 la dependencia en la superficie y no en la productividad para sostener el crecimiento de la producción de maíz es la característica más notoria en todos los países de la región en el período 1985-94. Más aún, en casos como los de Honduras y Nicaragua, los rendimientos más bien se han reducido en la última década y todo el crecimiento de su producción de maíz se debió a incrementos substanciales en la superficie sembrada. Guatemala y El Salvador presentan casos similares entre sí, de \" A diferencia de la parte norte de Centro América, en Nicaragua, Costa Rica y Panamá el marz no es tan importante en el consumo humano. El arroz, el frijol y algunos tubérculos son los productos básicos de la dieta en estos países (López-Pereira, Benítez y Borge 1996)..... La producción de maíz de la región sur de México (Oaxaca, Veracruz, Tabasco, Chiapas, Campeche, Yucatán y Quintana Roo), representa aproximadamente un 20% de la producción total del país (Cuadro 14). Aun así, y a pesar de que esta es la región donde se presentan los rendimientos de maíz más bajos de México, la región produce más maíz que la totalidad de Centro América (López-Pereira y García, 1994). Aunque con diferencias en las tasas de crecimiento entre estados, la producción regional creció a una tasa anual de 3.5%, la cual se encuentra por debajo de la tasa de crecimiento de México como un todo pero por arriba de aquella para C.A. en el mismo período.Como se explica mas adelante, un factor importante que hay que tener en cuenta para explicar estas diferencias en el crecimiento de la productividad, se encuentra en la estructura disímil del sector de producción de maíz. Una gran proporción del maíz en Mesoamérica es producida por agricultores pequeños, localizados en áreas de laderas, generalmente con un bajo potencial de producción, y bajo nivel de acceso a recursos y oportunidades. Esta estructura debe contrastarse, con la de otros países de América Latina y el mundo, donde predominan agricultores grandes, en tierras con pocas limitaciones, con fácil acceso a recursos y oportunidades de mercadeo y asociación.En suma, la razón por la cual la oferta doméstica de maíz no ha podido responder al incremento en la demanda parece deberse más a un estancamiento de los niveles de productividad que al efecto de la superficie sembrada. Los promedios a nivel nacional del rendimiento de maíz aumentaron en el período previo al ajuste estructural, pero permanecieron estancados o declinaron desde mediados de los 80 al presente, por lo que los aumentos en la producción debieron realizarse mediante incrementos de la superficie cultivada.A pesar de las grandes similitudes en la producción de granos básicos en Mesoamérica, existen también diferencias marcadas en la importancia de la superficie cultivada con maíz entre los países de la región. Estas diferencias están parcialmente determinadas por la importancia relativa del cultivo en la dieta en cada país. El maíz y el frijol, por ejemplo, son más importantes en el sur de _:WA México, Guatemala, El Salvador y Honduras, que coinciden con la definición antropológica de Mesoamérica, que en el resto de la región.La mayoría de los países que comprenden la región de Mesoamérica, tienen una topografía montañosa y, como consecuencia, se considera que un gran porcentaje de su superficie tiene una vocación forestal y/o de cultivos de montaña (Figura 11). Las regiones de laderas son especialmente predominantes en El Salvador, Guatemala y Honduras, y en la región sur de México, que constituyen la mayor parte de Mesoamérica. Además, una proporción considerable de la tierra arable de estos países se encuentra en las zonas de laderas, especialmente en El Salvador (40%) YGuatemala (30%), indicando que grandes áreas de laderas están bajo cultivos anuales y especialmente granos básicos.Aunque no existe ninguna duda de que al menos en forma conceptual la degradaci6n de los suelos por erosi6n afecta la productividad del recurso, la evidencia empírica a nivel de C.A. es escasa. Los esfuerzos de la investigaci6n se han centrado en medir los efectos de la erosión sobre la degradaci6n del recurso pero, poca o ninguna evidencia existe a nivel de C.A. sobre el impacto de esta degradaci6n sobre los rendimientos de maíz. (Lutz et al., 1993).Respondiendo a factores de topografía y clima, la producción de granos básicos en Mesoamérica se caracteriza por dos sistemas bien diferenciados (Sanders y López- Pereira 1996). En el primer sistema, agricultores de mediana y gran escala producen granos básicos en los valles y otras zonas de alto potencial productivo, normalmente como parte de una operación diversificada. Estos agricultores normalmente usan niveles elevados de insumos comprados tales como semilla mejorada, fertilizantes inorgánicos y otros. En contraste, en el segundo sistema, agricultores de pequeña escala participan en la producci6n de granos básicos en las regiones de laderas, normalmente en sistemas asociados de dos o más cultivos, especialmente maíz -sorgo y maíz -frijol.. Estos agricultores usan muy pocos insumos comprados, y prácticas tradicionales de manejo de los cultivos. Los insumos más importantes en estos sistemas de cultivo son la mano de obra (casi siempre familiar), la tierra, la semilla tradicional, y en algunos casos la tracción animal. Dos características importantes que distinguen ambos sistemas son: el tamaño de la superficie cultivada y el destino de la producción. En el primer sistema o sistema comercial, la escala de producci6n es relativamente grande y el producto se destina principalmente a la venta. En el segundo sistema o sistema deproducción campesino, la superficie de la finca y de producción es pequeña, usualmente de alrededor de 1 ha de maíz, y el producto se destina principalmente al consumo interno, y se vende el excedente. Se debe notar sin embargo, que esta clasificación no tiene límites definidos, por el contrario tanto dentro del sector campesino como del sector comercial existe una variabilidad suficiente como para que la clasificación en ciertos casos se vuelve imprecisa. Por ejemplo, existe un sector campesino medio cuyas características respecto a calidad de tierra, insumas comprados y dependencia del mercado lo podrían clasificar también como perteneciente al sector comercial. Este tipo de agricultor fue el foco de atención de muchos programas gubernamentales en el pasado.Aunque no se cuentan con cifras precisas sobre el porcentaje de agricultores y de la producción total dentro de cada una de estas categorías, si existe consenso de que en toda Mesoamérica la mayor parte de los pequeños productores de granos básicos pertenecen al sistema campesino y aproximadamente la mitad de la producción de maíz, sorgo, y frijol, proviene de este sistema tradicional de cultivo. Es decir que la estructura de producción de maíz en CAyM es tal, que una gran número de pequeños agricultores con baja productividad, coexiste con un número menor de agricultores comerciales que mantienen un nivel alto de rendimiento.La diferenciación por sistemas de producción aunque simple, es importante ya que las oportunidades para aumentar la productividad difieren para ambos sistemas ya que no solo la brecha tecnológica es diferente sino también toda la estructura económica de ambos sistemas es diferente y por lo tanto los impactos de las políticas económicas son diferentes entre los grupos.Se debe notar que, de acuerdo a los datos agregados a nivel nacional, en ninguno de los países de Centro América se ha superado la barrera de rendimiento de las 2 t/ha y, en algunos casos como Nicaragua y Panamá, los rendimientos apenas superan 1 t/ha (Cuadro 15) mientras que México con un nivel de 2.2 t/ha tiene rendimientos similares a los de América Latina (2.4 t/ha). Sin embargo, los rendimientos promedio de maíz a nivel mundial andan en 4 t/ha; es decir, más del doble de los rendimientos en Centro América. Estas cifras deben interpretarse como indicadoras de tendencias de los promedios a nivel nacional. En todos los países de la región existe una amplia variabilidad en los niveles de rendimiento con áreas de alto nivel de productividad. Por ejemplo, en Guaymango, El Salvador, el promedio de los rendimiento a nivel de campo supera las 3 t/ha mientras que el promedio nacional reporta 1.9 t/ha, y en Azuero, Panamá, los rendimientos oscilan entre 4 y 5 t/ha mientras que el promedio nacional reporta 1 t/ha (Pereira de Herrera, Sain y Villareal 1997).Las cifras anteriores señalan la existencia de una brecha entre la productividad actual y la productividad potencial. El Cuadro 16 muestra el tamaño de la brecha en productividad, definida como la diferencia entre el rendimiento actual del sistema y el rendimiento potencial estimado para dos tipos de materiales: híbridos y variedades mejoradas de polinización abierta (VPA). Las cifras del cuadro son reveladoras de las oportunidades que existen para aumentar la productividad del maíz en la región. Aun en el sistema comercial ubicado en áreas más favorecidas la productividad puede incrementarse entre 50 y 85% con la tecnología que se encuentra disponible. La brecha es todavía mayor para el sistema campesino (entre 300 y 400%).Sin embargo, los factores que limitan el aprovechar estas brechas dependen de los objetivos de las políticas sectoriales. Por ejemplo es probable que se obtenga una respuesta mas rápida y de mayor impacto sobre el nivel agregado de producción si los esfuerzos de investigación se dirigen a cerrar la brecha en el sector comercial que si se dirigen al sector campesino. Aunque en este último caso se alcanzara a un mayor número de beneficiarios ubicados en los estratos mas bajos de la distribución del ingreso.Las altas tasas de crecimiento de la población combinadas con la falta de incrementos substanciales en la superficie cultivada originaron que la disponibilidad de tierra total y cultivada por habitante se redujera substancialmente desde 1980 hasta mediados de la década de los 90 en la región (Cuadro 17). ¿ $lOOR . _ _.1J1i1m~:m~mg 1M! IIT_~~~&,fft$ §W1fJiA¡¡WẼ n todos los países excepto Honduras y Nicaragua, la disponibilidad de tierra arable per cápita se redujo a menos de 0.3 ha y, en el caso de El Salvador y Costa Rica, a menos de 0.2 ha. Cuando se eliminan las superficies no cultivables, los bosques y las regiones relativamente despobladas, por ejemplo, la zona del Petén en Guatemala y La Mosquitia en Honduras y Nicaragua, las densidades de población se incrementan substancialmente en todos los países. A pesar de esto, en general puede decirse que la presión de la población sobre la tierra no es tan fuerte en Mesoamérica como en otras regiones del mundo. El caso de Honduras provee un ejemplo de esta tendencia en relación a la presión de la población respecto a la superficie cultivada con granos básicos (Cuadro 18). Aún con niveles récord de producción en maíz y sorgo, el país no ha podido satisfacer la creciente demanda de estos granos. Hasta finales de la década de los 70 y principios de los 80 Honduras era un exportador neto de maíz. Sin embargo, la población rural en Honduras casi se triplicó de 1952 a 1993 y la disponibilidad de tierra con cultivos básicos por habitante rural se redujo notablemente, a pesar de los incrementos substanciales de productividad en la superficie cultivada con estos granos.Otro factor que influyó sobre la disponibilidad de tierra disponible para granos básicos en la región, fue la conversión de tierras de bosques y agrícolas a pastos para la producción de ganado vacuno. Aunque esta tendencia se redujo en los últimos años, las áreas de pastos son todavía muy importantes (Cuadro 19). Las áreas de bosques se han reducido a ritmos muy rápidos en la región, en favor de áreas para cultivos anuales, cultivos permanentes y pastos (Cuadro 20).Además de la disponibilidad de tierras, otro factor que incide directamente en la adopción y uso de nuevas tecnologías y por lo tanto en el nivel de productividad, es el régimen de tenencia de la tierra donde se produce el maíz. Aunque se han hecho esfuerzos importantes en años recientes para reducir la inseguridad de la tenencia de la tierra a través de programas de reforma agraria y titulaciones, el problema de inseguridad en la tenencia y el sesgo de la propiedad de la tierras es muy importante en toda la región. Como puede verse en el Cuadro 21, a excepción de Costa Rica, en la década de los 80 la mayor parte de las fincas en Centro América estaban ocupadas por familias que no podían extraer su subsistencia de ellas, por poseer cantidades muy pequeñas de tierra. Sin embargo, las grandes fincas, que representaban una proporción muy pequeña del total, ocupaban la mayor parte de las tierras. Este problema era especialmente serio en Guatemala y El Salvador.Como parte del proceso de reestructuración de los aparatos de gobierno y de la tendencia a la privatización de muchas de las actividades que éstos han realizado tradicionalmente, los sistemas públicos de generación y transferencia de tecnología se han reducidos drásticamente en la última década (López-Pereira y Filippello 1994). Aunque la tendencia a la reducción de los sistemas de investigación se inició a mediados de la década de los 80, es a partir de los 90 cuando comienza la tercera fase de los PAE, cuando los PNIA comienzan un proceso de reestructuración. El Cuadro 22 muestra que en c.A. la inversión en investigación aumentó entre 1971-75 y 1981-85 en un 52% pero el número de investigadores aumentó en 111 %. Como consecuencia, la inversión por investigador se redujo en 28% lo que estaría indicando que existen menos costos operativos disponibles.El Cuadro 23 por su parte, muestra que los recursos asignados a la investigación y extensión sobre granos básicos en Guatemala y El Salvador declinaron en términos reales entre 1970 y 1990. En el caso especifico del maíz, un ejemplo de esta reducción se encuentra en el ICTA de Guatemala, en donde los gastos reales en investigación y extensión en maíz se redujeron de aproximadamente 370 mil quetzales por año en 1981 a solo 130 mil quetzales en 1990. Es decir que en solo 9 años el nivel real de inversión pública en generación y transferencia en el cultivo agrícola más importante de Guatemala se redujo en términos reales en 65% (Reyes Hernández,1996).Como parte de los PAE, la oferta o disponibilidad de crédito público al sector de producción de granos básicos se redujo drásticamente. No solamente se eliminaron los subsidios al crédito, sino que los fondos públicos se redujeron y aquellos que quedaron fueron dirigidos a los sectores más dinámicos del sector, tales como productos exportables tradicionales y no tradicionales. Como consecuencia, la disponibilidad de crédito público para los pequeños agricultores productores de maíz se redujo en forma drástica a partir de la segunda mitad de los 80. El crédito está muy asociado al uso de insumas que los agricultores deben comprar al comienzo del período de producción, tales como semillas mejoradas y fertilizantes, por lo que su reducción causó una disminución en el uso de insumos. Por ejemplo, la Figura 12 muestra que en el caso de El Salvador, existe una estrecha correlación entre la evolución de la disponibilidad de crédito público, el uso de semilla mejorada y los rendimientos (Choto et al. 1996).La importancia de la disponibilidad de crédito para la adopción de nuevas tecnologías depende, en parte, de si la tecnología que se desea difundir requiere o no de un gasto en efectivo. Por ejemplo, los agricultores del Litoral Atlántico de Honduras incorporaron a sus sistema de cultivo de maíz una leguminosa (Mueuna deerengiarum) en rotación que prácticamente duplicó su nivel de rendimientos sin ninguna necesidad de crédito público o privado (Buckles, Sain y Triomphe 1997). Por el contrario, el crédito estatal en forma de efectivo y de insumos fue fundamental en el esquema de adopción de un paquete tecnológico consistente de semillas híbridas, fertilizantes, y prácticas de conservación difundido en Guaymango, El Salvador (Sain y Barreto, 1996).Aunque los precios de la semilla mejorada de maíz en C.A. y M se encuentran entre los más bajos del mundo (CIMMYT, 1988), el uso de variedades mejoradas no se ha generalizado en la región (Cuadros 23 y 24). Sólo el 17% de la superficie total de maíz en Centro América y el 26% en México fue sembrada con semilla mejorada en 1993 23 • Dada la larga tradición de los programas nacionales de investigación en maíz de la región y la gran cantidad de materiales desarrollados y comercializados en esos programas, los bajos niveles de uso de semilla mejorada indican que existen grandes barreras para la adopción de estas tecnologías. Dos de los obstáculos que más se mencionan en la literatura son la falta de una disponibilidad oportuna de la semilla para los agricultores y problemas de calidad y adaptabilidad de la semilla (López-Pereira y Filippello 1994, Sain y Martínez, 1997». Estos factores están relacionados con el tipo de productor y los ambientes predominantes en la región para la producción de maíz.Es en el caso de la industria semillera donde se puede apreciar mejor el cambiante papel del sector público y privado en la oferta de insumos y servicios. En el caso de la semilla de maíz, y probablemente en otros cultivos también, para principios de la presente década ya los sistemas privados habían capturado mas del 80% del comercio de semillas mejoradas. Por ejemplo, la participación del estado en la comercialización de semillas mejoradas declinó de aproximadamente un 8% en 1980 a 0% en 1994 en El Salvador (Choto, Sain y Montenegro 1996), mientras que en Guatemala disminuyó del 30% en 1978 a sólo el 1% en 1985 (Veliz 1993).Dadas las características de los diferentes sistemas de producción mencionados anteriormente, queda la duda de si el sector privado estará interesado y en capacidad de hacer disponible la semilla mejorada a los pequeños campesinos.Uno de los resultados del deterioro económico fue la migración de crecientes flujos de población hacia áreas con tierras cada vez más marginales y frágiles desde el punto de vista de su conservación. Este proceso condujo a la explotación agrícola de suelos extremadamente susceptibles a su degradación por erosión. Como consecuencia, la tecnología en forma de semilla mejorada, fertilizantes y otros productos agroquímicos han debido sustituir en parte esta menor calidad en el recurso suelo para sostener la tasa de crecimiento de los rendimientos. Por ejemplo durante todo el período que va desde 1970 a 1987, el consumo de fertilizantes por unidad de tierra creció en c.A. a un ritmo anual de 2.8% (Cuadro 26).Como consecuencia de esta tendencia, se originó un renovado interés por la investigación y difusión de tecnologías que además de mejorar la productividad del maíz conservan el suelo y sustituyen a los fertilizantes químicos tales como el uso de leguminosas de cobertura, labranza de conservación con cobertura al suelo con rastrojo, el uso de abonos orgánicos y el establecimiento de barreras vivas. Este tipo de tecnologías no sólo reduce substancialmente la necesidad de usar fertilizantes inorgánicos para incrementar la productividad, sino que permite un mejor manejo de los recursos agua y suelo, que son particularmente importantes en los sistemas de producción de laderas. Estas tecnologías dirigidas a la conservación de los recursos no deben verse como sustitutas de aquellas dirigidas a promover la productividad sino como complementarias (Saín 1996).De hecho existen en la región de c.A. algunas experiencias de programas que han combinado exitosamente ambos tipos de tecnologías en un paquete que ha sido adoptado por los agricultores (Saín y Barreto 1996).Aunque existe una amplia variedad de tecnologías dirigidas a la conservación de los recursos, una característica común con implicaciones para la política económica es la estructura de flujos de costos y beneficios. En general, los costos iniciales de introducir este tipo de tecnologías en los sistemas agrícolas son altos, mientras que los beneficios tardan un tiempo considerable (a menudo varios años) en producirse. Este patrón tiene suma importancia para la adopción y difusión de este tipo de tecnologías entre pequeños agricultores. Por ejemplo, la tenencia precaria de la tierra reduce el horizonte de planificación y, por 10 tanto, los beneficios de largo plazo tienen menos peso en la decisión de invertir en tecnologías. El grado de aversión al riesgo es otro factor que pesa en las decisiones de adopción de tecnologías con beneficios inciertos a ser obtenidos en el futuro.La divergencia entre los costos y beneficios sociales y privados de la adopción de tecnologías de conservación, debida principalmente a la existencia de efectos externos a la propia finca y a fallas de los marcados de los recursos naturales, podría justificar el uso de incentivos para promover la adopción de tecnologías.Durante los últimos 10 años la tasa de crecimiento del consumo doméstico de maíz en la región de Centro América superó a la tasa de crecimiento de la producción interna. Como consecuencia, las importaciones netas de maíz a la región crecieron en forma casi exponencial durante el período. En México, aunque el consumo también aumento respecto a las décadas anteriores, la producción interna creció a un ritmo aun mayor por 10 que las importaciones de maíz disminuyeron. Parte de esta diferencia entre ambas regiones puede ser atribuida al impacto de las políticas económicas implementadas durante los programas de ajuste estructural.Por el lado de la demanda, la eliminación de subsidios al consumo de sustitutos importados, como el pan y sus derivados, la devaluación de las moneda y la integración comercial ayudaron a promover el consumo de maíz blanco en forma de tortillas y harina de maíz. Por otro lado, las importaciones de maíz amarillo para la fabricación de alimentos balanceados aumentó considerablemente al reducirse sus precios domésticos por efecto de la devaluación de la moneda y la eliminación o reducción de las trabas al comercio. El impacto agregado de estos factores fue un aumento substancial en el nivel de las importaciones de maíz a partir de 1986 en toda la región, con excepción de México y Nicaragua.El crecimiento de la producción de maíz en Centro América no pudo mantener el mismo ritmo. El crecimiento de la producción doméstica de maíz se realizó hasta mediados de los 80 basado principalmente en aumentos de la productividad de la tierra (rendimientos), posteriormente a esa fecha, los rendimientos se estancan y el crecimiento responde principalmente a incrementos en la superficie cultivada. Sin embargo, estas tendencias deben interpretarse con cuidado. El impacto general de las políticas económicas estimularon la asignación de las tierras más fértiles a cultivos de exportación tanto de los denominados tradicionales como de los no tradicionales. Los reducidos recursos del estado, créditos, asistencia técnica y, en algunos casos, subsidios para promover la exportación, favorecieron a estos cultivos en detrimento de los granos básicos. Este proceso, ayudado por el crecimiento de la población, migraciones internas y desplazamiento de los desmovilizados de los conflictos militares que terminaban, aumentó la presión por la tierra en general y provocó el aumento de las superficies cultivadas en tierras marginales, de menor potencial de producción.En general, las políticas de precios han tenido un papel importante sobre el comportamiento de la oferta de maíz. Los precios de los insumos importados como fertilizantes y pesticidas aumentan por efecto de la devaluación, pero al mismo tiempo bajan por efecto de la disminución de las tarifas y otras barreras comerciales. Adicionalmente, la falta de disponibilidad del crédito público encareció aún más el costo de adquirir insumos fuera de la finca. Estos cambios en la relación de precios relativos afectó particularmente el uso de dos insumos de capital, fundamentales en el aumento de la productividad en el corto plazo: variedades mejoradas y fertilizantes. Al mismo tiempo, la puesta en marcha de los programas para disminuir la deuda interna (déficit fiscal) trajo como consecuencia una disminución importante de los recursos públicos asignados a investigación y extensión. Actualmente casi todos los programas nacionales dedicados a la generación y transferencia de tecnología se encuentran en proceso de ajuste que en el corto y mediano plazo significa menos recursos para estas actividades. En todos los países se discute el papel de los sectores públicos y en particular sobre aquellas actividades que producen tecnologías cuyos beneficios son apropiables privadamente. Más aún, en varios países se debate sobre la posibilidad de privatizar paulatinamente la extensión agrícola. Esta medidas tienen implicaciones importantes para los pequeños agricultores. Estudios sobre factores que afectan la adopción de tecnologías por parte de pequeños agricultores indican que la acción de investigadores y agentes de extensión desempeñan un papel importante en la decisión de adoptar o no la nueva tecnología (Sain y Barreto 1996; Sain y Martínez 1997; Pereira et al., 1997).No sólo los precios de los insumas y servicios fueron afectados por las nuevas políticas económicas puestas en marcha en los PAE; también cambiaron los precios de los productos. En general, las políticas tendieron a que los precios domésticos de los granos estén más ligados a la evolución de los precios internacionales. De esta manera, se intentó ganar eficiencia en producción, los países resignaron de cierta manera el objetivo político de la seguridad alimentaria para acoger una política más dependiente de los mercados internacionales para el abastecimiento de granos. La tendencia declinante de los precios internacionales del maíz implicaron, entonces, precios declinantes para los productores. A esta tendencia se le sumó la desaparición de los entes estatales en la compra de los granos que afecta en mayor medida a los pequeños agricultores que no se encuentran organizados. Como consecuencia, la superficie cultivada con maíz declina, especialmente en los países del sur de C.A., donde el cultivo no es muy importante en la dieta y por ende el costo político de resignar la seguridad alimentaria es menor. Sin embargo, el aumento reciente de los precios internacionales debido a la reducción de los stocks internacionales mostró lo volátil que es esta política. Recientemente los gobiernos de c.A. acordaron adoptar el sistema de bandas de precios para regular los precios internos y de imponer aranceles especiales en casos de sobreproducción mundial para proteger la producción interna (La Nación, domingo 26 de enero de 1997).Naciones Unidas para el Desarrollo y el Programa de las Naciones Unidas para el Medio Ambiente). 1994. World Resources 1994-95: A Guide to the Global Environment. New York: Oxford University Press. ---------------------------------------------------------------------- ----------------------------------------------------------------------( Fuente: Lassen 1980. (Citado en Leonard 1987).(Una finca con tierra abundante indica que la familia tiene más tierra de la que puede trabajar con la mano de obra familiar y que puede contratar mano de obra agrícola.(2) Una finca con suficiente mano de obra y tierra indica que tiene suficiente tierra para sostener a una familia a un nivel de vida satisfactorio, con el uso de la mano de obra familiar. (3) Una finca con mano de obra abundante indica que no tiene suficiente tierra para satisfacer las necesidades básicas de la familia, o para permitir el uso de la mano de obra familiar en la finca durante todo el año.1.48 . ¡;;;;;;;¡¡;;;¡;&--_----_---_ Fuente: Choto, Sain, y Montenegro (1996).Capítulo 5. El uso de leguminosas de cobertura como rubro de rotación para el cultivo de maíz cuenta con una larga tradición en la región de América Central. Mientras los efectos agronómicos y edafológicos han sido documentados en varias investigaciones de campo (Triomphe, 1996;Buckles, 1993;Buckles et al., 1992), existen pocos estudios acerca de su viabilidad económica desde el punto de vista de la economía campesina. En efecto, la mayor parte de los informes revisados no presentan datos económicos detallados, o se limitan a la comparación parcial de costos y beneficios para algunos estudios de caso. Por consiguiente, hace falta una evaluación más rigurosa de las (des)ventajas económicas de los sistemas de producción basados en los cultivos de cobertura, haciendo uso de muestras representativas de productores campesinos que recurren a diferentes sistemas de manejo de nutrimentos, con el objetivo de determinar: (i) la productividad marginal de los factores de producción (tierra, trabajo, insumos), y (ii) las características de los productores campesinos (p.e. edad, género, tamaño de finca, tipo de suelo, tamaño del hogar, tenencia, etc.) que influyen en la selección de determinados sistemas de producción.A pesar de reportes muy promisorios sobre la adopción y difusión de la práctica de siembra del frijol de abono (Mucuna spp.) en varias zonas de Honduras (Bunch, 1990;Buckles et al., 1992), existe todavía un limitado conocimiento sobre los factores que inciden de manera significativa sobre su adopción y acerca de las condiciones económicas (precios, costos de oportunidad) que determinan la viabilidad del uso del frijol abono (recursos externos inorgánicos vs. recursos internos orgánicos).Este estudio forma parte del programa de investigaciones \"Evaluación . Socioeconómica de la Agricultura de Altos y Bajos Insumos\" ('Socio-economic assessment of high and low external input agriculture') del Departamento de Desarrollo Económico de la Universidad Agrícola de Wageningen, Holanda. El objetivo del programa es el de desarrollar una metodología para la evaluación integral de los efectos económicos y ambientales relacionados con la selección de sistemas de producción de bajo y alto uso de recursos externos a nivel de fincas campesinas. Para tal efecto, las elasticidades de producción para los insumos primarios son estimadas de forma individual y desagregada para sistemas basados en el uso de fertilizantes inorgánicos comprados en el mercado (denominadoEIA: High ExternalInput Agriculture O Agricultura que usa Muchos Insumas Externos) con sistemas de producción que recurren de manera parcial o total a la substitución de nutrimentos provenientes de fertilizantes por abonos verdes (denominado LElA: Low ExternalInput Agriculture o Agricultura que usa Pocos Insumas Externos). Esta metodología busca revelar las diferencias entre ambos sistemas en términos de la productividad de diferentes sistemas de producción, y permitirá además determinar el impacto de (cambios en) los precios relativos sobre la selección de los sistemas de producción (Heerink & Ruben, 1996). Estudios preliminares de exploración han sido realizados para Malang, Indonesia (Ruben, Heerink & Mol, 1996) enfocándose en la comparación a través de cortes transversales (cross-section) de sistemas de producción con uso de fertilizantes inorgánicos y estiércol, y en la zona sur de India (Haile Abreha, 1997) usando panel data de ICRISAT para verificar efectos plurianuales de diferentes niveles de fertilización en función de medir elasticidades de sustitución. Otros estudios están programados para Mali-sud (rotación maíz-algodón), India (manejo integral de plagas) y la zona sur de Nicaragua (recuperación de suelos) El presente trabajo está estructurado de la manera siguiente. En la Sección 2 ofrecemos un breve resumen de los aspectos agrotécnicos y socioeconómicos que definen los sistemas de producción basados en el uso de frijol abono en rotación con el cultivo de maíz. La sección 3 aborda los diferentes métodos disponibles para la evaluación económica del referido sistema, haciendo especial referencia a las limitaciones del método de evaluación basado en análisis de costobeneficio. El uso de funciones de producción como método alternativo se discute en la Sección 4, demostrando su relevancia para explicar la coexistencia de diferentes sistemas de producción (HEIA y LElA) en una misma (micro)región. En la Sección 5 se presenta una ilustración empírica del uso de funciones de producción para el análisis del impacto de diferentes métodos de manejo de nutrimentos en las laderas del Departamento de Copán. La última Sección analiza las implicaciones de esta metodología para el diseño de programas de promoción de cultivos de cobertura en Centroamérica.El uso de leguminosas como cultivo de cobertura en un sistema de rotación con la producción de rubros alimenticios es ampliamente conocido y documentado en la literatura (Thurston et al., 1994; Buckles & Barreto, 1995; Bellows et al., 1996). Existen varias estrategias de manejo del frijol de abono, que varían desde la rotación temporal hasta la siembra asociada o intercalada. Se puede caracterizar la siembra del frijol de abono en esencia como una modalidad de intensificación de la agricultura, dado que el sistema maíz-mucuna sustituye recursos externos (fertilizantes, agroquímicos) por recursos internos (tierra, trabajo).Existe una amplia documentación acerca del potencial agroecológico de los cultivos de cobertura, las diferentes alternativas de manejo del cultivo, y los efectos sobre el sistema de producción. Como ventajas más significativas de los cultivos de cobertura se mencionan (Bunch, 1994): la fijación biológica de nitrógeno el aumento de materia orgánica en el suelo el control de la erosión y la conservación de la humedad del suelo el control de malezas la producción de forrajes para el ganado La mayor atención ha sido dedicada al efecto sobre la disponibilidad de nutrimentos, que permitirá disminuir el uso de fertilizantes químicos, cuyo precio de mercado ha aumentado sustancialmente durante la última década. En esta investigación hemos tomado en cuenta solamente el efecto de la fijación de nitrógeno y su disponibilidad efectiva para el rubro de maíz. 25 Para tal efecto, hemos determinado la cantidad de materia seca cosechada en términos de nitrógeno, tomando en cuenta (i) la disponibilidad de 25 Kg de nitrógeno por cada tonelada de biomasa producida (Triomphe,. t 996), y (ii) un factor de transición para el nitrógeno disponible del 30 % (comm. pers. de Ridder, WAU). De esta manera se puede valorizar también la diferencia en eficiencia del nitrógeno \" El uso del frijol de abono para consumo humano. para alimento animal y para la venta no tiene gran importancia en la zona, debido a las características semi-tóxicas que obligan a un uso controlado.proveniente del frijol abono comparado con los fertilizantes inorgánicos. 26 Los efectos sobre la estructura del suelo se hacen visibles en el transcurso de años posteriores, y no disponemos de datos confiables que permitan valorizar su efecto sobre la productividad del cultivo de maíz de manera adecuada. Hemos considerado, sin embargo, el efecto de la siembra de mucuna en años anteriores, suponiendo una gradual liberación del nitrógeno durante un período de 5 años. Además, el valor de alquiler y de venta de las parcelas donde se ha aplicado anterionnente frijol de abono tiende a ser mayor.El segundo efecto de la siembra del frijol abono se refiere a la reducción de la incidencia de malezas y por ende un menor uso de agroquímicos para el control de las mismas. Varios autores argumentan que se reduce sustancialmente el tiempo requerido para preparar los terrenos y para la deshierba (Sain et al., 1993;Buckles et al., 1992). Por otro lado, se aumenta la mano de obra requerida para la siembra y cosecha de la leguminosa (en sistemas de rotación) o bien se complican las labores de mantenimiento del cultivo de maíz (en sistemas de relevo). Aún cuando la ocupación total se ve reducida dentro del sistema maíz/mucuna, la menor producción total de maíz por manzana que genera este sistema (causado por la ocupación de una parte de la superficie sembrada por la mucuna) implicaría una reducción de la productividad de trabajo.Los diferentes trabajos de investigación sobre los sistemas de producción basados en el uso del frijol abono dedican mayor atención a la difusión progresiva de la práctica sobre productores campesinos en Centroamérica (Bunch & Lopez, 1995;Buckles, 1995). Existe además una amplia documentación de los programas de extensión (de campesino a campesino) que contribuyeron a la difusión. Sin embargo, análisis recientes apuntan también hacia ciertas limitaciones estructurales para la adopción del sistema maízlmucuna, tales como: (i) la inseguridad de la tenencia, (ii) el limitado tamaño de las fincas (y la imposibilidad de sacrificar el uso directamente productivo de una parte del terreno), y (iii) la necesidad de asumir trabajos fuera de la finca. Además, se presentan problemas 2. Un aspecto importante que explica la mayor eficiencia del nitrógeno proveniente de fertilizantes qufmicos se refiere a la dimensión temporal: el nitrógeno químico se aplica precisamente en el momento que los cultivos lo requieren, mientras el nitrógeno proveniente del frijol de abono se libera gradualmente. Por consiguiente, puede haberse un déficit de nitrógeno al inicio del ciclo vegetativo. de manera especial bajo condiciones climáticas templadas.En efecto, la evaluación económica de la factibilidad del sistema maízmucuna para diferentes categorías de productores campesinos debería tomar en cuenta muy seriamente (i) los costos de oportunidad de los factores de producción (de manera especial de la tierra y de la fuerza de trabajo) y (ii) los precios relativos de los factores de producción y de los productos en el mercado. Finalmente, habrá que tomar en cuenta las posibilidades del pequeño productor para invertir en la tierra (es decir: su horizonte de tiempo) y un conjunto de otros factores familiares (edad, educación, género, etc) que inciden sobre la adopción. 17 Se requiere hacer un posterior análisis del patrón de uso de la mano de obra en la finca y el aspecto estacional de la disponibilidad de trabajo fuera de la finca, para poder evaluar las opciones de uso de la mano de obra (familiar) para el establecimiento y mantenimiento del frijol de abono durante las épocas 'flojas'.Existen diferentes métodos para la comparación y evaluación económica de sistemas de producción de alto y bajo uso de recursos externos. Heerink & Ruben (1996) ofrecen un resumen de los métodos más relevantes y sus respectivas ventajas y desventajas. Los estudios de carácter netamente financiero se ocupan del método análisis costo-beneficio. Para poder evaluar la influencia de precios sobre la selección del sistema maíz-mucuna vis-a-vis el sistema de maíz tecnificado habrá que recurrir a la estimación de la función de producción. En función de poder determinar las características de la finca o del hogar que inciden sobre la adopción de una determinada práctica, se puede hacer uso del análisis estadístico de diferentes variables (Probit). Finalmente, para la evaluación del impacto de medidas de política agraria sobre el ajuste de sistemas de producción se recomienda el uso de modelación de finca. A continuación ofrecemos un breve comentario acerca de cada uno de estos métodos. En la Sección 4 explicaremos en mayor detalle la aplicación de funciones de producción para la comparación de sistemas HEIA y LElA.El método de cálculo de la relación costo-beneficio ha sido el más utilizado (Lutz el al., 1994; Buckles el al., 1992; Flores, 1993), y los resultados de dicho análisis de carácter estático confirman la desventaja relativa del sistema maíz-mucuna en términos de la menor productividad de trabajo y de tierra (véase recuadro). Esto se debe a la siguiente combinación de factores: la disminución de los costos de insumos materiales (fertilizantes, herbicidas) la reducción de la productividad física de la tierra el aumento de la intensidad de trabajo (para el mantenimiento del cultivo) El aspecto de la menor productividad de la tierra amerita una aclaración. Mientras que estudios anteriores se han ocupado con la comparación del sistema maíz-mucuna con la producción tradicional de maíz con unos ciclos de descanso o barbecho (Buckles el al., 1992), consideramos que sería más oportuno comparar el sistema maíz-mucuna con la siembra de maíz haciendo uso de fertilizantes químicos. Esto implica que no se sacrifican unos ciclos de la producción del maíz y por ende se mantiene un mayor nivel de productividad. Asimismo, esta comparación permite valorizar de manera directa las implicaciones de dos diferentes vías de intensificación: por el lado del uso de la fuerza de trabajo (LElA) y por el lado del uso de los insumas externos (HEIA).En condiciones de precios fijos para insumas y productos, el sistema HEIA tiende a ser preferido, tomando en cuenta también los costos de oportunidad de los factores tierra y trabajo. ~ichos costos de oportunidad son más altos para productores pequeños que dependen más del ingreso de la finca y/o del trabajo asalariado complementario (Ruben & Clemens, 1996), razón por la cual el sistema LEIA resulta ser atractivo más que todo para productores medianos que disponen de una horizonte de tiempo más largo (es decir: aplican una tasa de descuento más bajo) para poder apreciar el efecto del frijol abono sobre la productividad futura. El reducido peso que representan los insumas materiales todavía en el total de los costos de producción representa otra razón por no darles un papel decisivo para la selección de la técnica de producción. La transición del sistema HEIA hacia el sistema LElA se puede esperar solamente con un reajuste sustancial del precio de producto. En el ejemplo presentado esto requiere un aumento del precio de venta del maíz de 12 % para poder equilibrar el rendimiento por manzana, y un aumento del precio de venta del maíz de 20 % para poder equilibrar la remuneración por día de trabajo. Cabe dudar la existencia de tales mercados al nivel nacional que estén dispuestos a compensar esta diferencia de precios.Las desventajas del método costo-beneficio para la comparación y evaluación de diferentes sistemas de producción son de todo conocidas. El análisis costo-beneficio ofrece solamente las condiciones mínimas necesarias para la adopción de una determinada tecnología, pero no revela todavía las condiciones suficientes para dicha adopción. Por supuesto, el sistema LElA requiere tener una rentabilidad positiva, pero para su selección la rentabilidad marginal de los factores de producción debe ser superior al sistema HEIA. Para poder determinar esta última variable se debe recurrir al uso de funciones de producción (véase Sección 4).La base de datos disponible para el análisis costo-beneficio se limitan generalmente a una serie de estudios de casos; existen muy pocos estudios que hacen uso de muestreo. Por consiguiente, los resultados son de carácter estático. 28 Aspectos del comportamiento de la finca y posibles respuestas de productores ante cambios en los precios quedan fuera del análisis. Para poder valorizar mejor estos factores, existe la opción de utilizar otros métodos de análisis: (i) el análisis estadístico multi variado o econométrico para determinar las características intrínsecas del hogar que inciden sobre la probabilidad de adopción del sistema LElA o HElA, y (ii) los modelos de fincas para evaluar el impacto de medidas de política agraria sobre el ajuste de sistemas de producción. Sin entrar en detalle sobre el trasfondo de estos métodos, se ofrece a continuación un breve comentario sobre su relevancia para la evaluación económica de sistemas HEIA y LElA.El análisis probabilístico permite determinar cuales son los características de los hogares y fincas que afectan la probabilidad de adopción de una determinada tecnología. Con este método podemos verificar o falsificar los hipótesis con respecto a la viabilidad del sistema LElA para distintos tipos de productores campesinos. En este caso, se supone que la selección de sistema maíz-mucuna se da en fincas con las siguientes características: (i) tamaño mediano o grande de la finca (alta proporción de tierra por miembro familiar), (ii) inferior calidad de suelo, (iii) mayor distancia del mercado (o bien: menor grado de comercialización de la producción), (iv) hogares grandes con un índice de dependencia favorable, (v) hogares con menor involucramiento en empleo asalariado fuera de la finca, y (vi) menor disponibilidad de activos y ganado. Otros factores que pueden ser incluidos en este análisis se refieren al grado de información (sobre precios, mercados y técnicas) y la asistencia recibida en materia de capacitación, asistencia técnica y apoyo crediticio (Ruben & Vaessen, 1996).Finalmente, para la evaluación del impacto de medidas de política agraria (precios, acceso a mercados, derechos de propiedad) la metodología de modelos de fincas tiende a ser lo más apropiado. En esencia, este método permite evaluar simultáneamente el impacto de cambios en el entorno de la finca sobre las \" Esta limitación se ha intentado de compensar a través de métodos de análisis incremental de la relación costobeneficio (véase: Jauregui & Sain, 1992). Cabe señalar, sin embargo, que este procedimiento está basado en la simulación de resultados, mientras que la estimación de la función de producción usa unicamente datos actuales. posibilidades de producción (selección de rubros y técnicas de producción), sobre el consumo familiar, y sobre la ocupación del tiempo (leisure). Productores campesinos toman sus decisiones sobre el ajuste del patrón de uso de la tierra tomando en cuenta la optimización de las opciones de consumo y de tiempo libre.La función de objetivos que rige la selección de tecnologías de producción se amplía más allá del criterio de rentabilidad, e incluye también objetivos de minimización de riesgos y/o acceso a servicios. Cambios en los precios de productos u insumos pueden ser evaluados simultáneamente desde el punto de vista de su impacto sobre la utilidad (consumo, tiempo) y sobre el balance de nutrimentos y material orgánico de la tierra. Diferentes estudios confirman que las respuestas de productores ante cambios en los precios (supply response) son mucho más grandes en relación al mercado de productos, mientras que ajustes en los costos de producción ocasionan solamente limitadas respuestas de parte de los productores, y ocasionalmente atentan en contra de la sostenibilidad del sistema de producción (Ruben et al., 1994; Kruseman et al., 1995).El análisis de funciones de producción resulta ser un método apropiado para realizar una evaluación socio-económica de los sistemas de producción caracterizados como HElA y LElA. A partir de la estimación de funciones de producción separados para productores HElA y LElA (y para el conjunto de la muestra) se puede analizar la coexistencia de ambas tecnologías en una misma región. En este caso, productores campesinos operan en diferentes segmentos de la función de producción que domina bajo una determinada relación de precios entre insumos y productos. Diferentes productores también enfrentan diferentes precios en los mercados (debido a diferencias de acceso y/o gastos de transacción 29 ), y por consiguiente su punto de intersección con la función de producción también puede variar.2. Tomando en cuenta la ausencia de ciertos (segmentos del) mercado. no se puede considerar el precio de compra o venta en el mercado como el precio subjetivo que utiliza el productor para decidir sobre la allocación de los factores de producción y sobre el destino de la producción (de Janvry el al.• 1991)..16.7 . . . . ; .. J l ~~Ẽ n la Figura 1 ofrecemos una ilustración de dos diferentes funciones de producción para el cultivo de maíz, cuya respuesta ante el uso de nitrógeno como principal insumo demuestra rendimientos decrecientes. Ambas funciones tienen la forma común convexa, pero difieren con respecto a su inclinación, debido a otra intensidad de respuesta frente a la applicación de nitrógeno. El punto de arranque de la función de producción está dado por la fertilidad natural del suelo. La principal diferencia-es que la función LElA deriva el nitrógeno básicamente del frijol abono, mientras que la función HEIA descansa únicamente sobre el uso de fertilizantes inorgánicos. Es de criterio común, que en tales circunstancias se justifica una estimación separada de las funciones de producción (Mundlak, 1992).Funciones de producción para HEIA y LElA Las elasticidades de producción de los insumos primarios (tierra, trabajo, nitrógeno) y las elasticidades de sustitución entre los insumos difieren de manera sustancial entre ambas funciones. Se supone que en el segmento de bajo uso del insumo nitrógeno, el sistema LElA será probablemente más eficiente. Limitadas cantidades de insumos aplicadas bajo una tecnología indígena probada durante muchos años ofrecen mejores resultados que cantidades comparables de insumos externos (Hayami & Ruttan, 1985). Se puede encontrar, sin embargo, un punto de intersección de las funciones de producción para técnicas LElA y HEIA. La curva de la tecnología HEIA demuestra un decrecimiento relativo menos pronunciado, Ü F MiHíJlm:u:.tM1lt UltdliUB U lliJ 1 indicando que con mayores niveles de fertilización la respuesta de los cultivos se mantiene.La selección de una determinada tecnología depende, en este marco, de la relación de precios entre nitrógeno y el cultivo de maíz. Se usa el precio de mercado para fertilizantes como el precio sombra (O costo de oportunidad) del nitrógeno proveniente del frijol abono. La tecnología LElA será preferido en casos de bajos precios del producto o altos precios de fertilizantes (punto de tangencia con la línea PI)' Cuando el precio del maíz incrementa, la tecnología HElA será seleccionada en el punto de tangencia con la línea P3 (suponiendo precios fijos para los otros insumos). También existe una situación de coexistencia de ambas técnicas, cuando el producto marginal es igual para el sistema LElA y HElA (punto de tangencia con la línea p2).La forma de las funciones de producción puede variar de acuerdo con el tipo de suelos y las características de la finca. Suelos fértiles y profundos con limitados riesgos de acidez se caracterizan por una función de producción de menor decrecimiento, dado la respuesta favorable de los cultivo ante cantidades adicionales de nitrógeno. Por consiguiente, el punto de intersección de las curvas LEIA y HEIA se trasladará hacia la izquierda (es decir: con un nivel más bajo de uso de nitrógeno y a un nivel superior de productividad). De la misma manera, la curva LElA puede mantenerse más viable en condiciones de suelos marginales.El enfoque de las funciones de producción demuestra ser especialmente útil para analizar diferencias en la adopción de diferentes técnicas de producción en una determinada región. Esto se explica básicamente a partir de diferencias en los precios que enfrentan diferentes tipos de productores en los mercados de productos e insumos. La reducción de los precios de maíz y/o el aumento del costo de los fertilizantes aumenta las perspectivas para el sistema LElA. Por otro lado, la mejora de la infraestructura vial, acceso al crédito y/o apertura de mercados para otros rubros promisorios tiende a facilitar una transición hacia el sistema HElA.En función de poder valorizar los resultados de estimaciones separadas de la función de producción para sistemas de cultivo de maíz caracterizados como REIA (es decir: haciendo únicamente uso de fertilizantes inorgánicos) y LElA (es decir: haciendo uso del frijol de abono a la par del fertilizante inorgánico), se organizó una encuesta por muestreo en la región de El Espíritu, ubicada en la zona alta del Departamento de SaI}ta Rosa de Copán. Existe en esta zona una larga trayectoria de uso del frijol de abono en rotación con maíz, promovido por el Programa de Desarrollo Agrícola Integral (PRODAI), lo cual permitirá una evaluación del impacto a mediano plazo del sistema LElA en comparación con el sistema HEIA.La investigación se llevó a cabo en El Departamento de Copán, Honduras, en partes de los municipios de Florida y La ligua. Esta zona linda con el Departamento de Santa Bárbara en el Este, con el parque nacional Cerro Azul en el occidente, y con La República de Guatemala en el Norte. El área de investigación cubre un tamaño de 80 km2 y es caracterizada por dos zonas agroecológicas. La primera zona es un valle formado por el Río Chinamito que sale en el Rio Chamelecón. La zona es muy plana y la altura varía entre 490 y 520 metros. La precipitación anual es 1,400-1,500 mm. con un punto álgido desde el fin de Mayo hasta medio Julio. Este período es la temporada mas favorable para sembrar maíz de primera. También se puede sembrar maíz otra vez en NoviembrelDiciembre pero la probabilidad que el maíz de postrera sufra de stress de sequía es más grande. Por consiguiente, son pocos los agricultores que siembran maíz de postrera. La segunda zona forma parte de la Sierra Espíritu Santo. El paisaje es muy irregular y se compone de laderas con pendientes fuertes, con alturas que varían entre 500 y 900 metros. La precipitación anual es 1,500-1,600 mm. con puntos áldigos en el fin de Mayo hasta Julio y desde el fin de Diciembre hasta Febrero. El período mas favorable para sembrar maíz de postrera son los meses de Diciembre y Enero porque luego empieza el ciclo anual de mucuna y antes la tapisca el maíz puede secar mejor. El maíz de primera sufre algunas veces de exceso de lluvia.En estas dos zonas agro-ecológicas también hay diferencias en cuanto a la tecnología que se usa para producir el maíz. En el valle, la mayor parte de los agricultores usan abonos químicos en el maíz de la primera. Aquí, solamente algunos agricultores siembran frijol de abono en el maíz de la primera. Los agricultores en el valle que tienen frijol de abono en el maíz de la primera cortan el frijol de abono antes de sembrar frijol paisano en la postrera en la misma parcela. En el valle, la tierra es costosa y por consiguiente hay siempre dos cosechas por año; normalmente maíz en la primera y frijol paisano en la postrera. De esta manera el frijol de abono no tiene tiempo para florecer y cada año el agricultor tiene que sembrar el frijol abono otra vez en su maíz.En las laderas, la mayor parte de los agricultores tienen frijol de abono en su milpa de postrera. En el maíz de primera algunos agricultores usan abono químico (más que todo urea), pero la mayoría de los agricultores no fertilizan el maíz de primera. En esta zona hay mas tierra, y aquí hay solamente una cosecha por parcela por año. El frijol abono que los agricultores siembran en el maíz de postrera tiene suficiente tiempo para florecer y producir semillas. Entonces, después de la primera siembra de frijol de abono en el maíz de postrera, no es necesario sembrar frijol abono el siguiente año. El frijol de abono tiene tiempo para producir semillas y nace a revuelta el siguiente año. En el maíz de primera casi no se usa frijol de abono en las laderas, porque produce pocas semillas. Es mas favorable sembrar frijol de abono con el maíz de postrera. Estos dos zonas tienen también diferencias en respecto de aspectos socio-económicos. En el valle vive mas gente, la tierra es mas fértil y entonces los precios de la tierra por manzana son también mas elevados. En general, en las laderas hay mas pobreza y mayor proporción de agricultores que no tienen tierra propia. Asimismo, la producción en el valle tiene un carácter algo mas 'comercial', aunque en ambas zonas predomina la producción de maíz para fines de autoconsumo o de consumo local.El cuestionario utilizado para esta investigación se compuso de una serie de preguntas acerca del uso de recursos familiares, la forma de manejo de suelos y cultivos, las técnicas de producción del maíz, los cultivos producidos en asocio con el maíz, la composición de gastos e ingresos, características de la finca y del hogar, y conocimientos de los productores acerca de diferentes tecnologías de agricultura sostenible. Se registraron los precios reales de compra y venta a nivel de cada finca. Los datos recolectados fueron procesados y uniformados en cuanto al uso de diferentes tipos de fertilizantes (calculado en términos de nitrógeno y fósforo efectivamente disponible) y biocidas (calculado en términos de materia activa).Durante el período marzo-agosto de 1996 fueron entrevistados un total de 75 hogares campesinos que sembraron 151 parcelas de maíz durante el ciclo agrícola 1995/96. Se han excluido del procesamiento 14 parcelas que no ocuparon ninguna fuente de fertilización, para un total de 71 parcelas clasificados como LElA y 66 parcelas clasificados como HEIA. En el cuadro 3 se reporta el valor promedio de uso de insumas (mano de obra, nitrógeno disponible proveniente de diferentes fuentes, fósforo disponible, tracción, y biocidas y herbicidas) en cada uno de los sistemas, igual que algunas características intrínsecas de las fincas (tamaño, tipo de suelo, posesión de ganado) y de los hogares (índice de dependencia, trabajo fuera de la finca) que pueden estar asociadas con la selección de una de estas tecnologías. rtUmiWilmO Ji ~t aunque el total de nitrógeno aplicado a las parcelas resulta ser menor para las parcelas clasificadas como HEIA. Los fuentes de nitrógeno son muy diferentes entre ambos sistemas: el sistema LElA depende en un 60 % del nitrógeno proveniente del frijol de abono, mientras que el sistema HEIA depende casi el 100 % de nitrógeno proveniente de fertilizantes inorgánicos. La contribución del estiércol es mínima y no hay diferencia significativa entre ambos sistemas en este respecto. La posesión de ganado no sobrepasa los 1.5 cabezas por finca. El sistema HEIA ocupa una cantidad de fósforo muy superior al sistema LEIA y la diferencia entre ambos sistemas resulta ser significativa, indicando que la fertilización con fórmulas que incluyen fósforo responde a la escasez de nutrimentos que caracteriza los suelos fluviales de la zona. Finalmente, el sistema LElA ocupa sustancialmente menos biocidas, pero éstos representan una fracción mínima de los costos de producción.En cuanto a la ocupación de mano de obra, es sorpresivo que el sistema LElA requiere menos días de trabajo por hectárea. El tamaño promedio de las parcelas de maíz y de las fincas no son diferentes de manera significativa. Lo productividad promedio por día de trabajo de ambos sistema es alrededor de 20 kg de maíz por día de trabajo, pero dicho resultado se realiza con una combinación de factores de producción bastante diferente. El sistema LEIA aplica más nitrógeno (pero de fuentes menos eficientes) y ocupa menos mano de obra y biocidas, mientras que el sistema HEIA hace menos uso de nitrógeno y ocupa más mano de obra. La eficiencia de ambos sistemas depende por lo tanto de los costos de oportunidad de los factores tierra, trabajo y capital. Los productores que usan el sistema LElA ocupan, por ejemplo, mucho más días de trabajo fuera de la finca (la diferencia no es significativa debido a la alta desviación estándar), lo que puede indicar un costo de oportunidad más alta del factor trabajo. De la misma manera, el sacrificio de una parte de la tierra para la siembra del frijol abono puede explicar la menor productividad del sistema LElA y debe ser juzgado desde el punto de vista del costo de oportunidad de la tierra. Una evaluación completa de estos elementos requiere la estimación de las elasticidad de producción (i.e. producto marginal por factor) de manera separada para sistemas HEIA y LEIA.Para tal efecto se estimaron los coeficientes del factor de producción para el conjunto de las parcelas de maíz, igual como para los segmentos caracterizados como HEIA y LElA. En caso del no uso de determinados insumas, se usó el procedimiento indicado por Battese (1996).30 Se recurrió al uso de la forma funcional de tipo Cobb-Douglas (CD) por razones de su sencillez y porque los resultados son de fácil interpretación. 31 La estimación de dos funciones separadas para sistemas caracterizados como LElA y HEIA se justifica en la medida que los coeficientes demuestran ser diferentes y significativos, dado que se consideran diferentes elasticidades de producción para los insumos primarios. Por esta razón, se considera menos conveniente el procedimiento utilizado por Mausolf y Farber (1995) que se limita a estimar la significancia de un variable dummy que tipifica cada sistema.El modelo estimado utiliza los factores tierra (en ha), mano de obra (en días de trabajo), nutrimentos (nitrógeno y fósforo en kg*ha-1 ), biocidas (i.a*ha-1 ), y tracción (lps*ha-l) como variables independientes, y la producción de maíz (en kg) como variable dependiente. El uso de semillas no fue incluido por problemas de mediación y su efecto es posiblemente captado por otros variables. Otros variables que caracterizan el hogar y la finca fueron incluidos (educación, edad, género, tenencia, distancia del mercado, pendiente, calidad del suelo) pero todas, excepto la calidad del suelo (calificado como 1 para buenos suelos y Opara suelos deficientes), dieron una resultado no significativo. Parece ser que las características de la parcela prevalecen a las características del hogar en cuanto a la decisión de sembrar el frijol de abono. Los resultados se presentan en el cuadro 4. 30 En caso de la no aplicación de determinados insumos, se ha computado el logaritmo natural (In) especificando para variables ausentes un valor cero (ver: Battese, 1996).JI Una comparación de sistemas HEIA y LElA haciendo uso de otras formas funcionales (translog, CES. cuadrático, etc) ha sido presentado por Halle Abreba (1997). Los resultados de la estimación indican en primer lugar que la separación de la muestra en dos segmentos se encuentra justificada (prueba de Chow; Maddala, 1977). El sistema de producción de los productores que usan el sistema HEIA (básicamente localizados en el valle) demuestra ser fundamentalmente diferente al sistema maíz-mucuna que se practica más (pero no exclusivamente) en las parcelas en las laderas. Los coeficientes de los factores tierra, mano de obra y tracción y la constante son positivos y significantes en todos los casos. La productividad marginal de la tierra es superior para el sistema HEIA, mientras que la productividad marginal de trabajo es más elevado en el sistema LElA. Sin embargo, la prueba T indica que la diferencia del coeficiente entre ambos sistemas no es significativa para los factores mano de obra y tracción. Los coeficientes para el suministro de nitrógeno y el uso de biocidas son significantes para toda la muestra, pero no aparecen en la ecuación LElA. Separación del suministro de nitrógeno para diferentes fuentes (mucuna, fertilizantes, estiércol) no mejora el resultado. Por otro lado, la variable calidad de tierra obtiene un coeficiente positivo y significante para el sistema HEIA, indicando su selección en las mejoras parcelas. Conjunto con el coeficiente positivo y ligeramente significante para el variable de fósforo, esto parece indicar que la eficacia de suplementación con fuentes de nitrógeno se ve limitado por la disponibilidad de fósforo en el suelo. Por consiguiente, la elevada aplicación de nitrógeno en el sistema LElA en condiciones de desbalance del fósforo no resulta ser una solución adecuada para poder aumentar la productividad de la tierra.En cuanto a la presencia de economías de escala, la suma de los coeficientes para la función agregada es 1.05, mientras que para los segmentos HEIA y LElA son 1.14 y 1.06 respectivamente. Esto indica que existen mayores ventajas de escala para sistemas de alto uso de recursos. Para poder valorizar estas perspectivas, será necesario estimar los coeficientes de las elasticidades de substitución entre insumas. Se espera para sistemas LElA una mayor factibilidad de sustitución entre insumas externos y fuerza de trabajo, de tal manera que se mantiene la calidad y la productividad del suelo a costo de una menor productividad del trabajo. Esto permitirá además de reducir la diferencia en calidad de suelo entre ambos sistemas. La evaluación de este aspecto requiere una separación de la variable mano de obra en trabajos de mantenimiento y labores de cosecha.La estimación de funciones de producción separadas para sistemas HEIA y LElA demuestra ser de mucha relevancia para poder medir los coeficientes de la elasticidad de la producción para cada uno de los factores de producción. Mientras que la productividad promedia de la mano de obra es igual para ambos sistemas, el sistema HEIA realiza un nivel de productividad promedia de la tierra bastante superior (véase cuadro 3). El coeficiente de variación de la productividad es, sin embargo, más alto en el sistema HEIA, lo que indica una mayor sensibilidad ante riesgos. La producción marginal de la tierra resulta ser mayor en el sistema HEIA, pero la productividad marginal de trabajo no es significativamente diferente entre ambos sistemas (véase cuadro 4). Todo contrario a la expectativa general, esto implica que el sistema HEIA tiende a ser más apropiado para pequeñas fincas con escasez de tierra, mientras que el sistema LElA es más accesible para fincas de tamaño mediano o grande.La ausencia de valores significantes para la aplicación de nitrógeno en ambos funciones de producción (mientras que el coeficiente es todavía significante para todo la muestra) parece indicar que la contribución del nitrógeno a la productividad de la tierra es de mucho menor relevancia. La eficacia del suministro de nitrógeno se encuentra probablemente limitado por la disponibilidad de fósforo (significante solamente en la ecuación HEIA). También el alto coeficiente para la variable calidad de la tierra en la ecuación HEIA apunta en esta dirección. Mientras que el sistema LElA se limita por lo tanto en su aplicación a suelos de menor potencial, el suministro de nitrógeno proveniente del frijol de abono en cantidades muy superiores a las del sistema HEIA no se traduce en un aumento de la productividad. Dicho de otra manera: en condiciones de escasez de fósforo en el suelo, la aplicación de una pequeña cantidad de fórmula de fertilizantes químicos ofrece mejores resultados que una exclusiva dedicación al uso de frijol de abono.Estos resultados indican claramente que la selección de sistemas LElA y HEIA por parte de los productores campesinos de la zona está basado en una valorización implícita de las condiciones de producción que ofrece cada finca y parcela. La coexistencia de ambos sistemas -a menudo dentro de la misma fincasugiere que ocupan 'nichos' distintos determinados por las condiciones agroecológicas dadas. El sistema LElA puede ser apropiado en condiciones de menor inserción de la producción en los mercados y cuando hay menos alternativas laborales disponibles para la fuerza de trabajo familiar. Cuando la disponibilidad de tierra se presenta como un factor limitante, el sistema HEIA tiende a ser la alternativa más viable para poder mantener el ingreso familiar. Surgen en la práctica muchas opciones intermedias debido a varios factores específicos que modifican este panorama. Para tal efecto habrá que tomar en cuenta los patrones estacionales en la demanda y oferta de mano de obra, las opciones de alquiler de tierras, y los precios sujetivos de compra y venta que rigen la inserción en los mercados locales. Estos aspectos ameritan mejor atención para ser incorporados en análisis posteriores basados en el enfoque de la función de producción.Finalmente se puede señalar que la estimación de las funciones de producción permitió valorizar en cuales condiciones socio-económicas los productores campesinos estarían inclinados de ajustar sus sistemas de producción. Contrario a lo esperado, los variables típicas del hogar campesino (edad, educación, ubicación, índice de dependencia, tamaño de finca) no demostraron tener una influencia significativa sobre las elasticidades de la producción. La calidad del suelo de la parcela tiene mayor peso en la selección de la tecnología de producción. Los precios relativos del producto (maíz) comparado con los costos (de mercado o de oportunidad) de los factores de producción (tierra, mano de obra, insumos) ofrecen un marco explicativo adicional. La reducción del precio de maíz en comparación con otros rubros tiende a invalidar el sistema de producción LElA debido a su menor productividad. De la misma manera, un aumento del precio (costos de oportunidad) de la tierra y del componente de fósforo dentro de fertilizantes favorece los sistemas de producción HEIA. Dentro del marco del actual proceso de desarrollo rural en Honduras, ambas tendencias son ampliamente visibles, y las perspectivas para una mayor extensión de sistemas LElA en zonas con un potencial agroecológico adecuado parecen ser bastante limitadas.Los autores desean expresar su agradecimiento al personal del Centro Internacional de Información sobre Cultivos de Cobertura (CIDICCO) en Honduras, de manera especial a su director Ing. Milton Flores, por el apoyo recibido durante el trabajo de campo. Agradecemos además a las extensionistas del PRODAI (ahora: ADAAOCC) en El Espíritu, a su coordinador Carlos Hernández, y a los estudiantes Walter Mejía y Andrés Zelaya (EAP) y Simone Ransijn (VAW) por su ayuda en la recolección de los datos de campo. Cabe destacar además el apoyo recibido de parte de MSc. Mayra Falck del Centro de Políticas Agrícolas de la Escuela Agrícola Panamericana (EAP) zamorano. Agradecemos también los comentarios recibidos ante una primera versión de este artículo de parte de Gustavo Sain (CIMMYT Costa Rica), Mauricio Bellon (CIMMYT México) y Bruno Barbier (IFPRI). La investigación de campo ha sido financiada dentro del marco del programa NOP. Durante los últimos 50 años, las políticas y las investigaciones agrícolas en Mesoamérica se han orientado a promover el desarrollo en los valles; las laderas, generalmente, se relegaban a un segundo plano en el pasado. A pesar de lo anterior, las poblaciones rurales de escasos recursos económicos se asientan en estas áreas, cuya importancia para la produccion agrícola continúa incrementándose tanto en área como en producción (IIeA, et al. 1991;López, Scherr y Mendoza 1995). El valor social de los recursos naturales de las laderas es alto; sin embargo muchas de estas áreas son ecológÍcamente frágiles, con declives escarpados propensos a la erosión de los suelos y a la pérdida de nutrimentos; los sistemas hidrológicos son vulnerables a los cambios por actividades humanas; y muchos de los hábitats naturales se encuentran en peligro. Es necesario reconsiderar las políticas para el desarrollo en las laderas.Se pueden encontrar experiencias limitadas en la región con respecto a la intensificación en las laderas que puede llevar a mejoras en las condiciones socioeconómicas de los grupos mas pobres y que también puede llevar a la protección de los recursos naturales (véase Scherr y Neidecker-Gonzales, este volumen). Pero en otras partes del mundo se ha encontrado una relación positiva entre el uso mas intensivo de la tierra y una densidad mas alta de la población, por un lado, y el mejoramiento de recursos, por el otro. 33 Se ha demostrado que la intensificación en las laderas puede ser sostenible donde hay apoyo técnico local apropiado e innovación institucional y una adaptación que lleva a la productividad ya la promoción de inversiones en los recursos (Arnold y Dewees 1991; Bottema y Stoltz 1994; Templeton y Scherr 1996;Tumer, Hyden, y Kates 1993).A lo largo y ancho de Mesoamérica, las iniciativas están en camino para enfrentar los retos que implican el manejo sostenible de la agricultura y los recursos naturales (MRN) de las laderas, a través de reformas a las políticas agrícolas y ambientales. Pero en muchos casos, las políticas están siendo formuladas sin información adecuada acerca de los procesos actuales y rutas de intensificación y extensificación en el uso de los recursos naturales, los factores causales que influyen sobre éstos (incluyendo las políticas), y los resultados \" Tasas de crecimiento muy rápidos si llevan a un desequilibrio que conlleva la degradación de recursos, hasta que se alcanza un nuevo equilibrio. asociados con diferentes vías de desarrollo. Entre las preguntas claves pero difíciles de investigar rigurosamente se encuentran las siguientes: ¿Cuáles son los potenciales de producción a corto y largo plazo y las ventajas comparativas de las laderas en el contexto de los objetivos de la política nacional?¿Bajo qué condiciones pueden los productores de laderas intensificar el uso de la tierra y también mejorar su bienestar y proteger las fuentes de agua y otros recursos del medio ambiente?¿Qué instrumentos de política y qué secuencia de intervenciones (por ejemplo, asistencia técnica, política de precios, inversiones públicas, regulaciones sobre el uso de la tierra, derechos de propiedad) son prioritarios para apoyar el desarrollo sostenible en laderas bajo diferentes condiciones?Este ensayo explora los problemas metodológicos para la investigación sobre políticas sobre el desarrollo sostenible, y sugiere algunas posibles soluciones. La siguiente sección examina tres retos metodológicos para el diseño de la investigación: la definición del problema y las hipótesis, análisis de la escala espacial, y análisis de la escala temporal. La tercera sección presenta el marco conceptual, los objetivos y la metodología desarrollada para un estudio sobre políticas para laderas llevado a cabo en Honduras. La cuarta sección describe algunas innovaciones metodológicas introducidas para responder a los retos antes definidos, y la quinta sección presenta algunos ejemplos de su implementación. La sección final resume algunas implicaciones de estas nuevas estrategias metodológicas para la capacitación de investigadores en políticas sobre desarrollo sostenible.El reto del \"desarrollo sostenible\" es diseñar programas y políticas que enfrenten lo que conocemos como \"el Triángulo Crítico\" de objetivos de desarrollo: crecimiento en la productividad y producción económica, mejoramiento del bienestar humano, y la protección de base de los recursos naturales (Vosti y Reardon, en prensa). En áreas de ambiente frágil, como son las laderas, es especialmente importante buscar vías de desarrollo que alcancen las tres metas, o que por lo menos minimicen los conflictos entre los tres objetivos de desarrollo.Las dificultades metodológicas de analizar las políticas se derivan de la necesidad de entender las interacciones entre los diferentes puntos del triángulo. Las interacciones entre el crecimiento económico y el bienestar humano no son completamente comprendidas; pero ha habido progreso sustancial y hay muchos métodos de investigación para análisis integrado. En este ensayo se hará énfasis en los retos metodológicos que se desprenden al enmendar las interacciones entre el Manejo de los Recursos Naturales (MRN) por un lado y el crecimiento económico, y el bienestar humano por otro. Para integrar la temática de los recursos naturales dentro de la investigación en políticas, hay que resolver tres factores claves de diseño: Una definición del problema que sea significativa para los que manejan los recursos naturales y también los formuladores de política, y que permita la formulación de hipótesis precisas;Una escala y unidad de análisis que permita relacionar el MRN con su impacto sobre las condiciones ecológicas de los recursos; y Una escala de tiempo que permita que se evalúen los procesos y mecanismos de la degradación o el mejoramiento de los recursos naturales.Un principio fundamental para el diseño de la investigación formal es que ésta debe reflejar una definición coherente y productiva de problemas e hipótesis respectivas. Por varias razones, esta definición se dificulta para el análisis de políticas relacionadas con el MRN. En primer lugar, los problemas de MRN son comúnmente percibidos de manera muy diferente por diferentes usuarios de recursos y formuladores de políticas. Por ejemplo, un Departamento Forestal puede valorar los bosques principalmente por su riqueza maderera, mientras que la gente local los puede valorar por su provisión de leña y suplementos alimenticios; así varios grupos se enfocan sobre diferentes variables e indicadores relacionados a la problemática de la deforestación. La metodología de la investigación sobre políticas tiene que tomar en cuenta, explícitamente, estos puntos de vista. Hay que crear oportunidades para diferentes participantes: tanto los usuarios de recursos naturales, como los formuladores de políticas, para que todos estos grupos proporcionen sus perspectivas durante el proceso de investigación. Las variables e indicadores utilizados en la investigación deben reflejar esas diferentes perspectivas.En segundo lugar, es necesario cuestionar las suposiciones básicas de cualquier estudio sobre MRN. La falta de datos básicos y el desarrollo incipiente de los conocimientos de procesos básicos de cambio en recursos naturales hacen que la historia de la evaluación de MRN esté llena de casos de política e investigación basados en suposiciones que posteriormente resultaron ser erradas. Fairhead y Leach (1996) documentan un ejemplo de una región en Africa donde se tuvo por un periodo de casi cien años, un consenso entre los oficiales y los técnicos forestales que el bosque indígena sufría una deforestación seria y continua a manos de la población local. Este mito sirvió como base para la política, hasta que un estudio empírico demostró que la cobertura forestal había sido casi estable durante el período, protegido por un sistema de manejo indígena. Kaimowitz (este volumen) señala la prevalencia de ciertos \"mitos\" acerca del MRN en Centro América, que aun influyen sobre la formulación de las políticas y la investigación agrícola en la región .. En tercer lugar, se necesitan procesos para reducir el gran número de variables socioeconómicas, políticas y ecológicas que pueden afectar al MRN y sus impactos, a un número más reducido de variables que puedan ser fácilmente manejadas a través de una investigación formal. Comúnmente la selección de teorías de causalidad y de los variables a medir son grandemente influidas por las perspectivas particulares de determinadas disciplinas académicas. Así, un estudio sobre la problemática de la erosión con fines de diseñar política, típicamente se enfocará sobre factores muy distintos si es llevado a cabo por especialistas en suelos, economía u organización social. El análisis del triángulo crítico, en contraste, requiere que se unan estas perspectivas y que se identifique empíricamente cuales factores son mas importantes en el análisis.Dadas estas dificultades, una primera fase de la investigación exploratoria (a veces extendida) puede ser requerida para entender mucho mejor la situación contextual, antes de poder desarrollar las hipótesis específicas y el diseño detallado del estudio en una segunda fase.La incorporación de los problemas de los recursos naturales dentro de la investigación sobre políticas agrícolas, puede requerir la recolección e integración de datos a varias escalas espaciales y unidades de análisis (Izac y Swift 1994;Stonich 1993). La razón fundamental es la naturaleza de la temática de los recursos naturales mismos. Para ser efectivos, los instrumentos de política tienen que incidir sobre el comportamiento de los que usan o manejan el recurso natural.Pero este nivel no siempre corresponde al nivel operativo de la política, ni a la escala de su objetivo final. Las investigaciones convencionales sobre políticas de recursos naturales se derivan originalmente por uso en el análisis de manejo de bosques o cuencas bajo el control de una sola entidad, o sea el gobierno o una empresa privada grande. Pero estos métodos son difíciles de aplicar en casos donde el manejo y uso de recursos están en manos de muchos agricultores y pobladores individuales.La metodología de la investigación sobre políticas agrícolas se enfoca sobre la familia o la finca como unidad de análisis, y es usada para análisis de políticas de MRN en la actualidad. Como las decisiones más importantes sobre las cuales desea tener impacto la política agrícola son las decisiones de .L82 productores individuales, obreros, o consumidores (niveles de producción, productividad, uso de la tierra, uso de tecnología, uso de insumos, bienestar familiar, ingresos, inversiones), el instrumento de investigación de preferencia para los economistas agrícolas y sociólogos rurales ha sido la encuesta de hogares o fincas. Estudios a nivel de la comunidad han sido utilizados por sociólogos y antropólogos para considerar algunos temas sobre política agrícola tales como la formación y función de cooperativas, o como unidad para análisis de distribución de ingresos, modelos de adopción, etc. Sin embargo, las variables resultantes fueron usualmente agregados de familias o actividades a nivel de fincas.Pero muchos de los resultados y condiciones de los recursos naturales no se pueden evaluar a nivel de fincas o familias. Las preocupaciones de la política acerca de los recursos naturales incluyen el funcionamiento de cuencas hidrológicas, sedimentación de ríos, la calidad de hábitats, bosques o cobertura vegetativa, etc. Todos estos factores requieren una evaluación a una escala de paisaje (Aldenderfer y Maschner 1996;Conway, et al, 1987;Dvorak, ed., 1993;Forman and Godron 1986;Rocheleau 1987). Por eso, se necesita examinar no solo las características y manejo de parcelas individuales (la práctica estándar en los estudios de producción). También es importante analizar lo anterior como parte del paisaje en términos de su papel en funciones ecológicas importantes, tales como procesos hidrológicos o hábitat silvestre, y sus conexiones espaciales y funcionales con otros aspectos en el estudio de la tierra.Datos acerca del comportamiento de usuarios basado en una muestra aleatoria de hogares o de las condiciones de recursos naturales en una muestra aleatoria de fincas individuales, usualmente no se agregan para describir resultados a nivel de paisaje. Algunas excepciones son temas relacionados con la calidad de nutrimentos en suelos agrícolas, y el control de algunas pestes y enfermedades. Más aún, desde la perspectiva del triángulo crítico, la información sobre productividad y bienestar necesita recopilarse de tal manera que permita el análisis de su distribución espacial. Una estrategia alternativa de muestreo puede relacionar las características de parcelas y de fincas con su función ecológica en el paisaje, y así también evaluar información a nivel de paisaje de un contexto político regional o nacional.Pero esto no es simplemente una cuestión de muestreo apropiado. Aún en terrenos agrícolas intensamente manejados, hay grandes áreas que no están cultivadas o no están bajo el control directo de familias individuales: campos adyacentes a fuentes de agua o caminos, bosques y áreas en pastos comunales o nacionales, áreas verdes, o campos públicos. Para entender el manejo de los recursos o las condiciones en dichas tierras se requiere de estudios de campo con muestreo fuera de las fincas, entrevistas con grupos de la comunidad responsables de dichos recursos, y/o estudios que midan las actividades de agricultores individuales en esas tierras.El tercer reto para integrar la tema de MRN dentro de la investigación de políticas agrícolas es la necesidad de captar procesos de degradación o mejoramiento en la condición de los recursos, a través del tiempo.Para analizar los problemas de los recursos naturales, o el impacto de las políticas en las condiciones de los recursos naturales, usualmente se requiere de una escala a largo plazo de tiempo. Esto se debe a varios factores. En primer lugar, es comúnmente difícil medir cambios a corto plazo en cuanto a calidad de recursos, debido a la alta variación inter-anual (e.g., en escala de sedimentos) o bajos niveles de cambio (e.g., biodiversidad). Sin evaluar períodos largos, es difícil determinar si las condiciones de los recursos están mejorando o empeorando. Sin ninguna perspectiva histórica, es difícil distinguir las tierras que están sufriendo de un activo proceso de degradación, de aquellas que simplemente son de baja calidad (pero estable o aún mejorando) como resultado de procesos anteriores. Las implicaciones para las políticas son sumamente diferentes.En segundo lugar, es difícil sacar conclusiones acerca de las condiciones de los recursos naturales a través de estudios transversales. La variación en el tipo de recursos naturales y la calidad de los sitios es comúnmente tan alta que mucha de la variación en producción o bienestar será debido a las diferencias en la dotación de recursos naturales, en vez de en el manejo o política ambiental. Los estudios de un recurso natural definido y sus cambios sobre el tiempo serán más dignos de confianza.Esto es particulannente cierto, donde los procesos de los cambios en los recursos naturales dependen de su vía de desarrollo. No se puede suponer que los cambios en la calidad de los bosques en comunidades de reciente asentamiento fronterizo sigan los mismos patrones como en aquellas comunidades asentadas un siglo atrás, que han experimentado diferentes incentivos económicos por explotación de bosques. Así, factores históricos, y no las políticas recientes, pueden explicar la variación en la actual calidad forestal. Los estudios transversales son apropiados solamente cuando se puede asumir que todas las unidades de estudio están en la misma vía de desarrollo.La dificultad metodológica es identificar e integrar métodos (que pueden provenir de varias disciplinas) para reconstruir estas historias. Datos históricos son comúnmente disponibles a nivel de finca y de hogares, por variables económicas, algunas variables de productividad (en su mayoría para cultivos y recursos de agua), y variables de bienestar básico. Fuentes de información incluyen estadísticas oficiales de la población y censos agrícolas; encuestas permanentes sobre manejo de fincas, pobreza, nutrición, etc.; y series de precios de ingresos y egresos agrícolas.En contraste, hay pocas series de datos históricos al nivel de la comunidad o la micro cuenca, o sobre zonas agro ecológicas, o sus atributos económicos o culturales, sus características biofísicas, sus mercados o instituciones, la acción colectiva, o las condiciones de los recursos naturales.A largo plazo, es esencial desarrollar sistemas de monitoreo sistemático de estas importantes variables, para que se puedan utilizar para asesorar las condiciones de los recursos, las relaciones causales entre variables, y el impacto de políticas. Dichos esfuerzos se encuentran con dificultades de diseño, continuidad y financiamiento ahora. A corto y mediano plazo, hay que usar métodos de archivo o de historia oral para reconstruir bases de datos que asocien estas variables con información secundaria existente y datos sobre la implementación de políticas.Varias investigaciones han incorporado en su diseño elementos para incorporar los factores espaciales y temporales. Ejemplos valiosos son los análisis de la degradación ambiental en el sur de Honduras por Stonich (1993) y de la recuperación ambiental en una zona semi árida de Kenya por Tiffen, et al. (1994). 192.En esta sección se discute el marco conceptual, los objetivos, las hipótesis y la metodología general de una investigación sobre patrones de desarrollo en las laderas de la Región Central de Honduras, en los años 70s y en los 90s, y el papel de las políticas sobre la economía agrícola de la región. Los estudios se llevaron a cabo por los autores y sus colaboradores internacionales y nacionales desde finales de 1994 a principios de 1997. Un ensayo más detallado se puede encontrar en Scherr, et al. (1996).En la literatura sobre el proceso de intensificación agrícola, destaca en importancia la teoría de 'innovación inducida', que explica el cambio en sistemas de producción como resultado del crecimiento de la población y la expansión de mercados. Propone que cambios en los incentivos microeconómicos y acceso a factores de producción induce la adopción de tecnologías y nuevas arreglos institucionales que sirven no solamente para aumentar la producción agregada, sino también la productividad y el bienestar humano. Por medio de este mecanismo, el sistema se adapta a aumentos en la población. Se puede encontrar evidencia de este fenómeno en muchas partes del mundo (Boserup 1965;Lele y Stone 1989;Hayami y Ruttan 1971;Binswanger y McIntire 1987;Binswanger y Ruttan 1978;Pingali et al. 1987;Pingali y Binswanger, 1982;Scherr, 1992;Templeton and Scherr 1996).Otras teorías han desarrollado mas detalladamente los efectos de la innovación local (Chambers et al. 1989;Bunch and López 1995), y del desarrollo de mercados y otras instituciones económicas (North 1991; Samuels 1995) en los procesos de la intensificación. Para extender el análisis mas allá del nivel de la parcela o finca, al manejo de recursos como agua, bosque y control de erosión en cuencas, se requiere considerar también otros factores como la acción colectiva en MRN (Ostrom 1990;Scherr et al. 1995) y las relaciones ecológicas en el paisaje (Bennett 1993; Forman y Godron 1986; Jackson y Scherr 1996).1JII~!!IiI:iJi&lIIlIll$iIlIIl_lIIlI, _ _ .,.J4m1l11l1_.,.Q¡_.I.WlJ!!IiI:i_ _.IlliH;A_,Q;t ~m.J:1\\iiiMU, ,ZbUWLj¡jjJjI.W8JL2 XN .lllt ¡!llIg: ii1JIII _ Para guiar las investigaciones empíricas, desarrollamos un marco conceptual que refleja los posibles efectos de la innovación inducida y los demás factores sobre el MRN (figura 1). El marco delinea las conexiones entre la acción de política y los objetivos del triángulo crítico. En este marco, presiones creadas por cambios en, por ejemplo, la población, mercados o tecnologías de producción inducen dentro de cada comunidad, cambios en los mercados, precios e instituciones locales (por ejemplo, negociaciones laborales o derechos de propiedad). La naturaleza de estos cambios es condicionada por las características de la comunidad, tales como sus recursos humanos y naturales, infraestructura física y social, el patrón de distribución de bienes familiares, conexiones del mercado y el conocimiento local de MRN.Los cambios a nivel de la comunidad pueden inducir respuestas en manejo. Al nivel familiar, estas pueden tomar la forma de cambios en el uso de la tierra, inversión en la tierra y/o la intensidad en el manejo de la misma, uso de insumas y prácticas de conservación. Al nivel de la comunidad las respuestas pueden tomar la forma de inversión en tierra colectiva, auto regulación colectiva del uso de recursos privados, o cambios en el manejo de recursos comunales. Se presume que los incentivos económicos son un factor importante en estas opciones, pero otros factores también juegan un papel importante tales como la seguridad de subsistencia y estrategias para evitar los riesgos, preferencias culturales, características del hogar y experiencia con organizaciones. Estas respuestas individuales y colectivas tienen efectos de retro-alimentación en las condiciones básicas de la comunidad y las instituciones y mercados locales. El resultado neto de estos cambios en MRN es cambio en las condiciones de los recursos naturales, las condiciones económicas y el bienestar humano.Las políticas públicas pueden influir este proceso. Factores de presión pueden ser afectados por programas de investigación agrícola, políticas de precios sectoriales y políticas de asentamiento. Las condiciones de las comunidades son afectadas por restricciones sobre el uso de recursos e inversiones en la infraestructura. Los mercados o instituciones locales son afectados por los programas de titulación de tierras y los programas de crédito local. Los patrones de respuestas son influenciados por programas de asistencia técnica. Los resultados pueden ser afectados directamente por los programas de nutrición o el manejo directo forestal del estado.El objetivo de nuestra investigación es examinar si el proceso de innovación inducida también es aplicable en condiciones de áreas frágiles, integrando el aspecto de MRN. Queremos identificar cómo diferentes \"vías de desarrollo\" afectan el MRN, producción y bienestar humano, y cómo pueden intervenir las políticas para promover vías de desarrollo sostenibles. El enfoque de la investigación no es el de analizar la distribución optima de recursos en un momento dado, sino analizar la dinámica de transformación cualitativa por el transcurso del tiempo, por medio de nueva inversión, nuevos conocimientos y nuevas instituciones. Al explicar la variación en innovación 34 local para MRN, y su asociación histórica con acciones de política, la investigación formulará recomendaciones especificas sobre la importancia relativa y la secuencia de intervenciones, bajo diferentes condiciones de ladera.En cada región de estudio, se identifican hipótesis especificas. basadas en investigación exploratoria, sobre las vías de desarrollo, los factores determinantes de estas vías y sus efectos sobre el MRN, y el impacto de políticas. Además, en todas las zonas de estudio, se investigan hipótesis generales, que son adaptaciones de la teoría de innovación inducida:Presiones para la intensificación (de población, nueva tecnología o mercados) si llevaran a MRN mejorado, siempre que el valor de la tierra aumente con relación a la mano de obra, y los derechos de propiedad se protegen.Mejoramiento en el bienestar humano se asocia con la intensificación inducida por el mercado; la intensificación inducida por crecimiento de 3. El término \"innovación\" es utilizado en este proyecto pare referirse a tres diferentes conceptos. \"Inventos\" se refiere a tecnologías o instituciones desarrolladas independientemente o significativamente adaptadas por miembros de la comunidad. \"Difusión \"se refiere a nuevas prácticas que han sido tomadas por miembros de la comunidad de sus propias observaciones. contactos o experiencia y fuera de la comunidad. \"Transferencia de tecnofogra\" se refiere a la introducción dellverada de nuevas prácticas con la comunidad por medio de un agente extemo. I lIGA;la población resultará en mejoramientos de bienestar solamente con intervenciones externas.Mejoramiento en las condiciones de los recursos naturales y el bienestar con la intensificación en tierras frágiles dependerá de factores institucionales: el desarrollo de mercados locales e instituciones (como derechos de propiedad) que facilitan la inversión en mejoras de tierra y el cambio espacial en el uso de tierra, y la organización colectiva local para la regulación y manejo de recursos naturales.Innovación tecnológica e institucional local se encontrarán mas bajo condiciones de altos niveles de organización social, conocimiento agroecológico y buen acceso a conocimientos externos.La metodología utiliza una secuencia de métodos a diferentes escalas, para identificar los factores que han sido mas importantes en determinar las vías de desarrollo en las laderas, y los patrones de MRN asociados con ellas. 35 Un análisis de políticas regionales beneficia de la perspectiva comprensiva de todos los cinco componentes de estudio, idealmente en la secuencia indicada. Sin embargo, los componentes individuales se pueden aplicar por separado, aun los objetivos y recursos de los investigadores.El primer componente provee el contexto nacional para el análisis. Identifica los instrumentos de política que se implementaron en las laderas durante el período del estudio (generalmente, 1970s-1990s) y los debates mas críticos sobre el desarrollo en laderas. Se basa en una revisión de literatura y consultas con expertos nacionales en diferentes sectores (agricultura, forestería, ambiente, recursos humanos, infraestructura, servicios sociales, derechos de propiedad) a través de entrevistas y un seminario nacional. El análisis para Honduras se resume en Duran y Bergeron (1995) y Rodríguez, ed. (1996). El segundo componente es la caracterización de la región de estudio seleccionada. El objetivo es identificar patrones regionales de cambio en las condiciones económicas, sociales y ambientales. La información secundaria y las entrevistas con informantes claves son utilizadas para identificar las vías de desarrollo en la región y sugerir hipótesis acerca de las causas y efectos de los patrones observados. En la Región Central se desarrollaron hipótesis sobre cinco vías de desarrollo distintas. por medio de un análisis de factores; la caracterización se resume en Pender y Duron (1996).El tercer componente extiende el análisis de la región, al investigar la variación entre comunidades. Su fin es de documentar patrones de cambio en las condiciones de recursos naturales y la comunidad y su bienestar sobre un período de 20 años, y asociar los resultados con cambios en variables claves de la comunidad y de la política. Usando métodos econométricos y cualitativos. se examinan las vías dentro de la zona de laderas, documenta los resultados actuales, e identifica las intervenciones de política que han influenciada los diferentes senderos. En la Región Central, se llevó a cabo una encuesta de campo en 48 comunidades, que estan en proceso de análisis. Para documentar los cambios, se utilizaron técnicas de entrevistas de grupo. análisis de fotos aéreas por medio de Sistemas de Información Geográfica (SIG), y análisis de datos de censos. El Cuadro 1 lista las variables incluidas, organizadas aun en el marco conceptual. Una segunda fase se anticipa en una sub muestra de comunidades. la cual enfocará en análisis de la variación en manejo de recursos naturales a nivel de finca y hogar.El cuarto componente consiste de estudios de caso intensivos de comunidades/micro cuencas, en un pequeño número de sitios que representan vías de desarrollo de particular interés. Estos siguen en detalle los procesos y mecanismos de intensificación e innovación. Se utilizan mapeo participativo y otros métodos participativos para entender las percepciones de los pobladores sobre el MRN y reconstruir la historia de MRN en la comunidad. Se utilizan un censo de hogares. una encuesta de historias de parcelas, y análisis con el SIG para entender el proceso de cambio en uso de la tierra. Y se usan estudios de manejo de fincas y entrevistas con informantes claves para entender la evolución de los mercados de productos y factores de producción, y los incentivos económicos para el MRN a través del tiempo. Se ligan en el análisis los cambios a nivel de parcela con los a nivel de familia, y comunidad y los mercados de productos y factores de producción (véase el Cuadro 2). En la Región Central de Honduras, se desarrolló un estudio piloto en La Lima, una comunidad que ha experimentado un pr!Jceso de intensificación hortícola en las últimas décadas (Bergeron, et al, 1996b;Scherr, et al. 1997).Un quinto componente utiliza la información recoleccionada en sitios de estudio intensivo para construir y calibrar modelos bioeconómicos de la microcuenca y modelos del hogar. Con estos modelos, se puede simular los efectos ambientales, de producción y de bienestar de los cambios en factores biofísicos, socioeconómicos y de política hacia el futuro, bajo diferentes escenarios ( Barbier 1996). Los resultados de las simulaciones para La Lima se resumen en Barbier y Bergeron (1997).Varios métodos fueron integrados en el diseño de las investigaciones pilotos en política en Honduras, con el fin de analizar el eslabón existente entre recursos naturales, bienestar social y productividad y los procesos innovativos a través del tiempo. En particular, se intento a mejor definir la problemática, y considerar explícitamente la variación especial y temporal.El proyecto utilizó diversas técnicas para refinar la definición del problema de estudio. En vez de utilizar un enfoque a priori sobre un pequeño número de factores o políticas preseleccionados, el estudio inicial consideró un amplio conjunto de factores. Las fases siguientes se enfocaron en los factores que se consideraron potencialmente importantes en el área de estudio. En la Región Central de Honduras, se descubrió a través de una revisión de las políticas, que muchas de ellas nacionales relacionadas a crédito subvencionado se habían implementado poco en la zona que abarcaba el estudio; como tampoco se percibía la tenencia de la tierra como un obstáculo en el manejo del suelo (a diferencia de otras regiones de Honduras). Debido a esto, estos factores no se enfatizan en los análisis posteriores.Una fase exploratoria formó parte de la encuesta extensiva y del estudio de caso. Estas utilizaban un mapeo participativo con fotos aéreas históricas y recientes para examinar el uso y manejo de los recursos naturales, así como de los cambios a través del tiempo, a nivel de la microcuenca. En las entrevistas de grupo se identificaron conceptos locales de calidad de los recursos y manejo, para evaluar los usos actuales y prácticas de manejo y poder desarrollar líneas de tiempo de los cambios en la producción, las instituciones, las intervenciones de políticas y otros factores.La investigación integraba a formuladores de política, actores de desarrollo y organizaciones de campesinos para poder mejorar la calidad de la investigación y crear interés y confianza en los resultados encontrados. Hubo consulta extensiva durante el proceso de revisión de políticas y caracterización de la región. Los planes y los hallazgos de la investigación se compartieron con los formuladores de política, los administradores del proyecto y la comunidad en estudio a través de talleres y seminarios con el fin de obtener su retroalimentación y críticas.La metodología de la investigación intentó unir análisis a varias escalas, distinguiendo factores importantes a nivel nacional, regional, microcuenca, comunidad, finca y parcela. Esto se logró principalmente a través de procesos de selección de muestra y uso de un marco conceptual, variables e indicadores comunes. En la Región Central, por ejemplo, los resultados de la encuesta de comunidades se utilizan para evaluar la importancia de los hallazgos de política sugeridos por el estudio de caso de La Lima.En el estudio de caso intensivo, se realizaron esfuerzos para recoger información socioeconómica y del manejo de los recursos naturales de las mismas unidades de análisis. El censo de hogares caracterizó variaciones intra-hogar concerniente al bienestar, prácticas de MRN y acceso a los recursos. Para una muestra de hogares representativas de los diferentes economías familiares y condiciones agroecológicas en la microcuenca,se desarrollaron estudios de casos económicos. Estos evaluaban los costos y beneficios de diferentes sistemas de producción, prácticas de manejo de los recursos naturales y estrategias de decisión. Indicadores biofísicos seleccionados de la microcuenca, tales como erosión de suelo o calidad del agua, fueron monitoreados con la colaboración de gente de la localidad.Los cambios agregados en estas variables a nivel de la microcuenca fueron evaluados cualitativamente a través de mapeo participativo, un proceso de entrevistas de grupo catalizado por transectos de campo y la interpretación grupal de fotos aéreas a través del tiempo. En La Lima, este análisis se validó con una encuesta de la historia de parcelas en una muestra representativa de la microcuenca. Se colectó información sobre cambios en el uso de la parcela, la intensidad de uso, prácticas de conservación, y la condición de los recursos en un periodo de 20 años, y también información sobre cambios en los recursos, estrategias de ganar la vida, y la riqueza de las familias dueños o usuarios de las parcelas.Los datos se agregaron para caracterizar los cambios a nivel del paisaje. A través de los SIG, las variables de los mapas, fotos y estudios de campo se incorporaron en un análisis visual y cuantitativo. Los estudios no solamente examinaron las inversiones en la mejora de los terrenos, sino también la secuencia de cambios en el manejo de los recursos asociados con la intensificación, incluyendo cambios en el uso de la tierra aun nivel de pendiente y cambios espaciales en el uso de \"nichos\" particulares de terreno.Con la excepción de los estudios de manejo de fincas y el mapeo participativo, los datos recolectados en la Región Central de Honduras fueron históricos. Se utilizaron distintos instrumentos para proveer esta perspectiva histórica. Se analizaron series de fotografías aéreas en el tiempo para ver los cambios en el paisaje. Series de datos secundarias existentes, tales como censos de población y agricultura, fueron evaluadas a nivel municipal y de comunidad. Técnicas de historia oral fueron usadas de diferentes formas. A través de informantes claves y entrevistas de grupos, los investigadores reconstruyeron la historia económica y ambiental de las comunidades estudiadas, y la influencia de políticas y programas externos. En el estudio de caso intensivo, los investigadores .~QQ .. trazaron la secuencia de cambios y los factores causales dominantes a través de un período de 20 años, a nivel de parcela y de hogar, al igual que a nivel de comunidad, para probar directamente las hipótesis de innovación inducida.Para los estudios que dependían del uso de información proveniente de pobladores locales, se identificaron las variables más fáciles de recordar y métodos para mejorar la calidad de la memoria. En el diseño de instrumentos, la selección de indicadores, y guiones para la selección de informantes y participantes para las entrevistas en grupo se usaron principios de la literatura reciente de antropología, sociología, nutrición y psicología.Se utilizó el concepto de \"vías de desarrollo\" para tomar en cuenta la diversidad de condiciones y potenciales de las comunidades rurales en estas regiones, ya que esto es significativo para la selección de estrategias de desarrollo y para el establecimiento de prioridades de políticas. Una vía de desarrollo se refiere a una combinación de factores causales que llevan al cambio, factores condicionantes que afectan a las opciones de respuesta, y los patrones observados de respuesta por parte de hogares y comunidades. Por ejemplo, se definieron cinco vías de desarrollo importantes en la Región Central de Honduras desde los años 1970s. Una es la \"expansión de granos básicos\", la cual ha resultado de una combinación de pobre acceso al mercado y crecimiento de población rural en áreas de baja a moderada densidad inicial de población. Esta vía está asociada con pobreza crónica, deforestación y la degradación creciente de los suelos y bajo rendimiento de los cultivos. Las políticas apropiadas para promover el desarrollo sostenible son muy diferentes de las de otras vías de desarrollo, tales como \"la intensificación de horticultura inducida por mercado y tecnología\" representada por La Lima. Estos senderos fueron tentativamente identificados a través de análisis de series de datos secundarios (a nivel municipal), y están siendo analizados empíricamente a través de las encuestas de la comunidad (Pender, Duron y Scherr, 1997). Los estudios en la Región Central de Honduras ilustran bien las dificultades de la investigación sobre desarrollo sostenible en áreas frágile~. Hubo a veces tensión entre los investigadores del equipo inter-disciplinario, que desearon enfocarse en diferentes puntos del triángulo crítico. Todavía se debate las ventajas de diferentes estrategias de muestreo para la selección de parcelas, hogares y comunidades, y a pesar de haber alcanzado un acortamiento significativo del proceso de investigación, algunos datos no están bien integrados aún en el análisis. Sin embargo, se tuvo algún éxito en la integración de información ligado al triángulo crítico, a varias escalas, que permitió un análisis mas confiable de algunas políticas. Tres ejemplos son brevemente presentados aquí, para ilustrar el poder potencial de tal integración.Un objetivo del estudio de caso intensivo era documentar y explicar los patrones de cambio en el manejo de la tierra, a nivel de la microcuenca, a través del tiempo. Para verificar esto, el SIG fue usado para seleccionar al azar 98 puntos (sobre áreas de cultivo, pasto y bosque) en La Lima para la encuesta de la historia de parcelas y hogares. Datos sobre la \"línea de tiempo\" de los cambios importantes a nivel comunitario fueron recolectados por medio de grupos focales y entrevistas con informantes claves.La figura 2 muestra el patrón resultante del cambio neto de uso de tierra.Comparando esto con datos sobre cambios comunitarios, se podría examinar la importancia de diferentes variables en el proceso de intensificación. Por ejemplo, se encontraba que una expansión grande en el área de parcelas permanentes irrigadas ocurrió después de la apertura de una carretera en 1985. La intensificación se basó inicialmente en papas y cebollas, las cuales habían sido producidas comercialmente a pequeña escala por largo tiempo. La asistencia técnica promovió la adopción de nuevos insumas para la producción intensiva, pero también una importante difusión de prácticas de comunidades cercanas. Sólo después de las nuevas mejoras de las carreteras en 1994 hubo un cambio a vegetales perecederos de alto valor.Con un análisis de las transiciones en variables claves, se puede examinar las dependencias del proceso de cambio en el uso de la tierra en las decisiones anteriores. Análisis econométricos con los datos de parcela, hogar y comunidad, identificaron los principales determinantes del uso de la tierra, uso de insumos, inversiones y resultados del manejo de recursos (Bergeron y Pender, 1996). Se concluyó del análisis que por las políticas de precio, mejoras de infraestructura, extensión y difusión de tecnologías, y una dinámica favorable en los mercados de tierra en la comunidad, esta vía de desarrollo resultó en mejoramientos locales económicos y ambientales (Bergeron, et al. 1996;Scherr, et al., 1997).El SIG a nivel comunitario proveyó datos valiosos para el análisis de políticas en la encuesta extensiva, y servía para integrar datos de varias fuentes sobre elementos del triángulo crítico. Fotografías aéreas estaban disponibles para todas las comunidades para los años 1970s y para 25 de las 48 comunidades en los 1990s. Por el mapeo participativo se establecieron las fronteras de las aldeas (información no disponible en las fuentes oficiales de Honduras). Estos datos y fotos fueron transferidos al SIG, creando mapas electrónicos.Los análisis SIG generaron nuevos variables que se utilizaron, luego, en el análisis econométrico de las vías de desarrollo y determinantes del cambio en el manejo de los recursos. Los datos sobre área de la tierra fueron usados para calcular la densidad de población. Las características de la calidad de la tierra (pendiente, acceso a agua, cobertura vegetal) fueron usadas para categorizar comunidades por la calidad de su base de recurso. Cambios a través del tiempo en la vulnerabilidad de los recursos de la microcuenca se pudo calcular, comparando las áreas bajo diferentes usos de la tierra aun la categoría de pendiente y la proximidad de vías de agua en los dos períodos (ver ejemplo en la Cuadro 3) (Pender y Scherr, 1997).En La Lima, se analizó el cambio de paisaje a través del tiempo por medio de fotografías aéreas. Este análisis se uso para triangulación con otros datos. Por ejemplo, la historia oral y la comparación visual de fotografías aéreas, ambas sugirieron que había habido poca deforestación en la microcuenca entre 1975 y 1995 (véase mapa 1). Pero un análisis cuantitativo a través del SIG reveló que laestabilidad neta enmascaró altos niveles de ambas, la deforestación y la aforestación. A pesar de que inicialmente parecía que la política de restricción de tala de bosques había sido la responsable de detener la deforestación, la infonnación espacial demostró claramente que otros factores dominaron (Bergeron, et al., 1996).El modelo de programación lineal de la microcuenca, que utiliza datos a niv~les de hogar, finca y microcuenca, explícitamente liga variables de producción, recursos naturales y bienestar social. Lo hace dentro de unas reglas definidas de decisión a nivel de hogar y de comunidad. Modelos biofísicos y económicos están ligados, y los modelos de optimización biofísica están también ligados al sra (Barbier 1996). Para La Lima, el modelo fue calibrado usando datos espaciales, históricos y de manejo de fincas del estudio de caso intensivo en La Lima, asegurando un mayor realismo de los resultados.Simulaciones recursivas, a largo plazo, están siendo desarrolladas, para desenredar las innovaciones inducidas por el mercado y la población. El modelo se usa para simular cambios dentro de los próximos 20 años en el uso y calidad de la tierra, ingreso y seguridad alimentaria de hogares, productividad agrícola, y extemalidades ambientales (disponibilidad y calidad de agua río abajo). Estos son estimados bajo diferentes escenarios de políticas (por ejemplo, de precios o regulaciones en el uso de recursos), costo y disponibilidad de tecnologías, y factores de los mercados locales. Por ejemplo, se proyecta que va a aumentar los conflictos sobre el uso de agua, con una competencia entre la horticultura y la producción lechera que se rendirá mas rentable, y entre los productores de hortalizas aguas arriba yaguas abajo en la estación seca, causando un cambio espacial en la producción dentro de la microcuenca (Barbier y Bergeron, 1997). Los retos metodológicos en la investigación de políticas sobre MRN y EL desarrollo sostenible sugieren algunas elementos que deben ser integrados en los programas de educación y capacitación de investigadores, de los estudiantes, y también de personal de las unidades de análisis de política en los ministerios, en las üNG, y las consultorías.El ideal del \"triángulo crítico\" es sencillo. Sin embargo, conceptualizar las relaciones causales entre políticas, la toma de decisiones a nivel comtmitaria y familiar, y los resultados para los tres aspectos del triángulo crítico (y sus \"trade-offs\") es algo complejo. El número de variables potencialmente importantes es grande y debe ser reducido para poder implementar alguna investigación significativa.Es común en la investigación de alta calidad usar análisis exploratorio de datos secundarios y visitas al campo para llegar a una formulación precisa de las hipótesis y el diseño de un estudio (incluyendo la selección de indicadores, métodos de recolección de datos y métodos de análisis). Pero por falta de datos secundarios confiables, la complejidad causal, y la dificultad de seleccionar indicadores para variables claves que caracterizan estos temas, se requiere extender y formalizar este proceso exploratorio, hasta publicarlo. Los investigadores que trabajan en este campo deben ser entrenados y motivados a incluir una fase exploratoria de investigación de campo, usando métodos apropiados. Al tratar conjuntamente los temas de MRN, producción agrícola y los procesos socioeconómicos, el investigador se puede beneficiar al integrar métodos de recolección de datos y de análisis usando técnicas de varias disciplinas, como economía, antropología, agroecología y geografía. Las distintas disciplinas han desarrollado, a través del tiempo, técnicas para referirse a preguntas distintas. Por ejemplo, los economistas tienen una excelente \"caja de herramientas\" para la medición y el análisis de variables económicas, pero no se encuentra el mismo nivel de análisis sofisticado en el tratamiento de factores como manejo de recursos naturales, cultura u organización social. Por lo tanto, puede ser necesario integrar las teorías y técnicas de otras escuelas y disciplinas académicas.Para implementar la investigación interdisciplinaria, o simplemente tener acceso a ideas y técnicas de otras disciplinas, el investigador necesita primero tener acceso a los profesionales expertos en los otros campos, para consultas y consejos, así como para revisión de los planes de análisis e interpretación de datos. Las diferencias en paradigmas para explicar cómo funciona el mundo--y sobre qué tipo de evidencia se puede verificar una hipótesis--van a ser evidentes y pueden obstaculizar el estudio interdisciplinario de algunos temas. Sin embargo, al desarrollar paradigmas alternativos, el investigador puede diseñar su estudio de una forma que los resultados sean significantes para una audiencia mas amplia.Segundo, el investigador puede explorar el uso de herramientas especificas desarrolladas por otras disciplinas en la recolección y análisis de datos. Por ejemplo, el proyecto en Honduras utilizó métodos estadísticos de epidemiología para la recolección de datos de manejo de parcelas; métodos de antropología médica para el análisis de paneles de datos cualitativos, y métodos de geografía para evaluar cambios en el uso de la tierra. Debido a la falta de datos con los elementos necesarios para un análisis integrado de MRN, es esencial que se promueva la investigación primaria y los métodos relevantes para esto. El estudio en Honduras ilustra la naturaleza complementaria de los métodos cualitativos y cuantitativos en la investigación. Los métodos cualitativos fueron de particular ayuda en la definición de las prioridades de la investigación, definición de variables, y para desarrollar y especificar las hipótesis, hasta cuando se usaron métodos cuantitativos para verificar las hipótesis. Métodos cualitativos se pueden aplicar en vez de los métodos cuantitativos mas caros, cuando se necesita entender las tendencias generales de los variables, y no tanto su valor preciso. Además, el uso de ambos tipos para investigar el mismo fenómeno permite la \"triangulación\" de resultados. Se recomienda, entonces, que los investigadores en políticas se capaciten no solamente en los métodos de encuestas de hogar y finca, de las pruebas estadísticas, análisis econométricos, y análisis costo-beneficio, sino también en métodos como las entrevistas de informantes claves, grupos de enfoque, métodos participativos, modelos bioeconómicos y análisis espaciales utilizando sistemas de información geográfica. En todos casos, se necesita adaptar los métodos para entender los procesos espaciales y temporales, y para integrar aspectos relevantes ecológicos, económicos y sociales, en la evaluación y análisis de las políticas. Stonich, S. 1993. \"J Am Destroying the Land!\" The polítical ecology ofpoverty and environmental destruction in Honduras. Boulder: Westview Press.Templeton, S., and S. J. Scherr. 1997 Cambios en la estructura ocupación de la comunidad Cambios en los productos producidos por la comunidad Cambios en el sistema de barbecho y en la intensidad de uso de la tierra Cambios en uso de insumos Cambios en prácticas de manejo agrícola Tipos principales y nivel de inversión en la finca Cambios en derechos de -propiedad y mercados de tierra Cambios en el mercado de mano de obra Cambios en el mercado de crédito Acción colectiva para el manejo de recursos o la regulación de extemalidadesCambios en derechos de propiedad y respeto local para ellos Cambios en la distribución de tierra Cambios en la forma de contratación en mercados de tierra Cambios en el volumen de las transacciones del mercado de tierra Cambios en el valor de tierra (ventas, renta) Cambios en la forma de contratación de mano de obra Inmigración, emigración y migración temporal desde los 1970s Frecuencia de la práctica de viajes Cambios en el mercado informal de crédito (# prestadores. tipo y términos de crédito) Desarrollo de fondos de ahorro local Construcción comunal de estructuras para control de erosión o agua Nuevas reglas comunales para el manejo de brechas, vías de agua, tierras comunales, uso de bosque yagua Cambios en los mecanismos para enforzamiento de las regulaciones locales; manejo de riesgo Cambios en distribución e tierras Cambios en acceso a infraestructura social Cambios en calidad de casas (tipo de piso, construcción) Cambios en mortalidad infantil Cambios en acceso a bienes durables (radio, bicicleta, etc.) Cambio en área por tipo de cobertura vegetal (bosque, pasto, cultivo) Proporción de área degradada (cambio a uso de menos valor, menos productividad con el mismo uso, abandono de mejoras de tierra ya existentes) Área de tierra con evidencia de erosión u otros problemas de degradación (por indicadores de técnicos en el campo) Percepción de la comunidad sobre cambios en la disponibilidad o calidad de agua * Datos calculados por Carlos Duarte, Guatemala, enero de 1997. Se generó con el Image Cross-Tabulation Tool del SIG. Se dividió la aldea en células de 10 por 10 metros; luego se sobreponen las imágenes correspondientes a las dos fechas.Capítulo 7.Deborah Barry, con la colaboración de Nelson Cuéllar y Byron Miranda 37 \" Deborah Bany y Nelson Cuéllar son investigadores de PRISMA. El Salvador y Byron Miranda es investigador del IICA en San salvador.En este trabajo argumentamos que el entorno para el diseño de políticas para el sector agropecuario y sus mecanismos de implementación han cambiado dramáticamente en Centroamérica durante las últimas dos décadas. Describimos brevemente algunos de los elementos del cambio, concentrándonos sobre todo en los cambios institucionales. Posteriormente se presentan dos experiencias donde los resultados de la investigación y la experiencia de análisis-acción para orientar a la implementación de políticas en el sector han tenido éxito en este nuevo contexto. Los casos incluyen la experiencia del Programa Salvadoreño de Investigación sobre Desarrollo y Medio Ambiente (PRISMA) y el proyecto Desarrollo Institucional para la Producción Agrícola Sostenible en las Laderas de América Central (UCA-Holanda/LADERAS C.A.). Finalmente, presentamos algunos elementos claves derivados de las dos experiencias presentadas, donde se trata de señalar puntos considerados fundamentales para la incidencia sobre el diseño e implementación de políticas y sobre el impacto en comportamientos a nivel local.Los cambios en la economía y en las políticas globales de los países, han sido acelerados, mientras que la manera de elaborar e intentar implementar las políticas sectoriales sigue siendo convencional, produciendo así un desajuste importante entre uno y otro. Las políticas propuestas para el sector, encuentran tremendas dificultades de implementación, al no ubicarse en una reflexión más apegada a la realidad, donde las relaciones entre el estado, los productores y las instituciones financieras han cambiado. En este contexto, las políticas de manejo de recursos naturales sufren aún más, al encontrarse casi sin formas de contacto e intermediación institucional con los productores, a quienes deberían de llegar por definición.Sin pretender entrar en una exposición profunda sobre el tema, hacemos mención del peso determinante de las políticas macroeconómicas sobre el sector agropecuario, que reduce enormemente los márgenes de influencia de una política sectorial. Los parámetros que merecen revisión son los que emanan de las propuestas de reforma económica de los países, donde las políticas o metas son impuestas a través del ajuste estructural, cuyo eje fundamental es la liberalización económica, resultante de una reducción importante del rol del estado en la economía. El ajuste estructural promueve la preponderancia del mercado como el mecanismo principal de asignación de recursos y determinante de políticas. Sin pretender atribuir a cada cambio su respectiva política, insistimos que la orientación global de la reforma económica establece una lógica que se extiende a todas las esferas de la economía desde la reforma global y las medidas que se toman dentro de los \"sectores\", hasta las llamadas reformas sectoriales (Rosa 1995).La orientación general de la reforma económica se traduce en políticas que van desde la reducción de los aranceles a las importaciones, la liberalización de la tasa de cambio, hasta la reducción del rol y tamaño de las instituciones estatales. En la mayoría de los casos, la reforma global también implica un cambio en las políticas crediticias, donde el manejo del crédito abandona el esquema de ser 'dirigido' y bajo la orientación del mercado, deja que la asignación del crédito fluya hacia los sectores más rentables y con tasas de interés de mercado, sin mecanismos de distinción entre uno y otro sector.El crédito, tampoco es asignado con criterios de planificación o prioridad. Por ejemplo, ya no responde a propósitos de garantizar la producción de alimentos. De esta manera, tiende a desaparecer la Banca de Fomento o la Banca de Desarrollo del sector. Por ejemplo, en El Salvador, el porcentaje del crédito total destinado al sector agropecuario. pasó del 25.6% en 1980, al 15.3% en 1995, mientras que en Guatemala, pasó del 23.3% al 9.3% en los mismos años respectivamente. Bajo la nueva lógica, por definición, el crédito tiende a fluir entonces hacia los sectores de mayor rentabilidad, hacia los que suelen tener retornos de más corto plazo, marcando un sesgo anti-agrícola. Con excepción de los créditos de avío, una buena parte de las inversiones agropecuarias deberían contar con un panorama de más largo plazo para la maduración de las inversiones, sobre todo cuando se trata del fomento de cultivos perennes. También, el manejo de las deudas del sector agropecuario es un elemento clave, frecuentemente orientado por la política global, lo cual puede tener impactos sumamente grandes sobre el sector, derivados de su posible peso.Para el sector agropecuario, el conjunto de estas orientaciones derivada de la reforma global, se traducen en múltiples y fuertes impactos sobre la producción, la rentabilidad y la organización del sector. La disminución del aparato estatal 226--(respondiendo también a la orientación de reducir el déficit fiscal), se traduce en la eliminación o reducción de las instituciones que proveen información y análisis, servicios técnicos, infraestructura o logística para la producción y comercialización y las que regulan el mercado de tierras agrícolas. Estos últimos, casi siempre implican cambios en la estructura comercial del país y en el régimen de tenencia de la tierra. Con la disminución o eliminación de las instituciones en el agro, con la eliminación de tratos diferenciados en el campo del crédito, con la contracción de la inversión pública en la infraestructura relacionada al agro, el contexto y los instrumentos de intermediación con los productores se alteran enormemente.No se pretende aquí evaluar la eficacia ni la eficiencia de la situación anterior, seguramente sufrió debilidades. Lo que interesa destacar es que este escenario ha cambiado. La reducción de los instrumentos relevantes y la capacidad institucional de incidir en el sector agropecuario, hace que muchas de la políticas formuladas no encuentren a posteriori, vías efectivas de implementación. Esto se debe, en parte, a la falta de conocimiento (de parte de quienes formulan las políticas) del impacto que producen las medidas más globales sobre el sector. Como esto varía según las características de la economía de cada país, no hay lecturas únicas de la relación entre lo global y lo sectorial. Por ejemplo, en la mayoría de los países de Centroamérica, los resultados esperados de la política macroeconómica no arrojaron los resultados esperados, donde se proyectaba un despegue mucho mayor del sector agroexportador (Baumeister 1997).Otro impacto importante está relacionado con la disminución del poder de negociación de los actores vinculados al agro con respecto al resto de sectores del país. Esta es una tendencia que se profundiza por la pérdida del peso relativo del agro en la economía, por los compromisos asumidos por los gobiernos para implementar las nuevas reglas de juego y las orientaciones globales (como las mencionadas arriba).De particular relevancia es el impacto sobre la reducción del contacto con los productores mismos. La pérdida en la capacidad de generar información y de realizar el monitoreo sobre la producción, los productores y los recursos naturales, es una consecuencia de las reformas institucionales, de los recortes presupuestarios que tienden a \"adelgazar\" funciones y a utilizar menos funcionarios que se desplegan en el campo con fines de asistencia técnica o delevantamiento de datos tan básicos, como censos y encuestas. Con excepción Honduras y Costa Rica, los censos agropecuarios más recientes datan de 1971 en El Salvador, 1972 en Nicaragua y 1979 en Guatemala. Los estudios sobre el uso de la tierra son sumamente escasos y los mapas de uso de la tierra, en la mayor parte de los países también están desactualizados.Hoy en día, las tendencia de reducción del conocimiento y del contacto con los productores y su producción, paradójicamente ocurre cuando ellos están solos como actores frente al mercado, es decir, cuando tienden a desaparecer las intermediaciones (instituciones y canales) que proveía el Estado para relacionarse con ellos. Si, en términos generales, este es el contexto en el cual se intenta diseñar una política sectorial en muchos de los países de la región, es comprensible la dificultad de implementación efectiva por la cual atraviesan tales propuestas. Esto, sin mencionar la naturaleza de la crisis productiva en si que sufre el sector como tal en la mayoría de los países (Barry y Cuéllar 1997).Es en este mismo contexto que opera la mayor parte de los intentos por diseñar y promover políticas de manejo de recursos naturales como parte de la producción agropecuaria. A nuestro juicio, aunque el sector agropecuario constituye un \"lugar\" natural para emprender esta tarea, el contexto arriba descrito se convierte en una limitante fundamental para el diseño e implementación de políticas sobre recursos naturales en dos sentidos. El primero, como contexto institucional es demasiado reducido, inadecuadamente formado y actualmente debilitado. El segundo es, que al ubicar el ámbito de acción de las políticas de manejo de los recursos naturales dentro de la actividad del sector agropecuario se reduce el análisis y la valoración de su importancia nacional. Uno de los principales problemas tiene que ver con la VlSlon, todavía predominante sobre los recursos naturales. Bajo esta concepción predominante, los recursos naturales son percibidos desde una perspectiva disciplinaria, cada recurso visto de una forma desagregada, sin considerar las interacciones que les son inherentes (suelo, agua, clima, biodiversidad, otros). Otra forma frecuente de percibir a los recursos naturales, es desde su función productiva, donde se considera que los ciclos naturales pueden ser suplidos artificialmente. Considerar rn._1i_tCH mí $ M¡¡f!!'i~mí!li8?F. .¡mrW!iilm¡¡@'!liiICJJ §I'$ifUW$fYU1%W~n ; fIT1rn;rl\\1i¡i!!lOOlIl.~r¡¡¡M!m¡ mIPRjfE los recursos naturales dentro de este esquema, no es smommo de la lectura moderna y actualizada que debería predominar hoy en día. 38 En parte este problema se deriva de la limitada capacidad de las entidades nacionales públicas y privadas para desarrollar tecnologías que, simultáneamente al aumento de la productividad de los recursos empleados, conservan el medio natural. Incluso, en algunos casos, a pesar de haberse asumido el nuevo enfoque, estas entidades no disponen de recursos humanos adecuadamente preparados para orientar las nuevas técnicas y diseñar políticas que las apoyen. Lo anterior se agudiza con el uso de metodologías de extensión frecuentemente inadecuadas para este trabajo y con reducido efecto multiplicador. 39 De aquí, pasamos al segundo plano. Conceptualmente hablando, ubicar el ámbito de acción de las políticas de manejo de recursos naturales dentro de las actividades del sector agropecuario, limita en extremo el análisis y la valoración de su importancia nacional. Las orientaciones generales de la reforma económica tienden a provocar una desvaloración de la importancia del sector. Al ligar la importancia de los recursos naturales, como un subconjunto de los recursos agropecuarios, se reduce a un marco valorativo muy por debajo de su importancia real para la sociedad.El manejo de los recursos naturales y los ecosistemas que los sustentan, sólo puede adquirir la verdadera dimensión de su valor en el plano global, o dicho de una manera más convencional, en un análisis multisectorial. 40 Por ende, dependiendo del tipo de cultivo, de su extensión, ubicación y de la tecnología \" Entre los aportes obtenidos en la cumbre de Río de Janeiro, en 1992, está el reconocimiento de que los recursos renovables son finitos, y que la actividad humana, bajo el esquema de desarrollo actual, asume que son infinitos, llevando a un problema de limitantes objetivos; el reconocimiento y aceptación de la interconexión planetaria de los ecosistemas y los recursos (agua, aire y bosques); y que la escala de asentamientos humanos en su conjunto, ya comenzó a impactar sobre dichos ecosistemas, de tal manera que peligra la capacidad de sostenibilidad global. Este hecho revaloriza la importancia de los ecosistemas y los recursos naturales; la relación desigual de acceso a los recursos (la tendencia de la brecha entre pobreza y riqueza) acelera el proceso de degradación, exigiendo así la necesidad de mejorar la redistribución global.W Aquí nos referimos por ejemplo, al empleo de la Extensión Dirigida a Objetivos (EDO) que se ha implementado en las instituciones de extensión de la región.•• Se puede ejemplificar con el agua y su importancia derivada de sus múltiples usos: consumo humano, riego, generación de electricidad y como insumo para procesos industriales. [Ji UJg1UjliGi 3MIOC 1 . 2 Ji J& miRifMíkJ Wi l l md tiJbi J empleada, se afecta directamente la condición de los recursos naturales a escala nacional.Si los cambios en la producción agropecuaria pueden afectar positivamente los niveles de disponibilidad de los recursos naturales (por ejemplo, mayor disponibilidad de agua a nivel nacional), el costo de estos cambios correctivos (de la tecnología o en las prácticas culturales) debería ser reconocido como un \"pago por servicios ambientales\" proporcionados a los demás sectores.Hasta cierto punto, podemos señalar este problema como otra limitante para el sector agropecuario y para la formulación e implementación de políticas de manejo de recursos naturales, derivado de la reforma global. Al no haberse valorado correctamente los recursos naturales y sus ecosistemas dentro del marco de las reformas económicas a nivel global,41 se transfiere esta subestimación del valor ambiental generado por el sector agropecuario. Las propuestas de políticas deberían entonces, circunscribirse a lo que permite el marco de las políticas sectoriales ya debilitadas, como se ha descrito arriba.Estrechamente vinculado a la imposición de la lógica global que busca las inversiones de mayor rentabilidad y retornos de más corto plazo, los márgenes para las propuestas de conservación desde el agro, disminuyen aún más. 42 El indicador más relevante para demostrar esta limitante es la resistencia que se encuentra para financiar los incentivos necesarios para el fomento de actividades de conservación en laderas, que es necesario introducir en el sector agropecuari0. 43 \" A manera de ejemplo, una posible ruta para haber iniciado esta valoración pudo ser el análisis de la estructura de precios en los recursos hídricos y energéticos, y diseñando un sistema de cuentas nacionales que incluyera el registro del capital natural. Otra posibilidad pudo ser el reconocimiento de áreas naturales para con fines de protección de recursos como agua y suelo.42 Una discusión sobre este tema, se encuentra en Kaimowitz, David (1994). La valorización del futuro: Un reto para el desarrollo sostenible en América Latina. En: Segura, Olman (Ed.). Desarrollo sostenible y políticas económicas en América Latina. DEI. San José, Costa Rica. '.' El Programa Ambiental de El Salvador (proyecto financiado por el BID), que propuso el manejo de la Cuenca Alta del Rio Lempa, tuvo que limitar su área de intervención a \"las áreas con potencial para recuperar altos niveles de productividad en tiempos relativamente cortos\", dejando por fuera amplias zonas críticamente degradadas. El Green Project (financiado por USAID) ha limitado sus propuestas para la reforestación del país a Inversiones forestales con fines maderal>les, que puedan demostrer retornos significativos de la inversión.1. Experiencias de investigación y análisis-acción dirigidos a influir en el diseño e implementación de políticas y a cambiar comportamientos En esta sección se presentan dos casos que dentro del contexto descrito anteriormente, han intentado incidir tanto en las políticas a nivel nacional y local, como en comportamientos sobre prácticas vinculadas con el uso y manejo de recursos naturales. El caso de PRISMA, que se refleja un proceso de investigación dirigido a influir en el nivel de políticas, tratando de demostrar las principales vinculaciones, que deberían ser abordadas adecuadamente en un marco estratégico de sostenibilidad a escala nacional; el caso del proyecto /leA-Holanda/LADERAS C.A., ejemplifica el potencial que significa la creación de mecanismos colaborativos entre distintos sectores y actores interesados en la búsqueda del desarrollo sostenible a nivel local... En este punto, se sugiere que los parámetros para establecer los niveles de incentivos y costos institucionales para promover los cambios hacia la conservación, deben ser mucho más amplios de lo que los márgenes de rentabilidad en el sector agropecuario permiten hoy en dfa. Esto es más bien un cálculo cuyos parámetros deberfan medir la importancia de la función hidrológica del sector agropecuario, pasando por la importancia de la seguridad alimentaria. . El caso de PRISMA: Investigación aplicada e impactos en políticas Con este caso, intentamos una breve reseña de cómo un instituto de investigación aplicada,organiza y orienta su trabajo investigativo con el fin de incidir en la formulación e implementación de políticas integrales en el sector agropecuario y más allá de ella. Vale la pena mencionar que es en la estrategia institucional en su conjunto, donde se maneja este enfoque y abordaje metodológico del trabajo y no en un proyecto específico de investigación. Tanto la forma organizativa de la institución como la flexibilidad de la programación del trabajo son elementos claves para permitir que estos objetivos sean posibles de lograr. En general, los elementos centrales del enfoque institucional se pueden resumir de la siguiente manera: Primero, la investigación aplicada se concentra en la elaboración de estudios integrales cuyos productos son marcos de políticas también integrales, capaces de orientar la formulación de políticas más especificas complementarias y no antagónicas intersectorialmente.Segundo, parte de la investigación misma incluye un análisis de los cambios institucionales en sectoriales y de los cambios en la capacidad de los distintos grupos sociales de representar sus intereses sobre acceso a recursos y activos existentes (tierra, crédito, infraestructura, mercados, recursos naturales, participación, etc.). También, una interrelación constante con los actores nos permita conocer los niveles de conciencia y dominio técnico que tienen sobre los problemas ambientales y de la actividad agropecuaria.Tercero, la investigación invierte recursos en buscar las formas de presentación de los resultados de investigación de tal manera que sean fácilmente accesibles para los distintos niveles y sectores. Este trabajo es lo que determina el grado de sofisticación y complejidad de los resultados finales. No es un esfuerzo posterior ni separado de la investigación como tal.Todas las áreas de trabajo de la institución (investigación, diálogo de políticas, ediciones y publicaciones,) están orientadas a trabajar conjuntamente en la labor de diálogo con los sectores relevantes antes, durante y después del proceso de la investigación misma.En parte, esto se explica por el tipo de investigación que se realiza. PRISMA es una institución de investigación aplicada sobre el desarrollo y medio ambiente. La descripción de sus objetivos resume como se posiciona ante el trabajo investigativo:\"PRISMA opera como centro de investigación aplicada sobre temas de desarrollo y medio ambiente en El Salvador, con un enfoque que enfatiza los aspectos institucionales y sociales del proceso de desarrollo, así como las interrelaciones entre la dimensión local, nacional e internacional, en dicho proceso.A partir de esa visión, PRISMA trabaja por una mejor comprensión de la relación intrínseca entre los problemas del desarrollo y del medio ambiente en nuestro país. Asimismo, promueve una mayor transparencia y participación social en la formulación de las políticas y proyectos de desarrollo impulsados por la cooperación internacional y el Estado salvadoreño. .. políticas sectoriales, sobre todo del sector agropecuario. PRISMA prioriza el seguimiento y análisis de los cambios institucionales y sociales que acontecen en el país, resultado de la implementación de las políticas globales y sectoriales relacionados con los préstamos de la banca multilateral de desarrollo, dado su enorme peso en la conducción de dichos cambios. Esto ha permitido detectar que existe un creciente interés de parte de muchos sectores por entender las implicaciones de las reformas globales y sectoriales, sobre todo porque, como en el caso del agro, los resultados no fueron los esperados. Esto creó un campo fértil para la difusión de estos trabajos entre los mismos actores y productores.Metodológicamente esto resulta ser un reto en sí mismo, al tener que \"mapear\" e interrelacionar los múltiples préstamos para la implementación de programas, proyectos o paquetes de políticas que estaban afectando el desenvolvimiento del sector y de los distintos grupos de productores. El proceso de seguimiento de los préstamos y la interpretación de su impacto sobre el sector, se convierte en una parte significativa y constante del \"quehacer\" institucional, la cual la permite ir acumulando el conocimiento de la evolución institucional y los cambios sociales que afectan a muchos de los actores. 46 Un siguiente nivel de investigación está orientado a cómo relacionar el cambio en las políticas con los cambios en el sector y su impacto sobre los recursos naturales y el medio ambiente. El enfoque que orienta esta parte de la investigación es el intento de construir una lectura integral y multidisciplinaria, lo cual requiere contar con \"expertises\" (conocimientos) en diversos campos de especialización, para poder entender los procesos de degradación ambiental y sus causas, y para poder interrelacionar los aspectos económicos, sociales (incluyendo las dimensiones política y cultural) con lo ambiental. Entonces, el trabajo a este nivel se desarrolla a través de una serie de relaciones colaborativas con otras instituciones; algunas con mayor conocimiento técnico (agronómico, hidrológico, demográfico, etc.), otras con presencia directa en el terreno y con instancias técnicas oficiales que producen información (SIG's, censos, encuestas, etc.). Ejemplos de esto lo constituyen las relaciones constantes que mantiene PRISMA con llCA-Holanda/LADERAS c.A.. Green Project-USAID, Grupo de Trabajo sobre Sistemas de Información Geográfica. la Dirección General de Recursos Naturales Renovables del Ministerio de Agricultura y Ganandería, la Comisión de Agricultura Ecológica de El Salvador, etc.1. Investigación y diseminación de la Dinámica de Degradación Ambiental en El Salvador En 1995 PRISMA realizó una investigación para World Wildlife Fund Internacional (WWF) y Harvard Institute for Development (HIlD) sobre el \"Impacto del Ajuste Estructural en el Medio Ambiente en El Salvador\", cuyo objetivo consistió en analizar el impacto de los programas de ajuste estructural sobre el medio ambiente con el fin de identificar formas concretas que podrían orientar las reformas económicas en países seleccionados hacia una senda de desarrollo sostenible. A fin de lograr ese objetivo, se examinaron nueve países alrededor del mundo. 47 El caso de El Salvador revestía especial relevancia por varias razones: primero, porque la reforma económica que se implantó desde 1989, fue muy representativa de los programas de ajuste estructural; segundo, porque no había esfuerzos sistemáticos para evaluar la sostenibilidad de la senda de desarrollo que se define en ese marco, a pesar de los problemas ambientales extremadamente graves; tercero, por la importancia de los factores sociales y poblacionales que presionan sobre los recursos naturales: la extensa pobreza se combina con una distribución altamente desigual del ingreso, de la tierra y otros activos y la densidad poblacional como la más alta del continente, así como la elevada migración (interna y externa), alimentada previamente por la guerra y por razones económicas; y cuarto, por que los problemas sociales y ambientales, de continuar sin resolverse, podrían convertirse en la mayor amenaza para la paz y la estabilidad política del país.El proyecto proponía el desarrollo de un CGE (Computerized General Equilibrium Model) para demostrar los impactos e implicaciones para la sostenibilidad futura del modelo de desarrollo del país, como consecuencia de la implementación de las reformas económicas. Los objetivos de la investigación eran múltiples al pretender establecer, a partir de los resultados de la investigación, diálogos a varios niveles, sobre todo con el mismo Banco Mundial, con los gobiernos locales, con los distintos actores nacionales no-gubernamentales y en los foros internacionales en que se mueve WWF. Mencionamos esto último, porque la existencia de diversos públicos a quienes teníamos que tratar de influir tuvo mucho que ver con el tipo de abordaje de la investigación y las distintas formas que adoptaron los productos finales.PRISMA decidió hacer un ajuste en la metodología propuesta, al priorizar influir en el nivel del conocimiento y toma de decisiones en el país,48 y establecer un marco que podría orientar las políticas en los distintos sectores, que no tenían una interrelación adecuada entre sí. Por esto mismo. se descartó, la construcción de un modelo tipo CGE. Primero. el tipo y la calidad de la información existente no permitía la construcción de series históricas confiables, hubo premisas de vinculaciones entre variables con las cuales estuvimos en desacuerdo y no existía en el país más que un par de personas que habían tenido el tipo de experiencia necesaria con estos modelos significando un nivel demasiado alto de dependencia en apoyo extemo. 49 Segundo, los niveles de conciencia y formación de los actores que influyen sobre estos temas (tomadores de decisión) y la condición de las instituciones e instrumentos para incidir sobre esta realidad eran muy débiles. Consideramos que había un trabajo previo, mucho más básico que faltaba realizar para poder avanzar una agenda de reflexión concreta sobre la sostenibilidad del desarrollo en el país. Esto implicaba lograr interrelacionar información. análisis, mapas y establecer vínculos causales previos a un esfuerzo de construcción y aplicación de un modelo tipo CGE.De ese modo, los elementos que fueron incorporados a la investigación fueron: a) plasmar el cambio en el patrón demográfico del país, b) entender las repercusiones del modelo de desarrollo que habían sido altamente excluyente en términos sociales, con el particular interés de entender cómo esta exclusión social .. En este punto se priorizó el seguimiento al proceso de asignación del gasto y de la inversión pública y su impacto sobre la institucionalidad vinculada con el manejo de los recursos naturales... Solo existía una experiencia previa de construcción de un modelo similar (el Modelo de Coherencia Económica para Centroamérica • MOCECAl, la cual no había concluido ni aplicado experimentalmente, debido a problemas de esta índole.afectaba la dinámica de degradación de los recursos, c) dimensionar los cambios en la dinámica del crecimiento económico del país (registrar los cambios en el patrón de crecimiento), y d) fue necesaria una revisión a fondo sobre el problema de agua, que no estaba desarrollado, a pesar de que históricamente había sido una preocupación.Para cubrir la amplitud de temas se estructuró la investigación para incluir más de 12 estudios específicos, los cuales se utilizaron como insumas al trabajo de investigación integral. Un equipo central en PRISMA contrató investigadores y técnicos de mucha calidad profesional en distintas disciplinas para preparar estudios de actualización de información pertinente. Luego, el equipo principal trabajó en establecer los vínculos entre los resultados parciales para llegar a un producto final. El proceso de la integración de los resultados parciales fue a través de una relación interactiva con los consultores y asesores internacionales, construyendo el enfoque integral paulatina e iterativamente (entre el equipo principal, consultores y asesores de WWF) para lograr resultados de la mejor calidad posible y con la mayor utilidad.Los temas de investigación que fueron desarrollados como insumas para el trabajo de WWF fueron: Profundización de la investigación sobre el conjunto de políticas que afectan la situación del sector agropecuario y plasmarlo según el tipo de producción. focalizando sobre todo en los cambios en la producción agropecuaria y cómo esto afectaba particularmente en las laderas.Análisis del cambio de la contribución sectorial al crecimiento del PIB durante los últimos 20 años y con mayor énfasis durante el período] 990-1995, junto con una revisión de los cambios que habían ocurrido en el comportamiento económico (factores) dentro de cada sector.A raíz de problemas de consistencia estadística con las encuestas que generan información sobre pobreza, se hizo un estudio especial sobre la evolución de los \"medios de vida rurales\" durante los últimos 15 años para conocer la dimensión de la pobreza rural.Se intentó analizar los cambios en la estructura de la tenencia de la tierra en el mismo período, compaginando e interrelacionando los bancos de datos disponibles en el país.Análisis del impacto de la implementación de las políticas de financiamiento e institucionales para el sector agropecuario.La recopilación de mapas sobre la geomorfología, hidrogeología, tipos y usos potenciales del suelo, la última versión verificada en terreno del uso actual de suelos del país y un intento de construir territorialmente la expansión urbana que había ocurrido en las últimas dos décadas. La introducción de la lectura territorial de estas realidades o fenómenos fue sumamente importante, dado que no había una \"lectura\" de esta naturaleza en el país.La territorialización de los datos de población de los últimos dos censos (1971 Y 1992) para poder usarlo como un indicador clave de los cambios en el país. Análisis de las tendencias de crecimiento poblacional por tipos y las causas vinculadas a los cambios.Revisión de la literatura sobre los problemas de erosión de suelos en el país, desde los que miden la erosión en finca para los intereses de producción hasta los estudios de erosión laminar de grandes regiones y de micro-cuencas. También se revisó y se compararon los estudios técnicos sobre el azolvamiento en el embalse del Cerrón Grande, como un indicador de los problemas de erosión a escala mayor. Se entrevistó a técnicos -cuando era posible-que habían participado en ellos.Se comisionó un estudio de actualización de la situación hídrica del país a partir de los nuevos datos de población, que generó un cuadro de las tendencias del balance hídrico, la demanda para todos los usos y la contaminación global según cuencas hidrográficas.Se revisó la literatura existente sobre contaminación de agua a escala nacional y local, contando aquí con acceso a los estudios comisionados por consultorías del PNUD, BID, AID, Banco Mundial, etc. Se actualizaron los estudios sobre los cambios institucionales relacionados al medio ambiente, enfocando los que habían sido estipulados en el marco de la reforma económica global y sectorial (revisión de la situación de leyes y reglamentos, reformas institucionales, jurisdicciones inter-institucionales, grados de aplicabilidad y cumplimiento, etc.).Se hizo una labor de territorializar los fenómenos posibles para poder construir una lectura a escala nacional de los problemas, en base a \"superposiciones\" sucesivas de los mapas. Esto fue considerado clave en la presentación de los resultados, que también facilita la lectura a públicos no especializados (mapas de hidrogeología, topografía, vegetación, uso de tierra, densidades poblacionales, tendencias de crecimiento urbano y rural, crecimiento de áreas urbanas, ubicación de cuencas hidrográficas y ríos, etc.).Es importante mencionar en este punto la dinámica de interacción que se estableció con los investigadores y con los productos intermedios a lo largo de esta investigación. Por un lado, involucramos, vía consultoría, a investigadores externos y a técnicos del sector público, no sólo en su parte del trabajo, sino en un \"comité\" de apoyo al proyecto, de tal manera que hubo una interacción continua entre varios de ellos para poder ir encontrando los \"senderos\" (pathways) para la integración correcta de las partes. A lo largo del proceso de investigación se celebraron pequeños talleres de trabajo sobre temas escabrosos, donde a veces invitamos expertos externos para ayudamos a comentar los problemas. Como esto realmente depende mucho de un gran conocimiento de la realidad del país, fue clave apoyamos para construir las interrelaciones, por ejemplo, entre los problemas de la agricultura en laderas, la erosión y urbanización y sus relaciones con la pérdida de disponibilidad de agua.Por otro lado, hubo numerosos productos intermedios, en la forma de boletines PRISMA, que presentaron resultados parciales de estos trabajos, dándole crédito a los autores y consultores. Esto fue visto como un mecanismo de preparación del terreno para los resultados finales del estudio y como ejercicio propio en la elaboración de mensajes que pudieron ser dirigidos para un público amplio. La labor de integración de los temas y simplificación de los mensajes constituyó un reto fundamental.Es difícil medir y atribuir con precisión los niveles de incidencia que han tenido los productos derivados del proceso de investigación. Sin embargo, se podrían mencionar algunos de los procesos en los que creemos haber influido.El trabajo sobre la Dinámica de la Degradación Ambiental se convirtió en una referencia nacional de interpretación integral del problema de la degradación ambiental del país. Fue notorio el nivel de demanda de las publicaciones y la presentación visual del trabajo desde muchos sectores de la sociedad, incluyendo los sectores gubernamental, sector campesino y cooperativista, ONG's nacionales e internacionales (ambientalistas y de desarrollo), organismos de cooperación externa, etc.Como un intento de iniciar el ejercicio de elaboración de indicadores de influencia o impacto del trabajo de PRISMA, presentamos un bosquejo (al cual le falta mayor sistematización) y algunos indicios de la influencia del trabajo de la investigación y diálogo de políticas de la institución. Notamos que los trabajos de PRISMA comienzan a ser retomados en los marcos de abordaje de otras instituciones:GREEN PROJECT (USAID): Para la reorientación del proyecto PROMESA (ahora Green Project), se tomó en cuenta el marco desarrollado en la Dinámica de la Degradación y sugerencias concretas hechas por PRISMA.FUSADES (Fundación Salvadoreña para el Desarrollo Económico y Social): utilizó el mismo trabajo (sobre todo las exposiciones hechas por investigadores de PRISMA) en repetidas ocasiones, como un instrumento de capacitación de su Junta Directiva y sectores empresariales varios. Su propia elaboración de propuestas de políticas ha sido orientada por parámetros establecidos en los trabajos de PRISMA.El Manifiesto Salvadoreño de la Asociación Nacional de la Empresa Privada (ANEP): incluye un sub-capítulo sobre el desarrollo sostenible y manejo de recursos naturales y las principales referencias corresponden a trabajos de PRISMA.La cobertura en los principales medios de comunicación (prensa escrita) han presentado trabajos de PRISMA, cuando se dirigen a un análisis del marco general de la problemática ambiental en el país.De una manera creciente, firmas consultoras que realizan trabajos relacionados a proyectos y préstamos de las principales fuentes de financiamiento externo, buscan a PRISMA solicitando orientaciones globales sobre los problemas de medio ambiente y desarrollo en el país (agua, institucionalidad, agricultura, urbanización, etc.). Por un lado, comenzamos a incidir a nivel de la formulación y de ideas-proyectos a cargo de consultores o funcionarios de USAID y del BID.Otro nivel de influencia comienza a ser directamente con los consultores para la implementación de varios proyectos y préstamos (en algunos casos los \"Technical Assistance Loans\", non-payable). Por ejemplo, existe una firma consultora que ha solicitado que PRISMA participe (junto con su firma, como contraparte nacional o en coalición en la licitación) para la implementación de un componente relativo a políticas y diseño institucional de un proyecto financiado por el BID, posición que no hemos aceptado hasta la fecha. Otro ejemplo consiste en que, de manera casi permanente, los consultores entrevistan a los investigadores y retoman nuestros materiales y sugerencias como orientaciones para sus propuestas.Esto supone superar la tensión clásica de quienes argumentan la protección de las laderas por su importancia como fuente de servicios ambientales (según esta percepción, las laderas sólo tienen vocación forestal y su uso para fines agrícolas no es recomendable) y los que plantean la intensificación productiva para resolver los problemas de pobreza rural. Esta dicotomía tiene algunos problemas. Por una parte, no reconoce la dinámica demográfica en las laderas; no considera que el uso adecuado depende no sólo de las condiciones biofísicas, sino también de los niveles de inversión y de la calidad de manejo, y finalmente no considera que existen opciones tecnológicas para mantener las funciones ambientales de los bosques en las laderas y al mismo tiempo aumentar su productividad, es decir, que desde el punto de vista tecnológico es posible que las laderas cumplan sus funciones ambientales, pero a su vez, generen bienestar para la población asentada en ellas.El proyecto Desarrollo Institucional para la Producción Agrícola Sostenible en las Laderas de Centroamérica (proyecto llCA-Holanda/LADERAS), se inició en 1995 mediante un convenio entre el Instituto Interamericano de Cooperación para la Agricultura (nCA) y la Embajada Real de los Países Bajos, con la finalidad de contribuir a mejorar la seguridad del medio de vida de los agricultores de las laderas centroamericanas asegurando la sostenibilidad del recurso natural base, a la vez que se satisfacen las necesidades de los usuarios de agua.Este proyecto está concebido como un proceso de análisis-acción para incidir en las políticas y comportamientos a nivel local. 51 Se basa en resultados de investigación previos, en la experiencia directa y en la evaluación de ambos para ayudar a desarrollar políticas, marcos institucionales de trabajo, mecanismos organizacionales y capacitación de recursos humanos, para promover el uso sostenible de la tierra en las laderas, a través de acciones que permitan percibir las laderas como polos de desarrollo sostenible.\" Los resultados de largo plazo del proyecto liGA-Holanda/LADERAS G.A. incluyen el planeamiento territorial centrado en la planificación del uso de la tierra y zonificación agroecológica y la generación de personal capacitado. Para esto, el proyecto ha invertido recursos y producido una considerable cantidad de documentos de diagnósticos socioeconómicos y agroecológicos, estudios de caso sobre metodologías de extensión, documentos técnicos sobre temas relacionados con erosión y cultivos, guías metodológicas de planificación, etc. Las actividades de consulta, capacitación y coordinación están debidamente sistematizadas y documentadas en publicaciones producidas por el proyecto: documentos de planificación, memorias de seminarios-talleres sobre planficación, extensión, recursos naturales, etc.Se trata de promover un enfoque que combina las intervenciones en los niveles macro y micro, con la participación de una amplia variedad de actores institucionales. 52 Dado que los objetivos ambientales relevantes no pueden identificarse sin dirigirse hacia la cuestión del medio de vida rural, estas actividades deben ser llevadas a cabo dentro de la más amplia perspectiva de desarrollo en el área rural. Para solucionar los problemas de deforestación y erosión en laderas, se requieren nuevos mecanismos organizacionales, nuevas tecnologías, nuevas políticas, y sobre todo, nuevos marcos conceptuales e institucionales.En una forma muy resumida, el proyecto /leA-Holanda/LADERAS trata de realizar acciones que demuestren y hagan visible un proceso de redefinición del papel de las laderas, aprovechando sus ventajas comparativas con relación a otros territorios. Para ello, se busca avanzar en el desarrollo de experiencias concretas que permitan percibir las laderas como polos de desarrollo sostenible, mediante la promoción de sistemas de producción ecológicamente sostenibles, que aumenten la productividad y la provisión de servicios ecológicos, en un contexto que beneficie a los usuarios directos de los recursos naturales para que las laderas contribuyan a la economía nacional, sobre la base de un desarrollo endógeno a nivel local. Para ello se requiere movilizar voluntades, recursos y capacidades ya existentes, destacando tanto el papel hidrológico y energético de las laderas, pero también el potencial productivo.Incidir en la creación de la institucionalidad, es una finalidad básica del proyecto. Se reconoce que el papel de la estructura y acción institucional explica el éxito o fracaso de las estrategias de desarrollo, por consiguiente, la institucionalidad es un elemento vital para promover el desarrollo de la agricultura y el medio rural.Este proyecto parte del hecho que la región centroamericana enfrenta un profundo déficit de institucionalidad y que esto constituye el principal obstáculo \" En el pasado, la mayoría de estrategias para enfrentar los problemas de erosión y deforestación han estado centradas en el diálogo de políticas a nivel de élites, con limitada participación de las organizaciones de productores, ONGs, proyectos de desarrollo rural y gobiemos municipales, o bien, se han limitado a intervenciones a nivel local, donde las políticas y variables institucionales son tomadas tal como vienen propuestas por las fuentes de cooperación técnica y/o financiera. para promover el desarrollo del medio rural. En ese sentido, el proyecto juega un papel facilitador para propiciar y desencadenar la movilización del potencial y de recursos existentes a nivel local, para superar el déficit institucional que limita el desarrollo sostenible en las laderas, combinando e integrando intervenciones con la participación de una amplia representación de actores, en los que cada nivel desempeña un papel relevante con respecto a los otros. 53 1.El proyecto adoptó una estrategia de concentración geográfica de sus esfuerzos en cuatro municipios de Honduras y El Salvador para 'ejemplificar' de manera concreta y visible, las ventajas de la acción colaborativa en el diseño e implementación de acciones que aumentan la productividad y conservan el ambiente.En este nivel local (municipios), se ha logrado la organización y puesta en marcha de dos Comités de Desarrollo Sostenible (CDS), uno en Jocoro y otro en Nueva Concepción, en El Salvador, y el apoyo al Comité Local de Desarrollo Sostenible de la Cuenca del Río Tascalapa, Yorito, en Honduras. Estos Comités están integrados por los principales actores vinculados al desarrollo de esos territorios. Los Comités son la expresión organizativa local, que parte de entender a los integrantes como \"las fuerzas vivas en el territorio\".55 La estrategia involucra a gobiernos locales, iglesias, educadores, gremios, gobierno, üNGs y otros, estimulando las relaciones de colaboración y aprovechando el potencial existente, fortaleciendo la capacidad de las organizaciones de base para gestionar sus propios recursos y apoyando iniciativas existentes. El proyecto aspira a ser reconocido por su aporte y por reconocer el aporte de otros.El comité local es una estructura de representación, articulación, integración, orientación acompañamiento y movilización de las \"fuerzas vivas\" de la sociedad local, que encamina sus acciones para lograr mayor eficiencia y eficacia en la acción institucional local. Los CDS de Jocoro y Nueva Concepción han logrado consenso sobre sus principales problemas; acuerdos sobre prioridades y líneas de acción; disponen de un Plan de Desarrollo hasta el año 2000 y han puesto en marcha las primeras acciones colaborativas. En ténninos de efectividad, los CDS han logrado en menos de 10 meses de existencia un alto grado de coherencia y consolidación con los propósitos establecidos por ellos mismos.El avance organizativo de estas instancias contribuye al aumento de la capacidad local de gestionar, negociar e incidir para mejorar el manejo de los recursos naturales y hace aportes relevantes al trabajo en los otros niveles (nacional y regional) con elementos de reflexión, ideas frescas, resultados visibles y legitimidad de las modalidades organizativas locales. La creación y funcionamiento de los CDS's ha repercutido en consensos entre actores claves, que actualmente comparten responsabilidades; estimulan el intercambio; y ponen en práctica acciones colaborativas entre instituciones y actores, mejorando la eficiencia y eficacia de la acción institucional.Lo que se ha puesto en marcha hasta la fecha, ha permitido sumar al proyecto el aporte y recursos propios de los socios, logrando sinergia, complementariedad, cofinanciamiento y mejorando la coordinación de las acciones. Todas las acciones emprendidas por el proyecto son definidas, planificadas y ejecutadas corno esfuerzos colaborativos en los que las partes asumen responsabilidades organizativas, técnicas, metodológicas y el aporte de recursos financieros y humanos, entre otros. En esta lógica, los recursos financieros no han sido una limitante, principalmente porque el proyecto ha puesto en marcha una modalidad de trabajo que enfatiza las relaciones colaborativas, en donde se acuerda financiar acciones con aportes de los socios. 56 Entre los principales resultados del proyecto puede mencionarse: consenso entre actores claves (sector público, Organizaciones No-Gubernamentales, agencias internacionales, gremiales y comunidades), con respecto a las causas de la erosión y deforestación en las laderas de Centroamérica y sus posibles soluciones; organizaciones con capacidad analítica, metodologías participativas, coordinación interinstitucional y efectiva prestación de servicios; guías de políticas e innovaciones institucionales diseñadas para contribuir al desarrollo sostenible en los varios niveles nacional y local; personal capacitado: formuladores de políticas, líderes institucionales, técnicos y agricultores; planificación territorial implementada en cuencas seleccionadas en El Salvador y Honduras. existen ventajas comparativas muy claras con respecto a la acción individual. Uno de los temas que fue comúnmente expresado es el de las quemas. 57 Lo interesante fue que la gente estaba asociando el problema de las quemas a pérdidas en la propiedad privada, daños y riesgos a la salud (por ser una zona seca y con mucha población asentada en el territorio); cuando las quemas quedan fuera de control, frecuentemente se queman cercas de propiedades vecinas; se queman animales e incluso ha habido casos de quemaduras en personas, y por supuesto, las cosechas. De ahí que la gente percibe que este problema va más allá de lo ambiental.Una vez identificado el problema principal, la primera inquietud de la población fue la idea de exigir al gobierno municipal una ordenanza que prohibiera la quema y penalizar a quien continuara con esta práctica. La reacción del alcalde (que ha participado en todo el proceso) fue demostrar que con una ley no había muchas posibilidades de frenar las quemas, porque prácticamente todos hacían uso de ella. De ahí surgió la idea de realizar un inventario para conocer la magnitud de la quema (cuántas personas y en qué superficie se realiza esta práctica). De ese modo se tuvo un diagnóstico (realizado por la comunidad), en donde se tenía suficiente información sobre la práctica de la quema en el municipio de Jocoro.En este proceso, el apoyo brindado por el proyecto consistió en apoyar al Consejo de Desarrollo Sostenible, proporcionando material para explicar las consecuencias de las quemas. 58 El proyecto contribuyó haciendo guías técnicas; materiales audiovisuales; afiches y facilitando giras de observación a otras experiencias 59 para que los distintos actores constataran, a partir de la observación directa y del intercambio, las ventajas de la no quema.Elementos claves en el diseño de la investigación y análisis para incidir en la formulación e implementación de políticas y en comportamientos a nivel local Hay que reconocer que no existen marcos de políticas que efectivamente integran el manejo de los recursos naturales, los problemas ambientales y la problemática socioeconómica de la producción agropecuaria. Este hecho contribuye a la desarticulación e incoherencia de la producción de políticas especificas, muchas veces aisladas entre sí, llegando a producir políticas que en la práctica son contradictorias. En el proceso de la conducción de la investigación aplicada, los investigadores deberían de alimentarse con los avances conceptuales y metodológicos realizados por otros investigadores cuyos aportes son conocidos por vía de las publicaciones profesionales y técnicas (tanto a nivel nacional e internacional). Aquí es donde los distintos niveles de investigación deberían alimentarse mutuamente.Es importante resaltar que el diseño de la investigación aplicada y las modalidades de análisis y accióh para influir en la formulación e implementación de políticas deben estar enfocadas justamente a ese objetivo de incidencia. En este sentido, los procesos de investigación, análisis y acción para la incidencia sobre políticas no se refiere a procesos de investigación para la obtención de información primaria o básica. Al contrario, la investigación y análisis de este \" Como en muchos otros casos, esto implicó un esfuerzo de investigación y difusión acerca de los efectos derivados de la práctica de la quema, el cual, al igual que en la mayoría de las acciones se concentra en diagnosticar los problemas en sus distintas dimensiones: técnica, económica, social e institucional.\" Hubo una gira para visitar la experiencia de Guaymango (que incluye la realización de prácticas de labranza mínima), donde desde hace unos 15 a 20 años se ha superado la práctica de las quemas y ahora está fuera de cultura agrlcola de la zona. Se logró llevar a agricultores, líderes campesinos, técnicos, maestros, etc., para que conocieran que existen altemativas que están presentes en el mismo país y que constataran las ventajas de este tipo de prácticas......•.249... tipo retoma la información primaria y básica existente, que en muchos casos son aportes hechos por distintas fuentes. De esta manera, los temas de investigación se refieren a otros niveles de complejidad y de abstracción que se diferencian de la de investigación básica y primaria, sin embargo, la investigación aplicada es alimentada por los resultados de la investigación primaria y básica. En este sentido, uno de los roles de la investigación nuestra consiste en calificar la calidad de información existente, señalando sus debilidades y fortalezas para la interpretación. En muchos casos la investigación nuestra hace una \"relectura\" o \"reinterpretación\" de la información existente y también vinculaciones con otros tipos de información para establecer relaciones de causalidad o de impacto.Para la determinación del tema y nivel de manejo del tema de investigación, es importante aproximar lo que será la relevancia de tema, es decir, establecer a quiénes y a qué procesos se pretende influir dentro del país o en las relaciones internacionales (entre organismos y foros relevantes). En otras palabras, debe determinarse quiénes son los actores claves y cuáles son los procesos importantes dónde y en qué dirección se quiere influir con los resultados de la investigación. Dependiendo del objetivo, de los actores y de la relación con el cambio que se quiere introducir, la participación directa (de los actores y de las fuerzas vivas) en el proceso de implementación del cambio es clave. Esto es mucho más evidente cuando hablamos de ejemplos como la introducción de nuevos parámetros de análisis sobre el rol de agricultura vinculándola con la provisión de \"servicios ambientales\" como el agua, o con la introducción de la no quema como mecanismo de generación de medidas legales e institucionales (políticas) para la protección del suelo y como entrada a propuestas alternativas de uso y manejo de recursos naturales a nivel local.Por ello, resulta clave determinar, desde el principio, el objetivo central e identificar sobre quiénes se quiere influir o incidir. Este es un elemento esencial para diseñar el objeto de investigación de tal manera que pueda ser comprendido y apreciado como relevante de parte de los agentes sociales que puedan influir en su implementación. Esto tiene implicaciones para el nivel de sofisticación, abstracción y ritmo de divulgación de la investigación.Para que los resultados no sean extemporáneos para los actores, a veces los resultados aún no perfeccionados tienen que ser difundidos o compartidos con ciertos actores, para poder aumentar su propia capacidad de negociación, por ejemplo: sector campesino, sector cooperativista agropecuario, ONG's ambientalistas, instancias de coordinación local tales como los COS's, etc .. Además, como los mismos actores son mejores conocedores de algunos de los aspectos de la investigación (sobre todo lo referente a los aspectos institucionales y organizativos), es importante que ellos participen el proceso iterativo de investigación y construcción del análisis, asegurando así que los resultados e interpretación final sean aceptados por los distintos sectores y actores .60 e internacionales interesadas en la promoción del desarrollo sostenible es un factor crítico.Para la superación del déficit institucional tambiéri es clave superar el enfoque predominante y tradicional de la mayoría de los proyectos, según el cual las actividades se realizan independientemente de los actores, porque de este modo es más fácil planificar y destacar el aporte de los proyectos. Un efecto de este enfoque, es que la gente está acostumbrada a ver los proyectos como donantes, no como socios, incluso, en algunos proyectos la participación se compra.Por esta razón, es fundamental poner en marcha una estrategia que involucre a las fuerzas vivas (gobiernos locales, iglesias, educadores, gremios, gobierno, ONG's, etc.), estimulando las relaciones de colaboración, aprovechando el potencial existente en las comunidades, fortaleciendo la capacidad de las organizaciones de base para gestionar sus propios recursos y apoyando iniciativas existentes. Una estrategia de este tipo, en un contexto de recursos escasos, de problemas diversos y de instituciones con limitada capacidad de coordinarse, deben identificarse las oportunidades para mejorar la acción institucional, identificando intereses comunes, buscando consenso entre actores claves, compartiendo responsabilidades, estimulando el intercambio y poniendo en práctica acciones colaborativas entre instituciones y actores claves, de tal forma que todo esto mejore la eficiencia y eficacia de la acción institucional. Así, la estrategia permite multiplicar el aporte y recursos de los socios, logrando sinergia entre las acciones emprendidas. Dichas acciones deben ser definidas, planificadas y ejecutadas como esfuerzos colaborativos en los que las partes asumen responsabilidades organizativas, técnicas y metodológicas.Capítulo 8.Centro América61 Los autores son, respectivamente investigador principal en el Centro Internacional de Investigaciones sobre Silvicultura (CIFOR) en Indonesia e investigador del World Wildlife-Fund en Centro América.%Bli&.A pesar de que Centro América experimenta un acelerado proceso de urbanización, más de la mitad de la población todavía vive en el campo y en las áreas rurales. En estas regiones se encuentran los sectores más pobres y algunos de los problemas ecológicos más severos. Y si bien las exportaciones agropecuarias han perdido peso en la captación de divisas, todavía tienen una gran importancia en la economía regional. Además, existe una conciencia creciente de las importancia de los recursos naturales de las zonas rurales para la producción de energía, el abastecimiento de agua potable, el turismo y el funcionamiento del Canal de Panamá. La región no se entiende sin tener una idea de lo que pasa en sus áreas rurales.Las regiones rurales de Centro América se han visto sujetas a numerosos cambios. En la última década, aumentaron las exportaciones agrícolas no tradicionales; cobraron importancia las remesas de los centroamericanos en los Estados Unidos; se desmantelaron muchas de las cooperativas de los sectores reformados; surgieron nuevos movimientos indígenas; se puso de moda la agricultura sostenible y la forestería comunitaria; prosperaron las plantaciones forestales en Costa Rica, a la vez que aumentó la deforestación en Nicaragua y el Petén; se redujo el acceso al crédito público agropecuario y la intervención estatal en los mercados de productos agropecuarios; crecieron las üNGs rurales y se fortalecieron los municipios rurales...Y estos son apenas algunos ejemplos.Frente a la gran velocidad de los cambios, resulta fácil quedarse rezagado. Las verdades de ayer se vuelven los mitos de hoy. El mito del modelo agroexportador, de la deforestación en Costa Rica, de la lucha por la tierra en El Salvador, de Nicaragua como país rural, de los pequeños productores dedicados sólo a granos básicos y de la agricultura migratoria son apenas algunos de los que todavía circulan en el medio.Es peligroso formular, analizar o concertar políticas en función de mitos. También lo es hacerlo en función de constataciones generales sacadas de algún libro, fantasías neoliberales o viejas consignas de izquierda. La realidad centroamericana es compleja, diversa y única, y requiere propuestas similares. Para que esas pueden surgir e imponerse, hace falta información empírica y reflexiones frescas, investigadores capaces y comprometidos, instituciones que facilitan la investigación social y mecanismos para su posterior diseminación entre los distintos actores sociales. La colaboración regional es una estrategia que puede contribuir en ese sentido Toma la forma de redes, proyectos regionales de investigación, programas regionales de posgrado, casas editoriales y publicaciones, seminarios y talleres, asesorías técnicas, intercambios informales o visitas. 62 En principio, la colaboración permite: aprovechar el análisis de las similitudes y diferencias entre los países para sacar conclusiones más robustas; aprender de los éxitos y fracasos de cada país; generar una masa crítica de discusión sobre distintos temas; responder con fundamento a iniciativas regionales de los políticos y/o las agencias externas y aprovechar economías de escala en la capacitación y el desarrollo metodológico. En el pasado reciente, también sirvió para defender los derechos humanos de los investigadores quienes se encontraban amenazados por gobiernos represivos.Sin embargo, nada garantiza que el potencial de la colaboración se realiceen la práctica. Cualquiera revisión de los intentos anteriores demostraría lo difícil y problemático que ha sido lograr una colaboración eficaz, y esas dificultades, lejos de desvanecerse, parecen aumentar en el tiempo.Este ensayo tiene como objetivo revisar las experiencias con iniciativas de colaboración regional en las ciencias sociales relacionadas con las políticas para el campo centroamericano, para generar pistas sobre cómo hacer esa colaboración más productiva en el futuro. Como parte de esta revisión se analizan 16 casos de proyectos, redes y organismos que han promovido la colaboración entre científicos sociales centroamericanos de distintos países que se dedican a temas rurales. (Cuadros 1 y 2 resumen las características principales de estos 16 casos.) La revisión se fundamenta en la experiencia personal directa de los autores con los casos y entrevistas con unas 12 informantes claves.El ensayo comienza con una descripción cronológica de la evolución de los esfuerzos de colaboración regional relacionadas con la investigación sobre ciencias sociales en Centroamérica, para poner a estos esfuerzos en su justa dimensión histórica. La tercera sección discute algunas características específicas de el funcionamiento mismo de los mecanismos de colaboración. El ensayo concluye que con unas recomendaciones para que una iniciativa puede lograr el impacto deseado, relacionadas con las necesidades de los investigadores y actores sociales centroamericanos, la importancia de la investigación primaria, y la coordinación y relación entre actores.Los Años Sesenta y Setenta La colaboración regional en las ciencias sociales en Centroamérica tiene sus orígenes en las entidades ligadas al Mercado Común Centroamericano, como la Secretaría Permanente de Integración Económica de Centroamérica (SIECA) y el Consejo Monetario Centroamericano, y en las agencias de los sistemas de las Naciones Unidas y de la Organización de Estados Americanos, como la Comisión Económica para América Latina (CEPAL), el Programa de Empleo para América Latina y el Caribe (PREALC) de la Organización Internacional del Trabajo (OID y el Instituto Interamericano de Ciencias Agrícolas (UCA), posteriormente Instituto Interamericano de Cooperación para la Agricultura. Dichos organismos realizaron estudios y seminarios regionales, ayudaron a formar un núcleo importante de investigadores centroamericanos y pusieron en contacto los economistas y sociólogos de los distintos países.El público para las investigaciones de estas entidades fueron los Ministerios de Planificación, Agricultura, Economía y Trabajo. Incluso muchos de los estudios realizados fueron producto de solicitudes específicas de estos ministerios.Todos los organismos internacionales compartían un credo común de buscar el desarrollo, la modernización y la industrialización a través del fortalecimiento del sector público, políticas de sustitución de importaciones e integración regional y un fuerte intervencionismo estatal en el campo. La colaboración regional tendió La mayoría de las personas que participaron en los esfuerzos colaborativos dentro de este marco tenían trabajos estables en las entidades regionales mismas, los ministerios e institutos públicos o las universidades. Una buena parte de los recursos y los marcos teóricos vinieron de fuera de la región, pero encontraron una gran aceptación yeco entre los funcionarios públicos centroamericanos, quienes frecuentemente implementaba políticas concretas como resultado de los estudios.En 1974, arrancó el Programa Centroamericano de Ciencias Sociales del Consejo Superior de Universidades Centroamericanas (CSUCA), con sede en San José, Costa Rica y apoyo de la Fundación Ford. 63 En ese programa participaron investigadores de las universidades públicas y jesuitas, había una Licenciatura Centroamericana de Sociología, un programa de becas y una casa editorial (EDUCA) que publicaba libros y la revista Estudios Sociales Centroamericanos y se hacían investigaciones regionales sobre estructuras agrarias y migraciones. El programa fue encabezado por destacados científicos sociales centroamericanos, aunque también contó con el apoyo de algunos investigadores sudamericanos. De aquí también surgieron, en mayor o menor grado, las maestrías centroamericanas de economía y planificación del desarrollo, con sede en Honduras, y de política económica, con sede en Costa Rica.El hecho de tener sede en Costa Rica, reflejaba la realidad que éste se había convertido en el centro de las ciencias sociales centroamericanas, dado el grado de represión en El Salvador, Guatemala y Nicaragua, el limitado desarrollo de las ciencias sociales en Honduras, la débil vinculación entre Panamá y los demás países del istmo centroamericano y la relativa consolidación de la Universidad de Costa Rica. Fue allí donde se concentraron tanto las actividades como los recursos.6J La junta directiva del CSUCA es conformada por los rectores de las universidades miembros. La ideología (no oficial) del Programa fue social demócrata de izquierda. Compartía con las iniciativas anteriores la simpatía por la sustitución de importaciones y el fortalecimiento del Estado, pero a eso agregaba una fuerte crítica hacia los gobiernos autoritarios y la intervención extranjera y una mayor aceptación de Cuba y el pensamiento marxista y dependentista.El impacto del CSUCA en este período fue fuerte, tanto en términos de formación de pensamiento centroamericano e investigadores sociales de la región, como en términos de su influencia en el debate sobre políticas. Sin embargo, este impacto fue relativamente difuso, ya que no había mayor esfuerzo para influir de forma directa sobre los ministerios públicos.A un nivel más técnico, se destacaban las investigaciones regionales del Centro Agronómico Tropical de Investigación y Enseñanza (CATIE), sobre todo en cuanto a la caracterización social y biofísica de los sistemas de producción de granos básicos y hortalizas en los distintos países. El CATIE, con sede en Turrialba, Costa Rica, fue formado en 1973, producto de una separación de funciones dentro del nCA, y se dedicaba principalmente a la investigación y enseñanza agronómica, aunque los estudios sobre sistemas de producción también contaban con un componente social significativo. 64 Formalmente, el CATIE trabajaba con los Ministerios de Agricultura, pero en la práctica la mayor parte de sus investigaciones fueron realizadas por sus propios investigadores, y el centronperaba con una gran autonomía. A contrario del CSUCA y la SIECA, la mayor parte de sus investigadores de alto nivel no fueron centroamericanos, sino profesionales de otras regiones. Posiblemente, el CATIE haya tenido un impacto significativo en las políticas a través de la formación de profesionales quienes posteriormente ocuparon cargos importantes. Sin embargo, el impacto inmediato directo de sus investigaciones sociales fue limitado, y el CATIE puso poca énfasis en aumentarlo.En la división entre el CATIE y eIIlCA, el CATIE quedó con las instalaciones y actividades relacionadas con investigación y enseñanza, mientras que elllCA se especializó en actividades de cooperación técnica. en apoyo a los ministerios de agricultura. Ii! II!Finalmente, habría que destacar que durante todo este período las ciencias sociales que más desarrollo tuvieron fueron la sociología y, en menor grado, economía (generalmente estructuralista). Fue mucho más limitada la consolidación de la antropología, geografía, economía neoclásica, ciencias políticas y historia (excepto en Costa Rica).Con el triunfo de la Revolución Sandinista en Nicaragua en 1979, y el encrudecimiento de las guerras en El Salvador y Guatemala, el contexto regional cambió. Los investigadores sociales se encontraron inmersos en la lógica del conflic\\O político -militar regional, y para las entidades inter-gubernamentales resultó cada vez más difícil promover la colaboración regional. Esto llevó a una pérdida de capacidad y relevancia por parte de los organismos de los sistemas de Mercado Común Centroamericano, Organización de Estados Americanos y Naciones Unidas.Otro cambio importante fue el apoyo creciente de Europa para las ciencias sociales centroamericanas. Al comienzo, ese apoyo fue sobre todo para el gobierno sandinista en Nicaragua, pero después se canalizó cada vez más a través de iniciativas regionales. Los gobiernos y ONGS de Alemania, Francia, Holanda, y los países nórdicos y la Unión Europea como entidad buscaron fortalecer iniciativas centroamericanas para desarrollar propuestas propias a los problemas de la región, sin excesiva injerencia del gobierno estadounidense. A partir de las iniciativas de la paz de Contadora, y luego, Esquipulas, vieron en el nivel regional un ámbito privilegiado para ese propósito y financiaron muchas investigaciones sociales con ese fin.Los europeos tenían especial interés en el tema de la seguridad alimentaria. Poco antes, había comenzado una disputa seria entre Europa y Estados Unidos con respeto a la liberalización de los mercados mundiales de productos agropecuarios en el marco de las negociaciones comerciales de la Ronda de Uruguay, y el caso centroamericano ofrecía una buena oportunidad para remarcar las posiciones europeas a favor de la necesidad de medidas proteccionistas e intervencionistas para los productos alimentarios básicos. Con este fin se creó del Programa de Seguridad Alimentaria (PSA) de Centroamérica, primero con sede en Guatemala, y posteriormente en Panamá. El PSA fue organizado alrededor dejes, como producción, nutrición, comercialización y crédito, dentro de los cuales participaban las entidades estatales más relacionadas con cada uno. Para cada eje se realizaron varios estudios y seminarios a nivel de país y región; algunos de los cuales fueron realizado por consultores individuales centroamericanos y europeos y otros por funcionarios públicos de las entidades mismas.Si bien resulta difícil medir el impacto del PSA en las políticas, no sería aventurado afirmar que fue relativamente limitado. Eso se explica, sin embargo, no tanto por la mala calidad de sus análisis o una falta de esfuerzos para influir en la política, sino por el mayor peso político de las corrientes neoliberales en la mayoría de los países y de los países socialistas en Nicaragua. Los estudios sí influenciaron corrientes importantes de opinión en los medios profesionales, pero no tanto las políticas mismas.Otras entidades que recibieron sustancial apoyo europeo durante los años ochenta incluyeron el CSUCA, la Facultad Latinoamericana de Ciencias Sociales (FLACSO) y el Coordinador Regional de Investigaciones Económicas y Sociales (CRIES). En el caso del CSUCA, esto permitió que el Programa de Investigación de la Secretaría del CSUCA en San José se fuera independizando de las universidades que le habían creado y tomando vida propia. 65 Las cuotas anuales que aportaban las universidades miembros representaban una fracción cada vez más pequeña de los ingresos y una proporción creciente de sus investigaciones fue realizada por investigadores de planta de la Secretaría, en lugar de por investigadores de las universidades miembros. Esto generó un fuerte resentimiento de parte de ciertas universidades miembros y, junto con problemas administrativos y conflictos entre individuos, llevó a una crisis generalizada del CSUCA en 1991, y casi a su disolución.Por su parte, la Secretaría General de FLACSO se estableció en San José en 1979, con responsabilidades para toda América Latina, pero especial interés en Centroamérica. FLACSO es un organismo intergubemamental, creado en 1957, que opera bajo el patrocinio de UNESCO, y realiza actividades de docencia, capacitación, investigación y difusión, las cuales son realizadas por personal de ., Los estudios regionales del CSUCA en temas relacionados con el campo incluyeron estudios sobre las regiones fronterizas entre los países centroamericanos, los desastres naturales y las organizaciones campesinas.-ir. UD MMIffi m.,m ..J~WJDJi,\"¡m¡giiii! Il@¡íjJMu ji mM g f!J1JBtla misma institución y consultores. Durante un tiempo, la Secretaría produjo la revista centroamericana de ciencias sociales, Polémica, y organizaba diferentes eventos de carácter regional. Sin embargo, nunca dio mucho énfasis a temas rurales, y en tiempos más recientes han perdido peso las actividades regionales, frente a actividades nacionales que se realizan en las oficinas nacionales que se han abierto en Costa Rica, El Salvador y Guatemala.CRIES fue una iniciativa regional no gubernamental de investigación social, promovido por el Instituto Nicaragüense de Investigaciones y Estudios Sociales (lNIES), a partir de 1982, para aglutinar y potenciar diferentes centros de investigación de izquierda en Centroamérica y el Caribe, con el afán de generar propuestas alternativas de desarrollo para la región. Tenía un fuerte núcleo de investigadores centroamericanos ubicados en Nicaragua, además de coordinar estudios a nivel regional, donde participaban investigadores de los centros miembros. Antes de 1990, su principales estudios relacionados con temas rurales tenían que ver con los principales rubros centroamericanos de agro-exportación. También publicaba la revista Pensamiento Propio, donde frecuentemente salían artículos sobre temas rurales. Si bien formalmente CRIES era una red de centros, la mayor parte de las decisiones fueron tomadas desde Managua, y los otros centros se vinculaban en función de participar en los estudios regionales, financiados con dinero captado por la sede.Todo indica que ni CSUCA, ni FLACSO, ni CRIES tuvieron mayor impacto directo sobre las políticas públicas. En parte, eso se debe a una baja de interés real en ese aspecto y en parte a la predominancia allí de posiciones de izquierda, que no concordaban con las posiciones oficiales.A nivel nacional, la década de los ochenta fue muy pOSItIva para la investigación social sobre temas rurales, sobre todo en Nicaragua y El Salvador. En Nicaragua, el Centro de Investigaciones y Estudios de Reforma Agraria (CIERA), el Instituto Nicaragüense de Investigaciones y Estudios Sociales (INIES), el Centro de Investigaciones y Documentación sobre la Costa Atlántica (CIDCA), CRIES y las Direcciones de Planificación y Reforma Agraria del Ministerio de Desarrollo Agropecuario y Reforma Agraria (MIDINRA) realizaron numerosos encuestas, estudios de casos y otras investigaciones sobre temas rurales. En El Salvador, el Proyecto de Planificación y Evaluación de la Reforma Agraria (PERA), la Universidad Centroamericana (UCA) y el CENITEC desempeñaron funciones parecidas. También llegaron a Centroamérica un gran número de estudiantes de posgrado de Estados Unidos y Europa para hacer investigaciones sobre diversos temas rurales para sus tesis. Estas investigaciones sí tuvieron un impacto importante en las políticas públicas, pero en gran medida se realizaron al margen de la colaboración regional.Para la docencia en ciencias sociales la situación no fue tan positiva. En Nicaragua, una gran parte de los mejores científicos sociales salieron de las universidades y pasaron al gobierno o a centros de investigación semi-privados, mientras que en El Salvador y Guatemala muchos murieron o huyeron de su país. La Universidad de El Salvador (UES) fue clausurada durante varios años y en la Universidad de San Carlos en Guatemala la represión estatal hizo casi imposible la enseñanza en ciencias sociales. Sólo en Costa Rica y Panamá se pudo mantener una formación universitaria de calidad aceptable en las ciencias sociales. Muchos centroamericanos salieron a estudiar en el exterior durante este período, pero pocos estudiaron ciencias sociales a nivel de licenciatura. Como resultado, la mayor parte de los investigadores sociales centroamericanos quienes se graduaron en la década de los ochenta tuvieron una formación deficiente relativa a los que egresaron en la década anterior. Y ninguna de las iniciativas regionales para contrarrestar esta situación a través de post grados centroamericanos realmente logró ese propósito.Durante todo esto el tema de manejo de recursos naturales siguió recibiendo escasa atención. A nivel nacional, hubo investigación sobre temas pertinentes, como los mercados de leña, la ganaderización y el avance de la frontera agrícola, el abuso de los plaguicidas y, en menor grado, la conservación de los suelos, sin embargo, no se conoce una sola iniciativa regional de investigaciones sociales sobre estos temas.La década actual ha sido marcada por el fin de los conflictos políticomilitares, los procesos de ajuste estructural y reducción de la intervención estatal en el campo, la crisis ideológica de la izquierda, la vuelta al escenario de las instituciones financieras internacionales, el mayor protagonismo y autonomía de las organizaciones campesinas e indígenas y la preocupación creciente por los recursos naturales. En cuanto a las investigaciones sociales rurales, se observa un debilitamiento de la mayoría de las instituciones nacionales y regionales, una mayor presencia del nCA y los centros internacionales de investigaciones agropecuaria y una tendencia de sustituir investigaciones primarias por consultorías cortas con base en fuentes secundarias. 66 Y en lo que se refiere a mecanismos de colaboración regional, se destaca la pérdida de beligerancia de las entidades e investigadores centroamericanos, la desaparición de editoriales y publicaciones regionales, el reemplazo de estructuras institucionales permanentes por proyectos puntuales de corto plazo y una lógica de participación que encuentra su explicación más en motivaciones materiales que en intereses ideológicos.Las temáticas centrales de investigación durante esta década han sido: el impacto de las políticas macro-económicas en el campo, las exportaciones agrícolas no tradicionales, la liberalización del comercio agropecuario regional, las cadenas de producción, procesamiento y distribución de los rubros de agroexportación, los enfoques no convencionales de crédito y comercialización, el papel de la mujer rural, las políticas forestales y la adopción de tecnología agroforestal y de conservación de suelos. Han perdido peso las investigaciones sobre estructura agraria, sector reformado y sistemas de producción. En general, se nota cierto desarrollo de la economía neoclásica, y en menor grado la geografía y la historia, mientras la sociología se ha estancado.Durante la primera mitad de la década, un eje importante de debate fue la conveniencia o no de implementar políticas de ajuste estructural, como devaluaciones, promoción de exportaciones no tradicionales, liberalización del comercio regional y doméstico y reducción del crédito público y los aparatos burocráticos del sector público agropecuario. En apoyo a estas posiciones, el Banco Mundial, Banco Interamericano de Desarrollo (BID), Fondo Internacional de Desarrollo Agrícola (PIDA) y el nCA organizaron el proyecto Unidad Regional de Asistencia Técnica (RUTA), con sede en San José, para ofrecer \"\" Algunas instituciones nacionales y regionales que hacían estudios sociales en los años ochenta y/o los primeros años de los noventa que posteriormente se debilitaron de forma notable o desaparecieron incluyen CSUCA, CRIES,lICA,las UCAs de El Salvador y Nicaragua, CIERA e INIES en Nicaragua, CENITEC, CENTAy PERA en El Salvador, CECADE y SEPAS en Costa Rica, el POSCAE y la SRN en Honduras y las direcciones de políticas y/o planificación de los ministerios de agricultura de El Salvador y Nicaragua.cooperaclOn técnica y capacitación a los sectores públicos agropecuarios, incluyendo estudios puntuales sobre distintos temas. RUTA cuenta con un núcleo de profesionales en San José y representantes asignados a trabajar con las oficinas de planificación de los ministerios de agricultura en cada país y contrata muchos consultores. Más que seminarios o estudios regionales, lo que le da carácter regional es el equipo central, que trabaja en todos los países de la región. Un papel parecido fue desempeñado por la Secretaría Técnica de Consejo Regional de Ministros de Agricultura de Centroamérica, México y República Dominicana (CORECA), con sede en el nCA en Costa Rica. Dicha secretaría coordinó múltiples estudios regionales y nacionales, a solicitud de los ministros de agricultura, realizados principalmente por consultores.Iniciativas regionales críticas a las propuestas de ajuste estructural fueron coordinadas por el Comité de Acción para el Desarrollo Económico y Social de Centroamérica (CADESCA), la Universidad de Texas en Austin, el Instituto de Nutrición de Centroamérica y Panamá (INCAP) y el PREALC. En el caso de CADESCA, estas iniciativas fueron enmarcadas dentro del Programa de Formación Campesina en Seguridad Alimentaria (PFCSA), que sustituyó, en parte, al Programa de Seguridad Alimentaria, discutido anteriormente. CADESCA, que tenía sede en Panamá, se originó en los años ochenta con apoyo de la Unión Europea para reforzar a los procesos de Contadora y Esquipulas a través de proyectos como el PSA. 67 El PFCSA manejaba dos líneas de trabajo, una línea más académica, donde participaban investigadores de universidades y ONGs, y otra más de capacitación y sistematización, con las organizaciones campesinas. Dentro de la primera línea, se realizaron varios eventos y estudios regionales sobre patrones de desarrollo alternativos para Centroamérica, políticas macroeconómicas y el impacto del ajuste estructural sobre la seguridad alimentaria; en la segunda el trabajo se organizó por ejes como crédito, comercialización, tenencia de la tierra y desarrollo sostenible y cada eje tenía un coordinador, quien promovía estudios y reflexiones sobre el tema con las organizaciones campesinas. Tanto la dirección del PFCSA, como el grueso de las investigaciones estaba en manos centroamericanas.\" Posteriormente, CADESCA, que tenía carácter inter-gubernamental desapareció y fue reemplazada por una fundación privada, la Fundación para el Desarrollo Económico y Social de Centroamérica (FUNDESCA).Las iniciativas de la Universidad de Texas, INCAP y PREALC se centraron en el tema de las exportaciones agrícolas no tradicionales. El primero enfatizó su impacto sobre la captación de divisas, las condiciones sociales de los productores y el uso de plaguicidas, mientras que el segundo se centró sobre los aspectos nutricionales y el tercer sobre el empleo. En los tres casos, fue la entidad coordinadora quien diseñó los estudios y las otras entidades nacionales quienes las implementaron.Dada su cercana vinculación con los gobiernos regionales, no debe sorprender que el proyecto RUTA tuvo mayor éxito en influir a las políticas agropecuarias que los esfuerzos del PFCSA, Universidad de Texas, INCAP y PREALC. Por ejemplo, participó de forma muy directa en la definición de las políticas de liberalización del intercambio regional de alimentos y en la formulación de ciertos proyectos de inversión. Sin embargo, no queda muy claro hasta que punto las actividades de investigación de RUTA aportaron a esos esfuerzos o si realmente fueron principalmente actividades de cooperación técnica, sin mayor análisis nuevo.La segunda gran temática de la colaboración regional en los años noventa ha sido el manejo de los recursos naturales. En este sentido, se destacan las iniciativas promovidas por el Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT), Banco Mundial, Consejo Centroamericano de Bosques (CCAB), CRIES, Programa Regional de Investigaciones sobre Desarrollo y Medio Ambiente (PRISMA) y Programa de Frontera Agrícola (PFA). El CIMMYT ha promovido una Red de Socioeconomía, conformado por investigadores sociales de las entidades estatales de investigación agropecuaria, y ha auspiciado estudios empíricos sobre la adopción de prácticas de conservación de suelos. El Banco Mundial financió y coordinó estudios regionales sobre los aspectos económicos e institucionales de la adopción de tecnologías de conservación de suelos y agroforestería, realizados por consultores individuales. El Consejo Centroamericano de Bosques coordinó un estudio regional sobre las políticas forestales en cada país, realizado por ONGs y universidades, con el apoyo de la Cooperación Alemana (GTZ), la Organización de Alimentación y Agricultura de las Naciones Unidas (FAO) y el Centro de Investigaciones Forestales Internacionales (CIFOR). CRIES auspició un estudio regional realizado por sus centros miembros sobre la economía política del desarrollo sostenible.Actualmente PRISMA, de El Salvador, coordina otro estudio similar con apoyo del World Wide Fund for Nature (WWF). El PFA ha montado un equipo de consultores centroamericanos para diagnosticar la situación socio-económica y ambiental en varios zonas de frontera agrícola, y propone promover varias actividades regionales de reflexión sobre ese tema en el futuro. También otros organismos, como el nCA, el Instituto Internacional de Investigación en Políticas Agrícolas (IFPRI) y el Centro Internacional de Agricultura Tropical (CIAT) tienen iniciativas regionales sobre agricultura de laderas que apoyan actividades regionales relacionadas con ese tema en el futuro. Hasta ahora, la mayoría de las iniciativas con relación al manejo de recursos naturales han surgido de organismos no centroamericanos. A menudo la participación centroamericana se ha reducido a implementar estudios nacionales, cuya temática y metodología ya viene predefinida, bajo la modalidad de consultorías.Un aspecto positivo en varias de las iniciativas relacionadas con manejo de recursos naturales ha sido la preocupación por abrir un diálogo con distintos actores sociales públicos y privados. tanto durante como al final de los estudios. Existe una conciencia creciente que para que la investigación en políticas pueda tener impacto, es necesario generar una discusión amplia entre distintos sectores. Frente a la gran pérdida de capacidad e importancia de los ministerios públicos como resultados de los procesos de liberalización económica y ajuste estructural resulta cada vez más dudoso que una iniciativa de investigación en políticas pueda logran un impacto significativo por medio de convencer a los tecnócratas de los ministerios de agricultura o planificación sobre la conveniencia de adoptar a las recomendaciones propuestas. Dentro del contexto actual, sólo publicar resultados y/o presentarlos a las autoridades ministeriales de tumo tiene escasas posibilidades de éxito.Otras iniciativas regionales importantes al margen de las temáticas de ajuste estructural y recursos naturales incluyen: la creación en 1990 de un Centro de Estudios sobre el Desarrollo Rural (CDR) por la Universidad Libre de Amsterdam, la formación en 1993 de una Red de Instituciones Vinculadas a la Capacitación en Economía y Políticas Agrícolas en América Latina y el Caribe (REDCAPA), el establecimiento de una Red Centroamericana. de Departamentos de Economía Agrícola y la realización de algunos estudios regionales bajo el auspicio del nCA sobre el papel de la mujer rural y las cadenas agroalimentarias del azúcar, el arroz y la ganadería de carne. El CDR ha trabajado como una empresa consultora especializada en estudios empíricos sobre cooperativas, organizaciones campesinas, comercialización y crédito y proyectos de desarrollo rural, y se ha convertido en un eje importante de reflexión sobre estos temas. Cuenta con un pequeño equipo propio de profesionales y consultores en los distintos países que trabajan en sus estudios. REDCAPA es una red que ha sido promovido por un grupo de ex-estudiantes latinoamericanos de posgrado en Brasil, que cuenta con apoyo de la FAO. Cubre toda América Latina y ha promovido algunos cursos sobre políticas agrícolas e intercambios entre universidades y publica la revista Políticas Agrícolas. La Red de Escuelas de Economía Agrícola, por su parte, ha sido promovido por la Universidad Nacional (UNA) de Costa Rica, con apoyo de la Universidad de Tilburgo en Holanda y ha trabajado sobre todo en la realización de estudios y seminarios sobre aspectos económicos de distintos rubros agrícolas específicos.Una tendencia preocupante en estos últimos años ha sido la disminución en la recopilación y análisis de datos primarios, como base para la investigación. El Salvador, Guatemala y Nicaragua no han tenido censos agropecuarios por más de quince años. Se ha debilitado de forma notable la capacidad de los gobiernos de generar estadísticas sobre el sector agropecuario. Y, en general, se hacen cada vez menos encuestas y estudios de caso en el campo centroamericano.La sección anterior presentó un recuento de las principales iniciativas de colaboración regional. Esta sección, en cambio, está organizada en función de temas específicos relacionados a la colaboración regional en general que merecen discusión. Estos incluyen: el carácter centroamericano de las iniciativas, la participación de los actores sociales, el papel de los coordinadores, la capacitación de los investigadores, el balance entre investigación primaria y secundaria, el equilibrio entre países y la colaboración entre distintas iniciativas. Un aspecto preocupante de la evolución reciente de los mecanismos de colaboración relacionados con la investigación sobre políticas es la pérdida de control de parte de los centroamericanos. Si comparamos las redes y proyectos anteriores, como el CRIES, CSUCA, PFCSA y SIECA, con las actuales es evidente que la región ha perdido la capacidad de plantear sus propias agendas y enfoques de investigación y que ahora la mayor parte de sus investigadores trabajan en función de agendas y metodologías planteadas desde afuera.Una razón por esto ha sido el debilitamiento de las instituciones nacionales y regionales de investigación y de los mismos recursos humanos centroamericanos. Otro factor ha sido la presencia creciente en la región de las instituciones financieras internacionales y los centros internacionales de investigación. También hay una relación con el agotamiento de las ideologías tradicionales de la izquierda centroamericana y el carácter cada vez más mercantil de las preocupaciones de los investigadores.La región puede -y debe -beneficarse mucho con ideas, experiencias y recursos humanos de otros lados. Pero también es importante que parte de sus reflexiones sociales nazcan de la historia, tradiciones, condiciones, y preocupaciones específicas que le son propias y que se vayan mejorando la capacidad regional para Iiderear este tipo de esfuerzo. Por lo tanto, a las instituciones internacionales que financian y auspician iniciativas regionales en las ciencias sociales les incumbe abrir espacios para investigadores centroamericanos donde puedan plantear temas y enfoques de investigación y conducir una buena parte de las actividades.Tampoco es suficiente abrir espacios sólo para los investigadores centroamericanos. También hay que asegurar que las investigaciones toman en cuenta las prioridades, opiniones y conocimientos de los gobiernos centroamericanos, las organizaciones campesinas, indígenas, ambientalistas, comunales, empresariales y de mujeres, los gobiernos municipales y las agencias internacionales de financiamiento y cooperación técnica. Hacer eso permite mejorar la calidad de los estudios y las posibilidades de tener un impacto y a favorecer la capacidad de negociación de sectores que tradicionalmente han sido marginados de la formulación de las políticas.Existen múltiples formas de consulta, y realizar talleres tradicionales con exposiciones magistrales y grupos de trabajo probablemente no sea siempre la mejor. También se puede organizar reuniones personales con personas claves de los distintos sectores, enviarles borradores de documentos para comentario, armar mesas redondas para discutir distintos temas y organizar giras de campo con ellos para discutir los problemas en el terreno, entre otras cosas.En todas las iniciativas analizadas el papel de la entidad auspiciadora o coordinador ha sido problemático. Normalmente, esa entidad o coordinador es el más comprometido con el éxito del estudio, ya que son los que han desarrollado las propuestas de financiamiento y quienes tienen que responder a los donantes; mientras que los otros participantes tienden a tomar los estudios y seminarios como simples actividades adicionales en sus, ya sobreapretadas, agendas. Esta contradición tiende a llevar a la centralización de la toma de decisiones y una dinámica más de supervisión de las entidades nacionales que de colaboración con y/o entre ellas. También tiende a llevar al fortalecimiento de los equipos núcleos, a expensas de los equipos en cada país, ya que el coordinador tiene mayor control directo sobre los primeros.Al menos que las entidades e investigadores involucradas en las actividades participan en su diseño y estén verdaderamente comprometidos con sus objetivos, difícilmente se puede esperar un resultado de calidad o transcedencia. Sin embargo, en la práctica esto es difícil de lograr. Los costos de transacción de diseñar actividades de investigación o difusión crecen de forma exponencial con el número de actores involucrados, y como se dijo anteriormente, los incentivos para los diferentes participantes no son iguales. Por lo tanto, esto seguirá siendo uno de los principales retos para cualquier iniciativa de colaboración regional en el futuro.La mayor parte de las iniciativas regionales de investigación socio-económica se comprometen a producir estudios de calidad en un plazo más o menos corto. No tienen ni el tiempo ni los recursos para invertir en mejorar la formación de los investigadores participantes. A la vez, los investigadores típicamente perciben su participación en estos estudios como simples oportunidades para ganar dinero para complementar sus salarios, y las entidades donde trabajan las ven como posibles vías para sacar fondos para sus operaciones básicas. Sin embargo, la mayor parte de los investigadores centroamericanos quienes participan en estos estudios tienen formaciones académicas deficientes, bases teóricas y metodológicas insuficientes y dificultades de redacción. La combinación de problemas de motivación y formación llevan a el resultado de muchos estudios y eventos mediocres, que no cumplen con los objetivos planteados.Frente a esta situación, resulta urgente diseñar e implementar nuevos tipos de incentivos y mecanismos de capacitación en servicio para investigadores. Para la estructura de incentivos es importante: intentar generar relaciones de más largo plazo, utilizar sistemas de revisión externa de la calidad de los productos y buscar seriamente responder a las necesidades reales tanto de los investigadores centroamericanos como de las instituciones donde trabajan. Algunas posibilidades en cuanto a la capacitación incluyen: establecer cursos o diplomados que combinan investigaciones de campo con encuentros periódicos de capacitación y reflexión, formar grupos de estudio, auspiciar cursos de redacción para investigadores, ofrecer becas de posgrado para investigadores centroamericanos, con el compromiso de escribir sus tesis sobre alguna temática relacionada con la iniciativa regional que les auspicia y asignar un mayor porcentaje del tiempo de los investigadores senior (sobre todo los no centroamericanos) para la tutela de un número reducido de investigadores con menor experiencia.Una ventaja comparativa de las iniciativas regionales es la posibilidad de sintetizar un gran número de estudios locales y sacar conclusiones generales. Sin embargo, existe el peligro que todo el mundo quiera sintetizar y/o trabajar con fuentes secundarias y nadie quiere realizar el trabajo lento, costoso y poco reconocido de levantar información primaria. La modalidad de consultorías cortas realizadas por investigadores que tienen múltiples otros compromisos al mismo tiempo no permite hacer investigación primaria seria. Eso a la vez alimenta y refuerza los mitos pre-existentes, ya que no hay nuevos datos empíricos que podrían contradecir dichos mitos. Por lo tanto, en cuanto posible los mecanismos regionales de colaboración del futuro deberían evitar el camino fácil de sólo realizar estudios con fuentes secundarias y apoyar el levantamiento de información empírica nueva.De las 16 iniciativas regionales analizadas en este ensayo, 9 han tenido sede en Costa Rica. Allí están las sedes del CATIE, CDR, CIMMYT, CSUCA, FLACSO, nCA, RUTA. Ninguna ha tenido sede en Guatemala o Honduras. 68 Esta situación es perfectamente entendible dado la mayor estabilidad política que ha gozado y cierta consolidación de las ciencias sociales allá, pero no deja de ser problemática.También varias iniciativas han fracasado en el pasado, por lo menos en parte, porque han sido demasiado imbuidas con las culturas y/o problemáticas de sólo uno o dos países. Cualquier mecanismo regional de colaboración tiene que ser sensible a estas situaciones y buscar mantener un equilibrio de participación entre los países.Las distintas iniciativas regionales tienden a trabajar con las mismas entidades en cada país. (Ver cuadro 2). Sin embargo, tradicionalmente lo hacían sin tomar en cuenta la presencia de las otras iniciativas. Eso llevaba a: competición entre iniciativas por la atención y el tiempo de los investigadores, desaprovechamiento de oportunidades para potenciales sinergias entre iniciativas y una menor continuidad en los esfuerzos.El potencial para este tipo de desencuentro es especialmente grande en lo que se refiere a tema de manejo de recursos naturales en laderas y en trópico húmedo, donde existen distintas iniciativas que cubren problemáticas similares. En el caso de las laderas, ya han habido varios intentos de coordinación entre el CATIE, CIAT, CIMMYT, EAP, IFPRI e nCA, y este taller representa un paso positivo adicional en ese sentido. Y en cuanto a las zonas de trópico húmedo hay mucho potencial para sinergía entre las iniciativas del PFA, PRISMA, nCA y el Proyecto de Políticas Forestales para Centroamérica. y esas oportunidades no se deberían desaprovechar.En cuanto posible, cualquier iniciativa regional nueva debe de fortalecer ini~iativas e instancias ya existentes, y no crear nuevas. Eso permitiría dar mayor continuidad a los esfuerzos, reducir los costos de coordinación y administración y evitar la competencia entre iniciativas por el tiempo de los investigadores.Centroamérica sigue teniendo una necesidad real de reflexiones serias sobre lo que pasa en el campo, para el diseño de las políticas, nacional y locales, estatales y no gubernamentales. Sólo eso puede evitar que la región se convierta en víctima de una transferencia simplista y acrítica de las últimas modas internacionales en cuanto a políticas.Sin embargo, la capacidad institucional y de recursos humanos para promover este tipo de reflexión se ha deteriorado, igual como la recopilación de datos empíricos frescos. Los centros de investigación y planificación han sido reemplazados por consultores individuales, quienes se dedican sobre todo a estudios de corto plazo, y tienen poco compromiso con la temática. Dentro de este marco, los organismos internacionales y los proyectos regionales puedan ayudar a mejorar la situación o más bien contribuir a los problemas. El criterio básico para definir si están haciendo una contribución positiva, no es tanto si se están generando estudios de alta calidad académica, sino si se están fortaleciendo la capacidad regional de llevar a cabo estudios y actividades de reflexión que responden a las necesidades sentidas en la región y de utilizar esos estudios para fortalecer un diálogo democrático entre los principales actores sociales.Estado actual de la investigación sobre políticas relacionadas con el desarrollo sostenible agrícola en las laderas mesoamericanas Alex Coles 69 .. El autor es investigador y profesor asociado de la Universidad de Tulane en Nueva Orleans, EEUU. En México y Centro América, las laderas se ubican mayormente en los ecosistemas de hoja ancha y coníferas, los cuales se encuentran en un estado muy preocupante con respecto a la conservación de la biodiversidad; la mayoría de éstos ecosistemás son clasificados como 'en proceso de extinción' y en estado 'muy vulnerable.' (Dinerstein, E. 1995) Estas áreas se encuentran bajo constante amenaza por diferentes usos del suelo y prácticas de manejo. La expansión de la frontera agrícola y la deforestación -fundamentalmente asociada a la industria maderera, la ganadería y al uso de leña-se destacan en vista de que están presentes en casi todas las ecoregiones. Ademas, la misma degradación trae consigo un deterioro en la capacidad productiva agrícola y forestal del área lo cual amenaza la subsistencia de los pobladores. Este contexto de amenazas y problemas fortalece aún mas el llamado de estudiar a fondo y de manera urgente las prácticas y marcos de políticas en el manejo de recursos naturales.El diseño y la formulación de políticas para superar los mencionados retos es un proceso delicado y complejo. Con la puesta en marcha de los procesos de ajuste estructural y el fortalecimiento del neoliberalismo han surgido numerosos cambios en las políticas ambientales, sociales y económicas a todos los niveles.En materia de manejo de recursos naturales, la complejidad sobre la formulación, análisis y evaluación de políticas se magnifica. La exigencia de que es necesario formular políticas que sean eficientes desde el punto de vista económico y que, a la vez, aseguren el continuo aprovechamiento del recurso por generaciones futuras constituye un gran reto. Este reto está en gran medida influenciado por las condiciones físico-biológicas del sitio donde se ubica el recurso. A menudo los formuladores de política (Ascher and Healy 1990) desconocen las complejidades de carácter ecológico.Sin embargo, hay una literatura emergente que argumenta que el desarrollo económico no se encuentra necesariamente en contradicción con la conservación del ambiente (Bhagwati, 1993;Banco Mundial 1992). En el caso de las laderas de Mesoamérica, es urgente explorar estas alternativas, y las politicas respectivas. A raíz de lo anterior existe una creciente demanda sobre informacion empírica y analitica sobre estos temas por parte de los gobiernos, las Organizaciones No Gubernamentales (ONG), y los donantes. Hay necesidad de recolectar datos g jjJ 7' ~1:m §.1tJ1fPW'4M'mg• sr ir W' ¡¡W\"fM8An;tt~ §~m71m1Wnl!WWẽ mpíricos para comenzar a reformar las políticas de tenencia de la tierra, de regulaciones sobre uso agua, de manejo forestal social, de conservación de suelos y cuencas, de ajuste estructural y de cambios en políticas de comercio exterior sobre la dinámica social, económica y ambiental en las laderas.Ha habido un interés laudatorio en esta problemática por parte de muchos grupos internacionales--Ios bancos de desarrollo, las ONG ambientales, las universidades en Europa y los EEUU, los donantes. Pero, aunque ha surgido un verdadero auge en la actividad a nivel de base para promover el desarrollo sostenible en laderas, todavía la investigación y análisis de las políticas se concentra en manos fuera de la región. Ha habido un auge económico para las consultorías orientadas a apoyar a las actividades de desarrollo sostenible. Pero estas consultorías se dedican principalmente a hacer estudios de pre-factibilidad, inventarios de actividades, y evaluación de proyectos--no de llevar a cabo investigación extendida, empírica sobre los procesos de cambio en MRN y los efectos de la política. Hay una falta de desarrollo en las instituciones nacionales que deben tomar el rol de liderazgo intelectual--basado en investigación de alta calidad--en los debates sobre políticas de esta índole.El presente documento analiza el estado de la investigación para políticas en el contexto del manejo de recursos70 naturales (MRN) en México y Centro América. El estudio se basa en información colectada sobre iniciativas de investigación, educación y capacitación y redes que desarrollan un grupo selecto de programas e investigadores en apoyo al manejo de recursos en áreas donde predominan sitios de ladera. El objetivo de este ejercicio fue de identificar el trabajo actual en cada país, para ayudar en identificar colaboradores potenciales para los proyectos de investigación, para identificar investigaciones cuyos resultados tendrán importancia para otros países, y para proveer información que pueda ayudar a los redes (formales y informales) en sus actividades y en identificar el tipo de apoyo que necesita la comunidad de investigadores en esta área.70 Investigación para polftica' se entiende como aquella diseñada para influenciar la formulación de polfticas que conlleven a soluciones de los problemas socioeconómicos asociados al manejo de los recursos naturales.Cabe aclarar que este• estudio tenía un enfoque limitado. En primer lugar, trata solamente la investigación sobre el MRN que se relaciona con la agricultura, y que busca analizar conjuntamente los aspectos de la producción agrícola, los recursos naturales y el bienestar de la población de laderas. Hay muchos grupos de investigadores que han llevado a cabo investigaciones sobre temas como la migración, áreas protegidas, la nutrición, mercados de trabajo, etc.--que tienen mucha relevancia al desarrollo de laderas--pero que no integran directamente estos factores, y usualmente no distinguen los impactos en las áreas de laderas en los valles, a pesar de que factores como aspectos ecológicos, organización social y grado de integración en el mercado puedan condicionar los resultados.También, el estudio se limitó a los investigadores y proyectos que están basados en la región; no incluye los muchos proyectos sobre el tópico que son implementados por investigadores de instituciones basados fuera de México y Centroamérica. Tampoco incluye proyectos de estudios que no pertenecen al dominio público (por ejemplo reportes de consultorías). Finalmente, excluye las actividades de investigación social y económica que analiza los procesos de desarrollo, pero que no alimenta directamente el análisis de políticas.La próxima sección del capítulo describe la metodología del estudio y luego describe en términos generales la escala y distribución de la investigación en la región. La siguiente sección describe el contexto en que se formula la investigación para políticas y los principales resultados para cada país. Se termina con algunas recomendaciones para el fortalecimiento de la investigación sobre políticas de MRN y la agricultura en la región.Este trabajo surge de una iniciativa multinacional que el Instituto Internacional de Investigación para Política Alimentaria (lFPRI) desarrolla dentro del proyecto Análisis de políticas para el desarrollo sostenible de las laderas centroamericanas, que se describe mas tarde. El análisis resulta de la información colectada en trabajo de campo que se desarrolló entre Noviembre 1995-Mayo 1996, con una serie de visitas cortas a investigadores y otros académicos, así como a directores de programas de desarrollo y de redes que apoyan trabajo en MRN e investigación para política en México y Centro América. La información colectada incluida: En total 103 personas fueron entrevistadas dentro de 68 programas/proyectos en Costa Rica, El Salvador, Guatemala, Honduras, México y Panamá. Este análisis sin embargo se basa solamente en la información brindada por aquellos cuya labor y programas cabe en uno de los siguientes grupos: (a) que el trabajo esté enmarcado específicamente en el estudio de la problemática de sitios de laderas; (b) que estén conduciendo investigación o análisis relevante a la política en MRN y agricultura en áreas predominantemente de laderas; o (c) que estén desarrollando investigación para influenciar política en MRN. El apéndice 1 incluye los programas visitados que cumplieron con tales requisitos, que en total suman 35 incluyendo las redes en apoyo a la investigación y la capacitación.Programas de investigación regional con enfoque sobre laderas Existen cinco programas que definen su agenda de investigación y acción exclusivamente en el contexto de laderas a nivel regional, y otros dos que tiene un enfoque mas amplio, pero muy relevante 72• \"Políticas para el Desarrollo Sostenible en las Laderas de Centro América\" es un proyecto colaborativo entre el IFPRI y el nCA, conjuntamente con otras instituciones en la región. Los objetivos son entender los procesos de cambio en MRN en las comunidades de ladera en los últimos 20 años, y el papel de las políticas; recomendar políticas para un desarrollo mas sostenible para diferentes 71 Coles (1997) consiste de un inventario de todos estos programas, con detalles sobre sus objetivos y actividades, e informacion para contactarlos.72 La FHIA ha presentado una propuesta ante la Comisión Binacional Honduras-Canadá para el Manejo del Ambiente para la creación de un Centro Demostrativo de Agroforestería en las Laderas del Trópico Húmedo. Este Centro estaría ubicado en una área de elevación media en la cuenca del Río Cuero y operaría como un centro educacional y de investigación en apoyo a la agroforestería tropical, centrándose especialmente en sistemas de producción y tecnología agroforesta!.\"vías de desarrollo\"; y fortalecer la capacidad regional en análisis de políticas. La fase inicial de la investigación empírico se llevo a cabo en Honduras, y la segunda fase se extiende a Guatemala y El Salvador. \"Mejoramiento de la Sostenibilidad Agrícola y el Bienestar en las Laderas de Centro América\" es un proyecto que tiene énfasis principal en la tecnología para agricultura sostenible, pero que también tiene componentes sobre políticas relacionadas con la adopción de tecnología. La investigación de campo es principalmente en Honduras y Nicaragua, pero hay otros componentes regionales, como colecta de bibliografía sobre laderas. \"Proyecto Regional para el Desarrollo Institucional en Apoyo a la Producción Agrícola Sostenible en las Laderas de Centro América\" de nCA-Holanda, Laderas C.A. enfoca más en aspectos de política institucional. Sus actividades son principalmente en El Salvador y Honduras.El \"Programa para la Agricultura Sostenible en las Laderas de Centro América\" de PASOLAC-Intercooperación opera como un grupo de entidades que colaboran para validar y diseminar tecnología sostenible para suelos, fertilidad y manejo de recursos hídricos. Finalmente, el CATIE tiene un programa de investigación sobre manejo de cuencas que tiene componentes de la política y la institucionalidad para manejo sostenible. Los cinco programas tienen componentes de investigacion a varias escalas, pero con un enfoque sobre la microcuenca como la unidad base de análisis. Los programas tienen diferentes objetivos y socios, pero organizan varias actividades colaborativas entre sí, especialmente talleres. y apoyo en el diseño de la investigación.Además, el CIMMYT ha colaborado con el INCAE y otras organizaciones para analizar y promover las políticas que apoyarían la adopción de tecnologías más sostenibles de producción de granos básicos. No se enfatiza las laderas en particular, pero de hecho la mayoría de su trabajo cae en las laderas; y apoya estudios de miembros de la Red Socioeconómica de Maíz. Otro recurso intelectual importante en la región es el proyecto \"Frontera Agrícola\", con su sede en Panamá. Aunque este proyecto se orienta mas a las tierras bajas, trata de los mismos temas de la interaccion entre agricultura, recursos naturales y bienestar social.Se documentaron _ programas o proyectos nacionales sobre el tema, principalmente localizados en las universidades ( ) y centros de investigacion privada ( ) y centros públicos ( ). Los detalles se presenta en la sección siguiente. La mayoría de los programas/proyectos nacionales documentados definen su investigación/acción en el marco del desarrollo sostenible, mas allá del solo contexto de \"laderas.\"Redes regionales relacionadas con la política de laderas Se identificaron diez redes que proveen información y servicios que pueden ser relevantes y útiles para los investigadores en laderas. Solo una se enfoca específicamente sobre las laderas y las políticas. El grupo se describe más a fondo en el capítulo 10. Esto grupo se organizó específicamente para apoyar a los investigadores en políticas relacionadas con el manejo de recursos naturales. Tiene su sede en nCA/Costa Rica con el programa de Desarrollo Sostenible.Cuatro redes se ven orientadas específicamente a los investigadores, con un enfoque sobre capacitación. La Red Socioeconómica de Maíz, un grupo independiente pero apoyado por el CIMMYT desde t 99 t, originalmente se enfocó sobre análisis económico de tecnologías productivas. Recientemente, el trabajo de sus miembros extendía al MRN relacionada con la tecnología. La Red de Capacitación en Análisis de Políticas Agrícolas (REDCAPA) fue formada con miembros universitarios que deseaban fortalecer su trabajo en esta área. Se ha enfatizado otros elementos de la política en el pasado, pero en 1996 organizaron cursos de entrenamiento sobre análisis de MRN. La Red de Economía Ambiental de América Latina (REALAC) es un nuevo programa regional que en 1997 comienza actividades de capacitación en la región de mesoamérica. La Red Mesoamericana para la Investigación Agrícola, con sede en México, busca fortalecer las relaciones de profesionales que conducen investigación en Mesoamérica sobre agroecología, tecnología y análisis de política rural. Dos redes apoyan al desarrollo directamente. El Programa de Líderes Empresariales para el Desarrollo ~ostenible (PLEDS) del INCAE es una compensación para motivar y apoyar líderes negociantes para promover desarrollo sostenible. El programa Forest, Trees and People (?) de las Naciones Unidas promueva la forestería social en la región, y el intercambio de experiencias e información.Existen cuatro redes que sirven principalmente para el intercambio de información. La Red de Desarrollo Sustentable de UNDP, con base en Honduras, provee una red electrónica para diseminar información a ONG y otros interesados en el desarrollo sostenible. El Acervo de Recursos de Instituciones de la Educación Superior (ARIES), basado en México, provee información sobre los investigadores y proyectos de investigación en las universidades mexicanas. El Servicio de Información Mesoamericano sobre Agricultura Sostenible (SIMAS), basado en Nicaragua, sirve de foro para diálogo e intercambio de información y experiencia sobre desarrollo sostenible. La Red de Gestión de los Recursos Naturales, es un boletín trimestral auspiciado por la Fundación Rockefeller que divulga información sobre diferentes experiencias en materia de manejo de recursos naturales se forjan en México y otros países, para fortalecer el trabajo de proyectos e instituciones con estos intereses.Programas académicos en la política para el manejo de recursos naturales Existen nueve instituciones de educación superior en la región que han incorporado en su quehacer investigación orientada a la política del manejo de recursos naturales. Todos ofrecen una Maestría que incluye temática de economía, de política y de recursos naturales.En Costa Rica hay tres programas: el Centro Internacional en Política Económica (CINPE) en la Universidad Nacional en Heredia; el Instituto Centroamericano de Adminstración de Empresas (INCAE); y el Centro Agrónomico Tropical de Investigación y Enseñanza (CATIE) en Costa Rica. En Honduras, hay el Centro de Análisis para Política Agrícola y Ambiental de la Escuela Agrícola Panamericana de Zamorano (CPA-EAP). En Nicaragua fue recién establecida la Escuela de Economía Agrícola (ESECA). En México hay cuatro programas: El Colegio de la Frontera Sur (ECOSUR); el Programa de Aprovechamiento Integral de Recursos Naturales de la Universidad Nacional (PAIR-UNAM); El Programa en Desarrollo Rural en el Colegio de Postgraduados de Chapingo (PROEDERU) y UA-Chapingo (Sede Chiapas).La mayoría de estos programas tienen relaciones colaborativas en el programa educativo y/o la investigacion sobre políticas con universidades en EEUU o Europa. Por ejemplo, el EAP se relaciona con la Universidad de Cornell; el CINPE con la Universidad de Wageningen. La EAP, la Universidad Nacional de Heredia, y la Universidad Nacional de Chapingo son socios en la REDCAPA.Recursos humanos en la investigación y enseñanza en el contexto de MRN Las cifras sobre los recursos humanos existentes en la región en la investigación y la enseñanza en el campo de agricultura y MRN muestran que el 51 % de estos son economistas, la mayoría con grados en economía agrícola, o con bastante experiencia en ese campo; 14% son ingenieros (mayormente en ingeniería forestal); y 10% dentro del área interdisciplinaria de \"desarrollo rural.\" El resto es distribuido de manera uniforme entre otras disciplinas. Un porcentaje significativo de estos profesionales (72%) tienen grados de postgrado, 41 % con doctorados, o su equivalente, y 31 % con maestrías; 17% con licenciaturas; y, 7% con ingeniería, siendo México el país con mayor número de individuos con postgrado.La mayoría de aquellos con postgrados en Centro América obtuvieron éstos en instituciones fuera de sus propios países, siendo universidades en los Estados Unidos las mas comúnmente mencionadas, seguidas por CATIE en Costa Rica, y el Colegio de Posgraduados en México. Para aquellos en México la situación es diferente, ya que la mayoría de ellos completaron sus estudios de postgrado en instituciones nacionales, especialmente aquellos con grados de maestría.Se presenta a continuación un marco de contexto general por país con información relevante a las situaciones que influyen el proceso de investigaci2n sobre políticas de agricultura y MRN.México tiene un número importante de instituciones y profesionales calificados, con postgrados, que podrían contribuir significativamente al ~:.iMm¡& ¡ lE ¿ mrilP ¡ §í~nj;ífjJ~UJillj;¡¡ 11 ,k-mm.mm WfJí& SU :;mi.~Mrm¡n'!i0.M@.l!f&Míd esarrollo de la investigación para políticas en MRN a escala nacional y regional (Mesoamérica). Importante investigación en el diseño y/o adopción de tecnología para la producción y manejo de recursos naturales existe en instituciones académicas de gran experiencia con investigadores calificados. Mucha de la investigación que se conduce en centros de investigación nacional y regional en apoyo a los programas y políticas del gobierno es dirigida por agrónomos y forestales cuya formación, en gran manera, ha sido influenciada por las agendas de investigación y extensión en aspectos tecnológicos definieron en el pasado las agendas del CIMMYT, la Fundación Kellogg y la Fundación Rockefeller. Estas instituciones si cuentan con un producción extensa de información, derivada de investigación de carácter básico y aplicada, y de experiencias de campo, que podría ser aprovechada para hacer investigación para políticas. Sin embargo, la contribución directa de estos profesionales e instituciones en la investigación para políticas en manejo sostenible de recursos naturales es relativamente poca.Parela a esta corriente, se desarrollan otras agendas cuya meta primordial es la búsqueda e implementación de procesos y prácticas que conlleven a la sostenabilidad en áreas frágiles; corriente que es muy particular a muchas organizaciones de base campesina, ONGs, y programas académicos y nuevas instituciones gubernamentales.Representativo del primer tipo de orientación es el Instituto Nacional de Investigación Forestal y Agropecuario (INIFAP) y sus sedes regionales. También en esta categoría se pueden incluir sectores que desarrollan investigación en tecnología para la producción y el manejo de recursos naturales en centros académicos importantes como son el Colegio de Postgraduados (C.P.) y la Universidad Autónoma de Chapingo (U.A. Chapingo).La agenda del desarrollo basado en el principio de sostenibilidad la conforman un grupo amplio de programas enmarcados en metodologías participativas y enfoques interdisciplinarios. Representantes de esta corriente, entre otros, son el Programa de Aprovechamiento Integral de Recursos Naturales (PAIR) en la Universidad Nacional Autónoma de México (UNAM); el Programa de Regiones Sustentables en la Secretaría del Medio Ambiente, Recursos Naturales y Pesca (SEMARNAP); el Programa de Sistemas de Producción Alternativos en El Colegio de la Frontera del Sur (ECOSUR); el Centro de Apoyo al Movimiento Popular Campesino (CAMPO). Una gran antidad de organizaciones de base en el Sur de México desarrollan programas conducentes a la sostenibilidad en el manejo de los recursos naturales. Muchos de ellos cuentan con importante apoyo de la Fundación Ford, la Fundación Rockefeller y la Fundación Inter-Américana (HA), especialmente en cuanto a la formulación de proyectos, operación y manejo de éstos y a canalizar una serie de actividades que para difundir experiencias se refiere.Los programas académicos de postgrado que apoyan la agenda de sostenibilidad incluyen el Programa de Maestría en Recursos Naturales y Desarrollo Rural en ECOSUR, las Maestrías en Desarrollo Rural Regional (Grupo Operativo de Chiapas) y la de Agroforestería en la U.A. Chapingo. Estos programas han incorporado aspectos de investigación para política en sus enfoques interdisciplinarios. En el contexto de la investigación aplicada estos ponen mas atención a aspectos de evaluación metodología y recomendaciones de política. De estas instituciones y programas, los Programas de Sistemas de Producción Alternativos y el Programa de Maestría en Recursos Naturales y Desarrollo Rural en el ECOSUR, así como la Maestría de Chapingo en Desarrollo Rural, se perfilan como los mas fuertes en cuanto a la incorporación de los aspectos teórico-prácticos en MRN y política en México. Estos tres desarrollan su investigación mayormente en \"laderas\" en los Altos de Chiapas.En Honduras. donde la mayoría de la actividad agrícola y forestal se desarrolla en laderas, existe un número significativo de programas y proyectos apoyando la investigación y otras actividades en manejo de recursos naturales. Un importante número de profesionales especializados en agricultura y materia forestal participan en estos programas, la mayoría formados en escuelas nacionales (EAP-Zamorano; el Centro Universitario Regional del Litoral Atlántico--CURLA; la Escuela Nacional de Ciencias Forestales--ESNACIFOR); varios con posgrado, en su mayoría maestría, en economía, economía agrícola, ciencias forestales, y recursos naturales, otorgados por centros nacionales e internacionales (Programa Centroamericano de Economía de la UNAH; CATIE; Yvarias universidades estadounidenses).La mayoría de los programas/proyectos visitados en Honduras han sido diseñados para conducir investigación aplicada para resolver problemas asociados al MRN, con énfasis mayormente en la diversificación del manejo de suelos, bosques yagua y el mejoramiento de los sistemas de producción y de conservación de éstos. El Departamento de Economía Agrícola de la EAP cuenta con un Centro de Análisis de Políticas Agrícolas y Ambientales (CPA) que coordina investigación y enseñanza con un énfasis en aspectos macroeconómicos y sectoriales para la investigación en política. CPA se perfila con un interés en el temas de MRN y ha sido co-gestor de actividades regionales en apoyo a la discusión de temas relevantes a la política del manejo de recursos naturales en Mesoamérica. Tiene proyecto piloto para promover el desarrollo sostenible en una zona de Honduras, por medio de acción-investigación. Colabora con el Proyecto IFPRIIIICA en investigaciones sobre políticas de MRN.En El Salvador, la investigación para políticas en general, y la investigación en MRN en particular, se conduce actualmente dentro de un marco político y económico muy propio, diferente a los otros países en la región. Varios factores definen esta particularidad: (a) un gobierno comprometido a fondo con las políticas de ajuste estructural; (b) la existencia de un acuerdo de paz firmado entre el Frente Farabundo Martí para la Liberación Nacional (FMLN) y el gobierno, creando así un nuevo foro para la discusión y formulación de políticas; (c) un significativo número de ONGs trabajando en pos de reactivar economías locales, y gestando mayor participación de la sociedad civil en el proceso de desarrollo después de 12 años de guerra; (d) un grupo muy activo de empresarios organizados utilizando argumentos en pro de desarrollo sostenible y proponiendo agendas para el desarrollo agrícola bajo esa bandera, especialmente en 10 que respecta al desarrollo del sector agro-exportador. Además de estos factores, un aspecto que merece atención especial es la alta densidad de población con la que cuenta este país, que influencia de manera importante el marco y contenido de políticas, la investigación para políticas, y el desarrollo de la investigación y la extensión, como quizá no lo hace otro factor.El marco y contenido de las políticas en El Salvador son tema de discusión a todos niveles en todo el país. Varias agendas de políticas son generadas y atendidas por los diferentes grupos políticos y económicos dentro de los sectores públicos, privados y ONGs bajo la bandera del desarrollo sostenible. Profesionales competentes conducen investigación bajo el techo de Consultoras, ONG y Fundaciones, probablemente mas que dentro del sector académico-universitario, muchos de ellos sin embargo fungen como profesores e investigadores en universidades públicas y privadas.Existen en El Salvador varios esfuerzos en pro del fortalecimiento de las instituciones y los métodos para analizar y formular políticas en apoyo a los cambios estructurales y a la eficiencia en el manejo de los recursos. El Programa Salvadoreño para el Medio Ambiente (PROMESA), una unidad técnica en apoyo a la política ambiental dentro de la Secretaría Ejecutiva del Medio Ambiente, encabeza una iniciativa en este respecto. En este sentido PROMESA ofrece asistencia técnica y capacitación a los sectores público y privado en El Salvador. La Fundación Nacional para el Desarrollo (FUNDE) lo hace en apoyo a una agenda de gestión del ambiente local en varias municipalidades rurales, permitiendo de esa manera ampliar la participación de organizaciones de base y ONGs en materia de política para el manejo de los recursos naturales a nivel local-comunal. La Fundación Salvadoreña para el Desarrollo Económico y Social (FUSADES), a través de la Comisión para el Desarrollo Sostenible (CODES) impulsan agendas de mayor participación del sector privado en la discusión de las estrategias nacionales para el desarrollo sostenible. CODES, analiza política económica, social y ambiental para seguir de cerca la relación entre ambiente (mayormente el uso y manejo de los recursos naturales) y la economía, y el proceso de desarrollo en general.El Programa Salvadoreño de Investigación para el Medio Ambiente (PRISMA), una organización de carácter privado que se orienta a la investigación y análisis de políticas en el contexto del desarrollo y del ambiente, examina aspectos institucionales y sociales del desarrollo y las relaciones que se establecen a los diferentes niveles político-geográficos, para poder influenciar el debate nacional e internacional de políticas. PRISMA tiene una agenda balanceada de investigación ambiental e investigación para políticas y cuenta con un excelente centro de documentación en apoyo a su labor y de otros.Organizaciones regionales como el Instituto Interamericano para la Cooperación Agrícola (IlCA) participan en el debate de desarrollo y medio ambiente y manejo de recursos naturales desde una perspectiva metodológica en apoyo al proceso de formulación de políticas y en fortalecimiento de los vínculos horizontales con los nuevos actores (organizaciones de base, ONGs) que surgen a patir de las nuevas condiciones políticas y económicas que a nivel local y nacional existen. Un esfuerzo coordinado para conducir investigación en laderas se desarrolla dentro un acuerdo de colaboración entre el programa nCA-HolandalLaderas C.A. y el Programa de Agricultura Sostenible en las Laderas de Centro América (PASOLAC). El nCA tiene la táreas de estimular el desarrollo de políticas macroinstitucionales, marcos institucionales, mecanismos de organización y métodos, capacitar recursos humanos y promover agricultura sostenible en laderas de El Salvador y Honduras. PASOLAC, por otro lado, apoya la validación y diseminación de \"tecnología sostenible\" para promover agricultura sostenible en las laderas por medio de diferentes programas e instituciones que apoya a nivel regional, nacional y local.Instituciones de tal naturaleza apoyan la investigación básica y aplicada hacia la tecnología para la conservación de ecosistemas frágiles, e inventarios de recursos naturales y biodiversidad para la creación y manejo de áreas protegidas. Este tipo de instituciones (mayormente ONGs) han desarrollado fuertes vínculos con el sector privado y con las esferas académicas y políticas de Guatemala. Varios de los miembros fundadores de éstas, quienes son, o han sido, miembros de instituciones académicas o han ocupado altos cargos en el gobierno, son actualmente miembros de las juntas directivas de varias ONGs de corte ambiental-conservacionista. Importantes instituciones de este tipo en Guatemala son la Fundación Mario Dary (FUNDARY); Fundación para el Ecodesarrollo y la Conservación (FUNDAECO); Fundación Interamericana de Investigaciones Tropicales (FlIT), y el Centro de Estudios Conservacionistas (CECON).Las pocas instituciones que conducen investigación en apoyo a la política socioeconómica incorporan la dimensión ambiental dentro de un contexto amplio, fundamentalmente en apoyo a la agenda propia, o nacional, de desarrollo sostenible y MRN. Estas, con apoyo de una serie de donantes (internacionales en su mayoría), examinan políticas sectoriales y/o macroeconómicas que influencian el uso de recursos naturales y la calidad de vida de diferentes sectores sociales. Un ejemplo de este tipo de institución es ASIES, organización que actualmente se encuentra analizando y/o desarrollando estrategias de investigación para monitorear problemáticas asociadas a las políticas con el objetivo de sentar bases para una discusión amplia, nacional, al respecto.Investigación para el manejo sostenible de recursos naturales se desarrolla mayormente por parte del sector privado (apoyando investigación para fortalecer la participación del sector privado en la agenda nacional del MRN y desarrollo sostenible) y/o por parte de las ONGs en apoyo a las alternativas locales de desarrollo. Varias ONGs comparten el interés del desarollo local dentro de una perspectiva integral. La investigación y la acción en general es por lo tanto dictada en gran parte por los objetivos de los proyectos, la metodología, y los grupos que intenta beneficiar con éstas. USAID apoya ambos tipos de iniciativas.Un proyecto que parte desde una perspectiva integral al problema de manejo de recursos naturales en cuencas es MICUENCA, programa de carácter interinstitucional con énfasis en ayudar a los agricultores de 30 cuencas a contrarrestar la rápida degradación de los recursos naturales, incrementar la producción agrícola y mejorar la interacción entre los productores y de las instituciones que apoyan este tipo de agenda.Cada uno de estos tipos de investigación es apoyado por centros de documentación especializados, tales como lo son CECON-CDC (Centro de Documentación para la Conservación) en la Universidad de San Carlos, que contiene una colección importante sobre biodiversidad y conservación; y Asociación de Investigación y Estudios Sociales (ASIES) con un excelente centro de documentación sobre políticas económica, social, ambiental a nivel nacional.Costa Rica es el país centroamericano donde se encontró un nivel mayor de investigación para política en MRN. Varias instituciones y programas en este país conducen investigación que se orienta hacia el uso y manejo de recursos naturales con miras a contribuir al debate y a la formulación de políticas dentro de ese contexto.La Universidad Nacional (UNA) y el Instituto Centroamericano de Administración de Empresas (INCAE) ofrecen programas de maestrías en la administración y políticas del manejo de recursos naturales y desarrollo sostenible para estudiantes costarricenses e internacionales (mayormente centroamericanos). Estos programas son: la Maestría en Política Económica para Centroamérica y el Caribe por el Centro Internacional en Política Económica (CINPE), en la UNA; y el programa de Maestría en Administración de los Recursos Naturales (MARN) en el INCAE.MARN es un programa de postgrado (maestría) de dos años, que nace de la necesidad de incorporar las esferas público-administrativas a la formulación e implementación de las estrategias para el desarrollo sostenible. Este programa ofrece a estudiantes nacionales y extranjeros la oportunidad de estudiar aspectos del desarrollo y ambiente desde una perspectiva institucional-administrativa, proporcionándole al estudiante oportunidades para aprender y utilizar técnicas para el análisis económico en el manejo de los recursos naturales. Uno de los mas reconocidos centros de investigación eco-geográfica en Centro América es el Centro Científico Tropical (CCT). La investigación que en su mayoría fue de carácter bio-geográfica durante los primeros años de su existencia, ha dado paso a la investigación para políticas en el MRN y el desarrollo sostenible. Además de ser una institución para la investigación, el CCT imparte cursos en manejo de áreas de vida silvestre. ecología tropical, economía de recursos naturales, que combina con conferencias abiertas al público e internados para investigadores. Para apoyar la investigación, el CCT cuenta con un magnífico centro de documentación y una mapoteca especializados en ecología de los bosques tropicales, clima. suelos y uso del suelo y las bases de datos respectivas.El Centro de Estudios para el Desarrollo Rural CDR es una institución regional (Centro América) de investigación y consultoría vinculada al Departamento de Economía y Desarrollo Agrícola de la Universidad Libre de Amsterdam (OLA) y al Centro para el Desarrollo de Servicios de Cooperación de Holanda (CDCS). El CDR se especializa en análisis macroeconómicos y sectoriales al nivel de micro-zonas, concentrándose en los sectores campesinos y de pequeños agricultores. La investigación dentro de este centro está organizada en tres áreas: Economía Campesina e Institucionalidad Rural; Crédito y Mercados Agrícolas; y, Desarrollo Sostenible. Desde su creación en 1989, el CDR ha integrado científicos sociales centroamericanos en sus proyectos, vinculándolos con investigadores de la ULA y otros centros académicos holandeses.La labor en investigación para política en Nicaragua atraviesa por una etapa muy difícil. Varios años de polarización política han limitado el diálogo efectivo entre los diferentes sectores que quieren influenciar el proceso (incluyendo investigadores en instituciones de educación superior) y aquellos que diseñan y formulan políticas.A pesar del hecho de que mucha de la investigación para políticas desarrolladas en los años ochenta no es aplicable en el contexto socio-político actual general, muchas de esas estrategias, metodologías y formas de organización se practican hoy día en situaciones muy particulares por interés de gobiernos locales, comunidades y/o organizaciones para el desarrollo no ligadas a estructuras de gobierno.Cambios en la arena política han obligado a varios miembros del gobierno sandinista que ocuparon altos cargos en el desarrollo del sector agrícola y de recursos naturales a fundar organizaciones no gubernamentales para continuar las agendas en desarrollo sostenible que se habían impulsado en los años ochenta (ej. Centro para la investigación, la promoción y el desarrollo rural y social--CIPRES). La proliferación de estas ONGs, sin embargo, inició desde el período sandinista como una estrategia para fortalecer el desarrollo rural en medio de una crisis financiera y política internacional. El fortalecimiento de las comunidades locales se inició con la descentralización de la política de desarrollo y el aumento de las organizaciones de base y las ONGs.Enfoques de desarrollo local son notorios en los programas/proyectos que apoyan el uso sostenible de los recursos naturales. Coordinadoras (redes) regionales y nacionales, tales como la Asociación de Organizaciones Campesinas para la Cooperación y el Desarrollo (ASOCODE), Concertación Centroamericana de Organismos de Desarrollo (CONCERTACION), Servicio de Información Mesoamericano sobre Agricultura Sostenible ( SIMAS) , canalizan fondos, apoyan en desarrollar diferentes formas de organización, impulsan nuevas tecnologías, transmiten información y metodología para fortalecer el MRN y las iniciativas de desarrollo sostenible a nivel local. Organizaciones como CIPRES, Servicio Holandés de Cooperación para el Desarrollo (SNV), Centro de Estudios y Acción para el Desarrollo (CESADE), PASOLAC, Centro Internacional de Agricultura Tropical (CIAT), Centro Agronómico Tropical de Investigación y Enseñanza (CATIE) están participando en definir formas alternativas de frente a la crisis económica del campo y al deterioro ambiental con programas enmarcados dentro del concepto de sostenibilidad.La influencia de las ONGs en el desarrollo local en Nicaragua es significativa. La mayoría de las ONGs son muy activas en proponer e implusar formas alternativas de manejo de recursos naturales en el campo, creando por medio de esa vía oportunidades para conducir investigación para política con el objetivo de influenciar el manejo de recursos a nivel local.En los círculos académicos, los esfuerzos para ganar influencia en materia de formulación de políticas se a~plían para aquellas organizaciones capaces de demostrar que la investigación para políticas se puede desarrollar desde un marco \"apolítico.\" INIES, un instituto de investigación económica y social acreditado por la Universidad Nacional Autónoma de Nicaragua (UNAN) que define su papel en la investigación como uno comprometido con los sectores mas pobres, ilustra este tipo de esfuerzo. Estos casos sin embargo son pocos y académicos de otras instituciones (ej. ESECA) expresan que es necesario que los investigadores se involucren a fondo en el desarrollo de \"metodologías de influencia\" que sean efectivas para situaciones donde muchos sectores marginados quieren ser oídos y quieren participar mas efectivamente en el proceso de formulación de políticas.De los seis programas/proyectos contactados en Nicaragua, solo uno define su tarea exclusivamente en \"laderas\" (PASOLAC); dos realizan investigación en el marco del MRN con componentes de política incluidos (Instituto Nicaragüense de Investigaciones Económicas y Sociales---INIES y ESECA); dos orientan su trabajo hacia la acción y la capacitación en desarrollo sostenible sin componentes de política incluidos (CIPRES y SNV); y uno que vincula a varias organizaciones a nivel regional interesadas en desarrollo sostenible y MRN, fundamentalmente para proveerlas con información necesaria para el desarrollo de sus respectivos proyectos (SIMAS).Las agendas de investigación para política son difíciles de diseñar e implementar. En México y Centro América la presencia de varios factores explica en gran medida el por qué la investigación para políticas en MRN es débil (1) la falta de tradición en investigación para políticas en esta tema; (2) la presión que actualmente existe sobre estos países para introducir cambios rápidos y profundos en las estructuras socioeconómicas y políticas (requiriendo una rápida formulación de políticas, con tiempo y recursos inadecuados para conducir investigación para políticas); (3) la dificultad para distinguir entre análisis de políticas e investigación para políticas. Sin embargo, el estado de ésta presenta características particulares según el contexto nacional en que está inmerso el debate de política y su formulación. Entre los factores importantes que afectan a las oportunidades de fortalecer a la investigación para políticas en México y Centro América estarían el grado de estabilidad política y el grado de institucionalidad del proceso político.Tales aspectos, de alguna manera, se reflejan en los principales resultados que a continuación se presentan sobre los programas, los temas de investigación, los metodos de investigación, la diseminación de información, la comunicación entre investigadores y formuladores de política, y la actividad de las redes.En México y Centro América existe un número significativo de personas conduciendo investigación y desarrollando programas de acción-capacitación para el manejo de recursos naturales. Instituciones gubernamentales, instituciones nogubernamentales, grupos de base campesina, agencias internacionales para el desarrollo, centros nacionales e internacionales de investigación y enseñanza, y algunas organizaciones privadas, están profundamente interesadas en la formulación de nuevas políticas en manejo de recursos naturales y en los procesos que definen y promueven éstas. Pocos son, sin embargo, los estudios conducidos con el propósito expreso de informar e influenciar la formulación de políticas en MRN. Recientes estudios, que utilizan el concepto de microcuenca como unidad espacial de análisis, han sido diseñados e implementados por programas con mandato regional con miras a influenciar la formulación de políticas y los dictámenes sobre el manejo de recursos naturales en lad~ras.La mayoría de los programas que se consideraron para este análisis enfocan su labor en MRN dentro del contexto del desarrollo sostenible y problemáticas asociadas. Varios de estos incorporan aspectos de políticas en la investigación; pocos, sin embargo, evaluan la metodología utilizada y el impacto de sus investigaciones y/o de otras actividades.De la muestra de programas/proyectos que se consideraron en este estudio solamente 11 programas (cinco en México y seis en Centro América) están conduciendo investigación en MRN que enfatizan aspectos de política. Sin embargo la totalidad (35) tienen componentes que contribuyen a la investigación para políticas en MRN. Solamente cuatro de los programas/proyectos revisados en este estudio, están conduciendo investigación definida exclusivamente en el concepto de \"laderas,\" siendo todos de carácter regional para Centro América, concentrándose en Honduras, El Sal vador y Nicaragua.En los programas regionales, existen al menos tres preguntas principales en materia de investigación para políticas que están siendo analizadas: (a) ¿Cuáles son los procesos que dominan la producción agrícola y el manejo de los recursos naturales en las laderas? (b) ¿Cuáles son los aspectos agrícolas, tecnológicos, económicos, culturales, políticos, institucionales, y metodológicos que influyen en el manejo de los recursos naturales en las laderas? (c) ¿Cómo afectan las políticas sectoriales y macroeconómicas el manejo de los recursos naturales en las laderas y el proceso de investigación para políticas y la formulación de políticas? Gran parte de los programas nacionales enfocan su actividad en la investigación aplicada con el propósito de dar respuestas y proponer soluciones a la problemática que surge del uso intensivo de recursos en áreas con serias limitaciones ecológicas y de las relaciones de producción y comercialización que allí se establecen. La investigación pone énfasis en cómo los individuos, los recursos, y las políticas interactúan para definir, o impactar, prácticas y estrategias locales, nacionales, o regionales de desarrollo. Las preguntas de investigación que formulan estos programas/proyectos giran mayormente alrededor del impacto de las políticas de ajuste estructural en el bienestar de la familias de clases media y pobre. En el contexto de estos programas las preguntas mas comúnmente formuladas son: (a) ¿Cómo influenciar el proceso actual de formulación de políticas para dar paso a enfoques alternativos, capaces de responder mas efectivamente a las necesidades reales de las familias en las áreas rurales y urbanas? (b) Cómo minimizar el impacto de las políticas de ajuste estructural sobre los diferentes sectores de la sociedad? (c) ¿Cómo incrementar la capacidad de las organizaciones populares, comunidades, e instituciones de apoyo para mejorar los términos del debate de políticas y promover estrategias de acción para influenciar cambios en ese debate y el proceso de formulación de las políticas? (d) ¿Cómo vincular la sociedad a la agenda de sostenibilidad? Una discusión mas detallada sobre los temas prioritarios de investigación en políticas para laderas se encuentra en este volumen en el capítulo de Castro y en las recomendaciones para actividades del Grupo Inter-Red.Los antecedentes académicos y la experiencia profesional en MRN en la región es amplia y diversa, aunque con clara predominancia de ingenieros agrónomos y forestales y economistas. México y Costa Rica respectivamente son los países con más investigadores y líderes de programas con postgrados. En otros países ambas capacidades han sido complementadas con la presencia de personal internacional altamente calificado que colabora en los diferentes programas.En todos los países, la investigación en MRN se conduce entre enfoques tradicionales, basados en experiencias profesionales de muchos años de práctica, y enfoques nuevos, utilizados por las nuevas generaciones de profesionales que mayormente son responsables de introducir nuevas perspectivas metodológicoanalíticas. El uso de Sistemas de Información Geográfica (SIG) y técnicas básicas de análisis espacial (mayormente representación geográfica de factores discretos) son las mas recientes introducciones al análisis del manejo de los recursos naturales en la región. El IFPRI, por ejemplo, ha incorporado\" mapeo comunal\" como una técnica de recolección de información y análisis dentro del enfoque participativo de investigación en sitios de ladera en Honduras.Para investigar el manejo de los recursos naturales y las implicaciones socioeconómicas y ecológicas de éstos, los investigadores y programas típicamente conducen diagnósticos del campo. Mas común son las encuestas a nivel de hogar, comunidad o parcela. Varios tipos de avalúo rural rápido se utilizan para definir la problemática y las hipótesis de estudio. Los métodos de análisis costo-beneficio se utilizan mucho en la evaluación de tecnologías.La incorporación de estudios de casos y recuentos de historia oral en el proceso de investigación para enriquecer las bases de información es mas reciente. El análisis a partir del uso de modelos econométricos, otros modelos económicos y especiales, o de análisis de sistemas es relativamente poco, que luego dificulta la capacidad de predecir los impactos futuros de alternativas de política. Métodos participativos, que involucran a los pobladores en la definición de la problemática y/o en la implementación y evaluación de los estudios, es mucho más común en los proyectos de desarrollo, pero también están incluidos en varios proyectos de investigación.La mayoria de los proyectos descritos aquí son diseñados para ser inter-o multi-disciplinarios, y esto se refleja en la mezcla de métodos utilizados. Sin embargo, muchas veces éstos, de hecho, resultan en estudios independientes y no integrados.Los talleres se utilizan comúnmente para incorporar otros individuos e instituciones a la labor de investigación y acción que estos programas/proyectos desarrollan. En la práctica de investigación participativa, estos talleres se desarrollan durante diferentes etapas de los proyectos e intentan servir como medios para diseminar y analizar información, o inclusive para conducir evaluaciones.El intercambio, la difusión y el acceso a la información Las estructuras formales para el intercambio de información, la discusión a fondo, y el desarrollo de proyectos conjuntos de investigación sobre laderas e investigación para política en el manejo de los recursos naturales son relativamente escasas en toda la región. Existe a través de toda la región una dificultad en el acceso expedito a la información necesaria para la investigación. En general existe una pobre organización para la circulación de documentos y datos y es relativamente poca la sistematización de éstos en las instituciones públicas.En general la mayoría de los programas se han organizado efectivamente para comunicar a otros sobre su quehacer en la investigación. y/o acción. Los programas visitados cuentan con activas agendas para promover charlas, participar en conferencias, programar días de campo, desarrollar talleres y elaborar material escrito y electrónico para apoyar el proceso de investigación y enseñanza u otra actividad que los defina. Sin embargo, muchos de los resultados de la investigacion--sobre todo de las instituciones nacionales--se quedan en forma de reportes y nunca llegan a publicar en jornales, científicos ni en forma adecuada para los que analizan y deciden sobre las politicas.La mayoría de los investigadores reconocen que los centros de investigación agrícola internacionales (CGIAR) producen materiales relevantes a sus investigaciones, sin embargo muchos indican tener poco acceso a éstos. La mayoría se encuentra familiarizado y de alguna manera enlazado con el CIMMYT, en especial con el Programa Regional de Maíz. Organizaciones regionales corno el nCA y el CATIE son también muy mencionadas. La labor desarrollada por el CATIE y los materiales (publicaciones) en el área agroforestal son bien conocidas por los investigadores. Otra institución con presencia en los investigadores es la FIA por su apoyo a proyectos de desarrollo local y el material que sobre organizaciones de base y desarrollo sostenible produce y divulga.El material producido por organizaciones conservacionistasambientalistas tiene buena distribución en organizaciones nacionales del mismo carácter, especialmente en el ámbito de las ONGs. Materiales del WWF, IVCN, WRI se mencionan a menudo en estos ámbitos.La comunicación de los investigadores con los formuladores de política En general existe en la región una débil comunicación entre los investigadores en MRN y aquellos que formulan políticas. La comunicación que se establece en este sentido es producto de contactos personales, basada en el hecho de que formuladores de políticas (ministros, diputados, etc.) estuvieron vinculados al sector académico-estudiantil durante varios años antes de ocupar la posición que les dió el acceso directo a la discusión y formulación de políticas. Nicaragua pareciese ser el país donde actualmente tal comunicación presenta más problemas, mientras que México y Costa Rica muestran los mayores niveles de interacción entre estos sujetos.La existencia de redes y su fortalecimiento Son relativamente pocas las redes que enlazan la investigación y la acción en materia del manejo de recursos naturales e investigación para política en Mesoamérica. Las redes existentes son en su mayoría diseñados para servir clientelas amplias y definidas alrededor de temas o intereses muy amplios como la agricultura campesina, desarrollo sustentable y/o desarrollo rural. Algunas simplemente operan como bases de datos electrónicos. Sin embargo, algunas redes llenan importantes vacíos en cuanto a intercambio y difusión de la información y capacitación en aspectos de política y socioeconomía en MRN como serían REDCAPA y la Red de Socioeconomía.La interacción entre profesionales en el campo del MRN se da primariamente por medio de vínculos personales, fuera de redes formales. El difícil acceso a la información y la necesidad de mayor capacitación provoca una actitud muy positiva de parte de los profesionales en el campo del MRN hacia la creación, expansión y fortalecimiento de redes a nivel regional y nacional. Sus necesidades específicas son bien representadas en las recomendaciones para el nuevo Grupo lnter-Red (cap.9).En México y Centro América existe una clara necesidad de fortalecer la investigación para políticas en manejo de recursos naturales. Los programas de investigación y educación que analizan el manejo de recursos naturales deben abocarse a fomentar aún mas la discusión pública y el intercambio de información y recursos para poder influenciar de una manera mas efectiva el proceso de formulación y análisis de políticas. Para esto es necesario examinar y reforzar los esfuerzos que en investigación, educación y enlace institucional y de profesionales se han iniciado con la participación de diferentes organizaciones y Es sumamente importante desarrollar un proceso evaluativo sobre la validez de los esquemas de investigación participativa que se han implementado para analizar el manejo de recursos naturales y el impacto de las políticas sobre éste en áreas frágiles. Especial atención en este sentido merecen aquellas iniciativas de investigación y desarrollo que se han impulsado alrededor del concepto de microcuenca desde una perspectiva integral e interdisciplinaria.Es necesario fortalecer la capacitación en metodologías de la investigación, tanto para colectar información, como para el análisis, uso y comunicación de ésta. Para esto se puede aprovechar la capacidad que en materia de manejo de recursos naturales e investigación para política existe en organismos nacionales y regionales como serían CATIE, CIAT,CINPE, CDR, ECOSUR, IFPRI, nCA, INCAE, PRISMA y REDCAPA, entre otros.Es necesario apoyar los esfuerzos iniciados en la sistematización de la información socioeconómica y biofísica existente en instituciones públicas y privadas y hacerla mas accesible a los usuarios. Se necesita fortalecer y actualizar las bases de datos existente y fomentar la creación de otras. Un paso muy importante en el fortalecimiento de la comunicación sería la actualización de los directorios de instituciones y programas existentes en este campo y desarrollar un directorio de \"quién es quién\" en ese campo en México y Centro América, que contenga especialmente los datos de aquellos que enfocan su quehacer en la investigación interdisciplinaria en el estudio de áreas ecológicamente frágiles actualmente incorporadas a la producción (ej. sitios de ladera). Ante tal tarea, se hace necesario que las instituciones con programas de investigación para políticas en MRN mejoren la capacidad de desarrollar vínculos de cooperación mas fuertes.Es de alta prioridad desarrollar actividades regionales y nacionales conducentes a la discusión, examen y propuestas de \"metodologías de influencia\" con miras a lograr una comunicación mas efectiva entre los investigadores y los formuladores de políticas. Esfuerzos para fomentar reuniones regionales de participación amplia con miras a analizar el estado de la investigación sobre *mwm\"nrtrM$N~U~~iWfi-RllW¡¡mWtmnw; '.~$f políticas en MRN, tal como el realizado en la EAP-Zamorano en Febrero de ]997, deben de continuar para fortalecer la cooperación interinstitucional regional y nacional en el intercambio de ideas, información, metodologías para reforzar y mejorar la labor futura y redes en este campo.Para concluir, es necesario enfatizar que el manejo de recursos naturales debe de estar siempre orientado a mantener las condiciones que permitan el uso continuo y sostenido de los recursos de los cuales dependen miles de familias campesinas que se asientan en sitios ecológicamente frágiles. Desde esta perspectiva, según Sewell (1989) no se puede interpretar la preservación ambiental como un abandono de la lucha contra la pobreza, sino como agendas que se complementan. Es precisamente sobre este principio que se deben de enmarcar las nuevas políticas de desarrollo, las cuales para cumplir con sus metas necesitan hacer énfasis en beneficios a largo plazo; implementar incentivos con miras a lograr sostenibildad continua; y, definirse dentro escenarios de riesgos moderados. Estas deben además ser flexibles, o sea que cuenten con amplio rango de adaptabilidad. y formuladas con un profundo conocimiento del entorno socio-culturaLy ecológico en que van a ser implementadas. El nuevo marco del manejo de los recursos y de la política de desarrollo en los trópicos debe conceptualizarse en nuevos esquemas de pensamiento que emanen de la ca-participación de aquellos que tradicionalmente formulan políticas y los que serían beneficiados, junto con aquellos que tienen amplio conocimiento de los entornos socioculturales; económicos; políticos; y ecológicos como los investigadores en politicas.Capítulo 10.El reto de esta iniciativa es el de crear una red de investigadores sobre políticas para el manejo de recursos naturales en Mesoamérica que sea sólida, de alta calidad analítica y que tenga un impacto significativo en los debates sobre políticas en la región. En la formulación de las estrategias para fortalecer a esta comunidad, dadas las condiciones actuales en la región, destacan cinco temas centrales: ¿Qué características de la investigación sobre políticas hacen mas probable que los resultados y recomendaciones que surgen de dichas investigaciones tendrán un efecto significativo en los debates sobre políticas en la región? ¿Qué temas de investigación son los mas críticos para la formulación de mejores políticas para desarrollo sostenible en las laderas, y cuáles son mas apropiadas para la investigación colaborativa entre instituciones? ¿Qué actividades y mecanismos son de prioridad para mejorar la calidad intelectual y analítica de las investigaciones sobre políticas en la región? ¿Cómo se puede mejorar el flujo de información requerida por los investigadores en sus estudios, y sus resultados? ¿Qué estrategias y mecanismos son más apropiados para fomentar y fortalecer la colaboración inter-institucional en la investigación sobre políticas?Estos temas fueron discutidos en una serie de talleres en la región. Los resultados de estas discusiones se resumen en este capítulo. Representan el producto de un proceso colaborativo de mas de un año entre IFPRI, I1CA, REDCAPA, y CIMMYT. En la primera sección, se presenta una propuesta para un nuevo mecanismo de colaboración--el Grupo de Análisis de Políticas para el \" El taller de planeación se llevó a cabo del 5 al 8 de febrero, 1997, en el Centro Kellogg de la Escuela Agrícola Panamericana (EAP) de Zamorano, Honduras. El taller fue organizado conjuntamente por ellFPRl, elllCA, la REDCAPA, el CIMMYT. y la EAP. El plan fue revisado luego con la Mesa de Socloeconomia, Recursos Naturales y Desarrollo Sostenible del PCCMCA, y el nuevo grupo fue forrnalmente establecido en abril de 1997. Los participantes del taller en Zamorano Que elaboraron esta propuesta y las recomendaciones específicas para implementarlo son listados en el anexo 1 de este volumen. El reporte fue f)rjltado por S.J. Scherr.Desarrollo Sostenible en Laderas--cuyo objetivo es fortalecer la investigación sobre políticas. Las siguientes secciones tratan de capturar puntos claves de las discusiones sobre elementos específicos de esta propuesta. Algunos de estos elementos incluyen: estrategias para aumentar el impacto de la investigación sobre políticas; temas prioritarios para la investigación colaborativa regional; prioridades para fortalecer la capacidad humana; prioridades para mejorar la información para análisis de políticas; y, finalmente, mecanismos para fortalecer la colaboración inter-institucional sobre estos temas.Los participantes del taller elaboraron una estrategia para fortalecer la capacidad de investigación sobre políticas para el manejo de recursos naturales en Mesoamérica. Especificaron los objetivos y características del Grupo, criterios para seleccionar sus actividades, y su marco institucional y financiero.El Grupo de Análisis de Políticas para el Desarrollo Sostenible en Laderas tendrá tres objetivos principales: l. Fortalecer a la investigación sobre políticas para desarrollo sostenible en laderas, en Mesoamérica; 2. Promover la diseminación de los resultados de la investigación de políticas; 3. Promover el debate público sobre las políticas que influyen a las regiones de laderas.El Grupo consistirá de individuos, proyectos, instituciones y entidades nacionales que comparten los intereses del Grupo con respecto a (i) la investigación sobre políticas; (ii) el manejo de recursos naturales; y (iii) la investigación sobre laderas. Inicialmente se incluirá a miembros interesados de REDCAPA, REALAC, CODES-IICA, y la Red de Socioeconomía, y de la Mesa de Socioeconomía, Recursos Naturales y Desarrollo Sostenible de la PCCMCA.Otros grupos e individuos con interés en las políticas, pero que no sean investigadores ni analistas, serán clientes y colaboradores del Grupo, no miembros.El Grupo utilizará foros ya existentes (por ejemplo, la reunión anual del PCCMCA) para reunirse, presentar resultados de la investigación sobre políticas, y planear sus actividades; a su vez, el foro deberá estar abierto a una participación amplia de investigadores. Además, tendrá un carácter para facilitar, y articular esfuerzos; ayudar a identificar y canalizar apoyo financiero para la investigación, y promover la diseminación de información y los eventos relacionados a los intereses de las redes miembros. El Grupo no substituirá a las redes ya existentes, sino que actuará para fortalecerlas.Las actividades llevadas a cabo por el Grupo deben tener las siguientes características:Poder mejorar la capacidad de investigadores para tener un impacto sobre los formuladores de políticas; Ser inclusivas (por ejemplo, incluir campesinos en el proceso de consulta sobre los tópicos y resultados de la investigación) Proveer efectos económicos externos positivos-\"externalidades\" ventajosas (p.ej., desarrollar metodologías); Tomar ventaja de las economías de escala (p.ej., la compilación de bases de datos accesibles a todos los miembros de las redes) Ser adecuadas a la realidad regional del proceso de toma de decisiones de políticas, con estrategias para influir las políticas; Apoyar a las redes en el mercadeo de productos de investigación; Ser efectivas en aspectos de costos (p.ej., por utilizar foros institucionales ya existentes); Promover la diseminación y publicación de los resultados de la investigación.Marco Institucional y Financiero El Grupo tendrá un Comité Directivo, que inicialmente incluirá representativos de cada red participante. Inicialmente, el Secretario Ejecutivo se localizará en CODES, una rama del nCA en Costa Rica. CODES fue seleccionado porque: (i) pertenece a una organización regional permanente; (ii) tiene representación en todos los países de la región; y (iii) puede cubrir los costos básicos de administración de sus fondos de base.El financiamiento inicial de la iniciativa provendrá de las redes fundadoras, que cubrirán sus propios costos (por ejemplo, costos de viaje para que los representantes puedan asistir a las reuniones). Los costos asociados con la movilización de gente, distribución de materiales y comunicaciones serán minimizadas, por el uso de una página Internet. Esta página será desarrollada y mantenida por CODES, que tiene el equipo y personal para este propósito. Para llevar a cabo nuevas actividades, se prepararán propuestas financieras conjuntas.El Grupo propone desarrollar actividades en las áreas siguientes: (i) Desarrollar investigación colaborativa sobre temas claves. Existe la necesidad de establecer un mecanismo para socializar y concertar acción entre actores. Este mecanismo permitirá desarrollar acciones cooperativas. Esto debe estimular la investigación en laderas de tal manera que incluya las perspectivas de los actores relevantes en el diseño de la investigación (como campesinos, alcaldes, ONGs, asociaciones de campesinos, formuladores de políticas). La investigación debe tener una naturaleza colaborativa, que sea llevada a cabo en dos países o mas, e incluir miembros de varias redes. Para ayudar en la coordinación y comparación de resultados de proyectos de investigación efectuados por miembros de las diferentes redes, se puede desarrollar un marco conceptual estandarizado.Fortalecer la capacitación para investigación sobre políticas. Un curso permanente sobre análisis de políticas de recursos naturales y métodos de investigación se puede ofrecer anualmente, con enfoque en problemas y ejemplos de laderas. Se basará en las ventajas comparativas de las instituciones que ya se encuentran participando en las redes, de tal manera que los materiales se pueden conseguir del IFPRI, los profesores de REDCAPA, con estudios de caso por miembros de la Red de Socioeconomía, el apoyo logístico de REALAC, etc. Un curso corto se puede desarrollar sobre cómo mejorar la diseminación de resultados de la investigación sobre políticas, para que sean utilizadas por los formuladores de políticas. Otro curso corto se puede organizar para fortalecer la capacidad de los investigadores para preparar ensayos y artículos profesionales para publicación. El Grupo ayudará a incorporar investigadores jóvenes y a las mujeres en la investigación.Desarrollar la caDacidad de comunicaClOn. El Grupo promoverá la diseminación de materiales informativos por medio de varios mecanismos. Para mejor vincular los miembros de las redes, se propone: compilar y diseminar ensayos de interés a investigadores de las redes; publicar un directorio de afiliados; elaborar una Página de Internet; entrelazar a los miembros de las redes por medio del World Wide Web: desarrollar una \"pizarra\" electrónica, con información de fecha sobre las actividades de las redes; crear un grupo electrónico de discusión (por el Internet); y mantener el directorio de proyectos y programas activos en la investigación de políticas en laderas en la región.Para promover la comunicación entre los investigadores y sus varios clientes y audiencias, se propone:• presentar los resultados de la investigación en las conferencias del PCCMCA; contribuir a la escritura y diseminación de revistas y boletines de información; • organizar conferencias sobre políticas regionales; y promover la interacción entre investigadores y campesinos; Apoyar la publicación de los resultados de la investigación. El Grupo apoyará actividades editoriales, e identificará canales potenciales para las publicaciones. Se pueden publicar resúmenes de las tesis de estudiantes, y el desarrollo de publicaciones se puede promover por programas de subvenciones competitivas. La publicación de la investigación completada sería apoyada y diseminada por las redes. • Proporcionar apoyo institucional a las redes ya existentes. El Grupo puede fortalecer a las redes existentes de investigadores, y estimular a redes potenciales, con la provisión de servicios. El Grupo puede identificar recursos para elaborar proyectos, planificar actividades, e identificar fuentes de financiamiento. Facilitará el proceso de investigación por medio de la provisión de bases de datos ya disponibles.Los factores que se consideraron en llegar a estas prioridades se discuten en las secciones siguientes.Los cambios políticos y económicos experimentados en la región han cambiado también el proceso de la formulación de políticas relacionadas con las laderas. Esa nueva realidad tiene implicaciones para el diseño de la investigación sobre políticas, sobre todo si espera influenciar el debate nacional y regional. Hay que considerar alternativos modelos de influencia sobre las políticas, y los limitantes para tal influencia, en definir las metas y estrategias del Grupo.Hay por lo menos tres maneras de transferir y utilizar los resultados de las investigaciones de políticas. La primera es la vía \"indirecta\", por medio de publicaciones en las revistas profesionales y otras alternativas. Se espera que estas publicaciones influyan a varios actores que usen las publicaciones en los debates de políticas, pero el investigador mismo no toma responsabilidad por el \"mercadeo\" de su producto.El segundo modelo es la vía \"elitoria\" en que se establece una relación entre el investigador y los individuos o unidades expertas dentro del gobierno, que asesoran la política para los Ministerios. Este modelo fue aplicado con mucho éxito en algunos países asiáticos con gobiernos centrales muy fuertes, como Indonesia y Tailandia. Hay cierta duda sobre la aplicabilidad de este modelo en Centro América ahora, desde que la experiencia dentro del gobierno se ha reducido tanto con el ajuste estructural, los ministerios del estado se han debilitado, y el desarrollo democrático ha integrado diversos grupos notradicionales en el proceso de formulación de políticas. Depende, en parte, en las temas bajo estudio.El tercer modelo es la vía \"directa\". Asume que con un sistema político mas abierto y mas democrático, la formulación de política se hace a varios niveles. La sociedad misma presiona por el cambio sobre políticas (por medio de la sociedad civil, actores de base, etc.), y requiere información para cumplir esa función. El investigador trabaja directamente con \"grupos de usuarios\" que se interesan en la formulación de las políticas, no solamente con analistas del gobierno o la élite. Este modelo implica una estrategia y metodologías muy diferentes por parte del investigador, si quiere tener impacto.Presenta la cuestión sobre quién realmente representa los intereses de los campesinos en la sociedad civil. Es problemático cómo involucrar mas al campesinado de laderas en los debates sobre políticas; se enfrenta el problema de no organización. Aun cuando las organizaciones de campesinos se incluyen en el diálogo sobre políticas, una mayoría de los campesinos no son representados. Eso depende mucho del país; en El Salvador son mucho mejor representados que en Honduras, por ejemplo.Sin tomar en cuenta el modelo de influencia seleccionado, hay muchas limitantes con respecto a la utilización efectiva de los resultados de investigación. Hay limitantes muy prosaicas, por ejemplo, la falta de financiamiento y la rotación excesiva de personal en las universidades, los centros de investigación, y las unidades de análisis en el gobierno.Mas importante es la falta de investigación de coyuntura, estudios apoyados en una perspectiva objetiva y científica que ayuden a planificar políticas agrícolas a largo plazo. Debido a las limitaciones económicas, las investigaciones dentro de la región se pueden beneficiar de asociaciones estratégicas con centros en países industrializados y organizaciones internacionales. Esto se debe en parte a que la mayoría de las investigaciones son sobre tópicos \"de moda\" o de intereses especiales. La demanda efectiva viene mas de los bancos internacionales de desarrollo, los donantes, y las empresas privadas; esto afecta el tipo de tema que se trata. Típicamente tienen horizontes de corto plazo, que limita la posibilidad de llevar a cabo las investigaciones que por su naturaleza requieren la recolección y análisis de datos a través del tiempo. Esto afecta críticamente a las investigaciones relacionadas con la sostenibilidad.Hay también una falta de estrategias entre los investigadores para influir la política. Para mejorar la efectividad de comunicación sobre políticas, hay que reconocer que cada audiencia tiene sus propios requisitos, en cuanto al tratamiento 313.del problema y la forma y lenguaje en que se comuniquen los resultados. Es importante traducir los resultados complejos en \"mensajes\" sencillos de entender y comunicar. El proceso de \"traducir\" y diseminar los resultados de investigación para una audiencia de actores sobre política requiere que se dediquen los recursos escasos del tiempo del investigador, publicaciones especiales, etc. para este fin.Es importante mantener contacto permanente y regular con personas claves en los debates, y seguir un proceso participativo. Es recomendable presentar resultados intermedios, para mantener el interés de los formuladores de políticas en las investigaciones, ofrecerles una oportunidad para proporcionar sus reacciones durante el proceso de investigación, y asegurar que ellos van a tener confianza en los resultados finales.Este tipo de interacción ofrece también una oportunidad de \"educar\" a los formuladores de políticas, en la naturaleza y diagnóstico de los problemas y el marco conceptual del análisis. Es crítico que ellos entiendan los modelos que usamos los investigadores.Es lógico que no toda la investigación tiene que ser implementada en forma participativa, en el sentido de seguir las prioridades de los principales actores. Otro papel valioso del investigador es ser líder en identificar los problemas hacia el futuro, y tener listos algunos resultados de investigación para el tiempo en que estos problemas sean reconocidos y necesarios.Hay una amplia gama de tópicos de investigación en política que son relevantes para la problemática de desarrollo sostenible en las laderas de Mesoamérica. En el taller de Zamorano, hubo un primer intento de identificar algunas prioridades de investigación. Por medio de una lluvia de ideas, se identificó una lista de 38 temas de investigación para laderas, qile se consideró importante (véase Cuadro 1). Estos pertenecen a ocho categorías generales: análisis de instrumentos específicos de políticas; la institucionalidad requerida para desarrollo sostenible en laderas; la interacción de las laderas con la economía general; políticas de tecnología apropiada para condiciones de ladera; mejores datos básicos de ladera; valoración y contabilidad de la producción y los recursos naturales en ladera; aspectos socioeconómicos del desarrollo en laderas; y metodologías de análisis de políticas.Para seleccionar temas y tópicos específicos para la investigación colaborativa inter-institucional, se definieron ocho criterios (por 10 menos al inicio de la colaboración):1. Los tópicos deben ser de interés y urgencia para la población, reflejado a menos en parte por consultas con la gente local. 2. Los estudios deben ofrecer resultados al menor plazo posible. 3. Los estudios deben contemplar un análisis integrado de los aspectos económicos, sociales y ecológicos. 4. Debe existir una capacidad regional para implementarlos con éxito. 5. La implementación de los estudios debe desarrollar la institucionalidad y capacidad para el desarrollo de las laderas. 6. Los estudios deben contribuir al desarrollo de la información básica y primaria acerca de las laderas. 7. Ha de haber disponibilidad de los datos para su análisis. 8. Los tópicos deben ofrecer posibilidades de ofrecer soluciones sostenibles, en términos económicos, en el largo plazo.Los estudios no siempre tienen que tratar estrictamente de políticas en si. Dada la información incompleta sobre aspectos fundamentales, como entender los factores que inciden en decisiones sobre uso de la tierra, estos tópicos también contribuyen significativamente al potencial para formular políticas vinculadas con la realidad.Al aplicar estos criterios a la lista inicial, se llegó a una priorización de 10 tópicos de investigación:Conocer y evaluar metodologías para el análisis practico del impacto de políticas (locales, municipales, regionales, nacionales). Desarrollar una categorización de laderas con importancia para la formulación de políticas.Actualizar información de indicadores socioeconómicos y ambientales, y desarrollar una base de datos a nivel local, nacional y regional. Identificar los instrumentos de política mas efectivos para compensar a los productores de laderas que conservan y manejan bien los recursos naturales. Evaluar el impacto socioeconómico y agro ecológico de las políticas del pasado y de las actuales. Investigar el tipo de institucionalidad requerido, incluyendo üNGs e instituciones del gobierno. Identificar los instrumentos de política mas efectivo para revertir las extemalidades negativas. Evaluar el efecto de la apertura comercial en la producción en laderas. Evaluar la dinámica de cambios en el uso de la tierra en las laderas. Identificar y valorar social, económica y ecológicamente el tipo de tecnologías requerido y la forma en que se debe transferir.Hubo un debate sobre si se debe analizar solamente las políticas para los campesinos y pequeños propietarios, y no de los ricos. Se arguyó que al incorporar los tres puntos del triángulo critico, es necesario tratar también de los productores ricos en laderas, cuyo manejo de recursos puede tener gran impacto.Se resaltó en la discusión la importancia de consultar ampliamente antes de fijarse en un tópico específico de investigación. La lista elaborada arriba ofrece un punto de partida para este tipo de discusión. Tal consulta no se mide simplemente por la implementación de eventos; la comunicación efectiva depende de la actitud y perspectiva del investigador y si el investigador tiende a cuestionar sus propias prioridades y perspectivas. Se discuten diferentes temas a diferentes niveles. El proceso de consulta no consiste en buscar aprobación, sino en buscar el diálogo. El conocimiento profesional del investigador a veces va a identificar tópicos o factores críticos que no siempre son reconocidos por los campesinos u otros actores (por ejemplo, por entender mejor la operación del sistema económico nacional). Pero al mismo tiempo, estos otros actores pueden tener un concepto de las condiciones y procesos locales, mucho mas pegado a la realidad que el investigador.Se notó que es necesario alocar recursos financieros a tales actividades de consulta. El Grupo puede interesarse en organizar algunas consultas entre investigadores y varios intereses rurales (como campesinos, alcaldes).En las discusiones del taller, se hizo hincapié sobre la necesidad de fortalecer la capacidad humana para la investigación sobre políticas. Varios participantes con décadas de experiencia en el campo argumentaron que la calidad, en general, de la investigación ahora es mas baja que hace dos décadas. La calidad de entrenamiento universitario ha bajado; hay menos oportunidad para investigadores jóvenes de participar en la investigación; los investir-adores con mayor experiencia ahora no se encuentran en las universidades o en otras posiciones donde se puede servir como mentor de los jóvenes. Las asociaciones profesionales de científicos sociales en la región son débiles. Aunque las asociaciones de economistas son las mas fuertes, se enfocan más en la economía general (como ALACEA y los Colegios de Economía en los diferentes países.) Además, el tema de manejo de recursos naturales es relativamente joven en la región, y muchos expertos en investigación de política agrícola, incluso los profesores en las universidades, no tienen capacitación ni experiencia en este campo.Temas Prioritarios de Capacitación Se identificaron cinco áreas claves para concentrar la capacitación técnica de investigación:l. Métodos de investigación enfocados en problemas de recursos naturales (para diagnóstico, análisis, evaluación, valuación, planificación, predicción, monitoreo, y modelos); 2. El uso de métodos cualitativos, tanto como cuantitativos; 3. Métodos de análisis de políticas; 4. Métodos para el levantamiento de datos primarios;.317 j g TI M*ft@~_mn_ TIWUQL i ] tUt g ffi g il1Mh¡frU@@12Hl H mi.,. . .5. Manuales prácticos, en español, con información y conceptos recientes.Se enfatiza la importancia de utilizar el concepto del Triángulo Critico en la investigación, es decir, evaluar la interrelaciones entre sociedad, economía y ambiente. Esto requiere que se capacite más y en la economía de los recursos naturales, en la sociología de los recursos naturales, y en la ecología. Es importante reconocer que la metodología para la investigación del desarrollo sostenible es en formación en el resto del mundo, no solamente en Mesoamérica.Hay gran potencial de desarrollar la capacidad, no solamente por la transferencia de conocimientos de otras partes, pero como parte integral del proceso de desarrollar instrumentos de la investigación que se lleva a cabo.Los investigadores necesitan también capacitación en aspectos organizativos, especialmente en: l.Métodos para la diseminación de investigación. 2.Gestión de proyectos de investigación en MRN; 3.La formulación de propuestas de investigación y conseguir fondos según requerimientos institucionales. 4.Como desarrollar o crear financiamiento local para desarrollar capacitación Mecanismos de Capacitación Varios mecanismos se pueden utilizar para la capacitación de investigadores profesionales, que ya están trabajando. Estos incluyen cursos regulares y permanentes (institucionalizados), seminarios regionales y locales, creación de un sistema de pasantías, y foros para diseminar información sobre las metodologías. La colaboración de redes tiene promesa especial para la capacitación.Otros mecanismos son apropiados para fortalecer la capacitación en las universidades. Se puede fomentar la cooperación inter-universitaria, y dentro de la región y extra-regional. Por ejemplo, puede haber intercambios de docentes entre universidades en consorcios de universidades. Se puede editar catálogos sobre todos los programas y proyectos existentes.También, se necesitan crear y fortalecer los programas de M.Sc. en las universidades regionales. Entre actividades pertinentes destacan la evaluación de curriculum y el desarrollo de un programa de formación de docentes. Se puede utilizar enseñanza con módulos, y teoréticos y aplicados. Hay mucha potencial para desarrollar estudios de tesis relacionados con tópicos de interés para la región u otros países en desarrollo. Mientras tanto, es urgente desarrollar un banco de becas para la reincorporación de doctorados a su país.El desarrollo conjunto de cursos de capacitación puede servir otros retos también. Se puede guiar por los intereses compartidos de profesores y estudiantes. Los cursos por encuentros se pueden utilizar como parte de la implementación colaborativa de investigaciones particulares (por ejemplo, los cursos de REALAC). Además, los cursos pueden resultar en la creación de materiales que pueden ser utilizados en los cursos universitarios. Los cursos se pueden utilizar para recaudar fondos para la otras actividades de las redes.Las actividades del Grupo deben fortalecer la capacidad de miembros de las otras redes que funcionan en la región. Puede jugar el papel de catalizar una coordinación estrecha entre las redes y los programas de educación formal, colaboración en la investigación entre diferentes centros, y diseminación de información entre las redes. Ejemplos incluyen la compilación de catálogos sobre programas ofrecidos por los diferentes instituciones, un boletín regional sobre programas, y fomento del desarrollo del Internet.La encuesta hecha por IFPRI, de investigadores en políticas en Mesoamérica, identificó que los limitantes en el flujo de información eran de los factores mas restrictivos de la calidad y cantidad de investigación sobre políticas de manejo de recursos naturales en la región (Coles, este volumen). Una meta clave del Grupo es ayudar a los miembros de las redes a superar esta limitante. Rll1 . . .llllli i!1l? iW mt\"Ul[mflt \"taUWtiMW-.X rrr jjfllliD' nm.~f9lt.¡¡g;Límitantes en el Flujo de Información Hayal menos cuatro tipos de limitantes en el flujo de información que se necesita para una alta calidad de investigación de políticas relacionadas con desarrollo sostenible de laderas. El primer limitante es financiero. Los presupuestos de investigación típicamente no incluyen fondos suficiente para publicación y difusión, y a veces, tampoco se puede adquirir bibliografía.El segundo limitante es la tecnología de información. Frecuentemente, hay problemas de incompatibilidad y falta de uniformidad del software entre diferentes instituciones de investigación (p.ej. gobierno versus otras). El acceso a Internet, correo electrónico y otros medios es muy variable.El tercer limitante es la falta de acceso a datos secundarios sobre laderas. Es frecuentemente difícil aprender de la existencia de bases de datos, en particular los que fueron recolectados por una consultoría, o bajo un proyecto especial del gobierno. El acceso a muchos datos archivados por el gobierno es restringido, o el proceso de acceso es largo, difícil o caro. Por una preocupación de confidencialidad, hay restricciones sobre los bases de datos de censos nacionales para algunos niveles de agregación. Una vez accesibles, los datos frecuentemente vienen con inadecuada documentación o definición de variables, o con problemas de archivo. Lo mismo ocurre con las nuevos bases de datos de los sistemas de información geográfica (SIG). Sin la información geográfica, que ayudaría a identificar las áreas de laderas, es usualmente difícil interpretar las tendencias que muestran los datos agregados.El cuarto limitante es la debilidad de los centros de información y diseminación. La mayoría de las instituciones carecen de unidades de proyección para divulgar información. Faltan medios y capacitación humana apropiados para realizar la difusión. Las bibliotecas no tienen información actualizada a nivel regional, y hay una falta general de conocimiento de las bases de datos de documentos que tienen diferentes instituciones. Hace falta mayor apertura por parte de los centros de documentación existentes. Los sistemas de envío de información y documentos en la región presentan obstáculos, por su ineficiencia e inseguridad. Los usuarios de la información y resultados de las investigaciones desconocen los recursos que si existen.Una baja en el deseo de compartir información también ha complicado el acceso. Algunos departamentos gubernamentales son muy recelosos, y no quieren compartir la información. Un sentimiento creciente de \"privatización de conocimiento\" se está generando en algunas organizaciones e investigadores. Esto se intensifica ya que una proporción creciente de la investigación se genera vía consultorías privadas, en vez de universidades, unidades de análisis de políticas, o centros de investigación público o semi público.En parte esto se debe a la disminución de fondos para la investigación, que fomenta la competencia entre centros e investigadores y genera el \"proteccionismo\" de información. La competencia entre investigadores impide el flujo de información. Este contrasta con la situación en los países mas desarrollados, donde hay abundancia de datos generales y lo que esta protegido celosamente son los resultados de análisis. Dada la escasez de datos del campo y las dificultades de generarlos, hay cierta racionalidad detrás de este punto de vista, particularmente ya que es común que los investigadores de fuera de la región usen datos sin concederle el mérito adecuado a quien lo merece.Varios mecanismos pudieran mejorar el flujo de información esencial a los investigadores. Se pueden mejorar los incentivos para la provisión de información, capacitando a los que realizan la difusión, dando mayor crédito público a los que proveen o comparten información. El Grupo puede incentivar tal comportamiento por medio de un premio para la investigación sobre laderas, que logre mayor incidencia en políticas o prácticas o que mejoren más las laderas. Se puede impulsar el derecho a la información por la defensa del interés publico, ante el sector privado.Hay algunos pasos concretos que se puede tomar a corto plazo. Por ejemplo, se puede identificar una localidad central para enviar o distribuir la información en la región, como una universidad o instituto (un \"clearinghouse\"). nCA juega ese papel ahora para algunos tipos de información (como bibliografía); el CIAT esta compilando y haciendo accesible la literatura gris sobre las laderas, de toda América Latina, con apoyo de muchas instituciones en la región. El Centro de Políticas Agrícolas de Zamorano se esta fortaleciendo para ser depositorio de estudios sobre políticas en la región. No se habla de una centralización de la información, sino buscar un centro para difundirla con mayor efectividad.Se puede crear un boletín regional para la distribución de referencias bibliográficas por el Grupo mismo y tal vez los contenidos de jornales profesionales, y mantener un directorio actualizado por líneas de trabajo. Hay que promover el uso efectivo de recursos como la \"Red de Desarrollo Sostenible\" y de los sistemas nacionales de información. y ayudar a informar a miembros y apoyarlos para tener acceso a otra información y bases de datos bibliográficos.Hay muchas actividades que podrían mejorar el acceso a datos. Primero, es hacer inventarios de bases de datos de investigaciones en políticas, uniformizar su presentación y hacerlas fáciles de usar. El Grupo podría preparar un informe que lista los requisitos y papeleo necesarios para solicitar bases de datos claves, y elaborar guías para usuarios de las bases de datos. En un boletín se puede informar a otros investigadores sobre la disponibilidad de bases de datos. El Grupo puede facilitar la búsqueda de fondos para actividades de manejo de datos. por ejemplo. el acceso al Internet 74 • Puede asistir para que se mejoren la recopilación y difusión de datos en las investigaciones llevadas a cabo por miembros de las redes. Puede haber actividades para concientizar a los directores de instituciones sobre la importancia de las bases de datos.Una meta a largo plazo sería crear y desarrollar una base de datos regionales en las secretarías de medio ambiente en cada país. Se notó que el proyecto CIAT/CIMMYT Laderas en Centro América, basado en Tegucigalpa. está compilando una base de datos, organizado en un SIG. Están disponibles datos biofísicos para toda la región, y datos socioeconómicos para algunos países (especialmente Honduras).74 Existen sistemas pare tener acceso allntemet que funcionan en computadoras muy básicas solamente con DOS (Lynx y un programa Checoslovaco que permite usar el WWW con gráficos en DOS con HTML 3.0, el formato más avanzado de las páginas de la red). Además, se pueden establecer sistemas Que brinden acceso a texto solamente, en vez de presentar formatos incompletos complejos que no pueden ser utilizados por la mayoría de investigadores. La formación de listas de correo electrónico, en donde la inforrnación se envía en partes, y nunca codificada, puede contribuir a la colaboración.Detalles sobre los proyectos, programas y redes activos o relevantes a la investigación de políticas en laderas en Mesoamérica, se encuentran en el directorio producido por IFPRI (Coles, 1997). El directorio es un insumo meritorio y se recomienda enviar el documento a todos los miembros de las redes de investigadores, y a los incluidos en el directorio. El \"home page\" del Grupo que se va a establecer en el Internet, puede incluir el directorio, y además, la información sobre las investigaciones. Se puede preparar disquetes para usuarios que no tienen acceso a Internet. Finalmente, se sugiere organizar para que un contraparte regional pueda ampliar, completar y mantener el directorio.En el pasado han habido varios esfuerzos de colaboración interinstitucional en la investigación de políticas en la región (véase, p.ej., la ponencia de Kaimowitz y Murrar en este volumen). Entre los problemas que han surgido con estos esfuerzos está la falta de coordinar objetivos de investigación entre proyectos y falta de métodos para lograr una agenda de compromisos realistas. Al lanzar una nueva iniciativa de colaboración inter-institucional regional, hay que pensar claramente en como crear las condiciones propicias para que funciona tal colaboración con éxito.Varios factores explican la dificultad de organizar colaboración interinstitucional en la investigación sobre políticas. El primer factor es la escasez del recurso humano. En general, hay poca investigación relacionada con recursos naturales. Además, los investigadores en la región muchas veces no son de tiempo completo; tienen otros compromisos. Los sueldos de los investigadores en el sector publico/semi-publico son tan bajos. con relación a las oportunidades en el sector privado, que se ha bajado el suministro de profesionales. Los profesionales en América Central comienzan a estudiar cuando ya tienen familia; es esencial motivar la juventud para estudiar y lograr un mejor punto antes de llegar a la madurez.Con mayor frecuencia, las investigaciones no se implementan para resolver problemas. Por un lado hay un grupo que, con mayor frecuencia, hace investigaciones simplemente para ganar dinero o legitimarse. Del otro lado hay los investigadores que buscan sólo excelencia académica; los trabajos sirven .principalmente para mejorar el curriculum de los investigadores. Frecuentemente, la colaboración está vinculada con los donantes.Hay impedimentos políticos a la colaboración. Existe diversidad de intereses. A veces los investigadores o las instituciones son competidores entre sí. Por eso puede ser difícil tener acceso a las bases de datos de las otras instituciones. Por último, los prejuicios pueden impedir la colaboración. Por ejemplo, muchos profesionales muy buenos en sus campos técnicos tienen dificultades para relacionarse con productores. La investigación de políticas en laderas está dominada por economistas y agrónomos, aunque es esencial integrar las perspectivas, teorías y métodos de otras disciplinas también.Para promover la colaboración inter-institucional, el primer aspecto es fortalecer la confianza mutua entre socios. Es necesario reconocer de forma justa los aportes de todos. Los equilibrios en las relaciones dependen mucho de las relaciones personales, como voluntad de devolver y compartir. Hay que discutir los planes cuidadosamente, para asegurar que se comparten compromisos, objetivos, voluntades políticas, etc. La definición de temas de investigación es más fácil cuando los actores tienen una visión y una estrategia clara. Hay oportunidades de crear equipos multi-disciplinarios (economía, sociales, agronómicos) entre instituciones, y establecer la comunicación de bases (estudiantes).La asociación y coordinación previa con los actores de políticas es clave para que los trabajos tengan impacto. Hacen falta reuniones inter-institucionales y talleres entre investigadores y actores de política, donde los actores también preparen propuestas y planteamientos. La interlocución no tiene que ser en función de una investigación específica.Hay varias oportunidades para colaboración inter-institucional, que no requieren de armar proyectos complejos. Compartir datos puede ser mas ------------------~---interesante y útil que armar muchos talleres. Las relaciones formales permiten el intercambio entre académicos e investigadores por períodos. La colaboración puede. facilitar el acceso a los estudios hechos por gente de afuera de la región, que no están disponibles localmente.Se recomienda que el Grupo abra espacios de debate con diversos actores sociales sobre la problemática de laderas. Se puede aprovechar de fortalecer el rol de REDCAPA, no solo en capacitación de políticas, sino también por intercambios profesionales, y discusión de políticas. Hay que fortalecer también a las otras redes.Entre las actividades mas importantes están: crear bases de datos de profesionales, instituciones y proyectos, para evitar la duplicación y promover la coordinación; diseñar proyectos con equipos inter-disciplinarios; elaborar una agenda de proyectos de investigación existentes, y promover la publicación y acceso a datos. Se recomienda involucrar estudiantes de grado en los programas, y promover el establecimiento de becas para pos-grado, para fortalecer la próxima generación de investigadores.Debe haber un enfoque sobre la publicación, dentro de y fuera de la región. Se puede crear oportunidades de preparar artículos para las revistas profesionales, y ofrecer entrenamiento en esto. El Grupo puede levantar la posición y estatus de los investigadores, y su visibilidad, y así motivarlos a seguir como investigadores comprometidos. Se pueden diseñar otros incentivos, financieros o no-financieros.A pesar de los limitantes planteados en las secciones anteriores, hay un potencial significativo para la colaboración inter-institucional en políticas de laderas. Existen actores e instituciones importantes que están dispuestos a colaborar. Hay capacidad intelectual y de experiencia entre los investigadores de la región, y en la época actual hay un debate más abierto entre investigadores centroamericanos. Hay un reconocimiento fuerte de la necesidad de publicar mas en la región. Se reconoce que la colaboración permite crear los equipos interdisciplinarios requeridos para la investigación sobre políticas para el manejo de recursos naturales. Además, hay una base de contactos informales sobre la cual Identificar las regulaciones y nonnas sobre tenencia de tierra en bosques, que promuevan la producción y la generación de ingresos para la gente local. 6.Evaluar el efecto del subsidio alimentario en la implementación de prácticas de conservación. 7.Identificar los incentivos que sirven para intensificar la ganadería. 8.Evaluar el efecto del crédito en la productividad. 9.Identificar y evaluar instrumentos de política que sirven a revertir las externalidades negativas. 10.Identificar y evaluar instrumentos de política que permiten compensar a los productores de ladera, que conservan y manejan bien los recursos naturales. 11.Investigar cómo afecta la banda de precios a la producción en laderas.Contabilizar las existencias de capital natural en la región y la depreciación o apreciación del mismo. 13.Valorar los bienes y servicios que ofrecen los recursos de las laderas. 14.Valorar la contribución de la agricultura en laderas. 15.Identificar la voluntad de pago de la sociedad para conservar el servicio hídrico que provee la ladera.ASPECTOS SOCIO-CULTURALES 16.Evaluar cómo integrar el conocimiento indígena en el diseño de políticas. 17.Identificar las prioridades de políticas en las comunidades rurales. 18.Identificar los factores sociales y culturales de los productores en ladera que condicionan la adopción de prácticas de conservación y producción. 19.Evaluar métodos para promover el apoyo de las comunidades en la investigación.Conocer y evaluar métodos para el análisis práctico de impactos de políticas (a nivel local, nacional y regional).iI! fiBnretnrmStrllill! RiJjj¡ 1M Chal _ir.l ji ~W& [~tml.Wii7~I1!lW@ ' 1$ fff. .Ĩ NSTITUCIONALIDAD Identificar el nivel de organización que el productor requiere para superar la subsistencia.Investigar el nivel y tipo de organización que desea el productor para comercializar sus productos. 23.Investigar el tipo de institucionalidad requerido, incluyendo el papel de los ONG e instituciones del Gobierno. 24.Investigar el tipo de integración requerida entre los sectores públicos y privados.INTERACCION LADERA-ECONOMIA 25.Evaluar la relación entre la \"modernización agropecuaria\" y las corrientes migratorias (rural-rural; urbano-rural). 26.Evaluar el efecto de la apertura comercial en la producción de laderas. 27.Evaluar la dinámica de cambios en el uso de la tierra en las laderas. 28.Investigar la ventaja comparativa para productos de las laderas. 29.Investigar la función de los mercados de mano de obra fuera de la finca y sus efectos en el manejo de los recursos y condiciones en las laderas.MEJORAR LOS DATOS BASICOS DE LADERAS 30.Analizar los fotos aéreas para documentar el área y producción de la agricultura en laderas Uunto con encuestas). 31.Desarrollar una categorización de laderas con significativo para la formulación de políticas. 32.Identificar las condiciones en que se consigue regenerar el bosque secundario en laderas. 33.Compilar y evaluar la información básica sobre pérdida de productividad de suelos y tasas de erosión. 34.Actualizar la información de indicadores sociales, económicos y ambientales, y desarrollar bases de datos a nivel local, nacional y regional.Determinar la capacidad de carga de los diferentes ecosistemas. Identificar y valorar (social, económica y ecológicamente) el tipo de tecnología requerido bajo diferentes condiciones en las laderas, y la forma en que se debe transferir. 37.Fortalecer y redefinir los procesos de investigación y la extensión tecnológica. 38.Identificar la función que juega la mano de obra familiar en la producción en las laderas.Anexo REDCAPA es una red de instituciones vinculadas a la capacitación en economía y políticas agrícolas en América Latina y el Caribe. REDCAPA fue oficialmente instituida en 1993, cuando sus estatutos y reglamentos fueron finnados por las organizaciones fundadoras, incluyendo trece universidades, tres instituciones gubernamentales, una organización no gubernamental (representando, entre todas, a 11 países latinoamericanos y de la región caribeña), y una organización internacional (FAO).Los objetivos centrales de REDCAPA son contribuir para el progreso de la enseñanza y de la investigación en el área de la economía y políticas agrícolas, desarrollo rural y medio ambiente de la región, fortalecer el desarrollo institucional y promover la cooperación a nivel nacional e internacional entre sus miembros.Para eso REDCAPA apoya una evaluación pennanente de los programas educacionales, la introducción de nuevas metodologías, el intercambio de profesores y estudiantes y la organización de talleres, seminarios y conferencias. REDCAPA también estimula el apoyo internacional a investigaciones, proporcionando contactos con redes y colaborando con la presentación de propuestas, el intercambio de metodologías y resultados y el entrenamiento de investigadores. REDCAPA facilita el intercambio de informaciones a través de correo electrónico, con bases de datos, una biblioteca, elaborando materiales docentes, editando un boletín de infonnación -Carta Red-y publicando una revista científica Políticas Agrícolas y la serie Cuadernos de Políticas Agrícolas.La Red está pasando por un rápido proceso de crecimiento, y para principios de 1996 contaba con 50 entidades. entre miembros establecidos o en proceso de reconocimiento, entre los cuales varias universidades europeas e instituciones de EE.UU. La Red de Instituciones Vinculadas a la Capacitación en Economía y Políticas Agrícolas en América Latina y el Caribe, cuya sigla es REDCAPA, es una Asociación sin fines de lucro constituida por instituciones, tanto públicas como privadas, con capacidad actual o potencial para promover el mejoramiento de la educación y de la cooperación en el ámbito de la economía y políticas agrícolas en América Latina y el Caribe.Varios miembros de REDCAPA están involucrados en el análisis de políticas para el desarrollo y manejo de los recursos naturales en las áreas de ladera. Este tema es considerado como una de las prioridades para el fortalecimiento de la capacidad de miembros de la red.El Comité de Desarrollo Sostenible (CODES) del nCA se creó en noviembre de 1995, en atención a la alta prioridad que el Programa de Mediano Plazo 1994-1998 confiere al tema de la sostenibilidad y en procura de una mejor articulación de las acciones que realizan las diferentes unidades del nCA en la materia, y el óptimo aprovechamiento de los recursos que se destinan a ese propósito.El CODES tiene como propósitos potenciar las tareas de cooperación técnica que el nCA lleva a cabo en relación con el desarrollo sostenible (DS) de la agricultura y el medio rural en beneficio de los países miembros; apoyar la internalización de los postulados de la sostenibilidad en el nCA y los Ministerios de Agricultura en los países miembros, y promover actividades y eventos que privilegien al posicionamiento estratégico del nCA en el tema.Para el cumplimiento de su objetivo, el CODES realiza funciones de promotor, catalizador, enlace y seguimiento relacionados con los temas de desarrollo sostenible, tanto en el ámbito de la Sede Central del nCA como de sus Centros Regionales y Agencias de Cooperación Técnica en los países. Parte importante de las tareas del CODES se realizan con el apoyo de una Red interna de técnicos y funcionarios del nCA que trabajan vinculados con el tema del DS, que en la actualidad cuenta con 85 miembros. A través de la Red se les mantiene informados de los avances conceptuales y operativos en el tema, las distintas actividades que se llevan a cabo (seminarios, conferencias, talleres, etc.) y las iniciativas que se impulsan en el ámbito de los países miembros.Entre sus funciones específicas están las de promover la realización de foros de discusión y análisis; apoyar la instrumentación de los avances conceptuales y metodológicos; promover la ejecución de acciones de cooperación técnica en torno al DS; llevar al seguimiento de las acciones; promover la concertación de alianzas estratégicas; identificar y difundir experiencias exitosas y apoyar la transferencia horizontal de conocimientos; apoyar el desarrollo y articulación de redes inter-institucionales de profesionales, y coordinar la instrumentación de un programa para la internalización del tema de desarrollo sostenible en el nCA y en los Ministerios de Agricultura de los países miembros.7fPlfffirm.~~_J%I:W#frfiM:¡~W}i~AffiJr&S? §O)!srx1®Aig j,.Ji Ikum.w, _ _ ,¿aJEBE}]] JI; -.nU1:m¡alfM1jIMffifWSUt -. umr_MU~U _~MW#wEl Instituto Internacional de Investigaciones sobre Políticas Alimentarias (IFPRI) se estableció en 1975 con el objetivo de identificar y analizar estrategias alternativas sobre políticas nacionales e internacionales para satisfacer de manera sostenible las necesidades alimentarias del mundo en desarrollo. Se hace hincapié sobre la reducción del hambre y la desnutrición en países de bajos ingresos. IFPRI cuenta con cuatro divisiones de investigación, las cuales comprenden las áreas de Medio Ambiente y Tecnología de Producción, Mercados y Estudios Estructurales, Consumo Alimentario y Nutrición, y Comercio y Macroeconomía. La División de Proyección incluye la organización de seminarios sobre políticas, entrenamiento y capacitación, así como servicios de información y publicaciones.El programa de investigación del Instituto refleja una colaboración global con los gobiernos e instituciones públicas y privadas interesadas en el aumento de la producción alimentaria, así como el mejoramiento de la equidad en su distribución. Los resultados de investigación se diseminan a los encargados de tomar decisiones sobre políticas de opinión, administradores, analistas de políticas, investigadores, y otros interesados en las políticas agrícolas, alimentarias y ambientales a nivel nacional e internacional. IFPRI es un miembro del Grupo Consultivo sobre la Investigación Agrícola Internacional (CGIAR).En 1993, IFPRI inició un programa de investigación a nivel de varios países sobre \"Políticas para el Desarrollo Sostenible en Tierras Frágiles.\" El primer enfoque regional se basa en las regiones de laderas de Centroamérica. Las actividades de investigación de campo han estado en marcha en Honduras desde 1994 y comenzarán en Guatemala y El Salvador en 1997. La investigación colaborativa a nivel regional, comunitario, y de microcuencas incluye investigación participativa con el trazado de mapas sobre recursos comunitarios, análisis socioeconómico del proceso de cambio comunitario y el proceso de toma de decisiones en hogares, y asesoría de los recursos naturales por medio de investigaciones de campo y por sensores remotos. El objetivo es el de explicar los cambios históricos en el patrón del manejo de los recursos naturales, su impacto sobre el bienestar humano y el rendimiento económico, y las implicaciones para la formulación de políticas. El proyecto también promueve el diálogo sobre asuntos de políticas de laderas a nivel regional y nacional, y trabaja con investigadores de políticas en la región para mejorar la calidad y el alcance de sus investigaciones por medio de entrenamiento, capacitación e intercambio de información. ~,_-•tiIt1h1hM¡¡_F't-• •r1Y¡M~jnj~tTMmTI [ l(lj?dr~lrr . rc.u -; T i$~$~WÜ\\aJ'it1e%TnW17nr®1nẼEl Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT) es una organización internacional, sin fines de lucro, que se dedica a la investigación científica y la capacitación. Tiene su sede en México y lleva a cabo, a nivel mundial, un programa de investigación sobre sistemas sostenibles de maíz y trigo, que se centra en los pobres y en la protección de los recursos naturales en los países en desarrollo.El CIMMYT forma parte del Grupo Consultivo sobre la Investigación Agrícola Internacional (CGIAR), un consorcio de organismos donantes que se dedica a la generación de tecnologías eficientes en el uso de los recursos, y al mismo tiempo contribuye al desarrollo sostenible de la agricultura, los bosques y la pesca, mejorando de esta manera la nutrición y el bienestar de los pobres. El programa regional de maíz ha trabajado muchos años en Centroamérica para mejorar en forma colaborativa la producción de maíz.En el proyecto de laderas del CIMMYT conocer los motivos que llevan a los agricultores a aceptar o rechazar innovaciones agrícolas es fundamental para diseñar y fomentar prácticas de cultivo que no dañen el medio ambiente.Un estudio reciente identificó varios motivos por los cuales los agricultores de la comunidad de Guaymango, El Salvador, comenzaron a usar prácticas de conservación del suelo, mientras que los agricultores de dos comunidades semejantes a ésa no las adoptaron. Por ejemplo, las prácticas de conservación del suelo se vinculan con el empleo de variedades mejoradas y otros insumas con el propósito de aumentar con rapidez la producción de maíz. El acceso de los agricultores a la semilla y a otros insumas estaba condicionado a su disposición a dejar de quemar los residuos de los cultivos y a usarlos como mantillo.La experiencia de Guaymango destaca la utilidad de los estudios de adopción: aumentan el conocimiento de las necesidades de los agricultores y de los requisitos técnicos de cada sistema de cultivo. También alertan a quienes formulan las políticas acerca de los casos en que las políticas o las medidas institucionales (como el programa para proporcionar insumos en Guaymango) pueden fomentar la adopción. El CIMMYT considera que la investigación sólida sobre los procesos de adopción es la base para talleres para formular políticas acertadas, en los que investigadores, trabajadores de extensión, grupos de agricultores, ONGs y otros organismos discuten problemas de productividad y sostenibilidad y sus posibles soluciones.Al condensar los conocimientos y la experiencia de los agricultores, los estudios de adopción ayudan a crear asociaciones provechosas que aceleren la adopción de tecnologías que intensifican la productividad y conservan los recursos.El Instituto Interamericano de Cooperación para la Agricultura (IICA) es el organismo especializado en agricultura del Sistema Interamericano. Sus orígenes se remontan al? de octubre de 1942 cuando el Consejo Directivo de la Unión Panamericana aprobó la creación del Instituto Interamericano de Ciencias Agrícolas.Fue fundado como una institución de investigación agronómica y de enseñanza de post-grado para los trópicos. El IICA, respondiendo a los cambios y a las nuevas necesidades del hemisferio, se convirtió progresivamente en un organismo de cooperación técnica y fortalecimiento institucional en el campo agropecuario. Estas transformaciones fueron reconocidas formalmente con la ratificación, el 8 de diciembre de 1980, de una nueva convención, la cual estableció como fines delIICA: Estimular, promover y apoyar los lazos de cooperación entre sus 33 Estados Miembros, para lograr el desarrollo agrícola y el bienestar rural.Con su mandato amplio y flexible y con una estructura que permite la participación directa de los Estados Miembros en la Junta Interamericana de Agricultura (nA) y en su Comité Ejecutivo, ellICA cuenta con una amplia presencia geográfica en todos los países miembros para responder a sus necesidades de cooperación técnica.Para lograr estos objetivos, ellICA ha determinado la existencia de Cuatro Areas de Concentración en temas estratégicos: Políticas socioeconómicas, Comercio e Inversiones; Ciencia y Tecnología, Recursos Naturales y Producción Agropecuaria; Sanidad Agropecuaria; y, Desarrollo Rural Sostenible. Como apoyo a las Areas de Concentración existe un Servicio Especializado en Capacitación, Educación y Comunicación, y otro en Información, Documentación e Informática. Una de las instancias de fortalecimiento regional, nacional y local, es el Proyecto Desarrollo Institucional para la Producción Agrícola Sostenible en las Laderas de Centroamérica se inició en 1994. El propósito de este proyecto es ayudar a desarrollar políticas, marcos institucionales de trabajo, mecanismos organizativos y capacitación del recurso humano, para promover un uso sostenible de la tierra en las laderas Centroamericanas. El proyecto interviene en el nivel regional en Honduras y El Salvador y en cuatro micro cuencas seleccionadas en ambos países.NlESTIGACION SOBRE POUTICAS PAIlA El. OESAIIROtLO SOSTENl8LEENLAS~RASL a estrategia de trabajo se centra en las organizaciones públicas o privadas; entre ellas se procura alcanzar un consenso sobre las principales causas y posibles soluciones del problema de la erosión y de la deforestación en las cuencas; logrado esto el proyecto apoyará a las organizaciones presentes en las micro zonas para que trabajen en fonna articulada. pues se espera que de esta manera realicen un trabajo más eficiente y eficaz con mayor beneficio para los productores de las laderas.","tokenCount":"73196"} \ No newline at end of file diff --git a/data/part_3/1164780895.json b/data/part_3/1164780895.json new file mode 100644 index 0000000000000000000000000000000000000000..e6691c2f0d83fcf21b3aca1599a176998d1dfc2e --- /dev/null +++ b/data/part_3/1164780895.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"bb3fce102bdb25c66b918430718b51df","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/d696a561-6f7c-490b-b17f-4ffe02141133/retrieve","id":"-18803730"},"keywords":[],"sieverID":"e32ef7fc-8bf1-48ee-b0ed-904b737f4f6a","pagecount":"4","content":"Leafy, nutrient-rich vegetables are produced in urban and per-urban area.IWMI and partners are developing integrated strategies to safeguard public health while sustaining the urban food supply of perishable vegetables.In and around African cities, many irrigation water sources are heavily polluted with untreated urban wastewater and runoff. Due to the high costs involved appropriate wastewater treatment is not a feasible option for many municipalities.Exotic vegetables, like lettuce and spring onions, which require irrigation, are consumed uncooked in salads or other dishes.Laboratory analysis showed that the vegetables have high levels of microbiological contamination above the acceptable limits. Eating contaminated salad can result in worm infections, diarrhea and other diseases. This can be a serious risk factor, especially for children, people prone to illness and those not used to local conditions, like tourists.Banning polluted water use has failed as this threatens the city supplies of leafy, vitamin-and nutrient-rich vegetables, which are essentially produced in urban and peri-urban areas. It also threatens the livelihoods of poor vegetable farmers, traders and wholesalers. As long as authorities cannot provide alternative (safer) irrigation water sources, other options for risk management are required.Fortunately, there are alternatives especially where health implications relate mostly to microbiological risks, such as diseases causing bacteria, and not chemical risks, like heavy metals.To develop integrated strategies to (i) safeguard public health, (ii) support urban and peri-urban agriculture and related livelihoods and(iii) sustain urban food supply with perishable vegetables.The Research ApproachWater pollution and crop contamination levels were analyzed from wastewater sources to farms, markets and consumers, in order to identify where food contamination takes place as well as the best entry points for health risk reduction.The project is exploring possibilities for alternative cropping areas and safer water sources. But even where this is not possible and where wastewater treatment remains insufficient or absent, consumers can be protected through different lowcost measures:• On-farm, through safer irrigation techniques, improved shallow wells, low-tech water filters, simple water treatment, and sedimentation methods.• In formal and informal markets through provision of clean water for vegetable washing and \"refreshing\", appropriate sanitation and good hygiene,• In household kitchens or street restaurants through efficient vegetable washing using verified local practices.Research will quantify the degree of risk reduction for each option to recommend best practices. Awareness will be raised through active stakeholder involvement in the project and through the development of training modules, TV spots and others.Only washing vegetables with the correct salt solution can reduce health risks.","tokenCount":"404"} \ No newline at end of file diff --git a/data/part_3/1192006432.json b/data/part_3/1192006432.json new file mode 100644 index 0000000000000000000000000000000000000000..5ab1a8f7983e8ce89fc9cfcfc89ed91f78868d6e --- /dev/null +++ b/data/part_3/1192006432.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"2864a5b2f7c17a75c406d93ed960be36","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/788dfa3a-afde-4113-ad97-37e41e0f14fb/retrieve","id":"-626295691"},"keywords":[],"sieverID":"43d06ee7-94bf-4d6a-a7f6-c6a7a3b3c49e","pagecount":"2","content":"Local innovation platforms to enhance system integration and take innovations to scale in Africa RISING EthiopiaThe Africa RISING project in the Ethiopian highlands acknowledged from its outset the importance of developing partnerships to successfully implement its action research to create opportunities for smallholder farmers through sustainable intensification of the crop-livestock farming system.System interventions require the engagement of various research and development partners mainly at local level.Local Innovation Platforms (IPs) have been formed at research site levels to engage partners and to facilitate meaningful and effective interactions that help to prioritize, guide, and evaluate the various research and development processes that are implemented at household level.Unlike other IPs that focus on specific commodities, Africa RISING platforms deal with the wider crop-livestock system innovations and the institutional, market and policy challenges to sustainable intensification.Local Innovation Platforms (IPs) are formed at three levels in each research site: There is a plan to further enhance the capacity of the TG members so they will take over and coordinate future training for farmers. The plan is to organize a training of trainers for TG members on different technologies and management practices that are being implemented at farmer plot level, and then for the TG members to go back and train FRG members. The TG members at each research site need skills to support and follow up the FRGs at field level as some of the technologies being introduced are new to farmers.Innovation platform monitoring and evaluation: One of the major activities executed by the TG members, with support from ILRI, is monitoring and evaluation of IP processes and measuring their contribution to facilitating envisaged project level outputs and outcomes.Innovation platform performance indicators and data collection protocols are being developed with active participation and feedback from TG members. Monitoring and evaluation champions appointed from local institutions are helping to coordinate these activities and are actively participating in data collection. The whole process is designed to catalyze an active learning cycle and the information gathered will be analyzed to measure the contribution of IPs to project level objectives","tokenCount":"341"} \ No newline at end of file diff --git a/data/part_3/1219384960.json b/data/part_3/1219384960.json new file mode 100644 index 0000000000000000000000000000000000000000..75c70331d6fa089c24337d5c6daa28861bc64041 --- /dev/null +++ b/data/part_3/1219384960.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"447b26786d0d6b971e124ec8457d6f19","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/90d4b2f1-3bce-4007-8f2d-9f7e0adfffea/retrieve","id":"-1744152223"},"keywords":[],"sieverID":"1d5b8f7a-55d9-4ed8-98ae-e82c216b0836","pagecount":"36","content":"In Part 1 we looked at the definition of evaluation, its purpose, trends and core ingredients, and at the context in which it occurs -the project cycle.We also looked briefly at the closely related processes of monitoring and impact assessment. Now, in Part 2, we move on to the evaluation process itself. This process can be grouped into four phases:T preparing the evaluation terms of reference T designing the evaluation T implementing the evaluation T following up the evaluation What are the main issues you have to think about when organising the evaluation of an information project, and how do you reflect them in your terms of reference? How do these issues affect the way you design the evaluation? How do you select the evaluation tools? Do the tools you select match the objectives set and the resources available? What does evaluation follow-up involve?The process described here is intended mainly for self-evaluation, involving you and key stakeholders in the whole process. As we noted in Part 1, self-evaluation enhances the learning experience and makes it easier to apply the lessons learned to a project, with the overall aim of increasing its impact.We look both at the evaluation process in general and at how it applies, specifically, to information projects, products and services.The four phases in the evaluation process can be subdivided into a clear set of stages: We have listed these stages in chronological order. In reality, however, you might find that in order to go to the next stage you need to revisit an earlier one, to improve it. For example, in Phase 2, when designing your evaluation and in your discussions with stakeholders, you might find it necessary to go back to Phase 1 to refine the terms of reference so that they match your stakeholders' information needs more closely. Also, there is likely to be some overlap between the phases.The evaluation process involves selecting data collection tools. Here in Part 2, we discuss the process of selection, but do not go into detail on the tools themselves.That is the subject of Part 3, where we describe the tools you can consider for project evaluation, with Part 4 focusing on examples of how specific tools are applied to specific information projects, products and services.Every evaluation process is unique.You need to design a process that best fits the project being evaluated and the purpose and scope of the evaluation.Whatever process you design, however, it needs to involve your stakeholders from start to finish.Without this level of stakeholder participation, the value of the evaluation in terms of learning and impact will be considerably reduced.The first phase in evaluating an information project, product or service is preparation. Getting the preparation right is crucial to the success of any evaluation. Getting it right means being clear about:T the purpose of the evaluation T the scope of the evaluation (what it will cover, and what it will not) T who the stakeholders are and how to involve them in the evaluation T what existing data and sources of data there are T what methodology will be used to collect and analyse data T the strategy for reviewing and reporting evaluation findings T having a team capable of conducting the evaluation and implementing the lessons learned T the work plan and resources (time and money) Only when all these ingredients are clear should you move to formulating the terms of reference (ToR). It is crucial that the ToR are clear and detailed.They provide the parameters of the evaluation, enabling the evaluation team and the stakeholders to see:T what is to be done T who is to do it T how it should be done T when it should be doneThe process of formulating the ToR should involve both the team and the stakeholders, not only because this is more likely to produce a viable set of ToR, but also because it will enhance the commitment of all those involved in the evaluation process.If you do not know why you are conducting an evaluation, and for whom, it is unlikely that you will make the right choices for the evaluation process (e.g., which stakeholders to involve, how to collect data, what communication strategy to use).To define the purpose of the evaluation, you need to know why the evaluation was required in the first place.There might be one reason or several. It might have been initiated, for example, to:T Empower stakeholders: There are mechanisms that can be used to empower stakeholders in an information project. One of them is to organise an evaluation with strong stakeholder participation.This enhances their understanding of the project and commitment to it, and encourages them to actively contribute to its success.T Build stakeholder capacity: Participatory evaluation enables stakeholders to learn more about a project, and also to acquire new skills related to project implementation, management and evaluation.T Improve project implementation: An evaluation should show where improvements can be made in the way a project is being implemented, particularly if it is an honest appraisal of both failure and success.T Assist project re-orientation: The project might be facing new challenges, which require a change of course and a new strategy. An evaluation should provide the insight needed to formulate a new strategy.T Ensure accountability: An evaluation is a useful way of keeping people informed about the progress and effectiveness of a project.These people might be the donors (this is sometimes called 'upward accountability') or the primary stakeholders ('downward accountability') or both.T Ask yourself these questions: Who wants this evaluation? Why do they want it? How is the project likely to benefit from the evaluation? T Use the answers to these questions to make the right choices in your evaluation methodology.T Every evaluation is unique. So ensure that the purpose you define suits your evaluation, and avoid the temptation to lift a purpose statement from another evaluation. T Defining the purpose of your evaluation is, in itself, a good opportunity for learning, improving your project and strengthening your relationship with the stakeholders.If you want to evaluate your information project, you need to know what criteria (or main areas of concern) you want to assess. Establishing these evaluation criteria will help you to define the scope of your evaluation.Various organisations use different sets of evaluation criteria. Important and frequently used criteria include:T Accessibility: The extent to which your project reaches the primary stakeholders (i.e., how easy it was for them to access the information product/service in terms of its availability, distribution and timeliness).T Impact: The positive and negative changes produced by your project, directly or indirectly, intended or unintended (i.e., the extent to which primary stakeholders have successfully used the product/service to improve their lives).T Relevance: The extent to which the product/service is suited to the priorities and needs of the primary stakeholders, and the priorities of other key stakeholders, the project managers and the donor (i.e., the extent to which the project was a good idea).T Sustainability: The extent to which your organisation will be able to continue to provide the product/service after the completion of the project. (i.e., the extent to which the primary stakeholders will continue to benefit from the product/service when the project funding ends).T Usability: The extent to which the primary stakeholders are able to use your product/service. This depends on such factors as completeness of the product/service, accessible language (the language itself, and its level and style), accessible images (diagrams, pictures, etc. relevant to the lives of the primary stakeholders), technically accurate information, and design relevant to the context in which it will be used.T Utility: The extent to which your project could be successfully replicated in another location or among different primary stakeholders. Utility also relates to lessons learned from the project, and how they could be usefully applied to other projects.T Effectiveness: The extent to which your project has achieved its objectives (this is similar to impact, but whereas impact covers both intended and unintended changes, effectiveness is concerned with the intended objectives).T Efficiency: The cost-effectiveness of your project in terms of outputs -qualitative and quantitative -compared with inputs (i.e., has it used the least costly resources possible in order to achieve the desired results?).Choosing which criteria to use in defining the scope of your evaluation will depend on:T your organisation's policy and core values T the policies and interests of other major stakeholders, including your donors T the current state of your project and the key issues that you need to address T the level of stakeholder participation you envisage T the resources (time, money, people) you have Were farmers able to use the training on their own farms? If not, why not?Was the training course delivered in a language which was understood by all participants? Was the training complete in all details so that farmers could implement it? Was sufficient time given to the training for farmers to be able to absorb the information? Was support provided after the training?Was the training course implemented in the most efficient way, compared with alternatives? Could the same impact have been achieved with fewer resources?Has the training resulted in a change in farmer practices? If so, have these improved practices resulted in better yields for the farmers?Was the training course consistent with the farmers' needs and priorities?When project funding ends, will the implementing organisation be able to continue providing the training? If not, why not? Are the changes made by farmers sustainable?Have the farmers been able to pass on the knowledge gained?Would the training be suitable for other farmers in similar situations?KEY QUESTIONS TO ASK Who are the stakeholders in your project? And why should they participate in the evaluation?To answer the first question, in any project there are two sets of stakeholders (see Figure 2.2, overleaf):T primary stakeholders (the end-users of the information product/service)T secondary stakeholders, who can be subdivided into:-those who provide the inputs for your information product/service (e.g., donors, partner agencies) -those who help to ensure that your product/service reaches the intended end-users (e.g., distributors, media organisations) -those who are involved in developing and implementing policies relating to the product/service (e.g., government agencies).Now to the second question:Why should the stakeholders participate in the evaluation? As we saw in Part 1, stakeholder participation in the project cycle is crucial to project success.We also saw that the level of that participation should be extensive and meaningful, and include exchanging ideas and sharing decision-making.In the old mode of external evaluation (see Table 1.1 in Part 1, page 3), stakeholder participation tended to be top-down and to be seen as:T informing stakeholders about the evaluation process and results T using stakeholders as a source of information (e.g., through questionnaires and interviews) T consulting stakeholders to obtain their views on the evaluation process and/or results Today, however, participatory evaluation implies a far more active role for stakeholders, in which they:T are part of the evaluation team T actively contribute to the design and implementation of the evaluation T help conduct a joint analysis of the findings and recommendations T It is important to carefully select your evaluation criteria to suit your project and resources. This will help to make the evaluation more focused and manageable.T An important and often overlooked factor in deciding on the scope is to make sure it matches the resources you have available T Don't include criteria that go with key questions that can't be answered (e.g., don't select 'impact' if the project has only just started)T Be aware of the possible conflicting interests among the project stakeholders Box 2.2 Some key points in defining the scope of an evaluationIn order to identify the stakeholders who should participate in the evaluation, you need to conduct a stakeholder analysis.This requires analysing such factors as those shown in Table 2.2.Whichever groups of stakeholders you identify, there is one group that should always participate in an evaluation -the primary stakeholders.Issues to consider that relate specifically to the stakeholders participating in the evaluation include:T their involvement in, and influence on, the information product/service T their contribution to the information product/service T how they benefit from the information product/service T how they should be involved in the evaluation T their willingness and ability to be involved and to learn from the evaluation T the most appropriate ways of communicating with them during the evaluation T the dynamics and conflicts of interest among the participating stakeholders T the budget for stakeholder participation in the evaluation Knowing what data exist that are relevant to your evaluation will help you decide what data you still need to collect, given your time and resources.Also, looking at existing data may refresh your memory, and give the evaluation team a better understanding of the project background and any earlier recommendations that might have been made. Often, such recommendations get 'lost' and are not acted upon, or are only partly acted upon.Where would you look for these data? Possible sources include:T initial strategic and work plans for the information project T brochures or descriptions of the information product/service T baseline data collected before the project was implemented T desk studies T Don't be tempted to copy the way another evaluation organised stakeholder participation. Your stakeholders (types, groups, interests, availability, etc.) will be different from those in any other project T Be sure to involve the primary stakeholders, the users of your product/service, especially in relation to usability T Make a clear decision about who to involve and when, and avoid involving everyone in everything. Time is valuable; if you ask too much from stakeholders you may not get their co-operation a second time Choosing your methodology for data collection and analysis will be influenced by many factors.To ensure the methodology fits the evaluation, you need to be clear about:T the key questions you want to answer: this relates to the scope of the evaluation, and what the main concerns are (see Table 2.1)T the data needed to answer these questions: this relates not only to the amount of data but also to the type of data -primary and secondary (see Box 2.5)T the level of stakeholder participation: extensive but carefully managed involvement of both primary and secondary stakeholders is crucial (see Table 2.2)T the existing data: this relates to learning more about the project and not wasting resources on collecting data that is already available T the available resources (time, money, skills) to ensure that the methodology matches your resourcesThere are a variety of data collection methods to consider.You will usually need to choose a mixture of these.The most common methods include:T Quantitative methods produce quantitative (numerical) data that are relatively easy to summarise and compare.The data can be generalised (scaled up) to a larger population if you choose a representative sample; although this can be very efficient, it is not always easy to do in resource-poor settings. It requires trained people to design the questionnaires, administer and analyse them, and then interpret the findings. It is not enough to present tables of numbers without interpretation and explanation.The main limitation of the quantitative approach is that you may gain only a limited understanding of why things happened. T Make a point of looking for documents that describe why the project exists (rationale), what it is supposed to do (objectives and expectations), its assumptions, its planned activities, problems it has faced and any earlier recommendations made to improve it T Ask project managers and staff for documents; not everything will necessarily be in an archive or library T Ask stakeholders what data they hold that could be useful. This is often an overlooked source of existing data T Take stock of all data available in order to decide what additional data need to be collected through a desk study and other data-collection mechanisms T Qualitative methods are used to find out why and how people use your information product/service.They draw data from a variety of non-numerical sources, such as words, pictures and plays, and can be used to elaborate the facts provided by quantitative data.The main limitations of the qualitative approach are that it is relatively labour-intensive and time-consuming, requires good facilitation skills, and the findings can't usually be generalised.T Individual methods involve getting data from individual respondents without interaction with other respondents (e.g., questionnaires and interviews).T Group methods seek to encourage interaction between respondents so that they add to each other's knowledge.This can produce a more in-depth picture of the situation (e.g., focus groups).T Participatory methods are based on using stakeholders as part of the evaluation team and involving them in collecting data.This brings them into direct contact with other stakeholders and thus enhances their understanding of the project, its aims and its impact.The types of data to collect fall into two groupsprimary data and secondary data: T PRIMARY DATA are collected directly and for a specific purpose: methods could include questionnaires, interviews and focus groups T SECONDARY DATA have already been collected for some purpose other than the current evaluation: sources could include routine records, reports, newspaper articles, project monitoring sheets and progress reports.Examples of routine records are data from log books, registers, personnel lists, receipt books, accounts and contact databases. These data are collected during normal activities, such as data on who is using your information product/service, when they use it, and what they are using it for. If your project is not already keeping these types of records, it should start now; staff should be trained to keep accurate, complete and up-to-date information. Routine records can be used to manage the project and to reduce the amount of data collected during evaluations.T It is often worth selecting a multi-method approach, combining quantitative and qualitative data collection and analysis methods. Known as 'triangulation', this will bring greater understanding and increase the reliability of the findings T Data collection tools such as questionnaires should be pre-tested to ensure that they produce the data you need. The pre-test might show, for example, that there are ambiguous questions that need to be rephrased, that the language used is not understood, or that some of the questions are embarrassing for the respondents T Use the sources of secondary data, as far as possible, to provide the quantitative information, and use qualitative methods if the evaluation seeks to learn why, how and where you can improve a project T Consider whether time is an important element. If you want to measure change, time is obviously important. Often, however, all you want to know is what is happening currently (with the time element becoming important only later when you compare results in the longer term) Reviewing and reporting are essential features of an evaluation.Your communication strategy needs to cover:T how and when the evaluation strategies, activities and findings will be critically reviewed, and who will be involved in this review T how and when evaluation findings will be reported, and to whom This takes us back to stakeholder participation, and the importance of including the stakeholders in the design and implementation of the evaluation and in analysing the findings.This means you need to be clear about what the stakeholders want to know, why they want to know it, and how they want it presented.Stakeholders differ in many ways, including:T interest in the project T commitment to the project T involvement in the project T access to means of communication T expectations about feedback T time available So it is important to develop a critical review strategy that involves the right people at the right time. For example, in an evaluation of a farmers' newsletter, the strategy should allow for the readers -farmers -to be involved in formal meetings convened to critically review the newsletter, its content, production and distribution.Similarly, it is important to develop a reporting strategy that ensures that everyone receives feedback that is relevant to them and in the format they require. For example, farmers might prefer feedback in the form of a video rather than a lengthy written report, and a Minister might prefer a summary of the report.You should be aware that people often don't read reports. Sending reports will not necessarily elicit much in the way of comment and is not really part of participatory working. It might be better to provide feedback in a workshop setting. Here, the main points or even the report itself can be presented as posters on which the participants can write comments on post-its. These can then be reviewed by a facilitator and form the basis of discussion for the rest of the workshop.There are various communication methods you can use for reviewing and reporting. Some of them are listed in Table 2.4.T Involve the primary stakeholders in every stage of your communication strategy -they provide the most valuable feedback T Often, it is not appropriate send the same report to all the stakeholders. Some information might be sensitive, other information might not be of interest to everybody. Your stakeholder analysis, if done well, will show you who needs what T When reporting to a stakeholder, concentrate on the consequences of interest to that stakeholder and be aware of potential problems that stakeholders might have in implementing recommendations T Make sure that the way you disseminate the evaluation findings suits the recipients. That will give more chance of those findings being read, absorbed and acted upon A strong team that includes stakeholders will help generate relevant and accurate data. It will also create a shared understanding of the project, which will help in drawing up recommendations that are relevant to stakeholders.The size of the team depends on the scope of your evaluation and the resources available. If you are conducting a self-evaluation of a small-scale information product/service, the team will probably be a small one.The main factors to consider when you're selecting an evaluation team are:T purpose and scope of the evaluation, and the budget available T evaluation methodology T knowledge and skills of the team members T relationships between the team members T capacity of team members to influence project implementation Specific questions to ask when selecting a team include:T Do you need the team to make an independent judgement? T Do you need the team to act as group facilitators and work with stakeholders to help them take the learning on board?T Would including other key stakeholders facilitate the learning process and are they willing to spend their time on the evaluation?T To what extent are gender/age and other balances required in establishing the team? T What skills are needed in the team (e.g., facilitation, communication, organisational, technical, statistical)?T How will you reward and/or motivate the team members?T If the funding agency wants an external evaluation to be conducted, as opposed to a self-evaluation, negotiate for project staff to be included in the evaluation team. This is important for learning and for facilitating understanding between the various parties T If you are the sole evaluator, consider setting up an evaluation committee of people who could provide you with feedback on your evaluation design, implementation, analysis and reporting T Apart from including stakeholders in the evaluation team, consider asking stakeholders to help carry out specific tasks, such as data collection, data analysis and reporting Box 2.8 Some key points in selecting the evaluation teamAn evaluation process can involve a complex set of activities.To ensure that the process runs smoothly, it needs good planning and adequate resources. As resources are usually limited, drawing up a work plan and budget helps in assessing what realistically can and can't be done in the evaluation.Activities that you need to consider in your work plan include:T selecting the team (including stakeholders) T arranging team meetings and training T pre-testing data collection tools T collecting data T analysing data T arranging critical review meetings T preparing and communicating findings T formulating the follow-up action planThe work plan should be clear about who is responsible for the various activities, and about the timeframe, both overall and for each activity (the schedule).Budget items that should be considered include:T costs of the various activities T allowances for team members T training for team members T consultancy fees T transport costs T workshop venue costs T workshop materials T communication costs (telephone, internet, postage) T printing costs Evaluation budgets vary depending on the scope and objectives of the exercise. As such, there is no 'typical' budget for evaluating an information project. As a first step, however, you need to think about how to get your evaluation funded if a budget has not already been allocated.If you are conducting your own evaluation, you will be doing most of the work, possibly with help from your colleagues, using existing office facilities, transport and supplies. It will therefore be difficult to itemise the costs; on the other hand, the more they are internalised, the easier it will be for you to go ahead with the evaluation. However, you might want some outside expertise in, for example, analysing the data, or additional resources such as statistical software packages. These items will form part of your direct costs and you should have some provision in your budget to cover such expenses. The likely in-house and external costs, if you're conducting your own evaluation, include:T your time T time provided by other staff involved in the evaluation T time provided by support staff for such tasks as data entry T meetings (e.g., briefing meetings, stakeholder meetings, validation workshops) T transport T office supplies (e.g., stationery) T communication (e.g., fax, telephone, postage, photocopying, printing) EXTERNAL COSTS T consultants (e.g., for evaluation, data analysis, publishing) T other experts (e.g., IT experts) T transport and accommodation for these external advisers Box 2.9 Costs to consider when preparing an evaluation budgetThe terms of reference (ToR) for an evaluation provide the guidelines for your evaluation team. Even if you are the sole evaluator, it is useful to formulate the ToR, as this will provide an opportunity for an overall view of the organisation of the evaluation before you begin.The ToR will serve as a blueprint to show why the evaluation is being conducted, how it will be conducted and what it is expected to produce.They are not a wish list. Resources are nearly always less than wanted, and the ToR should reflect the reality of what is available and what can be achieved. Realistic, detailed and well-formulated ToR are useful when seeking approval for the budget and approaching prospective team members. Once the terms of reference have been agreed upon and the budget approved, you can move on to designing the evaluation.This is where you have to get down to planning each aspect of the evaluation in detail -exactly who is going to do what, and when, and how, and what resources will be used at each stage.It is important to remember that all decisions made in relation to the detailed planning will depend on resources, especially the skills and time available.There is no point in choosing certain methods or tools if you have no skills in the team for them and no way of getting access to training.Designing the evaluation involves going through the following stages:T reviewing the project concept and objectives T determining the data needed to evaluate the project T determining the evaluation focus, key questions and indicators T designing the data collection methods T designing the data analysis methods T designing the communication strategyYou can't evaluate an information project, product or service if you don't know what it is about. Even if you're conducting a self-evaluation, you will probably need to refresh your memory about the idea behind the project, how the project was intended to be implemented and what it was intended to achieve. Unless you know this, you can't make the comparisons between what was intended and what has actually happened, and so you can't really evaluate the project. Studying available documents will help you find out about:T key issues the project is expected to address T purpose of the project in relation to these issues T specific objectives to be achieved within the project time frame T indicators used to measure performance T work plan (activities) T staff and stakeholders T management structure and budget As we saw in Part 1, every project should have a theory of action and a logical framework.These documents will, if well conceived and compiled, tell much of what you need to know about the project purpose, objectives and performance indicators, as well as the assumptions made when the project was initiated.If the project documents you need are not there, or are incomplete, or if the project objectives have changed, you will need to discuss with the project staff and stakeholders how the objectives and indicators should be interpreted for the purpose of the evaluation. Only if this interpretation is clear will it be possible to compare expectations with actual performance.If your information product/service is more of an ongoing activity, rather than a project, you might find it useful to reflect on the background and purpose of the product/service.This could involve asking such questions as:T Why was the product/service initiated and what problems does it seek to address? T What is the long-term goal of the product/service? T What is the core assignment or purpose of the product/service? T What are the short-term objectives to be achieved by the product/service? T What is the main approach in delivering the product/service? T What are the core values of the product/service?T Be clear about what the key issues of the project are, and how they relate to the project concept and purpose T If some of the information you need is not available from documents, ask project staff and stakeholders T If you are new to the project, it might be worth conducting analyses (e.g., situation analysis, SWOT analysis) to help you understand the project, its political and cultural environment and the needs and resources of the stakeholders T Benchmarking will help you to compare the performance of the product/service with other comparable products/services, and to identify best practices. This will help in ensuring that any value judgments in your evaluation will not be arbitrary, and in formulating recommendations to improve the quality of the product/service Box 2.12 Some key points in reviewing the project concept and objectivesIdentifying what data are needed and who is likely to provide them is critical to the success of an evaluation.You will need data that relate to the evaluation criteria you have identified. As discussed earlier in relation to the scope of the evaluation, these criteria could include: accessibility, impact, relevance, sustainability, usability, utility, effectiveness and efficiency.It is important to ensure that the data collected are of good quality. Avoid the common mistake of collecting too much data, some of it of limited quality. Less good-quality data will produce a better evaluation than too much data of dubious quality.And be flexible about what data you need. As the data collection process gets under way, you might have to revise the type of data you need.To obtain the data required from the various stakeholders, you need to determine what questions to ask them. It is a good idea to make an inventory of these questions and then to design your selected data collection methods (e.g., interviews, questionnaires, focus groups) around them. An example is given in Table 2.5. Can it be produced on a sustainable basis? Do staff have the capacity needed to produce the newsletter?Are the topics of the newsletter in line with your priorities? Does the newsletter reach the target groups?Is there an incentive for you to promote the newsletter?How sustainable is the newsletter given the available resources? Do staff have the capacity needed to produce the newsletter?To decide whether or not to recommend the newsletter to others To decide whether or not the newsletter should be continuedTo identify ways in which the newsletter can be improvedTo identify ways in which costs could be reduced To decide whether or not the newsletter should be continuedTo determine what resources are needed to continue to produce the newsletter and/or to build capacityThe focus of an evaluation is a further specification of the scope. Every evaluation exercise has to be limited in focus because time, skills, and budget are limited. And it is not possible to cover all elements of the project every time you carry out an evaluation. It is therefore strategic to make a deliberate choice of the areas of focus of the evaluation.It is useful to formulate specific questions for each of these areas of focus. Focus and questions need to be linked to indicators. A common mistake in evaluations is to compile the indicators solely on the basis of the logframe objectives, without having a clear idea about the evaluation focus and the specific questions that relate to different areas of the focus.This could lead to producing indicators that are irrelevant, unfeasible and unreliable, and therefore do not produce the data you need to conduct a useful evaluation of a project.The steps involved in this process are:T Focus: The first step is to determine the areas of focus of the evaluation.This means looking at the criteria that you are using to define the scope of the evaluation (e.g., accessibility, impact, relevance, usability, effectiveness, utility and sustainability) and getting down to more detail about these criteria.Which criteria would you prioritise? What time and budget limitations might determine how many criteria you can focus on? How do the various criteria relate to the different stakeholder groups, to the product/service, to its promotion and distribution? For example, if a service does not appear to be achieving the objectives that have been set for it, the focus will need to be on why this is so.T Questions: The next step in the process is to identify the specific questions that relate to the different areas of focus of the evaluation.You will need to phrase key questions that are simple, that can be answered easily and that will provide the required information.This means that you need to be clear about the product/service performance and the changes that it might have brought about. For example, if the product/service is not achieving its set objective, the questions would relate mainly to the content of the service and whether or not the end-users had the skills and resources to make the best use of it. T Indicators: Indicators are quantitative and/or qualitative measures that enable you to answer your key questions and help to assess the extent to which project activities and impact have been achieved. Quantitative indicators relate to changes in numbers (e.g., the number of people listening to a particular radio programme), whereas qualitative indicators relate to changes in perception (e.g., the opinion of users on the content of that programme). Indicators need to be based on a clear idea of which stakeholder group(s) they will be applied to, and to be feasible both technically and financially.In Evaluations can fail because too little or too much data were collected without the right questions being asked. It is therefore important to prepare properly for your data collection so that:T the necessary data you need are available during the evaluation T the data you collect do answer your key questions T no more data than necessary are collected As noted earlier, there are many types of data collection methods, including quantitative, qualitative, individual, group and participatory methods. Each method brings with it a selection of tools which elicit particular types of data.You need to be clear about when you want qualitative data (e.g., when you want to know how some aspect of a project is affecting primary stakeholders) and when you need quantitative data (e.g., the project donors or potential donors will want to see statistics).In selecting the tools, you need to be clear about how they are going to be applied. For example, you need to specify:T source of information T major questions to be addressed T indicators related to these questionsHaving worked on the evaluation focus, key questions and indicators, providing this detail should not now be difficult.Table 2.8 provides an example of the data collection design for a newsletter.There is more detail on data collection tools in Part 3.You should always bear in mind that apart from using the data for the evaluation, at a later date stakeholders and others (e.g., potential donors) might want to see the data.T Prepare your combination of methods well so that you don't collect more data than you need and that you don't overlook data needed for answering key questions T Remember that analysing qualitative data can be very time-consuming. On the other hand, analysing quantitative data can often be done using statistical software packages T At the local level, in-depth, qualitative information may be more suitable than quantitative information if the aim of the evaluation is to assess where to concentrate efforts to improve the information project, product or service T The money, time and human resources available limit the sort of data collection tools you can use and how to use them Box 2.15 Some key points in designing the data collectionOnce all the data have been collected and collated, they need to be analysed.This means that the relationships between the data have to be clarified and conclusions drawn.You should always be clear about how the data are going to be analysed before starting to collect them.This will help to ensure that you collect the right data and do not overlook any data you need.The communication strategy for critically reviewing and reporting findings was formulated in Phase 1. Now it is time to develop a more detailed communication plan. Preparing an effective mix of communication methods is an important factor in ensuring a common understanding and commitment among stakeholders.These methods include workshops, meetings, articles and reports. The communication plan is also likely to influence your data collection and analysis activities.Initially, you need to answer the question:What do you want to achieve through the critical review and reporting processes?When you are designing your data analysis methods, you need to answer these questions:T Which tools can be used to analyse the data? T Which data collection methods will provide the data for these tools? T What types of observations and recommendations can be made from each tool? T How will the analysis be verified?Quantitative data are often analysed with the aid of a computer using a spreadsheet and/or a statistical software package.These analyses can be presented in tables, graphs, bar charts or pie charts. Qualitative data are often best analysed using tools such as a problem tree or a SWOT analysis. All these tools are described in more detail in Part 3.An example of the data analysis design for a newsletter is provided in Table 2.9. T Ensure that enough resources are allocated to data analysis. Sometimes, a lot of time and effort is spent collecting data that are never properly analysed because of a lack of resources T Allow plenty of time to analyse qualitative data. Although software is available to help in the analysis of qualitative data, considerable human effort is needed to understand what has been collectedT Keep looking for data that contradict your assumptions, so that they are fully tested. Test out alternative explanations.Bear in mind that the purpose of analysing data is to understand T Stay focused on the objectives of the evaluation T Don't attempt complex statistical analyses unless you have a good knowledge of the statistical analysis process T Don't overdo the analyses T Include in the data analysis process the people who took part in data collectionHaving answered the question, you then need to focus on the two areas of the communication plan:T Critical review: Questions to ask when selecting the critical review methods include:Who will be included in reviews? What will be the main focus of the reviews? Which communication methods best suit the different groups involved?When designing the critical review plan, it is important to note the basic questions that lead to critical review, such as:What is happening? Why is it happening? What are the implications for the project? What do we do next?T Reporting: Questions to ask when selecting the reporting methods include:Who are the target groups for reports? What will be the main focus of the findings? Should some parts of the findings be omitted from the report, depending on the target group? Which communication methods best suit these target groups (e.g., oral presentations, articles, videos, brochures, reports)?When designing the reporting plan, you should ensure that the message being delivered is clear (in terms of content, language, graphic illustrations, etc.) and timely (at agreed times and while the momentum is there).An example of a communication plan drawn up for the evaluation of a newsletter evaluation is given in Table 2.10.Evaluation findings can lead to an increase in knowledge and skills, as well as a change in attitudes that can influence the way people behave within the organisation.The tendency is to assume that evaluation results will be used to guide decision-making and improve the project. But this is not always the case.To stand a far greater chance of being acted upon positively, the findings should be analysed with the primary and secondary stakeholders.When organising and interacting with groups during an evaluation, you need to be aware of group dynamics issues and how to integrate them into the evaluation design. How well the groups involved work together will have an influence on the value of the findings.The way in which groups work together and develop is known as 'group development'. All groups working together face a number of problems, defined within the context of phases of development. T Special emphasis needs to be placed on the critical review and feedback as part of the communication plan. This is key to ensuring quality of the results and their acceptance by stakeholders T Involve management, colleagues and other key stakeholders in the critical review process, to maximise the learning from the evaluationT Although not all the results can be shared or will be acceptable to all stakeholders, try to take on board the key recommendations and find ways to put them into action Box 2.17 Some key points in designing the communication planThe phases are:T Inclusion: This relates to the need to belong and be accepted.This phase is characterised by a lot of 'small talk'. Group members observe whether they are important to the group leaders, and the degree of involvement of the leaders strongly influences members' behaviour. Once the members have assessed the leaders' involvement, they turn to each other to assess their commitment to and participation in the group.T Control: In this phase, group members seek the level of influence they are used to having.They become concerned with power and test other members of the group. If a group has control problems, there will be endless conflict and shifting loyalties, with some members avoiding responsibility and others wanting it all. In this phase it is best not to rush to accept the views or opinions of any member, as this might exacerbate the problem.T Affection: As group cohesion develops, members are more willing to co-operate with each other, using the words, 'we' and 'our group' and becoming interested in each other at the personal level.The danger here is that negative feelings get hidden, which may hinder the work. Also, subgroups often form, threatening group co-operation.There is a need for clarity regarding where loyalty to the group ends and personal autonomy begins. Cultural differences in terms of such factors as openness and sharing personal information can also cause problems.You must recognise that although there could be conflict in a group, not all conflict should be considered as 'bad'. A positive effect of conflict is that it can lead to the group performing better if they are able to explore the issues fully and openly. You also need to be aware of how to promote the healthy development of the group, by:T providing favourable conditions (e.g., voluntary membership, setting clear goals) T recognising the group development phases and stimulating the group to look at their behaviour T having a good mix of skills to support the group T having a working environment conducive to members working together as a group T creating a sense of unity within the group T modelling and supporting relevant processes (e.g., if involvement is required, show involvement yourself)In the event of conflict in groups involved in your evaluation, there are five possible routes (Levi, 2001): avoidance; accommodation; confrontation; compromise; or collaboration. Although avoidance, accommodation and confrontation can resolve the conflict, they can also create winners and losers.In brokering compromise, everyone wins a little and loses a little; this is not an ideal situation.Collaboration is time-consuming but allows everyone to win, and encourages creativity and performance.In essence, you should try to create an environment that promotes affection, inclusiveness and room for each member of the group to participate equally and openly.Having prepared the evaluation terms of reference and designed the evaluation process, the evaluation should now be implemented. If you have given enough attention to the design, implementation will be much easier.The main steps in the implementation process are:T collecting the data T analysing the data T critically reviewing and reporting the findingsIt is useful to start by collecting all the relevant data available, and this is best done via a desk study. This exercise might also highlight areas where more primary data are needed, and it could involve checking available data with stakeholders.Once the secondary data have been collected, you need to start collecting the primary data, using the tools you selected in Phase 2.This involves:T designing the tools (e.g., a questionnaire, an interview checklist)T training interviewers, if necessary, to ensure a common approach T identifying and motivating your respondents T testing the tools with selected respondents T developing a time schedule and organising logistics (e.g., transport) T applying the tools T reviewing experiences with interviewers You need to be aware of the sort of problems that can occur with the data from questionnaires and interviews. Pre-testing your questionnaire and training your interviewers can help to overcome these problems.This will show you where, for example, it is necessary to rephrase questions, or to choose to use a questionnaire rather than an interview.Common problems with data collection tools are:T Lack of clarity: This is probably the area that causes the greatest source of error in questionnaires and interviews. Questions need to be clear, short, simple and unambiguous.The aim is to eliminate the chance that the question will mean different things to different people. If the questionnaire designer does not do this, then essentially participants will be answering different questions.The problem can be exacerbated if there are different interviewers.T Use of jargon: Jargon (including technical terms) and colloquial expressions might not be used and understood by all participants.T Leading questions: A leading question is one that encourages a certain type of answer. Leading questions should always be avoided, as they produce unreliable data.T Words or phrases with positive or negative connotations: Two words that sound similar might have quite different connotations (e.g., 'childlike' is a positive, affectionate term that can be applied to men and women, and young and old; 'childish', however, has negative connotationsno one wants to be thought of as childish).T Embarrassing questions: These can make respondents uncomfortable, and close a potentially useful source of information.T Hypothetical questions: These tend to be based on conjecture (e.g., 'If you were governor, what would you do to stop crime?').They should be avoided as they do not produce consistent data representing real opinions.T Prestige bias: There can be a tendency for respondents to answer in a way that makes them feel better and puts them in a better light.T Do not assume your questions are clear and unambiguous. Pay attention to pre-testing and to training your interviewers T Review the initial results of the data collection with other interviewers, in order to identify any problems quickly T Change a data collection tool if it does not appear to be generating adequate, useful and good-quality data T Be prepared to organise additional data collection if the initial results indicate that there is a need for more data T Always keep your ToR in mind Box 2.18 Some key points in collecting the dataThe communication process can be seen as a sequence of events, each of them with its own objectives, target groups and characteristics aimed at ensuring that the evaluation findings are critically reviewed and effectively reported to stakeholders.You will have established in your communication strategy what events and tools you're going to use to review and report findings. Implementing this strategy involves:T preparing a presentation of the final findings from the data analysis T preparing an event at which the findings will be presented T Consider verifying your data analysis design T Use a statistician to see if any differences are significant. Interpreting the relevance of significant difference is not a task for people with no statistical background T Involve stakeholders in analysing and interpreting the data T Combine data analysis and verification with a first critical review involving stakeholders T formulating questions and assumptions related to these findings T formulating the expected outcome of the event T identifying participants in this event T developing the programme to address the questions and assumptions T organising the event T addressing the questions and assumptions, and agreeing upon the recommendations T reporting on the findings and recommendations for improving the project, product or service Too often, an evaluation report is produced but, for various reasons, little or no action is taken to implement its recommendations. It is important to build the follow-up action plan into the overall work plan and to ensure that it includes consideration of how the action plan is to be monitored and how the changes it brings to the project are to be managed.The main post-evaluation activities, therefore, are:T formulating the action plan T monitoring the implementation of the action plan T managing the resulting project changesFormulating the action plan should start from the time you discuss the evaluation findings. Specific manageable actions (matching existing skills and budget) need to be agreed, responsibilities defined and a time frame developed for these actions.T a clear goal (what do we want to achieve) T a clear description of activities (what are we going to do) T clear deadlines (when should the activities be done) T clear responsibilities (who is responsible for implementing the plan)When formulating an action plan you should ensure that:T the stakeholders involved are committed to carrying out the plan T the plan is realistic and manageable, and not just a wish list T it includes short-term wins as well as long-term gains, so that stakeholders see improvements quicklyT it is implemented without delay, so as to keep up the momentum of the evaluation T Ensure that major elements of the action plan are included in the organisational strategy T Use a pilot approach to test planned actions that might meet with resistance T Make sure your key stakeholders are committed to the action plan, so that any major changes to the project do not later meet with resistance to these changes T Communicate the action plan and its goals through various channelsThe implementation of the action plan should be monitored in order to see if the recommended changes are being made and are improving project performance and impact. Monitoring the implementation, following the standard monitoring process (as described in Part 1, pages 16-18) will also contribute to learning for future evaluations.Monitoring the implementation of the plan will involve setting out the planned actions and the changes they should lead to (the indicators for success). It is only in this way that an assessment can be made as to whether or not the change contributed to improvements in the project. If the changes are substantial, it might be useful to set up a steering committee consisting of different stakeholders who can monitor progress. Evaluation is all about improving the performance and impact of your information project, product or service.This improvement means changes. And changes mean that the stakeholders might need to adapt their behaviour. Different stakeholders have different positions and might not agree on some of the evaluation findings.They might also have had different levels of involvement in the evaluation.The implementation of the action plan therefore needs to take into account the different reactions that stakeholders might have to the findings of the evaluation. Possible reactions include:T Accepting the findings and recommendations, and ready to act upon them. This is the easiest situation. Nevertheless, there may still be various barriers to implementation (e.g., other people might resist changes in the way they need to work).T Accepting the findings and recommendations, and willing to see them implemented, but unable to act upon them. In this case, you will need to find out what the obstacles are. They might include a lack of necessary skills, staff or financial resources. If these problems can't be dealt with, implementation of the action plan is unlikely to succeed.T Accepting the findings, but not the recommendations, and not willing to act upon them. This can happen when the recommendations appear to create more negative effects (extra time and costs) for this stakeholder than positive improvements. Negotiation might be needed to minimise the negative effects and enhance the positive ones.This can also happen when a stakeholder is unable to see the benefits of implementing the recommendations and therefore hesitates to support them. In this case, more information and exposure to successful examples might be required.T Rejecting the findings and the recommendations. It is likely that this reaction is based on the relationship the stakeholder has with the evaluators and/or the information project, rather than on the report itself (assuming the evaluation and the report were adequate).Other reasons for this reaction could be that the stakeholder was not involved in the evaluation, that there are personality clashes or that there is disagreement between the stakeholder and the unit implementing the project. In these cases, relationships need to be improved before any co-operation from the stakeholder can be expected in the implementation process.To anticipate how a stakeholder might react to the evaluation findings and recommendations, you could do a new stakeholder analysis.The focus would be on assessing the benefits and contributions of the recommended changes.A useful tool for assessing the willingness and ability of stakeholders to change is the ADKAR model (Hiatt, 2006).This model lists five factors for successful change at an individual level: The model can be used to find out why a stakeholder is resisting change and to help the stakeholder move through the change process. It can also be used to create an action plan for T Use a communication strategy that ensures that stakeholders are kept informed efficiently and comprehensively; don't let the grapevine take over. In this strategy, include individual interviews with stakeholders to guide them through changes that will affect them personally T Be open and honest about the facts. Avoid creating unrealistic expectations T Give stakeholders choices to make, and be clear about the possible consequences of those choices T Give stakeholders time to express their views and concerns. Support their decision-making process, and provide any reassurance, guidance or information they might need T Where the changes involve loss, identify what could replace that loss. This will help assuage potential fears T Where the change process is complex, consider using a change agent. If the evaluation was conducted by an external evaluator, experience has shown that it is not a good idea to use the same evaluator to manage the project changes Smart Toolkit for Evaluating Information Projects, Products and Services 64 personal and professional advancement during change, and to develop a change management plan for your stakeholders.T different people react differently to change T everyone has fundamental needs that have to be met T change often involves loss, and people facing changes might feel a sense of loss T expectations need to be managed realistically T fears need to be dealt with If the evaluation recommendations call for a fairly complex set of changes involving various stakeholders, it might be worthwhile considering using the services of a change agent who can guide and lead the change process. It should be someone who is committed to the change process, has the capacity to lead it and has good relationships with the stakeholders. ","tokenCount":"9361"} \ No newline at end of file diff --git a/data/part_3/1237009741.json b/data/part_3/1237009741.json new file mode 100644 index 0000000000000000000000000000000000000000..a5524063b47f030409af1b2d30b6edda30669a11 --- /dev/null +++ b/data/part_3/1237009741.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"cb740ec46a461fa1a9fa459b7f03937a","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/2ff8ae7a-f759-456f-978d-a9ae2962db4e/retrieve","id":"1448441355"},"keywords":[],"sieverID":"17727500-aac1-4c7c-9a10-dd498f8ea26b","pagecount":"58","content":"The Tools for System Analysis (TOSA) Portal is a joint initiative of the Humidtropics and Livestock and Fish Research Programs of the CGIAR which aims to increase transparency and accessibility to the tools that are used within these programs. The database of tools and methodologies allows researchers easy access to appropriate tools and methodologies to more effectively and efficiently perform livelihood research related to agriculture, livestock and fish. This open source platform allows researchers to rate as well as comment on the tools and methodologies to continue to better research in this field worldwide.The TOSA portal offers a central location for sharing the tools, methodologies, examples and data that ensures maximum efficiency and optimization of research on the topics of agriculture and livestock. To prevent researchers from re-inventing the wheel, and ensuring that each is able to benefit from the lessons learned from other projects, we encourage researchers and project implementers to make use of this database of tools, as well as contribute tools they have, or are in the process of, developing.Beyond providing feedback and rating tools already in the database, this portal welcomes contribution of new tools from any user. Please contact Catherine Pfeifer (c.pfeifer@cgiar.org) if you would like to contribute.In 2013, as an outcome of the Participatory Agriculture Research: Approaches, Design and Evaluation (PARADE) workshop, over 40 researchers compiled experience and share methodologies in the areas of livestock, fish and crops. The various tools and methodologies these researchers developed were uploaded to a database called the Tools for Systems Analysis (TOSA) portal, as a joint initiative of the Humidtropics and Livestock and Fish Research Programs of the CGIAR, with the objective to increase transparency and accessibility to the tools that are used within these programs. The database of tools and methodologies allows researchers to find appropriate tools and methodologies to more effectively and efficiently perform livelihood research related to agriculture, livestock and fish. Now, nearly four years later, the database is being renovated and renewed for better user accessibility and therefore a broader impact. This is being achieved through an improved interface to the website and the development of online guides, and an integrated search tool.The TOSA portal includes a range of relevant and substantial products representing significant research inputs from various CGIAR partners. Dissemination of these tools to scale out uptake is a CGIAR imperative. Documentation of these tools and their collection into an online portal is an important step in the right direction. The proposed inputs will substantially improve the accessibility of the toolkit supporting its use by partner development and research organizations.By making this database of tools easily accessible and user friendly, tools will have a deeper impact and also be open to ongoing feedback. In addition, the toolkit should be used by partner research and development organizations, strengthening collaboration and mutual growth and learning. Through this portal, the worldwide community of researchers, project implementers and project developers working on livestock, agriculture and/or fish can build on each others work and find solutions collectively rather than in silos.The TOSA portal is a key access point where all of the data in the TOSA database can be accessed. In order to make this portal as accessible and user friendly as possible, it is being redesigned to include new search criteria and additional search methods. In order to make the portal more user friendly, additional and more consistent tagging methods were applied, and the database was reviewed for relevance. Changes to the database are further discussed in the following section.The new portal is scheduled for completion by December 2016.The purpose of the ratings function of each tool is to provide feedback and allow researchers to build upon their findings. This function creates an open conversation between users and developers of specific tools, while at the same time allowing the TOSA community as a hole a virtual meeting place for brainstorming, commenting and collective development of ideas.The ratings function will also be optimized in the new portal for December 2016.The TOSA portal offers easy access to a series of tools to aid in research in the areas of development research and implementation of projects. Initially developed in 2013 as an outcome of the Participatory Agriculture Research: Approaches, Design and Evaluation (PARADE) workshop, the database was reviewed and updated in 2016.As a result of the review in 2016, the database was cut down from 55 tools to 47 tools as if November 2016. The reduction was a result of an analysis of the tools in which the tool developers were emailed and asked for input. Tools were removed from the database if they were found to have inadequate information and therefore not useful to database users, if they were not yet complete, or if the developer felt that the tool did not belong in this particular database.In addition to removing tools that were not found to be relevant, contributors were asked to update their tools in the database to by providing additional information that would make their tool easier to find, and help users to find what they are looking for in the TOSA portal. All tools that have been updated are marked with an asterisk (*).The following tools are a combination of methodologies, guidelines, web and mobile applications, indices and other useful tools that are aimed at aiding research development and implementation of projects in the areas of livestock, fish and agriculture.To contribute a tool you think will help other researchers develop or implement their projects, please contact Catherine Pfeifer: c.pfeifer@cgiar.orgUsing a 4-Cell participatory tool -we can identify and rank species regarding their availability and use i) onfarm ii) in the wild iii) in the markets and iv) in the diet. The tool creates an inventory of all useful plant and animal species that are cultivated or collected on farm in the communities being sampled and rank them in regards to how many households cultivate/collect and over what size land. The tool provides insights into how the nexus between Species' on-farm and in the wild availability, Market presence and relevance in the diet functions within the community. The next step is to rank how these species are sold and purchased on the market, using the 4-cell to identify how many households buy/sell and how frequently the transaction is done. Additional inventory is made of those species and foods that are purchased in the communities but not cultivated/reared/collected. The final step is to see how the species inventoried in the previous session are consumed, using the 4-cell to identify how many and how frequently households consume the foods. A final session on seed Systems helps to identify what the structure of local seed system is. A set of qualitative questions accompany each session (Availability, Markets, Diets and Seeds) which help provide additional information regarding the availability and use of species in the community. The tool can be used to identify best-bet entry points through answering research questions such as: 1. Which species can be promoted to improve dietary diversity and nutrition 2. Which species are underutilised or neglected and can they have a role in the local community 3. What are the relationships between farms, markets and diets and how can these be leveraged when designing an interventions Over recent years, there has been increasing awareness that local knowledge and practices should be recognised in developing initiatives aimed at sustaining and improving the livelihoods of farming communities and the environment. Interest amongst research, education and development institutions to investigate and document local knowledge has grown significantly over the last few years. Bangor University is a leading institution in the development of a knowledge-based systems methodology and software called the Agroecological Knowledge Toolkit (AKT). The AKT5 software was developed by Bangor University in conjunction with the Department of Artificial Intelligence at Edinburgh University. Through a close partnership, Bangor University works with the World Agroforestry Centre (ICRAF) to integrate AKT into international research and development projects in order to design more effective interventions that work on the ground. The aim of the toolkit is to elicit local ecological knowledge in a rigorous and systematic way in order for it to be robust enough to be useful for informing projects. It was designed to provide an environment for knowledge acquisition in order to create knowledge bases from a range of sources. It allows representation of knowledge elicited from farmers and scientists or knowledge abstracted from written material. The use of formal knowledge representation procedures offers researchers the ability to evaluate and utilise the often complex, qualitative information relevant stakeholders have on agro-ecological practices and the knowledge underlying these practices. The methodology associated with knowledge elicitation for the AKT5 system allows for formalized flexible knowledge bases to be created.Local ecological knowledge refers to what people know about their natural environment, based primarily on their own experience and observation. Where management has a large impact on the natural resource base, it is useful to refer to it as agro-ecological knowledge, to emphasise the management component. The tool enables explicit representation of local knowledge through the use of a knowledge based systems approach. This is a methodology for formally representing qualitative knowledge on a computer. It is based on the premise that most knowledge can be broken down into short statements and associated taxonomies of the terms that are used in them. These can then be represented on a computer as a knowledge base using a formal grammar and a series of hierarchies of terms. Connections amongst statements can be explored by viewing sets of related statements as causal diagrams. The formal recording of knowledge in this way also makes it possible to use automated reasoning procedures to help evaluate and explore complex knowledge domains.The toolkit has been used successfully in a number of projects in Asia, Africa and Latin America and has been adopted globally by ICRAF. Projects have included development of multi-strata cocoa and non-timber forest products in Ghana and Cameroon; jungle rubber, soil conservation and Javanese home garden systems in Indonesia; participatory plant breeding for cassava in Colombia; fodder systems in Nepal; forest gardens and smallholder rubber in Sri Lanka; range management in South Africa and Lesotho; trees in crop fields and rangelands in Kenya and Tanzania. A Spanish language version is used in Latin America by the OVERVIEW \"Scientific evidence gathered in the last couple of decades suggests that climate conditions are changing rapidly and that this trend will likely continue and even accelerate. Some regions may benefit from more favorable climate conditions to production (the few winners), while others (the larger group of losers) will face increased climate change-related biotic and abiotic stresses. Where conditions improve, the traditional farming systems will be challenged to exploit the additional production potential, and where conditions deteriorate, accelerated adaptation (incl. transformational and systemic) will be vital, as centuries-old coping mechanisms used by farmers may become insufficient or obsolete for that specific area.The analogues approach is a novel way of supporting modeled policy recommendations with on-the-ground empirical testing. Analogues refer to sites or years that have conditions with statistical similarity, primarily in terms of current or future climate, but they can also include additional factors such as soils, crops, and socioeconomic characteristics. This helps link top-down global models (e.g. crop-climate or socio-economic models) with targeted field trials, on-farm information or visits and traditional knowledge.In essence, the approach locates a site whose climate today is similar to the given future of a place of interest (e.g. where can we find today the future climate of Nairobi, Kenya?), or vice-versa (e.g. where can we find in 20130 the climate that we currently find in Nairobi?). Additionally, it can also identify \"\"homologue\"\" sitessites that share similar conditions either today or in the future.\" Farmer Field Schools The Farmer Field School approach allows farmers to learn about alternative crop and livestock management practices and technologies with the aim of improving their own productivity; i.e. learning new ways to cope with old problems related to agriculture or livestock rearing (van den Berg & Jiggins 2007). At the same time, the approach allows farmers to investigate for themselves the costs involved and the different benefits of traditional and alternative practices, thus leading to swifter adoption of the successful practices or varieties of crops tested. The Farmer Field School learning process builds on the existing knowledge of farmers, enabling them to combine and evaluate new and existing technologies in their own fields and to adapt new technologies to their own environments. Once farmers are able to combine and evaluate these technologies they will become more responsive to changing conditions, such as that of Striga and soil fertility, and will thus be able to develop cropping systems that are more productive, profitable and sustainable (van Mourik, et al., Undated). Farmer-to-farmer video In West Africa, the International Crops Research Institute for the Semi Arid Tropics (ICRISAT) built on experiences gained by the Africa Rice Center (AfricaRice) in developing a series of ten farmer-to-farmer videos. The ten films are now being widely shown to support rural learning on practical and affordable ways to control one of Africa's most serious weeds -striga. Strong participation of farmers has been key to the film making process. First and foremost, the knowledge and farming techniques shared in the videos have been developed over a number of years within farmer field schools. ICRISAT and partners established the schools, starting in the early 2000s, to support farmer experiments on a wide range of striga control options. The result was the development of an integrated set of striga and soil fertility management practices (ISSFM) for use in sorghum and pearl millet cultivation. ComMod is a variation of mutli-agent systems modelling. The main principle of the companion modeling (ComMod) approach is to develop simulation models integrating various stakeholders' points of view and to use them within the context of the stakeholders' platform for collective learning. This is a modeling approach in which stakeholders participate fully in the construction of models to improve their relevance and increase their use for the collective assessment of scenarios. The general objective of ComMod is to facilitate dialogue, shared learning, and collective decision making through interdisciplinary and \"implicated\" research to strengthen the adaptive management capacity of local communities. By using such an approach, we expect to be in a better position to deal with the increased complexity of integrated natural resource management (INRM) problems, their evolving and continuous characteristics, and the increased rapidity of evolutions and changes in number of stakeholders (Gurung, et al., 2006). ComMod is a cyclic process of three stages that can be repeated as many times as needed: -Field investigations and a literature search to help generate explicit hypotheses for modeling. -Modeling, i.e., the conversion of existing knowledge into a formal tool to be used as a simulator. -Simulations, conducted according to an experimental protocol either on a computer or through a role-playing game (RPG), to challenge the former understanding of the system and to identify new key questions for new focused investigations in the field. The resulting mutli-agent systems model can be implemented either through a computerized model or through a role playing game. We named this process \"companion modeling\" because it is used in the mediation process (the social dimension of the companion) and it co-evolves with this social process (temporal and adaptive dimensions) (Gurung, et al., 2006 ) SUMMARY OF USES The COMPASS (Co-innovation and Modeling Platform for Agro-eco System Simulation) framework that integrates modeling tools at field, farm and landscape scales has been developed to support experiential learning and decision-making in participatory settings. The framework consists of a set of widely applied simulation, optimization and visualization tools that differ in their representation of social-ecological systems, and in the spatial and temporal dimensions addressed. Moreover, the architecture of the modeling framework allows rapid model development, reconfiguration and deployment.The field-scale modules of COMPASS quantify effects of management of soil, crops, grasslands and seminatural landscape elements, and comprise complete technology packages including crop choices and rotations and their management. Resulting indicators include e.g. crop yields, soil carbon and nutrient dynamics, water balances and soil erosion). Model outcomes at field scale can be aggregated to farm-scale modules, which may be spatially implicit or explicit, static or dynamic, and can use different optimization methods. Typical farm level indicators such as nutrient balances, productivity, and economic and environmental performance are quantified and their dynamics simulated). Indicators at landscape level may be derived from aggregation from field and farm scales indicators, or represent emerging properties that are only relevant at landscape level, such as the spatial coherence of landscape elements, or indicators of landscape quality. At the farm level farmers and their advisors are the main stakeholders, whereas at the landscape level a large range of stakeholders can be identified, such as cooperatives and governmental and non-governmental organizations.The diversity of farm types and styles is captured through functional typologies, while biophysical dynamics at higher scales can be explicitly coupled in COMPASS to socio-institutional dynamics represented in agent-based models.In the COMPASS framework, we use heuristic optimization techniques such as evolutionary algorithms (EAs) with Pareto-optimality as a selection criterion and multi-criteria methods to link supply and demand of ecosystem services. New farm and landscape management alternatives can be generated by changing resource management in existing solutions randomly, deliberately or by perturbation and recombination of existing alternatives. Each alternative is then evaluated in terms of the objectives that represent relevant ecosystem services. Evaluation may involve application of static or dynamic disciplinary models, pertain to one or several spatial and temporal scales, and can be carried out assuming stable conditions or uncertainty and environmental change. Methods to quantify indicators and the related data sources can be quite heterogeneous, ranging from survey, monitoring or experimental data, established empirical relations, or calibrated and validated computer simulation models, to expert knowledge and rules of thumb.Some tools in the framework: -FarmDESIGN: farm level analysis of production, nutrient cycling, soils, economy, labour, biogas production, GHG emissions, human nutrition -Landscape IMAGES: spatially explicit exploration of tradeoffs and synergies -FuzzyDANCES: drawing and simulating fuzzy cognitive maps -Landscape DISPLAY: simulation of dispersal of organisms in landscapes -FarmSTEPS: spatio-temporal exploration of cropping plans -ActorIMAGES: a set of agent based models on Netlogo -ROTAT: rotation planning and evaluation for productive, environmental and economic performance OVERVIEW EXTRAPOLATE (EX-ante Tool for RAnking POLicy AlTErnatives) arose out of the need for a decision support tool to assess the impact of different policy measures. By disaggregating the effects of policy interventions the tool facilitates discussion of the relevant issues and enables users to visualize the predicted impacts of policy interventions, based on numerical analysis. The tool serves as a \"filter\" that allows the user to sift through, in an ex-ante fashion, a range of policy measures to identify those that could be applied in a specific situation to achieve particular outcomes that further particular policy objectives. Whilst originally developed in the context of policy analysis, EXTRAPOLATE can be easily applied in the context of more technical interventions. In essence, for a particular theme (e.g. a dairy sector) relatively homogeneous \"stakeholder groups\" are first identified (a commodity chain approach can be helpful in deciding who is involved and where), and these groups are assigned a livelihood status (or some other currency of \"wellbeing\"). The constraints that they face in relation to the particular theme are then identified and linked by scoring their relevance to the different groups. \"Outcomes\" are then identified as the measurable effects of relaxing these constraints, and the impact of these outcomes on livelihood status is estimated. Thus the present (ex-ante) situation is described, and policy or institutional interventions can then be introduced. Their effects are estimated in terms of their impacts on constraints, which result in certain outcomes, which, in turn, influence the livelihood status of the different stakeholder groups. The tool has the further characteristic that it is participatory in nature, encouraging stakeholder involvement and discussion around the likely impact of policy change. Feed for livestock is often cited as the main constraint to improved productivity in smallholder systems. Overcoming this constraint often seems an elusive goal and technical feed interventions tend to adopt a scattergun or trial and error approach which often fails to adequately diagnose the nature of the feed problem and opportunities and therefore the means to deal with problems and harness opportunities. The purpose of the Feed Assessment Tool described here is to offer a systematic and rapid methodology for assessing feed resources at site level with a view to developing a site-specific strategy for improving feed supply and utilization through technical or organizational interventions. The Feed Assessment Tool (FEAST) is a systematic method to assess local feed resource availability and use. It helps in the design of intervention strategies that will optimize feed utilization and animal production. The tool comprises two main elements: -A focused PRA exercise which provides an overview of the farming system with particular emphasis on livestock feed aspects.-A simple and brief quantitative questionnaire, designed to be completed by experts under the guidance of the Feast facilitator. Output from 'FEAST' consists of a short report in a defined format along with some quantitative information on overall feed availability, quality and seasonality which can be used to help inform intervention strategies. In addition FEAST generates a prioritized list of feed intervention strategies which are assessed as being potentially suitable for the study location. The prioritized list is based on matching characteristics of a given village/community with the requirements of a particular intervention. These characteristics include factors such as land and labour availability, dominant farming system, main livestock commodity etc. The tool is aimed at research and development practitioners who are working in the livestock sector and need a more systematic means of assessing current feed-related strategies and developing new ones. We have developed and used a quasi-experimental design and index to measure women's intra-household bargaining position. We hope this tool can capture women's perceived bargaining position and by doing so over come the pitfalls of measuring bargaining power based on indicators. The tool can be further developed and used to measure the bargaining position of any household member in relation to other household members. The index can also be developed further into a bargaining model equation that helps to calculate the position of any household member in household decision making process.SUMMARY OF USES HUMIDTROPICS SIMILARITY ANALYSIS*The Humidtropics program of the CGIAR, aims to help poor farm families in tropical Africa, Asia and Americas to boost their income from integrated agricultural systems' intensification while preserving their land for future generations. Four action areas have been defined, in Eastern Africa, Western Africa, Central America and Mekong area. Each of the action areas is subdivided into action sites. Research in the different action site will be conducted, among other identification of best bet innovation to improve agricultural livelihoods. Innovations that improve these rural livelihoods work in a particular location but might not be a solution in another location with different characteristics. Understanding the context within which research operates is crucial to understand where else the acquired knowledge can applied and define the out-scaling potential. Up to recent, context was mainly understood as the biophysical environment, for which full coverage often satellite image derived geographical information exist. However, in complex agricultural systems, uptake and spreading of innovation is often more driven by socio-economic and institutional context than the biophysical environment. It is therefore crucial to define context in a broader way. Similarity analysis tries to understand these contexts and map them out. It allows addressing two different but complementary questions. First of all, to what extend is a given site similar to another sites? This allows to predict cross-site learning. Secondly, where else in the region can a similar context be found? This allows to define the extent of potential outscaling of the best bet innovations and lessons learnt. The objective of this report is present a generic similarity analysis for each of the action sites of the Humid Tropic program and define the out-scaling and cross-site learning potential. The similarity analysis tool allows to find area with similar characteristics to a study site. It runs tree types of similarity: principal component, Mahalanobis distance and Bioclim distance. There are 3 primary objectives for the Humidtropics situational analysis (SA): 1. To characterize broadly all important system aspects that are relevant to the CRP within the target Action Sites and, through that, generate information to inform all other Program activities to better attain the Intermediate Development Outcomes (IDOs), as well as to inform ongoing field site selection. 2. To harness the various partner skills and experiences to develop a common and shared understanding of the issues that need to be addressed and potential solutions, particularly between international and national partners, allowing local and global expertise to play complementary roles. 3. To initiate and facilitate engagement with stakeholders and partners as part of the R4D platform development that is needed for the long-term success and scalability of the Program. The tool itself is the outline for SA. It provides a description of the context of a Humidtropics situational analysis, and suggestions on how to undertake the analysis, choose the people implementing it, monitor its implementation. It also provides a list of indicators that are relevant for the analysis. LINK METHODOLOGYThe LINK Methodology aims to promote the engagement of small holder producers with modern markets by guiding a multi-stakeholder process of shaping or upgrading inclusive trading relationships with the potential to create win-win situation for all actors involved. For that reason, four key tools are designed to kick off, implement and conclude a participatory innovation process in the iterative manner of a \"design-test-checkact\" cycle. Key tool 1 -Value Chain Map: A strongly visual approach to the classic value chain analysis, divided into a nested perspective of core processes, partner network and external influences. Key tool 2 -The business model canvas: Adapted from Osterwalder's innovative approach, this participatory tool has proved to be extremely valuable for small-scale farmers, NGOs and buyers in understanding business goals and practices. Key tool 3 -The new business model principles: Represent a set of signposts to help evaluate current business practices in terms of their inclusiveness and to deliver practical ideas on how to enhance a business' inclusiveness. Key tool 4 -The prototype cycle: A mixture of iterative learning and formal monitoring and evaluation approaches, the prototype cycle aims to design, test and evaluate the progress of innovative elements for an existing or new business model on a regular basis and to facilitate the decision between upscaling aspects that work and redesigning elements that fail. Methods for info gathering The LINK methodology is based on: a) direct experiences of research projects in several countries in Latin America and Africa; b) more than twenty business model case studies which have proved to work for small-scale producers; and, c) the growing literature around business models as a design/development tool to augment the effectiveness of business processes to fight poverty. The methodology is highly adaptive, participatory and open to improvement. The exercises and approaches in the guide are not carved in stone but should rather be used in the way most beneficial for the involved actors. The Livestock Geo-Wiki is an online geo-data tool, that allows not only for visualisation of geo-data but also allows for crowd-sourcing. The Geo-Wiki is used to provide a central viewer, validation tool and repository for livestock distributions and production systems data. The module currently contains data on livestock distributions (cattle, chicken, duck, pig, sheep & goat) as well as the intensive, semi-intensive and extensive systems for pig and chicken keeping. Beyond this, the platform aims to develop a comprehensive global livestock information system, and will be complemented by modules on major global benefit and impact linked to the livestock sector in i) poverty and growth, ii) health and nutrition and iii) climate and natural resource management as new data is produced. What we use are a series of tools developed for the following 1. To collate initial information at household level on livestock owned within farming systems and identification of constraints in management of various livestock 2. Tools for continuous monitoring (at monthly intervals) of animal productivity (including production, reproduction, adaptation, feeding and management) --these tend to be species specific, so we have tools for monitoring dairy cattle, and for monitoring sheep, and are adapting this for monitoring goats-these have been paper based, but currently we are testing use of mobile phone technology to collate this information from farmers 3. Data storage and provision of feedback messages from information collated-these are still under development, with some testing carried out for dairy cattle production systems. Most Significant Change (MSC) is a potentially useful evaluation tool given its simplicity and its use of storytelling to communicate experiences of change, and the who, why, how and why of an event or situation. This relatively new method is based on a qualitative, participatory approach, with stakeholders involved in all aspects of the evaluation and is therefore a shift away from conventional quantitative, expert driven evaluation methods toward a qualitative participant driven approach, focusing on the human impact of interventions. MSC is particularly useful for understanding if and how behavior change has occurred and how an intervention has contribuated to the change. Most Significant Change involves the generation of significant change stories by various stakeholders involved in an intervention. These are stories of significant changes caused by the intervention and can be adapted to also pick up on unexpected changes that may not have clear causal links to interventions. The 'more significant' of these stories are then selected by the stakeholders for depth discussions. This is the heart of the how use most significant change and where many go wrong These discussions bring to the stakeholders' attention the impacts of the intervention that have the most significant affects on the lives of the beneficiaries (Davies and Dart, 2005). Due to the relative simplicity of the approach, which is easy to explain and can be communicated well across cultures, and its emphasis on encouraging project participants to share their stories and experiences in a relatively unstructured and informal way, MSC was thought to be particularly relevant as a means to identify unexpected changes-both positive and negative. The technique has so far been widely, and has been found to elicit a number of unexpected positive project impacts from participants (see for example Sheriff and Schuetz, 2009). Tittonell et al., 2008a;van Wijk et al., 2009) is a farming systems model with a special focus on organic matter flows within the farm. The model looks at interactions between the crop and livestock components, and assesses how nutrient management strategies work out on estimated productivity and profit of the farming system. To look at the interactions between crops, soil and livestock, component subsystem models are used that are as simple as possible to avoid being overwhelmed by detail, but to include all major activities to allow scenario analysis. Agricultural fields are represented by the FIELD model that contains linked crop and soil models (Tittonell et al., 2010), livestock production (milk, meat and manure) and reproduction are represented by LIVSIM (Rufino et al., 2009), an individual based model, and manure and organic residue management by HEAPSIM (Rufino et al., 2007). Each of the component models can have multiple instances depending on the configuration of the farm studied and have been tested in detail individually. NUANCES-FARMSIM and the component models are used together with secondary data, expert knowledge and empirical agronomic experiments or feeding experiments to generate understanding of the key processes that control farm performance. Farmers' decisions on resource allocation are represented in the model based on farmers' responses during the detailed system characterization and observations in the field. Discussions with key informants and farmers are conducted, both individually and in groups, to understand farmers' objectives and aspirations and the major constraints faced (Misiko, 2007;Misiko et al., 2008). These discussions feed into the choice of future scenarios to be explored. The model has been applied to study farming systems in West, East and Southern Africa, and to study how individual farms differing in the amount production resources (e.g. amount of land, number of livestock) available respond differently to specific intervention options. Nile Goblet is a software that allows stakeholder to introduce suitability ranges for agricultural practices for several criteria (layers), the software then return suitability maps where all the suitability ranges introduced are met. This tool as been developed for the Nile Basin Challenge Program and therefore comes with a database of geographical layers for the Nile, and has rainwater management agricultural practices already programmed as an illustration. Participatory video is a form of participatory media in which a group or community creates their own film. The rationale is that making a video is easy and accessible, and is a great way of bringing people together to explore issues, voice concerns or simply to be creative and tell stories. It is therefore primarily about process, though high quality and accessible films (products) can be created using these methods if that is a desired outcome. This process can be very empowering, enabling a group or community to take their own action to solve their own problems, and also to communicate their needs and ideas to decision-makers and/or other groups and communities. As such, participatory video can be a highly effective tool to engage and mobilize marginalized people, and to help them to implement their own forms of sustainable development based on local needs. The objective of participatory video is to create a climate that encourages individual and group development. The specific technical and organizational skills learnt, and the video produced are part of the work, but it is the positive change that participants go through during the process that is the most important outcome. This informs the activity and approach at every stage of the work. Participatory videocan have farreaching benefits and can be a potent tool for group empowerment (Shaw and Roberson, 1997). , 2006, Prolinnova) as a reaction to often observed extractive documentation where outsiders are controlling the process, and the information that has been documented being stored beyond the reach of the community . FLD, on the other hand, allows people tell their own stories in their own language. The resulting products can be used by community members for internal learning within the community, for exchange with other communities and for sharing with development workers, researchers and policy-makers. Photo safaris involve farmers in documenting the problems that they face. Groups of farmers are equipped with a Digital Camera and, depending on the objective, tasked to document problems they encounter or examples of innovative solutions. Following a transect through the community, for example, farmers then document the problems or solutions they consider to be priorities. If possible, photos are uploaded to computer and printed onsite, so that they can be presented back to farmers and other stakeholders. Interpreting the results required caution, however, as the photographic nature may encourage participants to focus on the most visually apparent issues within the site itself, at the expense of less tangible, seasonal or off-site issues.SUMMARY OF USES Participatory Impact Pathways Analysis OVERVIEW Participatory Impact Pathways Analysis (PIPA) is a practical planning, and monitoring and evaluation approach developed for use with complex projects in the water and food sectors. PIPA begins with a participatory workshop where stakeholders make explicit their assumptions about how their project will achieve an impact.Participants construct problem trees, carry out a visioning exercise and draw network maps to help them clarify their 'impact pathways'. These are then articulated in two logic models. Reflexive Monitoring in Action (RMA) is an interactive methodology to encourage reflection and learning within groups of diverse actors that seek to contribute to system change in order to deal with complex problems. It builds on the assumption that recurrent collective reflection on the current system (barriers as well as opportunities) helps to stimulate collective learning and design and adapt targeted systemic interventions. While doing so, these initiatives develop new or change local rules, practices and relations within the network of actors involved. This takes place in the muddiness of everyday struggles of change trajectories (Van Mierlo et al., 2010a, 2010b, 2013). Key to this methodology is institutional changes while evaluating these ex-durante. Reflexivity is the outcome; the emergent property of an intervention programme or bottom-up innovation initiative developing new coordinated practices while the rules of the game change along in the process of designing new systems. RMA builds on the premise that while the contribution of a single system innovation initiative to a long, capricious system innovation processes cannot be assessed, it is possible to characterise the actions of a project and their outcomes in terms of relevance for system innovation. The ongoing innovation process is evaluated with the aid of middle-range theories about processes of societal change, including communication, learning, network building and conflict management as well as sociological and institutional theories about system innovation and social practices specifically.The reflexive monitor's frame of reference is the particular system innovation ambition i.e. the drive to develop new rules, relations and material artefacts as articulated by the innovators (if necessary with the aid of the evaluator) rather than the needs of users. Monitoring activities are an integral part of the change initiative; the appointed reflexive monitor, whether a hired person, or someone from the project team, usually starts at the moments of interaction, such as regular team meetings to observe how the system innovation ambition is articulated, whether learning is taking place and ambitious collaborative actions are being designed and carried out. Challenges encountered on the pathway of change in the form of resistance to change that relates to the institutional setting of the innovation initiative, define the activities of the reflexive monitor. Hence, the reflexive monitor is not only an observer but also a facilitator and a sparring partner, with sufficient distance to take a critical stance if needed. In a diversity of ways, he or she encourages participants to reflect upon the relationships between the project activities and results and its institutional setting, and the ambition to change in both short-term actions and long-term goals and future perspectives. In this way, RMA addresses the mechanisms that provide stability to the current unsustainable systems. The River Basin Game is an effective simple-to-operate common-pool game using glass marbles and a sloping table or board. It promotes mutual understanding of different people's levels of access to water and allows participants to actively react to scenarios. Experience shows that participants become highly animated and, by the end of the game, have a good understanding of system dynamics, common-pool resource pitfalls and of which issues are most critical and of what solutions might be considered. If the game-playing is part of a workshop that is spread over two days, participants are able to contribute in detail to new solutions and institutional agreements. The second day can follow up on lessons learnt and bring together various institutions to assist improving the equity of supply. The game can also be conducted in sessions that last 1-2 hours and alongside other decision-aid tools such as spreadsheets. The cited paper includes a literature review of gaming in water resources management, a complete description of the game, details of the practical arrangements required to organize a game-playing session and possible approaches to evaluate the effectiveness of a session (Lankford, et al., 2004). The River Basin Game is a dialogue tool for decision-makers and water users that has been tested in medium to small catchments in Tanzania and with many other types of stakeholders over a decade in countries such as Nigeria, Rwanda, Zambia and Swaziland. The 'marbles game' (also known as) has been applied to these river basins: Nile, Zambezi, Mekong and Rufiji. It comprises a physical representation of the catchment in the form of a large wooden board. The central river flows between the upper catchment and a downstream wetland, and has on it several intakes into irrigation systems of varying sizes. Glass marbles \"flow\" down the channel represent river water. Participants place small sticks acting as weirs across the river to capture the marbles and scoop them into irrigation systems where they sit in small holes -thereby meeting the water requirement of that particular plot of rice or irrigation activity. The players learn that being at the top of the river has advantages, whilst tail-end systems experience water shortages. The game purposively goes through four stages; an introduction; a competitive stage whereby individuals compete for marbles (the search for water); a livelihoods stage when players consider 'the search for money' and a final collaborative stage where players cooperate over the distribution of the marbles to the different sectors on the board. Players then break into discussion groups to explore two related questions. These are: 'what technical and institutional solutions need to be considered and be initiated in order to arrive at a more equitable and productive sharing of limited water supplies? The second question is: What measures need to be taken to promote the sharing of water resources by those advantaged and located at the top of the catchment or irrigation system? The implications of different management strategies can be evaluated by various stakeholder groups including users and support agencies (Lankford, et al., 2004). The Targeting AGwater Management Interventions (TAGMI) is a decision support tool that facilitates targeting and scaling-out of three different Agricultural Water Management (AWM) technologies in the Limpopo and the Volta River Basins. This online tool displays the output of a Bayesian network model that assesses the influence of social and bio-physical factors on the likelihood of success of implementing different AWM technologies. The Bayesian network model was developed iteratively, in collaboration with local researchers and experts, and merges knowledge pools from technical experts to local agriculture extension agents. TAGMI displays spatially explicit model results at the district scale, based on available data, to determine which districts may be better suited than others for a particular technological intervention in Volta and Limpopo Basin countries. TAGMI helps to answer the question: will an intervention successfully applied in one location have a reasonable chance of success at other locations? The answer, provided with a measurable degree of certainty, suggests a way forward for scaling-out AWM interventions. TAGMI Assesses the Likelihood of Success. The tool models the relationship between social and bio-physical factors and successful implementation and long-term adoption of agricultural water management technologies. It is intended for non-technological expert users who want to know which parts of the river basins have conditions suitable for successful implementation of a planned AWM intervention. It is Science Based. Taking social and human resources into account reflects the fact that there are further enabling conditions required beyond the purely bio-physical conditions that dictate whether or not a technology is appropriate for introduction. The conceptual framework for the Bayes model is informed by the Sustainable Livelihoods Framework (DFID 1999). For more detailed information about the Bayes model behind the tool see the Model Technical Documentation It is Evidence Based. The Bayesian network model makes use of available data on key characteristics in a systematic way to suggest the likelihood of success of an intervention. It estimates how different contextual factors interact to influence success. This model and tool are based on the premise that, while absolute certainty is unobtainable, degrees of certainty are both obtainable and useful when using the available information in a systematic way. ","tokenCount":"7224"} \ No newline at end of file diff --git a/data/part_3/1244622641.json b/data/part_3/1244622641.json new file mode 100644 index 0000000000000000000000000000000000000000..18d25dad60416657725e4b7b19ee54225d07e007 --- /dev/null +++ b/data/part_3/1244622641.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"ae05589259773908b5c4e84dab13f82e","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/950f6bef-4397-4116-8579-2be28a92f7c1/retrieve","id":"511576732"},"keywords":[],"sieverID":"60c1dad2-a0fa-4890-a433-b0068a238ab7","pagecount":"2","content":"Intensive or semi-intensive rearing of improved and unimproved stocks of chickens, guinea fowls, ducks, turkeys and pigeons in relatively small numbers for food (meat, eggs) and cash has potential to reduce poverty, malnutrition and food insecurity among rural and peri-urban farm families. However, little is known about rural poultry production systems in the Africa RISING intervention communities in Ghana. IITA, University for Development Studies and Kwame Nkrumah University of Science and Technology are working with farmers to raise and sustain productivity of the rural poultry production systems in the Africa RISING project intervention communities.Questionnaire and interviews were used to collect data on rural poultry production from 180 households randomly selected from two districts in each of the three regions -Northern, Upper West and Upper East. The questionnaire covered demographic and poultry production characteristics.Production is mainly semi-intensive (Table 3). Men are the predominant keepers (85%). Most of the keepers were illiterate. Guinea fowls and chickens were types kept for income and home consumption (Table 1).Most households provided housing for their birds, which accommodated both young and adult birds as well as different types. Birds mainly scavenge for food on the rangeland, but are supplemented with cereal grains.The grains were obtained largely from farmers' farms. Watering was done daily using locally made pots placed outside the coops. Disease incidence was high, and veterinary care was inadequate. Diseases and predation were major constraints (Table 3). Breeding stocks were obtained mainly from the market as well as from friends and relatives. Mating was not controlled. Preliminary onfarm studies showed improved housing (Photo 3) improves live-weight of birds (Fig. 1).Extension of improved technologies and training of farmers on best management practices could improve rural poultry production. For example, production can be improved through establishment of breeding stock and hatchery and brooding facility for regular and reliable supply of either hatching eggs or chick/keets to farmers in order to shift to sustainable small-scale commercial production.Photo 3: Intensive poultry production unitsPhoto 2: Semi-intensive poultry system The International Food Policy Research Institute leads an associated project on monitoring, evaluation and impact assessment.Prepared by: Herbert Dei (hkdei@yahoo.com), Asamoah Larbi (a.larbi@cgiar.org) and Irmgard Hoeschle-Zeledon (i.hoeschlezeledon@cgiar.org) africa-rising.netThis document is licensed for use under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported Licence ","tokenCount":"370"} \ No newline at end of file diff --git a/data/part_3/1254876847.json b/data/part_3/1254876847.json new file mode 100644 index 0000000000000000000000000000000000000000..83c03aba1ea36e1fdda1cad8c6d34ceed7f1d86c --- /dev/null +++ b/data/part_3/1254876847.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"0574d9cd4dda3a19ec16ad1f8a7b8477","source":"gardian_index","url":"https://publications.iwmi.org/pdf/H043757.pdf","id":"-1677756734"},"keywords":[],"sieverID":"b4acccca-5c95-4961-88b5-a1f4dae8b9da","pagecount":"11","content":"The phenomenon of poverty is receiving the increasing attention of policy makers and institutions with an attempt to improve the living standards of the third world countries. Pakistan is no exemption to that. As the majority of third world population is concentrated in rural areas and dependent on agriculture sector for income, it becomes of special interest to dig into the root causes of poverty in these areas. A number of studies have shown that poverty is concentrated in the rural areas of Pakistan. However, a wide variation in estimates of poverty was experienced owing to various approaches and different poverty lines used by the researchers in estimating the incidence, depth, and severity of poverty. Recently, the Government of Pakistan addressed this issue by circulating the official poverty line. Poverty being a complex phenomenon, its determinants vary from time to time and across different areas. However, most of the studies indicate that poverty in Pakistan is concentrated in rural areas of Pakistan. Applying dollar a day poverty line shows that the poverty in Pakistan is higher as compared with many other Asian countries.The latest poverty scenario in Pakistan paints a very gloomy picture. According to the Government of Pakistan (2002), about 28 percent of total population is currently living below the poverty line. The incidence of poverty is higher in rural areas (32 percent) as compared to urban areas (19 percent). The quality of life of the poorer segments of the society continues to deteriorate. Not only income poverty has been on the rise in the country but other dimensions of poverty also present an equally dismal picture. Strong rural-urban difference in the context of poverty is observed, with households living in the rural areas likely to be poorer than those living in urban areas. A comparison of incidence of poverty across irrigated regions of the country leads to some interesting observations. Around 70 percent of the population is residing in rural areas of Pakistan. Majority of these directly or indirectly depend on agriculture for generating the household incomes. A significant proportion of rural population is engaged in raising crops for income to support the current livelihood standards. The landowners are the main beneficiaries while landless also derive income from providing different services to them. The increase in income of land owners through improved productivity and profitability shows trickle down effect on the betterment on the landless rural population while a failure on the part of landlord also affect the well beings of poor. Moreover, continuous fragmentation of land into small farms has decreased the efficiency and productivity of the farms, which has put tremendous pressure on the ever-increasing population of the rural areas. In addition to land, adequate and reliable supply of irrigation water is another constraint, which is inhibiting the increase in productivity to meet the potential productivity levels. As the productivity of these vital resources fluctuates, so is the income and risk of being poor vary from time to time and across different areas.The attempts to analyze the incidence of poverty and finding its determinants are made from time to time and by using various yardsticks based on different sets of assumptions. However, most of the studies indicate that poverty in Pakistan is concentrated in rural areas of Pakistan.The current paper is divided into five parts. In part II, literature on poverty is reviewed with reference to Pakistan and Asia. In part III, various definitions of poverty, limitations, and data requirements are discussed. Conclusions are drawn in the last part of the paper.A number of studies have been conducted assessing poverty situation and its dimensions in Pakistan regarding poverty lines, inequality, absolute versus relative poverty, unemployment, and different policies, social welfare programs, institutional reforms, gender, and demographic factors, irrigation performance and IMT, during the last three decades. A brief review of some of the important studies is presented below.A head count rural poverty (32%) was estimated by using the poverty line of 2550 calories intake per day per adult equivalent by Irfan and Amjad (1984). They translated the detailed information available in the Micro Nutrient Survey of 1977 to determine an income-based poverty line at 1979 prices of Rs. 109 per capita per month (poor), and then used this line and Rs. 95 per capita per month (very poor) to obtain the head count measure for the year 1979. The study showed that rural very poor increased from 32 percent in 1963/64 to 43 percent in 1969/70 and declined to 29 percent in 1979.A relative poverty line based on per capita expenditure of lowest 10 percent of the population was used by Akhtar (1988) on the basis of HIES data for the year 1979. The results showed that the incidence of poverty in rural areas was significantly higher than in urban areas. Moreover, it was found that poverty in Pakistan was concentrated in rural areas. The computed poverty line employed for analyzing the poverty situation was Rs. 948 and Rs. 1260 per year for rural and urban areas, respectively. The urban poverty line was set 33 percent higher than the rural one.A decline in poverty was estimated in rural and urban areas by Ahmad and Allison (1990). They employed poverty line of Rs. 100 and Rs. 110 per capita expenditure on monthly basis, respectively for rural and urban areas. The poverty line was based on 2550 calories intake per adult equivalent basis assuming 10 percent higher estimate of poverty line for the urban areas. The study concluded that during 1979-1984/85, rural poverty declined from 20 to 25 percent while urban poverty declined from 20 to 16 percent indicating higher incidence of poverty in the rural areas as compared to the urban areas.Based on basic needs approach, an increase in percentage of poor from 47 percent in 1992-93 to 50 percent in 1995-96 was estimated for Pakistan by Ahmad (1998). In Punjab province, the percentage of poor consistently rose from 43 to 44 and then to about 50 percent in the years of analysis. The well known indices of poverty like the head count ratio, poverty gaps and FGT were also calculated by using data from the HIES and PIHS of 1992-93, 1993-94 and 1995-96. When basic needs poverty line was used, the percentage of poor increased from 47 percent in 1992-93 to 50 percent in 1995-96. An increasing trend in head count poverty was also found in Baluchistan and NWFP. Sindh was the only province where the poverty situation had improved slightly. It was concluded that poverty situation in the recent past had worsened and intensity increased. The author also analyzed the determinants of poverty by using the Logit model. The results on determinants of poverty identified various groups, which were most vulnerable and could be used as effective tools for policy makers. The results of model showed that dependency ratios, household size and level of education had strong correlation with poverty. A high incidence of poverty was observed for households whose heads were engaged in agriculture and related activities as well as in services and transport sectors. It was also found that households living in the rural areas of Pakistan were likely to be poorer than those in urban areas. The author observed that poverty reduction programs were needed to be targeted oriented.A head count poverty of around 37, 40 and 33 percent was estimated by Qureshi and Arif (1999) for Pakistan, rural, and urban areas, respectively. The basic need approach was used in estimating poverty line using HIES data and estimates were calculated for the year 1998-99. A poverty line of Rs. 705.96 per month was used for assessing incidence of poverty in Pakistan while the corresponding figures for rural and urban areas of Pakistan were Rs. 676.31 and Rs. 898.94 per month, respectively.A rise in incidence of poverty, both in rural and urban areas of Pakistan, was estimated by Arif et al. (2001). The issues surrounding non-farm employment and rural poverty in Pakistan were examined. It was found that poverty was relatively higher in rural areas and widespread across all groups of population. The wageworkers in the non-farm sector were better off than the agricultural laborers. Services and trade sectors were hindrance in reducing rural poverty. It was found that poor were concentrated in construction, transport and manufacturing sectors. The study was based on primary data set of 1996-97, Household Integrated Economic Survey (HIES). The non-farm category included wageworker whoever all self-employed people but not the self-employed in agriculture sector. The basic needs approach was used for poverty line determination. The multivariate analysis showed that age, education, sex and household size were the major determinants of being employed in the rural non-farm sector. Authors suggested that dynamic labor in agriculture combined with a modernizing non-agriculture sector could generate employment and income with resulting growth and elimination of rural poverty.Table 1 shows the synthesis of various selective studies conducted in Pakistan, assessing the incidence of poverty using various approaches and related to various time periods. A variety of poverty lines were used in order to estimate the prevalent incidence of poverty in rural and urban areas as well as for Pakistan in general. Though majority of the researchers used HIES data sets to reach these estimate of poverty, however, different approaches led to different poverty line estimates, which in turn yielded different estimates of poverty. Table 2 shows the comparison of poverty situation in selected Asian countries. The highest head count poverty was found in India (44.20 percent) while the lowest was envisaged in Thailand (<2 percent). The incidence of poverty was third highest in Pakistan (31 percent), which was slightly higher than in Bangladesh (29 percent). Depth of poverty (poverty Gap) was highest in India while it was lowest in Thailand (less than 0.5 percent). It is clear from Figure 1 that per capita income of China and Sri Lanka was almost double than in Pakistan but poverty statistics indicated higher incidence and depth of poverty prevailing in China than in Sri Lanka. Moreover, India had slightly higher per capita income (460 US$) while Bangladesh had slightly lower per capita income (US $ 370) as compared to Pakistan (US $ 420), though statistics show higher poverty in India and lower poverty in Bangladesh than in Pakistan.Table 3 shows the estimated Gini-coefficient reflecting the inequality in income or expenditure prevailing in selected Asian countries. Highest level of inequality was envisaged in Thailand having Gini-coefficient of 0.414 while the lowest was found in Pakistan (0.312). It was found that in India and Bangladesh, relatively higher inequality in distribution of income exists as compared to Pakistan. It was also found that the lowest 10 percent of the population holds around 4.1 percent of the income in Pakistan, which was the highest among all the selected countries whereas the lowest figure was found in China (2.4 percent). On the contrary, the richest 10 percent of the population holds 33.5 percent of the income in India while the corresponding lowest estimate was for Indonesia (26.7 percent). The richest 10 percent of the population in Pakistan holds around 27.6 percent of the annual income. Over the past century, scholars and experts on poverty at the global level remained unable to define the term comprehensively and precisely. It is widely recognized that poverty is complex and multidimensional in nature.Poverty line differentiates between poor and non-poor on the basis of minimum income or expenditures that are needed to fulfill required minimum calorie intake or to acquire minimum basket of basic needs. People whose income or expenditure is below the poverty line are assumed poor.Some selective definitions of poverty, as available in the present literature, are summarized below:On the Basis of Calorie Intake Approach Ercelawn (1988) Planning and Development Division, Government of Pakistan ( 2002) defined poverty and poverty line on the basis of calorie intake per adult equivalent per day. Poor was defined as one who was unable to intake 2350 calories per adult equivalent per day. On the basis of this, a poverty line of Rs. 673.54 in 1998-99 prices was established.Ahmad (1993) defined the poverty line on the basis of basic needs approach which included food, clothing, housing, health, education, transport, social interaction and recreational needs. The poverty lines were estimated as per capita expenditure of Rs. 300 and Rs. 419 per month at 1991/92 prices for rural and urban areas, respectively. Jafri and Khattak (1995) estimated that monthly expenditure of Rs. 271 per person at current prices of 1990/91 was needed for meeting the basic needs (food, clothing, housing, health, education, transport, socialization and recreation) in rural areas. Qureshi and Arif (1999) Other Definitions (Relative Poverty Lines) Akhter (1988) defined the poor as lower 10 percent of the population with lowest per capita expenditure on the basis of HIES survey data of 1979. A rural poverty line of Rs. 948 per person was established to differentiate between poor and non-poor while corresponding poverty line for urban areas was estimated to be Rs. 1260 per person.Zaidi (1992) defined the relative poverty line for Pakistan as 75 percent of the national average expenditure. This poverty line was aimed at differentiation of those households or individuals as poor, which were deprived of certain commodities or standard national consumption pattern prevalent in the society.The measurement of income poverty involves: 1) Specification of an indicator of well being such as income or expenditure; 2) Specification of an income level or threshold below which a person or household is considered poor -the poverty line; and 3) Construction of poverty measures. Foster-Greer-Thorbecke (FGT) class of measures is the most commonly used measure of poverty, which captures three aspects of poverty: incidence, depth/intensity and severity of poverty. These measures are Head Count Index, Poverty Gap Index and Squared Poverty Gap Index.Head Count Index is defined as the share or proportion of the population which is poor, or whose income is below the specified poverty line. This is a measure of incidence of poverty. Suppose in a population of size n, there are q number of poor people whose income y is less than the poverty line z, then the head count index can be defined as:Poverty Gap Index is defined as the mean distance, separating the population from the poverty line. This can be interpreted as a measure of depth of poverty. Non-poor are given a distance of zero. This measure can be mathematically represented as follows:Poverty Gap IndexWhere z is the poverty line, yi is the income of the individual i or household i, and the sum is taken only on those individuals who are considered poor (below poverty line).The poverty gap can also be defined as the product of the income gap and the Head Count Index ratio, represented as the following: PG = I*HC, where I is the income gap Where Z -Z I y q = and ∑ = = q q q 1 i i y y 1 is the average income of the poor.Squared Poverty Gap Index is a measure of the severity of poverty. The poverty gap takes into account the distance separating the poor from the poverty line, while the squared poverty gap [PG] 2 takes into account the square of the distance. The squared poverty gap index gives more weight to the poor; by taking into account the inequality among the poor greater weights are given to larger gaps and the weights are simply the poverty gaps. It is represented as follows:Both Poverty Gap Index and the Squared Poverty Gap Index put more emphasis on those who are further away from the poverty line. The general formula for all three measures is given below, which depends on parameter α, which takes a value of zero for the Head Count Index, one for the Poverty Gap Index and two for the Squared Poverty Gap IndexThe above measures can be analyzed for various socio-economic groups as well as for different geographic locations (e.g. within irrigation systems).Sen Index Sen (1976) proposed an index that sought to combine the effects of the number of poor, the depth of their poverty, and the distribution of poverty within the group. The index is given by:where P0 is the head count index, µp is the mean income (or expenditure) of the poor, and G P is the Gini-coefficient of inequality among the poor. The Gini-coefficient ranges from 0 (perfect equality) to 1 (perfect inequality), and is discussed further below in the context of measuring inequality. The Sen index can also be written as the average of the head count and poverty gap measures weighted by the Gini-coefficient of the poor, giving: The Sen index has been widely discussed, and has the virtue of taking into account the income distribution among the poor. However, the index is almost never used outside the academic literature, perhaps because it lacks the intuitive appeal of some of the simpler measures of poverty, but also because it cannot be used to decompose poverty into contributions from different subgroups.Scientists have modified the Sen index and perhaps the most compelling version is the Sen-Shorrocks-Thon (SST) index.It is defined as:same poverty line is assumed, however, results estimated could differ due to inherent problem of these measures of well being. As long as the income is concerned, it is highly susceptible to the problem of under-reporting, which would lead to high estimates of incidence of poverty. On the contrary, there is a problem of exaggerated expenditure reporting on the part of individuals and households.Similarly, even taking the same welfare measure for estimating incidence of poverty, in different countries with different surveys, the welfare measures differ from each other. Thus, even using the same poverty line for two countries would yield quite different results while keeping other things same. Moreover, comparison over time and space also becomes difficult when definition of poverty and poverty line changes. Even for the same poverty line, use of primary and secondary data would yield different results. Thus, the use of primary or secondary data set is solely according to the reliability, which normally lacks in the official statistics of the developing countries.• Over time, poverty incidence is fluctuating in Pakistan.• Poverty is higher in rural areas as compared to urban areas.• It is difficult to define poverty precisely. The researchers used various definitions of poverty over time. • It is difficult to compare the estimates of poverty over time because various poverty lines have been used for estimating the figures. • Different poverty lines used owe their variation from selection of the approach used i.e. basic need, calorie intake, relative poverty line, etc. • For different approaches to estimate the incidence of poverty, data requirement differs. • Variation in sources of data also leads to significant variation in the results of poverty incidence. • Applying one dollar a day poverty line shows that poverty in Pakistan is higher as compared to many other Asian countries. • A relative low Gini-coefficient estimate for Pakistan, as compared to other Asian countries, show relatively lower level of inequality in income/expenditure distribution.","tokenCount":"3159"} \ No newline at end of file diff --git a/data/part_3/1254912287.json b/data/part_3/1254912287.json new file mode 100644 index 0000000000000000000000000000000000000000..7bb67a9b978830fd80d17bae2550078638789da2 --- /dev/null +++ b/data/part_3/1254912287.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"353cb53683a987336242e04ce77e32e8","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/07d56536-ab77-4b41-ab52-d2b6900d01b4/retrieve","id":"1702587865"},"keywords":[],"sieverID":"90f2f160-4587-4b14-abee-c18be8338093","pagecount":"118","content":"xv 1. INTRODUCTIONVegetable as a group of crops from the horticulture category has a very wide importance both as a source of food and health care. On the contrary, the level of consumption is very low for reasons of unavailability and market imperfection. Even with limited pocket areas of production, the product suffered low price and lack of market. As a result, glut and spoilage are common. Measures to solve the problem were limited partly for reasons of little research and lack of attention. Hence, this study was initiated to partially fill the gap.The overall objective of the study was to analyze vegetable market chain with a focus on onion and tomato. The specific objectives were to assess structure-conduct-performance of vegetable marketing, analyze market supply determinants, identify problems and opportunities in vegetable production and marketing For the purpose of completeness demand analysis was also conducted.Formal and informal data collection tools of both primary and secondary data were used. Econometric models like Heckman two stages (for market supply analysis) and double-log linear model (for consumption analysis) were the tools used for the analysis.The cost-revenue calculation results indicated that on the average a farmer profited 8,191ETB from shallot, 13,141ETB from onion, and 5,111ETB from tomato per hectare production (Assuming an average price of 1.75 ETB, 1.65 ETB and 0.75ETB per kg prices in that order). However, this potential benefit is under challenges of imperfect marketing. The market conduct is characterized by unethical practices of cheating and information collusion that led to uncompetitive market behavior even though the calculated concentration ratio did not indicate oligoposony market behavior (26.15%).With an estimated volume of annual production of 324,412Ql of onion and 40,402Ql of tomato the estimated marketed proportion according to the respondents was (95 percent of onion and 86 percent of tomato). This showed that Fogera is entering to commercialization albeit the challenge in marketing. For success of the started race, measures to improve marketing like correcting the malpractices, implementation of defined standard and grades, provision of market information, networking with the central potential buyers like urban cooperatives or groups at Addis Ababa seem important. Capacity building for all actors in the chain and strong extension service on product handling and marketing to farmers should get focus.Volume supplied to market were also analyzed and the same variables in the case of land allocation for onion also came up significant for onion supply but un the case of tomato it were experience and number of oxen owned by the respondent that came up with significant coefficients.The average monthly level of consumption was assessed when the Fogera produce was at the market and was used to see some properties of consumers. Based on the 91 sampled consumers from Gondar, Bahir Dar and Woreta towns it had been revealed that the xvi average monthly income per household was 1,372.21 ETB. Average family size was 5.7 where the monthly average consumption of tomato per household per month was obtained to be 5.11 kg of tomato and onion 7.34 kg onion. A household spent on the average about 44 percent (603.10ETB) of their monthly income on food from which 7.62 percent (45.96 ETB) was spent on vegetables.For assessing accessibility, the average distance a certain consumer measured per single feet trip was taken and the average was estimated from the respondents to be 0.485 hours. More than 97 percent of respondents reflected a strong interest on quality. According to the survey data, on the average respondents expressed their willingness to add 0.046 ETB per kg for tomato and 0.05 ETB for a kg of onion.Econometric analyses of demand revealed that from the proposed determinants it was income, purchase frequency, distance, own price and single purchase lot that were identified to be significant for both vegetables.Vegetable is the designation given to that group of horticultural plants grown for human consumption either for their roots, tubers, shoots, stems, leaves, flower buds, flowers, fruit or seed (immature or mature) (Nonnecke, 1989). About two-thirds of the world's population relies on a largely vegetarian diet. In addition to the contribution of valuable nutrients, vegetables add variety, taste, color, and texture to diets (Rubatzky and Yamaguchi, 1997).As Lumpkin et al (2005) pointed out world wide production of fruit and vegetable crops has grown faster than that of cereal crops. Between 1960 and 2000, the area under horticultural crops worldwide has more than doubled. Among the main reasons attributable to the growth, high return from horticulture as compared to cereals was the prime one. Per capita farm income from horticulture has been reported up to five times higher.Given the above worldwide development, horticultural production in Ethiopia is very much limited albeit ecological advantages. According to Dawit et al (2004), vegetable crops are produced in the country through commercial and small farmers. The type is limited to few crops and production was concentrated to some pocket areas. Production varied from cultivating a few plants in the backyards for home consumption up to a large-scale production for domestic and export markets.From the total 1.1 million square kilometers size of the country 10.18 million ha of land was under cultivation by the year 2005/06 from which vegetable covered 0.29 million ha. An annual production of 18.9 million quintal was estimated by the same year through employment of 9.03 million smallholder farmers for its production. Onion and tomato covered about 16.6 and 4.8 thousands ha of land CSA (2006).In Amhara National Regional State, where this study was conducted, agriculture contributed about 55.8 percent of the total regional GDP accounting for employment of 88.7 percent of the total population (BOFED, 2006). The total land size of the region was 3.396 million ha from which about 2.9 million ha was under cultivation as of 2006.Vegetables covered about 69.8 thousands of ha of land from which 3.5 million quintal production was estimated. Onion covered 5,338 and tomato 319 ha of land.Potato, onion, tomato, garlic, shallot, pepper, are among the leading vegetable crops grown in the region. Based on the data set out by CSA (2006), Alefa, Fogera, Achefer, Jabi Tehinan, Burei, Merawi, and Bahir Dar Zuria Woredas are the leading vegetable producing areas in the region. Even though, the region has an ample production potential and market access even to the nearby Sudan, it had never reaped the opportunity as it would supposed to be.Fogera Woreda endowed with beautiful diverse natural resource has the capacity to grow different annual and perennial crops. Two major rivers are of great importance to the Woreda, Gumara and Rib. They are used for irrigation during the dry season mainly for vegetables. Major types of vegetable crops growing in the area include potato, onion, tomato, garlic, green peppers and some leafy vegetables.Vegetable production in the Woreda is mainly for market except potato, which is utilized much for home consumption. The production is very fragmented and uncoordinated where all growers produce similar type of crop resulting in glut (mainly onion and tomato) typically in harvest seasons.According to the Rural Development Policy and Strategy Document (MOI, 2002) the agricultural sector is encouraged to meet the national food and industrial raw material demand. The sector is expected to generate surplus primarily for the producer to secure better purchasing capacity, secondly for the development of other sectors as a source of raw materials, and thirdly as source of hard currency for importing technology. This called for the improvement in both the organization and efficiency of marketing system. That is why a market oriented production system set in the strategy.Vegetable production has a significant role in reducing poverty through employment generation, improving the feeding behavior of the people, and creating new opportunities for poor farmers. Cultivation of vegetable allows productive employment as the labor/land ratio is high. Depending on the crop, production of horticulture crops require at least twice the labor, and up to five times the labor days per ha as compared to cereal crops. Increasing horticultural productions thus contribute to commercialization of the rural economy and create many off-farm jobs (Lumpkin et al., 2005).Abundant intake of fruit and vegetables is clearly a positive solution for problems of poor diet quality in the developing world. Fruit and vegetables are relatively cheap sources of essential micronutrients. They are a cost effective way to prevent micronutrient deficiencies and protect against chronic diseases, the main killers in the world today.Although FAO/WHO recommends minimum fruit and vegetable intakes of 146 Kg/person/year, few countries achieved this level. The level ranges from 27 to 114 in most Sub Saharan Africa countries, and 26.7 Kg/person/year specifically in Ethiopia (Ruel et al., 2005).To improve the poor feeding behavior and benefit advantages from consumption of the crops problems associated with production, marketing and consumption has to be addressed. Market chain analysis is a better approach for studies of such type. Analysis of the system in terms of vegetable market structure, conduct and performance taking in to account product and location specificity identify the bottlenecks and come up with specific workable solutions.Vegetable production in Fogera is characterized by relatively subsistence mode limited to few types. On the other hand, area advantages defined in terms of proximity to urban centers like Bahir Dar and Gondar and developed infrastructures were good opportunities. However, studies conducted elsewhere in Ethiopia indicated that the product marketing is imperfect due to intermediaries' malpractices and other reasons. The situation in Fogera might be similar or different. The motive of the study was therefore to investigate the marketing system with a commodity approach, understand the system, and come up with recommendations.The overall objective of the study was to analyze the vegetable marketing chain in Fogera Woreda with the following specific objectives -• To identify problems and opportunities in vegetable production and marketing Attempting to analyze the entire food system is an impossible action given the limited resources and human skill. Thus, the research was narrowed down to concentrate on the production area (Fogera) and major receivers (Gondar and Bahir Dar). The types of crops was limited to onion and tomato for their increasing coverage vis-à-vis the marketing problem they used to face.Moreover, these crops accounted for the major proportion of vegetable production and passed through a number of marketing stages. Other vegetable crop types are left, because either their production is limited, or they did not pass through a number of stages.Different market levels, role of actors in the channel, market direction, price discovery and bargaining characteristics of producers, buying and selling strategies, and traders' behavior in the whole marketing process were seen.The primary significance of the study is to all actors in the marketing system. Analysis of the whole system and identifying clearly the challenges will benefit policy makers and implementers in indicating the area of advantage for what should be done to improve vegetable marketing.Apart from this, some time ago ANRS had commissioned one relatively comprehensive marketing system study covering a number of commodities. The study was comprehensive but missed vegetables. Hence, this study was supposed to partially fill the gap. The other benefit that could be anticipated is its significance as a source for further studies.This study being the first in the Woreda (probably second in the region) lack many detail investigations which could have reinforced understanding of the whole system especially in relation to production and consumption studies. The time limit as a factor squeezed the chance to exclude other areas of vegetable production and marketing away from Fogera.With the above brief introduction of the research paper, the remaining part of the thesis is organized as follows. The next main section reviews detailed literature on relevant topics on the study of production, marketing, and consumption of vegetables. The successor deals with the research methodology starting with description of the study Woreda and end up with definition of econometric variables. The second from the last section explains results and discussions, including data presentation on respondents' socio economic characteristics, and econometric analysis of supply and demand. The final section obviously summarizes the findings of the study with some recommendations.Agricultural marketing -is defined as agriculturally oriented marketing. It embraces all operations and institutions involved in moving farm products from farm to consumers (Pritchard, 1969).It covers all the activities associated with the agricultural production and food, feed, and fiber assembly, processing, and distribution to final consumers, including analysis of consumers' needs, motivations, and purchasing and consumption behavior (Branson and Norvell, 1983).It is both a physical distribution and an economic bridge designed to facilitate the movement and exchange of commodities from farm to fork. Food marketing (of branded foods) tends to be inter-disciplinary, combining psychology and sociology with economics, whereas agricultural marketing (of unbranded products) is more mono disciplinary, using economics almost exhaustively (Kohl and Uhl,1985).As expressed by FAO (1986) food and agricultural marketing not only means the movement of agricultural produce from the farm where it is produced to the consumer or manufacturer but also includes the marketing of production supplies to farmers like fertilizer, pesticide, chemicals, machinery, animal feed, tools and equipments.Marketing Systems-is defined as the sequential set of kinds or types of business firms through which a product passes during the marketing process. It is the interrelationship of firms (Branson and Norvell, 1983).It is usually seen as a \"system\" because it comprises several, usually stable, interrelated structures that, along with production, distribution, and consumption, underpin the economic process (Mendoza, 1995).Agricultural and food marketing system-includes the primary collection system; the inland and port terminal system; the transformation system, which mills, process, and packages; and the transformation system that moves between the functions. There are also other additional elements like set of policies, institutions which facilitate functioning of the system and the public policy environment (McCalla and Schmitz, 1979).It refers to business activities leading to the production of agricultural produce on the farm and associated with its movement to the consumer or manufacturer. It includes the marketing of agricultural inputs (e.g. fertilizer) to farmers, as well as initial processing and packaging, handling, transporting, assembling, storing, wholesaling and retailing agricultural products. In addition to the physical dimension of the marketing system, there is also an intangible dimension, which includes trade finance, marketing infrastructure, administrative and macroeconomic policy framework (FAO, 1999).It is generally believed that small farm agriculture plays a central role in economic development, both in supplying a significant portion of the domestic food crop supplies and in generating income for low-income families, (Minot, 1986).Markets can serve as potential agents of development in two ways. Firstly, they can provide a way to allocate resources ensuring the highest value production and maximum consumer satisfaction. Secondly, they may stimulate growth by promoting technological innovation and increased supply and demand. Economic development normally requires increased resource productivity that directly demand specialization in production and technological innovation. Specialization requires coordination between producers, distributors and consumers, or between supply and demand. Markets provide one means of such coordination (Scarborough and Kydd, 1992).Markets aggregate demand and supply across actors at different spatial and temporal scales. Well-functioning markets ensure that macro and sectoral policies change the incentives and constraints faced by micro-level decision makers. Macro policy commonly becomes ineffective without market transmission of the signals sent by central governments. Similarly, well-functioning markets underpin important opportunities at the micro level for welfare improvements that aggregate into sustainable macro-level growth. For example, without good access to distant markets that can absorb excess local supply, the adoption of more productive agricultural technologies typically leads to a drop in farmgate product prices, erasing all or many of the gains to producers from technological change and thereby dampening incentives for farmers to adopt new technologies that can stimulate economic growth. Markets also play a fundamental role in managing risk associated with demand and supply shocks by facilitating adjustment in net export flows across space and in storage over time, thereby reducing the price variability faced by consumers and producers. Markets thus perform multiple valuable functions: distribution of inputs (such as fertilizer, seed) and outputs (such as crops, animal products) across space and time, transformation of raw commodities into value-added products, and transmission of information and risk (Barrett and Mutambatsere, 2005).In competitive markets, consumers can express their preferences, subject to the constraints of their incomes, by paying a certain price for particular qualities and quantities of goods. Producers can then attempt to maximize their profits by supplying the relevant quantity and quality of goods at least cost (Scarborough and Kydd, 1992).When markets work, the automatic adjustment processes perform an awesome task of coordination with a minimum of fuss, and economic resources are allocated efficiently.When markets fail, participants with inside information and economic power are able to exploit both producers and consumers, to the special detriment of the poor at each end (Timmer et al., 1983).As also put by Scarborough and Kydd (1992) if markets are perfectly competitive, and prices reflect the real costs of production, and if consumption does not have any external effects (positive or negative) on society, it can be shown that, through their influence on economic decision making, markets will lead to an optimal allocation of resources.Through their influence on incomes, prices and commodity flows, markets play a crucial role in determining national levels of production of and consumers' access to food. The development and expansion of markets can provide a source of productive employment and income generation; transfer resources to non-agricultural sectors leading to the development of a home-market and hence the demand for agricultural commodities by the non-agricultural sectors and vice-versa, and the profit maximization objectives of entrepreneurs may lead to the development of new products.The micro-level realities of agricultural markets in much of the developing world, however, include poor communications and transport infrastructure, limited rule of law, and restricted access to commercial finance, all of which make markets function much less effectively than textbook models typically assume. A long-standing empirical literature documents considerable commodity price variability across space and seasons in developing countries, with various empirical tests of market integration suggesting significant and puzzling forgone arbitrage opportunities, significant entry and mobility barriers, and highly personalized exchange ( Barrett and Mutambatsere, 2005). Barrett and Mutambatsere (2005) also added causes for widespread inefficiencies as incomplete or unclear property rights, imperfect contract monitoring and enforcement, high transactions costs, and binding liquidity constraints. Such failures often motivate government intervention in markets, although interventions have often done more harm than good, either by distorting incentives or by creating public sector market power. The history of agricultural markets in developing countries reflects evolving thinking on the appropriate role for government in trying to address the inefficiencies created by incomplete institutional and physical infrastructure and imperfect competition.Many scholars reason out the lack of shift from subsistence to commercial farming for different reasons like high risks, high transaction costs, limited food markets, limited insurance options and limited access to credit. Neway (2006) noted that integration of a household into a market economy involves forging new links deepening existing relationships between the household, on one side, and traders, micro finance institutions, and other farmers willing to supply labor and rent land, on the other.Though markets are indispensable in the process of agricultural commercialization, as many people argued, transaction costs and other causes of market imperfections could limit the participation of farm households in different markets. This implies that markets may be physically available but not accessible to some of the farm households. Under such circumstances, farm households may tend to choose crops that can easily be sold at the accessible markets. Such tendency is much stronger for households producing perishable crops like vegetables (Moti, 2007).Five common characteristics distinguish agricultural production from production in general. These include: agricultural production is tied to specific locations because ether the soils or the climate do not encourage or permit cultivation at other locations; the scale of agricultural production tends to be small; agricultural production is seasonal; nearly all agricultural products are perishable; and agricultural products exhibit natural variation (Van der Laan, 1999).These characteristics as put by Van der Laan (1999) demand marketing activities to be performed separately. Location specificity demand collection followed by distribution, small-scale activity urges assembling, collecting and bulking. Seasonality forced storage and stock holding. The perishable nature request on-farm or near off-farm preservation and the natural variation of products creates the need for sorting and standardization.Yet, by virtue of the spatial dispersion of producers and consumers, the temporal lags between input application and harvest, the variable perishable nature and storability of commodities, and the political sensitivity of basic food staples, agricultural markets are prone to high transactions costs, significant risks and frequent government interference.The fundamental functions of input and output distribution, post-harvest processing and storage, as well as the persistent challenges of liquidity constraints, contract enforcement and imperfect information; have characterized agricultural markets in developing countries under all forms of organization (Barrett and Mutambatsere, 2005).The bargaining position of farmers is usually weak, particularly for perishable vegetable products. This could be due to the existence of large numbers of farmers (sellers) and limited number of merchants (buyers) in these markets. Besides the market structure, farmers and merchants may not have equal price information from central transactions (Moti, 2007).With a long run objective of promoting participation of small-scale farmers in the production of non-traditional agricultural commodities, agricultural development policies need to focus on re-orienting the household use from usual subsistence or semi-subsistence production towards more market oriented production and consumption decisions. The achievement would be easily addressed through correcting sources of market imperfection.Agricultural marketing research like all other applied studies has its own history. Scarborough and Kydd (1992) analyzed the history as follows.The internal productive efficiency of marketing enterprises-In the 1940's and 50's the main emphasis in marketing economics was on the internal and operational efficiency of marketing firms. In this intra-firm organization, management structures, motivations and incentive arrangements, and decision-making rules and processes, were seen as important influences on the efficiency of operations. Descriptive analysis of accounting data, statistical analysis of same data using econometrics, and analysis, which combine both physical product and cost relationships, were used to analyze the internal efficiency of the marketing enterprise. However, today marketing is not a single isolated phenomenon that a certain enterprise can separate itself and only depend on its efficiency, rather, a number of factors influence its performance that demands to take into consideration when a decision is made. As a result, this approach became less important than its mathematical beauty.The structure-conduct-performance school-Since the 1960, this characteristic of markets has increasingly been emphasized in defining means of analyzing their efficiency.The so-called S-C-P school focuses on the behavior of groups of similar rather than individual firms. This approach provides a broadly descriptive model of the nature of various sets of market attributes, and the relationship between them and performance. The emphasis is not on the internal organization of firms, but on relationships between functionally similar firms, and their market behavior as a group. Its basic tenet is that, given certain 'basic conditions' the performance of particular industries depends on the conduct of the sellers and buyers, which in turn is influenced by the structure of the relevant market. Two most common weakness of this approach are; the degree of inference concerning behavioral and performance characteristics, and the type of indicator used to assess the latter.The food systems framework-It is based on the concepts of structure, conduct and performance, but attempts to broaden and inject a more dynamic aspect into the model. To this end, it goes beyond industry boundaries and assumes structure and conduct vertically over the entire commodity flow from input supplier to ultimate consumer. The rationale behind this extension is that structure and behavior at one level in the system, influences those in others. By analyzing the structure of the whole sub sector, hypothesis concerning the effects of the nature of vertical coordination between different, but related, industries, on market and economic performance, can be developed. Here economic, infrastructural and institutional environments in which markets are operating are not taken as given, but are studied in terms of their impact on market performance, and the constraints and opportunities for markets to contribute to improved economic performance.These discussions of history of study do not contradict the usual; functional, commodity, institutional and systems approach rather reinforce. Development of one over the other does not indicate an exclusively dropping of the earlier and substitute the incumbent rather a combination of one with the other for figuring out more.Many developing countries need improvement in their agricultural marketing systems to keep pace with expansion in agriculture and industry. The change in technology, consumer demand for farm supplies, and the growing interdependence of farming and marketing during development are other stimuli for modernization. Accordingly, many developing countries are eager to hasten expansion and change in their agricultural marketing systems. But to formulate effective improvement programs comprehensive analysis of agricultural marketing is crucial. A total-system research approach as put by Pritchard (1969) can help policy and program officials to identify present and emerging marketing problems and to understand the intricate, changing linkages binding agriculture and marketing together. Timmer et al., (1983) advised to follow indirect approaches that rely on normative competitive models that often used to provide additional weight because direct approaches are frequently constrained by unreliable data.In the functional approach one looks at the basic activities /functions/ that have to be performed in marketing agricultural commodities, and at the marketing of inputs into agricultural production. The systems approach is concerned with the number and kinds of business firms that perform the marketing task. How firms are interrelated is called the structure of the marketing system. The third approach, commodity approach, entails an analysis of marketing functions, system, and structure from the viewpoint of an individual product. Two other additional approaches, the post harvest and mixed systems approach, which analyze all harmful, or loss provoking elements and other causes in the transfer of products are also included (Mendoza, 1995).During the initial design stages of applied food systems research, one way to increase the likelihood that research issues are correctly identified and prioritized is to use a conceptual framework that permits systematic consideration of potential topics. The sub sector approach is one of such consideration (Morris, 1995).The original sub sector paradigm was proposed by Shaffer (1973) as the study of \"vertical set of economic activities in the production and distribution of a closely related set of commodities.\" The vertical set of activities by which a commodity's value is increased includes input provision (including research), extension, farm production, processing, storage, assembly, transportation, wholesaling, retailing, financing, and consumption. (Martel et al., 2000).Sub sector is an economic unit of analysis specific to a particular commodity or commodity group (e.g. maize, feed grains, cereals). It encompasses a meaningful grouping of economic activities linked horizontally and vertically by market relationships (for e.g. assembly, transportation and storage). Inclusion of the vertical dimension is important, because problems in the food system can frequently be attributed to poor coordination between successive stages of economic activity (Morris, 1995).A growing body of literature exists on topics related to food production, consumption, and nutrition. In most developing countries, collection and analysis of statistics on output and use of locally produced agricultural commodities has become routine. However, the growth is low as data on agricultural marketing -with the possible exception of prices for urban staples and export crops-are not so regularly monitored. Even, in some instances, data that may exist are hard to get access for political or property reasons. Furthermore, those studies on domestic agricultural marketing that are completed; often suffer from restricted publication and dissemination. The shortage of research on domestic agricultural marketing in developing countries is also partly attributable to the scarcity of methodological materials (Scott, 1995).Seeing, marketing as a \"system\" and evaluating based on the three approachescommodity, institutional, and functional-the coverage in research so far in Africa seems good in case of export and durable food crops while poor in perishable staple crops as put by Van der Laan (1999). Institutionally, producers and traders are well covered while processing, standardization, financing, risk bearing and market intelligence are poorly covered when evaluated functionally.Coming down to specific situations of Ethiopia the possible reasons that could be hypothesized for the weakly performance of agricultural marketing research as compared to production research might include limited number of professionals and the impacts of the passed command economy. In fact, there are some pieces of works done here and there by ministerial offices, the Grain Market Research Project of MeDAC, the market study project of ANRS, the International Food Policy Research Institute (IFPRI), postgraduate academic fulfillment works and Ethiopian Research Organization (EARO).Agricultural commodities are produced by large numbers of farmers and consumed by large numbers of households. With the exception of foodstuffs consumed on-farm or sold locally, they are bought and sold a number of times between the farm gate and the final consumer. While moving between these two points, the commodity is loaded, off-loaded, transported, stored, cleaned, graded and processed. The conduit that runs from a farmer down to a final user, through which the commodity passes and which embodies these transactions and activities is conventionally referred to as a \"marketing and processing chain\", a \"supply chain\", or a \"value chain\" (FAO, 2005a).An agricultural marketing system consists of a series of activities that feature sequentially or functional integration. Operational sequentially is a characteristic of all activities that use agricultural products and for this reason the first economic analysis of the agricultural markets also attributed greater importance to the study of filiére, or the marketing or distribution channel (Saccomandi, 1998). Filiére is defined as a structure composed of distinct and separable technological stages of production that are associated with the use of specific resources and/or with the making of a specific product. It can be explosive as in the case of milk and implosive in the case of cake. The filiére analysis takes in to account both products and technology.A marketing chain is used to describe the numerous links that connect all actors and transactions involved in the movement of agricultural products from the farm to the consumer (Lunndy et al., 2004). It is the path one good follow from their source of original production to ultimate destination for final use. Functions conducted in a marketing chain have three things in common; they use up scarce resources, they can be performed better through specialization, and they can be shifted among channel members (FAO, 2005a).According to Hobbs et al. (2000), the term supply chain refers to the entire vertical chain of activities: from production on the farm, through processing, distribution, and retailing to the consumer. In other words, it is the entire spectrum, from gate to plate, regardless of how it is organized or how it functions. Kotler (2003) defined supply chain as a longer channel stretching from raw materials to final products that are carried to final buyers. He shortly put as value-delivery network. He also separated supply chain from demand chain in that the later starts from thinking first the target market and move back words from that point, as a backward orientation.Under a free market, supply chains for a commodity develop to reflect its production, marketing and processing characteristics. Some of these are the spatial concentration of production, the extent of the commodity perishable nature, the extent of spatial concentration of consumption, economies of scale, weight loss in processing, the ease with which grades and standards can be assessed at points in the supply chain, and storability of the product and how this is changed by processing. Every stage is linked to and dependent upon activities at other points in the chain. Aspects of activities at one point interact with and affect other points. Consequently, it is possible for a problem experienced at one point to be the result of a change or an event experienced at some other point or some combination of such changes and events that have interacted to cause the observed problem (FAO, 2005).Value chain on the other hand refers to the vertical alliance or strategic network between a numbers of independent business organizations within a supply chain, as it is a particular form of supply chain. Organizations have a shared vision and common goals. It is formed to meet specific market objectives through satisfying the needs of consumers. Besides, it allows for the mutual decision making as well as the sharing of risks and benefits. Value chain is not a vertical integration as vertical integration occurs when a single firm owns several stages in the supply chain. Rather, it is strategic network of independent organization/business who recognize their mutual need for one another working together to identify strategic objectives through sharing the associated risks and benefits by investing time, energy, and resources to make the relationship work (Hobbs et al., 2000).Marketing channel is a sequence of enterprises and markets by which a produce is moved from producer to consumer (FAO, 1986). In passing, it should be noted that many marketing channels might exist, as there are separate sources and/or destinations for each item.To find out how many traders are operating in the marketing system, and at what points a commodity changes hands, it is helpful to sketch its flow through the marketing chain. The competitiveness of a market and the structure of the marketing chain are obviously related.If at some point in the chain only a single buyer or seller exists, then non-competitive behavior is likely. Alternatively, the presence of many active buyers and sellers all along the chain carries a strong presumption of competitive behavior and efficient market performance. Estimating volumes and percentages of commodity transformations, at each link in the chain provides an overview of the marketing systems (Timmer et al., 1983).All these reviewed literatures explain the thinking that grew up in studying and development of effective marketing system. For a clear application and understanding, definitions in this study are framed to mean as follows. Market chain is taken to encompass from input supply to consumption. Supply chain if expressed mean the chain of delivering product; market channel mean specific series of actors through which product changes hand until it reaches the final consumer; and value chain mean as exactly put above by Hobbs et al., (2000).Market chain analysis, therefore, identifies and describes all points in the chain (producers, traders, transporters, processors, consumers), prices in and out at each point, functions performed at each point /who does what?/, market demand /rising, constant, declining, approximate total demand in the channel/, market constraints and opportunities for the products.Marketing function is a fundamental or basic physical process or service required to give a product form, time, place, and possession utility a consumer desires. According to Saccomandi (1998), functions can be classified based on objectives: logistical, marketing and economic functions. Logistical functions are related to the concentration, transport and preservation of products. Marketing functions are dedicated to classification, packaging, development of demand and market information. Economic functions include financing, risk bearing and facilitation of exchange.The most important characteristics of a marketing function is that it is a physical process or facilitating service which must be performed one or more times within the marketing system. Eight general accepted functions are assembling, grading, storing, processing, packaging, storing processed products, distributing and transporting. There are also facilitating functions (market research, product research and development, demand development, exchange services, finance and risk bearing, market information) (Branson and Norvell, 1983).Marketing functions can be seen as essential link between producers and consumers in two different and yet simultaneous and connected ways. First, the marketing agents link producers and consumers physically, by actually buying, storing, transporting, processing, and selling commodities. Simultaneously, however, because exchange of commodities is taking place, open or implicit price signals are being generated and transmitted to the active economic agents in the food system, influencing their production and consumption decisions (Timmer et al., 1983). Goetz and Weber (1986) stated dimensions before a commodity be available to the urban consumer to include: the temporal, spatial and form dimensions. The temporal dimension is regarding the storage and providing reliable supply, the spatial dimension regards the transport of the produce from point of production to urban centers, and the form dimension discloses the processing, labeling, packaging, sorting and cleaning activities before the product arrive at the final consumer.The level of functions could differ from product to product. A clear understanding of marketing function with an exploration of strengths and weakness help where to improve the marketing system.The costs analyzed in economics are either private or social. There are three types of private costs: production, opportunity and transaction costs. Production cost is an expense required to purchase commodities, services and information. Opportunity cost is the benefits that could have been drawn from making a different choice. Transaction cost implies the costs sustained by carrying out the exchange in an imperfect market, or costs related to using the market (Saccomandi, 1998).A transaction cost consists of tangible and intangible costs. The former include marketing costs such as transport, storage, handling, commercialization and bank loans, while the latter would typically arise from lack of contract enforcement, information and coordination, and are expressions of missing markets and market failures (Neway, 2006).Transaction costs could also be explained alternatively to include costs of obtaining information, establishing one's bargaining position arriving at a group decision, and enforcing the decision made. It can be separated into (a) search and information costs, (b) bargaining and decision costs, and (c) policing and enforcement costs. These costs represent resource losses due to lack of information (Griffen, 1991). Chowdhury et al. (2005) also put definition of transaction costs in terms of the various components. It include costs of searching for exchange opportunities and partners, searching information about the goods and services, bargaining over the terms of trade, transferring the goods, services, cash, etc; monitoring the exchange to assess whether the agreed terms are compiled with, and enforcing the contract. The clearer we are on the sources and levels of transaction costs the higher the chance to correct the problem. It is for this purpose understanding of transaction costs become important.Agricultural products differ from manufactured goods in terms of supply and demand. Supply is peculiar because of the seasonal biological nature while their demand is relatively stable through out a year.It is boldly underlined in economic theory that human being is always under process of choice from a number of alternatives. The basis for the decisions could be issues ranging from in house to the exogenous uncontrollable factors. A case in point here is market supply where scholars put each owns point of determining variables.The study of market supply help filling the gap for success of commercialization. The analysis can identify factors that determine market supply. Knowing the determinants mean knowing where to focus to boost production. The point is to improve marketable surplus based on the capacity of potential market. However, how much can be increased is a question of supply determinants and demand. A vivid review of the basic principles and applications, therefore, help reveal all these.Market supply refers to the amount actually taken to the markets irrespective of the need for home consumption and other requirements where as the market surplus is the residual with the producer after meeting the requirement of seed, payment in kind and consumption by peasant at source (Wolday, 1994). In order to describe market supply words like marketable surplus and marketed surplus are usually used.Marketable surplus is the quantity of produce left out after meeting the farmer's consumption and utilization requirements for kind payments and other obligations such as gifts, donation, charity, etc. This marketable surplus shows the quantity available for sale in the market. The marketed surplus shows the quantity actually sold after accounting for losses and retention by the farmers, if any and adding the previous stock left out for sale (Thakur et al., 1997).Taking the then specific conditions of India, Harris (1982) defined marketed surplus (volume sold) in agrarian economy to constitute the basic wage good for those in the economy not controlling grain (even if they were used for its production). In the process of commercialization of which the marketed surplus is an indicator, not only sets up physical flows of commodities, it is instrumental in monetizing the economy.The surplus product supply stands for what the household brings to the market, but this does not necessarily imply an excess over his \"subsistence requirement\". It includes parts of the product needed for consumption by the farm household when the farmer is forced to sell to pay rents, buy inputs, cancel debts, buy non-farm staples, to meet socio-cultural obligations, and to cover other immediate expenses. As a result, marketed surplus represents actual surplus and the quantity sold in the form of forced selling (ANRS-BOARD, 2004).Neway ( 2006) sited two options for commercialization. The most common form in which commercialization could occur in peasant agriculture is through production of marketable surplus of staple food over what is needed for own consumption. Another form of commercialization involves production of cash crops in addition to staples or even exclusively.At the farm household level, commercialization is measured simply by the value of sales as proportion of the total value of agricultural out put. At the lower end, there would always be some amount of output that even a subsistence farmer would sale in the market to buy basic essential goods and services. For this reason, the ratio of marketed out put up to a certain minimum level cannot be taken as a measure of commercialization. Neway (2006) proposed the proportion to be 20 percent of marketable surplus in the Ethiopia as a cut of rate for commercialization.Marketed surplus is defined as the proportion of output that is marketed (Harris, 1982). Marketed surplus may be equal to marketable surplus, it may be less if the entire marketable surplus is not sold out and the farmers retain some stock and if losses are incurred at the farm or during the transit (Thakur et al., 1997). In the case of crops that are wholly or almost wholly marketed, the output and marketed surplus will be the same (Reddy et al., 1995).Empirical studies of supply relationships for farm products indicate that changes in product prices typically (but not always) explain a relatively small proportion of the total variation in output that has occurred over a period of years. The weather and pest influence short run changes in output, while the long run changes in supply are attributable to factors like improvement in technology, which results in higher yields. The principal causes of shifts in the supply are changes in input prices, and changes in returns from commodities that compete for the same resources. Changes in technology that influence both yields and costs of production /efficiency/, changes in the prices of joint products, changes in the level of price/yield risk faced by producer, and institutional constraints such as acreage control programs also shift (Tomek and Robinson, 1990). Askarie and Cummings (1974) found out that soil fertility, average size of holdings, cultivator's income, literacy, extent of irrigation facilities, availability of unused cultivated land, risk, and relative importance of the crop in question as determining factors for market responsiveness (expressed in terms of supply elasticity).Harris (1982) also verified empirically the relationship between marketed surplus and output and income. She obtained negative relationship between marketed surplus and variables like family size, and distance to market. Farm size was not found as a direct causal variable rather production as Harris (1982) put.The behavior of marketed surplus to changes in prices and non price factors like irrigation, acreage and productivity is of critical importance. The most important factor, which increases marketed surplus significantly, is the increased production or output followed by consumption and payments in kind which should be reduced to keep up the quantity of marketed surplus of food grains (Thakur et al., 1997).Reviewed literatures revealed some realities on supply determinants specific to Ethiopia. For instance, Wolday (1994) used about four variables to determine grain market surplus at his study in Alaba Siraro. The variables included were size of output, access to market center, household size, and cash income from other crops. In his analysis, factors that were affecting market supply of food grains (teff, maize and wheat) for that specific location include volume produced, accessibility (with negative and positive coefficients), were found significant for the three crops while household size in the case of teff and maize still with negative and positive coefficients. Cash income from other crops was insignificant.A similar study on sesame at Metema by Kindei ( 2007) also pointed out six variables that affect sesame marketable supply. Yield, oxen number, foreign language spoken, modern input use, area, time of selling were the variables affecting positively sesame supply and unit cost of production was found to be negatively influencing the supply. Similarly, Rehima (2007) in her study of pepper marketing chain analysis identified variables that affect marketable supply. According to her access to market, production level, extension contact, and access to market information were among the variables that were influencing.Another study by Gizachew (2006) on dairy marketing also captured some variables that influence dairy supply. The variables were household demographic characteristics like sex and household size, transaction cost, physical and financial wealth, education level, and extension visits. Household size affects positively, household education negatively, spouse education positively, extension contact positively and transaction cost positively.From all these reviews, what one can learn is that a number of economic and socioeconomic variables determine the marketable supply of agricultural products. Since the level of market supply for food crops might not be 100 percent for different reasons, determining factors both in-house and external should be considered.The decision to supply market is one big question but usually is taken after the produce is at hand or if decided earlier some other decisions have to be considered. Among many, the choice of crop to grow, land size to allocate, and to which buyer to sell are some. These choices crop and market outlet choices are household specific and depend on several attributes like household characteristics, farm resource endowments and access to market.Specifically, the choice of crop depends on a number of factors ranging from land availability to labor supply, market access, extension service and experience. The farmer's decision to choose which outlet bases a number of factors.According to Moti (2007) a farm gate transaction usually happens when crops are scarce in their supply and highly demanded by merchants or when the harvest is bulk in quantity and inconvenient for farmers to handle and transport to local markets without losing product quality. For crops like tomato, farm gate transactions are important as grading and packing are done on the farm under the supervision of the farmer. Therefore, households are expected to base their crop choice on their production capacity, their ability to transport the harvest themselves and their preferred market outlet.In explaining behavior of consumers, Stigler (2005) advised one approach to put in place.One must view the consumer as an enterprise. This enterprise obtains income from the sale of labor services or from hiring out capital, uses the income to purchase commodities, and services, which will efficiently serve the desires of the household. This description revealed that consumption decisions similarity with production decisions. Unless a consumer profit from consumption, he would not invest on purchase.Consumer demand is defined as the various quantities of a particular commodity that an individual consumer is willing and able to buy as the price of that commodity varies, with all other factors that affect demand are held constant (Tomek and Robinson, 1990). Stigler (2005) put three characteristics of a rational consumer: consistent tastes, correct cost calculations, and decision making to maximize utility. Purchase of a commodity depends upon factors like money income and taste and preference in addition to price. Kotler (2003) Tomek and Robinson (1990) also indicated major factors influencing level of demand grouped under four headings as population size and its distribution by age, and geographic area; consumer income and its distribution; prices and availability of other commodities and services and consumer tastes and preferences.Other group of scholars, Ruel et al., (2005), identified determinants of consumption patterns to be combination of three main factors: the income level, preferences of the household, and market prices. Preferences are in turn, affected by the composition of household, its member's knowledge and education, habits and cultural norms, personal experiences, and , in the case of food, the biological factors that affect hunger. They listed factors like household income, price and availability of fruits and vegetables, household members' preference, the decision making power of women relatively to men in the household. Consumer preference is assumed to be determined by nutrition education, cultural beliefs and norms, and biological aspects of hunger. The factors described aboveincome, prices, and availability-affect what consumers are able to purchase or consume. Consumer preference on the other hand, shapes the decisions that consumers make regarding what they choose to purchase or consume.For most agricultural commodities, income and demand are positively related. But for few commodities, the reverse is true. Changes in tastes and preferences obviously contribute to shifts in the demand for agricultural products. Tastes and preferences of individual consumers may change for a variety of reasons such as age, education, experience, and advertising. Long run trends in per capita consumption are sometimes used as indicators of change in preferences (Tomek and Robinson, 1990).Another study conducted by Fuller et al. (2004) also pointed out parameters to determine purchasing behavior include location of purchase, package size, preferred brand, and frequency of purchase in their study of demand analysis for dairy products in China.In their finding (Reul et al., 2005) argued demand for fruit and vegetables increases with higher incomes, although the share of the total expenditure allocated to fruits and vegetables tends to decline. This is largely because low income-households must prioritize the fulfillment of their basic energy requirement to avoid hunger, and the fruits and vegetables tend to be an expensive source of energy.Hence, they identified the following variables as the determinants for the consumption variable: consumed amount, budget shares, household demographic characteristics, education and area of residence. They identified that income elasticity of fruit and vegetable demand is 0.60-0.70 in most African and South Asian countries /low income countries/, 0.30-0.44 in most Latin American countries /middle income countries/, and 0.20-0.37 in industrialized countries. Thus, rises in income are associated with greater increases in the demand for fruit and vegetables in poorer compared to wealthier countries; and income increases are generally associated with larger increases in the demand for fruits than vegetables (0.60 versus 0.70 income elasticity).Own price elasticity of demand for fruits and vegetables in most African and south Asian countries ranges from, -0.35 to -0.50. It ranges from -0.35 to -0.45 in most Latin American countries, and between -0.10 and -0.30 in the industrialized nations. This confirms the conventional wisdom that low-income households are more sensitive to prices than higher income households are. It also suggest that policies to reduce the market price of fruit and vegetables can have a significant impact on fruit and vegetable consumption, particularly for low income households (Ruel et al., 2005).Ethiopia has a variety of vegetable crops grown in different agro ecological zones by small farmers, mainly as a source of income as well as food. The production of vegetables varies from cultivating a few plants in the backyards, for home consumption, to large-scale production for the domestic and home markets. According to CSA (2003) the area under these crops (vegetables and root crops) was estimated to be 356,338.82 hectares with a total production of 12.5 million tons in the year 2001/2.The productivity of crops is very low compared to the potential yield obtained in the research centers and on farmers' field technology verification studies. For instance, the productivity of onion and tomatoes was about 90 and 70 quintals per hectare compared to the potential yield of 400 and 350 quintal per hectare in research centers (EARO 2002 as cited in Dawit et al., 2004).Tomatoes-The cultivated tomato (Lycopersicon esculuntum Mill) is the most important and widely grown vegetable in the world. To date, its importance is increasing in Ethiopia.It is widely accepted and commonly used in a variety of dishes as raw, cooked or processed products more than any other vegetables (Lemma, 2002).Lemma (2002) added absence of definite time recorded regarding the introduction of cultivated tomato to Ethiopia. However, he added, cherry type has been growing for long around big cities and in small gardens. The bulk of fresh market tomatoes are produced by small-scale farmers. Farmers are interested in tomato production more than any other vegetables for its multiple harvests, which result in high profit per unit area.Tomatoes vary in visible fruit characteristics important for fresh market and processing values. These include shape, size, color, flesh thickness, number of locules, blossom end shape and fruit quality. The fruits may be globe shaped (Marglobe), oval or flattened (Marmande), and pear shaped (Roma VF), which differ in acceptability in the local market, quality, and storability.Onion-Onion, the principal Alliums, ranks second in value after tomatoes on list of cultivated vegetable crops worldwide (Robinwith and Currah, 2002). These people also reminded that all plant parts of alliums may be consumed by humans (except perhaps the seeds), and many wild species are exploited by local inhabitants. Careful handling and the choice of suitable storage method for the cultivar type in question are vital to ensure that the product retains its quality until it reaches the consumer. \"Cosmetic quality' is of increasing importance in competitive markets.The product is produced for both consumption and market. According to CSA (2003) out of a yearly production, 48.2 percent was utilized for sale, 39.9 per cent for household consumption in contrast to tomatoes where 66.7 per cent of the total production is send for market.Being produced both by commercial and smallholder farmers vegetable marketing is influenced by a number of factors that can be attributed to production, product, and market characteristics. Kohl and Uhl (1985) identified these attributes as-Perishability-as vegetables are highly perishable, they start to loose their quality right after harvest and continued through out the process until it is consumed. For this purpose elaborated and extensive marketing channels, facilities and equipments are vital.This behavior of vegetables exposed the commodity not to be held for long periods and fresh produce from one area is often sent to distant markets without a firm buyer or price.Prices may be negotiated while the commodities are en route, and they are frequently diverted from their original destination if a better price can be found. Sellers might have little market power in determining a price. As a result, a great deal of trust and informal agreements are involved in marketing fresh vegetables. There could not always be time to write every thing down and negotiate the fine details of a trade. The urgent, informal marketing processes often leads to disputes between buyers and sellers of fresh fruits and vegetables. Producers are normally price takers and are frequently exposed for cheating by any intermediary.Price /Quantity Risks-Due to perishable nature and biological nature of production process there is a difficulty of scheduling the supply of vegetables to market demand. The crops are subjected to high price and quantity risks with changing consumer demands and production conditions. Unusual production or harvesting weather or a major crop disease can influence badly the marketing system. While food-marketing system demands stable price and supply, a number of marketing arrangements like contract farming provide stability.Seasonality-Vegetables have seasonal production directly influencing their marketing.Normally they have limited period of harvest and more or less a year round demand. In fact, in some cases the cultural and religious set up of the society also matter demand to be seasonal. This seasonality also worsened by lack of facilities to store.Alternative product forms and markets-While different varieties and qualities could be grown for the fresh and processed markets, there could also be often alternative markets. These include form markets (fresh, frozen, dried, canned), time markets (winter, summer,), and place markets (different towns, foreign market).Product bulkiness-Since water is the major components of the product, it makes them bulky and low value per unit that is expensive to transport in fresh form every time. This, therefore, exposed farmers to loose large amount of product in the farm unsold.These listed characteristics of the product require a special complex system of supportive inputs. It demands a regular marketing preparation process like washing, cooling, proper management from the time of harvest until the produce is put on display. It is frequently believed a vegetable not only remain attractive to the consumer it must also have a shelf life of few days after having purchased by the consumer (Nonnecke, 1989).Nonneck (1989) added that series minded vegetable producers do not simply decide to get into production without first taking stock of resources; the size of the land base; proximity to potential markets; and facilities for holding, washing, grading, packaging, and transportation. Growers must then decide at what level they want to penetrate the market, and determine their products and in what volume, and the acceptable levels of quality and quantity, taking in to account the cost of packaging and costing as well.Improving vegetables marketing in developing countries is vital for a number of reasons: rapid increase in demand from growing domestic urban populations, opportunities to earn foreign exchange by exporting high value-off-season produce; the income raising opportunities it offer to small farmers and the contribution to employment made by its labor intensive production, handling and sales requirement are some to mention (FAO, 1986).Horticulture production is profitable. Farmers involved in horticulture production usually earn much higher farm income as compared to cereal producers. Cultivation of fruits and vegetables allows for productive employment where the labor/land ratio is high, since horticultural production is usually labor intensive. Increasing horticulture production contributes commercialization of the rural economy and creates many off-farm jobs. However, expanding the scale of horticulture production is often hindered by lack of market access, market information, and many biological factors (Weinberger and Lumpkin, 2005).Ideally, measures commonly recommended for the improvement of vegetables marketing are better packaging, handling, and transport; sorting by quality; extending the market season and leveling out gluts and shortages by market delivery planning and storage; developing new markets; installation of refrigerated transport and processing equipment: and establishing marketing enterprises .The vast majority of growers obviously must know how to grow crops to attain maximum productivity. To meet this basic requirement they must have astute business skills. In finding markets, they must decide in advance which route to take, size of operation, and select the crops.However, in our case these rationalities do not seem to be considered and farmers grew and sell with some spontaneity. Bezabih and Hadera (2007) explored this reality in their study of constraints and opportunities of horticulture production in Eastern Ethiopia. They argued that production is seasonal and price is inversely related to supply. During the peak supply period, the prices decline. The situation is worsened by the perishability of the products and poor storage facilities. Along the market channel, 25 percent of the product is spoiled.From these reviewed literatures on the status of vegetable production in Ethiopia lack of adapted varieties, pest and diseases, extreme production seasonality, seasonal price fluctuations, poor pre-and post harvest handling, lack of storage are among the cited realties.Dawit and Hailemariam (n.d) stated the importance of horticultural crops for both domestic and international markets as it was at an increasing rate from time to time associated with the expansion of small-and large-scale irrigation facilities compounded by national and regional extension service on the production of horticultural crops. In their paper, these researchers analyzed opportunities and constraints of vegetables marketing in the rift valley. They reported three options for selling horticultural crops similar to Fogera; right in the field (common for onion and tomato), sell at nearby markets, and least proportion option to access distance markets. They added that in terms of volume about 93 percent of the total produce was sold to wholesalers.Basing farmers report, these guys also added the major production and marketing constraints to include shortage of chemicals, shortage of commercial fertilizer, shortage of irrigation water, shortage of quality seeds, low product prices, intensive influence of speculators and brokers in reducing the bargaining power of farmers, poor market access, poor access to transportation, and intensive competition among producers.Similarly, Bezabih and Hadera (2007) explore use of low level of improved agricultural technologies, risks associated with weather conditions, diseases and pests, as the main reasons for low productivity. Moreover, due to the increasing population pressure the land holding per household is declining leading to low level of production to meet the consumption requirement of the household. As a result, intensive production is becoming a means of promoting agro-enterprise development in order to increase the land productivity. Horticultural production gives an opportunity for intensive production and increases small holders' farmers' participation in the market.The above scholars, Bezabih and Hadera (2007), further identified pest, drought, shortage of fertilizer, and price of fuel for pumping water as the major constraints of horticulture production in Eastern Ethiopia. Other problems which they reported also include poor know how in product sorting, grading, packing, and traditional transporting affecting quality. Many of these findings also hold true for other parts of the country like Fogera.Another interesting property that Bezabih and Hadera (2007) found out and actually also holds for this research site, is the flow of products is dictated by seasonal deficit where at times surplus producing site might also be receiver from the earlier receiving area at times of deficit.They added absence of direct transaction or linkage between the producer and the large buyer as another property that characterized horticulture marketing. Buyers follow contact persons who identify vegetables to be purchased, negotiate the price, and purchase and deliver the products. Bezabih and Hadera (2007) categorized actors in the marketing channel as producers, intermediaries/ brokers, traders and consumers.Brokers play a decisive role in the marketing system and determine the benefit reaching the producer. Onion and tomato are quite often purchased in the field with brokers. According to these people, Bezabih and Hadera (2007), three types of brokers: the farm level broker, local broker and urban broker exist. Each has their one separate task where the farmer level broker identifies plots with good produces and links the producer with a local broker. The local broker in turn communicates with the farmer and conveys the decisions made to the urban broker or collector. In this process the producer have contact with local agents and do not have direct contact with the other intermediaries. The third broker, urban broker, gets the information from ultimate buyers and sets the price. Here neither the farmer nor the traders set actual prices for the products. If the farmer insists on negotiating the price, the brokers gang up and boycott purchasing of the product leaving the product to rot. The farm level and local brokers get Br 5 while the urban broker gets 10 Br per quintal. If there are several brokers in an area, they negotiate not to compete on the price offered by the broker. The changes in the value of products as they move away from production along the marketing channel to the consumer is the increased utility by making the goods available rather than adding value in terms of increased shelf life or safety.Moti (2007) also found out interesting research findings in his study of econometric analysis of horticulture production in central and eastern Ethiopia. In his wide research report, he documented findings of the role of horticulture for export earning stability, farm resource allocation between food crops and cash crops, household decision making in crop choice-land allocation and market out let choice, and the influence of asymmetric price information on bargaining power of horticulture farmers.According to Moti (2007) horticulture could be way out for agricultural commercialization of small-scale farmers with relatively better agricultural resource potential. If small-scale farm household have to move towards the production of horticultural crops for agricultural commercialization, factors influencing household decisions behavior in resource use should be studied.He reported that diversifying the export base towards non-traditional agricultural commodities, as horticulture is important. He added linking small-scale farm household horticultural production with export could help both in reducing export earning instability and enhancing farm household's income. In addition, he pointed out that the production of high value and labor-intensive horticulture products contributes to poverty reduction and rural development through generating higher income and better employment opportunities for landless households.Moti ( 2007) did not end his finding on role of export only he added the role of well functioning markets for Ethiopia where cooling and storage facilities are none for perishable crops. He advised improvement in market information and availability of alternative market outlets for subsistence farming to commercialize.Amhara National Regional State is one of the regional states in Ethiopia. According to BOFED (2006) , 2005). The current land use pattern includes 43.8 percent cultivated land, 23 percent pastureland, 19.9 percent water bodies and the rest for others (IPMS, 2005). The major crops growing in the area include tef, maize, finger millet and rice in order of area coverage. According to IPMS (2005), average land holding was about 1.4 ha with minimum and maximum of 0.5 and 3.0 ha, respectively.For purposes of research and development activities, the Woreda was classified by farming systems. As it is well known, a farming system is defined as a population of individual farm systems that have broadly similar resource bases, enterprise patterns, household livelihoods and constraints, and for which similar development strategies and interventions would be appropriate (FAO, 2001). Basing this definition, IPMS (2005) classified the Woreda in to two basic farming systems, rice-based and cereal-based. The rice based farming system is that part of the Woreda where rice shared wider coverage, plain land, better livestock, and silt as result of flooding in the uplands. The altitude is lower than the cereal based. The cereal based farming system is that part of the Woreda to the west of Woreta, the capital, relatively with wider coverage in cereals other than rice, rugged topography, low fertility and limited livestock population. From the 30 Kebeles eight are under the rice based farming system and the rest seventeen from cereal based.Agricultural production in the Woreda is mainly rain fed far from its wide irrigation potential. Being one of the eight Woredas bordering Lake Tana, Fogera shared a water body of 23,354 hectares from the total lake size. Its plain topography created the opportunity for a good size of irrigation potential. Actually, farm field water lodging in the rainy months (July up to half of September) is the common phenomena in the plain areas.Bahir Dar and Gondar are the two big vegetable receivers in the area. These two towns are at 55 and 130 Kms from Woreta. Gondar is found to the north of Woreta while Baih Dar is to the south.The data for this study was collected both from primary and secondary sources. Primary data included the whole situations of the marketing system from the producing farmer up to the end consumer. It was through questionnaire-administered survey as well as informal and unstructured approaches the data were collected.The main data types collected include production, buying and selling, pricing, input delivery and distribution, market participation, problem and opportunities, etc characteristics of the market. Besides, secondary data on total land size and population types were consulted.A multi-stage random sampling technique was employed. The sampling covered, farmers, retailers and consumers on propionate to size basis.A two stages sampling technique made by selection of vegetable growing Kebeles at the first stage followed by random selection of vegetable growing farmers. Kebele identification was through secondary data based on production coverage of the two vegetables. Thirteen Kebeles from the two farming systems were selected; seven from rice and six from cereal based farming systems. Respondent sample size per each Kebele was determined proportionally to the number of total onion and/or tomato growing farmers per a Kebele (Annex Table-1).Researchers do not agree on sample size and procedure that should be used in each segment of the marketing chain (Mendoza, 1995). The decisions involved were partly a function of information currently known, time and resources available, accessibility to and openness of the marketing participants as well as the estimated size of the trading population.It is estimated that about 38 rural assemblers, 50 brokers, and 54 wholesalers used to participate in the marketing of the product. However, it was arbitrarily belived to take five from each for detail interviewing. In fact, frequent rapid informal and observational surveys were also followed.The sample frame was developed by taking a count of vegetable retailers in the three main retail markets; Gondar, Bahir Dar and Woreta. It is estimated that 148 retailers are found at Bahir Dar, 102 at Gondar and 24 at Woreta central markets. After estimating the number of retailers, a proportion to size was taken and 27 from Bahir Dar, 18 from Gondar and 5 from Woreta were randomly selected. Fifty retailers from the three towns were interviewed (Annex Table-2).The consumers' survey was meant to understand the demand for the products. The survey was taken from three major receiving towns namely, Gondar, Woreta and Bahir Dar. Ninety-one respondents were interviewed in the three towns through proportionate to size sampling technique based on the Amhara Regional Bureau of Finance and Economic Development population projection data. Accordingly, 48 respondents from Gondar, 39 from Bahir Dar and 6 from Woreta were interviewed (Annex -Table-3).Study of agricultural marketing based on market chain analysis demands both descriptive and econometric analysis. For this specific paper, data collected from a cross-section of samples was first analyzed with descriptive statistics followed by determinant analysis of supply, crop and buyer choice, and finally demand.Examining the nature of horizontal relationships between similar enterprises is analogous to analyzing the structure of the market as defined by the industrial organizational school.Analyzing market structure entails understanding of those characteristics of the organization of the market influencing the nature of competition and pricing (Scarborough and Kydd, 1992).The structure of the market refers to characteristics of the organization of the markets that seem to exercise strategic influence on the nature of competition and pricing within the market (Pomeroy and Trinidad, 1995).In food marketing, very large number of producers and consumers at each end of the marketing chain is suggestive of competitive conditions and, therefore, the focus in analyzing market structure is on the numbers and sizes of enterprises within the system, and the potential access of additional participants to it. A high number of buyers and sellers along the marketing chain, ease of entry into all functions, and widely available market information, together carry a strong presumption of competitive conditions (Timmer et al., 1983).Estimating the numbers, size and spatial distributions of each category of intermediary provides an indication of both the local structure of the market, and the range of alternatives faced by participants in the marketing chain in their buying, selling and hiring functions (Scarborough and Kydd, 1992). The following tools were employed to study the market structure.Concentration ratio-Market concentration is defined as the number and size distribution of sellers and buyers in the market. It is felt to play a large part in the determination of market behavior within an industry because it affects the interdependence of action among firms. The greater the degree of concentration the greater the possibility of noncompetitive behavior, such as collusion would be (Pomeroy and Trinidad, 1995).The commonly used measure of market power, or seller concentration, is given by the proportion of total industry sales accounted for by the four large enterprises in the industry. Kohls and Uhl (1985) suggest that, as a rule of thumb, a four enterprise concentration ratios of 50 percent or more is indicative of strongly oligopolistic industry, of 33-50 percent a weak oligopoly, and less than that, an un-concentrated industry. This is the number and size distribution of sellers and buyers in the market. The greater the degree of concentration, the greater will be the possibility of non-competitive behavior, such as collusion, existing in the market. ------------------------------------------------Equation (1)Where Si -market share of buyer i Vi-amount of product handled by buyer i ΣVi=Total amount of product handle- --------------------------------------------Equation (2)Where C-concentration ratio Si-percentage share of the i th firm r-Number of largest firms for which the ratio is going to be calculated However, this approach is not without limitations. Some of the limitations include lack of reliable data on firm basis for its application, the incapability of a single measure to reveal distribution of sales between the numbers of largest enterprises, and failure to take account product differentiation or other possible monopoly elements. Besides, the index falls prey to inferential problems of forming hypotheses about conduct from structural characterization. For example, a large number of similar-sized enterprises may result in a low concentration index, but the possibility that these enterprises to collude, to form effective oligopolistic conditions is a chance (Scarborough and Kydd, 1992). Nevertheless, supported by other methods it is the common used tool.The ease with which potential participants can enter various functions is commonly used as a means of assessing the degree of competition in an industry (Scarborough and Kydd, 1992). Stigler (2005) suggests about four points that can create barriers to entry: legal barriers (franchise and patents), economies of scale, superior resources, and pace of entry.The modes of entry into trade, means of building capital, means of acquiring marketing skills and contacts, periods of apprenticeship, trader's perceptions of barriers, the origins and levels of initial capital required for traders of different sizes (functions, or commodities), and the degree of mobility between functions and commodities can be used as centre of data to see the barriers to entry (Timmer et al., 1983).In fact, interviewing traders about barriers to entry might be difficult since all have entered the market. Rather, observation of the age, gender, and ethnic distributions of owners, an employees of different sizes of enterprises and the extent to which fluctuations in the number of active traders follow rises and falls in profitability can be considered. Market structure is most commonly evaluated by examining trends in the numbers and sizes of firms relative to each other, and to number of consumers and producer, in particular times and places (Scarborough and Kydd, 1992).If horizontal relationships between similar marketing enterprises are the basis for examining the structure of the market, the nature of vertical relationships of exchange shades light on the conduct of market participants. Conduct refers to firm behavior like pricing and selling policies and tactics; overt and tacit inter-firm cooperation, or rivalry and research and development activities (Scarborough and Kydd, 1992). It is the pattern of behavior of enterprises in determining prices, sales promotion, and coordination policies and the extent of predatory or exclusionary tactics directed against established rivals or potential entrants (Pomeroy and Trinidad, 1995/. There are no agreed up on procedures for analyzing the elements of market conduct. Rather, few points are considered to systematically detect indications of unfair price setting practices and conditions under which such practices are likely to prevail. The points include checking the existence of formal and informal producing and marketing groups; the availability of price information and its impact on prevailing prices; and the feasibility of utilizing alternative market outlets (Scarborough and Kydd, 1992). Accordingly, discussions and observations have been employed to investigate the market conduct prevailing in the marketing system.Market performance refers to the impact of structure and conduct on prices, costs, and volume of output (Pomeroy and Trinidad, 1995). Investigations of market efficiency is one approach to evaluate the degree of market performance.Marketing efficiency has the following two major components: (i) effectiveness with which a marketing service would be performed and (ii) the effect on the costs and the method of performing the service on production and consumption. These are most important because the satisfaction of the consumer at the lowest possible cost must go hand in hand with maintenance of a high volume of farm output (Ramakumar, 2001).Marketing Margin-In a commodity subsystem approach, the institutional analysis is based on the identification of the marketing channels. This approach includes the analysis of marketing costs and margins (Mendoza, 1995). A marketing margin can be defined as a difference between the price paid by consumers and that obtained by producers; or as the price of a collection of marketing services that is the outcome of the demand for and supply of such services (Tomek and Robinson, 1990). It measures the share of the final selling price that is captured by a particular agent in the marketing chain (Mendoza, 1995).It, in its simplest form, can be defined as the difference between prices paid for a commodity (e.g. bread) by consumers at a retail level, and prices received by farmers when they sell their commodity (e.g. wheat) to assemblers or other first handlers. Measured in this form, the margins reflect the amount of services added to a commodity once it leaves the farm and sits on a shelf in a retail outlet in a form that is acceptable, useful, and appealing to consumers (Goetz and Weber, 1986).Marketing margin is most commonly used to refer to the difference between producer and consumer prices of an equivalent quantity and quality of a commodity. However, it may also describe price differences between other points in the marketing chain, for example between producer and wholesale, wholesale and retail, prices (Scarborough and kydd,1992).The size of marketing margins is largely dependent upon a combination of; the quality and quantity of marketing services, and the efficiency with which they are undertaken and priced. The quality and quantity of marketing services depends on supply and demand of marketing services and/or the degree of competition in the market place. The costs of service provision depend on both exogenous and endogenous factors and the efficiency is determined by the extent of competition between marketing enterprises at each stage.According to Trotter (1992), the benchmarks to which results of marketing margin to be compared with are, the assumption of the margin to be equivalent to transfer cost as well as the constancy of margin per unit of product.Large gross margins may not express high profit but rather; increased qualities and quantities of service; low labor, capital and management productivity. Conversely, small gross margins may co-exist with inefficient use of resource; poor coordination and consumer satisfaction; and disproportionate profit elements. Thus, higher marketing margins resulting from increased services, including better coordination, may leave producers and consumers better off, and low margins may be due to low productivity. Therefore, in using market margin analyses to assess the economic performance of markets, it is always preferable to deconstruct them in to their cost and return elements (Scarborough and Kydd, 1992). However, the challenges of data availability on costs make impossible the deconstruction though marketing margins are still good indicators of market performance.Notwithstanding the considerable variation between markets, if a high proportion of sale price is attributed to purchase cost, it indicates that traders add relatively little value, in terms of transport, storage, or transportation of a commodity in question. Traders undertake only spatial arbitrage and not temporal or form arbitrage (Eleni, 2001). So the computation and use of margins need critical attention.The scope for government interventions in markets is determined by the efficiency and costs of performing the basic marketing functions. In addition to a concern for lowering the real costs of marketing, governments need to focus on the efficiency with which marketing services are provided. If high costs exist, government investments can lower them. In market economies, inefficiency means excess profits, and excess profits mean monopolistic intermediaries or collusion in price formation. If serious inefficiency exists, therefore, government policies might improve competitiveness or provide direct competitive standards (Timmer et al., 1983).All these reviewed literatures advised not to exclusively depend on marketing margin for decision making but to support with other tools. Hence, in this study four parameters are included to judge an overall market performance.When there are several participants in the marketing chain, the margin is calculated by finding the price variations at different segments and then comparing them with the final price to the consumer. Consumer price is the base or common denominator for all marketing margins (Mendoza, 1995). The relative size of various market participants' gross margins can indicate where in the marketing chain value is added and/or profits are made.The total marketing margin is given by the following formula Where TGMM-Total gross marketing margin Producers' participation or producers' gross margin is the proportion of the price paid by the end consumer that belongs to the farmer as a producer. Studies have found out that estimating marketing margin quite accurately through price surveys at all levels in the distribution channel during one week under normal conditions is normally recommended. In the case of perishable products, estimating the margin depends largely on primary data collection in the form of surveys carried out over time intervals relevant market cycle occurs. Recording prices at different levels of the marketing chain during a two-to-three-week period is sufficient to calculate quite accurately the relevant marketing margin (Mendoza, 1995).Limitations are apparent in using marketing margin. These are; the failure to allow for the temporal realities of storage or the spatial implications of in terms of market transfers. They are often calculated by noting price differences between different levels of the market in the same town and at the same market. They are static in nature. The other weakness raised is the inability to account differences in product perishable nature and in the number of services necessary (actually rendered).In using marketing margins cares are suggested by Saccomandi (1998) as the interpretations are largely incorrect because each agricultural marketing system has its own historical and social context, which is reflected in the means used to organize the marketing, processing and distribution of food products. Since these means also depend on various factors, there could be identical margins for different economic situations and different margins for homogenous economic situations, without offering the possibility of expressing any judgment on the comparative efficiency of one or the other. The greater or lesser importance of these margins is an index of equity in the performance of agricultural marketing activities, meaning that higher margins would correspond to low returns and monopolistic exploitation of agricultural producer, and vice versa. This interpretation is also incorrect, since monopolistic exploitation depends on the market power of the various components of an agri-marketing system. Such power cannot be evaluated through margins but requires a deeper analysis of the existence of workable competition in the various phases. Tomek and Robinson (1990) warned shortly as marketing margins provide only one point of reference in the evaluation of performance and should be compared with measures of profits earned by marketing firms to determine whether the margins are excessive.Marketing channels -The analysis of marketing channels is intended to provide a systematic knowledge of the flow of the goods and services from their origin (producer) to final destinations (consumers) (Mendoza, 1995). This is acquired through studying the participants, with the first step to determine what and which final markets are. While the source and destinations are clearly identified the study of participants within the channels, the activities they perform and the overall actions can easily be investigated. Ramakumar (2001) identified the different marketing channels based on different performance indicators from which rank was computed. The indicators included were producer's share in the consumer's money, marketing cost of intermediaries, marketing margin of intermediaries and returns per unit money of investment. In this study, volume passed, producer's share, marketing margin of intermediaries and rate of return were taken to evaluate the efficiency.R-An overall rank of a channel (all performance indicators) R i -Rank of a channel per a single indicator N i -Number of performance indicators and i-Performance indicators (volume handled, rate of return, producers' share, and marketing margin).This part of the analysis dealt with the analysis of understanding determining variables to for production participation, land allocation and volume of the vegetable supplied to market. For managing this, proposed methodology was probit estimation for participation probability and Heckman two-stages for the rest two.To investigate factors embedded in deciding participation, eleven variables were proposed for each crop.Where * i Y is dependent variable-Participated or not participated X i is the explanatory variables listed under.Age (AGE) -Age of the household, a continuous variable, was taken as one of the explanatory variables to influence participation to production. The expected sign was positive as age one of the parameters of human capital. As an individual stays long, he will have better knowledge and will decide to participate.was one variable to be considered. No sign could not be attached with the variable.Total size of land owned (TOT_LAND) -Total size of land a respondent owned, continuous variable, taken as anther variable to influence participation decision. The expected sign was positive. The more land owned the more will be the probability to participate in the decision.Family size (FAM_SIZ) -Family size of a respondent was one variable (continuous variable) proposed to influence participation decision. The more number of family members an individual had the more probable to participate production participation. This is because he will have a labor source.Distance from main road (DIS_ROAD) -this was another continuous variable suggested to be included in the model. Measured in single feet hours, the more time needed to reach a main road the lesser would be the probability to participate in production. Hence the expected sign was negative.-being a power for plowing, participation probability would increase as farmers increased their number of oxen ownership. The expected influence is positive. It was discrete continuous variable.Distance from Development Agent (DIS_DA) -This variable was considered to see the intensity of extension service. The nearer a farmer is to a development agent the more frequent would be his chance to get an advice. Hence, the expected sign for this continuous variable measured in single feet hours was negative. As a farmer dwelled far the lesser would be the probability to participate in production.-This is the price of the crop in 1997 EC and is continuous variable. The sign for the coefficient was expected to be positive. As the farmer saw higher price a year before the probability to produce and participate in the market would be high.Extension service (EXT_SER) -this was a dummy variable indicating extension service farmers were getting. This variable was expected to influence participation positively.Obviously, as farmers learned more and knew much it would be direct obvious to participate in production.proposed to be included in the model measured in single feet hours from the farmer's home to inputs supplier. The expected sign was positive. The farther a farmer lived from input supplier the lesser would be the probability to participate in production.to influence production participation positively. As farmers got more experience in production and marketing, the probability of to participate would be higher.-This was a variable proposed to influence decision to participation positively. If a farmer could get historical data, he would be able to participate. The variable was considered dummy. Assigning zero if a farmer got information and zero if not.For commercialization to success, farmers need to produce and supply market a considerable volume. For this purpose, farmers need to allocate more size of land and produce larger quantities of the vegetable crops. A number of factors could influence both size of land allocated for a specific crop and the volume of vegetable to be supplied to a market. As a result, about the eleven variables were proposed to be included in the model.Among the different variables that would explain market supply the most important variables, according to the reviewed literature, include family size, educational level, sex of household head, extension service, cash income from other crops, oxen number, livestock ownership, and the relative importance of the crop in question. Among production and market related variables production level, total size of land holding, distance to market, product prices, and market information were found to be important determinants (See for instance Askarie and Cummings, 1974;Harris,1982;Tomek and Robinson, 1990;Wolday, 1994); Reddy et al., 1995;Atteri and Bisaria, 2003;Gizachew, 2006;Kindei, 2007;and Rehima, 2007).However, it must be noted that the importance of these variables in explaining market supply level could be different depending on the crop type, region/area of production and degree of commercialization. As a result, taking into account specific situations at Fogera (better degree of farmers commercialization, high marketable proportion) it was decided to include age, sex of respondent, total size of land owned, family size, experience, distance from road, oxen ownership, distance from development agent as determinants for size of land allocated for a crop. Similarly, the same variables were included for volume supplied to market.Three basic variables common in other marketing studies viz, selling price and produced quantity were not included in the model. The specific situations in Fogera indicate that quantity did not influence supply because as far as the crop is produced the whole quantity would be supplied to market. In the area, there is very limited custom of consuming both crops. As a result, including quantity as determining variable has no any role to express.With regard to selling price, again it was excluded because farmers have no any bargaining power they are price takers. So it was not selling price but product maturity and availability and presence of a buyer that matters selling.In order to analyze the collected data it would have been easy if simple ordinary list squares was used. However, in the course of sampling it is customary to face problem of sample selection. This was faced in this research and a method that took into account for such problem was hence considered. Sample selection is a generic problem in social research that arose when an investigator did not observe a random sample of a population of interest. Specifically, when observations are selected so that they are not independent of the outcome variables in the study, this sample selection leads to biased inferences. To rely exclusively on observational schemes that are free from selection bias is to rule out a vast portion of fruitful social research. Selectivity is not only a bias in research, but also the subject of substantive research (Winship and Mare, 1992).The two versions of selection bias problem are the standard selection bias, where information on the dependent variable for part of the respondents is missing. In the other version, information on the dependent variable is available for all respondents, but the distribution of respondents over categories of the independent variable one might have been interested taken place in a selective way (Smits, 2003).Heckman two stages models of estimation would be appropriate with its relevant procedure: estimating first the probability of farmer's participation in a market for obtaining Inverse Mills Ratio which would be incorporated in the second stage OLS estimation of market supply level.The Heckman two stage model is estimated using the following equation----------------------Equation ( 7)Where , Z i -explanatory variables * 1i Y -is the estimated market participation probability V i -random term for the selection equationThe Heckman procedures assumes that the error term of the selection equation to be normally distributed and the expected value of the substantial equation error term given the error term of the selection equation is linear.In the second stage of estimation, OLS estimation procedure would be used to identify determinants of market supply level (quantity of supply) by taking those farmers who participated in the market. The estimation model is given as follows. 9 Age (AGE) -Age of the household, a continuous variable, was taken as one of the explanatory variables. The expected sign was positive as age one of the parameters of human capital. As an individual stays long, he will have better knowledge and will decide to allocate more size of land, produce more and supply more.was one variable to be considered. No sign could not be attached with the variable.Total size of land owned (TOT_LAND) -Total size of land a respondent owned, continuous variable, taken as anther variable to influence. The expected sign was positive.The more land owned the more will be the probability to allocate fro each vegetable crop and more to supply.Family size (FAM_SIZ) -Family size of a respondent was one variable (continuous variable) proposed to influence. The more number of family members an individual had the more size of land allocated to the two vegetables and more to supply. This is because he will have a labor source.Distance from main road (DIS_ROAD) -this was another continuous variable suggested to be included in the model. Measured in single feet hours, the more time needed to reach a main road the lesser would be the size of land allocated and volume supplied to market.Hence, the expected sign was negative.-being a power for plowing, more land allocation and product supply probability would be as farmers increased their number of oxen ownership.The expected influence is positive. It was discrete continuous variable.Distance from Development Agent (DIS_DA) -This variable was considered to see the intensity of extension service. The nearer a farmer is to a development agent the more frequent would be his chance to get an advice. Hence, the expected sign for this continuous variable measured in single feet hours was negative. As a farmer dwelled far the lesser would be the chance for extension contact and hence less knowledge, less land allocation and less market supply.-This continuous variable measured by number of years expected to influence positively. As farmers got more experience in production and marketing, the larger land would be allocated and more would be supplied.-This was a variable proposed to influence market supply and land allocation positively. If a farmer could get historical data he would be able to participate. The variable was considered dummy. Assigning zero if a farmer got information and zero if not.Different kinds of models are used to analyze demand or consumption. These include both single and systems of demand equations (FAO, 2003). The single equation models specify uncompensated demand equations. The prices of the goods omitted from the specification may then cause problems because any change in either of them causes changes in demand for the commodity in question through changes in expenditure. In empirical work, this problem may not be too serious, as the effect is small if the particular good represents small portion of the budget (Asche et al., 2005).The general demand functions can be generalized for a consumer buying n goods as: ) , ........ , ( 2 1Where Q i is quantity demanded; P is price;i denotes commodities, and I income.Extending the demand function for individual consumers to that for a group of consumers in most empirical applications requires the inclusion of demographic variables besides prices and income (FAO, 2003).It is generally acknowledged that income and price are by no means the sole determinants of food consumption, although they are normally the easiest to measure. Additional factors influencing food consumption may be grouped under five: physical need, availability, changes in services, tastes and changes in geographical distribution of the population (Saxon, 1975).The relationship between individual independent variables in a demand equation and the demand variable can be classified as elasticities, flexibilities, and impact multipliers.Elasticity applies to demand equations in which the dependent variable is quantity purchased (or specific use such as consumption) (Ferris, 2005).Double logarithm models were used by Saxon (1975) for its linearity in the logarithms and results of constant elasticities that are to equal coefficients. The log-log demand models enjoys a long history in empirical work. Its coefficients are elasticities (Asche et al., 2005;Durham and Eales, 2006).The parameters of the linear model have an interpretation of marginal effects. The elasticity will vary depending on the data. As put by Ferris ( 2005), for a linear demand relationship the slope and inverse slope are constant through out. Nevertheless, for every point on the line, the price and quantity will differ. Therefore, the elasticity will differ at each point on the line. In contrast, the parameters of the log-log model have an interpretation as elasticity. Therefore, the log-log model assumes a constant elasticity over all values of the data set. Such demand equations are functional forms of that are homogenous of degree zero in all prices and income (Binger and Hoffman, 1998). In equations of log-log functional form the coefficients are elasticities if the dependent variable is quantity purchased or consumed (Ferris, 2005). ------------------------------------Equation ( 18)Where, lnY i -natural logarithm of vegetable i consumed lnX i -natural logarithm of explanatory variable B 2 -vector of explanatory variables, α -intercept term, U i -random term In this model, the advantage of elasticities is that they represent relationships between percentages and the specific units involved do not have to be known. The sign on own price elasticity would be expected to be negative. The sign on income elasticity is either positive or negative (Ferris, 2005).The double log model is theoretically consistent when demand is independent of expenditure. Even though this violates Engle's law, which claims the propensity to consume a particular group of good varies with total expenditure. It should be noted that it is sometimes argued that in the analysis of a single commodity, where the functional form of the other goods in the system remains unspecified, the double-log specification may give a satisfactory local approximation, in particular if there is not too much variation in total expenditure (Asch et al., 2005).Monthly average consumption (QTY)-This is the dependent variable expressed as an average kilogram of onion or tomato consumed per household taking Miazia's month as a representative.Family size (FAM) -This is the total number of family members under a household. It is a continuous variable expected to take positive coefficient. The higher number of family a household had the more quantity they would consume.Purchase frequency (PURCHFRQ)-This is a categorical dummy, expected with positive coefficients. The more frequent a household purchased, the more quantity would consume.Distance from market (DIS) -This is a continuous variable measured in travel hours from a household to market center. The farther distance from its home the lesser quantity would be consumed. Hence, it is expected to take positive coefficients.Amount vegetable bought per single trip (SIN) -This is the quantity of a vegetable, onion or tomato, a household purchased per single purchase. It is a continuous variable measured in kilograms. The expected sign was positive assuming that more a household purchase lot the higher quantity he would produce.The result and discussion part of this thesis is classified into three major sections: production, marketing and consumption. Each of them are discussed separately.A random selection of 120 farmers from the two farming systems encompassing 9 female and 111 male farmers were taken. The number of onion growers were 103 and that of tomato were 50. No farmer reported as a grower of tomato in cereal based farming system that can be associated with distance to market, Woreta or main roadsides. The age of respondents ranged from 23 to 80 with a median of 43 and modal of 45 years (about 10 respondents). The average family size was 5.18 (5.35 in rice and 5.05 in cereal based farming systems). The average labor force was 3.38 with no significant difference between the two farming systems. All the household characteristics showed no significant difference between the two farming systems.The level of education for the majority of respondents (63.3 percent) was 1-4. Even though the older an individual the more probable illiterate he might be, in Fogera people were found literate to a certain level, primary level (1-4).The respondents' farm size ranged from 0.13 to 3.75 with a median land size of 1.5 ha. The average farm size was 1.63 ha, with significant difference between the two farming systems, 1.42 and 1.87 ha in rice and cereal based farming systems respectively. The largest proportion, 68 percent, of respondents owned a land size between one and two hectares of land.In terms of allocation, the largest land allocated was to rice 0.73ha (52.2 percent), millet 0.52 ha (46.8 percent), grass pea 0.49ha (37.8 percent), and teff 0.43ha (36.4 percent) put in order. Maize and millet seemed to have a cross farming system coverage planted by 100 and 89 respondents of the 120. The average land allocated for tomato was 0.16 ha and 0.10 ha in rice and cereal based farming systems respectively. The modal land size was 0.125 ha (16 farmers). The minimum land size was 0.005 ha found in cereal based farming system and the maximum was in rice based farming systems with a size of 0.5ha.Respondents also reported that the average land size allocated to onion was 0.32 ha in the rice based and 0.28ha in the cereal based farming system. The modal land size was 0.25 ha (32 farmers) and median of 0.25. The minimum land size was 0.01 in the cereal based farming system and maximum 1.50 hectare at the rice based farming systems.Based on the proportion from the average farmland, onion shared on the average 20.2 percent and the corresponding figure for tomato was 10.12. The proportion of tomato, as reported by respondents, showed no significant difference between the two farming systems ranging from 3 to 38 percent. The proportion of land allocated for onion was also from 1 percent to 80 percent with no significant difference between the two farming systems.Farm power-As critical sources of farm power 51.6 percent of the respondents owned two, 20.83 percent owned one, 16.67 percent owned three, 9.11 percent owned four and above, and 1.67 percent owned zero oxen. The oxen ownership showed no significant difference between the two farming systems.Labor availability was also seen in both farming systems where an average of 3.38 active labor force (3.53 in rice and 3.26 in cereal), with a minimum of 1 and a maximum of 8 per household prevailed. However, no significant relation ship (correlation) was seen with production pointing out their experience of accessing labor from other possibilities like Debo.It is well understood that access to different services contribute affirmatively to crop production. In this study farmer's distance to the Woreda capital, Woreta; and to main road was considered. Accordingly, it was revealed from the sampled farmers' response that the average distance to Woreta for a farmer to travel was 2.14 hours in single feet trip i.e., (1.65 hours in rice based and 2.57 in cereal based farming systems). Forty eight percent of the sampled farmers reported as they used to travel four hours single feet trip to reach Woreta, 30.8 percent travel one up to two and 20.8 percent travel less than one with a significant difference between the two farming systems at 1 percent level of significance. The average distance from main road was reported 0.85 hours single feet trip (0.62 hours in rice based and 1.04 in cereal based). From the sampled farmer respondents 77.5 percent traveled up to one hour, 19.2 percent from 1-2 hours, and 3.3 percent greater than 2 hours per single feet trip with significant difference between the two farming systems at 1 percent level of significance.Extension services-Extension service was delivered by the Woreda office of agriculture and rural development. Respondent farmers reported an average distance to development center was 0.6 hours of single trip travel in rice, and 0.69 hours in cereal based farming systems.Under encouraging support to strengthen the extension service each sampled Kebeles had three development agents assigned to work; natural resource, animal science and crop production. Respondents were asked how frequently they were getting an extension service from development agents. Accordingly, from all respondents 27 were visited more than once in a week, 19 weekly, 43 biweekly, 14 monthly, and 17 none with a significant difference between the two farming systems. Inputs-The types of inputs utilized for production of the two crops include; land, labor, seed, chemicals, irrigation generators, pedal pumps, and to a limited extent fertilizer.Tomato and onion were produced with seedlings developed in a small plot of backyard nursery while shallot was produced with direct planting of the bulb on a farm field. Seed for onion and tomato were supplied from market through private dealers. There was actually a good development in delivering onion seed from farmers' production since two years with the strong support of IPMS.As pointed out by sampled farmers, the cost per kg of shallot was around 2 Br while onion was 180-200 per kg. The common seed types were Adama Red and Bombay Red in the case of onion and local for shallot. The common tomato seed types included Marglobe and Roma VF. The cost was about 600 per Kg. Few respondent farmers also pointed out their use of pesticide (malathion) (thirteen onion and two tomato farmers).Disclosed by respondents, irrigation of onion and tomato was with pump (generator or pedal), if a farmer had no diverted natural water flow. As a result, those who had no capacity to purchase pump generators, rented or farmed by partnership. From the 120 farmers about 12 of them owned pump generators, 4 owned pedal pumps and the rest rented or farmed in partnership apart from those who used natural gravity flowing water.Farmers applied urea fertilizer on their tomato and onion to a limited extent at nursery. The source was open market as it was very little. From the whole grower respondents about 22 responded as they applied on their nursery field.Credit-The nature of production system at the harvest period opened an opportunity for farmers not to request credit. Moreover, the steady growth in rice production kept farmers at a promising financial liquidity. The advantage of silt on the farmlands due to plainness also relieved from use of fertilizer. For this fact, no farmer reported credit except 9 onion growers.Infrastructure-Fogera is relatively with better facilities. It has about 17 km asphalt road, 30 Kms all weather gravel road, and much dry weather road. In the harvest season, there was no need to use a bulldozer for paving a road. Lorries could travel to the direction they wish. All rural Kebeles had telephone line, one bank service at Woreta, mobile telephone worked in all onion and tomato growing plains. There was also credit giving institution, ACSI, with wider service coverage.Markets-Sampled farmers reported that two products were sold on the farm field, roadside and to a minimal share at Woreta and Bahir Dar. As the crops are very perishable and bulky, it was natural to sell the products there in the farm. The plain, Fogera, has a natural advantage for this.The common roadsides where tomato was sold were Kuhar Michalel, Gumara, and Woreta Zuria primary cooperatives office compound. The retail market places include Hod Gebiya, and Woreta though Hod Gebiya was very small.Farmers were also asked whether the numbers of vegetable market days were sufficient to sell their vegetables. Seemingly, 67.5 percent of the sample pointed out the numbers of market days was two and more. About 13.3 and 16.7 percent of the respondents replied the absence of specific day and no need to have specific days as they used to sell at farm gate.It could be deduced from this that the numbers of market days was not a limiting factor to sell their produce.Farmers' experience-From the survey, farmers' experience in onion and tomato production was understood to be 2.87 and 5.17 years respectively. A significant difference between the two farming systems in tomato experience existed at 1 percent level of significance. Farm Practice-The land covered with vegetables was by far lower than the potential. The main reasons attributed to this could be the limited knowledge about the vegetable types, their use and the market opportunities. The famous vegetable crops grown in the area were onion and tomato.With short years of development, onion and tomato are steadily increasing. Of the total respondents about 69 for tomato and 94 percent for onion, replied production has increased for the last five years. The quality of the product to command market and the period of production with irrigation when a farmer was relatively free speeded up the rate.Different modalities of farming were identified. Among the different types one was the allocation of a plot of land from self-owned, the second was, renting with a pre-determined and-paid cost on annual basis or production season. The third was farming in partnership by sharing all expenses equally. The fourth and common modality is a kind of partnership where a rich farmer with pump generator provided only his pump generator with fuel, shared seed while the partner farmers provided their labor, land, and shared seed for an equal output share at harvest. The fifth modality was similar to the fourth but the difference is in the counter parts were but civil servants or other urban dwellers (onion traders, etc).Repeated rounds of plowing, stirring and other farm practices in farming onion and tomato were also reported. From the survey, it was disclosed that the average round of tillage was 5.6 times for onion and 4.5 times for tomato. Weeding for onion was on the average 2.6 times while for tomato 2.14. The average harvesting rounds of tomato was from 6-7 rounds. No significant difference seen between the two farming systems in tilling, weeding and tomato harvesting practices. Productions of perishable crops demand efficient marketing system. The efficiency could be in the speed with which the produce reached the ultimate consumer, the prices, and qualities. For a critical understanding and identification of the inefficiencies the following section is spent for some investigation of the prevailing marketing system.Market structure in food marketing is analyzed based on the numbers and sizes of enterprises within the system, and the potential access of additional participants to it (licensing procedure, lack of capital and know how, and policy barriers) and the degree of transparency (Pender et al., 2004). Accordingly the structure of the market was analyzed as follows.The main actors involved in the system were producers, rural assemblers, wholesalers, retailers, transporters, brokers and consumers.Large number of supplying farmers characterized markets at the farm level. The wholesale buyers were estimated to be fifty-four, each of which handled almost equivalent amount of product (Annex Table-4). Based on the group discussion and development agents report the numbers of rural assemblers working on tomato and to a limited extent onion were about 38. Almost all the rural assemblers had equal capacity of volume bought. The retailing market at the three towns was characterized by large number of equivalent capacities in the volume of product they were handling.Calculation of the concentration indices by considering an average load a wholesaler took per day in peak production season basing the four firm criteria indicated no oligopsonistic market power. Even relaxing to six the number of largest buyers, the concentration index was 26.15 percent indicating no oligopsonistic market (Annex Table-4).Producers-These are those types of the actors who farm and sale onion/tomato. They would either have their own land or rented to produce both or one of the two crops. These farmers after they produced they sold on either farm field or roadside. According to the study 96 percent of the respondents sold at farm field. Obviously, the rest sold in Addis Zemen, Yifag and/or Woreta. Selling onion was through farmer brokers and/or partners if any with a very limited volume by themselves.The process of onion selling had some kind of steps. First farmers informed a rural broker for buyer. In the mean time, they watered the farm field (commonly 1-2 days earlier before uprooting) for a weight advantage though they justified for ease of up rooting. A broker searching and agreeing with a wholesaler came back for arrangements (pulling out and get ready). Leaves and root tips would be cut, bulbs heaped on an open field. The buyer, then, come, checked the quality and 'negotiate' price. As soon as they agreed, weighing and loading would start. This time a mischief usually appear (cheat in weighing). Farmers explained their grievance of being cheated up to 30 percent product volume apart from low price.On the other hand, tomato farmers used to collect fruit in pieces (every 3-4 days) for months (usually one up to two) and took either to road side, Bahir Dar or Woreta. The common roadsides where farmers used to sell are Gumara, Kuhar Michael, and Woreta multipurpose cooperatives compound. The average distance reported where a farmer went to a road side ranges from 0.62 for the nearest to 1.04 hours for distant per single feet trip.As the crops are perishable, the sale had to be made as soon as harvested. Members of the family who used to pick tomato were mother and daughters and to a lower extent son and fathers. Early in the morning or late in the night tomato is usually picked, to keep freshness. Farmers used Kirchat and wooden boxes for collection as well as product delivery. Buyers delivered boxes early in the afternoon to farmers for collection of good quality tomato.The selling usually carried out in the morning after buyers' arrived from Woreta, Bahir Dar or Gondar. Buyers' used to collect at roadside through visual inspection. Price discovery followed no scientific measurement rather volume (pricing of a Kirchat or a case of tomato). The estimated average weight of Kirchat was 15 Kg and box was 55 Kg.Respondents also pointed out that for both vegetables, there were no any set arrangements to make the marketing based on contract. The modalities were selling to any buyer.Farmers did not have any technology of creating price advantage over time. It was reckoned from the surveyed data that the average number of days an onion/shallot stayed until clearing was about 8.38 in rice based and 7.41 in cereal based farming systems.Tomato stayed only 2.62 days in rice based and 2 days in cereal based farming systems.Though onion/shallot could stay up to six months with appropriate storage facilities, it was simply disposed with very short periods of low selling price.Rural assemblers-These market actors are next to farmers along the chain who used to live either at rural Kebeles, Woreta or Bahir Dar. Many of them are opportunistic where at times engaged in other business and in other times farming. They used to buy small amounts from surrounding farmers at the roadside and took to Bahir Dar or Woreta for sell.On the average, they handled 10-14 cases of tomato per trip and travelled a maximum of twice per week to Bahir Dar. The rural assemblers for onion are those who loaded an Isuzu or half in every week or more. About 30 male and 8 female rural assemblers were assembling. Upon discussion with some of them, the number of onion rural assemblers was very limited and they used to sell to wholesalers at Addis Ababa.Rural assemblers follow strict sorting for tomato. Sorting in tomato based big size, pest free, firm and mature green tomato qualities. They buy on Monday and Tuesday and then delivered to buyers on Wednesday at Bahir Dar and then used to come back on Thursday and start assembling up to Friday and back again on Friday and Saturday.According to respondent farmers, the tomato assembling markets seemed transparent and relatively competitive. Both buyers and sellers practiced negotiating price. Rural assemblers and some growers exercised a kind of mutual agreement in seed delivery and back sell at harvest. This was common in Kebeles namely Woreta Zuria, Kuhar Abo, Kuhar michael and Awa. The advantage for rural assemblers was usually quality. The agreement based social bondage and for those farmers who planted smaller land size it was a good opportunity.The rural brokers were area segmented where one or group of brokers in one Kebele would not allow brokers from other Kebeles'. Their brokerage cost was a flat rate of 250 ETB per an Isuzu load. Brokering in the case of tomato was very limited due to the measurement limit (box) and the volume produced.Wholesalers-These were those participants of the marketing system who used to buy onion and/or tomato on the farm field with a larger volume than other actors did. They relatively fully engaged in wholesale buying by wandering to other areas of the countryin the other months of the year. They loaded one or more Isuzu of onion or tomato per day or per week. It was difficult to arrive at the exact number of wholesalers working at Fogera.Nevertheless, the discussion made with some wholesalers explored 54 wholesalers from whom 31 came from Tigray (Annex Table-4). Each wholesaler used to load onion and/or tomato with an Isuzu or FSR. They came on February and used to stay up to half of May every year. In these months, they buy and send to receiving partner at Addis, Dessei, Woldiya, Tigray (Mekelle, Shire, Adigrat, Adwa, Axum and Humera), Gondar (Gondar town, Metema and Dansha). On the average, of the total volume that passed through wholesalers, 27.4 percent went to Addis Ababa, 41 percent to Tigray, 17.8 percent to Dessei and Woldiya, 8.2 percent to Bahir Dar and 5.5 percent onion to Gondar. Similarly, from the total tomato taken by wholesalers about 75 percent went to Tigray, 3.6 percent to Addis Ababa, 10.7 percent Gondar, and 10.7 percent to Bahir Dar.Some wholesalers supply constantly to institutions (Jail, Bahir Dar university and Military Crew in Tigray) through a bid. The working capital of wholesalers ranged from 30,000 up to 200,000 ETB.Retailers-These are the final link in the chain that delivered onion and/or tomato to consumers. They are very numerous as compared to wholesalers and rural assemblers and their function were to sell to consumer in pieces after receiving larger volumes from wholesalers or rural assemblers. Eight male and 42 female retailers were interviewed. The majority, 86 percent, were literate. These respondents reported that the average number of years of experience was about 8.3 years: specifically 8.93 years at Bahir Dar, 11.4 at Woreta and 6.5 years at Gondar. The average years of experience for male retailers was 7.75 and for females 8.4 years. The above table showed that all retailers were Amhara ethnic. Of all the respondents about twenty twos' parents are/were engaged in trading business that might had an impact on the respondents' intention to engage in.The specific period where Fogera tomato arrived at market was between November and early May and that of onion was between February and end of May. The average holding of a retailer in these periods was 2.95 cases of tomato and 2.03 quintals of onion per week. The average working capital was 1632.20 ETB ranging from 50 to 4000. Retailers and wholesalers mostly market on credit basis. This was based on long-term established clientele ship. Every week or twice depending on their selling capacity, retailers took an amount they demand. After two or three days, especially on Wednesday and Saturday (Bahir Dar), a wholesaler wander retailers' stall to collect money. If the retailer failed to sell the product (say due to poor quality) s/he immediately report to the wholesaler for consideration (reduce price, write-off, etc). In response, the wholesaler decides. This creates a chance for retailers not to demand capital. Wholesalers' used to sell at a price adding 0.10-0.25 per Kg (as the wholesalers told the researcher) on the buying price and marketing cost.Even though holding tomato could be risky, it was necessary to have a certain amount for purpose of buyers' attraction. They had to display different types of vegetables. The common types they handled were potato, onion, tomato, leafy vegetables.From the survey, it was observed that the retail stalls were very poor made of papyrus, plastic and wood used mainly for sun light protection. It lacked sewerage, not convenient for product display, susceptible to rain and strong sun light and favorable for contamination. Product handling was very spontaneous. No body took any remedies to revert these easy problems. Relatively the Gondar's center was better. The Woreta center works half day and was poor. The Bahir Dar's center was very busy as compared to Gondar and Woreta. In all the three, retailers used to sit on stone beds of about 50 cm height.The municipality on all the three towns had delineated certain corners of market center.Even though the municipality collected some amount of money at intervals, it lacked attention in improving the market places. The researcher failed to get even a single retailer who got training. At the other end, retailers had no any organized institution, which could speak on behalf of them. Retailers collected money for compound cleaning and guard salary. However, there was no any organized institution in all the three.The buyers from retailers were obviously final consumers (households, crews, hotels and restaurants). There was a limited sale to other retailers (like corner shops and rural retailers). The type of product sold to rural retailers was of relatively poor quality.Licensing procedure: According to the rapid appraisal, almost all of the retailers and rural assemblers had no license. Even the wholesalers did not have. The few wholesalers that were with licensing were those that supplied to institutions on bidding. In fact, all paid some amount of money every year as per the Inland Revenue decision.As disclosed by a person from ANRS Small Scale and Micro Enterprise Agency retailerswere not claimed to have business license, what was done was to register them in commercial registration. Two steps are identified; commercial registration, and business sorting were color, fruit size, flesh content, firmness, free from pest and taste. Onion sorting based size, compact dry, pest free, sprout free and color.Containers for the two commodities differed, onion collected and packed with a sack, or free disposal on car. The only thing required was to pad walls of a car with polyethylene sacks. In case of tomato, the wooden boxes and different sizes of Kirchat were used. The wooden boxes padded with indigenous tree leaves and newspapers.The road network is very good having a natural advantage of plainness. Product transportation took different forms, head load to bus. Tomato was transported from field to market places with head load, animal back, equine pulled cart, and Isuzu. The mini and big bus participated in transporting tomato. Isuzu was the prominent transporter of both. Isuzu and FSR took onion from many places with limited transport of cart and donkey load (Dibana Sifatra and Rib Gebreil Kebeles). Roughly 35 Isuzu, 10 the big ones (FSR), 8 minibuses and 2 large buses participated in product transport per each day at peak production seasons.Scientific and practical field reports revealed the possibility of onion to be stored up to 6 months provided proper post and pre-harvest handling practices are made. However, in Fogera there were no significant storage practices. According to the survey, only 19 of the 103 farmers exercised storage from seven up to sixty days. The reasons for this exercise were fetching better price (63.2%). Among the potential types of storage hipping on the field, constructing a hut and disposing on and dry floor, leave on the field without pulling and put on Kot were some to mention.Market information specifically included information on price, product demand, product supply, market place and buyers and sellers. Out of the 120 of total interviewed 113 respondents had accesses to market information on price and buyers. The sources were friends for about 91.2 percent of the respondents. Apart from current information, there was no historical market information that convinced farmers for planned production.Respondent farmers evaluated the price trend of last five years whether it had increased or decreased. Accordingly, 93.2 percent of onion growers responded that the last five years price of onion was increasing. In addition, 90 percent of the total tomato growers believed that the trend was increasing. The reason for this price growth attributed to increased demand.The common risk types prevailing were spoilage, unsold left over, and defaulting (cheating). A question was raised whether there was unsold onion or tomato from the total amount produced. Few respondents claimed the presence of unsold produce (7 say yes out of the 50 tomato producers and 13 say yes out of 103 for onion). However, the majority sale their product even at lower prices.Respondents were asked what they did when they failed to sale after made available for market. Forty-two of the fifty tomato producers (84 percent) and 47.6 percent of onion growers took reducing selling price as alternative measure.The sold onion and tomato money was received in a number of alternatives; some paid as soon as they buy; some took the product and send the money after some time. In this study the majority received as soon as sold 59.22 and 84 percent of the respondents in onion and tomato growers respectively.Sometimes farmers sold to some wholesalers on credit. However, few wholesalers defaulted. For instance by the year 2006/07 (1999EC) about 12 farmers faced the problem of default from wholesalers amounting about 152,000 ETB.Market conduct refers to the patterns of behavior of firms. This implies analysis of human behavioral patterns that are not readily identifiable, obtainable, or quantifiable (Pomeroy and Trinidad, 1995). There are no agreed upon procedures for analyzing the elements of market conduct. Rather, some points are put to detect unfair price setting practices and the conditions under which such practices to prevail. In this report market conduct is analyzed in terms of the existence of formal and informal producer groups, formal and informal marketing groups, and the availability of market information.Farmers only organized in terms of Kebele or other social associations. With regard to production, every body produced lonely. Even there was a problem of seeing the neighbor to grow onion or tomato. This affected their bargaining capacity. The traders seemed to have some kind of grouping especially in price setting though sometimes rivalry observed if the market at Addis Ababa or Mekelle felt promising. Brokers had some kind of peer grouping in their Kebele. One would never see one broker blaming or betraying another.Market information supply was not transparent between levels that created high price variability and difference among selling farmers especially in onion. Buying wholesalers got information from their partners far in Addis or Mekelle while farmers and brokers not.This created the information asymmetry expressed by low prices at times when it was not.The main market information farmers' used were the product selling price, input price and number of buyers coming to the area. Farm gate buyers seemed to have better information attributed to their wide exposure. Wholesalers, either with the help of their commission agents or partners, got quick and readily information. Receiving information they pretended as if the price was not good and even informed some, as they could not sell what they send some day before. This time brokers provided the false information to farmers and forced to clear at the prevailing price, explaining 'the air is not good'. However, some very loyal wholesalers relatively respected truth. These people usually buy at higher price than the pretended based only on the real information. In the over all chain, wholesalers seemed to have the power influencing both backwards and forwards.The role of brokers in exploring price information was limited because of flat brokerage cost. At whatever the farmer sells, the broker would harvest his 250 ETB per Isuzu. On top of this, wholesalers agreed prices with farmers keeping the cost of brokerage, 0.05 per kg, in to account. This showed how much producing farmers are disadvantaged.Onion farmers' ranked purposive collusion among actors as the first reason followed by difference in quality and access to market information for different price received. In the case of tomato, the first reason for price difference attributed to quality followed by market information gap and traders' collusion. The relative comparison between the two crops showed that tomato market seemed very competitive relatively led by market. This could be justified by the opportunity of farmers to sell themselves harvesting piece by piece.Price decision is a good measure of market transparency. In this study, respondents were asked to comment on who decided buying price. Eighty percent believed negotiation as a tool for price decision in case of tomato. In the case of onion 50.48 percent, expressed price setting was by buyers. Nevertheless, 'negotiation' which was expressed by rest of the respondents was simply a term. Wholesaler was the main source of information, which gave them chance to set a price that deserved them.The buyers' behavior evaluated based on some selected parameters of loyalty, better price provision, immediate payment behavior, bulk purchase, and production credit revealed that 80 of the respondents believed wholesalers as good buyers with all weaknesses and 31 chose consumers as good buyers.The perishability of the products exposed farmers for a wide range of cheating. The respondent farmers were asked whether they perceived cheating or not and they reported as it was a day-to-day phenomenon. Wholesalers and brokers were the top cheaters. The cheating type included price, weight, defaulting an agreement, and any combination of these.Even most argued that a full Isuzu load was valued with 35 quintal (especially in onion)than the usual 50-quintal weight indicating the cheat level of 30 percent. Even if a farmer had knowledge of weighing scale, he was not allowed to see and complain on how the weighing proceeds. If he did, buyers might stop buying. Farmers, on the other hand, exercised cheating by watering onion short before harvest for weight advantage that had an impact on quality and storability. Farmers followed an approach for protecting wholesalers' cheat through allowing a certain kilogram allowance.Respondent farmers reported their selling strategy as spontaneous to any buyer brought by brokers. There was no any contract-based marketing.Respondents were asked what issues they took into account to decide for whom to sell. They responded as they offered to any body as far as he offered better price, 55 percent of respondents. However, the intervention of brokers influenced them to get good buyers directly.The techniques employed for analysis of performance were marketing margin and channel comparison. The analysis of marketing channels was intended to provide a systematic knowledge of the flow of goods and services from its origin, producer, to final destination, consumers. The estimated volume of production of tomato was about 40,402 quintals and the corresponding figure for onion was 324, 412 quintals from which about 30,000 and 300,000 quintals of tomato and onion were sold. Each followed their own channels, they are treated separately, and the result obtained was the following.Tomato market channels -Eleven lines of market channel identified for tomato. Three of these went outside the region and the rest seven ran inside. As can be understood from figure 1 the main receivers from farmers were rural assemblers, retailers and wholesalers with an estimated percentage share of 43.29, 33.36 and 22.25 percent in that order.Besides, the volume that passed through each channel was compared and based on the result the channel that stretched from farmer-retailer-consumer hosted the largest followed by channels that went out of region shouldering a volume of 10,038 and 6,301 Ql respectively. Onion market channels-Onion market channel was reported as it was similar to tomato. About 10 lines of market channel existed for onion marketing from which three went out of region. The largest purchase was by wholesalers accounting for about 90 percent of the total marketed. The ten channels were separately evaluated based on some efficiency parameters.Accordingly, based on volume passed through, the channel that went out of region was the best for it covered 49 percent of the total marketed. Alternatively taking producer's share as parameter, the channel that directly connected the producer to consumer was the best.With still another parameter, total marketing margin, the channel that stretched as farmerrural assembler-wholesaler-retailer-consumer at Gondar was the best. Nevertheless, considering the volume, it was very much small compared to produced and supplied volume. Rate of return on marketing was also the other parameter taken to measure the difference between channels and the result showed that the channel presented as farmerrural assembler-wholesaler-consumer at Bahir Dar was the best though the volume it hosted was inconsiderable.Overall comparison of the parameters showed that the channel-4 for Gondar and Bahir dar were found out to be the best in the overall parameters. However, the perishable nature of the crop obliged much choice on buyers that could clear the product than other priorities hence the channel that hosted the largest volume, out of region, was felt important. This channel should be improved through designing efficient systems among the sending and receiving regions for further integration. Taking the month Miazia as representative of Woreta produce consumption, the average consumption of tomato was 5.11 Kg and that of onion was 7.34 Kg per household/month. Consumption per head per month wais 0.9 Kg of tomato and 1.29 Kg of onion. The average consumer buying price was 2.50 Br/Kg for onion and 1.91 Br/kg for tomato. Among the relationships observed from the collected data tomato and onion consumption had a certain level of positive correlation, 68.4, indicating a kind of similar direction possibly complementarities. Income and amount consumed had no serious correlation as people used to consume both types without being affected by income difference. It is about 42.9 and 52.2 percent correlation for tomato and onion respectively.Seasonality seemed to affect volume of consumption, in production periods the level of consumption for onion was 7.33 Kg and 4.01 Kg of tomato while in slack periods it was about 6.18 Kg of onion and 1.27 Kg of tomato per household per month. A significant difference existed on volume consumed among the towns.The average distance a certain consumer traveled to purchase a vegetable is 0.485 hours for a single feet travel. From the whole respondents about 72.5 percent bought vegetables once and more than once per week. The average volume purchased per single purchase per household was 2.86 Kg in case of onion and 1.86 Kg in the case of tomato. Purchase decision was made by mother in 87.9 percent of the respondents and the buyer was mother in 65.9 percent followed by daughters in 12.1 percent of the respondents.The average expenditure per household on food amount 605.16 ETB (43.95%) on food from which vegetables share 46.10 ETB (7.62%). The average expense on tomato was 12.94 ETB where as it was 18.57 ETB on onion per household per month.The price during production and slack periods differ as it was natural. The average price for a Kg of onion and tomato was 4.02 ETB and 3.97 ETB in slack periods and it was 2.16 ETB and 1.40 ETB in production seasons respectively.More than ninety seven percent, 97.8, of the total consumer expressed interest for quality.They suggested to pay a premium provided they get quality. According to the survey data on the average they were willing to add 0.46 ETB per Kg to better quality tomato and 0.505 ETB for a Kg of onion.Different alternatives were taken when price increases. In tomato about 19.8 percent of respondents choose abandoning purchase if price increased, 50.5 percent reduce volume purchased, 18.7 percent purchase whatever increased and only 6.6 percent need to substitute with paste. Where as in the case of onion 49.5 percent responded to continue what they were doing earlier, 46.2 percent choose reducing volume and only 3.3 percent need to abandon. The econometric result following also confirmed this through elasticities.The consumption analysis based Miazia as a representative period. The month was selected for easiness to remember (survey was taken at end of Miazia) and wide availability of Woreta onion and tomato in the market and the relative high consumption indicating maximum demand.The estimated model result showed how sensitive consumption of both vegetables was to different factors. Seemingly, six variables were hypothesized affecting consumption level of tomato. From all the proposed income, purchase frequency and single purchase lot were found significant at 10, 5, and 10 percent level of significance. Similarly, the model estimation for onion demand was also regressed on similar variables. The model result showed that income, purchase frequency and single purchase lot were found significant here too.From all the results, interpretation of the result indicated that income elasticity was 0.21 for tomato and 0.27 for onion explaining inelasticity. The reason behind the result is as income increased by one percent the corresponding change for consumption would be 0.21 and 0.27 percent on consumption of tomato and onion respectively. The share of income on the two commodities is small.The coefficients for purchase frequency and single purchase lot indicated also how we could improve the consumption level by further improving the access to food. In that, if the commodities can be available to consumers they would frequently purchase more volumes and hence improve their consumption level. The main theme of this thesis was to analyze the marketing system of vegetables in Fogera Woreda with a specific focus on onion and tomato. The choice of the crops intentionally based their relative importance and marketability. The specific objectives included assessing the structure-conduct and performance of the market and analyzing the determinants of supply and demand. A very wide number of respondents at all stages of the market channel were interviewed. The analysis was made with the help of descriptive and econometric tools employing SPSS and Stata software.A total of 120 farming respondents' (9 females and 111 males) drawn from 13 Kebeles in Fogera, 50 retailers from three towns (Gondar, Bahir Dar and Woreta), 91 consumers from the same towns and 5 brokers, 5 rural assembler and 5 wholesalers at Fogera were interviewed using structured questionnaires. Rapid market appraisal with focus group discussion and key informant interview was conducted. Secondary data on basic agricultural and population was also collected.Analysis of the collected data showed that average land holding in the area was about 1.63ha. The average family size was about 5.18 of which the active labor force was 3.38.The average land allocated to onion and tomato was 0.296 and 0.146 ha which is 20.2 and 10.13 percent in that order.Fogera Woreda office of Agriculture is the core extension giving institution. Three development agents are deployed in each Kebele with the help of whom 10 percent of respondents reported monthly extension service, 35 percent a biweekly extension service and 40.8 percent weekly and more than once in a week. The remaining 14.2 percent reported no extension contact.The common inputs used were seed and to some extent pesticides. The major onion varieties grown include Bombay Red, Adama Red, and local shallot. Marglobe and Roma VF were tomato varieties. The average seed rate applied was about 600 gm per hectare in the case of tomato, 3.83 kg per hectare in onion and about 20.91 Qt per hectare for shallot.The maximum production cost that covered labor, seed, fuel, pesticides, fertilizer, pump rent and other small activities per hectare was estimated 9,475.63ETB for shallot, 5,938.78 ETB for onion and 4571.15 ETB for tomato. The lion share from this estimated cost of production was taken by seed (bulb) cost in shallot for about 45 percent of the total. On the contrary, the largest share in the case of onion and tomato was labor for about 43.3 and 88 percent from the total cost, respectively.An estimated 324,412 Qt of onion and 40,402 Qt tomatoes was produced in the 2005/06 from which about 307,218 Qt of onion and 34,867Qt of tomato was supplied to market.Farmers' average selling price for a kilogram of tomato was 0.75ETB, 1.65ETB for onion, and 1.75 ETB for shallot. The average yield per hectare according to the sampled farmers was 129.7 Qt for tomato, 110 Qt for onion and 96 Qt for shallot. The main market places were the farm gate and roadside. The largest receivers in the case of onion were wholesalers and in tomato rural assemblers and retailers.From the identified market channels the channel that stretched as Farmers-Retailers--Consumers for tomato and Farmers-Wholesalers-Outside region for onion were the major ones. Even though the result of concentration ratio didn't show any oligoponsitic behavior wholesalers seemed controlling the whole channel as they are major buyers and exercised some a kind of collusion on price information and price setting.Production and market supply was increasing compared to the short period of development. A number of factors were raised of which increasing demand and quality sited as main ones. Better roads, improving communication facilities and other factors characterizing the infrastructural facilities of the Woreda also contributed much.Onion and tomato in Fogera moved to different parts of the country. From the estimated volume of marketed onion, about 27.4 percent went to Addis Ababa, 41 percent to Tigray, 17.8 percent to Dessei and Woldiya, 8.2 percent to Bahir Dar and 5.5 percent to Gondar.Similarly, from the total marketed tomato about 75 percent went to Tigray, 3.6 percent to Addis Ababa, 10.7 percent to Gondar and 10.7 percent to Bahir Dar.An interview made with retailers at Gondar, Bahir Dar and Woreta revealed that the average product handled per retailer per week was 1.91 Qt in onion and 2 cases (equivalent to 110 kg) in tomato. Retail stalls are very poor and exposed to rain and sunlight. There were no measures taken to improve the facilities like well-constructed stalls, sewerage, hygiene, parking and so on. Skill of retailers in product handling, business management and related issues is very limited resulting in loss of large volume along the channel.Farmers and buyers' malpractices were some of the constraints sited in the production and marketing system. Watering farm field at the harvest by farmers and weight cheating and purposive information hide by brokers and wholesalers were some of the major ones. No serious effort had been made to reduce these malpractices and farmers were suffering a lot.The limitation in the quality of extension service was also the other problem apart from pest and disease challenges, price instability and lack of reliable market information.The calculation of concentration ratios from the 54 wholesalers based on their daily load indicated no oligopsonistic market behavior. The four firm concentration ratios were lower than the standard, 33 percent. However, activities like cheats in weight and information collusion showed uncompetitive market.The econometric result for production participation explored slightly different variables for each crop. Family size, distance from main road, number of oxen owned, and extension service for onion and experience and lagged price in the case of tomato were found significant. Family size and distance from main road was against the hypothesized sign of influence due to the main reason that as the number of family members increased farmers would be obliged to farm their land with other food crops like cereals. Distance from main road is due to the Kebele, Bebekis, found very from the road that was largest producer.Determinants of land allocation and volume supplied to market were also analyzed and from the proposed variables only experience and inverse mills ratio in the case of tomato and family size, number of oxen owned, and distance from development agent in the case of onion were found significant for size of land allocated for onion. The sign for family size and distance from development agent were against the proposed due to the explained reason in the case of participation decisions in the above paragraph.Volume supplied to market were also analyzed and the same variables in the case of land allocation for onion also came up significant for onion supply but un the case of tomato it were experience and number of oxen owned by the respondent that came up with significant coefficients.The average monthly level of consumption was assessed when the Fogera produce was at the market and was used to see some properties of consumers. Based on the 91 sampled consumers from Gondar, Bahir Dar and Woreta towns it had been revealed that the average monthly income per household was 1,372.21 ETB. Average family size was 5.7 where the monthly average consumption of tomato per household per month was obtained to be 5.11 kg of tomato and onion 7.34 kg onion. A household spent on the average about 44 percent (603.10ETB) of their monthly income on food from which 7.62 percent (45.96 ETB) was spent on vegetables.For assessing accessibility, the average distance a certain consumer measured per single feet trip was taken and the average was estimated from the respondents to be 0.485 hours.More than 97 percent of respondents reflected a strong interest on quality. According to the survey data, on the average respondents expressed their willingness to add 0.046 ETB per kg for tomato and 0.05 ETB for a kg of onion.Econometric analyses of demand revealed that from the proposed determinants it was income, purchase frequency, distance, own price and single purchase lot that were identified to be significant for both vegetables.Recommendations that are relevant to improve the marketing system in Fogera include production and market oriented. The following explanation tries to put these recommendations accordingly.Production related: As it was observed from the descriptive statistics and econometric result farmers were basing quantity clear off rather than price offer in selling vegetable.They were price takers. This can be improved if a proper linkage can be created between buyers and farmers through some kind of institutional arrangements like contract etc. In fact, improving farmers' bargaining power through capacitating market information access should not be missed.The production of vegetables has to diversify to include other vegetables, which have a production advantage and wider market potential in Tigray and Addis Ababa, Humera and Metema apart from the nearest markets, Gondar and Bahir Dar. Diversification will improve bargaining power of farmers. Furthermore, there seems to be a need to adjust the composition of planting time from their usual practice (to plant and harvest simultaneously say between February and May) to a smoothened period. An intervention with strong extension service delivery would be imperative.Period of production at Bega period means vegetables were creating a wider employment and income opportunity to the rural households. The largest share of labor cost from production cost indirectly indicates utilization of excess labor existing in the rural areas, which was in line with the government policy, little capital with large labor. On the contrary, larger shares of bulb cost in the case of shallot bulb imply the need to focus on reducing production cost through immediate research and extension. For sure, the within Woreda seed production system in the case of onion had relieved a good deal of seed shortage. The seed supply system started with production of onion seeds in the Woreda has to be scaled up to include other vegetable varieties on top of diversifying already undergone ones.Field watering prior onion harvest and failure to store for few weeks are the lacks in preand post-harvest handling. Thus, the issue of product handling should be serious. Development agents, model farmers have to be trained on pre-and post harvest handling so that the storability and management of the crops could be improved. This will bring a better income to producers and relatively stable supply for consumers. Demonstrative local made storage facilities especially for onion should be considered.The increasing participation of farmers in production and marketing of vegetables manifested by increasing land allocation and increasing number of participating market actors could be indicators for commercialization. High labor demand and return earned were driving forces for the growth. This would be an opportunity to replicate in other potential areas especially those surrounding Lake Tana.Moreover, successful commercialization could be effective if supported with an efficient marketing system.According to this study, farmers based quantity than price in marketing. This means either they could not get sufficient number of buyers, much quantity produced, or they produced poor quality Based on the field observation; there seem no problem with quality. The problem is the high production against perishable nature of the product. The best measure would be to increase the number of buyers along with improving post harvest handling practices. Farmers should be get in contact with vegetable shops and supermarkets far in urban towns, urban retailers, wholesalers in well structured institutional arrangements.Laws has to be effective wherever an actor abuses. Probably organizing vegetable farmers may meet markets' demands for quality and better price.Much of the imperfection prevailed due to the influencing role of wholesalers and existence of single market place in towns. It should be, therefore, the focus of intervention to increase the centers of wholesale distribution and retail markets at urban centers to break up the collusion. Urban market centers have to be increased from the current usual one or two to more. The urban organized groups and markets like those found in Addis Ababa should directly link with farmers so that direct delivery can be practiced.Individual vegetable retailing activity have to be recognized as a formal job for small scale entrepreneurs of the urban poor and farmers who are earning money for living, especially most of them are women. Therefore, they need to receive direct and indirect supports from the government and other sectors through training on business, upgrading physical retail market infrastructure and market information and promoting establishment of vegetable retailer groups. These activities will result in benefit not only the vegetable retailers but also vegetable consumers, an opportunity to get better quality products.The practice of brokers in Fogera can be called abusive. Correcting these problems need not only the act of a single institution but also the act of every concerned body like justice, police, trade and industry, Woreda and Kebele administration, and the farmers themselves.","tokenCount":"24793"} \ No newline at end of file diff --git a/data/part_3/1264326835.json b/data/part_3/1264326835.json new file mode 100644 index 0000000000000000000000000000000000000000..14491ff90a4c6a3686b96fc3576d71abf5fe2914 --- /dev/null +++ b/data/part_3/1264326835.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"64599369657ef009c91b18563b95d020","source":"gardian_index","url":"https://www.cifor.org/publications/pdf_files/WPapers/CIFOR-ICRAF-WP-6.pdf","id":"-841717214"},"keywords":[],"sieverID":"c1d5eeb3-6e46-4342-ae9e-5a1e55a2f041","pagecount":"50","content":"We would like to thank all donors who supported this work through their contributions to the CGIAR Trust Fund: https://www.cgiar.org/funders/ Any views expressed in this publication are those of the authors. They do not necessarily represent the views of CIFOR-ICRAF, the editors, the authors' institutions, the financial sponsors or the reviewers.1. Summary of trials and genetic variability studies on grevillea. Entries are organised alphabetically by first author of the study and then date of publication 2. Sites IDs assigned to three quality scenarios for assessed grevillea planting 3. Assumptions used for different planting options when estimating contribution margins 4. Summary of costs over a single cycle of production for grevillea planting options and quality scenarios 5. Summary of NPV, IRR and EAC values over a single cycle of production for grevillea planting options and quality scenarios 6. Summary of mean annual increments over a single cycle of production for grevillea planting options and quality scenarios1. A Grevillea robusta plantation in Masinagudi, India (Creative Commons Attribution-Share Alike 4.0 International license, \"Masinagudi Habitat -Silver Oak Grevillea robusta Plantation\" by P. Jeganathan) 2. Modelled predicted growth of grevillea for unique IDs (sites, coloured lines) and for the general data pool (black line). Figures A and B show predictions for tree height and DBH, respectively 3. Growth curves of height (A) and DBH (B) fitted to data segregated by three quality scenarios (AY = actual yield, CYG = closing yield gap, PY = potential yield), with derived profiles of aboveground biomass (C, AGB) and under-bark volume (D, V u ) 4. A tree-map where BSO establishment costs are represented. Different squares are proportional in area to specific costs 5. Cumulative NPV (Birr ha-1) for grevillea for the planting options of agroforestry and woodlots and three quality scenarios. Note the difference in x-axis scaling between quality scenarios, reflecting the different lengths of a single production cycle (long, intermediate and short for AY, CYG and PY, respectively) 6. The difference in cumulative NPV nationally between each of the CYG and PY quality scenarios and the business-as-usual AY scenario, based on the establishment of a grevillea BSO in year 1. The vertical lines indicate when the cumulative NPV shifts from negative to positive for both comparisons. The grey profile corresponds to an average level of tree improvement between CYG and PY scenarios 7. Mean Annual Increment for AGB (t ha -1 y -1 ) and V u (m 3 ha -1 y -1 ) over time for grevillea production for agroforestry and woodlot planting options and three quality scenarios. The y-axis reflects one production cycle which varies in length for the quality scenarioEthiopia is rich in forest ecosystems, with high levels of endemism and significant intra-specific diversity in trees and other organisms (Friis, 1986;Friis et al., 2010;Husen et al., 2012). The conservation of its forest ecosystems is however threatened by intense anthropic pressures such as illegal harvesting, land degradation, soil erosion, overgrazing and forest conversion (Bishaw, 2001;Lanckriet et al., 2015). The root causes of this crisis include the institutional instability of the forestry sector, land tenure insecurity, population growth and widespread poverty (Tadesse et al., 2020). Degraded forest ecosystems are especially found in the Ethiopian highlands, where population density is higher (Yesuf et al., 2005;Lanckriet et al., 2015).The Ethiopian economy relies heavily on the agricultural sector, which currently employs approximately 66% of the total population (International Labour Organization [ILO], 2020) and, together with forestry, contributes 43% of the country's gross domestic product (FDRE, 2015). Ethiopian farming systems are however largely based on rainfed agriculture (Pistorius et al., 2017) that increases their vulnerability to climate change and ecosystem degradation (FDRE, 2015), making the protection of forest ecosystems more vital. In terms of communities' reliance on forest products, a recent study by UNDP (2017) estimated that around 57 million Ethiopians depend on one or more for their fulltime or part-time income. The gross value per household per year of different forest products (e.g., fuelwood, construction wood, traditional medicine, etc.) was estimated at a considerable (for a lowincome economy) USD 393 (2015 figures).Restoring Ethiopia's forest landscapes is necessary to safeguard communities whose livelihoods depend on this natural resource base (Tadesse et al., 2020). In 2011, the Ethiopian government initiated the Climate Resilient Green Economy (CRGE) strategy, a cross-sectoral green growth approach to become a middle-income country with a net-zero increase in greenhouse gas emissions from 2010 levels (FDRE, 2011). One key climate mitigation strategy of the government's plan is to increase forest cover by implementing afforestation, reforestation and sustainable forest management. Tree-planting activities are being carried out to re-green the degraded landscapes of Ethiopia in order to enhance the provision of tree socioecological services. One leading example is in response to the Bonn Challenge, a multilateral initiative to which the government of Ethiopia has pledged 15 million hectares of land to be restored by 2030 (IUCN, 2021).Access to high quality native and exotic tree seeds and seedlings is essential to support the effective implementation of large-scale tree planting efforts (Dedefo et al., 2017;Sisay et al., 2020). The inadequate quality of tree germplasm currently available in Ethiopia, however, hinders the growth of the forestry sector (World Bank, 2017).Thanks to a collaboration between the Environment, Forest and Climate Change Commission (EFCCC) of Ethiopia and World Agroforestry (ICRAF), the Provision of Adequate Tree Seeds Portfolio (PATSPO) project was initiated in 2017 to help tackle the country's tree seed and seedling sourcing challenge. PATSPO is funded by the Norwegian International Climate and Forest Initiative (NICFI) through the Royal Norwegian Embassy (RNE) in Ethiopia. It aims to strengthen the existing national tree-seed system by ensuring access to high-quality tree germplasm for a selection of priority tree species that embraces many indigenous species as well as some particularly useful exotic ones. The listing of tree species selected for action by PATSPO was based on a combination of factors, including the demand for planting of the species, their economic value and their ecological roles.The impact of PATSPO is expected to be outscaled by the restoration efforts currently underway in the country. Tree-planting is a baseline activity linked to several landscape restoration options (LROs), including agroforestry, small-scale plantations (known as woodlots), and commercial plantations. The most suitable LROs depend on a set of landscape-specific variables such as current land cover, farmers' preferences, and land use rights, that define what type of restoration activity can be implemented at a specific location. Most LROs can be implemented by active tree-planting, to remedy the lack of a diverse soil tree seed bank in the majority of degraded locations, or by assisted natural regeneration in less degraded areas. In Ethiopia, most of the needed tree germplasm currently is sourced from poor quality informal sources and private nurseries, with only a small portion coming from government and other improved sources (Lillesø & Derero, 2019). Considering Ethiopia's ambitious restoration targets, the role of PATSPO is key, not only to ensure the provision of quality planting material, higher livelihood benefits for communities and the increased adoption of restorative measures, but also to conserve the country's forest biodiversity, through restoration and substitution of product sources.PATSPO has commissioned research studies to estimate the ecological and economic benefits of the initiative's implementation. By using economic and ecological indicators, van Schoubroeck et al. (2022) estimate the potential socioecological impact of PATSPO through an ex-ante impact assessment. The study defines a set of hectare-based LROs to investigate their economic feasibility and ecological value.The metrics used in the assessment include net present value, job generation, carbon sequestration and soil conservation. The findings also consider expert knowledge and the available scientific literature. In an earlier study commissioned by PATSPO (Lillesø & Derero, 2019), the tree seed market in Ethiopia was assessed, the most popular tree species identified, and an action framework outlined for upgrading the existing tree seed system nationally.In the current parallel study to van Schoubroeck et al., we estimate the socioeconomic impact of establishing a breeding seedling orchard (BSO, used to produce high-quality tree seed, further defined below) of the exotic tree species Grevillea robusta (grevillea). In our analysis we focus on grevillea rather than a native tree species for two reasons, as outlined below.First, a bigger data set of higher quality information is available in the scientific literature for grevillea characteristics compared to native tree species in East Africa (as native trees are in general understudied in the region). This means that we are able to establish the relevant parameters for modelling for grevillea more effectively than for other tree species (as we describe below, the model we develop can later be applied to native tree species, when more information on them is available).Second, soon after its introduction which is believed to have been in the early 1900s (see further information below), grevillea became a popular species to grow in the different countries of East Africa and across sub-Saharan Africa more broadly (Harwood, 1989). Considering Ethiopia specifically, for example, in an internal report of the Addis Ababa National Tree Seed Project which discussed seed supply and demand issues, grevillea was described as the most-demanded exotic tree in the nation by different stakeholders (Hunde et al., 2004). This high demand for grevillea planting material was recently confirmed in the study of Lillesø and Derero (2019) on tree seed markets in Ethiopia. In their survey, grevillea was mentioned by 11% of the nursery growers when asked to list the tree species that \"you want to produce but you cannot\". Even though in Ethiopia the supply of grevillea seed through formal channels is low compared to demand, around 155 million seeds are sold annually by the country's national Tree Seed Centres (TSCs); and it is ranked sixth in the total number of seeds of particular trees sold (Lillesø & Derero, 2019). More optimal seed supply of grevillea, therefore, has high potential for promoting the future uptake of successful tree planting.In this study, we explore the cost of BSO establishment for grevillea in the context of the economic benefits to smallholder planters that are gained by using higher quality tree seed. The analysis, apart from being useful for grevillea specifically, provides a model for estimating the impacts of establishing BSOs for other tree species, including for important native trees such as the timbers Cordia africana and Juniperus procera. It will be possible to better apply our model to these other trees when initial characterization data from the BSOs already established of the species become available in the next few years.In the current study, we first review the available literature on grevillea to explore its biological characteristics, uses and values. We then use growth data from the literature to model its productivity. Growth models are used to estimate the potential variability in grevillea performance under three different quality scenarios, and including the use of seed from a BSO. We then conduct an economic analysis where potential revenues under two planting options are estimated, with agroforestry and woodlots being the two options chosen. Findings are then outscaled considering the current demand for grevillea planting material nationally and an assumed adoption rate of PATSPO-derived high-quality (BSO) planting material. Anticipated impacts at local and national scales are also quantified, in terms of additional timber production. We conclude by estimating wider societal impacts through carbon sequestration and sawnwood production.Below, we compile information from the literature that sets the framework for our current costing analysis.Grevillea robusta Cunn. Ex R. Br. (grevillea) is a fast-growing timber tree native to New South Wales and southern Queensland in Australia, where it is found across a wide range of habitats, from sea level to around 1,100 metres in elevation. In Ethiopia, it performs well in agroclimatic zones at elevations of between 1,500 and 2,700 metres above sea level (masl) (Bekele-Tessema, 2007).Climate varies widely within the native geographic range, with a rainfall gradient across rugged topography. Generally, conditions are considered suitable when annual rainfall is between 700 and 2,400 mm, with mean annual temperature between 13 and 24°C. However, the species has grown satisfactorily in low-rainfall areas down to 400-600 mm yr-1 in Australia and other countries (Harwood, 1989). Grevillea does not tolerate prolonged seasonal droughts (Harwood & Booth, 1992). Maturity is reached as early as six years after planting.Grevillea, and most other entries of the Proteaceae family, are able to develop proteoid roots which are thought to increase nutrient uptake when growing in phosphorous-poor soils (Skene et al., 1996).The species has few pests in its natural environment (Harwood, 1990). According to Njuguna (2011), however, in Kenya, grevillea is under serious threat from widespread canker and dieback diseases in some locations. Additionally, grevillea has been observed to host 40 fungal species, which could cause serious disease in other woody and agricultural crops.Grevillea grows very well in all equatorial highlands where there are two rainy seasons per year (Harwood, 1990). Some growers consider that it does not compete strongly with adjacent crops (see more information below) and hence it is often found integrated in different cropping systems (Owino, 1992;Spiers & Stewart, 1992).In sites with good climatic and soil conditions, height mean annual increments of 2 m y-1 and diameter at breast height (DBH) increments of 2 cm y-1 are commonly achievable during the first five years of grevillea growth (Harwood & Booth, 1992). Okorio and Peden (1992) recorded that at favourable sites in the East African highlands grevillea also attained similar height and DBH annual increments over the period of growth from five to ten years after planting. On poorer sites at high altitudes (> 2,300 masl) in East Africa, height mean annual increments were lower (Kalinganire, 1996). Growth usually slows between ten and 15 years after planting, except at the most suitable sites (Harwood & Booth, 1992;Okorio & Peden, 1992;Ongugo, 1992;Doran, 1997). An inverse correlation between growth vigour and altitude was found by Okorio and Peden (1992) in the highlands of Uganda. Abebe (1992) found the same relationship in the Ethiopian Highlands. Studies have reported that grevillea trees have a maximum life span of 40 to 50 years before they become senescent (Owino, 1992).In a mixed species trial involving sixteen high-value rainforest tree species at Mt. Mee in south-eastern Queensland, Australia, grevillea showed the top performance in growth during relatively dry years (Lamb & Borschmann, 1998). At six years of age, the mean height of grevillea trees was 8.9 m and mean DBH was 16.7 cm. The form factor was 8.6 out of 10, indicating an ideal stem growth and branching pattern. However, the form score was lowered by some individuals that had suffered wind damage. At a sub-humid site with mean annual rainfall of 640 mm in south-eastern New South Wales, Australia, grevillea trees were on average 8.3 m tall with a mean DBH of 13.2 cm after nine years (Clarke et al., 2009).According to Owino (1992), grevillea was first introduced to East Africa in around 1910. Since then, grevillea has grown in its popularity and in its spatial distribution in the region (Ongugo, 1992;Yasu, 1999;Tefera et al., 2001;Muchiri et al., 2002;Muchiri, 2004;Carsan & Holding, 2006;Reyes et al., 2009).It is now commonly found in the central and eastern highlands of Kenya, Ethiopia, Uganda, Tanzania and Rwanda, where it grows vigorously and is often considered as an agroforestry species (Lott et al., 2000a;Ong et al., 2000;Madadi et al., 2009). Overall in Africa, its adoption has been extensive over a large altitudinal range, from 0 to 3,000 masl (Bekele-Tessema, 2007). Grevillea is praised by African farmers for its climatic tolerance (Clarke et al., 2009). Pohjonen (1989) states that grevillea has shown promising performance in a wide range of Ethiopian conditions.Grevillea is highly popular in Kenya, especially around Mt. Kenya (Castro, 1993;Takaoka, 2008), possibly because it fits pre-existing tree husbandry practices of the Kikuyu community (Castro, 1993).In Tanzania, a study by Yasu (1999) analysed and illustrated the diffusion process of grevillea plantings in the Arusha region and in the wider area of northern-central Tanzania. As early as the 1950s, grevillea was introduced to the Arusha area from around Kilimanjaro by immigrating coffee farmers (Talle, 1990).From the 1970s, the diffusion process and planting intensified due to the usefulness of the timber for on-farm construction, including for homestead building (Yasu, 1999). Grevillea plantings were also used to secure occupancy rights on farms during the confusing situation of Tanzania's villagization program between 1974 and 1981. Kalinganire (1996) compared the performance of grevillea trees sampled from plantations (33 trees) and farms (34 trees) located in seven different agro-ecological zones in Rwanda. He found that altitude and soil fertility had a major influence on growth, with trees planted at altitudes below 2,300 masl having higher height increments, as did trees in fertile, deep and light soils. His study also showed that larger spacings between trees favoured diameter growth and that trees' mean volumes were higher on farms than in plantations.The natural regeneration potential of grevillea is limited by the ecological niche it occupies. In its natural range it is an upper-canopy tree (Harwood, 1990). Natural regeneration, which occurs in light-exposed areas, is hindered when its seeds and seedlings are in close competition with other upper-canopy trees (Owino, 1992). A study by Webb et al. (1967) in South Queensland, Australia, observed that grevillea has an allelopathic inhibition mechanism that prevents the under-establishment of its young seedlings.To date, this interaction has not been widely investigated elsewhere, but grevillea has been observed to regenerate badly in some pure plantations in Hawaii (Burns & Honkala, 1990). In favourable conditions, however, grevillea has been observed to become invasive in some settings (Doran, 1997;Marikhele, 2018). In South Africa, Marikhele (2018) found it had colonized 20% of 159 sampled plots of grass and forest vegetation. Despite this, no clear evidence of the species becoming a weed problem in East African natural ecosystems appears to have arisen. From this simple ecological perspective, therefore, there does not appear to be any particular concern with promoting the species in Ethiopia.Grevillea is often cultivated as a source of fuelwood, for timber and poles, and to provide shade and as an ornamental tree. It is popularly used as a source of firewood and charcoal in all of tropical Africa (Poulsen, 1983;Harwood & Getahun, 1990;Muchiri, 2004). The calorific value of the wood is 4,875 kcal kg-1 and it is hard and moderately durable, though susceptible to termite attack. The wood is easy to work by hand and machine (Spiers & Stewart, 1992;Clarke et al., 2009). Though generally not considered suitable for pulp production commercially, the wood produces a short-fibre pulp of acceptable quality (Ghosh, 1972).In India and Sri Lanka, grevillea is planted as a shade tree for tea and coffee plantations (Figure 1). It is also planted as a shade tree in smallholder farming systems in tropical Africa (Owino, 1992;Kalinganire et al., 1996), specifically in Ethiopian coffee gardens (Negash et al., 2013;Denu et al., 2016). Several studies have observed that grevillea is suitable for intercropping. Bucagu et al. (2013), for example, indicated that grevillea is perceived by farmers to show low tree-crop competition due to its relatively deep roots. Lott et al. (2000b) found that grevillea trees were less competitive than other agroforestry trees commonly planted in farmlands. Conversely, Owino (1992) and Ongugo (1992) state that drops in grevillea use as a shade tree in East Africa over past decades were due to potential negative effects on crop productivity. Smith et al. (1999) observed how four-and six-year-old grevillea trees dominated the root layer when intercropped with maize, with no spatial separation of the rooting zones of the tree and the crop, denoting competition. Management practices affect competition and may partly explain the above contrasting observations. For example, Clarke et al. (2009) reported that grevillea tolerates heavy pruning or pollarding, practices which allows farmers to regulate the amount of competition for light between trees and the adjacent crops. Around Mt. Kenya, grevillea when grown along farmland boundaries is often heavily pollarded (Muchiri, 2004). Grevillea leaves can be used as a soil mulch (Omoro & Nair, 1993;Yobterik et al., 1994) and for livestock bedding (Clarke et al., 2009;Pravalprukskul, 2015). Grevillea mulch can support soil conservation as evidenced by a study conducted in Kenya by Omoro and Nair (1993). They compared the soil balance in a calendar year between a control plot and several other plots where mulches from different agroforestry tree species were applied. The results indicated that grevillea tree leaf mulch lowered soil losses by 75% during heavy rains. Grevillea is also used for soil rehabilitation (Tesfaye et al., 2015).In a study by Tefera et al. (2001) involving farmer-participatory evaluation of grevillea boundary plantings in Kenya, 66% of those surveyed expressed interest in future grevillea planting. Farmers highlighted fast growth and low competition with crops as primary reasons. In a study about farmers' interests in agroforestry in Rwanda, Bucagu et al. (2013) found that grevillea was the only tree species planted on all surveyed farms, where the most common planting niche for the tree was on boundaries.In a farm tree diversity study in Ethiopia conducted by Duguma and Hager (2010), grevillea was among the five most popular species across the Menagesha Suba area. It was used primarily for construction wood, secondarily for fuelwood, soil erosion control and to form living fences.As a commercial timber plantation species, grevillea is less attractive than other exotic trees such as eucalypts and pines due to its slower growth and only similar (or poorer) timber quality (Harwood, 1990). It has thus only been planted on smaller areas for this purpose in East Africa (Bekele, 2011).New uses for grevillea are being described. In Ethiopia, the Dilla University Biology Department demonstrated how its leaves can be used as a substrate for oyster mushroom (Pleurotus ostreatus) cultivation. Fruit bodies produced on this substrate were large and abundant. If this technology is feasible in rural areas, it could make an important and sustainable contribution to closing the hunger gap faced by local communities during the dry season (Fekadu, 2014).In the following paragraphs we discuss what is known about intra-specific diversity in grevillea, based on the available literature of provenance and family trials, and from other studies. Some detail is provided as the issue is crucial for the modelling work presented in subsequent sections of this working paper.Main findings relevant to our current study are summarized in Table 1. Importantly, the data show that marked improvements in grevillea performance are possible through appropriate provenance selection, providing a genetic basis for productivity improvements.In Ethiopia, at Wondo Genet, Sidama Zone, seven provenances of grevillea from Australia and a local landrace 1 were tested in a provenance trial (Hunde et al., 2004). At eight years old, significant differences were found in tree height, with provenance \"grevillea\" (NSW, Australia) performing best (16.27 m) and \"Bottle Creek\" (NSW, Australia) next best (15.49 m). Branching patterns between provenances were significantly different. Compared to the top performing Australian provenance, the local landrace \"Wondo Genet\" demonstrated slower growth (9% less growth in height and DBH).In a trial established in Rwanda at Ruhande Arboretum, Butare, Mugunga (2009) found significant differences among provenances of grevillea in height and branching pattern. The study confirmed good general stem straightness as indicated by Lamb and Borschmann (1998), indicating that the tree may not require selection to improve this trait. Maximum height in the Rwandan study at 18 years of age was 20.6 m for the Australian provenance \"Benarkin\", a metre higher than the tested Rwandan landrace \"Shyanda, Butare\".Also in Rwanda, in a study conducted at Karama and Ruhande, Kalinganire and Hall (1993) found significantly higher values for growth and tree form, and biomass production rates, for natural Australian provenances than for a local landrace. Australian provenances \"Imbil\", \"Benarkin\" and \"Glenbar\" stood out for their high productivity. The local landrace performed especially poorly in its growth characteristics, with apical and radial growth 30% lower than the mean of all provenances at the Ruhande test site. The authors found that survival rates and tree form were better at the wetter of the two test sites due to lower termite attack.In Tanzania, Maliondo et al. (1998) tested the growth of seven Australian provenances of grevillea and two Tanzanian landraces (named \"Soni\" and \"Rombo\") at two sites, Kiroka and Mkundi. These sites were 70 km apart and varied for climate, soil and altitude. The best growth was recorded at the Kiroka site, where, at two years old, the mean tree height was 6 m and mean DBH 10 cm. Growth was much poorer at the Mkundi site, where mean height was 3 m and mean DBH 4 cm. The site effect on tree performance was greater than the provenance effect, emphasizing how site quality influences the overall growth rate of grevillea. In relation to site quality, the authors found a small (0.29 < r < 0.37) but significant (p-value < 0.05) contribution of N and P to DBH and height growth, indicating the importance of soil nutrient availability. Though site quality was more important than provenance in affecting growth, the provenances \"Manriver\" and \"Condondale\" from Queensland, Australia still exhibited clear superiority for height and diameter at both sites. The local landraces displayed around 20% slower apical growth than these Australian provenances. At the poor site (Mkundi), despite their relatively slow growth, local landraces were less susceptible to disease and pest attack, which may indicate adaptation to local climatic conditions.Again in Tanzania, in the Western Usambara Mountains, Madadi et al. (2009) assessed the growth of seven Australian provenances and five Tanzanian landraces of grevillea at the two planting sites of Lushoto and Ubiri. In their study, measurements taken 66 months after planting showed good growth at both sites, with trees 7.8 m in mean height and 8 cm in mean DBH at Lushoto, and 8.0 m in mean height and 7 cm in mean DBH at Ubiri. Overall survival rate was higher at Lushoto (96%, compared to 84% at Ubiri). At both sites, landraces showed poor performance, all scoring below the general mean for apical and radial growth; the five landraces showed, on average, about 25% lower height and DBH growth than the best performing provenance at both sites.In Australia, a grevillea provenance trial established in the Atherton area of northern Queensland showed significant differences in growth among provenances 40 months after planting, with provenances \"Duck Creek\" and \"Tyalgum\" from the lowlands of New South Wales performing better than other provenances (Sun et al., 1995). In another Australian provenance trial of grevillea established in 1995 in Neerdie in south-eastern Queensland, height and DBH measurements 52 months after planting also showed the superiority of the \"Duck Creek\" provenance (Harwood et al., 2002). Martins et al. (2004) reported on a grevillea provenance and family trial conducted in the state of Paraná, Brazil in which 60 half-sib families from 18 Australian provenances were tested along with a Brazilian landrace control. The authors calculated cylindric volume gains of 27% and 38% with the selection and clonal propagation of the 200 and 50 best trees, respectively, from the trial (selecting the best 9.5% and 2.4% of trees, respectively), when compared to the local landrace. The best performing families were from the Australian provenances of \"Albert River\" (from Queensland), \"Fine Flower\", \"Mann River\" and \"Duck Creek\" (the last three all from New South Wales).In a second-generation progeny trial established in the same Brazilian state, Martins et al. (2005) reported on potential gains in wood volume. An original first-generation trial was composed of a total of 104 families from 20 different provenances of grevillea. Then, in 2002, 37 genotypes were selected from this trial and utilized as germplasm for the second-generation planting. In this second trial, it was estimated that selecting the 266 best genotypes would produce a genetic gain in over-bark wood volume of 63% over the general mean, while selecting the 50 best genotypes would produce a genetic gain of 115% for the same trait (these selections sampled the best 18% and 3% of trees, respectively).In addition to exploring phenotypic variation within grevillea, molecular characterisation of genetic variation has been undertaken. Harwood et al. (1992) investigated isozyme variation in provenances sourced from the natural range and in several African landraces. The authors found 15% of genetic variation was attributable to differences among natural provenances, a value typically observed for woody plant species (Hamrick et al., 1992). African grevillea landraces from Burundi, Democratic Republic of the Congo, Kenya and Rwanda showed either very low levels of genetic diversity or allele fixation, which could indicate genetic drift in founder populations. The isozyme patterns observed in broad African materials indicated secondary introductions from within Africa rather than numerous introductions from the native range. Harwood et al. (1992) concluded that \"one or a few natural provenances have contributed to the original make-up of many land races [in Africa]\", and that \"substantial levels of inbreeding, either through self-pollination or through mating among closely related trees, are likely to have occurred [in Africa]\".Somewhat similar isozyme patterns were obtained by Sousa et al. (2018) who compared diversity in five natural populations of grevillea from Australia with a commercial control from Brazil. This control was developed from Australian trees of unknown origin. Evidence of high inbreeding was found in the Brazilian material, which the authors suggested was due to a small number of trees initially being sampled in Brazilian introductions (Shimizu et al., 2002). Sousa et al. (2018) indicated that the limited sampling was responsible for low wood production and the bad stem form of several grevillea plantings in Brazil (due to inbreeding depression effects). Calibrated by the data revealed by the available scientific literature on grevillea (section 2), we model the potential growth rate of the tree under three 'quality scenarios'. In this section, we explain the methods used for this modelling. Our yield predictions were first computed over a 40-year period, which was then shorten in accordance with the length of an assumed single production cycle for specific grevillea planting options. The analyses we explain below were performed using R statistical software (R Core Team, 2020).In our analysis we use a yield model that is based on single-tree growth characteristics, as this is expected to better approximate growth across tree stands established in the various densities and spatial patterns that typify grevillea planting. Earlier studies had also fitted a single-tree model to grevillea growth data from the Kenyan Highlands (Muchiri et al., 2002;Takaoka, 2008) and so our analysis builds on this.Our resulting fitted model is used to estimate the expected yield of different 'quality scenarios', where this is determined by germplasm quality (G) matched (or not) to site environment (E), factors that may interact (West, 2014). It is beyond the scope of the current study to investigate this interaction (termed GxE), but rather the overall effect is summarized under the 'chapeau' of the quality scenario.The three quality scenarios we use, which represent a gradation in quality/matching from worst to best, are as follows: first, is the \"actual yield\" (AY) scenario, which represents the low quality and poorly site-matched germplasm currently available to Ethiopian tree growers. This scenario covers germplasm now distributed through the formal national tree seed market and informal seed sources such as the trees found in farmers' fields from which growers currently directly collect seed; second, is the \"closing [the] yield gap\" (CYG) scenario, which symbolizes an intermediate stage of germplasm improvement and site matching, achievable by implementing good practices of seed sourcing and considering more carefully the planting location; and third is the \"potential yield\" (PY) scenario, which represents the use of the highest-yielding available varieties of grevillea, with specific improved genotypes matched carefully to agro-ecological zones.Data were collected on dynamic single-tree growth characteristics of grevillea specimens from several studies. Target data were tree age, DBH, top height, spacing, and the latitude and longitude coordinates of the planting location. When available, data were also collected on provenance, land use and date of planting. In an attempt to narrow down site condition heterogeneity, a geographic filter was applied to only include planting data from East Africa (see studies listed in Table 1).Planting site coordinates were linked to a unique ID number (Appendix I). When DBH or height were not reported for specimens, a general DBH-height allometric relationship was utilized to replace missing values. The allometric relationship in equation ( 1), as it was estimated from tropical forest trees in East Africa (Uganda and Tanazania, see Feldpausch et al., 2011), was fitted to our assembled data, where H is tree height (m) and DBH is diameter at breast height (cm).When data are limited, as applies in the current case, a one-parameter regression model is relatively straightforward to calibrate (Vanclay, 2009). Though over-simplistic compared to multi-parameter models (Mensah et al., 2018), one-parameter models can still be useful for providing forest stand production estimates (Vanclay, 2009(Vanclay, , 2010)). Here, we used the steps suggested by Grant et al. (2012), where height and DBH are estimated using equations ( 2) and (3), respectively:H= β 1 (t-0.5) (0.5) (2)where t is age (years), H is tree height (m), N is stocking (stems/ha), DBH is diameter (mean DBH over bark, cm) and β 1 and β 2 are the model coefficients. Equation ( 2) offers a good approximation that allows for robust predictions to be made with few calibration data (Vanclay, 2010). Equation (3) predicts DBH based on tree mean height and initial stocking.To estimate single tree biomass, we then applied the allometric equations ( 4) and ( 5) (Kuyah et al., 2012a(Kuyah et al., , 2012b)):where AGB is aboveground biomass (kg) and BGB is belowground biomass (kg). To estimate total underbark volume (V u ), we applied equation ( 6) (West, 2009):where V u is total stem volume (m 3 , under-bark). Based on the obtained estimate of stem volume, we calculated bole total dry weight using a wood density value of 610 kg/m 3 (Olale et al., 2019). The biomass proportion allocated to leaves and branches was estimated based on the allometric equations of Owate et al. (2018).DBH and height models were fitted to data grouped by unique IDs (i.e., locations of sampling sites).Based on single-site model predictions, single-tree mean annual increments in volume (MAI V u ) over a 40-year period were computed. For each site-specific growth model, the MAI V u general mean (μ) and standard deviation (σ) were estimated. Site-specific MAI V u values were then grouped into three categories which were used to predict productivity rate corresponding to specific quality scenarios. These were defined using the following criteria:Where, as noted earlier, AY = actual yield, CYG = closing yield gap and PY = potential yield. A similar approach was adopted in the study of O'Brien et al. (1995), who also used a single-tree growth model.In this section, we show the initial results of our modelling. Profiles of model fit for data segregated by site ID (coloured lines) and for the general pool (no segregation, black line) are illustrated in Figure 2A and 2B, which show predicted growth in tree height and DBH, respectively. At some sites (ID = 2, 4, 7, 8, 16, 19 and 20; see Appendix I), predicted height values were over the limit of 35 m expected for grevillea growth in Ethiopia (Pohjonen, 1989). This is probably due to the lack of entries in our data set for older trees (> 20 years old). For DBH, site predictions ordered differently than those for height, possibly due to different planting densities across sites. The complete dataset used in our modelling can be found in Appendix I.Overall, the broad spectrum in height and DBH prediction curves that we observed was notable. This may reflect significant between-provenance genetic variation in performance in grevillea, as well as varied site conditions.For each of the sites shown in Figure 2, the value of MAI V u was then computed for our data, based on equation ( 6) applied over a 40-year period. These values were subsequently assigned to one of three categories of quality based on our AY, CYG and PY criteria (as shown in Table 2). Raw data were then assigned to these groupings and modelling using equations ( 2) and (3) was repeated to show the extent of the growth rate differences among quality scenarios for both tree height and DBH (Figure 3A and 3B, respectively). 4,6,9,10,12,13,14,15,17,18,21,22,26, 27 CYG μ -σ < x < μ + σ 3, 5, 11, 16, 20 PYx > μ + σ 1, 2, 7, 8, 19 See site ID explanations and further information in Appendix I. For assessed plantings overall, mean (μ) MAI V u was 0.032 m 3 tree -1 and the standard deviation (σ) in V u was 0.019 m 3 tree -1 . Based on height and DBH, AGB and V u profiles were then calculated using equations ( 4) and ( 6), respectively (results shown in Figure 3C and 3D, respectively). Although in equation ( 4) DBH was the only variable included as a predictor, DBH growth was modelled based on the relationship with tree height and planting density as specified by equation (3). Thus, estimates of AGB (Figure 3C) and V u (Figure 3D) are based on both DBH and H models. The effect of improved apical and radial growth on biomass and volume productivity is expected to intensify with tree age, as is confirmed by our modelling, where curves have not flattened at the 40-year stage.In this section we describe how we model the economics of grevillea production. We initially illustrate the costs involved in setting up a BSO of grevillea to provide high quality tree seed. We next establish the model framework for exploring the costs and benefits of grevillea production for our two chosen 'production options' of agroforestry and woodlots. Then, we input into our model actual cost and price data from Ethiopia for our three quality scenarios for a one-hectare landholding. We conclude by outscaling findings to the national level, considering the possible capacity and reach of a BSO in providing seed.The establishment of BSOs is a way to provide high quality tree planting material. PATSPO has to date established over 30 BSOs of tree species prioritised by communities, businesses and government in Ethiopia. These BSOs not only produce tree seed per se, but they support the selection and evaluation of GxE in tree performance that allow locally-adapted tree seed for growers to be identified. They also act to conserve the tree germplasm (a function that is more important for indigenous trees than for grevillea in Ethiopia).Here, we outline the costs of establishing a BSO for grevillea based on PATSPO's practical experiences. We illustrate the total costs involved up to a full year after BSO establishment in Figure 4, using a 'tree-map' where the area sizes are proportional to the costs of particular activities. Further data, summarized by the main activities with their costs, are provided in Appendix II.Figure 4 shows that post (initial)-establishment activities such as watering, and fencing to protect the BSO, took up more than half of the total budget, at 30% and 29% of the total, respectively. The next highest expenditure was linked to nursery operations (19%). Initial field establishment costs such as planting and site clearance were only a low proportion of the total expenditure (6%).The data revealed that the total expense of BSO establishment was approximately 470,000 Ethiopian Birr for a single hectare stand containing 2,500 grevillea seedlings at initial establishment. This is equivalent to around USD 12,300 when applying a conversion rate for Ethiopian Birr to USD of 38:1, the rate prevailing in 2021 when price data were collected.To assess the potential income to growers from grevillea plantings, we chose 'agroforestry' and 'woodlots' as the two most suited production options. These options are valid for a variety of farming systems in which grevillea is planted by Ethiopian smallholders (the same options would also be relevant more widely in East Africa and through the tropics). As noted in our literature review (section 2), grevillea planted in East Africa is often found in agroforestry situations such as live fences and as shade trees. Grevillea is also widely established in the region in small woodlots (and these are expected to be primary sources of timber supply in Ethiopia going forward; FDRE, 2017).The parameters we use for modelling in agroforestry and woodlot situations are summarized in Table 3 and the paragraphs below. In each case, we considered a landholding of one hectare for modelling purposes.In an agroforestry system, we expect grevillea to be planted at a low density integrated with crops. We therefore set this option to have 60 trees planted for a one hectare area overall, a value typical of studies that have researched East African smallholders' agroforestry practices (Yasu, 1999;Muchiri et al., 2002;Carsan & Holding, 2006). We assume an actual spacing of 4 m by 4 m between planted trees, which means that they only occur on about 10% of our modelled land area (they are aggregated into this smaller area with crops between them). This spacing would be typical for grevillea established in an agroforestry system (Edo et al., 2017). (The setting out of this spacing is important because the overall performance of the trees in our model is spacing sensitive.)In the case of the smallholder woodlot option, where grevillea is commonly planted to produce poles and construction wood (Pravalprukskul, 2015), we expect a high density of planting. We therefore set this option to have 1,100 trees planted initially for a one hectare area overall, a value approximating that seen by observers in practice (Pohjonen, 1989;Matthies & Karimov, 2014). We assume an actual spacing of 2 m by 2 m between planted trees, which means that they occur on 44% of our modelled land area (where they are aggregated on land assigned solely for wood production). This proportion of a landholding covered by a woodlot would be typical of smallholder practice in the Ethiopian highlands (Matthies & Karimov, 2014). We then assume that half of these trees will be thinned seven years after planting (Pohjonen, 1989).For both planting options, we set the seedling mortality rate after initial field planting at 20%, with lost seedlings being replaced in the second year. This mortality value is chosen as conservative for modelling purposes (Reyes et al., 2009;Marikhele, 2018). Further tree mortality after the initial establishment stage was not considered in our current model, as evidence suggests it should be low (Muchiri et al., 2002). Harvesting schemes were set differently for each planting option based on information sourced from Pohjonen (1989), Muchiri et al. (2002) and Matthies and Karimov (2014). Our cost-benefit analysis involved calculation of the net present value (NPV), the internal rate of return (IRR) and the equal annuity cashflow (EAC) of agroforestry and woodlot planting options, considering productivity under appropriate planting densities and single production cycle lengths, and taking account of different quality scenarios. The application of different single production cycle lengths is based on the threshold size for DBH being reached at different times based on the quality scenario. The application of different single production cycle lengths does not compromise our overall comparisons as EAC allows us to compare the financial efficiency of projects with different lifespans. The formulae used to calculate NPV, IRR and EAC are shown in equations ( 7), ( 8) and ( 9):where t is the number of years after planting, n is the number of years after planting of the last harvest, i is the discount rate (set to 10% in this analysis) and CF t is the contribution margin or net cash flow in year t. The cumulative NPV was also calculated to estimate the year after planting when landowners would start to achieve a positive overall NPV.Cost-benefit analysis was performed using the jrvFinance (Varma, 2019) and FinCal packages (Fan, 2016) of R.Information on labour and other production costs, and wood prices, are needed as inputs for model application. We take these from the literature and from local knowledge gained by the PATSPO initiative.For the labour costs of managing smallholders' grevillea plantings, estimates were founded on Nigussie et al. (2020) who studied costs for eucalyptus woodlots in the Ethiopian highlands. The labour cost of harvesting was based on a price of 1.3 Birr tree -1 for trees less than 26 cm DBH and 2.7 Birr tree -1 for larger trees. The cost for a round of pruning was set at 0.7 Birr tree -1 . The establishment costs for trees were based on calculations made for the establishment of BSOs (see earlier). The price for grevillea seedlings was set to 4.6 Birr each for the AY (lowest) and CYG (intermediate) quality scenarios. A premium of 50% was applied to seedlings of the (highest) PY quality scenario. Fuller data on costings are provided in Appendix II.On-farm wood prices were sourced from a farm survey undertaken during the fieldwork conducted in support of the ex-ante impact assessment of PATSPO of van Schoubroeck et al. (2022). We applied a price of 1.4 Birr kg -1 for air-dried wood of a DBH below 26 cm and 2.8 Birr kg -1 for harvested logs with a DBH greater than 26 cm. This means that the wood of thinned out grevillea trees in the woodlot production option was valued at 1.4 Birr kg -1 , since it is assumed that at this stage the trees will not have reached a DBH of 26 cm. Pruned branches, which will most likely be used by farmers directly for domestic fuelwood supply (Dessie, 2011), were assigned a replacement cost of 1 Birr kg -1 . According to the investigations of the PATSPO team, wood prices are expected to increase by roughly 20% in real terms over the next decade in Ethiopia (Moestrup, unpublished observations). We applied this rate of increase across our entire modelled time period to both timber and fuelwood production.Using these model inputs, the fixed and variable costs of the establishment and management of smallholders' agroforestry plantings and woodlots, based on a one-hectare total landholding, were calculated as time-series vectors. A summary of the net costs for planting options and quality scenarios, by establishment and management activity, and across an entire single production cycle, is provided in Table 4. Further information is given in the paragraphs below. A detailed time-series of expenses is given in Appendix II.Our analysis showed that the woodlot planting option required much higher initial investment than the agroforestry option (total values of at least 25,000 Birr and around 2,000 Birr for the two options, respectively). This was due especially to the greater costs of the seedlings and for the tending of trees for the woodlot option (for which many more trees are planted). The differences in the total investment cost between the three quality scenarios for either planting option were relatively small. This difference was greatest for the woodlot planting option for the PY scenario compared to the other quality scenarios, because of the large number of more expensive seedlings used for the woodlot PY scenario.Specifically for the agroforestry planting option, the pruning costs diminished as the quality scenario improves from AY to CYG to PY. This was due to the shortening of the production period in our model that is associated with higher germplasm productivity (i.e., the single production cycle length is shortest for the PY quality scenario, intermediate for the CYG scenario, and longest for the AY scenario). For woodlots, pruning costs were in our model the same across quality scenarios. Adding in these price data to our model, we next generated net revenues as time-series vectors while adopting a discount rate of 10% for NPV calculations, a rate set based on previous studies in Ethiopia (Duguma, 2013;Matthies & Karimov, 2014;van Schoubroeck et al., 2022). The IRR was also calculated to obtain the discount rate at which NPV is equal to zero, and the EAC was computed to estimate the annual rate of return that will be earned with the investment. A summary of the results of these calculations over an entire single production cycle for planting options and quality scenarios is given in Table 5 and further information is provided in the paragraphs below. This analysis showed six important features. First, NPVs were higher for the woodlot planting option than for agroforestry for the two higher quality scenarios (NPVs approximately double), though for the AY scenario the opposite situation was observed. Second, quality scenario had a major impact on the overall magnitude of NPV with both planting options. Thus, for the agroforestry planting option, a roughly 2-fold NPV increase was observed when moving from the AY to CYG scenario, and the same magnitude of increase again was seen when moving from the CYG to PY scenario. In the case of the woodlot planting option, the equivalent figures were an around 20-fold increase followed by a 1.6-fold increase. A focus on quality in germplasm provision is thus indicated to bring major NPV benefits for both planting options.The third important feature evident in Table 5 is the difference in IRR between planting options. Comparing planting options for each quality scenario, the IRR was always higher for the agroforestry option. For agroforestry, the IRR ranged from 17% through 24% to 30% for the AY, CYG and PY scenarios, respectively, whereas for woodlots the equivalent figures for the quality scenarios were 10%, 16% and 18%, respectively. The lower IRR values for woodlots reflect the higher investments they require and indicate that agroforestry can be described as a safer investment option. The fourth important feature is also reflected in the above IRR values that indicated that IRR was higher for both planting options the greater the quality scenario, again emphasizing the importance of focusing on quality in germplasm provision.The fifth important feature detected was the difference in EAC between planting options. EACs were higher for woodlots (approximately three to four times higher) apart from the AY scenario where the reverse situation applied. Sixth and finally, our results indicated that quality scenarios had a significant effect on absolute EACs within both planting options (mirroring the situation with NPV values as described above). In summary, our current analysis indicated that a focus on germplasm quality is predicted to bring significant benefits for growers in profitability and investment safety for both agroforestry and woodlot plantings of grevillea, considered over a complete single production cycle.Our NPV values were somewhat lower than those revealed by other work on the economic feasibility of agroforestry practices and woodlots in the Ethiopian highlands (Duguma, 2013;Matthies & Karimov, 2014), possibly because of the higher labour costs we assumed in our study. Elsewhere in East Africa, most farmers in the Tanzanian Southern Highlands dedicated fewer than 10 days per hectare over the whole production period to the management of trees on their land (Arvola et al., 2019), which is also lower than the time allocation we assume. Although our model carries relatively high costs, it may also support higher timber quality and hence improved prices. We have not factored this point into our current analysis.In a further analysis of NPVs for our two production options and three quality scenarios, we explored year-on-year trends in the cumulative values of calculations. These are depicted in Figure 5. The graphs show that planting options have rather different profiles, as summarised in the paragraphs below.For agroforestry, the cumulative NPV became positive earlier after planting than for woodlots, at the time of first timber harvest (which is 24 years for the AY quality scenario, 17 years for the CYG scenario and 14 years for the PY scenario). Before this time, fuelwood harvest had slowly contributed to paying back the initial investment for the agroforestry option. For this planting option, the last timber harvest, that came in years 36, 25 and 21 for the AY, CYG and PY scenarios, respectively, resulted in a jump in NPV.In the case of woodlots, the cumulative NPV remained negative until the final year of the production cycle (year 35, 24 and 20 for the AY, CYG and PY scenarios, respectively), when a large jump in NPV is observed. This reflects the greater investments required for woodlots than for agroforestry planting. Before the final year, the harvested wood from thinned woodlot trees (thinnings harvested in year seven) contributed only partially to pay back initial investments, as wood volumes and hence values were relatively low for these early growth stage trees. For the PY scenario, however, the wood harvested from thinning contributed to pay back half of the initial investment.To scale our calculations to the national level, we considered how much seed a grevillea BSO could produce. At year seven when trees reach biological maturity, a one-hectare BSO is designed to contain a total of 625 trees (thinned from an initial 2,500 trees to remove 1,875 of the specimens showing average or below average growth performance, corresponding to a selection intensity of 75%). At this stage, we assume for current modelling an average seed yield of 400 g tree -1 y -1 , which based on a value of 121,500 seeds kg -1 corresponds to approximately 48,600 seeds from each tree in the BSO. Although we expect seed production to be positively correlated with tree size (Moles et al., 2004), for current modelling purposes we kept a constant value for all future years as our estimate of average production (i.e., we apply a constant value from biological maturity in year 7 to senescence in year 50). We also assume that 20% of the BSO seed will be lost due to damage and impurity, a further 25% will not germinate, and a further 30% will be lost during the raising of seedlings in nurseries prior to field planting. Taking these factors together, this means that only 42% of the BSO seed will be converted to seedlings actually available for field planting. Under these assumptions, the estimated number of seedlings available for planting annually from a one-hectare grevillea BSO from year seven onwards is approximately 12.8 million.The above value of 12.8 million seedlings being available annually from the grevillea BSO compares to a best estimate of the annual demand for grevillea seedlings in Ethiopia of approximately 125 million (Lillesø and Derero (2019); note that this equates to about 300 million seed if applying the same conversion value of seed to seedlings as used above). This means that the grevillea BSO could in theory meet approximately 10% of Ethiopia's current demand for grevillea seed/seedlings. For current modelling purposes we however assume it can meet 5% operationally (i.e., supply 6.3 million seedlings for planting), due to delivery system constraints and inertia. In our modelling we keep this proportion constant across years, as we do the projected absolute annual demand for seedlings. Assuming that half of the BSO-sourced grevillea seedlings are planted in the agroforestry production option and half as woodlots, this equates to 43,000 ha of 'improved' agroforestry and 2,400 ha of 'improved' woodlots being established annually. To outscale BSO impact it is necessary to equate the seed it produces to our three quality scenarios. As a minimum, the seed should align with the CYG scenario and in the best case with the PY scenario. For current purposes, we modelled the cumulative NPV difference for Ethiopia as a whole between each of these two scenarios and the business-as-usual AY scenario, and expressed the results graphically over a 50-year timescale (Figure 6). We also modelled a midpoint between CYG and PY scenarios compared to AY. Figure 6 shows that the break-even point from BSO planting is expected to be reached at years 10 and 19 for the CYG and PY quality scenarios, respectively. This lag reflects the time that is needed for the BSO to biologically mature, and for the agroforestry and woodlot trees established from these seeds to begin production. In subsequent years, significant NPV benefits are achieved through using BSO germplasm compared to business-as-usual planting material. After 50 years, the increase in cumulative NPV of the PY compared to AY quality scenario is Birr 2.7 billion, with the value being 1.9 billion for the CYG versus AY quality scenario.In this section we make a further examination of the outputs of our modelling based on roundwood and sawnwood production, and relate these to environmental service provision (carbon sequestration) and additional economic benefits.Here, we take a closer look at the roundwood production projections of our model at one-hectare landholding and country scales. At the landholding level we consider our three quality scenarios for the two production options of agroforestry and woodlots (Table 6). At the national scale, we explore the benefits from BSO planting based on the equating of BSO seed to the PY quality scenario, and consider climate mitigation effects.In Table 6 and Figure 7, data on mean annual increment in total biomass (MAI TB), under-bark volume (MAI V u ) and branch biomass (MAI BRA) are summarised. These data, which are consistent with previously published productivity rates (Pohjonen, 1989;Burns & Honkala, 1990;Muchiri et al., 2002;Bekele, 2011;CABI, 2020), indicate the significant benefits that are achieved from CYG and PY quality scenarios compared to the AY baseline (e.g., 73% and 84% for MAI V u and MAI BRA, respectively, for the woodlot production option with the PY quality scenario). The last figure of 84% for branch biomass improvement indicates the fuelwood benefits of the higher quality scenarios, which could substantially support meeting rural households' energy requirements in Ethiopia (Yigezu & Jawo, 2020).Based on the assumptions for national scaling from a BSO given in section 5.4, the increased biomass production derived from the replacement of AY grevillea plantings with PY plantings would result in the sequestration of an additional 1.7 million tonnes of CO2 equivalents annually at a country level, averaged over the 50-year modelled period. Our rough estimate would also suggest that using BSO (PY scenario) grevillea seed rather than AY seed would satisfy an extra 4% of the country's roundwood demand by 2040, based on current estimates of requirements (World Bank, 2017). Table 6. Summary of mean annual increments over a single cycle of production for grevillea planting options and quality scenariosQuality scenario MAI TB (t -1 ha -1 y -1 ) MAI V u (m 3 ha -1 y -1 ) MAI BRA (t -1 ha -1 y -1 ) Agroforestry AY 0.9 1.1 0.1 CYG 1.2 (44%) 1.6 (38%) 0.2 (44%) PY 1.4 (70%) 1.8 (60%) 0.2 (69%) Woodlot AY 6.5 9.7 0.9 CYG 9.7 (49%) 13.9 (43%) 1.4 (50%) PY 11.9 (82%) 16.8 (73%) 1.7 (84%) Mean annual increment (MAI) data are reported for total biomass (TB), under-bark volume (V u ) and branch biomass (BRA). In brackets the percentage increase from the AY baseline quality scenario is given for CYG and PY scenarios Figure 7. Mean Annual Increment for AGB (t ha -1 y -1 ) and V u (m 3 ha -1 y -1 ) over time for grevillea production for agroforestry and woodlot planting options and three quality scenarios. The y-axis reflects one production cycle which varies in length for the quality scenario.Here, we take a closer look at the value of sawnwood production for timber enterprises at the country scale, based on a baseline quality scenario compared to PY scenario trees raised from BSO seed. The price of timber sold by timber enterprises is often much higher than that received by growers (Nawir et al., 2007), so it is important to take this into consideration when considering the overall impact of germplasm quality improvement for the national economy.Based on the assumptions for national scaling from a BSO given in section 5.4, the increased NPV of sawnwood derived from the replacement of AY grevillea plantings with PY plantings is estimated to be Birr 44 million annually. Over a 50-year period, PY plantings would generate an increase in sawnwood value of Birr 2.2 billion in total over AY plantings.These estimates were based on a log recovery rate of 36% from roundwood to sawnwood volume (Abebe & Holm, 2003) and a price based on an import cost of sawnwood of 455 USD per m 3 (Girma, 2021). Only harvested timber with DBH > 26 cm was included in the analysis. We did not include the cost of processing logs in our estimation.Our rough estimate would suggest that using BSO seed rather than AY seed of grevillea would bring significant benefits to timber enterprises.In this working paper we have set out an approach to evaluate the benefits that can be achieved with using higher quality tree germplasm in smallholder tree plantings in Ethiopia. Our approach takes the case of grevillea, planted in agroforestry and woodlot production options, as its example. It systematically applies a series of steps to measure impacts, from growth modelling using a one-parameter regression of three different quality scenarios, through the parameterization of two planting options at a onehectare scale, to outscaling findings nationally. Anticipated impacts at landholding and national scales were quantified in terms of additional timber production, carbon sequestration and sawnwood production. Our approach to estimate the benefits of using quality germplasm in tree planting provides some advances on previous methods (e.g. Kjaer & Foster, 1996;Marcu et al., 2020). It investigates the effects of improved germplasm on both profitability and environmental services, at both local and national scales, and can be applied when there is limited primary data. Our modelling shows that the returns on investment in using higher quality grevillea seed provided by a BSO should be considerable in terms of the extra value of wood from agroforestry and woodlot plantings, in the additional tonnes of CO2 equivalents sequestered, and in the superior returns on sawnwood production.In our analysis we have modelled the benefits of using improved germplasm for grevillea planting in Ethiopia because more growth data are available for the species in East Africa than for most other tree species planted in the region. Grevillea is an exotic tree species to Ethiopia and arguably more interesting would be to model the benefits of using improved germplasm for native trees, as these are more important for achieving broader forest landscape restoration targets. With the basic model now developed for grevillea, it can be applied to native tree species in the future. This will become more relevant as more data on native tree species performance become available for East Africa. New sources of information are the BSOs that were recently established by the PATSPO initiative in Ethiopia for a range of indigenous timbers including the priority species Cordia africana and Juniperus procera. Data collected from these BSOs in the next few years will support modelling. Our current study indicates the clear benefits that should materialise from PATSPO's work to establish these BSOs to provide improved tree seed.The benefits and costings laid out in the current study should only be considered as preliminary. This is for a range of reasons. For example, in our analysis we did not model the extra costs that would be involved in delivering BSO seed to smallholders, compared to them accessing business-as-usual seed from existing farmland trees as is common current practice. Improving smallholder growers' access to BSO germplasm involves considerable investments in the broader tree seed system, in terms of infrastructure and capacity development. (Note that the PATSPO initiative also takes on these additional roles, beyond producing BSO seed.) For growers, improving production is also not only about receiving improved tree seed inputs. For example, business loans may be required to support initial tree establishment before the financial and other benefits outlined in our modelling can be achieved. Our yield modelling approach for grevillea also has shortcomings due to the lack of extensive primary data on the tree's performance across Ethiopia's different agro-ecological zones. Our estimates of downstream timber value were also based only on very limited data.Nevertheless, our analysis represents a useful starting point for future work that will address data gaps. Important information on grevillea growth will come from PATSPO establishment of BSOs of the species in Ethiopia, while farm surveys will be conducted in the country's highland regions to collect data on tree management strategies, timber and fuelwood prices, labour costs and market access.Equally, our study also represents a springboard for germplasm supply modelling for other tree species and production systems outside Ethiopia. This study was developed in the context of the Provision of Adequate Tree Seed Portfolios (PATSPO) initiative in Ethiopia. PATSPO aims to strengthen the existing tree-seed system by ensuring access to high-quality tree germplasm. Here, we estimate the socioeconomic impact of establishing a breeding seedling orchard (BSO) and distributing quality planting material of the tree Grevillea robusta (grevillea) in Ethiopia. Grevillea is a commercially important and popular agroforestry tree species grown in East African smallholder farms.Our study starts by modelling tree growth with a one-parameter regression fitted to literature-sourced growth characteristics. For the purpose of modelling, we identify three 'quality scenarios' (related to the germplasm used) and two 'planting options'. Based on the model's outputs, we investigate the effects of increased tree productivity on farmland economy, on the provision of environmental services, and on the wider forestry sector. Findings are outscaled based on the demand for grevillea planting material in Ethiopia and an assumed reach of PATSPO-derived high-quality germplasm. Our growth models indicated that higher than baseline quality scenarios could produce a significant increase in volume (and biomass productivity). This resulted in several-fold increases in the net present value over the production cycle of agroforestry and woodlot plantings, as well as significant benefits in other economic indicators. At the country scale, our analysis estimated that after 50 years the increase in cumulative net present value of on-farm grevillea plantings should be between Birr 2.7 billion and 1.9 billion when using high-quality germplasm compared to an unimproved germplasm baseline, a significant boost (38 Birr = 1 USD at the time of calculations in 2021). We therefore reveal that establishing a grevillea BSO in Ethiopia could produce significant economic returns for tree growers that are much higher than the initial investment that we determine to be required. Furthermore, using BSO germplasm compared to an unimproved germplasm baseline could over 50 years after the BSO's establishment sequester an extra 1.7 million tonnes of CO2 equivalents annually and achieve an increase in net present value annually of Birr 44 million in roundwood milling into sawnwood. In summary, our current analysis indicated that a focus on grevillea's germplasm quality is predicted to bring significant economic and environmental benefits in Ethiopia. Our approach to estimate the benefits of using quality germplasm in tree planting represents an advance on previous methods and can be widely applied to a broad range of species, production systems and locations.","tokenCount":"11041"} \ No newline at end of file diff --git a/data/part_3/1264893960.json b/data/part_3/1264893960.json new file mode 100644 index 0000000000000000000000000000000000000000..79dc0e10ef4816625e5608c6d57e5c92119f150e --- /dev/null +++ b/data/part_3/1264893960.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"55653899a7e5b5112d3d9b8982c5c902","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/9532be23-c99f-442b-b204-ab4c398c1094/retrieve","id":"1590468012"},"keywords":["CSIRO","IRD","CIRAD","ICARDA","Bioversity International and ILRI"],"sieverID":"bedfa7fe-9bac-4ee7-b457-7121f25188c5","pagecount":"63","content":"and various Non-Governmental Organizations (NGOs), national agricultural research systems (NARS) and private sector partners. This consortium strives to support beneficiaries in 13 priority countries in South Asia (SA) and Sub-Saharan Africa (SSA) with the mission of improving rural livelihoods and nutrition by prioritizing demand-driven innovations to increase production and market opportunities along value chains.The ability of parasitoid Liragathis javana to survive harsh conditions led to its large-scale release in Burkina Faso, Niger, and Nigeria. Cropping systems based on maize, sorghum, or millet with grain legumes in combination with planting densities developed. Agroforestry systems involving Faidherbia albida trees, rotation sequences including maize following soybean or cowpea and vice versa and doubled-up legume systems that capitalize on the synergies between and among crops and systems were also considered.Over 21.9 M farm households adopted improved GLDC varieties, exceeding the target for 2022 by about 13 M. Commercialization of biofortified cultivars of sorghum, pearl millet, lentil, and groundnut during 2018-2020 was driven by a positive response from the public and private sector stakeholders. To enhance rate of genetic gain, RGA in chickpea and lentils, and MAS in breeding pipelines of groundnut, soybean, chickpea, pearl millet and cowpea were deployed.An interspecific recombinant inbred between Cicer arietinum with C. reticulatum developed for resistance to Helicoverpa armigera and genotyped by high-throughput AxiomCicerSNP array resulted in nine main-effect QTLs showing 42.49% phenotypic variance. QC markers developed in most crops, besides deploying GWAS for discovery of novel QTLs; cowpea (drought and Striga resistance), pearl millet (root traits, blast and micronutrient content), chickpea (nutrition), groundnut (aflatoxin), sorghum (Striga and agronomic traits), and pigeonpea and finger millet (blast and Striga). Flapjack-MABC and Galaxy-GS pipelines were optimized for all crops, while Timescope and HaploTool were deployed for tetraploids.A policy tool on scaling up of bean processing in Kenya, a policy brief on constraints women participation in national and regional export trade, and a nutrition strategy on enhancing bean and bean-based product consumption across five bean corridors were developed. Reducing agro-chemical inputs to control pests and diseases through tailored management options using biocontrol agents or in combination with agro-chemicals was pursued. Based on its ability to survive harsh conditions, the parasitoid Liragathis javana was released at a large scale in Burkina Faso, Niger, and Nigeria. For the abiotic stresses, two of the three cellulose degrading microbes that decompose sorghum bagasse into compost, thereby enhancing plant growth by solubilizing phosphorous was studied under field conditions. Sustainable intensification systems with diversified crop combinations were developed in Burkina Faso, Malawi, Mozambique, Nigeria, and Senegal. Resilient and high-yielding varieties that fit well in these cropping systems together with appropriate inputs, planting time, planting densities and arrangements were promoted to increase resilience and productivity on smallholder farms. Decision support tools were developed to evaluate the performance of legume varieties and combinations, and farm management options across agroecologies and socio-economic conditions in Burkina Faso, Ethiopia, and Nigeria. Over 750 households (about 4,000 beneficiaries) growing GLDC crops adopted improved seeds, cereal-legume intercropping systems, and specific recommendations on varieties and sowing dates. Improving natural resources and ecosystem services were supported by APSIM modelling in Malawi for sustainable intensification and diversification of integrated cropping systems, crop genotypes with complementary growth habits and plant architecture, soil type, and environmental factors.The research initiatives included variety development and/or improvement, product profile development, scaling and impact assessment under the crosscutting aspects of gender, youth, capacity development, and partnerships. To enhance the rate of genetic gain, small-and mediumseed companies and public sector partners enabled collaborative breeding, delivery of improved seed in target countries, and design of product profiles. Consequently, new cultivars were released that offer production, market, and consumer traits contributing to nutritional security, climate resilience, drive new value chains, promote employment opportunities among the youth and women, and environmental sustainability. Key innovations for breeding pipelines include scaling up of speed breeding at ICRISAT and ICARDA for chickpea and lentil, defining target product profiles (TPP) based on market segments, stage gate system (IITA) with multi-disciplinary teams along the breeding and testing pipeline, and institutionalized Multi-Environment Testing (MET). These were combined with advanced analytical tools for data analysis and decision making, seed-chip genotyping in groundnut (ICRISAT) and chickpea (ICARDA), and CT-imaging tools for grain physical quality. Over 20.5 M ha are currently under improved GLDC crop varieties that have been adopted by over 21.9 M smallholder farmers in target countries.FP5: Lines of cross-compatible cowpea wild relatives including those exhibiting seedling stage drought tolerance in screenhouse trials were crossed with elite cultivated varieties and incorporated into pre-breeding resources. Cross-compatible drought tolerant cowpea genotypes were hybridized with improved breeding lines and varieties from INERA-Burkina Faso, INRAN-Niger, and IITA-Nigeria. Pigeonpea mutants for seed color and 100 seed weight in the background of ICPL 87119 and ICP 8863 were identified and crossed with the respective parent line to generate F1s and selfed to generate F2 seeds. High resolution mapping and near-isogenic lines were used to fine map fertility restoration genes in pigeonpea that identified highly significant QTLs. For AB resistance in chickpea, transcriptome, small RNA, and degradome sequencing helped to identify 6767 differentially expressed genes and 297 miRNAs related to pathogenesis-related proteins and disease resistance genes. The analysis of both small RNA and transcriptome data identified 12 miRNA-mRNA interaction pairs related to AB infection. While genomic selection has been optimized in chickpea, pigeonpea and groundnut, a high throughput phenotyping platform was developed at ICRISAT. Enabling technologies focused on establishing protocols for proof of concept in genome editing, second-generation transformation, systematic mutant population, phenotypic screening, and rapid generation turnover (RGT).FP6: Activities focused on bean variety development, dissemination, and technology package offerings with well-integrated into crosscutting themes on gender, youth, and capacity development, highlighting, (1) satisfaction among women and youth on inclusivity within the bean business platform, (2) high adoption of bean business models, (3) Using ICT tools for easier access to services and advisory to farmers, (4) empowering bean value chain actors as change agents, (4) development of bean corridors in African regions, and (5) release of bean varieties and technology packages. Impact studies in Burundi showed that having access to profitable markets allows traders to negotiate for higher prices, compared with those who are yet to join market platforms. In Kenya, a women-only group (Ushirikiano-Nakuru) earned an additional US$10 per ton by linking with a woman-owned bean processor, Smart Logistics Ltd. which now trades in highly demanded varieties that attracted better prices. Increased transparency across bean value chains and partnerships contributed to higher levels of satisfaction amongst a sample of 302 farmers (165 women) who were linked to buyers by using digital payment solutions through MasterCard Farm Network (MFN) in Uganda. Over 86% of the women and 80% of the men were satisfied with the financial solutions (FinTech), and 89% of the non-user willing to embrace use of digital payment platforms. FP3: Since the pandemic protocols restricted travel and in-person meetings, trainings and field days, messages and information was broadcast through radio and digital media involving extension agents and lead farmers. Where possible, online meetings were conducted to discuss issues and disseminate information. Implications on resilience, food and nutrition security and recovery policies by the governments in major farming and food systems of Asia were also assessed.The pandemic led to delays in the release of cultivars and reduced the scale of on-farm testing to some extent, besides limiting the field days.FP5: While most research activities progressed as planned, travel of breeding teams were severely affected due to travel restrictions.FP6: PABRA members swiftly adjusted implementation of the planned and extension activities through digital platforms including WhatsApp, virtual trainings, radio, and television broadcasts.Besides, extension teams carried out field under country-specific restrictions and health guidelines. The pandemic had a negative impact on crop markets and supplies affecting businesses of traders and processors. Hence, investments were made in digital solutions to ensure support to key players, especially women and rural producers. New partners were onboarded to expand the MasterCard Farmer Network (MFN), besides a guideline and three virtual gender tools to integrate women and youth into the MFN system. Videos highlighting impacts of COVID-19, mitigation measures and strategies in the EAREM corridor were produced and disseminated across PABRA member countries. PABRA also provided prioritized support to vulnerable groups and women, besides providing options to reduce post-harvest losses.FP1: While no research area was significantly expanded, outreach activities on aspirations were expanded.FP3: New areas included the development of a phenotyping facility for fall armyworm at ICRISAT, household level studies to assessing profitability and risks of technologies upscaled, modelling climate impact on legume crop varieties, crop productivity under trees, and the monitoring of greenhouse gases balance.Speed breeding expanded at ICARDA and ICRISAT, besides mainstreaming biofortification in breeding pipelines of pearl millet, sorghum, lentil, and groundnut and expanded MET testing in Africa and Asia. The Pan African Soybean Variety trials also expanded to Bangladesh and Myanmar.FP5: QC and trait marker development was significantly expanded with the additional support from EiB and USAID-CtEH projects.FP6: PABRA expanded the use of MasterCard Farmer Network and messages on the nutrition value of beans and financial institutions to build the capacity of SMEs, particularly during the COVID-19.FP1: A market survey planned for sorghum and chickpea sorghum varietal trait preference study in India during 2021 could not be completed due to COVID-19 surge and travel restrictions. Hence, this work was limited only to key informant surveys in selected markets to map the value chains for sorghum and chickpea.FP3: Collection of new isolates of pearl millet downy mildew and blast pathogens from farmers' fields and exchange visits were cancelled due to travel restrictions/lockdown. The field work on assessment of whole farm model decision support could not be undertaken at village/farm level with stakeholders in India and in Sub-Saharan Africa.FP5: Innovation fund awarded to a partner of ICARDA could not be implemented due to the lack of clearance from ARC-Egypt. This activity had to be cancelled. A strategy for Women and youth integration in technology development and deployment process was developed to support the process of how research for development activities target and select participants and beneficiaries. The strategy for the gender-responsive technology development and deployment process applied the gender equity and equality model of checklist questioning of:(i). Who? -responding to the types of men, women, and youth from each crop value chain segment.(ii). What? -responding the issues, needs, preferences, and constraints of men, women, and youth analyzed and considered in outcome goals and intervention design.(iii). How and why? -responding to the overall research activities, objectives, and welfare outcomes targeted at, sensitive to, and responding to men, women, and youth-specific needs.Indicators developed for checklist questions included the number of men, women, and youth designed and targeted in project design include data collection protocol, capacity building field demonstration/trials plans, number/percentage of men, women, and youth reached, included, and participating in (survey and interviews, and attendance in training, trials /demonstrations). This also has intersectional consideration and data, outcomes and interventions designed with women, men and youth-specific needs integrated and implemented. The strategy was implemented with over 80% success rate wherein the percentages of women and men participants of the research for development activities were achieved at 50-50 men to women targets and beneficiaries. Sometimes more women or women only beneficiaries were targeted to close an identified gender gap. One such intervention activity was designed to improve access to improved seeds and engender behavior change. Women groups were targeted and trained to strengthen their role in improved seed production and dissemination.Three training sessions were organized in Mali targeting only women farmer organizations to strengthen the role of women in improved seed production and dissemination. The main objective of the training was to equip and to build the capacity of women involved in seed production, and to connect them to high-quality seeds suppliers, and raise awareness on the added value of using improved seeds. About 80 women were trained on seed production and essential agronomic techniques for the production and preservation of quality seed.The first module addressed the production of high-quality seeds; discussions were focused on the importance of growing high-quality seeds which increases yield by 30% to 40%, especially of hybrid sorghum and millet. The focus of the second module was on minimizing the risk of production by checking the seed certification with seed companies and cooperatives before purchasing any seed and testing the seed germination capability before sowing.The third module was on postharvest handling techniques to strengthen the capacity of women and youth groups to produce and provide high-quality grain to marketers, processors, and consumers. The participants learned the causes of losses in production and early or late harvesting. They were taught to be cognizant of the different moisture content of grains for storage and were equipped with knowledge on the appropriate times for harvesting millet, sorghum, and groundnut. In addition, the participants were taught the importance of packaging and labeling grains to enable effective product tracing and stock management. The bag or packaging must bear certain information such as producer's code, the product's place of origin, weight, the name, or the type of the product. This module also included lessons on marketing and networking techniques, to support women and youth groups to better manage their seeds and grain demands, define a marketing strategy and business plan.The training sessions identified additional capacity building needs among women and youth groups in seed production, grain marketing, and processing of agricultural products including:• Structural and organizational capacities of the groups.• Establishment of efficient information systems with the outside world and between the actors of the value chains. • Acquisition of appropriate equipment for agricultural production and processing of millet, sorghum, and groundnuts. • Strengthening of seed storage facilities and capacities.• Low literacy level among participants (5% for women and 10% for men).To unlock the potential of youth in agriculture, targeted, inclusive interventions that appeal to specific and diverse groups of youth, especially females and differently abled youth. For this, customized training sessions for young women, and hearing-impaired youth from the Wa School for the Deaf were conducted in Ghana with a focus on behavior change communication that incentivizes choice of improved varieties and quality seeds of cereals and legumes.The trainings focused on developing an organized group of groundnut producers to understand the market potential in groundnut seed production and marketing, as well as developing sustainable market linkages for the commodities produced in Tamale, Northern Ghana. Key areas of the training included groundnut seed production, quality control of seeds, seed business development, the concept of the Village Savings and Loans Association (VSLA), group dynamics for sustainable grassroots organization among seed producers, and processing of groundnut into confectionaries of high nutritional and market value.A total of 300 youth aged 15 to 35, including 30 from the Wa School of the Deaf in Tamale, Ghana, benefited from this intervention. By targeting and reaching out to every gender and social group, the outcome of the training will engender greater adoption, production, marketing, and utilization of improved groundnut varieties.The mapping and inventory of artisanal units for processing local products were conducted in Mali 30 women economic interest groups in the processing of agricultural products (millet, sorghum, groundnut, and cowpea) were identified within the framework of a Memorandum of Understanding (MoU) between The ICRISAT and the WFP. Each of the 30 groups will receive modern equipment (mills, dryer, storage warehouse, hulling, cooling, sorting, roasting rooms, sales stores, toilets, etc.) for processing products, and will be connected on the one hand with health centers and canteens to ensure a better supply of Smart Foods (i.e. biofortified foods), and on the other hand, with farmer groups that will receive high nutrient content varieties from ICRISAT.The CRP-GLDC scientists across the flagships and cross-cutting themes were engaged in substantial capacity development activities. Since the beginning of the CRP, at least 28,492 people including 35% females were reported to have benefited from the program's capacity development efforts. For short-term trainings, the beneficiaries included farmers and farmer groups, scientists, and R&D personnel from CGIAR centers, research programs (CRP) and platforms, partners from advanced research institutions, national agricultural research and extension systems (NARES), academic institutions, government and non-government entities, development organizations and the private sector among others. For long-term training, 35 PhD and 26 MSc students enjoyed more intensive support. The distribution of these participants are presented here 2018, 2019, 2020, and 2021. Due to the COVID-19 pandemic, e-Learning experienced a huge boost across the globe. In response, the Capacity Development Task Force set-up an e-Learning portal using a commonly known Learning Management Systems (LMS) to facilitate a flexible and user-friendly environment for both learners and facilitators. Available learning materials were related to \"Breeding Approaches for Enhancing Genetic Gains in Food Legumes\", \"Sustainable Food and Agriculture\", \"Creating Impact at Scale\" and \"Designing of Resilient Farming Systems\". After the closure of GLDC, the E-Learning platform will be open accessible through the ICARDA E-Learning platform which currently has over 70 courses and 1100 users in different languages and is continuously growing.The Capacity Development Task Force further revamped and upgraded the AGskillED platform. The platform is now published in Android PlayStore for use by farmers. The content platform has been transformed into an aggregation platform for mobile based e-learning courses targeted for farmers and frontline extension staff.In both pest and disease as well as resource and soil management options, efforts of FP3 have been to reduce the use of pesticides and mineral fertilizers, and consequently the GHG emissions. In addition, sustainable intensification systems with diversified crop combinations including intercropping cereals-legume and doubled-up legume systems were developed and promoted in Burkina Faso, Malawi, Mozambique, Nigeria, and Senegal. Resilient and high-yielding varieties that fit well in these cropping systems together with appropriate input bundles and production practices were promoted to increase resilience and productivity on smallholder farms. A training for trainers on Climate Information Services (CIS) for Beans (CIS4B was carried out for 126 bean value chain actors (including 48 women and 36 youth) from the EAREM corridor in Rwanda and Burundi and SEMAGUI Corridor in Senegal and Mali. Finally, a suite of tools, analytics and frameworks helped codesign resilient farming systems in India, Malawi, Niger, Burkina Faso, Mali, Nigeria, and Mozambique. Our sustainability assessment tool was tested and validated followed by strengthening the capacity of extension systems and NARS partners for enhancing resilience of rural livelihoods SA and SSA. To strengthen the capacity in climate change and plant protection activities, collaboration with advance research institutions such as University of Strathclyde, Scotland and Wageningen University Research, Netherlands was established. The main purpose was to develop high throughput phenotyping platforms using sensor-based technology for rapid detection of pathogens and to develop modelling tools to predict the distribution of pests and diseases under future climate scenarios.The MPAB crosscutting theme developed a set of case studies, reviews, and foresight reports that explore pathways to scaling market facing interventions for GLDC crops. This has been accompanied by the development of new analytical perspectives to explore these issues through an agri-food system lens. These empirical and theoretical building blocks have been used propose a modified theory of change for the way market engagement by commodity research can drive the transformation of agri-food systems for the benefits of poor producers and consumers of GLDC crops. This research has been published as working papers, journal articles, and blogs, with further manuscripts nearing completion. The pathway to impact of this research is through influence on strategic choices in project and program design within the CGIAR and beyond. Earlier indicators of influence of research output from MPAB is reflected in strong altimetric scores, with one journal article in the top 5% and others in the top 25% of papers published. Another dimension of MPAB work has focused on collaboration between ICRISAT (FP3) and CSIRO on modelling sorghum futures in India. This has successfully recalibrated the Crop Livestock Enterprise Model (CLEM) farming systems model for Indian farming systems conditions. Draft manuscripts on methodological and empirical and methodological aspects of this work have been prepared. A further strand of MPAB work has been led by ILRI and has explored technological upgrading processes associated the development of women's dairy enterprises.MPAB developed a close collaboration between CSIRO, ICRAF, IITA, and ICRISAT and across flagships, specifically FP1 (understanding adoption), FP3 (farming systems modeling), FP4 (understanding adoption), FP5 (scoping the potential of GLDC crops as functional foods) and FP6 for understanding market led breeding and scaling approaches. Strong external partnerships have also been developed and leveraged with advanced research institutes and think tanks outside of the CGIAR.The Independent Advisory Committee (IAC) that includes seven non-CGIAR members and five exofficio CGIAR members, including the Director General of the lead center provided scientific guidance through its biannual meetings. Two meetings of the IAC were held virtually due to the COVID-19 pandemic, on April 12 and October 21-22, 2021. The second meeting also included an interactive review session with the FP leaders and cross-cutting theme leaders.The Director of CRP-GLDC reports to the Director General of ICRISAT and chairs the Research Management Committee (RMC), where the responsibility of implementing the CRP-GLDC rests. The RMC has 14 members, including four FP Leaders, a Senior Gender Scientist, three cross-cutting theme leaders, three Center Focal Points and the CRP-GLDC Director. The RMC is primarily responsible for the establishment, execution and monitoring of the CRP research portfolio, strategy, work plans and annual budgets. In 2021, four meetings of the RMC were held virtually due to the pandemic. Overall, FP management is the responsibility of the FP leaders who are supported by the CoA leaders of the respective Flagships. The FP leaders devote at least 40% of their time on the CRP-GLDC's operational activities, funded from W1 and W2, and supported by W3 and bilateral projects.Enhanced partnerships with German university networks, Institute of Development Studies (University of Sussex), and MercyCorps through activities on rural aspirations. While collaborated with JIRCAS on the ex-ante impact assessment of BNI sorghum technology, the Swedish Agricultural University is leading the systematic review on the effects of GLDC crops on soil health. Working PIM helped contribute to the CGIAR Foresight Report, including a brief on the future of grain legumes and dryland cereals through knowledge-sharing and joint scientific products by establishing community of practice on foresight and a Blog under EnGendering Data. A special issue on demand orientation in seed systems was developed between GLDC, PIM, MAIZE, and RTB. Partnerships with RTB focused on MEL-based social network analysis for better performing CRP aimed at identifying GLDC structures and operations have contributed to publishing knowledge/science products that effectively increased multi-disciplinary publications, besides evaluating how the CRP-GLDC adds more collaborations to the knowledge exchange networks.ICRISAT and ICARDA collaborated on phenotyping of fall armyworm, and the framework for measuring sustainability and resilience; CIMMYT supplied Drought Tolerant Maize varieties to IITA for cropping systems activities; IITA and ICRISAT partnered on DSSAT and APSIM models for simulation of crop performance in Nigerian savannas; ICRISAT, ICRAF, IITA, and ICARDA collaborated on mainstreaming gender in Research for Development to improve GLDC-based farming systems; and with ICRAF to advance the crop modelling of agroforestry systems in Tanzania.With CRP-Livestock, released a drought tolerant and dual-purpose groundnut variety, Kalinga Groundnut-101 (ICGV 02266) in India which included fodder quality as one of the selection criteria for GLDC Product profiles. Crop breeders engaged with EiB to update their knowledge and share best practices in crop breeding. Collaboration with CIMMYT led to the development of specialized phenotyping net house facility for screening Fall armyworm in sorghum, millet, and maize at ICRISAT in India.Bean Program engaged with CGIAR initiative design teams to mainstream the PABRA approach in Accelerated Breeding Initiative (ABI) and Seed systems. Interacted with CIMMYT as the lead center for AVISA project and Alliance to continue the AVISA bean research activities in future.CRP-GLDC did not manage any intellectual assets. Partner institutions are directly responsible for managing and disseminating their intellectual assets, as evidenced by the submitted Innovations and Outcome Impact Case Reports (Ref. Table 3&4).A tool to assist better target and tailor the recommendations for tracking progress of implemented solutions (practices, technologies, policies) in a multi-dimensional sustainability context was developed. This tool enabling the monitoring of impact on KPI's and potential trade-offs was tested at a small scale in India and Niger and is ready for scaling. The online automated version of the tool will be available in public domain by end of 2021. Impact evidencing and consolidation of evidence of the CRP-GLDC has been completed with publication of a document. For impact evidencing on NRM, activities have been reported on the MEL platform and institutional documents and a working paper are being finalized for publication. Analysis of GLDC innovations including chickpea in Ethiopia and Myanmar, cowpea in Nigeria, and Legumes in Nigeria, Tanzania, and Uganda highlighted that successful adoption depends not just on the right technologies, but also on the enabling environment. This clearly identified the market demand, besides the establishment of successful partnerships and institutional linkages to overcome constraints in production and delivery of improved seed to smallholders. Fostering conducive policies to support national seed systems were integral to the viability and sustainability of seed systems.CRP-GLDC participated in a shared work with MEL by partnering with other CRP`s to fully automate the uploading of performance indicators towards greater CGIAR reporting that were previously done manually. This involved inputs in the development of modules, testing, and pilot use. To capitalize on the interconnectedness of processes within CRP-GLDC operations, MEL team operated collaboratively on data curation of knowledge products, inputs to digital platforms, and building consolidated knowledge products that can be accessed via the CRP-GLDC Research Communications page. Close coordination among partners allowed for greater promotion of GLDC blogs and other products, while also offering the CRP-GLDC communication platforms to promote GLDC-relevant materials developed by partners, particularly with FP6 team/PABRA. Innovation profiles that were collected during the CRP-GLDC submission for CGIAR @ 50 preparations, but not selected in the final list were developed into innovation communication packages, thereby capitalizing on information and references already collected. Close interactions between the PMU and RMT helped track the progress through a mid-term report and any shortcomings were addressed at an early stage for finalizing the 2021 annual report.While the CRP-GLDC continued to operate with the unfunded FP2, projects worth US$ 39.52 M supported through W3/Bilateral funds were mapped to FP2 in 2021. Not having FP2 was partly mitigated by having a cross-cutting theme on MPAB since 2019. Restrictions for travel due to the impact of COVID-19 prevented face-to-face scientific meetings with GLDC Partners, the Independent Advisory Committee (IAC), and Research Management Committee (RMC) and the annual review meeting. Hence, the anticipated unspent PMU operational budget was strategically invested into the activities of FP4 and FP5 in order to achieve the planned 2022 milestones due to an early closure of the CRP-GLDC a year earlier in December 2021.The W1-2 funds were mainly used for the following research activities: (1) End-user trait preference assessment of GLDC crops, (2) rural aspiration studies for targeting and scaling agricultural innovations, (3) assessing the potential impact of GLDC crops on urban food and nutrition security, (4) Assessing the nutritional/dietary and NRM impacts of GLDC crop varieties, (5) revision of GLDC's theory of change and impact pathways, and (6) MEL-based social network analysis to evaluate the performance of the CRP-GLDC. These funds supported clusters of activities where a significant part used to support enabling adoption of innovations at farming systems level. The W1/W2 funds were used to develop and deliver the GLDC crop cultivars in the CRP-GLDC target countries, besides leveraging for additional funds from various donors for the planned research activities. While the W1/W2 funds supported the partnership with ILRI and Crop Network Groups, the bilateral projects were aligned to complement the W1/W2 funds. For example, Feed the Future Peanut Innovation Lab (PIL) funds supported the development of markers for Groundnut Rosette Disease in collaboration with national programs in Malawi, Zambia and Uganda. These funds were also used for process innovations to enhance the operational efficiency and increase the genetic gain of GLDC crop cultivars that include deployment of genotyping tools, rapid generation advancement and MET. The Innovation fund of the CRP-GLDC also supported NARS and ARI partnerships in research areas where the FP lacked expertise. The FP6 was fully funded by W3 and bilateral funds.The total budget of CRP-GLDC for 2021 was expressed at US$ 7.79M inclusive of an additional FinPlan of cumulative unspent of US$ 785,978 from 2018-20.The cumulative utilization of funds (2018-21) is recorded at 99.2%. The total unspent is recorded at US$ 2,61,640 (0.80%) on 31.12.2021. The permitted accrual of US$ 60,000 was carried forward to 2022 to fulfil the reporting obligations.A total unspent amount of US$ 2,01,640 (2018-22) will be off-set against the final disbursement from SMO. Put N/A if the specific SRF target is not applicable to your CRP.Spell out all acronyms.Max. 150 words per entry.Global, Regional (e.g., West Africa), Multi-national, National (e.g., Philippines) Required.1.1. ADOPTION: 100 million more farm households have adopted improved varieties, breeds, trees, and/or management practicesIn GLDC target countries, an estimated 21.9 million smallholder farmers have adopted improved GLDC crops, cultivated in about 20.5M hectares or 43% of the total land grown to grain legume and dryland cereals. Woldeyohanes et al. 2021Regional: South Asia, sub-Saharan Africa 1.1. ADOPTION: 100 million more farm households have adopted improved varieties, breeds, trees, and/or management practices 299,350 farm households adopted and applied improved agronomic practices including doubled-up legume systems where improved crop varieties of pigeopea, groundnut and soybean are configured in cropping patterns that capitalize on the synergies between crop pairs e.g., piegonpea & groundnut, pigeonpea & soybean as part of sustainable intensification. https://bit.ly/3tXvHj9 https://pdf.usaid.gov/pdf_docs/PA00X689.pdf Regional -East, Southern and West Africa 1.1. ADOPTION: 100 million more farm households have adopted improved varieties, breeds, trees, and/or management practices A total of 10,296 tons of certified and quality declared seed (QDS) were produced and sold to farmers by seed enterprises. The countries involved were Kenya, Rwanda, Tanzania, Zambia, East DRC, Ghana and Guinea. Approximately 10.5 million (52% women) have accessed high-iron bean varieties, increasing the number of countries with high iron beans from 7 to 12.Multi-national: Kenya, Rwanda, Tanzania, Zambia, East DRC, Ghana, Guinea 1.1. ADOPTION: 100 million more farm households have adopted improved varieties, breeds, trees, and/or management practices 250 household farms with positive soil P balance, partly driven by improved soil-croplivestock management practices (southwest Burkina Faso). https://doi.org/10.1016/j.ecolind.2021.107385 Sub-national: Southwest Burkina Faso │CRP-GLDC Annual Report 2021 │14 SLO Target (2022)Put N/A if the specific SRF target is not applicable to your CRP.Spell out all acronyms.Max. 150 words per entry.Global, Regional (e.g., West Africa), Multi-national, National (e.g., Philippines)1.1. ADOPTION: 100 million more farm households have adopted improved varieties, breeds, trees, and/or management practices Around 375 farms have practiced soil-water conservation (SWC) measures (at least one among 6; SWC: terraces, grass strips and half-moon micro basins, trenches, tied ridge and mulching). That would improve water and nutrient uses efficiencies (North-Shewa Amhara region, Highlands of Ethiopia). https://mel.cgiar.org/reporting/report/type/crp/id/7380/del_id/15061 Sub-national: North-Shewa Amhara region, Highlands of Ethiopia 1.2. EXIT POVERTY: 30 million people, of which 50% are women, assisted to exit poverty Adoption of improved soybean varieties and agronomic practices in Malawi led to a 4.16 % reduction in poverty, which translates to over 150,000 people lifted out of poverty. In this study the international poverty line of US$1.90 per capita per day was used as standard. Tufa et al. (2021) National: Malawi 1.2. EXIT POVERTY: 30 million people, of which 50% are women, assisted to exit poverty Adoption of improved GLDC varieties is estimated to have generated additional income of US$4.7 billion in GLDC's 13 priority countries through yield gains and additional areas under improved varieties. An estimated 6.8 million people have been assisted to exit poverty. Woldeyohanes et al. 2021 Regional: South Asia, sub-Saharan Africa SLO2: Improve Food and Nutrition Security for Health 2.2. MINIMUM DIETARY REQUIREMENTS: 30 million more people, of which 50% are women, meeting minimum dietary energy requirements Adoption of improved GLDC varieties has assisted an estimated 19 million people (50% women) to meet their dietary energy requirements and 38 million people (48% women) to meet their dietary protein requirements through the supply of additional nutrients. Similarly, the number of women of reproductive age whose dietary protein requirements can be met with the additional protein supplied is 3.8 million Woldeyohanes et al. 2021Regional: South Asia, sub-Saharan Africa 2.3. MICRONUTRIENT DEFICIENCIES: 150 million more people, of which 50% are women, without deficiencies in one or more essential micronutrients The consumption of high-iron beans (HIB) increased by 0.46% in Uganda, 0.12% in Burundi, 9.8% in Zimbabwe and 2.1% in Malawi. The surge in HIBs intake in Malawi is due to the collaboration with complementary projects implemented in the country. Leveraging initiatives targeting mother care groups and adolescents, particularly Max. 150 words per entry.Global, Regional (e.g., West Africa), Multi-national, National (e.g., Philippines)women and children in poor setting of Malawi, has enabled the project to reach vulnerable populations. Across seven countries: Burundi, Kenya, Malawi, Rwanda, Tanzania, Uganda, and Zimbabwe, an additional 1.15 % of the people consumed HIBs in 2020. 10.5 million people (52%) were consuming high iron beans.5% increase in water and nutrient efficiency in agroecosystems Empirical analyses of rain-fed cropping systems in southwest Burkina Faso showed that cereals-legume intercropping increased the economic efficiency of crop production about 40% -133% compared to monocropping, suggesting a high potential and feasibility to improve crop production efficiency at scale by transiting from the current monocropping areas (85%) to intercropping. https://doi.org/10.1016/j.ecolind.2021.107385 Sub-national (Southwest Burkina Faso) 3. CRP-GLDC's multi-crop approach widens cooperation opportunities among partner institutions, not just among primary implementing CGIAR centers, but also with external partners such as national donors, specialist institutions, and NGOs.","tokenCount":"5590"} \ No newline at end of file diff --git a/data/part_3/1269573898.json b/data/part_3/1269573898.json new file mode 100644 index 0000000000000000000000000000000000000000..b9e85cbadad21d34d3d0cf291fa744b1be03ba44 --- /dev/null +++ b/data/part_3/1269573898.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"cf1a15c57485af5a90d2e78dcc5cab6b","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/db3273ff-ec14-4e77-87ab-ce079c86090f/retrieve","id":"-1551784890"},"keywords":[],"sieverID":"46beabd1-bf68-4be6-b1d6-c18bec973412","pagecount":"37","content":"Growing local and informal markets in Asia and Africa provide both challenges and opportunities for small holders. In developing countries, market failures often lead to suboptimal performance of the value chains and limited and inequitable participation of the poor. In recent years, innovation platforms have been promoted as mechanisms to stimulate and support multistakeholder collaboration in the context of research for development.They are recognized as having the potential to link value chain actors, and enhance communication and collaboration to overcome market failures. Despite the increased use of innovation platforms in research for development projects and programs, a monitoring and evaluation framework that encompasses the dynamic nature of innovation systems and value chains is not available. In this paper, the authors aim to develop a monitoring and evaluation framework for understanding and assessing the performance of innovation platforms in the context of pro-poor value chains, based on a discussion of various approaches.1. The terminology for such mechanisms depends on the context, e.g. 'innovation networks', 'stakeholder networks', or 'multistakeholder platforms' etc. and these terms have been used for various functions (Nederlof et al. 2011).IP processes, key parameters of change, and indicators Figure 2. Relation between intervention and M&E for plausible attribution of impact 14Growing populations, urbanization, and economic growth in developing countries have led to an increased demand for high-value agricultural commodities, including livestock (Delgado et al. 1999;Hall et al. 2004). The size and nature of demand varies by region and country. In more urbanized areas of Latin America, Asia and some parts of Africa, the demand is driven by an urban consumer-led focus with stringent food quality and safety standards set by retail chains (Boselie et al. 2003;Weatherspoon and Reardon 2003;Regi and Gelhar 2005).In most other parts of Asia and Africa, the increased demand has led to growing local and informal markets, and the development of some formalized markets. These developments are further influenced by increased communication capacities and liberalization, leading to expanding markets.As result of the increase in demand for livestock and livestock products, and the consequent market changes, supply channels have become increasingly complex confronting poor smallholders with several challenges. In terms of inputs, feeds are scarce, of poor quality and expensive, and there are major challenges with breeding and animal health services delivery. Markets for livestock products are constrained by weak linkages to farms, low investment in infrastructure, and the absence of a supportive policy and regulatory environment (McDermott et al. 2010a). Nevertheless, growing local and informal markets also provide opportunities for value addition by the poor, not just as farmers, but also as input suppliers, livestock producers, labourers and employees, market agents and retailers (Kaitibie et al. 2008). The involvement of women in different segments of the chains can play an especially critical role in creating wider and deeper development impact. Although these markets provide opportunities for some, inequalities and power differences that exist among the value chain actors mean that these opportunities are not always realized by the poor.Value chains (VCs) provide a framework for assessing opportunities for poor people in livestock markets (McDermott et al. 2010b). A VC refers to the network of different functions or stages from production to consumption of a given commodity or product, including the interrelationships among the main actors along the chain and all of the ancillary support services (Kaplinsky and Morris 2001). VC analysis provides insight on the interdependencies between stages and actors, the individual components of the chain that need to be improved, the benefits arising from different institutional arrangements, the needs for public investment, enabling policies and regulations, and helps to develop a framework for improvement toward enhanced performance and innovation capacity. VCs are ideally governed by market forces, but market failures, especially in developing countries, often lead to suboptimal performance of the chain and limited participation of the poor (Vorley et al. 2012).The use of 'innovation platforms' (IPs) as mechanisms to stimulate and support multistakeholder collaboration has gained ground in Agricultural Research for Development (AR4D) in the last few years (Lynam et al. 2010;Nederlof et al. 2011;Tenywa et al. 2011;Nederlof and Pyburn 2012). 1 An innovation platform is a space for learning and change. It is a group of individuals (who often represent organizations) with different backgrounds and interests: farmers, traders, food processors, researchers, government officials etc. The members come together to diagnose problems, identify opportunities and find ways to achieve their goals. They may design and implement activities as a platform, or coordinate activities by individual members (FARA 2007;Njuki et al. 2010;Nederlof et al. 2011). Although IPs were initially mainly used in R4D programs to make the development and use of knowledge more effective, their potential to link VC actors and overcome market failures is making use of IPs within the context of VCs popular in development discourse (van Rooyen and Homann 2009;Nederlof et al. 2011;Nederlof and Pyburn 2012).Over the years, ILRI has changed its approaches to addressing smallholder market development, and the VC approach and IPs are part of that change (Puskur et al. 2011a). ILRI has been using IPs as mechanisms to enhance market performance among smallholders in several projects. These include the Livestock, Livelihoods and Markets (LiLi) in Southern Africa, the Fodder Innovation Project (FIP) in India and Nigeria, the Fodder Adoption Project (FAP) in Ethiopia, Syria and Vietnam, the CORAF-led project on increasing resilience among smallholders (PLM) in Mali, Togo and Niger, the regional program on sustainable management of endemic ruminant livestock in West Africa (PROGEBE), and the imGoats project in India and Mozambique (for an outline of the different projects and programs, see Annex 1).More generally, ILRI has embraced innovation-systems thinking to support livestock development (Puskur et al. 2011b). Innovation systems thinking provides a holistic and comprehensive framework for understanding innovation as emerging from a broad network of dynamically linked actors (World Bank 2006;Rajalahti et al. 2008). The importance of an innovation-system approach is highlighted by the new ILRI strategy on food security and poverty reduction from 2013-2022, as well as the CGIAR research programs in which ILRI is involved (ILRI 2013).For example, it is the intention to use IPs to enhance performance of VCs Traditionally, agricultural research and development was conceived of as a linear process where technology was developed in the research centres, transferred by extension workers and adopted by farmers, popularly called the 'pipeline model'. The system is characterized by top-down, centralized, monolithic and isolated structures (Leeuwis 2004). Empirical evidence revealed several missing links between and among the actors in this system (Agbamu 2000;Uzuegbunam 2001). Farmer and private sector involvement were also reported to be weak.It is increasingly recognized that agricultural innovation is not a linear process, but is rather a very dynamic, iterative and complex process (Leeuwis 2004). The innovation system approach offers a holistic, multidisciplinary and comprehensive framework for analysing the innovation process, the roles of actors and their interactions, emphasizing wider stakeholder participation, linkages and the institutional context of innovation and innovation processes (World Bank 2006). It also helps to explore complex relationships among heterogeneous agents, social and economic institutions, and endogenously determined technological and institutional opportunities.Likewise, the VC approach helps to understand the complex, multilayered and open sociotechnical VC systems (Anandajayasekeram and Gebremedhin 2009), as VCs are not only influenced by a number of diverse actors, but also are continuously shaped and reshaped to adapt to changing conditions.Traditional R&D approaches employ a linear M&E model grounded in the idea of a single, perfectly knowable reality so that change can be planned and controlled. Such approaches and tools are not suitable for innovation systems and VC projects, due to their complex, nonlinear and participatory nature. What is needed is an M&E framework that takes into consideration the inherent complex characteristics of innovation systems, IPs and VC approaches.The objective of developing this M&E framework is twofold:• Firstly, in the context of research for development (R4D) projects, it is meant for joint learning among project teams and the actors by assessing their performance and to get a better insight on the underlying issues in order to adapt a course of action;• Secondly, it serves as a tool to generate research-based evidence for the effectiveness of IPs in livestock systems across different contexts.The main research question that will be answered through generating information using the M&E framework is:• How do we monitor and evaluate the performance of IPs, their contribution to the performance of VCs and the pro-poor outcomes that emerge?Sub-questions include:• How do we define and measure the performance of IPs and what factors influence this?• How do IPs affect the performance of livestock VCs?• In what circumstances do IPs lead to more sustainable and equitable (poor and women) benefits for VC actors?• How do the context and livestock systems affect the functioning of IPs and consequently their influence on the VCs?• What factors influence the sustainability and repeatability of IPs?• What are the implications of the above for project design and implementationTo understand better the role and function of IPs in livestock VCs, it helps to examine the characteristics of a VC approach, the potential benefits and risks for the poor, and the added value of an innovation system perspective to overcome market failures.An agricultural VC is usually defined by a particular finished product or closely related products, and includes all firms and their activities engaged in input supply, production, transport, processing and marketing (or distribution) of the product or products (Kaplinsky and Morris 2001). A VC exists when all stakeholders in the chain operate to maximize the generation of value as the product progresses from input suppliers to producers to consumers. The performance of a VC depends on how well actors in the VC are organized and coordinated, and on how well the chain is supported by business development services (BDS) and an enabling environment in the form of institutions, policies and regulations (Anandajayasekeram and Gebremedhin 2009).VC analysis can be a powerful descriptive and analytical tool to gain insights into the organization, operation and performance of processes from production to consumption of a particular commodity (Anandajayasekeram and Gebremedhin 2009). The primary purpose of VC analysis is to understand the reasons for inefficiencies in the chain, and identify potential leverage points for improving the performance of the chain through innovation.In recent years, various development-oriented VC guides have been developed to assist in VC analysis and development at a microlevel; these include the GTZ Value Links Manual (2007), KIT et al. (2006), Riisgaard et al. (2008), van de Berg et al. (2009).Although VCs can be studied from various dimensions and angles, there are four aspects that are particularly noteworthy in the context of agriculture (van de Berg et al. 2009):• Mapping of actors participating in the production, distribution, marketing, and sales of a particular product (or products) and those providing services and an enabling environment. This mapping assesses the characteristics of actors, profit and cost structures, flows of goods throughout the chain, employment characteristics, and the destination and volumes of domestic and foreign sales.• The distribution of benefits amongst VCs actors. Through the analysis of margins and profits within the chain, one can determine who benefits from participation in the chain and which actors could benefit from increased support or organization.• The role of upgrading within the chain. Upgrading can involve improvements in quality and product design that enable producers to gain higher value or can involve diversification in the product lines served. An analysis of the upgrading process includes an assessment of opportunities and constraints. In addition, the structure of regulations, entry barriers, trade restrictions, and standards can further shape and influence the environment in which upgrading can take place.• The role of governance in the VC. Governance in a VC refers to the structure of relationships and coordination mechanisms that exist among actors in the VC. Assessing governance is important from a policy perspective because it identifies institutional arrangements that may need to be targeted to improve capabilities in the VC, remedy distributional distortions, and increase value-added in the sector.By systematically understanding the linkages among actors in the VC through the lens of issues of governance, upgrading, and distributional considerations, with a special focus on the poor and women, one can better develop policy recommendations and understand their implications throughout the chain (van de Berg et al. 2009). Generally, market forces tend to ignore negative social and ecological externalities unless these are linked to economic penalties through some kind of regulatory or incentive mechanism (Vorley et al. 2012). An innovation-system perspective provides a framework to address this, by emphasizing collective action and innovation among a wider variety of mutually dependent actors, including service providers and regulatory bodies and other enabling agencies.Innovation is a social process by which knowledge is created, diffused, accessed, adapted, and, most critically, put into use in economically and socially significant ways (Leeuwis 2004). Innovation can be triggered by changes in markets (e.g. consumer preferences, new markets), knowledge (e.g. technological changes), resources (e.g. problems in production and/or supply of new and improved inputs or provision of services), crises (e.g. disease outbreaks, droughts), and policies (e.g. new international rules) (World Bank 2006; Puskur 2010). The extent to which actors are able to respond depends on their individual and organizational capacities (including resources, skills, attitudes etc.), institutional and organizational culture, nature of policies, and availability of support infrastructure (technical and human) (World Bank 2006;Rajalahti et al. 2008). Hence, innovation involves many different actors working together towards technological, organizational, institutional, and policy changes. An innovation system perspective implies the use of an innovation lens in the design, implementation and evaluation of activities of the various actors involved in the innovation process.A group of organizations and individuals involved in the generation, diffusion, adaptation and use of new knowledge and the context that governs the way these interactions and processes take place is called an innovation system (World Bank 2006;Rajalahti et al. 2008). In its simplest form, it has three elements: the organizations and individuals involved; the interactive learning that occurs when organizations engage in innovation processes and the way this leads to new products and processes; and the institutions (rules, norms, and conventions, both formal and informal) that govern how these interactions and processes take place (Horton 1990). Such a system may include traditional sources of innovation, service providers (including privatesector players and civil-society organizations) and those institutions that affect the process by which innovations are developed and delivered.The primary purpose of establishing linkages in innovation systems is knowledge sharing through interactions, leading to learning and resulting in development and deployment of new products and processes that ultimately contribute to social and economic change. Important for the innovation system is how patterns of relationships, habits and practices of actors either nurture or hinder knowledge flows and the process of learning (learning by doing or by interacting) amongst them (World Bank 2006). 'Social capital', i.e. the ability to form relationships of cooperation, is a key ingredient of effective innovation systems (see Box 2, for an example of added value of an innovation system perspective within the context of VCs).Box 2. From transfer of technology to an innovation system approachThe Fodder Innovation Project (FIP), implemented from 2003 to 2009 in India and Nigeria, looked at fodder scarcity and how to address it from the perspectives of capacities, policies and institutions. This emerged from the realization that the availability of technologies was not really the limiting factor, but that policy and institutional factors were the major bottlenecks. Essentially, the aim of the project was to form and facilitate a network of different actors in a chain or continuum of knowledge production and its use, mobilizing all their various resources and capacities to address a problem. At the farm level, farmers changed their livestock feeding and management practices. There was an emerging demand for technologies, inputs and services that, ironically, were earlier promoted without success. Farmers saw the need for knowledge and articulated their demands to service providers, but getting a network of actors working together was not an easy process and took time. Different organizations with different interests and motives had to be brought around the table to contribute and benefit. Traditional project management approaches do not seem to work in such projects: nimble financial management, and very responsive project management was needed.Source: based on video interview with one of the authors, http://www.ilri.org/ilrinews/index.php/archives/ tag/fodder-innovation-projectInnovations are the result of learning emerging from relevant networks of actors working together based on some mutually agreed institutional arrangements (Leeuwis 2004). 2 It is hypothesized that innovation can be stimulated when possibilities are created for key actors to interact and work jointly. One way of doing this is through the formation of so called IPs.IPs in the context of VCs are coalitions of actors along the VC, formed to address constraints and explore opportunities to upgrade the VC through use of knowledge and mutual learning. IPs provide a mechanism to facilitate communication and collaboration among VC actors, to promote joint action and to stimulate innovation. Based on the literature (e.g. FARA 2009; Nederlof et al. 2011;Adekunle and Fatunbi 2012) and our own experiences (Puskur 2010), some key elements of a commodity-focused IP include:• the identification of shared goals and interests of the VC actors, common problems and opportunity definition;• definition of the purpose of upgrading and identification of the scope and membership of platforms;• using an understanding of the VC to identify upgrading options-including technical, organizational, institutional, service delivery and policy innovations;• define activities, actions, roles and responsibilities of various actors in implementation of agreed options for VC improvement;• provide opportunities and mechanisms for needs-based capacity building of VC actors• definition of tools and processes for monitoring actions for VC upgrading; and• creation of spaces for long-term learning processes from experiences through iterative action-reflection learning cycles that support innovation.2. Institutions are the formal and informal rules (laws and regulations, norms, values, and morals) that shape human behaviour and the mechanisms (including certain organizations) for their enforcement (Douglas 1986). Institutions matter in determining the speed, magnitude and quality of innovation processes. Given the same set of agents with a particular set of objectives, changes in the institutions themselves and, in particular, in the sets of incentives, result in different decisions and different outcomes of the innovation process.For IPs to be effective, they need to have a basis in trust, recognize the diversity of actors, their interests, functions, competencies, knowledge etc. and a willingness among the actors to share information and knowledge with each other (Leeuwis 2004). They require time and resource commitments from members, and a facilitator who can convene and stimulate joint action (Leeuwis 2004;Nederlof et al. 2011). Which member plays the role of a facilitator has to be negotiated with and agreed by the members of the platform. Generally, neutral facilitators are preferred, but gradually as members realize the benefits of such a platform, the role of local actors can increase and the facilitation taken up by one of them (or on a rotational basis). This would make platforms more sustainable. In the IP, members are drawn in as-and-when required to address specific challenges as they evolve although there might be some actors (e.g. producers and the facilitator) who continue throughout.These principles have important implications for the formation, functioning and outcomes of IPs and need to be taken into account when monitoring and evaluating the effectiveness of IPs for livestock VCs.Various M&E approaches and tools have been used in the development sphere. They have undergone changes in parallel with dominant development paradigms in the development discourse. The main M&E approaches are currently based on the positivist and the constructivist paradigms. The former are linear, rigid and quantitative approaches, while the latter are more nonlinear and qualitative, allowing room for measuring complex processes (Rogers 2012). Some believe that a combination of these methods can work best, while others insist that fusion of these tools is not possible as they are completely different. 3 In this section, two M&E approaches that represent the different paradigms and that hold potential for use in M&E of IPs and VCs will be presented briefly.The Logical Framework Approach (LFA) has its foundations in the 1960s and was first formally adopted by the United States Agency for International Development (USAID) in the early seventies (Roduner et al. 2008). It is one of the most commonly used methods for planning and M&E. It is a conventional tool preferred by donors for project design and M&E of projects. It is very useful to set up a well-structured framework that will satisfy the requirements of donor organizations, especially for accountability, improving decision-making, managing risks and supplying operational information. In this approach, it is hypothesized that all inputs can and must be foreseen, and that every input should and will lead to a measurable outcome (Earle 2002). In the LFA, expected results are aligned with activities in a cause-effect chain (Roduner et al. 2008;Prasad Pant 2010;Rogers 2012).Activities produce outputs that result in outcomes and, finally, impacts. Indicators are used for measuring performance at different levels of results and the success of a project is measured against predetermined targets of these indicators.The major criticisms of LFAs revolve around their linearity, rigidity and stifling of creative and innovative working systems and conditions. Efforts have been made to modify LFAs through inclusion of more participatory and learning elements.• Financial advantages to informality (e.g. taxation, formal vs. black market foreign exchange rate)• Non-financial advantages to informality (e.g. avoided regulation, health standards, bureaucratic delay and hassle)• Non-economic factors (e.g. clan, linguistic ties, religious preference)..3. See discussions on www.outcomemapping.ca.Outcome Mapping (OM) is an alternative approach to planning, monitoring and evaluating development impact.It was developed about a decade ago by the Canadian International Development Research Centre (IDRC) in response to fundamental problems with existing approaches (Earl et al. 2001;www.outcomemapping.ca). The complexity and fluidity of development processes mean that achieving impact requires the involvement of a variety of actors over a considerable period time. When impact occurs, it is often as result of a combination of events over which no single agency has control or can claim full credit.OM focuses on 'outcomes', defined as the changes in behaviour, relationships, activities, and action of the people with whom a program works directly (so called 'boundary partners'). In practical terms, OM consists of a set of tools and guidelines for steering project or program teams through an iterative process to identify their desired change and to work together with boundary partners in order to bring about the anticipated changes. OM allows modification of the interventions over time according to the complexity of the change process. Unlike LFAs, OM balances learning and multiple accountabilities, by identifying the use of M&E data and by employing participatory and use-oriented approaches to M&E.There are various factors that affect the most suitable type of M&E approach to use in a given context. Some of these factors include information needs and interests of stakeholders, type of M&E data and intended uses, donor reporting requirements, availability of resources, scope and complexity of the intervention, M&E traditions and experiences, and capacity etc. OM and LFA each have their own strengths and weaknesses and are useful, based on the types of intervention and contexts (Roduner et al. 2008), but it is important to understand what kinds of strength and uses each has, as well as their advantages and disadvantages, and to find ways for using them in combination in a manner that helps to build on the strengths of both.Some believe that OM and LFA should never share a space, based on their fundamental differences in paradigms and approaches on how development interventions ought to be planned, monitored and evaluated. 4 Nevertheless, development practitioners are now recognizing the useful aspects of both and have developed ideas on how they can use OM in their LFA-dominated work settings, and to integrate two models that have seemingly unmatchable elements in their design (Roduner et al. 2008;Ambrose and Roduner 2009).In our case, due to the complex nature of innovation systems and VCs, and the demand from donors for continuous reporting on projects and programs, the use of both OM and LFA approaches is important. OM can be used to track the behavioural-change aspect and contribute to the innovative dimensions, and to social and organizational learning, while the LFA (through which the research projects were designed) can be used to track changes using indicators that were planned at the beginning (see also Box 3 for an example of integrating a LFA with OM).4. http://www.outcomemapping.ca/forum/files/OM-LFA_DRAFT_165.pdf (last date consulted 6/11/2012).Box 3. Integrating outcome mapping with a logframe approach ImGoats (www.imgoats.org) is an acronym for the EC/IFAD-funded project 'Small ruminant VCs as platforms for reducing poverty and increasing food security in dryland areas of India and Mozambique', led by ILRI and implemented by BAIF and CARE. The goal of imGoats was to increase incomes and food security in a sustainable manner by transforming goat production and marketing from an ad hoc and risky informal activity to a sound and profitable enterprise and model that taps into a growing market. There are few demonstrated working models of organizational and capacity development to increase sustainably the productivity and livelihoods from small ruminant production among resource-poor livestock producers.The project employed an innovations systems and VC approach using IPs, rather than relying on traditional methods of technology transfer. A main research component of the project was to determine how effective these platforms were.The donor required the use of a LFA as a planning and reporting tool. The LFA and the imGoats proposal focus on the objectives of model development and dissemination as a means to bring about changes in food security and income among resource-poor goat producers. ILRI's approach involved the integration of OM with the log frame as a way to take advantage of OM's strengths. OM is people-and outcome-oriented, and focuses on one type of change: behavioural change within those partners who a project or program aims to influence directly. Without these behavioural changes, other changes that depend on them, such as improvements in animal health, increased household incomes from goat sales are unlikely. An additional rationale for a hybrid M&E approach was that OM could be used to develop a map of what success and progress towards success would look like in terms of changes in behaviour among actors in the VC, aspects that are not easily handled through the LFA.Source: Braun 2012.Figure 1 shows the anticipated impact pathway for the strengthening of VCs using IPs. It integrates elements of a LFA and OM using a causal-effect chain, while taking into account how behavioural changes contribute to outputs and outcomes. The impact pathway describes the sequence from IP processes to outputs and outcomes, and how these translate into VC outcomes at the actor and chain levels, and their anticipated impact on households and communities. It takes into account the fact that interventions are not taking place in a vacuum, and that several other processes and their outputs play a role in the eventual outcomes at the various levels. Similarly, the wider ecological, physical, social and economic environments affect and interact with the system.To assess the performance of IPs, we need to monitor and evaluate changes and interrelations along the impact pathway (Douthwaite et al. 2003;Njuki et al. 2010). In this case, changes in and relations among IP outputs (products/deliverables generated by the platform), IP outcomes (knowledge and behavioural changes of IP members and technical and institutional innovations that have been developed as results of the use of products/ deliverables), VC outcomes (knowledge and behavioural outcomes among VC actors and the chain as a whole, and changes at the market level due to outcomes at the IP level), and development impact at the household and community levels. Several external factors that complicate the attribution of changes in impact indicators to the IPs alone need to be considered; moreover, the realization of the impact pathway is based on the premise that main sequence of potential cause and effect linkages through which impact is achieved by using IP;influence of other factors at the VC, household and community level that may negatively or positively affect impact as result of IPs. The impact pathway evaluation has been developed to make plausible attributions of impact to inventions. It consists of two stages. During the first stage, the project develops a strategic framework or impact pathway of how it sees itself achieving impact; this is used for monitoring and self-evaluation to guide project management.The second stage is an ex post impact assessment in which the project's wider benefits are independently assessed and whereby the evaluator seeks to establish plausible links between the project's outputs and developmental changes (Douthwaite et al. 2003).projects implement good practice/best fit principles for IPs. M&E should therefore also include the extent to which projects adhere to principles (i.e. by looking at the underlying processes).While evaluating the performance of IPs, we need to be aware that impact assessments of interventions are in general very difficult. Rural development is a complex and social process, with high degrees of nonlinearity.It is almost impossible to link outcomes directly to highly aggregated benefits like poverty eradication or food security (Douthwaite et al. 2003). M&E therefore should balance credibility with practicality to achieve plausible attribution of impact. On the one hand, it needs to rigorously assess the direct impact of interventions on market systems, the level at which it engages most directly. On the other hand, reasonable estimates, rather than claims of definite proof, should be made of the contribution of changes in the VC and markets to overall changes in access, growth and poverty reduction (van de Berg et al. 2009) (Figure 2). In the following subsections, indicative lists of indicators for assessing progress at IP and VC levels are suggested.A performance indicator is an observable or measurable characteristic that depicts the level of achievement of an intended result. A good indicator is Clear (precise and unambiguous); Relevant (appropriate and timely); Economic (available at reasonable costs); Adequate (sufficient to access performance); and Monitorable (can be independently verified)-better known as the CREAM criteria (Kusek and Rist 2004).The lists of indicators are not exhaustive. We are also not suggesting using all the indicators. In principle, identifying indicators is a participatory exercise where all stakeholders should agree. Hence, it is believed that every project will undertake such a process and select the most appropriate indicators using CREAM or similar criteria. What we provide is a menu from which to select, based on the specific context of each project or program. We are well aware that M&E can be very time consuming.Indicative performance areas and key parameters will be described by first looking at the process, outputs and outcomes at the IP level, and subsequently for outcomes and impact at the VC, household and community levels.In the last section, we will discuss the external conditions that need to be taken into account when attributing impact at the VC, household and community levels to activities of the IP.Box 4: definition of processes, outputs, outcomes and impact IP processes: Mechanisms for the establishment, functioning and maintenance of the IP IP outputs: Products/deliverables generated by the platform IP outcomes: Knowledge and behavioural changes of IP members, and technical and institutional innovations that have been developed as results from the use of products and deliverables generated by the platform VC outcomes: Knowledge and behavioural outcomes among the VC actors and the chain as a whole (beyond the IP members only), and changes at the market level due to outcomes at the IP level VC impact Development impact at the household and community levels in terms of wellbeing, improved livelihoods, ecosystem services, opportunities, choices, and reduced riskWithin the context of a VC, an IP is a mechanism to stimulate and enhance interactions, coordination, coherence, mutual learning and collective action among actors along the chain. As outcomes at the VC level are directly related to the outputs and outcomes of the IP, a rigorous assessment of how processes, outputs and outcomes at the IP and VC levels interrelate is needed. This is discussed in detail below.Drawing on the literature (FARA 2009;Njuki et al. 2010;Nederlof et al. 2011;Adekunle and Fatunbi 2012), key principles that underlie well-functioning and effective IPs are:• they are inclusive and follow participatory processes;• there is a common vision and an agreed set of operating modalities; members are committed and have adequate incentives to participate;• diversity of members capabilities, capacities, resources, skills, knowledge, interests and needs are acknowledged;• there is efficient and effective communication; knowledge and information sharing; joint identification of challenges/opportunities and, options to address them through joint action; and• there is an appreciation for learning-by-doing and M&E.These principles of best practice can be translated into various processes related to the establishment, functioning and management of IPs, and to building relations for an environment conducive to sustain them. These processes, key parameters and respective indicators are outlined in Table 1. All these indicators would be gender disaggregated as appropriate. Outputs at the IP levelOutputs at the IP level refer to products or deliverables from activities at the platform level. Based on key processes and mechanisms presented in the preceding subsection, IPs are expected to lead to an actor coalition with increased interaction, linkages and communication among its members, a well-functioning platform, and enhanced human and institutional capacity (see Table 2). As indicated earlier, the attribution of outcomes and impact at the VC level becomes less certain as the strength of external influence increases. It is, therefore, important that we develop plausible 'causal' links among the outputs and outcomes at the IP and VC levels, and their impact on households and communities. In the following subsections, we present the VC outcomes at actor and chain levels, and their key parameters and indicators, as well as those for the wider impact on households and communities.When we look at outcomes at the actor level, we can make a distinction between market performance, the use/ access to services, technical performance, innovation capacity, risk reduction and improved social capital. These are presented in detail with the key parameters and indicators in Table 4.This document provides an overview of a logical model to assess IP's contributions to outcomes at the VC level and to assess subsequent impact on households and communities. To test and refine the framework in a practical but robust fashion, we have proposed empirical measurement of the performance of IPs by: (a) assessing the outcomes and impacts at different levels: the platform itself, the wider VC (both individual actors and the whole chain), and ultimately the household and community; and (b) monitor processes to see whether they are enabling achievement of stated objectives and outcomes.Application of the framework should allow comparison of the IP performance across contexts, commodities and livestock species (e.g. by making use of the framework in various projects and programs in which ILRI is involved). It should further allow lessons for designing and implementing future projects involving IPs around livestock VCs.We are aware that the impact pathways and contexts in which IPs and VCs operate are different across different countries and livestock species. In addition, the resources that are available for M&E also vary by project. We present this M&E model to support project teams in ILRI projects and programs, and others, in developing a workable M&E strategy around IP's and VC's. The ideas can of course be adapted as necessary according to context, and we hope that this paper will be treated as a living document with others contributing to its development based on their experiences putting it into practice.Annex 1 Selection of ILRI projects to enhance market performance through IPsFodder Innovation Project (FIP) (2003)(2004)(2005)(2006)(2007)(2008)(2009). This DFID funded project focused on livestock-dependent small-scale farmers and the associated challenge of fodder scarcity in Nigeria and India. During the first phase from 2003 to 2006 the project tended to focus more strongly on technology-based innovations, but making famers find relevant information and networks appeared to be as or more effective for innovation. Hence, the second phase from 2006 onwards focused on improving farmer's access to knowledge, services and markets through innovation networks. (www.fodderinnovation.org)The Fodder Adoption Project (FAP) (2008)(2009)(2010). FAP was a research project implemented by ILRI, CIAT and ICARDA and funded by IFAD. The project engaged with a wide range of rural stakeholders to strengthen the capacity of poor livestock keepers in Ethiopia, Syria and Vietnam, to select and adopt fodder options, and access market opportunities to enable them to improve their livelihoods. IPs were used to strengthen and/or establishing consortia of players in the livestock and fodder arena to allow innovations for small-scale farmers to spread. (http://fodder-adoption-project.wikispaces.com)LILI Markets (2007Markets ( -2010)). The project 'Livestock, Livelihoods and Markets' was implemented by ICRISAT, ILRI and various other partners to improve market participation by small goat and cattle growers in semiarid regions of Mozambique, Namibia and Zimbabwe. It aimed at evaluating constraints and opportunities for commercializing smallholders' production of goats and cattle, testing and evaluating alternative product marketing and input delivery systems, and assessing impact of market led technology change on income and poverty. IPs were used for effective communication among stakeholders. (www.icrisat.org/locations/esa/esapublications/Innovation-platform.pdf)PROGEBE (2003)(2004)(2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012)(2013) The GEF/AfDB funded program 'Sustainable management of globally significant endemic ruminant livestock of west Africa' (PROGEBE) was implemented at twelve project pilot sites in four countries (Guinea, Mali, Senegal and The Gambia) in collaboration with national partners. The objective was to develop, test and implement models for community-based conservation, management approaches and strategies for preserving unique genetic trait-habitat complexes that are of global and regional significance in the four countries. IPs were established for enhancing communication, coordination and knowledge sharing. (www. progebe.net)PLM (2010)(2011)(2012)(2013) The project 'Building livelihoods resilience to alleviate poverty in semi-arid areas of West Africa' had the objective to build livelihood resilience of smallholder farmers through the promotion of integrated, sustainable and profitable farm systems of milk and vegetable production using IPs. ","tokenCount":"6280"} \ No newline at end of file diff --git a/data/part_3/1294424822.json b/data/part_3/1294424822.json new file mode 100644 index 0000000000000000000000000000000000000000..4bbefb5b4b19b2a1b3a37b5c8eccb3c5d7b151e9 --- /dev/null +++ b/data/part_3/1294424822.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"69ce5bd97b3512b59d891c4c628c39ee","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/45013b1f-37ee-479b-86a1-0f16f70a2023/retrieve","id":"-151265533"},"keywords":["Phaseolus vulgaris","--2","Varieties","--3","Production","--4","Socio-economic environment","--5","Population density","--6","Role of women","--7","Cropping systems","--8","Plant diseases","--9","Pest insects","--10","Environmental factors","--11"],"sieverID":"b56e6edb-6b94-43b6-aa72-9754a87eb5c7","pagecount":"129","content":"CIAT encourages wide dissemination of its printed and electronic publications for maximum public benefit. Thus, in most cases colleagues working in research and development should feel free to use CIAT materials for noncommercial purposes. However, the Center prohibits modification of these materials without written consent, and we expect to receive due credit when they are reproduced in other publications. Though CIAT prepares its publications with considerable care, the Center does not guarantee their accuracy and completeness.improved varieties. Several diseases and insect pests continue to be major constraints to bean production. Bean root rots have worsened in areas where intensity of bean production is high. Soil fertility is continually declining, which decline is an increasingly significant constraint to the production of not only beans, but also of all crops. Problem-solving research must continue. New technology must reach farmers more quickly. Policies need to be finetuned and infrastructure improved to enable farmers to achieve higher levels of production and to market surpluses efficiently.This Atlas, and its accompanying bean database, provides information that is needed for undertaking the challenge of increasing bean production in Africa, such as:Understanding of the biophysical and socio-economic characteristics of bean production areas enables more efficient exchange of information and germ plasm.The diversity of both production systems and bean varieties found in some places indicates the complexity of small-scale farming systems and the need for farmer participation in systems research.• Opportunity exists to extend the significant impact achieved with climbing bean varieties in the highlands of central Africa to other bean production areas.• Information on the distribution of bean seed types enables plant breeders to identify sources of germ plasm and to target improved varieties. Organizations providing seed relief to disaster-affected areas should find such information useful in determining the seed types to supply and in identifying appropriate sources of seed.• Although most beans produced by small-scale farmers are for home consumption, marketing is important.xii Information on market flows of beans enables the improvement of policies to increase marketing efficiency.• Bean is an important crop for women, who are primarily responsible for its production. Beans are also important in the diets of rural families.• Some diseases and insect pests are of localized or infrequent importance, but others such as angular leaf spot and bean stem maggot are major constraints in most production areas. Breeding for resistance is complicated by the genetic diversity of pathogens.• Low soil nutrient supplies and soil toxicity problems result in crops that perform poorly because of inadequate plant nutrition and increased susceptibility to diseases and insect pests.• Bean production is severely constrained by lack of soil water in some bean production areas; the use of available water needs to be made more efficient by planting drought-tolerant and water-use-efficient cultivars and improving methods of water management and use.I have been privileged to write the \"Foreword\" to this Atlas. It will be a valuable resource in improving research and development efforts for bean production and marketing in Africa for the purpose of greater food security and economic growth. I extend my appreciation to CIAT for its technical support to bean research in Africa; the Rockefeller Foundation, who funded the development of this Atlas; and CIDA, DfID, SDC, USAID, and other donors who have given, and continue to give, support to bean research in Africa.Professor Joseph K. Mukiibi Chairman, Committee of Directors, ASARECA and Director General National Agricultural Research Organization (NARO), Uganda xiii Common bean, a major food crop in many parts of Africa, is noted for its versatility and diversity. It is adapted to varied climatic and agronomic conditions, and exhibits considerable variation in growth habit and seed type. In Africa, it is grown primarily by smallscale farmers who have limited resources and usually produce the crop under adverse conditions such as low input use, marginal lands, and intercropping with competitive crops. Biotic and abiotic constraints to bean production are numerous. The diversity of this crop and its production implies a need for much information to effectively address the problems involved.The Atlas of Common Bean (Phaseolus vulgaris L.) Production in Africa compiles data on beans in Africa to serve information needs of bean researchers, rural developers, policy makers, and emergency relief personnel. It is the result of a collaborative effort by a wide array of bean researchers working in Africa who helped collect data and contributed their expert opinions. The Atlas gives information for 59 variables in 96 bean production areas in Africa; these areas are grouped into 14 environmental categories. Most of the information is presented in both maps and tables. The results of a constraints analysis are also presented.The authors thank the many people who contributed their data and expert opinions to the Atlas, including many who work with CIAT in Africa or with national bean research programmes. Especially noted for their input are Kwasi Ampofo on bean entomology, Robin Buruchara on bean diseases, and, for bean production, Urs Scheidegger (Great Lakes Region), Vas Aggarwal and Rowland Chirwa (Malawi), and Andries Liebenburg and Rob Melis (South Africa). Peter Jones, consultant, and Andy Nelson and Luz Amira Clavijo of the CIAT Group on \"Land Use Dynamics and GIS Analysis\" provided valuable assistance in data analysis and map production. Elizabeth Páez edited the manuscript with care and dedication,Common bean (Phaseolus vulgaris L.) is a major staple in eastern and southern Africa where it is recognized as the second most important source of human dietary protein and the third most important source of calories (Pachico 1993). Bean consumption in eastern and southern Africa exceeds 50 kg per person per year, reaching 66 kg per person in parts of Kisii, the most populous rural district of Kenya (Jaetzold and Schmidt 1983). Bean provides 60% of dietary protein in Rwanda (MINIPLAN 1988) and is often the principal source of dietary protein for the urban poor. Bean also contributes as much as 30% of dietary energy in the widespread maize-based cropping systems of the mid-altitude areas of eastern and southern Africa. Part of the intercropped bean harvest may be exchanged by poorer rural families to make up for insufficiencies in production of the maize staple (Wandel and Holmboe-Ottesen 1992). National directors of research in eastern and central Africa, and in southern Africa, rank bean second and fourth, respectively, in their priorities for regional collaborative research (ASARECA 1995;SACCAR nd).\"Beans were probably introduced to the eastern Africa coast by Portuguese traders in the sixteenth century (Greenway, 1945). These traders called at Sofala (Mozambique), Zanzibar and Mombasa and their goods, including various new food plants, were carried to the interior by Arab slave traders and by Swahili merchants (Binns, 1976;Merril, 1954;Oliver & Mathew, 1963). Beans became established as a food crop in Africa before the colonial era, but there is little clear indication of the status the crop attained. The wealth of local names given to distinctive cultivars, and the genetic variation, are together evidence of the long establishment of beans as a crop\" (Wortmann and Allen 1994, p 1-2).This document presents information on 96 bean production areas in Africa. It begins with the distribution of bean production in Africa. The African bean environments are characterized, and the hectarage of beans sown is presented with physical information for each bean production area. Socio-economic factors, producer and consumer preferences, and characteristics of bean cropping systems are discussed. Sections follow on the distribution and importance of major categories of seed types, and on agronomic constraints, that is, on diseases, insect pests, and climatic and edaphic stresses, and their overall importance. A final section discusses the sources of information on bean production and the quality of their data.The distribution of beans in Africa is heavily dependent on rural population density and mean temperature during the growing season. The following model accounts for 37% of the variation in intensity of bean production, or percentage of total land area sown to bean annually: Some areas have particularly high concentrations of bean production (Gray 1990;Wortmann and Allen 1994; Map 1):3. The vicinity of Lake Malawi, including south-western Tanzania, parts of Malawi, and the Lichinga and Tete Uplands of Mozambique; and 4. The Hararghe Highlands of Ethiopia.Other notable concentrations include the Tall Grass Zone of Uganda, the Northern and Southern Highlands of Tanzania, and the Kagera Region of Tanzania. Ninety-six bean production areas have been defined with areas of annual bean production ranging from 2,000 to 220,000 hectares.The above model indicates that bean production might become more intensive north of Lake Victoria and Arua in Uganda, in the Dedza-Shire areas of Malawi, in the Awassa-Areka-Jimma area of Ethiopia, and in Cameroon.The criteria used to define African bean environments are altitude, precipitation during the growing season, latitude, and soil pH (Map 2, Data table 1). While the levels of these criteria have been set arbitrarily, the cut-off points are of biological significance to the bean crop.Altitude affects temperature and therefore affects time to maturity, incidence and severity of certain diseases and insect pests, and rates of evapotranspiration. Three altitudes were used in classifying the environments: >1500, 1000-1500, and <1000 metres above sea level (masl).Amount and mode of rainfall determine the probability of soil moisture deficits and the number of important bean-growing seasons per year. Environments were classified as having either more or less than a mean of 400 mm of precipitation available to the bean crop. Rainfall in the low latitudes, a zone extending from about 7 o S to 7 o N, is effectively bimodal as a consequence of the movements of the Intertropical Convergence Zone (ICZ). The unimodal rainfall pattern of the higher latitudes is associated with significant photoperiod effects in sensitive varieties.Soil pH relates to both the soil's capacity to supply nutrients and to its aluminium and manganese toxicity problems. Environments were classed as having a mean soil pH either above or below 5.5.Fourteen African bean environments resulted from this classification (Map 2, Data table 1). The bean production areas are listed for each environment with its area of bean production, latitude range, and main soil types according to the Soil Map of the World 1:5,000,000 (FAO 1977). An estimated 3,741,000 ha of bean are sown annually in Africa. The subhumid areas of high potential in eastern Africa-highlands (897,000 ha) and mid-altitudes (677,000 ha)-account for 39% of production in Africa.Map 1.Distribution of bean production in sub-Saharan Africa.Map 2.Bean production environments in sub-Saharan Africa. (1984), Togo may have a much larger area of bean production than indicated here but their estimate appears to include additional pulses.The importance of bean as a crop and as food is closely associated with human population density (Figures 1A and 1B, Maps 1 and 3). Women are primarily responsible for decisions and labour in smallholder bean production in most sub-Saharan countries (Map 4, Data table 2). For example, women consistently contribute relatively more to the production of Bean area (%) bean than to maize across three very different farming systems in Tanzania, and did so in all farm operations; in some areas, women were also involved in bean marketing (Due et al. 1985).Aggravating the demands on women's time is firewood collection for beans, which usually require much more cooking than other components of the meal-as much as 3 hours in Rwanda-and consuming more wood, at about 7 kg per kg of beans (Shellie-Dessert and Bliss 1991). For this reason, short cooking times and long retention of flavour after cooking are varietal attributes commonly sought by women.Because women have relatively less access, less fertilizer is used for bean than for other crops, which receive more attention from male heads of households (Gladwin et al. nd).The role women play in maintaining genetic diversity is evident from variety names, the women's ability to recognize new types resulting from outcrossing, the women's interest in acquiring new varieties, the numerous varieties maintained on only a few farms, and seed selection criteria, which often place culinary qualities as second to yield (Ferguson and Sprecher 1987).Genetic diversity of bean on the farm in Africa is usually broader than in Latin America, where bean was domesticated (Grisley and Mwesigwa 1991b), but where consumer preferences are more specialized. Bean crops are often limited to one or two seed types. In Africa, grain appearance alone is less important than a complex of characteristics that often includes appearance, but also culinary quality and taste.A wide range of seed colours and sizes is acceptable in many bean production areas in Africa (Grisley and Munene 1992;Grisley and Mwesigwa 1991a;Martin and Adams 1987;van Rheenen 1979;Voysest and Dessert 1991). Although preferences exist, they are often associated with known cultivars and are not strongly exclusive. Large and medium-sized seeds are most commonly preferred but small seeds are acceptable, especially by poorer consumers and producers who rely on lowpriced food and seed. Unknown seed types gain acceptance if certain criteria are met, as in the case of 'Kablanketi' described below. Even small black-seeded types, the least acceptable class in Africa, are components of mixtures maintained for poor soils and, presumably for this reason, comprise almost 50% of marketed beans in Konso, south-west Ethiopia. Consumption of bean leaves and of green harvested bean is common in many production areas (Data table 2).Bean mixtures were marketed and consumed more commonly in the past. Their current decline is a result partly of an increasing preference by urban consumers for uniform samples and partly of extension efforts by colonial governments (e.g., Kenya) to eradicate bean varietal mixing as a 'backward practice' (C Robertson, 1990, unpublished data). Grain types are now commonly purchased separately by consumers in all countries except Burundi, Rwanda, and Zaire, although consumer preferences are weakened during times of shortage and high price.Bean is an important source of cash for smallscale farmers in Africa, whether as part of the total farm income or for providing a marketable product at critical times when farmers have nothing else to sell such as before the maize crop is harvested. The importance of bean as a market crop varies within and across production areas (Map 5, Data table 3); in some densely populated areas of Rwanda and Burundi, less than 20% are marketed, whereas in the Rift Valley of Ethiopia, more than 90% are marketed. Even in areas where only 20%-60% of the production is marketed, farmers are strongly influenced by market preferences when choosing the varieties to plant.Major bean market flows are usually found within countries, but considerable informal trade also takes place across borders. Prominent within-country flows are (Map 6): e. Blank spaces = insufficient information was available at the time.The bean-growing agro-ecosystems of Africa are numerous and diverse (Allen and Edje 1990).Their potential for production and management requirements are determined by the interplay of many factors, including climate, soil type, and a range of socio-economic and biological factors. Wortmann and Allen (1994) Area of production under different cropping systems was estimated by assuming that when:1. Three systems were named for a bean production area (BPA), then the first, second, and third system occupied 50%, 30%, and 15% of the production area, respectively;2. Two systems were named for a BPA, then the first and second occupied 60% and 35% of the production area, respectively; and, 3. One system was named for a BPA, then it occupied 95% of the production area.The eastern Africa highland and mid-altitude zones account for 38% and 24% of bean production in Africa, respectively. The majorsoil order in the highlands is Nitosol (dystric, eutric, and humic). Orthic Ferralsols and dystric Nitosols are common in the mid-altitude areas (Data table 1). The bean crop's quick maturity and tolerance of shading have encouraged its widespread use in intercropping with maize or banana; sole crop production is also important (Table 1, Maps 7-9), accounting for 43%, 15%, and 22% of the area, respectively. Sorghum, cassava, and sweet potato are also crops commonly associated with beans (Map 10). Two crops per year are grown, with sowing times in March to April and September to October, except in parts of Ethiopia and northern Uganda, where the main bean sowing time is in July (Data table 4).Bean production tends to be more intensive where human population density is high, although a significant proportion of the production does occur in areas of moderately low population density (Figure 1A, Maps 1 and 3). In the eastern African highlands, farm sizes have declined dramatically as population growth rates increased 2.5%-4% annually. In Rwanda, population density reaches 700 persons per cultivated km 2 ; the average land holding in 1988 was 1.2 ha, and only 0.5 ha in the northernmost prefecture (Ngarambe et al. 1989). Most holdings are below these averages and, although 99% of Rwandan rural households grow beans, most are net purchasers, with only 22% of farms producing a surplus (Loveridge 1989). Farmers have intensified production with high-yielding climbing beans planted on more productive or manured soils in parts of the eastern African highlands (Graf et al. 1991;Map 11). Elsewhere, the introduction of climbing beans is well under way, and opportunities exist for a more extensive introduction and adoption of this high potential technology. Current efforts to breed climbing bean lines with tolerance of warm temperatures may broaden their range of adaptation (CIAT 1997).Southern Africa accounts for about 32% of bean production in Africa, with about 518,000 ha above 1500 masl. Occasional soil moisture deficits constrain bean production in some midaltitude areas. Several soil suborders are important in this zone but orthic and rhodic Ferralsols and ferric Luvisols are the most important for bean production.Maize-bean intercropping and sole cropping are the major bean cropping systems in the zone (Table 1, Maps 7 and 8). The main sowing time is November to December, but two crops per year are commonly grown in the Southern Highlands of Tanzania, the Kasai area of Zaire, and north-eastern Zambia. The population density in this area is generally moderate (Figure 1B). However, population density does exceed 100 people/km 2 in much of Malawi and parts of southern Tanzania (Data table 2).Bean is particularly well adapted to intensification of land use through double cropping, or to cropping in low-lying areas with moisture during the dry season in unimodal systems. Heavy soils in valley bottoms (basfonds, mbuga, dimba) are increasingly being brought into cultivation for this purpose, as easier worked soils on hill slopes become fully cultivated or decline in fertility. Another opportunity for further intensification is through increased cultivation of climbing beans in some higher altitude areas (Map 11).Western Africa is estimated to have 135,000 ha of bean growing primarily on Nitosols, Luvisols, and Cambisols. Maize-bean intercropping is common in Cameroon and Cape Verde, but sole crop production is also important (Maps 7 and 8). In most of the bean production areas, beans are sown twice a year, and human population density is moderately high.Lowland bean production in Africa is geographically dispersed and accounts for 203,000 ha. Bean is sown after another crop to use residual soil moisture and to take advantage of the lower temperatures of the winter months in lowland areas of Madagascar, Malawi, Mozambique, and DR Congo. Irrigation of bean is practised in Mauritius, the Nile Valley of Sudan, along the Niger River in Mali, and in northern Africa. Production is generally as one sole crop per year. Human population density is generally moderate.Map 7.Importance of sole crop bean production in sub-Saharan Africa.Map 8. Importance of the maize-bean intercrop association in sub-Saharan Africa.Map 9.Importance of the banana-bean intercrop association in sub-Saharan Africa. Typically, three to six easily distinguished cultivars account for 95% of production in a bean-producing community. Diversity is greatest in the Great Lakes Region and south-west Uganda where beans are produced, marketed, and consumed as complex varietal mixtures (Map 12). In Rwanda, mixtures average 11 components, and may contain as many as 27 varieties (Lamb and Hardman 1985). The farmers maintain and adjust the mixtures according to growing conditions (Voss 1992). In parts of Malawi, Mozambique, Tanzania, and Uganda, production in mixtures is still important even though market sales are now by variety.\"Significant genetic erosion has also occurred and appears to be continuing. The complexity of Rwandan mixtures has declined in the past decade due to the susceptibility of many local varieties to an epidemic of root rots and to the adoption of high-yielding climbing beans in response to land pressure\" (Sperling 1997). Genetic erosion has been reinforced in some countries by the more affluent urban sector preferring a small number, usually large-seeded, cosmopolitan varieties (Grisley and Munene 1992).Poverty may oblige farmers to lose their preferred varieties (Sperling and Loevinsohn 1993) or to compromise their preferences. Long after having been removed from Kenya's list of recommended varieties, Mexican 142, a Navy bean variety with non-preferred culinary qualities, continues as the dominant variety among resource-poor farmers in Kirinyaga. Its low price and small seed size minimize the annual expense of purchasing seed (Franzel and Crawford 1987). Similarly, bean farmers in Malawi fall into four categories: seed secure; self-reliant, except at times of domestic crisis; regularly dependent on off-farm sources for a proportion of their seed; and chronically seed insecure (Cromwell 1991).Diversity of bean germplasm may be more restricted where production is commercialized and oriented to a specialized market. For example, the limited diversity in Ethiopia's Rift Valley is probably related to the crop's being introduced within the past 70 years (Ohlander 1980) and oriented to a specialized market. Beans are not an especially important part of the diet in this part of Ethiopia.The area of production of a seed type was estimated according to ratings of high (40% of total bean production area), moderate (20%), and low (5%) importance.Calima seed types are known for their relatively high and stable productivity under moderately good growing conditions. Their cooking time is relatively short, and they are highly marketable.In eastern Africa, the Calima, or Rosecoco, types account for about 22% of the production, primarily because of their high market preference in Kenya (Grisley and Munene 1992, Table 2, Map 13, Data table 5). In north-west Tanzania, Calima types are gaining prominence with the rapid adoption of 'Lyamungu 90' (David 1997). In southern Africa, Calima types are much less common, and account for about 10% of production. In contrast, Malawian farmers have expressed keen interest in obtaining seed of two recently released Calima varieties (Vas Dev Aggarwal, 1997, personal communication). In Madagascar, farmers are increasingly interested in Calima types (A Rabakaoarihanta, 1997, personal communication).Large red seed types, including red kidneys, usually account for about 10% of production in eastern and southern Africa (Map 14). These types typically are relatively low yielding under low-input management, and are susceptible to biotic and abiotic stresses. When seed quality is good, red kidneys are highly marketable in many areas and have export potential.Medium and small reds, including pink types, make up about 20% of Africa's bean production (Map 15). These occur widely and are especially common in the Great Lakes Region, Ethiopia, Madagascar, and in some parts of western Africa. Medium-sized types are much more common than small types, although small reds are often readily adopted when they have a good combination of attributes. This is illustrated by the case of the small red climbing variety 'Umubano', which was widely adopted. The palatability of its leaves especially attracted Rwandan farmers (Graf et al. 1991).Navy beans are small whites that usually yield well under low-input conditions. They account for only 9% of total production, but are in high demand from the canning industry (Map 16) and in urban areas, where they are popular for their taste and relatively short cooking time. Marketability, however, is affected by blemishes on the seed coat.Commercial, small-farm production of Navy beans for export to canning markets has long been the dominant pattern in the Rift Valley and Hararghe areas of Ethiopia. Larger scale producers in South Africa and Zimbabwe also grow this type.Heterogeneous, this category includes pinto, sugar, and carioca types, with local preferences for specific types. The entire category accounts for about 10% of production (Map 17). Pinto beans have good export potential but are relatively low yielding and susceptible to biotic and abiotic stresses. Speckled sugar types are preferred by commercial farmers in the Republic of South Africa. Carioca types are generally noted for their yield potential and tolerance of low soil P availability. A high-yielding carioca variety, released in the mid-1980s, has become commercially popular for supplying the Zambian Copperbelt and sugar estates in Swaziland (JM Mulila-Mitti and ZI Mamba, 1993, personal communication), but, in this case, lower market prices, rather than culinary characteristics, appear to have determined the variety's acceptability to consumers.This diverse category of seed types is especially important in Angola and is also grown in a belt of countries extending from south-west Uganda to Mozambique (Map 18). These types account for about 11% of the production in eastern and southern Africa and are often grown in mixtures with other seed types. Small-seeded types appear to be relatively tolerant of low soil fertility conditions, as exemplified by 'Ubososera', which tolerates the low soil pH complex (L Lunze, 1996, personal communication), and XAN 76, which tolerates low soil N and P (Wortmann et al. 1996).These types occur widely, but account for only 8% of total production, although they are important in some places (Map 19). A local 'mwezi moja' type known as 'Kablanketi' is now the preferred bean in Dar es Salaam because it cooks quickly, tastes sweet, and produces a reddish broth. It spread rapidly, being diffused by merchants to areas as far away as 1200 km from the variety's origin in the Southern Highlands of Tanzania.Medium and large white seed types are important in some countries, such as Madagascar and Sudan, and account for 6% of bean production in eastern and southern Africa (Map 20). Black seed types occur widely, but account for only 3.5% of bean production and are of moderate importance only in parts of northern Uganda, southern Ethiopia and Sudan, and in Cameroon (Map 21). Small blacks are often found in mixtures maintained by farmers for low fertility soils. AFBE 2: Subhumid highlands on acid soils at low latitudes AFBE 8: Subhumid areas at mid-altitudes and mid-latitudes AFBE 10: Semi-arid areas at mid-altitudes and mid-latitudes Other diseases, including halo blight (Pseudomonas syringae pv. phaseolicola) and Ascochyta blight (Phoma exigua var. diversispora and/or Ascochyta phaseolorum), can also cause significant crop losses, but tend to be confined to specific environments. A third group of diseases, although widespread, tends not to cause heavy losses. Many others are recorded, but occur either sporadically or locally (Allen 1995;Beebe and Pastor-Corrales 1991).The ratings given are based on observations made by researchers in recent years. Yield loss data to support these ratings are not readily available (Wortmann 1992). An exception is common bacterial blight for which Opio (1993) estimated yield losses in Uganda as ranging from 26.6% to 61.7%, and 6.2% to 7.8%, for a susceptible and tolerant cultivar, respectively.Effective disease management is further complicated by the occurrence of pathogenic variation: races of the halo blight fungus (Taylor et al. 1996a(Taylor et al. , 1996b)); pathotypes of both the common mosaic virus and common mosaic necrosis virus (Mink et al. 1994;Spence and Walkey 1995; Tables 4 and 5); and high diversity in both angular leaf spot and anthracnose (Pastor-Corrales et al. 1997). The diversity of the last two pathogens is related to the bean's centres of domestication and to the wide distribution in Africa of both Andean and Mesoamerican bean groups. Numerous pathogenic types may therefore be found at a single location with differing frequencies. Evidence shows that divergent evolution of the pathogens has occurred in Africa, giving rise to pathotypes not found in Latin America (MA Pastor-Corrales, 1996, unpublished report).Angular leaf spot, anthracnose, and common bacterial blight are major and widespread constraints to bean production at the regional and continental levels . Angular leaf spot is the most important biotic constraint in eastern and southern Africa; it is favoured by moist, warm conditions with abundant inoculum supply (Saettler 1991). Anthracnose is relatively more important at higher altitudes than at lower latitudes. Common bacterial blight is favoured by moist conditions and, as indicated by the correlation coefficient of 0.32, higher temperatures.A complex of root-rot species is increasing in importance in eastern and central Africa and is devastating some areas of intensive bean production and low soil fertility (CIAT 1995;Otsyula et al. 1998;Map 25). The following model explains 58% of the variation in root-rot severity (RR), when severity is rated as low (1), moderate (2), and high (3) importance. = a principle component that explained 31% of the variation in seven soil properties, including (with vector values) CEC (0.15), exchangeable bases (0.51), organic carbon (0.43), pH (-0.42), and available N (0.22), P (0.48), and K (0.27).The data also indicate that prevailing root-rot complexes tend to be worse in areas with low soil pH (r = -0.34), cooler temperatures (r = -0.22), or low K supply (r = -0.18). Usually, however, root rot is most severe where intensity of bean production is high and soil fertility is low; this observation agrees well with epidemiological information from Abawi and Pastor Corrales (1990).The model predicts that the problem has been underestimated or will soon become more severe in: Kisii and Nyahururu in Kenya; Morogoro, the Usambara Mountains, and localized areas of the Kilimanjaro, Arusha, and Kagera Regions in Tanzania; Nebbi, Apac, and parts of Ntungamo in Uganda;The Lake Kivu Basin in Rwanda;Localities of the Imbo Plains in Burundi;The Chitipa Highlands and Shire Highlands in Malawi;In the north-western region of the Hararghe Highlands in Ethiopia; andIn parts of the bean production area in Cameroon.Overall, observations agreed with predictions that areas south of latitude 20 o S had no cause for alarm.Several diseases are of moderate importance on a regional basis. Rust is more problematic in mid-latitude areas (Map 26). Severity tends to increase with soil pH VIa, and VIb (McKern et al. 1992;Vetten et al. 1992).BCMV pathotypes were referred to as B serotypes belonging to groups I, II, IVa, Va, and VII, which do not induce necrosis, and groups IVb and Vb, which may induce necrosis at high temperatures. BCMNV strains are now regarded as belonging to a virus distinct from BCMV (Mink et al. 1994).SOURCE: Modified from Spence and Walkey (1995).(r = 0.44), but this relationship is unexplained. Bean common mosaic (Map 27) and bean common mosaic necrosis, caused by two viruses, are more serious in eastern Africa. They are not rated of high importance wherever mean rainfall exceeds 500 mm during the season nor in southern Africa, where bean is normally grown in a single season. Halo blight (r = -0.28) and Ascochyta (r = -0.23) are important in areas of lower temperatures (Maps 28 and 29).Other diseases are important only locally (Table 3). Floury leaf spot and Fusarium wilt are usually unimportant, but are more common in eastern than in southern Africa (Maps 30 and 31). Web blight incidence (Map 32) increases with rainfall (r = 0.46) and with temperature (r = 0.24). Scab is rated as highly important only in the Mbala area of northeastern Zambia (Map 33). White mould is locally important in northern Tanzania (Map 34), and charcoal rot in the semi-arid parts of eastern Kenya (Map 35). AFBE 8: Subhumid areas at mid-altitudes and mid-latitudesSemi-arid areas at mid-altitudes and low latitudesAFBE 10: Semi-arid areas at mid-altitudes and mid-latitudes The relative importance of stresses: H = high; M = moderate; L = low, associated with mean losses of 200, 100, and 25 kg/ha, respectively, assuming that yield potential is 3000 kg/ha and that intercrop yield is 40% of sole crop yield. A = absent or not reported.c. Blank spaces = information available was insufficient at the time.MAIN SOURCES: Allen (1995);Buruchara (1993). AFBE 8: Subhumid areas at mid-altitudes and mid-latitudesSemi-arid areas at mid-altitudes and low latitudesAFBE 10: Semi-arid areas at mid-altitudes and mid-latitudes The relative importance of stresses: H = high, M = moderate, L = low, associated with annual mean losses of 200, 100, and 25 kg/ha, respectively, assuming that yield potential is 3000 kg/ha and that intercrop yield is 40% of sole crop yield. A = absent or not reported.c. Blank spaces = information available was insufficient at the time.MAIN SOURCES: Allen (1995);Buruchara (1993).Several insect pests were evaluated for importance as constraints to bean production, including aphids (chiefly Aphis fabae); pod borers (Helicoverpa spp. and Maruca testulalis); bean stem maggot (Ophiomyia spp.); foliage beetles (Ootheca spp.); bruchids, including Zabrotes subfasciatus (Boheman) and Acanthoscelides obtectus (Say); and thrips (Megalurothrips sjostedti) (Data table 8). Pod bugs, mostly Clavigralla spp., are common pests in humid, warm environments and more problematic in southern Africa.Bean stem maggot is the insect pest of greatest concern (Table 3, Map 36); it is widespread and especially serious during late planting and when conditions for seedling growth are not favourable. Bruchids cause heavy post-harvest losses and a consequent heavy loss of profit. Farmers are obliged to sell their beans immediately after harvest when prices are low. Bruchids are moderately important, at least, in all areas, and becomehighly important under warm conditions with a single growing season (Map 37). The importance of aphids is sometimes underestimated because their role in transmitting the bean common mosaic virus is not sufficiently recognized. Aphids are found throughout Africa (Map 38). The importance of thrips is also underestimated, because these small insects often go undetected (Map 39). Important pod and seed feeders are Helicoverpa, Maruca, and Clavigralla; these occur widely and usually are either unimportant or moderately important . Ootheca is also widespread and, occasionally, a significant pest (Map 43). Some pests are locally important, including whitefly (Bemisia tabaci) in northern Sudan; Apoderus humeralis ('le cigar', a bean leafroller) and Pyrameis cardui in Madagascar (Rabary 1993); and the Meloids (pollen and blister beetles, often referred to as 'CMR beetles') in Lesotho, Swaziland, and South Africa. AFBE 10: Semi-arid areas at mid-altitudes and mid-latitudes Mean rainfall exceeds 400 mm during the 3 months following the main sowing dates for bean in 65% of production areas (Figures 3A and 3B). Moisture deficits severely constrain bean production in some other areas, frequently resulting in complete crop loss (Map 44, Data table 9). Losses attributable to moisture deficits were estimated, using two different sets of data (Table 3). One method estimated losses as follows: for rainfall ranges of <300, 300-375, 375-450, and >450 mm per season, losses for a sole crop of bean were 1000, 600, 400, and 0 kg/ha, respectively.The two sets of estimates were similar for eastern Africa but differed greatly for southern Africa. Researchers' estimates of the severity of the problem in southern Africa are higher than those based on estimated mean rainfall during the growing season. The differences in estimates may stem from the higher temperatures during the season. Photoperiod response is a major factor affecting adaptation of beans to higher latitudes (White et al. 1992). Some early and intermediate maturing varieties (e.g., GLP x 92, G 13671) mature late in Madagascar. Photoperiod sensitivity is usually greater in genotypes of Andean origin than in germplasm of Meso-American origin. Sowing and early vegetative development for the main production seasons in the mid-latitudes coincide with long daylength (e.g., 13 h), followed by decreasing daylength (Data table 1).Orthic Ferralsol is the major soil type in bean production areas of eastern and southern Africa (Table 6), but is generally low in nutrients (Data table 9). Relatively more productive histic, eutric, and dystric Nitosols are important in eastern Africa; Luvisols are important in both regions; whereas humic, orthic, and rhodic Ferralsols are important in southern Africa.Bean is produced primarily in areas where median soil pH is between 5.0 and 6.0 (Figure 4), with 23% and 20% of production in areas where soil pH is either below or equal to 5.0 in eastern and southern Africa, respectively. eastern and north-eastern Zambia, in the Zaire-Nile Crest of Rwanda and Burundi, and in eastern DR Congo; and often on orthic Ferralsols.Soil N, P, and K availability was estimated by considering organic carbon and pH levels for representative soil profiles using the QUEFTS (Quantitative Evaluation of the Fertility of Tropical Soils) model (Janssen et al. 1990) (Figure 5, Maps 45 and 46, Data table 9). Soil P is the most frequently deficient nutrient and supply is low in 65% and 80% of the bean production areas of eastern and southern Africa, respectively (Data table 9). Availability of soil N is lower in southern Africa, being low and moderately low on 60% and 30% of the bean production areas, respectively. In eastern Africa, it is low on 50% of the production areas.Deficiency of bases (Map 47) is a major constraint to bean production and potassium is moderately deficient on 45%-50% of the area in both regions and moderately deficient in some of the remaining areas. Two independent, but similar, estimates indicated that Al and Mn toxicities are constraints of moderate importance (Map 48). They were assumed to cause losses of 200 and 100 kg/ha for a sole crop of bean if the typical soil pH was 4.5-5.0 or 5.0-5.5, respectively.The importance of edaphic constraints was estimated from the predominate soil types of the area. In some cases, ratings may have overemphasized the importance of the problems for the bean crop, as farmers avoid sowing beans on soils where only low yields can be expected. Most bean production may, in fact, be on moderate to good soils, especially where pressure on the land is less. In such cases, the ratings may be more relevant for the future, as increasing pressure on the land leads to more intensive use of marginal lands. b.Relative importance of stresses: H = high, M = moderate, L = low, associated with annual mean losses of 200, 100, and 25 kg/ha, assuming that yield potential to be 3000 kg/ha and that intercrop yield is 40% of sole crop yield.c.Water deficits refer to soil moisture deficits during the vegetative (E); early reproductive, or R5 and R6 (M); and late (L) stages of growth.d. Blank spaces = information available was insufficient at the time.Every year about 4,025,000 ha of beans are planted in 14 African bean environments. Two of these environments account for 43% of the production, another two have less than 100,000 ha of annual production, and the remaining 10 environments fall between the two extremes. Three major African bean environments (AFBEs 1, 3, and 7, Data table 1) are favourable for bean production. These have moderate to very high rural population densities (Data table 2).Major biotic constraints in these favourable environments are, in order of descending importance, angular leaf spot, anthracnose, bean stem maggot, bruchids, and root rots. The severity of some biotic constraints, especially root rots and the bean stem maggot, is enhanced by certain abiotic stresses. Soil moisture deficits are less important in these more favourable areas but can cause serious losses in some seasons. Low soil N and P availability are major constraints, but are potentially manageable with applications of organic and inorganic fertilizer, accompanied by newly available cultivars that efficiently use nutrients and are resistant to or tolerant of major biotic stresses.Bean production is primarily small scale, with little use of inputs. As demand for beans increases and varieties with resistance to or tolerance of the major biotic stresses become increasingly available, both double-cropping with beans and input use are likely to increase, leading to substantial increases in productivity.Increases in production will be more difficult to achieve in those environments where productivity is constrained by difficult-tomanage abiotic constraints, particularly low soil pH and inadequate soil moisture. In addition to improved varietal resistance to or tolerance of biotic stresses, tolerance of the low pH complex and of soil moisture deficits will be needed to improve both productivity and stability of production. Only then will inputs be adopted and the varietal yield potential achieved in these less favourable environments. Returns to research are lower from these less favoured environments than from the more favoured areas, but their problems need to be addressed as dependence on these environments is increasing as bean crops extend more to marginal soils in response to growing land pressure and urban demands.Information on bean production in Africa varies in quality (Map 49) and comes from a variety of sources. Much of the information used in this document comprised observations of bean researchers made over the last 15 years, including results from at least 20 diagnostic surveys, numerous on-farm trials, the Pan-Africa Bean Research Alliance (of more than 150 researchers at over 40 research institutes in 18 countries), and a series of national and regional planning workshops for bean research. National production statistics were used when available and current. In some cases, FAO production statistics were used. Reliable statistics on bean production are generally lacking for DR Congo and Mozambique, and the estimates given are a consensus of data from researchers with varying familiarity with those bean production areas.Digital databases were valuable sources of information. Africa: A Topographic and ClimaticDatabase V 1.0 (5' grid) of the Centre for Resource and Environmental Studies, Australian National University, was the source of rainfall and temperature data to determine mean rainfall and temperature during the 3-month growing season. Soil information was obtained from the Digital Soil Map of the World and Derived Soil Properties V 3.5, 1995 (1:5,000,000) of the Food and Agriculture Organization of the United Nations (FAO).The primary source of data for the bean distribution map (Map 1) were Gray (1990) and Wortmann and Allen (1994). Gray's sources for the first approximation are given below, together with our sources used to make revisions. Because of inadequacies in the statistics, revisions were often made, based on expert opinions of bean researchers working in Africa.List of sources for the Atlas.First approximation Revision Source Total area Source Area added (ha) mapped (ha)None. 0 Agrostat PC files, FAO (1990FAO ( -1993)) Agricoles, Togo (1984).apparently includes other pulses. 5,000 ha.(Continued)","tokenCount":"6944"} \ No newline at end of file diff --git a/data/part_3/1298882887.json b/data/part_3/1298882887.json new file mode 100644 index 0000000000000000000000000000000000000000..a7fbfc020407660e8bea396b179a6560839d5233 --- /dev/null +++ b/data/part_3/1298882887.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"0cf095474d9429d81d03a6948050b051","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/4d328b83-5922-4a8e-af65-767e8d7ac6ab/content","id":"1888833662"},"keywords":["Climate change adaptation","Conservation agriculture","Ex ante risk coping strategy","Learning from past climate extremes","Turbo happy seeder"],"sieverID":"23a1c28e-3467-480c-a9d7-e4967a47f291","pagecount":"19","content":"Purpose -Conservation agriculture-based wheat production system (CAW) can serve as an ex ante measure to minimize loss due to climate risks, especially the extreme rainfall during the wheat production season in India. This study aims to examine whether farmers learn from their past experiences of exposure to climate extremes and use the knowledge to better adapt to future climate extremes.Design/methodology/approach -The authors used data collected from 184 farmers from Haryana over three consecutive wheat seasons from 2013-2014 to 2015-2016 and multivariate logit model to analyse the driver of the adoption of CAW as an ex ante climate risk mitigating strategies based on their learning and censored Tobit model to analyse the intensity of adoption of CAW as an ex ante climate risk mitigation strategy. Farmer's knowledge and key barriers to the adoption of CAW were determined through focus group discussions.Findings -The analysis shows that the majority of farmers who had applied CAW in the year 2014-2015 (a year with untimely excess rainfall during the wheat season) have continued to practice CAW and have increased the proportion of land area allocated to it. Many farmers shifted from CTW to CAW in 2015-2016. Wheat (Triticum aestivum L.) is the most important cereal crop in India and is grown in about 29 million ha (Majumdar et al., 2013). It is a staple food, supplying about 61 per cent of India's protein requirement (Sapkota et al., 2014) and its assured supply is essential for national food and nutrition security. Analysis of trends in wheat production shows that yields have stagnated, as the beginning of the twenty-first-century with various possible causes including climate change and climate variability (Saharawat et al., 2010;Majumdar et al., 2013;Jat et al., 2016). Therefore, to cope with increasing climate risk, wheat production systems need to be more robust and resilient to buffer the effects of extreme climate events (Jat et al., 2014;Sapkota et al., 2015;Jat et al., 2016;Aryal et al., 2018a;Sapkota et al., 2018;Aryal et al., 2019).Conservation agriculture-based wheat production system (CAW), based on the principle of minimum soil disturbance, continuous ground cover and appropriate crop rotation, provides an alternative to the conventional system to enhance the resilience of agriculture to climate variability through better adaptation to climate change (Aryal et al., 2016), reduce GHG emissions (Aryal et al., 2015;Sapkota et al., 2015;Kakraliya et al., 2018) and reduced air pollution through the elimination of residue burning (NAAS, 2017;Tallis et al., 2017). A recent study (Aryal et al., 2016) in Haryana, India showed that CAW better copes with climatic extremes than the conventional tillage-based wheat production system (CTW). The study found that wheat yield during the bad year (defined in terms of untimely excess rainfall during grain development) was 4.89 Mg ha À1 under CAW while it was only 4.23 Mg ha À1 under CTW.As the knowledge gained from past experience to extreme climate events are critical to design and implement climate risk adaptation plans (Parry et al., 2007;Wise et al., 2014), one crucial question is whether farmers in Haryana adapted their wheat production system and adopted CAW based on their experience of climate extreme events during 2015 wheat season. This is because learnings derived from their own experience (i.e. learning by doing) and from neighboring farmers (i.e. noticing/communicating/social networks) is one of the important determinants of technology adoption (Cameron, 1999;Bandiera and Rasul, 2006;Crane-Droesch, 2018). Empirical research confirms that farm households learn from the choices made by other farmers and do the same (Besley and Case, 1994;Foster and Rosenzweig, 1995;Munshi, 2004). Therefore, it is important to understand whether farmers who experienced that CAW performed better under climate extremes during the 2015 wheat season, learned from their experience and increased the land area dedicated to CAW the following year. Although a technically viable ex ante climate risks reduction and coping strategy in agriculture, the use of CAW instead of CTW by farmers for this purpose is unknown. Understanding whether farmers gradually learn from past climate extreme events and adopt ex ante risk reduction measures provides with vital insights into farmer behaviour in relation to climate change adaptation.Another important issue is that unlike other new technologies, CAW has economic benefits and a shorter gestation period (i.e. the time gap between initial investment and return). This is because the machinery needed for CAW [i.e. Turbo happy seeder (THS)] is readily available on rent and does not require large up-front investment.Against this background, using three years panel data from 184 farm households in Haryana, India, together with focus groups discussions with farmers and interviews with key informants, this study seeks to address the following questions: Do farmers learn from past experience (for farmers who continued CAW adoption over a period of three years) and from their neighbors (for those who were nonadopters until 2014-2015 wheat season and adopted in 2015-2016 after observing that their neighbors benefited by CAW in both bad and normal year)?If not, why are farmers cautious about expanding the area under CAW even though it copes better with untimely excess rainfall and has a higher economic benefit compared to CTW? and What are the potential implications for future design of climate change adaptation in agriculture? This paper presents an empirical analysis of climate-adaptive decision-making by farm households using real-world situations.2. Extreme climate events in wheat season, loss of crop yield and public burden Climatic variability, especially rainfall variability (i.e. both drought and excess rainfall) and end-of-season high temperatures severely impact wheat production in India. Many studies have demonstrated negative effects of high temperature during wheat maturity period, i.e. \"terminal heat\" in India (Jat et al., 2009;Lobell et al., 2012;Tashiro and Wardlaw, 1989;Samra and Singh, 2004;Gupta et al., 2010).Early planting can help wheat escape terminal heat but increases the probability of loss due to high rainfall during the harvesting stage. Winter rains are largely unpredictable and rainfall immediately after irrigation is the most detrimental as it results in prolonged waterlogging leading to a yellowing of leaves and stunted growth of wheat. Waterlogging during the grain-filling stage also causes blackening of the wheat ear-head and loss of grain fill (Aryal et al., 2016). Even if grain filling occurs, it will lead to substantial yield loss due to shriveled and light-weighted grains. Rainfall during maturity can increase the moisture content of the grains, making them unsuitable to sell directly from the field. Analysis of long-term rainfall data from the study sites reveals that critical stage of wheat maturity received intensive rainfall in 10 out of 34 years (Figure 1).Conservation agriculture (CA) has been advocated as one of the solutions to address higher temperature stress in wheat production by advancing wheat planting dates, by conserving soil moisture through reduced run-off and evaporative losses and by changing the thermal properties of the soil surface (Sapkota et al., 2015). CA not only conserves moisture during drought conditions but also enhances infiltration and percolation of water in the event of excess rainfall. Retention of residue in CA also controls soil erosion, which otherwise would occur in the event of an intense downpour.In this study, authors used the panel data collected from 184 wheat farmers of Karnal district, Haryana for three consecutive wheat seasons of [2013][2014][2014][2015] In the survey of 2014-2015, a total of 208 (50 per cent each from CAW adopter and noadopter) farmers were surveyed. Same farmers were also surveyed in the 2015-2016 season. However, as 24 farmers had changed location, the sample size for the current study was reduced from 208 to 184. The data encompasses the information on major household characteristics, market and location characteristics, areas under CAW and CTW, production inputs, crop management, and grain yield under these two alternative wheat production systems. Authors have data for three consecutive years.Haryana is selected as the study area for the following reasons. Firstly, it suffered from untimely excess rainfall in the year 2014-2015 during the wheat production season, which damaged the wheat crop over 0.5 million ha in the state (Government of Haryana, 2015). As a compensation to the farmers suffering from crop loss, Haryana Government spent about Rs. 11bn [1] (i.e. US$174.72mn) in 2015 (Government of Haryana, 2015). Therefore, any alternative wheat production system that reduces the wheat crop damage due to such climatic risks can significantly reduce the farmers' loss and also the economic burden of the government. Secondly, in Haryana, many farmers follow CAW and in the focus group discussion (FGD) in 2014-2015 (Aryal et al., 2016), farmers reported that CAW suffered less from untimely excess rainfall as compared with CTW. Thirdly and most importantly, a study in Haryana by Aryal et al. (2016) compared wheat yield in both bad and good years and concluded that CAW performed better than CTW in both years. Therefore, it is important to understand if this knowledge was well communicated among the farmers and if farmers considered CAW as an ex ante adaptation measure to extreme rainfall during the wheat production season in Haryana.This study uses both quantitative and qualitative methods for the analyses of the data and indepth understanding of CAW adoption from learning. Using mixed methodseconometrics methods to rigorously analyse the CAW learning data and FGD to probe deeper to understand farmers' views and experience about CAW managed to bring forth issues, which otherwise Haryana would be overlooked. The main focus was whether farmers learn from past experiences, and also from their social networks (Bandiera and Rasul, 2006;Hanna et al., 2014;Crane-Droesch, 2018) and the importance of learning in the adoption process (Cameron, 1999).This study applies two robust econometric methods for quantitative analysis. It used a multinomial logit model to analyse the farmers' adoption of CAW as an ex ante climate risk mitigating strategies based on their learning and a censored Tobit model to analyse the driver of the intensity of adoption of CAW as an ex ante climate risk mitigation strategy. (For details on multinomial logit and censored Tobit models, see Greene, 2003 andWooldridge, 2010).This study uses micro-interlocutor analysis (MIA) for analysing information obtained from FGD organized in Shambli village of Karnal district (Haryana). In MIA, information from the FGD is analysed by delineating participants who respond to each question, the order of responses and the nature of responses (e.g. focussed and unfocussed) and also the nonverbal communication used by each of the FGD participants (Sovacool et al., 2017;Onwuegbuzie et al., 2009). Using this method, the current study better conceptualizes the role of conversation analysis in analysing data collected from FGD.The FGD concentrated on the two types of questions, i.e. general questions related to farmers knowledge and perception on climate change in agriculture, and more focussed questions on CAW and its adoption as an ex ante risk coping measure. The general questions on farmers' knowledge and perception are as follows:Is climate change a major problem in agriculture? Do you believe that some agricultural interventions can reduce the impacts of climate change on agriculture?The questions on CAW and its adoption as an ex ante climate risk coping measure are: Do farmers know that some practices help adapt to climate extremes, and thus, can be used as an ex ante climate risk coping strategies? Does CAW better cope with extreme rainfall during the wheat harvesting period? Is CAW cost-effective and more productive compared to CTW? Have you used CAW? What are the major reasons for adoption or non-adoption of CAW?Through FGD targeted at CAW, authors managed to gather extremely useful information from the participants, which are usually missed by pure quantitative methods.5.1 Descriptive statistics 5.1.1 Description of the variable used in the study. Table I presents the summary statistics of the variables used in the study. The average age of household heads is 41 years for both adopters and non-adopters of CAW, which indicates that most of the farmers were middle years of age. Result also shows that a large majority of the household (approximately 95 per cent) were literate and further segregation of the education level of the household head shows that 44 per cent of the household head had completed higher secondary level of education (i.e. Grade 12) and 25 per cent had completed secondary level (Grade 10), and 28 IJCCSM 12,1 per cent had completed primary level of schooling. The education level of the household head plays a critical role in the adoption of technology as it increases the level of awareness and has implication of adopting agricultural technology.The average land holding size of the sampled households was 6.56 ha; the adopter farm household had 6.6 ha compared to only 4.8 ha for non-adopters of CAW. The majority of the Notes: a Values in the table refer to percentages unless stated; and of the total sample households, only 21 households have more than 10 ha of land. If we omit those households, the average land ownership is 3.83 ha with a standard deviation of 2.66 ha. Only seven households have more than 20 ha of land; THS = Turbo Happy Seedersample households owned tractors (approximately 76 per cent), which indicates that a significant proportion of the sampled households have pursued some form of farm mechanization. In the study area, about 14 per cent of the farm households owned zero-till (ZT) drill machine. Among CAW adopters, only five have their own THS, capable of seeding over previous crop residues. Therefore, most of the farmer rent machines required for CAW. Membership in cooperatives is essential for knowledge sharing and also for working together with a common interest and the results show that only 36 per cent of the sampled farm households affiliated with cooperatives, suggesting that it is crucial to increase membership in cooperatives. About 15.7 per cent of the farm household had received training on CA management, and of the total adopters, approximately 30 per cent of households have taken some kind of training in CA. Use of weather information is vital for farm households, but the data shows that in the study area only 52 per cent of the households used the weather data. The analysis also shows that about 14 per cent of the households did not have access to agricultural credit, 66 per cent lacked knowledge of CAW, and 72 per cent lacked access to THS machines. In total, 59 per cent of the total sample households perceive that CAW helps in coping with climate extreme whilst the analysis on the accessibility shows that the area under study is well connected; the average distance to the market, extension service, agricultural cooperatives and ZT service provider 4.86, 6.68, 2.06 and 4.38 km. 5.1.2 Wheat yield under conservation agriculture-based wheat production system and conventional tillage-based wheat production system. Table II provides information on the yield difference between CAW and CTW over three seasons. It is noteworthy that the wheat yield is significantly higher under CAW as compared to CTW in both normal and bad years. Wheat yield under CAW was higher by 0.41 Mg ha À1 in 2013-2014 (normal year), 0.66 Mg ha À1 in 2014-2015 (bad year) and 0.33 Mg ha À1 in 2015-2016 (normal year) all significant at 1 per cent level of significance. The result also shows that the yield is higher and significant at 1 per cent in normal compared to the bad year for both CAW and CTW practicing farm households; however, the difference in the wheat yield between normal and bad years is higher for CTW compared with CAW, which indicates the compared to CTW, CAW does better in reducing the yield shock in the bad year. This is consistent with the findings of Aryal et al. (2016), and thus, provides a strong basis to examine why farmers are not shifting from CTW to CAW. The shifting from CTW to CAW is the consequence of the outperformance of CAW over CTW in terms of wheat yields over considered years.5.1.3 Trend of land operated and allocated to conservation agriculture-based wheat production system. The share of total operated land allocated to CAW has substantially increased over a period of three years (Table III), indicating that many farmers have learned from their own experience and neighbors experience and have adopted CAW as an ex ante climate risk coping measure. Most importantly, a sharp increase in the percentage of the total operated land allocated to CAW among its adopters was observed in the year 2015-2016 compared to the year 2014-2015. The average proportion of land allocated to CAW was 19.84 per cent in 2013-2014, 28.93 per cent in 2014-2015 and it was 69.29 per cent in 2015-2016. From this analysis, it can be inferred that CAW was increasingly recognized as an important practice to minimize the loss due to climate risk.5.1.4 Summary of farmer learning from past experience of climate extremes during the wheat season. Understanding whether farmers learn from past experiences (here, from past climate extreme event, which occurred during the 2014-2015 wheat season in the study area) and how they learn has important implications in designing policies to scale out the farming technologies (Cameron, 1999). Table III presents The results show that the effect of age is negative and significant at 1 per cent level for learning from neighbours, indicating that the older farmers are less likely to learn about adaptation to climate change from neighbours. In the Model B, the result shows that the coefficient of the young farmer is positive and significant for both learnings from own experience and learning from neighbours, indicating that young farmers are more likely to learn about climate change adaptation. Education enables individuals to learn quickly. The result shows that the household whose head has completed secondary and higher secondary and above are more likely to learn about climate change adaptation from their own experience and from neighbour in both Models A and B compared to a household headed by an illiterate farmer. The coefficient of the training dummy is positive and significant for learning from own experience in both Models A and B indicating that the household, which receives some kind of training in conservation agriculture has a higher probability of learning about climate change from their own experience. Lack of knowledge dummy is negatively associated with learning from experience and learning from neighbours in both Models A and B, which indicates the importance of information and knowledge in technology adoption. Similarly, other studies have also found that the lack of knowledge and insufficient information are causes of low adoption of CA by smallholder farmers in Southern Africa (Holden and Lunduka, 2014;Holden and Quiggin, 2017). The coefficient of the dummy membership in cooperatives is positive and significant at 1 per cent level of significance for learning from own experience and learning from the neighbour about climate change adaptation for both Models A and B.The land area (ha) owned by the farm household is positive and significant (at 1 per cent level of significance) for learning from own experience and neighbour experience about climate change adaptation signifying that land holding of the household plays a critical role in learning about climate change adaptation. Land is the primary asset of the farm household, which influences their livelihood and income; therefore, those household with larger land assets are keen to learn and adopt any technology, which influences the farm productivity. Studies have shown that poor farmers tend to be risk-averse and that this constrains their uptake of new technologies (Dercon and Christiaensen, 2011;Karlan et al., 2014). Though the tractor is also a key asset, it turned out to be insignificant in determining the learning outcome for the adoption of climate change adaptation.All variables for access to facilities and infrastructure turned out to be insignificant except distance to ZT service provider. The distance to ZT service provider was negative and significant at 1 per cent level of significance for learning from own experience and learning from neighbours' experience for both Models A and B, signifying that farther the ZT service provider is, the less likely that the farmer will learn about climate change adaptation.Perception of CAW is a critical determinant of farmers' learning about climate change adaptation. The results show that the farmers who perceive that CAW helps in combating climate change are most likely to learn both from their own experience and from the experience of their neighbour. The interaction between dummy young farmer and training is positive and highly significant, indicating that the young farmers who receive training are most likely to learn from their own experience and from the neighbour.5.2.2 Analysis of intensity of learning from experience. In the current study, the intensity of learning is measured by the proportion of total operated land under CAW (i.e. land under CAW/total land). As many farmers have applied CAW on a part of their total operated land, the dependent variable ranging from 0 to 1 (0 if the farmer does not practice CAW and 1 if the farmer applied CAW on their entire operated land). For such data structure, standard censored Tobit model is used to assess the determinants of its intensity. The result of the pooled Tobit model is provided in Table IV (right panel). To test the robustness of the result, the authors estimated three Tobit models. In Model A, authors used the age of the household, and in Model B, authors replaced it with the young farmer and the interaction term (young farmer and training), and in Model C, authors used only the interaction of young farmer and training. The findings show that farmer's intensity of learning from experience to cope with climate change is negatively associated with age, i.e. older farmers IJCCSM 12,1 are less likely to learn from experience. The coefficient of the young farmer in Model B is positive and significant at 1 per cent, which similarly indicates that young farmer are more likely to learn from the experience.Education of the household head appears to influence the intensity of learning from experience. The coefficient of the secondary and higher secondary and above is positive and significant at 1 per cent, which means that intensity of learning is higher for those households with a secondary and higher secondary and above level of education compared to illiterate. As envisaged, the training on CA technology is also positive and significant at 1 per cent level of significance; therefore it can be concluded that training plays a vital role in influencing farmers to increase the intensity of learning about CA technology. Lack of knowledge turns out to be a major constraint in the intensity of learning about the climate change coping mechanism. The coefficient of the lack of knowledge is positive and significant at 1 per cent level of significance. The membership dummy is insignificant in influencing the intensity of learning.As the land is a primary asset of the farmers, the study found that the landholding critically influences the farmer learning about the mechanism to cope with climate change. The result shows that the intensity of learning for farm household increases with the increase in the land asset. However, tractor ownership is not a significant driver of learning about climate change adaptations.Amongst all factors related to access to facilities and infrastructures, only distance to ZT service centre turns out to be significant drivers of the intensity of learning about adaptation to climate change. The coefficient of the distance to ZT service centre is negative and significant at 1 per cent level of significance highlighting that the closer a household is to the ZT service provider the more probable that the intensity of learning increases. The perception of CAW is a critical determinant of the intensity of learning to cope with climate change. The farmers who perceive that CAW helps in coping with climate change are more likely to learn compared to those who do not believe that CAW helps in coping against climate change risk. The coefficient of the perception on CAW is positive and significant at 1 per cent level of significance in all three Models A, B and C. The interaction terms of young farmer and training is positive and significant at 1 per cent level of significance, highlighting that the intensity of learning is higher for young farmers who have received training on CA technology.About 57 per cent of the total participants in the FGD consider that CAW can better cope with extreme rainfall during the wheat season, and they consider the primary reason behind this is the better root system. However, they reported the need for better management of CAW as it requires proper timing of weed management. This is where the significant knowledge gap exists and the major reason why some of the participants do not agree with the agronomists working in their area.Nearly 23 per cent of the participants are not convinced that CAW really serves as a climate risk mitigation measure and also doubt the economic benefits. They were of the opinion that several factors affect the yield and found it hard to believe that CAW alone was the reason behind the lower losses observed in a bad year, i.e. 2014-2015. Farmers reported that the majority of the extension workers' recommendations are based on high-input intensive agriculture, and such practices are not suitable for CA-based systems. According to them, farmers/local cooperatives/local custom hiring service providers who work with external agricultural projects are more informative than the government extension service providers. As a result, farmer-to-farmer communication is thedominant method to transfer the knowledge on CAW, which suggests the need for better training of extension staff on CAW.Young farmers are more enthusiastic about CAW and also about the mechanization of agriculture. However, they are worried about declining farm size, which may reduce the benefits of CAW. Authors also discussed why young farmers are more inclined towards CAW as compared to relatively older ones. Some old farmers replied that \"today's youth are better than us in using modern communication technology, such as mobile apps and internet\". They added that \"young farmers can access new information easily, which is beyond our capacity. This is mainly because of increasing technological innovations over time\".Overall, there is a positive response to CAW. Nevertheless, there is a need for closer integration between agricultural scientists, farmers, and government and private extension service providers to reduce the knowledge gap on CAW and to improve local knowledge. The major problems highlighted by the farmers are as follows:Farmers' knowledge gap: CAW is knowledge-intensive and requires the operation of modern machinery. There is a regular improvement in available machines for zero tillage. For example, the original ZT drill machine could not seed wheat in the presence of rice straw on the field, but the THS can perform this task. Changing from one type of machine to another requires a flow of information. This also requires new knowledge to operate the machine together with its proper calibration. Farmers' also focussed on the need for a replacement facility for old ZT drill machines when a new improved version is available on the market. Almost 25 per cent of the participants were not convinced that CAW performed better than the conventional practice and insisted that the weed problem was challenging to address in CAW. This aspect of CAW warrants further research and development.Narrow window for farmers and service providers for operating THS: The time gap between paddy harvesting and planting of wheat in North-West India is 7-10 and 15-20 days in fields planted with basmati/scented and coarse rice, respectively. If farmers cannot access the THS on time for seeding, the field loses soil moisture resulting in low germination of wheat, eventually causing a yield penalty.Machine service and technological backstopping: At the time of wheat sowing, service providers are unable to meet the demand of every farmer as the numbers of custom hiring services are limited north-west India.Small farmers: Almost 70 per cent of the farmers are smallholder. They have no economic capacity to purchase the THS and mostly rely on custom hiring services.Most of the farmers have traditional machinery (normal multi-crop planter and ZT machine, and 35 horsepower (Hp) tractor) for wheat sowing. There is a need to replace these machineries with the new ones (THS and tractor with >50Hp as THS requires high-power tractor). Any further improvement in CAW machinery needs further investment from farmers to use the improved version, and it is not profitable to buy a new machine every time. Provision of better custom hiring services is the only option for marginal and small farmers as agriculture is no longer a profitable venture for them. Attitude: For several years, farmers have been using clean cultivation. As the field sown with THS looks untidy during the first 45 days of crop growth, many farmers do not like it and so can be reluctant to change; a change in mindset is therefore needed.Weed management: Existing combine harvesters used for harvesting rice are not equipped with a straw management system (SMS), and thus, it leaves behind the loose residue in a swath. Due to the unavailability of labour on time, the manual spreading of loose residues before using THS is delayed. Because of this, in few cases (depending on management history of the fields), weeds emerge before wheat seeding and are covered by the residues, thereby escaping the herbicides droplets/ drifts. In such cases, application of herbicides may not match with the crop stage, and weed control becomes difficult.Germination problem due to soil compaction caused by machinery: Most of the farmers use the combine harvester for rice harvesting, and because of the heavy weight of the combine harvester, it causes soil compaction below the rear wheels, which farmers report cause poor germination and emergence of wheat. It is also not possible with the THS to seed wheat on an uneven soil surface. This requires better understanding and planning in the use of the combine harvester so that operations are timed for when soil moisture conditions are optimal.The findings of this study have important policy implications. Given that the majority of farmers believe that CAW contributes to climate change adaptation, removing barriers to adoption can help enhance farmers' income with and without climatic extremes. Hence, identifying and strengthening existing institutions rather than creating new ones is required to enhance the adoption of CAW. Despite some barriers to adopt CAW, the knowledge on CAW is spreading among farmers, primarily through farmer-to-farmer communications and farmers meeting in the local farmer clubs. Based on the findings, the authors suggest the following to promote CAW: Facilitate farmer-to-farmer communication: Facilitating farmer-to-farmer communication are crucial components in improving farmers' knowledge on CAW and its uptake. These findings corroborate other findings (Aryal et al., 2018c(Aryal et al., , 2018a(Aryal et al., , 2018b;;Fisher et al., 2018), which reported that farmer-to-farmer communication plays a major role in the adoption of climate-smart agricultural practices. Therefore, policy should focus on the importance of learning in technology diffusion and provide support to educational/training facilities related to CAW rather than merely focussing on input subsidy. Effective communication increases farmers' capacity to adapt to extreme climate events and minimizes the financial burden of the government in terms of compensatory payments, which could otherwise be used for nutrition/food security.Improve custom hiring services of CAW machineries: Insufficient custom hiring of THS is one of the major constraints to farmer adoption of CAW in the study area.Although the Government of India has introduced a scheme of about Rs. 11.5bn to incentivize in situ management of crop residues through subsidies that mainly target the THS and the SMS (Government of India, 2018), a broader policy to enhance the capacity to manufacture the required number of machines at the local level is essential. In 2014-2015, the number of THS was only 600, while about 5800 THS are required to cultivate 0.35 m ha of agricultural land in Haryana state alone (Lohan et al., 2018).Revise crop loss compensation policy: In the climate extreme event of the 2014-2015 wheat season, the Government of Haryana compensated only those farmers whose Climate extremes in Haryana crop yield loss was more than 30 per cent. This acted as a disincentive for farmers using CAW as their losses were less than those using conventional practices. Therefore, the compensation policy should also consider wheat production practices and not just a measure of losses.Private sector involvement: Engaging the private sector and the business community is essential for the rapid expansion of this innovative technology. Local government bodies help create a favourable environment to actively engage multiple private actors including farmers, civil society members and businesses by creating governance networks and conducive policies (Mees, 2017;Sovacool et al., 2017;Tallis et al., 2017).CAW, which has been adopted by the farmers primarily to reduce production costs, is now being adopted as a climate risk coping measure. The findings show that farmers learn climate change adaptation through their own experience and through the experiences of their neighbours. Several factors determine these learnings and their use for climate risk adaptation. Farmer learning and uptake of new technology is not only related to the characteristic of technology but also how well the technology fits the farming system and its impact on farmers' livelihood. Even though the technology has no investment risks, other factors related to the technology and farmers can largely influence its uptake.Learning/communication was found to be the most crucial factor for CAW adoption. Therefore, providing support to agricultural education programmes for farmers rather than focussing solely on input subsidies and credit should be a major target for policy. A transformational change in agriculture is possible through better institutional support and improved service provision for CAW-based technologies. Climate change adaptation in agriculture, therefore, needs to focus on various other issues related to farm household and market characteristics, along with technology development. Designing an appropriate strategy to communicate scientific evidence to farmers, reshaping compensation policies and strengthening local extension institutions are essential.At the local level, farmer-to-farmer communication was found to be a critical factor in promoting technology adoption (i.e. in the current study, learning from past experiences to cope with climate extremes). Targeting young farmers and training them to be lead farmers for new agricultural technology dissemination can substantially enhance CAW adoption.Climate change adaptation in agriculture through technology adoption is a crucial topic and has multiple dimensions. Therefore, future research at multiple locations is necessary to address the issues further at a broader scale and to generalize its impacts in different states of India.","tokenCount":"5676"} \ No newline at end of file diff --git a/data/part_3/1301337388.json b/data/part_3/1301337388.json new file mode 100644 index 0000000000000000000000000000000000000000..ee917203da920d2727abbf4436195a7cdd6bb700 --- /dev/null +++ b/data/part_3/1301337388.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"0582f3641a08a953e57cd1e28afeb232","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/1bb23b81-4eed-4090-9e85-bafd758cf3c0/retrieve","id":"199246268"},"keywords":[],"sieverID":"a270be18-15d7-4732-b924-63154c0e4441","pagecount":"8","content":"Gestion des ravageurs 2 ICT Update, numéro 11, mai 2003 Editorial La lutte contre les ravageurs C haque année, les insectes nuisibles réduisent de 25 à 35 % la production mondiale des cultures vivrières, malgré l'utilisation de 32 milliards d'euros par an de pesticides.¹ Il faut donc trouver au plus vite de nouveaux modes de lutte contre les principaux ravageurs pour garantir la sécurité alimentaire de la population mondiale en croissance constante. Ce numéro d'ICT Update illustre le rôle de plus en plus important que les NTIC jouent dans la gestion intégrée des ravageurs, en particulier en matière d'identification des ravageurs, de prévention, d'éducation, de diffusion des connaissances et d'éradication. Au niveau de l'identification des ravageurs, un grand nombre de bases de données en ligne et de logiciels novateurs sont désormais disponibles pour déterminer et reconnaître les ravageurs (voir la rubrique TechTip). Les systèmes d'information géographique (SIG) sont largement utilisés pour identifier les zones à risque d'invasions de ravageurs, et par conséquent les zones où des mesures de prévention sont nécessaires. Rose W. Irungu et ses collaborateurs nous présentent Awhere-ACT, une application qui aide les agriculteurs africains à lutter contre le foreur du maïs et l'acarien vert du manioc. Dans le domaine de l'éducation, Amadou Bocar Bal et Julia Brunt nous expliquent le fonctionnement du CPC, une base de données sur la protection des végétaux disponible en ligne et sur cédérom, et son utilisation à des fins éducatives en Tanzanie et au Niger. Dans le domaine de la diffusion des connaissances, Grahame Jackson et ses collaborateurs gèrent PestNet, un réseau e-mail de contrôle des ravageurs dans la région Asie-Pacifique extrêmement efficace et facile à gérer. Shantanu Mathur nous montre comment un projet du FIDA visant à éradiquer la mouche de la carambole au Surinam et en Guyane française utilise la technologie satellite pour cibler efficacement les zones infestées. Pour finir, Yunlong Xia, chef du Département bioinformatique & technologies d'information du Centre international sur la physiologie et l'écologie des insectes (ICIPE) au Kenya, analyse le rôle des NTIC dans la gestion intégrée des ravageurs et les tendances dans ce domaine dans les pays en développement, et évoque également des perspectives d'avenir très encourageantes.P our identifier un insecte, un entomologiste tentera d'abord de réduire le nombre de possibilités en examinant l'apparence de l'animal en question. Par exemple, s'il a deux ailes, c'est probablement une des nombreuses espèces de la famille des mouches. S'il a huit pattes, il y a de fortes chances pour que ce soit une araignée. Ce processus d'identification est devenu beaucoup plus simple et beaucoup plus rapide depuis l'apparition des bases de données et des logiciels multimédias. Il est désormais possible par exemple de stocker d'importantes quantités de données biologiques et d'accéder à ces informations par le biais de fichiers matriciels, ou « clés », faciles à utiliser. L'une de ces « clés » multimédias est Lucid, un outil développé par le Centre for Biological Information Technology (CBIT), de l'University of Queensland, de Brisbane, en Australie, disponible sur cédérom ou sur Internet. Tout le monde, professeur de biologie ou fermier, peut utiliser Lucid pour identifier n'importe quel insecte nuisible et se procurer toutes les informations utiles sur les moyens de le combattre.Imaginez que vous trouviez une mouche dans votre champ et que vous vouliez être sûr qu'elle est inoffensive. Pour l'identifier et en savoir plus à son sujet, il vous suffit de démarrer Lucid et de sélectionner la « clé » sur les mouches. Le système vous propose alors une liste de caractéristiques. Il vous suffit de valider celles qui correspondent à votre mouche pour réduire la liste des espèces possibles. Vous pouvez par exemple entrer la couleur du corps de la mouche, sa taille, la localisation géographie de votre champ, etc. Au cours de cette identification, différents modules multimédias (images, vidéo, son) et fonctions vous aident à réduire le nombre de possibilités. Une fois que vous avez identifié l'espèce à laquelle appartient cette mouche, Lucid vous propose des notes descriptives, des illustrations, des enregistrements audio et des vidéos. Le programme comprend également des liens vers des experts et des sites Internet proposant des informations plus détaillées et des conseils sur les meilleurs moyens de lutter contre ces ravageurs. Grahame Jackson occupe actuellement la présidence du réseau PestNet (e-mail : Grahame@PestNet.org). Les autres modérateurs du réseau PestNet sont : Wilco Liebregts (e-mail : Wilco@PestNet.org); Bob Macfarlane (e-mail : Bob@PestNet.org); Banpot Napompeth (e-mail : Banpot@PestNet.org); Mat Purea (e-mail : Mat@PestNet.org).Grahame Jackson et coll.Les ravageurs sont l'un des problèmes les plus graves auxquels se heurte la production agricole dans les pays tropicaux et lorsqu'ils s'attaquent aux cultures, les dégâts qu'ils causent peuvent être catastrophiques. Les paysans concernés ne peuvent pas se permettre d'attendre. Ils doivent trouver rapidement des conseils sur les mesures à prendre et réagir au plus vite. Mais la recherche d'informations prend généralement du temps. S'il faut d'abord « élever » les insectes ou préparer des spécimens pour identification, cela prend encore plus de temps. Les délais peuvent même être encore plus longs, et plus coûteux, s'il n'y a pas de taxonomiste au niveau local et qu'il faut envoyer ces spécimens à l'étranger. De plus, de nombreux pays n'ont pas de collections de référence d'insectes, de maladies ou de mauvaises herbes, ni de librairies adéquates permettant de vérifier les recommandations de lutte contre les ravageurs, ce qui complique encore plus les choses.L'objectif de PestNet, créé en 1999, est d'apporter une réponse à ces problèmes dans la région Asie-Pacifique. PestNet est un réseau informel qui grâce au courrier électronique met les personnes proposant des services de conseil dans les pays en développement en relation avec des spécialistes du monde entier. Bien que créé pour la région Pacifique, ce réseau s'est étendu pour aider aussi les paysans des pays d'Asie. Organisation non gouvernementale enregistrée aux Fidji, PestNet est un service gratuit géré entièrement par des bénévoles.PestNet traite toutes sortes de questions allant des périodes de quarantaine, de la lutte biologique et de la gestion des ravageurs, aux alertes en cas d'invasion et aux différentes formes que peut prendre la question : « Qu'estce que c'est que cet insecte et qu'est-ce que je peux faire pour m'en débarrasser ? ». C'est surtout ce dernier aspect qui a fait de PestNet non plus un simple forum de discussion, mais surtout un service gratuit d'identification en ligne qui a déjà largement prouvé sa valeur dans la pratique. La publication de photos numériques des ravageurs jointes aux messages se traduit par des réponses et des tentatives d'identification extrêmement rapides, souvent accompagnées d'offres de taxonomistes qui proposent d'examiner gratuitement des spécimens pour confirmer le diagnostic.PestNet utilise la liste de diffusion de Yahoo! Groups pour communiquer avec ses membres. Les listes de Yahoo! permettent au modérateur de chaque groupe de filtrer les messages postés avant leur diffusion sur la liste. C'est un détail logistique qui est cependant d'une importance essentielle pour maintenir le niveau de qualité et pour limiter la taille des messages, en particulier quand ils sont accompagnés de photos. De nombreux membres de PestNet Pour tenter de remédier à cette situation, une équipe de développeurs de logiciels de Mud Springs Geographers, Inc., a mis au point, en collaboration avec l'International Maize and Wheat Improvement Centre (CIMMYT), l'« Awhere Almanac Characterization Tool » (ACT), un progiciel autonome adapté aux besoins des chercheurs en agronomie et des responsables politiques dans les pays en développement. La particularité d'Awhere-ACT est qu'il intègre des applications de systèmes d'information géographique dans des bases de données très complètes (sur le climat, l'utilisation des sols, l'altitude, etc.) présentant un intérêt pour l'agriculture. Il est également facile à utiliser : quelques jours de formation suffisent pour apprendre à produire des cartes indiquant par exemple les zones où les conditions climatiques sont similaires à un moment donné ou à une saison donnée. Ce progiciel est mis gratuitement à la disposition des utilisateurs dans les pays en développement.Les scientifiques impliqués dans un certain nombre de programmes de gestion des insectes nuisibles en Afrique profitent désormais des avantages offerts par Awhere-ACT, comme le montrent les exemples suivants. Shantanu Mathur L es NTIC deviennent un instrument indispensable des méthodes classiques de contrôle tout comme des stratégies de gestion intégrée des ravageurs visant la réduction des infestations de ravageurs à des niveaux maîtrisables ou l'éradication complète des ravageurs en question. Les NTIC ont prouvé leur valeur dans le diagnostic et l'identification rapide des ravageurs, la conception et la planification de réponses efficaces, le choix et la mise en oeuvre de la stratégie d'éradication la mieux adaptée, et les mesures de quarantaine post-campagne.Le projet sur la mouche de la carambole du Fonds international de développement agricole (FIDA) utilise à la fois des technologies de communication modernes et des modes traditionnels de diffusion des informations pour éradiquer ce ravageur qui détruit les sources de revenus des petits producteurs fruitiers au Surinam et en Guyane française.Au milieu des années 90, la présence de la mouche de la carambole représentait une grave menace pour la production et la commercialisation des fruits et des légumes dans les pays d'Amérique centrale, d'Amérique du Sud et des Caraïbes. Les entomologistes ont identifié 236 espèces différentes de fruits-hôtes, et des études ont montré que la dissémination initiale de la mouche de la carambole était liée à l'accroissement de l'arboriculture fruitière et au transport et à la commercialisation de produits contaminés. On a découvert également que la mouche de la carambole était extrêmement mobile et pouvait migrer sur des distances de plus de 50 km.Diverses NTIC ont été utilisées pour déterminer la zone de distribution de ce ravageur, mais c'est tout simplement le fax qui s'est révélé être le moyen le plus efficace de diffusion d'informations telles que des données issues d'enquêtes, bulletins, photographies et cartes aériennes. On a remarqué que la mouche de la carambole n'était pas arrêtée par les obstacles naturels, tels que des forêts denses, ou par des poches isolées d'arboriculture fruitière. Compte tenu du volume croissant du commerce non officiel de fruits entre les différents pays de la région, il était indispensable de réagir au plus vite.La clé de cette stratégie de lutte contre les ravageurs est la technique dite de « destruction des mâles » qui implique l'utilisation d'un puissant appât mêlé à un bio-insecticide. Les mouches mâles étant attirées par ce leurre et tuées par l'insecticide, la population mâle est réduite à un niveau qui rend impossible toute reproduction, ce qui conduit donc à GeoWeb est une application basée sur Internet qui vous permet d'avoir accès à des données et des images satellite utilisées par les analystes du Système mondial d'information et d'alerte rapide sur l'alimentation et l'agriculture (SMIAR) de la FAO. Les utilisateurs peuvent établir des cartes personnalisées leur permettant Liens l'éradication. Des blocs de fibres imprégnés de ce mélange sont disséminés par des avions ultra-légers équipés d'un simple système d'information géographique (SIG) ou d'un système de positionnement par satellite (GPS) afin de garantir la couverture complète de la zone infestée qui englobe plusieurs pays.Cette stratégie basée sur les NTIC -utilisant des technologies allant de documents écrits à des supports multimédias et à la télédétection -a sans aucun doute contribué à l'efficacité et à la réussite des programmes d'éradication. Les NTIC ont également été utilisées pour soutenir une campagne de relations publiques et un programme de vulgarisation agricole permettant aux communautés rurales de mieux comprendre cette opération et d'y participer. La radio, la télévision et des séances vidéo en groupes ont servi à renforcer les capacités institutionnelles locales, notamment en matière de formation, de surveillance environnementale et de programmes de recherche destinés à fournir des informations utiles pour le développement de techniques de détection, de contrôle et d'éradication de la mouche de la carambole.Le succès de la campagne de lutte contre la mouche de la carambole est lié en grande partie à la mise en place d'un cadre régional organisationnel efficace de concertation des efforts de détection, de contrôle et d'éradication de la mouche de la carambole. Une plate-forme utilisant des technologies modernes de diffusion par voie électronique des informations en combinaison avec des réseaux traditionnels de diffusion des connaissances a permis d'assurer la coordination des contributions des scientifiques, des techniciens et des gestionnaires. Bien que ce projet ait réduit à zéro les populations de ravageurs dans la plupart des zones infestées, son financement futur reste incertain. Il serait dommage que ce remarquable effort soit abandonné, faute de fonds, avant l'éradication totale de la mouche de la carambole des quelques régions où elle sévit encore.Pour de plus amples informations sur les programmes de lutte biologique du FIDA, consultez : www.ifad.org/events/ past/anniv/bio.htm. Cette section propose une liste de projets et d'initiatives dans le domaine de la gestion intégrée des ravageurs. Des informations complémentaires, ainsi qu'une liste exhaustive des bases de données en ligne consacrées à la gestion intégrée des ravageurs, sont disponibles sur le site Internet de ce magazine (http://ictupdate.cta.int). Des matériels de formation sur la gestion intégrée des ravageurs de nombreuses cultures sont disponibles sur cédérom ou sur Internet [11,15]. Les NTIC permettent également de proposer des formations par l'intermédiaire de campus virtuels ou de formations à distance [16] spécialement adaptées aux besoins de la communauté scientifique ou des agriculteurs et des agents de vulgarisation agricole. Un grand nombre de ces matériels de formation peuvent être utilisés comme matériaux de référence par les utilisateurs dans les pays ACP, ou ont été spécialement conçus pour des pays en développement donnés.","tokenCount":"2228"} \ No newline at end of file diff --git a/data/part_3/1306732486.json b/data/part_3/1306732486.json new file mode 100644 index 0000000000000000000000000000000000000000..14a0d929749ed97656900e64f973358c6131c838 --- /dev/null +++ b/data/part_3/1306732486.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"052af1b29e4c82d18d2a518f399e1585","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/17b617f0-c76b-4785-babf-78455443ae27/retrieve","id":"-1249216881"},"keywords":[],"sieverID":"0f22dbb9-c853-4436-9407-8ab8005fd1cd","pagecount":"2","content":"O uso de diagramas de impacto é um método aberto, flexível e participativo para a avaliação de mudanças associadas a uma intervenção. Os produtos deste método são também chamados diagramas de fluxo de impacto. Como instrumento de monitorização e avaliação, os diagramas de impacto têm as seguintes vantagens: • Descrever as consequências directas e indirectas de novas tecnologias; impactos positivos e negativos; efeitos esperados; impactos directos e indirectos; e ligações causais. • Mostrar os pontos de vista dos produtores e/ou partes interessadas sobre a mudança, chamando a atenção para as lacunas identificadas.Podem ser usados para a monitorização periódica das mudanças ao longo do tempo.Podem ajudar à identificação de impactos não esperados e de indicadores de impacto.A natureza aberta e flexível do método permite também a representação de mudanças não esperadas.Podem ser usados por grupos, agregados familiares ou indivíduos.São fáceis e agradáveis de usar. As desvantagens deste método incluem o tempo necessário para desenhar um diagrama e a incapacidade ou a falta de vontade de alguns produtores (especialmente mulheres) de os desenhar. Além disso, o método pode ser menos adequado para medir impactos económicos ou ambientais (os quais requerem informação quantitativa). Este diagrama foi originalmente desenhado por um grupo de mulheres camponesas na zona ocidental do Quénia. O diagrama mostra que o principal impacto positivo desta variedade resistente à podridão da raiz foi o rendimento mais alto obtido (2 kg de semente rendem 36 a 40 kg na colheita) o que permitiu a melhoria da segurança alimentar e o aumento do excedente comercializado. Este resultado, apesar de beneficiar todos os membros do agregado familiar, teve diferentes implicações entre homens e mulheres, reflectindo a divisão entre responsabilidades de mão-de-obra e financeiras do agregado familiar. A Figura 1 mostra que os dois principais benefícios para as mulheres são: mais alimentos disponíveis na época de fome (antes da colheita) e dinheiro para a compra de bens domésticos e para o pagamento da mão-de-obra contratada para a sementeira, sacha e colheita. Além disso, o menor consumo de lenha poupou-lhes tempo. Porém, o amadurecimento tardio característico desta variedade tornou a época de fome mais longa. O cultivo desta variedade aumentou também a mão-deobra das mulheres durante a época da sementeira, visto terem que semear em linhas separadas para garantir bons rendimentos, enquanto que no método tradicional o milho e o feijão são semeados na mesma cova. Houve uma grande correspondência entre os diagramas de análise de impacto dos produtores e os impactos documentados por uma sondagem formal. O diagrama incluiu também algumas mudanças positivas intangíveis (famílias mais felizes) que não foram medidas pela sondagem, bem como comportamentos sociais negativos resultantes de grande afluência, nomeadamente aumento no consumo de bebidas alcoólicas, violência doméstica, relações extraconjugais e casos de SIDA. Algumas áreas de impacto, tais como o aumento de conflitos entre maridos e mulheres em relação ao acesso e uso dos rendimentos do feijão e o nível de impacto na comunidade, não foram bem captadas por nenhum dos métodos. Em geral, o diagrama de análise de impacto forneceu dados descritivos tanto a nível do agregado familiar como a nível individual. Os dados da sondagem complementaram bem esta informação com dados quantitativos sobre a percentagem de agregados familiares afectados, diferenças na produção e no consumo consoante o género e diferenças sazonais no consumo e rendimento. Antes de se desenhar um diagrama é importante colher informação de base (antecedentes) para se entender o contexto no qual a mudança ocorreu. Isto inclui a recolha de informação sobre a tecnologia ou intervenção em questão, quando foi introduzida na área e como a intervenção é percebida em relação a outras mudanças que ocorreram na mesma altura. É também importante colher informação quantitativa da situação antes e depois da intervenção. Por exemplo, para uma nova variedade devem ser colhidas informações sobre o rendimento agronómico, quanto tempo dura a colheita e quantas vezes se consome a cultura por semana.Este método pode ser aplicado a nível individual ou de grupo. Para a sua implementação deve identificar-se um facilitador qualificado.Os passos a seguir na aplicação de diagramas de análise de impacto são:1.Listar ou discutir todos os resultados directos e indirectos da intervenção -tanto os positivos como os negativos. 2.Explicar a ideia de um diagrama de impacto e mostrar um exemplo simples.Começar o processo simbolizando a intervenção/tópico (pode ser usado um quadro preto, papel, desenhar no chão ou ter já preparadas imagens ou símbolos). A intervenção/tópico deve ser específica. É mais conveniente começar a desenhar num quadro para depois elaborar a versão final no papel. 4.Perguntar o que aconteceu em consequência de cada resultado.Cada consequência deve ser simbolizada ou escrita. Usar setas para indicar ligações e causa e efeito. Para alguns resultados é importante indicar se a mudança é positiva ou negativa se ela não for imediatamente óbvia para os não participantes.A informação quantitativa pode ser obtida fazendo perguntas sobre quantidades ou número de pessoas relacionadas com cada impacto. Por exemplo, pode-se obter informação geral sobre os rendimentos de uma nova variedade ou a percentagem ou número de pessoas que tiveram um resultado particular. 6.Em grupos, pode obter informações sobre que categoria de pessoas ou agregados familiares são mais afectados por um resultado particular. 7.Os diagramas feitos por várias pessoas ou grupos podem ser ","tokenCount":"866"} \ No newline at end of file diff --git a/data/part_3/1346169434.json b/data/part_3/1346169434.json new file mode 100644 index 0000000000000000000000000000000000000000..4843317224165b723a93f70d510c41ed2727f70d --- /dev/null +++ b/data/part_3/1346169434.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"eb07d91a70358717dc655a24fe2bb3d4","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/f51657f6-0d58-40ce-840a-e55d4f648f7d/content","id":"-20269333"},"keywords":[],"sieverID":"27c4357f-2402-4a6c-9f41-6bb63ccf3c07","pagecount":"46","content":"La publicaci6n de este documento conmemora los 20 anos que el CIMMYT lleva de servir a la agricultura en el Tercer Mundo . Muchas cosas han cambiado durante esas dos decadas: los avances cientfficos han abierto nuevos horizontes en la investigaci6n ; las necesidades de la clientela del Centro (los programas nacionales de mejoramiento de cultivos) han evolucionado a medida que se han acumulado la experiencia y el conocimiento cientffico, y el Centro mismo ha cambiado en respuesta a las circunstancias . Mas a pesar de los cambios, el CIMMYT sigue siendo, en esencia , el mismo instituto vigoroso y dinamico que f1,1e desde el comienzo .El impacto mundial del CIMMYT y su madurez como instituci6n niegan su edad oficial. En un sentido muy real, tiene mas que sus 20 anos, pues su origen se remonta a 1943, cuando se inici6 el Programa Agricola de Cooperaci6n de la Fundaci6n Rockefeller y la Secretarfa de Agricultura de Mexico, con el fin de mejorar la agricultura mexicana . En su epoca cumbre, la Oficina de Estudios Especiales (asf se llam6 el programa en la Secretarfa) contaba con cerca de 20 agr6nomos no mexicanos y mas de 100 colegas mexicanos. El esfuerzo cooperativo fue muy eficaz en impulsar al sector agrfcola nacional y, para mediados de los 50 , Mexico se aproximaba a la autosuficiencia en la producci6n de mafz y trigo .El proyecto conjunto de la Fundaci6n y el gobierno mexicano prob6 que un grupo pequeno de investigadores dedicados podfa influir en el desarrollo de la agricultura. El CIMMYT es el resultado de ese esfuerzo colaborativo . El exito de los primeros anos hizo posible que el recien formado Centro respondiera rapida y efectivamente a la amenaza de hambruna en el subcontinente indio a fines de los 60. Esos anos de crisis produjeron un sentido de urgencia en los miembros del personal del Centro, quienes reiteraron su compromiso de cumplir con la misi6n del CIMMYT sin cambiar su modus operandi.Se han escrito muchas cr6nicas de esos primeros anos, pero nos preguntamos : (De que serviria otra cr6nica mas y, en realidad, que deberfa decirse en conmemoraci6n del vigesimo aniversario de una instituci6n tan dinamica y tan estable coma es el CIMMYT? Se lleg6 al consenso de que lo que hacfa falta no era otra historia convencional, sino mas bien una descripci6n de las corrientes principales que se han dado en la investigaci6n del Centro y el curso que sigu ieron durante los ultimas 20 anos.Con gran confianza se le encarg6 esta obra a Steve Breth, uno de los redactores mejor informados en el campo de la investigaci6n agrfcola hoy dfa . Steve ha trabajado en este campo desde 1963, fecha en que ingres6 en el USDA (Departamento de Agricultura de Estados Unidos) coma economista , para realizar un estudio sabre el desarrollo agrfcola en Africa Occidental. De 1965 a 1969, fue editor de la Sociedad Estadounidense de Agricultura y luego pas6 cinco anos en el IRRI (lnstituto Internacional de lnvestigaci6n de Arroz) coma redactor y editor. En 1974, Steve lleg6 al CIMMYT para ocupar un cargo similar, mismo que dej6 en 1977 cuando se traslad6 al departamento de comuni caciones del IADS (Servicio Internacional de Desarrollo Agricola). En la actualidad, Steve for ma pa rte del personal del recien establecido lnstituto Winrock para el Desarrollo Agricola . El CIMMYT desea expresar su agradecimiento al Sr . Robert Havener, Presidente de dicha instituci6n, por haber concedido a Steve el tiempo suficiente para escribir esta obra.En vista de sus singulares antecedentes, el CIMMYT le encarg6 a Steve que narrara la evoluci6n del Centro a la luz de los factores qu e han configurado la investigaci6n agricola internacional. Al cumpl ir con esta tarea, Steve proporciona un entendimiento mas profundo de la naturaleza del Centro y su funci6n cambiante en la comunidad de la investigaci6n agrfcola . Asf pues, la misi6n de Steve y el objetivo de esta publicaci6n son dar al lector una idea de lo que es el Centro, su agenda de investigaci6n y sus prioridades, para ubicar estas caracteristicas distintivas en un contexto retrospectivo .Prologo: Preparacion de! terrenoEl origen del CIMMYT se remonta a una invitaci6n efectuada durante la toma de posesi6n del Presidente de Mexico en 1940; de hecho, tal invitaci6n tenfa diversas ramificaciones , ya que respaldaba el concepto de que los problemas de producci6n de alimentos en los pafses pobres surgen de la falta de investigaci6n adecuada y no de la ausencia de una tecnologfa superior procedente de los pafses ricos. Con el tiempo, este punto de vista condujo a la creaci6n de un sistema de centros internacionales de investigaci6n agrfcola (uno de ellos es el CIMMYT) y del consorcio de donadores, el Grupo Consultivo de lnvestigaci6n Agricola Internacional (GCIAI), que suministra los fondos necesari6s para sus actividades. Antes de dedicar toda nuestra atenci6n al CIMMYT, es conveniente repasar los veinte anos anteriores a su fundaci6n de investigaci6n agrfcola en Mexico, que sentaron las bases para el CIMMYT.En la mencionada toma de posesi6n, el Secretario de Agricultura, Marte R. G6mez, le pidi6 al Vicepresidente de Estados Unidos, Henry Wallace , que brindara asistencia tecnica para ayudar a Mexico a superar su cr6nica escasez de alimentos. Wallace, que anteriormente habfa sido Secretario de Agricultura de Estados Unidos y habfa viajado mucho por Mexico, mostr6 una actitud favorable. Como esto sucedi6 antes del surgimiento de los organismos de ayuda al extranjero, Wallace recurri6 a la Fundaci6n Rockefeller, que tenfa experiencia en el establecimiento de programas internacionales de salud publica. La Fundaci6n estuvo de acuerdo en ayudar a satisfacer la petici6n de Mexico y en 1941 envi6 una comisi6n formada por tres eminentes cientfficos agrfcolas, E.C. Stakman, Richard Bradfield y Paul C. Mangelsdorf, para que inspeccionara las condiciones imperantes en Mexico e hiciera recomendaciones.En su informe, la comisi6n recomendaba atacar los problemas de producci6n de alimentos de Mexico mediante un enfoque triple: investigaci6n, educaci6n y extensi6n. En 1943, la Fundaci6n Rockefeller form6 un pequeno grupo de investigadores para que ayudara al gobierno mexicano . A fin de respaldar los esfuerzos encaminados a elevar los rendimientos tan rapido como fuese posible, el gobierno cre6 una organizaci6n aut6noma, la Oficina de Estudios Especiales, dentro de la Secretarfa de Agricultura.La Oficina de Estudios Especiales llev6 a cabo investigaciones sobre una amplia variedad de cultivos, incluyendo mafz y trigo, y, mas tarde, sobre ganado; estableci6 parcelas de investigaci6n y demostraciones en campos de agricultores y cre6 metodos de extensi6n . Emple6 a muchachos recien salidos de la universidad y les ayud6 a obtener becas para capacitaci6n avanzada . En su punto culminante, la Oficina de Estudios Especiales lleg6 a tener 21 investigadores estadounidenses y 100 mexicanos.un compromiso considerable con el sector agrfcola v, para 1960, se habfa iniciado una amplia gama de investigaciones.El experimento tuvo exito y, a mediados de los afios 50, Mexico estaba cerca de alcanzar la autosuficiencia en mafz y trigo . En cuanto se refiere al mafz, los factores que contribuyeron al mejoramiento fueron el incremento del area sembrada, mejores practicas de cultivo, selecci6n de variedades superiores procedentes de especies nativas y la inclusi6n de resistencia a las enfermedades. Se produjeron hfbridos que fueron muy bien aceptados por los agricultores en gran escala, aunque siguieron fuera del alcance de muchos pequefios agricultores a causa del limitado sistema de distribuci6n de semillas y de otros factores.En el caso del trigo, durante este perfodo se produjeron diversos avances cientfficos de gran importancia. La primera meta de mejoramiento fue obtener una gran resistencia a la roya del tallo, enfermedad que estaba devastando las zonas de Mexico en las que se cultivaba trigo. lnsatisfechos con el ritmo del progreso, los mejoradores de la Oficina de Servicios Especiales encontraron dos localidades de climas diferentes donde podfan cultivar, de manera sucesiva, dos generaciones cada afio y, de ese modo, reducir a la mitad el tiempo necesario para producir una variedad.Las dos localidades no s61o tenfan climas distintos, sino que habfa entre ellas una diferencia de 2,600 m en altitud y de 10 grados en latitud. Por tanto, las generaciones avanzadas estaban expuestas a diversos tipos de roya del tallo, asf como tambien a otras enfermedades y problemas ambientales contra los cuales se podfa seleccionar.Ademas, pronto se descubri6 que este sistema alternado de mejoramiento permitfa eliminar plantas sensibles al fotoperfodo . La desventaja de las variedades cuya floraci6n depende del fotoperfodo es que no se pueden cultivar con exito en zonas o estaciones que tengan una longitud de dfa diferente a aquella en la que fueron creadas. Las variedades insensibles al fotoperfodo que se obtuvieron mediante este sistema presentaron una mayor adaptaci6n, resistencia a la roya del tallo y a algunas otras enfermedades.Sin embargo, los agricultores que habfan comenzado a emplear fertilizantes en el trigo se frustraron al observar la tendencia de las plantas altas de trigo a caerse cuando se aplicaban dosis grandes . Los mejoradores de trigo en la Oficina de Estudios Especiales recurrieron a fuentes de los genes de acortamiento de la Norin 10 como una posible soluci6n. En aquel tiempo la Norin 10 se probaba en Estados Unidos para obtener trigo enano de invierno.En 1953 se efectuaron las primeras cruzas con variedades mexicanas de trigo de primavera. Tuvieron que transcurrir nueve afios antes de que fuese posible superar problemas tales como esterilidad y baja cal idad del grano al grado tal que Mexico pudiera lanzar sus primeras variedades semienanas. Estas variedades no s61o eran mas resistentes al acame, sino que presentaban una nueva estructura de planta que dio como resultado que una proporci6n mayor de materia seca pasara al grano. El resultado fue un salto gigantesco en el potencial de rendimiento del trigo que en unos cuantos afios harfa que el trigo mexicano fuera aclamado a nivel internacional.Durante la decada de 1950, el gobierno mexica no dio un gran impulso a la agricultura y para 1960 ya se habfa creado un grupo de agr6nomos mexicanos profesionales bien capacitados, se habfa establecido una escuela de agronomfa para posgraduados cuyo objetivo era la capacitaci6n de nuevos cientfficos y tecnicos, y se efectuabar un sinnumero de proyectos de investigaci6n. El gobierno decidi6 que ese era el momento oportuno para constituir un programa naciona l ce investigaci6n agrfcola (lnstituto Nacional de lnvestigaciones Agrfcolas o IN IA).En 1961 se cerr6 la Oficina de Estudios Especiales. Muchos miembros del persona l de 1 a Fundaci6n Rockefeller permanecieron en Mexico como asesores del INIA y con el fin de comu nic.::c a otros pafses las lecciones aprendidas en Mexico . La Oficina de Estudios Especiales ha bfa realizado algunas actividades a nivel internacio a algonos cientfficos j6venes de otros pafses latinoamericanos habfan participado en prograrr:;: de capacitaci6n en servicio y se habran establecido redes regionales, tales coma el Proyecto Centroamericano del Marz, para el intercambio de materiales geneticos e informaci6n. A partir de 1961, se crearon viveros internacionales de trigo para poner el trigo mexicano al alcance de todos las parses productores de trigo y se aceptaron las primeros aspirantes no procedentes del Hemisferio Occidental.En 1962, despues de una visita al nuevo lnstituto Internacional de lnvestigaci6n del Arroz, el Presidente Adolfo L6pez Mateos propuso crear una instituci6n agrrcola en Mexico con la ' colaboraci6n de la Fundaci6n Rockefeller . Se firm6 un convenio y en 1963 se cre6 el Centro Internacional de Mejoramiento de Marz y Trigo coma un programa de cooperaci6n de la Secretarra de Agricultura de Mexico y la Fundaci6n Rockefeller; el Centro absorbi6 al Programa lnteramericano de Mejoramiento de las Cultivos Alimenticios de la Fundaci6n .Pronto se hizo Bvidente que el alcance geografico de la nueva instituci6n era demasiado limitado; no contaba con las recursos suficientes para manejar el gran volumen de solicitudes de capacitaci6n y germoplasma que llegaban desde parses de Asia y Africa y, en consecuencia, las fundadores decidieron modificar el acta constitutiva.El 12 de abril de 1966, con una nueva acta constitutiva se cre6 el CIMMYT coma una organizaci6n sin fines de lucro, que es responsable ante un consejo de administraci6n elegido internacionalmente. La Fundaci6n Ford y la Fundaci6n Rockefeller se unieron a Mexico coma principales patrocinadores del CIMMYT.Durante las ultimas veinte afios ha aumentado enormemente la capacidad de las parses en desarrollo para resolver sus problemas agrrcolas. El C/MMYT ha contribuido a ese cambio que, al producirse, modific6 muchos aspectos de/ propio Centro, aunque ciertas caracterrsticas distintivas de sus actividades han permanecido constantes. Una de estas caracterfsticas es la producci6n en gran escala de diversos tipos de germoplasma que las investigadores nacionales pueden emplear directamente, adaptar o manipu/ar, ampliando el numero de opciones de las agricultores. Otra caracterfstica es la capacitaci6n destinada a incrementar la competencia y productividad de las especialistas que constituyen el nuc/eo de labor de mejoramiento de cultivos en las parses en desarrollo. Una tercera caracterfstica, que se relaciona estrechamente con la generaci6n de germoplasma y la capacitaci6n, es la participaci6n del Centro en redes mundiales de cientfficos de marz y trigo. Una cuarta caracterrstica es la creaci6n de procedimientos que ayudan a las cientfficos de la red a realizar su trabajo con mayor eficiencia y a obtener mejores resultados.Par ultimo, una quinta caracterrstica, menos tangible, pero no par el/o menos importante, es el total pragmatismo que se emplea para tratar de resolver las problemas de las seres humanos que padecen hambre. El personal de/ CIMMYT transmite este pragmatismo, por ejemp/o, mediante la capacitaci6n y las frecuentes reuniones y discusiones con las lrderes de las agricultores y con funcionarios gubernamentales de todos las nive/es. La gran asimilaci6n de esta actitud ha hecho que toda una generaci6n de cientfficos y tecnicos abandonen el escritorio y se lancen al campo con el fin de hacer frente y superar las problemas reales que afectan a las agricultores.En parte gracias a la labor de/ CIMMYT, dos ideas sumamente difundidas en las parses en desarrollo hace veinte afios ya no estan tan arraigadas; la primera es que las pequefios agricultores se obstinan en rechazar las ideas nuevas y la segunda es que las investigadores rara vez producen alga util.La base de la fuerza del CIMMYT radica en su naturaleza no polftica, en la constancia del suministro de fondos y en la estabilidad de su personal. Durante las ultimas 20 afios han cambiado muchas veces las vientos polfticos mundiales y regionales, pero la fraternidad de /os cientrficos agrfcolas que colaboran con el C/MMYT ha crecido y adquirido mayor fuerza. Una de las actividades mas importantes de/ CIMMYT es actuar coma centro imparcial de distribuci6n de informaci6n cientffica y material genetico, que, de otra manera, podrra verse b/oqueada por consideraciones polrticas o par obstaculos burocraticos.El constante respaldo que recibe el CIMMYT de donadores grandes y pequefios ha creado un clima en el que es razonablemente posible fijar metas importantes a largo plaza. Par otra parte, la estabilidad del personal brinda buenas perspectivas de que se pueda llevar a cabo la secuencia necesaria de pasos para la consecuci6n de las metas. Si bien es cierto que se producen cambios y modificaciones, las miembros del personal del C/MMYT sue/en ocupar sus puestos el tiempo suficiente para familiarizarse par comp/eta con las aspectos de la investigaci6n, adquirir un conocimiento profundo de las condiciones que afectan a la agricultura en diversas regiones y establecer relaciones personales con las cientrficos y lfderes locales. La libertad de poder trabajar a largo plaza es una ventaja que comparten s61o unas cuantas organizaciones nacionales e internacionales.El ano en que se fund6 el CIMMYT, 1966, fue de vital importancia para la creaci6n de una instituci6n agrfcola. En India, la cosecha de cereales habra disminuido drasticamente por segundo ano consecutivo; sobre una base per capita, la producci6n de alimentos habra alcanzado el nivel mas bajo desde la Segunda Guerra Mundial, y se prevera que tambien Pakistan tendrra una mala cosecha. El mundo vio el espectro de la hambruna cabalgar por las llanuras del subcontinente indio .En 1966, afio en que se fund6 el CIMMYT, el mundo via al espectro de la hambruna cabalgar par las llanos de/ subcontinente indio . El CIMMYT fue capaz de influir en la situaci6n de inmediato, pues contaba con el fruto de 20 afios de trabajo previo en Mexico .El CIMMYT pudo lograr de inmediato un efecto importante, beneficiandose de dos decadas de trabajo en Mexico. En 1966 se enviaron 18 mil toneladas de semillas de variedades mexicanas de trigo a la India como continuaci6n de las importaciones mas pequenas de semillas efectuadas el afio anterior. Durante varios anos, los cientfficos indios habran evaluado la adaptabilidad de las variedades mexicanas a las condiciones imperantes en India y estudiado cuales se comportaban mejor. En 1967, se importaron 42,000 toneladas de semilla en Pakistan, donde desde 1961 se habran realizado pruebas locales de materiales mexicanos.Estas importaciones produjeron ganancias significativas a corto y a largo plazo. Combinadas con practicas adecuadas de fertilizaci6n y de manejo de cultivos, disenadas por los cientrficos locales y del CIMMYT, las nuevas variedades incrementaron enormemente el rendimiento en India y Pakistan cuando en 1967 el clima se volvi6 mas favorable; los buenos resultados obtenidos hicieron que los agricultores se mostraran entusiastas respecto a las variedades aun mas mejoradas que los cientfficos locales habran comenzado a desarrollar empleando las variedades mexicanas como fuente de enanismo y otras caracterrsticas convenientes. Por otra parte, funcionarios progresistas del gobierno empezaron a instituir los cambios de polrtica necesarios para permitir a los agricultores contar con fertilizantes, semillas y demas insumos cuando los necesitaran .Un gran numero de parses productores Ide trigo siguieron el modelo establecido en India y Pakistan.En sus primeros anos como organizaci6n internacional, el CIMMYT prosigui6 con algunas actividades importantes que el programa mexicano predecesor habra iniciado, y formaliz6 y ampli6 muchas otras que habran sido iniciativas de menor importancia . Al desarrollo en gran escala del trigo harinero de primavera se agregaron programas completos de trigo duro , triticale y cebada, y se les aplicaron los principios de cruza masiva y rapido mejoramiento en las generaciones. Al igual que en el caso del trigo harinero, el potencia l de alto rendimiento y la amplia adaptaci6n eran metas fundamentales del mejoramiento de estos cultivos . Asimismo, se intensific6 la busqueda de resistencia a las principales enfermedades .Se ampliaron en forma considerable las pruebas internacionales . Se continu6 con el Vivero Internacional de Rendimiento del Trigo de Primavera, que habra comenzado a funcionar en 1963, pero para 1970 se enviaban tambien viveros de rendimiento anual de trigo duro y triticales. Se crearon nuevos tipos de viveros; los viveros de selecci6n permitieron evaluar detalladamente el comportamiento de las primeras lrneas de generaciones, sobre todo en cuanto a la resistencia a enfermedades . Los viveros F2 brindaron a los programas nacionales de mejoramiento que contaban con el personal adecuado la oportunidad de efectuar selecciones en poblaciones segregantes de base amplia.El Programa de Marz inici6 la labor de identificaci6n y creaci6n de diversas poblaciones productivas de amplia adaptaci6n, que se pusieron a disposici6n de los programas nacionales. Gracias a estos esfuerzos se ampli6 en gran medida la base del germoplasma que estaba a disposici6n de los mejoradores de ma rz de todo el mundo.Se cre6 un laboratorio de calidad de proterna a fin de suministrar informaci6n fundamental a las investigaciones del Programa de Marz sobre marz con alto contenido de lisina, u opaco-2 . Unos cuantos anos despues se comenz6 a trabajar en la qurmica de los cereales a fin de proporcionar al Programa de Trigo informaci6n sobre la calidad industrial.Se estableci6 un programa formal de capacitaci6n en servicio para cientfficos j6venes y se incremento el numero de participantes que se aceptaban cada afio . Se ofreci6 capacitaci6n en agronomra, fitopatologra y qurmica de los cereales, ademas de tecnicas de mejoramiento. Aument6 el numero de oportunidades para que las personas que ya tenran un doctorado CIMMYT y el GCIAI Los primeros exitos del CIMMYT y el IRRI (lnstituto Internacional de lnvestigaciones sobre el Arroz) fomentaron la idea de que se necesitaban esfuerzos mas extensos y diversificados en la investigaci6n agrfcola internacional. Las fundaciones Ford y Rockefeller, entidades creadoras del CIMMYT e IRRI, establecieron dos centros adicionales a fines de los sesenta: el lnstituto Internacional de Agricultura Tropical en 1967, y el Centro Internacional de Agricultura Tropical en 1968.Poco despues se hizo evidente que las dos-fundaciones por sf solas no podrfan suministrar durante mucho tiempo los fondos requeridos para financiar a los cuatro centros de manera adecuada. Por otra parte, habfa surgido una gran demanda de nuevos centros, lo cual puso de relieve que era esencial un financiamiento mas extenso. En respuesta, el Banco Mundial, la Organizaci6n de las Naciones Unidas para la Agricultura y la Alimentaci6n (FAO), el Programa de las Naciones Unidas para el Desarrollo (PNUD) y 12 donadores mas en mayo de 1971 crearon una nueva forma de asociaci6n internacional para apoyar al recien iniciado sistema de investigaci6n. La idea era formar un \"Grupo Consultivo sobre lnvestigaciones Agron6micas lnternacionales\" (el GCIAI) con el objeto de financiar una red internacional de centros de investigaci6n agrfcola, .. cada uno con su Consejo Directivo independiente, pero realizando actividades congruentes con la misi6n primordial del sistema. Una manifestaci6n impactante del exito de esta estrategia fue el rapido aumento de los fondos canalizados a traves del GCIAI, empezando con un presupuesto basico de US$ 9 millones en 1971 hasta casi US$ 200 millones en 1986. En sus comienzos el GCIAI inclufa 15 donadores y 4 centros; hoy dfa, el sistema cuenta con 40 donadores que respaldan las actividades de 13 centros. Cabe mencionar que, segun un estudio reciente del impacto del sistema, este ha resultado ser una estupenda inversi6n para los donadores.Es de alabar que el GCIAI ha evitado la burocratizaci6n en que a menudo cae este tipo de sistemas. Los gastos administrativos son mfnimos y el Banco Mundial proporciona al GGIAI el presidente y la secretarfa. El Grupo cuenta con un Comite Asesor Tecnico cuya secretarfa le es facilitada por la FAO y cuyos miembros son cientfficos destacados en la agricultura de todas partes del mundo. El GCIAI funciona sin acta constitutiva ni estatutos escritos y con el menor numero posible de \"reglamentos\"; los compromisos son verbales, y la cooperaci6n y el consenso son caracterfsticas de la organizaci6n.trabajasen en los programas de mafz y trigo. El interes que ponfa el CIMMYT en la capacitaci6n y en mantener el contacto con las personas que la habfan recibido, reflejaba la convicci6n de que, en la mayor parte de los pafses en desarrollo, el obstaculo mas importante para el progreso agrfcola era el lamentablemente reducido numero de investigadores con la capacitaci6n adecuada .A fin de colaborar de inmediato en el fortalecimiento de los prog ramas nacionales de investigaci6n, algunos miembros del personal del CIMMYT fueron asignados a importantes pafses productores de mafz o trigo. Para 1970, el CIMMYT tenfa alrededor de 20 cientfficos en pafses en desa'rrollo aparte de Mexico; la mayor parte de ellos participaban en programa bilaterales.Los programas nacionales de investigaci6n en cultivos hicieron avances impresionantes durante la decada de los 70. La proporci6n de cientfficos bien calificados aument6 y los programas de investigaci6n de un numero creciente de pafses dejaron de separar las disciplinas y reorganizaron la investigaci6n en grupos multidisciplinarios .Las dificultades de los primeros af\\os se vieron recompensadas cuando en 1970 Norman E.Borlaug, director del Programa de Trigo del CIMMYT recibi6 el Premio Nobel; el premio reconoci6 sus incansables esfuerzos por aplicar los conocimientos cientfficos a la erradicaci6n del hambre. Borlaug vio el premio como un sfmbolo \"del importante papel que desempef\\a la agricultura y la producci6n de alimentos en un mundo hambriento de pan y de paz\", y se denomin6 a sf mismo como \"tan s61o un miembro del gran equipo formado por un sinnumero de organizaciones y funcionarios, miles de cientfficos y millones de agricultores, en su mayorfa pequef\\os y humildes, que durante muchos af\\os han peleado una guerra silenciosa a menudo perdida en el frente de la producci6n de alimentos\".El principio de los setenta se vio marcado por la inauguraci6n de las instalaciones del CIMMYT a 45 km de la Ciudad de Mexico. El gobierno mexicano habfa conseguido las 43 hectareas de tierra que constituyen la estaci6n experimental y se las habfa prestado al CIMMYT.Al comienzo de la decada de los setenta tambien se adquirieron y desarrollaron cuatro subestaciones, que se encuentran a distintas altitudes y presentan importantes contrastes agroecol6gicos en comparaci6n con las condiciones que imperan en las instalaciones principales del CIMMYT (2,200 metros de altitud) y con el principal sitio de investigaci6n de trigo utilizado por el Centro, la estaci6n CIANO (39 metros de altitud) en el noroeste de Mexico (operada por la Secretarfa de Agricultural. El establecimiento de la estaci6n en Toluca (2,650 metros de altitud) provey6 al Programa de Trigo con un improtantfsimo segundo ciclo al af\\o en condiciones ambientales muy diferentes de las del CIANO . La inauguraci6n de la estaci6n de Poza Rica, en la costa de Veracruz, fue especialmente importante para el Programa de Mafz porque proporciona un lugar con las condiciones tropicales humedas que caracterizan a gran parte del mundo en desarrollo .Programas regionales. Durante los setenta, los programas nacionales de investigaci6n de cultivos lograron impresionantes avances; aument6 el numero de cientfficos bien capacitados y, en una cantidad cada vez mayor de pafses, los programas de investigaci6n abandonaron la separaci6n academica de las disciplinas y volvieron a organizarse sobre una base multidisciplinaria, siguiendo con frecuencia el modelo del CIMMYT y de otros centros internacionales de investigaci6n agrfcola.El auge de los programas nacionales hizo que aumentaran considerablemente las peticiones al CIMMYT en busca de asesorfa y consejo sobre la planificaci6n de la investigaci6n y las operaciones . Las visitas peri6dicas del personal del Centro no eran suficientes para satisfacer estas necesidades y tampoco era posible enviar personal a todos los pafses que solicitaban ayuda. Al mismo tiempo que conservaba los convenios bilaterales con algunos pafses, el CIMMYT comenz6 a recurrir cada vez a los programas regionales como un mecanismo eficaz para lograr que la mayor cantidad posible de pafses se beneficiaran de la ayuda proporcionada por los cientfficos asignados a estos programas.Las regiones del CIMMYT se definen como grupos de pafses, por lo general contiguos, que presentan ambientes y problemas de producci6n similares. El CIMMYT proporciona miembros de su personal a aquellas regiones que producen cantidades importantes de mafz o trigo y que estan de acuerdo en intercambiar germoplasma e informaci6n cientffica, con objeto de aprovechar de la mejor manera posible los escasos recursos de investigaci6n mediante la cooperaci6n .En 1979 existfan cuatro programas regionales de mafz, cuatro programas regionales de trigo y cuatro programas regionales de economfa. Las personas que forman parte de los programas regionales de mafz y trigo suelen ser especialistas en mejoramiento de cultivos o agronomfa de producci6n. Los economistas regionales colaboran estrechamente con los cientfficos regionales de mafz y trigo .Las obligaciones de personal regional consisten en colaborar con los cientfficos de los programas nacionales y ayudarlos a incrementar su capacidad; identificar los problemas tecnicos que afectan el empleo del germoplasma mejorado y ayudar a encontrar soluciones agron6micas y econ6micas mediante la investigaci6n en campos y demas medios a su alcance; ayudar a los programas nacionales a evaluar sus necesidades de capacitaci6n, y fomentar y apoyar las • actividades nacionales de mejoramiento de cultivos y producci6n.Los cientfficos regionales llevan a cabo estas tareas ayudando a los cientfficos nacionales a supervisar los diversos ensayos y viveros internacionales distribuidos por el CIMMYT; tambien colaboran en la reuni6n de materiales para efectuar ensayos regionales. Con el objeto de fomentar la integraci6n de la agronomfa de producci6n y de los ensayos en campos con los sistemas nacionales de investigaci6n, los miembros del personal regional ayudan a planificar experimentos agron6micos; asimismo, organizan cursos de capacitaci6n, talleres y viajes de estudio para los cient fficos nacionales. Asf pues , mediante el trabajo en equipo, los cientfficos regionales apoyan los esfuerzos de los investigadores nacionales por incrementar la productividad de los agricultores. El profundo conocimiento que poseen de los limitantes locales de la producci6n, tales como insectos y enfermedades o problemas sociecon6micos , tambien proporciona valiosa informaci6n para realizar investigaciones dentro del CIMMYT . lnvestigaci6n cooperativa . La decada de los setenta sefial6 el inicio de un gran numero de proyectos de investigaci6n cooperativa; estos proyectos son asociaciones en las que cada uno de los socios posee una capacidad especial o uni ca . Si trabajan juntos, los socios pueden avanzar con mucho mayor rapidez de lo que podrfan hacerlo por separado. Algunos de los socios del CIMMYT son programas nacionales de pafses donde una enfermedad o problema agron6mico es muy agudo; otros son organizaciones de pafses industrializados que cuentan con instalaciones especiales o han desarrollado tecnicas avanzadas.Algunos ejemplos de la investigaci6n cooperativa incluyen la investigaci6n de tres enfermedades del mafz: mildiu velloso en colaboraci6n con Tailandia y Filipinas; virus del rayado del mafz en cooperaci6n con Tanzania, Zaire y el lnstituto Internacional de Agricultura Tropical, y achaparramiento del mafz en colaboraci6n con Nicaragua y El Salvador.Otro proyecto cooperativo consiste en el mejoramiento de trigos de primavera e invierno mediante la cruza en gran escala de estos dos complejos germoplasmicos. Los principales socios de este proyecto son el programa nacional turco y la Oregon State University; el CIMMYT se hace responsable de desarrollar trigos de primavera a partir de la progenie de las cruzas, en tanto que los cientfficos de la Oregon State y del programa nacional turco crean trigo de invierno.El trabajo sobre el enanismo amarillo de la cebada , una enfermedad de los cereales diffcil de delimitar y que esta mas difundida de lo que se piensa normalmente, exige una colaboraci6n multifacetica. Con fondos provenientes de Italia, el CIMMYT selecciona lfneas avanzadas y ademas ayuda a diversos pafses de Africa y America del Sur que realizan pruebas de germoplasma e investigan la epidemiologfa de la enfermedad . Cuatro universidades italianas trabajan para elaborar tecnicas de identificaci6n y selecci6n del enanismo amarillo de la cebada en arroz y mafz . La Estaci6n Experimental de Rothamstead, Reino Unido, tambien coopera en la creaci6n de tecnicas de investigaci6n.La inmensa mayorfa de los programas de colaboraci6n tienen objetivos mas definidos : cooperaci6n con la Universidad de Hohenheim para la creaci6n de variedades endogamicas de centeno que sean fecundas, de poca paja y alto rendimiento para el programa de triticale; trabajo con el lnstituto de lnvestigaci6n Fitopatol6gica de los Pafses Bajos para crear programas de computadora que analicen datos patol6gicos; cooperaci6n con la Colorado State University sobre el empleo de tecnicas de cultivo de tejido en la selecci6n de mutantes de trigo para determinar la resistencia a las enfermedades y la tolerancia al estres; colaboraci6n con la North Carolina State University sobre la resistencia al nematodo nodulador, y cooperaci6n con la University of Missouri en la investigaci6n de aflatoxinas en los mafces tropicales.Estos convenios de colaboraci6n brindan resultados de investigaci6n basica y aplicada que son de gran utilidad en los programas de investigaci6n orientados a la producci6n que realizan el CIMMYT y los programas nacionales.Tambien sirven para que los miembros del personal del CIMMYT esten al tanto de los progresos logrados en investigaciones nuevas y constituyen una oportunidad para el intercambio de ideas con cientfficos de pafses que poseen una tecnologfa avanzada . Asimismo se incrementaron las pruebas internacionales de trigo harinero, trigo duro, triticale y cebada. En 1979, se distribuyeron 38 tipos diferentes de viveros entre los colaboradores de 11 5 pafses. Los viveros inclufan materiales para la cruza y selecci6n, tanto de generaciones precoces como avanzadas, y variedades comerciales; estos viveros ofrecfan a los programas nacionales de mejoramiento, tanto grandes como pequefios, germoplasma adecuado a su investigaci6n. La abundancia de informaci6n sobre el comportamiento que se obtuvo de las pruebas efectuadas con los viveros en diferentes localidades brind6 a los mejoradores de los programas nacionales y del CIMMYT una base s61ida para elegir a los progenitores de nuevas cruzas.El aspecto econ6mico. A principios de los anos setenta, economfa pas6 a ser el tercer programa de investigaci6n, en orden de importancia, del CIMMYT. Los primeros estudios econ6micos efectuados tenfan por objeto descubrir por que los productores de mafz y trigo estaban o no dispuestos a adoptar nuevas tecnologfas; los estudios demostraron que era posible identificar condiciones agroclimaticas y sociecon6micas que influfan en los patrones de adopci6n . La investigaci6n posterior se centr6 en la creaci6n de procedimientos para facilitar la colaboraci6n de los cientfficos agrfcolas y los economistas y comprender los factores que los agricultores consideraban importantes para la toma de decisiones. Como consecuencia de este trabajo, se crearon directrices que basaban la creaci6n de nueva tecnologfa en las necesidades de los agricultores. Un numero cada vez mayor de programas nacionales utilizan estos procedimientos como resultado de los programas de capacitaci6n y los talleres organizados por los miembros del personal del CIMMYT.A mediados de los setenta, el CIMMYT instal6 su primera computadora para dar apoyo a los Programas de Mafz, Trigo y Economfa. Se crearon procedimientos para analizar y procesar el creciente volumen de informaci6n obtenida de los ensayos internacionales de mafz y trigo. Se disenaron programas de computadores para producir libros y r6tulos de campo y etiquetas para los paquetes de semillas que utiliza el Programa de Trigo cada temporada. Por otra parte, se efectuan analisis estadfsticos especiales para la investigaci6n econ6mica y otros estudios.Capacitaci6n. En 1970, cuando se termin6 la construcci6n de los dormitorios y las aulas que form parte de las nuevas instalaciones, el CIMMYT pudo ampliar su programa de capacitaci6n. En 1971 y 1972, el numero de personas que tomaban cursos en servicio excedi6 al total de los cinco anos anteriores.La inclusi6n de encargados de capacitaci6n de tiempo completo hizo posible formalizar el adiestramiento y aumentar los tipos de cursos en servicio. En el Programa de Mafz se ofrecfan cursos de investigaci6n de la producci6n, mejoramiento de mafz y evaluaci6n de la calidad protefnica. En el Programa de Trigo, habfa cursos de mejoramiento, patologfa, agronomfa de la producci6n y tecnologfa de los cereales. Desde entonces se han creado otros cursos en areas tales como planificaci6n y analisis de las encuestas sobre agricultores y manejo de estaciones experimentales.Los cursos en servicio duran de tres a siete meses y la mayorfa combina el trabajo en el aula con el trabajo en el campo, junto a los cientfficos del CIMMYT. Por lo general, los cursos se disefian para incrementar la motivaci6n de los cientfficos j6venes dentro de un contexto multidisciplinario, aumentar los conocimientos y habilidades tecnicas, transmitir los pasos y principios necesarios para definir los objetivos de la investigaci6n y realizar experimentos de campo, y ensefiar los procedimientos adecuados para formular recomendaciones a los agricultores .Ademas de los cursos en servicio, el CIMMYT brinda diversas oportunidades de adiestramiento. Los investigadores experimentados de los programas nacionales pueden pasar algun tiempo en el CIMMYT como cientfficos visitantes para familiarizarse con los programas de investigaci6n del CIMMYT. Los asociados posdoctorados se unen a los programas de investigaci6n durante perfodos de uno a dos anos; algunos de ellos pasan despues a formar parte del personal del CIMMYT. Cada afio se aceptan unos cuantos candidatos al doctorado para que lleven a cabo la investigaci6n de su tesis bajo la supervisi6n de uno de los miembros del personal del CIMMYT.El cambio mas espectacular en las actividades del CIMMYT durante los anos ochenta ha sido su creciente interes en mejorar la estabilidad de rendimiento, sobre todo en las zonas marginales, aunque la creaci6n de germoplasma de gran adaptabilidad y alto rendimiento sigue siendo una de sus metas principales. Mucha parte de los recursos de investigaci6n se dedican a la conservaci6n de la estabilidad del rendimiento mediante la mayor y mas amplia resistencia a los insectos y enfermedades. No obstante, el programa de investigaci6n dedica cada vez mas atenci6n a las areas menos favorecidas donde la revoluci6n en la productividad que ha tenido lugar en los ultimas 20 anos s61o ha alcanzado a una fracci6n de los agricultores.Las zonas marginales se caracterizan por factores limitantes tales como alta incidencia de enfermedades, sequfa, suelos acidos y frfo o calor excesivo. Algunas zonas marginales sufren cada af\\o marcadas fluctuaciones en las condiciones de cultivo (causadas, por ejemplo, por patrones irregulares de precipitaci6n pluvial) que desalientan la inversi6n en tecnologfas que incrementen la productividad. Otras areas presentan rendimientos siempre bajos a causa de obstaculos inherentes a la producci6n como la incidencia de enfermedades sumamente destructivas o infertilidad del suelo.Como parte de su interes por las zonas marginales, el CIMMYT hace hincapie en la generaci6n de germoplasma que sea mas fiable en cuanto se refiere al rendimiento. Una forma de lograrlo es aplicar procedimientos convencionales de mejoramiento para obtener, con un cultivo, una variaci6n genetica que brinde mayor tolerancia a condiciones ambientales especfficas, tales como sequfa o calor o frfo excesivo. Existe otra forma menos convencional que consiste en encontrar en generos afines grandes fuentes de resistencia a los distintos tipos de estres que impiden el crecimiento productivo de los cultivos (alta incidencia de ciertas enfermedades o insectos) y fuentes de tolerancia a condiciones perjudiciales del suelo (niveles t6xicos de aluminio, acidez excesiva o salinidad), y transferirlas a variedades que serfan productivas si no las padecieran.El cambio mas pronunciado en las actividades def C/MMYT durante las 80 ha sido el impu/so cada vez mayor que se da al mejoramiento de la estabi/idad de rendimiento, sabre todo en las zonas marginales .La investigaci6n del CIMMYT sobre cruzas amplias (el cruzamiento de diferentes cultivos o de un cultivo y una especie silvestre) tiene importantes implicaciones para las zonas marginales. Este tipo de trabajo se realiza tanto en mafz, donde los principales elementos son mafz y Tripsacum (una especie silvestre affn al mafz), como en trigo, donde se utilizan especies silvestres afines como Agropyron, Elymus y Aegi/ops. El triticale, un cultivo creado mediante el cruzamiento amplio, presenta una productividad excelente en suelos acidos. La meta de la mayorfa de las cruzas amplias es transferir genes utiles, aunque escasos, a genotipos productivos de mafz y trigo.Los cientfficos de/ CIMMYT dedican mayor atenci6n a las ambientes menos favorables donde el agricultor aun no se beneficia de las tecnologfas agrfcolas mejoradas.12 Hibrldos de maiz. Para algunos agricultores que cultivan mafz en condiciones mas favorables, los hfbridos de mafz, en combinaci6n con practicas agron6micas mejoradas, podrfan generar considerables incrementos en la productividad. Si bien el CIMMYT presta mayor• atenci6n a las variedades de polinizaci6n libre, ha iniciado un programa de creaci6n de hfbridos en respuesta a las peticiones de algunos programas nacionales de mafz. El CIMMYT producira informaci6n de mejoramiento acerca de sus complejos y poblaciones, que ayudara a los cientfficos a crear hfbridos; por otra parte, tambien se hara cargo de la investigaci6n y capacitaci6n necesarias para la creaci6n y producci6n de hfbridos no convencionales:Ampliaci6n de bancos de germoplasma . A fin de apoyar la busqueda de las caracterfsticas especiales que se necesitan en las zonas marginales, durante los ochenta el CIMMYT reforz6 sus bancos de germoplasma mejorando sus instalaciones de almacenamiento y creando nuevo puestos para el personal.El banco de germoplasma de marz del CIMMYT se remonta a las amplias colecciones de especies nativas (variedades primitivas) de marz efectuadas por la Oficina de Estudios Especiales en los anos cuarenta en Mexico, el Caribe y Guatemala. En anos posteriores se agregaron colecciones procedentes de Brasil, Bolivia y Peru. El banco cuanta con la mejor colecci6n del mundo de especies nativas del Hemisferio Occidental, el lugar de origen del marz. Hasta hace poco tiempo, la funci6n principal del banco era suministrar materiales utiles para el Programa de Marz del CIMMYT, pero en la actualidad tiene tambien otras responsabilidades, como la conservaci6n a largo plaza de las especies nativas del hemisferio .La colecci6n cuenta con unas 10,000 entradas, pero se calcula que alrededor del 20% son duplicados o repeticiones que se descartaran en el futuro . Las instalaciones de almacenamiento a baja temperatura, terminadas en 1985, hicieron posible alargar a mas del doble la vida util de las semillas y, en consecuencia, reducir la frecuencia de regeneraci6n de una vez cada 20 anos a una vez cada 100 a nos . La regeneraci6n menos frecuente reducira tambien la fluctuaci6n genetica, el lento cambio que se produce en la composici6n genetica cada vez que se regenera una accesi6n. Por otra parte, las muestras duplicadas que se descarten se conservaran en otros bancos de germoplasma.En la actualidad se disena para el banco un sistema computarizado de manejo de datos, en preparaci6n para el cual se reune informaci6n sobre el origen y diversas caracterfsticas de las entradas.El banco tambien guarda especies silvestres afines al marz : los diversos grupos taxon6micos de teosintle y miembros del genera Tripsacum . Si bien es cierto que tal vez estas plantas presenten variaciones geneticas que no se encuentran en el marz, su caracterizaci6n y clasificaci6n es una tarea a largo plaza.El banco de germoplasma de trigo del CIMMYT cuenta con germoplasma de trigo harinero, trigo duro, triticale y cebada que tienen caracterrsticas convenientes. Antes de la decada de los ochenta, el CIMMYT s61o conservaba una colecci6n de trabajo que utilizaban •sus propios mejoradores, pero a partir de 1981, cuando se termin6 la construcci6n de las instalaciones del nuevo banco y se contrat6 a un cientffico experimentado para dirigirlo, el CIMMYT es capaz de satisfacer las peticiones hechas por mejoradores ajenos al Centro, que necesitan germoplasma con caracterfsticas agron6micas especfficas de resistencia a las enfermedades y de calidad .El banco de trigo se inici6 con cerca de 20,000 entradas no duplicadas, pero para 1985 tenfa alrededor de 60,000 entradas, que incluyen trigos harineros, trigos duros, triticale, cebada y entradas de germoplasma interespecffico . La principal fuente de material del banco son los viveros internacionales de selecci6n y rendimiento y los bloques de cruzamiento de variedades de primavera e invierno del CIMMYT.Cada una de las entradas de germoplasma se evalua respecto a unas 40 caracterrsticas relacionadas con la morfologra, comportamiento agron6mico, resistencia a las enfermedades y calidad del grano. Las instalaciones del CIMMYT permiten el almacenamiento a corto y mediano plazo. Para el almacenamiento a largo plaza, se envfan juegos de duplicados de las entradas a bancos de germoplasma de otros lugares. En 1985, los programas nacionales recibieron muestras de 2,600 entradas del banco.Capacitaci6n . En los ochenta, mientras continuaban los cursos de capacitaci6n en servicio en Mexico, el CIMMYT comenz6 a establecer mas cursos en el extranjero, en colaboraci6n con los cientfficos de los programas nacionales. Por ejemplo, en 1985 se llevaron a cabo varios cursos en los parses, con la En los 80, al mismo tiempo que continua con los cursos en servicio en Mexico, el CIMMYT dio comienzo a un mayor numero de cursos en el extranjero con la colaboraci6n de los colegas de los programas nacionales.14Gran parte de los cursos impartidos en el extranjero se concentran primordialmente en la investigaci6n en campos. En estos cursos, el CIMMYT utiliza el sistema de llamadas, un nuevo procedimiento de instrucci6n que reune a los participantes del curso durante una o dos semanas en momentos importantes del ciclo de cultivo. Cada llamada se dedica a ciertos aspectos del proceso de la investigaci6n en campos (realizaci6n de encuestas en campos para evaluar las condiciones de los agricultores, analisis de dichas condiciones y planificaci6n de ensayos, manejo de ensayos, analisis de los resultados experimentales, formulaci6n de recomendaciones) y se subraya la importancia de aprender haciendo las cosas . Es posible que un curso de este sistema de llamadas se concentre de manera exclusiva en ciertas habilidades o que trate de abarcarlas todas; en el ultimo caso, el curso puede durar hasta 18 meses e incluir por lo menos cinco llamadas; durante los perfodos que transcurren entre una llamada y otra, los participantes reanudan sus obligaciones normales .Durante los ochenta, el Programa de Economfa ha creado y ensefiado procedimientos para la investigaci6n en campos, al mismo tiempo que extiende sus actividades a otras areas. Ahora se presta mayor atenci6n al analisis de la informaci6n relacionada con las economfas mundiales del mafz y del trigo . El analisis de las tendencias de producci6n, consumo y comercializaci6n de estos cultivos constituye una parte fundamental de la labor del Programa. Uno de los principales resultados de este interes es la publicaci6n, en afios alternados, de \" Facts and Trends\" de mafz o de trigo , una publicacion qve ademas de resumir las principales tendencias del cultivo, presta especial atenci6n a un tema determinado. Algunos de los temas recientes son la economfa de la producci6n de semillas de mafz, aspectos de comercializaci6n y fijaci6n de precios del trigo en los pafses en desarrollo, distintos empleos del mafz como alimento y forraje y tendencias de consumo e importaci6n de trigo.Otra actividad emprendida por el Programa de Economfa es la creaci6n de un conjunto de procedimientos de gran utilidad pa ra las pe rsonas encargadas de tomar desiciones res pecto a la asignaci6n de recursos de investigaci6n entre los distintos cultivos y regiones. Las tecnicas incluyen la estimaci6n del costo real de los recursos empleados en la producci6n de productos que compiten entre sf por los recursos . Se requiere una mezcla de informaci6n econ6mica y biol6gica para efectuar el analisis . El Programa colabora con los colegas de los programas nacionales en el desarrollo de los estudios de caso, que se emplean en la elaboraci6n de un manual de procedimientos utiles para los administradores de los programas nacionales de investigaci6n .Ademas de proseguir con su trabajo de investigaci6n en campos, el Programa de Economfa comenz6 a explorar formas de utilizar la informaci6n a nivel de campo para evaluar cie rtos aspectos relacionados con las polfticas; la informaci6n ge nerada por la investigaci6n en campos es util no s61o para formular recomendaciones para los ag ricultores, sino tambien para determinar la idoneidad de la entrega de insumos, tipos de creditos, sistemas de informaci6n y mercados. En la actualidad se trabaja en la identificaci6n de perdidas directas de la producci6n relacionadas con fallas en la puesta en practica de las polfticas vigentes. Asimismo, se crean metodos efectivos en cuanto a los costos para llevar a cabo ese tipo de investigaci6n, que formaran parte de las actividades de capacitaci6n de Programa de Economfa.El CIMMYT y la biotecnologia . Se proclama que los ochenta marcan el inicio de la era de la biotecnologfa. Muchas universidades y laboratorios avanzados se dedican a la creaci6n de valiosos procedimientos para la investigaci6n biol6gica; sin embargo, el CIMMYT no se dedica a la creaci6n de biotecnicas, aunque mediante su labor con el triticale y otras cruzas amplias, emplea y refina tecnicas nuevas a medida que demuestran su utilidad.Por ejemplo, en la cruza de mafz y Tripsacum, son esenciales metodos y tecnicas de cruzamiento especiales para rescatar Lln. embri6n viable (cultivo de em briones). Los recientes progresos realiza dos en dichas tecnicas han elevado la producci6n de hfbridos de 1 por cada embriones se vuelven a utilizar al retrocruzar el hfbrido de mafz y Tripsacum con mafz en un intento por transferir las caracterfsticas beneficiosas del Tripsacum al mafz .El CIMMYT tambien colabora con laboratorios dedicados a la creaci6n de biotecnicas y les brinda una amplia gama de germoplasma, asf como tambien sus excepcionales instalaciones para que incorporen nuevas caracterfsticas a genotipos de utilidad comercial. Un ejemplo de este tipo de colaboraci6n es la labor que realiza el CIMMYT con CSIRO en Australia sobre la variaci6n somacl6nica. Los cultivos de una sola celula pueden acelerar la introgresi6n de caracterfsticas cuya transferencia mediante' metodos sexuales no es probable.Asf pues, el CIMMYT esta en posici6n de aprovechar los nuevos procedimientos a medida que surgen y de hacer que los beneficios derivados de los mismos lleguen con rapidez a los pafses en desarrollo.El CIMMYT es un organismo que sirve a los programas nacionales de investigaci6n agrfcola de los pafses en desarrollo; gracias a su labor conjunta, el CIMMYT y los programas nacionales han creado germoplasma y tecnicas nuevas, aunque son las pruebas locales, la evaluaci6n y la adaptaci6n efectuadas por los programas nacionales las que determinan si las innovaciones seran aceptadas favorablemente por la mayorfa de los agricultores . A lo largo de su historia, el CIMMYT ha hecho del apoyo y fortalecimiento de los programas nacionales un principio fundamental de su filosoffa .En el futuro, al igual que en el pasado, esta asociaci6n sera la clave para ayudar a millones de familias de agricultores cuya vida depende de la producci6n de mafz o trigo .El personal de/ Programa de Economfa en la actualidad crea procedimientos para facilitar la investigaci6n de los programas nacionales en tres areas: la generaci6n de tecnologfa, la asignaci6n de los recursos de la investigaci6n y la aplicaci6n de polfticas.El objetivo de la investigaci6n sobre el mejoramiento de mafz del CIMMYT es brindar a los agricultores mayor numero de opciones para elevar la productividad de los recursos que dedican a la producci6n de mafz. Como el mafz se cultiva•en una variedad mas amplia de ambientes que cualquier otro tipo de cereal, s61o los investigadores y agricultores locales pueden identificar la combinaci6n exacta de caracterfsticas en las variedades que se requieren en una localidad.El CIMMYT fomenta y participa en la generaci6n de germoplasma de mafz a nivel internacional y ofrece productos mas bien intermedios que terminados, que son adecuados a extensas zonas agroecol6gicas y no a espacios ecol6gicos especfficos.16El CIMMYT participa y promueve la generaci6n de germoplasma de mafz a nivel internacional. El programa de mejoramiento del CIMMYT genera productos intermedios, no terminados, que suelen ser adecuado~ para amplias zonas agroclimaticas (mega ambientes), aunque quiza no se adapten a un nicho ecol6gico determinado. Por esta raz6n, deben someterse a ciertas pruebas de adaptaci6n antes de ser entregados a los agricultores.En el programa internacional de pruebas de mafz del CIMMYT, los programas nacionales son de gran importancia para determinar la forma en que se mejoraran los materiales. El sistema concede a los programas nacionales voz y voto en la selecci6n de materiales geneticos y les brinda la oportunidad de tomar germoplasma en cualquier fase de mejoramiento para sus propios programas de mejoramiento o posiblemente para su lanzamiento.Conceptualmente, el sistema es como un embudo, con una gran cantidad de material genetico que entra por uno de sus extremos y una pequena cantidad de material genetico depurado y probado que sale por el otro. El proceso de mejoramiento comienza con los complejos geneticos, es decir, grupos de variedades y lfneas mas bien diversas, que se clasifican de acuerdo con la zona de adaptaci6n, la duraci6n del crecimiento y el tipo y color del grano . El numero de complejos varfa con los a nos, aunque hoy en dfa existen 37. Los complejos se cultivan cada ano, con agregados peri6dicos tomados del banco de germoplasma y de otras fuentes . Se les somete a una selecci6n moderada, aunque el objetivo es conservar el caracter basico del complejo como reservorio masivo de variabilidad genetica clasificada.La mejor fracci6n de la mayorfa de los complejos proporciona la base para formar 32 poblaciones depuradas (32 de estas se usan en la actualidad); cada poblaci6n se clasifica segun la adaptaci6n ambiental y las caracterfsticas principales:• clima: tropical, subtropical o templado• altitud: tierras bajas o tierras altas• madurez: precoz, intermedia o tardfa• color de grano: amarillo o blanco• tipo de grano: cristalino, dentado o harinoso Las poblaciones se someten a una fuerte presi6n de selecci6n basada en las pruebas internacionales. Cientificos nacionales de todo el mundo llevan a cabo los Ensayos lnternacionales de Pruebas de Progenie (IPTT); un IPTI consta de 250 familias de hermanos completos seleccionadas de una poblaci6n y cada IPTT se cultiva en seis localidades, aunque las localidades sue I en ser diferentes de una poblaci6n a otra.Con base en la informaci6n obtenida a partir de esos ensayos, los cientfficos del CIMMYT seleccionan a las mejores 50 o 60 familias de cada poblaci6n para efectuar el mejoramiento dentro de las familias, la recombinaci6n y la regeneraci6n de la poblaci6n.La informaci6n obtenida tambien indica cuales familias se elegiran para formar variedades experimentales. Ciertas variedades experimentales se forman con las 10 familias que presentan el mejor comportamiento en cada IPTT de cada una de las localidades. Otras se forman a partir de cada poblaci6n sobre la base de las 1 O mejores familias en todas las localidades en las que se prob6 la poblaci6n.Estas variedades pasan a la etapa F2 y se envfan a 30 6 50 colaboradores de todo el mundo como Ensayos de Variedades Experimentales. Las variedades que tienen el mejor comportamiento en esos ensayos se ponen a prueba una vez mas en los Ensayos de Variedades Elite, que se llevan a cabo en 60 u 80 localidades.Los datos obtenidos de los tres tipos de ensayos se ponen a disposici6n de los mejoradores de maiz de todo el mundo que colaboran con el programa, y ellos deciden si deben usar el germoplasma en su propia labor de mejoramiento o someterlo a prueba para su posible lanzamiento como variedad. Como muchos colaboradores participan en los ensayos, es frecuente que ya tengan la semilla en sus manos, aunque el CIMMYT suministra pequer'\\as cantidades de semilla de materiales seleccionados a los programas nacionales que lo soliciten.La red internacional ha sometido a prueba mas de 850 variedades experimentales durante los ultimos diez ar'\\os; con este material, cientfficos de 43 programas nacionales han creado y lanzado casi 1 50 variedades de hfbridos .El segundo indicador del progreso es la evaluaci6n sistematica de materiales mejorados.Por ejemplo, en 1982-83 se llevaron a cabo ensayos de variedades en multiples loca lidades para determinar si el mejoramiento de las' poblaciones en realidad producfa mejores variedades . Los resultados ser'\\alaron que las variedades experimentales que habfan surgido en los ciclos de selecci6n mas recientes rendfan mas, eran mas precoces y mas cortas que las de los ciclos originales. Ademas, los analisis de estabilidad indicaron que estas variedades se adaptaban mejor a ambientes de bajo rendimiento y se comportaban mejor en localidades de rendimiento intermedio y elevado.En 1970, las variedades modernas de trigo y arroz habfan demostrado sin lugar a dudas las ventajas de la poca altura para elevar el potencial de rendimiento y la respuesta al manejo adecuado. No obstante, la mayorfa de las cepas de mafz tropical y subtropical de tierras bajas que constituran el germoplasma empleado en el programa de mejoramiento del CIMMYT tenfan mas de tres metros de altura. Estas cepas tenian un indice de cosecha de 0.3, que significa que el grano s61o representaba alrededor de una tercera pa rte del peso total de la planta. El fndice de cosecha de las variedades modernas de trigo y arroz y de las variedades comerciales de la faja maicera de Estados Unidos era de aproximadamente 0.5 .La ventaja que ofrece una planta con un alto indice de cosecha es que, si se siembra con una densidad alta, produce aproximadamente la • misma cantidad de materia seca por hectarea que una planta con bajo indice de cosecha, pero el rendimiento de grano es mucho mas alto.A fines de los sesenta, el CIMMYT puso en marcha un proyecto especial para probar los beneficios de una altura menor en el maiz tropical. Los mejoradores utilizaron la selecci6n recurrente para acumular genes menores que dieran una altura menor; aplicaron el esquema de mejoramiento en un intento por reducir de manera progresiva la altura de la Tuxper'\\o-1, una de las poblaciones de maiz tropical del CIMMYT de mayor adaptaci6n y mas alto rendimiento .La Tuxpeno Crema-1, una poblaci6n de mafz tropical creada por el Dr. E. Johnson, fue sometida a selecci6n para reducir la altura de plants durante cerca de 21 ciclos y, como resultado, su eficiencia de rendimiento fue mejorada de manera significativa.En cada ciclo, en el momenta de la polinizaci6n, se elegfan para el cruzamiento s61o las familias con una altura inferior a la media. Luego, en el momenta de la cosecha, las mazorcas se colocaban en la base de cada planta a fin de poder evaluar visualmente el rendimiento, el acame y la resistencia a las enfermedades. Partiendo de esa base se rechazaban algunas de las familias o plantas seleccionadas. La densidad de la siembra se increment6 a medida que disminufa la altura de la planta .Despues de 18 ciclos se habfa logrado reducir la altura de la planta casi a la mitad, a 156 centfmetros, el fndice de cosecha se habfa elevado a 0.4 7 'y el rendimiento habfa aumentado en una tercera parte , a 6.2 t/ha, un rendimiento excepcional para las tr6picos. Ademas el material de ciclo 18 era de madurez mas precoz.Despues de 18 ciclos de selecci6n recurrente, la altura de la variedad Tuxpeno se habfa reducido casi a la mitad, el fndice de cosecha habfa aumentado a 0 .47 y el rendimiento habfa incrementado un 33% (a 6 .2 t/ha), cifra excepcional en el mafz tropical.18 Fuentes de mejoramiento . Gran parte del mejoramiento en el rendimiento se relacion6 con la capacidad de las plantas de menor tamafio de tolerar una alta densidad de siembra sin sufrir acame y sin presentar un incremento en el numero de plantas esteriles. La disminuci6n de la altura de la mazorca fue la principal responsable de la reducci6n del acame . El acortamiento del intervalo entre la dispersi6n del polen y la emisi6n de estigmas produjo una ligera reducci6n en la proporci6n de plantas esteriles.Comparaciones efectuadas entre la poblaci6n original y la poblaci6n de altura reducida en ensayos realizados en condiciones menos favorables, incluyendo campos de agricultores con escaso empleo de nitr6geno y control de malezas deficiente, demostraron que las mejoras en el rendimiento no se limitaban a las estaciones experimentales bien manejadas. De hecho, partiendo de una base porcentual, la ventaja en el rendimiento de la poblaci6n de altura reducida fue mayor en las localidades de bajo rendimiento, lo cual indica que dicha poblaci6n adquiri6 una mayor tolerancia al estres en general. La Tuxpefio-1 (ciclo 18) tambien result6 ser un buen progenitor para la producci6n de hfbridos.El estudio tambien demostr6 que existe un lfmite para el incremento del rendimiento que se puede obtener de la selecci6n para reducir la altura de la planta , ya que despues del decimo quinto ciclo se produjeron muy pocos cambios en el rendimiento de grano . Sabre la base de este estudio , la reducci6n de la altura de la planta se convirti6 en un objetivo de mejoramiento de maxima prioridad del programa de mejoramiento de mafz del CIMMYT . Hoy dfa la mayor part~ de las poblaciones de mafz del CIMMYT presentan una altura de planta generalmente aceptable, indices de cosecha mas altos , menor acame y mayor capacidad de respuesta a las fertilizantes.A nivel mundial, es raro que el mafz se cultive con irrigaci6n . En las campos de las agricultores, el cultivo suele pasar varias semanas sin lluvia en algun momenta de la temporada de cultivo. Sin embargo, el estres producido par la sequfa representa un peligro no s61o cuando deja de !lover temporalmente, sino tambien cuando, en climas extremadamente calidos, las plantas transpiran mas agua de la que pueden extraer del suelo, aun cuando llueva con regularidad .En Africa tropical, parece que las variaciones en la producci6n de mafz dependen mas de la cantidad y el momenta en que se produce la lluvia que de cualquier otro factor. En consecuencia, disponer de variedades con una mejor tolerancia a la sequfa podria mejorar la estabilidad del abastecimiento de alimentos entre las pequefios agricultores .La planta de mafz es particularmente vulnerable a la escasez de agua en dos etapas de su crecimiento. Despues de la siembra, si las semillas al germinar no pueden extraer suficiente agua del suelo, las plantulas no se estableceran en forma adecuada. La segunda eta pa critica son las dos semanas antes y despues de la floraci6n. lndicadores indirectos . El mejoram iento encaminado a obtener tolerancia genetica a la sequfa es complicado porque las indicadores directos, tales coma la morfologfa de las rafces y el ajuste osm6tico, requieren demasiado tiempo para poderlos utilizar en la selecci6n de plantas para el cruzamiento . En lugar de ellos, a partir de 1976, las cientfficos de mafz del CIMMYT, pusieron a prueba algunas medidas indirectas para utilizarlas coma criterios del mejoramiento de la tolerancia a la sequfa. Para esta investigaci6n se seleccion6 la Tuxpefio-1, una poblaci6n productiva del programa de mejoramiento del CIMMYT, a causa de su buen desempefio en localidades de temporal. Se cultiv6 con irrigaci6n normal y bajo dos niveles de estres producidos par la sequfa, creados limitando la irrigaci6n. Se consideraba estres grave el cese de la irrigaci6n durante tres semanas despues de la emergencia de las plantulas, y estres moderado, el cese de la irrigaci6n dos semanas antes de la emisi6n de estigmas .Con un esquema de selecci6n recurrente, los investigadores crearon una variedad sintetica resistente a la sequia, empleando cinco indicadores del estres, que eran : indice del largo de la hoja y el tallo, intervalo entre la antesis (dispersi6n del polen) y la emisi6n de estigmas, indice de hojas muertas, temperatura del follaje y rendimiento de grano. Considerados en conjunto, estos indicadores brindan informaci6n indirecta sobre la profundidad e intensidad del arraigamiento, la capacidad para ajustar la actividad osm6tica a periodos de insuficiencia de agua y la tolerancia general al estres .Despues de seis ciclos de selecci6n recurrente, la variedad sintetica tuvo un rendimiento de 0.2 t/ha en condiciones de estres grave producido por la sequia, 24% mas que la poblaci6n original. En condiciones de sequia moderada, el rendimiento fue de 3 .2 t/ha, 29% mas que la poblaci6n original, y con irrigaci6n normal, tuvo un rendimiento de 6.6 t/ha, 10% mas que la poblaci6n original. La raz6n principal del mayor rendimiento de la poblaci6n resistente a la sequia cuando se cultivaba en condiciones de estres producido por la sequia fue el mayor numero de granos por planta y no el incremento del peso por grano.En un experimento paralelo, los investigadores compararon la selecci6n segun los cinco indicadores con la selecci6n basada unicamente en el rendimiento y descubrieron que los indicadores eran mucho mejores. En especial, la selecci6n sencilla en condiciones de sequia grave produjo una variedad que presentaba un desempeno deficiente en condiciones normales de irrigaci6n, que indica que la capacidad de respuesta a condiciones con agua suficiente se puede perder con facilidad .Tolerancia general al estres . Los experimentos tambien demostraron que en la variedad tolerante a la sequia, la tolerancia general al estres era un factor importante, junto con la capacidad de encontrar mas agua y de continuar la actividad metab61ica en condiciones de estres . Los mejoradores que carecen de los recursos para aplicar todos los indicadores empleados por el CIMMYT, pueden utilizar la selecci6n en sembradios de alta densidad para elevar la tolerancia general al estres y, por ende, mejorar la tqlerancia a la sequia.Gran parte del mejoramiento en la tolerancia a la sequia se produjo durante los primero tres ciclos de mejoramiento. La disroinuci6n de los resultados positivos despues de esos tres ciclos indica que ya se habia agotado la variabilidad de las caracteristicas que se deseaban seleccionar, una hip6tesis que se investiga actualmente .Basandose en los indicadores sometidos a prueba en esta serie de experimentos, se eligieron cuatro poblaciones elite con buen tipo agron6mico y potencial de alto rendimiento para llevar a cabo una selecci6n recurrente y mejorar la tolerancia a la sequia . Este trabajo apenas comienza . Por otra parte, se esta formando un complejo germoplasmico con entradas que posean propiedades de tolerancia a la sequia ; este complejo servira como fuente de germoplasma para el mejoramiento de tolerancia a la sequia del CIMMYT y de los programas nacionales.El Dr. G. Edmeades, fisio/6go def CIMMYT, mide la temperatura def fol/aje de mafz bajo condiciones de escasez de agua.El germoplasma de mafz con calidad de prot efna interesa a /os investigadores de /os programas nacionales en varios pafses en desarrollo .20En ocasiones, el fitomejoramiento se ha comparado con poner 4na mariposa en un frasco sin dejar salir a las mariposas que ya se encuentran dentro . La creaci6n de mafz con calidad protefnica ha sometido a prueba el ingenio y la perseverancia de los mejoradores de mafz frente a unas pequefifsimas y caprichosas mariposas geneticas.Deficiencias. El descubrimiento del gen mutante opaco-2 en los afios sesenta aument6 las esperanzas de los mejoradores de mafz de todo el mundo respecto a que era posible mejorar en gran medida la calidad protefnica del mafz.Si bien en comparaci6n con otros cereales el mafz posee un contenido de protefnas mas o menos alto, la protefna carece de dos aminoacidos esenciales, lisina y troptofano. A causa de tales deficiencias, los seres humanos y los animales que no son rumiantes s61o pueden utilizar cerca de la mitad de la protefna contenida en el mafz a menos que sus dietas incluyan otras fuentes de lisina y troptofano. El mafz que posee el gen opaco-2 presenta niveles mas altos de lisina y troptofano, que permiten a los animales metabolizar una mayor cantidad de la protefna . Recientemente se han descubierto otros genes que tienen el mismo efecto que el opaco-2.En 1970, el CIMMYT comenz6 a introducir el gen opaco-2 en una amplia variedad de germoplasma y algunos de los productos obtenidos se probaron a nivel internacional. Pronto se hizo evidente que el gen opaco-2 se asociaba con graves desventajas; el mafz conocido como mafz con alto contenido de lisina presentaba granos blandos y de aspecto yesoso en lugar de los granos translucidos y duros que prefieren casi todos los productores de mafz. Por otra parte, la baja acumulaci6n de materia seca en las granos reducfa el rendimiento; el grano secaba con lentitud y era vulnerable a la pudrici6n de la mazorca y a ataques de insectos durante el almacenamiento.Aunque muchos programas descartaron la investigaci6n sobre el mafz con un alto contenido de lisina, el CIMMYT consider6 que, empleando sus amplios recursos de germoplasma y la red de pruebas internacionales, se podfan obtener variedades aceptables con un alto contenido de lisina. Los cientfficos del CIMMYT ya habfan encontrado unos cuantos genes modificadores capaces de mejorar la dureza y el aspecto del grano, aunque algunos de estos genes reducfan al mismo tiempo 'll contenido de lisina y troptofano. En consecuencia, el laboratorio de protefnas del CIMMYT desempefi6 un importante papel en el proceso de mejoramiento disefiando rapidos metodos de selecci6n para identificar los materiales que presentaban una textura de grano practicamente normal y conservaban la calidad protefnica.Genes modificadores. Al tratar de separar el gen del alto contenido de lisina de los efectos nocivos de genes relacionados, los mejoradores del CIMMYT se dispusieron a realizar una tarea a menudo discutida, pero nunca intentada, es decir, la de cambiar una caracterfstica primordial mediante la acumulaci6n de una gran cantidad de pequefios genes modificadores; y, gracias al esfuerzo y la dedicaci6n, lograron el exito. Para mediados de los setenta, la calidad protefnica se habfa mejorado en forma sustancial y el CIMMYT decidi6 realizar un gran esfuerzo para mejorar el rendimiento del germoplasma, el tipo de grano y otras caracterfsticas . La idea fundamental era que, para tener exito, el mafz con un alto contenido de lisina debfa ser semejante en todos los demas aspectos al mafz normal mejorado.Se tomaron dos medidas de gran importancia; en primer lugar, una amplia gama de genotipos de mafz normal con diferente madurez, adaptaci6n y textura y color de grano se convirti6 en mafz con un alto contenido de lisina y endosperma duro, es decir, en mafz con calidad protefnica (OPM), como comenz6 a llamarsele. En segundo lugar, se crearon y mejoraron complejos de genes OPM.El aspecto crftico de la conversi6n de los genotipos normales en OPM consistfa en elaborar un metodo para la acumulaci6n de genes modificadores. Cada gen modificador s61o tiene un efecto aditivo en la transformaci6n de los granos opacos en cristalinos. En consecuencia, es necesario acumular genes para lograr el efecto deseado, aunque tambien hay que descartar los genes que reducen el contenido de lisina y troptofano. Mediante la selecci6n repetida, el analisis qufmico y la recombinaci6n se logr6 un mejoramiento notable en el aspecto y textura de los granos...Se crearon diversas tecnicas para superar otras deficiencias; por ejemplo, en la selecci6n y mejoramiento en busca de granos duros, existe la tendencia de que los granos se vuelvan mas pequefios. Los espacios entre las hileras de granos son sintomaticos de este problema, de tal forma que, para increment(;lr el rendimiento, los mejoradores deben seleccionar mazorcas que no presenten espacios vacfos.Asimismo, se efectuaron numerosos ensayos para asegurar que la modificaci6n del grano fuese estable en diferentes condiciones de cultivo, problema que aun no se resuelve por completo.Es establecimiento de complejos OPM se disefia despues de que el CIMMYT termina de trabajar con los materiales normales. Los complejos suministran una amplia gama de modificadores geneticos y de nuevas combinaciones de genes.Al mismo tiempo, mediante el cruzamiento y una presi6n moderada de selecci6n, se mejora la calidad de los materiales en dive rsas fo rmas: las plantas son mas pequefias, las mazorcas se encuentran mas abajo, la madurez es mas precoz y el aspecto del grano se mejora, todo esto al mismo tiempo que se conserva una mejor calidad protefnica y un mayor rendimiento .Para 1980, se habfa creado una amplia variedad de germoplasma OPM y se habfan reducido en gran medida muchas de las desventajas relacionadas con el gen opaco-2. En este punto los mejoradores reagruparon todo el material OPM para disminuir su volumen total y facilitar el refinamiento ulterior y la ampliaci6n de las pruebas. Se formaron siete complejos de genes OPM de tierras bajas tropicales y seis subtropicales, que se diferenciaban por su madurez, color de grano y tipo de grano (dentado o cristalino), y se continu6 con el proceso de mejoramiento.El fitomejoramiento a veces ha sido comparado con introducir a una mariposa en un frasco sin dejar salir a las que va estan adentro. El desarro//o de mafz con calidad de protef na ha probado el ingenio v la perseverancia de las mejoradores de este grano con unas pequefifsimas v caprichosas mariposas geneticas .Variedades QPM. Ademas se formaron seis poblaciones tropicales y cuatro subtropicales. Las familias obtenidas de estas poblaciones se evaluaron en seis localidades diferentes del mundo, dentro de los ensayos internacionales de pruebas de progenie del CIMMYT. La informaci6n obtenida de estos ensayos se emple6 para crear variedades experimentales OPM, que se verifican a nivel internacional.Estos cambios han mejorado la informaci6n disponible para la depuraci6n del germoplasma OPM, han hecho que los programas nacionales participen mas activamente .en el mejoramiento del germoplasma y les han brindado facil acceso a los mejores materiales OPM .Los bajos rendimientos constituyen uno de los principales puntos debiles del OPM, pero en ensayos internacionales recientes, diversas variedades experimentales OPM igualaron a los testigos normales. Asimismo, se han obtenido buenos resultados en otros ensayos; por ejemplo, la Nutricta, una variedad OPM lanzada en Guatemala, ha tenido rendimientos tan buenos coma los de algunas de las mejores variedades e hfbridos experimentales.En la actualidad, el aspecto normal del grano es estable a nivel de la mazorca, pero todavra existe variabilidad de una mazorca a otra; la modificaci6n ulterior debe reducir esta variabilidad .Se han hecho progresos considerables en la disminuci6n de la incidencia de la pudrici6n de la mazorca , debidos en gran medida a que los granos son mas duros y secan con mayor rapidez. No obstante, en condiciones adversas, la pudrici6n de la mazorca causa mas daf'\\o a los materiales OPM que a los marces normales.lnteres comercial. Los programas comerciales de varios parses muestran un gran interes en el nuevo germoplasma OPM . Agricultores del sureste de Mexico cultivan diversos materiales en pequef'\\a escala . En Guatemala, se lanz6 la variedad Nutricta y, a partir de la misma poblaci6n, los investigadores han creado nuevas variedades experimentales que quiza resulten aun mejores. Paraguay lanz6 una poblaci6n OPM, la Nutri Gunari V-241 . En parses como Argentina y Mexico se llevan a cabo ensayos de alimentaci6n de cerdos. Companras privadas de semilla de algunos pafses sudamericanos emplean materiales OPM para la creaci6n de hfbridos. Senegal esta en las ultimas etapas de prueba de un material OPM previas al lanzamiento. China multiplica semilla de una variedad experimental para entregarla a los agricultores con el nombre de Tuxpef'\\o 102 y tambien trabajan en la creaci6n de lfneas endogamicas para utilizarlas en la producci6n de hfbridos.1 00---:;r---,~~---::;r---.,.~~-:::;;ir--.~---;1&2 Mejoramiento de la apariencia del grano del malz con calidad de proteins durante ocho ciclos de selecci6n(Escala del 1 al 5: 1 = apariencia normal; 5 = completamente opaca ).Las perspectivas del OPM se ven afectadas por los cambiantes puntos de vista sabre la nutrici6n de los seres humanos . Hoy dfa, la preocupaci6n por una crisis protefnica es mucho menor que hace 1 5 af'\\os y se hace mas hincapie en la superaci6n de las deficiencias cal6ricas . Sin embargo, existen importantes grupos de personas susceptibles a una deficiencia de protefnas, como las mujeres embarazadas y los nif'\\os menores de cinco af'\\os . Ouiza el OPM deba desempef'\\ar un importante papel en aquellas partes de Africa donde las dietas estan constituidas en su mayor parte por tuberculos con bajo contenido de protefnas y donde los costos de las fuentes tradicionales de protefnas han aumentado desmesuradamente. Resulta ir6nico que en estas condiciones las madres y los nif'\\os pequef'\\os tengan menos acceso a las fuentes de protefnas que otros miembros de la familia.El CIMMYT sostiene la opini6n conservadora de que el OPM puede constituir una arma que los programas deben usar para combatir la malnutrici6n. Como fuente mejorada de protefnas en un cereal que se cultiva extensamente, el OPM ofrece una ventaja sabre nuevos y poco conocidos cultivos con alto contenido de protefnas que se pueden introducir como parte de campaf'\\as para mejorar la nutrici6n de los seres humanos y los animales.Por otra parte, mediante el proceso de desarrollo del OPM, los mejoradores del CIMMYT han actuado como pioneros al demostrar cuantos genes modificadores, cada uno de los cuales produce un efecto muy pequef'\\o, se pueden acumular para provocar cambios fundamentales en las caracterfsticas de una planta .Desde su inicio, el Programa de Mejoramiento de Mafz ha concedido un lugar prominente al desarrollo de resistencia a las principales enfermedades y plagas de insectos en los pafses en desarrollo. Se ha logrado un avance sustancia l en la labor con enfermedades por medio de una estrategia triple: ( 1) la acostumbrada selecci6n en las estaciones experimentales en Mexico para obtener resistencia a las pudriciones de la mazorca y del tallo, a las rof'\\as foliares y las royas;(2) selecci6n adicional contra estas y otras enfermedades por cientfficos nacionales en el momento en que evaluan los IPTTs, y (3) proyectos especiales realizados en colaboraci6n con varias instituciones nacionales e internacionales con el fin de lograr resistencia a enfermedades contra las que no se puede hacer una selecci6n efectiva en Mexico .Si bien los logros en la labor con las plagas de insectos han sido menores, se han puesto los cimientos para la generaci6n futura de germoplasma resistente a insectos y su entrega a los colaboradores de los programas nacionales.La busqueda de resistencia en las p/antas depende en gran medida de la capacidad para distinguir las plantas resistentes de las susceptibles; por tal motivo, la creaci6n de resistencia a los insectos es una tarea diffcil ya que las infestaciones naturales con insectos son variables e impredecibles. Esto es especialmente cierto en el caso de los miembros de la familia de las polillas, que constituyen la plaga mas importante del mafz a nivel mundial.Metodos de laboratorio. En 1975, el CIMMYT puso en marcha un laboratorio para la crfa masiva de gusanos barrenadores del tallo del mafz, gusanos del elote del mafz y cogolleros del mafz . Las tecnicas empleadas en los climas temp/ados tenfan que adaptarse a las caracte rfsticas biol6gicas de las razas de insectos tropicales; ademas, la producci6n tenfa que ser suficiente para satisfacer las necesidades del enorme volumen de materiales contenidos en el programa de mejoramiento de pob/aciones de mafz del CIMMYT .Hay varios requisites imprescindibles para mejorar la resistencia a los insectos por medio de la infestaci6n artificial. En primer lugar, es necesario crear una colonia de insectos tan voraces como sus parientes silvestres; en segundo, hay que tener la capacidad de producir la cantidad suficiente de insectos en el momenta adecuado para la infestaci6n; en tercero, es precise disponer de fuentes de germoplasma con una variabilidad genetica suficiente para presentar diferencias en cuanto a la resistencia ; en cuarto, hay que contar con un medio eficaz de infestar las plantas con cantidades iguales de insectos; en quinto, se debe elaborar una escala para clasificar el dafio producido por los insectos y, por ultimo, es precise poseer un eficaz esquema de mejoramiento a fin de emplear la informaci6n obtenida para aumentar los niveles de resistencia .Con objeto de asegurar que las colonias de insectos sean representativas de la poblaci6n silvestre, el CIMMYT las renueva cada seis a diez generaciones (alrededor de un afio) , dependien do de la especie. Se capturan insectos silvestres y se crfan en aislamiento durante una generaci6n para tener la certeza de que no estan enfermos ni son portadores de parasites; luego, la raza Silvestre sustituye a la poblaci6n del laboratorio o se cruza con ella .Es precise fo rmu lar dietas especfficas para cada tipo se insecto. En el caso de los gusanos cogollero y eloterb, la dieta co nsiste principalmente en soya molida, mafz molido y levadura de cerveza ; los taladradores del mafz son alimentados con una f6rmula preparada, mezclada con mafz quebrado, levadura de ceryeza y germen de trigo . A los tres tipos de insectos se les dan vitaminas y anticuerpos y el CIMMYT ha descubierto que la inclusi6n de espiguillas de mafz molidas en la dieta ayuda a la proliferaci6n de las colonias.Las instalaciones de crfa se adaptan especialmente a la biologfa de cada tipo de insecto para fomentar el crecimiento y la reproducci6n . Las instalaciones adecuadas evitan problemas tales como el canibalismo y facilitan la recolecci6n de los huevos o larvas. Las polillas del gusano cogol/ero, por ejemplo , se conservaban en pequefias cajas, pero dejaban sus huevos pegados a las paredes u orillas y res ultabaLas instalaciones de la crfa masiva de insectos estan adaptadas a la biologfa de cada tipo de insecto con el fin de promover su crecimiento y reproducci6n .diffcil extraerlos. La sustituci6n de las cajas por balsas de papel constituy6 una mejora, ya que los huevos se podian recolectar cortando las balsas. Ahora se emplean balsas de papel encerado y la masa de huevos se puede recolectar facilmente con una espatula.Las pupas del gusano elotero presentaban un problema diferente; las pupas tienden a esconderse bajo la superficie de su alimento semis61ido, y para que no tengan que ser extraidas una por una, los cientificos han disenado una celda de poliestireno que se separa en dos capas. Al separar las capas, la masa del alimento y las celulas de las pupas se dividen por la mitad y las pupas se pueden vaciar.lnfestaci6n artificial. Desde que se lograron refinar los metodos de la cria masiva, los cientificos utilizan la infestaci6n artificial para mejorar la resistencia a una u otra especie en los complejos y poblaciones seleccionados.En el pasado, la infestaci6n se llevaba a cabo con las masas de huevos, hasta que el CIMMYT cre6 la tecnica de la \"basuka\" para infestar el maiz con larvas . La basuka es un dispensador cilindrico calibrado para colocar una dosis uniforme de maiz quebrado mezclado con larvas en cada planta. La cantidad de los pedazos de maiz permite a los cientfficos controlar el numero de larvas que se aplica a cada planta.Si se le compara con la infestaci6n con masas de huevos, el empleo de la basuka es mas rapido, brinda una infestaci6n mas uniforme y es menos frecuente que los depredadores destruyan a los insectos, con lo cual se obtiene una cantidad menor de plantas no infestadas.En los ultimas tiempos, el CIMMYT ha tornado diversas medidas para incrementar el flujo de material resistente a los programas nacionales. En 1983 se formaron variedades experimentales para concentrar la resistencia en buenas bases agron6micas; las variedades se forman con las progenies que presentan los mejores niveles de resistencia en los viveros infestados artificialmente. Actualmente se llevan a cabo ensayos preliminares con estas variedades experimentales.Resistencia multiple . El segundo paso consiste en la creaci6n de complejos con resistencia multiple . En 1984, se cultivaron en Mexico varios juegos de los Ensayos lnternacionales de Resistencia a Lepidoptera, organizados por la Mississippi State University (ELJA), y se infestaron artificialmente con• taladradores del tallo y gusanos cogolleros. Algunas de las entradas presentaron niveles de resistencia mas altos que los que se habian encontrado en cualquiera de las poblaciones de maiz del CIMMYT; sin embargo, su rendimiento era bajo y sus caracteristicas agron6micas deficientes.Alentado por estos resultados, el personal del CIMMYT pidi6 semilla de maiz supuestamente resistente a cualquiera de los generos o especies de taladradores de todas partes del mundo. Ahora se recombinan las lineas, sinteticos, hibridos y variedades enviados por los investigadores de maiz para crear un complejo con resistencia multiple a los taladradores. Despues de ser sometidas a una selecci6n moderada para determinar la resistencia y el tipo agron6mico, ciertas progenies demuestran buena resistencia a los taladradores y tambien a los gusanos cogolleros.El mejoramiento de este complejo continuara mediante la selecci6n recurrente. En nueve localidades se llevan a cabo pruebas internacionales de las familias mas resistentes, empleando niveles estandar de infestaci6n. En cada localidad, los colaboradores seleccionaran y cruzaran las familias que tengan el mejor comportamiento respecto al insecto presente en ese lugar y devolveran la semilla a Mexico para su recombinaci6n y verificaci6n posterior.Si bien el complejo con resistencia multiple a los taladradores promete convertirse en una fuente importante de resistencia diversa, es posible que no sea una fuente directa de selecciones con un comportamiento satisfactorio en ambientes tropicales donde predominan otros insectos.En consecuencia, el CIMMYT cre6 un complejo tropical con resistencia multip!e a los insectos. Este complejo incluye algunos materiales provenientes del complejo con resistencia a los taladradores del maiz, aunque esta constituido principalmente por las selecciones mas resistentes de las poblaciones y complejos tropicales del CIMMYT. Estos ultimas materiales han sido sometidos hasta a 1 8 ciclos de selecci6n en ambientes tropicales y presentan niveles satisfactorios de resistencia a las enfermedades tropicales, asi coma tambien excelente rendimiento y comportamiento agron6mico. En este complejo se realizan selecciones para obtener resistencia a los taladradores y a los gusanos cogolleros. Dentro de pocos anos , cuando se obtengan progenies de este complejo , estas deben combinar un potencial de rendimiento alto con la resistencia a los insectos y enfermedades.Asimismo, se exploran otras .areas de • investigaci6n, tales coma la prueba y selecci6n de algunas variedades procedentes del Caribe que se cree poseen buena resistencia a los insectos y la selecci6n de progenies de cruzas amplias de maiz y Tripsacum. Empero, sin importar cual de estos caminos arroje en ultima instancia los mejores resultados, todos dependen en gran medida del cuidado, alimentaci6n y entrega oportuna de millones de insectos.El germoplasma de trigo del CIMMYT se crea para satisfacer cinco criterios mfnimos: potencial de alto rendimiento, amplia adaptaci6n y resistencia a las tres principales enfermedades del trigo, que son roya del tallo, roya de la hoja y roya amarilla. Por otra parte, en la actualidad se impulsa el mejoramiento de la resistencia a las enfermedades \"menores\" del trigo, como son las provocadas por Septoria, Helminthosporium y Fusarium .La inclusi6n de estas caracterfsticas en el germoplasma creado por el CIMMYT es resultado directo del mejoramiento y las pruebas efectuadas en distintas localidades y respaldadas por el Programa de Mejoramiento del Trigo. ' La introducci6n de genes que producen enanismo a fines de los cincuenta le dio un impulso enorme al potencial de rendimiento del trigo. Los genes que producen enanismo cambiaron la forma en que la planta distribuye los carbohidratos entre sus partes vegetativas y reproductivas. El grano de las variedades productivas altas representa s61o el 25 al 35% del peso total de la planta. En las variedades enanas, el grano representa del 40 al 50% del peso total. En otras palabras, el enanismo mejora la eficacia con que las plantas emplean la luz del sol, el agua y los nutrientes, es decir, los elementos esenciales del crecimiento.Por otra parte, el acortamiento de la planta multiplica la respuesta a una gran fertilidad. Si se les aplican grandes dosis de fertilizantes, las variedades altas producen un poco mas de grano, pero tienden a caerse, reduciendo la cosecha real en tal medida que los rendimientos de plantas menos fertilizadas suelen ser mayores. Los tallos cortos y gruesos de las variedades enanas resisten el acame; esa y otras caracterfsticas propias de las variedades enanas las hacen mas eficaces en usar los insumos aplicados por los agricultores.En epocas mas recientes, la introducci6n de genes del trigo de invierno en los trigos de primavera mediante cruzas entre ambos volvi6 a elevar el potencial de rendimiento. El traslado de germoplasma de una localidad a otra durante el proceso de mejoramiento tambien amplia la adaptaci6n en otras formas. El lugar donde se lleva a cabo el mejoramiento de invierno se encuentra a flivel del mar en un desierto con irrigaci6n; el emplazamiento de verano posee fuerte precipitaci6n y se encuentra a 2650 metros de altitud. En consecuencia, la selecci6n de las lfneas se efectua en condiciones climaticas diferentes y en presencia de complejos de enfermedades e insectos muy distintos .Los viveros internacionales constituyen otro campo de pruebas muy exigente . El desempefio en cientos de localidades de todo el mundo representa la prueba de adaptaci6n definitiva.Resistencia a la roya. El requisito de resistencia a los tres tipos principales de roya contribuye a la amplia adaptaci6n del germoplasma del CIMMYT .Las royas son hongos que parasitan el trigo y otros cultivos; son enemigos mortal es del trigo y, debido a su capacidad de mutar y atacar variedades antes resistentes, la labor de mejoramiento para obtener resistencia es virtualmente interminable.En la decada de los cincuenta se logr6 una excelente resistencia a la roya en los trigo mexicanos y los mejoradores del CIMMYT ampliaron la base genetica de la resistencia mediante cruzas con una gran cantidad de fuentes . Las pruebas efectuadas en distintas localidades demuestran que la resistencia se conserva a nivel mundial.La investigaci6n sabre la resistencia a la roya de la hoja comenz6 despues que la de la roya del tallo, aunque para 1970 se habfan hecho avances importantes. Si bien el nivel genera l de resistencia del germoplasma del CIMMYT es suficiente para la mayor parte del mundo, no es estable en Mexico ni el algunos otros lugares donde existen cepas patogenicas excepcionalmente virulentas, denominadas razas.La selecci6n para la resistencia a la roya amarilla se lleva a cabo en la regi6n andina de America del Sur y en los valles altos del este de Africa, donde se localiza una amplia gama de razas de roya amarilla . La informaci6n obtenida de la selecci6n se emplea para dirigir las cruzas posteriores a fin de aumentar la resistencia . En 1 980 se comenz6 a contar con materiales con amplia resistencia a la roya amarilla.Otras caracterrsticas. El mejoramiento en busca de caracterfsticas especiales se lleva a cabo como un complemento de las caracterfsticas fundamentales: potencial de alto rendimiento , adaptaci6n amplia y resistencia a las principales royas . El mejoramiento para obtener resistencia a enfermedades tales como la rona y las causadas por Septoria y Helminthosporium se lleva a cabo en subgrupos de germoplasma del CIMMYT.Como estas enfermedades no son universales y s61o son importantes en ciertas regiones, nb se hace ningun intento por incluir la resistencia a las mismas en todo el germoplasma, ya que hacerlo asf retrasarfa innecesariamente todo el proceso. El CIMMYT adopta una actitud similar en relaci6n con la tolerancia a la sequfa, tolerancia al calor y tolerancia a niveles altos de aluminio .Estabilidad del rendimiento . Expertos en estadfstica investigan la estabilidad del rendimiento de distintos grupos de variedades en diferentes ambientes, usando los resultados de 15 anos de los Viveros lnternacionales de Rendimiento del Trigo de Primavera . Se trata de ensayos identicos que se llevan a cabo cada ano desde 1963 en cerca de 100 localidades de 60 6 70 pafses del mundo y en los que participan 50 lfneas y variedades avanzadas .Para el analisis de la estabilidad, las localidades se clasificaron segun el rendimiento medio de todas las variedades en todos los ensayos. De esta manera, las localidades con un rendimiento medio de 1 t/ha se caracterizaron como ambientes de 1 t/ha; las localidades que promediaron 2 t/ha se caracterizaron como ambientes de 2 t/ha y asf sucesivamente . El ambiente mas productivo present6 un rendimiento medio de 9 t/ha.Las variedades se agruparon en genotipos: a) materiales creados por el CIMMYT y lanzados directamente por los programas nacionales de mejoramiento de cultivos; bl materiales resultantes de un cruzamiento realizado por el CIMMYT, pero en los que un programa nacional habfa efectuado por lo menos una selecci6n mas; cl variedades mejoracfas localmente utilizando germoplasma del CIMMYT, y d) variedades mejoradas localmente sin germoplasma del CIMMYT.Se consider6 que la estabilidad tenfa cuatro aspectos. Una variedad o grupo de variedades posee una estabilidad aceptable de rendimiento si su rendimiento medio es insignificativamente mayor que el promedio de rendimiento en todas las localidades; si su capacidad de respuesta a mejores ambientes es mas grande que el promedio de todas las variedades; si la tendencia del rendimiento es congruente de un ambiente a otro, y si el rendimiento en el ambiente mas deficiente es igual o mayor a la media de todas las variedades.El germoplasma de trigo de/ CIMMYT se crea de acuerdo con cinco criterios mfnimos: potencial de alto rendimiento, adaptaci6n amplia y resistencia a las tres principales enfermedades que atacan a este grano : roya de/ ta/lo, roya de la hoja y roya amarilla .El analisis demostr6 que el Grupo A (materiales creados por el CIMMYT y lanzados directamente por los programas nacionales) tenfa rendimientos medios mas altos que los otros grupos, mayor capacidad de respuesta a mejores ambientes y que, an ambientes deficientes, sus rendimientos no eran inferiores al promedio. En relaci6n con la congruencia, el Grupo B obtuvo resultados ligeramente mejores que Grupo A, pero el analisis mas a fondo mostr6 que la clasificaci6n puede ser enganosa. En algunas localidades que tienen graves problemas con las enfermedades, la gran resistencia a las enfermedades de algunos genotipos del Grupo A hizo que su rendimiento fuera muy superior al promedio del grupo; desde el punto de vista de la estadfstica, esta situaci6n se registr6 como inestabilidad del rendimiento, pero en la practica se trata de una ventaja, mas que de una desventaja.El estudio no hall6 ninguna prueba que respaldase la idea de que ciertas variedades con un potencial de rendimiento modesto pueden desempenarse mejor bajo condiciones deficientes que las variedades con alto potencial de rendimiento. Todas las variedades ISWYN tuvieron aproximadamente el mismo rendimiento bajo condiciones deficientes. En zonas donde los rendimientos bajos son causados por bajos niveles de insumos, sobre todo agua, el rendimiento disminuye marcadamente en todas las variedades sin importar el rendimiento inherente a cada una . Ademas, la estabilidad que ciertos observadores atribuyen a las variedades creadas localmente es mas un resultado de su comportamiento deficiente en ambientes de alto rendimiento que de su desempeno superior en ambientes adversos.De esta manera, mediante un sistema dinamico de mejoramiento de trigo, que se basa en el cruzamiento de amplia base y en la realizaci6n de pruebas en un sinnumero de localidades, el CIMMYT y sus colaboradores generan un flujo constante de materiales mejorados, de gran valor para extensas regiones del mundo donde se cultiva trigo. •La idea de efectuar cruzamientos de trigos de primavera con trigos de invierno, dos complejos germoplasmicos importantes pero independientes, siempre ha sido muy atractiva para muchos fitomejoradores .En la naturaleza, los genes de estos grupos rara vez se mezclan porque la contaminaci6n es muy poco comun en los cultivos autopolin izados, porque en general los trigos de invierno y de primavera se cultivan en regiones con climas diferentes y porque, aun cuando los sembradios de trigos de primavera e invierno estan cerca uno de otro, suelen florecer en epocas distintas . En consecuencia, tos trigos que tienen habito de primavera y los de habito de invierno han evolucionando en formas diferentes con la manipulaci6n de los agricultores y, en este siglo, de los fitomejoradores .Los fitomejoradores desde hacfa mucho conocfan las caracterfsticas especiales de los trigos de habito de primavera y de invierno que se podfan combinar para producir un resultado util. Las progenies de las cruzas primavera x invierno ahora son de las mejores entradas en los ensayos internacionales.Caracteristfcas especiales. Desde hace mucho tiempo, los fitomejoradores estan conscientes de que cada grupo presenta caracteristicas especiales que se pueden combinar con las del otro grupo para lograr excelentes resultados . Por ejemplo, los trigos de invierno tienden a presentar mejor tolerancia a la sequfa, en tanto que los trigos de primavera suelen tener mejor calidad de grano. Ademas , los genes que producen estas caracterfsticas se encuentran en variedades productivas, variedades con una buena base genetica . De esta manera, al efectuar las cruzas, la progenie tendra un buen numero de caracteres aceptables y se necesitara menos tiempo para el mejoramiento y selecci6n posteriores a fin de eliminar los caracteres inconvenientes.En los invernaderos, es posible hacer que los trigos de primavera e invierno florezcan al mismo • tiempo, primordialmente mediante la manipulaci6n de la temperatura para vernalizar los trigos de invierno. Con este proceso se han creado diversas variedades de trigo de importancia comercial. De hecho, Norin 10 x Brevor, la fuente original de enanismo de las variedades mexicanas, es una cruza de primavera x invierno .Una localidad (mica . Sin embargo, la labor de invernaderos resulta costosa y el numero de cruzas que se pueden hacer cada ano es muy limitado. El CIMMYT ha podido veneer esa limitaci6n gracias al clima especial de una de las localidades donde se lleva a cabo investigaci6n en Mexico .En los setenta, el CIMMYT comenz6 a considerar el cruzamiento en gran escala entre trigos de primavera e invierno como un medio para incrementar la tolerancia a la sequfa de los trigos de primavera y su resistencia a la roya amarilla , Septoria y enfermedades de la rafz. En la Oregon State University (EUAl encontr6 un socio interesado en la creaci6n de trigos de invierno con mayor resistencia a la roya del tallo y de la hoja, mayor rendimiento y mejor calidad industrial, caracteristicas que se encuentran con facilidad en buenos trigos de primavera. Ademas de veneer las deficiencias de los dos complejos geneticos, el cruzamiento permitirfa aumentar la cantidad de genes que confieren caracteristicas deseables .La clave fue la estaci6n de Toluca, Mexico. Si bien se encuentra en los tr6picos, su altitud (2,650 metros) asegura que habra perfodos con temperaturas suficientemente bajas para vernalizar el trigo de invierno en los meses de diciembre, enero y febrero. En Toluca, los trigos de invierno se siembran en noviembre y los trigos de primavera se siembran en diversas fechas sucesivas a partir de enero; en mayo florecen ambos grupos y los mejoradores realizan cruzas extensas.A fin de acelerar el ritmo del mejoramiento, tambien se efectuan cruzas de primavera x invierno en la estaci6n CIANO en el noroeste de Mexico, el sitio donde se llevan a cabo las principales actividades de mejoramiento de trigo de primavera del CIMMYT. Ahi se cultivan plantulas de trigo de invierno en macetas que se colocan en camaras frias para vernalizarlas; luego se trasplantan al exterior y se cultivan bajo lamparas electricas para aumentar el fotoperfodo y acelerar la floraci6n.La investigaci6n conjunta . En total, se realizan mas de mil cruzas cada ano y la semilla obtenida de la progenie de la primera generaci6n se divide con la Oregon State University . Los mejoradores del CIMMYT emplean la semilla en cruzas posteriores a fin de producir trigos con habitos de primavera. A partir de a qui, la progenie se so mete al mismo procedimiento riguroso de prueba y selecci6n que los trigos convencionales de primavera. En la Oregon State University', los mejoradores utilizan la semilla de manera semejante para crear mejores trigos con habitos de invierno. El programa nacional de trigo de Turquia tambien participa en la explotaci6n de germoplasma para obtener trigos de invierno .En cuanto se dispuso de las primeras lfneas avanzadas de las cruzas de trigos de primavera x 1nvierno efectuadas por el CIMMYT, pudo apreciarse una notable mejorfa en el comportamiento. En la actualidad, la progenie de los trigos primavera x invierno se encuentra casi siempre entre las mejores entradas de los Viveros lnternacionales de Rendimiento de Trigo de Primavera, llevados a cabo cada ano en mas de 100 localidades de todo el mundo.Veery 'S '. Las cruzas de trigos mexicanos de primavera con alto rendim iento con algunos trigos de invierno de la URSS y de Estados Unidos han dado resultados sorprendentes. Uno de ellos, la lfnea llamada Veery 'S', ha producido rendimientos medios de 5 a 10% superiores a los de otras variedades de amplia adaptaci6n y alto rendimiento a lo largo de varios anos de ensayos . En comparaci6n con el trigo de invierno sovietico (Kavkazl que les dio origen, las lfneas Veery ofrecen mejor resistencia al mildiu velloso y a la roya amarilla, asf como tambien resistencia adicional a Septoria, mane ha foliar y roya de la hoja . Por otra parte, parecen tener mayor tolerancia al frfo a comienzos de la epoca de cultivo, al calor a fines de la epoca de cultivo y a la sequfa; por ende, se comportan bien en una amplia gama de ambientes diferentes .En los anos ochenta, Mexico comenz6 a lanzar variedades de lfnea Veery 'S' , que hoy dfa abarcan el 80% del area donde se cultiva trigo en el pafs. En mas de 12 pafses se han lanzado selecciones de lfneas Veery, y cada vez se crean mas variedades. En la actualidad, mas de tres millones de hectareas se siembran con variedades derivadas de la lfnea Veery.Uno de los objetivos primordia les del programa de mejoramiento de trigo harinero del CIMMYT es crear resistencia genetica a las principales en fermedades del trigo . Puesto que las royas mas m portantes, roya del tallo, roya de la hoja y roya amarilla, son con mucho las enfermedades mas destructivas del trigo a nivel mundial, la resistencia a ellas es un requisito imprescindible, que deben satisfacer las lfneas del CIMMYT que pasan a las etapas avanzadas . Ademas, los mejoradores del CIMMYT incorporan en el germoplasma adecuado resistencia a otras enfermedades de importancia regional.Las royas. En la lucha contra las royas, las batallas nunca terminan. Estos hongos parasites t1 enen una gran facilidad para mutar y convertirse en nuevas cepas virulentas, llamadas razas, y son capaces de multiplicarse de manera explosiva, causando epifitias. Una variedad resistente a las razas prevalecientes en una regi6n, puede volverse susceptible de la noche a la manana si de subito aparece una nueva raza virulenta. En muchas zonas, cabe esperar que una variedad nueva dure un maximo de cinco anos hasta que surja una raza a la cual no es resistente .La mejor arma contra estos terribles adversaries es el mejoramiento de amplia base, a fin de acumular la mayor cantidad posible de genes productores de resistencia, la exposici6n intensa a las royas por medio de la inoculaci6n y la realizaci6n de pruebas en localidades diferentes para que salgan a relucir las debilidades de los genes de resistencia .El cruzamiento con una amplia gama de fuentes ha continuado desde entonces para ampliar la base de la resistencia . En las pruebas internacionales, el germoplasma del CIMMYT ha demostrado ser resistente a la roya del tallo en localidades de todas partes del mundo . En el noroeste de Mexico , la principal zona triguera del pafs, no ha habido amenaza de una epifitia de roya del tallo desde hace 25 anosPor otra parte, hay indicaciones de que es posible lograr una resistencia estable a la roya del tallo . La Yaqu i 50, un trigo harinero mexicano alto , es una de un grupo de variedades cuya resistencia a la roya del tallo ha durado mas de 30 anos . El CIMMYT emplea dichas variedades con regularidad en los cruzamientos para lograr la resistencia .A lo largo de varios afios de ensayos, selectas trneas Veery han producido rendimientos medias de 5 a 10% mas elevados que los de otras variedades ampliamente adaptadas con alto rendimiento .A mediados de las setenta, el CIMMYT comenz6 a seleccionar lfneas para lograr resistencia a la roya amarilla en la regi6n andina de America de/ Sur donde es posible encontrar diversas razas de este tipo de roya.En la decada de los sesenta, la roya de la hoja, que en Mexico solfa ser una enfermedad sin importancia, comenz6 a crear problemas serios. Se empez6 a tratar de incorporar resistencia de diversas fuentes y en 10 a nos se hicieron progresos considerables. En la mayor parte del mundo, los materiales del CIMMYT son resistentes a la roya de la hoja, aunque resulta ir6nico que la resistencia no sea estable en Mexico. A fines de los setenta, una epifitia grave azot6 el noroeste de Mexico y s61o gracias a los cambios peri6dicos a variedades nuevas se ha logrado controlar la roya de la hoja.Un buen presagio en la busqueda de resistencia estable a la roy-stem designed to serve 36 maujas, or villages.I t is also called the Kumari irrigation system, for i t served the,Kumari-u' e in the beginning. A t present, the system irrigates approximately',3,000 hectare Y '( h a ) of land in 54 villages in eight panchayats.Nore than 257iilgmeters ( k m ) in length, the canal of Chhattis Mauja ranges in width from 4 meters ( m ) to 10 m with a depth varying from 1 to 4 m.--I t is a large-size farmer-managed irrigation system.The system h a s effectively undertaken water management for 3,000 ha of land. The water u s e r s a r e participating i n the decision-making process concerning water management. A three-tier organizational structure is formed by the water users/farmers within the command area to manage the system.The committee is most concerned with the management of water for the rn_sns.)n :pad&? cultivation. During the period of water scarcity, the committee becomes qulte active. The committee is responsible for the repair and maintenance of the canal and also for water distribution to the farms i n its command area. About sixty thousand beneficiaries a r e mobilized by the committee for maintenance of the main canal each year.In cases of non-participation or failure to comply with the regulations, penalties both in cash and kind a r e levied against the offenders.Frequent non-compliance may lead to dismissal from membership in the irrigation network resulting in cut-off of the water supply.-'-I ' :During the field survey we organized a meeting designed to help interaction with the governing board of this irrigation system. The lneeting took place a t their headquarters and was presided over by t h e newly-elected chairman of the governing board. Local farmers also participated.During t h i s meeting, the farmers explained some of the problems they a r e facing.The committee is facing difficulties in maintaining the canals and getting cooperation from the water users. T h e main problem in maintaining the canal network at present is the paucity of log, timbers, and other forest products used for repairs, the procurement of which has become very difficult.The lack of enthusiastic cooperation on the part of the farmers/users can be attributed t,o the fact that they a r e obtaining water from other sources--the tu be-wells.An increase in the population has created a n increased demand for water for irrigation, home use, and new industries. However, the supply of p;ater has been adversely affected due to deforestation, bringing additional land under cultivation, and construction of highways and feeder roads.Over the years, there has also been significant change in social values. One of the reasons for such change i s the availability of a relatively free water SUPPlY from the agency-managed system, BLGWP. I n the farmer-managed system the users had to work to acquire and distribute water themselves. With water from the government-managed project, community participation h a s eroded to an extent which has adversely affected the concept of farmer management. Basic problems faced in the management of the iraditional irrigation system were changes in the social values and t h e role played by vested interests. This study did not go into the details of such changes in social values, but it was able to discern that the farmers/users were effectively obtaining an adequate supply in the head area while the establishment of new allied occupations such as dairy farming and cottage industries have diluted a sense of communal belonging. Development of different occupational patterns and migration of rural population to urban areas a r e responsible for t h e main changes in the social values.Beneficiaries of the Chhattis Mauja irrigation system a r e expected to pro\\-ide labor to operate and maintain the system.Members failing to contribute labor a r e charged a fine fixed by the committee. The committee chairman reported that the cash income of the organization is increasing each year.T h e chairman attributed this increase to the fine rate fixed by the committee. T h e man/day rate fixed by the committee tended to be lower than that of the prevailing man/day rate for unskilled labor in the vicinity. This has induced some u s e r s to pay in cash instead of contributing labor.When other local leaders and farmers were asked about this issue, additional reasons for the increase in cash contributions were mentioned. The difficulty of obtaining forest products needed for t h e diversion of the water in the canal and for repair and maintenance was cited as a reason. Deforestation and new government rules restricting the cutting of trees make it much more difficult to obtain these resources. The problems associated with obtaining forest resources has discouraged some farmers from contributing labor for the maintenance of their system; some feel it is easier to pay the cash fine. The migration of t h e rural population t o urban centers, reducing the size of the labor resource was another reason t h a t u s e r s sometimes found' it easier to pay in cash.-\"?A feasibility s t u d y of the BLGWP was undertaken in 1975 by Tahal Engineers Ltd. of Israel. Following the completion of the feasibility study, H i s Majesty's Government of Nepal (HMGN) asked t h e International Development Association (IDA) of World Bank to finance the project. The World Bank s e n t a Group Mission to undertake appraisal of the project.The I D A agreed to provide a loan in 1976 for U S $ 9 million which covered 60 percent of the cost of !,he project. The project started delivering water in May 1980.The project is 1 aPPro2imate \".altitud.p-of W Or i v z i n t h e wefir alluvial deposits.The main objective of the BLGWP is to provide water for irriqated agriculture to allow two or three crops per year. To achieve this, the project included the construction of 64 deer, tube-wells ranging from 100 m to 200 m in depth. Irrigation control s t r u c t u r e s to serve an area of approximately 120 ha around each tube-well were planned.The project included provisions for installing electric lines to provide power run the tube-weli pumps, construction of 96 km of village roads, and the construction of offices to house DIHM staff in Bhairahawa.According to present estimates of available water resources, approxnnateiy 60 million cubic meters of water can be pumped annually from the confined aquifer of the Gangetic sediments. This quantity would suffice to irrigate an area totalling about 7,500 ha.Regarding the users' participation in the operation and maintenance (O&M) of the project as measured by payment of the fees for use of the water, BLGWP records show that only R s 60 (US5 2.75) have been paid. Furthermore, the water u s e r s do not consider themselves responsible for the mmor repair of breaches in t h e tertiary channels Regarding participation in the construction of the c h a n n e l system, the farmers were paid for the land utilized b y the channel network, which was designed by the project engineers and built by contractors employed b y the project. The farmers were not involved in either design or construction.Nearly half of the farmers a r e entirely dependent on t h e farmer-managed canal. For the farmers having alternatives, the main alternative is the tubewell system. This helped u s conclude that the tube-well system i s a strong alternative source of irrigation water in the command area under study. The DLGWP could develop the tube-well system without competing with the farmermanaged system.The farmers reported that they were not involved with the design of the channel system for the project. Channels with brick lining and cement pointing were found in the head areas. All other channels were constructed of mud.During the meeting with the farmers, a number of them asked why the project provided better structures only in the vicinity of the pumphouses. Some farmers voiced the opinion that this discrimination discouraged them from participating more actively in the project. The analysis of the situation helped U S to conclude t h a t the u s e r s must be involved from the design phase of the project to a s s u r e more active cooperation.For the purpose of this study, we have distinguished demand from need on the basis of who decides the timing of the application of water.If the farmer/user decides the point of time he needs the water and is supplied with water accordingly, then the allocation is considered to be made on demand. Whereas, if the water users' group/committee or some one in management decides when any particular area need6 water and arranges for the supply, then it is the case of water being availed on the basis of need.The leaders believed that water under the Chhattis Mauja system 1s allocated on t h e basis of need and they desired replacement of it by demand as a criterion. On the other hand, the farmers/users believed that a t present labor contributions determine the water allocation a t the f a r m level, and like the leaders, they also advocated demand to be the desirable criterion of water allocation.The criteria for water allocation helped u s reach the conclusion that in the BLGWP tube-well system a t present the basis for water allocation is a combination of both the need and demand. This is due to the fact that the water requisition form filled by a particular f a r m e r h s e r has to be endorsed by t h e chairman of the water users' committee before the water is supplied to the farmer. Water would not be released until three separate, properly endorsed requisition forms a r e completed for the particular turn-out point.The majority of the farmers believed their major responsibility to be pc,rforming assigned work whereas most of the local leaders and managers felt. that bringing together collective cooperation was their major responsibility. T h i s helped u s conclude that different groups within the system have diffel-ent responsibilities. The hypothesis test also supported o u r ,'inding to this effect. The Chhattis Xauja system is operated and maintained primarily through labor contributions from the users. Some cash is collected in the form of fines imposed upon those who fail to contribute labor. In the BLGWP system the water users' contribution is a cash fee assessed for use of the water. This one of major differences between the two systems.In the BLGWP system it was observed that from May 1984 when x a t e r charges were levied to May 1987, less than R s 60 have been realized from the water users a s water charges. The water rate fixed by BLGWP is R s 200 ( U S $ 9.13) per bigaha (0.67 ha) per annum. Neither the u s e r s nor the managers considered the rate to be too high in comparison to the labor contrihution practice of the farmer-managed irrigation system where the labor contribution is a t least 12 man-days per annum and calculated a t the local wage rate of R s 25-30 per day.When t r y i n g to identify the reasons behind the farmers' aversion to pay the water charges a t the rate fixed by the BLGWP even when they consider it reasonable, we could identify the following reasons: I t sometimes goes u p to 30 man-days.1. Water from the tube-wells i s less preferred by the farmers because it does not contain any fertilizing elements which a r e found in the Chhattis Mau.ja surface water.Farmers prefer contributing labor over having to make cash contributions. I t is not the rate that is not acceptable to them but it is the nature of the contribution which is not of their preference.The farmers/users are aware of the minimum fixed overhead For the operation and maintenance of the tube-well system. Annual minimum overhead for each tube-well, except for repair and maintenance in case the pump goes out of order, is estimated to be R s 72,000 ( U S $ 3,287.67), which includes t h e electricity charges a t an average rate of R s 5,000 ( U S $ 228) p e r month and the salary for ditch-rider and pump operator a t the rate of R s 500 ( U S $ 22.83) each per month. The farmers believe that if they s t a r t paying the water charges, they might be later given the responsibility for the O&M of the unit, and they would not be able to meet the costs. BLGWP should be able to clarifp this issue with the water u s e r s and make a commitment a s to what extent and for how long BLGWP can subsidize the overhead which can be expected to go u p along with the change of pump operation hours from the current average operation hours of less than four hours a day should the tube-well water usage rate increase to the maximum capacity of 18 hours a day.In the Chhattis Mauja irrigation system conflicts a r e settled democratically by involving all users.I n cases of water-related conflicts -74-concernirlg the groundwater irrigation system, i t is the chairman of the water users' committee who is most involved with resolving the conflicts.When we observed the relationship between t h e fai-mer-/users and managers 3t the farm level (the farmers and the pump operater), we impressed by its cordiality. W e could find no records of complaints reported against the primp operators. W e also did not hear any complaints against the water u s e r s from the pump operator. ( I t should be noted here that the pump operator has control over the discharge of water from the tube-well for irrigation o n demand from the water users.) This enabled u s to conclude that the relationship between the farmers/users and the managers a t the farm level is not the key factor responsible for poor participation of farmers/users in the BLGWP tube-well system.Users' Attitudes Toward a Farmer-managed System for Tube-wellsA model test was conducted with a view to test the farmers' attitude towards the community ( u s e r ) management system, in order to explore whether each tube-well unit could be brought under user management a s a separate, independent system. Fishbein's Attitude Test used to test the hypothesis helped U S reach the conclusion that since farmers/users lack a strong positive attitude towards the former-managed tube-well system, i t is not possible that each tubewell unit a s a separate system be brought under user management a t this point in time.we came to the conclusion that the incentive to increase participation in the BLGXP for the farmers would be the opportunity to make labor contributions.Not having to pay any dues i s a major incentive for the managers. T h u s the incentive in the minds of both the farmers and managers is virtually the same in the sense that both groups have an aversion towards making cash payments.The agency-managed irrigation system is a relatively new experience for both the farmers/users and the managers, planners, and policy makers in the limited areas where i t h a s been introduced in hiepal, whereas the history of farmer-managed irrigation systems is long. The outcome of this study could be a guide to the planners and the managers a t both the national and community levels. The following recommendations a r e offered:1. Policy makers should take into account not only the mode of irrigation but also the location of farms to which the irrigation water is to be channeled. The system should be designed in such a way that it is geared to serve the whole command area instead of the land in the vicinity of the pumphouse primarily, a s in the case of the ground water irrigation System.2. policy makers should note t h a t t h e farmers'/users' Prefer user management of an irrigation system. The success or failure of the irrigation system depends upon the extent to which the farmers/usera identify themselves as one of the ComponentB of the total system. Our study has clearly revealed that farmers/users will not consider an irrigation network their Property they have been consulted since the installation of the system* 3. The farmer-managed irrigation system faces technical and finnncjal c0nstraint.s i n infra-structural matters.The Chhat.t,is Mauja system i s a,1 oUt.st:inding example. This clearly is an area where policymakers a t the natir,nal level should formulate policies which can further strengthen cornmunit>involvement i n irrigation management such a? providing funding for p80, 60-80, 40-60 and 0-40 cm, commencing from top to basal layers. Samples from each stratum were weighed and handled as described above to estimate forage mass and its morphological components. Leaf samples were dried, ground and analyzed for crude protein (CP), neutral detergent fiber (NDF) and acid detergent lignin (ADL) concentrations, as well as in vitro organic matter digestibility (IVOMD), using nearinfrared spectroscopy (NIRS).Steers were weighed at 28-d intervals following a 16hour fasting period to minimize gut-fill effects on liveweight measurements, i.e. fasted from both water and feed. The average daily gain was calculated as the increase in live weight of the testers divided by the number of days between weighings.The stocking rate per cycle was calculated as the sum of the animal days (tester and regulator steers) spent in each of 6 paddocks (0.25 ha) divided by the total number of grazing days of a complete cycle, and divided by the pasture area (1.5 ha). It was expressed in animal units (AU = 450 kg live weight) per hectare. Liveweight gain/ha was calculated as the product of average daily gain and the number of steers/ha.The data were grouped by season as follows: spring (15 October-20 December), summer (21 December-20 March) and autumn (21 March-16 May). The experimental unit for both vegetation and animal data was the pasture. The data were subjected to an analysis of variance using the Mixed Procedure in SAS (Statistical Analysis Systems,version 9.4). The choice of the covariance matrix was made using the Akaike Information Criterion (AIC) (Wolfinger 1993), and analysis was performed considering sward light interception levels and season of the year and their interactions as fixed effects and blocks as a random effect (Littell et al. 2000). The season effect (spring, summer and autumn) means were compared using a Tukey test at a 5% significance level. For the stratified herbage samples, the same model was applied, but the effect of the stratum was added and considered fixed. Average daily gain data were analyzed via multivariate analysis with repeated measures according to Littell et al. (2000). Furthermore, we performed analyses of the relationships between the means of pre-grazing sward height and the means of interception of incident light by the canopy for each experimental unit for the entire experimental periodThere were no significant (P>0.05) interactions between LI and season for all variables associated with pasture characteristics. However, pastures grazed at 95% LI had longer rest and grazing periods, greater pre-grazing sward heights, forage mass, green stem (GSP) and dead material (DMP) percentages, plus fewer grazing cycles with lower green leaf percentages (GLP) and leaf:stem ratios (LSR) than those managed at 90% LI (Table 1). On the other hand, LI had no significant effect on forage accumulation rates (FAR; P = 0.248) and leaf accumulation rates (P = 0.085). The means and standard errors were: 86.7 ± 4.3 kg DM/ha/d and 59.6 ± 2.2 kg DM/ha/d, respectively.There was a positive correlation (P = 0.0001; r 2 = 0.86; n = 61) between sward height and LI.With regard to seasonal effects (Table 2), lengths of rest periods followed the order summer0.05) on forage dry mass in each layer and the distribution of the various morphological components in the vertical canopy profile.However, a stratum effect was observed for those variables. Forage dry mass and percentages of green stem and dead material decreased, but green leaf percentage increased from the basal to upper strata of the canopy (Table 3). Furthermore, no interactions were observed for LI by stratum (P>0.05), season by stratum (P>0.05) or LI by season by stratum (P>0.05). Post-grazing residues were maintained close to the target height of 50 cm throughout. Means ± SD were: 47.1 ± 1.3 and 49.7 ± 1.5 cm for pastures grazed at 90 and 95% LI, respectively.No differences were observed between pastures managed at 90 and 95% LI for post-grazing forage mass (mean ± s.e.m. 4,260 ± 51 kg DM/ha, P = 0.127) and percentages of green leaf (mean 27.5 ± 0.7%, P = 0.564), green stem (mean 30.4 ± 1.0%, P = 0.554) and dead material (mean 42.1 ± 1.2%, P = 0.522). However, postgrazing forage mass was greater in autumn than in spring and summer (Table 4). During spring, the pastures had lesser stem percentage and greater dead material percentage than in the other seasons (Table 4). In the pre-grazing condition, percentages of CP (P = 0.367), IVOMD (P = 0.458), NDF (P = 0.196) and ADL (P = 0.352) of the leaves were similar for pastures grazed at 90 and 95% LI. The means ± s.e.m. were 11.8 ± 0.3%, 61.2 ± 0.5%, 77.2 ± 0.4% and 3.6 ± 0.1%, respectively.In addition, there were no differences in the percentages of CP (P = 0.194), IVOMD (P = 0.132), NDF (P = 0.626) or ADL (P = 0.321) of green stems from the 2 grazing strategies, with means ± s.e.m. of 5.3 ± 0.3%, 48.3 ± 0.6%, 81.0 ± 0.5% and 4.8 ± 0.1%, respectively. Moreover, there was no effect of season on the percentages of CP, IVDOM, NDF or ADL of either green leaves or stems.On the other hand, when variables associated with the nutritive value of green leaf were evaluated in the vertical canopy profile, percentages of CP and IVDOM increased and concentrations of NDF and ADL decreased from the basal to the top strata (Table 5). No interactions were observed between LI and stratum, LI and season and season and stratum (P>0.05) for the variables associated with nutritional value of leaves.There was no interaction between LI and season for stocking rate (SR; P = 0.578) or for average daily gain (ADG; P = 0.671). Moreover, there was no effect of light interception on SR, ADG or liveweight gain/ha (Table 6).With regard to seasons, ADG was least in autumn and SR and liveweight gain/ha were greater in summer than in spring and autumn (Table 7). Pre-grazing canopy heights for the pastures managed at light interceptions (LI) of 90 and 95% remained relatively stable during the experimental period (Table 1). There was a positive correlation (P = 0.0001; r 2 = 0.86) between LI and sward height, which highlights the potential use of canopy height as a field guide for monitoring grazing management of this cultivar. This result supports Silva and Nascimento Júnior (2007), who suggested that canopy height could be used as a reliable criterion on which to base the optimal time to interrupt pasture regrowth.Regardless of the LI target used to define the time to regraze pasture, forage accumulation resumed quickly after defoliation because a lenient grazing strategy was adopted (post-grazing target of 50 cm), which led to 42 and 44% decreases in the pre-grazing heights for pastures managed at 90 and 95% LI, respectively. According to Parsons et al. (1988), the rate of photosynthesis is reduced less by defoliation and the maximum rate of photosynthesis is restored sooner in more leniently defoliated swards. Total forage accumulations were similar for pastures managed at 90 or 95% LI. This was in agreement with the results of Barbosa et al. (2007) and Zanine et al. (2011), who found that leaf accumulation was similar in Tanzania guineagrass pastures managed at 90 and 95% LI, and those of Sbrissia et al. (2013), who observed similar forage accumulation values in kikuyu grass (Cenchrus clandestinus syn.Pennisetum clandestinum) pastures managed at 15 and 25 cm (25 cm corresponding with 95% LI).However, pre-grazing green stem and dead material percentages were greater in pastures managed at 95% LI (Table 1), indicating that stem elongation may have started even before the pasture reached 95% LI. Santos et al. (2016) observed up to a 7-fold increase in stem elongation rate in annual ryegrass when the pastures exceeded a height of 17 cm, a condition in which there was still no restriction by high light interception. This supports the hypothesis that stem elongation can be initiated with a LI of the PAR lower than 95%.In this context, Barbosa et al. (2012) observed that the forage mass of Tanzania guineagrass pasture grazed at 90% LI was composed of younger tillers than that in pastures grazed at 95 and 100% LI. These authors also observed that younger tillers had higher leaf appearance and leaf elongation rates, and consequently a greater leaf length and number of live leaves than mature and/or older tillers.By contrast, fluctuations in weather conditions (Figures 1 and 2) and the dates of nitrogen application (1/3 in spring and 2/3 in summer) affected forage and leaf accumulation rates throughout the experiment (Table 2). This, in turn, influenced the variation in rest periods (Table 2; Figure 3) and stocking rates (Table 7; Figure 3) of the pastures, throughout the experiment. It is highlighted that weather conditions were similar to the historical 30-year average rainfall. Considering that post-grazing target height was the same for both treatments and forage accumulation rates were similar for these treatments, light interception levels determined the lengths of the resting periods (Table 1; Figure 3). Pastures grazed at 90% LI required less time to reach the pre-grazing target, resulting in an additional 1.4 grazing cycles for these pastures than for pastures managed at 95% LI (Table 1).The changes in lengths of the grazing periods throughout the study (Tables 1 and 3) could be explained by the variation in forage accumulation rates (Table 3), stocking rate adjustments (Figure 3) to maintain the pregrazing treatment targets and the need for animals to remain in their current paddocks until the next paddocks to be grazed reached the pre-grazing LI target.The greater pre-grazing forage mass values for pastures managed at 95% LI (Table 1) did not result in a higher stocking rate in these pastures (Table 6). This can be explained by the need to use fewer animals because the grazing period was longer (Table 1) as a longer resting period was required for these pastures to reach 95% LI (Figure 3).Despite the greater green stem and dead material percentages in pastures managed at 95% LI, when considering vertical distribution in the canopy profile, we found that about 95% of the green stems and dead material were located in the 0-40 cm stratum (Table 3). This stratum is below the post-grazing target (approximately 50 cm), so theoretically the animals did not have to explore this stratum. This finding supports the results of Zanini et al. (2012), wherein approximately 90% of all stem mass is located in the lower half of the canopy, regardless of the grass species or the targeted pregrazing height.Considering only the theoretical grazing horizon (that part of the canopy above 40 cm), green leaf and green stem percentages were 92.3 and 3.9%, respectively (Table 4), resulting in a leaf:stem ratio of 24:1. This indicates that, regardless of the pre-grazing LI target, the canopy structure above 40 cm did not limit the selection and prehension of leaves, and consequently, forage intake by the animals.Even with the strict control of pre-and post-grazing targets, the morphological composition of the forage varied between seasons. The decrease in leaf percentage and increase in stem percentage during the autumn (Table 2) can be partly explained by the onset of flowering of the Mombaça guineagrass in mid-April. In this period, 6.5% of the forage mass was inflorescences, regardless of the pre-grazing height targets. It is known that, after the inflorescence emerges, the appearance of leaves ceases and stem elongation increases; this was confirmed by the lowest leaf percentage and the highest stem percentage in the pre-grazing forage being recorded in this period of the year (Table 2). This greater growth of stems may explain the high stem percentage in the stubble in autumn (Table 4). On the other hand, regardless of the management strategy used, dead material percentage was higher in spring than in summer and autumn (Table 4). The increased presence of dead material is common in early spring when pastures begin to recover from the dry season (Barbosa et al. 2007;Difante et al. 2009).The similarity in nutritional value of the leaves and stems in the pastures managed using these 2 grazing strategies could be explained by their very close stage of growth, since the major changes in nutritive value occurring in pasture plants are those that accompany maturation ( Van Soest 1994).The similarity in animal performance in pastures grazed at 90 and 95% LI (Table 6) can be explained by the similarities in the canopy structures (Table 3), percentages of the stratum removed and nutritional value of the forage, indicating that the animals accessed similar pasture conditions. In this context, when analyzing the nutritional value of the leaves in the strata over 40 cm (Table 5) and considering the stem percentages above 40 cm (Table 3) and their nutritional values, the average crude protein concentration and in vitro digestibility of organic matter were 11.5 and 58.6%, respectively, for the forage theoretically available to the animals. The estimated average daily gains of the animals as a function of the amount of protein and energy (NRC 1996) revealed that the daily gain possible from the nutritive value of this grass was 810 g, a value close to those observed in the spring and summer (Table 7).However, average daily gain in autumn was much lower (Table 7). Since there was no change in pasture nutritive value between seasons, the variation in pasture structure (Table 2) was the probable cause of the decrease in forage intake, and consequently, weight gain of the animals in autumn. According to Benvenutti et al. (2008), in pastures in the reproductive stage stems act as a physical barrier by interfering with the process of bite formation, thus affecting bite dimensions and selectivity, and consequently daily nutrient intake. Recent studies have shown that maximum short-term forage intake rates could be maintained until forage in the upper 40% of the optimal pre-grazing canopy height had been consumed (Fonseca et al. 2012;Mezzalira et al. 2014). In this study, similar (P = 0.258) defoliation severity (in percentage of the height removed) was found for both treatments. The averages and standard errors for extent of reduction in canopy height during grazing were 43.8 ± 0.3 and 42.4 ± 0.3% for the pastures managed at 95 and 90% LI, respectively. Therefore, these results suggest that relatively moderate defoliation levels are more important than pre-grazing goals per se (provided the maximum height limit does not exceed the critical PAR) when the objective is to maximize animal performance.Similarly, because there was no change in forage accumulation or stocking rate, the similar levels of liveweight gain/ha with the two LIs indicate that Mombaça guineagrass pastures can be managed using either of these management strategies. Thus, instead of basing decisions on a specific LI, some flexibility exists in the pre-grazing target used, without impairment of the productive performance of the animals (Table 6).Our data indicate that Mombaça guineagrass pastures can be grazed under a rotational system using pre-grazing heights of 80-90 cm (90-95% LI) without compromising the performance of either the pasture or the animals provided a moderate defoliation severity is employed, i.e. approximately 45% of the optimal pre-grazing height of pasture is consumed before animals are removed. This hypothesis should be tested further with this pasture and other erect grass species plus prostrate species.El estudio tuvo como objetivos determinar el rendimiento de forraje y la composición química del chimero (Bouffordia dichotoma sin. Desmodium dichotomum), familia Fabaceae, en su nicho en las North y South Wollo Zones, Amhara Region, Etiopía, y conocer las formas de uso por los agricultores de la región. Se determinaron los rendimientos del chimero que crecía espontáneamente en los cultivos de sorgo de 3 asociaciones campesinas en cada uno de 5 distritos del estudio y se determinó su composición química con base en muestras agrupadas. El rendimiento promedio fue de 4,400 kg de MS/ha. La composición química promedio fue: ceniza, 15.4%; proteína cruda, 22%; fibra detergente neutro, 31%; fibra detergente ácido, 26%; y lignina detergente ácido, 5.8%. La digestibilidad in vitro de la materia seca fue de 61%. Las concentraciones minerales fueron: 0.6% Ca, 0.23% P, 1.5% K, 0.78% Mg, 0.01% Na, 0.27% S, 0.16% Fe, 4.4 mg/kg Cu, 45 mg/kg Mn y 12.3 mg/kg Zn. El forraje del chimero parece útil como suplemento para rumiantes, siempre y cuando no se presenten factores antinutricionales. Una leguminosa que ocurre en forma espontánea en un cultivo de sorgo y produce 4 t de MS/ha con un 22% de proteína cruda merece más investigación. Se necesitan estudios sobre el efecto de la leguminosa en los rendimientos de grano y biomasa de cultivos de sorgo y maíz, así como el efecto en el nitrógeno del suelo. También se requiere estudiar la factibilidad de asociaciones con gramíneas forrajeras y explorar si existe variabilidad genética en las poblaciones nativas.Ethiopia is considered to have the largest livestock population in Africa. It is home for about 59.5 million cattle, 30.7 million sheep, 30.2 million goats, 2.16 million horses, 8.44 million donkeys, 0.41 million mules and about 1.21 million camels (CSA 2016/17).Livestock play vital roles in generating income for farmers, creating job opportunities, ensuring food security, providing services, contributing to asset, social, cultural and environmental values and sustaining livelihoods (Metaferia et al. 2011).Despite the high livestock population and favorable environmental conditions for animal production, current livestock production and productivity are far below expectations. This is associated with a number of complex and inter-related constraints such as inadequate feed and nutrition, widespread diseases, limited genetic potential of local breeds, marketing issues and inefficiency of livestock development services with respect to credit, extension, marketing and infrastructure (Negassa et al. 2011). Among these constraints, poor nutrition is a major factor limiting livestock performance (Belete et al. 2012).While supplementing animals with concentrate feeds can increase digestibility, nutrient supply and intake (Preston and Leng 1987), concentrates are expensive and may exceed the financial limits for rural farmers.A logical alternative is to improve the nutrition of livestock by improving the quality of available feed resources like native pastures and crop residues. Another approach is to develop new forage crop varieties by selecting from within local species or through exotic introductions.One native herbaceous legume, known locally as 'chimero' [Bouffordia dichotoma (Willd.) H. Ohashi & K. Ohashi] [syn. Desmodium dichotomum (Willd.) DC], family Fabaceae, is recognized by farmers in several districts of North and South Wollo Zones, Amhara Region, Ethiopia as a valuable livestock feed. Chimero is an herbaceous annual self-regenerating legume growing in a wild state. The stem and branches have a trailing growth habit and reach 64-90 cm in length. Leaves are trifoliolate, with the leaflets being ovate (5.8-8 cm long and 4-5 cm wide). Both the dorsal and under-sides of the leaves are hairy and green in color, while flowers are pink to violet and seeds are yellow to light brown (Figure 1). Chimero is known by other common names in the various countries where it is found, including \"er qi shan ma huang\" in China and \"chikta\", \"asud\" or \"gander-lapto\" in India. It is also found in other parts of Africa (Cameroon, Chad, Eritrea, Sudan, Uganda) and Asia (Indonesia, Myanmar).On the basis of this scenario, the current study aimed to explore how the community uses this legume, plus identify and evaluate the chemical composition of chimero at its niche. South Wollo, situated approximately between 10°15'-11°30' N and 38°25'-39°30' E (Figure 2), has a total landmass of 17,067 km 2 . Elevation varies from 1,000 (Chefameda) to 4,247 (Amba Ferit) masl. The annual range of temperature is 10-25 °C and drops with the increase in elevation. Frost is very common at higher elevations, specifically above 2,500 masl. Annual rainfall varies from 900 to 1,000 mm, most falling in Belg (February-May) and Meher (June-September) (Figure 3). Soil types vary with the major type in the western part of the Zone being vertisol followed by luvisol and nitosol. The southern and eastern parts of the Zone have cambisols, vertisols and dark brown silty clay soils. Water-logging occurs as a result of poor surface drainage plus shallow soil depth and soil infertility is common.North Wollo central area is one of the 11 Zones of Amhara Regional State. It is in the northern part of the country (11°21'-12°20' N, 38°27'-39°57' E) (Figure 2) and shares a border with South Wollo Zone, South Gondar Zone, Wag Hamra Zone, Tigray Region and Afar Region. In addition to these neighboring areas, part of North Wollo's southern border is defined by the Mille River. The districts of North Wollo Zone fall under 4 livelihood zones. These are: the lowland areas, North Wollo East Plain livelihood Zone, Northeast Midland mixed cereal livelihood Zone and North Wollo Highland Belg livelihood Zone. Climatic conditions in the Zone are presented in Figure 4. A survey was conducted from 10 October 2018 to 20 November 2018 in North and South Wollo Zones. From North Wollo Zone, Habru, Gubalafito and Kobo districts and from South Wollo Zone, Ambasel and Tehuledere districts were assessed. Three PAs (Peasant Associations) from each district were selected as representative of the study area. Random sampling of households within these PAs was employed. The sample size was determined by using the formula given by Yamane (1967):where: n is sample size, N is number of households and e is the desired level of precision (0.05).A total of 387 households were interviewed from 12,262 households in the population representing the selected PAs. Structured and semi-structured questionnaires were used to collect information on: the season in which chimero is harvested and consumed by livestock; which parts of chimero are preferred and by which animal species; abundance; harvesting and conservation methods; ease of browsing; and additional uses. The questionnaires were pretested prior to commencing the survey to ensure respondents understood all questions clearly. Samples of chimero were collected from sorghumgrowing farmers from each PA, pressed, labeled, dried and transported to the National Herbarium of Addis Ababa University for identification, based on the Flora of Ethiopia (Hedberg 1996). Three samples of vegetative parts of chimero were collected from each Kebele (the lowest administrative unit of a certain area or PA) at random and pooled for chemical composition and in vitro dry matter digestibility (IVDMD) determination.At the 50% flowering stage chimero was harvested from each PA using 1 × 1 m quadrats (9 quadrats per PA) for dry matter (DM) yield determination. Plants were harvested at ground level and fresh biomass weighed immediately. A subsample of 15-20% of the total weight was taken, weighed and placed in a paper bag for DM determination. The samples were oven-dried at 105 °C for 24 h. Nutritive value analysis. The oven-dried samples were ground in a Wiley mill to pass through a 1 mm sieve for the determination of chemical composition. To determine ash concentration, samples were ignited in a muffle furnace at 550 °C (AOAC International). Crude protein (CP) concentration was determined using the Kjeldahl method (AOAC International), while neutral detergent fiber (NDF), acid detergent fiber (ADF) and acid detergent lignin (ADL) concentrations were determined according to Van Soest et al. (1991). In vitro dry matter digestibility (IVDMD) was determined according to the 2-stage method outlined by Tilley and Terry (1963). All chemical composition and IVDMD analyses were carried out at the Nutrition Laboratory, Holeta Agricultural Research Center. Mineral composition analysis. Three samples of chimero were collected from each PA (total of 45 samples) and delivered to the JIJE analytical testing service laboratory, Addis Ababa for the analysis of macro-minerals: calcium (Ca), phosphorus (P), potassium (K), sodium (Na), magnesium (Mg) and sulfur (S); and micro-minerals: cobalt (Co), copper (Cu), iron (Fe), manganese (Mn), selenium (Se) and zinc (Zn). Na and K were determined by flame spectrophotometry (AOAC International, Official method 966.16); Ca and Mg by EDTA titration (AOAC International, Official method 962.01); P by spectrophotometry (AOAC International, Official method 965.17); S by magnesium nitrate ashingturbidimetry; Co, Cu, Fe, Mn and Zn by flame AAS (AOAC International, Official method 985.35); and Se by Graphite Furnace AAS (AOAC International, Official method 985.35).The primary data collected for this survey were analyzed using descriptive statistics such as means, frequency distributions, percentages and standard deviations using SPSS (2007).The household characteristics of the respondents are presented in Table 1. Overall, in the present study 84.2% of the respondents were male-and 15.5% female-headed households. The overall average age of the respondents in the study districts was 46.8 years.In the study districts, the average total crop land and private natural grazing land owned by the households was 2.76 ha (range 2.49-3.56 ha) and 0.62 ha (range 0.54-0.8 ha), respectively (Figure 5). No respondents had fallow land or improved pasture land. The average landholding of the respondents in the study was greater than the average national landholding size (0.96 ha/household) (CSA 2011).The samples of chimero from each Woreda (third-level administrative divisions of Ethiopia) were sent to the National Herbarium of Addis Ababa University for identification and confirmed as being Desmodium dichotomum (Willd.) DC. This plant was initially named Hedysarum dichotomum by Willdenow in 1802 and During the wet season, most respondents (80.4%) indicated that their first choice for forage was weeds and green crop chop, with crop residue and natural pasture being the main second choices (40.8 and 39%, respectively) and natural pasture (40.1%) and crop residue (39.5%) the main third choices (Table 2). Green crop chop is defined as a harvested forage crop without allowing it to dry in the field. In the overall ranking, weeds and green crop chop were the most important, crop residues the second most important and natural pasture the third choice.During the dry season, 100% of respondents used crop residues as the primary feed resource, while crop aftermath was second choice (80.4%) and hay (60.2%) the third choice. Stover was the first choice of fodder in the dry season since it includes crop residue. Crop residues are defined as material left after the crop has been harvested, e.g. teff straw, barley straw, wheat straw, chick pea hulls, sorghum and maize stover, while crop aftermath is a second-growth crop.Chimero emerges spontaneously under sorghum crops (Figure 6). It is categorized as green chop for immediate feeding to livestock since the farmers have no experience in preserving forage, e.g. in the form of hay, as a feed resource for the dry season. Most farmers do not sow any forage for livestock feeding and prefer to use naturally occurring grass, grass hay, crop residues, green chop, The amount of ground covered by the plants at harvesting differed from farm to farm and even within the same farm because farmers broadcast sorghum seed at sowing so there was little consistency. To determine DM yield of chimero in our study, we sampled the legume from within the sorghum crop when chimero was displaying 50% flowering (at approximately 3 months after emergence). All categories of animals were fed chimero including oxen, sheep and goats for growth and fattening, cows for higher milk production and mules, horses and camels for energy. While all farmers did not have all classes of animal at the time of the survey, they indicated that at some time they had owned all types and fed them chimero. Farmers rated the animal preference through long periods of observation and experience and considered chimero was most preferred by cattle (273 from 387 respondents) (Table 3). According to the information gained during survey work, there was limited indication that different animal species had a special preference for different parts of chimero, although some farmers said equines preferred to eat stem and small ruminants preferred to eat pods. All respondents (100%) preferred chimero as a feed source over other locally available herbaceous legume feed resources, e.g. Neonotonia wightii. No respondent conserved/stored chimero, treated it in any way, sold it or used it for any purpose other than feeding his/her livestock. No farmers have received formal training on how to conserve and preserve important indigenous forage legumes for feeding later. All respondents used the self-regenerating chimero with sown crops (78.8% with sorghum and 21.2% with maize) and indicated that it was abundant for harvesting in the months September-November. All farmers used a cut-and-carry system for utilizing the chimero.The average yield of 3-4-months-old chimero as assessed under the grain crops was 4,400 kg DM/ha with a range of 4,100-4,800 kg DM/ha between districts. Possible factors contributing to variation across districts might be variation in rainfall, soil characteristics and competition from the grain crops.Chemical analyses revealed that mean concentrations of various components in chimero were: 22% CP (DM basis), 31% NDF, 26% ADF and 5.8% ADL, while IVDMD was 61%. Mineral concentrations were: 0.6% Ca, 0.23% P, 1.47% K, 0.78% Mg, 0.01% Na, 0.27% S, 0.16% Fe, 4.4 mg/kg Cu, 44.9 mg/kg Mn and 12.3 mg/kg Zn. There was no variation between sites in chemical composition.This survey has shown the important role that chimero plays as a self-sown legume with grain crops in this part of Ethiopia, especially for use as a source of feed during the wet season. Not surprisingly, the forage was fed using a cut-and-carry system as it would not be appropriate to allow livestock access to the plants while growing with the sorghum or maize crops. Further studies would seem to be warranted to determine the impacts of growing the legume with the grain crops on grain and stover yields of the crops as well as on soil improvement. Another aspect would be the possible contribution it could make to the diets of livestock during other times of year, especially if sown into native pastures.The finding from this study that crop residues from sorghum and maize stover plus teff straw were the most important feed sources during the dry season agrees with the report of Abate et al. (2010) that straw from maize, sorghum and teff was used mainly during the dry season in southeastern parts of the country. Contrary to the current study, Desalw (2008) reported that the major dry season feed resources for cattle were natural pasture (55.7%), crop residues (20.7%), stubble (14.3%) and hay (9.3%). Most farmers fed chimero to large ruminant animals and assumed that it would fatten animals rapidly, especially oxen. In this study it has not been possible to locate any data on how well animals perform when fed this legume and how it might compare with other legumes grown under these conditions.It was of considerable interest that all respondents preferred chimero over other locally available herbaceous legume feed resources, such as Neonotonia wightii. In the preference table (Table 3) the percentages of respondents listed indicated that particular animal categories had highest preference for chimero. For example, 6 (1.6%) farmers indicated that equines had the greatest preference and 43 (11.1%) farmers indicated that camels had the greatest preference. Similarly, 86 (22.2%) farmers stated that animals preferred to eat stem over leaf and pods, 258 (66.7%) indicated that animals preferred to eat leaf over stems and pods, while 43 (11.1%) indicated that animals preferred pods over leaf and stems. A preference for stem over leaf and pods is surprising but according to farmers' explanations during survey work, most indicated that equines preferred to eat stem and small ruminants preferred to eat pods. Despite there being surplus production of chimero in September-November, the crop growing season when good rainfall was received and other non-crop residue feed resources should have been most readily available, no respondents conserved and stored chimero as either hay or silage for use during periods of feed scarcity. However, data suggest that considerable amounts of other hays were fed in both wet and dry seasons, more so in the dry season, the major types being sorghum and maize stover, teff residue and natural grasses. The opportunity obviously exists to conserve this relatively high protein source for feeding during the winter-spring period when both quantity and quality of available feed, especially native pastures, stovers etc., are low. There are numerous references in the literature that a supplement of high protein forage increases intake of low quality roughage and improves animal performance (Adu et al. 1990;Melese et al. 2014). However, as no farmers have received formal training on how to conserve and preserve important indigenous forage legumes for feeding later, a technology transfer program would need to be mounted to achieve this end.This study has shown that many farmers in the study area grow grain crops and chimero is self-sown in these crops from residual seed (soil seed bank). Farmers feed it using a cut-and-carry system to all classes of livestock. Mean yields obtained of 4.4 t DM/ha were quite significant and would provide a valuable source of forage for stock. As mean CP concentration of the forage was 22%, this forage could be used as either a supplement to other feeds or as a complete feed. However, the presence of anti-nutritive factors in the forage should be investigated. As little research has been conducted on this very promising species, much more effort should be devoted to determining if more productive ecotypes are available and how yields of the forage can be maximized. The impacts of sowing this species with grain crops on grain and stover yields of the crops should be examined as well as its role if sown into native pastures. Conservation for feeding at times of low feed quality and availability seems a logical method to utilize the forage and this process should be investigated as well as mounting a technology transfer program to promote conservation.Since completing this survey the author has collected seed from 26 populations of Bouffordia dichotoma from a number of districts in the South Wollo, North Wollo and Oromia Zones of Ethiopia (10-12 o N, 39-40 o E; 1,470-1,890 masl) following the Ethiopian biodiversity institute collection format for forage genetic resources conservation.Mean annual rainfall at collection sites varies from 500 to 1,557 mm. The seeds are currently stored at Wollo University and the author will undertake preliminary evaluations of these populations as part of his Ph.D. studies to assess what degree of variation exists in the natural populations in the region.Major challenges for high quality silage production occur at the stages of ensiling, storing and discharging from bunker silos. During these stages, microbial activities may affect fermentation processes in the ensiled forage and consequently its nutritional quality. Thus, to reduce quality losses, parameters related to the forage itself at the harvest stage, such as moisture content, crude protein concentration and particle size, must be evaluated as well as those related to the type of bunker silo, which will determine the exposure of the ensiled material to oxygen and compaction (Cardoso et al. 2016).One of the most important factors influencing silage quality is its density (Craig and Roth 2005), which is primarily determined, among other things, by the average particle size of the forage plant, its stage of maturity at harvest and how efficiently the compaction of the material is carried out, which usually in bunker silos is done by using packing tractors (Muck and Holmes 2000). Silages with low density often contain high residual air mass, resulting in longer periods of oxygen exposure and consequently increased consumption of soluble carbohydrates, plus reduced production of organic acids and higher pH (McDonald et al. 1991).In addition, low density values lead to higher porosity and passage of air into the bunker silo, affecting the aerobic stability and increasing losses during utilization of the silage (Jobim et al. 2007). Thus, reduction of porosity/increasing compaction or density during ensiling is a crucial management practice for reducing aerobic deterioration (Bernardes et al. 2009;Hentz et al. 2017). Aerobic deterioration, besides reducing the nutritional value of the ensiled material, can increase the proliferation of pathogenic or undesirable microorganisms, impairing the performance of animals fed on these forages (Barbosa et al. 2011). Greater compaction results in higher density, allowing a better retention of soluble carbohydrates and reduced proteolysis, resulting in improved acceptability to animals and nutritional quality of the ensiled material (Velho et al. 2007;Sucu et al. 2016).Based on the above, we hypothesized that measuring density and dry matter (DM) concentration of silages on farm could provide reliable indicators of the nutritional quality of the feed. We designed this study to sample corn silages under farm conditions in Paraná, Brazil, determine their density and DM percentage, and calculate the relationships between these variables and physical and chemical characteristics of silages.Following a completely randomized design, samples of corn silages were collected from 20 bunker silos on 20 typical dairy farms in the ABCW dairy basin, Paraná State, Brazil, specifically in the municipalities of Arapoti (24º09' S, 49º49' W), Piraí do Sul (24º31' S, 49º56' W), Castro (24º47' S, 50º00' W), Carambeí (24º55' S, 50º05' W) and Ponta Grossa (25º05' S, 50º09' W). Before starting the sampling procedure, a slice of silage was removed from the vertical face of each silo panel in order to remove any loose silage, so that the samples were collected from undisturbed material.Density measurements (i.e. specific mass) were made by employing the methodologies described by Muck and Holmes (2000) and D' Amours and Savoie (2004); a metal cylinder (20 cm long and 10 cm diameter) with a serrated cutting edge and attached to a chainsaw was used as described by Craig and Roth (2005) and Krüger et al. (2017). The force generated by the chainsaw screwed the cylinder horizontally into the vertical face of the silage panel. When the silage sample was withdrawn from the silage, the depth was measured with a rule to calculate the volume of the sample. Silage samples were withdrawn at 5 points (replications) on the vertical face of the silo panel: 3 locations at the top and 2 at the bottom, forming a \"W\" like pattern. The samples were weighed when withdrawn and from the cylinder volume and the mass of the sample, density of silage in the silo on a natural matter basis (DNM) was calculated, assuming uniform density throughout the silo. Samples were then dried (55 °C for 72 h in a forced air circulation oven) and density on a dry matter basis (DDM) was calculated in order to account for differences in moisture content between silages.The Penn State particle size separator method (Heinrichs 1996) was used to determine the average particle size (APS) in each composite sample (5 replicates from the silo panel). Calculations of particle size were carried out according to manufacturer's instructions. This particle separator contains sieves of 19 and 8 mm, in which the 19 mm sieve was designed to retain forage or feed particles that would be buoyant in the rumen (form the forage mat) and require substantial cud chewing by the animal; in theory this would supply additional buffering to the rumen and help modify rumen pH. After that, the 8 mm sieve collects primarily forage particles that are also part of the forage mat in the rumen, but will be broken down faster with less cud chewing and will hydrate in the rumen faster to allow more rapid rumen microbial breakdown. Additionally, there is a bottom pan where all the other smaller particles should be collected. Subsequently, APS is calculated according to the percentage (on natural matter mass basis) of material retained in each sieve.A digital potentiometer was used to measure pH according to Cherney and Cherney (2003) and electrical conductivity was determined as described by Jobim et al. (2007) using a digital conductivity meter.For chemical composition analysis, dried silage samples (55 °C for 72 h in a forced air circulation oven) were ground in a Wiley mill through a 1 mm screen. The concentrations of DM (ID number: 934.01), crude protein (CP; ID number: 2001.11), ether extract (EE; ID number: 2003.5) and ash (ID number: 942.05) were determined according to AOAC International (2011). Starch (STA) determination followed the methodology described by Pereira and Rossi (1995), while neutral detergent fiber (NDF), acid detergent fiber (ADF) and lignin (LIG) were determined according to Van Soest et al. (1991). Total carbohydrates (TC) were calculated using the equation: TC = 1,000 -[CP (g/kg DM) + EE (g/kg DM) + ash (g/kg DM)]. Non-fiber carbohydrates (NFC) were calculated as the difference between TC and NDF (Hall 2000). Total digestible nutrients (TDN) were calculated using the equation: TDN (g/kg) = 87.84 -(0.70 × ADF) (Undersander et al. 1993). All chemical composition parameters, except for DM, were determined on a DM basis.The methodology proposed by Tilley and Terry (1963), adapted to a Daisy II incubator system (ANKOM ® -Technology Corporation) as described by Santos et al. (2000), was used to determine the in vitro digestibility of DM (IVDDM) and NDF (IVDNDF).Statistical analysis was performed using the software SAS v. 9.4 (SAS Institute Inc., Cary, NC, USA). Correlation (Proc CORR) and factor analysis (Proc Factor) were performed to verify the relationships between the obtained variables. For all procedures, 5% significance level was adopted.The means and variation between tested silage samples in physical and chemical composition parameters are presented as a boxplot in Figure 1. The greatest variation was shown for DNM, being much greater than the variation in DDM, while the variation in total carbohydrates, TDN and pH was minimal as shown by standard deviation (SD) values below. Average electrical conductivity and pH for silages were 591 ± 100.9 (µS/cm) and 4.0 ± 0.09 (mean ± SD), respectively. DMdry matter (g/kg); CPcrude protein (g/kg DM); NDFneutral detergent fiber (g/kg DM); ADFacid detergent fiber (g/kg DM); LIGlignin (g/kg DM); TDNtotal digestible nutrients (g/kg DM); TCtotal carbohydrates (g/kg DM); NFCnon-fiber carbohydrates (g/kg DM); STAstarch (g/kg DM); DNMdensity on natural matter basis (kg NM/m 3 ); DDMdensity on dry matter basis (kg DM/m 3 ); IVDDMin vitro digestibility of dry matter (g/kg); IVDNDFin vitro digestibility of neutral detergent fiber (g/kg); APSaverage particle size (mm). Dry matter percentage in silage was negatively correlated with NDF (r = -0.44*), ADF (r = -0.42*) and DNM (r = -0.48*) but was positively related to DDM (r = 0.54*) (Table 1). However, DDM and DNM were positively correlated (r = 0.47*), while DDM was negatively related to NDF (r = -0.46*) and ADF (r = -0.40*). These correlations may be clearly observed in the 2 main factor analysis (Figure 2 variables next to one another along the axes are positively correlated while those in opposite positions are negatively correlated), which explained 49.1% (i.e. sum of autovectors) of the variance observed between the parameters evaluated.An important outcome of this study was the demonstration that maize silage being made on dairy farms in this region varied greatly in quality, which can probably be related to the stage of maturity of the maize crop at harvesting (Figure 1). The ability to compress the ensiled forage depends greatly on factors like fiber levels, moisture content, particle size etc. High density of compaction can prevent loss of nutrients because more air is expelled from the compacted material and the opportunity for aerobic respiration to occur is reduced. On the other hand, low density of compression can result in an environment favorable for aerobic respiration, increasing the proliferation of molds and mycotoxins (Sucu et al. 2016;Hentz et al. 2017). Amaral et al. (2007) showed that low density of compaction resulted in greater gas production, while high density of compaction resulted in a greater preservation of DM content of Brachiaria brizantha cv. Marandu silage. In addition, reduced pH was associated with high density of compaction, indicating that the environment was more suitable for the proliferation of lactic acid-producing bacteria (Amaral et al. 2007). Santos et al. (2010a) demonstrated that high density of compaction in tropical forage silages was possible when NDF and ADF concentrations in the ensiled material were low and the in vitro digestibility was high.Our results showed that DNM was negatively related to STA, possibly due to the adequate environment for the fermentation process, since the microorganisms prefer low molecular weight carbohydrates as soluble sugars (Hentz et al. 2017). The DM% and density of the ensiled material has significant impacts on the final result of the fermentation process, because when DM concentration exceeds the ideal, it is more difficult to achieve the desired level of compaction in the ensiling process. Average DM observed here was 358 + 50.3 g/kg (mean ± SD), which was at the upper limit of the ideal range for corn silage (300-350 g DM/kg) suggested by Marafon et al. (2015). The positive correlations between DM% and parameters such as STA, TDN and TC lend weight to this suggestion (Table 1; Figure 2). TDNtotal digestible nutrients (g/kg DM); TCtotal carbohydrates (g/kg DM); NFCnon-fiber carbohydrates (g/kg DM); STAstarch (g/kg DM); DNMdensity on natural matter basis (kg NM/m 3 ); DDMdensity on dry matter basis (kg DM/m 3 ); IVDDMin vitro digestibility of dry matter (g/kg); IVDNDFin vitro digestibility of NDF (g/kg DM); ECelectrical conductivity (µS/cm); APSaverage particle size (mm).DMdry matter (g/kg); CPcrude protein (g/kg DM); ADFacid detergent fiber (g/kg DM); LIGlignin (g/kg DM); NDFneutral detergent fiber (g/kg DM); TDNtotal digestible nutrients (g/kg DM); TCtotal carbohydrates (g/kg DM); NFCnon-fiber carbohydrates (g/kg DM); STAstarch (g/kg DM); DNMdensity on natural matter basis (kg NM/m 3 ); DDMdensity on dry matter basis (kg DM/m 3 ); IVDDMin vitro digestibility of dry matter (g/kg); IVDNDFin vitro digestibility of neutral detergent fiber (g/kg); ECelectrical conductivity (µS/cm); APSaverage particle size (mm). The IVDDM was not related to DM% of silage, but we found evidence that excessive maturity in material at ensiling can result in reduced nutritional quality of silage, since STA, TDN and TC were negatively related to the fiber content (ADF and NDF), a factor which is emphasized by the extremely opposite positions of these variables along the axes in Figure 2. Still concerning the fiber levels in the silages, IVDDM was negatively correlated with NDF and ADF concentrations, indicating the importance of ensiling crops at the most appropriate maturity stage to obtain high quality silage (Souza Filho et al. 2011). In addition, the positive relationship between DDM and STA as well as IVDNDF indicated the importance of ensuring adequate compaction while ensiling forage material. Our results showed that DM% in silage and density are parameters that must be considered by producers to achieve better productivity results, since both are related to good quality indexes of the ensiled material (Figure 2), and are also supported by other studies in the literature (Santos et al. 2010b;Hentz et al. 2017).It was interesting that CP concentration in ensiled material was negatively related to total carbohydrates, non-fiber carbohydrates and starch, which might all be expected to increase as plants matured, i.e. when cobs were formed and seeds were produced. Crude protein levels would also be expected to fall at this stage of growth, while at the same time, they are positively related to density on a natural matter basis, again following a logical pattern. As the plants mature the forage becomes more fibrous so the material is harder to compact, while CP% declines.Electrical conductivity measurements have been used in studies carried out in Brazil (Jobim et al. 2007). The EC is defined as the ability that water has to conduct electrical current, which is related to the presence of dissolved ions. The EC values found in our study are lower than those found by Castro et al. (2006) evaluating Cynodon sp. silage (965 µS/cm). This measurement does not express specifically what ions are present in a given sample, but is related to the loss of intracellular material, i.e. soluble substances such as pectin, during the ensiling process as evidenced by its significant correlation with TC (r = -0.22*), CP (r = 0.34*) and TDN (r = 0.28*). The effects of fermentation products on EC are still not properly understood; however, the results can be used to draw inferences about adequate APS (r = -0.37*) and desirable DM% in forage at ensiling (Figure 2) (Jobim et al. 2007;Bumbieris Jr et al. 2010).Adequate APS values for corn silages should be in the range of 8-12 mm, when DM content is in the range of 300-370 g/kg (Weirich Neto et al. 2013), which was the case for most samples we evaluated (Figure 1), limiting the extent of unwanted fermentations and improving preservation of the nutritional quality (Neumann et al. 2007) by allowing higher density of compaction (DDM; r = -0.23*).In addition, we found that the APS of our samples was associated with higher digestibility of the ensiled material (IVDDM; r = 0.23*); it is important to emphasize that this correlation applies specifically to the data set we worked here (APS of samples in the range of 8-12 mm) since excessively long fiber particles are often correlated with reduced digestibility when compared with shorter particles. Hildebrand et al. (2011) emphasized that finely ground silage led to higher gas production on in vitro batch culture assay, while in a rumen simulation technique (Rusitec) assay, coarsely ground corn silage led to increased organic matter degradability, which the authors attributed to increased degradability of NFC and CP. Despite of observing a positive correlation between IVDDM and APS, the correlation had a relatively low r value (0.23) indicating that particle size explained very little of the variation in IVDDM values.The APS is also important in diet formulation, since it is directly related to animal selectivity, rumination time, stability of ruminal pH, passage rate and microbial degradation and consequently affects animal production (Santos et al. 2010a;Marafon et al. 2015). Corroborating the idea that silage materials with high DM% usually present higher pH values (Senger et al. 2005), our results showed that pH was affected by compaction levels (DNM = -0.30), with greater pH values in low density samples, which may be associated with poor nutritional quality of the silage and reduced acceptability by the animals.Our study has demonstrated that the corn silages produced on dairy farms used in our study varied greatly in parameters such as DM% and CP concentration but the most variable characteristic was the degree of compaction, which has such an important influence on the quality of the silage produced. Silages which were well compacted, i.e. with a high DDM, were also high in TDN, NFC and starch, but were low in fiber, i.e. were of better quality. On the other hand, more mature material at ensiling, i.e. with higher fiber levels, was difficult to compact and had lower DDM levels. These findings reveal a need for a technology transfer initiative to inform farmers of the variation which exists in terms of quality of silage produced and deficiencies in the silage making process. In utilization and conservation of forage there is always a trade-off between quantity and quality of material produced. In the case of silage, delaying harvesting until forage is quite mature can result in a poor outcome because of inappropriate levels of compaction combined with reduced quality of the forage ensiled. Farmers should be informed of the need to ensile material at a stage of growth when forage is still of good quality and good compaction of the ensiled material can be achieved. While high quality of the material at ensiling is positive, an added benefit is the reduced losses of nutrients during the fermentation process. When removed from the silo for feeding, the silage would retain much of its better quality at ensiling and resulting production from livestock would be greater. El bersín o trébol de Alejandría (Trifolium alexandrinum) comprende los ecotipos Miskawi, Fahli y Saidi, siendo Miskawi el más ampliamente cultivado. La estrecha base genética y la baja disponibilidad y utilización de recursos genéticos son un obstáculo para el mejoramiento genético de esta leguminosa en la India. Por tanto la explotación de nuevas y diversas fuentes de variación genética es esencial. En el presente estudio, 7 poblaciones de estos ecotipos de T. alexandrinum fueron evaluadas durante 2 años para analizar los patrones de acumulación de biomasa, fenología, valor nutritivo y rendimiento de semilla. Los resultados indican que los ecotipos Fahli y Saidi produjeron más biomasa por unidad de área y fueron más precoces que las poblaciones del ecotipo Miskawi. No obstante en muestras de plantas con 50% de floración, la concentración de proteína cruda en el forraje fue significativamente mayor en las poblaciones de Miskawi (20%) que en las de Fahli y Saidi (17.4 y 18.0%, respectivamente). Por otra parte, los rendimientos de semilla de los ecotipos Fahli y Saidi fueron significativamente mayores que los de las poblaciones de Miskawi. Los resultados sugieren que es posible mejorar los rendimientos de biomasa y la producción de semilla de las poblaciones cultivadas de Miskawi mediante la incorporación de genes procedentes de los ecotipos Fahli y Saidi.The genus Trifolium comprises more than 250 species and is widely distributed, being best adapted to mesic or humid environments, in soils of moderate to high fertility and slightly acid to alkaline pH. Trifolium species play a key role in soil improvement by providing biological nitrogen fixation and a source of green manure. Ten Trifolium species are used as the major forage legumes in tropical upland, Mediterranean and temperate regions of the world with the most important being white clover (T. repens), red clover (T. pratense) and Berseem or Egyptian clover (T. alexandrinum) (Zohary and Heller 1984). The eastern Mediterranean region possesses the greatest species diversity and is believed to be the center of origin of the genus Trifolium (Vavilov 1926). Berseem or Egyptian clover (2n = 2x = 16) is an important annual forage legume and has been introduced from the Mediterranean region to many countries like India, Pakistan, South Africa, USA and Australia.Trifolium alexandrinum is divided into 3 different bio/ecotypes, Miskawi/Miscavi, Saidi and Fahl/Fahli. The Miskawi, Saidi and Fahli ecotypes differ in morphology, yield and regrowth ability after cutting. Miskawi can be cut 4-6 times in a season, while Saidi can be cut twice and Fahli only once. Fahli berseem is a low branching cultivar and is more adapted to dry areas than the other ecotypes (Suttie 1999;Hannaway and Larson 2018). This species is commonly grown in Egypt and displays high level of morphological and molecular variability compared with Miskawi (Hussain et al. 1977;Muhammad et al. 2014). Miskawi was introduced into India in 1904 and has been widely utilized since 1916 as a major winter fodder due to its multi-cut (4-8 cuts) nature, ability to provide fodder for a long duration (November-May), very high green fodder yields (up to 85 t/ha), good forage quality (20% crude protein), high digestibility (up to 65%) and good palatability (Narayanan and Dabadghao 1972).While Berseem produces high quality forage in India, aspects requiring improvement are dry matter (DM) yields from early cuts, initial vigor, extended vegetative growth and resistance to stem rot and root rot disease complexes (Malaviya et al. 2004b). However, owing to extensive genetic drift and natural selection over time and space, the genetic base of this crop in India is narrow (Verma and Mishra 1995) and needs to be broadened for targeted traits using different breeding approaches like hybridization, mutation, etc.There are many species in the secondary and tertiary gene pool of T. alexandrinum L. such as T. apertum Bobrov, T. meironense Zohary & Lerner, T. resupinatum L., T. constantinopolitanum Ser. and T. vesiculosum Savo possessing genes for wide adaptability and resistance to biotic and abiotic stresses (Putiyevsky and Katznelson 1973;Malaviya et al. 2004a). However, crossincompatibility barriers and linkage drags limit their exploitation for cultivar improvement (Putiyevsky and Katznelson 1973;Malaviya et al. 2018). For the development of interspecific hybrids with these species, the embryo rescue technique is needed (Malaviya et al. 2004b;Kaur et al. 2017). However, the primary gene pool of Berseem needs to be exploited before addressing the interspecific hybrids, which are coupled with problems like linkage drag.Detecting and exploiting genetic variation in biomass accumulation and phenology is of great importance for increasing Berseem yield as well as development of plant ideotypes for different cropping systems. Therefore, we conducted an investigation to characterize a selection of T. alexandrinum lines for targeted traits that could be utilized for genetic improvement of this crop by breeders in the future.Seven lines (populations) of T. alexandrinum comprising cvv. Wardan, Bundel Berseem-2 and Bundel Berseem-3 from Miskawi, JHBF-1 and JHBF-2 from Fahli, and JHBS-1 and JHBS-2 from Saidi ecotypes were used. The experiment was conducted for 2 consecutive years during winter (November-April) at the Central Research Farm of the ICAR-Indian Grassland and Fodder Research Institute (25°31' N, 78°32' E; 237 masl), Jhansi, India. The experimental site is characterized by a semi-arid climate with extreme temperatures during summer (43-46 °C) and winter (as low as 2 °C). The soil was deep, moderately well drained, and brown to dark grayish brown with fine loamy texture. Nitrogen (20 kg N/ha), phosphorus (60 kg P/ha) and farmyard manure (30 t/ha) were applied at sowing. The design was a completely randomized block (CRBD) with 3 replications. Each line was planted (second week of November) in 4 × 3 m plots with 10 rows of plants/plot. Line to line distance was maintained at 30 cm. In each plot equal plant populations were maintained by planting of equal numbers of viable seeds. Immediately after sowing a very light irrigation was applied followed by 2 light irrigations at 7 day intervals and 9 subsequent irrigations at intervals of 12-15 days. Meteorological data for the experimental period showed that in the first winter season (November 2016-April 2017) total rainfall was as low as 5.6 mm and 5.0 mm in the second winter season (November 2017-April 2018), while the mean monthly minimum and maximum temperatures during those 6 months were 12.2 and 29.4 °C, respectively, for 2016/17, and 16.6 and 29.8 °C, respectively, for 2017/18.During the growing period, biomass yields (kg DM/ha) were measured on 4 occasions, viz. 45 days after sowing (DAS), 60 DAS, 75 DAS and at 50% flowering by clipping 2 rows (2.4 m 2 ) of each plot at 6 cm above ground level. Immediately after harvest, fresh forage yield was determined using a portable balance. A 500 g sample of fresh forage was taken from each plot and dried at room temperature without direct exposure to sunshine. When samples showed equal weight on 3 successive days, the weight recorded was considered as approximate dry weight and DM yields were determined. Dried samples of similar growth stage (50% flowering) material were ground for estimating the nutrient parameters in the 2016/17 cropping season. Crude protein (CP) percentage was estimated as per procedures of AOAC International (2005). Fiber fractions, namely neutral detergent fiber (NDF) and acid detergent fiber (ADF), were determined following the detergent method of Van Soest et al. (1991). Days to initiation of flowering, 50% flowering and maturity were recorded from planting date. Plant height (cm) and leaf:stem ratio were recorded on 5 plants in each plot at the 50% flowering stage. Plant height was measured from soil surface to tip of flower. For estimation of leaf:stem ratio (fresh weight) leaves and stems of clipped plants were hand-separated and weighed immediately. Seed yields (kg/ha) were recorded on open-pollinated plots and thousand-seed weights (g) were assessed.Data were analyzed using PROC GLM (SAS Institute 2011). Mean data for populations were compared using the t-test. Shapiro-Wilk's test was used for normality of residual effect and homogeneity of variance was tested using Levene's test. Crop growth rate (CGR) was measured as dry biomass (kg/ha/d) accumulated in different growth stages using the following formula: CGR = (W2 -W1)/(T2 -T1) where: W1 = Dry biomass at T1 of the period (kg/ha); W2 = Dry biomass at T2 of the period (kg/ha); T1 = Date at the start of the period; and T2 = Date at the end of the period.Analysis of variance for biomass yield (green and dry) at 4 different growth stages, plus phenology and seed yields of the 7 different Berseem populations (lines) belonging to 3 different ecotypes was conducted to determine the variability between populations and years and any interactions. Population × year interactions were rarely significant so main effects only are presented. The majority of the diversity was attributable to differences between lines rather than between years. Year effects were significant only for days to initiation of flowering, 50% flowering and maturity, as well as seed yields.Biomass yields (green and dry) of the populations belonging to Fahli and Saidi ecotypes were greater than those of Miskawi at all growth stages (Tables 1 and 2) and accumulated progressively with time irrespective of ecotype (Figure 1). At 75 DAS Fahli and Saidi ecotypes yielded 5.80 t DM/ha, while the Miskawi ecotype yielded 4.16 t DM/ha. Number of days to initiation of flowering, 50% flowering and maturity differed significantly between ecotypes with Fahli0.05) of cutting type, i.e. apical or basal, nor any interaction between cutting type and substrate, so data were pooled for both cutting types (Table 1).Substrate type had a significant effect (P<0.05) on percentage of cuttings which produced buds, expanded leaves and roots plus length and width of expanded leaves. The substrate S+MC promoted the highest percentage of buds (89.7% of cuttings), while S had the lowest number of cuttings which produced buds (37.3%) and fully expanded leaves (22.9%). Rooting of cuttings was significantly higher in V (19.1%) than in both substrates involving soil, where very low percentages of cuttings produced roots (2.4 and 0.8%). Both V and SA produced longer and wider leaves on cuttings than did straight soil. Some nodules were found on roots in the S+MC after 120 days of culture.While no statistical comparison between sampling periods was done, higher values were found for bud, expanded leaves and rooting percentages for cuttings obtained during the dry season, without any apparent difference for leaf width or length (Table 1).For cuttings taken in the rainy season, no significant effect was observed (P>0.05) for cutting type, nor was there any interaction between cutting type and substrate, so data were pooled for the 2 cutting types. Substrate type had a significant effect (P<0.05) on the percentage of cuttings which produced buds and expanded leaves plus length and width of expanded leaves (Table 1).Percentage of cuttings producing buds was higher for those grown in S+MC and SA than for those grown in S.Substrate had no significant effect (P>0.05) on percentage of rainy season cuttings producing roots, the only substrate producing any rooting being S+MC (0.8%).This study has shown that season when cuttings were taken had the greatest overall effect on production of buds, expanded leaves and roots on cuttings of mororó. It is possible that the difference between seasons is linked to amounts of substances stored in the cuttings, as during the rainy season the tendency is for more intense growth, with translocation/consumption of these substances in the branches.While cuttings taken during the dry season generally produced buds and expanded leaves at an acceptable level, those taken in the rainy season produced at a much lower level, barely better than a third of that in the dry. While root development was also affected by time when cuttings were taken, only SA and V substrates produced acceptable levels of root development and then only for cuttings taken in the dry season. The role of leaves in the rooting of semi-woody cuttings is related to photosynthesis, and the supply of carbohydrates, auxins and rooting cofactors, which are transported to the base of the cuttings (Lima et al. 2011). In this way, Bowerman et al. (2013) suggested that, providing good soil characteristics, e.g. adequate aeration and drainage, and a relatively consistent but moderate amount of moisture should ensure faster and better quality root development. Despite producing the highest levels of both buds and expanded leaves, cuttings grown in S+MC had poor root development, which suggests that factors other than adequate leaf development determined the level of root development in this study.The fact that cuttings grown in sand had the second highest budding (>50%) and expanded leaf percentages (47%) (Table 1) plus satisfactory root production (16%) for cuttings taken in the dry season, was opportune as sand has many advantages as a substrate, since it is low-cost, easily available and has positive drainage characteristics (Almeida et al. 2008).The effects of season when cuttings were taken on success rate agreed with the findings of Santos and Diodato (2017) who worked with algaroba [Prosopis juliflora (Sw.) DC.]. They reported that the dry season was the ideal time to collect cuttings in Petrolina, Pernambuco's semi-arid area, independent of cutting type (basal or apical).The emergence of expanded leaves was lower than the development of buds for all substrates, which may help explain the poor development of roots, since leaves are necessary for the survival of cuttings, as they provide the carbohydrates produced by photosynthesis, plus auxins and other substances for root development and growth (Ahkami et al. 2013).The substrate which promoted the highest percentage of buds was S+MC; this is probably associated with a greater water availability for the cuttings, a fundamental factor, especially in the initial growth phase.Although 90% of dry season cuttings cultivated in S+MC produced buds and 60% produced expanded leaves, continued development would likely be compromised by the low degree of root formation (2.4%). While the cuttings presented lots of buds, probably due to the presence of nutrient reserves in the cuttings, these reserves seemed insufficient to promote root development. The failure of cuttings to develop roots may be associated with nutritional deficiency in plants at the collection site, but this is speculation as we have no supporting evidence. It was reassuring that V and SA substrates allowed development of roots (16-19%) on dry season cuttings, as no hormones were applied to stimulate root development. It appears that substrate had an over-riding influence on root development as cuttings in both substrates including soils produced virtually no roots. Rooting of cuttings is dependent on many factors, both internal and external, e.g. the mother plant's nutritional and phytosanitary condition, genetic potential, hormonal balance, collecting period, temperature and humidity (environmental conditions), etc. (Gratieri-Sossella et al. 2008;Pizzatto et al. 2011). Natural climate factors, such as temperature and photoperiod, may also explain the year effects that we observed. In our study all cuttings were obtained from the same mother plant so most of the above factors can be ruled out in explaining why differences in rooting success between substrates were obtained in the dry season. More studies seem warranted to determine if the substrate plays an important role in rooting success. There seems little merit in repeating the seasonal comparisons as other studies, e.g. Santos and Diodato (2017), have previously found that dry season cuttings provide the optimal outcomes.Although Song et al. (2010) reported that plants of the genus Bauhinia are probably non-nodulating, some nodules were found on roots in the S+MC substrate. Sprent et al. (2017) indicate that there are many nonnodulated caesalpinioid legumes in the New World tropics, for example Bauhinia and Caesalpinia.The ability to grow uniform mororó cuttings could be of importance in cultivation of this species, which is well adapted to semi-arid conditions and is highly palatable to animals. Further studies are needed to determine appropriate substrates plus additives, e.g. hormones, which might stimulate root development, to expedite the successful adoption of this species by farmers.Since recognition in Australia of the forage value of the adventive species, Stylosanthes humilis Kunth, in the early 20th century, there has been continuing focus on the genus, Stylosanthes, to determine the commercial pasture potential of other species within the genus. Of the 40 species of Stylosanthes currently accepted by the US National Plant Germplasm System (GRIN), 7 have been demonstrated to have commercial agricultural merit. Large collections of a number of species were assembled by CIAT in Colombia and CSIRO in Australia, including shrubby stylo (Stylosanthes scabra) that was found to have potential in the acid, infertile soils of subhumid and semi-arid northern Australia. The most recent addition to the list of commercial species in the genus, S. seabrana B.L. Maass & 't Mannetje, has proven well-adapted to the slightly acid to alkaline, more fertile clay and clay-loam soils in the same region, but extending into the subtropics.While characterizing the S. scabra collection held by CIAT in Colombia, Maass (1989) identified a group of plants from Bahia state in Brazil that shared a number of morphological characteristics with S. scabra but were morphologically and agronomically different from S. scabra and other known species of Stylosanthes. Following the provisional name given to this form by plant collectors, she referred to the group in her classification as \"cf. scabra-Type\". This ___________ Correspondence: Bruce G. Cook, 23 Callabonna St, Westlake, QLD 4074, Australia. Email: brucecook@aapt.net.au promising phenotypic group was subsequently referred to as S. sp. aff. scabra by Jansen and Edye (1996), and eventually as \"Stylosanthes seabrana\" by Edye et al. (1998), accepting that S. sp. aff. scabra was indeed a different species from S. scabra. The name was selected in reference to the town of Seabra in the region of Bahia state, where the earliest accessions of the species were collected. The scientific name, Stylosanthes seabrana, was formalized by Maass and Mannetje (2002). The common name, Caatinga stylo, was adopted in Australia, referring to the xerophytic Caatinga vegetation type in northeastern Brazil on the medium-to heavy-textured soils on which the species is largely Vanni and Fernandez (2011) disputed the conclusion of Maass and Mannetje (2002), claiming instead that S. seabrana is a synonym of S. scabra, a claim that is hereby rejected based on a comprehensive assessment of all relevant information/evidence.To help direct future plant evaluation in the subhumid/semi-arid tropics of Australia, and to obtain a clearer picture of the taxonomic and agronomic boundaries of a number of promising Stylosanthes species, morphological and agronomic classificatory experiments involving large numbers of entries of S. scabra, S. hamata (L.) Taub. and S. sp. aff. scabra (= S. seabrana) were conducted at CSIRO Lansdown Research Station, north Queensland (Jansen and Edye 1996;Date et al. 2010). Each used a numerical classification program, PATN (Belbin 1995) that, at the 5 group level, separated entries largely into homogeneous groups, with S. sp. aff. scabra separated from S. scabra. Shapes of the terminal leaflet and the terminal leaflet apex, the presence or absence of leaflet and stem hairs, the presence or absence of inflorescence bristles, the presence or absence of stipule horn lateral bristles and stipule horn terminal bristles were the most useful attributes defining groups. Maass and Mannetje (2002) used the most consistent of these and other observations to develop a key to distinguish the 3 species morphologically.Key to Stylosanthes seabrana, S. hamata and S. scabra: 1a. Beak equal to or exceeding the upper article, leaflets without bristles……..…………..………………………… S. hamata 1b. Beak shorter than the upper article, leaflets with bristles 2a. Leaflets narrowly elliptical, glabrous except for long bristles on the margins and midrib and prominently raised veins on the lower surface…………... S. seabrana 2b. Leaflets elliptical to obovate, pubescent with bristles at least underneath or on the margins without prominently raised veins on the lower surface... S. scabraMany collections and studies of Stylosanthes scabra have been conducted since Vogel (1838) described the specimen from Serra da Moeda, Minas Gerais, Brazil and Mohlenbrock (1957) reviewed the genus, Stylosanthes. On this basis, it can be presumed that the Edye and Topark-Ngarm (1992) description based on research experience and the description of Costa and Ferreira (1984) might be more comprehensive than earlier keys. Vanni and Fernandez (2011) provide what they call a \"standard description\" of S. scabra, which differs from those of Vogel (1838), Mohlenbrock (1957) and Costa and Ferreira (1984) /Edye and Topark-Ngarm (1992), all varying somewhat in their choice of descriptors. However, some characteristics provided in the various keys help to further distinguish S. seabrana from S. scabra morphologically. A characteristic not used in the Maass and Mannetje (2002) key is the length of the axis rudiment, 7-8 mm in their description of S. seabrana and 4-5 mm in S. scabra (Mohlenbrock 1957;Edye and Topark-Ngarm 1992).There are clear agronomic differences between S. seabrana and S. scabra. Early research in the 1960s and 1970s to identify other Stylosanthes species to extend the range of S. humilis identified the potential of S. scabra and the tetraploid form of S. hamata (= S. hemihamata nom. nud.), resulting in the release of cultivars of each. However, while these were very effective in the light, acid infertile soils of northern Australia, they were not adapted to the heavier, more fertile clay soils in the region. Attention was then turned to the group of Stylosanthes sp. aff. S. scabra that were collected on broadly similar soils in Brazil (Edye and Maass 1997). These proved welladapted to heavy-and medium-textured alkaline soils in Australia, and unlike S. scabra, were also adapted to the more frost-prone environment of southern Queensland (Edye and Hall 1993;Jansen and Edye 1996). CSIRO applied for Plant Breeders Rights for the 2 most promising lines in 1996 (granted in 1997) as \"Caatinga Stylo (Stylosanthes sp. nov. aff. S. scabra) cvv. Primar and Unica\" to provide a legume base for forage systems on neutral to alkaline soils of central and southern Queensland.Early evaluation highlighted another important difference between the 2 species. While S. scabra is promiscuous in its root nodule bacterial requirements, nodulating effectively on native strains of Bradyrhizobium in Australia or the broad spectrum CB 756 commercial strain (Date 1997), this was not the case for Caatinga stylo.During field evaluation at a range of sites in Queensland in the 1990s, Caatinga stylo accessions nodulated poorly and ineffectively and frequently failed to nodulate at all (Edye 1994;Edye et al. 1998). Most accessions grew well for 1 or 2 years, before beginning to show classical signs of nitrogen deficiency. Success of the new cultivars was contingent on discovery of an effective and persistent strain of inoculum. Accordingly, nodules were collected during germplasm collections in Brazil, and strains of Bradyrhizobium were isolated, tested and released prior to release of cvv. Primar and Unica (Date 2010;2016).A major part of the argument advanced by Vanni and Fernandez (2011) revolves around their finding both diploid and tetraploid specimens in the roots of seedlings grown from a sample of commercial seed of S. seabrana cv. Unica from Australia. In their Introduction, they make the following confusing statement: \"In addition, they (referring to Maass and Mannetje 2002) reported different levels of ploidy in S. scabra, 2n = 40 chromosomes and S. seabrana, 2n = 20 chromosomes.\" The ploidy cited for the 2 species is correct; however it in no way supports their contention of dual ploidy in S. scabra. Rather, Vanni and Fernandez (2011) use this confusing statement to support their claim that: \"ploidy levels are not valid criteria for species distinction in the genus Stylosanthes, as S. scabra has been reported to be one of the few species with diploid (2n = 20) and tetraploid (2n = 40) genotypes (Cameron 1967).\" This is not the case. In fact, Cameron (1967) determined the chromosome number for a single accession of S. tuberculata (presumably Stylosanthes tuberculata S.F. Blake syn. S. scabra Vogel), which he found to be tetraploid (2n = 40) only. Since then a number of workers (Battistin and Martins 1987;Liu et al. 1999;Lira 2015) have reported tetraploidy in S. scabra. No report of diploidy in the species exists in the published literature.'Unica' was derived from CPI 110361, which has been shown to be diploid (Liu and Musial 1997), so the question arises: how could there have been the 2 ploidy levels in the sample tested by Vanni and Fernandez (2011)? The answer lies in the fact that the seed lot on which Vanni and Fernandez (2011) based their taxonomic revision was a commercial sample. Since seed crops of both S. scabra and S. seabrana are grown in the same general area in north Queensland, it is probable that a commercial sample of seed may contain both species, either from contamination in the crop (S. scabra is now naturalized in the region), in the harvester from a previously harvested crop of S. scabra or during post-harvest handling. There is no seed certification scheme for this cultivar in Australia and postharvest cleaning procedures for harvesting machinery are not as stringent for standard commercial crops as for certified crops.Until relatively recently, morphological characters were the only means of describing species, but they have not always provided the level of resolution required to categorically define interspecific and intraspecific differences. Vanni and Fernandez (2011) consider that the form of leaflets, the absence or presence of bristles and hairs on stipules and leaflets and their venation are not sufficient to separate species. Whether or not this is valid is debatable. However, the evidence provided from genetic and molecular studies is indisputable. As discriminatory methodologies improved with the development of molecular technologies, so did the evidence to more clearly define relationships within and between taxonomic groups.It has been shown that S. scabra is an allotetraploid with S. viscosa Sw. as one of the putative diploid progenitors (Stace and Cameron 1984;Vander Stappen et al. 2002). The identity of the other diploid progenitor is not so clearcut. Stace and Cameron (1984) postulated that, since S. scabra bears an axis rudiment on the loment, a characteristic governed by a dominant gene, and S. viscosa lacks an axis rudiment (section Stylosanthes), the other parent must bear an axis rudiment (section Styposanthes). Working with chloroplast DNA, Gillies and Abbott (1996) proposed S. hamata sensu stricto as the section Styposanthes progenitor, while Liu and Musial (1997) provided evidence that the other putative progenitor was Stylosanthes sp. aff. S. scabra (= S. seabrana). These 2 species fell into the same basal genome group A, determined by restriction fragment length polymorphisms (RFLP) and sequence-tagged-sites (STS) analyses by Liu et al. (1999). In the same study, S. viscosa fell into basal genome group B and S. scabra into group AB. More recent work (Tewari and Chandra 2008;Chandra and Kaushal 2009;Marques et al. 2018) confirms the proposition of allotetraploid origins of S. scabra with S. hamata or S. seabrana as the maternal donor and S. viscosa as the paternal donor. However, Marques et al. (2018) point out the difficulty in precise identification of the maternal donor since both the diploid and the polyploid species have diverged since the allopolyploidy event some 0.63 to 0.52 million years ago.Stylosanthes seabrana is clearly morphologically, agronomically, rhizobially, cytologically and phylogenetically different from S. scabra (Appendix I), and taxonomic logic dictates that it must be treated as a separate species. It is no more conspecific with S. scabra than is its other putative progenitor, S. viscosa. Similar confusion is faced by practitioners in relation to 2 other Stylosanthes diploid-allotetraploid derivative pairs, S. hamata -S. hemihamata nom. nud. and S. macrocephala -S. capitata, that will be dealt with in subsequent papers in this series.Taxonomists at the US Germplasm Resources Information Network (GRIN; https://npgsweb.ars-grin.gov/ gringlobal/taxon/abouttaxonomy.aspx) have reviewed their earlier decision to accept the Vanni and Fernandez (2011) thesis of synonymy between S. seabrana and S. scabra and have now listed S. seabrana as a valid species. A list of all S. seabrana germplasm accessions registered in the major Stylosanthes genebanks is presented as Appendix II. All accessions with known origin have been collected in Bahia State, except for ser. nos. 15 and 16 which are from Minas Gerais, Brazil.","tokenCount":"16700"} \ No newline at end of file diff --git a/data/part_3/1457761815.json b/data/part_3/1457761815.json new file mode 100644 index 0000000000000000000000000000000000000000..a2796d4af0c78975b4502b82501827fdde14179e --- /dev/null +++ b/data/part_3/1457761815.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"a616e2c02c52a3d05eb5739325d1519b","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/0da12f40-eb28-4485-9c7e-7418eb4647b0/retrieve","id":"-804660747"},"keywords":[],"sieverID":"aebb1ae0-a39d-4f57-9aa2-a978095ba583","pagecount":"2","content":"Understanding trade--offs and livelihood changes in areas affected by water storage infrastructure development is complex. It requires both qualitative and quantitative assessments with substantial amount of time, effort and budget investment that are often inpracticable at a project scale. Mekong Projects 1 and 2 decided to develop a common methodology, selecting overlapping study areas and sampled households whenever possible, to conduct an integrated analysis of water resource uses. This simple exchange of information and regular, open communication between the two research teams have enabled collection of a comprehensive data set that: allows integrated analysis of the role of water resources in local livelihoods; supplies data inputs for the development of Decision Support Models; and helps to characterize trade--offs and impacts due to hydropower development.This type of cooperation between projects within the same river basin is possible without impeding individual project methodologies and individual objectives and requires minimum effort or \"platform\" development. Greater interactions between projects can also lead to more accurate and in--depth analysis and triangulation of the results. In a complex research program that tries to integrate environmental, economic, and social sciences, simple but efficient interaction between projects can generate new knowledge for limited cost.","tokenCount":"196"} \ No newline at end of file diff --git a/data/part_3/1459591937.json b/data/part_3/1459591937.json new file mode 100644 index 0000000000000000000000000000000000000000..8d61e76fc8bc378ed2e4113b41b543f4c8490e3d --- /dev/null +++ b/data/part_3/1459591937.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"d22949f8301334fd0d1585feff345a09","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/f42fe291-c012-440a-81e0-a739e4e234f0/retrieve","id":"-1894573994"},"keywords":[],"sieverID":"53c91936-b899-4141-8510-2a3d7f120984","pagecount":"11","content":"Livestock pop in Ethiopia is over 187 million, cattle=70.3 million (CSA, 2020/2021) ▪ Livestock is one of the driving components of SI in the mixed farming systems. ▪ Feed, health and breed (core), and market, policy, finance, inputs (complementary) are vital for the development of the livestock sector. ▪ Feed gap-Imbalance between feed demand and supply. ▪ Improved feed and forage options are important to intensify and diversify farming systems, contribute to narrow the feed gap and reduce methane emission.The AICCRA-Ethiopia project leveraging its resources with other projects to facilitate scaling of validated feed and forage innovations and benefit more farmers. • Biomass yields from validated forage crops are making significant contributions to fill feed gaps (oat/ vetch-12 t DM ha -1 ; fodder beet-> 20 t DM ha -1 ; tree lucerne, 4-7 t DM ha -1 ).• Supplementation of oat/vetch mixture and fodder beet has increased milk yield from 30-50%.• Feeding trough and storage shed have reduced feed wastage from 30-50%. • Lack of good quality seeds to facilitate wider scaling, for example, fodder beet. • Unaffordable seed price-alfalfa-USD 35 per kg of seed. • Competing use of forages-feeding at an early stage rather than managing a portion for seed production.• In adequate collaboration and working modalities among the different feed and forage value chain actors. • Sustaining wider scaling requires resources, commitment from all actors, a continuous supply of proven innovations and capacity development schemes.• Aligning efforts of various feed and forage related projects and initiatives is very important to bring the desired changes/impacts on livelihood of smallholder farmers and other beneficiaries. • Working jointly with development partners and farmer organizations is a very good approach to reach and benefit big number of farmers with improved livestock feed and forage innovations. • Scaling of climate-smart feed and forage innovations requires a balanced focus on technical requirements and complementary interventions. • There are a lot of lessons on scaling efforts of climate-smart feed and forage innovations across the African continent. Hence, it will be important to organize cross-learning events to document lessons and scale them for wider use.","tokenCount":"350"} \ No newline at end of file diff --git a/data/part_3/1467742522.json b/data/part_3/1467742522.json new file mode 100644 index 0000000000000000000000000000000000000000..7d6ec4974a40e130f7ea0cd5dd02d7cbe3bc6477 --- /dev/null +++ b/data/part_3/1467742522.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"99f31b198fa85d6e652ee9123cb75522","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/6acecf77-919a-4b08-9695-c705a873a793/retrieve","id":"-574391466"},"keywords":[],"sieverID":"ecf9f597-89b0-44c0-aadd-246d4f6c137d","pagecount":"28","content":"SERENA MIlANO 10,000 fair food gardens 12 dECISION SUPPORT SySTEMS Open and big data 13Research by the World Bank and others has shown that economic growth generated from agriculture is up to four times more effective in reducing poverty than growth in other sectors. With the right policies, technologies and access to markets, agriculture can become an engine of growth for many developing countries. The challenge, however, is how to transform agriculture so it becomes more profitable, resilient and sustainable. 'Big data', widely accessible at an unprecedented scale via mobile phones and applications, can help to address this challenge in two ways.Firstly, at the level of farmers and producer organisations, better access to the latest data supports decisions on which crops to plant, which land management practices to adopt and which inputs to invest in. Secondly, at the policy level, high quality data also enables better decision-making and monitoring of results.These ideas came together at a recent conference held in the Netherlands, where the Global Open Data for Agriculture and Nutrition (GODAN) initiative met to showcase how open data is making a difference in agriculture across the developing world. CTA, an active member of the GODAN initiative, supports several activities for improved data management, including applications for smallholder farmers and policymakers in ACP region.n 2014, the number of people forced to flee from their homes across the world exceeded 50 million for the first time since the Second World War. The exponential rise in displaced people is stretching host countries -as well as aid organisations -to the limit.Ethiopia recently overtook Kenya to become Africa's leading refugee-hosting country, with a total population of almost 630,000; around a third of these are South Sudanese, escaping the violence which re-erupted in December 2013. The current conflict has driven nearly a million people into camps around Eastern Africa, adding to refugee populations already swollen by persecution and conflict in Eritrea and Somalia. In Kenya, the world's largest refugee complex is situated around Dabaab -a town in the semi-arid North Eastern Province of Kenyawhich hosts over 340,000 displaced people from Somalia.Besides conflict and political instability, millions of people are forced from their homes and land by climaterelated, natural disasters. Some are displaced by sudden onset storms and flooding, others by longer term climate hazards such as drought and desertification. In 2009, the UN's Refugee Agency (UNHCR) estimated that 36 million people were displaced by natural disasters. With climate change likely to increase environmentallyinduced migration and displacement by many more millions in the coming decades, low-lying Pacific islands, in particular, are already considering their options. In July 2014, the President of Kiribati, home to 110,000 people scattered across 33 small islands, completed the purchase of 20 km 2 of land on Vanua Levu, one of Fiji's islands, as a potential refuge for its people for when islands are lost to rising sea-levels.For poor countries, however, the presence of refugees as a result of conflict or natural disaster and the resulting demands on severely strained economies, services, infrastructure and resources compound the challenges faced by communities and governments. In 2014, for example, conflicts in Central and West Africa put severe strain on the already limited food supplies amongst host families and in refugee camps in Burkina Faso, Cameroon, Chad and Niger. With an increasing succession of emergencies to respond to, meeting the needs of displaced populations is becoming ever more challenging. In Eastern Africa, for example, the UNHCR received only 37% of the requested €475 million needed to assist the 2 million people displaced by the fighting in South Sudan during 2014.Nevertheless, with little resources on which to depend, external assistance (particularly for those living in camps) is a necessity as people forced to flee their homes often have little or no assets. But, providing sufficient shelter, water and sanitation services, health and nutritional care to ever increasing numbers of refugeesThe presence of refugees, and the demands they impose on the economy, services, infrastructure and resources, is a matter of great concern for many poor countries.is a logistical as well as financial issue for governments, as well as aid agencies.The establishment of refugee camps, for instance, relies on the generosity of the host governments for the timely identification of suitable land. In 2015, the need for additional land to settle increasing numbers of South Sudanese refugees will be a priority. However, whilst Ethiopia maintains an open-door policy and land has already been allocated for 23 camps in various districts along its borders, torrential rain during the last rainy season in 2014 resulted in severe flooding in many of the camps, particularly in the Gambella region, further hampering aid efforts. In addition, whilst Gambella is one of Ethiopia's most sparsely populated areas, access to its land and water is contested and, because of its fertility, the federal government has earmarked the state for commercial agriculture.In other regions in Africa, refugees are commonly settled in semi-arid, agriculturally marginal areas. Most camps tend to be large, for logistical and political reasons, with camp populations at least partially dependent on their surroundings for water, food, shelter and medicine. As a result, the impact on the environment can be significant in terms of firewood and wildlife, land deterioration and soil erosion, water pollution and availability of groundwater. In Uganda, disputes over environmental resources have led to the formation of district security committees to help resolve issues over deforestation and access to water around the Adjumani refugee camp, which hosts 50,000 people in northern Uganda, and to encourage refugees and local communities to respect law and order.Besides the impact on the natural environment, the presence of refugees may also disrupt local food prices and the labour market. Whilst this may be beneficial for local farmers, who can hire low cost workers from the refugee camps and sell crop surpluses for increased income, there can be negative impacts on local household food security and those who compete for employment as unskilled labour. On the other hand, jobs are often created by humanitarian agencies needing local employees, social services may increase, even for local communities, and markets can benefit from the trade with refugees.Positive innovations in recent years to reduce the impact of refugees on resources includes the introduction of solar cookers. For example, more than 50,000 people in four refugee camps in eastern Chad are using locally made solar CooKits. Elsewhere, in Eastern Africa for example, an integrated cooking approach has been introduced to refugee camps, which involves the use of solar cookers, fuel-efficient woodstoves (to use at night) and a heat retention cooker, reducing the use of fuelwood by at least 40%. In Kenya and Ethiopia, UNHCR, WFP and local partners have implemented multi-storey gardens to provide food for home consumption and a surplus to sell. The approach requires little labour and particularly instils self-reliance amongst women and the youth. In Mauritania, around 50 small gardens in the Mbera refugee camp are now part of Slow Food's 10,000 Food Garden's project receiving support to grow local food crops (see also Interview on page 12).A new report, published in 2014 by Humanitarian Innovation Project based at the University of Oxford, also challenges myths on the dependence of refugees and their impact on local economies. Refugee economies: Rethinking popular assumptions reports on research in Uganda which reveals that refugees are part of complex and vibrant economic systems, that they are often entrepreneurial and, if given the opportunity can help themselves and their communities, as well as contributing to the host economy. Not all countries are as accommodating as Uganda in their approach to refugees. Nevertheless, the report challenges common perceptions and presents some food for thought regarding the complex issue of how best to support refugees and prompt positive, rather than negative impacts on the communities that host them and the environment that supports them.Rural communities in Suriname have created a three dimensional map of their territory to be in a better position to negotiate benefit sharing of environmental services.orking together over a 10 day period, men, women and children of Suriname's Saramaccan people have constructed a three-dimensional map of the upper Suriname River basin in order to describe their territory and its importance for their livelihoods and cultural identity. In constructing the map, representatives from 14 villages have collated their knowledge of over 30 different features concerning infrastructure, land and resource use, and locations of cultural significance. Sensitive information was omitted to ensure that the final map could be made public and used for further spatial analysis, a process that is being taken forward by Tropenbos International. Tropenbos has already ensured the digitisation of the datasets, which were validated at community level in December 2014.The group were selected because of historical and ongoing threats to their land and livelihoods. Fifty years ago, 5000 Saramaccans were displaced from their traditional lands by the construction of a major dam. Today, the displaced communities are living among other Saramaccan groups but they do not enjoy the same rights of access and use of resources. The territorial rights of the Saramaccan people in general are still to be officially recognised and competition from outsiders is increasing as road infrastructure to the area improves. By documenting their profound knowledge of the area and their traditional, sustainable use of resources, the Saramaccans hope to gain a stronger voice, and be better understood by decision-makers.Stiefen Petrusi of the Association of Saramaccan village leaders believes the mapmaking process will have benefits both within and outside the community. Most importantly, it will help the villages to negotiate more effectively with other parties regarding the use and management of the land and the eventual sharing of environmental services. He also believes that younger members of the community have become more aware of their traditions and history through the process.A film documenting the process (which had been supported by CTA and WWF) was launched in October 2014 during the 12th Caribbean Week of Agriculture in Paramaribo, Suriname. During the launch, community representatives shared their experience in the process of map-making. See: https://vimeo.com/108466803Drawing on traditional knowledge, over 3,000 rural Zimbabwean women and youth have used anthill soil, which is rich in lime and has cementing properties, to construct energysaving clay ovens. The women and youth are organised in 30 member groups, each of which received €210 from Kunzwana Women's Association (KWA), which also organised training on oven construction and baking. The clay ovens retain heat for 24 hours and do not stain cooking utensils with soot. Previously, the group members were among those who suffered the most when the country's economy deteriorated and bread companies folded. But by diversifying into bread-making, participating households have increased their income by 40%.A major part of global food production is taking place in urban areas, according to a new study by IwMI. An estimated 456 million ha is farmed in and around the world's cities. yet nearly all agricultural research is focussed on rural areas, with urban farming frequently seen as backward, a situation the authors believe needs to change.On the initiative of several organizations, including the Mundukide Foundation in Cabo delgado and Niassa, many farmers are gradually replacing cotton cultivation with sesame. Sesame has a similar value to cotton on the Mozambican export market but its production requires less time and inputs, thus benefiting the farmer.In the Solomon Islands, women farmers growing kumara (sweet potatoes) have adopted new techniques to help them tackle falling yields. Increasing soil salinity has damaged kumara production, but techniques such as mound planting, placing the vine towards the sun, and clearing excessive leaves from the vine have proved effective in reversing the falling trend.is the number of countries included in a new world cotton calendar developed by the International Cotton Advisory Committee (ICAC). Freely available online , the calendar provides data on all stages of cotton production, from sowing to harvesting and ginning (http://worldcottoncalendar.icac.org).Kenyan student, Pauline Njeru, has developed a prize-winning system to cultivate mushrooms, based on low cost, readily available materials. P auline Njeru, a student at Egerton University in Kenya has been awarded second prize in a UN-sponsored competition to reward young innovators, for developing a mushroom growing system based on affordable, readily-available materials. She received the prize during the Sharefair for Rural Women's Technologies held in Nairobi in October 2014, which was organised by a number of UN agencies with support from the African Union.Njeru's innovation offers farmers a low cost method to prepare sterilized substrate, the material in which mushrooms are grown. Maize stalks and wheat or rice straw are chopped, packed into jute sacks (gunny bags) and soaked for 12-24 hours. Other ingredients such as wheat fibre and agricultural lime are then added, before the sacks are sterilized by steaming them in oil drums. Having added a spoonful of mushroom spawn (seeds), obtainable from the Jomo Kenyatta University of Agriculture and Technology, the sacks are placed in a dark, well ventilated room or shed in order for the mushrooms to fully colonise the substrate. According to Njeru, a simple outdoor shed constructed from maize stalks and roofed with banana leaves or grass, is a perfect option for this 'incubation room.'Farmers are able to know when colonisation has taken place, as the sack turns white. At this stage the sacks are moved to the 'fruiting house,' where they are exposed to light and high humidity (which can be achieved by putting several water basins in the room). For small-scale operations, farmers may be able to convert the shed used for incubation to become the fruiting room.For beginners, Njeru recommends oyster mushrooms, which can be harvested for several months, and which sell at around €3.6 per kilo. The market for these is growing fast in Kenya, particularly with the rising population of Chinese nationals in the country. \"Since I started using this simple technology my life has drastically changed,\" says Catherine Wangui, one of 40 farmers who have been introduced to the mushroom growing technique by Njeru. \"I used to burn all my farm wastes after harvest, not knowing that I used to burn wealth. Right now, I am smiling all the way to the bank.\"In Jamaica, farmers from 10 cooperatives have doubled their incomes by growing organic coffee and gaining organic certification. The farmers use natural predators, such as ants and beetles, to fight coffee pests, and apply organic fertilisers to ensure their plants are strong. In 2013, they supplied over 130 tons of organic coffee beans to Marley Coffee, helping the company to earn €5 million in revenues. Having been certified organic by USDA, farmers are able to earn a higher price when their coffee is sold at grocery stores in the US. \"There seems to be a trend in the direction of more farmers switching to organic because people are seeking it,\" says Rohan Marley, founder of Marley Coffee.The Kenya Com Rabbit Consortium limited has established cottage industries in western, Rift valley and Nyanza regions of the country to manufacture organic fertilizer from rabbit urine. Farmers rearing rabbits are collecting the urine on corrugated sheeting below their rabbit hutches and selling it for €3.36 per litre, as well as using it on their own crops.After the increase in agricultural production in over 20 t per week as a result of the redevelopment of the Alto Mira's river basin in Santo Antão, farmers have found that the new market created by the growing number of tourists to this Cape verdean island, as well as in the rest of the archipelago, is ideal for selling their produce, such as yam, sweet potato and sugarcane.Members of the Namulo women's Group in webuye district are intercropping sunflower with their white headed sorghum variety, Gadam, to prevent losses to birds. Once both crops are mature, the yellow sunflower heads attract the birds, diverting them from the sorghum, which is quick maturing and in demand by beer brewing companies because of its sweet taste.wASTE REdUCTIONA new online platform, the Global Community of Practice on Food Loss Reduction has been launched by three UN agencies (FAO, IFAd and wFP). The platform allows users to keep up to date with relevant news and events and access online libraries, databases and other networks. E-learning modules on postharvest management will also be available on the platform. Over-harvesting of bushmeat means that current practices are increasingly unsustainable, but banning such practices could lead to increased deforestation.I n Central Africa, population increase and the growth of rural-urban trade, compounded by the lack of a significant domestic meat sector, are driving unsustainable hunting of bushmeat. Up to 6 million t of bushmeat are extracted from the Congo Basin each year, providing up to 80% of the protein intake of people in Central Africa. The majority of hunted mammal species (70%) are not included on the IUCN Red List of Threatened Species. Nevertheless, the hunting of bushmeat is widely seen as unsustainable due to the disruption of ecological and evolutionary processes, changes in species composition within ecosystems and a general reduction in biological diversity, creating 'empty forests' -so-called because they lack any large animal species. Links to Ebola virus outbreaks have also resulted in calls to end the bushmeat trade.The Centre for International Forestry Research warns, however, that to replace bushmeat protein with beef would result in up to 25 million ha of forest having to be cleared for pasture. It also suggests that a ban on the hunting of vulnerable species, such as gorillas, while being difficult to enforce, could still be more effective than a total ban. This would allow hunting of resilient species such as duikers and porcupines to continue.olivia FrostEnsuring that good quality food is available to the Angolan population is one of the major challenges undertaken by Luanda's government. And aquaculture is an obvious 'tool' for this task.T he Angolan province Kwanza Sul is the main focus for entrepreneurs in the fish sector and the Luanda government to create a strong aquaculture sector, especially with tilapia, which is already being produced on a small scale but with approximately 250 additional producers ready to enter the market.The Secretary of State for Agriculture, Zacarias Sambeny, was recently in the area where most of the tilapia producers are based and he assured producers that aquaculture is an important part of the government's strategy to allow people access to high-quality food. During the visit Sambeny also mentioned ongoing studies focusing on the environmental impact of fish farming in the region and the introduction of regulations to ensure the appropriate use of medication and fish feed.One of the aquaculture entrepreneurs operating in Kwanza Sul, Manuel Macedo, sees production of tilapia and other species as \"a potentially good bet\" but admits that, \"even if you are already taking the first steps,\" ensuring that there are \"new and bold ways of financing\" is paramount for achieving a level of production sufficient to meet Angolan market demands.nina MendesIn the Hautes Terres in Madagascar, researchers have found that certain farmer practices are enhancing the nitrogen value of manure. The practices include placing a stone slab on the floor of animal sheds, adding rice straw to the bedding, and storing the manure in a pit. As a result, farmers are buying fewer inputs and are reducing greenhouse gas emissions and fossil energy use.Low-input livestock technologies are boosting farmers' income and food security in southern Tigray, Ethiopia. Nearly 200 women have been trained in sheep and goat rearing, and provided with one male and 3-4 female animals under a project run by the Relief Society of Tigray. Another 40 households were shown how to fatten livestock, enabling them to earn an average of 2,000 Birr (€80) in 90 days. To improve dairy traits, 54 higher yielding Begeit cows were provided to 54 farmers to breed with local Arado cattle. Households have been getting an average of 4 litres of milk per cow per day and 1,100 Birr per month (€44) from the sale of butter.FisHeries And LivestoCK © CIFOR Bushmeat is highly prized in Central Africa, like here at the Moutuka Nunene market in the DRCAccording to Kenya's Minister for Agriculture, the introduction of Index-Based livestock Insurance in drought-prone northern Kenya has reduced 'distress sales' of livestock during times of hardship for around 4,000 livestock herders, and cut dependency on food aid by 33%. The project is now being replicated in southern Ethiopia, where some 8,000 farmers are benefitting.The International Union for Conservation of Nature has released a Green list of 23 well-managed and governed protected areas. China (six sites) and France (five sites) rank top of the list. Among ACP countries, Kenya is listed with two sites: the lewa wildlife Conservancy and the Ol Pejeta Conservancy.To tackle deforestation and climate change and enhance sustainable management of natural resources, accurate information on forests is vital. launched in October 2014 by FAO, Open Foris is the first comprehensive and free software that helps countries to collect and analyse data on their forests (www.openforis.org).A mid-term evaluation of Malawi's Enhanced Community Resilience Programme finds that the programme has delivered early warning messages to 90,000 households, helping to protect lives and property in floodprone districts. drawing on climate data, farmers have been warned against planting too early, thereby avoiding the risks of early season dry spells.despite frequent criticism for its environmental impact, eucalyptus has become an integral part of Madagascar's agricultural landscape. It covers 147,000 ha and represents 46.5% of the forest crops raised artificially, either by sowing or planting. Over 80% of households are using it as fuel for cooking.In Burkina Faso, Senegal and Togo, agroforestry is becoming a popular success, with tree plantations expanding and helping to combat soil impoverishment.n the Sahel, Acacia albida used to be the best known tree for restoring and enriching agricultural lands, by increasing the soil's organic matter, nitrogen content and water holding capacity, as well as promoting valuable microbiological activity. But more than ten years ago, farmers discovered new fertiliser tree species to combat soil impoverishment. In Burkina Faso, Senegal and Togo, species such as Albizia saman (rain tree) or Albizia chevalieri are covering more and more agricultural land, with promising results in terms of soil quality and yield increases.In south-western Togo, the French association for the promotion of fertiliser trees and agroforestry, L'Association pour la promotion des arbres fertilitaires et l'agroforesterie (APAF), has disseminated agroforestry practices in rural areas. The initial target was to develop 11,000 agroforestry fields and afforest 560 areas, but this was soon exceeded. As part of the Association's support programme for agroforestry and community forestry initiatives, farmers have developed over 29,000 agroforestry fields and afforested some 2,000 areas on their farmlands.According to Mansour Ndiaye, APAF executive secretary, the use of fertiliser trees, which help to build new layers of topsoil and improve soil texture and structure, has increased yields in Togo by 30% since 1996. Without any chemical fertiliser or pesticide, these farmers are producing over 70% of the present national cocoa production and 62% of the coffee production.Long neglected in some Sahelian countries because of water scarcity, agroforestry is now reviving thanks to APAF. In Senegal, a tree nursery set up in 2012 in Mboulème village is now hitting a record production high of over 1,600 seedlings, mainly Albizia chevalieri, Samanea saman and Albizia lebeck to plant in fields and Leuceana leucocephala, Acacia radiana and Acacia mellifera to create hedges. According to farmer recipients, impacts are highly positive both in maintaining soil fertility without fertiliser and in firewood and timber supply.An international study, coordinated by the University of Buffalo and the French research institutes CEA (Genoscope), CIRAd, CNRS and IRd, has identified for the first time a reference sequence of the Robusta coffee tree genome. This outcome provides new opportunities for coffee breeding and varietal improvement.Scientists at the University of Arkansas have found that they can harness photosynthesis to increase rice yields by up to 30%. A productivity-increasing protein, known as HyR (higher yield rice), could also enable plants to survive drought, cold or salinity.A Phd student in Benin, laurent Adinsi, has succeeded in standardising the manufacturing process of gowe by controlling the malting and fermenting process. Gowe is a gelatinous paste of malted, fermented and cooked sorghum, millet or maize. Mixed with water, it becomes a beverage much appreciated by west African people, especially in Benin.Following training, farmers in Goma in the democratic Republic of Congo are increasing the value earned from their banana crops by converting the fruit into juice and beer. By using sodium benzoate to extend the banana drinks' shelf life, they have been able to access more distant markets and higher prices, increasing their profits by an average of 200%. Unlike traditional extension approaches, RRCs focus on farmer innovation and emphasise access to knowledge, interactive learning and networking. The approach is particularly relevant for new technologies that are 'knowledge intensive' and require farmers to learn new skills. Key services include training in nursery management, information on new technologies and links with market actors and information. The centres also help farmers to access seeds, seedlings and other inputs, and provide a forum for farmers, and others in the farming sector, to exchange information.By 2014, six RRCs in Cameroon were supporting 100 producer groups, representing close to 1000 farmer households. Nearly half of those working with the RRCs on a regular basis were women and 11% were youth (i.e. under 35). By the end of 2012, a total of 315 small-scale nurseries were producing improved germplasm of agroforestry species in Cameroon, Democratic Republic of Congo and Nigeria. Over 5,300 farm households were actively involved with domestication nurseries, producing around 6.3 million plants between 2011 and 2013.Farmers have reported improved incomes from nursery sales, improved soil fertility and crop yields, and a great number of multi-purpose trees used for providing fruit, timber, fuel, fodder and medicine. Farmers are also investing in other income generating activities and are using the increased income to invest in school fees, agricultural inputs and community projects. \"The RRC concept is a useful tool to improve agricultural production, enhance livelihoods and increase income of rural families. When it is well managed, it creates employment in rural areas,\" says Roger Kwidja, coordinator of the rural development NGO, APADER, in Cameroon.Providing an alternative to existing extension, Rural Resource Centres are training and demonstration hubs that are community-owned and managed. In a major effort to revitalize agriculture, the Government of Swaziland, the EU and FAO have helped over 20,000 smallholder farmers produce more, higher quality food crops and connect with new markets. Youth groups have been supported in setting up small agribusinesses, including poultry farming, pig raising, and vegetable production. Thousands of farmers have been trained in conservation agriculture, agroforestry and seed multiplication and a €1 million marketing investment fund has strengthened farmers' links with markets. National policies on research and extension have also been updated, and a 10 year national agricultural investment plan is currently being developed.uring November and December each year, up to 600 members of Namibia's indigenous Himba community are earning between €80 and €400 harvesting myrrh resin from Omumbiri trees (Commiphora wildii) and seeds from Mopane trees (Colophospermum mopane). Unlike trees from which resins must be tapped, the thorny Omumbiri trees naturally exude their aromatic gum in small droplets during the hot and dry months, or before the onset of rains.The droplets are then collected by the Himba harvesters, mostly women, who are seminomadic pastoralists from Namibia's arid western area of Kunene. According to Karen Nott, a technical advisor on indigenous natural products, this has increased their cash incomes by 100%. The community has also had support from the government, which has registered the harvesters and given them the right to harvest.Traditionally, Himba women have blended Omumbiri resins with ochre and butterfat to use daily as a perfumed body cream. However, in 2007, Integrated Rural Development and Nature Conservation, a local NGO, established the economic potential of Omumbiri and sensitised the Himba on its importance. This led to the establishment of the Opuwo Processing Factory, owned by a trust whose members come from among the harvesters. Essential oils extracted at the factory are sold to perfume and cosmetic producers in Namibia, Southern Africa and the EU, and used to fragrance perfumes and cosmetics. The community also earn some income from visitors, who pay a fee to tour the processing factory.Through the income earned, the Himba are buying foods to supplement their traditional dry season diet of milk and meat. \"Between 40 to 50% of the income is used to buy food,\" says Nott. For the seminomadic Himba, she says, selling resin may be the only opportunity to access cash since the remoteness of their territory severely limits their opportunities to sell their livestock. Most of the harvesters are also illiterate, and other job opportunities in Kunene are scarce.ESSENTIAl OIlSSemi-nomadic pastoralists from Namibia's arid west are earning valuable income from harvesting myrrh resin, which they process and sell to international perfume companies.Products What is the main objective of the 10,000 Food Gardens project?The 10,000 Food Gardens project is the flagship project for our international strategy. It is way of promoting an innovative new idea for agriculture in Africa based on biodiversity, local varieties, using less chemicals, and local consumption; it is not just a matter of nutrition but also of identity and culture. We use a holistic approach and we want communities to be proud of their culture and products.Are there specific beneficiaries you intend to work with and, if so, how will you go about it?We work with communities and families. But the young are the future, particularly in Africa. With our 10,000 Food Gardens project, we are building a network of young leaders who will be able to organise Slow Food in African countries. Thirty-three countries are now involved and more than 10 new training centres have been set up throughout the continent. Women also have a specific role in our programme as they are heavily involved in gardens and in agriculture in general in Africa.It is a common misconception to think that the Slow Food philosophy is about luxurious gourmet products and that it is more costly than conventional agriculture. Instead, Slow Food promotes natural agriculture, or the agricultural practices that existed before industrialisation took its toll with the influence of chemical fertilisers, pesticides, monocultures and GMOs. In fact, good, clean and fair agriculture is more resource efficient and saves money by not using chemicals. This is why developing countries are in the best position to implement the Slow Food philosophy, but also because they are still less influenced by Western practices. Industrialised countries are, however, increasingly corrupting the agricultural practices of developing countries through food dumping for their own benefit and the introduction of GMOs. This is why it is time to raise awareness in developing countries that the Western model is not to be seen as a role model, because it destroys local economies and local food traditions.Do you think organic agriculture, as promoted by the Slow Food movement, has the potential to satisfy global food demand?Organic agriculture can be sufficient to satisfy global demand if we all do our best to contribute, for instance by growing our own gardens where we can. As urban farming has shown, there is a lot of potential in urban settings. Of course, one cannot immediately substitute all conventional farming with organic at once, but it should be the goal in the long run, considering that monocultures and the use of pesticides and chemical fertilisers imply hidden costs and will cause irreversible damage to land and ecosystems. One of the dramatic consequences of monocultures and the use of certain neonicotinoids (chemical pestides) is, for example, the global phenomenon of colony collapse disorder of bees, which is already taking its toll across the world on pollinator-dependent crops. We need to look towards the future and not only think about satisfying current needs.How will the relations between small-scale farmers and big international trade companies develop in the future?The big actors of the international market are solely interested in profit and use an economic model of mass production and standardisation, which in general excludes artisanal producers from the global market. But the growing interest in local and organic products forces the industry to reassess their product lines. One of the positive outcomes is, for instance, that in many countries, even supermarket chains now offer organic or local product lines to avoid losing customers. As people become more conscious about what they eat, my hope is that local products will become increasingly common in our supermarkets and that commercial actors will be forced to consider small-scale artisanal producers.More information: http://www.slowfoodfoundation.com Reliable data enables governments to draw up and assess more efficient policies and stakeholders to make better decisions. Agricultural statistics slipped out of favour to some extent until the mid-2000s, but the exponential increase in data volumes has prompted reinvestment in statistical information systems. etter statistics, better policies and better development results -this winning combination is still far from being a reality in Africa. However, substantial progress is being made and a 'data revolution' is under way, as promoted by the United Nations to improve decision making and measure sustainable development progress.Agriculture has a pivotal role in African economies by providing employment, creating wealth and reducing poverty, malnutrition and food insecurity. Yet today this role is largely unrecognised due to the lack of reliable, comprehensive and streamlined statistical data.It has not always been so. Until the late 1970s, states had some capacity to generate data that they used to prepare and monitor national agricultural and rural development policies. But this was followed by a decline because of the lack of funding for statistical data systems, particularly agricultural statistics. \"A process such as the Millennium Development Goals (MDGs), which encouraged many donors to focus their aid on health and education sectors, does not have a very positive impact on agricultural statistics,\" says Christophe Duhamel, Coordinator of the Global Office of the Global Strategy to Improve Agricultural and Rural Statistics (GSARS).The international community is more concerned about agricultural and food security issues and has been looking at the problem of the lack of availability of agricultural statistics. This led to the adoption of the GSARS by the United Nations Statistical Commission in 2010. With a 5-year budget of €76 million, currently partially financed by the Bill & Melinda Gates Foundation and the British Department for International Development, GSARS is striving to fulfil the need for top quality agricultural statistics. Its initiatives are focused in three areas: producing a minimum set of baseline data, better mainstreaming of agricultural statistics in national statistical systems and capacity building. The GSARS global office, hosted at FAO headquarters in Rome, will develop the methodology and coordinate actions in five regions: Africa, Asia-Pacific, Latin America-Caribbean, Middle East and the Commonwealth of Independent States. Technical assistance for Africa is handled by the African Development Bank (AfDB), while the Economic Commission for Africa takes care of training.In practice, an evaluation of the statistical system of each country is systematically carried out to draw up a blueprint for potential activities, which will be part of a national statistical development strategy. For some Sahelian countries, the emphasis is often on livestock production, while for others it may be on fishing or crop production. \"Technical assistance will thus be tailored to the priorities of the concerned country, but often everything is an urgent priority,\" says Duhamel.Regarding training, the priority is to offset the severe shortage of agricultural statistics -roughly half of all African ministries of agriculture have no statisticians. Two aspects are considered to cope with this situation: offering scholarships and capacity building within the network of regional statistical training centres in Abidjan, Dakar, Yaoundé, Kampala and Dar es Salaam, through specific curricula designed for training future generations of agricultural statisticians.\"Many African countries manage to conduct an agricultural census every 10 years, which is essential because it is the foundation of all agricultural statistical systems. However, between two censuses there are not sufficient funds to cover current statistics collection. The aim of the GSARS is to strengthen survey systems to be able to collect information during this intercensal period,\" says the GSARS Coordinator. Survey systems could also be improved through the use of technology such as remote sensing or tablet computers. This would make it easier to stratify areas in order to identify landuse patterns or to target household surveys. Cape Verde Collected agricultural statistics then have to be mainstreamed into the national statistical system. This requires improvements in coordination mechanisms between governments and donors to ensure some degree of sustainability in the statistical system development process.The challenge to achieve a high level of quality in the collection, processing and dissemination of statistical data is certainly great but an unprecedented financial effort has been engaged for this task. Two key factors could also accelerate the process. First, several sustainable development goal indicators are applicable to agriculture and sustainable development for the post-2015 period. This should give a boost, like the MDGs had regarding health and education data. But there is one slight note of caution, agricultural statistics information is much more complicated to collect than health and education data because it requires on-farm and farming household surveys.The CAADP could also kickstart the process. In a report on its first 10 years of activity, the New Partnership for Africa's Development concluded that CAADP monitoring and implementation was hindered by the shortage of statistical data. GSARS therefore decided to integrateand thus fund -an agricultural statistics development component in African national agricultural investment plans. This GSARS input ensures long-term financing and there is hope that the tangible results obtained in Malawi, Mozambique, Rwanda (see box) and Tanzania, will ramify to other areas. However, as the main donors are English-speaking agencies, it is important to ensure that francophone countries are not overlooked and will obtain sufficient support for these initiatives.ICTs also offer cost-effective ways to collect and disseminate data. This technology has already proven effective in price collection. Market information systems (MIS) are rapidly developing throughout Africa. Farmers receive timely information by SMS that helps them make decisions, and the range of information disseminated is constantly expanding to include data on production, cropping practices, weather conditions, etc. Esoko is an ICT service that was initially launched in Ghana, but is now present in 11 African countries and concerns some 150,000 farmers. Moreover, N'Kalô (see Field Report), the RESIMAO MIS platform in West Africa and M-Farm in Kenya are continuing to develop. And there are many other examples of this trend. The point is to collect a variety of information for very quick dissemination to subscribers.The success of ICTs in this field should, however, not overshadow the unanswered questions regarding how to make these services cost-effective and thus sustainable, since most of them are being developed with donor funding. Moreover, the specific impacts of these instruments on policies and producers are still not clear.Mobile phones are also the gateway to big data in Africa. This is almost the only way for people to access available external data to meet their analysis and forecasting needs. Hence it is essential to collaborate with mobile phone operators and their partners to develop innovative services tailored to local people's needs.The use of these data for development applications is clearlyAgriculture is one of the priorities of the Rwandan government and a pillar of the second phase of its national economic development and poverty reduction strategy. The aim is to move on from subsistence farming into an investment sector, while also having access to reliable streamlined statistical data to help channel reforms towards transforming the sector.The country's statistical system was heavily damaged after the 1994 genocide. A donorsupported strategic plan for the development of a national statistical system was adopted for the 2002-2007 and 2009-2014 periods. For the agricultural sector, the plan provides for a national survey every 5 years, an annual cross-border agribusiness survey, improvement of baseline administrative statistical data compilation and of crop and livestock forecasting and assessment methods, as well as support for setting up a market information system. The budget package for this initiative is around €624,000, which also encompasses coordination and capacity building.In this setting, the National Institute of Statistics of Rwanda, in partnership with the Ministry of Agriculture, conducted two agricultural surveys in 2008 and 2013, in addition to an overall survey on household livelihoods in 2010/2011. These findings have contributed substantially to improving the country's agricultural statistics. Qualitative data are currently available on agricultural techniques, mechanisation, irrigation, input use, etc. Big data can be mined to help bring about major changes in agriculture and other fields. Overall it is felt that there is a dearth of information in ACP countries, whereas phone data is availablethe mobile penetration rate is very high in Africa -as well as data from satellites and many other sources. Solar panels can, for example, be installed on mobile phone masts as an inexpensive way to determine the extent of solar radiation. This gives us an almost minute-by-minute and quite reliable picture of sunlight conditions and longterm patterns in different regions throughout a country. If you add hydrometric or rainfall sensors, one can calculate the efficiency of agricultural production. We are currently working with the World Food Programme on using mobile phone data and airtime credit purchases to estimate food security in Eastern Africa. The possibilities are immense.A key problem is that phone data is highly personal. Phone data can be very beneficial if it is exploited to generate, for instance, very concrete suggestions on how the Ebola virus spreads and thus how to enhance its control, whereas extremely sensitive data may also be disclosed, even if they have been rendered anonymous, and aggregated on a large scale. A reasonable balance must be found between the protection of privacy and the accumulation of sufficiently rich data that could be processed to benefit society.Public research centres and universities exist. However, it goes without saying that the most advanced scientific expertise in big data is in North America and Europe. Relevant information, however, can be processed and extracted from these data using basic tools, without having to rely on the latest advanced techniques. Today, the problem is in boosting awareness and promoting ways to exploit the data from big data.still in its infancy. In 2012, the mobile carrier Orange launched the Data for Development Challenge in Côte d'Ivoire and Senegal as a contribution to the development of projects based on telephone data to address transportation, health and agricultural needs. Over 500 researchers from around the world participated in this challenge. Using big data to foster development is also the approach taken by the United Nations in its Global Pulse innovation initiative, which is striving to find new ways to utilise data analysis technologies to revolutionise economic development and aid in the poorest countries. These two major initiatives complement other existing specialised platforms, like CGIAR Consortium's Cassavabase (www.cassavabase.org) containing data on cassava crops, and Toto Agriculture (www.totoagriculture.org), an agricultural information sharing platform that was developed by the INSEAD Business School. This platform hosts information in over 100 languages on weather, soil, plants, etc., from 180 countries. Organisations such as FAO and the World Bank have also been pioneers in this field.Open data, potentially combined with information from statistical databases and/or big data, may also provide practical solutions for farmers in ACP countries, e.g. via mobile applications. The hackathons launched by CTA and its Eastern African and Caribbean partners to develop applications and platforms to meet agricultural challenges are in the same vein.Open data and big data offer many possibilities for data collection, access and use, but Duhamel points out that, \"statistics is primarily an inferential science. Thus to produce relatively reliable statistics, it is essential to have a sample that is representative of the 'population' we want to study. The final data quality cannot be improved simply by having more data (big data), it's the representativeness of the chosen sample that counts.\" Regarding open data, he regrets that this tool is now mainly in the hands of computer specialists, at the expense of thematicians.Anne Guillaume-Gentil dossierApril-MAy 2015 | Spore 175 | N'Kalô is a service that provides high value, analysed and synthesised information to meet the needs and capacities of agricultural stakeholders in Côte d'Ivoire. This information is used to better market agricultural products and improve incomes by reducing business risks. N 'Kalô, which means 'I am informed' in the Dioula language, is an agricultural market information service that was launched in Côte d'Ivoire by the NGO, RONGEAD in 2009. It aims to facilitate market access for value chain players and strengthen the capacity of producer organisations. \"Small-scale producers and farmers used to have problems in marketing their products and often had to sell at a loss,\" says Soungari Sekongo, a market analyst and coordinator of N'Kalô Côte d'Ivoire. \"N'Kalô creates transparency and helps overcome problems related to agricultural market information -availability, reliability, validity, etc.,\" adds Sekongo.This service is available in five African countries: Burkina Faso, Chad, Côte d'Ivoire, Mali and Senegal. Initially focused on cashew nuts, it was gradually expanded to include other export crops (shea nuts and sesame seeds), with gum arabic soon to be added. In partnership with the Ivorian marketing assistance board (OCPV), food crops such as maize, onion, groundnut, cassava, yam and plantain are also now covered.\"N'Kalô provides training and enables rapid information exchange and decision-making,\" says Sekongo Fougnigué, head of Bondoukou cooperative.Training sessions on the cashew value chain for small producers in Napié (left) and cooperatives in Bouaké (right) dossier Information is passed on via weekly bulletins sent by email and/or SMS. The service conveys raw information along with a synthesis report and analyses on the market situation, including decision-making advice. A typical SMS message includes two main components: the farmgate price range for each area covered, a price trend and recommendations on whether or not to sell the concerned products. The national analyst collects information weekly from a network of informants, including sellers, cooperatives and sometimes officials. In 2014, some 7,000 farmers had subscribed to the SMS broadcasting service for cashew at an annual fee of €0.76. \"It's extremely difficult to accurately measure the impact of this service as many factors are involved in producers' decision-making. However, we have some evidence,\" says Pierre Ricau, market analyst at RONGEAD. For the 2012 cashew nut season -which began with a price hike followed by a slump -60% of producers who received market advice from the service managed to sell their produce before the price drop, whereas only 30% of nonsubscribers sold their produce in time. Moreover, N'Kalô conducts annual surveys on the impact of its advice by comparing the average price obtained by a producer who strives to minimise the risks but whose sales are dispersed throughout the season, with that of service subscribers. The latter is always higher.On a more qualitative level, Ricau considers that the service facilitates negotiations and reduces mistrust between producers, sellers, exporters and processors. Better informed producers are more rational in their behaviour and speculative phenomena based on rumours or public announcements are avoided. Information may simplify relationships between members of cooperatives or producer organisations, while also boosting sales and minimising risks. \"For cashew, for instance, bundling is one of the best practices recommended by N'Kalô because it enables small producers to increase their margin from €0.01 to €0.04/kg,\" claims Sekongo.For Silué Souleymane, a producer based at Karakoro in the Korhogo sub-prefecture, \"N'Kalô completely meets our needs. It helps us produce well and sell better, so cashew nut production is profitable. In Poro region (Korhogo), 33,000 t of cashew nuts were marketed in 2014, compared to 12,000 t in 2013.\" The service also heightens producers' awareness regarding the commodity chain and market, while supplying reliable information. \"Knowing how to manage crops and becoming informed about rising and falling prices is a good thing,\" says Ardjouma Ouattara, a producer at Ouangolodougou.However, some areas do not have access to the Internet or the telephone network. \"The presently limited communications service coverage does not facilitate regular exchanges with rural people,\" adds Serge Kedja, ICT project manager.RONGEAD is currently involved in projects focused on harvest projections and weather forecasting, but the key challenge is to make the system sustainable. Two approaches are being considered: a multi-sectoral approach to pool already available resources so as to increase the supply and thus reach a larger number of farmers; and a multi-country approach to broaden the service coverage area and in turn increase the number of potential users.An Ivorian farmer benefiting from an information service on marketing corn, which operates via text messages dossier Sustainable harvesting and processing of medicinal plants for use in the pharmaceutical and cosmetic industries is providing valuable livelihood opportunities for rural communities. W orldwide, wild plant resources currently meet 70 to 90% of the market demand for medicinal and aromatic plants (MAPs) used in the food, pharmaceutical and cosmetic industries. MAPs offer multiple opportunities for producers and consumers. But concerns about overharvesting and loss of biodiversity, combined with complex regulations around access and benefit sharing (ABS), have hindered growth in this sector.Two recent developments, however, are signalling positive change for the sector. The first is the coming into force of the 2010 'Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits Arising from their Utilisation'. The Protocol, which supplements the Convention on Biological Diversity (CBD), aims to translate the theoretical principles of the CBD into practical guidelines around equitable ABS, thus providing a clear roadmap towards compliance. Having been ratified by over 50 countries, the Protocol came into force on 12 October 2014. The second is the emergence of industry-led certification systems that provide independently verified assurance that plant-derived ingredients have been harvested sustainably and equitably, based on international ABS laws.The FairWild Standard, for example, administered by the FairWild Foundation, assesses harvest and trade of wild plants against various ecological, social and economic requirements, and has been adopted in numerous countries and contexts. In Morocco, the Standard is being used in implementing the national strategy for the sustainable management and development of MAPs. Meanwhile in Lesotho, it is being used with a specific plant species, Pelargonium sidoides, extracts of which are used both regionally and internationally in remedies to fight colds and winter infections.Ethical verification of suppliers of plant ingredients is also provided by the Union for Ethical BioTrade, a Swiss-based industry organisation whose members undergo rigorous independent assessments of their adherence to ABS regulations, as well as of the environmental and social sustainability of their ingredient sourcing activities.\"These developments are making it easier for international food, cosmetics and pharmaceutical companies to invest in sustainable MAP supply chains\", says Gus Le Breton, who heads the research organisation Bio-Innovation Zimbabwe (BIZ). \"That's good news for rural producers around the world!\" BIZ aims to transform neglected and underutilised indigenous plants into viable commercial crops, providing benefits for rural people and their environment. Devil's Claw, for example, is a plant that is traditionally used in Africa as a pain reliever and digestive stimulant, but whose products are increasingly being considered as alternatives to non-steroidal anti-inflammatory drugs and are already registered as herbal medicines in France and Germany. The most common species (Harpagophytum procumbens) occurs in Botswana, Namibia and South Africa, but a second species (H. zeyheri), found in Zimbabwe, has a stronger, more potent active ingredient. This is now attracting further investment, offering communities in the region the prospect of access to new markets.The potential of MAPs is also evident in the Caribbean and Pacific. In Grenada, the agroprocessor Noelville Limited is well known for its nutmeg-based pain relieving spray and cream, Nut-Med. Supplying the company has helped nutmeg farmers to rehabilitate the agricultural economy, badly affected by Hurricane Ivan in 2004. Meanwhile, fetau oil, a traditional healing agent from the South Pacific, also produced from a nut, has begun to penetrate the EU and US markets. With support from a German NGO, an oil press has been established in Samoa and potential for greater production exists across the region.Medeline and her friends in the Chivi district of Zimbabwe collecting leaves and small twigs of the resurrection plant, Myrothamnus flabellifolius, used to treat a wide variety of ailmentsBuying or gathering fuel for cooking can be a significant drain on a family's income and time, and for many it is getting increasingly costly as resources are diminished. As an alternative, solar power is not without cost and complications, but for those with the commitment, use of solar cookers offers long term savings and environmental advantages. Solar driers also offer advantages over open air sun-drying, in reducing losses to contamination, speeding up drying times and improving quality in the dried product.This practical guide focuses primarily on the construction of two designs of cooker (a box cooker and a solar panel cooker) and two driers (direct and indirect), which can be made at relatively low cost from locally available materials. There is also useful information on how to optimise the performance of the cookers and driers, including estimated cooking times for different types of food. It should be noted that the parabolic reflector design of cooker that features on the cover is not one of those described in the guide.This brief, practical guide to milk marketing is a useful training or discussion resource for extension officers working with pastoralist communities and smallholder dairy farmers. It outlines, at a very simple level, some strategies for better milk marketing including organising a marketing group, setting up a milk collection point, and finding ways to deliver milk quickly. There are also more overarching and potentially challenging suggestions, such as reviewing gender roles in order to give women a bigger role in marketing decisions. This is one of six new practical guides to the production and marketing of animals and milk. Each guide is just eight pages long, and features large print text, simple language and line-drawing illustrations. Others in the series include: 11 ways to improve animal marketing, Producing animals and milk for market, Services for marketing animals and milk, Organising to market animals and milk, and Marketing animals and milk (CTA no.s 1810 to 1814). To understand the relationship between conflict and food security, this food policy report builds a new conceptual framework for food security and applies it to four case studies from Egypt, Somalia, Sudan and Yemen. Steps are outlined for policymakers to design and implement such food policies, including creation of price information systems and measures for climate change adaptation, bearing in mind the risk of increased conflict in the future. This latest volume in CTA's Success Stories series aims to inspire farmers, researchers, business leaders and policymakers to \"take up the mantle\" of climate-smart agriculture and speed up the transformation of Africa's agriculture sector towards greater profitability and sustainability. Drawing on case studies from across the continent, it outlines six strategic areas for improving the resilience and profitability of farming systems in the face of rising temperatures, drought and increasing climate variability.The East Africa Dairy Development programme is cited as a leading example of how strengthening value chains and improving market access increases farmers' resilience to climatic challenges. Over in West Africa, farmers in Niger are gaining multiple benefits from managing the natural regeneration of trees, with reforested lands improving soil fertility and boosting fodder, food and fuelwood supply. Other inspiring examples include conservation agriculture in Malawi and the development of drought tolerant maize for Africa.This report provides an analysis of six capacity development projects in tertiary agricultural education in Africa and Asia. Findings reveal that institutional change often proves to be a long and unpredictable process and that projects organised within short and inflexible frameworks are insufficient to achieve long-term, sustainable change. The case studies provide rich lessons and reflections on how things might be done differently. ■ Students of international development will find this guide to research and fieldwork an invaluable and highly practical resource, from planning research and collecting and analysing data to presenting results, including how to target non-academic audiences. \"Research,\" write the authors, \"is a journey during which you will encounter logistical, ethical, linguistic and other challenges.\" This text assists the reader along that journey, for example in understanding the links between theory and method, in navigating the pitfalls and challenges of fieldwork, in being organized yet flexible, and rigorous as well as sensitive.The book is much the stronger and more coherent for being written as if from a single author, rather than being a collection of edited papers. However, it also contains numerous boxes containing the personal reflections of senior development researchers on the topics in hand, which provide valuable illustrations of how the debates and theory that dominate much discussion on development research are experienced, and dealt with, in practice. ","tokenCount":"9435"} \ No newline at end of file diff --git a/data/part_3/1476868836.json b/data/part_3/1476868836.json new file mode 100644 index 0000000000000000000000000000000000000000..c21b3aa82f5165ed3daf36d32d2e8e10b7d57e0e --- /dev/null +++ b/data/part_3/1476868836.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"03e171fd7ff79ad257da50deb0c3a2b9","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/26427f7c-09d5-4842-a83b-06a5ac1ae02d/content","id":"-547554551"},"keywords":["Fluopyram","fosthiazate","Globodera rostochiensis","management","nematicide","Paecilomyces lilacinus","potato RESUMEN Fluopiram","fostiazato","Globodera rostochiensis","nematicida","manejo","Paecilomyces lilacinus","papa"],"sieverID":"81c41618-d0d5-4b65-894d-addac7292037","pagecount":"11","content":"The potato cyst nematode, Globodera rostochiensis, is a major potato pest throughout the world. Despite the environmental concerns associated with the use of chemical nematicides, they remain essential for integrated management programs, especially when resistant varieties are lacking. This study investigated fosthiazate efficacy to control G. rostochiensis in potato in comparison to fluopyram and the biological control agent Paecilomyces lilacinus strain PL1. Two independent trials were carried out at fields in Ödemiş and Bozdağ Districts, İzmir Province, Turkey. All treatments reduced densities of G. rostochiensis in roots and soil compared to the non-treated controls. All pesticides consistently decreased the reproduction factor (Rf = final population density/initial population density) values of G. rostochiensis compared to the non-treated controls in Ödemiş and Bozdağ. However, fosthiazate and fluopyram were more effective than the biological agent. Fosthiazate, fluopyram, and P. lilacinus strain PL1 applications increased potato yields in Ödemiş and Bozdağ by 21-34% and 20-31%, respectively, compared to the control. In conclusion, the application of fosthiazate and fluopyram provided a higher level of protection against G. rostochiensis and should be considered an alternative and integrative option in nematode management programs.variedades resistentes. Este estudio investigó la eficacia del fostiazato para controlar G. rostochiensis en papa en comparación con fluopiram y el agente controlador biológico Paecilomyces lilacinus cepa PL1. Se llevaron a cabo dos ensayos independientes en campos de los distritos de Ödemiş y Bozdağ, provincia de İzmir, Turkey. Todos los tratamientos redujeron las densidades de G. rostochiensis en raíces y suelo en comparación con los controles no tratados. Todos los pesticidas redujeron consistentemente los valores del factor de reproducción (FR) de G. rostochiensis en comparación con los controles no tratados en Ödemiş y Bozdağ. Sin embargo, fostiazato y fluopiram fueron más efectivos que el agente biológico. Además, el fostiazato aumentó el rendimiento de la papa en Ödemiş, mientras que la cepa PL1 de P. lilacinus aumentó menos en Bozdağ con aumentos del 21-34 % y del 19-30 % que el control no tratado, respectivamente. En conclusión, la aplicación de fostiazato y fluopiram proporcionó un mayor nivel de protección contra G. rostochiensis y debe considerarse una opción alternativa e integradora en los programas de manejo de nematodos.The potato cyst nematodes (PCN), Globodera pallida (Stone) Behrens and Globodera rostochiensis (Wollenweber) Skarbilovich, have been reported to cause economic damage in global potato production (Subbotin et al., 2010). These nematodes are root parasites that reduce potato yield quality and quantity. The global losses caused by PCN are between 10% and 12% (Urwin et al., 2001;Bates et al., 2002). In Europe, losses of 9% have been reported due to PCN (Turner et al., 2006). In Turkey, the annual loss in potato production due to PCN is estimated at ₺23 million (TurkStat, 2020). The main potato-growing areas in Turkey, including İzmir, Nevşehir, and Niğde Provinces, are commonly infested by both G. rostochiensis and G. pallida (Kepenekci et al., 2012;Ulutaş et al., 2012). However, the incidence of G. rostochiensis is much greater than for G. pallida and is reported to have reached 67% in potato fields where PCN was detected (İmren, 2018;Özarslandan et al., 2019;Altaş et al., 2020;Toktay et al., 2020).As in other countries, the control of PCN in Turkey is commonly acheived by using an integrated pest management strategy, which comprises the application of nematicides, the use of tolerant and/or resistant varieties, and crop rotation (Kepenekci et al., 2012;Ulutaş et al., 2012). The use of chemical nematicides is still necessary in Turkey considering the lack of tolerant and/or resistant varieties to G. rostochiensis and the economic constraints associated with the long crop rotations needed to ensure reasonable control of PCN (Kepenekci et al., 2012). In Turkey, concerns about the negative role of agricultural chemicals on human health and the environment and changes in EU legislation may limit the availability and use of many nematicides in the future (Pesticides Database, https://ec.europa.eu/food/plants/pesticides/ eupesticides-database_en). Currently, the Pesticide Registration Committee at the Turkish Ministry of Agriculture and Forestry has regulated the use of many nematicides, including terbufos (Counter ® 10G), cadusafos (Rugby ® 10G), and aldicarb (Temik ® 10G) for application on vegetables in Turkey (PPP, 2016). However, nematode control relying on a limited number of alternative compounds carry numerous health, environmental and economic risks due to high mammalian toxicity, risk of developing accelerated degradation, pest resistance due to the reuse of chemicals, and possible low efficacy of some compounds against plant-parasitic nematodes (Pattison et al., 2000). Some of the existing nematicides might be banned for agricultural purposes in the EU by 2023. Thus, there is increasing motivation to expand the range of available alternative products to be used to control PCN.Fosthiazate directly inhibits acetylcholinesterase (AChE), blocking normal nerve impulse conduction in the nervous system of the target nematodes (Xu, 2007). The root-knot nematodes, Meloidogyne spp., are the most targeted nematodes by fosthiazate applications. High efficacy of fosthiazate has been shown to control nematodes in tobacco (Meloidogyne javanica, M. arenaria, and M. incognita: Rich et al., 1994), potato (G. rostochiensis andG. pallida: Tobin et al. 2008), tomato (M. incognita: Saad et al., 2011), banana (Meloidogyne spp., Radopholus similis, Helicotylenchus multicinctus, and Hoplolaimus seinhorsti: Chabrier et al., 2002), tobacco (Globodera tabacum: LaMondia, 2002), cereals (Heterodera avenae: Cui et al. 2017), and peanut (M. arenaria: Dickson and DeWaele, 2005). Different formulations of fosthiazate (10% fosthiazate granule, 150 g/l or 900 g/l fosthiazate emulsifiable concentrate) are registered in Turkey as nematicides against plant-parasitic nematodes such as Meloidogyne spp. in tomato, potato, pepper, and cucumber, and Meloidogyne spp. and H. multicinctus in banana production (PPP, 2016). Fosthiazate is also registered in Turkey for Meloidogyne spp. management in tomato as a mixture with abamectin (10% fosthiazate + 0.5% abamectin, granule formulation).Fluopyram (N-{2-[3-chloro-5-(trifluoromethyl)-2-pyridyl]ethyl}-α,α,α-trifluoroo-toluamide) was developed and registered by Bayer CropScience as a broad-spectrum fungicide to control a variety of Ascomycetes and Deuteromycetes in many high-value crops (Chawla et al., 2018;Kandel et al., 2018a). Fluopyram works by inhibiting succinate dehydrogenase (SDH) in the tricarboxylic acid cycle and blocking the electron transport in mitochondria of fungi (Abad-Feuntes et al., 2015). Fluopyram is not only used for the control of fungal diseases but has also been evaluated for its nematicidal activity (Faske and Hurd, 2015). Jones et al. (2017) reported that fluopyram suppresssed M. incognita in lima beans. A recent study demonstrated the efficacy of fluopyram applied as seed treatments for reducing the activity of Heterodera glycines (Beeman et al., 2019). Another study reported that the soil application of fluopyram was promising in controlling Belonolaimus longicaudatus in strawberry in Florida (Watson and Desaeger, 2019).Paecilomyces lilacinus (Thom) Samson is one of the most widely tested biocontrol agents for controlling plant-parasitic nematodes (Kiewnick and Sikora, 2006;Akhtar and Jitendra Panwar, 2011). The fungus is now a well-recognized biocontrol agent against Meloidogyne spp. on various crop plants (Khan et al., 2006;Kiewnick and Sikora, 2006). In laboratory tests, the efficiency of this fungus on the eggs and females of Meloidogyne spp. was confirmed within a week (Khan et al., 2006). The production of secondary metabolites by P. lilacinus, including leucinotoxins, chitinase, protease, and acetic acid, plays an essential role during the infection process associated with reducing nematode populations (Yang et al., 2011). This fungus had the unique adaptability to grow in wide ranges of soil pH, making it a competitive biocontrol agent in most agricultural soil. Upon introduction, P. lilacinus becomes the dominant species in a very short period, which improves plant growth attributes and reduces nematode population densites (Siddiqui and Akhtar, 2009).In Turkey, fosthiazate, fluopyram, and P. lilacinus strain PL1 are registered as nematicides, and in the EU they are widely used against Meloidogyne spp. (PPP, 2016). The main objective of this study was to compare the efficacy of fosthiazate (900 g/l), fluopyram (400 g/l), and P. lilacinus strain PL1 (108 cob/ml) against G. rostochiensis on potato under field conditions.Fields located in Ödemiş (38º20'04 N, 27º82'93 E) District approximately 110 km west of Izmir Province and Bozdağ (38º30'64 N, 28º05'17 E) 30 km north of the Ödemiş site were selected as the experimental sites due to their natural infestation history with G. rostochiensis (Altas et al., 2020). The soil type in both locations is sandy (sandy, silicaceous, hyperthermic Arenic Ochraqualf) with 90% sand, 4% silt, 6% clay, and <1% organic matter.The Globodera species was identified by both morphological and molecular tools based on Basic Local Alignment Search (BLAST, http://blast.ncbi.nlm.nih.gov/) analysis of the internal transcribed spacer (ITS) of ribosomal DNA as described by Altas et al. (2020). Soil samples were collected prior to the potato harvest, and cyst extraction from the samples was performed using a standard flotation and sieving technique (Southey, 1986). Extracted cysts were categorized to genus level using a V20 model stereo-binocular microscope (Carl Zeiss AG, Oberkochen, Germany). DNA was extracted from a cyst using the Worm Lysis Buffer (WLB) Method (Waeyenberge et al., 2000). The primers F194 and F195 developed by Ferris et al. (1993) were used for sequencing of the ITS, and the resultant sequence was subjected to BLAST analysis (www.ncbi.nlm.nih.gov).Each experimental plot measured 28 m 2 (5.6 m wide × 5 m long) and consisted of six rows. Treatments were replicated four times and arranged in a randomized complete block design. Potato 'Agria' (Super Elite class), which is commonly cultivated in the region, was used in this study. A total of 84 tubers were planted with a handheld potato planter at a depth of 15 cm in the combination of 80 cm inter-row spacing and 40 cm intra-row spacing for each plot. The nematicides, fosthiazate 900EC (TRIPP ® 900 EC, Doğal Ltd., İstanbul, Turkey), fluopyram 40% SC (Velum Prime ® SC 400, Bayer AG, Leverkusen, Germany), and P. lilacinus strain PL1 (BIO NEMATON ® , Agrobest Group, İzmir, Turkey), were evaluated (Table 1). Chemical treatments were applied prior to planting via drip irrigation through 15,000 l of water/ha. The drip-line had self-compensating drippers with a flow rate of 2 l/hour, connected to a pump to distribute the treatments into the soil at a pressure of 2 atm. The non-treated plots that served as the control were irrigated with the same volume of water as those treated with nematicides.The experiments were planted on 5 May 2018 and 25 April 2019 at the Bozdağ and Ödemiş sites, respectively.Experiments were irrigated throughout the growing season and as needed. Two fertilizer applications were supplied at the time of planting and 45 days after planting at a rate of 2.5 kg/100 m 2 of 20-20-20 (N-P-K) and 5 kg/100 m 2 of 13.18.15+2 (MgO)+10(SO3), respectively.The initial nematode population density (Pi) of G. rostochiensis was determined prior to applying nematicides and planting tubers, while the final population density (Pf) was determined just after harvest. For both Pi and Pf, soil samples were taken at a depth of 15 cm using a soil core with a diameter of 20 mm. Samples were collected by taking 10 cores from each plot in a W pattern. Collected samples were mixed thoroughly and dried at 25ºC prior to nematode extraction. A 200 g subsample was washed on 18-and 100-mesh sieves to extract cysts based on the Fenwick can technique (Fenwick, 1940). The number of eggs and juveniles was estimated from a sample of 50 cysts by crushing them to liberate the eggs in 50 ml water (Shepherd, 1986). The number of eggs and juveniles were counted in a 1 ml aliquot using a Fenwick slide and expressed as the number of eggs and juveniles/g soil (Southey, 1986). The multiplication rates (Rf) of G. rostochiensis were calculated by dividing the Pf/Pi. Progeny tubers were harvested after the plants had senesced naturally and involved mechanical lifting, followed by hand forking of the plots to collect all potatoes. The yield was expressed in tons per hectare (t/ha). Plant growth parameters (root weight and shoot weight) were determined at 6 wk after planting by uprooting two plants from the middle rows. The roots and stems were dried at 65°C for 3 days and then weighed.Data sets were subjected to arcsine transformations of the square root of proportions to normalize data to minimize variance differences between measures being compared and then analyzed using analysis of variance (ANOVA). Significant differences between treatments were detected using Fisher's least significant difference (LSD) at P < 0.01 using SPSS for Windows, Version 16.0. (SPSS Inc., Chicago, IL, USA).The identification of nematode populations obtained from the experimental fields was confirmed to species level using the BLASTn analysis based on ITS sequences, which showed 100% homology with those of G. rostochiensis sequences (Accession Nos. GQ294521, FJ212167, etc.) deposited in GenBank. Experimental fields were sampled extensively to ensure that the selected sites were evenly infested with G. rostochiensis. The fields in Ödemiş and Bozdağ were naturally infested with G. rostochiensis with Pi of 34 and 13 eggs and juveniles/g soil, respectively.Population densities of G. rostochiensis significantly declined in the treated plots compared with the non-treated control (P ≤ 0.01). The highest Rf values of G. rostochiensis, 10.80 and 8.66, were recorded from the non-treated plots in Bozdağ and Ödemiş, respectively (Fig. 1). The Rf values of non-treated plots at both locations were approximately 7, 6, and 2 times those of fosthiazate, fluopyram, and P. lilacinus strain PL1 treatments, respectively. The effects of fosthiazate and fluopyram were statistically similar and were different from those of P. lilacinus strain PL1 (P < 0.01).The tuber yield increased significantly after the application of fosthiazate, fluopyram, and P. lilacinus strain PL1 compared to the non-treated control in both experiments (P ≤ 0.01). The application of fosthiazate resulted in the highest tuber yield (58.80 t/ha for Ödemiş and 54.38 t/ha for Bozdağ) followed by the applications of fluopyram and P. lilacinus strain PL1 (55.02 t/ha and 56.21 t/ha) and (48.11 t/ha and 48.78 t/ha) for Ödemiş and Bozdağ, respectively (Table 2). Fosthiazate resulted in a yield increase of 34% in Ödemiş and 31% in Bozdağ, which was not significantly different to yields obtained from plots treated with fluopyram (32% in Ödemiş and 29% in Bozdağ). P. lilacinus strain PL1 increased potato yield by 21% in both Ödemiş and Bozdağ trials.The plant growth parameters, including root and shoot dry weights, were positively affected by the application of fosthiazate, fluopyram, and P. lilacinus strain PL1 compared to the non-treated in both experiments (P ≤ 0.01). The application of fosthiazate resulted in the highest root weight (35.6 g) per plant in the Ödemiş experiment, followed by fluopyram (33.8 g) and P. lilacinus strain PL1 (27.9 g). Similarly, the application of fosthiazate resulted in the highest root weight (33.2 g) per plant in the Bozdağ experiment, followed by fluopyram (30.4 g) and P. lilacinus strain PL1 (24.9 g). The shoot weights varied among nematicide treated and non-treated plots (Fig. 2). The heaviest shoot weights were in fosthiazate-treated plots, followed by fluopyram and P. lilacinus for both experiments. Globodera rostochiensis is a major threat to the production of potato in many countries, including Turkey (Hafez et al., 2007;Kepenekci et al., 2012;Toktay et al., 2020). Cysts of G. rostochiensis are tolerant to unfavourable environmental conditions and can persist in soil for more than 10 yr, which makes their management very difficult (Williamson and Hussey, 1996). Since there are few genetic resistance sources in commercially available potato cultivars (Jones et al., 2013), chemical nematicides are considered the most effective nematode management strategy and should not be removed from an IPM strategy (Sasanelli et al., 2015). The results of the current study confirmed fosthiazate, fluopyram, and P. lilacinus strain PL1 suppressed G. rostochiensis. Plots treated with fosthiazate and fluopyram resulted in a substantial yield increase. However, the fosthiazate resulted in the highest yield compared with fluopyram or P. lilacinus strain PL1.Fosthiazate is an organophosphate pesticide that provides good and stable control of cyst nematodes (Tobin et al., 2008), root-knot nematodes (Rich et al., 1994), root-lesion nematodes (Kimpinski et al., 1997;Zasada et al., 2010), and free-living nematodes in a wide range of crops such as potatoes, bananas, tomatoes, and other vegetables. Similar to our results, several previous studies reported that fosthiazate suppressed nematode populations and increased yields. For example, Kimpinski et al. (1997) reported that potato tuber yields were higher in fosthiazate-treated plots (30%) when compared to non-treated plots. Norshie et al. (2016) reported that soil applications of fluensulfone, oxamyl, and fosthiazate at planting reduced infection of potato roots by G. pallida and suppressed nematode population development, increased shoot weight, and improved the growth and yield of potato when compared to the non-treated plots. Fosthiazate has been reported to reduce and suppress the hatch of G. rostochiensis and G. pallida (Tobin et al., 2008) by paralyzing nematodes in the soil as they migrate towards the root after emerging from the cyst (Kimpinski et al., 1997). The relationship between the population density of PCN and yield parameters has been documented in several studies (Tobin et al., 2008;Saad et al., 2012;Norshie et al., 2016), indicating that these plant-parasitic nematodes are primarily responsible for yield losses. Similarly, Woods et al. (1999) reported that fosthiazate is an acetylcholinesterase inhibiting compound that adversely affected hatch and movement of G. pallida in soil, subsequently reducing root invasion. Saad et al. (2012) reported that the application of fosthiazate in a mixture with abamectin suppressed population densities of M. z Means within a column followed by the same letter are not significantly different (P < 0.01) according to Fisher's least significant difference (LSD) for each experiment. ± standard error of the mean. incognita by 82.1%.Fluopyram, a phenylamide fungicide, has been used widely to control soilborne fungi (Kandel et al., 2018b). Information on the efficacy of fluopyram against G. rostochiensis and Meloidogyne chitwoodi was limited in Turkey (Kepenekci et al., 2012). In our field trials, the application of fluopyram significantly enhanced potato yield compared to the non-treated control, which agrees with the results of a previous study by Hungenberg et al. (2013), who reported fluopyram controlled M. incognita and increased tomato yield. Yield increase associated with the application of fluopyram may have been associated with nematode control (Hungenberg et al., 2016), or perhaps the management of fungal pathogens, especially soilborne root pathogens such as Fusarium spp. (Amiri et al., 2018;Bauske et al., 2018).The fungus P. lilacinus, a nematode egg parasite, is currently used as a biological control agent against various plant-parasitic nematodes, particularly the P. lilacinus strain 251 for which a commercial formulation is available (Kiewnick et al., 2002). The application of P. lilacinus L1 significantly reduced population densities of G. rostochiensis and enhanced potato yield compared to the non-treated control in our field trials. The fungus is generally specialized in parasitizing stationary stages of nematodes, particularly eggs. Commercial formulations of the fungal agent successfully suppressed M. incognita on potato (Jatala et al., 1980) and on tomato (Lara Martez et al., 1996) in field conditions, and on banana in greenhouse conditions (Jonathan and Rajendran, 2000). Additionally, P. lilacinus controlled R. similis on banana (Davide and Zorilla, 1985) and on betel vine when introduced into the soil prior to nematode inoculation (Sosamma et al., 1994). A reduction in infection by Heterodera spp. particularly H. schachtii (Nigh et al., 1980) and H. glycines (Chen and Dickson, 1996) by P. lilacinus has been demonstrated under laboratory conditions.The current study showed that there was a significant positive effect of the evaluated nematicides on plant parameters. The nematicides used in this study increased root weight, shoot weight, and tuber yield compared to non-treated control. Saad et al. (2010) recorded that abamectin and fosthiazate increased plant height and fresh weight in tomato. Saad et al. (2012) reported that fosthiazate, cadusafos, and crustacean increased root length in M. incognita-infested tomato plants. Several reports have confirmed that PCN are destructive pests in the potato production areas in Turkey (Ulutaş et al., 2012;İmren, 2018;Özarslandan et al., 2019;Altaş et al., 2020;Toktay et al., 2020), but the impact of PCN on potato yield in Turkey is relatively unknown (Kepenekci et al., 2012).In conclusion, this study demonstrated that fosthiazate, fluopyram, and P. lilacinus strain PL1 were able to reduce population densities of G. rostochiensis and can be part of any IPM strategy against this nematode. These compounds could be further tested in combination with other nematicides, tolerant and/or partially resistant cultivars, trap cropping, crop rotation, and possibly other antagonistic organisms under an IPM strategy manage PCN.","tokenCount":"3355"} \ No newline at end of file diff --git a/data/part_3/1501350248.json b/data/part_3/1501350248.json new file mode 100644 index 0000000000000000000000000000000000000000..492fbb0159dd63cc585f84cbfca273475df2d538 --- /dev/null +++ b/data/part_3/1501350248.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"352e954169a461cbb91013911d5b1a65","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/11cff6ce-b84a-4501-b17e-386f6916dff6/retrieve","id":"-133324871"},"keywords":["Epistemologies","participation","communication technologies","ways of knowing","multicultural Article Classification: Research paper"],"sieverID":"8c6ed0c3-f032-4ce6-bb97-076a67cdf5e5","pagecount":"15","content":"Purpose: Reflections on negotiation processes between farmers and scientists in research projects provide insights into issues of participation, power and equity. This case study illustrates how actors chose places to meet, negotiate and represent technologies.Design/methodology/approach: The research involved semi-structured interviews and participant observation with farmers, scientists, government agricultural advisors (extensionists), policymakers, and staff of development organisations involved in a research for development project in Western Shewa, Ethiopia from 2009 to 2011. It combines theories from social studies of science as well as development studies.Findings: Using blueprint approaches in research projects will not yield sustainable results. Participation must go beyond consultation or trying to educate farmers. Social relations are at the core of cooperation between farmers and scientists and require much more attention. Powerful choices on modes of representation and communication technologies as well as unilateral decisions on places have important implications for the way decisions are eventually made and by whom.Originality/value: Our approach to studying research for development projects from social studies of science perspectives adds new insights into debates on participation and power in technology transfer and multicultural cooperation in rural development.As early as 1935, Ludwik Fleck pointed to the fact that generation and stabilization of knowledge about the world is never the act of a single person, but deeply tied to what he aptly labels \"thought collectives\". These social groups, be they scientists gathering around a theme or actors who share specific preoccupations, are held together by a shared thought style. Appropriated through socialization into a group, a thought style leads to a quite specific way of seeing and understanding the world. Yet any person is always and simultaneously part of several such collectives which blend in the production of any kind of knowledge about the world (Fleck, 1935).In our case a farmer can be a scientist, an extensionist[1] may be a farmer, and a scientist may also be a donor. This nicely ties into what Jasanoff (2004) has labelled the idiom of co-production, namely the fact that our choices regarding the way we live in this world are deeply intertwined with how we represent and know the world. Thus (scientific) knowledge can never be seen as a neutral reflection of reality; instead it incorporates social practices and norms, discourses, instruments, institutions (Jasanoff, 2004). Knowing is inseparable from cultural, economic and political processes (Scoones and Thompson, 1994), and \"knowledge is socially and politically constructed, it requires a socially differentiated, politically astute analysis to comprehend\" (Leach and Scoones, 2005:26). Decisions about agenda setting, problem definition, framing of research questions, design of research methods, time and place of the research are rarely cooperative ones (Stirling et al., 2007).In our research we are looking at a case study in the Ethiopian Highlands. By looking at research interventions in a watershed area we try to understand how different aspects of social relations among (multicultural) scientists themselves, among scientists and farmers, as well as among farmers, scientists and extensionists, influence ways of knowing and learning cultures. We thus consider social relations, but also places, modes of representation and their inherent power structures as important factors regarding negotiations on ways of knowing. Freire (1970) has introduced the notion of dialogue into education as a tool of empowerment. He wants to give tools to people to enable them to critically evaluate different forms of knowledge (Mejía, 2004). This empowerment in assessing ways of knowing critically, in deciding for themselves what and how to learn, is crucial for dialogic processes on knowing. However, power imbalances as well as different epistemic understandings influence this dialogue, especially when communication technologies come into play that are not accessible and familiar to all participants at equal levels. One example is the virtual space created by IT tools. Most scientists are operating in it on a daily basis. Opening it up to farmers in the Ethiopian Highlands would have interesting implications for their dialogue. And literacy is not a precondition for the use of the internet (Gomez, 2006), as can be seen when pre-school children make use of the internet with astonishing proficiency.Looking at negotiations on ways of knowing, we agree with Long (2001) that knowledge evolves dynamically in social processes between different actors. Epistemologies are constructed by the social realities of human beings and in turn construct these social realities. They are an integral part of the social worlds of farmers and scientists (Gieryn, 1995;Rival, 1998;Clarke, 2005), as well as relating to broader technopolitical cultures (Felt et al., 2009:4); thus any positioning towards technological innovations always relates to historical, cultural and political developments.In such negotiations on ways of knowing, place becomes a central category. Place can provide attachment and identity, and is connected to inherent power structures depending on who wants to/can occupy which place for which purpose (Gieryn, 2000). Gieryn (2000) claims that place is not virtual. However, we suggest that the virtual aspect of place increasingly gains importance in science on a global level, as virtual communication and research tools become more and more widespread. Yet these technologies are only accessible to a limited group of people -those who have access to them to start with, and among those only those who have access to costly software such as GIS tools and/or powerful internet connections to download and use freeware.In opposition to many other authors, Gieryn (2000) requests a succinct distinction between place and space. Space to him is a much more abstract concept, or \"space filled up by people, practices, objects, and representations\" (Gieryn, 2000:465).The debate around space and place takes place within many different disciplines, not only geography (e.g. David Harvey and Benno Werlen), and sociologists (e.g. Pierre Bourdieu and Henri Lefebvre). Most disciplines nowadays support the so-called \"spatial turn\" (Bachmann-Medick, 2006), that emphasizes the social and cultural component of space. Thus, space is the result of social relations (Gieryn, 2000;Harvey, 2005), and space also has agency with an effect on social life (Werlen, 1993). In our work we prefer to talk about place rather than space. For us, the connection between place and space is constituted by interaction. The social construction of places changes by the agency of space (Werlen, 1993). Thus the dynamic nature of space and its impact on social life have a profound impact on the relation we have with places. Furthermore, social relations, modes of representation and place get (re)configured in specific ways through the creation of so-called interfaces. Interfaces are understood as settings where \"different interests, relationships and modes of rationality and power\" come into play (Long, 2001: 65). Interfaces shape and nourish personal relations; conflicts arise there or may be resolved; (hidden) transcripts (Scott, 1990) can be expressed, goods are exchanged, and promises are made and (not) kept (Long, 2001;Mosse, 2005). They may have existed before projects were created, or they may have emerged during or as a consequence of the projects. But interfaces are also settings in which powerful actors can shape the way alliances, coalitions and networks (can) emerge and thus impact on potential ways of knowing. It is precisely through these different ways of producing and distributing knowledge that power can be exercised (Foucault, 1980;Jasanoff, 2004) as well as through reinforcing or challenging specific socio-technical narratives.In practice such interfaces come in the form of personal relations between particular individuals, field manuals for extensionists written by scientists, and meetings such as workshops. They are partly created through the use of communication technologies and influenced by different learning styles. Different modes of representation are often applied in order to transfer information from one group of actors to another, such as from scientists to extensionists, from extensionists to farmers. Equally, \"participatory methods\" are increasingly used for this purpose. However, the range of understandings of what \"participation\" means in practice is broad; it starts with information and consultation at the minimum level and extends to handing over decision-making to stakeholders at the maximum level (Chambers,1994;Cooke and Kothari, 2001;Oxley Green and Hunton-Clarke, 2003).The use of communication technologies as outlined above is often rooted in the confusion of \"public understanding of science […] with public acceptance of science and innovations\" (Felt and Wynne, 2007:55). This leads to the basic assumption that public opposition to technologies can be resolved by simply providing more information (Felt and Wynne, 2007). As a consequence we most frequently encounter what Felt and Wynne (2007:55) have described as the \"Public Education Model\": science is separate from society, technosciences if well used are sources of progress, mistrust towards science \"comes from public illiteracy, ignorance and superstition\", and finally \"Scientists, who hold the knowledge, have to instruct and educate the public\". Yet research showed that people hold quite complex models of science and society relations and that it was distrust of the powerful institutions behind them that created public dissent rather than the risk of the technologies themselves (Wynne, 1991 in Felt andWynne, 2007).With our research we want to learn more about the role of social relations, places, modes of representation and the power relations inherent within them in the interactions of scientists with farmers. The object of our research is a case study in the Ethiopian Highlands where several overlapping research projects have taken place. Moments studied during these research projects were: the project inception phase in the field -how to engage with a place and its actors; a multicultural project inception workshop -how to represent research areas and how to negotiate about project planning in a multicultural environment; and finally a specific example -the relations between students and supervisors engaged in such research projects. Based on findings from these encounters we call for a balance in mutual perceptions of each other's ways of knowing, and for diversified epistemologies and learning cultures, creating space for more sustainable decision-making.A group of experts commissioned by the Ethiopian government selected Galessa as one of three model watersheds as part of the government's strategy on watershed management in the mid 1990s. In 1997 the Holetta Agricultural Research Centre (HARC)[2] became part of the Integrated Natural Resources Management (INRM) project (see below) of the African Highlands Initiative (AHI) [3]. The HARC scientists selected Galessa as a suitable place representing a watershed in the highland areas for this project and it is currently a mandated HARC research area. However, farmers and scientists interviewed for this research usually did not differentiate between the different projects taking place in the same area, but referred to them collectively as \"the watershed project\". We therefore use the acronym GWP (Galessa Watershed Project) when not referring to a specific project but to the overall research activities in the area.The GWP is situated in Dendi District, West Shewa Zone (Ethiopia) (Figure 1) in a high-altitude area of 2900-3200 m with bimodal rainfall patterns (Mekonnen, 2007). Agriculture is the main source of income in the area. The main language is Oromifa, although some understand and speak Amharic as well. Amharic is the official language of Ethiopia. Ethiopia is home to about 80 different languages. The ethnicities of Amhara and Oromo represent the largest part of the Ethiopian population with about one third of the total population each.The population is around 900 people (Admassu et al., 2008). Most people living in and around the watershed originate from the same families and are related. The area seems densely populated, with each of the villages having at least 25-30 households. Social life connects those villages. Farmers interviewed for this research were either working for the GWP, collaborating closely with the GWP (e.g. in farmer research groups) or were selected for their specific knowledge and expertise in relation to tree and soil management, which was the thematic focus of the PhD study of the first author. Some farmers were then selected as a reference group.The scientists interviewed for this research were partly from the Ethiopian Institute of Agricultural Research (EIAR) [4] and some of its member organizations, and partly from the University of Natural Resources and Life Sciences, BOKU Vienna [5]. They were either working for the GWP at some point or were familiar with the area for other reasons, or they were partners or supervisors of the former. All of them had work experience in multicultural cooperation.The largest project that took place in Galessa was the INRM project. It was implemented by HARC, the AHI, the Dendi Woreda (district) Office of Agriculture and Rural Development (Dendi WOARD) and farmers, and ran from 1997 until 2007. Furthermore, BOKU was involved in some of the research activities through the supervision of an Ethiopian PhD student in forestry and a small project that enabled the PhD student to do some additional research in Galessa Watershed and three other Kebeles (lowest administrational unit in Ethiopia, subunit of a district) from 2004 until 2007. The PhD student was also project coordinator of the INRM site at Galessa before starting his PhD studies.The INRM project aimed at contributing towards food security by improving natural resource management and agricultural productivity. The main donor of AHI for this project was the International Development Research Centre-Canada (IDRC). The INRM project went through four phases, but the first stage (1995)(1996)(1997) was geographically scattered and did not involve Galessa; the second phase (1999)(2000) was looking at improving income through farm diversification, intensification, soil conservation and fertility improvement as well as integrated pest management; the third phase (2002)(2003)(2004) focused more on social issues and process documentation and used participatory and interdisciplinary approaches; and the fourth and final phase (2005)(2006)(2007) focused on scaling up [6] technologies and knowledge, strengthening local institutions and bylaws (Admassu et al., 2008).The phases of the project between 1995 and 2007 also reflect the paradigm change within AHI during this time. At the outset AHI's approach was top-down, and then moved gradually into bottom-up and participatory research. AHI is cooperating internationally with the Consultative Group of International Agricultural Research (CGIAR). On a national level it cooperates with the national agricultural research systems.The output of those four project phases of the INRM project consisted of detailed resource characterization of farming systems, livestock production systems and others. Furthermore, on-farm research was carried out on potato and barley varieties and multipurpose tree species introduction amongst others. Capacity building incorporated training for farmers, scientists and development agents, as well as cross-site visits, field days and workshops. (Admassu et al., 2008) In 2009 a follow-up project of the INRM project began. It aimed at up-scaling the lessons from Galessa Watershed to other watershed sites. The inception workshop of this new project was also part of our research, because all previous partner institutions and farmers from Galessa Watershed were invited to the workshop.The research took place as part of a project funded by the Austrian Science Fund (FWF). This project ultimately wanted to find out more about ways of knowing in farmer-scientist cooperation and was designed by the first author. Thus this paper addresses only a fraction of the entire research findings resulting from this work.In Galessa Watershed 40 farmers were interviewed on different occasions in two villages inside and one village outside the project area. The villages have about 30 households each. The interviews and provided the opportunity to arrive at an understanding of the social relations in the GWP; to observe the places where the GWP happens; and to learn about the power relations inherent within the villages as well as between the farmers and the scientists and extensionists. Furthermore, for triangulation participatory mapping, seasonal calendars and village walks were carried out. This research was done by the first author jointly with an HARC staff member between October 2009 and December 2010. The first author was undertaking part of her PhD research for this study and the HARC staff member was interpreting for her and assisting with collecting background information. This was necessary because the first author did not speak Oromifa, the language of the farmers and local administrative bodies. Therefore two officials and one development agent of the Dendi WOARD were also interviewed together. These interviews served to capture the perspective of extensionists on the GWP experience, the social relations between scientists, farmers and extensionists, and their experiences with modes of representation and power relations inherent in the project.During the same time period the first author did research on the perspective of scientists, development organizations [7] and governmental organizations on the case study. She observed a project workshop and field day [8] (when referring to these findings, the first author is therefore called \"the observer\") in order to understand modes of representation and places in the GWP. She interviewed 20 scientists as well as staff of development and Austrian [9] and Ethiopian government organizations in relation to GWP to learn more about power and social relations between those actors. Scientists involved in the case study were also interviewed regarding their relationship with their supervisors/students and their experiences while studying abroad.The part of the research that took place outside of the actual watershed was done by the first author without HARC scientists. The HARC scientists' direct involvement as actors in the case study could have created a conflict of interest. To check on bias in the research with farmers in Galessa Watershed an additional translator was hired for triangulation towards the end of data collection.Observations were documented with video, photographs, observation notes and a reflective diary. Interviews in local languages (Oromifa and Amharic) were translated into English. The interviews were either recorded and fully transcribed, or recorded by note-taking.In this section we present the nature of encounters in the GWP as a case study, and the example of multicultural student-supervisor relationships in the context of the GWP. The student-supervisor relationship takes students to another country into another epistemological setting and learning culture, and sometimes takes the supervisor to the student's country and the project site. Thus it will allow us to show how place, social relations and representational modes are intertwined and how power relations get enacted in multiple often invisible ways.At the beginning of the INRM project AHI introduced new communication technologies to the HARC, AHI and EIAR scientists participating in the INRM project. They then contacted the Galessa Watershed farmers and consulted them in village meetings and individual interviews about their problems and preferences for the new project's sites and its specific activities. This communication technology is also documented in Admassu et al. (2008); however, we decided to discuss it in detail with several participating scientists.They [the scientists] first asked the communities their problems, and we said our first priority is water; also there is a tree planting problem. After that these people who came from Holetta Research Centre promised to solve this water problem as well as to plant these seedlings. Therefore the people agreed. (Farmer, 9.5.2010) First, a list of 48 different problems was collected -the place for this was in the villages of the watershed in an attempt to relocate power at the farmers' level. According to a scientist, this list was then condensed by the scientists working for the INRM project (INRM scientists [10]) at the research centre. Thus they were again taking the final decision away from the farmers: the INRM scientists decided if some of the problems were referring to the same or similar issues, and which ones were the most relevant (Scientist, 2.11.2009).The highest priority problems mentioned by the farmers were water supply and tree seedlings. So the INRM scientists developed springs to improve the water supply for people and livestock and started a community nursery. By addressing the lack of water and tree seedlings out of the long list of farmers' needs, the scientists gained an entry point to working with the farmers. During the interviews, Galessa Watershed farmers expressed satisfaction with the progress made so far. But they also emphasized that there were still expectations to be fulfilled by the HARC scientists, such as up-scaling technologies within and beyond the watershed. However, the perception of the scale of place differs between the farmers and the scientists. The farmers meant making the new technologies accessible to their relatives in the villages just outside their watershed, or their neighbours within the watershed, rather than taking them to new project areas, as was planned by the new AHI project. Place is a local concept for the farmers; however for the scientists it reflects quantity (that is, large areas, many different locations).For the farmers of Galessa Watershed the incentives to cooperate were benefits such as the spring development, introduction of improved crop varieties and the tree nursery. Most of the innovations introduced by the project provide benefits to the whole community rather than individuals. This is in line with traditional Oromo culture, which is based on a system of egalitarian collectivism and solidarity (Levine, 1974). Thus the initial communication technologies used were very much aligned with traditional Oromo expectations about decision-making processes -the community has to decide. When the INRM scientists introduced themselves to the community with a consultation process rather than a hierarchical decision, they were responding well to the experiences of the farmers in Galessa Watershed with indigenous social institutions, where similar procedures are common. However, on the ladder of participation this would be \"participation by consultation\" (Pretty and Shah, 1994) or \"consultation/consensus building\" (UNDP, 1997).In 2007 the INRM project finished, but the GWP continues as part of the research mandate of HARC. Due to the success of the INRM project in terms of the outputs achieved, AHI decided to launch a follow-up project in 2009 that aims at scalingup the lessons learned in Galessa Watershed to other areas. The inception workshop of a new project phase of the cooperation between HARC and AHI took place in Addis Ababa in October 2009. Its main focus was\"to enhance the productivity of farmers through scaling up of functional technologies and practices but also by working with them in participatory manners\" (Alemu, 2009:4).The objectives were to (1)publicize the project initiatives to various stakeholders; and (2) to inventorizeand document the sustainable landmanagement experiences of the research and development partners (Alemu, 2009).The workshop provided an opportunity for development organizations and scientists to present their work. The presentations were about the work done in Galessa and similar areas, and the most important challenges with regards to up-scaling and putting research into practice. The participants were scientists from a number of Ethiopian research organizations, universities, NGOs, CGIAR, visitors from Uganda and Tanzania, and government officials, as well as both male and female farmers from two Woredas. However, it was not clear to the observer how the farmers had been selected and which role was allocated to them in such an institutional setting. Addis Ababa was selected as a place for the workshop, and the venue was the conference hall of EIAR. This was the HARC scientists' choice. EIAR is located on a small but beautiful campus with flowering trees, lush green grass and decorative garden plants. The contrast in terms of location to the social world of the farmers, where every square metre of land is used for agricultural production, could hardly have been greater. It takes farmers and extensionists away from their own social worlds into the centre of the scientists' laboratory, the venue being the place where the national elite of agricultural research meet. While it is familiar terrain for scientists, who used the coffee and lunch breaks for lively chats in the corridors, the farmers kept to themselves. The scientists interviewed after the workshop all reported that they had had no or almost no communication with the farmers during the workshop. The workshop, although full of interesting events and presentations, thus failed in bringing different stakeholders together to negotiate, exchange knowledge, views and expectations.The observer perceived a contradiction in the actual set-up of the workshop: on the one hand the organizing scientists invited a large and multicultural variety of stakeholders in order to be inclusive; on the other hand the organizers planned and implemented the workshop as a scientific event not considering different learning cultures. PowerPoint was used to present the introduction, methods, results and discussion, but also to show images to convey more implicit yet powerful messages. The main language was Amharic, but presentations were written in English -yet the farmers' language is Oromifa. The workshop did not provide a place for farmers to make their presentations except for the summary of their group work, and it failed to provide space for equal engagement and joint decision-making.The case study under investigation also points at the role of universities in global, multicultural cooperation and partnership. The principal scientist working for the project on a long-term basis did his doctorate in forestry within the framework of the GWP. While he himself was an Amharic-speaking Ethiopian, his supervisor was Austrian. The doctoral student received a scholarship and a place at an Austrian university for his studies. This is a common arrangement yet it warrants critical analysis of the role of social relations, place, and power relations inherent in such relationships. It is also important to consider how epistemologies and learning styles are negotiated between the supervisor and the student, and how this may influence further cooperation with farmers; the agenda of a student studying for a limited period of time, funded by a scholarship, may not have much in common with the agenda of farmers who expect long-term commitments (but immediate benefits) from such cooperations.The external supervisor in such arrangements is acting in an environment out of his own context and may not even have the chance to visit the country or the study site of the supervised students. In the case of the main researcher in Galessa, his supervisor had visited Ethiopia on many occasions, including Galessa. Other respondents reported that their supervisors had not even been to Africa let alone to their study sites in Ethiopia. Thus the student and the supervisor have a very different degree of familiarity with the places where the research happens.Supervisors' motivations to engage in such relationships range from chance to deliberate choices in response to an interest in learning more about different ecosystems.Well, there is scientists' curiosity on learning new things, on things you have not seen before, you haven't done before, and so it's an expansion of your own knowledge which you can then use in teaching classes. The other is getting people from other cultures, other countries involved in a fairly intense exchange of ideas. This also, is personal gain on both sides. (Scientist, 8.5.2009) It seems inevitable that a supervisor will, to some extent at least, attempt to socialize the student into his own way of approaching a problem. Even if this isn't done deliberately, it happens because the student attends his supervisor's lectures, studies his supervisor's publications, and engages in scientific debates on the study topic. Cultural differences and hierarchies may prevent students from expressing doubts openly -hierarchies always matter in the relationship between supervisor and student. Furthermore, the legitimacy of the student's presence at a foreign university and entitlement to continued funding depends to a large extent on the approval of the supervisor.Students also perceive additional benefits from studying in a different place. Many respondents emphasized the benefits of learning more about a different way of managing resources, as well as getting access to libraries and internet facilities and learning about new methodologies and communication technologies. However, such relations also have their tensions. Supervisors express some disappointment with the high expectations of Ethiopian students regarding infrastructure.Sometimes I have the feeling that they are coming with wrong expectations. We get annoyed, when they are making such high demands, they are coming as Master students and demand so many things they need for their field research. They say it is not possible without this, and they are so surprised when we tell them NO. (Scientist, 20.7.2009) The research also indicates that supervisors' perception of the actual fieldwork of the students often differed from the reality. Supervisors are usually not aware that Ethiopian students tend to use technical assistants and enumerators to collect data in the field. This is because scientists and government employees at MSc level have already attained an unusually high status compared to the Austrian academic system. Therefore it is neither desirable nor achievable for them to spend extended periods of time in the field themselves. There are many challenges such as long and difficult trips to rural areas, where there is no hotel, no restaurant, and no electricity. Additionally, the research system does not provide incentives for exposure to such \"uncomfortable conditions\". Repeatedly, respondents expressed surprise that their supervisors showed no hesitation in going to remote areas and conducting fieldwork in difficult conditions. This was also the case in Galessa Watershed. Scientists, technical assistants/enumerators alike never stayed in the areas during their research and chose to return to Ginchi, the next town, on a 15km mountain all-weather road. It took the first author a few weeks to convince her colleagues that it was both possible and necessary to stay in Galessa Watershed for several consecutive days, if not weeks, to do this research.The nature of engagement between farmers and students/scientists is of course somewhat restricted by their choice of communication modes/technologies. Initially, scientists may have to \"appoint farmers\", who are officially requested to be available at a certain time, often by the development agents, who are government employees. In some cases this will influence how a farmer will engage with the scientist, because he may not necessarily be participating voluntarily. Once relationships have been established, scientists interact with farmers through more informal encounters, either individually or in groups (appointed by development agents) or through formal questionnaire-based interviews (mostly carried out by enumerators). Furthermore, scientists tend to arrive late in the morning and leave early in the afternoon. Farmers leave home around 7am and return home at 6pm so spending time with scientists means compromising their work time. Such communication technologies therefore have their drawbacks.Similarly, visits of supervisors to the field site may have a rather orchestrated character, where foreigners arrive for a day visit with an unclear agenda in order to get an impression of the site where the student is working.And then we saw how some farmers were giving very long speeches expressing their gratitude and acknowledgement for the people coming from so far away to help them. That was a bit of a showdown really…well, of course there were many people there, many cars,okay, all of course arranged meetings, but apart from that I got relatively little insight. […] But the impression that I had was positive, because I got the impression that the research of [XX] really targets application, and it really aims at working with the farmers. (Scientist, 27.8.2009, reporting on a field day in Galessa Watershed)Relations between scientists and farmers are characterized by mutual, often highly idealized, expectations that are hard to fulfil. Unaddressed differences in expectations and failure to meet these expectations may, in the long run, create distrust of the institutions destined to help farmers move out of poverty. But the power imbalance between scientists and farmers, and the methods and technologies chosen for communication make it difficult for farmers to challenge the scientists. At the same time, it seems hard for a scientist to acknowledge farmers' right to make their own decisions. Building successful relations between scientists and farmers is not an easy task and depends heavily on the mutual benefits emerging from this relation: a field site for the scientist, increased production for the farmer.The venue for the case study workshop was not appropriate for building relations with the farmers; rather it served to strengthen relations between the scientists themselves. A clear power relation was established through the choice of setting. In order to reduce the impact of power relations inherent in place, new and innovative modes of communication with more consideration for multicultural diversity are required . Stakeholders other than scientists should be allowed to decide the location, agenda and participation for a workshop. This could provide space for different ways of knowing, and for the meeting of multiple knowledges (Powell, 2006) and learning cultures.Following the workshop, a field visit to Galessa took place where the scientists visited the \"place of the farmers\". A different communication technology was chosen there, where farmers were making presentations on their farms, surrounded by their livestock and crops, visibly empowering the farmers who proudly enjoyed making those presentations.The enrolment of farmers during the inception phase of the INRM project depended very much on the farmers' willingness to cooperate with the scientists. The scientists had to negotiate with the farmers, for instance over a place for the community nursery. On the other hand, the farmers committed themselves to cooperation with the scientists in providing space and place for the scientists, and in engaging in their activities. This is not possible for all farmers -only farmers with enough land and labour can risk experimenting on a larger scale. In not considering how limited the availability of places to experiment is, especially for poorer farmers, the GWP is reinforcing power imbalances within the watershed.Place and identity also articulate themselves in student-supervisor relationships. Different epistemologies, languages and resource management contexts are often communication barriers at the outset, when a student and a supervisor may simply not understand each other, and when different expectations collide, as outlined in the case study. Later on, however, when a student returns to his home country, he may have adopted part of this new identity and it will impact on his work and life at home. The relation between student and supervisor is influenced by many unspoken elements; for example, a student may notice that the supervisor misunderstands the case study context, but will refrain from telling him so. In this case, it is hard for the supervisor to follow up the actual activities of the student in the field, his interaction with the farmers, and even how he collects data. Even if he has visited the country or the site, the actual social worlds and places of the student's work will be so different from his own that mutual misunderstandings are likely to arise. These may also affect the selection of literature and methods for the study, as well as the interpretation of outputs, as epistemologies continue to differ significantly. Undoubtedly there is also a \"power of space\" issue inherent in the multicultural relationship between \"Northern\" supervisors and their students from so-called developing countries. Using modern e-learning and knowledge-sharing IT tools could be introduced into this relationship; for example, students should be encouraged to write blogs, reflective diaries and frequent reports about their fieldwork, and provide audio-visual material, in order to present a clearer picture of their actual field experiences. Furthermore, it should be mandatory for PhD students working directly with farmers to provide feedback channels for farmers through communication technologies such as participatory video; for instance, farmers could accompany the researcher and document the process and the outcome. The content and form of communication technologies cannot be separated. Opening up towards farmers and other epistemic communities means co-designing both format and content. Admittedly, this would require some creativity. Table 1 shows the main communication technologies used in the project by the scientists. Despite efforts made by the project, these remain mostly one-way and singular events without much follow-up, especially not after the project end. To overcome this deficit, more technologically enhanced, dialogic and emancipatory communication styles could be designed that improve learning and communication. These could be useful after project termination, or simply for the future use of farmers when engaging with scientists and extensionists. In other parts of the world, positive experiences have been made with technologies such as participatory video (Chowdury et al., 2010;Chowdury et al., 2011), forum theatre (Sullivan and Lloyd, 2006), digital storytelling (Freidus and Hlubinka, 2002) and action research on a more general level (Eikeland, 2006;Stringer, 2007). We agree with Bell et al. (2012) who point out that the most important aspect about \"participation\" is how the respective methods are used, and that the \"how\" of engaging people must be carefully planned and structured. As Cooke and Kothari (2001) and others have pointed out, participatory methods are often applied in ill-considered ways and lacking clear conceptualization. There is no blueprint solution for communicating. But careful planning and structure, testing and developing methods together with farmers, and simply stepping out of the comfort zone might render development projects more successful.Farmers choose the space they give to the scientists, and to what extent they allow scientists to influence their actual behaviour. The scientists, however, determine the agenda in selecting the technologies, the methods of engaging with the farmers, and the places to meet. While scientists are partly operating in virtual IT spaces, this is still far from reality for the farmers. However, farmers quickly adopt other modern communication technologies such as mobile phones. Hence, the virtual component of space and places to meet becomes increasingly more important and needs to be taken into consideration, while at the same time acknowledging that the most important meeting places for the farmers remain traditional: remnant trees, churches, springs and, in the case of Galessa, the site of the community nursery.Despite a lot of good will and talk about farmer participation and bottom-up approaches, at the end of the day the farmers were only consulted about their problems and their answers were not surprising. Thus they magically fitted into the ready-made approaches of integrated watershed management used in the case study. But the location in a specific social world has a significant influence on the framing of different ways of knowing, and the way decisions are made. Hence embedding communication technologies in the social world of the less powerful actors in this interaction, in this case the farmers, is a way of overcoming challenges resulting from this dilemma. Participation and negotiation need to start with choice of location and drawing up the agenda, and it should happen in a more dialogic way in order to provide more space for different ways of knowing. Notes:[1] Extensionists in our research are the government agricultural advisors of the District (Woreda) Agriculture and Rural Development Office as well as the development agents assigned to the rural areas by the same office. Each administrative sub-unit of a district (Kebele) in Ethiopia has been assigned three development agents to assist the communities in their development activities in the fields of agriculture, livestock and natural resources.[2] Holetta Agricultural Research Centre (HARC), a sub-centre of [4].[3] African Highlands Initiative (AHI): http://worldagroforestry.org/projects/african-highlands/index.html[4] Ethiopian Institute of Agricultural Research (EIAR): http://www.eiar.gov.et/","tokenCount":"6377"} \ No newline at end of file diff --git a/data/part_3/1505418399.json b/data/part_3/1505418399.json new file mode 100644 index 0000000000000000000000000000000000000000..c7ca76a2773bfd023437e3aa69068027f9b6b208 --- /dev/null +++ b/data/part_3/1505418399.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"ab36c6525772ec976d505d15db00102b","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/a332cb12-4d7e-4491-9a9b-6eb5bf5a3e60/retrieve","id":"1309235015"},"keywords":[],"sieverID":"26300a80-977a-4345-bc18-93a6b7fff45e","pagecount":"25","content":"Agricultural research is a component of broader agricultural knowledge systems that are coordinated at national, regional and international levels. This section of this publication seeks to describe the changes in the mechanisms for agricultural research. The agricultural knowledge system in France has several noteworthy characteristics:(i) It has three subsets, namely research, teaching and training, as well as the so-called \"development\" sector, which focuses on technology dissemination. Internationally, it should be recalled that the Consultative Group on International Agricultural Research (CGIAR) was established as an alliance of governments, international organizations and private foundations with a view to promoting food security and reducing poverty. The CGIAR reform process initiated in 2000 -including in particular the establishment of the Science Council and the introduction of the Challenge Programs linking national research systems -seeks to enhance the synergies among these overall objectives, including environmental protection and natural resource management in developing countries and technology transfer activities.A paper on the International Center for development-oriented Research in Agriculture examines the challenges of building the capacity of agents responsible for agricultural and rural development projects. Agricultural research is a component of a broader knowledge system that includes education, training and the so-called \"development\" sector, which deals with technology transfer and technical support. The system includes 35,000 researchers, engineers and academics. Agricultural education engages 190,000 students, including 12,500 in higher education and 1,000 foreign holders of postdoctoral fellowships, as well as leading numerous international geographic networks for decentralized collaboration. The activities of the development sector pertain to technology transfers and technical support to 600,000 farmers and 4,000 small-and medium-sized agro-food enterprises. The research-trainingdevelopment agricultural knowledge system mobilizes € 2.6 billion a year, for the most part publicly financed. A number of ministerial departments are involved, namely those responsible for national education, higher education and research, agriculture, environment, and foreign affairs.The public research mechanism for the agriculture sector is built on organizations that have special ties with the ministry responsible for agriculture, such as the Agence française pour la sécurité sanitaire des aliments (AFSSA), Centre national du machinisme agricole, du génie rural, des eaux et forêts (CEMAGREF), Institut français de recherche pour l'exploitation de la mer (IFREMER), and Institut national de la recherche agronomique (INRA), as well as research organizations more intensively oriented toward development and international issues that are placed under the auspices of the ministries responsible for research and foreign affairs, namely the Centre de coopération internationale en recherche agronomique pour le développement (CIRAD) and the Institut de la recherche pour le développement (IRD). The Muséum national d'histoire naturelle (MNHN), Institut national de la santé et de la recherche médicale (INSERM), and Centre national de la recherche scientifique (CNRS) also contribute to the mechanism in their specialty areas and as regards the portion of their activities concerned. The public organizations implement research priorities established in the context of major programs and objectives. Program IV concerns the management of agrosystems and natural resources and includes the budgets of CEMAGREF, CIRAD, INRA and IRD. The missions entrusted to each of these bodies reflect the special characteristics of their mandates, resources and skills.AFSSA is the national facility for assessing the health and nutritional risks of food. AFSSA accords priority to developing programs relating to the safety of foodstuffs of animal or plant origin and to protecting the health of animals, designing and using new techniques, and establishing standards and analytical methods applicable to foods, particularly their organoleptic (eating quality) and nutritional aspects. This process is carried out in cooperation with other organizations. Priority is given to five cross-cutting topics: (i) the emergence or re-emergence of microbes and agents with zoonotic potential, (ii) transmissible subacute spongiform encephalopathies, (iii) animal feed and its health risks to humans, (iv) quantitative risk assessment, and (v) feed composition and human health risks. Contact: www.afssa.fr.CEMAGREF accords priority to research on the functioning of surface hydrosystems (water resources, environments, uses and management) and technologies and services for water and waste through two activities: (i) preventing natural risks associated with water and (ii) integrating the management of hydrosystems and land systems. In addition, research on agricultural technologies and food processes is focused on site-specific agriculture that is economical in terms of inputs and on controlling product quality. Contact: www.cemagref.fr.CIRAD concentrates its efforts in three fields: (i) sustainable approaches to agricultural production, in particular the integrated management of cultivated ecosystems and the improvement of local plant varieties and animal species; (ii) the sustainable management of natural resources and the environment, in particular knowledge about tropical and subtropical biological resources and biodiversity, soil management, sustainable forest management, and the prevention and treatment of health risks; and (iii) product quality and safety in terms of the agricultural, biological, technological and socioeconomic determinants of quality throughout the relevant sectors, and risk tracking and management in quality sectors. Contact: www.cirad.fr.IFREMER uses its research, expertise and technological development capacities to (i) optimize and sustainably exploit sea resources; (ii) identify, appraise and predict changes in sea resources; (iii) improve surveillance, forecasting, protection and optimization methods for the marine and coastal environment; and (iv) promote the socioeconomic development of the maritime world. Contact: www.ifremer.fr.INRA produces scientific tools that are put to use in three major fields: food, environment and agriculture. Five scientific priorities interconnect the inner dynamics of research with the needs and expectations of society: (i) environmental sciences (ecological engineering, optimization of biological resources, agricultural and forestry systems, and support for the evaluation of public policies); (ii) integrative biology (genomics, exploring the genomes of crop species, in particular rice and the model plant Arabidopsis, and sustainable management of genetic resources); (iii) bioinformatics; (iv) human food and its safety (interactions of nutrition-metabolism, microbiology and micro-organisms); and (v) economics and social sciences (understanding the changes and challenges facing the agricultural and rural world and assisting with decision making). Contact: www.inra.fr.IRD has two scientific departments involved most directly with questions pertaining to agricultural development. The main questions they address relate to the (i) impact of climate change on human activities (droughts and floods), integrated management of continental water resources, understanding of the mechanisms of physical soil loss (erosion) and its chemical alteration (dissolution, salination and alkalization); (ii) study of cultivated tropical plants (physiology, symbioses, genetics and genomics); (iii) study of agricultural and microbial biodiversity; and (iv) aquatic and fish ecology. Contact: www.ird.fr.MNHN has seven scientific departments that perform collection management and conservation missions as well education and research functions. Contact: www.mnhn.fr.The distribution of the component parts of the system of agricultural, veterinary, agroindustrial, forestry and environmental higher education throughout the country gives the system a strategic role in terms of territorial development and leadership in rural areas. Two groups in the system are evolving in tandem from the \"baccalaureate plus 2 years\" level to the \"baccalaureate plus 8 years\" level. The first group, under the auspices of the ministry responsible for national education, includes universities, university technical institutes and engineering schools. The second group, under the auspices of the ministry responsible for agriculture, includes classes for advanced technicians at some agricultural secondary schools and engineering schools, veterinary schools, and demonstration schools. The 218 public secondary schools for general and technical agricultural education and agricultural vocational schools, as well as private educational institutions, annually award more than 10,000 advanced agricultural technician certifications.The 27 higher agricultural education institutions, including seven private institutions under contract with the state, are placed under the auspices of the ministry responsible for agriculture. They may be broken down into four families: (i) 21 engineering schools, which produce 2,000 graduates a year including nearly 100 on terms of continuing education, (ii) one landscaping school training almost 50 landscapers annually, (iii) four veterinary schools training nearly 500 veterinarians annually, and (iv) one normal school training teachers for agricultural technical education. These institutions train senior officials in the agriculture and forestry, agroindustrial, and veterinary fields, as well as in the environmental sector and the rural-and coastal-development sector. They also contribute to training foreign engineers and veterinarians, the bulk of whom are from French-speaking countries of the South. The institutions are organized into six regional education, research and development poles.Demonstrating the benefits of scientific interest groups is one in Alpes du Nord that sustains professional farming, expands cheese production and quality, protects the rural Alpine environment, and educates stakeholders. The technical institutes and centers for the agricultural and agro-food sectors, of which there are 61, participate in vast technology transfers by engaging in applied research and the necessary experimentation, ensuring linkage among the needs expressed by end-users, producers and manufacturers, as well as by the major public research organizations. For the agricultural sector narrowly defined, the Agence de développement agricole et rurale (ADAR) has the mission of developing, financing, monitoring and evaluating the multiyear national agricultural development program. For the implementation of sectoral and geographical development programs, ADAR is supported by two networks of operators. The national network is made up of the 16 agricultural technical institutes and centers gathered together in the Association de coordination technique agricole (ACTA, contact: www.acta.asso.fr); the territorial network is made up of the agricultural and development utilities services of chambers of agriculture. ADAR also engages in innovative and forwardlooking programs resulting from calls for projects. The originality of the approach lies in having a decentralized system that brings together stakeholders in the field and partner agricultural professionals and so disseminates knowledge and builds solidarity among regions, production sectors and professionals.In the agro-food industry, development support functions and is financed differently. The Association de coordination technique pour l'industrie agoalimentaire (ACTIA) is a federation of 45 technical institutes and centers in the agro-food industry, each with its own topic area of responsibility around which programs are organized that match the research and experimentation needs of businesses and professionals with the major public research organizations.A special effort is made to strengthen the respective interfaces of the training-research-development triangle, and various forms of partnerships are implemented.Joint research units (UMRs by the French abbreviation) are one important way of structuring scientific partnerships and make it possible for teams from different public research institutes, universities or institutions of higher learning to come together for work on common research projects. UMRs have their own budgets and are authorized by the ministry responsible for research. They are evaluated every 4 years and may be renewed. Furthermore, mobilizing scientific programs makes it possible to focus the organizations' research efforts on priority subjects, such as the research programs financed by the Agence nationale de la recherche (ANR).The cooperation of various research, educational and development organizations with their counterparts abroad is carried out in particular through a bilateral framework of multiple national, regional or local initiatives. This cooperation is the subject of agreements and conventions on a wide range of different topics. All of the research institutes and institutions of higher education have international affairs departments that manage the various contacts and exchanges. CIRAD and IRD maintain over a hundred representatives abroad, some of them jointly. The Agropolis Genome Platform for the South fosters collaboration among French institutes, international agricultural research centers and national agricultural research systems.Suggested in 1997 by Ismaïl Serageldin, then Chairman of the Consultative Group on International Agricultural Research (CGIAR), the idea of using the technological platforms of developed countries as a partnership tool drew the attention of French organizations and their supervisory ministries. In 1999, Agropolis assembled a French proposal for the Agropolis Genome Platform with the following significant strong points:Scientific support. The platform directly draws together multidisciplinary teams with experience in tropical agriculture, plants and cropping systems, in particular those of the complex systems characteristic of small-scale family farming.Learning, technology transfer and genuine scientific collaboration. Collaboration with the finest teams enables researchers from the South to become stakeholders in scientific and technological cooperation rather than simply users. In particular, the platform enables stakeholders to contribute to advancing their national research, while supplementing their training, rather than merely learn sophisticated techniques on subjects and materials quite distinct from their own, for which in many instances they will lack the resources necessary to put them to use in their home countries.Consolidating a topic focus. The main French research organizations and their supervisory ministries demonstrated, with the second invitation to tender from the Agropolis platform, the possibility of consolidating a topic-focused, coordinated French bid while simultaneously integrating and guaranteeing optimal support for, and full financing of, participation in French laboratories.During the first invitation to tender launched in 1999, five projects were selected that involved four CGIAR Centers. The participating scientists for two of these projects were researchers at national institutes in Brazil and Côte d'Ivoire. Nine projects were selected in 2001 from the 25 proposals received (Table 1).Table 1. List of partners in the 14 projects selected in the two calls for proposals from the Acropolis Genome Platform for the South. France shares with the Food and Agriculture Organization (FAO) of the United Nations the desire to work for sustainable development, the improvement of agriculture, and ensuring that the supply of food to consumers is adequate in terms of both quantity and quality. It wishes to contribute to the ongoing efforts to strengthen the synergies and complementarities between FAO and the international organizations concerned, in particular the International Fund for Agricultural Development and the World Food Programme. The framework agreement between FAO and France was renewed in 2005.In addition, France has shown its interest and participated in the International Assessment of Agricultural Science and Technology for Development, whose findings are expected to be released in 2007.The European Initiative for Agricultural Research for DevelopmentThe purpose of the European Initiative for Agricultural Research for Development (EIARD) is to express and implement coherent European policies on agricultural research for development in a coordinated manner internationally, regionally and subregionally. In its decade of existence, EIARD has achieved a number of policy inputs and institutional and operational impacts. One of its strengths is its flexibility and self-organized mode of operation.A proposal for a European initiative on international agricultural research for development ( EIARD's objectives are described in the EIARD logical framework and strategy for 2005-2010. Its purpose is \"coherent European policies on ARD expressed and implemented in a coordinated manner at international, regional and subregional levels.\" To achieve this purpose, EIARD has three broad outputs:(i) the effective exchange and management of European ARD information in support of policymaking and research partnerships;(ii) European positions on ARD issues, policies and strategies formulated and endorsed by EIARD members; and(iii) ARD-related decision making by EIARD members and international, regional, subregional and national organizations facilitated. A smaller working group ensures the continuing activities of EIARD and operates as a steering committee. It meets about four times a year and is accountable to the ECG, which meets formally once a year. The working group is assisted by task forces and experts who prepare draft positions on specific issues for endorsement by the working group and eventually by the ECG.The EIARD executive secretary, provided by one of the European states and hosted by the European Commission (Directorate-General of Research), is responsible for the day-to-day management of EIARD.EIARD is therefore an informal ARD policy-coordination platform that operates outside the normal EU comitology (committee work) procedures. Its effectiveness is ensured through its country representatives and by the endorsement of its role by the European Council and Parliament.Institutional impacts EIARD's institutional impacts include facilitating the establishment of (i) the European Forum on Agricultural Research for Development and its constituent national forums;(ii) InfoSys+, an ARD information-management system for Europe;(iii) ARD organizations both regional (e.g., the (iv) inputs of EIARD members to the design of the international dimensions of the European Commission's 5 th , 6 th and 7 th Framework Programs.EIARD members (i) provide more than half of all donor support for ARD worldwide;(ii) continue to raise the awareness of decision-makers of the essential contributions of ARD to food security and poverty elimination;(iii) maintain the aggregate level of European support for ARD, which has been more or less constant over the last 5 years;(iv) provide about 44% of all CGIAR funds;(v) have been instrumental in the design, and recent adoption by the CGIAR, of the Challenge Program concept of time-bound, international, interdisciplinary, multi-partner ARD programs on researchable problems of global or regional scale;(vi) promote programmatic and institutional change in the CGIAR, through active participation in the task forces set up to consider and recommend such changes and, subsequently, in the deliberations of the CGIAR governing bodies on that matter;(vii) help GFAR and its constituent regional and subregional organizations plan and coordinate the implementation of as much of the ARD agenda as possible; and(viii) have increased European support for these organizations in recent years.EIARD is 10 years old, which is long enough for us to try to draw some first lessons for this original coordination mechanism. One strength of EIARD is its flexibility and self-organized mode of operation. Another is its full awareness that, when it speaks with one voice, it is much more than the mere sum of 20-plus voices.Lessons learned tell us that capacity building in ARD cannot be limited to training researchers; of paramount importance is that the researchers' institutions be able to make optimal use of their skills. This implies not only reliable funding, infrastructure and tools but also access to information and positioning in the international setting.Isolation hampers research everywhere in the world, especially as far as individual capacity is concerned, so an ARD dimension of an open European Research Area can surely help overcome this problem. European and Southern researchers share many common goals, problems, challenges and opportunities; the international dimension of the European Research Area is not the only solution, but it is an indispensable tool.The past decade has seen Europe make progress in establishing networks and forums to coordinate its research for development at the levels of policy, programs and projects. Progress in forging links with research forums of the South has also taken place, particularly with Africa. In addition, Europe is acquiring influence in international agricultural research more closely in line with its substantial financial contributions.With For historical, socioeconomic and cultural reasons, France is the European state making by far the greatest investment in ARD, which explains why it has taken many initiatives and plays a leading role in promoting the emergence of the ARD component in the ERA. These initiatives significantly contributed to establishing the coordination mechanism discussed below. In this process, the role played by the European Commission, both intellectually and financially, has been constant and essential.In building the ERA, the European Commission recognizes coordination at the levels of policy, programs and research projects. As ARD usually involves three ministries in the Member States (research, agriculture and foreign affairs) that intervene at multiple levels, distinguishing among and within these three levels, both nationally and Europe-wide, is not always a simple matter.A second original trait of ARD in the ERA is that it involves organizing and coordinating human, finance and infrastructure resources in Europe to put them to use, not directly serving Europe, but on behalf of other countries that are, for the most part, the poorest on the planet.A final special feature of ARD is that the research component cannot be separated from capacity building, and that it necessarily involves multiple stakeholders both in defining programs and in their execution, monitoring and impact evaluation.Over a period of 10 years, the European mechanisms for ARD coordination have gradually been built up by the Member States, with the involvement and active support of the European Commission (Directorates-General Research, Development and Aid Cooperation), targeting each of the three intervention levels.Logically, it was at the political level that coordination was first sought. 1995-1996 and 2000-2002 and currently serves as the executive secretariat.The coordination mandate of EIARD as described in the Commission Communication is quite broad, covering all three levels of policy, programs and projects. EIARD has thus endeavored over the years to carry out its role in policy coordination and promote the introduction of European coordination instruments for the two other levels. EFARD's mission is to strengthen the contribution of European ARD to meet three major global challenges: (i) reducing poverty and hunger, (ii) food security and (iii) guaranteeing sustainable development. EFARD follows the major principles of GFAR and contributes to implementing its action plan in partnership with regional forums of the South. Thus, on the occasion of one of its triennial conferences, in Rome in 2002, EFARD established, in close consultation with forums of the South, a list of priority research programs to be carried out jointly, which are currently being reviewed as part of the ERA-ARD project discussed below. (For further information, see www.efard.org.)ERA-ARD is a project financed by the European Commission intended to strengthen cooperation and coordination among the heads of Euorpean national programs of ARD. The Centre de coopération internationale en recherche agronomique pour le développement (CIRAD) of France is the coordinator. Fourteen Member States (Austria, Belgium, Denmark, France, Germany, Hungary, Italy, Lithuania, Netherlands, Poland, Slovenia, Spain, Switzerland and United Kingdom) participate in the project, which began in April 2005 with a total budget of almost € 3.5 million over 4 years.The four major categories of activities programmed under ERA-ARD are the (i) systematic exchange of information and best practices from existing programs, (ii) identification and analysis of strategic issues of mutual interest, (iii) development of joint activities with national or regional programs, and (iv) implementation of transnational research activities.After a year of existence, the members of ERA-ARD have a better understanding of ARD in each participating European country, along with an initial roadmap of the main programs and their modes of governance, and are in the process of identifying the programs or subprograms that would gain the most from enhanced coordination and joint and/or transnational activities. (For further information, see www.era-ard.org.)The Historically, support for the CGIAR was the first concerted ARD undertaking among Europeans. Moreover, European public donors to the CGIAR became the founding members of EIARD in 1995. The political aim of this collaboration is to enable Europe to exercise in the CGIAR System a political weight equivalent to its financial weight -as Europe is by far the largest donor to the CGIAR, accounting for about 45% of its total budget -and to develop its intellectual contribution in terms of research.While the effort to right this imbalance continues, the past decade has seen Europe unquestionably succeed through EIARD in gaining recognition and having its voice heard in the CGIAR. There, it defends various approaches to agricultural research, in particular more systemic approaches, those more in line with demand from developing countries and those entailing more partnership in their implementation. France and, in particular, CIRAD have played an important role in building these various ARD-coordinating mechanisms and are working to build on these gains and improve their interconnection across Europe.Among the partners in the South, the development of similar coordination mechanisms is proceeding apace, in particular in Africa. Coordination among Europe and its partners in the South still requires a lot of attention but is progressing rapidly. The most recent example of this progress is the establishment of a strategic alliance between EFARD, the European forum represented by ECART and NATURA, and the African forum FARA, which the European Commission has recently agreed to support financially.As regards coordination between Europe and the international research Centers of the CGIAR, significant progress is also being made, in particular through mobilizing European researchers in the Challenge Programs introduced by the CGIAR with substantial European support.All these coordination efforts explain why ARD is often regarded as being the area of research for development that is best organized globally by its various stakeholders: research institutions, government ministries and agencies, civil society organizations, and the private sector. It could well constitute a valuable governance model for other research sectors, such as medical research.The next challenge is to interconnect European agricultural research on problem areas more specific to Europe with European agricultural research devoted to development issues. In a globalized world, in which many of the issues that must be addressed by research involving all stakeholders and continents, convergences should be rapidly organized.Centers supported by the Consultative Group on International Agricultural Research (CGIAR) perform research that produces global public goods. As the CGIAR expanded and became more complex following its foundation in 1971, the highly informal organization and its Members recognized a growing need for structure and consistency. The CGIAR reform program launched in 2001 has brought about a charter that sets out the roles, responsibilities and functions of the System's main components, as well as other innovations.The Consultative Group on International Agricultural Research (CGIAR) is a strategic alliance of countries, international and regional organizations, and private foundations supporting a network of 15 international agricultural research Centers that work with national agricultural research systems (NARS), civil society organizations and the private sector.Since the inception of the CGIAR in 1971, the Centers it supports have demonstrated convincingly how a modest investment in strategic and collaborative international research can multiply the gains from the world's total commitment to research for agricultural development. For every dollar invested in the CGIAR, $9 worth of additional food has been produced in the developing world, according to a recent study prepared for the CGIAR's Standing Panel on Impact Assessment.The mission of the CGIAR is to strengthen food security, reduce poverty and protect the environment in developing countries through scientific research and related activities in the fields of agriculture, livestock, forestry, fisheries, policy and natural resource management.The network of international Centers constitutes the operational arm of the CGIAR. With financial support from CGIAR Members and other donors, the Centers conduct research that helps increase the incomes of the poor in developing countries without degrading the environment. The products of this research are global public goods, which are available to all and draw on the best knowledge from cutting-edge science and local experience.The CGIAR is cosponsored by the Food and Agriculture Organization (FAO) of the United Nations, World Bank (or International Bank for Reconstruction and Development), International Fund for Agricultural Development (IFAD) and United Nations Development Programme (UNDP).The three initial cosponsors (FAO, UNDP and World Bank) provided strong leadership in creating an instrument that could harness support for international agricultural research. Their goal, and that of the other founders of the CGIAR, was to extend the benefits of international agricultural research beyond Asia, where unprecedented harvests of new varieties of rice and wheat overcame the threat of famine in the late 1960s.The first formal meeting of the CGIAR took place on May 19, 1971, with Richard H. Demuth, director of the World Bank's Development Services Department, presiding. The World Bank has since continued to provide the CGIAR with its chair and director, host its Secretariat, and serve as the anchor for its finances. The chair of the CGIAR, usually a vice-president of the World Bank, is designated by the Bank's president. The director of the CGIAR, selected through an international search process, serves as its chief executive officer and heads the CGIAR Secretariat.In addition to the initial cosponsors, the other founding members of the CGIAR were (in alphabetical order) African Development Bank, Canada, Denmark, Ford Foundation, France, Federal Republic of Germany, InterAmerican Development Bank, International Development Research Centre, Kellogg Foundation, Netherlands, Norway, Rockefeller Foundation, Sweden, United Kingdom and United States of America.Initially, the CGIAR supported four international agricultural research Centers that had been previously established by the Ford and Rockefeller foundations: the International Center for Tropical Agriculture (CIAT by its Spanish abbreviation, based in Colombia), International Maize and Wheat Improvement Center (CIMMYT by its Spanish abbreviation, based in Mexico), International Institute of Tropical Agriculture (IITA, based in Nigeria) and International Rice Research Institute (IRRI, based in the Philippines). Over the years, membership of the CGIAR has increased, the number of Centers has grown, and their research activities have diversified. As a result, the Centers now work on many fronts, adding to their original focus on agricultural productivity activities that aim to reduce poverty and improve the management of natural resources.The CGIAR was established to serve both as a mechanism for coordinating donor policies and actions and as an informal forum for discussion. In keeping with its informal character, the CGIAR was founded without a charter, procedural norms, or conditions or procedures for membership. Founding Members felt that decision-making by vote would be too formal and decided instead to reach decisions by consensus.As the CGIAR grew larger, the activities it supported increased, and the research undertaken became more complex.Recognizing the growing need for structure and consistency, several units of the CGIAR have adopted guidelines, terms of reference and procedural rules. The most recent effort to define rules and guidelines took place in connection with the CGIAR Reform Program, launched in 2001. As a result, the CGIAR now has a charter that sets out the roles, responsibilities and functions of its main components. Documents about the reform program are available in the CGIAR Core Collection Database at www.cgiar.org (click on search).The CGIAR System is a network of independent institutions that are committed to a common cause and interact regularly. The institutions that make up the System are:the CGIAR, an independent Science Council and 15 international agricultural research Centers.These three interdependent components of the CGIAR System are supported by the Executive Council (ExCo), which includes representatives of a broad range of partners as well as various standing committees and the System Office. ExCo facilitates decision-making by the Group and provides oversight of the implementation of the Group's decisions. the oversight of Center activities by making recommendations based on reviews of information gathered through various mechanisms.Among mechanisms of oversight at the System level are external program and management reviews, which are 5-yearly assessments of the effectiveness of Center research programs, governance and management. Another mechanism consists of a 3-year, rolling medium-term plan for each Center, in which the Center indicates the expected outputs and impact targets of its research programs. These plans are submitted to the CGIAR for discussion, amendment and final approval. Recently, the CGIAR created its Performance Measurement System, requiring that each Center report annually on its research programs and governance, following a common template and an agreed set of indicators.ExCo receives advice on scientific issues of strategic importance from the Science Council. The overall mission of this advisory body is to enhance the quality, relevance and impact of science in the CGIAR System, so that it can address the goals of international agricultural research more effectively.The 15 international agricultural research Centers are independent institutions, each with its own charter, international board of trustees, director general and staff.The CGIAR System receives important services from the System Office. This is a virtual mechanism created to enhance coordination among the various central service units that support the Centers, Members and other stakeholders. The CGIAR Secretariat is the principal service unit, providing a focal point for relations with external partners, including Today, more than 8,500 scientists and other staff members of Centers supported by the CGIAR are working in over 100 countries. Thirteen of the 15 Centers are located in developing countries. Giving especially high priority to Africa, the Centers make important contributions through research partnerships toward achieving the Millennium Development Goals. In addition, their work presents valuable contributions to major international conventions, including those on biodiversity, climate change and desertification.Research supported by the CGIAR addresses every critical component of the agricultural sector, focusing on five themes:(i) sustainable management of crops, livestock, fisheries, forests and natural resources;(ii) strengthening NARS through joint research, policy support, training and knowledge-sharing;(iii) germplasm improvement for high-priority crops, livestock, trees and fish;(iv) germplasm conservation, including collecting, characterizing and maintaining genetic resources, as the CGIAR holds in public trust one of the world's largest seed collections available to all; and(v) public policy, as the CGIAR fosters research on policies concerning agriculture, food, health, technology diffusion and managing natural resources.The CGIAR's work is shaped by powerful forces of change, such as evolving food security challenges, urbanization, globalization, increased private sector involvement in agricultural research and global concern about the sustainable management of natural resources. Against this background, the CGIAR has recently developed a new set of priorities in close consultation with its stakeholders and under the leadership of its Science Council. The process was guided by a long-term vision of the CGIAR as a provider of international public goods resulting from agricultural research aimed at poverty alleviation.Five priority areas were identified:(i) sustaining biodiversity for current and future generations;(ii) producing more and better food at lower cost through genetic improvement;(iii) reducing rural poverty through agricultural diversification and emerging opportunities for high-value commodities and products;(iv) promoting poverty alleviation and sustainable management of water, land and forest resources; and(v) improving policies and facilitating institutional innovation to support sustainable reductions of poverty and hunger.Three criteria were used to identify the priorities: (i) expected impact, (ii) the degree to which the research provides international public goods and (iii) the existence or not of alternative providers of the research. The CGIAR aims to progressively devolve some site-specific research to NARS, paying special attention to strengthening partner capacity in sub-Saharan Africa.The CGIAR's objectives in research-for-development are pursued through the CGIAR Centers' core programs, systemwide and ecoregional programs, and the Challenge Programs.The CGIAR System is open to all countries and organizations that share its commitment to a common research agenda and are willing to invest financial, human and/or technical resources. From its 12 Members in 1971, today's CGIAR membership of 64 includes a majority of developing countries. Membership is poised to grow further.In 2005, CGIAR Members contributed $455 million -the single-largest investment in mobilizing science to create public goods for the benefit of poor farming communities worldwide.The experience of ICRA While agricultural research for development has changed considerably since ICRA's creation, the need for such integrative competencies has only continued to grow. In a globalizing world, the ability of rural economies and societies to generate sustainable and equitable development depends increasingly on their capacity to anticipate and adapt to rapid changes in their policy, market, institutional, physical and social environment. This capacity is reflected in their collective ability to deal with complexity and quickly access and generate, and effectively use, knowledge for innovation.Traditional inter-institutional roles and processes used to generate and apply knowledge, often based on linear and reductionist paradigms, are increasingly ineffective in dealing with these complexities. Alternative approaches are thus being developed. Initially focused on farmer participation, approaches more recently recognize the need to engage a broader range of stakeholders in inter-institutional innovation partnerships and to span wider scales. Several approaches put more emphasis on marketing and value-adding opportunities as entry points for improving livelihoods. In all of these approaches, interactive learning plays an increasingly important role.Recognition of the need for more integrative competencies and approaches is growing, as is awareness that acquiring these competencies requires new ways of learning, and that applying these approaches demands institutional change to enable organizations to engage effectively in collective rural innovation. Such changes have nevertheless proved difficult to achieve, and few educational institutions have mainstreamed the building of these integrative competencies.ICRA has played, and continues to play, a pioneering role in experimenting with new ways of developing integrative capacities in agricultural research for development (ARD). ICRA's programs have always integrated and built on knowledge and expertise from ARD-related organizations in Europe and the South and from international agricultural R&D institutions, including the International Service for National Agricultural Research (ISNAR) and the International Center for Tropical Agriculture (CIAT by its Spanish abbreviation). The unique programs resulting from this integration are thus emerging from effective partnerships that are ICRA's lifeblood.The vision underlying these learning programs is that the integrative competencies needed for successful collective innovation cannot be developed through individual knowledge acquisition, as in conventional higher education or postacademic courses. They require experiential and action learning approaches where individuals learn by doing through working in heterogeneous teams and where, by jointly reflecting on their team action, they develop not only the knowledge, but also the skills and (even more importantly) the mindsets needed for effective collaboration in rural innovation. These action learning approaches need to be embedded in a process of institutional change, so that human capacity development can contribute to the needed changes in organizational structures, systems, values and incentives.All ICRA's learning programs are designed to guide inter-institutional and interdisciplinary teams and other stakeholders through the process of setting up innovation partnerships and realizing opportunities for innovation that require interactive learning and collective action, and hence cannot be realized by each of the partners on their own. To assist the action learning process, ICRA has developed a generic approach -its ARD process -to address such complex challenges in rural innovation through four iterative activities. Rather than making a miscellaneous collection of modules on concepts, approaches and tools randomly available, ICRA arranges them around the progressive application of the ARD process, such that participants in learning programs link concepts and tools with processes and, in so doing, realize opportunities for innovation. This principle is illustrated in Figure 1. The modules are based on experiential learning. Their content is generic, thereby allowing several teams to participate in one learning program, each working on a different innovation issue, which enriches interactive learning. The core of all learning programs is formed by team practice in the real world of professional life and, by reflection on this hands-on experience, to generate lessons and consolidate them for use.In its first 2 decades, ICRA offered such learning programs to individual participants from Wageningen (in English) and, since 1991, from Montpellier (in French). Occasionally during this period, ICRA also delivered similar or more tailormade learning programs regionally (in Latin America, in Spanish) or nationally in partnership with Southern research and education institutes. All programs focused on mid-career professionals working in rural innovation in the South (both Southern nationals and Europeans) and representing both natural and social science related to rural development. They were employed by research and educational institutions, government development agencies, nongovernmental organizations and farmer organizations. All these learning programs comprised substantial periods of fieldwork undertaken by interdisciplinary teams of participants jointly with ICRA's partner research or development organizations in the South. Since the early 1990s, ICRA developed long-term partnerships with these organizations aiming to develop institutional capacity to implement ARD approaches and build up a critical mass of competent professionals. The partner organizations identified the innovation challenge that the teams were asked to address and provided some of the team members. Through this hands-on experience, professionals learned to work in interdisciplinary, multi-institutional teams, working together with other stakeholders to address complex challenges and to negotiate, plan and implement action plans to generate the needed knowledge. These action plans were followed-up by the local team members, their institutions and other stakeholders.Making extensive use of lessons learned from participants' experience, these learning programs were constantly adapted. They therefore combine the strengths of a time-tested formula with the ability to adapt to changing insights and needs.Through these programs, ICRA and its partners have built the capacity of 874 R&D professionals (26% of them women) in 83 countries and in different types of organizations. Outcomes were measured during and at the end of each learning program, partly by experimenting with innovative forms of peer-assessment of performance by team members in terms of contributions to process and content. To assess impact, alumni were occasionally asked some years later to report on the uses made of the newly acquired competencies by individuals, teams or organizations. In one instance, this use was reported through invited papers presented at an international seminar. For external reviews of ICRA's program and management, review panels organized questionnaire surveys among alumni and their employers.All these evaluations show high satisfaction with what many consider a unique learning experience with life-long impact. They also show substantial application of the new competencies, especially in favorable institutional environments. A number of alumni have made significant progress in their careers. A survey of the follow-up given to the action plans resulting from the fieldwork undertaken as part of the ICRA learning programs (130 team reports on fieldwork undertaken in sub-Sahara Africa [78], Asia [29], the Maghreb [14] and Latin America [9]), showed that about half of the planned activities had been acted upon. Through publications on the content of the ICRA learning programs (textbooks, CD-ROMs and an evolving set of open-access web-based learning materials at www.icra-edu.org) in English, French and often Spanish, ICRA has contributed significantly to bridging the information gap between Anglophones and Francophones on their respective approaches to rural innovation.The demand for this type of capacity development continues to expand. ICRA is receiving more requests than it can handle to provide tailor-made capacity development services. The demand is for services at lower cost, reaching more participants, delivered in-country rather than in Europe, demanding less time, and allowing a more flexible combination of learning modules, action learning in the field and on-going professional activities. ICRA is also regularly asked to help integrate the building of ARD competencies into university curricula. Requests come from national R&D organizations and universities in the South, international organizations and European R&D institutions collaborating with Southern partners.In response to this growing demand for its services, since 2003, ICRA has adopted a global partnership strategy that substantially changes its mode of operation and moves its center of gravity south. Core elements of this strategy are that ICRA responds to requests if the requested services are embedded in a national institutional change process and can be delivered in partnership with other organizations in the South, preferably involving ICRA alumni.ICRA strongly believes that developing ARD capacity needs to be embedded in an institutional change process aimed at enhancing the relevance, effectiveness and efficiency of knowledge generation for rural innovation through collective action. In responding to requests for its services, ICRA therefore first stimulates the requesting organization and other main actors to form a national innovation partnership. Members include R&D institutes, ministries and public development organizations, farmer and private sector bodies, and educational institutions. ICRA stimulates these partnerships to develop a national vision and plan to (i) institutionalize collective approaches to rural innovation and (ii) realize the required capacity development and institutional change. These processes are greatly facilitated by deploying regional ICRA representatives in the requesting countries.Delivering local capacity-building services in partnership with Southern organizations often requires an initial investment in strengthening the capacity of these partners and their staff to provide such services. ICRA's capacity-building programs delivered from Wageningen and Montpellier have therefore been redesigned to strengthen the competencies of national ARD capacity-strengthening teams from the requesting countries, with members nominated by the national innovation partnerships. This involves more than simply training trainers, as building ARD capacity not only requires competent facilitators of action learning processes, but also knowledgeable actors in rural innovation systems who, jointly with the facilitators, can create opportunities for the learners to engage in multi-actor innovation processes.Over the last 3 years, ICRA and national and international partners have experimented with this new strategy, which is in different phases of development in Armenia, Benin, Cuba, Ghana, Kenya, Mali, Mexico, Nicaragua, South Africa, Uganda and Venezuela. As the strategy envisages long-term institutional change processes, it is too early to determine impact. Nevertheless some preliminary observations can be made.Firstly, this strategy of promoting long-term partnerships aimed at system-wide institutional change has to be based, at least initially, on short-term funding for components of this change process that meet the immediate needs of the requesting organizations, who tend to think of themselves in the beginning as clients demanding a service from a provider. Raising awareness that new approaches to learning are potential instruments of institutional change requires demonstrating their success, which in turn requires time and resources to gain the necessary experience.Secondly, the varied experiences in the countries mentioned above are new for all national and international partners involved and thus offer rich opportunities for balanced, two-way interactive learning between North and South and South and South.Thirdly, the strategy has helped ICRA to considerably broaden and strengthen its partnerships with organizations in both North and South. Being a small player with big ambitions, ICRA has sought and found a role in broad international initiatives such as the Sub-Sahara Africa Challenge Program, which involves collaboration with the International Institute of Tropical Agriculture and CIAT. ICRA actively networks these various initiatives, which often pursue complementary objectives that fit very well into the ICRA strategy and operate in the same countries and with the same partners. In this way, important synergies are achieved.Several of these initiatives involve collaboration between ICRA and CGIAR Centers. Apart from the Sub-Sahara Africa Challenge Program, these include a project with CIAT to develop an e-learning program on managing collective rural innovation processes and joint fieldwork with the International Plant Genetic Resources Institute (IPGRI) in in-situ conservation projects, which resulted in an ICRA-IPGRI proposal to build capacity in multi-stakeholder management and the use of agro-biodiversity for improved rural livelihoods. As mentioned above, ICRA had close links with ISNAR.The new strategy is obviously risky, as its objectives are highly ambitious in terms of using capacity development as an instrument of institutional change. ICRA is a small player and therefore controls few of the factors that contribute to impact and success. Much will depend on ICRA's ability to achieve synergy by networking different initiatives and engaging in broad partnerships with larger players and to continue to demonstrate the added value of its unique contribution to these partnerships and initiatives. In the future, ICRA will need to strengthen its recognized role as a catalyst in bringing diverse partners together and promoting their continued mobilization for collective long-term interests against their tendency to emphasize more immediate short-term individual interests. Although, through its partners, ICRA has been successful in obtaining funding to deliver specific services, it will need to find new sources of core funding for this essential catalytic role, for which no individual partner will be willing to pay, especially in the beginning. Bringing partners together requires a substantial investment of core funds up front, mainly to finance the nurturing role of ICRA regional representatives. An increase in core donor funding for ICRA would greatly help to overcome these constraints.ICRA is just beginning its transition from an organization that offers learning programs to one that promotes partnerships for capacity development and institutional change. Through its support for local in-service capacity-development programs and changes in education programs, ICRA's role will further evolve and diversify through inter-institutional learning. ICRA will need more and more diverse staff but will want to remain small enough to keep its flexibility and flat management structure. With growing experience, ICRA will be well equipped in the future to promote mutual learning in partnerships across different countries, regions and continents in the North and South, and across language barriers.","tokenCount":"7752"} \ No newline at end of file diff --git a/data/part_3/1505519336.json b/data/part_3/1505519336.json new file mode 100644 index 0000000000000000000000000000000000000000..42bb04bf0d3aed100ecf81a852dddcbcc8c0e76b --- /dev/null +++ b/data/part_3/1505519336.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"2a8c8dd92358f6865f55f2bef105b830","source":"gardian_index","url":"https://publications.iwmi.org/pdf/H006311.pdf","id":"-1479514923"},"keywords":[],"sieverID":"c976d0c6-e17a-4e39-bd3c-484649fdf773","pagecount":"17","content":"This paper gives a concise overview of the findings of seven recent international meetings on irrigation in sub-Saharan Africa. Their proceedings and publications are listed in the bibliography. Given the widespread decline in per capita food production in Africa, all the meetings unanimously assigned important roles to irrigation developmentl. However, they all stressed the need to learn from past failures. The common objective of these meetings was to identify various features of irrigation development and irrigation technology that are likely to be most appropriate to regional needs in the future. Most of the discussions contained the message that irrigation schemes should be regarded as socio-technical systems where neither social nor technical aspects can take automatic priority. Furthermore, efforts were made to identify the key areas of interface between both domains. This paper also summarises some implications for irrigation design that resulted from these meetings. In all these meetings there seemed to be a consensus on some of the major drawbacks of irrigation projects and the future challenges they face.It was repeatedly stated that the process of systematic irrigation planning and policy formulation has not yet started in many sub Saharan countries. Irrigation planning requires knowledge on numerous physical, economic and social variables and on their interrelations. It also requires that priorities be set for national and community objectives which change in time, and this makes it essential to have feedback to policy and planning levels. A need was identified for clear objectives, clearly formulated agricultural policies framed in the national and regional context, the development of project-planning and implementation capacity, and training and research addressing both the physical and the social conditions for development.Supportive and complementary actions from international donors are needed to contribute to project sustainability, for example, by technical assistance in training, and with management and administration of irrigation development activities, long -term financial commitments and short term acceptance of recurrent cost deficits. The local, national and international information base needs improvement from a systematic feedback from past experiences.These issues should influence the broad strategies for irrigation development. 'Modern' capital-intensive irrigation within Africa is seen as the least cost effective option. Furthermore, it creates a series of potential con f1icts of interest between users and irrigation agencies. For countries without substantial irrigation experience it seems more remunerative to learn from small-scale developments. However, small-scale development does not guarantee better performance than large-scale, if similarly conceptualised.Irrigation should be based on a concept that initiates a development process rather than that plans a development action. Moreover, in the documents studied there is a general agreement about the need to include more than a one-sided consideration of the Economic Internal Rate of Return 2 in irrigation planning by giving greater weight to human and social advantages or disadvantages of specific options.The above clearly indicates the need for approaches to irrigation design that take different socio-econom ic and socio-political factors into consideration. What remains unaddressed in the reports under review is the fact that the objectives of national governments and donors often prevail over those of future users in irrigation planning. Therefore, external biases characterise the role that designers often unintentionally and almost always unwittingly play.2 As an initiator of the discllssion on the role of the EIRR, I have been surprised by the way the debate has developed in the irrigation community in Africa. The research upon which my papers were based showed that it is extremely important for the sllstainability of irrigatioll schemes that designers satisfy themselves first on the sOllndness of their financial analYSis. By this is meant first that the scheme mllst provide milch more attractive incomes to farmers, in cash and ill kind, than their present or alternative occupations, to reward them for the extra work irrigation entails, and that there mllst be an assurance of regular financial resources at the scheme level if the maintenance of the scheme is to be guaranteed. Only if these two financial analysis are positive, will there be an economic benefit at the national level, which is what the EIRR measures. My argument was that the financial analysis must be regarded as the first test of a project's viability; only if this could be assured was it worth proceeding to an estimate of the EIRR. It is also true that unless the farmers find the scheme fillanciaU y attractive, and unless some organisation has.the resources to operate and maintain it, there wi/lnot be any social benefits, sllch as increased security of food supplies, less migration to towns, etc, becallse the scheme will collapse or perform badly. It has been pointed out that in some village schemes ill Sahelian cOlintries (and probably elsewhere) the costs of irrigation are provided by the remittances of migrant workers, while the scheme exists to provide food for their families. Such family separation is hardly an ideal social silllatioll, although it may be the best solution cllrrently available to the problem of rural poverty.Most forums agreed that irrigation development may disrupt the family economy by imposing rapid transformation of subsistence farming into competitive commercial' farming 3 , rather than innovations in or im provements of pre -existing acti vities. Also, irrigation schemes that impose uniform production patterns on many farmers may be unpopular.The newly introduced component to the local farming system should be brought into balance with other food-producing and cash-earning activities, in a com bination attracti ve to farmers and acceptable to other actors. For instance, if rain fed farming increases, the productivity of irrigated plots sometimes drops. This underlines the sym biosis between rainfed and irrigated agriculture. Many farmers prefer combining these types of agriculture rather than depcnding solely on irrigated production. Therefore, irrigated agriculture should not compete for pre existing resources (land, labour, capital and water) beyond the extent acceptable to farmers. For example, farmer preferences and irrigation project pre-suppositions frequently diverge in regard to the labour input required by irrigation. For farmers, labour shortages are important. There may be wide variations between households, but at peak periods labour supply emerges as a key constraint because of the marked seasonality in African farming. Overstretching labour and other resources should be prevented by taking account of the com plementarity that exists among producti ve activities.Access to land is another example of why plans should be based on an in-depth farming systems analysis and consultations with farming families. By wishing to impose crop choices, cultivation techniques and timing of operations, governments cause those tilling the land to become more like tenants rather than landowners.Leases allow project authorities to control the production process, because these authorities have the power to remove a person's tenancy rights. However, conditional tenancy diminishes the farmer's commitment to modern irrigation.Furthermore, customary laws are still very much in operation.It seems appropriate that irrigation planning should take these traditional arrangements for the management of land -use into account, particularly to avoid conflicts between different groups of people.In general, all the documents reviewed underline that for better irrigation performance one has to get to the roots of the social, organisational and motivational aspects from a farmer's perspective. A first requisite in this respect is to know how male and female farmers choose, combine, manage and rank the various activities they engage in.The complementarity of different activities has implications for irrigation design: plot sizes and land allocation principles should enable households of different size and composition, and changes over time to be accommodated; plot sizes should only be chosen after farmers' budgets have been financially appraised. The plot size should guarantee an acceptable income without eliminating other important productive activities (even if this means modifying the size to allow for a small supplementary activity); low cost irrigation systems or methods that can give acceptable returns when used only for supplementary watering of traditional crops should be identi fied; land -use systems that integrate crop production and livestock rearing should not be ignored;anything that can make a system more reliable, robust and simple should be adopted, to minimise requirements for farm labour; the design should anticipate irregular periods of absence of the farmers, otherwise it may prove to be inappropriate in real-life conditions; designers should search for design options that can reduce the labour demands bf the operation of an lrngation scheme without increasing the capital intensi veness of production.Apart from advising that location where land and water rights arc already contested should be ignored, the documents reviewed contained no recommendations that designs should take land tenurelland rights into account 4 . Furthermore, resources like water, cash, agricultural equipment and knowledge were barely discussed, if at all.There is general awareness that irrigation management has been weak in many African farmer-managed and agency-managed schemes.In the African setting three areas have proven problematic in farmer management time and time again; achieving corporate identification and accountability on a non-kinship basis, managing money, and managing equipment shared between more than one operator. Unfortunately, irrigation projects require fairly high levels of proficiency in all three domains. However, many have observed that outsider-staffed scheme management does not necessarily promote development, due to the lack of government funds and an ineffective and top-heavy bureaucracy. Therefore, discussions on institutional constraints generally come down to the recognition of the need to delegate scheme management to water users' associations as much as possible.As regards the three problematic domains mentioned above, water users' associations should preferably be formed on the basis of traditional forms of cooperation. Organisations of people involved in irrigation systems arc not implemented in a social vacuum. Therefore, preparatory studies should devote time and energy to finding and assessing what form of organisation will fit in the existing local socio-political network, given the prevailing traditional forms of cooperation and mutual aid. Knowledge of local community structure and of village or clan leadership relationships is necessary for this aspect of institution -building.Existing local organisational structures should be modified as little as possible, while at the same time ensuring that the project revenues be recognisably fair to all, with safeguards to prevent progressi ve loss of economic and political power by the relatively poor in favour of the relatively wealthy.The design implications for irrigation design most often made is that schemes should be laid out as a series of modules, each of which is capable of operating semi-independently and which is adjusted in size according to the number of irrigators in a group. The optimal group size mainly depends on the degree of social cohesion in the local comm unity. Furthermore: designs should be such that they can realistically be maintained by local irrigators and, if necessary, can operate reasonably well even under sub-optimal mai nte nance; designs should allocate/distribute water in such a way that is locally perceived to be equitable. For example, di vision of water in fixed proportions, irrespective of its availability;design and construction methods have to be better adapted to local capacity for operation and maintenance, for example by requiring minimal adjustment during the cropping season.Women and Irrigated AgricultureStatistics suggest that women provide two-thirds of all working hours invested in African agriculture. However, the factors that matter to women -legal security, access to credit, to land, to water, to labour available for productive activities, and a share in profits -tend to be ignored in irrigation planning. It was agreed that it is incorrect to assume without investigation that the farming family is a homogenous unit, with a single purse, and with freely interchangeable or free family labour. A false assumption can contribute to the phenomenon of women 'losing out' in the transition from traditional to modern forms of agricultural production. Especially when projects seek to commercialise what was originally subsistence food production, women risk ending up with the best land, that they formerly used, passing into the hands of men, and they themselves being left with marginal areas or working as labourers on men's crops. The development of irrigation may have a differential impact on the various categories of women within a community, depending on the traditional socio economic status of their families, and within one family (age, marital status)5.All the documents reviewed mention that balance should be rectified and more attention should be given to women's needs, problems and potential, which for cultural, religious and economic reasons may be different from men's and less visible.The various meetings concurred that in addition to a sensitivity to women's issues, irrigation design also requires knowledge of the existing social structure in the project area and an alertness to the processes that may arise as a result of development measures. Some general recommendations are to identify target groups by gender, to collect data on the socio-economic organisation of farming, giving special attention to the gender-based divisions of labour and responsibilities, to assess the likely impact on men and on women both inside and outside the irrigation scheme, and to make specific 5 The documents perhaps put insufficient emphasis on the way the rights, role and wishes of women may vary between COUlltries and within countries, according to local social alld cilitural cOllditions.plans to ensure that both men and women are given access to land and water, equipment and services 6 .Only a few recommendations directly concern irrigation design. For example irrigation can alleviate women's workload by incorporating facilities for non-agricultural use of water. The location and size of the household plots should be carefully considered, and forage options and livestock movements maintained.Irrigation is highly sensitive to external factors. The level and nature of food demand, countries' economic situation, actions of financing agencies, popUlation growth, increase in rate of urbanisation all encourage the demand for irrigation. Other factors impede it (deterioration in earnings of foreign exchange, reduction of external aid).More direct influences on the performance of irrigation relate are those linking irrigation with the region and the nation. For example, if the output delivery system, comprising roads, rivers, railways, transport, power supply, spare parts, maintenance and competent operation, is defective, farmers are unable to respond to signals emanating from the market place. Inadequacy in the input delivery system can also be a constraint. The provision of inputs has proved difficult for some governments to arrange, especially where irrigation has become very sophisticated and external inputs of credit, seed, fertilizers, pesticides, pump and tractor fucl, spare parts, and mechanical maintenance are needed. Project strategies based on introducing intensive, modern techniques are even more vulnerable in small-scale projects, since their smallness and scattered ness brings them more problems in securing inputs, services and timely technical advice than their larger-scale equivalents.6 Olle has to note, however, that this may cOllflict with the recommendati01l Oil page 10 that desig1ls should respect what is locally perceived as equitable.The same applies to extension and traInIng services. Il is often unquestioningly assumed that farmers will, spontaneously, become expert managers, accountants, and mechanics without adequate and sustaining training. Furthermore, as the success of small-scale irrigation has generally depended on the cooperation of a large range of government institulions and individuals, small schemes tend to have more budgetary and institutional problems than major schemes. Almost all the above mentioned services require capable and enterprising managers, who are currently likely to be extremely scarce.Most recommendations on this subject deal primarily with institutional and policy reform, developing training capacities, etc. Only a few recommendations deal with irrigalion design; for example, that irrigation schemes should rely on simple design of pumps and other items of small-scale equipment that can be manufactured locally. This is to avoid failure as a result of a technology that cannot be serviced ('orphan' equipment). Loan financing for infrastructural costs should also be avoided. Intensive preparatory work with farmers can often stimulate them to generate simple structures from their own resources. Projects should refrain from being involved in the operation and maintenance of irrigation infrastructure and re-designs are needed to simplify the management tasks.Furthermore, produclion practices that minimise cash costs (external inputs) and indebtedness should be promoted.The central questions, whose imporlance has now become clear, are how input supply, marketing, extension and external management are arranged, and to what extent this could/should be arranged by the state, the private sector or by the farmers themselves. The risks arising from the farmers' dependence on external factors beyond their control should be minimised as far as possible by modifying physical designs of irrigation schemes. Designers have made over-optimistic assumptions on the reliability with which external relations can be arranged.The Design ProcessThere is a need to distinguish between poor technical irrigation design and inappropriate 'system architecture'. By 'system architecture' is meant the imaginative piecing together of the various parts of an irrigation system by a multi-disciplinary group including local farmers. The major factors signalled as leading to poor irrigation performance as a result of inappropriate designs are: Time pressure caused, for example, by unrealistic timetables for implementation; technical assistance units' overriding impulse to show immediate results; governments and donors wishing to minimise the duration of their involvement; and the disregard of the importance of incorporating elementary socio-economic conditions, creating a tendency to move to action before the situation warrants. Time pressure impedes the participation of the beneficiaries in the preparation of project proposals and design.Poor preparatory studies caused, for example, by feasibility studies conducted under pressure to produce high EIRRs; poor communication between researchers of different disciplines; and shortcomings of survey procedures.A feasibility study should include an assessment of the sustainability of the project, in which constraints at farm level and farmers' priorities primarily dictate the content of the applied research, and not only economic criteria. The study should ultimately lead to sound criteria for the final design of the project.Premature decision -making: crucial decisions on Terms of References (TORs) and projects' scope, size and institutional form are made before the main feasibility study is undertaken and may preclude the best solutions. The TORs of consultants may require them to design a particular type of project as decided centrally, even if it appears not to be the best alternative given local objectives, resources and constraints.A communication gap between policy-makers, field officers and farmers. Some of the recommended modi fications in the design process are dealt with as follows.The project concept of fixed targets to be reached within a fixed time-span should be replaced by a phased development in which irrigation is extended or introduced only after it has been thoroughly tested in pilot schemes.The lalter is especially important in areas with little or no experience of irrigation. The advantages of phased development include'the ability to implement projects in stages, with the possibility of correcting problems with the initial design during implementation, the ability to spend much more time talking to local people before commitment is made to a final project design, and the lack of adequate institutional capacity for alternative, but very demanding approaches. The advantages of flexibility are likely to apply particularly to the development of small-scale irrigation. Beginning with moderately sized schemes allows for the programme to be fanned out satisfactorily as knowledge, experience and qualified local manpower become available.Dividing the project cycle into stages tackled by different specialists breaks the connection between design and its consequences. The persistence of many social and economic problems in African schemes is evidence that a sharp discontinuity between designers and implementors inhibits the accumulation of useful experience. Donors will need to allow for more flexible, organic, evolutionary pre-design study. This will reduce their ability to control the scheduling of project design and implementation, but will increase the continuity of staffing and institutionalise memory.It is generally recommended that the design process be reversed. Rather than begin with the design of the irrigation system based on what is technically and economically optimal, designers and planners should begin with the participants and institutions responsible for implementation. Only after the strengths and weaknesses of each of these have been identified and the structure of incentives clearly understood, should technical design begin. This process can then proceed in iterative fashion as governments and farmers decide which changes they arc willing and able to make. Thus, first and foremost, design considerations should centre around what is feasible and acceptable to government and farmers and what impact this will have on project performance.It is very difficult to ascertain just what is feasible in a particular context. Therefore, not only do project designers have to solicit the views of farmers and executing institutions, they also have to understand and appreciate what these are saying and what they mean. This is why the development of indigenous capacity for project design that includes meaningful participation by involved in the project, is of the utmost importance.From the above it may be concluded that irrigation projects need time, continuity and meaningful interaction between the actors involved to arrive at desirable change.As discussed in the foregoing sections, farmer participation is a prerequisite for the adequate management of irrigation schemes and for the establishment of an appropriate 'system architecture' in which the irrigation and production technologies harmonise with the experience and resources of farmers and their existing land use. The reports reviewed, moreover, recognize that the erosion of traditional knowledge and skills should be prevented, and that western agricultural knowledge not only has definite limitations but sometimes also has definite negative effects on the development of agriculture in tropical areas. Few reports, however, address the question of how local farmers can be actively and effectively involved in different stages of the project cycle.The concept of participation is frequently ignored (for example, for fear that it will delay the project completion) or is misinterpreted (being seen primarily as a way to reduce costs of operation and maintenance). As a result problems occur because users have not been consulted during the design phase. Others regard participaLion as a ruse used by outsiders to obtain information to use themselves, in order to diagnose problems for the farmers. This as opposed to the approach of trying to help the farmers to consider their situation and diagnose their own problems, to build up their ability to analyse their situation and to decide what further actions to take. It is the laller aspect that should be regarded as the essence of participation.Moreover, it has been recognised that the willingness of the intended beneficiaries to allocate land to irrigated agriculture, and also their participation in terms of finance and labour should be regarded as a precondition for any government involvement in development.Proposals should be presented, discussed and compromised on with farmers, and their support and commitment for the agreed project should be solicited. Negotiated designing is regarded as possible, particularly in rehabilitation, since farmers will have detailed knowledge of the faults in the existing system and some ideas of its potential should improvements be made.The environmental implications of irrigation development in Africa have been significant. The construction of reservoirs and canal systems for irrigation without adequate drainage, for example, has tended to lead to higher water tables in some regions and to create waterlogging and soil salinity. The introduction of perennial irrigation has also substantially increased the incidence of waler-borne diseases.Most of the international meetings reviewed here have recognised the importance of considering these environmental and health aspects of irrigation. The gravity of these topics merits separate attention, not merely passing reference.Blackie, M J (ed), 1984, African Regional Symposium on Small Holder Irrigation, University of Zimbabwe, Harare. ","tokenCount":"3857"} \ No newline at end of file diff --git a/data/part_3/1545119458.json b/data/part_3/1545119458.json new file mode 100644 index 0000000000000000000000000000000000000000..87d49130c9431bc4d1e3f3f840aa0bccf8ef3c29 --- /dev/null +++ b/data/part_3/1545119458.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"e1910771cb59334062d06998e9786be9","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/027cd8ce-82e0-48a6-8817-894dc0445b83/retrieve","id":"256391335"},"keywords":["Center for Tropical Agriculture","Tropical Forages Program 2International Center for Tropical Agriculture","Multifunctional landscapes"],"sieverID":"506fd1be-4d26-4014-bd78-9496d3bc7951","pagecount":"5","content":"y Sustainable cattle practices are essential for improving the livelihoods and environmental sustainability of small-scale cattle farmers. Intensive silvo-pastoral systems (SPSi) can contribute to this purpose since they are more productive and efficient, restoring soils and reducing greenhouse gas emissions.y Estimates show that SPSi significantly increase profitability. The rise in milk productivity, animal stocking rate, and wood sales generate higher income for the system. Likewise, management with organic fertilizers reduces production costs.y It is important to strengthen the dissemination of SPSi. Traditional systems, such as monocultures, are deeply rooted among small-scale producers. Therefore, successful cases should be promoted to build confidence in these new technologies.y The adoption of SPSi is an effective alternative to boost the economy in northern Peru. The study of a representative case at the regional level provides evidence to support this. In the most likely scenario, the net present value (NPV) significantly increased and the internal rate of return (IRR) was above 30%.In the regions of San Martín and Amazonas, cattle systems typically have an area of less than 10 hectares (ha) (Alegre et al., 2019;Pizarro et al., 2020). Regarding forage conditions, more than 70% of the secondary forests in the Peruvian Amazon are native grasslands with low productivity or improved but degraded grasses at various stages of recovery. This has resulted from poor technical management, inadequate stocking rates, and overgrazing (Alegre et al., 2017;Echevarría et al., 2019). Additionally, from an economic perspective, the cattle sector is relatively small compared to poultry industry, which in Peru contributes with 42.5% to the livestock sector's economic value, whereas beef and dairy cattle only contribute with 4 and 4.5%, respectively (MIDAGRI, 2023). Hence, there is growth potential for the sector. However, projects that focus on both economic and environmental sustainability are needed for this purpose. SPSi meet these criteria, since they are technologies that combine grasses, legumes, shrubs, and trees, allowing for the intensification of production and the mitigation of the environmental impact of cattle farming (Chará et al., 2018). This document presents the results of an economic evaluation for a SPSi in northern Peru. The comparison technology is a monoculture with Urochloa brizantha (syn. Brachiaria brizantha) cv. Marandú, predominant in the cattle production systems of the region. The promotion of SPSi is one of the strategic pillars of the Peru-Hub initiative, which is the result of a partnership between national and international research institutions.The analysis involved comparing the traditional productive system of the region against an SPSi with organic fertilization. Each experiment was conducted in an area of 2.5 hectares, with dual-purpose Girolando cattle, at the Universidad Nacional Agraria La Molina (UNALM) campus in Tarapoto, San Martín province, within the framework of the Peru-Hub project. The traditional system is a monoculture dual-purpose system with Urochloa brizantha cv. Marandú.This material has been widely disseminated in the American tropics, is resistant to spittlebug, performs well in soils with intermediate to high fertility, but does not respond well to waterlogging (Cook et al., 2020). In Peru, this grass has performed well and is the most widely used forage in this region of the country (Perulactea, 2015). The improved technology is an SPSi with Urochloa brizantha cv. Marandú, the legume Centrosema macrocarpum, the shrub Tithonia diversifolia, and timber trees. Centrosema macrocarpum has high nutritional value, tolerates drought well, and is resistant to the main diseases of Centrosema spp. (Cook et al., 2020).Perennial legumes fix nitrogen, contributing to productivity (Lagrange et al., 2021). Tithonia diversifolia (Sunflower tree) is a perennial or annual shrub with good nutritional value, which can grow between 2 to 5 meters in height (Cook et al., 2020). It adapts to different climates and soils and has a positive impact on animal productivity (Cook et al., 2020).Finally, a wide range of timber trees were included in the SPSi, including Cordia gerascanthus (8-15 years), Brosimum alicastrum (8 years), and Guazuma Crinita (5-8 years). It was assumed that the SPSi provides shade over 15% to 20% of the 2.5-hectare area through trees and shrubs, contributing to microclimatic regulation of the animals and thus, reducing heat stress.Final animal response data are not yet available. To address this, consultation with experts from the Universidad Nacional Agraria La Molina (UNALM) was conducted, and appropriate productive assumptions were established. It is assumed that compared to the traditional technology, the animal stocking rate (SR) increases from 1 to 2 or 3 Livestock Units (LU) per hectare with the SPSi. On the other hand, milk productivity (MP) would increase from 5 l/day/cow to 6.5 l/ day/cow. Finally, the weaned calf selling frequency would decrease from 2 to 1 year.We used a discounted cash flow model, which consolidates the net benefit per period. With this, four profitability indicators were calculated: Net Present Value (NPV), Internal Rate of Return (IRR), benefit-cost ratio (BC), and payback period (PP). A positive NPV and an IRR greater than the discount rate indicate profitability. Subsequently, the indicators of the evaluated technologies were analyzed and compared to determine which is the best. The analysis continued with a probabilistic approach using Monte Carlo simulation with the software @ Risk, providing more robust estimates of NPV, probabilities of economic loss, and a sensitivity analysis. It also helps identify which variables have a greater impact on profitability. The modeling was applied for the traditional approach and three silvo-pastoral scenarios: pessimistic (SPSiP), moderate (SPSiM), and optimistic (SPSiO). These scenarios were obtained by modifying the values of relevant parameters, as shown in Table 1.Data on investments, costs, and market prices were available to feed the model. Both the traditional monoculture and the SPSi do not incur renewal costs. The analysis period was set from 2023 to 2030 (8 years), with a discount rate of 8%. Only the SPSi uses organic fertilizers. The beef price was estimated at US$1.96/kg, and the milk price at US$0.34/l. The exchange rate used was 3.83 Soles per US$, corresponding to the average of 2022.Stocking rate LU/2.5 ha According to Table 2, all evaluated technologies are profitable.They have a positive NPV and an IRR higher than the discount rate (8%). However, the results for SPSi were better. For instance, the IRR is significantly higher in the pessimistic (24.81%), moderate (29.31%), and optimistic (31.61%) scenarios compared to the traditional system (9.69%). The BC ratio increases from 1.06 to values between 1.46 and 1.60. Finally, the PP of the investment decreases from 7 years and 10 months to a range between 4 and 5 years in the SPSi.Moving on to the probabilistic component, Figure 1 presents the probability distributions for the NPV. The traditional scenario (in red) shows profitability with no probability of economic loss. This is not surprising, as the monoculture system with cv. Marandú performs well in the region, becoming the most widely used forage (Perulactea, 2015). In all SPSi scenarios, the probability distributions of NPV shift to the right, making the increase in economic benefit evident. The average NPV grows from US$580 in the traditional scenario to US$13,213 in the moderate SPSi scenario.Regarding the sensitivity analysis, Figure 2 shows the variables with the greatest influence on the NPV or profitability for both the traditional and SPSiM scenarios. The other scenarios follow similar trends. It can be observed that milk productivity (MP) explains 73.2% and 65.9% of the profitability, while the animal stocking rate (SR) explains 26.8% and 34.1% in these two scenarios. Therefore, improvement in these productive parameters will contribute to increasing profitability. The Amazon region of Peru has been affected by extensive cattle practices. In response to this, SPSi, with the combination of various species, provide the opportunity to boost productivity, efficiency, and environmental sustainability in cattle farming systems. While the traditional monoculture system is profitable, the results of SPSi are significantly better.Effectively disseminating these findings is crucial to encourage the adoption of the new technology in the region. In the regional context, producers do not have influence over prices. Therefore, the sensitivity analysis highlighted milk productivity and animal stocking rate as the determinants of profitability.","tokenCount":"1322"} \ No newline at end of file diff --git a/data/part_3/1551203467.json b/data/part_3/1551203467.json new file mode 100644 index 0000000000000000000000000000000000000000..f87f5c43da6fd3fe23eaf3b46e4546eda2534e47 --- /dev/null +++ b/data/part_3/1551203467.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c46cc88cc11b915ce97ae91ef6eefa8b","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/b80ef746-d917-4314-999a-5726deddba06/retrieve","id":"-913876842"},"keywords":[],"sieverID":"41b68de4-4d07-44f6-9e99-b9abd650caf5","pagecount":"2","content":"It was planned to do a sector analysis and cost benefit analysis for forage pellet production in Kenya. Both analyses have been cancelled due to negative results while the assessments for the studies by Uwe Ohmstedt and discussions with feed producers and Udo Ruediger (ICARDA).The idea of pellet making out of forages in Kenya was born while a visit of Uwe Ohmstedt to Zambia, where a local company was experimenting with pellet production based on mixture of fresh Brachiaria and cereal bran. This seemed to me being an interesting alternative to the 'usual' conservation methods like hay making or ensiling of forage. Especially compared to hay, pellets are less bulky, easier to store, to transport and the rationing in feeding more precise.Consequently, it was decided to give it a try and test it under conditions in Kenya and to see if it could become a business idea for investors or farmers.While assessing the possibilities for pellet making, we found out that the challenge is hidden in the detail: Pelletisers seem to be a niche product and we found out that there is only one company in Nairobi offering this type of machine. The machines offered have a low capacity, to narrow mesh openings as they are designed for poultry feed and only the smaller model was working on 220 V. The bigger machine with a slightly higher capacity already needed 380 V, which is normally not available in the county side. Another challenge is the high power consumption of the pelletisers, which would make the pellets extremely expensive.As a preparatory step, the forages have to be pulverised to small particles. The pulveriser is another heavy investment to the 'pellet producer' and an energy consumer. Once pulverized the material has to be mixed with bran, which serves as a 'glue' and additive to the forage. As the mixture of pulverized forage and bran has always to be of homogeneous consistence a mixer (e.g. a concrete mixer should be used, which is another investment.Taking in consideration the investment in the three machines and their energy consumption, we do not see that small-scale pellet production can be economic viable, especially as the capacity of the machines are modest.This judgement was supported by ICARDA's experience. They build a bigger prototype but finally did not find interested entrepreneurs who are interested to invest in the business.Talks with a professional feed producer also did not show positive results. The challenge they see is the limited steady availability of the raw material and the permanent same quality of it. Forage quality depends on many factors, as soil quality, fertilisation status, harvest time and short transport distances to the factory. Their experiences show that it is impossible to get the raw material of a permanent same quality to produce a homogeneous product around the year, as it is required by their customers. Consequently, they produce feed out of other ingredients.Taking all that in consideration we decided not to pursuit the forage pellet idea any longer.","tokenCount":"497"} \ No newline at end of file diff --git a/data/part_3/1553836994.json b/data/part_3/1553836994.json new file mode 100644 index 0000000000000000000000000000000000000000..1eac20f8884118124e4e2f9e9c6f45ed6a748d1c --- /dev/null +++ b/data/part_3/1553836994.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"1bb26a2761e2578b2a89db03a1333810","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/fa36540e-30e2-40cc-9d8d-90385e5398cf/retrieve","id":"-1323042010"},"keywords":[],"sieverID":"8900ed5d-03ef-4c14-849c-452b8bd177b2","pagecount":"16","content":"• The most important food crop in the developing world and a staple food for more than half of the population in the world. • Worldwide, more than 3.5 billion people depend on rice for more than 20% of their daily calorie intake. • An additional 116 million tons of rice will be needed by 2035 to feed growing populations. • Rice consumption is growing faster than any other commodity in Africa, because it is seen as a convenience food by the growing urban population.• How would be rice in LAC in a >2⁰ C world with higher CO 2 levels?Ensure calorie intake for the world rural and urban communities, with a healthier, abundant and nutritious rice with sustainable and climate friendly practices. Contributing to a decent work and economic growth through the reinforcement of rice value chain in Latin America.We are a multidisciplinary team aligned to:How we do it ?We improve rice to deliver safe, healthy and highly productive germplasm to farmers eco-friendly production systems adapted to climate change.We create and deliver solutions through the collaboration and support of people and organizations more sustainable and competitive rice value chain.We develop innovative solutions for precision agriculture and high throughput phenotyping accurate selection in the breeding process.We develop methods and technologies that allow us to study market dynamics, consumer preferences and predict climate change variability rice crop adaptation to a changing world. ","tokenCount":"231"} \ No newline at end of file diff --git a/data/part_3/1555275282.json b/data/part_3/1555275282.json new file mode 100644 index 0000000000000000000000000000000000000000..5d550172233b646ca40e10662526b6b5d77290a7 --- /dev/null +++ b/data/part_3/1555275282.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"1820632703d1df4b52849f4ca9cdbaad","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/71cc2a01-ed84-49a9-ab9e-3be52fc22680/content","id":"567120254"},"keywords":["Triticum aestivum L.","glutenin variants","quality of the dough"],"sieverID":"e4ca4669-fa37-4143-ab06-3070ef62b4b7","pagecount":"8","content":"The influence of allelic variants of HMWG and LMWG on viscoelastic properties of dough was evaluated in parents and 98 recombinant lines derived from the crosses Rebeca F2000 × Verano S91 and Galvez M87 × Bacanora T88. Genotypes were grown at Roque, Guanajuato during the Spring-Summer of 2008. Studied traits were mixing time, mixing stability and over-mixing tolerance, general strength of the dough and tenacity/extensibility ratio. HMWG alleles 1, 2*, 17 + 18 and 5 + 10 favored the quality of the dough and variants 2 + 12 and 7 + 9 were associated with low levels of gluten strength. A 7 + 9 allele was associated with genotypes prone to form tenacious dough. Alleles Glu-A3c, Glu-A3e, Glu-B3g and Glu-B3h from the cross Rebeca F2000 × Verano S91 affected positively the quality of gluten, while allelic variants Glu-A3b, Glu-B3h and Glu-D3c in the cross Galvez M87 × Bacanora T88 were associated with higher quality standards and its counterparts Glu-A3c, Glu-B3j and Glu-D3b were associated to lower quality parameters. Results also shown interaction among loci, hence breeders need to be aware not only of the effect of individual alleles but also its interaction.In Mexico, bread wheat (Triticum aestivum L.) is classified on the basis of strength and extensibility of gluten into Group 1, strong and extensible gluten, with W values larger than 300 × 10 -4 J and P/L < 1, Group 2, medium-strong and extensible gluten, with values of W between 200 and 300 × 10 -4 J and P/L < 1; Group 3, weak and extensible gluten, with values of W less than 200 × 10 -4 J and P/L < 1 and Group 4; tough gluten with little stretch P/L > 1.2.The viscoelastic properties (strength and extensibility) of gluten, define the quality of the dough and their manufacture for bread, biscuits and pastries. In turn, the gluten strength and extensibility depends on the presence of specific alleles of gliadin and glutenin, high and low molecular weight (HMWG and LMWG) (Flaete et al. 2003;He et al. 2005 andCornish et al. 2006) and its interactions (Eagles et al. 2002;Békés et al. 2006 andCornish et al. 2001).The individual and combined effect of HMWG (complex Glu-1) in Mexican bread wheat has been distinguished mainly for promoting the strength of the dough (De la O et al. 2006;Martinez-Cruz et al. 2007a;Espitia et al. 2008). On the other hand, LMWG (complex Glu-3) mainly affect the extensibility of gluten (Liu et al. 2005). It has been found in Mexican wheats that allelic variations of the Gli-1/Glu3 linkage complex (controlling gliadins and w-LMWG, respectively) affect the strength and extensibility of the dough, depending on the presence of HMWG (Martinez et al. 2007b). However, there are no studies aimed to define the individual effect of LMWG as they are controlled by allelic variants of the Glu-3 complex, comprising loci Glu-A3, Glu-B3 and Glu-D3; thus, the aim of this study was to identify the effect of the alleles that code for HMWG and LMWG in lines derived from crosses Rebeca F2000 × Verano S91 and Galvez M87 × Bacanora T88.Progenitors were evaluated along with 98 F 6 lines obtained by single seed descent from crosses Rebeca F2000 × Verano S91 and Galvez M87 × Bacanora T88. The progenitors have alleles as shown in Table 1. Recombinant lines from the Rebeca F2000 × Verano S91 cross made it possible to comparatively study the effects of allelic variants 1 vs. 2* (Glu-A1), 5 +10 vs. 2 +12 (Glu-D1), c vs. e (Glu-A3) and g vs. h (Glu-B3) on rheological traits, while lines derived from Galvez M87 × Bacanora T88 allowed to contrast the effects of allele 1 vs. 2* (Glu-A1), 17 +18 vs. 7 +9 (Glu-B1), b vs. c (Glu-A3), h vs. j (Glu-B3) and c vs. b (Glu-D3). Genotypes were grown at Roque, Guanajuato, Mexico during the 2008 Spring-Summer cycle under a randomized complete blocks experimental design with two replications. The experimental unit consisted of four 3-m long rows spaced 30 cm from each other.The mixing time (MT), mixing stability (MS) and over-mixing tolerance (OMT) were determined in 35 g of refined flour at the Mixograph using the 54-40A Method (AACC ). High values of mixing time and stability and low values of over-mixing tolerance are associated to increased dough strength. The general strength properties (W) and the dough tenacity/extensibility ratio (P/L) were calculated out of an alveogram, using 50 g of refined flour in the Alveograph by applying the 54-30A Method (AACC 2005). Electrophoretic analysis of allelic variants was performed using the Peña et al. (2004) protocol.Identification of HMWG and LMWG variants in the lines was conducted at the Wheat Industrial Quality Laboratory at the International Maize and Wheat Improvement Center (CIMMYT). HMWG loci (Glu-A1, Glu-B1 and Glu-D1) were identified based on the nomenclature proposed by Payne and Lawrence (1983) and LMWG loci (Glu-A3 and Glu-B3) according to Singh et al. (1991); Jackson et al. (1996) and Branlard et al. (2003).For the Glu-D3 locus the nomenclature proposed by Branlard et al. (2003) was used.One-way analyses of variance were performed for each of the crosses, including all the evaluated variables. The genotypes source of variation was grouped and an additional analysis of variance was performed in order to calculate mean squares for loci combinations and each specific locus. Means comparison was also performed by using the Tukey test (P £ 0.05) through the GLM procedure of SAS (SAS Institute 2002) to determine differences between loci.Table 2 presents the mean squares of the analysis of variance by genotypes, loci combinations of HMWG and LMWG, and by locus, Glu-A1, Glu-D1, Glu-A3 and Glu-B3 in relation to the quality traits of lines derived from the Rebeca F2000 × Verano S91 cross. Highly significant differences were found for all the traits in relation to genotypes, combinations and the Glu-D1 and Glu-A3 loci. For the Glu-A1 locus significant differences were observed only for tenacity-extensibility ratio (P/L), whereas for the Glu-B3 locus no significant differences were detected for mixing time, overall strength of the dough and P/L. Results indicate that in the Rebeca F2000 × Verano S91 cross, the progeny shows different patterns of dough viscoelastic traits, which is related to the different loci combinations of HMWG and LMWG, mainly due to allelic variation at loci Glu-D1, Glu-A3 and its interactions.In the comparative analysis of alleles 1 and 2* of the Glu-A1 locus on quality traits, no differential influence was observed at the P/L ratio. In contrast, allele 1 is associated to higher levels of MT, MS and W, and at the same time to lower levels of OMT (Table 3). By comparing variants of the Glu-A3 locus, it is clear that the Glu-A3c allele was associated with higher values of MT, MS and W, in comparison with Glu-A3e. Additionally, Glu-A3c showed lower average of OMT than allele Glu-A3e (Table 4). Both allelic variants, Glu-A3c and Glu-A3e, are related with dough extensibility as indicated by their values of P/L lower than 1.0 (Table 4). Alleles Glu-B3g and Glu-B3h alleles were associated with strong and extensible gluten wheat (Table 4).Table 5 shows the mean squares of the analysis of variance by genotypes, HMWG and LMWG loci combinations and by locus (Glu-A1, Glu-B1, Glu-A3, Glu-B3 and Glu-D3), for the quality variables of those lines derived from the Galvez M87 × Bacanora T88 cross. Highly significant differences were detected for all the studied traits for genotypes, combinations of glutenins and loci. No significant differences for MS and OMT were detected between allelic variants of the Glu-A1, whereas highly significant differences were found for MT, W and P/L.Alleles 1 and 2*, averaged over the whole group of lines of the cross Galvez M87 × Bacanora T88, showed similar values for all the traits, which correspond to wheat that produces medium strong and extensible dough (Table 6), even though allele 1 was statistically associated to greater strength (W) and extensibility (lower P/L) of gluten than 2*. Allele 17 + 18 showed higher values MT, MS and W as well as a smaller value of P/L than the 7 + 9 allele, indicating that in this population the presence of HMWG 17 + 18 is more favorable than 7 + 9 in terms of strength and extensibility.In regard to the Glu-A3 locus, both allelic variants, Glu-A3b and Glu-A3c showed somewhat similar values for some traits corresponding to medium strong and extensible gluten (Table 7), but the Glu-A3b allele had values significantly higher than Glu-A3c for MT, MS and W. In the Glu-B3 locus, the genotypes containing allele Glu-B3h showed higher values of gluten strength and were associated to better extensibility than the contrasting Glu-B3j allele (Table 7). Glu-B3j conferred low levels of gluten strength, corresponding to weak-middle gluten, and limited extensibility. The variant Glu-D3c, from the Glu-D3 locus was associated to strong and extensible gluten (Table 7).In the Rebeca F2000 × Verano S91 cross, results on the influence of alleles at the Glu-A1 locus in this study are in line with those of He et al. (2005) and Espitia-Rangel et al. ( 2008) who reported that allele 1 favors the viscoelastic properties of the dough and contradicts the assertion of Martínez-Cruz et al. (2007a), who reported similar effects in both variants.In the Glu-D1 locus, allele 5 + 10 was associated with higher values of dough strength than 2 + 12 (Table 3). This is in agreement with reports of several researchers (Luo et al. 2001;Peña et al. 2004;He et al. 2005;De la O et al. 2006;Nishio et al. 2007;Espitia-Rangel et al. 2008), who associated subunits 5 + 10 and 2 + 12 with high and low values of gluten strength, respectively. In the case of LMW glutenins coded by locus Glu-A3, alleles Glu-A3c and Glu-A3e are typical of strong and medium-strong gluten wheats, respectively, which agrees with other reports on these alleles (Branlard et al. 2001;Luo et al. 2001;Flaete et al. 2003;Liu et al. 2005;Cornish et al. 2006). Alleles Glu-B3g and Glu-B3h were associated with strong and extensible gluten, which is in agreement with reports of Wesley et al. (2001); Peña et al. (2004) and Meng et al. (2007) who recommended those alleles for improving strength of the dough.In the cross Galvez M87 × Bacanora T88, our results on the Glu-B1 locus agree with those of Branlard et al. (2001) and Martínez et al. (2007b), who found that allele 17+18 positively contributes to the strength and extensibility of gluten; however, contrary to our observations at the Glu-D3 locus, Cornish et al. (2001) and Meng et al. (2007) found that alleles Glu-D3c and Glu-D3a are not significantly correlated with the quality of the dough. In regard to the Glu-A3 locus, our data are in agreement with the findings of Branlard et al. (2001), who noted that both alleles (Glu-A3b and Glu-A3c) contribute positively to the quality of the dough. Our results are opposite to what was observed by Branlard et al. (2001) and Gobaa et al. (2008) since they observed no association of the Glu-D3c allele to a strong and extensible gluten. On the other hand, in our study allele Glu-D3b showed characteristic values of medium strong and extensible gluten, which is consistent with the findings of Branlard et al. (2001), but not with that of Gobaa et al. (2008) who associated it to weak gluten. Furthermore, Luo et al. (2001) found similar values of mixing time, while Meng et al. (2007) reported that the allele Glu-D3c was not significantly correlated to sedimentation volume, dough strength, tenacity and extensibility.In both Rebeca F2000 × Verano and Galvez M87 × Bacanora T88 crosses loci combinations resulted important for gluten strength and extensibility, these results are in accordance with that reported by Eagles et al. (2002) and Békés et al. (2006).Results of this study contribute to understand the effects of alleles on the final quality of worldwide important products. Alleles 2* at Glu-A1, 7 + 9 at Glu-B1, 5 + 10 at Glu-D1, g at Glu-B3 and c at Glu-D3, were identified as conferring favorable effects on gluten strength. According to Shan et al. (2007), those alleles are frequent in winter wheats of the USA, and are readily available for their use in plant breeding programs. The most frequent alleles in genotypes of France and China are 0 and 2 + 12 (Branlard et al. 2003;Liu et al. 2005) which might be replaced by 2* and 5 + 10 to improve dough strength. In China, alleles Glu-B3g and Glu-B3h might replace Glu-B3j which is the most common one and negatively affects the rheology of the dough (Liu et al. 2005). Results also shown interaction among loci, hence breeders need to consider not only effect of individual alleles but also interaction among loci in the end-use quality improvement.","tokenCount":"2112"} \ No newline at end of file diff --git a/data/part_3/1559853960.json b/data/part_3/1559853960.json new file mode 100644 index 0000000000000000000000000000000000000000..0f7eb989800e024f556957d0019fb832c54e497a --- /dev/null +++ b/data/part_3/1559853960.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"a8e91c3344bf8e27b9d809c2a9c3ef38","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/f7e02b82-15f1-4468-82f4-268667d43629/retrieve","id":"-1956919791"},"keywords":[],"sieverID":"c569595e-4051-4794-9e63-8553f89e126a","pagecount":"10","content":"Les activités de l' AT-MEDD sont les suivantes:Analyse de l'état de mise en oeuvre des projets sélectionnés par le PARC-DAD.Renforcement de capacités des acteurs à accompagner les projets de terrain et à en tirer des enseignements sur l´AIC.Appui à l'intégration de l'AIC dans les plans de développement communaux (PDC) des communes ciblées et les plans de développement régionaux (PDR) des régions de Dosso et Zinder.Coordination du projet au niveau du Ministère de l´Environnement, complémentarité et valorisation des actions AIC dans le cadre de l'i3N.Renforcement des capacités pour le suivi technique des résultats à travers le géo-référencement des sites restaurés et réhabilités. ","tokenCount":"101"} \ No newline at end of file diff --git a/data/part_3/1569182454.json b/data/part_3/1569182454.json new file mode 100644 index 0000000000000000000000000000000000000000..edab44d3f5c72ceb7081b6a7d69e2221c7f9755c --- /dev/null +++ b/data/part_3/1569182454.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"3bf2600feefaa59215f50d5c7cd01f33","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/fbe75f80-8f50-4197-a0a7-88efb42c2781/retrieve","id":"1554474585"},"keywords":[],"sieverID":"dce30f17-2f8e-4d1a-98b5-40a6fc2d484a","pagecount":"23","content":"A new approach is required to reduce, or reverse, the negative impacts of our food production systems on the environment, which are contributing to land degradation, pollution and the loss of biodiversity and ecosystem services on which we all depend.Many of the 2 billion smallholders who live in developing countries are adversely affected by climate change-drought, erratic weather and increased outbreaks of crop pests and diseases. Through our work with these farmers, research partners and conservation agencies, Bioversity International contributes to global understanding about the use and conservation of agricultural biodiversity. This resource can increase the productivity, resilience and sustainability of small-scale food production systems and has potential for development.Highlights from 2011 include a global effort to support scaled-up approaches to sustainability, research on using agricultural biodiversity to minimize pest and disease damage, and work with local communities in the forests of Mozambique.Following the International Year of Biodiversity in 2010, we celebrated the launch of the UN Decade on Biodiversity (2011Biodiversity ( -2021)). This year also saw the initiation of the preparation for the Rio+20 UN Conference on Sustainable Development, a key step in laying the foundation for the next set of Sustainable Development Goals.In addition, CGIAR, a global partnership that unites organizations engaged in research for a food secure future, completed its reform process in 2011 and formulated 15 CGIAR Research Programs to implement its Strategy and Results Framework. Our organization played an active role in the formulation of nine programmes and contributed its expertise and long experience to ensure that the role of agricultural biodiversity in achieving the CGIAR system-level outcomes was appropriately reflected in these new research programs.These key influencing events in 2011, along with the increasing realization worldwide that past models of agricultural intensification are not sustainable, have prompted us to revisit our own mission and develop a more sharply focused strategy that will guide us during the decade to come. Working with our partners and donors, we have developed a new set of strategic priorities and a new research agenda to help achieve our vision of a world in which smallholder farming communities in developing countries are thriving and sustainable. As a result, we also revisited our structure and created five distinct and innovative research programmes. These ensure that Bioversity International is an excellent investment and world-class partner for supporters and users of our knowledge and research.While our strategy development was in progress, we continued to make important research strides in using and conserving agricultural biodiversity for livelihoods, sustainability and nutrition. Working with smallholder farmers and partners, our scientists provide novel research ideas and practical solutions. Throughout the pages of this report, you will find examples of Bioversity International's work with partners and stakeholders from Africa to Asia to the Americas.As we reflect on the year and what lies ahead, it is clear that biodiversity is a critical entry point to a host of issues that need solutions. Agricultural biodiversity has the potential to benefit millions and complement other approaches to agriculture. It can play a central role in meeting global challenges and transform agricultural systems, but it has too often and for too long been neglected by research and development agendas. This must change, as agricultural biodiversity is a powerful resource to help our world.We encourage you to read this report and to share it widely. With your help and engagement, we can make a lasting impact in research to achieve better nutrition, improve smallholders' livelihoods and enhance agricultural sustainability while conserving the plant genetic diversity upon which they depend. Thank you for your continued support of our efforts.his past year represented a turning point for agricultural biodiversity, with increasing recognition of its value to help provide a food secure future in a sustainable way.People, Food & Nature \"A landscape is a human construct. It is not nature as it was handed to us but the result of interaction between people and nature. We have worked on many individual crops, looking at how they contribute traits and resilience to agriculture, but increasingly we see that a lot of the value comes when these elements of biodiversity are inserted into a landscape,\" says Bioversity International Senior Scientist Pablo Eyzaguirre.Finding solutions that simultaneously meet the challenges of biodiversity conservation, sustainable development, food security and poverty reduction is no easy task. A clear example is trying to find synergies between conservation and food production needs. A landscape approach is one that tries to address these different types of demands at the same time.Smallholder farmers, policymakers, food companies, conservation agencies and grassroots organizations are already adopting innovative integrated approaches, although on a small scale. So far these have received little recognition from policymakers or investors, but a 3-year multi-stakeholder collaboration to scale up sustainable rural development, launched in 2011, hopes to change this.The 'Landscapes for People, Food and Nature Initiative' will support the scaling up of sustainable landscape management approaches in over 60 biodiversity hotspots. Partners representing over 120 organizations, including policymakers, donors, NGOs, farmers, research centres and conservation agencies, are tasked with gathering evidence and making this knowledge widely accessible to policymakers. Bioversity International is a co-organizer of this initiative led by Ecoagriculture Partners.Multidisciplinary teams have already started work to synthesize current evidence as part of the partnership's global review: a set of key questions whose answers are critical for setting the standards for agriculture in the 21st century.For example, what is the contribution of ecologically intensifying agricultural systems to food and ecosystem service production? Can we produce more food with less, by focusing on intensifying ecological processes rather than relying largely on external inputs, such as chemicals and excessive water use? Can we make agricultural systems multifunctional-producing both food and ecosystem services?Pests and diseases cause an estimated 27% worldwide loss to annual harvests, a loss that can have devastating impacts on income and food for poor smallholder farming households.One resource available to smallholder farmers to minimize the risk of pest and disease damage is the use of different varieties of a crop, planted together. Funded by the Global Environment Facility (GEF), a 3-year Bioversity International project in China, Ecuador, Morocco and Uganda shows that growing a mix of varieties of a crop can decrease farmers' chances of losing entire harvests. This is because different varieties offer different resistance levels to outbreaks, rather than relying on a few high-yielding yet more genetically uniform modern varieties. It is also a sustainable and affordable alternative to expensive chemical inputs. Two of the six crops studied in the global project, banana and the common bean, were evaluated in terms of the number of varieties grown and the area planted with each variety. These two crops are significant to Ugandan farmers-banana and the common bean are the most important sources of carbohydrates in Uganda, with more than 7 million people depending on them for daily meals.\"The project showed that using diversity can help minimize risk. For example, farmers in Uganda who grow diverse sets of varieties of bananas and common beans lose less of their harvest when the incidence of the pest or disease is high. But, having enough diversity in a farmer's production system is not enough on its own. Success depends on farmers and the farming community having the knowledge and leadership capacity to evaluate the benefits that using this diversity gives to them. This, in turn, means that local, national and international agencies take an active role in strengthening local institutions to enable farmers to take a greater role in the management of their genetic resources,\" says Devra Jarvis, Senior Scientist at Bioversity International.The Niassa National Reserve extends over 42,000 km 2 along the Mozambique border with Tanzania, and includes one of the least disturbed areas of Africa's deciduous Miombo woodlands. It was established to protect wildlife and also includes populations of a number of the world's threatened tree species.Bioversity International project, 'Sustaining forest resources for people and the environment in the Niassa National Reserve in Mozambique' is studying the relationship between the people living in the reserve and the tree 5 species that are important to them, to see if the use of the trees is placing them under threat and if sustainable alternatives are needed.About 40,000 people live in the reserve using trees for many purposes: fuel wood for home cooking and charcoal production for sale, food, medicine, timber for construction and sale, material for carving cultural objects, fishing rods, and talismans. People here live in povertyon average they earn about US$ 35 per year-and depend on the trees for food and income, especially at times of food shortage when they eat the fruit and edible leaves. Trees are also a source of honey, the sale of which is the main source of income for many people. Yet the practices that people use, for example, cutting trees for honey collection, are placing the resources that they need under threat.The first year's fieldwork consisted of conducting interviews in communities in the reserve to understand people's dependence on and their use of forest resources.\"The second year of the project saw more focus on ecological studies following up on the previous year's surveys of how people used the forests. We saw the impacts of honey hunting and illegal logging, and that current practices are unsustainable. The next step will focus on honey hunting, working with people in the communities to identify and test more sustainable collection methods,\" says Judy Loo, Senior Scientist at Bioversity International.The final stage of the project will be to work with the people living in the reserve to help them develop more sustainable practices, to produce recommendations for reserve managers that will help them balance the need for wildlife habitat conservation with those of the local people, and to share this model widely.Hunger is a worldwide problem, which, together with nutrient deficiencies known as 'hidden hunger', undermines the growth, development, health and productivity of over 2 billion people. Our agricultural systems collectively produce enough staple food for everyone at the moment, in aggregate, but access to nutritious food remains a challenge for many. The predicted world population increase to 9 billion by 2050 is set to increase demand on these systems which are already being pushed to the boundaries of sustainability and placing our ecosystems under extreme pressure. Bioversity International's Nutrition Strategy was launched in 2011 to further understand how using agricultural biodiversity within smallholder farming systems can contribute to food security and nutrition. During the year, Bioversity International started two nutrition initiatives to gather robust evidence of the value of agricultural biodiversity for nutrition and health and further explore its links to livelihoods.The Grand Challenges Explorations is an initiative funded by the Bill & Melinda Gates Foundation to enable researchers worldwide to test unorthodox ideas that address persistent global health and development challenges.Bioversity International, in collaboration with Save the Children UK, is undertaking an innovative global health project through this initiative: 'The role of wild and underutilized foods in daily costs of diets in Baringo, Kenya'. This project focuses on reaching \"a clearer understanding of the role of wild and underutilized foods in helping to deliver a nutritionally adequate diet-at the same time reducing its cost. This will enable researchers and policymakers to develop accessible and local food-based solutions to malnutrition in mothers and 6 to 24-month-old children,\" says Federico Mattei, Research Support Officer, Nutrition and Marketing Diversity Programme, who will be involved in carrying out the research with local partners.The use of a 'Cost of Diet' tool, which calculates the minimum amount of money a household will have to spend to meet their full nutritional requirements using locally available foods, means \"we will be able to model the impact these foods could have on the affordability of a nutritious diet,\" explains Alex Rees, Head of Hunger Reduction, Save the Children UK.As a part of this project, diets with and without foods from wild species and Neglected and Underutilized Species (NUS), will be modelled to determine the nutritional and cost benefits of these foods to assist in the design of programme interventions aimed at improving diet quality and contributing to a reduction in child stunting. NUS are plant and animal species that are used traditionally for food, fibre, fodder, oil or medicinal properties, but have not yet been adopted by large-scale agriculture.In 2011, a new 5-year global project, 'Biodiversity for food and nutrition' was successfully approved to start in 2012.Funded by the Global Environment Facility (GEF), the US$ 35-million project will provide evidence of the nutritional value of agricultural biodiversity and its role in promoting healthy diets and strengthening livelihoods in the four countries leading the project: Brazil, Kenya, Sri Lanka and Turkey. Bioversity International is coordinating the project with implementation support from the UN Environment Programme (UNEP), the Food and Agriculture Organization of the UN (FAO) and a significant number of international partners.The project aims to use this evidence to influence policies, development programmes and markets that support the conservation and sustainable use of agricultural biodiversity. Part of the project will be to develop tools, knowledge and best practices to mobilize and mainstream the use of nutritionally-rich biodiversity and scale up its use for food and nutrition in development, value chains and local community initiatives.\"It is increasingly recognized at an international level that there are important links between biodiversity, food and nutrition, yet research in this area remains fragmented and uncoordinated. Bioversity International's involvement in a project of this nature is critical as the world's foremost research-for-development organization working in the field of mobilizing biodiversity for food and nutrition,\" says Danny Hunter, Bioversity International Project Leader.\"Good nutrition must be one of the major goals of agriculture and production systems, requiring a combination of agricultural, health, fortification and supplementation strategies. While promoting household production, Bioversity International is concentrating its efforts to understand and promote access to and availability of nutritious and diverse foods,\" says Bruce Cogill, Programme Leader, Nutrition and Marketing Diversity. This year, Bioversity launched a 10-year nutrition strategy which promotes the use of agricultural biodiversity within food production systems to provide nutritionallyrich food sources that contribute to dietary diversity and to better nutrition and health. This builds on research of the past few years that has focused on the role and impact of traditional foods on dietary diversity and livelihoods.The Nutrition and Marketing Diversity Programme will build evidence about how the benefits derived from growing and using agriculturally biodiverse foods can benefit people's livelihoods and ecosystems. Bioversity International is focusing its work on smallholder farming communitiescomprising 70% of the world's poorest 1.4 billion people-in low and middle income countries in sub-Saharan Africa, Central America and South Asia. Within these countries, like in many other countries around the world, people's diets have changed, moving away from traditional, local and diverse foods to eating more cereal-based staples and energy-dense fats and sugars. Some of these changes are adversely affecting people's health and nutrition, as well as the environment, and are not sustainable in the long term.The strategy has four objectives that fall into two broader categories: research and evidence, and development and policy.Objective 1: To strengthen the empirical evidence of agricultural biodiversity's role for nutrition and health.Objective 2: To ensure that the production of more nutritious foods through commercial pathways reflects agriculturally biodiverse practices and cultural and consumer practices.Objective 3: To determine best practices and delivery systems of agricultural biodiversity in nutrition and health development programmes.Objective 4: To mainstream the role of agricultural biodiversity into public health and nutrition policy and practice by sharing evidence and providing local solutions.For smallholder farmers and rural communities, agricultural biodiversity is a resource within reach that can help increase income and income stability. Diversified farming systems and sustainable small-scale forestry offer opportunities to provide a more regular income and enhanced food security across seasons and between years. Within these communities, women play an important but often unrecognized role in producing, gathering, processing and marketing food.Bioversity International is working to make markets accessible to the rural poor by expanding the focus beyond main commodity crops and developing innovative 'farm to fork' interventions. Bioversity International works in partnership with agencies, community groups and the private sector to improve the livelihoods of smallholder farmers. Our research in 2011 addressed production, marketing technologies and policies needed to ensure the equitable participation of the poor in new markets of diverse products. Here are some highlights.Back to Market 2011 marks the end of a 10-year research effort funded by the International Fund for Agricultural Development (IFAD), to empower poor rural communities in Asia and Latin America by strengthening their identity, income opportunities and nutritional security through the improved use and marketing of Neglected and Underutilized Species (NUS). NUS are traditional crops that are often better adapted to grow in marginal areas, with little need for irrigation, pesticides and fertilizers, but have fallen outside mainstream agricultural research and development.\"Thanks to this project, we now have the evidence that these species are a key asset to support poor farming communities,\" says Stefano Padulosi, Senior Scientist at Bioversity International.In India, Bioversity International and partners worked with 200 farming families to revive the cultivation of minor millets. As a result, Indian small millet growers increased their yields by 70% and their income by 30%. Women farmers integrated millets into innovative snack foods, which have reached urban markets and are now consumed in schools. Selling those foods to boost household incomes and the entrepreneurial skills acquired were also key for the empowerment and selfesteem of the women involved.In Bolivia, Peru and Ecuador, the cultivation of traditional grains, such as cañihua, amaranth and some neglected varieties of quinoa, was being abandoned because of poor economic competitiveness in markets. The interventions varied from developing new varieties of cañihua to providing prototypes of machines that drastically reduce processing times-from 6 hours to 7 minutes to process 12 kg of quinoa. By improving production, processing and marketing, these crops are now back in the farmers' fields offering new income opportunities. smallholder farmers through the diversity of beans cultivated, to the skill of the farmers, and to the differences in taste produced from different growing conditions.In 2011, 'Cocoa of Excellence' received and analyzed 119 samples of cocoa beans from 22 countries-50 of which were selected and processed into chocolateto be evaluated by a jury of professionals and connoisseurs who then assigned 12 'Cocoa of Excellence' awards. In addition, a second jury met during the Salon du Chocolat, Paris and gave four awards to farmers from Malaysia, Costa Rica, Ecuador and Cameroon.These events provide opportunities to establish links between cocoa growers and professionals in the chocolate industry. For example, at the Salon du Chocolat, one chocolate manufacturer met with the country representative of a farmer that had provided a nominated cocoa sample resulting in a business link between the farmer and the manufacturer.Cocoa is starting to get more attention in countries that produce it. In Peru, national competitions are now organized every year and there are trained specialists in the sensory evaluation of cocoa beans, liqueurs and chocolates. Brazil is organizing its first Chocolate and Cocoa Show in Salvador, Bahia, in 2012.\"The development of cocoa as a high-value crop and commodity has great potential for smallholder farmers, particularly in West Africa, Latin America and Asia,\" says Stephan Weise, Deputy Director General of Research at Bioversity International. \"We are looking at ways to expand those possibilities.\" \"We have to act at different levels. We have to conserve these species, create networks and infrastructure and build capacity so that farmers and communities can take advantage of cultivating NUS. Creating an enabling policy environment, both at a national and international level, is necessary to deploy the economic potential of these species for the poor. Last but not least we need champions, people spreading the message,\" added Padulosi.Building on this experience, Bioversity International is beginning a new project funded by IFAD to investigate the use of NUS in increasing the adaptation and resilience of production systems in the face of climate change.Cocoa is a vital source of income for some 6 million smallholder farmers in West Africa, Latin America and Asia. Compared with coffee, wine or tobacco, cocoa is still a low-value industrial commodity, but demand for fine-flavour, added-value cocoa is steadily increasing. Many projects have been, and continue to be, implemented worldwide to support on-farm conservation of agricultural biodiversity. The challenge of these projects is to identify, design and implement interventions that make the conservation of crop diversity compatible with improved livelihoods and well-being among the farmers who conserve it. The aim is to maintain diversity while also reducing poverty.\"One of the aims of this study is to fill the gap of systematic evaluation of the success of on-farm conservation projects in producing outcomes that maintain crop diversity on farm and at the same time create livelihood benefits for farmers,\" says Mauricio Bellon, Principal Scientist at Bioversity International. This research is also a very important tool for donors, policymakers and practitioners who need to have the conceptual and methodological tools to assess the success of their projects and the lessons learned, and hence their investments.The increasing loss of plant genetic resources, including those of crops, their wild relatives, and trees, has irreversible global implications. Genetic resources are critical to ensure the ability of future generations to adapt and enhance agriculture as needed. For almost 40 years, Bioversity International has been at the forefront of global efforts to collect, conserve and use agricultural biodiversity. Our new strategy includes two complementary conservation approaches: ex situ (conservation of seeds in long-term storage facilities) and in situ (conservation of plants on farms and in the wild), with greater emphasis on the less researched area, in situ conservation.In 2011, we marked many conservation milestones, including the 10-year anniversary of the International Treaty on Plant Genetic Resources for Food and Agriculture, a new atlas of crop wild relatives and new research on forest genetic resources.The Atlas of Guatemalan Crop Wild Relatives (Atlas Guatemalteco de Parientes Silvestres de las Plantas Cultivadas) is a new web resource to facilitate the conservation and use of wild plant species that are related to cultivated crops.Crop wild relatives are increasingly important to agriculture because they contain beneficial traits needed for breeding improved varieties that can be hardier, more productive, more nutritious, more disease and drought resistant, and better adapted to climate change.Guatemala, in the heart of Mesoamerica, is one of the world's most important centres of plant domestication and agricultural origin and, consequently, an area with an abundance of crop wild relatives.Launched in 2011, the atlas is the result of nearly a decade of extensive collaboration between Bioversity International and partners. It provides detailed information about 105 species or subspecies of wild Guatemalan plants, chosen for this study because of their economic, cultural and nutritional importance.Through an interactive Google Earth® interface, users can consult maps that show the known distribution and potential range of each plant included in the study, based on climate and the locations where they were collected. Additional maps display areas of high species richness and diversity to assist conservation efforts. The maps draw upon a database of 2,593 records of scientific specimens conserved in numerous national and international institutions.\"We are pleased that the Ministry of the Environment of Guatemala has made plans to immediately use the atlas to document the presence of crop wild relatives within their system of protected areas,\" says Marleni Ramirez, Regional Director, Bioversity International Americas Office.The atlas, and supporting database, is a resource for those who want to learn about and promote the conservation and use of the many unique and often threatened crop wild relatives in Guatemala, including plant breeders, conservationists, students and teachers.An international event marked 10 years of the International Treaty on Plant Genetic Resources for Food and Agriculture, a powerful legal instrument that defines the legal status and conditions for pooling, exchanging and conserving plant genetic resources for food and agriculture between countries. Without it, the costs and negotiations on a case-by-case basis to access plant genetic resources would be extremely difficult, and in many cases, impossible.Plant genetic resources are important, as they are the raw materials needed by farmers, scientists and breeders to help achieve food security in the face of climate change, land and water scarcity, and an increasing population. Since its adoption, the Treaty has been ratified by 127 countries and includes at least 1.5 million plant samples of 64 crops and forages.At the 2011 anniversary event, Bioversity International Director General Emile Frison called for greater collaboration between countries and international organizations to ensure that as much plant genetic diversity as possible is conserved and equitably used by the global community in pursuit of food security and environmental sustainability.CGIAR has played an important role throughout the negotiations of the Treaty, providing technical input and acting as one of the key resources for accessing genetic biodiversity. CGIAR genebanks host around 50% of the materials currently in the multilateral system of access and benefit sharing, including a wide diversity of local and traditional varieties, crop wild relatives, as well as neglected and underutilized crops. These materials are available through the Treaty's Standard Material Transfer Agreement (SMTA), and more than 8,000 samples are exchanged every week.The Treaty was adopted by the Food and Agriculture Organization of the UN (FAO) Conference in November 2001 and came into force in 2004.Slash-and-burn agriculture is a traditional way to prepare agricultural fields by felling trees which are then allowed to dry before being burned. This practice is often perceived as an enemy of forests, but according to Laura Snook, Programme Leader, Forest Genetic Resources, Bioversity International, it can favour the regeneration of dozens of valuable tropical timber tree species.\"Banning the use of fire, which many governments are doing in the name of protecting the environment, can reduce options for maintaining a diverse, valuable and sustainable resource,\" says Snook. This conclusion is based on many years of work in Quintana Roo, Mexico, where over 100 local communities manage 800,000 ha of the largest tropical forest in Mesoamerica for harvesting timber.The research began in 1996, when 24 half-hectare clearances were created in the forest using three different methods: eight were clear-felled which means all the trees were cut down and left on site with their stumps remaining in the ground; eight were cleared by bulldozers that uprooted the trees and pushed them to the side; while eight were cleared by slash and burn. The researchers then planted seeds and seedlings of mahogany, the most valuable timber species, to see how they would fare.\"Slash and burn was best for mahogany,\" says Snook, \"but what was really interesting, when we went back more than a decade later, was to find that more than 100 tree species had regenerated in the plotsmany of them commercially valuable.\"The study revealed clear differences between treatments. In clear-felled plots, valuable hardwoods occupied less than 30% of the plots, while on plots cleared by machine or by slash and burn, 60% of the trees were commercially valuable. Between the machined and burned plots, the largest 10% of trees were significantly bigger on the slash and burn plots.The differences were not hard to explain. Trees on clear-felled plots sprouted from the trunks and roots left behind, quickly resulting in a closed canopy, favouring species that can tolerate shade. Trees that result from resprouting stumps or roots are typically multi-stemmed, so even timber species are unlikely to provide quality logs.\"Many valuable timber trees require sunlight to regenerate-they don't survive in the small gaps produced by timber harvesting or in the clear-felled plots because they are quickly overshadowed,\" says Snook. \"Slash-and-burn treatments mimic the effects of hurricanes and lightning strikes. Burning not only controls competition, but releases nutrients that stimulate plant growth.\" Bioversity International's work results in knowledge that can shift policies, transform agricultural practices and open possibilities for income, improved nutrition and sustainable farming practices for poor rural communities. We develop knowledge products, tools, capacity and good practices with farmers, local and national governments, development workers, trainers and academia.'Plant Genetic Resources and Food Security-Stakeholders' Perspectives on the International Treaty on Plant Genetic Resources for Food and Agriculture' is an essential guide to understand the way international policy affects food security.The book, jointly published by the Food and Agricultural Organization of the UN (FAO), Bioversity International and Earthscan, gives a comprehensive overview of the negotiations and implementation of the Treaty and explains the different interests and views at stake between all players in the global food chain. This is the latest in the Earthscan-Bioversity International book series 'Issues in Agricultural Biodiversity', which reviews current knowledge around topical issues in agricultural biodiversity, identifying gaps in our knowledge base, synthesizing lessons learned and proposing future research and development actions.Bioversity International was one of the co-organizers of a 4-day agricultural knowledge sharefair in Rome in September 2011. This event was a forum to share success stories, knowledge, experience and innovations on information and communication technologies and processes relating to agriculture, climate change, food security and rural development.Over 160 presenters from 70 countries took part in the sharefair and many more followed events live online. In addition to live webcasts of many sessions, which were watched by around 4,500 people, there was a very successful social media campaign with a strong focus on Twitter-tweets using the event hashtag #SFROME reached over 200,000 people. Participants examined how to ensure better communication to share knowledge and found innovative ways to bring that knowledge to farmers. Bioversity International participated in several sessions including a demonstration of an e-learning course for pre-breeding, a look at the GENESYS Gateway to Genetic Resources, a talk on using traditional crops for sustainable livelihoods and an opportunity to taste quinoa cake, as well as contributing articles to the sharefair social reporting blog and daily event newsletter. Emile Frison gave an opening speech with the President of the International Fund for Agricultural Development (IFAD), Kanayo F. Nwanze.'Pre-breeding for effective use of plant genetic resources', an online learning course, was released this year to strengthen capacity at the interface between germplasm conservation and its use in plant breeding.Pre-breeding is a necessary first step in using biodiversity arising from crop wild relatives and other unimproved materials to broaden the range of heritable genetic variations available to generate new crop varieties that have increased yields yet rely less on external inputs. This free online course, jointly sponsored by Bioversity International, the Food and Agriculture Organization of the UN (FAO), and the Global Crop Diversity Trust, using the platform of the Global Partnership Initiative for Plant Breeding Capacity Building, was designed to strengthen skills among plant breeders, germplasm curators, university staff and students, field technicians and extension agents.By the end of 2011, over 5,000 people had registered for the course, with more requesting the free CD.In recent years, research has yielded a rapidly growing knowledge base on how agricultural biodiversity is linked to food security, nutrition, livelihoods, environmental sustainability and climate change. Yet according to consultations with universities in 2009 and 2010, agricultural biodiversity education courses are rare or non-existent and there is a need to integrate such knowledge into curricula.The new guide, Teaching Agrobiodiversity: A Curriculum Guide for Higher Education, is a tool to support this integration, designed to be flexible to fit into a range of institutional settings. It also suggests suitable entry points for quickly integrating aspects of agricultural biodiversity into existing courses. The guide discusses key issues in agricultural biodiversity education and presents a curriculum framework with 14 topics central to agricultural biodiversity processes, conservation and management. Each topic is briefly introduced along with key learning points, suggested contents, a bibliography and a list of internet resources.A free PDF was made available this year, with distribution of hard copies to key stakeholders including university partners planned for early 2012.The Crop Ontology Tool is an online resource that enables anyone to browse and download information regarding crop traits. This online tool is very useful for breeders, farmers and scientists when searching for crop trait information. It can be used to search for information regarding specific plant traits. For example, when researching the trait 'height' of cassava, the tool provides not only a detailed explanation that relates to the specific query, but also any other relevant information that relates to the trait. The Crop Ontology Tool was developed as a collective activity between CGIAR members and their partners, with Bioversity International leading the project. By the end of 2011, 49 users, who also act as curators, were already registered and regularly uploading content. Further development is planned for 2012.'GRIN-Global' is a project that provides the world's crop genebanks with a powerful, flexible, easy-to-use global plant genetic resource information management system.Improving the capability of genebanks to provide data to a global accession-level information system will make it easier to assess the status of the world's plant genetic resources and to identify priority needs for their conservation. It will also allow genebanks to make use of a generic web portal, GENESYS, which offers users online access to collections and an online ordering system, compliant with the International Treaty's Multilateral System (MLS) and Standard Material Transfer Agreement (SMTA).During 2011, GRIN-Global training was delivered to people from more than 35 genebanks around the world.In July 2011, the Platform for Agrobiodiversity Research (PAR) facilitated an expert workshop on climate change and genetic resources for food and agriculture. 'Contributing to food security and sustainability in a changing world' was organized by the Food and Agricultural Organization of the UN (FAO) Commission on Genetic Resources for Food and Agriculture. The workshop explored different challenges that confront agriculture and the options that exist or could be developed to help feed the world, cope with climate change and improve the impact of agriculture on the environment.The event took place prior to the 13th Session of the Commission, in which PAR also participated. PAR is hosted by Bioversity International, which also provides the secretariat, and is made possible with support from the Christensen Fund.Spatial analysis helps to gather information about plant diversity in specific geographical locations around the world. This information about the status of plant species and their patterns of distribution enables the setting of priority areas for conservation by identifying which species are most at risk and where there are gaps in collections. This vital information helps us tackle global challenges such as food security and climate change.The Training Manual On Spatial Analysis Of Plant Diversity and Distribution which was published in 2010, has so far been downloaded by over 2,000 people, and was made available in Spanish this year. A French version will also be published in 2012.The Global Musa Genetic Resources Network, or 'MusaNet' for short, was launched in 2011. MusaNet, coordinated by Bioversity International, is a global collaborative framework and a partnership of key stakeholders, to safeguard Musa genetic resources and promote their use around the world.Membership is based on expertise, with 62 members already having joined, representing the scientific research community, government representatives, educational institutions and development agencies. Regional research networks and other key initiatives such as ProMusa and the Global Musa Genomic Consortium (GMGC) are also represented in the expert committee.MusaNet is an online resource with member discussion forums and workspaces for the different critical thematic areas, e.g. evaluation, diversity, information and conservation, the latest Musa news and publications on genetic resources, and links to the Musa Germplasm Information System (MGIS) which includes accessions data and climatic maps.In 2011, Bioversity International and partners reached the half-way point on a project, 'Rescuing and promoting native chilies in their centre of origin'. This project is looking at how to increase the incomes of smallholders through the use of chili (Capsicum) diversity. Chili is a crop cultivated by farmers for thousands of years in the Americas, used as a spice, a vegetable and for medicinal purposes.Highlights of the project so far include new technologies, manuals and guidelines regarding the harvest and post-harvest operations of Capsicum, as well as increases in the number of accessions held in genebanks in Peru and Bolivia, making up the largest and most diverse national collections ever assembled. The huge variation in biochemical attributes mirrors the accession level diversity-and has led to interest from chili processors and exporters in those countries.\"There are good reasons to embed the continued use of traditional varieties into development and improvement strategies designed to improve the well-being of some of the world's poorest communities,\" concluded a newly published paper. 'An Heuristic Framework for Identifying Multiple Ways of Supporting the Conservation and Use of Traditional Crop Varieties within the Agricultural Production System' brings together available knowledge about the conservation and use of traditional crop varieties on farm. This comprehensive analysis is packaged in a way to better understand how traditional varieties can support the production strategies of rural communities and smallscale farming. Areas covered include onfarm traditional crop diversity and access to that diversity, ways to improve the use of diversity, as well as benefits derived from its use including market and non-market based actions and incentives.A pioneering study by Bioversity International and partners has introduced a new approach to finding solutions for climate change adaptation by integrating the predicted climatic shifts of a region with its traditional seed systems.The study investigated how climate change might affect the environments of Mexican maize farmers in four different agroecological zones, and then analysed where farmers currently source their seeds. It was discovered that over 90% of seeds in the study groups came from within a 10km radius of farmers' communities and from areas of less than 50m of difference in altitude.These results showed that farmers already have access to predicted novel maize environments within the traditional spatial scope of their seed systems, suggesting that these systems may be able to provide farmers with landraces suitable to agroecological conditions under predicted climate change, with the exception of farmers in the highlands, who might need help in coping with more extreme climatic changes.This approach has great potential to be applied in other countries in need of customized solutions for climate change adaptation.'Seeds for Needs', a project currently being carried out in Ethiopia and Papua New Guinea, has made significant steps towards empowering local women and increasing their options for climate change adaptation. The project combines modern GIS technologies and the preferences of local farmers, to identify seed solutions that will help these farmers cope in the future.In its first year, Bioversity International worked mostly with women's farmer groups, extension workers and local genebank managers on growing locally available seeds in different test sites and getting feedback from farmers on crop performance. In Ethiopia, more than 100 women farmers took part in selecting 25 out of 100 shortlisted varieties of durum wheat, varieties that were then distributed among communities to be sown for a second year of evaluation.The next phase will look into better understanding local seed systems and improving policies to ensure farmer access to seeds held in genebanks.'Agricultural biodiversity is essential for a sustainable improvement in food and nutrition security', a paper published in 2011 by Bioversity International Director General Emile Frison and co-authors in the open-access journal Sustainability, asserts the essential role of agricultural biodiversity in sustainably improving food and nutrition security.Previously viewed as being useful solely for trait selection in scientific breeding programmes, the paper reveals evidence that suggests diversity not only increases farm productivity, but also increases the resistance of farming systems to shocks. Agricultural biodiversity has been proven to help maintain and increase soil fertility, mitigate the impacts of pests and diseases, deal better with unpredictable weather patterns, and stimulate diverse diets that deliver better nutrition and health.Moreover, the paper puts special emphasis on adopting a cross-sectoral approach to reassessing the role of agricultural biodiversity in sustainable food production.The PACS project conducted pilot studies in Bolivia, Peru and India to better understand the effectiveness of rewarding farmers for the provision of conservation services that benefit broader society. The Board has adopted a risk management policy that has been communicated to all staff together with a detailed management guideline. The policy includes a framework by which Bioversity International's management identifies, evaluates and prioritizes risks and opportunities across the organization; develops risk mitigation strategies that balance benefits with costs; monitors the implementation of these strategies; and reports on results, in conjunction with finance and administration staff and internal audit, semi-annually to a Task Group of the Board and annually to the full Board.The Board is satisfied that Bioversity International has adopted and implements a comprehensive risk management system.One distinct key contribution from partnerships is bringing together actors who would not usually find ways to work together, to deliver science and create new knowledge about the use and conservation of agricultural biodiversity.Another contribution to partners is the leveraging capacity we have-connecting knowledge and science of global scope to local action, and vice versa. We are able to see the big picture of sustainability, food security and poverty and, by working with rural communities, we are able to use this knowledge to find solutions and to ensure they can be scaled up and out.Another indicator of our value is the positive feedback we receive from our partners and donors-a wide range of stakeholders with whom we develop long-term associations. We learn from partners, depend upon their insights and knowledge, and work as equals with them to create lasting change.Most importantly, the value Bioversity International brings to initiatives is demonstrated through the rural communities and smallholder farmers around the world who are providing for their families in innovative ways, becoming community leaders and advocates, and using their knowledge from farm to fork. These are the true champions of agricultural biodiversity.Bioversity International relies entirely on support from donors to undertake and champion world-class research with and for poor farming communities. We are proud to use that support in the most effective way possible. In all our work, our aim is to ensure that investment establishes knowledge that leads to approaches and tools that are selfsustaining, and that influence and shape the decisions of policymakers.• All our work is funded through voluntary contributions by donors.• 82% of our expenditure was allocated to research-for-development and critical services that directly support that research agenda.• Bioversity International is a member of the CGIAR Consortium, the world's largest publicly funded research body.• For every US$ 1 invested in CGIAR, at least US$ 9 worth of additional food is produced in developing countries.• Spending on agricultural research offers rates of return of about 40% higher than any other development investment.• We do not run our own laboratories; instead, we work through national and regional partners, building up capacity and making donor investment work harder.• We create dynamic coalitions of donors to leverage funds, expertise and networks across different disciplines.Financial and administrative management for Bioversity International is governed by the CGIAR Financial Guideline Series, a series of financial management and policy practices issued out of the World Bank and approved by all of the members of CGIAR.Bioversity International has a strong system of internal controls which are regularly reviewed and audited. We have designed a Risk Management Framework which enables Bioversity International's Board of Trustees to put in place firm controls for managing key risks.Over the next 10 years, Bioversity International aims to increase its real-term investment in research-for-development by more than 50% to US$ 62 million per annum by 2021. This will enable us to direct and support research efforts to potentially improve the lives of 320 million people who live in the regions where we plan to work.This ambition will only be realized with donor support; as a non-profit organization we want to engage more donors than ever before in a critically important agenda-and ensure a food and nutrition secure future for millions of poor smallholder farmers, and an environmentally sustainable future for us all.Our commitment is to work with donors as partners in change, together making significant contributions to global goals on sustainable food security and development and the conservation of agricultural biodiversity.We sincerely thank all of our supporters and partners. This list represents a sample of the many supporters involved with the projects highlighted in this annual report. We have made an effort to recognize as many as possible on these pages and regret we have not been able to mention every supporter in the space allowed.","tokenCount":"7352"} \ No newline at end of file diff --git a/data/part_3/1570080472.json b/data/part_3/1570080472.json new file mode 100644 index 0000000000000000000000000000000000000000..b41b1c4340d4d572917ab9b7080b38bc6c5dc9b4 --- /dev/null +++ b/data/part_3/1570080472.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c50dbcf925746dc11186069461417969","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/de8f7c50-dde0-4d51-b627-b77904569c49/retrieve","id":"-257344202"},"keywords":[],"sieverID":"953e9a3c-12ae-4e52-9ae8-c26877a57384","pagecount":"6","content":"promotion of intellectual property rights (IPR) systems under the rubric of free trade farmers loose control and ownership of, and access to their own genetic resources that they have developed over millennia. Restricting this age-old traditional right of farmers to control, own and access their own seed varieties and other genetic resources jeopardizes the possibility of continuously improving farm varieties and conserving agro-biodiversity, and compromises the welfare of resource-poor farm families.Producers of commercial varieties are protected by patents and IPRs though their 'inventions' are very much derived from the open access traditional seeds and propagation method already in existence. Commercial breeders earn from such practices of farmers but the farmers but the latter hardly receive any reward or incentive. Moreover, the IPR restrictions imposed on commercial varieties could also limit farmers' ability to continue with those practices.The farmers' right must be ensured also for the conservation of agrobiodiversity and fostering innovations in agriculture. This implies developing means of ensuring benefits to farmers and farming communities.The literature currently dis-cusses two forms of farmers' rights concepts-as a form of IPR and as a simple recognition of their past and present contributions to conserving, developing and making available crop genetic resources available. 3 The first approach focuses on operationalizing farmers' rights by awarding them some form of IPRs for 'traditional' varieties. This is generally seen as a method of addressing the imbalance between farming communities and plant breeders through a 'straight-forward' extension of IPRs to past innovations of farmers.However, the existing IPR regime is not sufficient to acknowledge that the traditional knowledge is the product of inter-generational improvement within a community without an inventor. The IPR system is largely individualistic, that recognizing ownership based on the resources devoted to the new invention. Also, such practices are not eligible for a patent. Thus, protecting farmers' right over to their traditional knowledge contributing to germplasm needs a separate regime of its own.The issue of farmers' rights garnered attention in international agricultural circles following a series of debates that started in the Food and Agricultural Organization of the United Nations (FAO) in 1979 about unequal distribution of benefits obtained from the sharing of germplasm. This led to the adoption of three FAO Conference resolutions (4/89, 5/89, 3/91) simultaneously recognizing the rights of plant breeders as well as farmers. The concept of farmers' rights was then included in the FAO Undertaking on Plant Genetic Resources and, later, in the International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGFRA), which evolved from the FAO's international undertaking in 2001. 4 The ITPGRFA recognizes the rights of farmers and emphasizes the need for promoting and protecting farmers' rights at both national and international levels. Article 9 of the Treaty recognizes the enormous contribution that farmers and local communities have made to the conservation and development of plant genetic resources for food and agriculture (PGRFA) and identifies measures to protect and promote farmers' rights. 5It also recommends national governments to take national measures to realize farmers' rights. Similarly, the Nagoya Protocol on Access to Genetic Resources and Benefit Sharing, under the Convention of Biological Diversity (CBD), supports and protects farmers' rights by seeking prior and informed consent of related communities for access to genetic resources and traditional knowledge. It makes provisions for equitable sharing of benefits accruing from the use of genetic resources and associated traditional knowledge. 6There are two concepts of farmers' rights as a form of IPR and as a recognition of their contributions in making crop genetic resources available.Taken together, these provisions call for a broad interpretation of farmers' rights, which go beyond the right to benefit-sharing. They include the right of farmers to continue the practices which contribute to the conservation and sustainable use of PGRFA and to sustain the traditional knowledge and livelihood systems needed for this.IPRs are essential incentives for promoting technology transfers and increased investment in agricultural research and development. The Trade-Related Aspects of Intellectual Property Rights (TRIPS) under the World Trade Organization (WTO) compels member nations to provide IPR protection to new plant varieties either through patent or a sui generis system or both for promoting investment and innovations. TRIPS sui generis provision has been used by interested countries to recognize farmers' rights.The International Convention for the Protection of New Varieties of Plants (UPOV Convention) has provided one of the most accepted sui generis systems for plant variety protection, vis-à-vis recognition of the plant breeder's right. It recognizes farmers' interests as an optional exception to the plant breeder's right. 7 For instance, the third amendment of UPOV Act, in 1991, made the farmers' privilege optional to the member countries 8 , indicating that national legislation formulated according to this provision may not provide for the rights of farmers to save, use and exchange part of the protected seeds with other farmers locally. However, IPRs that promote commercialization of agriculture may hinder the rights of farmers to the genetic resources and traditional knowledge that they have been controlling over many generationsTherefore, in order to foster both innovation and conservation, some countries have developed sui generis legislation under the WTO's TRIPS, with provisions for farmers' rights in plant variety protection laws. Countries that are party to the CBD, the ITPGRFA and the Nagoya Protocol are obliged to draft laws that include provisions of both plant breeders' and farmers' rights. The table below provides the membership status of South Asian countries in the WTO, the ITPGRFA and the Nagoya Protocol. Except Sri Lanka, all South Asian countries are party to the ITPGRFA, while only Bhutan, India and Pakistan have ratified the Nagoya Protocol of the CBD. All are party to CBD and most of them are the WTO members, except Bhutan, which has a status of an observer member. However, none of the South Asian countries are UPOV members. India is the first South Asian country to formulate and enact plant breeders' and farmers' rights in a balanced manner. India formulated Plant Variety Protection (PVP) and Farmers' Rights (FR) Act (2001) as a sui generis law to meet TRIPS requirements. The Act, which aims to balance breeders' rights with farmers' rights, includes a total of ten individual farmer rights and one community right. 9 The act is functioning and actively issuing plant variety certificates (PVCs), including granting IPRs to farmer-breeders. But despite its formulation in 2001 and the announcement of its implementation in 2005, it is yet to come into full force. Although there is an increasing evidence of registration of farmers' varieties (FVs) with the enactment of the law, there are no evidences of inclusion of these FVs in the official seed supply chain and commercialization process. 10 Similarly, cases of benefit-sharing from the FVs are not given due importance in spite of the fact that several such varieties may have been used to develop commercially marketable varieties.South Asian countries have the obligation to develop plant variety protection laws that meet international commitments. Sri Lanka has drafted a plant breeder's rights legislation, known as Protection of New Plant Varieties (Breeders' Rights) 2001(draft), which follows the UPOV model of 1991. This legislation does not recognize farmers' rights. 11 The PVP laws are still not officially approved and enacted in other South Asian countries, e.g. Bangladesh, Bhutan, Pakistan and Nepal. As a result, provisions and is-sues regarding farmers' rights and IPRs are either absent or partly dealt with through existing Biodiversity Acts or seed laws. Bhutan has approved its Biodiversity Act (2003) with provisions for breeders and farmers' rights. 12 Nepal, as a member of the WTO, is committed to implement a sui generis system to protect plant varieties. Nepal has yet to approve and implement the draft Plant Variety Protection (PVP) and Farmer's Rights Bill (2005). 13 The draft bill also has provisions to balance farmers' and breeders' rights. At the moment, seed development, certification, registration and release are being administered through the Seed Act (1988) amended in 2008 and the Seed Regulation (2013). These Seed Act and Regulations deal with various aspects of IPRs such as seed owner-ship, marketing and distribution.Many countries of South Asia have in place IPR laws which were formulated long ago. They have yet to form a comprehensive IPR policy as that of India. India has already made a significant policy shift towards a pro-intellectual property (IP) position in the seed sector. The recently approved National Intellectual Property Rights Policy (2016) of India envisages national development by promoting creativity, innovation and entrepreneurship. 14 It aims to integrate IP as a policy and a strategic tool of national development plans. Farmers' rights are an important part of the new IPR policy of India. It recognizes the rich traditional knowledge of farmers and their role in conservation. Considering the low aware-ness of farmers about their rights over genetic resources and traditional knowledge, the new IPR policy focuses on promotional tools and incentive mechanisms to encourage the farmers to register varieties and file for IPRs. However, the focus of the Indian IPR law is more on commercialization of traditional genetic resources and knowledge. Since, genetic resources are a shared intellectual heritage of local communities, the focus on commercialization without adequate conservation focus would hinder the collective efforts of communities to promote their in situ conservation and sustainable use.Nepal recently drafted a national Intellectual Property Rights Policy. The policy recognizes IPRs as an important mechanism for national development and prosperity. One of the components of the policy focuses on IPRs on new plant varieties and agricultural genetic resources. 15 However, farmer's right is not an important component of the draft policy, even though it recognizes traditional knowledge and collective community contribution to varieties.","tokenCount":"1600"} \ No newline at end of file diff --git a/data/part_3/1586802715.json b/data/part_3/1586802715.json new file mode 100644 index 0000000000000000000000000000000000000000..8720b6183b586539df280b6214997dd8e97ec033 --- /dev/null +++ b/data/part_3/1586802715.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c71a2080b443f62907607de38f5e5ad2","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/51bfc50f-c2e9-42ca-bd61-2614ff20a5aa/retrieve","id":"-26675518"},"keywords":[],"sieverID":"5455247e-25e6-4048-8da5-ce91dc193a3d","pagecount":"2","content":"Making the Case for Livestock: ZOONOTIC DISEASES ! Six out of every 10 human infectious diseases are likely shared with animals and 80% of this burden falls on low and middle-income countries. ! Zoonotic diseases transmitted from animals to people are strongly associated with poverty and cause huge human health burdens. ! Control of zoonotic diseases is highly economically attractive: every dollar invested in such interventions could generate five dollars' worth of benefits.Controlling zoonotic diseases, for example through comprehensive vaccination, has good returns on investments and important zoonotic diseases have been controlled in rich countries. Control interventions should prioritize the pathogens in the animal hosts. References: • Salmon, G. 2018. Livestock and zoonotic disease: Of emerged human disease epidemics, have 75% been of animal origin? And overall, are 60% of human pathogens zoonotic? LD4D Livestock Fact Check 3. Edinburgh: Supporting Evidence Based Interventions project, University of Edinburgh. http://hdl.handle.net/1842/30116 • Consultative Group for RVF Decision Support. 2010. Decision-support tool for prevention and control of Rift Valley fever epizootics in the Greater Horn of Africa.The health of animals and humans are intrinsically linked. Addressing animal diseases can directly improve human health, particularly in the developing world. Livestock also indirectly contribute to health goals by supporting better livelihoods and therefore better dietary, educational and health choices.! New human diseases that come from animals already cost at least $6.7 billion a year worldwide. If one of these were to become a major pandemic it could kill millions of people and cost more than $1 trillion.Controlling and mitigating the risk of new emerging zoonotic diseases requires increased investment in surveillance, diagnostics, vaccines and in research on transmission mechanisms and their mitigation.! Animal-source foods are most often implicated in foodborne diseases, which cause at least 500,000 deaths every year. ! The health burden of foodborne diseases is comparable to malaria, HIV/AIDS or tuberculosis. ! Improving the safety of animal-source foods would reduce this risk and improve the availability of these most nutritious foods.Although the large health burden of foodborne diseases is known, in low-and middle-income countries, investments in food safety are a fraction of the investments in comparable health problems and much of this goes to export control, where the burden is least. Policymakers need better information on the human and economic costs of foodborne diseases in poor countries and on investment options for their control. More resources available at the global level should be channeled to developing countries that bear the largest foodborne disease burden.Current food safety regulations and standards in low-and middle-income countries should be risk-and evidence-based rather than rule-based. The private sector should also be incentivized to help improve food safety and ensure stakeholder accountability.! Antimicrobial uses in agriculture contribute to the emergence of human and animal infections that are resistant to treatment. To reduce the amounts of antimicrobials used, farmers need alternatives and incentives to use them.Much larger quantities of antimicrobials, such as antibiotics, are used in animal production than in human health and their use is growing rapidly in emerging economies.Research investments are needed on how drug-resistant pathogens from antimicrobial use in animal agriculture move to human populations. The current push to ban use of antimicrobials arises from a 'precautionary principle' approach. However, it is important to ensure that food safety is not endangered by too zealous reductions in antimicrobial use in livestock production. Additional research is needed to understand how to best balance these risks.","tokenCount":"565"} \ No newline at end of file diff --git a/data/part_3/1628758884.json b/data/part_3/1628758884.json new file mode 100644 index 0000000000000000000000000000000000000000..2724e86913f7ab6d0823799e0f11a97949f19ba4 --- /dev/null +++ b/data/part_3/1628758884.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"37e7fc30acc2afadb2a78768f24d0977","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/f2beb042-9fe3-4323-ba36-a9e3817cf5a1/retrieve","id":"-2011707049"},"keywords":[],"sieverID":"93c04afa-2a07-477e-9475-11d8d625d388","pagecount":"21","content":"• Traditional, wet, informal markets: selling dry, fresh (and sometimes live) food all over the world.• Wet markets: selling mainly fresh foods such as meat, fish and vegetables, mostly used in Asia.• Often poor infrastructure, inadequate health and safety regulation, sell traditional products, traditional processing, not licensed, not tax paid, often some form of compliance with regulationMost FBD from fresh food in informal markets Retail: Hygienic cutting board, separate (fresh/cooked), cleaning/disinfection (35$) CambodiaHygienic cutting board, separate (fresh/cooked), cleaning/disinfection, easy to clean surface (25$)Scoring system, auction survey indicates 15 % higher WTP of consumers for improved market stalls ","tokenCount":"97"} \ No newline at end of file diff --git a/data/part_3/1644121983.json b/data/part_3/1644121983.json new file mode 100644 index 0000000000000000000000000000000000000000..cc534de00258e2e2f2cd7cc31dce861293ad8fdd --- /dev/null +++ b/data/part_3/1644121983.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"6d0770afbaa264869fe6e9073e65116e","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/007e3364-67d3-466e-891a-16635542e306/retrieve","id":"-441779761"},"keywords":[],"sieverID":"c4523054-0aa2-4e4b-ad22-168b97491ff1","pagecount":"4","content":"fanners will be classified hierarchically to enable selection procedures to be applied one afier the other aeeordíng to prioritíes reported by fanners. Indígenous methods for reeognízing desirable characteristies within populatíons ofbarley eultívars will be documented, and activities of fanners applying these methods will be recorded in detail.An important aspect ofthis component i5 the ídentíficatíon ofwomen's seleclíon eriteria, partícularly, but not only, al those locatíons where barley is u5ed for human consumption. Specific outputs for tbis component inelude the following:• evaluatíon of the innovatíve capacity of fanners and insíght into theír potentíal for direct participation ín formal breeding programs• lí518 of desirable characteristícs, prioritized and cross-referenced to environment and utilization• indigenous knowledge and perceptions of environment-genotype ínteractions in barley landraces• the theory, objectíves, and implementation ofthe participatory-breeding prograrn will be discussed thoroughly with the host fanners and expert farmer groups in order to obtain their input into the design of the breeding scheme, including selection procedures, such as the proper time for selection, how ofien selection is done, etc.This componen! represents the major empirical thrust ofthe project and will quantify the effects of the selection environment (experiment station vs. fanner's field), of who does the selection (breeder vs. farmer), and whether these effeets interact or vary from year to year.The traits that fanners select for, and the eriteria they use in their selection, will be recorded by the breeders and social scientists, and compared with objective measures of trai18 used by barley breeders, including the yíeld and quality of graín and straw.A common set oflines and populations (including the farmers' cultivars) will be grown on a typically well-managed experiment station field and on one fanner's field at each of six !ocations in Jordan under fanners' management practices (fertilízer use, rotations, date and method of sowing, land preparation, etc.). The locations will be as follows:Al-Mohay 60 km southeast ofK.arak and about 130 km south of Aroman, with an annual rainfull of about 1 3Q....1 50 mm Al-Muaqure Ramtha Khanasri RaMa Ghwer 55 km east of Amrnan, in the arid areas, with an annual rainfaIl of 150 mm 160 km north of Amrnan, with an annual rainfall of 250 mm 135 km north of Amrnan, with an annual rainfall of200 mm 140 km south of Amman, with an annual rainfall of 340 mm 160 km south of Aroman, with an annual rainfall of 280 mm By ineluding locations with less than 200 mm average annual raínfall, there will be opportunities to investigate the performance of breeding material in environments where barley is a forage crop rather than a grain erop. In addition, small graín-producing areas occur wíthin the < 200 mm zone. These are seasonally f100ded wadi f100rs (marrabs), where high graín yields are normal wíthín a generally arid environment. Because of theír ímportanee locally, and the uniqueness of the agroecosystem, these !ocations are included in the project.[n the project area, the majority of farmers still grow barley landraces ¡hat are heterogeneous populations composed of a large number of individual genotypes. Although the population buffering of such heterogeneous populations-and, hence, their role in reducing ¡he risk of crop failures-is well documented, we do no! know whether farmers perceive this type of diversity as importan! and jf this is the reason for the popularity of landraces. To gain information on this specific point, the genetic material will include high-yielding fixed or nearly fixed lines, segregation populations, and farmers' cultivars. The use ofbolh pure lines and heterogeneous populations will provide a means for testing the attitude of farmers towards heterogeneity, as opposed to the conventional breeders' propensity for homogeneity.The farmers' cultivars, which are likely to be different at each location, wíll be collected from each farmer during the harvest of the previous year, and all farmers' cultivars will be grown at each site. Selection will be conducted on the experiment station by breeders, and in each host farmer' s field, selection will be conducted by both the breeders and the host farmers, their spouses, andlor olher household members. Whenever possible, neighboring farmers wiJI also participa te in lhe selecnon process.The collaborating farm householders will make selections from theír fields. Following a group selection procedure similar to thatused by ICRISAT in Rajasthan (ICRISAT 1996:98-100), the expert farmer groups wíll be asked to select material from lhat grown by lheir host farmers, material lhat they think would be use fui for-them and olher farmers in lheír area. The selectíon wiIl be conducted in such a way as to reveal the criteria being used by lhe farmers and olhers when they make their choices. There will be detailed discussions regarding lhe cultivars selected and the eriteria used in selection. Farmers' observatíons, expected performance, and crop-management practices wíll be recorded.At lhe end ofthe frrst year, in addition to the breeders' se1ections from lhe experirnent stations, for each particípating farmer, the following groups of selected Iines wíll be available: 1. lines selected by lhe breeder 2. Iines selected by the farmer 3. Iines selected by other household members 4. lines selected by lhe farmer's neighbors In lhe second year, each host farmer wilI growall lhe Iines selected in hislher ficld in the fust year, regardless of who made lhe selection, Le., groups 1 to 4 aboye, as well as the lines selected by the breeder in lhe experiment station. The selections will be grown as one populatíon oflines without obvíous distinctions between the groups to avoid any possible bias in the second cycle of selection. AH lhe lines selected in lhe first year wíl1 also be grown on the experiment station in the sccond year to provide enough seed for lhe third year. Data on grain and straw yield will be collected at each host farmer' s field and at lhe experiment station. Response to selection will be evaluated using lhe farmer's cultivar as reference. In lhe second and trurd year, selection will be done, as in the first year-on the lines resulting from the first and second cycle of selection. Thus, during lhe second and third cycle (year) of selection, lhe farmers and lhe breeders wí11 be exposed to the material selected by each olher. By lhe third year, the project will have involved a total of36 households in lhe target area and will have simulated tbree cycles of selection of the sarue type of cyclical processes !hat take place in conventional breeding prograrns (figure 2). During the selection proeess, the eriteria ofboth fanners and breeders will be monitored and eompared. Of particular inlerest will be the frequeney with wmeh me fatrners,in me seeand and thírd year, seleet from the material they selected themselves in the first year and from among the material selected in me first year by the breeders. This will give not only an indícation ofthe eonsistency of fanners' seleetion eriteria, but also an indieation of the possible effects of fluetuations in environmen! over years on genotype performance and fanners' perceptions ofthese effects.Tm3 component is designed to quantify the following effects:• the effeet of the selection environment (experiment station vs. farmer' s field) by comparing, both on the experiment station and on the fanner' s field, the superiority over the fanner' s cultivar ofthe Iines selected by the breeder on-station with the superiority ofthose seleeted by the breeder in the fanner' s field• the effect of seleetion eriteria (breeder vs. fanner) by comparing, in the fanner's field, the superioríty over the fanner's cultivar ofthe lines seleeted by the breeder with the superiority of those seleeted by the fanner (this comparison wíll be extended to cover seleetions done by others, Le., farm household members and/or neighbors.)At the end of the first three years, it is expected tha! the number of selected lines wíll be small enough 10 stimulate the interest of the participating fanners, and possibly of sorne neíghboring fanners, to grow one or more of them as commercial erops. The experimental material will be assembled and distributed by the barley breeders to ensure a UIÚform seed souree.","tokenCount":"1321"} \ No newline at end of file diff --git a/data/part_3/1648147474.json b/data/part_3/1648147474.json new file mode 100644 index 0000000000000000000000000000000000000000..8bd4d26fb64c6ebf1ae1fe4bcd057a52959e4ea3 --- /dev/null +++ b/data/part_3/1648147474.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"5ff63d1dc75a5e3a3840776d0ed4dab4","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/673ca2be-1987-445b-b4d8-b9c690728c44/retrieve","id":"-913481453"},"keywords":["Co4 grass","Cultivars","Groundnut haulms","Sheep"],"sieverID":"00968713-0468-4948-94a1-cd740415d364","pagecount":"2","content":"Sl!M'\\.lARY: llaulms from four groundnut culti~ars (ICGV 02266, i>6564, 91114 and 00440) were compared with Co4 grass (+ 100 g conc.:ntra t.:) fresh and as silag.: (+200 g cnnccntratc) measuring voluntary feed intake, digestibility and growth over 43 daysin 6 groups of Ncllon: rams 1\\l!h SL\\ annnals pc1•group (2X.73+kg). Organ1c matter 1ntakc and average daily weight changes were Significantly (P<0.05) higher 1n ramson pure groundnut haulms compared to those on either supplemented Co4 fresh grassor silage. Intake 11crc signilicantl) higher in ramson Co4 grass than on silage but in both cases sheep did apparently not achie~e maintenance requirements. Th1s was in stark contrast to groundnut haulm fed sheep where apparent (trial period was too short lor delin1te I'. eight change measurements) positive daily weight changes of more than I 00 g were observed. llowcver, the voluntary f~ed intake mcasurcm<.:nt ckarly showed the superiority of groundnut haulms where intakes ranged from 4 to 4.5% of hotly wc1ght compared to 3\"'o with fresh Co4 grass which is better than in silag<.: lcmn. Culti\\ar differences in haulms we1-e observed lor nutri<.:nt intak<.: and digcstibilities but not on pcrl(mnancc of sheep.While planted fodder is often recommended for addressing fodder shortages in India, actual adoption of green forages/ fodder planting was on the whole disappointing. The less than expected adoption could partially be attributed to land and water shortage in small holder mixed systems, which commonly rely on crop residues as major feed resource. However, there are also indication that fodder quality might have been neglected in the breeding of some of the proposed forage options, favoring biomass yield over quality considerations. To shed some light on this issue the Napier hybrid Co4 known for its high biomass yield and low oxalate content was compared with haulms from dual purpose groundnut cultivars in a feeding trial with sheep. Groundnut haulms were previously shown to be of extraordinary high fodder quality for crop residues.Thirty six Nellore rams (28.7± 1.11 kg) were randomly divided into six groups of six sheep each. Four groups were offered ad libitum haulms of groundnut cultivars ICGV 02266, 86564, 91114 and 00440 as sole feed and the remaining two groups were offered Co4 in green and silage form supplemented with I 00 and 200 g concentrate mixture ( 17% CP), respectively, for 43 days. A digestion trial was conducted during the last 9 days of study. Feed offered and refused were analyzed using Nl RS. A nova was done using the General Linear Model procedure of SAS ( 2008).Groundnut haulms had organic matter intakes ranging from 3.6 to 4.15 of bodyweight with significant differences observed among the cultivars. Intake of fresh and si lage Co4 was significantly less, amounting to only 2.4 to 2.9% (Table I). Similarly apparent daily weight gains ranged from 78 to 125 g in groundnut haulm fed sheep while sheep on fresh and silage Co4 diets actually lost. When comparing fresh versus ensilaged Co4, intake was significantly higher in the fonner and sheep were maintained around maintenance level while on Co4 silage sheep lost 46 g/d, despite being supplemented with 200 rather than I 00 g of concentra~aily.The concentrate supplementation in the silage group was doubled early in the trial responding to the low silage intake.Table I. Organic matter intake (OM I), digestibility (OMD), digestible organic matter intake (DOMI) and weight gain in Nellore sheep fed only groundnut haulms and concentrate supplemented (CS) fresh (CS I 00 g/d) and silage (CS 200 ","tokenCount":"574"} \ No newline at end of file diff --git a/data/part_3/1664816390.json b/data/part_3/1664816390.json new file mode 100644 index 0000000000000000000000000000000000000000..30a2cfbe3ad3ac4a1853b8b2e42cdc8ab6ebf286 --- /dev/null +++ b/data/part_3/1664816390.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"66459a9cf940fe926e00b8ffac096cf8","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/8ba72046-edfd-44f3-bb9b-ab0aa0c2cf6f/retrieve","id":"-1600449835"},"keywords":[],"sieverID":"f0b82014-76d3-4979-84c7-ed15801ebf35","pagecount":"1","content":"Malawi is a densely populated land-locked facing economic challenges, high poverty rates, and vulnerabilities due to its predominantly agrarian economy. Over 80% of households rely on subsistence agriculture, exposing the nation to threats of food and income insecurity, weak infrastructure, climate shocks, and endemic infectious diseases. Environmental degradation further compounds issues, impacting soil fertility, water quality, overfishing, and biodiversity. Malawi COHESA team conducted a comprehensive baseline assessment of One Health (OH), from September 2022 to March 2023 to understand Malawi's position within the OH context. The assessment included a desktop review of existing literature, key informant interviews, and focus group discussions with experts. The assessment found that almost all existing OH platforms in government, academia, and the private sector were informal, although in some cases stakeholders connected for coordination of activities, research, and some degree of policy making. ","tokenCount":"138"} \ No newline at end of file diff --git a/data/part_3/1666769097.json b/data/part_3/1666769097.json new file mode 100644 index 0000000000000000000000000000000000000000..700a39327e7a202d7be5f601c36832e756a1f0fb --- /dev/null +++ b/data/part_3/1666769097.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"bda371e768b5b7fb086289f6b51a17f7","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/f6136424-16e4-4309-b8a3-0c429075e5b9/retrieve","id":"1552681396"},"keywords":[],"sieverID":"2617f9a1-8672-42c3-887c-5e478b2ea1e2","pagecount":"1","content":"Cassava (Manihot esculenta Crantz) is the third most important agricultural crop grown in southeast Asia. It is an upland crop, generally grown by smallholder farmers on poor soils and in areas with a prolonged dry season. When grown on slopes, even on very gentle slopes, it can cause serious erosion.In this approach, farmers are directly involved in all aspects of the process, from diagnosis, selection of promising options, testing those options on their own fields (FPR trials), selecting the most suitable treatments, scaling up to production fields and extending their experiences to other farmers (FPE). Farmers make all decisions, while researchers and extensionists facilitate the process and provide alternative options and germplasm for testing.Farmer selected practices were disseminated to other farmers by various FPE methodologies, such as: 1 . cross visits of farmers from new sites to those of older sites. 2 . field days at time of harvest of FPR trials to evaluate and discuss the results. 3 . large-scale field days with many participating farmers, school children, government officials and press/TV. 4 . setting up of community-based groups to help each other implement the selected soil conservation practices. 5 . pamphlets, videos, TV programs, newspaper articles, etc.The first phase (1994)(1995)(1996)(1997)(1998) of the project was conducted in 2-3 pilot sites (villages) each in Thailand, Vietnam, China and Indonesia; in the second phase (1999)(2000)(2001)(2002)(2003) the number of pilot sites increased year by year, reaching a total of 99 sites in Thailand, Vietnam and China by the end of 2003.Research has shown that soil losses due to erosion can be markedly reduced by simple agronomic and soil conservation practices. However, these are seldom used by farmers as farmers may be unaware of the seriousness of soil erosion, they do not know how to control erosion, or they consider the recommended practices unsuitable, too expensive or too labor intensive. In order to develop the most suitable soil conservation practices for a particular region and to enhance their widespread adoption, a bottom-up approach was used, in which farmers participate in all steps of the process, from diagnosing the problem, suggesting and testing solutions on their own fields, selecting the most suitable practices and disseminating their experiences to other farmers. This is called Farmer Participatory Research (FPR) and Extension (FPE), also known as Farmer Participatory Technology Development (FPTD).Table 3 indicates that in 2006/07 about 50% (nearly 2 million ha) of the cassava area in Asia was planted with CIAT-related varieties, i.e. varieties derived from crosses in which one or both parents contain genes introduced from Latin America. In some countries, such as Thailand, Cambodia and Vietnam this is as high as 98, 80 and 70%, respectively.Table 2 Summarizes the extent of adoption of the various practices in Thailand and Vietnam by the end of the project.We gratefully acknowledge the generous financial support from the NIPPON FOUNDATION in Japan. The project has been funded by the Nippon Foundation in Tokyo, Japan from 1994 to 2003, and was implemented by the CIAT Cassava Office for Asia in Bangkok, in collaboration with national research and extension institutions in Thailand, Vietnam, China and Indonesia. A similar approach is currently being used in Lao PDR, Cambodia and Timor Leste.To get farmers interested in conducting FPR erosion control trials, and to develop an integrated package of suitable practices, other types of FPR trials were conducted in the community simultaneously, such as evaluations of varieties, green manures, intercropping systems, weed control, etc. (Table 1).After conducting a participatory diagnosis of existing problems, farmers from the selected pilot sites visited research plots in which different varieties and a wide range of more sustainable practices were demonstrated. Farmers evaluated those plots and after discussion selected the types of trials they wanted to conduct on their own farms and the treatments to be tested. Researchers and extension workers helped farmers set out the trials, and helped during harvest to determine the yields, root starch contents and the net income in each treatment. During the field day at harvest, many farmers visited the FPR trials, evaluated and discussed the treatments and results and selected the best practices for future testing or for scaling up and adoption.Figure 1 shows that the adoption of new technologies, tested and selected by farmers themselves, greatly increased cassava yields during the second 5-year phase of the project, not only of farmers that actively participated but also those of nearby farmers as well as in the two countries as a whole.The adoption of new varieties and improved cultural practices, have markedly increased cassava yields in almost all cassava growing countries in Asia. The annual additional gross income farmers received due to the higher cassava yields obtained in 2007 as compared to 1984 (when the CIAT Cassava Office was established in Asia), is estimated to exceed 900 million US dollars in 2007 (Table 4), and is likely to be more than 1 billion dollars in all of Asia in 2008. In addition, many farmers are now more aware of the need to control soil erosion and to maintain soil fertility, and many have adopted various soil conservation measures when planting cassava on slopes, and are applying both chemical and organic fertilizers to make cassava production not only more profitable but also more sustainable. Area under cassava (ha) Area under CIAT-related varieties ----------------------Country FAO ","tokenCount":"880"} \ No newline at end of file diff --git a/data/part_3/1684656679.json b/data/part_3/1684656679.json new file mode 100644 index 0000000000000000000000000000000000000000..105afd47ae1ac9746b0cefb84fe3da9dffed649b --- /dev/null +++ b/data/part_3/1684656679.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"26a119616080a509806fe5224f8de92a","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/0c9446e9-a7a0-4323-a91d-f148bb2e3577/retrieve","id":"1006840647"},"keywords":[],"sieverID":"fbd530b9-8076-4b1e-a887-d517d91e9637","pagecount":"6","content":"The government can set the farmer contribution to fertilizer subsidized through the Affordable Input Programme (AIP) so that farmer demand for the commodity matches available supplies under the program. For any given budget dedicated to subsidizing fertilizer, this approach will maximize food security gains through two distinct channels. First, it will maximize the total amount of subsidized fertilizer that can be distributed under the allocated budget. Second, it will maximize the additional food generated through the subsidies by ensuring each subsidized bag of fertilizer has the largest possible yield response. This policy note discusses the first advantage. A companion policy note (Banda et al., 2022) discusses the second advantage.By adopting this pricing mechanism, the government can achieve the phase-out of the AIP, to which it has recently committed (Sabola, 2022), efficiently through a gradual reduction in allocated budget and a commensurate increase in farmer contribution.The market price of fertilizer in Malawi has, in nominal terms, more than tripled compared to two years ago. The price hikes were both unexpected and beyond the control of the government, linked to global events, such as the COVID-19 pandemic and Russia's invasion of Ukraine.This changed global reality reinforces the need to rethink the way in which Malawi approaches its agricultural input subsidies. A number of options for reforming the AIP have been outlined in recent policy work, but all have medium to long term implementation horizons. We will not repeat these here and instead refer the interested reader to Chadza and Duchoslav (2022), De Weerdt and Duchoslav (2022), and Nyondo et al. (2022).This policy note discusses a strategy that can be implemented readily and immediately, potentially still this year, to ensure that the budget allocated to fertilizer subsidies has the highest possible effect on food security in the country.It also discusses how the strategy, once adopted, can be used to phase out the AIP, while ensuring allocative efficiency within the program. This can be achieved by, each year, fixing the budget at a lower point and conducting the same optimization exercise.DECEMBER 2022It is surprisingly difficult to obtain precise information on the amount of fertilizer available for the AIP.The first four rows of data in Table 1 summarize our best guess, compiled from multiple sources, of the fertilizer the government currently has access to outside the private market: 31,500 MT of urea purchased by SFFRFM earlier in the year at a cost of MK 29 billion, a donation of 10,000 MT of monoammonium phosphate from the government of Morocco, which will be blended with other privately sourced inputs into 52,000 MT of NPK at a cost of MK 40 billion, 20,000 MT of NPK confiscated in the Netherlands due to European Union sanctions against Russia and subsequently donated to Malawi via the World Food Programme (WFP). The government further intends to purchase 10,000 MT of NPK and 10,000 MT of urea using a grant from the African Development Bank (AfDB). If these numbers are correct, the government will have access to around 82,000 MT of NPK and 41,500 MT of urea. Some of this is in country, some in transit and some will still need to be blended upon arrival. All these factors influence when we estimate the fertilizer to be available to the farmer (column 2). At current availability, the AIP is unlikely to be able to serve more than 630,000 beneficiaries before the end of December.The government has recently confirmed a number of commitments. First, it will offer 2.47m AIP beneficiaries one 50kg bag of NPK and one 50kg bag of urea. The program will therefore require 123,500 MT of each kind of fertilizer. Second, the farmer contribution to each bag shall be MK 15,000. Third, the budget allocated to the AIP, MK 109.4 billion, shall be respected. Juxtaposing these three commitments with the fertilizer situation as described in Table 1, we note a serious problem. Notes: The total requirement is for 2.47 million beneficiaries receiving 50kg of NPK, 50kg of urea, and 5kg of seed each. Net cost excludes farmer contribution and includes MK30,000 per MT transport distribution costs within Malawi. The total budget available for fertilizer purchases (MK 95.55 billion) is based on the total AIP budget as appropriated by parliament (MK 109.4 billion) less the expected government contribution to AIP seeds for 2.47 million beneficiaries (MK 12.4 billion) and AIP goats for 30,000 beneficiaries (MK 1.5 billion). Source: Since the government does not publish official figures on the availability inputs under AIP, the reported figures have been compiled by the authors from multiple sources including the African Fertilizer and Agribusiness Partnership (AFAP), the Minister of Agriculture (Kawale, 2022), The Nation newspaper (Singini, 2022), and the WFP. They are reported to the best of the authors' knowledge, but they may not be entirely complete or accurate.Once the government recovers MK 15,000 per bag from farmer contributions, the net cost of the 123,500 MT that is in country or in transit will be MK 37.7 billion, 1 leaving MK 57.9 billion (column 6)to source the remaining 123,500 MT of fertilizer if the AIP is to stay within budget (around MK 95.6 billion available for fertilizer purchases and distribution out of the total AIP budget of MK 109.4 billion).Factoring in the farmer contribution of MK 15,000 per bag, the additional fertilizer would have to be sourced at an average price of MK 38,500 per bag. The current commercial retail price for a bag of fertilizer is close to MK 75,000 in Malawi. Fertilizer can be procured cheaper abroad, but transport and distribution costs will bring the final price back close to the local retail price. The government may be able to get a slightly better price by purchasing in bulk, but the negotiated discounts will not be of this order of magnitude. Unless an unknown benefactor arrives on the scene with free or cheaper fertilizer, the government will have to turn to the private market to purchase the fertilizer, in which case MK 57.9 billion would be able to buy only about 48,500 MT of fertilizer, only reducing the shortfall from 123,500 MT to 75,000 MT. Under such a scenario, the AIP would only be able to serve 1.7 million beneficiaries instead of the intended 2.5 million (Table 2).Note that if farmer contribution remained at last year's MK 7,500 per bag, only 1.5 million beneficiaries could be served by the program, so the doubling of farmer contribution to MK 15,000 per bag is a step in the right direction. However, more can be done, as we show below. Relying on further donations to plug the shortfall of 75,000 MT is a precarious strategy. Even if they can be secured, which is far from certain, they are likely to arrive too late to be useful to farmers who need to apply basal fertilizer (NPK) now and top-dressing fertilizer (urea) in a few weeks' time.Procuring the shortfall commercially on international markets would carry the same time penalty. Procuring as much of the shortfall fertilizer as possible on the domestic market would, on the other hand, make it available almost immediately. This could be achieved by increasing the level of farmer contribution, which would reduce the net cost of the fertilizer that has already been secured and thus increase the amount of fertilizer that the program could afford to purchase at market prices. If farmers contributed MK 33,280 per bag, the program could afford to purchase all shortfall fertilizer at market prices without relying on uncertain donations (Table 2).Can enough farmers afford to contribute MK 33,280 per bag? Probably not. We phoned 1,390 farmers to ask them how many bags of NPK and urea they would buy at different price points, ranging from MK 5,000 to MK 110,000 (current market prices lie around MK 75,000). Interpolating from the numbers thus obtained, Table 3 shows, for each farmer contribution level, how many households would be willing to participate in the program. This can be contrasted with the next column showing the number of beneficiaries the program can afford to serve with 2 bags each. The last two columns contrast, per farmer contribution level, total demand in the country (in MT) to total supply under AIP.In that last exercise we assume households are allowed to purchase more than 2 bags each. Notes: Unrestricted demand means no restrictions on the number of bags bought. Our data show very few farmers buying more than 3 or 4 bags of each, so a higher-level restriction would give similar results. Total subsidized supply is the affordable amount of fertilizer in the AIP assuming no more donations, equivalent to column 2 in Table 2. Source: AuthorsComparing demand and supply, we see that at MK 33,280 per bag, only 1.8 million farmers say that they would want to buy, while there is supply for 2.5 million farmers. Clearly, this price level is too high. This, then, implies that the AIP cannot reach 2.5 million beneficiaries without receiving further donations or exceeding its budget.We point to two interesting price points in the table, where demand equals supply. The first is at a farmer contribution MK 27,621, where 2,174,950 farmers would be willing to participate and the total AIP supply can serve them with 2 bags each. The second assumes a price level of MK 31,214, at which total unrestricted demand, that is demand if farmers are allowed to buy more than 2 bags of fertilizer each, matches total available supply under AIP.The amount of immediately available fertilizer can be maximized at 235,341 MT if farmer contribution is increased to MK 31,214 and the limit of two bags per household removed. Should the limit stay in place, 217,495 MT of fertilizer can be made available, enabling the AIP to reach 2,174,950 households.Our analysis comes with a few important caveats. First, we cannot be sure that our survey resulted in a completely representative sample of farmers in Malawi. Second, we are using stated willingness to pay, which can be different from actual willingness to pay. Third, as we pointed out before, there is some uncertainty on the exact amount of fertilizer available to the government outside the market. Fourth, we have assumed that the private market can deliver a sufficient amount of fertilizer on time. 2 Fifth, raising farmer contributions would maximize production but would entail some of the least productive farmer dropping out of the scheme. In a companion policy note on targeting (Banda et al., 2022) we discuss this.Given these caveats it will be important for the exact level of subsidy to be independently verified, taking into account the principles that underpin the analysis in this note: the subsidy should be set at such level that subsidized supply matches demand. This will, for a given budget, maximize the amount of fertilizer available under AIP, thus maximizing the program's impact on yields-and harvest. To achieve this for this growing season the optimal farmer contribution would need to be higher than the currently proposed MK 15,000 per bag.The government has recently confirmed its commitment to phase out the AIP by gradually reducing the number of beneficiaries over the next five years (Sabola, 2022). This would be better achieved by a gradual and planned reduction in the budget, because a phase-out based on reducing the number of beneficiaries will have less predictable fiscal impact. Pricing the subsidy where demand meets supply will also eliminate the (potentially politically costly) need to decide which beneficiaries to remove from the program, because they will opt out themselves. Those who will remain will be the most productive ones, which will ensure that the smaller subsidy has the biggest possible impact on food production in the country (Banda et al., 2022).This note outlines how to optimally price the farmer subsidy, but we hasten to point out that any phase-out needs to consider more than pricing alone. At the very least, it should be accompanied by deliberate efforts to strengthen the network of private agrodealers, to improve soil health, to promote other sound agricultural practices, and to communicate long-and short-run plans clearly to farmers. ","tokenCount":"2000"} \ No newline at end of file diff --git a/data/part_3/1697091563.json b/data/part_3/1697091563.json new file mode 100644 index 0000000000000000000000000000000000000000..6fed1d1b4cef26a10affa8174401e263be88a962 --- /dev/null +++ b/data/part_3/1697091563.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"9b6b627f8ceedbd97da6b318cabda3c2","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/55650270-8184-42d7-a8b4-c4788ce5f656/retrieve","id":"-587421740"},"keywords":[],"sieverID":"0cc9dd4c-3d4b-419f-aa6f-8b4fba3c5d58","pagecount":"54","content":"The carbon footprint of food loss and waste (FLW) is estimated to be up to 3.49 gigatons of carbon dioxide equivalent (gtCO2e), representing up to 6-10% of total anthropogenic greenhouse gas emissions. Reducing FLW can reduce the emission intensity of agricultural production. Moreover, many FLW reduction measures are profitable thanks to increased revenues. This study examines the business case for reducing FLW by examining three supply chains in detail: tomatoes in Nigeria, dairy in Kenya, and cereals in Tanzania. The cases reveal key strategies involving enabling environment, credit, business promotion that should inform other efforts to reduce FLW at scale. Additional research is needed to assess social justice and equity and to focus on cases that may directly benefit women.The carbon footprint of food loss and waste (FLW) is estimated to be up to 3.49 gigatons of carbon dioxide equivalent (gtCO2e), representing up to 6-10% of total anthropogenic greenhouse gas (GHG) emissions (HLPE 2014). Addressing FLW can reduce the emission intensity of agricultural production; i.e. the number of tons of GHG emissions per ton of food consumed. This is critical, as global demand for food continues to rise. In addition to climate change mitigation, there are environmental, social, and economic benefits associated with reducing FLW.While development organizations have long promoted FLW measures, commercial uptake of FLW interventions lags in many developing countries. Supply chain analysis can identify opportunities for profitably reducing FLW. This study examines the business case for reducing FLW in three supply chains: dairy in Kenya, cereals in Tanzania, and tomatoes in Nigeria.Most losses in the dairy sub-sector in Kenya occur at the production and processing stages, as milk is transported from farmer to cooperative and to local processor.Satellite coolers and farmer training programs can reduce the amount of time milk is exposed to high temperatures and unhygienic conditions. Coolers can potentially reduce losses during storage by 6%, while extension programs to introduce proper handling practices can reduce losses by 4.5%.Approximately 10-20% of cereal production in sub-Saharan Africa is lost postharvest, resulting in decreased farmer income and food insecurity on the continent.Farmer investment in hermetically sealed cereal storage bags can greatly reduce farmer losses. The bags protect cereals and other crops from insect infestation and other potential damages, reducing post-harvest loss from an average of 14% to less than 1%, and reducing emissions proportionally, or 0.01 t CO2e per bag. Additionally, the bags enable farmers to store cereals, protecting them from volatile market prices and especially the typically low prices immediately after harvest.Although Nigeria is the second largest tomato producer in Africa, up to 86% tomatoes are not consumed due to losses throughout the supply chain: during production, harvest, local collection centers, cross-country transportation, and at retail markets.Approximately 41% of tomatoes are lost during transportation alone, mostly because tomatoes are placed in large woven baskets, and then smashed as the baskets are stacked on top of one another for the journey to Lagos. Replacing baskets with plastic crates can reduce losses from 41% to 5%, with proportional reductions in emissions, or 0.1 tCO2e per crate.Examining these three cases reveals profitable measures that can reduce the GHG intensity of agricultural production by reducing losses. Loss reduction ranges from 4.5% to 36%; internal rates of return (IRRs) range from 23% to 303%; payback periods from three months to two years; and emission reductions range from 0.01 to 1,367 tCO2e. The dairy cases have the highest return on investment, higher upfront costs and longer breakeven periods, implying a need for longer term financing. Bags in Tanzania and crates in Nigeria have relatively low upfront costs and seasonal break-even periods. Future studies should consider whether FLW interventions may indirectly increase emissions, partially offsetting benefits. Profitability of FLW business models does not rely solely on the reduction of FLW for increasing revenues. In many cases, there are synergies between the reduction of FLW, improved quality, increased prices for businesses and farmers, or other profitability incentives. Improved quality, safeguarding against price fluctuations, and guaranteeing delivery of higher quantity all can improve the profitability of FLW interventions.The biggest climate change mitigation impact in three cases described here is via reducing emission intensity (i.e. tCO2e per ton of food), rather than by reducing the absolute quantity of emissions. While some FLW reduction measures also reduce the absolute amount of emissions, especially in the dairy sector, emission intensity should be the focus of FLW reduction work. Given increasing demand for food products, this is a critical means of mitigating global emissions.These cases reveal a number of lessons for reducing FLW at large scales. Even though an appropriate technology or product has been developed, there is still a lot of work to be done before it becomes widespread and used on a commercial basis.Where a business model has been established, supporting businesses, such as a business that plastic crates, that profit from FLW reduction measures may be the most effective means of scaling up. Even though an appropriate technology or product has been developed, there is still a lot of work to be done before it becomes widespread and used on a commercial basis. Investing in marketing strategies and business management skills can help to accelerate the uptake of a FLW intervention.Lack of access to finance is a primary barrier to investing in FLW interventions across supply chains. In addition to general challenges in access to finance in the agriculture sector, many FLW investments have payback periods that are challenging for farmers with immediate cash needs, and appropriate credit is difficult for farmers to access. Absorbing the credit risk specifically related to FLW investments would be hugely helpful for increasing uptake of FLW measures. Additionally, increasing the business management capacity of involved businesses would also improve the adoption of FLW measures by reducing perceived credit risk.stages. The Gates Foundation, the Rockefeller Foundation, USAID, UK-AID, the World Bank, and many others have invested in early stage development of technologies and products that reduce FLW. This type of high-risk / noncommercial funding is key in early stages of research, development, and deployment of new technologies.A poor regulatory or enabling environment is consistently a barrier to scaling up FLW interventions. Health and safety and quality standards, in particular, can create conditions that enable FLW reduction measures to succeed. In some cases, the proper regulatory framework exists, but is not adequately enforced.All measures are expected to benefit smallholder producers, either directly in the case of the hermetic bags and the dairy extension services, or indirectly in the case of tomato crates and dairy coolers. In the case of indirect benefits, the increase in revenues and profitability in the supply chain occur very close to the producer in the supply chain, and it is reasonable to expect that producers capture some benefits.Business models for reducing FLW are not well understood at the level of specific interventions. More research is needed to investigate specific business models and the case for investing in those models. More research on business models is needed to understand where profits can be made on reducing losses and which actors are best placed to implement them. To address social justice and equity concerns, additional research should focus on gender-specific business cases.Duncan Gromko is a Finance Expert at UNIQUE forestry and land use. He facilitates investment in sustainable land use, particularly in Latin America, East Africa, and Southeast Asia. He can be reached at duncan.gromko@unique-landuse.de.Gulbahar Abdurasulova is a Climate and Agriculture Expert at UNIQUE. Her work focuses on improving the resiliency of agricultural supply chains and food consumption, especially in East Africa and Central Asia. She can be reached at gulbahar.abdurasulova@unique-landuse.de. IPCC 2018). The carbon footprint of FLW is estimated to be up to 3.49 gigatons (gt) of carbon dioxide equivalent (CO2e), representing up to 6-10% of total anthropogenic greenhouse gas emissions (HLPE 2014). Reducing FLW reduces the greenhouse gas (GHG) emission intensity of agricultural production; i.e. the number of tons of GHGs per ton of food consumed. In order to realize its potential, measures to reduce FLW need to be rapidly scaled up across agricultural supply chains.In addition to its impact on climate change, FLW has significant impacts on the global economy and food security. Researchers are still coming to grips with the scale of FLW; first estimates suggest that approximately onethird of all food produced is either wasted or lost, with a value of approximately US$ 940 billion per year (FAO 2015). The food security challenge and negative environmental impacts of food production are likely to grow, as demand for food increases due to population growth (an additional 3.6 billion people by 2100) and increasing incomes in developing countries (UNDESA 2017).Global social trends, such as changing diets associated with greater wealth, are increasing demand and providing private sector investment opportunities for resource-efficient food production and consumption (Delgado 2017).Beyond the climate change and economic impacts, FLW is associated with environmental harms, namely increased waste, water use, soil erosion, and loss of natural resources and biodiversity due to the production of food (Table 1) (FAO 2014). Increase in demand for agricultural production is the main driver of deforestation and land degradation in many parts of the world. The impact of FLW on land degradation and deforestation is higher in developing countries, with 6.31 Gt of soil lost and 1.66 million ha deforested in 2013. FLW also contributes to climate change by causing avoidable GHG emissions.➢ Initial estimates suggest up to onethird of all food is lost or wasted between production and consumption; ➢ The cost of lost and wasted food globally is estimated to at US$ 940 billion per year; ➢ Lost and wasted food consumes a quarter of all water used by agriculture annually; ➢ The cropland size that was necessary to produce lost and wasted food equals the size of China; ➢ Lost and wasted food generates an estimated eight percent of global greenhouse gas emissions; and ➢ Lost and wasted food would be the third greenhouse gas emitter in the world after China and the United States.Box 1: Quick facts on food loss and waste Numerous examples have demonstrated that reducing FLW can generate a triple win for food security, for the environment, and for the economy (Hanson & Mitchell 2017). Decreasing FLW creates an opportunity to feed more people. Cutting losses and waste in half by 2050 could contribute to reducing the food gap by 20% (WRI 2013) and that around one billion extra people's nutritional requirements could be met if food crop losses could be halved (Kummu et al. 2012). Curbing FLW along the food supply chain also has multiple economic benefits, as it saves money for farmers, companies, and households.Sustainable Development Goal (SDG) Target 12.3 calls for cutting per capita global food waste in half at retail and consumer levels and reducing food losses along production and supply chains (including post-harvest losses) by 2030. The progress of implementation of SDG Target 12.3 shows the potential of various actors, and especially business, to contribute to achieving the global FLW target and addressing climate change mitigation at large scales. One example is the global coalition of leading agricultural companies, the Global Agri-business Alliance, and its Food and Agricultural Product Loss Resolution, under which the members aim to reduce their rate of food loss by 50% by 2030 (Lipinski et al. 2016). Another big development is a global call to action by The Consumer Goods Forum to promote consumer education of labeling and labeling standardization by the year of 2020.While the topic of reducing FLW has been extensively addressed by research and practitioners, there has been less focus on understanding specific businesses' motivations for reducing FLW. Donor-supported programs have made important advancements to reduce FLW, but these interventions have not always been adopted at scale, due to commercial barriers and a poor enabling environment. Understanding businesses' motivation to reduce FLW and reducing barriers to further investment in FLW reduction are key steps to accelerating private sector investment and scaling up efforts. Relatively small amounts of public investment or policy shifts can encourage significant private investment to reduce FLW. Other studies show that FLW reduction measures can be highly profitable, while contributing to climate change mitigation and improving food security (Clowes et al. 2018, Hanson et al. 2016, Hanson & Mitchell 2017, Kiff et al. 2016, Sathguru Management Consultants & FAO 2017a-d).One study on benefits of a food waste reduction program at pre-consumption stage across 42 hotels found that the benefit-cost ratio of such programs was 7:1 over a three-year timeframe, with no correlation with hotel's market segment or geography (Clowes et al. 2018). In addition to the financial business case for FLW reduction, other studies have illustrated how FLW can reduce GHG: increased GHG emissions efficiency per unit of food produced (emission intensity) through increased efficiency in the food supply chain, and reducing release of GHG emissions from decomposition (Nash et al. 2017).This report analyzes research to date on the business case for reducing FLW and associated climate change mitigation. The report takes a deep dive into three interventions to reduce FLW via commercial means; milk spoilage in Kenya, grain storage in Tanzania, and tomato transportation in Nigeria. The report concludes by recommending how international development organizations, national governments, private sector investors, businesses in agricultural supply chains, and other stakeholders can address barriers to commercialization and accelerate adoption of FLW reduction measures in ways that also achieve social equity and environmental sustainability.FLW is defined as a reduction in mass of the edible food items produced for human consumption (FAO 2011). It takes place at each stage of the food supply chain (FSC): production, post-harvest and storage, processing, distribution, and consumption. Losses occur at early stages of the FSC, and waste occurs at later stages, closer to consumers (Delgado et al. 2017, FAO 2011, HLPE 2014, Lipinski et al. 2013). However, the precise boundary between food waste and food loss is somewhat arbitrary, and making this distinction does not serve to advance FLW reductions.Another potential point of disagreement over FLW definitions is related to the disposal and/or use of waste. For example, is food waste that is disposed of in a landfill equivalent to food waste that is composted? In such a case, the distinction should be based on the FLW impact that is being targeted. From a food security perspective, food waste in a landfill is more or less equivalent to food waste that is composted, but from a GHG emissions accounting perspective, the two have different implications.The reasons for losses at production, post-harvest, and processing stage are various: spoiling, inadequate storing conditions, lack of refrigeration, lack of packaging, etc. (FAO 2011, Segrè et al. 2014). For example, fruits bruise during picking; edible produce degrades due to fungus or disease; and milk is spilled during processing or transportation (Lipinski et al. 2013). The FLW that takes place at the distribution and consumption stages of the FSC are mostly referred to as food waste (Alexander et al. 2017). Examples of food waste are sorting out edible produce, produce expired before purchase, sorting out produce due to quality, and produce that is purchased and cooked but not eaten. Consumer preferences play a large role in FLW, as food is often discarded for aesthetic reasons even if it is safe for consumption. Additionally, unnecessary over-consumption of calories is a type of waste. While reducing unnecessary over-consumption would not reduce the GHG emission intensity of agricultural production, it would reduce agricultural production and associated emissions overall. Description of FLW at each stage of the FSC is presented in Table 2. This analytical work adopts a broader definition of FLW, starting from total harvest of produced food, including non-human food uses and inedible produce, until calories that are overconsumed (Figure 1). A holistic definition looks at the entire agricultural and livestock production system to identify inefficiencies. This definition includes the loss of agricultural residues that have impacts on the overall food security situation, although residues are not edible food, (Alexander et al. 2017). Over-consumption, i.e., intake of more calories than required, is recognized as an inefficiency of the food system (Alexander et al. 2017, Bajželj et al. 2014, Segrè et al. 2014) and as a public health concern (Kiff et al. 2016, Lipinski et al. 2013). Accounting for non-edible and over-consumption losses represents a broader view of the agricultural system that captures opportunities for improving efficiencies throughout the whole agricultural supply system, including both production practices and consumer preferences (Alexander et al. 2017). As discussed above, definitions for measuring FLW vary widely. How FLW is conceptualized has implications for how FLW is measured, which in turn raises difficulties comparing FLW estimates to another issues. For example, in addition to loss in mass, i.e., quantitative loss, FAO recognizes a qualitative loss of the food as the food quality decreases (Enclude and JMSF Agribusiness 2018). Deterioration of product quality can happen during harvesting, on-farm activities, post-harvest storage or distribution phases. Product quality deterioration also has economic and health implications: the price of produce can decrease due to reduced quality, and the nutritional value can be compromised and/or unsafe for consumption.Differentiation between quantitative and qualitative FLW also impacts whether FLW is measured in weight, calories, nutritional, and/or economic values (Delgado et al. 2017).Measuring FLW in mass or calories reveals different results. For instance, an FAO study on FLW found that 32% of global food produced for human consumption in 2009 was lost or wasted (FAO 2011). The same data converted into calories revealed that global FLW in terms of energy amounted to approximately 24% of all food produced (Lipinski et al. 2013).The difference in measuring weight versus calories is due in part to the water weight in food. For example, 100 grams of fresh apricots contains 60 kcal while 100 grams of dried apricot contains 274 kcal (Foodnutritiontable.com n.d.).Common quantification methods are presented in Box 2. The FLW protocol recommends measuring FLW based upon food weight (Hanson et al. 2016).Estimating and accounting for FLW reductions enables calculating the extent to which the interventions reduce GHG emissions. A common way to calculate GHG emission reduction is estimating the emission intensity of items produced. GHG is reduced through increased efficiency of the FSC, which results in increased efficiency of GHG emissions per unit of food produced (Nash et al.1. Direct weighing: Using a measuring device to determine the weight of FLW 2. Counting: Assessing the number of items that make up FLW and using the result to determine the weight; includes using scanner data and visual scales 3. Assessing volume: Assessing the physical space occupied by FLW and using the result to determine the weight 4. Waste composition analysis: Physically separating FLW from other material in order to determine its weight and composition 5. Mass balance: Measuring inputs and outputs alongside changes in levels of stock and changes to the weight of food during processing 6. Modelling: Using a mathematical approach based on the interaction of multiple factors that influence the generation of FLW 7. Proxy data: Using FLW data that are outside the scope of an entity's inventory (e.g., older data, FLW data from another country or company) to infer quantities of FLW within the scope of the entity's inventory.Box 2: Common methods for quantifying FLW Source: Hanson et al. 2016 2017). Another consideration regarding the climate impact of FLW reduction measures is the avoided GHG emissions from the decomposition of FLW: as agricultural products decompose, they produce methane, a potent GHG 1.4 Where does FLW take place?The degree and types of FLW vary among geographic regions. Regional assessments of FLW found that FLW takes place more 'near the fork' in industrialized regions and more 'near the farm' in developing countries (FAO 2011, Hanson & Mitchell 2017, HLPE 2014, Lipinski et al. 2013). Figure 2 shows the level of FLW per capita in different regions. Industrialized countries produce a larger volume of FLW than Sub-Saharan Africa or South and Southeast Asia. More losses occur at the production stage in Sub-Saharan Africa (167 kg per capita) and in Asia (126 kg per capita) than in other regions. While losses at the production stage are still high for industrialized countries, the proportion of food waste at the consumption level is higher than in developing countries. For example, average per capita food waste at the consumption level of FSC in North America and Oceania is 115 kg per capita and 7 kg per capita in Sub-Saharan Africa (Figure 2). Assessments of FLW in terms of calories and energy show similar distribution of FLW between post-harvest and consumer levels. In developing regions, the share of FLW in terms of calories is much higher at the production and post-harvest stages ( ) (Hanson & Mitchell 2017). In industrialized countries of North America, industrialized Asia, and Europe, the degree of FLW is higher at the consumer level, ranging between 45 and 60% of total loss. Reducing FLW has been addressed through measures at different scales, such as introducing changes in enabling environment or technology. The enabling environment is addressed through adopting policies and regulations for improving market access, infrastructure for roads, energy, and markets in rural areas, pricing the use of natural capital or GHG emissions, education on food waste, capacity building, etc. Technology solutions are typically micro-solutions that are implemented by a single group of actors, for example, the adoption of refrigeration in the fresh vegetable FSC. Interventions along FSC are often solutions that require collective action along the supply chain (HLPE 2014). A few FLW initiatives are described in Box 3.FLW solutions exist at each stage of the FSC (Figure 4). Input choice, such as selecting crop varieties that are tolerant to weather stresses, suitable for specific locations, and attractive to the target market have great potential to reduce food loss. Equally important and effective are solutions like harvesting timing and scheduling to avoid pre-harvest losses. For instance, 25% of tomatoes are not harvested in Nigeria because prices drop so low that harvesting becomes unprofitable (Enclude and JMSF Agribusiness, 2018). Processing and proper packaging of produce prolongs shelf life and contributes to reducing FLW. Storage technologies adapted to local conditions avoid the deterioration in quality of products and protect from destructive pests and other contamination. There is potential to reduce FLW at the transportation and distribution stage as well, for example through proper storage of produce during transit and at retail stores and warehouses, centralized distribution facilities, and efficient scheduling of transportation operations.There is significant interaction between FLW reduction interventions and efforts to mitigate global climate change. Byy increasing the portion of food produced that is consumed, the GHG intensity of food production is decreased. Additionally, some FLW-reduction measures directly reduce GHG emissions, such as reducing milk spoilage. Champions Initiative 12.3 is a coalition of executives from governments, businesses, international organizations, and other stakeholder organizations that seek to reduce FLW. These leaders share how FLW measures are being implemented around the world in order to address barriers and publicize success stories.Source: Adapted from (HLPE 2014, Nash et al. 2017) Numerous studies have examined the benefits of reducing FLW. The World Resources Institute calculated and explained the benefit-cost ratio of FLW-reduction measures using data collected from 42 hotels (Clowes et al. 2018). A ReFED Retail Food Waste Action Guide is a guide based on the EPA Food Recovery Hierarchy framework that recommends FLW-prevention with the greatest potential for profits (ReFED 2018). Too Good To Go (toogoodtogo.co.uk) is an example of a start-up company that helps stores sell their surplus food and track avoided GHG emissions; it is based in Europe. A study on food loss at post-harvest stage in the state of Andhra Pradesh, India for four sub-sectors: chickpea, mango, milk and rice, commissioned by the FAO initiative SAVE FOOD, highlights the causes of food loss and proposes possible solutions applicable to each sub-sector (Sathguru Management Consultants & FAO 2017a-d).FAO also commissioned a series of case studies on reducing post-harvest losses in fruit and vegetable supply chains in South Asian countries (FAO 2018).•Select varieties that meet consumer requirements, have longer shelf life, or are less vulnerable to droughts There is a US$47 annual fee for the food stores that includes everything from marketing, social media, service for the account and the app. For every portion that is sold through the app, TGTG gets US$0.85.The information used in this report was compiled using desk research, phone interviews, and authors' existing knowledge from other project work. The authors began research for the report with an extensive review of existing literature on FLW. Based on this analysis, 15 potential business cases were selected for further study.Follow-up interviews and availability of information led to the selection of the dairy supply chain in Kenya, maize supply chain in Tanzania, and tomato supply chain in Nigeria for further analysis as business cases. The authors prioritized cases based upon: their relevance in the country, perception of potential profitability, and potential to positively impact directly or indirectly smallholder farmers in developing countries. Additionally, the authors chose supply chains with high GHG intensity (dairy), medium intensity (horticulture), and low intensity (cereals). The authors present findings from the interventions at the intervention level and attempt to estimate the impact if the intervention were scaled up to the national level.The GHG emissions estimates for the tomato and maize cases were calculated using the EX-ACT Tool (http://www.fao.org/tc/exact/ex-act-home/en/). The dairy case estimates were calculated based upon WRI data for emissions per liter (WRI CAIT 2.0 2017).Cash-flow models were constructed using assumptions provided by interviewees and data found in literature.The specific cases were built partially using existing literature, but primarily by interviewing companies and other actors in the supply chain. The authors were not able to interview every key actor in each selected supply chain, and do focused on key actors for implementing the intervention. For example, hermetic bag distributors were a key source of information in the hermetic bag case. Additionally, organizations indirectly involved in promoting the intervention (NGOs, international development organizations) were interviewed to better understand the context for the intervention.3 Business case: reducing milk spoilage in KenyaApproximately 150 million households produce milk around the world. Milk is an important source of calories and income for small households, particularly in the developing world. Losses in the sector vary significantly by world region. In Europe, North America and Oceania, and industrialized Asia, most losses happen at the consumption level, when milk purchased by consumers expires before it is consumed. In developing countries, however, losses are more common at the production, post-harvest (transporting milk to processors), and distribution levels ( ). Challenges in controlling bacteria are a primary reason for milk spoilage at these stages of the supply chain. Milk production is also expected to grow from 5.2 billion liters in 2017 to 12.6 billion liters by 2030. About 2 million farming householdsor 35% of rural householdsproduce milk in Kenya. Women play a major role in dairy production throughout the country. About 70% of milk is produced on smallholder farms, and milk sales contribute significantly to farmers' incomes, including income for rural women. The sector is largely characterized by household consumption or selling milk directly; 47% of production is for household consumption, and 80% of production is consumed at household level or sold directly to consumers and not to a processor (Ministry of Livestock Development 2010). Most production is by smallholders with 2-3 cows. Furthermore, traditional consumption of milk in tea makes raw milk a favorable product.Dairy cooperatives, owned collectively by dairy producers, play a critical role in organizing milk production in the country. Cooperatives typically help to organize the transportation of milk from their hundreds of members to nearby dairy processors. Dairy producers make regular financial contributions to the cooperatives and receive services in return. For example, cooperatives may sponsor technical extension visits for their members, organize input suppliers to engage with members, and offer financial services for members, either directly or in cooperation with a local bank.Average dairy cow productivity is low (on average approximately 1,800 kg/cow/year, compared to 8,000-9,000 kg in Europe or 10,000 in the U.S. and Israel). In addition to reducing waste in the dairy supply chain, boosting productivity is a key strategy for increasing production in the sector. Improving access to feed and animal husbandry practices are two of the most important ways that yields can be boosted while reducing GHG emissions (Erickson & Crane, 2018).Limited market access in remote areas far from milk collection centers and low hygienic and food safety standards make milk spoilage and loss a primary challenge in the dairy sector in Kenya. Typically, milk that is processed is sent from producers to local MCCs and then to one of almost 600 cooling centers around the country. After cooling, milk is transported via trucks to 32 different processing plants, where it is pasteurized, separated, and homogenized. Total installed processing capacity is 2.9 million liters per day (Republic of Kenya 2013). Milk is sometimes treated with Ultra High Temperature (UHT) techniques or turned into powder before being distributed. Kenya dairy processors process approximately 600 million liters of milk per year (Wilkes et al. 2017).New Kenya Cooperatives Creameries (NKCC) is Kenya's second largest milk processor, processing 160 million liters of milk per year and second only to Brookside Dairy in terms of production (Wambugu et al. 2011). NKCC secures its supply from approximately 54,000 farmers from 18 catchment areas around the country. The majority of NKCC suppliers are small farmers, on average supplying the company with eight liters of milk per day (Ministry of Agriculture Livestock and Fisheries 2016).The dairy sector is a significant source of GHG emissions in the country, although the share of GHG emissions is debated. For every kg of milk produced, approximately 5.2 kg of CO2e are emitted (including enteric emissions and manure management), or 12.3 Mt CO2e per year in Kenya based on national dairy statistics (WRI CAIT 2.0 2017). Kenya's total GHG emissions were 60.2 Mt CO2e in 2013, meaning that dairy sector emissions represent approximately 20% of total emissions (USAID 2017). Other estimates suggest that dairy emissions are responsible for as much as 41% of total emissions in the country (Ainabkoi Dairy Farmers Cooperative Society personal communication 2018).This business case was developed with knowledge gained from UNIQUE's long-term experience in the Kenyan dairy sector, literature review, and targeted interviews of producers, cooperatives, and service providers.The dairy supply chain in Kenya is complicated, as milk passes through many actors in the formal market ( ). Smallholder producers, who produce most milk in the country, deposit their milk in local MCCs before it is transported to processing plants. Milk is then sold through a variety of outlets. Key losses happen between the smallholder producer and the processor. Milk is collected and transported in unhygienic conditions and exposed to high temperatures, leading to spread of bacteria and eventual spoilage. Recognizing the potential to increase milk supply, Kenyan milk processors have taken steps to reduce losses that occur before the milk enters their direct control. NKCC and other processors are supporting farmers to reduce losses through three specific measures:• Processors pay a premium of US$ 0.01-0.02 (KES 1-2) (assuming conversion rate of 0.0099 US$ per KES) per kg of milk for farmer cooperatives that collect milk in coolers (The coolers are typically diesel powered). Coolers store milk at a lower temperature, reducing the amount of time that milk is exposed to high temperatures, thus decreasing bacteria levels. • Processors pay a premium of US$ 0.01-0.03 (KES 1-3) per kg of milk to farmer cooperatives for achieving certain volume-based targets. Participating in farmer training programs can enable farmers to boost productivity and reduce losses, ultimately allowing cooperatives to reach these targets. Clean milk production training modules focus specifically on milk quality and handling prior to collection. • Processors pay a premium of US$ 0.02 (KES 2) per kg of milk for milk that is transported in tankers. Tankers are meant to displace smaller aluminum cans that farmers use to transport milk. By using tankers, the amount of time that milk is exposed to unhygienic conditions and high temperatures is reduced, decreasing bacteria levels.The mechanism by which NKCC and other processors support these loss-reduction measuresa price premium for farmers that adopt different practices -is noteworthy. \"Side-selling\" and competition among milk processors for access to supply is a major challenge for milk processors in the country. By providing a subsidy, processors hope to increase supplier loyalty in addition to providing an incentive to reduce spoilage losses.It is important to recognize that these measures are only relevant for the formal milk market, where milk is sold and processed. About 45% of milkwhich is mainly collected during the evening milkingis retained for home consumption, the feeding of calves, or sold to neighbors.Evening milk is often referred to as \"women's milk\" and is an important source of income for women.Farmer cooperative costs and benefits Farmer cooperatives help purchase equipment or implement extension services programs. It is important to clarify the underlying business model of cooperatives when analyzing the costs and benefits. Farmer cooperatives typically buy milk from farmers at the same price that they sell it to processors. Cooperatives are entities owned by their members and do not, therefore, make money by marking up the price of milk. Rather, they meet their costs by charging their members membership fees. The proposed investments alter this business model: as they are adding value to the milk and receive a premium from the processor, cooperatives make a small margin on milk that they purchase.The authors analyzed the business case for three FLW-reduction interventions in the dairy sector in Kenya: coolers, farmer training programs, and tankers. Data were not available to construct a cost-benefit analysis for investment in tankers.Coolers require high upfront investment costs and generate continual operational expenditures, primarily for energy. The purchase of the cooler and its installation cost approximately US$ 5,942 (KES 600,000), and yearly operational costs are US$ 8,318 (KES 840,000). Coolers have an average capacity of 5,000 liters and are typically operating at approximately 50% capacity. Farmer cooperatives benefit financially from increasing the amount of milk that they can sell to a processor and from the price premium. Coolers reduce spoilage losses at the cooperative from 6.4% to 0%. Costs and benefits with and without the cooler from a farmer cooperative perspective are summarized in Table 4. Data were not available to evaluate the costs and benefits of solar energy-powered coolers versus diesel-powered coolers; this remains a gap in analyzing coolers. The investment in coolers is extremely attractive under the authors' assumptions. CAPEX and OPEX increases are quickly paid back through increases in revenue. Revenues increase due to reduction in losses (52,560 liters per year) and an increase in price paid by the cooperative (US$ 0.01 per liter). The investment can be repaid within one year and has an IRR of an estimated 303% over five years. The investment is most sensitive to the assumption that coolers reduce losses from 6.4% to 0%. If losses are not reduced so dramatically, the investment becomes less profitable; for example, the IRR drops to 154% if losses with coolers are reduced to 3%. The investment is also sensitive to the amount of milk delivered by farmers; if farmers produce half of what they are assumed to produce (7.5 liters per day from 2 milking cows), the IRR drops to 77% over five years.There are no upfront capital costs; operational costs take the form of paying the salaries of extension agents (US$ 792 or KES 80,000 per month for three extension agents) and their costs (US$ 297 or KES 30,000 per month). Cooperatives benefit from the premium paid for meeting volume targets, between US$ 0.01-0.03 (US$ 0.02 per liter is assumed for calculations). Using the authors' assumptions, milk productivity increases by 1.5 liters per animal per day during the first year; during the second year, daily productivity increases by an additional 1.5 liters per animal. Increasing the total volume and price paid per liter increases the net cash flows of cooperatives by US$ 782 (KES 79,000) per month during the first year and US$ 1,316 (KES 133,000) per month during the second year after paying for the extension agents. An IRR of 72% results. This slight increase is extremely sensitive to the premium received by the cooperative; if they meet lower volume targets and receive a premium of only US$ 0.01 per liter, net cash flows become negative: US$ 153 (KES 15,500) during the first year and US$ 114 (KES 11,500) during the second year after paying for the extension agents. Table 5 summarizes the costs and benefits of farmer training programs. However, it is important to note that the business model of cooperatives is affected by more than the direct increase in revenues from the premium. Cooperatives cover a significant portion of their costs through membership fees. Having extension programs is likely to increase cooperatives' membership fees, and thus the fees that they earn. This dynamic is difficult to predict and has not been incorporated into the cash flow analysis.Aside from the benefits to the cooperatives, farmers additionally benefit from increased productivity that is associated with improved animal husbandry practices. Productivity may double, and spoilage losses may be reduced by 4.5%. Although the cooperative making the investment does not capture these benefits, their member farmers benefit significantly.The use of tankers implies a high upfront cost of US$ 91,080 (KES 9.2 million) for farmers for the purchase of the tankers. There are also some operational costs to support drivers and maintenance to the tankers: US$ 297 (KES 30,000) per month for a driver's salary and per diem, US$ 990 (KES 100,000) per month for fuel, and US$ 149 (KES 15,000) per month for maintenance (Ainabkoi Dairy Farmers Cooperative Society personal communication, 2018).Tankers have a capacity of 10,000 liters, but they typically operate at 70% capacity. The main benefit to a cooperative from purchasing a tanker and transporting the milk from the cooperative to the processor comes in the form of a premium from the processor of approximately US$ 0.02 (KES 2.5) per liter. The authors are not able to estimate the reduction in losses from using a tanker and thus the expected cash flows of such an investment. More research is needed to evaluate the profitability of investing in a tanker.The authors were unable to estimate the financial benefits to processors of these measures with the available data for two reasons. First, processors do not track the total change in quantity of milk purchased as a result of the three measures. One important benefit to processors, improved supplier loyalty, is difficult to attribute exclusively to the subsidies provided by a processor. Second, estimating the financial benefits of these measures would require a better understanding of a processor's own business model, and how increased access to supply translates into revenues and profits. More information is required to demonstrate the financial efficacy of these programs from a processor's perspective. The premium processors offer to farmer cooperatives are the driving force behind cooperatives' incentives to invest. Understanding their profit margins and the incentives they can afford would inform how they can optimally influence cooperatives to reduce losses.The GHG intensity of milk production in Kenya is high, so measures that reduce losses from spoilage have corresponding high potential to reduce GHG emissions. The reduction in losses from each measure and associated GHG reductions are shown in Table 6. Emissions savings for coolers are based on the use of one 5,000-liter capacity cooler. Emissions savings for extension services are based on hiring three extension workers to work with members of one dairy cooperative. The authors have been unable to estimate loss reduction potential from the use of tankers, so this is not included in Table 6 and is noted as a future information need. There is significant potential to reduce GHG emissions through coolers and extension programs. Assuming that all milk produced nationally could be shifted could be to using coolers and extension services, then approximately 1.7 and 1.2 Mt of CO2e per year could be saved. This is an overestimation as some milk is currently stored in coolers and produced by farmers that receive training on safe handling practices, but shows the scale of emission reduction potential.In addition to emissions reduction potential, another indicator of efficient use of financial resources for GHG mitigation are also relevant: marginal abatement cost, or the marginal cost of implementing mitigation. The marginal abatement cost is similar, dividing the NPV associated with a measure by the tCO 2 e that it will reduce. A negative marginal abatement cost means that the revenues associated with the measure are greater than the costs after applying an appropriate discount rate. Higher negative numbers reflect higher profitability per tCO2e. Despite the effectiveness of reducing losses and associated profitability, these three measures are not widely implemented in NKCC's supply chain nor amongst processors in general. The authors have identified three barriers to scaling up.Finance is a major barrier to implementing these loss reduction measures at a larger scale, particularly for the coolers and tankers. Farmers and farmer cooperatives have difficulty borrowing from local banks for a number of reasons: including insecure land title, insufficient collateral, informality of businesses and their accounting practices, and perception of risk of the agricultural sector. In addition to these general investment barriers for the sector, borrowing for coolers and tankers specifically presents a challenge. Both require significant upfront investment; and medium-and long-term credit is even more difficult for farmers and farmer cooperatives to access. Though some cooperatives have managed to borrow money in order to purchase tankers and coolers, this practice is not widespread.Access to markets and the informal sector. The measures evaluated are only relevant to milk that is sold to processors via formal markets; they do not address milk that is produced for selfconsumption or sold informally, such as from household to household. Poor infrastructure and general difficulty in accessing markets limit farmers' ability to participate in cooperatives and sell to processors. Women generally have a more difficult time participating in formal milk markets because of these conditions. As noted earlier, milk sold on informal markets is known as \"women's milk\" because women control its sale and often the associated income.Farmer cooperative management capacity. Lack of capacity is another important barrier to scaling up the loss-reduction measures described in this report. Kenyan dairy farmers are typically very small, with most farmers owning 2-3 cows and producing 5-10 liters per day.Because such farmers are too small to deal directly with processors, they are organized into cooperatives to collect, transport, and sell milk. Farmer cooperatives face a significant challenge in management, organizing their members and ensuring that they deliver consistent quantity and quality of milk. Loyalty and trust of cooperative members in management has been a key challenge for many cooperatives. Farmers often sell milk on the side if they might receive a slightly higher price, but they expect cooperatives to run profitably and to purchase the milk also when the demand is low. Financial management skills of cooperatives are also low, particularly bookkeeping skills. Both of these factors make it more difficult for a cooperative to invest in tankers, coolers, and training programs. In broad terms, youth are exiting the dairy sector and agriculture at large for employment in urban areas. The lack of youth in management positions in farmer cooperatives is a long-term barrier for the improved management of cooperatives.Disincentives for processors to invest directly in loss-reduction measures is also a barrier to scaling up. Given cooperatives' challenges in accessing finance and management capacity, an alternative model to rolling out loss-reducing measures would be for processors to assume the upfront costs of tankers and coolers. NKCC or Brookside could, for example, purchase a tanker and manage delivery of milk themselves. NKCC is much more creditworthy than a typical farmer cooperative so there is an argument that they are better placed to make these investments themselves.However, two factors discourage processors from taking these steps. First, it would be difficult for a processor to ensure that the tanker is not used to sell milk to a competing processor due to side-selling and competition from other processors. Second, this scenario would translate into additional liabilities in the form of high-risk farmer cooperative loans for processors.Improve financial access. Access to finance, a major barrier to farmer cooperatives to investing in loss-reduction measures, could be partially addressed through credit guarantees or other risk-absorption measures that would encourage banks to lend to cooperatives. Additionally, since access to finance is limited by the financial management capacity of cooperatives, business training for the aging population of financial managers in cooperatives is needed to improve cooperatives' bankability. Providing education and incentives for youth to stay in rural areas and manage these businesses themselves would also help to address the problem.Support the regulatory environment for informal markets. Quality standards for informal milk markets exist, but they are difficult for the Kenya Dairy Board to enforce. At the time of this report, there is a move to require that all informal milk be pasteurized. Support to ensure that all informal milk meets quality standards would reduce losses associated with transport and storage.Develop additional logistical solutions. Much of the loss in the dairy market is associated with the complex logistics of collecting milk daily from remote farmers and protecting it from spoilage until it can be processed. Blockchain technology based on smart phone applications can improve communication between farmers and cooperatives and better organize milk transportation and traceability. Motorbikes or other mobile transportation could be fitted with coolers in order to reduce the time until milk is chilled, which could be a niche for young farmers. Such new solutions will require upfront investment in research and development and broad understanding of the market.Understand and address actors' incentives. The costs and benefits of loss-reduction measures are spread among farmers, farmer cooperatives, and processors, creating a complex set of incentives for actors. For example, cooperative business models, including whether they generate revenues through member fees or by adding value to milk, are not well understood. A better understanding is needed of cash flows among these actors and what incentives they have to invest in loss reduction. This would help to identify price or investment bottlenecks that could then be addressed with public policy.4 Business case: storage of cereals in TanzaniaGlobal production of cereals in 2018 is projected to decrease by 40.6 million tons from 2017 levels, reaching total production of 610 million tons. 3 Meanwhile, utilization of cereals continues to grow and is expected to be 2,646 million tons in 2018/2019, a 1.2% increase from the previous year. Continued growth of consumption combined with production challenges is putting pressure on cereal stocks (FAO 2016). Cereal production in North and South America, is characterized by large-scale farmers of 50 hectares or more, while farmers in Africa and Asia tend to be smaller (Altiereri & Koohafkan 2008). In sub-Saharan Africa, cereal production accounts for approximately 25% of incomes (World Bank 2011).Maize is a staple crop for most Tanzanians and is grown as both a subsistence and cash crop. Most maize farmers are small farmers with 1-3 hectares of land. As most maize production in the country is rainfed, it is increasingly vulnerable to extreme weather events, and production varies significantly year to year. In late 2016 and early 2017, for example, maize prices doubled when supplies fell during prolonged drought. Prices subsequently returned to normal levels when rains returned (FAO n.d.).Production of maize and other grains is highly variable throughout the year based on agroecological conditions. Some regions in Tanzania have two growing seasons per year, while other regions have only one harvest per year. Annual weather fluctuations result in glut and scarcity times (see Figure 7), creating large fluctuations in the selling price of maize throughout the year. Farmers in a particular region usually harvest at the same time, creating a glut, and sell maize for as low as US$ 9 (20,000 TZS) per 100 kg. A few months after harvest, farm-gate prices spike to as high as US$ 35 (80,000 TZS) per 100 kg.The large price fluctuations for maize and other grains are primarily the result of lack of access to dependable storage. While losses in cereals supply chains happen at many steps in the chainincluding harvesting practices, pest and insect infestation, contamination by aflatoxins, fungus, or pathogens (often related to drying)this case focuses on post-harvest losses related to storage. In Sub-Saharan Africa, physical losses amount to 10-20% of harvested volumes and US$ 4 billion in losses annually (World Bank 2011). This case investigates the potential to reduce losses in grain storage through the introduction of hermetically-sealed bags. The case was developed through interviews with international financial institutions, local banks, companies that distribute hermetic bags, and NGOs involved in the sector. PASS and Vestergaard were particularly important sources of information.In recognition of the importance of maize and the potential to improve livelihoods through reducing post-harvest losses, a number of programs have developed and introduced technologies that reduce losses in storage. A Purdue University researcher developed a \"Purdue Improved Crop Storage\" (PICS) bag in the 1980s in an effort to specifically reduce post-harvest losses in cowpeas. The Gates Foundation has supported the use of PICS bags through three fiveyear projects in Burkina Faso, Ethiopia, Ghana, Malawi, Nigeria, Tanzania, and Uganda. Although the bags were initially designed for cowpeas, they are now being used for many other crops, and particularly with maize in Tanzania.With the third phase of PICS wrapping up in 2019, efforts are focused on turning the product into a commercial business. A Tanzanian company, PPTL, started to manufacture and distribute PICS bags in 2014. Commercial sales started in 2015 with 130,000 units, and reached 780,000 units in 2017. A UK-AID program, Food Trade, has assisted with marketing and distribution, and Purdue University has funded demonstrations in 3,500 villages.A second technology provides similar benefits. A Dutch parent company, Vestergaard, has developed many goods used for development work, such as blankets and water purification technology. In 2004, Vestergaard received a recommendation from the World Health Organization Pesticide Evaluation Scheme (WHOPES) for bed net technology to counter malaria. Knowledge about stopping insects for bed nets was then transferred to grain storage, and they developed ZeroFly Storage Bag. ZeroFly Hermetic stops insects through two means:The emission intensity of grain production is relatively low, especially compared with the Kenya dairy case. Emissions per ton of grain produced are calculated to be 1.07 tCO 2 e per ton. However, the low cost of the hermetic bags and their effectiveness at reducing waste by 14% mean that they can still generate significant emission reductions when implemented at large scales. The reduction in losses from introducing bags and associated GHGs are shown in Table 8. Source: Authors' calculations using EX-ACT ToolDespite PPTL, Vestergaard, and others' success in rolling out hermetically sealed bags, potential to scale up bag use by orders of magnitude remains. A number of barriers are slowing scaling-up efforts.Convincing farmers of bag effectiveness. Communicating the benefits of the bag to farmers is one of the main challenges to increasing adoption rates. Demonstration efforts have been partially successful in convincing farmers of the effectiveness of the bag, but demonstrations are costly. There are reports that some vendors are using untested technology and promoting them as hermetically sealed bags, which could further undermine farmer confidence in the technology.Distribution logistics. Many farmers are living in remote areas, often with poor infrastructure. PPTL estimates that adoption rates of bags are high within a seven-kilometer radius of a vendor.Establishing networks with vendors across remote areas of Tanzania is costly and time consuming.Access to finance. Purchase of the bag and forgone revenue from selling maize immediately after harvest are significant costs to small farmers. Farmers often have immediate cash needs, such as school fees, that they need to meet. Financial intermediaries such as Equity Bank and TPB Bank are the primary institutions lending to the agricultural sector, but small farmers are often not seen as creditworthy. Interest rates of 15-20% are common. Agro-dealers often provide some inputs to farmers on credit basis, but typically over very short terms. The IFC is currently supporting a risk guarantee program to reduce local banks' risk in lending to Tanzanian farmers for FLW reduction measures, amongst other investments.Price risks. Adopting hermetically sealed bags is a sort of speculation by the farmer, as he or she is counting on the price of maize to increase in order to justify the investment and delay in immediate income. If prices do not soar as normal, the investment would be a poor one. At prices below US$ 0.23 (525 TZS) per kilo and a discount rate of 15%, the investment no longer has a positive net present value. If hermetically sealed bags were widely adopted across the entire country, price fluctuations of maize would decrease, reducing the benefits of price speculation.There are several solutions that could accelerate the use of hermetically sealed bags for the storage of maize and other commodities.Enforce quality standards. Government enforcement of quality standards, and associated marketing, would reduce risk that vendors promoting poor technology as hermetically sealed bags could destroy farmer confidence in the technology.Subsidize distribution and marketing. Though PPTL has been able to quickly increase distribution networks, increasing the number of distributors and vendors represents a significant upfront investment with significant risk. Moreover, demonstration sessions required to encourage farmer adoption of bags cut into profit margins of bag distributors. Subsidizing distribution and marketing of bags would reduce these barriers and accelerate scaling up.Absorb credit risk. Given the clear profitability of the use of the bags and the quick return on investment, the bags are a sensible investment for a farmer with access to capital. Though some farmers have access to cooperative unions or other farmer organizations, this is rare and even those farmers experience difficulty accessing loans. Given that farmers are generally perceived as having questionable creditworthiness by banks, it may be more appropriate that distributors or vendors provide credit to farmers for bag use. Rolling out such a program would likely require the credit risk of farmers to absorbed by public finance.Hold maize as collateral. Another way of reducing the risk of lending to farmers is to change the location of maize storage to use maize as a type of collateral. In such a scenario, a grain trader or other entity with warehouse storage could provide the bag on credit to the farmer in exchange for keeping the maize as collateral in a warehouse. The farmer can then repay the loan when the maize is sold. The lender's risk is reduced because this entity holds the maize until it is sold. This model is unproven but it follows the principle of warehouse receipt systems, where farmers receive credit or payment once the produce arrived the warehouse, i.e. they do not have to wait until the trader paid for the produce. However, this would require farmers to give up control over their assets, and it implies additional storage costs for the warehousing entity.5 Business case: tomato transport in NigeriaTomatoes play an important role in the Nigerian economy, both in terms of production and consumption. In 2015, Nigeria produced 1.8 million metric tons of tomatoes, making Nigeria the second biggest producer in Africa and the fourteenth globally (GEMS4 2017). Most tomato producers are small farmers with small areas under production.Tomatoes are an important source of vitamins A and C and are the most commonly used vegetable in rural diets (FADEB consultancy 2014). Although Nigeria is a large producer, the country imports significant volumes (valued at US$ 360 million in 2015). The need for imports is largely due to the severe seasonal variation of tomato production. There is little or zero local production between March and July, while over production in other months means that farmers often do not bother to harvest some tomatoes during gluts because of plummeting prices.In addition to significant seasonal variation, tomato markets are greatly affected by regional differences in production and consumption. The largest volume of production comes from the northern Nigeria, while the biggest demand centers are in southern Nigeria. Table 9 shows production and consumption for different states. Regional differences in production and consumption, particularly between northern and southern regions, create the need for tomatoes to be transported great distances, typically along the Lakaji Corridor (Figure 8). The Lakaji Corridor is 1,225 kilometers long and, in addition to transporting tomatoes, serves as a critical transportation route connecting the interior of the country with international markets. The journey takes between one and three days. Tomatoes pass through many hands along this corridor. Farmers typically sell to local middlemen, who aggregate production and sell to traders. Traders make the trip to Lagos, where they sell to either wholesalers or directly to retailers. There are many markets in Lagos, but the largest is the Mile 12 market. Payment agreements between different actors vary, but it is not uncommon that farmers and middlemen in northern Nigeria are not paid until the traders return from Lagos on the next trip, after the tomatoes have been sold.Losses in the tomato supply chain are significant and occur at many stages. It is difficult to confidently estimate total losses, but losses could be as large as 86% of total production (Enclude and JMSF Agribusiness 2018). An estimated 25% of tomatoes are lost in harvesting or left on the vine due to low prices during peak season. Another 10% of losses occur at local collection centers before tomatoes are transported south. The largest lossesan estimated 41% occur during transportation. Finally, 10% loss occurs at the retail market.Recognizing the negative impacts of these losses on farmers and other small enterprises, a number of donor-supported programs have intervened to attempt to reduce losses in the tomato supply chain. The World Bank and DFID supported the Growth and Employment in States (GEMS) program that included introduction of good-handling practices for tomatoes. The Rockefeller Foundation supported PYXERA Global that introduced tomato drying technologies and practices. Via its Global Alliance for Improved Nutrition (GAIN) program, USAID supported loss-reduction measures, including via plastic crates. The Multi-Donor Trust Fund for Sustainable Logistics (MDTL-SL), administered by the World Bank, also supported the team of Agrofair The Netherlands and IFDC Nigeria to carry out participatory and practical research in \"living lab\" settings with farmers, wholesalers, transporters and retailers to reduce post-harvest losses in tomato, introducing plastic crates and improving sun-drying through using raised platforms. Wageningen University & Research conducted impact monitoring with this project.The plurality of losses occurs during the transportation segment of the supply chain, meaning that addressing transportation losses could be most impactful. Amongst other measures, the use of plastic crates has large potential to reduce transportation losses. In most cases, tomatoes are transported in raffia baskets that hold approximately 50 kg of tomatoes (Figure 9). Baskets are stacked on top of one another, crushing tomatoes at the bottom. In comparison, plastic crates (see also Figure 9) bears the weight of other crates, reducing losses of tomatoes to as low as 5% (compared to 41% with baskets). Trader costs and benefits The financial costs and benefits of introducing plastic crates are distributed across the supply chain from farmer to retailer. As mentioned above, in some cases farmers' payments are a portion of the sales the trader makes in Lagos, meaning that farmers would capture some of the financial benefits. However, without more information it is impossible to estimate the portion captured by each actor in the supply chain. For purposes of analysis, this report considers only the costs and benefits from the perspective of the trader, but recognizes that some costs and benefits may be passed to other actors.There are many financial implications for substituting raffia baskets with plastic crates. Plastic crates cost between US$ 7 (2,500 Naira) and US$ 11.2 (4,000 Naira), while baskets cost only US$ 1.12 (400 Naira). However, plastic crates last up to three years, while baskets last only one trip. Tomatoes in baskets can be packed more closely, increasing the volume of tomatoes per trader trip. However, because of significantly reduced transportation losses (41% versus 5%), the volume of tomatoes delivered to markets in Lagos would be substantially more with crates. (Ogundele 2017). Expected changes in monthly revenues, investments, and costs of goods sold are presented in Table 10. The authors assume that a trader is making four return trips per month to Lagos with a truck that has a 700-crate / 450-basket capacity. One crate holds 25 kg of tomatoes while one basket holds 50 kg. The authors assumed that tomatoes are purchased in northern Nigeria for US$ 0.06 (20 Naira) per kg and sold for US$ 0.22 (80 Naira) per kg in Lagos (Ogundele 2017).Changing to use of crates from baskets also has implications for the return trip from Lagos to northern Nigeria. Baskets are discarded in Lagos, meaning that the truck has full capacity to take other goods north when it returns. Crates must be returned. They can be stacked on top of one another, meaning that about half of the volume of the truck is lost to returning crates. The value of goods being sold on the return trip is less than that of tomatoes. For the purpose of this analysis, the authors assumed that volume lost to returning crates results in a 25% reduction in revenues on the return trip. This number is highly variable, depending on the goods transported from Lagos to northern Nigeria. The authors assumed that tomatoes are only transported during seven months of the year and that the crates are unused during the other five months (Ogundele 2017). Using modeled results, switching from baskets to crates appears to be a good investment. A significant upfront investment is recouped in approximately four months. Even though a truck filled with crates holds fewer tomatoes, many more tomatoes are delivered with quality that can be sold in Lagos. This increase in revenues is partially offset by the lost revenues during the return trip. The profitability of the investment is primarily derived from cost savings: by decreasing the cost of goods (purchase of tomato from the farmer) and by eliminating the need to buy new baskets for every trip. The investment is profitable, featuring a one-year IRR of 34%.However, it is important to emphasize that the assumptions underlying these financial figures are highly uncertain. Two variables that have a significant impact on the profitability of the model are the assumed losses in tomatoes with baskets (and that severely damaged tomatoes cannot be sold for any value) and the effect that returning to the North with empty crates has on lost revenues. Furthermore, the business case does not consider the time that crates will spend unused by traders, during harvest, at aggregation points, and at retail markets. The actual number of crates needed may be 4-5 times the number used by a trader at any one point.The emission intensity of rural tomato production is the lowest of the three cases. Emissions per ton of tomato produced are calculated to be 0.1 tCO2e. The low cost and high profitability of the crate means that marginal abatement cost is quite low (Table 11). Source: Authors' calculations using EX-ACT ToolCompared to the other two cases, switching from baskets to crates is less well developed in terms of its commercial application. With a few small exceptions, the adoption of crates has been highly subsidized by donor support. There are three main barriers to commercial adoption of the crates.Uncertain profitability of the business model. As discussed above, the assumptions underlying the expected cash flows have high uncertainty, and small changes in certain variables could undermine the profitability of the investment. More evidence is needed to determine costs, benefits, and other underlying assumptions.Moreover, while the investment of crates appears sound, the means of rolling out crates on a commercial basis needs to be developed. It has not yet clear, for example, whether farmers or traders should buy the crates, or whether it would make most sense to support businesses that are dedicated to the renting of crates.Manufacturing capacity. There are companies that manufacture crates, but they will only produce crates for orders of 10,000 or larger. Given the small size of many actors in the supply chain, there are few businesses that could place such a large order. Traders, for example, would need 700 crates for one truck load. However, an estimated 6 million crates are needed to transport tomatoes in the country, so the hypothetical demand is more than sufficient.Tracking crates. In order to improve handling of tomatoes, crates need to pass through many hands in the tomato supply chain. Proper incentives (e.g. deposits) need to be established in order to ensure that the owner of the crate can ensure return of crates. Additionally, use of technologies such as bar codes on crates could make tracking easier.Access to finance. The upfront investment of purchasing crates is high for small businesses and thus a significant barrier to adoption of crates. The immediate return on investment and relatively short payback period makes the investment a good case for financing from local banks, in theory. However, the actors who would be purchasing crateseither farmers or tradersare perceived to be risky by banks and have difficulty in accessing even short-term loans from local banks. Interest rates are generally quite high for agribusiness clients in the country.Prove the business case and facilitate financing. Donor-funded programs have provided important support for adopting crates. To transition to a commercial model, data collected during donor programs should be made available and studied to better understand the business case, including the most important financial sensitivities. Reliable cash flow models can give financial institutions more confidence to lend for the activity. The distribution of benefits from crate adoption needs to be understood in order to understand actors' incentives and how crates can be returned to their owner. Reducing lenders' risk for investing in crates can also facilitate their uptake. The Nigeria Incentive-Based Risk Sharing System for Agricultural Lending (NIRSAL) would be critical for such an effort.Support for crate rental companies. Given the economies of scale needed to manufacture crates, widespread adoption of crates is unlikely to happen without developing companies whose business model is based on renting crates or other schemes that enable widespread use of crates with small-scale payments. Rental companies are likely to be start-ups or recently established companies that, under normal conditions, would require significant financial investment and business management skills.Improve the enabling environment. Legislation is being considered that would regulate 12 Mile market, where most tomatoes are sold in Lagos. Legislation includes introducing handling and quality standards, such as the mandatory use of plastic crates in the trade of fresh fruits and vegetables. Such regulation could have a quick and dramatic effect on the use of crates.The three supply chains and associated FLW-reduction measures examined in this study reflect measures focusing on food losses (rather than waste) in developing countries. The dairy measures in Kenya are larger scale and appropriate at the cooperative level. The two dairy cases have higher upfront costs and longer breakeven periods, implying a need for longer term financing. In contrast, crates in Nigeria and bags in Tanzania have relatively low upfront costs and seasonal breakeven periods. All measures are profitable under the assumptions of the study.The GHG return on investment is highest for the two dairy measures. Given the high emission intensity of dairy production in Kenya, there is significant potential to reduce national emission intensity with the two proposed measures, in which the percentage reduction in emission intensity is equivalent to the percentage reduction in FLW. Introducing crates in the tomato supply chain in Nigeria has relatively low potential to reduce GHGs nationally, primarily because of the low GHG intensity of tomato production. The GHG efficiency of the investment is lower than in the dairy cases. Finally, introducing hermetic bags in the maize value has the lowest impact per unit of the three interventions presented in this report. However, given the large potential to upscale bags across the country, the emission-reduction impact can still be substantial. Based upon this study, a number of trends and recommendations have been defined.Where investment has been made to develop business models, profitable FLW interventions have been identified. Agricultural supply chains in many countries face severe FLW. There are many low-tech, low-investment measures that can make significant impacts on reducing FLW and increasing returns for farmers. The cases studied in this report ranged from reducing losses by 4.5% to as high as 36%, all with technology that is available in the countries studied. Economically competitive technology is not the missing link: rather, the overall business and investment environment in a country is often the major hurdle.The profitability of FLW business models do not rely only on the reduction of FLW for increasing revenues or decreasing costs. In many cases, there are synergies between the reduction of FLW, improved quality, increased prices for businesses, or other profitability incentives. Improved quality, safeguarding against price fluctuations, and guaranteeing delivery of higher quantity all can improve the profitability of FLW interventions.The cases identified make the biggest climate change mitigation impact via reducing the emission intensity (i.e. tons CO2e per ton of food) rather than by reducing the absolute quantity of emissions. While some FLW reduction measures also reduce the absolute amount of emissions, especially in the dairy sector, emission intensity should be the focus of FLW reduction work. Given the increasing demand for food products, this is a critical means of mitigating global emissions.Where a business model has been established, supporting businesses that profit from FLWreduction measures may be the most effective means of scaling up. Even though an appropriate technology or product has been developed, there is still a lot of work to be done before it becomes widespread and used on a commercial basis. It is important to identify which actors in the supply chain are most appropriate to adopt the new product. Even once appropriate businesses have been created or identified, they still need significant support to roll out the new product. Investing in marketing strategies and business management skills can help to accelerate uptake of a FLW intervention.Lack of access to finance is a primary barrier to investing in FLW interventions across the supply chains studied. Agriculture is already perceived as one of the riskiest sectors for lending in developing countries. Many FLW investments have payback periods that are challenging for farmers with immediate cash needs to adopt, and appropriate credit is difficult for farmers to access. Absorbing the credit risk of farmers related to FLW investments would contribute significantly to increasing uptake of FLW measures. Additionally, perceived credit risk is also related to the business and financial management skills of the investees, so increasing business management capacity in these businesses would increase adoption of FLW measures.Donor support has played a key role in developing FLW interventions at initial stages. The Gates Foundation, the Rockefeller Foundation, USAID, UK-AID, the World Bank, and many others have invested in early stage development of technologies and products that reduce FLW. Hermetic bags for cereal storage and crates for tomato transportation are available because of years and decades of investment in these measures. This type of high-risk / non-commercial funding is key in early stages of research, development, and deployment of new technologies.Efforts in developed countries, such as ReFED, have been successful in promoting FLWreduction measures by enabling the private sector to understand the economic benefits. In developing countries, FLW is more related to production and farm-to-processor parts of the supply chain than in developed countries. Accordingly, the platform would need to consider different partners and approaches but could learn from ReFED's experiences. CCAFS or other actors could partner with ReFED to explore the feasibility of developing a similar platform or initiatives in CCAFS target countries.The climate change mitigation potential was calculated using the EX-ACTTool. While the EX-ACT Tool is useful to quickly compare supply chains, there is a high uncertainty related to using Tier 1 default values found in the tool. A more detailed supply chain life cycle analysis e.g. using the Gold Standard Scope 3 would be more accurate. The authors recommend expanding the analysis of emission benefits and investment opportunities by considering indirect GHG emission benefits related to land-saving and analyzing the potential for scaling specific business cases at national or even global scale.Poor regulatory or enabling environments are consistent barriers to scaling up FLW interventions. Health and safety and quality standards, in particular, can create conditions for FLW-reduction measures to succeed. In some cases, the proper regulatory framework exists but is not adequately enforced.All measures are expected to benefit smallholder producers, either directly in the case of hermetic bags and dairy extension services, or indirectly in the case of tomato crates and dairy coolers. In terms of indirect benefits, the increase in revenues and profitability in the supply chain occur very close to the producer in the supply chain, and so it is reasonable to expect that producers capture some of these benefits. The exact portion of benefits captured by smallholders needs to be further studied. In the long run, while the interventions push the supply chains to be more market-oriented, there are few adverse impacts expected in terms of smallholders being disadvantaged.It is also important to consider potential adverse environmental impacts of the proposed interventions. For example, when profitability is increased there is sometimes an incentive for producers to increase production and ultimately increase overall emissions. The greatest risk comes in the case of satellite coolers for dairy in Kenya. While some coolers are solar-powered, they can also use diesel fuel. In such cases, the benefits of reducing GHG intensity of milk production could be offset by the increase in use of diesel. In the other cases, there may be a small incentive to producers to increase dairy, tomato, or cereals production if production is more profitable as a result of the FLW intervention. However, this impact would likely be minimal. In general, the potential for other negative environmental or social equity impacts from adopting the proposed measures needs to be further assessed.Business models for reducing FLW are not well understood at the level of specific interventions. Many studies that evaluate different FLW interventions do not consider the business case (e.g. investment costs and returns). The authors had a difficult time identifying cases in which reliable information was available. Because many FLW interventions are driven by donor or research interests rather than commercial concerns, the business cases are not yet developed.More research is required on business models to understand where profits can be made on reducing FLW and which actors are best placed to implement interventions. Finally, additional business cases should focus on gender-specific business cases to address social justice and equity concerns.","tokenCount":"12434"} \ No newline at end of file diff --git a/data/part_3/1706370758.json b/data/part_3/1706370758.json new file mode 100644 index 0000000000000000000000000000000000000000..2442b9a909421e861a4d0eb78698fa040ea9d856 --- /dev/null +++ b/data/part_3/1706370758.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"f8eff067707fc8dfeb1f1afc9b521fcc","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/61145439-46f0-42c7-a726-eb69dfada519/retrieve","id":"-1776945873"},"keywords":[],"sieverID":"afb37d42-9d22-49d6-8f5d-bc40832eb665","pagecount":"60","content":"Tropical (CIAT) -miembro del Consorcio CGIAR-desarrolla tecnologías, métodos innovadores y nuevos conocimientos que contribuyen a que los agricultores, en especial los de escasos recursos, logren una agricultura eco-eficiente -es decir, competitiva y rentable así como sostenible y resiliente. Con su sede principal cerca de Cali, Colombia, el CIAT realiza investigación orientada al desarrollo en las regiones tropicales de América Latina, África y Asia. www.ciat.cgiar.org CGIAR es una alianza mundial de investigación para un futuro sin hambre. Su labor científica la llevan a cabo los 15 centros de investigación que integran el Consorcio CGIAR, en colaboración con cientos de organizaciones socias.www.cgiar.orgPor ello, se tomó como área de estudio la zona que cumple condiciones favorables para el cultivo de café. Además, se realizaron modelaciones de aptitud climática de distintos cultivos bajo el escenario RCP 8.5 de proyección del clima hacia el año 2050, complementando esta información con índices socioeconómicos municipales.Según el IPCC (2014), el riesgo \"es la probabilidad de acaecimiento de sucesos o tendencias peligrosos multiplicada por los impactos en caso de que ocurran tales sucesos o tendencias. Los riesgos resultan de la interacción de la exposición, el peligro y la vulnerabilidad\".En otras palabras, el nivel de riesgo se determina conociendo en dónde está la población de interés, qué le afecta a la misma y qué capacidad posee para adaptarse o responder. La exposición se determina por la presencia de personas, medios de subsistencia, especies o ecosistemas, funciones, servicios y recursos ambientales, infraestructura; o activos económicos, sociales o culturales en lugares y entornos que pudieran ser afectados negativamente.De acuerdo a esto, el presente estudio priorizó y definió la zona productora de café, y se hicieron los análisis con base en esta priorización inicial.Para determinar las zonas más probables de presencia del cultivo de café, se utilizó el modelo MaxEnt, 1 el cual, según Cuesta y Chiriboga (2010), es un algoritmo de aprendizaje basado en la teoría de la máxima entropía, la cual es utilizada como propósito general para realizar predicciones o inferencias a partir de información incompleta (Elith et al., 2006;Phillips et al., 2006). MaxEnt proyecta el nicho climático de una especie encontrando la solución de máxima entropía, la cual está sujeta al limitante que los valores esperados de cada variable ambiental bajo esta solución coinciden con sus promedios empíricos (Phillips et al., 2006).MaxEnt funciona con puntos de presencia del cultivo y datos de variables ambientales para la zona de predicción, infiriendo probabilidades de distribución de la especie con el fin de obtener una probabilidad. La muestra de datos (puntos de presencia) mínima recomendada es de 30 puntos bien distribuidos, evitando al máximo aglomeraciones de puntos, pues inducen ruido al modelo a causa de la correlación espacial.La vulnerabilidad del sector agrícola, en general, frente a los posibles efectos del cambio climático en el Valle del Cauca ha sido trabajada en múltiples proyectos, entre los cuales se destaca el proyecto Agricultura, Vulnerabilidad y Adaptación (AVA, 2013), el cual incluyó factores económicos, productivos, biofísicos, culturales, políticos e institucionales del departamento y concluyó que el sector cafetero era altamente vulnerable al cambio climático.Los comités de cafeteros del Valle del Cauca son una muestra del arduo trabajo que se realiza en el departamento y en los cuales se ha logrado establecer un modelo organizacional que les ha permitido a los caficultores conocer más acerca del manejo del cultivo y a su vez entender la importancia de conservar sus zonas con un enfoque agroecosistémico que les permita la permanencia del cultivo a futuro, logrando así una estabilidad económica y un equilibrio ambiental con su entorno.Figura 2. Promedio del índice de vulnerabilidad actual por departamentos en la cuenca alta del río Cauca.Fuente: Estudio AVA (2013).Cauca Quindío Risaralda Valle del Cauca 0 0,1 0,2 0,3 0,4 0,5 0,6En el contexto del cambio climático, el término peligro se refiere generalmente a sucesos o tendencias físicos relacionados con el clima o sus impactos físicos. Con base en esta definición, se identificó el clima actual y futuro, así como su impactos sobre algunos cultivos que en la actualidad pueden o no ser cultivados en la región cafetera del departamento.La línea base de clima (clima actual) se obtuvo de la plataforma WorldClim (Hijmans et al., 2005), que consiste en un conjunto de superficies climáticas de aproximadamente 1 km de resolución espacial. Dichos datos representan la información acumulada desde 1950 hasta el año 2000.En el caso de la generación de escenarios de clima futuro se obtuvieron los Modelos Generales de Circulación (GCM, por sus siglas en inglés) descargados del portal del Earth System Grid (ESG) de Modelos Generales de Circulación pertenecientes al SRES (siglas en inglés para Informe Especial sobre Escenarios de Emisiones) del Quinto Informe de Evaluación del IPCC (IPCC, 2013). Los datos fueron interpolados utilizando los centroides de los pixeles a la resolución original y obteniendo superficies de 1 km de resolución (30 arcseg), mediante una técnica de reducción de escala estadística llamada \"Reducción de escala Delta\" (Ramírez y Jarvis, 2010), que incluye el uso de la superficie de alta resolución de línea base WorldClim. El método básicamente produce una superficie suavizada (interpolación) de los cambios en el clima (deltas o anomalías) y luego esta superficie interpolada se aplica al clima de referencia (de WorldClim), teniendo en cuenta el posible sesgo debido a la diferencia en las líneas de base. Este método es ampliamente utilizado porque es sencillo y relativamente fácil de entender. Debido a su baja demanda computacional, el método Delta permite una rápida y eficaz reducción de escala de los múltiples GCM y escenarios de emisiones durante cientos de años (Hayhoe, 2010). 2Entre los escenarios del Quinto Informe del IPCC, se escogió el RCP 8.5, con 32 GCM. Dicho escenario es una profundización del antiguo escenario A2 del anterior informe del año 2007 (IPCC, 2007). El escenario RCP 8.5 combina supuestos acerca de la población y el crecimiento relativamente lento con tasas modestas de cambio y mejora de la intensidad energética, lo que lleva en el largo plazo a la demanda y las emisiones de gases de efecto invernadero (GEI) de alta energía.• Gmax: máximo número de días en los que la planta alcanza su período de madurez.• Tkill: temperatura mínima (°C) que soporta la planta.• Tmin: temperatura media mínima (°C) de crecimiento de la planta.• Topmin: temperatura media mínima (°C) para el crecimiento óptimo de la planta.• Topmax: temperatura media máxima (°C) para el crecimiento óptimo de la planta.• Tmax: temperatura media máxima (°C) en que la planta deja de crecer, o los rendimientos se ven afectados de manera grave.• Rmin: requerimiento mínimo de precipitación (mm) para que la planta crezca.• Ropmin: requerimiento mínimo de precipitación (mm) para el crecimiento óptimo.• Ropmax: requerimiento máximo de precipitación (mm) para el crecimiento óptimo.Para identificar las zonas con cambios negativos hacia 2050, se usó la metodología de análisis del proyecto \"Evaluación de la vulnerabilidad al cambio climático de la agricultura y del recurso hídrico en los Andes de Colombia, Ecuador y Perú\", entre el CIAT y el Programa de las Naciones Unidas para el Medio Ambiente (CIAT-PNUMA, 2013), 4 que se explica a continuación.Fuente: CIAT-PNUMA (2013).Cuadro 1. Modelo para el análisis de cambio de aptitud climática. Para realizar el análisis con la metodología CIAT-PNUMA del cambio de aptitud climática (AC) que se presentaría hasta 2050, se tienen en cuenta las zonas que tendrían buenas condiciones para el crecimiento del cultivo en épocas futuras y se comparan con la aptitud en la época actual, basado en un umbral del 50% y realizando una reclasificación de valores de AC en cuatro tipos de cambio para facilitar la comprensión del posible cambio, así:• Amarillo: sitios que a futuro pierden ligeramente su aptitud climática (AC) [(actual >= 50), (futuro >= 50) y (futuro -actual) < 0)].• Rojo: sitios que ahora tienen buena AC, pero a futuro pierden su AC, incluso estarían por debajo del 50% [(actual >= 50) y (futuro < 50)].• Verde_o: sitios que ahora tienen buena AC y a futuro aumentan su AC [(actual >= 50), (futuro >= 50) y (futuro -actual) >= 0)].• Verde_c: sitios que ahora no tienen AC, pero a futuro sí podrían tener AC [(actual < 50) y (futuro >= 50)].• Sin color: Ni ahora ni a futuro, existen condiciones climáticas adecuadas para el crecimiento del cultivo.Para determinar la sensibilidad social y la capacidad de adaptación del sistema de producción del café, se utilizaron los indicadores del estudio CIAT-PNUMA. Para esto se seleccionaron los indicadores que tienen relación con los cinco tipos de capitales a saber:• El capital financiero/económico se refiere a las condiciones económicas actuales de los hogares del municipio o de la institucionalidad local. Este indicador nos dice qué grupo de personas son las más afectadas (pobres o no pobres) y, por lo tanto, nos da una idea del impacto del cambio climático sobre los diferentes grupos de pobladores. Igualmente, nos indica la capacidad de respuesta financiera que pueden tener los grupos afectados ante un evento climático.• El capital humano se refiere al grado de capacitación y formación que puedan tener las personas en una localidad en particular, y asumimos que entre mayor grado de educación tengan las personas, la capacidad de adaptarse a ciertos fenómenos es mayor. Una persona con mayor grado de formación posiblemente tenga la capacidad de consultar y entender más fácilmente soluciones a fenómenos particulares que la estén afectando, o puede acceder a información sobre amenazas, riesgos y pronósticos en materia de clima.• El capital social es la capacidad que tienen las personas de asociarse o responder en conjunto a ciertas amenazas. En este sentido, grupos de productores que comparten información y que buscan soluciones en forma coordinada pueden tener una mayor probabilidad de éxito que otros productores actuando de forma individual. Este capital social también está relacionado con la capacidad institucional local, ya que se consideró que esta capacidad está directamente relacionada con el grado de cooperación, coordinación y comunicación entre los pobladores.• El capital natural hace referencia al estado de los recursos naturales y a la presión que ejerce el hombre sobre ellos. Se partió del supuesto que una localidad con mejor calidad en los recursos naturales tiene una mejor capacidad de respuesta ante un evento climático. Suelos en mejores condiciones seguramente tendrán mayor capacidad de regulación hídrica. Otro indicador de capital natural es el estado de los bosques y la presión que se ejerce sobre ellos.No obstante, no es del todo clara la relación entre superficie en bosques y la capacidad de adaptación al cambio climático en el sector agropecuario.• El capital físico se refiere a la infraestructura construida con que cuentan los hogares y las localidades. La existencia de vías y su estado puede permitir encontrar con mayor facilidad alternativas tecnológicas o productivas ante fenómenos climáticos. En el caso de Perú, donde no se cuenta con un indicador a nivel distrital del estado de las vías, se utiliza como variable proxy las necesidades básicas insatisfechas (NBI).Proponer acciones desde lo local que permitan hacer frente a los riesgos que implica el cambio climático es la gran apuesta de la mitigación y la adaptación. Es por esto que el desarrollo de espacios de construcción social que permitan entender qué es el cambio climático y sus conceptos asociados cobra importancia a fin de concretar medidas que ayuden a las comunidades y grupos sociales a prepararse para enfrentar los posibles impactos del clima futuro.De esta forma, la gestión del conocimiento ayuda a transferir los conocimientos científicos de una manera fácil y sencilla a las comunidades, logrando forjar capacidades, y que a su vez sean las mismas sociedades capaces de identificar, a partir de su experiencia y conocimientos tradicionales, las mejores alternativas de adaptación.El desarrollo de talleres participativos tuvo gran acogida con la aplicación de la técnica de facilitación denominada Mesa Mundial del Café. Esta técnica permitió que los comités de caficultores del Valle del Cauca plasmaran su perspectiva en el contexto del cambio climático, identificando las mejores estrategias para adaptarse a él. La metodología de facilitación se describe a continuación:• Se conforman grupos o mesas de trabajo con los participantes del taller. Estas mesas de trabajo deberán estar compuestas por un número igual de participantes por cada mesa.• Dentro de cada mesa, se establecerá un coordinador, quien será la persona encargada de capturar las diferentes ideas que surjan a partir de la temática referente a cada mesa. El coordinador siempre deberá permanecer en la mesa de trabajo asignada.• Se establece un límite de tiempo para que los participantes puedan dar sus opiniones y aportes a las mesas en las cuales inician. Después de transcurrido el tiempo establecido, los participantes deberán moverse a la mesa siguiente, donde el coordinador contextualizará los aportes y la temática de la mesa.• Todos los participantes, por grupos, deberán rotarse por las mesas establecidas para que puedan participar en todas las temáticas.Al final del ejercicio, se establece un espacio de socialización general a cargo de los coordinadores de cada mesa, donde se explican los resultados preliminares y se recibe retroalimentación de los temas.5 Evaluación de los ecosistemas del milenio www.millenniumassessment.org/documents/document.439.aspx.pdf Figura 3. Categorías de servicios ecosistémicos del Millennium Ecosystem Assessment (www.millenniumassessment.org).Los servicios ecosistémicos hacen referencia a los beneficios que los seres humanos obtienen de los ecosistemas. 5 Estos pueden diferenciarse entre: servicios de abastecimiento, servicios de regulación, servicios culturales y servicios de soporte. Estos servicios se pueden clasificar dentro de servicios directos (afectan directamente a una persona) y servicios indirectos (afectan indirectamente a un grupo de personas). Los servicios ecosistémicos están ligados a la diversidad de las partes y del todo que componen.• Alimentos• Agua dulce• Leña• Fibras• Compuestos bioquímicosBeneficios obtenidos de la regulación de los procesos ecosistémicosBeneficios no materiales obtenidos de los ecosistemas• Sentido de placerServicios necesarios para la producción de todos los otros servicios de los ecosistemasPara la identificación de los servicios ecosistémicos dentro del sistema productivo del café, se utilizó la metodología de facilitación empleada para la identificación de medidas de adaptación, la cual logra capturar las perspectivas individuales y colectivas de los participantes.Para la delimitación de la zona cafetera, se utilizaron como datos de entrada para el modelo MaxEnt 172 puntos de la base de datos de la Infraestructura Mundial de Información en Biodiversidad 6 (GBFI, por sus siglas en inglés), correspondientes a una altura entre 1100-1840 m, de la planta Coffea arabica L.Como resultado, el modelo generó la grilla donde se indican los sitios probables en los que pudiera haber café. Observándose probabilidad superior al 50% en zonas aledañas al valle geográfico del río Cauca (color verde en el mapa).Con base en este resultado, la consulta bibliográfica, el modelo digital de elevación (altura entre 1000 y 2000 msnm) y la cobertura de usos del suelo del Valle del Cauca (cultivos perennes y transitorios), se realizó la delimitación de la posible zona de presencia del cultivo del café en el departamento. Los datos empleados para este estudio fueron tomados de los GCM del Proyecto de Interoperación de Modelos Acoplados versión 5 (CMIP5, por sus siglas en inglés) 7 incluido en el Quinto Informe de Evaluación (AR5, por sus siglas en inglés) del Grupo Intergubernamental de Expertos sobre el Cambio Climático (IPCC).La Figura 8 muestra los escenarios de cambios en precipitación y temperatura para el Valle del Cauca, los cuales fueron tomados de los GCM para los Caminos Representativos de Concentración (RCP, por sus siglas en inglés) 2.6, 4.5 y 8.5 (escenarios de bajas, medias y altas emisiones, respectivamente). Los cambios en precipitación y temperatura media anual en los municipios priorizados para el departamento del Valle del Cauca pueden apreciarse en el Cuadro 3.Cuadro 3 . Cambios en precipitación y temperatura media anual en los municipios priorizados.Cambios en temperatura anual (°C) 8 La escala de colores clasifica los incrementos de precipitación de menor (azul claro) a mayor (azul oscuro). 9 La escala de colores clasifica los incrementos de temperatura media de menor (amarillo) a mayor (rojo).Usando los datos de clima proyectados al año 2050 bajo el escenario 8.5 del IPCC, se determinó que aquellas zonas que en la actualidad tienen potencial para la siembra de café experimentarían un aumento de la temperatura promedio anual desde 2,3 °C en algunas zonas hasta 2,6 °C en otras. La precipitación acumulada del año también se incrementaría entre 130 a 180 mm dependiendo del sitio.Figura 9. Cambios en precipitación y temperatura en las áreas de probable presencia del cultivo.Para entender el contexto de vulnerabilidad, se hace necesario abarcar múltiples dimensiones que de manera conjunta logran dar una aproximación a las capacidades que posee un sistema para resistir los efectos de un peligro natural o causado por la actividad humana. Una de las formas más empleadas para determinar el efecto de los sistemas ante un suceso es a través de la sensibilidad y la capacidad de respuesta. Esta puede cuantificarse mediante indicadores que permiten observar el comportamiento temporal de los sistemas. Debido a que los procesos de los sistemas sociales, biofísicos y naturales son dinámicos, es complejo determinar umbrales exactos o definidos. Por tanto, se debe entender que, al evaluar la vulnerabilidad, siempre estará asociada a una incertidumbre debido a los comportamientos cambiantes de las variables que se emplean (clima, economía, sociedad).Los parámetros utilizados para la modelación en Ecocrop hacen referencia a la variedad de café más representativa en el norte del Valle del Cauca: Coffea arabica L. El Cuadro 4 muestra los valores. Con base en estos parámetros de cultivo y la zona delimitada como se describió anteriormente, se realizó la modelación de café, cuyo resultado es el siguiente:Figura 10. Modelación de café y análisis del cambio de aptitud climática hacia el año 2050.Esta modelación muestra que las zonas actuales, perderían aptitud climática (AC) de manera moderada a grave hacia 2050. Especialmente en el noroeste del departamento, en donde existen municipios de importancia económica en materia de producción de café.A continuación, se describen las características climáticas de las zonas que, según los resultados de la modelación, pierden aptitud de manera grave (zonas rojas), pierden aptitud de manera moderada (amarillo), conservan su aptitud (verde oscuro) o aparecen nuevas zona aptas (verde claro).Lo que se evidenció es que la temperatura siempre aumenta a medida que pasa el tiempo (años 2030 y 2050). De igual manera, sucede con las precipitaciones acumuladas del año. Su incidencia sobre el cultivo depende de qué tanto se acerquen estos valores a los ideales para el crecimiento óptimo del cultivo.Para las zonas donde el cultivo tendría alto nivel de pérdida de AC, se observa que tanto la temperatura (Figura 11) como la precipitación (Figura 12) aumentarían. En el caso de la temperatura, aumentaría hasta llegar a una promedio de 24 °C en el año 2050, en zonas que ahora registran alrededor de 21,7 °C. En el caso de precipitación, se espera un aumento de 143 mm hacia 2050 en las áreas de pérdida fuerte de aptitud climática. Figura 12. Condiciones de precipitación en zonas rojas (fuerte pérdida de aptitud climática).Por otra parte, en las zonas donde habría pérdida ligera de aptitud climática hacia 2050, se prevé que aumente la temperatura en 2,4 °C (Figura 13). Figura 13. Condiciones de temperatura en zonas amarillas (pérdida mediana de aptitud climática).En el caso de precipitación, es probable un aumento de 151 mm hacia 2050 en las áreas de pérdida ligera de aptitud climática. En las zonas donde la AC para café se mantiene igual, e incluso mejora, se observa que la temperatura podría aumentar desde los 18 °C hasta registrar los 20 °C.Figura 15. Condiciones de temperatura en zonas verde oscuras (donde la aptitud climática se mantiene).También se observa un incremento de las precipitaciones de 157 mm para 2050. Este incremento es favorable al acercarse a las condiciones óptimas de precipitación. En las zonas donde la AC mejoraría de manera tal que ahora no existen las condiciones apropiadas, pero a futuro sí, la temperatura pasaría de los 17 °C hasta registrar alrededor de los 19 °C.Cabe anotar que estas nuevas zonas aptas siguen sobre la misma área definida al principio, es decir, ignorando altura diferente al rango de 1000 a 2000 msnm y excluyendo también zonas de pastos y otras coberturas que no sean de cultivos. Teniendo en cuenta que grandes zonas aptas para el café se verían afectadas por el cambio climático, se modelaron otros cultivos para tener una idea de qué alternativas pudieran ser viables en algún momento dado.Los resultados muestran que a futuro se presentarían condiciones favorables de temperatura y precipitación para los cultivos de aguacate Lorena, caña de azúcar, caña panelera, maíz de mediana altura, mango y yuca.Los mapas que se presentan a continuación se pueden descargar del siguiente enlace http://bit.ly/23woX6X. Se evidencia que hay cultivos que son altamente vulnerables al cambio climático, tal es el caso del café, aguacate hass, fríjol y plátano. En contraste, hay otros cultivos que mantienen su aptitud climática, e incluso aparecerían nuevas zonas aptas para esos cultivos, como es el caso de la caña panelera, caña de azúcar, cacao, aguacate Lorena, mango y yuca.De acuerdo al proyecto entre el CIAT y PNUMA, 10 se muestran a continuación algunos de los indicadores que recogen aspectos relacionados a los cinco tipos de capital en los municipios. Esto sirve para tener una idea de la capacidad que posee el Gobierno para adaptarse o responder a distintos fenómenos, entre ellos, los de orden climático.Los indicadores que se presentan a continuación han sido seleccionados de acuerdo a la importancia de la capacidad de adaptación en el contexto de los diferentes tipos de capital (económico, humano, social, natural y físico). De esta forma, se seleccionaron las variables más representativas que clasifican los efectos sobre el tipo de capital de manera positiva (color azul) y negativa (color rojo). El Cuadro 5 presenta los indicadores que se consideraron tienen algún tipo de relación con los cinco tipos de capital.A continuación, se presentan mapas con la clasificación de los indicadores en rangos porcentuales de bajo hasta alto. Color azul = incidencia positiva. Color rojo = incidencia negativa. Se observa que los indicadores de calidad de vida son generalmente negativos.Cuadro 5. Indicadores según el tipo de capital.Fuente La Figura 20 muestra el mapa de índice de condiciones de vida, el cual refleja las condiciones de bienestar a nivel de hogar en función de la calidad de la vivienda, nivel de educación y acceso a servicios públicos. Los municipios priorizados se encuentran entre el rango de 51-73%, siendo Tuluá, Bugalagrande y Riofrío los municipios con mejores condiciones de vida. En la Figura 21, se aprecia el índice porcentual para los municipios priorizados.Figura 20. Mapa de Índice de condiciones de vida para los municipios priorizados.Figura 21 . Distribución porcentual en red del índice de condiciones de vida para los municipios priorizados.El índice de desarrollo endógeno (IENDOG) califica la gestión pública de un municipio, determinado por variables como: pobreza poblacional, ingreso per cápita, alfabetismo, densidad poblacional y económica, cobertura de educación, inversión pública, trabajo y capacidad institucional. Las Figuras 22 y 23 muestran el rango en que se encuentran los municipios (25-31%) y la distribución porcentual de cada uno, donde los procesos de crecimiento económico y cambios estructurales de competitividad son más altos en los municipios de Cartago, Caicedonia, Tuluá y Bugalagrande. El índice de crédito agropecuario representa el valor en créditos al sector agropecuario que otorgó el Estado a través del Banco Agrario (millones de pesos). Para los municipios de la zona de estudio, el rango porcentual se encuentra entre 5 y 23% (Figura 24), siendo los municipios de Caicedonia, Trujillo y Ansermanuevo los que poseen mayor tasa de créditos (Figura 25).Figura 24. Mapa de crédito agropecuario para los municipios priorizados.Figura 25. Distribución porcentual en red del crédito agropecuario para los municipios priorizados.La capacidad de ahorro se calcula a partir de los datos tomados por el Departamento Nacional de Planeación (DNP) y se calcula dividiendo el ahorro corriente por el ingreso corriente de cada municipio.El rango de porcentaje de los municipios se encuentra entre 18-58% (Figura 26). Los municipios con mayor índice son Tuluá, Bugalagrande y Ansermanuevo (Figura 27). Figura 27 . Distribución porcentual en red de la capacidad de ahorro para los municipios priorizados.El estado de vías es un índice construido a partir de los datos obtenidos del Ministerio de Transporte, en donde se tiene una matriz por municipio donde se encuentran los valores en kilómetros de vías a nivel municipal, calificado por tipo de vía (pavimentada o destapada), y por su estado (malo o bueno). La escala de rango se establece de 20 a 100% (Figura 28). Los municipios menos favorecidos son Argelia, Sevilla, Caicedonia y El Águila (Figura 29).Figura 28. Mapa del estado de las vías para los municipios priorizados.Figura 29. Distribución porcentual en red del estado de las vías para los municipios priorizados.El indicador de conflicto de uso del suelo es tomado del Instituto Agustín Codazzi (IGAC) y describe a nivel municipal el porcentaje de uso del suelo que no registra sobreutilización del territorio. El rango en el que se encuentra este indicador está entre 5 y 57% (Figura 30), donde los municipios con menos sobreutilización de las tierras son Bugalagrande, Argelia y Ansermanuevo (Figura 31).Figura 30. Mapa de conflicto de uso del suelo para los municipios priorizados.Figura 31. Distribución porcentual en red del conflicto de uso del suelo para los municipios priorizados.El índice de pobreza multidimensional (PMD) refleja el grado de privación de los hogares a un conjunto de dimensiones (educación familiar, condiciones de niñez y juventud, trabajo, salud, servicios públicos y condiciones de vivienda). Los municipios priorizados se encuentran en el rango de 56-89% (Figura 32), siendo los municipios de El Cairo, Ansermanuevo y Argelia los más desfavorecidos (Figura 33).Figura 32. Mapa de pobreza multidimensional para los municipios priorizados.Figura 33. Distribución porcentual en red de la pobreza multidimensional para los municipios priorizados.El índice de necesidades básicas insatisfechas (NBI) contempla aspectos asociados a las condiciones y estado de la vivienda, nivel de educación de la población, acceso a servicios públicos que poseen los hogares de la población y el grado de dependencia económica. Para los municipios cafeteros del norte del Valle, este índice varía en un rango de 13-31% (Figura 34), donde los municipios con mayor porcentaje son Ansermanuevo y Argelia (Figura 35). Una vez realizados los análisis de exposición, peligro y vulnerabilidad, se identificaron cuáles serían los municipios con mayor afectación por impacto negativo con base en la pérdida de aptitud del cultivo y la importancia económica de las familias con menos recursos (pobreza multidimensional). En la Figura 36, se aprecian los municipios con mayor pérdida de aptitud y mayor índice de PMD. Entre los más afectados, se encuentran Ansermanuevo, El Águila, Argelia, Trujillo, Sevilla y Caicedonia.Figura 36. Pérdida de aptitud en los municipios categorizados por pobreza multidimensional (PMD).Como resultado de los talleres participativos realizados con el Comité Departamental de Cafeteros y los comités de cafeteros municipales, se logró identificar -por medio de ejercicios de percepción local -una serie de medidas de adaptación y mitigación que permiten hacer frente a los posibles riesgos e impactos del cambio climático. De esta manera, se genera un insumo que puede articularse con los planes de acción municipales, departamental y de la CVC como línea base local para la evaluación e implementación de estas medidas a corto, mediano y largo plazo.Figura 37. Talleres con los comités de cafeteros municipales para la identificación de medidas de adaptación y mitigación frente al cambio climático.Algunas de las medidas de adaptación identificadas también contribuyen a la mitigación. Por tanto, se recomienda realizar un trabajo de investigación más detallado con respecto a la implementación y la evaluación de costos de estas medidas.Teniendo en cuenta que las medidas fueron priorizadas mediante la participación activa de los comités de cafeteros, se recomienda que estos comités estén involucrados en el proceso de implementación y se desarrolle un programa de monitoreo, reporte y verificación para evaluar su impacto en la zona. Esto permitirá fortalecer y generar experiencias exitosas que puedan replicarse en otras zonas.• Implementación de sombrío con apoyo técnico para la selección de especies y su distribución en el cultivo, prestando especial cuidado a las necesidades de cada región.• Implementación de sistemas agroforestales con base en estudios científicos que permitan determinar qué especies son las más adecuadas para los arreglos por zonas.• Diversificación de cultivos que posibilite la inclusión de nuevos productos, dependiendo de las condiciones climáticas y permita suplir las demandas en los mercados nacionales y locales.• Capacitación de la población en la implementación de sistemas alternos que permita replicar las experiencias con base en las necesidades concretas de cada familia productora.• El fortalecimiento de los aislamientos de las estrellas fluviales contribuirá a la disponibilidad del recurso hídrico para las futuras generaciones.• Implementación de sistemas descentralizados de tratamiento de aguas residuales domésticas mediante pozos sépticos, evitando la contaminación de cauces y cuerpos de agua.• Programas de educación para la población acerca del cambio climático que permitan conocer sus implicaciones, riesgos y peligros, generando capacidades para la evaluación e implementación de alternativas y mecanismos de adaptación y mitigación desde lo local.• Identificar las especies resistentes a la variabilidad climática (sequías), garantizando así la producción que demandan los mercados y beneficiando las economías de las familias en épocas donde se presenten períodos de déficit hídrico. Fortalecer y diversificar la variedad genética del café.• Reglamentación de uso y ocupación de suelos, generando así medidas preventivas de potrerización de terrenos en zonas de ladera y áreas de influencia de las microcuencas. Control y seguimiento al uso adecuado del suelo.• Articulación nacional y generación de programas locales para el trabajo campesino. Incentivar, mediante proyectos gubernamentales, el desarrollo y valoración del trabajo en el campo, especialmente para los jóvenes. Incentivar el trabajo en el campo debido a que hay insuficiente mano de obra y con ello pérdida de productividad.• Promover en la educación primaria, básica y superior el énfasis agropecuario y de cambio climático, especialmente enfocado al cultivo del café, para generar interés y amor por el cultivo.• Programas de inversión social en vivienda en las zonas rurales como incentivo para permanecer y trabajar en el campo.• Aprovechamientos de techos e infraestructuras para canalización de aguas y que puedan destinarse para riego.• Tratamiento de aguas residuales a través de filtros que permitan disminuir la carga contaminante y el impacto en las fuentes hídricas.• Seminarios, foros y capacitaciones en temáticas de ecosistemas y CC para la generación de conciencia en la preservación de los servicios ecosistémicos y la disminución del impacto del CC.• Articulación y participación en los procesos institucionales y gubernamentales, generando espacios para el debate y el análisis de políticas que impacten en la toma de decisiones.• Implementación de nuevas tecnologías como \"Ecomil-Biodigestor para aguas mieles de café\", logrando así un aprovechamiento de los subproductos derivados del café.• Sistemas de sombrío mediante barreras en las zonas de laderas y que a su vez funcionen como barreras rompevientos, protegiendo el cultivo.• Implementación de sistemas de pago por servicios ambientales (PSA) que beneficien tanto al entorno natural y los ecosistemas como a las familias protectoras de estos servicios.El ejercicio participativo en los talleres realizados también permitió la identificación de una serie de servicios ecosistémicos que se relacionan con el sector cafetero. Esta identificación de servicios permitirá trabajar a futuro en mecanismos que posibiliten la implementación de programas que preserven los ecosistemas y su conjunto de servicios asociados, logrando así una estabilidad en el entorno natural que beneficiará a los caficultores y a la población en general. A continuación, se enuncian algunos de los servicios identificados según su tipo (cultural, soporte, abastecimiento, regulación).Figura 38. Ejercicio participativo para la identificación de servicios ecosistémicos asociados al sistema productivo del café.• Generar un concurso de cuentos costumbristas para perpetuar el saber tradicional y ancestral del sistema cafetero local.• Conservación de los bosques nativos, preservando su valor paisajístico y el contraste ecotonal con el cultivo del café.• Senderos ecológicos con caracterización de las especies existentes de variedades de café (banco de semillas en las fincas) y de flora y fauna.• Juegos artesanales y tradicionales de la cultura cafetera.• Promover una feria que resalte la cultura cafetera y la importancia del cultivo para la región.• Paisaje cultural cafetero que permita conocer las áreas naturales donde se establece el sistema y otras especies nativas.• Promoción y conservación de lagos naturales y fuentes hídricas.• Conservación de la arquitectura tradicional de las haciendas cafeteras.• Adecuación de miradores en las partes altas que permitan apreciar la belleza paisajística de la región cafetera.• Promoción de ecoturismo para recreación, deporte y esparcimiento.• Conservar saberes ancestrales ligados al sistema cafetero y al cultivo.• Promover las costumbres tradicionales para garantizar un relevo generacional.• Implementación de sistemas mixtos sombríos con especies nativas, como el guamo, que permiten fijar el nitrógeno.• Agroecosistemas para la regulación de la temperatura y el microclima en general en los cultivos.• Adecuación de áreas para protección hídrica como medida de protección del recurso.• Conservación de guaduales como especie de regulación hídrica.• Incorporación de subproductos tratados del café al suelo como pulpa y lixiviados.• Diversificación de los cultivos asociados para incrementar la productividad y el mejoramiento de los suelos.• Incorporación de materia orgánica, con el fin de incrementar la producción por hectárea (rendimiento) y disminuir el consumo de agroquímicos.• Rescate de semillas de especies nativas (variedades) para consumo.• Conservación de bosques para aprovisionamiento de agua.• Sistemas agroforestales asociados con cítricos y plátano.• Siembra masiva de árboles con especies endémicas en áreas deforestadas.• Aislamiento de fuentes hídricas.• Control de agroquímicos.• Evitar la tala de árboles y la quema de monocultivos.• Control y seguimiento del esquema de ordenamiento territorial.• Implementación de frutales en las fincas.• Regulación del clima mediante la implementación de agroecosistemas.(Ordenados de mayor a menor por área sembrada). (Los valores de temperatura están multiplicados por 10). ","tokenCount":"5578"} \ No newline at end of file diff --git a/data/part_3/1715114628.json b/data/part_3/1715114628.json new file mode 100644 index 0000000000000000000000000000000000000000..cd9bdfc043e8e509dd0cd7a9c97c18937054802c --- /dev/null +++ b/data/part_3/1715114628.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"701730b6614e159d13086e3ab7f7d493","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/9d573f9f-bc30-44fc-b5f6-e57912964d19/content","id":"1418167058"},"keywords":[],"sieverID":"6fdaf462-250b-4eed-a884-406da0856376","pagecount":"12","content":"The El Niño-Southern Oscillation (ENSO) in 2016 adversely affected Vietnam particularly in the Mekong River Delta (MRD), where more than 90% of the country's rice export is produced annually. During that time, salinity intrusion and drought significantly affected agricultural production in the area. Furthermore, flooding is another recurring event in the area that is increasing in frequency. An assessment conducted by CGIAR Centers showed that even as warnings were provided by the government for the 2016 ENSO, these were not translated into appropriate preparations and responsive actions for agriculture. To address this critical issue, the Department of Crop Production (DCP) of the Ministry of Agriculture and Rural Development (MARD) of Vietnam, and CGIAR Research Program on Climate Change, Agriculture and Food Security in Southeast Asia (CCAFS-SEA) collaborated to develop and test an participatory approach for mapping climate risks and adaptive interventions (CS-MAP) to recognize climate-related risks, identify potentially affected areas and develop regional and provincial adaptation plans for rice production. The CS-MAP is a participatory approach involving experts from various local and national offices for: (1) identifying climate-related risks; (2) delineating affected areas and risk levels; (3) proposing corresponding adaptive plans; (4) fine tuning and verifying proposed measures; and (5) developing integrated provincial and regional adaptation plans. Risks and adaptive interventions maps were developed for normal and ENSO years by using technical data (i.e. topography and hydrology), infrastructures (i.e. dikes, road and canals), and local observations. CS-MAP is now is under various stages of development and implementation in 13 MRD provinces highlighting the organizational uptake and integration of the approach.. Until recently, participatory mapping tools and approaches are used for climatic vulnerability or risk assessments (Preston et al., 2011;Hung and Chen, 2013;McElwee et al., 2016),) and not widely used for climatic risk and adaptation interventions. There are some efforts in using mapping tools in disaster risk reduction (Gupta et al., 2002;Phong et al., 2008;Cadag and Gaillard, 2012;Kelman et al., 2012) but studies reporting its' use in large-scale climate adaptation is lacking and the current work attempts to address the void. It is expected to create a mid-path between predominantly science-led or predominantly community-led adaptation approaches (Gustafson et al., 2017).The Mekong River Delta (MRD) is the rice basket of Vietnam producing 56% of the total domestic rice production and accounting for 90% of Vietnam's rice export. Over 1.7 million hectares of land, more than half of the total arable land in the region, are being used for rice production (GSO, 2016). In the MRD, rice can be grown in three cropping seasons: the Winter-Spring season (November to February), the Summer-Autumn season (April to July) and the Autumn-Winter season (August to November). The rice production system that has a significant role in food security of the country, is increasingly under pressure from climatic related impacts such as salinity intrusion due to sea level rise (Renaud et al., 2014), increasing number of drought events in El Niño years (1997-1998, 2004-2005, 2010, and 2014-2016) (DMC, 2016) and flood events during La Niña events. In 2016, El Niño reduced the rice production by 700,000 tons and affected 339 thousand ha of the winter-spring rice cultivation area (21.8% of the total area in the MRD). In 2011, the severe flood damaged 27,000 ha of crops, of which crop yield of 10,000 ha was completely lost (Ngoc Anh, 2011). The projected sea-level rise of 100 cm by 2100 could flood upto 40% of total area of the delta. Currently, it is important to devise ways for adapting to these multiple climatic stressors (Birkmann, 2011).In response to growing need for climatic resilience in the delta, a number of programs have been conducted by international and national organizations to pursue climate resilient sustainable development of agriculture in the MRD. Starting from 2010, the Mekong Delta Plan (Govs, 2013) has been developed, presenting 'no-regret' and priority measures for long-term adaptation in upper, middle, and coastal zones of the region. The recommendations mostly focus on structural interventions, such as upgrading systems for flood protection, flood diversion, salinity intrusion prevention, and fresh water storage. In accordance with the key recommendations given in the Mekong Delta Plan, an on-going national program (World Bank, 2016) targets the improvement of infrastructure, information system, and capacity building to enhance climate-smart planning, and integrate land and water management and sustainable livelihoods in nine provinces of the MRD. The Vietnam government also invests in sustainable rice-based systems in the MRD (World Bank, 2015) to support large-scale improvement of rice-farming practices. However, the main focuses are capacity building (i.e. training and demonstration), extension skills, equipment and facility support, infrastructure, and financing. All the activities focusing structural adaptation measures are primarily carried out by state (Birkmann, 2011) while non-structural actions concerning adaptation of farming practices are less coordinated. In this article risk and adaptation mapping exercise is presented as a possible approach to meet the need of a mechanism for coordinating adaptation measures, especially the non-structural interventions. The following sections describe the methodology and results of the exercise.The current participatory adaptation mapping exercise was done for the MRD (Fig. 1), which is highly vulnerable to climatic changes and extreme events such as drought, salinity intrusion and floods (Dang et al., 2014). Every year, the delta experiences the effects of salinity intrusion and drought in ten provinces during the winter-spring season and flooding in nice provinces during the autumn-winter season. Six out of 13 MRD's provinces have to face to such climate risks within a year. Climatic phenomena like El Niño and La Niña exacerbates those risks and their impacts. Although climate-related problems in the MRD are clearly recognized, damage to agriculture, especially rice production in the region is not addressed on a larger scale.In recent years, a number of solutions have been introduced in the MRD to pursue sustainable development of rice production of the region (Govs, 2013;World Bank, 2015, 2016). However, many of them mainly focused on building institutional capacity, improving infrastructure (i.e. protected dike, sluice gates, irrigation canals and pumping station) and facilitating market opportunities; and few considered non-structural measures such as shifting sowing/transplanting calendar, using risk-tolerant crop varieties, changing cropping rotation and adjusting irrigation schedule that are practicable for rice farmers. A CGIAR led assessment (CGIAR, 2016) found that official warnings of expected salinity intrusion and drought problems during the winter-spring season of 2016 were conveyed to the farmers early. Structural measures were well prepared; however, these warnings were not translated to adjusted agricultural production on a larger scale. It highlighted the need of approaches and mechanisms that can translate the warnings into effective adaptive actions matching with the scale of perceived risk. The participatory mapping approaches are expected to meet such a demand. Though there exist attempts to utilize local knowledge to improve disaster maps in Vietnam, there are few attempts to map the non-structural adaptive interventions at farm level and understanding the preferences of stakeholders (Phong et al., 2008). The current study describes the development of a participatory approach for mapping climate risks and adaptive interventions in a resolution that allows their implementation by local authorities. It is to be noted that proposed measures by many of the modeling based studies on drought, flooding or salinization were not detailed enough for implementation at provincial level (Leskens et al., 2014). These studies ignore the fact that adaptation is a complex process that depends on type of climatic stress, the characteristics of systems, scale of adaptation and portfolio of adaptive responses (Dang et al., 2014). The current work aims to develop adaptive interventions maps for rice production that are scaled to climatic risks, consider local specific conditions and manage the conflicts in land and water management in different provinces. These map based approach is aimed at supporting climate-smart management of rice production in the Mekong River Delta by integrating science based data with stakeholder preferences and perspectives (Gustafson et al., 2017). The approach development activity was intended to support department of crop production and MRD's provinces in recognizing climate-related risks and developing regional and provincial climate change adaptation plans for rice sector. Specifically, the project aimed to:1. Use participatory mapping to identify of salinity intrusion and flooding risks for all 13 provinces of the MRD; 2. Map the possible adaptation plans for rice production taking into consideration the local specific conditions and the conflicts in land and water management by different provinces using the participatory process and hence support climate-smart management of rice production in the delta.Long-term and short-term weather forecast and climatic trends in the Mekong River Delta were provided by the National Centre for Hydro-Meteorological Forecasting (NCHMF), and the Southern Hydro-Meteorological Center (SHMC), respectively; and the responsive options for water resource management proposed by the Southern Institute of Water Resources Research (SIWRR). Effects of climate change on land use, especially the future effects of flooding and salinity intrusion to rice-based cropping systems, in the region were given by CLUES project (Hoanh, 2013;Ngo Dang et al., 2016). The provincial topographic maps at scale of 1:100.000 that are detailed enough to see landmarks, infrastructures, and land use patterns at district level, were used as the base maps. The most recent land-use map was also collected to identify rice lands and rice-based cropping systems of each province and of the MRD region. All maps were printed to facilitate discussion among stakeholders.In this study, we referred the participatory spatial planning method introduced by McCall and Dunn (2012) to develop the participatory approach for mapping climate risks and adaptive interventions and considered local knowledge as the backbone of the participatory mapping process. In the participatory process, experts and officials from the national and provincial institutions and international organizations identified problems and then explored appropriate local-specific-solutions through several multi- stakeholders dialogues. The process of the participatory mapping approach is summarized in Fig. 2.In order to have common understanding of climate risks in the region, the first dialogue is conducted for a wide range of stakeholders including provincial agencies (e.g. crop production office, hydrological management office, hydrological and meteorological stations), research institutes, universities and a high-level management institution (i.e. Ministry of Agriculture and Rural Development). Participants were grouped by province. Each group had about 10 members, including 8 provincial officials and 2 facilitators. The gender balance within a group was not considered in this dialogue.The first dialogue was split into four sections. In the first section, members of each group report recent crop damages and yield losses caused by climate-related hazards in the province, and together with facilitators to recognize potential risks in the future. A guideline for discussion developed by DCP and CCAFS was used by facilitators. The important guiding questions for the discussion were \"what were the main causes of recent damage on rice production?\", \"when did the hazards happen?\", \"which hazards relate to impacts of climate change?\", \"where in the province that rice production will likely be affected by the future hazards given current situation of natural resources, infrastructure and management scheme?\". Outputs of this section were the list of climate risks and their threat in rice production of the province. The outputs of group discussion were then presented to all participants.The second section was organized for all stakeholders to define risk scenarios and levels. The experiences of provincial officials on historical climate-related hazards in the region were then used by to build risk scenarios, namely (a) normal event: moderate intensity and duration of the hazard and (b) severe event: extreme intensity and prolong duration of the hazard. They also discussed to quantify thresholds of risk levels (i.e. low, medium and high risk) based on their background and understanding.The common understanding of climate risks and risk levels and scenarios were used in the next section to develop climate risk maps. Paper maps and transparent plastic layers were used to facilitate discussion and mapping process. Participants identified areas that are exposed and sensitive to the recognized risks in the province. Boundary of potential affected areas was delineated directly on the plastic layers. Provincial officials analyzed situation of existing infrastructures, such as protection dykes, irrigation and drainage canals, sluice gates, pumping stations, relative elevation of rice fields, among others, and assumed the level of damage of rice planting areas if hazards occur. Analysis was made following the two defined scenarios (i.e. the normal and the severe event). Latest extreme events and their affected areas were taken into consideration to localize area and intensity of the risks. To be noted that risk level refers to the possible loss in rice production due to the impacts of the hazard in relation with the current status of natural resources (i.e. land and irrigation water), infrastructure (i.e. protected dike, sluice gates and irrigation canals) and management practices (i.e. local rice varieties, transplanting/sowing methods and irrigation scheme). Outputs of this mapping work were separate risk map layers with detailed notations.In the final section of the first dialogue, the risk maps built by stakeholders were used as basic materials for developing adaptive interventions. Stakeholders were asked to propose non-structural interventions that are practicable for the province, corresponding to each of risk scenarios. The proposed interventions were described for each potential affected area and mapped on separated map layers.The is the fact that risk maps and adaptive interventions developed though above group discussions may not be representative due to bias inputs of invited participants. Other local experts, who did not attend the previous dialogues, may have different opinion on climate risks and solutions. Therefore, fine-turning the result with other local stakeholders is needed. Given this situation, a second multi-stakeholders dialogue was organized in the individual provinces. In each province, participants of previous dialogue and officials of provincial agencies were invited to participate in evaluation of risk maps and adaptive interventions. Through this meeting, the risk maps and proposed adaptive interventions were further refined and updated. The revised maps were digitized using Geographic Information System (GIS) tools. The second multi-stakeholders dialogue can be repeated several times if there is any argument.The third multi-stakeholders dialogue was organized to integrate adaptive interventions of individual province into ecological zone and regional plans. All stakeholders attended the first dialogue were invited to join a regional workshop on the integration issues. In this workshop, participants were grouped by ecological zones. Each zone includes adjacent provinces that have similar biophysical condition and share the same natural resources (e.g. irrigation water). Cross-province issues related to climate change risk management and action plans for implementation of adaptive intervention, which were emerged during the group discussion, were reported to policy makers, researchers, and other stakeholders. The integration plan was then developed for each province and for the whole region, taking into consideration the regional and national policies.The CS-MAP was piloted in a province of the MRD to (1) explore common understanding of flood and salinity intrusion risks; (2) see how local knowledge can be used in developing risk maps; and (3) adjust the participatory spatial planning method with the context of rice production in the MRD. Key informants from four administrative scales (i.e. province, district, commune, and village), who are familiar with hydrological and cropping systems, were invited to participate in the mapping process. Findings of the pilot test were presented to experts and officials of DCP to refine the CS-MAP components and processes.The CS-MAP approach was piloted in early October 2016 at four administrative levels: province (Bac Lieu), district (Vinh Loi), commune (Chau Thoi), and village (Tra Hat) of Bac Lieu province. There were different understanding and definition of climaterelated risks depending on the key informant's expertise and perception. In case of salinization, officials from Hydrology Management Office (HMO) categorized risk level as the frequency of salinity intrusion and concentration of dissolved salts in irrigation water. Accordingly, the intrusion of water with salt concentration greater than 4 g/L is considered as high risk for rice. This is in accordance with the results of researches on saline-tolerance capacity of rice. Areas that have salinity intrusion occurred every year are also considered as the high risk. According to the officials of the Agricultural Management Office (AMO) and the CPO, concentration of dissolved salts is not an important factor to define risk. A certain concentration level can be a high risk for double or triple rice system but may not be a major concern for single rice or rice-shrimp system. From their point of view, the start and duration of salinity intrusion significantly define levels of rice yield reduction. This is also true because the high saline-tolerant rice varieties cannot sustain under long saline period (i.e. more than 10 days with concentration of 4 g/l).In protected areas with dykes, shortage of fresh water for irrigation during saline period was another issue raised by the key informants. Experience from the salinity intrusion event occurred during the winter-spring season (2016) shows that rice yield in many well-protected (dykes) areas dropped significantly because of fresh water deficit for irrigation rather than saline water intrusion. There are similar issues for identifying and categorizing flooding risk. Frequency, depth, duration, and timing of floods should be the factors to be considered. These caused a lot of confusion in the development of the risk maps at any administrative scale. Using multi-factor risk assessment is difficult for local officials and managers because they are not familiar with technical terms and parameters that are often used by scientists. Furthermore, the key informants have different backgrounds and perspectives on risks and responsive strategies. Officials from HMO are very familiar with the details of irrigation system and can easily delineate affected areas, but lack knowledge of cropping system and crop production. Contrarily, people from Crop Production Office (CPO) tend to know about crop-related issues better than hydrological systems.Other key participants referred risk levels as the reduction of rice yield caused by flood or salinity intrusion, following the recent assessment guidelines of Ministry of Agriculture and Rural Development (MARD). The guidelines have been developed to estimate damage and provide relief to the affected areas. Accordingly, there are three levels of loss: serious (reduction of more than 70% of rice yield), medium (from 30% to 70% of rice yield), and low (below 30% of rice yield). These scales are made for the ease of understanding for local officials. Whereby, the intensity and duration factors of the extreme climate events can largely affect the level of yield loss can be tracked. Findings from the pilot of CS-MAP were presented to the experts and officials of DCP-MARD through a consultation meeting. The consensus was that CS-MAP needs to address four risk levels, namely very high risk: expected loss of more than 70% of rice production, medium to high risk: expected loss of 30%-70% of rice production, low to medium risk: expected loss of less than 30% of rice production and not affected: no impact to rice production. No impact scenario means the rice area is fully protected or rice-based system has transformed to other resilient farming systems. For the ministry of rural development, drought and salinity intrusion are two phenomena of a single extreme event and hence potential reduction of rice production that is resulted from drought or salinity intrusion can be combined as a single risk.The standardized CS-MAP was developed for all 13 MRD's provinces. The initial outputs were improved and verified with the provincial experts through separate meetings in each province. The final risk maps and adaptation plans developed by the provinces were combined and discussed to identify the potentials and constraints in the actual implementation, considering the regional context.The first multi-stakeholders dialogue was organized in Can Tho City on 17th and 18th November 2016 with attendance of about 130 participants from Department of Agriculture and Rural Development (DARD) of 13 MRD's provinces, Department of Crop Production (DCP), eight national research institutes, two hydro-meteorological centers, and two international organizations. At least five participants from each province were attended the dialogue, including a leader of provincial DARD, leaders of the Crop Production and Plant Protection Office and Hydrological Management Office, and representatives of local Hyro-Meteorological Station. Maps of climate risks and adaptive interventions developed during this dialogue were presented in several meetings in individual provinces from December 2016 to June 2017. In July 2017, the final provincial maps were presented in a regional workshop to discuss on regional integration.The followings are results obtained at Soc Trang, a coastal province prone to drought and salinity intrusion, Dong Thap, an upstream province prone to season floods.Fig. 3 shows the map of rice-based system in 2010 of Soc Trang, a coastal province of the MRD. More than 50% of the rice lands were used for triple-rice cropping (dark green regions), which includes winter-spring rice (November to February), summer-autumn rice (April to July), and autumn-winter rice (August to November). The remaining rice areas are for single (yellow regions) and double cropped rice (light green regions), and rice-shrimp rotation (blue regions). As being located in the coastal zone and close to river mouths, the province is exposed to the impacts of salinity intrusion, especially during ENSO years.Fig. 4 presents the risk maps developed by the CS-MAP exercise. In normal years, salinity intrusion may only occur from February to March in the north and west parts of the province. When this happens, rice yield in the winter-spring season can reduce up to 70% (orange region) in Nga Nam district and below 30% (yellow region) in My Tu and Ke Sach districts. Other rice areas are not affected (green region). In severe years (e.g. 2015-2016), there is a high possibility that about two-third of rice lands of the province is damaged by saline water. Most of rice fields along Hau River and close to Bac Lieu province are under the high risk (red region), which may result to yield loss of more than 70%. Risk level of some areas also rises from medium in normal years to high when extreme salinity intrusion occurs. In addition, a large rice land belonging to Thanh Tri, My Xuyen, and Chau Thanh districts in the center of the province could be at medium risk due to intrusion of saline water in the irrigation canals. Only rice lands located in the With awareness of the increasing climatic challenges in the future, participants from Soc Trang province have proposed two adaptive plans corresponding to two salinity intrusion scenarios. Fig. 4 present the CS-MAP exercise to develop spatially explicit adaptive cropping systems. To minimize yield loss due to salinity intrusion, the province will shift one-third and two-third area of current triple-rice to double-rice in normal years and in severe years, respectively. Rice in the high-risk seasons can be replaced with cash crops. Together with changes in cropping system, planting time of rice seasons will also be adjusted. Fig. 4 also presents the CS-MAP exercise to spatial specification of changing crop calendars. Particularly, winter-spring rice needs to start between September and October, about a month earlier than current planting calendar, to avoid drought and salinization problems at the end of the season.Fig. 5 presents maps of flooding risk and adaptation plans of Dong Thap, a province in the submergence prone of MRD. Two first maps in the Fig. 5 present the outcome of CS-MAP exercise in the province to spatially delineate flooding risks. These maps clearly show that most of rice acreage of the province is under flooding risk. The well protected area is very small, located in the north of the province. The high risk area covers nearly a half of rice land in normal years. It can be expanded to the southern part in case of severe flood event.At present, despite of seasonal flooding problem, triple rice cropping is widely practiced in the province. As the proposed plan, the autumn-winter rice season will be skipped in severe flooding years to avoid economic loss. As the result, a substantial portion of areas practicing of triple rice needs to be converted to double rice in severe flooding years. In the remaining area, planting calendar can be adjusted to minimize damages caused by unpredicted floods. Fig. 5 also presents the planting calendar in normal years. Accordingly, the autumn-winter rice can be planted from the May to June to make sure that rice is completely harvested before the flooding season (September to November).Similar maps and plans have been developed for individual provinces of the MRD through the CS-MAP process provided in Fig. 2.The Mekong River Delta contributes more than a half of the total domestic rice production and more than 90% of Vietnam's rice export annually. Therefore, maintaining rice production under increasing impact of climate change, reducing input costs through large scale mechanization and irrigation management and ensuring the stable market price are the major priorities of the farmers, managers and policy makers. In the MRD, agriculture production of adjacent provinces is interlinked to each other through their land use decisions, water sharing scheme, and farming practice. For example, water holding strategy of upstream provinces may lead to water shortages in downstream regions, or improper shrimp farming techniques of coastal regions may result in intrusion of saline water in rice lands. The inter-linkages are often ignored in studies focus single provinces. Given the regional context, changes in ricebased system and rice planting calendar of a province have to be in accordance with other adjacent provinces. Therefore, maps and plans have to be combined to present the regional picture. In July 2017, combined maps and provincial plans were presented to participants from provincial DARDs, researchers, and experts in the third multi-stakeholders dialogue. Participants were grouped according to the three ecological zones of the MRD, namely the upper delta zone: An Giang, Kien Giang, Dong Thap, and Long An provinces, the middle delta zone: Can Tho, Vinh Long, Tien Giang, and Hau Giang provinces, the lower delta zone: Ca Mau, Bac Lieu, Soc Trang, Tra Vinh, and Ben Tre provinces. The main discussion points related to cross-provincial issues were: updating the on-going structural interventions and research projects of provinces; identifying potential mismatch of land use plan and water management among provinces; analysing the possibility of cross-provincial solutions for common climate-related problems and development of sharing platform for adjacent provinces to enhance co-benefits from the individual changes; and produce the regional implementation plan. Fig. 6 shows how maps were merged into a salinity intrusion risk map and flooding risk map of whole MRD region. Fig. 6 presents the regional maps of salinity intrusion and flooding risks for rice production in severe years of the MRD as the final output.Cross-provincial intervention does not only mean integration of rice production but should also include sharing of resources, especially irrigation water, to ensure regional benefit. Therefore, sowing/transplanting date, irrigation or drainage schedule, and structural investments of a province have to be shared to others. Cross-provincial intervention needs a management unit. It can be combined with the South-West Steering Committee, a key regional political institution in Vietnam, which has a relevant mandate. Beyond the cross-provincial interventions for climate-related risk management, it is also needed to build linkages among private sectors, farmers, scientists, and the government to promote sustainable rice production in the region. Regarding the risk maps, provinces need to downscale and supplement local specific factors, such as acid sulphate soil, drainage and irrigation conditions, to improve map quality and corresponding adaptive plans. Beside climatic early warning and weather forecast, prediction of future market price also needs to be done because it is important information in the planning and decision making process. For sustainable Fig. 4. Maps of salinity intrusion risk in (1a) normal years and in (1b) severe years, and proposed adaptive cropping systems (2a and 2b) and planting calendar (3a and 3b) in the two scenarios, respectively.rice production of the MRD, changing cropping calendar and system cannot be done alone but have to be implemented together with structural measures, water saving technologies, tolerant varieties, and policy and institution. These recommendations have been considered by the DCP for future development of directions and management programs.In general, CS-MAP was well developed and implemented for rice production in the MRD. However, this method initially targets provincial officials and researchers as the main stakeholders. Private sectors and farmers, the two actors that play very important role in rice production, were not involved in the participatory mapping process. To engage those stakeholders, CS-MAP needs to be downscaled to lower administrative levels (i.e. villages or communities). Another limitation is that quality of output risk maps and adaptive interventions is much depends on expertise and perception of the invited stakeholders. They may bring their bias in identifying problems as well as proposing solutions. This can only be minimized by refining the CS-MAP outputs several rounds with different groups of local stakeholders when organizing the second multi-stakeholders dialogue.Results obtained from the implementation of CS-MAP were highly appreciated by the officials of DCP and provincial DARD. The maps and proposed adaptation plans are considered as important information in developing the short, medium, and long term agricultural land use plans of the individual provinces, as well as of the whole MRD. On 22 February 2017, the DCP issued the official Circular number 184/TT-CLT (Appendix 2) to request the MRD's provinces to develop action plan for actual implementation of adaptive rice-based systems and cropping calendar. It shows the credibility and authority of the produced maps and the effectiveness as a communication and adaptation planning approach (Hauck et al., 2013). The feedback and refining loops built within the five step procedure discussion officials helped in avoiding the post-development criticisms of the CS-MAP. The process also allowed the map construction from local to regional scales.Responding to DCP's request, several provinces have implemented their proposed plans. Tien Giang, a coastal province that is frequently affected by salinity intrusion and tidal rise, has integrated the adaptive rice-based systems in their land use planning. This was done under the provincial program titled \"Cutting and shifting cropping system and calendar for eastern districts of Tien Giang province up to 2025\". Accordingly, the eastern districts will only apply double rice cropping or rice-cash crops rotation. The change will be implemented on more than 26,000 ha of agriculture land, including 23,000 ha for shifting triple rice to double rice, and 3000 ha for converting rice land to fruit trees. In addition, shifting rice planting date was also planned for 4128 ha. The shift of planting dates in this area itself could have saved more than 3 million USD (taking average loss of 2.5 tons per ha by salinization) in the dry season. At present, the province has applied the changes for 15,217 ha, approximately 59% of the planned area in the map. To cope with annual flooding (from October to November), An Giang province has decided to shift the autumn-winter rice season earlier for both outside and inside dyke system to ensure safe harvest before October. Three provinces (Long An, Dong Thap, and Soc Trang) are also continuing to refine the maps on their own initiative.In 2017, CCAFS SEA continued to support provinces on CS-MAP application and following emerging outcomes. Further up-scaling was supported by MARD Decision QD-BNN-KH 1915 issued on May 28, 2018. Recently, the DCP of the Ministry of Agriculture and Rural Development issued a directive to adjust the planting calendar in the rice production areas in the MRD to avoid salinity intrusion that is expected to aggravate with the 2019 El Nino. The adjustments were guided by the climate-risk related maps and adaptive intervention developed by the 13 provinces. This was implemented following the directive of MARD Vice Minister Le Quoc Doanh last August 2019 during the rice production planning meeting for the DCP to monitor the upcoming El Nino and apply the CS-MAP for possible adjustments in the rice planting calendar during the Winter-Spring season (Announcement no. 6194/TB-BNN-VP). As per recent the report by the 13 provincial DARDs, areas planting earlier (November 2018) reached 802,702 ha (from 174,538 ha in 2017) and a reduction in later planting (December to February) to 596,543 (from 1,226,961 ha). This covers more than 600,000 ha planting earlier that has enabled the farmers to avoid the adverse effects of salinity intrusion that is common during Winter-Spring rice planting season and aggravated by the El Nino.The climate risks and adaptive interventions maps is generated through a participatory approach that actively engages experts from various local and national offices to come up with implementable local solutions to climate change related impacts. It involves (1) identifying climate-related risks; (2) delineating affected areas and risk levels; (3) proposing corresponding adaptive plans; (4) fine tuning and verifying proposed measures; and (5) developing integrated provincial and regional adaptation plans. The CS-MAP is a useful approach to help agricultural managers and planners better delineate location and time of climate-related risks; and identify specific response measures. It integrates scientific findings and local expert knowledge. The exercise showed that practical risk maps and adaptation options can be quickly developed at low costs. It is to be noted that the facilitators could act as intermediaries between scientists and ensure the communication among the stakeholders.With CS-MAP, provinces can conveniently develop their own adaptive plans. Local specific conditions and cross provincial concerns are better integrated in land use decision making and, therefore, solutions are more relevant to local context. Among the common adaptive options proposed by provinces include changing rice-based cropping systems and sowing/transplanting calendars. Some provinces are implementing the adopted measures and developing the corresponding monitoring and reporting tools. It can also be further downscaled to district and commune scale to improve precision. The approach was successfully embedded into the administrative system and it could be due to the direct involvement of the personnel in the development of the CS-MAP. It could also be the fact the mapping approach could capture the organizational requirements in addition to acting as a communication and management mechanism. It ensured the usability and usefulness of the approach.The participatory development of climate-related risk maps and adaptive plan in this study was developed for rice production but has potential to be extended for other crops, aquaculture, and livestock. The provinces and districts can also continue to refine the maps for various purposes including poverty mapping, relief operations, among others reflecting the utility of the participatory adaptation mapping exercise. There is also a need of continuous research support to the CS-MAP to make sure that they are updated and relevant and can accommodate newer technologies, climatic threats or system changes.","tokenCount":"5696"} \ No newline at end of file diff --git a/data/part_3/1719665761.json b/data/part_3/1719665761.json new file mode 100644 index 0000000000000000000000000000000000000000..45df5e59ba17a58219c4cef1c6ece078272569f9 --- /dev/null +++ b/data/part_3/1719665761.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"7dba14fa2f8f23dec0b83b9c98b9758f","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/a89ac777-a401-4e18-a641-a7b642888cfc/retrieve","id":"579001994"},"keywords":[],"sieverID":"d72e2833-14cd-4005-9d9a-04aedb95c075","pagecount":"7","content":"East African youth involved in agriculture have an understanding of the impacts of climate change and how to appropriately adapt their agricultural practices in part because extension services have been successful in providing appropriate training for youth. However, lack of access to financial capital, limited land ownership and difficulties accessing agricultural inputs are the primary barriers limiting youth participation in the agriculture sector. Decision making power of youth in agriculture is contingent upon their education and experience and also varies depending on age, gender, and marital status. Although policymakers and stakeholders value the opinion of youth, involvement of youth in policy making is indirect and limited.Africa boasts the world's most rapid population growth, and is concurrently experiencing a \"youth bulge\"an expansion in population of tech-savvy, well-educated, jobready 18-35 year olds (Population Reference Bureau, 2013). In some cases, a growing youth population is a positive indication of a country's development, and can be beneficial, as long as the majority of youth are sufficiently employed and contribute to the economy. However, employment can be difficult to find when the job seekers are many and the options are uncertain. The East Africa region is experiencing this \"ticking time bomb\" at the country level (Ighobor, 2013) within Kenya, Uganda, and Tanzania, with a nagging fear that youth unable to find work may create political and economic instability, resulting in violence (UN, 2013).According to the Youth Development Index (YDI), Kenya is well developed to support its youth population, compared to Uganda and Tanzania. Although it is still ranked \"Medium\" for the status of young people with a YDI of 0.563, Kenya demonstrated the largest growth in the YDI globally (22%) between 2010 and 2015. Similarly, Uganda has a YDI of 0.544, but supersedes Kenya in the area of employment, with a score of 0.613 compared with Kenya's 0.513. Tanzania lags far behind both of its neighbors, with a \"Low\" YDI of .436, and an employment index of 0.294 (Commonwealth Secretariat, 2015).The growing youth population and a stagnant job market in Kenya, Uganda, and Tanzania correlate with a bleak employment outlook. In Kenya, of those who are unemployed, over 70% are under 35 years old. Youth account for two-thirds of Kenya's population, and the rate of youth who are unemployed may reach as high as 35%, compared to 10% nation-wide (BCtA, 2016). In Uganda, of those who are unemployed, 64% are 24 years old and under (World Bank, 2015). In Tanzania, unemployment averages 13.4% for 15-34 year olds (Youth Employment Decade, 2015). The limited options do not appear to discriminate; youth are simply trying to find a place for themselves, wherever they qualify, whether it is urban, rural, business or farming.Agricultural livelihoods are vital to East Africa, with much of the region's GDP dependent on agriculture and with arable lands prime for both subsistence and commercial farmers. However, this relationship to agriculture can be risky; in times of success, it provides employment and food security, and in times of misfortune, it contributes to pervasive poverty and malnutrition. For Kenya in particular, 75% of the country's workforce is in the agricultural sector, contributing to 25% of the country's GDP, despite only 20% of the land being arable. Kenya's dominant areas of agriculture are horticultural produce and dairy, which have opportunities to expand; yet Kenya's agricultural productivity has been stagnant in recent years. For highly arable Uganda, agriculture employs 66% of its labor force, comprises 50% of its exports, and creates 23% of its GDP. The dominant crop for food security is maize, followed by beans, with coffee being the main export, although Uganda has suffered heavy harvest losses in recent years. For Tanzania, while 75% of its population is involved in agriculture, the sector contributes only 31.5% of its GDP. Despite the fact that Tanzania is largely self-sustaining in the staple crop of maize, it lags far behind global average maize yields (Feed the Future, 2016).Although farming is a common livelihood, it is a risky one, with climate change as one of the contributing factors. Farmers in Kenya, Uganda, and Tanzania are heavily dependent on rainfall, and therefore highly vulnerable to inconsistent weather events, such as droughts, floods, intense heat, and severe cold. Such extremities and uncertainties have a negative impact on agriculture, thwarting the involvement of young people.The status of a burgeoning youth population in East Africa, precarious employment opportunities, and the alteration of traditional agricultural practices in the face of climate change has prompted the need to explore the role of youth in adaptive farming practices; specifically, the extent of their decision making power in agricultural adaptations to climate change. This information is critical to understanding the future of agriculture and youth in Kenya, Uganda, and Tanzania.This note explores the findings from the research project \"Youth Decision Making Power in Agricultural Adaptations to Climate Change\" conducted in June -July 2016. For the purposes of this project, \"East Africa\" included Kenya, Tanzania, and Uganda, and the definition of \"youth\" was between 18 and 35 years old. Each of the countries has a National Youth Development Policy with defined strategies for youth development in various economic sectors.Data were collected in three CCAFS climate smart villages (CSVs): Wote, Kenya; Hoima, Uganda; and Lushoto, Tanzania. At each site, focus group discussions (FGDs) and case study interviews were conducted with youth between the ages of 18-35 years old. All sessions were divided by gender and included youth who were involved in agriculture as some facet of their own, or their family's, livelihood. Half of all case study interviews were conducted with males, and half with females (Table 1).Policymakers and stakeholders were interviewed individually in Nairobi, Kenya; Dar es Salaam, Tanzania; and Kampala, Uganda to understand their views on youth involvement in decision-making on issues related to climate change and agricultural adaptation, including representatives from national ministries, research institutions, finance institutions and NGOs in each country. the growth of drought-tolerant crops, which have a shorter growing season of 2-3 months (e.g. sorghum or sweet potato) compared to the traditional dietary staple, maize, which requires heavy watering over a lengthy growing season of 5-6 months.Wote's extension officers are directly involved with the community to educate farmers on how to best adapt to the recurring and persistent drought. Kenya's county governments disseminate information to extension officers, and these extension officers are responsible for sharing with their respective constituents. Interview participants stated that training on the aforementioned techniques and resources are helpful in educating them in adaptive farming. The interviewed youth acknowledged that their presence and involvement is welcomed and appreciated, and they feel equipped to communicate what they learn at the household and community levels. Therefore, they are pleased with the training offered, but need the resources, water, and financial capital to implement and sustain the adaptations about which they are learning.For the youth involved in farming, it is their knowledge and experience gleaned from the training provided, well as their successful harvests, that earn them respect at the household, and often, community, levels.Regarding the household level, participants in focus groups explained that they are often part of the farming conversation with their parents; although they may not have the final say in what happens, their parents take their voice into account. Regarding the community level, a female young farmer interviewed for an in-depth case study has had continual success with her farm due to the training and the funding she has received, and she explained that her success is the reason she is wellrespected in the community. She reported that many of her family and neighbors come to her for farming advice. However, the extent of this input for any farming related decision (crop, livestock, what to plant, where to plant, how to plant, what agricultural adaptations to make, when to sell the surplus, among others) can vary with family dynamics. For example, if a young person is single and lives with his or her parents, it is the parents (usually the father) who make the final decision. A married man holds decision making power, and he can choose to share that decision-making power by consulting with his wife, or with his parents, if they live nearby. This indicates that a married woman has partial input, since her involvement is usually in the form of consultation with her husband or her in-laws. Therefore, a married woman's decision making power is diluted in comparison to a married man's, because the married woman has multiple people involved in the decision-making process, and she is not the final decision maker, compared to the married man. However, if the woman is married, but the husband is not present, she holds the decision-making power.These family dynamics directly influence land ownership and land utilization. Youth agreed that the landowner is the ultimate decision maker in land utilization, and cultural dynamics dictate how much and when land is owned, purchased, gifted, or inherited. Some married women explained that their in-laws gave a portion of land to them, and that portion would increase in accordance with the longevity of their marriage. Other youth explained that their parents would gift them land as an inheritance, but would divide it equally amongst all siblings, leaving each a very small (and not very commercially viable) portion of land. The youth interviewed made it clear that land ownership was critical in holding ultimate decision making power, but noted how difficult and expensive it was to acquire land initially, and this varied with age and gender.This juxtaposition of the importance of owning land but not being able to afford it revealed the many nuances of government funding for youth. Those interviewed were aware that a specific fund was introduced by the Kenyan national government in 2014 (Youth Enterprise Development Fund) to support youth enterprise among minority populations and their entrepreneurial ventures, and they were quick to explain that while this fund has been made available to them, it is not easily accessible. They explained that the application process is far too technical and difficult, the loan payback is daunting, the applicant pool is large and broad, and the loan stipulations are impractical. Transparency is also an issue, as the youth perceive inequity and corruption in previously awarded funds. In summary, the findings show that training and information are helpful, but for them to be entirely effective, youth would greatly benefit from access to financial capital and provision of resources, such as water, land, and agricultural inputs, in order to implement the agricultural adaptation strategies about which they are learning and on which they are empowered to make decisions.Policymakers and stakeholders interviewed in Nairobi have very positive opinions regarding Kenyan youth; they are quick to say how critical the educated, tech-savvy, youth voice is, and that they are willing and interested to involve youth in their decision-making processes. One interviewee suggested that this positive perception is due to the fact that the youth population will be the most affected by climate change in the future, thereby necessitating their involvement in climate change matters.In fact, many policymakers and stakeholders involve a variety of youth in their work, but the extent of that involvement varies by organization; some simply hold forums that are open to the public which youth are welcome to attend, whereas others act specifically in the interest of the youth, conducting workshops and training sessions, speaking at conferences, teaching classes, creating mentorship programs, or even hiring youth employees. Since youth are not adequately represented at the policy level, stakeholders, such as youth-centered organizations, are working hard to make their names, innovations and ideas known from grassroots levels, in the hopes of influencing policy at the national level.From the interviews conducted, it is clear that policymakers and stakeholders themselves have an understanding of what climate change is, and how Kenya's farmers can adapt to its various effects.Policymakers and stakeholders interviewed believe that youth have personal knowledge of what climate change is, but that they do not know how to adapt to it. Our findings from the FGDs negates this latter belief, and recognizes that young people do know how to adapt their agricultural practices via training and education; however, they do not always have the resources to be able to implement everything they have learned. In addition, policymakers and stakeholders are quick to reference the Youth Enterprise Development Fund, but acknowledge barriers to its accessibility.The young farmers in this research demonstrated how Tanzania's traditional social norms greatly impact youth decision making power at the household and community level. This divide seemed to occur at the time of marriage, where, between the ages of 18-35, Tanzanian youth in Lushoto get married and establish their own households.It is during this period in which they transform from children who must listen to the \"baba\" (father) into heads of their own households.This transformation is particularly dramatic for males, who go from being subservient within their familial home to being the primary decision maker. Females, either pre-or post-marriage, are still limited to a subservient role due to their gender, but experience an increase in decision making power after they are married. The young women noted that within marriage, they are part of a team that leads the household, transforming from the role of a daughter who must obey her parents.Much like the change in decision making power at the household level, this increase in social standing occurs at the community level as well. Since whoever owns the land makes the decisions, once a youth owns land, his or her decision-making power increases. In this study, the majority of participants in focus groups reported that their parents gave them a parcel of land to work as their own; as early as 10 years old for males and 14 years old for females. However, this land given early in life is still the property of the parents, and as such, they do not keep the produce or money resulting from the labor, or make any of the decisions. A caveat to these findings is addressed below.Those interviewed aligned with the general perception that East African youth are more educated and techsavvy than any previous generation. Additionally, extensive CCAFS involvement and extension officer work in Lushoto have given the youth access to the educational components they need in order to connect observed changes in their environment with tangible climate-smart agricultural practices to implement. These training sessions are primarily held by government employees and the International Center for Tropical Agriculture (CIAT) and cover topics such as soil retention, irrigation, and utilization of improved seeds and fertilizers. It is this education component that can shift power structures of cultural norms, gender, or age. While individuals with traditionally-based decision-making power maintain the \"final say\" in adaptations to their agricultural practices, youth input and ideas are considered in this process, with the understanding that they have additional knowledge. The barrier for youth, then, is not their decision-making power; the inputs they are trained to use are expensive or inaccessible, rendering any training and advice unfitting in a localized context. In addition to the barriers of land ownership, financial capital, via loans or savings, are lacking in the hands of youth farmers, greatly limiting their ability to apply what they have learned.The primary concerns of youth in this rural agricultural setting are how to obtain inputs and achieve land ownership. They are aware that the Tanzanian government has programs targeting youth in agriculture, but lack specific information and are unsure how to access them. They often see the extension officers in their community, but the extension officers prefer to speak directly to the \"baba\" (father) head of household, or if he is not available, the \"mama\" (mother), and rarely speak to or seek out youth directly. Despite fulfilling the stereotype of an educated and tech savvy demographic, the young people interviewed expressed frustration about limited access to inputs and infrastructure.The Tanzanian government officials and stakeholders interviewed understand climate change and the importance of including youth in agricultural adaptation measures. In every interview, policymakers and stakeholders stated they consider youth to be the future, and thus a crucial component in any environmental planning and activity. Although each interviewee asserted that there are ways in which youth can become involved via conferences, internships, advisory boards, etc., it was unclear how such youth are selected, and what the extent of their involvement is.Despite the current state of youth involvement, policymakers expressed strong interest in engaging them directly, and have them in mind when considering new proposals and policies. Stakeholder organizations, however, ranged from having very limited or no youth involvement to being entirely comprised of young members. The flexibility of stakeholder status, whether it is a research institution or an NGO, enables the organization itself to dictate the level of youth involvement without the same constraints as a policymaker. Therefore, while youth may be involved with stakeholders, it is often those stakeholders who act as their representatives that work directly with policymakers.In Hoima, farming is the dominant livelihood, fostering a population with personal understanding of climate change and its effects. The young people interviewed reported that they are more aware of changes in the environment within the last five years, and expressed their thoughts on how climate change is the cause of both drought and heavy rainfall at unpredictable times and lengths, making it difficult to know (let alone depend on the routine practice of) when and what to plant. Periods of drought lead to poor harvests, while times of heavy rainfall can lead to crop rot and over-production, leading to post harvest losses.Participants were asked about their knowledge of climate change and climate change adaptation measures. Education in regards to adaptation comes from the National Agriculture Research Organization (NARO) and the National Agricultural Advisory Services (NAADS). NARO and NAADS hold training sessions in Hoima, where they teach farmers the adaptation strategies necessary to deal with drought and heavy rainfall. These organizations discuss the use of improved seeds, spraying pesticides, and agroforestry. Despite the fact that the young farmers are ready and willing to implement these strategies, access to financial capital is problematic.The youth are aware of funding initiatives, such as the Youth Venture Capital Fund, through loans specifically aimed at youth for starting group businesses. But the majority expressed frustration regarding the complexity of receiving said loans. These frustrations come from the bureaucratic application process and the struggle to meet the guidelines necessary to be in the applicant pool to begin with (such as forming a group of 10-15 members and putting together a strategic business plan). In the advent of receiving funding, many youth expressed fear of not being able to pay back the loan, noting interest rates exceeding 20%. In addition, there were complaints about corruption, and comments that government employees awarded the funds to their friends and those above the age requirements, older than 35.Those interviewed show an educated understanding of and personal experience with climate change, as well as satisfaction with the training they are receiving. But even with education and training, there is little that youth can do; their decision-making power is limited. The majority, men and women alike, concurred that if they are living at home with their parents, the father is the one most likely to make the final decision. If the father is not available, then the decision defaults to the mother. In the men's focus groups, the consensus revealed gender binaries; the men perceived the husbands as the decision makers, as opposed to the women's focus groups, where the consensus was that decisions are made as a family. This reflects discrepancies between the genders of perceptions of decision making power at the household and community level. Ultimately, men and women agree that experience, age and education are critical components of decision-making power at the community level, even though the men remarked that men should still be making the decisions.Like the youth in focus groups, policymakers and stakeholders are aware that a youth fund exists within the Ministry of Gender, Labor, and Social Development (MGLSD), but agree that its availability and accessibility are limited by the complexity of the application process. In addition to funding, interviewees remarked that youth services in general are missing (MGLSD is the organization responsible for the youth livelihood fund and youth services). Some youth do not have the skills or knowledge to create a business plan, whereas others have difficulty meeting the requirements of the loan, such as the prerequisite level of education, or maintaining a cohesive and long-standing group.When asked about youth decision making in regards to climate change adaptations, the majority of policymakers and stakeholders explained that efforts are being made to increase knowledge around climate change; although some efforts include young people, they do not target youth specifically. The only youth-specific initiative is the Youth Farmers Coalition, an NGO which encourages youth involvement in policymaking to increase advocacy for young farmers.The young people who were interviewed in Kenya, Tanzania and Uganda demonstrated an understanding of climate change and its impacts on agricultural productivity. They reported having mixed decision-making power at household and community levels, dependent on land ownership, experience, and education. The primary agricultural concerns of youth in the sites visited are lack of financial capital, lack of land ownership, and lack of agricultural inputs. These deficits hinder the ability of youth to implement the adaptation strategies they have learned, thereby limiting their decision-making power at the household and community levels. Youth explained that the current provision of training and information on agricultural adaptations to climate change is sufficient for their farming communities, but the lack of resources prevents their ability to follow through.Despite programs at the national level that offer loans, youth were quick to note that accessing this funding is not feasible, due to lack of transparency and complex bureaucratic requirements. Even if they are able to navigate the system and apply for funding, it is awarded to a small number of applicants.Policymakers and stakeholders interviewed agreed on the positive, critical importance of youth involvement in decision-making and consider they have valuable insights to contribute to policymaking and programming. However, findings show that direct youth participation in these processes, such as internships, coalitions, or advisory committees, is limited.In Kenya, the primary concerns of the stakeholders and policymakers are that young people have an understanding of climate change, but do not know how to adapt to it. This belief is in contrast to our findings amongst the youth which acknowledge that they understand both what climate change is and how to adapt to it, but simply do not have the ability to do so because of constraints (such as lack of access to financial capital and agricultural inputs). We suggest that this contrast arises since policymakers and stakeholders cannot see youth implementing the knowledge they gain from training; they attribute this to lack of understanding as opposed to lack of resources.Policymakers and stakeholders in Kenya also acknowledge that the opinion and involvement of youth is crucial, but direct participation and funding for youth is limited. Policymakers and stakeholders are quick to recognize that funding is available through the government and various organizations, but difficult for youth to access in reality.In Tanzania and Uganda, the primary concern of stakeholders and policymakers is how to empower youth in the current economy via education initiatives and provision of necessary resources, in order to present farming as a viable livelihood.Overall, policymakers and stakeholders are concerned that current population growth is contributing to a \"youth bulge\" in East Africa, and their rhetoric aligns with the desires of the youth themselves. Unfortunately, this appears to be little more than rhetoric, given the relative inaccessibility of government funding and lack of initiative to actively include youth in national level decision-making. ","tokenCount":"3939"} \ No newline at end of file diff --git a/data/part_3/1729557271.json b/data/part_3/1729557271.json new file mode 100644 index 0000000000000000000000000000000000000000..ae1810d39f19fd3a54091f43c20d0d3ea442a854 --- /dev/null +++ b/data/part_3/1729557271.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"7b8161786557f96760f76313bd93bcc4","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/a473e7c2-fb83-4ddb-9c27-fe474857db53/retrieve","id":"-2125878205"},"keywords":[],"sieverID":"b31eb164-ee5d-48af-b7ba-b31d7418f5af","pagecount":"20","content":"Region : CWANA Aymen Frija (ICARDA) 14 décembre 2022 Atelier regional sur la gestion durable et inclusive des écosystèmes pastoraux et leur potentiel socio-économique dans les pays du Proche Orient et de l' Afrique du Nord Tunis, 14-15 décembre 2022 Pastoral territorial development as key driver for rangeland restoration and governance Introduction: rangeland restoration 1 3 Conclusions 5 Some results and how they link to ongoing investment programs Usual Focus of current rangeland research and development projects Way forward: effective pastoral development 2 4 International Experts forum on Food Security in GDA Members,• Many Restoration practices have been tested in the past few decades,• Most of these are based on local traditional knowledge,• A large trend today to capitalize and formalize this traditional knowledge into formal institutions and arrangements, which sometimes create more problems than solutions• Pastoral communities are facing challenges which goes beyond rangeland resources (need for integrated approach to solve the problem of rangeland sustainability)5Most of these projects were focusing on the below key questions :• How can we ensure enhanced livelihoods of agropastoral communities through better crop-livestock practices• Technologies are not sufficient! Land tenure is a constraint, and there is a need for collective action and communities organizations.• What is the best way to organize communities and which empowerment activities are needed?▪ Increasing understanding that the problem of pastoral development is highly intricated into social and economic development dimensionsMain research questions recently tackled Some results -Pathways for enhancing rangeland governance under constraining land tenure systems• overall improvement of rangeland governance is highly related to the type of tenure system.• Even under restrictive tenure systems, the improvement of a set of local institutional attributes can lead to better governance. Ways forword -developing a toolbox for enhanced implementation of pastoral investment projects• Strengthenning the performance and ability of the community-based organizations to create opportunities and partnerships • Creating a platform for a socio-digital communication can help operating as a network for more effective rangeland management and pastoral development.","tokenCount":"329"} \ No newline at end of file diff --git a/data/part_3/1735866882.json b/data/part_3/1735866882.json new file mode 100644 index 0000000000000000000000000000000000000000..2edbfefe231ba09c753d12ca36d86f108ac75e09 --- /dev/null +++ b/data/part_3/1735866882.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c027afb0da787e35e14def61c4b87052","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/2168a1fe-c991-4ed9-b93d-3f04c1a8d8f1/retrieve","id":"1080387172"},"keywords":[],"sieverID":"2f60c599-0d89-486f-91ee-96be28fdab1d","pagecount":"30","content":"Rice cultivation in Peru exemplifies the complex nature of the interaction between changing climatic conditions and households' decisions on how to cope with these changes given their constraints and perceptions. In this study, we look at this interaction, focusing on small-scale household farmers that depend on rice production for their livelihoods. We first examine men's and women's perceptions of climatic changes and compare them to aggregate and weather station observations of changes in climatic indicators. Second, we examine the various adaptation practices used by rice farmers to cope with climate change, and what determines these practices using a multivariate probit analysis.The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT) delivers research-based solutions that harness agricultural biodiversity and sustainably transform food systems to improve people's lives in a climate crisis.The Alliance focuses on the nexus of agriculture, environment, and nutrition. We work with local, national, and multinational partners across Africa, Asia, and Latin America and the Caribbean, and with the public and private sectors and civil society. With novel partnerships, the Alliance generates evidence and mainstreams innovations to transform food systems and landscapes so that they sustain the planet, drive prosperity, and nourish people in a climate crisis.The Alliance is part of CGIAR, the world's largest agricultural research and innovation partnership for a food-secure future, dedicated to reducing poverty, enhancing food and nutrition security, and improving natural resources.Peru is among the three most vulnerable countries in the world in terms of climate hazard risks and has highly heterogeneous climatic variations across regions. Some of the areas of predominant rice cultivation are low-lying coastal areas that are predicted to face increased precipitation, others are on the edges of fragile mountain ecosystems and forest regions were drought frequency is predicted to increase disproportionately. This high and heterogeneous climate variability is imposed on producers who already face critical and diverse challenges for their economic survival. The two main agro-ecological regions where rice is predominantly grown -coastal and forest areas -have historically faced several distinct biophysical and socioeconomic constraints to rice production. Including highly arid terrain, low precipitation in the Coast, and low availability of improved varieties and other technologies, as well as limited access to important commercialization channels in the Forest.Thus, rice cultivation in Peru exemplifies the complex nature of the interaction between changing climatic conditions and households' decisions on how to cope with these changes given their constraints and perceptions. In this study, we look at this interaction, focusing on small-scale household farmers that depend on rice production for their livelihoods. We first examine men's and women's perceptions of climatic changes and compare them to aggregate and weather station observations of changes in climatic indicators. Beyond examining climate warming, which is the most widely known climatic stress factor, we also study perceptions on changes in rainfall frequency, quantity and seasonality, in the level of water in the rivers, and on the frequency of droughts and floods. We show that farmer perceptions provide a nuanced picture of climate change predictions in Northern Peru. Furthermore, official climate information often does not reach farmers in the countryside, who are more likely to base their behavior on their climate perceptions. As such, information about perceptions and coping behavior provides a unique view into the heterogeneity of households' exposure to climate risks and related livelihood stresses, as well as into the causal links between climatic stress factors and adapting or coping behavior.Second, we examine the various adaptation practices used by rice farmers to cope with climate change, and what determines these practices. Our empirical analysis uses a multivariate probit analysis for this purpose. Besides, we test different ways to measure gender that go beyond the sex of the respondent or the head of the household. Specifically, we include the gender of the manager of the plots which allows us to differentiate between households with plots that are only male-managed versus plots with female managers (either alone or jointly with their spouse).Preliminary findings show that while climate change studies predict generalized increased temperature, there is a coastal area in Peru where the majority of farmers perceive a drop in temperature over the course of the last 5 years (2007)(2008)(2009)(2010)(2011)(2012). Similarly, while aggregate predictions determine increases in precipitation in northern Peru, farmers' perceptions show a large degree of heterogeneity, with the coast facing most of the precipitation increase and the forest more floods and droughts.We also find that perceptions on the level of water in the rivers do not follow the same pattern as precipitation perceptions, likely because the level of the water in the rivers is affected by other factors. Regarding the adaptation to climate change, we find that households adopting new rice varieties as a coping strategy use this option in contrast to other households who rather ask for credit, reduce the cultivated area or diversifying away from the crop. Furthermore, non-agricultural strategies such as migrating, mortgaging the land and pawning assets are complements of asking for credit, reducing area or diversifying the crop, and relying on the help of family and friends. Furthermore, households with male managed and female managed plots are less likely to adopt a coping strategy in comparison to households with joint-managed plots.The document is organized as follows: The second section presents an overview of the rice challenges related to climate in Northern Peru. The third section describes the climate indicators in the region. It includes the patterns and the forecasted behavior of temperature and precipitation in the Andean region and Peru, particularly. The fourth section presents the literature review on gender and climate change. The fifth section briefly describes the Peruvian sample data and the methodology. The sixth section is dedicated to the results. It provides information about climate indicators from weather stations in our study site, the comparison of farmer's perceptions and aggregate weather data, the perceived impacts of climate change and the coping strategies used by farmers, and the estimation results. The document ends with a conclusion section and some policy implications of the findings.Rice is an important component of the Peruvian agricultural sector. It represents roughly 9.4% of the gross national production and occupies almost 20% of cultivated areas. In the rural areas, it is a source of employment and the livelihoods of many farmers depend on its cultivation. It also plays a vital role in food security as one of the most important staple foods in the country. Rice consumption in Peru is the thirdlargest in South America, where the average Peruvian consumes 48.7 kg of rice per year. 1 Rice cultivation is located mainly in the north of the country, in the valleys, forest rim, and forest region. Our study focuses on the departments of Amazonas, Cajamarca and San Martin, in the forest region, and La Libertad, Lambayeque and Piura, in the coastal area, which concentrate 70% of the national production according to Escobal et al. (1994). The study area is shown in Figure 1. This area is characterized by high climatic heterogeneity and is subject to a number of constraints. The coastal climate is characterized by very little rainfall. The mean temperature is 18.1 Celsius, and a wide range of daily fluctuation between 8 and 30 Celsius. In the Forest, depending upon the location, mean temperature ranges between 25 and 28 Celsius, rainfall varies between 1,500 and 3,000 or more mm per year distributed over a period of 9-11 months (Vera 2006).The challenges that rice production in Peru faces are already considerable and the threat of climate change will add to these challenges. Rice cultivation is vulnerable not only to higher temperatures, water scarcity and drought (especially during the growing season) but also to excessive flooding (in particular during the ripening phase). Rice flowers can become sterile due to higher temperatures, meaning that no rice grains are produced. Water scarcity and drought due to lack of rain can have a significant negative effect on rice yields as well. Excessive flooding, in turn, forces the plant to be submerged underwater for a long period with a high likelihood that it will not be able to survive. Fluctuating climatic conditions also generate severe disease outbreaks, which significantly reduce rice grain production and quality (CIAT 2013).The arid and dry nature of the coastal area has resulted in widespread and increasing irrigation use to supply the high water demand for rice production. Irrigation in the country depends largely on the water regulation capacity of Andean ecosystems (where almost all river systems in the North originate), which are being negatively affected by climate change (Hofstede et al. 2014). Additionally, the widespread use of irrigation has caused significant problems of soil salinization, which in turns has triggered that many fields become useless for cultivation and farmers have to move to new soil (CGIAR Research Program on Rice 2017).In spite of the arid nature of the soil in the Coast, larger market accessibility in this region have provided for larger adoption of mechanization and improved rice varieties. As such, production in the coastal area tends to be more predictable and has larger productivity. While rain-forest production puts less stresses on the hydric resources, it has had a tendency towards lower profitability, partially due to the lower availability of improved varieties and the more rudimentary methods used for production (Dirección General de Competitividad Agraria 2012).However, the heterogeneous impacts of climate change across the country may be altering production conditions in ways that could merit the reformulation of government goals. If precipitation increases in the coastal areas are generalized and sustained, or if, to the contrary droughts are occurring more frequently in the forest areas, then the emphasis of the government to shift rice production form the coastal region towards the more humid forest area 2 may be inappropriate. In general, policymakers may have to consider devising alternative strategies for rice production in order to confront increasing uncertainty in production conditions.The trend of mild average annual temperature increases in the Northern Andes (Venezuela, Colombia, Ecuador, Peru) documented since 1939 tripled over the last 25 years of the 20 th century; going from decadal increases of 0.11 o C to 0.34 o C (Marengo et al. 2004;Vuille and Bradley 2000). Recent studies have suggested that this pattern of change in the climate is generating increased variability in the cycle of Pacific Ocean surface water warming and cooling (Cobb et al. 2013;Fedorov and Philander 2000), which is associated with warm and wet weather in April-October along the coasts of northern Peru and Ecuador. This, in turn, causes heavy rain and flooding whenever the event is strong (University of Illinois 2010).As the average increasing trend in air temperature has been established, it has been difficult to establish trends with regard to precipitation, not only because of the different periods considered and methodologies used in the studies but because of the high annual and decadal variability. Specifically for Peru, strong regional differences in precipitation have been observed in weather stations. Towards the west of the Andes mountain range, systematic precipitation increases have been evidenced. However, in the central and eastern areas reductions may be occurring (SENAMHI 2009).Climate projections suggest that most of these trends will continue in the coming decades. A general increase in temperature over all the Andes is forecasted (an annual mean increase of 1-1.4C in 2030 and larger for 2050). Increases in precipitation are predicted in the central area that includes Southern Colombia, Ecuador, and Northern Peru. Reductions in precipitation are expected in areas of the South and North -to the south of Southern Peru and in the North of Colombia (CIAT 2014). Figures 2 and 3 reproduce the maps from the International Center for Tropical Agriculture (CIAT) study, which enables visualizing these changes. For Peru in more detail, the study by CIAT forecasts a general increase in the annual average temperature of 1.6 degrees Celsius by 2030 and 2.8 degrees Celsius by 2050. It also predicts a strong increase in annual precipitation in the North (up to 80 mm per year in 2030), but weaker or even reductions in the South (max 40 mm/year). Similarly, the Met Office Hardley Center (2011) projects an overall increase of up to around 3 to 3.5 degrees Celsius over most of Peru. In the North, they expect a 5 to 10% increase in precipitation whereas projected increases in the south are slightly lower, at around 0-5%.The National Meteorological and Hydrological Service of Peru (SENAMHI) coincide with these temperature trends by 2030 and further details that the largest increases would occur in the northern coast, and in the northern and southern forest. In the case of maximum precipitation by 2030, there would be a decreasing trend in most parts of the country and only in certain locations there would be an increase in reference to current values. In particular, reductions of 10 to 20 percent were projected for the mountains region, yet the northern coast and southern forest could see some increases of similar magnitude (SENAMHI 2009).Overall, the lack of climatic records or regularity in their collection in ample areas of the Andes prevents researchers from establishing more precise average and extreme trends (Marengo et al. 2009;Trenberth et al. 2007). As we will illustrate later, the larger the scale (more localized) of the analysis, the harder it is to find accurate and regular climate observations. Thus, information by local dwellers may be key to develop maps of climatic variation for specific micro-regions in the Andes and to capture more accurately the climatic heterogeneity in these areas.Watershed-river water level is importantly related to the previously described climatic factors, however, we did not find studies examining it systematically, perhaps because it is more complicated to explain and predict since it depends on a number of factors beyond the climate (the region where the watershed is located, the vegetation cover surrounding it, the type and quantity of anthropogenic intervention in the area). In the Andes, several watersheds provide for hydroelectric power, which reduces the water levels in lower altitudes. In times of high precipitation, where water is abundant the risk of floods and landslides may increase.There is a growing body of literature on gender and climate change that focuses on the different impacts that climate change has on women and men and the gender differences in adopting coping strategies. Regarding the differentiated impacts of climate change on women and men, the studies reveal that women are more vulnerable to the effect of climate events because they have less bargaining power and less access to and control over the essential resources to reduce exposure to unsafe conditions, to prepare for climate variability, and to increase the resilience to climate impacts (Alston 2014;Dankelman 2010;Perez et al. 2015;Arora-Jonsson 2011). Women have less land ownership and other assets (Diana Deere, Alvarado, and Twyman 2012), they also face more barriers in accessing education, training, and information, and they have fewer positions on decision-making bodies (Denton 2002;Arora-Jonsson 2011).Along with the gender inequalities in power relations and resource allocations, men's and women's traditional roles within the household are also determinants of adaptation to climate change (Ngigi, Mueller, and Birner 2017). As women are viewed essentially like mothers and housekeepers, and men as landowners, providers, and workers, then women, for instance, will be more likely to face constraints for adapting agricultural strategies that require control over the land (Perez et al. 2015). Further, the different roles that men and women play within their households shape the needs, preferences, and priorities for selecting adaptation strategies (Kristjanson et al. 2017) On the other hand, the literature about gender differences in adopting coping strategies provides mixed results. Some studies have concluded that gender is an important variable affecting decisions to adapt (Tenge, De Graaff, and Hella 2004;Newmark et al. 1993;Nhemachena and Hassan 2007;Deressa et al. 2009;Bryan et al. 2013;Ngigi, Mueller, and Birner 2017). Other studies do not suggest a clear-cut effect on the gender factor (Bekele and Drake 2003;Kristjanson et al. 2017;Lambrou and Nelson 2010). However, most of these studies rely on comparing male-headed household and female-headed households which limits their usefulness for gender analysis because do not tell us much about who participates in the decision-making process.rice varieties and to gain knowledge on women's roles in rice production in the main rice-producing departments in the country (Amazonas, Cajamarca, La Libertad, Lambayeque, Piura and San Martin). The fieldwork was carried out between October and December 2012 in both coastal and forest regions. The questionnaire consisted of 38 questions divided into 12 modules and was directed to rice farmers with less than 10 hectares that produce using irrigated systems. Table 1 shows the distribution of the sample across departments and agro-ecological zones. Using this household survey data, we examine how men and women perceive changes in temperature, rainfall, and water level in the rivers that feed irrigation channels. This analysis is informative in understanding the level of awareness of Peruvian rice farmers. It also allows us to compare men's and women's perceptions regarding climate variability and how they perceive the impacts of climate change on rice farmers' livelihoods 3 . In order to validate the farmers' claim of perception against actual weather data and forecasts, we use available aggregate observations and information about changes in climate indicators from weather stations in our study site.Finally, to have an in-depth understanding of the various adaptation practices used by rice farmers to cope with climate change, and what determine these practices, we rely on econometric technics and estimate a multivariate probit model. In addition, we test different ways to measure gender that go beyond the sex of the respondent or the head of the household. Specifically, we include the gender of the manager of the plots which allows us to differentiate between households with plots that are only malemanaged versus jointly-managed.According to SENAMHI (2009), the average temperature in Peru has increased by 0.2 degrees Celsius over the last 40 years. Average rainfall has increased on the coast and in the northern Andes and decreased in the northern Amazon (SENAMHI 2009). Below we reproduce some maps from SENAMHI report, whichshow the distribution of weather stations with reliable data for annual maximum mean temperature estimated for the period 1965-2006 (Figure 4) and the distribution for weather stations with reliable data for total annual precipitation (Figure 5). The latter figure shows the linear trend of total annual precipitation in percentage, relative to the multiannual average for the period 1965-2006. There are two main aspects to highlight in the map for changes in annual maximum temperature. First, it can be observed that for Peru as a whole, weather stations report mostly positive and significant changes in temperature, with a few exceptions. Decreases in temperature were registered over this period in two of our study regions --the coastal zone of Piura and the forest zone of San Martin. The highest change value (0.52C) was in the northern locality of San Marcos (Cajamarca). 4 Our second observation is that reliable and consistent temperature data from weather stations is very sparse. Overall, there are only 5 weather stations with reliable temperature data in our study area: two in the most northern coastal department of Piura, one in the northern forest department of San Martin, one in the border of San Martin with the northern forest department of Amazonas, and one in the central high forest area of Cajamarca (near border with La Libertad). No reliable weather station data was available for Lambayeque, La Libertad and Amazonas. The most significant trends for these data are the strong temperature increases in Cajamarca and the higher altitude Piura western area, and a significant drop in the northern San Martin (Moyobamba Station) area near Amazonas. However, the other weather stations in both Piura and San Martin do not provide such definitive evidence.While precipitation data from weather stations (Figure 5) is more widely available, significant trends provide mixed results. Unlike temperature, there is not a clear majority of sites presenting increases or decreases at the national level. Overall, the weather stations in the northeast (coastal area) appear to present increases in total annual precipitation, while the ones in the forest areas of San Martin and Loreto show mostly decreases. Two caveats from these data observations are that most coastal weather stations appear to be located in the relatively higher altitude area of the coastal departments, which may not be representative of lower altitude areas. The other is that no station data is available for the Amazonas and La Libertad departments (although the two weather stations in Cajamarca are located very close to the border with La Libertad).Figure 5. Linear Trend of total annual precipitation in percentage, relative to the multiannual average .Source: SENAMHI ( 2009). The trends with statistical significance at 5% or less in Mann-Kendall Test are indicated in black circles).Having analyzed these observational data, we proceed now to study farmers' perceptions by department and gender in our study region.The issue of a changing climate evokes the need to understand the perceptions and adaptation to climate change among rice growers in Peru. Maddison (2007) argues that adaptation to climate change is a twostep process. First, farmers perceive that the climate is changing and second, they respond to these changes through a series of adaptation strategies. In other words, the decisions to adapt to climate change are derived from their understanding and assessment of risk. Besides, there is a growing body of literature showing that men and women might adopt different strategies to cope with impacts of climate change (Lambrou and Nelson 2010;Ngigi, Mueller, and Birner 2017;Perez et al. 2015), depending on their capabilities, resources, information, knowledge, decision-making power, and roles.Perception is a prerequisite for adaptation to climate change. In our survey, rice farmers were asked about their perceptions of climate change with respect to change in temperature, rainfall, and water level in the rivers that feed irrigation channels. This analysis is informative in understanding the level of awareness of Peruvian rice farmers. It also allows us to validate the farmers' claim of perception against actual weather data and forecasts, and to compare men's and women's perceptions. Given available aggregate climate forecasts, we would expect farmers to perceive an increase in temperature in the region as well as increases in precipitation in the Coast and decreases in precipitation in the Forest.Indeed, we find that the majority of farmers in all departments perceive that the temperature has increased in the previous 5 years (2007)(2008)(2009)(2010)(2011)(2012) and that this perception does not differ by gender of the farmer. Close to 100% of respondents agree in the South and West of our study region, yet there is a significant minority of farmers in disagreement in the coastal Lambayeque (and in Piura if the lack of reply is taken as no change perception). As Figure 6 shows, in Lambayeque, 68% of farmers reported perceiving an increase in temperature while 11% perceived a decrease, 7% saw no change and 14% did not answer the question. In Piura, 78% of farmers perceived an increase in temperature, 1% perceived a decrease, 3% saw no change and 17% did not answer the question. When asked whether they think that hot months are hotter, we see a very similar pattern emerges. A significant proportion of farmers (90-99%) in most departments reply affirmatively but men tend to agree more with this affirmation than women do. However, in Lambayeque a larger proportion (19%) disagreed that it is hotter during the hot seasons (Figure 7).These findings show a clear consistency with the mixed nature of information from the two weather stations in Piura, one showing significant temperature increases and the other insignificant temperature decreases. In our case, a large group of farmers in the department perceive a temperature increase over the last 5 years, yet about 20% of the farmers saw no significant change, with a small minority perceiving a drop in temperature. As pointed out above, the same pattern holds for the seasonally hot months.Our data further complements the weather station data, showing that the most significant minority of the country perceiving temperature decreases is located in the Lambayeque department. A coastal area directly below Piura, where a significant minority clearly states perceiving drops in long-run average temperature.When asked about colder months being colder, we see a clear difference in perception between farmers in the forest region and farmers in the coastal one. More than 72% of farmers in the coastal departments perceive that the cold months are colder than usual. In the Forest, only between 34% (Amazonas) and 62% (San Martin) of farmers concur with that perception (Figure 8). Aggregate predictions for Peru suggest an increase in precipitation in the northern region and weaker or a decrease in precipitation in the south. Answers regarding perceptions of whether it rains more show that in most departments, the majority of farmers, regardless of gender, perceive less frequent rain. In most departments though, there are also between 15 and 24% of farmers reporting that they perceive an increase in rain frequency. Importantly, in Lambayeque the majority of farmers perceived an increase in rainfall. Thus, while weather station observations suggest generalized increases in precipitation in coastal departments, farmer perception data show that a majority of farmers perceive rainfall frequency decreases in two of the three coastal departments, with a not-insignificant minority perceiving decreases also in the third one. We believe this difference may be based on the fact that weather stations tend to be located at higher altitudes and further to the east, while the majority of our data points in coastal departments are located on the western side of these departments, further away from the mountains, where rain may be more frequent.Perceptions in the forest departments are better explained by weather station data, since a majority of farmers in these departments perceive precipitation decreases, just as the weather station annual total precipitation data suggests. However, there are important minorities within the forest area, for which weather station data would not be representative of their frequency perceptions, since a significant group of farmers perceive higher frequencies (22% in San Martin, 20% in Cajamarca and 15% in Amazonas -Figure 9).Comparing rainfall frequency with rainfall quantity perceptions (Figures 9 and 10), we find that overall, majority of individuals perceive quantity reductions as well. However, while the distribution pattern of the answers or quantity and frequency is very similar for Amazonas, La Libertad and San Martin, in Lambayeque, Piura and Cajamarca the number of individuals perceiving quantity increases is significantly Respondents also provided information on climate extremes' perceptions. Frequent floods were perceived to have occurred almost exclusively in the Forest during the previous 5 years: San Martin (49%), Amazonas (17% of respondents) and Cajamarca (16%). Examining more closely the case of San Martin, the department with the most frequent floods and droughts (Figure 11), we compare the frequent flood with precipitation perceptions and find that decreased precipitation concentrates in the South, while precipitation increases are in the North (matching weather station data). This means that the flatter areas of the North that tend to be heavily affected by floods, are the ones where precipitation increases may be worsening conditions the most. On the contrary, in the South, lower levels of precipitation may be reducing the flooding frequency and magnitude (both quantity and frequency precipitation perceptions are lower in this area).In the case of Amazonas, the other department relatively heavily affected by floods, we are not able to establish whether flood frequency may be increasing or decreasing. While the rainfall increases in Cajamarca --a higher altitude area through which the Maranon river passes that feeds smaller tributaries in the Amazonas--, maybe generating flood increases, the reduction in precipitation in higher areas could be reducing floods. However, since the majority of those perceiving frequent floods simultaneously perceived decreases or no change (73%) in rains, we suspect that floods may be decreasing in the Amazonas area.Floods' perceptions are also consistent with perceptions of the water level of the rivers that feed irrigation channels and precipitation perceptions. In Amazonas, Cajamarca and San Martin almost all farmers perceive decreases or no change in the level of these rivers as well as less or no change in the frequency of precipitation. The majority of households perceiving increases in the water level are located in Lambayeque --which is the department with most farmers reporting more precipitation frequency--and, in a smaller proportion, in Piura.Droughts were perceived by a high number of farmers in San Martin (47%). All other departments had between 15% and 19% of farmers perceiving frequent droughts, except for La Libertad, were no farmer perceived a drought in the past 5 years. A significant number of farmers also report frequent strong winds in San Martin (28%) and Lambayeque (13%). Of those farmers who perceived more frequent droughts, 99% also perceived increased temperatures. Thus, droughts may be exacerbated by the increased temperatures across the Peruvian northern territory, except for the Northern region of La Libertad (our data points are not representative of the whole department), were temporary precipitation occurs due to Humboldt streams and the ENSO phenomenon. Also, dry winds hit the lower western slopes of the Andes creating a low-level cloud (locally called \"Garua\"), which blocks out the sun for the cooler six months of the year.Figure 11. Frequent floods, droughts, and wind.In sum, the majority of farmers in all departments have perceived an increase in temperature over the last 5 years; which is consistent with observed data and climate change predictions. Precipitation perceptions are highly heterogeneous and hard to predict based on weather station or aggregate data. For precipitation, except for farmers in Lambayeque, most farmers have noticed less rain. This is not as consistent with aggregate predictions and observations that average rainfall has increased on the coast as a whole and in the northern Andes, and decreased in the northern Amazon (SENAMHI 2009). Overall, the department of San Martin presents the most generalized extreme weather changes, with a high proportion of farmers perceiving all long-term temperature increases, higher heat during hot seasons, colder temperature during cold season, decreased precipitation, frequent droughts, floods and winds. In addition, no gender differences were found on climate perceptions related to temperature, precipitation, floods, droughts, and strong winds.As explained earlier, rice is highly sensitive to the quantity and timing of rainfall. Rice thrives on wet conditions during the growing season followed by drier conditions during the ripening phase. Thus, smallscale rice farmers that depend on rice production for their livelihoods can be highly vulnerable to changes in both temperature and precipitation. When farmers perceive that climate change is having some impacts on their livelihoods they will be more likely to adopt coping strategies (Ngigi, Mueller, and Birner 2017).Rice farmers in our study site were asked about the impacts of the changes in the weather on yields, food availability, indebtedness, and crop growing. Rice farmers were also asked about the strategies that they have used in order to moderate harm or to cope with the consequences of climate change in the past 5 years. They were allowed to report more than one coping strategy. Table 3 provides a list of these strategies and the percentage of farmers that adopted them. We group the coping strategies into two main categories: agricultural and non-agricultural strategies. Thirty-three percent of the rice farmers adopt agricultural strategies, and among these, 54% chose to change the rice variety to cope with climate change. Many others chose to practice other agricultural strategies such as cultivate less area and diversify crops. Around 9% of the farmers adopt nonagricultural, and a significant percentage (31%) use both, agricultural and non-agricultural options. From table 3 we see that farmers' coping strategies to detrimental climate events vary from relying on family and friends, asking for formal loans or simply resigning to cultivate smaller areas, to more drastic strategies like leaving farm work to seek wage jobs or even to mortgage their land, pawn their assets or migrate. Even though there are no discernible differences between men and women with regard to coping strategies, men tend to adopt more agricultural strategies while women adopt more non-agricultural options. It is therefore important to have an in-depth understanding of the various adaptation practices used by rice farmers to cope with climate change and what determines these practices. The following section presents our empirical approach to address this issue.We use a multivariate probit model (MVP) to examine the determinants of various adaptation measures while allowing for the correlation across error terms due to unobservable explanatory variables. MVP is a normal discrete choice model to simultaneously examine the relationships between each adaptation option and a common set of explanatory variables. It simultaneously models the influence of independent variables on each adaptation measure while allowing errors to be freely correlated (Lin, Jensen, and Yen 2005). This model is superior to univariate and multinomial models because it explicitly recognizes and controls for potential correlation among adaptation strategies and gives a more accurate picture of the relationship between each adaptation option and its explanatory variables. Young et al. (2009) show that, compared to the MVP model, the multinomial logit model (MNL) --which is the empirical approach that is commonly used in studies of adaptation decisions involving multiple choices--is a poor approximation of outcome probabilities because it assumes that the adaptation practices must be mutually exclusive, which is not the case for the adaptation choices in our study. A single household can adopt multiple strategies to cope with climate change and may use them as complements or substitutes. This fact may be the source of correlations between error terms, modeled using a multivariate probit model.For each strategy type \uD835\uDC56 we will simultaneously estimate a set of binary logistic regressions as follow:Where \uD835\uDC66 \uD835\uDC3D is equal to 1 if the farmer ℎ chooses the strategy type \uD835\uDC57 and 0 otherwise. \uD835\uDC4B is a vector of covariates, \uD835\uDEFD \uD835\uDC3D is a vector of coefficients to be estimated for strategy \uD835\uDC57. \uD835\uDF00 \uD835\uDC3D is normally distributed with mean 0 and variance 1 and the covariance matrix \uD835\uDC49 where \uD835\uDC49 has values of 1 on the leading diagonals and correlations \uD835\uDF0C \uD835\uDC3D\uD835\uDC3E = \uD835\uDF0C \uD835\uDC3E\uD835\uDC3D for strategies j and \uD835\uDC58 for instance. The correlation coefficient \uD835\uDF0C \uD835\uDC3D\uD835\uDC3E indicates if strategies \uD835\uDC57 and \uD835\uDC58 are used as substitutes or complements.We hypothesize that the rice farmers' choices of strategies are not determined solely by climatic variables or geography; households' socioeconomic characteristics, farm characteristics, perceptions, and institutional factors also play an important role in choosing a set of adaptation strategies. We select a series of independent variables based on a review of the literature and location-specific characteristics as factors that explain households' choices between the following four strategies: changing rice variety, reducing cultivation area or diversifying crop, obtaining credit, and using non-agricultural options.First, we consider household size, measured as the number of working adults between the ages of fifteen and sixty-four in the household. According to the literature, the size of the household can have a positive impact on the propensity to adopt certain farm-based coping strategies, especially those that are considered to be labor-intensive (Tazeze, Haji, and Mengistu 2012;Gbetibouo 2009). Large households are also more likely to divert part of the labor force to non-agricultural activities in order to earn income to ease consumption pressure (Silvestri et al. 2012). In our sample, each household has in average 3 members between 15 and 65 years old.Farming experience measured as years of experience in rice cultivation also has a positive effect on the likelihood to adopt coping strategies to cope with climate change. It is hypothesized that households with more farming experience have more knowledge of changes in climatic conditions and therefore are more likely to adopt adaptation practices. Several studies have shown a positive impact of farming experience on the likelihood of adopting diverse coping strategies (Nhemachena, Hassan, and Chakwizira 2014;Silvestri et al. 2012;Gbetibouo 2009). The average years of experience in rice cultivation of the respondents in our sample is 23 years.Farm size positively influences adaptation of coping strategies. Several studies have shown that farmers with large farms are more likely to adopt coping strategies. In Nepal, Piya, Maharjan, and Joshi (2013) show that larger farms are more likely to adopt all the adaptation practices except the traditional strategies. Gebrehiwot and Vand der Veen (2013) find similar results in Ethiopia. Tazeze et al. (2012) argue that large-scale farmers are more likely to adopt coping strategies because they have more capital and resources. Farmers who own large farms also tend to adopt faster than farmers who own smaller farms (Gbetibouo 2009). The average farmer owns 3.6 hectares of land in our sample.Receiving financial assistance or being part of a farmer's association can also positively impact adaptation. Households might be more willing to take on risk associated with adopting new technologies if there is a social safety net in place to help them financially in the event of a shock. Membership in associations is considered to be a good source of information and extensions service for the community. Piya et al. (2013) find that being part of NGO enable households to adopt more modern strategies and deviate from traditional ones. In our sample, only 9% of households belong to a rice farmer's association.The literature provides mixed results on the gender differences in adopting coping strategies. Some studies have concluded that gender is an important variable affecting decisions to adapt (Tenge, De Graaff, and Hella 2004;Newmark et al. 1993;Nhemachena and Hassan 2007;Deressa et al. 2009;Bryan et al. 2013;Ngigi, Mueller, and Birner 2017). Other studies do not suggest a clear-cut effect on the gender factor (Bekele and Drake 2003;Kristjanson et al. 2017;Lambrou and Nelson 2010). Two things might be responsible for this ambiguity. First, many of these studies rely on the sex of the head of the household or the respondent. This variable might not perform well since it may not tell us who participates in the decision-making process. Second, many studies do not take into account couple-headed households and classify them as either female-headed or male-headed households, couple-headed typically being classified in the latter. Along with a measure of the ratio of women to men in the household, we include the sex of the managers of the plots instead of the sex of the head of the household in our analysis. This allows us to differentiate between household with plots that are male-managed only and plots in which women participate in the managing, either individually or jointly with men. The majority of households have plots managed by men individually (84%), 8% have female-managed plots and 8% have plots managed by men and women jointly.In the literature, the impact of the age of the household head on adaptation decisions is ambiguous. The literature has shown both positive and negative propensity to adapt to climate change by farmers. Some would argue that age is associated with more experience and more experienced farmers are more likely to adapt to climate change. However, older farmers might be more risk-averse and less likely to be flexible compared to younger farmers (Gbetibouo 2009). In a study of Ethiopian farmers, Tazeze et al. (2012) show that due to experience age affects adaptation to climate change positively. However, in Nigeria, Sofoluwe et al. (2011) find younger farmers to be more knowledgeable about modern practices and may be more willing to adapt to better techniques. The effect of age might be dependent on the location of the study and the type of coping strategy adopted. Similar to our gender variable, we use the average age of the managers of household plots instead of the head of the household.The education of the head of households or members of the household is expected to have a positive influence on adaptation strategies. Education is linked to information on improved technologies and bestpractices. Farmers who are educated are expected to have more knowledge about climate change and the practices that they can use to cope (Hassan and Nhemachena 2008). It is also expected to increase the ability of decision-makers to receive, decode and interpret information that is relevant for decision making. In Kenya, Silvestri et al. (2012) finds that farmers with higher levels of education are more likely to take adaptation measures. Piya et al. (2013) find that households headed by more educated heads are less likely to depend on traditional strategies and more likely to adopt more modern strategies to cope with climate change in Nepal. The average education of the plot managers in the household is used instead of the education of the head of the household.Farm and non-farm income are indicators of wealth, and in many instances, the technologies required for the adaptation of strategies requires sufficient financial well-being (Silvestri et al. 2012). The wealth of the households reflects its capacity to tolerate risks and deal with climate change. Additional income can help farmers overcome financial constraints and allow them to adopt agricultural practices that might not have been available to them. Gebrehiwot and Vand der Veen (2013) find that higher farm and non-farm income impact positively farmer's perception and adaptation to climate change. Farmers' additional income is captured in our analysis by other cultivation income, animal income, wage, and government assistance (bono).Access to information and extension services can be critical determinants of adaptation to climate change. Extension services provide important information on climate change and management practices. The availability of climate information can help farmers make comparative decisions among different management practices (Hassan and Nhemachena 2008). In Ethiopia, the degree of access to information that the farmer from agricultural experts was found to significantly influence conservation decisions (Bekele and Drake 2003). Gbetibouo (2009) finds that access to extension increases the probability of uptake of adaptation options in South Africa. Farmers in our survey received technical assistance, assistance in using machines, certification in the use of modern varieties, information on varieties, information on agricultural practices and information on climate change.Farmer's perceptions have been shown to have an effect on the probability of adopting a coping strategy. We expect farmers who notice climate change to be more likely to take up adaptation measures to help them mitigate losses associated with those changes. Hassan and Nhemachena (2008) show that farmers who are aware of climate change take up adaptation to help them reduce losses. However, all will depend on the variable used for perception. Piya et al. (2013) notice that the perception of temperature changes does not have the expected effect on adaptation, but the ability to perceive rainfall facilitates adaptation practices in Nepal. We measure farmers' perception of change in temperature, rainfall, and water level.Table 4 presents the descriptive statistics of selected dependent and independent variables for our sample of 497 households. Almost all rice farmers have perceived changes in temperature, rain, rainfall, rain season and water level. But only 22% reported having received information on climate change. As stated previously, in 16% of the households the women participate in the managing of the plots. But, on average each household has more women than men. Table 5 presents the results of the multivariate probit regression. Larger households and plot managers with more farming experience are more likely to adopt all the coping strategies except change in rice variety. Being part of a rice association has no significant effect on adaptation. As expected, farm size is positively associated with changing rice variety, acquiring agricultural credit and adopting non-agricultural strategies as ways to cope with climate change. We control for regional effects by adding department dummy variables. Households in all departments are more likely to change rice variety as a way to cope with climate change relative to households in La Libertad. Households in Amazonas are less likely to acquire credit as an adaptation strategy in comparison to La Libertad.Households with a high women-to-men ratio are less likely to adopt a coping strategy. The same is true for households with male managed and female managed plots in comparison to households with jointmanaged plots. Variables capturing additional income had an insignificant effect on the propensity to adopt a coping strategy. Other cultivation income is negatively associated with change rice variety as an adaptation strategy, but households receiving income from other cultivation are more likely to focus on other agricultural options such as crop diversification and reducing area of cultivation. The average age of plot managers seems to have a negative effect on adaptation strategies, while education has an insignificant positive effect.Receiving technical assistance appears to be positively associated with non-agricultural strategies.Receiving certification increases the likelihood of changing rice variety while decreasing the likelihood of acquiring credit. Households that received information on varieties, agricultural practices, and climate change are more likely to adopt certain farm-based strategies while significantly less likely to adopt nonagricultural strategies.Perception is not strongly correlated with the adoption of coping strategies. Households that perceive a change in raining seasons are more likely to change rice variety. Whereas those who perceived change in water level are more likely to diversify their crops or reduce the area of cultivation, acquire credit and adapt non-agricultural strategies. The impacts of climate change are not significantly correlated with coping strategies. The only significant result is that households that are impacted by climate change in terms of higher debt are more likely to acquire credit as a coping strategy.As expected, changing rice variety is negatively correlated with acquiring credit, and other agricultural and non-agricultural strategies. This means that households use these strategies as substitutes. However, all the other coping strategies are positively related to non-agricultural strategies meaning that households use non-agricultural strategies with the other strategies as complements. This paper examines Peruvian rice farmer's perception of climate change and the determinants of their selection of strategies to cope with the impacts of climate change. Farm level data was obtained from 497 households in different departments in Peru. The choice of strategies is not mutually exclusive, farmers can report using more than one strategy. A multinomial Probit is used to study the determinants of adaptation choices. This study is the first of its kind to analyze the determinants of adaptation strategies to climate by farmers in Latin America. Evidence from official studies has revealed an increase in temperature in Peru over the last 40 years and a decrease in precipitation in certain areas of the country.The perceptions of farmers are consistent with the official findings.Overall, weather station data and other aggregated data may not provide enough detail for policy design addressing climate change that is related to changes in precipitation.More 90% of households have declared that they believe that the climate has changed and many have taken steps to cope with these changes. Farmers mainly change the rice variety that they plant in order to cope with climate change. The results from the MVP model indicate that rice small-scale farmers adopt practices as complements or substitutes to cope with their underlying constraints to adopt one large and effective strategy. Moreover, household and farm size, gender, receiving extensions services, receiving information on varieties and climate change have a significant impact on the propensity of adopting a coping strategy. We also find that changing rice variety is negatively correlated with acquiring credit and other agricultural and non-agricultural strategies. This means that households use these strategies as substitutes. However, all the other coping strategies are positively related to non-agricultural strategies meaning that households use non-agricultural strategies with the other strategies as complements.Our analysis has important policy implications for the establishment of national rice production goals and recommendations on how to achieve these goals. Indeed, while a national policy goal was to shift rice production in the coast to the forest area because of the higher water availability in the latter region, our study shows that climatic variability warrants a re-examination of this objective. Hydrological patterns appear to have had wide variability in the last 5 years (2007)(2008)(2009)(2010)(2011)(2012) within and across zones, with the most unique weather patterns in the Lambayeque coastal region where widespread increases in rainfall and river water levels are occurring. While precipitation decreases follow similar patterns in the rest of departments, the level of the river water, which feeds many the irrigation systems for rice production, presents high heterogeneity and requires deeper study in order to regulate irrigation water use. The effect on irrigation of the widespread higher temperatures on the glaciers that feed the rivers also deserves further attention.","tokenCount":"8015"} \ No newline at end of file diff --git a/data/part_3/1750091927.json b/data/part_3/1750091927.json new file mode 100644 index 0000000000000000000000000000000000000000..db74da1575de8aeb3e3e1b89b684051b082cd697 --- /dev/null +++ b/data/part_3/1750091927.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"884ab83e29c59ba952ef1d1c5d923369","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/bee7d70c-fb6c-4c51-85b1-bfed2626b94c/retrieve","id":"1626507901"},"keywords":[],"sieverID":"1110c5b6-1464-4ec9-9acd-520f4760216d","pagecount":"25","content":"Guidelines for creating and using user-oriented ontology enabling a gender sensitive annotation of breeding product profiles. Alliance Bioversity-CIAT, February 2022.License CC-By 4.0The guidelines were developed to guide scientists, database managers and ontology curators to integrate in the ontology the proper social dimensions documenting trait preferences and use it to annotate the participatory trials or end-user surveys data stored in the databases or repositories. The development of breeding product profiles targeting specific market segments or consumer segments supposes that breeders can access interpretable information about the key preferences of the end users. The translation or interpretation of the collected preferences into traits and variables to make it interpretable and measurable by breeders is not always straightforward. A lot of contextual information needs to be included.The Guidelines were produced for the Research Programme on Roots, tubers and Bananas (RTB) and the RTBFoods project with the support of the CGIAR Gender Platform. Provided examples are taken from the RTB Foods-Alliance Bioversity CIAT report entitled 'Genderedfood mapping on Matooke in Uganda: Understanding the Drivers of Trait Preferences and the 'Development of Multi-user RTB Product Profiles' (Marimo P. et al, 2021) and the RTBFoods 'Gendered Food Product Profile Template' (Forsythe et al, 2022), This version will go through further revisions following additional feedback provided by experts.The objective of most breeding programs in the public sector remains to address the food security issue with a social impact. Information on specific user groups along with their preferences on crop or food product qualities is required to develop product profiles that will adequately inform breeding decisions. A variety of studies have identified gendered trait preferences, but do not systematically analyse differences related to or interactions of gender with other social dimensions, household characteristics, and geographic factors (Teeken B. at al, 2021) The RTB Breeding Community of Practice of the CGIAR Roots, Tubers and Bananas Research Programme (RTB) develops crop breeding product profiles that must integrate traits preferred by diverse social groups or market segments and include the gender dimension. It is not recommended to develop a separate product profile for gender which addresses specific traits unless if there is evidence that there is a niche product profile that is particularly relevant, and impactful for women, who may be involved across the value chain for such a product. Social scientists are exploring more nuanced examination of poverty level, food security and location and how these impact preferences. It is then crucial to relate the trait preference to individual, household-and farm-characteristics (Teeken, 2021).The Crop Ontology (www.cropontology.org) is a reference standard providing clear semantics (e.g., trait name, synonyms, definitions, …) for crop traits and variables recorded during experiments and surveys, supporting the harmonization and analysis of the evaluation data. The Crop Ontology is integrated in the RTB breedbases to annotate the trait data and create fieldbook templates. Most of the characteristics/traits in the current Crop Ontology are defined by the breeders. The current Guidelines do not have clear recommendations on how to incorporate gender, user-defined information, and other social aspects into the ontology and a breeding database. This is however needed to support the interoperability between product profiles and breeders' data.In collaboration with RTB breeding community, the project 'Breeding Roots, Tubers and Banana products for end-user preferences (RTBFoods)', led by CIRAD, France, aims at providing data sets and information required by breeders to understand the preferences of endusers in each market segment for food product qualities and make them storable into the RTB breeding databases called Breedbase. Therefore, the connection of the breeding product profiles to the food product profiles per region is desirable. The Crop Ontology (CO, https://cropontology.org ) compiles crop traits and food product quality traits, with methods of measurements or assessment and scales or unit. CO can support the harmonization of the assessments or measurements of products properties and support data interpretation across social groups and provide interoperability in the Breedbase.We took as example the Matooke Banana Product Profile developed by National Agricultural Research Organisation, (NARO), Uganda, in the context of the Research Programme on Roots, Tubers and Bananas (Table 1). Based on expert knowledge, the Matooke Banana breeding product profile was developed to include assessment or preferences for the agronomic traits and to be linked to the preferred qualities for Food product. It contains pre-harvest agronomic traits and stress traits. Hereunder, the traits in the profile were mapped to the Crop Ontology traits -see 'Crop Ontology Trait identifier' column. However, stress resistance traits are in fact related to several component traits and variables for observing presence/absence of the disease that can support conclusions about resistance (not listed in the table). The results need to be considered in the light of the environmental conditions. Within the RTBFoods project, in the work package called 'Surveys for trait preferences', a template was developed for describing a gendered Product Profile to support the recording of market segments' preferences on raw and cooked Products (Forsythe et al, 2022; Tables 2-4). The template records geography and scientists involved the of the product profile. Some elements were adapted from the template provided in the 'Demand-Led Breeding Product Profiles -A Practitioners' Guide: Creating product profile summaries', by the Demand-Led Breeding Community. The RTBFoods Template is divided into 3 sections: (1) Food Product Profile study details and context, (2) Preferred characteristics with Gender + assessment, (3) information about traits to avoid, producers' socio-economic characteristics and other study information.Type of processing for the product (household-local, processing centre-local, industrial etc.)Alternative crop uses (fresh root sale, processed products) Consumer segments for the product 2-3 sentences on the consumer segments (value chain actors) along the value chain that is relatively homogenous in their preferences, on which the completion of this document is based. These are the people that the product has been specifically designed to serve and may include one or more of the following: • Farmer • Transporter • Processor • Retailer • Consumer • Material producer • Seed distributors. Market scale : some indication of the extent of demand for the product where it currently is and where it is expected to go. In Section 1 (Table 2), the social group surveyed is named 'Consumer segment' which identifies food chain actors with a common set of preferences for a product which corresponds to producers, processors, traders and consumers (who often play one or more roles) preference for x product in x region(s). Section 2 (Table 3) contains the information about preferences that is possible to map to Crop ontology and a consumer group ontology. It is accompanied by the explanation about the content of each column. Section 3 (Table 4) holds the information about the qualities that are disliked by the consumers and could be mapped to Crop Ontology. A preference group is a subset of customer groups that the characteristic is very important fora deal breaker. This could be supported by qualitative evidence of its vital importance, such as labour reduction, or there may be a high citation and/or rank and/or high CATA scores. Women (W) -preferred by women; Men (M)preferred by men; Youth (Y) -preference by men and women under the age of 30; W+M+Y (All)for all users H Gender impact: Do no harm (Gender and Livelihoods assessment adapted from G+ tools)\"Do no harm\" analysis. An analysis of the possible harm that introducing a new trait might cause to women or any social category of customers identified for the analysis. See G+ tools I Gender impact: Positive benefits (Gender and Livelihoods assessmentadapted from G+ tools)Positive benefit analysis. An analysis of the likelihood that a new trait will be beneficial to women and men or another social category of customer defined for the analysis. See G+ tools The quality of the provided 'Indicator of Characteristics' varies a lot. For example, in the processors' preferences listed for matooke in Uganda, several preferences had no indicator which limits reuse by breeders or data scientists (Table 6). If most of the time the indicator brings clear information that can be interpreted, (Table 7a), it happens that the Indicator does not bring the expected clarity (Tables 7b).Table 7a: Example of an informative indicator. Therefore, it is recommended to record during surveys an indicator that: 1. Describes as precisely as possible how the informant is assessing the quality (e.g. bite the raw root, remove peel with the nail, smelling freshly cooked product, by hand, chewing, etc) 2. Provides, for each trait, a description using as much as possible terms/language relatable by breeders for instance, an end-user in a survey may mention 'Good branching' as a preferred trait for desired cassava, to a breeder it may better be understood by 'Canopy or leaf area index'. What is a variable in Crop Ontology?According to the Crop Ontology Guidelines v 2.1 (Pietragalla J et al, 2022. https://cgspace.cgiar.org/handle/10568/110906), the value of an observation or a measurement made by a breeder n a trait is associated with a variable. Therefore, the CO model provides a standard framework for the definition of breeders' variable that measures a trait such as Plant height (PH), Grain colour (GCOL) and Grain yield (GY).The essence of the CO model is to decompose a variable recorded by the breeders into:• A trait: \"what is observed\" • A method: \"how the observation is made\" • A scale: \"how the observation is expressed\"The variable is the combination of 1 trait, 1 method and 1 scale. Such a definition can apply to quantitative data collected through surveys and participatory trials but requires complementary information to put the user preferences into context.For the qualitative data and open questions, this variable definition does not directly apply. The variable can be created afterwards, once analytics are conducted to get the proportion of answers. RTBFoods had developed a template that supports the conversion of answers into scoring of traits per gender. However, the trait classes and trait names can be used to annotate surveys with the objective of supporting a trait data search in repositories or knowledge base.To Template for extracting the preferences before mapping to the Crop OntologyA draft template was designed in Excel to extract from the RTBFoods reports on Gendered mapping Food study, the preferred and disliked qualities on as expressed by processors and consumers and map them to the traits in Crop Ontology (see tables 2a and 2b). The template includes the country, the region where the survey was conducted, the food product and its status (raw, ready to cook, ready to eat), the method used to collect data, the attribute that provide the trait sub-class (e.g., texture, odour). The purpose of this extraction was to verify whether the information was sufficient to map all to existing agronomic or sensory traits recorded in the Crop Ontology. In the scale, 'Smooth' is coded 10 but corresponds to the way trained sensory panel will measure the trait. A new method should then be created for 'Smoothness in mouth_Assessement' with an hedonic scale if this was used. In the accompanying information, the method should describe the gender sensitive method used for scoring the trait.The simplest is to select the Trait Identifier if the method is the one used in the survey, select the variable Identifier. Paste the Trait name and identifier in the Trait & Variable dictionary of your product profile. If traits do not exist in the Crop Ontology, follow the guidelines provided by the web site regarding the term submission form: https://cropontology.org/page/Submit .It is crucial for all domains contributing trait information to the ontology (e.g. social scientists, breeders and food scientists) to reconcile or relate, as much as possible, across the domains, the traits, variables, and descriptions used. Having participatory discussions among the experts is important to validate terms used and create a common understanding of the meaning of the collected data.Preferences mentioned by social groups may need to be broken down into measurable traits to make them interpretable by breeders. In some cases, more than one trait may constitute a preferred quality (called 'Composite Quality'). If this information was not captured in the 'Indicator' of the survey, then it is recommended to open a dialogue with the experts to identify which traits and variables compose the mentioned quality. For example, in user preferences survey for banana, end-users mentioned that they like to harvest or buy a 'Big bunch'. This is typically a quality that does not mean much without a reference variety and/or indication of what the related traits that could be additionally assessed during the survey. Figure 1 proposes an example of 'Big Bunch and its component traits. Majority of the experts consulted for the Guidelines development agree that there should be a way to link the user composite traits to their measurable component traits either in the ontology or the Breedbase. Currently, the Crop Ontology does not adequately capture the richness of all that information. However, for such a quality, it is possible to record in the Trait and variable dictionary accompanying the product profile the Crop ontology identifiers of the component traits. Example for 'Big Bunch': In scenarios where it is difficult to dissociate composite traits, consultation can be made with Breeders, Crop specific ontology curators and expert groups, Food scientists, Social scientists, Data scientists. It is recommended to include in the survey data, all the subsets of the composite trait, and add average values, thresholds scored by the value chain actors interviewed in the survey.During participatory evaluations or surveys, a trait quality can be: (a) mentioned through surveys and free listing of preferences, or with comparative tests using hedonic scales or (b) measured by trained panels in participatory trials using defined attributes and categorical scales. Preferences can be collected about the agronomic and post-harvest traits on the plant,Finger circumference Length Number of clusters and /or size of fingers Big Bunch fruit, root, etc and on sensory qualities on the raw or processed food product. Providing sociodemographic and economic information about the informant who belongs to the targeted market segment will contextualize the preferences (social group/market segment, gender, etc).To harmonise breeder perspectives with characteristics reported by different value chain actors or social group, the development of inclusive market segment ontologies for Root, Tuber and Banana (RTB) crops was proposed. An ontology will provide a solid resource to support, the harmonization of the descriptions of the preferences, the socio-demographic context and its interpretation by breeders as well as supporting access in Breedbase. To include users' preference, it is necessary to integrate in Breedbase the informant characteristics beside the trait and variable name. As such, specific ontology is being developed to provide classes for the social groups along with their role in the food chain, and it will incorporate the user characteristics as recommended by domain experts. It is necessary to develop an ontology for describing the person or market segment who provides the preferences. This ontology will support the annotation of the preferences with harmonized and well-defined market segment when it will be linked to the product profile (Figure 2). The ontology can also support the translation of farmers preferences into a breeder's measurable variable as far as this can be feasible as it is not always straight forward. Often, one preferred quality will correspond to n breeders' traits to measure: a 'banana big bunch' preferred quality can correspond to bunch weight, bunch diameter, peduncle length, number of hands, number of fruits, fruit length. A preference group is a subset of customer groups that the characteristic is very important fora deal breaker. This could be supported by qualitative evidence of its vital importance, such as labour reduction, or there may be a high citation and/or rank and/or high CATA scores. Women (W) -preferred by women; Men (M)preferred by men; Youth (Y) -preference by men and women under the age of 30; W+M+Y (All)for all usersTo support the harmonization of the consumers' group naming and propose a generic definition that could guide scientists, we are developing a Market Segment ontology.To collect expert knowledge and their recommendations, an online survey was sent to RTB domain experts (Breeders, Social Scientists, Food Scientists, Data Scientists, Ontology curators) working on RTB crops. 12 responses were received to the survey and additional 8 interview were carried out were interviewed (see table in Annex). The experts who contributed were 5 breeders, 3 data scientists and ontology curators, 3 social scientists, 1 food scientist.Figure 3 provides the distribution of respondents per RTB crop. Survey results show that the top three types of information that must accompany a user preference for a product profile are:• the gender of the informant • a detailed and informative description of the quality preferred • the comparative variety (check)Additionally, indication of the social group, the geography of the informant is quite important.Definitions of social groups differ for breeders and social scientists and their research objectives. Social groups can be defined as social categories, market segments, value chain actors, food chain actors. Social scientists usually mention social groups defined by socio demographic characteristics and recently by their roles in the food chain, which is not always linked to the food value chain that has market connotation. An ontology must be related to a precise science domain which in our case is crop breeding so we propose to use the 'market segment' concept. A market segment is a group of people who possess one or more similar characteristics.For developing breeding product profiles and targeted breeding pipelines, CGIAR Excellence in Breeding (EiB) describes each targeted market segment by documenting countries and agroecological zones, hectares grown, average yield and average selling price of the product. In addition, total population, rural population, and the population within the market segment footprint are determined, as well as the number of people in poverty and the number undernourished. The market segment is here defined with the perspective of identifying options for dissemination and adoption of new varieties bearing desirable 'added value' traits aside the mandatory agronomic traitssee figure 4. Market Segment: Identifies a regional market opportunity based on a unique combination of grower and consumers' parametersTarget Product Profile Describes the set of key traits required in the 'ideal' product for the market segment to meet or exceed grower and consumer needs.Commodity traders, processors, manufacturers who convert produce into food items and retailers, among others, are interposed between the producer and consumer. Scientists as breeders, plant biologists, nutritionists and chemists are part of the food value chain as they have made an immeasurable contribution to the development of agricultural production and food manufacture. (FAO, 1997)A social group can be defined as any grouping within the social setup of a community based on one's area of interest such as farmers, seed producers, gender (male or female), age groups (youth, elderly), value chain actors and their roles in the value chain, researchers, wealth categories etc. Including value actors in the ontology cannot be bypassed because they are the people for whom the breeders are breeding. Each present preferences depending on the roles they play. However, each group of players possesses social, economic and cultural characteristics that may also create differences in their preferences.Consumer segment (value chain actors) for the product, as per The Food Product Profile Template of RTBFoods, is the segment along the value chain that is relatively homogenous in preferences, These are the people that the product will be specifically designed to serve and may include one or more of the following: Breeders suggested to integrate other social groups like youth, migrants/immigrants, disabled populations, food insecure populations, other vulnerable populations, depending on the region. Ethnicity was also mentioned as important as it is often connected to culinary traditions and specific ways of preparing food products, as well as cultural uses of the food products. The top priority socio-demographic characteristics defined by the survey respondents that should be used to define the informant and social groups are the following: gender, geography, age. It does not exclude to have additional characteristics in the ontology and in the database like: Main task(s) carried out within the value chain, socio-cultural background, decision making in stage, native to the region, years growing crops. For consumers, concepts describing the consumption patterns should be included.An informant often belongs to several of groups mentioned above: Farmer-trader, Farmerconsumer, etc. This information will need to be collected. A well-designed ontology can integrate these one to multiple relationships.Furthermore, survey respondents identified the important socio-demographic characteristics that should be used to define the informant and social groups as : gender, geography, age. It does not exclude to have additional characteristics in the ontology and in the database like: Main task(s) carried out within the value chain, socio-cultural background, decision making in stage, native to the region, years growing crops. For consumers, concepts describing the consumption patterns should be included.Inclusion of market segment into the Crop ontology will result in explosion of variables' number. It might be reasonable to limit the social groups to simple and more usable categories.An ontology must include a valid definition of its concepts with the source reference to enable adequate reuse. The definition of the marker segment very context specific. However, a generic definition can be identify indicating that socio-demographic criteria will be specific to the location. If a 'farmer' has a definition, the 'smallholding size' depends of the region:Those who owns, works on or operates a farm. https://www.vocabulary.com/dictionary/farmerThe definition of smallholders differs between countries and between agro-ecological zones. In favourable areas with high population densities they often cultivate less than one ha of land, whereas they may cultivate 10 ha or more in semi-arid areas, or manage 10 head of livestock -https://www.fao.org/3/y5784e/y5784e02.htmGiven that the Guidelines are for RTB crops, will be linked market segments to their specific production regions.A literature review by Marimo et al. (2020) indicated that there is less documented information on the gender differentiated trait preference evaluation for banana. However, farmers, irrespective of gender, reported similar characteristics related to production constraints, income generation and cultural uses of bananas as the main indicators for variety selection or preference. Among different value chain actors (farmers, producers, processors, and consumers), there was higher preference of traditional cultivars owing to their better consumption traits as compared to the new cultivars that had been bred to be higher yielding and resistant to pests. This points to the potential differences in the trait preferences among diverse groups in the banana value chain. These differences ought to be considered to increase the adoption of new varieties. Gender specific research and social group disaggregated data is, thus, important at the initial stages of breeding to ensure high adoption of new varieties.The respondents emphasized the significance of using gender to define the demographic attributes of a social group. Gender roles may be specific to region, market segment or product as such generate variations in perspectives. Gender is one of the dimensions that must be used to define a social group as such, integrating it into the ontologies requires a thorough yet thought out process because it is important to know the source of information. In addition, either gender plays a different role which warrants the capturing of disaggregated perceptions. Gender disaggregated variable is best placed in the ontology than in the meta data for easy access by breeders. Integrating can be done by defining the gender groups or related terms in the ontology which can then be linked to the data. On the other hand, describing of gendered roles for each segment of the data can be generalized and only specified in observations that require acknowledgment such as regional observations. Gender roles are very sensitive to region and crop value chain, therefore, isolating traits by gender restricts the information to the regions from which the surveys were conducted.If all survey respondents agree that a gender-sensitive variable should be linked to the role of the informant, opinions about how it should be integrated into the ontology and database vary. The ontologies on Banana, Potato and Sweet potato already integrate in the variable a gender disaggregation indicator. CIP has in fact adopted the format recommended by their Guidelines for potato PVS studies. Table 10 shows an example of Trait Dictionary where the variables directly integrate the gender indicator. Trait Dictionaries are uploaded in the Crop Ontology web site for public access. Figure 7 shows how the variables formatted in the Trait Dictionaries appear in the Crop Ontology web site.There is currently no standard practice in Breedbase across RTB crops. For the Participatory Varietal Selection data, the farmer is recorded as a study to which socio-demographic information can be attached like gender. The answers collected with the fieldbook are therefore linked to the respondent gender. In ClimMob (https://climmob.net/ ), the CGIAR citizen science platform for on farm trials, the process is similar. The Cassavabase disaggregates information by user (i.e. Farmer, processor) but not by gender so the integration of the gender indicator in the ontology will facilitate identification of scoring per gender in the database. As little differences between gender preferences have been observed for cassava and plantain agronomic traits, no gender specific division is currently possible in the database. This will change with the post-harvest and quality traits assessments.The Food Product Template integrates elements of the Gender + Template. Survey respondents who were aware of the Gender + tools for developing gender sensitive product profile agreed that the user-oriented ontology should extract concepts from the G+ templates. This way, preference data collected with the G+ tools can be annotated with the ontology in the database.The G+ approach for gender-responsive breeding, developed by CGIAR scientists since 2018 (https://www.cgiar.org/innovations/g-tools-for-gender-responsive-breeding/), offers an integrated, systematic and evidence-based protocol for breeding new crop varieties. The approach builds on work by the CGIAR Excellence in Breeding (EiB) Platform on the concept of a \"product profile\", which describes the traits that different actors want in a new variety, giving plant breeders a target. The G+ proposes 2 tools embedded into a Standard Operating Procedure• G+ tool for gender-responsive customer profile that characterizes client groups targeted for new varieties, considering gender differences in knowledge, assets and decision-making which influence adoption. This makes it easier for breeders to develop the right product for the right customers. • G+ product profile query tool (https://cgspace.cgiar.org/handle/10568/113189) guides collection of evidence to prioritize the traits in product profiles by examining both potential positive gender impacts of those traits, but also any negative impacts they might have. An example is provided in Table 11.These two G+ tools enable breeding programs to meaningfully think through social inclusivity, and especially women's trait preferences and the special circumstances of different contexts, recognizing that one size does not fit all.Respondents of the survey who know the G+ template recommended to integrate the concepts into the ontology. To develop a product profile, preferred traits are mapped to the market segments using statistical data analysis of the preference survey data. The RTBFoods Product Profile Template assists the scientists in this mapping. The consumer segment ontology will provide a consistent naming source of market segment dimensions to support the mapping in the database where the product profile will be stored Additional metadata can be added in the breeding database that specifies the market segment, gender proportion, the target location and role in the value chain. The ontology will provide the controlled vocabulary with proper definitions.When known, the economic importance of the most mentioned traits and variables for a crop or a food product could be indicated in the ontology if the information is available.Currently, variables/traits in the ontology are not mapped to variety. In the ontology, traits are given a general description while in Breedbase, the information is always linked to a genotype/variety.During participatory variety selection, evaluation is done on the variety in reference to cultivars that are well-known by users. This comparison contributes to better understanding of the preferred qualities as expressed by the end-users. For example, during surveys on banana hybrids in Uganda, respondents compared their preferences to Mbwazirume, their preferred cultivar. Data were captured indicated the trait quality in reference to this clone, e.g. 'yellow as Mbwazirume'. The trait measurements or assessments done on the check at the given location is captured in the data sets uploaded in breeding database to provide reference thresholds of the measurements or assessment made in a trial. It is not recommended to include the reference cultivar name directly in the scale of the trait in the ontology because (a) the ontology concept needs to be generic enough to be reused in other projects and (b) the phenotype of reference cultivar varies according to the environment of the growing location and the field management practices. It can be added as complementary information in the metadata of the trait as an information tightly linked to the location.Quantitative scores, or ranks, or measures may be added as complementary information to indicate significance of a trait. Breeders indicated that adding economic weights to the traits will assist them to screen for the most important information. Breeders suggested that an index selection should be used to identify the important traits to allow release of the most optimal clone to the target environment. A Selection Index and calculated with mathematical tools and is used when several useful traits are selected simultaneously and is calculated upon trials data. In this method, the crop is scored for its merit in each of the traits included in selection. The formula to calculate a linear selection index (I) for a selection candidate is as follows: I = ∑ i = 1 t a i g i , where t is the number of traits, and ai and gi are respectively the economic weight and genetic merit of the trait. To support full interpretation of the preferences, this information should be captured in the database, at the level of the product profile for a target market segment. As this value will change with the selected market segment it cannot be included in the ontology, or only as an informative element in the metadata.","tokenCount":"4959"} \ No newline at end of file diff --git a/data/part_3/1751955612.json b/data/part_3/1751955612.json new file mode 100644 index 0000000000000000000000000000000000000000..8fd51cd09325611ff8a3e7087aafdd33bdc5ebc7 --- /dev/null +++ b/data/part_3/1751955612.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"e197d3b08bc5a5fd4d75adac5bafb382","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/7d534e9c-7c85-489e-8ffb-88f1ac302463/retrieve","id":"-1415368461"},"keywords":["6.2.2. Segregantes 12.2.1. Sistema de rotación soya-arroz","finca \"La Consulta\" 12.2.2. Sistema arroz-pasto","finca \"La Argentina\" 1 12.2.3. Conclusión sobre las pruebas regionales PROYECTOS ESPECIALES"],"sieverID":"2b548432-45de-4fbd-a311-1ee080652abb","pagecount":"206","content":"Agradecemos la labor realizada por las siguientes personas, ya que sin ellas no se podr1a llevar a cabo el trabajo que aqui presentamos sobre el programa de Mejoramiento de arroz para suelos ácidos de Sabana del CIAT.Poblaciones F 3 sembradas y seleccionadas, EESR, 1991 B 25.Evaluaciones realizadas en las poblaciones F 3 Evaluaciones realizadas en las líneas de la Prueba Regional sembrada utilizándose el sistema Arroz-Soya, finca \"La Consulta\" 148 73.Evaluaciones y rendimientos de las mejores líneas de la Prueba Regional utilizándose el sistema de rotación Soya-Arroz, finca \"La Consulta\" 149 74.Evaluaciones realizadas en las líneas de la Prueba Regional Evaluaciones realizadas en las líneas del Ensayo de Rendimiento del cruce CT9981 procesado por Cultivo de Anteras; sembrada en suelo preparado con vertedera 162 86. Rendimientos de las líneas del cruce CT9981 procesado por Cultivo de Anteras; sembradas en suelos preparado de modo convencional 165 87. Rendimientos de las líneas del cruce CT9981 procesado por Cultivo de Anteras; sembrada en suelos preparado con vertedera 166Evaluaciones realizadas en las líneas del Ensayo de Observación sembradas en suelos preparado con vertedera.Rendimiento de las líneas del Ensayo de Observación en suelo preparado con vertedera 90.Evaluaciones realizadas en las líneas de la Prueba Regional sembrada en suelo preparado de modo convencional 91.Evaluaciones realizadas en las líneas de la Prueba Regional sembrada en suelo preparado con vertedera 92.Rendimientos promedio de las líneas de las Pruebas RegionalesRegionales, bajo dos sistemas de preparación de suelo 2.4.Informaciones climáticas obtenidas en la EESR, 19918 Informaciones climáticas obtenidas en la EEP, 19918 Informaciones climáticas obtenidas en la EEP, 1992AInformaciones climáticas obtenidas en la EELL, 1992AEvolución de la altura de planta a través del ciclo vegetativo de tres métodos de siembra con semilla F, 1.2.Variedad Mejorada •de Arroz para Sistemas Sostenibles de Producción en Suelos de Sabana, Oryzica Sabana 6Primera Variedad Mejorada de Arroz para siembras de Secano a Chuzo en Colombia, Oryzica Turipaná 7Páginas:180 Con el propósito de desarrollar lineas de arroz adaptadas a estas condiciones, el programa de mejoramiento de arroz para suelos ácidos de sabana del CIAT busca generar germoplasma con las siguientes caracteristicas: a) tolerancia a suelos ácidos; b) resistencia al Virus de la Hoja Blanca (VHB); e) tolerancia al insecto Tagosodes orizicolus; d) resistencia a otras enfermedades, principalmente Piricularia, Manchado de Grano y Escaldado; e) plantas de altura intermedia; f) buena capacidad de macollamiento; g) raices gruesas y profundas; h) buena calidad de grano; y i) precocidad.El programa de mejoramiento genético de arroz para el ecosistema de sabana inició, de manera exploratoria sus actividades en el año 1982, con las primeras evaluaciones de materiales de secano en La Estación Experimental \"La • Libertad\", de donde se concluyó que era factible desarrollar materiales para ese ecosistema. Con base en esta información, se programaron los primeros cruces con materiales de secano de América Latina y Africa. También fueron incluidos lineas de riego de Estados Unidos, América Latina y Asia, para tener una amplia base genética y obtener buena calidad de grano.El año de 1984 es considerado el marco inicial del programa. En la EstaciónExperimental \"La Ubertad\" se inició una extensa evaluación de materiales de secano en condiciones de suelos ácidos (alrededor de 1360 materiales del lnternational RiceResearch lnstitute-IRRI, lnstítut de Recherches Agronomiques Tropicales•IRAT, Jnternationallnstitute of Tropical Agriculture-IITA, Brasil, México, Surinám y otros). Para esa evaluación se utilizó un sistema de franjas con O y 3,0 tjha de cal, el cual permitió discriminar lineas con buen potencial para futuros cruces.A partir del año 1985, el programa. empezó a buscar, en sus poblaciones segregantes, los objetivos previamente descritos. La utilización de la técnica de cultivo de anteras se volvió rutina. Se siguió con la introducción dirigida de nuevos materiales 1 1 1 1 1 1 provenientes de Asia, Africa y América Latina con el propósito de identificar nuevos l 11.1. Estación Experimental Santa Rosa-Lote 2 Las siembras son realizadas en el mes de octubre, donde generalmente se presentan buenos niveles de precipitación, al igual que el mes de noviembre. Para los meses de diciembre, enero y febrero es necesaria fa utilización de riego suplementario por aspersion. Los datos de clima para el segundo semestre (8) del año 1991 son presentados en la Figura 1.La preparación de suelo se llevó a cabo mediante arada de cincel en el mes de agosto seguida de un pase de rastra. Se aplicaron 300 kg/ha de cal dolom1tica como fuente de Ca y Mg. Al momento de la siembra y al voleo se aplicaron 60 kg/ha de P 2 0 5 mas 30 kg/ha de ~O y durante el desarrollo del cultivo, a los 20, 30, 40 y 60 dias después de la siembra (dds) respectivamente, se aplicaron 10 kgjha de N; 10 kg/ha de N mas 30 kgjha de ~O; 20 kgjha de N y 20 kg/ha de N. La fertilización total fue de 60, 60, 60 kgjha de N, P 2 0 5 , ~0.Para el manejo de malezas, fue necesaria la aplicación, en preemergencia, de 2620 g de Bentiocarbo (Saturno 50) mas 600 g de Butaclor (Machete). En postemergencia temprana se aplicó Bentiocarbo + Propanil (Saturno Plus).A los 34 dias se efectuó una aplicación localizada con 300 gjha de Monocrotofos . (Nuvacron) para el control de Epitrix sp.Los esparcidores de inóculo para Piricularia fueron sembrados 20 d 1as antes de la siembra de los materiales de prueba. Estos últimos fueron sembrados cada uno en 2 1 surcos de 3,0 m y cada 31 materiales se ubicaron los testigos CICA 8, Guaraní y IRAT l 216, como patrones de comparación en las evaluaciones.1 1Los suelos utilizados por el programa están ubicados, en el Lote #2 de la EESR, un sitio donde se observa alto nivel de saturación de aluminio y deficiencias en macroelementos (fabla 1 ).La siembra se hace normalmente en camas de germinación y a los 20-25 dds se pasan las plántulas al sitio definitivo. Las plántulas se colocan a una distancia 0,3 m x 0,3 m entre plantas, para garantizar su máxima capacidad de macollamiento.Normalmente se hacen dos siembras al año, la primera en abril-mayo y la segunda en septiembre-octubre. La fertilización utilizada es la siguiente: 13,4 kgjha de P como superfosfato triple; 33,5 kg/ha de K como cloruro de potasio; 61 ,O kg/ha de N como úrea y 50,0 kg/ha de sulfato de zinc. La información climatológica y de suelos se puede observar en las Figuras 2 y 3, y en la Tabla 2.De manera general las siembras de la estación son realizadas siguiendo el mismo patrón. Se siembran los esparcidores para Piricularia 20 a 30 d1as antes que los materiales a evaluar, los cuales contienen una mezcla con CICA 8 (30%), Fanny (25%), Taipei 309 (15%), L 201 (15%), IRAT 216 (5%), IAC 47 (5%) e IAC 165 (5%). En el semestre A del año 1992 los materiales fueron sembrados el d1a 29 de abril, 7 y 9 de mayo.Las parcelas de los materiales a evaluar son de 2 surcos de 5,0 m, espaciados a 0,26 m, con una densidad de semilla de 0,3 gjm. La generación F 2 es la única que se siembra en parcelas de 12 surcos. Las evaluaciones son hechas con base en la Escala de Evaluación Estándar publicada por eiiRRI en 1988.Para cada cierto número de lineas a evaluar se sembraron los testigos Oryzica Sabana 6, Oryzica Uanos 5 e IRAT 216. Al mismo tiempo se sembró al azar un grupo de lineas de comportamiento conocido en el sistema de suelos ácidos conformado por los materiales Oryzica Sabana 6, CICA 8, IRAT 216, Guaraní, IAC 165, Taipei 309, Oryzica Uanos 5, CT6947-7-1-1-1-7-M y CT6196-33-10-4-15-M, con el objetivo de facilitar algunas comparaciones durante el proceso de selección.La preparación de suelos se inició en diciembre de 1991 con la quema fisica del material vegetal presente en el lote (lote en reposo con Brachiaria) y un pase cruzado con cincel. En marzo se reinició la preparación con un pase de rastra y de rastrillo para incorporar la fertilización básica. En total se aplicaron 300 kgjha de cal dolomitica y 60, 60, 60 kgjha de N, P 2 0 5 y ~o. respectivamente.Fue necesario la aplicación de herbicidas para controlar Brachiaria decumbens al momento de la preparación con rastra. En preemergencia se aplicaron 2096 gjha de Bentiocarbo (Saturno 50) y 1200 gjha de Butaclor (Machete). En post-emergencia temprana se aplicó Bentiocarbo+ Propanil (Saturno plus) en la dosis de 6 1 / ha de producto comercial.La Figura 4 muestra los datos climáticos de 1992 A en la EELL. En la Tabla 3 se presentan los datos del análisis quimico de los suelos.Todos los años el programa introduce germoplasma de diferentes partes del 1 mundo. El objetivo es el de evaluar estos materiales para seleccionar nuevas fuentes con l caracter 1sticas de interés para el programa, ampliación de la base genética y otros.También se busca ofrecer a los programas e Instituciones apprtantes, información sobre el comportamiento de sus materiales bajo las condiciones de suelos ácidos de sabana en la EELL. En este semestre se evaluaron lineas introducidas del Brasil, Africa y Asia, 1 1 1 1 1 1 1 1 7 como se muestra en la secuencia.2.1 . Lineas Originarias del \"Centro Nacional de Pesquisa de Arroz -e Feijáo-CNPAF /EMBRAPA\"-Brasii Las lineas participantes de estos viveros son distribuidas en los ensayos de observación y de rendimiento evaluados por la \"Red Brasilera de Evaluación de Germoplasma de Arroz de la Región 11\", la cual incluye los departamentos ubicados en el área de los cerrados.2.1.1. Vivero de 1991 de la red de sabana para la región 11 En 1991 fueron introducidas y sembradas 158 entradas distribuidas por esta red.Debido a la baja presión de enfermedades a que se sometió este germoplasma, se decidió volverlo a sembrar en el semestre A de 1992. Es asi como este vivero fue plantado en 2 surcos de 5,0 m/linea el dia 29 de abril, con una densidad de semilla de 0,3 gjm en la EELL.Como resultado de esta evaluación se presentaron materiales con caracteristicas de interés para el programa, entre ellas la precocidad (18,3% de las lineas presentó un periodo de floración entre 60-70 dds y un 47,5% con floración entre los 71 y 80 dds}.También se observó que 115 lineas (72,8%) del vivero presentaron tolerancia a Piricularia Hoja; sin embargo, no hubo una sola linea con resistencia a Tagosodes (TablaTeniendo en cuenta los anteriores aspectos, más el tipo de planta y grano, se seleccionaron 55 lineas, siendo cosechadas masalmente. En los materiales CNAx 1786-BF6J4-2 (S290016) y qNAx 600~BF6J3-3 (S290066) también se realizó selección individual, por su extremada precocidad (Tabla 4). Este grupo de lineas será incluido en el vivero de progenitores potenciales, donde serán caracterizados durante el primer semestre de 1993 en la EELL.2.1.2. Vivero de 1992 de la red de sabana para la región 11 En el año de 1992, se introdujeron de Brasil, a través de la coordinación del CNPAF/EMBRAPA, ef vivero de observación y los ensayos de rendimiento preliminar y avanzado, distribuidos en la región 11.Un total de 383 entradas fueron recibidas y inspeccionadas por el personal de sanidad vegetal del ICA. Después de su liberación fueron sembradas en la EEP en el bloque aislado de introducción de materiales. Este germoplasma deberá ser evaluado en la EELL en el primer semestre de 1993.2.1.3. Vivero Nacional de Brusone (Piricularia)-VNB Este vivero hace parte de la red de evaluación a Pirjcularia que coordina el CNPAF /EMBRAPA. El contiene 417 entradas desarrollados por los diferentes programas 1 1 1 de mejoramiento Brasileros tanto de secano como de riego. El objetivo es evaluar el espectro de la resistencia de los materiales en las diferentes regiones donde se siembra arroz en Brasil.El objetivo del CIAT es de servir como un sitio adicional de información para la red y de sacar materiales para ser utilizados en su programa de mejoramiento.Similar a lo mencionado anteriormente, este germoplasma fue introducido e 1 inspeccionado por el personal del ICA, y sembrado en el bloque aislado de l introducciones. Este material será evaluado en el próximo año por la sección de patolog1a... 1 1 1El programa de mejoramiento de arroz de secano para suelos ácidos está encargado de la realización de los cruzamientos para las demás secciones del programa de arroz del CIAT y otras instituciones que lo soliciten.Fueron realizados un total de 547 cruzamientos, de los cuales 530 cruces fueron destinados a las ecolog ias de riego tropical y secano favorecido y 17 para secano sabana (Tabla 8). En los anteriores cruzamientos cabe destacar que, en el proyecto de selección recurrente para obtención de materiales resistentes a Piricularía, fueron 1 1 1 utilizados como progenitores lineas en generación segregante S 2 • Para tener una mejor representación de la variabilidad genética de cada linea se han realizado, para cada una de las 244 combinaciones, 3 cruces (plantas) dentro de cada linea, en un sistema de 1 cruzamiento planta a planta, sin incluir cruces reciprocas.Fueron programados 737 cruces para diferentes ecolog ias, los cuales se 1 realizarán en el transcurso del año de 1993 (Tabla 9). En la EEP se evaluaron 5578 planta F 1 originarias de 69 cruces triples (Tabla 10) l donde estuvieron involucrados 66 progenitores provenientes del CIAT (56), Brasil (7), Asia (2) y Africa (1) (Tabla 11). Al desglosar sus progenitores una generación atrás los l resultados muestran que 27 son de origen Africano, 12 de América Latina, 9 de Brasil, 7 de Asia y 1 de USA.Durante el proceso de selección se eliminaron 12 combinaciones (17,4%) y 4 padres (6,0%) y se escogieron en las poblaciones seleccionadas 503 plantas, representando un 9,0% de intensidad de selección. En la Tabla 11 se observa que en las poblaciones originales los progenitores que más contribuyeron fueron CT7244-9-2-1-52-1 (Oryzica Sabana 6) (9,6%), CT6196-33-11-1 -3 (3,9%), CT6278-3-7-4P-1 (4,3%) y P 5589-1-10-4-3 (3,2%); después de la selección se incrementó la participación de estos progenitores a 11 ,6; 6,8'; 6,8; 4,8, respectivamente. Por otro lado, la participación de Basmati T3 y Khao Dawk Mali 105 disminuyó de 9,3% a 2,0%.La Tabla 12 contiene las principales caracteristicas observadas en las 69 poblaciones F 1 evaluadas en la EEP. Entre los cruces seleccionados se escogieron 42 para que fueran procesados por cultivo de anteras, estos se encuentran señalados en la Tabla como CA (detalles sobre el procesamiento de ese material por cultivo de anteras esta en el inciso 11 .1 ). Entre estos, los que mas se destacaron fueron CT11842, CT11845 y CT11846, todos con muy buena segregación para plantas de ciclo corto, tallos gruesos, granos largos y buen potencial de rendimiento.Las 503 lineas F 2 fueron sembradas en la EELL en el semestre A de 1992 y los materiales provenientes de cultivo de anteras deberán ser sembrados en el semestre B del mismo año en la EEP para seleccionar lineas que posteriormente van a ser evaluadas en la EELL en el año de 1993, semestre A.Este fue el primer material sembrado el d ia 29 de abril. El ensayo estuvo constituido por 48 lineas que integraron en parte los cruzamientos evaluados en la generación F 2 • Por razones de disponibilidad de semilla no se sembraron los 63 progenitores que participaron en los 57 cruzamientos.Estos materiales se sembraron con el propósito de orientar las selecciones en la F 2 , una vez que, sembrados bajo las mismas condiciones ambientales, auxilian la caracterización de las reacciones de resistencia o susceptibilidad, tipo de planta, ciclo y otros caracteres agronómicos, en las poblaciones en que se encuentren involucrados.Un total de 38 padres presentaron grados de 1 a 3 en Piricularia Hoja y 42 progenitores mostraron reacciones entre 1 y 3 en Piricularia Cuello, lo que representa el énfasis del programa en la generación de materiales con resistencia a esa enfermedad.Ocho de ellos mostraron un periodo de floración menor a 80 dias, ofreciendo con eso la posibilidad de obtener poblaciones segregantes con plantas de ciclo corto (Tabla 13).En la EELL, el dia 29 de abril, se sembraron las 503 poblaciones F 2 originadas 1 1 1 1 1 1 1 1 15 sección sobre Proyectos Especiales), planeado en el semestre 8 de 1991, fueron escogidos 15 cruces (Tabla 15), dentro de los cuales se realizó selección individual de plantas y masal modificado. El número original de lineas del proyecto fue de 123, siendo seleccionadas 35 (28,4%) y cosechadas 181 plantas individuales (5,2 plantas/linea). Estos materiales junto con los cosechados por masal modificado en todas las 123 lineas; continuarán su evaluación en el semestre A de 1993 en la EELL.Las restantes 894 selecciones individuales (1075 menos 181), mas los 28 masaJes serán sembrados en la EESR en el segundo semestre de 1992.Las principales caracter isticas de las poblaciones seleccionadas se encuentran en la Tabla 16. Sobresalieron 58 lineas (33,9%) que presentaron floración inferior a los 70 dias y 67 (35,7%) entre 71 y 80 dias para un promedio general de 71 ,4 dias. Estos resultados permiten suponer que en el futuro se tendrán materiales avanzados con un buen nivel de precocidad.En cuanto al comportamiento a enfermedades, especialmente Piricularia Hoja, se observó que un 80,3% de las poblaciones presentaron un grado de infección no mayor a 3, según la Escala de Evaluación Estándar. El promedio general fue de 2,8 indicando un buen nivel de tolerancia de los materiales a una alta presión de enfermedades. Los promedios generales para las demás enfermedades fueron de 2, 7 para Piricularia Cuello;3,4 para Escaldado; 2,5 para Helmintosporiosis y de 1 ,9 para Manchado del Grano.Las principales razones para el descarte de lineas fueron: la Piricularia, responsable por la eliminación del48,5% (26,7% en las hojas y 21,8% en el cuello) y el tipo de planta con 36,6%, lo cual se refiere a altura, arquitectura y potencial de rendimiento de las poblaciones (Tabla 17).En la Tabla 18 se aprecia el porcentaje de participación de los progenitores antes y después de la selección. El aporte genético de las lineas CT6196-33-11-1-3, CT6240-12-2-2-1-1 P, CT6278-3-7 -4P-1 , CT6516-23-1 0-1 -2-2, 1 RAT 146 y P 5589-1-10-4-3 aumentó significativamente después de la selección, mientras que progenitores como CNAx 56208, CT10048-6-3-M-2, Guaraní y Tangara disminuyeron de 4,3; 4,8; 6,3 y 7,9% a 2,6; 2,5; 3,8 y 6,9%, respectivamente. El progenitor CT7244-9-2-1-52-1 (Oryzica Sabana 6) presenta una alta participación dentro de la población (12,3%), la cual prácticamente se conserva (11 ,2%) después de ser seleccionados los materiales.En resumen se pueden mencionar algunos cruces que por su porcentaje de selección y observaciones de campo sobresalieron dentro de la generación F 2 • Tal es el caso del CT11846 con buen tipo de grano; CT11859 de buen tipo de planta y grano; CT11877 de porte bajo, limpio (sin enfermedades), buen grano y excelente potencial de rendimiento; CT11891 y CT11893 son poblaciones muy precoces. El cruce CT11901 presentó un muy buen tipo de planta con altura intermedia, sin embargo, este cruce solamente será evaluado en la EELL 1993 A, una vez que fue incluido dentro del proyecto de comparación de métodos de mejoramiento.1 1 6. GENERACION F 3 6.1. Lineas Segregantes F 3 , EESR 1991 BEl dia 15 de octubre de 1991 se plantaron en la EESR, 2257 poblaciones F 3 en surcos de 30m/linea, ubicando cada 31 materiales los testigos CICA 8, Guaraní e IAAT 216 como patrones de evaluación a Piricularia, precocidad y arquitectura de planta, 1respectivamente. Un total de 75 cruces conformaron esta generación, siendo seleccionados por el método de masal modificado 62 (82,7%) y 558 lineas dentro de esos (24,7%). Asimismo se seleccionaron 142 plantas individuales provenientes de 35 l cruces, las cuales presentaron un 50% de floración entre los 70-80 dds, para conformar en 1992 un grupo de lineas F 4 precoces (Tabla 19). Es importante mencionar que los l criterios de selección tenidos en cuenta fueron precocidad, altura de planta, tipo de grano y enfermedades, principalmente Piricularia.El listado de las poblaciones seleccionadas y sus respectivas evaluaciones se aprecian en la Tabla 20, de la cual se extraen los promedios de calificación en Piricularia Hoja {1,5) y Cuello {1 ,1), Helmintosporiosis (1 ,1), Escaldado (1 ,1), Manchado del Grano(1,3) y una media de floración de 82,9 dias.La mayor causa de descarte en los materiales recae en el tipo de planta y peri odo vegetativo largo con 65,8 y 23,7% respectivamente. Los materiales descartados por Piricularia alcanzan un 8,0%, lo que ratifica los criterios de selección tenidos en cuenta (Tabla 21).Según los análisis de participación de los progenitores (Tabla 22) se observa que los padres CT6196-33-11 -1-3, CT7179-31-1-1-4-4P, CT7244-9-2-1-52-1 (Oryzica Sabana 6) y P 5589-1-1-3P-4 aumentaron su contribución después de la selección a un 11 ,5; 11 ,3; 14,2 y 13,4%, respectivamente. Asi mismo se presenta disminución en su participación de los padres CT6946-2-5-3-3-2-M, CT694 7-7-1-1-1-7 -M y CT7378-2-1 -3-1-4-M principalmente.Los materiales seleccionados fueron sembrados en la EELL en el primer semestre de 1992, bajo condiciones de alta presión de enfermedades y alta saturación de aluminio.6.2. Lineas Segregantes F 3 , EELL 1992A 6.2.1. Progenitores Los 43 padres de las poblaciones F 3 , fueron sembrados en la misma fecha y con el mismo tamaño de parcela que los progenitores de la generación F 2 • El objetivo propuesto con su siembra es el mismo de la generación anterior, o sea, servir como referencia durante el proceso de selección. En la Tabla 23 se pueden apreciar algunas de sus principales caracter1sticas y comportamiento a enfermedades.En el semestre A de 1991, se cosecharon 296 lineas F 2 por el método masal modificado, debido a que la presión de enfermedades en estos materiales fue muy baja.Por esta razón se decidió seguir la evaluación de la generación siguiente en el primer semestre de 1992, en la EELL, y no en el semestre B de 1991 en la EESR, como ocurrió con el resto de material seleccionado en F 2 .1 1 11 1El dia 29 de abril fueron sembrados, en 6 surcos de 5,0 m/linea, con una 1 densidad de 0,3 gjm, 296 poblaciones F 3 provenientes de 58 cruces, en los cuales se realizó la selección. Fueron escogidas 90 lineas (30,4%) y cosechadas 362 plantas, para un promedio de 4,0 plantas/linea (Tabla 24}. Estos materiales serán evaluados en la generación F 4 en la EESR, en el segundo semestre de 1992, dando prioridad a la selección por precocidad, tipo de planta y grano. Las selecciones fueron enviadas a Palmira para sus respectivas evaluaciones a Tagosodes, VHB y calidad de grano.Teniendo en cuenta el comportamiento a enfermedades de la población original, se puede mencionar que el promedio de calificación en Piricularia Hoja, para la primera lectura a los 30 dds fue de 1 ,7, aumentando a 2,0 para la segunda lectura (45 dds).Piricularia Cuello presentó un promedio de 1 ,6, Helmintosporiosis de 3,1 , Escaldado de 3, 7 y Manchado del Grano de 1 ,5.Para otras caracteristicas los datos fueron de 80,7 dias para la floración promedia y una reacción a acidez de 1,6 en la Escala de Evaluación Estándar. El listado del material seleccionado y sus respectivas evaluaciones se presentan en la Tabla 25.El total de cruces plantados fue de 58, siendo descartados 19 para un porcentaje 1 1 1 1 de selección de 67,2%; destacándose los cruces CT11626, CT11635, y CT11648 por su l porcentaje de selección dentro de la población, buen tipo de grano, precocidad y potencial de rendimiento. 1El porcentaje de participación de los progenitores en la población muestra que las lineasCT6196-33-11-1-3, CT6515-18-1-3-1-2, CT7079-56-1-1-2-4-M, CT7179-31-1-1-4-4P, CT7244-9-2-1-52-1 (Oryzica Sabana 6) y P 5589-1 -1-3P-4 aumentaron su aporte después de la selección del 36,8% a un 58,8%; mientras que los progenitores CT6196-33-1 0-4-9-M, CT7608-11-M-2-3-2 y P 5589-1-10-4-3 sufrieron una pérdida en la participación del 26,1 a 13,4% (Tabla 26). La primera linea y la variedad Oryzica Sabana 6 estuvieron entre los progenitores mas importantes en la generación F 2 .El 80,0% de lineas descartadas tuvieron como principal razón el tipo de planta, responsable del 55,8%, la toxicidad a aluminio 12,6% y el ciclo largo con un 11 ,6%. El porcentaje restante lo comparten las diferentes enfermedades (Tabla 27). Esta población F 4 fue sembrada el dia 7 de mayo de 1992 y cada familia ocupó 6 surcos de 5,0 m con una densidad de semilla de 0,3 gjm lineal. Cada 12 lineas (72 surcos) fueron ubicados los testigos Oryzica Llanos 5, Oryzica Sabana 6 e IRAT 216, los cuales permiten establecer pautas en el proceso de selección.Dentro de los aspectos tenidos en cuenta en la selección figuran , la precocidad, tipo de planta, reacción a enfermedades, tipo de grano y potencial de rendimiento.Las evaluaciones realizadas en la población muestran que el promedio general en 1 (Tabla 30). Este material será sembrado en el segundo semestre de 1992 en la EESR.Para adelantar las evaluaciones se enviaron a multiplicación en Palmira 38 selecciones l masales de los 42 cosechados (Tabla 31) dadas sus buenas caracteristicas y homogeneidad. Estas lineas serán consideradas para el vivero de observación de 1 las plantas que presentaron 50% de la floración entre los 70 y 80 dds. Una selección de las mejores resultó en 142 poblaciones F 4 , donde participaron 35 cruzamientos y estuvieron involucrados 35 padres. Este material fue sembrado en la EELL el 7 de mayo de 1992, en 2 surcos de 5,0 m/lfnea, con una densidad de 0,3 gjm, plantando a cada 30 lfneas los testigos descritos en las anteriores generaciones.Los promedios de evaluación en la población total fueron : 3,1 para Piricularia Hoja, Este grupo presentó muy buenas caracteristicas, el 75,3% de la población total floreció entre 70-80 dds y 22,5% entre 81 -90 dds; adicionalmente mostró buen comportamiento a las enfermedades y un excelente potencial de rendimiento (Tabla 36).Se escogieron 17 lineas para multiplicación y 8 como progenitores potenciales (Tablas 37). Las lineas de multiplicación harán parte del grupo de lineas de observación de rendimiento a evaluar en la Altillanura en 1993, semestre A. Las escogidas como progenitores serán caracterizadas en el grupo de progenitores potenciales en la EELL también en el primer semestre de 1993 y entrarán a participar en los cruces planeados por el programa.El número de cruces que intervinieron en esta generación fue de 35 para los cuales contribuyeron 35 progenitores, siendo seleccionados 14 cruces (40,0%), 1 destacándose el CT11231 por su precocidad y porte bajo (están bajo multiplicación las l lineas CT11231-2-2-1 y CT11231-2-2-2 para ser probadas bajo el sistema soya-arroz) y el CT11614 por su precocidad y sanidad.en el número de plantas seleccionadas, mostró que en el material procedente de Santa Rosa se aprovechó un 12,4% en la F 4 masal modificado y 28,2% F 4 plantas precoces, respectivamente. En _ el grupo de materiales originarios de la EEP, el número de lineas y plantas seleccionadas fue muy bajo (5, 1%). Utilizando los promedios de las evaluaciones, se observó que hubo una mayor susceptibilidad a Piricularia Hoja con 3,7, una floración promedio de 84,1 dds, mayor que los otros grupos, y una altura máxima de planta de 86,2 cm. Estos datos son ratificados en las principales causas de descarte de los materiales de la EEP (Tabla 42) , atribuidas en un 41 ,9% a Piricularia Hoja y 37,8% a tipo de planta. Esos datos ayudan en la toma de decisión sobre la continuidad del trabajo ejecutado en la EEP, el cual tiene un costo elevado para el programa.Con anterioridad se mencionó que el número de cruces evaluados fue de 15, siendo seleccionados 4 (26,7%) y en donde, según el análisis de participación de los progenitores extraidos en la población antes y después de la selección (Tabla 43), muestra que los padres CT6947-7-1-4-2-1-M, CT7179-31-1-1 -4-P, CT7232-5-3-7-2-1P, CT7244-9-2-1 -52-1 (Oryzica Sabana 6) y P 5589-1-1-3P-4 aumentan su participación de 2,6 a 9,5%, de 14,7 a 19,1%, de 0,6 a 9,5%, de 15,1 a 28,6% y de 14,1 a 16,7%, respectivamente, para un total de 83,3% involucrados en las lineas seleccionadas.En el segundo semestre de 1991, en la EESR, se sembraron las lineas S 1 de 417 cruces del proyecto de selección recurrente para desarrollo de poblaciones con 1. resistencia estable a Piricularia. Como este material combina progenitores de secano y riego, el programa de mejoramiento para calaste ácidos de sabana seleccionó 160 1 lineas 5 2 , las cuales son equivalentes a poblaciones F 4 • Esas selecciones fueron sembradas en la EELL para que fueran evaluadas bajo condiciones de calaste ácidos. 1 Fueron seleccionadas 33 plantas dentro de 14 lineas provenientes de 12 cruces. En la lTabla 44 están los resultados de las evaluaciones realizadas en las lineas seleccionadas. Fueron descartadas 138 lrneas, atribuyendo el mayor porcentaje (44,9%) a tipo de planta. seguidos por período vegetativo largo y Piricularia Hoja con 39,1 y 8,7% respectivamente, lo que ratifica los criterios de selección (Tabla 46). Algunos cruces como CT9977, CT9899 y líneas específicas CT10575-2-2-M-1 y CT10598-36-9-M-1, se destacaron por su porte de planta bajo, tipo de grano y excelente potencial de rendimiento. Cabe mencionar que 8 líneas con 26 plantas cosechadas, fueron seleccionadas como progenitores potenciales, las cuales harán parte de la caracterización de progenitores, para suelos ácidos de sabana que se llevó a cabo en 1992 (Tabla 47). Esta población fue sembrada en 2 surcos de 5,0 m/linea, con una densidad de 1 0,3 gjm, el dia 7 de mayo de 1992, al igual que los otros grupos F Las 32 lineas escogidas son originadas de 12 cruces, dentro de los cuales se puede destacar el CT9899, CT9978 y CT10598 por su buen porte y tipo de planta, asi como un excelente potencial de rendimiento.En el análisis de participación de los progenitores de este material (fabla 51), los padres CT6241-17 -1-5-1, CT6258-5-2-6-1-27, CT7244-9-1•:1 y CT7244-9-2-1-31 se encuentran involucrados en un 26,7% de la población inicial F 6 y, después de la selección, aumentan su participación genética a 41,1 %. También sobresale la disminución en su aporte de los progenitores CT6196-33-10-4-7 (7,9 a 2, 1%), CT6515-18-1-3-1-2 (13,0 a 11 ,6%) y CT7244-9-2-1 -21 -1 (7,1 a 5,3%). Se concluye que estos 7 padres son responsables, dentro de las nuevas lineas seleccionadas, del 60,0% del aporte total.Las principales causas de descarte de las poblaciones en esta generación serán analizadas, teniendo en cuenta los 3 grupos de F 6 en la parte final del informe sobre esos materiales. Tagosodes, VHB y calidad de grano. Los materiales con tolerancia al virus fueron trasplantados para realizar en ellos selección.Fue as1 como se originan 24 lineas F 6 provenientes de 8 cruces, las cuales fueron sembradas en-6 surcos de 5,0 m/linea en la EELL el dia 7 de mayo de 1992.En este grupo fueron seleccionadas 3 lineas (12,5%) cosechadas masalmente (Tabla 52), y enviadas a Palmira a multiplicación. Adicional a la evaluación de materiales, con esta F 6 se planteó realizar un estudio comparativo sobre selección de poblaciones en Palmira, con las cosechadas en condiciones de suelos ácidos de la EELL.En la Tabla 53 se observan las caracteristicas de las 3 lineas seleccionadas, y en las cuales los progenitores CT6129-17-9-5P-1 con un 22,2%, CT6196-33-10-4-7 con un 11,1 %, CT6241-17 -1-5-1 con un 33,3%, CT6261-5-5-6-1 con un 11,1% y CT7244-9-2-1-21-1 con un 22,2% están participando con su aporte genético dentro de ellas (Tabla 54). plantas individuales, que presentaron un periodo de floración entre 70-80 dds, lo que originó la cosecha de 161ineas F 6 provenientes de 4 cruces con 9 progenitores. Las 16 1 lineas fueron sembradas en 2 surcos de 5,0 m/linea siendo finalmente seleccionadas 4 (23,5%) y cosechadas igual número, por selección masal (Tabla 55). El destino de los 1 materiales es el mismo del grupo anterior. Se espera obtener material precoz para ensayarlo en las pruebas de rendimiento.El promedio de evaluación para Piricularia Hoja fue de 2,9; Piricularia Cuello 2,2; 1 Helmintosporiosis 3,0; Escaldado 3,0 y Manchado del Grano 2,9; siendo mayores estos l promedios a los presentados por los otros 2 grupos. El promedio de Vigor 3,9, Floración 81,5 dds y Altura de 70,0 cm se muestra a la vez con valores menores que el resto de l 1 1 1La Tabla 56 muestra las principales caracteristicas de las 4 lineas seleccionadas en este grupo. Es importante recalcar el valor de la prueba de molineria y calidad de grano para la selección de los materiales a evaluar en las pruebas de observación de rendimiento.Según los análisis de participación de los progenitores en la población, se observa que los padres CT6241-17 -1-5-1 , CT6515-18-1-3-1-2 y CT7244-9-1-1 presentan el mayor porcentaje de participación antes (60,3%) y después (58,3%) de la selección (Tabla 57).Comparando con el grupo anterior, los progenitores aportantes de sus genes, los padres CT6241-17 -1-5-1 y CT6515-18-1-3-1-2 coinciden en su importancia dentro de la población seleccionada.Basado en los tres grupos de F 6 evaluados en este año y teniendo en cuenta las principales causas de descarte (Tablas 58, 59 y 60) se puede mencionar que el mayor porcentaje, estuvo atribuido al tipo de planta (bajo potencial de rendimiento, porte alto, alto follaje, etc) seguido por un ciclo vegetativo largo y enfermedades, principalmente Piricularia Hoja y Cuello.Con el objetivo de obtener plantas de la variedad Oryzica Sabana 6 y de la linea CT6947-7-1-1-1-7-M (conocida como linea 6) con menor altura y de ciclo mas corto, se decidió utilizar como fuente de variabilidad la inducción de mutaciones a través del tratamiento radioactiva.En octubre de 1991, en el \"Centro de Energia Nuclear na Agricultura-CENA\", localizado en Piracicaba, Sáo Paulo, Brasil, fueron tratadas, con radiación gama, dos muestras de 2000 semillas cada una, de los materiales de interés. El tratamiento se produjo utilizándose el Cobalto 60, como fuente, los materiales fueron expuestos a una dosis de 25 KR, a través de una exposición de 12 minutos con una distancia de 30 cm de la fuente.Las semillas M 1 fueron sembradas en la EEP, una semana después del tratamiento. En esta generación no se observaron sintomas evidentes de tratamiento radioactiva, tales como plantas albinas, necróticas, hojas con la punta enrollada, etc; solamente se detectaron algunas plantas con un elevado grado de esterilidad.El sistema de siembra de las lineas M 2 fue el de trasplante, iniciándose con el semillero, el cual se plantó el 12 de julio y el trasplante se efectuó entre el 11 y 14 de agosto de 1992. Las lineas M 3 seleccionadas serán sembradas en la EELL en el semestre A de 1993, donde se evaluará su resistencia a las distintas enfermedades y su comportamiento bajo condiciones de suelos ácidos.Para dar seguimiento al trabajo, de la variedad Oryzica Sabana 6 se cosecharon 342 plantas M 2 individuales y de la linea del cruce CT6947 un total de 499. En el semestre A de 1992, en la EEP, se sembraron las plantas M 2 , una en cada surco, con la expectativa de que se encuentren los mutantes deseados.De las 342 lineas originarias de la variedad Oryzica Sabana 6 se seleccionaron 116 {33,9%), de éstas, 102 fueron precoces (29,8%), y 30 fueron de porte bajo (8,8%), mientras que 14 fueron a la vez precoces y de porte bajo (4,1%); otras 16 lineas de porte bajo tuvieron un ciclo similar o mayor que la variedad de origen.En cuanto a la disminución en el periodo vegetativo (hasta 50% de floración) se observaron plantas 15 dias más precoces que Oryzica Sabana 6, sin embargo la l disminución en el ciclo varió entre 2-10 dias en la mayoria de las lineas precoces seleccionadas.1 1Respecto a la linea del cruce CT6947, de la cual se sembraron 499 lineas M 2 , fueron seleccionadas 148 plantas (29,7%) , de estos 142 fueron precoces. Dentro de las selecciones 15 fuero~ de porte bajo (3,0% del total). Solamente fueron encontradas 9 plantas (1 ,8% del total) que combinaron las dos caracter isticas. Se observaron algunas plantas que florecieron hasta 20 dias antes que el testigo no tratado.Este trabajo esta bajo la responsabilidad del lng. Cesar Moquete, que esta desarrollando trabajo de tesis en el CIAT.En Palmira, durante el segundo semestre de 1991 fueron sembrados 69 poblaciones segregantes F 1 de cruces triples. Durante el proceso de evaluación de esta generación fueron seleccionados 42 poblaciones para ser procesadas por cultivo de anteras. De las 42 escogidas 34 respondieron a cultivo de anteras produciendo un total de 441 plantas verdes. El porcentaje total de regeneración vario de 3,0 para el cruce CT11849 a 68,0% para el cruce CT11863. El porcentaje de plantas verdes regeneradas vario de 2,7 para el cruce CT11901 a 77,7% para el cruce CT11865 (Tabla 61). No se nota correlación entre los dos porcentajes.Las 441 plantas verdes obtenidas fueron llevadas al campo. La semilla cosechada será sembrada bajo condiciones de suelos accedáis para observar sus comportamientos . y compararlas con las lineas obtenidas de los mismos cruces por selección masal y pedigr1. El objetivo final es la comparación de métodos de selección. El ensayo preliminar se desarrolló bajo sistemas agronómicos diferentes en la Estación Experimental La Libertad y en las fincas \"La Consulta\" (después de soya), \"La Argentina• (sabana nativa) y \"Matazul\" (Arroz-Pasto) El objetivo es evaluar el potencial genético de las lineas en condiciones de suelos ácidos de sabana, como la adaptación a diferentes manejos agronómicos.12.1 .1. Sistema de rotación soya-arroz, finca \"La Consulta\" La finca La Consulta esta ubicada a 47 km del municipio de Puerto López (Departamento del Meta). La siembra en este sitio fue real izada el 14 de mayo utilizándose una densidad de 80 kg/ha con surcos de siembra espaciados a 0,20 m.Este lote fue sembrado con soya durante 3 años consecutivos. La preparación del suelo fue con un pase sencillo de cincel, en el mes de febrero, seguido, en el mes de marzo, con un pase de rastra y dias antes de la siembra (14 de mayo) se incorporó el fertilizante básico y se pulió el lote.Dadas las caracteristicas del lote, su historial y análisis de suelo (Tabla 62) se aplicó al momento de la siembra, 70 kgjka de P 2 0 5 , 24 kgjha de K 2 0 y 15,8 kgjha de sulfato de zinc. Durante el periodo vegetativo se realizaron 3 fertilizaciones a los 25, 40 y 60 dds con 23 kgjha de N más 30 kg/ha de K 2 0 ; 23 kg/ha daN mas 30 kgj ha de l 1 en post-emergencia temprana Bentiocarbo + Propanil (Saturno Plus) en dosis de 61/ha de producto comercial.En la Tabla 63 se observan las principales características de las líneas evaluadas.En la Tabla 64 están los siete materiales que presentaron mejores rendimientos, tolerancia a enfermedades y características para este sistema de cultivo. El cruce CT10037 que representaba el 72,4% del total de las líneas probadas, obtuvo el mayor porcentaje de los materiales con mejor comportamiento.El la parte final, una vez se presenten los resultados del comportamiento de los materiales en los otros sistemas de producción, se darán a conocer las líneas seleccionadas. Esas pasaran a multiplicación, en 1992 B, en la EEP, con el propósito de hacer parte, en 1993, de las Pruebas Regionales de Rendimiento manejadas por el convenio ICA/ CIAT j FEDERARROZ. Para tal fin se requiere una cantidad de semillas de 259 kg por línea.Para el sistema utilizado en La Consulta se pueden destacar las líneas CT1 0037-30-3-M-1-2P-2-M y CT10037-9-5-M-4-10P-1-M, las cuales superaron las 4,0 tj ha de arroz paddy, al14% de humedad. El testigo comercial, Oryzica Sabana 6 rindió 2935 kgj ha. 12.1.2. Sistema arroz-pastos, finca \"Matazul\" Matazul esta ubicada a 38 km del municipio de Puerto López. Las líneas de arroz fueron sembradas el 16 de abril en surcos de 0.26 m, con una densidad de 80 kgj ha. n 1 34 1Este lote provino de una sabana nativa, que fue cincelado en doble sentido en 1990. El análisis de suelo se encuentra en la Tabla 65. Se preparó con un pase de 1 rastra para luego aplicar 300 kg/ha de cal dolomitica que fue incorporada con rastrillo. l Después se realizó la fertilización básica al voleo y se incorporó con un pase de rastrillo liviano.Al momento de la siembra se hizo la fertilización básica con 89 kg/ha de P 2 0 5 , 30 1 kgjha de ~O y 20 kg/ha de sulfato de zinc. A los 25 y 40 dds se aplicaron 23,3 kgj ha de nitrógeno más 30 kg/ha de K 2 0 y 23,3 en cada una y a los 60 d ias se aplicaron 23,3 1 kgjha de N únicamente. La fertilización total fue de 70-89-90 de N, P 2 0 5 , ~O.Dentro del manejo de cultivo se realizó control localizado de Acrorilirmex sp con el producto clorpirifos (Lorsban).Las gramineas y leguminosas utilizadas en asociación con el arroz fueron Brachiaria dictyoneura y Centrocema acutifolium en densidades de 3 y 2 kg/ha respectivamente, siendo sembradas al voleo, 2 dds del arroz.La cobertura presentada por la graminea y leguminosa, 25 dds fue de 6 plantas de dictyoneura y 1 planta de centrocema por m 2 , promedios considerados aceptables para un buen establecimiento de la asociación. Al momento de la cosecha del arroz, las pasturas presentaban una excelente cobertura del suelo.En la Tabla 66 se pueden apreciar las principales caracteristicas de las lineas de arroz. La Tabla 67 contiene el rendimiento promedio de las mejores lineas, de las cuales 10 superaron el testigo Guarani (promedio de 1681 kgjha) y 4, CT9981-29-12-M-6-1P-2-M, CT7723-2-M-2-3-M-42-2-M, CT1 0037 -9-4-M-4-8P-1-M y CT1 0037 -9-4-M-1 -1 P-5-M, superaron al testigo comercial Oryzica Sabana 6, que obtuvo un rendimiento promedio l de 2057 kgjha.Esta prueba fue sembrada el dia 16 de abril en la finca La Argentina, ubicada a 30 km del municipio de Puerto López. La densidad fue de 80 kgj ha en surcos espaciados a 0,2 m. La preparación de suelo se inició en diciembre de 1991 con la quema del lote y luego con pases cruzados de arado de cincel. En el mes de febrero de 1992 se reinició la preparación con pase de rastra. En el mes de mayo se aplicaron 300 kgjha de cal dolomitica incorporada con rastra. Al momento de la siembra se fertilizó y su incorporación se hizo con un pase de rastrillo.La fertilización empleada fue de 70-89-90 kgjha de N, P 2 0 5 , ~O mas 20 kgjha de sulfato de zinc, en las mismas condiciones que se utilizaron en el ensayo de Matazul.Los análisis de suelo se encuentran en la Tabla 68.Las caracter isticas generales de los materiales bajo condiciones de sabana nativa se encuentran en la Tabla 69. A nivel de rendimiento, 10 lineas presentaron rendimientos superiores al testigo Guarani. Ninguna linea rindió mas que el testigo comercial Oryzica Sabana 6 (promedio de 3096 kgjha). Sin embargo, vale la pena destacar las lineas CT9981-29-12-M-6-1 P-2-M y CT7723-2-M-2-3-M-42-2-M las cuales coinciden con las de mejor rendimiento bajo el sistema arroz-pasto (Tabla 70).12.1 .4. Conclusión sobre los ensayos preliminares Considerando las evaluaciones de las lineas bajo los tres sistemas agronómicos y los niveles de rendimiento se acordó seleccionar diez materiales (Tabla 71) que pasarán a las pruebas de moliner ia y calidad de grano. Los mejores materiales serán multiplicados y conformarán un grupo para pruebas regionales en la Altillanura en 1993.Dentro del acuerdo ICA/ CIAT / FEDEARROZ fueron sembradas 8 pruebas regionales. El CIA T se encargó de dos pruebas en la EELL (preparación de suelo convencional y con arado de vertedera) y de La Consulta. Esos ensayos tienen 5 líneas promisorias y los testigos Oryzica Sabana 6 y Oryzica Llanos 5, sembrados en parcelas de 5000 m 2 con los surcos espaciados a O, 17 m, en monocultivo y 0,34 m en asociación con pasturas.A principios de 1 992, representantes de las tres instituciones que conforman el convenio de investigación de arroz en Colombia, acordaron realizar pruebas regionales con los 5 materiales avanzados del programa en las localidades de Arauca, San Martín, Puerto López (Aitillanura) y la Estación del ICA \"La Libertad\".Las pruebas regionales en la zona de la Orinoquía Colombiana bien drenada (Aitillanura) fueran conducidas, bajo los mismos sistemas agronómicos de los ensayos preliminares, por el convenio ICA/ CIAT / FEDEARROZ. En la Altillanura, el Programa de Arroz de CIAT realizó la evaluación de los materiales, bajo el sistema de rotación soya-arroz (Finca \"La Consulta\") y colaboró en la realización de la prueba bajo sistema arroz-pastos (Finca \"La Argentina\").En \"La Libertad\" el programa realizó un ensayo especial (ver sección 13.8. Proyectos Especiales) bajo dos tipos de preparación de suelo. 12.2.1. Sistema de rotación soya-arroz, finca \"La Consulta\" Este ensayo se sembró en parcelas de 400m 2 , utilizándose en diseño de bloques al azar con 3 repeticiones. La densidad de siembra fue de 80 kgjha en surcos espaciados a 0,2 m. La preparación de suelo, •la fertilización y manejo del cultivo fueron n 1 1 1 1 1 37 idénticos al ensayo preliminar.La Tabla 72 contiene todos los datos obtenidos en el ensayo y la 73 presenta los datos de campo (promedios) y el rendimiento de los materiales. Se observa como Oryzica Sabana 6 y la linea CT8402-27-M-4-2-3-M presentan susceptibilidad a Piricularia Hoja con grado 5. Asi mismo los• dos testigos Oryzica Sabana 6 y Oryzica Uanos 5 muestran una mayor presencia de Escaldado. Entre los dos materiales más rendidores (4398 y 4155 kgjha) la linea CT9997-5-3-M-4-M presenta porte alto, tallos débiles causándose volcamiento, mientras la linea CT10037-9-7-M-1-M es de altura intermedia y de tipo de planta más adaptado a las condiciones de cultivo. Todos los materiales presentan buen potencial en relación al testigo Oryzica Sabana 6. Seria conveniente probar la linea más rendidora con niveles más bajos de fertilización nitrogenada en estas condiciones de rotación con soya. 12.2.2. Sistema arroz-pasto, finca \"La Argentina\" Esta prueba fue sembrada el 28 de mayo en parcelas de 5000 m 2 /linea. Cada parcela fue dividida en dos partes, con el fin de evaluar el material bajo el sistema de monocultivo en sabana nativa y en la asociación arroz-pastos.El suelo se preparó mediante un pase cruzado de cincel en el mes de diciembre 1991 , luego en febrero se hicieron 2 pases de rastra y antes de la siembra un pase de rastrillo.Aproximadamente 30 dias antes de la siembra se aplicaron 300 kgjha de cal dolomitica. La fertilización básica a la siembra (17,5 kgjha de N, 90 kg de P 2 0 5 , 30 kg/ha de ~O y 5 kgjha de Zn) fue realizada al fondo del surco.Durante el desarrollo del cultivo fueron aplicados a los 25 y 40 d1as 17,5 kgjha 1 38 1 de N mas 30 kgjha de ~O en cada una , respectivamente. Finalmente a los 60 dias l se aplicaron 17,5 kg/ha de N. La fertilización total fue de 70, 90 y 90 kgj ha de N, P 2 0 5 , ~o.La siembra en monocultivo fue realizada en surcos a O, 17 m con una densidad de 1 80 kg/ha de semilla. • En el sistema de asociación la distancia entre surcos fue de 0,34 m con la misma densidad de siembra. La semilla del pasto, 3 kgj ha de Brachiaria dictyoneura y 2 kg/ha de Centrosema acutitolium fue sembrada al voleo 8 dds del arroz.En las Tablas 74 y 75 se pueden observar las evaluaciones y los promedios de rendimientos de los materiales en ambas condiciones. Cabe destacar que la linea CT1 0037-9-7 -M-1 -M obtuvo un rendimiento promedio más elevado que el testigo 1 1 1 comercial Oryzica Sabana 6. También superó al testigo en la asociación arroz pastos, 1 siendo inferior en el monocultivo. 12.2.3. Conclusión sobre las pruebas regionales 1 1 De acuerdo con los resultados presentados, se eligieron las lineas CT9997-5-3-M-4-M y CT1 0037-9-7 -M-1-M para ser probadas en 1993 a nivel de pruebas semi-1 comerciales bajo los sistemas de rotación con soya, asociación con pastos y en sabana nativa.Para este fin se multiplicarán en Palmira en 1992 B para obtener 1 aproximadamente 750 kg de semilla por linea.13.1. Ensayo Comparativo de Piricularia, Cruce CT11250 1 En la siembra realizada en el primer semestre de 1991 el cruce estaba en la generación F 2 • Hablan 33 lineas segregantes, las cuales tenian un comportamiento 1 39 general muy bueno, pero se mostraban susceptibles al Piricularia Hoja, con grado 5.Para reavaluar este material e intentar identificar segregantes resistentes en la siguiente generación, se cosecharon 100 plantas individuales en todo el cruce.Mientras que en 1991 A las líneas del cruce CT11250 se mostraron susceptibles a Piricularia Hoja, para el presente año solamente un 47,0% de la población total mostró susceptibilidad a la enfermedad.Fueron seleccionadas en 13 familias, 17 líneas las cuales presentaban tolerancia a Piricularia tanto en la hoja como en el cuello y buenas características agronómicas.De estas líneas seleccionadas se cosecharon 50 plantas individuales (Tabla 76), las cuales serán evaluadas en la EESR como F 4 en el semestre B de 1992.Los materiales serán seleccionados y avanzados hasta la generación F 6 , donde serán comparados con líneas de otro cruce que se muestren resistentes desde la primera generación. En el caso de que en la etapa.tinal hayan materiales suficientes se solicitará a la sección de patología la evaluación de esas líneas, para conocer a que lineaje son resistentes y susceptibles, y que diferencia hay entre ellas.Con este ensayo se busca comparar tres métodos de selección que son Pedigrr, Masal Modificado y Cultivo de Anteras. Para esto, en la siembra de 1992A, en la EELL, se sembraron los cruces para los dos primeros. Los de cultivo de anteras siguen en etapa de proceso de laboratorio en Palmira (ver sección 11) En los dos primeros métodos se cosecharon plantas individuales y masales modificados de manera independiente. Los criterios de selección fueron los mismos para todas las poblaciones y métodos. En el año de 1993, primer semestre, este ensayo será n continuado con las selecciones realizadas por el método de pedigr i y masal.Un total de 107 lineas originadas de introducciones, generaciones avanzadas y F 4 fueron agrupadas en un ensayo que sirvió de tema de tesis de la estudiante de Agronomia Constanza Huertas Puertas, para la obtención del titulo de Ingeniero ,grónomo en la Universidad Tecnológica de los Uanos Orientales.El objetivo fue: a) caracterizar estos materiales en dos diferentes condiciones de cultivo una en la EELL y otra en la Altillanura, b) basado en el desempeño de cada uno, escoger cuales podrán ser utilizados como progenitores potenciales para el ecosistema de suelos ácidos de sabana y e) planear cruzamientos involucrando las mejores lineas.Los ensayos se sembraron el 29 de abril y 14 de mayo en los dos sitios mencionados arriba, respectivamente. Las parcelas fueron de 2 surcos de 3,0 m, con una densidad de 0,3 gjm y no hubo repeticiones.Para la realización de este trabajo, no se utilizó ningún diseño experimental, ya que no requiere análisis estadistico; se trabajó con un total de 1071ineas en cada sitio.Según resultados preliminares luego de la caracterización y evaluación de los materiales utilizados en el ensayo, se procedió a seleccionar los que presentaron las mejores caracteristicas de acuerdo con los objetivos del proyecto y del programa.De acuerdo con estos objetivos se seleccionaron 40 materiales, con los cuales se programarán los cruzamientos. En la Tabla 77 aparecen las evaluaciones realizadas en la EELL. Las 110 lineas de CA y las 110 lineas S 2 de P fueron sembradas en la EESR en el primer semestre de 1992, siguiendo la misma metodologia utilizada en el proyecto de selección recurrente, o sea una linea por dos surcos de 2,5 m cju y 20 semillas por surco.Como diseño experimental fue utilizado el de parcelas subdivididas con tres repeticiones. Las parcelas principales fueron los cruces (donde . se requiere menor precisión), y las subparcelas las lineas dentro de cada método/cruce. Las evaluaciones fueron tres para Piricularia Hoja (Bl) y dos para Cuello (NBI).Para Nbl fueron necesarios datos de floración de plantas individuales. Dentro de cada linea fueron evaluadas 5 plantas para CA y 10 para P. En total, el estudio tuvo 110 líneas x 3 repeticiones x 5 CA y 110 líneas x 3 repeticiones x 10 P = 4950 plantas bajo evaluación. Adicionalmente se evaluaron las siguientes características: Escaldado, Manchado del Grano, tipo de grano, altura de planta y floración.Los resultados preliminares han indicado lo siguiente: a) Floración. Los métodos no muestran diferencias significativas para esta característica (Tabla 78). En la comparación de medias con la Prueba de Rangos Múltiples de Duncan se formaron 8 grupos diferentes al nivel de 0,05% de significancia en CA, siendo el cruzamiento CT11930 el material más precoz (76 dds) y el CT11988 el más tardío; mientras que en P se formaron 6 grupos, donde el CT11988 fue el más precoz con 86 dds y el CT11994 el más tardío con 96 dds (Tabla 79). b) Altura de Planta. Los métodos muestran diferencias altamente significativas para la característica (Tabla 80), pero biológicamente no es relevante (103 cm P vs 100 cm CA).En la comparación de medias, se formaron 5 grupos en CA, el CT11926 fue el materialmás bajo (85 cm) y el CT11942 (131 cm) el más alto; y 9 grupos en P, nuevamente el 1 CT11926 fue el más bajo con 89 cm y el CT11965 con 112 cm el más alto (Tabla 81).Para facilitar los análisis de las variables categóricas se procedió a agrupar los datos, según el valor en la Escala de Evaluación Estándar del IRRI (1988), formando 3 grupos: Resistente (0-3), Intermedia (4-5) y Susceptible (6-9), para la característica Piricularia Hoja. Para las otras enfermedades las clases fueron las mismas, pero dentro de diferentes rangos en la escala Resistente (0-3), Intermedia (5) El alto porcentaje de descarte de las poblaciones, se atribuyó principalmente al mal tipo de planta con un 54,8%, seguido por Piricularia Hoja y reacción a la acidez con un 19,8 y 15, 7%, respectivamente.Dado que las generaciones segregantes de este proyecto siguen siendo seleccionadas por Piricularia en la EESR, el programa continúa con la búsqueda de materiales de interés para el ecosistema de suelos ácidos. Es as1 como en las poblaciones S 2 sembradas en 1992 A se seleccionaron 187 plantas, para continuar por 1En las Tablas 84 hasta 85 se puede apreciar las principales caracteristicas y rendimientos mostradas por los materiales en los dos tipos de preparación. Cabe resaltar 1 que en la preparación con vertedera la totalidad de las lineas mostraron una alta incidencia de Piricularia Hoja, a excepción de Oryzica Sabana 6.Las lineas CT9981-2-4-1-CA-13 (3427 kgj ha), CT9981-2-4-1-CA-15 (3596 kgj ha) 1CT9981 -2-4-2-CA-9 (3438 kgj ha), CT9981 -2-4-2-CA-38 (3549 kg j ha) y CT9981-2-4-2-CA-1 42 con 3043 kgjha, presentaron los mayores rendimientos en la preparación convencional (Tabla 86), mientras que con vertedera se destacaron las CT9981-2-4-1-CA-l 1 47 13 con 3633 kgjha, CT9981-2-4-2-CA-33 con 3664 kg j ha y CT9981-2-4-2-CA-38 con 3759 kg/ha (fabla 87), coincidiendo la primera y la última linea como las de mejor rendimiento en los 2 sistemas de preparación.Los datos de campo indicaron que no se presentaron diferencias en las reacciones a Piricularia entre las lineas, el mismo se observó en relación a la prueba en condiciones de invernadero (datos aun bajo analices preliminares y no presentados en este informe). Esos resultados indican que el supuesto inicial de que se podria utilizar el cultivo de anteras para producir variedades multilineas no se aplicó para este caso.13.8. Ensayos de Rendimiento Bajo dos Sistemas de Preparación de SueloMediante la evaluación de diversas caracter isticas, a demás del potencial de rendimiento, se han detectado, en la EELL, las diferencias de comportamiento de las lineas F 5 y F 6 , del ensayo de observación, y de las lineas avanzadas, de la prueba regional, en relación a los dos tipos de preparación de suelo (arado de cincel vs arado de vertedera).Este ensayo fue conducido conjuntamente por las secciones de mejoramiento y fisiolog1a del programa de arroz de CIAT.Además de las evaluaciones tradicionales hechas por el mejoramiento, fueron evaluadas algunas caracteristicas morfológicas con el objetivo de caracterizar las diferencias de comportamiento encontradas en el ensayo.En este informe se presentan los resultados de la sección de mejoramiento, en el informe de fisiologia del programa de arroz se encontrarán los resultados y conclusiones desde punto de vista agronómico y fisiológico.La preparación de suelos se inició en los meses de enero-febrero con la quema f1sica del lote que estaba con Brachiaria decumbens después de un año de descanso.Con las primeras lluvias del mes de marzo se realizó un pase cruzado de arado de cincel seguido de un pase de rastra.La fertilización básica y la cal dolom 1tica fueron incorporadas de dos maneras.En la preparación convencional (arado de cincel) se utilizó la rastra, ya en la otra preparación se incorporó con el propio arado de vertedera, el cual logró profundizar aproximadamente 30 cm. Después de la utilización de la vertedera fue necesario adicionar un pase de rastrillo liviano sin traba. El empleo de la vertedera mostró su eficacia en romper la camada de suelo compactado (principal objetivo de su utilización).Para ambas preparaciones de suelo la fertilización fue la misma o sea, 300 kgj ha de cal dolom1tica, 60 kg/ha de P 2 0 5 y 30 kgjha de ~O al momento de la siembra, 20 kg/ha de N mas 30 kg/ha de ~O a los 25 d1as después de la siembra y 20 kg/ha de N a los 40 y 60 d1as, para completar un total de fertilización de 60-60-60 kg/ha de N, P20St ~0.Para el manejo post-emergente de malezas se aplicó, a los 12 dds, Bentiocarbo + Propanil (Saturno Plus), 6 ljha de producto comercial.1 1 1 1 1 1 Los análisis de suelo del sitio donde se llevó a cabo el ensayo están en la 1Tabla 3.El desarrollo del material hasta los 30-35 dds fue mejor en el lote preparado con arado de vertedera. Las variedades mostraban mejor vigor inicial, mejor cobertura del suelo y se notaba menos incidencia de malezas. Sin embargo, a partir de los 50 dlas y hasta la cosecha las variedades del lote cincelado se recuperaron mientras que en el lote con vertedera el crecimiento se mostró más lento, lo que se reflejó en los rendimientos. Los datos de crecimiento, los análisis de rafees, de suelo y de plantas deberán ayudar a la comprensión de los fenómenos observados. En la prueba regional se evaluaron cinco lineas y dos testigos bajo los dos sistemas de preparación de suelo. En las Tablas 90 y 91 se observan las evaluaciones tomadas en los materiales y sus principales caracter isticas bajo los dos. De manera general, los materiales sembrados bajo el sistema que utilizó la vertedera, presentaron un menor desarrollo, lo cual se reflejó en los rendimientos Tabla 92. En promedio el rendimiento fue de 20,5% superior con la preparación convencional.El material CT10037-9-7-M-1-M mostró los mejores rendimientos en los dos sistemas y superó al testigo comercial Oryzica Sabana 6. Sin embargo fue el material que más redujo su producción con la preparación con vertedera (27%). Cabe anotar que esta linea confirmó su buen comportamiento en el ensayo de Altillanura.Con el fin de analizar las diferencias entre las 2 preparaciones de suelo, como también bajo el sistema de rotación soya-arroz (Ensayo Finca La Consulta) se realizaron una serie de evaluaciones agro-fisiológicas en 5 sitios marcados al azar en cada parcela.Se tomaron datos de altura a los 45 y 65 dias, macollamiento a las mismas fechas, número de plantas, macollamiento y relación granojpaja. A la vez se evaluó el área foliar y el desarrollo radical. También se hizo el análisis foliar y de suelo a 4 profundidades.Estos datos y sus análisis, que permitirán caracterizar mejor y explicar el comportamiento de las variedades probadas bajo diferentes sistemas agronómicos, serán presentadas en el informe anual de la sección de Fisiologia del Programa de Arroz de CIAT.13.9. Comparación de Rendimiento en Parcelas Experimentales de Diferentes Tamaños El propósito de estos ensayos fue el de ajustar una metodolog ia que garantice seleccionar, en el futuro, genotipos con buen potencial de rendimiento, basándose en la evaluación de plantas individuales cuando la disponibilidad de semillas es baja.13.9.1. Lineas de VIOAL Este ensayo se realizó en la EEP entre el 25 de marzo y 14 de agosto de 1992.El propósito de dicho ensayo fue la de comparar el rendimiento de 64 lineas provenientes de diferentes viveros del VIO AL, sembrando una planta por sitio con 1 O repeticiones en un área total de 12,5 m 2 • Según los resultados, en general, el nivel de coincidencia para los dos ensayos fue del 1 ,6%. Si se considera el 20% de los materiales con los rendimientos mas bajos, solo 5 lineas coinciden en los dos ensayos (38% de coincidencia) y 3 lineas (23%) si se consideran el 20% de los materiales con los rendimientos mas altos. Lo anterior indica que al considerar una sola planta como parcela, aunque el número de repeticiones sea alto, no garantiza una adecuada selección ó descarte de materiales en prueba.13.9.2. Lineas de selección recurrenteEste ensayo fue llevado a cabo en la EEP entre el 20 de abril y 01 de septiembre 1 de 1992. El propósito fue el de seleccionar los mejores progenitores por resistencia a 1 Piricularia de acuerdo a las evaluaciones realizadas en la EESR en el año de 1992 y un adecuado rendimiento dentro del proyecto de selección recurrente.Según los resultados de las evaluaciones por resistencia a Piricularia se l 1 1 Este estudio se llevó a cabo en la EEP entre el 13 de noviembre de 1991 y el 10 de marzo de 1992. Con el presente trabajo se pretend 1a determinar un método de siembra con semilla F 1 que garantizara la obtención de un alto número de plantas establecidas y con buen desarrollo. En el estudio se compararon tres métodos de siembras, como sigue: a) el primer método consist1a en pregerminar las semillas F 1 en cajas Petri y a los 8 d1as pasar las plántulas a bandejas con fango como se hacia normalmente en el Programa de Arroz de CIAT; b) el método dos consist1a en sembrar las semillas F 1 en JIFFY (material orgánico muy útil en germinación de semillas pero muy costoso) y e) el último tratamiento corresponde a siembras de semillas F 1 directamente en suelo seco.El ensayo se llevó a cabo en casa de malla en los primeros d1as y a los 30 dds se llevó al campo para observar su establecimiento. En casa de malla cada método se repitió 3 veces y cada repetición ocupó una bandeja plástica distribuidas al azar. En campo se trasplantó en bloques al azar.De acuerdo con los resultados la germinación promedio se presentó de la . siguiente forma: en cajas Petri 93%, en JIFFY 88.7% y en siembra directa 91%; pero por mala condición de las plantas emergidas con cajas Petri, solo se trasplantaron en promedio 30 plantas, mientras que las plantas de siembra directa y de JIFFY se trasplantaron en su totalidad. En la Figura 5 se puede observar la ganancia en altura a través del tiempo de acuerdo con cada uno de los métodos. No se observa diferencias en altura entre siembra directa y siembra en JIFFY, pero éstas dos se diferencian de la siembra en cajas Petri; sin embargo, al final del ciclo no se presentó diferencias en ninguno de los tres métodos. Por otro lado, el macollamiento tendió a ser superior en siembra directa; mas sin embargo, el número de macollas efectivas tendió a ser superior cuando se sembró en cajas Petri, superando a la siembra directa en 1,8 macollas y a la siembra en JIFFY en 3,8 macollas.Teniendo en cuenta que los costos para producir semillas F 1 son altos, los medíos que se han venido utilizando en el Programa de Arroz para germinación no han sido eficientes, valdria la pena seguir utilizando la siembra directa, para obtener plántulas a partir de semillas F 1 , ya que este método aseguró un mayor número de plántulas establecidas y seguramente tendrá un menor costo.En el transcurso de 1992 se han incluido en el inventario de semillas un total de 5. 784 entradas, adicionadas al inventario anterior suman un total de 24.727 entradas; de las cuales se tienen 230 entradas en recipientes de 12 kg, 5.472 entradas en recipientes de 600 gramos, 1.487 entradas en sobres plásticos de 30 gramos.Las entradas del banco de germoplasma se encuentran tanto en recipientes de Las pruebas regionales realizadas en la.Aitillanura Colombiana, (Uanos Orientales de Colombia) dentro del convenio ICA/ CIAT / FEDEARROZ, permitieron, en 1991 , el lanzamiento de la linea CT7244-9-2-1-52-1 para la región. Según las normas deiiCA, institución encargada del lanzamiento del material, se nombra la variedad \"Oryzica Sabana 6\" (Anexo 1).El trabajo con los pequeños agricultores de la Costa Norte de Colombia proporcionó, en 1992, el lanzamiento comercial del material P 5589-1-1-3P-4-M con el nombre de \"Oryzica Turipaná 7\". Eso material es destinado a los agricultores de la costa que siembran sus variedades a chuzo (Anexo 2) .Nombre: René H. Aguirre V.Sitio: Colombia (CIAT-Palmira)Objetivo: Seleccionar materiales en las poblaciones F 3 y F 5 tolerantes a hoja blanca.Nombre: Elcio P. Guimaráes 3 3 3 72 3 5 69 5 3 83 3 72 5 1 74 1 4 S290288 lOSA 6x MUT.IAC 5100-F4-285/5 5 5 3 3 3 88 1 19 S290303 IOSA6x MUT.IAC5100-F4-317/4 5 3 1 1 3 84 138 S2SI0480 CNAx 737-28-2-5-1 5 3 o o --------------------• \" CT111114 o 0 .00 IRAT 148/CT81118-33-11-1-3//CT100511-3-1-M-4 2\" , 3 1 3 3 1 83 1 1 1 107 o o o CT9586-14Pl48-CA7//CT9586-283 -CA-1 /P 5589-1-1-3P-4-MP 2 CT11822o o o CT9586 -283 -CA-1/P 5589 -1-1-3P-4 -MP//BR-IRGA 409o o o CT6196-33-10-4-15/CT6775 -5-17 -5-1-5//GUARANI o CT6278-3 -7-4P-1/CT6113-8-9 -7-M//CT10006-7-2-M-2 o o o CT6241-17-1-5-1//CT9586-283-CA-1 /P 5589-1-1 -3P-4-MP 50 CT11897 6 2 20 o CT10713.CT7232-5-3-7-1 P-2 -M//CT1244-9-2-1-52-1 51 CT11899 8 4 29 o CT10715/CT6947 -7-1 -1-1-7-M//CT1244 -9-2-1-52-1 52 CT11900 4 13 o CT10716/CT7232 -5-3-7 -6P-4-M//CT1244-9-2-1-52-1o CT10724/CT6947 -7-1-1 -1-7-M//CT7244 -9-2-1-52-1 TOTAL 172 1075 28 1 --------------------------------------------------------------------------------o o o CT8S.7-7-1-Z'CT81118-33-11-1-31/CT7079-~1-1-5-7-M 7 CT11231 8 10 14o o 14 CT7244-9-2-1-52-1/CT81116-33-1 1-1-l' I CT81M7-7-1 -1-1-7-M o o 18 CT72 .. -9-2-1-52-1/CT7232--5-3-7-2-1P/ICT~7-7-1 -4-2-1-Me 10 45 CT7179-31-1-1-4-4'/ CT7244-9-2-1-52-1IICT81116-3l-11-1-3o o 2 P 551e-1-1G-4-~e 1 116-33-1G-4-9-W/CT7819-&-1-7-5-1 • :z::::::=s:z-:.:::::zz::::::.:=::::::t::::::::::::::::o o CT7244-9 -2-1-52-1/CT6261 -5-7 -2P-5-1 P//P 5589 -1-1-3P-4o o P 5589-1-10-4-3/CT7232-5-2 -5-8/ICT6947-7-1-4-2-1-M 3e CT1165eo o P 5589-1-10-4-3/CT7232-5-2 -5-6/ICT8196-33-11-1 -3-AP 37 CT11857 4 1 3 P 5589-1-10-4-3/CT7232-5-2-5-8/ICT7244-9-2-1-52-1 3e CT11658 2 o o P 5589-1-10-4-3/CT7232-5-2-5-8/ICT7079-43-1-4-1-1-M 39 CT11859 31 3 8 P 5589-1-10-4-3/CT6196-33-10-4-9-M/ICT7808 -11-M-2-3-2 40 CT11880 8o o P 5589-1-10-4-3/CT819e -33-10-4-9-M//CT7813-5 -M -1-3-4-M 41 CT11881 3o o P 5589-1-10-4-3/CT6515-18-7 -3-13-1//CT7079-43 -1-4-1 -2-M 53 CT11873 4 1 2 P 5589-1-10-4-3/CT6515-18-7-3-13-1//CT7819-4-M-7-5-3 54 CT11874 1 o o P 5589-1-10-4-3/CT8515-18-7-3-13-1//CT7242-18 -9-4-3-5-M 1 13 17 1.57 6 3 3 o 1.500 0.67568 3. 00 1.01 CT6946•2•5• ----------------------------------------------------------------------------------------------------------- o o o P 5569-1-10-4-3/Cf6196-33-10-4-9-M//CT7613-5-M-1-3-4 CT11882 2o o o P 5589-1-10-4-3/Cf6196-33-10-4-9-M//CT7819-6-1-7-5-1 CT11880 7o o o P 5589-1-10-4-3/Cf6516-23-10-1-2-2//Cf8196-33-11-1-3-AP CT11871 4o o o P 5589-1-10-4-3/CT6747-7-1-2/,CT6196-33-11-1-3-AP .. 1112401521 CT111o11 -25-2-M CT11 ... -3-3-M TOTAl. No. de X particp. *** Total *** 1 1140 100.00 1674 186 62 124 62.000 100. 00000 558.00 100.00 No. o o o CT6261-5 -7-2P-5-1 P/P 5589-1-1-3P-4//CT6947-7-1-1-1-7-o CT7242-16-9-1 -1-M-M/P 5589-1-1 -3P -4//CT6515-18-1-3-1 9 CT11242 4 12 2 CT7242-16-9-1-1-M-M/P 5589-1-1-3P-4//CT7232-5-3-7-6P 10 CT11247 1 5 o CT7244-9 -1 -5-3/P 5589-1-1 -3P -4//CT6946 -2-5-3-3-2-M 11 CT11250 o o o CT7244-9 -1-5-3/CT6196-33-11-1 -3//CT7232-5 -3-7-6P-4-M 12 CT11251 3 12 o CT7244-9 -1-5-3/CT6196-33-11-1 -3//CT6946-2 -5-o o o CT7179-31-1-1-4-4P/ CT7244-9-2 -1 -52-1//P 5589-1 -1-3P-4 o o o CT6196-33-11-1 -3/CT7079-43 -1-4-6-M//P 5589-1-1-3P -4o o o CT7079-56-1-1 -2-4-M/CT7232-5 -3-7-6P-4M//P 5589-1-1-3 33 CT11660 o o o P 5589-1-10 -4 -3/CT61 96 -33 -10-4-9-M//CT7613-5-M-1 -3 -4 34 CT11673 o o o P 5589-1-10-4-3/CT6515-18-7-3-13-1//CT7819-4-M-7-5 -3 1 1 ~------------------------------------------------------------------------------------------------------------------- o o CT7179-31-1-1-4-4P/P 5589-1-1-3P-41/CT6946-9-1-2-2-1-M 14 CT11622 1o o CT7179-31-1-1-4-4P/P 5589-1-1 -3P-4//CT7079-43-1-4-1-2-M 1 15 CT11623 1 o o CT7179 -31-1-1-4-4P/P 5589-1-1-3P -4//CT6196-33-11-1-3 TOTAL 78 4 14 1 ======:::::s•=====-•a::am•:.:a:a:amzz= o o CT6261-5-7-2P -5-1 P{TOX 340-1-7-3//C 48CU76-3-2-1-4-5 -M/ CT6196-33-11 -1-2 CT11930 1 2 CT6113-8-9-7-M/ IRAT 144 f/C T7242-16-9-2-M /CT6393-M -9-2-5-M 3 CT11935o o P 3055F4-3-4P-1 P-1 B/C48CU76-3-2-1-4-5M//P 5589-1-1-3P -4-MP/CT6458-9-4 CT11940 o o P 3621 F2-1-2 -8 -1 B,CEYSYONV/CT6278-3-7-4P-1/CT6240-12-2-2-1-IP 5 CT11948 2 o o ORVZICA 2/CT7242-16-9-2-Mf/CT6278-3-7-4P-1/TOX 1854-102-3 6 CT11978 o o CT6458-9-3-6-MIIRAT 146//CT6278-3-7-4 P-1/ P 3055F4-3-4P -1 P-1 B o o P 5589-1-1-3P-4-MP/CT6196-33-11-1-3-M//CT6278-3-7-4P-1/C48CU76 -3 -2 -1 11 CT12026 2 o o P 5589-1-1-3P -4 -MP/ P 4076F3-2-2-4//CEYSYONI/IR35410-16-3-2-2-2-2 12 CT12030 1 o o P 5589-1-1-3P-4-MP/IR35410-16-3-2-2-2-21/ P 4076F3-2-2-4/CT6278 -3-7-4 13 CT12032 3 o o P 5589-1-1-3P-4 -MP/CT6458-9-3-6-M f/ P 4076F3-2-2-4/CT6240-12-2-2-1-1P 14 CT12033 o o P 5589-1-1-3P -4-MP/CT6458-9-3-6-M /!TOX 1859-102-6M-3/CT7242-16-9-2-M 15 CT12034 o o CT6196-33-11-1-3-M/CT7242-16-9-2-M//P 4725F2-9-6-1X/P 4743F2-80-2 -1X 16 CT12035 o o CT6196-33-11-1-3-M/CT7242-16-9-2-M//P 4725F2-9-6-1 X/ORVZICA 2 o o CT6261-5-7-2P-5-1P/TOX 1859 -102 -6M-3//P 5589-1-1-3P-4-MP/CT6196 -33-1 28 CT12052o o CT6261-5-7-2P-5-1P/ IRAT 146//P 5446-9-4-4-M/ IRAT 144 29 CT12053 1 o o CT6261-5-7-2P -5-1 P/ IRAT 146/fP 3055F4-3-4P-1 P-1 B/C 48CU76-3-2-1-4-5-M 30 CT12055 4 o o CT6261-5-7 -2P-5-1 P/ CT6458-9-3-6-M//ECIA 24-107-1/CT6113-8-9-7-M 31 CT12057 o o CT6261-5-7-2P -5-1 P/CT6458 -9-3-6-M//P 4076F3-2-2-4/CT6240-12-2-2-1-1P 32 CT12058 1 o o CT6261-5-7-2P-5-1 P/CT5446-9-4-4-M//P 3055F4-3-4P-1 P-1 B/CT5756-3-5 -1 -33 CT12060 2 o o CT6261-5-7-2P -5-1 P/ CT5446-9-4 -4-M//CT6240-12-2-2-1-1 P/CT7242 -16-9-2-o o CT7242-16-9-2-M/CT6261-5-7-2P-5-1 P//OAVZICA 2/C 48-CU76-3-2-1-4-5-Mo o CT7242 -16-9-2-M/CT6393-M -9 -2-5-M//P 3055F4-3-4P-1 P-1 B/C48CU76-3-2-1-36 CT12065 o o CT7242-16-9-2-M/IRAT 146//CT6278-3-7 -4P-1/ P 3055F4-3-4P -1 P-1B 37 CT12068 o o CT7242-16-9-2-MITO X 340-1-7-3//P 5446-9-4-4-M/ IRAT 144 38 CT12069 o o CT7242-16-9-2-M/TO X 340-1-7 -3//P 3055F4-3-4P-1 P-1 B/C48CU76-3-2-1-4-5 39 CT12070o o CT7242-16-9-2-MITO X 340-1-7-3//P 2851F4-145-9-5P-1B-10/P 3055F4-3-4P 40 CT12076 5 o o CEYSVONVP 4076F3-2-2-4//P 5589-1-1-3P-4-M P/I A35410-16-3-2-2-2-2 41 CT12077 2 o o CEYSVONVP 4076F3-2-2-4//P 2851F4-145-9-5 P-1B-10/CT6196-33 -11-1-3 42 CT12080 o o CEYSVONI/CT6278-3-7-4P-1/ /CT6113-8-9-7-M/IAAT 144 43 CT12081 1 o o CEYSVONVIA35410-16-3-2-2 -2-2//CT6196-33-11-1-3/CT6278-3 -7-4P -1 o o ECIA 122-JB-1-2 -1/ P 4076F3-2-2-4//CT6196-33-11-1-3-M/CEYSVONI 47 CT120i2 1 o o ECIA 122-JB-1-2-1/P 2851F4-145-9-5P-1B-10//CT6196-33-11-1-3-M/CT7242 48 CT120i4 3 2 ECIA 122 -JB -1-2-1/CT6278-3-7-4P -1f/P 5589-1-1-3P-4-M P/CT6196-33-11-1 411 CT120i5 1 2 ECIA 122-JB-1-2-1/CT6278-3-7-4P-1f/ P 4076F3-2-2-4/CT6240-12-2-2-1-1P 50 CT12105 o o ECIA24-107-1 /CT6458-9-3 -6-M//CT6196-33-11-1-3/ARAGUf;JA 51 CT12107 o o C 48CU76-3-2-1 -4-5 -M,CT6196-33-11-1-3-M//P 5589-1-1-3P -4-MP/IA35410-16CT12118 1 o o P 4076F3-2-2-4/CT6261-5-7-2P-5-1P/,CT7242-16-9-2-M/CT6393-M-9-2-5-M 53 CT12124 2 o o P 2851 F4-145-9-5P-1B-10/ CT6196-33-11-1-3f/ ECIA 122-JB-1-2-1/IAAT 144 54 CT12125 3 o o P 2851 F4-145 -9-5P-1B-10/ECIA 24-107-1//CT6196-33-11-1-3-M/CT7242-Hl-55 CT12140 2 o o P 4725F2-9-6-1 X/0 RVZICA 2//CT6240-12-2-2-1-1P/CT7242-16-9-2-M se CT12141 2 o o P 4725F2-9-6-1X/CT6240 -12-2-2-1 -1 P//P 5589-1-1-3P-4-MP/CT6458 -II-3-6- o o CT6278-3-7-4P-1/ P 3055F4-3-4P-1P-1 B//CT6261-5-7-2P-5-1 P{TOX 340-1 -7 - o o AAAGUAIA!CT6261-5 -7-2 P-5-1 P//CT6458-9-3-6-M/IRAT 146 Se caracteriza por rener raíces gruesas y profundas, siendo éste un mecanismo de escape a la sequfa. ya que esra caracrerística le perrnue romar más fácilmente el agua y los nutrimenros de las capas inferiores del suelo. (Foro 1 ).Oryzica Sabana 6 riene rafees largas, gruesas y profundas.Preparación y Siembra Debido a la compacración de las sabanas narivas, nunca anres intervenidas, se sugiere quemar la vegeración y luego urilizar un arado de cinceles rígidos para romper el suelo, fac ilitando así las labores posreriores de preparación y mejorando la retención de agua. la ai=ción y la acti~idad biológica. Resullados ob1enidos han mostrado la bondad de esra prácrica si se realiza a finales de la época lluviosa a principios de diciembre para posteriormente realizar las orras labores de preparación. como pase de rastra y rastrillo al comienzo de las lluvias en el mes de abriL La siembra debe efecluarse en surcos dislanciados unos 15-20 cenlfmerros, si se siembra el arroz como monocullivo o a :!.Q-:!.5 cemímetros si se ~•cmhr.l en asOCIJC h.\"\"~:1 ~,. 't'fl pasiO.!I) Jc:g ummosas lc.uraJeras.LJ 1\\c supcrfosb\\O inpl<:l\\l~ ;~1 fondo del surco, conjum:1men1e con l:i \"embra.Potu~io: 3 buhos de cloruro de ¡X>IJ>IO por hL'<'Iarea. fraccionados en 3 aplicaciones (iguales). siendo b primera al momenlo de la siembra. jumo con el fós foro y las otras dos juntas cc>n la segunda y 1ercera aphcac1ones de úrea.Zinc: 1\\plicar 1 S-'20 kglha de sulblo de 1.inc si d comen ido de 1.mc en el análisis de suelos es menor de t ppm.Los sue)os de sabana presentan problemas con hormigas de la especie Acromirml'X sp. Por lo 1an1o se reqUI~re de espcc1al cuidado en las épocas de establec1mien1o del cuhivo. Una prácuca que reduce drás1ican1eme el númrro de honn1gueros e> la uti lización del arado de cincel a finales de la época de lluvia. Es1e es un beneficio adic1onal a los mencionados anlenormcme en preparación y siembra.En las primeras e1ap3s del cultivo se pucc.le 10suOar Lorsban en polvo a los hom1igucros para su comrol. Oryzic:• Sahana 6, es rcs1stemc a Sogata y la incidenc1a del daño del nl1Óil oc los pas1os y de los barrcnadores de llalla es mfn1ma. pero se requ1erc de evaluaciones pcri ódic~s para en caso necesario realizar comrol biológico.LJ ~ariedad es rcsislcntc al dailo de pincul.lfia. 1anto ~n la hOJ3 como e n la panícula. es rc~istentc al manchado de grano y a hclmimosporiosis. (Tabla 2). Aunque la mc~tle ncia del escaldado del JJTOZ no es grave, se debe tener cu1dado en que éslc no cslé localtzado en la parle supcnor de '-• planta afcciJndo la hOJa bandera.El cscaldndo del arroz al igual que la p1riculana son favorec 'd'\" por las altas densidades ele siembra y la a ha fcnil11aC1on nurogcnada. A rravés de la rcsis1enc1a genética de la vancd;u\\. se reduce drá.~ucamcnte e l uso de agroquí1111COS, prcserv:mdo así el ambiente.Tabla 2. Reacción a cnfcmJedalles de Oryt.ica Saban~ 6. Amphtud de evaluaciones Altillanura y C. l. L:1 L1bcrwd. 1990 ll La variedad es rústica , con raíces gruesas y profundas. aspecto que favorece la absorción del agua y de los nutrientes de las capas inferiores del suelo, tolerando así la sequía. l ctuar en el primer o segundo semestre del año, orde con la iniciación de la época lluviosa en cada zona. l control de malezas en este sistema de cultivo se ce manualmente, pero también se puede efectuar ntrol químico con herbicidas postemergentes. Se re-comiElnda tener el lote libre de malezas durante los pril eros 30 días del cultivo.f el sistema actual de secano a chuzo o manual, los ricultores no fertilizan . Sin embargo, en las diferens pruebas regionales y semicomerciales con la variedad mejorada Cryzica Turipaná 7, realizadas en las (: calidades de Sahagún y Tierralta, los rendimientos umentaron cuando se les aplicó de 1 a 2 bultos de rea por hectárea, fraccionada en dos épocas: al inicio del macollamiento y en el momento del máximo ni-1 1 del macollamiento. Los rendimientos obtenidos eron de 2700 a 5217 kilogramos por hectárea de rroz paddy, por lo cual se recomienda esta práctica.n las siembras de arroz a chuzo, los insectos plagas como el cucarro, el chinche de la ralz y el raspa pue-• en causar daños severos en las raíces y el follaje. Se conseja, por tanto, hacer observaciones frecuentes . . si hay plagas, utilizar control químico con la asesoda de un Ingeniero Agrónomo . l a variedad es resistente al daño mecánico de• la soata, a la hoja blanca y a las enfermedades fungosas como la piricularia (Tabla 3).Raaeet<>n a enlermecladea do la varteUiilcL>iOF Ejem p lareo: 3.000","tokenCount":"12837"} \ No newline at end of file diff --git a/data/part_3/1752317392.json b/data/part_3/1752317392.json new file mode 100644 index 0000000000000000000000000000000000000000..f71b78c375c074b218fc3b255ae7d35f727ada88 --- /dev/null +++ b/data/part_3/1752317392.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"8f33eca7f43091c2a9a92df81df6d0b9","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/3ffa68fb-ab0c-450f-b350-981bb8cd2bd0/retrieve","id":"1469691193"},"keywords":[],"sieverID":"f8151a2b-b3fd-40da-8dbb-735102930e42","pagecount":"23","content":"Pasos metodológicos de un programa de mejoramiento de cadena Principal producto: Mapeo de la cadena  Procesos clave de la cadena  Actores involucrados y su rol (Nivel micro, meso y macro)  Número de actores y tareas  Flujo de productos, información, conocimiento  Volúmenes de productos y mercados de destino  Tipo de relaciones y vínculos  Valor agregado en cada eslabón y distribución del valor  Servicios que se prestan por eslabón  Factores de contexto (económico, político legal, sociocultural, ambiental, tecnológico)  Estudio oportunidades y ventajas competitivas Estrategia de Competitividad de la cadena 8) Identificación de posibles alianzas para negocios incluyentes: vinculación entre productores y compradores potenciales.Agrupar según eslabón los cuellos de botella críticos para la construcción de un plan de acción.Visión de mejoramiento a mínimo 10 años, resultado de proceso participativo e inclusivo. 7) Diseño del plan de acción: Debe incluir actividades, acciones, responsables y fechas límites.Estudio de caso: Cadena láctea bovina en Caquetá (Colombia) Visión de la cadena a 2030  Incremento en la producción a 3.000.000 litros /día (1.200.000 acopio industrial y 1.440.000 transformación regional).  Reconversión ganadera por medio de sistemas agrosilvopastoriles (incremento de capacidad de carga de 0.6 a 1 UGG/ha).  La producción por día de 6 litros/vaca.  Implementación de BPG en un 50% del total de los predios.  Promoción de certificación y la recertificación de los predios libres de brucelosis y tuberculosis, por medio de incentivos económicos.  Mejora de la calidad microbiológica de la leche (llegar a 250.000 UFC).  Base genética basada en la raza criolla \"Caqueteño\" y en las razas Taurus e Indicus-en sus diferentes cruces.  Ingresar en el mercado de las leches líquidas, incrementar la diversificación de productos de los derivados lácteos, tanto para la marca colectiva como la producción en general.  Comercialización de productos diferenciados (denominación de origen, sellos cero deforestación, conservación y protección del medio ambiente).  De forma transversal, se promoverá la formalización del sector, el control y la vigilancia, la legalización de la tierra y la vinculación de jóvenes en el sector. Validación de modelos tecnológicos ya establecidos en la región.Evaluación de nuevos arreglos y especies, adaptados a las condiciones de cada zona.Falta tecnología para transformación, enfriamiento y conservación Fortalecimiento de las redes de frío, red eléctrica y vías de comunicación Revisión de los estudios y proyectos de redes de frío y vías de comunicación.Priorización de alianzas donde la red de frío es necesaria para pagar precios diferenciados Estudios de prototipos con energía solar para tanques de frío. Visión de la cadena a 2030 Producción ambientalmente sostenible y la comercialización de carne en mercados diferenciados.  Recursos genéticos de razas europeas en cruces con cebú  Alimentación por medio de ensilajes, leguminosas y otras especies forrajeras que permitan implementar sistemas silvopastoriles, agrosilvopastoriles.  Duplicar la carga animal y la ganancia de peso por hectárea sin extender la frontera agropecuaria.  Fortalecimiento de las iniciativas de asociatividad  Fomento de procesos de transformación y agregación local de valor, con la inclusión de los jóvenes a lo largo de la cadena.Cuellos de botella, estrategias y acciones para el fortalecimiento  Negocios inclusivos: relaciones entre productores y aliados comerciales mediante relaciones de ganar-ganar.  Mercados diferenciados: foros informativos.  Armonización de la asistencia técnica:armonización del contenido, los métodos y los lineamientos generales para la prestación del servicio.  Revisión de esquemas de crédito: redefinición de periodos de gracia, pagos ajustados y tasas diferenciales, según las características reales de los diversos sistemas productivos.La construcción de estrategias de mejoramiento requiere una imagen clara y confiable del estado del arte de la cadena (EAC).Elaborar el EAC puede ser complejo por falta de información y de estadísticas confiables. Es clave el trabajo continuo y la retroalimentación colectiva para la elaboración más realista del diagnóstico y contexto de la misma.El enfoque de cadenas de valor implica la articulación al mercado y el conocimiento de las posibilidades de diferenciación.El enfoque participativo garantiza la participación equitativa, transparencia y el desarrollo de asociaciones y redes entre los actores de la cadena.Herramientas participativas como las plataformas multiactorales (PMA) es un proceso que requiere organización y confianza.Las PMA implican la correcta identificación de los actores clave y un proceso adecuado en la convocatoria, buscando representatividad y equidad.Las PMA permiten conocer los puntos de vista, información o dificultades que enfrenta cada actor y eslabón de la cadena.Las estrategias construidas deben de estar acorde a las políticas locales.La estrategia de mejoramiento, requiere conformar un comité de seguimiento para garantizar el cumplimiento y trascendencia de las actividades.El análisis y las estrategias desarrolladas son un insumo clave para la formalización y orientación de las cadenas el diseño de políticas y planes de desarrollo.Para el éxito de la estrategia es clave la articulación de todos los actores para la acción colectiva y concertada de la misma.El proceso completo requiere tiempo, fondos permanentes, compromiso por parte de todos los actores, y un equipo facilitador externo e independiente, capaz de entender las dinámicas del sector y de la cadena. ","tokenCount":"832"} \ No newline at end of file diff --git a/data/part_3/1796753588.json b/data/part_3/1796753588.json new file mode 100644 index 0000000000000000000000000000000000000000..7662e73f6deb4092892b5d7f86468acd9ec4655c --- /dev/null +++ b/data/part_3/1796753588.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"3cbfd0d4d029bcfd27ca34ad15a438ab","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/0bc0dcd2-0522-4013-bb7b-aebfce864b26/retrieve","id":"1488609643"},"keywords":[],"sieverID":"a0fa24ce-36ef-4898-916c-68a5da9af99c","pagecount":"6","content":"O povoado de Sihane, na província moçambicana de Inhambane, foi selecionado para este projecto devido a uma série de mudanças climáticas. Dentre estas, os níveis das águas do mar estão a subir restringindo o acesso às praias e, portanto, as actividades de pesca e turística. Os moradores vêem a erosão das dunas a ficar acentuadas, ameaçando suas habitações. Para completar este quadro catastrófico, a invasão das terras pelas águas do mar também enfraquece as zonas aráveis dificultando a agricultura familiar nelas praticada.comunidade a adoptar práticas de vida que garantam a sua resiliência e adaptação às mudanças climáticas. Beneficiando ao grupo mais vulnerável da comunidade, o projecto demonstra usou microfinanças para a provisão de serviços financeiros e não financeiros tais como a concessão de créditos em grupos solidários e créditos individuais, a promoção de poupança e de seguros contribuindo para a sustentabilidade ambiental e empoderamento socioecónomico dessa mesma comunidade.Esta intervenção ocorreu no âmbito de um projecto intitulado Adaptação nas Zonas Costeiras de Moçambique implementado na província de Inhambane, Distrito de Inharrime, no povoado de Sihane com o financiamento do Fundo Global do Ambiente (GEF) e do PNUD em Moçambique. O projeto foi implementado pelo Fundo de Desenvolvimento da Mulher (FDM) em cooperação com os Serviços Distritais de Actividades Económicas (SDAE), durante os meses de Novembro de 2014 a Outubro de 2016.O povoado de Sihane foi selecionado para este projecto devido a uma série de factores climáticos. Dentre estes, os níveis das águas do mar estão a subir, a erosão das dunas a ficar acentuadas ameaçando as habitações.O Programa das Nações Unidas para o Desenvolvimento (PNUD) é o órgão da Organização das Nações Unidas (ONU) que tem por mandato promover o desenvolvimento e eliminar a pobreza no mundo. Entre outras atividades, o PNUD executa projetos que contribuam para o desenvolvimento humano sustentável e para melhora as condições de vida das populações em cerca de 160 países. Muitas vezes, os resultados alcanços são de médio a longo curso. Por se tratarem de projectos e programas na sua maioria de natureza macro, a avaliação de seu impacto é complexa.Entretanto, esta iniciativa aqui capitalizada consiste em um projecto implementado pelo PNUD em Moçambique que demonstra que com medidas simples de empoderamento das comunidades resultaram em diminuição imediata da fragilidade da comunidade, particularmente das mulheres. Por conta da intervenção, estas tornam-se menos vulneráveis aos factores climáticos desenvolvendo assim maior resiliência e sustentabilidade.O projecto abordou um problema complexo de uma comunidade rural vulnerável aos impactos das mudanças climáticas que vive situação de pobreza e com escassez de recursos. Através de um processo de formação, assistência técnica, o projecto assistiu a Capa O projecto foi concebido para que as medidas de adaptação sejam aplicadas numa abordagem participativa com as mulheres a liderarem as intervenções aumentando assim os meios de geração de renda e a diversificação das actividades comerciais e produtivas.Existe uma grande mudança de comportamento e atitudes em relação ao cenário de mudanças climáticas. Diversas inovações contribuíram, direta ou indiretamente. A começar pelo acesso a informação meteorológica que colaborou para a operacionalização do sistema de aviso prévio. Infraestruturas (capoeiras, matadouros, centro de processamento de pescado) resilientes aos ciclones e ventos fortes são hoje realidade. O efeito destas melhorias se multiplicou devido ao uso de práticas melhoradas e amigas do ambiente nos sectores da agricultura e pesca. Por exemplo, os locais escolhidos para a agricultura são os que não estão propensos a erosão -a qual coloca em risco a existência da própria comunidade. Esta conscientização se deu graças às campanhas de conscientização da comunidade realizadas pelo Fundo de Desenvolvimento da Mulher, pela rádio local, e pelos comitês locais de gestão de riscos e calamidades.Como estratégia de sustentabilidade do projeto, foi sensibilizada a comunidade para se apropriar das atividades implementadas. Assim, as mulheres estabeleceram comitês de gestão cujos membros foram treinados localmente, sendo estes comitês os responsáveis pela implementação e gestão das atividades dos membros da comunidade. Por contribuir no empoderamento das mulheres, foi possível constatar que diversas mudanças socioeconómicas e a melhoria das condições de vida que tem ocorrido na comunidade desde que o projecto foi implementado.O projecto contribuiu também para iniciar programas de alfabetização utilizando os grupos formados pelas mulheres para lidar com os altos O acesso às praias está cada vez mais condicionado, restringindo as actividades de pesca e turística. Vêem-se prejudicadas, assim, as instancias turísticas e outras infraestruturas que constituem os meios de subsistências das populações, particularmente as que vivem nesta região costeira. A invasão das terras pelas águas do mar também enfraquece as zonas aráveis dificultando a agricultura familiar nelas praticada, actividades das quais a comunidade rural de Sihane depende grandemente.Estes factores contribuíam para a exposição e vulnerabilidade desta comunidade aos impactos das mudanças climáticas, sobretudo a das mulheres e crianças. Ao selecionar as mulheres como beneficiárias primárias do projecto, este contribuiu para a sua sustentabilidade pois as mulheres investiram os recursos adquiridos em empreendimentos de rendimento para sustento de suas famílias.É de salientar que antes da implementação do projeto, os membros da comunidade viviam da pesca em pequena escala e da agricultura limitada somente às culturas de mandioca e milho. Através do projecto, a nutrição das famílias melhorou devido à produção de vegetais e hortícolas, produção de ovos, criação de galinhas, produção de peixe em tanques (aquacultura) e criação de porcos. A água consumida antes era retirada das lagoas perigando a saúde das comunidades. A comunidade conta agora água limpa e potável do sistema de abastecimento de água que usa energia solar. Com as mulheres beneficiárias do projecto a gerir os pontos de água, o acesso e o consumo da água potável tornou-se sustentável;• Aumento e diversificação de mecanismos de geração de renda através das actividades implementadas com fundos dos grupos de poupança e crédito: produção de ovos, cultivo de hortícolas, criação de frangos e porcos• Aumento da capacidade das comunidades para gerirem os impactos das mudanças climáticas através da formação e assistência técnica e campanhas de sensibilização pública• Melhoria e aumento da produção agrícola através do fornecimento de sementes melhoradas, assistência técnica continua e o estabelecimento de estufas agrícolas• Redução do tempo de caminhada até as machambas, devido à proximidade das estufas da zona residencial• Melhoria da captura de peixe através dos usos de artes melhoradas e amigas do ambiente• Redução da pressão marinha através da introdução da aquacultura, que veio a garantir o acesso a peixes durante a época de defeso• Diminuição da carga das doenças causadas por falta de saneamento do meio através da construção de 3 postos de abastecimento de água potável; sustentados pelos rendimentos das próprias mulheres índices de analfabetismo na comunidade. Foram igualmente implementadas sessões de educação financeira, e um cada vez mais crescente número de pessoas começou a aderir e a participar nos grupos de poupança e crédito. Hoje, várias mulheres membros destes grupos comunitários já possuem contas bancárias abertas, o que antes não se verificava. A participação nos grupos de poupança e crédito contribuiu também para a implementação de pequenas empresas contribuindo, consequentemente, para o aumento da geração de renda. Tudo isto os membros do grupos aprenderam fazendo na prática.Foi privilegiada no projecto a elaboração de pacotes de productos e serviços financeiros e não financeiros inovadores e virados para a adaptação às mudanças climáticas. Para os productos e serviços financeiros foram integradas as áreas de: agricultura, pesca artesanal, actividades de geração de renda dos pequenos negócios, iniciativas de micro-seguros e diversos produtos de poupança de base comunitária.Os serviços não financeiros utilizados nesta abordagem multissectorial e integrada foram desenvolvidos em coordenação com o Serviço Distrital de Actividades Económicas (SDAE), para a agricultura em coordenação com Instituto de Desenvolvimento da Pesca de Pequena Escala (IDPPE), para a pesca. Em relação à vertente de pequenos negócios (micro, pequenas e médias empresas), o Fundo da Mulher trabalhou com os seus técnicos e um consultor nacional para o desenvolvimento de manuais de formação de base comunitária.O facto de 90 % dos beneficiários directos deste projecto serem mulheres contribui para uma compreensão de como as respostas de adaptação podem ser concebidas para promover a igualdade de género. O projecto foi concebido para que as medidas de adaptação sejam aplicadas numa abordagem participativa com as mulheres aO projecto demonstrou como é que um problema tão complexo como a vulnerabilidade aos impactos das mudanças climáticas pode ser ultrapassado através de um processo de formação, assistência técnica. Outro resultado não planificado foi a ligação financeira estabelecida com bancos comerciais e mecanismos financeiros para o meio rural. Os membros da comunidade têm logo segurança nas suas transações comerciais e acesso a uma série de serviços sem precisar se deslocar para a vila de Inharrime. Recomenda-se assim a abertura de um banco no distrito conforme a política do Governo.As actividades do projecto criaram interesse nas comunidades de tal modo que elas por si estão a replicar os ensinamentos recebidos pelo FDM e SDAE através da implementação de acções concretas na área de agricultura e de pequenos negócios específicos para a preservação do meio ambiente.O projecto demonstrou como é que um problema tão complexo como a vulnerabilidade aos impactos das mudanças climáticas pode ser ultrapassado através de um processo de formação, assistência técnica para moldar uma comunidade a adoptar práticas de vida que garantam a sua resiliência e adaptação às mudanças climáticas. Beneficiando ao grupo mais vulnerável da comunidade, o projecto demonstra também como o uso das micro-finanças através da provisão de serviços financeiros e não financeiros tais como a concessão de créditos em grupos solidários e créditos individuais, a promoção de poupança e de seguros contribuiu para a sustentabilidade ambiental e empoderamento socioecónomico dessa mesma comunidade.Concluímos, portanto, que o projecto em Sihane contribuiu no desenvolvimento socioeconómico de cerca de 500 agregados familiares através do uso das micro-finanças como instrumento chave de redução de vulnerabilidade das comunidades aos impactos das mudanças climáticos, com maior enfoque para as mulheres que constituem cerca de 90% dos beneficiários directos.","tokenCount":"1638"} \ No newline at end of file diff --git a/data/part_3/1803020985.json b/data/part_3/1803020985.json new file mode 100644 index 0000000000000000000000000000000000000000..fd8cc927a37cf15da6e92b454c4f9470bf178b3d --- /dev/null +++ b/data/part_3/1803020985.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"20c0323e10fb4772f271cb756c4752c2","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/b3c5d93a-e57f-4955-ad06-97bd9558c989/retrieve","id":"-1159971642"},"keywords":["Island Plant Biology-Celebrating Carlquist's Legacy Azores","conservation","germination","population genetics","species distribution models","threats","Veronica dabneyi"],"sieverID":"d68be10e-bcb6-443e-80a0-069bccd93f9a","pagecount":"18","content":"Research dedicated to rare endemic plants is usually focused on one given aspect. However, holistic studies, addressing several key issues, might be more useful, supporting management programmes while unravelling basic knowledge about ecological and population-level processes. A more comprehensive approach to research is proposed, encompassing: phylogenetics/systematics, pollination biology and seed dispersal, propagation, population genetics, species distribution models (SDMs), threats and monitoring. We present a holistic study dedicated to Veronica dabneyi Hochst. ex Seub., an endangered chamaephyte endemic to the Azores. Veronica dabneyi was mainly found associated with other endemic taxa; however, invasive plants were also present and together with introduced cattle, goats and rabbits are a major threat. Most populations grow at somewhat rocky and steep locations that appeared to work as refuges. Seed set in the wild was generally high and recruitment of young plants from seed seemed to be frequent. In the laboratory, it was possible to germinate and fully develop V. dabneyi seedlings, which were planted at their site of origin. No dormancy was detected and time for 50 % germination was affected by incubation temperature. Eight new microsatellite markers were applied to 72 individuals from 7 sites. A considerable degree of admixture was found between samples from the two islands Flores and Corvo, with 98 % of the genetic variability allocated within populations. Levels of heterozygosity were high and no evidence of inbreeding was found. Species distribution models based on climatic and topographic variables allowed the estimation of the potential distribution of V. dabneyi on Flores and Corvo using ecological niche factor analysis and Maxent. The inclusion of land-use variables only slightly increased the information explained by the models. Projection of the expected habitat in Faial largely coincided with the only historic record of V. dabneyi on that island. This research could be the basis for the design of a recovery plan, showing the pertinence of more holistic research approaches to plant conservation.Island endemic plants are among the most threatened group of organisms worldwide (Caujape ´-Castells et al. 2010). Research dedicated to rare endemic plants is usually focused on one or few aspects, such as conservation genetics, propagation or distribution (e.g. Dubuis et al. 2013;Evans et al. 2014;Mir et al. 2014). Multidisciplinary studies, addressing several key issues, are much more useful but still the exception (e.g. Menges 1990;Halbur et al. 2014). They have the potential to provide sciencebased evidence to management or recovery programmes while at the same time unravelling basic knowledge about the population processes and the ecology of endangered species. We propose a general framework towards more holistic conservation research, particularly when devoted to rare plants on oceanic islands. We suggest that such approach should include the following critical areas: (i) phylogenetics/systematics (i.e. DNA sequences and morphology) to determine origin and close relatives as well as the existence of unaccounted taxa (Bateman et al. 2013); (ii) population genetics to estimate genetic structure and diversity (Dias et al. 2014), identify possible cases of inbreeding depression (Li et al. 2012) and ensure adequate provenance of propagation material (Silva et al. 2011;Hancock and Hughes 2014); (iii) germination biology and propagation methods to identify possible biological constraints (Beaune et al. 2013) and support the species recovery (Pence 2013); (iv) pollination biology and research on dispersal mechanisms to identify possible biological/ ecological constraints (Ollerton et al. 2011;Rodrı ´guez et al. 2015); (v) the identification of threats, including invasive plants (Foxcroft et al. 2013) and animals, particularly herbivores (Donlan et al. 2003;Garzo ´n-Machado et al. 2010, Barrios-Garcia et al. 2014); (vi) species distribution models (SDMs) to determine environmental constraints and potentially favourable areas, possible impacts of climate change and of other anthropogenic alterations (Costa et al. 2012(Costa et al. , 2013a;;Marcer et al. 2013) and (vii) long-term monitoring (minimum 10 years, depending on the duration of the species' generation time) to evaluate population fluctuations and the effect of management actions (Godefroid et al. 2011). Besides addressing those biological issues, conservation research should also integrate possible societal aspects (i.e. the different stakeholders that will have a direct or indirect role in the conservation process). Here we present an example of a multidisciplinary study, using Veronica dabneyi Hochst. ex Seub. (Plantaginaceae Juss.), known as 'veronica' or 'Azorean speedwell', a rare chamaephyte (subshrub) endemic to the Azores islands.The genus Veronica L. is the largest of Plantaginaceae with 450 species. It is distributed worldwide, with a large range of life forms from diverse habitats (Albach et al. 2005). Based on morphological affinities and preliminary molecular data, V. dabneyi is a close relative of V. officinalis L., belonging to the subgenus Veronica L., a clade also including V. alpina L. and V. montana L. (Albach and Meudt 2010).Veronica dabneyi was first described by Karl C.F. Hochstetter in 1838, after a visit to Faial Island. Since the plant was cultivated as ornamental in the garden of the American consul, Charles William Dabney in Horta (Faial), Hochstetter attributed the specific name presently used. Seubert (1844) published the description with drawings in his Flora Azorica. Later, Watson (1870) reported V. dabneyi for Sa ˜o Miguel, Faial and Corvo Islands, without specifying the exact places where the species was found. Cunha and Sobrinho (1939) collected V. dabneyi in Faial, at the inner side of the Caldeira summit, the only record published during the 20th century (specimen in LISU, seen by HS). The species was later cited as extinct by Catarino et al. (2001). However, it turned out that the species was still extant in inaccessible parts of the western islands (Pereira et al. 2002). Those authors observed a number of mature plants on Flores and Corvo, but noticed that young plants were rare and seed production was low, probably due to predation by goats and rabbits, and to the occurrence of environmental disturbance (e.g. landslides, trampling by cattle). The species was found to be associated with a vegetation type described by Sjo ¨gren (1973) as Festucetum jubatae, dominated by Festuca francoi Fern.Prieto, C.Aguiar, E.Dias & M.I.Gut (Poaceae Barnhart). The conservation status was reevaluated according to the International Union for Conservation of Nature criteria and it was classified as extinct in Faial and as critically endangered in Flores and Corvo (Pereira et al. 2002), based on an area of occurrence of 63 km 2 , with 16 subpopulations in Flores, and one in Corvo. In general, the populations only included a few individuals, while no individuals were found in the wild at Faial. Veronica dabneyi was thus classified as extinct in Faial and as critically endangered in Flores and Corvo. In a global analysis of the conservation status of Azorean indigenous species, Silva et al. (2009) suggested possible natural threats (storms, strong wind, landslides), biological limitations (isolation of populations), as well as threats of human origin (expansion of invasive plants and introduced herbivores, changes in land use) as causes of species decline.Two aspects that should be addressed as important contributions to the species long-term survival are estimates of genetic diversity and population genetic structure. These are crucial for any sort of recovery plan for endangered plants, particularly in islands, where genetic diversity has been often expected to be lower than in mainland populations (e.g. Caujape ´-Castells et al. 2008;Silva et al. 2011;Martins et al. 2013;Moreira et al. 2013;Moura et al. 2013;Dias et al. 2014).Propagation measures, particularly those allowing the maintenance of the genetic variability, such as seed germination, are also critical in the recovery of endangered plants (e.g. Moura and Silva 2010;Martins et al. 2012;Moreira et al. 2012).Modelling is nowadays a common approach for predicting species distributions. This is based on statistically or theoretically derived response surfaces that link the known distribution of a species to the pertinent environmental descriptors, allowing to estimate its potential distribution, as well as to determine the environmental factors limiting its range (Guisan and Zimmermann 2000). Species distribution modelling has been used in a wide range of applications (Elith and Leathwick 2009), including the evaluation and management of endangered species (e.g. Engler et al. 2004;Marcer et al. 2013).Integrating the above aspects in the design of a multidisciplinary research programme is an example of a more holistic approach to be applied in plant conservation, as a basis for recovery plans. Here, we reanalyse the available data for V. dabneyi, and provide new information on germination rate and population genetic structure and diversity. We also analyse species distribution in order to understand what ecological factors might be constraining it. Due to the small size of the populations, and to the degree of isolation and fragmentation, we expect to find reduced levels of seed set, comparably low levels of genetic diversity and some degree of differentiation between the studied populations. Because it is rare, we expect the species to have a relatively restricted ecological niche and high levels of ecological specialization.Veronica dabneyi populations. Veronica dabneyi was searched in areas with potentially suitable habitat on the islands of Corvo, Flores and Faial (Fig. 1), between the years 2000 and 2014. The search was not successful on Faial but on Flores and Corvo a total of seven (sub)populations were found. All cited locations here are recorded in the Atlantis database of the 'Azorean Biodiversity Portal' (Borges et al. 2010), including data from Pereira et al. (2002) and Schaefer (2003).Demographic data. Three populations were studied in detail: Miradouro Craveiro Lopes and Tapada da Forcada (Flores) and Madeira Seca (Corvo). Variables measured included: individual number and size, stem length, number of inflorescences and inflorescence height (measured in loco), number of fruits per inflorescence, number of seeds per fruit, seed diameter and weight, using a digital calliper and an electronic scale (measured/counted at the laboratory). Fruits were sampled in July 2008 from Miradouro Craveiro Lopes, and in June 2010 form Madeira Seca and Tapada da Forcada.Associated flora and invasive species. Characterization of the associated flora was based on the work by Pereira et al. (2002) and on data collected by the authors in 2010, using a 1 m 2 plot centred on V. dabneyi individuals or groups of individuals. The presence of plant invaders (see Silva et al. 2008) was recorded from the immediate surroundings of V. dabneyi populations. The presence of cattle, goats and rabbits was confirmed through direct visual observation of the animals or by the presence of characteristic faeces.Plant material for genetic analysis. In 2008 and 2010, a collection of leaf material was carried out to complement the samples already available at the DNA bank collection of the AZB herbarium (Biology Department, Azores University). Depending on leaf size, one or two leaves per individual were collected and immediately stored in a plastic bag with silica gel. After drying, the leaves were vacuum sealed and stored in folders. The number of individuals sampled per site varied from 10 to 30 individuals depending on the population size. In total, 72 individuals from 7 different sites were sampled (Fig. 1, Table 1). The plant material obtained from the F1 of Miradouro Craveiro Lopes (i.e. obtained from the germinated seedlings) was also used for comparison with the mother population.Seed germination. Fresh seeds collected in 2008 and 2010, as well as 2-year-old seeds stored at room temperature, were used for germination tests. Germination tests were done in Petri dishes using growth chambers with automatic temperature control (error margin of 1 8C) and a light period of 12 h per day, provided by six fluorescent lamps with a photosynthetic photon flux density (PPFD) of 19-22 mmol m 22 s 21 . The chambers were set to the incubation temperatures of 25/20, 20/15, 15/10 and 10/5 8C, and the highest temperature coincided with the 12 h of the photophase. Germination proceeded in light or in darkness (Petri dish covered with aluminium foil) with three replicates per treatment and 17, 18 or 56 seeds per replicate, depending on the total number of seeds sampled at each site. Seeds were monitored daily and considered to be germinated when the radicle extruded. Seeds from the dark treatments were observed under a green light. Accumulated germination curves were adjusted to a Gompertz model to allow the calculation of the time, in days, necessary for 50 % seed germination (T50). The latter model has been successfully used to describe accumulated germination while allowing a biological interpretation (see Latera and Bazzalo 1999;Moura and Silva 2010).Seedling growth and establishment. Germinated seedlings were planted in Jiffy w peat pellets in a growth chamber Table 1. Location and number of samples of V. dabneyi for population genetic analysis in the Islands of Flores and Corvo (Azores). Voucher code for the material deposited at AZB (Herbarium Ruy Telles Palhinha), population code used in the study, local designation for each site, elevation (m above sea level), universal transverse mercator coordinates (X, Y; WGS84 25S) and number of samples per site (N). Three individuals resulting from seed germination were also included (i.e. F1 Miradouro Craveiro Lopes). with regulated temperature (20 8C) and photoperiod (12 h of photophase) for 2 months, and regularly watered to avoid substrate desiccation. The seedlings were transported to Flores Island and planted near the mother plants at Miradouro Craveiro Lopes, and were followed up every 6 months during 2 years.General DNA extraction. Deoxyribonucleic acid was extracted from dry leaves using a modified hexadecyltrimethyl-ammonium bromide extraction method (Doyle and Dickson 1987) without the final ethanol wash. Deoxyribonucleic acid was then precipitated by adding 450 mL of isopropanol and re-suspended in 50 mL of pure water. The DNA quality and quantity were measured using a Nanodrop 2000 (Thermo Fisher Scientific) spectrophotometer. Samples were conserved at 220 8C until use.Total DNA from fresh leaves of one individual of V. dabneyi was sent to the Savannah River Ecology Laboratory (University of Georgia, USA), where the enrichment procedure described in Glenn and Schable (2005), with the exceptions described in Lance et al. (2010), was followed for microsatellite isolation. CAP3 (Huang and Madan 1999) was used to assemble sequences at 98 % sequence identity using a minimal overlap of 75 bp. Search for microsatellite DNA loci was conducted using the programme MSATCOMMANDER version 0.8.1 (Faircloth 2008) and primers designed with Primer3 (Rozen and Skaletsky 2000). One primer from each pair was extended on the 5 ′ -end with an engineered sequence (M13R tag 5 ′ -GGAAACAGCTATGACCAT-3 ′ ) to enable the use of a third primer identical to the M13R (Schuelke 2000), and a GTTT 'pigtail' was added to the 5 ′ -end of the untagged primer to facilitate accurate genotyping (Brownstein et al. 1996). Out of the 202 sequences of primer pairs provided by the Savannah River Ecology Lab, we selected 24 primer pairs, 12 with expected polymerase chain reaction (PCR) products ranging between 100 and 200 bp (A series) and 12 exhibiting expected PCR products ranging between 200 and 300 bp (B series) to allow later the multiloading of PCR products. All the primer pairs (with the tag sequence included) were selected on criteria of noncomplementarities within and between primers, low secondary structures and 3 ′ -end instability (Rychlik 1995).Microsatellite selection and full-scale genotyping. All 24 primer pairs were tested on eight samples of V. dabneyi using a unlabelled tag primer (M13R) in a final volume of 25 mL consisting of 25 ng of DNA, 75 mg mL 21 BSA, 1× NH 4 buffer, 2 mM MgCl 2 , 0.4 mM of untagged primer, 0.08 mM of tagged primer, 0.36 mM of Universal dyed M13R, 200 mM of dNTPs, 1 U of Immolase (Bioline) and using a Biometra TGradient thermocycler. Touchdown thermal cycling programmes (Don et al. 1991) encompassing a 10 8C span of annealing temperatures ranging between 63 and 53 8C were used for all loci. The PCR programme included the following steps: 95 8C for 7 min (hot start); 96 8C for 3 min; 20 cycles of 95 8C for 30 s, the highest annealing temperature of 63 8C (decreased by 0.5 8C per cycle) for 30 s, and 72 8C for 30 s; 20 cycles of 95 8C for 30 s, 53 8C for 30 s, and 72 8C for 30 s and finally 72 8C for 10 min for the final extension of the PCR products. Five microlitres of PCR products were then run on a 3.5 % agarose gel, stained with SafeView TM Classic Nucleic Acid Stain (ABM, Inc.) and visualized under UV to check for amplification, polymorphism and scorability of the bands. Ten primer pairs exhibited scorable amplified products of the expected length range and with at least two alleles. After analysis of the quality of the PCR products obtained with the universal primer M13R, 10 primers with acceptable to high scorability were selected to run the complete study (Table 2). After optimization, the amplifications for the whole sample were performed using the protocol indicated above with the alterations presented in Table 3, and the M13R labelled either with PET, FAM, NED or VIC. Amplification products were diluted, multiloaded, run on an ABI-3130xl Genetic Analyzer and sized with LIZ500 size standard. The genotypes obtained were scored using the software GeneMarker V.1.97 Demo version (Softgenetics).Analysis of genetic data. Population structure was analysed with GenAlEx 6.5 (Peakall and Smouse 2012), to obtain mean values per population of the total number of alleles, the number of alleles with a minimum allele frequency of 5 %, the number of effective alleles, the Shannon's Information Index, the number of private alleles, the expected heterozygosity, R st and the estimation of gene flow. A principal coordinates analysis (PCoA) and an analysis of molecular variance (AMOVA) were also performed. Furthermore, we used a Bayesian approach to estimate the number of genetic clusters present in the whole sample. This model-based analysis was run with the software STRUCTURE version 2.3.3 (Pritchard et al. 2000), using a batch-oriented web programme package for construction of super matrices ready for phylogenomic analyses (Kumar et al. 2009). We ran 10 replicates for each K value ranging from 1 to 10 with a burn-in length of 50 000 followed by 500 000 iterations of each chain using the admixture model along with the assumption of correlated allele frequencies between groups (Falush et al. 2003). STRUCTURE then partitioned individuals of the sample according to the membership coefficient Q, that ranges from 0 (lowest affinity to the group) to 1 (highest affinity to a group), across K groups. Estimation of the best K value was conducted with STRUCTURE Harvester (Earl and von Holdt 2012) following the Evanno et al. (2005) method. The optimal K repetitions were permuted in Clumpp version 1.1.2 (Jakobsson and Rosenberg 2007), using the Greedy algorithm, with results graphically represented using Distruct version 1.1 (Rosenberg 2004). The population matrix is available at DEMIURGE (http://www.demiurgeproject.org/) with digest code D-NMICR-98.Modelling approaches. Since it is likely that the current distribution range on the studied islands is much reduced as a consequence of human activities (e.g. changes in land use and biological invasions), true absences are not available in this case. We thus opted to use modelling methods based on presences only, namely ecological niche factor analysis (ENFA) and maximum entropy modelling. Such an approach allows us not only to estimate the potential distribution and the habitat suitability for the species but also to identify the macroecological factors that might affect species distribution (e.g. altitude, climate, land use). The ENFA (Hirzel et al. 2002(Hirzel et al. , 2006(Hirzel et al. , 2007;;Martinez et al. 2006;Hirzel and Le Lay 2008) provides smooth responses to environmental factors (Va ´clavı ´k and Meentemeyer 2012). This is desirable for modelling potential distributions, as models fitting complex responses may not accurately predict the distribution of species that are not at equilibrium. This approach was used successfully to model Azorean plant species, both invasive and native (Costa et al. 2012(Costa et al. , 2013a;;Moreira et al. 2014;Martins et al. 2015). Due to its wide application, Maxent was used for comparison (Phillips et al. 2004(Phillips et al. , 2006;;Phillips and Dudı ´k 2008).Distribution data. The species presences (Fig. 1) recorded at the Atlantis data base (shape file format) were transformed into raster format at the same resolution as the ecogeographical variables (EGVs) for input in Biomapper (Idrisi raster format) and in Maxent (ASCI format).Ecogeographical variables. As the number of presences was relatively low (,100), we followed Lomba et al. (2010) regarding the number of EGVs that should be used. We used three EGVs categories: climate, topography and land cover. Climatic variables were selected from Veronica dabneyi individuals usually grow linearly and horizontally, according to the procumbent nature of the stems. At Miradouro Craveiro Lopes we found 15 plants, with a stem length of 16 -70 cm. Only 4 (27 %) showed inflorescences, ranging from 1 to 2, with 7.5 -18 cm in height and 6 -23 fruits per inflorescence (mean ¼ 14.6, sd ¼ 6.9). At Tapada da Forcada, we found 12 plants, with a stem length of 8 -65 cm, and 5 seedlings. Only six (50 %) showed inflorescences, ranging from 1 to 15, with 8 -21 cm in height and 8 -31 fruits per inflorescence (mean ¼ 19.1, sd ¼ 5.8). At Madeira Seca (Corvo) we found 10 plants, with a stem length of 6 -35 cm, and 1 seedling. Of those, 9 (90 %) showed inflorescences, ranging from 1 to 24, with 3 -13.5 cm in height and 4 -20 fruits per inflorescence (mean ¼ 8.8, sd ¼ 3.6).In Flores the number of seeds per fruit ranged from 1 to 24 (mean ¼ 10.4, sd ¼ 6.3) while in Corvo, a larger variation was found (1 -31 seeds, mean ¼ 15.4, sd ¼ 7.2). Seed diameter was similar on both islands (Flores: mean ¼ 1.20 mm, sd ¼ 0.13 mm; Corvo: mean ¼ 1.09 mm, sd ¼ 0.17 mm). However, the weight of 100 seeds ranged from 0.00049 g in Flores, to up to 0.00074 g in Corvo. Based on those values, we estimated seed production as 5870 + 309.9 (mean + se) seeds at Madeira Seca, 4969 + 500.4 seeds at Tapada da Forcada and only 760 + 76.6 at Miradouro Craveiro Lopes.The flora closely associated with the presence of V. dabneyi included mostly other endemic taxa (Table 4). However, surrounding V. dabneyi populations, Hydrangea macrophylla (Thunb.) Ser. (Hydrangeaceae Dumort.), one of the most problematic invasive species in Flores and Corvo Islands (Silva et al. 2008), was found. In Flores, the largest populations were located along steep road sides. In Corvo, the population of Madeira Seca is established on vertical walls of a volcanic chimney. At this location, the main threats identified were the presence of feral goats (Fig. 2A) and the proximity of H. macrophylla clumps (Fig. 2B).The germination percentage of the seeds collected at Craveiro Lopes in July 2008 was high for all temperature regimes (90-100 %), with faster germination occurring at the higher ones (Fig. 3). However, seed batches lost viability after 2 years of storage at room temperature, with no germination in 2010. Seeds collected in June 2010 at Tapada da Forcada and at Madeira Seca did not germinate; however, they were most likely not mature at the time of collection.A total of 72 samples from 7 populations were analysed at 10 microsatellite loci. The results of the AMOVA indicated that the majority of the genetic variation was found within the populations (98 %), and only a small portion among populations (2 %). The permutation test showed that the R st value (0.033) was not significant (P ¼ 0.160) with an estimated gene flow of 7.249. Also, the R it value (20.451) was significant and negative (Prand ≥ data, 1), revealing a lack of genetic population structure. The inbreeding coefficient R is (20.501) was significant and negative (Prand ≥ data, 1). Diversity patterns were similar across the sampled populations (Fig. 4). The average number of alleles ranged from 2.5 to 5, with the average number of private alleles per population below 1 (Fig. 4). Expected heterozygosity was somewhat homogeneous across the sampled populations, ranging from 0.46 to 0.59 (Fig. 4). The results obtained with the PCoA and STRUCTURE (Figs 5 and 6) showed a considerable degree of admixture, with three genetic clusters identified and represented at various degrees in all the sampled populations. Miradouro Craveiro Lopes individuals seem to encompass all the genetic variability found in the other populations of both Flores and Corvo (Figs 5 and 6). The F1 generation (i.e. resulting from seed germination) obtained from Miradouro Craveiro Lopes population showed genetic patterns compatible with those obtained in the source population (Fig. 6). The Corvo populations showed slightly different genetic patterns, at the exception of the Arribas population that is similar to those found in Flores (Fig. 6).The best distribution model found in Maxent (AUC ¼ 0.840) also corresponded to a good model in Biomapper (total information explained ¼ 0.852, for the first three factors; Boyce index ¼ 0.990) (Fig. 7A). Although there was a slight increase in the AUC (0.865) and in the total information explained (0.871 for the first three factors; Boyce Index ¼ 0.953), according to the shape of the Boyce curve, the best model including land-use information was not as good as the model based on physiographic and climatic data alone (Table 5, Fig. 7B). When considering only the cells with habitat suitability above the third quartile, the McNemar test did not show significant differences between the results obtained with Maxent and Biomapper (model without land-use data, x 2 ¼ 0.264, P ¼ 0.607; model with land-use data, x 2 ¼ 0.250, P ¼ 0.617; Fig. 8). Likewise, marginality and specialization gave similar results for both models (marginality 0.426 and 0.349; specialization 1.108 and 1.144). The low marginality indicated that the habitat actually occupied by the species is similar to the average conditions of the available habitat. The relatively low specialization suggested that the conditions for species occurrence were not narrow. The analysis of the score matrix for the best models showed a positive link with elevation and slope, which affect the niche of the species, a negative link with the temperature, a positive link with rainfall and a negative association with high relative humidity ranges. It also demonstrates a negative association with the distance to uncultivated areas and a positive association with the distance to cultivated areas (Table 5).The heterogeneity of plant sizes in the three study populations suggests that there is frequent recruitment of new individuals from seed. This is more evident at Tapada da Forcada (Flores), a population with an almost uniform distribution of life stages, including 30 % seedlings and 35 % seed-producing individuals. At Madeira Seca (Corvo), more than 80 % of the individuals were reproducing, whereas at Miradouro Craveiro Lopes individuals were usually large but produced fewer inflorescences, resulting in a much lower total seed set. The existence of larger individuals with low number of inflorescences might be associated with regular brush cutting (see below). The shortest plant with an inflorescence measured 6 cm, although fruit production was more common in individuals with a length of ≥12 cm. This might imply that seed-producing plants can be relatively young. Despite the considerable variations in plant size and number of inflorescences, the estimated seed set for two of the studied populations was relatively high. The very small size/weight of the seeds, rapid germination, absence of dormancy and relatively fast decline on viability suggested that persistence as seed bank should be low ( Yu et al. 2007), and this was confirmed in our study by the absence of germination following 2 years of storage at room temperature.Veronica dabneyi was found to be mainly associated with other endemic species. The conservation of native vegetation cover is thus of the utmost importance for the preservation of this species. It grows at sites with low vegetation cover mostly dominated by Festuca francoi and Deschampsia foliosa Hack. (Poaceae), generally found in forest openings and at steep locations such as waterfalls or road side slopes (Sjo ¨gren 1973). Therefore, the conservation of this type of vegetation, by avoiding changes in steep areas, will also be necessary. While populations of V. dabneyi were generally recorded on steep locations, the largest ones were found along steep road sides. On Flores, the population found at Miradouro Craveiro Lopes is located in front of a viewpoint, where brush cutting is regular. Changes in the road or at the top of the road side slope might affect this population. A similar situation was found at Tapada da Forcada, where the existing population occurs in a very steep slope, along the road. At some sites, the presence of H. macrophylla is a threat that should not be ignored, since this plant invader develops pure stands, and can outcompete all other plant species (Silva et al. 2008). In the Azores (Costa et al. 2013b), as in similar island groups and in many regions worldwide, plant invaders are commonly found within protected areas (see Foxcroft et al. 2013) and hydrangeas are even actively planted by Azorean farmers and the forest department as 'green fences'. The hydrangea shrub can form impenetrable stands and stop cattle from falling down cliffs. These cliff-top hydrangea plantations spread throughout the cliff sides, outcompeting endemic species that survive in these inaccessible refugia. Hydrangea clumps are very close to several V. dabneyi populations both in Flores and Corvo and might overgrow those populations in the near future. Thus, H. macrophylla clumps that are detected near V. dabneyi occurrences should be considered as priority targets for removal/control measures, and its plantation on cliff tops should be banned. Instead, barbed wire fences should be preferred to keep cattle away from dangerous areas with no significant impact on natural vegetation. Other important herbaceous invasive species like Hedychium gardnerianum Ker Gawl. (Zingiberaceae Martinov) (Silva et al. 2008) should also be monitored at V. dabneyi sites.Although direct evidence of V. dabneyi consumption by goats, cattle and rabbits is rare, its distribution at Caldeira ˜o in Corvo Island, mostly on steep, rocky outcrops, suggests a possible retreat from areas more fully accessible to herbivores (Milchunas and Noy-Meir 2002). During our visits we found that cattle were free to roam at Caldeira ˜o, even on sensitive vegetation like peat bogs that are important systems for water absorption and retention, and that goats were generally feral or unherded. This poses a big threat not only to V. dabneyi but also to other herbaceous endemic species (Houston et al. 1994;Silva et al. 2008) like Tolpis azorica (Nutt.) P.Silva (Asteraceae Bercht. & J.Presl) or Euphrasia azorica H.C.Watson (Scrophulariaceae Juss.), which are eaten in all accessible places. In the Azores it was not yet possible to use herbivore-exclusion plots, but this approach was used in the Canary Islands, showing that herbivores exert a strong negative effect on plant establishment, demanding the implementation of conservation measures, such as large fenced areas, control activities and eradication (Garzo ´n-Machado et al. 2010). Meanwhile, the necessary changes in herbivore management clearly include a societal component, involving stakeholders that are not directly linked to conservation (e.g. hunters, farmers, the agriculture services).The fastest germination treatment occurred under the 25/20 8C temperature regime (T50 ¼ 6.7 days), germination reaching 90 %. The rate of 100 % germination was obtained with a temperature regime of 20/15 8C, given the second best T50 (12.6 days). Similarly, high germination percentages were also obtained for the related Veronica arvensis L. (King 1975). For conservation purposes, seeds should be collected after full development of the fruits which generally occurs by mid-July, and promptly sown. It was possible to grow seedlings obtained from germination in the laboratory and to plant them at the site of origin. For the first 2 years, the plants were monitored every 6 months and it was found that the seedlings planted next to the mother population survived at a rate of 50 %. Some early mortality due to transportation/establishment, and later mortality associated with roadside maintenance activities, was found. Furthermore, the genetic analysis of the germinated seedlings showed no considerable reduction in the genetic variability. Thus, the use of seeds might be a valuable option in a future recovery plan, in cases where population reinforcement might be preferred.Contrary to our initial expectations that were based on the existence of small and possibly isolated populations, the levels of genetic diversity found in the populations were relatively high, as was the level of genetic admixture, with no evidence of inbreeding. Expected heterozygosity was similar to that found for other Azorean herbaceous endemic taxa (Dias et al. 2014), which are much more common than V. dabneyi. The concentration of most of the genetic variation within populations was similar to patterns found for some of the endemic trees of the archipelago (Martins et al. 2013;Moreira et al. 2013). In a study using amplified fragment length polymorphism (AFLP) markers with Veronica hederifolia L., a European species invasive in China, high levels of genetic diversity were also found, and most of the total variance was attributed to that within (76 %) rather than between the populations (24 %) (Wu et al. 2010). Regarding Hebe speciosa (R.Cunn. ex A.Cunn.) Andersen (Plantaginaceae), a threatened endemic New Zealand shrub, using AFLP markers it was found that there is negligible contemporary gene flow, and that some of the populations exhibited extremely low genetic diversity (Armstrong and De Lange 2005). In V. dabneyi, high levels of gene flow and genetic admixture among the sampled populations presently impede clear population differentiation, even between Flores and Corvo. It should be noted that flower morphology of V. dabneyi suggests an entomophily syndrome (Garnock-Jones 1976): many-flowered inflorescence well above the level of the leaves; the background colour of the corolla is generally lavender with darker guide marks radiating from this ring to the surrounding corolla lobes, especially the posterior lobe. The related Veronica chamaedrys L. is mainly pollinated by hoverflies and short-tongued bees. Other possible pollinators include the Ichneumonidae (Garnock-Jones 1976). We frequently observed a range of Diptera species on V. dabneyi flowers, especially syrphid flies, dung flies and small, unidentified dipterans. Even though they probably do not regularly cross the channel between Flores and Corvo, they could easily be blown between islands in stormy weather, thus transferring pollen from island to island. Alternatively, the present population genetic structure might be the result of a bottleneck effect, consequence of the fragmentation of a previously wider species distribution range that was reduced due to land-use changes (Arenas et al. 2012). In fact, our modelling results do suggest that the potential distribution of V. dabneyi could have been wider in the past. Still another possibility is that the population at the Miradouro Craveiro Lopes, which shares most of the sampled genetic diversity, could be the result of a human translocation of plant material, although written records are not available. In this regard, although seed germination might be a good option to reinforce the most depauperate populations, we do not support translocation of plants between different populations and, particularly, between different islands. The species seems to comprise one global meta-population with gene flow among populations, but there is no reason for translocation, which would be an artificial intervention in the natural gene flow patterns. Meanwhile, the occurrence of natural gene flow might be viewed as a positive factor for the conservation of V. dabneyi, ensuring the transfer of genetic information among populations, and avoiding extreme cases of inbreeding depression (Li et al. 2012).The macroecological factors modelled showed that, at this scale, V. dabneyi is neither a marginal nor a highly specialized species. Both modelling approaches used, ENFA and Maxent, provided similar results, showing that its potential distribution largely coincides with the intermediate elevation zone in Flores and with the Caldeira ˜o zone in Corvo. While ENFA had already been used in the Azores to model invasive and native trees (Costa et al. 2012(Costa et al. , 2013a;;Moreira et al. 2014;Martins et al. 2015), this is a first result devoted to modelling the distribution of a rare plant in the Azores, further supported by the agreement obtained with Maxent. Veronica dabneyi was shown to prefer intermediate elevations, high slopes, relatively low temperature, high rainfall and small variations in relative humidity. Land-use data did not increase the model quality in a sensible way but suggested the existence of a negative correlation with agricultural land. This largely coincides with the type of habitat known for V. dabneyi, suggesting that microenvironmental factors like vegetation cover at a specific location or the presence of a rock outcrop might also be relevant for its establishment (Batik et al. 1992;Svenning 2001;Crain et al. 2014). It should also be stressed that, as stated above, V. dabneyi is mostly found associated with other native and endemic plants at sites with relatively low stature vegetation, which is frequently found at steep locations (e.g. volcanic craters, road side slopes). However, even those sites are not completely protected from herbivores (e.g. goats, rabbits) or human disturbance (e.g. roadside maintenance). Interestingly, the model based on Flores and Corvo occurrence data correctly predicted that V. dabneyi would have adequate habitat at the Faial Caldeira, in agreement with the previous record (Cunha and Sobrinho 1939).Since the species shows a considerable degree of genetic diversity, high seed production and high germination rate, conservation measures should be devoted to: (i) monitoring of natural populations to detect possible changes associated with human impacts; (ii) effective management of herbivores, especially feral goats, in Corvo and Flores Island Natural Parks, delimiting areas from which cattle should be prohibited and feral goats removed and (iii) the use of population circumscribed seed germination and seedling growth to recover the most depauperate populations. Eventually, more field work should be directed to Faial Island, particularly in the whole Caldeira area, in order to detect a potentially still existing V. dabneyi population on that island. We hope that this study will stimulate the development of a scientifically based recovery plan for this species, while serving as a model to similar studies devoted to other rare or endangered endemic plant species worldwide.Although it is a common approach to dedicate attention to specific areas involved in plant conservation, we consider that a more holistic approach, devoted to multidisciplinary studies of endangered plants, should serve as basis for designing management or recovery plans. The latter are an important gap in the Azores where conservation efforts dedicated to endemic plants do not follow integrated recovery plans, contrary to the situation, for example, in the Canary Islands (BOC 2012). In fact, more than 500 000 native plants are produced annually in the Azorean nurseries but their use does not follow approved recovery plans or strategies.Why should conservation research follow a more holistic approach?First, the absence of phylogenetic/systematic revues dedicated to endemic species might lead to erroneous conservation decisions or to the lack of action where it is needed. It was recently found that the most endangered plant in the Azores, known only from one location, is in fact an introduced species (Schaefer et al. 2011). In contrast, for several native genera, the number of taxa present in the islands is still unclear and often underestimated as shown by two recent studies that discovered overlooked endemic taxa with specific distribution patterns (Bateman et al. 2013;Moura et al. 2015). At another level, accumulated evidence for the population genetics of endemic trees in the Azores shows that levels of genetic diversity, and patterns of population structure, vary considerably among the evaluated taxa (Silva et al. 2011;Martins et al. 2013;Moreira et al. 2013;Moura et al. 2013), demanding a detailed study per taxon. Moreover, the absence of long-term monitoring data will not only preclude the evaluation of recovery programmes (Godefroid et al. 2011), but also impede a sound evaluation of conservation status, which has then to be determined based on distribution areas and not on observed population trends (Moreira et al. 2014;Martins et al. 2015). Monitoring is also linked to other relevant factors such as the detection of high mortality rates associated with herbivore pressure, making the propagation of high numbers of individuals an almost complete loss if no measures are taken to control predation (Donlan et al. 2003;Garzo ´n-Machado et al. 2010). In the future, other aspects such as climate change will have to be integrated in long-term management or recovery programmes, making modelling approaches fundamental tools to support decision making (Fordham et al. 2012).This more holistic approach can be accomplished by evaluating conservation status and possible management actions, based on a series of previous publications devoted to the target species (e.g. Moreira et al. 2014;Martins et al. 2015), or by developing multidisciplinary projects from the onset of the research programme, like it was done in the present paper.Undoubtedly the need to address different aspects involved in the assessment and restoration of endangered plants arises directly from the Global Strategy for Plant Conservation, namely from its Objective 1 (Plant diversity is well understood, documented and recognized, CBD 2012). In our view, the different targets of this strategy will only be implemented if holistic approaches to research in plant conservation are effectively implemented in the near future.Multidisciplinary studies like the one presented here, although sometimes longer, would increase the success of recovery and long-term maintenance of rare species, therefore improving the outcome of conservation investment, besides being a more powerful tool to halt plant extinctions.","tokenCount":"6833"} \ No newline at end of file diff --git a/data/part_3/1815720068.json b/data/part_3/1815720068.json new file mode 100644 index 0000000000000000000000000000000000000000..94f15fde03039cfccf830d454dbe48faa0ddc40d --- /dev/null +++ b/data/part_3/1815720068.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"f16565d8520fda1045fe772a61e261b6","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/ad9ae59a-ee3f-4ada-a611-2080c207a3cf/retrieve","id":"-1302733991"},"keywords":[],"sieverID":"a949d526-12c9-48b7-ae45-55ab0cd29fdb","pagecount":"44","content":"I 6S't40 c.l COL EC(lON HISTORiO, b f. ¡V [¿e I 'j Cj o 65'1'2.'2.r -\" ¡ frr?Or;;-.;c: u •:> ! debería constituir el suministro del insumo semilla de buena calidad para grandes, medianos. y pequeños agricultores.embargo. el abastecimiento de semillas es extremadamente heterogéneo entre 10$ grandes y América Latina, las tasas de medianos empresarios agrícolas. En utilización de semillas mejoradas (certificada. fiscalizada, y otras) son aún pequeñas. si consideramos las exigencias del desarrollo agrkola en una situaci6n moderna.estabilidad en sus negocios a aquellos que trabajan con seriedad. En los sistemas convencionales de producción y abasteclmiento de semillas, además de lo dicho anteriormente, el productor y el comerciante de semilla, cuentan con programas de certificación, con la fiscalizaci6n del comercio y con el dinam'lsmo caracterlstico del sector privado.Por otro lado están los pequeflOS agricultores que en su gran mayorla no utilizan semillas mejoradas\"'.Tradicionalmente han producido sus propios materiales de siembra o los han obtenido de agricultores vecinos o de 'lonas aledañas a través de mecanismos que muchas veces no implican un desembolso de dinero, sino el intercambio de semilla por otros bienes o por trabajo.La caracterización del pequeño agricultor ha sido mencionada por varios autores y, en términos generales. aportan informaciones similares; por 10 tanto, ya se conoce una• En el sentido más amplio, la semilla mejorada implica semilla de buena calidad (con identidad genética y pureza, libre de semillas de malezas, fisiológicamente vigorosa. y con buena calidad sanitaria) tanto de las variedades mejoradas como de las. tradicionales.buena cantidad de variables involucradas en el contexto social, económico, y cultural de esta clase de agricultores, pero poco se ha aportado en el sentido de disei'iar estrategias o alternativas para mejorar su producci6n y abastecimiento de semillas.Este trabajo presenta el esfuerzo realizado por el Centro Internacional de Agricultura Tropical (CIAT), con el fin de contribuir a la búsqueda En este documento.trataremos los aspectos relacionados con la fase de poscosecha que se desarrollan en dicha planta experimental.La implantación de sistemas no convencionales de producción y abastecimiento de semillas exige acciones de carácter organizativo y de control de calidad, cuya centralización en una planta de beneficio de semillas es necesaria, en función de las exigencias del sistema en lo que se refiere a asistencia técnica especializada, capacitación, control interno de calidad, y mecanización de ciertas actividades. Esta infraestructura de beneficio, única en su tipo en América Latina, se justifica plenamente ya que:,. Permitirá estudiar tecnologlas alternativas de producción, benefício, y distribución de semillas.2. Posibilitará a la Unidad de Semillas del CIAT actuar en forma más adecuada en el suministro de información y en la capacitaCión de lideres rurales, extensionistas, y tecnólogos de semillas.3. Servirá como planta de beneficio para 105 lotes pequeños de semillas producidos en la Unidad, bajo un esquema de control interno de calidad.lL Servirá como prototipo y punto de irradiación de tecnologías para organizaciones de pequer'los agricultores involucrados o interesados en la producción de semillas.Ademf!s ele lo mencionado anteriormente, este esfuerzo se justifica por ser el C1AT el (rnlco centro de! sistema CGIAR que tiene una Unidad de Semillas en su estructura y que trabaja con cultivos con características sociales muy fuertes. como son el frijol y la yuca.1{ 1. OBJETIVOS l. Demostrar la factibilidad de implementar estructuras sencillas de befleficio y control de calidad en semillas, a un bajo costo y adaptadas a las necesidades y recursos de las comunidades de pequeño,> agricultores, mediante la integración de las actividades de recepción, secamien to, acondicionamiento, almacenamiento.y distribución de semillas en dicha estructura. IV. INFRAESTRUCTURA DE APOYO La Unidad de Semillas, además de contar con una infraestructura física apropidda para la enseñanza de tecnolog{a de semillas dentro de los moldes convencionales (empresarialesl. está también involucrada en actividades de carácter no convencíonal. Para perfeccionar y difundir esta labor. se construyó una planta con características especiales para desarrollar esquema\", alternativos compatibles con las particularidades especificas de los pequel\"íos agricultores (Figura 1). 3. Utilizar la infraestructura para beneficiar pequefios lotes de semilla básica.La Unidad de Semillas. además de contar con una infraestructura física apropidda para la enseñanza de tecnologla de semillas dentro de los moldes convencionales (empresarialesJ. está también involucrada en actividades de carácter no convencional. Para perfeCcionar y difundir esta labor. se construyó una planta con características especiales para desarrollar esquemas alternativos compatibles con las particularidades especificas de los pequei'los agricultores (Figura 1).Cielo roso en teja asfáltico Muro en bloque de cemento D,enaje calecfa, ~!lJIIII~2 Agricultor están relacionadas con las actividades tiplcas de poscosecha.Es importante resaltar que las operaciones posteríore,,-a la cosecha no hacen IJmiJagrosl!, Ellas no mejoran la calidad fisíol6gica, genética, o sanitéll\"ia de la semi!!a, aunque pueden mejorar la compMk:ión del lote de semillas al remover los materiales indeseables y preservar esa calidad, minimizando el deteriwo durante el almacenamiento.Hay algunos puntos importantes de la fase de precosecha que se deben tener en cuenta:,. La semilla para la siembra debe tener buena germinación, vigor y pureza. 2. El terreno para la '3iembra debe estar preparado en forma adecuada; '3e debe practicar la rotaci6n de cultivos y seguir las orientaciones técnicas.~as prácticas culturales requeridas (dehierbas. erradicación de plantas atfpicas y enfermas, protección del cultivo en el momento oportuno, etc:.} En cualquiera de estos casos. e5 necesario llenar la ficha de actividades de Control Interno de Candad (ele), ya codificada y asignada al productor en la fase de pr'ecosecha (Anexo 1). Es importante resaltar que sóramente aqueJlos lotes de semillas de buena calidad deben recibir la atención y cuidados de poscosecha, mientras que aquellos lotes que presentan problemas deben ser rechazados y destinados para consumo humano o industrial. Esta simple actividad permite disminuir Jos riesgos y los costos. Aquel los lotes de buena calidad deben ingre .. ar al flujO de acondicionamiento.Dependiendo de las <:.ondiciones en que se reciba el material, se deben definir los semillas de buena cal ldad.Esto explica la necesidad de dar una identidad propia y distinta a cada lote recibido, Una de las primeras acciones que se deben adelantar en la recepción es identificar los empaques (saco, paquete, etc.) del material recibido para así evitar las mezclas con otros lotes o la pérdida de identidad en el futuro.En el procaso de recepción se debe pesar el producto y hacer un muestreo que sea representativo del lote recibido. Cuando sea posible, es conveniente haber realizado un muestreo a nivel de campo, poco antes de la cosecha. Si los materiales llegan en plantas, panículas, o mazorcas, se deben tomar muestras al azar y desgranarlas manualmente y homogenizarlas bien. Cuando el material se recibe trillado o desgranado. se procede él hacer un muestreo también representativo, sacando las muestras con sondas o caladores. Si estos equipos no existen, las muestras se sacan con las manos. La suma total de todas estas muestras debe ser aproximadamente de 2 a 6 kg. dependiendo de fa especie.En seguida, se procede con la \"div¡\";ión sUCE:!>iva o cuarteos\", ubicando la muestra compuesta sobre una tela en una superficie plana y haciendo divisiones en partes iguares con una regla hasta obtener aproximadamente 500 gramos (muestra de trabajo). Con base en la observación visual se detectan fácilmente problemas serios e irreversibles (ejemplo, lB semll1a se calentó, existen malezas inseparables. existen mezclas varietales inseparables de otra variedad, etc.) que impliquen descartar dicho lote. El proceso sistemático de muestreo es necesario cuando la semina se encuentra en buen estado y se desea tener precisión en los aspectos invisibles de la calidad (i.e., humedad, germinación. vigor, sanidad, etc.).Los resultados de germinación no son inmediatos. Normalmente, debido a la falta de una prueba rápida de viabilidad s610 se utiliza la prueba de humedad para tomar una decisión inmediata respecto al secamiento.El material recibido húmedo se debe secar inmediatamente aún sin saber su nivel de viabilidad. Después, con el resultado de la prueba de viabilidad se decide si el lote merece seguir el flUjo de beneficio siguiente o si se destinará al consumo.En algunos sistemas más desarrollaclos, la prueba de tetrazolio, la de conductividad eléctrica del exudado, o la de germinación fisiológica (evaluación de [a germinación cuando la radlcula emerge) se usan con éxito para determinar rápidamente la viabilidad.En la mayoria de los casos, una responsable de la recepción.prueba muy efectiva es el \"ojo\" del Esta persona debe conocer sus productores de semillas, las zonas, el campo de producción, y el historial del lote. Por lo tanto, la apariencia f(sica vista a través del \"ojo\" del responsable del galpón es indispensable. La calidad sanitaria de un lote de semillas frecuentemente se puede determinar con base en los slntomas que se observan en el campo. Las mezclas varietales, la contaminación con malezas, y otras caracterlsticas de 105 lotes deben ser observadas continuamente por una persona responSélble. Estas observaciones son valiosas para la toma de decisiones en el galpón.Teniendo en cuenta la necesidad de asegurar la calidad disminuyendo costos e integrando los manejos de pre y poscosecha, es conveniente que la supervisJón tanto en el campo como en la planta recaiga sobre el mismo supervisor. Esta es un enfoque muy práctico y económico de programar la producción de semillas, sobre todo en las etapas iniciales, cuando las cantidades son pequeñas.El Cuadro 2 presenta algunas alternativas operacionales y las pruebas de control de calidad, en función de la materia prima recibida. La decisión de proseguir un determinado flujo de beneficio de semilla es muy importante para alcanzar los niveles de calidad deseados. Cuadro 2. Operaciones de poscosecha y evaluación de la calidad de las semillas.<;; La capacidad sólo depende del número de personas que realizan el trabajo.FIGURA 4. Garita trilladora.Este sistema, utilizado ampliamente en América Centra!, facilita la trilla y causa un mínimo de darlO mecánico a las semillas. Las semillas que se desprenden de las vainas caen a través del piso rejillado y por tanto no reciben golpes repetidas veces.La trilla, realizada frecuentemente por aporreo en montones o en pilas, también es adecuada, siempre y cuando se realice con suficiente material para lograr el efecto de colchón. FIGURA 6.Desgranadora manual. Máquina sencilla y de fácil limpieza para desgrane de maíz.il.Al igual que la actividad de trilla, la prelimpieza se puede realizar también en el campo, utilizando mallas metálicas sencillas y{o la bomba de motor (pulverizadora) de espalda. La prelimpieza es una actividad necesaria sobre todo si el secamiento fin\",1 se va a hacer con aire forzado en secadoras artificiales.Por otro lado, la prelimpieza evita I!evar basura innecesari(;j a la planta.A continuación se presentan algunos equipos utiles para llevar a cabG esta labor (Figuras FIGURA 9. Venteadora pequeña de motor eléctrico (normalmente lJ':.ada por programas de investigación) .Similar a la de la Figura ti, pero construida en lámina metálica. Muy apropiada para cantidades pequef'las de semillas. Muy fácil adaptarla para que el flujo de soplado se constante.FIGURA 10. Bomba de espalda (pulverizadoral empleada normalmente para aplicar productos químiCOS en el campo. Apropiada para separar los componentes livianos (tallos, polvo. hojas. vainas. etc,) después de la trilla.Este paso es critico en el proceso de obtención y preservación de (a calidad de la semilla. El proceso de secamiento se debe realizar fa más pronto posible, después de la trilla, especialmente en lotes de semillas con alta humedad (mayor del 15%) s¡ se quiere garantizar un alm5%). para verificar su efecto inmediato sobre la calidad fisiológica de la semilla. Describir los tipos manuales: zarandas, etc., o mecánicos: máquinas, etc.En cada caso se deben pesar todas las fracciones y anotarlas en el espacio provisto para ello. Calidad final: Anotar los resultados de las pruebas de germinación, pureza, vigor, y otras, realizadas sobre la fracción de semilla pura.Especificar-el pr-oducto químico utilizado en caso de que la semilla sea tratada.Empaquefldentificación de la Semilla Lista Yute, papel multifoliado, pOlietileno, etc. Peso por cada saco, Peso total del lote (conjunto de empaques).Cuando se ha realizado el análisis oficial o cuando la organización tiene su propio laboratorio. Los datos cualitativos se deben escribir y fijar en un marbete en el empaque que contenga las semillas. Se pueden usar sellos y llenar los espacios en el propio empaque, pero los datos sobre la calidad final se deben anotar también en el espacio (28). .eJ espacio (30).Anotar el nombre de 13(s) persona(s) que comprarán semilla de ese lote en particular.Loo;; datos de cada ficha (lote} nos indicarán en qué lotes deberemos repetir los análisis antes de la venta. Es necesario hacer \\.loa prueba de germinación en aquellos lotes que sufríeron atraso durante la cosecha. tuvieron un mayor porcentaje de daño mecánico, etc.. y anotar en el espacio (31) para garanHa propia y del cliente. ","tokenCount":"4724"} \ No newline at end of file diff --git a/data/part_3/1819361853.json b/data/part_3/1819361853.json new file mode 100644 index 0000000000000000000000000000000000000000..dfc5f52308c2a2355fd340f6ec4d208014bfec64 --- /dev/null +++ b/data/part_3/1819361853.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"5c3a1d6f3ac1a7316099cc33ae3445bd","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/e0c11244-41bf-457f-b050-5ab203ca9cc2/retrieve","id":"744836105"},"keywords":[],"sieverID":"7dd10015-120e-443f-88af-bbd71e808055","pagecount":"4","content":"An innovation platform is a space for learning and change. It is a group of individuals (who often represent organizations) with different backgrounds and interests: farmers, traders, food processors, researchers, government officials etc. The members come together to diagnose problems, identify opportunities and find ways to achieve their goals. They may design and implement activities as a platform, or coordinate activities by individual members.Communication comprises a broad range of practices and approaches which include information management, publishing, use of information and communication technologies, communication for development, knowledge sharing and knowledge management.At the outset, communication helps bring platform members together to identify common objectives. It helps manage information and ensure an institutional memory. It ensures that all members' voices are heard and gives them ownership of the platform's work. It clarifies everyone's agenda and the vision of change that brings them together.Innovation does not happen in the dark. Innovation happens when knowledge and ideas from different people are combined to arrive at new solutions. Innovation platforms are like a switchboard that connects different 'light bulbs' (people) together to shed light on bigger issues and stimulate brighter ideas.Communication is the electricity that powers the platforms. It helps to create a steady flow of information to and from different parts of a platform. It regulates power flows, avoids overloads and blackouts on the innovation network, and connects to other parts of the network. Communication is a crucial part of facilitating the process of innovation within an innovation platform (Brief 10).Communication combines different 'energy sources' to power the platform at different phases of its development. The goal is not just to produce or disseminate more information, but rather to use communication processes to power changes identified by the platform.Communication with outsiders. Communication also links the platform and its members to people and organizations outside. It does this by engaging with other networks, providing information and making linkages to relevant groups. It also helps disseminate information for people to act on it. Communication among platform members happens everywhere: at platform meetings, between meetings, online, on the radio, and face to face. Creating a common understanding and tapping into the views of different members is necessary for a platform to deliver its goals. Communication is about making sure these conversations happen, frequently enough, and well enough. Effective and trusted facilitation is essential.• Example: The International Livestock Research Institute brought people together in roundtables to discuss fodder in Ethiopia. The meetings were short, stimulating, focused on a particular theme, and focused on actions and policy change. Held twice a year, they were more effective than longer, more frequent meetings (http://fodderadoption.wordpress. com/tag/fap).• Facilitated meetings and events• Study tours and exchanges• Role plays and games• NetworkingActivities, learning and events need to be documented. Why? To build an institutional memory for the platform members, and so outsiders can understand what the platform achieved and how it did so.Researchers often see innovation platforms primarily as a way to disseminate their research findings. This should be avoided. Information disseminated through the platform should meet the demands of the participants. Tools for documentation and outreach The project supports local innovation platforms at three locations, as well as a policy-oriented national platform on land and water management. The local platforms bring together people living in and working with a particular local community. Communication efforts include documenting and explaining local issues using participatory video, capturing community perspectives using photos and photo-films, facilitating engagement and learning using games, facilitating regular stakeholder discussions of opportunities and challenges, documenting insights and lessons by project staff using regular team meetings, compilation of most significant change stories, wiki collaboration tools, and sharing stories and updates on the internet for wider audiences.The national platform's communication efforts include position and issue papers, regular platform meetings on different topics, meeting reports and recommendations for wider audiences, groups working on specific issues, online publishing and dissemination of messages.More: http://nilebdc.org/In innovation platforms, learning breeds innovation and sharpens the capacity to innovate over time. Various factors can help or hinder communication within the innovation platform.Power and representation (Brief 4). Power relations between people and organizations in the platform can bias the discussions and decisions made because some voices are heard, while others are not. They can muddle conversations, impair relationships and destroy trust between members.Capacity (Briefs 8 and 10). Effective communication requires a wide range of skills: in interpersonal communication, facilitating processes and events, website management, radio and video production, publishing, design and public awareness. Platforms are more likely to thrive if they are supported by strong communications and have strong interpersonal communication among all members (Case 2).Resources. Time and money available have major impact on the approaches and tools that can be used. They affect the size of the communication team, the intensity of efforts to bring people together, and the communication tools used. Access to electricity and the internet has a big effect on the choice of communication approaches; knowledge of local languages can also be critical.Tools for learning ","tokenCount":"825"} \ No newline at end of file diff --git a/data/part_3/1831348287.json b/data/part_3/1831348287.json new file mode 100644 index 0000000000000000000000000000000000000000..be55a3388e5e9942813f96793b6d6221e40af6b3 --- /dev/null +++ b/data/part_3/1831348287.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"9ba4618048400466cfa983c468a0a8a1","source":"gardian_index","url":"https://link.springer.com/content/pdf/10.1007%2Fs13225-017-0383-3.pdf","id":"-888958664"},"keywords":["Classification","Evolution","Ranking","Temporal banding","Sordariomycetes Multigene Phylogenetic Analyses"],"sieverID":"ad006a2c-a93d-437a-9cc2-84f0c354b2aa","pagecount":"23","content":"The history of assigning ranks to fungi, as well as the relative importance of using divergence time estimates is reviewed. The paper pays tribute to the major mycological players, and especially to David Hawksworth on his 70th birthday and his contribution to fungal ranking in Systema Ascomycetum from 1982 to 1998. Following the conclusion of the latter series, the ranking continued with the Outlines of Ascomycota in 2007 and 2010 and more recently with specific classes in 'Towards an outline of Sordariomycetes' and 'Families of Dothideomycetes'. Earlier classifications based on phenotype were certainly more subjective; however, remarkably many of these old arrangements have stood the test of time. More recently, phylogenetic analyses have provided evidence towards a natural classification, resulting in significant changes inmany lineages. The classification arrangements however, are still subjective and dependent on the taxa analysed, resulting in different taxonomic interpretations and schemes, particularly when it comes to ranking. Thus, what have been considered as genera by some, have been introduced as families by others. More recently, estimation of divergence times using molecular clock methods have been used as objective evidence for higher ranking of taxa. A divergence period (i.e. 200-300 MYA) can be used as a criterion to infer when a group of related taxa evolved and what rank they should be given. We compiled data on divergence times for various higher ranking taxa in the Kingdom Fungi. The kingdom evolved 1000-1600 MYA (Stenian-Calymmian), while the presently accepted phyla evolved between 358 and 541 MYA (Devonian-Cambrian). Divergence times for subphyla are generally between 358 and 485 MYA (Devonian-Ordovician), those of classes 145-358 MYA (Jurassic-Carboniferous),The taxonomic ranking of fungi at higher levels (class, subclass, order, family, genus) has always been contentious and prone to subjectivity, since higher taxa are perceived as human constructs and not as natural entities, and their ranking is arbitrary, which in some instances has resulted in unnecessary personal attacks in the literature (Liu et al. 2016). Accurate and natural classifications should rely on clear scientific principles, with evidence from as many avenues as possible, and provide objective criteria for their use by others. In this paper, we provide an improved approach for the ranking of fungi at higher taxonomic levels, with additional evidence from divergence time estimates.This paper is the introductory paper to this special issue dedicated to David L. Hawksworth on the occasion of his 70th birthday this past year. The present study pays specific tribute to the efforts of David (with his colleague Ove Eriksson) in compiling Systema Ascomycetum (1982)(1983)(1984)(1985)(1986)(1987)(1988)(1989)(1990)(1991)(1992)(1993)(1994)(1995)(1996)(1997)(1998), the first modern classification of the largest fungal phylum leading into the molecular era. Revising molecular dating studies of the Fungi, we make an attempt at using temporal banding to reassess the ranking of higher taxa in the Ascomycota, with a detailed case study to rank taxa of Sordariomycetes using molecular clock evidence. In other contributions to this special issue, Hongsanan and co-authors provide an updated phylogeny of Sordariomycetes and recommended changes based on both phylogenetic and molecular clock evidence. Zhao and coauthors deal with ranking of Basidiomycota and Divakar et al. with ranking in the lichen family Parmeliaceae and allied groups using molecular clock evidence. Liu and coauthors use Dothideomycetes and Pleosporales as case studies for evidence from molecular clock data for ranking orders and families, respectively. A rather controversial paper introducing new species based only on molecular data by Lu ¨cking and Moncada is also included, expected to foster the discussion on sequence nomenclature at the upcoming IBC in China. Finally, Lu ¨cking and co-authors introduce 70 species in the lichenized genus Cora as a tribute to David.Classification has been of considerable interest to mycologists since fungi were first described (Hawksworth 2011). Classification is the grouping of taxa in a systematic manner based on their evolutionary relationships (Mehrotra and Aneja 1990); it follows scientific principles. In contrast, nomenclature is the process that gives scientific (Latin) names to taxa, in the case of species a binomial consisting of the genus name and the species epithet. Nomenclature is a convention, not a science, and hence follows laws laid down in a nomenclatural Code. The conflict between the scientific approach of classification and the convention of nomenclature arises in that nomenclature is based on the Linnean system, which not only uses the binomial but also rank-specific endings for higher taxa. Hence, any scientific name down to genus level also conveys its rank, which means that nomenclature of higher taxa has to find a common ground between scientific evidence of evolutionary relationships and the arbitrary decision what rank a higher taxon should receive.There were numerous attempts to classify fungi during the nineteenth and twentieth centuries (Table 1). Notable earlier contributions are those of Persoon (1801) with his 'Synopsis Methodica Fungorum', Fries's 'Systema Mycologium' (e.g. Fries 1821, 1831), Schweinitz with his 'Synopsis Fungorum Carolinae Superioris' (Schweinitz 1822), and Saccardo with the volumes of 'Sylloge Fungorum' (e.g. Saccardo 1884). These authors started to rank fungal taxa and develop a useable system for their classification. More elaborate systems with corresponding ranks were subsequently proposed based on anatomical and developmental studies (e.g. Nannfeldt 1932;Bessey 1950;Luttrell 1951;Martin 1961;Ainsworth 1966;von Arx and Mu ¨ller 1975;Barr 1976Barr , 1979Barr , 1987Barr , 1990;;Eriksson 1981). Cooke and Hawksworth (1970) assembled the first list of all family names proposed for fungi, while Ainsworth et al. (1973) accepted 21 orders in six classes of the Ascomycota.Ainsworth's classification was accepted by many mycologists and ten years later, Hawksworth et al. (1983) revised that work in the 7th edition of the 'Dictionary of the Fungi', accepting 37 orders. In their series Outline of Ascomycetes (e.g. Eriksson and Hawksworth 1991), attempts to classify and rank the Ascomycota listing 818 genera, 72 families and six orders were made. The annually revised outline in Systema Ascomycetum (1982( -1998( ) and later in Myconet (1997( -2007)), compiled by Hawksworth and Eriksson, contributed enormously to the classification of the Ascomycota and, by eventually integrating molecular data, has laid the groundwork for a natural and widely accepted classification of the genera and higher taxa in this phylum. M.E. Barr also provided significant contributions to the classification of the fungi (Barr 1976(Barr , 1979(Barr , 1987(Barr , 1990)). The success of this approach is based on swift and regular inclusion of the most recent results of molecular phylogenetic studies, especially since with the advent of DNA sequence-based data, taxonomic rearrangements are being proposed continuously (e.g. Liew et al. 2000;McLaughlin et al. 2001a, b;Lutzoni et al. 2004;Taylor et al. 2004;Adl et al. 2005;Lumbsch andHuhndorf 2007, 2010;Hyde et al. 2013;Wijayawardene et al. 2014;Senanayake et al. 2015;Li et al. 2016;Maharachchikumbura et al. 2016).Ranking and grouping are two conceptually different approaches. Grouping is essentially the delimitation of natural taxa into hierarchical categories, based on evolutionary relationships. Early mycologists grouped fungi in higher taxa using morphological characters and habitat and lifestyle features (Table 1). These classifications were later refined incorporating anatomical, ultrastructural, and chemical data, but even so, with the advent of molecular sequence data, it eventually became obvious that fungi exhibit a striking level of phenotypic homoplasy, so morphological (or more correcly, phenotypical) characters are often unreliable for the delineation and classification of taxa (Soltis and Soltis 2003) and grouping of taxa based on morphological similarities has always been contentious (Liu et al. 2016). Therefore, molecular phylogenetic classifications are now widely accepted to outperform morphological classifications (Soltis and Soltis 2003;Zhao et al. 2016), although even DNA sequence data are not unproblematic (James et al. 2006;Beimforde et al. 2014;Jeewon and Hyde 2016;Liu et al. 2016;Hongsanan et al. 2016;Spatafora et al. 2016).In contrast to the grouping of fungi, the ranking of taxa has no scientific basis. There is no difference in considering all Ascomycota as a single genus or a phylum; taxa accepted at class level could also be treated as orders or vice versa. The underlying phylogenetic relationships would not change. The fact that it has become difficult to give clear phenotypical circumscriptions of higher taxa down to order and sometimes even family level, and that there are no phenotypic features that could be used consistently at given levels to define ranks, underlines the problem. With the natural classification now in place, higher taxa are usually defined by their included elements, not by their phenotype, with few exceptions. For instance, while the large classes Arthoniomycetes, Dothideomycetes, Eurotiomycetes, Lecanoromycetes, and Sordariomycetes are well-supported, distinct phylogenetic entities, one would have a hard time to define them phenotypically. Almost any character state found in one class can also be found in the other, and orders within each class may vary almost at the same level as the entire class (e.g. Arthoniales, Ostropales). Hence, the fact that we treat them as classes, and not as orders or phyla, is due to convention and not to objective science. Notably, Arthoniomycetes is an example where a class contains a single order, showing that there is no scientific meaning in ranking. It is therefore not surprising that DNA sequencing has not contributed to resolve the problem of objective ranking criteria. On the contrary, progressively better developed phylogenies have shown the limits of the Linnean ranking system, as there are usually more distinctive and supported hierarchical levels within a higher taxon than can be named using main and intercalar Linnean ranks. As a consequence, the ranking of taxa continues to be controversial (Liu et al. 2016;Samarakoon et al. 2016a, b).However, there is one objective criterion to ranking that could be evaluated using sequence data, and that is the age of the taxon in question. It can be argued that taxa recognized at higher hierarchical levels should be older than those at lower levels, which opens the possibility to obtain time periods for given ranks through molecular clock approaches, the so-called 'temporal banding', a novel approach using estimates of divergence times to standardize criteria for taxonomic ranking (Beimforde et al. 2014;Liu et al. 2016;Hongsanan et al. 2016;Samarakoon et al. 2016a;Divakar et al. 2017).Molecular clock studies, i.e. the concept of measuring divergence times of lineages based on the assumption that mutations occur at balanced rate over time, began in the 1960s with protein and later DNA evidence (Kumar 2005;Vijaykrishna et al. 2006). The vast development of DNA sequencing technologies has influenced the expansion of molecular clock studies and its applications. Molecular clock studies are becoming a universal tool to place evolutionary events and explore new insights into genetic evolution (Bromham and Penny 2003;Kumar 2005;Vijaykrishna et al. 2006). Fossil calibrations or geological information provides absolute time estimations for evolutionary events, i.e. divergence times (Hennig 1966;Woese et al. 1990;Mitchell-Olds and Bergelson 2000;Vijaykrishna et al. 2006;Lu ¨cking et al. 2009). However, in current classifications, such as in the kingdom Animalia, divergence times are not necessarily correlated with taxonomic ranks, as seen in orders, families and genera of Mammalia, Aves, Reptilia, Amphibia and Decapoda (Avise and Liu 2011;Samarakoon et al. 2016a). Avise and Johns (1999) proposed a standardized, time-correlated and manageable hierarchical ranking system for different groups of animals using temporal geological bands. A three-letter time-clip format, emphasizing the approximate evolutionary depth of a clade as the rank, together with the existing ranking system, has been suggested and it was also proposed that clades with unstable divergence times should be maintained as taxa incertae sedis (Avise and Mitchell 2007). Talavera et al. (2013) suggested that systematics and relative ages should be based on threshold divergence times, and that explorative taxonomic ranks should be within a divergence-based classification system. Several studies have focused on the use of divergence times as universal criteria for ranking taxa (Talavera et al. 2013;Zhao et al. 2016;Hongsanan et al. 2016;Samarakoon et al. 2016a). A comparison of early divergences of organisms grouped as phyla, classes, orders and families among the kingdoms Animalia, Fungi and Plantae showed that they had common divergence periods (Liu et al. 2016). In the Fungi, there is a possibility to narrow down common divergence times and use these for standardizing current ranking systems (Samarakoon et al. 2016a).Many studies have recently focused on divergence time estimates in the Fungi and these can be used to resolve ranking discrepancies. Basidiomycota and its sister phylum Ascomycota are estimated to have evolved during the Palaeozoic, around 500 MYA (Lu ¨cking et al. 2009;Berbee and Taylor 2010;Oberwinkler 2012;Hibbett 2014). Several higher taxa of Basidiomycota have been studied based on their divergence times along with evolutionary relationships. For example, Agaricomycotina evolved 429 MYA (Floudas et al. 2012). The largest class, Agaricomycetes, which contains most species known as mushrooms, diverged ca. 290 MYA (Floudas et al. 2012). The class Dacrymycetes formed 280-360 MYA as estimated by Dentinger et al. (2010). The ages of some important orders within Agaricomycetes have also been estimated, such as Boletales with divergence times around 66-146 MYA (Skrede et al. 2011;Wilson et al. 2012) and Polyporales with divergence times around 203-250 MYA (Garcia-Sandoval et al. 2011).An overview of the phylogeny of Basidiomycota using six gene sequences data and genomics was published by Zhao et al. (2017), and almost all higher-level taxa (above order) in Basidiomycota have been dated. The study widely agreed with dating estimates reported by previous researchers (Berbee and Taylor 2010;Dentinger et al. 2010;Skrede et al. 2011;Garcia-Sandoval et al. 2011;Wilson et al. 2012;Floudas et al. 2012;Oberwinkler 2012;Hibbett 2014), except for the order Polyporales which had an older divergence time. Zhao et al. (2017) suggested that divergence times can be used as additional criteria for ranking higher taxa of Basidiomycota and reported that divergence for the phylum was ca. 530 MYA whereas all subphyla diverged ca. 400-490 MYA; classes are ca. 350-390 MYA for those from Agaricomycotina, but 245-356 MYA for Pucciniomycotina and Ustilaginomycotina, and the order level is ca. 120-290 MYA.The first attempt to establish a ranking system in the Fungi at the genus level based on divergence times was a reconstruction of a taxonomic system for Agaricus (Zhao et al. 2016). The authors proposed divergence times as additional criteria in taxa ranking, and the following criteria were used to recognize taxa above species level: (i) they must be monophyletic and statistically well-supported in multi-gene analyses; (ii) their respective stem ages should be roughly equivalent, and higher taxa stem ages must be older than lower level taxa stem ages; and (iii) they should be identifiable phenotypically, whenever possible (Zhao et al. 2016). Temporal banding to define ranks at the genus level was also recently used in the Ascomycota in the family Parmeliaceae (Divakar et al. 2017).We used the phylum Ascomycota and the class Sordariomycetes as case studies. Common divergence ranges for subphyla, classes, subclasses and orders in the Ascomycota were derived from several recent studies (e.g. Gueidan et al. 2011;Prieto and Wedin 2013;Beimforde et al. 2014;Pe ´rez-Ortega et al. 2016) and standardized relative to the crown age of the phylum Ascomycota in each case, giving the reference point for relative and absolute divergence time estimates. The ranks of the clades in each study were based on currently accepted ranks. Based on the aformentioned studies, we then reconstructed the absolute stem ages for each node in each study. Among the seven studies, the median crown age for Ascomycota was estimated at 533 MYA and this value was used to recompute all node age estimates in all seven studies by using the proportional difference of the individually calculated Ascomycota crown node age versus the 533 MYA. The stem ages were adjusted by multiplying by the respective calculated percentages, to obtain revised stem ages. The revised stem ages were used to calculate the median and average values (Table 2). Molecular clock analysis of Sordariomycetes Three-hundred and forty-five sequences were downloaded from GenBank to supplement the dataset (Supplementary Table 1). The SSU, LSU, TEF1 and RPB2 data sets were aligned separately using MAFFT (Katoh et al. 2009) and checked manually using Bioedit (Hall 1999).Molecular dating analysis was performed using BEAST 1.8.0 (Drummond et al. 2012). The aligned data was partitioned for each LSU, SSU, TEF1 and RPB2 dataset and these were loaded to BEAUti 1.8.0. for preparing the XML file. The data partitions were set with unlinked substitution and clock models to independently estimate each gene partition. Taxa sets were developed for each calibration of the common ancestor nodes, associated with the most recent common ancestor (TMRCA). Previous studies provided the divergence time for Sordariomycetes and Leotiomycetes, which share the most recent common ancestor, and the crown age of Sordariomycetes was also provided (Beimforde et al. 2014;Pe ´rez-Ortega et al. 2016, Hongsanan et al. 2016, Samarakoon et al. 2016a), thus this information was expected to be used as secondary calibrations. However, different researches have used different prior parameters, models and the number of calibrations points, which can affect node ages within their molecular clock (Gueidan et al. 2011;Prieto and Wedin 2013;Beimforde et al. 2014;Pe ´rez-Ortega et al. 2016;Hongsanan et al. 2016;Samarakoon et al. 2016a). We therefore used the average divergence times from the Ascomycota (Table 2) as the reference to consider the calibration points. The divergence time for Sordariomycetes and Leotiomycetes was set using a normal distribution (mean = 295, SD = 45, with 97.5% CI of 383 MYA), and the Sordariomycetes crown with a normal distribution (mean = 250, SD = 45, with 97.5% of CI = 338 MYA). Samarakoon et al. (2016a) discussed the use of Paleoophiocordyceps coccophagus Sung et al., a fossil of Hypocreales, which is similar to Ophiocordyceps (Hypocreales), for calibrating the tree (Sung et al. 2008;Samarakoon et al. 2016a). Thus, this fossil data was used in the present study for calibration of the Ophiocordyceps crown, using an exponential distribution (offset = 100, mean = 27.5, with 97.5% CI of 200 Mya). The substitution models were selected based on jModeltest2.1.1; GTR?I?G for LSU and RPB2, HKY?I?G for TEF1, and TrNef?I?G for SSU. However, the model TrNef is not available in BEAUti 1.8.0, thus we used TN93 with setting ''All Equal'' for the base frequencies. Lognormal distribution of rates was used during the analyses with ab uncorrelated relaxed clock model (ucld). The Yule process tree prior was used to model the speciation of nodes in the topology with a randomly generated starting tree. The analyses were performed for 100 million generations, with sampling parameters every 1000 generations. The effective sample sizes were checked in Tracer v.1.6 and the acceptable values are higher than 200. The first 20,000 trees (20%) representing the burn-in phase were discarded based on Tracer v.1.6, and 80,000 trees were combined in LogCombiner 1.8.0. A maximum clade credibility (MCC) tree was given by summarized data and estimated in TreeAnnotator 1.8.0. The molecular dating tree was viewed in FigTree (Rambaut 2006).In the MCC tree, node bars indicate 95% confidence intervals for the divergence time estimates. Divergence times of each subclass are marked with green symbols, in a similar way, divergence time of orders in Sordariomycetes are marked with red symbols and order level with grey symbols. Monofamiliar orders are marked using the order symbol. According to the aforementioned studies (Gueidan et al. 2011;Prieto andWedin 2013, Beimforde et al. 2014;Pe ´rez-Ortega et al. 2016), the Ascomycota diverged between 512 and 588 MYA ago, with a median value of 533 MYA, which is consistent with other recent studies (Lu ¨cking et al. 2009;Berbee and Taylor 2010;Oberwinkler 2012;Hibbett 2014). Using the median crown age of 533 MYA as a reference, the adjusted stem ages for the four subphyla ranged from 423 to 533 MYA. The classes diverged 248-487 MYA, the subclasses 181-338 MYA, and the orders 132-318 MYA. Based on these values, we propose the following temporal bands (Fig. 1): subphyla 400-550 MYA; classes 300-400 MYA; subclasses 250-300 MYA, and orders 150-250 MYA.Using these temporal bands, the class Neolectomycetes, at 473 MYA, falls within the subphylum band and could be separated from Taphrinomycotina at the subphylum level. Likewise, Orbiliomycetes (457-487 MYA) and Pezizomycetes would have to be elevated to subphylum level and the remaining classes grouped in an elevated subphylum Leotiomycotina. In contrast, the class Coniocybomycetes would be reduced to subclass level within class Lichinomycetes. Most subclasses fall rather well within the proposed temporal band, but Diaporthomycetidae (181 MYA) would have to be subsumed within Sordariomycetidae. The same applies to the orders, where those that fall outside the proposed band (Candelariales, Umbilicariales) are already recognized as separate, mono-ordinal subclasses. Notably, some subclasses and orders currently recognized in the class Dothideomycetes would also deserve raised ranking (e.g. Venturiales), which is supported by the notion that this class is by far the largest within the phylum Ascomycota; however, more taxa from these lineages need to be sequenced to substantiate such changes. In summary, the necessary changes in ranks of higher taxa of Ascomycota based on temporal banding would overall be minor and non-disruptive, which shows that even without this more objective criterion, the current classification and rank levels applied in this phylum are quite reasonable.We provide a molecular clock to evaluate the ranking of taxa of Sordariomycetes (Fig. 2). Evidence from the molecular clock is used as possible criteria for re-organisation of ranking in the group. If followed, this would result in a number of necessary changes to the ranking (Table 3).The crown node age is affected by the taxon sampling used in the analysis and number of base pair differences between fungal groups, and this can become older by including more taxa in the data set. Thus, we use stem age to evaluate divergence times as used by Zhao et al. (2016) and Garnica et al. (2016). The stem age as compared to the crown age provides insights into lineages across time and it has also been used in ranking plants and animals (Kumar and Hedges 1998;Magallo ´n and Sanderson 2005;Bremer and Eriksson 2009;Davis and Fielitz 2010;Smith et al. 2014). In this study, the divergence for Sordariomycetes is estimated at 341 MYA and concurs with other studies (e.g. Gueidan et al. 2011;Hongsanan et al. 2016;Samarakoon et al. 2016a). It also concurs with the recommendation times given for classes in Table 2 (290-420 MYA). All the subclasses in Sordariomycetes diverged 250-289 MYA which falls in the recommended rank. Divergence times for the orders of Sordariomycetes is within the range of 122-266 MYA, whereas we provide recommended divergence times for orders as the result of our calculations at around 130-260 MYA (Table 2). Liu et al. (2017) recommended a divergence time range for orders in Dothideomycetes at 130-310 MYA.The vertical grey band in Fig. 2 delimits the range of the oldest family (165 MYA) and the youngest order (122 MYA). The youngest stem age for the orders is Myrmecridiales which shares a common ancestor with Annulatascales at 122 MYA, therefore a family can at best be as old as 122 MYA, but not older. The posterior probability value in the MCC tree does not support the placement of Myrmecridiales and the stem age of this order therefore cannot be used as the lower limit for ordinal status (youngest orders). We therefore suggest using the divergence event of Phomatosporales and Magnaporthales which have the stem age of 138 MYA (Fig. 2). Thus, we recommend the ranking for orders in Sordariomycetes at ca 130-250 MYA, as the youngest subclass in Sordariomycetes is Diaporthomycetidae (250 MYA). However, there are some exceptions which are discussed below.Notes on changes suggested by MCC tree Maharachchikumbura et al. (2015Maharachchikumbura et al. ( , 2016) ) accepted six subclasses (including Meliolomycetidae) based on their phylogenetic study, whereas we recommend Meliolomycetidae (216 MYA) to be an order in Sordariomycetidae (Table 3, Figs. 2, 3). In the MCC tree, 345 taxa were used for the analysis. The selected orders generally correspond to the orders accepted in Maharachchikumbura et al. (2015Maharachchikumbura et al. ( , 2016)). However, the MCC tree suggests that some orders in Sordariomycetes might be raised as subclass based on their stem ages, which fall within the subclass recommended times; Savoryellales (267 MYA), Glomerellales (256 MYA), (Figs. 1, 3; Table 2).The MCC tree of Sordariomycetes, including some representative strains of Leotiomycetes and Eurotiomycetes obtained from a Bayesian approach (BEAST). Bars correspond to the 95% highest posterior density (HPD) intervals. The fossil minimum age constraints and second calibrations used in this study are marked with green dots.Geological periods are indicated at the base of the tree. The divergence time of each existing subclass are marked in green dots, divergence time of orders in Sordariomycetes are marked in red dots and families with grey dots.Families and orders recommended by MCC tree are labeled in blue 3 Recommended changes within the class Sordariomycetes strictly based on evidence from the molecular clock (These are not meant to be formal introductions or synonymies)In Diaporthomycetidae, the status of Amplistromatales, Calosphaeriales, Diaporthales, Jobellisiales, Magnaporthales, Ophiostomatales, and Togniniales are supported with divergence times of 130-188 MYA. Based on the stem age and tree topology in the MCC tree, the families Papulosaceae and Sporidesmiaceae might need upgrading to ordinal status, therefore the new stem age will be 165 MYA. Distoseptisporaceae (121 MYA) should be placed within Magnaporthales. Catabotryaceae has stem at 165 (MYA) and it should be considered as an order. Orders and families which have unstable placements, low posterior probability values or single strains are: Myrmecridiales and Annulatascales (122 MYA), and Phomatosporales (138 MYA), and need further study.In Hypocreomycetidae, the status of Coronophorales, Clavicipitales, Falcocladiales, Hypocreales, Microascales and Torpedosporales are supported with divergence times of 171-241 MYA. Coronophorales should include Coronophoraceae and Scortechiniaceae (clade I), based on the tree topology and stem age in the MCC tree. Bertiaceae and Nitschkiaceae diverged from Coronophorales (I) at 161 MYA and fall in the range of ordinal status. We however suggest retaining these families within Coronophorales until further phylogenetic studies can confirm this. Chaetosphaerellaceae diverged from the above two orders ca 179 MYA with high support in the MCC tree and it is suggested that Chaetosphaerellales be introduced as a separate order. Nectriaceae, Niessliaceae and Stachybotryaceae grouped and diverged from Clavicipitales 157 MYA in this study, however the placement of Niessliaceae is not well-supported (this study; Lombard et al. 2014). The MCC tree supports the ordinal status of the clade containing Bionectriaceae and Tilachlidiaceae which diverged from the above orders 171 MYA. The families in Hypocreomycetidae are mostly well-supported, falling in the recommended divergence times. Graphiaceae will need further studies to validate its ordinal status due to the stem age 166 MYA and support in the MCC trees.Within Sordariomycetidae, the MCC tree supports the status of Boliniales, Chaetosphaeriales, Coniochaetales, Meliolales (should be no longer a subclass), Phyllachorales and Sordariales, with the stem age at 145-216 MYA.Cordanales and Coniochaetales should be considered under Coniochaetales based on the most recent common ancestor at 77 MYA. Cephalothecaceae has a divergence time at 176 MYA, thus, the ordinal status of Cephalothecaceae should be considered with sufficient data and support in the phylogenetic tree. All currently recognised families within the Sordariomycetidae have ample support and their rank status are maintained.There is evidence for two orders, Amphisphaeriales and Xylariales within Xylariomycetidae (Samarakoon et al. 2016a). The Cainiaceae and Iodosphaeriaceae clade forms a distinct lineage from Amphisphaeriales and Xylariales (this study; Maharachchikumbura et al. 2016), with a divergence time of ca 84 MYA. However, the relationship between Cainiaceae and Iodosphaeriaceae is not well-supported in the MCC tree; they did not group together in Samarakoon Fig. 3 Radial MCC tree showing the six subclasses in Sordariomycetes accepted in this study based on stem age estimates. The tree also shows speciation events of some orders included in the subclasses, however they have divergence times close to the divergence times of other subclasses. Thus, there is some likelihood that these orders can be distinct subclasses when sufficient data is available et al. (2016a). Thus, we suggest retaining Cainiaceae and Iodosphaeriaceae as Families incertae sedis in Xylariomycetidae, until we have more data. The orders in Xylariomycetidae are mostly well-supported, falling in the recommended divergence times. There is only one strain used to represent Melogrammataceae, Hyponectriaceae and Vialaeaceae, and the divergence time estimates in this study indicate that they should be retained as distinct families.There is strong support for the status of Lulworthiales and Koralionastetales in Lulworthiomycetidae. The relationship between Pisorisporiales and above two orders is well-supported in the MCC tree. However, the stem age of Pisorisporiales is ca 265 MYA which falls in the recommended divergence times of subclass. but for the time being their status are maintained pending further studies with increased taxon sampling.There has been a general consensus regarding the composition of the major clades of the Fungi despite the substantial variation in names that have been given to these groups. For example, the Ascomycetes clade in the Dictionary of the Fungi is called Pezizomycotina in Myconet. Such incongruities can result in misunderstandings among researchers and should be avoided. Nevertheless, despite recent discrepancies in our fungal taxonomic treatments, considerable progress has been made, with attention being given to natural relationships. In many cases, molecular systematic studies have supported traditional taxonomic arrangements, but in others, such as the ascomycetes, sequence data has given rise to new groupings that have required frequent revision in their classification. With increasing knowledge, new classifications will be proposed from time to time, adopted and later rejected and this process continues. Liu et al. (2016) questioned whether it can be expected that taxa at the same rank should have comparable ages. For example, should a family of ascomycetes have the same divergence age as a family of animals? This remains open to debate, but if scientists strived to have a ranking system based on the molecular clock, across all kingdoms, a huge amount of changes would be necessary (Liu et al. 2016). Similarly, can it be expected that all species should have comparable ages? This should not be the case, as there are several ancient plant species, as well as more recent ones. If this variation in species is accepted, which is based on the only objectively rankable biological unit (the species) and transferred to higher ranks, would it make sense to define higher ranks using a narrow age range? What would be a comparable range at each rank and would such variation allow us to maintain ranks as they currently are? These questions need to be debated by the scientific community as specific groups of organisms may need their own classification concepts.Ranking using divergence times provides extra evidence for concluding whether to use or introduce higher taxa. It, however, cannot be considered alone, as some of the Box 1 Recommendations for ranking taxa with evidence from divergence times Based on the present and previous studies we provide the following recommendations for using divergence times in the ranking of taxa in the Fungi. As can be seen in the papers of this issue, divergence times may provide strong evidence to support changes at different levels of classification. However, as shown with Sordariomycetes in this paper, it is essential to stabilize the phylogenetic trees before drawing any conclusions from divergence data • The proposed ranking system should use the most recent stem age of monophyletic groups. Thus, making the clade into an evolutionary age stabilized rank • Rather than using the crown group for ranking, stem age is preferable as it is not affected by the sample size of the clade, but divergence times are relative to the sister clade • The often-considerable age gap between stem and crown ages of a particular clade provides information about undiscovered or extinct taxa, and an idea about drastic extinctions that might have occurred due to extreme weather or other events during some periods • The divergence time estimations for a particular clade should be confirmed using fossil and non-fossil calibrations. The results are not same from all studies. All the estimated divergence times from the combination of fossil and non-fossil data should be based on a single frame (here we use the Ascomycota crown). Thus, the required stem age should be calculated using an average relative to average absolute divergence time • The average absolute stem age of higher ranks is used to estimate lower ranks when the fossil data is unavailable. In this case, we combine the relative divergence time estimations with average absolute stem age of the higher rank taxa. Therefore, the unavailable or doubtful fossil data is not a major problem for the calculation of stem age in lower ranks • Morphological and phylogenetic data should be combined to develop an integrated taxonomic ranking system• The proposed ranks reflect the evolutionary age, not arbitrary ranks. However, to maintain a manageable number of ranks, we recommend to use most recent divergence within the given period • If there are missing taxa between higher and lower ranks (e.g. in a particular clade, the first stem age falls on class and second stem age falls on family), we recommend keeping the ranks as obtained from this without intermediate taxa. It provides clues for missing lineages or slow evolutionary rates (the divergence speed, the pulse of extinction and speciation) within the clade outcomes may be misleading, as has been shown in this case study on Sordariomycetes. It is very important that phylogenies are stable before any credence can be given to the applicability of divergence time estimations in ranking fungi. In addition, multi-gene analyses with a large number of genes and species will reduce statistical error in divergence time estimations (Kumar and Hedges 1998). If a lineage is poorly represented the crown age will be younger than which should be expected. The age of the common ancestor (stem age) based proposed ranking is well suited for monophyletic clades, but provides unstable and doubtful divergences for ranking. Thus, uncertainty and misleading phylogenetic classification may lead to errors in divergence time estimations (Bromham et al. 1999, Bromham & Penny 2003). The other problem is that absolute divergence time estimations are dependent on fossil or secondary calibration. Therefore, new fossil findings, accurate calibration with an acceptable fossil, and possible multiple fossil calibrations are needed to obtain reliable absolute divergence times (Gandolfo et al. 2008;van Tuinen and Torres 2015).The proposed common divergence periods for ranking taxa in this study is presently based on few studies. We provide recommendations for ranking taxa with evidence for divergence times in Box 1.","tokenCount":"5655"} \ No newline at end of file diff --git a/data/part_3/1835645586.json b/data/part_3/1835645586.json new file mode 100644 index 0000000000000000000000000000000000000000..184cc8943dad7cb2508bfc010d635c6988e75362 --- /dev/null +++ b/data/part_3/1835645586.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"b8990e6edfe5b8c62c55df7430a878bc","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/08309258-8650-4dcc-b83e-8860463b8a78/retrieve","id":"-1525557862"},"keywords":["nitrogen footprint","sustainability","N-offset"],"sieverID":"cad53fd4-ec5b-410a-9208-082ea7b44272","pagecount":"11","content":"We propose a novel indicator measuring one dimension of the sustainability of an entity in modern societies: Nitrogen-neutrality. N-neutrality strives to offset Nr releases an entity exerts on the environment from the release of reactive nitrogen (Nr) to the environment by reducing it and by offsetting the Nr releases elsewhere. N-neutrality also aims to increase awareness about the consequences of unintentional releases of nitrogen to the environment. N-neutrality is composed of two quantified elements: Nr released by an entity (e.g. on the basis of the N footprint) and Nr reduction from management and offset projects (N offset). It includes management strategies to reduce nitrogen losses before they occur (e.g., through energy conservation). Each of those elements faces specific challenges with regard to data availability and conceptual development. Impacts of Nr releases to the environment are manifold, and the impact profile of one unit of Nr release depends strongly on the compound released and the local susceptibility to Nr. As such, Nneutrality is more difficult to conceptualize and calculate than C-neutrality. We developed a workable conceptual framework for N-neutrality which was adapted for the 6th International Nitrogen Conference (N2013, Kampala, November 2013). Total N footprint of the surveyed meals at N2013 was 66 kg N. A total of US$ 3050 was collected from the participants and used to offset the conference's N footprint by supporting the UN Millennium Village cluster Ruhiira in South-Western Uganda. The concept needs further development in particular to better incorporate the spatio-temporal variability of impacts and to standardize the methods to quantify the required N offset to neutralize the Nr releases impact. Criteria for compensation projects need to be sharply defined to allow the development of a market for N offset certificates.The challenges of reactive nitrogen Nitrogen (N) supply is a necessary element for crop and livestock growth, and protein intake is essential for a balanced human diet (Smil 2002, WHO 2007). Historically, strategies have been developed to guarantee N supply to crops, including rotation systems with legume crops that can fix atmospheric nitrogen, transfers of reactive N (Nr) from pastures to crops via manure, or inputs of Nr from external sources (Billen et al 2008). In particular since the invention of Haber-Bosch ammonia synthesis in the early twentieth century, mineral fertilizer was rapidly adopted and Nr supply ceased to be a limiting factor in most industrialized countries (Erisman et al 2008, Galloway et al 2013). While progress has been made in some countries to improve nitrogen use efficiency (NUE) in agriculture, unintended losses of N to the environment continue to remain a problem in many regions, and farmer adoption of known best management practices to improve NUE is incomplete due to a complex combination of socio-economic, technical, and policy factors. External costs associated with inefficient nitrogen use include impacts on ecosystem services such as the functioning of soils and biodiverse landscapes, clean air and water, and a stable climate. Relatively cheap nitrogen for farmers in developed countries translates to cheap protein sources for consumers (O'Kane 2012). However, these cheap protein sources are often in the form of livestock products, which have a lower NUE than other food products, leading to increased nitrogen losses to the environment. Currently, new N fixation for agriculture is about three (EU27, Leip et al 2011) to four (Global Carbon Project 2008, Fowler et al 2013) times the amount of N fixation through combustion sources.However, the nature of Nr in the environment makes it cascade over multiple stages of transformation and associated impacts until final denitrification to harmless atmospheric dinitrogen (N 2 ) (Galloway et al 2003). These impacts encompass acidification of soils, air pollution through particulate matter formation, pollution of drinking water, eutrophication of fresh and coastal water resources, and contribution to radiative forcing (Sutton et al 2011b, 2011c, Erisman et al 2013).Despite the abundance of reactive N produced through the Haber-Bosch process, scarcity of reactive N is still an issue in many parts of the world; this is amongst the causes of continuing prevailing food insecurity (Sanchez et al 2007, Bekunda et al 2007, Sánchez 2010, FAO WFP and IFAD 2012). The Food and Agriculture Organization of the UN, with two other international agencies, has recently launched the zero hunger challenge, which is an effort that aims to eradicate chronic hunger and malnutrition by implementing efficient but sustainable food production systems and reducing food losses and waste by 50% (www.un.org/en/zerohunger/).Many smallholder farmers-particularly in developing countries-have limited access to sufficient nitrogen supply to replenish the nutrient quality, only relying on supply from soil organic matter that continuously faces depletion (Musinguzi et al 2014). This development is parallel to increasing urbanization, which separates food production and food consumption by sometimes large distances and disrupts previously closed nutrient cycles (Ebanyat et al 2010). Another cause of the nutrient gap observed on many farms is high N losses to the environment-despite insufficient N supply-caused by increasing soil erosion losses and inefficient use of available N sources. The former is a consequence of population pressures causing high deforestation rates, leaving the soil unprotected; the latter is rooted in lack of application of integrated soil fertility management (Musinguzi et al 2013, Vanlauwe et al 2010).Measures to decouple the availability of food and energy from environmental threats linked to Nr releases (Sutton et al 2011a(Sutton et al , 2013) ) include improved full-chain nitrogen use efficiency (NUE). Potential intervention points occur at all stages of the supply chain from crop and animal production over food supply to the consumer. Also, efficiency can be improved by reducing and/or re-using biomass streams in form of manure, food wastes, and sewage. Societal consumption patterns of both energy and food play a crucial role in this portfolio (Bellarby et al 2013, Westhoek et al 2014). Suggestions focus on reduction of animal protein consumption and substitution of protein sources (Tuomisto and de Mattos 2011, Stokstad 2010, Dagevos and Voordouw 2013, Garnett 2009, Tukker et al 2011, Kastner et al 2012, International Nitrogen Initiative 2009, Vogel 2010). At the same time, tools are being developed to communicate to consumers the connection between high N use in agriculture and the consumption (or wastage) of large quantities of protein-rich products.The situation can be compared to the link between emissions of greenhouse gases and voluntary carbon (C) offsetting programmes, which serve to encourage private companies and individuals to offset the greenhouse gas emissions they cause by purchasing emission reductions achieved by climate mitigation projects elsewhere (Lovell 2010, Global Carbon Project 2008). In order to make sure that C offsetting leads to a real benefit for climate change mitigation efforts (compared to no offsetting), strict rules and standards have been developed (Global Carbon Project 2008): additionality, leakage avoidance, permanence, verification, and efficiency (see definitions here: www.globalcarbonproject.org/carbonneutral/ StringentStandards.HTM). Furthermore, and most importantly, C-neutrality requests that C offsetting can be done only after all options for avoiding emissions (i.e., abstaining from emitting activities or consumption) and reducing emissions (e.g. switching to cleaner energy sources) have been exhausted. Still, there is an ongoing debate on the ethics of carbon offsetting, claiming e.g., that it is unlikely that purchasers strictly follow this sequence (Hyams and Fawcett 2013).No comparable instruments to C-neutrality exist so far to enable individuals and other entities to compensate their unavoidable Nr releases to all compartments of the environment. However, the concept of the N footprint has recently been proposed as a communication tool (Leach et al 2012, 2013, Galloway et Here we develop the concept of N-neutrality that combines (1) the quantification of the release of Nr to the environment associated with a period of time or at a specific event on the basis of the Nr releases (i.e., here N footprint) and (2) the offset of the N footprint (i.e., N offset). We describe how Nneutrality has been adapted to a major event, the 6th International Nitrogen Conference (N2013) in Kampala, Uganda 8 .Based on the C-neutrality concept, we define N-neutrality as a two-step approach focusing on (1) the measures that avoid and/or reduce the release of Nr, before (2) purchasing N offsets that compensate the residual Nr releases (see figure 1). The goal of N-neutrality is for an entity to achieve zero net Nr release to the environment. N is particularly complex as it is both an essential input to guarantee agricultural production yet it contributes to a cascade of negative effects through avoidable (and unavoidable) losses to the environment. Different metrics can be used to quantify Nr releases to the environment, depending on the choices made with regard to flows that are considered (N flows after consumption, Nr emission from land use change, N 2 emissions from soils etc). A discussion of other metrics that could be used to quantify the Nr releases is given in the Discussion section and in the Supplementary Information, available at stacks.iop. org/ERL/9/115001/mmedia. Here, we choose to use the N footprint as defined below.The negative impact related to N in agriculture is not only linked to the wasteful use of N and associated Nr releases, but also to unsustainable land management. A compensation of Nr releases can thus encompass a reduction of N losses elsewhere, an increase of Nr sinks (e.g., through restoring water resources in riparian zones), and an increase of sustainable land management where this is not yet achieved (see box 1).We define sustainable land management for the purpose of N-neutrality accordingly with the three dimensions of (i) the ecological footprint; (ii) good agricultural and environmental conditions of the land; and (iii) satisfying human food requirements while meeting the socio-economic needs of the farmers (see box 1).Figure 1. Schematic representation of the N-neutrality concept. First, the baseline of Nr releases is calculated to determine what the Nr releases would be if no measures were taken. Second, measures to reduce Nr releases from the event 'baseline' are implemented (point 1 in the N-neutrality definition). Finally, the residual Nr releases are compensated with N offsets according to the definition of N-neutrality (point 2 in the N-neutrality definition). N-neutrality is achieved if there are no remaining net Nr releases of the event. We show the concept here for an 'event' such as the N2013 conference (achieving 41% reduction in step 1 and a calculated offset of 73% in step 2, see later sections), but it could be any entity (e.g., individual, organization, country).Box 1. Definition of N-neutrality and sustainable land management.To achieve N-neutrality, (1) first decrease the release of reactive nitrogen (Nr) into the environment by (a) reducing over-consumption of food and reducing food wastes and minimizing energy consumption, and (b) choosing sustainable sources of energy and food, (2) then, contribute to a measured compensation of the remaining Nr releases by a measured (a) reduction of Nr releases elsewhere to balance the remaining releases, (b) increased sustainability in the production of food where sustainable land management is not yet achieved.Definition of sustainable land management(3) With respect to N-neutrality, sustainable land management is a farming system which (a) minimizes the ecological footprint of the farming products (incl.the C footprint, N footprint, water-footprint), (b) keeps the farmed land in good environmental conditions, (c) satisfies human food needs and enables the farm worker(s) and their families to a decent living standard.Nr releases were quantified as the N footprint as used in the N-Calculator tool (Leach et al 2012) and the N footprint quantification for food products according to Leip et al (2014). The N footprint for food products as defined in literature (Leach et al 2012, Leip et al 2014) is an integrative indicator for the total Nr releases in the food production chain, accounting for all Nr releases on its way to final disposal and is as such an indicator for resource use (Pelletier and Leip 2014). Leach et al (2012) apply the footprint calculator model to country-wide average personal consumption patterns that include Nr activation from both food consumption and production as well was the burning of fossil fuels for the generation of energy. This covers also energy used for food production, although these Nr losses are comparatively small.For the purpose of N-neutrality, the calculation algorithm was split into 'modules' enabling flexible and transparent assessment of multiple food products sharing the same losses for a part of the overall food chain, such as beef from different production systems which are treated equally entering the processing/retail steps. Furthermore, we extend the concept of N footprint to include soil mining (see also Hutton et al this issue).The N footprint of a specific food product or food ingredient f was calculated using total N losses per unit of intake (kg N total loss (kg product) −1 ) caused in the food supply chain. For each food product, a factor was calculated to describe the Nr releases during the food supply chain (i f , see equation ( 1)). According to equation (2), total N losses for a food product are obtained by subtracting the part of the N that is consumed (intake, here N out ) from the total N inputs; this also subtracts nitrogen flows that are recycled in the food chain because they are not lost to the environment. Examples of recycled N flow include manure applied to fields for the purpose of N fertilization, crop residues incorporated or used for mulching, composted food wastes applied on field or in household gardens. Here it is not of interest if the N is used in the same or another food chain.the total N footprint (kg N loss (kg product) −1 ) of intake of food product f i f the N loss factor (kg N releases (kg N intake) −1 ) specific for the food supply chain of food product f N f int , the intake of N with food product f (kg N) N loss,f the total N losses (kg N) in the food supply chain of food product f m f the mass of food f that is eaten or otherwise used by end-consumers N f in, tot the total N input (kg N) required for the production of the food item, independent of its sources (external such as mineral fertilizers, manures, etc and internal (Continued.) sources from mineralized organic nitrogen from soils, …);the N input (kg N) from external sources, including recycled nitrogen and newly fixed nitrogen N soil * the N that is depleting in the soil (soil mining) (kg N).Note that here changes in soil nitrogen are from the perspective of N released from soil organic matter N f energy, the total Nr mobilized by use of energy in the food chain (kg N) N f out, the N output (kg N) of the food chain element for food product or ingredient f. By-products with the purpose of direct (end) consumption, such as beef from dairy cattle, are considered as well in N f out, . That implies that at this stage both milk and meat from a dairy cow have the same N loss factor i dairy cattle , following a physical allocation of losses according to recommendations (ISO 2006, see also Weiss and Leip 2012). However, in practice, beef is produced in separate production systems giving different N loss factors. For the purpose of the N print,f calculation, a process producing multiple products can be thought to be split into separate sub-processes proportionally to the total N in each product. The output of the consumption step in the food chain is also termed N int,f above. N f rec, prod the total N recycled not considering human wastes N rec f , the N that is recycled in the current or another food chain.A comprehensive explanation of the different components and variables relevant in the food supply chains is given in the supplementary Information (figure S1).Note that our approach includes the part of the N footprint related to losses of Nr caused by the food chain (food production) before consumption of the food. In accordance to Leach et al (2012) this is thereafter referred to as food production N footprint from food consumption.The N loss factor i f can be split into two terms, i.e., the losses related to the consumption of energy i f energy, , and the losses directly linked to the flow of nitrogen in the food chain The food supply chain can be split into phases, and multiple intermediate products (e.g. 'A') can be combined and further processed in (e.g. in phase 'B'). 'A simple example of such a two-step calculation combining crop and grass as feed for dairy cattle is shown in figure 2.Quantifying the N offset required to compensate the Nr releases requires both (1) the quantification of the achievable reduction of the Nr releases as well as (2) the increase in production of sustainable food (see box 1) that can be achieved with the support of a compensation project (see equation ( 3)).with i c o , and i c t , the Nr releases before (baseline at time t 0 ) and after transition (time t 1 ).Time plays an important role for compensation and the total compensation impact I c depends thus on a time discounting factor δ (equation ( 4)).,0 1 assuming that the impact level either falls back to i c,0 for all > t 1 in the case of a one-off reduction, or remains at an 'improved' level i c,1 for all ⩾ t 1 in the case the effect lasts multiple years, for example if the sustainability of a farm is improved. This constancy is assumed to hold at least for the time period with relevant discounting factor δ t .The shape of the discounting factor function as well as the measure for the compensation project impact (reduction)are not yet included in the definition of N-neutrality and need to be established on a case-by-case evaluation of the nature of the Nr releases to be compensated and the N offset project(s) selected.In case the unit of the impact reduction I c is different from the unit of the Nr releases caused (for example if sustainable land management is being targeted which is not measured in the same unit as the N footprint), the quantity of N offset units n I c needed is obtained from an equivalence factor → e c f (equation ( 5)).The N-neutrality concept has been applied to a major conference: the 6th International Nitrogen Conference (Kampala, Uganda; November 2013).The 6th international nitrogen conference (N2013)The 6th International Nitrogen Conference (N2013) was held on 18-22 November 2013 at Speke Resort and Conference Center in Kampala, Uganda under the theme 'Let us aim for Just Enough N: Perspectives on how to get there for 'too much' and 'too little' regions'. The conference's themes were linked to nitrogen management, including food security, human health, agriculture, and the water cycle (see http:// n2013.org/).The N footprint of N2013 was determined based on a survey carried out with the chefs of the kitchens in charge of catering for the conference (i.e., breakfast, morning and afternoon breaks, lunch, workshop dinner) as described in Tumwesigye et al (2014). To quantify the magnitude of Nr releases reduction achieved by the measures implemented at N2013 (reduced meat and more vegetable choices offered in the buffet), Tumwesigye et al carried out a second survey on a 'baseline' conference that took place at the same venue a few weeks prior to N2013 where footprint reduction measures were not implemented. Survey data include both food ingredients (supply, serving, left-overs) as well as the number of guests joining the meal, on the average around 140 persons over the five days the conference lasted. N loss factors were taken from a study on the N footprint in Tanzania (Hutton et al this issue). The N footprint related to energy use was not considered.Agriculture in Uganda is dominated (>70%) by farmers with small land holdings (<0.4 ha Hence, the UN Millennium Village Ruhiira was selected to be supported to compensate the N footprint of N2013 participants, giving focus to the increase of sustainable food production according to paragraph 2b of the definition of Nneutrality and the definition of sustainable land management (see box 1). The use of the 'donation' was selected according to the current need of the village cluster to work towards the Millennium Development Goals (MDG, www.un.org/ millenniumgoals/). Specifically, the support was used for a tree afforestation programme-important for reducing soil erosion and improving water storage capacity and soil fertility (Siriri et al 2012).We measure the impact as increased crop productivity, expressed in kg N ha −1 yr −1 harvest, thus → e c f is 1 kg N released per kg N of sustainable increased productivity as a consequence of implementation of the holistic UN Millennium Villages concept. The unit of the N offset n I c is measured in hectares supported. Harvests in the Ruhiira village cluster increased to 3-3.5 t ha −1 yr −1 from a baseline of 0.8 t ha −1 yr −1 (maize) or from 0.5 t ha −1 yr −1 to 2.2 t ha −1 yr −1 (beans), giving an average impact (improvement) of about 49 kg N ha −1 yr -1 . This increased productivity will not be limited to one year but continue thus we apply an (exponential) discounting function such that (arbitrarily) the weight of following years is halved every ten years (integrated multiplicator is 14.4 yr). The total compensation impact I c is thus 702 kg N ha −1 . The choice of the relatively long half-life period of ten years is justified by the multiple dimensions of capital targeted by the UN Millennium Villages project going beyond direct effects on soil fertility.According to Sanchez et al (2007) the funds required to achieve the objectives of the the UN Millennium Villages projects are $110 per inhabitant in a supported village per year, sustained over a period of 5-10 years, thus totaling $1100 per capita. On the basis of household sizes (0.13 ha per household and 5.3 capita per household, Julius Ssempiira, personal communication, November 2013) the cost per supported hectare amounts to 45 000 $US ha −1 .The total food production N footprint of the surveyed meals at N2013 was 66 kg N. This includes all surveyed meals taken in at the venue and organized by the N2013 conference. Survey data include both food ingredients (supply, serving, leftovers) as well as the number of guests joining the meal, on the average around 140 persons over the five days the conference lasted. Details on the surveys is given in Tumwesigye et al (2014). Since the breakfast was not served separately for N2013 participants but for other guests present as well, the N footprint at breakfast was adjusted proportionally. Relative to a 'baseline' conference surveyed in July 2013, the N footprint per capita for the N2013 conference was 41% smaller (see step 1 in figure 1). This reduction was attributed to general lower intake levels, and a reduction of meat served and consumed as a consequence of the N footprint reduction measures implemented and increased awareness at the N2013 conference (Tumwesigye et al 2014).Contributions to the N footprint were: dinner 35%, lunch 31%, breakfast 17% and morning and evening tea 8-9% each. Meat (beef, pork, chicken, goat and mutton, fish and seafood) and staple food (matooke, rice, sweet and Irish potatoes, cassava, maize, cereals) contributed equally to the N footprint with 37% each, followed by fruit and vegetables (17%), animal products (milk and eggs, 7%). Leguminous crops (ground nuts, beans and peas) contributed less than one percent, but 3% of fresh weight intake and 8% of protein intake. Luxury food (tea, coffee, sugar)-the one food group which consumption was significantly higher when compared to the baseline conference -contributed 2% to the N footprint of the conference. The fresh weight intake for the food categories per person and meal at N2013 and the related N footprint is given in table 1 and table 2.On the basis of a preliminary estimate of the N footprint (giving a much higher value of about 150 kg N = 705 g N cap −1 • 200 cap), a compensation fee of US$ 50 was estimated and requested from N2013 participants as voluntary maximum contribution to N-neutrality. With 160 registered participants and a resulting per capita N footprint of 0.41 kg N per registered person (which is lower than the footprint of the for the average N footprint per person present at the meals of 0.47 kg N, due to shorter attendances or 'skipped' meals), the cost per person dropped to US$ 26 per person (note that no energy-related Nr releases were included in the calculation). From the 160 registered delegates, 61 persons donated up to US$ 50, where by the donations were topped-up to US$ 50 by sponsors, giving a total of collected money of US$ 3050 (or about 73% of the total calculated required compensation fee, see step 2 in figure 1) and invested in the compensation project as described above.The choice of N offset projectsThe UN Millennium Villages project targets N as a component in a holistic concept to improve sustainable land management in a country at risk of insufficient food security and low N input availability combined with depleting soil resources. This is only one of many routes for the implementation of N offsets according to the definition of N-neutrality. For example, the 18th Nitrogen Workshop 9 selected the REFOOD project 10 for targeting at the reduction of N losses at one of its roots in affluent European societies: waste (Bellarby et al 2013, FAO 2011, Parfitt et al 2010).Other projects, specifically targeting different N forms or different compartments affected, thus atmosphere or hydrosphere, might be selected for compensation of other events. The effect of Nr released to the environment is variable in space and time and such aspects could potentially be included in both the quantification of Nr releases and the selection of a compensation project.Stringent rules and standards have been developed for carbon offsetting projects (Global Carbon Project 2008) to ensure that the offset results in a real change for the environment. The criteria for allowable offsets are additionality, leakage avoidance, permanence, verification, and efficiency. All of these standards with the exception of 'permanence' (where carbon sequestration in soils or forest biomass is reversible) are relevant also for N offsetting. Additionality, which means that the offset needs to be in addition to what would have happened otherwise, is difficult with regard to the small scale of N offsetting donations which requires that existing projects are selected; however the donation such as the one presented here to the UN Millennium Villages Project will most likely help to reach their target earlier or can go further which would be a real 'extra' offset. A baseline assessment, however, is not possible. Verification and efficiency will be ensured by reports on the progress of the use of the donations, as accorded with the Ruhiira Millennium Village. As the projects do not target any decrease in production, any leakage effect can be excluded.N2013 chose not to consider energy-related Nr releases. Because N2013 was an international conference, it is expected that emissions from traveling to the venue were significant. Incorporating the energy related emissions is important for combining the concepts of C-and N-neutrality.Both carbon and nitrogen are in principle essential elements for overall sustainability. For N2013 the reasons for excluding energy were twofold-first, the N-neutrality concept was being newly developed which made it difficult to monitor energy use and measure GHG emissions; second, the estimate of the offsetprice per person was high at US$ 50 and already stretched the possibility of participants contributing to N-neutrality. Adding to that cost other offsetting needs for energy would rather have resulted in lower voluntary contributions. Indeed, in a survey made at N2013 evaluating the N-neutrality concept and its implementation, 50% of those who gave a reason why they did not contribute mentioned the price. Nevertheless, the survey also revealed that not including energy emissions was seen as problematic by some participants. However, the investment of the donation for tree planting-even though not chosen for this purpose-will still contribute to some carbon sequestration.In contrast to the carbon footprint and offset for GHG emissions, the use of N is not an unwanted side effect of food production but is intended and required to feeding a growing global population (Erisman et al 2008). Food is an essential human need (FAO WFP and IFAD 2012), and a differentiated assessment on the basis of regional critical limits might lead to somewhat higher 'emission allowances' as compared to the planetary boundary of 35 Tg N fixed annually proposed by Rockström et al (2009) (De Vries et al 2013). However, if the aim is the reduction of the wasteful use of N, the introduction of a reference situation in the concept of N-neutrality would add complexity without substantial improvements. This is similar to biogeochemical emissions of GHGs, contributing to C footprints, which are not completely avoidable yet can be controlled. The situation might have to be re-assessed, however, if a functioning N offset market is to be established.We used the N footprint to quantify Nr releases related to the food chain of a product. However other metrics are possible. For example, such other choices could consider the N flows after consumption, indirect emissions from land use changes, or energy input. The choice depends both on practical considerations and on the objective, mainly if increased resource use efficiency is targeted (in this case N 2 emission are to be counted as wasteful losses and as such need to be included in the Nr releases quantification) or if a reduction of adverse effects linked Nr emissions is targeted (in this case N 2 emissions should not be considered). Furthermore, choices on including post-consumption stages (which might not be under control of individuals) or possible (indirect) land use change emissions are to be made. A discussion on possible metrics to quantify the Nr releases is given in the supplementary information.The N-neutrality concept can be applied to a major scientific conference to raise awareness, reduce the conference's N footprint, and demonstrate that real compensation of Nr releases is possible. Multi-faceted solutions are feasible, and the choice of the compensation program needs to match the socio-environmental settings of the entity that caused the Nr releases. Scientific progress on the standardization of the methods for the quantification of Nr releases and N offset needs to continue. The high spatio-temporal variability of both factors and the particularity of N as a cascading environmental pollutant must be considered. The ideal situation to test this concept is at future conferences or other events. To advance the implementation of such measures, further education is needed to change behaviors. A longer-term goal might be the creation of an N offsets market in parallel or even in combination with the existing C offsets markets.","tokenCount":"5120"} \ No newline at end of file diff --git a/data/part_3/1839206685.json b/data/part_3/1839206685.json new file mode 100644 index 0000000000000000000000000000000000000000..838506fbe1f860ba009f2bb1485887cef453d9e2 --- /dev/null +++ b/data/part_3/1839206685.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"9985069c6a8d04f8f33499c2fd994347","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/15e6e8b2-33d0-43c1-8bd1-105f40f5b9f8/retrieve","id":"-1877074055"},"keywords":[],"sieverID":"797acf84-6e47-46bc-831f-e7717a21e584","pagecount":"60","content":"Soybean has great potential as a major source of protein for future generations Le soja présente un potentiel énorme en tant que source de protéines pour les générations futures.* Left during 2000. ** Ex-officio.IITA aims to enhance the food security, income, and well-being of resource-poor people primarily in the humid and subhumid zones of sub-Saharan Africa by conducting research and related activities to increase agricultural production, improve food systems, and sustainably manage natural resources, in partnership with national and international stakeholders.LIITA aspire à augmenter la sécurité alimentaire, les revenus et le bien-être des populations pauvres, principalement dans les zones humides et subhumides dAfrique subsaharienne grâce à la recherche et activités connexes en vue daccroître la production agricole, daméliorer les systèmes de production alimentaire et de gérer de manière durable les ressources naturelles, en collaboration avec les parties prenantes au niveau national et international.From the Director General ne event overshadowed all else at IITA in 2000. On Sunday 30 January we lost three scientists in an air crash at Abidjan. Dirk Vuylsteke, Paul Speijer, and John Hartman were traveling from our Eastern and Southern Africa Regional Center (ESARC) in Uganda to IITAs Ibadan headquarters when the fatal crash occurred. It was a terrible loss to their families and the institute, and it took us considerable time to find our normal rhythm again. To maintain the activities at ESARC we received strong support from many people, and we are very grateful to all of them. We will make sure that the research undertaken by our colleagues will lead to the goals so strongly pursued by all three, creating better living conditions for African farmers.IITA conducts its research in a decentralized manner, and currently more than 50% of the scientists are located outside our main campus in Ibadan, Nigeria. As a tribute to our late colleagues I would like to focus my remarks this year on activities undertaken outside Ibadan. From the Director General are caused by cassava mosaic, most probably the same strain that causes so much havoc in the Great Lakes Region. Plans are under preparation to help the country address the situation through a joint effort of various organizations.IITAs Humid Forest Ecoregional Center near Yaoundé in Cameroon is becoming a strong platform for ecoregional research in the humid forest zone.The center is located in the humid forest benchmark area established under During the year we completed a working draft of our strategic plan for the period 20012010. The research agenda is built upon the strategic plans and priorities developed by the subregional organizations and will be driven to a significant extent by the agricultural development needs of the major agroecological zones in which IITA is working. Through the establishment of agroecological zone teams in partnership with relevant stakeholders, sustainable agricultural production systems will be actively extended. As a direct route to reducing poverty, there will be increased emphasis on commercialization of agricultural production, supported by market-oriented research.IITA can undertake all these activities, as well as those at its headquarters, because of the continued support of our donors. I would like to thank them most sincerely for the confidence they place in the institute. Planning agricultural research, in particular where there is such a wide range of activities and commitments, requires special care in a situation of funding unpredictability. A major concern is that ongoing activities that have to be stopped because of shortage of resources cannot readily be picked up again should funds subsequently become available. Thus, in some cases, we have to decide to make funds available to cover bridging periods while waiting for approval of follow-up proposals. We consider that the importance of the research justifies this approach, notwithstanding the risk it entails. For 2000 we decided to maintain the full research program in the expectation that income would be higher than originally committed. Fortunately our hopes were realized towards the end of the year when additional funding came from two donors, one from the North and one from the South.The future is far from secure. For 2001 some important reductions in expenditure have had to be planned in order not to expose the institute to risks that might seriously affect its longer term financial position. I would like to appeal to our donors to continue their support for our work, which only becomes more important as the challenges to African agriculture increase.Cassava grows well in marginal areas where other crops are unable to grow Le manioc pousse très bien dans des zones marginales où dautres cultures échouent. Les activités de lIITA sont structurées en 14 projets de recherche pluridisciplinaire.Certains projets mettent laccent sur les systèmes de production de cultures spécifiques ou de combinaisons de cultures, dautres ont une orientation thématique et peuvent concerner plusieurs cultures. La plupart de ces projets couvrent les zones agroécologiques ciblées dans le cadre des activités de lIITA. LIITA sert également dinstitut hôte du Programme de lutte intégrée à léchelle du système et du Programme écorégional pour les tropiques humides et subhumides dAfrique subsaharienne.Cette section présente les points saillants de chaque projet en 2000. Ces résumés ne constituent pas un rapport exhaustif des activités qui ont démarré ou qui sont arrivées à terme au cours de lannée, ils mettent plutôt en exergue quelques résultats scientifiques-clés et sont censés fournir aux lecteurs un aperçu de lampleur des thèmes de recherche et des problèmes faisant lobjet dune investigation par les chercheurs de lIITA.IITAs work is structured as 14 multidisciplinary research projects. Some projects focus on production systems for specific crops or crop combinations; others are thematically oriented and can involve many crops. Most of the projects cut across the agroecological zones for which IITAs work is targeted. IITA also serves as the convening institute for the Systemwide Program for Integrated Pest Management and for the Ecoregional Program for the Humid and Subhumid Tropics of sub-Saharan Africa.This section presents the highlights of each project for 2000. These summaries are not a complete account of the work begun or completed during the year; rather, they describe some key scientific results and are intended to give the reader an insight into the breadth of the research themes and problems being investigated by IITA scientists.Cowpea is a good source of protein, and also provides fodder for livestock Le niébé est une bonne source de protéines et fournit également du fourrage.Ten accessions of Dioscorea alata, one accession each of D. batatas and D. purpurea from Taiwan, and 38 accessions of D. alata from South East Asia were added to IITAs yam germplasm collection.The feasibility of the 2n gamete breeding approach to produce triploid plantain and banana hybrids from diploid % diploid crosses was confirmed with the selection of hybrid 25287 (14.0 kg) derived from selfing TMP2x 1448-1(3.6 kg).Somaclonal variation in micro-propagated triploid Musa landraces was ascribed to preexisting genetic differences among tissues (chimerism) rather than de novo mutations induced by meristem culture.Amplified fragment length polymorphism (AFLP) analysis of Musa acuminata accessions showed 3 major clusters representing 3 major subspecies in the M. acuminata complex: the Malaccensis group (Madang, Mal. Holotype, Zebrina, and Pisang lilin); the Microcarpa group (Truncata, Selangor, sf247, Tjaulagada, and Borneo); and the Calcutta 4 group (Calcutta 4 and Long Tavoy). Other subspecies listed by other workers may have resulted from natural hybridization between members of the 3 basic subspecies. Selangor, previously classified as a Malaccensis, clustered with the subspecies microcarpa (Borneo). Zebria and Truncata accessions clustered with the subspecies malaccensis and microcarpa, respectively. Two genetic forms were identified among the M. balbisiana (BB) accessions: the Singapuri form and the 1-63 form.Six pubescent Vigna rhomboidea accessions and 3 nonpubescent cultivated cowpea lines were crossed in a partial diallel mating design to determine the inheritance of pubescence. Results of diallel analysis showed that an additive gene effect was more important than a dominance effect in the inheritance of pod pubescence. Generation mean analysis supported the preponderance of an additive gene effect but also indicated that dominance and epistatic gene interactions made significant contributions.Genetic inheritance of resistance to cowpea mottle virus disease in Vigna vexillata was elucidated.A course on biodiversity, biotechnology, and law for scientists, lawyers, and policymakers from sub-Saharan African was conducted.Dix obtentions de Dioscorea alata, une de D. batatas et de D. purpurea en provenance de Taiwan ainsi que 38 obtentions de D. alata en provenance de lAsie du sud-est ont été ajoutées à la collection de matériel génétique de lIITA.La possibilité dutiliser lapproche de sélection par gamète 2n pour produire des plantains triploïdes et des bananes hybrides à partir des croisements diploïde % diploïde, a été confirmée avec la sélection de lhybride 25287 (14,0 kg) obtenu par autofécondation de TMP2x 1448-1 (3,6 kg).La variation somaclonale chez des cultivars locaux triploïdes de Musa obtenus par micropropagation, a été attribuée aux différences génétiques préalables au niveau des tissus (chimères) plutôt quaux mutations novo induites par culture de méristèmes.Lanalyse AFLP dobtentions de Musa acuminata a identifié trois regroupements majeurs représentant trois sous-espèces majeures dans le complexe M. Six obtentions de Vigna rhomboidea pubescentes et 3 lignées de niébé cultivé non pubescent ont été croisées selon un dispositif de reproduction en diallèle partielle afin deImproving plantain-and banana-based systems déterminer lhéritabilité de la pubescence. Les résultats de lanalyse en diallèle ont indiqué que leffet du gène additif était plus important que leffet de dominance dans la transmission de la pubescence de la gousse. Lanalyse de la moyenne de génération a confirmé la prépondérance de leffet du gène additif, mais a également indiqué que la dominance et les interactions des gènes épistatiques ont apporté des contributions significatives.Lhéritabilité génétique de la maladie de la marbrure du niébé chez Vigna vexillata a été élucidée.Au cours de lannée, un stage de formation sur la biodiversité, la biotechnologie et la juridiction a été organisé à lintention des chercheurs, des juristes et des décideurs en Afrique subsaharienne.The virus causing banana die-back was detected with primers designed against nepoviruses using RT-PCR, and its field spread as well as that of banana streak virus (BSV), genus Badnavirus, was confirmed using monoclonal antibodies. Cucumber mosaic virus (CMV), genus Cucumovirus (subgroups A and B) and associated symptoms in hybrids and landraces and several weed hosts are more prevalent than previously recorded and may account for some of the BSV-like symptoms.Unidentified hymenopteran egg parasitoids and dipteran larval parasitoids of banana weevil were detected in Sumatra (Indonesia), the area of origin of the pest, opening prospects for classical biological control.An improved procedure to observe meiotic chromosomes was developed and random amplified polymorphic DNA (RAPD) fragments specific for the A and B genomes were cloned and sequenced to make more specific primers. An AFLP fragment associated with fruit parthenocarpy was identified by bulk segregant analysis of a diploid population.Breeding triploid plantain from diploid parents through unilateral sexual polyploidization (2n gamete) was achieved, and resistance to Radopholus similis was identified in 12 diploid hybrids that had been selected for resistance to black Sigatoka and good plant and bunch characteristics. A BSVtolerant secondary triploid plantain hybrid (TM3x 26636-2) with high yield, excellent fruit characteristics, and resistance to black Sigatoka was derived from a BSV-susceptible primary tetraploid hybrid.An efficient genotype-independent in vitro regeneration protocol from apical shoot meristems was developed and standardized; transient expression of GUS (uidA) gene was achieved by Agrobacterium-mediated transformation.Eight scientists in Cameroon were trained on virus diagnostics, two scientists in Rwanda on nematode identification, and one technician from Benin on cultivar evaluation. A workshop was organized to set up a strategy for delivery of improved hybrids to farmers in Nigeria. Adoption of technologies to reverse the decline in banana plantations was achieved through farmer participatory evaluation of soil fertility conservation techniques and weevil control through residue management. Huit chercheurs ont bénéficié dune formation sur les diagnostics des virus au Cameroun, au Rwanda deux chercheurs ont reçu une formation en identification des nématodes et un technicien du Bénin une formation en évaluation des cultivars. Un atelier a été organisé en vue de mettre en place une stratégie de distribution dhybrides améliorés aux agriculteurs du Nigéria. Ladoption des technologies susceptibles de renverser la tendance au déclin des plantations de banane a pu être réalisée grâce à lévaluation participative des techniques de conservation de la fertilité du sol et de lutte contre les charançons à travers la gestion des résidus.Over 500 new cowpea breeding lines were developed and tested at selected locations and promising lines were selected. Of these, IT97K-499-39, IT97K-608-14, IT97K-366-1, IT97K-560-1, IT97K-568-18, IT97K-568-19, IT97K-556-4, IT98K-277-1, IT98K-423-13, and IT98K-131-1 were outstanding. Major differences were observed between varieties for grain and fodder yields under poor fertility.IITA/ILRI/ICRISAT/Kano Agricultural Development Project participatory trials revealed 100300% gross economic superiority of the improved 2 rows cereal : 4 rows cowpea strip cropping system compared to the 1 row : 1 row traditional intercropping system. This was found ideal for croplivestock integration, and feeding of residues from the improved system resulted in higher weight gain in sheep.Farmers showed great appreciation for improved cowpea variety IT93KZ-4-5-6-1-6 for its resistance to Striga in Abomey plateau of southern Benin where the local varieties are highly susceptible.Healthy banana Bananes saines.Major differences were observed among cowpea varieties for protein content, cooking time, and seed hardness.A total of 139 sets of cowpea international trials and 225 sets of special nurseries were sent to international collaborators.Extra-early maize varieties 97TZEE-Y2Cc1 and 97TZEE-Y STR and earlymaturing soybean varieties TGX1871-12E and TGX1830-20E were found most promising for the dry savannas.Farmer-to-farmer diffusion of improved cowpea seed became extremely popular. From just a few farmers in 1997, over 10 000 farmers adopted new cowpea varieties in 2000 in Kano State.Economic analysis revealed that cultivation of improved cowpea varieties with two sprays of insecticide results in a gain of 11 naira for each naira invested.Eight national agricultural research system (NARS) scientists are conducting PhD thesis research under this project. A workshop on drought tolerance screening was organized, and the World Cowpea Research Conference III was held in September; many NARS scientists participated.Plus de 500 nouvelles lignées de sélection de niébé ont été mises au point et testées dans des sites choisis et les lignées prometteuses ont été sélectionnées. Parmi ces lignées, IT97K-499-39, IT97K-608-14, IT97K-366-1, IT97K-560-1, IT97K-568-18, IT97K-568-19, IT97K-556-4, IT98K-277-1, IT98K-423-13 et IT98K-131-1 étaient les plus performantes. Des différences majeures ont été observées entre les variétés, en ce qui concerne les rendements en grains et en fanes en condition de pauvreté des sols.Les essais participatifs IITA/ILRI/ICRISAT/ADP-Kano ont révélé une supériorité économique brute de 100 à 300% du système amélioré de cultures avec 2 rangs de céréales : 4 bandes de niébé, comparées au système dun rang : 1 rang en condition dassociation culturale traditionnelle. Ce système sest avéré idéal pour lintégration agriculture/élevage et lutilisation des résidus des systèmes améliorés comme aliment de bétail a entraîné un gain supérieur en poids chez les moutons.Les agriculteurs ont beaucoup apprécié la variété améliorée de niébé, IT93KZ-4-5-6-1-6 pour sa résistance au Striga dans le plateau dAbomey dans le sud du Bénin où les variétés locales étaient très sensibles.Des différences majeures ont été observées chez les variétés de niébé, en ce qui concerne leur teneur en protéines, le temps de cuisson et la dureté des grains.Au total, 139 lots dessais internationaux sur le niébé et 225 lots de pépinières spéciales ont été envoyés aux collaborateurs internationaux.Les variétés de maïs extra-précoce, 97TZEE-Y2C1 et 97TZEE-YSTR ainsi que les variétés de soja extra-précoce, TGX1871-12E et TGX1830-20E se sont révélées les plus prometteuses dans la savane aride.La diffusion de niébé amélioré, dagriculteurs à agriculteurs est devenue extrêmement populaire. A partir de seulement quelques agriculteurs en 1997, plus de 10.000 agriculteurs ont adopté les nouvelles variétés en 2000, dans lÉtat de Kano.Lanalyse économique a révélé que la culture des variétés améliorées de niébé avec deux pulvérisations dinsecticide a entraîné un gain de 11 naira pour chaque naira investi.Huit chercheurs des Systèmes nationaux de recherche agricole (SNRA) ont mené des recherches en vue dun doctorat de troisième cycle, au titre de ce projet. Un atelier sur le criblage de la tolérance à la sécheresse a été organisé et la troisième conférence mondiale sur le niébé sest tenue au cours de lannée, avec une large participation des chercheurs des SNRA.Luxuriant cowpea Niébé luxuriant.Project 4An experiment was conducted over 2 years (19992000) to compare the performance of 29 maize hybrids and 30 improved open-pollinated varieties with local farmers varieties under controlled drought stress and sufficient moisture supply. As a group, hybrids and improved open-pollinated varieties out-yielded the local varieties by 71% in the nonstress environment and by 56% in the drought stress environment. The increase in yield was accompanied by an increase in the number of ears per plant, shortening of anthesis to silking interval, and a delay in leaf senescence.Some maize varieties were compared at 0, 30, and 90 kg N/ha at 2 sites in the Guinea savanna in Nigeria. The latest cycle of selection from the low Ntolerant pool (C3) produced consistently higher yields than a widely grown open-pollinated variety, TZB-SR, at all levels of nutrient supply. This variety also yielded as high as an N-efficient commercial hybrid, Oba Super II, at all N levels and had good agronomic features.A study was conducted to quantify the effect of phosphorus fertilizer and a soybean variety that stimulates the germination of Striga hermonthica on the emergence of this parasitic plant in subsequent maize crop in 3 farmers fields. The results showed that this soybean cultivar reduced Striga parasitism on a succeeding maize crop and its effect on emergence of the parasitic plant increased with P application to the preceding soybean crop.A study was conducted to estimate the contribution of early-season cowpea to a late-season early-maturing maize in a double cropping system. Maize grain yield from a plot preceded by early-season cowpea was higher than the maize grain yield from a plot that received 30 kg N/ha. Thus, planting cowpea in the early season with adequate P supply appears to supply a small amount of N for the succeeding cereal crop in a double cropping system. In trials involving early-, medium-, and late-maturing soybean varieties, the relationship between stover and grain yields was positive and significant in each maturity group (early: r = 0.79; medium: r = 0.85; late: r = 0.78). It is thus possible to combine high stover and grain yields in early-, medium-, and latematuring soybean genotypes. To improve the capacity and efficiency of NARS scientists to generate and transfer appropriate technologies in West and Central Africa, an impact assessment workshop, an advanced statistical computing course, and a monitoring tour to Nigeria and Cameroon were organized in 2000. In addition consultation visits were made to Ghana, Togo, Benin, and Chad by the WECAMAN Coordinator and selected Steering Committee members. To strengthen the capacity of NARS scientists to generate and transfer appropriate technologies to farmers, a total of $197 300 was allocated to the collaborative research projects in member countries through the African Maize Stress and USAID projects. Through the funds, stress tolerance screening sites in Senegal, Burkina Faso, Nigeria, Ghana, Cameroon, and Benin have been improved and made operational. Also, quantities of seed of early and extra-early varieties were produced in member countries through the community seed production scheme.Priority setting village meeting Réunion villageoise de définition de priorités.Une expérience a été menée pendant 2 ans (19992000) afin de comparer la performance de 29 variétés de maïs hybride et de 30 variétés améliorées à pollinisation libre avec les variétés locales des agriculteurs, en condition de stress de sécheresse contrôlé et dhumidité suffisante. En tant que groupe, les hybrides et les variétés à pollinisation libre ont eu des rendements supérieurs de 71% à ceux des variétés locales dans un environnement sans stress et en condition de stress de sécheresse les rendements ont été supérieurs de 56%. Cette augmentation de rendement a été accompagnée dun accroissement du nombre dépis par plante, dun raccourcissement de lintervalle entre lanthèse et lépiaison et dun retardement de la sénescence des feuilles. Certaines variétés de maïs ont été comparées, suite à lapport de 0, 30, et 90 kg N/ha dans 2 sites dans la savane guinéenne du Nigéria. Le dernier cycle de sélection au niveau dun pool tolérant à la faiblesse de N (C3) a présenté, de manière constante, des rendements plus élevés que ceux dune variété à pollinisation libre largement cultivée, TZB-SR, à tous les taux dapport en éléments nutritifs. Cette variété a également eu des rendements aussi élevés que ceux dun hybride commercial doté dune efficacité dutilisation de N, Oba Super II, à tous les taux dapport en N et elle a présenté de bonnes caractéristiques agronomiques. Une étude a été menée en vue de quantifier leffet des engrais phosphorés et dune variété de soja qui stimule la germination de Striga hermonthica sur lémergence de ce phanérogame parasite chez le maïs subséquent, dans trois champs paysans. Les résultats ont indiqué que ce cultivar de soja a permis de réduire le parasitisme du Striga sur le maïs subséquent et que son effet sur lémergence du phanérogame a pu être augmenté suite à lapplication de P sur le soja précédent. Une étude a été réalisée afin destimer la contribution du niébé de début de campagne à la performance dune variété de maïs précoce plantée en fin de campagne dans un système de culture double. Le rendement en grains de maïs dune parcelle précédemment plantée de niébé de début de campagne a été supérieur à celui du maïs planté sur une parcelle qui a reçu 30 kg N/ha. Aussi, le semis du niébé en début de campagne accompagné dun apport adéquat en P semble fournir une petite quantité de N pour les céréales subséquentes dans un système de culture double. Dans des essais portant sur des variétés précoces, intermédiaires et tardives, les relations entre les rendements en grains et en fanes ont été positives et significatives dans chaque groupe de maturité (précoce, r = 0,79; intermédiaire, r = 0,85; tardive, r = 0,78). Par conséquent, il savère possible de combiner des rendements élevés en grains et en fanes chez les génotypes de soja précoces, intermédiaires et tardifs. Afin daméliorer la capacité et lefficacité des chercheurs des SNRA en matière de génération et de transfert de technologies en Afrique occidentale et centrale, un atelier sur létude de limpact, un stage de formation sur les calculs statistiques avancés et une mission de suivi ont été organisés au Nigéria et au Cameroun, en 2000. Par ailleurs, des visites de consultation ont été effectuées, par le Coordonnateur et des membres du Comité directeur du WECAMAN, au Ghana, au Togo et au Tchad. Afin de renforcer la capacité des chercheurs des SNRA à générer et à transférer les technologies appropriées auprès des agriculteurs, 197 300$ ont été alloués aux projets de recherche associative dans les pays membres, à travers les Projets Stress africains du maïs et de lUSAID. Grâce à ces fonds, les sites de criblage de la tolérance aux stress ont pu être améliorés et opérationnels dans les pays suivants : Sénégal, Burkina Faso, Nigéria, Ghana, Cameroun et Bénin. Des quantités de semences de maïs précoce et extra-précoce ont également été produites dans les pays membres dans le cadre des activités de production semencière au niveau communautaire.A stakeholder analysis in Benin Republic showed that only experienced male yam growers are involved in the domestication of wild yams. The main reason for domestication is to select more productive varieties and to rejuvenate the pool of genetic material. The principal criterion for the selection of wild yams for domestication is the similarity of their leaves to those of cultivated varieties (58% of respondents).Dioscorea mottle virus from D. alata was fully characterized and confirmed to be a member of the genus Comovirus using serological, biological, and molecular techniques; the two strains of the virus (causing mottling, mild chlorosis, and necrosis) can be detected using IITAs monoclonal antibodies.It was demonstrated that D. alata plants that flower behave as quantitative short-day plants and that duration from the end of dormancy to flowering can be predicted.Short-day treatment applied at the early stage of plant growth promoted rapid enlargement of tubers in D. rotundata, D. alata, and D. cayenensis. Differential responses of species and varieties were observed, suggesting the potential of the treatment in distinguishing between early-and late-maturing varieties.About 60% success was achieved in the grafting of vines from different yam varieties using the approach method. This sets the stage for further studies on yam flowering.One RAPD marker linked to a locus with a major effect on resistance to yam mosaic virus genus Potyvirus in D. rotundata was identified.Three varieties of D. cayenensis were certified for export following meristem culture and virus indexing. Over 19 000 minitubers of D. rotundata, out of 21 000 produced from virus-tested tissue culture plantlets, were delivered to NARS partners.The techniques for production of dry yam chips and the preparation of dishes based on yam flour were introduced from western Nigeria and Benin Republic to Burkina Faso, north Cameroon, and Côte dIvoire in order to add value to yams in urban markets.Un analyse portant sur les parties prenantes en République du Bénin a indiqué que seuls les producteurs (hommes) expérimentés sont impliqués dans la domestication des ignames sauvages. La raison essentielle de la domestication est de sélectionner des variétés plus productives et de renouveler le pool de matériel génétique. Le principal critère de sélection des ignames sauvages en vue de leur domestication est la similarité de leurs feuilles avec celles des variétés cultivées (58% des répondants).Le virus de la marbrure de Dioscorea provenant de D. alata a été entièrement caractérisé et confirmé comme membre du genre Comovirus, en utilisant les techniques sérologiques, biologiques et moléculaires; les deux souches du virus (causant une marmorisation, une chlorose moyenne, et une nécrose) peuvent être détectées en utilisant les anticorps monoclonaux de lIITA.Il a été démontré que les pieds de D. alata qui fleurissent, se comportent comme des plantes dotées dune photopériodicité quantitative courte et que la durée de la période entre la fin de la dormance et la floraison peut être prévue.Le traitement «photopériodicité courte» appliqué au début de la croissance de la plante a contribué à un élargissement rapide des tubercules de D. rotundata, D. alata, et de D. cayenensis. Des différences de réponses ont été notées au niveau des espèces et des variétés, ce qui semble suggérer un potentiel de traitement en tenant compte de la différence entre les variétés précoces et les variétés tardives.La greffe de tiges de différentes variétés dignames a réussi à environ 60% en utilisant la méthode de greffe «approche». Ces résultats posent les jalons dun approfondissement des études sur la floraison de ligname.Un marqueur RAPD lié à un locus doté dun effet majeur sur la résistance au virus de la mosaïque de ligname, genre Potyvirus chez D. rotundata, a été identifié.Trois variétés de D. cayenensis ont été certifiées en vue de leur exportation suite à uneYam graft Greffe digname.Yam chips Cossettes digname. culture de méristèmes et à lindexage des virus. Plus de 19 000 minitubercules de D. rotundata, sur 21 000 produits à partir de plantules testées contre les virus, ont été distribués aux collaborateurs au niveau des SNRA.Les techniques de production de cossettes séchées digname et de préparation de plats à base de farine digname ont été introduites de louest du Nigéria et de la République du Bénin au Burkina Faso, au nord du Cameroun et en Côte dIvoire en vue de valoriser les ignames dans les marchés urbains.Thirty selected genotypes of cassava for various agroecologies with multiple resistance to cassava mosaic disease (CMD), bacterial blight, anthracnose, and green mite as well as acceptable agronomic and end-user characteristics were pathogen-tested and certified for distribution.More than 20 000 cassava in vitro plantlets were produced for distribution, ministake production, and use as stock cultures. The plantlets were distributed to NARS collaborators in 5 countries and to the International Center for Tropical Agriculture (CIAT) in Colombia, and more than 1000 certified ministakes were delivered to Sierra Leone. In addition, 219 733 seeds of 1120 families were distributed to national programs in 6 countries. IITA received 2923 seeds constituting 61 families from Mozambique.IITAs Eastern and Southern Africa Regional Center (ESARC) continues to identify clones with high dry matter (> 40%) and low cyanogenic potential at its major regional evaluation sites of the midaltitude agroecology. At Mtwapa, Kenya (lowland ecology), 2401 clones with multiple resistance to the major diseases and pests and good quality characteristics were selected for further evaluation.The Government of Uganda officially released 3 additional CMD-resistant varieties of IITA origin. NASE 12, a selection under high CMD and the Ugandan variant of CMD (UgV) infection pressure at midaltitudes, has consistently shown no symptoms of the diseases indicating near immunity, and it has excellent cooking quality, low cyanogenic potential, and good agronomic characteristics as well as multiple pest resistance.In collaboration with the Institute of Plant Sciences (ETH), Switzerland, cyclic somatic embryogenesis, organogenesis, and plant regeneration were achieved in more than 10 selected African cassava genotypes. The regenerated plantlets have been established in the field with survival ranging from 60% to 100%, and no abnormalities were observed in these plants. Transformation studies are under way.Collaborative work with CIAT has shown that a dominant gene controlling a new source of resistance to CMD is flanked by the SSR and an RFLP marker, rGY11 and rSSRY28, at 9 and 8 cM, on linkage group R of the male-derived molecular genetic map of cassava.A pilot cassava processing plant was set up in western Kenya.A website (www.cgiar.org/foodnet) was established for the food network of East Africa (Foodnet), and was used as a template for 14 regional network websites.A total of 123 technicians, extension workers, and researchers attended training workshops on cassava processing, CMD monitoring, rapid multiplication, proposal writing, and other subjects.Foodnet website home page Page daccueil du site Foodnet.Trente génotypes supplémentaires de manioc adaptés à diverses agroécologies et dotés dune résistance multiple à la mosaïque (CMD), à la brûlure bactérienne, à lanthracnose et à lacarien vert ainsi que des caractéristiques agronomiques acceptables par les utilisateurs finaux, ont été testés pour les pathogènes et certifiés en vue de leur distribution.Plus de 20 000 vitroplants de manioc ont été produits en vue de leur distribution, de la production de miniboutures et en tant que cultures mères. Le gouvernement de lOuganda a officiellement distribué trois variétés supplémentaires, résistantes à la mosaïque et en provenance de lIITA. NASE 12, une sélection en condition dinfestation élevée de CMD et de pression dinfection de la variante ougandaise de CMD (UgV) dans les écologies daltitude moyenne a, de manière constante, présenté une absence du symptôme de la maladie, ce qui correspond à une quasi immunité ; par ailleurs, cette variété est dotée dune excellente qualité à la cuisson, dun faible potentiel cyanogène, de bonnes caractéristiques agronomiques en plus dune résistance multiple aux ravageurs.En collaboration avec lInstitut des sciences végétales (ETH) en Suisse, des activités dembryogenèse somatique cyclique, dorganogenèse, et de régénération des plantes ont été réalisées sur plus de 10 génotypes de manioc dAfrique. Les plantules régénérées ont été implantées au champ avec un taux de survie de 60 à 100% et aucune anomalie na été observée sur ces plants. Des études de transformation sont en voie de réalisation.Des recherches menées en collaboration avec le CIAT ont montré quun gène dominant qui contrôle une nouvelle source de résistance à la mosaïque (CMD) est adjacent aux SSR et à un marqueur RFLP, rGY11 et rSSRY28, à 9 et 8cM, sur le groupe de liaison R de la carte génétique moléculaire du manioc obtenue à partir dun mâle.Une unité pilote de transformation du manioc a été installée dans louest du Kenya.Un site Internet (www.cgiar.org/foodnet) a été mis en place pour le Réseau alimentaire pour lAfrique orientale (Foodnet) et servira de modèle pour 14 sites de réseaux régionaux.Au total, 123 techniciens, vulgarisateurs et chercheurs ont participé aux stages de formation sur la transformation du manioc, le suivi de la mosaïque, la multiplication rapide, la rédaction des propositions de projet et dautres sujets.The first field applications of Metarhizium for termite control produced significant population reduction.Commercial production of Green Muscle ® , a microbial control agent for grasshopper and locusts developed by the collaborative LUBILOSA project, began in South Africa.Lux Development, a major donor of the Niger Plant Protection Agency, purchased a large volume of Green Muscle ® for the first commercial application in Africa.A press release on LUBILOSA was launched during International Centers Week in Washington creating a large amount of international publicity.Elevated levels of fungal infection among populations of accidentally introduced cassava green mite have been measured in two experimental release sites of exotic isolates of the pathogenic fungus Neozygites floridana in the Republic of Benin.The importance of IITAs insect collection was reflected by an increasing number of working visits by both regional and internationally recognized taxonomists.Thorough faunistic surveys conducted in Ghana, Togo, Benin, Nigeria, and Cameroon resulted in an increase of the reference collection by 20 000 new specimens.WAFRINET, the West African loop of the global taxonomic network BioNET INTERNATIONAL, was established to support biodiversity conservation and agricultural development programs.In Niger and Mali, seminars were carried out to train and inform plant protection agents, NGO members, and distributors in the use of Green Muscle ® . NARS scientists were trained in insect taxonomy and biocontrol survey techniques.Les premières applications de Metarhizium pour lutter contre les termites ont entraîné une réduction significative de la population de ce ravageur.La production commerciale de Green Muscle ® , un agent de lutte microbienne contre les criquets et les sauteriaux mis au point dans le cadre du Projet associatif LUBILOSA, a démarré en Afrique du Sud. «Lux Development», principal bailleur de fonds de lAgence de protection des végétaux du Niger, a acheté une grande quantité de Green Muscle ® , en vue dune première application commerciale en Afrique.Un communiqué de presse sur LUBILOSA a été livré au cours de la Semaine des centres internationaux, organisée à Washington par la Banque mondiale, ce qui fut loccasion de faire une grande publicité sur le projet au niveau international.Des niveaux élevés dinfection cryptogamique au sein des populations dacariens verts du manioc accidentellement introduits ont été mesurés dans deux sites expérimentaux de lâcher disolats exotiques du champignon pathogène Neozygites floridana en République du Bénin.Limportance de la collection dinsectes de lIITA a été confirmée par le nombre croissant de visiteurs, notamment des taxonomistes de renommée tant au plan régional quinternational.Poster supporting the press release at International Centers Week 2000 in Washington DC Affiche présentée lors du point de presse à Washington.Des enquêtes sur la faune menées en cours dannée au Ghana, au Togo, au Bénin, au Nigéria et au Cameroun ont permis denrichir la collection de référence de 20 000 nouveaux spécimens.WAFRINET, la branche ouest-africaine du Réseau mondial BioNET INTERNATIONAL, a été mise en place en vue dappuyer les programmes de conservation de la biodiversité et de développement agricole.Au Niger et au Mali, des séminaires ont été organisés en vue de fournir une formation et des informations sur lutilisation de Green Muscle ® aux agents chargés de la protection des végétaux, aux membres des ONG et aux distributeurs. Les chercheurs des SNRA ont également bénéficié dune formation en taxonomie des insectes et en techniques denquête sur la lutte biologique.A number of cowpea breeding lines gave higher yields than local lines under no spray conditions at 3 sites in Nigeria. However, none of the lines was best at all locations, indicating possible G % E interactions.An Achishuru-type local landrace cowpea line was found to exhibit resistance to flower thrips. Plant damage was low and similar to another landrace (Sanzi) from Ghana. Crosses were made to accumulate the resistance. Baseline household surveys were completed in 8 PRONAF countries where the benchmark sites had already been delineated the previous year (Benin, Cameroon, Burkina Faso, Niger, Mali, Ghana, Nigeria, and Senegal). At the same time, to capture the demand characteristics for the different cowpea technologies, trader perception surveys were carried out in the same countries.Improved cowpea storage techniques which enable storage for more than 6 months without tangible losses were widely disseminated to about 3500 farmers through NGOs and NARES in 7 PRONAF countries.Eighty-five participants from NGOs, farmers organizations, and government institutions in 5 countries were trained in cowpea integrated pest management (IPM) and, in turn, established training for 185 farmers.Un certain nombre de lignées de sélection de niébé ont présenté des rendements plus élevés que ceux des lignées locales en condition dabsence de pulvérisation dans 3 sites au Nigéria. Cependant, aucune des lignées na été la plus performante dans tous les sites, ce qui indique probablement des interactions G % E.Un lignée de cultivar local de niébé du type «Achishuru» a présenté une résistance aux thripsExotic thrips parasitoid Ceranisus femoratus Parasitoïde exotique des thrips Ceranisus femoratus. Des enquêtes de suivi des lâchers expérimentaux de C. femoratus dans le sud du Ghana ont révélé la présence de C. femoratus 10 mois après le lâcher, en dépit du faible niveau de population de thrips.Des phéromones sexuelles synthétiques du foreur de gousses, Maruca vitrata, ont été utilisées avec succès pour la première fois comme moyen dassurer le suivi des populations au champ. Les plus grandes prises ont été effectuées avec des jerricans en plastique, bon marché et disponibles localement, suspendus à 120 cm du sol.Des insecticides à base de plantes, notamment les extraits aqueux de neem et des feuilles de papayers, ont fait lobjet dune promotion soutenue auprès des agriculteurs par les ONG et les Systèmes nationaux de recherche et de vulgarisation agricoles (SNRVA) du Bénin, du Ghana, du Niger, du Nigéria et du Sénégal.Le PEDUNE et le RENACO ont été fusionnés en un nouveau projet intitulé PRONAF (Projet niébé pour lAfrique), dont le lancement a eu lieu en mai 2000 grâce à un financement conjoint du Fonds international de développement agricole (FIDA) et lAgence suisse de coopération pour le développement (SDC).Des enquêtes de base auprès des ménages ont été réalisées dans 8 pays membres du PRONAF où les sites de référence avaient été déjà définis lannée précédente (Bénin, Cameroun, Burkina Faso, Niger, Mali, Ghana, Nigéria, et Sénégal). Par ailleurs, afin de mieux comprendre les caractéristiques de la demande pour les différentes technologies du niébé, des enquêtes sur la perception des commerçants ont été menées dans ces pays.Des techniques améliorées de stockage du niébé permettant une conservation de cette denrée pendant plus de 6 mois sans pertes tangibles, ont été diffusées auprès denviron 3 500 agriculteurs dans 7 pays membres du PRONAF, grâce aux ONG et aux SNRVA.Conducting an economic survey Une enquête économique.Quatre-vingt cinq représentants des ONG, des organisations paysannes et des institutions gouvernementales de 5 pays ont bénéficié dune formation en lutte intégrée (IPM) contre les ravageurs du niébé et ils ont pu, à leur tour, fournir une formation à 185 agriculteurs.Leaving maize on the ground due to lodging, harvest operation, or before storage considerably increases the risk of development of Aspergillus flavus fungi and aflatoxin contamination. Management strategies are being developed with farmer participation to help them to produce better quality maize.Isolates of Trichoderma harzianum have been found to significantly reduce endophytic stem infection of maize by Fusarium verticillioides (syn. F. moniliforme).Fusarium verticillioides in maize stems and grain has been conclusively shown to attract female Eldana saccharina, Mussidia nigrivenella, and the beetles Carpophilus dimidiatus and Sitophilus zeamais and causes higher survival and fecundity but shorter generation time of offspring.A cross-sectional study of 480 one-to five-year-old children across Benin and Togo found that 98% had aflatoxin in their blood, with levels increasing in months after weaning. Blood aflatoxin was significantly related to the use of white maize as a weaning food.The success rate of a simplified scouting program to detect damaging infestations of Prostephanus truncatus in grain stores, when applied to field data from 199798 and 19992000, was more than 97% when P. truncatus was present in the store. In association with Green River Project of Agip Oil, Shell Petroleum Development Company, and the National Rice/Maize Centre of the Federal Department of Agriculture in Nigeria, two stem borer-resistant populations (TZBR Eld3 C2 and Ama TZBR-WC1) were successfully deployed in more than 100 on-farm trials in southeast Nigeria.Advanced generation inbred lines with resistance to Sesamia and/or Eldana were identified.The methodology for improving on levels of resistance to downy mildew (DM) attack was standardized. A maximum of 3 to 4 cycles of S1 selection will upgrade DM resistance to 95% in DM converted populations.Laisser le maïs par terre suite à la verse, aux opérations de récolte ou avant le stockage, augmente considérablement le risque de développement des champignons Aspergillus flavus et de contamination par laflatoxine. Des stratégies de gestion sont en cours délaboration avec la participation des agriculteurs afin de les aider à produire du maïs de qualité supérieure.Des isolats de Trichoderma harzianum ont, de manière significative, réduit linfection endophytique des tiges de maïs par Fusarium verticillioides (syn. F. moniliforme).Aussi bien au niveau des tiges que des grains de maïs, Fusarium verticillioides a, de manière concluante, attiré la femelle dEldana saccharina, Mussidia nigrivenella et les coléoptères Carpophilus dimidiatus et Sitophilus zeamais et a entraîné une plus grande survie et fécondité, mais également une période de génération plus réduite des descendants.Une étude transversale menée auprès de 480 enfants âgés dun à cinq ans au Bénin et au Togo, a révélé que 98% avaient de laflatoxine dans leur sang, avec des teneurs augmentant au fil des mois après le sevrage. Laflatoxine dans le sang était, de manière significative, lié à lutilisation du maïs blanc comme aliment de sevrage. Une méthodologie damélioration des niveaux de résistance à lattaque du mildiou a été standardisée. Un maximum de 3 à 4 cycles de sélection de S1 permettra de renforcer la résistance au mildiou à 95% chez des populations ayant reçu une résistance au mildiou.Africa-wide implementation of cassava green mite (CGM) biological control continued in 2000. The exotic phytoseiid predator Typhlodromalus aripo is now established and persisting in 20 countries in sub-Saharan Africa.Surveys showed that T. aripo has covered much of the cassava-growing areas of West Africa, Kenya, Tanzania, and Malawi, with limited distribution in the Central African Republic, Democratic Republic of Congo, and northern Mozambique and Zambia.In the first apparent establishment of a mite-pathogenic fungus in Africa, Brazilian isolates of Neozygites floridana, released in southeastern Benin in January 1999, continued to produce an average of 35% CGM infection levels nearly 2 years after the initial introductions, while CGM infection levels in southwestern, southcentral, and central Benin have remained generally at the preintroduction background level of < 1%.Diagnostic surveys of the African root and tuber scale Stictococcus vayssierei in Cameroon identified several host crops including, with decreasing order of infestation levels, cassava, yam, cocoyam, taro, and groundnut. Scale infestations were most severe in degraded forest and on the more acidic soils, particularly when cassava followed Chromolaena odorata fallow.Anoplolepis tenella is the ant species most consistently associated with S. vayssierei and is considered essential for the scales survival.Expansion of the cassava mosaic disease (CMD) pandemic, associated with the novel virus variant EACMV-Ug (Ugandan variant of East African cassava mosaic virus), was reported for the first time from northeastern Rwanda.Casava mosaic disease symptoms Symptômes de la mosaïque du manioc.Severe CMD reported from both the shores of Lake Tanganyika in Tanzania and Bukavu in eastern Democratic Republic of Congo was shown to be the result of mixed ACMV/EACMV infections, and not the occurrence of EACMV-Ug.In Expansion of the CMD variant EACMV-Ug Progression de la mosaïque du manioc et de la variante ougandaise de lEACMV.région du Bukavu à lest de la République Démocratique du Congo, se sont avérés le résultat dinfections mixtes ACMV/EACMV et non une incidence de la variante EACMV-Ug.Dans le cadre dun programme important de lutte contre CMD dans la région du Lac en Afrique orientale, lIITA a, en collaboration avec les SNRVA et les ONG, déployé du matériel génétique résistant à la mosaïque sur plus de 500 ha de zones récemment affectées en Ouganda, au Kenya et en Tanzanie; par ailleurs, 10 clones élites obtenus à partir de plus de 500 germoplasmes en provenance des réseaux de recherche sur les plantes à racines et tubercules dAfrique orientale ont été identifiés et introduits en vue de louverture dune quarantaine dans le nord-ouest de la Tanzanie; et 19 centres de transfert de technologies ont été établis en vue des activités suivantes : multiplication de variétés résistantes, évaluation participative du nouveau matériel génétique et formation. A survey of users of LEXSYS, a decision support tool on the use of green manure cover crops, found that the program was valued for its references to completed trials and information on legume species and their pests and diseases. Respondents recommended that the program should be made Windows-compatible, available over the Web or on CD, and should include photographs and more information about actual farmer usage.In the Forest Margins Benchmark, groundnut variety JL-24 out-yielded local groundnut varieties by an average of 60% in the first season. During second season production, when groundnut yields are usually poor, soybean and cowpea out-yielded groundnut by an average of 63% and 132%, respectively, in 12 farmer fields in 4 benchmark villages. Yields of best soybean, cowpea, and groundnut varieties correlated with soil exchangeable aluminum.A minimum estimate of 345 kg of herbaceous legume seed consisting of 271 seedlots was distributed to international agricultural research centersMucuna as an effective cover crop Le Mucuna, une plante de couverture efficace.(IARCs), NARS, and NGOs during 2000, mainly for experimental evaluation. An additional 410 kg of seed was supplied to NGOs for multiplication and distribution. Private companies and NGOs are willing to pay for the seed, indicating active investment in cover crops.In the preliminary demonstration trials of cover crops for soil improvement, pest/ weed control, and livestock feed, 7 or more cover crops were tested in 4 pilot sites in collaboration with NGOs/NARS. At one site in Nigeria where extensive tracts of land have been abandoned by farmers because of Imperata invasion, Mucuna suppressed this weed better than the other legumes. This confirms that Mucuna has the potential to reclaim stretches of impoverished land.In a long-term fallow experiment at Ibadan, 1 year of Pueraria fallow was better than natural and Leucaena fallow in maintaining the maize grain yield. Leucaena fallow was best in maintaining soil organic matter. While 1 year of fallow increased grain yield, 2 and 3 years of fallow resulted in a smaller increase, with no difference between 2 and 3 years of fallow.At the end of the 19992000 dry season a total of 433 kg of herbaceous legume seed was harvested and stored from seed multiplication plots at Ibadan, and 118 kg from plots at the Institute of Agricultural Research, Zaria. The seed constitutes a resource for researchers, and development and extension agents who wish to further evaluate and multiply seed.Almost every activity under this project is carried out jointly with NARS partners including NGOs. Many students from national universities are conducting research under the project.Une enquête sur les utilisateurs de LEXSYS, un outil de soutien de la prise de décision relative à lutilisation des plantes de couverture comme engrais vert, a révélé que ce logiciel était apprécié pour ses références aux essais achevés et aux informations sur les espèces légumineuses ainsi que les ravageurs et maladies associés. Les répondants ont recommandé que le logiciel soit compatible à Windows, disponible sur Internet et sur CD ROM, et quil contienne des photos et davantage dinformations sur les pratiques paysannes du moment.Soybean varieties in the forest margins show various capacities to assimilate atmospheric nitrogen Des variétés de soja en bordure de forêt assimilent de diverses manières lazote atmosphérique.Dans la zone de référence de lisière forestière, la variété darachide JL-24 a eu un rendement plus élevé (denviron 60%) que les variétés locales pendant la première campagne. Au cours de la deuxième campagne de production, où les rendements darachide sont habituellement plus faibles, le soja et le niébé ont eu un rendement moyen plus élevé denviron 63% et 132% respectivement dans 12 champs paysans dans 4 villages de référence. Les rendements des meilleures variétés de soja, de niébé et darachide ont présenté une corrélation avec laluminium échangeable du sol.Un minimum denviron 345 kg de semences de légumineuses herbacées représentant 271 lots de semences ont été distribués aux Centres internationaux de recherche agricole (CIRA), aux SNRA et aux ONG, en 2000, essentiellement aux fins dévaluation expérimentale. En plus, 410 kg de semences ont été fournies aux ONG en vue dune multiplication et dune distribution. Les sociétés privées et les ONG sont disposées à acheter les semences, ce qui est une preuve dinvestissement actif dans les plantes de couverture.Dans les essais préliminaires de démonstration sur les plantes de couverture comme moyen damélioration de la fertilité du sol, de lutte contre les ravageurs et les maladies et comme aliment de bétail, 7 ou davantage de plantes de couverture ont été testées dans 4 sites pilotes, en collaboration avec les ONG et les SNRA. Dans un site au Nigéria où des zones extensives ont été abandonnées par les agriculteurs à cause dune invasion dImperata, Mucuna a mieux supprimé cette adventice que les autres légumineuses. Cela confirme que Mucuna a une capacité de récupération de bandes de terres épuisées.Au cours dune expérience sur une jachère de longue durée à Ibadan, une jachère de Pueraria dune année a présenté de meilleurs résultats que les jachères naturelles et de Leucaena, en ce qui concerne le maintien du rendement en grains de maïs. La jachère de Leucaena sest avérée meilleure en matière de conservation de la matière organique du sol. Tandis quune année de jachère a permis daugmenter le rendement en grains, 2 et 3 années ont entraîné une augmentation moindre avec aucune différence entre les jachères de 2 et de 3 années.A la fin de la saison sèche de 19992000, un total de 433 kg de semences de légumineuses herbacées a été récolté et stocké, en provenance des parcelles de multiplication à Ibadan, ainsi que 118 kg des parcelles de lInstitut de recherches agricoles de Zaria. Les semences constituent une ressource pour les chercheurs, les agents de développement et de vulgarisation qui souhaitent davantage les évaluer et les multiplier.Pratiquement toutes les activités dans le cadre de ce projet sont menées en collaboration avec nos partenaires des SNRA dont les ONG. Plusieurs étudiants des universités nationales mènent des activités de recherche au titre de ce projet.With phosphorus (P) and potassium (K) applied, cowpea yields at Adingnigon on terre de barre plateau (dominant soil Nitosols) in the southern Benin benchmark were still low in spite of a good variety and adequate protection from insects. Organic matter addition gave a dramatic increase in grain yield from 131 kg/ha in 1999 to 539 kg/ha in 2000.The cowpea cultivar IT-90K-59 was tolerant to low-P soil and was able to deplete the stable P fraction (non-Olsen-P) in the rhizosphere in P-deficient soils in the derived savanna in Nigeria.The response to P addition was related to the Olsen-P content for most soils in the derived savanna and in the northern Guinea savanna villages, showing an inflection point near 12 ppm Olsen-P.Evidence from trials with 15 N-labelled fertilizer indicated that although direct interactions between nitrogen (N) fertilizer and particularly low quality organic matter were substantial, this was not consistently reflected in improved synchrony between N fertilizer supply and uptake by a maize crop. The impact of direct interactions between N fertilizer and high quality organic material, whether incorporated or surface applied, was shown to be minimal.Medium-and late-maturing soybean resulted in an addition to the soil of 4.2 kg N/ha, whereas the early-maturing varieties resulted in depletion of the soil N reserve by 5.6 kg N/ha in a cereallegume rotation.An efficacious cultivar of soybean reduced Striga hermonthica parasitism on a succeeding maize crop and the effect was increased by P application to the soybean in 3 farmers fields in northern Nigeria.Les applications de phosphore (P) et de potassium (K) nont pas augmenté les rendements du niébé à Adingnigon dans la zone de plateau sur les terres de barre (Nitosols) de la zone de référence du sud du Bénin, malgré lutilisation dune bonne variété et une protection adéquate contre les insectes. Un apport en matières organique a entraîné une augmentation spectaculaire du rendement en grains de 131 kg/ha en 1999 à 539 kg/ha en 2000.Le cultivar de niébé, IT-90K-59, sest avéré tolérant aux sols présentant une carence en P et a pu épuiser la fraction stable de P (P non-Olsen) dans la rhizosphere des sols faibles en P dans la zone de savane dérivée du Nigéria.La réponse à lapport de P a été liée à la teneur en P-Olsen au niveau de la plupart des sols dans la savane dérivée et dans les villages situés dans la savane nord guinéenne, ce qui indique un point dinflexion proche de 12 ppm P-Olsen.Les résultats des essais avec application dengrais marqué à 15 N ont révélé des interactions substantielles entre les engrais azotés et la qualité particulièrement faible de la matière organique, mais ces dernières nont pas pu, de manière constante, améliorer la synchronie entre la disponibilité et labsorption des engrais azotés par une culture de maïs. Limpact des interactions directes entre lengrais azoté et une matière organique de qualité supérieure, incorporés ou appliqués, sest avéré minimal.Des variétés de soja intermédiaires et tardives ont fourni au sol un apport de 4,2 kg N/ha, tandis que les variétés précoces ont entraîné un épuisement de la réserve dazote du sol estimé à 5,6 kg N/ha en condition de rotation céréaleslégumineuses.Un cultivar efficace de soja a réduit le parasitisme de Striga hermonthica sur une culture de maïs subséquente et cet effet a été augmenté grâce à une application de P sur le soja dans les champs de trois agriculteurs dans le nord du Nigéria.In Results from food demand surveys in major cities of northern Nigeria indicated that each household consumes an average of 5 kg/week of cowpea. This and other results were used to make projections on the future demand and supply of cowpea in Nigeria. The projections indicate a deficit of about 2.5 million tonnes for 2005 and 2010 and about 2.4 million tonnes for 2015.A minimum average yield of 1200 kg/ha versus the current 530 kg/ha is required in 2015 for production to meet the growing demand for cowpea in Nigeria.Patterns of household food expenditures in the dry savanna indicated that food expenditure constitutes about 56% of total expenditure. Rural households experienced food stress for 7 (high expenditure group) to 9 (low expenditure group) months in 1 year.A survey in the western highlands of Cameroon targeted about 100 cowpea traders from both rural and urban markets. Wholesalers and semi-Cocoa tree Cacaoyer.Développement des systèmes intégrés de production des cultures annuelles et pérennes Impact, policy, and systems analysis wholesalers were more inclined to treat their stored product compared to retailers. Some traders (42%) used synthetic chemical products. Actellic was the chemical most widely used (57% of traders). Traditional methods include the use of wood ash, pepper, and tobacco leaves. Four variables were significant in explaining the decision to adopt or not adopt chemical pesticides: education level and age of the trader, proximity to urban centers, and infrastructure for storage.A comparative economic analysis of the management of speargrass in the derived savanna of Benin using cover crops integrated with hand weeding and chemical control indicated that the net returns were 2.5 to 7.4 times higher in maize plots that received glyphosate than in weeded plots. Weeding consumed 6274% of the total budget invested in crop production.Agricultural transformation in the northern Guinea savanna has occurred in the past 30 years. Changes were noticed in the land use systems (with maize and soybean becoming increasingly important), productivity of major crops (maize, sorghum, soybean, and cowpea), and rural capital assets (roads, rural markets, and population). However, changes in total population did not modify the social structure of the household. Increase in fertilizer use was closely associated with the changes in land use systems and capital assets.Participatory poverty mapping involving 462 heads of households and 298 housewives in the cowpea growing area of northern Nigeria resulted in the definition of 3 wealth classes: rich (13% of farmers), middle class (60%), and poor (27%).A total of 109 scientists from 16 sub-Saharan African countries received specialized training on methodologies for the measurement of impact and the evaluation of agricultural technologies. This training covered multivariate techniques for data analysis, methods for market analysis, and quality control in manufacturing and servicing of improved agro-processing equipment.Les résultats des enquêtes sur la demande alimentaire, menées dans les principales villes du nord du Nigéria, ont indiqué que chaque ménage consomme en moyenne 50 kg de niébé par semaine. Ces résultats et dautres ont permis de faire des prévisions relatives à loffre et la demande futures de niébé au Nigéria. Les prévisions ont révélé un déficit denviron 2,5 millions de tonnes pour 2005 et 2010 et environ 2,4 millions de tonnes pour 2015. Un rendement moyen minimum de 1200 kg/ha contre les 530 kg/ha du moment, sera requis en 2015 afin datteindre une production permettant de satisfaire la demande croissante en niébé au Nigeria.Les schémas des dépenses alimentaires des ménages dans la zone de savane aride, indiquent que ces dépenses représentent environ 56% des dépenses totales. Les ménages ruraux ont souffert de stress alimentaire pendant 7 (groupe à dépenses élevées) à 9 mois (groupe à dépenses faibles), en une année.Une enquête a été menée dans la zone daltitude de louest du Cameroun et elle ciblait environ 100 vendeurs de niébé aussi bien dans les marchés ruraux que dans les marchés urbains. Par rapport aux détaillants, les grossistes et les semi-grossistes avaient plus tendance à traiter leurs produits stockés. Certains vendeurs (42%) utilisaient des produits chimiques synthétiques. LActellic était le produit chimique le plus utilisé (57% des vendeurs). Les méthodes traditionnelles étaient, entre autres, lutilisation de la cendre de bois, du piment et des feuilles de tabac. Quatre variables étaient significatives dans lexplication de la décision dadopter ou de ne pas adopter les pesticides chimiques, notamment le niveau dinstruction, lâge du vendeur, la proximité des centres urbains et les infrastructures de stockage.Une analyse économique comparative de la gestion dImperata dans la savane aride duOne of a series of impact publications Une des publications sur limpact.Bénin en ayant recours aux plantes de couverture associées au défrichage manuel et à la lutte chimique, a indiqué un revenu net de 2,5 à 7,4 fois plus élevé dans les parcelles de maïs qui avaient reçu une application de glysophate que dans les parcelles défrichées. Le défrichage a consommé 62 à 74% du budget total investi dans la production agricole.Une transformation agricole dans la savane nord guinéenne sest produite au cours des 30 dernières années. Des changements ont été observés dans les systèmes dutilisation des terres (le maïs et le soja devenant de plus en plus importants), dans la productivité des cultures principales (maïs, sorgho, soja, et niébé), ainsi quau niveau des biens déquipement ruraux (routes, marchés ruraux, population). Toutefois, les changements de la population totale nont pas modifié la structure sociale des ménages. Laugmentation accrue du recours aux pesticides a été étroitement liée aux changements du mode dutilisation des terres et aux biens déquipement.Une cartographie participative de la pauvreté portant sur 462 chefs de ménages et 298 ménagères dans la zone de production de niébé du nord du Nigéria a permis de définir trois classes de richesse : les riches (13% des agriculteurs), la classe moyenne (60%), et les pauvres (27%).Au total, 109 chercheurs originaires de 16 pays dAfrique subsaharienne ont bénéficié dune formation spécialisée sur les méthodologies de mesure et dévaluation de limpact des technologies agricoles. Cette formation a porté sur les techniques danalyse multivariée des données, les méthodes danalyse du marché ainsi que le contrôle de la qualité dans la fabrication et lentretien des équipements améliorés de transformation des produits agricoles. Scientists from ICIPE, CIMMYT, ICRISAT, CABI, and KARI in IPM collaboration Chercheurs de lICIPE, du CIMMYT, de lICRISAT, du CABI et du KARI travaillant en collaboration dans le cadre de la lutteDes sites pilotes aux fins de tests, par les agriculteurs, des options de lutte intégrée (IPM) les plus concluantes reposant sur les activités de recherche de 5 CIRA et de plusieurs organisations partenaires, ont été installés dans 6 localités représentant différentes zones agroécologiques en Afrique (Burkina Faso, Cameroun, Égypte, Kenya, Maroc et Nigéria).De même quils servent de points focaux en vue de lintégration des résultats de la recherche sur la lutte intégrée, les sites pilotes contribuent à une prise de conscience du rôle-clé de la lutte intégrée dans la durabilité de lagriculture.Le Programme sur la recherche participative et lanalyse du genre le «Global FAO Facility» se sont joints au SP-IPM et à lAgence suisse de coopération pour le développement en vue de démarrer une étude comparative des méthodes participatives de recherche et de formation en matière de lutte intégrée sur la base dune analyse des projets IPM dans les pays suivants: Bolivie, Philippines, Honduras, Vietnam, Indonésie, Kenya, Zimbabwe et Bangladesh.Le Programme SP-IPM a été renforcé suite à larrivée de CABI Bioscience comme membre à part entière. Les chercheurs de CABI sont déjà des membres actifs du groupe daction SP-IPM sur les méthodes de recherche participative intervenant en collaboration avec le Centre international de recherche sur la physiologie et lécologie des insectes dans notre site pilote au Kenya. La composition du Comité directeur du programme a été davantage diversifiée suite à linclusion des représentants de la «Global Crop Protection Federation» (un groupe du secteur privé) du «Pesticide Action Network» (une ONG).The EPHTA Benchmark Area concept has been accepted by both IITA and the NARS. The benchmark areas have become the key areas for IITAs on-farm research and testing.Because of limited resources, the research plans of EPHTA have largely been implemented through IITA core activities. EPHTA faces the challenge of finding supplemental funding in order to increase activities with the NARS.In the Degraded Forest Benchmark Area in southeast Nigeria, stakeholder interest and involvement have resulted in participatory development, evaluation, and dissemination of improved crop production technologies. Technologies such as hybrid yams and improved cassava, sweetpotato, rice, and maize varieties have been evaluated and farmers selections made based on their food preferences and cash returns.A workshop on multivariate analysis was held in Cameroon in May 2000 to introduce EPHTA NARS member researchers to the concept of domain delineation in resource management research and upgrade their skills in the use of multivariate techniques for the analysis of data from the resource management surveys conducted in EPHTA benchmark areas. All of the 6 EPHTA benchmark areas were represented by a least 2 researchers per benchmark area.An example of successful introduction of a new technology through collaborative research with farmer involvement is the use of leguminous cover crops in short fallow systems to control weeds and restore soil fertility in the derived savanna benchmark area in the Republic of Benin. The adoption and rapid expansion of soybean in Kaya village in resource domain 3 of the Northern Guinea Savanna Benchmark Area in central northwest Nigeria is another success story during the year.Le concept de zone de référence EPHTA a été accepté par aussi bien par lIITA que les SNRA. Ces zones de référence sont devenues les sites-clés des activités de recherche et de tests en milieu réel de lIITA.Compte tenu des restrictions financières, les programmes de recherche dEPHTA ont été, dans une grande mesure, réalisés à travers les activités principales de recherche de lIITA. EPHTA fait face à un défi : trouver des financements supplémentaires afin daccroître ses activités avec les SNRA.Dans la zone de référence de forêt dégradée du sud-est du Nigéria, lintérêt et limplication des parties prenantes se sont traduits par la mise au point, lévaluation et la diffusion participatives de technologies améliorées de production agricole. Les technologies telles les ignames hybrides, les variétés améliorées de manioc, de patate douce, de riz et de maïs ont été évaluées et les agriculteurs ont effectué leurs choix sur la base de leurs préférences alimentaires et revenus monétaires.En mai 2000, un atelier sur lanalyse à variables multiples a été organisé au Cameroun afin de permettre aux chercheurs des SNRA membres dEPHTA de se familiariser avec le concept du domaine de délimitation dans la recherche sur la gestion des ressources et de renforcer leurs aptitudes en matière dutilisation de la technique de lanalyse à variables multiples pour les données provenant des enquêtes sur la gestion des ressources menées dans les zones de référence EPHTA. Toutes les six zones de référence EPHTA étaient représentées par au moins deux chercheurs par zone.A titre dexemple de réussite de lintroduction dune nouvelle technologie grâce à la recherche associative menée avec les agriculteurs, on peut citer lutilisation des légumineuses de couverture dans les systèmes de jachère de courte durée comme moyen de lutte contre les adventices et de restauration de la fertilité du sol de la savane dérivée dans la zone de référence de la République du Bénin.Ladoption et lexpansion rapide du soja dans le village de Kaya, situé dans le domaine de ressource 3 de la zone de référence de savane nord guinéenne dans la région centrale du nordouest du Nigéria, constitue une autre réussite enregistrée au cours de lannée.EPHTA benchmark sites Sites de référence EPHTA. ","tokenCount":"10811"} \ No newline at end of file diff --git a/data/part_3/1853542039.json b/data/part_3/1853542039.json new file mode 100644 index 0000000000000000000000000000000000000000..417aebbe4811206d57b5071eba7dd43c840126d4 --- /dev/null +++ b/data/part_3/1853542039.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"12ac2029997aae326f2a2c278b91a816","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/986aec1c-a8e0-475b-bd34-a84c86c47b06/retrieve","id":"1569759988"},"keywords":[],"sieverID":"89acc73f-8452-47c5-bbcc-a633b3346dea","pagecount":"6","content":"A. Golmirzaie and J. Toledo 1 In vitro conservation of genetic resources has advanced considerably during this decade. Since 1975, CIP has contributed to developing tissue culture techniques for conserving germplasm of potato (Solanum tuberosum) (Roca, 1975), sweetpotato (Ipomoea batatas) (Sigueñas, 1987), and Andean root and tuber crops (Toledo et al., 1994). In vitro conservation is the most useful and efficient way to distribute clonal materials. It facilitates the availability of planting materials at any time, avoids the transfer of major pests and pathogens, and makes possible virus eradication through meristem culture (Roca et al., 1979;George, 1993). In addition, in vitro conservation is less expensive than cryopreservation of field-grown clonal materials (Florkowski and Jarret, 1990).In vitro plantlets grow in a Murashige-Skoog (MS) culture medium containing minerals, a carbon (C) source, vitamins, and a low concentration of growth regulators (Table 1). Plants exhaust the nutrients in this medium in 2-3 mo; therefore, in vitro plants have to be transferred frequently to fresh medium. The culture rooms generally have a temperature range similar to those needed to grow a given crop in the field. That is called short-term conservation. The interval between subcultures, however, can be extended through growth rate reduction by modifications to the environment or changes in some media components.The addition of osmoticums or growth retardants to the medium has proved efficient for reducing growth rates of different plant species. Osmoticums such as mannitol or sorbitol reduce mineral uptake by cells through differences in osmotic pressures thereby retarding plant growth (Dodds and Roberts, 1985;Thompson et al., 1986). Growth retardants can produce some physiological changes or generate mutations, which can threaten the genetic stability of the materials conserved in vitro (Hughes, 1981;Lizarraga et al., 1989;Wescott, 1981). Reducing growth temperature close to 0 o C for temperate plant species or several degrees below normal for tropical crops can also minimize the growth rate in many crops (Dodds and Roberts, 1985;George and Sherrington, 1984). In vitro plants growing in closed culture vessels have low concentrations of CO 2 ; C absorption is maintained by supplementing the medium with sugar. Reducing light intensity also affects growth rate by reducing photosynthetic requirements and therefore metabolism (Hughes, 1981).A combination of osmoticums, low temperature, and low light intensity has been the most effective in lengthening periods between subcultures. At CIP, these procedures are applied to potato and sweetpotato with good results.There are well-established protocols for micropropagation of potato (Espinoza et al., 1992), meristem culture (Lizarraga et al., 1991), in vitro tuber induction (Estrada et al., 1986), medium-term storage (Golmirzaie and Toledo, 1998), and cryopreservation (Golmirzaie and Panta, 1997). 3.5 3.5 3.5 3. The protocol for medium-term in vitro conservation of the potato collection at CIP is as follows. Accessions are conserved in a conservation medium containing 4% sorbitol at a temperature of 6-8 o C, and light intensity of 1,000 lux. That extends the in vitro conservation of the potato collection for 2-4 yr without subculture (Table 2). The use of sorbitol as an osmoticum is applied to many crops without any physiological changes such as callus formation or vitrification. But these undesirable reactions are produced when the media contains mannitol, which can affect potato genetic stability (Harding, 1994). After several years in in vitro culture, plantlets can recover normal growth after one to two subcultures in propagation media. This conservation method is one of the most efficient for managing a large number of potato accessions and the time interval between subcultures is longer than for other crops.The production of microtubers in in vitro culture as an alternative method for longterm conservation of potato cultivars has also been evaluated at CIP. Microtubers are produced in 2 to 3 mo and can be stored at 10 o C for up to 10 mo after harvest (Estrada, et al., 1986). The dormancy of these microtubers can be controlled by environmental changes (Estrada et al., 1986;Tovar et al., 1985). Alternatively, once the microtubers sprout, growth can be retarded, as with in vitro plants, for 2-4 yr by storing them embedded in a conservation medium.In vitro techniques for micropropagation of sweetpotato cultivars are well established. Plantlets grow from 1 to 2 mo in 1) in a culture room at 23-25 o C and 3,000 lux (Lizarraga et al., 1990). Some plants show multiple shoot formation, phenolization, or shoot dormancy as a response to high stress. We have overcome this problem at CIP by using a culture medium containing naphthalene acetic acid (propagation medium II, Table 1).A number of problems prevent the longterm conservation of sweetpotato. Many attempts to establish an efficient slow growth medium have failed due to a strong genotypic response to the modified culture media, low survival percentage under restrictive growth conditions, or the formation of callus and vitrification during storage.Although plantlets cultured in growth retardants may have survival rates ranging from 70 to 90%, genotypic effects or toxic effects are seen. For example, plants grown in a medium containing abscicic acid at 5-20 mg/L had a survival rate of 70-85% after 8 mo, but showed strong genotypic effects (Desamero, 1990;Jarret et al., 1991). Plants grown with the retardant maleic hydrazide at 5 mg/L had a survival rate of 70-90% after 6 mo (Desamero, 1990). Plants grown with cycocel at 500 mg/L had the same survival rate after 1 yr (Guo et al., 1995). But toxic effects were observed with both maleic hydrazide and cycocel. Using kinetine as a growth regulator, Guo et al. (1995) achieved a 70% survival rate in 20 accessions after 1 yr in storage, but with some callus presented. Plants growing in MS medium diluted to 30% and 50% showed low survival (36-48%) after 4 mo in storage (Abreu et al., 1992;Aguilar and Lopez, 1993).Sweetpotato plantlets can remain in 10-40 g/L sorbitol for 6-12 mo without subculture (Desamero, 1990;Acedo, 1993;Cubillas, 1997). They resume normal growth when placed in a culture medium without osmoticum. Sorbitol, however, can be metabolized by the plantlets after some months of storage and exhibit an incremental growth rate, effectively reducing storage time. Mannitol at 20-40 g/L has also been used in sweetpotato to extend the interval between subcultures to 1 yr (Aguilar and Lopez, 1993;Acedo, 1993;Mandal and Chandel, 1990;Guo et al., 1995;Desamero, 1990) but some callus formation and vitrification was reported.Tropical crop species usually lose their viability at temperatures lower than those required for growth in the field. 3) (Cubillas, 1997). An evaluation of this method using several hundred accessions in the collection is under way.In vitro conservation entails the risk of losing material due to cooling equipment failure, contamination of cultures, or mislabeling accessions. Therefore, the following recommendations will help to maintain an in vitro collection more efficiently.Frequently evaluate in vitro growth during the first month to detect plants with growth problems. Maintain aseptic conditions in the culture growth room to avoid sources of contamination (dust, dirt, mites, or contaminated material). Treat the room as a restricted area to prevent contamination.Equip the in vitro laboratory with an electronic alarm connected to a control panel that monitors environmental conditions. Develop a database with unique codes for each accession in the collection. Each accession should have at least two identification numbers for proper identification. Labels for the cultures should be generated directly from the database to prevent human errors while transcribing.Closely monitor the cultures with some frequency during in vitro storage. Isolate contaminated cultures as soon as they are detected to prevent spreading the problem to clean plantlets. Include specific antibiotics in culture media to","tokenCount":"1243"} \ No newline at end of file diff --git a/data/part_3/1876443817.json b/data/part_3/1876443817.json new file mode 100644 index 0000000000000000000000000000000000000000..9bd2deb2bea7e92578ba0f0974014508fa25e72e --- /dev/null +++ b/data/part_3/1876443817.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c589cffdf7658402b2d02c1a6c83c166","source":"gardian_index","url":"https://www.cifor-icraf.org/publications/pdf/CIFOR-ICRAF-Annual-Report-2021.pdf","id":"1778093759"},"keywords":[],"sieverID":"46cad23b-d047-4e53-bd68-d3aa684ba2cf","pagecount":"24","content":"The right tree in the right place for the right purpose. Yangambi, DRC.We are deeply grateful for the financial support of our funding partners and the collaboration of our strategic partners. For more information see page 22.Our decades-long host country agreements with Indonesia and Kenya reflect their global leadership and deep commitment to forests, trees and agroforestry.For more information see page 21.total expenditure in 2021 $85.7M -Fergus Sinclair, Chief Scientist Five major global challenges interact with and amplify each other in myriad ways. A landscape perspective on nutrition and livelihoods While maintaining separate legal entities and headquarters, CIFOR-ICRAF now operates under a single governing Board and leadership team, with a joint regional structure. Our over 700 dedicated staff work in 60 countries, with offices in 25. Our decades-long host country agreements with Indonesia and Kenya reflect their global leadership and commitment to nature-based solutions. We are deeply grateful for the financial support of our 159 funding partners and the collaboration of our 281 strategic partners.In total, we have completed over 2,200 projects worth more than USD 2 billion in 92 countries. Through our over 25,000 research products and a suite of websites, news, social media and events, our message continues to mobilize an ever-growing audience, whether in academia, government or civil society.The entities of the CIFOR-ICRAF network reinforce and advance our shared goals.As the leading global movement on sustainable landscapes, the Global Landscapes ","tokenCount":"233"} \ No newline at end of file diff --git a/data/part_3/1897836278.json b/data/part_3/1897836278.json new file mode 100644 index 0000000000000000000000000000000000000000..667b72acd75c224dad4be89636e448c16850af9a --- /dev/null +++ b/data/part_3/1897836278.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"966727097696dab603590de364dda9a8","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/4e2f730a-ccb0-46c2-b731-9e998a2db808/retrieve","id":"-363965640"},"keywords":[],"sieverID":"75ea8d45-75dc-488d-a5b6-85d4fcb62035","pagecount":"45","content":"This document is published by the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), which is a strategic partnership of the CGIAR and Future Earth.Sabrina Chesterman -CCAFS Consultant; s.chesterman@cgiar.org Dr Polly Ericksen -Senior Scientist, International Livestock Research Institute (ILRI); p.ericksen@cgiar.orgAs the CGIAR moves towards a greater emphasis on impact, every CGIAR Research Program (CRP) needs to develop tools for monitoring and evaluating progress towards outcomes and impacts. As adaptation to climate change is a major theme for CCAFS, the programme needs a method for monitoring and evaluating interventions intended to foster adaptation and enhance adaptive capacity across food systems. This report set out to: Review current approaches to monitoring and evaluation (M&E) in climate adaptation;  Review current approaches to monitoring food security impacts of climate adaptation projects; and  Outline a way forward including a recommended approach and gaps in knowledge.We had hoped to produce a report explaining how food security outcomes are being monitored and evaluated within climate change adaptation projects. However, we soon discovered two problems: 1) the monitoring and evaluating of adaptation projects is fairly new, and most documents outline frameworks rather than report on experiences; and 2) as we had feared, food security per se is not an explicit focus of many of the adaptation projects we searched. Thus it was quite difficult to summarize best practice and most reliable indicators for assessing impacts on food security.Finally, recent discussions within CCAFS about the goals of using M&E to foster adaptive management and social learning have led us to re-think our approach. CCAFS is embarking on a much more outcome-oriented focus that includes learning from M&E as the programme activities are implemented. Our recommendations reflect these new discussions. Food systems are complex and dynamic, with interactions across multiple spatial, temporal and institutional scales and dimensions. However, partners implementing adaptation interventions need frameworks that they can work with now. The multiple outcomes from food systems, as well as different perspectives on what successful adaptation needs to achieve, means there will always be tradeoffs that cannot necessarily be resolved. Adaptation to climate change requires \"transformational\" or systemic change in many cases, but such change involves careful learning process, especially in order to avoid maladaptation. The long lead times and uncertainty around climate change make monitoring and evaluating adaptation more difficult than usual.We propose six main recommendations for CCAFS (or similar programmes). Agree on a common framework or outcome pathway with clear and agreed outcomes. A common framework keeps all stakeholders focused on the desired outcomes, as well as the best approach to evaluating successful adaptation. Use scenarios to handle the necessary planning under uncertainty, combined with ex-ante assessments of adaptation investments and interventions to identify robust strategies. Engage in on-going monitoring using a clear \"logic\" model to track progress of the \"robust strategies\" on the ground. Ensure that the logic model is explicit about what constitutes successful adaptation for the outcome pathway. Take a learning approach to M&E with \"stakeholders\" at multiple institutional levels. Encourage data sharing across projects doing M&E of adaptationthere is a growing consensus around priority interventions (e.g. UNFCCC Nairobi PoW, Thornton and Lipper et al. 2013) and we have evidence about the success and impact of agriculture and food security interventions on key outcomes. Develop and use a tool for managing or evaluating impact given inevitable tradeoffs among food system outcomes.Climate change is already having major impacts. Increased variability in rainfall and temperature patterns has direct implications on agricultural productivity and the resultant availability of food. This is especially acute in vulnerable areas, which are threatened by high levels of food insecurity. This chain of events can be viewed as both complex and geographically heterogeneous and guided by a range of factors, which contribute towards vulnerability in the food systems (Fussel 2010).Food systems and their resultant status of food secure or food insecure communities and populations are fundamentally affected by change; socio-economic and bio-physical, with climate change encapsulating many of the pressures on food systems and the resultant outcomes for communities. Uncertainty is an inherent attribute of future climate; this is further compounded by the complexities of food system linkages, both as a contributor to a changing climate through agricultural practices and yet highly vulnerable to the direct impacts of climate change. This creates a dynamic challenge to understand. Demand and supply of key resources to the future food systems will change; changes that are fundamentally inflicted, and to an extent controlled and linked to future shifts and fluctuations in local, regional and global climate patterns.At a global level food systems are affected by overarching trends and drivers, which filter down to national and provincial levels and have implications through to communities and households. Drivers include population growth, dietary changes and influence, governance around food systems, agriculture commodity prices and changing market mechanisms. At a broad scale the effect of globalization and aspects such as subsidies and trade restrictions also have an influence. Due to these drivers multiple uncertainties exist when predicting future patterns with food systems including agricultural commodity prices, population and income growth, investments in technological change as well as institutional and policy change (Antle and Capalbo 2010).In this frame adaptation, through projects and interventions, is a critical factor that will shape the future severity of climate change impacts on food production (Lobell et al. 2008).Ensuring this adaptation to climate change integrates food systems in their full complexity requires short-term decision and management of the systems to cater for immediate needs and shortages. In addition longer-term decisions concerning systemic level changes are needed including technology investment and physical and social capital enhancements (Antle and Capalbo 2010). In order for informed decisions concerning adaptation planning to be made, a much clearer nuanced understanding of how climatic factors affect food and livelihood security is required (Warner et al. 2012).This includes unpacking the linkages among climate, household livelihoods and food security profiles (Warner et al. 2012, Smith et al. 2008). In addition, analysis of the multiple causation pathways and complications is required, looking at the critical components that comprise food security. The four primary aspects are food availability (local or national level), food access (consumption) at household and individual level, stability of this access over time and food utilization leading to a sufficient nutritional status (IOB 2011).Adaptation to climate change needs to be seen as an iterative process, where the likely state of the climate will not be at a stable equilibrium, rather an ongoing transient process (Pittock and Jones 2000;Stafford Smith et al. 2011). Therefore adaptation responses need to be viewed and shaped appropriately. The area of adaptation is relatively new, especially in the policy and implementation arena, meaning there is little in the way of good practice to draw on (Harley et al. 2008). At the outset designing an M&E system requires a critical appraisal of what impact an adaptation project will have and what 'additional' climate change adaptation elements to a development project are in place. These are both key questions that impact on the formulation of objectives and indicators for monitoring (Spearman and McGray 2011).Monitoring refers to a systematic continuous process of tracking and reviewing interventions and activities and their results. This is within a bound context, with the aim of making adjustments to activities if deviations from the set objectives, targets or standards are found (Spearman and McGray 2011).The process of critically evaluating the monitored data and relevant proxies follows the monitoring. Evaluation assesses whether longer-term strategic project or programme goals were attained effectively and efficiently and accountable to achieving impact. Different categories of evaluation exist which can be applied to adaptation, including formative evaluation which focuses more on ways to improve a project or programme while it is still running, and often happens with ex-ante and mid-term evaluations (Pringle 2011). The alternative option is a summative evaluation, which seeks to summarize the effectiveness of the intervention after project or programme completion (ex-post) (Pringle 2011).A growing trend in the adaptation literature emphasizes the importance of M&E, however it has primarily focused on the challenge of conducting M&E, namely the categorization of adaptation interventions into thematic areas for M&E application. Where evaluation does take place, it tends to focus on the process rather than the outcome of implemented policies and strategies (UNFCCC 2010). In addition the literature has focused on the identification of factors to be considered when implementing adaptive activities and the subsequent development of indicators (Adger et al. 2004;de Franca et al. 2009). The research focus on M&E has been to attempt to measure the impacts of climate change adaptation on interventions (Prowse and Snilstveit 2010).As the definitions of how best to adapt, what adaptation entails and how it is 'additional' to development approaches continue to be debated, there is increasing necessity to develop robust monitoring and evaluation frameworks for adaptation. Current demand is shifting to the urgent need to share information and best practice especially around evidence of adaptation and detailed progress measurement. This is in part due to what M&E can potentially offer in promoting learning, as learning to adapt is as important as any specific adaptation intervention itself (Petengell 2010) and a critical component for developing effective programmes that allow adaptation to work (Frankel-Reed et al. 2009;Villanueva 2011).Monitoring and evaluation for adaptation needs to form an evolutionary and iterative process where lessons learned and identified gaps all inform future measures and enhance adaptation efforts (UNFCCC 2010). Many of the larger agencies currently have multiple criteria for measuring such effectiveness of adaptation, however the criteria are not usually focused at a sectoral level. For example the guidelines used by the Adaptation Fund's Project and Programme Review Committee (PRC) entail multiple criteria for assessment of projects such as economic, social, environmental and cost effectiveness, however as Stadelmann et al. (2011) highlight these general criteria do not allow comparison of concrete adaptation effects even at a project proposal stage.At a wider scale the Global Environment Facility (GEF) provides further examples of missing elements such as efficiency indicators and global targets for adaptation projects. This illustrates the 'moving goalposts' for adaptation M&E that make it hard to establish appropriate objectives and measures (Pringle 2011). In addition, not knowing the extent to which change may happen or how socio-economic responses will play out means it is difficult to evaluate the success or appropriateness of interventions (Pringle 2011). Therefore, when designing ex-ante assessments of adaptation, the focus should be placed on evaluating the value of the system under a range of conditions of the desirable objectives, rather than attainment of explicit goals due to the multiple uncertainties (Antle and Capalbo 2010).At the centre of climate change adaptation efforts are interventions to try and achieve a measure of adaptive capacity and stimulate adaptive action. The two processes and what they mean for an evaluation approach are described in Table 1. In practice an intervention may involve activities, which target both adaptive capacity and adaptive actions, however the distinction provides a practical way to conceptualize what is being evaluated and how performance and progress is most effectively assessed (Pringle 2011). This distinction is also relevant as the decision-making context is a major determinant of the monitoring and evaluation requirements and as such separate sets of indicators used to measure adaptation actions and building adaptive capacity are warranted (Harley et al. 2008).Where the focus is on adaptive processes and capacity, adaptation is measured upon interventions that address risk and vulnerability and attempt to foster learning and improvement. By addressing risk, the approach looks to address and quantify uncertainties of climate change outcomes in a particular context and situation. Success along these pathways involves a coherent decision stream, which integrates the contextual climatic conditions (and changes), vulnerability drivers and stakeholders' priorities and risk tolerance. In this frame the resulting M&E framework looks at the various elements of the process and considers the following questions (Spearman and McGray 2011): Quantity, relevance and quality of participant involvement in adaptation decisions  How robust is the assessment of climate risks and vulnerability and the subsequent linking to relevant and targeted adaptation interventions to address these  Sustainability of the adaptation process As Figure 1 illustrates, vulnerability is influenced by sensitivity and exposure to any given risk, within the context the adaptive actions are seeking to address. Therefore adaptive actions directly address these sensitivities and levels of exposure to the risk being targeted and feedback into the overall adaptive capacity. However it is important to realize this fits in an overall contextual situation with the linkage between the risk and vulnerability being dynamic and liable to change over multiple spatial and temporal scales. As a central pillar within vulnerability analysis, understanding the contextual perception of risk is critical as these are formed by past experience, the social and cultural environment, as well as the access to information (Grothmann and Patt 2005). Villanueva (2011) flagged this evaluation and perception of risk as a critical missing element in current evaluations of adaptation projects and programmes, and importantly as Villanueva ( 2011) alluded to: how capacity leads to action is not adequately integrated into evaluations, especially at smaller spatial scales. Interventions to promote adaptive actions focus more at a procedural level and on individual project actions. A useful distinction for evaluation to assess adaptive actions is the linkage to determinants of risk in the particular context and therefore direct actions seeking to address these. The focus on determinants is valuable when assessing how food systems interact with adaptation interventions, as it breaks down the evaluation process to understand how different elements target and interact with food system elements. This is an advantage to make the complexity of food systems more manageable.Determinants can be defined as the set of available, applicable and appropriate indicators or metrics for a select intervention for a given exposure to climate risk at a particular location (Yohe and Tol 2002). Their application to adaptive actions is useful as they can be broken down into resources, human and social capital which can be outlined for the project or programme context. The focus on adaptive actions in an M&E approach is attractive as there is more scope for direct metrics, which in an evaluation lens are very useful for reproducing and remaining objective and transparent. Importantly metrics allow inter and intra comparisons, across spatial and temporal lines and institutions of various adaptation actions and give a snapshot of adaptation progress (Pringle 2011). However caution needs to be applied when using metrics in the context of adaptation, where no direct metrics exist for measuring adaptation progress itself (Pringle 2011). Indicators and metrics selected to support an evaluation of adaptive actions need to be supported by robust reasoning for their selection.This is to ensure we monitor improving understanding at the implementation level and not only what is measurable (Pringle 2011).One An important step in M&E when concerned with adaptation is to have a robust appreciation of the range of adaptation strategies being employed by a particular project, as detailed in Table 2. This then allows a subsequent assessment of the required indicators within the evaluation exercise that allow a full evaluation of the strategy or range of strategies a project or intervention is employing. As it is an emerging field, a prudent step when evaluating adaptation is an examination of existing project categories to understand how targets for adaptation targets fit with these. For CCAFS this entails adding a sectoral focus on food security and inferring the food system linkages. Table 3 highlights some categories of adaptation and their food system linkages.However caution needs to be applied when trying to draw linkages between existing evaluation metrics and frameworks with adaptation, owing to the dynamic nature of food systems and transformations that may occur. As Hedger et al. (2009) In order for M&E to be accurate it is integral to define not only what is to be evaluated, but also to define what 'success' is in order to establish benchmarks against which to evaluate programmes, projects or specific interventions (Tanguay et al. 2010, Reed et al. 2006). These two aspects then inform the development of an M&E framework including the set of relevant indicators (Villanueva 2011). The Adaptation Fund Board (AFB 2010a) has developed useful guidance for forming adaptation baselines and targets as summarized: Review and synthesize existing information on current vulnerability, risk and adaptation measures based on previous studies, expert opinion and policy context. Evaluate and describe adaptation policies and measures in place, which influence the ability to successfully cope with climate variability. Develop baselines of vulnerability and adaptive capacity taking into account underlying historical trends over time, noting upward or downward trends over last 5-10 years drawn from records and context relevant statistics.A robust consideration of both contextual and controllable variables is required to understand their role in defining 'successful' adaptation. This definition needs to be objective from the outset to ensure the development of an M&E framework that is comprehensive. The development of the baseline allows benchmarks at the appropriate scale of evaluation, e.g.households, community or district to be set in place and form appropriate targets to be generated for interventions (Spearman and McGray 2011). As benchmarking is necessary to assess the progress achieved in a particular context (Balaban 2011) this needs to remain central in the evaluation process.Indicator based analysis provides a useful methodology to assess the performance of a policy or project towards a set of goals. Indicators allow a more empirically-informed process to evaluate decision making, and in the case of climate change adaptation to justify and evaluate adaptation actions associated with specific investments and their underlying decisions (Miller et al. 2012). Once the conceptual ideas behind adaptation projects have been operationalized, the variables can then be tested empirically through the indicators, which essentially 'measure the concept to produce data on it' (Adger et al. 2004). A wide range of evaluation needs exist when considering the intended changes and impacts from adaptation interventions. Given this range of potential evaluation needs no single set of indicators for adaptation are universally applicable.This is primarily because an indicator is a specific variable or piece of data, which has been assigned a specific role in the evaluation (Balaban 2011). In using indicators in policy and action-orientated research there needs to be an understanding that no 'one size fits all,' with context being a determining and bias factor, with multiple indicator frameworks in use across different spatial scales (Shen et al. 2011). Important contextual factors include scale and aggregation in their impact on how reliable, robust and representative the indicators are (Eriksen and Kelly 2007). The differentiation between outcome and process indicators is important in relation to how a results chain can be generated to understand adaptation processes. This is especially relevant when considering different themes and sectors a larger adaptation programme may comprise.The value of using both types of indicators is that it allows causal relationships to be built and, in the context of a specific project , breaking down individual activities to see how they contribute towards food security elements across different spatial scales. Process IndicatorsExtent to which ac vi es financed by the project contribute to food security outcomes within a adapta on approach Regional, district and local scale evaluating climate change adaptation as dynamic changes associated with climate change operate over much longer time scales. These timescales make M&E challenging as a 'snapshot' evaluation is not able to objectively assess if specific interventions are 'working'.The value of integrating multiple process indicators is their application over shorter time scales, especially useful to support continuous feedback, capacity development and learning, however they do not provide firm quantitative evidence of change, e.g. specific damage averted (Spearman and McGray 2011).When the M&E is focused on assessing achievement and success against set goals, outcome indicators measure broad impacts, which are partially but not exclusively brought about by an intervention (Lamhauge et al. 2012). At the outcome and output levels, process indicators come into effect, measuring more tangible achievements directly from an activity (Lamhauge et al. 2012). This is especially critical for using adaptation indicators to assess the impact of an intervention on food systems. This is due to the multiple short-term coping strategies such as migration, wild food crops, selling non-productive assets, reduced meal sizes and change of diet (WFP 2009), which are examples of activities employed to deal with impacts of climate change in a given context. Sufficient empirical evidence is lacking on the longer-term impact of these changes and whether they could constitute as a maladaptive actions. Therefore caution with the development of indicators must be made, as approaches often do not look directly at the distribution of vulnerability (Villanueva 2011). A balance of process and outcome indicators is essential for the M&E process to allow iterative and real-time changes to projects.Projects and programmes with a sectoral focus such as water and infrastructure have largely targeted their activities towards policy mainstreaming and awareness raising (Lamhauge et al. 2012). Few evaluations of projects formally categorized as climate change adaptation interventions have been undertaken (Hedger et al. 2009). An initial scoping of adaptation project evaluations was carried out for this report and revealed limited explicit focus on food security, its key elements and how activities and outputs in a programme structure are focusing on food system elements. A lack of clear understanding of what constitutes food security (Ballard et al. 2011) and how to adequately measure impacts is a challenge for adaptation projects if they are to attain positive impact in addressing food security through the evaluation process. Within the structure of adaptation projects, food security is often grouped under agriculture with outcomes and indicators of measurement linking the two themes.Therefore current methodological applications to M&E largely do not break food security into its component parts when evaluations take place. Evaluation approaches, whether quantitative or qualitative, commonly utilize agriculture as the core theme, over which 'food security' is stipulated as a broad overarching goal. This grouping can be problematic due to what Webb et al. (2006) describe as the risk associated with relying on correlates, where causes and consequences may differ in the strength of the linkage and association to food security depending on the various contexts.In this sense evaluations have lacked a critical analysis of which direct measures of food security are pertinent in adaptation, putting aside the integral issue of individual contexts. In light of this complexity each aspect of food security requires commensurate attention and relevant indications (Deitchler et al. 2011). In light of the lack of specific methodologies to address food systems in the adaptation process, an M&E approach using the Adaptation Logic Model (ALM) is proposed to integrate food systems. The ALM provides a good foundation for an evaluation process by giving clarity from the outset on the adaptation intervention being evaluated (Pringle 2011). A Logic Model approach to evaluating adaptation focuses on describing a program's theory of change, showing how activities connect to each other and the program aims and outcomes. The value of starting with this approach is to think beyond objectives and to integrate aspects such as scenarios of change in both unexpected and unintended outcomes. This is critical as many evaluation exercises fail to consider \"maladaptation\" as a potential outcome (Villanueva 2011). Barnett and O'Neill (2010) define maladaptation as \"action taken ostensibly to reduce vulnerability to climate change that impacts adversely on, or increases the vulnerability of other systems, sectors or social groups.\" A second issue is that adaptation success may ultimately be determined by the absence of a negative event or less change in the system than was predicted, requiring M&E to deal with measurement against a counterfactual scenario (Spearman and McGray 2011). To try to deal with this the ALM goes beyond traditional evaluations of performance, by providing and outcome orientated methodology to compare outputs and outcomes against programme purpose and objectives.Developing the ALM within the context of a project allows an examination of the assumptions underlying the intervention as well as the logic of the set objectives, and traditional processes of evaluating whether the objectives have been met (Pringle 2011). The ALM focuses the evaluation exercise on contribution instead of attribution (Pringle 2011). This is more appropriate considering the dynamic set of circumstances involved in adaptation;demonstrating the contribution of an intervention to the outcome, rather than attempting to link specific outcomes or impacts, is more realistic. This recognizes the variable conditions and future uncertainty surrounding adaptation programmes and projects, with many variables shaping the eventual (long term) attainment of an outcome, occurring over different spatial and temporal scales and not bound to the project timelines where evaluation is based.This approach places more focus and emphasis on generating evidence to determine the type, nature and level of contribution from an intervention to specific outcomes and impacts. By understanding potential synergies and tensions from the planning stage, a more balanced evaluation approach is developed (Pringle 2011). element is a clear understanding of the decision lifetime of the adaptation intervention, which is the sum of the lead-time (idea to execution of project) and the consequence time (period over which consequences of the decision emerge (Pringle 2011). This clear understanding of the decision lifetime, both to the intervention and the predicted consequences allows M&E to be planned in phases and complement activities to ensure best practice and continual improvements occur across the continuum of the intervention. Note that scenarios are often used in the ALM as a way to deal with future Different objectives target either adaptive capacity or direct adaptive actions. Furthermore, for food systems, a cross-scale analysis is required. For example, at a household level food insecurity arises when negative shocks can longer be mitigated using the available suite of coping strategies. Many shocks are intangibly linked to climatic factors, where bio-physical changes set off a series of linked events across scales which lead to food insecurity.Assets are an important proxy to allow integration of household decision-making processes in an impact pathway. This includes decisions households make to divest assets or reduce food intake in times of high stress. Assets reflect the stock of available adaptation resources and are the foundation for taking adaptive actions including social, cultural, economic and technological options (Spearman and McGray 2011). This is particularly prevalent when evaluating interventions focused at highly vulnerable populations where adaptation options are largely determined by an asset base (Prowse and Scott 2008).Through an assessment of food systems and their drivers, an ALM approach would assess how a given adaptation project has impact on both food system activities and outcomes.The Adaptation Logic Model can be complemented by the inclusion of a quantitative measure. Results Based Monitoring (RBM) integrates an assessment of the quality of the implementation effort and the results (Spearman and McGray 2011). RBM is a form of management which encourages strong performance and greater accountability for a project on achieving results (ACF 2011;AFB 2010b). As RBM utilizes quantitative measures it must be applied with caution in the context of measuring adaptation. This is especially true in the context of M&E processes evaluating the impact on food systems. A blanket indicator approach under RBM could lead to a mis-interpretation of how an action has addressed food system components, and could result in an omission of indirect adaptation benefits from an intervention that may not be captured (IEG 2013). In addition when applying numeric indicators, Fussel (2010) further advocates caution when dealing with climate variability and understanding this and highlights the need to describe the context and the 'system' where the adaptation intervention has taken place.The strategy behind a RBM framework is aimed at achieving important operational changes and improving performance (Binnendijk 2001). Consequently RBM consists of both measuring performance of a project or programme but also to learn and modify the design, which is critical for adaptation projects given uncertainty about the future. RBM frameworks applied to adaptation can incorporate monitoring and reporting at three distinct levels; programme or fund level, sectoral or level of intervention and project level (UNFCCC 2010).Tailoring RBM towards adaptation requires a consideration of longer time frames with M&E needing to track success in short (<5 years), medium (5-20 years) and longer term (20+ years) time horizons (Spearman and McGray 2011).A continuum exists between adaptation and overall development objectives, as climate change is one component potentially affecting development but not the only one (or necessarily the most important depending on context), especially in the short term. This continuum of actions ranges from more tradition development activities through to targeted and concrete adaptation measures. requires a robust approach to indicators, which adequately represent how food systems have been targeted, and interventions, which have served to enhance food systems and ultimately food security. This is particularly important with adaptation as evaluation approaches need to understand not only the set of actions undertaken to maintain capacity to deal with changes but also the decision-making processes associated with changes themselves (Park et al. 2012).We also recommend a clear focus on desired outcomes. As Table 4 reflects, there are multiple dimensions of food security that adaptation interventions need to target. Indicators selected should reflect food security itself as the primary impact and reflect household income and food production as proxy-impacts (IOB 2011).There are widely accepted proxies for failure in the supply of food such as price hikes and lack of food to purchase, as well as reduced utilization ability such as malnutrition and disease outbreaks, but there are no exact indicators of access failure (Webb et al. 2006). Figure 6 illustrates the adaptationdevelopment continuum within a food system context.A large database of food security projects with direct food security indicators can be found, security is equated to changes in production over an annual period, with a subsequent adaptive capacity measurement applied to the indicators. The critique of such an approach is the failure of the evaluation to understand the key components of food security. Simply equating food security with production increases is misguided in evaluating how successful an adaptation project may have been in addressing food security. This neglects the multiple elements that constitute the four pillars of food security and fine scale variation that occurs.Approaches to defining, understanding, and in this context measuring and evaluating achievements toward food security within adaptation projects and programmes need to appreciate historical and recent conceptual developments surrounding food security. These include what Webb et al. (2006) describe as a shift from using measures of food availability and utilization to measuring 'inadequate access' as the key proxy. In addition a shift is required from a focus on objective to subjective measures and an increased emphasis on fundamental measures rather than reliance on distal measures of food security. Webb et al. (2006) make further justification of their description of subjective approaches of analysis with activities such as village surveys where respondents express concepts of hunger and food insecurity.Although these subjective assessments provide valuable information, they ultimately express individual household members' perceptions and responses. These personal values and cultural ties reflect their status of food insecurity, which may not always coincide with an eternal or absolute standard or indicator (Webb et al. 2006). With a greater variety of activities implemented; the lack of a typical set of activities makes definition of a common set of indicators more difficult. This is especially true for indicators of the determinants of household food access, which are addressed through program interventions that include agricultural production, processing, and marketing; microcredit; and other income-and employment-generation activities. Because the interventions vary depending on the context, the appropriate way to capture their impact on the determinants of household food access is problematic (Swindale andBilinsky 2006, Coates et al. 2007). The critical element is also the definition within the adaptation projects of what is considered as a 'food secure' status to use as the analysis point in the M&E activities. An example of the methodology application using two different types of projects that take mainstream approaches to enhancing food security: Agriculture based interventions including horticulture, agriculture and agro-forestry  Food aid and assistance, including distribution, food vouchers, food for workAn adaptation project grouped under agriculture may traditionally reflect food security as an issue largely of increasing production. However in order to usefully understand how production volume reflects progress in food security the impact on yield (kg/ha) needs to also be combined with an adoption rate. In addition aspects such as land tenure security play a critical role in how likely production value may increase. With secure tenure such as a formal land certificate, farmers are encouraged to invest in land to enhance production. However this stimulus of land tenure allows land to be rented or transferred, or shared as part of a market agreement (Deininger et al. 2008) all of which can contribute towards production. Production as an element of food system activities needs to also be seen with other activities such as distribution and the role of markets.The prices producers can receive and food prices in general play a complex role in food security, with higher prices potentially increasing income for net producers but reducing food security for net consumers, motivating the need to also look at other trends such as food prices relative to wages (IOB 2011). However traditional M&E exercises which attribute only one indicator under production misses out on these key linkages. The example is illustrated in A clear logical model of how adaptation will affect outcomes has to also account for tradeoffs among different outcomes, for example enhanced food production and other regulating ecosystem services, or nutritional quality of food and the price of food. Relationships and thresholds in production systems may lead to non-linear or abrupt changes (Stoorvogel et al. 2004) and consequently further influence decision makers of various actors in the food system Thus the analysis of progress (or contribution) towards outcomes has to consider that tradeoffs may be a barrier unless they are resolved. Another critical issue for adaptation to climate change is the uncertainty the future brings, so we cannot know today if a given intervention will still make sense in 10 years. Park et al. (2012) highlight how highly complex decisions with impact life-spans lasting several decades are often based on a limited understanding of possible outcomes and consequences.Strategies for addressing the uncertainty inherent in climate change include using scenarios to identify \"robust\" adaptation options (Dessai and Hulme 2007) and looking for so -called \"noregrets\" solutions (see Vermulen et al. 2013 for more discussion of this). Finally, maladaptation is always a danger; again the use of scenarios in planning can help to avoid these, but an ongoing learning-based approach is critical. Such an approach can be drawn from transition management frameworks (Loorbach and Rotmans 2010) which first establish a 'transition arena' to group the problem and allow a shared understanding of it as well as a set of guiding principles. The second step is the identification of options for transitions and an agenda with specific goals and objectives, as detailed in the ALM approach. The third area is 'experimentation' where diverse actors involved in these transition pathways are mobilized into scenario type exercise to understand various transition outcomes. The fourth process then looks at how the M&E approach and evaluation activity can stimulate a process of social learning amongst different actors involved. The evaluation process allows this concept of double-loop learning to inform programs like CCAFS where objectives are systematically revisited and the monitoring approach redesigned accordingly to better serve the purpose of systems change (van de Kerkhof and Wieczorek 2005).M&E for climate change adaptation should have the enabling of such learning as its goal, so that programming can be corrected as tradeoffs become evident, interventions don't succeed in their intended impact or a key assumption about the future turns out to be incorrect. This allows M&E to actively and positively inform 'transformational' climate change adaptation where purposeful actions are made in response to impacts that have been defined as well as opportunities that have emerged (Rickards and Howden 2012). ","tokenCount":"5973"} \ No newline at end of file diff --git a/data/part_3/1911019846.json b/data/part_3/1911019846.json new file mode 100644 index 0000000000000000000000000000000000000000..7f7133e760524c54bc48ba3a7f70c7ccd4188cfb --- /dev/null +++ b/data/part_3/1911019846.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"de85cfe8281acf4efa254c4260d14d0d","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/564d9b33-af83-4ec3-86a0-d2b5a02b56f1/retrieve","id":"-149071291"},"keywords":[],"sieverID":"3062a08f-cdf4-4f8e-ae1e-d4638f160de2","pagecount":"4","content":"n Funders and innovators should reorient research and innovation to include sustainability and equity aims, adopting common international principles to track innovation intentions and implementation.n Funding bodies should increase funding for agrifood systems innovation as an immediate priority.Research and innovation have long lead times for their major payoffs, and they need upfront investment to meet global goals.n The global community should address critical innovation gaps. Innovation in policy, institutions and finance is vital, but rarely addressed systematically.Other underfunded areas identified in the study were post-harvest issues, local seed systems and natural resource management.n International agencies should join together to track global funding flows for research and innovation, including the proportion of funding that promotes sustainability and equity aims.Reorienting funding for research and innovation is an urgent step to transform agri-food systemsThe challenge: Current patterns of innovation funding are inadequate to transform agri-food systemsToday's investments in agri-food research and innovation will shape agri-food systems in decades to come. Innovation -in science and technology, policy, institutions and finance -will play a critical role in addressing the complex challenges of future agri-food systems. These include meeting rapidly increasing global needs for affordable, nutritious, safe and healthy food, while protecting and improving the natural environment and promoting resilient livelihoods and social equity.Are current patterns of innovation funding likely to achieve this? What needs to change? To answer these questions, a CoSAI study has mapped current funding for innovation for agricultural systems of the Global South, and estimated how much of this promotes sustainability aims (classified as productivity, economic, human, social and environmental).Overall innovation funding is estimated at about US$60 bn per year. Over 60% of this comes from Global South governments (driven primarily by China), about a quarter is from the global private sector (mainly large companies), and about 10% is from aid and development partners.The most crucial finding is that only 7% of the total funding has detectable environmental aims, and less than 5% has both social and environmental aims.Although aims don't always match outcomes, there is little evidence that multiple equity and sustainability aims can be met without clear intentions and tracking of progress.Even among international aid and development partners and large private companies, who report most diligently on sustainability aims, less than a tenth of the innovation funding analyzed has detectable environmental aims. Future innovation investment needs to be oriented towards reaching the multiple aims of sustainable agricultural intensificationenvironmental, social and economic.CoSAI's study emphasizes that intentional management of research and innovation to meet multiple sustainability and equity aims is vital. While a sole focus on one aim may sometimes help meet another aim (for example, an increase in crop productivity may help mitigate climate change) this is not guaranteed, and can come at the expense of other important aims (such as livelihoods of the poor).Adopting a standard for transparent reporting and measurement could lead to swift changes in funding patterns towards sustainability goals. Such an international standard does not exist for research and innovation, and the study found reporting to be patchy.CoSAI has therefore initiated an international Task Force on Principles and Metrics for Innovation that represents different sectors and is co-chaired by experts from FAO and the USAID Sustainable Innovation Lab. The Task Force has recommended eight Principles for Agri-food Research and Innovation and a scoring system. These are being piloted by the public and private sectors, with an aim to improve and eventually promote them for wide adoption.Research and innovation have huge payoffs but long lead times. They demand upfront investment to meet global goals and targets.The current US$60 bn yearly investment in agricultural innovation for the Global South is equivalent to 4.5% of agricultural sector output. This is low in relation to some other sectors. For example, investment in innovation in the energy sector -another key sector for climate change -is 6% of sector output. Matching that 6% would mean an additional US$20 bn every year for innovation in agriculture.Global South governments have a key role to play in providing consistent funding for innovation that supports societal goals. Current funding varies dramatically between governments. China accounts for about half of total government spending on agricultural innovation, while some governments fund very low amounts and there is scope to increase this.International aid and development partners are relatively small funders (10% of the total), but play a catalytic role. Even relatively modest funding increases for agricultural innovation would help make significant progress towards global goals.The CoSAI study identified some areas of underfunding in research and innovation for the Global South:n Policy, finance and institutional change are vital to transform food systems; however, innovation in these areas does not often receive systematic attention and fundingn Post-harvest loss and waste are critical areas for food security and climate change; however, innovation in post-harvest issues receives less than one-tenth of the funding for innovation in pre-harvest production n Innovation in local informal seed systems and farmersaved seed gets less than 0.5% of all seed innovation funding, although these are the main source of seeds for many farmers n Innovation in land and natural resources management is another area where funding is relatively low, despite its importance.Global funders and research/innovation organizations should consider how best to fill these global gaps.The CoSAI study found that current reporting on innovation for agri-food systems is patchy and short on detail. It generally lacks clear statements of intention, progress and expenditure.A Finally, international agencies to systematically track agri-food innovation funding, and how much of this is likely to promote sustainability goals. Such public information will provide incentives for funders, researchers and innovators to make the needed changes to deliver transformed agri-food systems.This policy brief draws on an overall study that synthesized data on public and private funding for innovation, and also eight case studies: India, Brazil, Kenya, USAID, IFAD, CGIAR, seed systems and agricultural finance. For more information, see the full report at: https://hdl.handle.net/10568/114762Supported by:","tokenCount":"977"} \ No newline at end of file diff --git a/data/part_3/1918981110.json b/data/part_3/1918981110.json new file mode 100644 index 0000000000000000000000000000000000000000..84d8a64b68cf61d967a8d8303c1f9da6ef0ba949 --- /dev/null +++ b/data/part_3/1918981110.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"633153e9f962d814f83f3f9d85de0465","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/8a29a1df-5926-4945-b7e5-96ef49ee4fb2/retrieve","id":"-34855649"},"keywords":["CGIAR system linkages: Saving Biodiversity (40%)","Enhancement & Breeding (55%)","Training (4%)","Information CRSP and USDA. CGIAR system linkages: Enhancement & Breeding (75%)","Crop Production Systems (10%)","Protecting the Environment (5%)","Networks (5%)","Training (4%)","Information ( 1 %) Continucd suppon for coll.aborative activities, e.g., SWNM program"],"sieverID":"959269be-28d5-4c39-84b2-903486479eba","pagecount":"60","content":"Objective: To preserve the Designated Collections and employ modern biotechnology to identify and use genetic diversity for broadening the genetic base and increasing the productivity of mandated and selected nonmandated crops.O utputs: l. Improved characterization of the genetic diversity of wild and cultivated species and associated organisms. 2. Genes and gene combinations used to broaden the genetic base. 3. In crease efficiency of breeding program using genomics tools 4. Mandated crops conserved and multiplied as per intemational standards. 5. Germplasm available, restored, and safely duplicated. 6. Designated Collections made socially relevant. 7. Strengthen NARS for conservation and use ofNeotropical plant genetic resources. 8. Conservation of Designated Collections linked with on-farm conservation efforts and protected areas. Milestones: 2004 High throughput screening of germplasm bank and breeding materials implemented, using microarray technology. Al tolerance in Brachiaria characterized. Gene discovery for drought tolerance in bean for nitrification in brachiaria initiated. Marker-assisted selection for ACMV and whitefly resistance initiated. Transgenic rice resistant to a spectrum of fungal diseases. Development of insertion mutagenesis population in rice, using Ac/Ds. Gene flow studies for bean and rice completed. Links with conservation efforts in protected areas and on farms established. Germplasm collections regenerated. Initiation of DNA banks for core collectlons. Safe-duplication and restoration continued. Biosafety field testing of transgenic cassava initiated. 2005 Efficient transformation system devolved for cassava. Bean with high iron and zinc tested and transferred to CIA T A frica program for bioavailability testing. Survey of cassava germplasm for beta carotene. SNP markers developed for bean and implemented for MAS. Targeted sequencing of cassava genome. Isogenic of QTL in rice developed and tested. Gene expression studies. Technology transfer for rapid propagation system to NARS. Testing of Ac/DS population for gene identification.2006 Scaling up of marker assited selection and transformation established for rice bean and cassava. High trough put screening for selected tropical fruits initiated. Marker assisted selected for multiple traits implemented in beans, rice and cassava. Target genes for drougt identified and tested in beans. High iron and zinc bean lines developed through markers assisted selection released for field testing. Beta carotene cassava tested in Colombia, Brazil and selected countires in Africa.Users: CIA T and NARS partners (public and private) in volved in germplasm conservation and crop genetic improvement and agrobiodiversity conservation; AROs from DCs and LDCs, using CIA T technologies.The Biofortification Challenge Program has started with $1.5 million from an expected $3.0 million World Bank grant. A grant of$47 million is being sought from the Bill and Melinda Gates Foundation over the first four-year phase ofthe program USAID has made a pledge of$6 million for the coming fiscal year. The newly formed Program Advisory Committee, chaired by Peter McPherson, President ofMichigan State University, held its first meeting in Washington on March 11-12. The PAC appointed Dr. Howarth Bouis as Director. A formal cooperative research agreement has been signed by CIA T and IFPRI, the two lead ceoters of the program A technical meeting is planned to be held at CIA T in June to develop the CP work:plan. Within this program CIA T wil1 conduct research to improve the vitamin A content of cassava and the iron content of beans.Water and Food Challenge Program In this CP CIAT is leading research Theme 2 on the multiple use ofwater in upper catchments. Research areas, objectives, research pre-proposals, and conceptual frarnework development for Theme 2 can be found at http://gisweb.ciat.cgiar.org/wcp/. Largely dueto CIA T's initiative, the Andean system ofbasins were approved asan Associated Benchrnark Basin which would take part in the Challenge Program with a budget and a part-time coordinator, to facilitate activities and develop research projects. CIA T also led the development of 19 concept notes that were submitted to the cornpetitive funding mechanism ofthe CP. In June we will know which were approved for full proposal development. Full proposals will be presented in August and decision on which wil1 be funded will be known in October, with actual work starting in January 2004.Genetic Resources Challenge Program: The revised Challenge Program proposal was submitted in February, after the Stakeholders Meeting of 14-16 January, held in Alexandria. CIA T participated in this meeting and helped forge a conunitment to investigating \"species from each crop group\" (cereals, roots and tubers, legumes, and forages) with emphasis on drought. These changes reflect significant improvements in the CP which will allow 1) CIA T to be represented on the program Steering Committee, and 2) CIA T scientists from all four crop projects to be in better positions to access the challenge program funds . It will be very important to be represented at the technical committee meeting that will be held within the first six months after the approval of the challenge program and to write competitive grant proposals. The CG ExCom is considering this CP proposal in its May 18-19 meeting. Sub-Saharan A frica Challenge Program held a stakeholders' meeting March 10-1 3 in Acera, Ghana, which four CIA T scientists attended. The proposal will be presented at the F ARA (F orum for Agricultura! Research in Africa) plenary meeting in Dakar in May, coinciding with the GF AR meeting that the DG will attend. By June the proposal will be subrnitted to the iSC. If approved by the iSC it would then go to the CG Excom. Funding could come online in late 2003 or early 2004. The CP is envisioned as using the Integrated Natural Resources Management framework within which the rnajor cross cutting themes would be on soils, policy, markets, and capacity strengthening. Further developments can be followed at http://www.fara-africa.org. It was very pleasing to note that many meeting participants naturally and spontaneously referred to TSBF-CIA T, which means this union is gaining recognition.Cross Project Integration: CIA T's portfolio of projects provides an effective structure for meeting the objectives ofthe Strategic Plan and provides a mechanism for collaboration with partners and for attracting stakeholder investment. Nevertheless, internal reflection has for sorne time now stressed the need for seeking ways to promote enhanced scientific collaboration across projects within CIA T. This was the focus of a Management-Project Manager facilitated retreat April 3-4, 2003 which identified three priority areas for cross project integration:• Implications of Intemational Conventions for Gene tic Resources • Restoring Degraded Land • Leaming to Compete Interna! task forces ha ve been formed to develop each of these ideas further into a framework conceptual paper and to identify a fund raising strategy to seek new resources to fully pursue these issues. These issues draw on airead y ongoing research in a variety of CIA T projects. By combining forces around these issues on a cross project basis, greater effectiveness in resource utilization is anticipated, as is greater attractiveness to potential donors. Although the task forces are only beginning their work, a preliminary progress report to the Management on April29 confirmed that these groups are advancing with commitrnent. A couple ofkey points on each of the integrating themes follow.CIAT's NARS partners, especially in Latin America, have expressed the need for assistance in designing their policy and scientific responses to new intemational treaties that affect how genetic resources will be managed in the future. These include the Convention on Biological Diversity, the Biosafety Protocol, and the Treaty on Plant Genetic Resources. Much CIA T research is already addressing related issues, including, for example, long ongoing research on gene flow between cultivated and wild species; more recent work on the below ground biodiversity effects oftransgenic crops; GIS research on the distribution ofwild relatives of crop species; socio-econornic analysis of the benefits of genetic resources and the distribution of these benefits.The tentative objective of the research to restore degraded land would be to improve access to multiple stress-adapted crop and forage germplasm and rnanagement tools and knowledge that enable resource-poor farmers of the tropics to restore degraded 1ands to profitability through intensifying the production and value-added processing of diverse agricultura! products. This work clearly brings together the unique strengths of CIA T research projects in competitive agriculture, agroecosystem health and rural innovation to initiate a concerted effort to mitigate the long-standing problem of land degradation. It would airn to convert hotspots of poverty and fragile land into bright spots of profitable restored land for a better future of millions of rural poor. The key factor for success is to identify and target modifiable situations. Since degradation results when the pressure exerted on a system exceeds the ability of the system to sustain it, a three-part solution of avoidance, adaptation and mitigation would be initially proposed.Learning to Compete: This issue is more fully titled as an initiative to increase incomes of the rural poor through competitive knowledge based innovation. CIA T's goal would be to make rural communities more competitive by link.ing them to the modero economy through knowledge networks. CIA T can play an important role in accessing and systematizing large amounts of information, as well as in tapping into existing global resources. However, CIAT's comparative advantage lies in putting this information into the context of resource poor farmer groups. This can be accomplisbed in devising systems to capture and systematize local knowledge, and in providing feedback mecbanisms. When developing a more detailed strategy frarnework, we will bave to clearly focus on wbat we will cboose to do well, wbile deciding wbat we will NOT do. This requires systemized feedback from the people for wbom we work. This effort would draw on, arnong others, information from CIAT commodity researcb, on CIAT's experiences witb community information management in participatory researcb and agroenterprises, and on the information and computing systems units ', experiences in managing information and data.Financia! developments are reported separately in otber presentations both to the Audit Committee and tbe Executive and Finance Committee. Gains: The rural populations in Africa, Asia and Latín America and the Caribbean benefit by increased productivity, enhanced value of the products produced, and flexibility by the availability of different processing altematives for cassava.The frrst set of S l lines planted in the field. Better understanding of methods for the control of postharvest physiological deterioration. Better understanding of gerrnplasm and processing procedures for the production of fried cassava chips. Project to develop biofortified cassava begins. First genetically modified cassava planted in the field following strict biosafety regulations.2005 The first \"trapiche yuquero\" begins full production of cassava flour. Other alterna ti ve uses in the process of scaling up. New molecular markers developed for different traits such as resistance to white flies, leaf retention, and high dry matter content.2006 The first hybrids from parental lines with sorne degree of inbreeding produced. First results from the newly developed protocol for the production of doubled-haploids. Markers assisted selection fully incorporated in the cassava breeding project.Users: Immediate beneficiaries are farmers growing cassava as a cash crop or for subsistence farrning. Close beneficiaries are processing industries related to cassava (for animal feed, for processed food, for starch or derived products).Collaborators: liTA and IFPRI (CG Centers), NARs in Asia (particularly in Thailand, Vietnam, China, India and Indonesia) and Latin America (particularly Brazil, Colombia, Cuba, Haiti and Venezuela), CLA YUCA, and private sector involved in cassava processing.CGIAR system linkages: liTA cassava breeding (5%); Objectives: To add to the well being of the rice sector with emphasis on the resource poor rice farrners by increasing genetic diversity and the stability ofhigh yielding varieties. These will require lower inputs which will reduce the production costs, help protect the environment, and make rice locally available at a reasonable price.l. Enhanced Gene Pools 2. Rice pests and genetics ofresistance characterized 3. Education and rice cultivation used as vehicles to alleviate poverty Gains: Robust high yielding rice varieties requiring lower inputs will be developed. We will provide well-characterized progenitors and advanced materials with an ample genetic base as well as training to our partners. The focus wil! be on developing the capability to increase the number of desirable traits in varieties. This will lower unit costs giving farmers higher profits as well as maintain rice as an affordable food for the consumers.2004 Two rice germplasm nurseries CIAT-ION will be evaluated with partners throughout the region. Regional breeder's workshops will be reactivated. Genetic progress and gains for populations enhanced by recurrent selection for different traits will be assessed in severa! countries. Studies ofthe genetics of complex traits including yield that used interspecific crosses and molecular markers will be completed. Marker aided selection will be used to combine complete resistant genes to produce rice that has a more durable resistance to rice blast. Molecular and virulence characterization ofRhizoctonia, which causes sheath blight will be started. Advanced populations using wild rice genes and recurrent selection will continue to be developed. These populations will include characteristics additional traits such as resistant to crinkling disease, good yield potential, aggressiveness, water stress adaptation.Molecular marker for at least five traits will be identified to use in marker aided selection and test as a breeding tools. Knowledge based activities for the srnall rice farrner will be started.Marker aided selection for multiple traits will be initiated. Participatory rice selection and breeding will be releasing new rice varieties for resource poor farmers. Advanced lines with multiple traits from wild species ofrice will be tested for national programs for their release as varieties. An interactive training for rice researchers and extension agents will be available through as E-leaming tools. Many ofthe modules will be appropriate for farmers as printed materials. The developing systematic selection methods for complex traits will increasingly become the focus ofthe genetic studies. Near isogenic lines for blast resistant genes will be used in regional studies to understand the dynamics ofthe pathogen and develop locally resistant varieties. Using water efficiently in rice systerns will be a focus of varietal development and crop management.The effectiveness of MAS as a breeding too! will be evaluated and if it pro ves cost effective then implemented as a routine activity. More systematic breeding for complex problerns such as rice blast as well as simpler characteristics will be the focus of the MAS activities. E-leaming activities will be used tojo in crop and pest management practices and participatory breeding activities. Rice as one componen! in the agricultura! community will be analyzed as a means to increase farrner's incomes. Regional networks that have been strengthen through breeder's workshops, E-Ieaming, evaluation ofCIAT-ION and participatory selection and breeding willlead to the more rapid development and adoption ofhigh yielding rice varieties with good grain quality and multiple stress resistance. Monitoring the use of the CIAT rice germplasm and the release of commercial varieties by our partners is a way to assess impact.Users: Rice researchers especially in Latín America. Ultimate beneficiaries are the LA rice farrners most ofwhom are small farrners, and the resource poor consumer who are eating rice because it is available and affordable. PROJECT IPS: TROPICAL GRASSES AND LEGUMES: 0PTIMIZING GENETICObjective: To develop and utilize superior gene pools of grasses and legumes for sustainable agricultura! systems in subhumid and humid tropics.Outputs: l . Optimized genetic diversity for quality attributes, for host-parasite-symbiont interactions, and for adaptation to edaphic and climatic constraints, for legumes and selected grasses. 2. Selected grasses and a range of herbaceous and woody legumes evaluated with partners, and rnade available to farmers for livestock production and for soil conservation and improvement.Gains: Defined genetic diversity in selected grass and legume species for key quality attributes, disease and pest resistance, and environmental adaptation. Known utility in production systems of elite grass and legume germplasm. New grasses and legumes will contribute to increased milk supply to children, cash flo w for srnall livestock and non-livestock farmers, while conserving and enhancing the natural resource base.2004 Defined utility of Flemingia, and Lablab hay as feed resources for dairy cows.Opportunities are identified in Africa to pro mote the utilization offorages developed by CIA T.2005 Methods and tools available to enhance targeting and adoption of multipurpose forage germplasm in srnallholder production systems in Central America.A new Brachiaria hybrid with better adaptation to dry season and with higher seed yield available for release in the dry tropics.2006 Widespread adoption of improved forage technologies in the subhumid and humid tropics ( e.g. Central America and SE Asia).A Brachiaria hybrid with resistance to different spittlebug species, with high forage quality and high seed production available as a commercial cultivar to farmers in the tropics.Users: Governmental, nongovernmental, and farmer organizations throughout the subhumid and humid tropics who need additional grass and legume genetic resources with enhanced potential to intensify and sustain productivity of agricultura! and livestock systems.Collaborators: National, governrnental, and nongovernmental agricultura! research andlor development organizations; SR Os (Universities of Hohenheim and Gottingen, CSIRO, JIRCAS, ETHZ); priva te sector ( e.g. Papalotla).CGIAR system linkages: Enhancement & Breeding (30%); Livestock Production Systems (15%); Protecting the Environment (5%); Saving Biodiversity (40%); Strengthening NARS (10%). Participates in the Systemwide Livestock Program (ILRI) through the Tropileche Consortium.CIAT project linkages: Genetic resources conserved in the Genetic Resources Unit will be used to develop superior gene pools, using where necessary molecular techniques (SB-2). Selected grasses and legumes will be evaluated in different production systems ofLAC, Asia and Africa using participatory methods (SN-3) to target forages (PE-4, SN-2) and to assess their impact (BP-1), and in rurallivelihoods and in natural resources conservation (PE-2, PE- Objective: To provide information and support to partners in the public and private sectors to promote the production, processing, and marketing oftropical fruits by rural communities, and thus increase wealth and improve welfare of current and future generations in the countryside.The project's first phase is to obtain a stable fund ing base for the initiative. The present level of commitrnent of core funding for this project is so ridiculously low that all plans for the future are totally dependen! on satisfying the whims of externa! donors and obtaining special project funding. ln effect future planning for this project wi ll be negotiated with donors rather than determined intemally by CIA T. Hence the plans established here are indicative ofthe directions in which we would like to move but are totally dependent on reaching satisfactory agreements with donors. Once the funding is base the following outputs are tentatively expected: l . lnteractive Web-based information system in place for farmer groups, development agencies, and entrepreneurs to determine which tropical fruits would grow successfull y in a given locale. Objective: To develop and transfer knowledge systems and pest-and-disease management components for sustainable productivity and bealthier environments, through the reduced or rational use ofpesticides.Outputs: l. Pest and d isease complexes described and analyzed. 2. Pest and disease management components and IPM strategies and tactics developed. Gains: Increased crop yields and reduced environmental damage. Natural enernies ofmajor pests and diseases evaluated. IPM developed, and tested and verified on farrns. Increased knowledge of the biology and ecology of pests and diseases and of the damage they cause. Molecular characterization ofmajor arthropod pests, pathogens and diagnostic kits made available for developing durable host plant resistant. FPR methods for IPM developed and implemented. Biological control agents established in new regions. Pests and diseases on additional food and fruit crops evaluated or characterized. Objective: To develop and disseminate to clients strategic principies, concepts, methods and management options for protecting and improving the health and fertility of soils through manipulation ofbiological processes and the efficient use of soil, water and nutrient resources in tropical agroecosysterns.l.Sustainable and profitable ISFM (integrated soil fertil ity management) practices developed.Irnproved agroecosystem health through management ofBGBD (belowground biodiversity). Gains: NARES , NGOs, IARCs, AR!s and private sector working together, in partnership with farmers on ISFM, in key researcb sites in the savannas, forest margins and hillsides of Africa and Latin America. Soil-quality indicators to assist in assessing soil health are published and used by farmers and extension workers. Guidelines are widely disseminated for selecting and managing productive and resource-use-efficient crop, forage and fruit components in land use systerns (notably Quesungal 1 agroforestry, cereal-legumesllivestock and banana and cassava systerns). Decision-support systems for identifying profitable options to manage organic and mineral inputs, crop residues, and green manure for sustained agricultura! production and for controlling erosion are disseminated and used by farmers, NGO's and NARES. Capacity of NARS for integrated soil fertility and below ground biodiversity management is strengthened through the AfNET network in Africa and MIS consortium in Central America. Rural poor farmers benefit from adoption of improved food systems that result in increased agricultura! productivity, higher income, and environmental protection.2004 Innovations for building-up an arable !ayer and recuperating degraded lands in savannas available. Indicators of soil quality used for farmer's decision making in hillsides, forest margin and savanna agroecosystems. Decision making too! available for combined man&gement of organic and inorganic resources. Decision support tools available to identify more producti ve, profitable and resilient smallholder farm production strategies. Documentation and analysis of farmers' perceptions, preferences, economics and information flow pathways and use of local knowledge within research to extension linkages. Analysis of the role of social differentiation in the creation and maintenance of soil fertility 2006 The relationships between agricultura! intensification and the diversity, abundance and function of soil biota understood and processes involved in indirect management of BGBD through cropping system design and in direct management through inoculation strategies quantified. CGIAR system linkages: IWMI, CIP, CIMMYT, ICRAF, ILRI and Water and Food CP.CIAT project linkages: Soils (PE-2), Land Use (PE-4), Agroindustries (SN-1), Participatory Methods (SN-3), Forages (IP-5), Impact Assessment (BP-1), Bean lrnprovement (IP-1), Cassava (IP-3), Rice (IP-4) Projects. Delivery of second-order information products ( e.g., policy guidelines, ana1ytical methods, or information exchange networks) that will reduce the risks associated with specific land use changes that might otherwise threaten the well-being of significant numbers of rural people in the tropics. These will address specific issues such as water productivity, clima te change, and application of new germplasm.Collaborators: ICRAF, CIP, ILRl, ECLAC, Univ. Guelph (Canada), IICA (Costa Rica), liLA (Italy), IIASA (Austria), WRl (USA), RIVM (Netherlands), TCA (Amazonian Cooperation Treaty), Earth Council (Costa Rica), World Bank; NARS, GOs, and NGOs in Latín America: DNP, IGAC, MinAmbiente, IDEAM, CARDER Threats of global climate changc (GCC) ID regional crop dll\\ cr:. uf IJnd u:.c cloJoo¡:c de vd opcd production dcfined for entire regions. Threa!S of climalc change ID plant gene tic resourccs defined.Modcls developed for dcfining !he impact ofGCC on the potemial productivity of a range of crops developed Oul¡out 3 Analy>C> and predictions ofsocioeconomic factors Spatial processes driving land use change identified . inllu.:uciug laud use dcvclopn>elll pcrfom>ed.Distribution of poveny and its causes identificd more accurately, using spatial infonnation.Ao1.1ly:>es aood predictions of vulnerability of land use lndicators of vuloerability adopted by policy agencies. >)>lCIIL> lo >Ognilkalll c\"cmal c>en!S pcrfom~ed Spatial infom~ation on vulnerability uscd ID reduce investment risks in atleast onc: country case study. Melhods of vulncrability assessment published with case stud y at national or regional scale by June 2004.Ex ante analysis of!he benefits ofrisk reduction publishcd.Case study documented of farmcn gcnerating infom1111ion and mcrging with \"hard\" data on naturalland resources. Network of fam~tr suppon initiated, including a minimum of 200 users at second-order organization leve!. Genc:rated methods and tools documented and disseminated.lmportant Assumptions O utputs:1. Methods for identifying viable rnarket opportunities that would incorporate srnall-scale farmer selection criteria. 2. Decision-rnaking tools and institutional models for strengthening rural agroenterprises and complementary support services. 3. Methods and tools for developing local capacity to select and develop postharvest processing and handling technologies. 4. Options for integrating collective action with business organization to establish sustainable enterprises. 5. National personnel trained in the design and execution of agroenterprise development projects.Gains: Rural populations in CA, Andean Region, eastern and southem Africa, and Southeast Asia gain enhanced capacity to establish srnall-scale agroprocessing enterprises. Linkages improved between conservation, production, added-value processing, markets, and consumers. Sustainable production practices catalyzed and adopted more widely. Community-based groups continue with their own resources. Institutions within each consortium maintain their matching support for the SWNM program.NARES have means to execute programs.Policy makers are open to dialog with SWNM program.-Objective: To assess and develop methodologies and organizational innovations for gender-sensitive participatory research (PR), and operationalize their use in plant breeding (PB), and in crop and natural resource management.Outputs: l. Methods for PPB developed and mainstreamed into scientific practice and organizational policy.2. Methods for PR on NRM developed and mainstreamed into scientific practice and organizational policy.3. Gender-sensitive methodologies suitable for pre-adaptive PR developed and broadly irnplemented. 4. Evaluation and application of innovations for institutionalizing gender-sensitive participatory approaches. 5. Innovative approaches to capacity building developed and undertaken. 6. New partnerships among the IARCs, NARS, NGOs, and farmer groups developed.Gains: Accelerated learning from existing experience and generation of new, widely applicable, methodologies for pre-adaptive PR and GA. The CGIAR and NARS will access a worldwide exchange of expertise on PR and GA among a wide range of institutions. Considerable savings and increased irnpact from NARS generated by better designed technologies. Indigenous systerns of crop development and NRM will be strengthened and integrated in a mutually reinforcing way with formal research. Poor rural women will be irnportant participants in and beneficiaries of research. The development and adoption of di verse gerrnplasm will be greatly accelerated in rnajor food crops.Milestones: 2004 Programmatic collaboration undertaken with at least two CGIAR Challenge Prograrns and at least one non-CG regional program Publication and dissemination of an analysis of impacts of different PR approaches under contrasting conditions. Two case studies undertaken assessing the irnpact of applying gender analysis.2005 At least five CGIAR centers with partners incorporate PR into core (mainstream) PB andlor NRM prograrns. Action research undertaken and tools developed for enabling scientists to capture product and process impacts , and to integrate learning from lA into research planning and adaptation.2006 A core capacity in the CGIAR to conduct PR has been institutionalized in terms of people trained in the methods, changes implemented in research organization, multi-year funding committed and institutional policies adopted, such that the scientific use ofPR is an organic part of research, project design, staff recruitment and capacity building in the CGIAR.Users: Poor rural women farmers, poor farmers in general, CGIAR centers, NARis, NGOs, and rural grassroots organizations.Collaborators: IARCs, NARS, NGOs, grassroots organizations, universities.CGIAR system linkages: Enhancement & Breeding (25%); Crop and Livestock Production Systerns (18.8%); Livestock (6.3%); Protecting the Environment (30%); Training (8%); Information (8%); Organization and Management (2%), Networks (2%). I am not sure wbat this refers to. However, if you like, we could provide an annex of a table that lists all our partnerships ( CG and non-CG and the nature of those partnerships. Let me know.CIAT project linkages: IP-2 (CIAT-Africa, Beans), IP-3 (includes CBN? Ifso, yes.), PE-2 (TSBF. Ifso, yes. Otherwise, no), SN-3 (IPRA), and BP-1 (Impact assessment). I only ha ve a very old list of the project codes, so I would like to verify that these are correct, or if they need updating.-+6 ","tokenCount":"4436"} \ No newline at end of file diff --git a/data/part_3/1927569365.json b/data/part_3/1927569365.json new file mode 100644 index 0000000000000000000000000000000000000000..adc8e107f4194557bea3362319dfad00780bf331 --- /dev/null +++ b/data/part_3/1927569365.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"ef6bea1d33a9a092a8b362ac4380dee4","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/8c16a438-7251-4bb0-820b-d5a06f2e986b/retrieve","id":"689265200"},"keywords":[],"sieverID":"bd2baad3-8d33-47a5-90e2-da87160d70e4","pagecount":"42","content":"The International Center for Tropical Agriculture (CIAT) -a CGIAR Research Center -develops technologies, innovative methods, and new knowledge that better enable farmers, especially smallholders, to make agriculture eco-efficient -that is, competitive and profitable as well as sustainable and resilient. Headquartered near Cali, Colombia, CIAT conducts research for development in tropical regions of Latin America, Africa, and Asia.Figure 1. The agricultural sector in Kenya is a fundamental part of the economy, contributing 25% directly to the total Gross Domestic Product (GDP), and another 27% indirectly (Government of Kenya, 2010). It accounts for 65% of Kenya's total exports and provides more than 70% of informal employment in the rural areas. Therefore, agriculture is not only the driver of Kenya's economy but also the means of livelihood for the majority of Kenyan people (Government of Kenya, 2010). Soils are fundamental to agricultural production.And their good management is vital for sustainable agricultural production (Sigunga, 2011). Yet, in sub-Saharan Africa soils are eroded and their fertility depleted at an alarming rate, and Kenya is no exception (Batjes, 2014). In addition, agriculture is highly exposed to climate change, as rainfed farming activities directly depend on climatic conditions (Grant, 2005). At the same time, agriculture also directly contributes to climate change through greenhouse gas (GHG) emissions and a reduction of (soil) carbon stocks in agricultural land.Globally, agriculture is a principal source of climate change, directly contributing 14% of anthropogenic GHG emissions, and another 17% through land use change; the latter mostly in developing countries. The majority of future increase in agricultural emissions is expected to take place in low-to middle-income countries (Smith et al., 2007). While industrialized countries must dramatically reduce current levels of GHG emissions, developing countries face the challenge of finding alternative, low carbon or green growth development pathways. In this sense, climate-smart agriculture (CSA) aims at transforming agricultural systems to sustain food security under climate change. Although CSA aims at improving food security, resilience and mitigation, it does not imply that every recommended practice should necessarily be a 'triple win'. Mitigation in developing countries should be a co-benefit, while food security and resilience are main priority. Low emission growth paths might have more associated costs than the conventional high emission pathways, thus monitoring can open opportunities for climate finance funds (Lipper et al. 2014). CSA is complemental to sustainable intensification (SI), aiming at increasing agricultural productivity from existing agricultural land while lowering the environmental impact. SI's focus on resource use efficiency and CSA's pillar on mitigation both focus on achieving lower emissions per unit output. Increased resource use efficiency contributes to resilience and mitigation through increased productivity and reduced GHG per unit output (Campbell et al., 2014). Both, CSA and SI underline the importance of potential trade-offs between agricultural production and environmental degradation. In fact smallholder farmers are confronted with trade-offs almost on a daily basis. Following the participatory workshop that described four to six farming system types per country, potential representative farms were jointly identified by CIAT, GIZ, GOPA, and ministry staff for a rapid assessment.The rapid assessment is based on a case study approach thus only one farm per type was selected and sampled. The head of the household was interviewed and household data collected using a questionnaire similar to IMPACTlite (http://bit.ly/2h3KAZf). Information about crops and livestock was collected including data about plot sizes, yields, use of crop products and crop residues, labour activities and inputs. Similar information was gathered for the livestock activities if any. In some cases, soil samples were taken from different plots.The data collected served as input for the model used for the rapid assessment. The rapid assessment model, named Kalkulator, calculates the following indicators:Productivity: Farm productivity was calculated based on the energy (calories) produced on farm -crop and livestock products -and compared to the energy requirement of an adult male equivalent to 2500 kcal per day (AME). Energy from direct consumption of on farm produce was calculated by multiplying the energy content of ever crop and livestock product with the produced amount. It is thus important to note that the indicator only represents food/energy production from the own farm, and does not include food that the household might purchase with additional income. Energy contents were based on a standard product list developed by the US Department of Agriculture USDA (source:http://bit.ly/1g33Puq). The total amount of energy produced on the farm was then divided by 2500 k cal to obtain the number of days for which 1 AME is secured. For the sake of cross-farm comparability, these data were then also expressed on a per-hectare basis.Soil nitrogen balance: This balance was calculated at the plot level following the empirical approach of NUTMON as described in Van den Bosch et al. (1998).The following soil N-inputs were considered i) mineral fertilizers, ii) manure, iii) symbiotic fixation by legumes crops, iv) non-symbiotic fixation, and v) atmospheric deposition. The N-outputs are i) crops and residues exported off the field, ii) leaching of nitrate, iii) gaseous loss of nitrogen (NH 3 and N 2 O) and iv) soil erosion. For calculating N inputs from manure and fertilizer, and N outputs from crop and residues, farmer reported data on quantities from the household survey was used. For N inputs from N fixation and deposition as well as N outputs from leaching, gaseous losses and soil erosion, transfer functions were used that are based on the rainfall and soil clay content of the specific site. The N balance is calculated for each plot (kg N/plot) and then summed to obtain the field balance expressed in kg N per farm. These results are then, again, converted into kg N per ha.Soil erosion: Soil erosion is calculated at plot individual field level following the Revised Universal Soil Loss Equation (RUSLE; Renard et al., 1991;Amdihun et al., 2014). Further information on each factor can be found at: www.iwr.msu.edu/rusle/factors.htm GHG emissions: GHG emissions are calculated at farm level following the guidelines of the International Panel on Climate Change (IPCC, 2006). Emissions from livestock (methane from enteric fermentation), manure (methane and nitrous oxide), and field emissions (nitrous oxide) are taken into account as illustrated in Figure 1. Household survey data on livestock feed, livestock numbers and whereabouts, manure and fertilizer use, crop areas, and residue allocation was used as input data for the calculations. Most of the calculations follow IPCC Tier 1 methods, while Tier 2 calculations were performed for enteric fermentation and manure production. et al. 2016a). We did, however, sample a resource-poor female-headed household. As there are some important lessons to learn from this farm, it was treated as a distinct type and is here reported alongside the other four farm types.Resource-poor female-headed household: This farm type is characterized by a female household head.The farm covers around 1-2 acres of land and has no livestock, low productive assets, low income, low technology adoption, reliance on scarce family labour only, and low level of education. This farming system is characterized by low yields and low soil fertility due to low input use, but a minimum level of manure needs to be purchased.Small mixed subsistence: Most of the farm, 1-2 acres in size, is under cultivation. Livestock herds are rather small with an average of not more than 5 local cattle, with no option for grazing on (communal) land outside the farm. Main crops grown are maize and beans though farmers have diversified and grown other crops to minimize risks of crop loss from attacks by pests, diseases, weeds and unfavourable weather conditions. Farmers in this category also have little resources, low yields and low soil inputs.Medium dairy commercial farms: have 3-8 acres of land with both livestock and crop production, specializing in dairy production mainly for sale. Their dairy cows are mostly improved (mixture of local and exotic) breeds. This farming system is characterized by high-quality feeds, zero-grazing, artificial insemination services and potential for value addition as the milk can also be processed into by-products and sold at a higher price. The combination of improved cow breeds and improved feeds often results in a higher milk production of on average 10 litters per cow per day. Farmers in this category have also embraced modern technologies such as hay-making, silage production, biogas production and coolers for their milk. Key output markets for this type of farm include milk brands such as Brookside, schools and cooperatives, among others.Medium horticulture commercial: This farm type comprises 3-8 acres of land with dairy and crop production but specializing in horticulture production. a guide to determine in which county the case study farm would be selected for each of the types.Most of the large commercial farms are found in Bungoma and most of the medium dairy commercial farms in Kakamega. Therefore, the representative farms for these two types were selected from these two counties. One small subsistence mixed farmer and one resource-poor female headed household was selected from Siaya, while a medium horticulture commercial farmer was selected from Bungoma (Figure 2). The following scenarios represent soil rehabilitation interventions that are currently promoted by GIZ and partners in Western Kenya or that are under discussion for future promotion. All assumptions are described according to impact dimensions and summarized in the Appendix Scenario Assumptions.Three distinct soil fertility improvement scenarios were implemented:i. The liming + DAP scenario assumes that 15 kg N/ha DAP was applied to all non-legume crops across all farm types that are not already receiving other fertilizers. At 18% N content of DAP, this corresponds to 83 kg fertilizer/ha. In response to the addition of lime and N-fertilizer, all yields were assumed to increase by 30%.ii. In the compost-only scenario, all crop residues are assumed to be removed from the field for composting. 30% of the N in these residues is lost to the environment during composting. The yields were assumed to increase by 20%.iii. The lime + compost scenario combines the previous two scenarios. The yields were assumed to increase by 30%. This scenario was not applied to the large commercial farm.In addition, a Conservation Agriculture (CA) scenario was assessed by introducing zero-tillage and soybeans in rotation or intercropping, depending on the farming system at hand. Both cropping systems are covering the soil well, thereby reducing erosion and suppressing weeds, while at the same time adding N to the farm by biological nitrogen fixation (BNF).Vegetative strips of vetiver (\"Veg. strip vetiver\") and Napier (\"Veg. strip Napier\") are the two scenarios in which soil protection measures are implemented. As these strips require space, for all farm types, 10% of the area under maize and other cereals are replaced with either vetiver or Napier. Milk production is assumed to increase due to improved feeding (10% increase with vetiver and 20% with Napier). More manure is produced as consequence of increased milk production.The small mixed subsistence and the medium commercial horticulture farms have the highest productivity per hectare compared to all three other farms (Figure 3). This is due to the high proportion of maize produced on both farms, beans on the small mixed and vegetables on the medium commercial horticulture farms. On the mixed commercial dairy and on the large commercial farm, there is a higher percentage of calories from livestock products compared to the other farms. Both these farm have the highest productivity at the farm level but not per hectare. On the mixed commercial dairy farm, 60% of calories come from livestock products, and 40% from crop products. On the large commercial farm nearly 50% of calories come from livestock and 50% from crop products (all of which is maize, as no calories are counted from coffee). The poor femaleheaded household has the lowest productivity -per hectare and for the entire farm, which is due to the absence of livestock and low crop production. The medium commercial horticulture farm has the most diversified production, counting 15 different sources of calorie production. The resource-poor female headed household and the large commercial farmer have the least diversified calorie production base with four and two sources only.Introducing the technologies described earlier is projected to generally increase productivity across all farm types (Figure 4). This is mainly due to the increases in yields and in animal productivity (i.e. milk) that result from additional inputs of N or from increasing the area of legumes (high calorie content).The vegetative strips have the least impact on productivity across all farm types. Although improving soil fertility to the areas where they are placed and thus potentially increasing crop yields to those fields, a) these strips cannot be consumed directly, and b) vegetative strips reduce the cultivatable area. Conservation agriculture impacts productivity the most on the poor female-headed household and on the mixed commercial dairy farms. In the first case, this is because of the increase in area under cultivation in the short rainy season (in the baseline, only 0.04 out of 0.32 ha were cultivated) and from the addition of soybean (source of high calories). Keeping the soil covered throughout the year through adding cover crops (mainly legumes) as intercrop or rotation is one of the three principals of CA. The farms where livestock products (especially milk) are important sources of calories, can improve productivity from the grass strips because of improved feeding. This is the case for the mixed commercial dairy and the large commercial farms. A negative N balance was calculated for all farms except the small mixed subsistence and large commercial farms (Figure 5). On the small mixed subsistence farms, the positive N balance is mainly due to the high livestock density. Five cattle are kept on the farm and fed on 70% off-farm grazing. All of the manure produced on-farm is used to fertilize the half a hectare cropland. This combination from nutrient import through off-farm grazing and nutrient return on a small piece of arable fields leads to nutrient abundance. On the large commercial farm, the N balance is positive mainly because of the use of inorganic fertilizers for the coffee crop. On all the other farms the major loss of N is due to N being exported from the fields in the form of harvested crop products. This is specifically the case on the mixed commercial horticulture farm where a lot of N is exported out of the fields through nutrient-rich crop harvest and sale without sufficient compensation through application of on-farm manure, compost or other fertilizers.Implementing the different soil technology scenarios affects the N balance differently across farms (Figure 6). The N balance improves the least across interventions in the mixed commercial dairy, the medium commercial horticulture and the large commercial farms.In the mixed commercial dairy farm the N balance ranges from -30 to -15 kg N/ha, in the medium commercial farm from -47 kg to -16 N/ha and in the large commercial farm from 5.6 to -38 kg N/ha. There is more impact seen on the small farms especially for the soil fertility improvement interventions. The balance ranges from -8.7 to 68 kg N/ha on the poor female-headed household farm and from 71 to as high as 168 kg N/ha on the small mixed subsistence farm. The vegetative strips and CA have the lowest impact compared to the three soil fertility improvement interventions. In this study, most farms sampled were found on relatively flat land. Erosion was greatest on the medium commercial horticultural farm at close to 1 ton of soil/ha. There was the least erosion on the mixed commercial dairy farm less than 200kg soil/ha (Figure 7).In the scenarios only the vegetative strips were considered to have a direct impact on soil erosion acting as a physical barrier (Figure 8). The technology of conservation agriculture had different impact on erosion. This is mainly due to the change in crop cover from the baseline, as new crops were introduced in the crop rotation. In some cases, soil erosion decreased such as in the small mixed farm, slightly decreased in the medium horticultural farm and increased in all other three farms. The large commercial farm has the highest emissions per farm, first of all because of the significant size of the farm, and because of the high number of livestock and high fertilizer input to the soils triggering nitrous oxide emissions. The small mixed subsistence farm, however, has the highest emission intensity (CO 2 e/ha) because of the high number of livestock per area. Here enteric fermentation is the major source of GHG emissions. Soil nitrous oxide emissions contribute comparably little because of the lower use of inorganic inputs and the low \"make use\" of the cow manure as organic fertilizer. In comparison to the small mixed subsistence farm, the mixed commercial dairy farm has slightly lower per farm emissions and especially a much lower GHG emission intensity. The lower livestock number (only two dairy cows) explain the big difference in emissions from enteric fermentation. In addition, the livestock production on this farm is more intensive, i.e. less animals and less area are needed to produce a similar amount of animal products. As this farm's land size is bigger, the emission intensity is lower. The poor female-headed household has lowest emission intensity because there is no livestock and no fertilizer use, closely followed by the medium commercial horticultural farm with its small animal herd and limited fertilizer application. In the three first interventions, additional N is added to the soil. This by consequence, applying IPCC tier 2 method, increases soil nitrous oxide emissions and thus overall farm GHG emissions (Figure 10). There is greater relative change from the baseline in the poor female-headed household farm because it is the most extensive. Thus, any input will increase emissions.Although the percentage change is large (compared to the other farms), this farm still has the lowest GHG emissions overall. Similarly, there is a relatively big change in the medium commercial horticulture because of the low baseline GHG emissions. The only soil fertility improvement intervention with a positive effect, i.e. reducing the GHG emissions per area of land, is composting at the large commercial farm. On all other farms, GHG emissions increase after the implementation of the three outlined soil fertility improvement measures lime+NPK, lime+compost, and compost only. The CA intervention has mixed impacts depending on the farm type.On the two small and on the large commercial farm, there is virtually no change in GHG emission intensity. On the medium commercial dairy farm the emission intensity is projected to go up slightly, whereas in the medium commercial horticultural farm, CA is projected to cause a small decrease in emission intensity. Under baseline conditions, GHG emission intensity is lowest for the female-headed farm and highest for the small mix subsistence farm.The emission intensity changes, on the other hand, are highest for the first of these and lowest for the second, across the scenarios. The high emission intensity at the dairy farm is due to the high stocking rate, with most emissions coming from livestock. The small changes in emission intensities in the dairy farm are caused by little changes in livestock management. In other words, as long as the livestock numbers do not change, emission intensity will not change significantly.Trade-offs occur when improvement in one dimension of farm performance cause deterioration in another dimension. We plotted changes in productivity -as food security indicator -against the changes in resilience (N balance, Figure 11) and mitigation (GHG emission intensity, Figure 12). These figures show trade-off and synergy patterns across farm types and soil technology scenarios.In Figure 11, the majority of dots are in the upper right quadrant of the graph, indicating that improving the N-balance also improves productivity (or vice-versa), representing a synergetic situation. Yet, it should be noted that even a positive changes in N-balance could still mean a resulting overall negative N-balance. Also, a further increase in N-balance in farms that already have a positive balance to start with, is not necessarily desirable, as this could lead to N-losses to the environment and associated eutrophication of water bodies and streams.Vegetative strip dots are mostly in in the lower right quadrant, meaning that these improve productivity at the expense of the N-balance (trade-off), which seems inevitable as long as these are not adequately fertilized or (N-fixing) legumes included. On the medium commercial horticulture farm, vegetative strips also lead to a reduction in productivity. When looking at synergies and trade-offs between changes in productivity and GHG emissions (Figure 12), the following conclusions can be drawn: even more strongly than in Figure 8, most of the dots are in the upper right quadrant. However, in this case it indicates a trade-off as increasing productivity comes at the expense of increased GHG emission intensities. However, some technologies -such conservation agriculture -have the potential to perform well in terms of increasing productivity without increasing GHG emissions. On the large commercial farm, introducing compost presents a potential win-win solution as well.The poor female-headed household, however, produces much less kcal than the other farms and is thus scoring badly on the amount of greenhouse gases emitted relative to its contribution to food security. In this report a fairly simple set of three indicators was used for assessing the climate-smartness of farm types and soil protection and rehabilitation measures in Western Kenya. This allowed for a truly rapid assessment across implementation countries that can feed into decision-making processes in the on-going GIZ Soil Program.Needless to say, the choice of indicators has its limitations. The use of calorie-based production of crops, milk and eggs as a productivity indicator disadvantages farms with higher importance of livestock production as compared to staple crops. The livestock farms are first of all disadvantaged by the exclusion of meat, secondly by the low calorie content of milk and eggs. The high protein content of livestock products renders them however very important for nutrition security, especially so for young children and pregnant women. This should be kept in mind when evaluating production. Adding up calories produced from the various crops and livestock products and comparing business-as-usual with best-bets, is however a simple and easy-to-grasp way of indicating changes.Focusing on soil fertility (approximated by the field-level N-balance) as the resilience indicator excludes a large number of important issues that contribute to farmers' resilience to climate change, such as income stability, access to skills, finances and information, crop/ livestock diversity, etc. Indeed soil organic carbon could not be modelled in the rapid assessment. SOC has the potential to offset GHG emissions through carbon sequestration.Despite the short-comings of the indicators used, the rapid assessment clearly shows that there is a large variation in the baseline climate smartness across large different farm types. One of the most important factors influencing this is the number of livestock and the efficiency of the livestock production. Livestock production depends on relatively large land sizes (for feed production) and therefore scores quite low in terms of production and productivity. The livestock manure, however, has the potential to contribute considerably to a farm's soil fertility. In some cases it is doing so already, in other farms the manure is underutilized and just left to contribute to GHG instead.Appendix I: Surveyed farm details Legend Temperature (°C) 5. 3 -12.4 12.4 -16.7 16.7 -19.5 19.5 -21.3 21.3 -22.8 Major townMean temperature","tokenCount":"3844"} \ No newline at end of file diff --git a/data/part_3/1927607176.json b/data/part_3/1927607176.json new file mode 100644 index 0000000000000000000000000000000000000000..bf5e546815cc8070469a69cf2ecd8ec13b8fceee --- /dev/null +++ b/data/part_3/1927607176.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"e4b8b66f88c50fe0bc9470b1cab3ae83","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/ace21b00-6859-4f89-9f2e-f834484c4fed/retrieve","id":"959408827"},"keywords":[],"sieverID":"14d4b569-f0e1-4ba1-843c-9db55e983723","pagecount":"7","content":"Es el proceso a traves del cual se cruzan plantas o animales de diferente constitucibn genetica, con el objeto de lograr un resultante o producto con las caracterlsticas deseables presentes en los progenitores.Es el proceso de eliminar las anteras de un boten floral antes de la madurez del polen.LA HIBRIDACIDN PUEDE DARSE:-Entre variedades.-Entre selecciones.Entre especies.AS 1 111 S110 SE PUEDE TENER:-Cruza simple-Alcohol.-Etiquetas.-Lápiz.-Lentes de aumento.El manejo agronómico debe ser óptimo y bajo condiciones controladas, en lo posible.C011PARACION DE LAS Th:..:.l.i TECNICAS DE HIBRIDACION A. HIBRIDACION POR EI1ASCULACION CON EL ESTISftA CUBIERTO.Se da proteccibn a los erganos reproductivos luego de realizar la polinizacibn.Como el emascular evita la autofecundacien, mayor confiabilidad en la cruza efectuada.-Es de manipulacien dificil y delicada.Solamente se puede observar el estigma en el de realizar la polinización. estigma antes de La eliminacibn de las anteras de los estambres, da mayor seguridad al cruzamiento.-Este proceso requiere mas tiempo.-Los erganos reproductivos quedan un poco mas expuestos a condiciones externas al ser eliminadas las alas.-Se requiere un especial cuidado al manejar el estigma.C.HIBRIDACIDN SIN BtASCUL..ACIDN.El proceso esdebido a que no se realiza la emasculación.Si se opta por arrancar !'as alas del botbn floral, se puede observar el pistilo antes de efectuar la poi i ni zaci bn.-Hay un mayor peligro de autofecundacibn.Cuando se opta por no arrancar las alas, sólo se puede observar el pistilo en el momento de efectuar la poi inizaci bn.-Existe la posibilidad de polinizacibn cruzada natural. Humedad.Temperatura.Luminosidad.Aireoci bn.Dias a floración.Competencia intraplanta.Adaptación.Estado óptimo del botón floral madre.Estado bptimo de la flor padre.NUmero de botones por racimo.NUmero de cruzamientos por planta. Uso de hormonas.l.Aunque los cruzamientos pueden ser hechos a pleno campo, una protección relativa de las plantas en una casa de malla es deseable para evitar riesgos por lluvias fuertes, viento, insectos grandes, etc.Se ha encontrado que entre las siete y las once horas se aumenta la eficiencia en el trabajo de hibridación.3.Se sugiere emplear fechas de siembra distanciadas una semana, con el fin de asegurar un periodo mas prolongado de disponibilidad de botones y flores a efecto de contar con mayor tiempo para realizar las cruzas.De las tres mencionadas, es la primera la que ofrece mejores ventajas; sin embargo, dltimamente en otros paises, se emplea mAs la tercera. Progenitores contiguos a cada poblacibn respectiva.Manejo agronómico:recomendaciones regionales. ","tokenCount":"378"} \ No newline at end of file diff --git a/data/part_3/1941059037.json b/data/part_3/1941059037.json new file mode 100644 index 0000000000000000000000000000000000000000..5aac341650f403fb5a0756377bd87dee0673ae14 --- /dev/null +++ b/data/part_3/1941059037.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"2ceeccbbc165a5ecc87d0e2ef2be67c9","source":"gardian_index","url":"https://agritrop.cirad.fr/592794/1/ID592794.pdf","id":"430302027"},"keywords":["Plenary Session 3 -Agroforestry, Food security and Nutrition Honduran farmers' perception of cacao agroforestry systems L1.2 -Mitigating climate change with agroforestry agroforestry, carbon sequestration, soil organic carbon, ecosystem services, Random Forest C sequestration, integrated crop-livestock systems, ecosystem biogeochemistry, biodiversity, SOC fractionation soil, Carbon storage, Agroforestry, Diachronic analysis, Madagascar Biomass crops, Marginal land, Climate change mitigation, Soil organic carbon Soil organic carbon, Soil bulk density, Agroforestry systems, Colombian Amazon, Forest-to-pasture conversion Ecology, SLU, Uppsala, Sweden silvopastoralism, soil carbon, tree growth, low carbon farming, eddy covariance Agroforestry, Soil quality, Spatial gradient, Microbial activities, Organic matter L1.2 Mitigating CC agroforestry management, carbon sequestration, ecosystem services, home- Agroforestry 2019 -Regular Talk L1.2 Mitigating CC L01.2_O.02 Brazilian Amazonia, Elaeis guineensis Agroforestry 2019 -Regular Talk L1.2 Mitigating CC Agroforestry 2019 -Regular Talk L1.2 Mitigating CC Gleysol, shrub legume, soil respiration, tropical grasses Agroforestry 2019 -Regular Talk L1.2 Mitigating CC carbon storage, soil respiration, carbon budget, grazed, hedgerows Agroforestry 2019 -Regular Talk L1.2 Mitigating CC Carbone sequestration, emission factor, climate change mitigation, land use change Agroforestry 2019 -Regular Talk L1.2 Mitigating CC deep roots, deep SOC, SOC modeling, priming effect, C sequestration Agroforestry 2019 -Regular Talk L1.2 Mitigating CC Carbon balance, CO2 flux, Sustainable intensification, Mitigation potential, Climate change adaptation Agroforestry 2019 -Regular Talk L1.2 Mitigating CC Agroforestry, Climate Change, Tree Management, Livestock, Soil Organic Matter Agroforestry 2019 -Regular Talk L1.2 Mitigating CC Congo bassin, soil-atmosphere, CO2 fluxes, Cocoa agroforest, mixed crop field Multistrata system, cover crop, amazon, degradation Abundance, Mitigation, Non-linear, Timber volume Biomass, Fixation, Necromass, Roots, Soil organic carbon Microbial activity, Farms renovated, CO2 emissions land degradation, drylands, climate change, mitigation, restoration sahel, Soil Carbon, soil nitrogen, tree alley cropping, silvoarable system, deep SOC, potential mineralization, metabolic quotient silvoarable system, alley cropping, earthworm abundance, earthworm diversity, carbon sequestration Mitigation, Aboveground biomass, Amazon, Bolivia, Variance partition riparian buffer, windbreak, carbon sequestration, Quebec sequestration, Grassland, cropping system, agroforestry, carbon stocks carbon sequestration, REDD+, agroforestry systems, climate change, mitigation Agroforestry, Litter decomposition, Enzymatic activities, Spatial gradient Agroforestry, Phytoremediation, Carbon Sequestration, Bioremediation, Poverty reduction Carbon mitigation, Greenhouse gas, Arable farmland, European grassland C fractioning, macroagregates, microagregates. L1 Mitigating CC CENTURY Model, Soil Carbon Dynamics, Agro-forestry, Tectona grandis, Western Ghats GHG emissions, Carbon stock, Robusta coffee, Input intensification carbon footprint, carbon, forest, soil, biomass Accumulation rate, farmer, fertilization, soil types, system Eddy Covariance, Faidherbia albida, Millet, GHG balance, SOM. L1 Mitigating CC Carbon sequestration, CENTURY model, Soil carbon, Tree species, Climate change. L1 Mitigating CC carbon balance, carbon sequestration, olive biomass, Traditional olive grove, Intensive and Superintensive olive grove. L1 Mitigating CC soil organic carbon, humus, shelterbelt, carbon sequestration, POXC soil organic carbon, infiltration, root penetration resistance, aboveground biomass growth dynamic agroforestry, biochar, terra preta, chipped wood, mitigation of climate change. L1 Mitigating CC climate change, mitigation, GHGs Juglans nigra, agroforestry, carbon, sequestration Cloud Tropical Mountains forests, Coffee management systems, Mixed forest system, Agroforestry systems Agroforestry, climate change mitigation, soil organic carbon, dry combustion Piliostigma reticulatum, allometric relations, biomass, Burkina faso Coffea arabica, Theobroma cacao, Resilience, El Nino, Yield Variability species distribution modelling, priority tree species, restoration, habitat change, AFRICLIM grapevine, microclimate, yield, grape juice quality Gender, Asset, Climate Change, Adaptation strategies Agroforestry systems, climate change, traditional ecological knowledge, ecosystem services, food security Smallholder farmers' perceptions, Highland agroforestry systems, Climate change vulnerability, Socioeconomic and environmental sustainability, Indigenous people and traditional knowledge competition, functional traits, phenotypic plasticity, roots, Theobroma cacao CORDEX, HADCM3 model, process-based model, system resilience, Albizia gummifera Climate scenario, Tree growth, Woody biomass, Short rotation coppice, Modelling L2.2 Adaptation to CC climate change, adaptation, mitigation, resiliency Agroforestry 2019 -Regular Talk L2.2 Adaptation to CC L02.2_O.02 National Adaptation Plan, adaptation, agroforestry, climate change, policies. L2.2 Adaptation to CC Agroforestry, Coffee, Resilience, Nicaragua, Climate change Agroforestry 2019 -Regular Talk L2.2 Adaptation to CC Stress, Modeling, Growth, Optimal temperature, Agroforestry climate change, PAR reduction, daily temperature cycle, water availability Agroforestry 2019 -Regular Talk L2.2 Adaptation to CC Cocoa Agroforestry Systems, remnant primary forest, total carbon stocks, soil macroporosity, water availability Agroforestry 2019 -Regular Talk L2.2 Adaptation to CC Faidherbia effect, LER_M, Drone, yield, pests Agroforestry 2019 -Regular Talk L2.2 Adaptation to CC resilient communities, agroforestry systems, climate change adaptation, super zone development program, water and land management Agroforestry 2019 -Regular Talk L2.2 Adaptation to CC Agroforestry, Sustainability, Climate Change, Combined food and energy, Public Goods Vegetation, Agroforestry, Ecosystem, Climate Cocoa, Shaded cocoa, climate change adaptation, Crown architecture, Ghana Rainout shelter, Drought experiment, Alley cropping. L2 Adaptation to CC Native shrubs, Rainfall variability, Fertilization, Climate information, FMNR Ants, Biodiversity, Carbon footprint. L2 Adaptation to CC Sicily, sustainability, value of products, reforestation, desertification Agroforestry, soybean, soil, water, yield Tylosis, resilence to drought, disease, Cocoa, climate change biochar, climate change, gas emission Wood, Medicinal plants, Cultivation, Biodiversity conservation, Agroforestry reforestation, forestry, alley cropping, microclimate, soil Shade trees, cocoa agroforestry, soil moisture, cocoa yields, dry season Bayesian networks, adaptation, cooling effect, agroforestry, temperature suitability Agroforestry, Basin planting, CSA, Planting windows, Soil moisture climate change adaptation, Intergovernmental Panel on Climate Change, IPCC assessment report, IPCC, crop stability Climate Change, Climate-Smart Practices, Agriculture, Agroforestry climate change, climate sensitivity, WaNuLCAS, West Africa Farmers, Climate Change, Adaptation, Livelihood, Networks dry tropics, Ruminants, silvopastoral systems, tropical trees, forage tree. L2 Adaptation to CC agrofprestry, climate change, food security, Bangladesh Traditional Agroforestry, Eastern Himalayas, Cultivated Systems, Climate Change, Resilience Agroforestry, Innovation, Interdisciplinary, Stakeholders, Sustainability temperate agroforestry, carbon sequestration, Canada Risk, Attitude, Dryland areas, Agroforestry, Utility theory agroforest, cocoa-trees, productivity, food security, Cameroon Tree species, Hydrology, Natural flood risk management, Fraxinus, Tree roots agroforestry, landscape, soil, climate, biodiversity robusta coffee, lengthening, dry, season, agroforestry legume slash and burn, cassava, agroforestry elastic model, amazon, climate change tropical peatlands, landscape restoration, agroforestry tree density, vegetation structure, regeneration, Macrotermes natalensis, Malawi Farmers, Fodder, Drylands, Growth, Trees Amazon, AFS, restoration pearl millet, groundnut, native woody shrubs, Sahel L3 Land Degradation Soil carbon, Soil health, Infrared spectroscopy, soil monitoring, drylands agroforestry systems, forest shelterbelts, climate changes, protection Peanut shell, Nacl, Restoration, S.senegal, P.juliflora Agroforestry 2019 -Regular Talk L3 Land Degradation afforestation, carbon stock, coal bio-briquette, salt-affected soil, soil amelioration. L3 Land Degradation A. senegal, Regeneration, Carbon stock, Biomass, Disturbance Sahel, Agroforestry systems, Acacia albida, Degradation, Restoration browsing, forest, Tierra del Fuego, Plant association, shrubs Ramial chipped wood, agroforestry species, Organosolv lignin, Soil quality, Tomato yields Agroforestry 2019 -Poster L3 Land Degradation Fodder, Fruit, Household, Land holding, Livelihood strategy Optimized Shrub Intercropping, remediating degraded soils, Sahel, millet, groundnut bocage, Sahel, Hedged farmland, Land restoration, Greening the Desert L3 Land Degradation Litterfall, Soil fertility, Parkland, Agroforestry species, Agroforestry landscape Agroforestry systems, pruning, natural abundance, nutrient cycling, fodder Agroforestry species, Yield, P availability, Microbial biomass P Agroforestry, Soil fertility, Melia, Casuarina, nutrient African blackwood, germination, seedling growth, natural regeneration, dry lands Improved fallow, Acacia senegal, Cameroon, Soil fertility, Restoration soil water content, Compacted soils, Infiltration trench, Subsoiling, trees Agaveforestry, México, land remedation, small farmer Adaptive Multi Paddock, Silvopastoral systems, Grassland production, Grazing management, Pasture quality Moisture, nutrient status, poplar, spacing Ecosystem services, soil ecology, biodiversity, aboveground-belowground Forest specialist, monophagous, indicator species, indigenous farming systems, spatial turnover semi-natural habitats, agricultural landscape, biodiversity conservation, weeds, community ecology Biodiversity production, pollinators, stakeholders perception, diachronic approach, ecosystem degradation silvoarable systems, forest shelterbelts, herbaceous plants, soil mesofauna, soil biological quality Contamination, Insect diversity, Nettle, Phytomanagement, Poplar landscape ecology, pollinators, farm forest, agricultural intensification, connectivity insect species richness, species abundance, ants, borer beetle, parasitoid Conservation status, Climatic zones, Agroforestry, Floristic inventory, West Africa Pollen-based land-cover, past landscape burning, impacts of changing monsoon, biodiversity changes in its tropical hotspot, Anthropocene Biodiversity, Swidden, Agroforestry, Oil palm, RSPO Agroforestry 2019 -Regular Talk L4.2 Biodiversity 4 th World Congress on Agroforestry Strengthening links between science, society and policy dynamic agroforestry, biodiversity, orange and cocoa, system comparison, birds Agroforestry 2019 -Regular Talk L4.2 Biodiversity 4 th World Congress on Agroforestry Strengthening links between science, society and policy H. albipuntella, Tree species, natural regulation, Biodiversity conservation, Senegal restoration, motivations, biodiversity, family farmers, social drivers Agroforestry 2019 -Regular Talk L4.2 Biodiversity L04.2_O.10 Carbon stocks, Biodiversity, Agroforestry Agroforestry systems, aboveground plant biomass, high conservation value of biodiversity, Côte d'Ivoire Wild edible mushrooms, Manipur, Biodiversity, Domestication, Employment opportunities for rural tribes Forest and Landscape Restoration, Coffee arabica L., Ecological indicators, Tropical forest restoration, Coffee agroforestry. L4 Biodiversity pollinators, agroforestry, pollination services, bees, insects Biodiversity, Conservation values, Agroforestry systems, cultural practices, Côte d'Ivoire. L4 Biodiversity soil engineers, Agroforestry, Oil palm, Diversity bioindicators, desertification, land use change, shrublands, woodlands Traditional, Northeast India, multipurpose, diversity. L4 Biodiversity Agroforestry systems, ethnobotanical knowledge, tree resources conservation, Bouba Ndjidda National Park, woody plant diversity Agroforestry, Biodiversity, Plant For the Planet, Hedges, 100 millions silvopastoral system, biodiversity, livestock, Ilex paraguariensis St. Hil., forest regeneration. L4 Biodiversity plant diversity, soil carbon, tree canopy, chronosequence, legume-rich pastures Agroforestry, Exotic tree species, Fruit trees, Ornamental trees Agroforestry, Biodiversity, Carbon stock, Dry zone homegarden, Sri Lanka conservation priorities, Traditional agroforestry systems, local knowledge, useful plants, Ouémé catchment Livestock, biodiversity, Mexico, agroforestry, connectivity agroforestry systems, belts of forest and agricultural vegetation, game species, wild species, growth and development Carbon project, Agroforestry, Senegal, ARLOMOM, Patako diversity, agroforestry, Thailand medicinal, aromatic, ethnobotany, traditional uses, plant conservation agroforestry, native species, Guáimaro, recovery of biodiversity Cloud forest regeneration, Maize monoculture, Milpa shifting cultivation, Narrowrange species Agroforestry System, Ananas comosus, pre-Hispanic, Biodiversity, Agroecosystems Eastern Himalayas, Traditional Agroforestry, Indigenous Farming Systems, Species Diversity, Biodiversity silvopastoralism, agroforestry practice in herbs cultivation, a network of forest stands and windbreaks. L4 Biodiversity hedges, soil biodiversity, soil biological activity, beneficial effect, soil food web Shifting cultivation, Biodiversity conservation, Soil fertility, Microbial diversity, sustainability macronutrient leaching, fertilized agroforestry system, hybrid aspen, perennial grasses Agroforestry 2019 -Regular Talk L5 Water Greenhouse gas, Riparian buffer, Carbon dioxide, Nitrous oxide, Methane Denitrification, Illumina sequencing, Land-use type, Nitrification, Nitrous oxide agroforestry, vegetation cover, water management, soil degradation, grassroots innovation Agroforestry, Riparian Zones, Water, GHG emissions Fulvic acid, water quality, chestnut forest, ecosystem service, mineral water riparian, agroforest, functional trait, functional diversity, greenhouse gases village forest, social forestry, environmental services, conservation behavior, community-based forest management hydrologic and hydrodynamic, climate regulation, free Eco-Systemic Services, agroforestry parkland, Sahel wadi, agroforestry, tribal, migration, livelihoods agroforestry parklands, Landscape restoration, Intra-household dynamics, Tree resources, Resilience Gender, Cocoa agroforestry, Vulnerability, climate change, adaptation Shea tree, women, climate change, flowering, fruting Gender issue, Fuel wood, Cow dung cake, socio-economic Agroforestry, Climat Change, Mexico, Impact Assessment, Mitigation Wild Perennial Crops, Value Chains, Sahel, Lost Crops, Food Processing Nepal, community forestry, livelihoods, under-utilised land, food security PPP, dairy, carbon, cooperatives, restoration Sustainable cocoa, inclusive business, responsible finance, smallholders, multistakeholder approaches economic diversification, Zambia, land restoration, Pongamia pinnata, mine site reclamation. Traditional production Carapa procera oil in Burkina Faso Native trees, Oil production, Africa, Local knowledge, Underutilized species slash and burn agriculture, protected areas, \"roça caiçara\" Populus deltoides, Poplar Clones, Plantations, socio-economic status, carbon-sequestration local economy, short food circuit, retraining, practical training, jobs Agroforestry systems, practices, research, Eritrea Landscape, Social innovation, Stakeholders, Policies, Concertation Alley cropping, active mushroom cultivation, sheep grazing, innovative practices, farmer network Research and Development, practitioner needs, outstanding questions, literature review, knowledge gaps Landscape, Complexity, Bioviversity, Diversity of products, online survey agroforestry, agricultural extension, learning, West and Central Africa, resilience agroecology, food security, homestead, on farm niche, priority species Traditional agroforestry in Iran, Modern Agroforestry in India, restoration of degraded lands, Agro-ecological zones Agro-ecology, Farmer managed natural regeneration, Lowland, Midland Smallholders, Trees on farms, Plantation forestry, Incentives Land Use Land Cover Change, Informed Policy-and Decision-Makings, Productivity, Resilience, RRCs Shea, Parkland, Natural regeneration, socialwelbeing, livelihood improvement extension, farmer2farmer, mentoring Agroforestery, Riparian areas, Wildlife, Tree crops, Oil palm large-scale agroforestry, regenerative-agroforestry, service-species, syntropicagroforestry, biomass Commercialization, food security, markets, productivity, value chains zambia, REDD+, Agroforestry systems, value chains drying, processing, fruits, nuts regenerative agriculture, certification standard, ecosystem services, measurable criteria Agroforestry, Business models, Entrepreneur, Value chain, Transition Waste Products, Economic Opportunities, Agroforestry certification, value chain, livelihood agroforestry, value chain, environmental services, smallholder, network Coffee & cocoa, Agroforestry, Vertical coordination, Risk aversion, Contract farming bioplastics, bio-fibres, sustainability, innovations Agroforestry,, biodiversity, indigenous knowledge, Gedeo alley cropping, financial balance, poplar clones, tree-crops interactions, stable isotopes Underutilized Trees, New product development, Community-based processing, Food security Agricultural productivity, Soil fertility, Runoff, Soil erosion, Trade-offs Hedgerow intercropping, Poplar, production, spacing Rubber, Analog agroforestry, Hainan agroforestry poultry system, climate change Agroforestry, Sustainability, Marketing, NGOs/ INGOs, Policy/ Act Innovative model of herbs production, cultivation of wild plants, sustainable environment of agroforestry system, food products with a health-enhancing effect, farm and production management decision-support, tool, design, guidelines, agroforestry Forage bank, farm autonomy, Concentrate substitution, on-farm biomass production, Intake and performance agroforestry, peatland, indonesia, revegetation, revitalization Knowledge Data Bank, Enrichment, Fulltext index, search Engine, Education Cropping systems, undergrowth, Guadeloupe, farms viability, added value planting, UK, practical, experience, hotel intercropping, yield, soil moisture, weeds, hardwood Syntropic agroforestry, PDCA agroforestry, Biomass production, Apical pruning, Alnus acuminata, green manure, Tree pruning Bateke plateau, Agroforestry, Charcoal production, Shifting cultivation, N2 fixation timber production, seasonal growth, adult trees National Park of Togodo-South, YOTO/LOME, retrocession/valorization, deforestation, Togolese Traditional Chiefdom Agroforestry, Emergy, Integrated food and non food Agroforestry, Demographic pressure, Land saturation, Sahel, Sustainability Land tenure, Financial capital, Partnerships, Landowners, Case studies multistrata, biodiversity, carbon, sequestration, drawdown Parklands, Senegalese Peanut Basin, crop productivity, remote sensing, landscape Rubber, Agroforestry, Hainan, China Agroforestry Systems, Cacao, Irrigation, Returns, Water scarcity Pruning, Sap flow, Maize grain yield, Grevillea robusta Pruning, Sap flow, Grevillea robusta, Maize grain yield Food Forest, Forest Garden, Sustainable Agriculture, Italy, Resilience Faidherbia albida, Safeguard, Phytochemical screening, Biodiversity, Togo, Benin, Niger Shea tree, ANR, plantation, transplantation, seedling Fruit-trees, Market gardening, Management practices, Intercropping, Horticulture entomophagy, Parkia biglobosa, Cirina forda, agroforestry parklands, Cirina butyrospermi dryland agroforestry, socio-ecological resilience, political ecology, participatory restoration, human-nature systems. Co-learning framework for scaling up agroforestry Tree selection, Local knowledge, Farming, Sub-Saharan Africa, Ecosystem services education, experiential learning, soil quality, wood amendment, hedgerow Rotational intensive grazing, Agroforestry Decentralise, Diversity, Food, Energy, Commons Agroforestry Systems, Indigenous Species, Latin America, Investment, Public/ Private Agroecology transition, Institutional markets, Biodiverse agroecosystems Policies, Adoption, Agroforestry systems Adoption, Constraints, Tree cover, Timber transit, Agroforestry models Watershed, biodiversity, Tropical trees sustainable development, Guadeloupe, territory, forest, game of actors Forest and Landscape Restoration, Restoration Opportunities Assessment Methodology, Bonn Challenge, Climate Change Adaptation FARM LIFE, Climate adaptation, agricultural transition CAP, adoption, subsidy, paiment, regulation Santiago-Freijanes1, A. Pisanelli2, M. Rois-Díaz3. Aldrey-Vázquez A4, Rigueiro-Rodríguez A1, Pantera A5, Lojka B6, Ferreiro-Domínguez N1, POLICY, CAP, Measures policy, silvopasture, homegardens, silvoarable, forest farming National policy, Agro-ecology Agroforestry, Agroecology, Agricultural policies, Ecological redesign, Greening Rapid Appraisal, system, urban, scale, local food silvopasture, land allocation, robust optimisation, Panama, farmer interviews agroforestry, Landscape, diversification, farming practices, resilience ecosystem services, family income, coffee agroforestry system, sylvo-pastoralism, home garden Forest regeneration and establishment, LSFRI Silava, Salaspis, Latvia buffer zones, agroforestry buffer zones, willow buffer zones, poplar buffer zones., SRC buffer zones financial assessment, successional system, annual species, technical coefficients Agroforestry 2019 -Regular Talk L12.2 Economics of AF 4 th World Congress on Agroforestry Strengthening links between science, society and policy Customary Land use Systems, Traditional Agroforestry Practices, Protected and Conserved Areas, Bio-cultural diversity Conservation Agroforestry, Climate Change, Coffee and Dairy, Sectoral System of Innovation, Social Innovation, multifunctional forests, sustainability transition, Horizon 2020, European Innovation Partnership Agroforestry 2019 -Regular Talk L12.2 Economics of AF L12.2_O.10 agricultural profitability, forestry potential, agricultural economics Acrocomia, mathematical programming, agroforestry, smallholder, Paraguay Green growth, Landscape management, Agroforestry, Green economy innovation, agroforestry, adoption, rejection, socioeconomic factors Agroforestery, Adoption, Social Fields, Habitus, Dispositif small farm, climate adaptation, land rights, Theobroma cacao, Spondias mombin Value-adding, smallholders, processing, nuts, market Smallholder, agriculture, community forestry, microcredit, agroforestry Agroforestry 2019 -Regular Talk L13.2 Adoption 4 th World Congress on Agroforestry Strengthening links between science, society and policy local agroecological knowledge, agroforestry, adoption, climate adaptation, Morocco Agroforestry, Adoption, Conceptual framework, Case studies Climate smart agriculture, Agroforestry parkland, Factor and regression analysis, Rural households, Farmers' perception Pacific Islands, Challenges Firewood, Parklands, Sustainable consumption, Energy Miombo, Deforestation, Agroforestry, Acacia auriculiformis, Kipushi Adoption, Improved fallow, traditional fallow, advantages, constraints Farmers, Timber Based Mixed Farming Benefits, Potential Classified Agroforestry Systems, Limpopo Province, South Africa Alnus acuminata, Agroforestry, fertilizer trees, socio-economic determinant, adoption species conservation, agroforestry, forest reserve, firewood, west Cameroon Bricolage, Customary land rights, Oil palm agroforestry, Political ecology, soil fertility negotiations, NET-Map, actor, intersectoral, land-use ecosystem services, external costs, biomass production, carbon storage, nutrient loss Forest Transition, Ecological Restoration, Agro-sucessional Restoration, Forest Landscape Restoration, Farmer-Managed Natural Regeneration Operationalisation landscape approach, Grand-strategy, Policy Framework, Integrated agroforestry management. Mutual information between LU_t1 and influence factors Modelling, Agroforestry, Land-use, Bayesian networks, Drivers Quercus suber L., Quercus ilex L., Time series, Contextual Mann-Kendall, Normalized Difference Vegetation Index agroforestry, fire risk, mosaic landscape, vulnerability, resilience Agroforestry system, Sustainable management, criteria, indicators Cork oaks, Mediterranean areas, Forest fires, Fire management, Land management agroforestry, beekeeping, reforestation, agroforestry and tree value chains, livelihoods matrix, oil palm, resilience, restoration, mosaic Landscape, Performance, Monitoring, Evaluation, Integrated Landscape Management agroforestry, visualisation, landscape, city-region food system Food security, agrobiodiversity, homegardens, child nutrition, Dietary Diversity Tree foods, nutrition, diets, local food systems, East Africa urban Agroforestry, urban area, tress, soil fertility, agriculture Urban homegardens, Preference ranking, Urban greening, Tree choice, Urban food security unmanned aerial vehicle, yield estimation, landscape mapping, GEOBIA Populus deltoides, Remote sensing, Carbon stock, Mapping, Object based classification Climate Change, IPCC, Carbon dioxide, Geoprocessing, MODIS dehesa, canopy cover percentage, spectral vegetation index, Landsat, pasture yield LULC classification, silvopastoral system, geoprocessing NDVI, Sentinel-2, Tree Hedgerow, TOF Inventory, Ecological Connectivity Hedgerows, Mapping, Monitoring, Bocages TLS, Lidar, Tree structure, wood-leaves segmentation, tree volume UAV, Digital Surface Model, Digital terrain Model, supervised classification, top canopy height Cocoa-based agroforestry systems, Planting density, Spatial distribution, Age, Productivity Deforestation, Mapping methods, Landscape analysis, Multiple scales, Amazonia cocoa, climate smart agriculture, carbon, REDD+, policy Companion modelling, shade-grown coffee, tree rights, games Alternative floral resources, Apis dorsata, Coffea canephora, Fruit-set, Pollination nutrient transfer, facilitation, litter decomposition, nitrogen budget Ecosystem services, Soil fertility, Cocoa sustainability, Land restoration agroecology, agroforestry, fruit growing, alley cropping oil palm, Indonesia, biodiversity, experiment, tree planting temperate agroforestry, fruit, co-design process, ecosystem service, pest suppression Farmer's perception, Cocoa and coffee agroforests, Preserved trees, Togo Agroecology, Action research, Land-use change, Nicaragua, Coffea Arabica sustainable organic cocoa production systems, Climate-smart practices/buffering of climate extremes, soil fertility, carbon sequestration, reforestation/timber production coffee agroforestry systems, ecosystem services, herbaceous communities, functional traits, biodiversity agroforestry design, large-scale agroforestry planning, yerba mate, olive, pecan walnut Cacao, Intraspecific diversity, On-farm conservation, Peru, Management practices smallholder, shade tree, Ghana, cocoa, pollinator Functional traits, specific leaf area, productivity, cacao, agroforestry systems Theobroma cacao, Côte d'Ivoire, agroforestry, ecological intensification, environmental services temperate agroforestry, fruit, ecosystem service, co-design, research project Carbon sequestration, Ghana, Image Segmentation, Rubber, Remote Sensing cocoa, diversification, management, income, environment Alley cropping, Poplar, Yield, Soil characteristics, Biodiversity Agroforestry, shade, Mediterranean, barley, wheat durum wheat, number of grains per spike, genetic variability Vegetation proximity, shade avoidance, shade tolerance, Arabidopsis thaliana, Cardamine hirsuta Agroforestry, Eucalyptus dunnii, Nitrogen fertilization, Subtropics Experimental site, Agroforestry, nitrogen-fixing trees, Soil erosion, Biodiversity Limiting factor, groundwater, Infiltration, Sapflow, tree density Senegal, Anacardium occidentale L., Arachis hypogaea L, length of the crown, yields herbaceous vegetation, macrofauna, microorganims, soil fertility, sylvoarable herbaceous vegetation, pruning, macrofauna, microorganisms, soil carbon Biomass, Carbon, Maize, Soil, Yield Alley cropping, productivity, profitability, fruit quality, Bangladesh alley cropping, black locust, triticale, yield, tree spacing Alley cropping, Green mulch, Low input, Nitrogen transfer, Weathered soil Agroforestry, Colocasia esculenta, Poplar, Soil, Yield Alley cropping, Short-rotation coppice, Poplar, crop yields, Piché evaporation corn, Eucalyptus dunnii, litter bag, no tillage, subtropic Agroforestry, Poplar, Productivity, Windbreak, Wheat shade, cattle, heat stress, climate change, rangelands Forage technology, Woody forage banks, Ruminant feeding, Dairy production, West Africa legumes, silvopasture, shading, adaptation Small ruminants, Colombian hair sheep, Tropical dry forest, Silvopastoral systems Leaves, Digestibility, Protein, Macro elements, Micro elements silvopasture, thermal-humidity index, forage, light environment, temperature degradability, fodder tree, leave, pollard, high stem fodder tree, alternate bearing, Gleditsia triacanthos, pod silvopastoralism, forage autonomy, codesign. TA: Thermorregulatory Action","IB: Ingestion of Branches","GB: Grazing Behavior","FB: Feeding Behavior. (a, b, c) Averages with same colors and different superscripts differ buffaloes, silvopastoral systems, animal welfare, behavior, thermorregulatory behavior silvopastoral system, caívas, pasture, Ilex paraguariensis, Araucarian Forest nutritive value, fodder trees, botanical families, biodiversity nutritive value, fodder trees, pollard trees, agroforestry, ruminants Gliricidia sepium, branches biomass, leaf biomass, Brachiaria decumbens, Mimosa caesalpiniifolia Silvo-pastoral systems, Native species restoration, Spacing, Thinning guidelines, Colombia silvopastoral, ruminants, innovations tree fodder","cattle","collaborative design","silvopastoral system","multipurpose trees agroforestry, Quercus ithaburensis subsp. macrolepis, ecosystem services, management, forest Agroforestry, Reforestation, Desertification, Biodiversity, Arid regions Meriagos, Wooded grassland, Agro-silvo-pastoral system, Scattered trees, Biodiversity agroforestry, understory legumes, %N derived from atmosphere, partial shade, full sunlight understory, bioactive compounds, HPLC, sunlight, partial shade economic efficiency, nutritional quality, silvopastoral systems, social impact alternative forage, family farming, native trees, leaves, legume Copper, Sylvopastoralism, sheep, vineyard, organic agroecology, agroforestry, co-creation, biodiversity, ecosystem services nutrients, feedstocks, environmental-friendly, crop yield, farm materials complex agroforestry systems, ecosystem services, diversification, resilience, agroecology Sapflow, Cordia africana, Albizia coriaria, pruning Agroecology, Decomposition, Intraspecific trait variation, Tree-based intercropping, Willow (Salix dasyclados) Net CO2 balance, allometric models, Integrated pest management, Soil conservation technics, Product differentiation Agroecology, Agroecosystem management, Biophysical interactions, Coffee, Functional traits Litter biomass, Fallow phase burning effect on soil nutrient, Potential Mineralizable Nitrogen, Microbial Biomass Carbon, Soil Enzyme Agroforestry, agroecology, functional pattern, system design, ecosystem services Agroforestry area, N cycling, Nitrogen fixing trees, Chemical N Fertilizers, Tree-crop combinations Microorganisms, Dispersion, Hedgerows, Agricultural management, Adventices cocoa, shade type, plant traits, soil fertility, agrosystem functions ramial, woodchip, hedgerow, agroforestry Dioscorea hirtiflora subsp. pedicellata Milne-Redh, tubers, wild edible plants, Zambia, semi-natural forests Genetic resources, Germplasm, Association mapping, Crop improvement strategy. Agroforestry 2019 -Regular Talk species distribution models, potential natural vegetation, seed zonation, species selection, synecological maps. Agroforestry 2019 -Regular Talk Shade adaptation, Coffea arabica, Biochemical, Transcriptomic, AFS markers Characterisation, Conservation, Fruit pulp, Grafting, Nutrition Tree domestication, Impact evaluation, Systems, Participation cutting, domestication, growth, IBA, seed Senegal, Casamance, improvement strategy, Anacardium occidentale L, agroforestry system Heterozygosity, Genetic divesity, Single Nucleotide polymorphism, Genotyping by sequencing, Threatened species Fodder Trees, Agroforestry, Silvipasture, Genetic improvement Conservation genetics, Microsatellite, Afzelia africana, Benin top 100, forest landscape restoration, useful tree species, databases, invasiveness Dodonea viscosa, Threatment, Save biodiversity, Togo agroforestry, tree domestication, indigenous fruit tree species, diversity, West Africa domestication syndrome, Dacryodes edulis, wild populations, cultivated populations, Tropical Africa macropropagation, micropropagation, rare tree, 6-benzylaminopurine, indole-3-butryric acid Breeding, Crude protein, Desert date, Iodine, Tree selection Agroforestry, progeny trial, border effect, peasants, tree elimination Garcinia kola, conservation, microsatellite markers, Central Africa, NTFP biological control, biodiversity, birds, bats, Africa SIR model, Colletotrichum kahawae, Bayesian inference, Mechanistic-statistical approach, Agroecological crop protection Mixed fruit tree-vegetable plots, Alley cropping, Brassica, Conservation biological control, Malus Hemileia vastatrix, Shade Dispersal, Inoculum stock, Througfall kinetic energy, Raindrop interception, Spore washoff. Left: High leaf retention under CLR infected shaded coffee Right: High leaf senescence under CLR infected unshaded coffee agroecological zones, Diseases, Leaf span, Severity Integrated pest management, Shade trees, Spatial structure, Cameroon Faidherbia albida, disease attack, phenotypes, Sahel, Niger Coffee agroforestry, Coffe Berry Disease, Coffee Leaf Rust, Spatial structure, Kenya Coffea arabica, coffee leaf rust, Hemileia vastatrix, throughfall kinetic energy, fungal plant disease Hypothenemus hampei, shade, natural control, structural equation modeling Hemileia vastatrix, Outbreak, Chemical control, Fertilizer Guiera senegalensis, Piliostigma reticulatum, Pennisetum glaucum, Sorghum bicolor metabarcoding, phenology, root length density, root distribution, under-tree herbaceous vegetation root competition, cover crop, organic, water, yield Forage biomass, Harvesting frequency, Plant spacing, Soil carbon, Aggregate distribution Biomass, Productivity, Nutrient, fine roots, coarse roots arbuscular mycorrhiza, dry deciduous woodland, water deficit, soil fertility, C. myrrh AMF, Plant Community, Carbon Stock, Root colonization, Spore density Auto Root Draw, Machine learning, Rhizotron, Roots Images, Data extraction Olive tree, AMF, root colonization, soil fertility peatland restoration, aerenchyma root, plant trait, Indonesia Photosynthetically active radiation, Modelling, Variable light process-based, Coffea arabica, Erythrina, NPP, growth Vitis vinifera, agroforestry vineyards, radiative budget, DART, 3D modeling Policy Impact, Impact Assessment, Integrated Agricultural Production Systems, Agent-based model, Participatory modeling agroforestry, soil carbon, dynamic vegetation model, carbon dioxide, silvoarable Stable isotopes ratios, Isoscapes, Ecophysiology, Spatial Analysis, Geostatistics Multi-agent platform, Integrated assessment and modelling, Biophysical processes, Landscape-scale, Temperate systems. Decision analysis for agroforestry intervention in Northwest Vietnam decision analysis, holistic model, risks and uncertainties, agroforestry Competition","Facilitation","Roots","light","water","nitrogen System dynamics, decision support tool, waste to resources, biofuel, WISDOM Agroforestry, Apple tree, Competition, Neighbourhood competition index, Mediterranean climate Model, organic matter, long-term, Ethiopia, microsites competition, water, nitrogen, alley cropping, intercropping alley cropping, silvoarable, model, genetic algorithm, optimization conservation agriculture, sensitivity analysis, climate, DSSAT, West Africa mixed systems, solar panels, joint production, Land Equivalent Ratio agroforestry, restoration, phytoremediation, multispecies, microclimate ex ante assessment, sustainability, agroforestry system, prototype, co-design scientometrics, topic modeling, agroforestry research customary forest, Kampung Naga, Mollo People, Suf, Hutan larangan Knicks, traditional agroforestry, ecosystem services, temperate agroforestry Trees outside ofrest, Caterpillars trees, Regeneration, Yangambi Biosphere Reserve, Democratic Republic of the Congo mapping, windbreaks, solitary trees, small-scale forests, short rotation coppice plantations of poplars Carbonate accumulations, oxalate, Tamarindus indica, Agroforestry, Madagascar tree avenues, hedgerows, green infrastructure, climate change adaptation annatto, Brazilian crops, Brazilian red pepper, red pepper oil"],"sieverID":"0f20d1ae-70c0-42ce-a9c1-f63e7adfb5fb","pagecount":"933","content":"Chairs: Hesti Tata & Raju Soolanayakanahally Regular talks• PRAMESWARI Diana -Bogor, Indonesia: Sustaining economic and ecological contribution to local community through participatory agroforestry practice • IVEZI Vladimir -Osijek, Croatia: Walnut and crop yields in walnut orchards intercropped with wheat • DO Hung -Hanoi, Vietnam agroforestry practice in Northwest Vietnam • DURAND Lucie -Paris, France: Activity analysis of coffee growers in complex agroforestry systems, understanding the farmers' practices • DUGUMA Lalisa -Nairobi, Kenya: Changing the discourse from 'tree planting' to 'tree growing ' to achieve restoration targets through agroforestry• ARI Susanti -Yogyakarta, Indonesia: Smallholders' oil palm agroforestry adoption: an opportunity to improve productivity and sustainability? • GUILLET Philippe -Le Mans, France: 30 years of agroforestry poultry system against climate change in Sarthe (West of • THIAW Ibrahima -Dakar, Senegal: Tree species effect on natural control of H. albipunctella de Joannis in a millet agroforestry system in Senegal • VILLANUEVA LÓPEZ Gilberto -Villahermosa, Mexico: The richness of tree in agroforestry systems favors the diversity of soil macroarthropods in the humid tropics of Mexico • WURZ Annemarie -Goettingen, Germany: Vanilla boom in North-Eastern Madagascar:A chance for a sustainable land-use transformation? • SUÁREZ SALAZAR Juan Carlos -Caqueta, Colombia: First typology of cacao agroforests in the Colombian Amazon, based on composition, structure and light availabililty • COUDEL Emilie -Brazilia, Brazil: Agroforestry as a restoration strategy: Motivations of farmers to plant more biodiverse systems in the Eastern Amazon • SARI Rika Ratna -Malang, Indonesia: Carbon stocks in agroforestry systems correlate with tree diversity 4:30 PM to Room Barthez (level 2) 6:00 PM• BIRKENBERG Athena -Stuttgart, Germany: Accounting for biogenic carbon sequestration in product carbon footprints: analysing trade-offs in a coffee agroforestry • VAN DEN MEERSCHE Karel -Montpellier, France -…/…Agroforestry: riding to the world's rescueGrab it back, jack: capture carbon with agroforestry and grasslands Agroforestry systems are known to sequester large amounts of carbon in the tree biomass. Several publications have also shown a positive impact of agrofo restry systems on soil organic carbon (SOC) stocks, especially after a conversion from croplands. These systems are also promoted to adapt agriculture to climate change and to diversify food production systems, and are therefore good candidates to reach the objectives of the 4 per Thousand Initiative.This session welcomes studies exploring changes in SOC stocks and accumulation rates in agroforestry systems compared to other land uses. A special attention will be given to studies looking at deep SOC stocks, and mapping the spatial heterogeneity of SOC within agroforestry systems. This session also encourages studies assessing the drivers and processes of SOC storage and dynamics in agroforestry systems. This includes a full carbon, C stabilization mechanisms (aggregate stability, priming effect…), but also long-term assessment of SOC storage through modeling.Bioenergy crop production (BCP) systems are considered as promising carbon-mitigation options because of their soil organic carbon (SOC) storage potential (Ashiq et al. 2018). However, there is a research gap in relation to long-term C sequestration comparison between herbaceous and woody biomass cropping systems. This study therefore is aimed at, (a) to quantify above and belowground carbon stocks within an 8-year-old BCP system, and (b) to quantify long term system level carbon sequestration (SLCS) potentials as influenced by woody and herbaceous species. We assessed C sequestration in poplar (Populus spp.), willow (Salix spp.), and switchgrass (Panicum virgatum) cropping systems by destructive sampling technique (Marsal et al. 2016). SOC stock obtained from this study was compared with existing 2009 baseline values. SLCS was determined based on the above and belowground carbon sequestered by the tested bioenergy crops. Results showed that SOC ranged non-significantly from 78.8 Mg ha -1 for switchgrass to 85.8 Mg ha -1 for willow. However, all bioenergy systems were able to increase SOC significantly in the long-term . Findings of this study suggest significant differences in biomass carbon production in woody and herbaceous bioenergy crops and in its components. Overall, considering SLCS, bioenergy production systems can be ranked as willow (96.3 Mg ha -1 ) > switchgrass (93.5 Mg ha -1 ) > poplar system (85.9 Mg ha -1 ) (Figure 1).Figure 1. System level carbon (C) gain and its components, belowground biomass carbon (BGC) and soil organic carbon (SOC) in bioenergy production systems, southern Ontario, Canada. Superscripts (x-y) indicate significant differences in system level C gain between bioenergy cropping systems as cate significant differences between SOC in 2017 and the baseline measurements in 2009 for each 2009 baseline for herbaceous and the dotted line indicates baseline for woody cropping system.The agriculture, forestry and other land use (AFOLU) sector is the main source of anthropogenic greenhouse gas (GHG) emissions in Colombia, generating 62% of the total GHG emissions in the country. Within AFOLU, forest-to-pastor conversion and pasture degradation during the establishment of traditional cattle ranching activities in the Colombian Amazon contribute to reduce the soil organic carbon (SOC) stock by more than 20% and to increase soil compaction (Navarrete et al., 2016; see figure). The Agroforestry for Conservation (A4C) project, an initiative proposed by The Nature Conservancy and the Amazon Conservation Team under the International Climate Initiative, aims to restore natural and productive degraded ecosystems and to reduce deforestation in the Colombian Amazon by promoting the implementation of agroforestry practices. By assessing the growing of agroforestry systems and the secondary forest, the A4C project will monitor its contribution to increase SOC and reduce soil compaction in restored areas of the Colombian Amazon. Some partial results indicate that the establishment of agroforestry systems in degraded pasture areas contributes to increase SOC by 0.3 Mg C ha-1 yr-1 and to reduce soil bulk density by 0.02 g cm-3 yr-1 (see figure). These results emphasize the importance of agroforestry systems in restoring SOC stocks and soil physical properties, highlighting their contribution with the 4 per 1000 Soil for Food Security and Climate Initiative.Soil organic carbon and soil bulk density dynamics during forest-to-pasture conversion and pasture degradation, and agroforestry establishment Elemental Analyzer. The percentage of carbon was used to calculate the carbon storage per hectare (Mg C ha-1) in the soil fractions. The obtained results showed that the land use modified the carbon storage in the soil fractions, mainly due to the different inputs of organic matter to the soil and the management activities associated with each land use such as the soil tillage or the livestock grazing. In this study, the trees established in the plots increased the carbon storage per hectare in the macroaggregates and in microaggregates probably due to the high inputs of organic matter to the soil coming from the tree leaves and roots. Therefore, in semi-arid areas such as those in this study it could be recommended the implementation of agroforestry systems such as the montado as a land use to mitigate the effect of the climate change, allowing agricultural production. Silvoarable systems are recognized to be able to stock higher amount of carbon (C) respect to conventional arable systems, both accumulating C in total biomass of trees and enhancing the soil organic carbon (SOC) sequestration potential (1). Several methods are available to assess agroecosystem C balance. Since changes in SOC become apparent in decades, soil sampling techniques do not allow to measure differences in short term. The flux approach is considered a good method for the full carbon balance accounting at annual scale. Indeed, it is an indirect method to estimate all carbon fluxes (2), suitable to quantify the net biome production (NBP), namely the net carbon gains/losses, calculated with the following equation ( 3): NBP=CAGB+CBGB-CRh-Ch The C inputs in the NBP calculation are the C in the aboveground biomass (CAGB) and in the belowground biomass of trees and crop (CBGB), while the C outputs are the C lost with the heterotrophic respiration (CRh) and with the harvested biomass (Ch). The aim of this work was to assess the potential agroecosystem carbon storage through the NBP of three systems: open field (OF), agroforestry (AF) and poplar short rotation forestry (SRF). The experimental field, which includes the three systems, was located in Pisa (Italy) at 3 m a.s.l. in a loam to clay loam soil. Rows of short rotation coppice (2 years cut cycle) poplar are spaced 13.5 m. Poplar (Populus spp. clone AF2 and Monviso) was planted in 2009, sorghum (Sorghum bicolor L.) was sown in open field plots and in poplar alleys in June 2018. In AF, the distance from trees was considered as a factor, sampling all the NBP components along a transect in the alley with 3 positions (AFW, westward; AFC, center; AFE, eastward). The experimental design included 4 replicates for each system and position. In each system, initial soil characterization was carried out and microclimate conditions were monitored in continuum by meteorological stations recording air temperature, wind speed, soil temperature and soil water content (SWC). The CAGB, CBGB and Ch were calculated multiplying the biomass dry weight per the biomass C concentration. The aboveground biomass was measured at harvest weighting all the crop aerial parts, weeds and litter. The belowground biomass was measured with soil coring at harvest. The harvested biomass was measured weighting sorghum grain and poplar biomass. The CRh was measured with the chamber method (portable CO2 analyser) in a soil CO2 flux partitioning experiment with the root exclusion method (trenching) (4), with weekly measurements. The method adopted in this study will allow to quantify the overall C sequestration potential of agroforestry in Mediterranean conditions considering the carbon accumulation at agroecosystem scale in short time in arable lands and to assess the effect of position along the transect on NBP due to different microclimate conditions.In Brazil, silvopastoral systems (SPS) are practiced in about 2 million hectares with Eucalyptus hybrids as the main tree species, and the area is increasing because of governmental incentives. To understand the influence of such systems on soil organic carbon (SOC) storage, we studied C content in three aggregate size classes in four land-use systems (LUS) on Oxisols in Prudente de Morais, Minas Gerais, Brazil. The LUS were 8-year-old SPS, planted forest (Eucalyptus hybrid), native (Cerrado) secondary forest, and managed pasture. The SPS had three tree-planting configurations: i) trees 3 m apart in double rows, 20 m between rows (SPS 20); ii) trees 2 m apart in double rows, 9 m spacing (SPS 9D); and iii) trees 2 m apart in single rows, 9 m spacing (SPS 9). The grass in SPS and pasture treatments was Urochloa decumbens. Cattle had been introduced 3 years after planting trees. The native forest was semi-deciduous degraded forest, with > 10 tree species, ~ 10 m height. From each treatment, composite soil samples were collected from each of the depth-classes (0-10, 10-30, 30-60, and 60-100 cm), three replications, and from two sites each in SPS: NT (near trees, 1.5 m from trees) and MR (middle of two rows). In the laboratory, each soil sample was manually fractionated (wet size class were determined and reported as stock (Mg ha per cm) in various soil layers, and compared using R and ANOVA in a completely randomized design and Tukey's studentized range test (significant at p whole soil and MA fraction. The MI fraction had higher SOC under pasture than forest and SPS 20 (NT and AT). For the SC size fraction, no difference was found between the treatments.Comparing the depths, SOC in MA was higher in the top soil layers. For the MI and SC size fractions, the SOC decreased with depths and were similar at the depths of 30 -60 and 60 -100 cm. Down to 1 m, total SOC stock ranged from 260 Mg ha under pasture to 167 Mg ha under native secondary forest; 174 Mg ha for Eucalyptus plantation; and the three SPS had values in the 190 to 200 Mg ha range. The SPS had higher C stock than the native forest and Eucalyptus plantation, and the highest stock was under pasture. The lowest amount of SOC under forest was a reflection of the poor state of the degraded secondary forest. It will be worthwhile to study if incorporating the native nitrogen-fixing trees (NFT), several of which are available, in SPS would lead to better C storage in soils comparable to or exceeding that under pasture. The relative distribution of C in different soil fraction sizes under SPS with native NFTs is another important line of future investigation, especially considering the status of the Cerrado biome as a biodiversity hotspot.Production systems with woody perennial plants, ideally timber trees, are technologies accepted in carbon projects to mitigate climate change through carbon sequestration. This research estimated C storage and fixation in coffee production systems in Cundinamarca, Colombia. Carbon in biomass, necromass and soil were estimated in systems with three different shade levels (low, medium and high) in three municipalities (Pacho, San Juan de Rioseco and Tibacuy) using IPCC´s recommendations (2006). Biomass was estimated with allometric equations, being some of them specific. Belowground biomass was estimated with a general model recommended by IPCC. Soil organic carbon was estimated at a 0-30 cm depth, considering the gross fragments. Variance analyses were carried out using the completely randomized design with three treatments (shade levels) and five repetitions per municipality. Soil stored 75% of the total C (93.9-137.7 Mg C ha-1), followed by trees (19%). Carbon increases with a rise in shade (55.8 vs42.0 vs23.0 Mg C ha-1for high, medium and low shade, respectively) (Figure 1a). Coffee bushes contributed just with 6% of total C in biomass and necromass; whereas necromass was the less important component (1-6%). These coffee plantations fixed a mean of 2.3 Mg C ha-1year-1, with a maximum value of ~7.1 Mg CO2 ha-1year-1 under a shade of 30-40% (Figure 1b). Coffee plantations, especially with high shade, have a high potential of C fixation and mitigate climate change. The aims of this study were: (i) assess soil organic carbon (SOC) mineralisation potential as a function of soil depth in an agroforestry (AF) plot compared to an agricultural plot (ii) estimate the contribution of soil inorganic carbon (SIC) to CO2 emissions at different depths. Soils were collected in an 18-year-old AF (tree rows and alleys) and in an adjacent agricultural plot. The incubation comprised four soil replicates per location (control, tree row, alley) and per depth (0-10, 10-30, 70-100 and 160-180 cm). Soil samples were moistened to reach field capacity, of the CO2 were measured after 1,3,7,14,21,28,35 and 44 days. The microbial biomass was measured at the end of the incubation. Decomposition rates were calculated, as well as the metabolic quotient. The cumulated total CO2, SIC-derived CO2 and SOC-derived CO2 emissions were only significantly higher in tree row than in the alley or in the control plot at 0-10 cm. SOC decomposition rates decreased with increasing depth. Contributions of SIC to total CO2 emissions according were comprised between 0.15 and 0.30 in topsoil layers and between 0.50 and 0.70 in subsoil layers. The higher emission in the tree row at 0-10 cm was related to a large amount of labile particulate organic matter. SOC did not seem to be more stabilized in AF compared to the control. SIC-derived CO2 must be taken into account on calcareous soils.Landscapes with a high share of agroforestry provide more regulating ecosystem services than landscapes dominated by conventional agriculture (Kay et al. 2018). Yet, which type of agroforestry to recommend depends on local and regional conditions and there may be regions where there is a higher need for agroforestry than others.We identified European farmlands where several ecosystem service (ES) deficits occur at the same time (soil erosion, low soil organic carbon and biodiversity, nitrate surplus, irrigation, low pest control and pollination potential). Almost ten percent of arable and grassland had more than five and four stacked deficits, respectively (Figure 1). In those areas, the introduction of agroforestry can help to reduce ES deficits. We propose 64 candidate agroforestry systems, which are locally adapted and attractive for farmers. They range from lines of trees around arable plots to relatively densely planted silvo-arable and silvo-pastoral systems.As an example for the reduction of ES deficits, we modelled the potential carbon sequestration of each candidate agroforestry system. The conversion of the 140,000 sqkm of priority farmland to agroforestry would sequester -depending mainly on the tree species and density -between 2 and 64 10 6 t of carbon per year in above and below ground biomass. This would correspond to up to 43 percent of the European greenhouse gas emissions attributed to the agricultural sector. Agroforestry play an important role in climate mitigation trough atmospheric carbon removal by trees photosynthesis activities but the carbon sequestration potential of smallholders agroforestry parkland are not well documented in Burkina Faso. Therefore, agroforestry parkland of smallholders' farmers in three climatic zones of Burkina Faso was studied. Thirty (30) household farmlands in each climatic zone representing about 35 ha were selected on which systematic woody species inventory and dendrometry data collections were undertaken. Non-destructive method using fitted allomectrics equations were used to compute carbon stock and to estimate equivalent dioxide carbon. Sustainability analysis of carbon sequestration potential was done using [0-10], ] 10-40] and ]40-110 cm] diameter classes respectively as long term , medium term and short term capability of agroforestry parklands to sequester the carbon. The balance between marketable carbon value and the trade-off resulting from tree conservation and major crop (millet, red sorghum and white sorghum) value was also analysed. The results revealed 24.71± 5.84 tCO2ha-1, 28.35± 5.84 tCO2ha-1 and 33.86±5.84 tCO2ha-1 respectively in Ouahigouya, Sapouy and Bouroum-Bouroum. Ouahigouya earned the first place for long term carbon sequestration potential with 1.82% of total amount of carbon. The medium term analysis give the first place to Sapouy with 71.71% of total amount of carbon and the short term analysis give the first place to Ouahigouya with 68.03%. The marketable carbon value was less than the trade-off value resulting from trees keeping and crop production value. The balance analysis revealed that carbon payment system promoted by REDD+ initiative will be profitable and compensable to smallholder farmers effort to keep tree when the tCO2 /ha price will be around 4 US$. By taking into account farmers, interests, profitability on carbon market will be the most relevant incentive method to enhance carbon stock in agroforestry parkland in order to meet Paris agreement.Keywords: trade-offs, corbon dioxide, smallholders, Agroforestry parland, REDD+.The objective of this study was to compare the carbon trade-offs of different coffee systems via quantification of carbon stock and greenhouse gas (GHG) emissions.Six coffee systems of shaded and unshaded (highly intensive, in terms of input use), shaded with exotic and native native trees (moderately intensive), and low and high shade tree density (least intensive) from Vietnam, Uganda and India, respectively, were compared. Carbon (C) stock was calculated from tree height, diameter, and wood density extracted from ICRAF database (http://db.worldagroforestry.org/wd) using allometric equations partly developed by Chave et al. (2014). GHG emissions were calculated from data on soils, fertilizer use, crop residues, energy use, and transportation of inputs and outputs using CoolFarmTool, an online GHG calculator (Hillier et al., 2011).The study showed that, higher carbon stock systems , did not significantly reduce Robusta coffee green bean yield (2.4 vs 2.6 tons ha -1 in shaded and unshaded coffee systems, Vietnam; 1.06 vs 1.04 tons ha -1 in shaded systems with exotic and native shade trees, India) while helped increase significantly carbon stock compared to unshaded systems (e.g., 15.2 tons carbon ha -1 , Vietnam). The additional carbon was achieved by growing primarily with fruit trees in Vietnam (85 trees ha -1 , contributing 15.2 tons C) and in India by maintenance of an agroforestry system with native shade trees (up to 245 trees ha -1 , contributing 77.6 tons C) or exotic (Grevillea robusta) shade tree species (397 trees ha -1 , contributing 47.5 tons C).The study also revealed that the GHG emission per unit product of systems in Vietnam (3.46 -3.98 kg CO 2 e kg -1 ) are not significantly higher than those in India (3.09 -3.13 kg CO 2 e kg -1 ), despite a much higher GHG emission per ha (7.5 vs 2.4 tons CO 2 e ha -1 , respectively) resulted from a significantly (3-fold) higher application of inorganic fertilizers, the main GHG contributor, in the former systems than the latter ones (around 2 tons ha -1 vs 0.7 tons ha -1 , respectively). This results from the higher yield of coffee systems in Vietnam, which compensates for the effect of GHG emission when measured per unit product. That coffee systems of Uganda had low GHG emissions (0.72 kg CO 2 e kg -1 ) in spite of negligible inorganic fertilizer use (on average 5kg ha -1 ) is explained by extremely low yields (0.86 tons ha -1 ). This may imply a trade-off effect in that a higher application of inorganic fertilizers increases coffee yield but simultaneously creates a negative environmental effect via higher GHG emissions.The introduction of shade trees to coffee systems of different input intensification helps provide significant carbon sequestration service while not significantly reducing coffee bean yield. Application of more inorganic fertilizers help increase coffee yield but must be optimized against the trade-off of causing higher GHG emissions.Agroforestry is known to be an opportunity to sequester carbon in soil and biomass leading to climate change mitigation. It provides also multiple benefits for farmers (additional incomes and sustainable land management). However, agroforestry impacts on soil organic carbon (SOC) sequestration rate are rarely documented in tropical regions due to the lack of longterm field experiments. This study aimed to quantify (i) SOC storage in agroforestry systems (AF, fruit trees inside staple crop plot) compared to traditional farming practices (TFP, staple crop only) and fallow land (FL, grass land) for synchronic approach (year 2018), and (ii) SOC accumulation rate under AF over 4 years (2014 to 2018) for diachronic approach. Soil sampling was conducted over 36 farmers' plot, at 3 soil depth (0-10, 10-20 and 20-30 cm) and over the 2 dominant soil types, ferralsols and andosols. Results showed that SOC stocks in AF was significantly higher (109 MgC.ha -1 ) than TFP (61 %) and FL (61%). The diachronic method showed an effective SOC accumulation rate up to 3 MgC.ha -1 .yr -1 for AF, with a slightly less accumulation rate in andosols, reflecting SOC saturation effect. High value of SOC sequestration on AF was due to an important organic fertilization supply (12 tons.ha -1 .yr -1 of manure) and trees density (500 feet.ha -1 ) feeding the soil biomass. This study confirmed the important role of AF to sequester carbon in the soil at farmer scale meeting widely the objectives of the 4 ‰ Initiative.Agroforestry-the integration of trees with crops and livestock-is not mentioned explicitly in the UNFCCC's Koronivia Joint Work on Agriculture. However, agroforestry generates many benefits directly relevant to the topics addressed, including: (i) building resilience, (ii) increasing soil carbon and improving soil health, (iii) providing fodder and shade for sustainable livestock production and (iv) diversifying human diets and economic opportunities. Despite its significance, agroforestry may not be included in measurement, reporting and verification (MRV) systems under the UNFCCC. Here we report on a first appraisal of how agroforestry is treated in national MRV systems under the UNFCCC. We examined national communications (NCs) and Nationally Determined Contributions (NDCs) of 147 countries, 73 countries' REDD+ strategies and plans, and 283 Nationally Appropriate Mitigation Actions (NAMAs) and conducted interviews with representative of 17 countries in Africa, Asia and Latin America. Our assessment found that there is a significant gap between national ambition and national ability to measure and report on agroforestry. Forty percent of the countries assessed explicitly propose agroforestry as a solution in their NDCs, with agroforestry being embraced most widely in Africa (71%) and less broadly in the Americas (34%), Asia (21%) and Oceania (7%).Seven countries have proposed 10 agroforestry-based NAMAs. Of 73 developing countries that have REDD+ strategies, about 50% identify agroforestry as a way to combat drivers of forest decline. Despite intentions, however, agroforestry is still not visible in many MRV systems. For example, though 66% of the countries reported non-forest trees in national inventory, only 11% gave a quantitative estimate of number of trees or areal extent. Interviews revealed a suite of definitional, institutional, technical and financial challenges preventing more comprehensive and transparent inclusion of agroforestry in MRV system. This absence has serious implications. If such trees are not counted in inventories or climate change programs, then in many ways they don't count. Only if agroforestry resources are measured, reported and verified will they gain access to finance and other support. The paper will discuss finding of the assessment, successes and specific Investments needed to help ability match ambition.Keywords: agroforestry, MRV, mitigation, adapation.Agroforestry systems in the humid tropics have the potential for high rates of production and large accumulations of carbon (C) in plant biomass and soils, and thus may play an important role in the global carbon cycle. Many factors, including crop species composition, management, and climate change could influence the extent to which agroforestry systems sequester C, but the relationships among the factors are complex. The objective of this study was to evaluate the relative effects of individual factors on C stocks in soil and plant mass in agroforestry systems in Kerala, India. We used CENTURY, a general model of plant-soil nutrient cycling, parameterizing the model for this region. We then conducted simulations to investigate the effects on C stocks in aboveground biomass and soil under four experimental scenarios: 1) Change in crop system; 2) Differences in soil types; 3) Increase in temperature above 20-yr means; and 4) Change in tree species. All of the factors influenced the simulated soil C stocks, whereas C in aboveground biomass was relatively little influenced by increasing temperatures and soil type under these scenarios. The significance of these findings is that if carbon trading schemes were to be initiated in Kerala, it is apparent that a variety of factors can potentially influence the actual amount of C sequestered in Kerala agroecosystems. 2) Under the 'Difference in Soil Type' scenario, the sand fraction was varied from 0.1 to 0.7 in the 'Mixed, ++' system. 3) Under 'Increase in Temperature', minimum and maximum temperatures were increased above the current 20-y means, as indicated, also in the 'Mixed ++' system. 4) The effect of 'Change in Species' of trees was simulated by increasing the production capacity and tissue lignin contents in the 'Trees 00' system. Species 'C' is the default tree (LUQD) in CENTURY.The study of shelterbelts in agroforestry landscapes includes a range of issues and tasks, solutions of which are aimed at a deeper knowledge of patterns for environmental changes.Changes in soil properties as a result of planting and long-term functioning of artificial forest plantations are of great interest. One of the most important aspects of this research is the assessment of shelterbelt contributions to carbon sequestration by soils. Our studies on the Great Plains (USA) and Central Russian Upland of Russia (6 key sites were studied) show the high probability of the accumulation of soil organic matter or humus in the surface meter of soil under the shelterbelts, which ranged from 21 to 70 years old (Chendev et al., 2015). However, we have reason to believe that this process has a stage character, i.e. accumulation of humus in soils under shelterbelts does not occur indefinitely. Sauer et al. (2012) observed an increase in soil organic carbon (SOC) accumulation in the surface 30 cm of soil at 4 locations in Iowa under artificial forest plantations up to tree age of 30 years. At tree age of 50 years the rate of SOC accumulation decreased to a lower rate similar to the early years of tree growth. Study of young shelterbelts aged 20-30 years at the Kamennaya Steppe in Russia in the 1920s confirmed the accumulation of organic matter in soils under the shelterbelts (Tumin, 1930). However, research in the same areas conducted in the 1990s -2010s showed no differences in organic matter stocks in the soils of old-growth (~100 years) shelterbelts and in the adjacent background steppe areas (Kaganov, 2012;Prikhod'ko et al., 2013). Researchers noted that as a result of the Late Holocene forest expansion on grasslands in Europe (due to natural changes of climate), fertile Chernozem soils (in the US -Mollisols) transformed into less fertile Luvisols (according to the American Soil Classification -Alfisols) (Chendev et al., 2018). Thus, the accumulation of humus in soils under shelterbelts can occur during the first decades after planting and then may be followed by a change in soil evolution including potential degradation. Our working hypothesis requires further research that can solve an important fundamental soil-geographic problem, which consists in developing the concept of \"soil formation factors -soil formation processes -soil properties\". Additional SOC characterization including permanganate oxidizable carbon (POXC) was used to further interpret SOC distribution. Soil cover type had an insignificant effect on POXC at two sites in Russia but at a third (Yamskaya) it had a very significant effect. Depth had a significant effect on POXC at all system of \"shelterbelt-soil\" can act as a controlled model of interaction of soils and factors of their formation, the parameters of which are specified in a space-time dimension.Targeting marginal lands for woody bioenergy production avoids some of the competition for food production and may improve soil health, the local microclimate and provide other ecosystem services. The objective of this study was to evaluate the effect of eastern red cedar (Juniperus virginiana L.) windbreaks on soil quality in the U.S. Great Plains. Eastern red cedar has great potential for bioenergy production due to its adaptability to a wide range of soil and climate conditions and the physical and chemical characteristics of its biomass. Nine sites were selected from latitudes 41-47 deg N and longitudes 94-103 deg W with MAP from 425 to 970 mm and MAT from 4.9 to 9.9 deg C. Tree age varied from 22 to 59 years. Ponded infiltration (twin ring technique) and penetration resistance at 2.5 cm increments to 30 cm (digital static cone penetrometer) were measured at 9 locations under the trees and in adjacent fields (crop, pasture, or hay). Soil samples were collected for carbon, bulk density, pH, and nutrient analyses. Infiltration rate was greater and penetration resistance lower under tree cover at most sites. Soil organic carbon (SOC) to 30 cm depth averaged 0.92 kg m -2 (16.8%) greater under trees as compared to adjacent land use. Improvements in soil quality following tree planting for bioenergy feedstock production may allow some marginal lands to be converted back to crop or forage production at a higher level of productivity.The loss of soil fertility at the global scale is alarming, as are the impacts of climate change.Conventional agriculture practices are reducing the organic matter content of soil as well as the soil´s capacity to regenerate nutrients to a minimum. In order to ensure food security in the future, sustainable agriculture techniques have to be promoted. These techniques should not only be productive, but also build soil fertility in the long term. At Mollesnejta-Centro de Agroforestería Andina, we apply dynamic agroforestry measures in combination with two agroecological techniques, with the goal of improving soil quality: (a) Activated Biochar and (b) Ramial Chipped Wood (RCW). Pruning material sourced from pruning in agroforestry systems was used as a soil amendment through both techniques. The presentation will describe the benefits of Activated Biochar and RCW and discusses their preparation and application to the soil, where both act as long-term carbon sink. Also, are provided the results of the experiences obtained at Mollesnejta-Centro de Agroforestería Andina after using these techniques. Both techniques proved to be effective at improving soil fertility and the capacity of rainwater storage. In combination with their impact as carbon sink it would be reasonable to intensify the practice of dynamic agroforestry Organic material of pruning is transferred to biochar, which activated with manure and urine of compost/dry-toilets becomes TerraPreta; this is applied into the soil to increase the fertility and the capacity to store the rainwater and at the same time act like a carbon sink during several hundreds of years.on soil organic carbon (SOC) sequestration. In all treatment combinations, soil from 0-30 cm depth were collected from eight RBS sites [Mature deciduous clay (MDC), Mature coniferous clay (MCC), Mature deciduous loam (MDL), Mature coniferous loam (MCL), Young deciduous clay (YDC), Young coniferous clay (YCC), Young deciduous loam (YDL) and Young coniferous loam (YCL). Soil samples were also collected from adjacent agricultural fields (control). SOC were determined using the dry combustion procedure as outlined in the Leco CR-412 manual (Wang and Anderson 1998). Results indicate that RBS with mature trees, irrespective of -1) compared to adjacent agricultural fields whereas, RBS with young trees did not show significant difference (Figure 1). Overall, MDC had more positive impact on SOC sequestration whereas YCL had least impact among the RBS. However, all RBS showed numerically higher mean SOC content compared to its adjacent agricultural fields. With in a site, means followed by the same letter are not significantly different according to a Tukey'sAgroforestry: riding to the world's rescueSinging in the rain: adapting to the erratic new normal Shade trees are often used to protect crops from excess heat and light in the tropics, where agroforestry (AF) is clearly seen as a way to adapt to climate change (CC). It could be interesting to grow crops under shade trees in temperate climates also, to adapt agriculture to CC by buffering temperature both at the annual scale and at the daily scale, thus reducing yield loss due to extreme temperatures (frost, heat wave), by reducing soil evaporation through a reduction in radiation, wind speed, temperature and for water between trees and crops might be exacerbated in the context of CC due to reduced rainfall and increased risk of drought. Tree productivity in AF conditions could thus be reduced, although the deeper rooting pattern in AF compared to forest conditions, might give the trees access to more water resources. This session welcomes modelling and experimental studies relevant to the assessment of the resilience of AF systems to CC as well as to the design of AF systems more adapted to CC and their adoption by stakeholders.This framework was developed by monitoring two contrasting agroforestry systems over three years, before, during and following the 2015/16 El Niño. We hypothesize that during a climate shock there will be factors outside of a farmer's control (e.g. farm 's location in the landscape) and management options within the control of the farmer that may either positively or negatively interact (e.g. be complementary or trade-off) with climatic conditions to impact yields.To explore this, we present the results of ecological and socio-economic data from 56 lowinput (Coffea arabica in Ethiopia) and 36 medium-input (Theobroma cacao in Ghana) farms, along landscape and management gradients. Both systems were severely impacted by the El Niño shock; however, monitored coffee shrubs showed a dramatic collapse in yields while the most stressed cocoa trees showed increased pod production. In Ethiopia, we found location in the landscape (e.g. elevation and forest patch size) and diversity of shade trees had tradeoff effects and the presence of leguminous shade trees had complementary effects on yield variability. Whereas in Ghana, both shade management and distance from forest had trade-off effects, while only soil nutrient management was complementary throughout the study period. We discuss the implications of monitored yield variability on household resilience and poverty outcomes using insights gleaned from household surveys and community focus groups.Figure 1 Depiction of proposed framework describing the prevailing attributes of a farm beyond the control of the farmer (e.g. its location in the landscape) and the management decisions available to the farmer. Resilience, in this model, is described by the interaction of farm attributes and farm management with a climate shock to influence inter-annual yield variability.The World Agroforestry Centre, in collaboration with Bioversity International, CATIE and Hivos, recently published habitat suitability maps for 54 tree species that are widely used in Central America for shade in coffee or cocoa agroforestry systems 1 (www.worldagroforestry.org/ atlas-central-america). Using similar methods of species distribution modelling, including ensemble methods whereby consensus habitat suitabilities are weighted average probabilities from different algorithms 2 and a likelihood scale recommended by the IPCC 3 , habit change maps were prepared for 150 tree species native to Africa. The Central American atlas calibration methods were augmented using filtering approaches of species occurrence datasets in geographical and environmental space and spatial blocking techniques to reduce spatial correlation during model evaluations 4 . These methods were also integrated in the newer versions of the BiodiversityR package. Models were calibrated with a subset of bioclimatic and topographic variables obtained from AFRICLIM 5 and ENVIREM. To reduce potential overestimation of the effects of climate change, species distribution data were obtained across Africa.Selected species were priorities in different projects and countries, including for a large forest landscape restoration project in Ethiopia, the African Orphan Crops Consortium, an ecosystem-based adaptation project for Gambia and cover priority food tree species identified in Burkina Faso, Ethiopia and Kenya.Most of sub-Saharan Africa is expected to experience drier climates by the middle of the 21st century. Shown here are the number of 18 downscaled General Circulation Models that project increases in the moisture index (P/PET) compared to the 20th century baseline (hyperarid areas were masked from the baseline; future grid layers from AFRICLIM for RCP 4.5). The major changes in the colour schemes correspond to the likelihood scale recommended for the fifth Assessment Report of the IPCC (red -orange : likely decreases in moisture index; light blue -dark blue: likely increases in moisture index).Agroforestry systems are conventionally treated as a mitigation tool to reduce the impact of climate change. However, climate change is threatening the very existence of every ecosystem, and there is no reason to believe that agroforestry systems will be spared. Hence we have addressed whether climate change has an impact on agri and agroforestry systems of Western Ghats biodiversity hotspot.The objective of the study was to identify and measure the impact of climate change on patterns, productions and processes in agroforestry systems of Western Ghats region of Kerala, India in particular Wayanad.The shift in area and production of major crops were analyzed using the data available from Agricultural Statistics records of the Government of Kerala. The daily temperature and rainfall data were collected from different agencies and ordinary least square regression equations were fitted in order to analyze the changes in trends. A house-hold survey was conducted to understand how agricultural practices have changed over the period, and what drove the changes in practices. Factor analysis based on principal components was conducted to identify the most important factors that drove the shift in agroforestry practices.The result showed that Wayanad has undergone major changes in agroforestry practices over the last couple of decades. The area and production of crops such as arecanut, coconut, rubber and banana increased considerably whereas that of rice, ginger and pepper has declined. Climate variables showed that monsoon rainfall is found to be decreasing over the years, while there is an increase in temperature during the same period. Also, there is a delay in the onset of monsoon and an advance in the offset of monsoon. Factor analysis indicated that 71% of the changes in cropping pattern of the area is driven by four principal components which were found to be, market driven shift in agricultural practices (25%), adaptive agriculture management strategy adopted by the stakeholders (18%), impact of climate change (15%) and booming expansion of tourism industry (13%). The study concludes that there are changes in pattern, production and processes of agroforestry systems in Wayanad, and climate change contributes 15% of the shift in agricultural practices.The present study contributes to our existing knowledge on the effect of climate change on crop production and agricultural dynamics, and sheds light into the programs related to the agroforestry based climate change mitigation where climate variability and other factors need to be accounted before making policy decisions that aimed to mitigate the impact of climate change by means of agroforestry systems.Keywords: Agroforestry systems, Climate change, Wayanad, Kerala, India.Shade trees have a complex role in adapting agroecosystems to a changing climate. Disentangling these complexities is central for climate change adaptation strategies for cocoa production in West Africa. In this study, we adopted a trait-based approach to investigate the effects of a common shade tree species (Terminalia ivorensis) on the resource acquisition strategies of cocoa (Fig. 1), as characterized by variation and covariation in fine root traits.We assessed these shade tree effects across optimal and suboptimal precipitation regimes, and in contrasting edaphic conditions (sandy vs. loam) in Ghana. We found that absorptive fine roots of cocoa are more acquisitive in drier sites, expressing trait values associated with higher acquisition but lower lifespan, suggesting roots are more responsive to soil moisture. Shade trees play a key role in controlling resource strategies of cocoa, and dictate the position of individual cocoa trees along on a singular axis of trait covariation, or the 'root economics spectrum', although this effect is specific to climate and edaphic conditions (Fig. 1). Shade tree management that accounts for soil physical properties may be critical in suboptimal climatic conditions, conditions which are expected to become more prevalent in West Africa.Context-specific agroforestry arrangements designed in ways that optimize resource acquisition strategies of cocoa represent a viable means to sustain productivity in the coming decades. Ethiopian economy strongly depends on coffee production. Coffee is sensitive to climate change and recent studies have suggested that future changes in climate will have a negative impact on its yield. One of the strategies that ensuring coffee production under future climate change is agroforestry-based production, as combination of trees in the system buffers extreme conditions. The objective of this study was to assess coffee production under: 1) monoculture and 2) coffee grown under trees using: a) current climate and b) two climate change scenarios. The study focused on two coffee growing regions of Ethiopia. A process-based growth model (Yield-SAFE) was used to simulate coffee production for a time horizon of 40 years. Climate change scenarios considered were: Representative Concentration Pathways (RCP) 4.5 and 8.5. Results suggest that in monoculture systems, the current coffee yields are between 1200-1250 kg ha -1 yr -1 , with expected decrease of between 4-38% and 20-60% in scenarios RCP 4.5 and 8.5, respectively. However, in agroforestry systems, the current yields are between 1600-2200 kg ha -1 yr -1 , the decrease was lower, ranging between 4-13% and 16-25% in RCP 4.5 and 8.5 scenarios, respectively (Figure 1). These results evidenced that agroforestry systems for coffee production have a higher level of resilience when facing future climate change and reinforce the idea of using this type of management to mitigate negative impacts of climate change on coffee production. In Brandenburg, eastern Germany, prospective climate changes imply extreme weather events 1 , increasing annual temperature, and decreasing summer precipitation 2 . Since alley-cropping systems (ACS) have a broad planning horizon, appraising their sustainability and efficiency under changing climate conditions is crucial for forthcoming risk assessments and adaptation scenarios. Consequently, this combined experimental and simulation study investigated the growth vulnerability of poplar clone \"Max I\" (Populus nigra L. x P. maximowiczii Henry) and black locust (Robinia pseudoacacia L.) short rotation coppices in an ACS established in Brandenburg to a considerable spectrum of weather conditions and long-term climate change, from 2015 to the end of 2054 3 . The investigation employed (i) Yield-SAFE 4 , a biophysical, process-based model to simulate the above-ground tree woody biomass and (ii) 100 realisations of the statistical regional climate model STAR 2K 5 . In the most optimistic sequence of events pertaining to air temperature, precipitation, and global radiation, 35% more woody biomass would be achieved by poplar and 43% by black locust in the last period compared to the base period (Fig. 1). Alternatively, in the most pessimistic circumstances, 54% less woody biomass would be rendered by poplar and 47% by black locust (Fig. 1). Our findings corroborated the tree growth vulnerability to prospective climatic changes, particularly to changes in water availability.A bandwidth of potential woody biomass accumulated in a 4-year rotation cycle from 2015 to the end of 2054 shown by maximum (blue) and minimum (red) values for (a) poplar and (b) black locust (after Seserman et al., 2018). The dash-dotted lines describe trend lines for the woody biomass. The dashed lines represent the woody biomass, as per reference period.Climate Change (CC) is expected to lead to both improvements and worsening of the crop growing conditions, depending on site-specific conditions. Agroforestry (AF) systems have significant effects on the climate experienced by the understory crop. The complex crop-tree-soil-microclimate dynamics make it challenging to predict crop yields in AF systems with too simple/empirical models. We explore the use of a process-based bio-physical AF model (Hi-sAFe) for the prediction of the drivers of crop growth and yields in AF under CC. Hi-sAFe is a 3D model representing tree-crop interactions for the capture of light, water and nitrogen, as well as the effect of tree shading on crop temperature and crop water use efficiency. The model was used to compare a monocrop of winter wheat and an alley cropping plot combining wheat and hybrid walnut tree lines. Each plot was simulated over cycles of forty years, in a location in southern France, as driven by climatic projections from IPCC, representing Past, Present, and Future climates.Trends in intercepted PAR radiation by the crop and thermal comfort indices were interpreted for the different agricultural systems and climate scenarios, taking into account the effect of the tree size in agroforestry. By this approach the positive and negative impacts of trees on crop growth temperatures for the different climate scenarios were discriminated.Thermal stresses on photosynthesis due to sub-optimal high (above) and low (below) temperatures across climatic scenarios (solid yellow line: Past; dashed orange line: Present; red dotted line: Future). Stress values are calculated as the product of the number of days of stress annually experienced, multiplied by one minus the mean annual value of the stress index. Stresses are represented after the application of a moving average with a window of eleven years. Vertical lines represent confidence intervals. The horizontal dashed lines correspond to relative stresses equal to one. The Mediterranean region has been identified as one of the most prominent Hot-Spot in climate change projections. We investigated an olive tree -durum wheat AF system and we wondered what is the potential role of these trees on the vulnerability of d. wheat to shifting environments.The experiments were conducted at INRA Mauguio (South of France) for 3 years. D. wheat was sown each year just after olive harvesting in 3 experimental conditions: AF: yearly pruned olive orchard, AF+: never pruned olive orchard (both 6 m between rows), C: open field.A national weather station and temporary sensors placed in the treatments provided air temperature and humidity, global radiation, PAR, wind velocity and water in the soil (Figure 1). PAR reaching d. wheat was reduced by averagely 30% in AF and 55 % in AF+, compared to C.A \"buffer effect\" was clearly noticed: air temperature in AF was lower (-4 °C) from 5am to 3pm and higher (+2°C) from 3pm to 12pm. Daily average wind velocity was significantly reduced by AF treatments: 2.0 (C), 0.25 (AF) and 0.01 m.s-1 (AF+). These effects allowed a reduction of water evaporation and an increasing of soil moisture conservation in AF treatments, with the greatest difference, compared to C, recorded from 30 to 60 cm depth in the soil, all years. The presence of evergreen tree species, with the PAR reduction observed, might be responsible for the decresed wheat yield in agroforestry (-43% in AF; -83% in AF+), while olive yield even slightly increased. Several studies have been conducted on shaded cocoa systems, very few of these have examined species-specific crown architecture and its influence on shade provision in cocoa agroforestry systems. In view of the fact that cocoa agroforestry is the recommended practice to drive cocoa production onto a climate-smart pathway, and given the role of upper canopy trees in the moderation of shade and light to the cocoa system, there is the need to understand the characteristics of crown parameters of upper canopy trees and the associated implication for shade provision for the cocoa system. This will provide useful guide to the selection of upper canopy tree species for the provision of shade to cocoa systems. The aim of the research was to investigate the crown architecture and dendrometric parameters of upper canopy trees and their implications for shade provision in two age classes of cocoa agroforestry systems. Employing a replicated transect method, quantitative data on upper canopy trees in cocoa agroforestry systems were collected from twelve ( 12) 1 ha plots established on a 5 km long transects at the Bonsu Nkwanta cocoa growing district in the Western region of Ghana. Information on the following crown parameters were generated, crown height, crown area, crown volume, uncompacted live crown ratio, and crown spread index. Given that there was no existing information on various crown forms of upper canopy trees in cocoa systems in Ghana, the crown forms generated by Frank (2010) was adopted for this study. These were \"spreading to cylindrical\", \"elongate to rounded to oval\", \"upswept and vase shaped\", \"conical to pyramidal\" and \"spade shaped\" crown forms. Results from the study showed that one hundred and sixty (160) upper canopy trees belonging to 44 species, distributed in 21 families were recorded in the cocoa agroforestry systems surveyed in the study area. Newbouldia laeviswas the most abundant species recorded and constituted (11.88%) of all the trees. The study showed that crown and dendrometric characteristics of the upper canopy trees did not differ in cocoa agroforestry systems of different ages. Also, the highest values of crown volume, crown area and shade area were recorded for the \"spreading to cylindrical\" crown forms followed by the \"elongate\" crown form. Furthermore, results from the study showed that crown area, crown volume, crown diameter, tree DBH and crown height were the parameters that strongly affected the ability of a particular crown form of a tree to provide higher shade.Based on the results, we conclude that in selecting upper canopy trees for the provision of shade to cocoa systems, \"spreading to cylindrical\" and \"elongate\" crown forms are the most suitable crown forms to incorporate in the cocoa agroforestry system. The results of this study hold implications for promotion of climate -smart and sustainable cocoa agroforestry in Ghana and the West African cocoa belt.In the Sahel, declining crop yields are a major obstacle to food security. This is mainly due to climate variability and land degradation due to unsustainable management practices. This is the case of the agro-ecological zone of the groundnut basin in Senegal where most of the soils are degraded by the effects of continuous cultivation with a peanut-millet rotation. In this area, farmers resort to clearing and/or uprooting of shrubs to extend cropland. For nonuprooted shrubs, their management includes annual spring coppicing and burning of residues before cultivation of row crops. This mismanagement of cultivable land correlated with the low valuation of crop residues and animal excrement as well as climatic disturbances has had adverse consequences on the environment. This study aims to evaluate the effect of a Climat Resilient Agroforestry Technological Package (CRATP) on millet yield in a context of rainfall variability. The CRATP includes native shrubs conservation in the fields through Farmer Managed Natural Regeneration (FMNR), the use of seed varieties chosen according to climate forecasts, climatic information throughout the season, organic and mineral fertilization by micro-dose and minimum tillage. Agroforestry trials were carried out over four successives years in 1250 m2 plots of 20 producers applying the CRATP pathway compared to 20 other producers applying their usual practice (UP). The results show that the CRATP has achieved ± 102.1 kg.ha-1 and 1579.5 ± 129.7 kg.ha-1 versus 632. 1 ± 69.3 kg.ha-1 and 970.7 ± 160.3 CRATP also allowed a yield of 1370.3 ± 164.1 kg.ha-1 and 904.1 ± 60.9 kg.ha-1 against 804.8 ± 101.9 kg.ha-1 and 461.8 ± 50.5 kg.ha-1 for farmer practice. Overall the yield increased by 60% and 63% compared to the farmer usual practice in defict rainfall years (2014 and 2017) and by 96% and 70% in excess rainfall years (2015 and 2016) with a decrease of 33% in the amount of mineral fertilizer and 71% of the amount of Urea used. This agroforestry technological package helps to reduce the negative impacts of climate variability and thus improve the food security and the resilience of small Sahelian farmers.Potential use of coffee agroforestry systems to adaptation-mitigation synergies for climate change Canal D. (dscanal@ut.edu.co), Andrade H.Grupo de Investigación PROECUT, Universidad del Tolima, Ibagué, Tolima, ColombiaMitigation and adaptation have been proposed by the international community as the main strategies to face the climate change, but its integration is taking more relevance. This study estimated the mitigation-adaptation synergy (MAS) in the three most dominant coffee production systems in Líbano, Tolima -Colombia: agroforestry system (AFS) with Cordia alliodora (AFS-C), AFS with plantain (AFS-P) and monoculture (M). Carbon footprint and diversity of ants were estimated as mitigation and adaptation indicators, respectively. The inclusion of trees in coffee production systems changed from negative to positive the carbon footprint: 12.8 vs -3.0 vs -6.4 Mg CO2e/ha/year for AFS-C, AFS-P and M, respectively) (Figure 1). In the same way, AFS-C had the highest richness of ants according to Margalef index (1.3) than AFS-P and M (0.6); in contrast, no differences between systems were detected in Shannon-Wiener and Simpson Index (Figure 1). The genera Cephalotes, Dorymyrmex, Hypoponera, Pachycondyla, Octostrumaand Proceratium were exclusively found in AFS-C due to their requirement of high biomass and necromass. The AFS that includes native trees, can be an acceptable strategy for mitigation-adaptation to climate change, due to its advantages in improving carbon footprint and hosting a high diversity of ants. The AFS-C have characteristics more similar to natural forests which allow to generate more services as carbon sequestration and those derived from biodiversity conservation. Increasing scientific evidences indicate that agroforestry is a land use that can support economic, social and environmental sustainability, thus promoting resistance and resilience towards ongoing climate changes. The implementation and management of agroforestry systems still face social, economic and political barriers. Mediterranean agroecosystems suffer from increasingly negative climate change effects and urgent measures are needed to improve their rural economy while protecting soils and the environment. In this context, the LIFE Project Desert-Adapt: \"Preparing desertification areas for increased climate change\" (http://www. desert-adapt.it), aims to demonstrate the feasibility of innovative climate adaptation strategies and measures, based on the agroforestry concept, over 1000 hectares at risk of desertification in Italy, Spain and Portugal. The core of the project is the Desert Adaptation Model (DAM), an integrative development model fitted to the specific requirements of each farm which guide the implementation of sustainable agroforestry systems (e.g. montado, dehesa). The results will be evaluated through an array of multidisciplinary social, economic and environmental indicators. The project will deal with the most common conceptual, technical, and legal constraints encountered along the implementation and management of agroforestry systems in marginal lands and its results will fill the gap between farmers' needs and policy makers at local and global level. Soybean yield responses to rainfall reduction and tree root pruning in a Gagné G. (gagg21@uqo.ca), Lorenzetti F., Rivest D.Sciences naturelles, Université du Québec en Outaouais, Ripon, Qc, Canada Agroforestry is increasingly viewed as an effective means to buffer crop yield against the impacts of climate change, especially decreases in the availability of soil water. The effects of belowground competition at the tree-crop interface on crop yield under rainfall reduction have not been assessed in well-documented manner in temperate tree-based intercropping (TBI) systems. The objective of this study was to determine the effect of rainfall reduction and tree root pruning on soybean yield in a 7-year-old TBI system. We hypothesized that soybean yield tolerance to rainfall reduction will be higher in TBI system as compared to soybean monoculture. We also hypothesized that tree root pruning will increase soybean yield and tolerance to rainfall reduction at the tree crop interface as compared to unpruned TBI system. Hybrid poplars and high-value hardwood species were planted alternately every 5 m along each tree row that were spaced 40 m apart, resulting in a stand density of 50 stems ha-1. The experimental design was a split-plot design with three systems, soybean monoculture, TBI with tree root pruning (2.5 m from the tree row, within the top 60 cm of the soil profile, both sides) and TBI without root pruning, as the main whole plot effect, replicated in four blocks. Split-plot effects consisted of two randomly assigned treatments of full rainfall or partial rainfall exclusion. In each TBI plot, split-plot effects were observed at three distances from the tree row (4,12 and 20 m) on both sides. The rainfall reduction treatment consisted in suspending PVC gutters at a height of 2-10 cm above the soil (covering 50% of the soil surface), and the excavation of a deep ditch at the lower part of the plots to intercept water from gutters. Variability of soybean yield and yield components among treatments will be discussed in relation to soil water and light transmittance availability. These results will enhance our understanding of the crop performance under different soil water stress conditions in temperate TBI systems. Gebrekirstos A. 1 (agebrekirstos@yahoo.com), Alban M. Cocoa (Theobroma cacao) is an important agroforestry tree species that has been providing socio-economic and ecological benefits for centuries. Cote d'Ivoire is the world's largest cacao producing country, followed by Ghana and Indonesia (Franzen et al., 2007). In this region, cacao trees play a significant role in farmers' livelihood and the national economy. For example, cacao production in Côte d'Ivoire contributes 7.5% of the national GDP. A recent study indicated that drought has caused widespread mortality of cocoa seedlings (Siebert, 2002) suggesting that cacao tree growth and productivity is susceptible to climate change, such as rising of temperature and reduction of rainfall amount. Hence, any impact of climate change on the suitability to grow cocoa in West Africa will not only affect farmers' livelihoods and incomes, but the national economies as well. It is becoming increasingly evident that patterns of growth, water use efficiency, and survivorship of tree species are sensitive to climate variations and stress induced mortality is prevalent (Gebrekirstos et al., 2014). However, previous studies did not investigate cacao tree response to changing climate. There is a substantial gap in fundamental knowledge concerning how cacao trees grow in response to climate variability, and therefore how they might react to future climatic change. Our approach considers different temporal scales (e.g., inter-annual and intra-annual wood anatomical variations). Stem disk samples were collected from seven sites across climate gradients in Côte d'Ivoire. Thin sections were cut with a sledge microtome and stained with solutions of astra enhance the contrast for successive image analysis. We observed peculiar anatomical features in macro section and micro cross sections in most of the stem disks collected although the extent appears to vary among sites and or varieties. Often, those structures did not appear along the whole circumference of the stem. We are in the process of further anatomical study to describe the anatomy of this particular features which seem to be unknown and to suggest possible drivers of their formation, whether it is due to climate or attack by pathogens.Examining the stem cross section and further wood anatomical analysis at different temporal scales clearly showed that the cacao trees have gone through multiple attacks by various pathogens. Trees invest metabolites for different purposes (defense growth, yield etc.), depending on the prevalent conditions. Considering the multiple compartmentalization, chemical defenses and thyloses observed, cacao in Côte d'Ivoire seems to invest a lot in defense and this might have affected cacao yield as well.We will present methods and tools to assess impacts of climate change on cacao resilience to climate variability, preliminary results and their implications for improved management practices.Following the previous World Agroforestry Congresses (2009 and 2014), the NGO \"GASD/ SADDA-Togo'' in collaboration with the research centre \"CERFOLAM/Univ. Lomé-Togo'' launched an initiative to develop Agroforestry in Togo.Initially, the plantation of teak was chosen to promote the reforestation and to fight poverty.From 2007-2016, plantation of teak was undertook. In parallel, ethnobotanical surveys were performed to identify antimalarial and analgesic medicinal plants endangered by habitat destruction and overexploitation [1,2] . A new initiative named 3U/O-3P (Une personne, Une plante, Une Planète/One person, One plant, One Planet) launched on 30/11/2018 to maintain this important biodiversity was created. Agroforestry was chosen as a mean to expand the cultivation of endangered plants.It was recorded 16 endangered plant species (9 tree, 2 shrub, 3 liana, 2 herb) used mainly in antimalarial and analgesic preparations [3] . 65 ha of agricultural land were planted with 162500 trees of teak. Three species (Alstonia boonei, Griffonia simplicifolia, Lannea kerstingii) having also international markets, were selected for cultivation, thus reaching 2 objectives at the same time: Conservation of medicinal plants by indigenous users and the increase of farmer's incomes.Further studies will be needed to identify the best practices for production of both wood for international markets and medicinal products for local markets.In Africa and South America rainforests forestry intercropping is a used practice to improve tree survival rates and the nutrition supply, while protecting the soil from erosion. Due to the adverse effects of climate change on forest areas and the success of reforestations, the traditional practice of growing crops in an afforested areas might be worthwhile to revive in Europe with the main purpose of protecting the seedlings in the first years and thus ensure the success of reforestation. Researchers examined the effect of soil cover and the shading of herbaceous plants on saplings in a Hungarian experiment. Measurements were made in oak (Q. robur) stand mixed with corn and in pure oak stand under the same circumstances as control. Values of soil conductivity, soil temperature and tree growth parameters (DBH and height) were measured during the summer in two consecutive years. Significant difference was found between the data of the two afforested parcels in terms of soil microclimate, the growth of trees and drought damage. The results confirm that the use of intercropping in reforestations can significantly reduce the climate sensitivity of the system.The biophysical and social sciences strongly point to agroforestry management as a key pillar in agricultural adaptation to climate change, with decades of research indicating agroforestry management promotes food security and crop yield stability under varying climatic conditions (1). However, it remains unclear if agroforestry has been integrated into global assessments of agricultural adaptation to climate change. Here, we critically evaluate how agroforestry science has been integrated into analyses and adaptation strategies published by the Intergovernmental Panel on Climate Change (IPCC). While climate change impacts on agriculture factor prominently into all five IPCC reports published since 1992, agroforestry science per se remains near-completely absent from these reports. Qualitatively, the term \"agroforestry\" is afforded a brief discussion within the theme of forest management in the first IPCC assessment report (2). Similarly, the term \"agroforest*\" appears only twice in the extensive 49-page chapter on \"Food Security and Food Production Systems\" published as part of the fifth IPCC assessment report (3). There is also little evidence that agroforestry has been integrated into quantitative analyses of food security under climate change within any IPCC report (Figure 1).Our review here indicates that stronger integration of agroforestry into global climate change assessments represents a potential avenue for elevating agroforestry onto agricultural policy agendas.Figure 1. There is a complete absence of \"agroforestry\" as an agricultural adaptation strategy cited/ assessed by the IPCC (2014) when evaluating crop yield responses to climate change. Presented here is a summary of the agricultural adaptation strategies cited by the Intergovernmental Panel on Climate Change in their empirical assessments of crop yield responses to climate change (namely, increasing global temperature). Names of all of the adaptation methodologies here are consistent with the results published in the 2014 report entitled \"Food Security and Food Production Systems\" (namely, Table 7-2 in 3), with the numbers above the bars corresponding to the number of studies cited by the IPCC that employ a particular agricultural adaptation strategy.The early growth is the most critical stage of tree development. Climate control of the early tree growth as well as best metrics of climate sensitivity of tropical species remain, however, poorly understood and can hardly be used in assessing risks and adaptation strategies of young forests to climate change. Using a combination of field experiments and modelling, we assessed the climate sensitivity of two promising afforestation species (Jatropha curcas L. and Moringa oleifera Lam.) by (i) analyzing their predicted climate-growth relationships in the first two years after planting on a degraded cropland in semi-arid zone of Benin, West Africa and (ii) identifying the climate metrics with the greatest predictive power for the juvenile tree growth. The Water, Nutrient, and Light Capture in Agroforestry Systems (WaNuLCAS) model was calibrated and validated with field data on survival, growth traits, soil properties and weather from afforestation experiments conducted over 2014 and 2015, and used to simulate aboveground biomass (AGB) growth under past climate conditions . Linear mixed models related the annual AGB growth to climate metrics, while climate sensitivity indices quantified the strength of climate-growth relationships. Both species successfully established on the degraded cropland as evidenced by their high survival rates (94-100%) assessed 15 months after planting. The seasonal dynamics of stem diameter, height, and AGB were reasonably well reproduced by the model during both calibration (R²> 0.9; RMSE ca 3-26 %) and validation (R²> 0.8; RMSE ca 6-34 %) for either species. Drought was the dominant constraint to sapling growth as shown by negative and strong climate-growth relationships with annual water deficit (AWD), length of dry season (LDS), and length of dry spells (LDSP). In the first year, LDSP had the strongest effect on tree growth whereas in the second year, AWD and LDS became the strongest predictors. Simulated rooting depths greater than those in the experiments (75 cm) enhanced biomass growth under extreme dry conditions and reduced sapling sensitivity to drought. Projected increases in aridity and the number of days between rainfall implied significant growth reduction, but tree adaptations via deeper root systems would reduce sensitivity to climate variability in young plantations. Our results highlight that modelling combined with field experiments can be a valid approach to assess climate change risks for planted forests and help identify effective adaptation strategies.Mean global temperatures have increased the risk of climate extremes such as drought, affecting smallholder farmers' livelihoods in developing countries like Uganda (IPCC, 2014). Teso sub-region being one of the most affected Fig. 1. This trend presents a strong need for the smallholder farmers to equip themselves with adaptation strategies for resilience if they are to survive. Although many adaptation strategies to drought are available for smallholder farmers in Teso sub region, most of them are not sustainable compared to agroforestry Fig. 2. The global climate change is intensifying the frequency and severity of drought conditions; which has made drought a major driving environmental factor to limit plant productivity through drought stress that increase water loss from the plant thus interfering with normal plant processes fig. 3. Smallholder farmers need to identify in their areas and institute appropriate coping and adaptation strategies such as Agroforestry. This can protect agricultural crops because of the deep roots of tree component able to tap water from underground to promote their normal growth by shading crops and animals from the sun heat.Farmers in Teso sub region apply several adaptation measures to cope with drought (table 1), some farmers apply multiple strategies Table 1. Women headed households are more involved in offering labor on other peoples' farms in exchange for food or to earn income for other household needs (Nabikolo, 2014). Raring domestic animals for sale offers a major adaptation by men to maintain their families. Farmers also intercrop a variety of crops with trees such as sorghum, rice, millet, maize, beans, groundnuts, green grams, peas, soya beans, tomatoes, cabbages, potatoes and cassava for adaptation to drought. The root tubers are sun dried for future use. No single adaptation mechanisms to drought is applied in Teso sub-region, Table 2. Agroforestry, household age, area of land owned and family size indicated a weak positive offered labor in exchange for food during period of drought. Family size, farm size, farming experience and access to credit were also reported elsewhere as being key adaptation measures to drought (Wannasai et al, 2013)Local adaptation strategies such as intercropping, adjustments in planting, agroforestry, mulching among others are practiced. Although more effort is needed in promoting the improved adaptation strategies like drought resistant varieties, irrigation systems, better infrastructures.Both local and external mechanisms should be applied concurrently. Other approaches like early warning mechanisms, encouraging group formation, easing liquidity constraints are strategies that promote adaptation (Kelvin et al, 2017).Keywords: Agroforestry, Drought stress, Climate change, Productivity, resilience.References:1. IPCC, (2014). Climate change 2014: Contribution of working group II to the IPCC Fifth Assessment Rep 2. Nabikolo Diane, (2014). Household headship and climate change adaptation among smallholder farmers i 3. Kelvin M, Shikukaa,d, Peter Laderach b, (2017). Smallholder farmers' attitudes and determinants of a 4. Lasco R, Pulhin F, (2009). Agroforestry for climate change Adaptation and Mitigation. An academic pr 5. Wannasai. N, Sasiprapa W, Suddhiyam P, Kashawatana, C.Prasertsak, P. Kumsuebe, B.Pratcharoenwanich,Rural farmers in the developing countries are highly vulnerable to climate change due to their exposure and poor adaptive capacity. However, farmers' social networks play an important role in their access to knowledge on climate risk and risk response strategy. This paper examines the pathways of climate knowledge generation and dissemination among actors in the climate change and agriculture sector in Ghana, focusing on the cross-scale processes to tailor knowledge to better fit rural farmers' context. It employs social network analysis of both the organisations in the agriculture and climate change sectors and rural farmers in the Lawra district of Ghana. We explored two networks of configurations: i) relations of collaboration in knowledge production and ii) relations of collaboration in knowledge dissemination. We used three measures of network cohesion; density, core-periphery, and degree centrality to analyse the network structure and influence on knowledge flow and adoption. It finds that the network (both the production and dissemination) consists of socially integrated centralized government and civic organisations that have developed over time. Our analysis reveals that overlaps between these organisations produce more usable knowledge for rural farmers as NGOs collaborates with governmental organisations at mostly community level to produce locally relevant knowledge for rural farmers. However, the challenges associated with cross organisational collaborations and the sustainability challenge of local NGOs threatens this existing network and knowledge communication to local farmers. Based on these findings, we recommend that effort aimed at tailoring climate knowledge to rural farmers' context in Ghana be supported by actions targeted at enhancing cross-organisational cooperation and the sustainability of local NGOs.Coffee cultivation has a high sensitivity to climate changes, because of its narrow climate range (Camargo, 2010). Many coffee areas in Mesoamerica are traditionally managed under a range of agroforestry systems. There is a trend to decrease tree cover in order to plant more-productive coffee varieties which are tolerant to fungal diseases (coffee leaf rust). Tree cover degradation, in addition to the growing patterns of climate change, provoke unpredictable conditions for growing coffee (Bunn et al., 2015). On a traditionally recognized coffee region of Mexico, we evaluated the trends of weather extremes based on daily rainfall, after that, we assessed the function of shade trees facing the changes in weather patterns. Daily data precipitation, maximum temperature and minimum temperature series were obtained from three weather stations in Veracruz, Mexico (Period 1961(Period -2016)). These stations (Coatepec, Briones and Xalapa) surround a coffee region. Data was provided by the national climatological base (from the Mexican National Meteorological Service). The data were subjected to analytical quality assurance, as well as a test of homogeneity. Subsequently, a set of 27 climate change indices proposed by the Expert Team on Climate Change Detection Monitoring and Indexes (Peterson, 2005) and its trends for the Xalapa-Coatepec zone were determined. Correlation and linear regression analyzes were performed, as well as the Mann-Kendall test to identify significant trends.During the period of time analyzed, there have been significant increments of total annual precipitation (PRCPTOT), (78.83 mm/decade), and seasonally precipitation in the months of March-April-May (MAM) and September-October-November (SON). Simple daily intensity index (SDII), number of heavy precipitation days >10 (R10), >20 (R20) and >25 millimeters (R25), very wet days (R95p) and extremely wet days (R99p) were also increased. This shows a tendency of an increament in quantity and intensity of precipitation within the study area. The current rainfall patterns would affect coffee crop, mainly for a lack of water during the stage of fruits development. On the other hand, the increase in quantity would affect the flowering stage (incomplete flowering and scattered blooms); decelerate the growth and filling of the grain and slowing coffee fruits maturation (Camargo, 2010). Moreover, the increase in the intensity of the rain combined with a low presence of shade trees would increase surface runoff and soil erosion. In addition, in the seasons of MAM and SON, rain events would cause the fall of coffee flowers and fruits (Läderach et al., 2010). Considering the current conditions, the maintenance and promotion of shade trees is a recommended strategy in climate smart agriculture. Additionally, shade trees within coffee plantations are a carbon stock that mitigates climate change at a local scale, diminishing the impacts of rainfall intensity and extreme temperatures (Beer et al., 1997).Effect of forage-tree species supplementation from the tropical dry forest on weight gain in zebu steers Pérez Almario N. 1 (nperez@agrosavia.co), Orjuela Franco O. E. 1 , Carvajal Bazurto C. T. 1 , Moreno Turriago J. M. 1 , Castañeda Serrano R. D. 2 1 Agrosavia, El Espinal, Tolima, Colombia; 2 Universidad del Tolima, Ibagué, Tolima, ColombiaColombian dry tropical region presents dry spells of up to six months, quantity and yields of foraging species depend upon this phenomenon which can cause a considerable decrease of the productivity of pastures and subsequently causing degradation of the soils being subjet to animal husbandry. In order to mitigate this problematic it has been proposed to include dry-tolerant forage-tree species with animal husbandry occuring in dry-tropical ecosystems (Bs-T). The aim of this study was to evaluate the weight gain of steers being fed with foraging fodder managed ex situ. This study was carried in the Agrosavia Research Centre of Nataima, municipality of Espinal in Tolima, Colombia; mean temperature of 28°C, at 410 m.a.s.l. and 1200 mm of rain per year. 12 zebu (Bos indicus) steers were used in the study, they weighed on average 321 kg, being distributed into three diferent groups. Each groups was managed under rotational grazing with Tanzania grass (Megathyrsus maximus) in 16 plots of 1260 m2 each. The steers of each group receives a balanced diet adjusted to the dry matter (MS) of the fodder and the weight of the animals so: 1,5 to 2,4kg/MS/animal/day of sorghum silage var.made up from all forage trees (manages as bushes) and mineral salt 7% of P. A latin square 4x4 array was applied. It was developed in three independent experimental cycles of 40 days each, where 4 species were assesed in periods of 10 days each. These periods were divided into 4 days of adjustment to the new diet and 6 days of assesments with initial/final weighing to determine the weight gain of the steers with the new diets. Experimental cycle 1 used the following species: Clitoria fairchildiana, Cordia alba, Gliricidia sepium y Leucaena leucocephala. Experimental cycle 2: Moringa oleífera, Guazuma ulmifolia, Albizia guachapele y Tithonia diversifolia. Experimental cycle 3: Spondias mombin, Bauhinia variegata, Albizia saman y Albizia niopoides). On the experiment 1 it was observed a major increase of the daily weight by the diet including C. alba (1.466,7g-1/animal/day), followed by C. fairchildiana (1.216,7g-1/ A. guachapele presented weight A. niopoides inclusion of C. alba and A. guachepele managed as bushes could be a good alternative for the nutrition of animals at silvopastoral husbandry systems in dry-tropical regions, achieving a quicker weight gain and a reduction of the fattening time.New and innovative land use solutions are needed to adapt to a rapidly changing climate and to mitigate the predicted impacts on rural livelihoods. Projected changes to current climate patterns are suggested to severely impact southern Africa in the near future. This may be realised as an increase in drought and flooding events and shifts in rainfall patterns causing a loss of productive cropland, thus, negatively affecting economic, ecological and social aspects of sustainable development.Agroforestry systems (AFS) present the potential to improve the bio-economy in rural areas, to provide an adaptation strategy for human needs, and to preserve natural resources and biodiversity against climate change influences. Targeting the application of AFS as a suitable response to the impacts of climate change, the research project 'Agroforestry in southern Africa -new pathways of innovative land use systems under a changing climate (ASAP)' with a project period of 2018 to 2021 incorporates research partners from Namibia, Mozambique, Malawi, Zambia, South Africa and Germany.In a transdisciplinary approach the ASAP project aims to both develop and cement knowledge concerning AFS in southern Africa, utilising simple easily replicable methodology across the entire study region. The project will utilise traditional knowledge and combine it with innovative technical solutions, learning from existing systems and technology. ASAP targets an understanding of the social demands and impacts that AFS can bring to the study region. This is undertaken by attaining an understanding of the needs of stakeholders, land managers and subsistence farmers, as well acknowledging the potential pressures such actors will face due to a changing climate. Results of the project will aid regional policy makers in evaluating future support for such innovative land-use systems in a science-policy exchange.The project consortium will perform an examination of the effects of the utilisation of trees within a farmed landscape in terms of soil processes, hydrological fluxes and flows, shading and nutrient export as well as assessment of woody biomass production, to allow researchers and land managers to target future research where it is needed. Project output will be designed to promote AFS as a viable approach to land use, agriculture and food production and as a modified alternative to conventional or traditional agricultural practices. The project stands as an interdisciplinary platform for transnational research, capacity building, information exchange, contributing knowledge and solutions for sustainable AFS management, while meeting stakeholder's needs at a grassroots level and promoting the implementation of AFS as an innovative, flexible and sustainable land use system under a changing climate.The ASAP project is funded by the BMBF (German Federal Ministry of Education and Research) under grant number 01LL1803, as part of the SPACES II funding program.Environmental and climatic risks are a major obstacles to sustainable agricultural productivity in most dryland areas of Sub Saharan Africa (Coulibaly et al., 2015). As a way to deal with this problem, gliricidia agroforestry technologies were developed to address the stated risks in dryland areas of Dodoma region, Tanzania. However, the major question is to what extent have farmers used these trees to reduce risks and improve farm level productivity and profitability? Employing utility theory, this study was conducted to assess the roles of gliricidia intercropping in reducing risks and increase farm level profitability and to determine farmer's perception of risks. Moreover, monoculture and pigeon pea intercropping systems were assessed for comparisons. The study adopted a cross-sectional research design whereby data was collected from 83 smallholder agroforestry households in dryland areas of Kongwa and Chamwino districts using a pre-structured questionnaire: households involved were those that had maintained agroforestry plots for at least two years. A linear regression model was used to analyses farmers' attitude towards climatic risk and their perception towards agroforestry as a coping strategy towards these risks. In addition, the maximum likelihood technique was used to estimate probability distribution functions. Most farmers (96%) considered agro-forestry and intercropping (80%) systems to be less risky compared to monoculture systems. Probably, this is because these systems can provide a diversified production with a large variety of agricultural and forest products (Stainback et al., 2012). Farmers practicing agroforestry are not likely to be affected by climatic change risks (i.e. drought, heavy rainfall and floods) compared to monoculture practitioners. This can be associated with their ability to act as buffer against increased climatic variability (Shibu, 2009). Findings further show that adoption of agroforestry technologies reduced the impact of climatic risks on crop productivity by 75%. Hence most (84.4%) of the agroforestry project beneficiaries intercrop Gliricidia Sepium with other crops for risk minimization and profit maximization. Study findings also show variation in farmers' attitude towards risk coping measures based on age and levels of individual household income. Age of individual farmer negatively influence farmers attitude towards risks attitude towards risks coping measures than older farmers. It is concluded that gliricidia intercropping has a great potential in addressing environmental and climatic risks thus, enabling farmers to cope with the associated risks. Therefore, it is recommended that there is need to promote agroforestry among other farmers as a farm risk management strategy against climatic and environmental risks and for enhanced crop productivity.Czech cultural landscape and its components have changed significantly over the past decades as a result of climate change, but especially of new trends in farming. Among the main trends in \"post-communist\" period, one can cite intensification of agro-technologies and creation of very large fields and farms (average farm over 200 ha, by far the largest in EU) with the aim to be competitive within European and world agricultural markets. Unwanted result comprise a growing evidence of biodiversity loss (genetic, species and ecosystem/landscape), soil degradation, decrease of soil and ground water and more frequent disasters of cultural and semi-natural systems due to extreme climatic events or outbreaks of harmful organisms/ agents in Czechia and also other European states. According to the results of the research in foreign countries, agroforest systems (AFS) in the area of temperate zones can significantly contribute to the prevention and solution of these risks and to increase the resilience of the landscape to the changing climate 1,2 . The results of the project will contribute to the extension of the knowledge about the possibilities of AFS in the Czech Republic and will provide the basis for selected adaptation measures of the Czech National Action Plan for Adaptation to Climate Change.The main objective of this new project (2019-2022) is research and quantification of expected non-production (ecological, environmental) functions and benefits of traditional and modern agro-forestry systems for landscape, especially on soil protection, temperature and water regime at level of selected stands and landscapes, as well as a possible increase of biodiversity. An important goal is to obtain information on planting, growth and appropriate management of tree crops on farmland and their impact on agricultural production (growth, yield, livestock welfare). The aim is also to identify appropriate support of agro-forestry systems development in natural and property-economic conditions of the Czech Republic for protection and restoration of landscape functions endangered by impacts of climate change and human activitiesThe coffee-tree is a tropical plant culivatedin areas where the dry season doesn't exceed three months. While these last decades are markedin Togoby a clear climatic change.Thus this reduces the amount of market coffee and the export earnings of producing countries. This situation imposes search for measures aimed at reducing the effects of this climatic phenomenon.It is in this context that from 1995 to 2018, an association of four agroforestry legumes trial with robusta coffee cultivation was implemented in station. They are:Albizzia adianthifolia, Samanea saman, Erythrophleumguineensis and Albizzia lebbeck. The first results were published in 2001. The observations are from 2003 to 2018 in station on the diameter of the agroforestry speciesand the yield in commercial coffee. Albizzia adianthifoliaand Erythrophleumguineensisare associated with two densities, 118 plants / ha and 59 plants / ha, in robusta coffee in a trial in 2000.The observations concerned the yield of commercial coffee. In resort in Tové, Albizziaadianthifolia has a recovery of 86 m2 at 5 years, 217, m2 at 10 years,226 m2 at 15 years, and 235m2 at 20 years.Erythrophleum guineensis in the following way: the speed of recovery on the ground is 44m2at 5 years, at 132 m2 at 9 years, at 175 m2 at 15 years and 216m2 at 20 years. Samanea saman slowly grows the first year, after itgrows quickly the following three years. In Togo the horizontal development of this species expressed by the ground covers is 126 m2 at 5 years, 254 m2 at 9 years, it reaches 290 m2 at 15 years and 327 m2 at 20 years.Albizzia lebbeck covers the ground on 139 m2 at the age of 5, at 9 years it reaches 197 m². Marketable coffee yields under forest legumes are: Albizzia adianthifolia 851 kg/ha,Samanea saman 1024 kg/ha,Erythropheum guineensis 1068 kg/ha,Albizzia lebbeck 1492kg/ha, NPK 1336 kg/ha, Control 986 kg/ha. In the peasant environment, underAlbizzia adianthifoliashadow,the coffee-tree produces 563 kg/ha and under Erythrophleum guineensisshadow, the coffee-tree produces 527 kg/ha, NPK produces 281 kg/ha and Control produces 195 kg/ha.Juruti (HDI 1 0.592) relies on agro-extractivism and cassava slash-and-burn for subsistence. It's mandatory creating new agriculture regenerative models to thrive in climate change conditions. The study aimed to develop participative agroforestry designs; prototyping and implementing modular replicable units in a successional decision-making logic as an alternative for slash and burn. During 2 months (Jul-Sep, 2018) RRA 2 , freelisting, participatory mapping, semi-structured interviews and pairwise sessions were conducted in 25 communities (157 farmers). Data were analyzed using selected principles, criteria and indicators. Adjustments were made merging local ecological knowledge, empirical information and scientific data. As a result it was co-created an elastic regenerative design, maximizing biomass production and inserting high-value fruit and NTFP 3 indigenous trees. Final model with explained arrangements; acronyms and units are shown in table 1. Based on literature and previous experiences within the zone the annual hectare expected production is: cassava 12 ton, fruits 24.4 ton, and dry biomass 3.53 ton. Based on farmers' preferences, at the 4 th year system can migrate to (1) agrosilvipasture, ( 2) perennial fruit orchard or (3) biodiverse NTFP forest. Creating an elastic and highly acceptable agroforestry model for amazon cassava-based agriculture, will drastically improve food resilience and cash flow while building a new productive paradigm, sustainable and resilient.Table 1. Close-up (1/10 of a hectare) of the vertical and orthogonal view of the proposed elastic and bottom-top based agroforestry design with timber/NTPF trees and fruit trees arrangement on top of a cassava field including biomass production stripe and plants per hectare and list of acronyms used in the text.It's all about the 'how': regreen the drylands with agroforestry and grazing management This session will focus on the role that agroforestry plays in enhancing soil regions of the world. Arid and semi-arid zones are characterized by low and erratic rainfall that does not exceed 700mm per year, and periodic droughts. Human-induced factors, especially overgrazing and other forms of inappropriate land use such as overexploitation of vegetation, excessive tillage and tivity due to human-caused processes. Land degradation usually involves soil degradation, which refers to negative changes in the physical, chemical, and biological properties of the soil, as well as vegetation degradation. Land degradation also embraces negative changes in the capacity of ecosystems to provide social and environmental goods and services. At the landscape level, such a degradation can lead to negative microclimatic changes, thus faciliconsequences for the livelihoods of rural communities by decreasing water supply and reducing food security, while increasing their vulnerability to biological and environmental hazards and to the effects of climate change. Many agroforestry technologies may help to restore land productivity. For example, trees can stabilize the soil, especially when they are used in terracing and contour cultivation to combat soil erosion. They can also protect soils against wind erosion. Their branches can be pruned and applied as mulch regions, including social aspects and scaling-up, are welcomed.Tropical peatlands are being eroded on a large scale. Indonesia, which contains over 45% of the world's tropical peatland, large areas of peatland have been deforested and drained, contributing directly to peatland and peat fires, which in 2015 burnt 2.6 m ha and caused USD 16 bn in damage.Restoration of tropical peatlands based on full protection or cultivation has generally failed to address environmental requirements and local community needs. However, agroforestry provides an investment model for the integrated approach to peatland restoration that can secure conservation of deep peat areas while enabling the shallow peat to be used for limited economic activities. There is much literature on species suitable for agroforestry; but much less on financially viable business models for agroforestry systems for livelihood and sociocultural aspects of smallholders.A set of agroforestry systems for Indonesia to attract investment by local communities and the private sector were assessed. Options were designed to balance short term cash flows with longer term profitability and economic benefit (Figure 1). Estimates of revenues for these systems cover a broad range, from below USD 500/ha/year low input systems (e.g. sago) to over USD 5,000/ha/year for small-scale models producing high value timber and oil products.Returns vary across countries and sites, but this study highlights the potential for mixed agroforestry systems on peatlands to support local community livelihoods.Figure 1 Comparative assessment of agroforestry models based on timeframe for profitability and associated benefitsDifferent land uses and/or agricultural interventions result in different vegetation structure and formation and macro-fauna distribution in a landscape. Information on land use condition is paramount for development of strategies that enhance biodiversity conservation and sustainable resource use. A study was conducted to characterise the vegetation and termite distribution in the three land use types: protected area (PA), harvested woodland (HW) and traditional agriculture (TA) in Salima District, Malawi. Data were collected from 42 plots on tree species, diameter at breast height, tree regeneration (measured as density ha-1), and termite species diversity and stem density in the HW and TA than in the PA, supposedly, due to tree harvesting effect on tree regeneration in the HW and TA. The HW and TA showed stable tree population while PA was characterised with an ageing tree population. Tree regeneration den-Macrotermes natalensis termite species dominated in all land uses with highest density and abundance in TA while Psammotermes allocerus were only found in the HW. We conclude that strict preservation of forest reserves may not achieve tree diversity; and recommend a 'suite' of management measures to balance conservation and promotion of tree diversity. Integrated pest management approach is proposed to prevent field crop losses due to termites.Intercropping with the native woody shrub Guiera senegalensis J.F. Gmel, can improve soilplant-water relations, nutrient availability, and crop yields. However its effect on crop development throughout the course of the growing season in the Sahel has not been demonstrated. This study conducted from 2013 to 2016, focuses on phenology and growth of crops in the presence or absence of shrubs under varying rates of fertilizer. Appearance of the major developmental phases was determined and the number of leaves and height of the main stem of peanut and millet were measured weekly. The experimental design was in a split-plot factorial design. The presence or absence of G. senegalensis was the main plot and fertilizer rate (0, 0.5, 1 or 1.5 times the recommended N-P-K rate) was the subplot factor. The flowering period of crops in presence of shrubs is 7 to 18 days earlier than no shrub plots for all years, regardless of rainfall distribution, which varied significantly including, periods of drought stress during critical developmental phases. Crop growth was also improved by shrubs. The number of crop leaves (26 to 45%), stems (42-81%) and plant height (2-4 times more) in shrub plots were significantly higher than no shrub plots. This shows that the presence of shrubs allows associated crops to grow larger and mature faster, which can allow crops to persist through early as well as late-season periods of moisture shortage in the uncertain rainfall regime of the Sahel.Romania has no legislation that specifically refers to agroforestry systems but indirectly supports the realization of forest shelterbelts, through Submeasure 8.1 of the National Rural Development Program. Thus, the Forest Research Institute realised projects of forest shelterbelts for the southern area of the country which are the most affected by climate changes.The design of shelterbelts was done using GIS techniques, current rectified aerial images and detailed pedological maps. Over the successive layers of diverse information (geographical, hydrographical, pedological, administrative etc.) the network of shelterbelts was placed. The GIS database has been completed.The network of forest shelterbelts was designed for each commune in the 12 counties from the southern area of the country (Figure 1). The main goals are to mitigate climate imbalances, avoid agricultural production losses and increase the area occupied with forest vegetation that is below 8%. We have selected a wide range of species like oak species (mainly pubescent oak), elm, ash, maple, wild pear and shrubs. The number of seedlings was also established.The percentage of occupation of the agricultural land with shelterbelts is 2 % which could improve the microclimatic conditions and the crop production. The variation of ecological site factors in each county means different afforestation compositions, thus shelterbelts increase biodiversity. The decrease in agricultural production due to excessive salts is a very serious problem in China. Salt-affected soil is mainly distributed in the northeast and northern parts of China, and the alkalization of soils has progressed rapidly in many areas. In addition, because SO2 emissions have increased remarkably during the last decade following the dramatic growth of the economy and energy use, the desulfurization equipment has been installed in large plants such as coal-fired power plants. However, the indoor pollution due to the combustion of the low-rank coal containing high percentages of sulfur and ash in rural area is crucial problem, and there are many instances about health damages. In addition, China faces the strong pressure to decrease CO2 emission by reducing fossil fuel consumption and examine the renewable energy sources such as biomass energy. So we have examined the amelioration of salt-affected soil with desulfurization by-products since 1996, and revealed the benefits of soil amelioration and afforestation in China. In this paper, we report the changes in agricultural production, soil chemical properties and soil carbon in coal bio-briquette ash (BBA) application. After that, we estimate the changes in carbon stock due to afforestation in Liaoning province.Salt-affected soil amelioration tests with coal BBAs were performed in 2008 at Kangping in Liaoning province. Two types of bio-briquette were made from low-quality coal (sulfur content BBAs were added to four experimental plots of salt-affected soil at the application rate of 0wt%, 0.5wt%, 1.0wt%, 2.0wt% and 3.0wt% (6.96 kg/m2) in three replications. Their soil amendments were incorporated into the plow layer of the soil by mixing with a scoop, and were added to all plots at the same time as the seeding in the first year. Moreover, an ammoniacal fertilizer was added to all plots and a pig manure as the organic fertilizer was added to two experimental plots at the application rate of 3.0 kg/m2. In addition, BBA was used as soil amendment for tree (Populus canadensis cv. Zhelin) planting in the northern part of Liaoning and simulated the effect of carbon sequestration due to the utilization of BBA for tree planting. Consequently, the corn production increased with the increase of the application rate at all test plots. BBA containing higher sulfur indicated better effect on corn production. And the pH, ESP, Na, CO3 and HCO3 concentration of soil solution decreased with the increase in BBA. Moreover, the increase in soil carbon at the application rate of 3.0wt% could be confirmed. Lastly, the increase in the carbon stock in tree biomass and soil in Liaoning and Tianjin due to afforestation with BBA could be calculated. Therefore, the increase in carbon stock due to salt-affected soil amelioration with BBA indicated the possibility as carbon sequestration technology in China.Land degradation is an important problem in Ethiopia, largely driven by the high removal of vegetative cover through clearing, cutting or overgrazing. Population pressures are increasingly forcing farmers to cultivate more and more marginal lands. This situation is particularly evident in the drylands of northern Ethiopia where the problems are exacerbated by increasingly erratic and decreasing rainfall. Consequently, rural communities can especially experience poverty and malnutrition. Multipurpose trees integrated into the farming system are options for both mitigating land degradation and can significantly contribute to the livelihood of small-scale farmers. Our six years of research support the view that Acacia saligna is a valuable multipurpose tree for the mid-elevation highlands of northern Ethiopia that can support livelihoods of rural communities and address the need to rehabilitate degraded areas. Acacia saligna supports livelihoods through the provision of feed, wood and fodder. Trees can readily integrate into existing systems as farm or plot borders, woodlots or as homestead shrubs. Pruning trees to 1.8-2.3 m height is most suitable when trees are being actively browsed by goats. Trees can be pruned early to mid-dry season (January to May) to address potential ruminant feed gaps.Seeds may be collected in December and May; seed meal fed as a supplement to laying hens can be used to improve egg production. Test results suggest the wood quality is similar to the standard required for manufacture of medium density particleboard, offering income-generation for smallholders. An alley cropping trial showed that the overall production -wheat yield, fodder, fuelwood -from Acacia saligna hedgerows pruned to 1.8 m height alongside wheat was more productive than wheat alone. Multi-year provenance resource stands have been established to select improved types of Acacia saligna for pole and multi-purpose use so that farmers will have eco-types to suit their requirements for feed, fuel and fodder. Acacia saligna successfully colonizes degraded slopes and gullies, providing shade and protection for native herbs, grasses and shrubs. Pruning of trees in exclosure areas provides farmers with supplementary fuelwood and fodder. There is potential for selective pruning and coppicing of these trees. Ongoing work in Tigray will focus on the development and release of improved germplasm to assist communities wanting to restore degraded land or farmers who can see an opportunity to make use of Acacia saligna to support their livelihoods.Keywords: Acacia, Multipurpose, Livelihoods, Management.Many authors have emphasized the importance of Faidherbia albida Parklands (FaP) in Niger, and have described their restoration by Assisted Natural Regeneration (ANR) (Montagne et al, 1996;Larwanou et al, 2010). A study was conducted in 2018 to check the parklands biodiv. status in the Niamey region. In 3 villages, a FaP area of 15,000 ha was mapped and an inventory was carried out on 75 plots of 1 ha. A survey was conducted to assess the importance of wood in household consumption. Results show that: FaP are poor in trees diversity (24 sp.), natural regeneration has even fewer species (21 sp.), tree density is low (5-8 / ha), trees with a diameter greater than 40 cm and less than 20 cm are rare (Fig 1) and many old trees are dead (4-8% of all trees in 2 villages) (Boubacar et al, 2017). In 2 villages, wood has become so scarce that people must use palm leaves or straw for domestic energy. It is therefore estimated that the efforts to restore the FaP by ANR either were not continued over the past 20 years or were ineffective.Further studies are urgently needed to understand the ecological and socio-economic determinants of the degradation of this AFS that is vital for the populations. A large-scale policy then must be launched to support the restoration of trees in the landscapes, one that probably should include training, the shared and secure management of territories, and subsidies for community forest management and the restoration of parks by ANR and plantations. Clashes between national level priorities for land restoration and those held by local actors may hinder the uptake of restoration actions at local scales. Yet, priority mapping for restoration rarely incorporates the knowledge or perspectives of multiple stakeholders, especially those of local land users, resulting in a lack of information regarding their preferences and priorities. Combining participatory mapping, farmer interviews and a field survey of soil erosion prevalence, we explore local perceptions of land degradation and restoration activities in the Gilgal-Abay watershed located in the Amhara National Regional State of Ethiopia. The watershed has experienced extensive land degradation in the form of soil erosion and soil nutrient depletion, largely attributed to the over-exploitation of communal resources and conversion of marginal land. Over the past decade, local communities have invested heavily in restoration efforts, including the establishment of area exclosures -an agroforestry-based intervention that promotes the regeneration of natural forest vegetation through the exclusion of livestock.Our study reveals discontinuity between current scientific perspectives and local values regarding when and where to act. While research has frequently shown that the prevention of land degradation is more cost-effective than its reversal, land users prioritised the areas they considered the most degraded for exclosure, despite being aware that once severely degraded land may become increasingly difficult to recover. This was because of the perceived opportunity costs associated with the establishment of exclosures on land that still maintained some productive potential, albeit very low. Perceptions of degradation and priority areas for restoration efforts were also found to vary with gender and that substantial disagreement between farmers existed over the establishment of exclosures on communal grazing lands.Two key factors were reported to influence farmers acceptability of exclosures: (i) farm size, and (ii) number of livestock. Farmers with many livestock or little or no land relied heavily on communal grazing and were strongly opposed to the establishment of exclosures. In contrast, farmers with sufficient farmland and fewer animals were able to designate an area of land for private grazing. Such findings demonstrate that land users may not share the same priorities, in terms of where, when and how to address degradation, as one another, or with other actors involved in restoration initiatives (e.g. researchers, government staff, and local planners) which implies a need for negotiation, and that the impact of restoration actions such as exclosures are likely to be socially differentiated. This makes it important to understand how livelihoods interact with different restoration interventions and to take measures to ensure that restoration efforts do not disadvantage the most vulnerable people.Keywords: Land restoration, Priorities, Exclosure, Local perceptions.The Sahel is an ecologically fragile environment under threat from over population & grazing, & intensification of cropping with continuing soil degradation. Additionally, drought is common, causing chronic low yields, crop failures & food insecurity. The main food is millet or sorghum for the majority Sahelian populations, that is largely outside the market economy. Green Revolution technologies have not been successful & yields of staple cereals are unchanged in five decades. Biologically based systems are desperately needed that utilize local resources. A solution, is intercropping of native shrubs, (Guiera senegalensis or Piliostigma reticulatum) , that coexist with row crops throughout the Sahel. Unfortunately, currently shrubs are coppiced & residue burned prior to cropping depriving soils of needed organic matter. Our >15 years research on the agronomic performance of an optimized, non-thermal shrub intercropping system (1500 shrubs/ha & return of coppiced biomass to soil) (OSS), at 2 long-term experiments (11 years) in Senegal, showed the intriguing ability of G. senegalensis & P. reticulatum to dramatically increase yields of millet & groundnut, while maintaining yields in drought years. Shrub intercropping has more than doubled soil carbon & increased the availability of most macronutrients in soil over non-shrub cropping. Shrubs significantly increase microbial diversity & enrich genera known to have plant growth promoting properties. A key discovery of our team is that these shrubs perform hydraulic lift (HL), which is the movement of water via deep roots from wet subsoil to dry surface soil, at night when photosynthesis stops. The long-term data shows that shrubs reduce drought impacts in crops by significantly increasing rainfall water use efficiency (WUE) (kg ha/mm), maintaining yields even in very dry years. Recently a simulated drought experiment (with total water control in the dry season) showed that stopping irrigation at late millet flowering resulted in a harvestable millet with OSS, whereas nonshrub plots had crop failure. We attribute the improved WUE & ability to buffer drought periods of OSS to improved soil quality & to hydraulic lift. Indeed, during the simulated drought experiment we confirmed that HLed labeled water (deuterium) was taken up directly by adjacent millet plantsmeaning shrubs are \"bioirrigating\" crops. Another valuable observation is that OSS reduces time to harvest by about 15 days -further buffering against erratic rainfall of the Sahel. Optimized shrub-intercropping is advantageous for subsistence farmers, because it is a local resource they are familiar with while remediating degraded soils & resisting drought.With the sound scientific basis of optimized shrub intercropping established & the fact that these shrubs are found throughout the Sahel -we are poised to pilot test & demonstrate this system throughout the Sahel as a key management tool for beating famine across the region.Long-term Piliostigma reticulatum intercropping in the Sahel: Impact of the density of shrub on sorghum yield Douzet J.-M. 1 (jean-marie.douzet@cirad.fr), Dusserre J. 2 , Lahmar R. 3 1 UPR AIDA, CIRAD, Ouagadougou, Burkina Faso; 2 UPR AIDA, CIRAD, Montpellier, France; 3 UPR AIDA, CIRAD, Tunis, TunisiaContinuous cropping of cereals and reduction of fallow periods contribute to soil degradation in Africa drylands, altering the soil functions and the systems' resilience. Alternatively, appropriate intercropping of cereals with native evergreen woody shrubs is proposed as a way to restore degraded lands and, ultimately, positively impact crop yields (Lahmar et al., 2012;Bright et al., 2017). The effect of the density of shrubs (Piliostigma reticulatum) was tested on a continuous sorghum crop (Sorghum bicolor).The experimentation is located in the 2iE Campus -Kamboinsé, Burkina Faso (12°28.031'N; 1°32.929 'W) including randomized block design with four replicates. Shrubs were installed in August 2012 with different shrub densities: 0, 488, 976 and 1953 shrub ha-1; Sorghum was cultivated using the Zaï technique (traditional planting pits) since 2013 season. Fertilizers were provided on the sorghum crop only in the first 2 years. Each year, the shrubs were coppiced before the start of the rainy season in June, and during the cropping season (starting from 2016). All the shrub biomass was used as soil cover. After sorghum grain yield was harvested, the remaining sorghum biomass was also left on the soil surface.Piliostigma aboveground dry matter have increased during the 4 years of monitoring (from 2015 to 2018), reaching in 2018 a production of 6160 kg ha-1 (dry matter) for both the highest shrub densities (976 and 1953 shrub ha-1), and 3890 kg ha-1 for the lowest density (488 shrub ha-1). Sorghum grain yields declined progressively since 2014 when we stopped using fertilizers, and for all treatments.allows the stabilization of soil carbon content but not of soil nutriment nitrogen and phosphorus (Félix et al., 2018). Further researches combining Piliostigma with other sources of nutrient would need to be tested. For example in 2018 we started to study the effect of adding cowpea (Vigna unguiculata L. Walp, nitrogen-fixing legume) to the intercropping of shrub with sorghum. Another consideration is the time required to achieve measurable benefits. It was observed that it took more than 4 years to obtain consistently increased yields of sorghum when shifting to an optimized Piliostigma system (Bright et al., 2017). This experiment is the support for various studies on hydrology of soil and on nutrient cycling (CGIAR Research Program \"Grain Legumes and Dryland Cereals\", LeapAgri \"Ramses II\" project, MacKnight \"3F\" project).L3 Land Degradation Girard H. 1 (eau.terre.verdure@gmail.com), Kabore S. 21 ONG TERRE VERTE, Ouagadougou, Burkina Faso; 2 ONG TERRE VERTE, Guiè, Burkina FasoThe action of the NGO TERRE VERTE (Green Earth) in Burkina Faso is to create bocage landscapes. Those are called wégoubri in Moore, a local language. This new rural development concept was first and successfully developed in the 90s, at the pilot farm of Guiè, and has since been replicated in the pilot farms of Filly, Goema and Barga.The degradation of the Sahel environment has dramatically escalated during the last decades, endangering rural populations. In addition, damages caused by the on-going traditional practice of extensive agriculture have worsened the matter. Creating bocage landscapes in rural areas helps solve the problem.Using a holistic approach that encompasses applied research, training and direct support to the farmers, the pilot farm succeeds in integrating environmental conservation principles in agricultural methods.The concept is based on the creation of bocage areas in co-ownership, including individual and common plots. Its management is organized through a land beneficiaries' group. The result is a fully restored environment where agriculture is no longer synonymous with erosion, where cattle breeding is no longer synonymous with overgrazing, and where trees and shrubs are harmoniously integrated in the environment.The increase in agricultural yields obtained after only a few years of soil restoration demonstrates the economic viability of the concept. It is the only solution to restore millions of deteriorated hectares of land across the Sahel. Domestic firewood consumption is one driver of deforestation in Tanzania. A lack of availability of clean cooking energy sources and the use of energy inefficient cooking devices contribute to high firewood demand at household level (~50 kg/week and household). In this study, we tested whether a firewood production and consumption equilibrium including both, on-farm firewood production through agroforestry systems (treatment 1: maize, pigeon pea and Gliricidia sepium (G. sepium); treatment 2: maize and G. sepium) and adoption of locally made artisan mud-based improved cooking stove (ICS) at household level could be reached.Our hypothesis was that households' firewood demand could be met by on-farm firewood production from Gliricidia sepium coupled with ICS technology leading to firewood autarky of households. The research was conducted in the semi-arid region of Dodoma, Tanzania.In order to determine the firewood production potential of G. sepium, we used data from a randomized block design with six blocks à 256 m². One-year old G. sepium wood (spacing 4m by 4m) was pruned and measured at the beginning of the planting season. Wood yield was extrapolated to estimate the firewood production potential per hectare (ha). In order to determine firewood consumption, we adopted the Controlled Cooking Test (CCT) and compared the firewood consumption patterns of traditional three-stone-fires (TSF) and ICS using G. sepium and the forest-based firewood species (Mrama). We standardized the cooking task and used the meal \"rice and vegetables\" in order to make firewood consumption patterns comparable. Our analysis showed that less firewood from G. sepium was needed to conduct the cooking task. The firewood consumption per meal of ICS compared to TSF was reduced by 24.3% with Mrama and 28.5 % with G. sepium. With a combined transition from TSF to ICS and from Mrama to G. sepium firewood, a substantial reduction of firewood demand per meal of 42.9 % might be realized. Assuming 2.5 cooking tasks per day, a 5-head household consumes 1,298 kg of G. sepium wood per year under an ICS scenario to meet its cooking energy demand (respectively 1,815 kg per year under a TSF scenario). With treatment 1 G. sepium-maize-pigeon pea intercropping, 2.1 ha of G. sepium firewood are needed to meet the annual firewood demand for cooking using ICS and respectively 2.9 ha using TSF (fuelwood from pigeon pea was neglected). With treatment 2, Gliricidia sepium-maize intercropping, 1.1 ha with ICS and 1.6 ha with TSF are needed to meet the annual firewood demand of a household. As shown, implementing these agroforestry systems would make households' independent from external firewood and present a significant reduction in pressure on forests. This might have knock-on effects like: reduced costs associated with firewood collection and utilization, climate change mitigation as well as reduced environmental degradation in semi-arid areas of Tanzania.Keywords: intercropping, on-farm firewood, forest degradation, improved cooking stoves.Poor soil fertility is a problem for agriculture in Burkina Faso. Litterfall is an important way for bioelements to return to the soil (natural ecosystems)1,2. Therefore, dynamics and quantity of litterfall were studied with aim to better manage agroforestry landscape with principle of multifonctionality of trees. Five 0.25 m2 litter traps were placed under 5 trees of 3 species (total 15 trees) that have economic and ecologic purposes in agroforestry parklands. Every 2 weeks, litter was sorted into leaves, twigs, fruits and other non-foliar components, which were oven dried and weighed. We calculated total annual litter production by species and fractions. Vitellaria paradoxa, Lannea microcarpa, and Azadirachta indica litter fall were composted and N, P and K content compared with Sorghum crop residues compost. Mean total litterfall (±SE) was 440±50, 377±110, and 494±130 g dw m-2 yr-1 for L. microcarpa, Parkia biglobosa, and V. paradoxa, respectively (Fig. 1). Leaves fraction varied from 63% to 89% of total litterfall depending on species. Largest litterfall input occurred in dry season, October-April. Litter quantity showed that agroforestry parkland is productive (Fig. 1). Litterfall compost had better chemical quality than conventional crop residue compost, but decomposition rate of V. paradoxa litter was very low (29%) (Table 1). These results suggest that with proper management, litterfall could contribute significantly to enhancing soil fertility in agroforestry landscape. We used a unique combination of ecological and social data from two sites: Centre-Southern Burkina Faso and Northern Ghana. Using the land degradation surveillance framework (LDSF) we assessed soil health, management and woody communities across 320 randomly selected plots (1000m2). 10 plant functional traits were measured on the 44 most important woody species. Semi-structured interviews were carried out with 76 farmers to understand farm practices and species preferences.FMNR was practiced by 65% of the farmers interviewed although the level of intensity differed. Seedling density is about 2500 seedlings per hectare, of which 99% regenerated naturally (from seed and rootstock). 48% of regeneration is considered as beneficial to the farm system, while 49% is considered a weed. Weeds usually regenerated from root stock, are persistent and farmers need to keep cutting them. Farmers promote a small subset of species that provide them with benefits in terms of litter, fodder and income. Regeneration on farmers fields is about 5 times less diverse than regeneration in the nearby protected forest. Taxonomic and functional diversity of seedlings on farmers fields is not different from the adult community although there is a shift in species and functional composition of the seedlings compared to the adults where the seedlings represent a higher abundance of shrub species and increased representation of functional traits that indicate drought tolerance (low adult stature, high wood density, small and thick leaves).Understanding regeneration dynamics, drivers and consequences is vital to restore degraded drylands using FMNR. This research shows that regeneration is successful in the two study sites, though only about half of the seedlings is useful for farmers while the other half needs to be continuously removed. Our results further show that FMNR contributes to drought resilient systems but for biodiversity conservation enrichment planting may be needed.Keywords: restoration, farmer-managed natural regeneration, drylands, degradation, agroforestry parklands.Dry lands in Uganda as elsewhere have problems of tree seedlings establishment due to little moisture in the soils as rains received in these areas is not enough. This situation is getting worse with the extreme long periods of drought that are now more prevalent due to climate change and variability. However trees are known to reduce such vulnerability to climate change effects (ICRAF, 2013). As a form of sustainable land management in these dry lands, we established an experiment of juvenile tree seedlings of Cassia siamea, Eucalyptus camaldulensis, (Neem) Azadirachta indica and Melia volkensii in three dry land areas of Butiaba, Ngwedo and Kaiso Tonya within the Lake Albert Crescent Zone (Kibale, Masindi, Hoima, Buliisa, Kiryandongo, and Masindi Districts of Western Uganda). We used varied hydrogel concentrations of 5 grams, 10 grams and 15 grams together with a control of no hydrogels at all for each of the above tree spp for each site. Hydrogels can absorb water 400 times their weight and make it available to plants for uptake and use in the dry season (Agaba et al, 2014). The tree seedlings were planted at a spacing of 3m by 3m following a completely randomized block design using slope as a blocking factor. For each hydrogel treatment and each site 5 tree seedlings for each spp were planted giving a total replication of 15. Data on tree heights attained and Number of branches was taken after 3 months and 6 months and analysed using R 3.4.2 (R-Studio). It was observed that in Butiaba and Kaiso Tonya that all the Eucalyptus seedlings without any hydrogels had dried after 3 months showing that without hydrogel use, there can't be any Eucalyptus tree establishment. It was also observed that the maximum height attained by Azadirachta indica (Neem) of 145.7cm and Eucalyptus trees at 116cm for Kaiso Tonya, it was only Cassia siamea tree seedlings that survived the dry season and were growing maximally at a hydrogel concentration of 10 grams while for Ngwedo which is a little bit wet, the hydrogel concentration that produced maximum growth of the tree seedlings was 5 grams. It was concluded that hydrogel technology enhances tree seedling establishment in dry areas and should be recommended for uptake by farmers as more research on other tree spp e.g. Faidherbia albida and others goes on.Keywords: Hydrogel, tree seedlings, dry lands.Over 80% of Kenya's landmass is considered arid or semi-arid; characterized by erratic and inadequate rainfall and poor inherent soil fertility; this is coupled with other factors hampering agriclture development such as high cost of mineral fertilizer that many smallholder farmers cannot afford. Declining soil fertility is a major hindrance to agriculture development in Kenya.In most parts of the country, soils are deficient in nitrogen, phosphorus and in some cases potassium. Drought tolerant agroforestry trees are an important alternative for enhancing soil fertility to enable farmers meet nutrient demand in agricultural systems. The aim of the study was to determine the potential of Casuarina equisetifolia and Melia volkensii systems in soil fertility improvement in semi-arid coastal Kenya (Kwale and Kilifi Counties) for adoption by smallholder farmers to address soil fertility challenges. Casuarina and Melia are fast growing drought tolerant tree species that have widely been adopted in Coastal Kenya. The experiment was set on-farm in a randomized complete block design with three treatments: Casuarina, Melia and control (pure maize crop stands) each replicated four times. Each plot measured 40m by 100m; with a spacing of 2m by 2m for Casuarina plots (with 1000 trees per plot) and 4m by 4m for Melia plots (with 250 trees per plot). Casuarina and Melia plots were intercropped with maize within the first two years. Soil fertility dynamics were evaluated from Casuarina ,Melia and control plots two years after establishment for three consecutive years. Soil samples were obtained from depths of 0-20cm, 20-40cm and 40-60cm. Data was subjected to Analysis of Variance using GenStat software at 95% confidence level. Results indicate that by the end of the fifth year, total Nitrogen was higher in C. equisetifolia (0.15%) and M. volkensii (0.22%) plots compared to the control treatment (0.1%). There was however low buildup of soil Carbon throughout the sampling period (0.36%, 0.38% and 0.39% for Control, Casuarina and Melia plots respectively); this can be attributed to high decomposition rates resulting from high temperatures in the study areas. Soil Carbon also declined with increased soil depth. Soil Phosphorus was highest in C. equisetifolia and M. volkensii plots (4ppm and 6ppm respectively) compared to the control (2.9ppm). There was a positive correlation between soil pH and soil C. equisetifolia and M. volkensii enhanced soil fertility, which can be attributed to N fixation by Casuarina through Frankia bacteria and nutrient cycling by Melia. The results of this study are essential for advising farmers engaging in C. equisetifolia and M. volkensii farming and for promotion of agroforestry using these tree species in semi-arid coastal Kenya.Soil fertility decline is a major limiting factor for achieving household food security in sub Saharan Africa and has led to increasing concern on agricultural sustainability. Development of indicators of soil quality to monitor changes resulting from land use and soil management have been proposed to address the issue. To better understand the soil fertility problem in the study area, we hypothesized that local farmers can detect differences in soil quality within their farms by using local soil quality indicators which would in return assist in highlighting changes in soil resulting from agroforestry trees. Forty-seven (47), smallholder farmers were interviewed on local soil classes, biological indicators of soil quality and agroforestry tree attributes influencing soil quality. In addition, they were asked to orally describe the characteristics of the local soil classes that occurred in their farm. This was followed by soil sampling guided by local soil classes and soil qualities recognized for each farm. Twenty-seven ( 27) out of 117 fields were classified as intermediate (transitional) between productive (good) and non-productive (poor) soil. To substantiate farmers' perception of soil quality we carried out common soil chemical analyses on samples collected from local soil classes identified by local farmers. Results shows farmers had detailed knowledge of plant species they use as bio indicators of soil quality and their influence on farming activities. Plant species such as Sesbania spp, Acacia abyssinica, Bidens pilosa, Digitaria scalarum, Tagetes minuta and Galinsoga parviflora were named by different farmers as bio-indicators of productive soil. Farmers associated invading species and grasses with unproductive soils. Most of the farmers in the study area were found to be aware of macrofauna as bio-indicators and their activities whereby earthworms and beetle larvae were indicators of productive soil. In contrast, majority of interviewed farmers attributed ants to destruction of crops and regard them as detrimental in the soil. Lastly, laboratory tests results of soils corroborated respective farmers' perceived soil qualities. The study conclude that farmers hold complex ecological or local knowledge on indicators of soil quality and contribution of agroforestry tree in their farms. They can also recognize the tradeoffs underlying a biodiverse agroforestry system and their creative capability in the utilisation of local knowledge was demonstrated. It is therefore necessary to find a realistic and common ground between scientific and local knowledge in order to implement a sustainable agricultural program. Ouédraogo A. 1 (amadeouedraogo@gmail.com), Glèlè Kakaï R. Dalbergia melanoxylon (African blackwood) is a multipurpose shrub, mainly used for pharmacopoeia, fodder, fuel and woodcarving. It produces one of the finest timber in the world which round logs fetch up to US$ 590 / m3 (Lemens, 2008). The species provides good mulch and may improve the soil by nitrogen fixation. It can be used to avoid soil erosion because of its extensive root system (Lemmens, 2008). Now, the natural populations of D. melanoxylon are exposed to a serious declining risk across its distribution range in West Africa (Ouédraogo, 2006;Lemmens, 2008). However, previous studies provide evidence that the species seedlings are good planting materials with high survival rate (Lemmens, 2008). This study aims at assessing the natural regeneration of D. melanoxylon across its natural distribution range in Burkina Faso and testing the germination capacities of seeds as well as the seedlings early growth. The results are expected to provide better understanding of the species reproduction in order to promote it for the restoration of degraded agricultural soils. Quantitative inventories were used to describe the natural regeneration stands and monitoring was carried out in permanent plots to assess the recruitment dynamics. Seeds from different provenances were used for germination tests and to assess the seedlings growth. The results revealed a scarcity of regeneration individuals that was traduced by comparable (p both Sahel (3 individuals / 25 m2) and sub-Sahel (1.8 individual / 25 m2) stands. Regenerating individuals originated exclusively from root sprouting and exhibited multi-stratum population structures. The spatial distribution pattern of recruitments revealed grouping trends around the mother-trees. The survival rates of recruitments were relatively good but their growth was unpredictable. D. melanoxylon had a relatively high rate of damaged fruits by pests (44-88%), which largely accounts for its poor rate of natural regeneration by seedlings. However, the experiments revealed average to high germination rate (52-77%), according to the duration of seeds conservation. The speed of germination (5.3 -12.8 days) and the longevity of healthy seeds are an advantage for sexual reproduction. Even though seedlings have poor resilience ability in the natural stands, the good capacities of germination as well as the high growth and survival rates in nursery are assets for the sylvicultural promotion of D. melanoxylon among local populations.Background: In the Sudanian region of North Cameroon, population growth has led to reduced fallow periods, soil fertility and trees (Peltier et al., 1993). Since 1984, CIRAD, Irad and Sodecoton have been testing techniques for planting tree legumes to restore soil fertility (Harmand et al., 2017). Results: Crop production was much higher for all 3 years and soil chemical properties (C, N, pH, CEC) were higher in Pf than in Cc (Table 1). Conclusion: Further studies are needed to determine for how long crop cultivation remains profitable (Dubiez et al. 2018). This will pave the way for farm and landscape management including plots planted with tree legumes, to improve biodiversity, carbon storage, wood energy production, food and cash crops of the territories, while limiting population migration and the destruction of the last Sudanese natural ecosystems.Table 1: Crop production and soil analysis at a depth of 0-20 cm in two control continuously cultivated plots (Cc) and in two plots after the fallow in 2011 of a 15-year-old A. senegal (Pf)Agroforestry activity of central Chile is developed on degraded and compacted soils under mediterranean climate. This study evaluate during 4 years, the effect of 2 soil conservation techniques (subsoiling with contour ridges (SB) and infiltration trench (IT), which were compared to a control treatment without soil management (CO)) on soil water content (SWC) and the survival and growth of two exotic (Chamaecitisys proliferus and Quercus suber) and one native tree (Quillaja saponaria). SWC was determined with a neutron probe in aluminum access tubes of 1,2 m. 4 were installed in each replicate and located at 0,5 and 1 m up and down the system. Soil conservation structures allowed higher SWC especially in the years of higher rainfall (1). At 20-40 and 40-60 cm depth SWC was higher in SB followed by IT and CO, whereas at 60-80 and 80-100 cm depth there was no differences. Conservation techniques had an effect on plant height, crown and trunk diameter in the 3 evaluated species (2). Plant height in C. p. was higher in IT>SB>CO, while in Q. s. it was higher in SB>IT>CO; Q. s. exhibited similar growth in both systems, but it was higher than in CO. The survival rate of Q. s. was lower in the CO system (57%), while C. p. and Q. s. had similar survival rates in the 3 systems (97% and 87%).Subsoiling with ridges has a great potential for degraded and compact soils of the Mediterranean region, allowing higher soil water content in the profile and better tree establishment and growth.The Quercus-based silvopastoral systems of the Mediterranean basin are declining due to both abandonment and intensification trends 1 . Grazing management is a major driver of plant communities dynamics and, therefore, of forage productivity and quality 2 . Adaptive Multi-Paddock (AMP) grazing system 3 , i.e. rotational grazing with high instantaneous stocking ratesand resting periods long enough to allow an optimal plant regrowth, has been recommended as a potential tool to manage rangelands to sustain forage productivity and improve livestock management.The experimental hypothesis of the study is that AMP grazing can be more effective than current grazing systems in supporting the biodiversity and the provision of ecosystem services in Mediterranean wooded grasslands.The study site was in a private farm located in the Central-western Sardinia, Italy (40°8'N, 8°35'E), consisting of two distinct areas located at 850 m (A) and 400 m (B) a.s.l., which main activity is the beef cattle and goats breeding. Since August 2018, at the A area, where animals graze during summer and winter season, 8 paddocks (size from 0.6 to 1.2 ha) were identified and electrically fenced, aiming to start the AMP system to be compared to the ordinary one (control). Furthermore, two typologies of soil cover where there identified: the Dehesa Type (DT) and the Permanent Grassland (PG). In each paddock animals graze for few days with high instantaneous stocking (Livestock Units 4 , LSU) rates (up to about 7 LSU ha -1 ) followed by long resting periods, while in the ordinary system grazing will occur according to a continuous scheme with lower stocking rates (up to 2 LSU ha -1 ). Plant biodiversity is assessed at each season in AMP and control areas according to the vertical point method integrated by the floristic relevé in order to record also rare species. Forage production is monitored at the beginning and the end of the grazing period by measuring the sward height (H) with a HFRO sward stick in both AMP and control areas. The sward stick is being seasonally calibrated in order to obtain robust and reliable regression equations between sward height and dry matter (DM) biomass.The results referring to autumn 2019 are preliminarily shown. Distinct relationships between H and pasture DM biomass of species belonging to Poaceae and Fabaceae families were identified. Significant relationship between sward stick height and DM biomass were observed for both Poaceae Fabaceae the 83% and the 56% of plant cover on DT and PG, respectively. The grass+legumes utilization factor in DT (79%) were higher in AMP paddocks than control areas (43%), while less difference between AMP (40%) and control (32%) were observed in PG, suggesting an higher consumption of less quality forage 5 , which presence is higher in PG than DT. Agroforestry: riding to the world's rescue -L4 -Agroforestry and biodiversity conservation \"Listen, mummy! Birds!\": using agroforestry to restore biodiversity Agroforestry has been demonstrated to be a feasible alternative to less biologically diverse agriculture in balancing biodiversity conservation and production. However, different studies have also demonstrated that the on management decisions. Multiple management decisions might affect the vegetative composition as well as the resource availability for animal species, thereby affecting their overall conservation value. Management decisions are crucial to fostering the desired balance between conservation and productivity, and more information is needed to accurately identify the tradecrucial in the development of biodiversity friendly management practices since these are the best options for preserving ecosystem functions and the services needed to secure sustainable production. This session aims to cover research related to the value of agroforestry systems for biodiversity conservation and the different effects that management might have on the value of particular agroforestry systems.Cacao is a major commodity crop that is mostly planted in small plots managed by family workforce in agroforestry systems (AFS). AFS are productive systems that combine a diverse canopy and provide opportunities for preserving biodiversity while sustaining rural livelihood. However, the role of the diversity and structure of the associated plant community on cocoa's productivity is still poorly assessed, especially in Colombian AFS. We selected fifteen cacao-based AFS in the upper Magdalena region of Colombia. In each one, we used a 1,000 m2 plot to characterize the diversity, structure and uses of the associated plant community. Additionally, we described the cocoa tree populations by measuring plantation density, age, and size of the cocoa trees. Finally, we characterized management practices by conducting farmers interviews to assess the frequency of pruning, application of fertilizer and manual pest control. AFS were ranked by multivariate analysis according to (i) management intensity, and (ii) plant functional groups based on the uses by humans. Four types of AFS differed on their management intensity and ranged from old plots planted at low density and based on traditional varieties to young plots planted at high densities of improved cacao varieties. Three types of AFS differed for their plant functional groups and included plantations where either fruit, timber or service trees predominated. Cocoa yield was in average low and although it widely varied among farms, differences were not significant among management or plant functional group types. As expected, cacao yield was positively affected by the proportion of improved cacao varieties and negatively affected by the proportion of unproductive cocoa trees. However, cacao yield was not affected by associated plant diversity. When most approaches to increase productivity are focused on replacing unproductive cacao trees with improved cacao varieties, we suggest that associated plant diversity should also be taken into account to diversify products and increase overall productivity, especially when the selected species do not affect cocoa yield. Better planning and management of associated plant species within cocoa-based AFS could provide further benefits to farmers such as provition or regulation ecosystem services. Research funded by UMNG Grant CIAS 2304. Yung L. (loic.yung@edu.univ-fcomte.fr), Chalot M., Chiapusio G., Bertheau C. UMR 6249,Montbéliard,France Phytomanagement, which combines techniques using plants to extract, contain or degrade pollutants, appears as efficient nature-based solutions for the rehabilitation of contaminated soils. The present study aimed at evaluating the entomological diversity and its beneficial aspect at a phytomanagement field trial, consisting of a mixed plantation of poplars and spontaneous stinging nettles (Urtica dioïca). In natural conditions, nettle hosts a large diversity of insects, including some auxiliary species (James et al., 2015), which could be involved in the bio-control of poplar pests. The entomological inventory was performed monthly during 2017 and 2018 using multidirectional window flight traps combined with active catching. In 2017, 1484 insects were collected and grouped on 154 taxa identified up to the genus level for 61%. Nine orders were represented with the coleopteran, hemipteran and dipteran accounting for 95% of the total abundance. The ratio of phytophageous / predatory was 23 ± 6 %. Diversity indexes showed a high taxonomic and functional diversity comparable to those observed in natural patches of nettles (Davis, 1989). We highlighted that nettles growing between poplars offers a natural reservoir of entomological biodiversity that seems beneficial to the whole agro-system. We also confirmed that the nettle-related insects were not directly implicated in the transfer of contaminants at the studied agro-forestry system.Insect pollinators play a pivotal role in agricultural landscapes, supporting both biodiversity and food production. However, intensification of agricultural practices and the subsequent landscape simplification have threatened pollinator abundance and diversity via important losses and fragmentation of semi-natural habitats. These perennial elements are mainly permanent grasslands and rural forests, i.e. farm forests and trees outside forests like scattered trees or hedgerows, that compose agroforestry landscapes. They provide feeding resources but also overwintering and nesting sites for pollinators such as wild bees, butterflies and hoverflies.We present here a synthesis of several studies we conducted on the effects of rural forests on pollinator abundance and diversity and how they structure pollinator communities and functional assemblages. We focus on their role on spatial and temporal resource complementation (wild bees and hoverflies) and their role on spatial connectivity (wild bees and butterflies). We also explore how the effect of rural forest on functional assemblage could buffer agricultural intensification. These studies highlight the need for a small-scale mosaic of crops, grasslands and rural forests to sustain pollinator biodiversity.Temporal habitat complementarity for Episyrphus balteatus, a pollinator and aphid predator. Winter: females hoverwintering in woods feed on late flowering species occuring in south-facing edges. Early spring: females lay up eggs in crops surrounding woods, their aphidophagous larvae cause an early control of aphids. Late spring: flowers are available in semi-natural habitats and in some crops, adults scatter in the landscape and lay up eggs not only in the close proximity of woods.Summer: flowering resources are scarcer, adult feed on flowers in north-facing edges. The effect of land use types on insect diversity and composition in tropical agroforestry system Rachmawati R. 1 (rina_rachmawati@yahoo.com), Rizali A. Land-use intensification is rapidly increasing in regions that harbor high levels of biodiversity, thus posing a serious threat to the stability and resilience of these ecosystems (Mumme et al, 2015). The expansion of monoculture crops has been directly linked to large-scale losses of biodiversity and ecosystem functioning (Barnes et al., 2014). Agroforestry has been proposed as an alternative to agriculture for smallholder farmers throughout the tropics in order to enhance ecosystem service supply and conserve biodiversity (Kearny et al. 2017). Insects are important bio-indicators of forest health. Each type of insect has an important role in ecosystem; therefore it is very important to maintain the existence of these species. Nevertheless, only a view studies has been reported regarding the response of several species of insects in tropical agroforestry system. In this report we bring together these four important insect taxa, namely ant, borer beetle, parasitoid wasp, and dung beetle to study for their response in terms of species richness, species abundance and their compositions from five land use types in agroforestry system in Indonesia. The method used was a field survey in UB Forest Malang, Indonesia. Types of land use in UB Forest being used as plots were pine intercropping with vegetables, pine intercropping with Coffee, mahogany intercropping with taro, mahogany intercropping with Coffee, and protected areas, with three repetition in each land use. Different types of insect traps were installed in the sub plot, depending on the insect taxa. All ant specimens were identified to the morphospecies level by referring to the book Identification Guide to Insect. The measurement of species diversity was calculated using the Shannon-Wienner diversity index formula (H'). Results between different land use were analyzed using variance analysis (ANOVA). Further tests on the similarity of the composition of the dung beetle community were calculated using Non-Metric Multi-Scaling (NMDS). All data processing was conducted using the vegan package from the R-Statistics software (R Development Core Team 2018). The results showed that all land use types significantly affected only species abundance, with various effect from negative to positive effect, with the exception for Hymenopteran parasitoid that was being affected both for species richness and abundance. Protected areas were the land uses that had highest abundance of woodborer and hymenoptera parasitic. As for the highest number of individuals for ants and dung beetle were found in pine intercropping with coffee. From this study it can be concluded that in general, different land use affected species abundance rather than species richness of the four species. Species compositions of the four insect taxa were significantly affected by land use type. Overall observations showed that protected areas has more species compositions rather than in any other four land use types. Despite growing literature supporting the importance of home gardens (HG) as biodiversity hotspots, knowledge of patterns of their contribution to conservation of threatened species and crop wild relatives (CWR) across climate and culture in Africa is still limited. This investigation was conducted across three climatic zones to assess the floristic diversity of HG and the extent to which they contribute to conservation of threatened species and CWR. Overall, 240 HGs were sampled and their floristic diversity assessed. The ecological importance of recorded species was determined per climatic zone using the importance value index (IVI). A cluster analysis was performed to group the species according to their IVI-values and a principal component analysis helped to identify the most important species. 285 species were inventoried throughout the study area. Home garden species' diversity globally declined from the drier to the wetter zone but was highest in the transition zone. The average number of species found per HG was 10.1 ± 1.4 and varied weakly across zones. The most important HG species differed across zones but has similar uses. They were mainly vegetables and used as food and/or medicinal plant species. Twenty CWR and twelve threatened species were recorded and were also mainly used for food and medicinal purposes. Detailed studies are still needed to understand the HG socio-ecological system, its dynamics and effectiveness in conserving biodiversity.The effective management of human-dominated tropical forest landscapes is crucial in the wake of global climate change affecting biodiversity, ecosystem functions, and the livelihoods of billions. Among varied land management practices in the tropics, agroforestry remains one of the most promising, promoting deliberate maintenance of forest cover for productive agriculture, facilitating avenues for mitigating climate change and enhancing ecosystem functions. Considering these merits, the Indian Government launched the National Agroforestry Policy (NAP) in 2014, world's first, nationwide policy with a central idea of doubling the agroforestry area concurrent with expansion of national forest cover 1 . As the world's most populous country, yet its fastest growing economy, moving towards \"Green India\" would be a serious game-changer for this tropical country with positive global environmental implications. The effective implementation of this economically valuable policy falls on the shoulders of Indian Forest Departments (IFDs), who uphold a strict policy of preventing fires in and around forests. Fire is an integral part of forest ecosystem functioning and its strict prevention leads to accumulation of biomass load, causing more/severe fires 2 ; this scientific evidence emerged from palaeoecology led other post-colonial countries towards adopting prescribed burning 3,4. Such evidence is vital to age-old, human-dominated Indian agroforestry landscapes where people have traditionally used fires in shifting cultivation 5 . This disagreement in fire practices often instigate serious conflicts between local communities and IFDs, hampering implementation and the desired impact of the NAP and its associated socio-ecological benefits. In this context, using palaeoecology-driven innovative statistical modelling methods (e.g. pollenbased REVEALS modelling, rarefaction and multivariate ordination), we examine the resilience of Indian agroforestry landscapes in relation to past fire regimes and monsoonal variability, thereby analysing their capacity to sustain biodiversity across the Common Era. To explore its applicability to other parts of the tropics, we use the model system, Western Ghats of India, one of world's biodiversity hotspots supporting the highest population density through agroforestry. Moreover, these age-old agroforestry landscapes often coexist with community-based conservation in the form of sacred groves, thus comparing forest trajectories from these two eco-units provides an ideal opportunity to develop regional resilience scenarios against human and natural regimes at a 20-50 yr resolution. This resolution renders a tangible window for building policy implications for fire management practices in relation to assess sustenance of biodiversity in the light of NAP. Our work is part of project \"EARNEST\" that has received funding from the European Union's Horizon 2020 research and innovation programme under the grant agreement no. 795557. mers' role in conservation of tree species is unclear. We hypothesized that farmers contribute to conservation of tree diversity through protection of trees in their agroforestry landscapes and compared the diversity and structure of the tree vegetation across landscape classes. Inventories were carried out in three villages in the Groundnut Basin in Senegal, assessing tree diversity, density and crown cover. Tree diversity as assessed by species accumulation curves was high in forests, but cultivated landscapes had comparable or almost comparable diversity, especially in the cases where the forest was planted or was affected by charcoal production. However, the occurrence of exotic species was higher in cultivated parts of the landscape, and although many species were in common, ordination plots indicated that forests and cultivated landscapes to some degree had tans (salt marshes) but also across the other landscape classes. In conclusion, agroforestry conserve the tree species. We argue that informing and including farmers in tree management in the region will contribute to overall conservation of tree genetic resources. Simamora T. I. 1 (trifosaiin@gmail.com), Suriyanto I. 2 , Dewo S. 2 , Laumonier Y. 3 1 Sustainable Landscapes and Food systems, CIFOR, Bogor Barat, Jawa Barat, Indonesia; 2 Forestry Faculty, Tanjungpura University, Pontianak, Indonesia; 3 UR 105 Forests and Societies, CIRAD, Montpellier, France The loss of biodiversity following forest conversion into monoculture plantations is well documented in SE Asia. The effectiveness of land sparing or integrating \"wildlife-friendly\" management into agricultural landscapes to maintain biodiversity is still a matter of debate. This study examines biodiversity conservation value of forest fragments in two types of land management: monoculture oil palm plantation under RSPO scheme, and agroforestry systems within swidden landscapes in the last forest frontier of West Kalimantan province. The area is a mixture of forested and agricultural lands dominated by swidden traditional practices, while oil palm plantations are expanding. We studied three sites representing different intensities of forest fragmentation at various distances from the contiguous forest. We surveyed swidden landscapes featuring natural forest, old and young fallows, smallholder jungle rubber plantations and forest remnants patches (mixed dipterocarp, peat swamp, and Kerangas forests) in oil palm concession. At each site, trees, birds and soil arthropods were sampled. Plots were laid for tree measurements (60 plots; 20 m x 20 m), bird recorded using timed point-counts and mist nets (120 points; 2087 mist-net hour), and litter-soil sample (140 trays) collected for soil arthropods identification. We used ordination, indicator species analysis, and statistical tests to assess the biodiversity conservation value of forest fragments. As expected, trees and birds species diversity were highest in natural and old secondary forest, but swidden agroforestry systems were also considerably biodiversity-rich largely outperforming oil palm forest fragments and rubber monocultures in terms of bird species richness. Natural forest and old fallows sustained a higher number of endangered bird species compared to young fallows and monoculture plantations. The species richness of soil arthropods -as ecosystem engineers-was also significantly highest in natural and old secondary forest, with Acari, Hymenoptera, Collembola, and Coleoptera being the most abundant. Traditional agroforestry systems should be maintained and managed to support forest successional stages and high biodiversity at the landscape level. Agroforestry patches in swidden landscape significantly harbored more diverse species composition than forest fragment remnants in oil palm concession and were even comparable in term of species richness to natural forests. Oil palm concession in our study site still contained high conservation value forest patches, but these particular patches were considerably larger (c. 500-1000 ha) than the one ha blocks preconized by the RSPO scheme. The question remains if these forest patches will remain resilient in the long run since connectivity with the contiguous forest has been lost. species (life span>80 years), to form a composition in which all storey (spatial) and all phases (temporal) are occupied, optimizing density and diversity. Where orange or cocoa is the main crop, a DAF can start with maize and rice in combination with manioc and pigeon pea, followed by banana and papaya, pineapple and Inga sp., providing shade for slowly growing primary forest species. Timber as a long-term investment dominates the system after 10-15 years, with cacao and oranges in full production. A most important experience is the benefit of land preparation without fire. The advantage of DAF can be seen already after a couple of months which helps to encourage farmers to extend the system step by step to the whole plantation. Investigations carried out in an orange plantation converted in a DAF system in Alto Beni, Bolivia indicates less abundance of fruit flies (Anastrepha spp. and Ceratitis captitata) in oranges in dynamic agroforestry with significantly higher yields and the same sugar content, significantly more humus in soils and a deeper Ah-horizon than in comparable monocultures. The plantation includes now more than 60 species of timber and fruit trees in different canopy layers below and above the citrus trees. More than 1.000 trees and palms are present per hectare, and soil fertility has increased in line with the development of the supporting flora within the plantation The birds´ selection among five cocoa production systems and forest fallow, using a cafeteria experiment was carried out in the long-term System Comparison trial in the same region of Alto Beni, Bolivia. In this study, five different cacao production systems were assessed-fullsun monoculture and agroforestry systems under organic and conventional management, dynamic agroforestry system and a natural fallow. The birds were quantified by a modified point count during the dry season. 239 visits of 43 bird species belonging to 18 families were recorded. The number of visits was positively related to the complexity of vegetation structure and tree diversity, decreasing from fallow, dynamic agroforestry systems DAF, simple agroforestry systems and monoculture plantations. In the monocultures, the number of species was reduced to the half of that found in the fallow plots. The bird composition was similar between the DAF and the forest fallow, suggesting that the DAF, having a diverse vegetation structure, providing resources similar to the forest fallow. It is important to encourage complex agroforestry systems for bird conservation in agricultural landscapes. A study on the economic viability of the same trial showed that agroforestry has a higher economic return on labour than mono-cropping.Association of several tree species in and around a plot can have a positive impact on ecosystem services. Thus, traditional agroforestry systems, characterized by a high plant diversity, constitute an ideal model of study to test if the natural tree vegetation provides both shelter and food resources for insects that could potentially improve biocontrol services. The main objective of this study was to test if tree species presence and diversity could enhance the natural regulation of the millet head miner Heliocheilus albipunctella (MHM) in agroforestry systems of the Senegalese Peanut Basin. To address our objective, we realized an inventory of tree species in a total of 30 millet fields surveyed in Bambey area, during 2013 and 2014 (Fig. 1). These data were used to calculate indices related to the abundance and diversity of tree species. The natural regulation was estimated using the biocontrol service index (BSI) for each millet field. In addition, data on MHM egg and larval predation and parasitism rates were also collected to estimate biocontrol services. Statistical analysis of the effect of tree presence and diversity on natural regulation variables were tested using a linear regression. Surprisingly, we found that BSI decreased with tree diversity and that it increased with the presence of the tree species Faidherbia albida. Morever, the presence of Anogeissus leiocarpus enhanced MHM egg parasitism and the presence of Azadirachta indica favored MHM egg predation.The change in land use for livestock and agriculture is usually linked to a potentially devastating effect on flora and fauna communities. n the humid tropics of Mexico, Tabasco is one of the States with the highest rate of deforestation and, currently, more than 66% of its territory is destined to livestock. We evaluated the effect of different representative traditional agroforestry systems (AFS) on the diversity of terrestrial arthropods. The collection was carried out in 49 plots of 41 localities categorized by their structure and function in eight SAF. Ten pitfall traps were established in each plot during the dry season (March-May 2009). To compare the diversity of macroarthropods in the soil between the eight AFS, species accumulation curves and diversity indexes were made. A total of 42,270 individuals of arthropods belonging to 16 orders in the eight AFS were collected. The most abundant orders were Hymenoptera and Coleoptera, while the less abundant were Dermaptera and Haplotaxida. The greatest diversity of terrestrial arthropods estimated was recorded in the roza-tomb-burning system and family gardens, and the lowest diversity was for alley cropping and the taungya system. The results showed significant differences in the diversity of terrestrial arthropods in AFS with lower plant diversity compared to systems with greater diversity. The study suggests that AFS with greater botanical diversity are an important strategy to increase the productivity, diversity and conservation of arthropods.Keywords: Agroforestry, Diversity of arthropods, Dry season, Conservation, Humid tropics. 1 Agroecology, University of Goettingen, Goettingen, Germany; 2 Macroecology and Biogeography, University of Goettingen, Goettingen, Germany; 3 Tropical Silviculture and Forest Ecology, University of Goettingen, Goettingen, Germany; 4 Cash crops farmed in agroforestry systems can be an economically attractive opportunity for farmers while alleviating negative impacts on biodiversity and ecosystem functions. Whether such a win-win situation can be realized is, however, highly context-dependent. Here, we study the impacts of vanilla agroforestry in North-Eastern Madagascar -a biodiversity hotspot which loses forest cover at high rates to agriculture. This forest cover loss is mainly attributed to subsistence rice farming but the current vanilla boom driven by prices of up to 600€ per kilo may also lead to the encroachment of plantations into forests, thus reducing understory complexity and tree cover locally. However, vanilla plantations can also be established on open fallow land already highly disturbed by slash-and-burn practices (\"tavy\") leading to a potentially more sustainable land-use. The interdisciplinary project \"Diversity Turn in Land Use Science\" investigated on 216 vanilla plantation the relationship of crop productivity and biological diversity. We compared tree cover, biodiversity, and vanilla yields (a) of forest conversion plots vs. fallow conversion plots and (b) along a canopy cover gradient to investigate (i) how vanilla farming shapes canopy cover locally, (ii) how vanilla yields vary between plantation types and under different shade regimes, and (iii) how plantation type affects tree cover, biodiversity (avifauna, insects, plants, mammals, amphibians and reptiles) and associated ecosystem functions (i.a. predation, carbon storage, soil quality). We hypothesize that vanilla agroforestry negatively affects biodiversity inside primary forest, but that it may have positive effects if established on open fallow land leading to tree regeneration and thus an increase in tree cover. Yields are expected to peak at mid-canopy cover -potentially incentivizing tree clearance under high canopy cover and tree regeneration under low canopy cover. Thereby we investigate how the cultivation of the same cash crop might have very different outcomes for biodiversity and sustainable land-use depending on initial land-use. This knowledge is aimed to result in management advice or certification schemes that are sensitive to land-use prior to vanilla cultivation. Keywords: biodiversity, canopy cover, Madagascar, vanilla agroforestry, yield.The cultivation of cocoa in Colombia are of key social importance. Indeed cacao plays a prime role in post conflict resolution as it is the legal crop to replace illicit crops. In the current context of the need of combating climate change, cacao agroforests are also expected to be a sustainable practice, promoting forest-friendly land use. In that context, it is necessary to describe accurately these systems, and especially accounting for their potential in terms of biodiversity conservation.In this work, we present a first a typology of cacao agroforest systems in Colombian Amazonia, systems that had yet to be described in the literature. This typology is based on tree species richness, canopy structure and light availability.We worked in 50 agroforest plots of 2000m² each, in the Bajo Caguán area of the department of Caquetá, in the Colombian Amazonia. In each plot, we measured variables of composition (diversity of plants associated with cacao trees) and variables of vertical and spatial structure (height layers, Diameter at Breast Height, basal area, shape and area of the crown, (x, y) positions of each individual plant in each plot. We also measured variables of radiation transmitted to cacao trees in the understorey: above the cacao canopy layer, we took hemispherical m-2 s-1) using an AcuPAR LP-80 sensor. We included variables related to light availability to evaluate the amount of transmitted radiation to the cacao trees in each type, and its suitability for cacao ecophysiological development. We also use variables of spatial organization to model the distribution of light in each plot, using two models: Shademotion 4.0 to calculate the fraction of the average of shade hours and shade area in each agroforest plot and the Spatially individual-based Explicit Forest-Simulator to calculate the degree of canopy openness in each agroforest plot. We there used a cluster analysis to build a typology of cacao agroforest, based on 28 variables characterized in each plot, and related to diversity, composition, spatial structure and light availability for the cacao trees.We identified 4 types of cacao agroforests. The typology was based on their differences in tree species diversity and the impact of canopy spatial structure on light availability for the cacao trees in the understorey. We also found 127 tree species in the dataset, with 3 out of the 4 types identified displayed an erosion of tree species diversity. This reduction in shade tree species may be linked to the desire to reduce shade, but we also found that all the types described were compatible with good ecophysiological development of the cacao trees. One challenging prospect will be to monitor and encourage the conservation of tree species diversity in cacao agroforest systems during the development of these cropping systems.In Brazil, the forest legislation has opened up new options for forest restoration by smallholders, allowing in particular the use of agroforestry in conservation areas. This has triggered a vigorous national debate, involving social movements, scientists and policy makers: while these legislative changes may encourage farmers to engage in restoration, the provision of environmental services greatly varies according to the type of agroforestry system (AFS). However, few studies go beyond the technical aspects of restoration and studies assessing the social drivers are urgently needed. To contribute to this debate, we analyzed restoration experiences of farmers in the Eastern Amazon, where there is a great diversity of AFS. Our objective was to understand why farmers had engaged in forest restoration and how these motivations influenced their management practices. Based on 136 questionnaires with farmers and in-depth analyses of their AFS, we elaborated a typology of different restoration systems based on the practices involved, in particular the number of species (see figure 1). 78% of farmers restore through AFS. Most of those who have pragmatical motivations (water, soil, products) have less diverse AFS. Those with broader environmental motivations (preoccupation with overall degradation and biodiversity loss) have more diverse systems. This points to the importance of building more awareness about the potential role of biodiversity in restoring environmental services. The degree to which maintenance of C stocks and tree diversity in practice can be jointly achieved in production landscapes is debated. Carbon stocks in forests decrease by logging before tree diversity is affected, while monoculture tree planting increases C stocks before diversity. Agroforestry can break this hysteresis pattern, relevant for policies in search of synergy. We compared five land use systems in Konawe District, Southeast Sulawesi, Indonesia: degraded forest (DF), complex cacao/fruit tree agroforests (CAF), simple shade-tree cacao agroforestry (SAF), monoculture cacao (CM), and annual crops (CR). Tree diversity (Shannon Index-H') and carbon stock were measured and estimated using the Rapid Carbon Stock Appraisal (RACSA) protocol. We added 48 data points from other studies which had similar methods of data collection. The data suggested intermediate positions for agroforestry systems, between forest decline and restoration responses (Fig1), with some medium-diverse low C stock, and medium-C stock low tree diversity points. Overall data indicate that maintaining agroforestry systems in the landscape allows the climate change control and biodiversity loss goals to be addressed simultaneously, in sustainable production systems. Henry et al., 2009;Mandal et al., 2013;Markum et al., 2013;Kendom, 2013;Natalia et al., 2016;Kurniawan, 2018;Prayogo, 2018) In Côte d'Ivoire, as in all West Africa, the cocoa farms from forests conversion results in drastic decline of forest biodiversity (Clough et al., 2011, PNAS 108 : 8311-8316.). Facing this unsustainable situation, agroforestry systems (AF) can offer a promising alternative, such as smallholders' plantations where trees have long been associated for diverse reasons. In a forest-savanna transitional zone, three AF have been defined (Kpangui et al., 2015, IJAAR, 36-47). Beyond the cocoa production of these AF, the peasants benefit from ecosystem services resulting from the species associated with the cocoa orchards. In order to assess these ecosystem services and analyze how the species contribute to biodiversity conservation, we conducted the present. We made botanical inventories to record the species associated with cocoa tree. Whereupon, we evaluated the provision of ecosystem services of the tree species, their biomass, and their contribution to biodiversity conservation (a special focus on the species with high conservation value).The study showed that most of the species are associated with cocoa trees to provide food and medicinal goods to local people. Tree biomass and rates of carbon sequestrated were important. The study has also showed that these three AF housed high conservation value species. The study suggested that agroforestry practices in center Côte d'Ivoire provide important ecosystem services as well as biodiversity conservation.Figure 1: Aspect of a complex agroforest according to Kpangui et al. (2015) showing diverse trees in the high stratum above the cocoa canopy. The state of Manipur, India falls under the Indo-Burma global biodiversity hotspot and hosts a variety of species.Wild Edible Mushrooms (WEMs) are one of the key food sources of rural people and have a major dependence both for own consumption and for cash income.WEMs are known for its valuable dietary and medicinal properties worldwide.Some mushrooms are domesticated and grown for commercial use but many edible mushrooms are still wild in the forest. The study was conducted to document WEMs diversity which are consumed and traded by the Kuki and Naga tribes of Kangpokpi and Senapati districts. Seasonal markets survey were carried out during 2016-2018 to record the local names, sources of supplies and quantity traded.The survey recorded 8 edible macrofungi species, belonging to 7 families. Some of the widely traded WEMs are Auricularia delicate(Fr.)P.Henn., Lentinula edodes(Berk.) Pegler and Schizophllum commune Fr. These species were found to be associated with many promising agroforestry tree species such as Alnus, Quercus, Castanopsis hystrix, Parkia roxburghii, and Phoebe hainesiana. Therefore, promising agroforestry models can be developed incorporating these tree species, so that the availability of WEMs may be maintained thereby conserving its biodiversity and help in securing the livelihood of rural tribes by generating employment opportunities. Thus, this finding provides baseline data for future monitoring and establishing suitable agroforestry models in the region. Agroforestry systems (AFS) are among the most representative systems that integrate productive and ecological restoration goals. However, although AFS have been widely promoted as an eco-friendly land use, little is known about its potential for ecological restoration. Here, we compared the ecological outcomes of 12-15 years old coffee AFS (established with native shade-trees), conventional restoration plantations with similar age, and ecosystem reference (regional old-growth forests) within a forest and landscape restoration project at the Pontal do Paranapanema region, Atlantic Forest, Brazil. We compared the abundance, richness, and regenerating saplings among these forest types, and investigated the drivers of natural regeneration in coffee AFS. Reference forests had a much higher density of trees and saplings, yet at richness levels similar to coffee AFS. Although coffee AFS and plantations did not differ in their density of trees, coffee AFS had a higher density, richness, and proportion of animal-dispersed species of saplings and canopy cover than conventional plantations. However, the abundance of regenerating woody plants declined with coffee density, thus indicating that the restoration value of high coffee abundance AFS can be reduced, and a potential tradeoff between ecological and productive outcomes. Despite that, the coffee AFS had greater ecological performance than the conventional restoration and can thus be an alternative for tropical forest restoration.Negative binomial generalized linear model between the spontaneous regeneration abundance and the coffee abundance in coffee agroforestry systems at Pontal do Paranapanema landscape, São Paulo, Brazil. Values above the dotted line are considered adequate, and below the continuous line are considered critical according to the legal ecological standards of São Paulo State to attest forest restoration compliance.In the current context of deforestation, farming practices constitute a loss of forest biodiversity in tropical countries (Jagoret, 2011). In Côte d'Ivoire, in particular, cocoa cultivation has long been considered one of the main causes of forest biodiversity loss. However, several studies have shown that these agroforestry systems contain a greater diversity of species (Kpangui et al., 2015) than monocultures. In order to examine the impact of this cultural practice on biodiversity, we analyzed and compared the ligneous flora of different cocoa based system. During this work, ethnobotanical surveys were conducted among 223 cocoa farmers. The data from these surveys were supplemented by botanical inventories on 115 plots of 625 m² . The analyses show that, at the floristic level, 176 species of plants have been identified in cocoa plantations. The analyses also show that these plantations contain a high proportion of endemic species, rare and endangered species listed on the 2016 IUCN Red List, which gives them exceptional and patrimonial values for biodiversity conservation. Surveys confirmed that beyond the production of cocoa beans, the practices of local populations show that women used these tree species for food and medicinal purposes. All of these contribute to the preservation and conservation of biodiversity.The edaphic macrofauna gathers invertebrates whose action optimizes nutrients cycling and are sensitive to changes in vegetation cover (Lavelle, 2001). Oligochaeta, Blattodea and Hymenoptera form the group called \"soil engineers\", because they modify it with their mechanical action. In view of the expansion of the oil palm culture in the Amazon, we conducted a study of the macrofauna community to understand how this culture impacts these organisms.We selected an organic biodiverse Agroforestry System (AGS) with 10 (ten) years old oil palm tree, and a traditional monoculture management in Tomé-Açu, Pará, Brasil. We adapted the method of Anderson et al. (1994) and removed in each system 9 (nine) blocks of soil (25x25x10cm) with the associated litter, divided in three transects of 18m. We used the software PAST (Hammer et al, 2001) for diversity-analysis. The community of AGS macrofauna is more diverse and is well distributed among the taxon ( Figure 1). The high density (1004,4 ind.m-2) in monoculture is the result of Blattodea highest frequency, confirmed by dominance. The frequency of the predator Hymenoptera in the AGS reflects a structured food web. Monoculture presented only 8% of Oligochaeta, this group is directly linked to the maintenance of the soil structure (Marichal, 2017).The AGS soil-litter system offered better conditions for the establishment of soil macrofauna. Since the last century agriculture is strongly promoting the simplification of the landscape.The LIFE Desert Adapt project is been developed across 1000 hectares in Italy, Spain, Portugal and has the objective of implementing integrative agroforestry-based land use planning and management, and one of the indicators to evaluate the project effectiveness is birds richness and abundance. Here we present the results of the first assessment and explore the relationships with the main vegetation cover types. We established 68 sampling points where we recorded bird abundance and richness. In total we registered 57 bird species, sampling points surrounded by woodlands presented 50 species, while shrublands presented 45 and herbaceous cover presented 32 species. The agroforestry practices that will take place inside the LIFE project are expected to increase the vegetation complexity inside the farms and consequently enhance bird diversity and abundance, as well as will provide useful information to compare the influence of different management decisions for bird communities. However, the species of birds threatened at the Mediterranean level are those linked to open agricultural systems (such as the alaudidae) and to areas with sparse tree cover (e.g. laniidae). The project will then evaluate the effects of agroforestry practices on bird communities in qualitative terms to also determine which of these do not have a negative effect on avifaunistic communities. Traditional agroforestry systems in Northeast India Deb S. (sdeb@tripurauniv.in) Overall, the intimate mixture of diversified agricultural crops and multipurpose tree species fulfills most of the basic needs of the local inhabitants while the multistoried configuration and high species diversity of the agroforestry system helps to reduce the environmental hazards that is commonly associated with monoculture production system.Protected areas in the Sudano-Sahelian zones are increasingly subject to threats related to climate change and human activities. To reduce these threats, an often-recommended approach is the intensification of agroforestry systems (AFS) in areas adjacent to protected areas (PA) (McNeely et al, 2006;Dudley, 2008). The present study focused on the characterization of agroforestry systems around the Bouba Ndjidda National Park (BNNP) in terms of woody plant diversity, structure and uses, in order to evaluate their contribution to the conservation of tree diversity. The methodological approach combined the inventory using the quadrats method associated with tree height and diameter measurements, and ethnobotanical surveys to document products, services and usage of trees by local people in the surrounding of the BNNP. Hedgerows (6%), fallows (72%), home gardens (83%) and scattered plantations (98%) were the four types of AFS identified around the BNNP. The overall average woody plant richness was 50 species belonging to 23 families. The most dominant family was Fabaceae with a species richness, family value of importance (FVI) and relative abundance of 12, 148.97%, and 62.38%, respectively. The tree density in AFS ranged from 29 stems / ha to 180 stems / ha for home gardens and hedgerows, respectively. The most predominant species was Acacia polyacantha with the highest value index (IV) (88.65), basal area (7.52 m2 / ha). Farmers use woody plants species of the AFS around BNNP for several reasons (fuelwood, food, fertilizer, fodder, medicine, shading, lumber, fence, and ornament), but mostly for fuelwood (66.49%) and food (63.69). The use of woody plants also vary according to the type of AFS. In fallows and hedgerows, trees are used primarily for fuelwood (78.49%) and (98.33%), respectively, while in scattered plantations and home gardens, shade for both livestock and humans is a priority with 91.94% and 78.26% of respondents, respectively. These use of AFS trees reduced the need of exploiting the woody plants of the Park. The plants of the Fabaceae family were the most cited as being used and contributing mainly for charcoal and fuelwood provision to local population. Vitellaria paradoxa recorded the highest used value (VU) (4.36); Anacardium occidentale and Acacia polyacantha the highest cultural indices (CI) of (1.00) and (0.98), respectively. Two endangered species, listed in the International Union for Nature Conservation's Red List were found in BNNP buffer zone namely Khaya senegalensis and Vitellaria paradoxa. The results of this study highlight the need to strengthen strategies to promote AFS around Sudano-Sahelian protected areas, as they contribute to improving farmers' livelihoods, creating an enabling environment for the conservation of useful and endangered woody plant species.Cocoa agroforestry system (AFS) is increasingly recognized as a biodiversity repository for many plants and animal species and it ensures a natural biocontrol of pests and diseases. However, In Cameroon, this biodiversity \"hotspot\" is gradually destroyed by ongoing cocoa intensification policies to incraese cocoa yield in the short term. The on-going intensification policies is already having negative impacts on the natural mangement of subeterraneans animal species such as termites generally recognized as bioindicators in cocoa AFS. We sampled termites in 20 cocoa farms in five localities in the Centre region of Cameroon, ranging from rustic to full sun agroforestry systems to assess the impact of shade trees removal and aging of cocoa farms on termite communities' composition and infestation of cocoa trees.We showed that implementation of on-going cocoa intensification policies toward shade trees removal has reduced the diversity and richness of termite with many of them feeding on newly planted seedlings and mature cocoa trees. We found that termites feeding damages were significantly lower in shaded rustic cocoa systems than full sun. We also observed that under full sun systems some species (Microtermes spp., Ancistrotermes sp., and Pseudacanthotermes militaris) have shifted their behavior from leaf-litter decomposer to above-ground pests building their galleries on cocoa trunk around flowers cushion. These species increase their abundance in cocoa farms in relation to shade trees removal to induce damages to cocoa trees. We also discovered a termite species (Amalotermes phaeocephalus) recognized as soil feeder which attacked cocoa trees by building galleries on the trunk. This emphasizes the impact of cocoa intensification in the drastical change in behavior of some key environmental species towards invasiveness. In addition, most of the control methods applied by farmers is not working against this new emerging pests but farm rehabilitation and renovation seems to affect termites infestation in farm. This study emphasizes the need to wild-friendly and sustainable cocoa cultivation by promoting agroforestry and favoring farm rehabilitation strategies to prevent termites outbreaks.Cocoa cultivation, pest outbreaks, termites, shade destruction, farm rehabilitation. The Anthropocene crisis is a reality, it is apparent to anyone. Where we live, we see the transformations of our environment: we note the scarcity of fish, the disappearance of trees and hedges, the scarcity of snow, the shrinkage of glaciers, the appearance of new species sometimes invasive. We have never been so informed by scientific relays and medias about climate change, desertification and biodiversity loss. Our politicians deal with these issues and attempt in their action to influence the way in which our societies are going to organize their «live together». Thus, today, every citizen, as long as he is in the circuits of public information, is sensitized to the questions of the human relation to climate, biodiversity, water, soil, agriculture, to questions related to the Earth. In short, the commons emerge as a source of debate, discussion and collective awareness. At the same time, however, there is a kind of dissociation between this understanding and the reality of our lifestyles. Transdisciplinary researchers like Peter Kahn, Cynthia Fleury and Anne Caroline Prévot are studying this «generational environmental amnesia». They try to better understand what is «the experience of nature», in the sense of : if we multiplied our personal relationship to the natural world and if it is early in our growth, if it is linked to happy moments, we are more able to put coherence between the messages heard about environment and our practices of consumption in order to make them compatible with the preservation of biodiversity.The reconnection of human being to a natural local territory is fundamental to invent new modes of society. To that end, trees can be a mediator. This article claims to identify some levers, from the experience of the Yves Rocher Foundation launching. Created in 1991 the YR Foundation focuses today on actions of preservation of the biodiversity which participate to raise awareness of the public. Since 2007, Yves Rocher Foundation is committed in tree plantation: ninety million trees have already been planted in 35 countries throughout the world. Agroforestry projects are being implemented in Europe: in France with the largest program of plantation of country trees on the territory (3.5 million), in the Netherlands but also in Africa, Latin America and India. These actions show the importance of trees in the essential relation of the human being to their natural environment: the «experience of nature» in the sense of a satisfactory re-anchoring on their territory. The action of planting contributes to the transformation of minds, therefore to the very possibility of changing individual and collective behavior for human societies. It is a tiny instrument, but we want to emphasize its strength. Whether we are in Europe, Asia, Africa or the Americas: Plant for the Planet program is a testament to the universality of trees. It re-anchors us to make us more able to protect biodiversity.Trees in agroforestry systems contribute to provision of wood and non-wood products, and help in circa-situm conservation of species. Agroforestry homegardens provide opportunities for plant biodiversity conservation. The objective of this study was to assess variation in tree species composition and diversity across urban, peri-urban and rural areas of Harare, Zimbabwe. The urban stratum was subdivided into High, Medium and Low density suburbs. Random sampling was used to select households within each stratum where forty respondents were sampled from each stratum. The Shannon-Weiner Index was used to determine species diversity. A total of 81 tree species were recorded in all homegardens across strata. More than 90% of the tree species found in homegardens were fruit trees while ornamental plants were prominent in medium density, low density and peri-urban areas. The highest species diversity was observed in the low density (3.09) and peri-urban (2.93) areas whilst the least diversity was recorded in high density (2.12) areas. Mangifera indica (83% of all homesteads) and Persea americana (71%) were the most dominant species across all strata. The high tree species compositions and diversities (2.12-3.09) recorded across all strata in Harare shows that urban areas play an important role in species conservation and should not be excluded in agroforestry extension strategies. An ethnobotanical survey was done with 411 selected households followed by a field survey in 69 plots. Ethnobotanical and ecological parameters were computed and analysed. These parameters were combined to construct a conservation priority index per species adapting the formula of Oliveira et al. (2007). Results 46 species were recorded. Significant differences in plants knowledge between women and men, but also between ethnic groups were found. Six species were classified as having highest priority for conservation in this area.The local conservation strategies most used were: seedlings protection in farms and apiculture practice favouring pollination.These six species could be involved in landscape restoration initiatives that are being promoted in Benin. In the north-eastern extremity of the Romanian Plain, near Namoloasa, Galati County within a 6,000-hectare hunting fund, a type of agroforestry system adapted to hunting requirements (to grow, develop and harvest hunting) was realized in autumn 2016. The agroforestry system consists of mixed belts of forest and agricultural vegetation for the growth of game species (pheasants, partridges and rabbits) and protected wild species (bustard). The width of this belt is about 40 m and consists of 5 rows of forest species (black pine, black locust, sweet locust, oleaster, mahaleb cherry, cherry plum), a strip of fodder species (maize, sunflower, clover, alfalfa), species producing seeds (in, mustard, chicory, millet etc.) and again 5 rows of forest species (Figure 1). These belts have been installed on less productive marginal lands.It has been proposed to analyze this type of agroforestry system in terms of influence on wild species, on agricultural production and environmental factors. Because the system is recently created, relevant observations could only be obtained on the influence on wild species. Thus, the number of pheasants harvested in 2017 was 65 % more than in the other hunting funds. This is an idea by which using agricultural and forestry species on less productive agricultural land increase the productivity of the land used. At the same time, a legal and stable framework is created for the protection and development of wild species including the endangered species. The loss of forest and tree cover is weakening biological diversity and contributing to soil degradation. Soil degradation is one of the most serious and pervasive ecological problems in rural West Africa. It is reducing agricultural productivity, increasing the frequency and magnitude of crop failures and undermining food security among already impoverished communities.There is an urgent need to work with smallholders to develop sustainable land management plans that integrate trees more into agricultural practices and increase their presence in the landscape. Since most of the land in the area is under cultivation, devoting more land to trees would mean that, in the estimation of local communities, the economic and other benefits of trees would need to compete with the value of harvested crops. That's why, there is a pressing need for financial and other resources, technical assistance, capacity strengthening measures, and a supportive institutional framework to enable local inhabitants to plant and maintain trees. Agroforestry carbon project offers the right sort of institutional framework for a properly financed and structured approach to supporting local communities and smallholders to cultivate and manage trees in their landscape. ARLOMOM provides a local frame of reference that is meaningful and inspiring for biodiversity conservation and local communities empowerement. It provides information about the sorts of methods and processes that can succeed, or why they fail. It can be a good reference for agroforestry carbon project in western Africa and can be efficiently replicated and expanded.The recently reported demise of most of the oldest and largest African baobabs (Adansonia digitata L.) raises concerns about the sustainable management and conservation of the remaining population of this important and iconic tree species in the face of the current climate change. Given the multipurpose nature of the species and the important role of human disturbance and climate in shaping species population, we hypothesized that integrating ecological assessments with modeling tools and socio-economic surveys would improve the understanding of the species ecology and biology, which in turn, can enhance the overall effectiveness of management efforts and community awareness. We established thirty-eight strip transects of 5 ha (i.e., 50 m x 1 km) each, systematically distributed across three landuse types (grazing lands, riverine areas and natural forests) in two districts of Western Tigray to characterize the structure of the species population and identify its future suitable niche using the Maximum Entropy (MAXENT) model. We administered semi-structured questionnaires to 120 households to assess local knowledge on the importance and management of the species. Baobab stands were denser with larger-sized and taller individual trees in riverine areas and natural forests compared to grazing lands, suggesting an adverse effect of human disturbance on its populations. Size-class distributions were positively skewed with negative slopes in all the land-use types, indicating a low recruitment of juvenile trees to adult stage. Climate change would lead to a significant reduction in baobab suitable habitats. Tropical montane cloud forests (TMCF) under natural disturbance events have shown high endemism in early successional vegetation. However, little is known about the relationship between anthropogenic disturbance and plant endemism in TMCF under ancient agricultural management. In this sense, I assessed the number of species, abundance, and frequency of endemic vascular plants in temporary plots of cultivated and young fallow areas from two maize-based systems: milpa shifting cultivation (MS) and semi-permanent cropping (SP) in Oaxaca, México. Overall both agricultural stages and systems harbored endemic species, seven in total, but most of such species were found in the fallow stage than in the cropping stage, and in the MS system than in the SP system. A single Asteraceae herbaceous endemic species (Melampodium mimulifolium) was commonly recorded in cultivated fields, but almost exclusive to the SP cropping system. Seven species were recorded in fallows, where the narrow-range endemic tree species Clethra integerrima (Clethraceae) was the most abundant and frequent, but almost exclusive to the MS cropping system. In more permanent and intensified agricultural systems within biodiversity hotspots, only ruderal endemic herbaceous species can persist. In contrast, in low intensity managed agricultural systems, like ancient agroforestry, not only can endemic tree species prosper, but also restricted endemic trees can be found. Coffee agroforestry is an important element in the agroecosystems matrix because promote habitat heterogeneity and connection between protected areas. Far from affecting diversity, coffee plantations are critical for management and conservation of the biodiversity in tropical agroecosystems. However, understanding patterns of biodiversity remains unclear so it is necessary to deepen in the knowledge of it to improve the conservation-production strategies. We designed a two-phase research where during the first phase we assess diversity and composition of bats and soil fauna on three different land-use systems (agricultural, natural forest and Coffee agroforestry). The second phase is still ongoing and consists of determining the relationship between diversity and ecosystem functioning as control of pest arthropods by bats and decomposition by soil fauna. Here we present the results of the first phase research.To assess soil fauna we used the standard tropical soil biology method in dry and wet season and to assess bats richness, abundance and composition we use capture mist-netting.In general, the abundance of soil fauna had no differences between sites but is significantly higher in the wet season. During dryness, the three main orders of soil fauna were hymenoptera, Oligochaeta and Lepidoptera (larvae) and during wet season were Oligochaeta, Isoptera more abundance of predators. Only agricultural sites are the one with significant differences in diversity between seasons.Regard bats, we recorded 648 individuals belonging to 20 species and three families. Fru-Desmodus rotundus agriculture (13 spp) and coffee (12 spp). Both in the assessment of bats and soil fauna, the forest is the site with more abundance and more diversity. But the importance of coffee agroforestry and agricultural spaces is because they promote niche heterogeneity and the presence of specific groups that assure the complexity of the community interactions. We conclude that coffee farms have an overall positive, but context dependent effect and are important for the mobility of bats among the agroecosystems landscape.Keywords: Bats, Coffee plantations, Forest fragmentation, Soil fauna, Wildlife conservation.Madagascar's unique biodiversity is threatened by anthropogenic forces such as deforestation. However, protected areas are not sufficient to halt biodiversity loss. This suggests that sustainable land use practices are needed to minimize negative impacts on biodiversity. It has been demonstrated that agroforestry and forest fragments can play an important role in nature conservation in the tropics, but the contribution of agricultural landscapes for biodiversity conservation in Madagascar remains poorly studied. Here, we investigate the value of vanilla agroforestry for ant diversity in the Sava Region, Northeastern Madagascar. We compared ant diversity in vanilla plantations to other land use types (primary forest, forest fragments, fallows, rice paddies). In addition, we analyzed (a) how habitat complexity within vanilla plantations affects ant diversity, and (b) how vanilla cultivation management affects ant diversity. We hypothesize that (i) vanilla plantations have greater ant diversity than less shaded land use types, and thus also share more species with forest fragments and primary forest, (ii) increased canopy cover and tree species richness positively affect ant species richness, and (iii) ant diversity is reduced by management intensification. Our research may contribute to establishing win-win situations for both biodiversity conservation and vanilla production, and contribute important knowledge to ant conservation and distribution in Madagascar.Keywords: agroforestry, ant, conservation, Madagascar, vanilla cultivation.Shifiting cultivation systems (SAIs in Portuguese) are characterized by the alternance of agricultural plots and forest fragments which are slashed and burned after a fallow period. Due to fire use, there are questions on SAIs capacity to maintain original vegetation and its biodiversity. We aim to characterize the evolution of floristic composition among areas with different stages of fallow compared to a primary forest fragment. We stablished chronosequences in SAIs managed by two families (F1 and F2) on Cananéia municipality, Sourthern Brazil. Once the plots were localized and their respective fallow periods were determined, the floristic survey was carried out and the most abundant tree species were identified by successional groups. We calculated richness (S) and Shannon-Winner (H') diversity indexes to characterize the biodiversity. We also measured diameter at breast high (DBH) to obtain class size distribution and verify the evolution of the regenerated areas. In the F1 areas we found similar richness indexes between the areas with 4 and 10 years of fallow compared to primary forest 1.5910 and 2.4040) due to high variation on edaphic conditions. In the area with 4 years of fallow, there was a predominance of pioneer's trees of smaller DBH classes (91.38% of individuals). The 10 years-fallow area presented a similar distribution to the primary forest on F1, containing 7 DBH classes (5 to 30 cm) and predominance of early secondary species. As for the F2 areas, we found a higher presence of small DBH trees (5 to 9 cm) in all the areas, which is typical of sand coastal plain vegetation. In the 30 years-fallow area we also observed the most homogeneous distribution of DBH classes. We noticed an evolution of vegetation through the different fallow periods, finding predominantly pioneer species in the 15 year-fallow area and early secondary species in the older areas. Considering this, we suppose that there is a maintenance of biodiversity in all the fallow areas, since the diversity indexes and classes of DBH resemble the primary forest in both families. This can only be affirmed with complementary studies on soil conditions, nutrient stocks and forest structure.Keywords: slash and burn agriculture, Restinga forest, forest regeneration. Sehgal S. (sehgals1@yahoo.com), Abidi R. A. Agroforestry, SKUAST-Jammu, Jammu, J&K, India Agroforestry plays a vital role in the livelihood of rural community and farmers have a long tradition of raising food crops, trees and animals together. The present study was aimed to have an exploratory view on the farming system in district Samba, situated in the Western has an average elevation of 384 m above mean sea level. The local farming systems rely heavily on forest and trees for their livelihood as trees are the single most important source of fodder, food and fuel wood for the inhabitants. The study was conducted with the objectives to identify the trees planted/retained on the farmland, the purpose of their planting/retaining as well as their spatial arrangement. A household survey was conducted in the study area, for which a total of one hundred eighty respondents were interviewed through a pre-structured interview schedule in person. Results indicate that farmers are retaining/planting trees on their field and have been accruing diversified uses and services from these trees which include both indigenous and exotic tree species. Overall, there were 33 tree species belonging to 16 families present on the farmers' field, out of which more than 50 per cent were fruit trees. The farmers' inclination for fruit trees may be due to their contribution towards nutritional security as well as income generation capability. The results impress upon developing tree based farming systems with preferred tree species as an essential component.Western Himalayas, Trees on farms, Biodiversity, Agroforestry.Hedgerows were established in 1998-2001 by Department of Ecological farming and sustainable Production System to utilise beneficial effects of hedges through balanced microclimat to soil strcutural and biological properties. Soil properties especially soil biodiversity (SFW) of different land use system was examined at Experiment Field of Szent István University Soroksár, Ecological Farming Unit. The soil-physical-chemical parameters, the nutrient content, the humus quantity and quality was measured. Enzyme activities and qualitative Soil Food Web assessment (Soil Food Web Inc.) was used. Results of FDA enzyme activities show significantly positive correlation with increasing humus SFW responded differently -e.g. highest number of fungi was found in scattered woody area, and in hedgerow.Our study shows, that the application of different land use and cultivation practices influences the biological activity of the soil of cultivated plots. We can assume that the soil of hedgerows, and scattered fruit orchards show significantly the highest biological activity, and humus content compared to intensive tillage areas (cereal field) and recultivation areas. Further samples collected from cultivated areas from different distance of the hedgerows are under procession. Tripathi S. K. (sk_tripathi@rediffmail.com) In Mizoram, northeast India majority of the population (~60%) depends on agricultural products from shifting cultivation carried out on steep slopes, and half of the total land area of the state is having 40-100% slopes. During this practice, farmers slashed a piece of forest land and burn the vegetation in situ after drying followed by cropping for one or two years, and then abandoned the land to restore soil fertility and moved to other forest areas for cultivation. Earlier the system was adequately productive, economically feasible and ecologically balanced because of prolonged fallow period (~20-30 years) but in recent years as a result of exponenwhich has led to substantial decrease is soil fertility, crop diversity and productivity (Grogan et al 2012). This has led to widespread concern of Government and Non-government organizations about the sustainability of this system and thus the Government has implemented various policies with aim to improve the livelihood options for the majority of poor people. Shifting cultivation in Mizoram is a unique agro-ecosystem with distinct biodiversity adapted on steep slopes of hilly terrain which includes variety of crops like cereals, vegetables, legumes, oil seeds, culinary spices and herbs, even flowers and medicinal plants within a small piece of land in comparison to other farming system (Tripathi et al 2017). Shifting cultivators generally belongs to a poor background who could not easily meet their daily need from market, and therefore they grow almost all crops that they need in a small land area through the well preserved seeds of the previous year crops using traditional conservation practices. These small farms support 30-60 different species of tree, fruits, vegetables, weeds. Diversity of crops depends on the fallow age, for example, shorter fallow support less diversity than the longer fallow. Diversity and the functioning of microbes in the rhizosphere of early regenerating plants showed a reverse trend that appears to boost up the nutrient cycling and growth of plants more rapidly in the short fallow land. Conversion of shifting cultivation to plantations like Oil palm, Rubber etc lead to decrease the diversity of plants and soil microbes in the system. Earlier Jhumias were using local varieties of the species with wide genetic diversity but nowadays some farmers use high yielding hybrid varieties that accelerates the erosion of endemic biodiversity of the region. Sustainability of shifting cultivation can be achieved by scientific interventions through integrated nutrient management using moderate fallow period and conserving the indigenous diversity of crops and microbes. Higher landscape connectivity should facilitate plant dispersal and increase plant diversity. In agroforestry landscapes, wooded elements but also grasslands and croplands may provide connectivity. Several studies demonstrated that connectivity acts as a filter on dispersal and establishment traits values (response trait). These traits values should, in turn, shape plant diversity (effect trait).Weeds play a dual role in agroforestry landscape. They support important ecosystem functions (e.g. pollination, limitation of soil erosion) but also represent a major problem for farmers through the competition with the crop. Assessing the effect of landscape connectivity on weed diversity represent a promising avenue toward a better understanding of mechanisms behind weed assembly.Here, we investigated how connectivity impacts i) five dispersal and establishment trait values and ii) weed diversity as a proxy of their colonization ability. We sampled 27 cereal fields in the LSTER-ZA Armorique. We assessed the connectivity provided by wooded, grassland and cropland using habitat reachability metrics based on circuit theory.Our preliminary results showed that connectivity provided by both wooded and cultivated elements impacts functional traits and diversity of weeds. This study emphasizes that using the response-effect trait framework provides i) a better understanding of weed assembly rules and ii) a key to combine the maintenance of weeds without jeopardizing crop production. Mitigation of macronutrient leaching by agroforestry system of hybrid aspen and perennial grasses Bardule A. (arta.bardule@silava.lv), Lazdina D., Bardulis A. Latvian State Forest Research Institute, Salaspils, Latvia Empirical data on leaching of macronutrients from agricultural land in the Baltic Sea region is of particular interest due to two reasons: 1) eutrophication of surface waters resulting in unfavourable ecological status of the Baltic Sea; 2) increasing risk of depleting the soil nutrient stocks by intensified harvest of agricultural yield and biomass. The objective of this study was to evaluate the mitigation effect of fertilized agroforestry system on macronutrient (NO 3 -N, PO 4 -P, K) leaching. The studied agroforestry system consists of juvenile hybrid aspen (Populus tremula L. × P. tremuloides Michx.) plantation and four cultivars of legume and perennial grass (fodder galega (Galega orientalis Lam.), poor-alkoloid lupine (Lupinus polyphyllus L.), reed canary grass (Phalaris arundinacea L.) and festulolium (× Festulolium pabulare)) sown for seed production.The agroforestry system, size of 16 ha, was established in agricultural land in central part of Latvia in spring 2011. Wastewater sludge (10 t DM ha -1 ), stabilized wood ash (6 t DM ha -1 ) and digestate (30 t ha -1 ) were applied as nutrient compensatory fertilizers to improve soil quality. Above-ground biomass was harvested in November 2015. Results derived from the monitoring of soil solution chemical content generally show a decrease of annual macronutrient leaching over time after the establishment of plantation in agricultural land in response not only to meteorological conditions, but also to the type of fertilizer used. Baskerville M. 1 (mabaskerville@uwaterloo.ca), Oelbermann M. 1 , Thevathasan N. Forested riparian buffers (RBs) located downslope of agricultural areas have high water tables, increased N due to surface runoff, and high C inputs from vegetation, creating a potential hot spot for soil greenhouse gas (GHG) emissions (Bradley et al., 2011). However, there are few comparative analyses of GHG emissions from different riparian land-use systems in temperate regions. The goal of the study is to determine and compare soil GHG (CO 2 , CH 4 , N 2 O) emissions between a grassed buffer (GRS), an undisturbed natural forest (UNFA), a forested riparian buffer (RH), and an agricultural field (AGR) found along Washington Creek, Ontario. Four permanent GHG sampling chambers were placed in each land-use, and gas samples were collected bi-weekly to quantify GHG emissions. Mafa-Attoye T. 1 (tmafaatt@uoguelph.ca), Thevathasan N. Riparian buffers (RB) intercept soil nitrogen (N) leaching and surface runoff from agricultural lands into aquatic ecosystems and can be hotspots for nitrous oxide (N 2 O) emissions (1). N-cycling microorganisms are crucial for the production and consumption of N 2 O in soils; however, they can be influenced by plant-microbe interactions (2). The goal of our study was to assess land-use changes related to RB on nitrogen-fixing, nitrifying and denitrifying bacterial communities and N 2 O emissions. The Washington Creek long-term experiment was established over 25 years ago and consists of grass buffer (GRB), grassland (GRL), undisturbed natural forest (UNF), rehabilitated site (RH), and agricultural land (AGR) (3). Soil was sampled in the summer of 2017 and 2018, DNA and RNA were extracted and used to target key N-cycling genes for N-fixation (nifH), nitrification (amoA and crenamoA), and denitrification (nirS, nirK, and nosZ) via quantitative PCR (4). High throughput sequencing of 16S via Illumina MiSeq and Non-metric multidimensional scaling (NMDS) indicated statistical differences in bacterial communities between AGR, UNF, and other riparian land-use types (Fig. 1a). The abundance of the nosZ gene was highest in RH and GRB relating to low N 2 O measured at these sites (Fig. 1b). Our results suggest N-cycling microbial community dynamics in RB differ according to land-use, this may be impacting potential N 2 O fluxes in the sites investigated. Forested riparian buffer strips (FRBS) are common in temperate agroecosystems due to their ability to sequester nutrients from agricultural runoff. The full environmental benefits of FRBS can only be evaluated, however, by accounting for a wide range of criteria that go beyond stream water quality. For example, it is important to determine the net greenhouse gas (GHG) balance of FRBS relative to adjacent agricultural fields. It is also important to identify the factors controlling these GHG emissions in order to propose optimal FRBS designs that maximize their environmental benefits. One such factors is the presence of earthworms (EW), whose burrowing activities may modify soil emission rates of CO 2 , N 2 O and CH 4 . We hypothesised that FRBS are a refuge for EW in agricultural landscapes due to higher moisture and litter inputs, and fewer physical disturbances. A field survey was conducted, in 2017 and 2018, to quantify EW species abundances in FRBS and adjacent agricultural fields in Eastern Canada and Central Europe. At 77 sites, we collected and identified EW, noted the tree species and understory vegetation in the FRBS, type of crop in the adjacent agricultural field, soil drainage class as well as five soil physicochemical variables (texture, pH, total C, total N and % organic matter). EW abundance was significantly higher in FRBS than in adjacent fields. Distance-based redundancy analysis (dbRDA) revealed that EW abundance is positively correlated with soil moisture, organic matter, clay content and deciduous trees, and negatively correlated with coniferous trees and sand content. To test the effects of EW on GHG emissions, microcosm studies were conducted using a replicated factorial design comprising of 3 soil origins (deciduous FRBS, coniferous FRBS, agricultural field) x 2 soil textures (field conditions, high clay) x 3 EW life habits (anecic, endogeic, no EW). Anecic EW had a positive effect on soil CO 2 and N 2 O emissions, which decreased after a few weeks. Increasing soil clay content had a negative effect on the emission of these two GHGs. We are currently using an isotope dilution protocol for testing the effects of soil origin, soil texture and EW life habit on potential gross rates of CH 4 production and oxidation. Collectively, our data will be used to assess environmental trade-offs between stream water quality, soil C sequestration and soil GHG emissions in FRBS of different designs. In Germany the anthropogenic input of nutrients such as N and P into surface waters adjacent to agricultural land is high, which leads to eutrophication of ditches and lakes. In order to examine to what extent a short rotation riparian strip prevents N discharge to water bodies, an experiment was conducted in an agricultural site, located in southern Brandenburg (about 150 km south of Berlin). The groundwater table at this site varies between 1 and 1.5 m over the year. A 24 m wide short rotation woody strip of poplars (Populus spp.) was planted along an existing ditch, while part of the area near the ditch was further managed in arable rotation and used as a reference area. Two years after establishment of the woody plants, measurements of nitrate concentration in groundwater took place by using groundwater wells in the center of the field and near the ditch, both inside the woody strip (about 12 m away from the ditch edge) and in the same distance to the ditch in the reference area. The nitrate concentration in the groundwater varied greatly depending on fertilization and weather conditions (especially precipitation). During the entire measurement period significantly lower nitrate concentrations were determined within the poplar strip as compared to the reference area and the center of the field (Fig. 1). Hence, planting short-rotation woody strips along ditches can contribute effectively to reducing nitrogen discharge to surface water after only a short period of time.Keywords: riparian buffer, nitrate, groundwater, poplar, short rotation agroforestry. The Agr'eau initiative -Main results and perspectives after 6 years of implementation Charton A. (aurelie.charton@agroforesterie.fr), Balaguer F.Mechanised, high chemical input intensive agriculture in the Adour-Garonne water catchment as in other parts of Europe has led to important land erosion, soil degradation, desertification, biodiversity loss and water pollution. This has increased floods and droughts, and other constraints on the agricultural production. In this large water catchment of nearly 5 Mha of agricultural area and a wide diversity of pedo-climatic contexts (average rainfall 700 mm), local farmer organizations and other landscape stakeholders have been developing agroforestry systems over the last 20 years to address these challenges. Since 2013, a network of more than 300 farms of all types and sizes across the region, organized in the Agr'eau programme and supported by researchers and local and national organizations, has built on this experience to develop and validate resilient climate-smart agriculture approaches that combine agroforestry with minimum-tillage, cover crop and mulching practices. The aim of the Agr'eau network was to come to collaborative development of farming practices that allow for sustainable soil and water management (landscape approach), intensification and optimization of farming systems, in short producing more with less resources, while protecting the environment. The result today is a multi-level form of agriculture that maximizes plant cover (both spatially and temporally), yields and ecosystem benefits, applicable on all sorts of farms. Riparian areas can be defined as vegetation strips bordering a water body (1). Agricultural intensification in Canada has led to a loss of riparian areas, which has resulted in the degradation of freshwater aquatic ecosystems (2) due to an increasing amount of fertilizer and nutrients runoff from the upland vegetation (1). Nutrient pollution causes eutrophication of water bodies, thereby lowering the water quality ( 1) and the health of the aquatic ecosystems (3). And rehabilitation/restoration of the riparian areas has been shown to minimize these effects (2,4). Additionally, riparian zones have the potential to mitigate climate change through carbon (C) sequestration in vegetation biomass and soil (5). These two services of riparian zones guide my research. While, there is a lot of information regarding the adverse effects of the nutrient runoff on water quality (3), information on greenhouse gas (GHG) emissions from riparian zones is limited. Therefore, the objective of this research project is to study the carbon (C) and nitrogen (N) dynamics in the aquatic component of the Riparian Agroforestry Systems (RAFS). RAFS are formed when the practice of agroforestry, tree plantation in farmland, is implemented to create a riparian area on the edges of a water body. RAFS being monitored include: an undisturbed natural forest riparian area, unaltered for over 150 years; a rehabilitated forest riparian area, restored over 25 years ago; and a grassland riparian area.The Chesapeake Bay is the largest estuary in the U. and 3) study tradeoffs between agroforestry farming returns and water quality benefits using a production possibilities frontier. Field-based plantings allow for empirical studies of tree-tube effectiveness, site preparation strategies, plant-water relations on contour, and nitrogen fixer intercropping. Plantings also help document financial costs for economic analysis. A set of hypothetical property-level projects representing agroforestry conversions across a large parcel sample frame are modeled using tools that depict the impacts of BMP adoption at the sub-basin scale. Integration of economic and biophysical models in simulations helps project production frontiers that study tradeoffs between various rates of tree plantings for trading and conventional agricultural production. This presentation covers C-CAP initiatives and early findings. In the Andean region, interest is growing in the use of trees to restore degraded areas through afforestation, reforestation or agroforestry. In addition to the economic benefits that these interventions can generate, particularly in the case of commercial plantations with exotic trees, one of the main arguments used to support these actions has been their purportedly positive effects on the recovery of the water provision and regulation functions of ecosystems. However, the relationship between tree cover and water is complex and may have positive or negative effects on the ecological functions of watersheds, depending on diverse factors.In this study, we compiled and synthetized the literature on the relationships between woody plants, land use and hydrologic processes in the Andes. The results showed that there is very limited and fragmented knowledge, with significant gaps in specific areas. While most studies focus on native forests and on agricultural land uses, there is very little research on paramos (Andean moorlands) or on agroforestry, the latter limited to coffee agroforestry. Furthermore, the results from different studies are often not comparable and are sometimes contradictory because of varying research design and methods.Our qualitative review highlighted the importance of montane cloud forests in water provision, in particular through the interception of horizontal precipitation. In addition, native forests play an important role in water regulation in comparison with crop and pasture lands, as they reduce runoff and store more water. Our results also showed that paramos provide higher water regulation than forested areas with exotic species and other land covers by maintaining base flows. Plantations with exotic taxa, such as pines and eucalypts, provide overall lower water provision than other land uses. However, their effect on water regulation defies simple comparisons with other uses: they have lower base flow and higher peak flow than other uses, and lower infiltration and water storage than forests and paramos, but perform better in these respects than natural pastures. The reviewed studies indicated that water provisioning from coffee agroforestry systems is lower than in coffee systems without shade, but that these levels vary according to the tree species. The tree species, and in particular the management practices, influence the water regulatory role of coffee agroforestry systems with shade as compared to systems without shade: while run-off is higher in systems with exotic taxa (e.g. pine, eucalypts), the level of infiltration varies according to management and leaf characteristics.Even though there remain important knowledge gaps on the role of forests and trees in the hydrology of Andean watersheds, especially regarding the combined impacts of land use and land cover change, our review results can help inform degraded land restoration practices and policies in the Andean region.Effects of conservation management practices on soil quality parameters compared to row crop management Alagele S. 1 (smaz22@mail.missouri.edu), Anderson S. 1 , Udawatta R. 1 , Veum K. 2 , Rankoth L. Restoration of degraded lands for watershed conservation and the adoption of recommended management practices on agricultural landscapes can rehabilitate watersheds and lead to enhance soil and water quality. The objective of this study was to assess the effects of grass buffers (GB), biofuel crops (BC), grass waterways (GWW), agroforestry buffers (AB), distance from trees, and row crop (RC) on soil quality. Soils were sampled by 10 cm depth increments for up to 30 cm with three replications. Samples were also collected from 50-and 150-cm saminidase, Fluorescein diacetate (FDA) hydrolase, dehydrogenase as well as active carbon (AC), water stable aggregates (WSA), soil organic carbon (SOC), and total nitrogen (TN) were measured. Results showed that SEAs, AC, WSA, and TN values were significantly greater had 16%, 23%, 49%, 29%, and 21% higher SOC respectively than RC. The GWW had the highest soil quality values among all treatments. The 50-cm distance of AB treatment had higher values than the 150-cm distance for all measured soil quality parameters. Results of this study show that conservation management practices have enhanced soil quality by improving soil microbial activity and organic matter accumulation, thereby contribute significantly to watershed restoration and enhancing water quality.Keywords: Watershed restoration, Soil quality, Soil enzyme activities, Soil organic carbon, water stable aggregates. , 2006): for each ecosystem it is possible to distinguish two components: a) the natural capital, which constitutes the matrix and B) the ecosystem services that represent the flow of benefits that contribute to define the level of human well-being. Natural capital preservation is now an imperative objective to guarantee continuity, quality and quantity of the ecosystem services.In the 6th Goal of the Sustainable Development Goals 2015-2030 highlighting that water scarcity, poor water quality and inadequate sanitation have negative impact on food security (UN2015).Forests are a key component to ensure the purification and the sustainable supply of water. Fiuggi chestnut forest (Lazio Region, Italy) provides an «unconventional» ecosystem service produced by the complex «water-chestnut forest-litter and soil».Fulvic acids in soil are water soluble in a wide range of pH (3)(4)(5)(6)(7)(8): rain water flows through soil with the effect to move fulvic acid in the ground water (1).Previous studies (2-3) highlighted Fiuggi's water therapeutic properties: it prevents the stones formation and/or facilitates their expulsion. The hypothesis is that this mechanism is activated at the renal level: fulvic acid prevents formation and promote the degradation of calcium oxalate and phosphate crystals through the formation of soluble calcium complexes.The aim of this study is to verify the structural similarity of fulvic acids extracted both from water and chestnut forest soil. To this end has been performed a chemical identification/ characterization. Soil sampling was performed on the basis of a randomized block design, taking 4 soil samples for each site. Soil samples were studied for their content in humic substances and these divided in to the different constituent fractions (FA,HA), according to the standardized method by the International Humic Substances Society (IHSS).In order to isolate and purify the fulvic fraction in water, 280 liters of mineral water taken at the Fiuggi settlement, were subjected to: concentration with resin DAX8, acidification with amberlite, freeze-drying. Fulvic fraction, isolated and purified from soil samples,and mineral water (550µgl-1),were subjected to pyrolysis-GC-MS and FT-IR characterization. The fulvic acids from the water and the chestnut soil show spectral similarities and qualitative analogies of pyrolystic profiles. The highlighted similarities allow to affirm that the fulvic acids isolated from the water come from chestnuts'stems and litter. The enrichment that chestnut forest gives to waters' quality, is an important information to define water enhancement strategies, establish soil management and designate sustainable forest management. Conservation of soil and water along with crop productivity improvement is indispensable for sustainable development of rainfed areas. The system of raising multi-height plant species with agricultural crops known as multitier agroforestry system was assessed (2007-10) for resource conservation and production potential in rainfed conditions of Eastern Ghats region in India. Thirty experimental plots, each of 18 m × 12m dimension with 2% slope having different multitier agroforestry treatments were assessed for soil erosion, nutrient loss and crop yield. Results revealed that multitier plantation of drumstick (Moringa oleifera) with Gliricidia sepium hedgerow and ginger (Zingiber officinale)+ pigeonpea (Cajanus cajan) under 8:2 row intercropping enumerated minimum mean runoff (8.26 %) and soil loss . This treatment saved 74 % more soil organic carbon, 64 % more phosphorus and 66 % more potassium, respectively than broadcasted finger millet cultivation (traditional farmers' practice). An increase of 24-27% drumstick fruit yield was observed in Gliricidia hedgerow based agroforestry systems over non-Gliricidia systems. Results from the experiment establish that, scientifically attuned combination of tree, hedgerows with compatible intercrops are effective in decreasing runoff-soil loss, building soil fertility and enhancing yields. The benefits of the system in resource conservation and production makes it a suitable intervention in the fragile ecologies.Keywords: Multitier, Runoff, Soil loss, Green leaf manuring. have also been taken up. Organic farming was also encouraged. For capacity building, SHGs, User Groups, villagers and members of Watershed committees were imparted training. Health and literacy camp have also been organized. In most of these watershed areas encouraging results have been registered with regard to silvi-pasture practices and production of different agricultural crops. There has been increase in biomass production and improvement in soil and water conservation. These results have positive impact not only on environment and livelihood of the people, but also on their social and cultural domain. The available water content of Sahelian agro-ecosystems controls their development and sustainibility. In fact there is a strong relationship between the availability ofwater and its use by plant associations. The presence of trees is related to the anthropic history of the local environment. Agroforestry parkland trees have two 'natural' habitats: in the lowland hydromorphic area and also in the area associated with farmers' activities developped on accessible groundwater. The expansion of these habitats is increasing. Our study therefore concerns the relationship between climate change, hydric and hydrodynamic properties of the soil under the crown and the effects of the tree-crop association on the regulation of soil water functioning. This regulation is very dependent on the free Eco-Systemic Services essential to human well-being of this zone such as: 1) Supporting services -Sequestration of C and OM accumulation in soils: lower bulk density and higher total porosity due to macropores that facilitate infiltration of water in the top 40 cm of soils; -Soil water availability improved both under and outside the canopy up to 175% of the canopy radius; -N fixation: increased soil covering; -Reduced leaching; -Available water content higher under crown than outside.2) Regulating services -Limitation of runoff: protection against erosion; -Climate regulation: i.e. higher relative humidity and lower air and ground temperature; decrease in direct evaporation and greatest efficiency of water use; -Increased water quantity at the beginning and end of the crop cycle ; little competition for water between trees and crown plants thanks to pivoting roots that plunge into the water table; -Intercropping under the crown decreases the ETR by 20%.The Sahelian agroforestry parkland is a agro-ecosystem that provides a number of free Eco-Systemic Services that create specific local physical, hydric and climatic conditions favorable to a particular ecological entity. Each tree is a «green oasis» that resists climate change with a local agro-climatic effect on the entire field. Because these free Eco-Systemic Services ensure the improvement of physical properties of soils, they explain the improved water functioning and supply for crops. Its tolerance to extreme drought and its resilience at the edge of the desert is also positively affected. A study was conducted to assess the impact of the wadi programme on livelihoods and distress migration of the families. 2135 families were selected through stratified random sampling. The study involved survey of individual families at the beginning of the project (baseline) and at project completion stage. The comparison against baseline situation indicates significant impact of the wadi programme. Distress migration (number of days per annum) has reduced by 51%. The number of non-migrating families increased by 2.6 times of the baseline number. Migration of women and children has completely stopped in 70% of the families. Distress migration has reduced due to significant increase in farm income. The integrated farming system promoted through the wadi approach resulted in more than100% increase in farm income. The increased number of income sources offer better resilience to the farmers. The diverse forestry species in \"wadi\" provide benefits in the form of windbreak, improved microclimate, green manure, improved fodder, timber and income from sale of surplus timber. The fruit and forest trees are a valuable carbon sink. (Watson, 2017, www.thegurdian.com).Owing to the significant impact of the wadi programme, it has been emulated in 25 states of India, benefiting more than 0.45 million families. This paper details on the components, processes, impact and learning's for wider replication of the \"wadi approach\".The gender dimension of tree-resources dependency has been well documented in the West African agroforestry parklands where women are the main beneficiaries of non-timber forest products, which are critically important for food security and cash income. Diminishing tree resources, land degradation and climate change have increased women's vulnerability, while restrictive socio-cultural norms offer limited opportunities for women to participate in landscape restoration or agroforestry initiatives, and to benefit from these. There is a need to develop transformative processes that can redress gender inequalities in access to and control of resources, and to actively engage communities in these processes of change. To understand ways that this can be done, we first developed an innovative approach that brought together elements of the Gender Action Learning Systems (Mayoux, 2014) and the Forestry Poverty Toolkit (Shepherd, 2008) with system thinking. We applied this set of participatory tools in three communities in northern Ghana and four communities in southern Burkina Faso; interviews were conducted with male family heads and one adult female in each of 84 households. Analysis shows the contribution of income from trees, particularly shea (Vitellaria paradoxa), to total household cash income was very significant in both countries, especially in poor households. This income was almost exclusively sourced by women, who often have neither control over how it is spent nor a voice in decision-making for land restoration (e.g. tree planting and/or management, as well as soil and water conservation improvements). Furthermore, activities typically done by women, both in respect to farming and tree-product harvesting and to their reproductive role, are significantly less valued than are men's. We presented these findings to the communities through structured community dialogues around gender relations. These included culturally sensitive workshops that brought together an engaged men and women from different ages and generations. Participants were encouraged and motivated to reflect on how local gender norms generate constraints and limit their opportunities to increase resilience in landscapes and livelihoods. We show that this integrated and innovative approach has substantial potential to tackle gender norms, one of the major bottlenecks to scaling up restoration interventions. This approach, that the communities has named locally «Silakouda» meaning «the new preferred way out of poverty», has enabled 1,412 women to establish 52 sustainable business groups and multiply by 4 their annual average income in the 32 villages of the project area. It has also enabled to put under protection 276 ha of community forests managed by local communities in connection with environmental and forestry services.The development and support of this rural women's entrepreneurship has proved to be a real driver for improving this traditional market and is promising for the inclusion in the initiated approach of other species composing this agroforestry system, thus participating in its safeguard and valuation.Keywords: agroforestry parklands, Parkia biglobosa, entrepreneurship, rural women, M4P approach.L6 Social issues The changes in the receiving community and its environment, generally in rural areas with lower human population density. Absorption of new labour can start as paid labour and patron-client relationships or share cropping, but also involve land renting and buying, within customary land ownership rules (rarely involving formal land certification). In some of the cases experience with more intensified land use in the source area (e.g. W Java) proved to be enriching agriculture and agroforestry in the new environment (e.g. S Sumatra).The effect of the migration on land use and livelihoods in the areas of origin. Feminization of agriculture, as described elsewhere for dominantly male migration patterns, appears to be less common than a pattern where elderly people taking care of grandchildren that stayed behind struggling to maintain their agricultural practices. The extensification of land use and a greater reliance on trees rather than annual crops are often constrained by lack of relevant knowledge, skills and technology.The dynamics of migrants returning with different levels of success. People coming back with success may help to rebuild the village and its agricultural system and could invest in social capital (mosques, healthcare, schools). Some who have failed may find other land use or urban labour options elsewhere. The interaction of migrants in all four aspects with government and other stakeholders in relation to development policies.In conclusion, our analysis suggests that positive aspects in both areas of origin and receiving areas may prevail, with exchange of knowledge between areas of different land use intensities spreading agroforestry practices. The latter may well be more effective than the routes through formal knowledge and extension, and in some cases is combined with tree germplasm exchange. Feminization of agriculture through preferentially male-based migration is not common in Indonesia, but age-based consequences are common, in both urban (or overseas) migration, and dispersal to areas of lower human population density.Keywords: Migration, Decision Making, Land competition, Feminization, Agroforestry. Shea parklands (Vitellaria paradoxa C.F. Gaertn.), which spread across sudanian Africa, reflect a human construction under certain conditions of land management and population density. They provide socioecosystems services : support and regulation services or provision services like traditional pharmacopeia, handicraft or food supply, which contribute to the reduction of socioeconomic vulnerability in the current context of climate change. In Benin as in other shea parklands, the resource management (land, trees, fruits etc.) keeps the gendered character described since the colonial period and the shea-tree is a particularly significant archetype. Men own land rights and control of trees which they can protect or cut. Women rights concern the collection or harvest of fruits, for family consumption or sale (raw or transformed) ; with this monetary income, women can cover the financial charges which fall to them inside households, where the budgets are largely separated. However, the state of shea parks is contrasted and often engaged in a process of degradation like in Djougou (Benin), where we have conducted our study between 2010 and 2015. Our objective was to identify and analyse the causes of this paradoxical situation of deterioration of the park, while the world demand for shea-nuts is rapidly increasing (Bidou et al., 2018). Our analysis was done at while different scales : regional (with remote sensing), village and households. At household level, we have conducted socio-economic surveys among 230 households and 381 women and qualitative interviews of a sample of women and men focused on the place and role of shea tree. By replacing the activities of the women within the families to which they belong ( by ethnic group, religion, socioeconomic level), we see that they are largely dependent on the degree of freedom which they have in their family (Droy et al., 2014).Results show that shea parkland degradation is due to a lack of regeneration in a context of population rapid growth, land pressure and reduction of fallows where the young shea-tree can grow (Boffa, 2000). But also to men choice, who favour the cashew trees over the shea trees at the expense of women. This factor will be particularly developed in this paper.Main results of our analysis can be summarized in the following points : 1) Income of the sheatree, even low, remains important for the poorest women and contributes to reduce the food vulnerability because the sale of shea nuts takes place during hunger season. 2) Women ressources are decreasing as their rights on land and trees are questioned, although their family charges are rising (with monetary expenditure for children). As a consequence, child chronic malnutrition has been steadily increasing in the rural regions of northern Benin 3) Difference of interest between women and men is deepening, in particular with the expansion of plantations of cashew trees, controlled by men while using women workforce.Keywords: Gender inequalities, Shea parkland, Access to ressources, Vulnerability, Benin. In the wake of major climate change impacts on cocoa, farmers in the Techiman municipality have rolled out various adaptation and coping interventions. However, there is very minimal information on the gender dimensions of these adaptation interventions. There is therefore inadequate information which could inform improved resilience of cocoa systems and livelihoods to the threats of climate change impacts, given that climate change impacts and its responses are mostly differentiated along gender lines. The research focused on the transitional zone of Ghana, where cocoa cultivation is dominant, and the climate is also characterised by high rainfall deficits and high temperatures. Using a stratified random sampling approach, key informant interviews and focus group discussions, data was generated on farmer's perception on the manifestation of climate change and current adaptation strategies employed by farmers, as well as gender-driven challenges male and female cocoa farmers encounter during the implementation of these adaptation strategies. Findings of the study indicated that, small-holder farmers in the Techiman municipality were highly exposed to negative climatic impacts and they adopted agroforestry strategies, on and off farm diversification, and soil fertility management to respond to climate change stress on the cocoa system. However, the study revealed no disparities between male and female farmers in the choice of specific onfarm adaptation strategies that are needed to respond to climate change impacts on cocoa, but rather, gender differences manifest during the execution of these on-farm strategies. Furthermore, it was observed that while male farmers increased their reliance on activities like driving, palm wine tapping, and alcohol brewing, female farmers diversified their sources of income into mostly trading, with animal rearing being common to both gender groups. The findings of the study also showed that there was disparity between male and females with regard to access to finance to respond to climate change impacts on their cocoa systems, with male farmers being more likely to access finance to implement various measures to respond to climate change impacts than their female counterparts. The study also revealed that, issues relating to household chores, and labour intensiveness of most of the adaptation strategies such as \"line and pegging\"and agroforestry tree species access and incorporation in cocoa farms posed major barriers to female farmers' decision making and capability to improve the resilience of cocoa farms to climate change impacts. The study brings out the complexity of access, differentiated household responsibilities and decision making on a holistic response to climate change impacts, and the need to pay attention to specific gender issues at the household level which exposes the vulnerability of cocoa farmers, in spite of farmers' knowledge of adaption strategies. Participatory research using seasonality calendars and score -ranking was conducted with sixteen focus groups and comprised of a total of 160 participants to understand knowledge and preferences for food trees. A total of 61 food tree species were listed with differences among countries. In Uganda, the total species number was 47 (including 58% exotic species), and in Kenya 55 (65% exotics). In Uganda, knowledge on food tree species differed between genders, with older women listing the greatest number of priority species ( 22), followed by younger women (19) and older and young men (15). In Kenya, older women and men identified 38 and 36 species respectively, whereas younger women identified 26 species and younger men 23 species. In all four sites, both men and women preferred exotic food tree species such as Mangifera indica, Passiflora edulis and Persea americana. Both men and women especially valued food trees that contribute to improved health, nutrition and income, those whose products have a good taste, and with medicinal properties. For old and young women, the main reasons for selecting food trees species was their availability and role as children's food. Findings show diverse food tree species that fill food and nutrition gaps and the value of gender-sensitive participatory research for understanding local knowledge, needs and constraints, to inform project implementation decisions. There is a link between agricultural systems (crops of basic grains, livestock, agroforestry systems for coffee and cocoa) and poor populations in rural areas. These land uses not only provide food, but also other ecosystem services (SE). In turn, each of these farming systems impacts the communities differently and the benefits they provide are perceived differently, for both men and women.In Nicaragua, agricultural production in rural and poor areas is poorly technified and is closely linked to the benefits offered by nature. The main objective of the study was to determine the importance of land uses in the provision of different ecosystem services with a gender focus.We studied nine farming communities in three municipalities in the center and north of Nicaragua: El Tuma-La Dalia, Waslala and Siuna. We conducted 58 semi-structured interviews and 13 open interviews with key informants in order to determine access to the SEs. We also conducted two focus groups per community, one for men and one for women, using participatory mappings and the pebble distribution method, in total 41 men and 53 women attended.Our study finds that the use of forest land is one of the largest providers for SE communities; however, it is perceived as one of the least contributes to the family's economy. We also find that the land uses that provide the most benefits for women are the urban center and the crops of basic grains, while for men it is the agroforestry system.Provision of ecosystem services according to land use for men and women Keywords: Land uses, community capitals, participatory mapping. While labour scarcity is a primary driver, we found good economic rationale for taking these alternative farming practices. As a whole, the changing demographic picture has opened up new opportunities for promotion of agroforestry practice. At the same time, agricultural feminisation has been a major characteristic of the rural society, due to changing demography in the hills. Two important policy implications have been identified in the paper. First, the policy environment should be redefined and reframed towards facilitating increased forest-farm interface for minimizing the distinction between agriculture and forestry activities. Second, considering increased role of women in agroforestry, the public support system such as service provisioning including technologies should be geared towards making them more women friendly.Keywords: Agroforestry, Migration, Gendered. Fruit yield of shea tree is irregular and insufficient in Burkina due to negative impact of climate change on its productivity. Women and children are main collectors and processors of shea fruits for multiple usages but less is known about how they perceive climate change and its impact on their activities.The study was to determine women's perceptions of climate change and the impact on the flowering, fruiting and quality of the pulp and butter. We sampled 80 women collectors and shea butter processors within 4 associations in north-Sudanese and south-Sudanese areas.The group focus and individual questionnaire were used in 2017 for the study.The results showed that women perceive climate change through the declining rainfall, violent and dusty wind and the high temperature. 80% said that flowering and fruiting process are influenced by the wind and the declining rainfall. The insufficient rain causes less flowering intensity and fruiting with high non-mature fruits rate. Fruits do not taste good and nuts become whitish and give less butter compared to the reddish colored nuts with high butter rate (Photo 1). The frequent winds dry out the blooming flowers and cut off unmatured fruits. The dusty deposit on flowers prevent pollinators to access to the anthers and the stigmates, thus limiting sexual reproduction success. Their perceptions provide key guidance for future adaptation plans to climate change. Uganda is currently hosting over one million refugees within its borders, most of them in the north of the country. With the increased human population due to the influx, pressure on the surrounding ecosystems has intensified. Hosts and refugees both depend heavily on the surrounding vegetation for construction wood, firewood and farm areas. As a result, exploitation of the surrounding woody vegetation is leading to user right conflicts between the two communities. Refugees intensively cut down trees in their surroundings and further degrading the ecosystem. The objective of this study was to identify the potential for tree-based restoration options (e.g. agroforestry, farmer-managed natural regeneration) and identify the enablers to fast-track restoration of the ecosystem. Over 84% of both the host and refugee communities believe their ecosystem is degrading, causing societal tensions. From the field assessment using stump density as proxy, we found that 60% of the trees in the landscape had been cut in the last 2-4 years, mostly post the influx. Three potential pathways of restocking the woody biomass in the landscape were highlighted: tree planting (woodlots, fruit orchards, boundary planting and agroforestry -scattered trees and shrubs on farms and refugee plots), conserving existing trees, and promoting natural regeneration of sprouting trees. Among refugees, 66% of planting was suggested to be on plot boundaries and within homesteads. In contrast, host communities suggested that a similar share be in the form of woodlots. Refugees requested on average 32-50 trees to grow per household while the hosts expressed an interest in growing 863-1249 trees per household (they possess larger landholdings). Natural regeneration was suggested for communal degraded areas rather than areas currently used by refugees. To operationalize the ambition of restocking trees in the landscape, participatory farm sketches were designed with refugees and host community members. Further, a community learning center, consisting of a training unit and a tree nursery, was established to provide training and preferred planting materials to enable both refugees and hosts to engage in tree growing. In addition, an extensive extension system consisting of technicians and local community-based facilitators was setup to support tree growing. A partnership scheme was also agreed between the relevant government authorities and humanitarian organizations handling refugee matters to ensure the planted seedlings grew to provide ecosystem goods and services.Bringing back trees to the landscape is believed to restore natural capital hence reducing conflicts between communities. This intervention has been lauded by the relevant authorities and tools and approaches developed and piloted have now been upscaled to other refugee settlements in Uganda and elsewhere.Keywords: agroforestry, landscape restoration, refugees, host communities. et al., 2015;Assalé et al., 2016). These different population movements have increased the pressure on the forest resources and modified the different agroforestry practices of the populations. Henceforth, deliberately leaving a tree on one's farm is governed by economic rather than ethical considerations. For Aboriginal producers, the tree is a land marker, a cultural richness and a source of non-timber forest products (Kouakou et al., 2017). For Aboriginal producers, the tree is a land marker, a cultural richness and a source of non-timber forest products (Kouakou et al., 2017). For agricultural migrants operating in protected areas, the tree on the contrary marks the presence of state managers and must be systematically eliminated so that these managers downgrade these areas. The ignorance of local tropical trees by migrants from Sudano-Sahelian areas is also one of the reasons for the total destruction of trees in migrant plantations (Zanh et al., 2016). These populations do not know the utility or the use of non-woody trees and forest products. trees with high yields but which support little shading is a brake on the promotion of agroforestry by migrants. One of the consequences of these practices is the recrudescence of Swollen shoot disease in Ivorian forest areas where the presence of outbreaks seems to be related to different agroforestry practices. to better livelihood? The DECOFOS in Mexico Cavatassi R. (r.cavatassi@ifad.org), Alfani F., Paolantonio A., Mallia P. Research and Impact Assessment, IFAD, Rome, Italy Starting from the '80s, Mexico has experienced one of the largest deforestation rates in Latin America. As a response to the country forest deforestation and degradation, in March 2011, implementation began of the project Desarrollo Comunitario Forestal en los Estados del Sur (DECOFOS), an initiative financed jointly between IFAD, the Global Environment Facility (GEF) and the Government of Mexico. The project had the dual goal of improving the livelihood of people living in poverty and extreme poverty in degraded or marginalized areas and of contributing to climate change adaptation and mitigation through the restoration and revitalization of degraded lands and deforested areas as well as by supporting, both technically and financially, the implementation of sustainable productive activities. To assess the impact of the DECOFOS project a rigorous Impact Assessment has been conducted ex-post through a quasi-experimental mixed method approach which combined quantitative primary data with qualitative analysis and climatic and geo-referenced satellite data plys secondary census data. The combination of different data sources and apporach has produced quite robust and rigorous results suggesing that the DECOFOS project has been successful in increasing agro-forestry and vegetation index as well as the income deriving from forest resources. The project presents different nuances tailored to the diversity of the three Mexican States where it has been implemented: Oaxaca, Chiapas and Campeche. A richness of heterogeneity is found across the three states, whereby higher impacts are found from better and larger use of forest and forest resources in the most forested areas namely Chiapas and Campeche, a stronger focus on agribusiness activities and agro-forestry is found in the State of Oaxaca. With regard to indirect beneficiaries, results suggests that the project facilitated specialization in the local economy: whereas project participants focussed on the use of forest and non-timber forest products through the use of permits and on starting or strengthening micro-business enterprises, indirect beneficiaries seem to strengthen agricultural activities. Economic mobility is positive across participants. Income, dietary and crop diversification is also a result of the project across the three states. Analysis has also been run controlling for climatic variables and variation to ensure that higher and more diverse forest resources where not linked to more favourable climatic patterns. Impacts on vegetation index have also been assessed finding positive results. Building markets for forgotten wild Sahelian tree foods.A case study of Sahara Sahel Foods Garvi J. 1 (josef@saharasahelfoods.com), Garvi A. V. 2 , Garvi-Bode R. D. The Sahel belt of Africa has been grappling with chronic food insecurity ever since the droughts of the 1970's. In Niger, the national cereal production averages 400 kg/ha, which is inadequate for many farming households, so new livelihood models must be sought. Sahara Sahel Foods (SSF) is a social food-processing entreprise based in Zinder, Niger, that develops new food supplies from the near-forgotten wild trees and shrubs of the Sahel, so-called Wild Perennial Crops. These native plants were commonly eaten in precolonial times, but became neglected and stigmatised as agriculture expanded. They are well adapted to the dry climate, easy to grow in polyculture, often have a higher productivity than annual crops, and provide diverse and nutritious foods. By combining tradition and innovation, SSF has developed 50 different food products from 15 of these species, succeeded in destigmatising the popular conception of these foods, and turned them into symbols of national pride. A network of 1500 primarily female suppliers has been organised, from which the tree produce is sourced. However, for this new livelihood to become sustainable, the entreprise must become profitable and the volume of products processed and sold must grow substantially. The strategy for achieving this goal lies in scaling up three sectors: pseudo-cereals, food oils and drinks. This needs to be coupled with added marketing efforts on how to cook and eat these foods, and a larger distribution network. The Mountain Hazelnut Venture (MHV) is a contract-farming scheme in Bhutan under which 10,000 hectares or about 12% of cultivated land are planted with hazelnut trees. An estimated 15,000 farmers, about 20% of all agricultural households, are expected to benefit from hazelnuts as an additional income source. However, there are concerns that the contract-farming scheme could negatively impact output of other crops, particularly cereals. The government of Bhutan is alarmed about its increasing dependency on cereal imports, as the country is landlocked and imported cereals, which comprise 35% of domestic cereal demand, are only sourced from neighbouring India.We apply an economy-wide model to simulate the effects of the contract-farming scheme particularly focusing on agricultural output, food self-sufficiency and household welfare. We utilize a 2012 social accounting matrix (SAM) for Bhutan, which is extended to depict seasonal labour markets and the hazelnut activity using data from MHV. Based on the SAM, we employ a comparative-static computable general equilibrium model to simulate the contract-farming scheme by exogenously shifting land from the crop sector to the hazelnut activity.As the hazelnut is a high-value crop, we expect our results to show a general increase in agricultural output. Yet, we also anticipate that maize output is reduced as the harvest seasons of maize and hazelnuts coincide, which should increase seasonal wages and thus the cost of maize production. We expect farm households' welfare to increase, as except for the harvest months hazelnut growing requires relatively little labour, thus providing higher returns to land. With potentially decreasing maize production and increasing household income, cereal imports are likely to increase. However, the potential impacts on cereal self-sufficiency are contrasted with overall food self-sufficiency accounting for the higher nutritional value of hazelnuts. These aspects are specifically discussed when drawing policy implications from the model results. Mindful of the data structure, we intend to demonstrate how depicting seasonal labour markets matters for an adequate assessment of the scheme's impact. While cereal self-sufficiency declines, alternative policy options to reduce Bhutan's dependency on cereal imports are briefly highlighted.Keywords: Economy-wide modeling, Contract farming, Foreign Direct Investment, Bhutan. Food insecurity is rife in the middle-hills of Nepal because of under-utilised land resulting from outmigration of male labour and underperfroming agroforestry systems. Agroforestry here is inextricably linked with surrounding community forests. We present a conceptual framework describing the links between farm and community forest and role of improved agroforestry in enhancing food security. This underpinned the work of the EnLiFT research project (2013)(2014)(2015)(2016)(2017)(2018). Results from EnLiFT are presented concerning drivers of under-utilised land, and how simple agroforestry interventions can lift households above the poverty line. However, widespread prosperity requires commercial agroforestry systems on the under-utilised land.Five propositions are made to establish the pathway for agroforestry wealth: 1] Agroforestry should be institutionally integrated with agriculture and community and private forestry; 2] The greatest potential for improving agroforestry is in fodder-livestock and timber-woodlot systems on under-utilised land; 3] The regulations for sale of private-grown timber needs to be rationalised; 4] Multi-sectoral commitment is required to support youth to engage in agriculture, encourage investment of remittances into agriculture, and provide legal systems to encourage investment in commercial agroforestry partnerships;and 5] Current constitutional changes provide an excellent opportunity to develop policies and institutions to encourage wealth-generating agroforestry.Figure 1 The farm-forest interface and food security in mid-hills of Nepal In the Mt Elgon region in Kenya, deforestation, inefficient agricultural practices, uncontrolled grazing and soil erosion have a direct impact on biodiversity, soil fertility and farmers capacity to adapt to climate change. Crop yields and milk production are low and smallholders don't have a guaranteed sustainable connection to markets for their produce. The dairy sector's development is hindered by unsecured milk supply and collecting challenges.The Livelihoods Mt Elgon project is improving the livelihoods of by empowering farmers to increase adoption of Sustainable Agricultural Land Management (SALM) practices with a strong focus on and establishing connections to dairy markets through 15 cooperatives. The project will sequester 1 million tCO2e through increase in tree planting, soil organic matter and dairy cow productivity. The overall mission is to secure thriving livelihoods for smallholder farmer communities through widespread adoption of Sustainable Agricultural Land Management (SALM), that delivers value across carbon credits, milk supply chain and water resources. Farmers are trained on SALM practices such as agroforestry to adapt to the impacts of cli-. The monitoring of SALM also tracks carbon sequestration. By year 10, the project will have reached a wide spread adoption of SALM on 35,000 ha of agricultural land with 4 million trees planted. Free grazing within small area of land, which severely damages the ecosystem, is avoided as cows have access to feed and water throughout the year. To increase milk productivity, farmers produce fodder crops on farm to feed the cows all year round. The project strengthens the capacity of 15 cooperatives to offer services to their members such as farming advisory services, milk collecting and veterinary services. Also governance of the cooperatives is strengthened to enable women to participate more actively in the dairy value chain, with the aim of women in 50% of the leadership positions. The project is developed through an innovative investment model. It is pre-financed by the Livelihoods Fund, an investment fund created by private companies, who bears the investment risk. Brookside Dairy, a private company, co-invests in the project, pays according to milk production and commits to buy all milk produced within the project over a period of 10 years. The carbon sequestered in the project is the return to the investors which they can use for offsetting in their own companies. Vi Agroforestry, an NGO, implements the project together with local communities organised in 15 cooperatives. The project delivers and has already delivered tangible results. By May 2019, at the World Congress on Agroforestry, fresh results from 3 years of implementation will be presented by Vi-skogen and by Margaret Nelima, a smallholder farmer and leader in Kiminini Cooperative. The legal configuration of community forests(CFs) in Cameroon demands that communties exploit resources like business units but invest the profits like charity organisations to solve community problems. This setup portrays the characteristics of social enterprises, which are enterprises that apply commercial strategies to improve the financial, social and environmental welbeing of communities. However, the extend to which community forest enterprises have effectively developed and generated profits from forest resources as business units is not clear, their ability to invest profits in development projects is not clear. Mining for copper in Zambia has left a legacy of degraded and contaminated landscapes, where the incentives and finances for restoration are limited. This situation is exacerbated by the decline of mining activities. Under such circumstances peri-urban communities suffer high levels of unemployment and a degraded environment. The considered establishment of elite Pongamia pinnata bioenergy orchards and 'inter-crops' on disused mine facilities offers significant potential to simultaneously incentivize investment and initiate a process of local economic diversification, job creation and environmental remediation. We describe the rationale and challenges of establishing such operations, the observed benefits of a pilot in Chingola, Zambia and the potential benefits for job creation and sustainable economic growth when replicated and scaled across the region.Our all female tree planting team, benefitting from flexible job creation and improved environmental conditions. By learning from the solar industry we can de-risk investments while creating ownership opportunities for farm managers. It is important to contextualize farm decisions with economic assumptions, such as yields and profit, making crops within growth markets a clear path to profitability.In the US, purchasing land requires outside capital, as profits from agriculture are insufficient to pay a mortgage, and it is challenging to debt-finance a system that will not break even for up to 7 years. Investment opportunity sits in separating the tree assets from the land. This increases return potential with direct investments into agroforestry, as real assets, similar to investing in a solar array.Trends in solar such as tax incentive programs and power purchase agreements play an important role. In the US, opportunity zones and new market tax credits create incentives for investors. Meanwhile, long-term purchasing contracts allow brands to secure supply, mitigating risk by providing secured buyer relationships. Brands and investors can meet climate goals and address consumer demands, while increasing supply certainty and profitability. By working across the value chain from farmer to investor to corporation, the pursuit of longterm landscape regeneration and financial sustainability can be addressed through market-driven agroforestry solutions.Keywords: agroforestry assets, project development, investment readiness, crop economics, purchase agreements. The effects of agroforestry on local community and landscape -changing approach and strategies in a rural family's life Csikvári J. (judit.csikvari@gmail.com), Barsony D.Zsörk, Pápateszér, Veszprém, HungaryZsörk is a very diversified land which was partly abandoned when we started our project. We intend to keep it in its complexity, produce fruit while conserving natural values. The villagers' significant part commute to nearby towns and cities, work as factory hands or in services. Few families practice agriculture -mechanized farming on arable lands -,which does not create jobs to keep workers on the field and in the village.We believe agroforestry can have a local effect on the health of the landscape, on people's well-being and on the community. Agroforestry affects local communities in different areas of life, through several features.Our system is labour-intensive and therefore costly -a challenge we tackle by product diversification and high added value products -which is labour-intensive again. Two persons (father and son) are working for us permanently. The son was working as a production line worker. Now they draw certain pride out of their status as the workers of Zsörk, and the rest of the village seem to respect that, too. Which makes it easier to involve occasional workers more efficiently. In a situation when forest and environmental protection is a priority and the demand for fuelwood is very high, the introduction of short rotation agroforestry system by planting fastgrowing species on rivers banks and canals could be one of the suitable systems to address these issues, improve land management and reduce flooding in plain areas. In Albanian rural areas, agroforestry represents one of the oldest land-use systems where trees and shrubs are used on the same land-management units as agricultural crops and grazing for animals. These traditions remain alive in rural areas where trees are cut at ground level or above to produce shoots which are harvested for various family uses including fuelwood, animal fodder, and building materials. Actually, coppice and shrubs cover 1 053 239 hectares or 37 % of the total area of the country (Agrotech 2004). Little attention has been given to coppice and shrubs during the last 20 years, an approach inherited from the central forest governance system before '90. They are a great unused potential for biomass production and their exploitation can both improve natural conditions and create more employment opportunities for farmers. Thus, apart from the areas near houses which farmers use for family needs, they can use other lands (bare or unused) to plant fast-growing species, initiatives which can boost family business and increase their income. Local case studies recognize that agroforestry is a major source of income to farmers. It shows that agroforestry activities have a significant contribution of 40% to the total annual income of rural households or around 1900 dollars a year (Kacani and Peri 2017). However, there is a lack of studies on the benefits of agroforestry systems and scientists and experts often hesitate to undertake a more in-depth analysis. This is a challenge for the Albanian context, as sectors such as agriculture and forestry have been isolated from each other for a long time. The review focused in understanding the advantages of short rotation coppicing and explore how the integration of these silvicultural techniques with traditional agroforestry might be used for environmental protection and increase production. It could be the first step in assessing whether promoting or not these means of vegetative reproduction and traditional agroforestry practices is the way towards a more sustainable and productive use of land. Swidden agriculture (SAIs) are land use systems adopted by caiçaras -traditional people that inhabits Brazilian coast. These systems consist on an itinerancy of cultivated plots alternated by a fallow period. SAIs are criticized for the use of fire and suppression of native vegetation, also they are pointed out as incapable of sustaining people. Nonetheless, these systems endure throughout the pan-tropical region until the present days. Another important aspect is that traditional agricultural systems represent local culture as an expression of people's interaction with nature. To evaluate SAIs capacity to maintain the forest and the population we investigated the dynamic of this system adopted by caiçara community in Cananéia, Southeast Brazil. We verified practices and interactions with the environment along time using the Diagnostic and Design tool and participant observation. We found that agriculture is a secondary activity that complements fishing and retirement incomes. Crops are for families' subsistence and feeding small animals. There is a sexual division of labor: preparation of areas (slashing and burning) is a masculine task while cultivation and harvesting are of feminine responsibility. Fallow period varies from 8 to 15 years depending on vegetation size but it's common to find older areas. The cultivation period depends on cassava or sugarcane cycles (2 to 3 years). New areas are chosen depending on crops and soil characteristics. There are no signs of soil erosion and forest seems to regenerate properly despite its temporary suppression, which will be confirmed by complementary field studies. Also, new land arrangements due to protected areas demarcation led caiçara people to restrict the areas under forest that could be in use. Finally, we noticed that the younger generations are getting involved into the emerging commercial fishing and leaving agriculture and/or the community. The studied SAIs have an importance in caiçaras families' subsistence and its practices seem to be adequate to preserve the local ecosystem. Even so, they seem to be threatened since only the older generations continue to adopt them. The understanding of SAI' dynamics and constrains in order to propose technological adjustments would help to improve its profitability and practice. Even more, it's necessary to conceive legal regulation appropriated to local forest management practices considering a land sharing approach. Thereby it will be possible to apply policies that preserve natural areas maintaining traditional communities, specially future generations, in their landscapes. The uncertainty of weather condition has really transformed to climate change and fluctuations in economic situation of an individual and entire nation at large. One of the factors responsible for climate change has been identified to be deforestation. This has seriously exposed the surface of the earth to direct sunlight and unprecedented rainfall with consequent ripple effect that threat existence of human being and agricultural crops. Drastic reduction of wood supply for making furniture and construction makes Nigeria as a nation to be importing forest timber products which transcend to reduction on nation's gross domestic product. Ogunwusi (2011) reported that the decreasing supply of wood to the wood products sector couple with the inadequate management of government plantations have made the need for private sector participation in forest plantation establishment imperative. However, through trees planting/afforestation unemployment as a cankerworm to the national development would be combated and also it will serve as means of households' livelihood diversification as noted by Matthies and Karimov (2014) 74% of the french employees think of changing life and jobs. 55% of the people who change jobs say they are more satisfied on a personal and professional level. These people want to give more meaning to their professional activities, to invest in social, local economy (1)... We can add migrants who wish to return to their country. Jobs linked to agro-forestry (2) answer to theses wishes . They bring quality of employment, social utility, diversified tasks.We have here motivated people who can put in practice agroforestry's \"know how\". They have the ability to create jobs. But they need to learn and to be trained for this: the study « SHORT FOOD CIRCUITS...» shines a light on the strong need of skills to answer the growth of demand for products stemming from the local economy. Savoir-Faire & Découverte trains more than 1000 people every year to ecological and manual know how. 55% pay personally, 45% were supported by existing devices. A survey carried out in 2016 (500 replies) shows that more than 80% of formers trainees put into practice the skills acquired (personal or professional purpose). More than 30% create their activity between 1 and 2 years after the end of the training. In developing countries, many farmers incorporate trees into their farming systems. For decades, donors have funded agroforestry research aimed at improving livelihoods and food security, while enhancing productivity and sustainability. Much good research has been done over the years, but rarely has it transformed rural communities. What then are the factors that catalyse transformational impacts from research projects? Do they vary in different regions? This presentation will draw on research conducted by the author to understand factors that influence success in collaborative agroforestry research. A new methodology for evaluating the relative success of agricultural and forestry research projects will be presented, and the lessons identified from case studies of transformational agroforestry research funded by the Australian Centre for International Agricultural Research (ACIAR) in Africa, Asia and the Pacific. More than 30 factors can either enhance or diminish agroforestry project success, most of which can be influenced during project design and implementation. However, a successful research project may not necessarily lead to widespread adoption of the agroforestry technologies and therefore the desired impacts. Some ACIAR forestry projects, for example on Acacias in Vietnam, have already catalysed transformative impacts. Other current work is demonstrating great potential to transform both adoption rates and farming livelihoods. Understanding the lessons from these projects could assist others to get better outcomes and greater impact from future investments in agroforestry projects. Natural regeneration represents more than half of all tropical forests. Within the Brazilian Amazon, the area of regenerating forest increased by 70% between 2004 and 2014, currently occupying more than 17 million hectares. These ecosystems have an important social roles, such as increasing food security and alleviating poverty among thousands of family farmers in the Amazon, while also being important repositories of biodiversity and carbon. Brazil has made bold commitments to the restoration of 12 million ha of forest by 2030 through the Bonn Challenge, Initiative 20 × 20, and its Forest Code law. The management of natural regeneration can be a viable alternative for accomplishing these commitments with less socioeconomic costs and higher environmental benefits. Here, we present a collation of different studies from the authors addressing natural regeneration on family farmers' land in the Eastern Amazon, aiming to address three overarching questions: i) How diverse are tree communities on these lands following natural regeneration? ii) What proportion of trees in regenerating forests have potential use recorded in the literature? iii) What are the real uses and motivations for farmers to maintain and manage these areas. We performed field surveys in 10m x 250m transects placed in regenerating forest fragments, followed by a literature review on potential uses for the dominant trees (> 80% of basal area). We separated the different uses in categories encompassing timber and non-timber forest products-NTPF (e.g. medicine, ornamental, food, handcraft, firewood). We applied semi-structured interviews and use the likert-scale to understand the uses and motivations for managing natural regeneration. The high tree diversity in the studied regenerating forests (up to 120 species ha-1) is reflected by a high variety of potential uses reported in the literature. Using an old regenerating forest plot (~50 years) as a case study in Northeast Pará, we found the vast majority of species reported in the literature as having potential for timber (76%), followed by firewood/charcoal (34%), medicine (29%) and food (20%). Natural regeneration has been used by family farmers in the Northeast of Pará for multiple uses, but mainly for extracting timber (50%) and hunting (18%). In fact, NT-PF-extraction and beekeeping management are important motivations for family farmers to conserve naturally regenerating areas. Despite the high potential for Farmer-Managed Natural Regeneration, the reality is that these areas continue to be prioritized for slash-and-burn agriculture. Therefore, public policies are needed to encourage family farmers to protect areas under natural regeneration to capitalize on the potential this form of restoration offers in the Amazon.Keywords: ecologial restoration, secondary forests, tree diversity, ecosystem services, Brazilian Amazon. Demonstration on three sites have shown that trees have stabilized the soil and water conservation structures and farmers were able to cut and carry grasses to feed their livestock. It is very important to create awareness to the community on the benefits of agroforestry and promote the different agroforestry practices in order to preserve the indigenous woody species. Furthermore, tree legumes are very important source of protein which provide animal feeds during the dry periods. However, it is important that extensive research programs be carried out on agroforestry and transfer the technology generated from research. In addition a lot of effort is needed so that farmers could be convinced in the adoption of agro forestry practices in a very aggressive manner. The need to move away from blanket recommendations and to tailor agroforestry innovations to local circumstances is well established. Yet there is a lack of tools for screening options based on current knowledge so that farmers can be offered suites of 'best fit' technologies to choose from. Here, we describe the development of livelihood trajectory models to assess (ex-ante) the extent to which planting on-farm trees for fuelwood can influence the livelihoods of those living in the drylands Northern Ethiopia and the degree to which they can directly and indirectly contribute to reducing poverty and increased fuel and food security.Due to scarcity of firewood, households in rural Ethiopia resort to using cattle dung as a supplementary fuel source, displacing its use as manure on farmers' fields. Planting on-farm trees for firewood could help meet household energy demand, reduce pressure on local forest resources and substitute the use of dung as fuel thus allowing for its return to croplands and increased production. Using the simulation modelling environment Simile (www.simulistics.com), participatory methods, expert knowledge and data collected from large-n trials, the impact of different levels of on-farm tree planting were evaluated in relation to enabling households with different resource profiles to reach fuelwood self-sufficiency and cross food security and income thresholds.The first version of the model, which simulated the establishment of Acacia decurrens woodlots, showed that the number of trees required to meet household fuelwood demand is substantially higher than current levels of on-farm tree planting and would require potentially unrealistic changes in land use for the majority of households, especially those with small farms. These findings motivated us to develop a more detailed model that enabled us to explore alternative configurations of on-farm trees, management regimes and species. Results from this second iteration of the modelling process suggest that while agroforestry practices such as trees scattered in cropland and manged through pollarding are unlikely to cover 100% of household fuel demand or lift the majority of households out of poverty, they can attenuate trade-offs between on-farm fuel and food production and may have indirect implications on food security through the substitution of dung as fuel.Our results highlight the need to scale up current tree planting efforts while finding ways to integrate trees with current farming systems, and that initiatives promoting trees for fuel need to be realistic about the extent to which on-farm trees can contribute to meeting household fuel demand. The modelling process also revealed major knowledge gaps and data deficiencies in relation to understanding key livelihood-options interactions, such as feedbacks in the wider rural economy, helping to focus ongoing research and model development.Keywords: Systems modelling, On-farm trees, Trade-offs, Fuel wood, Ethiopia. Since agroforestry is an option to design resilient farming systems facing global changes in West Africa (demography, markets, climate), the questions addressed by the project RAMSES II are : How agroforestry can be sustainably intensified and how this intensification can be upscaled ? Compared to crop alone, the C sequestration is supposed to be increased, climate variations buffered, and farms food and income diversified and increased. This way of intensification may be sustainable if its adoption by small farmers is maximized.The approach is based on a multi-scale diagnosis of the parkland drivers and the characterization of the environmental, agronomic, social and economic services provided by four common agroforestry parklands based on cereal crops in West Africa (Piliostigma ssp. and V. paradoxa, in Burkina Faso, G. senegalensis and F. albida in Senegal). They are inputs to multi-stakeholders innovation platforms at territory scale. To maximaze adoption, intensification scenarios have to be contextual and proposed by farmers themselves, scientists providing them with the simulated impacts on farm income and cereal yields. In addition, governance realistic arrangements able to support intensification are planned to be co-built by authoriries and all parkland users (famers, women, youth, migrants, etc.). The upscaling is expected to be achieved by «snowball effect», and monitored during-and after-the project by the NGOs and national scientific institutions involved.Keywords: Extended-peer-community, Participative-approach, Bio-economic-modelling, Systemic-approach, Upscaled-intensification. From 2009 to 2014, the \"Agroforestry and Landscape Laboratory\" gathered various stakeholders in Rocher-Percé regional county (Quebec, Canada) committed to maintain regional landscape's attractivity and agricultural dynamism through a landscape-scale agroforestry project.We used this project as a case-study and performed document analysis and interviews to identify key processes and features that facilitated agroforestry adoption. The long-term and flexible project scheme enabled the implementation of innovative concertation, funding, decision-making and follow-up mechanisms that facilitated agroforestry adoption. The full commitment of the agroforestry team throughout all the project helped the building of key trusting relationships between stakeholders. By formalizing unofficial agreements between land owners and farmers for land uses on a long-term basis, the project enabled agroforestry system implementation and secured the agricultural use of the land for the farmers. While most agroforestry public support follow agricultural funding schemes, the project team implemented an innovative funding structure directly inspired by regional afforestation programs.Finally, the decision-making process combined both regional and farmers interests to maximize private and societal benefits. The case-study illustrates the importance of a grounded, human-based, long-term, flexible and concerted approach for the implementation of agroforestry systems at the landscape scale.Localization of the 33 agroforestry field trials and demonstration sites implemented during the «Landscape and Agroforestry Rural Laboratory». Agroforestry is often not immediately associated with cold climates but it has a long tradition in Finland. The main aim of the AFINET project and its Finnish farmer network is to promote the uptake of agroforestry by facilitating knowledge exchange between farmers, advisors and researchers. In 4 workshops, participants identified the challenges and barriers for the uptake of agroforestry, as well as potential innovations to tackle the challenges. In total, the stakeholders identified 89 innovations across Europe. After evaluation by the Finnish stakeholders, 12 of these innovative ideas would be applicable to Finland. Some examples are: 1) alley cropping and trees planted on contour lines on steep slopes initially to reduce wind speed and erosion but it also helped to reduce the impact of recent summer droughts, 2) active mushroom cultivation as a forest management tool generating additional income for the forest owner, and 3) sheep grazing in young forest stands reducing the need for pre-commercial thinning and additional feeding, while at the same time enhancing animal well-being.The AFINET project will produce science-based information for farmers (factsheets, videos, seminars, tutorials) helping the uptake of the innovations into practice. The AFINET project helped making the agroforestry concept better known in Finland and the practice is gradually gaining popularity. However, much work remains to make this practice better known among farmers and the general public. Agroforestry is raising the interest of more and more farmers together as of some academics and technicians willing to support the development of more sustainable food production systems and the maintenance of ecosystem services. Nonetheless, in the context of France, not enough links have been made so far between research projects and the concerns of agroforestry practitioners: many scientific results remain unknown to farmers or technicians while scientists may miss the red-hot questions to be targeted in priority. In this context, an overall analysis was carried out. First, the results from several surveys carried out among the French practitioners of agroforestry and targeting their needs were synthetized. Second, both the already existing and relevant scientific or grey literature was reviewed. By confronting the two, the remaining and further needs in research and development were identified. These needs were formulated as gaps of scientific or practical knowledge per types of agroforestry practices met in France (sylvopasture, sylvoarable agroforestry, riparian buffer-strips, forest-farming, etc.). The first main results from this analysis will be presented at the conference and shall in the future help stakeholders to collectively design efficient research and development projects and to disseminate existing knowledge. In the Brazilian Amazon, oil palm has expanded rapidly since 2010, largely driven by policy incentives that led major companies to invest heavily in the sector and establish agreements with smallholder farmers. Many family farmers in Tomé Açu, Pará question the risks associated with planting a single crop that takes up most of their land and labor. Biodiverse agroforestry systems can reconcile oil palm production with more resilient livelihoods while also providing environmental functions, however, upscaling will require tailoring the systems to local contexts and improving the enabling environment. This study aims to identify the key factors underlying the adoption and scaling of biodiverse oil palm agroforests in this region.The methodology was comprised of: a comprehensive literature review; analysis of biophysical and socio-economic characteristics; semi-structured interviews within Tomé Açu; and an analysis of access to assets and farmer objectives through farm-level socio-environmental appraisals, conducted on 15 farms in Tomé Açu through PLANTSAFS (Planning and Evaluation for Decision-Making on Agroforestry Systems). Preliminary findings show a high demand for diversification because of the reduced risks of more diverse systems in coping with market fluctuations, disease, and climate factors, particularly prolonged droughts. The key constraints for upscaling such systems among family farmers are: low access to labor, knowledge and capital required to establish and management complex systems, access to markets and processing equipment for agroforestry products. These factors vary largely according to farmer type. «Marginalized farmers\", who are more resource-constrained and have less access to policies, require more capacity-building, extension services and credit for initial establishment costs, whereas «organized\" family farmers and medium-sized farmers (such as CAMTA) have higher access to knowledge and key policies such as credit, as well as labor and machinery, with systems becoming increasingly simpler and dependent on external chemical inputs. Given these constraints, upscaling will require, at initial establishment, mingling relatively smaller high biodiversity plots with simpler systems on larger plots that can be enriched gradually. Expansion of biodiverse systems with agroecological management practices will also depend on costs of inputs and market factors. Across all farmer types surveyed, key motivations for adopting diversified systems include: greater resilience to market risks and fluctuations, adaptation to climate change, and optimization of scarce labor and land. The culture of livestock free grazing has been practiced for long time in Ethiopia. However, the livestock free grazing has been posing a major threat on agroforestry because the livestock has been freely grazing trees and crop residues on farm which led to deforestation, soil degradation, and nutrient depletion and environmental degradation, at large. Hence, the free grazing contributed to low adoption and scaling up of agroforestry in the country. This, in turn, led to declining overall agricultural production systems. To address these challenges, the Ethiopian government developed and implemented several rural development strategies and programmes which aimed to restrict free grazing practices and to improve tree-croplivestock production systems. However, the initiatives failed to address the problem of free grazing. To understand the context specific challenges and sustainably address the existing free grazing problem while facilitate accelerated adoption and scaled up of agroforestry, a study was done in Ethiopia through conducting field assessments, interviews and discussions with farmers, religious and informal institution leaders, policy makers and experts; reviewed different documents and complied the opportunities and gaps of the existing policies, institutions and technologies on grazing systems and management; and experimental trials were also done to test and identify best grazing technologies and management options. The result showed that there are major constraints on the existing policies and institutions including lack of grazing land use policies, less clarity on tree tenure security, weak institutional set up, weak coordination among key stakeholders and top-down extension approaches without considering varying resources and contexts at different levels. The study also identified technological challenges including shortages of livestock feed and better breeds, limited availability of feasible and best-fit technologies coupled with a culture of keeping high number of livestock per household and production systems. This is aggravated by lack of knowledge and improved skills coupled with low motivation of local experts contributing to low adoption and scaling up of agroforestry. The study concludes that free livestock grazing problem can be sustainable addressed through understanding and building to existing farmers circumstances, and varying contexts. This helps to design best fit sustainable grazing options and improving informed decision-making for enhancing adoptions and scaling ups of agroforestry practices in the country. This study underlines that sustainable grazing options are very important for improving agricultural production and livelihoods of smallholder farmers, and creating resilient ecosystems and societies in Ethiopia. Assiri A. 1 (a.assiri@cemoi.com), Munoz J. -the improvement of aromatic quality of cocoa; -the traceability of supplies; -the professionalization of producers and their organizations; -the agroforestry -environment. Under this last axis, an inclusive and structured approach has been adopted by CEMOI. Five agroforestry systems were first defined with a list of 24 forest species by capitalizing on previous achievements, but also taking into account the needs and perceptions of producers. To ensure the availability of seedlings of these species and to facilitate their accessibility to producers, two to four nurseries men have been trained and installed per cooperative. Resource centers have also been set up to supply nurseries men with plant material for their nurseries.In the field, to demonstrate the proposed models and train farmers to adopt them as good agricultural practices for improving the productivity and sustainability of cocoa farms, a dozen pilot plots are set up per cooperative. Training is provided by two to four agents trained per cooperative.At the community level, a social and environmental responsibility committee has been set up in each cooperative. In addition, an agroforestry innovation platform has been set up to engage all key stakeholders (agents of cooperatives, representatives of communities, traditionnal and administrative authorities, ..) in raising awareness among producer communities.To evaluate the overall performance of the strategy, a land use map of the program area was delopped at the beginning of the program. Then, a periodic monitoring of the forest cover is carried out. A mapping of cocoa orchards is also carried out in order to locate them in relation to the classified forests and other protected areas. These data are also used to know the origin of the cocoa purchased.By 2022, a capitalization of achievements of the program and a scaling up of the approach are planned.Keywords: Cocoa, Agroforestry, Sustainability, Technical itineraries. In Burkina Faso, the exploitation of shea fruits is an opportunity to reduce rural poverty and offers a path for development in the country. But the shea stands are degradedthe potential is exploited without any concern for the safeguarding and renewal of the resource. Since 2013, INERA is implementing projects aimed at sustainably increasing women's access to shea nuts by providing them with technical means to conserve and restore shea parks. From 2015 to 2018, 1,460 women from 21 villages in southwestern Burkina Faso have been trained in 8 techniques of regeneration and shea management. They then trained 1,184 women from their villages. A survey conducted in 7 «control» villages focused on the expected contribution of regeneration techniques to stand density and the prospects for adoption and application of techniques by populations. Sowing and planting are positive in the fields, slightly less in shrub savannas, and negative in tree savannas. Protection against fire and livestock applied to the introduced or spontaneous regeneration is the most efficient technique. Regeneration appears to be the first option for women's sustainable access to the resource. However, difficulties with the application of certain techniques and the risks of conflict were noted. The future application of the techniques for a renewal of stands will depend on the common will and the interest that the populations bring to the restoration of the shea parks.Keywords: shea park, Burkina Faso, women, tree regeneration, forest techniques. The perspectives of local stakeholders (SHs) are critical in any research and policy making process (Sereke 2016). In order to know the opinions of Italian SHs on how agroforestry systems (AFS) affect production (P), environmental (E), management (M) and socioeconomic (SE) aspects (categories), an online survey was performed in Apr-Jun 2016. A questionnaire targeted to farmers, policy makers, technicians, researchers, tourism operators was sent to ca 20,000 email addresses. A total number of 652 responses provided respondents' biographical data and their opinions on AFS. The latter were collected through a Likert-type test scheme greement. The average weighted score (AWS) for each item and the mean of the items' AWSs per category were calculated (Fig. 1) SHs showed more positive opinions on E, SE and P aspects of AFS; lower scores were related to M. A similar trend was observed in a study on the positive and negative perceptions of local SHs on specific AFS in Italy (Camilli et al., 2018). The results seem coherent with findings on European SHs perceptions of AFS (Garcia De Jalon et al, 2018) even if, in this case, also SE issues were perceived more negatively. In this respect, further analysis is necessary also considering the influence on such items of the single target groups of the sample. While the essential role played by rural advisory systems in reducing poverty and hunger is increasingly recognised, agricultural extension in many African countries continues to offer single size interventions that do not take into account the increasingly complex nature of farming systems in the face of global challenges, in particular climate change.The World Agroforestry Centre (ICRAF) in West and Central Africa, has been experimenting with a novel community-based extension approach, providing a multitude of services and products tailored to farmers' livelihood needs and capacities. Rural Resource Centres (RRC) are training, experimentation and demonstration hubs that are managed by grassroots organisations. Emphasis is put on access to knowledge, interactive learning, and networking among farmers, and between farmers and other actors. RRCs are now used in Cameroon, Burkina Faso, Mali and Chad to disseminate a range of agricultural technologies and practices aimed at building climate change resilience in rural communities. This paper demonstrates that, through their active participation and direct engagement in the design, evaluation and demonstration of technologies, and partnerships with NGOs, as well as with national and international research institutes and universities, RRCs have the potential to extend complex and innovative technologies, such as climate-smart agriculture. Background: Increasing tree cover on farms in Ethiopia supports livelihoods and the environment. Most tree-planting schemes rely on a few species. Aims: We aimed to understand farmers' priorities for tree planting in semi-arid and sub-humid conditions in selected sites in Oromia, Ethiopia and constraints to meeting those demands. Materials and methods: Farmers' priorities for tree species and planting niches were assessed through focus group discussions. Participatory trials comparing species and on-farm niches were implemented, and seedling survival and growth patterns were evaluated.Results: Farmers identified a high diversity of tree species for each niche. Most of these are logical but some need exploring further. Fruit species were mainly selected for homesteads.The diversity of desired tree species is much higher than that typically available in nurseries or promoted by projects. Meeting planting demands proved hard as seedling supply does not support diversity. Evaluation of tree survival showed striking differences among species, farms, agroecologies and niches. There was high variation between farmer in survival meaning that local-level risk factors are still not understood. Conclusion: Understanding farmers' tree species priorities for different niches and designing and implementing participatory trials reveal the diversity needed and should be part of tree supply and planting action. Better understanding of survival risk factors would allow improved management.Species priorities, trees planted and surviving on-farm niches in two agroecologies of Ethiopia. Line width is proportional to priority, numbers planted and survival rate respectively. Dubon A. (a.dubon10@gmail.com), Sanchez J., Martinez R., Granados R. 1 , Diaz J.Cocoa and Agroforestry, FHIA, La Lima, Cortes, HondurasHonduras, one of six small countries that join North and South America, with a fast-growing population has 84% non-arable steep hillsides unsuitable for cropping. Tree cover steadily declines as forests and jungle are logged and burnt mainly by shifting agriculture. It has a record climate risk index (1995)(1996)(1997)(1998)(1999)(2000)(2001)(2002)(2003)(2004)(2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012)(2013)(2014) together with Myanmar, due to extreme climatic events as hurricanes, flooding and heat waves. Here, it is difficult for unorganized settlers with little education and unsecure land tenure to seek out a subsistence living without further damaging the ecosystem, fueling poverty and migration. In this setting, in 1984 FHIA was created to advance agriculture production via applied research and promoting diversification with high value alternative crops to increase income and quality of life of income-poor rural families and restore and protect the natural resource base. It was natural to pick up on the historical legacy and cultural tradition of cacao-based agroforestry as one of its main programs and create a unique 50-ha demonstration and experimental center; followed in 1996 with a 200-ha a humid tropics agroforestry center in piedmont areas with Canadian government's support. These centers have done research for 30 years in agroforestry and forestry systems, diverse crops and tree species, studied soil conservation practices, nutrient cycling and have an exotic tropical fruit and bamboo collection. This knowledge and technology are the foundation to foster and establish agroforestry systems for the sustainable economic development of small farmers. To promote these agroforestry systems, they should have a fruit or timber component, provide income starting from year one and should be larger than that of traditional activities. Promotion include participatory evaluation of feasibility and commitment, production and partial donation of selected plants, practical training and continuous technical assistance by extensionist. A pioneering integral and sustainable watershed project in 2000 benefited 165 families in the Tocoa and San Pedro river basin with 79 ha of new agroforestry systems, 33 km of hedge or timber trees in rows, 6 community micro hydro-turbines and 550 ecofriendly fire stoves, amongst other activities. Since then close to 20 projects sponsored by international cooperation agencies, private sector and government have ensued with more than 5,000 ha of new agroforestry plantations, 500 certified plantations, some 700 km of hedge or trees in line, around 40 micro-turbines. Reproduction of these models based on cacao and rambutan has occurred spontaneously and the community appropriation of management of the electrical systems and care of tree cover in the suppling water basin is the norm. It has been possible to advance agroforestry production systems with small farmers in Honduras having a strong institutional backing with a clear methodology which requires a medium to long-term commitment.L8 Scaling up Due to changing climate, land degradation, increasing population pressure, and the development of unsustainable land use systems over the last few decades, the natural resources have suffered irreparable damages. Zagros region, located in the arid and semi-arid agro-ecological zone in Iran is one such area, where agricultural production has seldom matched the household needs. The local communities had practiced agroforestry systems since thousands of years, for meeting their basic needs, while restoring the degraded lands, based on their traditional knowledge.Although extensive research has been carried out on agroforestry throughout the world, little work has been done on improving the systems in Iran so far. Consequently, this research assessed the socio-economic and environmental values of traditional agroforestry systems in the Province of Kohgiluye-and-Boyerahmad located in Zagros region to compare them with the modern agroforestry systems in the world and recommend adaptable systems of agroforestry for Iran. for this comparison, the state of Uttarkhand in India, located at the same latitude of the study area in Iran, with similar geographical and ecological characteristics and also comparative socio-economic condition has been selected. This study inspected the land-use systems of the pilot areas through Participatory Action Research (PAR), exploring the traditional agroforestry systems practiced by the local farmers and then critical systems and their characteristics were recorded. An inventory was also made on the conservation and socioeconomic significance of the explored systems. For this purpose, a detailed schedule/ questionnaire was prepared and used for interviewing the local community, experts and managers. On the other hand, the modern and traditional agroforestry systems of Uttarkhand in India were reviewed and inspected. Accordingly, strategies for developing sustainable land use systems were recommended for Iran.The results show that Agro-ecological characteristics can be used as a basis for planning agroforestry systems. Moreover, agroforestry systems in various geographical regions with similar ecological zones, are structurally comparable. It was suggested to improve the productivity through new systems such as \"Trees on pastures\", \"Multipurpose woody hedgerows\", \"Home gardens\" and \"Multipurpose trees on crop lands\". Finally, constructive solutions for adoption of agroforestry systems and improvement of traditional practices have been proposed for various land-use systems in Iran, including agricultural, range and forest lands which have easy acceptance by local communities. The study also reveals that for improvement of agroforestry systems as a feature of Sustainable Development, there are two basic points: one is application of the power of nature to solve its issues, and the other is use of a complex and sustainable landuse system for nature conservation, which is agroforestry. Farmer Managed Natural Regeneration (FMNR) is a rapid, low cost and easily replicated approach to restoring and improving agricultural, forested and pasture lands. The study was conducted in low (500-1500 m.a.s.l) and mid (1500-2300 m.a.s.l) agro-ecologies of Tigray region on Farmer's perception on FMNR. Purposive sampling was used to select three peasant associations (PA's) from each agro-ecology. Simple random sampling was used to select respondent household heads practicing FMNR. There were 15 respondents from one PA. The total respondents used for the study in both agro-ecologies were 90. All the data required for the study was collected through in-depth household survey and group discussion. Multiple response, Chi-square and means were used to analyse the data. Half of the respondents 38(42.2%) had 21-30 years of FMNR experience. The 15(17%) of the respondents with FMNR experience were from low land and 23(26%) were from mid land agro-ecology. FMNR has been practiced for more than two decades in the study areas. Respondents motivated to practice FMNR due to training from experts in the lowlands 33(37.1%) while in the midland 26(29.2%) their motivation was neighbours success. In the lowland 44(49%) respondents main reason to practice FMNR was fuel wood and fruit collections while in the midland the main reasons were for fuel wood collection 45(50%), soil conservation 42(47%) and 42(47%) fodder. The result shows that FMNR has the potential in improving income of households and supports the households especially in providing fuel wood, food/fruits, construction materials and farm equipment's. Smallholder plantation forestry is on the decline in Ghana because most smallholder efforts have resulted in mixed outcomes in terms of plantation success and economic returns. Meanwhile, plantation forestry presents an opportunity to address livelihood needs and lessening the impacts of climate change on rural households. To reap these benefits, Ghana has plans to establish 25,000 ha of forest plantation per annum. At present, smallholders do not seem ready to engage in this plan. Based on case studies in three forest districts, this study explores: (i) mechanisms by which smallholders integrate forest plantations in their production systems, (ii) their motivations for doing so, (iii) incentives available to them and (iv) barriers to their operations and options for addressing these barriers for effective smallholders' participation in national plantation development efforts. The findings reveal mismatches between smallholders' motivation for engaging in plantation forestry and their current agroforestry practices. A situation exacerbated by limited availability of support systems to smallholders engaged in plantation forestry. The study recommends the urgent need for investments in relevant support systems, including forestry extension to prop up smallholders' efforts. The increasing global demand to produce more food to support a rapidly growing human population has resulted in adverse ecological effects including land degradation, which threatens the livelihoods of smallholder farmers. In Ethiopian drylands, the effects of land degradation are more severe due to prolonged drought. Although smallholder farming systems are heterogeneous and dynamic, conventional land restoration technologies have focused on promoting few blanket restoration technologies informed by coarse-resolution assessments, rather than customizing technologies to local context. This has resulted in technologies not being locally adapted and effective, thus leading to low adoption of restoration options which leads to continued land degradation. We explored the role local knowledge can play in adapting land restoration options to local context and farmer circumstances. Local knowledge was elicited and analyzed through systematic knowledge-based systems approach (AKT5), on 95 smallholder farmers. Three catchments at different status of restoration were selected through paired catchment design in Samre, Northern Ethiopia. Results showed that farmers had an in-depth understanding of land degradation drivers, processes and effects across four scales namely regional, national, landscape and farm level. Farmers viewed land restoration as rehabilitation of already degraded land, and not prevention of degradation of non-degraded land. This reveals knowledge gaps, which should be addressed to ensure restoration interventions are locally understood and accepted. Farmers reported that some restoration approaches involved conversion of one land-use category to another, which calls for adaptive management approaches. Farmers' knowledge about land degradation and restoration varied with catchment, land-use categories and stakeholder categories. Farmers identified 12 contextual factors that influence the suitability of land restoration options to local context. Biophysical factors were soil erosion type, soil type, soil depth, slope of the field, field location along a slope and field size. Socio-economic factors were: livestock management system, land tenure system, labour, gender, technology and skills. This study also demonstrated that through their own experimentation and observations, farmers utilized their local knowledge to adapt and modify land restoration interventions to suit their needs and context. Hence the acquisition and analysis of local knowledge provides an effective mechanism to track iterative development of adaptation measures and to evaluate both positive and negative consequences resulting from these actions. Combining local and scientific knowledge can help to design, implement and monitor the performance of land restoration technologies to ensure successful scaling of locally adaptive, appropriate and effective restoration options which promote the delivery of multiple ecosystem services for diverse stakeholders at scale. zil, Brasilia, Distrito Federal, Brazil; 3 Mutirão Agroflorestal/ICRAF Brazil, Brasila, Distrito Federal, Brazil Designing agroforestry options tailored to the local context requires first assessing the key constraints and potentials in that situation, including biophysical characteristics, livelihoods strategies and access to resources, policies, and markets. Through a dialogue between farmers, technicians and local development agents (Miccolis et al., 2017), this study used a tool developed by ICRAF Brazil: PLANTSAFS -Planning and Evaluation for Decision-Making in Agroforestry Systems (AFS). Based on 40 indicators, the tool gauges farmers' access to different types of resources considered important for the long-term adoption and success of agroforests. Divided up into 6 main categories: human, social/political, physical, financial, environmental, and production systems, these indicators are scored on a scale of 1 to 5 and are explained by qualitative data from interviews. The tool was applied by ICRAF and partners in five different contexts in Brazil with the aims of: a) establishing a baseline for monitoring b) proposing improvements and agroecological management practices, c) providing guidance for designing new systems, and d) providing inputs to wider development interventions and proposing systems most suited to that regional context. Based on an aggregate analysis of these five case studies, we draw out lessons for increasing the adoption and success of AFS. The high degree of variability in key indicators between farms in the same context, i.e. where farmers have access to similar training, germplasm, and biophysical conditions, suggests that the human factor is determining to overall performance, and that systems design should be tailored to each family/farm. The main constraints to upscaling common to all five contexts were: low access to knowledge (extension) and labor for establishing and managing the agroforests, particularly more complex, biodiverse systems; low use of biomass-producing species to maintain nutrient cycling and soil conservation , leading to lack of mulch at key moments and decline of systems, lower availability of water at the farm level due to climate factors, and insufficient access to germplasm. Scant rural credit for agroforestry and farm equipment also occurred widely but varied significantly among farmer types. Overall, the more biodiverse systems tended to score higher in key indicators, especially food security, marketing, environmental indicators, and in avoiding drivers of degradation. Upscaling agroforestry in these contexts will thus require investing in capacity-building, strengthening value chains for key products, and supporting germplasm supply. In addition to farmer objectives, key considerations in species selection across contexts should be labor requirements, marketing opportunities and biomass production, ensuring that stories are occupied in different cycles, as well as resilience to climate change, particularly droughts. Mosquera-Losada M. R. (mrosa.mosquera.losada@usc.es)Crop production and Project Engineering, Univ. Santiago Compostela, Lugo, Lugo, SpainAFINET is a European Union funded project which overall objective of AFINET is the promotion and innovation of European Agroforestry (AF) through the development of a multi-actor interactive and innovation-driven network, based on successful sharing of practical experiences and existing research knowledge, applied to different contexts, climates and agricultural sectors. AFINET will modify AF systems design and management in order to increase the agricultural systems production and profitability to promote a sustainable land management throughout Europe. AFINET networking is based on nine Regional Innovation Networks in the nine countries where it is based where over 300 stakeholders meet every six months. AFINET first meeting aimed at asking farmers which are the main challenges to foster agroforestry in Europe. Among all, challenges could be summarized in four main topics: technical, economic, education and policy. Solutions to these challenges were discussed with all stakeholders and a provisional list of innovations was produced that has been validated in the third RAIN meeting. Innovation topics can be seen in Table 1 and the technical challenge can be grouped in several clusters: Livestock management, Lower story management, woody perennials management and horizontal innovation clusters for the technical challenge.Keywords: innovation, afinet, technical, education, policy. There are commonly two main reasons why agroforestry is a popular topic discussed in the context of rural development. Firstly, agroforestry is often seen to offer a balance between conservation and production in farming systems to provide socio-economic and ecological benefits, rather than either conservation or production systems in isolation. Secondly, agroforestry encourages smallholders to diversify enterprises and create resilient farming systems.Yet there is a gap between \"the ideal\" adoption of agroforestry and \"the fact\" that it is seen by many as difficult to optimise and not widely adopted. Government policies relating to building food security in developing countries,such as in Indonesia (where farmers are encouraged to grow rice and corn), still tend to lead to encroachment into forest areas and specialised farming systems geared towards maximising yields of commodity crops. This focus on agricultural production alone has led to severe land degradation including the erosion of farm soils and the siltation of rivers, the drying up of springs, and loss of lives, housing and other infrastructure due to severe flooding. Two research and development projects have been exploring an innovative approach to enhance extension efforts so that agroforestry is more widely understood and adopted by smallholders in Indonesia. This presentation (and associated papers) will discuss the design of the alternative extension approach used by the two projects, discuss the evaluation data collected about the learning impact of the extension approach and the implications for the adoption of agroforestry in Indonesia. The presentation will conclude with the key elements that have been identified about the innovative approach to agroforestry extension among smallholders, which include: close involvement of the local community; capacity building of smallholders' local institutions; framing the advantages within the local market context; and forging strong partnerships between smallholders, industry and government.Keywords: Rural development, extension, agroforestry, adoption, sustainable farming. Adoption and scaling up of simple and smart agroforestry practices in degraded areas such as Ethiopia plays key roles in enhancing productivity and resilience of agricultural systems and ecosystems while improving livelihoods of local communities. However, ecosystems and agricultural areas in Ethiopia are threatened by major challenges including land degradation, climate change, free livestock grazing and population pressure. This leads to declining ecosystem health, yield variability, crop failure and food insecurity. This also contributes to low buffering capacities of the local community with increased proneness to climate shocks. A study was, thus, conducted in Ethiopia to identify the key underlying drivers contributing to the problems, and explore best-fit, simple and smart agroforestry technology and scaling approaches. Survey methods substantiated by satellite image analysis were used to understand the Land Use and Land Cover (LULC) dynamics over time and their associated impacts.A multi-scale analysis approach was also used to analyse the data. The result indicated that Rural Resource Centre (RRC) approaches which built on and strengthened local practices were best fit, simple and smart options for enhancing accelerated scaling up of agroforestry practices in Ethiopia. The approaches also contributed to improved restoration of degraded landscapes (by 78%); gully reclamation (by 82%); four fold increase of vegetation cover (e.g., species density increased from 970 to 3310 individual plants ha-1); more honey bee production (from 5 to 75 kg hive-1 year-1); improved year round water availability (e.g., reduced women's travel distance to fetch water from 5 to 1.5 km); increased feed availability (from 3 to 7 months year-1); more rural employments and better income (above the poverty line household-1year-1). Adoption and scaling up of agroforestry contributed to improved overall results of this study provide evidences and insights on best-fit, simple and smart scaling up approaches for supporting design of informed policy-and decision-makings important for enhancing accelerated scaling up of agroforestry practices at national and regional levels. In Ghana, the cocoa sector employs over 800,000 smallholder farm families and contributes around US$2 billion in foreign exchange. It is an essential component of rural livelihoods and it's considered a 'way of life' in rural communities. The countries food security status is under threat due to the declining of per capita farm income and land and soil degradation. Between 2005 and 2010, the rate of deforestation was estimated at 2.19% per annum. On average, cocoa land area increases by 30,000 hectares annually with no evidence of decline. Also no shade cocoa systems have become the new cocoa production system with rich natural forest is rapidly giving way to cocoa farms. There is a knowledge-gap on understanding interactions between native tree species and cocoa yield as well as empirical evidence on this matter. The research therefore aims at determining the yield trends in cocoa under different forest-tree levels. Multi-stage sampling techniques were employed to selected 200 cocoa farmers in the Western Region of Ghana. Descriptive statistics and inferential analysis were used to analyze the data. A yield curve model was also adopted to determine the yield trend for various cocoa agroforestry systems. From the analysis, the R square values obtained under the no shade, low shade, medium shade and heavy shade were 77%, 61%, 53% and 56%, respectively. The highest average yield per hectare was attained for the no shade in year 16 (794 kg ha-1), for the low shade in year 22 (696 kg ha-1), for the medium shade in year 19 (735 kg ha-1) and for the cocoa under heavy shade in year 15 (546 kg ha-1). The no shade system showed the highest yield but there was a sharp fall in the yield compared to the low to medium systems.The conclusion of the study is that, although the no shade cocoa system has higher yields, it is input demanding, environmentally unfriendly and has a short productive life. Therefore, cocoa agroforestry system can be regarded as a win-win practice as it can support sustainable income of farmers with long years of cocoa yield, mitigate climate change and contribute to adaptation to these changes. With sustainable yield over time as a result of the cocoa agroforestry systems, the country benefits immensely and could contribution greatly to the GDP as well as improve livelihood of poor cocoa farming households. This therefore calls for the need to create an institutional system, tools and policies to rehabilitate the cocoa landscape; conserve and expand forests, forest buffer zones and corridors and incentivize cocoa farmers to adopt cocoa agroforestry system since it is an environmentally friendly practice.Keywords: Cocoa agroforestry, Deforestation, Ghana, Livelihood, Poverty Reduction.The exercise of data collection is indispensable to the Trees for Food Security II project where research is evidence-based and dependent on information collected from farmers. The project is managed by ICRAF offices at country level (Ethiopia, Uganda and Rwanda) in collaboration with respective development partners. Open Data Kit (ODK) which is a suit of methods that allow data collection using mobile devices, transmission and aggregation of data to an online server was adopted as a way of improving data quality with an aim of providing timely, credible and useful results and recommendations for the farmers. Now in the second year, we had a chance to analyze challenges and opportunities associated with the decision. The challenges observed are; 1) the process of developing questionnaires to be used is time consuming at the initial stages of the project, 2) availability and project awareness amongst the enumerators from partner organization, 3) technological awareness on how to fill the questionnaires and submit data, 4) data sharing concerns in terms of ownership and quality checks, and 5) time lapse between implementation and monitoring of project activities. However various opportunities in use of electronic data collection have been scouted in the project and include; 1) collecting research data in the geographically dispersed environment requires minimal coordination to ensure completeness, accuracy, and timely transmission of the data, 2) electronic systems allow use of transparent decision and improved data entry and data integrity, 3) can be integrated with webform option which can allow desktop data entry for data collected using paper format, 4) timely data analyses become possible which can inform the project early enough on key indicators for improving the process, revising project objectives or adding new ones from the observations, and 5) data archiving is improved and data losses minimized. In conclusion, use of electronic data collection offers a good opportunity for managing project involving multiple organizations with respective staffs as it allows centralization of the science at timely and cost-effective way. However, we observed significant challenges associated with the process and the study therefore offers a great insight into how data collection and monitoring of intercountry projects involving multiple partners can be effectively managed to improve scaling up of agroforestry options.Keywords: Electronic data collection, Agroforestry, Data quality, Small-holder farms, Eastern Africa.L8 Scaling up Socio-economic impact of farmer managed natural regeneration in the shea parklands of Uganda.Odoi J. B. 1 (juventineboaz@gmail.com), Gwali S. 1 , Odong T. L. Farmer Managed Natural Regeneration has been linked with low-cost land restoration technique used to combat poverty and hunger amongst smallholder farmers by increasing food and wood resource production and resilience to climate change impacts (Raij 2016). Here we discuss how smallholder farmers in Uganda's shea parklands practice and benefit from farmer-managed natural regeneration of woody species in their fields. Shea nut tree (Vitellaria paradoxa) Karité (in French) is a commercially useful indigenous fruit tree species found within Sudano-Sahelan Africa. Shea tree provides fruits, chocolates, oils, income, cosmetic and medicinal ointments, hair cream, soaps illuminant and water proofing materials, fuels protein and minerals that subsidize household food and nutrition during the hunger season and various services (Jasaw et.al. 2015). Households earn between US$50 and US$150 annually from the sale of such products. It also plays an important contribution in nutrient recycling when the leaves and fine roots decompose. The shea tree parklands result from naturally occurring individual trees that are protected by farmers when clearing their fields, thus creating parkland systems (Boffa et al., 1996). Farmers in the Uganda's shea parklands practice FMNR (77%) of economically viable woody species on farm resulting on realized increased profit per unit area over time. Although most of these species are found scattered on the farmland (67%) due to sporadic distribution and farmer random selection methods (Gwali et al., 2011), there is increasing woody species population on farm over the last ten years (74%). This is due to the established additional supportive instruments (bi-laws) that bans cutting and burning the species for charcoal. Seventeen (17) different crop types were registered to be intercropped with shea trees among which beans (30.4%); cassava (24%); maize (10.4%); sorghum (8.5%) and finger millet (4.9%) were the major crops reported to be mostly intercropped. These food crops are preserved for use even during dry seasons for food security. Meanwhile Combretum, Acasia; Terminalia; Albizia species; Grewia molle and Vitex doniana are some of the commonly naturally regenerating tree species that grow with shea trees within the parkland. The AFINET project acts in nine European countries aiming at taking up available research results on agroforestry into agricultural practice. Portugal is one of those countries. One of the main tools developed by the project is the creation, at each participating country, of one Regional Agroforestry Innovation Network (RAIN). For this purpose a multi-actor approach was considered, which is articulated by the figure of the Innovation Broker (IB).The development of the Portuguese RAIN started in February 2017. In order to guarantee the representation of the aimed stakeholders categories and a broad regional distribution, the registration process to the RAIN was largely announced by several communication channels.In addition, a direct invitation to key stakeholders was also made. Until February 2019 four RAIN meetings have been carried out. At this mid-point of the project, a SWOT analysis exercise was carried out in order to analyze current results and promote experiences sharing. The results show: Strengths -current interest on Agroforestry -large impact of the available communication channels, in particular social media -relationship to the EURAF member's community -high number of agroforestry systems and practices referred by stakeholders -awareness of relationships constraints between different stakeholder types -Innovation broker motivation and collaboration with other project team members Weaknesses -small impact at the national policy level -practical constrains to increase the implementation of activities covering a broader geographical distribution area -lack of expertise regarding all of the referred topics, demanding a significant increase of time to tackle them Opportunities -using the RAIN as the network for future projects related to the Agroforestry topic -increase communication of scientific knowledge from science to practice -establishment of new experimental and demonstration trials in collaboration to farmers -basis for the creation of a national Agroforestry association. Threats -lack of funding for RAIN activities sustainability after 2019 -large scope of subjects approached by the RAIN members, that implies a reduction of the fraction of topics considered in total and increases the demand of funding for future activity -concentration of efforts in already well established and recognized agroforestry systems in Portugal -lack of institutional awareness to the agroforestry concept (forest and agriculture usually approached like two separate topics).The importance of establishing thematic networks in Portugal is evident, and stakeholder's engagement has been remarkable along these two years. The maintenance and amplification of the RAIN activities to a larger percentage of topics requested my RAIN members are the main challenges still in need of further reflection. This is only possible with the involvement and colaboration with other research institutions in order to guarantee a multidisciplinary approach to the raised questions.Keywords: AFINET, RAIN, Innovation broker, Portugal, stakeholder. Rival A. (alain.rival@cirad.fr)CIRAD, Jakarta, Jakarta Selatan, IndonesiaReforestation experiments and rehabilitation of riparian areas are key in retaining wildlife and improving local ecosystems in plantations-dominated landscapes [1; 2]. In parallel tree crop plantations are increasingly implementing agro-ecological approaches which rely on environmental services [3] thus asking fo planting designs to change and integrate forest species.In the Sabah state of Malaysia, several groups including members of the PONGO (Palm Oil NGOs) Alliance have restored and reforested riparian areas for more than 10 years using native forest species including pioneer ones that quickly grow a canopy and fruit trees that provide food to wildlife.In parallel, agricultural practices in plantations are changing as a response to growing social and environmental concerns. Plantation management increasingly relies on agro-environmental services, which means that basic agricultural functions such as soil preservation, pollination, or pest control can be performed by living organisms (plants, insects, microbes…) [3].Changes in practices will have to involve new planting designs aimed at mixing selected forest species with plantation crops. A series of measurements will help in characterizing both the performance and the resilience of mixed agroforestry systems compared to traditional planting designs. Changes in wildlife diversity and abundance must be monitored together with the impact of agroforest designs on yields and resistance to both biotic and climatic stress The AFINET project is a thematic network dealing with agroforestry across 9 European countries. In Belgium (Flanders), and the other 8 countries, a multi-actor 'Regional Agroforestry Innovation Network' (RAIN) was created. The strengths of the Flemish RAIN lie within 1) its opportunity to expose relevant information from other projects to end-users and 2) the diversity of involved practitioners (starting and more experienced farmers), covering a range of farming models (community supported agriculture, organic, non-organic) and systems (arable and livestock). Although this diverse network leads to just as many different perspectives on agroforestry, the need for more information on fruit and nut trees in agroforestry systems was in general identified as the most important challenge during the Flemish RAIN meetings. Building further on this observation, we gradually invited thematic experts to join the RAIN and/or share their expertise by hosting RAIN members on their farm or by presenting their experiences as an invited speaker. Offering information specifically targeting the demands of the stakeholders yielded an active and motivated network. The Flemish network is establishing synergies with other national agroforestry projects and projects abroad (France, Netherlands), and gathers relevant information supported by examples from practice. This information is made readily available to all practitioners, improving the successful implementation of agroforestry in Flanders.Keywords: AFINET, participatory approach, knowledge exchange, stakeholders, synergies. Barriers to uptake of agroforestry in the UK Westaway S. (sally.w@organicresearchcentre.com), Smith J.Organic Research Centre, Newbury, United KingdomAgroforestry farming systems are receiving increasing recognition across Europe for their economic, environmental and welfare benefits as we look for ways to sustainably intensify agricultural production and increase resilience to climatic uncertainty. Agroforestry in the UK offers great potential, a few pioneer farmers have developed successful, innovative and profitable agroforestry projects on their land. There is increasing interest in the positive effects of trees on agricultural land, demonstrated by the success of the sell-out first national Agroforestry Conference in June 2017. A 2016 survey (Stocks, 2016) of more than 1,100 farmers asked how trees could benefit them and what the main challenges to future establishment of trees on farms were. Wildlife protection, shelter for livestock, wood fuel and soil protection were the top benefits of trees identified by farmers, with a lack of financial help and advice the main barriers to tree planting. However, the number of people talking about agroforestry doesn't match the number of people implementing new systems. As part of the EU-funded AgroForestry Innovation NETworks (AFINET) project we wanted to find out why and how to help farmers who are interested but not yet doing agroforestry.To understand the limiting factors and barriers to uptake we created a short online survey. Out of a total 132 responses, 46% were farmers. Barriers to establishing new agroforestry systems were further explored via three multi-practitioner stakeholder workshops. These workshops, held in different locations aimed to get practitioners with a common interest in trees on farms together, build on the survey results and establish a baseline of common bottlenecks to address. The main areas identified matched those from the survey and were:-A lack of demonstration farms, case studies and pioneers, for experience-based learning, a need to build local networks and partnerships to facilitate this learning.-A requirement for detailed cost/benefit analysis of different systems, information on the economic implications of introducing trees to farms and grants and funding sources available.-Access to advice on specific technical and management issues, for example the nutritional properties of tree fodder, efficient and economic tree protection, machinery to harvest tree products efficiently.-Lack of clarity around what is permitted under cross compliance regulations, what support is available and how this may change. Issues around land tenure and tree planting, how to make the case for trees to landlords. The interest in agroforestry by farmers in the UK is high, but as evidenced in our practitioner survey and feedback from workshops there are knowledge gaps to be resolved and a need to provide more opportunities for peer to peer learning. Through AFINET we are bridging these gaps to help farmers overcome perceived obstacles to agroforestry for the benefit of their farming business, environment and productivity.Keywords: agroforestry, barriers, farmers, tree planting. Adopting the future of land useGreat brands for great lands: certifying agroforestry products and systems System' (PGS), 'Internal Control Systems' (ICS): all these voluntary market tools aim to provide a credible guarantee for markets seeking sustainable or legal products. In the case of agroforestry systems, especially with smallholder farmers involved, this guarantee shall be a tool to increase smallholder access to markets. However, often it is seen as a barrier and only appropriate to tion processes to demonstrate organic or good agriculture practices for food and sustainability for forest-based products. The question is: How to makeLe Corum, Montpellier, FranceOkia C. 1 (C.okia@cgiar.org), Isubikalu P. 2 , Kabwe G. 3 , Masikati P. 4 , Sekatuba J. 5 , Kasonde K. 6 , Kimayo J. 7 , Oduol J. 7 , Hughes K. Smallholder farmers are responsible for most agricultural production in Sub-Saharan Africa but most of them remain poor and marginalized. Efforts have been made to engage these smallholder farmers to increase productivity of their agricultural systems and improve access to markets. Traditional approaches, such as the top-down extension systems have not yielded much. Value chain approaches are emerging to guide economic growth in agriculture. This notwithstanding, opportunities for smallholder farmers especially women to benefit from value chains remains elusive. The World Agroforestry Centre (ICRAF) in collaboration with national and international partners are implementing a project focusing on developing value chain innovation platforms to improve food security in Uganda and Zambia. The project aims to ensure that farmers improve productivity and gain access to better markets through value chain innovation platforms. Through baseline studies and livelihood analysis, the project identified three priority value chains in both countries (coffee, dairy and honey in Uganda, and local chicken, soy beans and Solwezi beans in Zambia) with potential to improve livelihoods of smallholder farmers and with special consideration to women. Three potential models for commercializing smallholder agriculture including linkage with private sector actors, co-financing of critical inputs and boosting productivity have been identified and are being tested for cost effectiveness and fine tuning through planned comparisons. Envisioning of innovation platforms (IPs) and supporting them to develop business plans as well as linkage to financial institutions to access cheaper credit are helping to bridge the farmer's financing gap. Training of IPs in social and technical skills has been undertaken to boost social cohesion and improve collective action. There is increasing appreciation of IPs by government and other stakeholders as a valuable approach for smallholder agricultural transformation and achieving food security. Evolving and strengthening cooperative approach for the agroforestry farmers in Bangladesh: lesson learn from Japan Islam K. K. 1 (kamrulbau@gmail.com), Fujiwara T. 2 , Sato N. 2 , Hyakumura K. Being an agroforestry based country, the farmers of Bangladesh do not receive proper returns from their products due to some obstacles blocking the way to achieve the ultimate goals.The study tries to identify the major challenges of agroforestry products supply chain in Bangladesh and offer an alternative solution through the involvement of farmer cooperative within the experiences of Japanese cooperative model. The objectives were outfitted by two case studies, and the Bangladesh case clearly showed that the involvement of many intermediaries in agroforestry products supply chain was one of the main obstacles which stunted the outcomes of the agroforestry programs. The intermediaries have maximized their profit by buying the farmer products at low price and selling them back at higher price and resulted high marketing margin. While the second case study in Japan had articulated that the well-organizational, apposite functions and estimable welfare facilities of the farmer cooperative did not have the scope for intermediaries and make the farming system sustainable (Fig.). In spite of decline the coop's member due to the ageing problem, the farmer driven Japanese cooperative approach would be a good solution to tackle the middleman problem and make the agroforestry a sustainable production system in Bangladesh.Keywords: Cooperative, Marketing channel, Sustainability, Agroforestry, Intermediaries. Social and environmental issues including climatic changes, plant diseases and vulnerability of producers and smallholders, threaten worldwide coffee production and in particular Arabica coffee. Meanwhile, social and environmental requirements are increasingly at the heart of the consumers' demand. All actors of the value-chain have a clear interest in engaging in agro-ecological and social initiatives preserving ecosystems and offering decent remuneration to farmers through a sustainable production of a high quality coffee. Coffee/Cocoa agroforestry Business driven Clusters (CaFC) are part of such initiatives as a new organizational model to finance social and environmental innovations. Defined as local micro value-chains dedicated to sustainable production under agroforestry of high quality Arabica coffee, CaFC are based on an original organization orchestrated by a network of five types of stakeholders forming an Innovation platform: producers, roasters, brokers, investors and CIRAD for methodology and engineering. In some cases, certification agencies could be integrated to this platform. Based on a 1300 ha prototype project in Nicaragua (MATRICE) initiated in 2016 funded by the Moringa fund. We will describe the operational principles of CaFC, the respective roles of each stakeholder in such projects (Moringa, NicaFrance, CIRAD, producers, ECOM…), as well as the added-value for each of them, the consumers and the environment. In a context of both the falling real prices of coffee and the continuous contestation of certification systems to internalize social and environmental problems, we will discuss why CaFC could be a sustainable governance mechanism among stakeholders as well as an alternative traceability scheme in conventional but also in organic production of Arabica coffee or cocoa. Finally we discuss its possibility of extension to other contexts such as Vietnam or Cameroon through the Breedcafs H2020 European project.Keywords: coffee/cocoa value chain, cluster, agroforestry, innovation.For many generations, farmers in the semi-arid and sub-humid areas of West Africa have practiced a traditional system of land use called agroforestry parklands characterized by the deliberate maintenance of trees on cultivated or fallow land. Parklands have the potential to mitigate the effects of climate change by improving soil fertility. Through water tapping and prevention of nutrient leaching, trees help recover nutrients, conserve soil moisture and improve organic matter, while restoring soil structural properties. In addition, the trees in parklands, specifically their non-timber forest products (NTFPs), contribute to dietary diversity, food security and household income (Hill, 2014). Rural families in Burkina Faso have few opportunities to diversify their livelihoods and thus are vulnerable to climate hazards. Forest products are vital natural assets from which they can earn revenue through agroforestry value chains development. However, poor regulation of access rights and control over the tree resources and protection of parklands puts at risk the natural assets these communities, in particular the most vulnerable, are so dependent on.Recent forest laws [1] and legislation [2] in Burkina Faso are providing a supportive policy and institutional framework for the decentralisation and devolution of forest governance (FG), which in turn should enable rural communities' access, control and derive sustainable benefits from their local forest resources. There is an opportunity for NGOs, such as TREE AID, to support forest actors through FG processes that recognise the rights and duties of local user. Key principles of 'good' FG include participation, accountability, equity, fairness, transparency, local control & management (Paulson, 2012).Here we present the results of a quantitative study of 1,287 households based on a digital platform, built on open source software, called the Rural Household Multi-Indicator Survey (RHoMIS) [3]. The study shows that communities in the eight districts that adopted good FG principles generate up to 3 times more income, through the development of viable NTFP enterprises, compared to districts that are not yet familiar to FG processes. The comparative analysis also recorded better values concerning the level of control of tree resources by women and young people in the eight districts. The promotion of good FG is an important condition for the sustainable expansion of NTFP value chains. The approach facilitates value chain development, including their access to adequate financing, which links household-level economic outcomes to the conservation-restoration of forests (Carpena et al, 2016).[ From Fork to Fork -Towards market integration for agroforestry and agroecology Balaguer F. 1 (fabien.balaguer@agroforesterie.fr), Buresi A. There has long been felt a need to create an entity that could play the role of an agroecology innovation platform, able to integrate vertically the major players of the agroecology production/processing/distribution chains, and to reach out horizontally to a wide range of consumers, including across extended, ethically-oriented, institutions (schools, hospitals, enterprises canteens, etc.) Pour une Agriculture du Vivant (PADV) is a movement founded by private companies in direct relation with farmers associations and assisted by local organisations and advisory offices specialising in agroecology/agroforestry development. PADV is laying the foundations in France for an integrated and revolutionary agroecological production-distribution approach on a large scale, from corporations in the private sector and high-level political commitment, to engagement from farmers.As PADV provides services to food companies by helping them creating sustainable distribution chains and identifying producers that fit specified agroecology and agroforestry standards, the additional value is being reinvested in applied research and assistance to farmers for implementing permanent soil cover, low soil disturbance, low phytosanitary interventions and tree reintroduction in landscapes. By bringing the subject to a much wider audience, this project is a major opportunity to involve every consumer in agroforestry development and to go beyond the frontiers of specialist researchers and agronomists.Pour Agriculture Du Vivant -A collaborative initiative to value farmers' efforts in their transition towards agroforestryKeywords: agroforestry, agroecology, agri-food chains, consumers, society. The Programme for the Endorsement of Forest Certification (PEFC) is an international, non-profit, non-governmental organization dedicated to promoting Sustainable Forest Management (SFM) through independent third-party certification. PEFC works throughout the entire forest supply chain to promote good practice in the forest and to ensure that timber and non-timber forest products are produced with respect for the highest ecological, social and ethical standards. Thanks to its eco-label, customers and consumers are able to identify products from sustainably managed forests. Expanding PEFC's scope from trees within forests, to include trees outside forests (ToF), is an important consideration for advancing sustainable landscapes and rural livelihoods. The term ToF refers to all trees that are grown outside the nationally \"designated forestland\" [1]; and includes both intensive and extensive, agriculture or settlement production systems. Within the scope are trees growing on private lands in fields and on field-boundaries in orchards and in common and state non-forest lands in parks and gardens, along roads, canals and railway lines in rural or urban areas etc. Sustainable management criteria and guidelines for ToF are necessary to achieve certification, since this land use is growing in importance, and could represent at least 27% of the global area of tree-based systems (Lawson 2016). The management guidelines should be administered in a similar way to forestry. These would form the basis of future certification of products from sustainably managed agroforestry systems. This approach will bring agroforestry to the attention of consumers, while emphasising its importance for the sustainable production of food, timber, fuel and environmental services.International requirements for agroforestry certification under the PEFC system have been available since the approval of PEFC's revised benchmark for Sustainable Forest Management at international level (14/11/2018), expanding the benchmark's scope and including an Appendix for ToF interpretation. ToF standards at a national level can be developed and later endorsed by PEFC International. The next step that is required on the national level would be the decision to either develop a new ToF standard or to adapt an existing FM standard to a ToF scope. Regardless of whether a new standard is developed or whether an existing standard is adapted to agroforestry, in order to achieve PEFC endorsement, the process needs to follow PEFC's standard setting benchmark. The oral presentation will outlines the process to ensure wide and balanced stakeholder engagement and pilot testing in the development process.[1] Using the national thresholds of minimum area, minimum tree height and minimum crown cover reported by countries under the terms of the UN Framework Convention on Climate Change. Expansion of cocoa fields is the main cause of deforestation in Ivory Coast which is the largest world producer of cocoa. When cultivating a new cocoa field, local farmers maintain a tree cover the first years to grow the young plants and clear cut all the forest trees within few years. To mitigate this important threat for biodiversity and carbon stocks of the few remaining forests of Ivory Coast, our aim was to develop and test a Payment for Environmental Service (PES in order to encourage local producers to preserve a forest cover in their existing cocoa fields. We focus our work on old cocoa plantations with remaining trees and excluded those originated from recent deforestation. An organic cocoa cooperative was created to deal this cocoa production from voluntary farmers and an agroforestry premium price according to a threshold on forest trees' basal area (a proxy of carbon stocks) was introduced through carbon payment from the client. Moreover, the cocoa is certified organic which guarantees another premium price to the producers in addition to the agroforestry one. Our results show that those premium payments represent an increase of 61% of the farmers' revenues from the certified fields. This significant increase due to the combination of organic and agroforestry premium prices compensates the decrease in yields due to the preservation of the forest cover.We observed so far that those premium prices are a sufficient incentive for the producers to maintain the forest cover. Those first results are encouraging and should be strengthened by the refinement of the monitoring system to ensure the respect of the agroforestry threshold. Such incentive is expected to provide a sustainable mean to encourage farmers not only to maintain their actual trees on their cocoa fields but also to stimulate new tree plantations on some of their other fields.Keywords: cocoa agroforestry, organic certification, deforestation, premium prices. The first step to making feasible certification processes for agroforestry-based production systems is to design measurable standards. Due to wide variation in agroforestry applications, ideally such standards would allow for endless variations in agroforestry practices while also reflecting likely desirable ecosystem service outcomes. We will share a proposed framework and measurable criteria for an agroforestry standard that could potentially be implemented as a standalone standard or built into existing agriculture, forestry, or resource conservation certification programs. This research is motivated by a growing interest in regenerative agriculture and efforts to certify regenerative practices. We examined how agroforestry practices can advance regenerative agriculture's five core environmental concerns: soil fertility and health, water quality, biodiversity, ecosystem health, and carbon sequestration. Next, we reviewed a subset of certification programs, standards, guidelines, and associated scientific literature to understand existing efforts to standardize agroforestry. We determined that development of an agroforestry standard alongside current efforts to certify regenerative agriculture offers an opportunity to leverage common goals and strengths of each. Additionally, we determined that there is a lack of standards with measurable criteria available for agroforestry, particularly for temperate environments.Measurable components of a regenerative agroforestry criteria. Agroforestry systems can be configured in a variety of ways. This generic illustration depicts a system arranged in rows as is commonly done in many agroforestry practices such as alley cropping, windbreaks, and riparian forest buffers. With ten years of experience, PUR Projet has built up a thorough methodology for sustainable agroforestry projects and supply chains creation, development and strengthening.Internally-elaborated tools enable staff to identify socio-environmental stakes at various steps of a value chain, list and prioritise potential solutions to those stakes, assess the practical feasibility of such initiatives, and regularly evaluate the compliance of rolled-out projects against key criteria for impact. All those assessments allow us to collaboratively build relevant agroforestry projects (40+) for both companies and the farmers supplying the raw materials, and suggest solutions for continuous improvement. PUR Projet's model for project development is community-oriented, which means that socialisation and trainings are organised with interested farmer communities to ensure acceptation of the potential agroforestry project locally, but also the application of good planting and maintenance practices over the long term. This is done through the PUR Field Schools methodology, a set of trainings and games that help PUR staff and local technicians animate trainings and workshops with farmers.When designing the project, planted species are carefully selected according to expressed and identified local needs, in order to increase and diversify revenues (according to a revenue increase model), help enhance crops' quality and resilience to climate change effects, etc. Planting models are elaborated following a landscape approach to generate impactful benefits on the environment and surrounding communities.Coordination with the sponsoring enterprise is also needed to align field activities with the sponsor's business expectations and constraints. And because sustainability of the projects is key to reach the expected impacts, companies are encouraged to commit over the long run, through solidarity sourcing contracts and the funding of impact studies for example. Depending on the risks encountered along the value chain, we may also encourage the implementation of innovative technologies, for ex. blockchain traceability or audits of intermediaries thanks to our internal Sustainable Supply Chain Assessment tool (SSCA©, that builds up on international socio-environmental standards).An effective way to boost sponsoring partners' engagement is to create links between them and the project, notably through field visits and stakeholders' meetings, but also effective and trustworthy reporting. To this aim, PUR Projet has developed several tools that enable to collect, analyse and communicate field data. This includes but is not limited to registries and GPS tracks that monitor planted parcels, planters and planted trees; the economic valuation of PUR Projet's agroforestry projects' potential impacts; or automatically-generated infographics.Developing and applying relevant methods and tools is therefore key to educate and engage all actors and boost agroforestry in production systems.Keywords: value chains, methological tools, data management, sustainable production systems, stakeholder engagement. In 2018, the FFEM financed a study of agroforestry projects with focus on the cocoa-timber agroforestry systems in the Congo Basin and West Africa. We focused our interviews and observations in Cameroun and Cote d'Ivoire: two countries with contrasting trajectories in the cocoa and timber sectors. 30 entities have been met (6 timber companies, 3 chocolate industry, 7 research center and forest authorities, 4 international cooperation agency, 5 NGOs, 2 certification bodies, 3 agroforestry fund) and 16 projects have been analyzed*.Major observations:-A large range of association schemes are implemented on a trial stage at small-scale.-For the moment, the foresters are engaged in plantation projects with chocolate industry, rather to meet compensatory reforestation obligations and not a goal of profitability and long term sourcing modalities.-The cocoa/timber plantation system with a purpose of wood production and profitability is an innovative approach in these countries. There is a convergence of interest, even early signs of a movement bringing together chocolatiers and foresters around common issues: climate, sustainable access to resources and livelihoods.-For timber industry, the cocoa + timber model can meet the requirements of FSC/PAFC forest certification, regarding the needs of livelihood projects for neighboring populations.-The cocoa + timber + annual crops and fruit species model can also be used as a basis for ecological intensification, climate smart agriculture, also leading to organic certifications, income diversification and payment for ecosystem services.-The development of fair trade cocoa in West Africa can lever on production systems transformation from single cropping to agroforestry: thanks to the guaranteed minimum price, to the development reward and to the multi-year commitment of buyers/importers/chocolatiers, certified cooperatives develop significant support capacities for their member producers.The success for «cocoa/forest plantation» projects must suppose organizational, technical and economic agreement between the farmer (who plants cocoa and trees and ensures the maintenance of the agro-forestry system), the cocoa buyer and the wood buyer. As in any innovative strategy, obstacles must be overcome. In our case, there are conditions to create: access to quality seedlings, technical support for good maintenance of tree species, adapted financial products and adaptation of the existing legal framework. These elements together can lay the foundation for a strategy for early payment for future timber resources, based on a sustainable partnership between cocoa farmers and foresters. These findings have been shared with the \"Cité du développement durable\" (France): 20 institutions involved in sustainable development and international cooperation. Many of them work on cacao agroforestry from different angles (agronomic, adaptation to climate change, agro-ecological transition, fair-trade) and will join their effort.Keywords: Timber, Cocoa, West-Africa, Fairtrade. Kodagu district in India is part of the Western Ghats, one of the hotspots of biodiversity in the world. The district is one of the largest wooded region in the country with over 80 per cent of the area under tree cover. It comprises of diverse natural forests managed by state, agroforests managed by farmers and sacred groves managed by local communities. The diversity of ecosystems, associated species and their management by local communities have contributed to make Kodagu among the most diverse landscapes in the tropics. As is the trend in many tropical landscapes, landscape dynamics due to changes in land use and land cover has impacted the density and diversity of biological diversity.Valuation of ecosystem services and providing incentives to farmers following sustainable practices was attempted as a tool to promote conservation. Studies were undertaken under CAFNET project funded by European Union to value the ecosystem services and look at possible mechanisms of payments to farmers in a coffee based agroforestry system. It indicated that coffee agroforests contribute significantly not only to economic development of the farmers, but also ecologically by contributing to key ecosystem services in terms of water, carbon storage, biodiversity conservation, pollination services and ecotourism. But it found that these diverse agroforestry system are undergoing simplification due to reduction in number and diversity of shade trees in coffee plantations to increase productivity of coffee crop by converting from shade grown to sun grown coffee production system. Hence an attempt was made to explore the possibility of incentivising the cultivation of biodiversity friendly agroforestry practices through eco-certification of farmer collectives. Though incentivising farmers through collectives showed tremendous opportunities, our experiences suggests that there is a need to ensure that these globally driven certification mechanisms need to be modified to suit the local situations where regional stakeholders can come together to workout payment modes and mechanisms. We share the first time effort undertaken in the country to conserve and sustainably manage natural resources involving multi-stakeholder approach aimed at conservation using the principle of ecological economics.Keywords: Farmer collectives, Landscape labelling, Green tax, Corporate social responsiblity. Agrobranche aims at studying the possibility of strengthening the economic model of the agroforestry by improving the valuation of the intermediate biomass in the new domains of bio-based materials and chemistry. This objective answers a double purpose: Agroforestry management requires regular cuttings of branches for the control of the shade and the influence of trees. Branches constitute a resource available throughout the life of trees, very few harvested today.For the partners of the industrial development, it is the possibility to benefit a resource of quality compatible with the classic agricultural productions, and safer in terms of supply. Agrobranche will identify the best segments for the agroforestry systems with a comparison between the various uses and to dread the relevance of these agroforestry products among the set of resources mobilizable for these segments. Among the aimed segments, rigid / semi-rigides insulations with wood, particle boards and composites wood-polymer for the « material » way and extractibles molecules for the «green chemistry» way will be particularly envisaged as ways of promising valuations.The works which are going to be led by our consortium including agricultural professional organizations, research laboratories and companies, aim in : Defining agroforestry products likely to contain substances extractibles of interest, Qualifying the industrial potential of valuation of the agroforestry chips for the new markets Identifying the standard of the agroforestry chips meeting the needs of companies for a given application and an organization of the sector to optimize its development and profitability, defining on one hand the upstream chips production ways and on the other hand the downstream technological ways dedicated for fibers and molecules extraction, The main asset of Agrobranche is the concern to connect the needs between research and industrial sectors with an agroforestry product with strong agroecological value, without any competition for the agricultural productions. By this way, we avoid the frequent stumbling block of the green chemistry projects based on rival productions and\\or on limited resources or little long-lasting, even few sustainable from an energical point of view.Keywords: green chemicals, chips, molecule, timber, pannel.References:1. Bono P. et al., (2015). Les nouveaux champs de recherche et développement pour la valorisation des 2. FRD/ADEME, Evaluation de la disponibilité et de l'accessibilité des fibres végétales à usages maté 3. Kebbi-Benkeder Z., Colin F., Dumarçay S., Gérardin P.. 2015. Quantification and characterization o 4. Marchal R., Kouakou S.-S., Brancheriau L., Candelier K. Introducing trees into cultivated fields t 5. Thebaut M., Pizzi A., Dumarcay S., Gérardin P., Fredon E., Delmotte L. (2014). Polyurethanes fromIn many tropical countries, agroforestry systems provide both services for agriculture and for non-food economic sectors (housing and energy).Since six decades, European countries, including France, have massively excluded trees from the fields and crops in order to intensify mechanized agriculture. But the current agro ecological transition reverse the trend through the design of new agroforestry systems. Nevertheless, French farmers are still to be convinced about the economic reliability of such systems, building their agricultural models on an annual income, which is not so easy with trees that cost annually making economic returns only every few years. Different ways exist to reduce these misgivings, among them the integration of trees products into conventional wood market or to some niche markets. In parallel, wood or chemistry industries are to be convinced of the interest to harvest such woods.Trees growing conditions are very different in agroforestry and in forests and so have a large influence on wood qualities that we currently assess making comparative measurements of mechanical, physical and biochemical properties between agroforestry and forestry woods for some given wood species. Agrpforestry farmers having to prune trees in order to control the light flux to the crops, they harvest every year a quite large volume of branches, valorizing them making mulching or energy. But, according to literature, wood of branches shows higher rates of polyphenols than wood of trunks and can open some new markets for branches.In the framework of the project \"Agrobranche\" financed by the French national agency for environment (Ademe), we screen biochemical contents of branches of different sizes from four species collected in two types of agroforestry systems: interplot systems (oak and chestnut); alleycropped system (poplar and walnut). We make first NIRS qualification on branches and tests of natural resistance to decay. Then we chipped the branches before processing chemical extractions and their qualification using UPLC-ESI-DAD-MS and CG-MS analysis in LERMAB, Nancy. For oak and chestnut, we have make comparison of extractives composition and rates between branches and wood of the trunk of the same trees.The comparison of extractives composition show a higher biochemical variability in wood of branches than in trunks. NIRS measurements make very effective prediction of the extractive composition determined by direct measurements; it seems possible to develop a NIRS-based rapid and non-destructive method to assess branches biochemical value directly on trees into the crops. Woods with more extractives resist more to decay than woods from trunks. These results are promising for new valorisation of branches coming from pruning of agroforestry trees.Keywords: wood, bioproducts, branches. Kinomé is a social business that aims to improve communities' economic and human development via forests. Through this project developed in Tchamba (Central Region of Togo) with Triballat Noyal (France) and Inades (Togo), we intend to test an integral solution from fields to schools to address the challenge of agroforestry chains development, assuming that this matter underlines three major issues: agronomy, food and collective gouvernance.In term of methodology, we first designed an agroforestry model by adding Moringa trees in current local productions (corn, soy). Highly nutritious leaves and seeds would then be cooked by women and distributed in schools. Second, and to motivate stakeholder engagement, we have adapted the GQHD© (Global Quality on a Human Dimension© from the Ethical Leadership) to the context of Togo. This tool enables the analysis of actors' individual and collective interests. To feed this framework, we interviewed 600 students, 10 teachers, 20 producers and 10 women cookers with a holistic and participatory diagnosis based on the 7 fundamental needs (on the figure) assessment.Finally, we designed indicators to measure how this innovative value chain reorganization could address human development needs. This project was based on life-skills and social entrepreneurship dynamic allowing the repositioning of actors, creating strong partnerships and thus generating positive impacts to develop sustainable and fair solutions for local development. In stands of cork oak (Quercus suber L.), the extraction of cork is one of the main productive activities of agroforestry management. The current practice is to debark every nine years, and the question whether it is better to decrease or extend the interval between cork extractions arises very often for various reasons.WebCorky was developed as an online tool for decision support on the deferral or not of the debarking in a given stand. The web application projects the cork growth of a given set of samples with known caliber (measured before or after boiling), classifying it according to the industrial caliber norms. Cork quality, in the absence of a quality analysis of the samples, can be added through an empirical quality classification (editable by the user), allowing the calculation of the average stand cork value over the years, based on a price table (caliber vs quality) also editable by the user.The observation of the distribution of the caliber classes over the years, together with the quality classification and price table, provides the yearly projection of the stand value by evaluating its present value on an interest rate also editable by the user. By simulating for different cork value influencing factors, WebCorky lets the user quantitatively evaluate if the postponing of the debarking is the best option, i.e. if it brings added value to the stand and by how much. In India, trees growing in private lands in agroforestry, farm forestry, along the farm bunds and in homesteads, in orchards, in parks and gardens, along roads, etc in rural or urban area mostly in non-forests constitute Trees Outside Forests (ToF). Such trees are contributing in a big way in meeting domestic needs of industrial wood of the country. Being in informal sector, ToF remained as invisible resource to land use agencies and their value as industrial wood has not been properly assessed and realized. Though reliable data on production of industrial wood from ToF is not available, using its growing stock data annual potential production has been estimated as 69 million cum as reported by Forest Survey of India (ISFR 2017) constituting about 85% supply of industrial wood. Most of the wood production comes from agroforestry sector. Despite such a huge production from TOF resource, there are no sustainability adherence systems. As a result, Indian producers using TOF raw material are unable to tap the global market and fetch desired price. Farmers who hold most this resource get adversely affected.There are also problems with the domestic marketing of the TOF product which is often unstable and inconsistent. Further, being in private sector, there is a lack of uniformity in silvicultural, management and other operational practices. There is also no mechanism to access to the improved and best management practices which are essential for sustainable management.In the certification standard and scheme developed by NCCF efforts have been made to globally align with other certification programs. Since there is a cost associated with the certification process, care has been to simplify the standard without compromising with global conditions so that it remains within the reach of small and marginal land holders. The standard is fully voluntary and not legal. It is only for the benefit of tree owners interested in value addition.In developing the standard, representative from all stakeholders including farmers, woodbased industries, pulp and paper mills, governmental and non-governmental organizations, research organizations related to agroforestry and forest professionals were involved. The focus of the standard is on a. legality compliance, b. management plan and practices, c. health and vitality, d. maintenance and enhancement of productivity, e. socio-economic responsibility and f. conservation and environmental safeguards. In all there are 6 themes, 28 criteria and 97 indicators applicable to block plantations of agroforestry. Certification conditions have been relaxed for scattered trees with 6 themes, 16 criteria and 51 indicators. The draft of the TOF standard was on website for public consultation and then under pilot testing in the field. Based on the comments it was subsequently revised. The themes, criteria and indicators developed are subjected to modification based on local, national and global changing conditions.Keywords: trees outside forests, certification, management, agroforestry, stakeholders. New programs promoting agroforestry have emerged since the 2000s claiming a contribution to farmers' resilience. The objective of this study is to analyse the evolution of the value chain governance and its implications in terms of farmers' vulnerability reduction. The results are based on a detailed analysis of some thirty programs implemented by the firms holding the majority of market shares in cocoa and coffee sectors, a dozen of semi-structured interviews conducted with these firms, and farm level field surveys in Peru and Nicaragua.Our results show that cocoa and coffee sectors are facing new challenges on both the demand and supply sides : (1) there is an increasing demand for better quality products ;(2) the security of supply is threatened. This changing context is redefining the governance of cocoa and coffee value chains : industries downstream are developing partnerships with actors upstream to increase their control over their supply leading to an increased vertical coordination. Firm's position on the market determines the choice of coordination and agroforestry model to implement. The more the firms are positioned in niche markets, the more the link with the producer is essential and the more agroforestry is a central element of the partnership developed.Two key results emerged : (1) traders are becoming a key factor for the success of sustainable partnerships and ( 2) contract farming is creating an opportunity for more created shared value at farmers' scale.Typology of agroforestry partnerships in cocoa and coffee sectors (Authors) Can the certification of cork management agroforestry system in Sicily help to relaunch its future management?Sala G. 1 (giovanna.sala@yahoo.it), Brunori A. 2 , La Mantia T. The economic importance of cork oak forests is mainly attributable to the role of provisioning non-timber forest products. The history of human management of these cork oaks stands make them a perfect example of agroforestry system, which surface is totally included in the Mediterranean-climate zones with more than 2.3 million hectares.In Sicily, the surface covered by cork forests amounts to about 15,000 ha but the most of this area is not affected by cultural practices. The cultural abandonment of many cork oak stands threatens their survival because of the close link between the conservation of cork stands and its use for productive purposes. The abandonment reasons are related to poor enhancement of cork raw material. However, in recent years some surveys have verified the high quality of cork obtained in Sicily.It is therefore possible to revive the sector through the validation of the product but also the certification of the management processes of the cork, if it is coming from a certified sustainable management.Certification of sustainable management of the cork stands owned by a Sicilian cork company called Syfar, with the certification of the chain of custody for the manufacture of articles of cork, such as coarse grained cork sheets for thermal and sound insulation, allows the Italian company to sell its product at national level and abroad, for the market of \"green building\" that is looking for certified material from the ethical and the quality point of views.Keywords: Quercus suber, abandonment, PEFC, wild fire, sustainable management. Strategies for improvement of agro-forestry market practice in North Western India Shukla S. (shashank.shukla2010@gmail.com), Singh H.P., Rawat A., Chaudhary A. Silviculture & Forest Management, Forest Research Institute, Dehradun, Uttarakhand, India Agroforestry has appeared as a most enticing and viable approach for maintaining social, economic and ecological sustainability in India. Especially North western region's of Indian states i.e., Punjab, Haryana, Uttar Pradesh and Uttarakhand. Farmers of these areas often prefer crops with Popules, Eucalyptus, Melia, Dalbergia sissoo and Azadirachta indica species in their fields. Agroforestry wants some cost to be borne on the part of the cultivator, which includes purchase of saplings, planting and caring for the trees. But most farmers have little access to market information regarding timber demand and price; little knowledge of market specifications. Marketing of Agroforestry tree produce in North-western India is a three-tier system i.e. Farmer, middlemen/commission agents and saw mill contractors. Commission agents are more often involved in the process from purchasing of plantation, harvest and transport. This has adversely affected the value of wood and simultaneously the interest of tree growers. Keeping this aspect in view, present study was carried out focusing the demand and supply status of wood in Punjab State of India and developing market strategies for the future prospects.The studies conducted in the State of Punjab in the year 2014 under which market mechanism of farm grown wood, the wood markets/mandis in Punjab were surveyed thoroughly and the data on market channels, method adopted for auction in mandis, sizes of logs in demand, marketing expenditure including Kat (weight loss due to moisture), prevailing market prices of commercially important agroforestry tree species. The required information from State Forest Department collected. The collected information analyzed and suitable measures were suggested strategies to improve the market practices. These aspects discussed in the paper in details.It is suggested from the present study that to develop viable wood market enterprises, producers must improve their market position excluding the middleman, strengthen their organizational set up and forge strategic business partnerships with the state forest department. Forest market institutions must adapt by providing business services to small-scale farm producers, investing in regional forest enterprise development to fill gaps in the value chain for wood pro- Cocoa production has dramatically reduced forest cover in Cote d'Ivoire, once a haven of biodiversity, particularly for primates (Bitty, et al. 2015). Facing intense public scrutiny, chocolate companies are turning to certification programs to sustainably source cocoa and mitigate their role in forest degradation. In addition to rules against clearing remaining forests, the two largest cocoa certification programs in West Africa include agroforestry components, aimed at minimizing environmental degradation and conserving biodiversity in areas already cleared of primary forest. Cocoa-agroforestry systems can sustain significant biodiversity outside of traditional protected areas (Asare 2006). Research suggests that cocoa certification programs are positively correlated with the intention to adopt agroforestry practices (Gyau, et al. 2014), but missing is an in-depth analysis of certified farmers' perspectives on agroforestry and their effects on adoption. This study examines the potential of certification programs to promote agroforestry adoption on smallholder farms. Drawing on in-depth interviews with production and marketing, I analyze how certified cocoa farmers engage with and implement agroforestry requirements. Preliminary results suggest that certified farmers are less familiar with agroforestry rules as compared to other rules of certification. Furthermore, how, or even if, agroforestry compliance is monitored as a part of certification audits is poorly understood, which could have implications for participation in agroforestry. Finally I discuss how farmer perceptions translate to agroforestry implementation more broadly, and highlight implications for the success of agroforestry components of certification programs.AbstrActs The Gedeo traditional agroforestry system is a multi-strata system composed of an organized mix of mosaics of multipurpose indigenous trees, coffee, and enset components, which is arranged sequentially in time and space. It is known for its uniqueness as it supports large number of population (population density >1000person/km2), on a very steep (slope gradient >60%) and undulating landscape. Despite this, the system remains resilient without modern soil and water conservation measures and able to feed large number of population without external inputs, agrochemicals or improved crop varieties. Arguably, it the most efficiently sustained land use system in the country, thanks to diligent Gedeo elders and their ancestors who meticulously harnessed nature's potential to accommodate the ever-increasing human population through an intergenerational transmission of indigenous agroforestry knowledge (IAK) and practices. However, IAK is not static; change is inevitable. The question is whether the young generation will follow their ancestors' footpath and ensure the continuity of indigenous agroforestry practices. In this regard, this study was carried out to examine changes and continuities of IAK and its implications to its sustainability. Data from 290 sample respondents chosen from four intergenerational groups were collected using semi-structured questionnaires, card sorting, free list, and cognitive mapping. Berkes ( 2008) knowledge-practice-belief framework was employed to analyse IAK and practices gap and thereby determine IAK change and continuity. Accordingly, IAK of the local people were assessed based on eco-cognitive, practical and normative dimensions. The collected data were organized based on themes and analysed using one way ANOVA, t-test and chi-square. The results of the analysis indicate that there is a clear IAK gap between young people and adults, which implies the loss of some of IAK. Majority of young people failed to identify common indigenous tree species, indigenous agroforestry practices and socio-cultural values and norms which are vital to manage the agroforestry system. They were not able to demonstrate as much knowledge and skills as their elders do. For instance, among the sampled adolescent (12-20 years old), 52% failed to demonstrate their knowledge and skills properly. About 71% of sampled adolescent (12)(13)(14)(15)(16)(17)(18)(19)(20) lack knowledge of socio-cultural practices and have never participated in any socio-cultural activities. Very slow transmission of IAK, lack of interest to follow their ancestors' footpath and inclination towards modernization, are among the contributing factors for the gap. The gradual loss of IAK has a negative impact on sustainability of the system. This calls for concerted efforts to maintain the sustainability of IAK through revitalization of IAK transmission and acquisition. Finally, joint effort is required to document IAK, include in school curriculum, and integrate with the modern practices.Mineral fertilizers are substantially used in agricultural production systems in order to improve yields in most part of the word. However, the use of fertilizer alone could not increase and maintain soil fertility in most tropical soils including that of Mali. Perennial nitrogen fixing shrubs have the potential to improve soil organic matter, biological activity, and physical properties, while protecting the soil against water and wind erosion. However, these have been underutilized in most agroecosystems due to biophysical, socio-economic and cultural reasons. This study lies within the framework of the organic resource management for soil fertility project (ORM4Soil) and aims at participatory designing and testing of the profitability and environmentally soundness of Gliricidia sepium cotton, maize and sorghum -based farming systems with and without alley cropping in order to recommend the best practice for scaling-up in the region. The trial is being conducted in the Sahelian and Sudanian zone of Mali with five treatments of organo-mineral fertilizer -with and without Gliricidia. The treatments were arranged in a split plot design and replicated four times. In the Sahelian zone, alley cropping with Gliricidia sepium generated 1559 kg.ha-1 dry matter of Gliricidia after 377 days of growth which was incorporated into the soil. Similarly, in the Sudanian zone, 3179 kg.ha-1 dry matter was generated after 407 days and incorporated into the soil. The results after two years showed that the agroforestry system with Gliricidia sepium had a significant impact on cotton, maize and sorghum growth, biomass and grain yields. Average yields of maize (1330 kg.ha-1) , sorghum (919 kg.ha-1 ) and cotton (871 kg.ha-1) from the agroforestry system with Gliricidia sepium were higher (p tem without Gliricidia Maize (742 kg.ha-1), sorghum (903 kg.ha-1) and cotton (568 kg.ha-1) . In zones, organic carbon and total soil nitrogen, increased at an average rate of 120 and 80 kg Nha-1 in the 0-20 cm depth under Gliricidia sepium mulch fields as compared to 80 and 40 kg Nha-1 in the field without Gliricidia sepium. The study conclude that Gliricidia sepium cotton, maize and sorghum-based farming system has the potential to improve crop yields and soil nitrogen, and thus, its scaling-up can improve the livelihood of small scale farmers and soil fertility in Mali.Keywords: Gliricidia sepium, Organo-mineral Fertilization, Cropping system, Agroforestry, Soil organic matter.The intercropping of poplar trees for timber production with crops has been largely studied and practiced in Italy until the late '70s (Prevosto et al., 1971). This practice was almost abandoned in the subsequent years, because tree canopy spraying for pest/diseases control was often hindering the management of intercrops. Nowadays, tree-crop intercropping is again studied for its important environmental and productive values for mitigating Global Changes. In Europe, public institutions provide funding for the establishment of new silvoarable (SA) systems. In Italy, new poplar clones are now available, not requiring canopy spraying (MSA clones, Colaoa et al., 2016). Aims This paper reports the study at a SA site with a traditional poplar clone (I214). Biophysical experimental data, collected for the first 5 years, are currently implemented with bibliographic data, back to the '70, for an economic analysis of poplar SA system in Italy. New financial simulations are carried out using the new MSA clones. Material and methods. The site was established in 2014 by the Casaria Farm, in the Po valley. The SA area is ca. 9 ha large, on reclaimed alluvial land with permanent drainage ditches (depth of 1 m and spaced at 30-35 m). The tree rows, planted along the outer ditch edge, have an orientation of 5° N. In the SA area, 9 experimental transects of 300 m2 were formed, with measurements on tree growth and intercrops yield, and for studying tree-crop interactions for solar radiation, soil moisture and nitrogen (N) (Paris et al., 2018). For the financial analysis, long terms data, concerning the effect of adult tree shade on intercrops, is obtained by literature.Alluvial soils, with frequent drainage ditches, can be easily used for the establishment of SA systems using fast growing poplars planted along one side of the drainage ditches, optimizing the use of reclaimed land. Tree growth rate in such conditions is comparable to those in monoculture. The expected tree rotation should be 14 years. Timber quality is not negatively affected by the low planting density required by SA system. Intercrop management, in terms of machinery movement, is not negatively affected by tree rows. Stable isotopes studies show early positive synergic tree-crop interactions, with trees using soil moisture in deeper soil layers than intercrops, and reducing N leaching (Paris et al., 2018). Old literature provides long term experimental data on tree growth and crop yield (Prevosto, 1971). MSA clones have many evident productive and environmental advantages in comparison to clone I214 (Colaoa et al., 2016).Results show that between trees and associated herbaceous crops, during the years of study, it prevails complementary interactions for light and water, and synergistic ones for N. The above results, along with old literature, are being used for running financial simulations of new SA systems with the new hybrid clones MSA. Floresta Viva SA is a private company which goal is to be the 1st organic producer of heart of palm and other products, cultivated under large-scale agroforestry systems in its own 1'000 hectares farm, the Fazenda São Pedro, in the São Paulo estate with 220 ha of open land, mostly cultivated with the pupunha palm tree (bactris gasipaes) associated with banana trees, green fertilizers and various trees for high. The remaining 780 hectares is preserved natural forest. The Fazenda São Pedro is located in the Vale do Ribeira region, home of most of the remaining Mata Atlântica (the Atlantic Forest, which is the 2nd forest with the most biodiversity in the world, and is also the 2nd most deforested) and one of the poorest regions of the state of São Paulo and Paraná, with the lowest HDI (0,69 mean). Moreover, it is estimated that more than 30% of its population (which is largely rural) live below the poverty line. The local economy relies largely on agriculture (banana and citruses) but is heavily affected by the poor infrastructures relies heavily on the massive use of industrial inputs like pesticides and chemical fertilizers. The main objective of the Floresta Viva project is to offer a productive and innovative agricultural model, based on agroforestry systems and agroecological practices, capable of regenerate degraded lands and provide a decent livelihood to every farmer, from smallholders to large-scale agricultural projects. This model is inspired by the Syntropic farming, an agricultural model created by Ernst Götsch in Brazil, based on spatial and temporal association of plants and trees following natural forest stratification and vegetal succession, and also inspired by the E.R.A. model (Environmental Revitalization Agriculture) developed by Leontino Balbo, using regenerative agriculture principles for more than 25 years in 25'000 hectares of sugarcane. It is since 2013 that Floresta Viva is developing this model in its own farm, step by step, creating and adapting economically viable techniques and machines, reaching today a 166 hectares plantation that has received the organic certification in October 2018, and is providing job to more than 80 rural workers. This large-scale transition to a regenerative model, 100% organic, has been successfully operated during the year of 2017-2018, and overall expense has not overpassed 15% compared to a standard conventional project. Even if still incipient, the Floresta Viva project is a good example to understand agronomical and economical challenges and results for agroecological transition in a business landscape. This example is not limited to its size, or production, or geography, since it relies on universal agronomy principles that could be adopted by every agricultural entrepreneur, and the lessons learned could benefit all.Keywords: Brazil, Agroforestry, Syntropic, Agroecology, ESG. The agroforestry in India is meant to reducing deforestation and pressure on woodlands by providing farm-grown fuelwood and focuses on improving the major ecosystem services and environmental benefits, namely, the carbon sequestration ; biodiversity conservation ; soil enrichment and the air and water quality improvement, in addition to alleviating poverty. The present study shows that the poplar (ciliate) and certain clones of exotic poplar (deltoids) have been found to be extremely fast growing trees and well adapted for agroforestry plantations together with wheat and sugarcane crops under irrigated conditions of Uttar Pradesh and parts of Haryana and Punjab in North India. Raising poplar trees on marginal crop and pasture lands incorporates carbon from atmospheric CO2 into biomass and this plantation helps in the establishment of vegetation filters, in which nitrogen and phosphorus in waste water and sewage are used for irrigation and fertilization in short-rotation forestry. It is of particular interest to India where technically advanced purification plants are too expensive. Biodiversity in this agroforestry region is typically higher than in conventional agricultural systems. With two or more interacting plant species in these land areas create a more complex wildlife habitat and found to support a wider variety of birds, insects, and other animals. The agroforestry further fixes Nitrogen of about 50 -100 Kg N/ha/year in the soil, shelters livestock, stabilizes depleted soils from erosion and promotes closed cycling of organic matter and nutrients thus, improving/enriching the soil so that crops are more productive. Poplar is grown to a noticeable extent in plantation programs in the above states because of their market demand and high returns. It has wide industrial use in the manufacturing of paper, matchbox, and plywood among others thus enhancing the rural livelihoods. The author observed that the economic condition of the farmers has improved by practicing agroforestry since the total output per unit area of tree/crop/livestock combinations is greater than any single component alone. It has been estimated that 60,000 hectares equivalent plantations of poplar exists in India. and the author concludes that the poplar trees help in removing atmospheric CO2 and producing oxygen. Further, deep roots of the poplar trees improve ground water quality by absorbing excess nutrients that have been leached below the rooting zone. Therefore, due to their fast growing nature, they serve as renewable resources for future green economies that has added up to a substantial improvement of the economic and resource sustainability of agriculture in India.Keywords: agroforestry, biodiversity, green economy, poplar, water quality. Forest and land rehabilitation involving local community remain the best alternative, and most effective practice for rehabilitation, especially those in relatively densely populated areas.One of the practices used is participatory agroforestry which has been practiced in Java, Sumatra and other islands in Indonesia. Several improved participatory agroforestry practices have been established using several locally adapted and economically valuable commodities in several sites in Java and Nusa Tenggara, Indonesia under the KANOPPI Project. Several commodities such as bamboo (Gigantochloa atter), smallholder teak (Tectona grandis), medical plant named ules (Helicteres isora) and rattan substitute for handicrafts locally known as rumput ketak (Lygodium circinnatum) have been planted using this practice and have been contributing to both local community livelihood and ecological aspect surrounding the trial sites from at least 9 trial sites established in Java and Nusa Tenggara islands. Trials and supporting activities under this project have contributed to the livelihood pathway as follows 1).Communities are likely to manage their resource sustainably, 2). Increasing benefits obtained from project activities and 3). New market opportunities and diversifying products that support local economy. Under the current second phase of the project, several activities will be extended and replicated to wider rehabilitation activities not only in Java and Nusa Tenggara but also to other islands in Indonesia in order to produce wider impact.Keywords: agroforestry, local community, participatory, livelihood. Walnut and crop yields in walnut orchards intercropped with wheat , Zebec V.The significance of intercropping is to reduce stress but also to increase productivity. The aim of our research is to investigate the yields in intercropped system of walnut and wheat. The field trial was set up in Eastern Croatia in an 11-year old walnut orchard with alley width of 8m, wheat was sown in 6m wide strips. The field trial consisted of three plots: a) control plot of wheat b) walnut orchard with intercropped wheat and c) walnut orchard without intercropped wheat. The walnut orchard has 10 equally long rows of walnuts. However, walnut yield of first five rows was always around 30% of the total yield, while the last five rows had around 70% of total walnut yield. We have decided to sow crops in the 4 alleys in between first five rows to increase the productivity of this low productive area. After the sowing of wheat in the alleys of first five rows they had walnut yield of 378 kg/ha and wheat yield 4.5 t/ha. Walnut control plot had walnut yield of 746 kg/ha and wheat control plot had wheat yield of 6.7 t/ha. In relative numbers the walnut yield was 51% (0.51) of the walnut yield in the walnut control plot and wheat yield was 67% (0.67) of the wheat yield in the wheat control plot. Altogether it comes out that intercropped plot had land equivalent ratio (LER) of 1.18 which means that by intercropping wheat in this rows of walnut of low productivity we have increased the production of this low productive area in comparison to high productive area by 18%.Keywords: agroforestry, intercropping, yield, walnut, wheat. Maize (Zea mays) cultivation in Northwest Vietnam has dramatically increased on the formerly shifting cultivation lands since the 1990ies, where more than half the area has slopes of over 20 degrees. Traditional cultivation practices in the region, mainly based on intensive tillage combined with burning crop residues, had resulted in severe erosion, soil degradation, reduced crop productivity and significant environmental impacts. However, farmers still apply monoculture maize in sloping lands. The main reason is because they lack financial backup to shift into new practices. The study aimed to assess the economic and ecological benefits of agroforestry practice in the context of the upland areas in Northwest Vietnam. This study presents the actual benefit assessment of a designed agroforestry system with late fruiting-longan (Dimocarpus longan) together with maize and forage grass strips (guinea -Panicum maximum) during 2012-2017 using cost and benefit analysis, land equivalent ratio (LER) and quantification of soil loss. The two monoculture systems, mono-maize and mono-longan, were used for comparison. The results showed that the longan+maize+forage grass system gave an early income from forage grass and maize. Forage grass yielded 17 ton ha -1 year -1 . Maize yield was not significantly different from mono-maize and the average dry grain yield was 4.5 ton ha -1 yr -1 . The longan trees started to bear fruit in the 4 th year; it yielded 0.06 ton ha -1 which increased to 0.38 ton ha -1 in the 6 th year. Longan in mono-longan system also started bearing fruits in the 4 th year. In terms of profitability, the net profit of the mono-maize was initially 23 million VND ha -1 yr -1 . However, it decreased to 4 million VND ha -1 yr -1 in the 6 th year, mainly due to drop in maize price. Mono-longan system was only reaching a profit of 3 million VND ha -1 in the 6 th year. Meanwhile, the longan+maize+forage grass system had a positive profit of 18 million VND ha -1 in the 2 nd year which increased successively to 33 million VND ha -1 in the 6 th year. The break-even point of the longan+maize+forage grass system was after one year of planting, and the payback period of the loan-credit provided to farmers was one year after planting. The LER from 2013 to 2017 of the longan+maize+forage grass system ranged from 1.05 to 1.84. Regarding the effectiveness in controlling soil loss, longan+maize+forage grass system reduced soil loss by 50, 56 and 77% in comparison with mono-maize system in 2015, 2016 and 2017, respectively. The data proved that the evaluated agroforestry system gave higher productivity, profitability, early returns to investment and significant reduced soil loss as compared to monocultural systems. We will continue monitoring and evaluating different agroforestry systems and tree species to provide the options for agroforestry development in sloping land area in Northwest Vietnam.Keywords: Agroforestry, Monocultural systems, Productivity, Profitability, Reduce soil loss. In coffee based agroforestry systems, biodiversity management by farmers is a promising lever for innovation to promote system sustainability and increase income. We hypothesized that the co-design of agroforestry cropping systems based on ecological process, and on implementation of innovative practices have to take into account the reality of the technical work as well as the farmer concerns and the knowledge leading to the actual plot management. The aim of this study is to examine how coffee farmers understand the diversity of their agroforestry systems and how do they manage it through their practices.We have developed an original methodology based on the activity analysis applied to the study of the shade trees regulation practices in the agroforestry coffee plot by coffee growers. The activity analysis is interested in human activity with a view to transforming and designing work situations. According to Theureau (2010), considering enaction paradigm, activity is considered as a dynamic of asymmetrical interaction between an actor and his environment 1 . Thus, human action is not considered to the actual achievement of a predetermined program resulting from the application of decision rules 2 . First, semi-structured interviews were conducted to understand the systems and the cropping practices drivers. Then, practices were studied in real situation, through participant observation and the use of methods of verbalization during practice, of self-confrontation and farmer-guided practice 1 . This study took place in Costa Rica (Turrialba). Agroforestry systems consists of coffee (Coffea arabica) and various types of shade tree species.Our results highlight each action carried out by the coffee grower, associated with farmers indicators, considered as the factors that farmer take into account in the agroforestry environment against the background of his concerns, knowledge or habits. These indicators inform about complexity of interactions between the coffee grower and his environment. This interaction occurred at several levels: for a systemic management (to favor the ecological processes like disease regulation), for an ergonomic management (to favor movements, or reduce risk of injury), for a personal management (based on an affective relation with the biotope). In that respect, shade tree regulation is not only intended to increase the incident light energy received by coffee, but also driven by other motivations. The re-design of innovative and sustainable cropping systems has to take into account the interaction between diversity of human situations and the agroforestry system complexity. In this context, how can practices be transformed? How can we support farmers to think about their own practices and initiate changes specific to them? The activity analysis is an efficient framework to nourish the thinking on current management practices and a promising way to support their progressive transformation in complex agroforestry systems.Keywords: co-design, agroforestry system, coffee growing, activity, farmers indicators.Every year, millions of dollars are spent on tree-based restoration activities. Over the last few decades there are few success stories of such interventions and even those do not match the anticipated objectives for which the resources were spent. News articles announcing tree planting campaigns accomplishing millions of seedling plantings are not uncommon. Despite all these, in many countries vegetation cover has not improved proportional to the investment. The objective of this paper is to highlight the main underlying challenges that need to be tackled if restoration through tree-based interventions are to be successful.The key challenges are as follows. 1) Often tree planting is stated as a goal of an intervention, rather it should be tree growing. 2) Planning cycles of national governments which often implement such tree-based interventions are annual, hence have insufficient resources to support tree growing. 3) In many developing countries priorities shift every year. Environmental issues are of less priority in relation to other short-term pressing societal needs, limiting the funding for such activities. 4) Performance indicators are often number of trees planted or area planted, not number of trees grown, or area of land covered with grown trees. 5) Most projects operate on a short time frame (1-3 years) while many species (e.g. indigenous ones) need more than 3 years to sufficiently grow. 6) Even in most projects, despite having adequate project duration, emphasis on the after-planting management is limited. 7) There is very weak tree tenure to formally transfer the management of planted trees to local communities who reside in the landscapes over a long period of time.For investments in tree-based interventions to lead to anticipated results (i.e. restored green vegetation areas) the following measures are recommended: 1) Donors, government agencies and any other stakeholder engaged in tree-based interventions should realize that tree planting is a one-time event and tree growing is a process involving management of planted trees. Hence, project or interventions focusing on a one season activity of tree planting should not be promoted as it results in waste of resources. 2) Strategies to strengthen the ownership of the restoration efforts by local actors and communities should be strengthened. This helps communities to take over the management of the planted seedlings even if the projects were short-term. 3) If there is limited local capacity, donors should ensure a clear justification and strategy by the implementors exists to continue managing the planted trees. 4) Unless such strategies are in place, governments and donors should not approve any one-season tree planting activity. 5) Incentives for local communities to take up the management during and after planting should also be crafted. 6) Finally, the basis for restoration discourse should be tree growing, not tree planting.Keywords: tree Planting, tree growing, planning, indicators, incentives.The baobab tree (Adansonia digitata L.) occurs naturally throughout the drier parts of Sub-Saharan Africa. Since its wood cannot be utilized as timber, and the fruits and other parts of the tree are appreciated by local populations for a number of uses, baobab trees are often preserved on agricultural lands whereas other trees are cut down -creating natural agroforestry systems. The fruit pulp of the baobab tree is rich in vitamin C, minerals and has pre-biotic and antioxidant properties. However, the potential baobab can have in Eastern Africa on improving local diets and livelihoods is not yet fully exploited. Processing of agroforestry food products such as baobab by rural producers or small-scale enterprises can considerably contribute to local food security, employment, alternative household income and improved livelihoods. The development and launching of new products has key influence in achieving such objectives since it contributes to continuous business success and growth of the involved enterprises. Such considerations are currently being addressed and put into practice within the BAOFOOD project. The project aims to promote the domestication, production, market development, processing and consumption of baobab for the improvement of food security, nutrition and rural livelihoods in Kenya and the Sudan. The project's ultimate goal is to establish a community-based processing unit to sustainably produce and supply highly nutritious baobab products for home consumption and local and regional markets. Approx. 80 farmers with baobab on their agricultural land are involved in the community-based processing unit. These farmers are currently being trained in the sustainable production, harvesting, and processing of baobab. Furthermore, novel ideas for the integration of baobab fruit pulp into traditional Kenyan recipes for dietary enrichment are currently being developed and tested. This approach gives local baobab producers and processors, often characterized by limited resources and expertise for product and business development, the opportunity to collaborate with stakeholders across the baobab value chain, research institutions, or regulatory bodies. While traditionally the development of new, marketable products has primarily been approached from the perspective of the companies involved in production and sale of such products, it is increasingly recognized that successful product innovation is the outcome of a collective and interactive effort rather than the achievement of a single person or firm. The approach followed in BAOFOOD gives the opportunity to not only contribute to food security and improved livelihood objectives but also to help build local entrepreneurial skills and verify the applicability of this more unconventional product development pathway. The paper describes the integrated approach applied by BAOFOOD in more detail and also presents initial results of the agroforestry food product development work.Declining crop productivity is a major challenge facing smallholder farmers in central highlands of Kenya. This decline is caused by continuous cultivation of soils without adequate addition of external inputs in form of manures and fertilizers. With this background, an on-station trial was initiated at Embu in 1992 with the aim of evaluating the feasibility of using two leguminous shrubs; Calliandra calothyrsus and Leucaena leucocephala as hedgerow for improving food production. The objective of this study was to evaluate the long term effects of hedgerow intercropping on maize yields and soil fertility status. After over 20 years of implementation, the results indicate that, Calliandra calothyrsus and Leucaena leucocephala biomass transfer with half recommended rate of inorganic fertilizer treatments gave the best average yields of 3.3 Mg ha-1. Calliandra calothyrsus alley cropped with prunings removed treatment recorded the lowest maize yield of 1.2 Mg ha-1. Though treatments with Calliandra calothyrsus biomass transfer had similar yields compared to those of Leucaena leucocephala biomass transfer, all the treatments that were Leucaena leucocephala alley cropped did better than Calliandra calothyrsus alley cropped, both with prunings incorporated and prunings removed. On average, integration of organic and inorganic sources of nutrients gave higher yields compared to all the other treatments. Over time, the soil fertility parameters changed significantly with soil pH, Ca, Mg, P and OC decreasing in all treatments with the exception of K and total N where there was no significant change in their amounts. This might explain the reason why the hedgerow intercropping technology has been abandoned by many small scale farmers.Keywords: Leguminous shrubs, biomass transfer, maize yields, Calliandra calothyrsus, Leucaena leucocephala. Oil palm has become an important export commodity for Indonesia and has been cultivated by both smallholders and large scale companies mainly as monoculture plantations. Research suggested that this massive monoculture practices have led to adverse impacts to natural and social systems. Smallholders encounter difficulties to cope with the fluctuating commodity price and extreme climate events such as long dry seasons. We argue that agroforestry could become a promising and realistic alternative to deal with these problems. This is indicated by the voluntary adoption of oil palm agroforestry system by smallholders although this occurred at limited scales. This article aims at analysing the adoptability, productivity and sustainability of oil palm agroforestry practiced by smallholders. We employ a hybrid method which combines qualitative and quantitative analysis. This research suggests that the adoption of oil palm agroforestry decrease the household dependency on monoculture commodity and thus improve the household resilience in terms of income. However, our findings suggest that oil palm agroforestry has been challenged by the tendency of decreasing oil palm fresh bunch fruit production. Species selection and crop combination strategy become the key factors to improve the productivity of oil palm agroforestry. We suggest that long term and regular observations as well as longitudinal data are required to paint more comprehensive picture on the contribution of oil palm agroforestry to the improvement of ecosystem functions.Keywords: oil palm agroforestry, Indonesia, adoptability, productivity, sustainability. Gómez-Martínez M. J. 1 (mjgomez@ut.edu.co), Ortíz-Ceballos G. The design of coffee agroforestry systems (CAFS), which simultaneously fulfill their function of conservation and production, requires a better understanding of how diverse tree species are interacting. Interactions would be either positive ones (facilitation), or negative ones (tradeoffs), on the microclimatic and pedological conditions within plantations. It is quite important to access to real and constant data through permanent plots in farms of producers. We selected 15 coffee plantations with heterogeneous management, in the Coffee Region of Coatepec, Veracruz, Mexico, which is originally an area of cloud forest, with approximately 200 years of coffee introduction history. Plots were demarcated (50 m x 20 m), 3 transects were drawn (50 m x 2 m) and sampling points were located every 10 m (18 points plot -1 ). The density of sowing, age of the crop, varieties and management of the plantation were registered. Additionally, the number of trees with DBH> 10 cm, crown area, height and plant species, number of strata, canopy percentage, area index of coffee trees and trees, and leaf litter percentage was counted. The variables were compared by type of AFS by ANOVA and mean comparison coffee plants were measured, of the varieties Catimor (31.6%), Sarchimor (29.4%), Costa Rica (21.8%), Mundo Novo (10%), Arabica (4.4%), Caturra (2.2%) and Oro Azteca (0.6%). These varieties are preferred since they require little direct sunlight and can be grown in shaded environments. Coffee densities differed between CAFS and range from 3383 to 7800 plants ha -1 . A total of 178 tree individuals were registered, comprising 17 families, 24 genera and 33 species. The Fabaceae family stands out with 11 species that represent 60% of the abundance. The most common genus for its richness is Inga, with 6 species and with 45% of the arboreal individuals. As the management of coffee plantations intensifies, producers select varieties resistant to coffee rust and increase the abundance of the tree component, however, with less diversity. Contrary to traditional producers, who leave in their plots few but large trees, and whom manages a mixture of coffee varieties. The assembly of the tree species in the CAFS is influenced by the decisions of the producers regarding the productivity of their plots, who mainly direct their efforts to the productivity of the coffee trees, maintaining tree coverage, which is positive for the conservation of biodiversity and provision of ecosystem services. For example: the composition of tree species is crucial to provide some nutrients for the development of coffee trees, however, this will depend on the agro-ecological conditions of the area. Farmers in the hills of Nepal have practiced agroforestry for centuries. For much of this time, farmers grew trees to meet subsistence farming needs, but the nature and extent of these practices depended on the size of their land and the accessibility of fuelwood and fodder from community forests. Over the last decade, much has changed in the rural areas of the Middle Hills. Household livelihood expectations have changed, many families have individuals working in cities or outside Nepal which has increased household income and reduced labour availability. Throughout this period, the role of agroforestry in Nepalese farming system has remained important, but the need for improved agroforestry systems and better knowledge of the various agroforestry options and market possibilities has increased.In order to examine the current agroforestry systems and practices in Nepal, and what factors are responsible to sustain a given practice, a survey was carried out in Eastern, Central and Far-western districts of Nepal. The survey showed that number of practices has increased since the 1999 when agroforestry as science was just new in Nepal.The survey also showed that agroforestry practices would further scale up if the selection of tree species from among some three dozen indigenous and one-dozen successful exotics visà-vis their silvicultural characteristics and local suitability is known and practiced accordingly. Proper choice of shrubs and herbs of economic value for commercial and general purposes, such as, medicine, essential oil, fibres, floss, and food could be encouraging for agroforestry practitioners. Capacity building should focus on skill development, market and its linkages and optimal use of available resources, optimal use of spacing, livelihood development and their enhancement. Understanding the structure, densities and utilization of tree populations in agricultural landscapes is useful in determining the species influencing agroecosystem function. Our study evaluated agroforestry adoption and practices within smallholder farms in a former large-scale maize growing area of Trans Nzoia County, Rift Valley Province, Kenya. This was followed by investigation of factors influencing heterogeneity in the adoption and practices. The factors include: household resource endowment, land tenure and time under current management.Five settlement schemes which were formerly large estates dominated by maize mono-cropping were selected for the current study. Tree inventories of the farms were obtained through transect walks across each settlement. A total of 123 farms were assessed representing households of different resource endowment levels, tenure and number of years under current management. Different analyses were carried out including farm size and tree number, tree density, tree diversity and utilization of the dominant tree species. In total, we identified 44 tree/shrub species, 24 of which were indigenous and the rest exotic. However, the exotic tree species dominated strongly in abundance with Eucalyptus spp. being the most frequent taxon and constituting 34.6% of all trees. Species richness was found to be low compared to other agricultural landscapes in the region. Resource constrained households were found to prefer fruit tree species and maintained high tree diversity on their farms. Households with secure tenure had higher tree diversity than those without who had higher species richness and opted for fast growing fodder and fertilizer/firewood trees. Younger farms had fewer trees but higher species richness than older farms. The study, therefore, explains heterogeneity in agroforestry adoption in terms of variation in household resource endowment, land tenure and time under current management levels.Keywords: Tree diversity, Resource endowment, Land tenure, Time under current management, Small-holder farmers. This study aims to determine the effect of selective pruning and thinning on i) tree species richness, and ii) potential production of standing biomass in fallows of Sudanian woodland stands.In Sudanian woodland of Benin, three random blocks (repetition) of 20 m x 20 m each were demarcated in homogeneous stands and divided into three treatment plots of 10 m x 10 m each i) T1: no harvesting, ii) T2: 30% thinning and pruning, iii) T3: 60% thinning and pruning.between 2015 and 2016.The plant species richness and composition varies with treatment and woodland development stands. Whatever the treatment applied, there was a deficit of 68.28 % to 85.59 % in biomass to cover local population need estimated in biomass at 9,515,850.22 kg/year. The best tree height (Figure 1) and biomass production (3,018,736.25 kg/year) were obtained with 30 % thinning and pruning (T1). Compared to T1, the biomass produced with no thinning and pruning and with 60 % thinning and pruning increased the deficit in biomass respectively by 17.31 % and 4.83 %.Moderate thinning gives the best result in early woodland's development stands, while more severe thinning gives the best result at later development stands. Keywords: Biomass, tree diversity, thinning and pruning, Sudanian woodland, Benin Republic.Baobab (Adansonia digitata L.) is an important plant species to people's livelihoods through provision of food, fibre and medicine. Baobab products are increasingly being commercialized and exported around the world which calls for an understanding of the status of the species natural stands.This study was conducted to assess the extent of conserve stands of baobab in different land use type in the semi-arid region of Benin, West Africa.The study was conducted within the Sudan agro-ecological zone of Benin specially in the Pendjari National Park (PNP), and surrounding farmlands, and Controlled Occupation Zones (COZ). Tree girth, tree total height, number of seedling and sapling was measured in 12 sample plots of 250m x 250m. Additionally, all baobab individuals irrespective of their size and allTree density, diameter and height were computed and compared among the four sites using one-way analysis of variance followed by Fisher's LSD test. Diameter size class distribution (SCD) slope obtained from the regression analysis was used as indicator of the population structure. Population stability was assessed with three metrics: the Simpson index of dominance (S), permutation index (P) and the quotient (Q) between successive size classes. Univariate and bivariate pattern of trees were studied with the pair-correlation function.The farmlands had high number of young trees and adult tree densities (stem.km-2) (181. 3 ± 155.4 and 453.3 ± 190.9), followed by COZ (16.0 ± 16.0 and 106.7 ± 33.3) and PNP (32.0 ± 16.0 and 85. 3 ± 24.4). Tree diameter and the total height did not differ significantly among land use types (p > 0.05). All land-use types had negative SCD slope showing that there were more individuals in smaller size-classes than in larger size-classes. However, the flattest of slope (between -0.001 and -0.006) suggests low recruitment. Values of Simpson dominance (> 0.1) and permutation (> 0) indices in addition to the fluctuations of the quotients of the density of successive size classes suggest unstable stands with episodic recruitment and mortality, particularly in the COZ. In general, A. digitata showed a random spatial distribution for both young and adult trees, irrespective of the land use types.This study showed that higher density of baobabs occur outside protected areas and the populations are mostly unstable, calling for active conservation in protected areas and promoting domestication of baobab in farmlands.Keywords: population structure, protected area, farmland, spatial distribution, Pendjari National Park. (Price, 2007). A unique feature of this species is that all of its parts (leaves, roots, seed, bark, fruit, flowers and immature pods) are used for different purposes with the medical ones being more popular in traditional and modern medicine (Leone et al 2015). Among its alimentary uses prevails oil production but it can also be used for water purification (Price, 2007). Its wood is excellent for the production of paper pulp, blue dye with its bark used for mats and rope. Its leaf extract contain growth factors which, when sprayed on other plants, increase their yield by 25-30% (Fuglie, 2001). Achieving the forage autonomy is a huge step in the goal of agroecological transition of farming systems. It's a priority in the current context of climate change, economic crises and the fluctuations of prices in raw materials and concentrates used for livestock supplementation.The objective was to evaluate, under the conditions of Ariège (France) a high density mulberry (Morus alba; 25 000 plants/ha) forage production technology, previously evaluated with very good results in tropics (see references). In collaboration with a voluntary farmer, a 0.2 ha pilot paddock was planted under real life beef cattle production, after previous conventional soil preparation and early stage plant growth in a nursery phase. A monthly monitoring was scheduled during the first-establishment year (i.e. from planting in April 2017 to the first-harvest -standardization cut-, in April 2018). Afterwards, the distribution to animals started. Mulching with on-farm produced straw between rows, and manure allowed efficient weed control and organic fertilization, with a zero-input approach. The plant growth and survival, biomass yield (total and edible forage) as well as its nutritive value and cattle voluntary intake are promising.The first results in agronomic and animal performance demonstrate the feasibility of establishing this technology under temperate conditions with this fodder specie, widely distributed in Europe. However, further efforts are required and the study will continue. In this study, SYAPROVAG and its partners in the VALAB initiative (Integrated ecosystemic valorization of the agrobiodiversity in the forest of Guadeloupe) surveyed the current diversity of complex agroforestry cropping systems in the forest undergrowth of Guadeloupe.For more than 3 centuries, Guadeloupeans cultivate many species in the undergrowth. High value-added heritage crops such as vanilla, coffee and cocoa, which can be classified as high quality and exportable, can be distinguished from other food, fruit, aromatic or medicinal crops intended for local households. All these species are cultivated in the heart of the natural rain forest, in complex agroforestry systems (AFS), the associated spontaneous forest species serving sometimes as shading, sometimes as support for cultivated species such as vanilla (Vanilla planifolia and Vanilla pompona) or the different yams (Dioscorea ssp) when they are not valued directly for some of these (production of various oils and resins) such as red wood carapate (Amanoa caribea), incense wood or white oak (Dacrydes exelcasa).Five main AFS have been identified in the Guadeloupe forests, a secular endogenous construction that has been produced by the history of the archipelago, with today two main orientations: the AFS based on heritage crops only on the one hand, and those combining heritage crops and food crops, accounting for 5 to more than 20 cultivated species, current declensions of forest gardens that tend to disappear. These various AFS are characterized by several common points. First of all, cropping techniques come from ancient know-how. Thus, chemicals and mechanization are missing. As a result, these systems are respectful of the environment and contribute to the conservation or the improvement of the biodiversity of the forest area. On the other hand, the labor intensity of these agroecosystems, coupled with the high cost of labor, limit the area cultivated by asset and the productivity of land and labor. On farm processing of high value-added crops for niche markets, or direct sales, are strategies developed to overcome this structural constraint by increasing income generation.Overall, it remains difficult today to live only with these AFS in Guadeloupe. Only the diversification of individual activities (pluriactivity) and / or the diversification of farms activities (agro-processing, agri-tourism ...) make it possible to make viable these systems of activity that nevertheless attract many candidates for farming installation. In the UK agroforestry is a relatively unknown and little understood practise with the exception of boundary hedgerows, wood pasture and parkland. It accounts for approximately 3.3% of the utilisable agricultural area den Herder et al., (2017). The UK is a densely populated country with approximately 70% of the land area being farmed. A land management approach is required that avoids the potential trade-offs between food production and public goods.Agroforestry has the potential to deliver multiple benefits for productive, resilient and environmentally integrated farm systems. Since 2013 the Woodland Trust has been offering farmers across the UK advice and funding support to help them set up agroforestry schemes. This has been made possible by our partnership with the PUR Project and funding from the Accor hotel chain. Over the last 5 years we have helped implement a wide variety of agroforestry schemes in the UK planting 90,000 trees on farms. Table 1 summarises agroforestry planting in the UK funded by the Trees on Farms scheme. This poster will describe, via short case studies, the benefits and challenges of implementing agroforestry and how these examples are being used to share best practice, increase uptake in the UK and influence future land management policy. Examples include: saving soil on an arable farm, tree fodder for dairy cows, shelter on upland sheep farm, woodland eggs mean better business and alley cropping to improve economic returns. Tree-based intercropping (TBI) systems, which offer many benefits for society and the farm enterprise, are not very common in eastern North America. An experimental network of widely spaced 4 to 6 year-old TBI systems (25-40 m between tree rows) that are adapted to large scale annual crops was established in southern Quebec. Realistic estimates of the effects of these TBI systems on crop yields and microclimatic conditions are clearly needed if their widespread adoption is to occur. Soybean (Glycine max), corn (Zea mays) and wheat (Triticum aestivum) yields, weed density, soil moisture and soil temperature were studied at four disbetween the center of the cropped alley and the tree row) and in control plots over the 2017 growing season across four sites (4, 6, 6, 6 and 21 years old). In all sites the distance from the tree row significantly affected weed density. TBI systems did not affect the soil temperature and soil moisture measured at 15 cm depth. In all cases, integrated crop yields (all distances combined, where only the space occupied by the crop is considered) were not different from the control. Our results suggest that the effects of widely spaced tree rows on soil microclimatic conditions and crop yields are negligible in young TBI systems. Potato (Solanum tuberusum L.) is an important food and cash crop cultivated in the highlands of Rwanda. Its yield is low to meet market demand due to inadequate use of mineral fertilizers which appear an expensive input. This research assessed potato yield response as affected by the application of alnus acuminata green manure and pruning managements in the tree long term trial of Tamira research station in the sub-humid highlands of Western Rwanda.Alnus acuminata with two management treatments involving two pruning levels (75% pruning and farmer practice corresponding to 90% pruning) and an open field with no trees were used. Potato, Kirundo variety was conisidered as crop test. Before planting, each pruning treatment plot was divided into two to accommodate two sub treatments of Alnus acuminata green manure (7 t/ha dry matter and 0 t/ha). Results indicated that all treatments with green manure performed better than those without green manure. Moreover, alnus green manure significantly increased potato yield (28.4 t/ha) in the open field compared to other treatments. Farmers' pruning treatments recorded the highest yield compared to the 75% branch pruning although there was no significant difference; however, trees were more vulnerable to wind due to excessive pruning in farmer practice. These results show that Alnus acuminata trees pruned at an appropriate pruning level (75%) are of potential use by farmers as green manure for improved potato crop productivity in Rwanda. Sikkim a state of India located in the Eastern Himalayas region with an area of 7096 sq.km. About 80% of the population depends on agricultural land for their livelihood. Trees are planted in farms along with agriculture and crops over the length and breadth of Sikkim Himalaya is an age-old practice with a considerable effect on the natural systems of this region. The local people possess broad knowledge on the tree-crop combination and their role in conservation of resources and in livelihood .There is need to gather such knowledge and incorporating into our resources education system, technical training and development plan. In view of this present study was conducted with the objectives, to study the different agroforestry systems in south and west Sikkim and to record the perception of the farmers regarding function of different agroforestry components in conservation of natural resources and role in livelihood. Three villages each were selected from south and west district of Sikkim. A list of 60 respondents were prepared using different tools such as; semi-structured interviews, group discussion, and social mapping. Agroforestry area survey was conducted to identify the agroforestry systems and to understand the components and composition of the agroforestry systems.Ten different Agroforestry systems were recognized on farmers land in South and West Sikkim, which are rich in tree-agriculture crop diversity. The study shows that the farmer's have considerable knowledge about farming and its contribution to natural resources and finding were recorded by White (2001) and Chauhan and Dhyani (1990).As per the perception of farmer, the Agroforestry systems plays both productive and protective role. The functional unit like agricultural crops, vegetable, fodder crops, fruit trees plays productive role where as large cardamom, multipurpose tree species, pastures, fruit trees and apiculture plays productive as well as protective role for the farmer (Table 2). Agrisilvipasture, agrihorticulture, agrihortipasture, livestock based mixed farming systems, apiculture and kitchen garden are more beneficial and mostly preferred by farmers. Eight different agroforestry components have been observed in agroforestry systems. In total 96 species i.e. functional unit were recorded in agroforestry systems of Sikkim Himalayas of which 85 percent plants species are native (Table 2). Similar finding were recorded by Chauhan and Dhyani (1990).The study reveals that the agroforestry is an age old practice in Sikkim and has been way of life and livelihood for centuries. The farmers of South and West Sikkim presently practicing ten traditional agroforestry systems which plays both productive and protective role to farmers' subsistence and conservation of local germ plasma. However Research on choice of species, tree crop interaction, spacio temporal dynamics needed to be undertaken to maximize the socio-economic and ecological benefits of the Agroforestry systems. Keywords: Agroforestry system, productive, protective, functional unit. To produce charcoal and prevent the deforestation around Kinshasa (Gond et al., 2017), 7,700 ha of Acacia auriculiformis were planted on savannah ecosystems, in 1987 (Bateke Plateau, DR Congo). Since 1995, the plantation was managed using the rotational woodlot system alternating agricultural and charcoal production on the same area (Kimaro et al., 2007). The 7,700 ha produced a large amounts of charcoal, cassava and maize during many years (Bisiaux et al., 2009). However, farmers have observed for a while a decline in wood and crop productivity. The aim of this study was to compare chemical properties of soils in six acacia stands in two farms having undergone different agroforestry trajectories: -one 22-year-old acacia stand, never-harvested; 4 stands in their 2nd rotation after 1 cropping cycle; and 1 stand in its 3rd rotation after 2 cropping cycles -and soils in the native control savannah.Compared to the original savannah, all acacia stands showed an increase in soil C, N and N-NO3-contents, but a decline in soil pH and exchangeable cations, and an increase in exchangeable Al and CEC (Fig 1).To maintain the sustainability of the system, we recommend different practices in order to improve the nutrient balance and decrease the soil acidity. Such practices are the debarking of tree stems before carbonization, the restitution of small branches and charcoal residues to the soil, and the supply of natural rock phosphate (Dubiez et al., 2018).Total carbon content, total nitrogen content, pH in water, Cation Exchange Capacity (CEC), Exchangeable Ca, Mg, K and Al in the soil at a depth of 0-20 cm in the savannah and the six acacia stands.Cacao yield in agroforestry systems with non-traditional income earning shade trees Dubon A. (a.dubon10@gmail.com), Sanchez J., Diaz J.1 Cocoa and Agroforestry, FHIA, La Lima, Cortes, HondurasNative legume trees Gliricidia, Erythrina and Inga are found in cacao-based agroforestry systems offering suitable and manageable shade, soil improvement and fire wood, yet provide no addition income for impoverished small farmers. Thus, FHIA has proposed fruit or tropical timber as shade trees and set out to determine their effect on cacao yield. In 1987 on a site close to sea level with tropical rainforest climate, on low fertility alluvial soils, cacao was planted with black laurel (Cordia megalantha), Spanish cedar (Cedrela odorata), rambutan (Nephelium lappaceum) and a legume control in a 0.25 ha plot each with four replicas in a randomized complete block design. The analysis of variance of average yearly yield gave a gumes, rambutan or Spanish cedar, 13.1, 13.6 and 13.9 t/ha, respectively, all different to black laurel with 10.5 t/ha. We have demonstrated additional income from fruit or timber shade is possible since cacao yield is not affected compared to traditional legumes except for some fast-growing competitive trees like black laurel. Radial growth of pollarded hybrid walnut trees in a mediterranean agroforestry system Dufour L. (lydie.dufour@inra.fr), Gosme M., Dupraz C. UMR System, INRA, Montpellier, France In temperate agroforestry systems, crop yield is reduced mainly by light competition (Dufour et al, 2013). Dramatically reducing tree canopy by pollarding may alleviate both light and water competition. Pollarding provides an additional production (branch biomass) but may affect timber production negatively. To assess this tradeoff, we compared the trunk radial growth of pollards and control trees in a cereal-based alley-cropping plot. In December 2013, fifty 22-year-old hybrid walnut trees were cut back at 4m height. Each pollard was paired with a control tree, always pruned up to 4 m high, with the same initial height and trunk diameter. Pollarding was repeated in October 2017. We monitored tree diameter growth with microdendrometers during 5 growing seasons. Pollarding reduced trunk growth in spring but increased summer growth 2, 3 and 4 years after cutting (figure1). The mean growth of pollards was 5.9±0.8 mm year-1 vs 6.3±0.7 mm year-1 for controls during 2014-2017; but only 2.6±0.8 mm for pollards vs 9.6±1.0 mm for control after the second pollarding. Ghahramany et al. (2017) evidenced that long term pollarding had a positive effect on the diameter increment of oaks. In contrast, we observed that the strong reduction the first year after pollarding was not totally compensated by the boosted growth during the subsequent years, while the second pollarding was impressively detrimental to trunk growth. In coffee based agroforestry systems, biodiversity management by farmers is a promising lever for innovation to promote system sustainability and increase income. We hypothesized that the co-design of agroforestry cropping systems based on ecological process, and on implementation of innovative practices have to take into account the reality of the technical work as well as the farmer concerns and the knowledge leading to the actual plot management. The aim of this study is to examine how coffee farmers understand the diversity of their agroforestry systems and how do they manage it through their practices.We have developed an original methodology based on the activity analysis applied to the study of the shade trees regulation practices in the agroforestry coffee plot by coffee growers. The activity analysis is interested in human activity with a view to transforming and designing work situations. According to Theureau (2010), considering enaction paradigm, activity is considered as a dynamic of asymmetrical interaction between an actor and his environment 1 . Thus, human action is not considered to the actual achievement of a predetermined program resulting from the application of decision rules 2 . First, semi-structured interviews were conducted to understand the systems and the cropping practices drivers. Then, practices were studied in real situation, through participant observation and the use of methods of verbalization during practice, of self-confrontation and farmer-guided practice 1 . This study took place in Costa Rica (Turrialba). Agroforestry systems consists of coffee (Coffea arabica) and various types of shade tree species.Our results highlight each action carried out by the coffee grower, associated with farmers indicators, considered as the factors that farmer take into account in the agroforestry environment against the background of his concerns, knowledge or habits. These indicators inform about complexity of interactions between the coffee grower and his environment. This interaction occurred at several levels: for a systemic management (to favor the ecological processes like disease regulation), for an ergonomic management (to favor movements, or reduce risk of injury), for a personal management (based on an affective relation with the biotope). In that respect, shade tree regulation is not only intended to increase the incident light energy received by coffee, but also driven by other motivations. The re-design of innovative and sustainable cropping systems has to take into account the interaction between diversity of human situations and the agroforestry system complexity. In this context, how can practices be transformed? How can we support farmers to think about their own practices and initiate changes specific to them? The activity analysis is an efficient framework to nourish the thinking on current management practices and a promising way to support their progressive transformation in complex agroforestry systems.Keywords: co-design, agroforestry system, coffee growing, activity, farmers indicators. Cork oak is an important species in the Mediterranean agroforestry systems. There are few studies outcomes providing knowledge on the impact of different understory management practices, on the tree and cork growth.Monthly diameter increments, monitored with band dendrometers, and the seasonal variation of the specific leaf area (SLA) and N, P and K content of current-year leaves, were collected during two consecutive years from an uneven-aged cork oak pure stand that included debarked trees at two different years. This dataset provided information to study how trees respond to three distinct understory management alternatives (UMA): spontaneous understory vegetation maintenance (NUR, as control); understory removal with biomass incorporation into the soil (RUI); and understory removal with simultaneous NP fertilization (RUF).A parametric approach was performed to identify seasonal patterns for the leaves variables, and differences among UMA and debarking ages. Differences were found between UMA and for the combined effect with different debarking years, where the P content was higher in the 2nd year on RUF. A difference on RUF was also revealed in the 1st year for the diameter increment. A linear mixed model was performed for the diameter increment, which allows simultaneously considering the UMA effect and its interaction with climate and distance-dependent competition indices. A positive correlation with precipitation was expectedly found regardless the UMA. Keywords: Montado, dendrometers, spontaneous shrubs, fertilization, cork growth. Forests provide adjacent communities with livelihood opportunities; during periods of uncertainty, shocks and stress, indigenous knowledge is used for alternate livelihoods. This study focused on the use of indigenous knowledge by local communities in the creation of agro-forestry alternatives amidst conservation programs in the Mount Oku Forest, North West Region, Cameroon. Based on frontline and secondary villages, five communities were randomly selected from the three tribes (Nso, Kom, Oku) that make up the forest. Selected Participatory Rural Appraisal tools were used to collect relevant data. Resources extracted from the forest were ranked; trees extracted from forest and planted in farms were identified, farm produce before and after the practice of agro-forestry was assessed. The paired sample t-test was used to test differences between agricultural productions from farms and livelihood opportunities before and after agro-forestry practices. The results indicated that there was a nities, viz-a-viz forest cover. Though there was diversification in livelihood opportunities, the lack of incorporation of basic scientific approaches of agro-forestry was a major limitation. There is need for a blend of indigenous and scientific knowledge and training of farmers, in the practicing of agro-forestry practices for forest sustenance and livelihood assurance in the Mt Oku area. The present investigation was conducted at the experimental field in the Department of Silviculture and Agroforestry, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan (H.P.) during 2017-2018 to evaluate the effect of different types of organic manure on yield and biomass production of Lepidium sativum under Morus based agroforestry system. The present investigation consisted two structural and functional components Morus alba fodder tree as woody perennial and Lepidium sativum as intercrop. In addition, the impact of three types of organic manure on performance of Lepidium sativum was observed under Morus and open conditions.There were eight treatments i.e.T1: Lepidium + Morus +FYM@ 4tonnes ha-1 (3.2 Kg plot-1), T2: Lepidium + Morus +Vermicopost@ 1.12 tonnes ha-1 (0.9 kg plot-1), T3: Lepidium + Morus +Jeevamrut@ 500Litre ha-1 (0.4Litre plot-1), T4: Lepidium + Morus +No Manure, T5: Lepidium + FYM @ 4tonnes ha-1 (3.2 Kg plot-1),T6: Lepidium + Vermicompost @ 1.12 tonnes ha-1 (0.9 kg plot-1), T7: Lepidium + Jeevamrut@ 500Litre ha-1 (0.4Litre plot- Agroforestry is a widely advocated adaptation strategy for enhancing agricultural resilience to extreme climates. Here we describe studies on jujube agroforestry regimes using two different cash crops: the annual fodder species rape (Brassica napus) and the perennial daylily (Hemerocallis fulva). The jujube agroforestry systems were characterized with respect to their interspecific water interactions and their responses to extreme natural drought using stable isotopic techniques and in situ soil water observations. We found that agroforestry altered the jujube trees' water sources but its impact depended on soil wetness: compared to monocultures, jujube trees in agroforestry systems generally shifted to deeper water under dry conditions but to shallower water under wet conditions. Complementary water use between jujube trees and crops was observed on most sampling dates, but there was clear evidence of water competition in the shallow layer under relatively wet conditions. Furthermore, it was found that facilitative interspecific interactions were clearly enhanced in both agroforestry systems during extreme drought. In addition, jujube yields in agroforestry systems were clearly higher than in monoculture. These findings demonstrate that agroforestry is a climate-smart agricultural system and can increase the resilience of semiarid jujube plantations to extreme real-world drought.Seasonal patterns of contribution of soil water at different layers to xylem water under different treatments in 2015 (upper) and 2016 (lower). The error bar represents one stand error. JT0, JT1 and JT2 denote jujube tree in the jujube monoculture, jujube/daylily system, and jujube/fodder rape system, respectively; DL: daylily; FR: fodder rape.Keywords: intercropping, water use, stable isotopes, interaction, Bayesian mixing model. . Results showed that the two areas have the same composition for dominant woody species but the mean tree density is higher in the ANR than in non-ANR areas. Tree density is lower in fields in the vicinity of the village than those that are far away irrespective to the two areas. Soil moisture in uppermost horizons is higher in ANR areas under -and out of canopy than in non-ANR area. However, in deep horizons up to 1.0 m, soil moisture is higher in ANR areas (under and out of canopy) than in non ANR areas. Apart from seeding density (F P-value in the non-ANR area. This study showed that the ANR improve crop production in a sustainable manner through the increase of crop yield. With the increase of tree density, additional direct incomes could be expected to smallholders through wood exploitation. , while that percentage in the eastern parts of the province, where the effect of the southeastern wind called Košava is the greatest, goes between 1.5 and 7.7%. Lowland terrain and the climate there make this area susceptible to wind erosion, i.e. degradation of the agricultural land. The negative effect is two-fold: deflation of fertile soil particles, and deposition of infertile material over fertile agricultural land. Degradation of the agricultural land due to the wind erosion, salinization of the soil caused by irrigation and flooding, spreading of infrastructure and similar negatively affect the area of land convenient for agriculture. The paper points to all the adverse effects that lead to the decrease of arable land areas in APV, making it vital to protect and preserve the most fertile zones. As a priority measure, raising forest windbreaks is suggested so as to provide a long-term protection of the degraded agricultural land and preserve the existing agricultural land, along with the crops raised there. The purpose of this paper is to analyze the need for, the types of and the techniques of forest windbreaks on the territory of the Autonomous Province of Vojvodina, in the Republic of Serbia, as well as to establish other positive impacts of planting and maintaining forests. It also presents a comparative analysis of the change in the ration between agricultural and forested areas based on CORINE Land Cover -CLC database, illustrating natural and both positive and negative anthropogenic effects on the protection and degradation of the said areas.Keywords: agricultural land, forest windbreaks, land degradation, wind erosion, protection. Forests play an integral role in securing livelihoods of the rural poor in Nepal. Large population, which does not have adequate land to cultivate, has been benefitting from common pool resources especially community forests. Management of community forests and sustainable use of diverse forest products, has significantly contributed to food, fiber, medicine and income.Drawing on the lessons learnt from community forestry in Nepal, this paper shows how strengthening forest-farm interface creates opportunities for securing food security of the people dependent on forests. The evidences were gathered during the five years of action research supported by Australian Centre for International Agricultural Research (ACIAR) in Lamjung and Kavre districts of Nepalese hills. It is evident that timber, fodder, grass, and non-timber forest products (e.g. tea, coffee, fruits) that are grown in close association with community forestry hold a significant share of income and livelihood of the people. However, the existing policies, regulatory framework and forestry institutions are not fully embracing these realities and still tend to be inclined to timber-centric management, thus overlooking the diverse existing and potential strategies for supporting rural food security. Strengthening forest-farm interface will not only help in achieving food security, but also contributes to check deforestation through reduced demand for agricultural expansion. Efforts to scale agroforestry in the arid and semiarid areas in Ethiopia are constrained by the high rate of tree mortality. These areas have low tree cover despite concerted efforts of tree planting by both governmental and non-governmental institutions. To enhance tree survival in East Shewa zone of Ethiopia, two micro catchments: micro basins and trenches were introduced in four districts: Adami Tulu, Dugda, Lume and Bora. This study sought to assess the effectiveness of the micro catchments in enhancing survival of three tree species: Cordia africana, Grevillea robusta and Mangifera indica through soil moisture retention. The study also sought to assess other factors that influence survival of trees from farmers' perspective. Survival of the trees grown in the micro catchments was compared with trees grown in the conventional planting pits (control). Tree survival data was collected through six-month assessment from planting time up to 36 months while data on farmers' perceptions was collected through a household survey involving 110 farmers who had planted at least one tree species for the past five years. Using SPSS, descriptive statistics and ANOVA were used months with no significant differences between trees in the micro catchments and those in the control. The highest mortality rate was observed between 6 and 12 months. Trees that had survived past 18 months survived up to 36 months. Survey results showed farmers had planted a total of 33 different species. Mangifera indica was planted by all households in Bora and Dugda. Melia azedarach was planted by 100% and 85% households in Lume and Adami Tulu respectively. Only 9 species were common across all the sites. Of these, a significant being recorded in Lume. Water scarcity was reported to be the main cause of tree death in all the sites (>30%). Livestock damage was the second main cause in Adami Tulu (25%) and Dugda (20%), insects and pests attack in Lume (33%) and Bora (29%). The study further revealed differences in tree management activities and access to water for trees across the sites. The study concluded that: in isolation, micro catchments may not adequately address the low tree survival rate in East Shewa. Not only is tree survival influenced by other factors such as inadequate soil water but also by livestock damage and attack by insects and pests; early stages of tree establishment are critical in overall tree survival; variations across sites in terms of tree species suitability and tree management influence performance of trees. The study recommends holistic approaches in addressing tree survival and further research into appropriate tree management practices suitable in the specific sites and for the different tree species, mainly focused at the early stages of seedling establishment. Beninese smallholders associate food or cash crops with young oil palm stands to reduce field maintenance costs and gain income before the oil palm comes into production. However, little is known about the effects of these agroforestry systems on nutritional and growth status of the tree at end of its juvenile phase although it is well known that the tree production could be affected by the management in juvenile phase. We selected 15 plantations where the crop succession associated with the trees was mostly based on maize, cassava, tomato and pineapple respectively. Nutrient contents in soil and tree leaves, and the vegetative growth of the tree were examined at end of juvenile phase. We found that N and P nutrition of young palms was satisfactory but K nutrition was deficient in all systems especially in tomato and pineapple ones. There was a significant correlation between K contents in soil and palm tree leaves. In the pineapple-and tomato-based systems, the amount of K fertilizer did not compensate the exportations by the crop. We concluded that competition for K are particularly important in pineapple-and tomato-based systems although fertilizer inputs were the highest.Trade-offs between profitability of these associated crops and the productive performance of the tree could be sought. A better adaptation of mineral fertilization could help in satisfying these compromises. The aim of this study was therefore to assess local drivers and indicators of food insecurity by land degradation status. Local knowledge was elicited using systematic knowledge-based systems approach (AKT5) from 150 smallholder farmers through paired catchment assessment of three landscapes along a land degradation gradient in Western Rwanda. Data was analysed using R statistical software. Results showed a decrease in annual crop diversity or complete disappearance of some annual crops between 1995 and 2015, which 76% of farmers attributed to Crop Intensification Policy launched by the government of Rwanda in 2007 that led to specialization in a few 'high-value' crops. About 83% of farmers reported being food insecure, with the main indicator of food insecurity being food shortage during certain months of the year (mainly July to November) when the high value crops were not mature for consumption. This resulted in most farmers outsourcing food. Over time, farmers have become more dependent on the market, with food produced on-farm supporting them for an average 6.6 months annually in 2015 compared to 10.1 months in 1995. The main coping mechanism currently employed by 55% of farmers experiencing food insecurity was off-farm (paid labour). The frequency of mention of all the above parameters varied with land degradation status, but there were no gender differences. Inversely, there was an increase in perennial crop diversity between 1995 and 2015, mainly attributed to access to quality germplasm (66%) and tree propagation and management skills (34%), with farmers noting that tree food crops played a key role in filling food gaps during 'food -insecure months Agroforestry is well known and is becoming more popular as a sustainable farming method.In Latvia there is agroforestry, but it is not mentioned in local legislation. There are two main farming methods which could be also be classified as agroforestry, they are short rotation coppices, which is counted as agroforestry in some countries because trees are grown on agriculture land and have been managed like an agriculture crop. Multistrata agroforestry takes its cues from this natural structure, blending an overstory of taller trees and an understory of one or more layers of crops.Because multistrata agroforestry mimics the structure of forests, it can deliver similar environmental benefits. Multistrata systems can prevent erosion and flooding, recharge groundwater, restore degraded land and soils, support biodiversity by providing habitat and corridors between fragmented ecosystems, and absorb and store significant amounts of carbon.Whether the crop being grown is coffee, cacao, fruit, vegetables, herbs, fuel, or plant remedies, the benefits of multistrata agroforestry are clear. It is well suited to steep slopes and degraded croplands, places where other cultivation might struggle.The costs to establish such a complex system are high and without immediate returns. Though they are quite profitable once established, that investment may be out of reach for resource-poor farmers. That same complexity makes mechanization difficult, if not impossible.Tending and cultivating by hand means higher labor costs. And though resilience and longevity are superior, yields can be lower than with conventional approaches, as crops compete for water, light, and nutrients. Multistrata agroforestry cannot be implemented everywhere, but where it can, it promises a sizable impact. In addition to their high rates of carbon sequestration, these systems of cultivation are among the most energy efficient in the world. Management of isolated trees as an integrated part of smallholder farming systems has long been a key food security strategy in Africa. Current knowledge on the impact of parklands structuring on agrosystems productivity is limited. Combining multisources remote sensing, landscape ecology and statistical modelling, this study aims at evidencing the contribution of FMNR to the agricultural performance of smallholder farming systems at landscape scale in Senegal. Agronomical surveys were conducted in 2017 and 2018 on 70 farmers' fields with heterogeneous trees composition. We assessed groundnut aboveground biomass (AGB) and millet grain yield (GY). Proxies for parklands composition and vegetation productivity were derived from remote sensing. Regression models were calibrated and model parameters were optimized using a random sample consensus method accounting for measurement uncertainties. For 2017, Green chlorophyll index over millet flowering phase and whole groundnut cropping cycle allowed estimating GY and AGB with R² of 0.76 and 0.67 respectively. Integrating information on tree cover structure (fraction of soil covered by trees) increased assesspromising results have to be strengthened with data from ongoing cropping season but they already indicate the need to integrate information on trees at landscape scale to better assess agricultural performance of smallholder farming systems.Millet grain yield estimation (left) and groundnut aboveground biomass estimation (right) with a linear model and a random sample consensus algorithm applied to linear regression. Input variables are chlorophyll index, woody cover and phenological information derived from multisouces high spatial resolution remote sensing data. Another positive point for this new opportunity is to offer the possibility to farmers, often very busy, to join session without spending too much time outside their farm, but keeping the interactivity with other trainees or participants. In the same way, it's also the possibility to connect a same project with international partners… that encourages collaboration and shared learning.Training, Blended learning, icosysteme, webinary. Trees on farms have the potential to improve the livelihoods of smallholder farmers. In addition to ecosystem services, they provide opportunities for generating additional income and contributing to household nutritional requirements. Despite these benefits, tree planting in the eastern drylands of Kenya has had many challenges, especially characterized by low seedling survival. This is partly due to erratic rainfall, planting of ecologically unsuitable tree species, poor quality seedlings, and poor tree seedling management practices. To support farmer learning to enhance tree seedling survival, 1600 farmers in Kitui, Machakos and Makueni Counties conducted on-farm planned comparisons to explore the performance of different planting and management practices on survival. The objective was to determine how different planting and management practices influence tree seedling survival across varying farm contexts. Farmers compared two sizes of planting holes with and without manure, and mulch. Seedlings of six tree species were planted in November 2016 and November 2017 and seedling survival was monitored six months after planting using electronic data entry. Data was analysed using R statistical software.Results showed that of the six tree species, Moringa oleifera seedlings had the highest survival rate in Kitui County while Carica papaya and Senna siamea had the highest survival rate in Machakos and Makueni Counties respectively. Seedlings planted with manure had a higher survival rate across all species and Counties. Azadirachta indica, Carica papaya, Mangifera indica , Melia volkensii, and Senna siamea had higher survival with the addition of mulch across all the Counties while seedlings planted in a woodlot had a higher survival compared to those planted along the boundary, scattered in cropland, along the terraces, and home compound. Survival was highest with watering in Makueni County while survival was higher for seedlings planted without fertilizer in Machakos and Makueni Counties. Seedlings planted in the 90cm by 90cm by 45cm hole had a higher survival rate than those planted in the 45cm by 45cm by 45cm.Survival was also higher in Kitui and Makueni Counties for seedlings planted in November 2017 compared to those planted in November 2016. Farmers reported that higher seedling survival was due to increased rainfall during the November 2017 planting season, improved farmer management of the seedlings due to practices learned during trainings, and changes in attitudes towards the value of tree planting which resulted in better management practices. Contextual variables affecting seedling survival include: household characteristics such as farm size, access to labour and inputs, and farm characteristics such as erosion status, soil quality and level of degradation.Keywords: Trees on farm, Options by context, On-farm planned comparison, Tree seedling survival.Many studies have demonstrated the advantages of cacao agroforestry systems. However, large scale, long-term field trials are not common, and the current body of knowledge is not sufficient to support farming recommendations. We are currently evaluating cacao agroforestry schemes at scale for an extended period (2015-2026) using a 12-ha agroforest in Côte d'Ivoire. The aim is to assess the economic and environmental benefits of large-scale cacao agroforestry. The experimental design is based on three agroforestry planting schemes and one control. Each agroforestry scheme has a different design comprising cacao intercropped with timber or fruit-trees, temporary & permanent shade (plantain and Gliricidia) with sufficient space for the growth of annual crops (maize and cowpea) during the establishment period of cacao. Scheme 1: double row cacao and teak. Scheme 2: double row cacao and coconut. Scheme 3: single row cacao and teak. Scheme 4 (control): single row cacao and plantain (typical small-holder's system). The trial has just completed the establishment phase. Measurements include i) economic performance: cost of inputs, labour and outputs, ii) agronomic performance: mortality, growth rates and yields and iii) environmental assessment: climate & microclimate data, soil chemistry, carbon sequestration and shade level. The establishment and early findings from the trial will be described. Arunachal Pradesh is rich in variety of agro-ecosystems. These ecosystems are being practiced by indigenous population representing 28 major and 110 sub-ethnic tribes. Agroforestry is one of the most commonly practiced farming systems in this humid sub-tropical climate.The poor small land holding farmers are mostly engaged in the agro-forestry systems and they adopted various cultivation strategies for their enhanced food security and better livelihood options. Out of various land use practices operated, the most common land use practices are Agri-silviculture, Agri-silvopastoral and Agri-horticulture in this foothill of Eastern Himalaya. Among these practices, home garden and shifting cultivation are the most prominent indigenous agroforestry systems extensively adopted for cultivation of variety of crops. Crops grown in home gardens are mainly selected by the tribes on the basis of their utility to the family for fulfilling day to day requirement of the family. These species includes variety species of trees, bananas, vines, vegetables, spices and diverse medicinally important herbaceous plants which are grown to make a dense canopy with random or spatial and temporal arrangements. Further, the dependency of the population is on age-old traditional slash and burn agriculture system which comprises variety of rice, maize, mustard, vegetables including various indigenous spices as major crops which played a vital role in meeting the basic family needs. Conservation of forest trees and bamboo in and around the agriculture fields adopted by the indigenous tribals provides resilience to the system at the landscape level. Besides agro-forestry practices, the region is endowed with rich and unique natural diversity of wild edible plants. However, expanding population and increasing cost of commodities are adversely affecting the sustainability of indigenous farming practices, which require attention from the policy makers and Government department to sustain such practices which should be ecologically balanced and economically feasible. It requires holistic approach of forest management in the tropics with emphasis on landscape management for sustainable management of resources, providing developmental benefits to local communities, based on equity and social justice.Keywords: Indigenous farming, Homegarden, Shifting cultivation, Food security, Northeast India.Agroforestry (AF) is considered to have a high mitigation potential and to be more resilient to climate changes compared with conventional cropping systems. However, the effectiveness of AF systems still need to be evaluated in the Mediterranean, where ongoing changes are exacerbating the interannual variability of climate, making farmers choices increasingly difficult. A multidisciplinary team is focusing on the establishment of a 40-ha Long Term Experiment (LTE), to support the transition towards AF in Tuscany. The purpose of the LTE is to assess the sustainability of rainfed AF compared with conventional arable and agro-pastoral systems. The LTE, started in 2018, is located in Pisa on clay loam soils (Fig. 1). Two AF systems, silvo-arable (SA) and agro-silvo-pastoral (ASP), have the same linear tree system for timber production, with poplar and oak, but different crop rotations. In AS the rotation consists in durum wheat, sorghum and faba bean; in ASP the 3 crops are followed by a 4-yr meadow.Trees have been planted along one side of each field, 2m away from drainage ditches, with a density of 60 trees ha-1. The space between tree rows and ditches are managed as semi-permanent buffer strips to increase functional biodiversity and to limit nutrient leaching.The controls are the 2 rotations without trees, 2 pure stands of poplar and oak and a polycyclic plantation (oak, poplar, hazelnut and alder). The LTE will be the base for future research and demonstration activities. This abstract is based on existing projects developed by 12Tree Finance in Latin America.Cacao is a species native to the tropical rainforests of the Americas. The humid natural environment of cacao trees favors fungal diseases, which decrease the plants' productivity.To protect their investments, investors looked for drier climates to establish new large and capital-intensive commercial cacao plantations. However, these \"superior\" climatic conditions brought new challenges: water scarcity, lacking organic matter in the soil and adequate nutrition programs.For most South American large-scale producers, the solution was to establish monoculture cacao plantations in dry climates with complex irrigation systems that supply the water demand and compensate the evapotranspiration rates in such conditions. However, with increasingly erratic climate patterns, these dry zone plantations will have less surface water available over time and at all of the times. As rainfall decreases and temperature increases, deeper wells and bigger water reservoirs are needed. These factors combined with a volatile commodity market, make a point for agroforestry economic and environmental resilience. Agroforestry concepts used by 12Tree cacao provide moderate shade, while maintaining the environmental services of an agroforestry plantation; such as protection of younger plants from radiation and extreme heat, reduced evapotranspiration rate and increased organic matter in the soil over time. By reducing evapotranspiration, the amount of water required by the main crop reduces significantly. A cacao plantation in a full exposure system may require up to double the water lamina than an agroforestry system, because of the reduction in evapotranspiration. Lower water requirements mean smaller investment in pumps, wells and reservoirs, and less energy consumption because of shorter irrigation turns. In other words, lower operation costs.Using leguminous plants as primary shade, also decreases the amount of nutrients that must be provided by a nutrition plan, as leguminous plants help fixing nitrogen in the soil. The presence of shade substantially decreases the weed growth in a plantation; decreasing the cost of weeding. This ensures that the fertilization is more effective as there is less competition for nutrients between the commercial crop and the weeds. By using such profitable shade crops, the same plot of land can be used to produce two or more different crops that are linked to different commodity markets, which increases the economic resilience of a project as it diversifies revenues streams.Using Musaceae in the earlier stages of a cacao plantation is another good example how temporary shade crops contribute positively to financial returns [1]. Musaceae also attract Forcipomyia, a pollinator of cacao [2]. Having this pollinator in the plantation increases the pod production, thus increasing the returns [3]. , and a combination of other fruits, hardwoods, and fertilizer species, with a total of 33 species and average of 12 species per plot in innovative compositions. After 9-10 months, over 80% of areas have been managed properly, plant development has been satisfactory and farmer participation in demonstration sites and project activities has been high. Youth accounted for 54% of farmers directly involved in plot establishment and management, and women made up 45% of participants in project activities. Key constraints in initial establishment were low labor availability, significant losses of fertilizer species planted by cuttings, few short-cycle food crops in most of the systems, and insufficient planting materials to cover the whole site with some species. Given high labor requirements for more complex, biodiverse systems, it is highly advisable to establish smaller plot sizes than usually practiced for monocrop oil palm in the region, not exceeding 1 hectare per family per year in the case of family farmers. The prevalence of degraded lands and low ecological resilience where many of these new plots are being established calls for the wider use of fertilizer species. Overall, the greater use of short cycle crops and food species in the first year should also be encouraged to offset high initial establishment costs and enhance food security, thus spurring adoption. Constraints identified in the appraisal stage and confirmed in initial establishment also include the need for capacity-building and extension processes that build solutions with farmers, strengthening germplasm supply, and increasing access to the financial capital needed to cover high initial investment costs.Keywords: oil palm, agroforestry, Saf Dendê, diversification, Brazil. Dynamic Agroforestry without burning for land preparation for annual and perennial crop production in the tropics Milz J. 1 (j.milz@ecotop-consult.de), Jacobi J. 2 , Velasquez F. Slash and burn practices are still one of the most common methods used by small and largescale farmers for land preparation of bush and forest fallow for annual and perennial crop production in the tropics. The consequences are risks of uncontrolled bush fires, rapid loss of soil fertility, biodiversity loss, erosion, and high pressure by weeds, pests and diseases. Ecotop conducted an experimental study in the Alto Beni region in the lowlands of Bolivia during four years, producing upland rice, beans and maize while applying the principles of dynamic agroforestry processes as described by E. Götsch. In addition, within Ecotop's scope of participatory extension work with small farmers in Bolivia, Central America, Ivory Coast and Ghana, farmers are rapidly adapting non-burning field preparation. The slashed vegetation is chopped and the organic matter distributed uniformly on the ground. Dynamic agroforestry systems are also replicated elsewhere: In Ghana, a pilot phase of the renovation of unproductive cocoa plantations by implementing the principles of dynamic agroforestry started in 2016, and 450 ha of dynamic agroforestry systems are going to be established with small farmers as of 2019.In general, it is thought that the main reason for field preparation with fire is because of less labour requirement comparing with non-burning land preparation. Nevertheless, on-field monitoring of labour investment for land preparation in the Alto Beni Region without burning indicated less requirement of working hours compared with the use of fire. Implementation costs are varying according to characteristics of existing vegetation, topography and land use history. Labour requirement for land preparation with and without burning included slash of fellow vegetation, chopping of branches, tagging for cocoa plantation of 4m x 4m, preparation of banana suckers, digging of holes for banana and cocoa planting, sowing of maize, beans and squash. The average labour requirement was 513 working hours/ha for non-burning and 681 working hours/ha for land preparation with burning.The main difference is that land preparation without fire for dynamic agroforestry systems requires the establishment within a timeframe of only 3 to 5 days. The planting of banana and by-crops have to be done before cutting and chopping the vegetation while land preparation with fire can be extended within a time frame of several weeks. Throughout the four years of the upland rice field experiment in Bolivia, we achieved annual yields comparable to slash and burn plots on primary forest soils of around 1560 kg/ha of husked white rice without land rotation and any external inputs. Average yields of upland rice in the Alto Beni region are normally less than 1000 kg/ha. Further labour requirements for weeding in non-burning fields are considerably lower than in burnt fields and cocoa, banana and other crops are performing better than in burnt fields.Keywords: Dynamic agroforestry, Non-burning land preparation, Upland rice in dynamic agroforestry, Bolivia, Ghana, Ivory Coast, cocoa production Ghana.Agroforestry are sustainable land management systems able to increase the production considering both the woody and herbaceous component. The Woody component economic return is usually produced when the stand is thinned and in the final harvest. However, the herbaceous production is usually negatively affected by the shade, but it also depends of the type of understory that it is grown. Yield SAFE is a biophysical model that allow to compare different crop production under different tree management options. The aim of this paper was to compare the herbaceous production of wheat and grassland in a tree less situation and a silvopasture system with low tree density (600 trees ha-1) developing four different scenarios. Wheat and grassland were sown at the beginning. Under treeless situation (Figure 1), wheat produces more than grasslands, but in extreme years with a high leve lof drougth the production of pasture is reduced in a lower degree or even not reduced. When the herbaceous component grows up under the tree, wheat diminishes more its productivy than grasslands. As a mean pasture under tree is able to maintain the 20% of the full sunlight situation grassland production, while the whea is below 5%. We can conclude that having grassland as part of the understory of a pinus radiata silvopastoral systems, farmers are able to have more forage than having wheat. Moreover, the resilience of pasture availability is higher when grassland is used in silvopastoral systems. Mosquera-Losada M. R. 1 (mrosa.mosquera.losada@usc.es), Chatrchyan A. 2 , Chedzoy B. J. Keywords: environment benefits, productive benefits, social benefits. A randomized complete block design replicated three times was used with 5 treatments, continuous unfertilized maize (T1), natural fallow-then maize (T2), pigeonpea intercropped with grass in (1st year) -then pigeonpea (2nd year) -then maize (3rd year) (T3), maize intercropped with pigeonpea (1st year) -then pigeonpea (2nd year) -then maize 3rd year (T4). Two-year pigeonpea fallow then maize on 3rd year (T5). Pigeonpea fallows were planted as pure stands at a spacing of 1 m by 1m, direct seeded in 2015/2016 season. The fallows were terminated in November 2017, and then maize was planted in all plots. Soil macrofauna was sampled using steel monoliths. Infiltration rate was measured using double rings. Aggregate stability was measured using a modified wet-sieving technique.Data was analyzed using Estimate S, Correlation and macrofauna species richness and diversity as indicated by the order T5 (17.44d) >T4 (13. Increase in aggregate stability and infiltration can increase potential for rapid capture of rainfall. This will also decrease the potential for runoff, erosion, and evaporation leaving more water available for maize crop use. This ultimately leads to a more sustainable viable system and under climate change variability maize crop may go under dry spell, hence it will create resilient maize cropping system. The Food Forest as part of Agroforestry approach seems to give convincing results in term of marginal land management, reduction of inputs, sustainable production and ecosystem services, even though it is still little studied and known. It is based on the prevalent use of perennial varieties and the design takes place according to the creation of an ecosystem, based on self-fertilization, the close cycle of nutrients typical of a forest and the constant coverage of the soil. All these factors create a model with very low energy and care needs but highly fertile and biodiverse, and therefore resilient. This article is an attempt to describe the phenomenon of the \"Food Forest\" in the Italian scenario, researching design methods, purposes and specific characteristic of the forest creation. 6 case studies from 5 Italian regions were visited and interviewed in 2017 to registered plant species and varieties, the gastronomic use and potential ecosystem services.According to the results, the formation of these 6 food forests are quite recent with similar aims (mainly educational and self-sufficiency) on experimental base. In small areas (3000 m2 as average) 113 species/varieties of vegetables and 2 animal species were identified in total.The species were chosen for different productive roles, ecosystems functions and characteristics. Many results are already tangibles but productivity, animal interactions, consolidation and enlargement of surface are goals for the near future. Central European countries have a strong potential for agroforestry application in practice, which has become a rediscovered land use system of mainly family and small-scale farmers and foresters in the last years. The main aim of the study was to give a general overlook of the role and potential of agroforestry in Slovak Republic, Czech Republic, Poland and Hungary with special attention on selected agroforestry systems. One of the most traditional agroforestry systems in Slovakia is represented by juniper pastures. Current findings from the mapping of juniper localities occurrence in Slovakia confirm the assumption that vital juniper stands suitable for fruit production can be most effectively exploited as agroforestry systems combined with livestock grazing. In the Czech Republic several traditional systems had occured until the begining of the 20th century, however slowly disappearing starting from the second half of 19th century due to intensification and collectivization in agriculture. Mainly hedges on the borders of particular properties, homegardens and pasture in forests were the most frequent in this period. Relicts of traditional agroforestry practices remains in some areas, especially in montane regions (silvopasture, «Streuobst»), such as White Carpathians Mts. Nowadays, the development of small farms based on family enterprises tend to re-establish these traditional elements (hedges, windbreaks, Streuobst, etc.) in the landscape as well as establish new agroforestry systems (e.i. alley cropping) in some areas. The estimated proportion of total territorial area based on LUCAS data is 0.6 %. In Poland, there is slowly growing interest among farmers (particularly organic, but not exclusively) in planting mid-field trees rows (including lime, ash, elm, black locust, willow or traditional varieties of fruit trees) for biodiversity conservation (green infrastructure concept), protection against wind impact on grazing animals and honey production. There are number of different social actions aimed at planting trees on rural areas carried out by NGOs (e.g. Eco-Development Foundation, Agri-Natura Foundation, Polish Agroforestry Association) or landscape parks (e.g. Landscape Park Complex the Wielkopolskie voiovodship). Despite many campaigns and local workshops, lack of unequivocal definitions considering trees on agricultural lands, particularly trees management rules discourage farmers to plant them. Wood pastures have been present in Hungary for thousands of years. According to the recent surveys, there are about 33, 000 hectares of wood pastures in Hungary, 90 % of which is located in protected or EU Natura 2000 areas. Today, large areas of wood pastures are overgrown with shrubbery and trees, causing serious problems at farm level. The restoration of abandoned wood pastures is a key issue for developing the natural and cultural value of the rural region, and also for the profitability of the livestock industry.Keywords: Central Europe, agroforestry practice, traditional systems, wood pastures, hedges. Among agroforestry systems, the intercropping of fruits and market gardening (Horticultural Agroforestry System -HAS) is innnovative and attracts more and more new entrants to farming (Burgess et al. 2018;Léger et al. 2018). Although HAS meet environmental and social challenges, particularly with regard to diversified and local food consumption, their management is challenging because of species diversity and the complexity of fruit and vegetable management practices (Lauri et al. 2016).The present study aims to understand how labor organization and management practices are impacted by the agroforestry configuration.A framework co-developped with farmers was implemented to record workload in market gardening and orchard activities. Regular follow-ups and semi-structured interviews in 9 farms made it possible to acquire data on workload for fruit-trees and vegetable management practices and to highlight frictions points between these two activites.The results reveal (i) an increase in the overall workload induced by the management of two activities; (ii) numerous friction points between orchard and market gardening management practices (Fig. 1); (iii) innovative strategies developed by farmers to address this increasing complexity.Often very promising on paper, HAS are sometimes more difficult to set up in the field (Eksvärd 2016). The present work points out the main antagonisms related to the simultaneous implementation of fruits and vegetables in an agroforestry design. Agroforestry is a land management system in which trees are cultivated among crops or pasture. Tree products, such as fruit or nuts, are one of the outputs of this system; the other output(s) are in the form of plant crops and/or livestock. It is found on every continent, using a range of cultivars. In the Sahelo-Sudanian zone of Africa, agroforestry is the dominant land management system. The two key tree cultivars are shea (Vitellaria paradoxa) and nere (Parkia biglobosa). The main products from these trees are the fruits, and these are important both as a source of nutrition and as a commodity that farmers may sell at market. The importance of these products is particularly high for more marginalised and vulnerable communities that rely on subsistence smallholder farming.Across the African continent, many rural communities also use insects for food and income. Until recently, this was limited to the harvesting of insects from wild land and agricultural fields. There are now a few initiatives that promote farming edible insects in enclosed systems, but most are still in the pilot phase.In the Sudano-sahelian zone, the edible caterpillars Cirina butyrospermi and Cirina forda are harvested widely from both wild and cultivated areas. Their abundance is partly due to their food preference: the shea tree. They do not appear to cause damage to shea fruit production, though evidence for this is not conclusive. The caterpillars are sold in rural and urban markets, but recently in Burkina Faso a company has responded to urban demand by processing and packaging the caterpillars in a way more palatable to the high-end consumer, and distributing these in supermarkets at a high price. This strategy could generate additional income for the collectors of the caterpillars. The purpose of this paper is to explore some concrete examples of possible solutions. It is possible to combine the production of several commodities, and this is the basis of the management of other multipurpose tree species in agroforestry parklands. Specifically, double-end species are common and the differentiated management practices (eg. Of Adansonia digitata, Parkia biglobosa…) implemented by rural communities could be a source of inspiration. Thus, certain individual or stand-level management (offset harvest, pruning and pollarding techniques, differentiated management) could increase and spread foliar production over time.The development of insect farming could also, like certain old practices (sericulture) or recent initiatives make it possible to manage this resource more sustainably. In many regions, finding a means of protein production that is compatible with the maintenance of tree cover is a major issue. Thus, better management of foliar production in agroforestry systems as an aerial forage resource specifically dedicated to insect farming opens important perspectives in terms of diversification and the promotion of new agroforestry practices. Agroforestry (AF) studies tend not to take much into consideration the different options available for the management of crops per se, generally taking into account classical techniques. However, in these single farming systems, reduced or no-tillage methods using mulch or cover-crops defined as Direct seed Mulch based Cropping systems (DMC) are gaining momentum. According to recent studies, DMC systems result under specific conditions in an enhancement of biological activity of soils and optimization of soil-plant-microorganisms interactions which in turn can enhance the resistance of crops towards plant pathogens. DMC systems have however been rarely combined with AF systems. A straightforward explanation lies in the high level of expertise needed to follow each of the two approaches, which makes their combination highly complex. But more fundamental issues such as the difficulties to manage root competition between trees and vegetables without ploughing are also at stake. The objectives of our work is (1) the co-design and co-implementation with farmers of DMC and AF systems, ( 2) the study on how these systems and their combination affect the farming system in its whole and ( 3) the continuous diffusion of the results of this study. We focus on a co-design which is a result from a thorough collaboration between the farmers and our partners which are AF structures and experts in different fields. We started our work in 2016 and are currently collaborating with a network of 34 farms (arable crops, breeding and horticulture) in the South-East of France which are using or developing DMC and/or AF systems (e.g. vegetable-orchards, agroforestry in arable crops) since 2007 and up. Ndoli (2018) [1] has already shown that under specific conditions the combination of DMC and AF systems can lead to a reduced productivity as in the case of maize grown under trees. Hence, one of our aims is to identify technical and design options optimizing the combined management of crops and trees in DMC systems and allowing the success of the farming system in the long run. We direct this identification into an iterative process with the co-design of the farms.The co-design of the DMC and AF systems is implemented based on the diagnosis of the farming system at various levels associated to the farmer's objectives. On-farm experiments are then processed by the farmers in order to test the viability of the design. The ADAF carries out with the farmer and in relation with the technical partners the monitoring and evaluation of various parameters which assess the agronomic, environmental and socio-economic performances of the farm as well as the soil and crops conditions. Focus is also made, through a systemic approach, on the specific linkage between crop culture and tree management (e.g. workforce repartition and adaptation in vegetable-orchards).Keywords: co-design, conservation agriculture, on-farm experimentation, systemic approach, participatory development. The Free Labour Contribution Period (FLCP) is a common feature of rural society in the Tigray Region of Ethiopia. During this period, typically lasting between twenty and sixty (20-60) days, community members volunteer substantial hours of intensive labor towards large-scale projects, frequently directed at watershed restoration. Many agroforestry initiatives in Tigray rely on the FLCP-often unwittingly-to realize projects, and as such, the FLCP is a force that animates much 'community-led participatory agroforestry' in the region. Despite the centrality of the FLCP to these projects and practices, there is little scholarship or systematic treatment of the FLCP within programming, publications, or evaluation schemes. This research dimentionalizes a case study in Abreha we Atsbeha, a qebele (village) known for successful restoration and agroforestry efforts [1], through the lens of the FLCP. In so doing, it aims to initiate academic documentation the FLCP and identify key factors that motivate community participation in FLCP-based agroforestry.This interdisciplinary case study relies on three types of data collected via the following methods: (1) ethnographic qualitative data collected through participant observation, focus groups, and interviews (2) quantitative labor data collected at the woreda (regional) level and(3) historical data synthesized from previous publications, analyses and archives. [2] The data was analyzed using conceptual mapping to identify loci of decision-making within the community, and assess the degree of participation afforded within this loci to community members across different metrics.The results suggest a high degree of heterogeneity among different community stakeholders in their attitudes, motivations, and perceptions surrounding the FLCP. Moreover, results reveal that while many community members understand the economic and environmental benefits of their work, participation in the FLCP is also motivated by fear of punishment. Notably, political party affiliation appears to play a substantial role in determining a community member's ability to participate in FLCP decision-making, which in turn may negatively impact their perception of both the FLCP and the projects undertaken during the FLCP.The study concludes that a lack of political diversity historically enables the FLCP, making possible the mass movements and large-scale projects central in Abreha we Atsbeha's success. This political monoculture may render Abreha we Atsbeha-and communities seeking to emulate it-vulnerable to political shocks and stressors across scales. The study offers an improved sampling methodology to assist future researchers model and survey the unique political organization of rural communities in Tigray and beyond. Ultimately, this knowledge can help integrate agroforestry within political frameworks, and steer community interaction with intensive agroforestry initiatives towards more durable, equitable, and resilient outcomes. Agroforestry can generate multiple ecosystem services underpinning human wellbeing while maintaining environmental integrity but rather than promoting silver bullet technologies across large areas, menus of options need to be tailored to local context. There are knowledge gaps in scientific understanding about how to enhance tree cover to deliver a range of ecosystem services. We present insights on how to do this from participatory action research across contrasting farming contexts in sub-Saharan Africa. In all cases, farmers had knowledge of a wider range of tree species than was available scientifically or promoted by extension services. This knowledge can be used in tree planting or regeneration initiatives to include a diverse range of tree species, largely unknown to science but important in farmers' practice. Doing so results in agroforestry options that are more inclusive, with different options suiting different people. Drawing from these experiences we propose a co-learning framework that integrates multiple knowledge systems through the facilitation of stakeholder engagement to identify agroforestry options for different contexts, alongside interventions required in the enabling environment for them to be realised. Co-learning continues beyond the design phase to drive iterative evaluation and refinement of options based on their real world performance, thereby reducing risks and increasing benefits for smallholder farmers adopting innovations. Agroforestry is a pillar of the agroecology program initiated by the French government in 2012.In Western Europe, hedgerow landscapes are one of the most widespread agroforestry systems (Baudry et al., 2000). Initiatives of hedge's restoration have primarily emphasized their value as providers of environmental services. For instance, their local impacts on nutrient leaching and carbon sequestration are widely recognized (Moreno et al., 2018). The « Terres et Bocages » farmers' association promotes a more multifunctional view of hedges as productive resources, contributing to the sustainability of farming systems. Wood chip resulting from tree shaping and early management pruning has a low energy value. While their use as mulching generates shipping costs, the farmers investigate their agronomic interest as an organic amendment in the cultivated field. In this context, the project presented here aims to bring together farmers, teachers/scientists and students in order to challenge different views of soil quality in a hedgerow agroforestry system. It is based on a scholar field experiment involving soil indicator measurements in two livestock farms in Brittany (France). In Loire-Atlantique, at the West of France, we can see paddocks surrounded by trees managing by dairy farmers. They choose to create and manage innovative paddocks inspired by the bocage system. Indeed, this agricultural practice is a heritage as rotational intensive grazing was common in the first part of the twentieth century. Yet, these new paddocks are designed for contemporary farming: trees are planted instead of hedges which permits crop rotations.These new rotational intensive grazing systems have numbers of benefits. Firstly, paddock's size is designed for a 2 or 3 days grazing rotation which contributes to maximise fodder quantity and quality. If there are more paddocks available than needs, they can be cultivated or can be cut for hay. Moreover, small paddocks help avoid grazing refusal as there is less food available. Secondly, trees contribute to animal well-being as they provide shade. Thirdly, farmers and advisors notice that cows don't cross trees lines and are quickly adapted to the new pathway without harming fences. This helps zone management of livestock. Finally, farmers save time as distances are shorter.To enhance this note, we will come with a farmer to the 4th World Congress on Agroforestry. His story will help to explain how rotational intensive grazing systems are created according to each farmer's situation and needs. Vityi A. 1 (vityi.andrea@uni-sopron.hu), Kiss-Szigeti N. 2 , Szalai Z. Hegdes and shelterbelts have history in some European countries, for their important role in protecting fields, people, poverty and livestock and improving productivity.In Hungary and many other Eastern-European countries hedge and shelterbelt management is a historical agroforestry practice. During the last decades their numbers are reduced and their condition is deteriorating in many places.After their disappearance environmental problems occurred (e.g. soil degradation) and led to economic difficulties. Therefore, the Hungarian Regional Agroforestry Innovation Network (RAIN) focuses its work on promoting the multifunctional benefits of shelterbelts and their innovative use in mixed farming for land owners.In this case study the farmers and researchers share their experiences on silvoarable organic mixed agroforestry farm where boundary hedges are planned and managed in accordance with the principle of making the most of the possibilities.Keywords: shelterbelt, hedgerow, agroforestry, multifunctional, mixed farm.Agroforestry systems designed to decentralise both food and energy production, based on diversity at all levels, within and among crops, can mitigate climate change and increase sustainability. For example, the organic crop rotation at Wakelyns Agroforestry is widening the range of crops grown both for resilience and for diet in the locality.For wheat, we have developed a composite cross population which is reliable in widely varying environments including alley cropping, with no external inputs. Small-scale sourdough fermentation of the wholemeal flour produces easily digestible bread with outstanding taste and quality. For apple, dispersal of different varieties among timber trees provides a high level of protection against all common pests and diseases with no external inputs, again with potential for fresh consumption and local processing and marketing. System maturity (the main tree planting was completed in 1994/5) leads to vegetational climax progression and increasing biodiversity which contributes to productivity both directly and indirectly. For example, muntjac established naturally on the site and has become a livestock enterprise through regular culling for local processing. This aspect of decentralised food production was achieved at almost no cost. However, we delay climax progression of the trees by coppicing and pollarding so as to maintain tree growth at maximum rates, increasing potential fuel production. For the past 10 years, wood chip (mainly willow and hazel) produced on the farm, has provided central heating and hot water for the farmhouse. We now aim to change the current boiler for a small-scale CHP (combined heat and power) unit which will deliver both heat and electricity so as to further decentralise energy production and reduce transmission losses. Thus, alley cropping integrates decentralisation of both food and energy production, while delivering many other benefits including increased biodiversity, carbon sequestration, water storage and health benefits for the crops, animals and humans involved. The next stage, already in progress, is to encourage wide replication of the principal system to other smallscale, food and energy circles (not chains) in different localities. This will highlight the potential for 'commoning' (Ferrando & Vivero-Pol 2017) to sustain and enrich the natural world from the soil upwards by connecting these replicates.Agroforestry management to maximize ecosystem services provided by soils Mao Z. 1 (maozhun04@126.com), Zuo J. 2 , Cardinael R. Adopting the future of land useThe Sustainable Development Goals, agreed in 2015, encourage all countries to address 17 social, environmental and economic goals that promote prosperity while protecting the planet. Whilst there is clear evidence that agroforestry can support the attainment of these goals (see the other sessions!), farmers continue to cite administrative and policy burdens as one of the most important reasons for not using agroforestry. In this session, we are seeking papers from tropicaland temperate contexts that move beyond stating that there is a mis-match between our aspirations for agroforestry and its administration and implementation in practice. Instead we want to encourage papers that demonstrate and explain how public policies, initiatives,strategies and action plans can successfully promote agroforestry at regional, national, and international levels. We encourage researchers, practicioners and policy makers to submit and to participate to an exciting roundtable about the key policy ingredients to make agroforestry attractive for farmers. Hopefully by learning about agroforestry policies that work, we can frame the key steps towards an agroforestry transition.For agroforestry to reach its full global potential, there is a need to overcome barriers and create favourable environments at all levels. This requires horizontal integration across sectors, such as agriculture and forestry, and vertical integration between local, national and regional governance and operations (Coe et al. 2014). Local uptake can be enhanced through for example active farmers' organisations and the availability of sustainable value chains for agroforestry products. There is also a need for conducive national or sub-national guidelines, policies and plans (with an attached budget to facilitate implementation), and a link to regional and global frameworks to create a favorable environment for scaling up agroforestry. The Agroforestry Network (2018 and 2019) in Sweden has produced a series of reports and briefs to explain how and why agroforestry should be at the top of policy-and decision-makers' minds. The recommendations can be considered at local, national, and global levels: Local action: this includes increasing knowledge and cooperation among key stakeholders whilst ensuring gender equality and equity; engaging with farmers' organisations and groups; considering longer funding cycles and increased funding for agroforestry projects and research; supporting more demand-driven, participatory and inclusive research which benefits from local knowledge systems; strengthening agroforestry value chains; and promoting multi-functionality in landscapes through a mix of tree species on farmland and mosaics of forests around farm land and in uplands. National and regional policy: this includes making agroforestry visible in policies, strategies, and budgets and communicate successful implementation; strengthening land tenure and resource rights for smallholder farmers and indigenous peoples; ensuring that policy instruments and investments are appropriate for smallholder farmers, especially women; and using multi-actor dialogues to integrate policy-making particularly across agriculture and forestry. Global frameworks: this includes connecting agroforestry practices to the Sustainable Development Goals (SDG), the Paris Agreement, and the Convention on Biological Diversity, and report progress. Agroforestry can contribute to at least nine out of the 17 SDGs: 1, 2, 3, 5, 6, 7, 12, 13, and 15. Keywords: sdg, policy.Multiple management decisions affect the species composition and the architecture of agroforests and forestry plantations. Mixed-species plantations and agroforestry systems that incorporate a diversity of indigenous tree species have the potential to restore degraded land in a way that is more productive and supportive of biodiversity and other important ecosystem services (Lamb et al. 2005, Perfecto and Vandermeer 2008, Tscharntke et al. 2012, Leakey 2014). However, mixed-species plantations and diverse agroforests are more complex to manage than monocultures of well-known exotic species. The complexity of working with multiple species, and the lack of information regarding indigenous tree species performance, ecology and silviculture, have been long recognized as important limitations for the widespread adoption of indigenous species in agroforestry systems and mixed-species plantations (Evans 1999). Nevertheless, and in response to this, an important pool of knowledge on indigenous trees' ecology and silviculture has been developed in the last decade (see for example, Rolim & Piotto 2018, Wishnie et al. 2007), providing project managers of agroforestry and forestry operations with a suitable set of species for planting. Hence, instead on focusing on technical barriers, this presentation discusses key policies, and public and private investments that could address market related barriers currently influencing management decisions about the species composition in agroforest and forestry plantations under 12Tree's management. Specifically, the need for coordinated private and public efforts to build regional-scale processing facilities that provide a market for timber and non-timber forest products (NTFP) grown in diverse agroforests and mixed-species plantations. Founded in Berlin in 2016, 12Tree Finance is an investment advisory and asset management company working with institutional investors to place capital in sustainable forestry and agroforestry projects in deforested and degraded agricultural lands of Central and South America. 12Tree manages more than 150 million euros in assets covering about 20 000 ha. Current investments include established and new agroforestry projects in the Dominican Republic, Guatemala, Costa Rica, Panama, Colombia, and Ecuador. Drawing on 12Tree's experience in Central and South America, this presentation describes three case studies that highlight the enabling conditions for constant growth and advancement of the agroforestry industry. In addition, the presentation reveals how localized eco-industries could help get around the problem of low timber prices triggered by the abundant supply of illegal wood from natural forests. In 2017, the European Court of Auditors special report n°21 concludes that \"greening, as currently implemented, is unlikely to significantly enhance the CAP's environmental and climate performance\". Can we extend this conclusion to agroforestry? To answer this question, I focus on how the CAP's cross-compliance is able or not to protect hedges. In France, the greening was directed on the first pillar payments, but also extended to the cross-compliance, that is compulsory rules that every farmer has to follow. They are named \"Good Agricultural and Environmental Conditions\" (GAEC) and, among them, a new one concerns agroforestry: the GAEC7, which protects ponds, copses and hedges. Since 2015, farmers who receive CAP payments cannot uproot hedges without an authorization. If this seems to be a good thing to conserve a traditional form of agroforestry, in the different French departments the GAEC7 implementation is however highly variable: sometimes the GAEC7 is well applied resulting in the diminution of hedges' uprooting ; sometimes the GAEC7 is not applied resulting in the unchanged, or even increasead, number of hedges' uprooting. My communication identifies political, social and environmental factors that explain this phenomenon in different local contexts. The materials result from a long field work inquiry (2016-2019) led for my PhD in sociology on the CAP greening. The ethnographic method used is based on social immersion which allows the researcher to understand people's practices and representations. The two types of actors encountered are state local administrations and agroforestry associations. I analyze three types of materials: ethnographic observations; in-depth sociological interviews; and gray literature. This study was partly conducted in collaboration with the French Association of Agroforestries (AFAC). The focus on the regions of Britanny (West), Auvergne (center) and Rhône-Alpes (East) provides a wide range of agricultural practices and social contexts. The main result is that the GAEC7, even if mandatory, is not implemented in the whole country. Its implementation often, but not necessarily, results from the conjunction of two factors. The first one is that the hedge's official definition excludes some types of hedges. It follows that is difficult to protect hedges that are found in the local landscape but are not officially defined as hedges in the law. But the most important factor is political: I observe a correlation between the activity of local agroforestry associations and the application of the GAEC7. I show that the quality of the relation that these local associations maintain with the state administrations is also crucial to the GAEC7 implementation. With this French case study, this inquiry moves toward the idea that an efficient agroforestry public policy is not only a text, as ambitious it is, but also, and maybe primarily, a network of local administrations and associations. Agroforestry systems (AFS) are recognized as being a land use system that can improve the sustainability of agroecosystems (Wilson et al, 2016). However, low market opportunities for its products is one of the challenges for its adoption, especially the more diversified AFS (Coq-Huelva, 2016). With this perspective, the Brazillian National School Meal Program (Programa Nacional de Alimentação Escolar, PNAE) and Food Procurement Program (Programa de Aquisição de Alimentos, PAA) have emerged in the last decade as public policies aimed at stimulating purchasing of local products (Grisa & Porto, 2015). This research aims at assessing how the programs have encouraged biodiversification and in particular in AFS. We compare two municipalities in the Brazilian Amazon, Paragominas and Irituia. By realizing interviews with local stakeholders and review of documents, we identify the variety of products that have been acquired through programs representing different cropping systems (Table 1). The AFSs are the most significant cropping system purchased by the programs in Irituia, differently from Paragominas. This can be explained by the set of background initiatives improving AFSs carried out in Irituia. Programs, in this case, have emerged as one of the drivers of this expansion process. We conclude that the programs have a great potential to act on the expansion of diversified systems such as the AFSs, as long as they are associated to other actions present at the local level. Although increasingly recognized, the role of agroforestry in mitigating climate change still did not reach its full potential.Basing on a review of available literature and on an in-depth analysis of agroforestry approaches in selected NDCs, the paper aims at understanding where the gaps are and at providing a set of suggested considerations for policy-makers. The paper also maps the role of agroforestry as a measure for emissions reductions from the AFOLU sector, through REDD+ and NDCs. We evaluate the opportunity that these national strategies and contributions offer to scale up agroforestry in moving towards concrete and long-term results within the countries, and bring concrete good practices for how agroforestry can contribute to the goals of national policies and Paris Agreement, for wider uptake.Keywords: redd+, agroforestry, climate change, policies, NDCs.It is estimated that there are 15.4 million ha of agroforestry systems in Europe, comprising 8.8% of the utilized agricultural area [1]. Yet the first mention of \"agroforestry\" in policy documents of the There are important opportunities for agroforestry promotion in the CAP for 2021-2027, which is currently being developed. Within Pillar I, there are plans for Member States to develop \"Ecoschemes\" and to map and set a minimum threshold for \"isolated trees\" and \"lines of trees and groups of trees\" [5]. Within Pillar II, there are plans for \"Agro-Environment-Climate Schemes\" which include higher-and longer-term payments, but with greater conditionality.Outside of the European Union, in Switzerland traditional agroforestry fruit orchards and wooded pastures are maintained by agri-environmental measures. The regulations are flexible, so that modern agroforestry systems such as alley cropping on arable land can be supported. In the UK, ministers have argued for a new land-use policy focused on public service provision and \"Environmental Land Management\" plans after Brexit.Keywords: policy, CAP, Landscape Feature, LPIS, Greening.Agroforestry is a key component of climate smart agriculture, with trees in agricultural lands providing significant contributions to both climate change mitigation and adaptation. Trees also play key roles in strengthening ecological resilience, whereas various tree products provide economic and nutritional benefits to rural households. The EU-funded Reversing Land Degradation in Africa by Scaling-Up Evergreen Agriculture (Regreening Africa, 2017-22) is an active intervention that deploys agroforestry for land restoration across eight African countries.It has an explicit policy objective to accelerate scaling up of land restoration through policy influencing. The target countries are Ethiopia, Kenya, Rwanda, Somalia, Mali, Niger, Ghana and Senegal. Based on mixed-methods research consisting of an intensive desk review, focus group discussions and key informant interviews, the comparative analysis conducted across the eight countries revealed four key findings: (i) agroforestry has not been mainstreamed or supported through policy frameworks. Various aspects of Agroforestry remain scantly spread across mainstream agriculture, forestry or other environmental policies (ii) There are significant gaps in human, technical and financial capacities to implement agroforestry (iii) There is fragmentation and poor coordination of institutions dealing with agroforestry (iv) Complex land tenure aspects and tree permit regimes constrain the wide adoption of AF by smallholder farmers. Some key opportunities to ensure coherence and widespread adoption of AF practices included: a) the establishment of a national cross-sector AF scaling platform (e.g. in Ethiopia) and development of an AF strategy and action plan (e.g. Rwanda); b) the establishment of networks of rural resource centres to multiply and promote diverse quality tree germplasm together with knowledge and skills on its deployment; c) implementation of the devolution process enabling the integration of AF into sub-national level plans, programmes and policies; d) reforms on land and tree tenure regimes that re-align with the interests of landowners and farmers. As a way forward, the SHARED (Stakeholder Approach to Risk Informed and Evidence Based Decision Making) methodology is being applied in the eight countries to bring together multiple actors, across sectors and stakeholder groups to review evidence, discuss key scaling challenges and develop a roadmap for regreening. Through structured stakeholder engagement and clear strategies to shift behaviour practices, the project hopes to support massive scaling up of evergreen practices and benefits. Although agroforestry (AF) is widely recognized as a promising land use option to stimulate farm productivity, mitigate environmental challenges, alleviate poverty and hunger, and provide livelihood security to the smallholder farmers, its development is impeded by lack of public policy support. To remedy the situation, India formulated the National Agroforestry Policy (NAP) in 2014. Though a total of 16 or so countries have framed policy agendas to promote AF, India is the first country in the world to have a comprehensive policy. NAP aims to promote AF by removing the constraints in its adoption and incentivizing it. A multi-pronged strategy, focusing on industrial models of AF, removing regulatory barriers for farm-grown timber extraction, and providing market support and credit, is the cornerstone of NAP. The policy also aims to create convergence among various programs/agencies involved in AF and helps to meet the increasing demand for AF products, protect environment and natural forests and minimize risks during extreme climatic events. Although four years since the launch of NAP is not long enough to evaluate its impact, we report here some of the progress made so far.Several initiatives have been made to implement the policy, which includes establishment of a Sub-Mission on AF (SMAF; Rs. 9350 million outlay for 2016-2020) to expand tree coverage on farmland in conjunction with arable crops, liberalising timber transit regulations and amending the Corporate Social Responsibility (CSR) guidelines to put AF under its ambit. SMAF aims at nursery development for quality planting material, peripheral and boundary plantations, farm woodlots, capacity building and demonstration of AF Models. Financial assistance up to 50% of the cost will be provided to the farmers. Several states have also taken steps to streamline the regulatory framework that restricts growing trees on farms. For the wood based industries, CSR provides a golden opportunity for developing back end linkages with growers for enhancing wood availability through tree plantations. ITC Limited, one of the leading private companies, with its subsidiary WIMCO Ltd, has established plantations of different species over 300,000 ha of land in over 60 districts of the country. Although India is estimated to have 25.32 million ha under AF or 8.2% of the geographical area (Dhyani 2014), there are many institutional, technological, ecological and socioeconomic factors, which obfuscate the adoption of AF. Major constraints include property rights (land tenure), tree tenure, supply of quality planting materials, subsidies and extension systems. In view of this, adoption and spread of AF has not kept pace with the expectations, despite climate change issues. Tree planting also could not be done at the expense of food production. The solution to this appears to tree planting on farm boundaries. NAP and other sectoral policies make AF the main form of current and future land use in India. SMA 44 (2008). The agroforestry systems are often considered as a restoring plantation in those Permanent Protection Areas once they could induce the restoring process of vegetation and soil by the inclusion of trees to agricultural production ensuring biodiversity of the ecosystem and optimizing land use when compared to monoculture and also because of income generation and food production. According to São Paulo State Resolution SMA 32(2014) small landowners with less than 4 local rural modules are able to install agroforestry systems in these areas. This permission promoted a high demand of agroforestry system plantation in these areas once the agroforestry system can be explored with agricultural products giving the landowner some extra income and also giving environment gain due to native trees plantations and maintenance. The monitoring of the increase of plantation in those areas have been done by an electronic registration system of national scope established by Law 12.651 / 2012 , the Rural Environmental Registry which gathers the information of the properties and rural possessions composing a database that will help environmental and economic planning and combat to deforestation. More than 259 thousand properties that have 4 rural modules or less were registered. The information given by landowners inserted in the system the location of native vegetation remnants, Permanent Preservation Areas (PPA) and Legal Reserves (LR) and this rregistration of rural properties is essential and is a requirement for joining the Environmental Regulation Program (PRA) where the landowners make a commitment to fulfill the legal requirements within a established period of time to plant the areas deprived of vegetation. The complexity of the game of actors mobilized around the issues of valorization of the Guadeloupe forest is a question of research and a major stake for the sustainable development of the territory. Like other ultraperipheral European tropical regions (Jouan, 2017), the study reveals deep antagonisms for the advent of a territorial policy of sustainable agroforestry valorization in a context where the land resource is limited. Between the regional authority, decision-maker of a territorial policy and manager of European funds, the departmental authority, large public forest owner, decentralized State services, guarantors of compliance with national regulations, the Chamber of Agriculture in representation of Guadeloupe farmers, the institutional micro-sheet complicates the emergence of a viable agroproductive sector in the Guadeloupe forest (Demené 2013, Cruse 2014). In corollary, we find among producers (Castro Nunes et al., 2018), a proliferation of divergent strategies sometimes crossed, depending on opportunities, or threats with tensions sometimes curbing the synergies around innovative endogenous collaborative initiatives. In a territory where the forest has played a major socio-economic role, beyond the currently promoted agroforestry models (Vinglassalon et al., 2018), or the ecological sanctuary advocated elsewhere, it seems necessary to strengthen the work of participatory co-construction to achieve an inclusive territorial agroforestry project.In the Czech Republic, industrialised agriculture is predominantly practiced. Intensive and industrial agriculture is able to provide sufficient agriculture products to supply high demands; however, it has a number of adverse effects on the environment such as, soil erosion and compacting, decreasing of soil fertility, loss of biodiversity, reducing landscape functionality, breaking local nutrient and energy cycles, etc. Agroforestry systems (AFS) entails an option that can minimize these negative effects and can provide more diverse and sustainable production. Agroforestry is currently not a common land-use system in the Czech Republic. Traditional agroforestry nearly disappeared during the era of collective farming throughout of 20th century, except for small remnants, modern agroforestry systems are not in practice yet. The traditional agroforestry practice did not survive decades of agricultural industrialisation, and hence, it is scarcely practice nowadays. To re-introduce agroforestry as a sustainable agricultural practice among Czech farmers, technical background and research on its implementation is needed. Therefore, the research project \"Agroforestry in Czech Republic -potential for regional development and sustainable rural landscape\" funded by the Technology Agency of the Czech Republic (ETA programme, TL01000298) started in 2018. It aims at evaluating the benefits and constraints of using AFS in Czech Republic with a focus on the socio-economic, legal and environmental context. The project evaluates planting and adaptability of selected tree species on arable land in areas affected by soil erosion and drought, as well as animal husbandry combined with tree components. The target areas will be large contiguous arable lands with intensive agriculture in the Central Bohemia and South Moravian Region. Based on detailed literary review, socio-ethnological surveys, production and economic data gathered from farmers, the AFS benefits on the agricultural land will be evaluated. Furthermore, legislative constraints and opportunities for trees growing on agricultural land will be analysed. Scientific publications and the development of methodologies for the application and implementation of the AFS in Czech Republic will be the main and final output of the project. This study evaluated the most effective models and participatory approaches for restoration through profitable and sustainable land management systems at scale, to develop restoration programs and landscape-level strategies in Iran. For this purpose, the objective, strategy and action plan for landscape restoration have been localized and customized to the specific conditions of the country, including its biophysical conditions and its stakeholders, taking into account their interests, indigenous knowledge and the decisions they make. Some of the expected outcomes and achievements of this study are: Better information for improved land-use decision-making; High-level political support for FLR; Fundamental inputs to national strategies on FLR, REDD+, adaptation and biodiversity conservation, and for mutually reinforcing convergence between such strategies; A basis for better allocation of resources within restoration programs; Engagement of and collaboration among key policy-makers and decision makers from different sectors, as well as other stakeholders with interests in how landscapes are managed; and Shared understanding of FLR opportunities and the value of multifunctional landscapes. By implementing ROAM, decision-makers and stakeholders can expect to deliver the multiple functions and different types of outcomes that will be approached through this methodology.Restored landscapes and seascapes can improve resilience including adaptive capacity of ecosystems and societies, and can contribute to climate change adaptation and generate additional benefits for people, in particular indigenous and local communities and the rural poor, using a participatory approach involving all stakeholders.L11 Public policies Foundjem-Tita D. (d.foundjem@cgiar.org), Degrande A.World Agroforestry Centre (ICRAF), Yaounde, Centre Region, CameroonWithin the context of climate smart agriculture (CSA) in most dryland countries, agroforestry diversifies and increases food production, improve livelihoods, and increase adaptation and mitigation to climate change. The right enabling environment are prerequisites for technology development and uptake amongst which agroforestry. Yet, many countries often fail to tap into the opportunities provided by national and international policies and the global institutional environment to develop agroforestry with prevailing literature citing national policies and legal context as major impediments to agroforestry uptake. We aim to show with the case study of Chad that most countries can exploit opportunities in national polices and legislation on the environment and forest to enhance agroforestry. To demonstrate the latter, information was collected through (i) literature reviews of important national and international polices and legislation governing access to land and trees, amongst which 'La Loi 14', Chad's 2010 poverty reduction strategy paper; draft zero of the National Environmental Policy; (ii) interviews and focus group discussions with NGOs, Government officials and farmers; (iii) household surveys with 100 farmers. We found that despite the absence of a specific agroforestry policy in Chad, the country has adopted many policies and developed strategies that may be exploited to develop the practice. Most stakeholders interviewed had positive attitudes towards agroforestry, but its uptake is constrained by limited expertise and inadequate extension efforts, limited access to improved planting material, and poor mastery of the forestry law by farmers and forestry officials. This gives room for rent seekers to collect access fees to trees on both forest and farm land thus discouiraging tree planting. The study concludes that more farmers will become involved in tree planting on farm land as awareness increases, and as water and planting materials are made available. We propose that the Government of Chad should unmask elements of agroforestry in its current forest and environment policies and policy instruments and demonstrate the importance of the technology to the country's economic and environmental challenges. It is important for the country to develop clear agroforestry action points in subsequent climate change and environmental policy documents so that tree planting initiatives entrenched in such policy documents could be implemented from an agroforestry perspective. REUNIR AF is a national project, coordinated by APCA and AFAC and founded by the Agriculture Ministry, to coordinate the Agroforestry Development in France. This program named a referentt in each province to lead the regional adoption of agroforestry. A key action is to make sure of the « Agroforestry » presence in the regulations, in the first and second pillar in the CAP. To this purpose, various actions are led to determine the key parameters for adoption regarding the current regulations and to propose some adaptations or innovations in the proposals for the next CAP.From November till January, an important survey will be led to all the professional public concerned by the CAP evolution : farmers in first place, but also the technical advisors in association or Agriculture Chamber, the administration (instruction but also the control office).Interviews will be organized in all the province and 700 persons will be interviewed. The main objectives are to realize a state of the current CAP and to formulate new proposals for the next CAP Period, at different scale : European, National, and Regional. The survey will take attention to the articulation between the CAP and administrative or local regulation, to check if it could exist some contradictions between European and national or regional measures. The project will take part to the European activities from EURAF. A possible European survey could be organized in collaboration with the different national associations. The Western part of Europe is dominated by Atlantic weather conditions which are associated with high rain fall conditions of over 600 mm to 2500 mm per year. This precipitation provides excellent conditions for high productivity for all types of crops which are mainly associated with forestry and to permanent grasslands in the Western part of Europe. There is also a temperature gradient from the North to the South that creates growth restrictions associated with cold and droughts in areas like Ireland and Galicia. Both areas have enormous potential to increase agroforestry use and promote more sustainable land management. Ireland has a large number of hedgerows that help reduce the negative impact of winds in grassland production but also contributes to improved animal welfare. Galicia has a 70% of its land allocated to forestry and should use livestock to reduce forest fires which results in over 100,000 ha of burned land in only a few days every decade when weather conditions become increasingly negative. The benefits that silvopastoralism could provide are even greater considering the rising temperatures and the appearance of extreme events due to climate change. Increasing forest cover in Ireland and delivering agricultural products (livestock) can be achieved on the same piece of land, while access to the land is prolonged through the presence of trees and the enhanced drainage they provide. The potential for agroforestry to mitigate the negative effects of wildfires in Ireland is also recognised. Increasing forest land used by livestock in Galicia is essential to increase income and rural development as livestock produces a short and medium term income to farmers that otherwise cannot live exclusively from the benefits of forestry. Tree species selection and tree density becomes a key issue in both cases. Broadleaves such as oak ,ash (some species), birch, willow, walnut, poplar or cherry are excellent species because they can provide feed in the autumn or when pruned and shaped to obtain high value timber trees. In addition they can protect water, intercepting silt and nutrient runoff and can increase soil fertility as they incorporate leaves every year into the soil increasing nutrient recycling and carbon storage. When selected the species it is important to take into consideration the time when the leaves appear, the capacity of generating epicornic buds, fruit and nuts, but also its management such as the distribution within the plot or the timing for thinning and final harvests as this will affect the development of both livestock and forest stand. The management of light will be critical too as the trees mature and shade increased it is important that there is enough light for grass to thrive. In spite of the known positive impacts silvopastural agroforestry systems could have in both areas, the number of measures promoting them is still rather small.Agroforestry is one of the most prominent tools to make easy the transition of European agricultural and forestry farms to more sustainable land use systems such as agroforestry. 2018). Since the participants of the events organized by the Agroforestry Committee identified the absence of recognition at the political level and the lack of technical and financial support as some of the most important constraints to adoption of agroforestry, a working group stemming from this committee was also set up in order to draw up a document about the strategies to put in place to stimulate such an adoption ( 2017). An analysis of the current situation in view of the challenges faced by the agroecosystem brought the working group to make six recommendations: the recognition by the public authorities of the potential of agroforestry systems; an increased technology transfer through the setting up of networks of agroforestry advisors and demonstration sites; the provision of financial support to producers through a program specifically dedicated to agroforestry; the creation of new knowledge through research; the development of adapted plant material; and an increased dialogue between the various actors of the agriculture, forestry, environment and rural development sectors. The implementation of these recommendations should help the scaling-up of agroforestry in Québec. However, the ability of the Agroforestry Committee to reach policy makers could be a pre-requisite for that. The advantages and disadvantages of such an organization for stimulating the development of agroforestry will be discussed. Agroforestry systems (AFS), presented by their supporters as systems able to reconcile multiple social and ecological functions, are potentially interesting for a diversity of sectoral policies such as forestry, environment or water policies. They are presently in a process of being institutionalized in Europe through the development of specific policy instruments. In this context, we investigated the policyscape of agroforestry, meaning the articulation between multiple policies impacting a diversity of AFS in two Mediterranean protected landscapes: the Ventoux biosphere reserve and the Verdon regional nature park. We conducted in depth interviews with 50 practitioners and institutional representatives from diverse policies directly concerned by AFS. We found that if some AFS such as silvopastures are highly intersectoral and concerned by a large diversity of instruments, others such as alley-cropping systems are confined in the agricultural sector (Figure 1). Presently, systems such as grazed pastures are largely ignored by policies. Our results indicated that instruments specific to agroforestry represent a minority in relation to the diversity of sectoral instruments impacting AFS at a landscape scale. Regarding this agroforestry policyscape, we discuss opportunities for agroforestry development with issues of policies coordination, lack of instruments or of involvment from environmental or land-use planning policies for certain types of AFS. A study was conducted in western Uganda to; i) determine the socio-economic attributes of private natural forests owners, ii) assess the status of private natural forests under REDD+ iii) assess the drivers of deforestation and degradation of forests under REDD+ and iv) assess the effect of REDD+ on livelihoods. A participatory approach using semi-structured interviews and focus group discussions was followed to collect data. Quantitative data were analyzed in SPSS 20.Results showed that up to 69% of Private natural forest owners were middle aged men with limited education (86%) and involved farming (62%) as a key source income. About 48% of the forests were slightly logged, 30% slightly degraded and 14% heavily degraded (the cadegradation include agricultural expansion and land grabbing. Although some participants were still protecting their forests, the incentives provided or promised seem to have just encouraged others to stay with the program rather than conserve the forests. To ensure effectiveness of REDD+, a review of the nature of incentives and the approach of delivering them should include assisting the smallholder farmers with mechanisms to address crop raiding and land tenure insecurity. Without these, perpetuity of tropical forests on private land under REDD+ will be in jeopardy. van der Meulen S. 1 (suzanne.vandermeulen@hvhl.nl), Verschuur M. 2 , Santegoets J. The municipality of Nijmegen is developing a vision on agroforestry in its surrounding areas.To investigate the current state view of stakeholders on agroforestry, a Rapid Appraisal (RA) has been carried out in the region around Nijmegen, completed with in-depth interviews (Verschuur, 2012; Van der Linde, 2014).A number of the interviewees are actively involved in a form of food forestry production, with a focus on crop production (figure 1). These initiatives are small and are currently not planning to scale up to larger sized farms or processing units, which would be needed to provide food for a city like Nijmegen. People who are at the moment involved in agroforestry are very passionate and very much looking for connections outside their farms, which is key for the establishment and acceptance of a new system. The other side is that at this moment agroforestry in the Netherlands is mainly associated with the small scale food forests. With the aim of providing the city of Nijmegen with food coming from agroforestry, this is might not be enough and many questions remain. Part of these circle around the agroforestry system itself: what types of sustainable systems will fit the area? Others deal with the economics and business models. Also, what will be the effect on the landscape in the Nijmegen-area? And last but not least: a discussion is needed about the role and responsibility of the municipality of Nijmegen, if they want to further develop and implement their vision. Adopting the future of land use -L12 -Economics of agroforestry: the link between nature and societyAgroforestry practices and techniques are relatively well described as well as environmental aspects (biodiversity, impact on soils and fauna…). Impacts partially lacking in explaining why some farmers move to agroforestry. Social issues are mainly seen from an ethno-botanic perspective. This session focuses on socio-economic aspects, including income analysis (in particular for vulnerable countries and populations link to food security), social components (farmers' perceptions, organization and policy), payments for ecosystem services and other environmental issues. The objectives of this session are 1) to contribute to knowledge on economic impacts and social nature of agroforestry practices in order to bridge the science-policy gap, 2) to provide a broader view of understanding the basics of agroforestry practices and develop ment using a multi-disciplinary context, and Agroforestry (AF) systems have clear potential to increase ecosystem services in agricultural landscapes, but to what extent do they meet the socio-economic needs of farmers? We present a goal-programming approach that integrates farmer knowledge and future uncertainties in the optimisation of farm portfolios. Using this robust, normative method we investigate the potential of AF to meet multiple objectives at the farm level, focusing on a forest frontier region in eastern Panama. We obtained data from farmer interviews, drawing on participatory research methods to quantify farmers' knowledge and perceptions of six land-uses. Results show farmers viewed silvopasture very favourably, and this AF system dominated the optimised farm portfolios. Maintaining liquidity appears to be a key driver of farmers' land-use decisions in the study area. Differences emerged in the preferences and perceptions of different farm types, highlighting that a one-size-fits-all approach to promoting AF systems may be inappropriate. Overall, results suggest that farmers in the study region would be receptive to silvopastoral systems, which as part of a diversified farm portfolio can contribute to a range of socio-economic objectives. However, important barriers to adoption, such as a complicated tree harvesting permit system, remain. While we tested the modelling approach in Panama, it is easily transferable to guide land-use planning in other tropical and temperate regions. Most agroforestry systems in the world results from local adaptation to climate, soils, crops and markets conditions for a specific crops combination and generally linked with a crop opportunity for export during colonial era which is mainly true for coffee, cocoa, rubber and clove. The focus is then put on income generation and rapid monetarization of local livelihoods. Some systems are purely resulting from local demands such as coconut tree based systems with focus on food for self-consumption. Some systems are based on a main cash crop (rubber, cocoa, coffee…). In all cases, production diversification is a key element for a better global resilience through production of the main crops and fruits, firewood, timber wood, resins, rattan… and other plants such as medicinal plants. Some products are sold and some self-consumed largely depending on access to markets. The \"useful\" biodiversity is then largely known and combined to fulfill a better resilience, based on crop diversification in order not to depend only on one product and generate in the short/mid term several sources of income. But the \"non useful\" biodiversity or more exactly the non-marketable biodiversity is also producing ecologic services in the long run that are highly appreciated and generally well known by local people. What is the role of these externalities in agroforestry development and associated farmers' strategies. If most income analyses have difficulties in providing a value to these externalities, they may have a key role in farmers' choice and preference in agroforestry rather than monoculture when they have the choice.In other words, if profitability and short term income generation are often a priority for most smallholders, long term stability, positive externalities provided by ecological services of agroforestry systems and the search for a better resilience are key factors in developing agroforestry strategies in the long run. More than 150,000,000 ha of tropical forests were converted to farmland between1980 and 2012, with devastating effects on livelihoods, biodiversity and ecosystem services, resulting in a global outcry for restoration supported by a UN Decade. Agroforestry has become one of the key restoration interventions. Using the Philippines as a case study the paper demonstrates the current mismatch between the agroforestry systems promoted and the development objective to be achieved which is restored forest landscapes. Farmers and forest dependent communities, like elsewhere in the world -want trees that provide income, and fairly quickly, in the absence of functional markets and enabling policy frameworks and financial support native timber tree species are not a very high preference. This is leading to the inclusion of exotic fruit, fodder and fast-growing timber trees in the agroforestry models promoted and implemented on forested lands.We conducted a literature review on a 110 successful agroforestry case studies, documented by the Institute of Agroforestry of the University of the Philippines and reviewed more than 50 commercial forestry investment proposal (CFIP) that were submitted to the Department of Environment and Natural Resources of the Philippines, to be considered under the Natural Resources and Environmental Management Program program. The analysis show that on the one hand current farmer and community driven species selection is strongly following the agricultural with trees understanding of agroforestry, with the main socio-economic benefits coming from the crop component, ensuring food security and from tree products, providing income. The CFIP models analyzed are exclusively designed with financial incentives for planting trees. Long term sustainable aspects looking at access and benefit sharing of slow growing timber species is largely absent. While the Philippines has one of the most progressive forest legislation frameworks with respect to supporting private timber production, it is compounded by a web of policies and laws that regulate the planting, harvesting and sale of trees on farms and of state land, unintentionally restricting farmers and larger private investors who want to plant indigenous forest species and restore degraded land. Based on the Philippine case studies we argue that successful forest restoration programs need to move beyond the traditional view that land should be classified based on a specific land use: that timber is produced on forest land and food is produced on agricultural land. A unifying agroforestry policy could serve as a bridge between sectors that rarely coordinate their actions, bringing together not only government agencies but also small and large sectoral interests to navigate a clear path through the tangle of policies and regulations to ensure swift and efficient achievement of national commitments through better use of trees on farms and degraded state forest land.Keywords: Forest Restoration, smallholder, agroforestry, incentives, income.The multi-dimensional diversification of agroecosystems, from the plot to the landscape scale, is known to be a key factor of social-ecological systems resilience. Agroforestry research especially brought considerable insights on this issue by documenting the socio-economic, agronomic and environmental outcomes of this type of practices. However, the drivers of agroforestry practices' heterogeneity and its spatial patterns remain poorly understood. This requires a diachronic perspective as the observed agroforestry systems often result from the gradual implantation of tree in pre-existing plantations, fallows, forests or pastures. This study addresses this issue through an original diachronic approach at the landscape scale, which contrasts from more usual static approaches focusing on cropping systems. We characterized the drivers of the observed heterogeneity of agroforestry practices and its spatial patterns in the landscape of a village located in the Analanjirofo region on eastern coast of Madagascar. In this locality, small farmers cultivated for 50 years varied perennial crops (clove, litchi and fruits, vanilla, coffee…) within different patterns including complex agroforestry systems.Analyses were conducted in 2016 on both qualitative and quantitative data collected through farmers' surveys on the following topics: i) the plant species grown in local agroforestry systems, ii) farms socio-economic characteristics, and iii) economic evaluation at plot level. A land-use map was built in 2016 through photointerpretation of drone and satellite pictures, and was compared with a map from 1966. The survey showed that a wide diversity of agroforestry practices currently exists on the locality regarding their plant species composition. Agroforestry accounted for 20% of the land surface in the study locality, resulting in a highly heterogeneous landscape mosaic. By merging the analysis of farmers' survey and the diachronic analysis of the land-use map between 1966 and 2016, we were able to give insights on the economic, demographic and geographic processes that led to the observed heterogeneity of agroforestry practices and their spatial patterns. These results raise perspectives to understand the processes involved in agroforestry evolution and expansion in Analanjirofo landscape over the past 50 years. Our results are relevant for supporting the orientation of social-ecological systems toward resilient trajectories. Results prove no relation between land tenure security and the plantation of trees. Land occupation by any farming system with or without trees, such as food crop or pasture, is informally recognized as proof of ownership. Farmers plant trees around their house, in pastures or on the borders of paths, for the high value they attached to them. Trees provide goods (timber, fuel wood, fruits, medicine…) and services (preservation of soils and water resources, regulation of pests and diseases, action on the local climate), and are also recognized for their social value. With the same logic, both women and men recognized forest as the main land use regarding ES provision. By contrast, they consider it of less interest than agricultural land uses regarding household's income and livelihoods. Logging is not a well-remunerated activity, and the forestry law imposes strong restrictions to timber sale. Women and men farmers perceived that forests are important for soil, water and biodiversity preservation. They may provide fuel wood and timber for family needs, but these are also provided by trees in agroforestry systems and elsewhere in the farm. Indeed, fuel wood is more often collected in agroforestry systems, including sylvopastoral ones, as are fruits and medicines. Timber trees might be preserved when opening new agricultural lands over forests, for later use, and timber species spontaneous regrowth in agricultural lands might be protected by farmers. Forests poorly contribute to the household's livelihood, trees within agroforestry systems provide the same ES than forests, and deforestation for agricultural land use conversion is a way to gain access to land. For these three reasons forests are converted into agricultural land uses until only remaining in locations of poor agricultural value. Because farmers value trees, these are preserved and even planted within agricultural lands, leading to a rich variety of agroforestry systems. As a result, agroforestry systems replace forests for their higher economic value to farmers. In Senegal, areas covered with scattered trees, intentionally selected and preserved by the populations, are dominant features of the landscapes. Numerous studies have highlighted the multifunctionality of these parklands, where people use trees as fodder for herds, as natural fertilizers for crops, and food, wood and pharmaceutical providers for households livelihoods (eg. Sène 2004;Baudron et al, 2017). A study conducted in Mali conclude that parklands were responsible for between 26 percent and 73 percent of household revenue (Faye et al. 2010).Regardless of this, the role of the parklands and the importance of their preservation remains little discussed in rural development policies and programs, and the potential of the tree in reducing food insecurity remains poorly explored. As human pressure on lands, increase of herds demography and climate change effects are currently threatening parklands (Bayala 2014), the need to better understand the contribution of trees in household's resilience takes on increasing importance. How might trees affect livelihoods and food security of farming families? Based on a dense survey, our work aims at improving our understanding on the links between parklands and household food security.Our study area is the groundnut basin in Senegal where we choose the arrondissements of Niakhar (Fatick region) and Nioro du Rip (Kaolack region), of approximatively 400 km² each. They differ in the parkland composition in terms of tree species and density, and in the social rules of access to the trees. In each of these areas, 200 households were surveyed over the 2018 cropping season. The questions focused on the description of the parkland to which they had access (collective or individual access), their uses of products from trees, their production system and their non-farm activities. For each household, two indicators of food security level, frequently used in the literature; were calculated as well: the Household Food Insecurity Access Scale (HFIAS) and the Coping Strategies Index (CSI).Our preliminary results show that parklands have an impact on household food security, particularly in sustaining nutritional intake, and highlight the complementary roles through time of different tree species in coping strategies. We then estimated incomes from the sale of tree products to highlight the economic importance of trees. Our results also demonstrate the importance of collective areas for families whose state of food insecurity is the most critical. By replacing the tree at the heart of the coping strategies of households in times of hunger, this study contributes to providing scientific knowledge that could then be used to advise policies and programs addressing food insecurity.Keywords: food security, parklands, senegal, coping strategies.Across much of Europe, hedgerows are an important part of our joint cultural heritage, covering a total of 1.78 million hectares in the EU (den Herder et al. 2016). Innovative reinterpretation of traditional hedgerow management techniques for modern farming systems represents an opportunity for farmers to both diversify income streams and increase system sustainability. Recent trials in the UK have investigated the potential of using biomass from hedgerow management for local heat production as a way of supporting the rejuvenation of old hedges, restoring not only their economic role but their value to the wider landscape (Westaway et al. 2016). These trials assessed the feasibility of mechanising the process of coppicing hedges and processing the resultant material, and demonstrated that hedges can be managed to produce woodfuel of a quality that meets industry standards. However, to be attractive to farmers, the management of hedges for bioenergy must be profitable. This paper reports on a cost:benefit analysis of these UK trials using the FarmSAFE model (Graves et al. 2011) to test the hypothesis that harvesting hedgerows for woodfuel is financially profitable. Costs associated with standard hedgerow management by flailing every two years are compared with hedgerows managed on a 15 year coppice rotation, under different scenarios (scale of machinery, end use/market for the woodfuel, and the availability of grants). The Alliance Approach to Innovation in agroforestry:Parrot L. (laurent.parrot@cirad.fr)Agro-ecological innovations aim at promoting sustainable agricultural practices that have long term benefits. However, farmers rarely adopt beneficial innovations in agro-ecology despite expressing an understanding of the benefits and a desire to do so. It has been argued that the farmers lack sufficient knowledge to implement complex innovations. We believe that in many cases such knowledge is necessary, but is ultimately insufficient for complex innovation adoption. We argue that there is a need to understand the economics of agro-forestry as a series of relational acts. All interventions, all innovations are relational acts between people.Effective economics is therefore an effective analysis of the relatonal acts occuring in an agro-forestry system: between the farmer and his or her farm, family, markets, and so on. The goal of such an approach is to select for exemple the pertinent and useful information. In order to assess the effectiveness of a relational act, we will present Alliance Approach to innovation. This approach is modeled after the therapeutic Alliance Approach at work in cognitive and behavioral sciences. We argue that using the Alliance Approach will not only prove effective in helping farmers adopt complex agro-ecological innovations, but also a better fit for the human centered development of capability approach human development, as it is likely to enhance both the well-being and agency of the farmers. Forest gardens (FGs) are tree-dominant land uses in small, family farming enterprises in Sri Lanka (McConnell et al., 1997). Although the financial performance of FGs has been described, how they compare with other components in farming enterprises and their current and future contributions to farming enterprises as a whole are poorly understood. This information is critical given the global quest for financially viable farming models that increase livelihood security (Pretty et al., 2014) in the face of climate variability (Marambe et al., 2015) and shrinking natural resources (Food and Agriculture Organisation, 2018). We investigated and compared FG financial performance with other components of farming enterprises in short (reference year, 2012-2013) and long-terms (beyond 2013). Farming enterprises include On farm (land uses: FGs, paddy, cash crops, plantations, swidden plots and livestock), Off farm (employment, trading, grants) and household components. Data were collected for 85 farming enterprises in nine locations of the Intermediate zone in Sri Lanka. Floristic, timber and fuelwood inventories were undertaken and area mapped for all land uses. Financial data were collected using household income and expenditure surveys and quantified using accounting procedures. Forest gardens occupied the largest area and had the highest floristic diversity of all land uses. Tree crops were more productive than seasonal crops despite multiple stressors including rainfall variability, animal and insect pests, and labour scarcity. In the short-term, FGs contributed 29% to household food self-sufficiency, generated the highest profit and profitability, and were the most financially efficient land use in the On farm component. Average FG profit (Current assets) was greater than enterprise profit. Van Isterdael J. 1 (codesa@yahoo.es), Diaz J. All mentioned there is always something to harvest for self-consumption with these systems, including fire wood from temporary shade. These systems help to improve diet and nutrition. Few mention the income opportunities by transforming cacao, agritourism and sale of budwood. They are aware of the challenges of increasing organizations membership to be able to ferment and sell at a better price, but recognize volumes are small. All focal groups believe climate is less predictable, warmer, with longer dry spells and less but torrential rains. The negative impact of Hurricane Mitch and El Niño drought (2014)(2015) are remembered by all.The later killed some young cacao trees but not mature plantations. All corn and beans plots were lost. They foresee no threats to sustainability of plantations, they feel well trained and will protect investment done thus far. Groups recognized the systems as a radical departure from traditional agriculture development initiatives. They are diverse, flexible and adapt to family preferences, plot conditions and allow inclusion of women and men. They recognize improvements: higher soil fertility, water retention and less soil erosion. Few groups mentioned the benefits of no-burn, biodiversity protection and landscape enhancement. Families recognize added wealth-heritage with permanent shade of high value certified tropical wood trees. We recognize the need for a follow-up study as cacao matures and to broaden the survey. Findings clearly show Honduran small farmers with new cacao agroforestry systems have a positive perception of the economic and environmental benefits. This development initiative is a winning strategy and should be applied to other developing tropical regions. Willow is one of the most widely grown species and comprises about 13% of the total broad leaf plantations established on government and privately owned lands of Kashmir Valley. The results of our study vis-à-vis viability measures indicated that cultivation of willows in Kashmir has a great economic feasibility with respective NPV of $ 3964 and $4802 and BCR of 1.55 and 1.57 when the plantations are managed and used for making cricket bats and basketry under a production period of 20 and 7 years respectively. The economic feasibility of willows for biomass production in short rotation coppiece forestry managed under a planting design that accommodated 17600 plants ha-1 revealed that the first rotation of this crop harvested after 4 years of plantation yielded 15 tons (fresh weight basis) of biomass ha-1 yr-1 which increased to 23 tons ha-1 yr- The diversity of associated crops within cocoa-based agroforestry systems (CAFS) generates different productions that can be either sold or self-consumed. This wide range of plant species and densities directly influence the amounts of products to be sold and/or self-consumed by the producers and their families. Consequently, the impacts on the overall economic performances of these CAFS can be important but have been poorly assessed. We characterized 140 CAFS distributed over 3 production areas in the Dominican Republic in order to (i) build a typology of Dominican CAFS according to their cultivated plant structure, and (ii) compare the agro-economic performances of each type of CAFS. We found that the sum of the different sales, including cocoa, do not differ significantly among the 3 types of CAFS that we characterized. However, a high degree of diversification combined with a significant densification of associated fruit species weakens the economic performance of cocoa sales, but increases fruit sales and the level of self-consumption of the farming household. On the other hand, a low diversification of plants associated with nitrogen-fixing trees increases the economic performance linked to the sales of cocoa but reduces fruit sales and self-consumption. This study evidences different farmer's strategies. It also provides elements for the improvement of agricultural practices towards different economic options between sold and self-consumed products provided by CAFS. Farmers in Nepal have practiced some form of agroforestry for centuries, however the contributions of trees and agroforestry to food security is poorly understood. Using a bio-economic model, EnLiFT, the food security index across 6 household types of rural Nepal were estimated for selected agroforestry interventions. Market-oriented timber production shows strong potential to increase food security across all household types with greater benefits accruing to land-rich households (Figure 1). For land-poor households, remittances from household members working abroad remains the strongest route to their food security despite the underutilisation of agricultural land due to adult male labour outmigration. A drawback of market-oriented timber production is the long-term nature of timber production. As EnLiFT assumes that timber can only be harvested from year 9, complimentary livelihood strategies are required to address food insecurity in the short term. Complimentary agroforestry interventions with strongest potential to improve food security include combined high-yielding fodder production and commercial goat production, and production of non-timber forest products. While land-poor households are heavy reliant on foreign remittances for food security, it is argued that policies encouraging use of remittances to promote agroforestry businesses is needed. Social innovation refers to the reconfiguration of social practices and new institutions such as networks, partnerships, collaborations and governance arrangements -in response to societal challenges and opportunities (Polman et al. 2017;MacCallum et al., 2009). VALAB is studied and supported by SIMRA as a case study and an innovation action. In this research, our hypothesis is that to bring about change, social innovation has to be transformative. We build upon the theoretical framework of transformative social innovation (Avelino et al.;2017) to analyse and understand i) how problems and opportunities related to linkages between nature and society are tackled within the setting of an operational group and ii) how innovative solutions that meet the end-users needs (including on the economics of agroforestry) are developed. We conducted an in-depth case study of the VALAB social innovation based on a mixed-research methods approach. Our preliminary results reveal that operational groups can be conceptualised as real social innovation laboratories because of both the processes they enable and the knowledge they produce. In particular: i) they lead to new ways of framing sustainability issues in relation to the forest; ii) knowledge is co-produced and shared among participants and new methodologies of work are co-created and implemented; iii) they lead to new governance arrangements; iv) as a result, future actions and projects will be implemented aiming to design viable agricultural farming systems while guaranteeing the protection and preservation of the forest ecosystem. The research contributes to the development of a better understanding of: (i) human-environmental interactions in social-ecological systems; (ii) the perception of pathways to change by relevant stakeholders to suggest on an agroforestry wedding band between society and the natural world; (iii) diverse development trajectories of SES, with identification of management options, policies or institutional arrangements as responses (e.g. social innovations) to assist in overcoming the challenges and achieving sustainability in the Guadeloupean Forest at a local scale.In the Eastern Amazon, many small-scale farmers have been spontaneously initiating experiences in forest restoration, mainly through agroforestry systems. To guide more inclusive restoration policies, it is important to assess the socio-economic viability and ecological benefits of the different systems. Following a companion modelling approach, simulation and gaming tools were developed to enable exploring how and why smallholders would engage in farming systems oriented toward agroforestry systems. A stylized model of 4 similar 25-ha family farms was first designed by researchers. This virtual landscape represents a game board. During gaming sessions, participants are requested to select the activities they would like to perform, to locate them in the game board and to indicate the practices related to these activities. These human-made decisions are inputted into a computer simulation model that allows simulating the growth of the plants and calculating a set of indicators to assess the balance between environmental and socioeconomic benefits. This tool has been codesigned with a small group of farmers from the Municipe of Irituia (North-eastern Para, Brazil) who were selected because of the experience in agroforestry systems. The game was then tested by students from Itabocal, a rural school of Irituia Municipe. We present how it enabled fostering knowledge sharing among students, farmers and researchers.Keywords: Gaming, Agent-based simulation, social learning, Brasil. We visited cocoa farms to characterize the cropping system and conducted socio-economic surveys with farmers to collect data on the land acquisition costs, farms age, farms maintenance costs, yield of cocoa and associated fruit tree species between 3 cropping seasons (2015 -2018). We identified three SAFc differing by their level of complexity in term of shade tree density and associated species, namely simple SAFc, mixed SAFc and complex SAFc. The average cocoa yield and the income generated from cocoa over the three years was positively correlated with the complexity of the SAFc. On the contrary, the income generated from the associated fruit species was negatively correlated with the complexity of the SAFc. Overall, the incomes generated from the complex, mixed and simple SAFc were 171,288 ± 67,502, 181,041 ± 47,453 and 166,937 ± 37,760 F CFA/ha respectively, suggesting that mixed SAFc can be recommended as the best profitable cocoa agroforestry option in the study area. However, a trade-off between the financial profitability and the other benefits of agroforestry i.e. ecosystems services, social benefits…need to be considered. Colombia is occupying the second place among the countries with the greatest biodiversity in the world, unfortunately by more of 50 years we had to live the scourge of armed conflict that left thousands of victims and deforested areas caused by the establishment of illicit crops. This project originated in 2006 in the region of Meta, We seeking that the displaced families have a source of decent income, through of agroforestry with non-timber forest products, Amazonian fruits, condiments, spices, colorings and essences. We were based on research from the Institute of Amazonian Studies SINCHI, this in order to establish the nurseries, have the seedlings and to be able to cultivate in an optimal way according to the ecological and topographic conditions and then transform it for to give an added value . As a result we have a Network of 144 families producers and agroforestry units developed, where they are guaranteed better living conditions, food security and decent income. Currently and with the signing of the peace process (Nobel Peace Prize 2016), this agroforestry model and experience is the bet for try to reintegrate more than 6,000 former guerrillas to civil and productive life, , with a potential of more 400,000 ha to recover , the commitment to a new country in peace with opportunities for all where agroforestry combined with the biodiversity of the country is the key to these regions that for so many years lived with fear and state abandonment.Training, establishment and use of Amazonian fruits within agroforestry systems Keywords: amazonian fruits, non-timber forest products, armed conflict, illicit crop substitution, agroforestry alternatives. Cacao (Theobroma cacao L.) a plant from Central America that was cultivated long before the arrival of the European settlers. Cacao has great importance in the national agricultural scenario since Brazil is the fifth largest producer in the world and 90% of this production is directed to foreign market. After the decline of the crop in the 1980s with the witch-broom problem, there was a restructuring of the production chain leading to a resumption of production in recent years, which resulted in a considerable increase in Brazilian production from 170 thousand tons in 2003 to 279 thousand tons in 2014. This culture has gained attention in the northwest part of São Paulo state where has been increasing planted area in consortium with the culture of the rubber tree (Hevea brasiliensis) and banana in agroforestry systems. The dissatisfaction with the price of latex and the possibility of an extra income in the same area of cultivation of rubber tree stimulated large-scale planting in old and new rubber tree plantations. The state of São Paulo produced 56% of the national rubber in 110 thousand hectares and produced 98 thousand tons of dry rubber in 2017. An agreement between CATI (Coordination of Integral Technical Assistance) and CEPLAC (Executive Committee of the Cocoa culture planning) has already directed plantations in the region of São José do Rio Preto. At the same time, some farmers have planted the crop in full sun, as they understand that this is a great opportunity for expansion in the region, which has attracted the interest of industries that process and commercialize cocoa and its products. The experimental areas with cocoa clones from CEPLAC, were planted in rubber plantations, with different spacing (2.5m x 8m and 14m x 3m) located in the northwest region of São Paulo State and also planted in full sun in a consortium with banana and windbreaker of rubber in two spacing. The cost of rubber tree plantation (476 plants / ha) is US$ 5.250 and it takes from 7 to 8 years for exploration and the cost of the irrigated agroforestry system with rubber tree, cacao and banana (397 rubber plants in the first year, 855 second year banana plants and 855 cocoa plants in the third year) is approximately US$ 7,950. At the current juncture the planting of rubber trees monoculture, inspite taking 7 to 8 years to be explored, could make the project unfeasible and would yield approximately 1.6 tons of latex or US$ 340/ ha/year. The agroforestry system model with the three crops would generate US$ 1860/ ha/year and begin to generate income already in the third year.In the regional scenario and within the demand of the cocoa production chain it is understood that this work is the beginning of a long work and, that does not exhaust all the possibilities and questions that the culture will require in the near future, since its large-scale commercial planting is recent in this region and tends to expand rapidly, requiring further studies and further study.Keywords: Chocolat, Theobroma cacao L., Hevea brasiliensis. Improving the financial rationale of agroforestry for farmers Burgess P. 1 (P.Burgess@cranfield.ac.uk), Graves A. 1 , García de Jalón S. 2 , Palma J. The integration of trees in livestock and arable production can improve animal welfare, increase biomass production, and provide environmental benefits. Hence, economic analyses from a broad societal perspective have shown that agroforestry can be preferable to separate monoculture livestock and arable systems (García de Jalón et al. 2018b). However the question remains: how can we make agroforestry more financially attractive to farmers? This paper highlights three areas.Using trees to support existing farm enterprises Graves et al. (2007) concluded that for agroforestry to be more profitable than both monoculture forestry and agriculture, the profitability of the monoculture systems needed to be similar or the farmer would focus on the more profitable farm or forest enterprise. However, experience with the EU AGFORWARD project suggests that most farmers using agroforestry do not attempt to balance the two enterprises, but rather to make an existing enterprise more sustainable. Hence, for example, trees in a free-range egg system can be used to promote hen welfare, and arable farmers can use trees to reduce soil erosion to enable long-term crop production. Focussing on how trees support an existing farm enterprise is therefore important in agroforestry adoption and practice.Early modelling of silvoarable systems indicated higher revenues from agroforestry, compared to separate arable and forest production, due to continued cropping and the benefits of concentrating timber growth on fewer large trees rather than many smaller trees (Graves et al. 2007). There is readily available data on the sale price of agricultural crops. By contrast, there are few details on the interaction between volume and quality on timber and fuelwood prices in many parts of Europe. In practice, valuable timber like walnut can even be sold for firewood, as shown in the case of the commonly-cited walnut-arable system at Les Eduts in Western France (AGFORWARD 2016). More information on timber and fuelwood values is needed.In recent analyses in Europe, increased complexity and management costs are identified as key negative effects of agroforestry (García de Jalón et al. 2018a) but these effects are typically ignored in financial analyses (Graves et al. 2007). In fact within the EU, a complex land use like agroforestry can be penalised within Pillar I of the Common Agricultural Policy and there can be low financial benefits and high administrative hurdles associated with support in Pillar II (Mosquera-Losada et al. 2018). In addition, farmers can perceive that tree planting results in more restrictive environmental legislation on their farm. In view of the societal benefits, we argue that farmers practising agroforestry should receive enhanced public payments, with low administrative hurdles, and this would help to address some of the higher management costs.Keywords: Profit, Motive, Prices, Regulation, Complexity. While agroforestry systems have been described internationally (Nair et al., 1993, Parrotta, 2012), this study sponsored by the VALAB program provides typological insights into the reality of Guadeloupe by deciphering the extreme diversity of farming situations (Perrot et al. 1993). A combination of agronomic, techno-economic and socio-cultural criteria distinguished 5 farms types for a study sample of 40 farmers:-Organizations with a productive and / touristic vocation are large-scale farms, with business status and a commercial or touristic vocation contrasting with the other stakeholders of the undergrowth of Guadeloupe. Their weight is undeniable in the whole actors of the three traditional sectors of the undergrowth of Guadeloupe (coffee, cocoa, vanilla).-The traditional crops parcels out of the undergrowth are developed by farmers who have chosen to get out of the constraints that the undergrowth could have in particular in terms of regularity and profitability of the production for the supply of structured trade channels. However, this model appears vulnerable in terms of phytosanitary and socio-cultural values.-The ONF concession farms are in vanilla monoculture. These multi-skilled farmers cannot live only on this climate-dependent productive activity. They have little leeway to change their agrosystem towards a viable activity in the undergrowth in relation to the rather coercive specifications proposed by the departmental land manager.-Undersized private understory plantations result from the structural sharing of the activity of the farmers concerned between their farm and other sectors of labor, valuing their labor force in an immediate and less risky way. These farms reflect the current rather general situation of degraded valuation of the Guadeloupean private undergrowth. Fragilized for the most part by sectorized support exacerbating their sensitivity to climatic and economic hazards, they gather potential candidates concerning the initiative that some farmers wish to promote with agroecological integrative diversification projects in the undergrowth.-The forest gardens are still a model of valorization by old knowledge of the agrobiodiversity of the undergrowth in an integrated and diversified way, fruit of a concomitant transmission of the land heritage and the associated intangible heritage. This mode of development is becoming rarer with the retirement of the old farmers and the structural difficulties of a transmission based on orality and proximity, for these particularly complex agroecosystems. This typology, essential for understanding the reality of undergrowth agrosystems, is also used as a tool to study their viability. Finally, it makes it possible to envisage development actions adapted to each type of farming.Keywords: Guadeloupe, undergrowth, socio-economy, typology, diversity. Shea trees (Vitellaria paradoxa; Karité in French) are a major presence in the agroforestry parklands of Uganda and a source of livelihoods for the local people in these areas [1]. Shea trees produce nuts that contain abundant oil which is extracted and used in cooking, in cosmetic formulations and medicinal ointments. Shea tree populations in Uganda have been decimated by various anthropogenic practices [2]. This study sought to identify the most suitable shea tree use option that has least social and environmental cost. A consultative mixed-methods approach [3] involving 124 household interviews, 10 focus group discussions and field observations was employed to perform a cost benefit analysis of various use options. Farm gate prices and average quantities harvested per hectare were used to value the shea tree products [4]. The value of environmental services from shea parklands per acre was obtained from secondary sources [5]. Labour costs in charcoal production were US$ 220 ha -1 , US$ 132 ha -1 in oil production and US$ 44 ha -1 in timber production. Environmental services were estimated at US$ 23.9 ha-1yr -1 . The Net Present Value (NPV) of she oil production was US$ 8,309 ha -1 , charcoal production was US$ 5,766 ha -1 and timber production US$ 4,822 ha -1 . Since charcoal and timber production are a one-time harvest in 20 years, oil production is therefore the best-bet use option since it continues throughout the lifetime of a tree.Sensitivity of shea tree use options' NPV to various discount rates. Note the base-case discount rate was 10% during the study period.Keywords: Shea tree, Vitellaria paradoxa, Cost Benefit Analysis, Agroforestry parklands, Use options.L12 Economics of AF In Kenya the agricultural sector provides employment and contributes to food security. However, micronutrient deficiencies are prevalent and require interventions from a range of interconnected strategies. Wild plants such as Baobab are often rich in micronutrients and are increasingly being recognized globally for its high nutrients. In spite of the nutritional and economic benefits potentially accruing from the opportunities for trade created by the international markets, the potential of Baobab to uplift local communities from nutritional deficiencies and poverty in Kenya has not been assessed. The present study aims to fill this gap by characterising baobab collector/producers and analyse the structure of market supply of baobab fruit and pulp on seed with respect to non-price incentives in Kenya. A total of 274 respondents were selected using linear systematic random sampling method from a list of commercial baobab collectors in three different counties of Kitui, Makueni and Kiifi. Preliminary results indicate that baobab supply by harvesters/collectors is predominantly done by women and children mainly with basic primary education. Price of the baobab fruit/pulp on seed positively influences the quantity supplied. However, the price is not the main reason why a household sold through a particular marketing channel but rather availability and accessibility of the buyer, timeliness and buyers' ability to pay in cash, and the proximity/nearness to the market also play a role. Household with more number of baobab trees in their farm supplied more baobab to the market than those with fewer trees. Households with unemployed heads and spouses and those with lower on-farm income tended to supply most of the baobab. Moreover, households with children aged between three years and 13 years participated more in the harvesting and hence selling of baobab than those with older children. The results thus imply that government policies targeted at improving commercialization of baobab fruit and pulp would greatly enhance incomes for the vulnerable groups participating in baobab trade as well as raise the nutritional status for everyone in the society.Keywords: Agroforestry, baobab supply, Incomes, Nutrition. The adoption of agroforestry practices depends on several factors, including the possibility of diversifying income sources. In an ecological zone that is apparently not suitable for cocoa cultivation (Camara et al., 2009), three traditional agroforestry systems (SAF) with cocoa have been identified (Kpangui et al., 2015). Their management involves the maintenance, preservation or introduction of local or exotic species. Although the choice of species has been documented, the financial income from the sale of the products of these associated species remains one of the important questions. To address this issue, a botanical inventory coupled with socioeconomic surveys were conducted in 52 plantations of the three identified SAFs.The investigations allowed to count 37 introduced and 35 local plants maintained. The study showed that food products from introduced species such as banana, avocado, orange and cassava provided more benefits. The simple SAF yielded more income than the others. The wood products of the saved local species brought in the most, after the felling of trees and cutting into planks. The logging of local saved timbers (Figure 1) could yield to a farmer between 3,000 and 30,000 FCFA per tree (an average of 15,500 FCFA) according to the diameter and the quality of the tree. The exploitation of wood products tends, however, to favor the expansion of the simple agroforestry system.View of a framire (Terminalia ivorensis A. Chev.) shot and slaughtered in a cocoa plantation Keywords: : Economic value, cocoa companion species, agroforestry system, Côte d'Ivoire. Lejissas L. T. 1 (lemlemtajebe@gmail.com), Tanga A. A. 2 , Ayele Z. E. Despite the long history of agroforestry in Ethiopia, the level of its adoption by farmers and its significance for household income improvement has not been matched by the generated technology and knowledge system. This is due to the system's more attractiveness to relatively wealthy families or those with larger land holdings since they have financial capability and mental readiness to allocate more resources to commercial tree growing ( Bellow et al., 2008 ). Poorer farm households often concentrate on producing subsistence crops rather than growing trees as cash crops, the benefits of which can be accrued after years ( Negussie Achalu, 2004). A key lesson is that promoting technology is far more complex than simply generating information. Promotions of on-farm tree/shrub plantings could also greatly relieve the pressure on the remnant natural forest by providing variety of forest products. Beside climatic and biophysical suitability for temperate fruit production, central highlands have a great opportunity for marketing of the produced fruits due to their proximity to the capital city market. Accordingly, this research was intended to find out the contribution of apple-based agroforestry system to improve the household income along with the critical factors that limit the adoption process in the central highlands of Ethiopia.For this study, a rule-of-thumb that , where N is minimum number of households and m is explanatory variables, was used (Green, 1991). The market price method was used to estimate the value of goods that are bought and sold in the local market. To answer the question of factors influencing the adoption of apple-based agroforestry system, a binary logistic regression model was used. Adopters mean annual gross income from vegetable + apple fruit was 344,602.27ETB ($12,763) ha-1yr-1 and mean annual gross income of non-adopters from vegetables was 187,925.43ETB ($6960)ha-1yr-1. Non-adopters annual net income from vegetables was 165,478.34ETB ($6128) ha-1yr-1 and adopters' annual net income from vegetable + apple was 312,378.79ETB ($11570) ha-1yr-1. The mean annual apple fruit production from 928.3trees ha-1 was 3639.68kg ha-1 yr-1 and the gross income was 58,234.85ETB ($2157)ha-1 yr-1. Income obtained from apple contributes 17 per cent of the total income from agri-horticultural system. The mean gross income of adopters from vegetables + apple was 1.8 times higher than the income of non-adopters from vegetables. The mean gross annual revenue of adopters from solely apple fruit production constituted about 17 per cent of the total income obtained from vegetable + apple. The mean net annual income of adopters from vegetables + apple fruit was 2 fold higher than the income of non-adopters from vegetables. However, adoption of the system was significantly influenced by Age (+), formal educational levels (+), livestock holding (+), distance from market to home (+), sex (-) and total land holding (-).Keywords: Agri-horticulture system, Apple tree adoption, Household income. Agroforestry offers an opportunity to increase agricultural enterprise profitability. The benefits of agroforestry are multiple, but too often the decision by farmers to adopt an agroforestry system is dependent on only a single benefit, such as the forestry economics being profitable. However, the forestry benefits per se may only be a relatively small component of the overall financial benefits that trees provide to the agricultural system. We established a project in Tasmania to quantify the benefits that agroforestry, in a shelterbelt configuration, conveys to the adjacent agricultural enterprise. The project is also developing a modelling framework to integrate the benefits into a form that allows farmers to understand the scale of the financial returns and the relative contributions of each of the benefit streams. Key results from the study will be presented, including the impacts of shelter on the windspeed, evaporation and pasture productivity. Other values such as carbon and amenity are included in the tool that allows land managers to account for the financial returns from the broader suite of benefits. The benefits of shelter on agricultural productivity tended to outweigh all other returns from the system.The assumption that land for agroforestry needs to have low opportunity cost is challenged by the study, as higher benefits are likely to accrue from the use of agroforestry systems in protection of higher value cropping enterprises.30% higher pasture production in the sheltered half of a paddock compared to the unsheltered half leads to increased profitability Keywords: Bioeconomic modelling, Imagine, Shelter benefit, economics, adoption. In Paraguay, around 20% of the population runs a family-based farm, where they mainly produce for their own consumption, plant cash crops, as soy and sesame, and maintain a low amount of livestock (Garcia and Chavez 2007;Riquelme 2016). The main challenges of these farm systems are on the one-hand increasing variable climatic conditions and compact and degraded soils, with low yields as a consequence. On the other hand, they face weak access to markets and low integration into the agroindustrial sector. Living on the edge of poverty, the younger generation migrates to cities or leaves the country. Therefore, policy makers and smallholders are interested in alternative production system that are not only economically feasible but also help to overcome the environmental burdens and reduce risk. Acrocomia, also known as macaúba, coyol, or mbocaya, is a native palm-tree in the neotropcis of Latin America. The oil-bearing fruits can be processed to fuel, food and fodder (Hilger et al. 2015).In Paraguay, smallholders collect the fruits from wild growing palms before they are further processed in small factories since almost a century. The diverse product portfolio of Acrocomia has a high potential on the international markets and targeted cultivation would help in managing the palm and oil-quality. The main objective of this research is to find economically viable and locally adaptable cultivation systems including Acrocomia. Attention is turned to agroforestry systems with Acrocomia to especially bridge the gap of a four-year investment until the first harvest.The district of San Pedro del Paraná in the province of Itapúa was selected as a representative case study for family-based smallholder farms. A literature review was conducted and local experts and farmers were interviewed in order to identify new agroforestry systems related to Acrocomia. In a second step we built a mathematical micro-simulation farm-model with the software package MP-MAS (Schreinemachers and Berger 2011). The model is based on typical crops and livestock production patterns as well as own-consumption, derived from census data and discussed with the smallholders in the area. The model is used to analyze data related to farm-labor, costs and revenues over a 20 years investment horizon. The results are a comparison of land-use-decision options of Acrocomia, the agroforestry systems with Acrocomia and with actual production schemes. The results give further insights into farm-labor distribution, cash-balances and farm-income. Preliminary results show a potential for Acrocomia-Agroforestry systems focusing on consumption-crops. Land and labor is used more effectively and smaller farms among the smallholders can overcome liquidity problems. Measuring efficiency is important because it is an indication of resource saving potential and it is useful for better informed policy formulation and for improved farm management (Idumah, et al, 2015).This study presents the analysis of technical efficiency differential of farmers that adopt agroforestry technologies and the non-adopting farmers in North central, Nigeria. A multi stage sampling techniques was used to select 295 farmers in the study area. Data on input-output and socioeconomic variables were collected and analyzed using descriptive statistical methods and by applying a stochastic frontier production function to the data. Results show that the average farm size of adopters was 2.4 hectares while the non-adopters had an average farm size of 3hectares. The adopters had a significantly higher average gross margin cal efficiency showed that the adopters had a mean of 0.84 while that of the non-adopters was 0.79 which was significantly different. Factors affecting the technical efficiency of adopters includes: seed, labourand farm size. The variables that significantly influenced the output of the non-adopters were the seed, farm size and labour. In addition, there are increasing returns to scale for adopters and non-adopters. The study concludes that adoption of agroforestry practices play a significant role in determining the levels of technical efficiency of the farmers.Keywords: Technical efficiency, stochastic frontier, agroforestry, arable crop farmers, Nigeria.The use of biochar in agroforestry practices is a new concept in Nepal. The soil application of biochar is considered to be a promising alternative to increase productivity and reduce chemical fertilizers. To test this concept an action research project was implemented in two villages of Lamjung district in the middle hills of Nepal. This study aimed at assessing the productivity and livelihood impacts of a banana-based Agroforestry (AF) system with and without biochar-based fertilization. Biochar was used in one village while another village served as control (with NPK application but no biochar). The information obtained from 111 household survey was verified and tested through five farmers' field trials. The present paper investigates the effect of different fertilizers on banana yields and its contribution to poverty reduction. The result of the study shows that the banana yield increased by 41% in the plots treated with urine-biochar plus compost compared to the control with conventional NPK fertilization; and more than doubled (102%) compared to the fertilization with compost only. Findings also revealed that the poverty level of respondent households using biochar dropped by 30%, at Dhamilikuwa (biochar village) and it is only 19% at JitaTaxar (control village). The study implies that the use of biochar in banana-based agroforestry system has potential for increasing soil productivity and reducing poverty, thereby revitalizing agrarian economy of many Nepali villages.Keywords: biochar, banana based agroforestry, productivity, agrarian livelihood, poverty alleviation. Cacao production in Colombia has socioeconomic relevance. Its production implies an estimated annual demand of 7 million daily-labor and supports the monetary incomes of 35000 families, mostly in rural areas (Agronet, 2013). According to Agricultural National Census, 2014, cacao area (recently planted area + harvested area) was 165.000 hectares, located in 27 out of 32 national departments in 327 Colombian municipalities. Given the current socioeconomic scenario, which combines attractive market forecasts for farmers and a post-conflict period, which promotes the developing of new profitable agricultural activities, cacao area has increased in recent years (Cely, 2017). Among the different cacao productive regions, Tumaco -Nariño, has been placed as one of the most important municipalities. It is located in the Pacific region, which is a Colombian post-conflict zone and according to some national \"fine and flavor\" experts, the cacao harvested in this region has special characteristics, which are attractive for the market [1] (Casa Luker, 2014;Rodriguez et al., 2011). This study was conducted in Tumaco during 2016 and 2017. it was divided into two stages. During the first stage a socio-economic characterization for cacao agroforestry systems was conducted; cacao production costs, plant densities, yields, financial sources, and planted forest materials were analyzed. it was identified that there are 3 plant densities in the region (3mx3m, 3.5mx3.5m and 4mx4m), which affect only the production costs, but also the yields for the farmers. Based on this fact and in order to determine the optimal plant density, a linear programming was conducted, in the second stage. The algebraic model used workforce, financial payments minimum required incomes as constraints, in addition, profitability was used as the objective function. This model was optimized with GAMS software, using CPlex solver and the plant density 3mx3m (1100 plants/Ha), was identified as the optimal solution for it. The minimum required price for this solution was $4.700/Kg and the ICR (Rural Capitalization Index subvention) had to be greater or equal to 20%.[1] A cacao sample collected in Tumaco-Colombia won the \"Excelencia Extranjera' prize in \"Salon du Chocolat\" at París 2016 .Keywords: Costs, Utility, Linear Programming, Incentives, Cacao. The agroforestry parkland has been conceptualized empirically in the Sahelian zones, to cope with the constraints pedoclimatic the weak soil fertility, food demand and economic conditions. And now, it is promising to ensure the resilience of agro-systems destroyed by the intensified monoculture promoted since the 1950s. There results showed that under tree a pure culture or mixed / intercropping systems with fewer inputs produced more under the crown than intensified monoculture because of free Eco-Systemic Services.Provisioning services: food and feed yields are higher than pure crops (LER de 1.20 to 4); Regulating services: (micro)-climate regulation; protection against wind and rain erosion;Economic and Social services : Benefit Equivalent Ratio>1; curbing the exodus to limit social disruption.The influence of agroforestry parkland because of several free ESS, preserve agro-écology and limits the greenhouse effect. Peasants use now the Assisted Natural Regeneration but also the « forest zaï » ensures resilience agroecosystems. Then only the peasants will get their ecological, food, economic, and social sovereignty. Adopting the future of land useTechnology adoption has often been a key constraint on improving productivity, income and yields in farming, particularly in developing countries where market-based systems of production are not well developed, the subsistence economy remains strong, land is held under communal tenure and family labour is the backbone of production. This session welcomes papers that explore socio-cultural and economic factors that constrain or limit the adoption of new technologies in agroforestry systems. We interpret technology in its broad sense to include non-material technologies such as new farm management techniques, labour arrangements, changing gender relations, new regimes of land tenure, etc., as well as material technologies like new processing machinery, inorganic fertiliser and so on. We anticipate that together the presentations will provide an overview of the key constraints on technology adoption and smallholder productivity in much of the developing world and point to potential solutions and strategies to address such constraints.The low rate of technology adoption has long been a key constraint on improving productivity, income and yields in farming, particularly in developing countries where market-based systems of production are not well developed, the subsistence economy remains strong, land is under communal tenure and family labour is the backbone of production. We examine four case studies of innovation to explore key socio-economic factors facilitating or constraining adoption: 1. new replanting program for oil palm smallholders in PNG, 2. new selected oil palm planting materials in Cameroon smallholdings, 3. Cocoa Pod Borer control methods in PNG, and 4. high yielding planting materials amongst cocoa growers in PNG. We assess the propensity to adopt along a number of socioeconomic dimensions including intra-household relations, particularly gender relations; tensions between modern and traditional farming practices in terms of labour mobilisation, land tenure and the indigenous values underpinning production, consumption and distribution. The barriers to technology adoption and innovation are not simply technical and nor are they because smallholders lack the relevant knowledge and information to facilitate adoption. Rather, proposed technologies and innovations are often incompatible with indigenous values, habits, and socio-cultural institutions that can make adoption difficult for farmers. Improving adoption rates requires a closer alignment with indigenous social institutions and values. Agroforestry systems are an intervention priority in the Andean montane landscapes of Ecuador, as they contribute to the restoration and sustainability of a highly fragmented landscape. However, smallholders are often reluctant to adopt new practices, preferring to maintain conventional monocultures and pastures. Within the framework of the projects EcoAndes and Programa Bosques Andinos, a tool that proved effective in generating acceptance of change was farm planning. This comprehensive, simple and participatory planning tool, based on mapping and analysis of land use options, was used with 38 smallholders who later chose to implement different agroforestry practices; which, in addition to protecting forest remnants, also restored priority areas. Through the farm planning tool, it was possible to: a) generate trust with landowners, by providing them with a tangible and useful product to support their decision-making regarding land use; b) recognize advantages and vulnerabilities of the different farm areas, and jointly reflect on more sustainable use options. The farm plan was a first step towards a more pro-active and informed decision-making by landowners, and has potential to be a key element for external support programs that act in a coordinated manner and contribute to a previously established plan. This tool, which can be updated over time, also contributes to documenting land use change and facilitates the monitoring of impacts of agroforestry practices over time. Keywords: agroforestry adoption, farm planning, landscape restoration, agroforestry systems, silvopastures. Land degradation has reduced agricultural productivity in Nepal's terai. This has raised concern over the viability of conventional agriculture of the terai farming system. Agroforestry can be a potential solution to the above problem. This paper aims at identifying socio-economic constraints affecting adoption of agroforestry with respect to conventional agriculture. Data were collected from a survey of 288 households through a face-to-face interview. A multinomial logistic regression (MNL) was run with conventional agriculture as a base category.It was found male-headed households are more likely to adopt agroforestry. Having a source of off-farm income also has a positive effect on adoption because off-farm income acts as a safety net in case of crop failure. Landholding size was found as a major constraint to adoption. Sparing a part of farmland for tree planting means reducing field crop production and thus failing to meet annual food needs of smallholder farmers. Some other variables affecting positively include livestock herd size, provision of extension service, home-to-nearest government forest distance, membership and awareness of farmers about environmental benefits of agroforestry. Irrigation is another constraint that has stopped farmers from promoting a tree-based farming system. Home-to-highway distance, family size (economically active family members) and risk-averse have significantly negative effects on adoption of a tree-based farming system.Keywords: Agroforestry, Adoption, terai farming system, multinomial logistic regression, Nepal. Soil fertility replenishment, through improved fallows, was a key achievement showing the \"promise of agroforestry\" (Sanchez 1999). The World Agroforestry Centre (ICRAF) was extremely active in eastern Zambia, carrying out extensive research and promotion of fertilizer trees for soil replenishment from 1986 until it ceased operations in 2006 (Ajayi et al. 2006).With partners, ICRAF established a scaling-up team to promote adoption of improved fallows (Kabwe 2010). By 2006, it was estimated that over 61,000 Zambian farmers were \"reached\" with improved fallow technologies. Today, improved fallows are virtually nonexistent in Zambia.To understand what happened, a \"process tracing\" approach was used to examine the causal relations of fertilizer tree uptake in Zambia (Collier 2011). According to data from a 2015 national Rural Agricultural Livelihoods Survey, \"agroforestry\" is practiced by about 5% of households in Zambia and very few use fertilizer trees (Table 1). ICRAF left a \"vacuum\" and \"gap\" in agroforestry in Zambia. There has not been a \"sense of ownership\" by the government, r other entities to agroforestry. This paper discusses institutional and policy factors influencing adoption, including fertilizer subsidies, seed supply, land availability, extension capacity, top-down project approaches, donor demands, as well as a failure to understand farmer/household characteristics, and their knowledge, attitudes toward both the technology and its perceived returns and risks.Keywords: adoption, improved fallows, fertilizer trees, impact evaluation, Zambia. Israely L. 1 (lironisraely@mail.tau.ac.il), Amdur L. 2 , Dayan T. Encouraging farmers to adopt new practices is social challenge, as agricultural practices such as agroforestry brings multiple environmental & social benefits (Torralba, 2016). Social marketing is a strategic marketing scheme set for promoting social values using commercial marketing tools (Verissimo, 2013). The aim of the study at hand was to develop and evaluate framer While female farmers also achieved perceived increases in knowledge through traditional sources, the knowledge gains were less than those of male farmers. In addition, the interaction of female farmers with lead farmers (i.e. community members trained to train others) made increases in knowledge much more likely. However, the overall impact of lead farmers is constrained by their limited range and availability. While women who received lead farmer visits were more likely to report high levels of agroforestry knowledge retention post-extension, the majority of female participants received no such visits. These findings correspond with the literaure in several ways, including the efficacy and limitations of lead farmers (Toth et al. 2017). Our results can inform more effective approaches for improving CSA extension effectiveness, such as: training more female extension agents, including improving the extent of sensitivity to the needs of female farmers in extension agent training, and coordination of specialized women's groups for the purposes of serving as their own farmer clubs and centralizing receipt of formal extension (thereby increasing confidence and reducing nominal and passive participation).Keywords: Gender, Climate Smart Agriculture, Agroforestry, Extension, Logistic Regression.Intercropping annual food crops in coffee gardens is sometimes done in an ad hoc manner (usually without added fertilizer) in order to provide additional food for the household. The objective of this research was to study the adoption of formalised intercropping of coffee with vegetables in a way that improves the nutrition and yield of coffee through its juxtaposition and thus access to nutrients applied to those vegetables. The trials were conducted on-farm to maximise farmer participation and to test the research concepts under real conditions. The uptake of formalised intercropping was successful in Asaro because farmers were already familiar with this concept as they were already practising ad hoc intercropping because of land shortage issues. However, in Bena it was less successful as it was a new concept and was adopted by only one farmer (who had secured a market for his vegetable produce) (Fig 1). One reason for the initial lack of adoption is clear; namely, limited funds to support the technology even though it can have financial benefits in the future.Increased production leads to increased incomes thus providing resources to further increase vegetable production and improve nutrient management strategies for both coffee and vegetables. However, the adoption of such technologies is minimal and needs more research to identify the gaps for better intervention. This paper explores the various reasons for adoption or non-adoption of intercropping technologies. Keywords: intercropping, coffee, vegetables, nutrition. The need to address socioeconomic and environmental conditions in the upland area in the Philippines, necessitate the introduction of agroforestry technologies. Agroforestry is the main production technology that is integrated in the country's sustainable forest management programs. In spite of these, however, the sustained adoption of agroforestry remains a challenge. This article argues that socioeconomic characteristics of the farmers, particularly age and income, as well as policies are the main determinants in the farmers' choice of adopting agroforestry and conservation farming practices. This argument is based on a study conducted in three upland farming communities in the Philippines, involving a survey of 230 farmer-respondents, nine sessions of focus group discussion, key informant interviews and farm visits.Results revealed five dominant development pathways that exist in the upland farming communities, namely: monocropping + conservation practice (Pathway 1); multiple cropping + conservation practice (Pathway 2); agroforestry (Pathway 3); agroforestry+non-farm activities (Pathway 4); and, multiple cropping without conservation practices (Pathway 5). From monocropping in the 1990s to early 2000, the upland farmers have shifted to crop diversification from the mid 2000 to 2016 at the time of the study. The shift was driven by internal stimuli such as the need for households' source of food and income, as well as external stimuli such as development programs, and climatic variability. Results of the multinomial logistics redeterminants in the farmers' choice of adopting agroforestry and conservation practices. Specifically, as the income of the farmers engaged in Pathways 1, 2 and 4 increases, they would prefer these pathways rather than Pathway 3. Agroforestry requires the integration of two or more crops, with woody perennials, which imply the need for additional capital to invest on planting materials, farm inputs and labor costs. Similarly, older farmers engaged in Pathways 2 would choose these pathways over Pathway 3. The woody perennial components of the agroforestry systems take about at least seven years before they bear fruit. This may not be favorable among the older farmers because of the perception that they would not have immediate economic benefits from these species. The mean predicted probabilities suggest that there is 13% probability that farmers would choose Pathway 1; 5% would choose Pathway 2; 29% would choose Pathway 3; 52% would prefer Pathway 4 and 1% would choose Pathway 5. These results imply the need to emphasize the ecological services of agroforestry besides its economic contributions, and review the mechanisms of incentivizing and providing support system to farmers engaged in agroforestry, among others. Thus, there is a need to revisit and formulate sound national and local agroforestry policies.Keywords: climate change, adoption, upland farming, pathways, policies. In most developing countries, there has been a long-standing conflict of interest between using land for agriculture and the conservation of biodiversity. This paper reports on a study of factors influencing farmers' decisions to incorporate trees into their agricultural practice.We also discuss the possibility of protecting and managing trees on farmland in order to restore degraded land and improve biodiversity. The data were collected from personal interviews conducted with farmers in the Center-West region of Burkina Faso and analyzed using Principal Component Analysis, multiple linear regression and binary logistic regression. The results showed that farmers' decisions to incorporate trees into their farmland were mainly influenced by silvicultural knowledge and skills, participation in farmers' groups or other social organizations with an interest in tree conservation, the social value of biodiversity in the rural landscape and the perceived economic benefits of trees on farmland. The most important factors associated with variation in levels of motivation to conserve trees on farms included household wealth, gender, age, education level, marital status, residence status, farmland size, household size and technical support. We conclude that an agroforestry project will be more successful if the diversity of smallholder socio-economic characteristics and their perceptions are considered in its design. The importance of farmers' attitudes for the adoption of agroforestry: a case study in India Brockington J. (j.brockington@bangor.ac.uk), Hockley N., Brook R.School of Natural Sciences, Bangor University, Bangor, Gwynedd, United KingdomThe vast majority of agroforestry adoption studies only consider demographic and socio-economic variables in their analyses. While valuable, the focus on 'extrinsic' factors has neglected underlying psychological and motivational factors that are likely to influence farmer decisionmaking (Meijer et al. 2015) Cattle production is a central livelihood for smallholders in the Argentinian Chaco. Smallscale \"criollo\" farmers oftentimes live in settlements in the middle of the forest. However, the Chaco forests and related ecosystems are under high pressure. The Argentinian Chaco currently experiences very high deforestation rates. This process has been driven mostly by the expansion of the agricultural frontiers, in particular for soy, as well by large-scale cattle ranchers [1]. Among the two main user groups of native forest, we find indigenous people, as well as small-scale \"criollo\" farmers. These smallholders raise cattle, mostly with management practices known as \"campo abierto\", a system under which cattle roam freely in the forest and feed from natural vegetation (trees, shrubs and rare natural pastures). In order to secure higher income for farmers, as well as to reduce pressure on forests, recent and private initiatives have developed silvopastoral production systems for smallholders. Most of these systems involve felling shrubs (either with tractor rollers or manually) and introducing new grass species (gaton panic, buffalo grass, etc.). These pastures provide forage during the dry season and thus contribute to reduced pressure on forests during this sensitive period, although this comes with important costs associated with preparation of land and fences. This article examines the current introduction of silvopastoral production systems in the Chaco salteño and their adoption by smallholders. We will present results from a survey conducted in August 2018 of 552 small-scale cattle rangers from the departments of Rivadavia and San Martin, Salta, Argentina. We will focus especially on the stated motivations of smallholders adopting these practices. This information will be combined with socio-economic profiles of the households (i.e. subsistence versus entrepreneurial farmers). We also examine diffusion channels of silvopastoral practices (networks and institutions involved). The article concludes with some policy implications for silvopastoral development in the Argentinian Chaco in the context of acute deforestation. Rural forests, i.e. farm forests and trees outside forests (TOF), are part of traditional agroforestry systems in many European regions. Yet, the industrialization of agriculture has induced the decline of rural forests and promoted a physical and functional separation between trees and agriculture. Despite the recent promotion of TOF in the Common Agriculture Policy (CAP), most farmers do not reinforce them in their farms. In order to understand farmers' attitudes towards rural forests, we conducted 19 face-to-face interviews in southwestern France. Farmers identified 32 positive contributions, including 29 ecosystem services (ES), associated with rural forests. Similarly, they emphasized 25 negative contributions, including 21 ecosystem disservices (EDS). Contributions varied with the type of forested area. For instance, hedgerows had high levels of positive and negative contributions, while woods had high levels of positive and low levels of negative contributions. Finally, farmers identified 19 stakeholders and institutions, especially the CAP, that influenced rural forest management. In focusing on the balance between positive and negative contributions, our study enabled us to uncover the complex rationale of local rural forest management. Ecosystem disservices and CAP policies tended to discourage farmers to reinforce rural forests in their farms. Taking into account farmers' rationale and perceptions may give invaluable information to better target public policies.Number of times each positive and negative contribution was cited by farmers.Only contributions with at least two citations are represented.Keywords: local knowledge, local perceptions, Common Agriculture Policy, Mental models, landscape-scale agroforestry. Pacific Islanders are \"natural\" agro-foresters in as much as their gardens are dynamic mixtures of tree and ground crops within the context of shifting cultivation. However, coastal land with easy access for communities is at a premium with coconut plantations taking up a large area that could be considered disproportionate to the goods and services that they produce. But copra is one of the few avenues for subsistence farmers to earn hard cash and therefore coconuts command their position within the landscape.The widespread planting of teak has brought further pressure on land within coastal communities, especially in those provinces where land pressure is highest (Malaita and Guadalcanal), the development of a formal agroforestry system was seen as a way of allowing people to earn a living from growing high value trees for export while utilising the land for food and cash crops. A project under the Australian Centre for International Agricultural Research was instigated to examine the introduction of novel systems for growing high value trees that would also allow crop production. Trial plots were established in communities and in selected vocational training centres (see image) with good results, but the initial enthusiasm was short lived. The paper will discuss the challenges the project has faced and also the agroforestry solutions that have been established to assist communities to have a sustainable livelihood in one of the worlds least developed counties. Firewood is the main source of cooking energy in West Africa. In the savannah, firewood mostly comes from agroforestry parklands which are subject to increased environmental pressure. Failed predictions on the exhaustion of parklands as firewood stocks suggest that these warnings may have over-simplified the phenomenon, lacked the necessary data or underestimated the parklands' resilience. During 2014 and 2015, in the catchments of Dassari, Benin identify householders' firewood-management practices, quantified their consumption, and identified the favored species and the biomass stocks. Our results show that preferred species diverged from species conventionally asserted as firewood and there was a growing predilection for bushes and palms. A firewood trade had started to emerge, framed by scarcity and institutional control, and firewood gathering was being overcame by branching and selective cut. The average per capita consumption may be substantially higher if other uses are accounted for such as beer brewing (Figure). Our two-site study, contrasted production and consumption and their drivers, contributed to an understanding of the sustainability of firewood and shed light on other factors, such as religion prohibitions, that play a determinant role in firewood demand. The conversation around agriculture in the U.S. is subject to a neoliberal framework that requires farmers to consider their practices in economic terms. As a result, the rationale behind any change in practices is often discussed in terms of bottom line and omits the environmental and social aspects that need to be considered for agricultural practices to be sustainable.In the case of agroforestry, environmental benefits have been carefully studied and conversations about the adoption of practices have come to include these arguments. However, due to the challenge of measuring their impact, the social components, on the other hand, remain subordinate.To counterbalance the power of economics in the agricultural discourse, an intentional focus on non-economic factors is necessary. Interviews conducted in Southwest Wisconsin using this methodology allowed agroforesters to discuss their practices in their own terms and revealed clear considerations of the environmental and social components of these practices. Most importantly, these conversations helped identify place as a useful concept to recognize the inherent embeddedness of these environmental and social elements.Challenging the mainstream understanding of sustainability that separates environment, society, and economy and using the concept of place as a framework allows the social benefits of agroforestry to be further discussed and can make for a more balanced and wholesome conversation around these practices.Keywords: motivations, social aspects, sustainability, place, discourse. The characteristic Miombo ecosystem of Upper Katanga is severely degraded on the outskirts of the city of Lubumbashi by charcoal production, slash and burn agriculture, urbanization, and the regular passage of fire. To jointly meet the objectives of food security and the fight against deforestation, the Afodek project (Agroforests for the Development of Kipushi, 2012-2017) implemented by Gret and Nature + with EU funding, supported the development of an agroforestry perimeter. 2,000 hectares where 150 families from the surrounding villages have been progressively settled and supported in the development of 12 ha lots exploiting the principle of improved (soil-building) fallows. The monitoring of tree growth and ecosystem services (carbon storage, non-timber forest products) is now carried out by the University of Lubumbashi in support of the Central Association of Agroforestry Perimeter Associations of Kipushi (CAPAK). This system of forest species planting whose main purpose is the production of timber or fuelwood is part of the initiatives in DRC carried out around Acacia auriculiformis and Acacia mangium. The project demonstrated how to adapt the Taungya system to the local soil, climate and socio-economical conditions by addressing the challenges of land quality and household capital heterogeneity. Achieving these results requires initiating a collective learning dynamic that leaves room for experimentation and adjustment. Sustaining biodiversity while meeting global agricultural needs is a critical challenge. This is especially true in remote Pacific Islands like Hawai'i where over 25% of native plants are threatened or endangered and high labor and land costs make both native forest restoration and agricultural production economically challenging. Biodiverse, crop producing agroforests can address this issue and were widespread in Hawai'i before European contact, yet few remain today. While interest in agroforestry restoration is growing, designing systems that incorporate indigenous and local knowledge and produce desired ecosystem services remains challenging. Plant functional traits may facilitate the design process by serving as a tool to predict the connections between plants and ecosystem services; however, few studies have combined a functional trait approach to agroforestry design with explicit inclusion of cultural values. We tested a participatory design process to identify a list of culturally and economically important candidate species and then used a functional trait approach to select species that would also provide 1) erosion control and 2) early successional facilitation services. We established the two species mixes on a community farm using before-after-control-impact design and will monitor plant growth and survival, soil carbon, and erosion over time. We discuss the opportunities and challenges of this approach and describe the early stages of a long-term experiment. at a community workday opening ceremony.Keywords: biodiversity conservation, functional traits, ecosystem services, biocultural restoration, participatory design. In recent years, economic forces have favored expansion of perennial crops (such as almonds, grapes, and walnuts) at the expense of annual crops (such as tomatoes, carrots, and alfalfa) in the Central Valley. These perennial crops -now more than 2 million acres -are high-input mechanized monocultures; they do not usually have lower inputs or higher biodiversity than annual crops. However, some Central Valley farmers are experimenting with adding species to their orchards and vineyards to augment ecosystem services and reduce environmental impacts. Here, we examine a small sample of early adopters and assess prospects for scaling up.We interviewed 16 farmers with diversified orchards and vineyards, some of whom used more --These diversified practices are currently very rare in the Central Valley. For example, data from Yolo County [1] suggests that only about 4% of field and road edges are maintained with hedgerows or other native vegetation. A US-wide analysis [2] found that only 1% of crop area is integrated with livestock; this is likely even lower in California due to strict food safety laws for fruits and vegetables [3]. This illustrates the challenge of diversification when financial and policy incentives are lacking and knowledge networks are sparse. However, we also found reasons to be optimistic about diversification trends. For example, incentive programs may increase adoption. In 2017, California's new Healthy Soils Initiative gave out over US$7 million in grants for conservation practices, of which approximately 25% included diversification of orchards and vineyards. More research is needed on farmers' experiences and perceptions so that California's Central Valley becomes renowned not only for its agricultural output, but also for its diverse and sustainable perennial cropping systems.Keywords: Mediterranean, orchards, vineyards, intensive, diversify. Agroforestry offers an integrated approach that can curb land degradation and deforestation, while securing the livelihoods of rural households. As well acknowledge that, the adoption level normally based on the real needs and interests grounded in socio-cultural and economic factor's contexts.With the aim to bring agroforestry research results to application in Northwest Vietnam.The research framework combined different activities, started by understanding local ethnic group's knowledge on tree-soil interaction, their perception, the challenges and interests from adopting agroforestry. The participatory approach was carried out to design agroforestry systems, in which local knowledge and scientific knowledge are combined. These established trials were evaluated to find out suitable options and spread through farm visits and training sections, following by equipping basic skill based on farmer's needs and interests. The research findings and farmer's feedback were used to advisory policy makers on promulgate the development programs.The study showed that the farmer's specific social circumstances influence their aspiration and constraints for agroforestry intervention. Perceived challenges to adopting agroforestry systems are varied among ethnic groups. Seven systems have been evaluated as higher economic and environmental performance compared to current farmer practice. The farm visits and trainings on various aspects of agroforestry, as laying out contour lines, establishing nurseries, preparing seedlings and designing agroforestry farms, benefiting more than Both science-technologies and local knowledge can offer potential solutions to addressing the increasing vulnerability of mountain ecosystems and communities and building their resilience to natural hazards. However, a disjuncture between local and scientific knowledge on farming practices can have implications for rural livelihoods, ecosystem health and potential hazards when the two knowledges come together. So how can we resolve this disjuncture for reducing communities' vulnerability and increasing their resilience? Knowledge hybridization might be one such process towards resilience, \"where traditional knowledge, practices, and beliefs are merged with novel forms of knowledge and technologies to create new knowledge systems\" (Gómez-Baggethun et al. 2013). In eastern Nepal, farmers are changing their farming practices from traditional and scientifically-endorsed alder-cardamom agroforestry to monoculture cardamom plantations that can potentially trigger landslides. Many researchers and development agencies have endorsed a preferred agricultural practice for farmers in this region that aims to not only reinvigorate traditional agroforestry systems but also couple innovative climate-smart agricultural practices with the reinvigoration. During this process, this research postulates that sustainable resource management and disaster risk reduction measures derived from knowledge hybridization may (1) be nurtured with increased knowledge range, diversity and options for learning and problem-solving; ( 2) emerge as cultural built-in objects and situated practices, and ( 3) therefore be more intuitive to local farmers and more likely to be acted upon. As a result, a hybrid knowledge system, and a capacity and condition to cultivate such hybridity, could proffer pathways to resolving the disjuncture between local and scientific knowledges and contribute to enhancing farmers' resilience to environmental changes. This research is operationalized through an ethnography of risk-based agricultural decision-making and a field experiment of knowledge engagement through citizen-powered participatory digital mapping. The study examines the conditions in which local and scientific knowledge are produced and exercised, when they are compatible, and how they can be integrated to develop place-based resilience through reviving alder-cardamom agroforestry in Nepal. A mixed-methods approach has been used to collect qualitative and quantitative data. Lizárraga A. (alizarraga@cientifica.edu.pe), Lino G., Quirós L.The Pacific Alliance is a platform composed of four countries, Chile, Colombia, Mexico and Peru, and «is a mechanism of political, economic, cooperation and integration that seeks to find a space to promote greater growth and greater competitiveness of the four economies that make it up» (Pacific Alliance, 2018). This agreement is related to the development and integration processes. In this sense, policies related to the promotion of education, and particularly on agroforestry systems (AFS), are considered as strategic elements for sustainability.There are several examples of the importance of education in agroforestry systems (Zulkberti, 1990;Tengnäs et al.;2008, Okojía, 2018)). Education is somehow related to the different characteristics of the four countries. Therefore, knowing the situation of agroforestry in the university system is important in order to perform a detailed analysis later. The information on the entire educational offer at the undergraduate and postgraduate levels of universities in the four countries was reviewed, based on the Webmetric Ranking data. The total of universities in the four countries was 618, of which 99 have degrees in Agronomic Engineering and 32 in Forestry Engineering. Within forestry careers are six (1% of the total) whose objectives are oriented to the management of agroforestry systems. In Colombia, 5% of universities have a degree in Agroforestry Engineering, while Peru has only 2%; Mexico and Chile do not have careers in agroforestry. None of the universities in these countries has a master's degree or doctorate in agroforestry. However, some universities with careers in Agronomic Engineering and/or Forestry Engineering in Colombia and Peru include some agroforestry courses: five in Colombia and 15 in Peru, equivalent to 8% and 10% respectively. There are differences between the relationship between the agricultural/forestry area and the number of universities.There are also differences in the relationship between the GDP of the countries and the number of agricultural careers. In both cases we considered a negative direction.Keywords: Agroforestry, Pacific Alliance, Education, Latin America. Agroforestry systems in Greece have a long tradition and were once actively managed. However, they have become increasingly neglected due to agricultural intensification and rural exodus. This has, in part been driven by the Common Agricultural Policy, which has promoted to remove trees in favour of intensive production systems. This study sought to assess local perceptions of the socio-economic contribution of old agroforestry systems for the livelihoods of the local population. Interviews were held with 64 farmers, shepherds and other actors from the villages Eratira and Sisani in Northern Greece to assess the contribution of agroforestry to ecosystem service provision.The results showed that despite the need for economic income, agroforestry was highly valued for contributing to indirect benefits of ecosystems like the beauty of the landscape, climate regulation and protecting livestock against harsh weather. This corresponded with ecosystem services that were recognised as most important ones for supporting local livelihoods. Yet, the results showed that trees were increasingly being removed from the landscape due to economic pressure. In order to maintain the multifunctional character of the landscape, it is recommended to promote the valorization of non-monetary benefits from agroforestry practices and improve the cooperation between local and administrative level. Furthermore, continuous and strategic awareness-building on benefits of agroforestry is seen as crucial.Advantages of integrating trees into cultivation areas and pastures according to the interviewees Keywords: ecosystem services, agroforestry, multifunctional landscape, indirect benefits.Agroforestry is a land use system that includes the use of woody perennial and agricultural crops and animals in combination to achieve beneficial ecological and economical interactions for food, fiber and livestock production.The aim of the study was to evaluate and classify the timber based mixed farming/agroforestry systems.The objectives of the study was to determine the potential constraint of rainwater on the establishment and expansion of agroforestry, to document farmer's perception on constraints to agroforestry competiveness, to review the current knowledge on agroforestry and to identify and describe the farmers' benefits from timber based mixed farming/agroforestry. A purposive sampling technique along with quantitative and qualitative designs were used to select 65 productive and potential timber based mixed farming/agroforestry systems classified as follows: Silvipasture; Agrosilvoculture; Agrosilvipasture and Apiculture.The socio economic data was also coded, captured and analysed using Statistical Package for Social Science (SPSS). Most of the potential classified agroforestry systems visited fell in areas of good rainfall and the results also indicated some important benefits and constraints identified by farmers. It is thus recommended that stakeholders should take note of the potential classified agroforestry systems, benefits and constraints identified by farmers in an attempt to increase agroforestry competitiveness and adoption in Limpopo Province. Optimizing yield and sustainability through mechanization and improved land management practices?Martinez L. (lenny.martinez@12tree.de)12Tree Finance GmbH, BERLIN, Germany, GermanyMechanization is common all-over Latin America (but in various ways, adapting to local traditions and cultures), in all kinds of contexts and by all sorts of companies with varied values [1].It certainly disrupts dynamics in a rural landscape, but this where both context and how the company approaches it matters. We defend an approach specific to the project's socioeconomic and environmental context. We are not suggesting that everybody should and can mechanize. In fact, in order to mechanize a farm, you need to design it and plan for that purpose from the very beginning. Mechanization entails considering the architecture of the tree and the topography of the land. Mechanization might make sense in specific projects, but it may not make sense for others. Combined with training courses, affordable, labor-saving tools could be more suitable in some contexts to increase sustainability (in particular for small farmers). Nevertheless, mechanization, if done correctly, can positively affect not only the smallholders around a project, but also the local economy by sharing infrastructure or renting machines to local companies. In fact, some machines are not used throughout the entire year, and by renting and sharing equipment, we can maximize the machine's use and offer new services to the local area. Mechanized farms may lead to lower direct employment (in comparison to labor-intensive commercial farms), but they create more indirect employment opportunities (in services required for mechanization provided to the farm), as well as more qualified employment opportunities that offer higher wages and allow aspiring youths to remain in rural areas rather than push them to migrate to urban centers, fostering growth in the region. Mechanization also increases gender equality as it alleviates the physical demands of hard manual labor and enables women to take up farm worker (and manager) positions that previously were too physically demanding. Finally, we don't want to omit the challenges of avoiding soil compaction resulting from the intensive use of machinery from this discussion. This means that particular attention needs to be paid to using proper equipment to limit soil compaction (e.g., cable transport systems instead of tractors), understanding soil dynamics, providing farmers and employees with training and educational documents on safe and optimal use, calibrating and maintaining the machinery and equipment. Drawing on 12Tree's field experience in Central and South America, in this presentation we discuss the social and cultural challenges behind the mechanization of large-scale agroforestry plantations based on preliminary results from 12Tree's established agroforestry cacao projects.[1]http://www.ifpri.org/blog/increasing-agricultural-mechanization-latin-america-will-takemore-coordination-investment Keywords: Agroforestry Systems, Mechanization, Social and Environmental Impact, Investment, Soil Restauration.This study analyzes the socio-economic determinants of garden plank technologies and horticultural grafting adoption of Adansonia digitata L. (baobab) in Kolda and Sedhiou regions in southern Senegal. The main interest of this study is twofold: on the one hand, it focuses on the preservation factors of A. digitata and the durability of its exploitation in the two regions.On the other hand, it shows that A. digitata can play a major role in improving the income of rural populations through the sale of products and in food and nutritional security. The methodology used is based on surveys and interviews with populations, but also on statistical estimates. The results show that the adoption and non-adoption factors are multiple and depend on the interest of the populations studied. For the majority of the sample (74%), adoption is determined by water availability, access to seeds and land, and the possibility of selling or buying baobab products in markets. People are also adopting technologies for their and horticultural grafting technologies of A. digitata by local populations. «Land ownership» is therefore a factor that promotes adoption as well as a «household size». In other words, improved access to land and increased household size facilitate the level of adoption of agroforestry technologies in Kolda et Sedhiou areas.Keywords: socio economic determinants, adoption, garden plank, horticultural grafting, Baobab.From urban margins to the remotest forest areas, multistrata and biodiversity-rich cocoa agroforestry systems dominate the agricultural landscapes of Centre and South Cameroon Regions. For a long time, the development of cocoa production benefited from the strong support of the Cameroonian State. Local farmers rapidly adopted the new crop and adapted their swidden agriculture practices, developing an original agroforestry system rich in biodiversity.Progressively they introduced the improved hybrid seeds, shade regulation techniques and chemical inputs promoted by an active national extension network. Unfortunately, the major economic crisis of the late 1980s and following structural adjustment plans put an end to State support and left the Cameroonian agricultural sector in stagnation for two decades. The decline and volatility of cocoa price, population migrations (rural to city, rural to forest areas), and major socio-economic changes induced a profound transformation of the cocoa production sector. Nowadays, cocoa growers' profiles and strategies are highly diverse, a diversity which in turn impacts cocoa plantations. Comparing four ecologically and socially contrasted sites in Centre and South Cameroon, a multidisciplinary study thoroughly investigated 170 farmers and 71 cocoa plantations. Ten major types of cocoa plantations were identified and characterized in terms of species composition of trees and vegetation structure (number of trees and basal area per stratum), and cocoa technical management. In the two oldest sites (Obala and Akongo) agroforestry systems have persisted, though evolving somehow. In the more densely populated areas near Yaoundé (Obala), the intermediate stratum ( 8to 25 m high) has become richer in fruit trees, the cocoa stand has been renewed with new varieties and treated with pesticides. In Talba, where population pressure is increasing in a forest area, the natives and in-migrants from Obala have opted for cocoa plantations rich in forest trees with a predominance of the high stratum (from 25 to more than 60 m), mixing old/new cocoa varieties and mobilizing pesticide treatments. On the forest margins of Mintom, where population pressure is still low, more complex agroforests (in number of strata and specific diversity) have remained, with old cocoa varieties and less pesticide mobilization; they have been even developed by recent in-migrants from Obala. However, in Mintom as well as Talba, new cocoa plantations with simple structures, new cocoa varieties and high intensity of pesticide treatment, have been established by new stakeholders, mainly urban elites investing non-agricultural capital in cocoa production, and seeking short-term financial gains. Demographic pressure, the forest environment, the origin of farmers and their strategies are the major factors that determine the farmer's choice between complex agroforests, intensively managed cocoa plantations or a hybridization of the two.Keywords: technical management, vegetation structure, specific richness, demographic pressure, diversity of farmers.References:1 3. Bisseleua, D.H., and B.S. Vidal. 2008. Biodivers. Conserv Agroforestry is a traditional land use system that may represent the answer to many present and future environmental problems. However, many farmers who practice agroforestry do not identity it as agroforestry nor even accept such identification. So far, there is not an organized training method on agroforestry apart the Agrof MM method. The Agrof MM, «Agroforesterie -Formation -Mediterannee et Montagne», was a 3-year KA-2 ERASMUS+ educational project that aimed to i. Train between 130 and 150 agricultural professionals in Europe, ii. Improve and develop the education tools to enable agroforestry training to be sustainable, and, iii. Agroforestry is an agricultural system where crops and/or cattle are associated with woody perennials. Rediscovered some decades ago, agroforestry is today becoming more and more popular, mostly due to the provisioning of ecosystem services it enables. In France, agroforestry is being promoted through the National Agroforestry Plan (NAP), a strategy aiming at developing agroforestry practices nationwide. The 5 French Overseas Departments (FODs, Martinique, Guadeloupe, Reunion Island, Mayotte and French Guyana) are territories characterised by their geographical isolation, a tropical climate and a specific economic context. As a consequence, agroforestry systems found in FODs are very different from those found in continental France, and the question of how to implement the NAP there arises. In the framework of the NAP, this study aims at developing a better understanding and description of agroforestry systems in FODs, focusing on three examples: shifting cultivation in French Guyana, shade-crops on Reunion Island, and creole gardens, a form of tropical homegarden. Financial incentives promoting agroforestry are also analysed. Data is collected through a review of existing literature and interviews of local stakeholders. From the results, tools that could potentially be used to promote agroforestry overseas are presented and discussed.Keywords: overseas, tropical agroforestry, agro-ecology. Agroforestry practices support agricultural resilience against climatic variability, increase soil productivity, can diversify and increase farmers' incomes, and support native fauna in agricultural landscapes. However, many farmers are still reluctant to implement agroforestry practices. Based on a comprehensive literature review we investigated the habitat potential of agroforestry systems for the golden-headed lion tamarin (Leontopithecus chrysomelas), the maned sloth (Bradypus torquatus) and the golden-bellied capuchin (Sapajus xanthosternos) in Brazil's Atlantic Forest region. We sent questionnaires to 75 agroforestry and 64 \"conventional agriculture\" small-scale farmers in southern Bahia to identify the motivations and limitations to implement agroforestry practices. We found five important factors that supported the three analyzed species in agroforest systems: absence of hunting; absence of domestic dogs; canopy connectivity; occurrence of food plants; and close proximity to forest remnants.In addition, we found four main reasons why farmers worked with agroforestry: higher income generation (89%); diversification of the production system (86%); increase in the land's quality and productivity (86%); and increase in self-sufficiency (82%). The three most common mentioned reasons for \"conventional agriculture\" farmers not shifting to agroforestry practices were: uncertainty if the system would work (62%); reduction in yield of the main agricultural crop (43%); and a lack of models and knowledge in the region (41%). Agroforestry in Brazil's Atlantic forest region can support native fauna, but farmers need to be educated about agroforestry practices and encouraged to switch from \"conventional agriculture\" to agroforestry through an increase in available technical assistance and capacitation/training in agroforestry practices.Keywords: cabruca cocoa plantations, biodiversity conservation, small-scale farmers, technical assistance, Atlantic Forest.Recent \"post-forest\" landscapes of Madagascar result generally from combined processes: forest conversion to agriculture, forest degradation, ecologically regressive dynamics, and regeneration thanks to practices that favor the protection or regeneration of trees. \"Agriforestry\" (when agriculture and trees are on different plots) and agroforestry practices have been analyzed in a Highland district in order to identify the possible levers for a landscape transition towards more trees. The approach focused on the ecological characterization of habitats and their dynamics in a recent post-forest zone, the link between practices and dynamics, and the ecosystem services expected by farmers and other stakeholders. The spatial and ecological analysis showed a double process of forest fragmentation and degradation: agro-industrial exploitation of large post-forest areas; over-exploitation of forest remnants; and barriers to regeneration processes due to bush fires. Taltamo T. 1 (tesfayemi@du.edu.et), Bongers F. 2 , Giller K. 3 , Amede T. Multispecies agroforestry is widely acknowledged for its sustainable production while maintaining the resilience of the landscape. Despite recognized advantages, its adoption is challenged by various factors. This study aimed to assess the role of socioeconomic attributes in the adoption of agroforestry systems in drought-prone Kabe watershed in northern Ethiopia. Sixty sample farms were selected using stratified random sampling. The watershed was grouped into three classes (Downstream, Midstream, and Upstream) for fair representation of farms and 20 households were selected from each elevation category. Subsequently, households were categorized into four farm types based on resource endowment that depended on farm size, livestock ownership and annual income from non-farm activities. Socio-economic data and woody species, stem number and niches of plantation were recorded in each farm. Tree and shrub diversity indices and density were calculated and compared across farm types and with the socio-economic attributes. Twenty tree and shrub species were identified. Tree and shrub species richness and abundance significantly differed among the four farm types. High resource endowed farmers possessed higher species diversity and density compared with less resource endowed farmers. Farm size and age of the household head were positively correlated with on-farm species diversity and density whereas family size and farm distance from village center showed a strong negative relationship with on-farm species diversity and density. From the results, it could be explained that richer farmers with larger farm size and better income may not be constrained by food shortages for households and allocate a significant part of the land for tree plantation. In contrast, poor farmers invest in their land for quickly growing annual crops to satisfy the immediate need of food for the households. Finally, it is concluded that tree and shrub species diversity and abundance in the farms are influenced by socio-economic factors. Therefore, it is important to identify the socio-economic constraints on the households, particularly resource endowment status prior to the introducing tree and shrub species in the farms for the adoption of the agroforestry system in the Kabe watershed and in areas with similar biophysical, socio-cultural settings.Keywords: Agroforestry, Adoption, Farm-type, Socio-economic, Kabe. A project on the ecosystemic value-enhancement of forests (Valab) emerged at the initiative of the Agricultural Union of Vanilla Producers (Syaprovag) in the Guadeloupean archipelago. This paper analyses the contextual elements -with a focus on the insular context -that led these producers to start the project. It presents their vision of agroforestry in Guadeloupe and the local challenges the project has had to face. In the early 20th century, agroforestry systems were located in spontaneous forests, in most cases itinerant, and based on a great agrobiodiversity found in Guadeloupe. Those systems were progressively abandoned because of their own constraints and because of socio-economic changes on the archipelago ( 1). In the 1990s, programs to revive the coffee and vanilla sectors led to the creation of farmers' organisations. Among them, the Syaprovag was created in 1993 and received financial support for vanilla plantations. However, vanilla monoculture did not provide sufficient income for the farmers due to the long return on initial investment, climate hazards, lack of technical knowledge, and international competition magnified in the remote insular context. In 2011, the Syaprovag farmers put forward the alternative of diversified activities in the forest, inspired by the historical Guadeloupean forest gardens. They designed the concept of \"Integrated ecosystemic value-enhancement of the Guadeloupe forest agrobiodiversity\" (Valab).The objectives were to: 1) assure incomes to farmers through diverse quality products; 2) preserve ecosystemic services provided by the forests to society; and 3) maintain a threatened socio-cultural heritage. Moving away from long promoted sectorial approaches, these producers decided to adopt a systemic vision of the forest plot and related issues. Then, they designed the Valab project and recruited local partners for its implementation. They chose to talk about \"forest valorisation\" (value-enhancement) instead of \"agroforestry\" to distinguish their approach from tree plantations in open field systems.Valab aims to address different issues of the Guadeloupean archipelago: economic issues (viability, creation), environmental issues (preserving endemic biodiversity as well as water quality and stock for the islands, balancing carbon stocks and sinks), as well as social issues (providing quality product that meets local demand while maintaining cultural heritage and enhancing agriculture's contribution to the well-being of the population).The VALAB project is currently being implemented. It proposes a paradigm shift in the approach to agroforestry in Guadeloupe: first, through the development of systems by and for farmers; and secondly, through the objective of achieving global value-enhancement of the forest leading farmers to envision and build new roles as biodiversity managers. Adopting the future of land useAcross much of the world, agricultural systems, ecosystem health, and rural resource-based livelihoods are in crisis. Over the next 50 years, agriculture will be forced to go through an extraordinary transition to meet production needs sustainably, in the context of climate change, growing populations, and economic transformation. Biodiversity and ecosystem conservation efforts will need to shape new strategies in the face of agricultural growth. Populations base to secure the full range of goods and services needed from their landsof agricultural landscapes (ILM) will be an essential building block towards that transition. Landscape-level platforms and partnerships are the mechanisms by which inclusive green growth and Sustainable Development Goals will be implemented. Agroforestry systems and practices promise to play a major role in the sustainable transformation of agriculture within sustainable landscapes. This Session on Agroforestry Landscapes will examine: Increasingly agroforestry is considered as a foundation for multi-functional, socio-ecological landscape transformation. Yet the barriers to large scale agroforestry adoption are legendary, rooted in the misalignment between risk-takers (small scale farmers) and beneficiaries (society at large) (Franzel et al., 2001). Integrated landscape management (ILM) offers a strategy for scaling up agroforestry, by mobilizing collaborative efforts among multi-sector stakeholders. This study evaluates the application of ILM strategies in agroforestry initiatives in three diverse landscapes: the Amazon Production Transformation Agenda (ATPA) project of the Ecuadorian Ministry of Livestock and Ministry of Environment, the Chocó-Andean Bio-Corridor in Ecuador, and the Nut Tree Based Agroforestry initiative in New York. Integrated landscape management (ILM) frameworks provided the conceptual basis for analysis (Denier et al., 2015, Sayer et al., 2013;Scherr, et al., 2012;Tonen et al., 2018). Other landscape examples were incorporated into the analysis.The agroforestry initiatives represent a public policy, government led approach (ATPA); a civil society grassroots and international NGO led approach (Chocó-Andean Bio-Corridor); and a value chain led approach (Nut Tree Agroforestry). All include indigenous peoples' lands and organizations. The analyses highlight characteristics that are advancing the scaling-up of agroforestry; blockages to progress; prospective levers of change to unlock the blockages; and the partners, partnership formation and strengthening processes, activities, roles, and responsibilities that can advance momentum for landscape transformation. Integrating value chain and landscape governance perspectives and critical partners can accelerate scaling, and create incentives that attract multiple sources of finance to sustain the initiatives.Keywords: Agroforestry landscapes, Integrated landscape management, Landscape partnerships, landscape transformation, scaling up. An advancing agricultural frontier is one of the key causes for tropical deforestation and present a major obstacle towards the global target for sustainable agriculture (CBD-Aichi target 3). In one of Central Americas most dynamic areas in Eastern Honduras, main agricultural land-uses replacing native forests are coffee, cattle ranging and grains. Production systems and the respective actors operate to large extents in silos and do neither engage with each other nor with conservation initiatives. Continous droughts and low market prices for cattle products increase the vulnerability of cattle rangers and lead to questioning existing farming practices.We applied and adjusted the NET-MAP approach as a negotiation tool to bring together different landscape actors to agree on an objective for a landscape approach. The NET-MAP is a tool for analysing social networks of local actors related to trees on farms both on the national level and in the case study region around Catacamas, Olancho (Schiffler et al. 2010al. , Reed 2009)). Focus group discussions brought together stakeholders from governmental agencies, NGOs, business and farmer organisations as well as academic actors to analyse the influence of actors on trees on farms. In a four step analytical process, we first identified and categorised relevant actor groups. Secondly, linkages regarding the exchange of information, financial flows and regulatory influence were mapped. Thirdly, participants rank the influence of actors in an ordinal scale. Finally, results and observations were discussed.As key result, cattle rangers and coffee association were found to have the strongest potential in influencing trees on farms. After having been a driving force in land-use change, cattle farmers got aware of the potential of forming coalitions for multi-functional approaching expanding their sources of income, accessing the know-how for sustainable, shaded pasture management practices. Besides local coalitions for alternative management approaches, national biodiversity policy actors were connected to different farmer groups presenting new innovative potential for implementing biodiversity targets in agricultural landscapes. While producing both quantitative and qualitative information, our results highlight the potential of net-map to structure learning processes for transformative sustainability science (Lang et al. 2012). Net-Map presents a methodology that is both scientifically solid as well as flexible and practical to be applied as analytical tool in transdisciplinary development projects.Temperate agroforestry landscapes provide economic and environmental benefits; however, these benefits are only partly financially valued by farmers and society.Against this background we assessed the economic performance of marketable ecosystem services (ES) and non-marketable ES in contrasting landscapes dominated by agricultural or agroforestry land use in twelve case study regions in Europe. The focus was on the evaluation of the annual biomass production as marketable outcomes and groundwater recharge, nutrient retention, soil preservation, carbon sequestration and pollination as non-marketable outcomes (Kay et al. 2018). Our findings showed, that agroforestry landscapes had slightly lower market outputs than agricultural areas if the focus was only on marketable ES. However, when monetary values for non-marketable ES were included, the relative profitability of agroforestry landscapes increased. This was due to the fact that nutrient and soil losses were reduced, and additional benefits could be gained from carbon sequestration. This trend was of similar relevance in all three major biogeographical regions of Europe (Figure 1). Our outcomes showed how a market system that includes the value of broader ES would result in landscapes including multifunctional agroforestry systems and underlined that there is a critical gap in economic assessments that fails to account for ecological and social benefits. Agroforestry for Conservation: planning sustainable landscapes in the Colombian Amazon Ordonez M. 1 (maria.ordonez@tnc.org), Arango D. 21 Lands Strategy, The Nature Conservancy, Bogota, Bogota, Colombia; 2 Science Team, The Nature Conservancy, Bogota, Bogota, Colombia The vast area of the Colombian Amazon region spans close to 39 million hectares. A gateway to the Andean Amazon, the Department of Caqueta, is one of the most affected areas by the armed conflict and it is currently the country's highest deforestation hotspot, representing 30% of national deforestation in 2017. To build a territory of peace implies several challenges for conservation and the sustainable development of the Amazon and its inhabitants.The Agroforestry for Conservation (A4C) project, an initiative developed by The Nature Conservancy and the Amazon Conservation Team under the International Climate Initiative, aims to restore natural and productive degraded ecosystems and to reduce deforestation in Caquetá by promoting the implementation of agroforestry practices. The A4C project developed a methodology for a comprehensive technical landscape planning process for Caquetá considering three criteria: 1. Legal status of the territory, 2. Plans and policies for the development of the Amazon region, and 3. Historical trend of deforestation and current land cover.The spatial analysis of these criteria allowed the identification of priority areas for the implementation of agroforestry systems that can fulfill several objectives: increased forest cover and biodiversity protection and connectivity; increased carbon storage contributing to climate change mitigation; and increased productivity and profitability for farmers and indigenous peoples depending on forests.Landscape planning process for Caquetá Amazon region Keywords: Landscape, Planning, Agroforestry, Colombian Amazon, Sustainability. We aim at presenting our research movie : Agroforestry, agroforesters and landscapes, it is a scientific documentary showing with the help of audiovisual tools how landscapes benefit from agroforestry. If we lack knowledge on the qualification of agroforestry landscapes we do know that refurbishing the landscapes is part of the agroforesters involvement. For centuries, rainfed lowland rice production associated to sugar palm (Borassus flabellifer) hedges planted in the paddy field bunds (RLR-SP) has been an emblematic cultural agroforestry system in the indianized Southeast Asian countries. But recent changes in communication infrastructure, commercialization, urbanization, private and state interventions are driving the rapid transformations of these multi-functional systems. In the absence of in-depth analyses documenting the socio-ecological impacts of such change on household livelihoods and landscapes, a case study on the transformations, over the past four decades, of one of the most sophisticated coastal RLR-SP agroforestry system was implemented in Sathing Phra peninsula, Southeastern Thailand. Chronological series of satellite images and ground truthing were used to characterize and quantify land use change during 1983-2015, and 120 interviews with concerned stakeholders were carried out to understand agro-ecological, social, and economic effects of the driving factors of change on their livelihood systems.We show a process of diversification of farming (and off-farm) activities along their gradual market integration, since the opening of bridges and all-weather roads linking the area to neighboring cities in the 80s. We found that the traditional RLR-SP agroforestry system survived, almost unscathed, a first series of agrarian change. It was characterized by attempts at introducing irrigated rice, shrimp farming small perennial tree plantations in the paddies, or converting deep-water rice areas into small-scale integrated farming systems. The much improved communication infrastructures, and lack of irrigation water to switch from the low and unstable RLR yields to higher-value cash crops, increased the mobility of family farm laborers. They sized wage-earning opportunities, in the village or in fast developing urban centers, and escaped the drudgery of tapping sugar palms, in increased numbers. But a rising and profitable demand for sugar palm fruits from caning factories allowed the maintenance of the multiple functions of dense and healthy palm groves. A more recent \"palm narang\" government policy, supported by the establishment of new palm oil companies in the area, promoted small oil palm plantations in abandoned paddy fields to raise farm incomes. As the conversion to oil palm plots was the most important land use change observed during the last decade, it seems to be a more serious threat to the survival of the RLR-SP agroforestry system. In addition to these impacts of peri-urbanization combined with private and state interventions, an increase in the frequency of extreme rainy and windy events was also uncovered. This is underlining the need for the collaborative design of land-use scenarios and related collective and coordinated action plans to adapt this, diverse but increasingly vulnerable, iconic agro ecosystem to future challenging socio-ecological circumstances.Keywords: rice, Borassus flabellifer, crop diversification, market access, climate change. Agroforestry systems across the planet are elements of larger anthropogenic landscapes. These include a range of environments, from forests to areas mainly used for the intensive production of cereals, tubers or forage for domestic animals. We examine 'traditional' agroforestry systems to decipher how indigenous and local knowledge creates continuities and connectedness among the different elements of these larger anthropogenic landscapes. The societies that have devised these systems and shaped these landscapes conceive of nature and culture as intimately interconnected. These conceptions are linked to multiple practices, including choice of crops and how each crop is propagated, management of wild species as part of food systems, soil management, and management of vegetation mosaics at the landscape level. These societies use the wide range of environments in multiple activities for subsistence and for trade. Given these interconnections, focusing only on the part of the landscape seen as 'agroforestry' prevents us from understanding the structure, functioning and dynamics of the overall system. Using case studies from Indonesia, Madagascar, Morocco, Sicily, France, Vanuatu and Amazonian forests, we will show how agroforestry is embedded within social-ecological systems. We emphasize the importance of understanding how societies use indigenous and local knowledge to manage landscape-level interconnections and how practices are related to their conceptualization of nature. We will also show how these practices create and maintain diversity at different levels, from intraspecific genetic diversity of their crops to landscape-level biodiversity, and thereby contribute to the resilience of agroforestry and the well-being of societies that increasingly depend on it.Keywords: Nature-Culture, Connectedness, Domestication_Diversification, Local knowledge, anthropogenic landscapes. Large-scale restoration goals have been targeted globally and achieving those requires further understanding on how different restoration options are perceived. This study analyzed the potential of Agroforestry systems (AFS) for upscaling landscape restoration, considering Forest Transition theory and pathways (Lambin & Mefroydt, 2010;Wilson et al., 2017). We combined literature review, interviews, focus group and participatory observation about AFs in Rio de Janeiro state: 128 experiences were mapped, of which 18 were visited. Data about the AFS objectives and the species composition were collected, along with stakeholders' perceptions about them. Different types of AFS were observed, with different species, designs and management strategies, which subsidized a discussion about the role of different AFS in the restorative continuum. According to the stakeholders, the main benefits of AFS are: quality and diversification of food production, soil recovery and the sense of (re)connection with nature. Challenges include: access to knowledge and labor, inputs and markets, as well as legal insecurity in managing forests and land tenure. Results expand the understanding on Forest Transitions, identifying new factors that promote agroforestry adoption and forest gain. This understanding is fundamental for planning effective restoration projects, based on diverse strategies, contributing to climate change mitigation, adaptation, biodiversity conservation and human wellbeing.Expanded framework on Forest Transition pathways, their drivers and relative outcomes. We identified new drivers that promote agroforestry adoption and forest gain at landscape scale, showing it's potential for promoting multifunctional landscapes and achieving global targets. Based on Wilson et Wildfires represent one of the most extensive disturbances of the agroforestry systems, as other land use systems of the Mediterranean basin. As Mediterranean rural landscapes are often characterized by a complex matrix of grasslands, open wooded pastures, shrublands and broadleaf forests, these heterogeneous conditions may limit the prediction of wildfire behavior and severity and in turn affect the sustainability and effectiveness of fire prevention and fire management activities carried out by the fire protection agencies. For these reasons, fire prevention and suppression actions should be supported by analytical tools (simulators and decision support systems) and data provided by monitoring technologies (satellite imagery, unmanned aerial vehicles with vision-based systems, automatic weather station networks, short-term weather forecasts) able to provide assistance in evaluating the most appropriate fire prediction and management strategies. Analytical tools can help managers considering in an integrated way the complex relationships among variables that affect wildfires: fire ignition and current location, vegetation and fuel characteristics, weather conditions and other landscape characteristics. The aims of this work are ( 1) to present a wildfire simulator designed to provide support to wildfire prevention and management operations in Sardinia (Italy) and ( 2) to provide a probabilistic application of wildfire simulators devoted to estimate burn probability in Sardinian grazed forests considering different scenarios of grazing pressure and weather conditions. The wildfire simulator is based on in-house developed codes for the estimation of high resolution wind field maps from local area weather forecasts by a mass-consistent model, and the simulation of wildfire spread by a level-set approach which uses as input the vegetation characteristics summarised as fuel models, the weather conditions and the topography. The simulator is specifically designed to simulate the wildfire propagation on different temporal and spatial domains. The wildfire simulator were run using a random sample of ignition points in order to determine fire probability and severity maps for different treatments and environmental conditions. The probabilistic application of wildfire simulators provided useful data and maps to assess the effects of grazing pressure on fire behaviour, to identify the areas with high probability of burning, and to plan the fire prevention and fire management practices.The study confirmed that regulated pastoral activities could provide a valuable support in wildfire management, particularly if linked to a higher involvement of farmers in the surveillance and prevention policies of Mediterranean areas; this role could be even supported by the public institutions through specific programmes and incentives.Keywords: fire behaviour, fire spread, fire management, grazing. Agroforestry (AF) is promoted as a key strategy to increase the level and stability of multiple ecosystem services. Yet, this may not be true for all landscapes and all systems. As it is usually impossible to empirically test different landscape designs and AF systems, we rely on modelling approaches. We propose a multi-objective land-use allocation model for investigating different land-use strategies. Being parsimonious in nature, the model draws on a set of indicators and their uncertainties to optimize land-use allocation. We include and exclude agroforestry systems to investigate whether they can actually help to increase levels and stability of multiple ecosystem services. We present example applications of the approach from Panama, Ecuador and Indonesia. We find that in forested landscapes agroforestry did not contribute to multifunctional landscapes, while in agricultural dominated landscapes, they could help to improve service provision. The modelling approach may help to better understand the conditions under which agroforestry and specific systems should be promoted.Keywords: Land-use allocation, robust optimization, ecosystem functions, multifunctional landscape, compromise solution. The landscape-based approach has been promoted to overcome the multi-faceted direct and indirect causes of deforestation. Efforts are needed to move toward operationalising it into practice. In Indonesia, challenges include the lack of integrated planning at the landscape level. The conceptual framework is clear, integrated grand strategy based on sustainable business model considering the ecosystem characteristics and supported by complementary policy framework, and this is crucial for facilitating a sustainable integrated forest-landscape management. Using Participatory Action Research Approach, two documents of grand strategy in two-district case studies in eastern Indonesia have been developed considering multiple management objectives of different stakeholders and government agencies at the landscape level. Watershed used as the workable landscape unit of the analysis. The policy working group was initiated and formally appointed by the head of the district. Challenges included the newly imposed act of recentralisation governance system at the national level, in which Forest Management Unit's authority was shifted from district to provincial level. The grand strategy has provided the district government as the negotiation-tool in dividing the management plans between the two-government authorities. Cases in these two districts have provided a good lessons-learnt on multi-stakeholder negotiation for effective acceptable solutions.L14 AF landscapes Andriatsitohaina N. 1 (ntsiva_intel@yahoo.fr), Celio E. 2 , Rabemananjara Z. Agroforestry system is expanding in North-Eastern landscape of Madagascar. Farmers establish their vanilla and clove plantation in a mixed-agroforest, combine also pastures and cloves plantation. This expansion are due to many factors and has socio-ecological impacts. This contribution would like to fill the knowledge-gap on drivers of agroforestry expansion in this part of Madagascar.Our study took place in two landscapes in Northeastern Madagascar that are featured by a small-scaled agriculture with dynamic developments in the vanilla and clove production. We used a participatory Bayesian network-based land-use decision modelling approach which aims to set-up the conceptual model and to analyze future land-use development in a spatially explicit way. We first analyzed the model's sensitivity to investigate which factors influence land-use decisions of farmers on intensifying and/or extending agroforestry system (AFS) and then evaluated its extent on landscape. Results (Cf. Figure ) suggest that intention of farmer is the most important factor for adopting and/or keeping the agroforestry system in overall case study area. In the Southern site of our case study area, biophysical context such as slope, soil fertility and water followed intention. In contrast, in the Northern site, socio-economic factors such as rice sufficiency of households, theft were ranked as most important after intention. Furthermore, agroforestry landscape is likely developing in the area. Habitat temporal continuity influences plant and animal communities and species spatial distribution, according mainly to their dispersal capacities and lifespan. Considering habitat history to the long and mid-term is then crucial to understand thow past landscape changes affect current biodiversity patterns. Moreover, the knowledge of the socio-economic causes of past landscape changes allows a better anticipation of their future changes and more efficient habitat or landscape management strategies. We thus reconstructed the history of rural forests in an agroforestry landscape in South-Western France, composed of farm forests and trees outside forests. Thanks to retrospective photo-interpretation of airborne images, we traced back and quantified their evolution from 1962 to 2010. We first attempted to understand both ecological and sociological determinant factors of these rural forest changes illustrated here for hedgerows. We focused on their location within exploitations and showed how changes are dependent of farm dynamics but also patrimonial and cultural backgrounds. We underline as well their potential contribution as ecosystem services providers (windbreak and erosion). Second, in order to detect whether changes in structural farm forest connectivity translate into changes in functional connectivity, we assessed its dynamics for plant species differeing by their dispersal capacities.Changes in hedgerow density from 1962 to 2010 in the studied area, from dark red (strongest density decrease ie -9 to -4,5 km by km²) to dark blue (strongest density increase ie +1,5 to + 2,7 km by km²).Keywords: Landscape ecology, history, rural forests, ecosystem services, connectivity. Oak woodlands are declining in many regions of southern Europe (Brasier, 1992;Costa et al., 2010). With the goal of assessing this process, long-term trends of the Normalized Difference Vegetation Index (NDVI) were derived and mapped at 30 m spatial resolution for all areas with a stable land cover of cork oak (Quercus suber L. Vaillant et al. (2016) and the Wildfire Analyst (WFA) software for the simulations. VAF components, exposure, sensitivity, and resilience, will be measured first in a retrospective assessment (after the wildfire) of landscape vulnerability, followed by a predictive, comparative assessment under different scenarios of project success, including the 'business as usual' (without project). We hope this study will help forestry authorities and local government officials to make better informed decisions on land management and ultimately, to achieve fire resilient communities and landscapes in the region. In the 1970s and 1980s, the Sahel experienced recurrent drought and famine. Farmers and their development partners reacted to this crisis by developing climate-smart agricultural practices, including water harvesting techniques to restore degraded land to productivity. In several densely populated parts of the Sahel, farmers began to protect and manage woody species that regenerated naturally on their farmland. Farmer-Managed Natural Regeneration (FMNR) is a foundational practice that produces multiple benefits, such as maintaining or improving soil fertility, which raises crop yields, and increasing the production of tree-based fodder, fruit and firewood. In Niger's Maradi and Zinder Regions alone, farmers have applied FMNR practices on 4.2 million hectares. The findings suggest that the future of agriculture in the Sahel will be largely determined by whether or not low income smallholder farmers will manage to improve soil fertility which will depend on maintaining substantial densities of onfarm trees.Faidherbia albida improves soil fertility and produces fodder for livestock. Farmers like high on-farm densities of this species as they increase crop yields Keywords: Farmer-Managed Natural Regeneration, Sahel, agricultural intensification, land use change, on-farm tree cover. Payments for environmental services on agricultural land:The case of evergreen agriculture in EthiopiaHaile K. (haile@merit.unu.edu), Tirivayi N., Tesfaye W.Despite the economic and environmental benefits, the uptake of evergreen agriculture by farmers in sub-Saharan Africa remains very low (Garrity et al., 2010;Glover et al., 2012). The households' decision to invest in evergreen agricultural innovation is a sacrifice of their current income for anticipated higher utility from future net income gains. Drawing on the reference-dependent utility model (Köszegi and Rabin, 2006), the lack of uptake of evergreen agriculture by smallholder farmers can be explained by the overemphasis farmers give to the loss in utility as a result of a decline in their reference (i.e. status quo) consumption level. The standard policy intervention in the face of positive environmental spillovers is to introduce incentives so that private individuals benefit from the use of environmentally responsible practices.In recent years, researchers and policymakers alike have advocated payments for environmental services (PES) as an incentive-based approach to internalizing the positive externalities of resource use decisions. Designing and implementing PES schemes that benefit poor and vulnerable farming households will ensure sustainable land use and Pareto-efficient provision of environmental services (Reed et al., 2015;Börner et al., 2017). The first step should involve understanding which attributes of a PES scheme influence participation of poor farmers in the program. Therefore, eliciting farmers' stated preferences will uncover how they value the attributes of a proposed PES contract before launching the program.To that end, this study examines farmers' preferences for adopting contractual evergreen agriculture and identifies factors that significantly affect their choice behavior. A discrete choice experiment was conducted with 200 farmers in Ethiopia to elicit their willingness to participate in a hypothetical payment for environmental service (PES) program that incentivizes integrating faidherbia albida (a fertilizer tree) in their mono-cropping farming system. Attributes evaluated are \"payment amount\", \"number of planted trees\", \"payment type\", and \"contract period\". A Generalized Multinomial Logit (G-MNL) and latent-class conditional logit (LCL) models were used in the choice analysis. All the attributes considered in the PES program are statistically significant, and hence provides evidence for the relevance of the attributes that are chosen. As expected, farmers drive higher utility from higher amounts of payments. Farmers also strongly prefer food as the mode of payment than cash. Moreover, low numbers of mandatory planted trees and short-term contract periods are found to be important attributes that positively affect farmers' decisions to take-up a contractual evergreen agriculture. These findings shed light on the design considerations that must be accounted for when implementing PES schemes that promote evergreen agricultural innovations within smallholder farming systems in sub-Saharan Africa.Keywords: Evergreen agriculture, Payment for environmental service, Discrete choice experiment, Faidherbia albida, Ethiopia. Lacourt S. (lacourtsimon@gmail.com), Petit Berghem Y.Agroforestry questions the way separated cultivation practices shape the territory. In In agricultural areas where crops and trees grow apart, the integration of agroforestry intercropping systems introduce new features in the landscape. These changes may be perceived differently by the residents bounded by a close relation to the landscape and by the tourists who appreciate these features from an external point of view. Mixing trees and crops may also be perceived differently whether agroforestry systems are introduced in intensive or declining agricultural landscapes or depending on their specific design parameters (tree row spacing, species, etc.). The visual impacts of the introduction of these systems in agricultural areas need to be investigated to better understand their desirability in agricultural contexts of intensification and decline. The aims of this study are 1) to assess and compare the visual appreciation of four common agricultural landscapes and six intercropping system designs by residents and non-residents of two contrasted agricultural areas, 2) to determine the influence of tree diversity and row spacing on the visual assessment tree-based intercropping systems, 3) identify social characteristics influencing the visual assessment, and 4) identify some of the reasons underlying the visual appreciation of specific landscapes. Residents and non-residents from two contrasted agricultural areas of Quebec (Canada) were surveyed online using a non-probabilistic method. Respondents rated on a 1-10 scale their visual appreciation of twelve landscapes: six agroforestry scenarios following a complete factorial 2x3 design testing two variables: tree row spacing (two levels, 15 m and 30 m) and tree diversity (three levels: monospecific, mixed tree species and mixed trees and shrubs) and six common rural landscapes (deciduous forest, conifer forest, herbaceous fallow, forage field, wheat field and corn field. A second section captured the reasons underlying their appreciation of five of the landscapes previously rated. In the third section, participants chose, for a given basic landscape, the landscape change they prefer between four options. A fourth section captured the respondent's profiles. Statistical analysis were performed on landscape ratings and were crossed with individual characteristics. Results shed light on the visual appreciation of specific agroforestry intercropping system designs compared to common agricultural landscapes and inform about the reasons underlying these appreciations by residents and tourists. They inform about the desirability of intercropping systems in various agricultural contexts for residents and tourists, thus guiding future landscape planning and design decisions.Keywords: Visual assessment, Agroforestry intercropping system, Residents, Tourists, Landscapes.Agroforestry intercropping systems fulfill multiple functions at the landscape level. While the integration of these systems in agricultural landscapes is mostly investigated on the ecological angle, the social context in which they are integrated still needs to be enlightened. Our study used the SWOT-AHP procedure to investigate the factors influencing local stakeholders' (farmers, forestry and farm advisors, local authorities and urban planners) decision to integrate agroforestry intercropping systems in two contrasted agricultural landscapes (very intensive and very extensive) in Quebec (Canada) and their perception of the relative suitability of three system designs (crop-, tree-and landscape aesthetic-oriented). On the 24 influencing factors identified by stakeholders, 22 related to the social sphere, emphasizing the importance of the social context on agroforestry decision-making. The relative value given to the decision factors varies greatly across stakeholders' categories and areas. Agroforestry intercropping systems designed to meet crop production needs or landscape aesthetic purposes are globally perceived as more suitable in both agricultural contexts than the tree-oriented design (fig. 1). However, major differences appear between stakeholder categories, suggesting that consensus may be difficult to reach in a collective decision process. Our results highlight crucial issues for agroforestry system deployment in various agricultural contexts. Keywords: SWOT-AHP, Agroforestry intercropping systems, Agricultural landscapes, Stakeholders, Perceptions. Forest and agriculture landscapes dominate across Southeast Asia. Agricultural systems are highly diverse ranging from traditional swidden and agroforestry, to the more recent intensive industrial oil palm plantations. These management approaches have fabricated distinct fragmented landscapes that could yield significantly varying impacts on biodiversity and ecosystem services. Our systematic styled review compares fragmentation in industrial oil palm (IOP) and smallholder agroforestry (SH) landscapes, and how this influences biodiversity (soil fauna, avifauna, and vegetation) and ecosystem services in Southeast Asia. Two literature searches were carried out capturing fragmentation studies in IOP and SH settings. After devising a selection criteria, we identified relevant studies, assessed the type of landscape metrics used, and synthesized research findings.After screening 2301 studies, 26 passed our selection criteria; avifauna was the most widely in Indonesia despite being the world's largest oil palm producer. We found too few studies on interactions between ecosystem services and landscape dynamics to draw meaningful comparative findings. Studies in SH systems provided cases of well-connected and diverse forest-agriculture mosaics that successfully supported all biodiversity. In IOP landscapes, we found mixed effects, which depended on the dispersal range of species, their adaptive ability along habitat gradients, and how actors managed forest fragments. Land use research is dominated by land use level comparisons, and rarely do studies measure landscape interactions, which is evident in the lack of studies in our review. Few studies addressed more complex, yet important measures, such as the permeability and pattern of the landscape matrix 1 . Assessing fragmentation processes over time addresses the resilience of landscapes to different agricultural practices 1 , and the critical threshold that determines the recoverability of forests and biodiversity 2 . Understanding these underlying recovery mechanisms contributes to supporting sustainable restoration efforts and agroforestry intensification programs.The current Southeast Asian trend in which landscapes are moving away from swidden and agroforestry practices to industrial plantations could significantly impact biodiversity and ecosystem health. We recommend the following for future research: i) Greater accountability of landscape metrics in assessing spatial interactions with biodiversity and ecosystem services, particularly in smallholder agroforestry systems, and how this can facilitate integrated management of agricultural landscapes.ii) Review threshold studies in the context of landscape dynamics to increase our understanding of resilience in fragmented landscapes, and what role this has for restoration efforts. The Iris Garden: an urban agroforestry case study to promote the traditional olive trees-iris landscape in Tuscany Maienza A. 1 (a.maienza@ibimet.cnr.it), Fabrizio U. The Iris Garden of Florence hosts a historical botanical collection of Irises cultivated in an olive grove on the slopes of the hillside area of the town (Fig. 1 ), giving rise to an outstanding Tuscan agroforestry system. The Garden embodies a strong cultural meaning for the city, as the Iris is the symbol of Florence, but also for the rural landscape around it.The Iris pallida Lam., is one of the varieties cultivated in the Garden since 1954, and is \"famous\" for the traditional pharmaceutical and cosmetic uses of its rhizomes. Today, Iris pallida represents a niche production but, in the past, suiting hostile environments (shallow rocky soils on southern slopes), it was widely cultivated among olives trees on the Chianti hills. Starting from the Iris Garden, this work aims to study the supply of ecosystem services of the olive grove-iris agroforestry system. Using a holistic approach, quantitative data gathered from the biodiversity and soil carbon analysis will be integrated with qualitative data from interviews with citizens, tourists, garden managers (the Italian Iris society) and land owners (the Municipality of Florence). The investigation will elicit the environmental characteristics and strengths, weaknesses, opportunities and threats of the Iris Garden contributing to outline preliminary guidelines to promote the Garden and the olive trees-iris intercropping in terms of cultural values, environmental protection, landscape amenities and citizenship well-being. Agroforestry plays an important role in food security and farmer's resilience to climate change and variability in West Africa and diversity of landscape has been seen to be more resilience to climate change according to the diversity of ecosystem services that they can offer. However agroforestry parkland diversity at landscape level in the climatic zone in Burkina Faso is not well known. Therefore, the mosaic of agroforestry parkland landscape in three climatic zones of Burkina Faso was studied. Thirty (30) farmlands in each climatic zone representing about 35 ha were randomly selected on which systematic woody species inventory and dendrometry data collection was undertaken. Diameter classes' distribution and agroforestry parkland typologies representing their mosaic using Importance Value Index analysis were also done.The results showed 42, 31 and 34 woody species respectively in Sudanian, Sudan-Sahel and Sahel strict zones with corresponding density of 37, 30 and 35 trees/ha. Agroforestry parklands in Sudan-Sahel zone appeared to be unstable compared with the two others climatic zones. One parkland landscape of Vitellaria paradoxa was observed in the Sudanian zone while three parklands landscape of Vitellaria paradoxa, Parkia biglobosa and Bombax constatum were observed at the given farmland area in the Sudan-Sahel and Multi-parkland landscape of Adansonia digitata, Azadirachta indica ,Balanites aegyptiaca , Faidherbia albida, Lannea microcarpa and Sclerocarya birrea were observed at the same given area of farm in Sahel strict zones. The investigation revealed that the main reason of mixing crop and trees was to diversify the sources of production to secure food security and multi-agroforestry landscape is to cope more with climate variability affecting crop production. Thereby, Multiagroforestry parklands landscape observed in the Sahel strict zone appeared to be the most resilient to climate variability and change and could therefore be advised as a strategy to cope with the adverse effects of climate variability on rural livelihood. Keywords: Parkland typology, woody species, density, smallholders, ecosystem services Keywords: Parkland landscape, woody species, tree density, smallholders. Agroforestry systems (AFS) are multifunctional land use strategies that can be used in forest landscape restoration. The \"Portal da Amazônia\" Territory was established through recent colonization with high rates of deforestation. Currently, 84% of its properties are managed by family farmers. We have mapped 19 rural communities of two counties and surveyed the food and medicinal species cultivated in 44 agroforestry homegardens, identifying those which are commercialized by the families and the main places where they are sold. AFS are not traditional land use systems in this region, they were implemented by the NGO Ouro Verde Institute, with BNDES (National Development Bank)/Amazonia Fund support, aiming to diversify agricultural production in these agroecosystems. We found 131 food species and 151 medicinal plants chosen to be cultivated by the families, with 96 species being already sold in local markets. There are species occupying all strata (trees, shrubs, herbs, lianas and epiphytes), which indicates their potential for the establishment of multiple agroforestry consortia. We found a high number of tree species, both for food (109) and medicinal (36) uses. The results show the potential of AFS to bring back the arboreal component into the properties and to improve food security and income generation to families, which will certainly stimulate their adoption by family farmers and maybe promote the expansion of AFS and forest restoration at landscape scales in Amazonia.Spatial distribution of rural communities with agroforestry homegardens in two counties, highlighting the deforested areas Keywords: Landscape restoration, Tree species, Homegardens, Family farming, Amazonia. Agroforestry uses (such as grazing, hay cutting and litter raking) were once important parts of forest management and played a major role in ecosystem development through biomass removal. This poster will present unique and comprehensive data on agroforestry uses from 3500 settlements in the Czech Republic from the 16th to the 20th century to show the extent to which these uses were present in preindustrial forests at the landscape scale and how the contemporaries related to them. We will describe the potential drivers behind the distribution of agroforestry uses in the past as well as the drivers for their subsequent decline. Lastly, the poster will illustrate the potential of agroforestry uses in sustainable forestry in the future.Agroforesty uses in Moravian (eastern Czech Republic) in the 19th century.Keywords: forest management, traditional uses, litter raking, hay cutting, landscape scale. Anthropogenically developed linear woody features, such as hedgerows, windbreaks, and riparian buffer strips, served a multitude of purposes within agricultural landscapes in the past. Currently, they are of minor importance for farmers in Germany, who are typically not allowed to manage them, due to nature protection regulations. The aim of this study was to classify existing linear woody features within agricultural landscapes and to assess them in relation to relevant ecosystem functions and services, such as production, wind and water protection, habitat provision, and landscape aesthetics. For the classification of woody features, 45 categories were obtained by the combination of general characteristics such as hedgerow type, hedgerow structure and degree of naturalness (Fig. 1). The condition of each ecosystem function was assessed by low, medium, and high for each category according to the literature. The application of this assessment in a study area of 4 km 2 in southern Brandenburg revealed a prevalence of tree dominated woody features and an overall low to medium condition of the assessed ecosystem functions. The assessment method can aid decision making regarding the condition of multiple ecosystem functions under consideration of potential synergies and conflicts between functions. Allowing farmers to utilise the production function of hedgerows is necessary for their rejuvenation and maintenance in a good condition. Visualization as a tool to raise the debate on agroforestry in urban contexts van Dooren N. (noel.vandooren@hvhl.nl), van der Meulen S., Noortman A. Delta Areas and Resources, Van Hall Larenstein, Velp, Netherlands In many parts of the world, agroforestry is a known practice, for diverse motives, including the desire to win back degraded land. In the Netherlands with its focus of highly productive agricultural production, oriented on the global market, agroforestry is a rather unknown practice. Recently, however, the phenomenon receives a lot of attention, also due to the attention for so-called food forests, which can be considered a close-by practice. Reasons for such growing attention can be found in the debate on climate change, for example, and on city-region food systems. As the Netherlands are highly urbanized, and landscape is considered a cultural product, the impact of agroforestry on landscape is of interest, be it negative or positive. We notice a widespread lack of insight what the spatial implications of agroforestry, especially large-scale developments, can be. Therefore, within our larger research program, together with students first attempts were done to visualize agroforestry developments two-dimensionally and three-dimensionally. Especially the combination of multicropping and the need for an efficient system of management and harvesting reveals the lack of best practice in different landscapes. This exercise, therefore, not so much counts as predictable visualization, as well as a visual starting document for debate and knowledge exchange. In that respect, it contributes to the further development of agroforestry as such, and the implementation in local contexts. Adopting the future of land usePermaculture, agroforestry, and homegardens: the urban ticket to nutritional yumminessThe world has been experiencing unprecedented levels of urbanization in the past few decades, a trend that is expected to continue so that food and nutritional security is emerging as one of the principal concerns in many cities. Another major concern is 'regreening', as, much too often, the conversion of agricultural and forest land to urban land has been done with little or no concern for environmental quality, leading to loss of tree cover and ecosystems services. Developing agroforestry in the urban and peri-urban remaining green spaces, as long as they are not impacted by pollution, may respond to these concerns: combining the production of food and the rehabilitation of a tree and plant cover with its various ecosystem services, it would increase food and nutritional security for the urban poor and reconnect the urban people to nature.This session will explore whether and how agroforestry can contribute to both food security and environmental betterment of cities. cially welcome. Case studies may include aspects related to agroecology, permaculture, agriculture and forestry, in an urban context; they may also cover a wide range of scales from local to global, and any kind of geographic setting. The papers presented for this session will be written-up with a view to publish them as a special issue of an international journal such as Agriculture, Ecosystems and the Environment, Agroforestry Systems or Forests, Trees and Livelihoods, or alternatively, as a stand-alone edited volume. Uganda faces serious challenges in providing sufficient healthy foods for its growing and urbanizing population. This paper aims to explore the contribution of urban agroforestry homegardens to child nutrition in Kampala. A repeat 24-hour dietary recall including information on food sources was conducted with 49 children (aged 2-5) and 31 of their caretakers (aged 18-49). Dietary Diversity Scores (DDS), Food Variety Scores (FVS) and household food insecurity levels (HFIAS) were calculated and anthropometric measurements taken. A total of 70 edible plant species were recorded in the 49 homegardens. We found a correlation between child P P P ren from wealthier households were more likely to have higher DDS (P=0.007) and fruit intake (P vegetables (Fig. 1). Higher garden agrobiodiversity had no influence on dietary diversity and nutritional status of children during the dry season, but the surveyed children had a generally good nutritional status. During harvest season urban homegardens may contribute more to family nutrition. To ensure a more food secure city, researchers, policy makers and urban planners need to become aware of the potential value of urban homegardens and prioritise them in future development plans. Growing demands from citizens for urban gardening, edible cities, for biodiversity habitats in green spaces, but also the need for residential green areas that provide climate regulation have become apparent in recent years in German and other European cities. Examples from the benefits of urban food forestry projects in the United States and the United Kingdom (Clark & Nicholas, 2013) have led us to investigate the feasibility for implementation of this concept in German cities. Food forests imitate the multi-layered structure of natural woodlands. In contrast to alley cropping systems, they consist mainly of fruit and nut bearing trees and shrubs, as well as a vegetable and herb layer. Through their structural similarity to natural woodlands, ecological and climatic functions (e.g., cooling, soil conservation, biodiversity habitat) may approach the ecological functions of forests with increasing age of the system. Hence food forest enable the production of food with the improvement of multiple ecological functions in urban areas (Clark & Nicholas, 2013), which go beyond short term urban gardening activities with annual species carried out in planting boxes.To assess the feasibility of the concept of urban food forests we carried out interviews and questionnaires with all relevant authorities at city level and in different quarters of Berlin, Germany. This was accomplished by assessing potential user groups and the response of different urban gardening initiatives towards the concept. Based on this, a series of participatory workshops, bringing together civil society actors, green spaces administration, nature protection agencies and scientists was used for focussed discussing concerning the level of public access, options for coordination between public green spaces management and users duties and options for long term land definition within the public planning regime.Intermediate results reveal the large array of demands and regulations on different types of urban green spaces in Germany and strong conflicts of interest on green spaces, which seem to be a barrier for the long term access to land for implementing this complex agroforestry system. While civil society actors are articulating demands for long term urban gardening setups and some sort of reliability concerning site availability and agroforestry development options, government authorities are hesitant concerning longer term definitions. This is true, despite of the recognition of the ecological and social benefits that food forests may bring in the long term, as well as the potential benefits of a collaborative management form for urban green spaces in terms of management costs. As any type of agroforestry requires a long term perspective, the development of innovative rules and regulations dealing with long term land guarantees and management responsibilities will be crucial for facilitating the adoption of agroforestry systems such as food forests in urban areas.Keywords: urban gardening, comunity management, public green spaces, feasibility study, Germany.L15 Urban AF The favorable environmental conditions together with the ancient agronomic practices, e.g. the irrigation systems introduced by the Arabs, have made the plain surrounding Palermo, known as Conca d'Oro, the unique agriculture landscape famous worldwide. Several tree and vegetable species have spread throughout in time but the new crops, instead of replacing the others, were often integrated exploiting the different heights of the tree canopies. The result was the creation of complex agroecosystems characterized by orchards with several layers of trees (as walnut, loquat, citrus) and empty spaces where the farmers cultivated vegetables.The grass fed the animals in the stables while manure was returned to the fields. Now the traditional system has changed (simplification, disappearance of animals, abandonment) but new functions, in the meantime, are attributed to these areas: air purification, high quality products, biodiversity conservation, preservation of history, and, recently, training of young farmers. The purpose of this communication is to describe the agroforestry features of today's Conca D'Oro system and that of the recent past and to illustrate its new functions while the city is engulfing its last agricultural areas. It is evident that, without the support and control of the public administration, the green spots left in the Conca D'Oro (one is indicated by the yellow arrow) will disappear and one of the most beautiful landscapes in the world will be lost forever.Keywords: biodiversity, Citrus orchard, layers of vegetation, agronomic techniques, transmission of culture. Urban agroforestry is largely advocated, as trees in the city provide a number of ecosystem services. In Africa, one of the world's fastest urbanizing regions, they contribute particularly to food production and to maintain the quality of the environment. Nevertheless, little is known on the interplay between management practices and levels of genetic diversity of urban trees.Our model species, Dacryodes edulis (G. Don) HJ Lam, is a widespread indigenous fruit tree in Central Africa. In Cameroon, it is commonly found in different agroforestry systems (home gardens, agroforests), from the capital Yaoundé to peri-urban and rural areas. This study characterizes tree management practices along an urbanization gradient and the associated distribution of genetic diversity. Using 13 nuclear microsatellites markers and samples from nine study sites along the gradient (three rural villages, three peri-urban towns and three Yaoundé district), we will compare management practices and their effect on the intraspecific genetic diversity. We hypothesize that the genetic diversity could be higher in Yaoundé, with planting material coming from different regions as people settle. This intraspecific diversity could thus be related to seed sourcing strategies still being the dominant planting strategy for this cross-pollinated species. The results will help understand the distribution of cultivated tree genetic diversity, in the context of ongoing domestication of tropical perennial species.Urban D. edulis tree bearing young fruits (African plums) in the Messa-Carrière district of Yaoundé Keywords: ethnoecology, genetic diversity, indigenous fruit tree species, management practices, urban home gardens. Using participatory research, the World Agroforestry Centre (ICRAF) developed the food tree and crop portfolio approach to enhance the diversity and seasonal availability of nutritious foods in local food systems. These nutritious food portfolios are defined as site-specific combinations of indigenous and exotic food tree species with complementary staple crops, vegetables and pulses that potentially can provide year-round harvest of nutritious foods and, 'gaps', certain nutrient 'gaps' are addressed by mapping the nutritional value of selected species using food composition data. This data plays a key role in linking agriculture to nutrition, particularly the nutrient composition of indigenous and underutilised species, for which such information is often lacking. To address this data and knowledge gap, ICRAF have collated food composition data to support decision-making in the selection of ecologically suitable and nutritionally valuable species for cultivation. This approach supports the mainstreaming of trees and crops rich in micronutrients which can be overlooked in agriculture -nutrition development planning, projects and policies. The portfolios represent a sustainable foodthe diets of rural and urban consumers. The portfolios have been developed in 15 sites across East Africa.An example of a fruit tree portfolio* for Siaya/Bondo counties, Western Kenya. Ecologically suitable fruits selected based on their complementary months of harvest and their nutritional contribution for target nutrients, vitamins A and C. Nutritional value ratings of beta carotene (vitamin A) and vitamin C and contents are given as +++ (high source), ++ (source), ~ (present, but low, or moderate), blank, white (no source), blank, grey (no data available). Fruits can also be evaluated for other nutrient values (B vitamins, minerals including zinc etc.). Avocado is included as a source of good fat, minerals and vitamin E. Months of harvest are mapped against vitamin-rich fruits are indicated by green-shaded boxes. *This graphic illustrates a fruit tree portfolio, the expanded concept of the food tree and crop portfolio as presented in this abstract is available in further detailed graphics and with additional nutrient mapping of iron and folate.L15 Urban AF Urban agroforestry is expanding in the tropical countries due to urban densification and expansion, increasing distance with agricultural lands and farms. Whilst urban agroforestry has been registered in the Adaptation to Climate Change Program of the Tonga Island in 2013, it hasn´t fully been explored in the Temperate Climates. This article is part of a PhD research on urban agroforestry. In the frames of a landscape architectural study, I have planned and designed an experimental public forest garden in partnership with the 14th district of Budapest and an NGO cargonomia. Compared to other urban food systems, urban agroforestry is a complex topic which requires research in both biology and sociology. Therefore, it is important to bring together planners and experts in ecology to plan agroforestry in the urban landscape. Through a Landscape Architectural approach this paper explores why agroforestry systems should be planned in the city and how public spaces can be designed with agroecological principals. Further, this article presents steps in planning a public edible forest garden through the case Budapest, the principals behind the community participation, and the first results from the opening on the 11th of November 2018. The conclusion is that the socio-ecological interactions are the basis to implement a new urban land use policy. Key words : Land use policy, urban agroforestry, landscape architecture, forest gardens Potager du Roi is a remarkable garden that fits into a unique urban composition. Since its creation starting in 1678, the site has undergone many changes without ever losing its original structure. Gardens must be continually cultivated and maintained. But some architectural and plant structures of large gardens have a life cycle that is approximately centennial. Potager du Roi was created starting in 1678. The first major restoration occured in the 1780's and the second began in the 1880's. Today, Potager du Roi suffers from a thirty year deficit of sustained investment. This presentation will describe how an agroecological approach, including agroforestry, is being applied to conserve and share the unique and exceptional atmosphere of the garden designed by La Quintinie; to position the site as a living heritage at the heart of contemporary debates and in particular sustainable practices concerning food and health issues in an urban environnement.Potager du Roi. Historical kitchen garden in an urbanized setting Results showed high species abundance and high variability in garden structure and composition. Garden size had no significant effect on ecological diversity. Gardeners were most motivated by food production (availability, quality, and known provenance) and aesthetics.There was no apparent relationship between economic status and gardening objective. All gardeners acknowledged NGO facilitation through seed provision, skills transfer or, particularly relevant given the drought in Cape Town, water harvesting techniques. Policy makers wishing to encourage these practices would do well to explore ways to collaborate with these organisations. Agroforestry development in urban and peri-urban areas may respond to food security and environmental concerns by reconnecting urban people with nature. A study was done to determine diversity of trees in urban croplands and contribution of agroforestry to people's livelihoods in Harare, Zimbabwe. Objectives were to i) identify the tree species used in urban agroforestry ii) determine factors influencing adoption of urban agroforestry and iii) identify the challenges of practicing urban agroforestry. Questionnaires and field surveys were used to collect data. In agroforestry plots, Eucalyptus grandis (24%) was most abundant species, followed by Cajunus cajan (18%), E. resinifera (13%), Faidherbia alibida (9%), Leucaena leucocephala (9%) and Acacia angustisma (6%). The other 13 species were below 3% each. Four exotic and four indigenous fruit trees were used in agroforestry plots although their numbers were low due to reasons of fruit insecurity. Fruit trees need to be close to homesteads to ensure their security. About 50% of urban farmers were motivated to engage in agroforestry mainly for food security although soil fertility (20%) and income generation (13%) were also important. The main challenge affecting adoption of agroforestry in urban areas was the small plot sizes and land tenure. There is need for more education and awareness to increase knowledge on the importance of trees in urban agriculture to facilitate ecosystem restoration while achieving economic gains. Increasing trend of rural-urban migration has caused rapid land-use change in peri-urban areas of the capital city of Kathmandu, Nepal. The paper elaborates the need for change in urban authorities and residents for growing trees in peri-urban areas in the future. Five different study sites representing diverse geophysical and socioeconomic strata were sampled out. Methods included literature review, street/transect walk, comparative interviews between younger and elder people, area estimation and recording of trees/plants, and change analysis based on periodic maps. Results show that eighty percent of the households don't think of growing trees while building their houses, and five percent have opinion of need for trees around but have no cropping due to lack of space or appropriate species. Out of total, 20 percent have green space with some flowers and vines. Households having more than 200 square meters area have home yards, and have planted 1-2 tree species (i.e., more than 5 meters height in maturity). People are more interested in planting religiously important trees such as sandalwood (Santalum album), Elaeocarpus sphaericus, and wood apple (Aegle marmelos).Frequency of popularly grown religious tree pairs (Ficus benghalensis & Ficus religiosa) that are now old and hazardous, is rapidly declining mainly due to their large size and root effects.The number of urban trees are positively correlated with household land size and not correlated with size of public land. Governmental and municipal authorities should have programs for awareness, seedling subsidy or other incentives, and mandatory provision in designing, building and granting completion certificate of new buildings or houses. Factors like population pressure, high demand of small size land, fragmentation of landscape, lack of housing standards and collective action between neighbors, and people's habit of sun basking are not to be ignored by authorities and forgotten by residents in the future. Kampala's municipality plans to 'regreen' its city by planting 500,000 trees. If done well, this can help build climate resiliency and contribute to urban food security. This paper aims to create insights into how trees are valued by local communities in public and private space through scoring and ranking exercises. Fieldwork was conducted in Kampala, Uganda in May-June 2017. Data was collected through 35 semi-structured interviews and one focus group discussion. Preliminary results indicate a higher preference for fruit trees in private space (63%) than in public space (45%) (Fig. 1). A higher number of species was mentioned for public space, 35 versus 19. Aesthetic considerations were the main reason for not wanting more fruit trees in public spaces, followed by the concern that eating fruits from public trees is not permitted. Free seedlings, access to training, and the provision of tools, fertiliser and pesticides are effective incentives for residents to plant more trees in their homegardens. Data on rankings of ecosystem services is currently being analysed and will provide more insight into how the different services are valued by the respondents in public and private space. These results can support urban planners and policy makers when considering urban greening as well as urban food security in both the public and private spaces of Kampala. Since most land in Kampala is privately owned engaging with private land owners is crucial in tackling urban deforestation.Figure 1. Species ranking scores for preferred fruit and non-fruit species in public and private space in Kampala, Uganda, 2017 (note: only species with ranking minimum of 6 were included in the figure). Homegardens are traditional land use systems located near homesteads that bring together different species of plants and animals. The diversity of these systems are significantly associated with subsistence, and may involve a range of indigenous agroforestry practices. In addition, the agrobiodiversity of homegardens is considered to be a useful source of plant germplasm and plant domestication. The aim of this study was to describe the urban? agroforestry multistrata homegardens of Central Amazonia and its social importance and contribution to agrobiodiversity. The study was carried out in 89 agroforestry farms located in the urban areas of Belterra, Curuá, Oriximiná, Porto de Moz and Santarém municipalities. The homegardens were selected by the non-probabilistic sampling technique, due to the difficulties of access and permission. In each garden, a floristic survey was carried out and each owner was interviewed for location, history/chronology of what? and management practices.The urban multistrata homegardens of Central Amazonia have an average size of 664 m2.The age of the gardens? ranged from 01 to 84 years, with a mean age of 23 years. Most gardens are managed with family labor (95%) and the exclusively women managed gardens accounted for 42%. The main management practices used in these systems included pruning, selective cleaning (weeding and thinning) and organic fertilization. The sampled gardens are managed with own internal inputs. Only 15% of the owners raised animals for food, mostly poultry(Gallus gallus domesticus). One hundred and forty five plant species were inventoried, belonging to 63 botanical families. The mean richness of plant species was 11 per garden? and ranged from 2 to 37 species. Asteraceae was the most abundant botanical family (nine species), followed by Lamiaceae and Rutaceae with eight species each. Mangifera indica, Theobroma grandiflorum, Citrus sinensis, Cocos nucifera and Psidium guajava were the most frequent species in these gardens, serving both as a source of food for the family and providing cash income from the sale of surplus production. In the gardens evaluated, most of the production was exclusively for domestic consumption (81%). As for the main uses of plants in the homegardens, food accounted for most (76%), followed by medicinal products (16%), ornamentals (6%), timber (1%) and handicrafts? (1%). Tropical agroforestry multistrata homegardens contribute significantly to food security of most families, especially in places where wage opportunities in formal employment are scarce. Their plant richness shows the potential of these systems to contribute to the conservation of agrobiodiversity as well as to provide better quality of life for the Amazonian urban population.Keywords: Amazonia, Central Amazonia, multistrata homegarden. Adopting the future of land useIs that a forest? Is that a park? No, it's an agroforest! Mapping agroforestry Landscape level mapping of agroforestry systems and related interventions is an important approach for developmental planning at local, regional and national levels, given that the demand for up-to-date geo-spatial information for informed decision making are increasing exponentially. Mapping agencies and effectiveness. Remote sensing, GPS and GIS techniques have been utilized successfully over the years for addressing these concerns. However, new and revolutionary trends are emerging in data capture and analysis. Invariably, Unmanned Aerial Vehicles (UAV) are one of the newest and most innovative tools offering the advantages of utilizing superior reach and dexterity in data collection. This session will expose participants to results on the theories, science, applications, and technology of remote sensing and GIS studies in agroforestry systems. Our aim is to circulate novel/improved methods/ approaches and / or algorithms of landscape level mapping relating to agroforestry systems and interventions to drive informed decision support systems. In this session, we will focus on the new trends in acquiring geospatial data through UAV and applications; Remote Sensing and its applications in agroforestry; Land evaluation in terms of agroforestry land suitability mapping; Modeling and Mapping Agroforestry parameters; and creation of a geospatial information systems to inform effective management of agroforestry systems etc. Special focus and attention will be placed on emerging and revolutionised trends in UAV applications and Lidar and Rader Remote Sensing applications in Agroforestry mapping and monitoring. Against the background of global population growth, agricultural productivity must be increased for achieving long-term food and nutrition security in West Africa. Contributing to address this issue, mango is a major fruit crop grown under various cropping systems in the region. The aim of this study was to test how orchard plant diversity, configuration, and practices affect mango yields from large commercial-based monospecific orchards to agroforestry systems. In thirty orchards of different mango cropping systems in Senegal, we mapped orchard land uses by UAV photogrammetry and object-based image analysis (14 classes) and quantified plant diversity (Patch richness, Shannon diversity, Simpson evenness index). Then individual mango tree characteristics (height, cultivars, crown area, and volume) were extracted from drone canopy height models and combined with a load index (taking into account year and management effects) to inform predictive yield models. The mapping procedure reached an average overall accuracy of 0.89 for classification of plant species and mango cultivars. Yield models reached satisfying accuracy with R² greater than 0.77 when evaluated with actual yield of 60 validation mango trees. Finally, results showed that orchard mango yield is not only driven by planting density and management practices but also by the tree species diversity, highlighting the efficiency of UAVs to inform stakeholders of complex agroforestry landscapes. Agricultural forests are an important resource in the central United States yet little information describing their extent and location is readily available in formats that are convenient for resource professionals and decision makers. National forest inventory and natural resource monitoring programs seldom account for these non-traditional forests in their official statistics. In addition, most satellite-derived datasets are too coarse to accurately depict small or narrow groupings of trees common in agroforestry systems. Recently, the U.S. Department of Agriculture's (USDA) Strategic Framework included a goal of inventory and monitoring of agroforestry practices. To address this goal, the USDA Forest Service's Forest Inventory and Analysis program and the National Agroforestry Center have developed and implemented a remote sensing-based operational land cover mapping process using 1-meter aerial photography. In a secondary mapping process, tree-covered areas are classified as the most likely agroforestry practice represented, with an emphasis on identifying windbreaks and riparian forest buffers. The resulting high-resolution datasets can be combined with other location-specific information in order to understand relationships between agroforestry systems and soil erodibility, water quality and abundance, habitat suitability, and more. This endeavor is the first of its kind in that datasets are being produced at such fine detail for agricultural landscapes and over such a large portion of the central United States. Maps for Nebraska and Kansas have been completed and additional mapping efforts are currently underway in other areas where agriculture is the dominant land use. The land cover map of Kansas discovered more than 1 million acres of tree cover beyond the national forest inventory estimate of traditional forest land, and the ensuing windbreak map details more than 30,000 miles of windbreaks throughout the state. Descriptions of the mapping methodologies and associated results are presented for multiple states in the central U.S.L16 AF mapping Populus deltoides (Poplar) trees are widely grown on agricultural lands as boundary, block and agrisilviculture systems by farmers in the Indo-gangetic region including Punjab state in India. This species is preferred because of its short rotation and demand of wood for paper, plywood and matchstick industries. These Poplar based agroforestry systems play significant role in sequestration of atmospheric CO2 for a rotation of 6-7 years. In the present study, spatial analysis of Populus deltoides based systems for area, biomass and carbon stock has been done in Punjab using field data and remote sensing techniques. Four districts of Punjab state namely Hoshiarpur, Ludhiana, Rupnagar and Shahid Bhagat Singh Nagar were surveyed during Aug. 2018 and data on age, system, spacing, diameter at breast height and GPS points were collected from farmers' fields. Agroforestry plots were also tracked with the help of GPS, which was used for identification and generation of spectral signature for Poplar species. High resolution LISS IV data (spatial resolution-5.8m) of selected districts was processed and analyzed for mapping of Poplar based systems and estimation of area. Object oriented image classification technique was applied for identification and mapping of trees on farmlands. For this purpose, Object based image analysis (OBIA) module of ERDAS Imagine software was used (ERDAS 2009). Stem and aboveground biomass for Poplar trees of different ages were computed using developed biomass equations (Rizvi et al. 2008, Puri et al. 2002). The total biomass was derived by considering 79% of total biomass as aboveground biomass. Carbon stock (CS) was (kg/ tree). In literature carbon content in poplar wood is estimated to 45.4 percent (Negi et al. 2003). Accordingly per tree biomass and carbon was converted into per ha biomass and carbon after multiplying with number of trees per ha.Results revealed that tree density ranged from 200 to 1905 trees ha-1 in the four districts. Characterizing agroforestry systems (AFS) at landscape scale is of a great importance for development planning at regional scale in Africa. Therefore, the major constraint to effective AFS mapping with remote sensing is the high diversity within landscapes. To have a robust and representative sample of training data, this study proposes an optimized sampling strategy guided by the AFS functioning and allowing to take into account the landscape diversity. A simple and reproducible approach based on unsupervised classification of remote sensing data and an a priori knowledge on the environment functioning is developed. The study is conducted on AFS of the Senegalese Peanut Basin.Assuming that AFS landscapes with similar trees and crop cover composition will have similar phenological development, a multiresolution segmentation was performed on Sentinel-2 NDVI time series to obtain homogeneous landscape units. Then for each unit, landscape diversity proxies were derived from various geospatial data sources, namely vegetation productivity and its temporal dynamic, actual evapotranspiration, woody cover rates and soil type. Using a hierarchical clustering, four classes of typical unit of the landscape heterogeneity gradient were obtained. On this basis an optimized sampling plan was produced and used to carry out an inventory campaign of tree biodiversity (figure). The results showed a well-defined landscape diversity gradient, confirmed by the field inventory of tree species.Landscape heterogeneity gradient divided into four classes and the distribution of tree inventory sites. More than 8000 trees including 41 species have been inventoried covering 213 landscape units distributed accordingly to the weight of each landscape class Keywords: remote sensing, agroforestry system, sampling strategy, landscape heterogeneity, landscape classification. Verma A. K. (amitvermafri@gmail.com), Kaliyathan N. N. Silviculture and Forest Management, Forest Research Institute, Dehradun, Uttarakhand, India Terai Arc Landscape (TAL) ecologically important region of the subcontinent is a mosaic of a variety of land use. Increasing population pressure on forests to meet the increasing demand for fuel, fodder, and timber has introduced the concept of multiple uses of land with multipurpose tree species. Agroforestry has drawn the attention of researchers due to its capacity to reduce poverty and land degradation, improve food security and mitigate climate change. In India Poplar is an important Agroforestry species and plays important roles in the livelihood of agriculture-based populations as well as ecological restoration through carbon sequestration.However, the progress in promoting Agroforestry is at a slow pace due to the lack of reliable data sets and appropriate tools and techniques to accurately map the potential areas and to have an adequate decision-making system for Agroforestry models. The identification of potential areas is important steps to introduce Poplar based Agroforestry models in the region. The present study has been conducted to identify the potential areas for the occurrence of Poplar in Terai Arc Landscape. MaxEnt ecological niche modeling framework was used to predict the potential areas under Poplar across the TAL landscape. A total of 359 GPS coordinates of presence locations was collected from a field survey and the Auto-correlation test was performed using Diva-GIS. A total of 129 independent species occurrence locations was used for model building with 24 predictor variables including climatic, topographical.The Area under the Receiving Operator Curve (AUC) was used to evaluate models goodness of fit. Model with the highest AUC value was considered as the best performer. A set of ASCII environmental layers and a csv file of presence location of Poplar were used to produce the probability maps that predict the potential distribution of a species. Habitat suitability classes were categorized into high potential (>0.6), good potential (0.4-0.6), moderate potential (0.2-The model output shows that the value of Training AUC was 0.9613 and Test AUC was 0.9024 which are close to 1 and the standard deviation was 0.041. It indicates that the model performed better than random. The potential distribution map predicted in this study shows a close resemblance to the ground situation. This research shows the capability of remote sensing in studying Agroforestry practices and in estimating the prominent factors responsible for its optimal productivity. The ongoing Agroforestry projects can be diverted in the areas of high and good suitability potential as an extension. The use of ancillary data from the field survey in the GIS domain can have enormous ability to map the land for the benefit of rural people even up to the village level. Considering the hilly terrain of the Himalayan region, this model can help in identifying high potential areas for future exploration work.Keywords: Agroforestry, MaxEnt, Poplar, GIS, TAL. The swidden agriculture practice, a cyclic agroforestry system that presents high ecological heterogeneity, still represents the most used farmers' practice in the SE Asian region, experiencing rapid land-use transitions driven by the conversion of biodiversity-rich ecosystems to monoculture plantations. Increased fragmentation creates mosaic of land cover types difficult to map. Challenges persist for evaluating such matrix configuration using satellite remote sensing. The present study explores feasibility, advantage and inconvenience of UAV technology for the acquisition of geospatial data to better understand, fine-scale agroforestry landscape fragmentation, connectivity and the dynamics of the burning and cropping phase.The study site is a swidden agriculture forest landscape, north of Kapuas Hulu regency in West Kalimantan, Indonesia. The drone system consisted of a customized SkyWalker fixedwing plane equipped with RGB camera (resolution 7-12 cm). Each flight at 400 m elevation covered around 3000 ha, replicated over 3 years, in the month of October after the burning phase season. Orthophoto mosaics were created using AgiSoft software. Object based image classification (OBIA) was tested with open source software to create a reproducible and automated assessment of landscape, together with an appraisal of the landscape metrics. Ground check and vegetation sampling were performed for each mapped classes.The results showed that: (1) Up to 25 vegetation classes can be easily interpreted visually, but the low spectral resolution of RGB bands restricted the number of classes used for OBIA;(2) The area of swidden agriculture on forest increased only by 2%; (3) Over 80% of swidden fields were transformed from fern savannahs, the rest mainly taken on young fallows; ( 4) From 2016 to 2019, the frequency of swidden fields in the district remained constant; (5) The proportion of very short burning cycle (1 to 3 years) was around 50%, revealing that swidden cycles in this particular area were shortened; (6) Overall, connectivity of old fallows and forest patches was maintained. This particular study represents promising preliminary steps in fully mapping the agroforestry landscape for future monitoring. Local people involvement was critical in mapping their landscape. Integrating ground-based surveys with UAV remote sensing appeared as promising tool essential for achieving cost-efficient wide-scale surveys of agroforestry resources and to monitor changes and long-term sustainability of the system. The ecosystem recovery time following initial slash-and-burn practices may be longer in our study area. Soil impoverishment related to reduction in rotation length may become a serious threat likely to jeopardize the production of goods and services in the long-term. In our study site, the long-term persistence of the swidden agriculture system maybe at stake, if enhanced management of fallows and agroforestry plots (enrichment planting) is not performed.Keywords: swidden agroforestry, UAV, land use land cover change, communities, Borneo. Agroforestry bridges the gap that often separates agriculture and forestry by creating integrated systems that address both environmental and social-economic objectives. Agroforestry research spans many disciplines and addresses a broad range of outcomes, thus creating an opportunity and need to synthesize the evidence for easier exchange of knowledge and ideas.Existing research suggests that integrating trees on farms can reduce environmental degradation, diversify agricultural production, increase carbon sequestration, reduce pollution, control runoff, and enhance soil fertility while providing stable incomes and other benefits to human welfare 1 . Although these claims are becoming more widely accepted as the body of agroforestry research increases, systematic understanding of the evidence supporting them remains lacking. To address this research need, we develop a systematic map of the evidence on the impacts of agroforestry practices and interventions on agricultural productivity, ecosystem services, and human well-being published between 2000-2018 2 .Our map is global in scope, combining the results from parallel efforts to systematically map available evidence in low-and middle-income countries (L&MICs) and in high-income countries. The systematic map allows users to easily navigate and access available evidence, and it provides an intuitive visualization tool that highlights areas that have been relatively well studied together with research gaps. We provide an overview of the systematic mapping process and results, and show heatmaps, charted with agroforestry practices and interventions on one axis and outcomes on the other, reflecting the number of available studies for each intersection. We also map the distribution of studies conducted within each country geographically. Finally, we present descriptive statistics on the growth rate of evidence over time, research and publication trends, study type distribution, top publication sources, and author institutional affiliations. The results from our L&MICs evidence gap map showed that there is a notable lack of impact evaluation work on agroforestry interventions as well as a lack of studies evaluating social and human well-being impacts of agroforestry. Agroforestry research in L&MICs has focused primarily on productivity, biodiversity, and soil health in tree-crop agrisilvicultural systems. These results are compared with our results for high-income countries. Our dataset will be made available online on an open-access, interactive map server. Users will be able to visualize our results, filter the dataset per our data coding criteria, and automatically interact with the most updated version. The map is intended to serve as a tool for informing policy decisions and developing strategies for future research initiatives, with special relevance in the context of the UN Sustainable Development Goals.Keywords: Evidence Synthesis, Impact Evaluation, Systematic Map, Agroforestry. Shelterbelt agroforestry systems are an integral part of the Canadian landscape. From 1888 to 2014, over 600 million trees were distributed to farmers across the Canadian Prairie Provinces through the Prairie Shelterbelt Program (PSP) of the Government of Canada. While there are records of trees shipped and their destinations, until now, there has not been an accurate inventory of where, and how many, shelterbelts are still growing, or how many are being removed by farmers for various reasons. The Saskatchewan Shelterbelt Inventory was created by locating and identifying shelterbelts visible on digital airphotos (ca .2008) obtained from the Saskatchewan Geospatial Imagery Collaborative. As the shelterbelts were digitized, a number of characteristics were recorded -type, width, species composition, and condition. Recently, a new method was developed to map removal of planted shelterbelts using object-based classification techniques and a combination of 2016 Sentinel MSI and SAR radar satellite imagery. This method was useful in differentiating very narrow shelterbelts from the surrounding bare soil and crops, aiding in the production of land cover maps across a vast agricultural landscape with an accuracy of 80%. A land-cover change detection analysis from these two successive shelterbelt inventories (2008 digitized and 2016 satellite-based) was used to produce a map of planted shelterbelt removal occurring in the period 2008-2016. Carbon stocks of existing and removed shelterbelts in farm yards or crop fields were estimated using the map-derived shelterbelt lengths, approximate shelterbelt age, and estimated species-specific C sequestration rates. The results showed that shelterbelt tree species could sequester from 1.78 to 6.54 Mg C km-1 yr-1, and that soil C storage in shelterbelts was 2 Mg C ha-1 higher than surrounding crop production fields. The current cumulative shelterbelt length across five soil zones in Saskatchewan is 62,832 km (single-row estimate) with majority, 79%, planted in 1-row, 19% in 2-3 row, and 2% in >3-row design. The cumulative carbon stocks in these shel-9% in coniferous shelterbelts. Approximately 4% of all shelterbelts were removed during the 2008-2016 period, equivalent to 2,491 km and 0.19 Tg C removal, the majority of which were planted in 1-row design (97%), 30-50 years-old, and comprised of shrub (56%) or deciduous (41%) species. In light of a future carbon tax implementation across Canada, shelterbelt retention or removal has grown in importance for balancing carbon emissions in the agricultural sectors. A more focused understanding of shelterbelt removals in Saskatchewan can lead to new socio-economic policies aimed at addressing shelterbelt removal, and promoting future shelterbelt planting and retention.Keywords: shelter belt inventory, carbon stocks, retention, removal, mapping. Reducing Emissions from Deforestation and Forest Degradation (REDD and REDD+) recommend specific approaches for quantifying and spatializing ecosystem services (ES). In the context of climate change, REDD recommends the mapping of carbon stocks and its sequestration by vegetation cover to implement more appropriate environmental management practices and policies against global warming. Forest carbon mapping is a current and important environmental tool for a better land management as successful implementation of climate change mitigation (Saatchi et al., 2011). This study presents the mapping of carbon sequestration using two different approaches. Firstly, the direct Remote Sensing (DRS) approach using MODIS images (product MOD17) (Running & Zhao, 2015). Secondly, the indirect approach named Combine and Assign (CA) Approach (Goetz et al., 2009). MODIS images allow the accounting of Net Primary Productivity (NPP) which presents the quantity of carbon absorbed by vegetation cover during a period as a key indicator of ecosystem performance.The CA Approach combines remote sensing and field data in GIS environment to assess the yearly carbon sequestration for each ecozone and the carbon losses by fires in 2010, using the atmospheric flow proposed by Intergovernmental Panel on Climate Change (IPCC). Both CA and DRS mapping approaches show that the forest stands, generally, Pinus pinaster and Eucalyptus stands, in central and coastal areas have the higher CO2 sequestration potential. However, these two species contribute significantly to CO2 emissions comparing to all other species. The comparison between IPCC methodology and the MODIS product (MOD17) used to follow the carbon dynamic in terrestrial ecosystems has demonstrate that IPCC method can be used as a perfect method to validate MOD17 product. The Iberian Dehesa, one of the most widespread silvopastoral systems in Europe (den Herder et al, 2017), have been identified as example of adaptation useful to face the effects of the climate change on Mediterranean grasslands. Although it is known that trees in Mediterranean wood pastures can favor grass growth (López-Carrasco and Gómez, 2009), studies at large spatial and temporal scale are needed since the relationship of competition and facilitation between trees and grass depends on the edaphoclimatic conditions (Rivest et al, 2013). The aim of this study is to evaluate, through the examination of long series of satellite images, the buffering capacity of the trees for the pasture yield variability in Western Spain. This study uses temporal series of Landsat-5 and Landsat-8 data to map different spectral vegetation indices such as Normalized Difference Vegetation Index, Soil-Adjusted Vegetation Index and Enhanced Vegetation Index. The phenology of the grass has been evaluated in dehesas that follow a gradient of structural complexity (tree and shrub cover), which was determined by the combination of Object-Based Image Analysis and Digital Surface Model applied to infrared orthophotographs and LiDAR data. The results show that trees does not reduce grass yield compared to pure grassland areas, but extend the vegetative period and stabilizes the grass yield across years. Using this methodology, we try to determine optimal tree density for different edaphoclimatic regions. A new approach to quantify grazing pressure under Mediterranean pastoral systems Castro M. (marina.castro@ipb.pt), Ameray A., Castro J.Pastoral systems based on grazing itineraries, very common along the Mediterranean region, provides an opportunity to search feeding resources at landscape scale under a silvopastoral system called by San Miguel ( 2004) as \"Mosaic of different land uses within one management unit\". However daily and seasonal movements of flocks bring on different Grazing Pressure (GP) over the landscape. This study presents an approach to modeling sheep GP under a Mediterranean pastoral system in Northeast of Portugal. The pressure of grazing in a given location depends on Distance from the stable to the border of the parish, Distance to the stable, Stocking Density (SD) (sheep/ha) and preferences for land use and land cover (LULC) (Castro et al., 2004). Geoprocessing integrates several geodatabases, a) land use (COS2015), b) parishes boundaries (DGT, 2017), c) stables location (0108_OTSA_2_E), and d) Sentinel-2 data. SD was performed by Multiple Ring Buffer tool and Ordinary kriging. Homogeneous LULC units (Permanent Crops; Annual crops; Forest; Shrubland; Grassland; Waterland) were obtained by Supervised classification algorithms. The COS2015 was used to establish a mask of the urban area and ungrazed forests. The best performing preferences classifier was Ran-. Integrating the LULC grazing and the SD (Weighted Overlay tool) allows to calculate and to map the GP (figure 1). The most common GP in grazing classes is about 4.7 sheep/ha. Chiocchini F. (francesca.chiocchini@cnr.it), Ciolfi M., Sarti M., Lauteri M., Leonardi L., Cherubini M., Paris P. CNR -IRET, Porano, TR, Italy Background Agroforestry, being grounded in traditional land use practices, has developed as an autonomous science to increase productivity and profitability for the farmers, while ensuring the land use sustainability. Agroforestry systems are widespread in many countries, supporting the coexistence of tree, crop and livestock components. Such complex ecological systems offer a wide range of economic, social and environmental benefits, occurring over a range of spatial and temporal scales. The integrated use of GIS, Remote Sensing and GPS technologies is particularly suited for assessing, mapping and quantifying the intrinsic spatial complexity of these systems. One of the major geospatial issues in Agroforestry is detecting, mapping and estimating the forest component of the systems: scattered trees or linear forest formations located either inside the field or along the field boundaries, also known as Trees Outside Forest (TOF) (FAO 1998(FAO , 2001)). Data on TOF are scarce and the information available is fragmented at regional and national levels (Schnell et al., 2015). Beckschäfer et al. (2017) give an overview of inventory approaches suitable for the science-based assessment of TOF, specifically on agricultural lands. However, up to now there are no guidelines for TOF inventory in agroforestry systems. Aims Traditional tree-based agriculture systems involving different multipurpose trees such as chestnuts (Castanea spp.), oaks (Quercus spp.), and olive (Olea europa), (Eichhorn et al., 2006) are common in Italy and other Mediterranean countries. We investigated the integration of geospatial techniques for TOF inventory in traditional silvoarable systems located in Umbria region (central Italy), where oaks tree hedgerows (THRs) coexist with herbaceous crops.We tested a procedure for the GIS inventory of THRs, through the semiautomatic photo interpretation of high-resolution multispectral Sentinel-2 satellite images and NDVI. Results were compared with GPS field measurements of THRs as control points to assess the ground truth. We also compared THRs picked up by remote sensing products with different spatial resolution (Google Digital Globe, Sentinel-2 and Landsat 8) using the same combination of spectral bands.The THRs length detected, corresponding to the 14% of the total perimeter of the cultivated fields, fits accurately with the GPS field survey. The THRs' crowns cover the 3% of the total cultivated area, with an incidence of 67 m of linear tree rows for each hectare of cultivated land. We also observed that the THRs' spatial distribution improves the connection between forested patches in the study area, enhancing landscape connectivity. Further development is needed in order to include diverse landscape patterns: the high-resolution Sentinel-2 imagery appear especially suitable for the detection of most TOFs at landscape level. Commagnac L. 1 (loic.commagnac@ign.fr), Sinoquet A. 2 , Morin-Pinaud S. 2 , Benest F. 1 1 Forest ecology unit, IGN, Saint-Médard-en-Jalles, France; 2 Bocage and wildlife unit, ONCFS, Villiers-en-Bois, France \"Bocage\" is a typical Western European landscape consisting in a network of hedgerows surrounding agricultural parcels. Hedgerows have decreased globally in France since the 1950s, in parallel a decline of agricultural wildlife has been demonstrated by the scientific community. ONCFS and IGN are preparing a national survey program on bocages to evaluate and monitor their quantity and their quality (ecosystem approach). This project is divided into three phases: -Create a first geographic layer with French hedgerows, -Edit a new map of bocages in France, -Define and set up a field monitoring on bocages. Current phase, phase I, assumes the mapping of French metropolitan hedgerow network, it will be achieved by combining two pre-existent data sets featuring surface hedgerows: -BD TOPO® from the IGN : VHR aerial imagery with semiautomatic segmentation, -Data from Land Parcel Identification System (LPIS) of the CAP. The resulting layer will then be skeletonized. This geographic information layer will be updated using several innovative methods which will be discussed: -Digital Canopy Height Model (using photogrammetry obtained DSM) to spot hedgerow losses, -Participatory mapping via a web GIS application, -Other resources possibly available. The first project partners are French Ministry for Agriculture and Food and the French Ministry for an Ecological and Solidary Transition. Indeed, the program could help to lead and evaluate both national agroforestry and biodiversity plans. Trees on farms will play an increasingly important role in national contributions to meet global objectives like Aichi target 7 and SDG 2 that ensures sustainably managed agriculture for biodiversity conservation. Meeting these targets relies on accurate and timely monitoring of these systems to measure progress and inform decision making. Currently, measuring contributions to these targets is not straightforward, with indicators such as 'area under sustainable agriculture' leaving out the crucial question of what actually constitutes sustainable agricultural. New satellites from the ESA's Copernicus programme and advances in radar remote sensing have proved useful in estimating biophysical parameters across landscapes, but to date there has been limited application in agroforestry systems. This offers a great opportunity to employ these new technologies to enhance our understanding of these agricultural mosaic landscapes. Using a combination of freely available optical and radar imagery and data on trees, birds, pollinators, natural enemies, soil organisms and land health, this research aims to explore the best approaches for monitoring biodiversity and ecological changes in trees on farms with remote sensing. The ICRAF Sentinel landscape network provides an ideal setting for developing these approaches, with a good dataset on biophysical and socioeconomic metrics in rural landscapes across the tropics. This dataset will allow us to develop models that are scalable across the tropics to accurately predict indicators of agricultural sustainability, including farmland's contribution to habitat connectivity, support for forest and farmland dependent species, and land health. These methods will measure biodiversity in trees on farms, but also monitor ongoing changes such as the spread of agroforestry, growth rates and tree harvesting. This research will provide new approaches for monitoring agroforestry to deliver information to land managers and decision makers to take appropriate action towards more sustainable agricultural production.Keywords: remote sensing, biodiversity, trees on farms, sustainability. Herblot A. (claire.marais-sicre@cesbio.cnes.fr), Marais Sicre C., Demarez V.Wasteland is defined as an agricultural area with a cultural past (Derioz, 1991), where natural and uncontrolled vegetation have gradually established (MAPAQ). Wastelands, which are islands of biodiversity, have the capacity to support diversified fauna and flora. They allow to maintain ecological continuity and fight against soil erosion. Characterized by three stages of ecological succession (herbaceous, shrubby and tree-lined) these environments may close if they are not maintained which may lead to endemic species disappearance.Our study site is located in the Pyrénées-Orientales near Perpignan, where the premiums for grubbing-up vines have affected the agricultural economy (Chakir et al., 2006). This region had been severely impacted with 70% of the plots uprooted (Arnal et al., 2013) and wastelands occupied 30% of the agricultural land in 2016 (Association des AFP et GP des Pyrénées-Orientales, 2016). Many problems arise from these wastelands and rehabilitation projects aim to make this land available to agricultural projects and thus meet local food demand. These projects could limit the closure of areas, conserve an agricultural belt, manage these areas and thus limit urban sprawl (UrbaLyon, 2017). In this context, our study aims to detect wastelands using satellite images with high spatial and temporal resolution.Many studies report the use of multispectral and multi-temporal remote sensing images to map crops, grasslands and even forested areas, but areas with mixed vegetation are still difficult to identify (Genet, 2010 ;Latour, 2017). However, the availability of high spatial (HRS) and temporal resolution satellite images offers new opportunities for detecting these areas.We implemented a method for mapping wasteland, using a time series of Sentinel-2 images and in situ data for calibration and validation. The methodology is applied in two processing phases. A supervised classification based on a Random Forest algorithm is first used to separate crops, grasslands and woodlands (OA, 0.83; Kappa, 0.87). Then, in a second step, we apply texture parameters on the previously identified pixels as grassland or wooded area, in order to take into account the heterogeneity of the various kinds of wasteland plots.Taking texture into account allows the detection of different types of wastelands (herbaceous, shrubby and tree-lined) and increases the detection of grasslands. We obtain an F score of 0.80 for herbaceous wastelands and 0.73 for tree-lined wastelands.Keywords: remote sensing, wasteland, classification, haralick.Silvopastoral systems (SPS) have been recommended as one of the strategies to mitigate the effects that livestock production systems have on the climate through greenhouse gas emissions. To determine the extent and characteristics of SPS, most research has been focused on tree sampling in pasture areas, using circular plots, transects or a combination of both and subsequently these results are extrapolated to farm and regional level. Although these approaches allow to understand the characteristics of the woody component on the SPS, they usually a) assume homogeneity of the tree characteristics and abundance from plot to farm and regional level, and b) the spatial arrangement of the trees is neglected in the study, which can be considered as key information in order to determine farmer's preferences for tree arrangements. This study aims to fill the gaps identified above by proposing a novel approach that combines field level techniques (plots measurements) with remote sensing information (UAV photographs and satellite imagery). Forty-three farms from the Climate Smart Livestock project executed by FAO, located in the Ecuadorian Amazon region, were used to study SPS.In each farm, two square plots of 1ha were marked in the pasture areas suggested by the farmers as representative of the total pasture area. Inside the square plots, a circular plot of two crown diameter (Cd) were measured for each tree with diameter at breast height > 5cm.From May to July 2018, a drone survey was performed on the square plot, using a DJI Mavic Pro. Th and Cd were calculated from the point cloud using the Web Open Drone Map software. Above ground biomass was up-scaled using two different approaches: results from the tree inventory at the plot level followed the following assumptions to upscale the results: plotFor the information gathered from the drone surveys, the workflow proposed was as follows:Keywords: silvopastoral, UAV, remote sensing, biomass, Ecuador. Mantzanas K. (konman@for.auth.gr), Papadimitriou M., Sidiropoulou A., Sklavou P., Chouvardas D.Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, GreeceOne of the most important evergreen tree species is olive (Olea europea L.), found in many regions of Greece. Olive trees are planted mainly to produce table olives and olive oil. The understory could be either natural vegetation grazed by livestock or agricultural cultivation. In the region of Chalkidiki these systems are threatened by abandonment or conversion to intensive monocultures. The aim of the study was to identify olive agroforestry systems in the area and study their characteristics. For this purpose, the European ICT tool of land/use types Corine Land Cover 2012 (CLC -2012) was used followed by onsite visits (Fig. 1). The following systems were distinguished: a) silvoarable systems with trees in rows intercropped with cereals, b) silvoarable systems with scattered trees intercropped with cereals, and c) silvopastoral systems with scattered trees with natural vegetation and grazing. These systems were mainly found in the land cover type 223 (olive groves) of CLC-2012 in the Kassandra and Sithonia peninsulas. The occupation of local population with tourism contributed to the preservation of agroforestry systems, which could be better exploited in the future by adoption of new CAP agri-environmental measures by farmers. Keywords: Corine Land Cover 2012, silvoarable, silvopastoral systems, tree arrangement, understory.L16 AF mapping In cocoa-based agroforestry systems (CAFS), the cocoa trees are associated with other cultivated plant species at variable densities. There, the spatial distribution of the cultivated plants can be regular, random or aggregated, and their age may vary even in the same species.Variables of (i) density, (ii) spatial distribution and (iii) age can thus influence the overall productivity of CAFS and its distribution in space. We studied the relationships between these 3 variables and CAFS productivity based on data collected in 34 experimental yield tracking plots placed in agroforestry fields of producers in the Dominican Republic. A mapping of the cultivated plants was carried out on each plot at their installation and harvests of the ripe products of each individual plant were carried out every two weeks over a period of one year.The first results of this study indicate that optimal CAFS productivity can be maintained along a decreasing density gradient of crops, associated with cocoa tree ageing. In addition, regular and random spatial distribution of all plant species may increase overall productivity. The analysis of the variability of cocoa, fruit, tuber and timber yields allows us to provide recommendations on the most suitable species and the optimal distance between plants to improve overall productivity and therefore the producer's income. The Agroforestry Concessions mechanism in Peru´s Forest Law seeks to formalize tenure of smallholder farms that illegally encroached State forest land. This 40-years lease is conditional to the engagement in conservation of on-farm tree cover and adoption of agroforestry systems through the signing of a contract. Circa 1.2M ha of mosaic forest landscapes of more than 120,000 smallholder farms in the Peruvian Amazon might be of interest of this mechanism with major positive impact on deforestation reduction and restoration of ecosystem services on agricultural land. Strategic to the identification of the interventions to be promoted and of the monitoring of compliance in the long term and at a large scale, is the capacity to map agroforestry and monitor fine-grained land-use changes typical of heterogeneous smallholder land-use mosaics. That requires to address issues related to the recognition of agroforestry mosaics including their intrinsic temporal sequences (i.e fallow rotations) at an adequate spatial and temporal scale, and accuracy level. This study assesses different mapping approaches and techniques; and provides conceptual and technical recommendations to address key challenges in the mapping and large-scale monitoring of agroforestry concessions. A literature review of different experiences in mapping tropical land-use mosaics such as Unmanned Aerial Vehicle (UAV) technology, remote sensing and mixed mapping systems together with farm registry and cadaster systems constitutes the basis for a discussion with users, including land administration officers and remote sensing/ GIS experts. This will consider implications regarding feasibility and costs for large-scale implementation of agroforestry concessions. We evaluate trade-offs between approaches and identify mixed methods to compliment remote sensing classification with UAV-based validation and expert knowledge.To properly capture local agroforestry practices, a classification system that takes into account differences in spatial arrangements, vertical structure and temporal sequences of landuse mosaics components is needed. Depending of the sensor used, satellite imagery may not provide enough detail to differentiate the mosaic through remote sensing techniques, leading to misclassification errors. To overcome spatial resolution issues, UAV technology has proven to have optimal potential for fine-grained mapping as it provides enough detail to distinguish land-uses at the farm level. However, the large-scale adoption of such technology in terms of costs and logistics, might be prohibitive for local authorities to adopt it and for repeating monitoring activities. This study brings elements to support decision-making in order to appropriately map agroforestry mosaics, and therefore, support the future implementation and facilitation of high-impact policies.Keywords: mapping, approaches, agroforestry, concessions, smallholder. In Ethiopia, forested areas are decreasing because of increases in cultivation and grazing pressure by livestock. In addition, the illegal logging for firewood also contributes to the forest degradation. However, the combination of agriculture and forestry benefits for increase in biodiversity and decrease in erosion. Therefore, sustainable use of the land should be considered in trees, crop and livestock. From a viewpoint of agroforestry, it is important to map forest areas and quantify tree biomass. Satellite remote sensing is powerful tool for large scale mapping of forests. However, trees with canopy size of a few meters are sparsely distributed in highlands of Northern Ethiopia. It is not easy to detect single trees and estimate tree biomass even by using high spatial resolution satellite images. The objective of this study is to establish a method to estimate trees biomass by structure from motion (SfM) method. Pseudo aerial photographs were taken from a 3-m tripod to estimate and the 3D structure of tree was built (Figure 1). There were good correlations between measured and estimated plant parameters, such as tree height and canopy area. The R 2 values for tree height and canopy area were 0.82 and 0.93, respectively. Tree biomass was estimated by using an allometry equation with tree height and canopy area as parameters. Tree biomass was approximately 4.5 ton ha -1 . The SfM method would be useful for biomass management. Comparison of tree crown area (in sq. m.) on 15 stations (defined by circles of 50 m. radius) by remote sensing (blue), photo-interpretation (orange) and field survey (red).Keywords: mapping, parkland, remote sensing, degradation, Burkina Faso. The research and policy pathway to climate-smart cocoa and REDD+ in Ghana Asare R. (rebeccaashleyasare@yahoo.com), Mason J.Research has played a crucial part in the development of climate-smart cocoa (CSC) in Ghana, and in supporting the design and implementation of REDD+. However, we argue that research alone is unlikely to have significant impacts on any sector unless it is purposely linked into an intentional decision process focused on the development of policies and practices. This paper tells the story of how research has played a major role in shaping CSC in Ghana and the pathway that was followed to where it is firmly embedded in policy, in private sector investment, and in practice. Ghana's cocoa production landscape (5.9 million ha) has one of the highest deforestation rates in Africa, at 3.2% per annum and being driven by cocoa expansion, other agriculture, and extractive industries. Efforts to address this situation date back to 2005, when local and international researchers launched a study to to measure the impacts of cocoa intensification on yields, biodiversity and ecosystem services in a cocoa landscape in Ghana. The results were clear and worrying. As management intensity increased, biodiversity and ecosystem services decreased. The results also showed some interesting outliers; farms that had maintained high shade, high carbon stocks and still had high yields-the first indication that there does not have to be an extreme trade-off between increasing yields and maintaining shade to support biodiversity and carbon storage [1].Though Ghana was one of Africa's leaders on REDD+, neither the Cocoa Board nor the Forestry Commission was speaking to each other and there was no interest to explore the research implications. In 2011, the Nature Conservation Research Centre, established a CSC working group to reach consensus on the cocoa sector's business-as-usual (BAU) trajectory, and if unsustainable to envision a future \"desired state\" and set a critical pathway to achieve that state. This paper tells the story of how research played a crucial role in informing the BAU assessment and designing the pathway to a sustainable, CSC system. It outlines how intentional actions were taken to create understanding and commitment between the Cocoa Board and the Forestry Commission. It highlights how the two agencies came to realize the opportunity of climate finance and the potential to create a CSC emission reductions (ER) program. It outlines how research directly informed the concept of CSC. It shows how Ghana entered the World Bank Carbon Fund pipeline in 2014 and moved to sign a performance-based ER contract in 2019, while also receiving significant private sector investment thru the industry's Cocoa & Forest Initiative to support implementation of a no-deforestation supply chain. In summary, this case study shows the potential for astounding impact if research and results are firmly rooted in the real-life dialogues and pathways that actually influence policy and practice at scales.Deforestation and biodiversity loss in agroecosystems are the result of rational choices, not of a lack of awareness. Despite both scientific evidence and traditional knowledge that supports the value of diverse production systems for ecosystem services and resilience, a trend of intensification is apparent across tropical regions. These transitions happen in spite of policies that prohibit such transformations.We present a participatory modelling study run (1) to understand the drivers of landscape transition and ( 2) to explore the livelihood and environmental impacts of tenure changes in the coffee agroforestry systems of Kodagu (India). The components of the system, actors and resources, and their interactions were defined with stakeholders, following the companion modelling (ComMod) approach. The underlying processes driving the system were validated through expert knowledge and scientific literature. The conceptual model was transformed into a Role Playing Game and validated by 8 workshops with 57 participants. Two scenarios were explored, a No Policy Change as baseline, and a Restitution of Rights where rights to cut the native trees are handed over to farmers. Our results suggest the landscape transition is likely to continue unabated unless there is a change to the current policy framework. However, the Restitution of tree Rights risks speeding up the process rather than reversing it, as slow variables such the differential growth rates between species kick in.A coffee planter from Kodagu presents his coffee estate after one morning of play. A large part of the world cocoa production is provided by multifunctional agroforestry systems (AFS). Despite their ability to provide a large range of ecosystem services (ES), eg. biodiversity, carbon sequestration, crop production, these systems were however long considered inefficient in terms of cocoa yield and, thus, neglected by agronomists. Our studies are carried out in Cameroon on farmers' cocoa plantations. They are based on 100-year chronosequences and/or a large array of situations, ranging from simple systems to very complex ones. We show that cocoa AFS can reach yields of over 1000 kg ha-1 of marketable cocoa which is in many cases comparable or even better than yields of conventional systems. We found that very long-term sustainability of cocoa AFS could be achieved if the basal area (BA) share of the cacao stand does not exceed 40% of the total BA of the cocoa AFS. Moreover, farmer's management of the different species associated with cocoa trees provides not only continuous cocoa production on the very long-term but also permits interesting combinations of valued products and/or ES. For instance, the combination of expert knowledge and Pareto front algorithms enabled us to shed light on some of the tradeoffs occurring in these systems and to identify clusters of increasing ES provision. Significant differences in associated tree communities and management strategies were identified across these clusters. Furthermore, by combining field observations and historical survey data, we reconstructed the impacts of changes over time on management practices, agroforestry structures and cocoa yields. The long-term trajectories we identified explain the current agroforests structures, with low or high cocoa tree densities, mean basal area per cocoa tree (from 29.4 cm2 to 92.7 cm2), and finally cocoa AFS allows a system balance that can be temporarily broken or redesigned, suggesting the resilient and flexible nature of these complex cocoa agroforests. Despite such results and the increasing recognition of their multifunctionality, cocoa AFS were recently questioned about their putative unsuitability to climate change adaptation. This question appears legitimate and we support that, when necessary, adaptation to climate change in cocoa AFS shall be overcomed by choosing adequate associated species and planting densities. Yet, in order to prevent the possible misuse of this ongoing discussion within the cocoa supply chain, we urge the scientific community to support and keep demonstrating that complex cocoa AFS are valuable, ecofriendly and climate-smart systems. Finally, we argue that these systems should be used to promote the building and establishment of cocoa cropping models that fully include associated flora diversity in order to provide the farmers, the cocoa supply chain and the consumers with sustainable revenue, goods and services. Accounting for biogenic carbon sequestration in product carbon footprints: analysing trade-offs in a coffee agroforestry Birkenberg A. (a.birkenberg@uni-hohenheim.de), Kumeh E. M.Product carbon footprints are increasingly used to determine and reduce greenhouse gas (GHG) emissions from the agri-food sector and to produce carbon neutral agro-commodities. However, contrary to what is often assumed and desired by consumers, biogenic carbon sequestration in perennial systems, e.g. agroforestry systems, is not accounted for in product carbon footprints, e.g. of shaded coffee (Brandão et al., 2013;Plassmann and Norton, 2017).The lack of a precise and harmonized method to undertake the accounting is not compatible with life-cycle assessment principles (Bessou et al., 2013). Notwithstanding, there are valuable reasons why biogenic carbon accounting is worth considering. Accounting for biogenic carbon sequestration in product carbon footprints could reduce offsetting costs, and enable small-scale farmers to participate in carbon neutral value chains too (Birkenberg and Birner, 2018). Further, it could incentivize the integration of shade trees into production systems, which would result in positive environmental effects (Kumar and Nair, 2011). However, before promoting biogenic carbon accounting in product carbon footprints it is of fundamental importance to understand potential risks and trade-offs. This study addresses the knowledge gap regarding trade-offs between farm gross margins and carbon sequestration footprints based on a case study from shaded coffee farms in the highlands of Costa Rica.Based on a carbon inventory, a biogenic carbon accounting model was used to estimate the development of carbon sequestration footprints in selected coffee farms over a 20-year period. Farmers production costs and revenues were obtained through household surveys of 190 coffee farmers in the study area. A regression model is used to identify the relationship between carbon sequestration footprints and farm gross margins. Furthermore, a sensitivity analysis is used to identify the magnitude of influence of the different variables, i.e. GHG emission ha-1, carbon sequestration ha-1 and yield or gross margins ha-1.The preliminary results suggest that carbon sequestration footprints of shade grown coffee in Costa Rica are negatively correlated with farm gross margins. Thereby, the magnitude of carbon sequestration is the most influential factor to reduce product carbon footprints. It is expected that further results of this study contribute to a better understanding of potential trade-offs that farmers would face when participating in product carbon footprint schemes which would account for biogenic carbon sequestration of perennials. Further, this study might provide insights on conditions under which coffee agroforestry systems in Costa Rica could bridge the trade-offs and rather create synergies. Finally, implications on how smallholder coffee farmers could participate in increasingly demanded carbon neutral value chains might be generated.Keywords: product carbon footprints, coffee agroforestry, economic-environmental tradeoffs, climate change mitigation, carbon neutral value chains. Nitrogen-fixing shade trees in coffee agroforestry systems are assumed to provide an alternative nitrogen source for the coffee crop when fertilizer applications are low, but the transfer of nitrogen from shade trees to the coffee crop has not yet been quantified directly. We present a case study for coffee agroforestry systems with Erythrina poeppigiana as a shade tree. The transfer of nitrogen from the N2 fixing tree to coffee plants was measured through a stable isotope pulse and chase experiment. Shade trees that had been labelled with a 15N-enriched nitrate solution, were pruned, and the prunings were subsequently laid out below coffee crops under conventional or organic management. Significant fractions of nitrogen ended up in the coffee plants 5 months after the deposition of 15N labelled prunings on the plantation floor (figure 1). More nitrogen from prunings was found in the soil under organic management than under conventional management. This finding was associated with higher macrofauna abundance, particularly earthworms, in the organic system.Coppicing of the shade tree and subsequent decomposition of the pruned material was the dominant mechanism for nitrogen transfer to the coffee plant, while other mechanisms only affected coffee plants directly neighbouring the tree.In conclusion, the pruning of shade trees in coffee agroforestry systems is an important pathway for the transfer of fixed N to the coffee plants and seems to be essential in organic systems.Figure: Fate of nitrogen from 15N labelled tree prunings: N transfer (% of initial N litter) to the soil and the coffee plant, 5 months after pruning. Data for the organic management. Over the past decades in Northwestern Vietnam, Arabica coffee systems have been moving towards intensified, full sun monocultures that are not long-term sustainable and have negative environmental impacts. As most of the farming systems in this area are on sloping land (approximately 75% of the total farmed area), these systems are associated with very high levels of soil erosion, loss of biodiversity. This, in turn has contributed to declines in agricultural productivity. There is now a need reverse these trends and better integration of agroforestry is one potential option. Indigenous coffee systems often use trees for shade. A survey of 124 farmers from three indigenous groups was conducted in Northwest Vietnam to document the characteristics of these shaded coffee agroforestry systems. This included systematic acquisition of the local knowledge of the ecosystem services and disservices that rural communities associate with the different tree species used within these systems.Our results show that tree species richness in shaded coffee agroforestry plots was much higher compared to other farming systems in the area (including maize, orchards, and timber plantations). Farmers had in-depth knowledge of environmental benefits of different trees in their systems including their capacity to reduce soil erosion, improve soil fertility, enhance biodiversity and reduce damage from wind and frost. Interestingly farmers had limited knowledge on both how trees affected coffee quality and yield as well as their role in light and nutrient dynamics. The leguminous shade tree species (Leucaena leucocephala) was the highest ranked tree in terms of providing most ecosystem benefits. Nonetheless, farmers' selection of tree species in their shaded coffee systems was more heavily influenced by economic value associated with the intercropped trees. Our survey shows that there were fewer native species in the areas with better road accessibility (in these systems the road is synonymous with the market) despite the recognition of their value to coffee systems. Consequently, Leucaena leucocephala was only maintained in areas away from roads. This study highlights areas where we can target learning to improve the uptake of trees with high environmental value and highlights challenges associated with tree selection as Vietnam attempts to move towards more climate smart agricultural systems.Keywords: local knowledge, ecosystem service, coffee agroforestry, tree diversity, tree selection.L17. Highly productive monoculture coffee (Coffea arabica L.) farms have rapidly expanded since the 1990s in Yunnan Province, China. In 2013, in order to initiate a large-scale transition towards more sustainable coffee growing practices, local government in southern Yunnan started distributing free shade tree seedlings to all coffee farmers in their jurisdictions. This study highlights the impact of three of these promoted shade tree species (Cinnamomum camphora, Bishofia javanica and Jacaranda mimosifolia) on soil fertility and coffee production only four years after their distribution to coffee farmers.Soil samples in the 0-20 cm soil layer were tested for chemical composition (soil organic matter, pH, total N, available P, exchangeable K, Ca and Mg), soil communities (free-living nematodes nidase and acid phosphatase) under shade trees (6 replicates per tree species) and in open areas (15 replicates), both in coffee rows and inter-rows, once during the rainy and once during the dry season. Additionally, we characterized root systems and soil water profiles to a depth of 1.2m, monitored litterfall for one year, as well as coffee production for two years.We detected a clear positive impact of all three shade tree species on soil chemical, biological and biochemical fertility, despite the marked effect of 20 years of high mineral fertilizer inputs. In particular, we measured higher pH and soil organic matter; similar or higher soil enzyme activities throughout the year; more abundant fungi communities throughout the year; and more abundant microbial communities during the dry season below shade trees than in open areas. Furthermore, coffee trees shaded by B. javanica and J. mimosifolia yielded as much as open coffee trees. On the other hand, coffee trees shaded by C. camphora yielded less than open coffee trees, most likely as a result of high root competition from this shade tree species. Lastly, shade trees had no visible impact on coffee organoleptic quality.These results demonstrate that carefully selected shade trees can rapidly contribute to preserving and/or restoring soil fertility in intensive coffee systems, while maintaining high coffee yield.Keywords: Arabica coffee, China, PLFA, Soil enzyme, Soil fertility. it is possible to intercrop two ancestral crops?Cerdán C. R. 1 (ccerdan@uv.mx), del Amo S. 2 , Hipólito E. 2 , Ramos-Prado J. M. 2 , Ricaño J. The history of the origins of cultivated vanilla suggests that almost the entire stock of cultivated vanilla outside of Mexico is a single genetic individual (clone) 1 . Vanilla is therefore suspected to be a highly susceptible monoculture, and new sources of germplasm (either from wild vanilla or from closely related species) should be introduced through breeding. Although vanilla can be found cultivated through the Tropics, natural populations in southern Mexico -the most critical sources of novel genetic diversity-are on the verge of disappearing.Traditionally, Mexican vanilla plantations have been managed in highly diversified agroforests, with some indigenous groups being related to its domestication and cultivation by centuries, especially in Southern states (by Totonacas, Mazatecos, Chinantecos and Mayans among others). Profitability of these traditional multistrata agroforestry systems relies on the diversity of incomes obtained through a set of different timber and non-timber species (vanilla representing less than the 7% of the total income). However, three challenges are currently faced by these smallholder vanilla production systems: a) Land Use Change to more profitable alternatives (decades ago to orange monocultures, currently to pastures), b) vanilla trade is monopolized by one company, c) and more recently, abortion in blooming likely due to rainy changes. Because of that, vanilla area has been reduced to less than 700 hectares in the whole Mexico. Simultaneously, cacao is growing there on agroforestry systems since it was introduced more than 2000 years ago. It is well known that original inhabitants were the first to use cacao for 2 . However, Mexico has lost nearly half of its cacao areas during the last decade, resulting in deforestation and the loss of valuable traditional knowledge. There is a need to improve the profitability either cacao and vanilla plantations. Vanilla and cacao can be grown in humid tropics, both from sea level up to an altitude of 1200 m and optimum range is 20-30º C, as well as a minimum of 1800 mm of rain. However, intercropping of these two crops is not a common practice 3 . It is argued a possible competition, either for nutrients and space; by the other side, there are some reports about the existence of agroforestry systems by indigenous groups in the past, which are however currently unknown. Even its common origin and requirements, intercropping of vanilla and cacao has not studied enough. Plots intercropping cacao and vanilla has been stablished 4 years ago in three different states of Southern Mexico in order to study: a) competition between crops, b) adaptation of them in different agro ecological conditions, c) differences in local management practices, c) phenology of tree species used as shade, and d) use of microorganisms to promote plant growth. Preliminary results shown that intercropping is not affecting farm profitability.Keywords: Conservation, Local knowledge, Co-innovation, Diversification, Performance.Recent studies based on remote sensing showed a gradual expansion of tree cover over savannah and agricultural land in the forest-savannah transition zone of Cameroon 1 , part of this expansion is actually due to shaded cocoa. Despite unfavourable conditions in herbaceous savannah (low soil fertility, weed competition and risk of bush fire), farmers have proven that afforestation is achievable using cocoa and specific technics to build up an associated tree canopy 2 . Full-grown cocoa agroforestry systems created on savannah (S-cAFS) and in forest (F-cAFS) seem to exhibit comparable multi-strata structure. Nevertheless, previous land uses and related canopy structures may have contrasted impacts on production and other ecosystem services over time. We selected 1 to 70 year-old S-cAFS and F-cAFS, and we used forest and savannah patches as controls 3 . By combining measurements of cocoa production, litter fall and cycling, soil quality, carbon storage and tree species diversity along this age gradient, we showed that those variables in S-and F-cAFS generally tended to comparable levels after several decades. Results also emphasized the ability of S-cAFS to increase most of the ecosystem services (ES) although the time needed to reach levels found in F-cAFS varied strongly amongst variables (Fig 1). Results also showed the positive contribution of associated plants to ES, particularly C storage and nutrient cycling contributing to REDD+ 4 and sustainability of the cropping system. Fruit agroforestry as a suitable candidate for new resilient food systems ? A french case Warlop F. 1 (francois.warlop@grab.fr), Castel L. 2 , Gaspari C. 1 , Fourrié L. 3 , Plessix S. 2Because of negative externalities of specialized agricultural systems, diversification has been shown as a relevant tool to improve their resilience. Agroforestry in traditional peasant models is a case-study of a diversification. In 2012, French partners worked on de novo designs of two modern fruit agroforestry systems in southeastern France, with a specific objective of reduction of plant protection inputs, through higher wild/cultivated biodiversity occurrence. One system ('TAB') is oriented on long marketing channels with arable crops, the second ('Durette') is dedicated to short channels with highly diversified vegetables and directly managed by farmers. This long-term research project (funded by French Agricultural Ministry -Ecophytofrom 2012 to 2018, to be continued) has led to useful deliverables. A co-design methodology for innovative agroforestry systems has been thought to involve farmers in design choices, considering scientific objectives together with pragmatism. A multi-criteria assessment tool has been initiated to assess ex ante performance, and has been adapted for ex post assessment. A common methodology has been developed for on-farm performance assessment, based on classical sustainability indicators (picture). Preliminary results have been produced on biodiversity or economic performance and will be further detailed. The following years will be useful to further investigate natural pest control mechanisms, and complete performance assessment.The increasing frequency of extreme and variable climate patterns in the future will threaten agricultural productivity in many areas, especially in dryland regions. In rainfed agriculture, to investigate the capability of the agroforestry system under global climate change is essential to achieve sustainable agriculture.This study examines whether intercropping a rain-fed jujube orchard in the Loess Plateau, China with either Brassica napus (JB) or Hemerocallis fulva (JH) is a viable agroforestry system.A portable Time Domain Reflectometry (TDR) system was used to take long-term volumetric measurements. A cryogenic vacuum distillation system was used to extract water from xylem and soil samples. The thermal dissipation method was monitored the tree sap flux.Soil water data collected over four years show that the JB and JH treatments increased soil water during the jujube growth (May-to-October) and dormant (March-to-April) relative to the control. The JB and JH treatments were characterized by a significant increase in soil water at a depth of 0-60 cm, along with a significant increase in average relative extractable water (REW) of 14.68% and 21.18% over four years, respectively. At the inter-row, the B. napus and H. fulva significantly increased the soil water at the depth of 0-60 cm in 2015-2017 and provided average REW gains 11.5% and 3.48%, respectively. The two economic crops significantly decreased soil water at the depth 60-180 cm and resulted in average REW losses 17% and 47.7%, respectively. The agroforestry altered the jujube trees' water sources but its impact depended on soil wetness: compared to monocultures, jujube trees in agroforestry systems generally shifted to deeper water under dry conditions but to shallower water under wet conditions. Complementary water use between jujube trees and crops was observed on most sampling dates, but there was clear evidence of water competition in the shallow layer under relatively wet conditions. The jujube transpiration was higher in the two agroforestry systems than the CC treatment, especially at the jujube critical water requirement stage (June to September). In addition, jujube yields in agroforestry systems were clearly higher than in monoculture.The two tested agroforestry systems were directly related to soil water improvements in the jujube orchard. These findings demonstrate that agroforestry is a climate-smart agricultural system and can increase the resilience of semiarid jujube plantations to extreme real-world drought. The presented research demonstrates that agroforestry systems provide an economically feasible way to protect trees during both drought and normal years, and should be seriously considered by farmers who face water limitations.Keywords: agroforestry, soil water, transpiration, stable isotopes, the Loess Plateau.The transformation of rainforest into monocultural oil palm plantations has led to dramatic losses in biodiversity and in ecological functioning. To alleviate the negative ecological impacts in existing plantations, designer plantation landscapes have been proposed, in which agroforestry zones are considered to have a positive impact on biodiversity. In 2013, we established a biodiversity enrichment experiment in Indonesia (EFForTS-BEE) with multiple tree species planted in an oil palm monoculture, forming agroforestry plots of varying tree species diversity, composition, and plot size. Two main questions are investigated: is mixed-species tree planting a suitable measure for biodiversity enrichment in oil palm plantations? What are the socio-economic and ecological trade-offs? As the experiment is now well established, we study the experimental response of (a) the environment (soil, micro-climate), (b) plants (tree performance, plant water relations, natural succession, structural complexity), (c) animals (bird, bat and invertebrate communities), (d) micro-organisms (prokaryotes and fungi) and (d) socio-economics (oil-palm yields, benefits from the planted trees, incentive for enrichment planting). Here, we present initial findings resulting from the integration of comprehensive ecological and socio-economic studies from the past five years. These preliminary results contribute to the development of ecologically improved management concepts in oil palm landscapes.Oil palm plantation enriched with six native tree species used for fruit, wood and latex (EFFoRTS-BEE 2016). Smallholder households in the rural uplands of northern Laos PDR are characterised by high rates of poverty; however, well-managed teak (Tectona grandis) can provide a pathway out of poverty for these households (Newby et al. 2012). The benefits of alley cropping systems have long been recognised in Lao PDR (Hansen and Sodarak 2004), yet examples of their successful adoption are rare. Midgley et al. (2007) The trials were established using a paired-row configuration, with 2.1m between rows within a pair, and 1.8m between trees along the rows. The distance between adjacent paired-rows was set at 8, 10, 12 and 15 m giving planting densities of 1100, 918, 788 and 650 trees/ha respectively. In each of the 88 trials, two of these spacings were tested, providing a balanced set of comparisons across all trials within a district. The height and diameter at breast height (DBH) of all surviving trees were measured annually. A total 56 of the agroforestry trial sites were regarded as having been 'successful' (20 sites classified as good, 24 average and 12 poor performance). The remaining 32 trials were deemed to be unsuccessful, primarily due to a lack of weed control after the first growing season, which adversely impacted on survival and growth of the teak. The poorest growth and survival of the teak was associated with farmers who did not grow companion crops after the first year, and/or where the trials had been burnt. The most successful companion crops involved the growth of perennial crops (particularly banana, but also fodder crops). Factors impacting on the success or failure of these agroforestry trials are complex, and require further analysis. Nevertheless, some important factors are: farmers did not understand the concept of alley cropping as they had never seen this before, and only understood companion cropping only in terms of the Taungya system; the location in relation to the village (plots further away were less likely to be managed); availability of household labour (often related to the age of the farmers); and geographic location (high elevation sites were unsuccessful). In summary, our experience demonstrates that alley cropping systems involving teak in northern Lao PDR are applicable where farmers have limited land, but sufficient labour; sites are located in proximity to village or other upland fields (to minimise travel and maximise return on labour), and sites are below 800m above sea level.Keywords: mixed-plantation, Tectona grandis, Non-Timber Forest Products, intercropping, fodder.L17. Myanmar's Tanintharyi Region is a forest frontier landscape facing rapid rubber and oil palm expansion. In the past two decades, subsistence use of forests, shifting cultivation and traditional mixed betelnut/cashew agroforestry have been largely replaced by more intensive land uses, strongly impacting the supply of ecosystem services (ES) and human well-being.We investigated the bundles of ES provided by former and current land uses and analyzed the trade-offs for ten ES from the perspective of local land users. Using participatory action research, we conducted four transect walks, 16 focus groups and 27 semi-structured key informant interviews in three villages. Based on a qualitative content analysis, we developed a scoring system from 0 (no supply) to 3 (high supply) and applied it to each land use. We found the highest trade-offs for the conversion of forests to oil palm due to environmental pollution and limited access of local communities to concession areas and potential benefits. On the other hand, the booming rubber expansion offers income from commercial crops as well as fuelwood, climate regulation and even new cultural values. With the additional opportunity to include poultry production, rubber agroforestry provides most of the locally demanded ES. Nevertheless, disturbed water flows might cause future problems. We conclude that both remaining forests and new rubber agroforestry can contribute to a sustainable landscape development and human well-being. In Africa, the personal self is greatly influenced by and is in close interaction with both the human and natural environment. In the past, conservation in Africa was greatly influenced by its close interaction with both the belief and knowledge systems. There was always a linguistic expression, a category of knowledge, a practical use, a religious meaning or a role in ritual, which gave vitality to the conservation and protection of natural resources. Local community conservation of the shea trees, was therefore governed by a complex mix of traditions, customs, taboos, rituals and legends handed down from generation to generation and are neither found in written form, nor organized and structured in ways accessible to science. However, despite the value of traditional and cultural practices, their inclusion in national conservation policies has not been pragmatic. This paper aims to show the value of past traditional and cultural practices in the conservation of shea trees in Uganda. Data were collected through 15 focus group discussions, 41 key informant interviews and 300 semi-structured interviews across three farming systems of the shea tree parklands of Uganda. The results indicated that pre-current shea tree conservation can be traced back to the value system and traditional practices which can be broken down into seven broad levels: (i) the use of taboos, (ii) folklore and legends, (iii) local bye-laws, (iv) the sanctity of the elders, (v) the authority of traditional chiefs, (vi) traditional songs, and (vii) depth of integration into tradition, culture and custom. These have, however, been eroded over time, threatening the conservation of shea trees in Uganda. Given the diversity of traditional conservation practices, it is imperative that the people need to be active participants in conservation decisions, and traditional knowledge has to be accepted and/or regularised as a component of conservation. Conservation does not need to undermine the traditional wisdom base; rather traditional knowledge can offer lessons and complement contemporary methods to produce an acceptable and working conservation framework.Keywords: shea tree, Vitellaria paradoxa, conservation, traditional practices, traditional knowledge.L17. Gaudin A. 1 (agaudin@ucdavis.edu), Brewer K. 1 , Patzec L. 2 , Tiffany S. 3 , Ryschawy J. California hosts one of the most valuable, diverse and intensive cropping systems in the world. Several rounds of intensification and chronic irrigation water shortages have incentivized highly specialized crop and livestock enterprises and scientific research and technological development tailored to simplified systems. The broader aim of our work is to study ecosystem services provided by livestock reintegration into perennial cropping systems and their potential to offset external inputs, mitigate climate change and provide an effective adaptive strategy to impending shifts in resource availability in California. We propose to take the specific example of Integrated Sheep Vineyard Systems in Northern California (ISVS), a growing agroforestry system. Although this practice is gaining popularity among growers, no impact assessments have been conducted and benefits and tradeoffs associated with sheep integration remain unclear. We will present preliminary results of an interdisciplinary project assessing how and to what extent sheep integration impacts multiple ecosystem services and in turn the economic and environmental sustainability of vineyard production systems. We will also present leverages available for wider adoption of such systems in California.Many of the socio-economic and environmental issues of rubber plantations are linked to their monocrop nature. Agroforestry systems (AFS) associating permanently crops or other trees to rubber are widely believed to offer a favourable alternative, not only able to diversify the source of income for farmers but also to limit the negative environmental impacts of plantations.However, despite such good reputation, in Thailand, the first rubber producing country, rubber AFS are estimated to cover less than 5% of the surface area, mainly in the south zone. Within Heveadapt, a multidisciplinary project on the adaptation of rubber smallholders to global changes, we assessed the existing systems in a representative zone (Phattalung Province) of the main rubber producing area (South) and evaluated their actual impact on the farms economy and on soil quality. Only few rubber farmers had permanent AFS and none of them in all their rubber plots. The 3 main systems in southern Thailand were fruit trees/rubber, vegetable/rubber, timber trees/ rubber. Complex systems mixing several associated species also exist. The density of rubber trees was always the same as in the monocrop, safeguarding the latex yield. The fruit tree/rubber association provided the best trade-off between return to land and to labour. Timber provided a labour-saving alternative with high but late income. Simulations showed that, thanks to their flexibility and a higher gross margin, the AFS actually provided a higher resilience of the farms when the price of rubber fall. The effects of AFS on soil biological and physico-chemical properties were not that clear. Actually, agricultural practices (weeding, fertilization) tended to vary more between farms than between the AFS and monocrop plots. Therefore, the heterogeneity was high within each system. The age of the plantation also had a greater effect than the kind of system. However, differences between systems increased with age and traits linked to carbon transformation indicated more active processes in fruit tree/rubber than in monocrop. Nevertheless, the actual vegetation soil cover was the most important factor influencing soil quality and weeds sometimes covered more the soil in monocrop plots than in AFS. We showed that current AFS originated from individual pioneer initiatives that spread in a second step through farmers-to-farmers networks. Social motivations and family consumption prevailed at the beginning, but diversification of the source of income is now the main reason to adopt AFS. The change in the attitude of official institutions, mainly the Rubber Authority of Thailand, now promoting AFS, was also important. Such basis, with existing networks, knowledgeable leaders and institutional support, paves the way for the development of regional innovation platforms offering channels (meetings, social medias, trainings) to share the available information necessary to scale-up the rubber AFS from a marginal to a widespread system.Keywords: Hevea, Sustainability, Diversification, Soil quality, Innovation. Farmer's perceptions of the effects of some preserved trees in cocoa and coffee agroforests in Togo (West Africa)Adden A. K. 1 (ayiadden@gmail.com), Fontondji K. J. 2 , Fare Y. A survey conducted in the forest zone in Togo nearby 317 cocoa and coffee producers, allowed to identify appreciated and unappreciated trees by them in the cocoa and coffee agroforests, then the main raisons for this discrimination. In coffee agroforests, the first trees species appreciated and able to be conserved by farmers remain Erythrophleum suaveolens (76,2%), Khaya grandifoliola (76,1%), Albizia adianthifolia (72,3%), Milicia excelsa (68,4%), Albizia zygia (56,1%), Terminalia ivoiriensis (40,1%) and Terminalia superba (40,1%). In cocoa agroforests, farmers prefer Milicia excelsa (65,2%), Albizia adianthifolia (56,5%), Terminalia ivoiriensis (52,2%), Terminalia superba (52,2%) and Khaya grandifoliola (39,1%). The main raisons evocated by the producers were linked to the trees shade quality (95%), the soil fertility and conservation improvment (93%) and the timber tree quality provided (92%). The unappreciated trees in coffee agroforests were Cola chlamydantha (89%), Cola nitida (89%), Ceiba pentadra (88%), Milicia excelsa (86%),Bombax costatum (79%) and Mangifera indica (77%) while in the cocoa agroforests it remained Bombax costatum (93%), Cola nitida (91%), Anogeisus leicarpus (88%), Cola chlamydantha (87%) and Glyricidia sepium (80%), because these trees in the orchards, depleted and hardened the soil (89%), provised bad tree shade (78%) and invaded the agroforests (75%). More informations is capitalised for the best orientation of the phytogenetic ressources conservation and dissemination strategies in the production area for enhancing sustainable cocoa and coffee production in Togo. In Central America, smallholder coffee farmers rely on low input agroforestry systems (AFS) while experiencing increased pressure from climate change and social inequality. In order to increase the sustainability of these systems and to guide farmers along agroecological transition pathways, participatory approaches are needed. However, methods for the co-design process of such complex AFS are still scarce. Here, we present a practical approach based on game sessions and backcasting for the development of sustainable farming systems, together with the smallholder communities. We organized five game sessions and one backcasting workshop with farmer communities, technicians, researchers and municipality officials in La Dalia, Nicaragua. Through the game sessions we managed to highlight the key factors that allow or impede successful coordination among farmers to diversify their systems and develop organic and/or low input agriculture. Furthermore, using backcasting, we shared the outcomes from the game sessions among the communities and co-designed new farming systems highlighting major economic, social and environmental benefits and barriers. Through combining game and backcasting sessions, we were able to describe the current system and co-construct a desirable future vision towards agrological transition. We envision a wide range of relevant applications of this method in agriculture and beyond to facilitate stakeholders to collaboratively initiate processes of change.Illustration that combine RESORTES game sessions describing current situation and backcasting approach, showing how targets are chosen and pathways are then subsequently developed for achieving those targets. One third of the world's cocoa (Theobroma cacao L.) grows in monocultures in Ivory Coast, which are threatened by degraded soils and vulnerability to climate change. Cocoa agroforestry systems have the potential to provide various ecological benefits. However, making them economically feasible at larger scales remains a challenge. In this study, we assessed critical success factors for the establishment (in 2014) of Fredy's Plantation, a unique largescale mechanized dynamic agroforestry system under organic management located at a marginal site for cocoa production in central Ivory Coast. Major parts of the site had previously been under 30 years of intensive pineapple production. Using a pairwise comparison of six plots each in high-and low-tree vigour areas, we assessed physicochemical soil properties and meteorological stand parameters, as well as growth and survival rate of cocoa trees. We observed a decrease of the daily temperature amplitude (difference Tmax -Tmin) in high-tree vigour areas (denser shade canopy), which correlated with enhanced cocoa tree growth and survival rate. Furthermore, survival of cocoa trees correlated with increased soil fertility (higher organic C and N), lower bulk density and higher water holding capacity (Figure 1). Applying large amounts of biomass through regular pruning may be a key factor for the regeneration of impaired soil health on marginal lands in order to increase the productivity of cocoa-based dynamic agroforestry systems. The role of the herbaceous community in ecosystem service provisioning in coffee agroforestry systems Archibald S. 1 (sarah.archibald@mail.utoronto.ca), Isaac M. E 21 Geography, University of Toronto, Toronto, Ontario, Canada; 2 Geography, Environmental Science, University of Toronto Scarborough, Toron, CanadaThe effects of diversifying shade-tree composition in coffee agroforestry systems has been explored in depth, showing many benefits to overall land productivity, farmer livelihoods, and biodiversity conservation (Tscharntke et al. 2011). However, the role of the herbaceous community (HC) in contributing to agroecosystem processes and ecosystem services in coffee agroforestry systems are poorly understood. My research aims to provide key insights on the function of HC on ecosystem services using social and ecological research approaches. I implemented a functional trait-based approach to measure plant functional diversity -functional richness, evenness and divergence -of the HC on 15 organic coffee agroforestry farms (Figure 1). This was paired with in-depth producer interviews to document the management and the perception of the HC using a cognitive mapping approach (see Isaac et al. 2009). My research found that both soil carbon and nitrogen increased with higher HC functional richness. Cognitive maps were diverse in their number of variables, indicating that there are many pathways to promote HC as a way to increase ecosystem services while reducing farmer labour in coffee agroforestry systems. This research aims to contribute to the growing field of agroecology, functional-trait ecology, and HC research. I aim to provide timely and essential information to support farmers interested in transitioning to low/no-chemical coffee agroforestry systems. Emerging challenges to farming drives farming systems to have three strategies; intensification options optimizing resources and technological innovations, firm diversification orchestrating interdependencies among sectoral boundaries, and transition to new system and trajectories. The intensification in the coffee system is the process to specialize in coffee using new varieties and practices while the second option is diversification to complementary enterprises to adapt challenges. The trajectory shift emphasis on how new sectoral systems (dairy sector) emerges, and its link with the previous system (coffee) in terms of impact pathway. In the multi-level perspective however, there is no simple cause effect relationship drives transitions rather systems change is enacted by various types of actors. This paper, therefore, presents (1) how the transition from coffee to dairy based farming system is taking place? ( 2) How the different actors in the innovation system of transition contribute to the learning and innovation process? ( 3) What contributes the transition from intensified coffee based to dairy based farming system on household food security? Our data collection consists of household survey (120) for household specific data, focus group discussions (9 FGDs) and stakeholders' interview. The results revealed, coffee production declined by 65% in the last 30 years, and the trend is straight. The dairy on contrary is in opposite visualizing sharp increase in volume of production and price. In line to this, innovation process and actors' interaction to adapt to climate change differs for the coffee and dairy. Actors in the coffee are limited, the system is highly centralized with limited options to farmers to process and market their product while the dairy sector is informally controlled by demand based business, comparatively numerous actors with limited government intervention, various options to marketing. The strong correlation between farm performance and socio-institutional variables, stakeholder interaction suggests the need for the establishment and strengthening of local institutions that have capacity to break the farmers' capital constraint to invest in climate smart agriculture which is beneficial to sustain systems.Keywords: Climate Change, Coffee agroforestry, Climate Smart Agriculture, Innovation, Transition.Forest coffee in Ethiopia: understanding and developing a specific Ayerbe D. (delphineayerbe@hotmail.com)Belco, Palaiseau, FranceThe Anfilo Coffee Forest in western Ethiopia is an ancient heritage forest where coffee has been cultivated for centuries. Coffee is grown under various ancient species of trees originating from primary forests. This specific type of production gives local harvests a more complex range of aromas of interest to consumers. However, the system is now under threat from recent developments, in particular a growing population, land pressure and the development of cash crops.In our lecture, we will analyze the specific features of this type of land use to understand how it works and how it might be developed in such a way as to make it sustainable. To do this, we propose describing the coffee forests of Anfilo, which employ a specific type of highly localized farming technique. We will then explore our case study in relation to global trends in favor of promoting and defending agroforestry coffee. Finally, we will consider ways of developing such production, which despite low yields is of a remarkable quality, in order to prevent this culture system specific to the coffee-growing regions of western Ethiopia from disappearing and to make it more beneficial for local farmers.Keywords: Coffee, Forest, Ethiopia. In West Africa, most of farmers regard trees as an integral part of the cultivated system. They maintain traditional farming systems in which trees spared during clearing are scattered over the fields. Agroforestry has been practiced for several centuries and provides wood and nonwood products, from which households derive an essential part for their food security (Kouakou et al., 2017). In these fragmented agricultural landscapes, these agroforestry systems (AFS) maintain connectivity between different habitats and provide excellent refuge for biodiversity (Asare et al.,2014;Smith Dumont et al., 2014). Moreover, socially, trees are precious land markers and constitute an important part of family heritage (Camara et al., 2009). Furthermore, several studies have shown that AFS sequester more or less carbon depending on their level of complexity and contribute to the mitigation of climate change (Somarriba et al., 2013). Since two decades, there has been a diversification of crops in the Ivorian Sudanian zone and a large increase of cashew trees (Anacardium occidentale)in this area. This crop has become the main perennial one of the Ivorian savanna zone. Côte d'Ivoire is also the main African producer of cashew nuts with around 50% of African production. However, this extension of cultivated areas in cashew trees is to the detriment of existing traditional AFS dedicated either to food crops or to the conservation of local biodiversity. The expansion of orchards also leads to a reorganization of social relations, particularly through renegotiation of land rights. The increase in cashew orchards is therefore a threat of traditional AFS making some agroforestry parks, sources of greenhouse gases. Despite the extend of human pressures and constraints to biodiversity conservation, a lack of data and information on the spatial-temporal dynamics of land use, the potential of ecosystem services of traditional AFS compared to cashew trees and the impact of climate change on the evolution of these systems remains. Moreover, the factors of the establishment of these traditional AFS, and their suppression or maintenance by the farmers are still poorly known in the Ivorian Sudanian zone. In view of the need of scientific data on the Ivorian Sudanian zone, it is important to adopt a multidisciplinary and integrative approach that allows, on the one hand, a better understanding of the dynamics of the vegetation cover of the zone, to predict their future evolution in a context of climate change and, the other hand, to establish alternative models of management of these AFS.Keywords: Sudanian zone, traditional agroforestry systems, cashew trees, fragmented agricultural landscapes, family farming.Blaser W. J. 1 (wilma.blaser@usys.ethz.ch), Oppong J. Meeting demands for agricultural production while maintaining ecosystem services, mitigating and adapting to climate change, and conserving biodiversity will be a defining challenge of this century. Crop production in agroforests is being widely implemented with the expectation that it can simultaneously meet each of these goals. But trade-offs are inherent to agroforestry and so unless implemented with levels of canopy-cover that optimise these trade-offs, this effort in climate-smart, sustainable intensification may simply compromise both production and ecosystem services. By combining simultaneous measurements of production, soil fertility, disease, climate variables, carbon storage, and species diversity along a shade-tree cover gradient, here we show that low-to-intermediate shade cocoa agroforests in West Africa do not compromise production, while creating benefits for climate adaptation, climate mitigation, and biodiversity (Fig 1). As shade-tree cover increases above approximately 30%, agroforests become increasingly less likely to generate win-win scenarios. Our results demonstrate that agroforests cannot simultaneously maximise production, climate, and sustainability goals but might optimise the trade-off between these goals at low-to-intermediate levels of cover.Figure 1 Optimizing shade levels in agroforests. Agroforests with ~30% cover are ideal for optimizing the trade-off between the costs (red) and benefits (blue) for yield and the provisioning of ecosystem services such as climate adaptation, climate mitigation and biodiversity along a gradient of shadetree cover, relative to paired monocultures. Blaser et al., Nature Sustainability (2018).Keywords: agricultural production, climate adaptation and mitigation, biodiversity conservation, shade-tree cover, trade-offs. Many studies have measured biodiversity loss across the coffee intensification gradient; some studies have shown, with contradictory results, the trade-offs between biodiversity loss and coffee production increments. Plot assessments of tree diversity, soil conservation, carbon sequestration and coffee production are lacking. We characterized the structure, productivity, diversity, soil conservation and carbon sequestration of 40 coffee agroforestry systems in two different areas in Northern Nicaragua. Coffee management, environmental conditions and soils properties were also characterized to better understand the trade-offs among services within the plots and their dependence on the local environment. These agroforestry systems were chosen to maximize contrasts in terms of biophysical context, botanical composition and management practices. Results (preliminary) showed significant differences in the vegetation structure that enabled us to identify main clusters: CAFS with dense and diverse overstorey canopy, CAFS with high Musa density and CAFS with low density of overstorey canopy.Changes in vegetation structure reflected differences in farmers' strategies but did not affect the overall coffee yield or the conservation of soils. Coffee yields had strong variations among the plots, and this was mainly related to the amount of fertilizer applied. Neither carbon sequestered, soil conserved nor tree diversity have a significant negative relationship with coffee productivity. However, coffee yields were low comparing with other coffee areas in the region. These results open new perspectives to improve coffee agroforestry systems' structural complexity and their relative ecosystem services without affecting their overall productivity.Further investigations and a more stratified sampling to get a good grasp of the whole range of variability (in highly productive areas with less shade canopy) are needed to fully understand the mechanisms involved in trade-offs.Keywords: Performance, Management, Multivariate analysis, Ecological intensification. For centuries, millions of hectares of tropical forests have been cleared and replaced by commercial plantations of tea, coffee and cardamom in biodiversity rich Western Ghats of India. Many of these plantations have been already abandoned or are in the verge of abandonment due to various socio-economic and legal issues including dwindling profits and market factors and change in legal and policy frameworks. Such abandoned areas provide opportunities for restoring diverse economically important local forest species which support the community needs and livelihoods.We studied tea plantations in Agasthyamalai region in south India where about 55% of plantations are under various levels of abandonment. Our aim was to understand the factors associated with the establishment of native plant species in abandoned plantations, especially how shade trees in plantations can enhance local biodiversity in context of birds/mammals and seed inputs from neighbouring forests. Seven permanently marked, 10 × 10-m plots were laid along a linear transect from forests to tea plantations in both managed and abandoned conditions to assess the seasonal seed inputs. Transact plots were laid at distance from 0 m (forest edge), and towards forest edge to interior of the plantation transact at distance of 25 m, 60 m and 95 m, respectively. Nested 1x1 m subplots were laid at four corners to assess the soil seed bank and dispersal syndrome. The species richness and seed density in the plantations were assessed using seed banks. We found out that forest proximity to tea plantations is critical for native species to colonise the plantations. Nearly 92% of the seeds are animal-dispersed, even then seeds do not move more than 60-95 m from the forest edge, which significantly restricts species' colonisation inside the plantations. Most of the species that reach the tea plantation are early successional species dispersed by small birds while large-seeded species dispersed by hornbills and pigeons are not established in the plantations. Further, in managed plantations restoration can be facilitated by retaining shade trees in the tea landscape. Presence of shade trees is increased native species richness by 3 times and seed density by 3-30 times compared with plantations without shade trees. Further, distance to forests influenced seed arrival in plantation without shade trees and plot 95m from the forest did not have any seeds in them. No such effect was seen in the plantations with shade trees. In general density of shade trees have strong influences on seed arrival which can negate the forest proximity effect and enhance natural forest colonisation. Results of the study have direct relevance in strategizing ecological restoration of degraded areas in this globally important landscape.Keywords: Tea plantation, Abandonment, Shade tree, Seed input, Restoraiton.Most cocoa in Indonesia is grown in agroforestry systems providing permanent canopy cover which protects the soil (Smiley and Kroschel, 2010). Despite this, yields are constrained by declining soil fertility (Hartemink 2005;Jagoret et al., 2011). Although soil organic matter (SOM) levels tend to increase during the development of cocoa trees, they remain low. In Indonesia, producers have therefore asked for more information on the effect of organic matter additions on SOM and cocoa production.In response, a three-year research project has been developed to determine the relationship between organic matter additions, soil fertility and cocoa production. Because the long-term effects of organic additions cannot be determined in three years, a modelling approach is being used with additional field measurements in Sulawesi, home to about half of Indonesian cocoa production. This paper briefly describes the current progress regarding the modelling of the system.After establishing the above objectives, the next step was to determine the main criteria for the proposed model. There is a need to model both the impact of organic matter additions on soil properties and the resulting effects on cocoa yield. An example of a cocoa growth and production model is CASE2 (Zuidema & Leffelaar, 2002). Inputs such as litterfall, dead roots and branches will then serve as inputs for a SOM dynamics model. Examples of potential soil organic matter models include TAO and MOMOS. The TAO model can be used to describe the transformation of added organic matter in soil. MOMOS is a process-based model for carbon and nitrogen transfers in SOM (Pansu et al. 2004). To evaluate the impact on cocoa production, these soil changes will be fed back into the cocoa growth model. The effects of locally available amendments such as compost and manure are being included in the study through different scenarios. The planned results include validated simulations of the effects of organic addition on long-term SOM stocks and the consequences for cocoa production.Keywords: cocoa production, soil organic matter, modelling, organic amendments, agroforestry.Plant species selection and spacing regimes are two of major challenges to design a successful agroforestry system to maintain high nutritional security. Cocoa is considered an important cash crops worldwide. The cocoa trees are usually planted with shade trees. However, it is important that neighbouring trees would not negatively affect nutrient concentrations of crops.In this study, two shade trees were chosen as shade trees for cocoa trees including Gliricidia sepium and Canarium indicum. Canarium trees also produce canarium nut which are highly nutritious. This study was undertaken in Papua New Guinea, 8 years after agroforestry system establishment. This study aimed to investigate the nutrient concentrations of cocoa beans and canarium nuts planted under different spacing regimes. Coffee based agroforestry (CAF) is been promoted as a conservation friendly land use system with immense potential to conserve native tree species. In the western ghats, these coffee based agroforestry farms have proven to harbor over 250 species of tree. Recent trends in cultivation practices and policy changes has motivated the farming community to increase productivity of coffee through intensification of tree management. Intensification comes at a cost to the numerous ecosystem services provided by the system including biodiversity conservation services. The present study builds upon the baseline data collected on tree species across 11 farms of western ghats in 2008 as part of CAFNET project. The farms were revisited in 2017 and the results show all attributes that promote biodiversity conservation have a declining trend. The density of trees reduced from 420 trees ha-1 to 274 tree ha-1. Species richness reduced from 100 to 76 tree species, canopy cover reduced from 59 to 46 per cent and most importantly the study documents that native tree species are being gradually replaced by exotic tree Grevillea robusta which has increased from 19 to 29 per cent of all tree found in the CAF farms. These trends ascertain Grevillea robusta as the most dominant tree in the system. This dynamics has numerous practical implications for the future of CAF system as a conservation friendly land use system, as the trade-offs between biodiversity conservation and coffee production widen.Species accumulation curve for 2008 and 2017 in coffee based agroforesty farms.Keywords: Coffee based agroforestry, western ghats, biodiversity conservation, Grevillea robusta, dynamics. Developping sustainable cocoa production in a damaged country: challenges and opportunities.Laigle I. (idaline.laigle@gmail.com), Le Heurt G.La finca brava SAS, Bucaramanga, ColombiaColombia produces less than 1% of the world cocoa total production while presenting similar environmental conditions than Ecuador known for its high quality cocoa. Colombia is just going out from years of drugs trafficking war. Therefore, it presents today great opportunities to developp a cocoa production on good foundation. We have the ambition to develop and structure the production of a sutainable and ethic high quality cocoa. However, its yet complex socio-political situation lead to several challenges. We will present how we will overcome these challenges thanks to agroforestry and collaborative transnational teamwork. Cocoa agroforests have demonstrated high potential for sustainable cocoa production. However, knowledge about cocoa production in Colombia is scarce because of the situation of conflict that avoided scientific research. We will then undertake studies to determine best agroforestry practices for biodiversity, cocoa quality and productivity. We will provide information and support to often undereducated producers. To motivate them in the long term it is crucial to adapt these practices to their counstraints and objectives by involving them in decision making. Practices should also improve their wealth by including economic valuable tree species and giving them access to certification. Finally, we will boost a sustainable market by creating strong associations between Colombian producers and chocolate makers from Belgium and France.Conceptual map of the project. The economical dimension is in red, the environmental one is in green, and the human one is in blue.Keywords: Cocoa, sustainable, colombia, human dimension. Colombia produces less than 1% of the world cocoa total production while presenting similar environmental conditions than Ecuador which is famous for its high quality cocoa. Colombia is a very new market all in all as it is just going out from years of war for drugs trafficking, which make the challenges very interesting from a social and cultural perspective point. Furthermore the very high positionning of its coffee worlwide show us that the Country has succeeded to overcome various barrieres in the past in terms of international trade conditions and specifications. Therefore, it presents today great opportunities to developp a cocoa production on good foundation. Based on these observations and after a long journey of first-hand investigation we have the ambition to develop and structure the production of a sutainable and ethic high quality cocoa. However, the lack of knowledge and know how about cocoa production and its yet complex socio-political situation lead to several challenges to overcome, and we have identified three main ones. We aim to offer a new model of colaboration and practices within the colombian cocoa value chain thanks to agroforestery and collaborative transnational teamwork. The challenges are as follow:1: The asymetry of information that can be resolved by solid and perrenial associations between colombian producers and french, belgium chocolate makers. 2: The lack of formation and discipline of the producers that can be overcomed by new educating system based on different methodologies that have been proved functionning in other sector as in the coffee industry in Colombia, and by involving the producers through the all process with more participation and critical decision making.3: Colombia being now able to design and mold its new economic path thanks to the very recent Peace agreement (2017) gives us an opportunity to fill the gaps in terms of investigation and research (specially in the agriculture sector). Since there has been no investigation towards the effects of several agroforestry practices on biodiversity, quality and productivity of cocoa plantations in the past, we are determined to bring scientific and empirical insights to the developpment of its cocoa sector as a whole. And to secure a smooth transition to a new way of growing and living for the producers we have ensured the integration of an expert team that would have the objective to coach them through this cultural transformation process with conflicts resolution protocoles and psichosocial plans to mitigate any kind of reluctant behaviors in other words, to avoid any tensions emerging from these new social and economical alternatives offered to the producers. Integrating them as much as possible into the definition of what should be the next steps for them once the project is over should garantee a continuity to our actions and allow them to decide with assertivness of their futur, socially, economically and as individuals and/or as a group.Keywords: empowerment, cacao, agroforestery, asociativity, social transformation. Maguire-Rajpaul V. (victoria.maguirerajpaul@ouce.ox.ac.uk), Morel A.Environmental Change Institute, University of Oxford, Oxford, United Kingdom Smallholders in Ghana grow almost one quarter of the world's cocoa. Yet, intense cultivation has deforested Ghana's tropical south. As cocoa's natural habitat is in rainforests' lower storey, shade is essential for cocoa's continued supply to the global chocolate industry. Accordingly, agronomic officers who promote 'climate-smart' cocoa in our interviews aim to instruct farmers to maintain 16-18 shade trees per hectare. But in practice, few farmers receive this agroforestry recommendation, and fewer can maintain such shade tree density. This presentation elucidates socio-economic obstacles that impede smallholders from practicising their desired agroforestry. Shade and pollination play important roles for cocoa yields and thus, farmer livelihoods. Theombroma cacao L. is strictly entomophilius whereby cocoa's fruiting depends on pollinating insects. We set up pollinator traps at 108 cocoa trees on 36 farms over 3 years to decipher how insect-mediated cocoa pollination: 1) depends on habitats in immediately surrounding forests; and 2) was affected by 2015-16's El Niño drought. We monitored interactions between forest biomass and pollinator abundance, and height from forest floor to understand agroforestry's cocoa-pollinating benefits, if any. Rather than Ceratopogonidae, we found a higher abundance of Cecidomyiidae. Our analysis suggests that pollination-enhancing techniques by farmers could boost cocoa yields and thus incomes, which could lower pressure on remaining forest.L17 Perennial crops AF In Sri Lanka, homegardens constitute a majority of the country's total annual crop and timber production. Despite Sri Lankan homegardens are considered desirable and sustainable landuse systems, the scientific evidence of its role for food security is not yet totally clear. By synthesising articles from scientific databases we investigated the links between homegardens and food security, in terms of quantifying homegarden products or ecosystem services, and identifying whether the characteristics of food security are assessed as direct-or indirect impacts, synergies or trade-offs. The indirect effects are the most commonly assessed impacts in the literature. These services are described as adaptation to climate change or a variety of ecosystem services such as increased carbon uptake, increased rainfall infiltration capacity and reduced soil erosion; all relevant characteristic for food production and sustainable food security. Our findings show that correlation between food security and ecosystem services is a fruitful way to assess synergies and trade-offs of these multifunctional land-use systems. However, many studies are descriptive and only provide location-specific information on single research focuses such as plant species, yield and management. Our data suggest a higher degree of inclusiveness of relevant stakeholders aligned with system approaches and long-term assessments would generate greater output of homegardens in terms of food security.Keywords: agroforestry, Sri Lanka, trees, crops, landscape. Coffee production has been threatened by increasing climate variability. Shaded coffee has been suggested as a promising strategy to cope with the effects of global climate changes. However, potential competition for water between coffee and shade trees and lower coffee yields under shade are among the main constraints of coffee agroforestry. Most advantages attributed to agroforestry are focused on ecological issues; little is published on ecological and economic aspects combined. This investigation analyzed and compared ecological and economic performance of unshaded arabica coffee (NS) and shaded (AFS) by a mixture of evergreen Simarouba glauca DC. and deciduous Tabebuia rosea Bertol. Both tree species are widely utilized for timber and other products but are poorly studied.The study was carried out during 2012 and 2013, in a 12-year old agroforestry experiment in sub-optimal coffee growing conditions (27 0 C mean annual temperature, 455 m altitude and 1470 mm annual rainfall) in Masatepe, Nicaragua. Water consumption by soil evaporation and coffee and tree transpiration was measured by using weighing lysimeters and the stem heat balance sap flow method, respectively. Coffee production over the 10-year period prior to the study was used to determine coffee economic performance. Timber production from four shade trees of each species in the study site was measured and results were extrapolated for the whole plot by using population density.The AFS system was a more efficient water user than NS. Shade trees had the effect of reducing by 31% water loss from soil evaporation compared to NS, which represented more water available for coffee. Transpiration was greater in AFS plots; however, most of the water was transpired by coffee rather than by shade trees or evaporated from the soil. Temporal complementarity in water use between coffee and shade tree was observed with higher shade tree water consumption in the wet season contrasted with greater water use by coffee in the dry. Contrasting precipitation patterns in the two consecutive years of the study demonstrated competition for water only by the end of the very dry season in 2013. Evergreen shade tree characteristics seemed to be more suitable as coffee shade compared to deciduous in such environmental conditions. Coffee production in AFS was 18% lower than NS from data averaged over 10 years. However, the lower coffee yield in AFS was compensated by greater productivity of the whole system. By the end of the experiment, 13-year old shade trees produced 125 m 3 ha -1 of timber from Simarouba glauca and 98.5 m 3 ha -1 from Tabebuia rosea (US$173 per m 3 local price). Further income could be derived from the firewood extracted over time. Therefore, both ecological and economic aspects showed advantages compared to the no-shade system, which suggests agroforestry with timber trees as an attractive system of land use for farmers in the sub optimal coffee growing conditions studied. Insetting is a way for chocolate makers to compensate their carbon emissions by financing the plantation of trees in supplying cocoa farms. It appears as a new way to finance agroforestry but also to create a link with producers and secure cocoa supply. However, whether insetting contributes to reduce smallholders' vulnerability and increase their fidelity is an empirical question that has to be addressed. A survey has been conducted in Peru (100 producers, 3 focus groups) to assess the benefits of the insetting programs and the challenges that remain.Results show that the partnership developed through the insetting program contributes to alleviate some difficulties preventing farmers to adopt agroforestry practices. However the implementation can be tricky and complex. Since insetting programs are based on a tripartite model dissociating the wood and the cocoa component, the planting of trees alone does not increase farmers' loyalty. In addition, an inadequate implementation might not impact farmers' vulnerability and could therefore lead to a negative vision of agroforestry.Insetting can be a viable financing solution for agroforestry dissemination but cannot be dissociated from an holistic approach of the farm focusing on a joint management of the crops.Alleviating poverty in rural cocoa communities requires also to break out of the carbon paradigm and to turn towards bottom-up approaches favouring social considerations and midterm visions.1: Games during focus groups ; 2: a cocoa farmer Keywords: Cocoa, Agroforestry, Insetting, Vulnerability, Contract farming.Agroforestry systems (AFs), where agricultural and livestock crops are associated with woody plants, are known as sustainable systems, that conserve biodiversity and improve the provision of ecosystem services without compromising productivity. This work focuses mainly on cacao AFs, which have been related to different ecosystem services in tropical regions.Especially, our study focuses on the ability of the cacao AFs to improve soil ecosystem services in the Colombian Amazon region. We focused on soil ecosystems ecosystem services in the Colombian Amazonia because: of the social importance of cacao production system in the study region, specifically within the post conflict context; the lack of knowledge on the capacity of cacao AFs to offer soil ecosystem services in the study zone and its capacity in restoring ecosystem services in degraded soils.The objective of our work was to evaluate the soil quality in different cacao agroforestry systems in the Colombian Amazonia, and to compare these evaluated soil quality of soil quality in Forest and Pasture.The study was conducted at the Macagual Amazon Research Center, located west of the Colombian Amazon. We evaluated soil quality in four types of AFs Cacao, presenting different establishment, composition and structural characteristics; but also in a plot of native forest composed of characteristic species of the area, and in a plot of pasture composed of grasses. In the different plot of each land use, we evaluated the diversity of macrofauna, the morphology of aggregate, the physical properties and the soil chemistry. We summarized these variables in a General Indicator of Soil Quality GISQ, characterizing soil quality in the different land uses.It was found that the level of intensification among land uses (Bosque>AFs>Pasture) affects the decrease of the macrofauna populations, which was related to soil compaction (physical properties). Chemical fertility improved with the establishment of AFs influenced by the application of amendments and organic fertilizers. When establishing agroforestry systems from pasture areas at a certain level of degradation, the GISQ scale was found to increase by 42%.Our results indicate that AFs practices can definitely be used as a restoration strategy, for the recovery of degraded areas.There is evidence that not all woody species have the same function in ecosystems and that this is related to their plant functional traits and the abundance of these traits in the community. In order to contribute with functional knowledge to the design of agroforestry systems for cacao, plant functional traits of woody species, specific leaf area (SLA), total height (TH), penetration resistance (PR), leaf nitrogen concentration (LNC) and leaf phosphorus concentration (LPC) were measured according to Pérez-Harguindeguy et al. (2013) y Cornelissen et al. (2013) for five common woody species found within a range of cacao production systems in Santander (Colombia). A variation range of the woody species along an axis of resource acquisition and competitiveness, represented by species with less trunk hardness (higher PR) and high diameter at breast height was identified. In the opposite side, species with less foliar phosphorus concentration and diameter at breast height and higher trunk hardness (lower PR). Albizia guachapele present higher SLA, followed by Cedrela odorata and Cordia gerascanthus. In this sense and according to global ecological findings about SLA and its correlations these species have morphological traits for high photosynthetic rates. Erythrina fusca was the most different species according to its traits variation in a PCA. In the cacao region of Santander, these species had the higher potential for a photosynthetic answer given its less investment in wood structure or penetration resistance. The woody species that in cacao agroecosystems of Santander are more usually found: C. odorata, C. gerascanthus, E. fusca, A. guachapele and Schizolobium parahyba were explained by 57% of the trait variation in a PCA. At the same time, it is important to mention that the presence of the five common woody species in the region are also evidence that farmers had been slightly driving the woody species selection by given more attention to plant traits related to fast growth that can offer shade and companion and conserve the cacao crop productivity (Figure 1). The diameter at breast height as a common woody species measurement should be accompanied by the determination of SLA and other plant functional traits that contribute bridging knowledge to improve the design for multifunctional agroforestry systems that integrate the functional tree biodiversity in cacao production systems. The VALAB initiative (Integrated Valorization of the Agrobiodiversity Ecosystem in the Guadeloupe Forest) is led by the union of vanilla producers of Guadeloupe (SYAPROVAG), a special look has therefore been devoted to the cultivation of this orchid strongly represented in agroforestry systems enhancing the guadeloupean undergrowth.A qualitative survey was conducted among the region's vanilla producers to better understand their productive strategies. The technical practices are described and the technical and economic conditions of their implementation are characterized. Cultivation techniques remain traditional, a legacy of old know-how without mechanization or synthesis inputs, and are very demanding quantitatively and qualitatively in terms of labor (for closure, sizing of hanging ends, pollination, scarification, drying, ripening, etc.). These techniques, not always mastered, cause large differences between plots, the climate creating in addition interannual productive variations. Today, Guadeloupean vanilla production does not cover local demand (tourism, gastronomy, cosmetics...). The challenge is to improve technical control and, more generally, reduce the vulnerability of cropping systems implemented in particular by their diversification.Keywords: Vanilla, cropping systems, technical management, Guadeloupe, economic indicators.L17 Perennial crops AF Although not fully demonstrated, one can assume that the collapse of biodiversity linked with 'monoculture-like' systems does contribute to negatives externalities such as fertility loss, increasing pressure from weeds, pests and diseases (for instance pests switching to the mono-crop because of the disappearance of their original host trees in natural forest). Finally these environmental externalities are re-internalized. Producers who use these 'monoculture-like' systems are frequently hit by rocketing maintenance costs and additional replanting costs.One can thus assume that systems favouring certain forms of diversification and biodiversity make ecological and economic sense, and result in better cocoa sustainability in all senses of the term, including farmers' revenues and patrimony. Under these assumptions, what are the barriers to 'biodiversity-friendly cocoa'? What conditions are needed to make biodiversity-friendly cocoa' production a mainstream business? Are research and extension services able to offer technical alternatives to smallholders? Are these alternatives really economically efficient in the short term and can they be adopted by farmers? Besides a review of the literature, the method is based on small samples of cocoa farms (40 to 100) surveyed between the late 1990s and the mid-2010s.One possible option would be to combine certification of biodiversity-friendly cocoa and that of timber trees owned, planted and regenerated by smallholders (a kind of PSE). This double certification could reduce costs and perhaps serve a springboard for timber-cocoa systems. However, in the long term, the most elegant and widely-applicable solution would be to contribute to an institutional environment in which farmers would wish to regenerate and plant timber trees themselves. To achieve this goal, the first condition is to 'allow' farmers full access to timber markets, which implies they would receive the full market price for their timber.Salazar-Diaz R. 1 (risalazar@tec.ac.cr), Tixier P. To improve the management of complex agroforestry systems, it is crucial to understand how plants interact. However, in such complex systems, methods to disentangling plant interactions are lacking.The aim of this study was to address the questions: how the spatial structure of the plant community affects yields? We present an original individual-based statistical approach that allows the assessment of interactions in highly complex agroforestry systems. We applied our methodology in 19 plots in farmer fields in Talamanca, Costa Rica to analyse the effect of the structure of the plant community in the neighborhood of each individual cacao tree and banana plant on their yield. We found that the distance at which other trees alters the yield of banana or cacao was greater for fruit or wood trees than cacao trees or banana plants. Interestingly, higher strata trees had a smaller effect than lower strata trees, suggesting that moderate densities of tall trees could be compatible with high banana and cacao production.On an applied perspective, our results suggest that productivity could be maximized by a reasonably number of plant species, and then we proposed new direction to organize fields in order to maximize the production of cash crops while providing supplementary income for farmers and ecosystem services. The complete linear model predicted about 60% of the variance of the average response of the potential yield to the neighboring plant assemblage. Trees after the forests: agroforestry (re)adoption in a « post-forest » context. The case of ivorian cocoa Université Jean Moulin Lyon 3 and CIRAD,Lyon and Montpellier,France Ivory Coast, producing 40% of world cocoa beans, has known wide conversion of forests into nearly monoculture systems under the progression of cocoa pionneer fronts. At the start of the XXIth century, it was considered that 90% of ivoirian cocoa orchard was grown in full sun conditions. However, cocoa producers are nowadays facing with a new environmental situation that could lead to the re-introduction of companion trees in their fields. Forest cover has almost completely disappeared, monocultures are showing their limits and recent climatic evolutions are less suitable to the crop. The conjunction of these different elements has led to a « structural blockage » (Leonard and Oswald, 1996) that could induce changes (innovative or not) in the way farmers grow cocoa. This presentation, based on botanic inventories, interviews and diachronic mappings , analyses farmer's agroforestry practices at environmental and socio-political data crossroads. Results of 220 hectares botanic inventories will be presented to describe the structure of cocoa systems and illustrate which kind of « agroforests » farmers can (or desire to) re-built after years of monocropping. Then, environmental services (biodiversity, carbon storage, timber production) these light agroforests provide have been assessed. Finally, the drivers and constraints for present and future agroforestry are studied at landscape-level through geographic and diachronic studies in Divo and Soubré.Short-term damage by ash deposits interacts with long-term soil fertility benefits. The eruption of Mt Kelud in 2014 affected a long-term study landscape. Soil organic carbon (SOC), soil texture, bulk density, porosity and macroporosity and soil infiltration had been quantified in 2007-2008 (before eruption/BE). Repeat measurements were made in 2017-2018 (after eruption/AE) in several land uses systems (LUS), including: Remnant Forest (RF), Complex Agroforestry (CAF), Simple Agroforestry (SF) and Crop Field (CF). Soil texture changed from loam to sandy loam, with soil bulk density decreasing from 0.98 g.cm-3 (BE) to 0.95 g.cm3 (AE) and no significant difference in SOC. Porosity increased from 46.5% (BE) to 55.2% (AE) and macroporosity from 3.8% to 4.8%. However, water infiltration decreased dramatically as volcanic ash created a 'cemented' hydrophobic layer on the soil. The highest soil infiltration among LUS were in RF (1 cm.hour-1) which were 50 times lower compared to condition before eruption, with the lowest were in CF (0.1 cm.hour-1). However, among the agricultural LUS, CAF provided fastest infiltration (0.7 cm.hour-1) followed by SAF (0.5 cm.hour-1). Slow soil infiltration increased surface runoff and increased dry season water shortages in the area.Countering the worst short-term effects of ash deposits agroforestry was more resilient than monoculture crop systems. Differential tree survival showed the benefit of tree diversity in CAF, supporting human resilience. Keywords: Agroforestry, Resilience, Volcanic ash, infiltration, macroporosity. The forest floor interfaces between above-ground and below-ground ecosystem processes like water retention, nutrient cycling and carbon sequestration. The agroforest floor condition has received little attention. We reviewed the results of a long-term experiment in Masatepe, Nicaragua, with a five-month dry season at an altitude of 450 meters comparing 4 tree treatments (2-species combinations of leguminous and non-leguminous deciduous and evergreen) and two intensities of organic and conventional coffee management to identify variables in the agroforest floor status (Haggar et al 2011). The 3-hectare experimental site initially was a patchwork of old coffee with highly variable tree and shade, avocado and weedy fallow. First-year botanical composition under all ground cover management treatments was annual grasses and annual and perennial broadleafs. O layer status was not recorded. We studied a network of 12 plots (31m x 31m) in which we identified pest attacks, diseases, shading rate, the presence of weeds, and soil conservation. And then we measured the growth (height, diameter or circumference of the collar) and the production (crop yield) of each plant.Characterization: The first results showed that a success rate of 95% among young cocoa trees and almost 100% with banana. The shade trees have too a good pass ration towards 80%. The annual crops excepted yam, banana, peanut and pepper, have been negatively affected by lack of the rain. All of the plants are healthy and the weeds have been well controlled.Only few attacks on cocoa leaves have been observed.Growth performance: Almost cocoa trees of the 12 plots presented good growth according to the measures of the average height and average circumference taken on February 2018 (Period 1, P1) and on August 2018 (Period 2, P2). We recorded an average of 6 cm on P1 vs 10 cm on P2 for circumference. The shade trees also recorded a good growth. As trees have only recently been planted and because the trees are comparatively slow growing, the full effects of the trees on the cocoa will take time to develop. By the time banana trees offer shade to the young cocoa trees with an average height of 250 cm. Production performance: We expected to have as first results the production of all annual crops but we recorded only yam, banana and pepper production. The others have suffered from dryness. Yam's production is estimated after harvesting between 15 and 20 tons ha-1.The evaluation of the global performance of an AFS is crucial because it allows to determine an optimal AFS for all farmers. So our research approach permitted us to take into account all of the elements of the AFS designed with farmers. But further, economic, environmental and social performances will be included to complete the study that needed a long time. The potential of shade-grown coffee to contribute to the protection of coffee yield quantity and quality Wagner S. (sigrun.k.wagner@stu.mmu.ac.uk) Science and the Environment, Manchester Metropolitan Univerersity, Manchester, United KingdomCoffee, an important agricultural export commodity, supports many small-scale farmers. Tanzania, Africa's fourth largest coffee producer aims to improve coffee production 1 . Climate change however, poses a significant threat to coffee production 2 . Shade trees might be an adaptation strategy because, depending on the context, research shows improved coffee quality, and bean size when shade trees are present 3 . On the other hand, shading increases berry borer infestation and high shade density reduces yield 45 . The aim of this study is to evaluate the effect of shade density on coffee yield and quality at Mt. Kilimanjaro. The 80 studied plots in commercial coffee plantations (coffee and shade trees) and homegardens (diverse, including bananas and other crops beside coffee and shade trees) cover a range of shade density (0-99%). The total number of berries per plant are counted to estimate yield. Red berries are harvested, weighed and opened to record single beans (pea berries) and bean quality.Correlations and regressions between shade density and response variables are calculated.Coffee plantations have a higher yield and higher average berry weight than homegardens, but the effect of shade density is not significantly different between the two systems (Figure 1). The results show that shade trees can improve coffee quality, especially in homegardens.It is critical to find the right shade tree species and density for optimal balance between yield loss and improved quality. The cultivation of cocoa is a commodity of great importance worldwide. In Mexico, cocoa is grown in the states of Tabasco and Chiapas in agroforestry systems since pre-Hispanic times, more than 2,500 years ago. The Mayans grew cocoa under the canopy of great trees in the rain forests. This has been an ancestral practice that is still preserved. However, crops such as sugar cane and oil palm as well as livestock activity have gradually decreased the area previously devoted to cocoa cultivation in both States. Despite this decline, farmers keep small portions of the cacao agroforestry systems to maintain the floristic diversity that accompanies them. This practice seems to be a successful contribution to food security. In order to know the management practices used by farmers in the agroforestry cocoa systems and the diversity of products they harvest, a non-probabilistic sampling was carried out in the states of Tabasco and Chiapas, 19 plots were sampled in Chiapas and 37 in Tabasco. Quadrants of 20 x 50 m2 were established and all individuals with DBH ³ 5 were identified and measured.A survey to 56 farmers was applied and informal interviews were conducted to the wives of the farmers or a family member. It was found that the farmers have different shapes, sizes and distribution of land. Great producers (38% of the farmers) own a land over 8.5±5.4 ha average, they only cultivate 33% of their production units with cocoa, in the rest, 67%, they cultivate either sugarcane, or raise livestock, or both; differently than the small holders (62% of the framers) with a land 2±1.03 ha average cultivate just cocoa. In both cases, major and small holders obtain a wide variety of products for self-consumption and local market from their cocoa agroforestry systems. They associate to cacao, timber, spicies and fruit trees. The farmers obtain incomes from the sale of other products associated to the cultivation of cocoa: fine woods obtained from trees such as Cedrela odorata, Swietenia macrophylla and Tabebuia rosea among others; fruits of trees, such as Pouteria sapota, Citrus sinensis, Citrus sp., Citrus limon, among many others and crops of shrub species such as Zea mays, Phaseolus vulgaris, Manihot esculenta, Ipomea batatas, Colocasia esculenta, Cucurbita sp. and Calatea lutea. The management practices employed by cocoa small-holders have allowed them to conserve these agroforestry systems, obtain income from the local market by selling a great variety of products grown in this system as well as satisfying their own food needs. The wide floristic diversity in these agroecosystems constitutes a bank of germplasm that could favor the increase of agroforestry plantations associated with the cultivation of cocoa; therefore, small farmers could contribute to food security. Integrated results are presented from a PhD research whereby the effects of tree row presence on soil characteristics, biodiversity and crop yield were simultaneously quantified near boundary planted tree rows and near tree rows in young alley cropping fields in Belgium.We assessed the effect of tree row presence on SOC, total N, P, K, Mg, Na, Ca and pH in the plough layer of the experimental fields. Although no effects were observed near the young tree rows, significantly increased SOC and soil nutrient concentrations were observed near the boundary planted tree rows. The noted increase of these soil variables was strongly related to the distance from the tree row, resulting in considerable spatial gradients. In addition, the magnitude of the observed effects differed according to tree species and the increase in SOC, total N, K, and Na near the poplar rows was related to the size of the trees, indicating a continuous evolution in SOC and soil nutrient status of the agroforestry system as trees mature.The main causal factor was assumed to be the input of carbon and nutrients in the top soil layer through tree litter, in particular tree leaves, and to a lesser extent via nutrient enriched throughfall water and a potentially reduced nutrient uptake of the arable crops.Next, the effect of tree row presence on the activity-density and diversity of two types of macro-detrivorous arthropods (woodlice and millipedes) and two types of carnivorous arthropods (carabids and rove beetles) was assessed. Strongly increased activity-density values and diversity of the macro-detritivoreous arthropods were detected in silvoarable fields. Near the (larger) boundary planted trees, these effects extended into the neighboring arable zone. Contrasting gradients in abundance were observed for carabids and rove beetles, with increased activity-density values in the arable zone.Finally, the influence of tree rows on yield and quality of key western European arable crops was quantified. Tree size, crop type and distance to the trees were main determinants of the crop yield and quality in the silvoarable fields. While effects on crop yield were limited for all crops near young tree rows, substantial yield reductions were observed near mature trees, in particular for maize and potato. Effects on crop quality were limited for all crops under study, with substantial effects only arising near the oldest tree rows. To optimize the provisioning service of agroforestry systems, the cultivation of winter cereals may be advisable over maize and potato towards the end of the lifecycle of the tree component. In addition, poplar trees should be harvested when they reach their target diameter for industrial processing. If tree rows are preserved for the delivery of other ecosystem services, however, substantial impacts on crop yield and quality should be taken into account. Arenas-Corraliza M. G. (garenascorraliza@unex.es), López-Díaz M. L., Juárez E., Moreno G. INDEHESA, University of Extremadura, Plasencia, Cáceres, Spain Selections programs to grow cereals under tree shade are needed to establish successful agroforestry systems in order to cope with the reduction of crop yields as a consequence of climate change (Zhao, 2017). A greenhouse trial with three levels of photosynthetically active radiation (0 %, 10 % and 50 % of shade) was performed in central Spain to assess the influence of the solar radiation in the yield and the physiological mechanisms of winter wheat and barley. Nine cultivars of each species, widely used in the area, were studied. Most of barley cultivars showed higher grain yields in the 50 % shade treatment compared to those with higher light availability. In the same way, the ratio of photoprotective pigments (carotenoids)/ total chlorophyll was lower in 50 % shade in both species, especially for barley, showing a less need to photoprotection. The acclimation of barley to lower radiation was confirmed by barley grown in 50 % shade, which had a lower light saturation point in terms of electron transport rate compared to barley grown in 10 % and 0 % of shade respectively, while no adaptation was found in wheat. These findings are remarkable since all cultivars studied were selected originally to full light conditions. Therefore, our results prove the potential of barley cultivars to be intercropped in agroforestry systems in Mediterranean countries where recent early heat events had detrimental effects on cereal crops cultivated in open fields (Arenas-Corraliza et al 2018). In the Mediterranean region, durum wheat productivity is mainly affected by heat stress and drought and this situation is expected to intensify in the near future (Moriondo et al. 2007). Is-it possible to mitigate such stress by cultivating durum wheat in olive orchards? Durum wheat was sown for 3 years, at INRA Mauguio (South of France), in 3 conditions: a yearly pruned olive orchard (AF), a never pruned olive orchard (AF+), and in open field (C).The average yield was reduced in AF (-43%) and AF+ (-83%), with % reduction in line with literature (Artru et al. 2017;Dufour et al. 2013), but this reduction varied greatly according to the cultivar. Despite a similar sowing density, final density was higher (+22%) in AF treatment than in C. The most affected component was the number of grains/spike (-37% in AF, -62% in AF+), then the number of spikes/plant (-32% in AF); the TGW was higher in AF compared to C (+12%). Harvest index was 6% higher in AF treatment compared to C. Plant height and spike length were significantly decreased in the two AF treatments, whereas the distance between the flag leaf and the spike was greater in AF compared to C. A wide genetic variability was observed: modern pure lines reached higher yield and yield components, compared to populations and ancient pure lines in C; but in AF treatment populations reached higher yield than modern and ancient pure lines. These data conduct to frame ideotypes needed to implement an AF-oriented breeding program. Trees are usually eliminated in field due their possible competition with crops for water and nutrients. Our work aimed to investigate how to manage S. senegal trees to optimize their association with crops. A field trial was conducted under natural conditions in a S. senegal plantation 10 years old. Investigations were conducted during two years to evaluate the effect of S. senegal trees management on gum arabic yield, associated cowpea yield, soil mycorrhizal fungi spores density and enzymes activities reflecting soil fertility such as fluorescein diacetate (FDA), acid phosphatase and dehydrogenase. Four treatments of pruning were applicated (control, shoots, roots, shoots and roots pruning) and tapped in november. Soil samples were collected during dry and wet seasons at 0-25 cm layer. Cowpeas were sown at the beginning of rainy season in rows 0.5 m apart. Results showed that shoots pruning significantly increased gum arabic while a negative effect of roots pruning was noted. The presence of S. senegal increased soil fertility and cowpea yield. Any significant effect of treatments was noted on pods yield during the first year. However, shoots pruning, shoot and roots pruning increased significantly pods yield during the second year. Shoots and roots pruning seemed to decrease FDA and spores density depending on the season. Our results showed that shoots and roots pruning increased the positive effect on soil fertility and the association of S. senegal with annual crops.Effect of S. senegal tree management on cowpea production Keywords: S. senegal, trees pruning, soil fertility, crops, Agroforestry. In the Brazilian subtropics, the inclusion of animals during the winter seasons together with the annually cultivated summer pastures like corn is an attractive alternative to utilize the vast unproductive expanses of land during this season (MORAES et al., 2014). Besides, including trees for wood production in integrated crop-livestock systems (ICLS) offers benefits, like the diversification of the producers' income sources. However, any alterations in the solar radiation, either in quality or quantity, will affect the yield of the crops in the woody ICLS, a phenomenon especially observed in the C 4 grasses, like corn (PENG et al., 2009). As this culture is crucially important, and the aim is to encourage the use of woody ICLS in the Brazilian subtropics, the likely losses need to be quantified. Therefore, the objective of this study was to assess the influence exerted by two different types of ICLS, crop-livestock only (CL) or crop-livestock-tree (CLT), and the residual effect of two N supply levels (90 and 180 kg N/ha, N90 and N180, respectively, added to the winter pastures), on corn yield (CY). Adopting the complete randomized block design, the four treatments (CL N90, CL N180, CLT N90 and CLT N180) included three replicates. In 2006, following the 14 x 3 m spacing (238 trees/ha) the trees (eucalyptus, pink pepper and silver oak) were planted in the same rows running crosswise in relation to the slope, in 6 out of the 12 plots. While the corn (Balu 280 Pro, 0.80 m spacing) was implemented during summer of 2017/2018, under the no-tillage system, cattle grazing on the annual pasture was done during the prior winter, in both ICLS.After applying 400 kg/ha of NPK as the base fertilization in the 10-30-30 formulation, cover fertilization was done at 51 days post planting, using a single dose of 270 kg/ha of urea. At 185 days post sowing, the CY was recorded in 5 m of maize line per plot, and corrected to 13% of the moisture content. Analyses of variance was done to test the effect of block (degrees with the treeless system (9722 ± 492.7 kg/ha), the CY value was significantly (P in the CLT (-27%), regardless of N level. Eleven years post tree planting, and after some thinning (currently with 40 trees/ha of eucalyptus), the shading value was 35%. This restriction of solar energy available acted as the determinant for the finding recorded. It is notable that the CY in the CLT system was extrapolated to hectares to analyze the CY per se. However, corn occupied 85.7% of the area, with the remaining 14.3% being taken up by the trees. Thus, the real CY achieved in 1 ha of this association of corn plus trees would be 6070 kg/ha (-38%). The challenge is to determine which are the acceptable levels of tree competition during the entire period of tree development. Agroforestry impacts tomatoes production in a vegetable organic alley cropping temperate system Béral C. (beral@agroof.net), Martin-Chave A., Liagre F.In organic vegetable crop systems, agroforestry is identified as a possible solution for a better economic and climatic resilience of farms. However, few references exist on the response of vegetable crops under trees. This study was conducted in southern France, in a 20-year-old agroforestry system where hybrid walnut at 100 stems.ha-1 were intercropped with organic vegetables crops. We assessed the growth, development, production and commercial quality of tomatoes in different canopy openness (CO) treatments (AF ++ with 22.9 to 27.2% CO ; AF + with 32.8 to 39.4% CO ; AF-with 40.6 to 47.2% CO ; CONTROL with 96% CO). We found that for the two most shaded treatments tomatoes had a significantly delayed growth than in AF-and CONTROL. The first flowering and harvest appeared on average 15 days later in AF ++ and AF+. Moreover, the global production period was significantly reduced in AF++ and AF+ compared to AF-and CONTROL which produce an average of 20 days more. The total production was significantly higher in CONTROL (697.5±42.9 g.plant-1) than in AF- (449,5±42.3 g.plant-1), than in AF+ (253.1±41.8 g.plant-1) and AF++ (212.4±41.8 g.plant-1).When excluding waste, average yield is similar between AF-and CONTROL. The global commercial quality of fruits was superior in AF-than in CONTROL. To conclude, trees can induce strong competition on tomatoes, but pruning management appears to be an interesting lever to reduce this competition while producing woody biomass.Average total production (a) and average yield (b) of tomatoes in the different canopy openness treat-Keywords: Alley crops, Tomato, Canopy openess, Organic cropping.In the Canadian prairies agriculture production is typically a monoculture, dominated by small grains and oilseeds. In 2017 canola was planted on 5 million hectares in Saskatchewan, surpassing wheat as the most widely planted crop in Canada. This crop is one of the highestyielding and most profitable and also one of most expensive and input-intensive for producers. Within this landscape, shelterbelts, and other natural areas, are scattered throughout providing ecological goods and services. In this study, the effect of natural and planted shelterbelts on canola yield was compared over two years in 15 canola fields, 5 with naturally occurring trees, 5 with a row of planted trees and 5 without any trees. In each field RGB and multispectral sensors were used to collect a variety of variables, such as elevation, slope and micro topography as well as vegetation indices, such as NDVI, EVI, SAVI in order to determine whether there was a relationship with canola yield. This data is currently being analysed.Canola field with natural shelterbelt in prairie landscape Keywords: Agroforestry, Shelterbelt, Canola Yield, Prairies, Canada. Olive-based agroforestry with annual crops is wide spread in Northern Morocco and more generally in the Mediterranean, but poor information is available on their functioning in the context of increasing aridity. In order to evaluate the changes in tree-crop interactions due to water shortage, we assessed the productivity of both a cereal (durum wheat) and a legume (faba bean) species intercropped with olive trees under three contrasting levels of water availability in an experimental trial in Morocco during 2017-2018. Water availability treatments were determined by adding different amounts of irrigation water to precipitation (P) during the determine final grain yield at harvest. Water dynamics was also monitored each two weeks. Crops under olive trees were compared to full sun crops as control. Aboveground biomass and grain yield of both crops were significantly lower under olive trees than in full sun control (up to 27% yield reduction for durum wheat and 38% for faba bean). Indeed, strong reductions in number of grain per m2 explained observed yield reductions. Our results suggest that competition for light under olive trees is intense and prevails under Mediterranean subhumid conditions (experienced in 2017/2018) but trees could have beneficial impacts on crop water efficiency in a drier future.Olive-based agroforestry system: durum wheat intercropped with olive trees Keywords: agroforestry, annual crops, olive tree, interactions, water gradient.Is it possible to mix olive trees and crops efficiently? Setting from the rich diversity of agroforestry in Morocco Amassaghrou A. 1 (amassaghrou.asmae@gmail.com), Bouaziz A. 1 , Daoui K. 2 , Barkaoui K. 3 , Belhouchette H. Agroforestry in Morocco is an ancient traditional practice; however there is no study on its performances and limits.The objectives of this work, based on surveys was to characterize the diversity of associations, practices, and to evaluate the efficiency of agroforestry. 72 surveys were conducted in Moulay Driss Zerhoun (Meknes, Morocco). Cereals and legumes are the main intercropping crops with olive tree, the analysis of collected data shows there was a significant difference between soft wheat and barley grain yield in agroforestry and full sun crops: we recorded a reduction of 57% of soft wheat grain yield in agroforestry versus full sun crops, and a decreasing of 42% of barley grain yield. However, there was no significant difference between grain yield of agroforestry and full sun for faba bean, lens and chickpea.The land equivalent ratio shows that the association with faba bean is the most important with a ratio of 1.6 , 1.5 for lens, 1.4 for chickpea ,1.2 for barley and 1.1 for soft wheat. Since the association with legumes is promising, and to understand interactions, two experiments were carried out during two years: 2016 and 2017 under 25-year old olive tree and two agricultural witnesses in the same years. The first year of experimentation experienced a water deficit, at this year the grain yield was not significantly different in agroforestry and pure crops; however we recorded a low yield in both agroforestry and full sun. In 2017, there was a highly significant difference between faba bean, and lens grain yield in agroforestry and full sun crops we recorded a reduction of 72% of faba bean grain yield in agroforestry and 47% for lens, however there was no significant difference between chickpea grain yield. Results are variable from one year to another; further studies are needed to confirm results.Keywords: Efficiency, olive, legumes, cereals.Amassaghrou A. 1 (amassaghrou.asmae@gmail.com), Bouaziz A. 1 , Daoui K. 2 , Barkaoui K. 3 , Belhouchette H. Agroforestry in Morocco is an ancient traditional practice; however there is no study on its performances and limits.The objectives of this work, based on surveys was to characterize the diversity of associations, practices, and to evaluate the efficiency of agroforestry. 72 surveys were conducted in Moulay Driss Zerhoun (Meknes, Morocco). Cereals and legumes are the main intercropping crops with olive tree, the analysis of collected data shows there was a significant difference between soft wheat and barley grain yield in agroforestry and full sun crops: we recorded a reduction of 57% of soft wheat grain yield in agroforestry versus full sun crops, and a decreasing of 42% of barley grain yield. However, there was no significant difference between grain yield of agroforestry and full sun for faba bean, lens and chickpea.The land equivalent ratio shows that the association with faba bean is the most important with a ratio of 1.6 , 1.5 for lens, 1.4 for chickpea ,1.2 for barley and 1.1 for soft wheat. Since the association with legumes is promising, and to understand interactions, two experiments were carried out during two years: 2016 and 2017 under 25-year old olive tree and two agricultural witnesses in the same years. The first year of experimentation experienced a water deficit, at this year the grain yield was not significantly different in agroforestry and pure crops; however we recorded a low yield in both agroforestry and full sun. In 2017, there was a highly significant difference between faba bean, and lens grain yield in agroforestry and full sun crops we recorded a reduction of 72% of faba bean grain yield in agroforestry and 47% for lens, however there was no significant difference between chickpea grain yield. Results are variable from one year to another; further studies are needed to confirm results.Keywords: Efficiency, olive, legumes, cereals.As the current agricultural practices in the Hauts-de-France region result in soil erosion, nitrate leaching and a decline in biodiversity, agroforestry systems (AFs) may be an alternative to conciliate productivity with lower environmental impact (Dupraz and Liagre, 2008). We set up the first AF experimental site to study its agro-economic and environmental performance in local agro-pedoclimatic conditions. The experimental site was established in autumn 2018 on an 18-ha plot in Ramecourt on a deep luvic cambisol with a silt loam texture developed on a flint clay. Due to a high silt content (73% silt) and a low organic matter content (2%), as well as a slope of 8%, the plot is highly affected by channel erosion. Modalities with or without nitrogen-fixing trees in AF treatment are compared with sole-crop (CC) and pure-forest control (FC) plots (Figure 1A) according to a randomised block design with 3 replicates. Tall trees in rows are intercalated with 9 species of shrubs (Figure 1B) and will be intercropped in AFs by sugar beet, potato, wheat, barley and flax. The tree density is 50 and 430 trees ha-1 for AFs and FC respectively, and the average size of the microplots is 0.9 ha. Using this experimental approach, we hypothesised that AFs should limit soil erosion, restore soil fertility and biodiversity, improve natural-resource use efficiency and water quality, reduce inputs and increase farmers' incomes. Parkland is a land use system in which woody perennial species are grown in with annual crops or livestock and are the most widespread systems in the Sahel.Water scarcity contributes to the poverty of around one-third of the world's people.Despite many benefits, tree planting in dry regions is often discouraged by concerns that trees reduce water availability and crop yield. The aim of the research was to contribute to understanding the interaction in the tree-crop , and the impact of tree on the groundwater recharge. We developed and tested an optimum tree cover theory in which groundwater recharge is maximized at an intermediate tree density and crop yield. We found that complementary irrigation, nitrogen and phosphorous are not limit factor for crop yield. However, crown pruning has had a very significant increasing sorghum yield. Thereby suggesting that light is the limiting factor. Results, based on groundwater budgets calibrated with measurements of drainage and transpiration in parkland, demonstrate that groundwater recharge was maximised at intermediate tree densities. In contrast to the prevailing view, we therefore find that moderate tree cover can increase groundwater recharge, and that tree planting and various tree management options can improve groundwater resources. These results suggest that they are likely to be common in the seasonally dry tropics offering potential for widespread tree establishment and increased benefits for hundreds of millions of people In Senegal, Agricultural production system is dominated by rainfed farming and one alternative for sustainable production is the combination of woody-farming. Introduction of new species with high value-added on farming land might be one of those solutions for a sustainable and diversify agricultural production. Cashew having which plays large part in the Senegalese agricultural sector, could be part of the species with high agroforestry potential has yet to be properly evaluated. The objective of this work is to contribute to the assessment of agroforestry potential of emerging species by examining the influence of crown length of Anacardium occidentale L. on Arachis hypogaea L yields. To do this, 1.5 ha of cashew tree plot has been chosen then divided in 3 lots of 0.5 ha. In each lot, three single tree type of 6 m, 9 m et 12 m have been chosen. Three off-cover control plots of cashew were delineated. Agronomic characteristics of Arachis hypogaea were evaluated. Results reveal that association peanut and cashew trees within less than 6m of crown length give best peanut yield. The maximum yield (676.51 kg ha-1) was recorded for trees having 6m of crown length compared to controls (399.58 kg ha-1). The management of the crown cashew tree is essential to optimize peanut yield. The broadening of the range of species associated with cashew would help to consolidate agroforestry potential of the species Herbaceous vegetation of sylvoarable tree rows contributes significantly to soil carbon storage (Cardinael et al. 2015). However, its impact on soil organisms and fertility is poorly studied. It could especially play a significant role in young systems in which the tree influence is limited. We hypothesized that due to the herbaceous vegetation, soil chemical and biological fertility is increased in tree rows and close to them (at 1 m). We sampled two 10 year-old wheat alley-cropping sites of South-West France in spring 2017. We defined three positions: in the herbaceous vegetation of the tree row, at 1m from the tree row and in the middle of the crop alley. In each position, we determined macrofauna density, microbial biomass and respiration and soil C, N and P content. Soil organic carbon and available phosphorus contents were higher in the tree row than in the middle of the crop alley. However, we did not find higher values close to the tree row. Microbial biomass and respiration were higher in the tree row compared to the closest position in the crop alley only, indicating that positions close to the tree row did not benefit from the higher microbial growth and activity observed in the tree row. Soil macrofauna presented different patterns between sites and was more abundant in the tree row than in the crop alley in one site only, especially for saprophages and predators. In addition, some specific taxa of soil macrofauna were present only in the tree rows.Mean values of microbial biomass carbon with the fumigation-extraction method and basal respiration (in presence of water only) with the MicrorespTM method for each position and each site.Different letters indicate significantly different values between positions after one-way analyses of variance for both sites together with factor site as a random factor. The herbaceous vegetation in agroforestry tree rows is a poorly studied potential trophic resource and habitat for soil organisms. This could enhance nutrients turnover (Porazinska et al., 2003), and thus be beneficial for the crop. We studied soil macrofauna density, soil microbial biomass and soil organic carbon in a 22 year-old organic market gardening plot with walnut trees, located in the South of France. We hypothesized that 1) the herbaceous strip impacts soil organism development and that 2) soil organism development also varies with tree management. Three treatments were studied: no trees in the herbaceous strip, lightlypruned trees and heavily-pruned trees. Three positions were sampled: in the herbaceous strip, at 1 m from the herbaceous strip and at 2 m from the herbaceous strip. Sampling was carried out in April, June and November 2018. The first results for the Spring and Summer seasons demonstrate that the heavy pruning treatment presented the highest microbial biomass, and soil carbon content was higher in treatments with trees. However, macrofauna density did not vary according to the pruning treatment. Macrofauna density was increased in the herbaceous strip compared to the crop alley in all treatments, but not microbial biomass.Our first results suggested different impacts of trees and herbaceous vegetation: a stronger effect of the herbaceous vegetation for macrofauna density, and a stronger effect of the pruning of the tree for microbial biomass.Mean macrofauna density for each position and each pruning treatment.Error bars represent standard deviation . Agroforestry (AF) is often define as \"an ecologically-based land management system, that maintains ecosystem diversity and processes contributing to long-term sustainability and environmental quality\". But surprisingly in Europe and especially in France, AF is mainly implemented by conventional farmers, using chemical herbicides, pesticides and mineral fertilizers. Therefore, although «sold» as enhancing biodiversity of plants and insects, AF is managed by intensive methods known to kill such biodiversity! This paradox interrogates the capacity of organic farming to well address stakes of agroforestry.In France, organic AF knows a shy development and concerns mainly systems mixing fruit trees and vegetables or crops. Therefore, the understorey crops must be adapted to organic conditions and also to fruit trees association. But nowadays, there is no variety, registered in the french or european catalogue, cumulating these two criteria. For arable crops, to be register, a variety must be distinct, uniform and stable and is generally evaluated, for its value for cultivation and use, in conventional environments. In France, there are only 3 varieties bred in and for organic farming and registered (1 durum wheat and 2 soft wheat).The demand for varieties presenting traits well adapted both to organic and to AF is increasing. But the question is : «Is-it the same ideotype that is required for both? « Because herbicides and fungicides are prohibited and organic fertilizers are expensive, organic farming requires varieties adapted to weed competition (e.g. for cereals: early sowing to tolerate mechanical weed control, emergence seedling vigor, numerous tillers, high plant height, competitive roots), diseases resistance, and resources (water, N, P) use efficiency (deep roots).In Agroforestry systems, the presence of trees imposes to consider others important traits like the duration of the cycle, namely to be compatible with the fruit tree phenology (for instance cereals can be sown in olive orchards only after olive harvesting, so late sowing is targeted), the tolerance to shade (horizontal leaf orientation, low leaf area index), the underground competition (superficial roots to avoid competition with tree roots), the ability to bear some adverse conditions like excess of humidity. Some of the traits are common between organic and agroforestry needs but some others like phenology, roots architecture, etc. may differ. These differences must be seen as highly challenging for plant breeding. The proposal is to focus on a new merging concept : OrgAgroforestry ( a contraction of Organic Agroforestry) that will strengthen the sustainability of AF and will help to reconsider ecological plant breeding through participatory approaches (Ecobreeding). The involvement of a great diversity of actors (farmers, processors, consumers, researchers, etc) to breed adapted varieties will renew the way to envision agroforestry and definitely enhance biodiversity. Faidherbia albida is an important tree species in the parkland agroforestry system of Ethiopia, as it can improve carbon (C) sequestration and crop production. However, C sequestration and the effects of tree pruning and fertiliser on crop growth, have not been extensively studied in these parklands. Carbon sequestration in this system was estimated by harvesting F. albida trees above-ground and by taking soil samples under and beyond the tree canopies.A field experiment containing three levels of tree pruning as main plots, and application of recommended rates of N and P fertilisers as sub-plots, was conducted for two years (Dilla et al. 2019 Agroforestry Systems, in press). Trees stored about 2 t C ha-1 in their above-ground biomass and 34 t C ha-1 more in soil (0-80 cm depth) under trees than in crop-only areas.Carbon storage in trees was low due to sparse tree density (5.80 ha-1) but could be increased by encouraging farmers to protect planted seedlings or natural regeneration. Biomass and yield of maize were higher (56%) under the 2-6 m radius of tree canopies compared to crop-only plots in both growing seasons, regardless of pruning and fertiliser levels. Fertilisation further increased yields (14.8%) under tree canopies compared to crop-only plots both years, but more so in 2016 (Fig A central goal of agroforestry practices is to ensure productivity, profitability while maintaining ecosystems sustainability. Alley cropping is one of the most popular agroforestry system practiced around the world for triumphing ecological and economic benefits. Traditionally smallholder farmers of Bangladesh grow vegetables in between the alleys of fruit and timber yielding trees for income generation. Previous researches focused on identifying tree-crop combination only in terms of production but the profitability of the system along with the nutritional quality of the crops produced remain unknown. We conducted field experiments in the alleys of eight years old litchi orchard and recorded data of different parameters. The results revealed that the fruit yield of tomato was significantly higher in sole cropping (27.08 t/ ha) than of alley cropping (15.33 t/ha). But benefit-cost ratio (BCR) of litchi tomato based alley cropping system (4.20) was maximum than sole cropping (2.25). In case of quality parameters, total soluble solids (TSS), ascorbic acid and lycopene content was significantly higher in alley cropping while pH and color values of fruit were higher in sole cropping. In alley cropping, tomato plants received 40-50% total light which indicates partial shade improved fruit quality.The findings from this study are valuable for the farmers and policymakers as litchi-tomato alley cropping system ensures production upholding nutritional quality and profitability. Traditional low input farming system relies on trees and shrubs to sustain soil fertility. One of the approaches is to adopt hedgerow tree planting, having trees of certain attributes capable of giving benefits to the cash (in our study Zea mays) or targeted crops. Trees with nitrogen fixing ability and fast returning biomass are of beneficial. Six nitrogen fixing trees i.e. Gliricidia sepium, Parkia speciosa, Azadirachta excelsa, Paraserianthes falcataria, Acacia mangium and Leucaena leucocephala were screened for their potentials to fix nitrogen and to produce high biomass. Stable isotope nitrogen technique was adopted with two reference non-fixing trees which were Hopea odorata and Khaya ivorensis. Each tree was planted within a plastic sheet lined inside 6m by 6m trench with 1m ditch and covered back with the same soil. 15 N was applied as labelled ammonium sulphate of 10% atom excess. Data collection was concluded at 30 months. For evaluating hedgerow trees contribution, G. sepium was selected based on its proven ability to withstand frequent pruning. Results show that A. mangium and P. falcataria were able to fix above 80% N. These two species also contributed high biomass (Table 1). We did not find significant improvement in soil fertility from N-fixing tree planting but corn yield (cash crop) was significantly improved by having hedgerow N-fixing tree and applied with its pruning and root biomass. The significant increase in yield was also seen in the second corn crop.L18 Annual crops AF Effects of agroforestry systems on microclimate and water availability as determinants for sustainable soil productivity Majaura M. (majaura@b-tu.de), Böhm C., Freese D. Soil Protection and Recultivation, BTU Cottbus-Senftenberg, Cottbus, Germany Recent studies have shown that hedgerows in short rotation alley cropping systems (SRACS) can improve the microclimate in adjacent crop alleys through, e.g., a reduction of daytime temperature, wind speed and evaporation (Kanzler et al. 2018). Improved microclimatic conditions may positively affect crop yields by increasing the availability of water for the crop. However, studies that examine the interdependencies between microclimate changes caused by hedgerows in SRACS, water availability and crop yields are rare.In a poplar SRACS, we investigate with high spatial and temporal resolution if changes in microclimate affect water availability for two crops and crop yields. For this purpose, we use stationary weather stations installed in a transect and mobile sensors in four strips running parallel to the stationary transect at different distances from tree strips (Fig. 1) and in a monoculture. At all measuring points air temperature, air humidity and Piché evaporation will be continuously determined. In addition, wind speed, global radiation and precipitation will be measured at the stationary weather stations. Furthermore, transpiration of crops will be determined at different times close to all microclimate points. Subsequent crop yield sampling will then enable us to determine the degree to which tree strips in ACS influence microclimate and water availability for crops at different distances from tree strips and how these relate to small-scale changes in crop yield. Silvoarable systems can reduce impacts of agricultural practice and increase agroecosystems services in the Mediterranean [1]. Nonetheless, farmers are reluctant to implement agroforestry systems because of the potential loss of gross production due to: (i) the reduction of arable surface and (ii) the risk of lower crop yield due to the competition for resources with trees [2]. The aims of this study are: (i) to assess the productivity of soybean in an alley-cropping system (AF) and (ii) to determine soybean productivity and feed value according to the position in the alley (A-West, B-MidWest, C-Centre, D-MidEast, E-East). The experiment is located in Pisa (Italy) 3 m a.s.l. on a loam to clay-loam soil with 7.6 pH. Rows of short rotation coppice (2yrs cut cycle) poplar are spaced 13,5m and N-S oriented. Soybean was sown the 12 June 2018 with 50 seed m-2. During the soybean growth period, rainfall was 90 mm and the mean temperature was 22.9 °C. The harvest biomass and grain yield of soybean were higher in C respect all the other positions in the alley. The grain yield ranged from A to C (55 and 247 g m-2). Overall, the yield components declined according to the tree distance and light availability, showing a higher reduction in A and B position respect to D and E (Fig. 1). The harvest index ranged from 0.40 to 0.47 in A and D respectively. Further analysis will assess the effect of tree presence as light availability and soil water competition on crop yield and nutritive value. Nyaga J. (J.Nyaga@cgiar.org), Barrios E., Muthuri C., Öborn I., Sinclair F. World Agroforestry Centre, Nairobi, Kenya In sub-Saharan Africa, smallholder farmers remain the dominant source of food production and over the past years, integration of tree into cropping systems has become a common practice. A major constraint that is associated with such practice is on how to minimize competition and favor complementarities plus facilitative interactions among trees and associated crops in these simultaneous agroforestry systems. To overcome this constraint, our study evaluated the effect of spatial arrangement of dominant tree species (Calliandra calothyrsus, Sesbania sesban, Grevillea robusta, Eucalyptus spp, Croton macrostachyus and Markhamia lutea) on soil nutrient availability and whether this differential impact explains maize productivity in smallholder farms. Results showed that both S. sesban and C. macrostachyus have highest turnover rate of plant residues while Eucalyptus spp and G. robusta recorded lowest rate compared to the rest of evaluated tree species. The nutrient concentrations decreased with an increase in distance from tree trunk and increase in soil depth under S. sesban. The amount of total carbon (Total C), total nitrogen (Total N), exchangeable bases (ExBas), calcium (Ca), potassium (K), phosphorus sorption index (PSI) and available phosphorus (available P) in the soil decreased with an increase in depth into soil under all dominant tree species. The observation was attributed to direct inputs of soil nutrients under the tree from aboveground residues and possible depletion from uptake by tree roots. However, soil pH significantly increased with increase in soil depth under C. calothyrsus and G. robusta. Maize production was found to be adapted to Zone B (zone of root and light competition) under C. calothyrsus which the study attributed to improved soil nutrient under the tree as a result of leguminous nature. Maize production under Eucalyptus spp treatments was higher at Zone D (open cropped areas that are relatively free from the interference of trees) which highlights high competition for nutrients, water and light under the tree. In conclusion, dominant tree species in smallholder farms were found to differently influence the spatial distribution of soil nutrient which explains their differential impact on maize yield.Keywords: Tree species, Nutrient availability, Maize productivity, Agroforestry systems, smallholders farms.Calculations of nutrient fluxes in integrated crop-livestock systems (ICLS) can furnish basic information about sustainability of those systems (Carvalho et al., 2010). We evaluated the influence of two levels of N fertilization (90 and 180 kg N ha-1) and two ICLS, with (159 trees ha-1, Eucalyptus dunnii + Grevillea robusta) and without trees, on the release rate of N-P-K-S from decomposing corn straw. Both ICLS integrated corn during the warm season and beef cattle grazing on pasture during the cool season. The experimental design was a randomized complete block with three replicates and with four treatments (i.e. two ICLS crossed with two N levels). Litter decomposition and nutrient release were assessed with litter bags placed at the soil surface during the subsequent growth of black oat/ryegrass pasture. During 90 days of decomposition, no changes in N-P-K-S release dynamics (i.e. on the decomposition rates and active fractions) were observed between treatments. However, total N-P-K-S released from summer residues (Figure 1) and potentially available to the subsequent pasture depended on the initial N-P-K-S level of residues and on the quantity of plant residues, which was signifiintensified to reduce the shading level to below 41% and avoid losses to soil cover, which in turn will maximize benefits from nutrient cycling, since important amounts of N-P-K-S are cycled (Figure 1).Total Nitrogen (N), Phosphorus (P), Potassium (K) and Sulfur (S) released from corn straw to Lolium multiflorum + Avena strigosa pasture, as affected by treatments, during litter-bag exposure in a field experiment. CL, crop-livestock and CLT, crop-livestock-trees systems; 90 and 180 kg N/ha, N90 and N180, respectively. Faidherbia albida is an important agroforestry tree species known for its reverse phenology which makes it compatible with most crops. The management of F. albida varies from region to region; some retain part of the branches and some pollard full canopy, the later is common in Mojo for fencing purpose. The study was conducted in Mojo, Ethiopia from 2016 to 2017. The area is known for its erratic rainfall and frequent drought which adversely affect crop productivity. The main objective of this study was to investigate the impact of pollarding F. albida on water relation of the tree and wheat productivity under non-pollarded and pollarded trees. Six trees with similar size were selected of which three trees were pollarded as per farmers' practice and the other three were kept un-pollarded. Tree sap volume was measured using heat ratio method (ICT International Pvt. Ltd, Australia). Cambial growth was measured using electronic dendrometer (Ecomatik Muenchner, Munich, Germany), soil moisture was measured using profile probe (PR2 Delta-T device, Cambridge, England) from different depth classes (10-100cm); wheat aboveground biomass and grain yield were recorded under non-pollarded and pollarded F. albida. For most of the parameters, there were significant differences between the two tree managements. Sap volume declined when the tree was pollarded and during leaf shading from non-pollarded one mainly around the onset of the main rainy season (June-July). The highest monthly sap volume was 4590L (153L day -1 ) for non-pollarded compared to 403L (13.4L day -1 ) for pollarded F. albida, during the dry season (January-March) in each year. Cambial dynamics of pollarded trees reduced up to 96% due to pollarding effect compared to non-pollarded ones. As a result, pollarding reduces the tree annual trunk growth up to 78%. The average soil moisture percentage under non-pollarded F. albida was higher compared to under pollarded trees across similar depth classes. The highest aboveground biomass was 4.1 t ha -1 and 3.5 t ha -1 at 1m distance under non-pollarded and pollarded F. albida tree respectively. Similarly the highest grain yield obtained under non-pollarded and pollarded F. albida was 4 t ha -1 and 2.3 t ha -1 respectively. Despite higher sap volume and sap flow rate was recorded from non-pollarded F. albida, aboveground biomass and grain yield obtained under pollarded F. albida decreased by 14% and 42%, respectively. The study indicates pollarding the branches of F. albida not only reduced the cambium increment but also reduces complementarily effect of tree-crop interaction. To optimize the benefits of F. albida -wheat interactions, the study suggests to raise awareness of farmers and motivate them to reduce pollarding. The effect of distance from olive row on soil fertility in olive orchards with different intercropping crops in Morocco Zayani I. 1 (zayaniinass@gmail.com), Bouhafa K. 2 , Ammari M. 1 , Ben Allal L. Agroforestry is a set of agricultural practices whose coherence is based on the use of ecological processes and the valorization of agro-biodiversity. It is often a question of combining one or more woody species with annual crops to obtain a mixed farming system, managed in the long term to produce and protect the environment. These cropping systems are an integral part of traditional Mediterranean and also Moroccan agriculture including systems based on olive trees. This work aims to study the effect of distance from the olive tree on soil fertility at different intercrops in comparison with the olive tree in monoculture.The study was done in an olive orchard conducted in rainfed conditions owned by a farmer in the Saiss region of Morocco. The orchard is planted at a density of 12*10 m² where the trees (Moroccan picholine) are old than 22 years. Three annual crops (fababean, spring chickpea and lentil) are cultivated as intercropping crops with olive tree in the study area. Soil samples were taken from the 0-30 cm layer in the different plots in the olive orchard. These samples were the subject of soil physico-chemical characterization. After harvesting annual crops in June 2018, soil samples were taken from the 0-30 cm layer at different distances from the olive rows (0, 1, 2, 6, 10, 11, 12m). These samples were subjected to chemical analyzes to determine their fertility levels.The soils studied are calcareous with neutral pH and electrical conductivity. According to the distances studied the results showed that in the different annual crops parcels the soil organic matter content was important near the olive trees (0 and 12m) but it decreased in the uncultivated band (between 0-2m and 10-12m) then it increases inside the plot until reaching a high value at the mid-distance of the olive row. The results of this study are in agreement with several studies that contribute to the increase of soil organic matter returns to intercropping systems, due to the above-ground biomass residues of associated trees and intercrops and the in situ decomposition of their roots. For nitrate levels in the fababean and lentil plots, initial soil characterization recorded higher values than post-harvest analyzes. This may be due to the character of atmospheric nitrogen fixation related to legumes that have already been installed during the first sampling period. The results of variance analyzes, performed by the SPSS software, showed that soil parameters, have not been affected by the distance from the olive row for all the systems studied. On the other hand, for the olive tree in monoculture, the distance from the olive row affected the soil phosphorus contents.The soil parameters measured in the different intercropping systems give different results relating to the effect of the distance studied.Keywords: agroforestry, olive tree, soil fertility, legume, Morocco. When the trees and livestock dance together: getting a rural renaissance through sylvopastoralism Silvopastoral systems were and still are common all around the world. While traditional ones dominate large agricultural landscapes in less productive soils and/or climate, different new silvopastoral schemes emerged in the last decades to improve the forage autonomy of extensive pastures and to cope different environmental issues associated to livestock farming. The selection of the abstracts for this session will try to cover this geographical distribution and to demonstrate the relevance of these systems for livestock farmers and the provision of public ecosystem services. Both fundamental and applied research results are encouraged to be presented. The abstracts submitted for oral presentation should refer to work carried out in topics dealing to one or more of the following elements: tree, animal or pasture, and their inter actions. planting/maintaining trees (and/or shrubs) on pastures are also welcome. encourage to be proposed for a poster presentation, although the description of innovative silvopastoral systems and practices can be also proposed for oral presentation. Results should be clearly stated in the abstract submitted. Some examples of topics of interest are: tree-pasture management and interaction, improved pastures for shading conditions, woody forage banks, animal and welfare, tree regeneration monitoring and promotion, control of nutrient leaching and greenhouse gases emission, carbon sequestration, silvopastoralism for the adaptation and mitigation of climate change.Oak savannahs are a cultural icon of California and the most important rangeland type in California's $4 billion beef cattle industry. In past decades, California ranchers have often removed or ignored oak trees on their rangeland (Huntsinger et al. 2010), but they are now increasingly recognizing the need to actively manage oaks for multiple benefits (Oviedo et al. 2017). One benefit of mature trees is reducing cattle heat stress by providing shade. Studies in tropical Latin America (e.g., Mitloehner and Laube 2003) have quantified this benefit, but few field studies have been conducted in the US (Sharrow 2000), and none have been done in California to our knowledge. The issue of cattle heat stress becomes more pressing under climate change. By 2040-2069, daily maximum temperatures in California's inland foothills are predicted to increase by 3°C (5.4°F). We conducted this field study (29 Aug -3 Oct 2018) to investigate whether oak canopy cover could be an important climate adaptation tool in California rangelands. Our study sites were three grazed regional parks (Vargas, Pleasanton Ridge, and Brushy Peak) along a 50-km transect (121.8W, 37.6N). We designated three plots per park, and in each plot, we used a pair of radiation-shielded loggers (Hobo 8K Pendant Temp, Onset Corp) at 1 m height to measure air temperature under a large mature live oak (Quercus agrifolia) and in an open field 20 m away. We also collected temperature data with a pair of \"black globes\" (hollow black metal balls with sensors inside) that incorporate effects of solar radiation and wind, as a proxy for animal heat stress. Our paired sensors showed that Q. agrifolia canopies have a major cooling effect. Midday (10a to 4p) air temperatures averaged 4.5°C (8.2°F) cooler under the canopies. The effect varied between our nine plots (range: 3.1 to 6.3°C), with higher wind speeds reducing the canopy/ field difference while tree size had no effect. Midday black globe temperatures showed an even larger difference of 10.2°C (18.3°F). We translated these data into a livestock heat stress index (Dahlen and Stoltenow 2012), assuming 30% RH. Compared to under an oak canopy, open fields were 2.4 times more likely to reach the \"Alert\" threshold (29.4°C / 85°F) and 12.7 times more likely to reach the \"Danger\" threshold (32.8°C / 91°F). Open fields reached the \"Emergency\" threshold (37.8°C / 100°F) for an average of 1 hour per day, whereas this threshold was never reached under any tree canopy. These results suggest that maintaining and increasing mature oak trees on open rangeland could help California ranchers protect their herds from climate variability and future warming. Future work could examine a wider geographical area, more species of oaks, and animal behavior. It is already clear that cattle \"vote with their feet,\" congregating under trees on hot days. Quantifying this important benefit of oaks can help inform management strategies in grazed oak woodlands.Sib O. 1 (sibollo84@yahoo.fr), González-García E. 2 , Bougouma-Yaméogo V. 3 , Blanchard M. 4 , Navarro M. 5 , Vall E. 61 CIRDES, Bobo-Dioulasso, Burkina Faso; 2 INRA, Montpellier, France; 3 University Nazi Boni, Bobo-Dioulasso, Burkina Faso; 4 CIRAD, Hanoi, Vietnam; 5 University of Matanzas, Matanzas, Cuba; 6 CIRAD, Montpellier, France To feed dairy cattle in West African farms, livestock keepers usually combine the availability of natural resources, crops residues and other more or less locally available alternative feed resources. However, despite such strategies the herds nutritional requirements are rarely covered. Among the consequences of such often and unpredictable feeding unbalances are the low production level and calvings seasonality. Thus, this study was intended to design, in partnership with livestock keepers, an innovative forage system that has never been tested under the West African context. The proposed low-input intensive forage production technology, rely on establishing high-density Woody forage banks (WFB). The potentialities of WFB for sustainable forage production, as well as the establishment feasibility under real farm conditions and the effects on the dairy cows production performance was also evaluated. During 18 consecutive months, we monitored the agronomic performance of two widely recognized woody fodder species (one leguminous: leucaena, Leucaena leucocephala; and one non-leguminous: mulberry, Morus alba), planted at high-density (20000 plants/ha) for the first time in 3 different sites of western Burkina Faso for intensive forage production. Three WFB have been established in 2016 using the «step-by-step» co-design method (Vall et al., 2016). At the first standardization cut, 13 months after planting date (PD), the heights of leucaena and mulberry plants were respectively 183.4±20.4 cm and 153±5.3 cm and lower than reported results ranging from 200 to 300 cm (Wencomo et al., 2009;Martín et al., 2014). These performances were affected by soil quality, termite attacks, drought and agronomic practices such as mulching, shallower planting bed. The high forage yield per ha as well as the nutrithe potential interest of this forage technology for contribution to the farm forage authonomy in this region while improving animal performance. However, special attention must be deserved for adjusting agronomic practices to factors like soil properties, drought, termite attack and fires. The cumulative biomass production over 3 harvests (PD+13, PD+15 and PD+18 months) was 8.2±2.6 t DM/ha and 1.8±2.3 t DM/ha respectively for leucaena and mulberry versus 15 t DM/ha and 10-12 t DM/ha for leucaena and mulberry respectively reported (González-García et al., 2009;Martín et al., 2014). The economic feasibility indicated that production cost of 1 kg of forage has been estimated at 152 franc of the African financial community (FCFA), which could be more competitive if the forage bank is «self-made» (46 FCFA). These results demonstrated the potentialities and feasibility of establishing, with a low-input approach, high-density WFB under the harsh conditions of Burkina Faso, a potential alternative to enhance farms forage autonomy and dairy production for livestock keepers. Silvopastoral stakeholders need to ensure the system resilience through the increasing of pasture availability and the assessing of appropriate stocking rate (Camilli et al., 2018). Annual legumes are a key feature for the improvement of low quality native pastures in these systems.One of the most critical factor controlling silvopasture productivity, along with other factors (competition for soil resources, different microbiota, higher mineral N in the soil beneath trees, ets.), is the competition for light, and light interception affects the growth and development of understorey herbaceous vegetation in various ways.The main objective was to assess the adaptability and the factors responsible for better adaptation to shade of different legume species in a Mediterranean silvopastoral system.The experimental site was located within a scattered tree cork oak silvopastoral systems at In the spring of the second year, after the first self-reseeding, the ISPAAM mixture showed high contribution of L. rigidum and T. subterraneum cv Campeda to floristical composition. Among Fertiprado legumes, only O. sativus showed a high coverage in the second year probably because of its very low level of hardseededness.The openness of scattered trees in the studied silvopastoral system restricted the difference in the levels of light transmission between shaded plots and not shaded plots. However, the most shade-adapted species for the use in legume-rich pastures were T. subterraneum cv Campeda (ISPAAM mixture), T. vesiculosum and O. sativus (Fertiprado mixture) and shading reduced the productivity of the legume-rich mixtures of 70%-90%. Pastures are among the main land use types in the world. In Brazil they occupy 20% of productive area, although half of them are somehow degraded. In \"Portal da Amazonia\" Territory (MT) the implementation of agroforestry systems (AFS) has been encouraged by social movements and NGOs, with support of universities and research centers. In the past decade, more than 1,000 families have adopted AFS and, among them, silvopastoral systems (SPS). The Family Agriculture Resilience Research Program was structured in 2015 to support these projects, having SPS among their research lines. Research projects and governance structure were supported by Instituto Ouro Verde using resources from the Amazon Fund/ BNDES and University of Exeter. We have been working with participatory mapping to locate tree species of interest to farmers that can be incorporated into production systems, aiming to improve the quality of soil and forage, to identify species which leaves or fruits can be used as nutritional supplements and propose arrangements with different species that guarantee greater biodiversity and financial return in the short and long term. Research lines are updated every year, including new species and discussing results with communities for adjustments to existing production systems and planning new ones. So far, results have shown that among desirable characteristics for the species, according to farmers, are tree growth and their potential uses in the property, absence of toxicity or danger to animals and positive influence on pastures, especially in the dry season. Among the species indicated by farmers, Handroanthus serratifolius contributed to higher protein contents of forage plants, raising crude protein level from 3% to 5%. Apeiba tibourbou Aubl influenced soil fertility in shaded areas, especially increasing potassium levels from 116 to 298 mg dm-3. Main effects of trees on pasture were observed in the dry period, while the effects on soil fertility were potentialized in the rainy period. Fruits of Samanea tubulosa, leaves of Maclura tinctoria and different Inga species showed high percentage of crude protein (15,9%, 12,0% and 12,3%, respectively), being able to be used as supplements for dairy cows. Studies have also assessed the behavior of these animals in shaded pastures, showing that they respond positively to shading conditions when there is good distribution of forage supply, increasing rumination period and reducing laziness. However, when shading is not well distributed this effect can be reduced or even eliminated. We emphasize the importance of the articulation between research, extension and support for SPS planting, with the direct involvement of family farmers in this process. This experience shows that research can be used as a tool for innovation and transformation of production systems in different scales of action, thus paving the way for enhancing resilience of family farming in an Amazonian agricultural frontier Keywords: Amazonia, participatory research, family farmer, pasture.Unmanaged woodland grazing can cause timber degradation, diminished regeneration, habitat loss, soil erosion and water quality impacts. Nevertheless, farmers in Wisconsin, USA use woodlands for grazing to meet management objectives, and for property tax benefits. To evaluate promise of silvopasture in this landscape, we conducted three related studies: First, we interviewed 18 farmers about how they use and value their woodlands. Interviewees commonly valued woodlands for pasture, timber, fuel, hunting, aesthetics, and lifestyle benefits. Diverse perspectives emerged regarding management motivations and objectives, which suggested four types of perspectives toward farm woodlands: incidental owner, practical manager, working naturalist, and ecocentric member. We distinguished these types via instrumental or intrinsic values, as well as active or passive management of woodlands. Second, we measured soil compaction and vegetation biodiversity across a gradient of cattle grazing intensities, confirming the direct relation between intensity and negative impacts on woodland ecology, but pointing out potential management strategies to reduce impacts. Third, we established silvopasture via overstory and brush thinning in degraded oak woodland on three farms. In paired experiments with/out rotational beef grazing, preliminary results indicate that canopy thinning and broadcast seeding improved forages, native understory establishment was poor, and adaptive management improved outcomes.A typology of perspectives on use and value of farm woods in the Driftless Area of Wisconsin.Perspectives were defined via qualitative analysis of in-depth interviews. The overlapping ovals represent the indiscrete nature of perspectives. An attributional LCA was carried out on the milk production system. Enteric fermentation was found to be the largest contributor to global warming potential (56%), followed by imported feed (20%). The environmental burden per litre of milk was calculated to be 1.08 kg CO2e/L; quite low because most of the electricity is generated from an anaerobic digester that also reduces manure management emissions. A second, hypothetical attributional LCA was carried out to approximate the environmental impact of the system without live fences -i.e. where it was assumed that reduced shading may increase heat stress in animals and thus reduce milk yield by 11%, based on a previous study (Villanueva et al. 2014). Live fences were found to have a positive effect, reducing environmental burdens by 8% to 9% per litre of milk produced. The LCA will be recalculated once all sampled living fences have been remeasured to allow for off-setting due to rate of C sequestration.Keywords: Dairy, Living fences, Life cycle analysis, C off-setting.In temperate regions, farmers often report that free ranging cows use trees as fodder.Available literature shows that different tree species are very interesting in terms of nutritional value for ruminants because of high levels of protein and especially macro and micro elements (Rahmann 2004;Luske et al. 2017). The objective of this study was to investigate the effect of soil type (clay and sand) and seasonal variation on the nutritional quality of three common tree species in the Netherlands.At 10 Dutch organic dairy farms (five on sandy and five on clay soils) tree leaf samples were collected from Fraxinus excelsior, alder Alnus glutinosa and basket willow Salix viminalis in June, July and September of 2013. The samples were analysed in the laboratory for a set of parameters. The data was analysed with a split-split plot design (Genstat 13.3) to test for differences in nutritional values (Table 1).Tree species is the most important factor to take into account when introducing three dimensional grazing with fodder trees or shrubs (Luske & van Eekeren 2017). A. glutinosa is interesting because of high CP and Cu concentrations in the leaves. F. excelsior leaves had the highest digestibility (DOMD) and Ca concentration. S. viminalis is very interesting for livestock when there is a shortage of micro elements like Zn and Se but less when there is a shortage of Cu.Table 1. Nutritional values of tree leaves per species and measured at three sampling periods. The Group differences based on the LSD's are indicated with a, b and c's. Significant interactions were found between species, sampling period and/or soil type for DOMD, Ca, S, Zn and Se.The Valab project (Integrated Ecosystemic value-enhancement of the Guadeloupian Forest Agrobiodiversity) is a participatory action research, that has developed at the initiative of the Agricultural Union of Vanilla Producers of Guadeloupe (Syaprovag) and within the framework of a European Innovation Partnership. In the exploratory phase of the project, we studied the constraints or motivations to setting up livestock units within agroforestry systems in the private forests of Guadeloupe. This aims to identify the locks that might hinder the development of this activity, or on the contrary the potential to be encouraged. To establish a diagnosis of the current situation and practices, 70 stakeholders (among them 48 farmers) were interviewed.All the breeders interviewed (37) mention economic motivations for sales and/or self-consumption. The valuation of their land is another reason given, so animals are used to limit the bushes while fertilizing the soil. However, in 25% of cases, they are concerned about production costs and question the profitability of this animal sub-activity. Many breeders (36%) give importance to their activity in the construction of their identity, whether it is through a desire to perpetuate traditions or to maintain family activities. A strong commitment is observed for «body involvement» among 44% of breeders who like to spend time taking care of their animals or for physical activity. At the opposite, 36% report that this occupation is difficult and hard. For 44% of the informants the development of his breeding activity also depends on the relationships they have with their colleagues and family or even on the links between them and their animals. Finally 31 % of them reported how they suffer from dog's attacks from the vicinity as well as from praedial larceny.The main constraints identified are natural constraints (61% of cases), including topography, climate and predators. On the other hand, 28% notify their motivations for environmental protection. The second most important constraint is of a technical nature for 44% of farmers. Very often, this is associated with the complexity of their work schedule resulting from the mixed nature of those farming systems that count with multiple units. Others ask for more technical references or support services. Regulation and the role of institutions are also among the obstacles identified by 36% of the farmers who felt constrained by norms or disappointed by state organizations. Further development of this work involves the analysis of the set of actors within this very complex socio-technical system of agricultural activities within the Guadeloupian undergrowth.Keywords: constraints, motivation, livestock farming, agroforestry, humid tropic. Silvopastures provide distinct ecosystems services and are a multiple-income enterprise for land managers benefiting from the integration of trees, livestock, and forages. The objectives were to: 1) characterize light environment and forage productivity, and 2) determine a mitigation (MIT) parameter [ability to reduce air temperature and thermal-humidity index (THI)], as a function of tree-species in silvopasture vs. open-pasture. The silvopasture, established in 2007 as an alley-cropping system, consisted of three tree-species (Pinus palustris, PP; Pinus taeda, PT; and Quercus pagoda, QP) and two alley-widths (Fig. 1). Understory forage was a mixture of big bluestem (Andropogon gerardi), gamagrass (Tripsacum dactyloides), indiangrass (Sorghastrum nutants), and switchgrass (Pannicum virgatum). Light environment under the trees was ~40% compared to the alley pasture and it was not different among tree-species during summer but different during winter. Forage dry matter yield was lower by ~35% for QP and PT (~5 Mg ha-1) at the 3.5-m south sampling location compared to PP (8 Mg ha-1) but there was no difference at the center of the alley (~11 Mg ha-1). All the tree species were able to provide a significant MIT during daylight hours with greater impact during summer months (June, July and August). The three different species showed a different ability in MIT; QP showed the strongest MIT, which was significantly larger compared to PP and PT, which in turn showed similar values. Bumper harvests of honeylocust (Gleditsia triacanthos L.) pods on some isolated trees often draw attention of farmers and researchers on the value of this tree as a potential fodder producer for ruminants (Detwiller 1947, Dupraz andNewmann, 1994). In vivo digestibility studies of the pods provided encouraging results with sheep (Foroughbakhch et al, 2006). In 1988, an orchard was established with 16 grafted varieties that were identified by a survey of honeylocust trees in Southern France. The orchard includes a variety selected in the USA (Millwood variety). Pod production was monitored since plantation. Alternate bearing is a distinctive trait of all cultivars, but high year production are not synchronised between all varieties. Growing a mixture of different cultivars would therefore allow a sustained pod production. Measured yields are small, as the local site conditions are harsh. The tree size has remained almost the same for the last 20 years, indicating a severe water shortage at the site. Better soil conditions could easily induce higher yields, but the extrapolation of extraordinary heavy harvest from isolated trees is definitely not advisable. The adoption of honeylocust fodder trees by farmers rely on the availability of grafted trees at a reasonable cost, and this proves to be the limiting factor for adoption at the moment. A better understanding of tree pruning and pollarding on the fodder quality of woody leaves may be helpful for the conception and the management of livestock agroforestry systems (Dufour et al., 2018;Emile et al., 2017). In this study we compared the nutritive value of pollard and high stem tree leaves across seasons in three species (common ash, white mulberry and paulownia). Leaves were collected on high stem and winter pollard trees grown on the same site. All samples were analysed for 1/ ash, crude protein (CP), and fibre (NDF) contents, and 2/ enzymatic digestibility (Aufrère, 1982, adapted to the DAISY Incubator). The three-way ANOVA shows a significant effect of species, season and management on all the variables. Common ash and white mulberry exhibit a better fodder quality than Paulownia: higher leaves CP content, digestibility and lower NDF content. Leaves ash content was 50% and 30% higher for white mulberry than for common ash and paulownia, respectively. There was a strong interaction species by management for all variables but particularly high for CP and ash content. Leaves CP content decreased from June to October (146 to 131 g kg-1 DM). In conclusion, the three species have a sufficient digestibility and CP content to be including in the diet of ruminants whatever the season and the tree management. Silvopastoralism is an activity that integrates silvicultural production and animal production, based on grazing, on the same land. In this study, we evaluated the effects of pig activity in a natural forest of Quercus faginea (Vitoria-Gasteiz, Northern Spain). A stocking rate of 8 pigs/ ha with two different pig breeds (an autochthonous and endangered Euskal Txerria breed, and a mixed breed) were considered. The experimental design consisted of three plots divided according to the breeds (1 ha) and three control plots without animals (0.5 ha). The experiment lasted two productive cycles of approximately five months each (June17-October17 and December17-April18) and samplings were taken at the beginning and at the end of both cycles. Each subplot was set up for proper animal management with shelters, water points and feeders, all which became points of concentration for pig activity. Soil compaction, one of the most damaging effects of grazing, was closely analysed. Twenty sampling points were defined in each subplot and control plots. As an indicator of soil compaction, resistance to soil penetration was measured with a digital penetrometer (0-60 cm). Two replicas were recorded and averaged with 0-10; 10-20; 20-30; 30-40; 40-50 and 50-60 cm depth ranges. ANOVAs were applied, taking into account the effect of treatments of pig breeds and controls.In addition, in relation to distance to points of concentration of pig activity, transects of 16 points each were defined to measure resistance to soil penetration with a manual penetrometer (0-10 cm) after the first and second pig cycle. In general, the observed values do not kPa) regardless of the time the samples were taken in the cycle. No differences were detected at the level of soil compaction at the end of the second cycle between the two different breeds, or with the control. Although, in the duration of this study, the effect of resistance to soil penetration was not significant a tendency of greater soil compaction was observed in the plots with pig activity. The effect of pig activity showed spatial variability within the plots while the distance to points of concentration to pig activity was also a significant effect, higher compaction and bare soil coverage were both observed with less distance. High values were eventually recorded with manual penetrometer (0-10 cm) near activity points, after two pig cycles. The obtained results show a complex production system that requires an adequate and adaptive management plan in order to guarantee the sustainability of pig activity under trees of natural forest. A simple crossover design was used to analyse the variables of each experiment. In experi-Leucaena -Tanzania (T4) (7,4 l/v/d; 12,8 and 3,9% for total solids and fat, respectively). In in T4 (14%). The total and the commercial timber volume of E. camaldulensis was 59,2 and 31,2 m3, respectively when considering 16,1 m and 14,4 cm as total height and diameter at breast height, respectively. According to commercial volume information it can be expected among 900 and 1200 wooden poles for fencing (2,1 m length) for different uses in the farms or between farm sells. For carbon stock aerial biomass, the reserve was estimated as 12,6 tC/ha with fixation rates of 2,1 tC/ha/yr. Tanzania -Leucaena -E. camaldulensis was identified as a silvopastoril system that increase the saleable yield, and the total solids of milk compared with the predominant open grass (Bothriochloa pertusa) in the colombian dry caribbean region, that has shown a milk production of 4,4 y 3,9 l/v/d and total solids of 12.2 y 12.9% at the early and mid lactation stage for dual purpose cows, respectively. This system also represents an opportunity to contribute to mitigation from carbon fixation rates of 2, 10 tC/ha/yr at the cattle production system and farm level. Montes I. 1 (irene.montes@12tree.de), Montagnini F. 2 , Ashton M. As reforestation and restoration processes gain momentum across the world native tree species are being established for production, conservation and restoration purposes in agricultural landscapes. One such tree with promise is dinde [Maclura tinctoria (L.) D. Don ex Steud]; a multi-purpose, Neotropical tree species that is being widely introduced on to silvo-pastoral farms of the coffee axis region in the Latin American Andes. No formal studies have been made that examine its potential for reforestation. Unlike exotic species, technology for the introduction of native species in ranchlands is scarce, and markets and wood-processing techniques are often insufficient. It has therefore become imperative to generate information and disseminate appropriate management practices for native species that can be integrated into reforestation and rehabilitation strategies across Latin American landscapes (Piotto et al. 2004;Calle et al. 2012). In this study we aim to measure and define the relationships between age, bole size (dbh), tree height, and crown size of planted dinde trees for the development of spacing guidelines at time of planting and for thinning. We also sought to identify whether tree growth is influenced by various measures of soil fertility. We studied these relationships on dinde trees planted at twelve silvo-pastoral farms in the central Andean foothills of Colombia. Our results are the first to show dinde has comparable growth to other native and exotic trees used for reforestation in Latin America. Strong relationships exist for tree age and diameter at breast height (DBH) with crown size and height. Based on these relationships we developed spacing and thinning guidelines for timber production in plantation and silvo-pastoral circumstances. Soils were generally fertile but varied between farms.Growth varied with soil primarily related to pH and calcium, and secondly to soil nitrogen and organic matter. Our results provide preliminary information for the forester and/or the farmer on expected growth and size relationships for given ages in relation to soil fertility for planted trees. As more trees are planted on a wider array of soils and providing a greater diversity of ages further studies are necessary for refining guidelines.Agroforestry could play several functions in ruminant production systems, but at present it constitutes only a minor part of ruminant husbandry in Northern Europe. Ruminant livestock farmers need more scientific and practical knowledge for the implementation of agroforestry systems. During meetings held in France, the Netherlands and UK in 2014 in the framework of the AgForward project, the expectations and questions of farmers related to agroforestry were collected. They identified the need for more data on the nutritive value of tree leaves, as well as information on methods to protect young trees from ruminants and on the spatial arrangement of trees in the paddock. Other demands were more country-specific. In the Netherlands for example, dairy farmers were preferentially interested in the health benefits for cows and the effect on soil.To answer these multiple demands, several studies were implemented in these three countries (Table 1) and gave first promising results. However, to promote agroforestry in ruminant production systems several knowledge gaps still remain, such as the proportion that tree biomass could play in the diet, the presence of antinutritional compounds, the effects of nutritive value of tree leaves on the health and production, and the role of trees on ruminant welfare, especially in the case of climate change. Despite the multiple functions offered by trees to livestock farmers (e.g. source of forage, animal welfare, litter, fuel wood, timber), agroforestry systems constitute a minor part of ruminant husbandry in Northern Europe. Before adopting agroforestry, farmers need more information on the methods to protect young trees from ruminants, and on the spatial organization of trees to address multiple purposes.To answer these demands, an agroforestry paddock was co-designed with farmers, researchers, technical institute engineers and extension agents in 2014. This paper presents the agroforestry paddock and gives its first results.The agroforestry paddock (3 ha) was implemented in February 2015 on the innovative mixed crop -dairy cattle system of INRA in Lusignan (Vienne, France), which integrates also other agroforestry practices (Novak et al., 2016). To save fossil energy and water, forage resources are preferentially grazed. Fodder trees were planted to be browsed by cattle but also to provide wood chips. Two types of pruning techniques will be tested: pollards of Morus alba and Alnus cordata, and coppices of Salix caprea, Ulmus minor, Robinia pseudoacacia and Alnus incana. High stem trees (Pyrus communis, Gleditsia triacanthos, Sorbus domestica) were also planted, mixed in various layouts with pollards and coppices. Three spatial organizations of trees are tested with single, double or triple-row sets, with an inter-row spacing of 20 m. To restrict the browsing of the young trees by cattle, seven types of tree protections were compared: single or double line of electric fence, electric fencing tape, metal or plastic fences, olfactory repellents and a barrier tape. Another option was to exclude the paddock from grazing and to mow the grassland during the first years.After two years, the most efficient protections were the following: electric fence, electric fencing tape and metal fence. Electric fence and electric fencing tape are quickly installed and facilitate the mechanical control of the vegetation although they are relatively expensive. Metal fence is cheaper and offers the opportunity to be used as trellis for climbing fodder plants. However, it needs more time to be installed and it complicates the control of the vegetation on the tree rows. The olfactory repellents did not work.When considered relative to the number of tree seedlings, double and triple row sets are more economical and time saving for their implementation and maintenance. They also open more opportunities for different tree uses compared to single rows. However, the available grazing area is more reduced, and will only be recovered when the trees will be browsed.The collaborative design gave promising layouts for integrating multipurpose trees in a paddock grazed by cattle, and for using them as an aerial browsed fodder. We acknowledge the support of EU through the AGFORWARD FP7 research project (contract 613520).L19 Silvopastoralism The valonia oak forest in Western Greece is one of the biggest and oldest in the Balkan Peninsula. It is mostly used nowadays for livestock raising of freely grazing sheep and less goats, rending it an important silvopastoral system. Under the framework of the AGFORWARD project, we investigated this system. The area can be characterized as hilly to semimountainous with trees extending from an altitude of 0-580 m, mostly on shallow to very shallow soil of limestone origin. The climate of the region is typical Mediterranean with mean participation of 938.5 mm and mean annual temperature 16.8 C. Even if the environmental conditions are favorable for organic matter accumulation and decomposition, soil litter is absent due to wind and water erosion. Quercus ithaburensis subsp macrolepis dominate in the area with old aged trees of 500 years old (mean age 200-250 years) and 4 m bh diameter, mean height ranging from 6.4-11.5 m at a density of 32-204 trees/ha. Most stands are uneven aged even if they appear as evenaged due to the old age of the trees, from a silvicultural point of view. A major problem is the lack of a management scheme applied in the area. This resulted to intense illegal logging and land use switch to agriculture or brush encroachment, and other problems caused by humans. The system provides numerous ecosystem services such as eco-friendly dyes, high quality dairy products, medicinal plants and contributes to biodiversity with its diverse flora and fauna species.Planting and managing native fodder trees and shrubs on degraded lands offers a promising approach to establishing resilient silvopastoral systems (SPS) in the semiarid Caatinga region of Brazil (Pinheiro & Nair, 2018). Although several examples of such successful smallholder initiatives are available, their experience is seldom known or recognized by outsiders. The objective of the present work is to describe such a success story of a progressive smallholder farmer, Eduardo Emídio, in his 24 ha-farm in the municipality of Barreiros, in Bacia do Jacuípe region, Bahia state, Brazil, and assess the extent of improvements brought about in landquality and productivity through his innovation. His initiatives included high-density planting of cactus (Opuntia ficus-indica) and enclosing the area to keep off animals, broadcasting seeds of native fodder trees (mainly Caesalpinia pyramidalis) and adding a few tree seedlings, and managing the buffelgrass (Pennisetum ciliare (L.) Link syn. Cenchrus ciliaris (L.)) covers. Manure was applied at the rate of ca. 1kg per m 2 annually. By replicating this SPS model in plots six times on the 24-ha farm, the farmer could maintain a total herd of 110 goats and 40 cows, and substantially increase his profitability, such that it was hailed as a model farm by the local farmers and organizations. We collected some on-farm biophysical productivity data from a non-recovered area, an extensively degraded pasture (DP), and two closed SPS areas, one with 3-year-old trees (SPS 3) and the other with 17-year-old trees. The DP and the SPS were compared in terms of percent soil cover, mulch cover on land, and stand density and species composition of trees; total biomass productivity and the biophysical water storage in SPS 17 were also estimated. The DP, which the farmer described as the least deforested area on the farm, had a shrub/tree density of 462 per ha and a total of 18 tree species, compared with the corresponding values of Sardinian landscapes have evolved through millennia as a response to the environmental as strategies to maximize production of multiple goods and ecosystem services (Zapata et al., 2014). Cereal and fodder crops or semi-natural grass-herbs communities are mixed with a sparse tree cover mostly dominated by oak trees such as holm oak, cork oak, downy oak. These landscapes are common in Spain and Portugal, where they are respectively called Dehesa and Montado, but are also spread in other areas such as Sardinia in Italy, where they cover about 113.000 ha, 4.7% of the regional surface and 9.8% of the total agricultural land (Camarda et al., 2015). Sardinian Meriagos, often tilled and sown with annual species for the grazing and hay production, are mainly dominated by cork oak or wild olive, with tree densities ranging from 7 to 250 ha -1 and are generally concentrated in the hilly areas of the North and the Center of Island.Others agro-silvo-pastoral systems of Sardinia are Mediterranean maquis with more or less dense shrubs and a combination of cereals, forage crops and natural pastures. Livestock graze usually for the whole year, sometimes in mixed grazing systems with sheep, goats and beef cattle, using different feed resources such as herbaceous species, shrubs and trees. The grazing activity involves private, public silvo-pastoral areas and common lands. Meriagos wooded grasslands have emerged from a continuous selection of both the woody and grass vegetation operated by traditional agro-silvo-pastoral activities practiced over centuries. They are used as a forage suppliers and provide ecosystem services such as climate regulation, carbon sinks (Seddaiu et al., 2013), control of water flow, soil erosion regulation and pollination (Bagella et al., 2013). Scattered trees in Mediterranean's Meriagos (Seddaiu et al., 2018). Traditional land uses still persist in these agro-silvo-pastoral systems, but depopulation and consequent abandonment represent a real threat. As antioxidant capacity and the content of plant secondary metabolites ascertained in the legume-based swards could potentially affect the nutritional properties of forage, their variations caused by contrasting light intensities thus represent a particular benefit, which must be exploited as an additional service from agroforestry. Our results provide new insights into the effects of light intensity on plant secondary metabolites from legume based swards, underlining the important functions provided by agroforestry systems.In plant species, genetic and morphological variability are considered the basis for their adaptation and ability to respond to challenges and threats (Govindaraj et al., 2015). Tithonia diversifolia, a shrub of the family Asteraceae, is considered a forage species of great importance due to its chemical composition, productive performance, and adaptation (Mauricio et al., 2017, Mauricio et al., 2018). According to different studies, silvopastoral systems with T. diversifoliacan replace commercial feeds (15% DM basis) in a total mixed ration diet fed to dairy cows without any change in total intake (18.7 kg MS/ day), milk yield (22.9 kg/day) and composition; an alternative resource like T. diversifolia might can provide important economic saving for farmers (Ribeiro et al.,2016). On the other hand, comparing animal production in systems with T. diversifolia(5,000 shrubs/ha, alley crop) and monoculture systems whit Brachiaria or Urochloa, the daily milk production per cow is 8% higher than the conventional system, and the stocking rate and milk production (ha/year) are higher 32.1% and 36.6% respectively, in addition to greater production of solids in milk (Rivera et al.,2015). The objective of this work was to determine the diversity of T. diversifolia in Colombia and Mexico, as well as to recognize its social, productivity and economic potential for bovine systems. Molecular markers were used to determine genetic diversity, and chemical characteristics and morphologies were analyzed with multivariate statistics and non-parametric statistics were used to analyze the economic and social variables. The materials presented differences in their crude protein (CP) (29.4% ± Sheep and goats are one of the most important livelihood capitals of wayuu indigenous communities in La Guajira, Colombia. These populations are being affected by the effect of climatic variability on the availability of forage for animal feed. The present study assessed the biomass production and resprouting capacity of four native forage species during two contrasting periods (rain and drought). A total homogenization pruning at two meters of height was performed for individuals of the species Prosopis juliflora, Tabebuia chrysanta, Phitecellobium dulce and Capparis odoratissima; in trees with a diameter at breast height (DBH) between 5 and 20 cm. Monthly counting, marking and recording of sprouts was carried out during each contrasting period (three months for rain season and three months for drought season). At the end of each period the regrowths were harvested and stems). In the rainy period P. juliflora and T. chrysanta had the highest sprouting capacity with 114.5 and 113 sprouting / tree respectively, followed by P. dulce and C. odoratissima with 86 and 3.5 sprouting / tree. However, the dry season influenced significantly the production of sprouts in these species, being the exception of P. juliflora with 214 sprouts / tree. There were differences in the production of edible biomass between the species. For the first period, the T. chrysanta and P. juliflora species showed higher value with 356.5 and 222.57 g/DM/tree respectively. while in the second period P. juliflora presented a better response to drought with a production of 503.7 g/DM/tree; followed by T. chrysanta with 7.63 g/MS/tree. With respect to the leaf -stem relationship, the species with the best relation correspond to T. chrysanta with 1.48, followed by P. dulce with 1.21 and P. juliflora 1.06. It was not possible to estimate this relationship for C. odoratissima due to the low production of sprouts during the development of the investigation. The fractionation analysis of the biomass in the thin and thick components showed that the P. dulce species assigns a percentage of total biomass for the edible biomass fraction with 98.27%, followed by P. juliflora and T. chrysanta with 95.21 % and 85.26% respectively, while for C. odoratissima the fine fraction of the leaf is the most important. As a conclusion it can be said that the species P. juliflora behaves in an effective way in its ability to regrow and produce biomass in relation to the other species of the study for the two assessed periods. In this sense, it is necessary further research about the effect of frequent pruning on the survival of P. juliflora and also to propose the inclusion of silviculture management practices, such as tree pruning, into the animal feeding strategies of wayuu communities. The species C. odoratissima showed the lowest capacity for regrowth and biomass production for the assessed periods.Keywords: Animal nutrition, forages, small ruminants, dry topic.Agroforestry planning requires reliable information on the species to be used. Different tree species of Inga have been successfully employed in different agroforestry and silvopastoral systems because of their rapid growth, tolerance to poor soils and beneficial effects for soil fertility, as well as providing shade, firewood and food. Here we present results of digestibility and nutritional assessments of five Inga species used in agroforestry and silvopastoral systems in Northern Mato Grosso region, Brazil. These species were sampled in family farmers' properties that participate in the Sementes do Portal project, coordinated by Instituto Ouro Verde. Sampling the species (I. edulis I. laurina I. macrophylla, I. nobilis I. pilosula adult trees, avoiding sampling two trees less than 50 meters apart. These trees were planted in homegardens or agroforestry systems, except I. nobilis, which grows spontaneously in wet areas. For each tree, we measured the diameter at breast height (DBH), total height and crown area, and visually estimated crown density using a five-point scale. Leaves of each tree were collected for determining dry matter, mineral matter, ethereal extract, crude protein and fibers. All species exhibited basal branching, usually below 2 m, which is useful for direct feeding on trees. I. edulis and I. laurina were the largest, with average DBH of 61.1 and 33.2 cm and crown areas of 102.4 and 77.7 m2, respectively. Most of the trees had an intermediate crown density, which would allow the development of pasture under the canopy, except I. macrophylla, which provides deeper shade, and is therefore better suited to control weeds. All species have high protein content, exceeding 10% of dry mass. Despite the fiber content of Inga leaves was similar to other tropical forage plants, digestibility was much lower (ca. 20%).Nutritionally, I. edulis and I. macrophylla stand out, as values of mineral matter and crude protein are significantly superior to others and with significantly lower fiber content, yet still not ideal for animal nutrition. To confirm that the leaves of these species are not useful as forage, specific tests for lignin are still required. Regardless, fruits of these species have nutritional qualities for both animals and people, being the pulp rich in carbohydrates and the seeds valued as natural purgative. This study provides important information for agroforestry and silvo-pastoral system designs, such as size and crown density of adult trees for five Inga species, as well as the nutritional quality of the leaves, although future studies are still needed to confirm leaves digestibility and to incorporate the fruits of these species into analyses. Further silvicultural studies are also welcome, since few Inga species have been used yet in agroforestry or silvopastoral systems. The wonders of agroforestry's biophysicsAgroforestry and agroecology: the key divisions in the growing Land Use Army (organic, biodynamic, permaculture etc.), applying ecological principles and practices to the design and management of agroecosystems, and integrating the long-term protection of natural resources as an element of food, fuel and ging more complex systems, relying on diversity within the system to deliver ecosystem services such as pest control and maintaining fertility. However, there are challenges to managing agroforestry systems with an agroeco logical approach, particularly with regards competition for limited resources such as nutrients, and weed control within the tree rows. This session will explore the opportunities and challenges that combining agroforestry and agroecological farming can generate. The 10 Elements of Agroecology: Guiding the transition to sustainable food and agricultural systems Barrios E. (edmundo.barrios@fao.org), Bicksler A., Siliprandi E., Batello C., Brathwaite R. Food and Agriculture Organization -FAO, Rome, Italy Agroecology is an integrated approach that simultaneously applies ecological and social concepts and principles to the design and management of food and agricultural systems. It seeks to optimize the interactions between plants, animals, humans and the environment while considering the social aspects that need to be addressed for a sustainable and fair food system. Agroforestry is considered a realization of the promise of an agroecological approach. The 10 Elements of Agroecology emanated from a FAO consultative process, expert reviews and regional seminars, and include: diversity, co-creation and sharing of knowledge, synergies, efficiency, resilience, recycling, human and social values, culture and food traditions, responsible governance, circular and solidarity economy. As an analytical tool, the 10 Elements can help countries to operationalize agroecology and promote agroforestry by linking increased biodiversity and the use of local and co-created knowledge to build relevance, credibility and legitimacy, with agroecosystem redesign that enhances synergies, efficiencies and resilience, and helping to enhance governance while developing a circular and solidarity economy. By identifying important properties of agroecological systems and approaches, as well as key enabling environment conditions, the 10 Elements constitute a guide for policy makers, practitioners and stakeholders in planning and evaluating transitions aiming at sustainable food and agricultural systems. Agroforestry systems in the Talamanca region in Costa Rica are particularly interesting because their vertical and horizontal organization is particularly diverse. Plant diversity was separated by different functional groups of the plant communities. This helped to better understanding the rules that govern the production in multi-strata systems. The aim of this study was to address the question, how plant diversity influences the global productivity of agroforestry systems? Plants in nine plots of 100 m² in each of 20 fields were classified into five groups (banana, cacao, other fruits, timber, and firewood), and diversity was assessed by the Shannon-Wiener index. A global evaluation of the productivity of these systems was possible with the estimation of the production of each plant during 1 year. This production was converted into income according to local market prices. While we observed a global positive effect of plant diversity on global income. When considering the functional group separately, there was a positive effect of plant diversity for higher strata groups (other fruits, firewood, and timber) and a negative effect for lower strata groups (banana and cacao). This suggested that complementarity between plants was stronger than competition for those plants occupying the higher strata of the canopy but that competition was stronger than complementarity for plants occupying the lower strata of the canopy. Agroecological benefits realized by small farmers adopting tree-based farming Bedare G. (ganeshbedare@gmail.com), Daniel J., Sawant Y. Agriculture, BAIF Development Research Foundation, Pune, Maharashtra, India Trees are commonly found on farmland in India, but intensive agroforestry is not often practiced. BAIF Development Research Foundation, a non-government organization engaged in rural development, introduced tree-based farming among small farmers about 30 years ago. It has grown into a major land-based development programme over the years, covering about 80,000 ha in 11 states of India. The socio-economic benefits of this agroforestry model, locally known as the wadi system, are well documented (Sohani 2014, Indian Farming, ICAR, 33-35;Sawant et al, 2016, National conference on Forestry in India, HFRI, 26). It comprises of fruit trees, annual crops and fast-growing multi-purpose trees. Besides the easily measured socio-economic gains such as farm income and reduced distress migration, the wadi system brings in many agroecological benefits. As these benefits have not yet been scientifically examined, the study reported here is an attempt towards understanding the agroecological aspects of this system. The location of this study is villages around Jawhar in Maharashtra state of India and the mango and cashew trees were about 15 years old. Information was collected by interviewing 30 farmers with a questionnaire. The study revealed increased biological activity in the farms adopting the wadi system. This increase was seen in the biodiversity of birds and insect as well as soil organisms. Farmers attributed many ecological benefits to this increase in biodiversity, but it was not always possible to find direct relationships. Reduced pest incidence as a result of birds feeding on them was a major benefit, but some farmers also found the birds feeding on fruits and intercropped grain crops. More than 95% of the farmers felt the interaction among the birds, insects, reptiles and crops to be positive. A major ecological benefit of tree-based farming is the reduction in deforestation in the neighborhood of the farms in the study as fuelwood and fodder are produced in the farm itself. In some cases, this has resulted in moderated flow of rainwater and more ground water recharge. Reduction in soil erosion is another benefit that in turn improved biological activity of soil. In general, interventions aimed at building a sustainable farm production system resulted in a more favorable ecosystem on farms practicing wadi system. Improved soil fertility and the favorable conditions under the tree canopies provided a better environment for weed growth. Plants that were few in number earlier have now become serious weeds and some new weeds have also been observed. Although the ecological benefits of the wadi system far outweigh the negatives, there are instances where farmers have not fully realized the potential because of unsustainable practices such as excessive use of water and agrochemicals. This emphasizes the need for adopting appropriate practices in order to sustain the gains. Keywords: Wadi system, Agroecology, Biodiversity, Deforestation, Soil erosion.Mountains cover almost a quarter of the earth's surface. Both urban and rural areas depend on mountains for essential ecosystem services such as fresh water, crops and highvalue products. Mountainscapes are storehouses of natural and cultural diversity; they are on the frontlines of global change, and can provide insights and solutions to global problems. Multi-functionality of mountainscapes depends on intertwined and interdependent five pillars of biological diversity which includes microbes, plants, fungi, invertebrates and vertebrates, which are the result of hundreds of millions of years of evolution. Agroforestry could be a potential innovative solution for addressing mountain challenges such as climate change and restoring functionality to mountain ecosystems, especially if we seek new, innovative ways of linking the use of trees with positive feedback models aimed at supporting the five pillars of diversity. Agroforestry is broadly defined by the FAO as the use of trees in agricultural systems, however, given the changes imposed on agricultural systems over the past two decades, perhaps it is time to redefine this concept. It is time to think about the goals and drivers behind the use of trees, what are the overall benefits to be gained by incorporating trees into a social-ecologicalsystem, beyond C capture or shading. Trees function as complex ecosystems, acting as reservoirs of biodiversity, providing feedback loops into the broader ecosystem, furthermore, these effects are unique to a given tree species. Therefore we need to first understand the complexities of a given tree species and the effects it has on the surrounding ecosystem before we decide on its use. An integrated approach towards agriculture is now more commonplace than in the past, and in light of this, we should rethink how trees fit into these integrated systems. What roles should the trees be playing, especially in environments where there remains a delicate balance between human activities and nature. With this in mind, I would like to propose the following steps for restoring mountainscapes for a better future: a) selecting superior species based on local social-ecological systems; b) developing vertical communities with tree-shrub-grass layers, as well as the above-below ground interaction of roots, mycorrhiza and soil microbes; c) Integrated system with tree-crop-livestock; and d) Biomass-based circular economy & society. The sustainability of agroforestry systems largely depends on incorporating business models that use new technologies to restore landscapes and recycle biomass, which benefit farming communities while generating sustainable profits and protecting the environment. We are carrying out research into new plants/crops/ fungi that can thrive in the face of global change.Keywords: Trees, mountainscapes, biological diversity, integrated system, circular economy. In this study we investigate trade-off and bundle formation among ecosystem services (ES) in Mediterranean woody crop systems. Therefore, we selected frequently tilled almond monocultures which are known to be associated to reduced ecosystem service potential. We capacity to improve regulating and supporting ES. We measured indicators related to carbon stock, pollination and biodiversity and relate these to provisioning of almonds to assessed whether ES bundles or trade-offs emerge. We found that pollination indicators form an ES bundle with almond provisioning (Fig. 1 c-d). Plant species richness was significantly negatively correlated with almond provisioning (Fig. 1, f). This suggests that maintaining understory vegetation results in a trade-off for almond provisioning. Our results also suggest that tradeoffs and synergies might be management specific, as GM was better capable of enhancing both food provisioning and understory plant diversity in comparison to the other treatments. Soil organic carbon (SOC) and insect species richness were not correlated to almond production. To conclude, this study shows that agroecological management in almond orchards may be an efficient tool to enhance carbon stock and biodiversity.Keywords: Ecosystem services, trade-offs and bundles, Mediterranean, almonds, Spain.Canada contributes significantly to world food production, but this has not occurred without environmental costs. The fragmentations of the agro-ecosystem and associated habitat destruction for monoculture production have contributed to a loss of flora and fauna diversity. Producers often regard field boundary habitats as a non-productive land that potentially limits crop production. We hypothesized that non-crop areas provide a mixture of habitats that contributes to the diversity and dynamics of the agro-ecosystem, with net positive impacts on adjacent crops. To test this hypothesis we: 1. spatially analyzed the extent and distribution of field boundary habitat influences on in-field variability using precision agriculture approaches, such as micro scale in-field measurements of soil moisture, above-and below-ground biodiversity, insect pests, pathogens and weeds, crop metrics from UAV-based sensors; and 2. quantified the benefits of conserving non-crop areas on crop yield and quality. We collected data from 15 sites representing one of two field boundary habitat types in the black soil zones of Saskatchewan, Canada: planted shelterbelt (Figure 1), natural hedgerow, and open field with no field boundary habitat. The data is currently being analyzed. The intent is to provide science-based information on the functioning and value of field boundary habitats and the extent of their influence into adjacent field crops. Potential for using biochar in resource-limited agroforestry systems Nair V. (vdn@ufl.edu), Nair P., Freitas A.One of the major expectations from agroforestry systems (AFS) is to maximize the use of locally available and environment-friendly resources instead of harmful and resourcedepleting chemical inputs. In this context, the use of biochar from locally available farm materials to substitute, and complement to some extent, the use of synthetic products holds promise. A meta-analysis of studies on biochar use in agriculture from 1850 to 2011 showed that 50% of cases reported positive effects, 20% no effect and 30% negative effects on crop yields (Maddox, 2013). Wide differences in nutrient availability exist among biochar produced from plant-and animal-based materials (Table 1) and could result in variable crop-yields when biochar is used as a nutrient source. Biochar produced from mixed feedstocks (feedstock refers to the materials used for biochar production) would be an option to optimize the amount of biochar to be land-applied to maintain soil fertility (Nair et al., 2017). For example, both plant-and animal-based \"waste products\" are often available in AFS in many parts of the world. Application of biochar within tree-rows or its use as a nutrient source in other AFS is yet another, relatively unexplored opportunity. Developing appropriate techniques for biochar use will be a win-win situation in terms of crop-yield increase and waste disposal for smallholder farmers particularly in developing countries. Modern agroforestry emerged in the 70's as an answer to the disappearance of tropical rainforests. To improve land management, it was felt necessary to combine crops, trees and animals and apply management practices compatible with the cultural patterns of the local population. Yet, today's agroforestry relies often on simplified associations of one crop and one tree species. Such associations ignore the \"forest dimension\" of agroforestry and fail to restore forest-like ecosystems and promote local cultural values. I argue that between the 2 extremes of \"forest gardening\" and a simplified two-plant association, there is a continuum of multilayer agroforestry options with environmental attributes close to natural ecosystems, management features compatible with existing practices and productive qualities comparable if not better than simplified associations. I provide examples from Indonesia (multistrata agroforests in Sumatra), Egypt (multilayer agriculture in the Nile Delta), Cameroon (cocoa agroforests near Yaoundé) and Bangladesh (agroforestry gardens near Rajsahi). They show that multilayer agroforestry has a range of sustainability attributes and performs well for soil carbon sequestration and climate change mitigation. If agroforestry is to play its role to address environmental and climate change challenges and diversify land-based commodities, it needs to learn from complex agroforestry associations and recommend them as viable alternatives to industrial agriculture.Knowledge of tree water use can inform water requirements of interacting components and best bet management options for farmers. The objective of the study was to assess the daily water use patterns of mature Cordia africana and Albizia coriaria trees at different times of the year. This study deployed 6 sapflow meters on stems of 3 selected trees each of C. africana and A. coriaria. We measured the daily sapflow of these two species using the heat ratio method (HRM). The two species show contrasting patterns of seasonal water use across leaf shedding stages characterized by episodes of reverse flow in A. coriaria. This is an indication that the two species may have different water-use strategies. C. africana generally used 12% more water than A. coriaria on a standardized daily basis. There was a significant main effect of the interaction between tree species and season on daily water use. The consistent and predictable leaf fall in A. coriaria may be beneficial for planning farming activities among smallholders. This knowledge is useful in facilitating development of appropriate tree management regimes for optimal utilization of soil water. Managing on-farm trees can be a powerful means of controlling tree water use in agroforestry system. For example, canopy pruning can reduce the water demand of the tree component and may result in recharge in the croprooting zone, while prolonging the period of intercropping. Background Slash-and-burn agriculture or Shifting cultivation or Jhum cultivation, a form of traditional agroforestry system constitutes the basic subsistence of livelihood among rural masses throughout the tropical areas. Despite its environmental impact, this practice has been continued adopting as a sole agricultural resource for the hill community residing in tough topography. Shortening of fallow length of Jhum cycle in one hand and supporting the inclining population in the other is challenging concern for co-existence between agriculture and hill forest ecosystem.The present investigation aimed on comparative assessment of pre-burnt forest litter (PBFL) and their burning effect on soil quality index (SQI) at different fallow length viz. Agroforestry appears as a way of diversifying farms in the European context. These practices are, however, only emerging in northeastern France. There are a multitude of reasons why farmers venture or do not venture into agroforestry practices. The general tendency is that farmers consider investing into agroforestry if have concrete production, environmental and/ or socioeconomic performance indicators for their specific regional conditions. The overall objective of our project is to evaluate the potential of alley cropping agroforestry plantations at the scale of the French Grand-Est region, based on indicators and to simulate agroforestry deployment scenarios at the territory scale.The impact of introducing trees into agricultural plots is assessed at 3 scales: 1) detailed analysis of biophysical processes at a well-experimented site, 2) analysis of a subset of processes at the plot scale at 6 plantations and 3) an agro-environmental and socioeconomic assessment of deployment scenarios at the scale of the territory.Monitoring at the 6 plantations has just began, while the pilot site is monitored in terms of production and soil functioning since 5 years. The site is composed of 2 mixtures (poplar/ alfalfa and alder/cereals) and corresponding monocultures. During the first years, agroforestry plots were less productive than monoculture plots (shown for the trees on the figure below) because of an intense competition between species. However, this trend is currently changing. Trees alone contribute 9% of total N addition in AFS in India (Fig. 1). Thus, BNF tree species can contribute a significant role in N-cycling in agro-ecological systems. Multi-scale assessment of the impact of tree hedgerows on wheat root microbiota : organic vs. conventional farming Ricono C. (claire.ricono@univ-rennes1.fr), Mony C., Vandenkoornhuyse P.Agricultural intensification (i.e. landscape homogenization, intensive agriculture) induced a huge loss of biodiversity in agroecosystems, including microorganisms community. Symbiotic microorganisms are key functional group due to their action favoring plant nutrition and protection (1). Loss of biodiversity can reduce these functions and promote parasitic behavior evolution (2) leading to lower plant's performance. This work will address the impact of tree hedges in agricultural landscapes, supposing that they constitute a microorganisms biodiversity refuge, and will analyze the consequences of agricultural practices on soil and wheat roots microbial community. We hypothesized that presence of hedgerows and organic farming act as adventices plant sources and dispersal vector in crops, leading to a more diverse and efficient symbiotic microorganisms pool. The microbial community assessment will be done by mass-sequencing approaches. For each sampling time-point, we will performed soil and wheat roots sampling, floristic surveys, measures of wheat production and health. Data will be analysed under an innovative view of microbial landscape ecology. Two independent gradients of tree hedgerows density and % of organic farming will be used to study microorganisms community at landscape and parcels scale (Figure 1). This work is expected to provide a new understanding for a more sustainable agriculture by stimulating a biodiversity promoting the fertility ecological service. Conventional, intensively managed coffee monocultures are environmentally damaging. The use of shade trees and organic management are welcome options to reduce coffee physiological stress, reduce synthetic inputs and restore soil biological balance. However, whether the effects of shade trees on soil functioning would be similar for different coffee management practices should be investigated. Here, we measured soil total C and N, inorganic N, Olsen P, pH, biomass produced in bioassay, nematode and microarthropod communities under three shade types (unshaded coffee, shaded with Terminalia amazonia, and shaded with Erythrina poepiggiana) combined with two management practices (organic and conventional) in a 17year old experimental coffee plantation in Turrialba (Costa Rica). Under conventional management, soil nutrient availability and fauna densities were higher under shade, regardless of the shade tree species (Fig 1). Under organic management, only Erythrina, a heavily pruned, N 2 -fixing species, had increased soil nutrient availability and fauna density, while Terminalia shade had a null or negative impact. Soil N availability was linked to bacteria-feeding nematodes while soil P availability was more linked to detritivorous microarthropods. Higher fertility was recorded in soil with balanced foodwebs. This study highlights the importance of the choice of shade tree species for soil fertility in low input systems, more so than in fertilized systems. Redundancy analysis of soil biogeochemical parameters (in red) constrained by nematode and microarthropod communities (in black). Nema: nematodes; Detri: oribatid mites and collembola; Sh: Shannon Index; B-f: bacterial-feeding nematodes; F-f: fungal-feeding nematodes; Om + Ca: omnivorous and carnivorous nematodes; Surf. Coll: \"surface-living\" collembola; Soil. Coll: \"soil-living\" collembola; Orib: oribatid mites.Keywords: Management practices, Shade type, Soil fertility, Soil food web, coffee. Associating shade trees to cocoa plantations supply many services to farmers, yet their contrasting impacts on soil fertility in relation to their traits remains little understood (Blaser et al., 2017) , NH 4 + , Olsen P, pH, bioassay and cocoa yield. Shade tree -cocoa association increased total litterfall for all the species without impacting on cocoa yield. Further, litter N was higher with Albizia, while litter P and Ca were higher with Milicia and Ceiba and litter pH was lower with Canarium and Dacryodes. Soil properties were not impacted by Canarium and Dacryodes, while Albizia, Milicia and Ceiba increased soil inorganic N and P content and bioassays (Fig 1). Finally, soil pH and total C and N content increased under Milicia and Ceiba, leading to the highest increase in soil fertility. Multiple regression models suggested a critical role of litter Ca to improve soil fertility in such systems. Using shade trees like Milicia or Ceiba with high Ca cycling should thus be advised to farmers to improve their system. Agroforestry systems play a very important role in reducing wind speed, improving soil structure, increasing biodiversity and carbon sequestration. One of the beneficial microbiota that have a symbiotic association with most of the plants in agroforestry is arbuscular mycorrhizal fungi (AMF). The diversity of AMF can be a critical factor in enhancing both the productivity and the diversity of plants in ecosystems, and the plants in the ecosystem also strongly influence the occurrence of these fungi. However, very few studies have been carried out on the impact of mycorrhization on walnut trees with associated crops. The integration of a vegetative cover in intercrop in walnut plantations is an innovative practice, still little developed. Although cover crops are widely used in conservation agriculture or organic farming, there is little knowledge on the impact of cover crops on native mycorrhizal fungi. This mycorrhizal approach is reinforced in this study by the presence of crops in the walnut trees (maize mainly) during the first years of growth. Our study focused on the natural mycorrhization and the ecosystem services rendered two important crops in South-western France: maize and walnut. In June of 2017 and 2018, root and rhizosphere soil samples of walnut trees were collected from the agroforestry plots in Dordogne and the experimental station of Creysse (South-western France) to evaluate the relationships between different cropping systems and AMF communities. Six modalities (Walnut in Conventional farming, Walnut in Organic farming, Walnut with vegetal cover, Walnut and maize in agroforestry, Maize in direct sowing with seeds untreated and Maize in direct sowing with seeds treated) and three types of parameters (technical itineraries, biological and physicochemical indicators) are studied. Our results showed a higher mycorrhizal colonization in walnut trees in organic farming in comparison with those in conventional farming. The highest percentage of total AMF colonization was recorded for walnut trees (34%) in the presence of faba bean. These findings showed the great role played by vegetation cover in the enhancement of mycorrhizal colonization of plants. The establishment of plots of mycorrhizal communities on walnuts with intercrop maize culture would be a very beneficial model to study the transfer of arbuscular mycorrhizal fungi from walnut trees to maize.Keywords: arbuscular mycorrhizal fungi, agroforestry, walnut, cover crops, organic farming.Use of uncomposted woodchip as a soil improver in arable and horticultural soils Westaway S. 1 (sally.w@organicresearchcentre.com), Smith J. 1 , Rousseau A. Repeated applications of composted material lead to long term improvements in soil organic matter (SOM), soil water retention and improved nutrient status. The application of uncomposted, ramial, woodchip to cultivated soils also has significant potential benefits. A long-term study in the US (Free, 1971) showed positive results in terms of soil biological activity and SOM. Research by Caron et al (1998) confirms these findings and recommends using smaller diameter material, chipped green without leaves. Few studies have followed up on these findings. This requirement for smaller material makes agroforestry systems based on short rotation coppice and boundary hedgerows ideal for ramial woodchip production. This paper reports on the first-year results from trials comparing the addition of uncomposted and composted woodchip produced from agroforestry systems as a soil improver. The trials aim to increase the sustainability of farm systems by linking hedgerow management with soil improvement, providing an economic incentive for management of on-farm woody resources. First year results have shown no significant differences between ramial woodchip and compost in terms of soil biology, soil chemistry or crop parameters (ley biomass and spring barley yields). Where two years data were available, we saw an increase in available P, K, Mg, SOM and biological activity in both the ramial and composted woodchip. The trials will be monitored over the coming years to confirm these results. In Ethiopia trees on farms have big potential as sources of germplasm and for improving livelihood through ecosystem services. However, shortage of sufficient number of plus trees and selection of 'wrong' plus trees may be an impediment in realizing their potential. Tree breeding and quality tree seed production are expensive ventures, in terms of capital and knowledge. Therefore, planning and implementation of tree improvement with resource poor farmers needs to be less complex and cheaper. The seed source, procurement and possibilities for improvement of two prioritized farm trees Cordia africana and Faidherbia albida were assessed in the framework of provision of adequate tree seed portfolio for forest landscape restoration in Ethiopia. Standard methodologies were followed for: seed source description, estimation of number of trees, seed crop production and possibilities for improvement. Mean tree seed production, for both species, varies between 10 -107 kg/ha depending on number of trees per ha. Farm trees are the most common source of seed for the formal tree-seed market, and the farmers, individually or collectively, are major suppliers. There is big potential for tree improvement and quality tree seed production through the establishment of Breeding Seedling Orchards (BSO) as evidenced by C. africana. Similarly, there are fertile grounds to improve F. albida in the same pattern. BSO is a new model of tree improvement in Ethiopia. This approach can further be developed and have additional impact on the provision of quality tree seed in Ethiopia, if farm households can participate through maintaining of best quality trees on their farms.Keywords: farm trees, tree improvement, BSO, tree seed.L21 AF Germplasm Uruguay, a traditional livestock country, experienced since the nineteens an authentic forestry boom, based on commercial plantations of fast growing exotic species. Almost two decades later, a policy for the establishment of agroforestry systems in the country was launched by the government and fairly adopted by small and medium-sized producers. As an innovation back-up for the smooth application of this process, INIA Forestry Department developed a research program on multipurpose forest trees domestication. This work presents some of its mayor developments. The first step was the identification of promising native and exotic species through wide stakeholders consultations, followed by seed sources procurement and a germplasm bank establishment. The requirements for a successful nursery planting production of the main identified species (Figure 1) and the establishment of a national provenances and progenies tests network constituted the additional knowledge accumulated for a smooth transition to the diversification of forest species and the agroforestry systems shaping in the country. These actions and results configured the first systematic effort on native multipurpose species domestication registered in the country, highlighting the importance of forest genetic resources, the impact of its adequate transfer in the country and the need for more transdisciplinary studies and interinstitutional networks. Stereospermum suaveolens DC, Litsea monopetala (Roxb) Pers. Holarrhena pubescens and Mangifera sylvatica Roxb. grown in wild in tropical forests of Bangladesh are valued for their fruit, timber and medicine. However, they are gradually eroding from forests due to deforestation, illegal harvesting, and inadequate knowledge about their uses. This study aims to assist in preserving these species and investigated their uses and domestication potentiality through seed and leafy cuttings from mother tree species with the effects of different IBA (indole-3-butyric acid, 0, 0. Agroforestry having high potential for simultaneously meeting three important objectives: protecting & stabilizing ecosystems; high economic productivity; ensuring better livelihood security. It is an option to increase tree cover in meeting the targets of SDGs and Nationally Determined Contribution for climate change action of India. India's livestock sector is one of the largest of the world with significant role in supplementing family income in rural areas. However, fodder availability is a big challenge and at the end of rainy season, animals suffer due to lack of protein rich diet. Under rainfed conditions farmers either feed their animals with the low-quality hay or travel long distances to gather fodder. In such circumstance agroforestry play an important role as fodder trees are able to withstand the drought and provide a solution. The AICRP on Agroforestry initiated research on fodder trees and identified important species in different agro-climatic regions of the country and evaluated. However, limited efforts have been made for fodder tree improvement through management and breeding. Most indigenous fodder trees not even gone through simple selection for plus trees, though, importance of quality seeds or vegetative propagation has been realized for improving the productivity. Management, agronomic features and nutritive value of these trees are being worked out so that the production and use of feed can be more efficient. The studies indicate that improvement programme for fodder trees is very tedious compared to crops. In India, so far for fodder trees, germplasm collection and breeding has been done on few species and results indicate the quality of green fodder mainly depends on the voluntary intake by the livestock and availability of protein, energy, minerals & vitamins to the animal. The low dry matter intake appears to be a limiting factor in energy supply from tree leaves and low digestibility of leaves is possibly due to high lignin and tannin content. Tannins also bind proteins and thereby lower their digestibility and also adversely affect calcium use. About 60% of fodder trees evaluated contain > 50% total digestible nutrients on a dry matter basis; 40% of trees than 55% TDN are better energy source. The season wise nutritive value of fodder trees and ranking for their nutritive value & palatability and complete value chain for tree fodder meal has been developed which is relatively cheaper compared to other feeds. The integration of fodder trees through site specific agroforestry systems have shown potential to supply nutritious fodder and conserve natural resources. Silvipasture system on an average cycle of 10 yr can generate 120 mandays/ha/yr employment with B:Cratio of 1.5 to 2.1 indicating viability of these systems. Thus fodder tree based agroforestry systems may play an important role in reducing the fodder shortage problem.Baobab (Adansonia digitata) is an iconic African fruit tree of high nutritional importance due to high nutrient and anti-oxidant contents but remains neglected and undomesticated. For its domestication and improvement, ICRAF is establishing a field genebank representing Africa.The first batch of seedlings was established using seeds from ~165 individual trees from four countries (Zambia, Mali, Kenya and Tanzania) representing 17 provenances. DNA was extracted and used to generate 138 high quality DArT-SNP markers (from 4,617 SNPs) from 320 half-sib accessions. Using MicroSatelliteAnalyzer (MSA4.05), Nei's chord genetic distance was estimated and Neighbour Joining (NJ) tree was drawn using PHYLIP3.695 (Figure 1). The genetic distance data was bootstrapped for 100 times in MSA followed by drawing NJ trees and a consensus tree generated using PHYLIP. The phenetic trees were visualised and edited by FigTree v1.4.3. The data indicated very strong population structure with very good bootstrap support for three distinct genepools-Zambian (Zambia, four provenances), Malian (Mali, five provenances) and East African (Kenya-two provenances; Tanzania-six provenances). Zambian populations had the highest genetic diversity followed by Malian and the least diverse were the East African populations. This data is being used to establish core collection of 100 accessions with highest genetic diversity and 17 forced selections to ensure representation from all the populations (Figure 1). Cedrela odorata is a tree species with a high commercial value that has been negatively affected by overexploiting to such an extent, that it is now rarely present in natural forests and is mainly associated with agroforestry and other agricultural systems. The populations of C. odorata are becoming increasingly isolated in a matrix of different land use systems which impedes their connectivity and influences their genetic variability. In the present investigation, the genetic diversity of populations of C. odorata in the Nicaragua-Honduras Sentinel Landscape was studied with the objective to identify potential resources of germplasm for forest restoration and conservation circa situm. Samples of 164 individuals were fingerprinted with 10 SSR loci. The results showed significant differences in population structure among three genetic clusters (Fig. 1a), where clusters A and B showed high diversity and allelic richness, whereas cluster C presented low genetic diversity. Furthermore, the patterns of genetic diversity showed close relations to the phenological status and altitude a.s.l. of the sampled trees. From the conservation point of view, cluster A (high in genetic diversity and clearly geographically defined, Fig. 1b) can be considered an important source of germplasm. However, there is still a lack of deeper understanding of the cause of genetic differences among subpopulations from a small area with relatively homogeneous environmental and topographic characteristics. With EcoAF, download a group of concrete farm parcels, place if needed the polygons of main soil types, then play with possible futures! You can choose whatever combinations of lines, straight or broken or in spots, around or inside the field, decide where to plant trees, shrubs and grasses, in hedges or placed points, the species/varieties and the quality of the bundles of plants. The growth will depend on further choices on how you intend to manage the bundle of plants, the plantation, then all the components during their life. A further development will include simplified crop/animal productions, and the possible impact of the growth of trees and shrubs on them. Each simulation will include variability and aleas. 2D and 3D graphic interfaces and visualizations, at once and delayed datasheets let compare the consequences of different choices. The EcoAF module is developed in French and English on CAPSIS (Computer-Aided Projection of Strategies In Silviculture ; http://www.inra.fr/capsis), with the aims to be user-friendly and transparent about the degree of reliability of parameters. Its conception and evolution take into account the need of advisors in agroforestry. We illustrate some consequences of genetic and silvicultural choices: plant an ordinary or improved variety, densify or not the plantation, take great care or not of the young plants while planting etc.Keywords: simulation, genetic, agroforestry, farm, economy. Imagine waking up one day and cannot get a cup of your preferred coffee, tea or chocolate bar. It may not be easy to relate this issue to agroforestry but think of the tree crops in the farmers' fields being destroyed and cannot be replaced! Almost 90% of the of economically important tropical tree crops such as cocoa, tea, coffee, palm oil, mangoes etc. are produced by small holder farmers who own an average of less than two hectares of land. Breeding is important to maintain the quality and production of these tree crops and relies heavily on the maintenance of the species diversity. However, in most countries breeding and improvement of these species, rely on the diversity collected and selected over years. Most of these species' diversity has been lost due to deforestation, degradation and destruction of natural habitats, including clearing for urban centres, settlement and farming, logging, forest fires, overexploitation and unsustainable harvest, natural disasters and climate change. It is therefore important to safeguard these national collections. However, maintaining these collections has several challenges such as limited funding and intermediate/recalcitrant seed (can only be maintained as field, suspension cultures or cryopreservation). It is therefore important to address how these national collections can be secured. Continued breeding will require promoting diversity exchange across the countries. However, germplasm exchange for commercially important species is limited due to national rivalry. Where they exist, international collections (such as cocoa and coffee collection in CATIE) are easily accessible to breeders. This paper explores the challenges relating to conservation of high value tree genetic resources and proposes options to facilitate their conservation and use Keywords: Tree genetic resources, Conservation, Tree improvement, Tree breeding.Imagine waking up one day and not getting a cup of your preferred coffee, tea or cocoa because the tree crops in the farmers'fields and in the forest are vulnerable and cannot be replaced! Almost 90% of the of economically important tropical tree crops such as cocoa, tea, coffee, palm oil, mangoes etc. are produced by small holder farmers who own an average less than two hectares of land. Breeding is important to maintain the quality and production of these tree crops and relies heavily on the long-term maintenance of the species diversity. In many countries, the breeding and improvement of these species rely on the diversity currently conserved ex situ that has been selected over years. Much of these species' diversity is being lost due to deforestation, degradation and destruction of natural habitats, including clearing for urban settlement or farming, forest fires, unsustainable harvest, natural disasters and climate change. It is therefore important to safeguard and expand these nationally based ex situ collections. However, maintaining these collections has many operational and technical challenges, such as limited funding and intermediate/recalcitrant seed, that require actions to secure their long-term conservation and use. Continued breeding will depend upon greater diversity exchange across the countries. However, international germplasm exchange for commercially important species has been limited due to unclear national access and benefit sharing policy. Where they exist, international collections (such as cocoa and coffee collection in CATIE) can be more easily accessible to users. This paper explores the challenges of conservation of high value tree genetic resources and proposes options to facilitate their global conservation and use Keywords: breeding, commercially important, conservation, germplasm sharing, tree genetic resources.L21 AF Germplasm Griffonia simplicifolia is a legume native to the west coast of sub-Saharan Africa with a seed rich in fatty acid and also known to be the most abundant natural source of 5-hydroxytryptophan (5-HTP). 5-HTP is a natural precursor of serotonin, a neurotransmitter secreted by the brain and involved, among other things, in the regulation of mood. In Togo, this plant is used as a medicine. Indeed, the leaves of the plant are eaten like vegetables; while the various organs of the plant are exploited by traditional healers for the manufacture of traditional medicines involved in the treatment of a variety of ailments. The seed of Griffonia simplicifolia, which is very rich in fatty acids, is a potential source for the production of lipids which can be used in nutrition.The overall objective of this study is to promote the agroforestry culture of the Griffonia simplicifolia plant with a view to food security and the fight against poverty in rural area of Togo. More specifically, it involves: to make the phytochemical screening of the leaves and the seed of Griffonia simplicifolia; to isolate some molecules with interesting bioactivities from these organs; to perform a physico-chemical characterization and to determine the nutritional factors of the mentioned organs and the oil extracted from the Griffonia simplicifolia seed. 5-HTP was quantified by High Performance Liquid Chromatography (HPLC) analysis. After hexanic extraction with Sohxlet, the extraction yield and physicochemical characteristics of the oil were determined. The results show that Griffonia Simplicifolia seed of Togo contains a 5-HTP with content of 90.24 ± 4.00 mg/g of powder and an oil yield of 25.25 ± 0.30%. The phytochemical test revealed the presence of alkaloids, tannins and flavonoids. Biochemical analyzes show that Griffonia Simplicifolia seed is rich in rare amino acids, necessary for the proper functioning of the human body. The physico-chemical characteristics obtained show that Griffonia simplicifolia oil from Togo is rich in micronutrients. The obtained results then justify the use of the plant as a medical food in Togo. However, for a better conservation of the biodiversity of this plant species, it is important to promote the cultivation of this plant with many advantages, but which is consumed until now by the picking.Keywords: Griffonia simplicifolia, phytochemical composition, nutritional values, agroforestry culture, biodiversity conservation. Son tra (Docynia indica (Wal.) Decne) is found in the high-elevation mountainous areas, above 1000 masl, in China, Bhutan, India, Myanmar, Nepal, Pakistan, Thailand and Northern Vietnam. Analysis of Son tra fruit showed that it contains polyphenol is with antioxidant properties that benefit human health. Son tra has been used prominently in the reforestation program of Vietnam. The area of plantation has expanded rapidly, using unimproved local seed sources.Breeding to improve fruit value could therefore contribute to the livelihoods of farmers and fruit processers in the mountainous area in Vietnam. The potential to convert existing unimproved plantations by top-working with scion material from selected clones was confirmed in field trials. Dominant trees were selected based on their fruit yield and fruit morphology. Scion material from 11 selected trees was grafted onto seedling rootstocks and the growth and fruit yield in trials was monitored. Fruit quality of 11 selected clones and eight unselected control trees was evaluated by a panel of 19 experienced farmers and fruit traders. The farmers and buyers' assessment indicated that there was clear significant difference between genotypes in their sale price, fruit size, fruit attractive, sweetness, sourness but not acerbity. There was a strong correlation between estimated price and fresh fruit attractiveness.11 clonal seedlings from Tuan Giao population planted in the trials in Tuan Giao district, Dien Bien province had shown the quick growth and early bearing fruit at 3rd year. The average fruit yield at year 5 was 21.9 kg per tree twice that of seedling trees which typically yield 11 kg per tree at year 7. 36 plus trees were selected based on fruit's yield and quality. From selected trees, the grafted seedlings were produced and on-going tested in three provinces, Dien Bien, Son La and Yen Bai.Further selection of Son tra plus trees should be led by farmers based on market demands in order to reach the highest value. Research to rank and select the best clones on their market value nutritional value, pest and disease resistance, is recommended for profitable expansion of Son tra growing. (1888-1903), Norman Ross (1904-1941), John Walker (1942-1946), Bill Cram (1947-1974), Gordon Howe (1975-1980), William Schroeder (1981-2010) and Raju Soolanayakanahally (2011-present). Improvement efforts touched many genera and species but focused primarily on the genera of trees (Populus, Salix, Fraxinus, Quercus, Larix, Pinus, Picea) and shrubs (Hippophae, Shepherdia, Prunus, Caragana). During the 100+ years the Program encompassed species introductions and testing, plant exploration, classical breeding and selection, ex situ conservation and genomics. To date, the breeding efforts have changed the landscape and quality of life for thousands of prairie people by protecting 50,000 farmyards and one million hectares of farmland by distribution of >700 million trees and shrubs. Selected examples of the tree breeding program outcomes, and their potential applications for shelterbelts, biomass and bioenergy, limiting nutrient enrichment of riparian ecosystems, value added biochar and bio-products prospects, and tree species resilience to climate change will be discussed.Staff and students working on agroforestry research, development and tree distribution at Indian Head, Saskatchewan, Canada (photo 2011).Keywords: tree improvement, ex situ conservation, genetic diversity, progeny test, bioproducts.Malnutrition is key issue for people living in Eastern of Chad. Indeed, nutrition of people from this zone is poor in iodine, vitamin A, protein and iron, which are key nutrients. In the framework of the building-resilience-and-adaptation-climate-extremes-and-disasters (BRACED) programme, high-value indigenous tree species of tropical Africa including Balanites aegyptiaca were enrolled in a domestication programme aiming at increasing and securing fruit and seed production while conserving genetic resources. This domestication matched intraspecific variability in required nutrients for human nutrition to the needs of subsistence farmers. We sampled 24 fruits in each of the surveyed 51 trees occurring in wild stands in Goz-Beida (Eastern Chad) and determined whether the species could be genetically improved for fruit/ seed production. Highly (P in fruit mass, seed crude protein and iron. Iodine was found in the seeds of one surveyed tree, and traces of vitamin A were observed in the seeds of all surveyed trees. Moderate and positive relationships (r weak relationships were observed between other fruit traits (r seed traits and between fruit size traits and seed traits. Application of independent culling method to the set of traits retained for selection allowed the sampling of 6 'plus trees' for breeding in the study site, with expected responses to selection amounting to 1.42 g, 2.41% and 0.084 mg/100 g for fruit mass, seed crude protein content seed iron content, respectively, representing a potential increase of 22.33%, 89.26% and 1.45% in the selected traits in the first-generation breeding population. Adoption of tree planting being a key option to alleviate nutritional in a context of climate change, our results highlight among-trees variation in desired characteristics for subsistence farmers, principal actors and beneficiaries of tree domestication. Genetic resources conservation may capitalize on these findings. How diverse is tree planting by farmers in the Central Plateau of Burkina Faso?Valette M. 1 (michel.valette88@gmail.com), Vinceti B. 2 , Traoré D. 3 1 Bioversity international, Kuala Lumpur, Selangor, Malaysia; 2 Bioversity international, Rome, Italy, 3 Association tiipaalga, Ouagadougou, Burkina FasoBurkina Faso is actively engaged in implementing actions aimed at containing environmental degradation and strengthening sustainable use of natural resources. Restoring forest landscapes not only tackles desertification but also some major environmental problems, notably climate change and loss of biodiversity. With strategic planting of trees that are useful to local people, restoration can also bring benefits such as increased food security and income generation. An adequate supply of high-quality forest reproductive material is critical in assisting this effort.Between 2017 and 2018, we carried out a survey to assess tree planting practices adopted by ring with a local association tiipaalga, supported by this in the establishment of small fenced plots (fencing excludes grazing and encroaching and foster natural regeneration of indigenous posed to the sustainable tree management practices promoted by the association); group 3For each farmer, we recorded the diversity of tree species planted, the proportion of exotics, planting densities and seed sources used. Significant differences in the types of species planted were found between farmers of group 1 and other groups. Within fenced plots, a greater diversity of tree species and a larger representation of indigenous trees (including important food tree species) was found. Overall a diverse set of tree species was planted, but only a handful of were planted in large numbers. Better access to diverse seed sources and farmers greater technical knowledge of seed propagation resulted to be positively correlated with a greater diversity of tree species planted and a larger representation of indigenous tree species. Overall, 47% of the seed used was obtained through autonomous collection by farmers in surroundings. When harvesting their own seeds, farmers seemed to privilege as seed sources those individual mother trees with an interesting phenotype but tended to disregard collection criteria that ensured appropriate diversity in the seed lot. Access to formal sources of seed was constrained by a high seed price and limited diversity in tree species available. This study highlights the importance of promoting a combination of approaches to tree planting in order to ensure the conservation of a greater tree diversity in the landscape. Capacity building initiatives promoting adequate seed collection practices among farmers would also play a crucial role in supporting forest restoration. Finally, the study indicates that the formal tree seed sector needs to take steps to accommodate farmers needs and demands to enable a scaling up of tree planting efforts across the country. Keywords: germplasm, seed supply, fences, tree planting, Burkina Faso. The millet head miner, Heliocheilus albipunctella (Lepidoptera, Noctuidae), is a major constraint to millet production in sub-Saharan Africa. In the absence of any insecticide application by farmers, millet production relies on pest regulation by natural enemies [1]. However, the continued delivery of such ecosystem service is threatened by biodiversity loss due to simplification of land uses in agricultural landscapes. A better understanding of factors driving natural pest control is a major challenge for designing sustainable cropping systems [2]. The objective of the present study was to assess the association between canopy openness in traditional tree-crop agroforestry systems, richness and abundance of birds and bats, and their role in the natural regulation of the millet head miner.Ten study sites were selected in a 50 km² area in the Peanut basin in Senegal. In each site, a couple of millet fields were selected according to canopy openness and tree species richness. Monitoring of birds and bats, pest regulation and crop damage was carried out. Nine insectivorous bird and bat species were observed and their predator status confirmed by direct observation or DNA analysis on feces. Egg infestation of panicles was greater in open reduced when birds had access to panicles. Further research is needed to better understand relationships between trees, food webs and biological control. In complex coffee-based agroforestry, quantifying interactions within the agrosystem that impact on coffee disease regulation and on coffee yield is a major stake to design sustainable cropping systems. To this end, we analyzed the interaction network between shade trees, coffee trees (Catimor variety), coffee foliar diseases complex (CFDC; majority of Mycena citricolor) and soil characteristics. The system is characterized by 40 variables measured in 60 plots spread on three farms (monitored for 2 years) in Nicaragua. We used Partial Least Square Path Modeling (PLSPM) to study the network interaction. We built 6 blocks with the more significant variables of each component: shade trees (shade percentage, species), soil (Cation Exchange Capacity, P), CFDC (incidence, severity), coffee trees age and size, coffee growth and coffee yield. The second part of the PLSPM was performed between blocks. Shade trees, mostly the shade percentage, had direct positive effects on CFDC and soil quality, and negative effects on coffee growth and yield. Shade had also an indirect negative effect on coffee trees by increasing CFDC, which impedes coffee growth and yield. Soil variables being negatively related to CFDC, shade had an indirect effect on coffee trees. Reducing excessive shade cover seems to be a solution to enhance positive impacts of shade trees on coffee yield. Overall, shade management requires an analysis of trade-offs between soil quality, diseases regulation and yield gains. Keywords: disease regulation, ecological process, trade-off, structural equation modeling. Coffee berry disease (CBD) is widespread in Africa and has been responsible for massive yield losses of Coffea arabica. Shade trees are one of the promoted strategies to control CBD because they are supposed to reduce disease dispersal through rainsplash 1 . Nevertheless, data collected over two consecutive years in West Cameroon showed that shade did not necessarily reduce the disease incidence and could even increase it. The objective of our study was to determine the epidemiological mechanisms and environmental covariates involved in the differences between epidemics observed under shade and full sun cropping systems. For this purpose, we developed a Susceptible -Exposed -Infectious -Removed (SEIR) model, some of the parameters being function of environmental covariates. This model was combined with a probabilistic model of observation via a mechanisticstatistical approach and parameters were estimated in a Bayesian framework. According to our model, temperature and relative humidity were the main environmental variables explaining differences in disease transmission between shade and full sun. Our results show that shade treatment exhibits antagonistic effects on epidemiological mechanisms, notably it reduces disease transmission but also the latency period. This suggests that depending on the local climatic conditions, one specific mechanism may be fostered, thereby explaining the variability in shade efficacy described in the literature. Crop losses caused by pests and diseases threaten the food security and income of thousands of families worldwide. In Latin America and the Caribbean, coffee losses have caused severe crises since 2012. Most of coffee farmers manage diverse types of coffee agroforestry systems (CAF); therefore, it is important to know: what shade canopy and management characteristics are able to reduce coffee losses due to pests and diseases, but also provide other ecosystem services such as provisioning, maintenance of soil fertility and carbon sequestration? We worked with two-year data of 61 coffee plots in Costa Rica: firstly, we estimated primary yield losses and secondary yield losses; secondly, we assessed the relationships (trade-offs) between yield losses and indicators of the other ecosystem services; finally, we identified the CAF which had the lowest losses and provided high levels of agroforestry products, soil fertility and carbon sequestration. We identified six CAF as the most promising ones for reducing losses while providing other ecosystem services. One of these systems was a simple CAF; three were medium diversified CAF; and two were highly diversified and dense CAF. For each of these CAF, we described the structure and composition of their shade canopies, management and costs, and the levels of ecosystem services they provide (see Keywords: Design, Yield, Shade, Soil, Carbon. Pests and diseases affect considerably cacao production. Agroforestry systems, in comparison with monocultures, can provide some pest and disease regulating services, i.e., complex systems can encourage natural enemies and prevent outbreaks. However, some pests and diseases might be favoured by higher air humidity, and less aeration and light. The capacity of agroforestry systems to regulate pests and diseases might highly depend on their management. Without good management practices, differences between systems are often observed. Management of agroforestry systems can be quite poor due to lack of resources of the farmers, economic profitability or knowledge.Here we compare the incidence of pests and diseases in different cacao production systems. Data were collected between 2015 and 2017 in a long-term trial established in Bolivia in 2009.Five different production systems are compared: monoculture and agroforestry systems both under organic and conventional farming and one successional agroforestry system without external inputs. Four replications were established in a randomised block design. Each plot measued 48×48 m, with a net plot of 24×32 m. Pest and disease control do not differ between systems, and it relies on preventive measures, i.e., regular tree pruning and fortnight removal of infested pods, but no external inputs are used. Frosty pod rot (Moniliophthora roreri) was monitored all-year round every two weeks. Infected pods were registered and cut to avoid the spread of the spores. At harvest (every two weeks), the incidence of other pests and diseases was registered. Incidence of pests and diseases at tree level was also monitored, i.e., witches broom (M. perniciosa) on vegetative tissue, stem borers and cacao mirids. Across systems, only about 14% of the pods were affected. About 70% of the infested pods were affected by frosty pod rot, followed by witches' broom, black pod rot (Phytophthora spp) and pods eaten by birds or mammals. At tree level, very few trees were registered with any pest or disease.The percentage of pods affected by pests and diseases did not differ between production systems, with the exception of a slightly significant higher incidence (3% above) in the successional agroforestry system. In this system there were also more pods eaten by birds or small mammals, indicating that this system supports their presence but, at the same time, it can cause more yield losses (trade-off between biodiversity and production). However, the pod losses caused by these animals were still low. At tree level, significantly higher incidence of witches' broom was registered in the monocultures, while no differences were detected for the stem borers and cacao mirids.In conclusion, our results show that under no external inputs for controlling pests and diseases, low and no significant differences of pest and disease incidence were observed between monocultures and agroforestry systems when good management practices were applied.Keywords: management practices, organic farming, Bolivia, monocultures. In southern Cameroon, citrus trees are usually planted in complex cocoa-based agroforests by smallholder producers. The health and the productivity of trees are generally jeopardized by a host of pests and diseases, for which the environmental conditions of the system are critical drivers. An evaluation of the intensity of citrus dieback diseases in three shading conditions and various spatial organization of citrus trees was carried out in 26 cocoa fields in four sites. A net plot of 2500 m 2 comprising a minimum of 12 citrus trees was mapped, associated vegetation was characterized, and spatial structure of citrus trees described using the Ripley's method. Disease intensity on the organs attacked was evaluated using a scale varying from 1 to 4. ANOVA and a comparison of means was performed. Results showed that 98.1 % of citrus trees were infested with pests, mostly mealybugs and mites on leaves. High rates of dieback on citrus trees (76.36 % to 100 %) were recorded. The intensity of citrus trees dieback under shade was significantly low (2.22±1.02 a ), as compared to those under moderate shade (2.52±1.12 b ) and cocoa/citrus (2.55±1.13 b ). Citrus trees in aggregate and random spatial structure showed a high intensity of dieback (2.88±0.88 b ; and 2.63±1.17 b respectively), as compared to those with a regular spatial structure (1.72±0.84 a ). The involvement of structural features of agroforestry system to reduce significantly dieback on citrus trees was demonstrated. Faidherbia albida is an agroforestry species whose agro ecological and socioeconomic roles have been proven in several studies in arid and semi-arid areas. For a long time, anthropogenic pressures and droughts were considered the main threats to Faidherbia albida, which is associated with annual crop in Parkland resources in Niger. Diseases with considerable mortalities and whose identification of causal agents is in progress are studied in the context of agro sylvo pastoral system. The disease damage would not allow leaves formation nor the fruiting on tree, and thereafter would reduce the litter fall and soil fertility, which is of great concern for rural communities. The objective of this study is to evaluate the level of disease attack on F. albida trees in the southern Sahelian western part of Niger. A radial sampling with a distance of 1.2 km, leaving from the center of the large villages towards the bush following the four geographical directions was carried out. On each of the four (4) transects per village, square plots of 50 m x 50 m with 300 m equidistance were installed. The measurements concerned dendrometric parameters, new natural regeneration, observations on the incidence and the severity of the disease. The results revealed a list of 12 adult woody species with an alpha diversity of 1.33 bits. The stand is almost mono-specific with a beta diversity of 0.37, dominated by F. albida, the specific contribution was 77.65%, while the density value was of 26.5 individuals / ha and the structure was bell-shaped. Observations revealed an incidence of the disease of 18.87% and a mortality of 5.66%. The most affected parts of the tree were 53.77% branches and 38.68% trunks. The main component analysis showed that large diameter trees were the most heavily attacked. This decline of F. albida, observed only in this south western Niger, is a serious threat to the survival of rural communities. These results can be applied to guide Parkland management strategies to better define and control disease in the area.Resistant phenotypes selected could be also used to rehabilitate the infested parkland in Niger.Cultivation of indigenous fruit trees baobab (Adansonia digitata) and marula (Sclerocarya birrea) plays a pivotal role in providing key nutrients and income for smallholders and enhancing diversification of agroforestry systems in the drylands of South Saharan Africa. Tree decline associated with stem cankers and canopy dieback is increasingly observed impacting baobab and marula in domestication trials and farms in Kenya, but little is known about the disease occurrence and associated pathogens. We evaluated incidence and severity in the field, isolated and characterized fungi in family Botryosphaeriaceae through comparisons to baobab, marula and additional agroforestry trees Vachellia xanthophloea and Calodendrum capense .We identified nine taxa belonging to genera Lasiodiplodia, Neofusicoccum and Dothiorella, co-occurring in both symptomatic and asymptomatic plant material. Seedlings inoculated with isolates of L. pseudotheobromae, L. theobromae and N. parvum showed similar symptoms but with various degree of pathogenicity. These findings suggest that Botryosphaeriaceae spp. may occur as endophytes and act as a disease complex, with the potential of infecting a wide range of trees in Eastern Kenya. We plan to further investigate ecology and impact of this potential threat to agroforestry systems in the African drylands, and lay ground for developing mitigation strategies. Keywords: Adansonia digitata, Sclerocarya birrea, tree decline, Botryosphaeriaceae, African drylands. The role of functional leaf traits in pathogenic transmission in agroforestry systems Gagliardi S. 1 (stephanie.gagliardi@mail.utoronto.ca), Isaac M. E. 1 , Avelino J. Variation of plant functional traits may predict ecosystem function 1 , yet there is little work linking functional traits of crops and service trees, their interactions, and processes in agroforestry systems 2 , specifically the transmission of pathogens. Focusing on coffee as a model, we explore how multi-species functional traits adjust abiotic processes that affect the dispersal and persistence of coffee leaf rust (CLR) 3 . We hypothesize that shade tree canopy and leaf traits will mediate CLR transmission via abiotic modifications and that key coffee functional leaf traits will suppress CLR under different agroforestry systems. This study was conducted in CATIE's coffee agroforestry research trial in Costa Rica. Throughfall kinetic energy under diverse shade tree canopies was modified by shade tree composition, canopy characteristics (e.g. crown base height; CBH) and functional leaf traits (e.g. specific leaf area; SLA). Certain shade tree traits such as canopy depth, CBH and SLA also related to trends in plant-level CLR incidence (Figure 1). CLR tended to favour certain coffee leaf functional traits, where coffee plants with low mean leaf nitrogen concentration and high mean SLA had higher plantlevel CLR incidence. These results suggest that managing the functional leaf trait variation of shade trees and targeting key coffee functional leaf traits can change the persistence of CLR, thus improving our understanding of alternative resistance measures available in agroforestry. The coffee berry borer (CBB) is one of the main pests affecting coffee production leading to significant yield losses. Pest control service within agroforestry systems (AF) results from complex biotic and abiotic interacting components. Factors explaining regulation of the CBB can interact with each other and have potential antagonistic effects. This explains many contradictory results for studies focusing on the impact of few factors on a single response variable. This is particularly true with the effect of shade on the CBB (Morris et al, 2018). This factor can directly affect CBB development but also indirectly by affecting the community of natural enemies. Studying this pest-regulation service requires therefore a systemic approach. Here we developed structural equation models describing the interactions within these systems. Using data from three complex AF in Nicaragua and from an experimental farm in Costa Rica, we assessed the effects of environmental conditions and agricultural practices on the CBB, and on the diversity and abundance of predaceous ants (Fig 1). The area occupied by coffee-associated trees, the thermal amplitude and the shade were negatively related to CBB. Ant diversity and abundance were negatively related to coffee density, and positively related to CBB. While our results on a systemic scale confirm the potential of AF to provide a pest control and interesting management alternatives, it also reveals the difficulty of studying this service. Very severe coffee rust (Hemileia vastatrix) epidemics of an intensity never seen before have hit Central America from 2012.This study aimed at identifying management factors that hampered coffee rust development in Nicaragua and at learning about how producers understood these epidemics. Twenty nine pairs of coffee-based agroforestry plots (a pair was one plot severely hit and another one slightly hit in the same location) from the municipalities of Jinotega, Tuma-La Dalia and San Ramón were characterized for their management, including shade, and coffee rust impact, and their owners interviewed for studying their perception (2).The main drivers of these coffee rust epidemics were meteorological (1). In these propitious weather conditions for rust, some producers avoided intense epidemics and losses. According to field measurements, shade did not make the difference, contrary to timely applications of fungicides and fertilizers. However, interviewed producers mentioned that shade affected rust (Figure ); but this was the only controversial effect mentioned. Interestingly, this controverse also exists in scientific literature. Producers were well aware and agreed, in general, about practices to control rust. Although producers knew how to fight rust, they did not implement the required management to control this disease, mainly due to economic difficulties.To our knowledge, this is the first time that the development of severe outbreaks is related to economic drivers.To cope with nutrient depletion in poor soils, agronomic strategies have been set up in West Africa by combining traditional annual crops with local shrubs, such as Guiera senegalensis or Piliostigma reticulatum, which contribute significantly to improve soil fertility. These shrubs are traditionally cut to provide fodder to livestock and let the aerial parts of associated crops, such as millet or sorghum, growing freely. The objective of this study was to evaluate the effect of the management mode of Guiera and Piliostigma in association with millet and sorghum, respectively, on the dynamics and phenology of shrub roots and the agronomic performances of cereals. An experiment was conducted under natural conditions in Senegal where 6 shrubs of Guiera, already well established for several decades, were chosen. Nine young Guiera plants were transplanted to characterize juvenile stage. A millet crop has been established per pouch in and near each shrubbery. A similar experiment was installed in Burkina Faso at the same time where 12 shrubs of Piliostigma, 6 aged of several decades and 6 transplanted juveniles, were associated or not with sorghum. In both situations, half of the shrubs were coppiced, the other left intact as a control object. Rhizotrons of 1x1m were placed 20cm from each shrub in a vertical position, allowing observation of the roots of the shrubs and cereals between 0 and 1m deep.The results showed the positive impacts of the shrubs on the aerial phenology of millet and sorghum (earlier heading, flowering and maturation), their growth (millet four times larger, 1.5 times more leaves, 1.8 times more tillers) and their yield (3.8 times more spikes, 3 times more spike biomass and straw). The root dynamics of shrubs are stalled over the rainy season with a very pronounced seasonal variation in all root categories: higher elongation rates in the wet season compared to the dry one. This seasonal variation was observed in both young 1 to 3 year-old plants (0.62 cm/day in the rainy season and 0.36 cm/d in the dry season) and old (0.15 cm/d and 0.13 cm/d respectively the same year). On the other hand, shrub coppicing did not show any significant depressive effect on the average rate of elongation of their roots. However, a 1-month root-growth stop was observed for Guiera 1.5 months after cutting, a condition that did not exist in uncut shrubs. In addition, these growth stops correspond exactly to the peak of cereal root growth, a phenomenon observed for the 3 consecutive years.The coppice management of the shrubs has a positive influence on the phenology, the agro-morphological parameters and yield of millet and sorghum through a better conservation of the physicochemical and biological properties of the soil as well as a good complementarity of root growth providing benefits and sustainability to cereal shrub intercropping in the context of climate change with strong drought constraints. Landslides can be destructive for any vegetation or people in its path. In the context of a broad evaluation of agroforestry role in maintaining/restoring watershed functions in the humid tropics, we tested two hypotheses: (1) Differences in the distribution of tree roots between species in coffee agroforestry systems can be used to reduce landslide risks, (2) Shear strength of soil increases with root length density in the topsoil, regardless of plant species.Root systems of about 570 5-year old trees belonging to 114 species commonly found in agroforestry systems were observed across 5 landscapes (Figure 1). The Index of Root Anchoring (IRA) and the Index of Root Binding (IRB) were calculated as S Dv2 /dbh2 and as S Dh2 /dbh2, respectively, where dbh is tree diameter at breast height, Dv and Dh are the High IRA values (>1.0) were observed in non-pruned coffee, Artocarpus elasticus, Parkia speciosa and Durio zibethinus. The common shade trees in coffee agroforestry system incl. Gliricidia sepium and Calliandra calothyrsus, have low IRA values, indicating little 'soil anchoring'. Where root length density (Lrv) in the topsoil is less than 1 cm cm-3 shear strength largely depends on texture; for Lrv > 1 we can expect shear strength to be > 1.5 kg m-2 regardless of texture. In conclusion, a mix of tree species with deep roots and grasses with intense fine roots will provide the highest river bank stability. Root interactions between cash crops and neighbouring trees remain a major gap of knowledge. Both cacao and coffee are important cash crops and are usually planted under shade trees to optimise their yield. Ideal shade trees would develop their root systems below the cacao and coffee root zones, minimizing plant competition for nutrient uptake in the soil layers. However, assessment of root development in soil remains highly challenging. Destructive excavation provides root biomass and root morphology data. However, the abundance of fine roots of an individual plant species in a mixed-species plantation remains unknown because it is difficult to identify the species of fine roots that are present. We used DNA meta-barcoding to determine the presence and abundance of fine roots of each species in the soil profile to a depth of 80 cm. We assessed two plantations at 9 years after the establishment of cacao and coffee with an overstorey of canarium trees. We also examined soil and foliar nutrient concentrations including total nitrogen (TN), phosphorus (P) and potassium (K), and depth, whereas canarium had higher fine-root abundance at 30-80 cm depth. Stepwise re-tion in cacao and coffee. Foliar TN was higher in cacao and coffee than in canarium and foliar K did not differ significantly between cacao, coffee and canarium. Our study indicated that canarium could be a suitable shade tree for cacao and coffee. DNA metabarcoding allowed us to develop a deeper understanding of root development through the tropical soil profile.Keywords: nitrogen isotope composition, soil fertility, agroforestry, canarium, rbcL gene. In dry ecosystems where silvo-pasture is the common farming system, seedling growth and survival are limited by access to moisture and nutrients. Arbuscular mycorrhizal (AM) fungi are known to increase seedling establishment and survival through enhancement of nutrient and moisture availability. Arbuscular mycorrhizal fungi are regular component of rhizosphere micro-flora in natural ecosystem and are necessary for sustainable plant soil systems by establishing symbiotic associations with most land plants and form mycorrhizae. Keeping in view the importance of these environment friendly micro-organisms and understanding how mycorrhizas operate in natural systems helps to improving the quality of plants in our gardens and landscapes while minimizing the need for fertilizer and water. We used a greenhouse experiment to determine the interactive effect of AM, water deficit and soil fertility on the biomass, growth, nutrient availability, and root colonization of seedlings of Commiphora myrrh, tree species that dominate large areas of dry forest in the Horn of Africa. A full factorial design was used: with and without AM, top and subsoil, and four levels of water deficit. AM increased the biomass of Commiphora myrrh seedlings. AM increased the allocation of biomass to shoots in C. myrrh seedlings. The seedlings had higher nutrient levels when mycorrhizal under water deficit conditions. C. myrrh seedlings responded positively to decreased moisture deficit. Rich soil condition favoured the growth of the seedlings. Colonization increased with decreased moisture in C. Myrrh seedlings. Rich soil positively affected colonization of the species. AM increased the biomass growth of C. myrrh seedlings through increased nutrient levels and colonization. The increased performance of mycorrhizal plants indicates that mycorrhiza is a major component of the adaptive strategy of seedlings in the dry deciduous ecosystem. For successful rehabilitation efforts, seedlings need to be mycorrhizal. Inoculating seedlings with AM in the nursery enables to increase survival, growth and escape browsing in the field where grazing is a major problem in an agro-pastoral system. Swamp forests of Pterocarpus officinalis (jacq.) form remarkable monodominant forest stands growing on temporarily or permanently flooded soils in mangrove hinterland areas, along rivers and in wet depressions in the mountains of the Caribbean and Guiana regions. In Guadeloupe, smallholder farmers traditionally cultivate flooded Taro (Colocasia esculenta (L.) Schott) monocultures under the canopy of P. officinalis stands in the swamp forests. Taro corms and unrolled leaves are commonly consumed in Guadeloupe. The understorey culture of Taro is conducted without pesticides and fertilizers, which could be partly due to the net input of nitrogen into the soil by P. officinalis through its ability to fix atmospheric nitrogen. Furthermore, the mycorrhizal networks could favor the transfer of fixed nitrogen from P. officinalis to the intercropped Taro. Taro cultivation is conducted during the dry season to facilitate their planting between mature Pterocarpus trees and their harvest when the marshy soils are dewatered. The sampling of roots and leaves on Taro and two cohorts of P. officinalis (mature trees and seedlings) were made during the dry season in two swamp forest sites located at Gosier (approx. 0.1 ha in area) and Belle-Plaine (approx. 0.5 ha in area) in the island of Grande-Terre, Guadeloupe. The arbuscular mycorrhizal (AM) fungal community was compared between Taro and two cohorts of Pterocarpus, by using pyrosequencing of partial 18S rDNA gene. We also compared natural abundance of 13C and 15N contents in leaves of the two cohorts of Pterocarpus, Taro and surrounding non-nitrogen-fixing plant species, in order to estimate what proportions of N and C were transferred to Taro. Of the 210,676 sequences, 37,631 sequences were assigned to a total of 215 OTUs belonging to the orders of Glomerales, Paraglomerales, Archeosporales and Diversisporales. A low AM fungal community membership was observed between P. officinalis and C. esculenta. However, certain AM fungal community taxa overlapped between both plants, notably predominant Funneliformis OTUs, suggesting a potential common AM network. The isotopic analyses did not show any direct link between the mycorrhizal status of both associated species and the transfer of N and C between P. officinalis and Taro. The proportion of N derived from atmospheric fixation in P. officinalis varied according to the study site, from about 80 to 95% in adult trees and from 50 to 80% in young seedlings while we estimated that 35% of fixed N was transferred from Pterocarpus seedlings to Taro in mixed stands of both species. The implementation of experiments under controlled conditions are needed to demonstrate the possible role of mycorrhizal networks in the transfer of nutrients between P. officinalis and Taro.Most studies on root development are based on root images analysis with rhizotrons sources to study root turnover, which essential for understanding ecosystem carbon and nutrient cycling on large situation including agroforestry system. Yet extracting data from field root images requires intensive effort and was large time consuming even with semi automatic root software drawing. Our aim was to develop real automatic root drawing model capacity using machine-learning capacity.Images are renamed and re-organized in the proper structure for the convenience of training and testing process. We apply CNN (Convolution neural network) in field roots images segmentation, by training the neural network using pairs of one image of roots and one ground-truth image which was drawn by human for determining the position of roots. After the training process, the model is able to convert images of roots to outputs similar to groundtruth images created by human with a valuable accuracy. We use cross validation to control the result form the model. After being process, these output images will be used to compute the length and diameter of the plant-roots using IJ_Rhizo open software it is freely available from (www.plant-image-analysis.org/ software/IJ_Rhizo) Conclusions For now, AutoRootDraw© has reached the capacity to identify, draw and analyse roots using the predictions of the network. We expect to provide a portable version to run the model. Solitary and boundary trees in parks, gardens as well as in agroforestry alley cropping stands are exposed to action of environmental abiotic factors more than trees growing within a group formation e.g. inside the forest stand and short rotation coppice plantations. Each part of these edge or solitary trees is otherwise affected concerning various sides of the crown. When from the densely overgrown stand side, the trees create own microclimate, towards an opened space they are not protected. On the exposed side they suffer less from spatial competition by neighboring trees and they have more space for development of crown and root systems. This process begins from the edge trees which create the buffering zone. The external factors gradient is being decreased by ecotone, which alleviates the abiotic influence. However, inside the forest, the competition for nutrients, water and solar radiation exists. The goal of the work was to compare the physiological activity of the semi-solitary and solitary tree along with the investigation of the irregular morphological differences. The research was performed in the Michovka research area of the Silva Tarouca Research European Ash Fraxinus excelsior cv. Atlas which grows on the agroforestry plantation edge and solitary hybrid Poplar Populs maximoviczii × Populus × berolinensis clone NE-49, which were in 200 m distance to each other (Weger and Bubeník, 2012). The field measurements were performed on both trees using Electrical resistivity tomography (ERT), as well as Dipole electromagnetic profiling, Gas exchange measurements, Sap flow sensors, Stem decay investigation by non -destructive acoustic testing, along with biometrical parameters investigation. The ERT measurement were performed using the Wenner -Schlumberger electrode configuration with the spacing of 30 cm and two profiles for each tree in NS and EW directions. With CMDExplorer, we investigated the soil apparent resistivity changes in three depths in distance roughly up to 7 m from the trees (Mareš et al. 2004, Hagrey, 2007). Gas exchange measurement were used for the evaluation of net photosynthetic rate (Pn) in the bottom part of the crown. Each hour, the measurement was repeated on random leaves for each geographical direction. Sap flow sensor was placed on northern side of each tree breast height, the Early morning Pn started about the same time in both trees, however, the increase in Pn was faster in solitary tree upon sunrise. The solitary tree terminated the photosynthetic activity earlier than the semi -solitary one. In case of the solitary tree, root system is fully developed and it creates uniform circle -like shape. However, in semi -solitary tree root system is congregated in an unoccupied area and shows tendency to grow towards south in triangle shape in this particular study. Rosati A. 1 (rosatiadolfo@gmail.com), Wolz K. 2 , Murphy L. 3 , Ponti L. 4 , Gold M. The light distribution under trees and available for understory crops has been examined with biophysical agroforestry models of various levels of complexity (for a review see Malézieux et al., 2009). No model, however, predicts the exact light pattern available under the trees in each point in time and space, as this would require detailed knowledge of the spatial arrangement of leaves and large computing effort (Lamanda et al. 2008). By averaging in time and/ or space, the light predicted by models is less variable than in reality. Under variable light, photosynthesis (and crop growth) is reduced compared to more uniform light (Poorter et al., 2016;Vialet-Chabrand et al., 2017). Here, we tested whether using the more uniform light patterns estimated with models significantly affects the estimation of photosynthesis and radiation use efficiency compared to using measured light patterns. We measured the light pattern using PAR photosensors every minute for several days in 24 positions under chestnut orchard canopies of various ages and tree spacings. We also created a spatially explicit, ray-tracing canopy light model and used it to estimate the light pattern under the trees at a one-minute resolution. We then compared the measured and modeled light patterns at the minute scale, as well as with half-hourly, hourly, and daily averages. Finally, we used the measured, modeled, minutely, and averaged light patterns to estimate the daily photosynthesis of an understory wheat leaf using its photosynthetic light response curve. Despite calibrating tree porosity in the model to yield the same daily light total as measured with the sensors, the modeled light patterns under the tree canopies differed substantially from the measured one, being much more uniform. This was due to the fact that the model assumes a canopy of uniform porosity, while, in reality, sun rays pass through a complex heterogeneous canopy. Using the more uniform modeled light overestimated daily photosynthesis by about 40%, even when calculating photosynthesis using the light patter at a minute scale. Averaging light in time increased the overestimation even further. We conclude that, by predicting overly uniform sub-canopy light patterns, current agroforestry models likely overestimate photosynthesis and radiation use efficiency of understory crops. Finding ways to account for the actual variability in light patterns under trees could improve model predictions of understory crop performance.Agroforestry systems (AFS) are complex to model mainly due to the high spatial variability induced by the shade trees. Recently, the microclimate and light heterogeneity issue in AFS has been addressed using the 3D ecophysiological process-based model MAESPA (Charbonnier et al., 2013;Vezy et al., 2018). MAESPA surpassed the classical sun/shade dichotomy in AFS (Charbonnier et al., 2014) and provided continuous maps of e.g. available light, light-use-efficiency and canopy temperature within Coffea Agroforestry Systems (CAS). A step further was to design a crop model for Coffea grown under agroforestry that would benefit from this continuum to estimate ecosystem services on the long term and under climate change scenarios. We designed DynA_Cof, a new process-based growth and yield model to compute plot-scale net and gross primary productivity, carbon allocation, growth, yield, energy, and water balance of CAS according to shade tree species and management, while accounting for fine-scale spatial effects using MAESPA metamodels (Figure 1). DynA_Cof satisfactorily simu-C m -2 d -1 on 1562 days) and the -1 -2 d -1-2 d -1 ) compared to measurements from an eddy-flux tower in Aquiares (Costa Rica) and also the NPP for above and below-ground organs, coffee bean yield and shade tree wood production compared to a comprehensive database from this site.Detailed DynACof model workflow. The air temperature is recomputed within the shade tree layer and Coffea layer canopy, and above soil surface using a series of resistances. The precipitation interception, evaporation and throughfall are all computed at plot scale. Carbon-related computations are coloured in green, energy-related in orange, and water-related in blue. Black arrows represent the interactions between layers, grey arrows the interactions within a layer, and white the retro-actions. VPD: vapor pressure deficit, PPT: precipitations, T: gross primary productivity, APAR: absorbed photosynthetically active radiation, Ev: evaporation, SWC: soil water content, H: sensible heat, Rn: net radiation, Q: heat storage. In order to describe underlying biophysical mechanisms, process-based plant growth models often contain an excessive number of parameters when only considering the accuracy of the model outputs. Regarding their influence on the model output, parameters of complex nonlinear plant growth models interact in ways that cannot be easily predicted based upon their roles in the component submodels describing biophysical processes. Consequently, parameter estimation in complex nonlinear plant growth models is often challenged by lack of a means to interpret the relative importance of parameters. In multi-crop models such as for agroforestry, increased model complexity due to interactions between crops and lack of data for novel crop combinations in varying environments further exacerbate the difficulties of discerning which parameters are important for estimation (Young 2012).Our approach is based upon foundational system identification theory (Sjöberg et al. 1995, Ljung 1999) applied to a class of deterministic process-based predictive growth models.We evaluate the Hessian of the quadratic cost function to determine the relative importance of parameters to its curvature. Subject to a list of model requirements, the Hessian can be computed given input-output data and an estimated location in the parameter space provided by prior research into underlying biophysical processes and expert knowledge. Although system identification for plant growth models may be overlooked due to an assumed lack of data, this investigation illustrates that an input-driven predictive growth model can be parameterized using only environmental inputs and size data that are straightforward to collect.The analysis method is presented as a procedure for determining a ranking of parameter importance that can be used by model developers to provide end users with guidance for parameter estimation given real data for novel crops and crop combinations. The procedure arrives at a reduced-order parameter space within which parameters can be uniquely identified entirely from input-output data. The procedure prioritizes (and allows the user to pick for identification) the parameters that will have the most impact on improving output prediction. Furthermore, when successful, reduced model outputs closely follow the outputs of the original system (with any feasible parameterization) when driven by any input in the input class. The procedure is demonstrated on the well-known Yield-SAFE predictive agroforestry growth model (van der Werf et al. 2007, Palma et al. 2017). The advantages of an input-output system identification approach may also carry over into field trial design or model structure revisions. Further, because model parameterization relies only on readily accessible model outputs, relatively low-tech data collection strategies may streamline approaches to on-farm participatory research.Keywords: plant growth modeling, system identification, process-based models, reducedorder parameter space. Cutting through the complexity of biophysical models: Seeing the forest for the trees Huth N. 1 (Neil.Huth@csiro.au), Holzworth D. 1 , Smethurst P. 21 Agriculture and Food, CSIRO, Toowoomba, Qld, Australia; 2 Land and Water, CSIRO, Hobart, Tas, Australia Modern farming systems models have built upon many years of work to develop robust, fit for purpose models for systems such as those incorporating agroforestry. However, these models have many parameters whose impact is not always known. Furthermore, agroforestry systems have many complex interactions that makes the value of different possible interventions difficult to identify. Modern statistical and software approaches allow such issues to be untangled. Global Sensitivity Analysis has previously been used to inform plant breeding for different environments through ranking the value of individual plant traits for different geographical regions (Casadebaig et al, 2016). Similar approaches have been used to identify effective management options for minimising environmental impacts of oil palm whilst maintaining crop yields (Pardon et al, 2017). These approaches have been formalised within the APSIM Next Generation modelling framework (Holzworth et al, 2014) in a way that makes these techniques accessible for the farming systems modelling community. APSIM provides a user interface that assists the user through the process of defining their analysis, ensuring efficient and effective sampling, and highlighting the impact of climate variability on the results of the sensitivity analysis. This functionality, and the availability of modern high performance computing capabilities will assist modellers in understanding hidden relationships within their models and the opportunities they provide.In this paper, we demonstrate how these different sensitivity analysis techniques can be used to prioritise parameter optimisation or further research efforts such as targeted management interventions, beneficial Gene X Environment interactions or synergistic relationships within complex agroforestry systems.Keywords: APSIM, Sensitivity Analysis, Biophysical Modelling, Farming Systems Analysis. What are the impacts of tree shade on the absorption of light by grapevine within alley-cropped vineyards?Grimaldi J. 1 (juliette.grimaldi@inra.fr), Wang Y. 2 , Chavanon E. 2 , Lauret N. 2 , Guilleux J. 2 , Bustillo V. 2 , Houet T. Within modern agroforestry vineyards, light depletion from trees may impact both grape yield and berry quality for wine making. To target this question an alley-cropped vineyard was selected in Lagardere in South-Western France, under humid-continental climate. Based on drone-borne RGB and DSM images of this vineyard, several 3D numeric mock-ups of alley-cropped vinerows and their monocropped references were built [1]. Their radiative budgets were simulated in the photosynthetically active radiations (PAR) wavelengths using the 3D radiative budget model DART [2,3,4]. Simulations were run from April-15th (grapevine budburst) to September-12th (grapevine harvest) considering the succession of sunny and cloudy skies recorded at Lagardere in 2016. According to our simulations, (i) under clear sky conditions, grapevine rows falling inside the shade of trees absorbed 20% to 40% of the PAR that is absorbed in full sun, depending on the tree leaf density, while (ii) under overcast conditions, no shade pattern appeared as most of the light irradiance is diffuse. Over the whole simulated time period, alley-cropped grapevine rows absorbed 90% to 85% of the cumulated PAR that is absorbed under monocropped arrangements, depending on tree heights. This very new approach led to encouraging results in regards to agroforestry practices for grapevine cultivation and shall in the future be widened to other climatic contexts and vegetation arrangements. Agroforestry systems, even simple ones such as two-strata alley cropping systems, present almost infinite possibilities for the design of the system combined with the crop and tree management options. Simulation models can be useful tools to quickly test a large number of combinations in order to test only the most promising systems in the field. Here, we tested the effect of tree root and branch pruning in an alley cropping system with hybrid walnut in the Mediterranean climate, with two contrasting dates of sowing of durum wheat. The results showed that branch pruning (removal of 50% of the branches) had a much stronger effect than root pruning (pruning at 1m depth, 2m from the tree line) not only on crop yield, but also on soil water content. These effects depended on the date of sowing and soil depth: branch pruning increased yield with the normal date of sowing (November), but decreased it when sowing of the crop was delayed until December, and increased deep soil water content but decreased topsoil water content. A field experiment with the same treatments (but not all combinations) showed the same patterns of crop yield, but pointed to possible improvement of the model concerning tree water extraction. Keywords: modelling, root pruning, branch pruning, crop yield, competition. Substantial increases in total UK carbon storage are modelled from agroforestry vs. mono-cropping over an 80-year term, particularly in aboveground stocks. Rising atmospheric carbon dioxide levels increase this gain.The results support agroforestry on UK cropping land as an option for significant carbon removal, though long-term sequestration depends crucially on the fate of above-ground carbon stocks. Improving soils mapping and topography in the model could identify UK regions with highest potential for soil carbon sequestration. European policies are encouraging the development of agricultural practices such as agroforestry, which are promoting both provisioning and regulating ecosystem services. To help decision support, there is a need to develop tools able to evaluate the environmental, economic and social impacts of converting existing agricultural land to agroforestry. The MAELIA platform (Multi-Agents for Environmental norms Impact Assessment http://maelia-platform. inra.fr/) has been developed to handle interactions between agricultural activities, agricultural landscape dynamics and the management of natural resources at the landscape level. MAE-LIA is currently able to simulate the development, yield, gross margins, and workload of arable crops and grasslands and their interactions with water, nitrogen and carbon dynamics in soils.The aim of this work is to extend the functionalities of MAELIA a) to simulate growth of trees and their biophysical interactions with intercropping crops and grasslands, and b) to implement management strategies in agroforestry systems.Growth of trees and their temporal and spatial interactions with crops regarding competition for light and water will be implemented into MAELIA at a daily time step. A light response curve will be adopted to simulate carbon assimilation, which will also be regulated by water availability (Granier et al., 2007) and temperature (Sitch et al., 2003). Allometric relationships will be used to allocate biomass in trees and hence describe tree growth. Water dynamics in the soil-plant-atmosphere system will be described similar to the BILJOU water balance model (Granier et al., 1999), considering competition between plants for soil water. Light under the canopy will be simulated by implementing the CanSPART radiative transfer model (Haverd et al., 2012). Information on management strategies in agroforestry systems will be collected to parameterize the decision rules that allow simulating the dynamics of technical operations applied by farmers (Murgue et al., 2016). These data will also be used to parameterize the economic module of MAELIA. Calibration and validation of the platform will be performed using 1) an in-depth analysis of biophysical processes from an instrumented experimental site, and 2) data on a subset of processes from 6 other field sites to encompass diverse pedoclimatic conditions and plant associations.Robust representation and simulation of plant growth and water fluxes in temperate agroforestry systems are expected from MAELIA after implementation of the above biophysical processes. The environmental and socio-economic impacts of scenarios regarding introduction of alley cropping systems in a French temperate region will then be assessed. Ongoing developments in MAELIA will allow in the future to address further issues related to carbon and nutrient cycling in agroforestry systems.Data from field observations acquired in partnership with several categories of actors (foresters, farmers, breeders, etc.) as part of agroforestry experiments have been accumulating for many years now. The management and reuse of this data is made difficult by the multiplicity of media and formats used and by the diversity of the actors and their language. In addition, agroforestry studies require systemic approaches to better understand for example, how to better manage a site in response to climate change, pests and soil pollution. This necessity can only be tackled by linking up with other fields of knowledge such as climatology, zoology or soil science.To help the agroforestry community in the exploitation and sharing of their data, and in order to report on the evolution and effectiveness of the developments they have performed, we propose as a first objective, to set up a knowledge model (an ontology) dedicated to agroforestry. This ontology will serve as the basis for capitalizing and sharing data in agroforestry.A second objective is to link agroforestry data with other data sets from diverse knowledge areas concerning the environment and regional territories. For example, an agroforester should have the opportunity to easily compare the selling price of standing timber in his/her region for different tree species that they wish to plant on a given site.The dual challenge of sharing and interconnecting data in agroforestry brings us closer to what is currently practiced within the \"semantic web\" with different tools and methods to promote the sharing of open and linked data sources. Semantic web technologies provide standard procedures for describing and accessing resources on the web. The linked data is exploited and enriched by technologies such as RDF, SPARQL, OWL and SKOS. We reuse semantic web standards and exploit a range of terminological ontologies to provide an open and flexible knowledge model that can reflect the complexity of data already collected in agroforestry. This new model will be able to connect to other knowledge models already present on the Web. Agroforestry expertise linked to other expert areas on the web will facilitate the creation of decision support tools and thus provide new solutions to agroforestry practice.Keywords: agroforestry, structural modelage, ontology, semantic web. Nonetheless, large scale agricultural modelling tools have focused on the most economically important crops in the world and have yet to represent the variety and complexity of agricultural systems prevalent in many low-latitude countries. Subsistence and semi-subsistence cropping systems, involving multiple cropping management practices, are central to securing food to small farmers in these regions, and have yet to be taken into account in climate impacts assessments. Furthermore, the agricultural sector in low-income countries represents the biggest share of the national economy but remains one of the most vulnerable and exposed sectors to the effects of climate change, and urgently needs tailored scientific information to support the identification of sustainable, productive, equitable and resilient land use and agricultural management options. Designed to better inform vulnerability assessments and adaptation planning targeted at small low input cropping systems in the tropics and sub-tropics, this work will present an extension of the global agro-ecosystem model PEGASUS (Predicting Ecosystems Goods and Services Using Simulations) in order to simulate the productivity of crop-tree inter-cropping systems and implication for ecosystem services at the landscape and potential feedback to the climate system, taking into account the physiology of traditional and indigenous crops and trees. Short rotation coppice (SRC) systems are excellent tools for managing treated, nutrient-rich, domestic wastewater residuals, soil carbon, and providing economically viable sources of sustainable wood fibre. However, SRC systems are complex, with numerous interactions between climate, nutrient inputs, soil physicochemical properties, crop establishment and growth, bioenergy, carbon offset credits, environmental regulations, and economics. A method is thus required to simulate such interactions. This paper proposes \"WISDOM\", a comprehensive decision-support model for SRC systems. WISDOM can be used to aid stakeholders and decision-makers in long-term planning for environmentally-and economically-sustainable SRC plantations. It can also be used to identify how alternative management decisions affect system behavior -biomass growth, soil properties, and economic returns, for example -through the development of \"what-if\" scenarios. Model validity was tested with eight years of historical data from a case study in Alberta, Canada. For instance, statistical test results between simulated and observed values using the Nash-Sutcliffe efficiency were 0.98, 0.90, 0.86, and 0.68 for biomass production, tree height, soil electrical conductivity, and irrigation application, respectively. Additionally, three different climate and nine yield-harvest economic scenarios were run to predict different aspects of SRC system and project life cycle assessment outcomes 20 years into the future. The dark side of agroforestry: Modelling shadow projections based on 3D data Morhart C. (christopher.morhart@iww.uni-freiburg.de), Rosskopf E., Nahm M., Kahle H.-P.Chair of Forest Growth, Albert-Ludwigs-University Freiburg, Freiburg, Germany Background Agroforestry systems (AFS) represent complex landuse systems as they imply the cultivation of trees and agricultural crops. Since supply with radiation energy is fundamental for the growth of trees as well as of crops, estimations of the spatial and temporal variation of solar irradiation available at different parts of AFS are of particular interest regarding optimized management.We use 3D point cloud data of single trees collected with a terrestrial laser scanner to develop vector-based models of these trees. To model the shadow cast by the trees and to quantify the resulting loss of solar radiation energy on the ground, we use factual weather data of solar irradiance, obtained from the German Meteorological Service (Deutscher Wetterdienst, DWD).The novelty of this approach is to use 3D data of trees to compute shadow projections at increased temporal and spacial resolution. The model provides shadow projections in time intervals of 10 min for a raster grid of 10 cm x 10 cm cell size (see Fig. 1).Using factual climate data enables us to model the radiation regime around a given tree in a realistic manner. The derived results can help to plan AFS more efficiently and to optimize their planting design, taking the expected light reduction into account for choosing the best tree/ crop combinations and spatial arrangements. In the last decade, the Yield-SAFE model has been used to estimate long term-productivity of silvoarable systems. However, new challenges have arisen and the model has been improved in order to capture new components of the agro-ecosystem dynamics. This paper summarizes four areas of new developments with the EcoYield-SAFE model which can be categorized into: 1) Improved availability of climate inputs using the CliPick tool; 2) improved description of the microclimate experienced by crops, pasture and livestock within the tree canopy, 3) the addition of new outputs to enable prediction of the carrying capacity of a grass understorey and the impact of agroforestry systems, where appropriate, on fruit and bark production (e.g. cork), and 4) the integration of a soil carbon module adapted from RothC.The improvement of the model kept its simplistic concept and tried to keep the algorithms as simple and general as possible to ease the calibration for a wider audience.Example of assessment of tree effects on pasture production during a year in a mature agroforestry system (montado) in southern Portugal with 50 tree/ha, while considering tree influence on microclimate and 0.7 livestock units/ha energy demand. Note the increase number of days with available energy for grazing Keywords: Ecosystem approach, livestock, energy, provisioning ecosystem services, regulating ecosystem services. Silvoarable practices are a type of agroforestry systems that allows combining a crop with a Woody component. Tree layout designs considering distribution but also density modify the productivity of both components. Yield safe was used to compare two tree densities of a Pinus radiate stand considering the productivity of the tree and of wheat. Low initial tree density (600 trees ha-1) aiming at high value timber production was compared with high initial density (1333 trees ha-1) aiming at to produce a higher volume per hectare. Two different thinning were programmed being the first the extraction of 20% of the trees in years 10, 15 and 20 and the second a 20 and a 10% in years 10 and 15. Stand volume was reduced when low tree density were implemented compared with high tree density, while the contrary happened with the tree volume and diameter. Tree diameter was higher when 20:20:20 thinning program was carried out in both tree densities, being the effect more noticeable when low tree density was evaluated. Wheat maximum production peak was found in the third year being the reduction of wheat production more steadily in high densities than in low densities as expected. However, in all treatment's wheat production was negligible from the 7th year of the simulation. Thinning increased wheat production but the tree density selected is too high to make the seeding profitable.Keywords: Silvoarable, density, thinning, volume, yield. Faidherbia albida is an N-fixing tree native to many countries across a wide range of sub-Saharan Africa, including Ethiopia. Several researchers recorded higher concentrations of C under tree canopies than in adjacent crop-only areas, and speculated that differences were due to a tree effect. Conversely, others indicate that natural regeneration of trees was favoured on pre-existing fertile microsites. To quantify potential influences on soil C, we simulated five decades of a Faidherbia-maize parkland system in the Central Rift Valley of Ethiopia. Soil C was measured in 2015, and maize yield in 2015 and 2016. Simulations were conducted with the APSIM Agroforestry model. Soil parameters were tuned to achieve a good fit of soil C and maize grain yield in the crop-only treatment. Factorial combinations of zero or high annual additions of tree litter and manure were simulated. Soil C (0-20 cm) increased under trees without litter or manure additions, explaining 0-45% of observed increases in the three radial tree zones (Fig. 1). High litter inputs explained a further 25-80% increase, with a further contribution from manure.As high manure and litter input rates simulated were higher than could be expected in this heavily pollarded and low-stocked system, we suspect that the tree-effect is due to a combination of these and other previously hypothesised mechanisms. This simulation approach appears useful, but better quantification of actual pools and fluxes of C is needed. Demand for predictability of wood, food and livelihood outcomes of agroforestry options prompts a need to incorporate trees into plot-scale-biophysical and farm-scale livelihood models. The ICRAF project 'Scaling Trees for Food Security' aims to develop and apply this capability, and make it available for further use. The APSIM modelling framework was chosen for plot-scale-biophysical modelling because of its use in various contexts of food production around the world. However, this model lacked a two dimensional capability that could grow adjacent crops and trees interacting above-and below-ground. In two phases, the project is developing and applying this capability using the APSIM Next Generation framework. Phase 1 involved a proxy tree model used in linear (tree row) or circular (single tree or parkland) configurations in which tree behaviour in relation to competition for light, water and nutrients was user-defined. Phase 2 involves replacing the tree proxy with 'active' tree options that respond to environment, management and genotype. Eucalyptus, gliricidia and oil palm are the tree models currently available, along with wheat, maize, potato and several other crop or pasture models. During phase 1, adequate simulations in a range of contexts were achieved: Gliricidia-Maize (Kenya and Malawi; Fig. 1), Faidherbia-Maize (Ethiopia) and Eucalyptus-Wheat (Australia). We are now proceeding to release the proxy model for public use, and to develop the active tree capability. In the current context of adaptation to and mitigation of climate change, water use in agriculture is a critical issue. Specifically in relation to water use, agroforest systems are considered as a sustainable strategy, as the presence of shade trees above crops induces adequate microclimatic conditions that result in an improved water use status. Indeed the presence of shade trees reduces soil evaporation through a reduction in radiation, wind speed, temperature and an increase in air humidity. Therefore, understand and predict water use in agroforest systems is of a key importance when assessing the environmental impacts of agroforestry practices nowadays.The aim of this study is to quantify, compare and model sap flow of cacao trees growing under different shade intensities and its relationship with the microclimatic characteristics generated by these shade intensities. The work is applied to cacao agroforests in the Colombian Amazonia, giving the importance of cacao cropping systems in the world in general, and especially in Colombia within its post conflict context.For that purpose, we measured sap flow in three plots with different shade intensities in agroforest systems in the Colombian Amazonia, at the Macagual Center of Investigation -University of Amazonia. We used Sap Flow Meter sensors set up in three random cacao trees in each plot. The sap flow measures was recorded during two weeks within the dry season, with a data recording system that stored a measure every 10 minutes. Shade trees composition and structure were characterized in each plot, along with environmental variables related to sap flow variation, mainly: radiation, humidity, temperature, and vapor pressure deficit.We then built a mixed linear model that predicted sap flow as a function of the climatic variables measured, and we assessed its predictions compared to the measured values of sap flow using the best (AIC/BIC) models for sap flow and a validation dataset.The statistical model we built was able to simulate sap flow variations in each plot during the day, but also sap flow variation between the plots. We simulated real situations of hydrological behavior specific to the cultivation of cocoa under different agroforestry arrangements. Particularly, it predicted the hydraulic redistribution of cacao trees in agroforestry arrangements, as well as nocturnal transpiration in monocultures under the environmental conditions, that we put in evidence for the first time in the region of the Colombian Amazonia. In this sense, hydraulic redistribution may play a fundamental role in the water balance of the cacao plant. This model could be an useful tool for managing and predicting cacao tree water use as a function of the microclimatic conditions in the different agroforest systems in the Colombian Amazonia.L24 Modelling The use of crop models is motivated by the prediction of crop production under climate change and for the evaluation of climate risk adaptation strategies. Therefore, in the present study the performance of DSSAT 4.6 was evaluated in a cropping system involving integrated soil fertility management options that are being promoted as ways of adapting agricultural systems to improve both crop yield and carbon sequestration on highly degraded soils encountered throughout middle Côte d'Ivoire. Experimental data encompassed two seasons in the Guinea savanna zone. Residues from the preceding vegetation were left to dry on plots like mulch on an experimental design that comprised the following treatments: (i) herbaceous savanna-maize, (ii)10 year-old of the shrub Chromolaena odorata fallow-maize (iii) 1 or 2 year-old Lalab pupureus stand-rotation, (iv) the legume L. pupureus -maize rotation; (v) continuous maize crop fertilized with urea; (vi) continuous maize crop fertilized with triple superphosphate; (vii) continuous maize crop, fertilized with both urea and triple superphosphate (TSP); (viii) continuous maize cultivation. The model's sensitivity analysis was run to figure out how uncertainty of stable organic carbon (SOM3) can generate variation in the prediction of soil organic carbon (SOC) dynamics during the monitoring period of two years, within the first soil layer and to estimate the most suitable value. The observed variations were of 0.05 % in total SOC within the short-term and acceptable dynamics of changes were obtained for 0.80% of SOM3. The DSSAT model was calibrated using data from the 2007-2008 season and validated against independent data sets of yield of 2008-2009 to 2011-2012 cropping seasons. After the default values for SOM3 used in the model was substituted by the estimated one from sensitivity analysis, the model predicted average maize yields of 1 454 kg ha-1 across the sites versus an observed average value of 1 736 kg ha-1, R2 of 0.72 and RMSE of 597 kg ha-1. The impact of fallow residues and cropping sequence on maize yield was simulated and compared to conventional fertilizer and control data using historical climate scenarios over 12 years. Improving soil fertility through conservation agriculture cannot maintain grain yield in the same way as conventional urea inputs, although there is better yield stability against high climate variability according to our results.The agricultural sector in the Philippines is the major stakeholder in food production, and is dominated by smallholder farmers in the upland farming communities. Can the farmerproducers consume their own produce? Is food available and accessible among them? Can the production systems produce food enough for households and community? Can these production systems withstand climate change? These are the basic questions that were addressed by the study in the three upland farming communities in Luzon, Philippines, involving 215 farmer-respondents. The food security potentials of different production systems were analyzed based on food stability, availability, accessibility, and utilization. Each variable was measured through several indicators. The corresponding mean scores are scaled2) means the opposite or highly available, stable, accessible, or utilized. A mean score in between (1-1.49) means moderate indicators. The food security status in the study sites were then computed by adding up the scores in each of the four measures/indicators divided by the total number of indicators (4). The food security score was measured using the following scale: (7.00 -8.00 high level of food security; 6.00 -6.99 moderate level of food security;in the three communities were small-income earners, as their estimated annual farm income ranges from PHP 10,000-20,000. Landholdings were small-farm size ranged from 1 to 3 ha, although 70 percent of the farmers owned the land they tilled. Most of the farms had a topography ranging from rolling to steep slope, which was prone to soil erosion. Furthermore, the areas, which were mostly rainfed, were vulnerable to changing rainfall patterns brought about by climate change. Four types of production systems were present in the upland communities-monocropping, relay cropping, multiple cropping, and agroforesty. Around 64 percent adopted agroforestry planted with a combination of short, medium, and long terms crops.Results revealed that farm households engaged in agroforestry had the highest food mean score (1.82) in terms of food availability (year-round availability of food in the household); food stability or the capacity of the farming system to withstand natural calamities (1.58); food utilization (1.94, or the consumption of the farmers' produce within and outside the community; and food accessibility or farmers' ability to access basic food items either in their own backyard or nearby markets (1.53). The smallholder farmers engaged in agroforestry production systems have the highest food security score of 7.14 based on the four indicators. Therefore, this paper argues that the practice of agroforestry provides potentials for ensuring food security of smallholder farmers in the upland farming communities in the Philippines.Keywords: food availability, food accessibility, food utilization, food stability, smallholder farmers.L25 Open session Since the Constitutional Court Decision (CCD) was enacted in 2012, customary forest are no longer part of state forest, yet the rights forests. Customary forest can be owned by indigenous people through mechanism established by the government. In Indonesia, agroforestry practices also happen in customary forests or communal forests managed by indigenous peoples. This practice runs from generation to generation and is still ongoing in several regions in Indonesia. As a province with the densest population, West Java still has indigenous community, known as \"Kampung Naga\" village which maintains communal forests known as hutan larangan (taboo forest). In East Nusa Tenggara, Indonesia's southernmost province, there is \"Mollo People\" that still have traditional territories called suf. In both regions, traditional agroforestry practices are still carried out with different patterns. Agroforestry practices are carried out not only through traditional agroforestry systems (vegetables-perennial crops) in communal forest areas but also silvo pastur (forest crops-cattle) in the state forest area. Until now, the agricultural products obtained are still sufficient to meet household needs, which if there is residual harvest will be sold to the nearest market. The results of perennials are taken to meet the needs of communal needs of building materials without any compensation of money. PAFERN has implemented training programs on various aspects of agroforestry farm and enterprise development; collaborative agroforestry research and extension projects; provided technical assistance in the establishment, documentation, monitoring and evaluation of agroforestry demonstration farms/projects; organized policy forum and national and international agroforestry congresses of various themes relevant to the pressing issues and concerns in sustainable development; and in so doing, was able to directly reach-out partner communities, along with concerned local government and non-government institutions. PAFERN finds it important to have a venue for sharing recent and innovative agroforestry development initiatives, particularly prospects and challenges in addressing food security, ecological stability, poverty and cross-cutting issues in agroforestry promotion and development in the Philippines.Apart from the aforementioned activities, one major role of PAFERN is on agroforestry curriculum development. This is very important to keep abreast of the current state of agroforestry education in the country, hence contribute towards advancement of agroforestry science and practice and in bridging the science-policy gap. Given its humble beginnings and experiences, PAFERN continue to draw inspiration from the active participation and strong commitment of its member institutions, sharing the mutual goal of promoting agroforestry for sustainable development. In Europe, agroforestry systems are considered as a way to maintain higher levels of biodiversity and to produce greater biomass than conventional systems. Compared to monoculture, agroforestry systems may also enhance soil microbial functioning by increasing soil organic matter (SOM) content through the deposition of tree leaf litter, fine roots and crop residues. Short-and medium-term changes in SOM pools could alter both the diversity of microbial communities and their ability to synthesize several classes of enzymes that are the proximate agents of SOM decomposition. Studies focusing on soil microbial communities and on related ecological functions (such as carbon and nutrient cycling) in temperate agroforestry systems are still scarce.The hypothesis of our study is that the quantity and the quality of organic matter inputs in agroforestry may increase microbial biomass and the decomposition of SOM compared to agricultural systems.The study site is located on an agricultural field of the experimental farm of La Bouzule, in north-eastern France. Experimental plots have been installed during spring 2014 and associate nitrogen-fixing species (alder, alfalfa) to non-fixing species (poplar, cereals or perennial ryegrass). Agroforestry plots (poplar / alfalfa association, alder / cereals or perennial ryegrass association) are adjacent to agricultural control plots (pure alfalfa, pure cereals or perennial ryegrass). Alfalfa was sown in 2014 at the same time of poplar planting. For the second association, the rotation was spring wheat-wheat-triticale-ryegrass in the control plots. This pilot site is monitored in terms of biomass production and soil functioning since 4 years. An initial soil characterization (physico-chemical parameters) was performed in spring 2014.In 2015, 2016 and 2018, we investigated soil microbial biomass C and N (MBC and MBN), extractible organic C and N (EOC and EON) pools, inorganic N content and several enzyme activities related to C, N, S and P cycles. Soil samples were collected in the 0-15 cm layer, in the middle of inter-rows of each plot, which is repeated according to a three-block design. The initial characterization in 2014 showed a gradient of texture and organic carbon content along the three blocks. A significant effect of sampling date was observed on microbial parameters suggesting notably a strong influence of climatic conditions. After 4 years, the microbial biomass N was found to be significantly higher in agroforestry plots compared to agricultural plots with a stronger effect in alfalfa as inter-row crop compared to cereal-ryegrass. Concerning enzyme activities, we did not observe any significant difference at these early steps between agroforestry and agricultural systems. However, trends in differentiation can be observed for some N-cycling enzymes and suggest that potentially higher activities could be measured in agroforestry compared to agricultural plots in the next future.Keywords: Microbial communities, Enzyme activities, Soil organic matter, N-fixing species, Temperate systems. In the past decade, the depth, breadth and pace of agroforestry progress has accelerated. The USDA Natural Resources Conservation Service formally recognized temperate agroforestry practices in their Environmental Quality Incentives Program (EQIP) cost share programming helping promote agroforestry through national policy. An agroforestry knowledge infrastructure began to take share in the form of regional agroforestry working groups, the establishment of formally recognized online graduate certificate and MS degree programs, and the creation of numerous extended duration training programs designed to train educators and landowners. Importantly, both the NGO sector and the private sector started to engage with landowners about agroforestry, including formation of multiple specialty crop and livestock cooperatives supported by increasingly robust financial decision support tools.The future: Looking forward to 2050, a rapid expansion of agroforestry practices will be deployed on the US agricultural landscape. The agroforestry knowledge infrastructure will have matured to support a tipping point of rapid growth and development. The private sector will heavily invest and engage with landowners to deploy diversified agroforestry practices across the temperate zone landscape. Nurture capital will fund long-term perennial-based agroforestry practices. A trained cadre of \"Professionally Certified Agroforesters\" will work with landowners adopting agroforestry. Finally, an \"Agroforestry Certified\" label will gain market and consumer recognition and landowners will receive a price premium for \"Agroforestry Certified\" products.Keywords: Knowledge Infrastructure, History, Science, Education, Tipping Point. Of the non-Annex 1 countries, around a third incorporated Agroforestry in their NDCs pledges as a strategic climate change mitigation and adaptation measure. To prove compliance by 2030, readiness of national MRV systems in reporting it is a must. Yet countries struggle in incorporating the Agroforestry component, ultimately jeopardizing the attractiveness of these set of practices for countries to prioritize. We present the case of Peru as emblematic for Latin American countries challenged by Agroforestry incorporation in the MRV. In 2015, Peru iNDCs reported 3 Agroforestry measures with an estimated contribution up to 2.07 GgCO2e (55% of iNDCs pledge). So far, no upgrade to the MRV system was promoted to include Agroforestry.It is urgent to understand what are the gaps to support the definition of a readiness roadmap.The study first examines technical, infrastructural, legal and institutional gaps in relation to the IPCC guidelines for MRV. We consider agroforestry definitions in use, their alignment and actual capacity to include existing practices. We focus on the availability of activity data and emission factors including advancements in mapping, potential sources of quantitative information, the data format and their suitability for MRV purposes. Finally, we interview key actors from national reporting teams. As it is, the measuring/monitoring of Agroforestry in Peru presents key interconnected challenges in the classification, quantification and mapping, so Tier 2 or 3 activity data are lacking. Preliminary exploration on use of Remote Sensing Technologies and of IPCC classification-based land use change maps shows that the heterogeneity of the practices and the nature of the main crop are the main challenge in separating Agroforestry from forest or secondary vegetation, preventing activity data generation. This entails that IPCC guidelines gets applied and Agroforestry is reported as a generic perennial crop, downing its mitigation potential to the one of the associated crop. Aside technical barriers, not counting with an adopted legal definition of agroforestry prevents the construction of a consistent framework to assess and consistently integrate information from different sources. Agricultural statistics on perennial crops used as data source, if not simply outdated, present uncertain accuracy and do not refer to the tree component associated to the perennial crops. Lastly, Peru separate reporting structure (LULUCF and Agriculture) creates trans-sectorial challenges if Agroforestry contribution, generated concurrently by both sectors, has to be accounted. To address these topics and institutional challenges and to prove the attractiveness of mitigation through Agroforestry, these findings set the basis for a forthright dialogue among scientists, policy makers and governmental technical teams, supporting the definition of key building blocks of a MRV roadmap for Agroforestry inclusion where improvements are strategically prioritized Keywords: MRV, iNDCs, readiness, Peru, gaps.There is no patent on agroforestry.https://agroforestry2019.cirad.fr @Agroforest2019 #Agroforestry2019","tokenCount":"165483"} \ No newline at end of file diff --git a/data/part_3/1943741561.json b/data/part_3/1943741561.json new file mode 100644 index 0000000000000000000000000000000000000000..a500d7920d331682abf88a50fe2a47863a296cbc --- /dev/null +++ b/data/part_3/1943741561.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"becced4566c08a74284b23a1c9f16a38","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/ce9bdc0e-bd12-420e-af57-653b4add0431/content","id":"-220311738"},"keywords":["vitamin A, hidden hunger, malnutrition, fortification, diet diversification ANOVA, Analysis of Variance","IREC, Internal Research Ethics Committee","PVA, Provitamin A","RAE, Retinol Activity Equivalent","SAMRC, South African Medical Research Council","SD, Standard Deviation","USD, United States Dollars"],"sieverID":"0fe3bb59-cd35-4a53-bb48-a6b5888d752a","pagecount":"12","content":"Background: Evidence of the effectiveness of biofortified maize with higher provitamin A (PVA) to address vitamin A deficiency in rural Africa remains scant. Objectives: This study projects the impact of adopting PVA maize for a diversity of households in an area typical of rural Zimbabwe and models the cost and composition of diets adequate in vitamin A. Methods: Household-level weighed food records were generated from 30 rural households during a week in April and November 2021. Weekly household intakes were calculated, as well as indicative costs of diets using data from market surveys. The impact of PVA maize adoption was modeled assuming all maize products contained observed vitamin A concentrations. The composition and cost of the least expensive indicative diets adequate in vitamin A were calculated using linear programming. Results: Very few households would reach adequate intake of vitamin A with the consumption of PVA maize. However, from a current situation of 33%, 50%-70% of households were projected to reach !50% of their requirements (the target of PVA), even with the modest vitamin A concentrations achieved on-farm (mean of 28.3 μg RAE per 100 g). This proportion would increase if higher concentrations recorded on-station were achieved. The estimated daily costs of current diets (mean AE standard deviation) were USD 1.43 AE 0.59 in the wet season and USD 0.96 AE 0.40 in the dry season. By comparison, optimization models suggest that diets adequate in vitamin A could be achieved at daily costs of USD 0.97 and USD 0.79 in the wet and dry seasons, respectively. Conclusions: The adoption of PVA maize would bring a substantial improvement in vitamin A intake in rural Zimbabwe but should be combined with other interventions (e.g., diet diversification) to fully address vitamin A deficiency.The prevalence of vitamin A deficiency is high in low-and low to middle-income countries [1,2], including (rural) Zimbabwe and neighboring countries [3][4][5]. It can be addressed through dietary diversification, fortification of industrially processed food (such as cooking oil or sugar), biofortification, and/or supplementation (high dose provided in e.g., oral liquid form) [6][7][8][9]. The coverage of vitamin A supplementation programs for children aged 6-59 mo in Zimbabwe was ~40% in recent years but varies widely across years, including a decline during 2020 and 2021, most likely due to COVID-19 [10]. Vitamin A supplementation programs are generally costly and difficult to maintain, and supplementation access varies by sub-population, typically compounding other health and food system inequities (such as vaccination access), including in Zimbabwe [11]. In this context and recognizing that low-income households may not be in a capacity to afford a diverse diet [12], conventional breeding of maize for higher provitamin A concentration-referred to as PVA maize in the rest of the paper-has been presented as having good potential to address low vitamin A intake in rural Africa [13].A breeding target of 15 ppm was set to provide 50% of the estimated average requirement for vitamin A [14]. To date, a total of 76 PVA enhanced varieties have been commercialized in Africa [15]. Under on-station conditions, the PVA concentration achieved through breeding has varied from 7.5 to 15 ppm [16] (against a concentration of non-PVA elite maize 2 ppm [17]). For illustration, consumption of 250 g/d of maize flour with PVA concentration of 10 ppm would deliver 2.5 mg PVA, equivalent to 208 μg Retinol Activity Equivalent (RAE). This compares with an average adult female requirement of 490 μg RAE [18].Although the ability to increase PVA content of maize through genetic improvement has been demonstrated, evidence of the effectiveness of maize biofortification programs on vitamin A status remains scant. Consumption of PVA maize improved children's vitamin A status, serum retinol concentrations among children who were vitamin A deficient at baseline [19], and visual ability to see in low-light conditions [19]. Breastfeeding mothers who consumed PVA maize for 3 mo had an improvement in the vitamin A concentration of their breast milk, and the prevalence of low-vitamin A concentration in breast milk was reduced by >50% [20]. In addition, there have been recent criticisms as to the cost effectiveness and impact of biofortification, and even suggestions that it may have diverted resources and efforts away from more promising strategies such as dietary diversification [21,22].Against this background, the objectives of the study were as follows: 1) to assess the adequacy of vitamin A in the diets of a diversity of households in a site typical of rural Zimbabwe, 2) to project the impact of large-scale adoption of PVA maize and other nutrition interventions under farm conditions, and 3) to model the cost and composition of diets adequate in vitamin A. We hypothesized the following: 1) that dietary intake of vitamin A would differ across farm types, 2) that PVA maize could be a viable option to address inadequate vitamin A intake for some farms but not all, and 3) that the cost of diets adequate in vitamin A would be above the current cost of diets for the majority households.The District of Murehwa (-17.6432, 31.7840, 1400 m.a.s.l.), located within Mashonaland East Province, Zimbabwe, was selected for the study. This district is predominantly rural, with 80% of the population engaged in small-scale agriculture as their primary livelihood strategy. The prevalence of stunting is greater in Murehwa (36%) than the national average and increased by 6% between 2010 and 2018 [23], indicating persistent nutritional challenges. This is despite agricultural productivity being relatively higher than in most other districts. The area receives a mean annual rainfall of 750-1000 mm [24], mostly falling between October and April. The main soil types include relatively infertile Lixisols and comparatively more fertile Luvisols [25]. Cattle and goats are the main livestock species, and maize is the staple crop [26].The current study was conducted as part of a larger survey, with recruitment methods described previously [27]. Briefly, 2 wards from Murehwa District with contrasting agricultural soil types and elevation were purposively selected: Ward 4 and Ward 27. In September 2020, a total of 306 farms representing around 7.5% of the population were selected at random within these 2 wards, using an adaptation of the Y sampling [28], and the household head was recruited and interviewed following informed consent. From the dataset, 4 farm types were identified using multidimensional scaling and hierarchical clustering [29].Type 1 can be described as larger farms with larger livestock herds, high-food security, high-dietary diversity, and crop sales as the main source of income. Type 2 are characterized by intermediate farm and herd sizes, high-food security, and lowdietary diversity. Type 3 are predominantly female-headed households, with intermediate farm and herd sizes, lower food security, and intermediate dietary diversity. Finally, Type 4 farms tend to be households with younger heads, smaller farms and herds, lower food security and dietary diversity, and off-farm activities as main source of income. Based on this typology, a representative sample of 30 rural households was selected through stratified sampling (using ward and farm type as strata). The sample was limited to 30 households due to resource constraints.Ethical approval was obtained from the institutional review board at the International Maize and Wheat Improvement Center (IREC 2020.016). All participants provided written informed consent for their participation in the study. Food consumption data were generated at household level using weighed food records. For a week (7 d) between the period 7 and 16 April 2021 (end of wet season) and for a second week between the period 24 October and 1 November 2021 (end of dry season), all food and drink items consumed as a meal or snack by the 30 selected households and its weight were recorded. Only items consumed at home were recorded. For recipes, every raw ingredient was identified and weighed before cooking. The source of each food item-food production, purchase, gift, hunting/gathering, or other-was also recorded. Records were made at the time of food preparation and consumption by a trained member of the household, typically an adult female, receiving regular visits from a research assistant during some of the meals to ensure data was captured accurately. Research assistants were advised not to accept food from households, even when offered. During these visits, records made in the absence of research assistants were also checked. The weight of each food item consumed was estimated using containers of various sizes (jug, bowl, cup, cooking spoon, table spoon, and tea spoon). The quantity of some food items was also estimated by counting units (e.g., for eggs, small tomatoes, medium-sized sweet potatoes, etc.). For each food item and in each household, the unit of measure was then calibrated by a research assistant using portable scales with a 0.1 g resolution. Inedible portions and food waste from these food items were not estimated (food waste tends to be negligible in the community studied). For every meal (or snack), household members taking part were also recorded, including their sex and age. A total of 4543 individual food items consumed at household level were recorded, and their weight was estimated-2294 during the wet season and 2249 during the dry season.Market surveys also took place during both monitoring periods to collect the local price of all food items recorded. Prices were collected from more than one source (with a target of 3-5 different sources) for each food item whenever possible, and the median was taken. For some uncommon items (16 items in the wet season and 35 in the dry season), it was only possible to collect market price data from one source. Across both seasons, 564 market prices were recorded (289 during the wet season and 275 during the dry season) for 176 food items (82 during the wet season and 94 during the dry season).Food consumption data sets were first matched to food composition datasets on a like-for-like basis, considering food description and moisture content. Each food item in the consumption data set was matched to a single representative item from composition tables published by the South African Medical Research Council (SAMRC) [30]. We chose this source because the food tables available for Zimbabwe were published >2 decades ago and were relatively limited in terms of the food items they included [31]. For items that could not be found in SAMRC (2017), we used composition data compiled for Malawi [32]. Finally, for wild fruits and vegetables, we used the database published by Stadlmayr et al. [33]. A few items could not be found in any of these sources, and we therefore used the US Department of Agriculture FoodData Central [34]. Cooking oil and margarine were considered industrially fortified with vitamin A, as this is prevalent in Zimbabwe. The full set of consumption-composition item matches is provided in Supplementary materials -Appendix 1. Weekly household intake of energy, protein, vitamin A, and selected other vitamins and minerals were then calculated by summing the products of quantities and concentrations for each food item consumed.For each household and each week of observation, requirements for vitamin A were calculated based on the characteristics of household members present each day and using the mean harmonized average requirement values published by Allen et al. [18]. Based on these values, weekly household intakes were then expressed on a per adult male (25-50 y old) equivalent and per day basis, using the requirement value for vitamin A of 570 μg RAE [18]. This assumed food was distributed among household members according to their vitamin A requirements. Using the median of local prices for each food item and assuming all food was sourced from local market purchases, indicative cost of diets was calculated. These costs are indicative as they are estimates of the cost a household would incur if they were to purchase diets from the local market, whereas households in the study area source a significant share of their diets from their own production (and gifts).To project the impact of large-scale adoption of PVA maize, we modeled the intake of vitamin A assuming all maize products to have a vitamin A concentration equal to one of the following values: the mean concentration recorded on farm (28.3 μg RAE per 100 g of dry matter; [35]), the maximum concentration recorded on-farm (40.4 μg RAE per 100 g of dry matter; [35]), the maximum concentration recorded on-station of a released variety (95.0 μg RAE per 100 g of dry matter; Ndhlela, pers. com.), and to the target concentration according to Bouis et al. [14] (125 μg RAE per 100 g of dry matter).Finally, the composition and cost of the least expensive indicative diets adequate in vitamin A were calculated using linear programming with the Rstats package lpSolve [36]. Models were analyzed for an adult male-25-50 y old-on a per day basis and set to minimize the cost of diets while achieving a daily intake of vitamin A >570 μg RAE (the mean harmonized average requirement value published by Allen et al. [18]). To obtain realistic diets and minimize deviation from current ones, intakes of energy, protein, and selected micronutrients (those displayed Supplementary materials-Appendix 2) were constrained to fall between 100%-200% of baseline values (mean values recorded for the total sample of 30 households). The same rule was applied to intake (in g of dry matter) in food belonging to the food groups 'cereals,' 'dark green leafy vegetables,' and 'legumes, nuts, and seeds' (groups according to Kennedy et al. [37]), as these food groups dominated observed diets. A constraint of intake lower than twice the mean values recorded for the total sample of households was set for the other food groups.Differences between types were tested through ANOVA, followed by a Tukey post hoc test when differences between types were revealed, using the Rstats package stats [38].The size of households included in the study was larger during the wet season than during the dry season: 8.1 AE 5.0 compared with 5.8 AE 2.8, respectively (Table 1). During both seasons, children (aged 1-17 y) represented the dominant group (3.0 AE 2.1 and 2.5 AE 1.9 during the wet season and the dry season, respectively), followed by young female adults (aged 18-50 y; 1.8 AE 1.7 and 2.5 AE 1.9 during the wet season and the dry season, respectively). No statistically significant differences in household size and household composition were found between the 4 farm types, except Type 2 farms having significantly more children than Type 1 farms during the dry season (Table 1).During both seasons, diets were dominated by cereals, with mean daily quantities consumed estimated at 396.0 and 509.1 g/ d per adult male equivalent during the wet and the dry season, respectively (Table 2). Other important food groups were 'legumes, nuts, and seeds,' 'white roots and tubers,' and 'sweets.' Consumptions of eggs, organ meat, and vitamin A-rich fruits were very low (<5 g/d per adult male equivalent) in both seasons. The mean (AESD) energy intake was 14,662 AE 4549 kJ per day per adult male equivalent during the wet season and 13,370 AE 3455 kJ per day per adult male equivalent during the dry season (Table 3). These values are plausible given the minimum recommended dietary allowances published by Otten et al. [39] (2006).Out of the 30 households under observation, only 3 had a diet adequate in vitamin A during the wet season and only 1 during the dry season (Figure 1). During both seasons, 10 households reached at least half of the daily requirement in vitamin A. Inadequacies were also commonly observed for several other nutrients, including protein, riboflavin, vitamin B12, choline, and calcium during both seasons, and vitamin C during the dry season (see values in Table 3 compared with Supplementary materials -Appendix 2). Vitamin A was predominantly supplied by meals, with a small contribution from snacks during the wet season (Figure 1 A and B). The main sources of vitamin A were foods produced on the farm and purchased food, during both seasons (Figure 1 C and D). The food groups contributing to most of the vitamin A were 'dark green leafy vegetables' (55.6% and 55.3% of the average diet in the wet season and the dry season, respectively) and 'vitamin A-rich vegetables and tubers' (25.4% and 23.2% of the average diet in the wet season and the dry season, respectively) (Figure 1 E and F). Although Type 4 farms in the wet season and Type 2 and Type 4 farms in the dry season tended to have lower average intake of vitamin A compared with the other farm types, vitamin A intake did not statistically differ between farm types during the wet or dry season (Figure 1 G and H, Table 3).The mean (AE SD) indicative cost of current diets was USD 1.43 AE 0.59 day -1 during the wet season and USD 0.96 AE 0.40 day -1 during the dry season (Figure 2). The food groups that accounted for the largest proportion of this cost were 'legumes, nuts and seeds,' 'cereals,' 'other vegetables,' and 'other fruits' during the wet season (20.5%, 20.3%, 12.9%, and 12.6% of the mean cost, respectively), and 'cereals,' 'legumes, nuts and seeds,' 'vitamin A-rich vegetables and tubers,' and 'white roots and tubers' during the dry season (24.3%, 13.7%, 9.4%, and 8.0% of the mean cost, respectively). Kale and covo (2 different cultivars of Brassica oleracea var. acephala) and rape (Brassica napus) were among the least expensive sources of vitamin A during both the wet and the dry season (Figure 3). Kale was the least expensive source during the wet season, and carrot was the least expensive during the dry season.If all maize products consumed were PVA maize with a vitamin A concentration of 28.3 μg RAE per 100 g of dry matter (the mean concentration recorded on farm), diets would only be adequate in vitamin A for 4 households (out of 30) during the wet season, and 2 during the dry season (Figure 4). This means that only 2 additional households during the wet season and one additional household during the dry season would reach vitamin A adequacy compared with the current situation. However, 50% of the households would reach at least half of their daily The estimated minimum cost (per adult male equivalent per day) of a diet adequate in vitamin A was USD 0.975 day -1 during the wet season and USD 0.793 day -1 during the dry season (Figure 5), i.e., above the current cost of diets for only 6 households during the wet season and 12 households during the dry season (Figure 2). Compared with the average current diet, the diet adequate in vitamin A at minimum cost would imply a doubling in the consumption of 'dark green leafy vegetables' (Table 2). It would also require a substantial increase in the consumption of 'flesh meat' during both seasons and 'oils and fats' during the dry season.If all maize products consumed were PVA maize, with a vitamin A concentration of 28.3 μg RAE per 100 g (the mean concentration recorded on farm) and assuming no difference in cost with current maize products, the cost of a diet adequate in vitamin A is expected to be reduced to USD 0.923 day -1 during the wet season and to USD 0.766 day -1 during the dry season (Figure 5). With a vitamin A concentration of 40.4 μg RAE per 100 g (the maximum concentration recorded on farm) and 95 μg RAE per 100 g (the maximum concentration recorded on station) for all maize products, this cost during the wet season would become USD 0.919 day -1 and USD 0.914 day -1 , respectively, and during the dry season USD 0.759 day -1 and USD 0.750 day -1 , respectively. No difference in the cost of a diet adequate in vitamin A would be expected between a vitamin A concentration of all maize products of 95 μg RAE per 100 g or 125 μg RAE per 100 g (the target concentration).To date, all studies (to the best of our knowledge) focusing on the potential health impact of biofortified crops, including maize, have used crops produced under optimal conditions onstation or on commercial farms [19,20,40,41]. However, the nutritional concentration of biofortified crops decreases under suboptimal conditions and thus when produced by resource constrained smallholder farmers [42]. In the secondary data used in this research, the mean vitamin A concentration of maize grown in smallholder farmers' fields was ~1/3 of that of PVA maize grown under optimal conditions (irrigated, well-fertilized, and nondegraded soils [35]). To our knowledge, this is the first study to account for a range of micronutrient concentrations (in this case, vitamin A) of biofortified crops in the projection of their likely impact.Our results suggest that large-scale adoption of PVA maize in the area (without additional interventions) would not lead to an adequate vitamin A intake for most households unless concentrations currently not achieved on-farm (concentrations of 95.0 μg RAE per 100 g dry matter or more) could be reached (Figure 4). However, the consumption of PVA maize grown under ensure that most households reach at least half of their daily requirements, which was the original target for PVA maize breeding [14], with a stronger effect during the dry season (Figure 4). Better understanding the links between soil fertility, fertilizer use, and vitamin A concentration remains an interesting avenue not yet fully explored, to potentially increase the benefit of PVA maize produced under typical smallholder conditions. Earlier studies have shown a significant positive contribution of soil fertility management to grain micronutrient concentration in cereals [43][44][45][46]. Pathways between soil fertility and grain concentration would probably be different for vitamin A and for micronutrients that can be supplied through fertilizers and/or organic soil amendments. Recent results in the study area indicate that lower PVA concentrations in the grain on-farm might be related to a generally lower energy status of the plant under limiting conditions [35].In addition to highlighting the likely impact of PVA maize consumption on vitamin A intake, our study points to the importance of complementary nutrition interventions, including diet diversification, industrial fortification, and supplementation. Contrary to our original hypothesis, we found that most households could obtain a diet adequate in vitamin A from food produced on their farms or available in local markets at a cost that does not exceed the current cost of their diets (Figures 2 and 5). However, the large-scale adoption of PVA maizeassuming no price difference between biofortified and nonbiofortified maize products-would only lead to a modest reduction in the cost of diets adequate in vitamin A, even at higher concentrations of vitamin A in maize (Figure 5). Adopting a diet adequate in vitamin A at minimum cost would imply a substantial increase in the consumption of 'dark green leafy vegetables' and 'flesh meat' (Table 2), which could be supported by targeted interventions. The promotion of home gardens in South Africa has been demonstrated to significantly improve the consumption of dark green leafy vegetables and reduce vitamin A deficiencies [47]. Similarly, the promotion of small livestock rearing in Ethiopia has been found to significantly increase the consumption of micronutrient-rich meat and milk [48].In addition to 'dark green leafy vegetables,' 'oils and fats' are a food group that makes a significant contribution to diets adequate in vitamin A during the dry season (Table 2). These food items are industrially fortified with vitamin A in Zimbabwe and represent a cheap source of vitamin A, although mainly for adults rather than infants and children whose food habits tend to differ [9]. The latter group, however, may benefit from high-dose vitamin A supplementation programs that run every 6 mo, targeting children from birth until the age of 5 y [10]. Industrial fortification could also be expanded to include sugar and cereal products, in addition to cooking oil [49]: the universal fortification of these staples would increase dietary vitamin A supplies, including potentially for vulnerable communities, although very low-income households may still have dietary vitamin A shortfalls as seen in Malawi [3]. In addition, local small-scale food fortification of flour is currently being piloted in parts of sub-Saharan Africa, targeting that milled maize flour is fortified with essential micronutrients before consumption and could be expanded to the study area [50].The lack of association between vitamin A intake and farm type (Figures 1 G and H) demonstrates that vitamin A adequacy is independent of wealth and suggests that complementary interventions, including the promotion of dietary diversification, focusing on vitamin A-rich sources, may be important in the context of rural Zimbabwe, as previously demonstrated in other contexts [51]. Some of the households studied used sun-drying of vegetables, which ensured a consistent supply of vitamin A, including during the drier months, a practice that could be promoted to other households (although vitamin A concentration may be affected by the practice [52]). Although the contribution of wild foods to vitamin A intake was found to be insignificant in this study (Figures 1 C and D), they have been found to be important in other communities of Zimbabwe [53] and could play a role in promoting year-round consumption of vitamin A-rich food in Murehwa.There were several limitations of this study, which are highlighted to guide future studies. First, this research was conducted at household level and assumed foods were distributed among household members according to their vitamin A requirements. Although studies have found reasonably equitable distribution of food within the household context [54] it is not always the case, with household members-mainly children and females-who may be undernourished in households that are nutritionally adequate [55]. Intrahousehold food distribution may be particularly unequal for nutrient-dense food such as animal-sourced food [56]. Therefore, future research should assess vitamin A intake at individual level, with a focus on children aged !5 y, girls, and women of reproductive age as they have the highest requirements for most nutrients [57]. Second, vitamin A intake may have been overestimated. Both storage and processing/cooking (i.e., drying of vegetables) have been shown to reduce vitamin A content [52,58] and were not monitored in this study. Food waste within the household was also not considered, although this tends to be low in low-income countries [59]. Third, food composition data used in this study originated from neighboring countries, which may differ from actual compositions. Finally, this study could be improved by assessing serum retinol concentration as a biomarker of vitamin A status, which may be poorly correlated with vitamin A intake [60].In conclusion, this study confirms that diets in rural Zimbabwe tend to be inadequate in vitamin A (as well as proteins and several other micronutrients, including riboflavin, vitamin B12, choline, calcium, and vitamin C), often only reaching less than half the dietary requirements. Our results demonstrate that the adoption of PVA maize would ensure that most households reach at least half of their daily vitamin A requirement, which was the original target for PVA maize breeding, even when accounting for the lower vitamin A concentration achieved onfarm. However, our study also shows that the adoption of PVA maize alone will not lead to adequate vitamin A intake (i.e., meeting 100% of daily requirements) for most households unless nutrient concentrations achieved under typical on-farm management increased. In addition to PVA maize, this study found evidence that other nutrition interventions could have a positive effect on vitamin A intake, including dietary diversification, industrial fortification (as already practiced for cooking oil and margarine), and supplementation.Although PVA maize can help alleviate the problem of low intake of vitamin A, the current adoption of PVA maize in Zimbabwe remains very low. In a nationally representative survey conducted in 2018, only 6% and 2% of rural households were found to consume and grow biofortified crops, respectively [61]. In a survey of 295 farms in Ward 4 and Ward 27 of Murehwa District conducted in February 2023, 35% of the farms were found to grow PVA maize, but seed was received as a gift or handout from programs running in the area, with no household purchasing seeds [62]. In contrast, 49% declared having knowledge of PVA maize and its benefits but did not grow it, primarily due to limited availability of seed. Strengthening the seed value chain for PVA maize is thus crucial to increasing its adoption. However, the cost and effort of doing so should be weighed against alternative interventionse.g., promotion of home gardening and small stock keeping, small-scale food fortificationas recently suggested [21].","tokenCount":"4687"} \ No newline at end of file diff --git a/data/part_3/1980023846.json b/data/part_3/1980023846.json new file mode 100644 index 0000000000000000000000000000000000000000..f429d33e519ee4b967a849ae089f92f996330a12 --- /dev/null +++ b/data/part_3/1980023846.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"3eff61c779c83ba2d61ae9671ee565d0","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/41229c2d-530e-4d55-bf37-7d5c262bb784/retrieve","id":"-1162446831"},"keywords":[],"sieverID":"f033621a-cdcd-4dec-ae07-59d3020060e3","pagecount":"17","content":"Senegal, with 196,712 km 2 land area, is located at the extreme west of the African continent (Longitudes 11°21W --17°32N and Latitudes 12°8N --16°41N). The country's soils are in general of low fertility, fragile and very susceptible to wind and water erosion. The climate is of Sudano--Sahelian type characterized by alternating dry season (November to May) and rainy season (June to October). The 700 km coastline brings climatic differences between coastal areas and inland zones. Rainfall amount follows a latitudinal variation going from 300 mm in the north semi--desertic areas to 1200 mm in the south. Senegal is divided into 7 agro--ecological zones for management perspectives: River Valley, Niayes, Groundnut Basin (North and South), Silvo--Pastoral zone, Eastern Senegal and Upper Casamance, Lower Casamance (CIAT--BFS/USAID, 2016). The country's economy is mainly driven by crop and livestock production contributing 17% of the GDP and employing about 70% of the population (NAPA, Republic of Senegal 2006). Like other sub--Saharan African countries, Senegal faces food insecurity as a consequence of climate variability and change combined with other global changes (Zougmoré et al., 2015).Senegal's economic growth strategy identifies agriculture as the key driver for poverty reduction and enhancement of food security. Such a strategy can only be viable if it integrates both the productivity and sustainability aspects with the latter calling for consideration of adverse effects of agricultural production on the environment and climate. Nowadays, the Senegalese government has advocated for the adoption of CSA to improve the adaptive capacity of the agricultural sector to climate change and variability and build more resilient livelihoods for sustainable development. CCAFS has been a strategic partner on this government agenda (MEPN Senegal, 2006) and the work with the Senegalese National Civil Aviation and Meteorological Agency (ANACIM) on the dissemination of downscaled climate information services through community rural radio across the country contributed to improve the adaptive capacity of many farmers (Lo and Dieng, 2015). Indeed, about 7 million rural people having access and to climate information, and the government of Senegal is now considering climate information as an agricultural input, similar to fertilizers and improved seeds (CCAFS 2015).Also, a number of current agricultural practices (deforestation, fire for cropland cleaning, poor fertilization practices, inadequate livestock raising practices, etc.) may generate GHGs. Therefore, agricultural development plans need to consider implications of GHG emissions, particularly for the expansion of rice cultivation and livestock production. It is in line of this vision that Senegal engaged as a member of the West Africa CSA Alliance created by ECOWAS which aims at coordinating initiatives, mobilizing resources, strengthening institutional and inter--sectorial coherence to support implementation and monitoring of CSA in agricultural investment programs (see WACSAA). In addition, the country's Intended Nationally Determined Contributions (INDCs) to emission reductions under unconditional (based on national resources) and conditional (support from international community) situations, amount to 5% and 21% respectively by 2030 (MEDD Senegal, 2015). It is to note that the national science-policy dialogue platform put in place since 2012 with the support of CCAFS, has been successful in sensitizing and raising awareness of national decision makers on the mainstreaming of CSA into national development initiatives (see http://ccasa--senegal.org/).When CCAFS initiated work in Senegal in 2010, sites for field work were considered and after stakeholder consultations, the Daga--Birame village was chosen as one of the seven villages within the CCAFS' site of Kaffrine (block of 30 x 30 km). The geographic coordinates of the Kaffrine site are 13.9--14.2 Lat. North and 15.4--15.68 Long. West. Specific challenges identified by the village community during the participatory diagnosis (Sanogo et al., submitted manuscript) highlighted droughts, floods and winds as the main climatic risks. Poor harvests, destruction of crops and harvests, post--harvest losses due to pests and diseases, destruction of farmlands due to wind and water erosion, and declines in market gardening and, livestock production were identified as the most important constraints to agriculture and natural resource management. While the lack of appropriate mechanisms for obtaining financial credits was the largest financial challenge, the weak functioning of existing institutions/organizations was pointed out as the main social constraint. Other challenges related to lack of infrastructure. According to the village baseline study conducted in 2011 in Toune Mosquée, a village close to Daga--Birame, soils are degraded with low fertility, and crop production cannot meet the food needs of a family throughout the year; thus families must buy food to fill the food gap and consequently, may harvest and sell forest products, which creates a vicious cycle of resource degradation (Goudou et al., 2012).In a view to tackle these challenges, the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) has been working with a range of partners (CGIAR centers, NARES, State technical agencies and services, NGOs, local authorities…) and rural communities, to test and validate several agricultural interventions aimed at sustainably improving agricultural productivity and households' income, improving the resilience of farmers and their ecosystems and reducing greenhouse gas emissions or sequestering carbon when possible. A CSV approach has been used -a participatory approach that, in the Daga--Birame CSV, targets four main components: (i) delivering climate information and services, (ii) developing climate smart practices/technologies, (iii) strengthening local knowledge and institutions and (iv) supporting local development plans (Aggarwal et al., 2013).The CSV approach in Daga--Birame builds on the following assumptions: (i) Improved understanding of farmers' perceptions and demands will lead to better tailoring of options and effective implementation of climate--smart technologies and innovations for improved resilience and climate mitigation; (ii) Addressing barriers to adoption of climate--smart technologies and practices, taking into consideration gender and social differentiation, institutional, political and financial mechanisms, will boost integrated and inclusive local development that can be brought to scale. These assumptions emerged after an initial diagnosis of local constraints and opportunities, including the use of the TOP--SECAC toolkit (Somda et al., 2011) to (1) analyze the vulnerability and adaptation capacity to climate change, (2) map the livelihood resources and climate hazards in the village territory, (3) analyze the perception of community members about the impact of climatic hazards on main livelihood resources; and finally, (4) define current and future adaptation strategies based on existing resources in the village.Based on the above assumptions, the following research questions are being addressed during implementation of the CSV approach:• What are the food and nutritional security's drivers of households in the context of climate change? • What combination of climate--smart water and crop--livestock--trees technologies and practices enhance the adaptive capacity of smallholder farmers; i.e., how beneficial is CSA implementation for smallholder farm communities? • What are the enabling social, institutional, political and financial determinants for adoption of incremental change in water--and climate--smart crop--livestock--trees technologies? • What are gender--related barriers to adoption of CSA?3. What does a CSV approach looks like in Senegal?Setting up Daga--Birame CSV commenced after selecting potential CSV sites based on climate risk profiles, potential land--use options, and assessing willingness of farmers and local government to participate (Förch et al., 2013). Initially, a household baseline study was conducted and covered 7 villages including Daga--Birame (Yacine et al., 2011).In 2011, two villages including Toune Mosquée and Ngouye--Daga--Birame, were selected for the implementation of the CSV approach but the latter was the main focus given the social motivation of the village for innovation. The visions for the future, as well as actions and partnerships needed to reach this desired future, were elaborated with farmers and key stakeholders using a participatory approach. Village communities indicated that for natural resources management, they envision the following to happen, in a positive future:-Crop production provides sufficient food as well as surplus stocks -Livestock numbers increase, and their health and conformation (shape and structure) improve -Pest and diseases from the location are eradicated -Water erosion is controlled through better management of farmlands -Market--gardening incomes increase -Livestock deaths due to flooding are reducedThe community also wished to eradicate diseases related to drought and rainfall events, to have better access to financial resources, to have dynamic, autonomous, well--structured and functional organizations and strengthened partnerships.Subsequent to the defined vision, specific actions to be undertaken were agreed upon during the community meetings. The community recognized that a key condition to getting an operational CSV was strong partnerships, with partners implementing the different actions in an integrated manner. For Daga--Birame CSV, research and extension services, met services, NGOs, private sector, local decentralized authorities and community organizations were key playing actors (Sanogo, 2014;Bayala et al., 2016). Regional and international organisations such as Aghrymet, INSAH, CORAF/WECARD, ICRAF, CCAFS--WA, provided scientific, technical and financial support. Through a number of these partners, community voices, successes and lessons could be relayed to policy--related decision makers.The set of actions identified by the village community was used to shape the CSV. The actions selected are discussed in relation to four major components (Figure 1). These actions are local in character, but have to be framed and selected in the context of feasible scaling up strategies (see later section): Participatory testing of CSA technologies and practices. The resulting technological solutions are expected to contribute to the following desired changes: reducing water erosion and improving management of farmlands; improving crop and livestock production; and increasing income generation. Action research includes: (i) The use of demonstrations on drought--tolerant crops varieties through comparing traditional varieties with improved cultivars selected on the basis of the seasonal forecast information. Improved varieties tested included those of maize (Early Thai, Swan, and Obatampa) and millet (Souna 3, Thialack 2). Initial results show an average 50% increase in yield, that consequently contributes to improved food availability; (ii) Combined soil tillage, microdosing and farmer--managed natural regeneration (FMNR) for integrated soil fertility management (ISFM). Suitable ISFM options could sustainably intensify agricultural production and generate income. Demonstration trials are being conducted to compare combined soil tillage (land scraping), different densities of FMNR and fertilizer microdosing (about 4 g/pit, 15 days after sowing) against the local practices (clear cutting and burning of biomass coupled with local fertilization practices --about 9--10 g/pit); (iii) Fruit tree planting for improved vegetation cover and income generation. Five tree species are being used in community demonstration trials as well as in individual plantations owned by women in order to identify options of fruit trees and products that fit local needs and context. This includes Ziziphus mauritiana, Adansonia digitata, Tamarindus indica, Psidium guajava and Annona muricata. Three grafted varieties of Z. mauritiana (ICRAF 08, ICRAF 09, Gola), three grafted varieties of T. indica (a sweet variety, Niger 309 and TB 3) and one grafted variety of A. digitata (Nonokène) are being compared with local ones. (iv) Gardening for nutritional security and income generation. This activity is mainly conducted by women organized in sub--groups with the aim to increase income while also contributing to nutritional diversity.. The gardens are rain--fed during the rainy season while clean energy (solar power) irrigation is used during dry season. For the past season (2015), the women'a groups produced water melon (Citrullus lanatus), okra (Abelmoschus esculentus), mint (Mentha spicata) and pepper (Capsicum annuum). Water melon and okra generated 76 and 20 Euro respectively, while mint was only for self--consumption; (v) Processing of non--timber forest products (NTFP). An NTFP promotion committee composed of women has been established to process baobab fruit into powder with the aim of generating income. During 2015, 29 kg of baobab powder were sold, resulting into 171 Euro of income for the women's association. The money has been deposited in the common village savings. Such income could serve to purchase food provisions and to rescue community members during poor harvest years. It could also serve to invest in resilient sustaining activities of the community.Overall in Daga--Birame CSV, options trialed under the climate--smart technologies/practices component have been looking for improved soil conditions through ISFM, FMNR or directly for increased production or income generation through appropriate crop varieties, fruit tree cultivars, and NTFPs processing. A recently published paper that used data from 700 surveyed farming households in five CSV sites in WA, confirmed that markets and climate are driving rapid change in farming practices in Savannah West Africa (Ouédraogo et al., 2016). Through better management of tree biomass, local improvement of environmental conditions could alleviate hazards such as strong winds, erosion, etc. while contributing to mitigation through carbon sequestration.(2) Climate information services for improved climate risk management. Knowledge on local climate conditions, through seasonal forecasts, information on dates of the start and end of the rainy season, and 10--day forecast, may allow farmers to better synchronize their farming activities (and other livelihood activities) to climate variability and improve their resilience to climatic shocks. Since 2011, a local multidisciplinary working group (made of various decentralized institutions, local farmers and private sector organisations, and the media) established by ANACIM, has been sharing climate and weather information with farmers through trainings (at the beginning of the season), mobile phones and local radios. As a follow up to the seasonal forecasts training, individuals from the innovation platform (IP - see below) also relay the climate information to their colleagues through the IP. In addition, some farmers in the different neighborhoods of Daga--Birame receive climate information on their mobile phones and share it with others. The field tests conducted through ANACIM consistently report reduced crop failure and increased crop production (about 50% yield increase) as a result of using CIS for farm management (Lo and Dieng, 2015). A study to analyse the effectiveness of the various dissemination mechanisms is underway. For this 2016 rainy season, PICSA (Participatory Integrated Climate Services for Agriculture), a new approach to guiding farm management decision making, is being trialed with 30 farmers including 16 women. This approach helps farmers long before the season starts, to match their production and other livelihood options to local climate features and individual circumstances, and subsequently use other climate information (seasonal and short term forecasts and warnings) to adjust their plans and operations.(3)Village development planning. Although there is not yet a formal village development plan, the initial diagnosis of constraints and opportunities and the definition of a vision for the village, prompted the community to plan a number of initiatives: (i) Baobab trees protection within the village territory: in the village, baobab trees were previously being overused for livestock feeding, causing progressive scarcity and reduced productivity of NTFPs from this important tree species. Nowadays, following the collectively agreed decision to protect the remaining population of baobab trees in the village, all baobab individuals have been marked and their use prohibited; the use of baobab leaves as animal feed has now shifted to other vegetation resources, crops residues and cereal by--products. This protection initiative is yielding results as women now have baobab fruits available for their processing and income generating activities. (ii) Establishment of protected areas. This initiative also results from the initial diagnosis exercise that identified progressive degradation of the vegetation as a major contributory cause to climatic risks (strong winds, erosion, flooding and drought). The community therefore implemented participatory management of 128 ha of community land, prohibiting fire and wood cutting while allowing grazing. A committee made up of 11 people including 4 women, has been officially recognized and appointed by local authorities (the municipality of Ndiognick, Office of Environment and the prefect) to ensure enforcement of the management rules. Baseline information on vegetation condition has been collected. The CCAFS partner in the CSV approach -ISRA -has participated to a similar initiative in the region of Kaolack, a region close to Kaffrine (Sanogo et al. 2014). (iii) Establishing a borehole: A borehole was established in the village to improve water availability especially during dry season because of the need to irrigate the demonstration field on improved tree cultivars. Establishment of the borehole was funded mainly through the ENRACCA project, funded through CORAF/WECARD and implemented by INSAH and CCAFS--WA. This initiative was a result of the synergistic partnership established among various actors in order to develop the CSV model and to tackle the multifaceted challenges facing the village. (iv) Access to advisories and technical services. Prior to the ISRA/CCAFS interventions, Daga--Birame had no access to advisories and technical services. Today, Daga--Birame communities interact with staff from the Meteorology, Agriculture, Environment, Livestock husbandry, and Research services, as well as with development NGOs, local politicians and administrators.(4)Strengthening local knowledge sharing and institutions. An innovation platform (IP) has been put in place as a driving force for CSV development. The IP is regarded as the local institution that decides and leads the implementation of the work plan as defined collectively by the community. It is a functional structure made of all social components of the community i.e. men, women, youths, traditional and religious leaders, and marginalized groups. It also brings together external actors such as technicians, administrative staff, local elected officials, researchers and members of associations, local organizations and savings and loans schemes. The IP bureau is made of 17 members including 6 women, who meets regularly to discuss and suggests decisions to the community for the CSV's activity planning. Major decisions are taken through its general assembly which is held annually, its board meeting every 3 months, and neighbourhood level meeting when specific needs arise. Also, information generated (lessons learnt) from implementation of the practices/technologies are shared through the IP. It has allowed women to get land for market gardening and to plant priority local fruit trees in a demonstration plot. The Innovation Platform also coordinated the process to obtain agreement from the local authority to protect and manage the community lands. The IP has also been used as a channel to relay climate information to farmers. As part of the IP, 3 other structures were created and tasked with specific goals: --The economic interest group (Groupe d'Intérêt Economique). This is in charge of promoting economic activities (NTFPs -baobab fruits processing, market gardening, maintenance of tree cultivars demonstration plot and groundnut production through intercropping in the plot) within the village; --The committee for protected areas. This is in charge of sustainable management of the protected area. For instance, the committee is responsible for overseeing the enforcement of the rules; --The committee for promoting NTFPs. This is initially in charge of developing a business model with baobab fruit powderThe IP is legally recognized through its GIE named Soukhali and it is through the GIE that initiatives can be developed to seek for loans and other forms of assistance (insurance, etc.), although such initiative have not yet been tried because of insufficient capacities; indeed, there is need for capacity building (also elaboration of code of conduct) to allow the IP engage in resource mobilisation.On the four CSV components An analysis of the linkages/interrelations between the four components (see Figure 1) in the case of Daga--Birame indicates that climate information services (CIS) have been a key entry point to guide farmers' decisions and selections of crops, agro--sylvo--pastoral systems, production timelines and levels of investment. Thanks to the greater availability and access of CIS, largely through the ANACIM--facilitated local multidisciplinary groups, mobile phone text messaging and rural radio broadcasts, as well as the now initiated PICSA trainings, it is apparent that farmers are becoming convinced about the effectiveness of using CIS for farm management. Therefore, farmers' decisions on the type of crops, varieties, technologies, arable land size, level of intensification, etc. (the \"CSA technologies and practices\" component) are now commonly guided by the climate information shared through the various dissemination channels. Given with new knowledge required to understand and implement the defined climate--relevant technologies and practices, various activities related to the \"Local knowledge and institutions\" component have become crucial. These have included capacity building to share knowledge amongst CSV actors. Also important was the setting up of the IP and other sub--committees, thus improving community organization to collectively benefit from the capacity building and to discuss and plan CSV. Lessons learnt from the demonstrations tests and from individual decision makings are iteratively shared among the IP members to guide next steps and plans within and outside the CSV. This has also led to activities in the \"Local development planning\" component.Local institutions put in place have facilitated women's access to production assets especially land and water. For instance, they obtained land for market gardening and for fruit trees planting, thus empowering them economically and socially.Quantitative evaluations are planned and data has been collected since 2012. The research questions aimed at providing understanding and evidence of the functioning and effectiveness of the various technological options with respect to climate variability. Their cost--benefits are also being assessed. In this regard, a special issue on climate--smart agricultural technologies in West Africa with 12 scientific papers from the five CCAFS pilot countries is currently submitted to Agriculture & Food Security. ICRAF has published an occasional paper (peer reviewed) that documented approaches and lessons learnt from CSV development research in West Africa (see:Lessons from CSV development research--WA). Based on data available from the various CSVs, a PhD student from Wageningen University is currently exploring how a system--based approach can be used to evaluate the impact of CSA. A System Dynamics Models for CSA at village level will be designed to simulate the behaviour of a system and understand the impact of current interventions and the effectiveness of current interventions against future climate change shocks, population growth, and policy change.Learning from changes in social processes, perceptions of climate risks and the related options constitute an important way to improve and accelerate the CSV approach. A key partner has been IUCN West and Central Africa who have conducted monitoring and evaluation of behavioral changes in the intervention sites. Table 1 summarizes behavioral changes as recorded in stories of changes gathered in 2013 and 2014. The results showed that the CSV approach has enacted significant shifts in knowledge, practices and organizational change. A recent survey (early 2016) indicated that the innovation platform has been instrumental in enhancing participation in decision making by community members, and enhancing their role in shaping development activities. The community particularly appreciated the collective learning developed through the various demonstration trials, the exchange visits, experience and knowledge sharing with farmers from other areas and the regular assistance they get from technicians to implement their activities. It is clear that men, women, youth and migrants have varying abilities to adapt to climate shocks and longer--term climate change because of differentiated access to entitlements, assets, and decision--making (Bayala et al., 2016). In Daga--Birame CSV, women have always been involved in the CSV process; from the identification of constraints and opportunities during the first meeting that gathered 76 agro--pastoralists including 39 women. Women farmers were also involved in the participatory testing of CSA technologies and practices, especially for the tree cultivar demonstrations and garden vegetable production, which was mainly entrusted to women's groups. Emphasis has also been placed on interventions that are likely to be more beneficial to women, including finance management and accounting, composting for gardening production, and processing of NTFPs notably baobab fruits. Climate information services are shared through the innovation platform, where women's membership is higher than that of men. Locally established institutions have kept the momentum on the gender focus, with the IP made of 110 women out of 194 members, 35 women out of 92 members in the EIG, 4 women out of 11 members of the ESPIV monitoring committee, 47 women out of 59 members of the committee for NTFPs promotion. All capacity building activities in the framework of the CSV (e.g. tree grafting and planting techniques, crop residues treatment with urea, etc.) have involved about 50% women participants.Using successfully tested results and outputs from the CSV approach to influence major next users has been the primary pathway to scaling up and out. To this end, a number of linkages with agricultural development projects and programs has been initiated at the early stage of the CCAFS intervention in Senegal in order to mainstream and disseminate lessons to large numbers of beneficiaries.• The best success to date from the Kaffrine CSV site relates to the use of downscaled climate information services to informing farm management decision making (through the pluri-disciplinary working groups (GTPs), the community rural radios and the mobile phone text messages). As of today in Senegal, ANACIM has strengthened the capacity of 82 rural community radio stations across the 14 administrative regions to develop special broadcast programs on CIS in local languages, and together with SMS transmitted through mobile phones, allowed to potentially reaching 740,000 rural households across Senegal. Climate information in Senegal is now considered an agricultural input just like seeds, fertilizers and equipment, which are at the basis of production (CCAFS 2015).• In the framework of the dissemination initiatives of the national science--policy dialogue platform (see science--policy dialogue platform), research results and experiences from the CSV site are regularly shared by ISRA scientists and used to illustrate and demonstrate how effective various CSA technologies and practices could be. These results are also used when the platform analyses how CSA is mainstreamed into national development plans (e.g. the Accelerated Program for Agriculture in Senegal). Overall, the national science--policy is seen as the government's commitment to foster a multi--sectoral approach that will enable actionable CSA initiatives in the country (CIAT--BFS--USAID, 2016). The platform recently organized a high level event to discuss on the roles expected from policy makers in order to mainstream CSA into national plans and strategies (see High level event--decision makers). USAID/CINSERE project: Based on the above successful achievements of CCAFS and partners in Senegal (ANACIM, ISRA), and as a follow up to the request expressed by Senegalese stakeholders, the USAID--Senegal office has decided to finance an activity that focuses on the scaling of climate information services in order to increase the resilience and productivity of the Feed the Future projects beneficiaries. With a total budget of 3.5 million US$ over 3 years (2016--2019), this project aims to strengthen the capacity of ANACIM and other structures implementing the Feed the Future projects, to succeed in developing and communicating tailored and salient CIS in support of farms', fisheries' and pastoralists' communities, both women and men, in their management decision making for increased resilience and productivity (see: CINSERE--Senegal project).• A project proposal of 10 million US dollars aiming to scale up the Daga--Birame CSV model across Senegal has been developed by ISRA in partnership with ANACIM, ASPRODEB and ANCAR, and submitted to the Green Climate Funds. The project expects to set up 100 CSVs and to impact about 1 million people from 63 districts.• South--South scaling up: The experience from the Kaffrine CSV site has even informed CIS strategy in Latin America. Based on the successful pilot South--South exchange between Colombian and Honduran farmers with the Senegalese actors was organized in 2013 for the Latin American partners to learn from the farmers in Senegal (see: South--South learning outcome or UNEP south--south cooperation case). As a result, Latin American farmers and service providers gained new skills and knowledge of how to incorporate climate and site-specific information into their planning systems and strategies. In Colombia, 154,000 farmers are now receiving agro--climatic advisories, and an additional 6,000 have adopted climate--smart practices. In the medium--term, the project is expected to reach 1,500,000 farmers.The CSV process has shown good progress towards an integrated model where the various components are iteratively feeding each other to help the community achieve its vision. In addition, the initial scaling up activities have shown much promise. However, some challenges need to be tackled soon to strengthen the institutional framework that regulates the functioning of the CSV:• Though formally registered through the Economic Interest Group, the IP does not have a validated reference document on rules and regulations that could guide its proper operation. This also includes how to manage the benefits and incomes generated from the CSV activities as well as the mode of remuneration of individuals working for the IP.• The text message sharing CIS through mobile phones are in French and not often understandable to most people in the village. An alternative could be to design voice messages in local language.• It is clear that the community is mostly interested in agro--sylvo--pastoral production systems that deliver cash incomes. However, their capacity to design and implement business--led activities is weak. The PICSA trainings have revealed strong capacity building needs on agro-business development for small scale farmers. This also concerns their ability to develop bankable projects that would generate financial resources in support to their local development plan.On the research front the CSV approach deals with complex systems, requiring significant data collection to analyse synergies and trade--offs. The research teams have endeavored to set up simplified action research protocols that allow easy understanding by farmers of the research activities while also allowing to collect the minimum set of data needed for generating scientific evidence. However:• The participatory nature of most research trials makes it challenging to collect data that has statistical rigour.• Also challenging is the multiple interactions amongst variables in the CSV production systems (which in West Africa involve numerous crops/livestock in mixed farming systems) and their linkage with climatic variables. Because CSA interventions span across various disciplines and require understanding of synergies and trade--offs over time, the challenge remains to monitor and evaluate CSA, taking into consideration the complexity of food production systems and the uncertainty of climate change.• One option to deal with the complexity is system dynamic modeling that can simulate the behaviour of the system and understand the impact of current interventions as well as the effectiveness of these interventions against future climate change shocks, population growth, and policy change. The system dynamic modeling could allow analysing conditions that trigger CSA, and how to support inclusive business--oriented development through associated technologies and digital agriculture.• For effective scaling--up, M&E systems need to be strengthened to allow understanding of: For more information, visit www.ccafs.cgiar.org","tokenCount":"4930"} \ No newline at end of file diff --git a/data/part_3/2004216327.json b/data/part_3/2004216327.json new file mode 100644 index 0000000000000000000000000000000000000000..f567b6a16913ead6b6f14846c497ed0037bcc4ff --- /dev/null +++ b/data/part_3/2004216327.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"4bb2b68b14d388295422287378a87c94","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/5b47ca6a-33bc-4bfb-a59c-49edde582365/retrieve","id":"-47182957"},"keywords":[],"sieverID":"4cacbe28-6e72-41bb-83bc-4a5b64bce7a1","pagecount":"7","content":"Estas actiVidades siguen una secuencia que se IniCia con el estudio de la sabana y el efecto de algunos factores de manejo sobre su productividad, siguIéndose con la determinación de la productivIdad de las especies forrajeras conOCidas en la reglón, para después entrar en la evaluación de germoplasma nuevo de gramíneas y leguminosasEn Carlmagua se estudia a nivel de pastoreo, el manejo y capaCidad de producción animal de nuevo germoplasma que alcanza un estado avanzado de seleCCión En la sección de ut,] Izaclón de pastos de Carlmagua, eXIsten dos tIpOS de ensayos El primero es la determinación del potenCial de producción animal de praderas de gramíneas puras y el potenCial de producción animal el manejO mas apropIado durante las estaciones llUViosa y seca Las ganancIas de peso corporal se han mantenIdo Slml lares durante dos años con excepción de algunos tratamIentos con carga animal variable en las estaciones llUViosa y seca Es de SIgnifIcatIva ImportancIa la gananCIa de peso con esta gramínea La dIsponibIlidad de forraje dIsmInuye de 1 a 2 toneladas de 'naterla seca verde \" durante la época llUVIosa, hasta O 2 a O 5 toneladas durante la época seca La recuperacIón después que se InICIan las llUVias es rápida y asombrosa La productIvidad del pasto en Carlmagua es regularmente estable a traves del tIempo a pesar de las grandes varIaCiones de la época llUViosa y seca, pero estas dIferenCias luego desaparecen en estacIones posterIores En el segundo experImento de B decumbens se Investiga la POSIbIlIdad de aumentar la pro-dUCCión por hectárea, medIante el uso de capaCidades altas de carga, durante la estacIón llUViosa y una baja capaCidad de carga durante la estacIón seca En la tercera pradera de ~ decumbens se busca InvestIgar los efectos de varIaCiones de capaCidades de carga durante la época seca y una capaCidad de carga Intermedia, durante toda la estacIón llUVIosa Estas praderas parecen agotarse, especIalmente las de mayores capacIdades de carga, en consecuencIa estas praderas tIenen un futuro ImpreVISIble S,endo el Andropogon gayanus un germoplasma bastante promlsorlo, se debe estudIar su potencIalIdad de produccIón en sabana tropIcal En prImer lugar, se debe estudIar aisladamente, con diferentes cargas de ganado durante las épocas lluvIosa y seca Luego InIcIar un estudIO de esta gramínea aSOCIada con cuatro leguminosas promlsoflas que llegaron a la categorla 4 del Programa de Pastos Tropicales del CIAT Siendo estas ~ phaseololdes (kudzu), ~ ovallfollum CIAT 350, Stylosanthes capltata (CIAT 1019. 1315, 1405. 1078 Y Zornla sp CIAT 728), Andropogon gayanus presenta serIOS problemas de manejO de pastoreo pues es lenta para establecerse Una vez estableCIdo crece muy rápIdamente neceSItando carga anImal alta para mantener una altura razonable de plantas las praderas de Panlcu~ maXlmum presentan serIOS problemas de orden nutrlclonal pues Se trata de una gramínea bastante eXigente agotándose rápidamente los nutrIentes del suelo, por lo tanto, es necesarIO hacer una fertIlIzaCión de mantenImIento Brachlar'8 humld. la presenta tamb.én graves problemas de maneja, tratándose de una gramínea muy rústIca y agresIva que se puede establecer muy fáCIlmente ya que compIte con las malezas, todavía es una especie que se lIgnIfIca rápIdamente ocaSIonando pérdIdas de peso conSIderables 51 no es bIen manejada Puerarlaf'haseololdes a pesar de presentar cualIdades poco pOSitIvas debIdo a las condICiones de pastoreo contInuo eS una legumInosa que en Carlmagua está Siendo usada como banco de proteína en combInaCión con sabana natIva ","tokenCount":"556"} \ No newline at end of file diff --git a/data/part_3/2017279578.json b/data/part_3/2017279578.json new file mode 100644 index 0000000000000000000000000000000000000000..e7772fd4c0bc70e4313be3ec88eac75034f646a9 --- /dev/null +++ b/data/part_3/2017279578.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"6395d72ee2b4a2e3b190357205b2aab8","source":"gardian_index","url":"https://www.cifor.org/publications/pdf_files/infobrief/8726-Infobrief.pdf","id":"1831513434"},"keywords":[],"sieverID":"6fcbe5a1-c06e-42e3-85fd-329a33dfd7ac","pagecount":"8","content":"En la última década, enmarcadas en el desafío de Bonn y la Declaración de Nueva York sobre los Bosques, han surgido importantes iniciativas para restaurar los bosques, apoyadas por esfuerzos regionales tales como la Iniciativa Latinoamericana 20x20 y AFR100 en África. Estas iniciativas se centran en la restauración del paisaje forestal (RPF), \"un proceso planeado que busca recuperar la integridad ecológica y mejorar el bienestar humano en paisajes deforestados o degradados\" (Mansourian et al. 2005). La RPF comprende diferentes intervenciones de restauración tales como plantaciones de árboles, sistemas agroforestales, regeneración natural y asistida del bosque, y la conservación. Todo implementado bajo seis principios rectores (Besseau et al. 2018). El proceso y los resultados de la RPF dependen de la convergencia de metas individuales y colectivas, y de la toma de decisiones de forma colaborativa, lo que requiere transparencia, negociaciones frecuentes para optimizar el balance entre los beneficios y las pérdidas, y monitoreo para el manejo adaptativo (Chazdon et al. 2021).Sin embargo, mucho de los actuales proyectos, programas e iniciativas de RPF podrían estar fallando en comprender el potencial de la RPF para catalizar el aprendizaje y la reflexión sobre los resultados del manejo, debido a marcos de monitoreo e infraestructuras de intercambio de la información que son estrechos o insuficientes (Stanturf y Mansourian 2020) o como resultado de bajos niveles de aceptación de las diferentes directrices existentes para el monitoreo. Además, factores No. 375 Noviembre 2022 como la escasez de recursos financieros y capacitación (Höhl et al. 2020), un entendimiento limitado de los procesos para definir actores y partes interesadas relevantes (términos que utilizamos indistintamente en este artículo) (Buckingham et al. 2021), la insuficiencia de organizaciones puente que permitan a los profesionales tener acceso al conocimiento (Minang et al. 2021), y escasos sistemas para el intercambio de conocimientos (Ladouceur et al. 2022), también limitan el aprendizaje social y la RPF en mayor escala. Cash et al. (2006) aclaran que las escalas espaciales, temporales y jurisdiccionales son relevantes para las interacciones entre los humanos y el ambiente. El término a través de los niveles se aplica a los diferentes niveles dentro de una escala, mientras que el término entre escalas se refiere a las interacciones entre las escalas. Son preferibles enfoques de monitoreo entre escalas porque muchas veces la resolución espacial de los conjuntos de datos globales es raramente útil a nivel local, y con frecuencia, la información recolectada localmente se integra en los conjuntos de datos globales de forma deficiente (Danielsen et al. 2021), lo que resulta en la pérdida de información valiosa (Eicken et al. 2021). En respuesta, existe una creciente demanda del monitoreo colaborativo, que permite a los actores de la RPF estar vinculados a diferentes niveles y entre escalas por medio de redes de intercambio de información (Schweizer et al. 2021a) para abordar asuntos complejos que abarcan dimensiones espaciales, temporales, jurisdiccionales u otras de tipo humano-ambientales (Cash et al. 2006). En este estudio, se utiliza el término entre escalas para referirse de forma breve a este rango de interacciones.Se define al monitoreo colaborativo como un proceso de recopilación y diseminación de información que orienta la toma de decisiones en diferentes niveles y entre escalas. Se basa en un \"compromiso continuo\" que involucra tanto a la gente de la localidad (individuos, dueños, comunidades, empresas o el sector público) como a investigadores profesionales en la recolección y uso de la información (Danielsen et al. 2009), y acoge actores e interacciones de múltiples niveles con las diferentes tareas y responsabilidades para monitorear con el fin de mejorar el aprendizaje y los resultados del manejo (Demeo et al. 2015). Este estudio trata de entender de forma preliminar la magnitud del monitoreo colaborativo en proyectos de RPF en Latinoamérica. Se justifica el estudio ya que esta región carece de armonización entre los niveles de gobernanza en programas y proyectos de RPF, así como de débiles arreglos institucionales que con frecuencia obstaculizan el flujo de información entre escalas (Schweizer et al. 2021a;Wiegant et al. 2022).Para evaluar el estado del monitoreo colaborativo en proyectos de RPF en los países de habla hispana en Latinoamérica adaptamos el instrumento de diagnóstico de Guariguata y Evans (2020). El diagnóstico se basa en \"factores de éxito\", es decir, aquellos elementos, condiciones, acciones o actores que apoyan los objetivos de la RPF. Desagregamos los 42 factores de éxito del conjunto original en 54 y creamos una escala de Likert para que los encuestados calificaran si cada factor de éxito \"existía\", de acuerdo con los siguientes rubros: 1 = no, 2 = un poco, 3 = parcialmente, 4 = en mayor medida, 5 = sí, y NA = no aplica. La encuesta fue distribuida entre agosto y octubre de 2021. Cabe notar que las escalas tipo Likert han demostrado tener limitaciones, tales como pedir a los encuestados que apliquen una escala ordinal a temas complejos, la tendencia de los encuestados de elegir la puntuación de en medio, o asumir que los intervalos tienen el mismo valor (Jamieson 2004). Se solventaron estas limitaciones empleando estadísticas apropiadas a la escala de Likert (South et al. 2022) e incluyendo espacio para comentarios.Un total de 36 encuestados aportaron sus perspectivas sobre 36 proyectos en 12 países. La mitad de los proyectos son de Sudamérica y el resto son de México y Centroamérica. Sin embargo, dentro de cada subregión la representación es irregular, 58 % de las respuestas provinieron de dos países: México (36 %) y Perú (22%) (Fig. 1). Los proyectos se encontraban en diferentes etapas, 36 % estaban en la fase previa a la planeación o en fase de planeación, 47 % en la de implementación, 6 % en fase de mantenimiento, 3 % en fase de monitoreo y 8 % de los proyectos habían concluido. La mayoría Noviembre 2022 de los proyectos fueron reportados como una combinación de diferentes tipos de actores. Cuatro quintas partes de las respuestas provinieron de proyectos pequeños (≤1,000 ha). Los encuestados fueron en su mayoría implementadores; es decir, aquellos encargados de un proyecto de restauración, representantes de ONG, universidades, iniciativa privada, agencias de gobiernos locales o socios responsables del proyecto.En general, la mayoría de los encuestados reportaron que sus proyectos de RPF tienen objetivos fáciles de entender que son compartidos por las partes interesadas, cuentan con metas medibles y los proyectos tienen límites territoriales definidos (Fig. 2). En general, las partes interesadas entienden que el monitoreo es fundamental para el éxito de la RPF, y los planes de monitoreo -cuando se encuentran ya establecidos-están alineados con los objetivos de corto y mediano plazo. Los encuestados además reconocieron que el monitoreo colaborativo requiere tiempo, y conlleva capacitación y negociación. Como lo señaló un encuestado de Costa Rica, \"[la colaboración] es un proceso largo, que requiere de persistencia, no de velocidad; toma tiempo integrar las asociaciones vecinales, las afiliaciones y otro tipo de relaciones con cada proyecto …\". Generar motivación e interés en el monitoreo colaborativo entre la gente local ha tenido menos éxito. Un encuestado de Chile dijo: \"Hay interés por parte de los asesores y aquellos a cargo de parte del gobierno; pero por parte de los usuarios o beneficiarios, [el interés] es solo parcial\". Sin embargo, hubo gran interés cuando los beneficios para la gente de la localidad eran claros, tal como sucedió con un proyecto en Costa Rica en el que el pago por servicios ambientales estaba vinculado al monitoreo del proyecto. Un proyecto en México señaló que la inversión en tiempo y esfuerzos dio resultados. \"Con el tiempo, la confianza de las comunidades creció, y con ella, la libertad de expresar sus opiniones sobre el proceso\".Sin embargo, los resultados sugieren que las personas de la localidad tienen menos probabilidades de estar involucradas en el diseño de los protocolos de monitoreo, y los enfoques de monitoreo aplicados tienen a su vez menos probabilidades de contar con procesos colaborativos y que hagan énfasis en el aprendizaje mutuo para definir los indicadores, o de tener indicadores que son fáciles de entender. Estos resultados 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 1. El área geográ ca donde se realizará el proyecto de Restauración del Paisaje Forestal (RPF) está de nida.4. Los objetivos de la RPF son objetivos que las personas no técnicas puedan comprender y apoyar.5. Los objetivos de la RPF han sido de nidos en objetivos realizables y en objetivos medibles.7. Las partes interesadas en la RPF consideran el monitoreo como un factor esencial para alcanzar el éxito.13. Existen claras motivaciones a nivel local para la participación en el proyecto de RPF y tales motivaciones… 16. El personal del proyecto de RPF reconoce que se necesita tiempo, negociación y entrenamiento en el… 28. Se ha dedicado una porción especí ca del presupuesto de RPF al monitoreo durante toda la duración de proyecto… 29. Los planes de monitoreo se han realizado en las etapas iniciales de la RPF.32. Los indicadores del monitoreo están alineados con los objetivos a corto plazo de la gestión.33. Los indicadores de monitoreo están alineados con los objetivos a medio plazo de la gestión.Un poco Parcialmente En mayor medida Sí Figura 2. La distribución de las respuestas relacionadas con aspectos de sitio de RPF y planeación, y planes de monitoreo y selección de indicadores. Los resultados se presentan en una escala del 1 al 5 en la que 1 = no (el factor no existe) y 5 = sí (factor plenamente establecido). RPF, restauración del paisaje forestal; NA, sin respuesta/no aplica. Los números denotan el \"factor de éxito\" de un total de 54 en el cuestionario de la publicación original en inglés.No. 375Noviembre 2022destacan acciones concretas que pueden llevarse a cabo para promover el interés local en la participación por medio de un proceso social y colaborativo que identifica las preocupaciones y problemas ambientales que justifican una intervención de RPF, al tiempo que respaldan los beneficios e impactos futuros. Los enfoques ascendentes facilitan el trabajo con las partes interesadas para promover colaboraciones que estén mejor alineadas con la forma en la que los recursos ecológicos están interconectados a lo largo y ancho del paisaje (Guerrero et al. 2015). Se requiere apoyar los esfuerzos de RPF, creando sistemas de producción conjunta de conocimientos, y ofreciendo acceso a la información y la capacidad de compartir información (Ladouceur et al. 2022).A pesar de la puntuación relativamente alta para la afirmación \"el personal del proyecto de RPF sabe promover enfoques participativos para reunir información, analizar datos, compartir información, y para el aprendizaje\" (Fig. 3), los resultados sugieren que, en general, la capacitación ha sido insuficiente o poco considerada en el presupuesto. Las puntuaciones relativamente bajas en lo que se refiere a la capacitación en métodos de monitoreo y recolección de datos, trabajo con partes interesadas locales, e interpretación de datos, subrayan la necesidad de capacitación para los implementadores de la RPF y las partes interesadas locales, y cómo pueden trabajar juntos. Las mayores deficiencias en puntaje estuvieron en la capacitación de las personas de la localidad en el uso de herramientas, formatos y tecnologías para la recolección de datos, y en la interpretación de datos de una forma que promueva el entendimiento y responda a las preocupaciones.Por otro lado, también se recopilaron comentarios sobre la necesidad de capacitación, particularmente sobre técnicas emergentes o tecnologías que aceleren las tareas. Por ejemplo, una persona de Ecuador señaló que \"cada día hay nuevos formatos, metodologías, programas que necesitamos aprender\". Un proyecto en México ha involucrado activamente a partes interesadas locales en varios aspectos de la capacitación, incluido planear ellos mismos las actividades: \"los participantes deciden los días y horas para llevar a cabo los talleres de capacitación\". Sin embargo, el mismo proyecto también notó vacíos en la capacitación en cuanto a enfoques y técnicas de monitoreo.Figura 3. La distribución de las respuestas relacionadas con aspectos de capacitación. Los resultados se presentan en una escala del 1 al 5 en la que 1 = no (el factor no existe) y 5 = sí (factor plenamente establecido). RPF, restauración del paisaje forestal; NA, sin respuesta/no aplica. Los números denotan el \"factor de éxito\" de un total de 54 en el cuestionario de la publicación original en inglés.0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 16. El personal del proyecto de RPF reconoce que se necesita tiempo, negociación y entrenamiento en el proceso de monitoreo. 17. El personal del proyecto de RPF está entrenado en técnicas de monitoreo adaptadas al contexto local.25. La inversión en capacitación, creación de capacidades y seguimiento se incluyen en los costos de monitoreo.26. Se dedican recursos al análisis de datos y las actividades de aprendizaje social (reuniones, talleres, capacitaciones, excursiones) que apoyan la toma de decisiones y el… 42. Se ha brindado capacitación a los pobladores locales en el uso de las herramientas, formularios y tecnología para la recolección de datos.43. Se ha brindado capacitación a los pobladores locales en la interpretación de datos de manera que promueva la comprensión y responda a inquietudes.44. La capacitación se adapta a la preparación técnica de los participantes.No. 375Noviembre 2022Capacitar a las partes interesadas en herramientas y tecnología para la recolección de datos es esencial, así como lo es interpretar y entender los datos obtenidos de la RPF y cómo ello aborda las preocupaciones sobre el manejo. Por ejemplo, profesionales de la restauración en Latinoamérica han descrito la necesidad de capacitación en temas relacionados con aspectos sociales (es decir, resolución de conflictos, equidad social) y de manejo (es decir, manejo de información y administración financiera; Meli et al. 2019). El monitoreo colaborativo puede hacerse con equipos integrados por múltiples partes interesadas que complementan las capacidades individuales y refuerzan la colaboración entre las organizaciones. Este enfoque no solo promovería el aprendizaje y el intercambio de información, también lograría alcanzar objetivos ambiciosos para la RPF a nivel mundial, de una manera más eficaz (Bloomfield et al. 2019).No todos los proyectos encuestados reportaron estrategias enfocadas explícitamente en lograr la participación de las mujeres o de grupos marginados o vulnerables en todas las fases de la RPF (Fig. 4), aun cuando los encuestados mencionaron la importancia de apoyar su participación. Por ejemplo, un proyecto en México ha establecido una meta de participación de al menos 20 % de mujeres, y la mayoría de los participantes son indígenas. En otro proyecto en México, se llevaron a cabo varios talleres con las comunidades para promover la participación de las mujeres en los procesos de toma de decisiones. Sin embargo, uno de los encuestados de Ecuador reconoció que \"todavía existe la necesidad de trabajar más con mujeres en espacios en los que se sientan cómodas participando\".Una mayor atención al asunto de la inclusión de género se justifica por los siguientes aspectos. Primero, la investigación ha demostrado que involucrar a las mujeres en el manejo de los recursos naturales y en los esfuerzos de conservación conduce a mejores resultados (James et al. 2021). Por lo tanto, considerar asuntos asociados con el género podría generar más proyectos exitosos de RPF (Lau 2020); esto necesariamente significaría incluir el asunto de género en todos los aspectos de la restauración de los ecosistemas, es decir, en el diagnóstico, la planeación de la restauración, la implementación y el Figura 4. La distribución de las respuestas relacionadas con aspectos sobre inclusión de mujeres, grupos marginados y otras partes interesadas. Los resultados se presentan en una escala del 1 al 5 en la que 1 = no (el factor no existe) y 5 = sí (factor plenamente establecido). RPF, restauración del paisaje forestal; NA, sin respuesta/no aplica. Los números denotan el \"factor de éxito\" de un total de 54 en el cuestionario de la publicación original en inglés.0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 8. Existen estrategias explícitamente enfocadas enlograr la participación de mujeres en todas las fases del proyecto de RPF 9. Existen estrategias explícitamente enfocadas en lograr la participación de grupos marginados o vulnerables en todas las fases del proyecto de RPF.10. Los pobladores locales en el área del proyecto, tienen derecho de acceso a la tierra y los recursos naturales.12. El proyecto o actividad de RPF representa la unión de todos los usuarios relevantes del paisaje. Por ejemplo, se incluyen varios de los siguientes grupos sociales:… 31. Los planes de monitoreo consideran una variedad de partes interesadas.43. Se ha brindado capacitación a los pobladores locales en la interpretación de datos de manera que promueva la comprensión y responda a inquietudes.44. La capacitación se adapta a la preparación técnica de los participantes.45. Las partes interesadas a nivel local sienten que el monitoreo responde a inquietudes relevantes para ellas. ). Segundo, la inclusión de género es un asunto de equidad porque el género influye en las relaciones de poder y los derechos, los valores, los beneficios y costos que la sociedad otorga a las diferentes personas. Por ejemplo, a pesar del uso y conocimiento de las mujeres sobre los recursos naturales, con frecuencia los hombres tienden a participar y a beneficiarse más de las intervenciones de conservación (Anthem y Westerman 2021). Sin la participación de las mujeres en la planeación y el monitoreo de la RPF, es poco probable que estos costos y beneficios sean plenamente entendidos y contabilizados.Mensaje 4-Se necesitan redes de intercambio, organizaciones \"conectoras\" de información y oportunidades para el fortalecimiento de los conocimientosEl resultado más sobresaliente de la encuesta es la escasez de redes o entidades que permitan la transformación de la información en intercambios de conocimientos y oportunidades de aprendizaje entre los niveles de gobernanza y entre escalas espaciales y jurisdiccionales (Fig. 5). Por ejemplo, el factor \"Existen organizaciones a nivel nacional o subnacional responsables de organizar y supervisar el monitoreo, y de lograr un balance entre las necesidades locales, nacionales y globales\" recibió puntuaciones muy bajas. Uno de los encuestados, de Chile, comentó: \"no hay entidad que coordine o centralice [el monitoreo de] la información\"; mientras que un proyecto en México observó que, además de los evaluadores del proyecto, no existía un análisis a nivel subnacional o nacional. Otro de los encuestados, de Perú, señaló que \"aunque existen ciertas estructuras para monitorear la inversión pública, el monitoreo se enfoca en medir el cumplimiento de los objetivos y el manejo del presupuesto, y no tanto en tener una vista integral de la RPF con la posibilidad de generar aprendizajes\". A nivel de proyecto también hacen falta recursos para el análisis de datos, incluyendo la infraestructura técnica para su registro y almacenamiento; los datos de muchos proyectos permanecen en la computadora de un individuo debido a que no existe suficiente presupuesto dedicado a su almacenamiento y análisis. Esto se hace extensivo a las actividades de aprendizaje social, incluidos los talleres, la capacitación y viajes de campo que apoyan la toma de decisiones y el manejo adaptativo.Los datos obtenidos sugieren la creación de un sistema de monitoreo de la RPF que atienda las necesidades de varios actores en diferentes niveles y entre escalas. Las intervenciones Figura 5. La distribución de las respuestas relacionadas con aspectos de intercambio de información entre escalas. Los resultados se presentan en una escala del 1 al 5 en la que 1 = no (el factor no existe) y 5 = sí (factor plenamente establecido). RPF, restauración del paisaje forestal; NA, sin respuesta/no aplica. Los números denotan el \"factor de éxito\" de un total de 54 en el cuestionario de la publicación original en inglés.0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%22. Existen instituciones formales y cooperación entre instituciones informales.23. Las instituciones formales e informales toman decisiones en manera transparente, con distribución… 26. Se dedican recursos al análisis de datos y las actividades de aprendizaje social (reuniones, talleres, capacitaciones,… 27. Los costos relacionados con el control de calidad, la gestión de datos y el almacenaje de información están… 28. Se ha dedicado una porción especí ca del presupuesto de RPF al monitoreo durante toda la duración de proyecto… 41. La recolección de datos está diseñada para el intercambio con las partes interesadas a múltiples niveles… 48. Existe la infraestructura para el registro, almacenamiento y procesamiento de datos del proyecto. que son prometedoras comparten varias características: se enfocan en la producción conjunta del conocimiento que cumple objetivos en diferentes escalas; el manejo de datos responde a las necesidades locales; el uso de datos locales es respetuoso y apropiado; se han establecido incentivos apropiados y apoyo a las alianzas; existe un compromiso intergeneracional para promover la sostenibilidad (Eicken et al. 2021). Dichas redes podrían estar integradas por personal del sector académico e involucrar a personal de instituciones del gobierno local o instituciones no gubernamentales, así como a comunidades locales. Estas redes también ofrecen la oportunidad de construir relaciones entre los proyectos locales y universidades, que tienen la capacidad de analizar los datos y compartir los resultados (Ladouceur et al. 2022).Se pueden aprovechar los avances en las tecnologías informáticas, el aprendizaje automático y el desarrollo de algoritmos para apoyar el intercambio de información y el análisis de datos entre escalas. Actualmente existen varias plataformas que recolectan información espacial explícita de proyectos de restauración de bosques, que, a su vez, comparten imágenes de satélite y medidas biofísicas entre proyectos. Un ejemplo de ello es la coalición PACTO del Bioma del Bosque Atlántico de Brasil, que recopila la información dentro de la plataforma Observatorio de Restauración (http:// observatoriodarestauracao.org. br/app/dashboard) y también comparte los datos globalmente por medio de plataformas como la de Restor (https://restor.eco). Estas plataformas podrían expandirse hacia Latinoamérica, tanto dentro de los países como entre ellos, de una forma que ayude a los usuarios a compartir información local de monitoreo e integrar funciones de análisis de datos que interpretarían automáticamente indicadores relevantes para el proyecto.El monitoreo colaborativo, caracterizado por un flujo de información multidireccional, ofrece una forma de vincular a los implementadores, facilitar la transferencia del conocimiento, compartir mejores prácticas y aprender de los errores. Al respecto, nuestros resultados sugieren vacíos clave en Latinoamérica. Se requiere integrar a la academia, las comunidades locales, los gobiernos y las organizaciones no gubernamentales, así como armonizar los actuales instrumentos normativos y de políticas relacionados con la conservación y restauración del bosque, algo que no siempre existe al interior o entre los países de esta región (Schweizer et al. 2021b). Si bien los resultados de este estudio son preliminares, también evidencian el papel que las organizaciones globales podrían tener para fortalecer el intercambio de información y el aprendizaje. Por ejemplo, la red latinoamericana de restauración ecológica ha comenzado un proceso de integración con la Society for Ecological Restoration (Sociedad para la Restauración Ecológica), como su capítulo iberoamericano y del Caribe, bajo el nombre de SER-IAC (es decir, \"SER Iberoamérica y el Caribe\" en español, https://www.ser.org/page/Chapters). Estas redes deben fortalecerse para servir como interlocutoras con instituciones gubernamentales relevantes que diseñan programas nacionales y subnacionales de restauración. Con este fin, hacemos un llamado para contar con una mejor integración y análisis de los datos de monitoreo de la RPF desde lo local a lo nacional y viceversa.","tokenCount":"3812"} \ No newline at end of file diff --git a/data/part_3/2019241740.json b/data/part_3/2019241740.json new file mode 100644 index 0000000000000000000000000000000000000000..df28afbe5a9b7bfc45637fa95a765bc7b6235a3c --- /dev/null +++ b/data/part_3/2019241740.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"2d79cd4260ea1f06c6bca5588ac3c9f9","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/b5f6c06c-e37f-49e7-a523-da4154aff8c8/retrieve","id":"-701195784"},"keywords":[],"sieverID":"99edadcb-6393-435f-b5f0-4994f29e5a4d","pagecount":"14","content":"This study was undertaken under the project \"Li-chăn -Livestock-led interventions towards equitable livelihoods and improved environment in the North-West Highlands of Vietnam\", a priority country project of the CGIAR Research Program on Livestock, which is carried out with support from the CGIAR Fund Donors and bilateral funding agreements. We warmly thank the farmers for their time and their kindness. Special thanks toIn Son La province, Mai Son district, low soil fertility is one of the main constraints for agricultural production. We quantified nutrient balances and recycling using nitrogen (N) as modelling currency in smallholder crop-livestock farms. Six farmers with different levels of access to roads and markets were interviewed on their assets, agricultural production, and nutrient management practices. Nitrogen balances were positive in the high and middle access farms, with 35 to 177 kgN/ha. In contrast, the balances were negative in the most remote farms, with -18 kgN/ha in average. The application of mineral fertilizer was a key game changer, accounting for an average of 83% of the N inputs across the six farms. Burning of crop residues contributed strongly to nutrient losses, especially on remote farms. The nitrogen recycling intensity was 13% on average, expect for one farm which produced a lot of its own livestock feed and reached a nitrogen recycling intensity (NRI) of 64%. Farms with remote access would not apply nutrient management techniques like recycling of crop residues as feed or as mulch and using animal manure as fertilizer. The use of organic inputs should be encouraged and burning should be avoided, especially on slopping lands. Legume species should be better integrated in the system, for example as multipurpose forages. Constraints in adoption of these measures should be carefully studied, as well as the long-term cost-benefit ratio. Preliminary implementation of soil erosion control and soil fertility improvement techniques in the region are promising and should be supported by local authorities and extension services.\"According to a tradition of the Black Thai ethnic group, people must have a jar of rice beans to make sticky rice cakes (banh chung), which are offered to their ancestors for the Lunar New Year in order to pray for good fortune. Now that rice bean seeds have been supplied by the Li-chăn project, villagers don't need to buy more for the Lunar New Year. The photo shows Ms. Quàng Thị Thuấn's small rice bean farm intercropped with peanuts. Previously she planted corn on this land, but the soil had deteriorated through erosion. The following sugarcane cultivation failed, and now they are planting rice bean to improve the soil quality. Legumes make the soil porous and rich in nutrients, while their stems are protein-rich fodder for livestock and poultry.\"Narrator: Lường Văn Yêu (Thai ethnicity, 46 years old) and Quàng Thị Thuấn (Thai ethnicity, 31 years old). Photographer: Quàng Thị Thuấn (Thai ethnicity, 31 years old).Son La is the largest mountainous province in northern Vietnam with a total area of 1.4 million ha and a total population of 1,252,700 (88 people/ km2), unevenly distributed between urban and rural areas. About 88% of the population lives in the rural areas (Son La Statistical Yearbook, 2020). The population comprises 12 ethnic groups, mainly 55% Thai, 18% Kinh, 12% H'Mong and 8% Muong. Ethnic minorities account for 83.7% of the total population. Poverty rates reach 70%, 2.7 times higher than the rest of the country, and stunting in children below 5 years old is 35% (Nguyen 2016;WB 2015).Agricultural production is challenged by cold winters, lack of inputs and poor access to information and services. Over 94% of the land is on slopes, of which 87% are above 25° (Cong 2012). Population growth, partly as a result of a government resettlement policy 1961-1998, exerts pressure on available natural resources. Deforestation and expansion of agriculture onto steep slopes using predominantly monocropping practices in the last few decades has resulted in forest loss, degradation of agro-ecosystems and landscape fragmentation that threatens environmental sustainability and food security (Hoang et al. 2017).During focus group discussions carried out in Mai Son, one of the districts of Son La province, erosion and low soil fertility were mentioned by farmers as main environmental issue, challenging agricultural production in the region. One of the most cost-effective way to address soil fertility issues is to improve nutrient management, using a whole-systems approach that thoroughly considers nutrient stocks, removals, exports and recycling (Jones et al., 2013). We quantified nutrient balances and recycling using nitrogen (N) as modelling currency and propose options to improve nutrient management in smallholder crop-livestock farms in Son La province. The target district, Mai Son (Figure 1), has a diversity of farm types, from grazing and extensive systems at the top of the mountains to intensive farms with strong crop and livestock integration at the bottom of the valleys, with a variety of socio-economic and ecological conditions. The climate is continental tropical monsoon and influenced by topography. Cold and dry winters last from October to March, whilst the remaining months are hot, humid and rainy. The average temperature is 21.5°C. Average annual rainfall is 1,400 mm with an average of 118 rainy days per year (80% of rain falls between June and September). Average annual humidity is 80-82% (Le and Marshall, 2021).Based on consultations with partner organisations and early assessments of the local context, three farm types were identified according to their accessibility to roads and markets. Households closest to roads and markets, in the valley bottoms with the best soil and most commercialised and intensified were classified as Type A households. Households on the valley edges and slopes, who practiced more mixed agriculture and were less specialised were classified as Type B households. Finally, those households high on the slopes who had poor road access, poorer quality land, and were generally more extensive and subsistence-oriented than the others were classified as Type C households. Two villages were selected for each type, in Chieng Chung and Chieng Luong communes, based on their representativeness for local farming systems and the endorsement of local authorities. More details on site and village selection can be found in Douxchamps et al. (2019 and2020). Twelve farms were selected from household lists for the nutrient flow study to represent a diversity of crop-livestock integration systems, two in each village. One was selected from each pair based on farmers availability, and named in this report by their type followed by the number 1 or 2 (A1, A2, B1, B2, C1 and C2).Data collection followed the method outlined in Epper et al. (2020). Briefly, the six selected farmers were interviewed in July 2021 using the IMPACTLite survey (Rufino et al., 2013). The questionnaire was used to collect detailed quantitative data on assets, farm production and management. The interview was conducted in the local language, at the homestead of each farmer. Resource flow diagrams were drawn to get a better understanding of the farm management practices at plot level (Dalsgaard and Oficial, 1997;Lightfoot et al., 1993). Particularly, information regarding biomass allocation were captured for each plot.Farmer interview in Mon 1 village, Son La province. Photo credits: Bùi Văn Tùng (NOMAFSI)Gross farm income was calculated as the sum of income from crop and livestock sales. Intensity factor reflects the proportion of the area that is cultivated twice during the year or with intercropped species. Crop and livestock diversity are the sum of crop or livestock diversity, with 1 count per 1 crop or 1 livestock species. Land productivity was calculated as the sum of crop and livestock products, in terms of energy, divided by the cropped area. Data on energy content of crop and animal products were obtained from the USDA Food Composition Database (USDA, 2018). Market orientation was calculated as the proportion of agricultural products sold for the total production, in terms of energy. Productive assets were calculated following Njuki et al. (2011). Food availability was a subjective and qualitative factor based on a scale of 1 to 4: 1 being the least satisfied and 4 the most satisfied.Nitrogen budget calculations followed the method of Epper et al. (2020). Briefly, system boundaries were defined as in Figure 2 and include the cropping areas, home gardens and stalls. The household was omitted, as food purchases and household wastes were outside the scope of this study.N balances (kg ha -1 year -1 ) were calculated as follows:where fx are detailed in Figure 2. As partitioning nutrient losses into soil erosion, leaching and runoff is an important source of uncertainty for budgets at farm level (Oenema et al., 2003), these flows were neglected. Deposition rates were taken from Dentener et al. (2006).Nitrogen recycling intensity (NRI) indicates the proportion of the flows that is potentially recycled within the system boundaries, as compared to the total flows. And was calculated as follows:where fi are recycled flows, i.e. f3 (animal products as feed) + f6 (crop products as feed) + f10 (bedding to manure) + f12 (green manure) + f16 (manure to soil), and ftot is the sum of all flows, as shown in Figure 2. The higher the NRI, the greater the opportunity to maintain long-term soil fertility.The six selected farms were diverse both in terms of crops (5 to 10 different species per farm) and livestock (5 to 7 different species per farm; Table 1). Land area varied between 1.38 and 5.5 ha, with an average of 0.6 ha per capita, and a maximum of 1.1 ha per capita for the most well-off household (A1). All households showed a certain level of intensity in crop production, with an average of 30% of the land area under seasonal rotations or intercropping. Livelihood strategies varied strongly, with 60% of the agricultural products sold to the market for the households with medium and good access to markets, and only 16% on average for the households with low access to markets. This discrepancy would be even higher if the calculation method would be free from the energy bias: if B2 households exhibits a very low level of market orientation and land productivity, it is because its main cash crop is coffee, which has a low energy content. Despite contrasting performance in terms of income and land productivity, all households expressed a relatively high level of satisfaction with respect to food availability. High access households (A1 and A2) also showed more opportunities for off-farm income. Nitrogen balances were positive in the high and middle access farms (Types A and B), with 35 to 177 kgN/ha (Figure 3). In contrast, the balances were negative in the most remote farms (Type C), with -18 kgN/ha on average. The application of mineral fertilizer was a key game changer, making an average of 83% of the N inputs across the six farms. The only organic fertilizers imported from outside the farms were those provided by sugarcane companies for use on sugarcane plantations, in the case of A1 and B1 farms. Other organic fertilizers applied originated from recycling operations and do not appear on this farm level budget. Only A1 had legumes (the tree Dalbergia tonkinensis) which provides some amount of N from biological nitrogen fixation.Except for A2, all farms burned a proportion of their crop residues. The proportion was lower in Types A and B farms, with 17 to 35% of residues burned, whereas Type C farms burned 97% of their residues on average. This N loss was a major contributor to the negative N balances in Type C farms. Nutrient flows between the different system compartments varied strongly by farm type (Figure 4). Type A and B farms have more intense biomass circulation than type C farms. Sugarcane cultivation appears to drive high magnitude flows, with high mineral fertilizer inputs and sales, accompanied unfortunately by losses through residues burning. Following sugarcane, trees and shrubs (mainly mango, plum and coffee) are a key node for nutrient flows, particularly for types A and B farms. Livestock feeding mostly comes from the farms, with a mix of cereals, crop residues and forages when available. Fish, vegetables and roots are minor components and do not contribute much to the biomass flows. Mulching is very rarely applied, and represents only a small proportion of the nutrient flows in A2 and B1 cereal fields.The amount of nitrogen recycled per ha was similar for all Type A and B farms, with an average of 35 kgN/ha. Type C farms provided two extremes, with very low (C2) and very high (C1) amounts of N recycled. The resulting NRI was 13% on average, except for farm C1 which produced a lot of its own livestock feed and reached an NRI of 64%. Types A and B farms recycled crop residues as feed or as mulch and used animal manure as fertilizer. These nutrient management options were not applied in Type C farms. Types A and B farms were not depleting nitrogen, as the balances were positive. However, by only applying mineral fertilizer, soil organic matter is not renewed, soil loses structure and soil erosion might increase in the long-term. These farms should be encouraged to make more use of crop residues produced on their farms and recycle biomass between farm components, especially on slopping lands. Type C farms should make more use of mulching, animal manure and soil erosion measures, and avoid burning of crop residues. Constraints in adoption of these measures should be carefully studied.Legumes are not traditionally consumed in the region, and farmers have not been planting them. However, some forage legumes species exist and would fit very well in the system, to support both livestock production and soil conservation. In general, the system would benefit from the inclusion of forage species, both grasses and legumes, to protect the soil against erosion and provide additional source of feed.Trainings on soil erosion control, soil fertility management and composting were given to farmers of Chieng Chung and Chieng Luong communes in 2021 (Douxchamps et al., 2021), together with trainings on feeds and forage management (Atieno et al., 2021). The trainings were well attended, and farmers livestockpanorama.ilri.org/en/livestock-development-farmers-perspective/en4-story-quyen started to adopt forage legumes, erosion control measures and options to improve biomass recycling. Promising results were documented through the Photovoice method (Boxes 1, 2 and 3), an M&E method where farmers are given cameras to document the impact of new agricultural techniques on their livelihoods and tell stories about their constraints and opportunities (Wang and Burris, 1997).With support from local authorities and extension services, soil fertility decrease and erosion might soon be under control in Son La province. Further studies should evaluate the long-term benefits and the return on investments of different management options, especially with respect to the additional labour involved.\"We should plant forage to feed animal, then use their manure for forage and crops, then feed the animal with forage. It is a cycle\".Drawing and quote by Song A Trang, Xam Ta village, during a participatory exercise where farmers expressed their most important learnings during in Li-chăn project.Exercise and photo credits: Mai Thanh Tu (ILRI/Alliance Bioversity-CIAT).\"The rainy season comes after harvesting the rice in June. Villagers are afraid that they won't be able to collect the straw in time, therefore they burn it to make that land available for a new crop. But burning is harmful because the smoke pollutes the air. When straw is burnt, thick smoke blankets the hills and mountains. In the morning and evening, fog prevents the smoke from escaping to the sky, making it hard to breath. If time is available, farmers should bring the straw home to feed their cattle, to make compost as an organic fertiliser, and grow delicious mushrooms.\"Narrator and photographer: Lèo Thị Xiền (Thai ethnicity, 31 years old) livestockpanorama.ilri.org/en/livestock-development-farmers-perspective/en5-story-xien","tokenCount":"2592"} \ No newline at end of file diff --git a/data/part_3/2038368746.json b/data/part_3/2038368746.json new file mode 100644 index 0000000000000000000000000000000000000000..4fd0147405b0d11dfb7964623187bd7aab633c46 --- /dev/null +++ b/data/part_3/2038368746.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"93feb213a17e41ac954740875567f8b1","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/6eff926b-fec2-472f-a433-a6d5e5d826ac/retrieve","id":"-996637403"},"keywords":[],"sieverID":"0195dde2-3877-44f2-ac92-d62438f288ae","pagecount":"67","content":"Output 3: Grass and legumes genotypes with superior adaptation to edaphic and climatic constrains are developed• Collaborative research conducted with Hokkaido University in Japan generated the first evidence based on 27 Al NMR analysis that organic acids within root tissue help detoxify aluminum in nonaccumulator species such as in the Brachiaria hybrid cv Mulato.• Showed that the high level of aluminum resistance in signal grass (Brachiaria decumbens) is part of a generic resistance mechanism that is effective against trivalent cations in general.• Showed that hematoxylin staining could be employed as a quick selection criterion to discard Alsensitive genotypes in the Brachiaria breeding program, because most of the Al accumulates in the external layer of root meristems and should be readily stainable with hematoxylin in intact root apices.• Constructed a genetic linkage map for aluminum resistance in Brachiaria, evaluated 50% of the polymorphic SSRs and AFLPs in the F1 cross of B. decumbens x B. ruziziensis and found preliminary associations between markers SSRs and AFLPs and three phenotype root traits of aluminum resistance.• Using microarray technology, the 3'-UTR sequences of candidate genes associated with aluminum (Al) resistance in Brachiaria decumbens were identified by comparing expression levels between genotypes and treatments.• Using screening procedure to evaluate aluminum resistance, 3 sexual hybrids (SX03NO/0846, SX03NO/2367, SX03NO/0881) were identified with greater level of Al resistance than that of the sexual parent. One of the apomictic hybrids (BR02NO1372) was outstanding in its level of Al resistance and this hybrid is also resistant to spittlebug• Showed that the Brachiaria hybrid, FM9503-S046-024 (Mulato 2) performed well into the third year after establishment in the Llanos and its superior performance at 30 months after establishment was associated with its ability to acquire greater amounts of nutrients, particularly Ca and Mg from low fertility soil• Results from a 4-year field study in the Piedmont showed that the Arachis pintoi accessions CIAT 18744, 18751 and 22159 were superior to the commercial cultivar (CIAT 17434) in terms of persistence with low amounts of initial fertilizer application.• Collaborative research conducted in Goettingen, Germany, under controlled environmental conditions in a growth chamber, showed that the Arachis pintoi accessions CIAT 18744 was more efficient acquiring P from less available P-pools in a low-P oxisol than the commercial cultivar, CIAT 17434. This high P efficiency and the increase of P uptake were found to be due to a high P influx. The activity of acid phosphatase on root surface and exudation of organic acids (lactic and acetic) did not contribute to this increase in P influx.Contributors: I. M. Rao, P. Wenzl, J. W. Miles, J. Tohme, M. Ishitani, J. Ricaurte, R. García, A. L. Chaves, M. E. Recio, A. Arango, D. F. Cortes, G. Gallego, E. Gaitán, and C. Plazas (CIAT), T. Watanabe, H. Yano, M. Osaki (Hokkaido University, Japan)Previous research on mechanisms of adaptation of Brachiaria species to acid soil stress factors indicated that Brachiaria decumbens cv.Basilisk is highly resistant to toxic levels of Al and low supply of P. Based on this knowledge, rapid and reliable screening procedure to evaluate Al resistance was developed to improve the efficiency of the on-going Brachiaria breeding program. The use of improved screening methods and identification of QTLs and candidate genes responsible for Al resistance and adaptation to low P supply will contribute toward development of superior genotypes that combine several desirable traits to improve pasture productivity on acid, infertile soils and to combat pasture degradation.As part of the restricted core project funded by BMZ-GTZ of Germany, we continued our effortsContributors: P. Wenzl (CAMBIA, Australia), A.L. Chaves, M.E. Recio, J. Tohme and I.M. Rao (CIAT)to investigate physiological and genetic aspects of aluminum resistance in Brachiaria.Signalgrass (Brachiaria decumbens) has evolved a highly effective Al-resistance mechanism that does not appear to rely on chelation of Al ions with organic-acid anions. Electrical charges at the external surface of root cells generate an electrostatic potential that modulates cell-surface ion activities and hence ion uptake and intoxication. We hypothesized that the superior Al resistance of signalgrass compared to closely related ruzigrass (B. ruziziensis) could be due to a less negative surface potential at root cells that are critical to root growth and elongation. We tested this hypothesis by investigating whether Al resistance of signalgrass was associated with superior resistance to other cations toxicants and greater susceptibility to anionic toxicants.Seeds were germinated in continuously aerated 200 ìM CaCl 2 (pH 4.20) for 3-4 days. Homogeneous seedlings were selected and their root lengths were recorded. The seedlings were then transferred to continuously aerated treatments solutions in the greenhouse (toxicant + 200 ìM CaCl 2 , pH 4.20; see left panel below).After three days root length were measured again. Each experiment comprised six toxicant levels plus the toxicant-free basal solution. Three independent experiments were performed for each toxicant. The concentration of a toxicant that inhibited relative root elongation (RRE) by 50 % (C 50 ) was determined for each of the two species after fitting a Weibull function to the pooled data from the three replicate experiments by using the Marquardt-Levenberg algorithm (right panel above). The SE of C 50 was computed based on error propagation rules. The C 50 values of the two species for a particular toxicant were considered to be different if their 95 % confidence intervals did not overlap.The superior Al resistance of signalgrass compared to ruzigrass was associated with greater resistance to all the trivalent lanthanide cations tested (Figure 11). If a lower root cell surface negativity was the cause for the greater lanthanide resistance of signalgrass, signalgrass should be more resistant to other cationic toxicants and more sensitive to anionic toxicants. The two species, however, were equally sensitive to the majority of divalent and monovalent cations (Figure 10b) and most anions (Figure 10c). Apart from lanthanides and Cd 2+ , signalgrass was more resistant than ruzigrass only for those inorganic toxicants that are in redox equilibrium with a trivalent cationic form: Fe 2+ ↔ Fe 3+ , Co 2+ ↔ Co 3+ , Cr 2 O 7 2\" ↔ Cr 3+ . An organic trivalent cation (spermidine 3+ ), by contrast, was equally toxic to both species.These results suggest that Al resistance in signalgrass is part of a more generic resistance mechanism that is effective against trivalent cations in general, a finding that confirms the unique physiological basis of Al resistance in signalgrass.The pattern of resistance to cationic and anionic toxicants, however, is not consistent with the idea that a less negative root cell surface potential confers resistance to cationic toxicants as a result of electrostatic interactions, that is, solely based on the charge but not the structural properties of a toxicant. The cross-resistance of signalgrass to Al and other, mostly trivalent inorganic cations may instead be based on interspecific differences in critical cellular sites to which trivalent cations such as Al 3+ and lanthanides bind. More work is required to elucidate the nature of these sites and to develop biochemically-based strategies to isolate the underlying genes. It may be possible to use lanthanide cations as proxies for Al to circumvent some of the problems and ambiguities caused by the difficulties to predict Al speciation. The effects of aluminum (Al) toxicity on callose accumulation were evaluated in root tips of Brachiaria populations previously evaluated for physiological and genetics response (IP-5 Annual report 2002, 2003). Brachiaria decumbens (Al resistant ), B. ruziziensis (Al sensitive) and two contrasting B. ruziziensis x B. decumbens hybrids were evaluated after 3, 12 and 21 days of Al treatment (200 µM AlCl 3 ).Rooted stem cuttings of B. decumbens, B. ruziziensis and two contrasting hybrids were cultivated as described previously (IP-5 Annual Report, 2003). Root apices (5 mm), collected after different times of exposure to Al, were fixed during 48 hours in 2.5 % glutaraldehyde to detect callose with aniline blue, or in a 1:1 mixture of 3.7 % phormol (pH 7.4) and 2.5 % glutaraldehyde to detect Al accumulation with hematoxylin.Samples were cut (7 µm) and processed and aluminum was visualized by staining with 0.1% (w/v) hematoxylin and 0.01% (w/v) KIO 3 for 20 min. Callose was visualized by staining with 0.1% (w/v) aniline blue and 1M glycine NaOH (pH 9.5).Differential hematoxylin staining was observed between sensitive and tolerant genotypes. Root apices of B. decumbens (Figure 12A) and an Alresistant hybrid (Figure 12C) did not accumulate much Al. By contrast, root apices of B. ruziziensis (Figure 12B) and an Al-sensitive hybrid (Figure 12D) accumulated Al in the outer layer of root meristems. Aniline-blue staining of histological sections revealed a higher content of callose for Al-sensitive genotypes.The pattern of callose accumulation was only partially correlated with that of Al (visualized by hematoxylin). Al-tolerant B. decumbens accumulated callose exclusively in the root cap and at the surface of the root meristem. Alsensitive B. ruziziensis accumulated a large amount of callose in cortical and vascular tissues, an area where little Al was detected in the hematoxylin stain (Figure 13). Acid soils have been estimated to occur on about 40% of the arable land (3.95 billions of ha). Plant growth on these soils is constrained mainly by aluminum (Al) toxicity and deficiencies of nutrients such as phosphorus (P), nitrogen (N), and calcium (Ca). There is considerable variation within and between plant species in their ability to resist Al, and this variation within some species has allowed breeders to develop genotypes that are able to grow on acid soils. Within the Brachiaria genus, Al resistance of signal grass (B. decumbens Stapf cv Basilisk), a widely sown tropical forage grass, is outstanding compared with the closely related ruzigrass (B. ruziziensis Germain and Evrard cv Common). The main objective of this work is to identify microsatellites, AFLPs and QTLs associated with the gene(s) conferring aluminum resistance in a Brachiaria ruziziensis × Brachiaria decumbens cross.An F 1 hybrid population of 263 individuals (B. ruziziensis x B. decumbens) was used for this study. Young leaves were cut and placed in paper bags in an incubator previously set at 45-50°C. Samples were allowed to dry for at least 20h, or until the leaves were dry enough that they break easily. Samples were stored at -80°C until grinding. Dried leaf tissue was grinded with stainless steel spheres with vigorous shaking. Genomic DNA was extracted using a CTAB-Chloroform protocol with some modifications for small amounts of tissue. DNA was quantified on a DyNA Quant 200ä Flourometer (Hoefer Scientific Instruments) and diluted at 4ng/ul for SSRs amplification and 25ng/ul for AFLPs amplification. Methods for the isolation of microsatellites, and the methodology for PCR amplification and evaluation of polymorphism, were as described previously (SB-2 Annual Report, 2000;2001) with some modifications. The AFLP Analysis System I kit, and AFLP Analysis System II Small Genome, from Invitrogenâ were used for AFLP amplification, following the instructions, with some modifications. Silver staining (Promega Inc., USA), was used to visualize allele segregation of the markers on 6% denaturing polyacrylamide gels with 5M Urea and 0.5X TBE.Microsatellites: 73 SSRs were evaluates in the parental genotypes of which 40 were found to be polymorphic. When run in the progeny, three sets of primers did not amplify in 30% of the progeny, so they were discarded together with three more monomorphic microsatellites. Ninety-seven polymorphic alleles were scored in the population, out of which 63 were found with the B. decumbens, Al-tolerant, 606 genotype, while 34 carried the B. ruziziensis, Al-sensitive, 44-2 genotype (Figure 14).AFLPs: 64 combinations of primers were assayed with the two parental genotypes. Among them, 12 having high number of polymorphic bands, were chosen. To date 3 combinations (E-ACC/M-CAC; E-ACT/M-CTA and E-ACG/ M-CAG) were run in the progeny and yielded 63 polymorphic bands distributed as follows: 50 were found in the Al-tolerant parental and 13 in the Alsensitive genotype. (Figure 15). To find association with molecular markers, a preliminary analysis of 106 markers at the 10% level was done using SAS. Putative associations were found between 78 SSRs and AFLPs markers and the phenotypic characterization under greenhouse conditions. The three phenotypic variables for Al resistance (root length, abundance of root tips, mean root diameter) were analyzed for association with molecular markers. We found 13 molecular markers with R 2 between 0.0124-0.0267 that explain the variance for these traits; molecular markers associated with phenotypic characterization are in blue (Table 15 and Figure 16). Subtractive libraries of 3'UTR fragments were prepared with the differential subtraction chain (DSC) method (IP-5 Annual Report, 2003).Inserts were amplified and arrayed in duplicate on glass slides. Pairs of contrasting RNA populations (control, target) were hybridized to microarrays (Table 16). Two pairs of dye-swap hybridizations were performed per combination of control and target.Microarray sample pools (MSPs) were synthesized from 2.4 to 240 ng of cDNA to cover a 100-fold range of signal intensities. They were arrayed together with other controls, such as negative controls (spotting buffer, polylinker of the vector used for library preparation, unrelated genes such as insulin, Sp1 β-cell, HPH) and positive controls (GADPH of Brachiaria, αtubulin, Spy genes). A total of 768 controls were spotted onto the array. The logarithms of the crude ratios between the two channels were first normalized by using the lowess algorithm and then analyzed with the Significance Analysis of Microarrays (SAM) software.Differentially expressed clones were amplified, purified (Qiagen kit) and sequenced (ABI BigDye terminator kit). The sequences obtained were compared against those in the UTR database at http://bighost.area.ba.cn.it/BIG/ UTRHome.The microarray hybridizations identified a total of 35 3'-UTR fragments of candidate genes that were expressed differentially in the four comparisons between target and control pools (Figure 17, Table 16).Seven clones contained the post-transcriptional control sequence 15LOX-Dice (15-Lypoxigenase Differentiation Control Element), seven clones contained the ribosomal regulatory element IRES (Internal Ribosome Entry Site), and one clone was homologous to the 3'-UTR of a Arabidopsis thaliana gene coding for the germination protein GLP2 (EMBL: BT002170). Five clones had no match in the data base. The 3'-UTR clones of differentially expressed genes identified in these experiments will be used as probes to isolate the For both experiments, we used seeds from three tropical forages: the grass Acid phosphatase activity in root exudates was determined. One unit of acid phosphatase activity was defined as the amount of enzyme that hydrolyzed 1 µmol of pNPP per minute. Soluble organic acids in fresh samples were determined and the concentration of organic acids was measured by capillary electrophoresis. The levels of Al, K, Ca, and Mg in leaves and roots were determined. Concentrations in leaves and roots were determined by the semi-micro Kjeldahl method for N and the vanado-molybdate yellow method for P.Experiment 2: 27 Al NMR study: Brachiaria seedlings were prepared as described above, and transferred to 36-litre containers carrying the standard nutrient solution, but with 2.8 mM Al at pH 3.7 added, and left to grow for 1 month. The much higher Al concentration was used to ensure clear peaks in the 27 Al NMR spectrum. Even so, the Brachiaria seedlings grew well (data not shown). After treatment, roots were removed from the seedlings and washed, first with tap water, then with deionized water. The roots were grouped into three: Fraction (a), roots given the water washings only, and used to determine total amounts of Al and organic acids; Fraction (b), roots were also washed with 0.1 N HCl for 5 min to remove apoplastic, soluble or loosely bound, components; and Fraction (c), roots were also washed with 0.1 N HCl for 5 min, frozen at -50°C for 1 h to rupture cell membranes, thawed, and washed again with 0.1 N HCl for 5 min to remove symplastic, soluble or loosely bound components. Al and organic acid concentrations in each fraction were determined as described for Experiment 1. Each fraction of Brachiaria roots was placed in a 10-mm-diameter NMR tube. AlCl 3 (0.1 M) solution was used as an external reference to calibrate the chemical shift (0 ppm). 27 Al NMR spectra were recorded, using a Bruker MSL400 spectrometer at 104.262 MHz. The spectra were obtained by using a frequency range of 62.5 kHz, a pulse width of 12 µs, a delay time of 0.16 ms, a cycle time of 0.5 s, and 4000 scans.Experiment 1: Tolerance of Al stress and P starvation. The effect of each treatment on plant growth was expressed as dry matter accumulation in each treatment relative to that of the control treatment (Figure 18). The +Al treatment (+0.37 mM Al) did not affect growth in any of the species used in the study. The -P treatment did not inhibit growth in Brachiaria and A. pintoi, but did in A. gayanus. Relative growth rate (RGR) in the control treatment was much higher in the two grasses than in the legume (Figure 18). The root-to-shoot ratio in Brachiaria and A. pintoi increased remarkably with -P treatment, whereas it remained unchanged in A. gayanus (Figure 18). The treatments hardly affected acid phosphatase activity in root exudates of seedlings, except in A. gayanus where it increased with +Al treatment (Table 17). roots). The differences in organic acid concentrations between fractions A and B were also small. 27 Al NMR spectra obtained from fractions A and B were very similar, and showed several peaks downfield and a small peak at 0 ppm. In contrast, in fraction (c) (roots after removing apoplastic soluble components, followed by removing symplastic soluble components), Al concentration was much lower than in fractions A and B. The 27 Al NMR spectrum was also different, with the resonance peaks downfield decreasing and a peak at 0 ppm becoming higher and sharper. Of the three organic acids, malate decreased drastically in fraction (c) (Figure 19).All three tropical forages used in the present study were highly tolerant of Al and no growth reduction was observed with the +Al treatment (+0.37 mM Al) (Figure 18). Concentrations of Ca and Mg, the uptake of which appeared inhibited by Al, decreased in the +Al treatment (Table 18). However, concentrations of other major nutrients were not affected by Al application (Table 18), suggesting that Al did not affect root function for these nutrients.To prevent or evade Al toxicity, plants growing in acid soils have developed mechanisms to exclude Al from roots or to tolerate high Al concentrations in tissues. Although organic acid exudation from roots is a major mechanism for excluding Al from roots, this mechanism was not evident in Brachiaria species. Previous research showed that Al application increases organic acid concentrations in roots of Brachiaria species. In our study, organic acid concentrations increased with Al application, but not with P starvation in Brachiaria and A. gayanus (Table 18).We speculated before that the increase in organic acids in roots suggested that they play a role in the internal detoxification of roots from Al by acting as ligands for Al. In many Al-accumulator species, leaves with high concentrations of Al are detoxified by organic ligands, such as Al-oxalate, Al-catechin, and Al-citrate. The same mechanisms are considered possible in roots. In Al-accumulator species, Al that penetrates the plasma membrane of root cells is immediately transferred to shoots. In Brachiaria, however, Al accumulated only in roots and Al concentrations in shoots were kept very low (Table 18). In shoots of buckwheat, an Al-accumulator species, Al-ligand complexes are mostly isolated in vacuoles. Al in the Brachiaria hybrid may also compartmentalize in vacuoles and, thus, not be translocated from roots to shoots.Of the three species tested in this study, the Brachiaria hybrid and A. pintoi were extremely tolerant of low P stress (Figure 18). The Brachiaria hybrid grows well under P starvation, despite very low P concentrations in its leaves (Table 18). This suggests that Brachiaria can reuse P more efficiently. In A. gayanus, growth under the -P treatment was inferior to that of the control treatment, probably because of a higher relative growth rate (RGR). Based on values of P-use efficiency (the reciprocal of P concentration in plant), both A. gayanus and the Brachiaria hybrid appear to be tolerant of P starvation (Table 18). Higher P-use efficiency was observed before in Brachiaria humidicola (dictyneura) than in forage legumes, including A. pintoi, in acid Oxisols.Although APase activity in root exudates, which contributes to the use of organic P in the rhizosphere, was hardly affected by P deficiency in any of the species (Table 17), it was higher than that of other forage species. While the ability to use organic P in the rhizosphere did not affect plant growth in the solution culture experiment, high APase activity in root exudates may significantly affect P acquisition in soils. In addition, the higher root-to-shoot ratio under P starvation in Brachiaria hybrid and A. pintoi would increase P uptake in soils (Figure 18). As reported for the past 3 Among the 745 sexual hybrids and checks tested, 3 sexual hybrids (SX03NO/0846, SX03NO/2367, SX03NO/0881) and 3 apomictic hybrids (Mulato, BR02NO1372 and BR02NO1621) showed greater level of Al resistance based on total root length per plant (Figure 20; Table 19). Among these promising hybrids, BR02NO1372 showed greater fine root development than CIAT 606 in the absence of Al in solution (Figure 20). Total root length of the three sexual hybrids, both in the presence or absence of Al, was markedly superior to the sexual parent, B. ruziziensis (Figure 20). Among the hybrids and the checks tested, B. humidicola (dictyoneura) CIAT 6133 showed the lowest values of mean root diameter in the presence or absence of Al in solution (Table 19; Figure 22). This could be a desirable attribute for persistence under infertile acid soil conditions. Relationship between root length and mean root diameter with Al in solution showed that several sexual hybrids were superior to the sexual parent, B.ruziziensis 44-02 (Figure 21). Exposure to Al decreased the mean value of total root length of the 78 genotypes from 352 to 120 cm plant -1 (Figure 22). Relationship between total root length without Al and with Al in solution showed that several apomictic and sexual hybrids were superior to the Al resistant parent, B. decumbens CIAT 606 in the absence of Al in solution (Figure 22). The greater root vigor of these hybrids couldThe sexual hybrids SX03NO/846 and SX03NO/ 0881 were found to be spittlebug resistant while SX03NO/0311 was resistant to Rhizoctonia foliar blight. Two sexual hybrids that were found to be spittlebug resistant, SX03/2483 and SX03/1820, were also found to be moderately resistant to Al stress. Another spittlebug resistant sexual hybrid, Evaluation of a large number of Brachiaria hybrids for their resistance to spittlebug and adaptation to infertile acid soils resulted in identification of a few promising Brachiaria hybrids. We selected 4 of these hybrids for further field-testing in comparison with their parents. The main objective was to evaluate growth and persistence with low nutrient supply in soil at Matazul farm of the altillanura. brizantha CIAT 6294). The trial was planted as a randomized block in split-plot arrangement with two levels of initial fertilizer application (low: kg/ ha of 20P, 20K, 33Ca, 14 Mg, 10S; and high: 80N, 50P, 100K, 66Ca, 28Mg, 20S and micronutrients) as main plots and genotypes as sub-plots with 3 replications. The plot size was 5 x 2 m. A number of plant attributes including forage yield, dry matter distribution, nutrient (N, P, K, Ca and Mg) uptake, leaf and stem total nonstructural carbohydrate (TNC) content and leaf and stem ash (mineral) content were measured at 30 months after establishment (November 2003).After 30 months of establishment, forage yield with low fertilizer application was greater with one spittlebug resistant genetic recombinant, FM 9503-S046-024 (CIAT 36087-Mulato 2) and one parent (CIAT 6294) (Table 20). With high initial fertilizer application also these two genotypes were outstanding in live forage yield (Figure 23). Among the 4 hybrids tested, Mulato 2 was outstanding in its adaptation to low initial fertilizer application. It is important to note that CIAT 6294 had greater amount of dead biomass and stem biomass under low fertilizer application (Figure 23). (1251,4015,4132,4624) of Brachiaria grown in a sandy loam oxisol at Matazul, Colombia. Plant attributes were measured at 30 months after establishment (November 2003). LSD values are at the 0.05 probability level. NS = not significant. 6 0 6 1 2 5 1 4 0 1 5 4 1 3 2 4 6 2 4 6 2 9 4 6 0 6 1 2 5 1 4 0 1 5 4 1 3 2 4 6 2 4 6 2 9 As observed last year, results on shoot nutrient uptake, particularly Ca and Mg, indicated that the hybrid, Mulato 2 was superior to CIAT 606 under low fertilizer application (Figure 24). Nutrient acquisition by Mulato 2 was also greater than the rest of the hybrids with high initial fertilization.These results are consistent with the results reported last year from the same experiment.Correlation coefficients between live forage yield and other plant attributes indicated that greater nutrient acquisition with low initial fertilizer application contributed to superior performance (Table 20). No significant correlations were found between live forage yield and leaf and stem TNC or ash contents.The performance of the 4 hybrids in comparison with two parents with maintenance fertilizer application will be monitored for next year in terms of forage yield and nutrient acquisition. (1251,4015,4132,4624) of Brachiaria grown in a sandy loam oxisol at Matazul, Colombia. Plant attributes were measured at 30 months after establishment (November 2003). LSD values are at the 0.05 probability level. NS = not significant.Contributors: A. Schmidt, C. Davis, M. Peters, J. Miles and I. M. Rao (CIAT)As part of the BMZ-GTZ project on developing aluminum resistant Brachiaria hybrids, in 2002 we initiated field studies in Nicaragua for evaluation of new hybrids of Brachiaria along with commercial Brachiaria cultivars with farmer participation. The opinion of farmers is very important in the process of identifying and selecting promising forage germplasm, because their selection criteria are not necessarily the same as those of researchers. Thus the main objective of participatory evaluation was to expose the promising hybrids to farmers and generate information on farmer selection criteria. This information is highly useful to Brachiaria improvement program to incorporate farmer perspectives on Brachiaria ideotypes for multiple uses in crop-livestock systems.The 25).Photo 14. Brachiaria accessions and hybrids tested on acid soils in Ubú Norte, Nicaragua.Evaluation 2003: Results from agronomic evaluations showed no significant fertilizer effect on plant height, soil cover and dry matter yield (Table 22). Significant differences were found among accessions/ hybrids, but no fertilizer x accession/hybrid interactions were detected. Participatory evaluations with farmers: Prior to agronomic data collection, farmer groups evaluated the plots in accordance with their own criteria. Their preference rankings are summarized in Table 23.The main criteria applied by farmers throughout the experiment were: plant height, soil cover, foliage production, and ease of establishment, leaf size and color. While the high ranking of B. brizantha cv. Marandú (CIAT 6780) was somewhat expected, the cultivar is known in the area for years and well-adapted to the prevailing conditions, B. brizantha cv. Toledo (CIAT 26110), Brachiaria hybrid cv. Mulato (CIAT 36061) were preferred because of their abundant foliage with bright green leaves. The fact that both materials were sold on the seed market could have influenced the ranking. Accessions such as B. brizantha CIAT 26990, 26124, 16322 were often classified as less productive because of their leaf size. Most other materials were rated low due to low soil cover or plant height.As mentioned earlier, farmer rankings could have been influenced to some extent by the active presence of a livestock project in the area promoting B. brizantha cv. Toledo and B. hybrid cv. Mulato. The main difficulty during the participatory evaluation was the large number of accessions to be ranked. Some farmers had difficulties to keep track of all plots. In the future, smaller number of materials should be presented to farmers in order to avoid confusion, especially with farmers who do not have experiences with ranking of forage germplasm.Although the chosen experimental site represented an acid soil region of Nicaragua, soil pH and aluminum contents were not limiting factors for the tested accessions/hybrids. Since real drought conditions did not prevail throughout the experiment, hybrids such as cv. Mulato could not express their full potential, but did show susceptibility to Rhizoctonia foliar blight. Nevertheless farmers seem to appreciate the Mulato hybrid, since seed is increasingly available to them. Brachiaria brizantha accession CIAT 16322 and Brachiaria brizantha \"Mixe\" are high-potential materials due to their excellent adaptation and growth. Their small leafs might be a decisive factor for their adoption by farmers. At 42 months after establishment of the trial, the response in terms of shoot biomass production with fertilizer application was greater with CIAT 22160 (Figure 26). Overall the performance of CIAT 18744 and CIAT 18751 and CIAT 22159 was better than the other accessions. These results are consistent with the observations made last year. Shoot TNC content was markedly greater in CIAT 18751 under both low and high initial fertilizer application (Tables 24 and 25).Shoot ash (mineral) content was higher in CIAT 22172 under both low and high initial fertilizer application (Tables 24 and 25). 26 and 27).Correlation coefficients between green forage yield and other shoot attributes indicated that the superior performance with low initial fertilizer application was associated with lower level of Ca content in the shoot tissue (Table 28).Results from this field study indicated that after 4 years, the Arachis pintoi accessions CIAT 18744, 18751 and 22159 are superior to the commercial cultivar (CIAT 17434) in terms of persistence with low amounts of initial fertilizer application. Several studies conducted in Colombia as well as in Goettingen confirmed that Arachis pintoi genotypes showed a different growth potential when grown in Ultisols or Osixols with extremely low P availability. A growth chamber study conducted last year in Goettingen indicated significant genotypic difference in P acquisition among the accessions CIAT 17434, CIAT 18744 and CIAT 22172. Therefore this P acquisition was related to an increase of P soil solution concentration with CIAT 18744 i.e. to P mobilization in the rhizosphere. These results indicated that the rapid establishment as well as the sustained yield of CIAT 18744 and 22172 was due to their great ability to acquire P from Pdeficient soil per unit root length. There was no significant difference among the genotypes in their ability to utilize acquired P. This year, we continued our efforts to determine the physiological basis of differences in P influx between the 2 accessions, CIAT 17434 and 18744.Plant cultivation -Germinated seedlings in sand of Arachis pintoi CIAT 17434 and 18744 were pre-cultured in −P nutrient solution for 5 days and then the taproot was excised to develop lateral roots for additional 15 days till the lateral roots had reached about 5 cm long. The 20-day-old seedlings were transplanted to pots divided in three compartments (Figure 27) and placed on the dividing walls and their roots split so that 50% grew in soil and 50% in sand.Each one of the outer compartments was filled with 2 kg of air dry clay loam fossil Oxisol (clay 50%, organic carbon 0.35%, pH CaCl2 5.1, pH H2O 5.2, P-CAL 0.4 mg /100 g soil and P-Bray II 1.4 mg/100 g soil, Fe/Al-P 788 mg kg -1 and Ca-P 330 mg kg -1 ; in soil solution pH 4.9 and 0.1 µM P) from Lich in the Vogelsberg area (Hessen -Germany). The middle compartment was filled with 3 kg air dry sand (size 3-5 mm) in which P were removed using 5% HCl solution and then washing the sand till getting the same pH of distilled water. The sand compartment was watered three times per day with nutrient solution without P. Its composition (M) was: Ca (NO 3 ) 2 5.0×10 -3 , KCl 5.0×10 -4 , K 2 SO 4 3.5×10 -3 , MgSO 4 2.5×10 -3 , H 3 BO 3 5.0×10 -5 , MnSO 4 5.0×10 -6 , ZnSO 4 2.5×10 -6 , CuSO 4 1.0×10 -6 , (NH 4 ) 6Mo7O24 5.0×10 -8 , and FeEDTA 1.0×10 -4 . This compartment was allowed to percolate water through a hole in the bottom which were later leached the root exudates. Two levels of P supply (0, and 1000 mg kg -1 ) as Ca (H 2 PO 4 ) 2.H2O were given only in the soil compartments. Basal nutrients were applied (mg kg -1 ) every 30 days to each soil compartment: 50 K as K 2 SO 4 , 40 Mg as MgSO 4 , 0.2 B as H 3 BO 3 , 0.1 Mo as (NH 4 ) 6Mo7O24 and 100 N as Ca (NO 3 ) 2 . The soil surface in each soil compartment was covered with a layer of quartz sand (1 to 2 cm) to avoid the formation of a superficial crust due to the watering. Two weeks before transplanting, water was added to get moisture content of 25% w/w. One pot for each P treatment was left unplanted to measure soil moisture evaporation losses and as control of P dynamic under unplanted conditions. The pots were watered daily and water was added to maintain the soil with 60% of its water holding capacity by weight. The plants were grown in a growth chamber, maintained at 25°C, with a photon flux density of 300 µmol m -2 s -1 and 80% relative humidity during 16 h day and at 20 °C and 70% relative humidity during 8 h night.There were four replicates for each treatment. The pots were completely randomized and repositioned weekly to minimize any effect of uneven environmental factors.Collection of root exudates using a percolation system -Prior to collection of root exudates, the sand compartment was thoroughly washed with distilled water until removing nutrient ions, specially NO 3 , which affects accurate determination of organic acids by HPLC. The sand compartment drainage's was closed and then filled with bi-distilled water for 1 hour. After that the leached root exudates were collected to avoid O 2 stress (deficiency) in the roots and immediately the sand compartment was again filled with the collected root exudates for one hour. Finally, leaving the drainage open, the collected root exudates were once more added to the sand by a pressure bottle in order to leach all as possible root exudates from the sand. The collected root exudates were lyophilized to concentrate them and after that the dry root exudates were diluted in 1 mL bi-distilled water and put into 1.5 mL Eppendorf reaction vials. Thereafter, they were subjected to shaking for three-times (30 seconds each) for extraction of carboxylates. The aliquot was centrifuged at 2000g for 10 min. The supernatant was collected by a micropipette and stored at -20ºC for analysis of organic acid anions by HPLC.The organic acid anions in root exudate samples were analyzed by reversed phase HPLC in the ion suppression mode. Separation was conducted on a 250 × 4 mm reversed phase column (LiChrospher 100 RP-18, 5 µm particle size) equipped with a 4 × 4 mm LiChrospher 100 RP-18 guard column (Merck, Darmstadt, Germany). Sample solutions (100 µL) were injected onto the column, and 18 mM KH 2 PO 4 adjusted to pH 2.2 with H 3 PO 4 was used for isocratic elution, with a flow rate of 0.25 mL min-1 at 24°C and UV detection at 210 nm. Identification of organic acids was performed by comparing retention times and absorption spectra with those of known standards.Determination of root surface APase activity -Excised segments (2-3 root tips at 1.5-2 cm) of root tips were harvested in the soil compartments and transferred to 1.5 mL Eppendorf reaction vials. The root segments were washed 2 times with distilled water for 5 min to remove contents of wounded cells, followed by adding 0.5 mL water, 0.4-mL Na-Ac buffer and 0.1 mL pNPP substrate. After a reaction time of 10 min at 25-30°C, an aliquot of 0.8 mL of the reaction medium was taken out and mixed with 0.4 mL of 0.5 M NaOH to terminate the reaction. The absorption of reaction solution was measured at 405 nm. The fresh weight of excised segments of root tips was recorded after determination of APase activity.In the soil compartments, the pH values at the root surface of young and old root were measured potentiometrically with an antimony electrode.Plant and soil harvests -The plants were harvested as separate roots and shoots at 30, 60 and 100 days after transplanting (DAT) into splitroot pots. The dry weight was determined by drying the shoots and roots in an oven at 65% for 1 day and then at 105°C till constant weight. After grinding, the plant material was used for determination of nutrient composition. To determine P concentration in plant tissue, shoot and root samples were wet digested in HNO 3 and P was determined with Molybdate-Vanadium method.Shoot P uptake, shoot growth rate, P acquisition efficiency (mg of P uptake in shoot biomass per unit root length), P use efficiency (g of forage production per g of total P acquisition), and P-Influx (the amount P taken up per unit of root and time) were determined. Soil solution pH value was measured directly. Soil pH was determined in 0.01 M CaCl 2 in soil to solution ratio of 1:2.5. Data were subjected to an analysis of variance using the SAS computer program. Leastsignificant differences were calculated by an tuckey-test. A probability level of 0.05 was considered statistically significant.At high P supply (P-1000) the shoot yield (Figure 28) and the shoot P concentration of both genotypes was similar. i.e. the growth potential of both genotypes is the same. But under low P availability, the shoot dry matter yield and shoot P concentration were different between the genotypes. Since under sufficient P condition the genotypes show the same growth, the difference at P-0 is because they have different P efficiency (Figure 29). At 30 DAT, the two genotypes had different shoot P contents (Figure 30) under low P availability and at 100 DAT the P content in the shoot of CIAT 18744 is 5 times higher than that of CIAT 17434. This shows, that the high shoot dry matter yield by CIAT 18744 was due to its high P uptake. Differences in P uptake by a plant could be due to differences in the size of the root system and/ or differences in P influx i.e. the amount taken up per unit of root and time. As a measure of the size of the root system, we used the root lengthshoot biomass ratio (Figure 31). CIAT 18744 showed the lower ratio at each harvest. Thus the high shoot P content, of the efficient genotype, was not associated with more roots but to a greater P influx. The P influx (ability of plant P uptake per unit length of the root per unit time) was determined for the period between 30 and 60 days and 60 and 100 days. The P influx by the CIAT 18744 was markedly greater than that of CIAT 17434 (ca. 2 times and 3 times for the first and second harvest, respectively). With age, the P influx increases 4 times higher for CIAT 17434 and 6 times higher for CIAT 18744 (Figure 32). One possible reason for high P influx could be due to increase in P absorbing surface area per cm root that was infected by hyphae of native arbuscular-mycorrhizae (AM). Only at 100 DAT and -under low P availability, CIAT 18744 had a higher colonization of native AM than CIAT 17434 (Table 29), which may be the reason for the higher P influx of CIAT 18744, during the second growth period. However, the infection found after 30 and 60 DAT cannot explain the P influx differences between the genotypes, at 30 DAT.To explore further possible reasons for differences in P influx between the two accessions, we investigated the acid phosphatase (APase) acitivity on the root surface and exudation of organic acids from roots. At each growth stage, CIAT 18744 had a lower APase activity at the root surface than the CIAT 17434 (Figure 33). Thus the APase activity may not have contributed to either the high P influx of the efficient genotype or the increase of P influx with age. The P absorbing surface area and the hydrolysis of organic P cannot explain the higher P influx by CIAT 18744.Another possibility could be that the plants mobilise P, i.e. increase P concentration in soil solution. P concentration in soil solution of unplanted and planted soil was also determined (Figure 34).After 30 days of planting, the P concentrations for all were approximately 0.1 µM, which is below CLmin found for Arachis hypogea. At 60 DAT, especially at 100 DAT, the P concentration of the planted soil increased markedly and the efficient genotype showed the highest P concentration. It was 6 times higher than that of the unplanted soil P mobilization has very often been related to organic acids exuded by roots. Twelve different organic acids were analyzed from the collected root exudates in which only lactic acid and acetic acid were detected in significant amounts with the HPLC. Organic acids, like citric acid or malic acid, that are often shown to be associated with P mobilization, were only found in trace amounts (Figure 35).The observed organic acids were related to the P soil solution concentration. The highest exudation rate was associated with the lowest P concentration in soil solution with CIAT 17434, and the increase of the P concentration with age was associated with a decrease of organic acid exudation. Thus the organic acid exudation by the genotypes could not explain the increase of P concentration in soil solution. Moreover, monocarboxylic acids such as lactic or acetic acid have not been associated with P mobilization. • Found that total nonstructural carbohydrate (TNC) content in stems of Brachiaria genotypes increased with increasing drought stress in large plastic soil cylinders under greenhouse conditions.• Found that Brachiaria hybrid Mulato 2 is superior to cv. Mulato in terms of dry season tolerance under low fertility acid soil conditions in the Llanos of Colombia. This was associated with a greater proportion of fine roots in the top 5 cm of the soil profile.Contributors: J. Rincón, J. Polania, F. Feijoo, R. García, J. Ricaurte, J. W. Miles and I. M. Rao (CIAT)Identification of shoot and root attributes that are associated with superior drought adaptation will help to develop rapid and reliable screening methods. These methods are needed to develop Brachiaria hybrids that combine drought adaptation with other desirable attributes. Field studies conducted for the past few years in the Llanos of Colombia indicated that one of the Brachiaria hybrids, CIAT 36087 (FM9503-S046-024 or Mulato 2) is superior to its parents and other hybrids. This hybrid maintained greater proportion of green leaves during dry season under field conditions. A greenhouse study was conducted to characterize shoot and root responses of this hybrid in comparison to its parents and another hybrid, cv. Mulato when subjected to moderate and severe drought stress conditions.A greenhouse study was conducted using a sandy The trial was planted as a randomized block in split-plot arrangement with three levels of water supply: 100% field capacity (well-watered), 60% field capacity (moderate drought stress) and 30% field capacity (severe drought stress) as main plots and genotypes as sub-plots. Soil was fertilized with adequate level of nutrients (kg/ha of 80 N, 50 P, 100 K, 66 Ca, 28 Mg, 20 S and micronutrients).Treatments of water stress were imposed after three weeks of initial growth of plants established with seed. Water stress was maintained by weighing each cylinder every week and applying water to the soil at the top of the cylider. After 2 months of stress treatment (at 85 days after germination), shoot biomass distribution, root biomass and root length distribution in different soil depths, and leaf and stem nutrient composition, ash content and TNC (total nonstructural carbohydrates) contents were determined.Reducing the water supply to 30% of field capacity markedly decreased the leaf, stem and root biomass of the three parents and the two hybrids (Figure 36). Leaf biomass of CIAT 606 was lower than the other genotypes tested at all three levels of water supply. Differences between the two hybrids (CIAT 36061 and CIAT 36087) in leaf biomass were not significant within each level of water supply.Results on root length distribution showed that the hybrid Mulato 2 had a greater proportion of fine roots in the top 5 cm of soil profile at all 3 levels of water supply (Figure 37). Higher values of root length observed for 50 to 100 cm soil depth in some genotypes at 60% and 100% of field capacity indicates the growth of roots on the surface of the plastic tube and reaching to the bottom of the cylinder. We also noted problems of compaction in some cylinders. Therefore we conducted some additional studies to overcome these problems and found that use of 2:1 of soil and sand in smaller plastic tubes (50 cm long and 5 cm diameter) could overcome some of the problems encountered with large cylinders. Use of small cylinders will also facilitate evaluation of a larger number of genotypes.Results on the determination of N, P, ash (mineral) and TNC contents in leaves and stem tissue indicated that water stress could markedly increase stem TNC content (Figure 38). Severe water stress also increased stem N, P and ash contents. But leaf N, P, ash and TNC contents were not markedy influenced by water stress conditions.Work is in progress to evaluate the usefulness of fine root production in top soil, root penetration in subsoil and % increase of stem TNC as indicators of drought tolerance and green leaf production in Brachiaria. Because of the application of maintenance fertilizer, forage yields with high fertilizer treatment were greater than those with low fertilizer treatment (Figure 39; fertilizer application ranged from 0 to 609 kg/ha and the highest value of forage yield was observed with a germplasm accession CIAT 26110. This accession was released in Costa Rica as cultivar Toledo and is known for its dry season tolerance. Among the 3 parents, CIAT 6294 was outstanding in green live forage and dead biomass production with low fertilizer application. A spittlebug resistant genetic recombinant, Mulato 2 was superior among the genetic recombinants in terms of greater live 31).Results on leaf N content indicated significant differences among genetic recombinants, parents and accessions with both levels of fertilizer application (Table 31). Shoot N uptake with both low and high fertilizer application was markedly greater for the hybrid Mulato 2 than the cv. Mulato (Table 31; Figure 39). Leaf and stem N content and shoot N uptake values indicated that the genetic recombinant Mulato 2 could use N more efficiently to produce green forage in the dry season (Table 31). Evaluation of a large number of Brachiaria hybrids for their resistance to spittlebug and adaptation to infertile acid soils resulted in identification of a few promising Brachiaria hybrids. We selected 4 of these hybrids for further field-testing in comparison with their parents. The main objective was to evaluate growth and persistence in dry season with low nutrient supply in soil at Matazul farm of the altillanura. At 34 months after establishment, live forage yield with low fertilizer application was greater with one spittlebug resistant genetic recombinant Mulato 2 and one parent (CIAT 6294) (Table 32). With high initial fertilizer application also these two genotypes were outstanding in live forage yield (Figure 40). Among the 4 hybrids tested, 4624 was outstanding in its adaptation to low initial fertilizer application. It is important to note that both the hybrid 4624 and CIAT 6294 had greater amount of dead biomass and stem biomass under low fertilizer application (Figure 40).As observed last year, results on shoot nutrient uptake, particularly Ca and Mg, indicated that the hybrid, 4624 was superior to CIAT 606 under low fertilizer application (Figure 41). Nutrient acquisition by the hybrid 4624 was also greater than the rest of the hybrids with high initial fertilization. These results are consistent with the results reported last year from the same experiment. Correlation coefficients between live forage yield and other plant attributes indicated that greater nutrient acquisition with low initial fertilizer application contributed to superior performance (Table 32). No significant correlations were found between live forage yield and leaf and stem TNC or ash contents.The performance of the 4 hybrids in comparison with two parents with maintenance fertilizer application will be monitored for next year in terms of green forage yield and nutrient acquisition. (CIAT 606,6294) and four genetic recombinants (1251,4015,4132,4624) of Brachiaria grown in a sandy loam oxisol at Matazul, Colombia. Plant attributes were measured at 30 months after establishment (November 2003). LSD values are at the 0.05 probability level. NS = not significant.• Plant survival and yield of Brachiaria hybrids and accessions were affected by waterlogged conditions. However, Brachiaria hybrid CIAT 36087 (Mulato 2) showed less plant mortality than other hybrids under these conditions.• Paspalum atratum cv. Pojuca showed no plant mortality and increased yield under waterlogged soil condition.Contributors: Pedro J. Argel and Guillermo Pérez (CIAT)Poorly drained sites are frequently found in many areas of the low land tropics were cattle is an important economic activity. However, improved forage options are limited for permanent or periodically waterlogged conditions, and as a result native or naturalized grasses of medium to poor feeding qualities predominate in these areas.For this reason field tests are necessary to characterize the adaptation of promising forage germplasm to poorly drained soil conditions.As described in the IP- Twelve plants were established in each strata as described in 2003, and in September of this year three dikes were built along the lower part of the plots to create variable gradients of soil humidity: (a) waterlogged, (b) moderately waterlogged and, (c) well drained condition. Plant mortality, vigor and plant yield were measured during the wet period of 2004 along the three humidity strata that were created.The dikes built created the expected waterlogged conditions. At the lower part of the plots a permanent water table of 5 to 10 cm depth remained and covered partially the grass plants during the evaluation period. At the middle of the plots, moderately waterlogged conditions were also created, and the water table remained around 20 cm. The well drained conditions had a water table that ranged from 30 to 50 cm.Plant vigor and plant mortality of all Brachiaria species were affected during the evaluation period by the soil moisture conditions created as shown in • Root exudates from B. humidicola are effective, persistent and stable at inhibiting nitrification up to at least 75 days.• Presence of NH 4 -N stimulates the synthesis and release of NI activity in exudates produced by the roots of B. humidicola.• Genetic variability in capacity to inhibit nitrification was found among accessions of B. humidicola held by CIAT, which opens up the possibility for breeding for this traitContributors: G.V. Subbarao, O. Ito, T. Ishikawa, and K. Nakahara (JIRCAS, Japan)We have further improved the bioassay methodology and developed ways to express inhibitory effect (on nitrification from root exudates) in equivalent standard inhibitor, allylthiourea (AT) units. The transgenic Nitrosomonas responds linearly to the AT concentration in the bioassay medium (Figure 42). Using this relationship, the inhibitory effect from root exudates (that is determined using bioassay) is expressed in AT units, which can be subjected to statistical analysis. One AT unit of NI is defined as the inhibitory activity caused by the presence of 0.22 µM of AT in the bioassay medium. These improvements in the bioassay methodology will make it now possible to characterize the nitrification inhibition phenomenon in root exudates of plants. Also, the bioassay methodology will make it possible for the evaluation and comparative analysis of crop and forage germplasm accessions and breeding lines for the NI (nitrification inhibitory) activity in root exudates.Contributors: G.V. Subbarao, H. Wong, T. Ishikawa and O. Ito (JIRCAS, Japan); M. Rondon and I.M.This year, we have improved further the protocols in processing and testing of root exudates to determine the inhibitory effect on nitrification in soil (IP-5 Annual Report, 2003).We have tested the stability, persistence and effectiveness of the inhibitory effect from root exudates of B. humidicola on nitrification in soil. NI activity of 10 AT units g -1 soil (Soil from Tsukuba, Japan) was added to the soil with 182 ppm of N as (NH 4 ) 2 SO 4 and incubated at 20 ο C and 95% RH. The experiment was replicated three times. Sequential sampling was done at 25 d intervals and the incubation was continued for 100 days. NI activity of 10 AT units g -1 soil was very effective in inhibiting nitrate formation in soil (about 70% inhibition) and remained effective in inhibiting nitrification (about 50%) until 75 days. A substantial portion of the inhibitory effect from NI activity was lost between 75 and 100 period of incubation in soil.The synthetic nitrification inhibitor, Nitrapyrin did not inhibit nitrification effectively (only about 20% inhibition on nitrate formation) at 4.5 ppm under these conditions and lost its effectiveness after 30 days of incubation (Figure 43).Our results demonstrate that root exudates from B.humidicola are effective, persistent and stable in inhibiting nitrification in soil (up to 75 days at least). Our results indicate that two B. humidicola plants of 60 to 70 d old can release up to 100 AT units of NI activity (in 24 h period) under optimum conditions.Our results also indicate that the NI activity release rates mentioned above can be maintained for long periods of time (we have tested up to 15 days and that the release rates were maintained). This is the first time that we have demonstrated the effectiveness, stability and persistence of root exudates (from B. humidicola) inhibitory effect on nitrification in soil. The NI activity released in the presence of NH 4 -N was several-fold higher than in the absence of NH 4 -N (i.e. when root exudates are collected using distilled water).Our results support the hypothesis that presence of NH 4 -N stimulates the synthesis and release of NI activity from root exudates (data not presented on the root tissue NI levels). The release of NI activity from roots appears to be a highly regulated phenomenon and NH 4 -N in the rhizosphere is certainly one of the important regulating factors for the release of NI activity. Also, regulatory role of NH 4 -N in the rhizosphere for the release of NI activity from roots further indicates the functional significance of NI activity in protecting NH 4 -N in soil from nitrification. Contributors: M. Rondón, I.M. Rao, C.E. Lascano, J.A. Ramírez, M.P. Hurtado, J. Ricaurte (CIAT); G.V. Subbarao, T. Ishikawa, K. Nakahara, and O. Ito (JIRCAS, Japan)Ongoing collaborative research with JIRCAS, Japan, has shown that B. humidicola CIAT 679 inhibits nitrification of ammonium and reduces the emission of nitrous oxide into the atmosphere. Given these findings with the commercial cultivar of B. humidicola CIAT 679, and the fact that a range of inhibition of nitrification was observed among different tropical grasses, there is a need to determine the extent of genetic variation among the 69 accessions of B. humidicola that are part of CIAT germplasm bank. This information will be extremely useful to develop screening methods to select genetic recombinants of Brachiaria grasses that not only are resistant to major biotic and abiotic stress factors but also can protect the environment. Given the vast areas under B. humidicola in the tropics, reductions in net emissions of N 2 O could also have important environmental implications.The main objective was to quantify differences among 10 accessions of B. humidicola regarding the nitrification inhibition activity of root exudates collected from plants grown under greenhouse conditions using infertile acid soil. Also we intend to test the relationship between nitrification inhibition and root production in terms of biomass and length.A sandy loam Oxisol from the Llanos (Matazul) of Colombia was used to grow the plants (4 kg of soil/pot) under greenhouse conditions. A basal level of nutrients were applied before planting (kg/ha): 40 N, 50 P, 100 K, 66 Ca, 28.5 Mg, 20 S and micronutrients at 2 Zn, 2 Cu, 0.1 B and 0.1 Mo. A total of ten accessions were used (accessions CIAT 679, 6133, 6369, 6707, 16866, 16867, 16886, 16888, 26149, 26159). A control without plants was also included. The experiment was arranged as a completely randomized block design with four replications. Each pot contained four plants. After sowing, plants were allowed to grow for 15 weeks and were cut to 10 cm height to simulate grazing effects under field conditions. Plant tissue was dried and saved.Plants were allowed to re-grow during 5 weeks more to promote a well developed root system and then ammonium sulfate was applied in solution at a rate of 38.5 mg N-NH 4 /kg soil (equivalent to 100 kg N-NH 4 per hectare). Five weeks later plants were harvested (at 25 weeks after sowing). At the end of the experiment, plants were carefully removed from soil minimizing mechanical damage to the roots. Soil adhered to the fine toots was removed and the roots were rinsed with deionized water. Once clean, the roots were fully immersed in 1 liter of deionized water and were allowed to produce root exudates during 24 hours. Collected root exudates were kept in the refrigerator and were reduced in volume to approximately 100 ml using a freeze drier.Harvested plants were separated into shoot and roots. Root length was measured using a root length scanner. Dry matter content and N status of both shoot and root biomass was determined. At harvest time, soil samples were extracted with KCL and analyzed for nitrate and ammonium levels. The concentrated root exudates were further concentrated using a rotovapor using protocols that were developed for this purpose.The final concentrate was tested for its nitrification inhibitory activity using a specific bioassay developed at JIRCAS.Results on dry matter partitioning among shoot and root biomass from the comparative evaluation of the ten accessions are presented in Table 35. No significant differences were found in total biomass production among most of the CIAT accessions except for the accessions of 16866 and 16867, which were lower than the rest of the accessions. However, significant differences among accessions were found in root biomass production. The commercial cultivar, CIAT 679, which has been used in most of the previous work, seems to have root biomass around the average value for the group tested. The accession 6707 produced the highest root biomass among the tested accessions. Values of root biomass of this accession were more than two fold greater than the value for the lowest in the group, the accession 26149.Results from the bioassay indicated substantial level of NI (nitrification inhibitory) activity in the root exudates of most of the accessions tested (Table 36). However a range in NI activity was found among the tested accessions. Accessions could be grouped in 3 classes in relation to their specific NI activity. Group 1 with the accession CIAT 16867 showed no NI effects, behaving 126.17 (19.9) b 46.33 (19.0) ab Note: Numbers in parenthesis indicate standard deviation. In a given column, data followed by the same letter indicate nonsignificant differences (LSD, p<0.05). NI activity is expressed as AT units; One AT unit is defined as the inhibitory activity caused by the addition of 0.22 µM of allylthiourea (AT) in the bioassay medium. Thus, the inhibitory activity of the test samples of root exudates is converted into AT units for the ease of expression in numerical form. * Negative activity indicates that nitrification was stimulated by the root exudates. similarly to other grasses such as Panicum maximum, which also lack the NI activity. Group 2 that included accessions CIAT 6133, 6707, 16866, 26149, 6369, and 6707 showed similar levels of NI that was observed with the commercial cultivar CIAT 679. Group 3 that included the accessions 16886, 16888, and 26159 showed significantly higher levels of NI than the accession 679. The accession 16888 was outstanding in its NI activity with a value of more than three times to that of the value of CIAT 679.Results on NI activity indicate that wide genetic variability exists among accessions of B. humidicola in relation to the effectiveness of root exudates to inhibit nitrification in soils. This genetic variability for NI activity could be exploited in a breeding program to select for genotypes with different levels of NI activity. Once all the accessions in the gene bank are tested, accessions with superior NI activity could be used as parents to regulate NI activity in the genetic recombinants together with other desirable agronomic traits.The presence of substantially higher levels of NI activity in the root exudates of the two CIAT accessions (16888 and 26159) draws attention to the need to study these accessions in more detail. The immediate task is to continue the screening of other accessions of B. humidicola from the gene bank and to initiate screening of other commercially important grasses and crops for their ability to inhibit nitrification. As a continuation of this work, this year we have initiated the screening of another 11 accessions of B. humidicola including all materials that are classified as putatively sexual. An additional experiment will be conducted to obtain and test NI activity of root exudates from maize, rice, sorghum, soybean, cowpea and common bean. Results from this study will be reported next year. Further research work is needed to determine the relative importance of total NI activity vs. specific NI activity in influencing the nitrification process (i.e. inhibition) in a soil environment.Contributors: M. Rondón, I.M. Rao, C.E. Lascano, M. P. Hurtado, J. Ricaurte (CIAT); G.V. Subbarao, T. Ishikawa and O. Ito (JIRCAS, Japan)Research conducted at JIRCAS and CIAT for the past three years using B. humidicola has shown that root exudates from this tropical grass have the capability to inhibit/suppress the nitrifying populations in the soil. Factors such as presence of NH 4 -N in the soil seem to have a stimulating effect on the expression of nitrification inhibition (NI) activity in the root exudates of B. humidicola. Differences have been found among accessions of B. humidicola with regard to their NI activity. Also, our recent studies involving soils incubated with root exudates of B. humidicola and soybean have shown that root exudates from B. humidicola have suppressed the N 2 O emissions and inhibited the nitrification process, while those of soybean seem to stimulate the nitrification process in soils. Soybean (usually in rotation with maize) is becoming increasingly important as a crop not only in Latin America but also in many tropical and temperate regions. Other grasses such as Panicum maximum lack the NI activity, while the Brachiaria hybrid cv. Mulato was found to have a moderate level of NI activity. The use of this hybrid is expanding rapidly in Latin America due to its high productivity and forage quality.All these above studies were conducted either using hydroponic systems or soil in pots under greenhouse conditions to test and verify the concept of the biological phenomenon of nitrification inhibition. There is a clear need to validate some of these findings under field conditions. This year a collaborative (CIAT-JIRCAS) long-term experiment was initiated to validate the phenomenon of NI under field conditions and to monitor whether the NI activity is a cumulative process in the soil Given the vast areas currently grown in the tropics on tropical grasses, an understanding of the NI process and the possibility of managing it to improve fertilizer N use efficiency, reduce nitrate pollution of surface and ground waters as well as reduce net impact on the atmosphere through reduced emissions of nitrous oxide, could have potential global implications for sustainable agricultural development and environmental protection.The field experiment was established on 31 August 2004 at CIAT-Palmira on a Mollisol (Typic Pellustert) as a randomized complete block (RCB) design with six treatments and 3 replications. Annual rainfall at this site is about 1000 mm with a mean temperature of 25 ο C. Soil is fertile with a pH of 6.9. Two accessions of B. humidicola were included: the reference material (CIAT 679) that has been used for most of our previous studies, and the high NI activity germplasm accession (CIAT 16888). The Hybrid Mulato was included as a moderate NI and Panicum maximum var. common was included as a negative non-inhibiting control. A crop rotation (maize-soybean) was included to assess under field condition the recent finding that Soybean lacks NI ability (indeed accelerate nitrification), while maize shows some degree of inhibitory capability. As first crop of the rotation we used maize variety (ICA V109). A plot without plants where emerging weeds are removed manually is used as an absolute control.Plot size for each treatment was 10m x 10m. Irrigation will be provided if necessary. Maize was planted from seeds and the tropical forage grasses were propagated from vegetative cuttings. Fertilizer will be applied (broadcast) for every crop cycle, consisting of (kg/ha) 96 N (as urea), 48 K, 16 P, 0.4 Zn, 0.4 B and 8 S. The fertilizer is split into two equal applications: one at 20 days after sowing of each crop (either maize or soybean) and the other at flowering time at approximately 60 days after sowing.A number of soil and plant parameters will be measured at every four months. These include nitrate and ammonium availability in the soil, dynamics of nitrifier organisms in soil, plant nitrogen uptake and nitrous oxide (N 2 O) emissions. The NI activity of soil water extracts will be measured using the bioassay. Soils samples will be periodically collected and sent to JIRCAS to assess changes in inhibitory compounds in the soil. Gas samples for measuring N 2 O fluxes will be collected every month. Once a year, soil incubation studies will be conducted using rhizosphere soil, to monitor nitrogen dynamics and fluxes of N 2 O. Currently plants are growing well and the initial sampling is expected in January 2005. Results from this field study will be reported next year.• Selected accessions of Desmodium velutinum with superior productivity, forage quality and that have persisted over 2 years under cutting.• Selected accessions of Canavalia brasiliensis with superior productivity and drought tolerance for seed multiplication. F. macrophylla also is a highly promising shrub legume with excellent adaptation to infertile soils.In contrast to C. argentea, whose adaptation is limited to an altitude below 1200 masl, F. macrophylla can successfully be grown up to altitudes of 2000 masl. However, the potential utilization of F. macrophylla is so far limited by the poor quality and acceptability of the few evaluated accessions.The project aims to investigate the genetic diversity within collections of F. macrophylla, Flemingia spp. and C. argentea with two main objectives:1) To identify new, superior forage genotypes based on conventional germplasm characterization/evaluation procedures (morphological and agronomic traits, forage quality parameters, including IVDMD and tannin contents).2) To optimize the use and management, including conservation, of the collections. For this, different approaches to identify core collections for each species were tested and compared based on: (a) genetic diversity assessment by agronomic characterization/ evaluation and (b) germplasm origin information.In Plants were sown in the greenhouse in jiffys and transplanted to the field 6 weeks later. We employed the same evaluation methodology as for the larger collections of C. argentea and F. macrophylla described in the Annual Report 2003 (for more details on the methodology please refer to the Annual Report 2003).Agronomic evaluation: Three cuts were carried out in each the dry and wet season and results on dry matter yield are presented for Cratylia argentea and Flemingia macrophylla in Tables 37 and 39.Cratylia argentea (2002): Except for the distinct growth habit of Yacapani, no morphological differences between accessions were observed. Though Yacapani has normally a prostrate growth habit, erect plants were also encountered; it is not clear if this variation is to be attributed to contamination of the seed, outcrossing or diversity within the accession. Additional plants of the accession were sown to study the growth habit of this particular accession in more detail. No disease and pest problems were observed.In general, yields were much higher than previously obtained in Costa Rica for the same accessions. DM yields of the accessions CIAT Annual Report 2003), materials evaluated this year were more homogenous and all of erect growth habit (Photo 17).Differences in yield between the wet and dry seasons were not significant. However, significant (P<0.05) differences in DM yield were found among accessions when averaged across seasons. The highest DM yields and the best regrowth were recorded for accessions CIAT 659 and 906 (Table 39). In terms of quality parameters significant (P<0.01) differences among accessions were measured for IVDMD, ADF and soluble tannin content (Table 40). While some accessions had a higher digestibility than CIAT 17403 (control), values were lower than for the accessions with highest quality selected from the larger collection of Flemingia macrophylla previously evaluated (see Annual report 2003). For acid, low-fertility soils in drought-prone environments there are few options in terms of shrub legumes. Species such as Desmodium velutinum may offer an option in such environments (where they would complement Cratylia argentea). There are very few studies on D. velutinum and the ones available concentrates on one or two accessions. However, the available information indicates that this legume produces forage of high quality and has the potential to adapt to drought and (acid) low-fertility soils.We are currently exploring the genetic diversity in a collection of D. velutinum held by CIAT in terms of morphology, yield and quality parameters. From this work we expect to derive a core collection based on agronomic and morphological parameters, origin information, (using GIS tools), and characterization with molecular markers, will be identified for more detailed regional evaluation.A total of 137 accessions of Desmodium velutinum, mostly originating from Asia and to a lesser extent from Africa, were planted at Quilichao (Photo 18). Plants were sown in jiffy pots and transplanted 6 weeks later into the field in single-row plots, with 4 replications. Dry matter yield, drought tolerance and forage quality are the main parameters being measured.Photo 18. Regrowth at 8 weeks of Desmodium velutinum at QuilichaoFive months after transplanting plants were well established, had a good vigor and were free of pests and diseases. Accessions were classified into three groups according to their growth habit: e = erect (54 accessions), se = semi-erect (66), r = prostrate (17 accessions).DM yields, averaged over two cuts each in the wet and dry periods are presented in Tables 41, 42 and 43 for the 3 groups of D. velutinum that were formed based on growth habit. Each growth type was analyzed separately as these are likely to occupy different niches. Significant (P< 0.01) differences among accessions were recorded in each group.In general, results indicate that for the group classified as erect, DM yields were slightly higher in the wet than in the dry season, with accessions CIAT 33443, 13953, 23985, 23994 and 33352 producing more than 200g DM/plant for an 8 week regrowth, in both seasons (Table 41). A higher number of regrowing points was recorded in the dry season, indicating that D. velutinum does not only survive dry periods but that it remains productive (Table 41).Among the semi-erect groups DM yield differences among accessions were significant (P< 0.05), with slightly higher yields in the wet than the dry season. In this group only 2 accessions, CIAT 13218 and 23983 had DM yields above 200 g DM/plant (Table 42).As observed in the erect group, there were more regrowing points in the dry than in the wet season. Quality of the semi-erect types was similar to the erect types, with a range of 59 to 76% and 17 to 25 % IVDMD and CP, respectively. A larger number of accessions in this group had digestibilities above 70%, with accessions CIAT 23992, 23923, 23922, 33387, 23986, 23995 and 23975 having values above 73% though at a low yield level.In the prostrate group significant (P<0.01) yield differences among accessions were measured (Table 43). However yields were lower than for the other groups, with only CIAT 13212 having DM yields above 200g/plant (Table 43). As digestibilities were also relatively low, this group is probably of the least agronomic interest.Forage quality parameters of some promising Desmodiun velutinun accessions in the Erect Group are presented in In Central America, the legume is being used to improve the value of stubble grazing in the dry season. Antinutritive substances such as toxic amino acids (e.g., canavanin), lectins (e.g., concanavalin Br) and trypsin inhibitors have been reported in seeds of C. brasiliensis. However, there is little information on the nutritive value of the herbage of this species for ruminants. Plants established quickly, and incidence of pest and diseases was low, in particular when compared to a collection of Canavalia sp. planted at the same time in Quilichao. 12 weeks alter transplanting the majority of accessions had soil covers above 70%, with accessions CIAT 808, 18515, 7319, 7648, 7970, 8557, 2009517008,17009 and 20096 showing the highest values (Table 45).Forage yields 16 weeks after transplanting varied significantly (P< 0.01) among accessions, with yields above 4 t DM /ha recorded for accessions CIAT 808, 17009, 8557, 17012, 20098, 21824, 18515, 20303,17973, 7178, 20306, 7648 and 7319. Accession CIAT 17009 is a line previously selected by farmers in Central America for use as green manure and to improve fallows and crop residues, due to its high yield and drought tolerance. Despite a severe dry period all accessions remained healthy, with soil covers above 80%; in a few materials some leaf loss under drought conditions was observed. In view of the promising results obtained with Canavalia brasiliensis, there is an interest to define the potential of other species of Canavalia for use mainly as green manure and for fallow improvement in low fertility, drought prone environments.A total of 47 accessions of Canavalia sp, originating from Latin America, China and Thailand were sown into jiffy pots and transplanted to the field in Santander de Quilichao (Photo 20).The design and variables are the same as described for C. brasiliensis. Establishment of most accessions was slow, with soil covers below 53% after 12 weeks of transplanting. On the other hand, 16 weeks after transplanting, only 11 materials had soil covers above 80%. Several materials appear not to be well adapted to the acid soils in Quilichao and were severely affected by pests and diseases.Accessions with the best adaptation during establishment phase were CIAT 21012, 21014, 19038, 21209, 7317, 7383, 8719, 21013, 21211 and 18587, all of which are showing good drought tolerance (Table 46). • Showed that cowpea as green manure can substitute the N applied (80 kg) to maize by farmers in hillside of Nicaragua.• Selected an accession (CPI-67639-early flowering) of Lablab in hillsides of Nicaragua based on rapid establishment, high cover and high seed yield. Cowpea (Vigna unguiculata) is utilized in the subhumid/semi-arid tropics of West Africa and India as a source of food and feed for livestock, but the utilization of cowpea in Latin America is so far limited. We visualize that, cowpea could be an alternative crop for the second planting season in the central hillsides region of Nicaragua and Honduras where the legume could provide not only higher grain yields as compared to common beans, but could also allow for a third crop in November/December in order to provide hay as animal feed in the dry season or contribute to soil fertility enhancement for the following maize crop. Cowpea could also be used for hay, silage and feed meal production, which in turn could be an option for income generation by smallholder livestock and non-livestock owners.Good adaptation to climatic and edaphic conditions, especially to water stress, are prerequisites for a successful development of cowpea as an option for the traditional maizebean cropping systems in Central America. It remains to be seen if cultural traditions allow for the inclusion of cowpeas in the daily menu of people in Central America.A new collection of cowpea obtained from IITA was sown in Santander de Quilichao and Palmira in 2004 in order to select accession with both high forage and grain yields and good adaptation to contrasting soils. (Photo 21). Our previous selection criteria for cowpea had been mainly forage yield in alkaline and acid soils. The same evaluation methodology as presented in previous annual reports was utilized. The main variables measured are forage production and quality, grain yield and effect as green manure on a subsequent maize crop. A particular emphasis is given to material adapted to a wide range of soils.The collection established was highly diverse in terms of flowering response, with very early to very late accessions present. The differential flowering pattern will be taken into account for the planning of subsequent trials. In Palmira it was necessary to replant one replication because Photo 21. Cowpea (Vigna unguiculata) at Quilichao.of negative effects of waterlogging and consumption of seed by birds.Soil cover was more rapid in Palmira than in Quilichao, with a mean of 80% and 64% covered respectively 10 weeks after planting. Pest and diseases were present in both sites but did not limit the development and productivity of plants. Grain was harvested 12 We visualize that cowpea could be an alternative crop for a) the first planting season (\"primera\") as a soil improving starter crop for maize, and b) for the second planting season (\"postrera\") in low fertility soils in hillsides of Nicaragua and Honduras. This legume could allow for a third crop in November/December the maize/bean systems in order to provide grain, hay for animal feeding in the dry season or contribute to soil fertility enhancement for the following maize crop. Cowpea could also be used for hay, silage and feed meal, which in turn could be an option for income generation by smallholder livestock and non-livestock owners. Adaptation to climatic and edaphic conditions, especially to water stress, are prerequisites for a successful development of a cowpea option for the traditional maize-bean cropping systems in Central America.During 2002 a small core collection of Vigna unguiculata from IITA comprising 14 accessions, which were selected in Quilichao and Palmira for good adaptation to soils (acid and alkaline) was introduced into Nicaragua. Early 2003, due to increasing interest in Vigna unguiculata by farmers in San Dionisio (who demanded the re-establishment of our collection for further participatory evaluations and for seed increase for on-farm evaluation) the accessions were re-established in 6m x 6m plots without replicates. After 2 field events with participatory evaluations (n=21 persons) plots were harvested and seed distributed to 35 farmers.In Table 49 maize plant height, DM and grain yields are presented. No significant differences (P>0.05) were detected among accessions or between treatments (mulch vs. grain harvested). Mean plant height, DM and grain yield are in-line with farmer maize crops in San Dionisio. Farmers, depending on their economic possibilities, apply up to 80 kg/ha N to their maize crops. Results of our experiment showed that a cowpea crop can easily replace the application of these amounts of nitrogen, even as a preceding dry season crop. This corroborates our findings from on-farm experiments, reported in AR 2003 (p. 145), where we argued that with a legume crop planted at the end of the rainy season, traditional nitrogen fertilizer applications for the following maize crop can be substituted in the dry hillsides of Nicaragua and Honduras.Our results this year with cowpea indicate that farmers can not only reduce production cost of maize, but also have an additional legume grain harvest for human consumption or animal feeding. Since no significant differences between plots with mulched or grain-harvested cowpeas were found, farmers can choose their cowpea accession based on their utilization preference.In Table 50 we present the results of participatory evaluations of the cowpea collection in Nicaragua. Selection criteria employed by farmers were: grain yield, leafiness and leaf size, plant vigor, pod size, and plant height. Of the accessions selected, the local accessions Rojo, INTA and Negro are leafy types for animal feeding, while the introduced IT90K-284/2 accession is a dual purpose type as shown before (see AR 2003, p. 117). This accession is widely adapted across different environments in Colombia and Central America.Seed production began in the first planting season 2004 with the production of 50 kg of accession Rojo and IT90K-284/2. In the second planting season seed production efforts will be increased. Evaluation of new accessions, both local and introduced materials, will continue throughoutContributors: A. Schmidt, C. Davies, E. Lopez, M. Peters, L.H. Franco, G. Ramirez (CIAT)A major problem facing livestock producers in Central America is inadequate animal nutrition during the dry season when pastures, sorghum and maize stover are limiting in quality. Problems such as sickness and weight loss due to a poor nutrition are frequent. One way for improving the utilisation of such crop residues is by adequate supplementation with leguminous forages of high quality.The legume Lablab purpureus is recognized not only as drought resistant, but also for its adaptability to a wide range of environmental conditions. Though the legume is widely known in Central America under a number of names (e.g. dolichos, caballero) and has the capability of being an outstanding resource for crop-livestock systems in this region, (e.g. the legume can be used as cover crop, grazed in a pasture setting or as a companion crop to maize, cut as hay, or mixed with corn silage), it is not being used to its full potential. So far only two commercial lines have been available to farmers in Nicaragua, but seed availability remains a major limitation. Thus to select for more productive and better-adapted germplasm for the dry hillside regions of Nicaragua, a Lablab purpureus core collection from ILRI/CSIRO is currently under evaluation.During 2003 a core collection from ILRI/CSIRO comprising 12 accessions was introduced into Nicaragua. In October 2003, accessions were planted out in 2m x 2.5 m small plots in three replicates in a randomized complete block design at the SOL seco site in San Dionisio, Matagalpa, Nicaragua (Lat N 12° 45' 05.8\", Long. W 85° 53' 16.5\", Alt. 537 masl, rainfall 990 mm/a, mean temperature 26°C). After an initial evaluation of plant emergence, accessions were evaluated in a two-weeks interval for plant height, soil cover, plant vigour, flowering patterns, incidence of pests and diseases, and seed production. No fertilizer was applied throughout the experiment. Dry matter yields prior to flowering were not recorded due to the small initial amount of seed introduced. Priority was given to genotype characterization and seed increase.Accessions of the core collection established well at the experimental site with an average of 79% of all seeds emerging (Table 51). Plants reached an average height of 49 cm and covered 12 weeks after planting on average 74% of the plots. Plants showed good vigour and no incidence of pests or diseases throughout the experiment, with the exception of accession CPI-36903.Accession CPI-67639 (early flowering) performed outstanding in this experiment in terms of establishment, soil cover and seed yield. It remains to be seen if this seed high yield is correlated with low biomass production. Biomass production and on soil fertility effects on subsequent maize crops will be obtained on larger plots in the postrera 2004 and primera season 2005. Enough seeds was harvested in the present experiment to include an additional experimental site in 2004-2005, which will be under the responsibility of our national partner INTA.We conclude from this first experiment with Lablab purpureus that the accessions evaluated adapted well to the dry conditions of the central region of Nicaragua where small farmer crop-livestock systems are predominant. Our results showed variability within the collection with regard to seed yield and flowering patterns. Nevertheless, biomass production data and the results from participatory evaluation by farmers will determine which accession will be multiplied for forage production, soil improvement or grain production. The selected Lablab accessions will be an additional annual legume alternative to farmers in the drier regions of Central America. Lablab purpureus is a free seeding, fast growing, short-term perennial legume, with widespread use through the tropics as a fodder plant. In Africa the use of Lablab for human consumption is also common. The origin of the Lablab germplasm currently utilized is mainly Eastern/Southern Africa and Asia. In addition, it is well documented that Lablab purpureus is best adapted to areas with rainfall regimes of 750-2000 mm/year. This species grows in a variety of soils, but the ideal pH for growing Lablab is reported to be between 5.0 and 7.5.In order to evaluate the potential of Lablab in tropical America, we obtained a collection available at ILRI/CSIRO. Our main objective with the collection is to select accessions with broad adaptation to different soils and climate conditions in tropical America. However, of immediate interest is the evaluation of the Lablab collection in acid and neutral soils to define niches for this species as green manure and fodder (especially for hay and silage or deferred feed), with emphasis on Central America where soils are highly variable in pH.A multilocational trial to evaluate of Lablab purpureus selected from previous work in Colombia was initiated in contrasting sites -soil, climate and altitude -in Colombia (6 sites), Costa Rica and Nicaragua. In this section we report results on effects of Lablab on a succeeding maize crop in Quilichao (acid low fertility soils) and Palmira (alkaline high fertility soils) (Photo 22).Due to the short rainfall cycles in the bimodal rainfall system prevalent in Palmira and Quilichao, it is not possible to plant a crop directly after lablab as a green manure. Hence an alternative strategy was employed, with the lablab green manure being incorporated at the end of the dry season, followed by the crop sown at the beginning of the next wet season. Maize DM and grain yields after incorporating lablab as green manure are presented in Table 52.Maize yields in Palmira were higher than in","tokenCount":"14251"} \ No newline at end of file diff --git a/data/part_3/2043288966.json b/data/part_3/2043288966.json new file mode 100644 index 0000000000000000000000000000000000000000..945c2486244e93b04205d721c1a1b0f80c9a30d4 --- /dev/null +++ b/data/part_3/2043288966.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"974feeb7f4515fcdc20d2419de4d3233","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/6b6f19ce-1b76-4450-9437-e3384b871b73/retrieve","id":"692877472"},"keywords":[],"sieverID":"50808044-f053-4314-a242-dff371199c4f","pagecount":"6","content":"• Calf management begins before birth, and at the last stage of pregnancy.• Dry off the cow 60 days before the expected calving date, so she will be able to recoup and get ready for the next lactation.• Steam up the cow by feeding some concentrates about 4 weeks before the expected calving date. Proper, highly palatable, feeds are the most important in this stage to help the cow start lactating well and give a strong calf.• 1-2 weeks before the expected date of calving, the pregnant cow may be shifted to an individual calving pen or maternity house (Figure 1).• The maternity house/calving pen should be thoroughly cleaned and disinfected before moving the cow/in-calf-heifer in.• Keep the cow/in-calf heifer separate from the herd in a clean place and on clean bedding (the maternity pen).• Allow the cow to behave naturally, as far as possible. Provide the correct balance of nutrients (energy, protein, calcium, magnesium and phosphorous) during the last 3 -4 weeks of pregnancy. This may affect ease of calving and the quality and quantity of colostrum. Ultimately, this will influence the health and survival of the calf. >>>After the calf was born:• Clear mucus from its mouth and nostrils.• Ensure that the calf is breathing.• Disinfect the umbilical cord with iodine.• Assess the calf's vigour by monitoring its responsiveness to external stimuli, muscle tone and sucking reflex, as well as the time it takes the calf to lift its head and stand for the first time. • Ensure that colostrum is milked immediately and in a clean environment that allows the quality to be retained.• Feed 3-4L of colostrum within 1hr of birth, using a nipple bottle, or let the calf suckle to its fill.• Repeat the feeding of colostrum multiple times for the first 24 hours. In this period, the calf is able to absorb antibodies found in the colostrum.• Continue to feed colostrum to calves beyond the initial 24 hours (after the calf's gut 'closes'). This has additional advantages, such as that antibodies can still bind to pathogens in the gut and help to protect the calf from infections. • Calves should be reared on fresh, clean milk.• Feed 10-12% of body weight as milk or milk replacer (approximately 4L per day).• Milk feeding can be done twice a day, this allows calves to be closely observed. Reluctance to drink or other signs of disease can be detected and action taken.• Liquid milk should be fed to the calf at around body temperature (38°C).• Introduce small quantities of high quality calf starter on day 4. Make the starter available at all times.• Introduce small amounts of high quality calf starter in the milk to increase consumption.• Water should be made available to the calf at all times. Provide fresh water every day. However, at this early phase the amount of water consumed by the calf should be monitored closely, to avoid salt poisoning. • Once the calf is consuming 0.5 -1 kg of calf starter per day, the amount of milk can be reduced gradually.• Introduce fresh high quality fodder to calves.• Fresh water should be available at all times.Figure 5: Make fresh water available to the calves at all times. >>>• Calves should be weaned at around 8 -12 weeks.• Weaning should be done gradually. The twice-a-day milk feeding should be reduced to once a day, then to once every other day, to allow the calf's digestive system to adjust to the new diet.Time of weaning will depend on:• Calf doubling its birth weight (80kg).• Calf being able to consume 1.5% of the bodyweight (approx. 1kg of dry feed)• Calf being free of health problems.• Calf being approx. 8-12 weeks old.• The calf house floor should be raised. If at ground level, the floor should be made of material that can be easily cleaned (e.g. concrete) and should be bedded using straw.• The sides can be made of concrete or wood.• Slats made of timber spaced at 2.5cm will allow urine and faeces to fall on the ground. The house should be at least 30cm from the ground.• A calf stall should be 1.5m long and 1.2m wide.• The house should be kept clean, dry and free from strong winds.• Adequate ventilation is important when housing the calve(s) indoors.• Keep calves in individual pens or stalls during the milk-feeding period to minimize spread of disease.• Keep the house calves away from other cows and older animals, as they are highly vulnerable to diseases at this early stage in life. • Farmers should focus on meeting the key weight targets for heifers of specific age.• After weaning, heifers should be grouped based on weight.• Heifers should be closely observed and fed correctly to avoid the growth slump that can occur after milk is withdrawn.• Ensure food feed quality and provide sufficient quantity of fodder to the heifers.• Heifers should achieve a growth rate of approx. 700 g/day (this ensures that they will come on heat at the right time, as puberty is related to size rather than the age).• Monitor the growth rate compared to the age. Growth charts that provide expected weight at different ages are available.• Once the heifer is ready for insemination, it is important to monitor heat signals so that a successful insemination can be done.• During the last weeks before calving it is important to introduce concentrate so the heifer can get used to the new rations. Scan here ","tokenCount":"908"} \ No newline at end of file diff --git a/data/part_3/2055092467.json b/data/part_3/2055092467.json new file mode 100644 index 0000000000000000000000000000000000000000..af1a5872eda940d4d6fd58b8a117b5ccc114b5b4 --- /dev/null +++ b/data/part_3/2055092467.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"09575fc73047f41d43530fbbb828233c","source":"gardian_index","url":"https://www.resakss.org/sites/default/files/090222-Biennial-review-Angola.pdf","id":"-813333424"},"keywords":[],"sieverID":"d571223d-e3df-45fc-8eb5-329af0d4e0c5","pagecount":"7","content":"Established in 2006 under the Comprehensive Africa Agriculture Development Programme (CAADP), the Regional Strategic Analysis and Knowledge Support System (ReSAKSS) supports e orts to promote evidence-and outcome-based policy planning and implementation. In particular, ReSAKSS provides data and related analytical and knowledge products to facilitate CAADP benchmarking, review, and mutual learning processes. AKADEMIYA2063 leads the work of ReSAKSS in partnership with the African Union Commission, the African Union Development Agency-NEPAD (AUDA-NEPAD), and leading regional economic communities (RECs).The 2014 Malabo Declaration outlines Africa's vision for accelerating agricultural growth and transformation on the African continent through seven broad commitments from 2015 to 2025. The commitments include: (1) upholding the principles and values of the Comprehensive Africa Agriculture Development Programme (CAADP), (2) enhancing investment finance in agriculture, (3) ending hunger in Africa by 2025, (4) reducing poverty by half by 2025 through inclusive agricultural growth and transformation, (5) boosting intra-African trade in agricultural commodities and services, (6) enhancing the resilience of livelihoods and production systems to climate variability and other related risks, and (7) ensuring mutual accountability to actions and results by conducting a continent-wide biennial review (BR) to monitor progress in achieving the seven commitments. As part of fulfilling commitment 7 to mutual accountability, the second (2019) BR report and Africa Agriculture Transformation Scorecard (AATS) were launched at the 33rd African Union (AU) Summit in February 2020. This brief highlights Angola's performance in the second BR and assesses challenges faced and lessons learned by Angola during the review. The brief also reviews policy and programmatic changes in Angola that can be attributed to the first (2017) and second (2019) BRs. It concludes by highlighting required policy actions for Angola to implement to meet the Malabo Commitments by 2025.The benchmark (minimum score for a country to be on track in implementing the Malabo Declaration commitments) for the second BR was 6.66 out of 10 (AUC, 2020). Angola had an overall score of 4.77 in the second BR, which is far below the 2019 Benchmark of 6.66 indicating that the country is not on track to meet the Malabo commitments and targets by 2025 as shown in Table 1. Only four countries (Ghana, Mali, Morocco, and Rwanda) were on track on the overall commitments in the second BR and no country in the Southern African Development Community (SADC) was on track, indicating a regression from the first BR, when 8 countries in the SADC region were on track.The second BR process helped to show the importance of having relatively good agricultural data management systems in producing better quality data. In addition, aligning and implementing policies and programs based on CAADP principles was shown to contribute to better country performance.Angola received an overall score that is below the benchmark due to its poor performance on all the Malabo themes except on intra-Africa trade in agriculture commodities and services (theme 5) (Table 1). Even though Angola performed higher than the average score in five thematic areas in Table 1 (themes 1, 3, 5, 6 and 7) compared to the group of SADC low-income countries, the country was below the average score in three other thematic areas (themes 2, 4, 7) compared to the group of SADC middle-income countries. As shown in Table 2, Angola did not perform well across all the themes during the first BR compared to the second BR. In the second BR, the country did not perform well in 6 thematic areas: recommitment to CAADP (8.18), enhancing agriculture finance (3.23), ending hunger by 2025 (3.13), halving poverty through agriculture (0.75), enhancing resilience to climate change (6.72) and mutual accountability for actions and results (6.00) and was therefore not on track to meeting any of these commitments by 2025. Even though the country did not perform well in six commitments indicated above, there was improvement in theme 5 (intra-Africa trade in agriculture commodities and services) which is above the second BR benchmark, hence the country was on track on theme 5. Overall, the Angola showed improvement in the second BR across all commitments (4.77) compared to the first BR (2.10). Even though Angola performed better in the second BR, the overall score was still below the benchmark of 6.66, hence the country was not on track toward meeting all the Malabo commitments. In order to improve in the future, Angola needs to focus more on key areas of weakness which are caused notably by data gaps in various thematic indicators.Angola faces challenges of limited data quality and quantity which continue to a ect its performance in the BR process. During the second BR, the country had missing data on a number of Malabo thematic indicators including data on domestic and foreign private sector investment in agriculture. Angola needs to prioritize making improvements to data availability and quality as well as focusing on thematic areas in which it did not perform well by, for example, increasing yields of the country's priority agricultural commodities, improving food safety measures, ensuring inclusive institutionalized mechanisms for mutual accountability, peer review, and evidence-based policies, and strengthening supportive institutions and corresponding human resources.Even though the country did not meet the overall benchmark to be on track, Angola made some necessary policy and programmatic changes based on both its the first BR and second BR results. For example, Angola has made progress, in terms of the country CAADP process, in the following areas:• Surpassed the 2018 milestone of 30 percent by doubling the current levels of quality agricultural inputs for crops (seed), livestock (breed), and fisheries (fingerlings) by 2025.• Consistently invested at least 1 percent of its agricultural gross domestic product (GDP) toward agricultural research and development between 2017-2018. This shows an increase in Angola's total agricultural research spending as a share of agriculture GDP.• Reduced post-harvest losses by 15 percent between 2015 and 2018.• Improved in intra-African trade in agriculture by increasing the value of intra-Africa trade in agriculture by 57.3 percent between 2015 and 2018.• Improved country capacity for evidence based planning, implementation, monitoring and evaluation by adopting an inclusive agricultural sector review mechanism.• Improved public agriculture expenditure as a share of agriculture value added by allocating more public resources to the agriculture sector.• Increased the size of irrigated area from its 2000 to 2018 by 400 percent which led to improved productivity and food security and nutrition.To improve implementation of the Malabo Declaration commitments and to achieve set goals by 2025, Angola needs to implement the following recommendations:• Recommitment to CAADP process: Since the country did not perform well on this first commitment, Angola should improve on the overall CAADP process by making its national agriculture investment plan Malabo compliant and developing a Malabo compliant monitoring and evaluation system.• Enhancing investment finance in agriculture: It is recommended that Angola should improve on its agriculture investment by providing financial support systems. It is also recommended that the country increase its agriculture budget to at least 10 percent of its total public expenditure in line with the CAADP target. Angola should also work to promote both domestic and foreign private sector investment in agriculture and improve farmers' access to finance.• Ending hunger by 2025: Angola was also not on track for this commitment hence the country should improve access to agricultural inputs and technologies, agricultural productivity, social protection and food security and nutrition. It is imperative for the country to make e orts to increase yields for the country's priority agricultural commodities including rice, maize, cowpea, peanuts, and cassava to ensure food security and nutrition. Angola should strive to improve its food safety health index by putting in place su icient legal as well as policy and institutional frameworks on food safety.• Halving poverty through agriculture by 2025: It is recommended that Angola increase its agriculture sector growth through value-added production as this will improve food security and nutrition. In addition, Angola should promote inclusive public private partnerships (PPPs) for commodity value chains, creating youth jobs in agriculture and promoting women's participation in agri-business.• Boosting intra-African trade in agriculture commodities: While Angola is on track to meet this commitment, there is still need for the country to improve its intra-African trade in agriculture commodities and services through value addition and a deliberate e ort to expand and diversify its agricultural export basket.• Enhancing resilience to climate change: Angola needs to increase its investment in resilience building initiatives such as the development of social safety nets for vulnerable households.• Mutual accountability for actions and results: Angola should strengthen its peer review and mutual accountability processes by improving its BR process through strong stakeholder engagement. The country should strengthen its statistical o ices to better collect data that feeds into the monitoring indicators of the BR process with a view to promoting inclusive mechanisms for mutual accountability and peer review.","tokenCount":"1456"} \ No newline at end of file diff --git a/data/part_3/2064263213.json b/data/part_3/2064263213.json new file mode 100644 index 0000000000000000000000000000000000000000..52d8ef4546fdcb5aa323ccdb895af6ce373073e6 --- /dev/null +++ b/data/part_3/2064263213.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c0e5cbb213beb91aa3d2db20c489e056","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/357976a5-113a-4348-a6da-e7ddf479d036/retrieve","id":"-1366535948"},"keywords":[],"sieverID":"2dba768b-96bd-438c-aada-3e49fad0666e","pagecount":"1","content":"GloMIP is a public platform for sharing market intelligence to inform market segmentation, target product profile design, seed systems and investment decision making in crop breeding.• Data-driven insights: provide timely and relevant data, insights, and information to effectively guide decisionmaking and maximize return on investments in breeding programs and seed systems.• Innovation: develop a one-stop shop for sharing, exchanging, and crowd-sourcing market intelligence.• Interoperability: collaborate with other online platforms, such as the Breeding Portal developed by the Accelerated Breeding Initiative.• CGIAR breeding programs have experienced slow varietal turnover in farmers' fields over the past decades.• Limited information on drivers of varietal replacement.• Genetic Innovation decisions within CGIAR-NARES predominantly follow a supply-driven approach, misaligning the needs of farmers, agribusinesses, and consumers. • GloMIP currently has three operational portals:Market Segments portal hosts more than 450 seed product market segments to support the design of TPPs and alignment of breeding pipelines.Impact Opportunities portal enables analysis of crops and market segments through an extensive set of indicators across the five CGIAR Impact Areas.Target Product Profiles portal displays about 300 TPPs that have submitted to the Breeding Portal.• Our team was selected as the 1 st Fusion Team of the CGIAR Digital and Data.• GloMIP was showcased at several workshops, stakeholder engagements, meetings, and notable events like the 6 th International Rice Congress.• GloMIP will be officially launched this 2024.• Upcoming portals in 2024:Investor Dashboard allows analysis based on ex-ante impact indicators such as projected benefits and returns on investments of current and future breeding pipelines. GloMIP supports alignment of crop breeding efforts to regional market segments, and provide analytics for product design, priority setting, and investment guidance in CGIAR Genetic Innovation.GloMIP serves a diverse audience, including CGIAR and NARES scientists and breeders, donors and investors, Genetic Innovation management, private seed companies, and NGOs. \"","tokenCount":"300"} \ No newline at end of file diff --git a/data/part_3/2064523227.json b/data/part_3/2064523227.json new file mode 100644 index 0000000000000000000000000000000000000000..189f99d3a0a1f02ccc258bfcc67925c02eceacdb --- /dev/null +++ b/data/part_3/2064523227.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"920756399ec68f7ecd15fa6473e8f57c","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/a4be5ab5-da1e-4ca6-a67f-b1799b54f9cd/retrieve","id":"-719247762"},"keywords":[],"sieverID":"e217e5b5-c487-469c-8093-49c7cafcb246","pagecount":"7","content":"At least two key decision-making agencies in WLE focal regions have strengthened capacity to understand and integrate WLE research to assess impacts, risks and trade-offs of investment decisions using WLE tools, data and models in their context.At least three key decision-making agencies in WLE focal regions to consider WLE-based trade-off analyses and landscape design options to create or re-frame investment decisions that are integrated and improve ecosystem services, resilience and enhance decision-making power and benefits to women and marginalized groups.Minuted meetings with key decision makers. Before and after capacity surveys.The At least one regional development community (e.g. SADC) and/or international river basin organisation in sub-Saharan Africa (e.g. ORASECOM or LIMCOM) establishes a transboundary diagnostic analysis and an informed and capacitated stakeholder platform to manage water storage (from surface and groundwater) in shared river/aquifer basins jointly, sustainably and equitably.NGO documentation. Minutes of stakeholder platforms. Documentation from river basin organization.At least two major bilateral or multilateral donor agencies or investments banks increase awareness of and interest in providing financial support to at least three countries within WLE's focal regions to implement WLE solutions for improved water-energy policies and investments (Volta, Nile, Indus and Central Asia).Minuted meeting documents.IPBES scoping documents for regional assessments for Africa, Latin America, and Asia/South Pacific incorporate WLE knowledge and expertise on ecosystems service contributions in agricultural landscapes.WLE has assessed priority landscape ecosystem services in the four WLE focal regions; WLE scientists have contributed to IPBES regional assessments representing agricultural services and landscapes.IPBES scoping reports and regional assessment drafts. ","tokenCount":"250"} \ No newline at end of file diff --git a/data/part_3/2064823720.json b/data/part_3/2064823720.json new file mode 100644 index 0000000000000000000000000000000000000000..0a2293059392747da2527b2f3569c03c037544b6 --- /dev/null +++ b/data/part_3/2064823720.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"8c7a53d84bead6e73240830392e800fc","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/36d4f37a-2319-4750-a66c-86423a1cbe20/retrieve","id":"367196741"},"keywords":["P730 -Activity 1","2","3: Breeding Schemes"],"sieverID":"f8c49dae-2e65-4605-9583-8b816b94e4cf","pagecount":"1","content":"Description: 23 government universities of Ethiopia have incorporated community based breeding programs (CBBPs) in their undergraduate curricula. Some are also supporting CBBPs in nearby villages.• I1150 -Methodological framework for upscaling community based breeding programs (https://tinyurl.com/2qdm6qnq)• I1407 -Sire certification for small ruminant community based breeding programs (https://tinyurl.com/2fqs8j95)Milestones:• 1.2.10 Essentials of Community-based breeding programs and associated complementary services for sheep and goat in Ethiopia packaged and made available for national partners (ICARDA)• 12 -Increased conservation and use of genetic ","tokenCount":"77"} \ No newline at end of file diff --git a/data/part_3/2071257871.json b/data/part_3/2071257871.json new file mode 100644 index 0000000000000000000000000000000000000000..45c58c812ff9f8f66361e4a79c44e8e46b09c478 --- /dev/null +++ b/data/part_3/2071257871.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"a44cc208bdd27c924a5d1d6cd4a5855c","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/407a189c-4a7f-4080-b4fd-89159a834222/retrieve","id":"373543418"},"keywords":[],"sieverID":"fa2a0b29-8df7-4bf8-9af6-c6e8504ddbc8","pagecount":"32","content":"El cultivo del arroz tiene gran importancia en el desarrollo agr1cola del Brasil; el arroz es producto básico en la dieta de la población; el consumo de arroz blanco es de 50 kg por persona por año.El arroz abarca un total de 5.4 millones de hectáreas, 77% de las cuales se cultivan bajo condiciones de secano, 12 . 0% con •riego controlado y 1.1% en tierras bajas denominadas \"varzeas\"; el 9.5% restante corresponde a una combinación de los tres sistemas. El 58.6% de la producción total (7.6 millones de toneladas de arroz en cáscara) proviene del área de secano, el 27.6% proviene del área irrigada, el 4.0% de las varzeas y el 9 . 8% del área cultivada en los tres sistemas.El arroz de secano en Brasil se concentra principalmente en los Estados Goiás, Maranhao, Mato Grosso, Minas Gerais, Mato Grosso Sul, Sao Paulo y Paraná, en áreas que corresponden a los denominados \"Cerrados\", excepto en Sao Paulo; en estas áreas de Cerrado predominan los suelos latosólicos de co l o r amarillo bermejo y bermejo oscuro, que abarcan el 52% del áre a; son suelos profundos, altamente intemperizados, de baja fertilidad y alto contenido de aluminio.El régimen pluviométrico de la región es posiblemente aún más importante que la fertilidad de los suelos, puesto que condiciona la estabilidad de la producción e impide a los productores utilizar buena tecnolog1a .El arroz se cultiva durante el periodo lluvioso, de septiembre a abril; sin embargo , la distribución de las lluvias es irregular, especialmente en la región central de Brasil, con periodos secos denominados regionalmente \"veránicos\", que ocurren durante los meses de febrero a marzo con duración de una a tres semanas . Los veránicos son de menor ocurrencia en el arroz de secano de Paraná, del área preamazónica de Maranhao, Goiás y de Mato Grosso .En este informe se describen con más detalle las observaciones realizadas por un grupo de técnicos que visitó el cultivo de arroz de secano en varias zonas de Mato Grosso. Los cultivos de importancia económica son el arroz de secano, la soya y el ma1z, que abarcan respectivamente áreas aproximadas de 950,000, 140.000 y 120,.000 ha. Tiene un buen potencial para cultivos perennes; para 1985 se prevén unas 100,000 ha en caucho y además hay proyectos en desarrollo para el establecimiento de plantaciones de guaraná , café y pimienta.La yuca es un cultivo de importancia industrial , especialmente para la extracción de alcohol. En Mato Grosso hay una plant a para procesamiento de almidón de yuca con este fin, cuya c apacidad de producción es de un millón de litros de alcohol por d1a ; está localizada en la Fazenda CIDADE \"SINOP\" Cuiabá-Santaran, Km 500 .La ganaderia es otra actividad de importancia en el estado y comprende un total de cuatro millones de cabezas en un área de 90.000 km 2 , en producción extensiva.Los contactos para la realizaci6n del viaje de observaci6n se hicieron por intermedio de Juarez Simeao Albuquerque Penso, Presidente de la Empresa de Pesquisa Agropecuaria do Estado de Mato Grosso, EMPA-?1T en ~á, la cual depende de la Secretaria de Agricultura de Mato Grosso.También dependen de esta secretaria otras instituciones que desarrollan actividades en Mato Grosso, as!: En Cuiabá, que representa la zona de Cerrado se visit6 la Empresa Matogrossense de Pesquisa Agropecuaria (EMPA) y se tuvo contacto con la Empresa de Asistencia Técnica y Extensi6n Rural (EMATER).Empresa }atogrossense de Pesquisa Agropecuaria (E}WA) EMPA depende de la Secretaria de Agricultura de Mato Grosso y tiene un año de fundación. La unidad de esta empresa localizada en Cuiabá cuenta con un personal de 15 ingenieros agr6nomos, tres de los cuales son de nivel directivo, cuatro de laboratorios y ocho trabajan a nivel de campo. 10 encargados Tiene cuatro laboratorios bien equipados y uno en proceso de instalación, as1: Laboratorio de suelos, para servicio de los agricultores en relación con análisis f1sico y de fertilidad de los suelos.Laboratorio de fitopatolog1a, para aislamiento y clasificación de los patógenos de arroz y soya. E~A realiza sus investigaciones en estrecha cooperación con otras instituciones dependientes de la Secretaría de Agricultura de Mato Grosso .Según el Director de EMATER, doctor Pinheiro Da Silva, quien dio una amplia información al grupo de observación sobre las actividades que esta empresa desarrolla en Mato Grosso, hasta 1980 EMATER había establecido 50 oficinas en este estado que tiene 55 municipios; en 1981 se crearían 10 oficinas más para completar un mínimo de una oficina por municipio.EMATER cuenta con 180 técnicos distribuidos en seis regionales dentro del estado para prestar asistencia técnica al agricultor; tiene además seis técnicos en oficinas centrales, 25 técnicos directivos de la empresa y 98 funcionarios administrativos y 16 técnicos que cooperan con las otras entidades de la Secretaria de Agricultura.En 1980 EMATER prestó asistencia técnica en 14,448 propiedades y para 1981 tiene como meta abarcar unas 16,000 propiedades;en arroz cubren el 50% del área total consistente en 900,000 ha. La asistencia técnica es directa y consiste primordialmente en la elaboraci6n de los proyectos de producci6n y crédito para los agricultores pequeños, me~ianos y grandes. En el área de Cerrado los pequeños agricultores poseen hasta 400 ha pero sólo se les permite cultivar 200 ha; el resto es para bosque. En tierra fértil, poseen de 24 a 100 ha para cultivo.En general, los agricultores medianos poseen de 600 a 3000 ha y los grandes más de 3000 ha.El Arroz de Secano en Mato Grosso En Mato Grosso el arroz de secano es el principal cultivo. Para la cosecha 1979/80 se sembraron 900,000 ha y se obtuvieron rendimientos promedios de 1.3 ton/ha; se estima que para la cosecha de 1980/81, el área será de 950,000 ha. Las variedades más cultivadas son lAC47 de ciclo medio, lAC 25 y Pratao Precoce de ciclo corto .Las zonas arroceras de Mato Grosso tienen un clima tropical húmedo y sub tropical con un régimen pluviométrico definido en dos épocas: periodo lluvioso de octubre-abril con una precipitación de 1500 a 2000 mm y un periodo seco de mayo a septiembre. Durante el periodo lluvioso pueden ocurrir periodos de sequia (menos frecuentes que en Goiás y Sao Paulo), que se denominan veránicos.La temperatura media durante la época de cultivo oscila alrededor de 25°G. Generalmente , no hay problemas con temperaturas bajas.En general se consideran dos sistemas de producción de secano: el manual y el mecanizado. La época de siembra en los dos sistemas es de octubre a diciembre.El secano manual es el sistema que utilizan los colonos que cultivan el arroz en áreas de desmonte; comprende tres clases de productores que son los propietarios, los arrendatarios y los parceleros, quienes siembran entre una y 40 ha. Todas las etapas de adecuación del terreno y labores del cultivo son manuales y no se utilizan abonos quimicos.Los productores usan lAG 47, lAG 25 Y Pratao Precoce; siembran en surcos a distancias de 50 a 60 cm entre surcos y de 20 a 30 cm entre sitios, colocando 10 a 15 semillas por sitio a una profundi dad de 2 a 5 cm. El rendimiento es de 2.1 ton/ha.El cultivo de secano mecanizado es el sistema que utilizan los productores concentrados en áreas del Cerrado y de bosque ; en este caso se usan insumos modernos y mecanizaci6n, pa ra 10 cual se dispone de buena infraestructura, hay acceso al crédito rural y se cultivan extensiones mayores de 100 ha. La maquinari a puede ser propia o alquilada.El nivel tecno16gico de estos productores se considera como medio. Usan semilla certificada de las variedades lAC 47 e lAC 25 y la siembran en surcos a distancias de 40, 45 6 50 cm y empleando de 35 a 40 kg/ha de semilla . La fertilizaci 6n con s iste en aplicar al momento de la siembra 10 kg/ha de N, 22 .0 a 26 .4 kg/ha de P (50-60 kg/ha de P205) , 24.9 kg/ha de K (30 kg/ha de K20) y 4 a 6 kg/ha de Zn. Las malezas las controlan mecánicamente durante los dos primeros años de cultivo y . en el tercer año con herbicidas especificos; las plagas y enferme dades se controlan con compuesto s quimicos recomendado s por l os t é cn icos de EMATER.Los productores que aceptan las recomendaciones técnicas obti enen rendimientos que fluctúan entre 1 . 6 ton/ha pa r a la primer a cosecha y 2 . 1 ton/ha para las siembras de segundo año , en áreas ya corregidas en su f e rtilidad .CC~PllT BIBLIOTECA Figura l. Satish eh.ndr. Mathur de la Jndia y Manuel Rosero del IRRI obser• van los síntomas de enfermedad en w cultivo comercial de arroz. Al fondo, Leonardo Hernández, de México. Figura 2. Dos miembros del grupo de observación y técnicos de EMPA enhían un cultivo de arrOl de secano. Figura 3. Pantanado es una zona bija inundable, donde la investigación en arroz tiene prioridad de segundo orden después de la ganaderfa, los búfalos y los pastos.A través del programa de visita que el director técnico de EMPA prepar6 para el grupo de observaci6n, éste pudo conocer lmsistemas de producci6n y observar los problemas en diferentes estados de desarrollo del cultivo en los campos experimentales y en cultivos comerciales de varias fincas en Cuiabá,Jaciara, Ron-don6polis, Chapada dos Guimaraes y Poconé (área de Pantanado).Campos experimentales de EMPA Se observaron los campos experimentales de arroz de EMPA en Ron-don6polis yen Jaciara.El campo experimental de Rondon6polis está localizado en una finca particular denominada Guarita ; cuyo propietario cedió a EMPA 10 ha para experimentación . Aqui se conducen experimentos en arroz, soya, maiz y pastos.En arroz se observ6 un ensayo uniforme de rendimiento con 18 variedades en tres repeticiones. El material en prueba estaba constituido por cuatro variedades del Instituto Agron6mico de Campinas (IAC) , 10 lineas del Centro de Investigaciones de Arroz y Frijol (CNPAF) y cuatro testigos comerciales IAC 47 , IAC 25, Dourado Precoce, Pratao Precoce.Al momento de la visita, el ensayo sembrado el de 1980, tenia 102 dias. Se habia fertilizado 5 de diciembre antes de la siembra con 3.5 ton/ha de cal, 88 kg/ha de P (200 de P205) , 83 kg/ha de K (100 de K20) y 200 kg/ha del completo 5-30-15; en postsiembra (a los 50 dias) , se aplicaron 100 kg/ha de nitrógeno . No se efectuó control de insectos y enfermedades.La mayoria del material estaba en estado de floración a maduración. En las variedades usa das como testigos, Dourado Precoce y Pratao Precoce, se observó una alta indicencia (80%) de pudrición de la vaina (AQkOQyi~ndk~um okyzae); rAC 47 e rAC 25 estaban afectadas severamente por piricularia o bruzone (Pyk~ Quiak~a o~yzae ) , escaldado de ,l a hoja (Rh yn Qho apo ~~um o~yzae), pudrición de la vaina y barrenado res del tallo (V~atkaea sp.). Varias plantas de estas variedades mostraban sin tomas tipicos de deficiencia de Zn.En tre las nuevas variedades del rAC, rAC 65 mostraba mejor compor tami ento agronómico y mayor tolerancia a estas enfermedades; rAC 164 es t a ba altamen te afectada (60%) por l a pudrición de la va ina; r AC 5544 es tardia y mos traba susceptibilidad a l esca ldado de la hoja y a deficienci a de Zn.En tre el ma t erial del CNPAF , la linea CNAX 790825 se mostraba super i or a las variedades usadas como testigos;CNAX 793835 era susceptible al escaldado de la hoja y a deficiencia de Zn; la s otras line as mostraban mejor comportamiento ,excepto la CNAX 790827 que era suscept i ble a l a cercosporiosis (Ce~Q06pO~a okyzae) y la CNAX 791059 que era altamente susceptible a la alternariosis (Ai t e~na~~a padw~QQ~~), (Figura 4).Este campo experimental se consider6 como excelente para la selección de materiales resistentes a enfermedades, especialmente a la pudrici6n de la• vaina o \"mulata\" como la denominan en Brasil.En el Campo Experimental de Jaciar~ se observaron experimentos relacionados con un ensayo uniforme de rendimiento y con control químico de piricularia.El ensayo de rendimiento era similar al de Rondon6polis, o sea con 18 variedades en tres repeticiones. Los materiales estaban en la etapa de floraci6n a maduraci6n y mostraban incidencia del escaldado de la hoja, piricularia en hoja y panícula y pudri-ci6n de la vaina. En cuanto a insectos, se observ6 la presencia de la cigarrina de los pastos o mi6n de los pastos (Aeneoia-m~a sp . ), un gorgojo negro y grande (sin identificar) que estaba afectando el grano en formaci6n, chinches y barrenadores del tallo.También se observ6 deficiencia de Zn y los materiales mostraban variabilidad en tolerancia. lAC 47 era muy susceptible, CNAX 790941 tolerante y las líneas lAC 5544 y CNAX 700821 eran altamente resistentes.La linea CNAX 790941 se presentó como la mejor por resistencia a enfermedades e insectos y tolerancia a deficiencia de Zn.El ensayo sobre control quimico de piricularia estaba plantado con la variedad lAC 47 y tenia 87 dias de edad; aún no se habian aplicado los fun gicidas debido a que los tratamientos estaban orientados a la protección de la panícula. Se observó piricularia en la hoja, en grado 5 -6 pero con baja incidencia dentro del lote.En Cuiabá, Jaciara, Rondonópolis, Chapada dos Guimaraes y Pocané se observaron va rios cultivos comerciales en las haciendas \"Umurama \", \"Prata\", \"Guaríta\", \"Santa Fe\", \"Estrella do Norte\" (Chapada do s Guimaraes) e \"lpiranga\" (Poconé).En la ha cienda Umurama se culti va n 2000 ha de ar ro z, la s cuales estaban en su segundo año de c ultivo. En 1980 se sembró lAG 47 Y se obtuvo un rendimi ento med io de 24 ton /ha. Se observó un l ote con lAG 47 listo para cosechar, el cual habia s ido s embrado a una densida d de 50 kg/ha de semilla en surcos a distanc i as de 60 cm y fertilizado con 150 kg/ha del comp leto 5-30-15. El cul tivo mostraba in fecc ión de piriculad .a en el cuello con una intensidad de 20-30%. También se notó , con menor intensidad, la presencia de pudrición de la vaina , he lmin tospor iosi s y cercospora; así mismo, se observaron varias plan ta s (en pa rches) con deficiencia de Zn.En general, las condiciones del cultivo eran regulares, y se estimó una producción de 1.5 ton/ha. Según información que recibió el grupo, los costos de producción oscilan entre 12,000 y 13,000 cruzeiros/ha (US$160 y 180/ ha) en áreas de segunda cosecha y alrededor de 17,000 cruzei~ ros (US$230/ha) en tierras de primera cosecha.De las 16,000 ha que tiene la hacienda Prata, 1200 se cultivan con soya, 800 con arroz y el resto en ganadería; en arroz se siembran las variedades rAG 47, rAG 25 e rAG 164.La hacienda tiene cinco años de cultivo y dispone de buenas instalaciones para secamiento, limpieza y clasificación y de silos para el almacenamiento a granel de soya y arroz, con controles automáticos de temperatura y humedad. En cuanto a equipo de campo, posee una avioneta para la aplicación de insumos (herbicidas, fungicidas, fertilizantes), dos combinadas para la cosecha y varios tractores.Los suelos aqui son franco-arenosos y ácidos (pH 4.5) . Antes de sembrar el arroz fertilizan con 3.0 ton/ha de cal, 300 kg/ha de superfosfato triple y 250 kg/ha del completo 5-25-15; en postsiembra fertilizan con 20 kg/ha de úrea a los 60 días de edad del cultivo . Para prevenir severas incidencias de piricularia, especialmente en el cuello de panícula, aplican antes de la floración o cuando ella ocurre el fungicida Bim.Los costos de producción ascienden a 13,000 cruzeiros/ha (180,00 US$/ha). El arroz paddy tiene un precio de venta que oscila entre 11.6 y 13.3 truzeiros/kg (0.16 a 0.18 US$/kg). El arroz blanco tiene un precio de venta de 30 a 40 cruzeiros/kg (0.41 a 0.55 US$/kg).Se observaron dos lotes, uno de lAG 47 de 90 dias y otro de lAe 164 de 110 dias. Los lotes de estas variedades se habian sembrado en surcos a distancias de 47 cm con una densidad de 50 kg/ha de semilla. No se notó presencia de malezas.La hacienda Guarita tiene un área total de 18 , 000 ha, de las cuales 700 se cultivan con arroz, 2200 con soya y el resto está dedicado a pastos. Los suelos de esta finca son arenosos, ácidos (pH 4.0) y pobres en materia orgánica (1.0 a 1.5%). A-qu1 se siembra la variedad lAG 47 con una densidad de 45 kg/ha de semilla, en surcos distanciados 47 cm entre sí . Fertilizan con 250 kg/ha del completo 4-14-18 que tiene además un 3% de azufre y un 0.02% de 2n . No aplican herbicidas ni pesticidas.Se siguen dos sistemas de producci6~ en uno de los cuales se siembra primerD soya y luego arroz y en el otro se siembra arroz y luego arroz; pero la experiencia ha mostrado aquí que con el sistema de arroz + arroz se incrementa el problema de malezas y se tiene que recurrir a los herbicidas para controlarlas; los rendimientos son de 1.5 ton/ha. En cambio, cuando se siembra el arroz después de la soya, no se tienen problemas de malezas y los rendimientos han alcanzado las 3.0 ton/ha.La fertilización consiste en aplicar antes de la siembra 3.0 ton/ha de cal, 500 kg/ha de superfosfato triple y 230 kg/ha del completo 4-20-20. Se hacen dos tratamientos fitosanitarios para piricularia principalmente, el primero al momento de la emergencia de la panícula y el segundo 15 días después . Utilizan Bim o Hinosan en dosis comerciales.Los costos de producción fluctúan entre 25,000 y 30,000 cruzeiros/ha (340 a 410 US$/ha), de los cuales 18,000 corresponden a los costos del cultivo y el resto al secamiento y procesamiento de la semilla. El precio de venta es de 30 cruzeiros/kg de semilla (0.41 US$/kg).En esta finca se observaron dos lotes de lAG 47. Un lote de 120 días de edad mostraba el grano manchado de color marr6n y deforme, afección ocasionada por el hongo Phyllo~t~cta sp . según aislamientos hechos por los fitopatólogos de EMBRAPA. El otro cultivo, de 72 días de edad, mostraba áreas con plántulas muertas, hojas completamente secas y pudrición en raíz; la fi-topat6loga de EMPA aisló de estas plantas un hongo del género Fu~a~~um sp.Estrella do Norte está en Chapada dos Guimaraes, una región localizada a 50 km al noroeste de Cuiabá, a una altitud de 680 msnm, con una temperatura media de 20°C. Aquí se siembran unas 30,000 ha de arroz, 70% de ellas con lAC 47 y 30% con lAG 25; el rendimiento promedio es de 1.2 ton/ha. La hacienda \"Estrella do Norte\" tiene 900 ha dedicadas al cultivo del arroz. Allí se observaron dos lotes, uno de lAG 25 que estaba en recolección y que había sido sembrado el 11 de noviembre de 1980 y otro de lAC 47 que estaba en estado de flo-raci6n. Estos cultivos se habían fertilizado con 400 kg/ha del completo 3-30-16 y habían recibido una aplicación de Kitazin al momento de la floración para prevenir incidencias severas de piricularia.En ambas variedades se notó una incidencia severa de pudrición de la vaina ~ con menor intensida~ de cercosporiosis, escaldado de la hoja, piricularia en el cuello y añublo de la vaina (Th~n~tepho~u~ cucume~~~l.En el lote de lAC 47, sembrado a fines de noviembre de 1980, se observaron áreas en donde las plántulas murieron a los 15 días de edad y no fue posible determinar la causa.El propietario de la finca manifestó que en lotes cosechados antes de la visita había obtenido rendimientos de 1.8 a 2 . 4 ton/ha y que sus costos de producción eran de 17,000 cruzeirosl ha (230 US$/ha). lpiranga La hacienda lpiranga está localizada en una región baja denominada \"pantanado\", en Poconé.Poconé está a 100 km al sureste de Cuiabá, y tiene unas 10,000 ha dedicadas al cultivo del arroz de las variedades lAC 47,lAC 25 y Pratao Precoce;los rendimientos oscilan entre 2.1 y 2.4 ton/ha. Los suelos de esta región son ligeramente ácidos, con pH de 5 . 1 a 6.9 y pobres en fósforo, potasio y materia orgánica (1.1 a 1.3%); el arroz se fertiliza con 150 kg/ha del completo 5-30-15.Los técnicos de EMATER en Poconé informaron que el área de pan-2 tanado es de 17,000 km aproximadamente, con una cuarta parte en bosque y el resto en ganaderia y cultivos. Como es una zona en donde el gobierno está conservando la fauna silvestre, no se promueve un desarrollo agricola tecnificado, porque se propiciaria el uso de pesticidas que contaminarian el ambiente.\"lpiranga \", la hacienda visitada, tiene una extensión de 6000 ha y su principal actividad es la ganaderia; el arroz s e cultiva aqu1 con el propósito de colonizar la tierra para el establecimiento de pastos.Las varzeas son tierras bajas que se inundan durante la época de lluvias y que los agricultores quieren aprovechar mediante una adecuación del área inundada, para la siembra de arroz y otros cultivos (Figura 6).Cerca de Cuiabá (a 60 km), se visitó una finca en donde EMATER tiene un proyecto de varzeas dirigido por el i.á. Pedro Kaiser. Se observó un lote de cuatro ha niveladas en curvas de nivel, sembradas con la variedad lAC 899 en estado de embuchamiento . El cultivo estaba libre de malezas y enfermedades y tenía una capa de agua de 10 a 15 cm; el riego es por gravedad y proviene de un lago que recibe las aguas lluvias de las partes altas de la finca.La meta de este proyecto es adecuar unas 200 ha en esta finca. Según el ing . Kaiser, en Mato Grosso hay un potencial de dos millones de ha para adecuarlas con el sistema de varzeas. Resultados obtenidos en otras fincas han demostrado que en 12 meses se pueden obtener dos cosechas con una producci6n de 5.0 a 6.0 ton/ha, por cosecha. El grupo consideró que es posible incrementar la productidad en la región usando variedades de mayor capacidad de producción (de altura intermedia y buen vigor inicial) y tolerantes a enfermedades y suelos ácidos que se están distribuyendo a los programas nacionales en los viveros del lRTP para secano favorecido y suelos ácidos.Los campos experimentales de EMPA en Jaciara y Rondonópolis son apropiados para la selección de materiales resistentes a la pudrición de la vaina, escaldado de la hoja, piricularia y deficiencia de Zn, pero el material que actualmente evalúa la entidad es muy reducido en cantidad y diversidad genética. Se sugiere que se diversifique yaumente el germoplasma para evaluarlo bajo las propias condiciones de tales campos.3. El sistema de siembra en surcos a distancias de 40 a 50 cm que actualmente utilizan los agricultores, se ha adoptado de otros estados en donde el problema de sequía es serio.El grupo consideró que para Mato Grosso, por tener una mejor distribución de las lluvias, sería más apropiado un espaciamiento más reducido entre surcos (20. ó 30 cm . ). Sin embargo, es necesario que EMPA considere en las investigaciones que adelanta. este factor 4. En la hacienda Santa Fe se obtienen rendimientos 1.5 ton/ ha cuando se sigue la rotación arroz-arroz, pero al sembrar el arroz después de soya el rendimiento se ha logrado duplicar . Se recomienda difundir esta tecnología a todos los productores del estado, a través de siembras demostrativas, días de campo y otros medios de difusión. 5 . La adecuación de las tierras bajas se está ejecutando en el estado a través de Proyecto Provarzeas, y las experiencias logradas demuestran que se pueden obtener dos cosechas en 12 meses con rendimientos de 5 . 0 a 6.0 ton/ha por cosecha.Se debería asignar a este proye~to una prioridad de primer orden y disminuir los incentivos para el cultivo del arroz de secano en zonas de mayor riesgo.","tokenCount":"3948"} \ No newline at end of file diff --git a/data/part_3/2073666161.json b/data/part_3/2073666161.json new file mode 100644 index 0000000000000000000000000000000000000000..e7521504ade3e021bd96483ea247381d1165d723 --- /dev/null +++ b/data/part_3/2073666161.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"5164aed6c3370ba33908e165e24b4364","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/1d761532-326f-4f86-ba57-646eb75fa592/retrieve","id":"-1586685142"},"keywords":[],"sieverID":"325144a9-a980-4195-b41d-9200639d1bb7","pagecount":"18","content":"The CGIAR Initiative Agroecology to Transform Food Systems promotes a transdisciplinary, participatory, and action-oriented approach to designing development options that support food system resilience, equity, and sustainability. At the level of territories called \"Agroecological Living Landscapes\" in seven countries (Burkina Faso, India, Kenya, Lao PDR, Peru, Tunisia, and Zimbabwe), each encompassing specific food system attributes and dynamics, the Initiative seeks to articulate the various actors that inhabit it, adapting solutions to the local context, integrating traditional and scientific knowledge, and strengthening the social and institutional ecosystem toward an agroecological transition. These actors are farmers and their associations, indigenous communities, researchers from multiple disciplines, private sector companies, local, national, and international nongovernmental organizations, as well as policy makers from the local to the national scale.In the Pucallpa -Aguaytía agroforestry corridor, located in Ucayali region, in the central-eastern Amazon of Peru, an Agroecological Living Landscape (ALL) has been established since mid-2022 that brings together the multiple actors of the territory to: (i) evaluate and demonstrate which agroecological innovations (practices, business models and institutional arrangements) work best, where, why and for whom; (ii) Identify business opportunities and financial mechanisms so local companies can integrate agroecological innovations; (iii) develop strategies and action plans to promote and support sustainable behavior change towards the adoption of agroecological principles across the social-ecological and institutional ecosystems; and (iv) determine the policies and mechanisms needed to catalyze an agroecological transition in the ALL.Between June of 2022 and September of 2023, multiple activities were conducted -desk reviews, stakeholder mapping, key informant interviews, and workshops -to identify the diversity of actors, institutional aims and interests, multiple stakeholder partnerships (MSPs), and regional and national policies that are part of the sustainable agriculture and/or agroecology landscape in Peru, specifically at the ALL level. These activities were led by WP1, WP2, and WP4; hence the content of this report represents an effort to integrate and summarize the information that was collected, and the insights and lessons learned to guide future interactions and collaboration between the Agroecology Initiative and stakeholders in the Peru ALL during its next phase of implementation. In the ensuing sections, we first contextualize the ALL, then we detail the methods utilized across the WPs involved, present results, and conclude with the main lessons and recommendations drawn from these exercises.Agroecological movements in Peru date back to the early 80s, consolidating their institutional bases with the founding of the Organic Agriculture Network (RAE) in 1989 and later with the National Association of Organic Producers (ANPE) (1998) (Alvarado et al., 2015). In terms of public policies, one of the first milestones was the approval of the Technical Regulation of Organic Producers (2006), from which the creation of national and subnational-level commissions for organic production was promoted: the National Council of Organic Products (CONAPO) and, for each region, a Regional Council of Organic Products (COREPO) (Valdivia-Díaz & Le Coq, 2021;Alvarado et al., 2015).After the recognition of organic production in agriculture, different policies alluding to agroecology emerged in the country, such as those with a clean agriculture approach, those oriented to food security and family farming, and those explicitly adopting the agroecological approach (Valdivia-Díaz & Le Coq, 2021). From this wide range of public policies, those promoted by the agroecological movements RAE and ANPE in 2011 and considered critical to enabling an agroecological transition stand out: At the regional level of Ucayali, where the ALL is located, policies currently supporting the agroecological approach are: (1) the Regional Strategy for Low Emission Rural Development in the Department of Ucayali to 2030 (ERDRBE Ucayali 2030) and its declaration as a regional public policy (O.R No. 009-2021-GRU-CR), ( 2 (Ivanova, 2022).Within the framework of the Regional Strategy for Low-Emission Rural Development in the Region of Ucayali by 2030 (ERDRBE Ucayali 2030), the Regional Government of Ucayali (GOREU) set the stage for the development of a plan and roadmap to take specific actions on the territory, having prioritized the provinces of Padre Abad and Coronel Portillo for its implementation. Within these provinces, GOREU proposed the creation of a so-called \"Agroecological Corridor\", where it seeks to design, guide, and apply mechanisms to transform food systems and develop various economic activities with a view to sustainability and resilience to climate change. While this proposition is commendable and represents a significant step forward, it is nonetheless subject to the political will and continuity of authorities during the next cycle of government. In January 2023, new authorities assumed power in governmental institutions at the regional level. It is now up to these authorities whether the \"Agroecological Corridor\" materializes into a public investment program or project.On July 26, 2021, the Regional Strategy for Low-Emission Rural Development in the Region of Ucayali by 2030 (ERDRBE Ucayali 2030) 1 was approved as a regional public policy, with the aim of reducing and halting deforestation and improving the quality of life of its population with emphasis on rural areas and indigenous communities. Within the framework of its implementation, with a focus on sustainability, social inclusion, and competitiveness, the Regional Government of Ucayali (GOREU) established five geographical zones known as Territorial Development Units (TDU), among which is the TDU that includes the province of Padre Abad and part of the province of Coronel Portillo (Figure 1). This TDU covers an area of 14,064.11 km², which represents 14% of the total area of the region of Ucayali and the entire sub-basin of the Aguaytía River and its tributaries. Being a territory that registers the highest rate of deforestation at the level of Ucayali in the last two decades, with 40% of its forests lost due to the expansion of the agricultural frontier and the construction of infrastructure (roads and highways), the GOREU has prioritized it as an 'agroforestry corridor' with the potential for developing alternative activities that are economically and environmentally sustainable and that contribute to resilience to climate change (GOREU, 2020;MINAM, 2021). The agricultural activity that currently predominates in the corridor is based on the monoculture of cocoa, coffee, oil palm, banana, papaya, pineapple, camu camu, rice, and pastures for livestock raising, with implications in terms of loss of biodiversity, soil impoverishment, and forest fragmentation. However, with a population that is 40.9% rural, its high forestry, aquaculture, and tourism potential, the presence of conducive institutions, and a public policy that supports it, the corridor meets the conditions for the design of agroecological innovations and their scaling, based on the articulation of the multiple institutional actors, public and private, that the territory brings together. In view of the above, the Agroecology Initiative in Peru has identified this corridor as its area of influence and intervention.This activity, led by WP4, consisted of creating an inventory of pertinent policies in terms of their potential effect, whether positive or negative, on the agroecological transition at the agroecosystem and food system levels in the ALL of Ucayali region, Peru. Based on a desk review of secondary data and interviews carried out during 2022, during the last quarter (Q4) of 2023 the policy inventory was updated to include additional policies that were not formerly mapped and with regards to the year the policies in question were approved.During 2022, WP1 and WP4 led activities that shed light on the composition of the social and institutional ecosystem at both the regional and national levels, as well as on the current domains of influence and potential role of stakeholders for an agroecological transition in the ALL. The activity led by WP1 consisted of identifying the key actors, their roles, and their scale of intervention in the food system -whether directly or indirectly-through, firstly, a desk review of previous diagnoses prepared by projects of the Alliance Bioversity-CIAT in Ucayali. Although these analyses had been focused on the cocoa value chain, they provided valuable information as an initial inventory of actors and their potential interest in agroecological transitions at the territorial scale of the ALL. Based on this inventory, interviews were conducted whereby the \"snowball\" method was applied to further identify other actors beyond the cocoa value chain whose activities had implications in terms of sustainable agriculture, value chain development, or rural development with an agroecological approach. WP4, on the other hand, undertook a mapping exercise, through a desk review of secondary sources and webpage consultations, to identify actors with a specific role in policymaking processes at the national and regional levels. Both WP1 and WP4 exercises entailed the classification of the identified stakeholders according to social / institutional groupings or domains (e.g., producers, civil society organizations, government, private sector, international research & cooperation) and a description of their specific roles.Following from the stakeholder mapping exercise above, all actors identified were interviewed to specifically address their affiliation (or not) to an MSP at the regional and/or national level, prompting them to name the MSP. Once the MSPs were identified, their representatives were contacted, and a semi-structured interview was applied with each to understand the main characteristics of the MSP and to probe its potential affinities with the Agroecology Initiative. The interviews were carried out in the city of Pucallpa, Ucayali region. In addition, regulations and documents regarding each MSP, either available on the web or shared by the interviewees, were reviewed. This activity was carried out by WP1 during the last quarter of 2022.In Table 1, we present the results of the policy mapping exercise, consisting of a total of 18 policies with direct or indirect relevance to agroecology. Each policy is briefly characterized in terms of its longevity, geographical scope, thematic breadth and level according to the typology proposed by Place et al. (2022), linkages or implications for agroecology and whether its potential effect assuming its implementation is positive, negative or neutral, and, finally, the digital location of the policy for reference.Table 1. Policies identified and their brief characterization. It can be observed that most policies have a national reach and that all are deemed to have a potentially positive effect for an agroecological transition in the ALL. However, this list is considered non-exhaustive and a first step toward the identification of the policy landscape in Peru and more specifically in Ucayali region, where the ALL is located. Not coincidentally, all policies identified at the national level thus far have been enacted by the Ministry of Agrarian Development and Irrigation (MIDAGRI) or the Ministry of the Environment (MINAM). While these institutions and their domains of action are obvious in terms of agroecology and sustainable development approaches, there are certainly key players from other public sectors (e.g., Ministry of Economy and Finance, Ministry of Development and Social Inclusion, Ministry of Foreign Trade and Tourism, Ministry of Education, and Ministry of Housing) that have likely remained in our blind spot during this first policy review, and whose initiatives and programs may be affecting smallholder agriculture and agroecology-oriented development in less obvious, yet relevant ways. As to the subnational level, the five policies that were identified, all enacted by the Regional Government of Ucayali, emphasize the region's development in terms of enhanced productivity and competitiveness of existing, predominant value chains (i.e., palm oil, cocoa). However, there may be regional or municipal ordinances with implications on agriculture, family farming, and rural development yet to be mapped. At all levels -national, subnational or regional, and municipal -it would likewise be key to map those policies with a negative or less favorable effect for an agroecological transition, as these could inform future analyses of disabling factors impeding agroecological development and scaling in the ALL and beyond.In Table 2, we summarize the findings from the stakeholder mapping exercises conducted by WP1 and WP4. Each stakeholder has been classified into a specific social or institutional domain as described under Methods. Their roles, in terms of policy making or other activities with implications for an agroecological transition in the ALL, are briefly elucidated. Ucayali. The program sought to provide alternatives to coca leaf producers through their integration into the cocoa value chain.This section highlights the MSPs of relevance that were mapped by WP4 and characterized in detail by WP1, at both regional and national levels. The regional multistakeholder platforms hereby presented are institutional spaces for coordination and articulation, legally recognized, and established in alignment with national sectoral policies within the framework of the implementation of public policies in the environment and agriculture sectors.The CAR-U is a formal, institutionalized space within the National Environmental Management System; hence it is part of the national environmental policy structure of governance. The CAR-U is the environmental management body in charge of coordinating and agreeing on the environmental policy of Ucayali. In that sense, it is part of the Regional Environmental Management System (SRGA) which aims to apply environmental policy and the necessary standards in its jurisdiction. This system is integrated into the decentralized environmental management strategy led by the Ministry of the Environment (MINAM). Since 2011, the Regional Government of Ucayali (GOREU) recognizes the CAR-U as a formal body since functions for environmental policy are delegated to it. Bringing together up to 50 institutions -including civil society organizations, indigenous organizations, professional associations, universities, NGOs, international cooperation, and decentralized liaison offices-the purpose of the CAR-U is to coordinate policies, instruments and legal regulations relating to the environmental sector, in addition to facilitating conditions for the resolution of environmental conflicts. It is in this space where the regional environmental plan and agenda must be developed, in addition to proposing proposals for the operation, application and evaluation of environmental management instruments and the execution of environmental policies. Likewise, it has the function of coordinating with the municipal environmental commissions to operationalize the regional environmental policy at the local scale.The CGRAs have been established since 2017 under ministerial resolution (No. 0211-2017-MINAGRI) as a space for intergovernmental and interinstitutional management of a permanent nature. The decisions made within these spaces are binding provided they have the opinions of the competent bodies of the entities involved. The CGRAs aim to promote territorial agrarian development through the coordinated and articulated participation of the various territorial actors, considering their competencies and functions linked to the productive chains of relevance to the region. Through the decisions that take place in these interinstitutional spaces, they are expected to contribute to the improvement of the productive and commercial capacities of agricultural producers, mainly those dedicated to family farming; strengthening agricultural competitiveness and insertion into markets; and to the efficient management of natural resources along prioritized value chains.In Ucayali region, the scope of intervention comprises its entire territory. The CGRA of Ucayali is chaired by the Regional Agrarian Directorate of Ucayali (DRAU); and sectoral coordination is overseen by the National Institute of Agrarian Innovation (INIA) in its Pucallpa, Ucayali, headquarters. Other members of the CGRA include representatives of MIDAGRI through the agrarian territorial manager, representatives of attached public organizations (National Agrarian Health Service, National Forestry and Wildlife Service, National Water Authority, Sierra y Selva Exportadora, Compensation Program for the Competitiveness -AgroIdeas, National Institute of Agrarian Innovation), the Regional Government of Ucayali (GOREU) through the Economic Development Management and DRAU management offices. In Ucayali, representatives of the Ministry of Development and Social Inclusion (MIDIS) have also joined through the Cooperation Fund for Social Development (FONCODES) and the Action Platform for Social Inclusion (PAIS); as well as a representative of AgroBanco 4 . Producer organizations are invited to some of the sessions.The Regional Organic Production Committee is the advisory and consultative platform on organic production at the regional level and functions as a liaison to the National Council of Organic Products (CONAPO). CONAPO is the entity that proposes policies and regulations that contribute to the promotion of organic production. Its constitution is supported by Law No. 29196 -Law for the Promotion of Organic or Ecological Production and its regulations, the latter approved in July 2012. Initially, the COREPO at the national level functioned as a link to CONAPO for the preparation of the Concerted National Plan for the Promotion and Promotion of Organic or Ecological Production, which was approved in June 2021. The COREPO Ucayali has been recognized under a regional council resolution in in 2017.The regulation in question establishes the members assigned to COREPO, with members of the Committee being a representative of organic producers, a representative of companies processing organic products, a representative of companies marketing organic products, a representative of the DRA, a representative of the Regional Directorate of Health (DRS), a representative of the Regional Directorate of Education (DRE), a representative of local governments, a representative of universities, a representative of non-profit organizations and a representative of native communities or peasants (as appropriate).In the Ucayali case, the committee's board of directors is chaired by the presidency of the El Pimental Organic Producers Association and the technical secretariat headed by the DRAU. Also participating in the region are a representative of the INIA, the Research Institute of the Peruvian Amazon (IIAP), a representative of the ANA, the local governments of Yarinacocha and Campo Verde, in addition to the National Intercultural University of the Amazon (UNIA) and the National University of Ucayali (UNU), and civil society organizations that promote sustainable development.One of the central functions of COREPO is the preparation of the Institutional Operational Plan for Organic Production within the framework of the guidelines and strategies of the National Concerted Plan for the Promotion and Promotion of Organic Production. However, in the last two years of COREPO Ucayali there was discontinuity of sessions due to the health emergency and it has been difficult for them to resume the ordinary sessions established by regulation. COREPO Ucayali occupies an important position as it represents the regional committees of the Amazon in CONAPO. It is expected that under the new GOREU management the new representatives of COREPO Ucayali will be sworn in; for the moment the committee's activity is suspended.National scale multistakeholder platforms are interinstitutional spaces for coordination and action where actors from civil society, the private, and public sectors participate. One salient attribute of MSPs at the national scale is collective action to address complex societal challenges such as the transition towards agroecological production systems, deforestation-free value chains, and sustainable jurisdictions. The national scale MSPs described below have demonstrated concrete achievements in political advocacy for more sustainable production systems and toward a concrete agenda on agroecology in the country.The Peruvian Agroecological Consortium (CAP) is a civil society organization established in 2005, which integrates organizations of farmers, consumers, academics, NGOs, and national and international networks that promote agroecological food systems, the cultural identities and traditions associated to them, and the conservation of natural resources. The CAP representation in the Ucayali region is through the NGO AgroSalud (see Table 2), whose work since 2003 has focused on improving the living conditions of rural families.The CAP seeks to influence public opinion and pushes for policies that promote agroecological food systems, healthy eating, and sustainable territorial development. One of its main achievements has been to articulate and carry out effective advocacy work for agroecology across the local, regional, and national levels, while also improving relations between civil society and the public sector (Wu and Alvarado, 2021). For example, the CAP was a key actor in the elaboration of the National Plan for the Promotion of Organic Agriculture (PLANAE), approved in June 2021 by the Ministry of Agrarian Development and Irrigation (D.S N°011-2021-MIDAGRI), which is a public policy instrument to implement ecological and organic production at multiple levels of government and in coordination with the private sector. Along with CONVEAGRO and the Transgenic Free Peru Country Platform, the CAP was also behind the extension of the moratorium on the entry and production of living modified organisms (GMOs) into the national territory until 2035.In summary, the CAP brings together Peru's national agroecological movement actors who collectively advocate for modifications to laws and promote policies yet to be implemented by the Peruvian State.The Organic Agriculture Network of Peru (RAE) is a non-profit association created in 1989 that promotes the transition of agriculture towards sustainable, competitive agroecological systems linked to internal and external markets. The RAE is made up of 13 institutions that have influence across the 24 regions nationwide. Its work consists of four main thematic areas: Among the RAE's main achievements in political advocacy are: (1) Technical regulations in organic production, (2) Law for the Promotion of Organic and Ecological Production, (3) creation of the National Council of Organic Production (CONAPO), and of its 24 Regional Councils (COREPOs), and (4) Family Agriculture and Food Security Law.The Coalition for Sustainable Production (CPS) seeks to establish alliances to accelerate the transition towards deforestation-free productive chains, contributing to sustainable jurisdictions with a low-emissions rural development approach. The CPS was founded in 2017 within the framework of the Tarapoto Declaration 5 as a strategy to address deforestation and the loss of ecosystem services in the Peruvian Amazon, mainly associated with expansive agricultural activity. Between its creation in 2017 and 2020, when the CPS was formally launched, it underwent a consolidation process where a roadmap was established, and its members were formally integrated.The CPS is made up of actors from the private sector 6 , civil society organizations 7 , ministries and public institutions 8 , as well as regional and local governments 9 . The governance structure is made up of a plenary forum, where all members of the coalition participate and serves as the decision-making space; the board of directors composed of 15 members from the national and subnational public sector, private sector, civil society, national indigenous organizations, and academia. 5 The Tarapoto Declaration was signed within the framework of the 2017 Amazon Expo, where an Amazon-focused agenda was prioritized to: i) guarantee rights over land and forests to native communities and agricultural and forestry producers; ii) optimize the sustainable use of Amazonian Forest landscapes; iii) foster enabling conditions and generate the necessary changes for low-emission rural development. (SERFOR). 9 Regional Government of Ucayali; Regional Government of Madre de Dios; Regional Government of San Martín, and Provincial Municipality of Tambopata.One of the coalition's main achievements has been the participatory design of the agreement \"Cacao, forests and diversity\" where actors committed to promote strategies that differentiate Peruvian cocoa based on attributes such as deforestation-free, product quality, genetic diversity, and origin. It proposes to achieve a supply chain free of deforestation by 2025, promote the intensification and restoration of degraded areas, develop a package of incentives and specific commitments for producers, position Peruvian cocoa in differentiated markets, and establish a monitoring and traceability system. The agreement has been integrated into the National Cocoa and Chocolate Plan for 2030 developed by MIDAGRI in consultation with the actors involved in the value chain.Further, the CPS has led the promotion of the Alliance for Regenerative Livestock Farming in the Peruvian Amazon (AGRAP). AGRAP is a community of practice that has been working since 2022 to design, implement, monitor, and communicate actions in the livestock production chain based on a collective agreement to not only improve the quality and sustainability of the chain but also the quality of life of ranchers.Although the CPS does not explicitly address agroecology, the coalition's agenda coincides with several of the agroecological principles. It would thus be strategic for the Agroecology Initiative in Ucayali to articulate with the CPS, since it represents a space where regional, national, and global sustainability agendas come together.This document brings together information that was otherwise dispersed across work packages (WP1, WP2, WP4), to begin to consolidate our present knowledge about the Peru ALL's social and institutional ecosystem in terms of policies, institutions, and multistakeholder platforms highly relevant or influential for the agroecological transition. We have thus arrived at a list of 18 policies; 32 stakeholders representing producer and civil society organizations, government, private sector, international research, and cooperation institutions; 3 regional scale MSPs; and 3 national scale MSPs. However, we consider these first \"maps\" of policies and actors to be incomplete and of a highly descriptive nature. A second round of desk reviews and key informant consultations is warranted to update our inventory of policies and institutions, including those that are less obviously related to agroecology, agriculture in general, and rural development. Further, in-depth analyses are needed to better understand the connections between the policy-making process, the stakeholders in the ALL and at the national level, and the influential capacity of the MSPs compiled thus far.For 2024, the last year of the Agroecology Initiative -Phase 1, our recommendations would be to pursue the following activities:• Comprehensive, second-round review of policies, public programs, and institutions affecting -positively or negativelyagroecology at the national and regional levels.• Application of a specific analytical tool, such as ICARDA's proposed Kaleidoscope Model for Policy Analysis or other suggested framework, to attain an in-depth understanding and finer-grained diagnosis of the interrelationships, (dis) articulations and trade-offs that may be occurring within the institutional ecosystem and policy landscape, especially at the ALL level.• Integrate analysis on the regulatory framework and institutional landscape focused on BioTrade, Agroecology, and Circular Economy that is currently being undertaken by a consultant hired by WP4-Peru into the future document \"Roadmap for the scaling up of Agroecology in Ucayali\" as 2024 output.Alejandra Arce, Associate Scientist in Agroecology, alejandra.arce@cgiar.org CGIAR is a global research partnership for a food-secure future. CGIAR science is dedicated to transforming food, land, and water systems in a climate crisis. Its research is carried out by 13 CGIAR Centers/Alliances in close collaboration with hundreds of partners, including national and regional research institutes, civil society organizations, academia, development organizations and the private sector. www.cgiar.orgWe would like to thank all funders who support this research through their contributions to the CGIAR Trust Fund: www.cgiar.org/funders.To learn more about this Initiative, please visit this webpage.To ","tokenCount":"4248"} \ No newline at end of file diff --git a/data/part_3/2077773656.json b/data/part_3/2077773656.json new file mode 100644 index 0000000000000000000000000000000000000000..abd75a17211f71685dfac97007ded20f6ff85aad --- /dev/null +++ b/data/part_3/2077773656.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"e1f8e5bdbe91df11adb29d77c1aaff67","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/897d5720-abe8-472a-ba54-8b4126729ce1/retrieve","id":"-848387915"},"keywords":["• P658 -1","2","1 Seeds Systems and Markets OICR: Outcome Impact Case Report"],"sieverID":"5509b309-b562-4e0a-a803-6463638c06f2","pagecount":"4","content":"Improving smallholder farmers' access to high-quality seeds is among CGIAR's key objectives. Achieving this objective requires a conducive policy and regulatory environment.In Afghanistan, the laws and procedures that regulate the seed sector had not been updated for over a decade when ICARDA scientists started to work on this topic with the government in 2015. A review of the seed certification system in Afghanistan and neighboring countries was conducted [1] and constraints and opportunities were highlighted [2]. A baseline survey of 26 private seed companies, five seed-testing laboratories and 105 farmer households [3] was carried out, highlighting the insufficient quantity and quality of certified seeds available to farmers. This survey revealed that third-party seed certification based on the public-private-producers partnership model was perceived as a promising approach to improve seed quality. An inception workshop was conducted to raise awareness about the concept of public-private-producer partnership.Based on these results and in partnership with NARS and private sector stakeholders, ICARDA and the Ministry of Agriculture, Irrigation and Livestock developed key documents in support of the seed policy reform, including the General Guidelines for Seed Certification [4]. A mechanism for third-party seed certification was established. Seed regulations and standards for 57 crops were approved. The Afghanistan Seed Certification Agency website includes these documents and provides guidance for seed producers [6]. Workshops were conducted throughout the country to train participants from the Ministry, seed-testing laboratories and private seed companies on the application of the new policies and regulations.The engagement of CGIAR with the government resulted in a strengthened seed certification and seed market system in Afghanistan through implementation of the public-private-producers partnership business model [6].In Afghanistan, the laws and procedures that regulate the seed sector had not been updated for over a decade when ICARDA scientists started to work on this topic with the government in 2015. Following a review of the seed certification system in Afghanistan and neighboring countries [1] and a study highlighting constraints and opportunities [2], a baseline survey of 26 private seed companies, five seed-testing laboratories and 105 farmer households [3] was carried out in the Herat, Kabul, and Nangarhar provinces. The results of this survey revealed that 76% of farmers perceived the quality of certified seed available in the market to be low and that 91% of farmers perceived the quantity of certified seed available in the market to be insufficient. In addition, 98% farmers were in agreement with the perception statement that third-party seed certification based on the public-private-producer partnership model would improve the quality of certified seed available in the market.The project team, including ICARDA, the Seed and Planting Material Certification Directorate of the Ministry of Agriculture, Irrigation and Livestock's, NARS and the private sector, developed several legal, managerial and technical documents including the General Guidelines for Seed Certification [4], guidelines for authorization/accreditation of third-party seed certification officers and entities [7] and bylaws of the Afghanistan Seed Certification Agency [5]. A fee-based seed certification system was introduced, with procedures to apply penalties for offenses. Guidelines on the general requirements of certified seed production, field inspection, postharvest management of seed, seed sampling techniques, seed testing and post control were developed, published in local language and distributed to stakeholders. National Seed Quality Control Standards for 38 vegetable crops and 19 fruit crops developed in collaboration with the Afghanistan National Standard Authority were approved in 2019 by the Standard High Council chaired by the Vice-President of Afghanistan and are now being implemented throughout the country.Workshops, learning visits and training programs were conducted to train about 1,000 staff of seed-testing laboratories, Provincial Directorates of Agriculture, Irrigation and Livestock and private seed companies on the application of the new guidelines.","tokenCount":"607"} \ No newline at end of file diff --git a/data/part_3/2078871443.json b/data/part_3/2078871443.json new file mode 100644 index 0000000000000000000000000000000000000000..ec545c99071f3b2fd2ec2f8e7bc79bd7cb2302c4 --- /dev/null +++ b/data/part_3/2078871443.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"a101eed989fd8988cdd5d766272c77f6","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/699fdcdb-b1c7-4c6d-88a5-f5d75bb3c806/retrieve","id":"879104977"},"keywords":["Dessert banana hybrids","host plant resistance","Panama disease","sensory attributes"],"sieverID":"536ccaed-d1a4-45ea-9bbf-0fb0999ec376","pagecount":"6","content":"Fusarium wilt of bananas (Musa species) is caused by Fusarium oxysporum f. sp. cubense (Foc). Foc race 1 in particular affects dessert bananas in Uganda, causing >60% yield loss. This study was conducted to assess the performance of two new apple banana genotypes for bunch yield, resistance to Foc race 1 and consumer acceptability. The new apple banana genotypes (NAMU1 and NAMU2), along with two check cultivars, one susceptible but preferred by consumers (Sukali ndiizi) and the other resistant (Yangambi-KM5), were evaluated at the National Agricultural Research Laboratories in Uganda. Bunch yields of the two new apple bananas were higher than those of check cultivars by >50%. NAMU1 and Yangambi-KM5 showed no symptoms of Foc race 1, whereas NAMU2 showed mild symptoms on its corms. Sukali ndiizi showed severe pseudostem splitting and corm discoloration as the key symptoms of Foc race 1. The consumer acceptability of NAMU1 and NAMU2 was as high as that of Sukali ndiizi, implying that they can be perfect substitutes for the Foc race 1 susceptible Sukali ndiizi.Apple banana (Musa species, AAB genome group), is one of the more than 300 varieties of banana grown worldwide. It is the most widely distributed dessert banana cultivar in Uganda (Gold et al., 2002). Apple banana is locally known as Sukali ndiizi and Kabaragara in the Central and Western regions of Uganda, respectively (Nsabimana and Van Staden, 2006); in Rwanda, it is known as Kamaramasenge (Nsabimana and Van Staden, 2006). The cultivar is known for its small fruits with a thin peel and a slightly acidic apple-like taste of the pulp, which is its unique characteristic (Van Asten et al., 2010). It makes a major contribution to Uganda's economy, as its production is mainly by small-scale farmers who sell it for improved incomes and also eat it for nutrition. Apple banana has been commonly sold and consumed fresh, but of late, it is being processed by a number of private sector and development partners to improve shelf life and value addition (Van Asten et al., 2010). This makes it fit well in the Uganda government policy of value addition of agricultural products.Fusarium wilt, also known as Panama disease, is the most important lethal disease of dissert bananas (Butler, 2013;Dale et al., 2017). It is a fungal disease caused by Fusarium oxysporum f. sp. cubense (Foc) (Ploetz and Evans, 2015). Foc race 1 is the primary cause of Fusarium wilt disease of dessert bananas in Uganda (Karangwa et al., 2016). The disease severely affects important exotic banana cultivars, such as Gross Michel, Kayinja, Kisubi and apple banana, which are major dessert and juice-producing bananas in the country (Bettina et al., 2012). It causes an estimated yield loss of >60% in dessert bananas (Tushemereirwe et al., 2000).The first internal symptom in diseased plants is a reddish brown discoloration of the xylem that develops in feeder roots, the initial sites of infection (Butler, 2013;Ploetz, 2015). Vascular discoloration progresses to the rhizome, where the stele joins the cortex, and ultimately proceeds up to the pseudostem. On plants that are more than four months old, the oldest leaves yellow or split longitudinally at the base. Eventually, younger leaves wilt and collapse until the entire plant canopy consists of dead or dying leaves (Ploetz, 2015). Infected rhizomes are often symptomless and effectively spread the pathogen when used as planting material (Stover, 1962). The pathogen spreads in soil, running water and farm implements, and survives for up to 30 years in the absence of banana (Stover, 1962). Because of the persistent nature of Foc in the soil and the lack of effective chemical control strategies, the development of Foc-resistant cultivars has been a priority in banana genetic improvement programs (Daniells, 2011).Control of Foc through the deployment of dessert banana varieties similar to Sukali ndiizi but are resistant to the locally prevalent Foc race 1 has not been successful in Uganda until the present time. In this paper, the performance of two consumer-acceptable apple banana genotypes possessing resistance to Foc race 1, which were developed at the National Banana Research Programme (NBRP) in Uganda was presented and discussed. In the early 1990s, scientists at the NBRP in Uganda evaluated a wide range of banana cultivars and recommended FHIA 17, FHIA 23, Cavendish and Yangabi-KM5 as resistant dessert banana cultivars to Foc race 1 (Tushemereirwe et al., 2000). Although these varieties were high-yielding and resistant to Foc race 1, Buregyeya et al. 129 their sensory/organoleptic traits were not appealing to consumers accustomed to the taste of apple bananas (Tushemereirwe et al., 2000;Van Asten et al., 2010). Against this background, there was a need to develop new varieties of apple banana that combine resistance to Foc race 1 and desired fruit quality traits to sustainably exploit the potential of local and export markets for the apple banana. The objective of this study was to compare two newly developed consumer-acceptable apple banana genotypes with the existing commercial cultivar (Sukali ndiizi) for bunch yield, resistance to Foc race 1 and consumer acceptability.The Three genetically diverse parents sourced from the farmers' fields and NBRP (Table 1) were used to develop the two dessert banana genotypes that were evaluated for this study. Selection of the parents was based on their better performance for bunch yield, flowering-ability and relative degrees of field resistance to Foc race1.Targeted controlled crosses between male and female parental lines (Table 1) were made between 6:00 and 8:30 a.m. by dusting pollen on the stigmas of Sukali ndiizi. Before pollination, female and male flowers that had just flowered were bagged to avoid contamination by stray pollen. Seeds from mature ripe pollinated bunches were extracted, as described by Vuylsteke et al., (1995).In vitro germination of the extracted seeds was carried out according to the protocol described by Vuylsteke et al. (1990). The resulting seedlings were planted in the early evaluation trial at NARL in April 2011. Based on visibly high bunch yield, fruit size, fruit pulp smoothness, taste, color and smell, and resistance to black Sigatoka and Foc race 1 of the genotypes at the early evaluation trial stage (results not presented), two Sukali ndiizi hybrids (NAMU1 and NAMU2) were selected for further evaluation in a replicated preliminary yield trial. NAMU1 resulted from the cross Sukali ndiizi × Cultivar Rose, whereas NAMU2 resulted from the cross Sukali ndiizi×TMB2×8075-7. It is the results of these two new apple banana hybrids (NAMU1 and NAMU2) (Figure 1) and the two local check cultivars (Sukali ndiizi and Yangambi-KM5) that are presented and discussed in this paper.Experiments were planted in a randomized complete-block design with three replications. Because of low multiplication rate of bananas by suckers, NAMU1, NAMU2, Sukali ndiizi and Yangambi-KM5 were multiplied in vitro to generate sufficient planting materials for replicated preliminary yield trial. The tissue culture-derived plantlets of each genotype were planted in lines of 10 plants genotype -1 replication -1 . Spacing between plants intra-and interlines was 3 × 3 m 2 . At planting, 10 kg of Kraal manure was applied in 0.5 m deep and 0.6 m wide planting holes. The trial field had a history of severe Foc race 1 infestation, thus, considered a hot spot. Nevertheless, to avoid field escape of some plants to the pathogen because of uneven pathogen distribution, Foc race 1 inoculum at a concentration of 5 × 10 6 spores/ml was distributed around the banana stools. Also, Sukali ndiizi, a banana cultivar susceptible to both Foc race 1 and black Sigatoka, was planted around the trial to act as a guard row, as well as a spreader for Foc race 1 and black Sigatoka.Data collection was done during the plant growth and at harvest on: plant height (cm), number of functional leaves at flowering, youngest leaf spotted at flowering as a measure of the genotypes' response to black Sigatoka, pseudostem splitting and corm discoloration. Harvesting of bunches was done when at least one fruit finger of the first hand on a bunch began to ripen and data were recorded on bunch weight (kg plant -1 ), number of hands, fruit finger length (cm), and fruit finger circumference (cm). Bunch weight was obtained by weighing the harvested bunch using a weighing scale, whereas the number of hands on a bunch was obtained by counting the hands on a bunch. Finger length was obtained by measuring the length of one middle finger from each hand on a bunch and the average length per bunch was calculated. to 81%. Fully ripened bunches were taken for sensory evaluation by a trained group of 20 apple banana farmers/consumers. Genotype assessments (NAMU 1, NAMU 2 and Sukali ndiizi) based on taste, color, smell and general acceptability were done on as a scale of 1 to 5, where 1 = dislike very much, 2 = dislike, 3 = like fairly, 4 = like, and 5 = like very much.Data analysis was performed using SAS version 8.2 for windows (2001). To compare the trait means, Fisher's protected least significant test at α = 5% was performed.There were highly significant differences in mean scores of the experimental genotypes for corm discoloration and pseudostem splitting, as measures of Foc race 1 severity (Table 2). NAMU1 showed the highest resistance to Foc race 1, as it exhibited the lowest mean scores for pseudostem splitting and corm discoloration. Sukali ndiizi, the susceptible check cultivar, showed the highest mean scores for pseudostem splitting and corm discoloration.Yangambi-KM5, the highly resistant check, showed the lowest mean scores for pseudostem splitting.Highly significant differences were observed among the test genotypes for plant height, plant girth, number of functional leaves at flowering, and response to black Sigatoka (Table 3). NAMU1 showed the highest mean performances for plant height, followed by NAMU2; whereas Sukali ndiizi had the lowest plant height. NAMU2, on the other hand, had the highest mean performance for plant girth, followed by NAMU1. Sukali ndiizi had the lowest mean plant girth. Yangambi-KM5 and NAMU2 had the highest mean performance for the youngest leaf spotted.Highly significant differences were observed among the test genotypes for the yield and yield-related traits (Table 4). The mean performances for bunch weight, number of hands, finger circumference and length were higher for the new apple banana genotypes than those of the check cultivars. For instance, the bunch weight was the highest for NAMU2, followed by NAMU1 and least for Sukali ndiizi. The number of hands was the highest for NAMU2, followed by NAMU1 and least for Sukali ndiizi. Fruit finger circumference, however, was the highest for NAMU1, followed by NAMU 2, and least for Sukali ndiizi. Fruit finger length was the highest for NAMU1, followed by NAMU 2 and the least for Sukali ndiizi.The new apple banana genotypes and check cultivar were only different for pulp color with NAMU1 having the highest score for consumer acceptability (Table 5).Genotypes was not different significantly for the pulp smoothness, taste, smell and general acceptabilityThe development of high-yielding and disease-resistant bananas is essential for increased food security, improved human nutrition, and incomes for the farmers. Bananas are being improved for resistance to prevalent stresses, yield and quality by selecting for useful traits, and accumulating desirable genes from genetic resources.In this research, the hybridisation of Sukali ndiizi with cultivar Rose and TMB2×8075-7 resulted in high-yielding, consumer-acceptable apple banana hybrids with resistance to Foc race 1. Hybridization introduced these agriculturally valuable traits into the progeny of Sukali ndiizi. Cultivar Rose and TMB2×8075-7 used in this breeding program are being used by other dessert banana breeding programs for Fusarium wilt resistance breeding.Resistance of NAMU1 and NAMU2 to Foc race 1 gives assurance to farmers of sustained apple banana production and productivity. In addition, NAMU1 and NAMU2 showed partial and full resistances to black Sigatoka, respectively and good sensory attributes. Black Sigatoka, a leaf spot disease causes reduction in functional leaf area results in a decline in the quality and quantity of the fruit since the fruits of infected plants ripen prematurely before proper filling. The higher performance of NAMU1 and NAMU2 for the number of hands and fruits per bunch, as well as the fruit circumference and length are of great economic importance to the producers and the market, as the bunch is the commercial unit of apple bananas. Moreover, fruit length and circumference are important criteria for selection of a commercial banana. In addition, of the four banana genotypes evaluated, NAMU1 and NAMU2 were characterized by the highest pseudostem girth, which is associated with plant vigor and cracking resistance of the pseudostem; thus, reflecting the support capacity for the plant and bunch. Genotypes with strong pseudostems are less susceptible to lodging by wind.The ripe fruits' pulp smoothness, taste and smell of NAMU1 and NAMU2 were acceptable to the consumers and not significantly different from those of Sukali ndiizi. This implied that the new apple banana genotypes were as good as the local commercial Sukali ndiizi. Sensory attributes of crop plants are pertinent to their acceptability and adoption (Barrett et al., 2010). Therefore, since NAMU1 and NAMU2 are more yielding and resistant to Foc race 1 and black Sigatoka compared to Sukali ndiizi, they can be its perfect substitutes.The results of this study show prospects for the use of hybrids that can substitute for Sukali ndiizi while increasing productivity not only in Uganda but also in other Sukali ndiizi-growing areas in the Great Lakes region of East Africa with similar production constraints, especially Foc race 1. As NAMU1 and NAMU2 combine resistance to Foc race 1 and black Sigatoka with improved yield and consumer-desired fruit characteristics, they can replace Sukali ndiizi that is adversely affected by Foc race 1. It is recommended that NAMU1 and NAMU2 can be evaluated in multi-location field trials to confirm their stability for yield and Foc race 1.","tokenCount":"2280"} \ No newline at end of file diff --git a/data/part_3/2086751929.json b/data/part_3/2086751929.json new file mode 100644 index 0000000000000000000000000000000000000000..384324d7a73432fb8feee5d03531c420ffff7ff9 --- /dev/null +++ b/data/part_3/2086751929.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"1d138ceb3ea1589586cd56c11754cff2","source":"gardian_index","url":"https://publications.iwmi.org/pdf/H043838.pdf","id":"-846587834"},"keywords":[],"sieverID":"8581fed7-2604-41d9-b3e3-88c656ba09e1","pagecount":"11","content":"Consultants were employed to identify past levels of expenditure as preparation for determining future needs. This paper is derived from the work (DAI 1984). which was performed under contram with USAID as part of Irrigation Systems Management Project No. 391 -0467,Despite concern over poorly maintained irrigation systems and insufficient investment in operations and maintenance (O&M) for irrigation systems in most developing couqtries, there is little agreement about how much money is required. A review of 18 Asian Development Bank (ADB) appraisal reports for irrigation projects in Asia, covering the period 1969-78, revealed O&M estimates ranging from USS15 -USSl20 per hectare (ADB 1980). This is not surprising given the variety of irrigation systems involved. What is surprising is the absence of published information on what is actually spent for O&M. Funding for irrigation system O&M in Pakistan has not been adequate to maintain the lndus system in good working order. As a result, irrigation operations are adversely affected. Irrigation facilities, particularly canals and drains, have deteriorated to the point where the United States Agency for International Development (USAID), the World Bank, and the Government of Pakistan are jointly providing USS118 million to rehabilitate portions of the system in what is commonly termed \"deferred maintenance.\" Under 1982 agreements that underpin the rehabilitation project, Pakistan's provinces agreed to step-up their funding for O&M. However, the level of funding needed to adequately maintain the irrigation system 2 was not clear then and is still not fully understood. This paper presents 1983/84 costs of irrigation system O&M for Pakistan. It describes the facilities maintained by the Provincial Irrigation Departments (PIDs), details current organization and staffing levels, and discusses income sources and water charges. Lastly, it discusses certain O&M policy related issues.Historical. Although irrigation had been practiced along the rivers and streams of Pakistan for centuries, the lndus system today dates primarily from works constructed by the British between 1850 and 1947. and from works built post-partition and/or as a result of the 1960 lndus Waters Treaty. The first irrigation works were constructed to create employment opportunities for war veterans (Michel 1967). A second series of facilities were opened to encourage resettlement in areas that were largely uninhabited and thereby generate revenues from sale of state lands. A second objective was to maximize the command area and prevent famine by providing water to a large number of families.The objective of projects constructed in the early 1900s was to generate revenue by selling water and taxing land, agricultural produce, and trade (Merrey 1983). Above all, projects were designed to keep administrative and operational staff requirements as low as possible. Systems were intended to provide \"equitable distribution (of water) without any interference by the canal establishmentwhich is an important advantage to the irrigation community\" (Clibborne 1924146). This laissez faire attitude toward canal operations, combined witn a design that required only minimal regulation, established the basis for today's relatively low involvement of government personnel in active system operations.In Pakistan, irrigation system O&M is the responsibility of the Provincial Irrigation Departments (PIDs). PID responsibility begins after water is diverted from the dams and terminates at the outlets to some 89,ooO watercourses which serve areas that vary in size from 80 -280 hectares, and typically about 160 hectares. Compared to other Asian countries, this is a relatively large area to be served by a single outlet. In Thailand and Malaysia an outlet serves 50 -80 hectares; Indonesia, 20 -30 hectares; Sri Lanka, 12 -16 hectares; Philip. pines, 10 hectares; Korea, 0.8 -2 hectares; and Japan, 0.4 hectares. Thus, other factors being equal, irrigation department expenditures in Pakistan should be less than those in other Asian cquntries.The costs reported in this study cover only those items for which the PlDs have responsibility (i.e., main system O&M). The Water and Power Development Authority (WAPDA) is responsible for planning and constructing storage and headworks facilities, and for O&M of major dams and power-generation works. Below the outlet, O&M is the responsibility of water users.FaciMies. PlDs operate and maintain three major types of facilities: irrigation canals, public tubewells, and drains and flood protection works. Besides these, PlDs also incur costs for maintaining and/or operating canal roads, small hydro facilities, small dams, barrages, and workshops, and for several modest facilities where research programs are conducted.1. higation canal$. The irrigation network consists of 63,100 kilometers of unlined (alluvial) canals that command 14.25 million hectares (Table 1). of which 58% can be irrigated perennially and 42% c8n be irrigated only during the summer (kharif) season when the rivers are at peak flow.Canals vary from minors that carry 0.09 -0.1 5 cubic meters of water per second (cumecs) and serve 2 -3 watercourses to canals the size of rivers that transfer water between river basins and which have capacities up to 650 cumecs. Measured at the headworks, the canal irrigation system carries about 16 million hectare-meters (mhm) per year. By design, the number of control structures in a canal was kept to a minimum; cross-regulators (checks) were installed only where necessary to control operating water levels for the headworks of \"offtaking\" channels. For example, in Sind the distance between regulators on main canals averages about 24 kilometers, about 16 kilometers on branch canals, and 32 kilometers on distributaries. The lowest point in the system for regulation is at the headworks of distributaries, which often carry 6 -9 cumecs. In practice, regulating flows in distributaries is not common.When water supply is insufficient, a system of scheduled canal closures and rotational operations between distributaries is initiated. Thus, canals either run at full supply level (most of the year) or are shut down entirely. Gates were not installed at the outlets (called moghas) but were designed to pass a specified quantity of water at the normal full-supply level. Moghas act as proportional flow dividers, each taking proportionately less when the canal level is lower than normal, and more when the supply level is high. The theory is that the entire system, from the main canal head-works down to the last outlet on the last minor, will operate in balanceprovided the head inflow is close to normal full supply and the moghas are in good condition. This design obviates the need for operational changes common in many modern irrigation systems. Essentially. the canal system functions like a drain. Because the irrigation system was designed to supply only 0.25 litres per second per hectare, farmers must apply a relatively high degree of water management in order to irrigate their entire holdings. Needing few operational changes and having few structures means the system can deliver water with relatively little investment in O&M. except that for major barrages which are at the headworks of main canals.2. Public tubewells. Beginning in 1959, Pakistan made major investments in a series of salinity control and reclamation projects (SCARPS) consisting of a battery of tubewells of 0.03 -0.1 5 cumecs capacity. SCARPs were constructed by WAPDA but are operated and maintained by the PlDs at considerable cost. Tubewells are used for two purposes: water table control and, where groundwater quality permits, supplemental irrigation. There are almost 13,000 public tubewells. with the majority in Punjab (Table 2). Public tubewells produce an estimated 0.95 million hectare-meters of water per year. Outside PID responsibility. about 90,OOO private tubewells located within the canal command areas pump an additional estimated 3.1 mhm/yr. About 110,OOO.other pumping schemes outside government irrigation commands produce about 0.24 mhm/yr.PlDs have responsibility for maintaining 15,079 kilometers of main, branch, and sub-branch drains (Table 3). Maintaining surface drains is a low priority. PlDs also maintain over 5,255 kilometers of flood protection works, including levtes (bunds) along rivers, and training bunds and spurs that protect facilities such as bridges.Maintenance Practices. Canals were designed with slopes and sections in regime to minimize scouring and silt deposits. But even though the irrigation systems carry a substantial load of silt which is discharged through the moghas and deposited on irrigated lands, major silt cleaning efforts are required each yeai. Annually, about 20% of the canals are scheduled for cleaning but lack of funds reduces this percentage. Perennial canals are maintained during a 2 -3 week closure between December and early February, and consists primarily of silt removal and bank shaping. Non-perennial canals are normatly shut down from mid-October to mid-April to provide a more flexible schedule of silt clearance and general maintenance. PlDs generally contract out silt removal and other labor-intensive maintenance activities. Silt accumulation reduces channel cross-sectional area, which means that operating water levels must be raised to maintain design flows. A higher operating level leads to reduced freeboard, more bank overtopping and breaching, and generally increased maintenance costs. It also increases the flow through moghas at upstream locations, depriving farmers in the lower portions of the system of their fair share of the water and thereby creating a potential for equity problems between top-end users and bottom-end users.During periods of peak water delivery, very little direct operation of the system is required and the major work effort i s directed toward maintaining canal banks. Additional patrolling and maintenance is done to guard against overtopping or breaching of the banks. Emergency repairs often involve farmers and small contractors as well as PID personnel.Whereas PtD costs for surface water supply are largely for maintenance activities, P D costs for groundwater (tubewells) are about 75% operationalprimarily electricity chargesand 25% maintenance, which includes repairs to motors, pumps, and wells.Structure and Size ofrhe Provincialhigation Departmenfs. PlDs are large, hierarchically structured, and labor-intensive organizations, and their responsibility for irrigation water delivery is correspondingly highly centralized. In each provinc'e, PlDs receive water from the dams and deliver it to the moghas without relinquishing control to any other intermediary water agencies. The contrast in nianagement responsibility with some other large gravity flow systems is sharp. For example, while Punjab irrigates 8.32 million hectares through a single entity, California delivers water to 3.8 million irrigated hectares through a decentralized network of 244 water districts (DWR 1983). * Figure 1 is an organizational chart for a PID. The chief executive officer is the Secretary, who is assisted by a secretariat. Next in line are one or more Chief Engineers (CE). depending on the size of the department. A CE usually supervises three to six Superintending Engineers (SE), each with a supporting staff. The organization under the command of an SE together with the area served is called a \"Circle.\" The Circle is divided into Divisions (usually 3-5). with each Division under the authority of an Executive Engineer (XEN). Reporting to XENs are Sub-Divisional Officers (SDOs), positions normally held by Assistant Engineers. The day-to-day field work is carried out at the divisional level and below. All levels above the Division provide administration or support. Without exception, all grades from Assistant Engineer and.above require an engineering degree. Most of the officer positions are held by civil engineers, although there are a few mechanical and electrical engineers assigned to specialized functions, such as SCARP projects and major workshops. Expertise and degree training in management, finance, or economics are not substitutes for the engineering degree if one is t o occupy any position of authority in the PIDs.Pakistan's irrigation bureaucracy is enormous. The Punjab PID has more than 50,000 employees. In contrast, the United States Bureau of Reclamation currently has about 7,500 employees. More than 80.000 individuals were employed by the four PlDs in 1983/84 (Table 4). In aggregate, this is about one employee per watercourse or one employee per 88 -216 irrigated hectares, depending on the province. Bottrall(1981) notes that the ratio in other Asian countries ranges from one employee per 122 -496 irrigated hectares.In Punjab. almost 40% of the total work force is assigned t o canal irrigation, followed by 26% who work with tubewells, 15% in the special revenue group (whose function is to assess water charges). and 6% who work with drainage. The remaining 13% is assigned to administration or to a number of less labor-intensive categories such as dams, flood control, hydrology, hill torrents, land reclamation. waterlogging and salinity, workshops, research, design, stores, water treaty, and water allocation. Recurrent and Non-Recurrent Budgets. PlDs receive funding for recurrent or operational expenditures throu h Provincial Finance Department allocations contained in the non-development budget (NDB) . The NDB is the only source of revenue to support direct O&M costs, salaries and administration associated with those expenditures, and administration of the irrigation bureaucracy.Each year's budget allocation to the PlDs is based upon the physical characteristics and inventory of the irrigation facilities against which are applied \"yardsticks\" developed by the PID and sanctioned by the Finance Department. For example, the Punjab PID receives USS600 per year for each kilometer of main and branch canal with a discharge greater than 300 cubic meters per second. Allocations for other categories of canals also depend on length and discharge capacity. SCARPS draw allocations on the basis of number of wells, discharge, and pumping lift. Flood control and drainage works are rated on the basis of length (in kilometers) and bed width, barrages and headworks on discharge capacity, dams per individual facility, and buildings per criteria set by the Buildings Department. Thus, the basis for budget allocations is rigidly fixed and based on formulas most of which were developed decades ago.NDB budget categories are divided into broad groupings such as repairs and maintenance, operations (in the case of tubewells), machinery and equipment, salaries and allowances, utilities, and other staff-associated budget items. Because the allocation is not for a specific job nor by functional category (e.g., canals and tubewells). the breakdown is not conducive to job-cost accounting.However, it does allow PID managers broad scope in using funds for a variety of O&M functions.PlDs also receive funding from the Provincial Annual Development Plan (ADP) for development works, new construction, or non-recurrent project-related expenditures. The current irrigation system rehabilitation project that funds deferred maintenance is \"budgetarily\" a non-recurrent item, and funding for it is channeled to the PlDs through the ADP.Water Charges. Water charges are based on cropped area and on the type of crop. For example, water charges for sugarcane and orchards are more than three times those for grains and pulses that 3Afour-year review (1980-84) of NDB allocations tothe PlDs In each of Pakistan's four provinces provlded the basis foi cost information presented in this paper use less water. The rate for water delivered from tubewells and lift schemes is double that for gravity canals. Water charges are assessed against the cropped area of each field at the beginning of the growing season. At the end of the season, adjustments are made for crop failures. Water charges average between USS5.00 and USS7.50 per hectare/crop, and it is estimated that water charges represent about .6% of the net income per hectare derived from crops produced.In the early development of the irrigation network, farmers who owned lands that benefitted from irrigation were expected to pay for the costs Of operating, maintaining, and repairing the system. As a result, irrigation proved to be a lucrative government activity. In 1927/28, one-third of Punjab provincial revenues were derived from irrigation department profits (Merrey 1983:130). Receipts from water charges generally exceeded O&M expenditures but, in the early 1970s, PID expenditures for O&M escalated sharply because PlDs were forced to assume the operating costs of SCARP tubewells. Presently, cost recovery from water charges falls far short of O&M requirements. Expressed as a percentage of O&M expenditures, revenues from water charges were: Punjab, 62% (1983/84); Sind, 49% (1982/83); and NWFP. 24% (1982/83).PlDs participate in assessing water charges through their cadres of revenue officials. However, collection is the responsibility of the Revenue Departments. Monies raised through water charges pass into the provincial treasuries along with other tax revenues, thereby losing their distinctive source identification. PID budgets are allocated by provincial governments as part of the normal budgetary process. Because provincial treasuries are the direct source of PID funds and not water charges directly, PlDs are accountable upward to the administrative authority, the provincial governor. In contrast, if water charges were collected and retained by the PlDs as their primary source of financing, there could be increased PID accountability downward to the farmers. Lack of accountability to the farmer/water-user affects the perceived quality of service, because PlDs can be fully accountable without interacting with farmers who, in turn, can perceive the service they receive as less than satisfactory.Because present water charge rates are considered low compared to the farmers' ability to pay, one frequently discussed solution is to raise water charges to close the gap between recovery and expenditures. Another proposal is to relieve the PlDs from the responsibility and costs of O&M for SCARP s, and to turn tubewell operations over to the private sector. This may be a valid approach for some areas of Punjab where groundwater qualityis good, but it is less appropriate where water pumped from SCARP tubewells is too saline for irrigation. Under such conditions, farmers will not assume responsibility for the wells.Expenditures for Irrigation System O&M Allocation for O&M. Allocations for all PID activit'ies were broken into five categories: canals, public tubewells, surface'drainage and flood control. establishment, and other. An analysis of expenditures by category and province is presented in Table 5. Although a four-year period was analyzed, dollar figures in the table are only for 1983/84. After 1980/81, expenditures for irrigation O&M increased annually by about 20 -22%. double the rate of inflation. Increases were a response to agreements between Pakistan and the World Bank for the irrigation rehabilitation project which mandated greater expenditures for O&M.Depending on the province, 50 ~ 60% of a PID's budget goes for repair, maintenance, or operations of canals and tubewells. From 30 -40% goes to establishment, or to those salary, allowance and administrative costs associa:sd with operation of the bureaucracy. Staff salaries and allowances range from 28 -33% of the PID budget. In three provinces, expenditures for canal maintenance were greater than for tubewell operation. Punjab differs from the other provinces in that it uses its SCARP tubewells primarily for irrigation not drainage, and thus operates its wells for more hours than dces Sind or NWFP. Consequently, expenditures for electrical charges for tubewell operations and repairs and maintenance to pumps and motorlaccounts for 45% of the Punjab PID budget. If a fair portion of the establishment cost pool is allocated to tubewells, their O&M consumes 56% of the PID budget 4 .Between 1970/71 and 1982/83, the Punjab PID increased expenditures for tubewell O&M at an annual rate of 67%, or more than ten times the rate of expenditures for other forms of O&M which increased at 6% per year over the same period Because Punjab encountered sharply escalating cost obligations for O&M of SCARP tubewells, and Finance Department allocations have not kept pace, the Punjab PID diverted funds from other portions of its O&M budget which were forced to operate on residual funds. Thus the SCARP tubewell program has had an unintended impact upon canals, surface drains, and flood control works leading to an accumulation of deferred maintenance.At the other extreme in PID Driorities is the allocation of resources for surface drainage. Less than 4%, or USS0.42 -USS0.62 per hectare, is spent on maintaining suface drainage although inadequate drainage at depths less than 1.5 meters affects over 2.4 million hectares. Pakistan is currently investing in a major drainage arterythe Left Bank Outfall Drainbut this is a development and not an O&M expenditure.There is little support within the Provincial Finance Departments for raising PID allocations for O&M. The fact that water charges have been set low and recoveries through water charges do not meet expenditures is an argument used to slow the rate of increase in allocation for O&M. the PIDs. The command area and water delivery statistics were furnished by the PIDs. O&M costs for SCARP tubewells and for the portion of establishment costs associated with tubewell operations have been separated from O&M costs for canals, drains, and flood control works. Table 6 shows the cost of irrigation services for canal and tubewell deliveries. In 1983184. Pakistan spent USS148.4 million dollars or USS10.34 per hectare for O&M for its irrigation systems. For the \"average\" hectare, approximately USS3.72 was spent on salary, allowances, and administration, leaving USS6.62 to be spent principally on operation of public tubewells or on repairs and maintenance of canals, tubewells, drains, and flood control works.In the major irrigated areas, Punjab and Sind, the costs associated with providing canal irrigation water are extremely low, USSO.09 per hectare-meter respectivelyabout one-third to onequarter of that in NWFP where irrigation works are much smaller. Annual expenditures for canal O&M including establishment costs were USS900 and USS1.490 per kilometer of canal for Punjab and Sind, respectively. Low expenditures can be attributed to several factors: 1) irrigation O&M responsibility that is limited to above the outlet and below the headworks; 2) the size and Scale Of major delivery channels; 3) the design of the system that requires few, if any, operational changes; and, paradoxically, 4) an inadequate level of maintenance activities which has led to an accumulation of deferred maintenance needs.The annual cost to operate a public tubewell in Punjab was USS6.250; in Sind it was USS2,OI'O. The difference in cost is attributable to longer operating hours per well in Punjab. Public tubewell supplied water costs of USS0.75 -USSI .OO per hectare-meter versus USSO.09 -0.32 per hectaremeter for canal-supplied irrigation water. On a volume basis, tubewell water is four times the cost of canal water in NWFP, 8 times the cost in Sind. and 16 times the cost in Punjab. However, in most locations public tubewells have a dual purpose: drainage plus water for irrigation. Thus, it is not strictly correct to compare canal water costs with those of public tubewells for irrigation supply alone. Furthermore,. the fact that many private individuals have made investments in tubewells is an indicator that farmers realize additional benefits and thus are willing to incur additional costs in order to operate and control deliveries from their own wells.The cost data presented.here are accurate for Pakistan. However, any attempt to make cross comparisons with other studies or to apply these data to other locations should be approached with caution because of the physical differences in the irrigation systems, and differences in the institutional structures, methods of cost accounting, and wage rates between countries.O&M can be kept relatively low because of a) the design of the lndus irrigation system, and particularly the scale of major canals; b) the fact that few operational changes are required; and, c) the practice of delivering water only to outlets which serve large areas. But these same factors which keep O&M expenditures low are also the key water constraints to increasing the productivity of irrigated agriculture. The design and management of the system intercedes, causing insufficient capacity, apparent lack of flexibility in main system management, and inability to make operational changes in the pattern of irrigation delivery.What will be the impact of better system maintenance upon agricultural productivity? Probably, not much. Low productivity is unlikely to be corrected by doubling O&M expenditures. O&M the capacity of the irrigation system it was designed and is currently used. Increased investment in O&M doesn't address inherent design and management limitations which, along with a lack of agricultural inputs, more directly constrains agricultural performance. Thus, while better O&M is needed and increased financial support is justified, neither is a substitute for improvements indesign and management. Nevertheless, with a major new dam scheduled for completion in the 1990s and the potential to extend irrigation to new areas, Pakistan should now be experimenting with design innovations and changes in operation of the lndus system.","tokenCount":"3924"} \ No newline at end of file diff --git a/data/part_3/2108470328.json b/data/part_3/2108470328.json new file mode 100644 index 0000000000000000000000000000000000000000..56437564cfd1076eb3fee2092e42a2ff90713762 --- /dev/null +++ b/data/part_3/2108470328.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"fe13e234c7f26d796c1e6dc528eb8d38","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/6fc6b709-41cd-4894-a23c-3cc1a9cfaa5c/retrieve","id":"-390891337"},"keywords":[],"sieverID":"8228df83-29a1-4066-94f8-84ff46ffb93f","pagecount":"2","content":"F ood safety issues have attracted international attention because they play an increasingly important role in determining whether developing countries have access to export markets.At the same time, food suppliers in developing countries face the challenge of improving food safety for their growing urban middle classes, and the large burden of disease that poor food safety generates in developing countries is more widely appreciated. Because developing countries produce and consume more perishable foods than before, such as meat, milk, fish, and eggs, food safety has become especially important to domestic consumers and in trade among developing countries.Actions by firms or households are frequently undertaken to improve food safety, and market incentives can be sufficient in bringing about successful private efforts to meet quality and safety standards. Public sector activities are frequently unnecessary if they simply displace such private sector or household activities. But when is public intervention necessary?The \"public goods\" nature of many food safety activities is one reason for public intervention. Individual producers or firms may not be able to adequately control an environmental food safety hazard without cooperative effort, thus the public sector may be needed to enforce controls, certify sanitary conditions, or invest in the necessary supporting infrastructure. In domestic markets, consumers cannot always judge food safety or avoid the hazards that endanger the safety and quality of food. And public intervention may sometimes be needed to protect vulnerable groups-such as small children-by setting minimum safety standards. In export markets, the public role is clear in governmentto-government negotiations regarding market access.Public sector interventions to improve food safety can be evaluated in terms of the benefits gained and costs incurred. Improved food safety results in enhanced consumer well-being and increased life expectancy, and the monetary value of these improvements can be measured in greater productivity levels and reduced health care costs as food-borne illness declines. Such benefits must be weighed against the costs of public actions or investments to improve food safety. Because there is no direct market for health, monetary value estimates of these benefits are not easily obtained, and public health investments are sometimes evaluated in terms of how cost-effectively they meet predetermined goals. In some cases a fixed amount of public resources is allocated to actions that have the greatest impact on public health.The relative importance of food safety risks differs with climate, diet, income levels, and public infrastructure. Poor sanitation and inadequate drinking water pose a much greater hazard to public health in developing countries than in developed ones.As such, public health interventions within developing countries might differ from interventions that would address export market access.Because interventions targeted to domestic public health may not directly improve export product quality, there may be both tradeoffs and synergies between food safety interventions for these two different goals. The benefit from public action to help industry meet export market standards can be measured in the value of additional exports. The two kinds of benefits resulting from improved food safety in a developing countryimprovements in public health and increased export earningswill differ in terms of their magnitude, distribution and ramifications, and thus will be difficult to compare. Separate public agencies may be responsible for public health and export market development, making such comparisons unlikely. Export earnings, more easily measured in direct monetary terms, may provide more compelling political reasons for public action in support of food safety in the short run.However, investments to meet export market standards have synergistic benefits for domestic food safety. These synergies are more likely to occur when the export product is also consumed domestically, the investments affect a large portion of production, and the safety requirements do not price the food out of the range of the majority of domestic consumers. If such conditions are met, the investments in infrastructure or in food safety regulations then have the potential to benefit domestic consumers.Is it desirable for a developing country to have a \"dual standard\" for food safety, with one standard for exported products and another for products consumed domestically? New export markets can provide income generation and may be expected to improve health and well-being in the exporting country indirectly, primarily by increasing household income. But the relative importance of certain food safety risks and the market mechanisms for determining who bears the costs of mitigating those risks will differ between most developing countries and most industrial countries. Thus it may not be beneficial for export standards to apply to domestic production, even when the commodity is widely consumed locally. What is important is that governments establish an inclusive, transparent and wellinformed process whereby each country can decide the merits of a single-or dual-standard system.Public sector actions to support improved food safety can be placed into five categories:Policymaking at the national level is needed to establish effective food safety regulation, which requires the capacity for assessing food safety risks, the establishment of priorities for policy intervention, and the ongoing monitoring and evaluation of food safety risks. Establishing a legal and regulatory framework is often a necessary first step towards achieving export market access. In Bangladesh, for example, Hazard Analysis Critical Control Point (HACCP) regulations based on the HACCP model adopted in major export markets during the 1990s were part of a package of activities required to regain export market access following an E.U. ban (see Brief 9). These regulations established a regulatory framework in Bangladesh equivalent to that existing in export markets.Capacity building to participate in the international arena allows developing countries to engage in and influence the \"rules of the game\" governing food safety. Developing-country government officials need to be able to more effectively use existing trade rules and agreements and to argue for changes in them in a more powerful manner. In order to do this, they must have the capacity to participate effectively in the three international standard-setting organizations recognized by the WTO to ensure that internationally agreed-upon standards reflect production conditions particular to that developing country. Furthermore, they must have the capacity to negotiate market access (see Brief 11). Such negotiations will become more important between developing countries in the future as the high-value product trade among them expands (see Brief 14).Provision of information by the public sector can make it easier for consumers or export buyers to identify and reward safer products. Certifying production conditions to satisfy domestic and export buyers (see Brief 10) is a well-established public role or function, and facilitation of private quality and safety certification is also becoming an important public role. As discussed in the Guatemala case (see Briefs 7 and 12), such facilitation includes establishing voluntary guidelines, authorizing testing agencies, and auditing producer group records. The case studies in this collection show that food safety concerns have significant impacts on traditional producers of high-value agricultural products in developing countries. These farmers need not only to produce safe food, but to assure buyers that their product is safe. Thus facilitating collective action among small producers for certification of food safety and quality is likely to be a critical part of agricultural policy in developing countries.Direct public efforts to prevent and control hazards can be useful when hazard control is a public good. Public goods in developing countries include basic investments in sanitation infrastructure, particularly at key points in the food supply chain. In China (see Brief 13), the government has tried centralizing slaughter facilities in an attempt to improve meat hygiene. Additional examples include targeted infrastructure investments to facilitate better handling and processing, such as cold storage facilities in ports or clean water supplies in markets.Investments in infrastructure and research are sometimes necessary as part of overall food system development.Investments to improve food safety include the development of rural sanitation and water supply infrastructure that support better hygiene at the beginning of the food supply chain as well as marketing infrastructure that improves the performance of the system in terms of timeliness, freshness, cleanliness, and quality. Investments in research targeted to food safety might lead to the discovery or adaptation of new methods of control for important hazards, such as the development of aflatoxin-resistant crop varieties. Applied research on pest control in order to reduce negative health effects resulting from pesticide application and residues on horticultural products is another example. These kinds of public sector investments in infrastructure and research are more likely to have positive benefits for food safety within developing countries, but also set the stage for better export market performance.Food safety is no longer simply a public health issue. It is also a market development issue. The focus on food safety in international trade and in trade agreements has also made it a trade issue for many countries-developed and developing alike. The process of adaptation by the developing countries to standards and expectations originally set for developed country consumers could potentially yield benefits in developing countries. Looking to the future, the growth in demand within developing countries for highly valued products, such as meat, fish, and horticultural products, will increase the returns to improved food safety for both domestic producers and consumers. The perishable highvalue food products that most often give rise to safety concerns will become important building blocks of South-South trade.But the benefits from food safety improvement will only be captured if policymakers in developing countries understand both food safety risks and their impact on public health, and the synergies between development of the domestic food system and food export industries. In addition, developing countries must establish processes for food safety policy development that are inclusive, in that they take into account the interests of many different groups; transparent, in that they use verifiable information, relate decisions to evidence-based rationales, and communicate those rationales in a widely accessible manner and in a timely way; and competent, in that they are based on the best available information about the magnitude and distribution of benefits and losses. ■ Laurian Unnevehr (laurian@uiuc.edu) is a professor of agricultural and consumer economics at the University of Illinois, U.S.A., Lawrence Haddad (l.haddad@cgiar.org) is director of the Food Consumption and Nutrition Division at IFPRI, and Christopher Delgado (c.delgado@cgiar.org) is a senior research fellow at IFPRI.","tokenCount":"1680"} \ No newline at end of file diff --git a/data/part_3/2110252111.json b/data/part_3/2110252111.json new file mode 100644 index 0000000000000000000000000000000000000000..187fbc71ea3532f2c65dc0ca1de3e85bb2dad8a8 --- /dev/null +++ b/data/part_3/2110252111.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"48351a83aba42a24dde4538dd5d04d43","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/3912c524-9217-4ba0-8c80-89d9dcbc112b/retrieve","id":"1393480835"},"keywords":[],"sieverID":"836fe12b-cc50-49bb-b473-682c55e70777","pagecount":"5","content":"Findable -Lack of resources to get data ready for open-access and made open-access • Accessible -Lack of mechanisms and clearly defined roles and responsibilities to make data open; getting data processing tools usable by others (farm-to-web) • Interoperable -Tools are there but making SQL databases open-access requires a lot of forward planning (by projects) and resources ('gold standard') but perhaps 'bronze standard' (Excel spreadsheet + meta-data) is appropriate for some…but not truly interoperable • Re-usable -always questioned on how useful it is to make raw data available; ideally would re-package for different stakeholders For all challenges some ideas for 'solutions', for discussion on Slide 3.","tokenCount":"105"} \ No newline at end of file diff --git a/data/part_3/2121477812.json b/data/part_3/2121477812.json new file mode 100644 index 0000000000000000000000000000000000000000..6fb47cc315c4870adbb93f63001c57d0ba126741 --- /dev/null +++ b/data/part_3/2121477812.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"8eb19a1e5312bc136d5933b22ba4739a","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/4193ad63-7370-490e-8693-a3d01be0f0b3/retrieve","id":"-726743962"},"keywords":[],"sieverID":"6c012c2a-db6f-4f57-8c33-982c69f254f3","pagecount":"67","content":"Presidente, Junta Directiva del CIAT promoting national agricultura! progress. The key speeches made on that occasion, and reproduced in this document, provide an insight into the richness ofthe partnership between ClAT and Colombia. We wish to share ClAT's pride in Dr. Nickel's and ClAT's accomplishments as perceived from the perspective of our host country. Dr. Frederick Hutchinson Chairman, ClAT Board ofTrustees vii Un abrazo de amistad. El Presidente Virgilio Barco entrega a Jobn Nickclla Medalla al Mérito Agrícola en representación del Gobierno Colombiano. An embrace offriendship. President Virgilio Barco presents Joho Nickel with the Meda} of Agricultural Merit on behalf ofthe Colombinn goveroment.El éxito de los centros del GClAI se fundamenta en gran parte en la calidad de las relaciones que establecen con sus colegas de los programas nacionales. Dentro de esta compleja red de relaciones humanas e institucionales, la relación de un centro con su país anfitrión es especial, ya que puede determinar la diferencia entre un centro que persigue cumplir dinámicamente sus responsabilidades regionales o internacionales y uno cuyas operaciones se ven limitadas por determinadas prioridades nacionales. Un país generalmente elige ser anfitrión de un centro internacional porque cree en la importancia de la investigación agrícola internacional y porque está dispuesto a respaldar al centro en el cumplimiento de su misión. Le proporciona el terreno, le otorga privilegios en cuanto a importaciones e impuestos y facilita el ingreso al país del personal extranjero que trabajará en él. También reconoce que el centro internacional necesita contratar personal y utilizar parte del recurso nacional, probablemente limitado, deThe success ofthe CGIAR centers hinges in large part on the quality of their relations with national program partners. Within that complex net of human and institutional relationships, a center's relationship with its host country is special. It can spell the difference between a center dynamically pursuing its regional or global responsibilities and a center constrained in its operations by specific national priorities.A country usualIy elects to host an international center because it believes in the value of international agricultural research and is willing to support the center in carrying out its mission. It provides land, grants import and tax privileges, and facilitates the passage of international staff. It also recognizes that the international center will have staffing needs and will draw on the nation's perhaps limited pool of agricultural professionals, which may deflect good people from the national programo On the plus side, however, the host country tends to benefit first from the center's technologies, due to the sheer intensity ofthe international center's v vi profesionales agrícolas, reduciendo así el número de buenos empleados que se podrían vincular a los programas nacionales. Viéndolo del lado positivo, sin embargo, el país anfitrión se beneficia en primera instancia de las tecnologías generadas por el centro, dada la gran intensidad de sus actividades de investigación, evaluación y capacitación dentro del país.En su país anfitrión, Colombia, el CIAT goza de muchos privilegios. La variedad de sistemas agroecológicos que sirven de medio para evaluar nuevas tecnologias, la disponibilidad de recurso humano altamente calificado, la proximidad a la principal estación del programa nacional y a la Facultad de Agronomía de la Universidad Nacional en Palmira, y el ambiente de trabajo consultivo son aspectos importantes que facilitan sustancialmente el funcionamiento eficiente del centro.La relación de apoyo mutuo desarrollada a lo largo de los últimos 21 años ha hecho posible que el CIAT y sus colaboradores hayan tenido un impacto importante no solamente en research, testing, and training activities in the country.CIAT is extremely fortunate in Colombia, its host country. The variety of agroecologies that serve as testing grounds for new technologies, the availability ofhighly qualified human resources, CIAT's proximity to the national program's main station and the National University's College of Agriculture based in Palmira, and the consultative working environment are all important assets that greatly facilitate the efficient operation of the center.The mutually supportive relationship developed over the last 21 years with Colombian programs and institutions has made it possible for CIAT and its partners to have an important impact, not only in Colombia but far beyond its borders, in accordance with its intemational mandate.When John Nickel retired as director general ofCIAT after 15 years on the job, Colombia chose the occasion to acknowledge, in a generous and public way, the roles of both Dr. Nickel and CIAT in Introduction viii A medida que se acercaba la fecha de retiro de John Nickel del CIAT, me dirigí informalmente a diversas instituciones colombianas con quienes él y el CIAT habían tenido una vinculación durante muchos años, para preguntarles si deseaban hacer un reconocimiento en dicha ocasión. Sus respuestas inmediatas fueron afirmativas; es más, iban más allá de lo que el protocolo exigía. En ellas percibí un genuino sentimiento de aprecio, no sólo por John Nickel, hombre excepcional, sino por el CIAT, una institución que contribuye al desarrollo de Colombia en el mejor de los sentidos.La posición actual del CIAT en Colombia refleja la filosoña personal de John Nickel y sus incansables esfuerzos durante 15 años de liderazgo. Cuando John Nickelllegó al CIAT en 1974, el centro atravesaba un diñcil período de transición. Los primeros años se habían dedicado necesariamente al desarrollo de la estación y al enganche de personal. No se había entrado de lleno en la investigación. John entró con confianza a este vacío, le dio forma y le inyectó un nuevo ímpetu. LaAs the date of John Nickel's retirement neared, 1 approached several Colombian institutions of longstanding association with John Nickel and CIAT, and asked them on a purely pro forma basis if they wished to recognize the occasion. Their responses were spontaneously positive, and far beyond what protocol dictated. In them 1 percei ved an expression of genuine appreciation, not only for John Nickel, exceptional man that he is, but for CIAT, an institution contributing to Colombia's development in the broadest sense.Nonetheless, CIAT's present status in Colombia reflects John Nickel's personal philosophy and untiring efforts during 15 years ofleadership. When John Nickel arrived at CIAT in 1974, the center was in a difficult transition periodo By necessity, the fust years had concentrated on station development and staffrecruitment. Not much research had been done yet . John stepped confidently into this void, imposing form and injecting new ímpetus. Research was consolidated inta programs, each with a c1ear mission, and unified by concrete objectives, reflecting a fundamental investigación se organizó en programas, cada uno con una misión clara, unificados por objetivos concretos que reflejaban el interés fundamental de ayudar a la población de escasos recursos de América Latina.Diversas instituciones colombianas importantes hicieron un reconocimiento al Dr. Nickel en el momento de su retiro: la Universidad Nacional de Colombia, la Presidencia de la República, el Instituto Colombiano Agropecuario (ICA) y un grupo de empresarios destacados del Valle del Cauca, departamento en donde está situada la sede del CIAT. El Gobernador del Valle y el Alcalde de la Ciudad de Palmira también le ofrecieron distinciones. Los honores que recibiera el Dr. Nickel se destacaron tanto por su alto nivel como por la poca frecuencia con que se han otorgado.El título ''Honoris Causa\", conferido por la Universidad Nacional, se otorga ocasionalmente a colombianos destacados. De hecho, sólo ha sido entregado cinco veces en los 122 años concern for helping Latin America's poor.Several important Colombian institutions clistinguished John Nickel when he retired: the Nationa! University of Colombia; the Colombian Presidency; the Instituto Colombiano Agropecuario (lCA), Colombia's nationa! agricultura! research orgaruzation; and business leaders ofValle del Cauca, the department in which ClAT headquarters is located. The governor ofValle del Cauca and the mayor of the city of Palmira also bestowed awards. The honors Dr. Nickel received were remarkable for both their prestige and the infrequency with which they are given.The title of \"Honoris Causa,\" conferred by the Nationa! University, is only occasionally awarded to outstancling Colombians. In fact, it has been bestowed only five times in the university's 122-year history. It was most unusua! for it to be conferred on a foreigner, much less for a lasting contribution to research and science in Colombia. En la tradición académica de la Universidad Nacional, este acto reviste una solemnidad particular, en virtud de la clase de distinciones que se otorgan y del tipo de personas que se escogen. Los criterios que siempre ha mantenido el cuerpo directivo de nuestra institución son los de la excelencia académica, la vocación docente y la dedicación investigativa que llevan a cabo los profesores más destacados y de grandes cualidades intelectuales y humanas.On behalf of the University Council and administrators of the National University of Colombia, I wish to express a special recognition to those professors and personalities who, on thís solemn occasion, are the object of special distinctions for their educational and research work.In Une with the academic tradition ofthe National University, thís occasion is particularly solemn by virtue of the honors awarded and the persons selected. Our institution's adminístrative body has always maintained the criteria of academic excellence, a vocation for teaching, and dedication to research as the aUributes that distinguísh the most outstanding professors, those with great intellectual and human qualities.We can affirm, without being afraid to err, that we have the best university teaching staff in Colombia in both the arts and sciences. Therefore, when making selections for the Medal of Merit, Professor Emeritus, Honorary Professor, and Master, the criteria are extremely rigorous and academic. We rejoice that it ís and has always beenAn economist specialized in urban and regional economic8, Dr. Medalla al Mérito, Profesor Emérito, Profesor Honorario y Maestro, los criterios son absolutamente rigurosos y accuUmicos. Celebramos que esto sea así y lo haya sido siempre, porque eso nos permite tomar distancia de los falsos halagos y las distinciones interesadas de la pura amistad, la conveniencia, la simpatía política, que han hecho tanto mal a la comunídad accuUmica colombiana, colocando en pedestales de oropel a figuras de relumbre que por su mismo peso muy rápidamente las arrasa el víento. Esta seriedad en la escogencia, esta rigurosidad en la selección y esta independencia académica de la que nos sentimos orgullosos, nos permiten mantener, por lo tanto, las distinciones de la Universidad Nacional como uno de los honores mayores que cualquier docente puede tener en su vida universitaria. receive the honor to which all of us who teach at the National University aspire, we likewise wish to refer to our institutional commitment to the nation-state in which our University is inscribed. We have defined a long-term strategy that implies designing a Plan for Scientific and Technological Development for the year 2000. This plan gives priority to four research areas: Farming and Food Systems; Health; Industrialization; and National Problems. On behalf of this Plan, we are undertaking an academic reform that will adapt the University to new demands of the times, which forces us to seek new financial sources to achieve these goals.If we are inclined toward these ethical, academic, and moral criteria, it is because they comprehend our understanding ofthe University. If the professors who receive this recognition today do so beca use of their professional and academic capacity, that is, because of that which cannot be apprehended materially but rather in the sphere of conceptual excellence, we are likewise expressing Si propentÚ!mos por estos criterios éticos, creadémicos, morales -si se quiere -es porque en ellos está comp .. endido nuestro juicio sobre la Universidad. Si los profesores que hoy reciben este reconocimiento lo hacen por sus cualidades profesionales y académicas, es tÚ!cir, por aquello que no puetÚ! ser aprehendido materialmente, sino en la esfera tú! la trascentÚ!ncia conceptual, así mismo estamos expresando nuestro compromiso ante el país con las armas tú! la inteligencia, tú! la ética, tÚ!1 profesionalismo académico y administrativo, que son nuestras armas y nuestro empeño.En momentos críticos como los que pasamos, en esta encrucijada hacia el abismo hacia el que nos impulsan oscuras fuerzas tÚ!sestabilizadoras en esta batalla tan compleja y tÚ!sigual, la esperanza en Colombia es nuestro trabajo intelectual, nuestra irrevocable búsqueda por la trascentÚ!ncia artística, filos6fica, ligada a las grantÚ!s urgencias nacionales.our commitment to the nation with the weapons of intelligence, ethics, and academic and administrative professionalism.In critical times such as these, on the edge of this abyss toward which obscure, destabilizing forces are pushing us in this complex and unequal battle, our hope in Colombia is our inrellectual work, our irrevocable search for artistic and philosophic excellence, linked to our most important nalional needs.Oppenheimer, one of the irresponsible pioneers of the atomic bomb, when reflecting upon conremporary man's destiny and the very role and future of science, said: \"Science is reaching the turning point. From here on it is pure nebulosity.\" This philosophic and scienti{ic astonishment with regard to man's future, and his finireness within the realm of the tangible universe, could well serve us as an example for our University and our future. Uno de los pioneros irresponsables de la bomba atómica, Oppenheimer, en una reflexión sobre el destino del hombre contemporáneo y de la misma función y futuro de la ciencia, decía: 'Za ciencia está llegando a la ruta número uno: de ahí para allá es pura nebulosa': Este asombro filosófico y científico respecto de la contingencia del hombre, de su finitud de la exploración del universo tangible, bien podría servirnos de We were united at birth, in our formation, and in our development. Many of those who gave birth to lCA also gave birth to ClAT. Many ofthe first staff members of CIAT were staff members of ICA. In short, we share in some way a common history that we have enriched along the way, that we have shaped over time, and that today is expressed in a series of wonderful contributions made to agriculture, to cattle farming, to the general progress of Colombian agriculture, and to the welfare of the country in general.Being a leader at CIAT for a long time, Dr. Nickel has been an important part of that common history. Fifteen years is a rather long period in the life of a person and in the life of an institution. Thus, Dr. Nickel has left an indelible mark on CIAT's future plans, on its institutional creed, Un grupo de agricultores espera ansioso la siembra de las nuevas variedades.Expectant fanners look forward lo planting new varieties.años es una etapa bastante prolongada en la vida de una persona y en la vida de una institución. Entonces, John ha dejado un sello indeleble en las proyecciones del CIAT, en su doctrina institucional, en su futuro. Ha sabido conducir al CIAT a través de estos años hasta convertirlo en uno, o en el centro internacional más respetado dentro del grupo de instituciones que a nivel mundial se preocupan del desarrollo de la agricultura. El CIAT es hoy reputado y reconocido como uno de los centros internacionales mejor organizados, con más proyección, que enfrenta con más seriedad los retos que plantea hoy la agricultura a las entidades de investigación. Y esto en gran parte es una labor del Dr. Nickel, que hoy queremos agradecer los and on its future. He has led CIAT through these years, turning it into one if not the most respected international center among the group of institutions concerned about agriculture around the world. Today, CIAT is reputed to be one of the best organized international centers, facing the challenges that agriculture now presents to research institutions more seriously and with a greater potentia/. This is to a great extent an achievement by Dr. Nickel that we, the researchers and the scientific and administrative community of lCA, wish to thank and recognize through this medal, very rarely awarded. lt is only granted to persons who have truly distinguished themselves through substantial contributions to the institution's development. fortunate to be the hosts of a eenter with the excellent qualities of CIAT, whieh has sueh highly qualif¡ed seientifie personnel, and whieh has eounted on persons sueh as Dr. Nickel among its direetors, who have led it sueeessfully over time. Arroz: Mayores rendimientos en América Latina Al haber triplicado la producción en sólo 20 años, Colombia ocupa hoy el primer lugar en producción de arroz en América Latina, con rendimientos de arroz en cáscara de 4.8 tlha, y el sexto lugar en el mundo, después de países como Japón, Italia y los Estados Unidos. La intensa investigación y el trabajo en fincas han hecho que el arroz se convierta en el producto amiláceo básico popular del país. La disminución de los costos de producción ha ayudado a reducir a la mitad los precios reales Después de cinco años de trabajo de mejoramiento por parte de CIATIICA, se están evaluando por rendimiento las líneas de arroz de sabana que abrieron paso a este cultivo en la región, en los suelos ácidos menos favorables de los llanos, donde actualmente no existe este cultivo.Estas líneas permitirán incorporar extensas áreas de sabana de los trópicos americanos, tradicionalmente destinadas a la ganadería debido a sus ambientes restrictivos para la agricultura, a una producción de arroz más intensa mediante el cultivo rotacional con pasturas y/o soya. Las nuevas líneas commerciallines linking tolerance of both \"hoja blanca\" and rice blast, rice's most devastating diseases. These varieties need much less investment in land development, crop management, and crop protection, thus reducing costs and generating considerably more profits. Both varieties \\Vere developed in a record four years, due to successful lCA-ClAT collaboration.Afier five years breeding by ClAT and lCA, ground-breaking savanna rice lines are being yield-tested in the least favorable acid soils of the Llanos, where no rice is grown presentiy. With these lines, vast areas of the American tropics traditionally devoted to cattle ranching could be opened to more intensive crop production tlu'ough rotatians with pastures and/ar soybeans. The new rice lines assimilate de arroz asimilan bien el nitrógeno, no presentan problemas de volcamiento, y tienen rendimientos más altos y estables. En condiciones comerciales simuladas, en ausencia de riego, se obtienen rendimientos de 3.0 a 4.0 tlha. Pasturas: Reducción de los precios de la carne y de la leche en sistemas sostenibles La compra de leche y carne representa el 20% de los gastos en alimentos de una familia colombiana. Las pasturas mejoradas pueden reducir estos costos a la vez que desempeñan un papel esencial en la introducción de sistemas agrícolas más sostenibles en Colombia y en otros países de América Latina.Aunque el concepto de manejo de pasturas, particularmente el uso de asociaciones productivas de leguminosas-gramíneas, es nuevo para la mayoría de los ganaderos colombianos, ellos están adoptando la tecnología rápidamente. La difusión de dicha tecnología se está nitrogen well without lodging, and have hlgher and more stable yields. Yields of3.0 to 4.0 tonslha are obtained in simulated, non-irrigated, cornmercial conditions.Milk and beef purchases account for 20% of the Colombian family's food costs. Improved pastures can reduce those costa, while playing a critical role in introducing more sustainable agricultural systems in Colombia and other countries ofLatin America.Although the concept of pasture management, in particular, use of productive legume-grass associations, is new to most Colombian cattlemen, they are adopting the technology at an accelerating pace. Recent intensive 32 acelerando gracias a una reciente e intensa promoci6n en los Llanos, realizada principalmente por la división regional de investigación del ICA (CRECED), y por el establecimiento de esquemas de multiplicación de semillas con agricultores y compañías de semillas en los Llanos, el Valle del Cauca, Tolima y Cesar.Una década después de su liberación, las primeras variedades de pasturas mejoradas liberadas en Colombia en 1980 (Andropogon gayanuB cv. Carimagua) yen 1983 (StyÚlsantheB capitata cv. Capica) siguen siendo productivas, persistentes y vigorosas. Aún cuando han sido sobrepastoreadas o mal manejadas, su volumen se duplica con sólo unos pocos meses de descanso y con la aplicaci6n de fósforo. Además, los productores están obteniendo las mismas ganancias altas de producción animal que se obtuvieron originalmente en la estación experimental: cerca de 600 g/animal/día durante la época lluviosa. Entre la nueva generación de pasturas para la producción de ganado de leche y carne, de buena calidad y con gran capacidad de carga, se destacan los cultivares de gramíneas y leguminosas liberados más reciente -Brachiaria dictyoneura cv. llanero en asociación con Centrosema acutifolium ev. Vichaday las pasturas a base de Arachís pintoi. La asociación Llanero-Vichada puede producir ganancias de peso vivo 60% superiores a los resultados obtenidos con la gramínea sola y aumenta la producción de leche en 20% durante la época lluviosa y en 40% durante la época seca. Las pasturas a base de A. pintoi soportan pastoreo intenso y generan ganancias significativas de peso animal cuando se asocian con una gramínea agresiva, aunque de b~a calidad, como B. humidicola.En los Llanos se está estudiando la factibilidad de utilizar el cultivo de arroz para establecer o renovar pasturas deterioradas con asociaciones de gramíneas-leguminosas más -productivas. Las ganancias A new generation of pastures for dairy and beef production, with both high quality and high carrying capacity, incJudes the more recently released grass and leguroe cultivars, Brachiaria dictyoneura cv. Llanero in association with Centrosema acutifolium cv. Vichada, and Arachis pintoi-based pastures. Llanero teamed with Vichada can produce 60% higher liveweight gruns than the grass alone and increase milk production by 20% in the wet season and 40% in the dry season. A. pintoi-based pastures withstand heavy grazing and contribute to significant animal weight gains when associated with the aggressive but otherwise low-quality grass B. humidicola.In the Llanos, feasibility of using a rice crop to establish or renew deteriorated pastures with more productive grass-Iegume associations is 34 obtenidas con el cultivo inicial de arroz motivarán a los agricultores a invertir para mejorar sus pasturas. En áreas marginales, la asociación de pasturas con cultivos como el arroz o la soya podrán no sólo extender la siembra de cultivos alimenticios, sino que también ofrecerán una alternativa a los monocultivos intensos, aunque insostenibles, y a los sistemas extensivos, pero improductivos, de producción de ganado.CIAT, el ICAy las instituciones de desarrollo regional y de crédito (la Corporación Autónoma Regional del Cauca y el Fondo Ganadero del Valle del Cauca) están utilizando cultivares mejorados de especies forrajeras para recuperar unas 100,000 ha de tierras erosionadas en el norte del Cauca y en el sur del Valle del Cauca, una región en donde predominan los pequeños agricultores de escasos recursos. La integración de sistemas productivos de leche/carne con sistemas de cultivo ayudaría a evitar que esta área sufra un atraso económico. Cassava is a crop that produces well on marginal soils. Millions ofThird World farm families rely on it as their insurance againat hunger. In Colombia, problems of perishability and price instability were discouraging production, until ICA and CIAT, a10ng with DRI (Fondo de Desarrollo Rural Integrado), began tackling production and utilization problems and succeeded in creating new markets and reversing declining production trends.The solutions, now commercially employed, were technologies for drying cassava and extending fresh cassava's concentrados para animales. El primer proyecto de secado se inició en la costa norte en 1981, con una asociación de 15 agricultores. Hoy, más de 50 asociaciones productoras venden cerca de US$2.5 millones de yuca seca/año; la idea se ha extendido a Ecuador y al noreste de Brasil. Al estabilizar los mercados y los precios, el secado redujo los precios de la yuca fresca en cerca de 27%, ahorrando a los conswnidores de Barranquilla únicamente, aproximadamente US$3.8 millones/año. Para retardar el deterioro de la yuca fresca, las raíces se tratan con químicos y se empacan en bolsas plásticas, una tecnología que no cuesta más de 3-4 centavos de dólar/kg. Esto permite a los agricultores vender a los mercados urbanos yuca de mejor calidad a precios más competitivos.El uso de harina de yuca como sustituto de la harina de trigo es otra innovación tecnológica, actualmente en etapa piloto, que generará una mayor demanda de yuca. La harina de yuca puede reemplazar hasta 15% de la harina de trigo en la Using cassava flour instead of wheat !Jour is another technological innovation now at the pilot stage that will create further demand for cassava.Cassava flour can replace up to 15% af preparación de pan. Una fábrica de pastas d e Cali utiliza hasta 50% de harina de yuca en su mezcla. La sustitución con yuca de granos importados como e l sorgo y el trigo puede ayudar a frenar la fuga de divisas en muchos países tropicales que importan cereales. Para atender la creciente demanda de variedades de yuca de alto rendimiento, se están poniendo a disposición de los agricultores cuatro nuevas variedades, culminándose así 10 años de investigación conjunta ICA-CIAT. Dos de ellas, ICA Costeña y CM 3306-4, son apropiadas para la costa norte, responsable del 40% de la producción. Estas variedades son resistentes a las principales enfermedades y rinden entre 5 y 10 tlha más que las variedades actuales de mayor aceptación. Las variedades ICA Cebucán e ICA Catumare están destinadas a los Llanos, con lo cual se crean nuevos empleos y se amplian las posibilidades de producción de esta área agrícola marginal. En promedio, ambos cultivares rinden el doble de las variedades locales. Con estas nuevas variedades, Colombia puede atender la demanda wheat flour in bread. A pasta factory in Cali uses up to 50%. Substituting cassava for imported grains, 5uch as sorghum and wheat, may help stem the drain ofhard currency in many tropical cereal-importing countries.To meet growing demand for Frijol: Enfoques innovativos para aumentar la producción La falta de una industria productora de semillas efectiva es un problema crónico relacionado con la adopción de nuevas variedades. Para superarlo, la Unidad de Semillas del CIAT,junto con el ICAy CECORA (Central de Cooperativas de la Reforma Agraria), estableció un proyecto piloto exitoso entre cooperativas de agricultores de Santander para producir semilla de alta calidad.En Sumapaz, la principal región productora de habichuela de Colombia, el ICA y el CIAT están colaborando en un proyecto novedoso para aumentar la producción y reducir el uso de plaguicidas. El uso excesivo de insecticidas en la región ha creado resistencia en las plagas y ha eliminado sus enemigos naturales. A través de un enfoque participativo, desarrollado a través de un proyecto especial CIAT-Fundación Kellogg,los bean productivity. Commercial genotypes with greater capacity to flX nitrogen and yield well in pOOl' soils will be available shortly for areas where fertilizers are not practica!.A ehronie problem related to the adoption of new varieties is lack of an effeetive seed industry. To overcome this problem, CrA'!\"s Seed Unit, together with ICA and CECORA (Central de Cooperativas de la Reforma Agraria), established a successful pilot project among farmers' coopera ti ves in Santander to produce their own high-quality seed.In Sumapaz, Colombia's major snap bean-growing area, ICA and CIAT are collaborating in an innovative project to increase production and reduce pesticide use. Excessive use ofinsecticides has created insecticide resistance in the pests and killed their natural enemies in the region. Using farmer partieipatory teehniques developed through a speeial CIA T -Kellogg Foundation projeet, agricultores están trabajando junto con los investigadores para evaluar las líneas avanzadas de habichuela y las prácticas de manejo integrado de plagas. Los resultados demuestran que tanto los rendimientos como las ganancias mejoran cuando la aplicación de insecticidas se reduce a la mitad.farmers are working with researchers to evaluate adva nced snap bean lines and integrated pest management (IPM) practices. Res ults show that both yields and profi ts improve when insecticide applications are halved. En el caso de la yuca, p\"oducto de gran consumo popular y considerado el tercer alimento energético de 400 millones de personas que viven en el trópico, se han logrado avances notorios; la productividad de este cultivo ha mejorado a tal punto, que de un promedio de producción de 25 t/ha, hoy es posible obtener cerca de 60 t/ha en suelos fértiles y hasta 35 tlha en suelos pobres. Además, mediante paciente investigación, se encontró que la inmersión de la yuca fresca en una solución química no tóxica para los humanos permite almacenar el producto durante varias semanas sin necesidad de refrigerarlo.En 1980, el CIAT y el DRI, en coordinación con ellCA, CORFAS, el to an extent that, from an auerage production of 25 tons I ha, it is now possible to obtain almost 60 tons I ha in fertile soils, and as many as 35 tons I ha in poor soils. In addition, patient research resulted in the deuelopment of a technique to store fresh cassaua for seueral weeks without hauing to refrigerate it.In 1980, CIAT and DRI, in cooperation with ICA, CORFAS, SENA, the Caja Agraria, and other regional institutions, started a program of technology adaptation in the Atlantic coast region to dry cassaua chips and thus create an alternate market that would allow explaiting this economical resource in animal feed. In the first year of SENA, la CcUa Agraria y otras instituciones regionales, iniciaron en la Costa Atlántica un programa de adaptaci6n de tecnología para secado de rodcUas de yuca y así disponer de un mercado alterno que permitiera aprovechar este recu rso económico en la alimentaci6n animal. Un año después de este esfuerzo inicial, se produjeron las primeras 38 toneladas de yuca seca, en una sencilla y econ6mica planta operada por una cooperativa de campesinos.En la actua lidad, existen cerca de 50 p lantas de ese tipo s610 en la Costa Atlántica y un núm ero no deter min ado de ellas en otras regiones del país. En conjunto, estas plantas han entregado más de 13,000 toneladas de yuca seca a las fábricas de productos concentrados para animales.Por lo anterior, en los últimos tres años, el área sembrada con yuca por los agricultores que participan directamente en el programa aument6 en 46% y los consumidores de los centros urbanos cercanos al programa t ambién se beneficiaron del descenso en los precios de la yuca La colaboración con las asociaciones de productores como FEDEARROZ y la Federación Nacional de Cafeteros (en el caso del frijol) hace que la investigación sea relevante a las necesidades de los agricultores y agiliza la liberación de los productos de la investigación. FEDEARROZ, por ejemplo, ofrece programas de capacitación y vincula las actividades del SENA (Servicio Nacional de Aprendizllie), del HIMAT (Instituto Colombiano de Hidrología, Meteorología y Adecuación de Tierras), y de las Universidades del Tolima y de los Llanos.En el caso de la yuca, el DRI (Fondo de Desarrollo Rural Integrado), que comparte el liderazgo con el ICA y el CIAT en las actividades de utilización de yuca, coordina la financiación, la capacitación y el manejo de las operaciones piloto de secado de yuca. Las organizaciones regionales y otras como el P11/R (Plan Nacional de Rehabilitacióll). la CVC (Corporación Autónoma Regional del Cauca) y el INCORA (Instituto Colombiano para la Reforma Agraria) son tambié n una vía importante para llevar las nuevas tecnologías a los agricultores. La CVC y el PNR han desempeñado papeles críticos e n el caso de la yuca y de las pasturas.Reforma Agraria), are also important avenues ror reaching farmers with new technologies. The CVC and PNR h ave both played critica l roles for cassava and pastures.","tokenCount":"5153"} \ No newline at end of file diff --git a/data/part_3/2147488237.json b/data/part_3/2147488237.json new file mode 100644 index 0000000000000000000000000000000000000000..f8bacb609c9c7c3f9f06a3d8a2892021af65ecfe --- /dev/null +++ b/data/part_3/2147488237.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c739d3f9cced7d45fc27238be3a9551e","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/c9cc5c49-097c-4c91-9d9b-018b2f2d8195/content","id":"-1742160562"},"keywords":[],"sieverID":"6c609550-59f8-48f7-b412-9566429cb68a","pagecount":"26","content":"This bibliography includes 166 titles relating to triticale and written by CIMMYT researchers. It covers conventional published literature as well as unconventional reports, studies, and conference proceedings. Entries in the bibliography are subdivided into seven subject headings (see contents page) and arranged alphabetically by senior author. A complete author index is also included. There may be some missing titles that were not available at the time this document was compiled. We intend to update this bibliography regularly and would appreciate any suggestions for improvement.When ordering photocopies, indicate reference number and title of the document and send to: Esta bibliografia enumera 166 obras sobre el triticale escritas por investigadores del CIMMYT, y abarca tanto literatura convencional como informes, estudios y articulos noconvencionales. Los documentos aqui incluidos se dividen en siete temas (vease el contenido) y aparecen en orden alfabetico segun el nombre del autor principal. Tambien se incluye un exhaustivo indice de autores. Es posible que algunas obras no f iguren en la bibliografia porque no estuvieron disponibles cuando esta se elabor6, pero dado que se le actualizara regularmente, cualquier sugerencia para su mejoramiento sera bienvenida.Al solicitar fotocopias, indique el numero de referencia y el titulo del documento en cuesti6n y envielos a: ","tokenCount":"202"} \ No newline at end of file diff --git a/data/part_3/2165578935.json b/data/part_3/2165578935.json new file mode 100644 index 0000000000000000000000000000000000000000..8a1304a79a2b7670ec92395e71fd47829dd8318a --- /dev/null +++ b/data/part_3/2165578935.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"167c7bc0b4f14a43699ab542e09336de","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/93103e4f-1678-437f-8725-1dc065d99947/retrieve","id":"-955817563"},"keywords":[],"sieverID":"2bc4f3f3-205f-4d22-9558-58c591e6e7be","pagecount":"23","content":"The Feed Assessment Tool (FEAST) was used to characterize the farming system and particularly the feed-related aspects of the livestock production system in Kisumu West Sub-County of Kisumu County of Kenya. The assessment was conducted with groups of farmers through a participatory rural appraisal approach at two sites representing a peri-urban and a typical rural setting. Firstly, focused group discussions with 20 farmers and subsequently personal interviews with nine farmers (consisting of three each) representing small, medium and large-scale farms were carried out. It was found that Kisumu West sub-County is characterized predominantly by smallholder mixed croplivestock production systems on approximately less than 0.8 hectares of land. Dairy and food crops are the primary sources of household income. Farmers in Kisumu West sub-County keep predominantly local cattle. Improved dairy production is constrained by inadequate feeds/management skills, high cost of disease control and poor breeds. Unorganized milk marketing is also a constraint. To mitigate these constraints farmers prioritised (i) improving skills in forage production and availability of varieties that are tolerant to Napier grass stunt disease and drought; knowledge on feed preservation and processing (ii) improving access to animal health and AI facilities to ensure farmers can rapidly upgrade the genetic merit of their cattle holdings, (iii) access to credit facilities to enable farmers to invest in livestock production enterprises and also milk marketing strategies.Livestock farming contributes significantly to the economies of Western Kenya (Ojowi et. al., 2001 andKARI Kakamega annual report, 2006) through the generation of tangible and intangible products (World, 2005). Within the region, most of the milk produced is marketed informally and is thus an important source of employment and income in rural areas from production at the household level to informal transporters and retailers in the urban centres (MoALF. (2010). In addition, a regular supply of milk improves nutritional security for many rural poor families, provides affordable nutrients to improve the well-being of those suffering from HIV/AIDS and generates more regular household income and jobs than many other farming enterprises in Eastern Africa (Nicholson et al., 2003).The western region is considered a high dairying region because of the favourable climatic conditions and soils (Jaetzold et. al., 2005), but the productivity of its herd is much lower compared to similar regions like Central Kenya and the North Rift Valley because of its the dairy genetic resources kept by farmers. According to estimates by Waithaka et al. (2002), only 13% of the households are keeping improved dairy cattle. There is a potential to improve production and productivity to attain the levels of other regions with similar climatic conditions. Another major constraint to increase dairy productivity in the highly populated regions of Western Kenya is the inadequate quality of livestock feeds (KARI Kakamega annual report, 2006). This is particularly critical during the dry season when dairy herds are forced to rely on low-quality feed resources, which are nutritionally deficient in energy, nitrogen, minerals and vitamins with minimal or no supplementation. Most dairy farming in this region is practised by smallholder farmers in densely populated holdings. These conditions force farmers to allocate most of the available land to food crops leaving very little for planted pasture/fodders and natural grazing. With increased crop productivity dairy cattle are therefore fed on crop residues and Napier grass (Pennisetum purpureum Schumach), planted on lands averaging less than 0.2 hectares. However, Napier stunt disease caused by phytoplasma, has since mid-1990's caused forage yield reductions of up to 90% (Mulaa et al., 2010). This is currently the biggest threat to forage production and the dairy sector in the region. According to Mr Sagala of Heifer international Western Region (Personal Communication), there has been a milk yield reduction of 20-40% caused by the lack of feeds, mostly due to the stunt diseases.There is a need to improve animal productivity through more intensification and utilization of crop-livestock interactions, and promotion and adoption of genetically diverse, high yielding, and climatically adapted grasses that are tolerant to diseases. Therefore, in order to design site-specific strategies for sustainable feed supply and utilization, the current survey was conducted with the following objectives:• To assess feed resource availability and utilization using the FEAST tool, within the context of the overall dairy value chain, at four specific sites in Western Kenya • To determine the potential of site-specific feed interventions in selected areasKisumu West is one of the sub-Counties of Kisumu County and is situated along the shores of Lake Victoria covering the area from the Kisumu airport to Maseno, surrounding the whole of Nyahera up the hill and bordering part of western and rift valley. It is located at 0.08 0 S and 34.5 0 E and has an area 171 km 2 . It has five administrative Wards namely: South West Kisumu, Central Kisumu, Kisumu North, West Kisumu and North West Kisumu (Figure 1). The PRA was conducted in North West Kisumu and Kisumu Central Wards. The climate of the whole county is modified by the presence of the lake. The county has an annual relief rainfall that ranges between 1200 mm and 1300 mm with a bimodal pattern. The long rains are reliable while the short rains can be unreliable in the drier parts of the sub-County. The temperature ranges between 20 0 C and 35 0 C with a mean annual rainfall of 23 0 C. The humidity is relatively high throughout the year. The altitude of Kisumu West sub-County is approximated to be between 990 and 1470 metres above the sea level. There are three agro-ecological zones namely the Upper Midland Zone 3 (UM3) and Lower Midland Zone 1 (LM1) which have adequate and reliable rainfall and the Lower Midland zone 4 (LM4) agro-ecological zones which are drier with an unreliable short rain season (Jaetzold et al., 2009). The soils are volcanic but vary depending on the parent material they are formed from. In the higher regions Upper Midland zone 1 (UM1), soils are dark red clays which are fertile and well-drained.The study was carried out in Kisumu West sub County, Kisumu County which is within the sub-humid zone of Western Kenya. The specific sites were North West Kisumu Ward and Kisumu Central Ward representing a typical rural setup and peri-urban communities.Participants were selected by the research team comprising of local agricultural/livestock production officers, a research scientist from Masinde Muliro University of Science and Technology, and local administrators. At each site, 18 to 25 farmers were involved in the Focus Group Discussions (FGD) to provide an overview of the farming system and to identify constraints and opportunities for improving livestock production at the site. Subsequently, 9 farmers were selected from the FGD to take part in the individual interviews.The quantitative data collected during individual interviews were analyzed using the FEAST excel template (www.ilri.org/feast), a feed assessment tool that has been developed to help to design site-specific strategies for feed supply and utilization, The data were presented in tables, graphs, pie and bar charts. The qualitative data collected using the PRA group discussions were synthesized and summarized.The study was carried out in Kisumu Central and North West Kisumu wards of Kisumu County. Secondary data obtained from literature and unpublished reports were integrated and the primary data was collected through focus group discussions and individual farmer interviews using the Feed Assessment Tool (FEAST). This was used to characterize the livestock production system and feedrelated aspects. The FEAST tool is a rapid and systematic method that employs the Participative Rural Appraisal (PRA) approach. It also helps identify major problems, issues and opportunities within the livestock production system. The individual farmer interview gathers both quantitative and qualitative information according to major wealth groups based on relative land size owned. The assessment was carried out through two structured group discussions and completion of short questionnaires by key farmer representatives in Nyahera sub-location in Kisumu Central Ward and Marera sub-location in North West Kisumu Ward both in Kisumu West sub-County on 5 th December 2013.The composition of the groups is shown in Table 1. Participating farmers were chosen by ICIPE staff working on push-pull technology and the sub-County Livestock Production Officers (PDO) of Kisumu West sub-County Ministry of Agriculture and Livestock. Overall 24 persons participated in the group discussion in North West Kisumu Ward and 20 in Kisumu Central Ward (Table 4.1). From each PRA group, 3 representatives each from different wealth classes were chosen for the individual interviews. The following are findings of the assessment and conclusions for further action. The 4.5). In addition to providing milk and manure, these are also sold for meat to supply substantial income when the need arises and payment of dowry. The improved dairy breeds in Kisumu Central are occasionally sold as breeding stock. Majority of the households (60-70%) in North West Kisumu keep local breeds of small ruminants (goats and sheep) for meat, manure and sale for income than those of Kisumu Central. Most farmers also keep indigenous chicken but there were no dairy goats and commercial chicken in both Wards. The average livestock holdings (TLU) per household is shown in Figure 4.4 and generally agrees with those described in the group interview.The most common livestock production systems in Kisumu West sub-County are:• The zero-grazing system practised by farmers who have improved livestock, in Kisumu Central Ward. Farmers in this category practise cut and carry feeding systems. Fodder is often chopped before feeding and often supplemented with concentrate feeds. They occasionally mix the grass with molasses and legumes. • Tethering is practised by 70% of households who keep crossbreed and local dairy cattle in both wards. Cattle are tethered to graze alongside the farm's boundaries, homestead or roadside during the cropping season. They are provided with a supplementary feed from the farm or collected from outside. • Free-range grazing is practised by 25% of the farmers and mainly for local cattle in both wards by households who have slightly large farms.Livestock input services such as feeds and veterinary drugs are available but were reported to be costly. Government veterinarians are mainly involved in vaccinations but are unavailable for animal health services. Private veterinary services are generally costly for most farmers. For example, treating East Coast Fever (ECF) costs farmers KES 4,000-7,000 ($50-87.5) per treatment, black water costs Ksh 2,000 ($25), Anaplasmosis costs KES 700 ($87.5) and deworming KES 500 ($6.25) per animal. Para-vets are available and slightly cheaper but not qualified enough in disease diagnosis.Artificial Insemination (AI) services are available from private service providers. The cost for single insemination is KES 700 ($8.75) from Kabete (if served by Government staff) and KES 1,200 ($15) per insemination (inclusive of the service) if served by private service providers. However, Government service is not regularly available. For imported unsexed semen, the cost ranges between KES 3,000 to 4,000 ($37.5 to 50) and up to KES 10,000 ($125) for sexed semen. Farmers incur the same costs as the first insemination per repeat insemination cow and repeats are quite frequent according to the farmers interviewed. Improved bulls cost KES 500 ($6.25) per service and KES 300 ($3.75) for a local bull, but the breed quality and diseases are of concern to farmers. Therefore, the high rates of repeats coupled with high cost cause a constraint to improve dairy productivity in the sub-County.Agricultural and livestock inputs (farm implements, crop seeds, fertilizers, herbicides, pumps, acaricides, feed supplements) are available from agro-vets within the sub-county. Credit facilities for crop or livestock production are available from commercial and micro-finance institutions; Village savings, Maseno Green Sacco, Table banking and Merry-go-round, used especially by women enterprise fund and youth. However, many farmers do not access loans from commercial banks and microfinance institutions because of high interest rates, collateral requirements, long loan processing period and defaulting by group members (in cases where groups guarantee each other). Many farmers do not have title deeds to act as collateral to access loans. The major type of feed for improved dairy cattle is Napier grass and is grown on very small plots of 0.05 to 0.08 hectares of land on average both wards (Figure 4.5). In addition to small area planted, Napier stunt disease is a major constraint to herbage productivity per unit land in the sub-County that needs to be addressed. Calliandra, Leucaena and Sesbania were mentioned as leguminous browse species grown by farmers to provide supplementary protein. However, when the number of these shrubs planted was computed in hectares the amount grown was very small except for Calliandra in Kisumu Central Ward (Figure 4.5). A few of the farmers in the group interviews grew Desmodium and Mulato II as a component of the push-pull technology but the maximum area grown is 30 x 50 metres which provide very little feed for the dairy cow.In The main contributors to income in both Wards are food crops (41% in North West Ward and 47% in Kisumu Central Ward). According to the individual farmers interviewed, dairy was found to contribute more in the North West Kisumu (22%) than in Kisumu West Ward (15%). This perception is contrary to the high number of improved cattle in Kisumu West (Table 4.5). The environmental constraints (rather than genetic) may be the cause of low production. Poultry meat was the second most important livestock species in terms of income generation in North West Kisumu Ward. More farmers in North West Kisumu Ward compared to Kisumu West Ward were involved in off-farm business and this could be attributed to the presence of retirees and wives whose spouses are employed elsewhere. Overall, the main issues that farmers face in the farming system and the potential solutions are listed in ","tokenCount":"2259"} \ No newline at end of file diff --git a/data/part_3/2171900733.json b/data/part_3/2171900733.json new file mode 100644 index 0000000000000000000000000000000000000000..1a0d0e6a309b67e1037a473080a1920bd64dff62 --- /dev/null +++ b/data/part_3/2171900733.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"d55d1b3956b07cf71df90df117729727","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/a8f6e00d-fb20-4e5c-ad86-7475a966b486/retrieve","id":"1286108242"},"keywords":[],"sieverID":"0e138e45-6f8e-4d51-839d-737c606a857e","pagecount":"12","content":"Desde su creación, en 1971, el Grupo Consultivo sobre Investigaciones Agrícolas Internacionales (CGIAR) ha desempeñado una función importante en la promoción del desarrollo agrícola en América Latina, manteniendo una fuerte tradición de apoyo y presencia en la región. Puede afirmarse que nació en la región, pues el Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT), con sede en México, fue uno de los primeros centros del CGIAR.La agricultura, que pasó de ser la principal actividad en la antigüedad y llegó a convertirse en una importante fuente de crecimiento en la era actual, es un sector de importancia estratégica en la región. Aunque en 1998 representó en promedio el 8% del producto interno bruto de América Latina, esta cifra enmascara una gran variación, que va del 5% en México, el 8% en Brasil y el 15% en Colombia, hasta el 24% en Nicaragua. Por lo tanto, la agricultura y el sector rural seguirán siendo importantes para promover el crecimiento, generar riqueza y lograr la sostenibilidad ambiental y social.El hecho de que tres de los primeros centros de investigaciones agrícolas internacionales del CGIAR (CIAT, CIMMYT y CIP) tengan su sede en América Latina es un claro indicio de la sólida asociación entre el CGIAR y la región. Además, siete centros del CGIAR poseen oficinas regionales o de proyectos en Brasil,Los siguientes son algunos ejemplos de impactos beneficiosos de los programas de investigación que reciben apoyo del CGIAR en América Latina El maíz (Zea mays L.), uno de los cultivos alimentarios más importantes del mundo, es originario de México. Las ventas de maíz comercial en América Latina constituyen un importante indicador América Latina y el Caribe: Indicadores básicos 2 América Latina y el Grupo Consultivo sobre Investigaciones Agrícolas Internacionales: Breve síntesis de una asociación exitosa del número de agricultores que ha adoptado variedades modernas en la región. América Latina es el mayor mercado regional: el 76% del maíz comercial vendido en esa región en el período 1996-97 consistió en variedades desarrolladas utilizando germoplasma del CIMMYT. Además, el 73% de las variedades de maíz desarrolladas por el sector privado en América Latina contenían germoplasma producido por el CIMMYT (www.cimmyt.org).El frijol común (Phaseolus vulgaris) se originó en América Latina, la zona de cultivo de frijol más importante del mundo. El frijol común es una fuente importante de proteínas para millones de personas pobres que viven en América Latina. Desde 1970 se han distribuido más de 350 variedades de frijoles en todo el mundo, de las cuales 243 se distribuyeron en América Latina. El CIAT, en asociación con los sistemas nacionales de investigaciones agrícolas, ha desempeñado un papel preponderante en el mejoramiento del frijol. A través de 15 sistemas nacionales se han distribuido en América Latina más de 45 variedades de frijol derivadas de germoplasma producido por el CIAT. En la región, los tipos de variedades con alto contenido producidas por el CIAT aumentaron de 18,9 por año en el decenio de 1980 a 24,4 en el decenio de 1990. En 1998, el valor anual bruto de la producción incrementada ascendió a US$177 millones (www.ciat.cgiar.org).El camote (Ipomoea batatas) forma parte esencial de la alimentación de las poblaciones rurales y urbanas de Perú. El cultivo cubre deficiencias nutricionales y debido a su bajo costo es uno de los alimentos preferidos por las personas pobres. Además, su materia vegetal se utiliza como forraje para el ganado. En 1991, el Programa nacional de investigaciones sobre la papa y el camote del Instituto Nacional de Investigaciones Agrícolas (INIA), en colaboración con el CIP, distribuyó cuatro variedades de camote: Cañetano-INIA, Imperial-INIA, INA-100 INIA e INIA 306-Huambachero. Las nuevas variedades tienen un mayor rendimiento, que en promedio asciende a un total entre 25 y 30 toneladas por hectárea. Esto permitió que la productividad aumentara de un promedio de 16 toneladas por hectárea en 1989 a 22 toneladas por hectárea en 1999 (www.cipotato.org).El tizón tardío de la papa, causado por el Phytophthora infestans, es una plaga devastadora. La investigación orientada a desarrollar resistencia al tizón tardío es de vital importancia para el bienestar de los millones de agricultores pobres y sus familias que dependen de la papa para su alimentación y subsistencia. Los científicos del CIP están luchando contra esta plaga en los principales países productores de papa mediante estudios tendientes a determinar la eficiencia de diversas variedades de papa. La tasa de rentabilidad interna sobre las inversiones en la lucha contra el tizón tardío es del 27%, con un valor actual neto de US$5,4 millones; los hogares pobres reciben el 31% del porcentaje estimado del total de beneficios (http://gilb.cip.cgiar.org).El arroz también es un importante cultivo alimenticio en América Latina. La investigación del CGIAR reviste vital importancia para mantener la productividad y rentabilidad de los cultivadores de arroz de la región, y el CIAT lleva a cabo esta labor. En América Latina y el Caribe se han distribuido más de 299 variedades de arroz a través de 23 programas nacionales. El hecho de que más del 40% de las nuevas variedades fueron obtenidas mediante cruces en el CIAT y que casi todas contienen germoplasma proveniente del Centro constituye un indicador del éxito alcanzado por el CIAT en la concertación de alianzas. Se han distribuido en la región no menos de 13 variedades de arroz desarrolladas por el Instituto Internacional de Investigaciones sobre el Arroz (IRRI) y 31 que contienen al menos una parte de su matriz genética proporcionada por el Centro de cooperación internacional en investigación agrícola para el desarrollo, de Francia. La labor del CIAT complementa el trabajo realizado por el Fondo Latinoamericano para Arroz de Riego (FLAR), una asociación de organizaciones arro-Asociación para recuperar los recursos genéticos del maíz de América Latina ceras públicas y privadas que financia y establece el programa de medidas internacionales para la reproducción de arroz y la gestión del cultivo (www.ciat.cgiar.org).En 2001, el CGIAR puso en marcha Programas de reto (PR). Estos programas de investigaciones para el desarrollo con alto impacto reúnen a una gran variedad de asociados en la investigación para abordar los principales desafíos que enfrenta el desarrollo en el plano mundial y regional, fomentar la investigación basada en la mutua colaboración y contribuir al logro de los objetivos de desarrollo del milenio. Programa de Reto \"Generation\": Los agricultores de los países en desarrollo enfrentan una amplia gama de desafíos agrícolas, tales como ataques de plagas y enfermedades, suelos de baja fertilidad, y falta de acceso a insumos básicos, tales como fertilizantes, riego y plaguicidas. De esos obstáculos a la producción suele depender que una familia sea saludable o padezca hambre. El PR Generation procura subsanar el problema empleando las abundantes existencias mundiales de recursos fitogenéticos depositados en los bancos de genes del CGIAR, así como los avances en la biología molecular para crear una nueva generación de plantas que pueda satisfacer las necesidades de los agricultores pobres en materia de alimentos, nutrición e ingresos. En los grupos de cultivos se incluyen los cereales, los cultivos de raíces y tubérculos, las leguminosas, musa (bananas y plátanos) y especies forrajeras. En esta labor, ocho centros del CGIAR (CIMMYT, CIAT, CIP, ICARDA, ICRISAT, IITA, IPGRI e IRRI) están trabajando en colaboración con seis instituciones asociadas en países industrializados y en desarrollo (www.generationcp.org).HarvestPlus: El objetivo de este Programa de reto es producir cultivos alimentarios nutritivos que sirvan para reducir los casos de malnutrición entre los pobres. Los productos que se espera obtener incluyen arroz con más hierro, trigo con agregado de zinc y maíz fortalecido con vitamina A. A través de este programa los científicos y asociados del CGIAR procuran combinar contenidos con alto grado de micronutrientes con mayores rendimientos que permitirán aumentar los ingresos y mejorar la nutrición y salud de las familias. La asociación está integrada por siete centros del CGIAR (CIAT, IFPRI, IRRI, CIP, ICRISAT, IITA e ICARDA) y nueve instituciones científicas. En septiembre de 2003, la Fundación Bill and Melinda Gates concedió US$25 millones al programa (www.harvestplus.org).Programa de Reto Sobre Agua y Alimentos: Este programa procura generar conocimientos y métodos derivados de la investigación para producir más alimentos con menos agua, y proteger al mismo tiempo el medio ambiente. La mayor parte del trabajo se realiza en América Latina, incluida la cuenca de San Francisco, que abarca más de 500 centros urbanos que padecen graves problemas de ordenación del agua. EMBRAPA, la empresa brasileña de investigaciones, es uno de los principales asociados y trabaja en estrecha colaboración con este programa para reducir la pobreza a través de medidas tendientes a mejorar los resultados de la agricultura de regadío. El objetivo principal del programa es aumentar la eficiencia en el uso del agua en la región andina, cuyas cuencas hidrográficas abarcan Colombia, Ecuador, Perú y Bolivia. Bajo la dirección del Instituto Internacional del Manejo del Agua (IWMI), esta asociación para la investigación está integrada por el CIAT, el IFPRI, el IRRI y el WorldFish Center, junto con 11 asociados formando parte de un consorcio (www.waterforfood.org). La incorporación de las perspectivas de los agricultores en el proceso de la investigación para el desarrollo es un elemento esencial de la estrategia del CGIAR. La iniciativa de Comités de Investigación Agrícola Local (CIAL), instrumentada por el CIAT, ofrece a los agricultores la oportunidad de expresar sus opiniones y colaborar con los científicos en la elaboración y evaluación de distintas tecnologías agrícolas. Actualmente, están funcionando 249 CIAL en ocho países de América Latina. Los beneficios de esta iniciativa van desde una mayor capacidad local en materia de métodos formales de investigación y mejores aptitudes de gestión y planificación local hasta una mayor disponibilidad de semillas mejoradas y mayor seguridad alimentaria. Por ejemplo, en Cauca (Colombia), más del 80% de los agricultores de la aldea de Pescador adoptaron una variedad de frijol recomendada por el comité local. El CIAT estima una tasa de rentabilidad del 78% sobre las inversiones efectuadas en el desarrollo que aplican el enfoque de CIAL. Los científicos del CIAT han demostrado que para lograr que el esfuerzo global de desarrollo sea útil, eficaz y sostenible es esencial aumentar las contribuciones de los agricultores a los programas de investigación (www.ciat.cgiar.org).El Consorcio para el Desarrollo Sostenible de la Ecorregión Andina (CONDESAN) es un organismo coordinador que reúne a organizaciones no gubernamentales, organizaciones comunitarias, universidades, centros del CGIAR, empresarios y responsables de la política pública, con la finalidad de colaborar con los científicos en iniciativas de investigación, capacitación, desarrollo y políticas que promuevan la protección de los recursos naturales y un mayor bienestar para las poblaciones de la región andina. El CONDESAN recibe apoyo del CIP (www.condesan.org).Además de los tres centros del CGIAR con sede en América Latina, otros centros también llevan a cabo programas de investigación para el desarrollo en la región. El Centro Agroforestal Mundial (de su nombre en inglés World Agroforestry Center) y el Centro para la Investigación Forestal Internacional (CIFOR) apoyan la iniciativa del CGIAR Alternativas a la Tumba-y-Quema (ASB), trabajando con agricultores para identificar y desarrollar políticas y opciones institucionales y tecnológicas para el uso de la tierra que mejoren la calidad de vida de las poblaciones rurales preservando los bosques amazónicos. ASB es una asociación global exitosa que incluye a más de 50 instituciones (www.asb.cgiar.org).Los cultivos alimentarios de América Latina: Tan antiguos y sin embargo tan modernos En otro ejemplo, CIFOR ayuda a países latinoamericanos a promover la descentralización de la gestión forestal en Bolivia, Brasil, Costa Rica, Guatemala, Honduras y Nicaragua (www.cifor.org).En la región andina, los agricultores pobres utilizan la cebada como alimento básico. En la región meridional del Ecuador, el Centro Internacional de Investigación Agrícola en las Zonas Secas (ICARDA) y el Instituto Nacional de Investigaciones Agropecuarias (INIAP) establecieron un proyecto sobre semillas de cebada. En 1998, muchos de los más de 500 agricultores que cultivaban las nuevas variedades de cebada lograron un aumento de su producción tres veces superior al promedio nacional de 700 kg (www.icarda.org).El Instituto Internacional de Investigaciones sobre Cultivos en los Trópicos Semiáridos (ICRISAT) mantiene una alianza con la Comisión Latinoamericana de Investigadores de Sorgo para proporcionar nuevas variedades biológicas de sorgo a partir de la colección mundial del ICRISAT e identificar los tipos que combinan un rendimiento más alto con la tolerancia a los suelos ácidos de la sabana tropical sudamericana. Gracias a las sólidas asociaciones entre los investigadores internacionales y nacionales, los rendimientos del sorgo en América Latina aumentaron de 2,8 toneladas por hectárea en 1993 a 3,1 toneladas por hectárea en 2003 (www.icrisat.org).Además, habida cuenta de las muy satisfactorias tasas de rentabilidad obtenidas sobre las inversiones en investigación agrícola, los economistas del Instituto Internacional de Investigaciones sobre Políticas Alimentarias (IFPRI) han colaborado con sus contrapartes nacionales para lograr que la investigación agrícola y las actividades de desarrollo que se están llevando a cabo en la región reciban apoyo en forma constante. El Instituto Internacional de Recursos Fitogenéticos (IPGRI) ha realizado una serie de estudios que demuestran la utilidad de los sistemas de información geográfica de última generación para los profesionales encargados de conservar los recursos fitogenéticos de la región (www.ifpri.org y www.ipgri.cgiar.org).El CIAT traza el camino a seguir en materia de investigación participativa y análisis de género En un mundo donde el 75% de los pobres sobreviven gracias a la agricultura, no es posible reducir la pobreza sin invertir en ese sector. Muchos de los países donde la agricultura es importante han realizado en el pasado constantes inversiones en ciencia y tecnología agrícolas. Está perfectamente comprobado: la inversión en investigación agrícola para el desarrollo genera crecimiento agrícola y reduce la pobreza.La investigación agrícola para el desarrollo ha demostrado su capacidad de conseguir resultados. La ciencia que hizo posible la Revolución Verde de los años sesenta y setenta se debió en buena medida a los asociados y centros de investigación del CGIAR. La labor de los científicos no sólo aumentó los ingresos de los pequeños agricultores, sino que también hizo posible la conservación de millones de hectáreas de bosque y pastizales, lo que contribuyó a conservar la biodiversidad y a reducir las emisiones de carbono en la atmósfera. El programa de investigación del CGIAR es dinámico, flexible y atento a los nuevos desafíos del desarrollo. La cartera de investigaciones ha evolucionado, y la atención ya no se centra, como en un comienzo, en el aumento de la producción de cultivos concretos. El enfoque actual reconoce que la investigación sobre el medio ambiente y la biodiversidad son componentes clave en el intento de aumentar la productividad agrícola sostenible. Nuestra fe en los principios básicos continúa siendo tan sólida como siempre: el crecimiento agrícola y el aumento de la productividad agraria en los países en desarrollo generan riqueza, reducen la pobreza y el hambre y protegen el medio ambiente (véase el gráfico Evolución del programa de investigaciones del CGIAR).Entre los logros recientes más destacados del CGIAR cabe mencionar los siguientes:Maíz de calidad con alto contenido proteínico, tipo de maíz más nutritivo que puede representar una mejora para la salud humana. Este maíz se está plantando en un millón de hectáreas en 20 países. Los nuevos arroces para África (o NERICA, de su nombre en inglés \"New Rices for Africa\"), están transformando la agricultura en la región del África occidental. Se estima que en 2003 se sembraron arroces de este tipo en 23.000 hectáreas, y su uso se está extendiendo en toda África. En especial, se sembraron 6.000 hectáreas en Uganda. Sólo en Guinea, el arroz NERICA permitió un ahorro de aproximadamente US$13 millones en concepto de gastos de importación de arroz.EL GRUPO CONSULTIVO Alianza Estratégica para el Siglo XXI La Investigación Científica de Vanguardia, Base del Futuro Rehabilitación de la agricultura en Afganistán: se ha implementado un importante programa de abastecimiento y distribución de semillas, y se está proporcionando asistencia técnica para reconstruir el sistema agrícola devastado por sucesivos años de guerras, conflictos y sequías. Técnicas de acuicultura/agricultura integradas, que dan lugar a un aumento de la producción de arroz y pescado en Asia mediante nuevas variedades de tilapia, cuya tasa de crecimiento es 60% superior. Capacitación de más de 75.000 científicos e investigadores de países en desarrollo.Reducción del uso de plaguicidas en los países en desarrollo mediante la gestión integrada de plagas y los métodos de control biológico. Adopción de prácticas agrícolas con escasa o nula labranza en África y Asia, lo que permite reducir la erosión de los suelos y multiplicar tanto los ingresos como la productividad agrícola. Capacitación de los productores africanos para que puedan acceder a los mercados internacionales del guandú. Iniciativas de agrosilvicultura en colaboración con organizaciones comunitarias de Asia y África. Los investigadores del CGIAR recibieron el Premio Anual Mundial de la Alimentación durante cuatro años en los pasados cinco años.A pesar de estos éxitos, el futuro presenta enormes desafíos. Se prevé que la población mundial alcance los 9.000 millones de habitantes para 2050 y que, en un período de tiempo semejante, la demanda de alimentos se duplique con creces. Aproximadamente el 30% de las tierras de regadío están ya degradadas, y la utilización del agua aumentará un 50% en los próximos 30 años. Las soluciones de base científica para sustentar los aumentos de la productividad al mismo tiempo que se protegen los ecosistemas son fundamentales para resolver esos desafíos.Aumentar la productividad sostenible, intensificar las asociaciones que promuevan la ciencia y el desarrollo, y proteger el medio ambienteEl CGIAR se creó en 1971. Hoy, más de 7.600 científicos y funcionarios del Grupo trabajan en más de 100 países. El CGIAR se ocupa de todos los componentes importantes del sector agrícola, en particular la agrosilvicultura, la biodiversidad, los alimentos, los cultivos forrajeros y arbóreos, las técnicas agrícolas favorables al medio ambiente, la pesca, la silvicultura, la ganadería, las políticas alimentarias y los servicios de investigación agrícola. Trece de los 15 centros tienen su sede en países en desarrollo. África es un objetivo prioritario para el CGIAR. Las asociaciones del CGIAR en favor de la investigación ayudan a alcanzar los objetivos de desarrollo del milenio y prestan apoyo a las grandes convenciones y convenios internacionales (biodiversidad, cambio climático y desertificación). Los conocimientos generados por el CGIAR se ponen a disposición de todos.El CGIAR tiene cinco prioridades:Producción sostenible (de cultivos, ganado, pesca, bosques y recursos naturales). Fortalecimiento de los sistemas nacionales de investigaciones agrícolas mediante investigaciones conjuntas, el apoyo de las políticas, la capacitación y el intercambio de conocimientos. Mejoramiento del germoplasma (para cultivos prioritarios, ganado, árboles y peces). Recolección de germoplasma (recolectando, clasificando y conservando los recursos genéticos: el CGIAR tiene en depósito una de las mayores colecciones de semillas, que está a disposición de todos los interesados).\"… La defensa de la naturaleza es la defensa de la humanidad\"Octavio Paz, Discurso pronunciado durante el banquete de los Premios NobelPolíticas (fomentando la investigación sobre políticas que tienen importantes repercusiones en la agricultura, la alimentación, la salud, la difusión de nuevas tecnologías y la gestión y conservación de los recursos naturales).Importantes reformas concebidas con el fin de contribuir al desarrollo de la ciencia, ampliar la alianza, racionalizar el sistema de gobierno y multiplicar los efectos están ganando terreno y produciendo beneficios. La innovadora iniciativa \"Programas de reto\" tiene como objetivo abordar cuestiones de alcance mundial y regional de gran importancia, como la lucha contra la carencia de micronutrientes que afecta a más de 3.000 millones de personas, y resolver el problema de la escasez de agua mejorando la eficiencia con que se la utiliza en la agricultura. Los Programas de reto están facilitando la investigación basada en la colaboración y ayudando a movilizar conocimientos, tecnologías y recursos.La alianza del CGIAR está abierta a todos los países y organizaciones que comparten el compromiso con una agenda común de investigación para el desarrollo y que están dispuestos a brindar apoyo financiero y a invertir recursos humanos y técnicos. Desde el año 2002, se han sumado a la alianza cinco nuevos miembros, y el número de participantes tiende a aumentar aún más.En 2003, los miembros del CGIAR aportaron aproximadamente US$381 millones, que representaron la mayor inversión de bienes públicos para movilizar la ciencia en beneficio de las comunidades agrícolas pobres de todo el mundo. .Evolución del programa de investigaciones del CGIAR 10","tokenCount":"3336"} \ No newline at end of file diff --git a/data/part_3/2174391379.json b/data/part_3/2174391379.json new file mode 100644 index 0000000000000000000000000000000000000000..74eadaecfad9d9744687e374f474b0080671591e --- /dev/null +++ b/data/part_3/2174391379.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"af5c7e071c99d925f14b4a73942be60a","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/da6c8453-a630-4afe-a91b-f7e45c5d4838/retrieve","id":"717598788"},"keywords":["adopción","forrajes","ganadería","análisis cualitativo","innovación"],"sieverID":"415f2a0a-12bf-4135-b100-d278554f2c37","pagecount":"14","content":"La creciente preocupación por el impacto ambiental negativo de las prácticas agrícolas y pecuarias, y la necesidad de aumentar el nivel de producción a largo plazo para suplir la demanda de alimentos y adaptarse al cambio climático, ha llevado a que las instituciones encargadas en la generación y transferencia de tecnología desarrollen y promuevan alternativas de producción más sostenibles. Para que estas intervenciones sean más eficaces, es necesario comprender lo que induce a un productor a cambiar sus prácticas convencionales a las nuevas tecnologías.La adopción de estas tecnologías depende de múltiples factores, independientemente de los beneficios potenciales. Algunos de ellos están asociados a problemas técnicoproductivos que facilitan o limitan la adopción; otros están vinculados a las características tanto de los productores como de su entorno. Por lo cual, comprender el papel que juegan los distintos factores en el proceso de adopción de tecnologías, es central para diseñar mejores políticas y/o estrategias, que reduzcan tanto los costos de transacción como los riesgos que enfrentan los productores al momento de tomar decisiones sobre la adopción de nuevas tecnologías.El proceso de adopción ha sido ampliamente analizado en la literatura, donde se han identificado una serie de factores que influyen en la adopción de una nueva tecnología en el sector rural. Dentro estos se encuentran: factores externos (e.g. sociales, económicos, políticos ambientales) (Valencia, 2012), factores asociados con la aversión al riesgo, incertidumbre (Delgado, 2009;Valencia, 2012), capital financiero y restricciones de acceso al crédito (Alonzo, Ibrahim, & Prins, 2001;Chi & Yamada, 2002;Delgado, 2009;Forero, Rojas, & Argüelles, 2013;Kinyangi, 2014;Mahecha, 2003;Valencia, 2012), nivel educativo, edad, género (Chi & Yamada, 2002;Kinyangi, 2014;Rojas, 2008;Souza, Cyphers, & Phipps, 1993), tamaño de la unidad productiva (Delgado, 2009;Rojas, 2008), capacitación, reciprocidad y organización comunitaria (capital social) (Forero et al., 2013), abastecimiento de insumos, disponibilidad de capital de trabajo, (Delgado, 2009) y, bajo conocimiento y entrenamiento (Chi & Yamada, 2002;Kinyangi, 2014).No obstante, la literatura también reconoce que los procesos de adopción de nuevas tecnologías son más complejos y dinámicos, y debe tener en cuenta el contexto especifico donde se coloca la tecnología y los efectos de los distintos mecanismos sociales (Pignatti, Carli, & Canavari, 2015). Además la tecnología en si misma podría conducir a diferentes enfoques o evaluaciones de los productores. Debido a ello, no solo importan las características de los productores y de su entorno, sino, además, las relaciones sociales que establecen entre ellos y las diferentes percepciones del productor.Por tanto, en el presente documento tiene como objetivo presentar una metodología de análisis de factores de adopción de tecnologías forrajeras, mediante técnicas cualitativas. Este enfoque permite abordar temas complejos como son el estudio de creencias, motivaciones o actitudes de la población, los cuales serían difíciles de abordar por medio de técnicas cuantitativas. A pesar de que sus resultados no se pueden generalizar, el análisis cualitativo permite una comprensión holística del productor primario, y por tanto una mayor profundidad y compresión del fenómeno estudiado.Para la identificación de factores que inhiban o promuevan la adopción de tecnologías, se han adoptado dos enfoques metodológicos cualitativos: entrevistas en profundidad cara a cara y grupos focales con informantes clave seleccionados. Mediante el enfoque cualitativo se busca entender el proceso de adopción desde el punto de vista del sujeto, y se basa en la exploración de comportamientos, actitudes, experiencias y opiniones, tratando de analizar los mecanismos e interacciones entre los factores (Pignatti et al., 2015).De acuerdo a Rogers (2003), se define como nueva tecnología (o innovación) \"una idea, práctica u objeto que se percibe como nuevo por un individuo u otra unidad de adopción\". No obstante, las innovaciones no se perciben de manera equivalente por todos los individuos o las unidades de análisis. De este modo, las características de la innovación, o atributos percibidos por los individuos, ayudan a explicar las diferentes tasas de adopción; estas son: ventaja relativa, compatibilidad, complejidad, experimentalidad y observabilidad (Rogers, 2003: p.17).La adopción (uso) de tecnologías o innovaciones se define como un proceso de múltiples etapas, el cual se ve influenciado por antecedentes propios del entorno en donde se va a implementar la innovación, y que resulta en la decisión de adoptar o rechazar una innovación. Siguiendo con Rogers (2003), el proceso de decisión de innovación se divide en cinco ( 5) etapas (Figura 1), a través de las cuales se manifiestan las cinco características perceptibles de la innovación.Figura 1. Etapas del proceso de adopción de innovaciones. FUENTE: Rogers (2003) Figura 2. Proceso metodológico de análisis. FUENTE: Tomado de Grotz (2014) El objetivo de este marco de análisis es proporcionar una visión general completa del contexto situacional y de las innovaciones o tecnologías que pueden ayudar a explicar la probabilidad de adopción en el lugar donde se desea implementar. El modelo de análisis que ha desarrollado Grotz (2014), tiene en cuenta todos los aspectos relevantes que determinan e influyen en la adopción y difusión de las innovaciones investigadas. La investigación se centra en las decisiones de adopción individuales con respecto a la innovación específica en cuestión, y está orientada hacia el uso de los responsables de la toma de decisiones locales.A continuación se describen las herramientas de análisis cualitativo a utilizar:La entrevista en profundidad sigue el modelo de plática entre iguales, \"encuentros reiterados cara a cara entre el investigador y los informantes\" (Taylor & Bogdan, 1990:101), con el objetivo de comprender las perspectivas que tienen los entrevistados respecto a sus vidas, experiencias o situaciones.A diferencia de un uso de un cuestionario, las preguntas y su orden no se desarrollan por adelantado, sino que se formulan y secuencian durante la entrevista. Esta debe abordar unos tópicos y temas claves definidos anteriormente por el investigador. Respecto al tamaño de la muestra a entrevistar, este se determina mediante un muestreo no aleatorio con un tamaño de muestra pequeño y mediante entrevistas extensas. Como señala Saether (2006), \"si el método cualitativo se toma en serio, el número de entrevistas en sí no es relevante. Lo importante es el tipo de entrevistas, observaciones e interacciones, y lo que el trabajador de campo obtiene de ellas. Esto no pretende ser un argumento contra los rigurosos métodos de trabajo de campo, sino como un argumento para utilizar y reconocer la riqueza del proceso de aprendizaje involucrado en el trabajo de campo. Sobre la base de las múltiples fuentes de aprendizaje, es posible comunicar una historia que será una adición significativa al discurso académico\" (p.55).Para la entrevista profunda se presenta el siguiente cuadro donde se listan los tópicos a abordar, aplicado a productores ganaderos -¿Cuáles son las fases que componen el proceso de adopción? -Fuentes de conocimiento de tecnologías (medios de comunicación, instituciones, otros productores, extensión) -¿Cuáles son los factores relevantes (positivos y negativos) que afectan el proceso de decisión? -La decisión de adopción es individual, en asociación, comunidad. -Esfuerzos de promoción: Durante el proceso de difusión de la tecnología hubo alguna acción para promover la adopción (donación de semillasinsumos-materiales, mayores facilidades de acceso a crédito, asistencia técnica, subsidios) (Pignatti et al., 2015;Rogers, 2003) de las innovaciones tecnológicas.Identificar la percepción de las características de la tecnología sobre la decisión de adopción Ventaja relativa (Grado en que una innovación se percibe como mejor que la idea que reemplaza),Complejidad (Grado en que una innovación es percibida como relativamente difícil de entender y usar).Compatibilidad (La innovación debe estar acorde al contexto y realidad de la sociedad donde se la quiera implantar)Experimentabilidad (la innovación debe tener la capacidad de ser sometidos a prueba antes de ser aprobada o usada)-Impacto en productividad (diferenciales en términos de carga animal, producción de leche o carne, Cantidad y calidad del forraje, comportamiento en temporadas de sequía o lluvia), costos de inversión, riesgos (vulnerabilidad a plagas y enfermedades), clima, asimetría entre costos y beneficios. -Establecimiento de la pastura, manejo y mantenimiento (tiempo aprendizaje, requerimiento de insumos). (Rogers, 2003) Oportunidades y limitaciones Recopilar información sobre las acciones que se deben realiza para incentivar la adopción ¿Cuál es la herramienta más eficiente para motivar la adopción de tecnologías forrajeras por el productor primario? (Pignatti et al., 2015)Los grupos focales son esencialmente una entrevista grupal que permite obtener información sobre un tema, acorde con objetivos previamente establecidos. Se conducen como discusiones abiertas con grupos de entre 6 y 10 personas (actores claves seleccionados previamente) guiadas por un facilitador (Eliot & Associates, 2005).La dinámica del trabajo en los grupos focales posee la particularidad de propiciar exploración mediante la interacción entre los participantes, lo que constituye un elemento central de análisis. En este caso, se pretende generar discusión entre ganaderos y profesionales del sector (heterogeneidad de pensamientos) sobre los tópicos presentados en la tabla 1, así como identificar las herramientas más eficaces en términos de política, que permitan generar mayor nivel de adopción en innovaciones tecnológicas.La sesión de grupo sigue una guía previamente diseñada, la cual se presenta a continuación:-Identificar factores limitantes o motivadores para la adopción de tecnologías forrajeras entre productores adoptantes y no adoptantes.Productores del sector ganadero en la región objetivo (6 o 10 productores) -¿Por qué no han adoptado? (Priorizar factores limitantes y proponer soluciones) 1. A continuación se realizan las siguientes preguntas a los productores: -¿Qué instituciones hacen presencia en la zona? ¿Cuál es su influencia? -¿De qué instituciones han recibido apoyo y como ha sido?-¿Por qué adoptaron las tecnologías forrajeras? -¿Cuáles fueron las circunstancias que facilitaron la adopción? -¿Cuáles fueron las circunstancias que dificultaron la adopción? -¿Cómo afrontaron las dificultades para lograr adoptar? -¿Qué cambios (Manejo,) o beneficios (productividad) han percibido al adoptar las tecnologías forrajeras? -¿Requieren capacitación de algún aspecto de manejo de las tecnologías forrajeras? -¿Qué instituciones hacen presencia en la zona? -¿De qué instituciones han recibido apoyo y como ha sido? -¿Qué dificultades se han presentado en el momento de adquirir la semilla? -¿Tienen planes futuros para aumentar la adopción de las tecnologías? ¿De qué depende esa decisión?Preguntas de Cierre a. Que le recomendaría al CIAT, que comentarios le haría al director del proyecto acerca de este producto.Agradecimiento por la Participación Se les agradece a las personas por su participación y por la calidad de respuestas que se obtuvo en las preguntas.","tokenCount":"1665"} \ No newline at end of file diff --git a/data/part_3/2199590574.json b/data/part_3/2199590574.json new file mode 100644 index 0000000000000000000000000000000000000000..fcd7ebcb085feb7d4dec41f3236086446f102715 --- /dev/null +++ b/data/part_3/2199590574.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"4409b9ab748273b16dcd220953d95300","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/d0f09785-83d3-4b69-ac71-19e1cd8607f9/retrieve","id":"1144964182"},"keywords":[],"sieverID":"4237e097-be50-4775-9be5-413b9339bb76","pagecount":"54","content":"The county spatial planning process typically involves dividing the county into a number of distinct geographic planning units.We would also like to show our gratitude to the representatives of the counties who provided valuable input including: Garissa, Wajir, Marsabit, Isiolo, Samburu, Turkana, Moyale, and Tana River. A County Spatial Plan (CSP) is a holistic plan that establishes the vision for a county's development, and lays out a strategy for addressing emerging opportunities and challenges in the county. As the premier plan setting the development agenda of a county, it helps to protect and guide the development of land and natural resources and to align county financial and institutional resources to agreed policy objectives and programs for the entire county.This Annex is an aid that will bring the dynamics of rangelands and pastoralism into the county spatial planning process. The Annex, accompanied by the toolkits, will help to demystify spatial planning by providing practical guidance on carrying out county spatial planning successfully in pastoral areas.In much of Kenya, pastoralism or agro-pastoralism is the dominant livelihood. Rangelands, which cover more than three quarters of the country, can be defined as land on which the native vegetation is predominantly grasses, grass-like plants, forbs, or shrubs. Rangelands are managed as natural ecosystems through ecological rather than agronomic methods.These areas make a critical contribution to the national economy.Recent estimates suggest that there are 17 million cattle, 17 million sheep, 27 million goats and three million camels in Kenya, the majority are found in pastoral rangelands. The livestock sector employs about 50% of the agricultural workforce and about 90% of the workforce in the arid and semi-arid lands (ASALs) . As the key resource for this production, pastoral rangeland systems require protection.In recent years however, rangelands and pastoralist livelihoods have come under increasing pressure from conflicting land uses, poor land tenure security, lack of investment in livestock production, and increasing frequency of drought. Movement between grazing areas, water points, and markets is a crucial aspect of the production system in pastoral areas and of strategies for realizing the economic potential of rangelands. Various factors, however, have increasingly constrained mobility. Good land use planning at different levels can help ensure that pastoral resources are protected, and their use optimised for local and national economic gain. To support livestock production and pastoralism, counties where pastoralism is prominent will need to take particular steps in the county spatial planning process in order to reconcile land use competition and conflicts, facilitate mobility, protect key resources, strategically guide investment opportunities towards livestock production and marketing, and improve rangeland management.1.2.2 SPATIAL PLANNING AND UNIQUE NATURE OF PASTORAL AREAS Spatial planning in pastoral areas, however, can be complex and challenging. In order to rise to these challenges, the planning process must be well thoughtout. Firstly, there is a need to understand the variety of interconnected sociocultural, economic, political, ecological and climatic factors that affect rangelands and pastoralism. Secondly, the diversity of stakeholders with multiple and often overlapping or even conflicting interests means that a process of meaningful and profound participation and deliberation is needed. Thirdly, competing land uses, which have increased in the recent past, require negotiation. Different layers of use, including primary, secondary and tertiary use need agreement and documentation.The spatial planning process, moreover, requires a systematic approach to ensuring that marginalised groups are included in decision-making processes in a fair and equitable manner. Infrastructure development and other associated investments need to be strategically located in order not to disturb but rather to support indigenous production systems including livestock production. Spatial planning should result in proximate and equitable public service provision to often dispersed and sometimes mobile population. The CSP will also need to accommodate the variable distribution of key pastoral resources across the county through the facilitation of mobility and resource-sharing agreements. Decision-making and management bodies may need to be established to improve the implementation of the plan. Monitoring and evaluation will require both assessment by community members and technical analysis. The task of spatial planning in pastoral areas is complex and challenging, but the potential reward is great. CSPs can help to protect the land-based resources that livestock production depends upon, as well as strategically guiding investments for development of the livestock sector in pastoral areas. Well-targeted investment can build on pastoral systems to improve management practices and increase the health and productivity of the land and livestock. A well-crafted county spatial planning process can be a critical part of the development of pastoral areas.This document gives guidance for county spatial planning in pastoral areas and is targeted at County Planning Teams and any consultants who are contracted to support the spatial planning process. However, other stakeholders may find this document and accompanying toolkits useful for facilitating spatial planning process in pastoral areas. The African Union has developed two important policy frameworks towards secure land and resource tenure rights. The Framework and Guidelines on Land Policy calls on member states to take steps to protect grasslands and pastoralist ecosystems . The Policy Framework for Pastoralism in Africa is a continent-wide policy initiative seeking to secure, protect and improve the lives, livelihoods, and rights of African pastoralists. Also relevant is the Voluntary Guidelines on the Responsible Governance of Tenure of Lands, Fisheries and Forests in the Context of National Food Security produced by the Food and Agriculture Organization of the United Nations 5 . It calls on states to implement spatial planning. It also calls for the needs of pastoralists to be taken into account. The Voluntary Guidelines are accompanied by a Technical Guide on Improving Governance of Pastoral Lands, which also emphasizes the role that land use planning can play in effective governance of rangelands that:Planning and management of pastoralist rangelands take on different forms in different places. Allow for diverse approaches and incorporating formal and traditional institutions and systems.Pastoralist and agro-pastoralist communities often have management systems that are a form of traditional land use planning.Pastoralist production systems have unique characteristics and planning must adapt to those characteristics.\"Although human population densities in grasslands and pastoral ecosystems remain relatively low when compared to the medium and high potential agricultural areas, and urban settlements, these ecosystems typically support a vast amount of livestock and wildlife resources which contribute significantly to the economies of many countries. Today, these ecosystems are under threat from several factors, including creeping desertification resulting from global climate change, invasion by agricultural communities and a long tradition of neglect in the national development policies of many countries. As a result the valuable contribution of grasslands and pastoral ecosystems to economies including as reservoirs for wildlife and biodiversity is slowly receding. This is often exacerbated by outmoded stock management and environmental practices. The protection of pastoral ecosystems will require policies that address issues of tenure security, the role of pastoral communities in pastoral management, guarantee equal access to pastoral resources for women, establish processes for the resolution of cross-boundary disputes, and improve technologies of resource use.\"In pastoralist settings, there is a need to plan at multiple levels.It is very important for the county spatial planning process that existing community organizations and traditional management systems, territorial demarcations, and dispute resolution mechanisms are well understood. This diversity of local institutions, approaches, and traditions of planning and management must be taken into account in county spatial planning, and the process adapted to local conditions.More formal community organizations and governance mechanisms such as natural resource management committees, WRUAs, or community conservancies may also have land use or grazing plans. Similarly, it is expected that communities that will be registered under the Community Land Act (No. 27 of 2016) may develop land use and grazing plans for their community land. The participation process for developing a CSP can be designed so that customary institutions and community organizations are partners in the planning process. Rather than only involving elders as \"participants\", the planning process can engage with these community and customary institutions as institutions, linking theirTraditional systems for managing rangelands have been around since before the colonial period, and in many parts of the county these traditional systems prevail to this day. Around the country, they take on different forms based on differing cultural practices and social institutions, and on different climatic and resource characteristics. Some pastoralist communities have detailed systems of territories and decision-making for these territories at different levels. For others, clans are central to traditional decisionmaking. It should also be noted that pastoralist communities in the most arid regions have tended to put much less emphasis on managing clear boundaries and controlling who could access which pastures, than did communities in semi-arid areas. Instead, resources tend to be managed through inclusion rather than exclusion. As well, many of the pastoralists from the arid areas more commonly manage their rangelands indirectly by carefully managing water points rather than the land itself.decision-making processes to the spatial planning process The CSP can play an important role in recognizing and giving legal weight to planning that communities have already done. Adapting the process to different settings may mean, for instance, that different types of consultative processes are needed in different places and that different zoning categories are needed by different counties.It is also important to note that most rangeland areas in Kenya are on Community Land, which means land that belongs to communities and is managed by them. Many aspects of community plans will need to be updated and revised more often than County Spatial Plans are meant to be done. CSPs can, however, be used to validate and give legal weight to mechanisms such as inter-community agreements about protected pastures and stock routes. In designing the public participation and stakeholder engagement strategies for the planning process, it is important to ensure that the process takes account of diverse types of planning and negotiation that have already taken place, as well as to engage with communities so that community planning and county spatial planning can move forward harmoniously.It is very common for pastoralist and agro-pastoralist communities in Kenya to have systems guiding how different areas of land will and will not be used. These systems often involve a form of land use planning even if they are not formally described as such.Some pastoralist communities are organized in group ranches. In recent years, the community conservancies approach has emerged, driven by objectives around wildlife conservation and the development of livelihoods and economic incentives, especially through tourism. In some cases, the community conservancies are made up of one or more group ranches. In other places, community-based natural resource management (CBNRM) committees have been established, often with strong involvement of traditional leaders, sometimes resulting in the creation of a hybrid traditional-modern system. Some Water Resource Users Associations (WRUAs) in the drylands engage in grazing and pasture management as a key element of their strategy for watershed management. Another, very different approach, which is common in the north-western part of Kenya, pays less attention to establishing and strengthening community rangeland management organizations, and focuses instead on establishing inter-community grazing agreements.If customary institutions can be involved in the process as institutions in a genuine partnership, this can leverage the respect that these institutions often have in pastoral communities, turning that respect into a resource for successful implementation of the plan.Traditional land and natural resource management systems often have a variety of categories of land tenure (land to which individual households have use rights, communal land for the local community, land shared amongst more than one community, etc.), and various categories of land use (community enclosures for \"milk herds\" near the settlement, rainy season grazing areas, dry season grazing areas, drought reserve areas, no-go areas set aside for rehabilitation, sacred sites protected from normal use for conservation and cultural practices, etc.). These are rarely, if ever, written down.Pastoralist systems in Kenya's rangelands are adapted to conditions where rainfall is scarce and highly variable. Pastoralist mobility is an ecologically appropriate and economically rational adaptation to these conditions. The implications of this for county spatial planning are summarized as follows: Mobility is the linchpin of livestock production in the Pastoral Areas, including mobility for accessing pasture, water and mineral resources, for accessing markets, and for accessing services. The CSP must facilitate mobility, both regular and irregular (e.g., in time of drought). Pastoralist communities have deep indigenous knowledge of range ecology and conditions, as well as insights into what rules, institutions, investments, and other interventions will and will not work. A participatory approach, therefore, is needed. Pastoralists have methods for collective decision-making and systems for managing resources. The spatial plan should facilitate community management and decision-making systems.The size of the Planning Areas* and of zoned areas needs to reflect the pastoral use of the land and take a landscape perspective. Fragmentation of the rangelands must be avoided. Settlement planning, for instance, should be done in a way that does not break up rangelands and block migration routes. The development of settlements, infrastructure, and services should support the pastoral production system. The development of new settlements and services such as schools, clinics and water points can contribute to excessive growth of settlements in grazing areas, and lead to areas which formerly were grazed only on a seasonal basis now being grazed permanently. Spatial planning can help ensure that the development supports mobile livestock production rather than undermining it. Plans should take into account multiple use of certain areas: for example, livestock production together with wildlife conservation, together with harvesting of non-timber forest products, together with harvesting of honey, gums and resins, and together with cropping.The county spatial planning process must look beyond administrative boundaries. Ecosystem, watershed and other biophysical boundaries cut across ward, county and even international boundaries, and thus so too do the challenges and opportunities that people face. The kinds of territories that are meaningful to resource using communities can also cut across administrative boundaries. Each of these scales-administrative, biophysical and community-has its own set of levels that must be considered in the planning process (see Figure 2.1). This is particularly true in pastoral areas, where the use of land and other resources is something which takes place at multiple levels. There are many pastures and water points that are used on a daily basis by some herders, and only on seasonal basis by some others, and even less frequently-such as during droughts-by others. Systems of management are similarly multi-level. Not only do livestock-keeping communities have methods of planning at the local, community level; they also often have systems of management and negotiation at larger scales from the inter-community level all the way up to very large rangeland landscapes. In pastoral and agro-pastoral areas, County Spatial Planning too should be done at various levels and must also take into account and coordinate with planning done at lower (e.g., community) and higher (e.g., inter-county, national, and transboundary) levels.The planning done at each level informs, and is informed by, planning done at lower and higher levels. For instance, communities may have agreed that certain areas are stock routes or shared drought reserve pastures.The planning process for a particular Planning Area within a County may designate these areas as special zones to be protected. However, this needs to be checked against lower level plans such as community grazing plans, as well as broader county-wide plans. Sometimes the suggested zoning at one level may be inconsistent with the draft plan at another level. Bringing the suggested plans at the different levels into harmony can seldom be done through one single public participation or stakeholder engagement activity at each level-instead, these parts of the planning process need to move back and forth between the levels as plans from the different levels are examined, validated and revised, as depicted in Figure 2.2. This implies, too, that spatial planning is needed at other levels such as between counties-inter-county spatial planning-and even internationally with trans-boundary spatial planning. For inter-county spatial planning, this may be facilitated when counties harmonize their approaches and the timing of the planning cycles. The planning team should actively work toward synergizing the county spatial planning process with ecosystem planning and watershed management planning. The sharing of information and data with other counties and with other agencies will be a critical aspect of this kind of synergistic planning.PART 2County spatial planning has nine main steps, which are outlined in the Monitoring and Oversight Guidelines:These steps apply to the entire county spatial planning process as it is carried out in relation to all issues and sectors. The sections that follow describe particular considerations for implementing Steps One through Six in pastoral areas.The Pre-Planning Step-involves scoping, reconnaissance and identification of stakeholders, among other activities.One of the outputs of a reconnaissance survey is a recommendation of how the county will be divided into geographic Planning Areas. Some aspects of county spatial planning will involve analysis, mapping and planning at a countywide scale. Much of it, however, will take place at lower levels in distinct Planning Areas within the county. Not every task will be completed at the same time for every part of the county; instead, some tasks will proceed in a step-wise fashion in different Planning Areas, eventually to be brought together at county level. Therefore, a key task in the Pre-Planning phase of county spatial planning is to identify Planning Areas.In some cases, a county may simply choose to use its sub-counties as the Planning Areas. the level of large landscapes, and may even have some sort of land use plan, whether or not such a plan is formally documented or is called a \"land use\" or \"spatial\" plan. Some pastoralist ethnic groups have large, traditionallydefined Planning Areas. These territories seldom correspond to ward, constituency, or sub-county boundaries.Another activity that is part of the Pre-Planning Step is identification and analysis of stakeholders. Some factors to bear in mind in this analysis are: Differences in herd composition. For instance, the challenges and opportunities of pastoralists who emphasize keeping cattle, are different from those who primarily keep camels, and different again from households who primarily have small stock. Ethnicity and social structure. Traditional institutions, customs, and social structure differ between, and sometimes even within, different ethnic groups. Simply including a category of \"elders\" in a stakeholder analysis is often a great oversimplification. Different kinds of local organizations. There are a wide variety of local organizations involved in managing rangelands, water resources, and herd movements, and also a different mix of organizations in different places. Depending on the particular location, community conservancies, grazing committees, Water Resource Users Associations, and/or traditional organizations may be important. Some of the interests, challenges and opportunities of women are different from those of men. For example, it is often women who manage the milk animals. They may see the management of pastures close to settlements and to the water points that are used by milk herds as being more important than do men. The importance of youth. The gradual breakdown of the authority of elders in some places makes participation by youth very important for the success of the plan.Step Two in the county spatial planning process is Visioning and Objective Setting. Some considerations for this step in pastoral areas are:The long-term past as well as the long-term future. The very gradual change in the condition of some landscapes, for example through creeping bush encroachment or soil degradation, can result in \"a shifting baseline\" as people's expectations are constrained by what they know through their own observation. At least some of these areas, through careful management and rehabilitation, might be returned to their former condition. Part of visioning, in other words, involves helping stakeholders to understand not only what could be, but also what was.The need for drought preparedness. Developing a vision is not only about \"blue-sky thinking\"-drought is a way of life in Kenya's Pastoral Areas and the vision and objectives for the CSP should incorporate strategies for coping with the effects of drought. How to build on pastoralism. Many features of pastoralist practices are ecologically appropriate and economically rational adaptations to the climatic variability of Kenya's rangelands. A vision for the future should build on those positive features of pastoralism rather than attempting to create a completely new way of life that may not be adapted to the characteristics of pastoral areas.The complexity, challenges and potentials of rangelands have often been misunderstood or ignored in planning processes, and because of lack of understanding rangelands are often undervalued. Therefore, the Research and Mapping and Situation Analysis steps of the county spatial planning process are very important. Livestock-based livelihoods in rangelands are affected by the complex interaction amongst a range of factors: changing norms and values, growing human population, evolving institutions, climate change, changes in vegetation and rangeland condition, land tenure, and conflict, to name a few. Understanding these interactions is key to having a useful situation analysis that can then guide the subsequent steps in the spatial planning process.The County Spatial Planning Monitoring and Oversight Guidelines identify broad thematic areas that will guide data collection. In addition to this, in rangelands there are specific categories of data that need special attention for assessment and understanding of social, environmental and livestock production issues in rangelands. These are described in Table 3.2. For each of these categories, it will be helpful to have not only a snapshot of the current situation but an analysis of historical trends up to the present and possible future projections of demography and climate change.There are various possible methods for collecting the types of data that are needed: Pre-existing data available from previous assessments or other kinds of research or from already existing community plans, Remote sensing and aerial photos, Field surveys, Participatory mapping, and Participatory GIS. The County Spatial Planning process also needs to take account of planning done at lower levels by communities. Many communities may have local land use plans or grazing plans. Grazing committees, WRUAs, community conservancies or other types of community organizations may have identified different pastures for different seasons or for particular uses. They may have identified certain areas as being temporarily protected (e.g., pastures being rested for rehabilitation) or permanently protected (e.g., sacred sites only accessible to livestock for particular cultural ceremonies, or core conservation areas in conservancies). The county spatial planning process should be aware of these community plans. Among the tasks in the Research and Mapping and Situation Analysis steps, therefore, are to identify which communities do have some kind of land use plan and collect maps and other information about those plans.The issue of how the county spatial planning process relates to community level land use planning is described in more detail in Section 4.0.In rangelands, analysis of the kinds of information listed above should contribute to understanding in four areas:The role that particular parcels of land play in the broader landscape, in ecosystems, and in livelihoods;The interconnections between land use, biophysical characteristics, and tenure and social organization;How the dynamics in rangelands relate to other thematic areas and sectors such as infrastructure,Outputs of the Research and Mapping and Situation Analysis steps of the county spatial planning process include:For pastoral areas, these outputs involve one or more composite rangeland thematic maps, a thematic rangelands or pastoralism section in the situation analysis report, and the kinds of data described above for the GIS database.After the Research and Mapping and Situation Analysis steps, the process moves on to formulating elements of the plans. Informed by careful analysis and meaningful public participation, alternative plan scenarios are developed.In most of Kenya's rangeland counties, where water and pasture resources are limited and unreliable, livestock production has a comparative advantage over crop agriculture. Herd mobility is the pivotal strategy that pastoralists use: adaptively moving livestock in response to the changing availability of resources. To harness this comparative advantage, these key features of pastoral rangeland systems-the resource scarcity, the variability, and mobility-need to be considered in plans. The development of alternative plan scenarios must take at least four key considerations into account: How to protect and conserve key resources such as drought reserves, stock routes, wildlife dispersal areas, migration corridors, wildlife breeding areas and cultural heritage sites;How to provide services and infrastructure that are adapted to the pastoral context;How to relate livestock production and pastoralist livelihoods to other dimensions of the spatial plan, including achieving balance among sectors such as infrastructure, urban development, mining, industry, agriculture, and livestock production and rangelands; andHow to support the growth and development of the livestock sector.First, plan scenarios must consider the protection, sustainable use, and management of pastureland and other rangeland resources. Scenarios may include elements such as protection and improvement of livestock routes, and zoning of drought reserve areas for protection from settlement and other forms of development.Second, plan scenarios should address the provision of services and infrastructure to people whose livelihoods require mobility. The mobile nature of livestock production in pastoral areas has often challenged the delivery of services such as medical care, education, financial services, communication infrastructure, and so on. The CSP must consider how such services and infrastructure can reach the entire population.Third, planning for rangelands and pastoral livelihoods needs to be integrated with planning for other issues and sectors. The aim is to develop a holistic, all-inclusive CSP that integrates components of infrastructure, urban growth and development, mining, conservation, livestock production and crop agriculture, as well as rangelands (Figure 3.3). To ensure that the pastoralist livestock production system is adequately accounted for, the spatial plan must address questions such as where provision of new infrastructure or other developments should not happen: for example, development of new water points or creation of new settlements in rainy season pasture areas that would disrupt grazing patterns. Plan scenarios can also involve identifying zones for multiple and integrated land uses such as integrated conservation and livestock grazing activities, dual-purpose livestock-wildlife migration corridors, and provision for the location of tourist facilities and road development.Fourth, the spatial plan can do more than simply protect rangeland resources; it should also be forward looking. Different plan scenarios should include options such as prioritizing sites for the development of pasture areas for finishing of livestock, and auxiliary services such as cattle dips, holding areas, quarantine facilities, and veterinary stations. Many of these are best located along livestock routes or close to livestock markets.All three of these elements are considered in light of a strong understanding of the economic, social, demographic, climatic and other factors that are driving the transformation of many pastoralist communities. While zoning can help to protect rangeland resources, great care must be taken in designing and applying zoning schemes. Land in pastoral areas can serve multiple purposes. Some areas, for instance, may be used for both grazing and cropping. It is also important to note that the community institutions that plan and manage grazing systems and carry out management of rangelands often need to adjust their plans on an ongoing bases, so excessive rigidity in zoning is to be avoided. Rules and guidelines will need to be developed for any zoning scheme, and balance needs to be struck between effective protection of key rangeland resources through zoning and flexibility that recognizes multiple use and the needs of communities to adjust their plans.One way to approach these issues is to understand that the kinds of zoning activities that a community may do is different than, but connected to, the zoning done in a CSP. The zoning done for rangeland areas in county spatial planning is less detailed than a community's local zoning. For instance, a broad zoning category such as \"community planned grazing area\" could be applied to all of a community's different pasture management categories. Each community, within its \"community planned grazing area\", would have its own more detailed zones and plans.A few suggested zoning categories relevant to pastoralist rangelands which a County Government might include in its zoning scheme are described in Table . These are in addition to other zoning categories that might apply to areas designated for the large-scale agricultural investment, for wildlife conservation, etc.32 Table 3.2 -Suggested Zoning Categories Relevant to Pastoral AreasLand that is recognized as Community Land and designated by the community as a grazing area. Communities may, themselves, subcategorize their grazing areas into dry season pastures, rainy season pastures, community enclosures, pastures identified for particular livestock species, etc.Special pasture areas designated as shared among multiple communities. This would include inter-community drought reserve pastures, including pastures accessed by herders across county boundaries.Areas designated as migration corridors, protected from use for cultivation or for other developments other than approved livestockrelated services.Areas designated as being available for either farming or grazing.Areas designated for the development of fodder production.Areas prioritized for development of the livestock economy, including livestock markets, holding pastures near to markets or abattoirs, and livestock services such as dipping stations.Areas designated for use both for wildlife conservation and for grazing by livestock.Areas of critical importance for the protection of wildlife and fragile ecosystems. These may or may not already have protected status as parks or reserves.In addition to other land use zoning categories used in CSPs, the above are zoning categories that can be used in pastoral areas.The Community Land Act, No. 27 of 2016 vests primary responsibility for land use planning at community level with communities. The Act recognizes that communities may develop land use plans for community land administered by them and that these plans will be informed by the County Spatial Plan and may be submitted to the county government for approval (Section 19). It also recognizes that communities may develop rotational grazing systems or other kinds of grazing plans and have the right to designate portions of community land as grazing areas for which certain activities such as erection of structures, ploughing and cultivation, or restricting access to water sources may be proscribed (Section 28).Many communities, whether or not they have yet been registered under the Community Land Act, already engage in land use planning and spatial grazing planning at their level. As implementation of the Community Land Act, including demarcation and registration of communities, will take some time, community level land use or grazing plans developed by other community mechanisms such as WRUAs, local grazing committees, or community conservancies should also be recognized by the county spatial planning process.Often the precise details of these kinds of community land use and grazing plans may be adjusted from year to year. The spatial distribution of rainfall, changes in grazing pressure, or the success or failure of pasture management interventions may necessitate a community changing a portion of land from one category to another. For instance, a section of dry season pasture may be re-designated drought reserve pasture or vice versa, a new area may be identified for a community enclosure, etc. Typically, therefore, plans at the community level will be somewhat more flexible and updated more frequently than a CSP.The county spatial planning process has three roles in relation to community level land use and grazing plans:Helping to protect community rangeland resources from inappropriate capture and conversion to other uses. Synchronizing community plans with the planning that takes place at inter-community, large landscape and county level through the county spatial planning process. Providing a broader plan upon which approval of community land use plans can be based as per the Community Land Act, Section 19.","tokenCount":"5196"} \ No newline at end of file diff --git a/data/part_3/2228623607.json b/data/part_3/2228623607.json new file mode 100644 index 0000000000000000000000000000000000000000..5572897a51edcf8adf00d38305709aaa13b6aa40 --- /dev/null +++ b/data/part_3/2228623607.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"3005afc2f399a6f1628a1232f4a8fb63","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/0823f437-f19e-40e6-89e6-9e5c2661780d/retrieve","id":"-410607662"},"keywords":[],"sieverID":"baf1eb03-e806-4132-98ee-0122a9b05bad","pagecount":"6","content":"The Africa Research In Sustainable Intensification for the Next Generation (Africa RISING) program comprises three research-for-development projects supported by the United States Agency for International Development as part of the U.S. government's Feed the Future initiative.Through action research and development partnerships, Africa RISING will create opportunities for smallholder farm households to move out of hunger and poverty through sustainably intensified farming systems that improve food, nutrition, and income security, particularly for women and children, and conserve or enhance the natural resource base.The three projects are led by the International Institute of Tropical Agriculture (in West Africa and East and Southern Africa) and the International Livestock Research Institute (in the Ethiopian Highlands). The International Food Policy Research Institute leads an associated project on monitoring, evaluation and impact assessment.This document is licensed for use under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported LicenseThe objective of this proposal was to review, test and provide a package of outputs that together will better define areas of priority where gains in crop and livestock productivity to reduce poverty could be brought about. Testing and identification of increased water use efficiency, greater/better use of water storage structures and opportunities and constraints for interventions will ultimately support and promote sustainable development goals within Ethiopia where this research is proposed.The outputs from the project were planned to be: a) a review document detailing the opportunities for developing indicators of water use, water constrained agriculture and water vulnerable agricultural and b) a series maps showing where particular regions have specific opportunities or constraints from water use and management in relation to reducing poverty through better targeting of agricultural practices. Together these would provide a proof of concept identifying the opportunities and constraints for better targeting of agricultural water planning and targeting and further development in the full Africa RISING program.The activities to generate these outputs were proposed to consist of a review of previous and existing work on water indicators from a mixture of biophysical and a poverty/socio-economic stand points. Further analysis of existing mapped and GIS products would be used within Ethiopia to generate a series of indicators. Finally, to test and validate the indicators and maps a series of discussions and interviews with experts and different stakeholders would be undertaken.This work was undertaken by a consortium of researchers drawn from centers of agricultural water expertise in Ethiopia and internationally. Namely the contributors are IWMI, East Africa and Nile Office based in Addis Ababa, ILRI, Bahir Dar and Arba Minch universities.The specific responsibilities of these partners were: IWMI led the project and undertook research coordination, inputs to the literature review, trajectory development, data collation, leading report writing and financial management. ILRI led much of the spatial analysis and co-partnered the research development and contributed to the literature review and report writing. Bahir Dar and Arba Minch universities attended 2 days introduction and training on the use of the GIS toolbox. Subsequently they set up, ran and wrote reports from testing of the toolbox/GIS with a range of stakeholders in the north and south of the country respectively. They also attended the national workshop meeting.The research undertook a literature review of policies, initiatives and policies promoting agricultural intensification. From this review as well as regional and national consultations, eight trajectories of change, which combine a number of practices to achieve different objectives were identified and developed. These trajectories recognize a number of local spatially variable potential opportunities, limitations, existing livelihood and social conditions. To assess the suitability of these trajectories a number of indicators have been applied to evaluate the suitability of a practice, combinations of practices, and the likelihood of their adoption by farmers. For each trajectory a number of spatially explicit indicators (1 to a maximum of 5) were selected. The final product from this development and analysis is a set of maps of suitability.Collectively these elements provide a toolbox for targeting and prioritizing future land use interventions to reduce poverty and improve livelihoods at a landscape scale. To test the proof of concept of the approach we tested the toolbox through two pilot workshops with Ethiopian university researchers and regional policy staff in which the work was described and participants engaged in practical use of the toolbox to test it. From these, comments on the use and applicability of the approach were gathered. These comments will help focus the work if there is a subsequent call for development and incorporation into the wider second phase of Africa RISING.The GIS tool, maps and trajectory tool box are available, together with all of the project materials, from the Africa RISING wiki: http://africa-rising.wikispaces.com/Quick+waterThe research provides a transparent and objective approach to evaluating different options for agricultural intensification. The approach can be utilized by a range of end users and stakeholders without extensive training. The approach is flexible enough to allow further trajectories to be built and evaluated according to user defined indicators. It will therefore allow further analysis and evaluation of differing intensification and implementation of possible future policy options.The research was conducted as a proof of concept covering the whole of Ethiopia. There are options to both scale this up to smaller areas of Ethiopia or to scale-out or scale up to other parts of sub Saharan Africa. The structure of the approach should not need to be fundamentally changed, perhaps some adjustment. As such the proof of concept is robust. The principal constraint will be the scale and availability of the necessary data required to run the approach.Based on our experience of undertaking the research and from testing the work with stakeholders a number of recommendations are suggested to improve the utility of the toolbox.In summary, these are: During all of the consultation meetings the most active topic of discussion was the selection of trajectories, their corresponding indicators and thresholds. A wealth of information and input was provided by participants on the definition of trajectories and locally prioritized development. A number of new potential trajectories were suggested by regional agencies who also requested a more focused development of the toolbox two allow them to test localized development. They also agreed to provide detailed local data for indicators in order to make this possible. This would assist in developing ownership with the national research system and policy advisors/implementation authorities. There was significant interest in the tool and its future use from all of the stakeholders.Future development of the trajectories and tool will need to:1. Allow users to define their own trajectories (potentially from a menu of predefined practices) or sub-trajectories. If the toolbox was 'set-up' for regions this may be one approach to simplify the complications of different zonal statics. 2. Incorporate more indicators -these could also be locally specific. 3. It may be necessary to collect some primary data for indicators depending on prioritized trajectories and availability of local data. For example improving the spatial data sets on existing and future irrigation sites. This is an important activity in general as without good quality spatial data sets it will be difficult to prioritize in a systematic and equitable manner areas in which interventions could be targeted in an objective and transparent manner. 4. In terms of national level developments, further evaluation and refinement or establishment of trajectories and indicators against existing and developing government agricultural policy.For instance the government is currently embarking on a drive to establish A Cleaner, Resilient Green Economy (CRGE) with input from a number of donors. 5. Closer collaboration with regional authorities and planners to incorporate local development priorities. 6. Acquire and improve better spatial data sets to define trajectories and appropriate indicators.In order to begin the process of assessing where a particular development strategy would be biophysically suitable and also likely to be adopted by farmers (on the basis of socio-economic opportunities and constraints), we identified a number of probable trajectories.These trajectories of change, aiming towards intensified productivity, include a number of practices combined to achieve different objectives depending on potential local opportunities, limitations and existing livelihood and social conditions.Having identified an initial range of trajectories we then had to find indicators which could be applied to assess the suitability of a practice, and combinations of practices, and the likelihood of their adoption by farmers.As the final product is a set of maps of suitability, the indicators must be quantitative and spatially distributed.The first map below shows the intensification trajectory and priority livelihood area where rainfed livelihoods could be enhanced. The second map shows the distribution of livelihood zones where the number of different intensification trajectories could be targeted and explored in further detail. ","tokenCount":"1422"} \ No newline at end of file diff --git a/data/part_3/2247127832.json b/data/part_3/2247127832.json new file mode 100644 index 0000000000000000000000000000000000000000..efde0be5ac76b2bed86cafbbde77eb7d8149616c --- /dev/null +++ b/data/part_3/2247127832.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"df98055828e554081f643cb973b19a2e","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/8d58e1b8-2c80-4b7f-b19a-b1fbefe20e04/retrieve","id":"2077107327"},"keywords":[],"sieverID":"9f0c3353-b729-436f-baab-8d094a9731c1","pagecount":"11","content":"Estela Isabel Escobar Arias 36 • Raúl Ruiz 37 • Luis MaldonadoLos departamentos de Bolívar, Sucre y Córdoba se encuentran en la región Caribe colombiana. Las principales actividades económicas son la ganadería y el cultivo de la yuca, el maíz, el ñame 38 y el plátano, mayormente por pequeños y medianos productores. Estos departamentos producen el 90% del ñame de Colombia que se vende para el consumo en fresco, en las plazas de los mercados locales y regionales (ciudades de Cartagena, Barranquilla y Montería). Una parte del ñame se exporta, pero la mayoría llega al mercado local, abastecido por pequeños productores, quienes entregan el ñame a los intermediarios locales.La Asociación Municipal para el Desarrollo Sostenible de los Pequeños Agricultores de San Jacinto (Asomudepas), la Asociación de Productores Orgánicos de Ovejas (Apros), la Asociación de Productores Nápoles Venecia, la Asociación de Productores Mateo Pérez Sampués (Asopromapes), la Asociación de Productores de Yuca de la Siria (Asoproyus) en los departamentos de Bolívar (municipio de San Jacinto) y Sucre (municipios de Ovejas, Los Palmitos, Sampués y Toluviejo), aplicaron el EPCP como parte del proyecto \"Construcción de Activos de las Redes Productivas de los Montes de María\". El proyecto fue manejado por la Corporación para el Desarrollo Participativo y Sostenible de los Pequeños Productores Rurales (Corporación PBA). 36 Corporación PBA. 37 Preval. 38 El ñame es un planta cuyo tubérculo es comestible y es muy apetecida por su valor alimenticio y rico sabor. Grupo objetivo Tenencia de la casa Familias que viven en casas propias 73% Familias que viven en casas familiares 14% Características de la casa Familias en casas con paredes de zinc o eternit 83% Familias en casas con techos de hojas de palma 17% Familias en casas con piso de cemento 61% Familias en casas con piso de tierra 35% Servicios de la casa Familias en casas con abastecimiento de agua de acueducto 81% Familias en casas con alumbrado eléctrico 100% Familias en casas con baterías con pozo 52% Familias que cocinan con leña o carbón 79%Fuente: Encuesta a los miembros de los grupos de base, de aplicación del EPCP (agosto 2008).Cuadro 4.1. Condiciones de la vivienda de los productores de ñameFamilias en casas con paredes de zinc o eternit 83% Familias en casas con techos de hojas de palma 17% Familias en casas con piso de cemento 61% Familias en casas con piso de tierra 35%Familias en casas con abastecimiento de agua de acueducto 81% Familias en casas con alumbrado eléctrico 100% Familias en casas con baterías con pozo 52% Familias que cocinan con leña o carbón 79% Según el estudio de base realizado, 52% de las familias de interés tiene el ñame como su cultivo principal. El 31% tiene la yuca como cultivo principal presente y hay otros cultivos como el maíz que también se cultivan en la zona.En la zona de trabajo, 73% de las familias vive en viviendas propias, 14% en viviendas familiares y un 13% restante, en viviendas prestadas o bajo su cuidado. El 63% de las viviendas tiene paredes con ladrillo o bloque de cemento, aunque también hay casas con paredes de bareque, madera y adobe. La mayoría de las viviendas (83%) tiene techos hechos con láminas de eternit (ferrocemento) o zinc, pero 17% vive en casas con techos de hoja de palma. La mayoría (61%), ocupa viviendas con pisos de cemento aunque 35% de las familias vive en casas con pisos en tierra.El 81% de las familias se abastece de agua con un sistema de acueductos. Solo 52% de las familias tiene pozos sépticos, pero 100% tiene alumbrado eléctrico. El 79% de las familias cocina con leña o carbón.Referido a la situación de pobreza, 95% de las familias vive en pobreza con un consumo familiar por debajo de $2,50 por persona, por día. 65% de las familias es califi cado como pobre extremo con un consumo familiar por debajo de $1,25 por persona, por día. Cultivo de ñame entre el maíz Las familias encuestadas cultivan un promedio de 5,9 ha de ñame. Los productores cosechan un promedio de 83,7 toneladas de ñame al año. Se estima un rendimiento promedio de 14,4 toneladas por hectárea.El 66% de la producción es destinado a la venta, principalmente por medio de los intermediarios locales, para el mercado local.Los precios de venta del ñame dependen de la variedad. Según la encuesta a los productores, aplicada en agosto de 2008, la variedad Criolla se vende a un promedio de 418 pesos el kilo ($0,22), la variedad Diamante a 369 pesos ($0,19) y la variedad Espino a 457 pesos por kilo ($0,24).Al inicio del trabajo se identifi caron los siguientes actores de la cadena (Figura 4.2):• Los productores que cultivan el ñame de manera tradicional. Entregan su producción a los intermediarios locales quienes lo compran de acuerdo con los anticipos que han entregado unos días antes de la cosecha.• Los intermediarios locales. Son personas de la localidad que conocen el ñame en las zonas productoras, tienen sufi ciente dinero para comprar el producto.• Comercializadores de tiendas. Son establecimientos comerciales donde se expenden productos de consumo alimenticio.• Plazas de mercado local. Son lugares públicos de funcionamiento permanente al que concurren comerciantes y compradores (por lo general, familias de la zona) para la compra y venta de productos diversos (productos de \"pan llevar\").• Vendedores de insumos agrícolas. Son establecimientos comerciales donde los productores agrícolas compran insumos (abonos, fertilizantes, plaguicidas, etc.) para el desarrollo de su cultivo.• Exportador, comercializador internacional. Comercializadora Internacional de los Montes de María (Cimma). La Corporación PBA -demandante del método EPCP en este caso-es una entidad sin ánimo de lucro, cuyo objetivo es contribuir al mejoramiento del nivel de vida y a la superación de las condiciones de pobreza de los pequeños agricultores colombianos, con base en el desarrollo y la aplicación de tecnologías sostenibles.La Corporación PBA usa la Innovación Rural Participativa (IRP), un método dinámico y fl exible que tiene cuatro componentes que se complementan, y que no son secuenciales:• Mejoramiento Tecnológico Participativo (MTP): se desarrolla a partir de una herramienta denominada núcleos de investigación participativa (NIP). Los productores reciben aprendizajes sobre sostenibilidad y ambiente. Luego observan, experimentan y practican.• Desarrollo Organizativo para la Innovación (DOI).• Empoderamiento de los Pequeños Productores Rurales (EPPR).• Emprendimiento Participativo Rural (EPR) y vinculación de mediano/largo plazo a cadenas productivas o de valor dinámicas, o a dinámicas económicas locales/ regionales.La aplicación de estos métodos ha empoderado a los productores y a sus organizaciones quienes están capacitados para compartir sus conocimientos a otras organizaciones, desarrollando innovaciones tecnológicas como la producción de semillas limpias de ñame en laboratorios de bajo costo y la multiplicación en viveros; estableciendo una producción comercial y vendiendo al mercado de la exportación.Exportador. Seis empresas en la región (Lalvi, Cimma, Exposucre, CI Tropicol, y Golden Crow) que exportan ñame a los mercados étnicos de Estados Unidos.Fuente: Estudio de cadenas en los Montes de María. En agosto de 2010, se realizó el evento pos-EPCP para dar a conocer el proceso seguido para aplicación del método y los resultados.Los productos del EPCP fueron:• Caracterización de actores: productores de ñame de los departamentos de Sucre, Bolívar y Córdoba; comercializadores como Almacenes Éxito, Carulla Vivero; intermediarios locales como Víctor Meza, del municipio Los Palmitos; y exportadores como Lalvi y Cimma.• Diagnóstico cualitativo de la cadena de ñame y un estudio de mercados.• Implementación de planes de trabajo por la Mesa de la Cadena Ñame, con cinco reuniones de grupos de interés, en la segunda fase.• Identifi cación de la oportunidad de negocio para vender ñame Espino a Lalvi, a través de la Asopromapes.Se formularon tres planes de negocio para producir y vender ñame Espino y Diamante tipo botón (para la Asociación Nápoles Venecia y la Asomudepas) y para producir harina de ñame (para la Asopromapes).El EPCP ha previsto diferentes tipos de alcances. Para este caso de implementación se exponen los alcances logrados en los grupos de actores involucrados, presentando el alcance esperado en relación con lo logrado.• Ocho asociaciones han fortalecido su organización, lo que se evidencia en una moderada participación de los socios y en la inclusión de las asociaciones en una red de organizaciones productoras. Este cambio es signifi cativo, porque pasan de ser simples asociaciones a estar articuladas, lo que les da acceso a nuevas relaciones comerciales e institucionales.• Las ocho asociaciones están debidamente constituidas y con reglas claras sobre la participación de los socios.• Las ocho asociaciones funcionan permanentemente. Tienen reuniones quincenales o mensuales y programan trabajos colectivos como siembras, limpieza de cultivo, cosecha; entre otras actividades propias del cultivo.• La mitad de socios de las asociaciones acude a las reuniones y trabajos, según afi rman los representantes de las asociaciones.Los productores han mejorado sus capacidades -aunque son expertos para producir el ñame y principiantes en la parte comercial-adoptando diversas prácticas de manejo agronómico y poscosecha.Estos logros obedecen, principalmente, a la intervención de la Corporación PBA mediante otros proyectos que tiene en la zona y no a la implementación del EPCP, el cual no enfatiza en las prácticas agrícolas sino, en la generación de nuevos negocios. Sin embargo, el EPCP muestra al productor cómo articular la producción al negocio. La adopción de mejores prácticas agrícolas facilita la venta del ñame en el mercado internacional.Las ocho asociaciones de productores consolidaron la idea de negocio del ñame para exportación. Seis de las ocho asociaciones, identifi caron ideas de negocio en otras líneas de productos (la Corporación PBA aplicó el EPCP en otras cadenas, lo que ha permitido estos negocios).Los productores no solo siembran ñame:• La Asociación Nápoles Venecia ha empezado a vender abonos orgánicos a la Empresa Colombiana de Petróleos (Ecopetrol) y tiene la idea de producir y vender ajonjolí a una empresa de chocolate ya identifi cada.• La Asacam ha empezado a vender yuca en mercados de Cartagena.• La Apros ha vendido yuca seca en Carpa, a la Asociación de Productores de Yuca de la Sabana de Córdoba y Sucre (Aproysa), en el Municipio de Chinú; y vende miel en el mercado de Sincelejo.• La Asoproyus ha vendido yuca seca a Italcol (Italia-Colombiana, una empresa colombiana que produce ALCANCE ESPERADO 1. Los agricultores fortalecen su organización en función a la demanda.Desarrollan capacidades y habilidades de gestión comercial y tecnológica para agregar valor a su producto.Se organizan asociativamente para emprendimientos comerciales.Los productores incrementan su confi anza hacia otros actores de la cadena.alimentos para animales) y a la Aproysa. Tiene interés en vender yuca congelada en los supermercados y harina de yuca para consumo animal.• La Asomudepas ha vendido lombri-abonos (humus de lombriz de tierra) a otras organizaciones, entre ellas la de productores de cacao.Los productores han mejorado su confi anza hacia otros actores de la cadena y han establecido relaciones con más actores.• La Corporación PBA ha promovido que las asociaciones de productores se vinculen con otras instituciones en Colombia, como la Universidad de Córdoba, la Universidad Nacional, la Universidad de Sucre, la Corporación Colombiana de Investigación Agropecuaria (Corpoica) y el CIAT. Estas relaciones se limitaron a la parte técnicaproductiva ya que estas instituciones proveen capacitación y semillas.• Los productos del EPCP mencionados, despertaron el interés de la Gobernación de Sucre, el Instituto Colombiano Agropecuario (ICA) y las Universidades de Sucre y Córdoba (a través de sus centros de investigación).Las instituciones de cooperación internacional participaron en el EPCP y han apoyado proyectos para la comercialización del ñame y el fortalecimiento empresarial.• Actualmente, los productores se relacionan más con otros actores de la cadena, pero no es sufi ciente. Estas relaciones deben consolidarse y ser lideradas por las propias asociaciones, mientras que ahora son intermediadas por la Corporación PBA.Antes del EPCP, las asociaciones vendían ñame a los intermediarios y, después, siete de las asociaciones continúan vendiendo principalmente a los intermediarios (en algunos casos, a los mismos intermediarios de antes). Solo una, la Asopromapes, estableció un negocio comercial con una empresa exportadora. La empresa empezó esta relación y se contactó con la asociación.Los productores establecen negocios comerciales con otros actores de la cadena.ALCANCE ESPERADO 6. Conocen nuevos nichos y oportunidades de mercado.Las ocho asociaciones han identifi cado tres nichos de mercado: el ñame en fresco, la harina de ñame y la semilla limpia de ñame.La Asociación Nápoles Venecia, la Asomudepas, la Apros y la Asproalga, han elaborado planes de negocio para producir y vender el ñame fresco. La Asopromapes hizo un plan de negocio para transformar harina de ñame y, la Asomudepas, hizo otro para producir semilla limpia de ñame.Las asociaciones han logrado poco avance, ya que mantienen a los intermediarios locales como su principal canal de venta, y venden individualmente. Sin embargo, las asociaciones buscan nuevos mercados. La Nápoles Venecia, la Apros y la Asopromapes, han gestionado la venta de ñame en los supermercados Carulla y Olímpica, aunque sin éxito, debido a las exigencias hechas por estos supermercados: ñame limpio y clasifi cado, tipo exportación, con manejo poscosecha en cuartos de refrigeración; las cuales los productores no podían cumplir.Al fi nal del EPCP, las ocho asociaciones tienen planes de negocios para el ñame en fresco; dos tienen planes de negocio para la harina de ñame y semilla limpia de ñame.La Asomudepas y la Apros elaboraron un protocolo para almacenar el ñame. También hicieron un estudio de mercado del ñame y los fundamentos para desarrollar una estrategia comercial. Han creado fondos rotatorios para la venta.Ha pasado muy poco tiempo para poder apreciar los impactos, pero hay ciertas tendencias que se muestran a continuación:No hay evidencias de que los productores hayan mejorado sus ingresos, porque en 2010 se vendió menos cantidad, pero a precios más altos, debido al fuerte y atípico verano que dejó grandes pérdidas en los cultivos. Esta venta se hizo para el mercado de exportación a través de los intermediarios locales.Los productores no han mejorado sus condiciones de vida como impacto del EPCP, debido a que recién se ha concluido, pero sí han mejorado la productividad y las asociaciones de los productores.El ingreso percibido por uno de los grupos ha servido para cubrir las pérdidas del año anterior. Los demás no produjeron durante 2010, debido a la falta de dinero e insumos para la siembra.IMPACTO 1. Los productores incrementan sus ingresos, con base en productos con valor agregado.IMPACTO 2. Los productores mejoran sus condiciones de vida.Comercializan asociativamente productos diferenciados, con valor agregado, en los nuevos nichos de mercado.ALCANCE ESPERADO 8. Tienen una estrategia de comercialización y mercadeo.Aplican innovaciones tecnológicas y comerciales en función a la demanda.","tokenCount":"2392"} \ No newline at end of file diff --git a/data/part_3/2269218747.json b/data/part_3/2269218747.json new file mode 100644 index 0000000000000000000000000000000000000000..f0617b84c0ebfbc5e4d4faa158293d6aaf91d615 --- /dev/null +++ b/data/part_3/2269218747.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"e29dfd91d50f857abc2bdd3761895346","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/76b54e7e-2161-49e9-90de-2cf23decdd39/retrieve","id":"1926084341"},"keywords":[],"sieverID":"6092b791-cd3c-4447-8262-2001713fdc37","pagecount":"4","content":"Kenyans drink a lot of milk. Various studies estimate that Kenyans consume between 50 and 100 liters of milk per person each year and consumption is growing rapidly. 1 In Nairobi, even poor households consume around a liter per week. 2,3 A large body of research, including several studies based in Kenya, shows that milk consumption improves child growth. 4,5 However, because it is so highly nutritious, milk is also an excellent breeding ground for bacteria and other germs. Moreover, milk can be contaminated from many different sources: foods that the cow eats, chemicals and antibiotics used on the farm or along the supply chain, diseasecausing organisms that infect the cow or people who handle the milk, and substances deliberately added to milk. And unfortunately, because milk is associated with goodness and purity and is a favorite food for children, scares about milk safety tend to get a lot of attention, even if not based on facts. This note goes beyond the rumors to summarize the scientific evidence on milk safety, and offers practical recommendations for improving milk safety in Kenya.Foodborne diseases (FBDs) cause a large share of illness and death worldwide. The Foodborne Disease Burden Epidemiology Reference Group (FERG), a panel of experts convened by the World Health Organization, has estimated that FBDs are responsible for a comparable burden of illness and death (measured in disabilityadjusted life years) in Africa as cancer or tuberculosis. (Figure 1). 6 2014. Foodborne infections and intoxications in hyderabad India.As the panel's approach was very conservative, relying mostly on official records, it may under-estimate the actual burden of foodborne disease by a wide margin. This is because treatment for food-borne illness is often not sought, and many treated cases are never reported to health authorities; even if treated, there is usually no laboratory diagnosis or way of telling if an illness came from food or another source. Many foodborne hazards are also present in drinking water and can be transmitted from person to person. The figures shown here include only the share of illness caused specifically by contaminated food, based on the best and most recent estimates of experts.The burden of FBD is not equally distributed across the globe. According to FERG estimates, the risk of foodborne illness is higher in Africa than any other region (Figure 2). Children under five years of age bear a disproportionate share of the FBD health burden. Although this group constitutes only nine percent of the global population, 7 it suffers from forty percent of the burden of FBD worldwide according to FERG estimates.In addition to immediate health outcomes, these diseases can have long term impacts on children's physical and intellectual growth. Children with repeated cases of diarrhea during the first 24 months of life tend to be shorter at 24 months of age. 8 Stunting and intestinal parasites (often transmitted by food) in early childhood have been linked to lower mental function later in life. 9 The WHO's assessment of foodborne disease found that there were only 31 hazards for which there was good enough evidence to assess the health burden. Hypothesized but unproven impacts, such as the suspected link between aflatoxin and stunting in children, were not included. However, we can be confident that these hazards include most of the important ones that cause sickness and death. When we look at the hazards by category, we can see that most known disease is caused by microbes (for example, viruses and bacteria), followed by worms (e.g. pig tapeworm), and finally toxins such as aflatoxins. According to the FERG study, almost three quarters of foodborne DALYs in sub-Saharan Africa are caused by diarrheal disease agents while the remainder are attributable to invasive infectious disease agents, helminths (worms), and chemicals and toxins (Figure 3).Microbial contamination of milk is common; some of these microbes come from the cow and some from the environment or from people who handle the milk. 10,11,12,13 Aflatoxins are often found in milk in Kenya, although in far lower concentrations than observed in maize, 14,15 and their impact on health is not well established. Antimicrobial residues are also commonly found in Kenyan milk; 16,17 while there is little evidence that these chemicals cause significant direct harm to human health, giving antibiotics to cattle can increase the likelihood of antibiotic resistant infections in people. Worms are not so much of a problem in milk.Data on the actual burden of illness attributable to milk consumption in Kenya are limited, though based on official reports, milk and dairy products are some of the foods most frequently implicated in foodborne disease occurrence. 18 One study estimated that two to three cases of diarrheal disease caused by a common toxin-producing bacterium (Escherichia coli) occur for every 10,000 servings of unpasteurized milk consumed in Kenya. 19 This finding of a relatively low risk of infection was due to the fact that the vast majority of consumers (97%) boil milk prior to consumption, a highly effective way of addressing microbial contamination that was assumed to kill any E. coli present. However, more evidence is needed on household boiling and consumption practices, as milk may not be boiled for long enough to kill all organisms, and may become re-contaminated if improperly handled and consumed some time after boiling. Sources of evidence from other settings provide additional clues on the role of milk in foodborne illness:• In high-income countries, nearly all milk is pasteurized and standards for dairy products are well maintained. As a result, occurrence of milk-borne disease is relatively rare; milk is thought to be responsible for 1-10% of all reported foodborne diseases in high-income countries. 20,21,22,23 • In the United States of America, before widespread pasteurization and disease eradication schemes (especially addressing tuberculosis, brucellosis, typhoid, paratyphoid and food poisoning) were implemented, around 25% of foodborne illnesses were attributed to dairy products 24 • A study in India similarly found that milk and dairy products were responsible for 25% of self-reported illnesses. 25 In India, people do not often drink milk raw but, as is the case in Kenya, mainly boil or ferment it.The government of Kenya estimates that 80% of the milk consumed in the country is purchased form very small-scale vendors in informal markets. 26 Informal markets are often preferred by consumers for a number of reasons: milk is 20-50% cheaper than in the formal sector, 16 there is more flexibility in the quantity sold, outlets are closer to the consumers' homes, and some vendors even deliver to the doorstep. The lower price of informal sector milk is especially important to poor consumers. A recent study in Nairobi found that poor households spend 38% of their total food expenditure on livestock products and fish, of which 37% is spent on milk and dairy products. In this context, increasing the price of milk could have adverse effects on nutrition. 1 Efforts to improve milk safety should therefore avoid increasing milk prices.Since the early 1990s, global best practice in food safety has evolved from an approach in which the government monitored hazards and punished firms for violating regulatory standards, to a greater emphasis on building the capacity of the private sector to prevent foodborne illness. 27 Prevention-based approaches are particularly well-suited to contexts in which the public sector has limited capacity to perform inspections and tests.Invasive infectious disease agents 12% Helminths 15%One preventive intervention that has proven effective at improving milk safety in Kenya and is among the measures recommended in the 2013 National Dairy Development Policy is to educate and certify small-scale raw milk vendors on safe handling practices. 28 A 2006 pilot training and certification program in informal settlements outside Nairobi led to improvements in hygiene practices and microbiological quality. 29 45% of milk sold by traders who had been trained and used plastic containers met the national microbiological quality standard, compared to just 29% of the milk sold by those who had not been trained (the impact was smaller among those using metal containers, whose milk was more likely to meet the standard even without training). Milk vendors reported that a certificate indicating completion of the training program made it easier to obtain operating licenses from the government, creating an incentive to participate. 30 An ongoing ILRI study based on this model will test the impact of milk vendor training, certification and marketing on child health outcomes, and could provide a starting point for scaling up such efforts in Kenya. 31 Other measures to improve milk safety proposed under the National Dairy Development Policy include the development and adoption of low cost technology for small scale dairy investors; public education campaigns on the merits of consuming properly handled (boiled) milk; provision of incentives for procurement and installation of milk testing equipment; stakeholder sensitization on the importance of safe use of antibiotics and other veterinary drugs; and training on milk testing. One simple technology that can improve milk safety and quality is the Mazzican, a wide-necked, easy to clean milk container. 32 In addition, Kenya's National Food Safety Policy of 2013 recommends a broad set of policy interventions to improve food safety in the country. These include the establishment of a National Food Safety Law and a national Food Safety Authority through which to coordinate government activities related to food safety; investment in training of stakeholders, especially small and medium enterprises (SMEs), on food safety and regulatory compliance; the provision of guidelines and technology to support traceability of food from farm to fork; improved analytical capacity through the accreditation of additional food safety laboratories and maintenance of an inventory of the same; and development of systems for food safety validation, inspection, certification and selfassessment as well as an early warning system to prevent outbreaks.The interventions proposed under both the National Dairy Development Policy and the National Food Safety Policy have the potential to greatly improve food safety in Kenya, however few if any of these have been fully implemented. While moving forward with the food safety agenda at the national level remains important, counties can and should adopt many of the recommendations contained in these documents within their own jurisdictions in the meantime.• Consumption of dairy products is important for child development and has life-long health and cognitive benefits.• Contaminated milk is an important conduit of foodborne disease, which represents a significant share of the global burden of disease, particularly in Africa. Improving the safety of dairy products and increasing their consumption are both important for improving population health in Kenya.• Most foodborne disease, including that transmitted through milk, is caused by microbes; addressing microbial hazards should be prioritized.• Consumers should be strongly encouraged to boil milk, as this kills most microbes. To keep milk safe after boiling, it should immediately be tightly covered, kept in as cool an environment as possible, and consumed within a few hours.• Simple technologies that improve milk safety, such as easy to clean, wide-necked containers, should be promoted and made available at reasonable cost.• Food safety policies that increase milk prices could have negative impacts on the nutrition of vulnerable populations and should be avoided.• Globally, food safety policy increasingly focuses on prevention of foodborne illness through capacity building in the private sector; this approach is especially relevant for Kenya given the limited resources for regulatory enforcement.• Training and certification of informal raw milk vendors has been shown to improve milk safety. This approach could potentially be scaled to the estimated 80% of Kenyan milk that is sold through informal channels.• The Government of Kenya has proposed a number of measures to improve food safety in the National Diary Development Policy and the 2013 National Food Safety Policy, but most of these have yet to be implemented. Many of these interventions could be taken up by county governments.","tokenCount":"1953"} \ No newline at end of file diff --git a/data/part_3/2276444370.json b/data/part_3/2276444370.json new file mode 100644 index 0000000000000000000000000000000000000000..f5b492b8b95e7688f0aba87638924bfc080bcb07 --- /dev/null +++ b/data/part_3/2276444370.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"95b6a14a05f661f905c0681d377d91c8","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/bd01da52-6dd4-443e-967d-93dd7624d8e0/retrieve","id":"1771816574"},"keywords":[],"sieverID":"7cca9873-c30a-41fd-ac7f-0d9f6503c8e9","pagecount":"15","content":"The cattle sector plays a pivotal role in the economies of numerous Latin American and Caribbean countries. However, it also exerts a significant impact on environmental degradation, including substantial contributions to greenhouse gas emissions (accounting for 23.5 % of global livestock emissions) and deforestation (70 % attributed to livestock in South America). This article aims to investigate the complex, long-term, and short-term relationships between population growth, pastureland expansion, deforestation, and the cattle sector in 15 countries across the region, focusing on their effects on greenhouse gas emissions as well as beef and dairy production. Utilizing data from FAOSTAT spanning the period from 1990 to 2019, a cointegrated panel model was developed using the Pooled Mean Group technique, resulting in the estimation of six models. The aggregate-level results for the region reveal the presence of relatively stable long-term relationships. This implies that over time, the influence of population growth, pastureland expansion, and deforestation on greenhouse gas emissions from cattle production tends to diminish in significance. This long-term behavior may be particularly pronounced in countries with more developed cattle sectors, where efforts to mitigate the environmental impacts of cattle production, such as promoting improved forage technologies, silvo-pastoral systems, grazing management practices, and the implementation of policies, regulatory frameworks, and incentives, have gained traction. These progressive countries can serve as regional benchmarks, and the lessons they have learned hold valuable insights for the sustainable intensification of cattle production in countries with less-developed cattle sectors.The cattle sector is key for the economy of many countries in Latin America and the Caribbean (LAC). In addition to generating employment and development for large parts of the rural areas in the region, it is one of the main food sources and thus plays a fundamental role for food security [1]. According to the FAO [1], LAC produced 18.82 million tons of beef and 85.54 million tons of raw milk in 2021, which correspond to 57.15 % and 43.28 % of the total production of the American continent, respectively. The economic and social importance of the cattle sector, however, contrasts with the negative environmental impacts generated in beef and dairy production systems and along the associated value chains. According to the FAO [2], cattle farming is one of the activities with the greatest impact on greenhouse gas (GHG) emissions, deforestation, loss of biodiversity, and conflicts over land use. Since the 1990s, it is estimated that about 420 million hectares of forest have been lost due to land use changes, and the agricultural sector is held responsible for about 90 % of the deforestation in this period (52.3 % cereal crops, 37.5 % livestock) [3]. In South America, deforestation attributed to the cattle sector reaches close to 70 % while crop production is held responsible for 20 % [2,3].In LAC, deforestation dynamics have been linked to various determinants related to productive activities, implementation of forest conservation and protection policies, land-use-related conflicts, and illegal activities such as mining and the cultivation of illicit crops. At the country level, several studies have delved into deforestation dynamics. Cattle farming and its relationship with land speculation and land grabbing processes were studied for example in Costa Rica [4] and Colombia [5,6]. In Peru, the expansion of palm, cocoa, and coffee plantations and the presence of artisanal mining [7], and in Colombia, elements such as the armed conflict, the Peace Agreement with the FARC-EP, the cultivation of illicit crops, and the implementation of public policies regarding land distribution and land use [8][9][10][11][12][13], were identified as factors that influence deforestation dynamics. In Ecuador, deforestation is attributed to factors such as connectivity, population pressure, and territorial conflicts [14], and in Bolivia to weak legislation and institutional limitations in the control of activities that degrade the country's forest cover [15]. Large-scale forest fires and decision making on land use are important determinants in the case of Guatemala [16], whereas in Mexico, factors related to the inadequate planning of agricultural systems, monocultures, and the absence of public policy mechanisms were identified [17]. Finally, in Brazil, large parts of the deforestation are attributed to the illegal expansion of cattle farming in the Amazon region [18]. What most of these studies have in common is that the cattle sector is identified as major driver of deforestation.Parallel to the increasing levels of deforestation and land use change related to the cattle sector in LAC, GHG emissions from beef and dairy systems have also increased [2]. According to the Intergovernmental Panel on Climate Change (IPCC) [19], within the agricultural sector, livestock are the largest source of GHG emissions globally, which result mainly from enteric fermentation in ruminants and through the decomposition of manure. Ruminants such as cattle are important sources of methane (CH 4 ) and carbon dioxide (CO 2 ) emissions. Approximately 25 % of the global CH 4 emissions come from cattle, with enteric fermentation contributing with 80 % and manure management with 20 % [20,21].These emissions contribute significantly to global warming and climate change [22]. LAC stands out for its livestock sector, with a growth rate of 3.7 %, in contrast to the global average of approximately 2.1 %. Despite representing only 13.5 % of the world's population [23], the region contributes significantly to global meat production, accounting for nearly 23 % of the world's beef and buffalo meat. This makes it particularly interesting to examine the impact of this livestock activity on environmental degradation and GHG emissions in the region. According to estimates from IPCC as reported by the Global Livestock Environmental Assessment Model [24], LAC is responsible for generating approximately 1.9 gigatons of CO 2eq. out of the global total of 8.1 gigatons from livestock production. Additionally, the region contributes around 23.8 % of the global enteric CH 4 emissions and 5.2 % of the nitrous oxide (N 2 O) emissions from manure [24]. Estimations on long-term and short-term effects are of interest in the empirical measurement of cattle farming and its relationship with the environment. Pesaran et al. raise the need to find, from quantitative data, results of interest as a conglomerate, in addition to the diverse empirical applications [25][26][27][28][29]. Although recent studies have explored the relationships between GHG emissions and cattle production [30,31], land use changes [32], or population and economic growth [33][34][35], it is important to understand the long-and short-term effects of these relationships, especially for LAC where the cattle sector is so relevant in economic, social, and environmental terms. Likewise, it is important to generate evidence that allows for a better understanding of these types of relationships and that serves as an input for the design of policies focused on mitigating the emissions and the effects they cause in the region. Against this background, the present study aims at estimating the effects of population growth, the expansion of pastureland, deforestation, and afforestation on beef and dairy production both in terms of GHG emissions from enteric fermentation and manure management and beef and raw milk production. In the long-term it is evaluated if the variables exert less pressure on the cattle systems and thus the environment (providing stability) with an increasing economic and technical development over time. For this purpose, a co-integrated panel methodology for 15 Latin American countries for the period 1990 to 2019 was applied. The methodology allows for modelling the various relationships over time, i.e., for a period of 30 years, and for identifying trends and differential behaviors among the countries of the region.The relationship between cattle farming and the environment is broad and has been studied by numerous scholars [22,30,31,[36][37][38]. Recent studies [32,34]have not only aimed at identifying the effects of cattle farming on deforestation [39,40] but also at characterizing and quantifying the GHG emissions generated by land use changes and the loss of forest cover associated with cattle farming [41,42] Several studies [6] showed that the intensification of cattle farming has negative effects on the loss of forest cover in Colombia. Along the same lines, Golub et al. [43], in their analysis for the Mato Grosso region in Brazil, found that forest conservation accompanied by intensive cattle production systems is competitive against traditional intensive cattle farming, but that a series of obstacles is limiting this change, such as the perception of producers about land use values.There is diverse literature on the relationships between GHG emissions from cattle farming and variables such as demographic and economic growth [44][45][46] land use changes [47], and environmental conservation policies and mitigation of climate change [48][49][50]. Have projected that GHG emissions from cattle farming will grow as the population increases [31]. In a meta-analysis for LAC, identified three strategies, namely animal breeding, feeds, and ruminal handling, with 34 actions that can be adopted by cattle farmers for the mitigation of CH 4 emissions from ruminants [30]. Other works studied the link between CO 2 emissions and economic and population growth in a data panel for 128 countries for the period 1990-2014, and found that at the global and regional levels, economic and population growth have a positive and significant effect on CO 2 emissions [33]. Along the same lines, estimated that GHG emissions are expected to increase in Latin America because of GDP and population growth [51]. Similar results are presented in a study for the five most populated countries of Asia (China, India, Indonesia, Pakistan, and Bangladesh) on the effects of population density and economic growth on GHG emissions for the period 2001-2014 [35]. Another interesting relationship showed that, in many developed countries, the GHG emissions derived from livestock product and oilseed trade are higher than the emissions from national agriculture [52].Calvin et al. [32] explored the effect of agriculture, floristry, and other land uses on GHG emissions in Latin America. Significant differences were found between the projections of future emissions with and without climate policies. Regarding land use changes, Rehman [34] explored the influence of forestry, crop production, livestock production, energy use, population growth, temperature, and rainfall on CO 2 emissions in Pakistan. Using series data for the period 1970-2017, it was found that forest production, rainfall, and temperature have a positive effect on CO 2 emissions in the long-term, while population growth has a negative effect. The short-term results show that forestry, crop production, livestock production, population growth, and temperature have an influence on CO 2 emissions. In LAC, research focused on the relationships between GHG emissions and different determinants of deforestation [53][54][55][56], such as the implementation of policies, land use changes, growth of the cattle activity, and forest fires [53][54][55][56].Regarding GHG emissions, studies have focused on different perspectives, such as the results of climate regulation policies and emission control on society [43], differentiated effects of economic development on deforestation [46], and the relationship between public spending and deforestation due to land expansion and emissions [47]. Graham et al. [45] present a series of policy alternatives to reduce emissions from deforestation and degradation. Other studies made predictions of emissions based on the Paris Agreement for Southeast Asia [57], experiences and challenges of REDD + mechanisms to control emissions and deforestation [48][49][50], and the use of economic incentives to reduce emissions [58].Public policy analysis on the effects of conservation initiatives on deforestation and GHG emissions shows that the incentives for agents to reduce emissions depend on the characteristics of individuals, where the efficiency of economic payments decreases if those heterogeneous capacities of the agents are ignored by the policies or programs implemented [59]. Along the same lines, Sheng and Qiu [60] studied the effect of REDD + program incentives on the actors and decision makers involved in reducing GHG emissions. Modelling the decisions of individuals using numerical methods, the authors find that the behavior of landowners in relation to decisions about GHG emission reductions does not depend on their market power and that policy makers must consider multiple factors (emission prices of carbon, credits, opportunity costs, productivity, etc.) within this type of initiatives.For Mexico, the emissions from enteric fermentation and manure management were estimated at 1926.08 and 62.24 Gg CH 4 , respectively [61], and beef cattle farming contributes with 79 % of the CH 4 emissions [62]. Enteric fermentation was also identified the main source of CH 4 emissions in Colombia [42,63]. At the micro level, a life-cycle analysis of a dairy farm in Brazil estimated that CH 4 emissions contribute to climate change with 36.46 % [64]. In Nicaragua, in a sample of 30 cattle farms, significant reductions in CH 4 emissions in cattle farming were achieved among those farmers that used quality forage and good husbandry practices [65].The relationships mentioned correspond to the empirical evidence for the sector. However, a long-term analysis as provided in the present article can provide evidence of the existence of trends among different variables. Economic development entails the use of cleaner and more efficient technologies that require fewer resources, and it is expected that the pressures exerted by population growth, the extension of pastureland, and deforestation on cattle farming lose influence in the long-term. The present study, however, focuses on a region characterized by countries with heterogeneous cattle farming systems. In other words, at an aggregate level, some countries can mark the long-term trend of others [66][67][68]. The data used in this article was derived from FAOSTAT [69] and is described in Table 1. Net forest conversion was used as a proxy for deforestation. Furthermore, population, forest land, pastureland, production volumes of beef and raw milk, and GHG emissions from beef and raw milk production, both from manure management and enteric fermentation, were included as variables. It should be noted that the variables on GHG emissions were obtained in volume units of N 2 0 and CH 4 . These variables are considered relevant to study the long-term relationships between GHG emissions from the cattle sector and the other variables. Information was consulted for the period from 1990 to 2019 for 15 Latin American countries, namely Argentina, Bolivia, Brazil, Colombia, Costa Rica, Ecuador, El Salvador, Guatemala, Honduras, Mexico, Nicaragua, Panama, Paraguay, Peru, and Venezuela. These countries were selected due to the importance of cattle farming in both socio-economic and environmental terms. In these countries, the cattle sector plays an important role for food security, employment and income generation, and rural development, and strongly contributes to the agricultural and national GDPs. Likewise, the sector generates negative environmental externalities, such as GHG emissions from enteric fermentation and manure or the expansion of the agricultural frontier at the expense of forests (i.e., in the Amazon region and Central America). This list of countries thus includes those with the largest cattle herds of the region, as well as those with the largest impacts on the environment.Given the structure of the data, the most appropriate methodology to examine the relationships between cattle farming (GHG emissions and production) and the explanatory variables described in the previous section is a panel data model. This approach is designed for cross-sectional and temporal unit-of-measure analysis. The panel data method varies depending on the size of the data, its heterogeneity, and stationarity [29]. Therefore, a heterogeneous panel data is applied in this study, which makes it possible to identify both long-and short-term relationships. In other words, the model recognizes the global effects for the conglomerate of 15 countries of analysis in the long-term, but also allows identifying the effects by country in the short-term. As previously stated, there is information for 15 Latin American countries with data from 1990 to 2019. Therefore, the model to be estimated is:Where Y it is the dependent variable, which represents various variables to be estimated, such as the GHG emissions generated from beef and raw milk production, and total beef and raw milk production of country i in year t. For its part, X it refers to the explanatory variables of the model, such as population, pastureland, forest land, and net forest conversion. Therefore, there are six specifications that will be estimated: Model 1Where EBC MM it represents the GHG emissions generated from manure management of cattle for beef production, EDC MM it the GHG emissions generated from manure management of cattle for raw milk production, EBC EF it the GHG emissions generated from enteric fermentation of cattle for beef production, EDC EF it the GHG emissions generated from enteric fermentation of cattle for raw milk production, PR BC it and PR DC it refer to the variables production of beef and raw milk in tons, respectively. These are the dependent variables of the six models. The explanatory variables include POP it , which is the total population estimate by country, PL it , which is the amount of land used for pastures, FL it , which is the amount of land covered by forests, and DEF it , which refers to the net forest conversion (as a proxy for deforestation). Furthermore, for i = 1,2,3,…,N, N refers to the number of countries in the sample, and for t = 1,2,3,…,T, T refers to the number of years of available data. The variables are expressed in logarithms to facilitate the interpretation of the results. A more detailed development of the equations is provided in Appendix 1.The relevance of the implementation of methods for non-stationary and heterogeneous panels should be noted. The nonstationarity and the presence of temporal relationships in the data panel implies the need to differentiate short-and long-term effects and, at the same time, allow the estimated coefficients to differ per panel analysis unit, given the implicit heterogeneity. For this, Pesaran and Smith [70] propose the Mean-Group (MG) method, where the coefficients vary between groups and the value of the coefficient for the panel is an average of all the coefficients calculated separately. Another alternative is the Pooled Mean-Group (PMG) estimation method [25,26] which brings the same benefits as the MG estimation but imposes certain restrictions for the long-term effects in the panel. For this study both the MG and PMG estimations could be considered since they allow the panel to be estimated under the conditions of the available data. To select the best model and estimate the short-and long-term effects adequately, the following steps were considered beforehand. i) Testing for slope homogeneity and cross-section dependency of data ii) Testing for the presence of unit roots in the data panel iii) Testing for the existence of cointegration between the variables iv) Identifying the best model between MG and PMG v) Estimating the long-and short-term effects of the chosen model The slope homogeneity tests identify an adequate specification of the model, in such a way that differences between the units of analysis are evaluated, in this case countries. The test makes it possible, for example, to show whether the effects of the variables population and deforestation on GHG emissions and cattle production are the same for all countries. A priori, it is considered that the null hypothesis should be rejected, since the effects by individual or country tend to be different or heterogeneous [71]. For its part, cross-section dependency poses a characteristic of the panel data structure since it contrasts whether there are relationships between countries [72]. For the presence of cointegration, unit root tests of the panel are proposed [73]. In case non-stationary series are found, the panel cointegration test proposed by Pedroni [74,75]is applied. Finally, identifying the presence of cointegration in the panel, the models are estimated by MG and PMG, to then choose the best one based on a Hausman test. In this way, the long-and short-term results for the selected models are obtained. In any case, the model would consider what has already been mentioned: heterogeneity and non-stationarity.There exist some difficulties in the selection of the variables of interest. The information available on FAOSTAT by country can be compiled by the Intergovernmental Panel on Climate Change (IPCC) classification of Agriculture, Forestry, and Other Land Uses (AFOLU), which identifies the type of activity by land use, as well as the share this activity contributes to the overall GHG emissions. In this sense, the cattle sector generates more GHG emissions than accounted for in this study, since they are not only generated on-farm but also along the entire value chain. Likewise, in cattle farming there are different types of sources of GHG emissions, such as enteric fermentation, manure management, deposition in pastures, and emissions from agricultural residues, among others. The reason for considering only some and not all these GHG emission sources in the present study lies in the availability of data on FAOSTAT. Various studies suggest that cattle are among of the main sources of CH 4 emissions, which is reported as emission data from enteric fermentation and manure management. Although the FAO makes periodical publications on the subject, there are studies that delve into the analysis of GHG emission sources at the country level. In China, for example, GHG emissions were calculated from 1991 to 2019, identifying cattle and poultry as main emitters, contributing with 39.53 %, 46.5 %, and 37.4 % of the total GHG emissions of the agricultural sector in 1991, 2003, and 2019, respectively [76]. A study from South Africa estimated that in 2019, cattle farming produced 35.37 million tons of carbon dioxide equivalent (CO 2 e), from which 65.54 % correspond to methane from enteric fermentation and 4.34 % to nitrous oxide (N 2 O) from manure management. Commercial beef production was identified to be the main contributor to the total GHG emissions generated by the cattle sector [77]. Although not complete, the selection of the GHG sources in this study represent a major proportion of the overall GHG emissions generated by the cattle farming.Furthermore, constraints around data sources need to be considered, as information on deforestation, pastureland, and forests is limited for the period from the 1990s onwards, while information on GHG emissions from cattle (for both beef and raw milk) is available since 1961. This implies that the analysis of the relationship could be addressed in greater detail if data for deforestation were available for the period before 1990. An alternative is data imputation. However, it can bring more difficulties than benefits in the empirical analysis, since there would be approximately 30 data for the 15 study countries, which would impute an entire data panel. It is important to highlight that the information on the deforestation variable is available in the form of averages from the 1990s to 2010 and on a five-year basis from 2010 to 2019. The underlying difficulties generated by this occur in the variability of the panel and in that the estimates show some degree of bias. Despite these limitations, the presented results can generate information and ideas related to the studied problem and contribute to discussions on future research.Regarding the methodology used in this study, the ability to find long-term relationships can cause ignorance of processes specific to each country and that relationships are assumed based on data from some countries but not all of them. Cointegration tests give hints of long-term relationships, but it is difficult to irrefutably assume them. A possible solution lies in including a greater number of temporal and country data. It is important to clarify that the use of panel models is justified despite these restrictions. The methodology allows for estimations in a more consistent way compared to the temporal data structures by country. This is due to the increase in the number of observations and the interdependence between countries with respect to the relationships of the variables of interest [72]. It is thus a more robust estimation method. The limitations are typical of the scope of the empirical tools to capture the real relationships in the phenomena of interest. However, these techniques give clues to the underlying relationships in panel data.It is important to mention that the source of information is based on the IPCC Tier method, specifically the Level 1 approach (Tier 1). This is the simplest and most basic level [78]. This is due to its simplified assumptions, as it assumes that emissions per animal do not vary and are the same for all animal categories. Additionally, it only allows for the identification of changes in trends over time due to changes in the number of animals, making it unable to detect the impacts of mitigation actions. The Level 2 approach (Tier 2) is a methodology with more disaggregated data, which increases the accuracy of estimates. These developments are incorporated into the Global Livestock Environmental Assessment Model (GLEAM), which provides detailed estimates of GHG emissions and emission intensities for major products, agricultural systems, and regions [79]. Its strength compared to previous models lies in its incorporation of geographical profiling, considering factors like climate, soil quality, and land use. It also employs a life cycle assessment method to capture all emission sources throughout the supply chain [79]. The choice between Tier 1 and Tier 2 ultimately depends on the type of analysis being conducted. In the present case, the sample under analysis spans a 30-year period, and the sheer volume of data required necessitates the use of the more basic methodology to ensure an adequate number of observations for analysis. While the method used for these data does not allow for the identification of the impact of mitigation actions, it does establish a relationship between the number of animals and the long-term trends in relevant variables [78]. This enables the examination of emissions variables' behavior in relation to livestock production.The complex relationships between cattle farming (GHG emissions and production) and variables such as population growth, the expansion of pastureland, afforestation, and deforestation pose challenges in the fight against climate change, highlighting the importance of analysis, i.e., for Latin America, where cattle farming plays a strong social and economic role.Before estimating the model, some descriptive statistics are presented for the entire panel. Although they do not consider time and heterogeneity of the countries, it is a first approximation to characterize the data. Table 2 shows the means, standard deviations, and minimum and maximum values of the variables. Beef and raw milk production generate on average 1,192,000 and 172,000 tons of GHG emissions from enteric fermentation, respectively. GHG emissions from manure management are much lower, with mean values for beef and raw milk production of 630 and 260 tons, respectively. On the other hand, the average deforestation is 122,787 ha per country. The average production of beef and raw milk is 964,339 and 4,025,363 tons, respectively. The average amount of land used for pastures and forests are32,227,000 and 122,787,000 ha, respectively. The population variable, as expected, has a large dispersion with respect to its central value.The first step in the methodology is the testing of the homogeneity hypothesis for the effects of the variables between the units of analysis. In this case, the null hypothesis of homogeneity in the slopes for all models is rejected (see Table A1). Therefore, a disparate relationship between countries is proposed or differential effects can be expected in the six models. This is expected, since there is no reason to assume that each country presents the same effects as the others.Likewise, cross-section dependency tests are conducted which indicate the relationships between countries and interdependence in the data panel. Here, the null hypothesis of independence is rejected only for the models of GHG emissions from milk production, which is why relationships between countries are identified for these cases (see Table A2). In this sense, the null hypothesis is not rejected in the case of GHG emissions from beef production, nor are the models of beef and milk production.ii) Testing for the presence of unit roots in the data panel For the evaluation of the unit root of the models, it is found that all variables of interest, except population, are non-stationary and have a unit root. This means that the time series have some pattern of behavior and the mean and variance do not remain constant but have considerable changes in the analyzed period. Given this, the first difference of all variables with unit roots is taken and the test is repeated. We find that the variables in first differences are all stationary (see Table A3). Therefore, it is possible to estimate cointegrated models.iii) Testing for the existence of cointegration between the variables Based on the cointegration tests (see Table A4), it is found that for both GHG emissions from beef cattle due to manure management and enteric fermentation, a cointegration relationship is presented with the model variables. On the other hand, the models for GHG emissions generated from manure management and enteric fermentation in the production of raw milk present a cointegration relationship, since four estimators are statistically significant. Similarly, this occurs with the beef and milk production models, with four and five coefficients supporting it, respectively. In this sense, for all the models there is at least one coefficient that rejects the null hypothesis of no cointegration, for which cointegration relationships can be assumed for all the models. iv) Identifying the best model between MG and PMG After identifying the presence of long-run relationships for the variables of interest and for the various models, the best estimation model must be identified. Therefore, a Hausman test is performed to choose between the PMG and MG models, and thus estimate the effects of each of the models and identify if there are long-term effects between cattle farming (GHG emissions and production) and the variables of interest. The results of the Hausman test (see Table A5) show that the best model to estimate is PMG. v) Estimating the long-and short-term effects of the chosen model Table 3 presents the general results of the short-and long-term estimations for the six models. In general, the short-term effects are not statistically significant at the 5 % level. Significant results occur only in the two manure management GHG emissions models for the population and forest land variables. However, they do not present the expected signs. Given this, the analysis of short-term effects is further broken down by country (see Tables 4 and 5).The estimation of long-term effects presents a greater number of significant coefficients than the short-term ones. Therefore, it allows extracting some results of interest. The impact of population growth on both GHG emissions from cattle production and beef and dairy production levels tends to stabilize in the long-term, or in other words its fluctuation reduces. This is shown by the coefficients in the six models, which have values that range between − 1.41 and 2.54. The same happens with the expansion of pastureland, since although a positive effect predominates, it is small and ranges between − 2.15 and 2.66. Deforestation also seems to lose influence on cattle farming in the long-term, since the coefficients do not exceed 1.19 in any case. Finally, the estimates suggest that the growth of forest land reduces cattle farming in the long-term. The most consistent results were obtained by running a one-lag empirical specification.Table 4 shows the error correction terms and their statistical significance by country, both for the beef and raw milk production models. The results of this analysis were also obtained within the framework of the dynamic panel methodology. For beef production, there are no long-term relationships for Costa Rica and Panama, whereas for raw milk production, there are none for Colombia, El Salvador, Mexico, Panama, Peru, and Venezuela. So, for this set of countries, there would be no incidence of the explanatory variables of the models on the production of beef or raw milk in a long-term scenario. The most representative results of the estimation show that Argentina presents long-term relationships in both models. The coefficients are 0.22 and 0.24, indicating that the adjustment period to long-run equilibrium in the event of any shock to the system is similar in the beef and dairy sectors, namely about 4 years (for example, 1/0.24 = 4.1 years and 1/0.22 = 4.5 years). This means that disturbances in raw milk or beef production generated by variables such as population, pastureland, or deforestation take between 4 and 4.5 years to correct. Brazil has a faster adjustment period in beef production (1/0.48 = 2 years), but a slower one in milk production (0.15 = 6.6 years). For both models in Ecuador, El Salvador, and Honduras, there are relatively fast adjustment periods of about two years.Table 5 shows the short-term effects by country, according to the beef and raw milk production models. Most of the results are not statistically significant. However, some elements can be extracted. In Honduras and Argentina, the positive association between population growth and beef production is the most robust in the region. Regarding the pastureland variable, the coefficients are small except for the outlier of Venezuela. For deforestation there is little significance, and the coefficients are less than 1.14. Very few statistically significant results are found for the forest land variable and those that are significant do not contribute in terms of interpretation, given the atypical magnitude of the coefficients. Based on the panel data, it appears that the deforestation variable better captures the impact on production than the forest land variable.This document analyzed the short-and long-term effects of population growth, deforestation, and the expansion of pastureland and forest land on the cattle activity in Latin America, both in terms of GHG emissions and beef and raw milk production. The most relevant effects occur in the long-term, at an aggregate level for the 15 countries of analysis, and for beef production.It is estimated that over the period of analysis, a population growth of 1 % decreases the methane emissions derived from manure management in beef production by 1.41 % and increases those derived from enteric fermentation by 0.97 %. These results are consistent with other panel data studies from different regions of the world, which have evaluated the relations between productive activities and GHG emissions. A study from south-eastern Europe, for example, highlights a positive long-term relationship between CO 2 emissions and variables such as income, electricity consumption, and agricultural production. The relation is especially high forError correction term by country for the beef and raw milk production models. income, where a 1 % growth leads to increased emissions of 2.33 % [66]. An analysis for 28 countries of the Union for the Mediterranean (UfM) showed that in the long-term, a population growth of 1 % decreases CO 2 and CH 4 emissions by 0.25 % and 0.038 %, respectively, because of technological advances and new regulations, which reduce the impact of economic activities on the environment [67]. This might also be the cause for the results of the present study: On the one hand, there are countries with strong technical and political advances in cattle production, such as Brazil, Uruguay, Costa Rica, and Argentina, which may pave the way towards stability in the long-term [80,81]. On the other hand, in countries with less efficient and productive cattle systems, such as Colombia or the Central American countries, long-term stability can only be achieved through the implementation of new public policies that focus on a transition towards more sustainable production systems, i.e., those that include improved forages, silvo-pastoral systems, agroforestry arrangements, and improved grazing management, among others [79,80].It is reiterated again that caution should be exercised when interpreting these results, as the source of information corresponds to a basic and less detailed level. However, given the availability of the data, the analysis provides relevant insights. With that in mind, the results indicate that a 1 % expansion of pastureland increases the methane emissions from manure management by 2.66 % and decreases those related to enteric fermentation by 2.15 %. The increase in the emissions from manure management identified in the present study might be related to a growing cattle herd resulting from the expansion of pastureland, a phenomenon widely documented in literature for several of the analyzed countries [6,[82][83][84][85]. The decrease in emissions from enteric fermentation might be explained by improvements in forage quality and grazing management over time because of technological advances, which increase production efficiencies and contribute to reducing GHG emissions. This includes for example new forage varieties and hybrids, silvo-pastoral systems, and rotational grazinginnovations that are being pushed for adoption in cattle systems in the countries of analysis since several decades [81,82,[86][87][88]and have shown to reduce the emissions from enteric fermentation [30,[89][90][91][92]. This result is in line with a study on the influence of economic growth on CO 2 emissions in Brazil, India, China, and South Africa for the period is from 1971 to 2013, where it was found that a 1 % increase in cattle production increases emissions by up to 15.8 % in the long-term. The study concludes that these economies are in a stage of development in which economic growth has a significant impact on the environment, and that a transition towards cleaner and more efficient technologies is needed [93,94].An increase in deforestation has effects on both the emissions from beef and raw milk production: In the case of raw milk production, both emissions from enteric fermentation and manure management increase (by 1.19 and 1.17 %, respectively), while in beef production only the emissions from enteric fermentation increase (by 0.22 %). This might be related to a growth in the cattle herd on deforested areas, which often are not planted with productive forages nor follow adequate pasture management practices, i.e., when cattle are used as placeholder in land speculation processes, and thus increase GHG emissions [5]. On the other hand, if the land used for forests is increased by 1 %, for example through afforestation efforts, the emissions from beef production decrease by 2.11 and 1.79 % for manure management and enteric fermentation, respectively. This shows that the cattle activity is strongly related to deforestation in the region, which is in line with the findings from other studies on the subject [6,37,[95][96][97][98], and that adequate public policies or monitoring can contribute to reducing the emissions from deforestation related to cattle production, among other environmental benefits such as biodiversity conservation, for example through land-sparing [99][100][101][102] and sustainable intensification approaches [103].The results for the short-term effects of the measured variables on cattle production and emissions in LAC are heterogeneous and little statistical significance was found. Despite this, the estimation of the adjustment periods to long-run equilibrium in the event of any shock to the system by country are provided, which estimate how long it takes the cattle sector (beef and raw milk production) to return to its original trend, after an unexpected change in the explanatory variables happens. According to the results, if disturbances in the population, pastureland, deforestation, and afforestation variables occur, cattle production adjusts over a period of 2-6 years. The estimated adjustment periods are consistent with the findings from other studies [68].Studies agree that in the short-term, the economic activity has a significant impact on GHG emissions. However, the most important results suggest that in the long-term, there is a tendency towards stabilization. This applies particularly to developed countries and to those that count on strong environmental regulations, suggesting that developing countries have a bigger challenge to control their emissions in the long-term [67].On the other hand, as mentioned in the study's limitations, the Tier 2 method is more efficient. For instance, when estimating methane emissions, it yields more accurate results that enable better monitoring of the livestock activity [2]. Consequently, these tools allow for a more in-depth exploration of the observed relationships, using more recent temporal information. Several studies have delved into this approach [104][105][106]).In the present article, the estimates showed results with some similarities. In the short-term, there are heterogeneous results for the countries. In the long-term, trends towards stabilization are observed with small or even negative coefficients. The findings thus indicate that both technological development and improvements in regulatory frameworks in the long-term can a) help in reducing the pressure population growth, pastureland expansion, and deforestation have on cattle production systems and hence, the environment, and b) contribute towards achieving stability.This article provided an analysis of the relationship of the cattle sector and the environment. It was evaluated how population growth, pastureland expansion, and deforestation affect cattle production and greenhouse gas emissions from the cattle sector in the short-and long-term with a data panel for 15 Latin American countries over a period of 30 years. The results show that cattle production in the region is very heterogeneous, and some countries have a stronger participation of more technology-intensive production systems, whereas in others production levels and efficiencies lag behind. The estimation of a panel allows to reflect this heterogeneity but also shows a path towards stability in the long-term, meaning that population growth, pastureland expansion, and deforestation, over time, tend to be related less with the GHG emissions generated by the cattle sector. This long-term behavior may be marked by countries with a more developed cattle sector, i.e., those that focus on reducing the impacts of cattle production on the environment, for example through supporting the adoption of improved forage technologies, silvo-pastoral systems, and grazing management practices, or the development of regulatory frameworks and incentives. These countries can serve as regional benchmarks and decision-makers from countries with a less-developed cattle sector can learn from their experiences.This suggests that long-term scenarios for those countries with less efficient and sustainable cattle sector should be further investigated. A large-scale study that focuses on the cattle production units as unit of analysis for the entire region can provide a better understanding of the relationships between cattle production and the environment. Econometric advances and increasingly sophisticated computational techniques can contribute strongly to this endeavor, but more complete sources of information are needed. The results of this study can be used as a starting point for future research, such as a) further assessments of the general trends at the country level, b) assessments of other units of analysis and other sources of information, and c) expanding the techniques for empirical analysis.The present study is a contribution to the field since it allows for comparisons to be made at the regional level in relation to GHG emissions and cattle farming. The study provides an understanding of the dynamics of the sector in the region, where cattle farming is a determining productive activity in the generation of GHG emissions. This is a growing topic of interest considering both the importance of the cattle sector in Latin America and the growing demand for the conservation of natural resources and sustainable production systems that support the mitigation of GHG emissions. Nevertheless, it is essential to delve more deeply into these dynamics using other methodologies and sources of information that allow for result comparisons. Recent developments such as FAO-GLEAM provide an opportunity to further explore these aspects. If the variables in equation (A1) are I(1) and cointegrated, then the error is I(0). Thus, these variables have the capacity to respond to deviations from the long-term equilibrium. This implies an error correction model. Therefore, equation (A1) can be reparametrized into the following error correction equation:where:).j= 1, 2, ….,p− 1.δ im j= 1, 2, …, q− 1.θ i : error-correcting speed of adjustment. If it is equal to zero, then there would be no evidence for a long-term relationship.θ ′ i : contains the long-term relationships between the variables. There is a PMG estimator that combines both pooling and averaging. This estimator allows the relevant elements to differ across the groups but constrains the long-term coefficients to be equal across groups [25,26,29]. Since equation (A2) is nonlinear in the parameters, Pesaran et al. [26] propose a maximum likelihood method to estimate the parameters, as expressed in equation (A3):where:i= 1, ….,N.ξ i (θ)=y i,t− 1 − X i θ i .I T : identity matrix of order T. ) .Stata software offers computational facilities to obtain these results. A detailed analysis of these technical aspects can be found in Blackburne and Frank [29]. ","tokenCount":"7256"} \ No newline at end of file diff --git a/data/part_3/2296848332.json b/data/part_3/2296848332.json new file mode 100644 index 0000000000000000000000000000000000000000..dedb35d3363b8e8e0f8b957a4b3289d9031c990b --- /dev/null +++ b/data/part_3/2296848332.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c349657312c192fd5d386a412f4f7c48","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/46a4e589-d022-4771-b06b-305340c3bfa8/retrieve","id":"551850080"},"keywords":[],"sieverID":"59dbd877-2a25-443a-937d-23b0293149a4","pagecount":"5","content":"Total population: 13.2 million 41% of the urban population lives in Kigali 61% of urban Rwandans live in informal settlements Urban poverty rate (2017): 15.8% Annual urban growth rate: 3.1% Information on child feeding practices shows high consumption of Vitamin-A rich foods in urban and rural areas and a steady increase from 2010 and 2020 in both areas (Fig 2). Vitamin A deficiency among children 6-59 months is slightly higher in urban children (8.3%) than in rural children (6.5%). Among pregnant women, 14% in urban areas are Vitamin-A deficient as compared to 7% in rural areas (8). Consumption of iron-rich foods is low, especially in rural areas, and has not increased over time (Fig. 2) (5).Rwanda is one of the most densely populated countries in Africa. National strategies aim to eliminate chronic malnutrition by 2050 (1). Overall, the country is on track for global nutrition targets for child wasting, overweight and recommended breastfeeding practices (2). However, there are differences in nutrition challenges between rural and urban areas. The dominance of the agricultural economy at the national level, higher poverty and stunting rates in rural areas has led to a greater focus on promoting food and nutrition security in rural areas (Fig. 1) (3,4).National data show that food and nutrition security improved in urban areas since 2010. Child stunting and wasting over this period also declined in both urban and rural areas (Fig. 1) (5). However, urban poverty increased during the COVID-19 pandemic, with the low-skilled urban poor being most affected (6).Kigali* 1 While there is no data on the impacts of the pandemic on urban child nutrition, a study of secondary cities found high levels of household food insecurity during the COVID-19 crisis (7).Vitamin A-rich foods commonly consumed in Rwanda include spinach, amaranth, cassava, pumpkin, sweet potato, mango; Iron-rich foods include egg, meat, and fish or shellfish. Vitamin B12 deficiency affects 16% of children aged 6-59 months, with no differences between rural and urban areas. However, nearly half of pregnant women in urban areas (46%) are B12 deficient, and 43% in rural areas.Overweight and obesity in women is markedly higher in urban versus rural areas and has increased steadily (almost doubled) between 2010 and 2020, and affected 40% of urban women (Fig 4). Obesity and overweight also doubled among women in rural areas but reached a lower prevalence (22%) in 2020.Nationally representative data indicates hypertension prevalence is slightly higher in semi-urban areas (18.5%) as compared to rural (15%) or urban areas (15.7%), and is associated with older age, increased BMI and residence in a semi-urban area (10). A study using World Health Organization surveillance data found diabetes prevalence is also higher in urban areas (9.7%) than in rural areas (7.5%). Obesity, high cholesterol, hypertension, and age were associated with diabetes and impaired fasting glucose among urban residents (11).Generally, trends in Rwanda mirror the rest of the East African region, with higher rural stunting and wasting but rapidly increasing overweight and NCD burdens in urban areas (12).Photo of Kigali: Gwendolyn Stansbury/IFPRI Overweight and obesity prevalence among urban men was 9% in urban areas and 2.6% among rural men 2010, and has not been updated for either locality (5).There is limited information on urban adult diets. A recent study found urbanites may eat more healthy foods, but their overall diet quality is lower than rural residents relative to global diet recommendations and for unhealthy foods that should be limited (9). Another surveyed women in two secondary cities and found that 67% did not consume an adequately diverse diet (7). Child anemia has seen little improvement since 2010, and affects 34% of urban children and 37% of rural children. Women's anemia slightly declined in urban and rural areas from 2010-2020 (Fig. 3).Likewise, the prevalence of children overweight or obese in urban areas rose from 7% in 2010 to 11% in 2014 but dropped back down to 7% in 2020. Rural child overweight showed a slight decline from 7% in 2010 to 5% in 2020.Urban food environments are also understudied in Rwanda. Work on the topic has been only published more recently (after 2015) and is focused on describing characteristics of urban food environments. Most of this work is focused on the 'availability' dimension of the food environment (n=3) (14). The types of food environments studied were formal and informal markets. Cultivated, wild and institutional food environments were not represented in the literature. Two studies focused on vendors and product properties in Kigali. One assessed food safety in meat in retail outlets, finding a need for improvements in meat handling practices particularly in terms of temperature, hygiene conditions and personnel training (15). An inventory of African indigenous crops in three informal urban markets found only a quarter of consumables available were cultivated or wild native foods, and highlighted the opportunity to promote consumption of native species to improve dietary diversity (16). Another study measured coverage of iron-biofortified beans and biofortified orange-fleshed sweet potato (OFSP) in a peri-urban area. While unfortified bean and OFSP consumption was high, awareness and availability of biofortified crops were barriers to uptake (17). Another study described advocacy efforts to support a ministerial decree for food fortification as a means to support urban food quality (18).There is a need for further descriptive and inferential work to characterize the urban food environment in Rwanda, particularly in relation to informal urban markets and on topics including prices, consumer preferences, stability, accessibility, sustainability and food safety.There was also an evidence gap on developing and testing interventions to improve diets and nutrition via the food environment. No published evaluations of urban food environment interventions were found. However, these types of interventions could prove useful to address the diet and nutrition challenges outlined above in the urban environment. For example, the biofortification of commonly consumed foods such as beans, which already occurs in Rwanda, has the potential to address the low percentage of children consuming iron-rich foods. Integrating information from studies of the food environment -such as barriers to availability of these crops -could inform interventions to encourage healthy diets among urban populations.There is little published evidence on urban nutrition interventions in Rwanda. In the absence of evidence, formative work could help to inform potential interventions. Formative research in rural Rulindo and urban Kigali identified acceptable feeding practices for children and potential barriers to recommended child feeding practices. One potential barrier to nutrition interventions is the belief by caregivers in both urban and rural areas that child overweight is an indication of good health (13). Unfortunately, the lack of rigorous evaluations and few results presented by locality (urban/rural) preclude an understanding of what interventions would be most effective in urban areas. There are major gaps in the evidence on urban dietary patterns and nutrition challenges, interventions and policies in Rwanda. These include understanding the range of nutritional challenges urban dwellers face (e.g., multiple forms of malnutrition), their dietary patterns, and how food environments and other factors influence their food choices and diets. There is also a lack of comprehensive diet, nutrition and health data on vulnerable urban sub-groups and little information on the role of smaller secondary cities and peri-urban areas in shaping the food environments urban dwellers are exposed to. This data is needed in order to align identified nutrition, diet, and food environment challenges with interventions to address them. These interventions must then be rigorously evaluated, with a goal to eventually incorporate lessons into policy or strategies focused on urban areas.Urban farming is also supported by the National Urbanization Policy (2015), but only through zoning regulation that allows for mixed agricultural use including gardening, tree nurseries and communal plots. Vision 2050 is an ambitious national agenda which foresees a transition from a reliance on imported food to a domestic food system that meets dietary needs of an urbanizing population, including through urban farming. However, how that transition will be implemented or financed is not clearly defined. At the local government level, a partnership between local government and the Food and Agriculture Organization on an Urban Food Agenda is building capacity to implement food system strategies to strengthen the connections between rural and urban food systems surrounding Kigali (20). While national policies reference the importance of urban agriculture, greater designated funding and programmatic support could help to encourage these initiatives. The Rwandan policy environment has many comprehensive strategies focused on nutrition, but there are few specific efforts targeted to the challenges of growing urban areas.Rwanda's first National Nutrition Strategy was adopted in 2007. Subsequently, a multi-sectoral National Food and Nutrition Policy (2013-2018) set political commitments to nutrition, reinforced support to nutrition programs and aimed to reduce household food insecurity and malnutrition. However, while the policy acknowledged the growing challenge of overnutrition and NCDs in urban areas, there were few concrete actions outlined to address them. Homegrown school meals and gardening in urban schools were emphasized in the policy but financing or operational efforts are needed (19). The Vision 2020 Umurenge Program (VUP), the national social protection strategy, incorporated nutrition-sensitive interventions such as the nutrition-sensitive direct support program (NSDS) to provide cash transfers to vulnerable women and children. The NSDS targeted districts with high levels of stunting, including some rapidly urbanizing districts, although urban considerations are not explicitly addressed in design or implementation.","tokenCount":"1537"} \ No newline at end of file diff --git a/data/part_3/2298354379.json b/data/part_3/2298354379.json new file mode 100644 index 0000000000000000000000000000000000000000..fc415228af9288b40e902858bd442933dbfca249 --- /dev/null +++ b/data/part_3/2298354379.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"a4d82d620b611357ffa0f8760a406f39","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/4790dd69-3f8a-4e8c-ba9d-325bbe301e11/retrieve","id":"1191689868"},"keywords":["cassava","plantain","moringa","bush fire","resilience","food security View publication stats View publication stats"],"sieverID":"fe75316f-f70d-4470-9326-1914bb86e12e","pagecount":"6","content":"Research on the resistance of cassava to fire is scarce because ordinarily researchers would not set their cassava farms on fire for such evaluation. Stems rendered useless by fire were commonly reported by farmers but no information on root yields and shoot regeneration. This study compared the superiority of two improved International Institute of Tropical Agriculture (IITA) cassava varieties (\"Yellow root\" and \"Agric\") over plantain and moringa in a cassava + plantain + moringa intercropping arranged in a randomized complete block design at the University of Nigeria, Nsukka, Research Farm. The original aim was to compare the performances of the crops in the mixture. It was set on fire by unknown persons in early February 2018. Crop growth data were collected after six months. Less than 5% and 4% of plantain and moringa stands regenerated respectively. The stands appeared impoverished. More than 90% of both cassava varieties regenerated stems suitable for use as cuttings. Average fresh root yield obtained was 18.5 t ha -1 with ≈ 95% marketable and only < 5% rotten. The \"Yellow root\" gave significantly higher starch content (30.9 vs 19.7%) than \"Agric\". The root: shoot ratio (3.35 vs 5.28), fresh root weight (22.5 vs 14.5 t h 1 ) and marketable root weight (21.61 vs 13.72 t ha 1 ) for both varieties were statistically similar. This evaluation confirmed cassava as a better food security crop than plantain and more resilient to fire than both plantain and moringa. The two IITA improved varieties proved to be equally resilient to bush fire.Cassava (Manihot esculenta) is well known for its cash and food security values (Nweke et al, 2002). Cassava is also known as manioc, yucca, madioca, macaxereia and Brazilian arrowroot. It originated from South America. Currently, Nigeria is the largest producer in the world. Southeastern Nigeria is known for cassava production. The food security value of cassava is associated with its advantages over most crops. This is because cassava tolerates pest and disease attack, fire and draught; serves as a cheap source of carbohydrate; has flexible time of planting and harvesting; and has high soil storage value 1,2 . Specifically, cassava is generally known as a food security crop satisfying the calorific needs of roughly two out of every Africans and more than 65% of the calorific energy needs of the people of sub-Saharan Africa including Nigeria 2 .During many field studies including the Collaborative Study of Cassava in Africa (COSCA) study, several burnt cassava fields were observed. Information on the resistance of cassava to fire is scanty, possibly because researchers would not ordinarily set their farms on fire so as to assess the impact of fire on his experiment. The COSCA showed that in Sub-Saharan Africa (SSA), the number of cassava farms set on fire during the dry season by hunters of bush animals is high and wide spread 3 . Most times, the commonest reports by farmers often centred on cassava stems burnt and rendered useless. However, there is scarce information on the effect of fire on the cassava root yields and shoot (stems and leaves) regeneration.Plantain is a major staple food in Africa, Latin America, and Asia. Four African countries have the highest per capita consumption of banana/plantain in the world, with Uganda having the highest. Plantain provides food security and income for small-scale farmers who engage in its production 4 . Plantain is cherished in eastern Nigeria for its food and cash values.Both the soil fertility restoration 5 and medicinal values of moringa have been documented 6 . Moringa oleifera is a fastgrowing tree native to South Asia and now found throughout the tropics 7 . It is sometimes described as the \"miracle tree\", \"drumstick tree\", or \"horse-radish\" tree because of its health and agricultural uses. Moringa extract can be used as a liquid fertilizer. The ratio of moringa extract to water should be 1:30 when used as a liquid fertilizer. To attain the maximum yield of most crops, the dilution can be used as the best foliar applicator to enhance yield because the extract is rich in NPK along with other nutrients and trace minerals. Moringa leaf extract applied on the crops does not harm bees, wasps and butter-flies but helps to control all other pests even rodents 7 . Cassava + plantain + Moringa intercrop has been identified as possible alternative cropping system that can improve and sustain the income of smallholder farmers in eastern Nigeria 5 . Southeastern Nigeria is known for cassava production. In February 2018, barely ten months after planting, onehectare cassava + plantain + moringa alley farm established at the University of Nigeria, Nsukka Teaching Farm which involved two popular improved IITA cassava varieties grown by the local farmers (IITA-TMS-IBA070539) also known as yellow root) and (TMS 30572 also known as 'Agric' was set on fire by unknown person at the peak of dry season. This fire outbreak necessitated the need to evaluate the effect of such bush fire on crop resilience vis-a-vis plant survival rate, regrowth and yield potentials. This study compared the resilience of cassava, moringa and plantain to bush fire and the superiority of two cassava varieties involved in the fire incidence. The yellow variety has a pro-vitamin A content that averages 10 parts per million (ppm) based on fresh roots 8.Nsukka is located by latitude 060 52'N, longitude 070 24'E within the derived savanna zone of Eastern Nigerian. The average elevation of Nsukka area is 447 m above sea level. The area is dominated by two seasons namely the rainy and the dry seasons. The former lasts from April to October with a short break (August Break) normally in the month of August. Average annual rainfall is about 1550 mm and more than 85% of this rain falls within the rainy season. The average minimum and maximum temperatures are about 22 and 30 °C respectively while the average relative humility is rarely below 60% 9 . The soil was formed from the residua of false-bedded sandstone and has been classified as Rhodic Kandustalf (Haplic Lixisol). Nsukka location meets the biophysical requirement for the growth of most tree and arable crops including plantain and moringa 10 .The field was ploughed, harrowed by tractor, and then alleys of plantain and moringa were established at 5 m apart and 6 m along the alleys in May 2017. Plantain was planted at 9 m apart and moringa was planted in-between the plantain stands giving a plant population of 1111 plants ha -1 . Ridges were made by tractor between the alleys and two improved IITA cassava varieties TMS 30572 known as \"Agric\" and IITA-TMS-IBA070539, known as \"Yellow root\", in the study area, were planted at 0.5 m by 1 m giving a plant population of 20 000 plants ha -1 (Plate 1). Poultry manure was broadcast at the rate of 8 t ha -1 on the harrowed plots before ridging. Again, poultry manure was also applied to the plantain at 0.5 kg stand -1 . rates approximate farmers' practice in the area. The two cassava varieties were arranged in a completely randomized block design (RCBD) replicated three times. In the second week of February 2018, ≈ 10 months after planting, the entire field was burnt by unknown persons (Plate 2). The burning was facilitated by the undergrowth of dry grass and dry portions of the crops. The numbers of cassava, plantain and moringa regenerated from their burnt stands across the entire field were taken. Photograph of the regenerated shoots were also captured. These activities were carried out in the first week of July 2018 approximately six months after burning (6 MAB).From the three replicates of cassava plots, three subplots measuring 5 m x 6 m were carved out for data collection. The following data were taken: number of regenerated cassava stands, weight of cassava leaves, weight of plantable stems, weight of fresh roots, weight of marketable roots and unmarketable roots as well as that of rotten roots. The starch contents of the fresh roots of the two cassava varieties were evaluated in the field using the specific gravity method 11 . The set up is shown as Plate 3. The following parameters were obtained: Generally, in Nigeria, cassava markets are bound both in rural and semi-urban areas. Sorted cassava tubers have premium price across cassava markets Thus, the weight or number of marketable roots is more relevant than entire fresh root yield (unsorted harvest).Marketable roots have been defined 12 as those roots which are at least15 cm in length. However, we considered those roots that cannot be held in the hand while peeling (< 10 cm in length) as unmarketable roots based on agricultural extension information and local market experience in Nigeria. Such roots are not, however, useless as they are crushed and fed to animals by the farmers.Plantable stems are those stems from which at least two viable cuttings of 15 cm long can be obtained before getting to green part of cassava stem. The green parts of cassava stem hardly survive when the soil is either dry or wet.The rotten roots were sorted and separated from fresh roots and weighed separately.The status of the field when the farm was burnt in February 2018 is shown Plate 2. The entire field appeared charred with no hope of any crop re-growing. The number of plantain that regenerated at 6 MAB was < 5% of the original stands (Table 1) and the regenerated stands appeared very impoverished (Plate 4and 5) as compared with the plantain stand at the edge of field not affected by fire (Plate 6).Plate4: Impoverished regenerated plantain stand at 6 MAB Plate 5: Another two impoverished regenerated plantain stands from the same spot at 6 MAB Plate6. Plantain stand at the edge of field not affected by fire The effect of fire appeared worse on moringa than on plantain. This was evident by <4% of the original stands of moringa that was counted at 6 MAB (Table 1). The moringa stands also appeared impoverished (Plate 7). Page: 77 Plate 7. Impoverished regenerated moringa stand at 6 MAB In contrast, the mean number of cassava stands counted at 6 MAB was > 90% (Table 2) and the cassava stands looked well nourished (Plates 8 and 9).The results clearly showed the superiority of cassava over plantain and moringa when subjected to bush fire. This resistance to fire agrees with established facts that cassava is a reliable food security crop 3,1 . It also raises the hope of cassava farmers whose farms are subjected to frequent bush fire by hunters of bush animals.Plate 8: Flourishing Yellow root at 6 MAB Plate 9: Flourishing TMS 39572 (Agric) at 6 MABVarieties to Bush Fire The data obtained showed that the two cassava varieties (Agric and Yellow root) did not differ significantly in the number of stands regenerated at 6 MAB (Table 1). Similarly, cassava stem, leaf and shoot (above-ground biomass) weights; and root: shoot ratios associated with the two varieties did not differ significantly. Although the root weights of \"Agric\" and \"Yellow root\" varieties were statistically the same, \"Yellow root\" had 38% higher average root weight than \"Agric\" variety. The non-significant differences in the parameters obtained from the two varieties at 6 MAB suggest that both varieties have similar genetic potentials to resist fire. However, the starch content obtained from \"Yellow root\" variety was significantly higher than that obtained from \"Agric\" by 36%. The significant difference in the starch content obtained could be attributed to the variance associated with their inherent genetic makeup indicating that Yellow root was superior to Agric with respect to starch content at 6 MAB. Possibly the fortification of \"Yellow root\" with pro-vitamin A content that averages 10 parts per million (ppm) based on fresh roots 4 . (IITA, 2014) may be responsible for the observed differences in the starch content. This result requires further investigation.The average rotten root percentages for \"Yellow root\" and \"Agric\" were 5% and 3% respectively and when compared statistically there was no difference. This is another advantage of the varieties. It is, however, possible that the bush fire killed the microbial organisms that would have contributed to the rotting of the roots and the organisms could not repopulate before July when root harvesting was carried out. This is another area of research challenge because the expectation would be that a lot of the roots would have been rotten at 6 MAB the heat from the fire. The effect of bush fire on plantain, moringa and cassava from this evaluation was more disastrous on both plantain and moringa than on cassava. The effects of bush fire on the regrowth parameters of the two improved cassava varieties, IITA-TMS-IBA070539 (Yellow Root) and TMS 30572 (Agric) namely: number of regenerated stands, plantable and unplantable stems, weight of stems and fresh roots, rotten roots, marketable and unmarketable fresh roots were similar. The starch content of \"Yellow root\" was significantly higher than that of \"Agric\". The resistance of cassava to bush fire confirms cassava as a better food security crop than plantain and more resilient to fire than both plantain and moringa. The two IITA improved varieties proved to be equally resilient to bush fire. This additional attribute of cassava raises the hope of cassava farmers whose farms are often subjected to seasonal bush fire in sub-Saharan Africa and confirms cassava as a reliable food security crop.","tokenCount":"2220"} \ No newline at end of file diff --git a/data/part_3/2302303343.json b/data/part_3/2302303343.json new file mode 100644 index 0000000000000000000000000000000000000000..8e39f85f2b89f73c76c96b9ddca2f1af1e81595a --- /dev/null +++ b/data/part_3/2302303343.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"ac0b2f964b94e9b9e350ad06c1da7a52","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/e9ac5feb-58e5-4e10-8a47-f8c496c30492/retrieve","id":"661548221"},"keywords":[],"sieverID":"cc01ea1d-894f-4324-ae22-3d026afb4eab","pagecount":"15","content":" Why do we need to assess the impact of our work?• Donors want us to be accountable  Special consideration about inferences being valid:• Internal Validity: impact given by our intervention • External Validity: estimated impact is generalizable Problem of missing information: Common Methods for IA (2) Each method has pros and cons  Selection of specific method depends on status of project implementation, data needed/available, resources, etc.  If we can collect primary data, we need to remember that we want to make valid inferences  Because of this, it is desirable to adequately sample beneficiariesHow are we implementing IA? Collaborate with researchers from other disciplines and many institutions (government, universities)  Attempt to participate from the project design stage  Implement RCTs when viable  Collect primary data with specific instruments  Use statistical tools to sampling  Identify sampling design to reduce costs  Determine appropriate methods for analysis What are we doing? Recently, we are using tools from other disciplines (molecular biology) to better identify crop varieties (DNA fingerprinting)  Prioritization indexes: uses production, consumption and nutritional deficiency data to identify \"zones of action\"","tokenCount":"189"} \ No newline at end of file diff --git a/data/part_3/2305386244.json b/data/part_3/2305386244.json new file mode 100644 index 0000000000000000000000000000000000000000..53fc1b2a8288e37264324e97e716a9bb9fe0efa5 --- /dev/null +++ b/data/part_3/2305386244.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"60d56392bbcfe49a0bae394c43e879c0","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/638a2749-10ea-458b-81df-aa23862966d8/retrieve","id":"1400764960"},"keywords":[],"sieverID":"fda5c11c-1c56-49de-9518-494dc24fae62","pagecount":"8","content":"Insects are potential ingredients for animal feed and human food. Their suitability may be influenced by species and nutritional value. This study was aimed at determining the nutritional profile of four insects: Dipterans; black soldier fly (Hermetia illucens Linnaeus) family stratiomyidae and blue calliphora flies (Calliphora vomitoria Linnaeus) family Calliphoridae; and orthopterans; crickets (Acheta domesticus Linnaeus) family Gryllidae and grasshoppers (Ruspolia nitidula Linnaeus) family Tettigoniidae to establish their potential as alternative protein sources for animals (fish and poultry) and humans. Gross energy, crude protein, crude fat, crude fiber, carbohydrates, and total ash were in the rangesInsects are generally nutritious and therefore have potential for use in human and animal feeding (Klunder et al. 2012). They are rich sources of first-class protein (20-76 g/100 g dry matter), fat content (2-50 g/100 g dry basis), carbohydrates (2.7-49.8 mg per kg fresh weight), up to 70 g/100 g total fatty acids could be polyunsaturated fatty acids and minerals such as calcium, zinc, potassium, iron, manganese, and phosphorus (Kourimska and Adamkova 2016). For example, grasshoppers (Ruspolia nitidula Linnaeus) family Tettigoniidae contains 36-40 g/100 g crude protein, 41-43 g/100 g fat, 10-13 g/100 g dietary fiber, and 2.6-3.9 g/100 g ash on dry matter basis (Ssepuuya et al. 2016). Insects, therefore, have tremendous nutritional potential when either used as primary sources of human food or intermediate products such as animal feeds for poultry and fish. This study focused on insects recommended for food: R. nitidula and crickets [Acheta domesticus (Linnaeus) family gryllidae] and for animal feed: blue calliphora flies [Calliphora vomitoria (Linnaeus) family Calliphoridae], a close relative to the common house fly and black soldier fly (Hermetia illucens Linnaeus) family stratiomyidae (EFSA 2015). Insects that have been researched for use in animal feeds include the common house fly (Musca domestica), black soldier flies (Hermetia illucens), mealworms (Tenebrio molitor), locusts (Locusta migratoria, Schistocerca gregaria, Oxya spp., and others), and silkworms (Bombyx mori and others; Makkar et al. 2014, Stamer 2015, Veldkamp and Bosch 2015). Hermetia illucens pre-pupae are either commercially reared on organic waste such as kitchen food waste or naturally found in pig, poultry, and cattle manure waste (Veldkamp and Bosch 2015). Calliphora vomitoria are harvested from open damping sites or reared (Nakiyemba 2016). There is no competition for the use of H. illucens pre-pupae and C. vomitoria between humans and animals because these insect species are currently not consumed by humans. Acheta domesticus and R. nitidula can be directly consumed as human food. Although both A. domesticus and R. nitidula can be reared, R. nitidula are also seasonally abundant in African countries, especially Eastern Africa where they are obtained by harvesting from the wild (Kelemu et al. 2015).Whereas the nutritional composition of A. domesticus has been widely researched, a few studies (Mbabazi et al. 2009, Ssepuuya et al. 2017) on the nutritional composition of R. nitidula have excluded the amino acid profile. Other studies (Kinyuru et al. 2010, Ssepuuya et al. 2019) have focused on Ruspolia differens, a close relative. Similarly, for feed insects, Hermetia illucens pre-pupae has been widely studied (Makkar et al. 2014, Spranghers et al. 2016), but there is no current research on the nutritional composition and quality of C. vomitoria. This study was, therefore, aimed at confirming the nutritional characteristics of some insects such as A. domesticus as well as determining the nutritional potential of unresearched/less researched insects such as C. vomitoria for use as food and feed.Hermetia illuccens pre-pupae were reared on millet brew waste due to better colony performance and high protein content when compared with other substrates such as swine waste (Supp Tables S1-S3 [online only]). They were harvested at the pre-pupae stage (fifth-sixth instar). Adult C. vomitoria were harvested using bottle traps placed around garbage dumps in Makerere University in Kampala, Uganda, with decomposing chicken offal as the lure. Ruspolia nitidula were harvested from the wild using light traps in Masaka and Kampala districts in Uganda during the November-January season. Acheta domesticus were reared on a mixed feed containing banana peels, cassava peels, cassava leaves, sweet potato peels, and sweet potato leaves at inclusion levels of 18,12,43,7,and 20%,respectively (Supp Table 3 [online only]) and then harvested as adults after 3 mo. For all the four insects, random sampling from the rearing/harvesting sites was done three times to obtain a total of 750-g representative laboratory samples.Moisture content, crude protein, crude fat, ash, and crude fiber were determined by using methods described by AOAC (2012). Moisture content was determined by the draft oven method (934.01). Crude protein by the Kjeldhal method (976.06), crude fat by the Sohxlet method (991.36), crude fiber by the acid detergent fiber method (962.09), total ash by ashing in a carbolite furnace at 550°C for 2 h (942.05) and total carbohydrates determined by subtracting other proximate parameters from 100% (Reis et al. 2012). Gross energy was determined by the bomb calorimetry method as described by Smit et al. (2004).Fatty acid composition was determined by preparation of fatty acid ester derivatives (Christie 1993) and the fatty acid methyl esters were analyzed by gas chromatography/mass spectrometry (GC/ MS) on a 7890A gas chromatograph (Agilent Technologies, Inc., Santa Clara, CA) linked to a 5975 C mass selective detector (Agilent Technologies, Inc., Santa Clara, CA) as elaborated by Musundire et al. (2016). Fatty acids were identified as their methyl esters by comparison of gas chromatographic retention times and fragmentation patterns with those of authentic standards and reference spectra published by the library-MS databases: National Institute of Standards and Technology 05, 08, and 11. Serial dilutions of the authentic standard octadecanoic acid (0.2-125 ng/µl) were analyzed by GC/MS in full scan mode to generate a linear calibration curve (peak area vs concentration) with the following equation: [y = 7E + 06x − 4E + 07 (R 2 = 0.9757)], which was used for the external quantification of the different fatty acids.Inlet temperature was 270°C, transfer line temperature was 280°C, and column oven temperature programmed from 35 to 285°C with the initial temperature was maintained for 5 min and then increased by 10°C/min to 280°C and held at this temperature for 20.4 min. The GC was fitted with an HP 5MS low bleed capillary column (30 m × 0.25 mm i.d., 0.25 µm; J &W, Folsom, CA). Helium at a flow rate of 1.25 ml/min was used as the carrier gas. The mass selective detector was maintained at ion source temperature of 230°C and a quadrapole temperature of 180°C. Electron impact mass spectra were obtained at the acceleration energy of 70Ev. A 1.0-µl aliquot of sample was injected in the splitless mode using an auto sampler 7683 (Agilent Technologies, Inc., Beijing, China). Fragment ions were analyzed over 40-550 m/z mass range in the full scan mode. The filament delay time was set at 3.3 min. The amino acid profile was determined using the method described by Musundire et al. (2016). Chromatographic separation was done using a Waters ACQUITY UPLC (ultra-performance liquid chromatography) I-class system (Waters Corporation, Milford, MA). The UPLC was fitted with an ACE C18 column (250 mm × 4.6 mm, 5 µm, Aberdeen Scotland), with the heater turned off and the autosampler tray cooled to 5°C. Mobile phases used were water (A) and acetonitrile (B) each with 0.01% formic acid. Gradient elution was used at a constant flow rate of 0.7 ml/min. The injection volume was 1 µl. The following gradient was used: 0 min, 5% B; 0-3 min, 5-30% B; 3-6 min, 30% B; 6-7.5 min, 30-80% B; 7.5-10.5 min, 80% B; 10.5-13.0, 80-100% B, 13-18 min, 100% B; 18-20 min, 100-5% B; 20-22 min, 5% B. The flow rate was held constant at 0.7 ml/min. The injection volume was 1 µl. Leucine encephalin, a mass spectrometry standard was used as the reference compound.Data for proximate analysis, fatty acid profile, amino acid profile, and minerals were analyzed and presented as means ± SD. Means for proximate analysis, fatty acid profile, and amino acid profile were analyzed using one-way analysis of variance to test for significant differences (P < 0.05). Means were separated using Tukey's honest significant difference (P < 0.05). The statistical package for social scientists' software (SPSS Inc., Released 2007, SPSS for Windows, Version 16.0., Chicago, IL) was used for data analysis.There were significant differences in the nutritional composition of insects commonly used for human food (R. nitidula and A. domesticus). Similarly, insects used for animal feeds (H. illucens and C. vomitoria) also had significant differences in their nutritional composition (Table 1 The fatty acid profile of C. vomitoria, H. illucens pre-pupae, crickets, and R. nitidula is summarized in Table 2.The fatty acid composition varied significantly (P < 0.001) between the insect species for human food (R. nitidula and A. domesticus), except for lauric acid (F = 3.975; df = 3, 8; P = 0.053). Similarly, insect species for animal feed (C. vomitoria and H. illucens pre-pupae) had significant variations in fatty acid composition (P < 0.001) except palmitoleic acid (F = 3.203; df = 3, 8; P = 0.944), linolenic acid (F = 3.203; df = 3, 8; P = 0.0.896), and docosahexaenoic acid (DHA; F = 3.203; df = 3, 8; P = 1.0). The content of polyunsaturated fatty acids ranged from 950 mg/100 g (5 g/100 g of all fatty acids) in crickets to 3,626 mg/100 g (17 g/100 g of all fatty acids) in H. illucens pre-pupae.The total amount of saturated fatty acids (SFA) ranged from 2,345 mg/100 g (C. vomitoria) to 8,846 mg/100 g (H. illucens prepupae). Palmitic acid, stearic acid, and myristic acid were the main saturated fatty acids detected in black soldier flies, C. vomitoria, A. domesticus, and R. nitidula. The main SFA in these insects was palmitic acid ranging from 5,860 mg/100 g (38.8 g/100 g of all fatty acids) in black soldier flies to 3,053 mg/100 g (25.2 g/100 g of all fatty acids) in crickets. However, the main SFA in R. nitidula was stearic acid (Table 2).The concentration of total monounsaturated fatty acids (MUFAs) ranged from 2,638 mg/100 g (in H. illucens pre-pupae, constituting 12.3 g/100 g of the total fatty acid content) to 8,328 mg/100 g (R. nitidula, constituting 38.2 g/100 g of the total fatty acid content). The main monounsaturated acid (MUFA) in A. domesticus, R. nitidula, and C. vomitoria was oleic acid contributing 40.7, 62.7, and 45.0 g/100 g of the total fatty acid content, respectively, whereas that main monounsaturated acid in black solider fly pre-pupae was palmitoleic acid contributing 13.1 g/100 g of the total fatty acids (Table 2).Hermetia illucens pre-pupae, C. vomitoria, crickets, and R. nitidula had appreciable amounts of alpha-linolenic acid ranging from 100 mg/100 g (C. vomitoria) to 1,903 mg/100 g (H. illucens pre-pupae). Only C. vomitoria contained DHA (Table 2).The amino acid content of C. vomitoria, H. illucens pre-pupae, A. domesticus, and R. nitidula is summarized in Table 3. All insects contained both essential and nonessential amino acids.Twelve amino acids were determined including methionine, the most limiting for fish and poultry diets as well as those commonly limiting in human diets such as lysine and methionine Generally, there were significant (P < 0.001) differences in amounts of amino acids, except for proline (F = 2.726; df = 3, 8; P = 0.114), serine (F = 0.934; df = 3, 8; P = 0.468), and leucine (F = 0.897; df = 3, 8; P = 0.483) in the different insect species. The nonessential amino acid values ranged from 3.53 g/100 g (serine in H. illucens and R. nitidula) to 8.15 g/100 g (proline in C. vomitoria). Essential amino acids ranged from 0.2 g/100 g (tyrosin) to 26.6 g/100 g (methionine) in R. nitidula. The four insects were mainly rich in methionine, leucine, isoleucine, tyrosine, and phenylalanine.Determining the nutritional composition of potential food and feed ingredients is an important step in developing dietary recommendations to prevent or treat malnutrition. Prior to this study, there was limited research into the nutritional composition of some edible insects and thus their evaluation for use as food and feed in Uganda.According to Mlcek et al. (2014), the energy values of insects are high but vary with insect species and locality as shown in this study for differences among species. The obtained energy values for R. nitidula (2,069.53 kJ/100 g) and A. domesticus (2,056.73 kJ/100 g) are comparably higher than 1,783.64 kJ/100 g reported for orthoptera (grasshoppers, locusts, and crickets; Rumpold and Schlüter 2015). This could be attributed to environmental conditions such as geographical location, as the insects were reared/harvested in Uganda. Gross energy is mainly influenced by the macronutrients (protein and fat) composition of the insect, which is also influenced by other factors such as diet and sex (Kulma et al. 2019). However, the studied insects (R. nitidula and A. domesticus) were collected without considering the sex of individual insects. The high fat content of H. illucens pre-pupae (31.88 g/100 g) and grasshoppers (46.29 g/100 g) explains the high gross energy values. In contrast, for C. vomitoria and A. domesticus, the high energy values can only be explained by the high protein values, 64.9 and 62.57 g/100 g, respectively. Because insects are poor sources of carbohydrates, the contribution of carbohydrates to gross energy values is negligible. Ruspolia nitidula and A. domesticus contained more energy than conventional animal protein sources such as lean fried beef and pork, 213 and 974.87 kJ/100 g, respectively, and a wide range of livestock products (690.36-2,949.72 kJ/100 g; Heinz andHautzinger 2010, Mlcek et al. 2014). Therefore, R. nitidula and A. domesticus could make great contributions to human dietary energy intake in addition to high-quality animal protein such as beef, pork, fish, and others; however, for insects whose gross energy content comes mainly from fat, there is need to regulate fat consumption to avoid fat-related health problems such as cardiovascular diseases. It is also imperative to note that the chitin content of insects may not be fully utilized for energy, but rather useful in reducing the glycemic load when insects are eaten with other foods.In animal production, low energy intake affects growth and productivity. For example, in laying hens restricted energy intake reduces egg size, rate of egg production, and weight gain (Kingori et al. 2014). In swine production, energy is regarded as the most expensive feed ingredient that influences carcass characteristics such as lean or fatty pork (Velayudhan et al. 2015). Edible insects are high in energy; most of which comes from their high protein content. Velayudhan et al. (2015) demonstrate that high protein feeds for swine increase energy retention (net energy) in form of lean meat up to the genetic capacity of the animal beyond which fat will be deposited. Therefore, high protein ingredients such as edible insects could help in lean pork production provided feeds are formulated to meet growth and production requirements of swine.The energy values for C. vomitoria (2,028.11 kJ/100 g) and H. illucens pre-pupae (2,551.61 kJ/100 g) were higher than for conventional protein sources used in animal feed; for instance, cyprinid fish meal and high-quality Chilean low-temperature (anchovy) fish meal contain 2,011.25 and 2,013.34 kJ/100 g, respectively (Maina et al. 2002). Insects such as C. vomitoria and H. illucens pre-pupae, which are not consumed by humans, could be a potential ingredient in animal feeds.Regarding crude fiber content, reared H. illucens pre-pupae, and harvested R. nitidula values were close to 5.06-13.56 g/100 g for Isoptera and Hemiptera (Rumpold and Schluter 2013) but higher than those of fish meal (0 g/100 g) and cyprinid fish meal (0.9 g/100 g; Maina et al. 2002, Abowei andEkubo 2011).Monogastric animals including fish and humans cannot digest crude fiber (Delbert 2010). However, in humans, consumption of fiber confers health benefits especially along the digestive tract such as prevention of colon cancer, constipation, alleviation of symptoms of irritable bowel syndrome and reduction of the risk for cardiovascular diseases (Anderson et al. 2009, Ottles andOzgoz 2014). Ottles and Ozgoz (2014) recommended a daily dietary fiber intake of 28 and 36 g/day for adult women and men, respectively. The insects analyzed in this study contained 5.07-16.61 g/100 g of crude fiber. Therefore, consumption of 100 g of A. domesticus and R. nitidula meals can provide 16 and 28.7% of the daily requirement for fiber, respectively.In fish feeds, the maximum fiber inclusion is normally 7% to limit the amount of indigestible material (Delbert 2010). Dietary fiber intake may also reduce bioavailability of some minerals such as calcium except for highly fermentable fibers that improve mineral bioavailability (Ottles and Ozgoz 2014). The fact that H. illucens pre-pupae and C. vomitoria had higher crude fiber contents than fish meal (Maina et al. 2002, Abowei andEkubo 2011) is an indication that insect meal could be less digestible than fish meal. Therefore, care has to be taken when formulating animal feeds to ensure optimal inclusion levels of insect meal for minimal effects on mineral bioavailability and digestibility.As far as proteins are concerned, they influence the growth of humans and animals as well as productivity of animals such as chicken and fish. They play a key role in synthesis of body tissue, enzymes, and hormones (Beski et al. 2015). It is therefore important to evaluate the protein content of edible insects to determine whether the insects can provide adequate protein for human and animal (poultry and fish) feeding. The crude protein content of R. nitidula and A. domesticus are relatively similar to values earlier reported for Orthoptera (crickets, grasshoppers, and locusts;Rumpold and Schluter 2013). The crude protein content of the adult C. vomitoria is comparable to that of house fly larvae meal (40-60 g/100 g; Makkar et al. 2014), whereas that of H. illucens is in agreement with values reported by Diener et al. (2015).Edible insects (R. nitidula and A. domesticus) have more protein than beans (23.5 g/100 g), lentils (26.7 g/100 g), and soy (35.5 g/100 g) moreover with all the essential amino acids present (Ramos-Elordy et al. 2012, Rumpold andSchluter 2015). In comparison with fresh edible portions of cattle and fish products (11-28 g/100 g protein; Bernard and Womeni 2017), the crude protein content of A. domesticus (41 g/100 g) and R. nitidula (23.5 g/100 g) on fresh weight basis were higher or comparable, respectively. Moreover, digestibility of insect protein is comparable to conventional animal protein sources such as beef, pork and others (Kinyuru et al. 2010). EFSA (2017) recommends adults to consume 0.66 g/ kg body weight of protein per day. Thus, human protein requirements can be satisfactorily met by most edible insects (Rumpold and Schluter 2013), including R. nitidula and A. domesticus.Production animals also require adequate protein levels in the diet for growth and productivity. Insects intended for use as feed for fish and poultry (H. illucens and C. vomitoria) were generally rich in protein. The crude protein content of C. vomitoria was similar to that of fish meal (60-80 g/100 g) and higher than 45-50 g/100 g of soy, whereas that of H. illucens pre-pupae was comparable to 45-50 g/100 g reported for soy meal (Sánchez-Muros et al. 2014). Therefore, C. vomitoria and H. illucens pre-pupae could substitute the expensive fish meal and soy meal. It is imperative to note that the protein content of the studied insects could have been affected by the rearing substrates for the reared types (Spranghers et al. 2016) and time/season of harvesting for the harvested types (Ssepuuya et al. 2017). For example, H. illucens pre-pupae fed on different substrates (millet brew waste, rotten ovacado fruits, chicken house waste, swine dung, and bovine dung) had protein contents ranging from 38.62 for ovacado waste to 55.71 g/100 g for swine dung (Supp Table 2 [online only]). Millet brew waste was used for H. illucens pre-pupae in this experiment because of its availability in Uganda, good performance in terms of pupae protein composition (Supp Table 2 [online only]) and its relatively high protein content (Supp Table 1 [online only]). Therefore, it is important to optimize rearing conditions for the reared insect types (A. domesticus and H. illucens pre-pupae) and also identify the best harvesting seasons for the harvested types (C. vomitoria and R. nitidula) to ensure consistently high protein supply.Insects are also good sources of lipids the lipid contents of A. domesticus, R. nitidula, and black soldier flies were higher than 5.41-36.87 g/100 g reported for queen caste (Raksakantong et al. 2010), while that of harvested C. vomitoria was much lower than values reported for other insects. Such variations could be attributed to variations such as sex and the substrates on which these insects were fed (Kulma et al. 2019). Ruspolia nitidula had the highest lipid content on dry basis (46.29 ± 0.2 g/100 g) followed by black soldier flies (31.88 ± 1.3%). EFSA (2017) recommends that fat intake in adults should contribute between 20 and 35% of total energy intake. Therefore, this implies that they could greatly contribute to the energy requirements of humans and animals. Notably, the rearing conditions of insects such as feeding substrates need to be optimized to ensure consistent nutritional findings. The crude fat content of H. illucens falls within the range of 33-35 g/100 g reported by (Diener et al. 2015) for H. illucens pre-pupae. In comparison, the insects evaluated in this study, with the exception of C. vomitoria, had much higher fat contents than fish meal (3.5 g/100 g), anchovy (9.6 g/100 g), and cyprinid fish meal (12 g/100 g), respectively (Maina et al. 2002, Abowei andEkubo 2011). However, there is a need to optimize feeding conditions of the domesticated insects to match the essential fatty acid profile of fish oil and essential fatty acid requirements such as omega 3 in terms of proportion for humans and animal feeding, as illustrated by Oonincx et al. (2019).Regarding the carbohydrate content of the studied insects (3.43-12.27 g/100 g), is rather low compared with the main sources of energy for humans and animals such as maize, wheat, and rice. Notably though, the key source of energy in edible insects is fat.The carbohydrate content of C. vomitoria, adult A. domesticus, reared H. illucens pre-pupae, and R. nitidula on dry basis lies within the range of 6.71 g/100 g for long stink bug to 15.98 g/100 g for cicada reported for edible insects (Raksakantong et al. 2010). Fish meal has 1.5 g/100 g carbohydrates, which is lower than that provided by C. vomitoria, H. illucens pre-pupae, and A. domesticus (Abowei and Ekubo 2011). Carbohydrates provide energy for metabolism in both humans and animals; however, the contribution of insects to dietary carbohydrate intake cannot sustain carbohydrate requirements of both animals (fish and poultry) and humans. Therefore, it is advisable to supplement insects with good carbohydrate sources such as cereals.With respect total ash, the percentage total ash values on dry basis of harvested C. vomitoria, A. domesticus, reared H. illucens pre-pupae, and harvested R. nitidula falls within the reported range (2.94-25.95 g/100 g) for edible insects (Rumpold and Schluter 2013). The observation that H. illucens pre-pupae had the highest percentage of total ash is consistent with the findings of Finke et al. (2013) who evaluated the composition H. illucens larvae, tebo worm larvae, Turkestan cockroach nymphs, and adult house flies. However, values of total ash obtained in this study are lower than that of cyprinid fish meal (17.5 g/100 g) and anchovy fish meal (15.3 g/100 g) reported by Maina et al. (2002), thus implying that the insects evaluated could be low in mineral content However, the suitability of these insects for human and animal (fish and poultry) nutrition will depend on the presence of individual minerals such as iron, zinc, and calcium in sufficient quantities. Therefore, there is a need to investigate the presence of individual minerals in edible insects.The content of polyunsaturated fatty acid (PUFA), MUFA, and SFA observed in this study is consistent with results reported previously by Yang et al. (2006), Elagbo (2015), and Bophimai and Siri (2010). Results of saturated fatty acids are consistent with those of Yang et al. (2006). Results for MUFAs are similar to those of Yang et al. (2006), with only two MUFAs identified (palmitoleic acid and oleic acid). The concentration of total MUFAs ranged between 2683 mg/100 g in H. illucens pre-pupae to 8533 mg/100 g in R. nitidula. The amount of MUFAs in the analyzed insects lies within 714 to 5,889 mg/100 g for other insects (Yang et al. 2006) except R. nitidula with higher quantities. Linoleic acid and palmitic acid are among the dominant fatty acids in the insects evaluated in this study, consistent with data for cockroaches, tebo worm, and house flies (Finke et al. 2013). Black soldier flies have the highest levels of lauric acid, which is consistent with the findings by Finke et al. (2013) when compared with other insects including tebo moth, cockroach nymphs, and house flies. The main MUFA in A. domesticus, R. nitidula, and C. vomitoria was oleic acid consistent with the findings of Yang et al. (2006), Bophimai andSiri (2010), andElagbo (2015) for other insects.The ratios of saturated to unsaturated fatty acids were 1.24, 0.50, 0.97, and 0.24 for H. illucens pre-pupae, C. vomitoria, A. domesticus, and R. nitidula, respectively. Elagbo (2015) reported a ratio of 0.7 for edible migratory locust, which confirms that most insects have more PUFAs than SFAs (Finke et al. 2013). Therefore, despite the observed high total fat content in some edible insects, there could be less risk for cardiovascular diseases as most of the fat comprise healthy PUFAs.Generally, terrestrial insects do not contain docosa hexanoic acid (DHA) and eicosapentanoic acid (EPA) (Bophimai and Siri 2010, Tran et al. 2015, Twining et al. 2016) but contain their molecular precursor alpha-linolenic acid, which is either converted into tissue or long-chain PUFAs to a minor degree by terrestrial insects (Torres-Ruiz et al. 2007, Bophimai andSiri 2010). However, the presence of DHA in C. vomitoria in this study could be attributed to the possibility of the insects having fed on a variety of substrates in the wild containing DHA (ST-Hilaire 2007, Torres-Ruiz et al. 2007). This implies that if edible insects are fed on EPA-and DHA-rich substrates, they could reduce deaths due to cardiovascular conditions in humans.For human feeding, the ratio of omega-6 to omega-3 fatty acids should be less than 4 (Scollan et al. 2003, Simopoulos 2008). The recommended ratio of polyunsaturated to saturated fatty acids (P/S ratio) for humans should be above 0.4 to reduce risks for cardiovascular disease, cancer, asthma among other diseases (Milicevic et al. 2014). Therefore, direct consumption of edible insects could provide a better balance of fatty acids essential for optimal health in humans.In animal nutrition, consumption of omega-3 fatty acids results in improved animal health and production of healthier foods. In poultry, for example, omega-3 fatty acids improve disease resistance by moderating immune reactions and improving specific immunity (Pike 1999). The long-chain omega-3 fatty acids are also subsequently deposited in chicken products such as the eggs and meat, which are channeled into human diets. Modification of the fatty acid profile of animal products through the diet to match human targets could improve the quality of animal products such as poultry meat (Mlcek et al. 2014). Both C. vomitoria and black soldier fly pre-pupae contain linoleic and linolenic acids, which domestic hens, fresh water, and some marine fish are able to convert into DHA and EPA using elongase and desaturase enzymes (Kalakowska 2011, Hixson et al. 2015, Twining et al. 2016). Therefore, insects could greatly contribute to healthy fat requirements for humans either directly through consumption as food (A. domesticus and R. nitidula) or indirectly through consumption of fish and poultry fed on insects (C. vomitoria and black soldier fly pre-pupae).Regarding the amino acid profile, edible insects are rich in both the essential and nonessential amino acids. The amount of essential amino acids in edible insects is generally higher than those found in conventional animal protein sources. For example, the amount of lysine and methionine obtained for C. vomitoria and pre-pupae (meant for fish and poultry feeds), A. domesticus and R. nitidula (meant for direct human consumption) were higher than those of beef meat (1.94 and 0.61 g/100 g), pork meat (0.59 and 1.8 g/100 g) and chicken meat (1.79 and 0.69 g/100 g; Amadi and Kiin-Kabari 2016). Because insects contain demonstrable high amounts of essential amino acids, they could replace the expensive skimmed milk in ready to use therapeutic foods (RUTF) for malnourished children. However, further research is needed to evaluate the technological potential of edible insects to replace the expensive RUTF.Moreover, the amino acid profile of edible insects matches the essential amino acid requirements for animal feeding. The studied insects more than make up for the limiting amino acids in fish and poultry, which include cysteine, lysine, and arginine and methionine (Finke 2002). For example, the arginine content of black soldier fly pre-pupae (5.61) and R. nitidula (5.62) are slightly lower than that of fish meal (5.82), and arginine content of C. vomitoria (6.16) and A. domesticus (6.12) are higher than that of fish meal (5.82; Abowei and Ekubo 2011). In terms of amino acid balance for poultry and fish, edible insects are superior to fish meal. For example, the arginine to lysine ratio of fish meal is 0.74, which is lower than 1.18 and 0.84 recommended for leg horn chicks and cat fish, respectively (National Research Council 1993, 1994). The arginine to lysine ratios of H. illucens pre-pupae, C. vomitoria, A. domesticus, and R. nitidula obtained were 1.45, 1.06, 1.06, and 1.45. These values are higher than 0.74 for fish meal. Arginine to lysine ratios of H. illucens pre-pupae and R. nitidula were higher than 1.18 and 0.84 recommended for leg horn chicks and cat fish respectively, whereas arginine to lysine ratios of C. vomitoria and A. domesticus were higher than 0.84 required by cat fish and slightly lower than 1.18 required by leg horn chicks. The amino acid results indicate that insect meal is rich in essential amino acids critical for fish and poultry optimal growth and performance as well as human growth and maintenance.In conclusion, H. illucens pre-pupae, C. vomitoria, A. domesticus, and R. nitidula are rich in protein and fat, most of the essential amino acids and fatty acids required for fish and poultry as well as humans. These insects, therefore, have the potential for utilization in human and animal feeding. Acheta domesticus and R. nitidula, which are already accepted for human consumption, can be used for production of value-added products such as packaged insects and insect meal for formulation and direct addition to food. Hermetia illucens pre-pupae and C. vomitoria can be recommended for use as a cost-effective alternative protein source in animal feed. There is, however, a need to determine the economic feasibility of producing the insects in quantities enough to justify their use as food. Furthermore, there is a need to evaluate the safety and/or develop processing protocols that ensure safe insect meal for human and animal feeding. For the less studied insects, especially C. vomitoria, more research is needed to evaluate their safety for feed as well as need for optimal rearing conditions other than wild harvesting. Finally, there is a need to develop and optimize suitable rearing protocols for the insects that were harvested from the wild, to avoid potential negative impacts of wild harvesting on the ecosystem.","tokenCount":"5193"} \ No newline at end of file diff --git a/data/part_3/2316646158.json b/data/part_3/2316646158.json new file mode 100644 index 0000000000000000000000000000000000000000..8e6a86f392b2b4a5a1a8b9c21e4a1ff883123974 --- /dev/null +++ b/data/part_3/2316646158.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"5aada2fdf5b05722adb4ba1ba574f4cc","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/1b0251f0-4415-4d9b-bb4c-c82d59a7226c/retrieve","id":"840738130"},"keywords":[],"sieverID":"bc833b8e-0bd3-463d-86af-95c0b33b2b59","pagecount":"97","content":"This \"Operational SWAT+ Limpopo River Basin Seasonal Forecasting System\" report outlines the development and implementation of an automated hydrological forecasting system using the Soil and Water Assessment Tool Plus (SWAT+). This system leverages publicly available global datasets and open-source modeling tools integrated within a custom developed automated system to predict seasonal water availability in the LimpopoThe Limpopo River Basin (LRB) is a region of immense environmental, socio-economic significance, extending across Botswana, South Africa, Zimbabwe, and Mozambique. It encompasses a diverse range of ecosystems, including forests, wetlands, and savannahs, supporting a rich variety of flora and fauna (Mosase, Ahiablame and Srinivasan 2019). The river and its tributaries provide essential water resources for agriculture, livestock, and fisheries, supporting millions of livelihoods in the Southern African region (Nhassengo, Somura, & Wolfe, 2021;African Development Bank, 2014;Busari, 2007). Despite these invaluable resources, the LRB faces challenges such as hydro-climatic extremes, excessive abstractions, land degradation, poor water quality, urbanisation, and population growth, which reduce river discharge, threaten biodiversity and weaken local communities' resilience to climate change. The basin also faces increasing competition for access to limited water resources and arable land, with women and youth disproportionately affected (Brito, et al. 2009, Zhu and Ringler 2012, Reason, et al. 2005) The LRB riparian countries and stakeholders are eager to address these pressing challenges through informed and data driven decision making. To support these efforts, IWMI is creating a Digital Twin of the Limpopo River Basin (Garcia Andarcia, et al. 2024, Gurusinghe, et al. 2024, Botai, et al. 2023). The LRB Digital Twin will increasingly serve as a virtual representation of the basin's socio-ecological system, by utilizing multiple modelling and mapping toolsets including the Soil and Water Assessment Tool Plus (SWAT+) model for the representation of LRB hydrological process (Bieger, et al. 2017) to forecast seasonal water availability and support sustainable water management practices. This approach mirrors other Digital Twin initiatives, such as the Digital Twin for the Mediterranean Basin (Brocca, et al. 2024), which integrates Earth observation (EO) data with hydrological modeling. This Mediterranean Digital Twin demonstrates how EO, advanced modeling, and AI can be combined to forecast hydrologic variables, highlighting the potential for large-scale implementation of Digital Twin's in water management.Operational hydrological models have been implemented in various regions, demonstrating their importance in water resource management. In Portugal, the \"AquaSafe Douro\" system provides daily streamflow predictions for the Douro River hydropower cascade, optimizing hydroelectric production and flood control. This system integrates operational SWAT models, supported by meteorological data from WRF and GFS models, ensuring reliable streamflow forecasting (P. Chambel-Leitão 2016). In Brazil, an operational platform was established for the Cubatão River watershed, providing near real-time monitoring of fluviometric and rainfall data. This platform includes SWAT modeling and integrates data from various meteorological sources to forecast river flow and support flood mitigation efforts (Ribeiro, et al. 2022). Similarly, in Australia, SWAT was This chapter provides a detailed description of how the SWAT+ model was set up and operationalized for the LRB. It covers the steps taken to automate the seasonal forecasting system, including data acquisition from ECMWF server, processing, automated model execution, and result dissemination. This chapter highlights the technical infrastructure and tools used to achieve these tasks.The SWAT model's processing chain for the Limpopo region has been refined to automate seasonal water availability forecasting. This sophisticated system is engineered to generate monthly outputs, execute the SWAT model daily using the most up-to-date data, and generate timely results. The data processing and model execution chain ensure that the outputs are consistent over time and space, allowing for seamless integration and automatic dissemination. The development was done using a cloud windows server called Tlaloc.The model makes use of data starting January 2001until the present. To enhance the model's accuracy, the system includes an automated processing script that assimilates the previous month's data, utilizing observations from globally and regionally accessible datasets, like CHIRPS, to inform the upcoming month's forecast. The automation extends to downloading weather data, transforming it to fit the SWAT model's input requirements, and integrating seasonal forecasts. The system adeptly manages spatial resolution discrepancies and temporal misalignments between datasets and model time steps.Robust error handling and validation processes are in place to address any data input inconsistencies.Operationally, the model consistently outputs results from January 2023 to the present, ensuring that there is a sufficient warm-up period for the model to generate reliable results.The automation scripts are precisely tuned to initialize the SWAT model with forecasted conditions for optimal performance. Moreover, specialized scripts are deployed to extract pertinent output variables from the SWAT results. The SQL database writing process facilitates this integration, with the results also being accessible via AWS.In addition to the operational system, mechanisms have been established to benchmark the SWAT model outcomes against WAPOR observations, fostering continual model calibration and validation. The entire processing system's source code has been documented, complete with a README file that provides exhaustive instructions for system modification and execution. This transfer of knowledge and resources guarantees that in the future it is possible to adapt and maintain the SWAT-based forecasting system with a high degree of autonomy and technical proficiency. The SWAT operational model for the Limpopo basin has been prepared for deployment.This model uses CHIRPS daily precipitation data sourced from Google Earth Engine (Funk, et al. 2015), spanning from 2001 to the present.We prepared an operational SWAT model based on the existing model implementation called LimpopoFull (Gurusinghe, et al. 2024).Using the CHIRPS data, we conducted comparative analyses of different SWAT model setups by evaluating the output flows from channel 215 against observed data from the Limpopo River at Beit Bridge station (A7H008). Initially, we compared the results from the model run (executed using Revision 60.5.4 of the SWAT model without calibration) with those from the same model utilizing the operational CHIRPS data fetched from GEE. This allows to confirm that both CHIRPS datasets, the one used for calibration and the one used for the operational workflow, are similar.As illustrated in Figure 1, the comparison highlights the consistency of the precipitation data source. The grey solid line represents the original model run with Revision 60.5.4 using static CHIRPS data, while the blue dashed line represents the model run with operationally downloaded CHIRPS data from GEE. Both results are closely aligned, with minor differences attributed to a 1-day shift between the datasets. This demonstrates the reliability and accuracy of the operational CHIRPS data integration into the SWAT model. Both results do not include calibration and so they are both different from observed flow. Comparing SWAT and WAPOR EvapotranspirationThe historical evapotranspiration estimates from the LRB SWAT+ model for selected Hydrological Response Unit (HRU) was compared with data obtained from the WAPOR portal (FAO 2020). To perform this comparison, we used the operational SWAT run with starting date 2001-01-01. Specifically, we used the monthly 'et' results in the output file hru_wb_mon.txt.In the plot of Figure 2, we show the evapotranspiration time series obtained from the SWAT run (blue line) for a HRU and the corresponding WAPOR data averaged over the HRU's area. Figure 3 illustrates the linear function that best fits the SWAT and WAPOR results from which we see that in general there is a good correlation between the two ETs. We verified that for most channels, SWAT monthly results and WAPOR data do correlate well. The seasonal forecast precipitation data used within this hydrological database system is • pc10: This represents drier conditions and is based on the 10 th percentile of accumulated precipitation data, indicating a lower probability of precipitation that might lead to drier scenarios.• pc50: This corresponds to average conditions and is derived from the 50 th percentile of the accumulated precipitation data, reflecting median forecast outcomes.• pc90: This indicates wetter conditions, based on the 90 th percentile of the accumulated precipitation data, suggesting a higher likelihood of significant precipitation events.Choosing these percentiles reduces the computational burden and storage needs of running all 51 members while still providing valuable insight into the range of possible weather outcomes. These percentiles help decision-makers assess different risk levels and plan for various potential future conditions The database's operational workflow is programmed to leverage the CDS API to check for new forecast data releases regularly. Once available, it automatically downloads and postprocesses this data to label forecast ensemble members appropriately, including the \"control\" run and the specified percentiles. The pc10, pc50, and pc90 simulations are chosen among all the ensemble members by:1. Calculating the mean over time of the accumulated precipitation value for all ensemble members in the forecast period (the default value is 215 days).2. Calculate the 10 th , 50 th and 90 th percentiles of all mean accumulated precipitation values.3. Select the simulations where the mean accumulated precipitation is closer to the 10 th , 50 th and 90 th percentile values. These will correspond to the simulations labelled as pc10, pc50 and pc90, respectively.The workflow further processes this data to distil precipitation metrics for designated SWAT precipitation stations. For each precipitation station, the corresponding forecast data is extracted from the ECMWF NetCDF file based on the geographical coordinates where the station is located. This is done by identifying the grid cell in the ECMWF data that overlaps with the station's location. Since ECMWF data covers large areas, a single grid cell's value is assumed to represent the conditions around that station. In Figure 4, we show an example of the fetched ECMWF precipitation for the station with ID s24067s31692e (corresponding to channel 844, according to the rainfall_station table in the database). In this case, the accumulated precipitation values for the pc10, pc50 and pc90 curves in the forecast period are respectively 27.06 mm, 37.18 mm, and 55.03 mm, justifying the association of these simulations with possible drier, median, and wetter precipitation scenarios.The processed control data is then inserted into the table rainfall_data which serves as input to the operational model and the SWAT+ run results based on the percentile precipitation data are updated to tables swat_output_2 and water_availability_2, using the labels (pc10, pc50, pc90) to inform water availability calculations and river flow forecasts in the context of climate variability and change.The \"Operational Seasonal Forecasting Framework\" outlines the automated system used to generate seasonal water availability forecasts for the Limpopo River Basin using the SWAT model. This framework integrates data collection, processing, and model execution into a seamless workflow, ensuring timely and accurate forecasts.A comprehensive overview of the scripting framework that constitutes the operational backbone of the SWAT model for the Limpopo River Basin is shown in Figure 5. The central objective of this operational run is to produce seasonal forecasts of water availability within the Limpopo region. The process is structured into a multi-stage operational workflow, encompassing different functions. • GEE_CHIRPS_Downloader: Imports CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data) daily precipitation data from GEE for a defined time interval based on the required number of hindcast days, and for given precipitation station locations.• GEE_GFS025_Downloader: Imports GFS 0.25 degree daily precipitation data from GEE for a defined time interval based on the required number of hindcast and forecast days, and for given precipitation station locations.• CDS_SeasonalForecast_Downloader: Imports grided values of daily seasonal forecast precipitation data from the Copernicus CDS API for a defined time interval based on the required number of forecast days.• FAO_WAPOR_Downloader: Imports rasters containing evapotranspiration data from the FAO GIS data API for a given spatial extent and for a defined time interval based on the required number of hindcast days.• DEA_Waterbodies_Downloader: Imports water area from the Digital Earth Africa Waterbodies Monitoring Service for a defined time interval and for given waterbodies.• INWARDS_API_Request: Imports verified and unverified discharge stations and respective discharge timeseries.In the Processing category, scripts like CsvToPcpConverter and the FieldStats series prepare the downloaded data for the SWAT+ model. These scripts transform raw data into SWATcompatible formats and generate time-series statistics necessary for accurate modeling.The processing tools take care of nuances such as format consistency and data integrity, providing pre-processed inputs primed for simulation. They play a crucial role in ensuring that the inputs are not only accurate but also aligned with the model's requirements for efficient execution.• UpdateDatesInputs: Automates the configuration of time-related parameters in input files (e.g., SWAT model run, CsvToPcpConverter, SWATOutputVisualizer, FieldStats) by calculating updated start and end dates based on the present-day date and the required number of hindcast and/or forecast days.• CsvToPcpConverter: Converts precipitation data from .csv to the .pcp format required by the SWAT model. It combines precipitation data from different sources by determining the corresponding time intervals to be used across multiple sources according to a given order of priorities.• FieldStats: Derives statistics for a property from image data for a given polygonal region. This code takes as input a raster file containing IDs (representing polygons) and a list of IDs, which should correspond to the IDs present in the raster file.• FieldStats_Input_Generator: Generates input files for running FieldStats, given a list of FieldStats configuration parameters and paths for the folders containing input rasters and the folders receiving the output .csv files.• FieldStats_TimeSeries_Generator: Processes FieldStats output files, extracting and converting data to time series format.The Database Management scripts, were called SWATOperationalDatabase, and these scripts ensure the structured storage and timely data update within both local and cloud-based databases. This category of scripts manages the intricacies of data flow from the model outputs to the database entries, encompassing the maintenance of records related to rainfall, water availability, SWAT results, and validation datasets for evapotranspiration. By handling both the ingress and egress of data, these scripts maintain the database as a reliable source for both current operational needs and historical reference.• SWATOperationalDatabase: Performs management operations on the operational database including connection to the local (using Docker) or the AWS databases; deletion of outdated SWAT, precipitation, and evapotranspiration data based on user-defined hindcast months and subsequent insertion of updated data; assessment of water availability using SWAT outputs and update of the obtained results in the database.Each of the datasets mentioned below provides a distinct type of data crucial for hydrological modeling. CHIRPS offers observed precipitation data, GFS provides short-term weather forecasts, and ECMWF delivers long-term seasonal forecasts. We utilize a \"best data source\" approach for precipitation data in our database. This means we prioritize specific datasets based on their perceived accuracy. Operationally, there are cases where forecast data may be required to fill gaps in the hindcast period. In such instances, we prioritize GFS in relation to ECMWF seasonal data. This approach ensures that the best available data is always used-whether observational or forecasted-ensuring more accurate hydrological predictions and continuity in the SWAT model's operation.1. CHIRPS: The publicly available global gridded rainfall product CHIRPS was selected for inclusion in the database based on the comparison with gauge datasets with LRB. 2. GFS: If CHIRPS data is unavailable, we use the Global Forecast System (GFS) data as the next best option. 3. Seasonal ECMWF: Lastly, for longer-term forecasts, data from the Seasonal European Centre for Medium-Range Weather Forecasts (ECMWF) model.To ensure data reliability and reflect the latest information, we follow a two-step process:1. Data Cutoff: We maintain a rolling window of precipitation data in the RDS database. This means we typically erase data older than two months from the current date. 2. Historical and Forecast Updates: When CHIRPS or other data becomes available for past dates (including those erased) or for upcoming forecasts, we completely overwrite (re-write) the existing historical and forecast precipitation data in the \"rainfall_data\" table.This approach ensures our database reflects the most reliable and up-to-date information based on our current understanding of data quality.The visualization category is embodied by the SWATOutputVisualizer, a tool that converts complex model output data into intuitive and informative visual formats. This script allows stakeholders to easily comprehend and analyze the SWAT results, facilitating evidencebased decision-making. By presenting data in a user-friendly manner, the visualizations help to bridge the gap between sophisticated model computations and practical applications, allowing for the clear communication of water availability forecasts and other key hydrological metrics.• SWATOutputVisualizer: Processes and visualizes time series data from SWAT output files.The SWAT operational model of the Limpopo River Basin is a comprehensive data management and simulation system that uses a structured, modular approach to water resource management and forecasting. The architecture is divided into three primary components or \"Scheduled Packages,\" each focusing on specific tasks and workflows within the larger system (Figure 7).Scheduled Package #1 involves the data download process, where the system defines the hindcast and forecast periods necessary for operational monitoring. The download process utilizes various data sources, such as FAO, Google Earth Engine, and the Copernicus Client, integrating diverse datasets, including raster images and time series data. Once the relevant data is collected, a Cell Extraction Tool processes this information to extract the needed granularity for further analysis. This stage is vital for initializing the system with the necessary historical and current data, and the outcomes are recorded in a local log file for traceability and quality control. Windows Task Scheduler, which is a component of Microsoft Windows that provides the ability to schedule the launch of programs or scripts at pre-defined times or after specified time intervals. It's a critical tool for automating routine tasks on a computer. Here's an explanation of how scheduling is set up. The screenshot in Figure 8 showcases the series of tasks within the Windows Task Scheduler tailored to the SWAT Limpopo River Basin operational workflow. The tasks are arranged to automate the downloading and processing of environmental data as well as the execution of various hydrological models. For instance, tasks labelled with \"Download -Limpopo\" followed by the data type (like \"WAPOR 300mMonth\", \"GFS025_hourly\", \"CHIRPS\") are scheduled to automatically retrieve datasets pertinent to the Limpopo region's weather, climate, and hydrology at specific times each day. This ensures that the most current data feeds into subsequent analyses and model simulations without the need for manual intervention. The \"Next Run Time\" and \"Last Run Time\" columns provide a clear schedule and historical log of each task's execution, facilitating a reliable and systematic update cycle that feeds into the operational monitoring services of the SWAT operational Limpopo River Basin system.Different types of data, such as precipitation and evapotranspiration, are incorporated to provide a comprehensive dataset for hydrological modeling.historical data, flow percentiles, and calculated water availability metrics, along with alert flags to monitor water stress situations.For more detailed information on the data formats used in the database, refer to Annex I -Data integration. This annex provides comprehensive details on the various data formats used, including CSV files for CHIRPS precipitation data, WAPOR evapotranspiration in GeoTiff and CSV formats, and water availability data. It also outlines how these data formats are structured, stored, and processed to support the hydrological modeling and forecasting capabilities of the Limpopo Operational SWAT Digital Twin.The operational seasonal forecast database for water availability is a specialized hydrological and meteorological information system designed for the storage and analysis of river flow and water availability data. It incorporates a set of interrelated tables containing time-series data, statistical summaries, and metadata related to various aspects of hydrological modeling. This system includes the swat_output_2 and water_availability_2tables, which are tailored to store results from specific model runs using the 10th, 50th, and 90th percentile ECMWF Seasonal Forecasts. These tables have an added RunLabel column to differentiate between the forecast runs and are intended to supplement the baseline or 'Control' run data. They operate on a cycle of deletion and updating to ensure that only the most current forecasts are represented, with a monthly data labelling system that tracks from the last day of the current month to the last simulated date. Furthermore, changes to the swat_output table have been made to streamline data columns and improve clarity.Tables on evapotranspiration, discharges and reservoirs were also added.The Figure 9 provides a comprehensive overview of the various numbers on the datasets integrated within the operational framework of the Limpopo River Basin project as of July 5th, 2024. This snapshot highlights the extensive data collection and management efforts that support the SWAT model and other hydrological analyses essential for the region. The Water Availability (EFlows) section highlights data for 14 locations, with 282 historical and forecast monthly dates for the same four seasonal forecast scenarios. This part of the database contains 4,228 water availability records and 692 alert messages, indicating the system's capacity to monitor and provide warnings for water availability and environmental flow requirements. In the near future, we plan to expand this coverage to include all channels simulated by SWAT, adding the missing sites to the system. This will enhance the database's capacity, enabling more comprehensive monitoring and forecasts across the entire Limpopo River Basin, thereby increasing the overall accuracy and reliability of water availability assessments.The detailed information on the data available in the database, its organization, and how to retrieve it can be found in Annex II Database management. This annex outlines the structure of the database, including tables for evapotranspiration, discharges, reservoirs, and waterbodies. It also provides guidance on how to access the data through SQL queries, ensuring users can efficiently extract the necessary information for hydrological modeling and forecasting tasks.This chapter is intended to illustrate the results of the workflow presented in the previous chapters. We start by showing some outputs of the SWAT model. Then we explore the water availability forecasts, evaluating fluctuations in flow against ecological thresholds using percentile-based scenarios from the ECMWF Seasonal Forecast. Additionally, SQL queries are presented to extract operational data from the SWAT model database, facilitating informed decision-making and resource management.Statistic Flows (Based on historical measurements, these flows are only available for a limited number of river sections and a specific historical period)• Pitman_study Natural Flow: This represents the historical flow of the watershed assuming minimal human impact. This is based on historical data and doesn't account for current land use changes, reservoirs, or water withdrawals.• Statistic Eflow (Environmental Flow): This is a predetermined flow level considered necessary to maintain a healthy ecosystem within the watershed, based on ecological studies presented here (https://limpopo-eflows.iwmi.org/).SWAT Flows (Modeled -Can be forecast and exists for all Limpopo reaches)• SWAT Present Flow (Present Land and water use): This is the simulated flow generated by the SWAT model under current conditions, including existing land use, reservoirs, and but not including water withdrawals. This is the flow that presently is being operationally forecasted with different seasonal forecasts.• SWAT Natural Flow (Pristine Land Use): This is a scenario where the SWAT model simulates the flow assuming a natural state for the land use, with no agriculture. It helps assess the impact of human activity on the flow. This is the flow that presently is available in the operational database for historical values. These values can be updated in the future as we gain more knowledge of the system.The SWAT results for the control and percentile runs are depicted in the database tables swat_output and swat_output_2. To exemplify, we present in Figure 10 the monthly estimated flow out and accumulated precipitation for channel 844 (upper and lower plots, respectively). The results are presented for a SWAT model that has run with control, pc10, pc50 and pc90 seasonal forecast precipitation (in orange, blue, green, and red, respectively). From the upper plot in Figure 10 we can see that for channel 844, the largest flow is obtained using the 50 th percentile of the seasonal forecast precipitation data. This is due to the observed peak in the accumulated precipitation of June (see green line in the precipitation plot, which can be compared to the red curve, representing the fetched daily precipitation for the station associated with this channel). By calculating the accumulated precipitation value over the seasonal forecast period, we confirm that the 10 th , 50 th and 90 th percentile curves correspond to overall drier, median, and wetter forecast scenarios, with accumulated values of 98820 m 3 , 125798 m 3 , and 176988 m 3 , respectively. This reinforces the importance of looking at daily/monthly precipitation input data to better understand the SWAT flow estimates. Example of water availability forecast for river LUVU-A91K-OUTPO. The water availability forecasts based on the 10th and 90th percentiles from the ECMWF Seasonal Forecast depict varying scenarios for river LUVU-A91K-OUTPO, as described in tables below. In the 90th percentile scenario, starting from April 30, 2024, the river exhibits relatively healthy surplus water availability at 67.4% compared to the ecosystem flow, gradually declining to a deficit by July and August, triggering alerts of increasing severity, up to Level 3, indicating a critical threat to the ecosystem, necessitating water additions to maintain the Eflows. Conversely, in the 10th percentile scenario, while initially comparable to the 90th percentile, the water availability rapidly decreases by June 30, 2024, reaching a warning level due to the imminent risk of falling below the Eflow threshold, followed by further decline and escalating alert levels by July and August, signalling the urgent need for water additions to prevent ecosystem collapse. 3 and Table 4 in 30/04/2024 the flow predicted is exactly the same for the control and the p10 and p90. The reason for this is that for April, the precipitation input (pcp) is derived from CHIRPS and the Global Forecast System (GFS), neither of which provides percentile-based precipitation data. The percentile values become relevant only when using precipitation from the ECMWF seasonal forecast, which is not the case here.In May, we integrate precipitation data from both GFS and the ECMWF seasonal forecast. This results in initial discrepancies in water availability projections due to the different nature of the datasets. However, as May progresses, these differences will diminish as we transition to using the most reliable precipitation data available at the time, aligning with our strategy to employ the best available data for precipitation to refine and improve the accuracy of our forecasts. This approach ensures that our water availability assessments are robust and adapt to the best available climatic data.The introduced discharge monitoring system for the Limpopo River Basin is demonstrated The integration of discharge data into the MySQL database, categorized into tables such as 'Verified Discharges' and 'Unverified Discharges', supports advanced data analysis through SQL queries. This structured approach allows users to generate custom visualizations and reports, facilitating more informed water resource management decisions. The system's ability to differentiate between verified and unverified data further strengthens the reliability of the analyses performed. The combination of spatial and temporal data facilitates a deeper understanding of hydrological patterns, ensuring that water management strategies are based on robust and up-to-date information.The operational waterbody monitoring system for the Limpopo River Basin is illustrated in Figure 13, which shows the spatial distribution of monitored waterbodies and connected reservoirs across Botswana, Mozambique, Zimbabwe, and South Africa. The system currently monitors 1,424 waterbodies, with 62 in Botswana, 313 in Mozambique, 231 in Zimbabwe, and 818 in South Africa. Additionally, 96 reservoirs have metadata associated within the network, ensuring a comprehensive coverage of the region's hydrological infrastructure. The OperationalServicesMonitor script plays a vital role in overseeing the entire operational system. It continuously evaluates the health and performance of data downloads, processing tasks, database updates, and model executions. By identifying and addressing potential failures or bottlenecks in real-time, the script ensures the uninterrupted operation of the SWAT model's workflow. This vigilant oversight is essential for maintaining the high availability and reliability of the service.OperationalServicesMonitor manages and monitors various operational services by assessing their timeliness and update status. It handles multiple types of data services, including timeseries data, log files, simple files, and SWAT model outputs. After processing all specified services, the script generates an HTML table that provides an easy-to-visualize status of each service.The HTML table created by OperationalServicesMonitor offers a comprehensive overview of the status of various operational services within the SWAT model's ecosystem. This table is critical for real-time monitoring and management, ensuring each component of the system is functioning efficiently. This table is reviewed daily, and a ticket is generated for the team to address any issues that arise. It lists several key attributes for each service:• Service Name: Identifies the specific service being monitored, ranging from downloading logs to the execution and results logging of the SWAT model.• Type: Categorizes the type of data or process being logged, such as logs, SWAT output, simple files, or timeseries data.• Initial Date: Indicates the start date for the data or service being monitored. For instance, the \"DEA Waterbodies Download Log\" began on 2024-06-28, while the SWAT output data spans from 2023-01-31.• End Date: Shows the most recent date of the data or the latest update for the service.Many entries are current as of 2024-07-09, indicating the system's up-to-date status.• Current Lag: Displays any delay in the service or data update, measured in days. A value of 0 signifies no delay, indicating the service is current.• Maximum Lag: Records the maximum observed delay for the service, helping to understand past performance and identify any recurring delays.• On Time: A Boolean indicator (True/False) showing whether the service is running on schedule. All services in this table are marked as \"True,\" indicating that they are operating within expected timelines.Each service plays a crucial role in ensuring the accurate simulation of water availability, river flows, and other hydrological variables for the Limpopo River Basin. Here is a description of each service monitored:• DEA Waterbodies Download Log: Tracks the download status of waterbody data from Digital Earth Africa. The data is used for monitoring waterbodies and their areas within the Limpopo River Basin.• INWARDS API Discharge Request: Monitors the status of requests to the INWARDS API, which retrieves discharge data for both verified and unverified stations within the basin.• SWAT Control Log: Logs information related to the general control and execution of the SWAT model, including its operational runs and status checks.• SWAT Natural Flows Control Log: Monitors the execution and status of SWAT model runs that simulate natural flow conditions, where minimal human impact is considered.• SWAT PC10 Log: Tracks the execution of the SWAT model using the 10th percentile (pc10) precipitation data from seasonal forecasts, representing drier-than-average conditions.• SWAT PC50 Log: Monitors the SWAT model runs with the 50th percentile (pc50) precipitation data, representing median forecast conditions.• SWAT PC90 Log: Logs the SWAT model runs using the 90th percentile (pc90) precipitation data, representing wetter-than-average forecast scenarios.• WAPOR 300 Raster Download: Tracks the download of 300-meter resolution raster data from the WAPOR dataset, which includes evapotranspiration data used in hydrological modeling.• SWAT Control Channel Results: Logs the results of the SWAT model simulations based on control scenarios, which are baseline runs without percentile-based seasonal forecasts.• SWAT Natural Flows Control Channel Results: Monitors and logs the results of SWAT simulations for natural flows, assuming pristine conditions in the watershed.• SWAT PC10 Channel Results: Logs and tracks the results of SWAT model runs using the 10th percentile precipitation data, capturing drier scenarios for specific channels.• SWAT PC50 Channel Results: Tracks the results of SWAT model runs using 50th percentile precipitation data, representing typical or median forecast conditions for specific channels.• SWAT PC90 Channel Results: Logs the results of SWAT simulations using the 90th percentile precipitation data, representing wetter-than-average conditions for specific channels.• SWAT Flow Plots: Tracks the generation of flow plots that visualize the SWAT model's flow output for various channels and scenarios.• SWAT Natural Flow Plots: Monitors the creation of plots that visualize natural flow conditions simulated by the SWAT model, showing flow patterns without human impacts.• CHIRPS Raw Data: Tracks the download and processing of raw precipitation data from the CHIRPS dataset, a critical input for SWAT model simulations.• ECMWF Data: Monitors the retrieval and processing of seasonal forecast data from the European Centre for Medium-Range Weather Forecasts (ECMWF), used to simulate different hydrological conditions.• GFS Raw Data: Tracks the download of raw short-term weather forecast data from the Global Forecast System (GFS), which provides daily updates for hydrological forecasting.• WAPOR Timeseries: Monitors the processing of timeseries data from the WAPOR dataset, which includes evapotranspiration and other related environmental variables.All the scripts previously described form an integral part of the SWAT model operational workflow and are executed on the Tlaloc server. This automation is facilitated by the Windows Task Scheduler, a tool native to the Windows operating system, following a sequence that adheres to the dependencies and requirements of the workflow.For instance, data download scripts will be triggered to retrieve the latest datasets from specified sources like FAO or Google Earth Engine. Once the data is downloaded, the processing scripts take over, manipulating the data to fit the necessary input format for the SWAT models. Following data processing, model execution scripts launch the SWAT striking a balance between used space and free space to accommodate demanding processing workflows.The decision to utilize the Tlaloc server from a private cloud provider offers significant advantages over maintaining a local server. A private cloud server ensures higher availability, scalability, and robust security compared to on-premises infrastructure. By leveraging cloud services, the Tlaloc server benefits from professional data center management, redundant power supplies, and 24/7 monitoring, which enhance uptime and system reliability. Additionally, cloud hosting mitigates risks associated with local hardware failures and provides flexibility to scale resources as needed, making it a more resilient and future-proof solution for supporting the SWAT model's operational workflow.The SWAT+ operational forecasting system LRB represents a significant contribution and knowledge for sustainable water resource management for the region. The project's main achievements include the establishment of a fully operational SWAT+ hydrological model that integrates multi-source datasets. This model's accuracy was validated against WAPOR evapotranspiration data, ensuring reliable outputs. Additionally, a sophisticated system was developed to automate the downloading and processing of seasonal forecast precipitation data from the ECMWF, accessed through the Copernicus Climate Data Store API. The cornerstone of the data management aspect is a custom-designed hydrological database hosted on Amazon Web Services, which guarantees high availability and reliable management of critical river flow and water availability data. High availability means always accessible and minimizes downtime, ensuring continuous access to critical river flow and water availability data. Reliable management ensures data integrity, security, performance, and scalability.Complementing the model and data management framework is an operational scripting setup that automates the entire workflow, including data acquisition, processing, model execution, database updates, and monitoring. To aid in decision-making, a visualization tool was also established, transforming complex model outputs into accessible formats for stakeholders. The document details the SWAT model's configuration and validation, describes the operational SWAT of the Limpopo River Basin architecture, and explains how the Windows Task Scheduler is leveraged for system automation. It includes an illustrative forecast for river water availability, portraying various scenarios informed by ECMWF Seasonal Forecast percentiles. The document also provides SQL queries for extracting information from the Operational Database, demonstrating the project's commitment to transparency and utility.Moving forward with the SWAT+ Operational Limpopo River Basin seasonal HydroForecast system requires a strategic focus on data fusion, model calibration, and the integration of alternative variables to enhance its predictive capabilities. Fusion of CHIRPS, local precipitation, and GFS data presents an opportunity to refine precipitation estimates and improve flow predictions. Calibration efforts should commence in upper catchments before extending to larger river systems, taking into account the complexities of reservoir operations and cumulative errors. By systematically calibrating the model and studying the impact of fused precipitation data, the system can achieve greater accuracy in forecasting water availability and river flows.In addition to precipitation, integration of alternative weather variables such as temperature, wind, and radiation could further enhance model performance. In fact, the present simulation uses the SWAT weather generator to derive the daily values of these variables. Evaluating the effectiveness of incorporating these variables (using for example a sensitivity analysis) is important for improving seasonal rainfall forecasts and improving overall predictive accuracy. Furthermore, the integration of improved seasonal forecasts with other weather variables offers potential for reliable SWAT+ model predictions, thereby providing decision-makers with valuable insights for water resource management.Operational validation and reporting are essential components of the system's development, requiring a comprehensive assessment of forecast accuracy and uncertainties. By addressing these aspects, the SWAT+ Operational Limpopo River Basin seasonal HydroForecast system can evolve into a robust decision support tool for effective water resource management in the region.Additionally, to optimize the eflow_iwmi operational database, improve data accessibility, and enhance the clarity of its structure, the database should be revisited. This includes reorganizing tables to consolidate similar datasets, such as unifying precipitation data into a single table, and renaming features to provide a clearer understanding of each section.These changes aim to streamline data retrieval and improve overall efficiency in database management.One further step aspect is the transformation of the operational system into a Dockerbased system using Kubernetes, with the goal of running it on AWS infrastructure. This transition will provide scalability, flexibility, and reliability to the system, allowing for seamless deployment and management of resources. For that, all the scripts written in Python and the SWAT model itself need to be compiled to run efficiently on Linux, ensuring compatibility and optimization within the Docker environment. This step is essential for streamlining the deployment process and maximizing the system's performance on the AWS cloud platform.We would like to express our sincere gratitude to the LIMCOM Member States and the LIMCOM-UNDP/GEF project team, supported by the Global Water Partnership Southern Africa (GWPSA), the United Nations Development Programme (UNDP) facilitated through the Global Environment Facility (GEF), for their vision, encouragement and support throughout this project. The invaluable contributions from all stakeholders and partners, whose experience, deep understanding of the system and commitment played a crucial role which cannot be overstated. Their involvement was instrumental in shaping the development process. We also extend our appreciation to the Pegasys Consulting team, whose guidance, sharing of data and technical experience were key to aligning and advancing the modelling efforts. Additionally, we acknowledge the critical contributions of all data providers, particularly Digital Earth Africa and the Department of Water and Sanitation, South Africa, whose observed datasets were essential to the modelling process. A special thanks to AWS for their technical support and cloud computing credits, which significantly enhanced our capacity to deliver this project. Finally, we are deeply appreciative of the Leona M. and Harry B. Helmsley Charitable Trust for their generous grant on DIWASA project, which not only enabled this project but also provided an opportunity to collaboratively develop tools that will have a lasting impact on the Limpopo River Basin. • lat (latitude)• et_mm/month (evapotranspiration in millimeters per month) This data format provides a detailed picture of water flow and availability for various river channels within the system. It includes historical data, flow percentiles, and calculated• Actual Percentage: Percentage of available water currently present.• Alert Type: Alert status related to water availability.• message: Additional message related to the alert status. Based on the hierarchy and their relationships, the tables in the database can be listed as follows: The database is hosted on Amazon Web Services (AWS) platform, utilizing the Amazon Relational Database Service (RDS). Located in the af-south-1 region, AWS's designation for the Africa (Cape Town) region, the database is accessed through the endpointiwmi-dt-dboperational.cluster-cd6gaumoede8.af-south-1.rds.amazonaws.com. The hosting on AWS RDS ensures a high degree of availability and reliability.The database, named eflow_iwmi, is the central repository for the SWAT operational data and is configured to facilitate secure connections via port 3306, which is the default for MySQL databases. Utilization of the JDBC (Java Database Connectivity) standard in the connection string suggests the possibility of database interactions being managed by Javabased applications or tools that support JDBC drivers. This setup not only facilitates reliable data management and analysis but also integrates seamlessly with the operational workflows of SWAT, ensuring that data-driven decisions are based on the latest and most accurate forecasts. • latest_record: timestamp of last discharge timeseries update for station.• date_modified: timestamp of last insertion or modification for verified station, automatically attributed by database, in UTC (in discussion whether these stations' parameters will be modified throughout).Name: verified_discharges Columns:• id: A unique identifier for each timeseries value for each verified station (primary key, automatic incrementation) • Station_id: identifier of verified station containing the timeseries value (verified_stations primary key) • Date: date for station timeseries value • Discharge: value of discharge for station at date (m 3 /s).• Quality_code: code indicating the quality of the data presented for date, value, and station (discharge_quality_codes primary key) • Last_date_updated: timestamp of timeseries insertion in database, automatically attributed by database, in UTCName: unverified_stations Columns:• id: A unique identifier for each unverified station (primary key)• Station_name: Station code (string) identifying the station • wma: The name of the water management area where the station is located.• location: A descriptive location or the geographical place of the station.• station_status: The operational status of the station (ACTIVE or INACTIVE).• latitude: y-coordinates of unverified station (EPSG: 4326)• longitude: x-coordinates of unverified station (EPSG: 4326)• Verified_station: verified station id associated with unverified station, by proximity (verified_stations primary key) These tables will facilitate the integration and management of hydrological data, specifically discharge data (INWARD API) and reservoir information (Digital Earth Africa DEA), for the Limpopo River Basin.The new tables included in this update are:• Reservoirs: Provides information on reservoirs within the basin.• Waterbodies: Stores details on water bodies, potentially including reservoirs.• Waterbodies Data: Holds time-series water body data, such as water area.Columns:• id: Unique timeseries row identifier (primary key)• waterbody_id: A unique identifier linking the waterbody water area record to the waterbody.date: The date of the satellite image acquisition used to measure the water area of the waterbody • water_area_ha: water area in ha in the reservoir • percent_invalid: percentage of invalid area (not clearly observed in the satellite acquisition) • last_date_updated: timestamp of timeseries insertion in database, automatically attributed by database, in UTCThe database schema diagram in Figure 22 illustrates the integration and management of reservoir and waterbody data within the eflow_iwmi MySQL database. This structure includes detailed tables for reservoirs, waterbodies, and related time-series data, ensuring a comprehensive approach to hydrological data management. Each query serves as a building block in the operational workflow, allowing for a seamless transition from raw data to actionable insights.Extract available daily precipitation data from the rainfall_data table: Verified discharge with quality_code=1 This chapter details SQL examples of the tables to the eflow_iwmi MySQL database, specifically reservoir information (Digital Earth Africa DEA) for the Limpopo River Basin.Query 1: Extract water area time series from the waterbodies_data table given a reservoir name and filtering by percent_invalid SELECT r.name, r.waterbody_id, wbd.date, wbd.water_area_ha FROM eflow_iwmi.waterbodies_data wbd inner join waterbodies w on w.id = wbd.waterbody_id inner join reservoirs r on wbd.waterbody_id = r.waterbody_id where r.name = 'Massingir Dam' and wbd.percent_invalid < 10 SELECT w.swat_channel, w.id, DATE_SUB(MAKEDATE(YEAR(wbd.date) + 1, 1), INTERVAL 1 DAY) AS last_day_of_year, AVG(wbd.water_area_ha ) as avg_water_area_ha FROM eflow_iwmi.waterbodies_data wbd inner join waterbodies w on w.id = wbd.waterbody_id where wbd.percent_invalid < 10 group by w.swat_channel, w.id, last_day_of_year ) as aggregated_month where aggregated_month.swat_channel = 'cha0075' group by aggregated_month.swat_channel, aggregated_month.last_day_of_year order by aggregated_month.last_day_of_year This publication has been prepared as an output of the CGIAR Initiative on Digital Innovation, which researches pathways to accelerate the transformation towards sustainable and inclusive agrifood systems by generating research-based evidence and innovative digital solutions. This publication has not been independently peer reviewed.Responsibility for editing, proofreading, and layout, opinions expressed, and any possible errors lies with the authors and not the institutions involved. The boundaries and names shown and the designations used on maps do not imply official endorsement or acceptance by IWMI, CGIAR, our partner institutions, or donors. In line with principles defined in the CGIAR Open and FAIR Data Assets Policy, this publication is available under a CC BY 4.0 license. © The copyright of this publication is held by IWMI. We thank all funders who supported this research through their contributions to the CGIAR Trust Fund.","tokenCount":"7277"} \ No newline at end of file diff --git a/data/part_3/2318662558.json b/data/part_3/2318662558.json new file mode 100644 index 0000000000000000000000000000000000000000..00ebc446964550559d14c4fb69efc105abeaa828 --- /dev/null +++ b/data/part_3/2318662558.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"bb729e730d9e2afd5d1b092e628a0c09","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/92250bbc-fe30-490b-ae59-69cae87f6d77/content","id":"552308180"},"keywords":[],"sieverID":"462205f2-1c20-461f-9f43-b8102162bb78","pagecount":"58","content":"CIMMYT® (www.cimmyt.org) is an international, not-for-profit organization that conducts research and training related to maize and wheat throughout the developing world. Drawing on strong science and effective partnerships, CIMMYT works to create, share, and use knowledge and technology to increase food security, improve the productivity and profitability of farming systems, and sustain natural resources. CIMMYT is one of 15 Future Harvest Centers of the Consultative Group on International Agricultural Research (CGIAR) (www.cgiar.org). Financial support for CIMMYT's work comes from the members of the CGIAR, national governments, foundations, development banks, and other public and private agencies.Table 1 lists the activities through which CIMMYT builds NARSs' capacity. As shown, these activities have different levels of intensity and vary in location.As mentioned earlier, this report will focus on the formal training courses described in the first two rows of the table. However, much of CIMMYT's capacity-building takes place through one-on-one In a database provided to the CGIAR Technical Advisory Council (now the Science Council) in 2002, 184 courses were recorded during 1991-2001. Figure 1 shows the number of courses offered each year.Course topics. CIMMYT has offered two kinds of courses: long courses focused on basic and advanced skills in maize and wheat breeding and on crop management, and shorter courses focused on specialized topics, including but not limited to experiment station management, analysis of nutrient response trials, wheat diseases and their control, molecular markers in breeding, scientific writing, gender analysis, and socio-economic analysis. The most commonly offered courses are listed in Table 2. These make up more than half of the courses listed in the 1991-2001 data set. 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 # of courses (total = 184)3 The criteria for inclusion in this list were: \"CIMMYT must be named, and its support -either financial or through the use of its research resources -must be recorded in the thesis itself or in a journal article based on the thesis. An acknowledgement to CIMMYT for the use of its seeds or its library is not sufficient to make a thesis eligible; nor is an acknowledgment to a member of CIMMYT's staff, whether for scientific counseling, for moral support, or for serving on the thesis committee. It should also be noted that CIMMYT has changed its organization in recent years, so the programs/ units named here may not reflect those which actually exist today. training. Ad hoc studies have been conducted since the early 1970s (Table 3). Note that all relied on surveys of trainees. 4 The information available on the surveys identified in Table 3 is incomplete; however some pattern to the results can be training materials. As CIMMYT decentralizes its management structure, the amount of training in the regional offices may increase. Figure 4 As the previous section shows, there is some information about the effectiveness of individual The The primary purpose of the interviews with CIMMYT staff was to understand their perceptions of the role of training in CIMMYT, the impact of that training, and the pathway through which impact was achieved. In addition, staff were asked if they had any recommendations for CIMMYT training. The results of the interviews are summarized below.In interviews conducted in May 2004, CIMMYT staff described training as \"one of the main pillars,\" \"a key issue,\" \"a core activity,\" and \"the lifeblood\" of the Center. They were not just referring to the role of training in the past. One scientist stated that training is \"very, very crucial for our future impact.\"Another described training as \"a key component for CIMMYT's long-term existence.\" The most common reasons given for the value of CIMMYT training were:• An advantage in resources such as scientists, laboratories, and fields; developing country institutions do not have similar resources and so cannot compete when it comes to hands-on training.• Its global and independent presence: CIMMYT is seen as \"an honest broker\" of knowledge.• The use of hands-on work in the field and the laboratory. More than one scientist described the focus on hands-on, practical training as CIMMYT's \"niche.\"• The combination of headquarters and regional \"There is definitely a demand for it [training]. The biggest thing for us is that it builds partnerships. CIMMYT scientists identified several barriers to achieving the desired effects of the center's training, including language, heterogeneity of trainee skills, and inadequate resources in home countries.Getting the right pool of trainees for a course can be problematic: participants may be selected by their home supervisors as a reward for good work, even though they may not be the people most likely to benefit from training. Some interviewees said that, even when the right person has been trained, the training loses its value when that person leaves the position for which they were trained. (Others, however, said that turnover is not bad if the trainee is promoted to a higher position, stays in food crops research, or moves to private sector research.) A barrier related to the environment in the national research organization is lack of support for new ideas by senior scientists or cultural constraints on introducing new ideas.In addition to the barriers associated with the trainees and their institutions, CIMMYT-based constraints to providing the highest quality training were also mentioned. Interviewees reported that core funding for basic courses had shrunk and that project funding does not always include support for training. In a related concern, several interviewees referred to the lack of time allotted for training in their schedules, and the subsequent difficulty of balancing attention to their own research programs and developing training courses. Finally, it was suggested that CIMMYT was losing some of the good will developed through training activities, because of staff had not been able to maintain communication with past trainees.The given that internet access is still limited for many CIMMYT partners.A variety of strategies were used and/or recommended to increase the likelihood that training participants are the ones CIMMYT wants to train. For example, some courses require prospective participants to complete a brief screening questionnaire; others negotiate behind the scenes with decision-makers in national programs to identify appropriate participants, before issuing an invitation to the program to nominate someone.CIMMYT staff in regional offices are very important in making sure that the people who come to Mexico for training are the right people.The This section describes respondents' nationalities, crop specializations, occupations, workplaces, and supervisory responsibilities.Nationality and region of respondents. Figure 6 shows the distribution of the trainees across the five areas of the world, using the classification system established by the World Bank. There were no respondents from Latin America and the Caribbean and only two respondents from sub-Saharan Africa. 8Countries represented by the respondents are Turkey (10 respondents), India (6), Bangladesh (5), China (5), Iran (4), Kazakhstan (3), Nepal (2), Azerbaijan (1), Croatia (1), Georgia (1), Kyrgyzstan (1), Sudan (1), Thailand (1), Uganda (1), and Yugoslavia (1). Four respondents did not indicate their nationalities.Crop specialization of respondents. Another characteristic relevant to interpreting the findings is whether the respondent works with maize or wheat. Figure 7 shows that a higher proportion of respondents worked with wheat (27 cases) than with maize (13 cases). The other seven trainees reported working with both crops.Trainees also listed other crops they work on, including legumes (6), rice (3), sorghum (2), cotton(2), barley (2), coffee (1), sesame (1), and medicinal plants and vegetables (1).Occupation. Most (23 or 49%) of the trainees who answered the survey were plant breeders (Table 5).Plant pathology was the second most-reported occupation with 11 responses (23% of the total).Agronomy received only four mentions (9%).Three people indicated that their jobs involved8 The survey of research leaders, which is described in the next chapter, addresses this limitation to some extent. About 25% of the 27 research leaders who responded to the survey were from Latin America and another 25% were from Africa. Respondents were also asked how much time they spent in various work environments: office, laboratory, experiment station, farmers' fields.Figure 9 shows that respondents were likely to spend at least a small proportion of their time in the office or farmers' fields. More than third (17 or 36%)of the respondents reported that they spent 50% or more of their time at the experiment station.Most respondents had little or no supervisory responsibilities. Twenty-one respondents (45%)reported that they supervised between one and five people (figure 10). Almost a third (14 or 30%) did when the period asked about was the present.Twenty-six respondents (53%) reported that they are currently using \"most\" of the training they received.The respondents were asked to indicate whether or not they had used the training resourcesmanuals and printed materials, germplasm, and research tools other than germplasm-provided by CIMMYT. Figure 12 shows that everyone reported using the course manual and publications that were distributed during training. In response to the question about use of germplasm, eight (16%) said they had used germplasm collected during training; 25 (51%) reported that the question was Agronomy practices • Zero-tillage.• Bed planting.• Yield components on machine harvesting.• Agronomy observation made in field relating to field control.• Planting systems.• Identify the proper time of irrigation for maximum yield.• Intercropping (maize with legumes). I have been working in maize from 1999. I am conducting low nitrogen trials from CIMMYT also. I made a very stupid job while conducting this trial in the summer of 2003. I planted the seeds in a field where legumes were grown earlier, as a result, the yield was higher than the normal trial (120:60:40 kg NPK/ha). After attending this training coarse, now I know very well how to deplete nitrogen level, conduct experiments and to identify the varieties. I have been worked as breeder and agronomist but I have been in CIMMYT for bed planting course. I carry out the bed planting trials and adapted this system in Southeast Asia of Anatolia. I also developed bed planter and bed former.Planning and analysis • Planning of crossing strategy (in national breeding program).• Problem identification and priority setting.• Alpha-lattice design for laying out experiments and analyzing data. The design is extremely useful especially in Hill areas where heterogeneity of experimental fields is an important consideration. • Proper management and efficient selection in international and national screening nurseries and yield trials.• Statistical and biometric skills (MSTATC).Use of randomization at the time of sowing.• Use of statistical analysis of data through MSTAT. Data analysis and interpretation of result of the experiments under abiotic stresses.not applicable; and 15 (31%) answered that they did not use germplasm collected during training.(The two most likely reasons for a \"not applicable\"or \"no\" response are that the course did not focus on breeding and/or the trainee did not collect germplasm during the course.) In response to a separate question, 22 (45%) respondents reported having used other research materials. The questionnaire asked respondents to describe how they used the materials they collected or received.Their answers are presented below.All the respondents reported that they used the The figure combines the \"no\" and \"not applicable\" responses. Many of the respondents did not speak English as their first language and we were uncertain if everyone understood the distinction between the \"no\" and \"not applicable\" responses.No or not applicable # of trainess (total=49)• Germplasm were mainly resistance powder mildew and good quality materials. We use them to make cross with our materials. Now, we had got more 20 F2 populations.• Spring durum and bread wheat yield trial; • I selected some parents in crossing blocks and also I did some crosses in CIMMYT but I did not collect them.• Till time I don't received that germplasm.They included some high potential line and advance material in bread wheat and some of varieties that had been made with disease Use of other research tools. Hybridization kits, emasculation sets, spore collectors, identification materials, software CDs, books, and reference materials are the research tools that respondents identified. They described their use of the various research tools in these ways:Fusarium diseases (head blight).• The software for alpha lattice design. Used for the current crop season and results are awaited.• Microscope and other identification materials.• I received an emasculation set. It was very useful for crossing. Also I received the number of books which were essential for my work. I think the books are sufficient for some next years.• The research tools such as hybridization kits I used in the field for making crosses efficiently. As shown in Figure 13, most trainees who answered the question about how frequently they had communicated with former fellow trainees since the course said they had interacted at least once or twice a year. Twelve (24%) said they communicated less than once a year or not at all. There was no clear correspondence between frequency of interaction and year in which the course was offered. Of the eight who answered \"less than once a year,\" two attended training in 2000, two in 2002, one in 2003, and two in 2004.Most trainees also seemed to have had some communication with the training instructors. Thirty (61%) of the respondents reported that they had communicated with their instructors at least once or twice a year since the training course (Figure 14). In contrast to the frequency of interaction with fellow trainees, there seems to be a slight correlation between the year of the training course and the extent of interaction with instructors. Respondents from year 2000 courses were more likely to report frequent interaction with trainers. Four of the 18 respondents from the 2004 course said they had not communicated with instructors since the course. The course had been offered just a few months before the survey was conducted, however, so there is a limit to the amount of interaction they could have had.The value of the interaction with fellow trainees and instructors was made clear in comments from 14 respondents about the development of collaborative relationships or new contacts in the scientific community. Examples of these comments include:• I got a lot of friends from other countries and we always collaborate between us about scientific topics.• I left behind my cultural differences. My best friend during training was person from country that my country was in war with few years ago.• It affected [my] way of thinking in direction of international exchange of breeding materials. to know some international research fellows and scientists. All these are helpful for our research.• This was the first time I have participated in an international scientific activity. Therefore this activity helped me to improve my English as well as experience on the subjects covered. In addition,I have gained self confidence to work with an international group of researchers. The survey asked three questions about the impact of training at an organizational or national level: If the respondent answered \"yes\" to any of these questions, he was asked to describe the impact.Figure 16 summarizes the answers to the questions.For the first two questions, 30 (61%) respondents we could spread some of it in production too.• Giving awareness to the farmers about the soil borne diseases of wheat. • Development of late heat tolerant wheat varieties:My organization is trying to develop late heat tolerant wheat varieties as our winter spell is very short and we belong to ME5 especially humid and warm environments.• I am conducting the research work about evaluation of spring wheat for resistance and selection to diseases (rusts, leaf blights, common bunt) in the Southeast and North of Kazakhstan.Comments related to impact on biotechnology research.• In CIMMYT I collected some experiences and literature in biotechnology and now we are also improving DH and some of DNA techniques in my company too.• Double haploid breeding: My organization is trying to do some research on producing double haploids with collaboration of Bangladesh Agricultural University.• My organization is trying to introduce bed planting, strip tillage and zero tillage along with bed planter, power tiller operated seeder (PTOS) at farmers' level, setting demonstrations in their fields. Now farmers are very much impressed on these demonstrations and some of them are using PTOS to decrease the turn-around time after harvest of T. aman rice. Some farmers are also using reaper and power thresher for harvesting of wheat which are manufactured locally.• Recently we have developed bed planter (2-wheel driven), identified efficient varieties for bed planting situation, and we have demonstrated in farmers' fields with their participations.• In Bangladesh, plant spacing was 25 x 75cm. Now we are using 20 x 75cm, according to CIMMYT training manual. As a result the total population has been increased and yield has also increased. Comments related to participatory research.• Before our research mainly focused on the highyield in the station field where the water supply was sufficient and other factors were appropriate for maize growth, rarely thought of the conditions of farmers' field. Now we have emphasized the farmers' direct benefit from field product by using some way similar to farmers participate approach.However, what we have done is just a beginning. We still need more time to improve agricultural practices.• Participatory plant breeding (PPB): PPB is also going on as the farmers can take part selecting their own varieties according to their opinion.• Regarding participatory plant breeding (PPB), mother and baby trials were set up in farmers' field and the farmers' had a very good response to select varieties according to their opinion.Comments related to other aspects of research.• My organization improved agricultural practices locally using field control with the aim of issuing OECD certificates.• Besides ASI and yield, we attached importance to other indices learned in training.• The national disease resistance screening project coordinated by my organization started covering the screening of national germplasm against root rots in collaboration with another research institute.• There is a lot of area located below new dams.In that area there are some civil projects to make canals and irrigation systems. The projects can increase irrigated area. Therefore are needed varieties adapted with high yield for that area. The survey asked trainees to identify other sources of training similar to that offered by CIMMYT.The respondents were offered five options and encouraged to mark all the choices they considered appropriate. As shown in the Figure 17, \"other international agricultural research center(s)\"was the most common response (23 or 49% of the 47 respondents). Thirteen respondents (28%)answered that similar kinds of training were not available elsewhere. This indicates the importance of the CGIAR centers in building capacity in general.The next question focused more specifically on CIMMYT. Most (29 or 62%) of the 47 respondents knew of other staff in their organization who 9 A reviewer of a draft version of this report remarked that \"staff\" implies people below one in an organizational hierarchy and that \"colleagues\" might have been a better choice. This distinction was not noted by the CIMMYT staff who reviewed the draft survey. The issue is raised here so that the reader can consider whether the wording affected the responses obtained. Overall, the respondents were very positive about Of the 47 research leaders whose contact information we had, 28 (60%) from 19 countries responded to the survey. As described in Section 2, the 28 respondents • The courses were very instrumental in equipping myself with the technical skills in the research work. I found them very useful and indeed changed my approach and attitude to maize 11 The respondent who reported that nobody in his institution had attended CIMMYT training answered \"Don't Know\" to the question, \"In your opinion has CIMMYT training had an impact on your organization? \" That respondent skipped the rest of the questions and is not included in the data presented in this section. • CIMMYT provided so many germplasms that are very useful for breeders. Some used as parents, some used directly as varieties.• Germplasm support for improvement programs of the University Center, as well as laboratory support in molecular markers and publications.• 90% of the germplasm used is in commerciallyreleased maize varieties from CIMMYT.• CIMMYT is one of the most influential scientificresearch partners in our wheat research programme. The germplasm we received from CIMMYT and introduced as new cultivars in different agro-ecological zones have had great and significant impacts on promoting wheat yield and increasing its production in the country. We owe part of our success in wheat self-sufficiency to CIMMYT and its wheat germplasm. CIMMYT training had affected these aspects of their institutions' research programs. Some comments were very brief (such as \"wheat breeding\" or \"quality protein maize\"). Of those that provided more detail, some are included below. A full set of the comments is provided in Appendix C.• We have better information, human resources, germplasm access, and both more modern and efficient methodologies to perform our research work.• Changes in the sow-experiment techniques, data gathering and data analysis.• Some research activities are carried out as done at CIMMYT; e.g., laying out of experiments, data taking, inoculations, etc.• CIMMYT has familiarized the maize researchers with latest developments and refined methodologies used in maize technology generation.• Participatory research in the rice-wheat cropping system also got initiated by this interaction.• A mother-baby trial methodology which enhances farmers participation in variety development.• Better development of field practices (agronomists with better techniques to perform field experiments).• Cooperation with CIMMYT certainly opened doors for collaboration on a wider scale within the region in terms of regional variety testing trials, setting up seed production schemes and supporting resourcepoor farmers from a platform of collaborative networks with different stakeholders.• CIMMYT training widened our research ideas. For example, some breeding techniques and methods, such as spring wheat, winter wheat, shuttle breeding, physiological approaches and selection of hybrid generations, etc., were used to increase yield potential and adaptability of cultivars, which have greatly improved our breeding efficiency. • For wheat breeding program, breeders pay more attention to wheat quality, especially bread-baking quality, durable resistance to rust and powdery mildew, drought tolerance. For maize breeding program, breeders began to use marker assisted selection for QPM.• Population improvement procedure and maintenance breeding procedure of composite varieties of maize were successfully implemented.Procedures of inbred line development, maintenance of inbreds and large-scale seed production of inbreds and hybrids were also successfully implemented.• More emphasis is put on QPM variety development and providing improved varieties rather than hybrids to resource-poor producers for the sake of self-sufficiency in seed provision.• New research trends in post-graduate study training programs have been implemented.• Wheat bed planting system has been widely extended in Shandong Province of China.• Better crop handling practices (sow, seed, post-harvest handling, seed production and preparation, among others).• New and more environment-friendly technologies, increased efficiency in national problem-solving (drought, famine, disease tolerance, among others).• Farmer-participatory variety selection was introduced to us by CIMMYT and it has become popular with government and aid institutions working with us to improve farmers' choice and quality of varieties in remote communities.• The use of tied ridges; the use of cover crops such as mucuna; the use of improved varieties; the use of recommended type and rate of fertilizer.Although respondents were not asked specifically In general, a higher proportion of research leaders to have an impact. In other words, while the survey of research leaders confirms that there has been some impact and identifies specific instances of impact, it does not allow any conclusion about the extent of impact.Similarly In The it is designed to have. Table 9 summarizes the findings of the two surveys in relation to the specific kinds of impact identified in Chapter 2.While positive, the evidence has many limitations.First, the surveys are unable to provide information about the extent of impact. While we may say with confidence that CIMMYT training has made a difference from the perspective of most trainees and research leaders who responded to the survey, we do not know the extent to which the experiences they reported are shared by people who received the survey and did not answer; much less the many trainees and research leaders who were not included in the survey at all. As a result, if a different set of courses had been selected as the basis of the trainee sample, the trainee survey results might be different.the comments of research leaders, there is concern about these reductions. One aspect of this concern is the need for a balance between headquarters and regional training. The long, basic crop improvement courses in Mexico seem particularly embattled.Their location and length are seen as advantages or disadvantages, depending on the perspective.According to proponents, a Mexico location enables trainees to benefit from multidisciplinary training because of the greater access to scientists working in different research areas. In addition, trainees have Respondents were asked to identify three skills that Research leaders were not asked to assess the knowledge they had learned in the training event(s). Most skills and skills of trainees. However, two research leaders related to plant breeding and selection. Others related to commented positively on the impact of their own pathology, agronomy, project management, and data analysis. CIMMYT training experiences on their research skills.Twenty-five (51%) reported that CIMMYT training motivated Respondents in 21 (95%) of the institutions reported that them \"a lot\" to increase the amount of hands-on work that trainees had increased interest in hands-on work. they do, and 14 (29%) indicated that CIMMYT training Respondents in 17 (77%) of the institutions represented in gave them \"some\" motivation to increase the amount of the sample reported that trainees' morale had increased. hands-on work.Thirty (61%) trainee respondents reported communicating Respondents in 20 (91%) of the reported that trainees had international networkswith their instructors at least once/year. Several provided increased communication with international scientists. comments about the value of the relationships forged duringSeveral provided examples or supporting comments. the training. Thirty-two (65%) trainee respondents said they had interacted with their fellow trainees at least once a year. On the way the organization does research.• We have better information, human resources, germplasm access, and both more modern and efficient methodologies to perform our research work.• Research approaches, increased efficiency, better quality.• Better issue knowledge and problem-solving alternatives.• Changes in the sow-experiment techniques, data gathering and data analysis.• Better and more scientific rigorousness.Techniques to select and develop maize genotypes have improved.• Some research activities are carried out as done at CIMMYT e.g. laying out of experiments, data taking, inoculations, etc.• Increased activities in participatory research; intensity in applied and adaptive research has also increased; efficiency has increased for achieving national goal.• CIMMYT has familiarized the maize researchers with latest developments and refined methodologies used in maize technology generation.• More reliable researches at the organization.• Participatory research in the rice-wheat cropping system also got initiated by this interaction.• Support [of] farmers training and field days enables the institute to provide quality research work and extend its research area and involve more farmers.• A mother-baby trial methodology which enhance farmers participation in variety development.• Better development of field practices (agronomists with better techniques to perform field experiments).• CIMMYT had an impact on helping to improve research activities of different disciplines of the organization.• Establishment of infrastructure: Drought and low nitrogen tolerant germplasm screening sites; small irrigation facility.• Cooperation with CIMMYT certainly opened doors for collaboration on a wider scale within the region in terms of regional variety testing trials, setting up seed production schemes and supporting resourcepoor farmers from a platform of collaborative networks with different stakeholders.• For wheat breeding program, the scale is getting bigger and put some materials both in dry land and irrigation land.• CIMMYT training widened our research ideas. For example, some breeding techniques and methods, such as spring wheat ◊ winter wheat, shuttle breeding, physiological approaches and selection of hybrid generations, etc., were used to increase yield potential and adaptability of cultivars, which have greatly improved our breeding efficiency. • We change the priority in wheat breeding: resistant to diseases emerges as one of the key problems of breeding.• Wild cross and shuttle breeding in wheat breeding.• For wheat breeding program, breeders pay more attention to wheat quality, especially breadbaking quality, durable resistance to rust and powdery mildew, drought tolerance. For maize breeding program, breeders began to use marker assisted selection for QPM.• Application of physiological approaches to wheat breeding; haploid breeding-wheat x maize technique; wheat cultivation-bed planting.• Biotechnology area (not as the major responsible person, but as an active and strategic collaborator).• The modern approaches to complex evaluation of selection material by detailed studying of seed technological properties; studying of new technologies of cereal crops treatment by bed planting in local conditions. This method promotes to decrease the seed sowing rate to 2-2.5 times, and reduce the consumption of irrigated water to 30-40%, and yield increasing & output of conditional seeds on growing in seed farms.• In the tiny-cereal-crop improvement programs, as well as in maize. Their researchers are using knowledge acquired in CIMMYT.• Insect rearing for maize streak virus research, research on QPM, development of nitrogen use efficient maize materials (use for low and high nitrogen screening sites).• Example: participatory varietal selection, technology transfer and resource conservation.• Population improvement procedure and maintenance breeding procedure of composite varieties of maize were successfully implemented.Procedures of inbred line development, maintenance of inbreds and large-scale seed production of inbreds and hybrids were also successfully implemented.• More emphasis is put on QPM variety development and providing improved varieties rather than hybrids to resource-poor producers for the sake of self-sufficiency in seed provision.• In the national scientific programs of our Center were introduced and now are investigated some problems of cultivation and seed growing, which were started with the help of CIMMYT, for example, furrow-irrigated bed planting systems. Increase regional training/use of regional experts. ","tokenCount":"4908"} \ No newline at end of file diff --git a/data/part_3/2324932262.json b/data/part_3/2324932262.json new file mode 100644 index 0000000000000000000000000000000000000000..c83daa87840ebef1b21b9b405bb6c3da32c59178 --- /dev/null +++ b/data/part_3/2324932262.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"a053bfe0422a7abec0c8141ad49d03d5","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/86a2ad76-f12d-4766-bd55-9ef0760c6050/content","id":"1174035763"},"keywords":["Agro-ecological zones","Agroforestry","Food self-sufficiency","Household income"],"sieverID":"da692daf-75a9-47e4-8439-5760240298a9","pagecount":"15","content":"The world is challenged to meet the food demand of a growing population, especially in developing countries. Given the ambitious plans to scale up agroforestry in Africa, an improved understanding of the effect of agroforestry practices on the already challenged food security of rural households is crucial. The present study was undertaken to assess how on-farm trees impacted food security in addition to other household income sources in Rwanda. In each of the six agroecologies of Rwanda, a stratified sampling procedure was used where two administrative cells (4th formal administrative level) were selected in which households were randomly selected for interviews. A survey including 399 farmers was conducted and farmers were grouped in three types of agroforestry practice (i) low practitioners (LAP) represented by the first tertile, (ii) medium practitioners (MAP) represented by the second tertile and (iii) high practitioners (HAP) represented by the third tertile of households in terms of tree number. Asset values, household income sources, crop production, farm size, crop yield, and food security (food energy needs) were quantified among the types of agroforestry practice. A larger proportion of HAP households had access to adequate quantity and diversity of food when compared with MAP and LAP households. Food security probability was higher for households with more resources, including land, trees and livestock, coinciding with an increased crop and livestock income. We found no difference in asset endowment among types of agroforestry practices, while farmers in agroecologies with smaller farms (0.42 ha to 0.66 ha) had more on-farm trees (212 to 358 trees per household) than farms in agroecologies with larger farms (0.96 ha to 1.23 ha) which had 49 to 129 trees per household, probably due to differences in biophysical conditions. A positive association between tree density and food security was found in two out of six agroecologies. The proportion of income that came from tree products was high (> 20%) for a small fraction of farmers (12%), with the more food insecure households relying more on income from tree products than households with better food security status. Thus, tree income can be percieved as a \"safety net\" for the poorest households.The double challenge faced by the world is to meet the food demand of the growing population, and to do so in ways that are environmentally and socially sustainable (Von Braun 2007). Sub-Saharan Africa remains amongst the most food insecure regions in the world, with 22.8% of the population showing prevalence of undernourishment (FAO et al. 2019). In this region, population pressure has led to shorter fallow periods or continuous cropping, even on hillslopes causing erosion and leading to reduced soil organic matter content and nutrient mining without replenishment (Stoorvogel and Smaling 1990). Agroforestry, a low-input technology, is said to contribute to the enhancement of food production while ensuring sustainability in sub-Saharan Africa (Garrity 2012). Agroforestry was defined by ICRAF (2013) as \"the inclusion of trees in farming systems and their management in rural landscapes to enhance productivity, profitability, diversity and ecosystem sustainability\". Agroforestry could also be defined as a dynamic, ecologically based, natural resource management system that, through the integration of trees on farm and rangeland, diversifies and sustains smallholder production for increased social, economic and environmental benefits (Leakey 1996). Agroforestry is now receiving increasing attention as a sustainable land-management option because of its ecological, economic, and social attributes.Agriculture is the primary source of livelihood for 85% of the rural population in the developing world (Dixon et al. 2001). In countries such as Rwanda, smallholder farming is commonly practiced on farms smaller than one hectare (NISR 2010) and is highly vulnerable to weather related shocks, such as drought and irregular rains (Hjelm et al. 2015). Rwanda is characterized by one of the most severe nutrient depletion rates in Africa and low soil organic carbon content (Stoorvogel and Smaling 1990;Drechsel et al. 2001). The country is dominated by sloping agricultural land (up to 55%) with 50% showing signs of erosion. Producing enough food on nutrient deficient land for the rapidly growing population is challenging and buying imported food would be too expensive for most of the population who currently live on less than one dollar (USD) per day. Despite the economic recovery of Rwanda since 1994, household food insecurity and malnutrition remain a challenge in the country. In 2012, as many as 460,000 households (21%) were food insecure (NISR 2012). This number increased to 473,847 households (20%) in 2015 (Hjelm et al. 2015). Though the percentage of food insecure households decreased slightly, the absolute number of food insecure households increased due to population growth.In light of recurring food shortages, projected climate change, and rising prices of fossil fuel-based agricultural inputs, interest in agroforestry has recently increased as a costeffective means to enhance food security, while at the same time contributing to climate change adaptation and mitigation (Mbow et al. 2014). Rwanda government officials, NGOs, and extension specialists perceive smallholder agroforestry as a suitable strategy for smallholder farmers (Stainback et al. 2012). Consequently, Rwanda has pledged to restore 2 million hectares of land (almost 100% of arable land) by the year 2030 mainly through agroforestry (http://www. bonnchallenge.org/content/rwanda). Food security is one of the main drivers in agroforestry adoption in Africa (Brown et al. 2013). For instance, Coulibaly et al. (2017) found that agroforestry increased food security in Malawi. Kristjanson et al. (2012) found a strong positive relationship between food security and the adoption of agroforestry farming in Ethiopia, Kenya, Uganda, and the United Republic of Tanzania, though it was not determined whether adoption had induced more food security or vice-versa.While agroforestry may improve food security through increased income from tree products (Garrity Dennis et al. 2010) and enhanced crop production (Coulibaly et al. 2017), it may also reduce it by lowering crop yields (Ndoli et al. 2017) under trees due to competition for resources shared between trees and crops (Kho 2000). Despite the potential positive impact of agroforestry on food security, its contribution to food security in relation to other sources of household income is still unknown. There is a need for an improved understanding of the role of trees on farm income and the food security status of farmers to better understand and anticipate the likely impacts of current efforts to upscale agroforestry on rural households in Rwanda. The present study seeks to understand how the trees grown and managed on-farm affect farm income and food security of households in the six agroecological zones of Rwanda. The specific objectives were: (i) to determine whether agroforestry practices lead to diversification and increase of income and value of assets; and (ii) to evaluate food security for households that differ in the number of trees on their farms.The study was conducted in the six agroecologies of Rwanda as defined by Djimde (1988). However, the Eastern Savannah lowland, as defined in 1988 was subdivided into two systems, namely Eastern Savannah and Eastern Plateau (Table 1). This is because the Eastern Savannah became heterogeneous in terms of socioeconomic and biophysical characteristics in the last two decades. The Eastern Savannah of 1988 was a less populated parkland with the protected Akagera national park covering half of it. Eastern Savannah used to be occupied by a National Park but in late 1990s, its biggest share was settled by former refugees and they started farming activities which completely changed the land cover/land use. What used to be savannah woodland was then converted into farmland and rangeland by clearing the forest. A short description of the characteristics of the land use systems is presented in Table 1. The administrative structure of Rwanda is organized into provinces, districts, sectors, cells and villages. In each agroecology, one representative district was selected, based on biophysical and socio-economic factors. A stratified sampling was used to ensure that each subgroup of households received good representation within the sample. Two cells, representing the 4th formal administrative level in Rwanda from each district were selected based on contrasting outcomes with respect to the incorporation of trees on farm and they were used for assessment of the contribution of trees on household food security.A household survey was conducted between November and December 2014 in each selected cell with about 20-60 randomly selected households (Mukuralinda et al. 2016;Iiyama et al. 2018a;b). From a list of all households, a sample was randomly selected and visited for interviews. A total of 465 households were interviewed in the 12 selected cells but this study uses 399 households which had full information. A structured questionnaire was administered to respondents' household heads or their representatives during the survey. Questions related to tree species, number of trees (defined in this study as woody perennial plants with a minimum height of 2 m excluding recently planted seedlings), products and income from trees. The questionnaire also captured the household socioeconomic characteristics, crop production, and income from crops, from livestock and from off farm activities. Farm and field areas were computed from field boundaries as recorded with a Global Navigation Satellite System (GNSS) receiver (Garmin) and with this on-farm crop productivity (i.e., crop yields converted to gigajoules (GJ) energy per ha) was determined. To this end, for each field the farmer reported harvested amounts of grain, tuber or fresh product were converted to dry mass estimates, using standard values for dry matter content from Feedipedia and USDA web databases (http://www.feedipedia.org/;: https://ndb.nal.usda.gov/ ndb/search), and divided by the measured field area. Household asset values were determined. While measuring farm area, surveyors could quickly count trees to confirm the number of trees reported by the farmer. Assets were grouped into four categories: (i) domestic (i.e., sofa set, refrigerator, wood stove, kerosene stove, gas/LPG stove, granary and domestic water tank), (ii) communication (i.e., radio, mobile phone, television), (iii) transport (i.e., bicycle, motorbike, car/truck and ox cart), and (iv) farming assets (i.e., water tank for irrigation, hoes, machetes, ox-plough, wheelbarrow, grain-mill, water pumps, milk can, shovel, spades, axe, and sprayer). Food security status throughout the year was evaluated in the questionnaire where farmers were asked to assign each month of the year to one of the following categories:(1) not enough food for all members of the household: lack of access to food quantity and quality that normally satisfies each member of the household throughout each month of the year, (2) enough food but not enough diversity: access to food quantity that normally satisfies each member of the household but not in the desired quality throughout each month of the year, or (3) enough food and enough diversity: access to food quantity and quality that normally satisfies each member of the household throughout each month of the year.Therefore, the required quantity and diversity of food in this study is the perception of farmers interviewed.Key informants (farmer groups, extension workers, researchers and policy makers) were interviewed to validate the survey data as a part of a more comprehensive study for the project 'Taking to scale tree-based systems that enhance food security, improved resilience to climate change, and sequester carbon in Rwanda' (Mukuralinda et al. 2016).Assets as well as income were compared between types of agroforestry practice and between agroecologies using a Kruskal Wallis test while proportions of farmers in different food security categories were compared with Chi-square tests. (Welham et al. 2004).Three relative types of number of trees on farm were constructed using tertiles in each agroecology; (i) low agroforestry practitioners (LAP) defined as the first tertile of the households in terms of tree number, (ii) medium agroforestry practitioners (MAP) defined as the second tertile of the households in term of tree numbers and (iii) high agroforestry practitioners (HAP) defined as the third tertile of the households in terms of tree numbers. Tukey's test in the PredictMeans R package (Welham et al. 2004) was used for pairwise comparisons of different household assets between LAP, MAP and HAP for each agroecology (Fig. 1).Fig. 1 Map of 2012 tree cover in Rwanda displaying the six agrecologies and the study sites that were selected for this study While 465 households were interviewed, 66 farmers had reported inaccurate farm sizes or did not have either land or trees and were thus removed from the analysis. Food security for the remaining 399 households was ranked as '1' if they did not have enough food and not enough variety (carbohydrates, proteins, and fats), '2' if they had enough food but not enough variety and '3' if they had enough food and enough variety. Generalized linear models were used to assess the source of variability in food security. Model 1 aimed at testing the effect of tree number when controlling for structural variables (e.g., farm area). Model 2 aimed at testing the effect of tree income when controlling for other functional variables (e.g., crop productivity, offfarm income). Both Model 1 and Model 2 were run for the whole dataset. In the analysis, the scores 2 and 3 for the response variable 'food security status' were combined and considered as food secure households (coded as 1) to signify households having at least access to food quantity that normally satisfies each member of the household throughout the month. These were compared to food insecure households (coded as 0) which are those without access to food quantity that satisfies each member of the household throughout the month. A logistic regression model was then used. The Analysis of Variance (ANOVA) was conducted to compare effects and differences were evaluated for their significance with a Chi-square test. Models were constructed as follows:where Y ijklm and Y mnopqr represents the binomial values of food security status (with the value 1 for food secure and 0 for food insecure), TC is the number of trees on-farm, MO j is the j th month of the year, FS is the farm size in hectares, AEi is the i th agroecology, TI is the tree income, CI is the crop income, LI is the livestock income, OI is the off-farm income, CP is the value of crop production in calories, and R is the residual, and where α, β, γ, δ, μ, τ, ε, ϵ, θ, ϑ, π, ρ and σ represent effects values. We used R software for all statistical analyses (R Development Core Team 2014).Households were grouped in types of agroforestry practice using tertiles, see Table 2. The mean number of trees grown by households was higher in the Congo Nile agroecology, followed by Buberuka Highlands, Eastern Plateau, Volcanic Highlands, and Central Plateau while the Eastern Savannah had the smallest number of trees. The number of on-farm trees in the Congo Nile agroecology was seven-fold larger than in the Eastern Savannah agroecology (least covered with trees), and 1.7 times larger than in the Buberuka Highland which Income from trees was generally higher for HAP than MAP and LAP but its contribution to total household income was small compared with other sources of income. Tree income for HAP were four times higher than for MAP and 21 times higher than for LAP. Tree income and crop income were significantly higher in HAP than the rest of the agroforestry practice types in Congo Nile and Eastern Plateau. In addition, crop income was higher for HAP than for MAP and LAP in Eastern Savannah while livestock income was only higher for HAP in Congo Nile when compared to MAP and LAP (Table 3). Off-farm income was not higher in HAP than in MAP and LAP. Figure 2 shows the contribution of four farm income sources to the total household income. Around 35% of farm households earn income from trees, about 25% of households earn income from crops and livestock, while about 40% of households earn income from off-farm activities (Fig. 2).Asset ownership tended to be similar among the different types of agroforestry practices, except in the Congo Nile agroecology where communication assets were significantly higher in HAP as compared to the other types. On average, HAP had assets worth USD 289, 73, 32, and 50 for domestic, communication, transport and farm assets respectively. MAP had assets worth USD 303, 61, 38, and 29 for domestic, communication, transport, and farm assets respectively. The corresponding asset value in the LAP type were USD 302, 57, 52, and 20 (Table 4). Assets did not significantly vary among farmers and were hence not included among factors that directly distinguish wealth in the study sites. Livestock value was not considered as a household asset but income from livestock was captured and used in the analysis. Food security probability increased with increasing tree density on-farm and increasing farm size. Farmers with an average of 1 ha and with more than 175 trees/ha were the most food secure while those with farms around 0.25 ha and with lower tree density, were the least food secure. The density of trees had a large impact on the food security of households of 1 ha, a modest impact for farms of 0.5 ha and no difference for the smaller farms of 0.25 ha. Nevertheless, the trend of food security probability across the year remained the same for all the agroforestry practice types showing the lowest food security in April and November (Fig. 3).In model 1, most variation in household food security was explained by farm size, the month of the year, followed by crop income (Table 5). With the exception of livestock income and crop productivity, all other factors had a significant impact on food security. Larger farms were more food secure than smaller farms. The interactions between farm size and agroecologies, and between number of trees and agroecologies were also significant. This implies that the influence of number of on-farm trees on food security is mediated by farm size, positively. In the 2nd GLM, tree income was a significant factor in explaining differences in food security, although interactions between income categories and agroecologies indicate strong regional differences (Table 6). We found a negative association between tree income and food security in all regions, possibly indicating that food insecure farmers are selling more wood products than food secure farmers. Income from crops had a positive impact on food security in all regions, possibly indicating that food secure farmers are selling more crop products than food insecure farmers. Off farm income tended to have a negative association with food security in regions with smaller farm sizes possibly indicating that food insecure farmers in these regions tend to depend more on wages than food secure farmers (Table 6). Food self-sufficiency here refers to the ability to cover the household's calorific needs through the household's own production. Most farms were not food self-sufficient: only farmers in HAP and MAP types in the Eastern Savannah agroecology were self-sufficient (Fig. 4) while all types in other agroecologies were not self-sufficient. Coverage of the household caloric needs was significantly different between the types of agroforestry practitioners on-farm with 51% coverage coming from household own food production and 49% coming from generated income. The highest food insecurity was found in Congo Nile, Buberuka Highland and Volcanic highland where none of the types could cover all their caloric needs (Fig. 4). Households in the Buberuka Highland and Congo Nile agroecologies with more trees on farm also had smaller farm sizes (Table 2) and were more food insecure (Fig. 4). When comparing farms in the same agroecology, households in the HAP type were more food secure than other types, in four out of the six agroecologies probably due to higher production of food on farm and in three out of six due to more purchased food (Fig. 4).The influence of farm size and trees on food security differed strongly between the agroecologies. Differences between farms of 0.25, 0.5 and 1.0 ha were relatively small in Central and Eastern Plateau and Volcanic Highlands, whereas farm size effects were much larger in Congo Nile, Eastern Savannah and Buberuka Highlands. The influence of trees on food security varied between agroecologies, increasing tree density was associated with a higher probability of food security in Congo Nile, but in a lower food security in Bubureka Highlands (Fig. 5).4.1 Tree income can be perceived as a \"safety net\" for the poorest farmers Households in the HAP group were more food secure than those in MAP and LAP groups, mainly due to higher income from crops but with limited contribution of income from trees. Income from trees was minimal and not well related to the types of agroforestry practitioners in some agroecologies, suggesting that trees on-farm are probably kept by farmers for other reasons (e.g., own consumption of firewood and fruits, shade, and erosion control). Yet, for about 12% of farmers, tree products contributed more than 20% to their income, where food insecure farmers were more often selling tree products for income than food secure farmers. In this way trees may be perceived as a \"safety net\" to meet the needs of the poorest households, with smallest farms and lowest income.Though the income contribution from trees was generally small in absolute terms, farmers in agroecologies of the western part of the country (Congo Nile, Volcanic highland, Burberuka Highland and Central Plateau) seemed to earn a substantial proportion of their income from trees in contrast to their counterparts in the East (Eastern Savanna and Eastern Plateau). This may reflect the value of wood products and the hypothesized importance of the ability to sell wood for the food security of farm households when on-farm trees are in a sufficient number to be marketable (Ndayambaje et al. 2014). Within a particular agroecology, household's food security increased with increasing numbers of on-farm trees but was not driven by tree income. Indeed, within each agroecology, HAP households had usually a higher crop and livestock income than MAP and LAP households, suggesting that the improved food security of households with higher number of on-farm trees is associated to their higher overall farm income while the contribution of tree income was small. Coulibaly et al. (2017) recently found that agroforestry adoption increased income from both crops and tree products and therefore positively impacted household food security in Malawi. Our study did not assess the proportion of selfconsumed tree products but from the validation workshops and expert knowledge, it is commonly understood that in Rwanda, the biggest share of on-farm tree products are selfconsumed while the surplus is sold on market. Our study confirms this, suggesting that on-farm trees are mostly used for self-consumption and not necessarily sold, in contrast to crops and livestock which form an important source of income for rural households. Though income from trees is lower than income from crops and livestock, food insecure households tend to rely more on tree income than food secure households who mainly depend on crops and livestock income. Thus, income from trees can be perceived as a \"safety net\" for the poorest households.4.2 More on-farm trees are found in agroecologies challenged by small farmland and food insecurityDue to contrasted biophysical (e.g., topography, rainfall, temperature and soil types) and socio-economic conditions, farm size was larger and food security was higher in the East than in the West of the country (NISR 2012) while the number of trees per household was higher in the West than in the East.In the eastern part of Rwanda (Eastern Savannah and Eastern Plateau) where households have relatively more land, HAP farmers had larger farms and a higher crop income than MAP or LAP farmers. Thus, despite the lowest income from trees as compared to the other agroecologies, the HAP households in the eastern parts of Rwanda were wealthier (e.g., with larger farms and higher overall income) and therefore were more food secure than MAP and LAP. In the western part of the country which has a very hilly topography (Congo Nile Crest, Buberuka Highland and volcanic highland) and with more on-farm trees, most households were food insecure possibly due to small farmlands and lower off-farm income. This study found no direct relationship between asset endowment and agroforestry practice type. However, farm size, crop and livestock incomewhich are the most common wealth indicators for farm households in Rwanda -were correlated to the number of on-farm trees in most of the agroecologies. Within the same agroecology, food security increased with increasing farm size and households with more trees were more food secure than those with less. Within the same agroecology, households with more income from trees as compared to their counterparts had also more income from crops and livestock in contrast to what was observed in Ethiopia where income from trees increased at the expense of income from crops (Sida et al. 2018). In the study sites, trees were important in providing firewood, timber, and shade but could come with the cost of lower productivity especially near trees. Though dependent on farm size, on-farm trees seem profitable when farmers integrate crops and livestock since income from trees appeared positively associated with crop and livestock (Bucagu 2013;Beedy et al. 2013). There is a need for more detailed studies to assess the biophysical and socio-economic contexts in order to understand the role of agroforestry on net farm income and household food security. Assessment of food security is notoriously difficult (Barrett 2010). Our analysis is based on self-reported sufficiency in the quantity and diversity of food, and may therefore be biased (Tadesse et al. 2020). However, for comparative analysis such as in our paper, this bias is unlikely to affect conclusions.The present study investigated whether farmers with more trees on their farm were more food secure than those with less trees in the six agroecological zones of Rwanda. Large differences between agroecological zones were observed for both food self-sufficiency and food security. Households with larger farms depended more on crop and livestock income and were more food secure than those with smaller farms who depended more on tree income. The proportion of income that came from tree products was more than 20% for about 12% of the farmers, with food insecure farm households relying more on income from tree products than food secure farm households. The influence of tree density on household-reported food sufficiency varied between regions when accounting for farm size. In most cases, higher tree density did not result in higher income from trees at the level expected, suggesting that trees on-farm are mostly used to meet the demand of households in firewood, fruits and other tree products. In each agroecology, better coverage of caloric needs was found in the type of households with more trees mainly through food purchase as they were usually wealthier (e.g., with larger farms and higher income) than the rest. The lack of a clear relationship between asset endowment and levels of agroforestry practice while farm size and income were significantly different between HAP, MAP and LAP, suggests that assets may not be the best indicator of wealth for Rwandan farm households. Our results suggest that within the same agroecology, farm households with more land most probably grow trees on-Fig. 5 Monthly probability of food security as a function of farm size category (1 ha, 0.5 ha, and 0.25 ha) and tree densities (>175 trees/ha, < 175 trees/ha, and <35 trees/ha) for each agroecology farm to increase their self-sufficiency in fuelwood, fruits and other tree products rather than growing them for markets. Future research should address improvements in commercialization of on-farm tree products to generate income and thus impact on food security of smallholders.","tokenCount":"4529"} \ No newline at end of file diff --git a/data/part_3/2325413433.json b/data/part_3/2325413433.json new file mode 100644 index 0000000000000000000000000000000000000000..dc26ce3192c06cbff18e14a5584a8f73f0574a3b --- /dev/null +++ b/data/part_3/2325413433.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"8fed2edc30a75e700fc8de3060d57d23","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/5e8063ef-32b3-4231-948f-a5b2a1462f63/retrieve","id":"1086777295"},"keywords":[],"sieverID":"915c6e77-a8e7-498d-b0df-5e009f4ab305","pagecount":"1","content":"Not just business-as-usualWomen and marginalized people are being hardest hit by the pandemic due to pre-existing systemic inequalities and longstanding underlying barriers to equity in food systems.The COVID-19 pandemic has both worsened gender inequalities and made them more visible, with women from marginalized groups hardest hit. Women, especially those with low incomes and from marginalized social groups have:Women and men are both critical to resilient food systems. Yet the aquatic food sector is not an even playing eld: persistent gender inequalities mean women face more barriers than men at every turn.Transforming food systems to advance equality Where are women in the seafood industry?Why do gender inequalities in food systems matter?How long it will take to achieve gender equality at our current trajectory, which has been set back by a generation due to the COVID-19 pandemic.The number of hungry people in the world who could be fed if rural women gain equal access to land, technology, nancial services, education and markets for agriculture. Accommodative approaches aim for changes or outcomes that relate to how women are.Facilitated sessions for spouses on gender norms, dynamics and nancial decision making, and co-creating and trying out more equitable ways of being. Learn more. Gender transformative approaches overcome limitations by addressing the underlying causes of gender inequalities that limit the lives and livelihoods of shers, farmers, and value chain actors. These structural constraints include:Formal (policies): Policies fail to create enabling environments required for women to equitably bene t from resources.Semi-formal (systems): Data systems fail to count women's contributions, and extension services often do not consider the needs of women as they are not recognized as 'real' farmers or shers.The burden of unpaid, household work on women and the lack of support from their family, community, and government impede their ability to live healthy and productive lives.Transformative approaches work on the deep structural barriers to engage with, reduce or overcome structural constraints, from household to national and even global.","tokenCount":"322"} \ No newline at end of file diff --git a/data/part_3/2343682452.json b/data/part_3/2343682452.json new file mode 100644 index 0000000000000000000000000000000000000000..42a04b3cc8a82656645b9fd8cc571699f74dcc8e --- /dev/null +++ b/data/part_3/2343682452.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"bbce0da6341e6edcee6659530c3ecb81","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/fbae4781-8b00-4c2f-81c9-cbe7475d5a0e/retrieve","id":"1144964341"},"keywords":[],"sieverID":"f09cf2a2-226b-4c5c-a481-26524379ab25","pagecount":"51","content":"El autor agradece:• El Directorate General for Development Cooperation (DGDC), Bélgica por su apoyo financiero a través de Inibap (Red internacional para el mejoramiento del banano y el plátano, ahora Bioversity International), asi como el Banco Mundial en el marco del proyecto Global Crop Diversity Trust y de la Collective Action for the Rehabilitation of Global Public Goods in the CGIAR Genetic Resources System, y la Fundacón Gatsby, por sus aportes financieros a las investigaciones sobre los protocolos presentados en estas guías.• Bioversity International por el aporte de los recursos necesarios para hacer realidad la publicación de esta guías técnicas.Desea además manifestar agradecimientos especiales a:• Erica Benson y Florent Engelmann, especialistas en crioconservación, por su valioso labor come editores científicos,• Claudine Picq y Vincent Johnson por la edición técnica. Los bananos y plátanos (Musa spp.) representan dos de los grupos de cultivos más importantes en el mundo entero. Más de 400 millones de personas en los países en vías de desarrollo de los trópicos y subtrópicos dependen de estos cultivos, sean estos alimentos básicos, o importantes productos para la venta, local e internacionalmente.Los bananos y plátanos son cultivados casi exclusivamente por pequeños agricultores y la producción se basa en una amplia gama de variedades importantes localmente. Sin embargo, en muchas áreas esta producción está siendo restringida debido a la presión que ejercen las plagas y enfermedades.En respuesta a este hecho, varios programas de mejoramiento de bananos y plátanos alrededor del mundo están trabajando para producir variedades mejoradas, resistentes a plagas y enfermedades y de alto rendimiento.La materia prima para el mejoramiento de los bananos son las especies silvestres de Musa y diversas variedades que se encuentran principalmente en Asia, centro de diversidad de Musa, pero también en África y América Latina. Estas especies y cultivares contienen los genes necesarios para una producción mejorada de manera sostenida de cara a los ataques de plagas y enfermedades y condiciones ambientales cambiantes. Para asegurar la disponibilidad de estos importantes recursos para el mejoramiento y producción futuros, es esencial conservar el germoplasma de Musa de manera segura.Bioversity International (anteriormente INIBAP) es responsable por la colección mundial de germoplasma de Musa. Esta colección contiene más de 1100 accesiones, tanto de especies silvestres, como de variedades cultivadas, y es mantenida bajo los auspicios de la FAO. Esta colección se mantiene actualmente in vitro, en condiciones de baja intensidad de luz y bajas temperaturas, con el fin de reducir las tasas de crecimiento de los cultivos. A pesar de estas condiciones de crecimiento lento, aún es necesario hacer nuevos cultivos de todas las accesiones una vez al año en promedio. El proceso de recultivo es laborioso y se presta para que las accesiones sean contaminadas con hongos o bacterias. Además, las accesiones que se mantienen in vitro, aún bajo condiciones de crecimiento lento, están expuestas a la variación somaclonal.Para superar estos problemas y asegurar la conservación a largo plazo de los recursos genéticos de Musa, Bioversity está apoyando la investigación en el área de la crioconservación, es decir, almacenamiento a temperaturas ultra bajas, usualmente las del nitrógeno líquido (-196°C). Este es el método a elegir para resguardar un almacenamiento a largo plazo rentable y seguro de los recursos genéticos de las especies que tienen semillas recalcitrantes o se propagan vegetativamente, como es el caso de Musa.Esta investigación se está llevando a cabo en la Katholieke Universiteit Leuven, Bélgica (KULeuven), y las técnicas desarrolladas se utilizan ahora para la crioconservación habitual de las accesiones mantenidas por Bioversity. Actualmente, casi la mitad de la colección se conserva de manera segura a largo plazo en nitrógeno líquido. Esta colección crioconservada se considera un complemento de la colección in vitro y sirve como un respaldo seguro en caso de que las accesiones se pierdan debido a la contaminación, variación somaclonal y errores humanos durante el proceso de subcultivo.Las técnicas de crioconservación en principio son aplicables a cualquier tipo de tejido vegetal con potencial de regeneración. Estas técnicas han sido desarrolladas para más de 200 especies de plantas diferentes, cultivadas de diversas maneras, incluyendo suspensiones celulares, callos, ápices, embriones somáticos y zigóticos (Reed 2008).A partir de los bananos es posible obtener dos tipos de tejidos meristemáticos y regenerativos in vitro: (i) meristemas individuales aislados de los cultivos de puntas apicales y (ii) cultivos de meristemas altamente proliferantes que contienen agregados de meristemas parecidos a la coliflor. Los métodos de crioconservación han sido desarrollados para ambos tipos de tejidos.En adición, suspensiones de células embriogénicas de diferentes cultivares pertenecientes a distintos grupos genómicos actualmente también se almacenan en nitrógeno líquido (Panis et al. 1990, Panis 1995, Panis et al. 2005b). El principal propósito de conservar las suspensiones de células embriogénicas de banano a largo plazo no es la conservación de la diversidad de los bananos. Como algunas de las accesiones de banano son recalcitrantes para el establecimiento de suspensiones de células embriogénicas, además de que este proceso consume mucho tiempo (hasta 15 meses), en este caso se debe considerar la crioconservación como un apoyo para las aplicaciones biotecnológicas como la ingeniería genética (Strosse et al. 2003).En esta publicación se describen los diversos métodos, desarrollados en la KULeuven para la crioconservación de los cultivos de Musa. Se describen las ventajas y desventajas y se identifican las áreas donde aún se requieren investigaciones para optimizar los protocolos.El propósito de esta publicación consiste en proporcionar información y guías con respecto a metodologías adecuadas de crioconservación para su uso en el germoplasma de Musa. Se espera que las descripciones detalladas de las metodologías faciliten su adopción y uso estandarizado en diferentes laboratorios.La disponibilidad y el tipo de material inicial, los genotipos aptos para la crioconservación y la disponibilidad de los recursos, tendrán que ser considerados para determinar cual de estos métodos es el más apropiado para el uso en otros laboratorios.8 Crioconservación de germoplasma de Musa 1. Protocolos de crioconservación para meristemas de bananoHasta hace 20 años, los protocolos de crioconservación para los tejidos vegetales se basaban principalmente en un congelamiento lento en presencia de mezclas crioprotectoras que contenían DMSO (sulfóxido de dimetilo), azúcares, glicerol y/o prolina. El congelamiento lento resulta en una congelación-deshidratación, dejando menos agua en las células que pudieran formar cristales de hielo letales durante la exposición a temperaturas extremadamente bajas.Sin embargo, durante los últimos 20 años se han establecido varios nuevos procedimientos para la crioconservación, como la vitrificación, encapsulación-deshidratación, precultivo-deshidratación y encapsulación/ vitrificación, todos ellos basados en la vitrificación. La vitrificación puede ser definida como la transición del agua directamente desde la fase líquida a una fase amorfa o vítrea, evitando así la formación de cristales de hielo. Los protocolos de crioconservación basados en las técnicas de vitrificación han sido desarrollados para diferentes cultivos de propagación vegetativa, incluyendo los bananos (Sakai and Engelmann 2007).La investigación en la KULeuven apoyada por Bioversity dio como resultado el desarrollo de dos protocolos de crioconservación adecuados para el almacenamiento a largo plazo de los cultivos de meristemas de banano. El primer método se basa en un congelamiento rápido de los cultivos de meristemas altamente proliferantes precultivados durante dos semanas en un medio con 0.4 M (136.8 g/L) de sacarosa. El segundo también utiliza cultivos de meristemas altamente proliferantes precultivados en sacarosa, pero ellos reciben un tratamiento de vitrificación adicional. El tercer protocolo y el que se aplica de manera más general, es la vitrificación de los meristemas apicales extirpados de las plantas enraizadas in vitro. El trabajo que se requiere para crioconservar las accesiones, al igual que las tasas de regeneración después de descongelarlas, depende del cultivar y del método utilizado (Panis et al. 2007). La aplicación de los protocolos antes mencionados hasta la fecha ha dado como resultado el almacenamiento seguro en nitrógeno líquido de 655 accesiones (situación a finales de 2008) que pertenecen a diferentes grupos genómicos dentro del género Musa.Durante el cultivo y almacenamiento de meristemas normales bajo condiciones de crecimiento limitado, raramente se observa la presencia de bacterias endógenas. Si se encuentran, a menudo estas bacterias no interfieren con el crecimiento de los cultivos de meristemas. Sin embargo, tan pronto como los meristemas se someten a crioconservación, el crecimiento de las bacterias endógenas se vuelve un problema. Cuando los meristemas empiezan a crecer nuevamente después de la crioconservación, cualesquiera bacterias endógenas presentes pueden desarrollarse en colonias amarillas o blancas, cuyo crecimiento sobrepasa el meristema en recuperación. Por lo tanto, antes de someter los cultivos a la crioconservación, ellos son cribados para detectar la presencia de bacterias endofíticas en un medio desarrollado para el crecimiento de las bacterias (medio BACT) que contiene 23 g/L del caldo nutritivo Difco ® Bacto, 10 g/L de glucosa y 5 g/L del extracto de levadura (van den Houwe y Swennen 2000). Estos platos se incuban por 3 semanas a plena luz a 28°C. Las accesiones que responden positivamente, son descartadas (Hamill et al. 2005, Thomas et al. 2008, Van den Houwe y Swennen 2000).La crioconservación de puntas apicales de banano cultivadas in vitro mediante la crioconservación por primera vez fue reportado por Thinh y colaboradores (Thinh et al. 1999). Utilizando este método, los porcentajes de regeneración a menudo fueron bajos e impredecibles. Por lo tanto, la técnica fue mejorada y adaptada en la KULeuven para poder aplicarla a una gran variedad de cultivos (Panis et al. 2005a).Este método es ilustrado en la Figura 1 y los detalles se presentan a continuación.Figura 1. Crioconservación de meristemas individuales. Todas las accesiones fueron obtenidas de la colección de germoplasma de Musa in vitro de Bioversity (KULeuven, Belgica). Esta colección contiene cultivares de banano comestibles, igual que sus parientes silvestres. Los cultivos apicales se siembran en 25 tubos de ensayo de 150 ml en 25 ml de medio P5. El medio P5 contiene el medio semisólido de Murashige y Skoog (MS) complementado con 30 g/L de sacarosa, 10 µM de BA y 1 µM de IAA y solidificado con 2 g/L de gelrite P5 (Banerjee y de Langhe 1985). Se cultivan a 25 ± 2°C bajo iluminación continua de 50 µE m -2 s -1 proporcionada por tubos fluorescentes blancos Osram de 36 W. El pH es ajustado a 5.8 previo al autoclavado. De estos cultivos multiplicados se separan brotes de 3 a 5 cm de largo que luego se transfieren a un medio de enraizamiento en tubos de ensayo. El medio de enraizamiento tiene la misma composición que el P5, pero desprovisto de fitoreguladores de crecimiento y complementado con 0.5 g/L de carbón activado. Después de un mes, se obtienen plantas in vitro robustas y bien enraizadas con un diámetro del cormo de 5 a 8 mm el cual proporciona una fuente apropiada para la escisión de meristemas apicales (Figura 2). Disección y selección de meristemas apicales Como en muchas otras monocotiledóneas, los meristemas apicales de banano están cubiertos con varias capas firmes de hojas inmaduras, de forma tubular y de color blancuzco. Los meristemas apicales individuales se cortan bajo un microscopio binocular. Las hojas son removidas una por una hasta que el domo apical esté visible, pero aún cubierto parcialmente por uno o dos primordios foliares jóvenes (ver Figuras 3 y 4). La base foliar (tejido del cormo) es de 1 mm de diámetro. Para extirpar los pedazos de cormo exactamente de este tamaño, se coloca un papel milimetrado debajo del plato Petri plástico transparente esterilizado sobre el cual se extirpan los meristemas. Los meristemas diseccionados son transferidos en una solución pretratamiento (loading) (en la oscuridad a temperatura ambiente). Las puntas que están dañadas ligeramente o no se encuentran en la etapa correcta (por ejemplo el meristema está demasiado o poco cubierto por el primordio foliar) son excluidas de la crioconservación. Un técnico hábil y entrenado puede aislar un máximo de 10 meristemas por hora (aproximadamente, 6 minutos para aislar un meristema). Pretratamiento, deshidratación y congelación rápida La solución esterilizada y filtrada de pretratamiento contiene 2 M de glicerol y 0.4 M (= 136.8 g/L) de sacarosa disueltos en el medio MS (pH 5.8). Los meristemas extirpados se dejan en la solución pretratamiento en un recipiente plástico de 20 ml hasta diseccionarlos a todos. Por lo tanto, el tiempo de exposición varía entre 20 minutos y 5 horas. Una investigación anterior mostró que la regeneración de los meristemas de banano no está influenciada por el tiempo de exposición en la solución pretratamiento (Panis et al. 2005a). Aunque el mecanismo preciso de pretratamiento aún no se entiende completamente, se ha comprobado para diferentes especies de plantas que el pretratamiento puede mejorar dramáticamente la tolerancia de meristemas aislados a la deshidratación por la solución vítrea (Matsumoto et al. 1994, Takagi et al. 1997).Después del pretratamiento, la solución es reemplazada por la solución PVS2 muy fría. La solución PVS2 consiste de 30% (w/v) (3.26 M) de glicerol, 15% (w/v) (2.42 M) de etilen glicol (EG), 15% (w/v) (1.9 M) de DMSO y 0.4 M (= 136.8 g/L) de sacarosa (Sakai et al. 1990). Todos estos compuestos están disueltos en el medio MS, con pH ajustado a 5.8 seguido por una esterilización por filtro. Los meristemas son sometidos a la solución PVS2 por un periodo de 30 a 40 min a 0°C. Cinco minutos antes de finalizar el tratamiento, 10 meristemas se transfieren individualmente a una microgota de la solución PVS2 (de unos 15 µl) en una cinta de papel aluminio (5x20 mm) con una pipeta plástica Pasteur de 2 ml (Figura 5). Para mantener la temperatura de la cinta de alrededor de 0°C durante las manipulaciones, la cinta de papel aluminio se pone en un plato Petri plástico colocado encima de un elemento de enfriamiento congelado. Después del tratamiento con la solución PVS2, la cinta de papel aluminio se sumerge en nitrógeno líquido con un fórceps fino. Para un crioalmacenamiento permanente, el papel aluminio congelado es transferido rápidamente a un criotubo de 2ml llenado con nitrógeno líquido y cerrado.Figura 5. Transferencia de meristemas a una microgota de solución PVS2 (de unos 15 µl) sobre una tira de papel aluminio (5x20 mm) con una pipeta Pasteur de 2 ml.Almacenamiento, descongelación y post-tratamiento (unloading)Los meristemas se mantienen en nitrógeno líquido por al menos 20 min. Para la descongelación, las cintas de papel aluminio se enjuagan en 10 ml de solución post-tratamiento en un pequeño plato Petri a temperatura ambiente. Después de pocos segundos, los meristemas se separan del papel aluminio y se mantienen por otros 15 min en la solución post-tratamiento. Como tal, la solución tóxica PVS2 es removida durante la descongelación y reemplazada por una solución post-tratamiento menos tóxica. La solución post-tratamiento consiste de 1.2 M (= 410.4 g/L) de sacarosa disuelta en el medio MS (pH 5.8).Después del post-tratamiento, los meristemas son colocados en dos hojas de papel de filtro esterilizadas encima de un medio MS semisólido libre de hormonas, que contiene 0.3 M (=102.6 g/L) de sacarosa. Después de dos días, los meristemas son transferidos al medio de regeneración sin papel filtro. La primera semana de cultivo siempre tiene lugar en la oscuridad. De cuatro a seis semanas después de la crioconservación, se puede distinguir cuatro tipos de reacción:(i) puntas apicales blancas que son el resultado de la muerte inmediata del tejido sin ennegrecimiento;(ii) puntas apicales negras completa o parcialmente, indicando que hubo una reacción enzimática después de la crioconservación (producción y oxidación de polifenoles);(iii) crecimiento desorganizado de callos representando la excrecencia de pequeñas áreas aisladas del domo apical y/o tejidos de primordio; y (iv) regeneración de meristemas resultando de la supervivencia de una parte sustancial del domo apical (Figuras 6a-d). Un mes después de la descongelación, se puede observar un brote de 0.5 cm de largo (Figura 7). Los callos nunca producen brotes.Figura 7. Brotes recuperados a partir de meristemas apicales crioconservados del cv. de banano 'Williams' un mes después de la descongelación.Un segundo tipo de tejido meristemático regenerativo en banano, el cual ha sido crioconservado exitosamente, se refiere a los agregados meristemáticos altamente proliferantes (algunas veces llamados agregados parecidos a la coliflor). Este tipo de tejido originalmente fue producido como material inicial para empezar cultivos de suspensiones de células embriogénicas en bananos (Dhed'a et al. 1991, Schoofs 1997, Strosse et al. 2006).Dos técnicas de crioconservación aplicadas a los cultivos de meristemas altamente proliferantes 'parecidos a la coliflor' se describen a continuación:• Método sencillo de congelamiento (que incluye un precultivo en sacarosa) (Panis et al. 1996),• Vitrificación por microgotas de los agregados meristemáticos 'parecidos a la coliflor' (combinando el precultivo con vitrificación por microgotas) (Panis et al. 2000b, Agrawal et al. 2004).Producción de agregados meristemáticos 'parecidos a la coliflor' Los experimentos preliminares revelaron que el nuevo crecimiento de los grupos meristemáticos después de la crioconservación puede tener éxito sólo utilizando los agregados 'parecidos a la coliflor'. Para producir este Guías técnicas 9 15 tipo de material en todas las accesiones de Musa, los cultivos de meristemas se transfieren a un medio que contiene una alta concentración de BA (medio P4, ver Apéndice 1). Cada uno a dos meses, el material se somete al procedimiento de subcultivo y los pequeños agregados de meristemas 'parecidos a la coliflor' son seleccionados y transferidos a un medio fresco (Strosse et al. 2006). La alta concentración de BA en el medio P4 (hasta 100 µM) inhibe el crecimiento excesivo de los meristemas, favoreciendo de este modo la formación de numerosos domos apicales de color blanco (Figura 8). Es necesario repetir el subcultivo y el proceso puede tomar de 4 a 12 meses.Luego de la aparición de los agregados 'parecidos a la coliflor' y 4 semanas después del ultimo subcultivo, se recortan los agregados meristemáticos blancos de unos 4 mm de diámetro, cada uno conteniendo al menos cuatro domos apicales, y se transfieren a un medio de precultivo (P5 + 0.4 M (= 136.8 g/L) de sacarosa) por 4 semanas. Se cultivan a 25°C ± 2°C en la oscuridad.Este método es ilustrado en la Figura 9.Figura 10. Agregados meristemáticos precultivados de Musa schizocarpa.Pequeños agregados meristemáticos de color blanco de 5-15 mg (2-3 mm de diámetro), que contienen de 3 a 6 domos meristemáticos, se extirpan de los brotes precultivados (Figura 10). Se remueven los tejidos de color marrón y sólo se retienen las partes más sanas, como lo indica el color blanco amarillento. Los agregados se transfieren a criotubos esterilizados (2 ml) sin ninguna solución líquida y se sumergen directamente en un frasco Dewar que contiene nitrógeno líquido. Cada criotubo contiene de 7 a 10 agregados. En esta etapa, las muestras pueden ser almacenadas por un término largo al transferir los criotubos a un tanque con nitrógeno líquido, asegurando que su transferencia de un contenedor a otro transcurra con la mayor rapidez (dentro de unos pocos segundos), previniendo de esta manera la descongelación letal de las muestras.Después del almacenamiento, la descongelación rápida se realiza revolviendo el criotubo congelado en un baño María o en un vaso con agua a 40°C por 90 segundos.La regeneración de los meristemas congelados puede ser efectuada de dos maneras diferentes:• Los meristemas se transfieren a platos Petri de 9 cm que contienen el medio de regeneración semisólido (P6) y sellados con parafilm.• Alternativamente, la regeneración puede ser realizada en un medio líquido. Los meristemas descongelados se transfieren a frascos Erlenmeyer de 100 ml que contienen 30 ml de medio de regeneración líquido (P6 sin agentes solidificantes) y se colocan en un agitador rotativo a 70 rpm.Después de una semana de cultivo en condiciones de oscuridad, los platos Petri y los frascos se transfieren a una luz continua a 50 µE m -2 s -1 . Los cultivos se mantienen todo el tiempo a 25 ± 2°C.Tres semanas después de la transferencia al medio de regeneración, el nuevo crecimiento de los meristemas congelados se determina bajo un microscopio binocular. Se distinguen dos tipos de tejidos supervivientes, es decir, brotes y callos no regenerados. Los callos son sistemáticamente eliminados y sólo los brotes recuperados (Figura 11) se transfieren a los tubos de ensayo con el medio de regeneración para promover el consiguiente desarrollo de plantas enteras. Tan pronto las plantas enraizadas alcanzan el tamaño suficiente, se siembran en el suelo.Este método es ilustrado en la Figura 12. El pretratamiento, la deshidratación, congelación rápida, almacenamiento, descongelación y postratamiento son casi idénticos a la vitrificación por microgotas descrita en el párrafo 1.2. Por lo tanto, abajo presentamos sólo los pasos esenciales (y distintos).Pretratamiento, deshidratación y congelación rápida Los agregados de meristemas extirpados se dejan en una solución de pretratamiento (Apéndice 1) en un recipiente plástico de 20 ml hasta que todos ellos estén cortados. De este modo, el tiempo de exposición varía entre 20 minutos y 3 horas.Después del pretratamiento, la solución es reemplazada por 5 ml de solución PVS2 fría (Apéndice 1). Los agregados de meristemas se someten a la solución PVS2 por un período de 2 horas a 0°C. Cinco minutos antes de terminar el tratamiento, unos 10 agregados meristemáticos se transfieren a una microgota de la solución PVS2 colocada sobre una tira de papel aluminio (5x20 mm) con un fórceps y una pipeta Pasteur plástica de 2 ml (Figura 13). Para mantener la temperatura de la tira de papel aluminio alrededor de los 0°C durante las manipulaciones, ella se coloca en un plato Petri plástico puesto sobre un elemento congelado. Después del tratamiento con PVS2, la tira de papel aluminio se sumerge en nitrógeno líquido con un fórceps muy fino. Para el crioalmacenamiento permanente, el papel aluminio congelado se transfiere rápidamente a un criotubo de 2 ml con el nitrógeno líquido, que se sella.Figura 13. Agregados meristemáticos en una microgota de la solución PVS2 (de unos 15 µl) sobre una tira de papel aluminio (5x20 mm).Los agregados de meristemas se mantienen en el nitrógeno líquido al menos por 20 minutos. Para descongelar, las tiras de papel aluminio se sumergen en 10 ml de solución postratamiento (Apéndice 1) en un pequeño plato Petri a temperatura ambiente. Después de pocos segundos, los agregados meristemáticos se separan del papel aluminio y se mantienen por otros 15 minutos en la solución postratamiento. Como tal, la solución tóxica PVS2 es removida durante la descongelación y reemplazada por una solución postratamiento menos tóxica. Regeneración Los agregados meristemáticos congelados se remueven de la solución postratamiento y se colocan en platos Petri de 9 cm sobre dos capas de papel filtro esterilizado encima de unos 25 ml del medio MS semisólido libre de hormonas, que contiene 0.3 M (= 102.6 g/L) de sacarosa. Después de dos días, el papel filtro se remueve y los agregados meristemáticos se transfieren a platos Petri con un medio MS complementado con 2.22 µM de BA. La primera semana de cultivo siempre tiene lugar en la oscuridad. Después de un máximo de seis semanas, los agregados meristemáticos se transfieren a los tubos de ensayo con el medio P6 para el posterior desarrollo de plantas enteras (Figura 14). 2. Crioconservación de suspensiones de células embriogénicas de bananoYa que la mayoría de las variedades cultivadas de banano son altamente estériles, los programas clásicos de mejoramiento son muy lentos y laboriosos. Además, en el acervo génico de los bananos no se dispone de fuentes de resistencia contra algunos de los patógenos, como lo son los virus. Por lo tanto, la ingeniería genética ofrece una alternativa acogida para el mejoramiento de los bananos. En monocotiledóneas, las suspensiones de células embriogénicas a menudo representan el material de elección para la transformación, particularmente, en los cultivos estériles como el banano, donde los embriones zigóticos no se encuentran disponibles. Las suspensiones de células embriogénicas actualmente representan la única fuente de protoplastos regenerativos en banano (Panis et al. 1993).Al someterlos a la electroporación, los protoplastos derivados de las suspensiones de células embriogénicas originan una alta frecuencia de expresión transitoria de los genes marcadores introducidos (Sagi et al. 1994).Las células en suspensión rodeadas de paredes pueden ser exitosamente transformadas mediante bombardeo con partículas (Sagi et al. 1995) y Agrobacterium (Hernandez et al. 1998, Remy et al 2005). De esta manera, se introdujo en los bananos la codificación de genes con el fin de obtener nuevos tipos de proteínas antifungosas, igual que la resistencia a los virus.El principal cuello de botella para la transformación sigue siendo la iniciación de suspensiones celulares de buena calidad, es decir, suspensiones homogéneas de células embriogénicas con una alta frecuencia de regeneración. La iniciación de estos cultivos de suspensiones es difícil y consume mucho tiempo, independientemente del material de iniciación utilizado (flores masculinas inmaduras, embriones zigóticos inmaduros o meristemas proliferantes in vitro). Una vez establecidas, estas valiosas suspensiones celulares están sujetas a variación somaclonal y contaminación microbiana. Además, un prolongado período de cultivo puede dar como resultado una disminución y eventualmente una pérdida total de la capacidad morfogénica (Strosse et al. 2006, Strosse et al. 2003).En 1990, se desarrolló una técnica de crioconservación para suspensiones celulares 'ideales' que involucra una crioprotección con 7.5% de DMSO (sulfóxido de dimetilo) por 1 hora a 0°C, seguida por una congelación lenta a 1°C/minuto hasta -40°C e inmersión en nitrógeno líquido. Una suspensión 'ideal' de células embriogénicas contiene una alta proporción de células isodiamétricas caracterizadas por un núcleo relativamente grande, vacuolas pequeñas y granos de almidón y proteínas mínimos (Figura 15). Posteriormente, este protocolo de crioconservación fue optimizado con el fin de aplicarlo a células de banano menos 'ideales' pero también altamente regenerativas (Panis et al. 2000a). Las suspensiones menos 'ideales' son más heterogéneas y pueden contener, además de los agregados de células embriogénicas, células con vacuolas grandes y alongadas, células con un citoplasma muy denso, pero granular, o células con grandes granos de almidón y glóbulos organizados. Recientemente, fueron recuperadas suspensiones celulares de banano después de 15 años de almacenamiento en nitrógeno líquido (resultados no publicados). La habilidad de producir embriones somáticos permanece intacta. También se pudo iniciar suspensiones de células embriogénicas a partir de material congelado. Estas suspensiones reiniciadas demostraron retener su aptitud comparable con los testigos no congelados (Panis et al. 2005b).Los estudios más recientes publicados sobre la crioconservación de las suspensiones de células de banano, muestran algunas diferencias en los procedimientos dependiendo del tejido utilizado como material inicial para empezar las suspensiones celulares. En estas guías se considerarán dos diferentes tipos de suspensiones: (i) suspensiones derivadas de las flores masculinas (Côte et al. 1996) Las suspensiones celulares se mantienen en un medio líquido ZZ (Apéndice 1) en un vibrador rotativo a unas 70 rpm y a 25 ± 2°C. Suspensiones de células derivadas de las flores masculinasLas suspensiones celulares se mantienen en un medio líquido MA2 (Apéndice 1).Este paso se recomienda solo para las suspensiones celulares derivadas de flores masculinas. Las células se cultivan por 24 horas en un MA2 líquido complementado con 180g/L de sacarosa.Las suspensiones de células se crioconservan siempre y cuando se encuentren en su fase de crecimiento exponencial. El crecimiento celular exponencial usualmente tiene lugar de 7 a 10 días después del último subcultivo.Se les permite a las células establecerse en un tubo graduado de centrífuga y se remueve el medio viejo.Se añade el nuevo medio líquido ZZ 1 con 180 g/L de sacarosa hasta obtener un volumen final de células establecidas de 30%.Un volumen igual del medio estéril ZZ 1 +180 g/L de sacarosa que contiene 15% (v/v) de sulfóxido de dimetilo (DMSO) se transfiere gradualmente a la suspensión concentrada de células durante un período de una hora a temperatura ambiente.Como tal, la solución crioprotectora final, en soluciones derivadas tanto de flores masculinas, como de los cultivos meristemáticos, contiene 7.5% de DMSO y 180 g/L de sacarosa.Para una congelación lenta, algunos laboratorios utilizarían congeladores electrónicos programables donde el refrigerante es el nitrógeno líquido. Ya que al autor no conoce laboratorios que hayan aplicado este equipo para las células de banano, aquí se discute sólo el uso del baño de metanol y el Contenedor de Congelación Nalgene TM cryo 1°CCongelación lenta en baño de metanol Muestras de 1.5 ml de suspensiones de células crioprotegidas se transfieren a criotubos de 2 ml y se colocan en un baño de metanol agitado (Cryocool CC-60, Exatrol y agitador de Neslab, Portsmouth, New Hampshire, EEUU). Este baño de metanol se refresca a una tasa de 1°C/minuto desde temperatura ambiente hasta -40°C.Tan pronto se obtiene la temperatura de -7.5°C, los criotubos se sumergen por 3 segundos en nitrógeno líquido para iniciar la cristalización del medio protector. Luego los criotubos se enfrían hasta -40°C. Después de 30 minutos a -40°C, los criotubos se sumergen en nitrógeno líquido (-196°C) para el almacenamiento posterior.Congelación lenta utilizando el contenedor de congelación Nalgene TM cryo 1°CLos criotubos que contienen 2 ml de suspensiones de células crioprotegidas se colocan en un contenedor de congelación Nalgene TM cryo 1°C. Este sencillo dispositivo para congelación consiste de un contenedor plástico que contiene 250 ml de isopropanol (Figura 16). Su transferencia a un congelador (-80°C) permite una tasa de enfriamiento de alrededor de 1°C/ minuto.En ambos casos, la disminución de la temperatura dentro del criotubo dentro del contenedor de congelación es controlada utilizando una sonda de temperatura que se coloca en un criotubo testigo que contiene 1.5 ml del medio crioprotector.Figura 16. Congelación lenta utilizando Nalgene TM cryo 1°C con sonda de temperatura.Después del almacenamiento, los criotubos se descongelan rápidamente en un vaso con agua esterilizada a 40°C por unos 1.5 a 2 minutos hasta derretirse la mayor parte de hielo. Suspensiones de células derivadas de los cultivos de meristemas proliferantes Las células descongeladas se colocan en un medio semisólido ZZ o RD1 (Apéndice 1) en platos Petri de 90 mm. El medio RD1 se aplica cuando se requiere obtener plántulas regeneradas a partir del material crioconservado.El medio semisólido ZZ se utiliza cuando se debe restablecer un cultivo de suspensiones de células embriogénicas. Durante la primera semana después de la crioconservación, los platos Petri siempre se colocan en un lugar oscuro (Figuras 17 A, B, C).Figura 17. (A) Nuevo crecimiento después de 4 semanas en un medio semisólido de suspensiones de células embriogénicas no congeladas (izquierda) y congeladas (derecha) de 'Bluggoe' (grupo ABB); (B) Masa de embriones somáticos que se originan a partir de un cultivo de células congeladas; (C) Plantas de invernadero obtenidas a partir de una suspensión de células congeladas.Las células descongeladas se colocan en un medio semisólido MA2 por 24 horas en los platos Petri de 90 mm. Después de 24 horas, las células se transfieren a un medio MA3 para el consiguiente desarrollo de los embriones somáticos regenerados a partir de la suspensión de células, o a un medio MA2 cuando se debe restablecer un cultivo de suspensiones de células embriogénicas.La viabilidad química de las células se determina mediante una prueba de diacetato fluorescente (FDA) (Widholm 1972), ya que las células supervivientes muestran un gran brillo fluorescente bajo la iluminación ultravioleta (Figura 18).Si no se dispone de un microscopio fluorescente, se puede aplicar la prueba de reducción de cloruro 2,3,4-trifenilo de tetrazolio (TTC) (Dixon 1985). Las células supervivientes convierten el TTC incoloro en cristales de formazán rojos que pueden ser observados bajo un microscopio ordinario.Figura 18. Suspensión de células embriogénicas del cv. 'Bluggoe' (grupo ABB), crioprotegida con 5% (v/v) de DMSO, congelada en nitrógeno líquido, teñida con FDA y observada bajo una luz ultravioleta. Las pequeñas células embriogénicas muestran un gran brillo fluorescente, mientras que las estructuras más grandes muestran una fluorescencia más difusa (barra = 100 µm). 3. Crioconservación de embriones zigóticos de bananoEste método de crioconservación requiere de embriones zigóticos desarrollados completamente extraídos de las semillas maduras de Musa. La fruta es cepillada y lavada con agua corriente y jabón líquido. A continuación, la fruta se esteriliza con un blanqueador comercial de 20% (v/v) por cinco minutos y se enjuaga tres veces con agua esterilizada.El banano se pela bajo condiciones asépticas utilizando un gabinete de flujo laminar. Después de extraer las semillas, se aísla el embrión zigótico utilizando un microscopio estereoscópico. Debido a que el embrión zigótico se localiza justamente por debajo del 'opérculo', es importante utilizar el escalpelo y hacer un corte longitudinal muy preciso alrededor del 'tapón del micropilo' (Figura 19).Los embriones se transfieren por 5 horas en el medio descrito por Escalant y Teisson (1987) que consiste de nutrientes minerales de Murashige y Skoog con Crioconservación de germoplasma de Musa macroelementos a mitad de su poder, vitaminas de Morel, 60 g/L de sacarosa, y 2 mg/L de gelrite. El pH se ajusta a 5.8 previo a someterlos a la autoclave.Luego, los embriones se deshidratan bajo el aire esterilizado de un gabinete de flujo laminar. No obstante, dependiendo tanto de las condiciones de laboratorio como de la especie de banano, el período de desecamiento puede requerir algunos ajustes (ver Tabla 1). Por lo tanto, se recomienda tener un estimado del tiempo requerido para obtener un contenido de agua de alrededor de 14% (% de peso fresco) en los embriones, ya que se comprobó que este contenido de agua es óptimo y proporciona la tasa más alta de recuperación después de la descongelación. Para Musa acuminata y Musa balbisiana, este contenido de agua se logra después de 1.5 y 2 horas de deshidratación, respectivamente.La congelación de los embriones se realiza en criotubos de 2 ml mediante la inmersión directa en nitrógeno líquido.Tabla 1. Evolución del contenido de agua de embriones extirpados de Musa acuminata y M. balbisiana como una función de duración de deshidratación. Los embriones se descongelan rápidamente calentando los frascos con muestras en baño María a 40°C por unos 2 minutos. Para la regeneración, los embriones se colocan en el medio descrito anteriormente (Escalant and Teisson 1987) complementado con 0.5 mg/L de BA. Los cultivos se mantienen en la oscuridad por un período de cuatro semanas aproximadamente. Luego, los embriones germinados se transfieren al medio de enraizamiento y desarrollo (medio MS sin hormonas).En vista de su eficacia y simplicidad, la técnica de crioconservación establecida para los embriones de M. acuminata y M. balbisiana podría ser aplicada con utilidad en el futuro para el almacenamiento a largo plazo del germoplasma de los diploides fértiles de Musa.Varios genotipos diferentes de Musa han sido crioconservados utilizando este protocolo (Thinh et al. 1999, Panis et al. 2005a). Los porcentajes de regeneración después de la descongelación varían entre 20 y 85% (con un promedio de 53%). Estos porcentajes de recuperación no dependen relativamente del genotipo. Sin embargo, se observó que los genotipos con más genomas B sobreviven significativamente mejor que aquellos que sólo tienen el genoma A (Panis et al. 2005a). La observación bajo un microscopio de la recuperación de los meristemas crioconservados (Helliot et al. 2003) ha revelado que:(i) todo el domo del meristema aislado sobrevive a la exposición al nitrógeno líquido, y (ii) no se forman callos que no puedan ser regenerados después de la crioconservación. Por lo tanto, es poco probable que ocurra la variación somaclonal.Las principales limitaciones de este procedimiento son las siguientes:• Las tasas de viabilidad o regeneración después de la crioconservación varían de acuerdo al operador. Se requiere una experiencia considerable en la disección de los pequeños y frágiles meristemas apicales antes de poder aplicar este protocolo (utilizando este método sólo 60 meristemas pueden ser extirpados y crioconservados en un día).• Muchos meristemas superviven pero se tornan negros y no son capaces de formar brotes regenerativos. Por lo tanto, es necesario optimizar las condiciones de regeneración.• Las bajas tasas de crecimiento pueden ser debido a la baja calidad de los meristemas (puntas que están dañadas ligeramente o no se encuentran en la etapa correcta o están demasiado o poco cubiertas por los primordios foliares). Por lo tanto, se podría mejorar la calidad de las plantas donantes (más iluminación, menos plántulas en contenedores).• Usando el método de vitrificación por microgotas, algunos investigadores han mostrado cierta preocupación con respecto a los efectos del contacto directo del nitrógeno líquido con el material vegetal. Sin embargo, los supuestos problemas como la contaminación y pérdida de material nunca aparecieron en el laboratorio del autor.Este protocolo de vitrificación por microgotas fue aplicado con éxito recientemente a una gran variedad de especies de plantas como la papa, ulluco, patatas dulces, achicoria, fresa, taro, pelargonio, palma datilera, tomillo, olivo y lúpulo, y por lo tanto, podría ser considerado como el primer protocolo aplicable generalmente (Gallard et al. 2008, Sanchez-Romero y Panis 2008, Sant et al. 2008, Marco et al. 2007, Panta et al. 2006).La parte más laboriosa de la crioconservación de este tipo de material es la preparación de los cultivos altamente proliferantes. La calidad de los agregados meristemáticos 'parecidos a la coliflor' puede ser muy pobre para utilizarlos en los experimentos de crioconservación (la calidad del tejido meristemático versus el tejido del cormo es muy baja y/o los explantes muestran demasiado ennegrecimiento). Esto puede deberse al hecho de que el cultivar pertenece a un grupo genómico 'difícil' (por ejemplo, bananos de altiplanos de África Oriental y muchos plátanos). Anteriormente, la proliferación se obtenía sólo utilizando el medio BA en concentraciones extremadamente altas, casi tóxicas (100 µM). Por lo tanto, el cultivo prolongado en 100 µM del medio que contiene BA a menudo resulta en la disminución de la calidad de los cultivos (la pérdida de las características típicas de 'parecidos a la coliflor'). Recientemente, el uso de las citoquininas alternativas como el tidiazurón (TDZ) a una concentración más baja (1 µM) demostró aumentar las tasas de proliferación (Strosse et al. in press).Un protocolo de congelación sencillo fue aplicado a 36 cultivares de banano pertenecientes a 8 grupos genómicos (Panis et al. 2002). Los resultados fueron extremadamente dependientes del genotipo. Los mejores resultados (hasta un 70% de nuevo crecimiento) han sido obtenidos con los cultivares ABB como Bluggoe, Cachaco y Monthan. Los resultados intermedios (alrededor de 25% de nuevo crecimiento) fueron alcanzados con los bananos de postre AAA y los bananos AAB. Los plátanos y diploides AAB respondieron mal generalmente. Para todos los cultivares bajo investigación pertenecientes a estos grupos genómicos, las plantas fueron regeneradas y cultivadas en el invernadero. Sin embargo, la mayoría de los bananos de altiplanos AAA no fueron capaces de aguantar una sencilla congelación.Con respecto a este método de congelación sencilla, a menudo se observa el ennegrecimiento debido a la oxidación de los polifenoles cuando los meristemas descongelados se colocan en un medio semisólido. Esto puede provocar efectos citotóxicos y también puede dar como resultado que los agrupados recuperados estén rodeados por una capa impermeable, previniendo de este modo la absorción de nutrientes para el crecimiento. Uno de los métodos para vencer este problema consiste en utilizar un medio de regeneración líquido con el fin de diluir los polifenoles liberados.Esto dio como resultado el aumento de los porcentajes de regeneración de más del 20%.Se descubrió que los porcentajes de un nuevo crecimiento después de descongelación de los meristemas precultivados en azúcar son más altos que los de los cultivados en un medio P4 normal. El precultivo en sacarosa parece aumentar la tolerancia de los meristemas no solo a la solución PVS2, sino también a los eventos dañinos que tienen lugar durante el proceso de congelación. Al comparar los resultados de la vitrificación por microgotas de los agregados de meristemas 'parecidos a la coliflor' con aquellos obtenidos utilizando el método sencillo de congelación para el mismo cultivar, se observó un aumento en los porcentajes de viabilidad para casi todos los cultivares. El aumento en la regeneración después de la descongelación para los bananos ABB es limitado. La recuperación sigue estando entre 50 y 70%. Para los bananos AAA de postre y bananos AAB, el aumento de los porcentajes de regeneración se remonta a 30-50%, mientras que para los plátanos se logró 20-30%. Los bananos de altiplanos AAA que demostraron ser recalcitrantes hacia la crioconservación utilizando la congelación sencilla, dieron una tasa de supervivencia de 0-20% mediante el método de vitrificación por microgotas.Para la mayoría de las especies de plantas, la deshidratación óptima de los tejidos meristemáticos con el PVS2 se obtiene después de 10 a 30 minutos (Takagi 2000). Entre las excepciones se encuentran los brotes apicales de la patata dulce y de la piña, que deben ser tratados con el PVS2 por 100 minutos y 7 horas respectivamente (Plessis y Steponkus 1996, Gonzalez-Arnao et al. 1998). La duración de este tratamiento debe ser optimizada caso por caso, ya que debe producirse una deshidratación suficiente para evitar la formación de los cristales de hielo letales durante la congelación. Al mismo tiempo es necesario tomar cuidados para prevenir el tratamiento con la solución potencialmente tóxica que daña irreversiblemente el tejido. En el caso de los cultivares de banano proliferantes precultivados en sacarosa, se observó que las tasas óptimas de regeneración después de la descongelación se obtienen generalmente después de 2 a 2.5 horas de tratamiento con el PVS2. Las tasas de supervivencia después de 3 horas para la mayoría de los cultivares son considerablemente más bajas, debido probablemente a la toxicidad de esta solución altamente concentrada.Para facilitar el desarrollo de protocolos de crioconservación aún más eficaces, se requiere un mejor conocimiento de la base fisicoquímica de la crioconservación. Esto sólo puede ser aclarado a través de estudios fundamentales que involucran tanto el análisis termal como un examen profundo de los distintos parámetros que influencian el criocomportamiento, composición de las membranas, estrés oxidativo y proteínas protectoras. En el marco de un proyecto de investigación europeo (CRYMCEPT, ver http:// www.agr.kuleuven.ac.be/dtp/tro/CRYMCEPT/) y European Union COST Action (http://www.agr.kuleuven.ac.be/dtp/tro/cost871/Home.htm) estos parámetros están siendo investigados para diferentes especies de plantas y entre ellas, el banano.Hemos demostrado que una fase de precultivo en un medio con elevado contenido de concentración de sacarosa es esencial para que los cultivos de meristemas de banano se vuelvan tolerantes a la crioconservación. Existen numerosas prácticas aceptables de precultivo en sacarosa para el mejoramiento de la resistencia a la congelación. El precultivo en sacarosa resulta en una reducción lenta del contenido de humedad (Uragami 1991, Engelmann y Duval 1986, Zhu et al. 2006) debido a su efecto osmótico y de absorción de la sacarosa, bajando de este modo el punto de congelación y la cantidad de agua a congelar. Los azúcares también pueden mantener el estado cristalino líquido de las capas dobles de las membranas y estabilizan las proteínas bajo condiciones de congelación (Kendall et al. 1993). Un efecto indirecto de la sacarosa, que provoca un ligero estrés osmótico en el tejido, podría provenir de la acumulación de los compuestos que protegen contra el estrés hídrico, como la prolina (Delvallée et al. 1989). En el banano, hemos determinado que el precultivo en sacarosa induce cambios en proteínas (Carpentier et al. 2005(Carpentier et al. , 2007)), componentes de las membranas, azúcares y poliaminas (Zhu et al. 2006), incluso para cultivares que poseen distintas habilidades para la crioconservación. Estos análisis revelaron que el proceso crioprotector inducido por el precultivo en el azúcar es extremadamente complejo: además de los cambios en esteroles, ácidos grasos y poliaminas, y la producción de proteínas protectoras específicas, aún podrían existir parámetros o factores limitantes involucrados como la capacidad para la erradicación de radicales libres. Confiamos que cuando se determine el método exacto para el precultivo en sacarosa con respecto a la crioconservación, los distintos protocolos de crioconservación serán optimizados con una mayor eficacia.A menudo, la ausencia de la reproducibilidad representa un factor que limita la aplicación habitual de crioconservación (Benson et al. 1996, Reed et al. 2001, 2004). Sin embargo, los investigadores de INIFAT (Instituto Nacional de Investigación Fundamental en Agricultura Tropical, Cuba) y FONAIAP (Fondo Nacional de Investigaciones Agropecuarias, Venezuela) (Surga et al. 1999), han aplicado exitosamente el método sencillo de congelación. En INIFAT, se obtuvo un porcentaje de supervivencia después de la descongelación de 34% para el cultivar local 'Burro criollo' (IPGRI 1996). Igualmente, el protocolo de vitrificación por microgotas fue aplicado con éxito al banano en NBPGR (National Bureau for Plant Genetic Resources), New Delhi, India (Agrawal et al. 2004).Actualmente, la vitrificación por microgotas de los meristemas apicales, igual que la vitrificación por microgotas de los agregados meristemáticos 'parecidos a la coliflor', están siendo aplicados en la colección de Musa. El método sencillo de congelación no se está aplicando más para estos propósitos en vista de los porcentajes relativamente bajos de regeneración después de la descongelación, obtenidos para la mayoría de los grupos genómicos. En la Tabla 2 se compara el trabajo requerido para los dos métodos que estan actualmente aplicados. 1 Tiempo calculado necesario para preparar el medio de cultivo y cultivos de meristemas seguido por la crioconservación. Para cada cultivar se realizan 3 repeticiones con al menos 6 criotubos para cada repetición que contienen de 10 (vitrificación de meristemas individuales) a 20 (vitrificación de agregados proliferantes) explantes. Para cada repetición se descongelan al menos tres muestras representativas (tubos) y se verifica la recuperación.2 1 año = 220 días laborables (8 h/día).3 Empezando con 2 tubos hasta que toda la accesión está almacenada de manera segura en nitrógeno líquido (3 repeticiones).El método que requiere más trabajo (vitrificación de meristemas apicales extirpadas de las plantas enraizadas in vitro) solo se aplicará a los cultivares difíciles para crioconservar con otros métodos (por ejemplo, a los bananos de altiplanos AAA). Para las accesiones de banano, pertenecientes al grupo ABB y los bananos AAB (que no son plátanos), siempre se aplica la vitrificación por microgotas de agregados proliferantes, mientras que para Musa acuminata y los bananos de altiplanos de África Oriental el método preferido es la vitrificación por microgotas de meristemas apicales. Para todas las otras accesiones el método de elección se basa en (i) el grado de proliferación de los agregados meristemáticos que se obtienen después de tres ciclos de subcultivo en un medio que contiene altas concentraciones de citoquinina y (ii) la supervivencia de los agregados meristemáticos proliferantes después de un ensayo preliminar de crioconservación.Para decidir si el experimento de crioconservación es exitoso o no, usamos el modo de cálculo desarrollado por Dussert y colaboradores (2003). Estos cálculos han sido aplicados a todos nuestros datos. Un experimento es considerado exitoso siempre que la posibilidad de regenerar al menos un brote del material almacenado sea más del 95%. Esta probabilidad depende de:(i) número de explantes almacenados a largo plazo en nitrógeno líquido (variando entre 30 y 50);(ii) número de explantes descongelados (variando entre 16 y 50); y (iii) porcentaje (%) de regeneración después de la descongelación.Un experimento que conduce a un bajo nivel de probabilidad no será considerado exitoso, independientemente de su porcentaje de regeneración. En estos casos, se efectuará una nueva repetición.Consideramos una accesión de banano conservada 'con seguridad' si se completan tres experimentos independientes (y exitosos). De acuerdo a estos requisitos actualmente estamos almacenando en nitrógeno líquido 655 accesiones pertenecientes a 30 diferentes grupos genómicos de banano (situación a finales de 2008).A menudo en los protocolos de crioconservación se incluye una fase de crecimiento previo para aumentar la tolerancia de los cultivos de tejidos a la congelación. Compuestos activos osmóticamente como sorbitol o mannitol se añaden para reducir el agua celular antes de la congelación, reduciendo así la cantidad de agua disponible para la formación de hielo letal (Withers y Street 1977). En el caso de las células de banano, se descubrió que la deshidratación osmótica con mannitol al 6% (w/v) por 2 o 7 días no afecta la viabilidad después de la crioconservación (resultados no publicados). Sin embargo, para una suspensión de células derivadas de brotes masculinos de Musa acuminata, el precultivo con 180 g/L de sacarosa durante 24 horas mostró ser beneficioso (Côte et al. 2000).Se examinaron diferentes soluciones crioprotectoras, que consistían del medio MS con 30 g/L de sacarosa incluyendo el DMSO (a 2.5, 5, 7.5, 10 y 15% (v/v)), glicerol (a 5, 10 y 15% (v/v)), prolina (a 10% (v/v)), y una mezcla crioprotectora (que contiene 0.5 M de Glicerol, 0.5 M de DMSO y 1 M (=342 g/L) de sacarosa). Aunque todos los tratamientos dieron como resultado, de acuerdo a la prueba de viabilidad de FDA, la supervivencia de las células congeladas, sólo el DMSO a 5, 7.5 y 10% (v/v) dio un crecimiento satisfactorio después de la descongelación. La adición de niveles de sacarosa más altos (180 g/L) a la solución crioprotectora tuvo, para la mayoría de las suspensiones, un efecto positivo sobre el porcentaje de viabilidad de FDA y, lo que es más importante, sobre el crecimiento después de la descongelación. Este hecho también se observó en los callos embriogénicos de la caña de azúcar (Martinez-Montero et al. 1998).Un crecimiento comparable después de la descongelación se obtiene utilizando el baño de metanol y Contenedor de Congelación Nalgene TM cryo 1°C, con tal de que los criotubos se transfieran al nitrógeno líquido tan pronto se obtenga la temperatura de-40°C. Si el Contenedor de Congelación Nalgene TM cryo 1°C se deja durante la noche en un congelador con temperatura de -80°C, no se observa recuperación después de la descongelación. El uso del Contenedor de Congelación Nalgene TM cryo 1°C también mostró ser muy eficaz para las suspensiones de células embriogénicas iniciadas a partir de flores masculinas (Côte et al. 2000). Su principal ventaja consiste en que no se necesita un equipo costoso (exceptuando el congelador para alcanzar -80°C) para controlar el congelamiento lento.La remoción de la solución crioprotectora 'potencialmente tóxica' inmediatamente después de la descongelación y su reemplazo por un medio líquido sin crioprotectores, antes de transferir los cultivos a un medio semisólido, da como resultado una pérdida completa de la capacidad de nuevo crecimiento y las células se tornan blancas. La transferencia directa de las células a un medio líquido que somete las células a estrés similar al de lavado después de descongelación, igualmente resulta en fallo de crecimiento. El nuevo crecimiento sólo puede ser logrado cuando las células, aún suspendidas en la solución crioprotectora, se transfieren directamente a un medio semisólido.Utilizando el protocolo optimizado para crioconservación descrito anteriormente, KULeuven actualmente está almacenando en nitrógeno líquido más de 2700 criotubos que contienen suspensiones de células embriogénicas pertenecientes a 19 cultivares de banano diferentes. Recientemente, se recuperaron suspensiones celulares de banano después de 15 años de almacenamiento. La habilidad de producir embriones somáticos permaneció intacta y se podría establecer nuevas suspensiones de células embriogénicas a partir del material congelado.El hecho de que algunas suspensiones celulares de banano no son capaces de resistir la crioconservación podría ser considerado como una razón para la futura optimización del protocolo de crioconservación. En adición al procedimiento más convencional, que involucra congelación lenta en presencia de una solución crioprotectora que a menudo contiene el DMSO, también se informó sobre la obtención de una crioconservación exitosa después de la vitrificación (Watanabe et al. 1995, Huang et al. 1995, Nishizawa et al. 1993, Sakai et al. 1990), encapsulación-deshidratación (Bachiri et al. 1995, Swan et al. 1998), encapsulación-vitrificación (Gazeau et al. 1998), encapsulación combinada con la congelación lenta (Gazeau et al. 1998) y vitrificación combinada con la congelación lenta (Wu et al. 1997).Sin embargo, ya que las suspensiones de células, que son recalcitrantes al protocolo de crioconservación descrito anteriormente, no se regeneran, ellas no se usarán en la ingeniería genética. Por lo tanto, su conservación podría ser de valor más bien científico que práctico.Medio MS ( Medio MS complementado con sacarosa de 30g/L, 10 µM de BA, 1 µM de IAA, 2 g/L de gelrita o 5 g/L de agar (Banerjee y De Langhe 1985).(pH:5.8).Medio P5 con una concentración de BAP 10 veces más alta (100 µM).Este medio contiene todos los elementos del P5 pero los niveles de sacarosa están aumentados hasta una concentración final de 0.4 M (=136.8 g/L).Medio P5 con una concentración de BAP 10 veces más baja (1 µM).Componentes del medio MS diluidos en agua complementada con 2 M de glicerol y 0.4 M (=136.8 g/L) de sacarosa; el pH es ajustado a 5.8. La solución es esterilizada a través de un filtro (0.22 µm).Consiste de glicerol a 30% (w/v) (3.26 M), etileno glicol a 15% (w/v) (2.42 M) (EG), DMSO a 15% (w/v) (1.9 M) y 0.4 M (= 136.8 g/L) de sacarosa (Sakai et al. 1990). Todos estos componentes se disuelven en el medio MS, el pH es ajustado a 5.8 seguido por una esterilización con filtro (0.22 µm).El filtro es esterilizado (0.22µm), la solución postratamiento consiste de 1.2 M (410.4 g/L) de sacarosa disuelta en el medio MS. (pH:5.8).Macro elementos y hierro de MS a mitad de su poder, microelementos de MS, 5 µM 2,4-D, 1 µM de zeatina, vitaminas estándar de MS, 10 mg/L de ácido ascórbico, y 30 g/L de sacarosa. (pH:5.8).Macroelementos y hierro de MS, microelementos de MS, 1 µm de BA, vitaminas estándar de MS, 100 mg/L de mio-inositol, 10 mg/L de ácido ascórbico, 30 g/L de sacarosa y 2 g/L de gelrita (pH 5.8).Macro y microelementos de MS, biotina 1 mg/L, glutamina 100 mg/L, extracto de malta 100 mg/L, 2,4-D 1 mg/L y sacarosa 45 g/L (pH 5.3). ","tokenCount":"8732"} \ No newline at end of file diff --git a/data/part_3/2350152883.json b/data/part_3/2350152883.json new file mode 100644 index 0000000000000000000000000000000000000000..412f7c5540bacc149890f93c765566378ec75666 --- /dev/null +++ b/data/part_3/2350152883.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"d79cf26718a0b3f6525f6cdb52f9d604","source":"gardian_index","url":"https://data.worldagroforestry.org/api/access/datafile/:persistentId/?persistentId=doi:10.34725/DVN/7TVOVY/XL15NS","id":"126186734"},"keywords":[],"sieverID":"7abf1744-a164-4841-bcf6-6daf714ca037","pagecount":"1","content":"Whilst utmost care has been taken by the World Agroforestry Centre and data authors while collecting and compiling the data, the data is however offered \"as is\" with no express or implied warranty. In no event shall the data authors, the World Agroforestry Centre, or relevant funding agencies be liable for any actual, incidental or consequential damages arising from use of the data.By using the World Agroforestry Centre Dataverse, the user expressly acknowledges that the Data may contain some nonconformities, defects, or errors. No warranty is given that the data will meet the user's needs or expectations or that all nonconformities, defects, or errors can or will be corrected. The user should always verify actual data; therefore the user bears all responsibility in determining whether the data is fit for the user's intended use.","tokenCount":"134"} \ No newline at end of file diff --git a/data/part_3/2353238532.json b/data/part_3/2353238532.json new file mode 100644 index 0000000000000000000000000000000000000000..c9334f3f44b05e5b701be9789094f5fef6af18f2 --- /dev/null +++ b/data/part_3/2353238532.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"6e29129a4bf00262d3b19781ae6e6d63","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/1a52370d-433b-422d-9579-ebb5ea6d01ca/retrieve","id":"918015133"},"keywords":[],"sieverID":"8fa011d2-a8db-461f-845e-fcde2f991410","pagecount":"4","content":"play an important role in mitigating SOC improves improves nitrogen cycling Soils rich in SOC have high crop productivity Soils under sustainable management practices climate change and reducing greenhouse gas emissions through carbon sequestration Soils that are rich in which are essential cycling support a wide variety of living organisms generally support SOC soil structure soil aeration, and water retention Higher Climate change mitigation through reducing nitrate leaching risks Increasing organic matter inputs Improved nutrient cycling Enriched soil biodiversity Improved water retention Improved food security Reduced agricultural production costs Enhancing SOC can reduce the long-term needs forof ecosystem nutrients sequestration mineral fertilizer, i.e nitrogen Soils are a very important component of the global carbon cycle as they contain the largest sink of carbon in the terrestrial biosphere. At the same time, soil organic carbon (SOC) is the basis for soil fertility and the production of food to feed the growing global population. Healthy soils are not only important from an agricultural production point of view, but they also provide a multitude of other benefits that are critical to human well-being.to the soils for theReduce soil disturbance and respiration from the soilsIncreases organic matter inputs and soil nutrients, promotes soil water retention and reduces soil erosionCover bare ground during planting seasons, reduce erosion and prevent nutrient losses through leaching and runoff.Improve SOC through increasing above-and below-ground vegetation biomassImproves the soil nutrient to maintain high crop productivity, which directly enhances SOC through increased biomass inputsEnhances nutrient supply to improve the health of crops and soils. Organic amendments improve soil structure and the water holding capacity in soilsIntercropping cereal crops with legumes allows the crops to benefit from the nitrogen that is fixed by legumes. This increases crop production and enhances SOC through more above-and below-ground biomass transfer to the soilsIncorporation of trees in agricultural systems increases the above-and below-ground organic matter inputs. Trees reduce soil erosion, enhance soil water retention, and increase the organic matter inputs to the soilsThe multiple benefits and importance of improving soil carbon are recognized, but there is a need to turn this is into on-theground action through site-specific information, tools to guide decision-making, and engagement in key policy and program processes. An interdisciplinary team of researchers is working on understanding the biophysical aspects of SOC in agricultural systems in Kenya and Ethiopia, quantifying the biophysical and economic benefits of improved agronomic management practices, and assessing the socio-economic barriers that limit the adoption.SOC is influenced by many factors such as land use and management, soil texture, and climate. In cropland areas, the amount of SOC varies with the agronomic management practices. Although evidence from observed studies remains scarce, data gathered from published studies over the East Africa region show that SOC sequestration from crop residues retention, farmyard manure application, and inorganic fertilizers can be up to 19.7, 14.8, and 35 t C ha -1 yr -1 in the East African region. 1 However, to scale up the adoption of these practices, extensive research is still needed to quantify their SOC sequestration potentials and other co-benefits.Socio-economic opportunities and constraints to farmers adopting soil carbon enhancing interventionsGlobal policy processes (e.g. UNFCCC, etc.)National policy and strategic guidance We have developed a new method for assessing the achievable SOC sequestration based on a non-linear boundary approach. 3 The method uses observed data on the current SOC and soil texture. The approach has also been extended using weather, soil and topographic data to enable us to predict achievable SOC at any location of interest. This approach quantifies the SOC that can be achieved by the farmers adopting the best management practices in the neighbourhood. We are using this approach for mapping the hotspots for SOC sequestration in selected watersheds in Kenya and Ethiopia.Models allow us to quantify SOC across complex landscapes and provide useful tools for assessing impacts of different management practices on SOC and the associatedTo disseminate our research and to be able to reach many beneficiaries, we are collaborating with two program partners: the Sustainable Land Management Programme (SLMP) in Ethiopia and GIZ in Western Kenya through the Soil Protection and Rehabilitation for Food Security Program. The tools developed and the knowledge acquired in various contexts within our work will help these programs in designing and implementing improved soil management practices for farmers. At the national level, our research will play a critical in guiding the implementation of policies to meet the targets set within the United Nations Framework Convention on Climate Change.Furthermore, farmers often also require more information on the co-benefits of these practices, mainly yield benefits.Data gathered from the literature and data-bases WOCAT (World Overview of Conservation Approaches and Technologies) and CIAT best-bet management practices provides useful information on some of the critical factors that determine the adoption of improved soil management practices. These factors can be broadly grouped into four categories: socioeconomic, plot-level, biophysical, and institutional. Using this data, statistical analysis shows that factors such as farm income, benefits vs. maintenance costs and access to technical assistance can negatively influence the adoption rate of the common improved agronomic management practices in Kenya and Ethiopia. 2 Therefore, in designing alternative management practices at the household level, it is important to consider the cost implications for farmers and the derived monetary benefits.Policy interventions ensure that soil carbon is managed in sustainable ways. Our assessment of the existing agricultural policies in Kenya and Ethiopia reveals a need to formulate direct and specific policies to regulate the protection, utilization, and management of soil carbon. The existing indirect policies that impact on soil carbon are scattered across policy areas with disjointed implementation approaches. To develop effective and appropriate direct policy at regional and national level, policy makers need to be well informed of the importance of soil carbon, and extensive research is still needed to identify the priority areas and the effective management practices.co-benefits. At the local scale in Kenya, we are using the CropSyst and DayCent models in Kenya to quantify the SOC changes that can be expected with farmers shifting from conventional management to improved practices. In addition, the RothC model is also being applied in Ethiopia to examine the impact of upscaling strategies of different land and agricultural management practices at the national level.An ex-ante cost-benefit analysis will be conducted to assess the feasibility of different improved management practices.In both countries, the SOC benefits associated with largescale adoption of no tillage, residue retention and cover crops, and broadly conservation agriculture, are being assessed using the LPJ-GUESS global vegetation model. The modelling framework of LPJ-GUESS enables us to investigate the trade-offs between the agricultural ecosystem services, mainly crop production, water pollution, and carbon balance using yields, nitrogen leaching, and SOC as the key indicators, respectively. The effectiveness of these practices with climate change is also tested using the representative concentration pathways (RCPs) scenarios.Detailed household level surveys have been developed to assess the physical characteristics of farmers' plots, rate of adoption of soil enhancing practices, such as agroforestry, mulching, manure and fertilizer application, and their income levels. The Evaluating Land Management Options (ELMO) tool is being used to assess how farmers perceive different land management options in terms of the required costs and inputs, their benefits and desired outcomes as well as how they gauge their advantages and disadvantages. The data gathered using the survey and the ELMO tool is critical for identifying the opportunities and constraints for adoption of soil enhancing practices in the case study areas in Kenya and Ethiopia.","tokenCount":"1240"} \ No newline at end of file diff --git a/data/part_3/2359768027.json b/data/part_3/2359768027.json new file mode 100644 index 0000000000000000000000000000000000000000..b128a1a15929672f8f61d277aad9faec1f9c27df --- /dev/null +++ b/data/part_3/2359768027.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c5855f4aeccd8dfe26cf76e54ad981a1","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/66a67199-2b74-4ae3-a30f-6149ea2b2219/retrieve","id":"-807862378"},"keywords":[],"sieverID":"9f3398f4-1527-4a0b-a159-dd8a3cb7d167","pagecount":"105","content":"Je suis grandement obligé à Chris Menzel, horticulteur auprès de Queensland Department of Primary Industries, Australie, qui a lu et corrigé le manuscrit et qui a fait quelques suggestions rédactionnelles pertinentes. Ses observations m'ont poussé à reconsidérer les possibilités permettant d'améliorer la floraison, ce qui a conduit à une révision de cette question clef. Johannes van Leeuwen du National Research Institute of the Amazon (INPA) à Manaus, Brésil et Bennie Bloemberg, qui a dédié 30 ans de sa vie à la coopération internationale en Afrique de l'Est, ont proposé des améliorations au manuscrit et ont recueilli des informations très appréciées. Je suis très reconnaissant de l'aide offerte par Janhein Loedeman pour le remaniement et le raccourcissement du texte dans les dernières phases du processus de rédaction.Les éditions précédentes de cet Agrodok, publiées en 1992 et 1999, donnaient une introduction globale à la culture fruitière dans les zones tropicales ainsi que des descriptions des 8 cultures principales. Pendant notre travail de révision, l'introduction générale remplit rapidement la totalité de l'Agrodok! Et pour traiter à nouveau les principales cultures fruitières, il aurait sans doute fallu un Agrodok particulier pour chacune d'entre elles. En réalité il vaut mieux publier des manuels de culture régionaux plutôt que d'essayer de faire tenir en un simple livret toutes les informations concernant différentes zones tropicales. L'objectif de ce texte revu et corrigé est de stimuler l'intérêt que vous portez à la culture des fruits et d'en approfondir la compréhension. Nous mentionnons les connaissances traditionnelles ainsi que les idées nouvelles issues de la recherche. Nous ne donnons pas de recettes pour cultiver des cultures spécifiques. Le contenu est destiné à ceux qui ont un jardin potager ou un jardin de case, à des cultivateurs qui dépendent (partiellement) des recettes de la vente des fruits pour assurer leurs revenus, aux agents de vulgarisation et aux autres qui encadrent les producteurs.Ainsi, la culture des fruits vous intéresse ! Vous cultivez peut-être déjà des fruits dans un jardin de case ou un verger, ou alors vous avez l'intention de le faire. Le présent Agrodok a été rédigé pour vous familiariser avec les différentes cultures fruitières pratiquées dans votre région. Dans le texte, plus de 60 cultures sont mentionnées. L'index figurant à la fin présente une liste des noms botaniques et des pages auxquelles vous trouverez davantage d'informations relatives aux fruits en question. Il y a également une annexe, avec des détails concernant les fleurs (en rapport avec la pollinisation), les fruits, les graines et les méthodes courantes de multiplication.Pas de fleurs, pas de fruits ! Une maigre floraison est la cause principale des récoltes décevantes dans les zones tropicales. Ainsi, le mode de floraison d'une culture fruitière est extrêmement important. Le mode de floraison est lié au port de l'arbre, comme il est expliqué dans le chapitre 3. Certaines cultures très répandues -l'ananas, le bananier, le papayer, (les palmiers également) -ont un port de croissance qui consiste d'une pousse unique. En général, ces cultures ont une bonne floraison et un bon rendement de fruits lorsqu'elles poussent bien. Elles réagissent donc aux mesures courantes qui permettent de stimuler la croissance -arrosage, fertilisation, mesures de protection -qui sont connues de tous les producteurs agricoles. Mais la grande majorité des cultures fruitières consiste de plantes qui se ramifient librement, et qui émettent des centaines ou des milliers de pousses. Chacune de ces plantes a sa propre façon particulière de se ramifier. Le présent Agrodok accorde surtout de l'attention à ces arbres à la ramification libre, car il s'agit de cultures difficiles qui ont souvent une maigre floraison.La cause principale d'une maigre floraison est simple : l'arbre « oublie » de former les boutons floraux parce qu'il est trop occupé à former de nouvelles pousses. En réalité, la plupart des cultures fruitières ramifiées nécessitent une période de stress -provoquée par une saison froide ou sèche -pour interrompre la croissance des pousses au profit de la formation des boutons floraux. Et lorsque le stress présenté par les circonstances naturelles n'est pas adéquat -comme c'est le cas la plupart du temps dans de nombreuses zones tropicales pour beaucoup de cultures fruitières -vous devrez interrompre vous-même la croissance des pousses. Par conséquent, pour ce type d'arboriculture, il sera nécessaire d'alterner en fonction des saisons des mesures qui limitent la croissance des pousses et des mesures qui stimulent leur croissance. Ainsi, le producteur de fruits devra maîtriser des capacités particulières et devra les appliquer au bon moment. L'objectif est d'obtenir un meilleur EQUILIBRE entre la croissance végétative et la croissance reproductive (période entre la mise à fleurs et le mûrissage des fruits). Ce sujet est traité dans le chapitre 6.La taille, qui fait l'objet du chapitre 5, est une des techniques utilisées pour les arbres qui se ramifient. Mais dans les zones tropicales les résultats de la taille sont trop souvent négatifs. Ceci est principalement dû au fait que la taille incite une croissance compensatoire, ce qui retarde la formation des boutons floraux. Par conséquent, la taille est surtout importante dans les cas où les arbres fruitiers ont une floraison et une fructification abondantes, et où il faut stimuler la croissance des pousses plutôt que la floraison.Sans fleurs il n'y aura pas de fruits. Mais également : sans pollinisation la fructification n'aura pas lieu ! Cette règle connaît des exceptions, mais en général les fleurs doivent être pollinisées, de préférence par pollinisation croisée, pour pouvoir former des fruits. Les cultures fruitières connaissent une grande variation de types de fleurs et de manières selon lesquelles la pollinisation et la fructification sont effectuées. Ce sujet important est traité dans le chapitre 7.Dans une grande partie des zones tropicales, en particulier dans les régions humides, les arbres forment la végétation naturelle. L'importance de l'arbre provient partiellement de ses dimensions et de sa pérennité. Les arbres donnent forme au paysage et encadrent les bâtiments, ils fournissent de l'ombre pour les hommes et les animaux. Ils protègent le sol contre le soleil torride, les pluies intenses et les vents violents, surtout pendant les saisons au cours desquelles il n'y a pas de cultures annuelles dans les champs. Leurs racines explorent les couches profondes du sol, recyclant ainsi l'eau et les éléments nutritifs auxquels les racines des cultures de plein champ ne peuvent pas accéder. De la sorte, les arbres améliorent leur environnement immédiat.Les preuves s'accumulent démontrant que les arbres exploitent et protègent l'environnement de manière plus efficace que les plantes annuelles. Les arbres à feuillage persistant présentent un avantage par rapport aux cultures saisonnières dans le fait que la couronne de feuillage est présente tout au long de l'année. L'Agrodok 16 : « L'agroforesterie », donne des explications plus détaillées sur les rôles que jouent les arbres aussi bien dans l'environnement que dans le système agricole.En tant que fruiticulteur vous récoltez les fruits, et non pas les feuilles ni le bois. Malheureusement, le dénommé « indice de récolte » -c'està-dire la part des fruits dans la quantité totale de production de matière organique -est souvent assez faible, surtout pour la plupart des arbres fruitiers à ramification libre. Les tomates, les aubergines, les cucurbitacées, etc. du maraîcher n'exploitent pas l'environnement aussi bien que les arbres fruitiers, mais ils donnent bien plus de tonnes de fruits par ha que la plupart des arbres. Peut-être que vous devriez cultiver des légumes... On pense qu'il est naturel pour les arbres d'atteindre de grandes dimensions, mais en réalité les arbres deviennent grands parce que les maigres floraisons et mises à fruits leurs laissent suffisamment d'énergie pour former de plus en plus de pousses. En tant que fruiticulteur, vous devriez avoir pour objectif de produire des fruits avec un minimum de bois ! Lorsqu'un arbre donne une bonne récolte -par rapport à sa taille -chaque année, à commencer quelques années après sa plantation, il n'atteindra jamais de grandes dimensions. Imaginez un manguier mature qui a les dimensions d'un caféier : pensez comme il serait facile de vaquer à la taille, aux mesures de protection, à la récolte sélective... Pour un fruiticulteur, SMALL IS BEAUTIFUL. Voici la conclusion du chapitre 2, dans lequel nous comparons différents systèmes de culture fruitière.Le clonage constitue le premier pas vers le contrôle des dimensions d'un arbre, comme il est expliqué dans le chapitre 4 : « Multiplication ». Dans le chapitre 9 : « Récolter », il est défendu que les arbres de grandes dimensions et les fruits de première qualité n'aillent pas de pair : il est impossible de récolter chaque fruit au moment adéquat et difficile d'éviter les fruits tachés si les arbres sont grands.En Afrique, on considère souvent les fruits comme étant « la nourriture des oiseaux » (en Swahili : « chakula cha ndege ») et les enfants peuvent bien faire la concurrence aux oiseaux, mais selon leurs croyances un homme doit boire la bière. En Amérique centrale et australe, les fruits sont souvent appréciés davantage. En général, les asiatiques valorisent grandement les fruits.Il s'avère que la valorisation des fruits est liée aux méthodes de multiplication. Jusqu'à ces derniers temps, en Afrique, les arbres fruitiers étaient cultivés à partir de graines, par conséquent il n'y avait pas de variétés ni de cultivars dénommés (le bananier étant une exception importante). En Asie par contre, l'on trouve le berceau de plusieurs méthodes importantes de clonage, permettant aux cultivateurs de multiplier des variétés de meilleures qualités. L'appréciation du goût spécifique de chaque variété a évolué au cours du temps. Au fur et à mesure, les jardins de case prospèrent, les populations se familiarisent avec des méthodes de conservation et de préparation et connaissent les caractéristiques bénéfiques que la tradition accorde à chaque fruit. Malgré cela, la plupart des gens en Asie doivent se contenter de bien moins de fruits qu'ils ne souhaiteraient consommer.L'idée de ce livret est de communiquer aux cultivateurs et aux agents de vulgarisation des idées nouvelles. Bien sûr, notre intention est de vous stimuler à cultiver des fruits. Cependant, il est justifié de lister brièvement quels sont les arguments pour ne pas vaquer à la culture des fruits, même si vous y avez probablement déjà pensé de vousmême.Vous aurez sans doute tenu compte du fait qu'il faut attendre plusieurs années avant de pouvoir faire la première récolte. Et une fois que les arbres sont en age de produire, il est possible que la floraison ou la fructification ne se fasse pas, ou encore que les fruits tombent prématurément. Mais imaginons que les arbres se portent à merveille : avezvous considéré le risque d'éventuels dommages causés aux arbres par le feu? Et qu'en est-il des risques de vols, du fait que les oiseaux, les chauves-souris et les rats peuvent manger les fruits, sans parler des pertes causées par d'autres ravageurs ou maladies? Un fruiticulteur doit faire face à de nombreuses incertitudes de production, et lorsqu'il obtient un bon rendement, il y a toujours les incertitudes du marché. Il y a du vrai dans l'adage disant que ce n'est pas la production des fruits qui présente le gros du travail, mais plutôt la manutention post-récolte et la commercialisation... ce qui concerne les marchés locaux et les règlements d'usance avec les intermédiaires, et la situation sur le marché change avec une telle rapidité lorsque la production d'un nouveau fruit augmente, que des conseils de commercialisation doivent se baser sur les circonstances locales.Le chapitre 8 couvre la lutte contre les ravageurs et les maladies en présentant quelques exemples. Finalement, si vous avez considéré toutes les objections mentionnées ci-dessus et que vous avez toujours l'intention de planter des arbres fruitiers, vous trouverez des recommandations dans le chapitre 10 : « Plan d'implantation et établissement du verger ».Les fruits sont produits dans toutes sortes de systèmes de culture. Certains fruits sont ramassés ou cueillis dans la végétation naturelle (à « l'état sauvage »). Dans les systèmes de culture itinérante, les arbres fruitiers sont souvent plantés en même temps que les cultures de plein champ, une fois que la parcelle a été défrichée. Pendant les premières années de la période de jachère suivante, les repousses de la végétation naturelle sont coupées pour permettre aux arbres fruitiers de survivre et de donner des fruits. Ainsi, les Indiens d'Amazonie enrichissent la végétation de la jachère avec une gamme de cultures fruitières locales, comme par exemple le canistel, l'uvilla, le palmier pejibaye et d'autres palmiers.Pour aller d'une parcelle semi permanente autour de la case d'un pratiqueur de culture itinérante à un jardin de case d'un producteur agricole établi, il ne faut qu'un pas. A l'origine, le terme de « jardin » (du latin « hortus » dont a été dérivé « horticulture ») signifiait « clôture » ou « enclos ». Les cultures horticoles sont cultivées à l'intérieur de la clôture, les cultures de plein champ à l'extérieur. La clôture offre une protection et assure que ce soit la famille qui jouit de la récolte et non pas des chèvres ou des écoliers. Il existe de nombreuses cultures de jardin. On les cultive à petite échelle -en partie parce qu'elles sont périssables -et dans l'ensemble elles occupent le jardin tout au long de l'année, rendant d'autant plus nécessaire les mesures de protection.Il est plus facile de protéger le jardin lorsqu'il entoure le domicile : c'est alors un jardin de case, où il est également aisé de se rendre pour s'occuper des cultures. De nombreuses techniques culturales qui figurent souvent dans les manuels mais que l'on observe rarement dans les champs, comme par exemple l'arrosage à la main, le compostage, le paillis, la taille, l'utilisation de treillis et les mesures simples de pro-tection, sont des pratiques courantes dans les jardins de case. Etant donné la protection offerte et les soins administrés, un jardin de case peut fournir des petites quantités de fruits, de légumes et d'herbes pour complémenter le régime alimentaire, mais également des produits médicinaux, du fourrage pour les animaux, ainsi que des produits de commodité comme les perches en bois ou les bambous.A proximité des villes en expansion, certains jardins de case ont évolué pour devenir des jardins maraîchers, et la spécialisation de plus en plus poussée a conduit à la création de nouvelles professions : maraîcher, fruiticulteur, pépiniériste, etc., dont la fonction primaire est de produire pour le marché.Cependant, parmi toutes les différentes cultures fruitières que l'on trouve dans les jardins de case, il y en a peu qui sont produites dans des vergers professionnels alimentant le marché. La cause est aussi simple qu'elle est choquante : les fruiticulteurs sont incapables de produire ces cultures de manière rentable parce qu'elles produisent des quantités insuffisantes, avec trop d'irrégularité, et qu'il faut attendre des années avant qu'une arboriculture entre en production ! Pourquoi planter un verger de durians s'il faut attendre jusqu'à 10 ans avant que les arbres ne donnent un rendement qui en vaut la peine ? Et considérez les manguiers dans votre région : l'on remarque un arbre qui est plein de fruits, mais on a tendance à passer le regard sur 10 autres exemplaires sans les voir s'ils ne portent pas de fruits.En réalité le manguier, une des fruiticultures les plus répandues, produit de manière tellement irrégulière dans les zones tropicales qu'il est difficile de déterminer quel rendement peut être considéré comme «normal ». Par contre, l'ananas et le bananier sont des cultures tellement productives que pour celles-ci les investisseurs sont disposés à financer des plantations à grande échelle. Ceci est illustré dans la figure 1 où les jardins de case sont comparés à d'autres systèmes de culture plus commerciaux. Il y a des fruits que l'on ne trouve qu'à l'état sauvage, tous les fruits cultivés se retrouvent dans des jardins de case, mais très peu d'arbres fruitiers sont devenus des cultures de verger ou de plantation. Si l'on regarde de près la figure 1 il apparaît clairement que les cultures qui ont été promues des jardins de case aux plantations ne sont pas seulement des cultures à haut rendement, ce sont également des cultures dont la période non productive est courte et dont les dimensions restent réduites. L'ananas et le bananier, les 2 cultures de plantation par excellence, possèdent ces caractéristiques à l'extrême.Des rendements élevés et une production précoce sont associés à des arbres de petite taille. Pour le fruiticulteur, SMALL IS BEAUTIFUL ! Le présent livret insiste sur cet aspect car traditionnellement les personnes souhaitent que leurs arbres poussent pour devenir GRAND.Après tout, la taille d'un arbre est ce qui le caractérise. La qualité de grandeur, ou plutôt de hauteur, est merveilleuse pour un forestier, toutefois, en tant que fruiticulteur, ce sont les fruits qui vous intéressent, pas le bois.La culture des pommes aux Pays-Bas fournit un exemple frappant de nanification des arbres fruitiers. Entre 1930 et 1970, le nombre d'arbres par ha a augmenté de 100 à 2,500 (l'espacement a été réduit de 10m x 10m à 3,20m x 1,25m). Au cours de ces 40 années, le rendement moyen dans ce pays est passé de 8 à 32 tonnes par ha ! Si les arbres restent petits, il vous faudra bien plus d'arbres par ha, mais cet inconvénient est compensé par le fait qu'ils atteignent rapidement l'âge de production. Par ailleurs, les activités de culture sont bien plus faciles lorsque les arbres sont petits : la taille, les mesures de protection, la récolte, etc. sont effectués avec plus d'efficacité. Des petits arbres à production précoce et faciles à gérer devraient conduire à une réduction au niveau des frais de la production fruitière, permettant au cultivateur de faire des bénéfices même lorsque les prix de marché baissent davantage. Lorsque les fruits sont bon marché, bien plus de personnes pourront se les offrir.Alors que pour le fruiticulteur professionnel il est essentiel de contrôler les dimensions des arbres, cela présente également un avantage pour ceux qui ont un jardin de case. Imaginez par exemple que 3 ou 5 petits manguiers fructueux de différentes variétés viennent remplacer le grand manguier de votre jardin ! (Mais ils seront peut-être trop petits pour vous abriter du soleil...) Des méthodes permettant de limiter les dimensions des arbres sont traitées dans d'autres chapitres. Nous mettons l'accent sur le premier pas à franchir, la multiplication par clonage (chapitre 4).Les fruits jouent un rôle dans presque tous les systèmes de culture. Certains fruits sont cueillis dans la nature, une variété de cultures fruitières est utilisée pour enrichir la végétation des jachères de la culture itinérante, et la plus grande diversité de cultures fruitières se trouve dans les jardins de case. Il n'y a qu'une minorité de fruits tropicaux appropriés à la production commerciale dans des vergers. Les plus grandes entreprises commerciales, comme par exemple des plantations professionnelles, n'existent pratiquement que pour l'ananas et le bananier. Les cultures commerciales produisent en abondance et avec régularité, grâce à une production précoce et aux dimensions réduites des arbres.Les progrès obtenus dans la culture des fruits se basent largement sur des méthodes qui nanifient les arbres, car les petits arbres sont souvent plus productifs que les grands et ils sont beaucoup plus faciles à cultiver, ce qui réduit les frais de production. La méthode principale pour y arriver est la multiplication végétative.3 Forme et fonctionCertaines cultures fruitières sont dominantes là où les conditions de croissance permettent leur culture : le papayer, le cocotier, l'ananas et le bananier. Le port de croissance de chacune de ces plantes ressemble à une pousse unique géante. C'est la raison pour laquelle on les désigne par le terme de « plantes monocaules », ou plantes à tige unique (alors que, strictement parlant, ceci n'est pas correct -voir cadre). La pousse en question a une croissance continue, le point de croissance se situe à l'extrémité de la pousse où les feuilles et les inflorescences se forment en succession régulière.Le papayer et le cocotier forment des fleurs dans l'aisselle de chaque feuille, l'ananas et le bananier fleurissent à l'extrémité de la pousse une fois que suffisamment de feuilles se sont formées pour assurer la croissance.La forme de ces cultures monocaules implique que lorsque leur croissance s'accélère, la floraison et la fructification se produiront également plus tôt. En outre, les feuilles et les fruits atteignent de plus grandes dimensions lorsque les conditions de croissance sont favorables. Pour le cultivateur, ces cultures sont relativement simples, car elles réagissent bien aux pratiques culturales (arrosage, fertilisation, mesures de protection). Il suffit d'offrir à ces plantes de bonnes conditions pour qu'elles donnent de bons rendements qui sont prévisibles. Comme le point de croissance est toujours actif, l'on peut récolter des fruits à tout moment de l'année. Il n'est donc pas surprenant que ces cultures sont pratiquées partout, elles sont importantes pour les riches autant que pour les pauvres.Le bananier et l'ananas forment des surgeons, qui sont en réalité des branches. Toutefois, les surgeons n'ont pas une grande influence sur la forme et le fonctionnement de la pousse principale, et donc nous considérons ici ces deux cultures comme étant des plantes monocaules (ceci vaut également pour les palmiers qui forment des surgeons comme le dattier et le palmier pejibaye). Il est possible d'apercevoir des papayers ayant formé plusieurs branches à la suite d'un incident. Comme chacune de leurs branches ressemblera à un papayer non ramifié, aussi bien dans la forme que dans le fonctionnement, nous incluons toujours ces plantes dans la catégorie de plantes monocaules.La ramification des cultures fruitières proprement ramifiées est de nature tout à fait différente. Les plantes en question se ramifient afin d'adapter leur forme à l'espace disponible (les branches poussent vers la lumière). Les plantes grimpantes sont les champions de cette discipline : leur forme n'est pas du tout prédéterminée. La forme d'une plante grimpante dépend de l'appui qu'elle trouve dans sa quête vers la lumière.Les cultures fruitières monocaules ne représentent qu'une petite minorité qui est néanmoins extrêmement importante. La grande majorité des cultures fruitières est constituée d'arbres à ramification libre. Les pousses de la plupart de ces espèces ramifiées n'ont pas une croissance continue, elles poussent de manière intermittente. Les pousses s'allongent pendant une poussée foliaire au cours de laquelle un certain nombre de feuilles se déroulent rapidement. Ensuite les pousses arrêtent leur croissance, elles n'émettent plus de nouvelles feuilles mais mûrissent pour devenir des rameaux qui semblent être en repos.Les cultures monocaules sont capables de pousser continuellement parce que dès qu'elles ont un ensemble de feuilles, la superficie de feuilles est maintenue, chaque nouvelle feuille viendra remplacer une feuille fanée. L'eau et les éléments nutritifs requis par un arbre sont absorbés presque en totalité par de jeunes racines. Les racines ne peuvent donc pas arrêter leur croissance, sinon il n'y aura plus de jeunes racines. La superficie des feuilles relativement constante des plantes monocaules peut être approvisionnée en eau et éléments nutritifs si les racines poussent de manière régulière.Les racines des arbres ramifiés devraient pousser de plus en plus rapidement si la quantité de pousses et de feuilles augmentait de manière illimitée. C'est une chose impossible, ce qui explique peut-être pourquoi la plupart des arbres ramifiés poussent de manière intermittente plutôt que continue. Pendant une poussée foliaire, la quantité de feuilles augmente si rapidement que le système radiculaire n'arrive pas à suivre. Toutefois, après la période de poussée foliaire, les racines continuent leur croissance et la tombée des feuilles réduit progressivement la superficie foliaire. Ainsi, après une période de plusieurs mois, l'arbre sera à nouveau capable d'entamer une période de poussée foliaire. Il en découle que le rapport pousses : racines des arbres ramifiés n'est pas constant, il fluctue. Dans des conditions de croissance favorables, les périodes de poussée foliaire peuvent se succéder rapidement, et la ramification devient assez complexe, comme le montre la figure 2. Pour le fruiticulteur, la caractéristique la plus remarquable des cultures fruitières ramifiées est que la floraison et la mise à fruits n'occupent pas une place déterminée dans le port de croissance, contrairement au cas des cultures monocaules. Certaines plantes ligneuses sont capables d'avoir une croissance continue et de fleurir dans les aisselles des feuilles sur la pousse en croissance, comme par exemple le papayer monocaule. Les exemples les plus illustratifs sont les plantes grimpantes, comme par exemple la grenadille et la vigne. Dans leur quête vers la lumière, leurs pousses continuent leur croissance jusqu'au moment où -avec une ramification de plus en plus poussée -la croissance des pousses ralentit. L'arbre à pain et le caféier sont des exemples d'arboricultures qui ont une croissance continue combinée avec une floraison dans les aisselles des feuilles. Le jacquier et le durian ont également des pousses qui ont tendance à pousser de manière continue, mais ces arbres fleurissent sur les grosses branches et sur le tronc (phénomène appelé « cauliflorie » ou « ramiflorie »). Alors que les pousses à croissance intermittente arrêtent de pousser (en périodes de poussée foliaire) même dans des conditions de croissance idéales, les pousses à croissance continue interrompent leur développement en cas de conditions défavorables, comme par exemple une période sèche ou une grande quantité de fruits, ce qui vaut pour le caféier et la grenadille.Dans cette section, nous nous concentrons sur les arbres à croissance intermittente car la majorité des cultures fruitières, y compris presque toutes celles qui sont importantes, appartiennent à ce groupe là. Toutefois, les cultures fruitières à croissance continue sont mentionnées de temps en temps.La croissance d'une pousse peut suivre une cadence \"go-stop\" qui s'arrête brusquement par l'avortement du point de croissance, comme chez le cacaotier et souvent chez les pousses d'agrumes. Il est plus courant que la pointe de croissance finit par former un bourgeon terminal en repos, recouvert d'écailles, comme le fait le manguier. Dans le bourgeon en repos, la pointe de croissance continue à former les primordia foliaires, qui se dérouleront une fois que le bourgeon s'ouvrira au débourrement de la poussée foliaire suivante. Les poussées foliaires successives peuvent également suivre une cadence « rapide -lent », où la croissance ralentit à la vitesse d'une limace une fois que les feuilles se sont développées, pour reprendre de la vitesse au cours de la poussée foliaire suivante (ramboutan, muscadier). Le cas échéant, le bourgeon en repos est généralement à nu, il n'est pas protégé par des écailles.La croissance des pousses est qualifiée de « déterminée » lorsque les feuilles qui se développent pendant la poussée foliaire ont toutes été amorcées dans le bourgeon. Si l'extrémité de la pousse continue à former de nouvelles feuilles, la poussée foliaire dure plus longtemps et la croissance des pousses est qualifiée « d'indéterminée ». Plusieurs cultures fruitières forment des pousses à croissance déterminée (des petites pousses, appelées « spurs » en anglais dans le cas du grenadier, du pommier, du poirier et du prunier) ainsi que des pousses à croissance indéterminée (de longues pousses, appelées « whip » en anglais dans le cas du prunier et des espèces appartenant au genre des annonacées, comme l'attier, le chérimolier et le corossolier). On peut considérer la formation des pousses à croissance indéterminée comme étant une évolution vers celle de pousses à croissance continue. Vous pouvez observer les différents modes de croissance sur vos propres arbres.Le type de croissance des arbres ramifiés est bien plus flexible que celui des plantes monocaules. Néanmoins, cette flexibilité est obtenue au détriment de la floraison et de la fructification, ce qui est dommage pour le fruiticulteur. La fonction naturelle de la fructification est de fournir les graines nécessaires pour produire la génération suivante. Il n'est donc pas surprenant que les arbres ramifiés se sont adaptés pour assurer la production des graines malgré la croissance d'une abondance de pousses. Deux stratégies sont répandues : le développement des pousses et la croissance reproductive ont lieu soit à différents moments, soit sur différentes positions.Les cultures fruitières à croissance intermittente dédient l'intervalle de temps qui s'écoule entre deux périodes de poussée foliaire au développement des fleurs : sauf quelques exceptions, c'est à ce moment-là qu'elles amorcent les primordia de fleurs sur les rameaux en repos. Ainsi, ces cultures combinent la floraison et la fructification avec la ramification libre en les séparant dans le temps : la croissance des pousses et le développement des fleurs se font à différents moments.Les boutons floraux peuvent se former dans les aisselles des feuilles ou aux extrémités des rameaux en repos. Au débourrement des boutons floraux, ils produiront soit une inflorescence, soit une pousse croissante avec une ou plusieurs inflorescences. Notez que de nombreuses cultures fruitières fleurissent aussi bien dans les aisselles des feuilles qu'aux extrémités des rameaux, ou encore directement sur le rameau aussi bien que sur les nouvelles pousses. Comme le montre la figure 4, le goyavier fleurit dans les aisselles des rameaux en poussée foliaire. Cependant, les primordia de ces fleurs sont formées avant que le bouton sur le rameau en repos ne commence sa poussée foliaire. Dans un bouton qui est sur le point d'éclore, on peut voir par le biais d'un microscope les primordia des feuilles qui se développeront pendant la poussée foliaire, mais on voit également les amorces du développement floral dans les aisselles de ces primordia de feuilles. En d'autres mots : les évènements qui conduisent à la floraison sur les nouvelles pousses sont généralement amorcées sur le rameau en repos.Les espèces fruitières du genre annona, le grenadier, le pommier, le poirier et le prunier forment les boutons floraux sur les rameaux en repos. Ils ont également des pousses longues (indéterminées) aussi bien que des pousses courtes (déterminées). La croissance des pousses courtes s'arrête plus tôt, accordant plus de temps à ces « spurs » pour leur permettre d'initier les fleurs. Bien que des fleurs apparaissent également sur les pousses longues, la floraison et la mise à fruits sont de bien meilleure qualité sur les « spurs ». Ainsi ces cultures combinent la séparation dans le temps du développement des pousses et des fleurs avec la création de zones préférentielles pour la floraison.Le caféier est un exemple de plante dont la floraison se produit sur des pousses spécifiques à croissance continue. Le caféier a plusieurs types de pousses fort différentes : une ou plusieurs pousses dressées (pousses orthotropiques), ayant plusieurs pousses latérales horizontales (pousses plagiotropiques). Uniquement les pousses plagiotropiques portent des fleurs. Différentes cultures ont une tendance de plagiotropie, même si ce n'est pas aussi extrême que chez le caféier. Le durian, par exemple, a surtout des branches horizontales (plagiotropiques) et en général une ou deux branches robustes dressées (orthotropiques). La distinction entre les pousses latérales et les branches dressées vigoureuses est très claire chez les jeunes arbres, comme le montre la figure 5. Contrairement au cas du caféier, chez le durian les deux types de branches portent des fruits, mais les branches orthotropiques con-tribuent essentiellement à la hauteur de l'arbre alors que les branches plagiotropiques contribuent essentiellement au rendement des fruits.Le durian a des pousses de plusieurs types, mais sa caractéristique la plus frappante est que ses fleurs sont formées sur le côté inférieur des branches, près du tronc. La floraison sur le tronc et les grosses branches, désigné par le terme de « cauliflorie », est une stratégie très efficace pour allouer la croissance des pousses et le développement floral sur différentes positions. Cela permet de libérer la croissance des pousses : les pousses du durian et du jaquier ont une croissance plus ou moins continue, alors que les pousses du cacaotier se développent pendant des périodes de poussée foliaire qui se succèdent rapidement. Les exemples cités du durian, des espèces fruitières du genre annona, etc. montrent qu'il est courant pour les arbres fruitiers de combiner plusieurs stratégies qui leur permettent de séparer la formation des fleurs et la croissance des pousses. Néanmoins, la maigre floraison est le facteur déterminant qui limite le rendement des cultures fruitières ramifiées. Ceci s'applique en particulier aux plantes qui forment des boutons floraux sur les rameaux en repos. Ces cultures représentent un groupe de grande envergure et importance (voir figure 4). Bien que l'on ne comprenne pas à fond le comportement des cultures en question, les paragraphes suivants décrivent une approche qui permet d'améliorer la floraison.Malgré l'information fragmentaire à cet égard, il semble qu'une floraison adéquate dépend largement de deux conditions :? périodes de poussée foliaire synchronisée ; ? pas de pousses en poussée foliaire avant et pendant la formation des boutons floraux.Lorsqu'un arbre a des périodes de poussée foliaire synchronisée, il distingue dans le temps différentes phases pour la croissance des pousses et le développement des fleurs. Lorsqu'une grande proportion des rameaux produit simultanément des pousses nouvelles, ces pousses mûriront en même temps, deviendront ensuite des rameaux en repos qui, le moment venu, produiront une période de floraison synchronisée. Il s'avère que la floraison est plus profuse lorsque ce ne sont pas quelques rameaux individuels mais la totalité de l'arbre qui entre en « mode floral ». Une floraison ainsi concentrée favorise également la pollinisation et la mise à fruits. Le cycle annuel de production bien défini qui en découle facilite la gestion des arbres, puisque cela permet de choisir les moments adéquats pour les activités de fertilisation, taille, traitements de protection, récolte, etc. (voir chapitre 6).La synchronisation est le résultat du stress imposé par l'environnement. Le degré de stress requis pour assurer une croissance synchronisée des pousses et une floraison synchronisée varie grandement selon les espèces. En général il y a toujours un certain degré de synchronisation, même dans les zones tropicales humides, où une courte période sèche ou une pluie rafraîchissante survenant après quelques jours chauds sont les principaux bouleversements météorologiques. Certains clones d'arbres à caoutchouc perdent leurs feuilles à la suite d'un changement météorologique que la plupart des gens ne remarquent même pas. Les espèces Spondias (pommier de cythère, prunier mombin) se dressent dénuées de leurs feuilles après une courte période « sèche ». La perte des feuilles permet aux racines de déclencher un débourrement synchronisé, que ce soit une période de floraison ou une période de croissance des pousses. Parmi les cultures fruitières des zones humides tropicales, il y a des espèces, comme le ramboutan et le mangoustanier, qui donnent des fruits deux fois par an au lieu d'en donner sporadiquement tout au long de l'année. (Cependant, la floraison -et par conséquent la période de récolte -peuvent se déplacer significativement dans le temps en fonction du moment auquel sévit la période de stress.)Les cultures fruitières qui poussent dans les climats à mousson nécessitent un stress bien plus prononcé pour induire une poussée foliaire synchronisée. Lorsqu'on les cultive dans un environnement humide, ils poussent de manière encore plus vigoureuse, et la continuelle croissance peu méthodique des pousses réprime la formation des boutons floraux. C'est ce qui est arrivé au manguier de la figure 2, ce qui explique les fréquentes émissions de nouvelles pousses et l'absence de fleurs. Les seules cultures fruitières dont le rendement ne varie pas en fonction de la synchronicité de leur croissance sont le sapotillier, le corossolier et le muscadier.Bien qu'il y ait toujours un certain degré de synchronisation, cette dernière est généralement loin d'être parfaite. Il n'est pas rare de voir un arbre plein de nouvelles pousses à côté d'un arbre en repos de croissance, comme l'illustre la figure 6, ou de voir un arbre dont seulement une branche porte de nouvelles pousses, alors que les autres branches sont en repos de croissance. -périodes de poussée foliaire non synchronisée et boutons floraux formés tout au long de l'année sapotillier, corossolier, muscadier -cycle de culture annuel mal défini, déclenché par un faible degré de stress ramboutan, mangoustanier -cycle de culture annuel bien défini, imposé par un fort degré de stress manguier, oranger, kapokierLa plupart des arbres fruitiers tropicaux sont multipliés à partir des graines, particulièrement dans les jardins de case. Dans la fruticulture, la multiplication végétative ouvre la voie à des progrès considérables en matière de productivité et efficacité, donnant plus d'attrait à la production commerciale.La reproduction sexuée a pour résultat une VARIATION au niveau des SEMIS : bien que tous les semis ressemblent à l'arbre mère sur certains aspects, il n'y a jamais deux semis identiques. Naturellement, les différences entre les semis s'accentuent lorsque ces derniers sont cultivés dans des conditions différentes.Dans la multiplication végétative, c'est une partie de l'arbre mère autre que la graine (par ex. une bouture) qui deviendra une nouvelle plante. Le bagage génétique de la nouvelle plante est alors exactement le même que celui de l'arbre mère. Ceci constitue la principale différence entre un semis et un arbre cloné. La précocité productive siphonne dans le développement des fruits l'énergie qui aurait autrement été utilisée pour la croissance des pousses et la production de bois. Ainsi, les arbres clonés gardent des dimensions réduites et peuvent être plantés plus proches les uns des autres. Davantage d'arbres par ha implique un accroissement supplémentaire dans la récolte précoce ! Le fait de prélever les boutures sur un arbre mère à haut rendement contribue également à une production accrue. En outre, comme nous l'avons vu dans le chapitre 2, les arbres nanifiés sont bien plus faciles à gérer, ce qui réduit significativement les frais de production par kg de fruits.La multiplication par clonage est le chemin vers l'intensification et l'augmentation des rendements : réduction des années non productives, davantage d'arbres par ha, récolte maximale par ha accrue, rendement moyen bien plus important pour la durée de vie du verger, gestion plus efficace et réduction des frais de production.La multiplication par clonage a également des inconvénients : ? Rares sont les maladies transmises par le biais des graines, mais lorsqu'on procède au clonage, il faut prendre particulièrement soin de l'état de santé de l'arbre mère, puisque les maladies et les ravageurs qui infestent cet arbre peuvent être transmis aux boutures, aux marcottes ou au bois prélevé pour les greffes. ? Les semis, avec leur racine pivotante vigoureuse et leur phase juvénile, connaissent un départ robuste dans la vie. Les arbres clonés ont un système racinaire bien plus faible et sont sensés produire des fruits plutôt que du bois. Par conséquent, un verger d'arbres clonés requiert des soins intensifs, en rapport avec l'intensité de la culture.? La production des semis est bon marché en comparaison avec la multiplication par clonage, surtout en cas de marcottage, ou de différentes méthodes de greffage. Et comme les arbres clonés gardent des dimensions réduites, il faut davantage d'arbres pour planter une superficie donnée. ? Finalement, puisque toutes les plantes d'un clone ont le même bagage génétique, une nouvelle maladie ou un trouble qui détruit les défenses génétiques affecteront probablement la totalité du clone. Afin de minimiser le risque, il est sage de planter plusieurs cultivars différents en un endroit (ceci facilite également la pollinisation croisée).En dépit de ces désavantages, les progrès réalisés dans la fruticulture ont été obtenus en grande partie par le biais de l'utilisation de matériel de plantation cloné. Il ne reste que quelques cultures fruitières que l'on cultive à partir de graines : le papayer, la grenadille, le corossolier et l'anacardier. La phase juvénile de ces cultures est très courte : moins d'un an pour le papayer et la grenadille et seulement 3 à 4 années pour le corossolier et l'anacardier.Le tableau 3 présente les méthodes de multiplication végétative les plus courantes. Il commence avec des formes naturelles de clonage.Les méthodes sont de plus en plus complexes en allant vers le bas du tableau. Cela prend bien moins de temps d'établir 100 boutures de tiges que de préparer 100 marcottes aériennes. Préparer 100 greffes par approche requiert encore plus de temps et de compétences. « Inarching » peut être considéré comme étant une forme de greffage par approche. Tout d'abord on élève un porte-greffe. Le greffage consiste à en tailler la tige et à insérer l'extrémité coupée dans l'arbre scion. De cette manière, un arbre mal ancré (à la suite de dommages racinaires causés par des rongeurs par exemple) peut être sauvé en plantant quelques porte-greffes alentour et en insérant les tiges de ces derniers dans le tronc de l'arbre. Une forme de « inarching » utilisée en Asie du sud pour multiplier les arbres en grandes quantités s'appelle « suckle grafting ». Le porte-greffe est mis dans un sac et La plupart des cultures fruitières se laissent cloner de différentes manières. L'écussonnage et le greffage ne sont utilisés que lorsque les boutures ou les marcottes ne prennent pas racine, ou lorsqu'un portegreffe présente des avantages importants tels que : dimensions réduites de l'arbre (pommier), tolérance au sel (avocatier), meilleure qualité des fruits (agrumes), tolérances à des maladies (avocatier, agrumes). Globalement parlant on peut dire que les méthodes simples requièrent une attention spéciale pour les conditions environnementales (par ex. ombre, humidité) dans la pépinière, alors que les méthodes plus sophistiquées demandent plus de temps et plus de compétences. C'est pourquoi les méthodes simples sont plus appropriées à la multiplica-tion de masse, puisqu'elles nécessitent peu de main d'oeuvre par plante et que les frais à encourir pour créer un environnement adéquat sont répartis sur un grand nombre de pieds.Les fruiticulteurs professionnels dépendent de pépinières qui se spécialisent dans certaines cultures fruitières et qui produisent les principaux cultivars en grandes quantités et à des prix compétitifs. Une pépinière ainsi spécialisée devrait également être à mesure de garantir la santé de ses plantes. Une pépinière avec des petites quantités d'arbres fruitiers de toutes sortes regroupés sous l'ombre d'un arbre en attendant un acquéreur ne peut pas satisfaire à ces exigences.5 Palissage, taille et ployage On peut induire une pousse ou une branche à occuper la position souhaitée en la ployant pour la diriger. Il s'agit là d'une alternative intéressante à la taille, particulièrement pour les jeunes pieds qui doivent encore remplir l'espace qui leur est alloué. La tendance de remplacer la taille par le fait de diriger les branches a conduit à une augmentation bien plus rapide du volume de production, par exemple chez le théier (où l'on fixe les rameaux avec des piquets, pratique appelée « pegging down » en anglais) et le pommier (voir figure 10). Le palissage est une combinaison du ployage des branches pour les diriger et de la taille.Pour les plantes grimpantes, le palissage doit se faire à l'aide d'un treillis de support. La manière la moins onéreuse consiste à utiliser des tuteurs vivants pour un treillis vertical (par ex. pour la pitahaya), un treillis en forme de T (par ex. pour la grenadille) ou encore une pergola (pour la vigne). La construction en hauteur peut consister de barres en bambou qui portent des fils. L'agrodok 16 : « L'agroforesterie », liste des espèces d'arbres que l'on peut utiliser en tant que tuteurs vivants.On pense souvent que les arbres dont la croissance est trop vigoureuse ont besoin d'être taillés. Cela s'applique peut-être aux jeunes arbres, mais en général ployer et diriger les pousses vigoureuses ou imposer du stress (ce qui est expliqué dans le chapitre 6) offrent une meilleure solution. Pour les arbres qui portent des fruits c'est le contraire qui s'applique (voir cadre) : il est nécessaire de procéder à la taille lorsque la lourde charge de fruits réduit la croissance à un degré tel que (la qualité de) la récolte suivante est compromise. En rétablissant la vigueur de l'arbre et en réduisant la floraison et la fructification, la taille permet de créer les conditions nécessaires pour une prochaine récolte de bonne qualité.Comme règle pratique l'on peut adopter l'axiome : la taille stimule la croissance au détriment de la floraison et de la fructification. Par conséquent, la taille n'offre aucun intérêt jusqu'au moment où les rendements des fruits tropicaux ont atteint un niveau supérieur. La mesure dans laquelle la taille stimule la croissance des pousses et l'influence de la taille sur la floraison et la fructification dépendent grandement de la portion des pousses ou des branches éliminée par la taille.On distingue ci-après différentes catégories de taille en fonction de l'endroit auquel la pousse, le rameau ou la branche est coupée (voir figure 11) : ? Pinçage ou «tipping » : taille de l'extrémité des pousses ; ? Rabattage ou « cutting back » : taille d'une portion substantielle des pousses ; ? « Stubbing » : taille près du point d'attache des pousses, ne laissant qu'un moignon ; ? Eclaircissement ou « cutting out » : supprimer une pousse entière en la coupant au point d'attache.La taille des extrémités des pousses appelée pinçage lorsque cela se fait avec les ongles, semble être la méthode la plus délicate, mais la réaction de l'arbre est spectaculaire. De nombreux bourgeons situés dans les aisselles des feuilles inférieures à la coupe se développent pour devenir des pousses (relativement faibles). Il en résulte une augmentation rapide des ramifications; ce qui est très apparent chez le théier après la récolte et les haies que l'on entretient. Un effet secondaire important est que la floraison est réprimée : les théiers en production et les haies régulièrement entretenues ne fleurissent jamais.Les hormones produites dans l'extrémité des pousses inhibent le développement des bourgeons dans les aisselles des feuilles, ce qui explique la forte réaction de la plante en cas d'élimination des extrémités de pousses.Lorsque les pousses vigoureuses d'une jeune vigne sont palissées le long de fils pour former les bras permanents, un pinçage répété fait de sorte que des pousses latérales apparaissent dans pratiquement chaque aisselle de feuille de ces pousses. Ceci est nécessaire car ces pousses latérales deviendront les rameaux qui porteront les sarments donnant les fruits. Bien sûr, des conditions de croissance excellentes (fertilisation généreuse, arrosage opportun) sont nécessaires pour soutenir la croissance des principaux bras et pour appuyer la croissance de toutes les pousses latérales.Si on enlève plus de bois que l'extrémité des pousses, on qualifie la taille de rabattage. La réaction de la plante sera différente puisqu'une plus grande partie de la pousse est alors éliminée : moins de pousses latérales se développeront et ces dernières seront plus vigoureuses, notamment celles qui sont situées en hauteur. Elles forment un angle avec la branche, plus on descend le long de la tige, plus l'angle est grand et les pousses sont faibles (voir figure 11). Une croissance vigoureuse de l'extrémité des pousses de jeunes arbres non ramifiés implique un flux important d'hormones inhibant les pousses latérales. Le rabattage, qu'on l'effectue en pépinière ou après plantation, permet d'obtenir une ramification à la hauteur souhaitée (voir figure 12). Notez que la pousse principale de la figure 10 a également été rabattue. Le rabattage s'effectue également avec les « whips », des branches très vigoureuses non ramifiées chez les chérimoliers et les pruniers. Là encore, l'objectif est de forcer les « whips » à former des pousses latérales car celles-ci ont plus de chances de donner des fruits, comme l'indique la figure 13. 5) ainsi que l'élimination des pousses latérales apparaissant trop bas sur le tronc pour devenir des branches permanentes, dans l'année suivant la plantation (voir chapitre 10). Les ralentisseurs de croissance sont des produits chimiques qui inhibent les hormones favorisant la croissance dans les plantes. Ils présentent une méthode directe pour freiner la croissance des pousses. Différents ralentisseurs de croissance ont été appliqués dans la fruticulture, mais le seul produit qui a gagné une certaine popularité dans les zones tropicales est le paclobutrazol, dont le nom commercial est « Cultar » ou encore « Bonzi ». Non seulement le paclobutrazol inhibe la croissance des pousses, mais il stimule également la floraison, une combinaison de propriétés idéale ! Cependant, les utilisations du paclobutrazol sont assez limitées, car son application est complexe. On obtient les meilleurs résultats lorsqu'on applique le produit au sol, mais le cas échéant il est difficile de prédire quelle quantité atteindra les racines. Une dose trop élevée conduira à la malformation des pousses et des inflorescences. Par ailleurs, le paclobutrazol est une substance persistante dont les effets sont reportés à l'année suivante, ce qui complique davantage la détermination de la dose adéquate pour les traitements annuels. Dans de nombreux pays, cette substance n'a pas été enregistrée pour l'utilisation sur les cultures fruitières.De nouveaux ralentisseurs de croissance apparaissent sur le marché, ils sont supposés être plus sûrs et plus simples à utiliser. Le temps dira si ces nouveaux produits sont réellement meilleurs.Lorsque les traitements ci-dessus sont efficaces, ils permettent d'établir un cycle de culture annuel bien déterminé. On aura alors la possibilité de planifier avec plus de précision toutes les autres pratiques culturales. Ceci est illustré par le cycle de culture d'un manguier qui pousse dans un climat à mousson où la saison humide et la saison sèche ont toutes deux une durée d'environ 6 mois (voir figure 15). Les courbes représentent les différentes composantes du rythme de croissance dans le cours de l'année : floraison, poussée foliaire et développement des fruits. Poussée foliaire post-récolte synchronisée Lorsque les traitements décrits dans les paragraphes précédents ont l'effet espéré, conduisant à une bonne floraison et fructification, la croissance des pousses sera minimale pendant le développement des fruits. Il s'en suivra une poussée foliaire post-récolte synchronisée.Pour un fruiticulteur, c'est la manière idéale d'assurer une poussée foliaire synchronisée !Une fruticulture irriguée dans une zone relativement sèche offre d'excellentes opportunités pour contrôler le cycle de culture annuel.On peut freiner la croissance des pousses en arrêtant l'irrigation pendant une période de 5 à 10 semaines. Le rétablissement de l'irrigation assure un débourrement synchronisé des cultures telles que les agrumes et le manguier. Lorsque la saison sèche est longue, il sera même possible de mettre une partie du verger à sec tout en continuant l'irrigation sur le reste de la parcelle. Ceci permettra d'obtenir une récolte précoce sur la partie du verger mise à sec, le reste pouvant être récolté plus tard. Nous faisons tout de même mention des produits chimiques qui rompent la dormance car de nouveaux produits, tels que Waiken® et Ar-mobreak®, sont testés actuellement. Ces produits sont appliqués dans un mélange avec un agent qui rompt la dormance et il s'avère que ce type de mélange est plus efficace à des concentrations bien plus faibles de la substance qui rompt la dormance ; ce qui permet une application moins coûteuse et moins risquée (aussi bien pour le cultivateur que pour les arbres).Il vous est peut-être arrivé de constater qu'un arbre sain, dont toutes les feuilles ont été mangées par un fléau de chenilles ou de sauterelles, réagit avec une poussée foliaire abondante. Ce constat a conduit à l'emploi de la défoliation comme méthode pour forcer une poussée foliaire synchronisée afin de commencer un nouveau cycle de culture. Dans un premier temps, la défoliation s'appliquait chez des cultures fruitières des zones tempérées, telles que le pommier, le pêcher et la vigne. Ces cultures dépendent de l'hiver pour rompre la dormance des bourgeons. Dans les zones tropicales, elles ne poussent que dans les régions montagneuses, mais même chez les cultivars qui nécessitent un moindre facteur de refroidissement, le débourrement est souvent maigre. A des altitudes au-delà de 1200 m, des produits chimiques qui rompent la dormance sont parfois utilisés pour forcer le débourrement.A de plus faibles altitudes, les pommiers sont défoliés pour forcer le débourrement avant que les boutons floraux n'entrent en stade de dormance. De cette manière, le cycle de culture est raccourci à environ 6 mois permettant deux récoltes par an. Similairement, la vigne peut produire deux récoltes par an. La défoliation des arbres peut se faire à la main, mais parfois on fait recours à des substances chimiques rompant la dormance pour brûler les feuilles. Pour certaines vignes, les feuilles sont éliminées par le biais de la taille.La défoliation épuise les arbres ce qui donne une importance vitale aux pratiques culturales intensives (irrigation, fumure, traitements sanitaires). Néanmoins, les arbres ainsi forcés ont tendance à vieillir rapidement, surtout lorsque le cycle de culture est raccourci. Des résultats prometteurs obtenus dans la réduction des cycles de culture d'espèces purement tropicales (goyavier, manguier) n'ont pas été suivies d'une adoption à grande échelle de ces techniques, mais des essais avec le goyavier ont réussi dans différentes zones tropicales (voir figure 16). Chez le bananier et le cocotier, les fleurs des deux sexes sont regroupées dans une même inflorescence, les fleurs mâles se trouvant à l'extrémité et les fleurs femelles à la base. Les grandes inflorescences du manguier portent aussi bien des fleurs mâles que des fleurs parfaites.Les types de floraison des cultures fruitières mentionnées dans le présent Agrodok sont indiqués dans l'annexe. Les types de floraison sont assez variés. Il existe par exemple des cultivars de papayer dont toutes les plantes portent des fruits parce qu'elles portent soit uniquement des fleurs femelles, soit des fleurs parfaites. Vous reconnaîtrez ces cultivars parce que les fleurs parfaites sont portées par de longues tiges (comme les fleurs mâles) et les fruits sont plus allongés.Le type de floraison de varie pas uniquement selon le cultivar, il varie également d'année en année. Le pourcentage de fleurs mâles chez le cocotier ou de fleurs parfaites chez le manguier varie d'une année à l'autre, en général il est plus important lorsque les conditions de croissance ont été favorables. Les conditions de croissance ont également une influence sur la qualité des fleurs. Un arbre sain dont la vigueur est modérée porte des fleurs robustes, le stigmate étant réceptif à la pollinisation pendant une période prolongée pour améliorer la mise à fruits.La pollinisation des fleurs est nécessaire pour fertiliser (le ou) les ovules. Les ovules fertilisés deviendront les graines. Elles produisent les hormones qui permettent à la fleur d'assurer la mise à fruits et au fruit de se développer. Dans certains cas, les fruits poussent même sans le stimulus provenant des graines, on les désigne par le terme de « fruits parthénocarpiques ». En tant qu'exemple, on peut citer l'ananas, le bananier, et certains cultivars d'autres fruits, par ex. les goyaves et les mandarines sans pépins.Lorsque le pollen provient de la même fleur ou d'une fleur du même arbre, on utilise le terme « autopollinisation ». Lorsque le pollen provient d'un arbre qui a un autre bagage génétique, on utilise le terme « pollinisation croisée ». De nos jours, beaucoup de cultures fruitières sont clonées. Comme tous les plants d'un clone ont le même bagage génétique, la pollinisation au sein d'un clone est également une autopollinisation.Si au fil des générations successives il est toujours question d'autopollinisation, cela conduit à la consanguinité, c'est-à-dire à une réduction de la variation génétique. En règle générale, ceci conduit à une réduction de la vigueur et de la forme. Ceci explique peut-être pourquoi chez de nombreuses plantes la forme ou la fonction des fleurs entrave ou rend impossible l'autopollinisation, privilégiant ainsi la pollinisation croisée. Une des dispositions est que le pistil n'est pas réceptif au moment où les étamines de la fleur en question libèrent leur pollen. Une autre disposition est que les étamines sont trop courtes pour que les anthères puissent libérer le pollen sur les stigmates. L'autopollinisation est impossible lorsque le bagage génétique du pollen n'est pas compatible avec celui du pistil, et que le tube pollinique ne peut pas se développer dans le style pour accéder aux ovules (par ex. chez l'ananas).En outre de ces adaptations pour limiter l'autopollinisation, les plantes produisent généralement davantage de fruits après une pollinisation croisée. Lorsque vous ne cultivez qu'un seul clone d'une culture fruitière spécifique, des arbres issus de semis de cette espèce se trouvant à proximité peuvent éventuellement fournir le pollen pour la pollinisation croisée des fleurs de vos arbres. Néanmoins, il est souvent plus sûr de cultiver plusieurs clones dans un même verger.Un bon pollinisateur a du pollen VIABLE qui est génétiquement COMPATIBLE avec le cultivar à polliniser et qui FLEURIT AU MEME MOMENT. Malheureusement, pour la plupart des cultures fruitières tropicales, ces informations ne sont pas disponibles. C'est pourquoi il est à recommander de planter au moins trois cultivars sur une même parcelle et d'essayer de s'assurer que les périodes de floraison de ces cultivars coïncident. Si jamais l'un des trois est un mauvais pollinisateur, il y a des chances que les deux autres peuvent assurer la pollinisation croisée des trois cultivars.Le vent peut transporter le pollen, mais la plupart des cultures fruitières dépendent des insectes (abeilles) pour transporter le pollen d'un arbre à l'autre. Pour certaines cultures ce sont des oiseaux (colibri pour l'ananas en Amérique du Sud) qui s'en chargent, ou des chauvessouris (baobab, durian). Pour quelques cultures fruitières peu courantes le type de floraison et le transfert de pollen n'ont pas encore été décrit. Il y a des cultures fruitières importantes -comme l'avocatier, le ramboutan et le plaqueminier -pour lesquelles la floraison et la pollinisation sont trop complexes pour être expliqué dans le présent document. Mais ces facteurs sont tellement importants que vous devriez aller à la recherche des informations pertinentes, soit auprès de personnes qui s'y connaissent, soit par le biais d'une observation attentive des fleurs de vos arbres et de leurs visiteurs.La diécie présente un problème sérieux pour le cultivateur, surtout lorsque les pieds sont cultivés à partir de graines, comme c'est le cas pour le papayer, le palmier salak, le rambai, l'uvilla, le safoutier et le châtaigner d'Inhambam. La moitié des plants issus des graines sont des pieds mâles, mais vous ne pourrez les identifier qu'une fois que les arbres fleurissent. A partir de ce moment-là, vous pourrez éliminer les « mâles », n'en laissant que 1 ou 2 sur 20 pour polliniser les « femelles ». Ainsi vous aurez perdu des années pour faire pousser les arbres en question et au bout du compte votre plantation sera pleine de trous. La seule solution élégante consiste à adopter la multiplication par clonage : planter des clones femelles et planter des clones mâles compatibles dans 5 à 10 % des positions d'arbres.Il est clair que la pollinisation croisée est une question importante dans la fruticulture. Le cultivateur devrait planter des lignes alternées de différents cultivars ou, lorsque le pollen provient d'arbres mâles, interplanter ces arbres dans les lignes. Un brise-vent sera peut-être nécessaire pour abriter les insectes pendant la saison de floraison (lorsque le temps est souvent chaud, sec et venteux). Un apiculteur peut aider en installant des ruches dans le verger. L'agrodok 32 : « L'apiculture dans les zones tropicales » donne plus d'informations là-dessus. Dans certains cas, le cultivateur doit y mettre du sien, la pollinisation manuelle est souvent pratiquée pour les espèces fruitières du genre annona, les grenadilles et le palmier salak.L'annexe donne des informations concises sur la manière dont on pollinise les cultures listées.Les pratiques de protection des cultures sont liées au système de culture appliqué. L'utilisation des pesticides commerciaux se limite aux vergers et aux grandes plantations. Dans les vergers de petits arbres, tels que le mandarinier, le goyavier ou le pommier, les pesticides sont souvent appliqués excessivement. Les pratiques culturales intensives augmentent les frais de production à un niveau tel que le cultivateur ne peut pas risquer une mauvaise récolte, il essaye de protéger ses arbres avec tout pesticide qu'on lui recommande (et qui est disponible). Les applications routinières, sans tenir compte du degré d'infestation, sont pratique courante. De cette manière, on perturbe l'équilibre naturel entre les ravageurs et leurs prédateurs dans le verger. Ainsi, une application fomente la nécessité de procéder au traitement suivant. Par ailleurs, il y a de sérieux risques de santé : pour le cultivateur qui manipule le matériel et qui est exposé aux produits pulvérisés, pour les consommateurs au moment de manger les fruits, et pour les créatures qui vivent dans le sol et dans les cours d'eau alentour qui deviennent pollués.Il est impossible de traiter les grands arbres avec des petits pulvérisateurs (à dos) et le traitement des arbres de taille moyenne dans les vergers est une exception plutôt que la règle générale (par ex. ramboutan en Thaïlande, manguier aux Philippines). Lorsque le verger comporte un mélange de cultures fruitières il est difficile d'éviter une dérive partielle du jet de pesticide qui se déposera sur des arbres non ciblés.Les arbres parsemés dans les jardins de case, les jardins, en bordure des champs et des cours d'eau ne se prêtent pas à des traitements aux pesticides. Différentes mesures traditionnelles de protection des cultures sont pratiquées dans les jardins de case, mais principalement en faveur des petites plantes ou des activités de pépinière (par ex. utilisation de cendres de bois et d'extraits de plantes). Sur les troncs des grands arbres poussant dans des jardins, on voit souvent des colliers fabriqués en tôle ou avec des ronces, pour arrêter les rongeurs qui grimpent aux arbres. Les grands fruits, comme le jacquier, peuvent être ensachés pour les protéger contre les insectes, les oiseaux et les chauves-souris. Parfois on ensache également des fruits de taille plus réduite (par ex. les goyaves), notamment pour prévenir les mouches des fruits d'y déposer leurs oeufs. Dans l'ensemble, les jardiniers espèrent que la grande variété de plantes freinera le développement des ravageurs et des maladies et évitera les fléaux, mais ils acceptent également des pertes considérables comme faisant partie des réalités de la vie.L'on réalise maintenant que l'utilisation des pesticides devrait être radicalement diminuée en : ? abandonnant des applications routinières ; ? remplaçant les pesticides à large spectre par des produits qui tuent le ravageur cible sans nuire à d'autres organismes.Cette dernière approche n'est pas facile. Vous constaterez peut-être que votre choix se limite aux pesticides utilisés pour les cultures de rente de votre région, telles que le coton ou le café. Les pesticides sélectifs appropriés à votre culture ne seront peut-être pas disponibles.Stopper les applications routinières peut également poser problème : pour pouvoir effectuer un traitement au moment approprié, le cultivateur doit d'abord se familiariser avec les ravageurs et les maladies et leurs cycles de vie. En général, ces cycles de vie sont liés aux saisons, et, surtout pour les maladies et ravageurs qui complètent le cycle de leur vie sur l'arbre, au rythme de croissance de l'arbre. Pour donner un exemple, de nombreuses maladies deviennent endémiques au cours de la saison humide : les chancres, comme la maladie rose des branches (Corticium salmonicolor) affectent de nombreuses cultures fruitières tout au long de l'année, mais ils se propagent principalement avec la pluie. Ainsi, une façon relativement effective de combattre les chancres est de couper et brûler les branches affectées avant la fin de la saison sèche, pour ne laisser que peu de sources d'infection au moment de l'installation des pluies. L'exemple mentionné ci-dessus qui consiste à couper et brûler les chancres de la maladie rose des branches avant l'installation des pluies est également une question d'hygiène : il faut nettoyer, en choisissant le moment adéquat. Ensacher des fruits sur l'arbre, également mentionné dans ce qui précède, est laborieux mais peut en valoir la peine dans les zones où les mouches des fruits, les chauves-souris ou les oiseaux causent des dommages importants et où les fruits impeccables obtiennent des prix élevés. (Certains cultivars de manguiers et de goyaviers sont récoltés et consommés lorsqu'ils sont encore verts, avant que les vers des mouches des fruits n'éclorent des oeufs.)Les fourmis (mais également les pucerons, les cicadelles ainsi que certains autres insectes) déplacent des insectes immobiles vers des jeunes pousses, afin de récolter le miellat qu'ils secrètent. Les fourmis protègent leurs insectes contre leurs ennemis naturels. Il est donc important de lutter contre les fourmis. Des collets de papier collant sont attachés autour des troncs d'arbres afin d'attraper les fourmis (ainsi que quelques autres insectes sans ailes qui essayent de grimper aux arbres). Lorsqu'on utilise un insecticide pour lutter contre les fourmis, il suffit de le pulvériser sur les troncs.L'hygiène demande également de vérifier quelles sont les plantes qui sont des hôtes facultatifs d'un ravageur ou d'une maladie. Cette tâche est difficile, parce que toutes les informations ne sont pas toujours disponibles ou parce qu'il n'est pas dans vos moyens de lutter contre les hôtes facultatifs. Un exemple pratique est celui de l'abéria, une haie très utile en région montagneuse mais également un hôte pour les mouches des fruits des agrumes. Le cultivateur peu se contenter de tailler régulièrement sa haie, pour éviter qu'elle ne porte des fruits. Il est à conseiller de recueillir les fruits tombés car ces derniers sont souvent infectés par des ravageurs ou des maladies. Toutefois, ceci demande beaucoup de travail, puisqu'il faut le répéter souvent et que chaque fois les fruits devront être enterrés dans un fossé sous une couche de terre épaisse.La lutte biologique a un grand potentiel car tout organisme peut attraper des maladies et connaît des ennemis naturels. Les moisissures et les bactéries ainsi que les insectes souffrent de virus et d'autres bactéries ou moisissures. Les insectes connaissent également des prédateurs.La lutte biologique est en expansion, mais pas à la vitesse souhaitée. Les fruits tropicaux en bénéficient. Les cultivateurs d'agrumes, par exemple, peuvent demander à leurs collègues des régions subtropicales, comment ils sont arrivés à réduire radicalement le nombre d'applications de pesticides en ayant recours à des agents biologiques, ce qui a rétabli l'équilibre naturel. La mineuse du citronnier, Phyllocnistis citrella par exemple, est un ravageur très coriace malgré des pulvérisations fréquentes, mais présente moins de problèmes lorsqu'on réduit les traitements. Les pucerons ont toute une série de prédateurs : les guêpes parasitoïdes, les larves de coccinelle, les syrphes et les chrysopes. Les guêpes parasitoïdes et les coccinelles sont élevées puis lâchées en grands nombres dans les vergers afin de lutter contre les pucerons.Des formes intéressantes de lutte biologique ont vu le jour lorsque l'on a traité avec succès des arbres avec du Surround® pour réduire le stress provoqué par le soleil dans des conditions sèches. Le Sur-round® est un produit qui consiste simplement de fines particules d'argile, donnant aux arbres une couche réfléchissante lorsqu'on le pulvérise sous forme de bouillie avec de l'eau. Les arbres ainsi traités ont moins souffert de toute une série de ravageurs, y compris les vers, les cicadelles et les psylles. Le film blanc recouvrant les feuilles confond ou repousse certains insectes et agit comme une barrière pour d'autres insectes qui s'abstiennent de pondre leurs oeufs. Un produit simple qui ouvre de nouvelles possibilités dans le domaine de la protection des cultures !Pour plusieurs cultures fruitières, des cultivars tolérants ou résistants deviennent disponibles. Même les porte-greffes peuvent jouer un rôle. Les porte-greffes tolérants à la pourriture des racines sont recommandés pour l'avocatier, les porte-greffes résistants au virus de la tristeza pour les agrumes. On peut greffer la grenadille pourpre sur des semis de grenadille jaune qui sont résistants aux moisissures Fusarium du sol. Toutefois, la plupart de ces cultivars et porte-greffes tolérants ou résistants sont originaires des zones subtropicales. Pour les cultures fruitières purement tropicales, ce type de matériel n'est généralement pas disponible. 9 Récolter 9.1 Les fruits à maturité de cueillette ou à maturité de consommation ?Lorsqu'un fruit atteint sa taille définitive, on dit qu'il est arrivé à maturité. Un fruit à maturité ne se développera donc plus, pourtant, il continuera à mûrir. Chez certains fruits arrivés à maturité, le processus de mûrissage comprend une courte phase de mûrissage accéléré (le « pic climactérique »). On peut récolter ces fruits climactériques à tout moment dans l'intervalle de temps qui s'écoule entre la maturité de cueillette et la maturité de consommation. Si on les récolte dès qu'ils sont à maturité de cueillette, on peut utiliser la période de mûrissage pour transporter et commercialiser les fruits, il est même possible qu'ils devront rester encore quelques jours dans une coupe à fruits avant d'atteindre le stade de mûreté idéal pour la consommation. En outre, si les fruits sont réfrigérés ou gardés sous atmosphère contrôlée (par exemple sur un bateau de bananes) avant d'avoir atteint le pic climactérique, le mûrissage est reporté jusqu'au moment où les fruits sortiront de leur entrepôt. De cette manière, la durée de conservation des fruits climactériques peut être prolongée de plusieurs semaines ou mois, facilitant la commercialisation sur de longues distances.Pour certaines cultures, les fruits arrivés à maturité de cueillette mûrissent progressivement, à un rythme constant (fruits non climactériques). Il ne faut pas récolter ces fruits-là avant qu'ils aient atteint la maturité de consommation, car le processus de mûrissage s'arrête dès qu'ils sont cueillis. En général il est plus facile de déterminer la mûreté d'un fruit que de déterminer sa maturité de cueillette. Un fruit mûr change de couleur, dégage une odeur ou émet un son creux lorsqu'on le tapote (parce que les cavités de graines sont entièrement formées, par exemple chez les durians et les jacques). Mais comme nous l'avons déjà évoqué, c'est également une question de goût. Les cultivateurs d'agrumes peuvent cueillir à intervalles de temps quelques fruits pour les tester puis commencer la récolte lorsque le rapport sucre-acide est acceptable. Il existe des critères de maturité de la chair des fruits que l'on peut mesurer avec des équipements adéquats. Souvent, les supermarchés n'acceptent que des fruits dont le poids spécifique, l'indice de maturation (sugar-to-acid ratio) ou la teneur en matière sèche soluble dépassent une certaine valeur.Etant donné la grande taille de la plupart des arbres fruitiers tropicaux, la récolte sélective (plusieurs cueillettes pour ne récolter que des fruits à maturité de cueillette ou de consommation) est impraticable. En ou-tre, les arbres et les fruits souffrent des méthodes de récolte rudimentaires : ? Les cueilleurs grimpent à l'arbre, tirant sur les branches avec une crosse pour atteindre les fruits. ? La récolte se fait à partir du sol avec une perche en bambou à l'extrémité de laquelle est attaché un panier pour recevoir les fruits.Il est inefficace de grimper aux arbres puisque la plupart des fruits sont portés à la périphérie de la canopée. La cueillette à partir du sol est très lente et ne permet pas de déterminer le degré de maturité des fruits. Ce sont les échelles qui constituent un matériel approprié, (voir figure 18), mais les échelles longues sont onéreuses. En outre, les cueilleurs doivent apprendre à utiliser les échelles au préalable pour réduire les risques d'accidents. On peut faire tenir une échelle en l'appuyant de deux perches entrecroisées attachées sous un barreau, ce qui permettra l'accès aux fruits du bord de la canopée. Toutefois, pour récolter davantage de fruits de meilleure qualité avec moins d'efforts, il faut des arbres nanifiés.Dans la production fruitière professionnelle, la production même est la partie la plus facile du travail. Le gros du travail est constitué par la manutention post-récolte et la commercialisation, car les revenus issus de la fruticulture dépendent grandement de ces facteurs-là. Ces facteurs comprennent les aspects suivants : ? tri et classement ? lavage, protection contre les infections et la détérioration ? conditionnement ? entreposage ? transport ? canaux de commercialisation et points de vente ? exigences des points de ventes pour les produits frais et pour les produits destinés à la transformation. La portée du présent livret ne permet pas d'approfondir ces aspects.Généralement ceci constitue un des premiers sujets traités dans des livres couvrant la fruticulture, mais en réalité vous devriez avoir une claire idée de tous les autres aspects avant de commencer la planification de l'aménagement d'un verger. Vous devriez tenir compte des : ? différences de vigueur des différents cultivars, ? mesures pour gérer la vigueur des arbres (sècheresse, taille des racines, annélation, etc.), ? besoins par rapport à la pollinisation croisée.Traditionnellement, les vergers sont plantés « en carré », c'est-à-dire par ex. 10 x 10 m pour les manguiers. Cela convient parfaitement pour les semis de grands arbres qui développent des canopées énormes. Lorsque des arbres de dimensions réduites permettent de planter deux fois plus de pieds par ha, jusqu'à 200 (approximativement 7 x 7 m), il ne sera pas non plus utile d'adopter des tracés différents. Mais lorsqu'il est possible de planter 400 arbres ou plus par ha, les arbres devront garder des dimensions tellement réduites que vous pourriez leur permettre de former des lignes fermées ou des haies. Ceci implique que, avec 400 arbres par ha, au lieu d'avoir un espacement carré de 5 x 5 m, vous aurez un espacement de 6 x 4 m, la CULTURE EN LI-GNES devient alors une option intéressante. Il faudra s'assurer que suffisamment de lumière puisse pénétrer la haie pour produire des fruits de bonne qualité même sur les branches les plus basses. L'espacement carré se base sur la notion que tous les arbres se développent aussi bien et qu'il est possible de prédire avec suffisamment de précision quelle sera la taille des arbres adultes. Cette notion est erronée. En général on observe une grande variation dans les dimensions des arbres, même s'ils appartiennent à un même cultivar. Il arrive fréquemment que les arbres restent bien plus petits ou au con-traire se développent bien plus que ce qui n'avait été prévu. Une succession de bons rendements dès que l'arbre entre en production contribue beaucoup à limiter les dimensions de ce dernier.La figure 19 illustre que l'espace ouvert entourant les arbres plantés dans un espacement carré se transforme en allée dans le modèle de la culture en lignes. L'espacement réduit dans la ligne implique qu'un arbre plus vigoureux peut compenser pour un voisin plus faible. Lorsque la croissance est décevante, il faudra plus de temps aux arbres pour remplir les lignes et une éventuelle culture intercalaire dans les allées pourra être pratiquée pendant quelques années de plus. Lorsque la vigueur des arbres est excessive, l'espace des allées pourra servir pendant quelques années. Et s'il est impossible de contrôler cette vigueur, l'arrachage de la moitié des arbres aura pour résultat un nouvel espacement des lignes de 8 x 6.25 m.Par rapport à un espacement carré, on peut dire que la culture en lignes est un agencement des arbres très flexible. La culture en lignes se prête également à la plantation le long des courbes de niveau, ou en travers de la direction du vent dominant sur un site venteux. La culture en lignes connaît un essor maintenant que les cultivateurs se concentrent sur la nanification des arbres par le biais de la multiplication par clonage ainsi que d'autres méthodes permettant de contrôler la vigueur des arbres.Lorsqu'on utilise du matériel de plantation cloné ou des cultivars qui portent des noms, il est à conseiller de planter plusieurs cultivars côte à côte dans le verger afin de : ? étaler les risques si jamais un cultivar ne répond pas à vos attentes, ? faciliter la pollinisation croisée.Etant donné le manque d'informations essentielles il est risqué de se concentrer sur un seul cultivar. Pour la plupart des cultures, l'information disponible se limite à celle qui concerne les FRUITS : forme, couleur, goût, durée de conservation, etc. Pourtant, pour le fruiticulteur, des informations concernant les ARBRES, portant par exemple sur la vigueur, la productivité ou la tolérance aux maladies, sont tout aussi importantes. Les manuels n'ont pas grand-chose à dire au sujet de ces caractéristiques des arbres, en partie parce que ces dernières sont fortement influencées par les conditions de croissance locales (et chez les arbres greffés elles sont déterminées aussi bien par le porte-greffe que par le cultivar). Par conséquent, si les informations nécessaires ne sont pas disponibles au niveau local, l'espacement approprié est un coup de chance, les prévisions de rendement sont de la conjecture et les maladies et les ravageurs peuvent dévaster les arbres.Il sera donc nécessaire de regarder autour de vous, de consulter les agents de vulgarisation, ainsi que d'autres cultivateurs et des pépiniéristes. Si vous n'êtes pas sûr de votre affaire, plantez simplement les lignes 1, 3, 5, 7, etc. avec le cultivar principal et, par exemple, un autre cultivar dans les lignes 2, 6, 10, etc. et un troisième cultivar dans les lignes 4, 8, 12, et ainsi de suite. Planter trois cultivars de cette ma-nière permettra de créer les bonnes conditions pour la pollinisation croisée. En outre, le faible développement d'une ligne pourra être compensé par une croissance plus vigoureuse dans la ligne suivante (et si vous le savez à l'avance vous pouvez adapter l'espacement dans la ligne à la vigueur du cultivar). Les pratiques culturales sont ainsi facilitées car dans une même ligne les besoins par rapport à la taille, aux mesures de protection, à la récolte, etc. sont les mêmes.La croissance que connaissent les arbres pendant leurs premières années détermine en grande partie à quel moment les arbres entrent en production. Comme nous l'avons expliqué dans le chapitre 2, dans la plupart des cas, la croissance des arbres en production doit être entravée pour favoriser la fructification. Le cas échéant, vous pouvez stimuler la vigueur des arbres au cours des années précédant leur entrée en production sans courir de risques. Une charpente robuste avec des branches bien espacées, formées au cours de plusieurs périodes de poussée foliaire pendant les 2 premières années, est un atout dont on pourra jouir à vie. C'est la raison pour laquelle nous stressons ici qu'il faut prendre soin des arbres pendant les premières années.En général, les manuels conseillent de creuser de grands trous de plantation (c-a-d. 40 x 40 x 40 cm) bien avant la saison de plantation, et de garder séparés la couche superficielle du sol du reste de la terre. Ainsi, au moment de plantation, on pourra répandre la couche superficielle du sol sur les racines. C'est une bonne méthode lorsqu'on a beaucoup de temps sur les mains, mais en général il vaut mieux accorder la main d'oeuvre aux efforts de paillage et d'arrosage des jeunes pieds.Lorsqu'on compte tuteurer les arbres, il est à conseiller de commencer par placer les tuteurs. Plantez l'arbre sous le vent du tuteur, non pas contre le vent, pour éviter que l'arbre frotte contre le tuteur. Creusez un trou suffisamment grand pour accommoder les racines. Pour les arbres à racines nues, on peut étendre les racines dans un trou en forme de V qui contourne pour ainsi dire le tuteur, comme dans la fi-gure 20. Assurez-vous que l'union de greffe se situe bien au-dessus du niveau du sol, également après tassement du sol, pour éviter que le scion ne prenne racine.Souvent, les fruiticulteurs perdent l'intérêt qu'ils portaient initialement à leurs arbres au cours des longues années d'attente avant la première récolte. On peut le comprendre, mais c'est une grande erreur. Si vous avez investi pour acheter du bon matériel de plantation et pour planter soigneusement les pieds, vous devriez continuer à investir dans vos arbres. Dorlotez-les avec des applications généreuses de paillis. Au nécessaire, protégez-les du bétail, des vents violents, et du soleil ardent et arrosez-les. S'il vous est possible de retenir une certaine humidité dans le sol, les jeunes pieds réagiront bien aux applications de fumier ou d'engrais.Il faut accorder presque quotidiennement de l'attention aux jeunes arbres. Les mauvaises herbes grimpantes atteignent le sommet d'un jeune pied en très peu de temps. Les drageons et les pousses latérales qui apparaissent au bas du tronc gaspillent l'énergie de l'arbre en question et doivent être éliminés. Lorsqu'on s'y prend à temps, il suffit de les cueillir (avantages : demande peu de main d'oeuvre, peu de pertes d'énergie de croissance). Les grillons, les chenilles et les coléoptères qui se nourrissent la nuit peuvent en terminer rapidement avec les feuilles d'un petit arbre. Regardez attentivement, un abri érigé pour protéger les jeunes pieds cache souvent les premières indications de prolifération de mauvaises herbes. Des inspections fréquentes permettent de tuer dans l'oeuf d'éventuelles infestations : on pourra attraper les grillons et les chenilles à la main. Ceci peut sembler primitif, Les cultures fruitières sont listées par ordre alphabétique de la famille à laquelle ils appartiennent, pour montrer quelles cultures sont étroitement liées, ayant des caractéristiques en commun. Le tableau donne les caractéristiques des fleurs (y compris la compatibilité en ce qui concerne la pollinisation) et des fruits. Les méthodes courantes de multiplication et le statut horticole sont également présentés. Le numéro dans la première colonne correspond au numéro imprimé en caractères gras dans l'index. 14,21,27,29,36,44,45,46,48,53,54,63,73,74,75,76,78 6,13,14,16,17,18,22,24,25,40,44,67,68,69 21,29,36,44,46,69,76 ;20 Bananier,plantain Musa 6,9,13,14,16,17,18,22,24,25,26,40,44,67 ","tokenCount":"13224"} \ No newline at end of file diff --git a/data/part_3/2378893045.json b/data/part_3/2378893045.json new file mode 100644 index 0000000000000000000000000000000000000000..093708fb8672151d17e775e86003373a0637d52b --- /dev/null +++ b/data/part_3/2378893045.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"a98a4e419edc1b298c0efdd5dcec46b8","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/3a2e6b1b-4273-4985-8c2f-ead226220e8b/retrieve","id":"138753707"},"keywords":[],"sieverID":"939855fa-09af-4c2d-843c-f0db926c331a","pagecount":"6","content":"• The results of a recent CIAT/CCAFS study reveal three major trends in the roles that various crop species play in global diets:(1) a steady increase in the importance of major cereals, (2) the growing importance of oil crops, and (3) a decline in regionally important crops. • CGIAR research on three global staples -wheat, rice and maize -continues to be critical because of their increasing importance for the global food system. • The rising global significance of oil crops creates new opportunities to benefit farmers in parts of the developing world but also poses major agro-ecological challenges. • Increased investment in developing and promoting nutrient-rich, stress-tolerant varieties of crops that are becoming relatively marginalized (e.g., sorghum, millets, cassava, and yams) offers a means to diversify the global food system and enhance long-term food security. • Agricultural research should pursue a systems approach aimed at enhancing the nutrition of an increasingly urban world population, while conserving natural resources.In the five decades during which CGIAR has worked to reduce poverty and hunger through agricultural research, very substantial changes have occurred in human diets worldwide and in the production systems that sustain them. National diets around the world have become increasingly similar, gaining in calories, protein, and fat, as animal-derived foods and high-calorie plant foods (oils and sugars) have risen in importance. The proportion of diets consisting of major cereals and oil crops has increased, while regionally and locally important cereals, root crops, and oil crops have generally become further marginalized. Developing countries show the most significant shifts in diets over this period.These changes have been driven by globalization, urbanization, and economic development, including agricultural research. While this \"nutrition transition\" has enhanced food security by making macronutrients more readily available worldwide, it has had mixed effects on micronutrient sufficiency, and the over-consumption of macronutrients has contributed to a global surge in diet-related non-communicable diseases. Dietary change is also linked with greater homogeneity in farmers' fields and the associated commodity trading systems, thus heightening concerns about genetic vulnerability to biotic and abiotic stresses as well as food system vulnerability to climatic and political instability. This policy brief provides an overview of the key results from a recent study published by the International Center for Tropical Agriculture (CIAT) and CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) (Khoury et al., 2014), which has important implications for CGIAR research priorities.Since the creation of CGIAR, global diets have undergone significant changes, which are reflected in three main crop trends:1. The major cereals -wheat, rice, and maize -remain primary calorie and protein sources for the developing countries of Africa, Asia, and Latin America and the Caribbean. These crops have gained importance in diets outside their regions of origin, and their overall relative contribution to diets in developing countries has gradually expanded. Trends in global diets clearly justify CGIAR research on the staple cereals wheat, rice, and maize (Figure 1). As these crops gain importance in global diets, both their production stability and nutritional quality become ever more critical issues. The extensive history of research with these crops in diverse regions makes CGIAR a crucial partner in global efforts to support these crops in the face of land, water, and other resource limitations; climate change; and agriculture's increasing pressure on ecosystems. CGIAR should take the following actions to prepare the world's most important food crops to meet increasing demand:• Conserve and describe the full range of genetic diversity within these crops and their wild relatives and make diverse genetic material and associated information available to researchers and breeders.• Facilitate sharing of plant genetic resources through policy leadership, particularly in support of the International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA).• Breed more productive and resilient varieties, with emphasis on enhancing nutritional quality by means of biofortification.• Through agricultural extension and development partnerships, promote widespread adoption of genetically diverse, locally adapted varieties to minimize vulnerability associated with genetic uniformity.• Reduce the negative environmental impacts of major crops through research aimed at maximizing the eco-efficiency of production practices.CGIAR has historically given little emphasis to the oil crops that have become an important part of the global diet over the past 50 years (Figures 1 and 2). These crops have created new market opportunities for farmers in the developing world, but only sparse benefits have accrued to low-resource growers. These crops are associated with major impacts on natural ecosystems in developing countries through deforestation and contribute significantly to greenhouse gas emissions. Excessive consumption of oil crops has also contributed to the global rise in dietrelated disease. CGIAR research collaborations could include:• Develop and promote eco-efficient production and processing methods through engagement with major actors in oil value chains for the purpose of minimizing environmental damage.• Enhance the genetic diversity and nutritional traits of oil crops through crop research, policy advocacy, and public-private partnerships aimed at developing a wider range of productive, nutritious, and well-adapted varieties.• Diversify oil crop production, processing, and markets through research on crops of particular importance for developing countries and with potentially high direct benefits for farmers (e.g., coconut, groundnut, sunflower oil, cottonseed oil, olives, rape Diets in developing countries increasingly comprise major globalized crops. and mustard, sesame, and shea nut).• Support education, advocacy, and policy development aimed at increasing availability and access to, and in promoting the judicious consumption of, healthy oil crop products.Regionally significant cereals, root crops, and oil crops, many of which are especially important for the rural poor in developing countries, have generally remained static or declined in terms of their relative contribution to national diets since CGIAR's inception (Figure 2). Since many of these crops are both stress tolerant (Figure 3) and nutritionally rich, investment in their improvement offers a wise long-term option for diversifying global food supplies, as the environmental challenges that agriculture faces intensify and as more people suffer from the negative health effects of the nutrition transition.The monumental advances in our capacity to generate genetic information and associated breeding tools and the experience gained from application of these tools to major crops provide tremendous potential for accelerating the improvement of crops that are being marginalized in developing country diets. One of the keys to CGIAR's success in crop improvement has involved the expansion of crops into new production regions, and many regionally important crops have shown significant potential for cultivation elsewhere. The recent rise of quinoa shows how global food supplies can be diversified through research and advocacy, against a background of growing consumer interest in diverse and healthy food alternatives. Given CGIAR's worldwide reach and broad experience with such crops, it is well positioned to facilitate crop-level diversification through several key steps:• Identify regionally and locally important crop species -both among and beyond the current mandate crops -that show potential for improved productivity, enhanced nutritional quality, and greater competitiveness under challenging conditions, and conserve as well as foster the use of their genetic diversity.• Breed productive and resilient varieties of these crops; make these materials widely available to breeders and other researchers; facilitate their uptake through support for agricultural extension and training; and develop robust seed systems for their multiplication and distribution.• Stimulate policy measures that strengthen market demand for these crops, both within and outside their traditional areas of distribution.• Perform targeted biofortification of crops that are locally or regionally important to address nutrient deficiencies.• Support education, advocacy, and policy development aimed at mitigating the effects of malnutrition through dietary diversification.Since the inception of CGIAR, diets in developing countries have shifted dramatically, including greater amounts of major oil crops and lesser quantities of regionally important staples. A comprehensive view of food security emphasizes both availability and access to adequate and nutritious food as well as empowerment of consumers to use this food for improved health. Over the long term, food security also requires actions to mitigate the negative ecological effects of food systems and adapt agriculture to future climatic variability and natural resource limitations. Achieving long-term food security thus requires a systems approach to agricultural research. From a crop diversity perspective, such an approach aims to build food systems in which a broad range of crops can flourish in terms of production, markets, and consumption.The increasing homogeneity evident in diets in developing regions, in concert with the nutrition transition, raises the urgency for further research to explain the relationship between food diversity and human nutrition, and to translate the results of this research into forms that are useful for consumers. The rising healthcare costs prompted by diet-related non-communicable diseases will increase the demand for such research and advocacy.Local and national food security depends increasingly on production stability in other regions, trade dynamics and related economic policies, and the price of non-renewable energy needed for large-scale production and transport. Research aimed at bolstering food security should include assessments of the appropriate balance between local production and importation. It is also critical for research to analyze trade policy and seek means to increase food safety within large-scale production, packaging, and transport systems.Increasing urbanization worldwide lends real urgency to research needed for achieving sustainable food production in densely populated and peri-urban areas, and for overcoming micronutrient deficiencies in urban \"food deserts.\"Several food crops important in diets in developing countries -including sugar crops and a number of oil crops (e.g., palm oil, coconut, and sunflower oil)are not covered by CGIAR crop mandates. Vegetables and fruits also contribute importantly to protein and food weight, but the relative importance of the specific crop species belonging to these general commodity categories are not elucidated in globally comparable data on national food supplies. Furthermore, these statistics do not fully capture the total range of crop diversity produced and consumed in different communities within countries, and this failure is especially marked for crops cultivated in small areas, such as vegetables in home gardens. The importance of such crops to food security, particularly for the poor, can be very significant. With the urgent need to increase availability and access to micronutrient-rich, lower calorie foods, the expansion of CGIAR research on vegetables and fruits is absolutely warranted. This research requires a more robust system for monitoring food crop production and consumption at the national, community, and household levels, in order to identify the full range of factors contributing to diets, to work to ensure that important diversity is not lost under changing food systems, and to conceptualize the options potentially available for further diversifying the global food system. The need for research focused on reducing post-harvest waste is also particularly acute for these crops.The increasing importance of animalderived products in developing-country food supplies provides a strong argument for further investments aimed at achieving sustainable livestock production, including more feed and forage crop research. Given the negative health impacts of over-consumption of energy-dense animal foods together with concerns about the environmental impact of livestock, CGIAR should help develop policies that promote healthier animal-derived foods with lower environmental impact, and it should conduct research on attractive protein and fat alternatives to livestock products, including crops and potentially insects and microalgae.The complex, interrelated environmental, political, economic, and nutritional challenges associated with food security justify the allocation of over half (56%) of current CGIAR Research Program funding to various systems-oriented programs dealing with themes that range from drylands, humid tropics, aquatic agricultural systems, forests and agroforestry, and water to policy and markets, nutrition, climate change, and genetic resources conservation.Funding for CGIAR Research Program crops generally parallels the importance of these crops for food supplies in developing countries, particularly in terms of calories (Figure 4) and less so for protein and fat (see Supporting Information). Almost 70% of current funding on specific crops and livestock is directed toward rice, maize, and wheat, with 26% devoted to other mandate crops and 5% to animal products.As research funding not only follows the importance of particular crops in food supplies, but also influences it, the elevation of diverse and relatively neglected cereal, pulse, root, and oil crops in global and regional food supplies will require increased investment. It is remarkable that CGIAR contributes so significantly to agricultural research, even though its funding represents only 3% of public investment in agricultural R&D worldwide. Since partnerships make this possible, CGIAR must strengthen its efforts to create new synergies with well-funded national agricultural research programs as well as with the private sector, which now accounts for over 20% of global agricultural research. CGIAR continues to play a critical role in the conservation and development of most of the food crops of greatest importance for the provision of calories, protein, and fat in developing-country diets. Its research has increasingly been contextualized within biodiversity conservation, natural resource management, and ecosystem function needs, and broadened to include the contribution of animal-derived foods to global production systems. Increased research on nutrition and health as well as policy and markets has expanded crop research beyond its original concern with macronutrient availability and identified key steps for extending the benefits of agricultural research to marginalized producers and consumers. These developments have been essential for widening the impact of CGIAR work on food security.Given the significant changes in global diets documented here and their long-term implications for agricultural productivity and stability as well as human health, future research should:• Continue to safeguard and improve major staple crops.• Extend the benefits of emerging crops to more farmers in an eco-efficient manner.• Aggressively promote the development of previously neglected crops that are resilient and nutritious.• Address food security in a holistic manner through the development of ecologically sensitive and nutritionally diverse food systems.• Better explain the relationships between food diversity and nutrition, while closely monitoring this diversity and advocating for its use to improve human health.International Center for Tropical Agriculture Since 1967 / Science to cultivate change","tokenCount":"2284"} \ No newline at end of file diff --git a/data/part_3/2385646506.json b/data/part_3/2385646506.json new file mode 100644 index 0000000000000000000000000000000000000000..11fb41eceab482f30d184ad3b59d2a2ab229eb12 --- /dev/null +++ b/data/part_3/2385646506.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"6cbb95f7cc3c7bcf8bdf2127a5945a4f","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/a57c08c2-1309-4e38-9d84-74e3c2f77955/content","id":"961093801"},"keywords":[],"sieverID":"9d35b37d-18cd-42a9-ba30-98a8946da9d8","pagecount":"13","content":"Crop residue management and tillage are known to affect the soil bacterial community, but when and which bacterial groups are enriched by application of ammonium in soil under different agricultural practices from a semi-arid ecosystem is still poorly understood. Soil was sampled from a long-term agronomic experiment with conventional tilled beds and crop residue retention (CT treatment), permanent beds with crop residue burned (PBB treatment) or retained (PBC) left unfertilized or fertilized with 300 kg urea-N ha −1 and cultivated with wheat (Triticum durum L.)/maize (Zea mays L.) rotation. Soil samples, fertilized or unfertilized, were amended or not (control) with a solution of (NH 4 ) 2 SO 4 (300 kg N ha −1 ) and were incubated aerobically at 25 ± 2 °C for 56 days, while CO 2 emission, mineral N and the bacterial community were monitored. Application of NH 4 + significantly increased the C mineralization independent of tillage-residue management or N fertilizer. Oxidation of NH 4 + and NO 2 − was faster in the fertilized soil than in the unfertilized soil. The relative abundance of Nitrosovibrio, the sole ammonium oxidizer detected, was higher in the fertilized than in the unfertilized soil; and similarly, that of Nitrospira, the sole nitrite oxidizer. Application of NH 4 + enriched Pseudomonas, Flavisolibacter, Enterobacter and Pseudoxanthomonas in the first week and Rheinheimera, Acinetobacter and Achromobacter between day 7 and 28. The application of ammonium to a soil cultivated with wheat and maize enriched a sequence of bacterial genera characterized as rhizospheric and/or endophytic independent of the application of urea, retention or burning of the crop residue, or tillage.Soil microorganisms are vital in the cycling of carbon (C), nitrogen (N) and phosphorus (P). Nitrogen enters an ecosystem through the conversion of dinitrogen (N 2 ) to ammonium (NH 4 + ) by free living or symbiotic N 2 fixators microorganisms. When ammonium is available in soil it is oxidized by ammonium oxidizing bacteria and ammonium oxidizing archaea to nitrite (NO 2 − ) and by nitrite oxidizing bacteria to nitrate (NO 3 − ). Nitrate, which easily dissolves in water, is readily taken up by plants 1 . Nitrifiers play a central role in N cycling and their activity is controlled by environmental factors, such as NH 4 + availability, pH, salinity, water content, temperature and agricultural practices 2 .Conventional agricultural practices (CP) in Mexico include generally monoculture and tillage, with large variations in N fertilizer applied. Crop residue is removed often for fodder or burned. These intensive agricultural practices have reduced strongly soil organic matter content and deteriorated most arable soils 3,4 . Soil organic matter is not replenished as crop residues are removed and tillage breaks up aggregates liberating physically protected organic material. The decrease in soil organic matter and a less developed soil structure reduces water infiltration and the absent of soil cover promotes soil and wind erosion. Conservation agriculture (CA), i.e. minimum tillage, crop rotation and retaining some of the crop residue on the soil surface, has been suggested as an alternative to stop the decline in soil fertility and even reverse it 5 . A long-term field trial was started by the \"International Maize and Wheat Improvement Center\" (CIMMYT) to investigate the effect of different agricultural practices, i.e. tillageand residue management, combined with different N fertilization practices on yields and soil characteristics in the Yaqui Valley (near Ciudad Obregon, Sonora) in north-western Mexico in 1992 6 . In the Yaqui Valley, farmers mainly grow durum wheat (Triticum durum L.) in monoculture during the winter season under furrow irrigation and sometimes maize as summer crop 6 . Crop residue is incorporated through tillage or burned.The field trial had a wheat and maize (Zea mays L.) crop rotation. This study used a subset of treatments with two N fertilizer application rates (no fertilizer versus 300 kg urea-N ha −1 for wheat) and three tillage-residue managements (tilled bed planting with residue incorporated [CT treatment] and permanent beds with residue burned [PBB treatment] and retained [PBC treatment]). Earlier research suggested that the retention of crop residue might lead to a limited N availability in the soil and this might affect C and N dynamics, grain quality and the bacterial communities 7,8 . High urea fertilization rates affect nitrifiers and ureolytic soil microbial communities 9 . For instance, the application of inorganic fertilization enriched Bacillales in the maize rhizosphere 10 . It accelerated the mineralization of soil organic matter the first days after N fertilizer application 11 and stimulated nitrification activity in soil (e.g. 12,13 ). Therefore, treatments were sampled in triplicate and soil from each treatment (n = 6) was amended with 300 mg NH 4 + -N in the laboratory or left unamended and incubated aerobically for 56 days, while emissions of CO 2 , dynamics of mineral N and the bacterial community were monitored. The objectives of this study were to determine how the bacterial communities were affected by (i) the tillage-residue management, (ii) the application of inorganic N fertilizer in the field and (iii) the application of NH 4 + in the laboratory. We found that the application of ammonium to an unfertilized or N fertilized soil cultivated with wheat and maize enriched a sequence of bacterial genera characterized as rhizospheric and/or endophytic independent of the agricultural practices applied.Carbon and nitrogen mineralization. Application of NH 4 + and N fertilizer increased significantly the CO 2 emitted after 56 days (P < 0.05), but tillage-residue management did not affect it (Fig. 1). The amount of NH 4 + in the unamended fertilized and unfertilized soil remained < 10 mg N kg −1 soil. The NH 4 + -N concentration in the unfertilized soil amended with 300 mg NH 4 + -N decreased sharply and was ≤ 18 mg N kg −1 soil in the CT and PBC treatments after 28 days, but still 105 mg N kg −1 soil in the PBB treatment and significantly higher than in the CT and PBC treatments (P < 0.05). The NH 4 + -N concentration in the soil fertilized with 300 kg urea-N ha −1 and amended with 300 mg NH 4 + -N dropped even faster than in the unfertilized and was ≤ 7 mg N kg −1 soil after only 7 days.The concentration of NO 2 − remained < 0.2 mg N kg −1 soil in the unamended soil, but application of NH 4 + increased it sharply (Fig. 1). The NO 2 − concentration reached a maximum at day 3 in both the fertilized and unfertilized soil amended with NH 4 + and decreased thereafter, but the decrease was faster in the fertilized than in the unfertilized soil. The concentration of nitrate remained < 13 mg N kg −1 soil in the unamended unfertilized soil and < 40 mg N kg −1 in the unamended fertilized soil. The application of NH 4 + increased the concentration of nitrate sharply, with the fastest increase found in the fertilized soil. Of the 300 mg NH 4 + -N applied, 135 mg N kg −1 was not accounted for as NO 2 − or NO 3 − in the unfertilized soil and 122 mg N kg −1 in the fertilized soil after 56 days.A total of 3,243,711 joined paired-end, high quality and chimera-free sequences were obtained from the 288 soil samples. Clustering yielded 78,215 bacterial OTUs based on 97% nucleotide similarity cutoff. The rarefaction curves of the number of OTUs versus the number of sequences per treatment were asymptotic (Fig. S1a). As such, a sufficient sequencing depth was obtained and analyzing more sequences would have yielded only a limited number of more OTUs. The average Good's coverage was 83%.Overall, 38 different bacterial phyla, 111 classes, 180 orders, 235 families and 387 genera were detected in the soil. Proteobacteria (relative abundance 51.91%) was the dominant bacterial phylum in soil followed by Acidobacteria (20.48%) and Firmicutes (9.97%) (Fig. S2). Bacillus (6.04%) was the dominant bacterial genus followed by Pseudomonas (4.49%) and Halomonas (4.38%) (Fig. S3).The bacterial diversity dynamics measured in terms of Hill numbers at q = 0, 1 and 2 were similar in the different treatments of the unamended unfertilized and fertilized soil and showed a sharp drop at day 56 compared to day 28 (Fig. S1b). Application of NH 4 + changed the dynamics of the Hill numbers compared to the unamended soil, but there was no significant effect of treatments or application of fertilizer.+ -amended soil as affected by tillage-residue management. A large number of bacterial groups assigned up to the level of genus was significantly affected by tillage-residue management in the unamended and NH 4 + amended unfertilized and fertilized soil (P < 0.05) (Table S1). The PCA showed a clear effect of time on the bacterial community in the NH 4 + -amended soil, but not always the effect of tillage-residue management (Figs. 2 and 3). The perMANOVA analysis showed that time and tillage-residue management had a highly significant effect on the bacterial community structure in the fertilized and unfertilized unamended and NH 4 + -amended soil (P ≤ 0.004, Fig. 2). Additionally, the in-field N fertilizer rate had a highly significant effect on the bacterial community structure in both the unamended and NH 4 + -amended soil and affected significantly the relative abundance of a wide range of bacterial groups (P < 0.001).+ . Application of NH 4 + to soil had a strong, often immediately and sometimes a long-lasting effect on the relative abundance of a wide range of bacterial groups in the unfertilized and fertilized soil (Figs. 4, S4, S5). The relative abundance of the bacterial groups was affected in a similar way, but the effect was mostly smaller in the fertilized than in the unfertilized soil. Some bacterial groups in the N fertilized soil also responded more rapidly to the application of ammonium so they appeared to be better adapted to N applications than the same bacterial groups in the soil that was not fertilized with urea in the field. A sequence of bacterial genera was enriched highly significantly by the application of NH 4 + , compared to the unamended soil in both the fertilized and unfertilized soil, i.e. Achromobacter, Acinetobacter, Enterobacter, Flavisolibacter, Pseudomonas Rheinheimera (Figs. 4 and S5). Sometimes the relative abundance of the bacterial genus showed a sharp increase on only one day when NH 4 + was applied compared to the unamended soil, e.g. Achromobacter on day 28, the effect on others lasted longer, e.g. Acinetobacter, Pseudomonas and Rheinheimera, while still others were sometimes enriched on certain days while on other days their relative abundance decreased, e.g. Rubrobacter and Steroidobacter. The relative abundance of a wide range of bacterial groups decreased in soil amended with NH 4 + . The effect was mostly small except for the enrichment of members of Bacillus in the unamended soil on day 56.The PCA separated the bacterial community in the NH 4 + -amended soil from the unamended soil most clearly at day 0, 1 and 3 (Fig. 3). It was only after 28 days that the bacterial community in the NH 4 + -amended soil resembled that in the unamended soil. Consequently, the effect of time and application of NH 4 + on the bacterial community was highly significant, but also their interaction (P < 0.05). The effect of application of NH 4 + on the bacterial communities was larger than that of the time considering the F values, but it was for a short period of time, from 3 to maximum 5 days (Fig. 3).Members of only one NH 4 + oxidizer, i.e. Nitrosovibrio, and one NO 2 oxidizer, Nitrospira, were detected in the soil (Fig. 1). The relative abundance of Nitrosovibrio was significantly higher in the fertilized than in the unfertilized soil, but not that of Nitrospira (P < 0.001). Treatment had no significant effect on the relative abundance of Nitrosovibrio and Nitrospira but the application of NH 4 + did on certain days. For instance, members of Nitrosovibrio and Nitrospira were enriched in the NH 4 + -amended soil on day 56. Principal component analysis (PCA) with the converted sequence counts of all bacterial groups classified up to the genus level using the centred log-ratio transformation (aldex.clr argument, ALDEx2 package 14 ) in the unfertilized soil or soil fertilized with 300 kg urea-N ha −1 left unamended with conventional tilled beds (CT) at day 0, 1 and 3 (filled green square), at day 5, 7 and 14 (filled orange square) and at day 28 and 56 (filled brown square), permanent beds with crop residue burned (PBB) at day 0, 1 and 3 (filled green circle), at day 5, 7 and 14 (filled orange circle) and at day 28 and 56 (filled brown circle) and permanent beds with crop residue retained (PBC) at day 0, 1 and 3 (filled green triangle), at day 5, 7 and 14 (filled orange triangle) and at day 28 and 56 (filled brown triangle) or amended with 300 mg NH 4 + -N kg −1 dry soil with CT at day 0, 1 and 3 (filled red square), at day 5, 7 and 14 (filled blue square) and at day 28 and 56 (filled black square), PBB at day 0, 1 and 3 (filled red circle), at day 5, 7 and 14 (filled blue circle) and at day 28 and 56 (filled black circle) and PBC at day 0, 1 and 3 (filled red triangle), at day 5, 7 and 14 (filled blue triangle) and at day 28 and 56 (filled black triangle), incubated aerobically at 25 ± 2 °C for 56 days. F and p values were determined with a perMANOVA analysis.Soil functional profiles, and carbon and nitrogen pathway genes. Some clear changes were detected in metabolic processes related to the C and N cycling as determined with FAPROTAX (Figs. S6, S7, S8). Tillage-residue management and application of fertilizer or NH 4 + had a highly significant effect on the carbon and nitrogen pathway genes (Fig. S7). Application of NH 4 + increased the relative abundance of some carbon and nitrogen pathway genes sharply sometimes (Fig. S8). For instance, the relative abundance of the potential ligninolysis showed a large increase in the NH 4 + -amended soil compared to the unamended soil on day 0 and 1 Figure 3. Principal component analysis (PCA) with the converted sequence counts of all bacterial groups classified up to the genus level using the centred log-ratio transformation (aldex.clr argument, ALDEx2 package 14 ) in the unfertilized soil left unamended with permanent beds conventional tilled with residue retained (CT treatment) or permanent beds with crop residue burned (PBB treatment) or permanent beds with crop residue retained (PBC treatment) at day 0, 1 and 3 (filled green square), at day 5, 7 and 14 (filled orange square) and at day 28 and 56 (filled brown square), or ammonium-amended at day 0, 1 and 3 (filled red square), at day 5, 7 and 14 (filled blue square) and at day 28 and 56 (filled black square), and in soil fertilized with 300 kg urea-N ha −1 left unamended at day 0, 1 and 3 (filled green circle), at day 5, 7 and 14 (filled orange circle) and at day 28 and 56 (filled brown circle) or amended with 300 mg NH 4 + -N kg −1 at day 0, 1 and 3 (filled red circle), at day 5, 7 and 14 (filled blue circle) and at day 28 and 56 (filled black circle) incubated aerobically at 25 ± 2 °C for 56 days. F and p values were determined with a perMANOVA analysis.but not thereafter, while that of the potential aromatic compound degradation was enriched on days 7, 14 and 28. Application of N fertilizer enriched the potential nitrification, while it was reduced in the NH 4 + -amended soil compared to the unamended soil until day 28 but higher on day 56. The nitrite reductase (nirD gene, COG2146) and COGs related to transportation and assimilation of N compounds were the most abundant, e.g. glutamine synthetase (COG0174), N-acetylglutamate synthase (COG1246) and ammonium transporter (COG004) (Fig. S9). The perMANOVA results showed that N-cycle related genes were highly significantly affected both by tillage-residue management and NH 4 + -N application (P < 0.001).Carbon and nitrogen mineralization. The soil in the CT, PBB and PBC treatments at CENEB was N depleted, even in the soil fertilized with 300 kg urea-N ha −1 for wheat, as application of 300 mg NH 4 + -N more than doubled the emitted CO 2 . Previous findings showed that although the retention of crop residues and fertilization increased yield and wheat grain quality it affected N availability in soil 7,8 . As such, the amount of C substrate available for heterotrophs was high but the mineral N severely limited even in the fertilized soil, i.e. C mineralization was impeded by the lack of mineral N so application of 300 mg NH 4 + -N stimulated strongly microbial metabolic activity. The composition, e.g. N availability, and the amount of crop residue left in the field will determine its decomposition 15 . The maize and wheat crop residues left in the field had a high C-to-N ratio (approximately 80 for wheat and 57 for maize, USDA Natural Resources Conservation Service (soils.usda.gov/ sqi)) so all mineralized N was immobilized by the soil microorganisms. The soil was so N depleted that more than a third of the 300 mg NH 4 + kg −1 applied was not accounted for after 56 days. Losses of NH 4 + through abiotic processes, e.g. NH 3 volatilization, cannot be excluded but were assumed to be small. The soil was only slightly alkaline (pH between 7.7 and 8.1) and the soil was mixed immediately after the ammonium was applied to reduce possible NH 3 volatilization so most of it was immobilized by the soil microorganisms. The amount of mineral N immobilized in the fertilized soil was similar (i.e. 122 mg NH 4 + -N kg −1 ) after 56 days.Alpha diversity. The effect of tillage-residue management and crop residue on soil microbial diversity is highly variable and depends on environmental and edaphic factors, and soil nutrient dynamics 16,17 . Some studies found a higher bacterial diversity, i.e. the variability of species, in limited or zero tillage compared to conventional tillage 18 , while others showed little or no effect of tillage on both bacterial richness and diversity 19,20 . In this study, tillage-residue management had no effect on bacterial diversity and richness.Application of N sources also affects microbial diversity, but their possible effect depends on soil type and fertilizer rates 17,21 . For instance, Staley et al. 22 studied three urea fertilization regimes on eight different arable soils. They observed only a decrease in soil bacterial diversity at the highest fertilizer application rate, i.e. 500 mg urea-N kg −1 , and the effect depended on soil characteristics. Fierer et al. 23 , however, found that the bacterial diversity was affected by N fertilizer application rates as found in this study. However, application of ammonium to the soil increased significantly bacterial richness.Soil bacterial community as affected by tillage-residue management. Agricultural practices, such as crop residue management and tillage, are known to affect the bacterial community structure 19,24 . Crop residue management and the composition of the organic material left in the field affects the bacterial community 25 . Retaining crop residue in the field provides heterotrophs with C substrate and enriches copiotrophs. The characteristics of the crop residue, such as its lignin and (hemi)cellulose content and its C-to-N ratio, determine its availability for the soil microorganisms and which of them will be enriched. Kraut-Cohen et al. 26 reported that even a single tillage event had a significant effect on some microbial groups. Tillage brings crop residue in direct contact with the soil microbial community and breaks up aggregates liberating previously physically protected organic material 27 . These changes in organic material availability will enrich some microorganisms at the expense of others 28 .Short and long-term inorganic N application did not affect the bacterial community structure in an agricultural soil in Utah 29 , but in this study the effect of N fertilizer application on the bacterial community structure was significant. The length of the experiment, i.e. 20-y, and experimental conditions, such as soil characteristics and agricultural practices, will determine if N fertilizer application will alter the bacterial community structure. In this study, wheat and maize residue, both characterized by a high C-to-N ratio, enriched certain bacteria, such as Bacillus, while application of N fertilizer enriched others, such as Kaistobacter.wheat and maize in rotation, a bacterial community had developed adapted to a limited N availability even in the soil fertilized with 300 kg urea-N ha −1 for wheat. Application of NH 4 + allowed some bacteria to mineralize the C substrate with a high C-to-N ratio. As a result, the bacterial community structure changed immediately when NH 4+ was applied to soil and was clearly different from the unamended soil. At day 5, the bacterial community structure in the NH 4 + -amended soil changed and started to resemble that in the unamended soil so that after 28 days the bacterial community structure in the NH 4 + -amended soil was similar to that in the unamended soil. Application of NH 4 + stimulated the metabolic activity and consecutive growth of specific bacterial groups. Most of these are well known rhizosphere and/or endophytic root bacteria often with plant growth promoting capacity and a copiotrophic lifestyle. Members of Flavisolibacter and Pseudomonas were the first group of bacteria enriched by the application of ammonium with the latter becoming the dominant bacterial genus at the onset of the experiment. Both genera are considered plant growth promoting rhizobacteria (PGPR) 30,31 . Pseudomonas shows rapid growth and can use various substrates as nutrients with a capacity to survive different stress conditions and therefore is a good colonizer of soil 32 . Its members are enriched in the rhizosphere 33 and have been found abundantly as endophyte in the roots, stems, leaves, pericarp and seeds of tomato plants 34,35 . Most members of Pseudomonas have a large metabolic versatility, such as degradation of aromatics and assimilatory N reduction to ammonium 36 , and they can protect plants against pathogens 30 .Members of Enterobacter were the next bacterial genus enriched when NH 4 + was applied to the N depleted soil. Enterobacter is also considered a PGPR and has also been found abundantly as endophyte in the roots, stems, leaves, pericarp and seeds of tomato plants 34 . Some strains of E. cloacae strains can fix substantial amounts of N 2 and have other PGPR characteristics 37 . Akita et al. 38 reported that the strain E. oligotrophica could grow in nutrient poor (oligotrophic) medium, but its growth was not affected by high-nutrient medium. Interestingly, Niu et al. 39 reported that E. cloacae was a member of simplified synthetic bacterial community that contained seven strains (also Pseudomonas putida) obtained through host-mediated selection of distinctive microbiota assembled from maize roots and it played the role of keystone species in this model ecosystem.Rheinheimera, Acinetobacter and Pseudoxanthomonas were the next bacterial genera enriched strongly in the NH 4 + -amended soil. Members of Rheinheimera (i.e. R. hassiensis and R. muenzenbergensis) have been detected in the rhizosphere of false rye barley (Hordeum secalinum Schreb.) 40 and it was the dominant bacterial genus in the rhizosphere of hardy sugar cane (Saccharum arundinaceum Retz.) grown on organometallic pollutants-rich hazardous distillery sludge 41 . It was also the dominant bacterial genus in the endophyte-enriched root-associated microbiome of rice (Oryza sativa) cultivated in soil for 55 days 42 . Members of Pseudoxanthomonas are also rhizosphere bacteria 32 and the strain P. suwonensis J1 isolated from soil enriched with rotten leaves and wood has been described as a cellulose-degrading bacterium 43 . Dong et al. 34 studied the bacterial community in the rootzone, rhizosphere, phyllosphere and endosphere of roots, stems, leaves, fruits and seeds of tomato plants. They found that OTUs belonging to Pseudomonas and Acinetobacter dominated in the rhizosphere, > 97% of the sequences in the phyllosphere belonged to Acinetobacter, and Acinetobacter, Enterobacter and Pseudomonas were the most abundant genera in the roots, stems and leaves. Cordero et al. 44 studied the bacterial community in rhizosphere and root interior of canola (Brassica napus L.), wheat, field pea (Pisum sativum L.), and lentil (Lens culinaris L.) and found that Pseudomonas was one of the dominant genera in the rhizosphere and Acinetobacter in the root biome of all these crops. www.nature.com/scientificreports/ At day 28, the relative abundance of Achromobacter, a salt-tolerant PGPR 45 , was much higher in the NH 4 + amended soil than in the unamended soil. Soares et al. 46 reported that A. spanius B1 an endophyte of the invasive common reed (Phragmites australis (Cav.) Trin. ex Steud.) with the capacity to produce indole acetic acid, secrete hydrolytic enzymes, solubilizes phosphate and with antibiosis activity increased common reed growth in soil with a low N content. They suggested that the A. spanius presumably increased the growth of common reed by scavenging nitrogenous compounds from the rhizosphere and transferring them to the plant roots. At day 56, the relative abundance of none of the most abundant bacterial groups showed such a sharp increase as found earlier in the experiment. Contrarily, a range of genera, such as Steroidobacter and Rubrobacter, were enriched on day 56, although earlier, their relative abundance was often lower in the NH 4 + -amended than in the unamended soil. Steroidobacter was described by Valverde et al. 47 as part of a small 'core' rhizosphere bacterial community of welwitschia (Welwitschia mirabilis Hook.f.). Some members of Rubrobacter have been described as oligotrophic which would explain that their relative abundance decreased when NH 4 + was applied to soil 48 . The relative abundance of a wide range of bacterial groups was reduced when NH 4 + was applied to soil but the effect was small, except for members of Bacillus that were enriched strongly in the unamended soil at day 56. Although members of Bacillus have been found to be abundant in the rhizosphere of crops, such as maize (e.g. Li et al. 36 ), in this study they were not enriched by the application of NH 4 + as other rhizosphere bacteria, such as Pseudomonas or Enterobacter. The enrichment of phylotypes belonging to Bacillus in the unamended soil at day 56 would indicate an oligotrophic lifestyle in the soil studied here.Only OTUs belonging to one ammonium oxidizing bacteria (AOB) Nitrosovibrio and one nitrite oxidizing bacteria (NOB) Nitrospira were detected in the soil studied. Shah et al. 49 reported also Nitrosovibrio spp. as the sole AOB and Nitrosocaldus spp. as the sole ammonium oxidizing archaea (AOA) when studying the bacterial and archaeal community present in the Pine Barrens Forest of Long Island, NY. Sometimes, more than one AOB and NOB have been detected in soil although both Nitrosovibrio and Nitrospira are often dominant 29,50 . In this study, the archaeal community was not studied, but AOA are sometimes more important than AOB and might have contributed substantially to the nitrification process in the soil studied (e.g. 51 ). The OTUs belonging to the phylum Nitrospirae have a triple-layered cell wall and are enriched under drought stress 52 , conditions predominant in the area with little or no rainfall and high average temperature 53 . Nitrospira might also have been benefitted from the lack of nutrients as Liang et al. 54 reported that application of compost, which is normally nutrient rich, reduced its relative abundance.Ammonium provides AOA and AOB with the sole energy for growth. Application of urea as inorganic N fertilizer and its subsequent hydrolysis will provide AOB and AOA with energy for growth and the formation of nitrite provides NOB with energy for growth. As such, the relative abundance of Nitrosospira was significantly higher in the fertilized than in the unfertilized soil. Interestingly, that was not so for Nitrospira although the oxidation of the nitrite as evidenced by dynamics of nitrite and the formation of nitrate was much faster in the first compared to the latter when ammonium was applied to the soil. Ouyang and Norton 29 reported similar results. They found that application of ammonium sulphate did not affect the abundance of Nitrospira nxrB gene determined by real-time quantitative PCR, although ammonium fertilizer application for 4 years significantly increased rates of potential nitrite oxidation determined at 0.15 mM nitrite in soil slurries.Application of NH 4 + enriched Nitrosospira only at the end of the incubation, which would suggest that activity, i.e. oxidation of NH 4 + , occurred before growth. The relative abundance of Nitrospira was higher in the unamended than in the NH 4 + -amended soil at day 14, but enriched in the NH 4 + -amended soil at day 28 and 56. This might indicate that oxidation of NO 2 − , occurred before growth of Nitrospira, but it has to be remembered that no absolute abundance were available. The increased mineralization might have resulted in the growth of heterotrophic copiotrophs, thereby reducing the relative abundance of AOB and NOB. As such, the relative abundance of AOB and NOB might have only increased when the growth of heterotrophic copiotrophs decreased, i.e. day 28 and 56.Soil predicted functional profile. Changes in organic material availability and composition will alter the bacterial community structure and might change its potential functionality 55 . The retention of crop residues together with tillage changes the available C and soil enzymatic activities and functional diversity 56 . Previous studies have shown that reduced or no tillage with crop residue retention increased the soil enzymatic and microbial functional activity related to C-compounds degradation, e.g. carbohydrate and phenolic compounds degradation and urease activity, compared to conventional tillage with or without crop residues in long-term arable soil experiments 57 . In this study, metabolic functions related to the degradation of complex C compounds and metabolism of N-compounds (assimilation and transportation) were enriched by tillage-residue management, but less than by the application of ammonium. Li et al. 58 observed an enrichment of organic-N and N-compounds bacterial metabolism, e.g. nitrification, denitrification and assimilatory nitrate reduction, in a long-term N fertilization experiment.The soil bacterial community structure, diversity and its potential functionality was determined in an arable soil under two contrasting tillage systems (conventional tilled beds remade every year and permanent beds) with crop residue retained or burned and left unfertilized or fertilized with 300 kg urea-N ha −1 . Irrespective of fertilization, the soil was N depleted. Application of NH 4 + increased microbial activity and C mineralization as evidenced by an increase in emission of CO 2 in both the fertilized and unfertilized soil. However, fertilizing the soil accelerated the oxidation of NH 4 + and NO 2 − independent of tillage or crop residue management. The soil bacterial structure was affected more by ammonium application than by fertilization in the field and tillageresidue management, i.e. CT, PBB or PBC. Application of ammonium had an immediate and strong effect on some bacterial groups. Well-known rhizospheric and/or endophytic bacteria with copiotrophic lifestyle, e.g. Flavisolibacter, Pseudomonas, Rheinheimera, Pseudoxanthomonas, were enriched. The C mineralization and N pathways related genes were strongly affected by ammonium application and to a lesser extent by N fertilizer and tillage-residue management. Tillage and crop residue management, and inorganic fertilizer application, i.e. N fertilizer application in the field and NH 4 + addition in the laboratory had a strong effect on the bacterial community in this N depleted arable soil.Study site and soil collection and characterization. Soil was collected in April 2012, from a longterm experiment initiated in 1992 with different agricultural practices at CIMMYT's Norman E. Borlaug experimental station (CENEB) near Ciudad Obregon, Sonora, Mexico (lat. 27.33°N, long. 109.09°W, 38 m.a.s.l.). The six treatments were: conventional tilled beds with the crop residue retained and incorporated through tillage (considered the CT treatment), permanent beds with crop residue burned (considered the PBB treatment), and permanent beds with crop residue retained (considered the PBC treatment) fertilized with 300 kg urea-N ha −1 for wheat or not receiving N fertilization. The summer maize received a uniform N application of 150 kg N ha −1 in the first years of the experiment. From the summer of 2008 on, no N was applied to the maize in the treatments without N fertilization for wheat, while 150 kg N ha −1 was applied to the rest of the maize. All treatments received 46 kg P 2 O 5 ha −1 for wheat and 50 kg P 2 O 5 ha −1 for maize. The site has an arid climate and a mean annual temperature of 24.7 °C. Rainfall is dominant in the summer, with an average rainfall of 384 mm. Wheat (winter planted crop) and maize (summer planted crop) in annual rotation are irrigated in the furrows between the beds. Details of the field experimental design can be found in Verhulst et al. 6 .Twenty subsamples (500 g) of the upper 0-15 cm soil layer were collected at random from three plots (n = 3) of each treatment (n = 6). The bulk soil was sampled at the tillering stage of maize. The soil sampled from each plot was pooled separately so that 18 composite samples were obtained (n = 18) (Fig. S10a). The field-based replication was maintained in the laboratory experiment to avoid pseudo-replication 59 . The soil samples were left to dry in the greenhouse, homogenized and sieved (2 mm mesh size). The particle size distribution, total C content, water holding capacity (WHC), moisture content, pH, electrolytic conductivity (EC), and mineral N (NH 4 + , NO 2 − and NO 3 − ) were determined (Fig. S10b). Details of the physical-chemical characterization of the soil can be found in Patiño-Zúñiga et al. 60 .Microcosms set up and experimental design. Sixteen 50 g sub-samples of soil (n = 6) from each plot (n = 3) were added to 120 mL flasks and adjusted to 40% WHC. The flasks were placed separately in a 1 L jar that contained a 25 mL flask with 20 mL 1 M NaOH to capture emitted CO 2. As such, a total of 288 experimental units were used in the study. The 1 L jars were closed air-tight and pre-incubated for 7 days. The soil was preincubated to eliminate any possible effect of handling the soil and adjust its water content 62 . The jars were opened and the 25 ml flask with 20 mL 1 M NaOH replaced. Half of the sixteen 50 g soil samples were amended with 1 mL of a 0.5 M solution of ammonium sulfate so that 300 mg N kg −1 dry soil was added to soil (considered the amended soil) and the soil water content was 50% WHC. The other half was amended with distilled water so that the water content was 50% of WHC (considered the unamended soil). The soil of both treatments was mixed. A flask from each plot (n = 18) and amended with NH 4 + or left unamended was selected at random and 20 g soil extracted for mineral N with 80 ml 0.5 M K 2 SO 4 filtered through a Whatman® No 41 filter paper and the mineral N in the extract determined on a Skalar autoanalyzer (Breda, The Netherlands) 63 . A 10 g sub-sample of soil was extracted for DNA and stored at − 21 °C pending analysis. These were considered zero time samples.The jars were closed air-tight and incubated at 25 ± 2 °C for 56 days. After 1, 3, 5, 7, 14, 28 and 56 days, a flask with soil from each plot (n = 18) and amended with NH 4 + or left unamended was selected at random (Fig. S11). The flasks were opened, the flask with NaOH removed and analyzed for the CO 2 trapped 61 . The soil was removed from the flasks and part of it was extracted for DNA and the rest used to determine mineral N as described earlier.DNA extraction and 16S rRNA gene amplification and sequencing. Metagenomic DNA was extracted from soil using three methods that rely on mechanical and/or chemical/enzymatic lysis [64][65][66] . The first technique used the Hoffman and Winston lysis solution to lyse the microbial cells 64 , the second used lysozyme to lyse the cell walls based on the method developed by Sambrook and Russell 65 , and the third used a thermo/ mechanical technique based on the method developed by Valenzuela-Encinas et al. 66 . The soil was homogenized using a FastPrep24 high-speed benchtop homogenizer (MP Biomedicals, Solon, OH, USA) at 4 m s −1 . The three techniques were used to extract DNA twice from 0.5 mg soil samples from the three plots of each of the six treatments (n = 18), and then pooled to create a metagenomic sample. As such, a total of 3 g soil was extracted per plot, i.e. three extraction techniques applied twice to a 0.5 g soil subsample.The V3-4 hypervariable region of the 16S rRNA gene (about 490 bp amplicon size) was amplified using 8-bp fused barcode primers 341-F (5′-CCT ACG GGIGGC WGC AG-3′) and 805-R (5′-GAC TAC HVGGG TAT CTA ATC C-3′) 67 with a two-step PCR protocol \"16S metagenomic sequencing library preparation\" published by Illumina Inc (15044223 Rev. B). Triplicate PCR amplification reactions per metagenomic DNA were done in a MultiGene OptiMax thermal cycler (Labnet International Inc.) under conditions previously reported 19 . The PCR amplification conditions were as follows: initial denaturation at 95 °C for 10 min, followed by 25 cycles of denaturation at 95 °C for 45 s, annealing at 53 °C for 45 s, extension at 72 °C for 1 min and a final extension at 72 °C for 10 min. A no-template control (negative PCR reaction) was included each time a PCR was done. The triplicate PCR reactions (12.5 µL each) were pooled and cleaned using FastGene™ columns (Nippon Genetics, Co., Ltd). Pooled and cleaned PCR products were quantified using the Invitrogen's PicroGreen ® assay with a NanoDrop™ 3300 fluorospectrometer (Thermo Fisher Scientific Inc., Suwanee, CA) and standardized at equal molar amounts for later sequencing. As such, a total of 288 metagenomic DNA samples, i.e. one DNA sample from each soil sample, were PCR-amplified and sequenced. Both library normalization and sequencing process was done by Macrogen Inc. (Seoul, Korea). Amplicon libraries were paired-end sequenced using the MiSeq v3 platform (2 × 300 cycle kit) at Macrogen Inc. (Seoul, Korea).16S rRNA gene sequence analysis. The 16S rRNA gene sequences were analyzed using the \"Quantitative insights into microbial ecology (QIIME v1.9)\" platform 68 . Briefly, reads from the same samples were demultiplexed based on the 8-bp barcodes and then merged using fastq-join method (100 nt as the minimum overlap region, -j 100). Chimeric sequences were identified and removed using VSEARCH v2.8 69 . Joined paired-end chimeric-free sequences were clustered into operational taxonomic units (OTUs) at 97% similarity and taxonomy was assigned by aligning to QIIME's default Greengenes v13_8 database using PyNAST. The OTUs assigned to Archaea were discarded. The functional prediction of the nitrogen cycling related genes was assessed with PICRUSt v1.1 70 using a down-sampled OTU-table to 3000 sequences per sample and using the general \"cluster of orthologous groups of genes\" (COGs) categorization. The PICRUSt analysis was done according to the \"metagenome prediction tutorial\". The standard procedure included (i) normalization of the closed reference OTU table using the normalize_by_copy_number.py script and (ii) the functional predictions with predict_metagenomes.py script (using \"cog\" as the option for the -type_of_prediction). The selected COG identifiers related to nitrogen cycling were obtained from Li et al. 71 . Their relative abundance was calculated based on the total sum scaling per sample. The functional annotation of prokaryotic taxa (FAPROTAX, v.1.2) was used to investigate and map the functional profiles of soil bacterial communities 72 . The relative abundance of each functional role was determined based on the total sum scaling procedure within samples, and modules not related to environmental samples were ignored.Rarefaction curves were made after pooling sequences of all individual soil samples from the same field treatment (n = 6), i.e., CT urea-fertilized (CT300) or unfertilized (CT0), PBB urea-fertilized (PBB300) or unfertilized (PBB0), and PBC urea-fertilized (PBC300) or unfertilized (PBC0). Sequences were pooled using both the collapse_samples.py and alpha_rarefaction.py scripts within QIIMEv1.9 68 as described in \"http:// qiime. org/ scrip ts/ colla pse_ sampl es. html. \"The soil microbial diversity was determined with the Hill numbers at different q orders (q = 0, 1 and 2) using the raw count dataset at the genus taxonomic level as described by Ma and Li 73 . Hill numbers have the advantage over commonly used diversity indices that they maintain the same measurement unit across values, i.e. effective number of species, overcoming the bias due to rare and dominant species and they are comparable with the traditional diversity indices. At higher q orders, diversity values are more sensitive to common species 73 .All statistical analyses were done in R 3.6 74 . An ANOVA test (aov function in \"stats\" package) was used to determine the effect of the tillage-residue management (permanent beds with residue retained and burned and conventional beds), in-field fertilizer application (0 or 300 kg urea-N ha −1 ), and ammonium applied in the lab (unamended or soil amended with 300 mg NH 4 + -N kg −1 soil) on emitted CO 2 and mineral N after 56 days. The Tukey-HSD test using all pair-wise comparison, i.e. post-hoc, was done with the \"agricolae\" package (HSD.test function) 75 . A non-parametric test (aldex.kw function; Kruskal Wallis test) in the ALDEx2 package 14 was used to determine the effect of the treatments on the different bacterial groups using the centered-log-ratio transformed counts, i.e. clr-transformation. The clr-transformation was done using the ALDEx2 (v1.18) package as high-throughput data are compositional 14,76 . A principal component analysis (PCA) was done using the clr-transformed sequence counts to explore the effect of tillage-residue management, fertilizer application, and ammonium applied on the bacterial community structure. A preliminary PCA analysis grouped the bacterial communities of day 0, 1 and 3 together, those of day 5, 7 and 14, and those of day 28 and 56. To facilitate our analysis and better visualize this, similar colours were given to these groups in the PCA graphs. The permutational multivariate analyses of variance (perMANOVA) test was used to determine the effect of tillage-residue management, fertilizer application, ammonium applied and incubation time on the bacterial community structure. The perMANOVA was done using the clr-transformed sequence counts for taxonomic and functional data. Time (days) was embedded in the perMANOVA analysis using \"strata\" argument when tillage-residue management and fertilizer application or ammonium application were used as fixed factors within adonis function. The PCA and perMANOVA tests were done with the FactoMineR 77 and vegan packages 78 . Heatmaps were constructed with the pheatmap package 79 .The effect of ammonium application on the bacterial groups was calculated by a ratio in two different ways. First, when the relative abundance of the bacterial group was higher in the ammonium amended soil than in the unamended soil then the ratio was calculated as: Second, when the relative abundance of the bacterial group was lower in the ammonium amended soil than in the unamended soil then the ratio was calculated as: Ratio = relative abundance of the bacterial group in the NH + 4 amended soil − relative abundance of the bacterial group in the unamended soil / relative abundance of the bacterial group in the unamended soil .","tokenCount":"7268"} \ No newline at end of file diff --git a/data/part_3/2388549209.json b/data/part_3/2388549209.json new file mode 100644 index 0000000000000000000000000000000000000000..fe8ce5dbf0d472c77f4c49d30fb46dee230f3862 --- /dev/null +++ b/data/part_3/2388549209.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"4cf933d9b4310dd23e502f3cede7a99e","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/ebca01ed-0dfb-4a9f-89f3-193fcfbe485f/retrieve","id":"-459202062"},"keywords":[],"sieverID":"3992c6dc-fb1a-4029-ac96-e62e6b92c258","pagecount":"2","content":"The approach of the VBDC to link with decision--makers through the existing platforms of actors in VBA and GWP brings a win--win situation to partners at the regional level. Researchers should not only define the needs and generate user--friendly outputs for decision making, but must engage in continuous interactions with the stakeholders throughout all stages of the VBDC research.Both the Volta Basin Authority (VBA) and Global Water Partnership (GWP) have stakeholder platforms that include high--level decision makers and activists from the public and private sectors and civil society in the riparian countries and from donor institutions. They include the ECOWAS Technical Committee of Experts, African Network of Basin Organization (ANBO), VBA's Council of Ministers, Experts Committee, and Forum of Parties. Also included are GWP/West Africa's Steering Committee, Network of Journalists and Country Water Partnerships (CWPs). Analysis of these networks and stakeholders shows that they are addressing issues related to water management, climate change, MDGs and the environment. While these stakeholders can influence policy making in focus countries, they often lack the scientific basis to motivate the choice of alternative options. They are therefore the potential next users of the expected results from VBDC research. For research to influence the decision-making process in the Volta Basin, the VBDC researchers will take advantage of these consultation platforms of VBA and GWP to disseminate best practices in rainwater and small reservoir management within the context of integrated water resources management (IWRM) in the Volta basin. While the interaction with VBDC researchers provides opportunity to use research results and transform it to some outcome in the countries, the project teams need to be aware of challenges that could hamper effective stakeholders' engagement at the regional level. The researchers should not only clearly define the needs and generate user--friendly outputs for decision making, but they need to engage in continuous interactions with stakeholders throughout all stages of the VBDC research.","tokenCount":"315"} \ No newline at end of file diff --git a/data/part_3/2412731584.json b/data/part_3/2412731584.json new file mode 100644 index 0000000000000000000000000000000000000000..cbe1940e1608155fb998cd0824b92aa299124dac --- /dev/null +++ b/data/part_3/2412731584.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"54a47d1d4a51b0a88830fe6e2d19fc90","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/245b46c2-5db9-42fc-85a9-693d4e8402b1/retrieve","id":"781655181"},"keywords":[],"sieverID":"2d07dea0-3b03-4751-8b9f-faa8f2ca2883","pagecount":"148","content":"Los gremios y su proyecci6n a la comunidad .las responsab i 1 idades y respuestas que debemos dar a los crecientes problemas de sub-alimentación de nuestros países.Para persona s como ustedes, quienes dedican su capacidad y esfuerzo para el bienestar de sus asociaciones , sería redundante enunciar el valor de estar asociado, de crear nuevas asociac i ones y de fortalecer las ya existentes. Sé que todos estamos convencidos de la importancia y responsabilidad que conlleva ser dirigente de asociaciones; esto es seguramente lo que nos ha motivado a reunirnos para analizar las nuestras y estudiar estrategias para lograr su través de fortalecimiento no como fin asociaciones más numerosas, más úl timo, fu ertes sino para que y con objetivos a claros se logre prestar el apoyo que requieren nuestros pueblos para el mejoramiento de sus condiciones de vida.Cuando empezamos a programar esta reunión no encont ramo s antecedentes de ot ra similar, lo cual ha hecho que su planeación constituya un reto muy interesante ya que seguramente sus conclusiones y recomendaciones serán aplicables tanto a nuestras asociaciones de semillas como al desarrollo o progreso de asociaciones en otros sectores. Será bueno para todos nosotros analizar, como en efecto haremos, los aspectos fundamentales en la creaci ón y fortalecimiento de las asociaciones, sus aspectos organizativos. humanos, financieros y legales y sobre todo el papel que cumplen en beneficio de sus afiliados o asociados y de la comunidad en la cual conviven.Desde el punto de vista sociológico, el termino asociación se refiere al mecanismo por medio del cual las personas llegan a aliars e unas con otras, y a los grupos que se forman como resul tado de estas alianzas. En sociología formal o pura, asociación es la unidad básica de conducta social, es decir un grupo grande o pequeño que rea li za una actividad. Un par de personas, o una sociedad entera pueden cons tituir una asociación siempre y cuando exista un contacto ó algún elemento de organización. En resumen , es un grupo organizado para satisfacer un interés o un grupo de intereses comunes.La s asoc iaciones , en un sent ido más estre cho y jurídico, son el res ultado del derec ho de asociación, con s ide rado como un derecho natural , fundamental y humano . aunque no siempre ha ya s ido reconoc ido qomo tal.Durante e l Siglo XIX , el proletariado industrial reivindicó la constitución de asociaciones para la defensa de sus i ntereses , com o )eacción primaria co nt ra la anarquía en el mercado del trabaja.La lucha posterior por el derecho a la libre asociación fué larga, ifícil , y a menudo sa ngrienta .Durante la reunión estudiaremos l as Asoci aciones exi stentes, tanto las de naturaleza comerc ial, como la s comerciales y de este anális is obtendremos conclusiones y formularemos, a través de los grupos de trabajo, recomendaciones específicas para cada grupo de asociaciones.Podría deci rse que con lo anterior estaría má s que cumpl ido el objetivo del Seminario y compensado el esfuerzo de todos I pero no podemos desperdiciar la primera y excepcional oportunidad de estar reunidos para darle a nuestra Asocia ción de Asoc iaciones, a ALES, la estructura legal y jurídica que hemos venido buscando desde hace t anto tiempo.Todos no sotros seremos los responsables de la restructurac ión de ALES. Por esta razón, también analizaremos ampliamente 105 aspectos propios de ALES, sus objetivos, sus estatutos, y realizarem os la Primera Asambl ea Ge neral marcando así el inicio de una etapa decisiva.Para hacer un poco de historia, ALES se fundó durante el Congreso de la Asociación Latinoamericana de Fitotecnia realizado en Bogotá, Colombia en Noviembre de 1970, es decir, hace 16 años. Inicialmente se propuso como Asociación Latinoamericana de Especialistas en Semillas y de ahí su nombre y siglas iniciales, ALES.En 1983 en Quito, Ecuador durante el X Seminario Panamericano de Semillas se propuso que ALES fuera una Asociación de Asociacione s y se acordó el cambio de nombre, manteniendo la sigla original.Durante este Sem inari o quiero proponer que noS cons tituyamos en una Federación que agrupe a la s asociaciones, ya que la FederaciOn se define como una agrupación orgánica de colectividades humanas, la cua l corresponde más con 10 que somos y representamos ; acorde con 10 anterior quiero también sugerir e1 cambio de nombre de ALES por e1 de Federación Latinoamericana de Asociaciones de Semil1i stas con la sigla IIFELASEW .Por otro lado, nuestra asociación o nuestra federación ha recibido ambién el encargo de vigilar por la oportuna realización de los 1eminarios Panamericanos de Semillas, evento que todos reconocemos como qe la mayor importancia. Ya en el XI Panamericano realizado aqui en I ~ali, tuvimos la oportunidad de colaborar y ya estamos también 101 aborando con los organi zadares de 1 XII Semi nari o Panamer; cano de ~emillas que tendrá lugar el año próximo en Montevideo, Uruguay. Por ¿sta razón se encuentra aquí presente el Ing. Gustavo Blanco, Secretario Ejecutivo de la Comisión Organizadora de dicho evento, con quien tendremos la oportunidad de definir el temario del proximoSerá de la mayor trascendencia que finaln~nte sea una organización Latinoamericana representativa de todos los intereses la que se responsabilice de la oportuna realización del Seminari o , con la cual se consulten los temas a tratar para mantener el nivel del certamen y procurar asf que su influencia en el desarrollo de nuestras actividades sea creciente y con un mayor intercambio entre todos nuestros paises.Evaluar y buscar soluciones a la problemática de las indu s tria s y de los programas de sem illa s .Propender por la capacitación formal y no formal e n la región.Preparar planes regionales de ca pac itación .Cooperar en la actualización de regl amentos y l eyes de sem i ll as .Se proponen para esta área las s iguien tes acciones:Hacer un diagnóstico periódico de la oferta j de la demanda de semilla s en l os paise s l para fac ilitar el comercio en la región.Facilitar el intercambio regional de semillas mediante la un iformi dad e n la nomenclatura y la legislación.Estudiar y buscar soluciones conducentes a superar las barreras que impiden la fluidez de l mercado de semi ll as , e spec ialmente la s de l tran sporte .t~antener estadísticas sobre mercadeo y producc i ón.Desarrollar reglas para facilitar el comerc i o de semillas y proveer arb i traje en caso neces ario.Fortalecer las asociaciones de productores y comercializadores de semi ll a. Proveer información sobre comerc i o y producción de semillas, proveniente de paises fuera de la reg l ón. Promocionar e l intercambio de tecnol og í as y de informac i ón sobre producción y comercio. Promocionar viajes de estudio. Intercambio del personal técnico.Mecanismos para Fortalecer las Asociaciones Comerciales y la s Asociaciones de Tecnólogos de SemillasAunque se sugirió que se presentaran conclusiones por sepa rado .para cada uno de los tema s propuestos, el grupo de trabajo llegó a la defini ción de que lo s temas y decisiones deberían tratarse en conjunto.Comerciales y de Tecnólogos tienen finalidades nobles que les son comu ne s. En este campo. lasAsociaciones Comerciales deberán apoyar y agrupar a los Tecnólogos, especialmente en sus fines convergentes, hasta tanto se logre la fuerza y capacidad asociativa nece sa ria por parte de los tecnólogos.Organización. Para aprovechar las ventajas comparativas de productores comerc iales y tecnólogos de semillas, se recomienda que las asociaciones del ramo, reunan en su seno a las asocia c iones, institu ciones e individuos que tenga n relación directa con el sector.Para evitar el conflicto de intereses, los estatutos deberán omitir la participación de la s asociaciones en los manejos comerciales de la semilla.3. Financia ción. Se reconoce que ésta e s un área básica y esencial, pero la recomendación no puede ser general. Cada asociación deberá expl orar lo s mecani smos más apropiados de finan ciación aprovechando las ventajas de su mercado. Por ejemplo:Obtener un porcentaje en el precio de la semilla básica y/o comercial.Inscripciones, donaciones, etc. Apoyo flsico de entidades oficiales y privadas: oficinas, personal, papelería, etc.A través del serviclo a sus asociados, se transmiten benefici os a toda la comunidad.Intercambi o de información a través de seminarios, boletines, publicacicnes. etc. Formación y capacitac ión del recurso humano.Organismo de ca suHa para el sector oficial y los gremios agrícolas.Alberto Goñi* En Argentina existen tres asociaciones nacionales de semillas:1.Asociación Argentina de Semilleros (ASA). En ella se agrupan los productores de semillas en general. Tiene dos tipos de socios.Los semi 11 eros y los criaderos. Los primeros son mul ti pl ; Q. l dores a partir de semilla básica originada en criaderos tanto privados como oficiales.Los segundos son los Que generan su propia semilla básica tanto de variedades como de híbridos.Existe una comisión directiva integrada por los representantes de los semilleros y criaderos apoyada por un gerente y una estructura administrativa. Las cuotas de sostenimiento son diferentes para cada uno de los grupos.2. Camara de Semilleristas de la Bolsa de Cereales de Buenos Aires (CSBC) . Agrupa a los comerciantes de semillas, fundamenta lmente a aquellos relacionados con semillas forrajeras. Tiene dos categorías de socios: activos y adherentes. Tiene una Comisión Directiva y una estructura administrativa de apoyo. La s cuo t as son diferentes para cada uno de los grupos pero uniforme dentro de cada categoría.República Argentina (CPIS).Esta Asociación reune a los comerc iantes tanto del mercado interno como a los importadores de semillas de hortalizas . Posee una comisión directiva y una cuota uniforme para todos.(*) Miembro de la Comisión Directiva de CSBC y de la Comisión Revisora de Cuentas de ASA.Las tres asociaciones han constituido la FEDERACION ARGENTINA DE SEMILLAS cuyos estatutos han sido presentados a las autoridades y en el momento se está constituyendo la primera Comisión Directiva y sus órganos ejecutivos.El principal objetivo de las tres asociaciones es gremial y por 10 tanto participan en todas las actividades desarrolladas en este ámbito.Nacional de Semillas (CONASE) que es el organismo Asesor del Secretario de Agricultura en lo que respecta a la implementación y a la reglamentación de la Ley de Semillas vigente en nuestro país. indirectamente con semilla s y con las políticas de manejo que vayan en beneficio de esto s productores.ABRASEM está dirigida por una Junta Directiva conformada por un (*) Presidente de ABRASEM.ABRASEM se financia en un 30% por medio de las constribuciones ABRATES, como asociación civil, congrega la él ite de técnicos y empresari os relacionados con la producción y la tecnol og ía de semillas dedicados a una de las causas más nobles y f undamenta l es del desarrollo agricola, el suministro de semillas.Apoyar y estimular el trabajo teénico y cientlrico y la ense~anza de la tecnología de semillas.Divulgar ampliamente los resultado s obtenidos en l os trabajos de la investigación técnica y científica de semi llas.Cooperar con la industria de semi ll as en la so lución de problemas técnicos de interés común. El modelo programático de ABRATES se caracteriza por un sistema La Asoci ac ión Colombiana de Productores de Semillas (ACOSEMILLAS) es una entidad joven, pue s no cuenta sino coo 15 a~os. Se creó en 1970 con l a participación de casí todos los productores de semillas de ésa época, tanto oficiales como privados . Hoy la Asociación cuenta con 21 afi liados que producen y mercadean más del 50% de la semilla certificada que se utiliza en el país, más del 90% de la semilla de pas tos y leguminosas tropicales, más del 80% de la semilla de a' lgodón, sorgo, ajonjon y más del 60% de la semilla de cebada, frijol y soya.Defender los intereses comunes de sus afiliados.Promover la competencia libre sana y honesta en la producción y comercialización de semilla s de óptima calidad, evitando prácticas abusivas o restrictivas. la Asamblea, máxima autoridad de la Asociación, está constituida por todos los afiliados y se reune ordinariamente cada año.Revisor fiscal son elegidos por la Asamblea para un periodo de un año.La Junta nombra al Presidente Ejecutivo quien es el representante legal de la Asociación.El órgano de divulgación de ACOSEMILLAS es la revista \"Semillas\", de &aracter t.écni~o científico, que desde hace 11 años se ha publ icado ininterrumpidamente cada tres meses.ACOSEMILLAS participa en todas las actividades semillistas del pals; forma parte del Comité Nacional de Semillas del Ministerio de Agricultura y del Comité Asesor de Semillas del ICA.Los socios aportan una cuota mensual, igual para todos los miembros¡ una cuota semestral basada en un porcentaje de la venta de semillas de cada empresa afiliada y cuotas extraordinarias para actividades específicas.Jorge Prerao I La Asodación se fundó el 16 de Diciembre del ano 1985 en respuesta a inquietudes y voluntad expresa de un grupo de técnicos que están estrechamente ligados a las actividades de semillas dentro del marco público principalmente y algunos del sector privado.Se identifi ca con la sigla ANTE S. Sus actividades son t écnicas y de servicio y sin ánimo de lucro.El proyecto de estatutos que rigen la entidad fué aprobado por la asamblea general el día del asentamiento.En la actualidad el e pediente completo está en trámite y se espera tener pronto la p1rsonería jurídica para poder desarrollar actividades en forma legal y a tor; zada.Agrupar a los profesionales y técnicos que trabajan en las actividades rela cionadas con la investigación, producción, beneficio , mercadeo , administración, análisis, control de calidad, ensef'lanza en semillas y aquellos que sin estar dedicados a la actividad de semillas se interesen en la Asociación.(O) Presidente en Funciones.Promover, organizar, dirigir y co l acorar en seminarios, comité s de trabajo, conferencias, exposiciones, programa s de enseñanza y capacitación y todas las actividades relacionadas con la tecnología de semillas.Facilitar el desarrollo profes ional de sus asociados a través del intercambio de conoci miento y experiencias.Efectuar y recopilar publicaciones relacionadas con los diferentes campos de la tecnología de semillas.mayor difusi ón y progreso de la tecnoloJía de semillas y para el desarrollo, promoción profesional y bienestarsoc;al de• sus afiliados.Miembros Honorarios y Acti vos. quienes la Asamblea General propone segundos, aquellos profesionales los primeros son las personas a se le otorgue ese carácter y los y técnicos que justifiquen su capacidad técnica en cualquier rarr.o de la tecnología de semillas o aquellos que sin estar dedicados a la actividad de semillas se interesen por los objetivos de ANTES.los recursos económicos con los que contará la Asociación son los siguientes:1.Aportes o cuotas peri ódicas o extraordinarias de l os miembros activos.Los auxilios y donaciones de personas naturales o jur1dicas tanto nacionales como extranjeras. 3. Los recursos que pueda obtener de sus actividades propias. Cont ribuir al desarrollo de la industria de semill as mediante la org ani zación y capacitac ión técnico-administrativa de sus asociados en las áreas de producción , manejo y distribución de semillas.Cooperar con el Programa Nacional de Semillas y otros organismos de Control de Ca lidad del Ministerio.Parti cipar en las Asociaciones Regionales ó Internacionales en el área de semillas enviando un representante.. Apoyar la formación de otras organizaci ones afin es.La Asociación cue nta con 22 miembro s af i 1 iados que representan iferentes empresas productoras de semill as. Ti ene participación en la om i si ón Asesora de Semi 11 as y en los Comités Técn i cos de Apoyo a la omisión.(*) Sub-Jefe Programa Na cional de Semillas, M in isterio de Agricu l t ura.Para estimu l ar l a mayor participación de la empresa privada se está gestionando la implementac i ón de un proyecto de desarro ll o y f orta l ec imiento a l a industr ia de semi ll as media nte la obtención de líneas de crédito para el área de semn l as. También está promoviendo la capacitación de sus miembros mediante cursos . seminarios, escuelas de capa citación, etc. que puedan facilit ar el logro de los objetivos. Incrementar el uso de semilla mejorada 2.Autorizar la investigación pri vada. Este objetivo se ha log rado reci entemente . La idea es de que cada empresa cuente con su departamento de in vestigación.Intervenir en el Comité de Variedad es de Plantas mejorando l os sistemas . También se ha l ogrado este obj eti vo.1.Seminar i os para personal técnico 3.Permisos de importac ión 5. Su objetivo primordial es el de asociar los teénicos dedicados a las actividades de semillas del país para apoyar con sus conocimien tos el me jor desa rro llo de la industria de semillas.Esta Asociación qu agrupa fitomejoradores, t ecnólogos y en la actual idad trata de agrupar tambi én a productores y comerc iante s de semillas, al igual que a todo el personal afín y con cierto grado de experiencia en el área esta contonnada por 48 miembros, los cuales pdgan cuotas de inscripción de USO 5.00 únicamente. I (*0 Representante de ADOTES. IASOCIACION La finalidad de dicha agrupación sería consolidar esfuerzos para encontrar alternativas de solución a los problemas de semillas de los países de la región. El 8 de Abril de 1983, reunidos en la Ciudad de Panamá, 24 profe sionales de 7 países de la región, por decisión unánime fonmaron la Asociación Regional de Tecnólogos de Semillas (ARTES).Producto de las reuniones que los profesionales de la región habían mantenido antes de la creación de ARTES, se contaba con un a á1isis y diagnóstico sobre la problemática de semil las en el área.Formación del recurso humano en semillas por medio de cursos regionales .Promover e incentivar la investigación en semillas.Aunque existen otros aspectos en los cua les ARTES ha trabajado en beneficio de los patses de Centroamérica, se considera que los dos mencionados anterionnente juegan un papel de suma importancia, ya que son la respuesta a mediano y largo plazo para resolver muchas de nuestras deficiencias.« .) Representante de ARTES. Para 1 a real izaci6n de estos cursos ARTES ha contado con el decidido apoyo financiero y tecnológico de Centros y Agencias Internacionales. El primero y tercer cursos desarrollados recibieron el total apoyo del CIAT, CIMMYT y de la Agencia Alemana GTZ. El curso desarrollado en Guatemala recibió apoyo total del C/AT y del CIMMYT.Formac ión académica en semillas (universidades y escuelas a nivel medio). Investigación en semillas. El 68% de l as universidades con formación agrícola no cuentan en sus programas de estudios con la dis c iplina de semillas. El 32% de la universidades con formación agrícola cuentan en sus programas de estudio con l a dis ci plina de semillas aunque en algunas es de carácter optativo.El 93% de las Escuel as Agrícolas Medias no cuentan con la disciplina semillas en sus programas de estudios.El 7% de la Escuelas Agrícolas Media s cuentan con la disciplina de semillas en sus programas de estudios.El 37% del personal que desarrolla actividades en semillas (tanto oficial como privado), tiene formación académica universitaria.con formaci6n académica media hay 31.5% del personal.Los países se han visto en la necesidad de formar el recurso humano ca pacitado e n sem i l l as por med i o de cursos cortos (ARTES, CIGRAS , CIAT, otros) para hacerle frente a sus necesidades inmediatas . La formación de este rec urso humano por medio de cursos cortos se ha hecho en un periodo no mayor de siete años.La falta de formacibn académica en semillas (uni verSitaria y media)limita o dificulta el aprovechamiento en los cursos cortos espeCializados en semilla s por parte de los técnicos de nue stros países.La actual Junta Directiva de ARTES presentb un docu mento a la Dirección General del Centro Agronómico Trop ical de Investigaci ón y Enseñanza (C AllE ) en Octubre de 1985. Dicho documento busca el apoyo del CAllE para promover en la región una mejor formaci ón académica en sem illas por parte de las univers idades y escuelas de nivel med io como también para promover la investigación en semillas en el área.Por considerarlo importante, ARTES ha definido la neces idad de establecer un programa regional de ca paCitación en Semillas para desarrollarlo en cinco años (a partir de 1987). Para desarrollar este programa, ARTES ha venido desarrollando una ser ie de acciones .Patología de semi lla sComo una forma de canta r con mayor i nformaci ón sob re semi 11 as de los países de l área, la Junta Directiva de ARTES con el patrocinio de l a Agencia Alemana GTZ elaboró y levantó una encuesta de los siete paises de la región sobre l as deficienc ias y neces idades de semi lla s. En l a actualidad dicha e ncuesta ya se encuentra procesada.La misma va a serv i r de base para la preparación del documento de capacitación a cinco años.Fomentar y apoya r la creación de Asociaciones Naciona l es.de investigación e n semillas de cada pais. asista a presentarlo en 19 reuni6n anual de semillas.Actuali zar el directorio de tecnólogos de empre sas de semi 11 as.Crear medalla ARTES para otorgar le al mejor trabajo so bre semillas pre sentado en las reuni ones anuales.Incrementar e l número de socios.Informar a los Minis tros de Agricultura del área sobre l as actividades de ARTES.Promover e l desarro ll o y uso de l as descripci ones varietalesRam ón E. r~a driMn*La pal abra Asoc13ción sugiere la i dea de IIvinculo\" .El hombre es un se r social porq ue nace de l a unión de dos seres y en el seno de l a sociedad. Sin embargo, es un Se r con tingente y as' ctimo es el result ado má s perfecto de la creación, tiene limitaciones qu¡e 1e exigen insertarse dentro de asociaciones natura l es o volun tarias que suplan sus deficiencias.La familia, la sociedad y el estado l o vi ncula n naturalmente a sus padres y a sus herma nos I a sus vecinos y a sus compatriotas. En ellas encuentran el mayor número de circu nst ancias de apoyo para l a satis facci ón de sus neces idades.Pero las asociaciones naturales no siempre tienen ni l a especialidad ni l a versati 1idad de la s vo luntaria s y por eso tiene que acLdir a las religio sas , cívicas, cu ltu ra les, políti cas , sociales y defensa de l a profes i ón, el benefi cio de l afiliado y la protecc i ón de los intereses genera le s que les dieron el perfil especial que hoy se repite en mucha s de nue stras insti tuc ione s .En l a Edad Moderna l as ideas del Ilumini smo afectaron el agradece la invitaci6n para participar en esta importante conferencia.Estoy muy complacido de poder hacer esta presentación a nombre de la ASTA y poder participar en las discusiones de esta reunión.Me tomé la libertad de cambiar el título del tema asignado, para La asociación nacional en los Estados Unidos es por supuesto, la /lsociación Americana para el Comercio de Semillas (ASTA). Esta organización tiene más de 100 años y más de 800 miembros. Sus miembros act ivos son semil1istas con oficinas principale s en los Es tados Unidos , Mexico y Canadá. Tiene miembros afiliados, tales como las asociaciones bstata1e s de comercio de semi lla y las asoci aciones para el mejoramiento de cultivos¡ los miembros asociados son aquellos que suministran los bienes y servicios para el comercio de semillas y ex i s te una nueva clase de membresí a -el miembro corresponsal -que se ofrece a sernillistas de otros países. Existen más o menos 20 miembros corresponsales, tres de los cuales son de Argen tina, y no estoy seguro si existen otros de los palses de Centro y Suramérica.La Asociación Internaci onal para el Comercio de Semillas (FIS) es una federaci6n de asoc iaciones naci onales aunque existen provi s iones para IIMiembros Extraordinari os\" que son firma s loca li zadas en paí ses sin una asociación nacional. Su membresía está compuesta actualmente por cerca de 60 asociaciones nacionales.Comercio de Semillas (ASTA) tiene más de 100 años, qu e l a mayoría de las ~sociaciones estatales de los Estados Unidos tienen 50 o más años, que I la mayoría de l as asociaciones regionales se formaron antes que la mayoría de las asociaciones estatales, y que la FIS acaba de completar su XXIV Congreso Bi-Anua1, debemos llegar a l a conclusión de que estas el Promover l os intereses generales de negocios entre todos aque llo s que es tán ; nvo 1 ucrados en el negocio de semill as. trabajen para e l mejoramien t o y el desarrollo de la agricu ltura.Co leccionar y di seminar información pertinente al negocio de sus miembros. Se debe dar crédito a los empleados y directivos de las Asoe; ae; ones de Camere; o de Semill as que reconocen 1 as neces idades cambiantes de sus miembros J responden a la tarea de aumentar la tarifa a cierto nivel para ofrecer los servicios requeridos por sus miembros.Hasta este momento yo he discutido aquellas cosas que una Asociación puede hacer fáci lmente determinar sus propósitos. establecer los objetivos y desarrollar una estructura de tarifas.Vayamos ahora al servicio, 10 que realmente determina el éxito de la asociación. Sin los tipos de servicios que necesitan los miembros para mej orar sus negocios, hacer el comercio más fácil y contribuir al bienestar financiero de sus asociados, las asociaci ones no tendrán éxito. Ilustraré este punto discutiendo la Asociación de Distribuidores de Semillas de Kansas , Estados Unidos. Habían estado en el negocio durante un perlodo de tiempo muy largo J tenían una Convención Anual J pero parecían tener dificultades para determinar el propósito de su exis t encia. La legislatu ra de Kansas aprobó una ley de protecci ón al consumidor que tenia un efecto principal adverso sobre los semil1istas en el Estado. La Asociación revivió, obtuvo apoyo para corregir la legislación y ofreció un servicio que benefició a sus miembros. Podemos entonces definir los ti'pos de servicios que las Asoc iaciones pueden ofrecer a sus miembros como aquellos que los miembros no pueden obtener por si mismos.Algunos servicios que una asociación ofrece a sus miembros pueden ser anuales, tales como las Convenciones, mientras que otros son transitorios~ tales como la solución de problemas en la restricción de los negocios, aspectos legislativos, etc.Como se había dicho anteriormente, una asociac ión exito sa es aquella cuyos lideres reconocen cuánto se necesita un nuevo servicio o cuando uno ya no se necesita y 10 descontinúan. Certificación a nivel regional y na c ional; organizaciones internacionales tales como la ISTA, la OECO, la UPOV y otras, di scuten periodicamente las regulaciones t los cambios en la s leyes, los reglamentos y en otros aspectos que pueden afectar directamente el negocio de las semillas a un nivel estatal nacional o internacional. Un aspecto clave de una asociación de comercio de semillas debe ser ayudar al movimiento libre de las semillas en el comercio. Es casi universal mente cierto que cuando una semilla se empaca y se mueve a través de los canales de comercio, el empacador no tiene ningún co ntrol sobre dónde se venderá y usa rá rea 1 mente esa semi 11 a. Puede ve nderse dentro del estado, en otros estados o aún en otros paises.Esto hace necesario que el empacador conozca y entienda la s l eyes y la s regulaciones de otros estados o aún de otros paises, en los cuales su semilla se puede sembrar. Es evidente que la uniformidad en las leyes y regulaciones entre los estados y entre los paises es de principal importancia para l os semillistas y la realización de este objetivo es materia de alta prioridad en la s asociaciones regionales e internacionales del comercio de semillas. Uno de los med ios más efectivos para alcanzar este objetivo es la cooperac ión y el dia logo cont inuo con la s diferentes agencias públicas.Cooperación con otras Asociaciones Nacionales: El grupo más efectivo para comunicarse con las asociaciones regulatorias o legislativa s es la Asociación Nacional.El diálogo y la comunicación entre las asociaciones nacionales es el medio m&s efecti vo para comunicar los problemas de importanci a inte rnaciona l . En este punto, yo quisiera decir que ASTA aprecia la comunicación que hemo s tenido con la s asociaciones latinoameri canas ya que nuestras discusiones y cooperación han sido mutuamente be neficiosas en varias oportunidades.Cooperaci ón con 1 as Organ i zaci ones Profes i ona 1 es: La mayor; a de las organizaciones profe sionales tienen muy poca comunicación directa con las organizaciones comerciales; sin embargo, muchas reglas o regulaciones nuevas tienen su base en los hallazgos que han reportado las reuniones de carácter científico o profesional.Uno de los grupos con mayor influencia en nuestra industria son los fitopat610gos. Muy a Son esenciales para el comercio internacional de semillas y sirven como base para el arreglo de disputas tanto a nivel nacional como i nternacional. Es imposible para el semillista de un pals vender la semilla a un comprador en otro pa í s a menos que ambos tengan un entendimiento de la definici6n de calidad, análisis de semillas, procedimientos usados, etc. La ASTA, la FIS, la ISTA y otras organizaciones internacionales ofrecen estas definiciones a través de reglas para el comercio y proced i mi en tos aceptados i nternac i ona 1 mente pa ra e 1 a ná 1 i s i s . Usaré la China como un ejemplo de los problemas que se pueden tener debido a una falta en las Reglas de Comercio. La China no es un miembro de la flS y no sigue las Reglas de Comercio de la FIS, no es un miembro de la ISTA y no usa los procedimientos de Análisis de la ISTA y la semilla que Se envía a la China está sujeta a la evaluación a su llegada por reglas que no son uniformes aún China.Es casi imposible circunstancias.de estado a estado en la misma hacer negocios bajo estas Otros Servicios y Actividades: Otro aspecto muy importante de las Asociaciones de Comercio de Semillas que contribuye a su éxito incluye el apoyo a las conferencias técn icas y de i nves t i gac; ón, e 1 apoyo económi ca con becas académi cas para estudiantes en agronomía y producción de semillas, el desarrollo de programas de seguro de grupo para sus miembros, el arbitraje de disputas entre sus miembros, y la oposi c ión muy a menudo, de la legislaci ón tanto nacional como estatal, que pueda afectar a los semi 11 i stas I y muchas, muchas otras actividades que var ían de una asociación a otra.Ejempl os especificos en el caso de ASTA serían el apoyo inicial a laFundaci ón Americana para la Investigación de Semillas y al Consejo de Fitomejoradores Comerciales. La Oficina Nacional de Jardines y la Selección Americana que ofrecen servicios valiosos para la lndustrla de semillas de jardin, organizaciones autónomas y autogobernadas que tuvieron su comienzo como una acti vidad de la ASTA.Yo pOdría discutir todos estos aspectos en mayor detalle y prosiblemente en otras discusiones y reuniones de trabajo si me ofrecieran la oportunidad. Independientemente de qué tipo de información o serv icio pueda ofrecer una asociación para el comerc i o de semillas a sus miembros, la evaluación final del éxito de una asociació n debería ser la eficacia con que realice la función de facilitar el comercio de las Semillas ya sea a n~vel local, estatal, nacional o interna cional , porque s6 10 con un comercio rentable de semi lla s pueden sobrevi vir sus miembros. Si las a~ociasiones para el comerc i o de semilla s tanto privadas como públicas fallan en este aspecto, no so l amente no tendrán éxito como organización , snno que habrá condenado su derecho a existir.Aprecio la oportunidad para presentar estas ideas a nombre de la Asoc iación de Comercio Americana (ASTA) dura nte esta importante conferencia. Espero l as discusiones que seguirán durante esta semana .A. 8. Ed nie'En esta conferencia se utilizaron la Asociación Internacional para el Análisis de Semillas (ISTA) y la Asociaci6n Oficial de Analistas de Semillas (AOSA) como ejemplos de asoc ia ciones técni cas exitosas. Se hizo claridad sobre el punto de que estas son asociaciones específicas para el análisis oficial de semilla s que agrupan gobiernos individua les o laboratorios aprobados por gobiernos.En las memorias tanto de la ISTA como de la AOSA se han publicado 1 1 as historias de ambas entidades. Los laboratorios para el análisis de semillas comenzaron sus labores alrededor 1870 en Europa y más tarde, entre 1890 Y 1900, en los países del Norte y Sur América. investigaciones de estos laboratorios revelaron una Las primeras adulteraci6n significativa de la semilla que se vendía en esa época. El contacto entre estos laboratorios se llevó a cabo en 105 Congresos Botániéos en J.ropa.La ne cesidad de estandarizar los métodos de análisis de s~millas fué el propósito común para desarrollar una Asociación tanto c mo la nece sidad de operar de tal forma que se pudiera intercambiar y d~stribuir informaci ón técni ca . El análi sis de semill as se aplicó entonces y tuvo un impacto directo sobre los vendedores y compradores, as1 como sob re los programas oficiales de semillas.(*) Presidente, International Seed Testing Association (ISTA) Pruebas comparativas dirigidas a alcanzar resultados más uniformes y precisos.Formulación de métodos uniformes en el análisis de semillas para el comercio internacional.Organización de congresos internacionales, publicación de reportes e informes científicos y ayuda mutua en la capacitación de técnicos oficiales .Las metas de la AOSA, por su parte fueron perfeccionar y promulgar métodos uniformes para el análisis de semillas y trabajar en un modelo de ley de semillas con el objetivo general de alcanzar mayor uniformidad en la regulación de las semillas.Información EstadIstica acerca de 1 a I STA ¿Cómo hacer para mot ivar la parti c ipa ci ón de los asociado s dentro de a asoc i ació n de sem illa s de tal forma que contribuyan voluntari amente co n u tiempo para que la asociación a l ca nce su s objet ivos? La respu esta a ~ste interroga nte no es simp le. Exi sten demasiados f actores relacionados on la estructura y pract ic a de l as in st ituc iones que in f luyen positiva o ega ti vamente en la di s posición que 105 miembros de asoc ia c iones tengan ~es pecto a apoyar a l a as ociaci ón . En este trabajo quiero refer i rme ol amente a algunos elementos que ciertamente pueden ser catali zadores de art icipaciÓ n.En primer luga r , es poco probab l e que lo s asociados participen en o1ma enérgi ca dentro de una organización de estructura rígida que no lu~de asimilar las expectativas, así como inquie t ud es y con t ribucio ne s, de I :ada uno de s us mi embros. Ocurre que. a menudo , los asoe; ados deb en ,d~Pta rse a una es true tura organ i zaei on a 1 determi nada que ofrece po cas I p~rtunidades de flexibilidad.Se asume, en este contexto, que l as ns¡tituci ones deben tomar una forma particular para a l ca nzar una meta .. i ~ embargo, se asume tambi é n la ex istenc ia de dos grupos de actores en la nS¡titución: po r un l ado , aquellos que piensan, dec iden, planean, crean 'a rmas de asoc iación, y por el otro, aque llos que aceptan y adopta n estas orloas, adaptándose a e ll as . El prob lema es que no exis t e ninguna ,rganización perfecta ni ning ún di seño de organización óptimo para ualq uier circun stancia. La s organi zacion es son sistemas au xi li a res para ') Antropól ogo , CIAT. responder a circunstancias siempre cambiantes ya sea en cuanto a las condiciones de la sociedad en que se desarrollan (climas, político, económico, fiscal, institución.La s social), o al propio desarrollo evolutivo de cada asociaciones se crean dentro de condiciones que dinam;zan o restringen su desarrolla. Al mismo tiempo, no es de esperar que la estructura de una asociación permanezca inal terada de sde sus fases iniciales de organización hasta llegar a su desarrollo. Estas observaciones son particularmente aplicables a instituciones que, como en el caso de las asociaciones de semillas. deben mantener un perfil competitivo en el mercado, s i quieren sobrevivir.Ahora bien , si una organización es rígida y no puede adaptarse a cambios en el exterior inst ituciona l o a tra nsformaciones debida s a su propio desarrollo interno, es muy probable que sufra pérdida de efectividad y resistencia por parte de sus asociados.Tal re s istencia es más frecuentemente pasiva: una expresión se encuentra en lo s bajos índi ces de asistencia a reuniones de la asociación. aSl como el igualmente reducido nivel de participación. Acá vemos que es posible aceptar formal mente una organización sin participar dinámicamente en ella. La clave, entonces, no es log r ar la aceptación de una estructura por parte de l os asociados. Al contrario, se debe buscar una incorporación del asociado por parte de la organización, por un lado, y, por el otro. una internalización de los objetivos y los medios institucionales por parte de los asociados. En otras palabras, el gran desa fio consiste en ha ce r que exista una identifica ción mutua entre la asociación (sus objetivos, proyecci ones, etc) y sus miembros (sus intereses particulares. inquietudes, creatividad, energía, etc.).Por todo esto es posible decir que una organización moderna cuyo desempeño es exitoso se caracteriza invariablemente por una incorporación, dentro de su práctica operativa. de 10 que podemos llamar \"circunstancias u de los asociados por un lado~ y del público a quien si rve, por el otro . As~, como una asociación comercial, debe entender correctamente las aracterísticas de la estructura de me rcado , las insti tuciones de crédi to de propiedad, las políticas na ciona les y las regionales y debe gU, almente vigilar con cuidado esmerado el baróme tro de la s inquietudes y SPjiraCiOnes de sus miembros. La s asociaciones voluntarias aumentan s u fe, ctividad en la medida en que son capaces de articular tanto los structuras rígidas y ve rti cales a ultranza tienen dentro de sí las emillas de una miop'ia perniciosa que l es impide adaptarse a nu e vos esafíos y éxitos probables . El futuro de la asocia c ión depende del dinamismo de la participación de sus miembros. La permanenci a de tal dinamismo apoyada eficazmente por la iden tificación de los miembros y su asociación const ituye una de las más sólidas fundaciones de la asociación.El éxito de grandes corporaciones en el mundo entero reside en un a visió n empresarial correcta y flexible, un s i s tema de evaluación dinámico y la creaci6n de una \"mistica\" o de una ideologia de pertenecer a una \"familia\" en que todos los miembro s co ntribuyen y se benefician dentro de sus areas de trabajo. Las asociaciones de semilla s pueden hacer lo propio. La participación de los miembros en el diser.o de los cambios en las políticas de la asociac ión, así como de los servicios que ofrece y de las tividades que desempeña 1 no contradice una estructura en la que por cesidad debe existir un liderazgo claro y unas instancias de decisión rmes. Corresponde a los dirigentes de una asociación tomar decisiones y finir metas. Sin embargo, la capacidad de toma de deci siones acertadas, definir objetivos que interpreten correctamente el clima externo e I terno de la organ izac ibn, y, especialmente, de maximizar el impacto de ~s decisiones que se tomen, depende enormemente de la receptividad de los íd~res a la participación de lo s miembros. Una dirección dinámica y ectiva no es necesariamente una dirección que suplanta a los miembros. con trario, la dirección efectiva es la que mejor articula los intereses los miembros y conoce mejor las capacidades reales de su organización. r ello, una dirección fuerte no sólo puede sino que debe ser mplem entada con mecanismos de retroalimentación de información desde los veles más bajos de l a jerarquía hac ia la cúspide de la organización. El der debe crear una base de sustentación de sus decisiones sobre comprensión correcta de lo que los miembros esperan de su organización. t iempo y el dinero invertidos en sondeos periódi cos sobre la vo luntad y mandato de los miembros , sobre sus inquietudes y su valoración de la strumental idad de la organización para alcanzar objetivos , etc. serán s lque recompensados en lo s ~ndices de productividad de las asociación e, dJrectamente, en los índices de las instituciones particulares a las que r enezcan sus miembro s.Se trata, en defini tiva, de crear asociaciones que promuevan el ltus iasmo de sus miembros. Es esencial que exista entusiasmo, deseo de \"a~ajar por la organizaci6n, incluso de ha cer sacri fici os para alcanzar a meta. Por ello es que las asociaciones deben estar orientadas a ,s~lver las necesidades sent idas de sus miembros mediante el respeto a la. lb rtad de ellos mismos para definir Sus Objetivos. Al mismo tiempo , sin lb rgo, es importante que las asociaciones fijen metas modestas y alistas porque el entusiasmo no se templa sino sobre éxitos. Proyectos miciosos y demasiado comp lejos, que queman etapas y reducen condiciones \"evias son terriblemente peligrosos porque pueden contribuir a socavar la moral de los miembros y s u conf ian za en el espíritu corpora tivo. Er tercer lugar, l os medios, la s tficticas utilizadas para alcanzar objetivo~ deben ser lo suficien temente bien presentados y di señ ad os de forma que lo~ miembros no so lamente entienda n la s medidas sino que tambi én vean l é posibilidad de ser creat ivos , que pi ensen que ell os pueden solucionar lo ~ problemas. Esto está intimamente ligado al hecho de que los miembros dE la asocia ción deb en tener confianza en que sus dirigentes tiener exper iencia y conocimiento t anto de aspectos administrativos como de la ~ IIc ircunstancias\" de l os ambie ntes externos e inte rnos a l a organizacior co mo para trabajar efectivamente en provecho de l os asociados .Esta~ co ndi cione s harán que l os miembros creen confianza en sí mismos y en Sl organización, y que s ientan orgullo y sentimi ento de que están mejorande al es t ar en una asociación.La participación creat iva y enérgica de los miembros es a lgo que n< se pu ede crear de la noche a la mañana . Toma mucho tiempo y requien habilidades tales como capacidad de expresarse bien e n público, dE analizar si tu aciones , resolver conflictos , determinar prioridades y toma l complejas decisiones. Po r ello es probab le que una asociación req uiera er sus fa ses de desarrollo in icial prestar aten ci ón a estas condicio nes ) mot i var efect i vamente a que los asociados con ti núen aprendiendo, cada vei con niveles mayores de sof isti cac i ón de aná li s i s. Esto es t amb i en uné justificación para la difusión de publicaciones propias de la asociación. o la organización de ta ll eres, semi narios y cursos de mejoramie nto. Este cont ribu irá poderosamente a que los miembros entiendan más la ! pos ibilidades ili mitada s de s u cont r ibución, a que ex ploren forma! co ncretas de participación y que, en definitiva, se identifiquen con Sl organización.En si nt esis~ es preciso que l as asoc iac i one s asuman una actltuc receptiva, plástica y reflexiva que responda a l os intereses e inquietude' de sus mi embros. Es por ello qu e la asociación deberá combinar esfue rzo' para alcanzar objetivos tecnológicos y humani stas , s in que esto di sm inuya la efectividad adm ini strativa de la organización.Sobre esta base se d~rán las condiciones para promover la identificación mutua de asociados y aSociación, de forma que l os éxitos de la última se consideren también En otro artfculo, de Peter F. Drucker titulado IIBuenas Obras y Buenos Negocios\" (l9B5), se hace un concienzudo análisis del papel de la empresa en la sociedad en conjunto y dice que la responsabilidad social del empresario es convertir un problema social en una oportunidad económica, en capacidad productiva, competencia humana, empleos bien remunerados y riqueza.Drucker presenta el ejemplo de dos estadounidenses que a principio de este siglo figuraron entre los dirigentes empresariales que hicieron reformas comunitarias importantes -Andrew Carnegie, fundador de la U.S. Steel Corporation y quien financió la Biblioteca Pública y Julius Rosenwald quien creó el sistema de agentes agrlcolas de los condados, con el propósito de desarrollar competencia y productividad en el agricultor norteamericano.El criterio de este último era que la prosperidad de Su empresa. IIS ea rs 11, estaba 1 i gada a 1 a prosperi dad de su cliente principal: el agricultor.En ese mismo articulo Drucker plantea otra forma de enfrentar la responsabilidad social y es, como lo hace William C. Norris (después de la 11 Guerra Mundial) quien de una manera prodigiosa logra combinar la solución de problemas a través del adiestramiento y empleo de grupos marginados, en pro de proyectos rentables. Se resume esta actuación en convertir en oportunidades comerciales los desafíos sociales.En el artículo de Drucker hay tres visiones: La filantropía de Carnegie, la de desarrollo comunitario de Rosewald y una tercera que e s la del desarrollo comunitario intimamente ligada a la actividad empresa ri al.social primordial de la empresa en la próxima década será una que hoy no se menciona s iquiera en el análisis de la s responsabilidades empresa ri a 1 es: La responsabi 1 i dad cada dí a más importante de crear el capital que pennitir~ financiar los empleos del mañana \".Hoyes indudable y sobre todo en nuestro medio, que el empresario no puede estar ausente del ambiente que lo rodea. Así lo exigen las más modernas técnicas de IIPlaneación Estratégica ll no sól o porque en el ambiente externo están los c l ientes de las empresas s ino porque es asunto de s upervi venc i a de 1 as empresas y en algunos casos de 1 s; s tema de libre iniciativa y de la democracia.En Cal;, es notorio el aporte de empresas y organizaciones gremiales ha cia la solución de las necesidades básica s de la comunidad: (ALES) tienen un gran potencial para contribuir con el desarrollo del sector de semi llas en la región. Se han presentado diversas propuestas sobre las clases de actividades y beneficios que se pueden lograr a través de ALES. Actualmente se requiere tener una visión sobre lo que puede ser la Asociación en los pró ximos anos, y sus beneficios potenciales.LA ALES DEL FUTURO Membresía:ALES es una Asociación que puede contar con la afiliación de 25 a 35 asociaciones en el área del comercio y de la tecnologla de semillas. Estas asociaciones tienen un potencial de 3.500 socios. ~diciona1mente. ALES podría afiliar 1.000 miembros a titulo individual y 200 miembros patrocinadores. Estos miembros representarlan todo el t ector semillista públi co y privado de América Latina y del Caribe .Véase Anexo 2}. secciones y grupos de trabajo que real icen un programa de trabajo continuo y establezcan las bases de la mayoría de las actividades del programa de los Semi na ri os Panamer; canos conjuntamente con i as reuniones oficiales de ALES.Estos grupos de trabajo podrán establecerse dentro de siete áreas principales que podrían incluir:l.Políticas y planeación de programas de semillas 2.Fitomejoramiento en los sectores público y privado 3. Unidades de producción de semilla básica 4. Grupos de cultivadores de semillas, empresas y mercadeo 5. Calidad de la semilla 6. Educación e información sobre semillas 7.Cada sección estaría dirigida por un director que también podrla ser miembro de la Junta Directiva. El director de la sección sería responsable de la organización de uno o más grupos de trabajo con miras a alcanzar los objetivos de dicha sección. El Anexo 1 presenta los objetivos para cada sección y para los grupos de trabajo sugeridos.Además, ALES requerirá de Comités organizativos y administrativos tales como el de auditoría, presupuesto, nombramiento y otros.La Asociación cuenta con varias alternativas para conseguir fondos para realizar sus actividades. Las asociaciones afiliadas representan el principal apoyo financiero. Los miembros individuales y los miembros asociados podrían representar otro 25% del presupuesto. Otro 25% estar1a representado por la venta de publicaciones, material de propaganda y publicidad, la inscripción en las reuniones y donaciones.El otro 25% estaría representado por los miembros patrocinadores. El presupuesto cubrirá los gastos de operación de una secretaria y las actividades de programas continuos de la asociaci6n.Secretaria:La Secretaria de la Asociación podrla estar en las manos de un tecnólogo de semillas o de un administrador de tiempo completo, que cuente con buena experiencia institucional y organizativa dispuesto a viajar para conocer los objetivos y los programas de las asociaciones afiliadas. Si estas solicitan su asistencia deberán cubrir los gastos de viaje.Seda conveniente que la Secretaría tuviese una sede permanente para facilitar la comunicación dentro y fuera de la región.La Secretaría tendría el apoyo de una secretaria y contaría con los medios para contratar los servicios de los miembros tanto de las asociaciones afiliadas como de las no afiliadas.La Secretaría de ALES podría ser el vínculo para relacionarse con o ras asociaciones y organizaciones internacionales. Por medio de este trabajo se podría ayudar a las asociaciones e individuos miembros para q~e se mantengan al día con los adelantos de la ciencia y tecnología de s,millas y hacer los arreglos necesarios para traducir al Español los teriales útiles para la región.I Las Asociaciones afil iadas a ALES dilferentes maneras. Algunos beneficios, asociaciones incluir~an: podrfan beneficiarse de al vincularse a otrasLa oportunidad de afrontar, a nivel regional, los problemas de política y desarrollo de programas y contar con la posibilidad de hacer una aplicaci6n a nivel local.Los medios para trabajar de una manera sistemática y constructiva para lograr una mayor uni formidad en los patrones de ca 1 idad. la legislación. los procedimientos de inspección y de análisis de semi 11 as.Las oportunidades para lograr una mayor motivación de los miembros de la asociación mediante el establecimiento de vínculos adicionales con los colegas dentro y fuera de la región.Mejores mecanismos para resolver los problemas de producción y tecnología de semillas a través de proyectos conjuntos de investigación dentro y fuera de la región.Mayores oportunidades para que sus miembros presenten y publiquen los resultados de la investigación.Los contactos adicionales que logran los miembros a través de reuniones y publicaCiones para que puedan comercializar la semilla y promover Su producto en toda la región y fuera del área.La posibil idad de aumentar la comunicación y el intercambio de información que beneficiará a los miembros de las asociaciones loca 1 es.Las nuevas oportunidades que se ofrecen afiliados a las asociaciones técnicas para que los miembros y comerciales puedan intercambiar ideas y beneficiarse de las experiencias de los otros.Muchos de los beneficios que obtienen los miembros a titulo individual estc1n vinc ulados con los beneficios que obtienen las asociaciones afiliadas. Además los miembros a titulo indi vidual pueden beneficiarse mediante:1.El reconocimiento más allá de las frontera s de su propio país de los logros alca nzados.Mayore s oportunidades para desarroll ar habil idades de 1 iderazgo y para contribuir en la s actividades regionales de de sa rrollo de semi 11 as.Nueva s oportunidades para identificar soluciones a los problemas locales a través de mayores lazos de comun icación con los colegas.Oportunidades adiciona les a nivel profesional. Pollticas y Planeaci6n de Programas de Semillas a.Objetivos: 1) Contribuir al desarrollo de directrices que puedan ayudar a los programas nacionales en la preparaci6n de planes para los programas de semillas.2) Dirigir los puntos que requieran atenci6n en los programas de semillas y en las industrias y desarrollar los mecanismos para enfocar la atenci6n hacias las pOSibles soluciones.Identificar parámetros de más éxi to en los programas de semillas y en el desarrollo de la industria e informar a los gobiernos y a las asociaciones afiliadas sobre la posible utilizaci6n de estas medidas.Dar asesoría a las asociaciones afiliadas sobre políticas importantes para el desarrollo del sector semillista.Inicialmente sólo se requerirá un grupo.Fitomejoradores del sector público y privado a. Objetivos: 1) Dar oportunidades para que los fitomejoradores del sector públ ;eo y privado compartan información sobre progresos en metodología de fitomejoramiento y sobre los resultados obtenidos.2)Dar asistencia en 1 a identificación de maneras para lograr una mayor cooperación en el área de fitomejoram;ent o entre los sectores público y privado.3) Mejorar la cooperac ión entre los programas de fitomejoramiento y el sector semil li sta.b. Grupos de Trabajo:Ini cialmen te sol o se requerirá un grupo 3. Unidades de Producción de Semilla Bá s ica a. Objetivos:1) Favorecer el intercambio de semilla básica entre los programas nacionales.2) Ofrecer oportuni dades pa ra compart ir i nformaci ón sobre aspectos técnicos del mantenimiento de las variedades e h1bridos .3) Identificar mecanismos para mejorar la administración y finanzas de las Unidades de Semilla Básica.b.Ini cia lmente so lo se requerirá un grupo.Cultivadores comerciales de semillas . empresas y grupos de mercadeo.a. Objetivos:1) Proponer mecanismos, considerar y resolver asun t os relacionados con la legi slación y el comercio de semillas a escala regional tanto para individuos como para empresas comerciales involucradas en la industria de semill as.Disponer de un foro para discutir avances que puedan contribuir a una mayor eficienci a y desarrollo de la industria comercial de semillas.Contribuir a l ogra r una mayor importación y exportación de semillas dentro y fuera de la región.b. Grupos de Trabajo: 1) Semillas de cereales 2) Semillas de hortalizas 3) Semillas de pastos 4) Otros cultivos 5.Calidad de la Semilla a. Objetivos :1) Contribuir para al canza r una mayor uniformidad en los procedimientos y evaluaciones de los laboratorios de contro l de calidad de semillas.2) Ayudar a desarrollar ma neras que faciliten el mo vimi en to de semillas dentro y fuera de la región ide nti f icando las restricciones existentes de naturaleza legal.3) Mejorar los vínculos con las asociacione s , universidades y asociaciones que se encuentren fuera de la región y que puedan contribuir al mejoramiento de la cal idad de la semilla produc ida en la región.b. Grupos de Trabajo: 1) Legislación de semillas 2) Certificación de semillas 3) Análisis de semillas 6.Educac ión e informac i ón en semillas a.Objetivos :1) Contribuir en el intercambio de información del sector de semi lla s dentro y fuera de la región.2) Aumentar los vInculas y el intercambi o de información y de persona l entre l as uni ve rs idades que cuenten con programa s de ciencia y tecnología de semilla s.3) Fomentar el desarrollo de la ed ucación en c iencia y tecnología de semilla s en la r egión.Conocer y fa c ilitar la s ac t i vidades de capacitación a nivel naciona l, subregi onal, regional e internac ional.Es timul a r y ayudar en los esfuerzos publ icitarios que puedan contribuir al mejoramiento del sector semilli s ta.b. Grupos de Trabajo: 1) Información y publ icidad 2) Educac i ón y capacitación 7.Investigación en semi llas a. Objetivos :1) Promov er el intercambio de informac i ó n en investigación sobre tecnología de semi llas.2) Verificar las necesidades e identif icar l as prioridades de investigación en la región.3 ) Es tabl ecer y mejorar los vínculos con l os programas de i nvestigación que existen fu era de la regi ón.b. El Gobierno Uruguayo acogió la iniciativa de realizar este evento y ante la importancia otorgada al mismo, lo ha declarado de interés na cional; comprometiéndo al Ministerio de Ganadería, Agricultura y Pesca para su planificaci6n con la coparticipaci6n de la Asociaci6n de Ingenieros Agrónomos.Dadas las características del evento, para atender todos los detalles organizativos y técni cos, se creó una Comisión Organizadora con representantes de organismos públicos y privados vinculados a la temática de semillas.Para el financiamiento de este evento, Uruguay contará con diversos recursos entre otros:-Aporte del Gobierno Uruguayo:-Dinero -Personal -Equipo -Transporte Aporte de la empresa privada:-Inscripciones -Instalaciones -Centro de Conferencias -Aportes finan cieros de patrocinadores -Aportes de organismos internacionales El campo científico y técnico de los Seminari os Panamericanos de Semillas abarca aquellas actividades sobre semillas comprendidas dentro de los s iguientes títulos: 1) investigación científica; 2) producción, análisis y certificación; 3) beneficio, almacenamiento y distribución; 4) legi slaci6n; 5) educación, extensión y fomento de su uso; 6) intercambio y comercio nacional e internacional.Sobre estos temas se invita a todos los especial ista s a presentar trabajos, los cuales serán anal izados en Comi siones de Estudio que funcionarán para cada especial idad. También se enfocarán los temas de más actualidad que serán elegidos por la Comisión Organizadora del país sede, en este caso Uruguay, en consulta con los demás paises participantes al evento. En este caso dichos temas serán presentados y discutidos en Mesas Redondas por especialistas de alto nivel reconocidos mundialmente y especialmente por invitados para este fin.Otro tipo de intervenciones serán las que real icen instituciones internacionales ampliamente reconocidas de América y Europa. También se contará con presentaciones por pa1ses participantes. Funcionarán Comisiones de Trabajo para discutir los temas de interés dando un informe en la Sesión Plenaria en donde se harán las recomendacione s del caso.Corresponde ahora, en este seminario, discutir y sel eccionar los temas de más actual i dad. Los propues tos por nosotros como parte del Comité Organizador del XIr Seminario Panamericano de Semillas, son los siguientes:-Recursos Genéticos y su conservación.-Métodos prácticos de fomento y control que lleven al incremento del uso de semillas de calidad.-Aspectos tecno1ógicos de producción, beneficio y mercadeo de semilla s de especies forrajeras.Esquema de la produ cción de semillas de calidad de especies hortícola s , frutlcolas y de otras de reproducción asexual (propagación clonal). VerificaciOn de asistentes delegados.2. Discusión y aprobaciOn del Orden del Día .3. Elecc ión de Presidente, Vicepresidente y Secretario de la Asamblea.Informe del grupo de estudi o de estatutos y aprobación de los mi smos .El ecc ión del Consejo Directivo.Lectura y aprobación del Acta Constituti va definitiva de FELAS.Varios.Tal como lo esbocé breveme nte durante 1 a presentación del Seminario, ALES fué fundada por un grupo de especialistas en semillas que participábamos en el Congreso Latinoamericano de Fitotecnia realizado en Bogotá en Noviembre de 1970 y a quiene s nos unía el interés común de las semillas.Este primer intento de asoc iación no tuvo realmente la evolución que todos deseábamos y no dejó de ser mas que la primera manifestación de voluntad de constituir un ente legal que nos agrupara de acuerdo con nuestro interés mutuo en el campo de las semillas.En Quito, en 1983, con motivo de la realización del X Seminario Panamer; cano de Semill as, un pequeño grupo de as; s ten tes formado por aquellos fundadores de la Asociación, tuvimos la oportunidad de volver• sobre la idea de estar asociados. Ante la dificultad de hacerlo como individuos por un lado, y dado el auge que estaban tomando las asociaciones en casi todos l os países t decidimos cambiarle su forma de participación para que fueran las asociaciones latin.0americana s de especialistas en semilla s las que se asociaran con servando la sigla ALES que aún hoy conservamos más por razones románticas que por semántica, como ya expresé inicialmente y que espero sustentar a su debido tiempo.En Quito, para seguir el recuento histórico, vimos la necesidad de estructurar nuestra asociación para poder cumpl ir una seri e de objetivos, pero ante todo el de mantener viva la idea de l os Seminarios Panamericano s de Semillas cuya importancia nadie di scute. Se nombró la denominado \"federación Latinoamericana de Asociaciones de Semil1istas\" el cual se designará con la sig la \"FELAS\" y será regido por estos estatutos y por las disposiciones legales que le s ean aplicables, y cuya duración será de 99 años contados a partir de la fecha de su constitución.Artículo 2 La sede permanente de la Federación así como la de la Secretar ía General será la ciudad de Bogotá, Colombia.Podrán establecerse oficinas regionales en los lugares que acuerde el Consejo Directivo.Artículo 3 La Federación tiene por objetivos: a) Propender por la vinculación de los espeCialistas en semillas a través de sus asociaciones en los países latinoamericanos y favorecer el intercambio de conocimientos, capac itación, integra ción y relaciones comerciales.Promover la formación de nuev as asociaci ones afine s , regionales y naciona les, y fortale cer la s ya existentes.c) Mantener estrec ha s relaciones con instituciones, sociedades y empresas, que desarrollen ac ti vidades afines ta nto nac iona l es como internac i onales , públi cas y/o pr i vadas.d)Orientar a l as instituciones oficiales y/o pr i vadas de los países que lo solic iten , en la definición de poI íticas y estrategias que incentiven el desarrollo del sector semillista.e) Propiciar y a poya r los programas de capacitac i ón científica técn ica y de m er cadeo de l os mi emb ros de las asociaciones reg i ona les y nacionales .f) Organizar y mantener un banco de datos e información sobre l as actividades de semill as , y publicar trabajos de interés para los asociado s.g) Velar por la real izaci ón opor tuna de los Semina ri os Panamericanos de Semilla s, y def ini r con el Comi té Organizador del evento la programac i ón, la organización y la ejecución de cada Semi na rio Pa namericano.CAP nULO ¡ ¡ ¡Artí culo 4La Federación quedará confonnada po r todas aquellas asoc iac iones de pai ses latinoameri ca nos , relacionadas con semillas que man ifi esten expresamen t e su deseo de vinculación, y cumplan con los requisitos y obligaci ones que se estipulen en estos estatutos. bl Estudi ar y aprobar la s reformas de estatutos. el Fijar al Consejo Directivo la s orientac iones y políticas para lleva r a cabo los propósitos de la Federación. dl Nombrar y exc lu ir a los Miembros Honorarios de l a Federación. Artículo 20 EL Consejo Directivo es el orga no ejecutor de las políticas de la Federación y tendrá todas l as facultades necesa ria s para llevar a ca bo l os propós itos de 1 a Federación de conformidad con 1 as poI íti cas y orientaciones fijada s por l a Asamblea General de Miembros de la Federación.Estará conformado por e l Presidente, los dos Vicepre sidentE s y cuatro vocales con dos suplentes numéricos representantes de difere nte s países y elegidos en Asamblea General de Miembros de la Federa c ión, de entre sus Miembros Activo s por el s istema de cuaciente electo ra l. El sistema de cuoci ente electo ral se determinará dividiendo el número total de l os votos vá lidos emitido s por el de la s pers onas que hayan de elegirse.El escrutinio se comen za rá por la lista que hubiere obtenido mayor número de votos y asl en orden descendente. De cada li sta se declararán elegidos tantos nombres cuantas veces quepa el cuociente en e 1 número de votos emi t 1 dos por 1 a mi 5ma , y s 1 quedaren pue s tos por proveer J estos corresponderán a en el mismo orden descendente. decidirá la suerte . d} Designar los Comités Técnicos necesa rios para la ejeCUCión eficiente de las labores de la Federación. e} Presentar el informe de sus actividades. Autorizar al Secretario General para la celebración de todos los actos o contratos cuya cuantía exceda US$ 2.500. j)En general. llevar a cabo todas 1 as gesti ones y efectuar todos los actos que fueren necesarios y co nvenientes para el fun cionamiento de la Federación.El Consejo Directivo se reunirá por 10 menos una vez al año atendiendo la convocatoria que haga el Presidente cuando menos con se senta días de anticipación a la fecha prevista, a no ser que la mayoría de los miembros apruebe un plazo menor.En todo caso deberán consignarse en la convocatoria los asuntos que se someterán a debate.Cada representante tendr! derecho a un voto en la s reuniones del Consejo Directivo. Habrá quorum deliberatorio y dec isori o con la presencia de cuatro de sus miembros.La aprobación del presupuesto que someta a su co ns idera ción la Secretarla General, requerirá el voto de cinco de sus Miembros.Artículo 25La Secretaría General será ejerCida por el Secretario General auxiliado por el personal que él designe.Artículo 26El Secretario General será el ejecutor de las resoluciones del Consejo Directivo y para tal efecto tendrá las siguientes atribuciones: al Apoderado general para administrar la Federacibn y ejecutar los actos, celebrar contra tos , fi rmar los documentos y otorga r y suscribir los t1tulos de crédito que requiera esa administración.bl Apoderado general conforme a la ley, con facultad para representar a la Federa cibn ante toda clase de autoridades administrativas, políticas y judiciales, aún las de ca rácter penal o ante árbritos. Presentar posturas en remate y obtener adjudicación de bienes , renunciar derechos, desistir de l as acciones que hayan intentado y de cualquier recurso y, en general, ejecutar todos los demás actos para los que se requiera claúsula conforme a la ley. dl Nombrar apOderados con la s facultade s que juzgue convenientes para los fines de la Federación y revocar los que hubiere otorgado.el Proponer al Consejo Directivo el proyecto de presupuesto de ingresos y egresos, y presentarle el balance y las cuentas de la Federación. b) Por decisión de la autoridad competente en los casos expresamente previstos en las leyes.e) Por reso1ucibn tomada por la Asamblea General de Miembros de la Federación, aprobada por los votos de las dos terceras partes de sus miembros activos.En caso de disolución el Consejo Directivo hará el nombramiento de el ó los liquidadores, quienes tendrán las facultades y las atribuciones que la ley y el mismo Consejo les fijen.Artículo 34En caso de diso1ucibn, los bienes de la Federación pOdrán pasar a la entidad que la sustituya, o a la Cruz Roja Internacional . ","tokenCount":"11101"} \ No newline at end of file diff --git a/data/part_3/2426605624.json b/data/part_3/2426605624.json new file mode 100644 index 0000000000000000000000000000000000000000..85b0fb0c90ebe15d1e5758c56c65d481c635de11 --- /dev/null +++ b/data/part_3/2426605624.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"b0d1470316bdec65169848ea2fa02984","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/99f11dce-7e13-4131-b058-3bad6e0d8a8f/retrieve","id":"-1376650183"},"keywords":[],"sieverID":"78863071-bfb5-47fb-a912-7f537a23178d","pagecount":"13","content":"El agua es un factor crítico en la producción de cultivos y para obtener un buen rendimiento en la cosecha de fríjol se requiere un abastecimiento adecuado.Las observaciones de campo hechas durante muchos años en CIAT y en especial en el primer semestre de 1.982. el cual fué muy lluvioso (680 mm). indican que el fríjol es una planta muy sensible al contenido de humedad del suelo. especialmente cuando la textura es pesada. El exceso de humedad puede producir efectos tanto o más nocivos para la producción del fríjol, que el déficit de la misma.Con el fin de determinar la frecuencia de riego y la óptima utilización del agua del riego por el cultivo de fríjol, se realizó una serie de experimentos en CIAT. El primero de ellos consistió en regar el fríjol, tomando como indicador de la frecuencia de riego la tensi6n de humedad del suelo; en •el 20. experimento. se combinaron la tensión de humedad del suelo y la fase de desarrollo de la planta de fríjol como indicadores de la frecuencia del riego; y, en el tercer experimento, teniendo en cuenta los resultados de los dos anteriores, se estudió la importancia del suministro de agua durante el. período de reproducción del fríjol p~.a ~. .~ producción con. la menor cantidad de agua aplicada. ~M . ~ '1 .J .al BLIOTECA 1.-El objetivo de este ensayo fué el de determinar el momento oportuno del riego, mediante el análisis de los resultados de la producción de parcelas de fríjol que habían sido regadas a diferentes tensiones de humedad del suelo.La tensión de humedad del suelo (THS), es la medida de la fuerza de adhesión y cohesión que deben ejercer las rafees de las plantas, para extraer humedad del suelo; por 10 tanto, la tensión (THS), es una medida indirecta del contenido de humedad del suelo. Se sembró en el 20. semestre de 1980 la variedad de Fríjol ICA-PIJAO, con densidad de siembra de 240.000 semillas por Ha., y dos hileras por cama de 1 metro; la distancia entre las hileras gemelas fué de 40 cms. Los tratamientos que aparecen con la misma letra (cúadro No. 1) no muestran diferencia significativa entre ellos. as1 mismo. aparecen 2 grupos; el uno formado por los tratamientos 1 y 2, Y el otro constituido pór los tratamientos 3, 4 Y el testigo. El análisis estadístico mostr6 diferencia significativa entre estos 2 grupos. El cuadro No. 2, presenta la lámina de agua utilizada por el cultivo calculado en base al cambio del contenido de humedad ocasionado por los riegos, de acuerdo a los diferentes tratamientos ya la precipitación pluvial., .2.3.-Método de Riego.-Se utilizó el sistema de riego por sifones, y se determinó el flujo en los surcos por medio de canaletas W.S.C. (Washington State. Collegé). la lámina de agua aplicada. se determinó de acuerdo con la capacidad de retención del suelo, en este caso, 70 mm por cada riego. Después del riego de germinación aplicado a todo el lote, se hicieron mediciones periódicas de la tensión (THS). con un tensi6metro. (ver fig.No. 1), para determinar cuándo se debía regar cada tratamiento. También se tomaron muestras de suelos antes y después de cada riego. para determinar la cantidad de agua utilizada por los diferentes tratamientos, calculando la diferencia en el contenido de humedad entre riegos. * Peso de las muestras con el 14% de contenido de humedad de las semi 11 as . La gráfica No. i representa la lámina de agua acumulada en cada tratamiento de acuerdo con la edad del cultivo. En esta gráfica los puntos indican los días en que s~ aplicaron los riegos y los triangulos muestran los días de precipitación mayor de 20 mm., a 10 largo del período vegetativo.3.3.-Discusión.los tratamientos 1 y 2, que forman un grupo, produjeron el mismo rendimiento. Esto indica, que 4 riegos que provean 342 mm., incluyendo la precipitación, son suficientes para obtener una producción sin diferencia significativa con el tratamiento de 5 riegos más precipitación, con un total de 395 mm. En otras palabras, no se justifica regar cuando la tensión (THS), es de 25 centibares, ya que se obtiene el mismo rendimiento que cuando la frecuencia del riego esté indicada por una tensión de 35 centibares.El tratamiento 3, dió una producción sin diferencia estadlstica can el tratamiento 4 y el testigo. Esto indica que la frecuencia de riego más apropiada está dada por una tensión de 45 centibares. Por otra parte, el testigo, tratamiento O, di6 una producción que no presentó diferencias estadísticas con el tratamiento 4 o el 3; esto se debi6 a que hubo 158 mm de precipitación en el perí~do de 20 dlas de edad del cultivo hasta los 55 días de edad, 10 cual induce a pensar en que, en la fase de reproducción del fríjol. el contenido de humedad del suelo y la disponibilidad del agua son factores de suma importancia.-En este segundo ensayo, no solo se tuvo en cuenta la aplicación del riego de acuerdo a la tensión del suelo, sino al estado de desarrollo de la planta. • . .• . .Se utilizaron 6 tratamientos de riego, 1 testigo y 8 replicaciones.Todos los tratamientos tuvieron 3 aplicaciones básicas de riego. a saber: riego para la germinación, riego para la floración y riego para el llenado de las vainas. El cuadro No. 3, muestra cómo se plane6 distribuir el riego. de acuerdo con la edad del cultivo. Testigo 71 El diseño experimental consistió en distribuir los tratamientos en bloques al azar replicados 7 veces. El ~rea total del ensayo fué de 1.5 Has. La siembra se efectuó en Feb. 19/81. La variedad de fríjol usada fué ICA-PALMAR. La población fué de 240.000 plantas/Ha., y la distancia entre surcos fué de 0.60 mts.Se utilizó el sistema de riego por gravedad mediante tuberías de compuertas. Las prácticas agronómicas se realizaron de acuerdo con las recomendaciones técnicas, procurando ~4ntener el cultivo libre de malezas y plagas.Se tomaron muestras de suelos de las parcelas antes y después del riego. En las pdmeras fases del desarrollo y hasta los 20 días, se muestreó a 20 cms., de profundidad; de los 20 a 40 días de edad del cultivo. a 40 cms., y de allí en adelante. a 20, 40 Y 60 cms. de profundidad.Resultados y Discusión.-La gráfica No. 2, muestra la precipitación ocurrida durante el experimento.Las lluvias de los días 8, 9 Y 10 de Mayo, y las de los días 4 y 5 de Abril, coincidieron con fechas programadas para riegos, de acuerdo con los tratamientos, de esta ~anera, los tratamientos 11 y V, recibieron el mismo El enfoque del ensayo quedó así: Los tratamientos I y 111, recibieron cuatro riegos; los tratamientos 11, IV y V, recibieron 5 riegos, pero con la diferencia de que el tratamiento IV no recibió riego a los 40 dfas entre floración y fructificaci6n. El tratamiento 6, recibió 6 riegos que concuerdan con una frecuencia de riego a una tensión del suelo de 25 centibares. El testigo recibió en la práctica, 3 riegos, pero desde los 19 días desde la siembra hasta la fructificación, a los 50 dias, no recibió agua. El cuadro No. 5, presenta el promedio de rendimiento por tratamiento en Ks/Ha., así como también, la lámina total aplicada en cada tratamiento, que incluye la cantidad de agua suministrada por los riegos más la de agua lluvia, en mm. Los tratamientos 11, V Y VI, no presentaron diferencias significativas en la producción, de acuerdo a la prueba de Duncan. Los rendimientos fueron 1874, 1872 Y 1831 Kg. por Ha., respectivamente. El tratamiento VI, recibió un riego ~ás que los otros 2, 11 días después de la siembra, el cual no se justificó.Los tratamientos 1 y 111, produjeron 1652 y 1520 Kg/Ha., respect1vamente, sin presentar diferencia significativa entre si. Esto se explica, porque los dos tratamientos recibieron agua en las mismas fases de desarrollo, Cuadro No. 5.-l~mina utilizada y producción de frfjo1 en cada.tratamiento.Tratamiento Agrupalámina Precipi-Lámina Rendimienmiento* util i-tación. El tratamiento 7 ó testigo, produjo 689 Kgs/Ha., y recibió 175 mm. de lámina de agua suministrada por el riego de germinación, más las lluvias. pero éstas no ocurrieron en la época de floración. Esto indica que la disponibilidad de agua en el suelo durante la época de floración. es un factor crítico para la producción.Conc1usiones.-1) Cinco riegos que suministren 270 mm aproximádamente de lámina de agua uti1izables,(aproximadamente 350 mm. de lámina aplicada). dieron el mayor rendimiento del fríjol.2) la etapa comprendida entre la iniciación de la floración (25-30 días a partir de la Siembra) y la fructificación (48-55 días a partir de la Siembra), es la más crítica para la producción desde el punto de vista de disponibilidad de agua para las plantas. Durante esta etapa, y de acuerdo con los ensayos realizados. la tensión que señale la frecuencia del riego, no debe ser mayor de 35 centibares.3) Un buen riego de germinación. que cope la capacidad de almacenamiento de los 30 cms. superiores del suelo, es suficiente para permitir que el frfjol sobreviva sin problemas los primeros 20 días después de la siembra.C.-APlICACION ADECUADA DEL RIEGO PARA FRIJOL.-Habiendo determinado en los dos ensayos anteriores que la frecuencia del fríjol en CIAT está dada por la tensión de humedad del suelo de 35 . '• -11centibares, y que el período de mayor respuesta de la producción del frfjol al suministro de agua es el comprendido en la fase de desarrollo que va desde antes de la floración al llenado de las vainas o fructificación, se realizó un tercer ensayo que consistió en determinar la importancia del suministro de agua durante el perfodo de reproducción del frIjol para obtener máxima prOducción utilizando la menor cantidad de agua durante el ciclo de vida del cultivo. En otras palabras, cual es la mfnima cantidad de agua que suministrada al suelo dé la mayor producción de fríjol.Materiales y Métodos.-Se utilizó el mismo sistema de riegos. Una población de 240.000 plantas por Ha., y semillas de la lfnea 24, tipo Calima. Se tomaron muestras de suelos antes y después de cada riego, 10 mismo que la tensión del mismo, para determinar, cuando ésta fuera de 35 centibares. El tratamiento I con 5 riegos, correspondió al que produjo mayor rendimiento en un ensayo anterior. Los tratamientos 11 y 111, difieren en que el 11 recibió un riego entre la floración (26 días después del riego de germinación) y la fructificación (50 días después del riego de germinación), o sea a los 39 días de la siembra, y, al tratamiento 111 no se le aplic6 el riego en esta fase del cultivo, sino entre el riego de germinación y la floración (26 días despuªs del riego de germinación). Ambos tratamientos recibieron un total de 4 riegos. El testigo sólo recibió el riego de germinación.Resultados y Discusión.-El cuadro 6, presenta los tratamientos, el número de riegos por tratamiento, lámina de agua utilizada, precipitación, lámina total de agua, producción promedia por tratamiento y el agrupamiento de los tratamientos, de acuerdo con el an~lisis estadístico.Según la prueba de Duncan, no hubo diferencia significativa entre los tres tratamientos; sin embargo, el tratamiento I recibió 5 riegos, con una l~mina utilizada de 380 mm más 49 mm de lluvia. El tratamiento 11, que dió la mayor producción, recibió 4 riegos para un total de 310 mm de agua utilizada m~s 49 mm de precipitación. El efecto pOSitivo del suministro de agua durante el período reproductivo, se hizo evidente en este tratamiento, ya que el tratamiento 111, que también recibió 4 riegos, dió menor producción; sin embargo, a éste sólo se le suministraron 2 riegos durante el mismo período. La producción del testigo de casi 1 tonelada por Ha., de fríjol, ratifica la anterior afirmación, pues recibió cerca de 50 mm de precipitación (gráfico 3) durante la floración. ","tokenCount":"1961"} \ No newline at end of file diff --git a/data/part_3/2432646519.json b/data/part_3/2432646519.json new file mode 100644 index 0000000000000000000000000000000000000000..32fb36b1f9dda62b7696fecf94ffa74641ff2089 --- /dev/null +++ b/data/part_3/2432646519.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"a1253fc4ef63d86f0d620bcd1747975e","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/76382b01-e793-4d8f-814f-0c358cd20404/retrieve","id":"-13133939"},"keywords":[],"sieverID":"6bdd8128-abf8-4432-b0d5-e5fcdf2b116d","pagecount":"6","content":"La herramienta Tropical Forages está ayudando a una amplia gama de usuarios a seleccionar forrajes que se adaptan mejor a entornos, climas y sistemas específicos.Tropical Forages -Herramienta de Selección (TF) es un sistema de conocimiento experto en línea de acceso abierto creado por un equipo de renombrados especialistas internacionales en forrajes entre los años 2000 y 2005 y actualizado entre 2017 y 2020. Proporciona información detallada sobre 172 forrajes cultivados en los trópicos y subtrópicos, e incorpora una herramienta de selección de especies basada en el entorno objetivo y el uso del forraje. La capacidad de seleccionar y priorizar los forrajes para nichos de producción, entornos, requisitos socioeconómicos y animales específicos es importante para mitigar la escasez de alimentos y mejorar la gestión de los recursos naturales como parte de los sistemas agropecuarios sostenibles.La herramienta consta de dos partes 1 -Fichas técnicas de forrajes: Contienen información sobre los forrajes tropicales más utilizados/ recomendados (172 en total), incluyendo el nombre científico de la especie, sinónimos y nombres comunes, una descripción morfológica, su distribución y usos/ aplicaciones, información agronómica y valores nutricionales, potencial de producción, producción de semillas, puntos fuertes y limitaciones, y cultivares y accesiones prometedoras.2 -Una herramienta de selección: Permite a los usuarios introducir su información agroecológica específica del lugar, como latitud, altitud, precipitaciones, textura y fertilidad del suelo, y ofrece a los usuarios posibles opciones de forraje en función de las características seleccionadas. La herramienta está vinculada con las fichas técnicas para que los usuarios puedan acceder a información más detallada sobre las opciones sugeridas. Los pronósticos indican que la demanda mundial de carne, leche y huevos se duplicará de aquí al año 2050, y las mayores demandas provendrán de los países en desarrollo. Este escenario no puede materializarse sin al menos un aumento paralelo de la disponibilidad de alimentos de calidad para los animales. Los forrajes (ya sean de ciclo corto o perennes, de heno o ensilaje conservados, o procedentes de sistemas de corte y acarreo) suelen ser la opción más rentable para satisfacer la demanda de alimentos en los rumiantes e incluso en la producción de monogástricos (porcinos y aves).Los forrajes también son fundamentales para la cada vez mayor «intensificación sostenible» de los sistemas mixtos de cultivo y ganadería, donde apoyan la producción ganadera y pueden proporcionar servicios ecosistémicos, como la reposición de los nutrientes del suelo, especialmente el nitrógeno, la mejora de la salud del suelo, el control de las plagas y la reducción de la erosión del suelo.A diferencia de los forrajes de los sistemas agropecuarios de clima templado, las especies forrajeras que mejor se adaptan a los sistemas tropicales y subtropicales y la forma de utilizarlas es un área científica relativamente nueva, que ha crecido desde sus inicios a mediados del siglo XX. Además, a diferencia de lo que ocurre en los sistemas de clima templado, donde se utilizan relativamente pocas especies de gramíneas y leguminosas, más de 150 de estas especies tropicales y subtropicales han sido reconocidas por su potencial valor productivo y/o ambiental.A pesar de la creciente demanda de productos ganaderos y de opciones de alimentación para sustentar ese crecimiento, muchas instituciones nacionales e internacionales de todo el mundo han reducido drásticamente la inversión en investigación sobre forrajes tropicales y subtropicales. En consecuencia, existe una alarmante escasez mundial de expertos en la adaptación y uso de forrajes tropicales y subtropicales, que ayuden a interpretar la gran cantidad de información sobre la adaptación, el uso potencial y el valor de este gran número de especies acumulada durante más de 70 años.La herramienta se desarrolló inicialmente entre los años 2000 y 2005 para reunir los conocimientos de experimentados especialistas en forraje (varios de ellos ya jubilados) de todo el mundo, con el fin de orientar a las nuevas generaciones de investigadores, asesores, especialistas en desarrollo y agricultores versados en la materia a la hora de elegir con conocimiento de causa las especies y los genotipos para entornos y sistemas agrícolas específicos. Desde entonces, la herramienta se ha convertido en la principal fuente de información sobre las especies forrajeras tropicales y subtropicales, su adaptación y su uso potencial. La herramienta fue completamente revisada y actualizada entre los años 2017 a 2020 para hacerla más accesible a un público más amplio.La herramienta Tropical Forages permite a los usuarios: -Identificar una lista de especies forrajeras adecuadas para combinaciones de climas, suelos, sistemas de producción y manejo a través de una herramienta de selección y un software de fichas técnicas. -Acceder y descargar información completa sobre estas especies con detalles de adaptación, usos y gestión, cultivares y accesiones promisorias. -Acceder a la información sobre los posibles riesgos (sobre todo de malas hierbas o toxicidad) asociados al uso de las especies. -Ver imágenes de los distintos forrajes y su uso.-Solicitar muestras de semillas a través de los Bancos de Germoplasma del ILRI y de la Alianza Bioversity-CIAT.2 -¿Cómo funciona? / Tropical Forages -Herramienta de SelecciónFoto Alianza de Bioversity y CIAT/Georgina SmithFoto Alianza de Bioversity International y CIAT/Neil Palmer ¿PARA QUIÉN ES LA HERRAMIENTA?La herramienta se dirige a una amplia gama de usuarios finales: Investigadores, asesores, tomadores de decisión, extensionistas, especialistas en desarrollo y agricultores versados. Los agricultores y los extensionistas son cada vez más el objetivo de la herramienta, especialmente desde el lanzamiento de la nueva versión en 2020, a la que se puede acceder en línea o a través de una aplicación móvil.• Los productores ganaderos pueden seleccionar los forrajes adecuados para su contexto agroecológico, acceder a información valiosa sobre sus características y cómo cultivarlos, y con ello, aumentar la eficiencia de sus sistemas de producción. • Los extensionistas pueden apoyar más fácilmente a los productores en la selección de materiales forrajeros apropiados para su contexto agroecológico, y proporcionar soluciones adaptadas sobre cómo cultivarlos y manejarlos. • Los tomadores de decisión pueden utilizar la herramienta para identificar material forrajero potencial para las regiones de interés en sus países, y basándose en esto, desarrollar políticas más adaptadas y apoyo a inversiones. • Los especialistas y las agencias de desarrollo pueden identificar más fácilmente los materiales forrajeros para sus áreas de intervención, acceder a información valiosa sobre cómo cultivarlos y gestionarlos y, basándose en esto, enfocar más claramente: a) la toma de decisiones estratégicas y b) el apoyo al desarrollo en finca. • Los investigadores obtienen una visión general de los materiales forrajeros prometedores para diferentes regiones tropicales, sus características, rendimiento y sus limitaciones, y en función de ello, pueden planificar eficazmente las evaluaciones de campo; es decir, reducir el número de materiales potenciales a los más prometedores con mayor facilidad y antes de plantarlos.No se requieren conocimientos previos ni formación para utilizar la herramienta; sin embargo, incluye las secciones «Guía práctica» y «Glosario». La herramienta es gratuita y se puede acceder a ella a través de un navegador web ( www. tropicalforages.info ) o a través de una aplicación móvil diseñada para teléfonos inteligentes que puede utilizarse sin conexión.En función de los detalles de la información agroecológica proporcionada por los usuarios y las características seleccionadas, se tarda entre 5 y 10 minutos en pasar de la introducción de datos a la lista de materiales forrajeros recomendados. La última edición de la herramienta, lanzada en 2020, está adaptada a los teléfonos inteligentes, ampliando así su uso potencial a los productores ganaderos y agricultores pobres de las zonas rurales. La opción de traducción automática permite que los usuarios que no hablan inglés puedan ahora beneficiarse de la herramienta.¿Cómo funciona? / Tropical Forages -Herramienta de Selección -3Figura 2. Algunos ejemplos de las características filtradas de la herramienta de selección. Un total de 217 usuarios respondieron un sondeo en línea que se llevó a cabo entre agosto y septiembre de 2021, con el fin de recabar opiniones sobre su experiencia con la herramienta y su manera de usarla.La mayoría de los encuestados (75%) pertenecían a los sectores de la educación y la investigación. Alrededor del 10% eran agentes de extensión y alrededor del 8% pertenecían a empresas productoras/distribuidoras de semillas o a agricultores. Aproximadamente el 90% trabaja en el sector agrícola y ganadero.Alrededor del 40% de los usuarios consultan la herramienta al menos una vez al mes, mientras que cerca del 28% la utiliza una o varias veces por semana. Las Fichas Técnicas son la función más utilizada (48,8%), seguida de una combinación de consulta de la herramienta de selección y las fichas técnicas (43,8%). Esto confirma que ambas funciones son fundamentales para los usuarios, y que la herramienta de selección suele ser la puerta de acceso a la información sobre las distintas especies forrajeras.La información obtenida con la herramienta se utilizó principalmente para educación (35%), seguida de la investigación (31,8%), y para formación de los agricultores y/o servicios de extensión (23%). Alrededor del 10% de los encuestados dijo que utilizaba la herramienta para mejorar la actividad ganadera o simplemente para obtener conocimientos. La herramienta Tropical Forages es una de las bases de datos de forrajes más utilizadas y citadas (>660 citas) en todo el mundo. Es el primer resultado que aparece en los motores de búsqueda cuando se busca información sobre forrajes tropicales. Es ampliamente utilizada en los sectores de la educación y la investigación, y ha contribuido a aumentar la base mundial de conocimientos sobre forrajes tropicales. La herramienta está atrayendo ahora a usuarios de otros sectores, como los extensionistas y los productores primarios, gracias a la disponibilidad de la aplicación móvil y las nuevas funciones lingüísticas.Investigadores de la Alianza de Bioversity International y el CIAT capacitan a jóvenes agricultores colombianos en el uso de la herramienta Forrajes Tropicales. Esta investigación se llevó a cabo en el marco de los programas de investigación del CGIAR de Investigación del CGIAR sobre Ganadería (CRP sobre Ganadería) y Cambio Climático, Agricultura y Seguridad Alimentaria (CCAFS) por los contribuyentes del Fondo Fiduciario del CGIAR. https://www.cgiar.org/funders","tokenCount":"1630"} \ No newline at end of file diff --git a/data/part_3/2444141164.json b/data/part_3/2444141164.json new file mode 100644 index 0000000000000000000000000000000000000000..5731b0832407427d7ad1e5711a4b73b5897c8b9f --- /dev/null +++ b/data/part_3/2444141164.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"68904d1ff7af518335104b54f2ee2fd3","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/a93fdc7c-f7c6-4cd3-bf26-6ac7b040b5ec/retrieve","id":"-1219492099"},"keywords":[],"sieverID":"fd968b16-d1b2-41d0-8953-967ea24ac80f","pagecount":"52","content":"The goal of the RCMP is to develop economically and ecologically viable farming systems for increased and sListainable production by the smallholder or family farmer while conserving the natural resource base.The International Institute of Tropical Agriculture (IITA) is an autonomous non-profit corporation willi headquarters on a 1 ,OOO-hectare experimental farm at Ibadan, Nigeria. It was established in July 1987 as the first major African link in an integrated network of international agricultural research and training centers located in all the major developing regions of the world.Funding for IITA came initially from the Ford and Rockefeller foundations. The land for the experimental farm was allocated by the Government of the Federal Republic of Nigeria. Principal financing has since 1971 been arranged through the Consultative Group on International Agricultureal Research (CGIAR).Rnancial support of the COie program during 1988 is being provided by Australia. Austria, Belgium, Canada, China, Denmark, Federal Republic of Germany, the Ford Foundation, France, India, Italy, Japan, Netherlands, Nigeria, Norway, Sweden, the Rockefeller Foundation, United Kingdom, the United Nations Development Program, United States and the World Bank. In addition, many organizations and governments are also providing funds for special projects and specific > training activities.The Resource and Crop Management Program (RCMP) is concerned, with two of the three main thrusts ofilIA research, namely: resource management research which is the study of the natural resource base in order to refine existing resource management technologies and devise new ones, and crop management research which is -concerned with the synthesis of the products of resource management research and plant breeding into sustainable and productive cropping systems.Objectives of the study Methodology .iiiThe RCMP Research monograph series is designed to widely disseminate results of research on resource and crop management problems of small holder farmers in sub-saharan Africa including socio-economic and policy related issues and to contribute to improvement of scientific knowledge of improved agricultural principles and policies and the effect they have on the sustainability of small scale food production systems. The monographs summarize the results of studies by liT A researchers and their collaborators and are generally more substantial in content than journal articles.RCMP research monographs are aimed at scientists and researchers with National Agricultural Research Systems of Africa, and the international research community, policy makers, donors and international development agencies.Using the International Institute of Tropical Agriculture (UTA) definition of a staple food as one that accounts for more than two hundred calories per day in the diet of an individual, cassava (Manihot esculenta Crantz) is the second most important staple food in sub-Saharan Africa (SSA) (UTA 1988). About 160 million people, or 40% of the population of SSA, consume cassava as a staple food. Only maize (Zea mays) which is consumed by about 200 million people, or 50% of the population of SSA, is a more important staple food than cassava. West Africa produces about a third of all the cassava in SSA. A third is produced in Central Africa while East and Southern Africa together account for the rest of the output. Zaire and Nigeria are the continent's leading producers of cassava with Nigeria accounting for about 23% of total output (Figure I).About 75% of the cassava in West Africa is grown in the forest and moist savanna zones. The major soil types found in these zones are acidic Ultisols, Oxisols and the less acidic-Alfisols (Kang and Juo 1986;Lawson et al. 1981; Lawson 1986).This study, the first among a series of impact studies planned to be conducted at selected sites in cassava growing areas of SSA by the Cassava Based Systems Working Group (CBSG) of the Resource and Crop Management Program (RCMP) of IITA, has as its major objective the development and testing of a methodology that would allow: l.Determination of the extent of adoption of improved cassava varieties in the specific location.Measurement of yields of traditional and improved varieties obtained by small-scale farmers.Identification of factors that may be impeding the realization of the yield potential of improved cassava varieties adopted by small-scale farmers. Identification of any potentially undesirable or adverse effects of the expansion of cassava production in the area.Identification of issues and problems that need to be addressed by research institutions in order to ensure the full realization of the potential of improved cassava varieties in improving the economic well-being of people in cassava-growing regions of SSA.The methodology used in this study involved site selection, description of the physical characteristics and cropping patterns of the selected area, study of the history of the spread of improved varieties into the area, determination of the relative importance of improved and local cassava varieties in the farming systems, measurement of the yields of local and improved varieties, as well as calculation of economic returns from the adoption of the improved cassava varieties by the farmers.Ohosu area in Ovia Local Government Area (LGA) of Bendel State was selected using knowledgeable informants and s.econdary information.Cassava is a staple food in the area and the agroecological conditions are representative of cassava growing areas of West and Central Africa. In addition, improved as well as traditional varieties of cassava are grown in the area.In order to describe the physical environment of the area, information on rainfall patterns, vegetation, relative humidity and sunshine hours, soil conditions, etc. were compiled and evaluated. To confirm existing data, soil samples from the fields of a representative group of farmers were collected and analyzed for chemical and physical characteristics.The predominant cropping patterns were determined and described by a team comprising an agronomist and an economist. Visits to the areas and interviews with farmers aimed at obtaining information on cropping patterns, farm operations and practices, use of improved tools, other inputs, such as fertilizers and chemicals, incidence of diseases and pests, etc. were undertaken by the researchers.The history and spread of the improved vanetIes in the area was determined by group interviews with knowledgeable informants in the village, as welI as study of the records of research and extension agencies in the area.The areas planted to cassava by the surveyed farmers were measured with tape and compass.In addition, yields and plant population densities of cassava of different ages were measured on sample plots 40m 2 in area. The direct measurement of crop area and the use of plots to determine yield was necessary because experience has shown that information on output and yield provided by farmers who keep no records are notoriously inaccurate, especially when given in European units of measure with which they are usually unfamiliar (Spencer 1973). Accurate information on area and yield is essential for the estimation of productivity and income derived from the adoption of improved varieties Separate questionnaires were used for group and individual farmer interviews.The group interview questionnaire covered information that was not e•xpected to vary from farmer to farmer, e.g. information on rural infrastructure, major crops grown, major cassava production constraints, farmland availability, cropping patterns, and agricultural extension activities. The individual farmer questionnaire covered information on household size and cOmpOSitIOn, cassava varieties grown, source of farm labor, farm expenditure, disposal of farm products, livestock and tree crop enterprises, food consumption patterns, and nutrition status of household members. A number of areas in the cassava belt of Nigeria were considered as potential study sites (Table I). Ohosu area in Ovia LGA of Bendel State of Nill:eria was chosen on the basis of the imoortance of the UTA mandate crops, its representativeness of the UTA mandate region ecologically, and on the basis of its proximity to UTA headquarters in Ibadan.Preliminary investigations indicated that cassava production and processing were the predominant farming activities and that UTA improved cassava varieties were widely grown. Being in the humid ecological zone with mean annual rainfall nearly 2000mm and the soil type being an acid Ultisol, the ecology of Ohosu area is typical of the overall ecology of UTA's mandate region. 2). Farmers return to their homelands seasonally and for major social events such as festivals and funerals.Three communities, namely Ohosu, Igbogui and Igwugun were selected.In each selected community, 15 farmers were chosen at random from a list of farmers compiled by the community head. The Ohosu area is within the tropical rainforest, characterized by tall evergreen trees with dense undergrowth.The evergreen trees, 30-S0m tall, form the uppermost layer in a multistory vegetative setting. The middle layer is about IS-30m tall and the lower layer about S-IOm, while shrubs dominate in layers below Sm. Important food crops grown are cassava (Manihot esculenta), yam (Dioscorea spp.), maize (Zea mays) and melon (Colocythis vulgaris and Cucumeropsis spp). Tree crops include cocoa (Theobroma cacao), rubber (Hevea braziliensis), and oil palm (Elaeis guineensis).Lumbering of forest timber including Iroko (Chlorophora exelsa) is also an important economic activity. Plantains and bananas (M usa spp) are also very important.Other economic tree crops found in the area are kolanut (CoLa nitida), star apple (Chrysopnyllum ajricanum), velvet tamarind (Dalium guineense), mango (Mangifera indica), guava(Psidium guajava), raphia palm(Raphia spp), oil bean (Pentaclethra macrophyllum) , silk cotton tree(Ceiba pentandra), among others .Based on 43 years' data from NIFOR in Benin City, rainfall was in the IISO-2200mm range, with a mean of 1914mm per year. In about 20 of the 43 years, rainfall was above 2000 mm per year but in no year was it below 1147mm. Typically, although rai.nfall distribution has a trough in August (Figure 3), crops have adequate rainfall during the period between the two peaks.There are only three dry months when evapotranspiration (ET) is greater than rainfall.The probability of having less than 100mm of rainfall in March is 60% (Figure 4). This falls to about 20% in April and to zero in May. Cutoff of rainfall occurs in November, with above 80% probability of having less than SOmm of rainfall in that month. This contrasts with only 10% probability of having less than 50 mm in the first decade, and about 30% in the second and 40% in the third decades of October. This implies that planting of crops is possible from the second decade of March but would be less risky from the second decade of April. Planting should be timed to ensure physiological maturity by the ::2: ::2: --------------------------------------- Relative humidity and sunshine hours Quality of crops, especially grains and processed cassava is affected by humidity which in turn is moderated by insolation. In none of the wet months is relative humidly less than 80% at 1000hrs GMT (Figure 5). During the drier months, the relative humidity In the midmorning hour declines to a low of 50% in February.The months of long sunshine hours are July, August and September, which are also the wettest months.About 45% of the annual rainfall falls during those months.The congruence of long sunshine hours with period of high moisture can produce high crop yields provided light intensity is also high.Long duration crops requiring dry conditions at harvest, such as soybean and pigeonpea, can thus be planted as late as the first week of July.The Ohosu area is within the \"Acid Sands\" belt which, according to Vine (1956), is described as having loose, brownish topsoil over a great depth of featureless, non mottled, nongravelly, porous subsoil in which coarse sand is the predominant fraction and the clay content is up to about 35%. Vine recognized two zones in which Acid Sands occur, denoted as A(l) and B, with the following characteristics: Zone A(l): Moderately to strongly leached latosols, of low to medium humus content, predominantly pale brownish to reddish brown and red in color; and rainfall approximately 1500-2500mm per annum in hot lowlands.Zone B: Excessively leached acid latosols, yellowish brown to brown in color; of low to medium humus content; and rainfall approximately 2200 to over 5000mm per annum in hot lowlands. i:;1'II' :. ,Soils in the Ohosu area belong to (1) Benin Fasc which comprises deep, porous non mottled and nonconcretionary red soils (sands and sandy clays) which are moderately acid in uncultivated forest land with strongly acid subsoil deficient in plant nutrients; derived from unconsolidated grits and sandstones containing clay beds in varying proportions, and (2) Alagbe series, with very clayey sand to moderately sandy clay (depth 35-70cm) and sandy clay (depth > 90cm). Though typically moderate in acidity, occasional high pH values may be observed, frequently related to differences in forest species or to differences in previous cropping and fallowing history (Vine 1956).Typical Acid Sands (Alagbe series) characteristics are shown in Table 2. The topsoil is moderately acid while the subsoil is definitely acid. Vine (1956) described the rocks underlying the Acid Sands as mainly beds of unconsolidated cross-bedded and false-beddedm coarse-textured sandstone interbedded with layers of fine-textured clay and lignite in some areas of eocene, post-middle eocene and cretaceous age.These soils, which in the Benin formation are mainly of coastal plain sands, support dense growth of He v e a brasiliensis, Cola cordifolia, Cola nitida, and Diallum guinense. Food crops include cassava interplanted with maize, yarns and plantain, plus a range of local vegetables. Pineapples are also jmportant.Analyses of soil samples (topsoil, 0-15cm) from 19 fielc;ls of small farmers (Table 3) show that they are not acidic. Organic carbon of 2.29% is about twice that obtained by Ojanuga et al. (1981) but only 28% higher than the level reported by Vine (1956). The relatively high levels of K, Mg and Ca are presumed to be related to the high level of organic matter derived fIOm recently cleared forest reserve which constitutes much of the Ohosu fields now under I cassava.Every village surveyed in the Ohosu area has a water supply from a stream, a secondary school, and a private or public health ! facility (an outpatient clinic or a maternity horne). The maximum distance to a hospital is 30km; to an agricultural extension agent, 16km; to a tarred road, 5km; and to the main five-day market, 30km.Gari traders corne from as far as Lagos, about 300km southwest, to buy in this market. The cropping patterns .Multiple cropping and land fallow are the main features of. the cropping system in the Ohosu area.There are three major intercropping associations which are described below.There are three variants of this pattern (Fig. 6). In the first, cassava and full season maize are intercropped with okra, melons and leafy vegetables on a field recently cleared from forest. The maize is harvested between October and November and the cassava between November and December of the following year. The cycle is repeated in the third and fourth years. Thus two or three crops of cassava and maize are grown before the land is fallowed for about three years.In the second and third variants, which occur where fallow land is domianted by Chromelina odorata, a crop of early maize intercropped with vegetables may be harvested before full season caSS{lva is planted, or late maize could be interplant~d with late cassava. Usually the crop of cassava is taken before the land is The most important non woody perennial intercropped with cassava in the Ohosu area is plantain (Musa sp). It is usually grown in patches within cassava fields.The plantain forms thick groves within the patches.Land area occupied by cassava in this patch intercropping pattern is usually larger than that occupied by plantain patches.The cassava may be interplanted with maize and/or vegetables as described above.In the early stages of cocoa establishment, interspaces are usually planted with cassava, maize, cocoyams, and sometimes yams. Farmers reported that they could crop in new cocoa plantations for about two years before the canopy closes.More permanent intercropping also takes place with oilpalm and kolanut.In such cases tree crop densities are low, sometimes only 10-50 trees/ha. The food crops are grown in multistory association .with the trees. Two years of food cropping followed by two to four years fallow are commonly reported.In 1987, the popUlation density of Ovia LGA was estimated at 40 persons per square kilometer compared with the Bendel State average of 140 persons per square kilometer'! Consequently, farm land is relatively abundant in the Ohosu area. The Ohosu area as a whole was a forest reserve until the early 1970s when farmers from the Delta LGAs of mainly. Bendel State, displaced as a consequence of petroleum exploration, and Nigerian refugees from Equatorial Guinea were resettled there. Land clearing is done from. December through March (Fig. 7) usually using simple hand tools.Trees are felled by farmers themselves or by. contract labor sometimes using power saws when heavy forest is being cleared. The vegetation is allowed to dry and is then set on fire. Stacking or removal• of wood trunks is done by manual labor and is labor intensive.Cassava planting is almost continuous from March to mid-September but peaks during April to May.Early season maize, melon and yams are normally planted between March and May. Farmers plant the maize in spite of a high risk of failure arising from the high probability of low rainfall in March (Fig. 4), because of the opportUnities for high price premiums from early maize. harvests. Late (second season) maize is planted in August to September.All the crops are' planted virtually without primary tillage, and without the use of herbicides, resulting in serious weed problems later in the season.Ninety-five percent of the farmers identified . weeding as their most labor, intensive farm, operation. It was done entirely with handhoe or cutlass. The fiumers claim 'that higher cassava root yield is possible, in tilled, ridged or mounded fields. All the farmers indicated that they would till and ridge or mound their fields, if more labor or tractor power, were available.•Cassava cuttings, 20-30cm long, are usually selected' from mature, lignified stems. Occasionally, green immature cuttings are selected in which case they are longer, approaching 40~50cm. The cuttings are• usually planted at a 30° angle with up• to two-thirds buried, although the short ones may be buried completely in the soil. Farmers select\"planting materials for \"the required size .and age with little attention to sanitation.;• •f . . . , :,:.r.No specific row arrangements~ were observed. :Cassava to cassava spacing ranged from 0.5m to 15m. Populations observed were below the 10,000 plants/ha (1m x 1m) recommended for cassava. Mean plant populations from 36 yield plots harvested from 18 fields showed that populations were only 67% of recommended rates for improved varieties and 74% for local varieties.Cassava harvesting is continuous throughout the year. but peaks between November and March.Gari and starch are the only processed food products made from cassava in the Ohosu area. Cassava leaf is not eaten and cassava' is not processed inte)' animal feed products. Starch is extracted in the prace'ss of gari making but removal of the starch reduces the gari quality_ Since gari and not starch 'is the main 'commerCial product, only' just enough starch to meet household consumption 'needs is produced by farmers.\"Peeling of harvested tubers; in preparation for ,processing into gari is' done with knives and,' small cutlasses.'• 'Peeled tubers are grated on a custom basis using motorized mills. ' After fermentation and pressing, the dehydrated mash is fried over an open' fire in a metal pan with a wooden stirrer. All processing operations are done almost exclusively by-women and children..The busiest period' for' Ohosu farmers is betwee'n March and May at• whiCh;, tillie, they clear the land, plant cassava and its associated crops,' weed, early-planted maize + cassava, harvest and process not only cassava but also oilpalm fruit. The slack period' is between June and October when the major operation is second weeding:: Some harvesting and ~iocessing of 'cassava continue during this period (Fig. 7).The no-tillage practice of the farmers limits soil loss 'by erosion (Lal et al. 1983). Plantain patches and protected trees\" within the fields are also effective erosion 'checks. I The trees, iiowever, cast a lot of shade in many of the fields reducing available insolation with adverse consequences on' cassava yield,' The dominant'; intercropping patterns with' crops' of 'differerlt growth durations 'also ensures, that the 'soil is' 'continuously cover~d by vegetation\" during any given year. These practices contribute to' soil conservation (Lal 1976;' Lal etal~ 1983). '; Fallow periods, which may be up to five years; are sh'ortened to two years' in ' fields 'nearer residential'quarter~. No inorgaIli~ fertilizers are' applied. 'Organic matter derived from' weeds, mainly Chromolina odorata, is the main mulching materiaL' \" , \", .,. ' . r CMV is a virus disease transmitted by the whitefly, Bemisia tabacc;'i;Yield loss can be high, iangingfroin' 30-50%' for leaf (TerrY and 'Hahn 1981) to 20-90% for root (Hahn et al. 1979). CBB and CA are not important problems in Ohosu since most of the fields are planted with improved disease-resistant cultivars.The most important pest obs«rved, particularly on local varieties, was the cassava mealybug (eM), Phenacoccus manihoti Matt-Ferl.Without CM, local cassava varieties are said by the farmers to produce \"acceptable\" yields. CM has been reported to cause yield reduction ranging from 40 to 85% (Nwanze et al. 1978;Ezumah and Knight 1978). The devastation caused by the CM around 1982 reduced yields so much in the area that cassava as a crop was threatened.With the introduction of biological control measures (Herren et al. 1986) and perhaps with the effectiveness of local enemies of the CM (Akinlosotu 1985) yield reduction caused by the CM may now be much lower than reported in 1976. The green spider mite, Mononychellus tanajoa, was also observed. However, this was not as important as the CM and appeared to caus\" little damage.Cowpea was once grown by farmers in Ohosu, but is no longer grown because of insect pests.Second season maize is usually severely attacked by stem borers which are more serious than uncertainties of weather.Ninety percent of 85 surveyed farmers reported that they would grow more of these crops if these problems were solved.Any management practice which directly or indirectly results in declining soil fertility would also reduce cassava yield (Fig. 8). In the Ohosu area, unimproved cassava varieties prone to infestation by pests or infection by diseases produce low root yields. Low quality cassava cuttings which establish poorly are often used as planting materials.Cultural practices observed that adversely affect yields include shortening of fallow periods and nonapplication of fertilizers. These practices also contribute directly to declining soil fertility. Poor weeding, late planting, suboptimal cassava populations, shading by trees and \"heaping\" of weeds are practices which also contribute to low yields.Although no-tillage was identified by farmers themselves as a yield constraining practice, the potential benefits of tillage for weed control and cassava root development, especially in the sloping terrain and toposequences commonly observed in Ohosu area, needs to be carefully evaluated.Tree shade has adverse effects on cassava root yields although the trees themselves are of economic importance. Therefore intensified cropping in tree + cassava associations requires special studies in which the spatial arrangements of trees are adjusted to accommodate cassava over a longer time before it is shaded by the trees. Such spatial arrangements include the \"avenue\" and \"hollow\" placements suggested by Onwubuya et al. (1981).Under the constraints indicated in Fig. 8, improved cassava varieties, now widely grown in some parts of Ohosu, may not attain their optimum yield potential.Therefore research aimed at developing appropriate soil fertility and yield improvement _practices needs to be emphasized.Improved cassava vanetIes identified in the Ohosu area are TMS 30572 or Ogoja, Agric, NIFOR, TMS 30211, and TMS 3D555. The TMS varieties are from IITA. The level of adoption (proportion of fields growing improved varieties) is estimated at over 80% in Ohosu. In the early 1970s, IITA, the Shell-BP Company of Nigeria Limited (Shell), the Federal Department of Agricultural Research, and Bendel State Ministry of Agriculture began cooperative efforts at cassava selection and breeding for resistarice against eBB and for high yield (IITA 1976;Ohunyon, undated). In 1976, Shell started a cassava multiplication program at Agbarho in UgheUi LOA of Bendel State, based on 66 varieties (Ohunyon undated) selected or bred earlier through the cooperative effort.In 1977, Shell started distribution of the planting materials directly to farmers.One hectare of cassava can provide planting materials for up to five hectares. Even if we assume only a 20% multiplier effect, the amount distributed to farmers. to date by Shell would be adequate to plant the entire surface area of Bendel State at least twice over. Yields were determined from 40m 2 sample plots in fields where cassava was planted as the first crop after two years of Chromellina odorata fallow and as the second crop after clearing of secondary woody forest (7-20m high).Relevant average yield components are given in Table 4 for 12-month-old cassava.The mean fresh tuber yield of the improved varieties for the 18 fields of the farmers was 19.6 t/ha with a range of 11.5-26.3 t/ha. This average yield compares very favorably with that obtained by lIT A in its researcher-managed trials in three locations in the humid zones of Nigeria between 1983 and 1985 (Table 5). This indicates that farmers in Ohosu are fully exploiting the yield potential of the improved varieties when no fertilizers are used.The improved varieties yielded 75% higher than local varieties (Table 4). This difference is statistically significant at the 1% level using the two-tailed 't' test. Since number of plants/ha, shoot fresh weightlha, and number of tuberslha are not significantly different between the improved and the local varieties, the difference in root yield is attributed to higher bulking capacity by the improved varieties (Hahn et al. 1979). This is reflected in higher average tuber weight (by 38%), higher harvest index (by 29%), higher total biomass (by 32%), and higher average root weight/plant (by 10\"%).Tuber yield from each of the improved and local varieties were regressed with average yield of the two (e) for each of the eighteen fie~ using---th0--model of Eberhart and Russell (1966) and Hilderbrand (1984).The environmental index, e, represents the effects of farmer management skill and soil and climatic variables on performance of tec!mology aL farm level. .. An imp-rovea-cassava variety,--Cor example. poorly managed might yield less than a local v3.l'iety; although it might still out yield the local variety under improved management.•Both the observed yield distribution frequencies -(Fig. 9)atrdihe regression analysis (Fig. 10) confirm the superiority of the improved cassava varieties over local varieties at all levels of farmer•-management. The nonconvergence of the slopes is an indication that the improved varieties have higher potential for tuber yield and may consistently out yield the local varieties no matter how adverse the environment and the level of farmer management.\"25 Since most Ohosu farmers usually harvest some of their cassava around 18 months, yield samples were also taken from older cassava fields. Fig. 11 shows that the older the cassava is harvested, the less the difference in yield between the improved and the local varieties. The percentage difference in yield declined from 77% at 9 months to 75%, 56% and 32% for cassava harvested at 12, 16 and 18 months, respectively. However, since few samples were available for comparisons at all ages except 12 months, these observations should be . treated with caution.The nutritional status of the children in the households of the farmers surveyed was assessed, based on infant « 5 years) mortality rates and on incidence of kwashiorkor symptoms in the children.Similar observations were also made in the Ika area for comparative purposes. Symptoms indicating kwashiorkor were bleaching of hair, swelling of legs and protruding of the belly (Latham 1979).Among the surveyed households in Ohosu area, infant mortallty was estimated at 22% of the total. sample. It occurred in 65% of the households. In comparison, among the households in Ika area, infant mortality was estimated at 9%, and it occurred in only 16% of the households.Kwashiorkor symptoms were observed in 85% of the children under five years of age in the households surveyed in Ohosu area. In many of the cases the symptoms of the kwashiorkor observed had reached advanced stages, showing oedema of the legs and face and dermatosis of the thighs, arms. and back.One such severe case resulted in death two weeks after the research team's initial visits in February. Kwashiorkor symptoms were not observed at all in Ika • area.The staple food items in the three meals (breakfast, lunch and supper) taken by all the survey~d. households in the 24 hours prior to interview were ascertained. There wez:e--.1;U such meals in the 45 surveyed households in Oh9SU area and 135 in 45 households visited in Ika area. Three households in Ohosu area skipped lunch and one skipped breakfast.The survey was carried out during the week days, Monday to Friday,• in February.In Ohosu. area, the staple item was cassava in 70%, yam in 20% and plantain and cowpea in 10% of the meals. Most of the breakfast cassawa meals were pure cassava starch taken with palm fruit soup.In Ika area,the staple item was yam in 69%, cassava in 16%, and rice and pllpltain in 15% of the meals .. AH. the households observed in both areas included vegetables, fish. and palm oil in the meals.The quantities of the nonstaple items included was an important factor that could not be ascertained within the time available for the study.The two areas have similar rainfall patterns and hence vegetables would be equally scarce in the period of observation.In a return visit made in April, it was observed that the symptoms of kwashiorkor observed in the Ohosu children had virtually disappeared. February was the peak of the dry season (Fig. 3) and peak of harvesting and processing for cassava and harvesting for yam (Fig. 7). Vegetables were scarce. By April the rains had set In and vegetables had appeared in the fields.The results of this study suggest that infant mortality rates and incidence of kwashiorkor in children may be higher among predominantly cassava eating people (Ohosu area) than among predominantly yam eating people (Ika area), especially during the dry season when vegetables are in low supply and women are very busy with cassava harvesting and processing.The major cost of acqulSluon of farm land by Ohosu farmers is that of clearing the original forest. Farm land in the forest reserve is acquired by farmers through allocation by the Ovia Local Government at no charge. The allocation is on a 10J}g-term 'basis. None of the surveyed farmers had ever relinquished any farm land allocated in the forest reserve by the local government. Farmland is therefore assumed to have no opportunity cost outside cassava production, and is not costed in this analysis.The-fields cultivated in 1986 by a sample of 21 randomly selected farmers were measured using compass, ranging poles and measuring tapes.There was an average of 0.82ha of cassava cultivated per farmer with a range from 0.50 to 1.00ha. This area was divided on average into two fields per farmer. On average, 97% of the crop area in Ohosu was planted with cassava and only 3% with yam as the main crop.Labor input data was not collected in this survey, so secondary data reported by Knipscheer (1980) are used in the analysis.He reported a mean total labor requirement of 168 man-days/ha for production of cassava when no fertilizer is used. We assumed this to be for production using improved varieties and calculated labor requirements for production using local vanettes (llS man-days) by adjusting harvesting labor dow.nward in proportion to the differences in yield Ohosu farmers obtained between improved and local varieties. Similarly, labor requirements for processing raw tubers into gari were estimated at 108 woman-days/ha for improved, and 62 woman-days/ha for local varieties. These are based on farmers' estimates that a 2-tonne tractor. trailer load of fresh! tubers yields about eight SOkg bags of gari, i.e. a conversion factor of 0.2.Farmers reported that they spent an average of 400 naira (equivalent to about eighty US dollars) on hired labor for cassava production in 1986. Since wage rates were about 6 naira/man-day, about 67 man-days of labor was hired per farmer. Most of the hired labor was, however, employed by farmers with above average farm size.Family size in Ohosu area is large, , with an average of 3.6 wives and 10 children, of whom five, mostly above school age, have left home. The farmer and his wives work full time on the farm. School-age children help out when not in school. The people of Ohosu area attend market six days a month (once every five days) and, as Christians, they go to church four days per month. Broadly. speaking, therefore, they have about 20 days a month per adult potentially available for farm work.During the busy period (March to April), the average farmer who cultivates 0.82ha of cassava needs 33 man-days for land ~ preparation and 11 man-days for planting.They also need significant amounts of labor for weeding,. harvesting and processing. In addition to time requirements for necess!lfY social activities, they also engage in activities such as oilpalm fruit harvesting and processing and lumber work. They 'are therefore likely to face labor. bottlenecks during the busy season. The extent to which they can expand cassava production therefore depends on i their ability to hire labor.The farmers reported an' average expenditure 0(•95 naira/year_ on purchase of farm. tools, mainly cutlasses, ,sharpeners. and handhoes. Most of the farm tools are replaced yearly.The average distance between the farmers' homesteads and cassava fields is about lkm ani:! the maximum distance is 3km. . The farmers and their families get to the cassava fields on foot, by bicycle, and in a few cases by motorcycles owned by them. They transport small amounts of farm produce, including cassava tubers, back from the fields to their homesteads by the same means. Relatively large amounts of cassava tubers are transported from fields to gari mills in hired 2-tonne tractor trailers. Small amounts of gari are head-loaded to the markets or transported by bicycles or motorcycles, while larger quantities are transported by buses or lorries.The transport cost used in this analysis is based on an average charge of 20 naira per 2-tonne tractor trailer load of tubers from the field to the gari mill and on an average' charge of 8 naira for transporting the resulting 400kg gari from the, mill to the market. Other cost items for processing are fuel wood for frying and sacks for bagging.Total cost for producing gari (Table 6) is about 55% higher per hectare and 10% lower per tonne for production of improved varieties, as compared with local varieties. Higher cost per hectare for improved varieties is a result of higher harvesting' and processing costs for the higher yield while lower cost per tonne is because fixed costs such as cost of tools and all labor except that used for harvesting I and processing, are spread over a greater output.• ---The price of gari used in the analysis is 700 naira/t, the mean obtained by farmers' in 1986.The resulting net revenue per tonne of gari is higher by about 75% for production with improved varieties as compared with local varieties. 'The average farmer who cultivated 0.82ha' .wouldtherefore have earned• a gross margin of 1,332 naira/t if he produced with cimproved varieties or 556, naira/t with local varieties. Gross margin was ,estimated as gross revenue less value 'of purchased inputs.The revenue estimates are based on the same tuber to gari -CORversmfiratio for, both the improved and the local varieties. The surveyed farmers\" reported . no• difference between local' and improved varieties in the quality or in. the quantity of gari pwduced' per unit weight of tuber. Source: Field survey.The revenue estimates however depend on the reliability of labor data since labor costs constitute -----nearly 70% of total costs. Labor data are based on secondary information from other locations. Furthermore, the revenue estimates are based on tubers harvestedat 12 months. We have already stated that farmers sometimes harvest older cassava. U sing our survey data, yields of gari would be 4.83t/ha for improved and 3.22 t/ha for local varieties for 18months-old cassava.In addition some of the cassava is harvested, processed and marketed at periods when prices are higher than the average used above. As for most food products, the price of gari exhibits seasonal variability reflecting variations in the availability of close substitutes and in availability of harvesting and processing labor (Fig. 12). Gari prices usually reach their peak in June during the period of scarcity of other starchy staples such as yams and plantains. At that time women are also busy with the weeding of the ----------------------------------------------- In 1986, the June price of gari was 860 naira/t compared with the average for the year of 700 naira/t Gari prices also exhibit strong cyclical variability (Fig. 13) in response to supply of cassava and close substitutes. The high peak of the real price of gari during 1970-73 reflects scarcity of cassava and close substitutes resulting from bad weather experienced during the early 1970s. Similarly, the high peak during 1980-84 also reflects shortages resulting partly from bad weather but mainly from wide incidence of cassava mealybug in the period.Therefore: the difference in cost and revenue estimates for production between. improved and local varieties depends on differences between the two varieties in tuber to gari conversion ratio and in actual labor input, on age at harvest, month of the year marketing was done, and on overall gari price level in the year.Sensitivity tests show that net revenue would be more than double if gari were sold mainly in June and tubers were harvested at 18 months (Table 7). Furthermore, delaying cassava harvesting to 18 months, a common farmer practice, results not only in higher net revenues but also in narrowing of the net revenue gap between the two production techniques from 75% to 45 or 20% depending on sale price.Data in Table 7 suggests that revenue from gari production varies, depending on age at harvest and month of sale. Risk analysis using the Monte Carlo technique (MSU 1971) was employed to compare the probability distribution of the revenues from production with improved and local varieties.The technique involves selection of the variables to which the revenues are most sensitive and assigning probabilities to the values of each selected variable.The effects of simultaneous changes in the values of cost and revenue variables. were determined.Net revenue appears to be most sensitive to changes , cost, gari price and yield. The variables required to bring comparatively low (Table 8). The effect of changes in wage rates on revenue is assumed to be dependent on past inflation trends, official minimum wage rates, and OIl farm wage rates, as reported by the farmers. Inflation was 10% in 1963Inflation was 10% in , 72% in 1975Inflation was 10% in and 120% in 1981. . The official minimum wage rate was 12 naira per month in 1967, 64 naira in 1973, 100 naira in 1974, and 125 naira in 1981. Ohosu farmers reported paying 4 naira/man-day for farm labor in 1979, 5 naira in 1983, and 6 naira in 1985. Effect of gari price charrges on the revenue is also assumed to depend on inflation. lIT A data suggests that cassava yield is positively correlated with annual rainfall, and negatively correlated with pest incidence, especially CMV, and particularly for local varieties (UTA, 1984(UTA, , 1985)).In this analysis various levels of yield associated with different amounts of rainfall are determined using the above data. Since improved varieties exhibit some resistance, only local cassava varieties are assumed susceptible to the pests.The probal'>ility distribution of net revenues per ton for production with both the improved and the local varieties is positively skewed suggesting that under production with either the probabilities are higher for positive than for negative net revenue (Fig. 14).However, the probability for positive net revenues is higher under production with improved (75%) than with local (54%) varieties.In addition, production with improved varieties has, relative to local varieties, low probabilities of high. negative net revenues and high probabilities of high positive net revenues. This is because of lower yields under production with local than with improved varIeties and the additional negative effects of possible incidence of pests.The probability distributions of gross margins (Fig. 14) show that the probability of negative gross margin is zero under production _ with improved varieties and very low under production with local varieties. The probability distributions of both net revenues and gross margins have both positive and negative peaks. The positive peaks result mainly from high probabilities •and strong effects oC price increases; while the negative peaks result mainly from effects of wage changes which •are entirely negative and from• strong effects of price declines. Variabilities in cassava production income in the area would more likely arise from market than from biological factors. The improved cassava varieties appear to have fitted very easily into farmers' existing cropping systems. Farmers were able to interplant the improved varieties with maize, melon and other crops, as they do with the local varieties. The use of the improved varieties has not induced any change in the cropping sequences in the Ohosu area.Also the improved cassava varieties performed better than the local varieties in terms of tuber yield, gari yield, cost reduction, and revenue generation.Furthermore, production with the improved varieties appears less sensitive to risks associated with variability in weather, pests and diseases, wage rates, and gari prices. Because of these advantages, and the fact that cassava production is the primary commercial activity of the Ohosu farmers, who are aware of the potential values of the improved varieties from their homeland expenences, the improved varieties have been widely adopted in the Ohosu area.The improved varieties appear to be attaInIng their yield potentials in the farmers' fields in spite of the mixed crop practice with consequent suboptimal plant density, low insolation due to shading, weed infestation and low soil fertility problems. • Family labor availability may be a major constraint to expansion in the production of cassava. Labor is the major item of cost because all production and all processing operations, except milling, are performed manually. There may be a potential for further cost reduction In mechanization of more processing operations.Returns for cassava production estimated in this study are low because both current market and real prices of gad declined in 1986 compared to the early 1970s and early 1980s. However, producers incomes were partly protected by their adoption of improved varieties, which exhibit many of the desirable characteristics indicated by Spencer (1986) as required for adoption of new technology by small farmers in sub-Saharan Africa.stem borer resistant late full season maize could continue to be planted for grain production.Determination of the factors of adoption of UTA's cassava varieties on a wider scale is another important area for further research. The subject is treated only casually here because it was not the major objective of this study.","tokenCount":"7066"} \ No newline at end of file diff --git a/data/part_3/2448550551.json b/data/part_3/2448550551.json new file mode 100644 index 0000000000000000000000000000000000000000..097d25397c99f0123e132f47d78ceb6d7d57fe3b --- /dev/null +++ b/data/part_3/2448550551.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"3b64faf55f31285881ccb6446e8fff0c","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/af698a87-7491-4a7b-96c3-c39e6c456571/retrieve","id":"-143303434"},"keywords":[],"sieverID":"0e0a4f78-2df4-414c-a0d5-2484f15236d9","pagecount":"2","content":"P964 -Identify, analyze and map key maize (a)biotic stresses in selected countries in SSA Description of the innovation: Several activities have been conducted on identifying, synthesizing and mapping sustainable maize production systems in Africa since 2012. Research evidences on sustainable production systems (improved variety targeting combined with conservation agriculture) were synthesized and a policy engagement works done over two years resulted in adoption of conservation agriculture -based sustainable intensification by the Ministry of Agriculture of Ethiopia. New Innovation: No Innovation type: Production systems and Management practices Stage of innovation: Stage 4: uptake by next user (USE) Geographic Scope: National Number of individual improved lines/varieties: ","tokenCount":"106"} \ No newline at end of file diff --git a/data/part_3/2454374116.json b/data/part_3/2454374116.json new file mode 100644 index 0000000000000000000000000000000000000000..5f72f4481cdd9ebc2ee2ba2903a1ff89d976d013 --- /dev/null +++ b/data/part_3/2454374116.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"b4fb49cde40ccd7897dbd823de5d2a55","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/2b818e1b-866f-4f91-89a1-2313a82231ad/retrieve","id":"1693101426"},"keywords":["Risk","poverty","drought insurance","dry beans","Central America","Honduras","Poverty","drought","dry beans","MarkSim","DSSAT","micro-insurance","indexed insurance drought","impact assessment","priority-setting","developing countries","rural development wild relatives","climate change","abiotic stresses","breeding","domestication"],"sieverID":"afa5b09f-dc9b-463d-81fc-39456b2d4dbf","pagecount":"246","content":"Participatory Impact Pathways Analysis (PIPA) is a practical planning, and monitoring and evaluation approach developed for use with complex projects in the water and food sectors. PIPA begins with a participatory workshop where stakeholders make explicit their assumptions about how their project will achieve an impact. Participants construct problem trees, carry out a visioning exercise and draw network maps to help them clarify their 'impact pathways'. These are then articulated in two logic models. The outcomes logic model describes the project's medium term objectives in the form of hypotheses: which actors need to change, what are those changes and which strategies are needed to realise these changes. The impact logic model describes how, by helping to achieve the expected outcomes, the project will impact on people's livelihoods. Participants derive outcome targets and milestones which are regularly revisited and revised as part of project monitoring and evaluation (M&E). PIPA goes beyond the traditional use of logic models and logframes by engaging stakeholders in a structured participatory process, promoting learning and providing a framework for 'action research' on processes of change.We have used PIPA-generated impact hypotheses as a basis for ex-ante impact assessment and are currently undertaking an impact assessment project to revisit them ex-post. More information on PIPA can be found at http://impactpathways.pbwiki.com.Outcome Line: Agroecosystems ResilienceThe tropical world is characterized by considerable variation, at all scales from community to the region. Institutions at all levels from village to region tend to be numerous, and at varying levels of effectiveness, inclusiveness and governance. Small farmers' livelihoods range from nearsubsistence to small scale commercial (although pure subsistence is less common than is sometimes thought), and households may seek or have opportunities to emerge from poverty in ways that differ according to composition, agroecological situation and socioeconomic circumstances.Development and research practitioners need tools that enable them to work at different scales, and to discriminate effectively among rural populations and environments. Outcomes tailored to specific social and biophysical contexts are needed to achieve widespread impact under these conditions. Many of the most appropriate tools will be interdisciplinary in nature, and in general need to be derived through iterative interdisciplinary research processes. Agricultural science practice cannot be successful if it is disconnected from development practice, and some of these research processes need to be embedded in development (research for development) in order to yield robust and international public goods. This project (outcome line) is new to CIAT's portfolio of projects for 2008. It was established in late 2007, taking on components of the Markets, Institutions and Livelihoods project. The project is among the smaller ones of CIAT, and currently consists of two outputs:1. Institutional arrangements and mechanisms for targeting, increasing and evaluating impacts 2. Policy guidelines, tools and innovations for adaptation to risk, high stress and vulnerability.The emphasis of the project is on process-based research which supports other research activities within CIAT and with external partners (including CPs), with a thematic focus on generating better understanding of water-related processes and issues surrounding climatic risk. A common theme throughout the project is that of impact mapping, both geographically and institutionally.Outputs from this project will increase the effectiveness of other projects of CIAT, as well as the wider R&D community. Output 1 specifically develops knowledge on how impact occurs in complex institutional, economic, environmental and geographic settings, and develops methodologies for monitoring and evaluating impacts. Output 2 focuses on the significant risks facing rural communities (especially from climate variability and change) through impacts on agricultural production and the natural resource base, and develops tools and methodologies for assessing and adapting to these risks from the local to the regional scale. This output specifically looks at the challenges of climate variability and change to rural communities, providing policyrelevant insights of impacts and potential adaptation mechanisms.Cross-cutting between both outputs is the use of spatial analysis for characterizing the problems associated with rural development and for supporting ex-ante and ex-post impact assessments and supporting research decisions during the life of projects. This builds on CIAT's core competency in spatial analysis, and an important component of the project's strategy is one of service provision within CIAT and to key external partners.The project operates through close collaboration with other projects within CIAT (both germplasm and natural resources) and with external partners, especially Challenge Programs.The project leads Theme 2 of the Water and Food Challenge Program, co-coordinates the Andes Basin Focal Project of the Water for Food Challenge Program, plays a coordination role in the Lake Kivu pilot site of the SSA-CP, and supports both Harvest Plus and GCP through geographic analyses of ex ante impact. Gender analysis will be applied systematically in the work described here.The logframe for 2008-2010 was still based on the old RDC structure of an integrated logframe with 5 products (or broad outputs). The logframe for 2009-2011 is the first which is actually structured around the Agroecosystems Resilience Outcome Line structure. CIAT research on the targeting of high-value crop options to environmental niches in Latin America and Africa has generated a number of methodologies and tools which are now being used widely by public and private organizations engaged in high-value supply chains. This outcome refers to Output 2 of the BP-2 project in CIAT's 2007-2009 MTP, which aimed to generate \"Frameworks and tools for evaluating and targeting technology and/or management alternatives in agriculture and NRM R&D\".This outcome was achieved largely through a project in Colombia and Ecuador on diversification options in hillside landscapes, and through a number of off-shoot projects including also Central America which were subsequently developed. The overriding principle of this work focused on the development of generic tools and methodologies for identifying niches for high-value crops, and the application of such methodologies in coffee, honey, medicinal plant and high-value forage supply chains. A total of 52 community-based organizations, public institutions, and private companies were involved.The CinfO system was developed and made operational, which allows the two-way flow of information between producers, exporters, and roasters, and even the consumer. During the course of the project, some 2,000 farms were integrated into the Cinfo system. Today more than 4,000 farms are registered in CinfO and this number continues to increase as other farmer organizations and secondary level organizations adopt the tool.Homologue software was developed to find homologous environments for technological transfer, where a particular variety or management regime may be well adapted. This was used to identify specific niches for high-quality coffee production, and results were validated in the field.Homologue has now been distributed to over 100 organizations across the globe, including NARS, ARIs, and sub-national research and development organizations.Canasta software was developed to combine expert knowledge with formal scientific knowledge in order to predict potential adaptation zones for a species. It was used to identify specific niches for high-quality production of coffee in Colombia and Central America, and through the CinfO system this information is fed back to the farmer in order to provide options for increasing farm income. It is now being used on a range of different crops in different continents, including for the generation of a denomination of origin for coffee in Colombia and Nicaragua.Today, Homologue and Canasta are being used by external partners across Latin America, Africa and Asia for identifying environmental niches for a wide range of crops and species, including many underutilized crop species.The analysis of the environmental drivers of coffee quality brought a number of important insights, which provided essential components for projects such as the subsequent work with the Federación Nacional de Cafeteros de Colombia on denomination of origin. A number of other spin-off projects have been generated, and continue to be implemented in the region with new institutions which have become interested in the environmental niche concept for stimulating rural development around high-value supply chains.The evidence for this outcome is available in a range of reports and scientific publications which are using the principles, concepts and tools of identifying environmental niches for high valueproducts. An impact study of the output from the 2007 MTP is pending to fully quantify adoption, uptake and changes in farm income derived directly or indirectly from this outcome.We successfully and fully achieved all output targets for 2008:TARGETS 2008 Fully Achieved EXPLANATION PRODUCT 1• A method for tracking change, improving learning, accountability, relevance and impacts of agricultural innovation systems tested in at least two countries in Africa and Asia tested for at least 15 crops (General spatial analysis tools, as well as CIAT's Canasta and Homologue software tools, adapted to a range of crops; concepts expanded to Africa)to the Global Facilitation Unit (GFU), CIAT, Cali, Colombia.• A methodology and two prediction models to target higher value products to environmental niches developed and tested with at least 5 crops in LAC.Following the three broad areas of work we engage in, here follows three research highlights:4.1 Technology and impact targeting:4.2 Equitable and sustainable use of ecosystem services: Ecosystem services and poverty alleviation in the Andes/AmazonWe completed a strategic analysis of the entry points for both research and development in the Amazon region with regard to ecosystem services and poverty alleviation. The report aims to guide research and capacity-building priorities related to ecosystem services and poverty alleviation in the Amazon basin and eastern Andes. It is the result of extensive engagement with stakeholders in the region, combined with novel analysis of secondary data on poverty and ecosystem services such as water provision, biodiversity, and soil quality. The report presents a list of priority research challenges for the region, concluding that it is far more cost effective to prevent future degradation through incentive-based schemes that empower local communities rather than force people to comply authoritatively. Commissioned by the Ecosystems Services for Poverty Alleviation Programme (ESPA), a UK-based initiative of DFID, NERC, and ESRC to promote multi-disciplinary research in sustainable ecosystem management, this study is valuable to direct environmental-management policy at all levels. The full report is available at: http://www.ecosystemsandpoverty.org/wp-content/uploads/2008/05/espa-aa-final-report-_small-version_.pdf.There have now been a number of global and regional studies on the impacts and potential implications of climate change on agricultural productions of major crops, with some studies examining the significance of these changes to food security. Whilst a significant percentage of food intake per capita is accounted for by the world's ten biggest crops, food and nutritional security depends on a much wider range of crops, some of which are consumed on farm and others cultivated as cash crops. Unfortunately, mechanistic-based models (like DSSAT) are only available for a handful of crops, which goes to explaining the concentration of research on major staples. We used a simpler approach to modeling the impacts of climate change on agriculture using the Ecocrop niche-based model. Under 2 different scenarios, and 18 downscaled GCM models we map the changing geographies of crop suitability to 2020 and 2050 for 50 crops. The crops studied included staples, cash-crops and traditional crops that contribute heavily at the local scale to food and nutritional security. Using agricultural production and export data from FAOSTAT, we analyzed the impacts within the context of food and nutritional security for tropical countries. The analysis shows that a great deal of opportunities exist in agriculture as a result of climate change if farmers have the access and information to change varieties and, when necessary, their crops. When the crops are grown for cash, this is easy. However, when the crops are of large cultural importance and highly traditional, adaptation measures are made significantly more difficult. We used this approach to identify hotspots of both opportunity, and of significant challenges where fundamental changes in the agricultural system may be required. The results of this research were presented in numerous international fora.5. Description of one project outcome.CIAT research on the targeting of high-value crop options to environmental niches in Latin America and Africa has generated a number of methodologies and tools which are now being used widely by public and private organizations engaged in high-value supply chains. This outcome refers to Output 2 of the BP-2 project in CIAT's 2007-2009 MTP, which aimed to generate \"Frameworks and tools for evaluating and targeting technology and/or management alternatives in agriculture and NRM R&D\".This outcome was achieved largely through a project in Colombia and Ecuador on diversification options in hillside landscapes, and through a number of off-shoot projects including also Central America which were subsequently developed. The overriding principle of this work focused on the development of generic tools and methodologies for identifying niches for high-value crops, and the application of such methodologies in coffee, honey, medicinal plant and high-value forage supply chains. A total of 52 community-based organizations, public institutions, and private companies were involved.The CinfO system was developed and made operational, which allows the two-way flow of information between producers, exporters, and roasters, and even the consumer. During the course of the project, some 2,000 farms were integrated into the Cinfo system. Today more than 4,000 farms are registered in CinfO and this number continues to increase as other farmer organizations and secondary level organizations adopt the tool.Homologue software was developed to find homologous environments for technological transfer, where a particular variety or management regime may be well adapted. This was used to identify specific niches for high-quality coffee production, and results were validated in the field.Homologue has now been distributed to over 100 organizations across the globe, including NARS, ARIs, and sub-national research and development organizations.Canasta software was developed to combine expert knowledge with formal scientific knowledge in order to predict potential adaptation zones for a species. It was used to identify specific niches for high-quality production of coffee in Colombia and Central America, and through the CinfO system this information is fed back to the farmer in order to provide options for increasing farm income. It is now being used on a range of different crops in different continents, including for the generation of a denomination of origin for coffee in Colombia and Nicaragua. Today, Homologue and Canasta are being used by external partners across Latin America, Africa and Asia for identifying environmental niches for a wide range of crops and species, including many underutilized crop species.The analysis of the environmental drivers of coffee quality brought a number of important insights, which provided essential components for projects such as the subsequent work with the Federación Nacional de Cafeteros de Colombia on denomination of origin. A number of other spin-off projects have been generated, and continue to be implemented in the region with new institutions which have become interested in the environmental niche concept for stimulating rural development around high-value supply chains.The evidence for this outcome is available in a range of reports and scientific publications which are using the principles, concepts and tools of identifying environmental niches for high value products. An impact study of the output from the 2007 MTP is pending to fully quantify adoption, uptake and changes in farm income derived directly or indirectly from this outcome.Börner, J.; Wunder, S. 2008. The potential of payments for forest environmental services in the Brazilian Amazon: Insights from a macro-scale spatial analysis. In: 10th Biennial International Society for Ecological Economics (ISEE), 7-11 August, Nairobi, Kenya. Rather than maintain the logframe structure for the detailed abstracts, papers and reports section, we have reordered into three broad categories which better represent the nature of the Agroecosystems Resilience Outcome Line. These are 1) technology and impact targeting, 2) sustainable and equitable use of ecosystem services, and 3) Climate change and risk.Project evaluation is currently used to: 1) communicate to donors the expected and actual impacts of the project; 2) show compliance with the agreed work plan, and negotiate changes to it; and 3) provide systematic information to support learning and decision making during the implementation of the project. Participatory Impact Pathways Analysis 1 (PIPA) improves evaluation by allowing managers and staff to formalize their project's impact pathways and to monitor progress, encouraging reflection, learning and adjustment along the way. Impact pathways are the detailed assumptions and hypotheses about how a project is expected to achieve its goal. They describe how individuals and organisations should act differently, strategies to bring this about, and how such change might impact on peoples' livelihoods.Evaluators generally agree that it is good practice to first formalize a project's impact pathways, and then evaluate the project against this 'logic model\" (e.g. Chen, 2005). In the CGIAR planning system, logic models are called 'logical frameworks', or 'logframes' for short. PIPA goes beyond the traditional use of logframes by: 1) involving key stakeholders in a joint process; 2) emphasizing the stakeholder networks needed to achieve impact; 3) providing the information managers need both to learn and to report to their donors; and 4) establishing a research framework to examine the critical processes of change that projects seek to initiate and sustain.PIPA grew out of ILAC funded work by the International Center for Tropical Agriculture (CIAT -Spanish acronym) on innovation histories (Douthwaite and Ashby, 2005) and work to evaluate impact pathways in an integrated weed management project in Nigeria (Douthwaite et al., 2003 and2007). It was first used in a workshop in January 2006 when seven project teams, funded by the Challenge Program on Water and Food (CPWF), met for three days to co-construct their respective impact pathways in order to help the CPWF better understand the types of impacts its teams were envisioning. To date, staff from 44 CPWF projects have constructed their impact pathways in seven workshops.During 2008, PIPA will continue to be used for project planning and M&E by CPWF; by an EUfunded project in Latin America 2 , and by the International Potato Center (CIP -Spanish acronym) for ex-post evaluation purposes in the Andean Change Project. PIPA will also be used for ILAC's own learning-based evaluation.PIPA is an umbrella term to describe both the participatory construction of impact pathways and their subsequent use. This brief focuses on the participatory monitoring and evaluation of progress along impact pathways. The use of impact pathways for ex-ante impact assessment is described in Douthwaite (et al., in press). Used ex-post PIPA involves using the PIPA workshop format to reconstruct impact pathways. More information on all aspects of PIPA, including an on-line manual, can be found at http://impactpathways.pbwiki.com. PIPA is similar in its philosophy to 'outcome mapping' (Earl et al. 2001). A main difference is that PIPA stretches participants to predict how project outcomes can lead to social, economic and environmental impacts.At the heart of PIPA is a participatory workshop in which project implementers and key stakeholders construct project impact pathways. Those who have contributed to a traditional logframe know that completing the required formats is tedious in groups and is often dominated by one or two people. Our experience is that when people are not constrained, at the outset, to fill in logframe boxes, they have tremendous energy for exploring collective ideas about how a project should work, or has worked. Therefore, in the PIPA workshop, participants only attempt to create a logic model once the underlying impact pathways have been discussed and agreed.The PIPA workshop is useful when two or more project teams in the same program wish to integrate better. At least two people for each project should attend; preferably this should include the project leader. The workshop also works well when one project team wishes to build common understanding and commitment with its stakeholders. In this case, two or more representatives from each important stakeholder group should attend. The ideal group size is four to six and the ideal number of groups is three to six. We have facilitated workshops with nine projects but this leaves little time for individual presentations and plenary, and participants tend to be overwhelmed by too much information.Day 1: Developing a cause-and-effect logic Participants spend most of Day 1 developing a problem tree for their project. Most people easily grasp the cause-effect logic of the problem tree, which begins with the identification of problems the project could potentially address and ends with problems that the project will directly address. When working with several projects from the same program, presentations of various problem trees help participants better understand each others' aims, a prerequisite for successful programmatic integration. Problem trees are seductively simple; they can lure people into thinking that solving a limited set of discrete problems begins a domino-like cascade which automatically achieves impact. Participants generally point this danger out themselves on Day 1. Day 2, therefore, is about balancing cause-effect logic with a network perspective, in which impact results from interactions between actors in an 'innovation system'. These interactions can be modelled by drawing network maps showing important relationships between actors.To connect Day 1 with Day 2, participants construct a vision of success in which they imagine what the following classes of stakeholders will do differently after the project:1. The users of project outputs, or 'next users'; 2. Groups with whom the next users work; 3. Politically-important people and organizations who can help facilitate the project; 4. The project implementers themselves.Next, participants draw a 'now' network map, showing current key relationships between stakeholders, and a 'future' network map showing how stakeholders should link together to achieve the vision. Participants then devise strategies to bring about the main changes. The influence and attitude of actors is explicitly considered during these exercises (see Figure 2(ii)) based on work by Schiffer (2007). In the final part of the workshop, participants distil and integrate their cause-effect descriptions from the problem tree with the network view of project impact pathways into an outcomes logic model. This model describes in table format (see Table 1) how stakeholders (i.e. next users, end users, politically-important actors and project implementers) should act differently if the project is to achieve its vision. Each row describes changes in a particular actor's knowledge, attitude, skills (KAS) and practice, and strategies to bring these changes about. The strategies include developing project outputs with next users and end users who subsequently employ them. The resulting changes are outcomes, hence the name of the model, which borrows in part from Bennett's hierarchy (Bennett and Rockwell, 2000;Templeton, 2005) The outcomes logic model is the foundation for monitoring and evaluation because it provides the outcome hypotheses, in the form of predictions, which M&E sets out to test. The predictions are that, if key assumptions are met, the envisaged project strategies will help bring about desired changes in KAS and practice of respective actors.M&E requires that the predictions made in the outcomes logic model be made SMART (specific, measurable, attributable, realistic and time bound) so that project staff and stakeholders can know whether or not predictions are being realized. Hence, the next step in developing an M&E plan is to identify outcome targets, and milestones towards achieving them (see Table 2). Participants begin by prioritizing changes listed in the outcomes logic model in terms of what the project will actually do. 1 Assumptions are conditions that are beyond the control of the project but which affect project success. For example, a key assumption for a project working to improve product quality (e.g. fish, rice etc.) is that farmers will receive a higher price for better quality.After the workshop, participants may wish to formalize how changes described in the outcomes logic model help change the livelihoods of end users (for example when PIPA is being used for ex-ante impact assessment). In this case, we (the facilitators) use workshop outputs to construct a first draft of an impact logic model that shows the underlying cause-effect sequence of outputs, adoption, outcomes and long-term impact. We also draft a narrative explaining the underlying logic, assumptions and networks involved. These narratives have drawn on the 'learning selection change' theory (see http://boru.pbwiki.com/Learning+Selection+Change+Model). An example of an impact logic model is shown in Figure 3, and the narrative describing it can be found at http://boru.pbwiki.com/f/PN06%20Impact%20Narrative-4.DOC. After the workshop, participants complete their M&E plan with key staff and stakeholders. If M&E is to contribute to project learning, stakeholders should reflect on the validity of the impact hypotheses periodically, not just at the end of the project. We suggest that projects hold a reflection and adjustment workshop with their key stakeholders once a year with a smaller meeting in between.We use the graphic in Figure 4 to explain to participants how the reflection process works. The numbers below relate to the graphic.1. During the PIPA workshop, participants develop a shared view of where they want to be in two years' time, and describe impact pathways to achieve that vision. The project then implements strategies, which lead to changes in KAS and practice of the participants involved. 2. A workshop is held six months later to reflect on progress. The vision is changed to some extent, based on what has been learnt, the outcome hypotheses are revised when necessary and corresponding changes are made to project activities and strategies. New milestones are set for the next workshop. 3. The process continues. The project never achieves its vision (visions are generally used to motivate and stretch), but it does make real improvements. These reflections are the culmination of one set of experiential learning cycles and the beginning of others. If the reflections are well documented, they can be analyzed at the end of the project to provide insights into how interventions do, or do not, achieve developmental outcomes in different contexts. PIPA M&E thus provides a framework for carrying out action research 3 . The quality of the research depends on the facilitation of the reflections, the data used and the documentation of the process. PIPA M&E is not prescriptive about the data used in the reflections, but does encourage researchers to gather data using multiple methods. It also recommends ways of introducing thematic and gender perspectives into the design of datagathering methods and reflection processes. One data-gathering method we have promoted in the EULACIAS project is the 'most significant change' approach, in particular for picking up unexpected consequences (see Davis and Dart, 2005). The CPWF is \"impact-oriented\" which means the performance of the program and its projects is being evaluated not just on the delivery of research outputs, but on how those outputs are used, by whom, and to what effect (Ryder-Smith, 2002). The CPWF will be judged successful if it can demonstrate that the research it has supported has in a meaningful way \"increased the productivity of water for food and livelihoods, in a manner that is environmentally sustainable and socially acceptable\" 5 in and beyond the river basins in which it works.\"If the CPWF and its constituent projects are to be successful they must be managed for impact, that is, projects must plan and manage to achieve development outcomes, not just to deliver the outputs listed in their project documents (Ryder-Smith, 2002). Managing to achieve developmental outcomes is more challenging than managing for outputs because, while projects can largely control whether they deliver their outputs, many factors in addition to research contribute to achieving developmental outcomes (Mayne, 2004;Hartwich and Springer-Heinze, 2004).A second challenge facing the CPWF is securing adequate funding streams for long enough to achieve measurable developmental outcomes. It can take 10 years to move from basic research to useful technologies and then another 10 years to see wide-scale impacts (Collinson and Tollens, 1994). The CPWF generally commissions projects on a 3 to 5 year basis. Hence the CPWF needs an ex-ante impact assessment approach that can plausibly demonstrate to donors how project outputs will lead to development outcomes and widespread impacts after the end of the projects that developed them.The ever increasing challenges facing the CPWF are those faced by all medium and large-scale R4D programs. This paper reports efforts to date by the CPWF's informal Impact Group (the authors of this paper) to develop Participatory Impact Pathways Analysis (PIPA) to meet these challenges, specifically to: 1. Present the logic that explains how project activities and outputs are hypothezised to contribute to a sequence of outcomes and impacts. 2. Facilitate development of shared understanding of, and agreement with, the project logic among project team members. 3. Provide the basis of a plausible ex-ante impact assessment methodology for the CPWF that will also provide a solid foundation for later ex-post impact assessment 4. Provide the basis for monitoring and evaluation that fosters learning and change in the CPWF.The first section of this paper introduces the \"impact challenge\" facing complex programs such as the CPWF. The second explores the characteristics required of Participatory Impact Pathways Analysis (PIPA). The third describes PIPA in terms of its component parts and their relation to existing tools and approaches, and the literature. The fourth offers an account of how PIPA is used in practice with CPWF projects and their teams. The paper concludes with a discussion of the value added by PIPA to agricultural R4D and to the practice of evaluation in general.The success of R4D projects and programs such as the CPWF depends upon achievement of intended results. This, in turn, depends on (i) sound project and program management geared to meeting the outcome expectations of funding agencies and (ii) maintaining and increasing resources as projects proceed beyond the pilot stages and the program gathers momentum. There is a close-knit relationship between these two issues particularly when funds come from diverse sources. Convincing arguments are required to persuade multiple funding agencies of the likely potential uptake of research products and services by networks of diverse partner organizations and of the eventual impacts of these on a wide range of beneficiaries. Without an initial wellfounded and persuasive ex-ante account of how project managers, basin coordinators and theme leaders predict their projects will have impact, and later ex-post evidence of impact, the executing organizations' efficacy and their very right to existence is cast in doubt (Ryder-Smith, 2002;OECD, 2006;Anderson, Bos and Cohen, 2005). Both management and funds are vulnerable without critical and timely information for informed decision-making and effective ways of communicating anticipated and actual results to funding agencies. This information should come from monitoring and evaluation and, initially, from ex ante impact assessment.Plausible impact assessment must quantify impacts achieved or to be achieved and then make a convincing case that the project or program being assessed will contribute or has contributed to that impact (EIARD, 2003). To be able to do so requires understanding and communication of the R4D processes being employed, and the theory or theories supporting them. Monitoring and evaluation has the potential to provide this information but often does not, in part because evaluative inquiry as an organizational learning system is highly underdeveloped (Cousins et al., 2004). It is not uncommon to keep impact assessment and monitoring and evaluation separate. For example, in the CGIAR System, within which this work is being conducted, impact assessment, both ex-ante and ex-post, has been viewed as a legitimate research activity while M&E has been viewed as an accountability mechanism but not contributing to research (Horton, 1998). M&E in the CGIAR has largely been based on the use of logical frameworks to identify and report on milestones, which in a research sense is of limited interest. The logical framework was originally developed by the US Department of Defence in the late 1960s (Horton et al. 1993 p. 113) and since then has been modified and widely used by development agencies throughout the world (Rush and Ogborne, 1991;Cedric, Cedric, Saldanha and Whittle, 1998;Schmitz and Parsons, 1999;Kellogg Foundation, 2004) as well as in the private and public sectors (McLaughlin and Jordan, 1998;Cooksey et al., 2001).The logical framework builds a causal chain of how a project or program will achieve its development goal (Figure 1). The chain begins with identifying activities and shows how these will produce project outputs if a certain set of assumptions and necessary conditions are met. The next step in the hierarchy is to show how outputs will achieve the project purpose and then how that purpose achieves the goal, or final expected impact.While the typical logical framework does show a causal chain, in practice it tends to be a very simple one, often with just one level of outcomes between production of project outputs and the eventual goal. In practice, whole chains of intermediate outcomes link project outputs with eventual impact. Also the opportunity for a detailed description of causality within the logical framework tends to be weak and provides only superficial explanations of causation. More seriously, logframes can lead to a false idea of the linearity and predictability of impact pathways which project and program managers find seductive. As a result, managers tend to stick with their original logframes developed at the outset and do not regularly revisit them to reassess the underlying assumptions. In recent years a number of R4D scientists have increasingly begun to look beyond logical frameworks to program theory to help remedy this lacuna (Horton, 1998;Douthwaite et al. 2003). Logic modelling is largely limited to normative theory-what is expected to happen.Program theory is concerned with both normative and causative theory (Chen, 2005). Causative theory explains how use of project outputs lead to a chain of intermediate outcomes and eventual impact. It is an explanation of process based on either stakeholder theory or scientific theory.Examples of scientific theory is the published learning-selection model of early grassroots adoption and adaptation of technology (Douthwaite, 2002;Rogers, 2003) innovation decision process. Scientific theory is different to stakeholder theory as Chen (2005, p. 41) explains: \"Stakeholder theory is implicit theory. It is not endowed with prestige and attention as is scientific theory; it is, however, very important from a practical standpoint because stakeholders draw on it when contemplating their program's organization, intervention procedures, and client-targeting strategies. Stakeholders' implicit theories are not likely to be systematically and explicitly articulated, and so it is up to evaluators to help stakeholders elaborate their ideas.\"The use of program theory in R4D projects offers a number of benefits. Evaluators would help project staff to articulate their implicit theories and where appropriate suggest appropriate scientific theory on which to base all or part the project or program's causative theory. Subsequent M&E would then become tools in a legitimate research exercise that would contribute to knowledge by: (i) testing stakeholder-implicit theory and potentially establishing it as new scientific theory; and, (ii) validating scientific theory in different conditions. M&E of the validity of a project's causative theory would support learning and change and adaptive project management, thus making project impact more likely. Information from M&E would also help refine the causative theory and contribute to process knowledge about how research outputs do, or do not, lead to developmental outcomes and impacts. Such process understanding can help improve the plausibility of qualitative ex-ante and ex-post impact assessment. \"Impact assessments and evaluations should not be limited to directly measurable impacts; they should seek to capture the complexity and non-linear nature of agricultural innovation and sustainable development. Impact assessments and evaluations should also be integrated as far as possible into research programmes, to facilitate internal learning processes and changes that enhance the probability of impact.\" (EIARD, 2003, p. 329) EIARD (2003) then went on to recommend that evaluators make explicit the model of how innovation occurs both for ex-ante and ex-post impact assessment.Program theory is starting to be used in R4D projects. Douthwaite et al. (in press) report the use of impact pathways evaluation to monitor and evaluate the development, adaptation and adoption of integrated weed management techniques in Northern Nigeria. Impact pathways evaluation develops and uses a causal model of how adoption and adaptation is expected to take place, and makes explicit mention of its roots in program theory (Douthwaite et al., 2003).The Association for Strengthening Agricultural Research in Eastern and Central Africa, (ASARECA, 1999), uses an impact chain to represent the several intermediate steps and actors along the way to impact. Projects and programs use their resources through planned activities to produce outputs. With the intervention of other actors these outputs are transformed into outcomes. The resulting impact chain is characterized by a time dimension and organizational level. Depending on the complexity of the impact chain, ASARECA acknowledges that it can become difficult to ascertain the proportion of credit due to which actor for what impacts --the classical \"attribution problem\". While the ASARECA approach goes beyond the simple logical framework by allowing the identification of chains of intermediate outcomes, and by introducing an organizational dimension, it falls short of program theory as it does not make causal theory explicit.The International Development Research Centre (IDRC) has been working for a number of years to develop Outcome Mapping that focuses on making explicit the changes in behaviour that are expected as a result of project and program intervention (Earl et al. 2001). Outcome Mapping is similar to PIPA in a number of ways. Like PIPA, Outcome Mapping usually begins with a participatory workshop, it takes a learning-based and use-driven view of evaluation, and it identifies the stakeholders that the project needs to influence to achieve its expected outcomes. PIPA is different in two important aspects. Firstly, PIPA attempts to integrate both a results-and actor-orientated view, while Outcome Mapping focuses on the latter (Ambrose, 2007). The use of problem trees in PIPA makes it more accessible to project staff already used to working with logic models. Secondly, PIPA uses network mapping to explore how stakeholders are linked to, and influence each other, and how the project aims to change the existing network. Outcome Mapping does not consider this dimension, taking more of a project-centric view.Hartwich and Springer-Heinze (2004, p.5) argue for improving the impact orientation of agricultural research by means of impact pathways. However their conceptualization of an impact pathway is similar to the logical framework with just one level of outcome.The CGIAR Science Council also encourages progressing beyond the normative use of logical frameworks. The Science Council's mission is to \"enhance and promote the quality, relevance and impact of science in the CGIAR\" and one of the functions it plays is to analyze CGIAR Centres' medium term plans (www.sciencecouncil.cgiar.org). The Science Council recently requested that CGIAR Centres prepare for each CGIAR Centre project a \"description of the plausible impact pathway from research outputs through outcomes to the ultimate impacts\" (Science Council, 2006, p. 3). They acknowledge that the logical framework they ask to be prepared is by definition \"only a simplified version of the impact pathway from outputs to outcomes to one level of intended impacts\" (Science Council, p. 5). The Science Council requests that the plausible account of the full impact pathway be given in a written description called the \"project narrative\". A plausible narrative would imply some discussion of theories of causality, and would be greatly helped by the use of program theory.We have, so far, argued that R4D projects and programs should increasingly use program theory because it has the potential to (i) raise the status of M&E to a research activity and thus be more likely to be taken seriously and attract resources, (ii) provide sound assessments of what changes will or might occur, (iii) provide descriptions of how project research outputs might or have achieved developmental outcomes and impact, and, (iv) provide process information to assist project and program management as well as to improve ex-ante and ex-post impact assessment.Program theory is already being used in a R4D context under the name of \"impact pathways\" and we choose to continue this tradition.In collaboration with other CPWF participants, the Impact Group agreed upon three general and two technical characteristics that IP Analysis must fulfil to meet the requirements of the CPWF.In general terms, it must be capable of providing (i) a better appreciation of the existing and potential impact of research on water use in agriculture to justify current and future funding, (ii) a deeper understanding of what impacts the CPWF expects to attain, and how and (iii) a framework for an effective M&E approach that fosters and tracks progress towards achieving impact. In more technical terms, the model must also be capable of (i) making explicit each project's causative theories and, (ii) generating quantifiable measures of the likely intermediate and final outcomes and impacts for which managers and funders hold the projects accountable.We chose to base PIPA on ideas from program theory (Chen, 2005), organizational learning (Argyris and Schön, 1974) and network theory (Cross and Parker, 2004). The characteristics of PIPA will be discussed in terms of the two technical requirements.Causative theory describes how project and program research outputs are adopted and promulgated. There has been an increasing recognition in agricultural R4D that two types of adoption are important: scaling-out and scaling-up. Scaling-out is the increasing adoption of project outputs from farmer to farmer, community to community, within the same stakeholder groups. It is a horizontal spread, as shown in Figure 2. Scaling-up is a vertical institutional expansion, based largely on a desire or need to change the rules of the game. It can be driven by the influence of first-hand experience, word-of-mouth and positive feed back, from adopters and their grassroots organizations on policy makers, donors, development institutions, and the other stakeholders who then have an interest in building a more enabling environment for the scalingout process. Sometimes the process is reversed and driven by political conviction. Interventions at a higher scale, for example policy research, can affect scaling-out processes at lower ones, as shown in Figure 2. In PIPA project impact pathways are described in terms of an Impact Pathways (IP) logic model and network maps. The IP logic model is a flowchart that shows the chains of outcomes that link outputs to eventual developmental impacts. It is similar to Chen's (2005) change model, except that where possible it incorporates one or more published (confirmed) causative theories as recommended by Renger and Titcomb (2002).The network maps give additional detail to the causative theory. PIPA builds on an innovation systems perspective that recognizes that scaling-out and -up are brought about by the formation and actions of networks of stakeholders in what is essentially a social process of communication and negotiation (Douthwaite, 2002;Hall, Mytelka and Oyeyinka, 2004). Network maps are drawn for the beginning of the project and for the future, usually two years after the project has finished. The \"future\" network is essential for the project to achieve eventual impact, because if no one is using or promulgating the project outputs after the end of the project, the project will not achieve its goal. Clarifying and making explicit how the project will build its \"future\" network helps project staff identify the key stakeholders that the project needs to engage with to achieve scaling-out and scaling-up of project outputs.The network maps are crucial to PIPA. The network maps include the 'softer' behavioral and relational dimensions of a project or program's impact pathways, complementing the 'harder' mechanistic description given by the IP logic model. A number of writers have identified the need to blend 'hard' and 'soft' to gain a fuller understanding of change and innovation processes (Checkland and Scholes, 1990;Douthwaite et al. 2001;Campbell et al. 2001).The network maps also help compensate for a weakness of logical frameworks and other types of logic models that do not give sufficient information about the actors involved in bringing about developmental change. For example, logical frameworks commonly contain narrative statements in them without people, \"rice yields increased by 25% in pilot sites\". Network maps play a similar function to the concept of 'reach' (Montague, 1997) introduced to provide actor information in traditional logical frameworks; (McLaughlin and Jordan, 1998;Mayne, 2001).Reach refers to the sphere of influence --i.e. the \"with whom?\" (partners and stakeholders),\"for whom?\" (direct and indirect beneficiaries) and \"how many or how much?\" (proportion of beneficiaries) --over which an organization wishes to spread its resources. EIARD (2003) has noted that agricultural development comes about through complex and non linear processes. This reality is not represented in logic models, but it is implicit in network maps. Network maps show relationships between actors involved in an innovation process and can: \"incorporate mutual and circular processes of influence as well as simple linear processes of change. This enables them to represent systems of relationships exhibiting varying degrees of complexity and chaos.\" (Davies, 2003, p. 2).The IP logic model and the network maps are woven together by an impact narrative. We, and others, have found that textual descriptions can make up for or supplement the incompleteness that is an inevitable concomitant of flow-charts, diagrams, and matrices, useful as these undoubtedly are (Cooksy et al. 2001;Mayne, 2004). The impact narrative describes the relationships between the outcomes in the IP logic model with the network maps. By virtue of the demand that the narrative create an integrated unity, the IP group and project personnel find that the process of creating it subjects the assumptions on which the project is based to exacting scrutiny. This enhances the comprehensibility and reinforces the plausibility of both the logic model and the network maps, and hence the overall causative theory. This scrutiny helps project managers and staff to develop a better, more robust and complete impact pathways for their project or program.The impact narrative is more than the more traditional \"narrative summary\" that accompanies a logical framework. That is usually little no more than a statement of each of the project's goals, outputs, and activities and inputs (Horton et al., 1993). It is also substantially richer than the stand-alone \"impact narrative\" used to provide an account of significant program efforts and milestones and the effects of the program on its target population (Taylor and Fugate, 1993;Hamilton, 2005). It is similar to Mayne's ( 2004) \"performance stories\" although CPWF impact narratives, because of their ex ante orientation, explain what is expected to happen while performance stories recount what has happened.In terms of the relationship between program theory and theories of action (Figure 8) the whole process of developing the IP logic model, the network maps and then writing the impact narrative works to improve the project or program's espoused theory about how they will achieve impact by making explicit project members' theories-in-use. The process used to construct project and program impact pathways (i.e., program theory) is described in the next section.The Impact Group's IP logic model goes further than identification of the likely intermediate and final outcomes and impacts. It quantifies these so that managers and funding agencies can be clear about the magnitude, in appropriate units of measurement, of what is expected from the project. Mayne ( 2004) has highlighted the importance of having clear, quantified statements of expectations. It is not practicable to measure everything, but without a concrete statement of expected results, -\"….. all one has is results information.\" (op. cit. p. 34). The two quantitative techniques are geographic extrapolation domain analysis and scenario analysis. The effective use of the latter depends upon the prior execution of the former and so geographic extrapolation domain analysis will be discussed first.Simply stated, geographic extrapolation domain (GED) analysis helps identify where one would expect a technology to be adopted. GED analysis uses Weight of Evidence (WoE) techniques using data from geographic databases to calculate where in the tropics one is likely to find areas with similar socio-economic and agro-ecological conditions as found in CPWF project pilot sites. The purpose is to determine, ex-ante, the sites most likely to offer the potential for successful adoption of research products and services generated by CPWF. With this information, the project and/or the CPWF can then plan to scale out into areas that offer the greatest likelihood of success so as to augment and maximize their impact and thereby optimize the use of the financial contributions of the agencies funding the research.GED analysis is so far unable to take into account similarities between the institutional environments of sites in the most probable replication areas making the technique less useful for the purposes of determining the success of scaling-up. Indeed, it is unlikely that GED or any other quantitative technique will ever be able to account for the any uncontrolled institutional factors that influence results in different social contexts (Dahler-Larsen, 2001).Scenario analysis has gained in importance over more predictive approaches in a number of global environmental assessments over the last 20 years, because it allows for including surprises and unexpected developments outside of currently existing boundary conditions. Scenario analysis is used to quantify project impact pathways over a 25-year time scale. The analysis is carried out using an existing water and food supply and demand quantitative modeling framework called IMPACT-WATER. The framework allows economic policies, including trade policies, and climate outcomes of other basins and regions to be taken into account when building scenarios for the impact of different project research outcomes.Project impact pathways are developed basin by basin. The process begins with an Impact Pathways Workshop at which two or more representatives from each project work to develop the inputs required to build their project's IP logic models and network maps. The workshop is facilitated by members of the Impact Group. A \"road map\" of the entire process is shown in Figure 3. The purpose of the workshop is to clarify and surface the participants often implicit program theory. The first part of the workshop clarifies a linear \"logic model\" view of the project's impact pathways, that focuses on outputs and outcomes. The second part clarifies an actor-orientated view focussing on the relationships needed to achieve impact. The nature of the workshops Workshops employ strategies for participation and the sharing of power that have already proven successful in earlier CGIAR projects involving evaluative inquiry and capacity development (Horton 2001). These strategies derive from principles of \"negotiated rationality\" (Lincoln and Guba, 1985;Guba and Lincoln, 1989) and \"deliberative, democratic evaluation\" (House, 2004). They include the inclusion of all participating stakeholder views, a willingness to share power, extensive dialogue to make value positions explicit, and deliberation to allow parties to change their positions if they encounter new and persuasive information.A negotiated process for developing the impact pathways model for each project is time consuming and can be expensive. However, it is an effective process to ensure that stakeholder reality drives the IP models and not merely researcher assumptions. Value for money is exacted from the process by using the workshops as occasions for capacity building and for exchanging information from similar but widely dispersed projects.The unit of analysis of PIPA is the project because this is what the CPWF funds. CPWF Projects last for 3 to 5 years, while it can take 20 years to go from basic research to developmental impact (Collinson and Tollens, 1994). A CPWF Project therefore cannot expect to achieve highly aggregated developmental impacts such as poverty reduction in the lifetime of the project. Nevertheless, workshop participants are stretched to think and plan beyond their current projects The diagram in Figure 4 is presented to workshop participants and the point made that while a project has little control over whether it achieves impact, that influence is not zero and can be maximized by identifying impact pathways and following them during the project cycle. Impact pathways may well involve looking for subsequent project funding after the end of the current one.Figure 4: Project influence on outputs, outcomes and impactIn preparation for an Impact Pathways workshop, the first two authors develop a draft problem tree for each project from the respective project proposals. This is considered necessary because CPWF project proposals are written in different styles, and generally do not use logical frameworks. It can be quite difficult for an outsider to grasp the project's program theory. A problem tree is a visual problem-analysis tool used to identify problem situations and their key causes starting with the root cause. We, and others (Renger and Titcomb, 2002) have found that it is an excellent tool for clarifying, building and communicating a project's underlying logic.The managers and staff of each project are asked to reflect on the draft problem tree and to bring their own comments and modifications with them to the workshop. The first exercise in the workshop (see Figure 3) is for the project groups to modify and redraw their problem trees on cards and poster paper and then present them in plenary (see Figure 5). The next exercise is for the project groups to convert their problem trees into objective trees. This involves reframing the problem positively by describing the situation when the problem has been solved. For example, \"food insecurity\" becomes \"food security\". The idea of reframing in the positive is shared with Appreciative Inquiry (Whitney and Trosten-Bloom, 2003) and other so-called \"asset-based\" approaches which have found that people are more motivated by positive outcomes than by problems. Constructing the problem tree helps clarify which problems the project is tackling and hence what its outputs should be. The next step in the workshop is for each project to construct a vision of project success two years after the end of the project. The visioning exercise is adapted from Appreciate Inquiry and is based on the question: \"You wake up two years after the end of your project. Your project has been a success and is well on its way to achieving its goal. Describe what this success looks like:• What is happening differently now?• Who is doing what differently?• What have been the changes in the lives of the people using the project outputs, and who they interact with? • How are project outputs scaling-out and scaling-up?\"The visioning exercise has proved very useful because usually existing project espoused theory about goals are caged in very general terms, if described at all. The vision also provides the context for the \"future\" actor network map constructed in the second part of the workshop. An context for the \"future\" actor network map constructed in the second part of the workshop. An example of a project vision is shown in Box 1. • Extension and research are working together and both working at the service of farmers and pastoralists • Local communities more independent: solving their own problems and conflicts • Government is starting to develop policies for the Karkheh River Basin as a whole What have been the changes in the lives of the people using the project outputs, and who they interact with? The final exercise in this first part of the workshop is for the project groups to develop a timeline of key events and activities that show how the project outputs are developed and then what needs to happen to those project outputs to achieve the vision.The second stage of the workshop involves asking participants to construct two network maps, one for the present and one corresponding to their vision, two years after the end of the project. The participants are also asked to transfer the map data into matrices. The \"now\" network map shows the existing relationships between the project partners and their links to other stakeholders and the ultimate beneficiaries of the project outputs. The relationships mapped include research, provision of funding, scaling-out and scaling-up.The \"future\" network shows the relationships that the participants think are necessary to achieve their respective visions. Before participants draw this network the facilitator reminds them of the concepts of scaling-out and scaling-up, and stresses that their respective projects will only achieve their vision and goal if a network of organizations actively works to scale-out and scale-up their project outputs after the end of the project.Once the two maps are drawn, the facilitator then asks them to compare and contrast them. They are also told that if the \"future\" map is very different from the \"now\" map, and usually it is, then this implies that the project must work to build these new relationships before the end of the project as the relationships are unlikely to spontaneously emerge afterwards. This need to forge new relationships suggests additional ways of working with existing partners and points at which new stakeholders should enter the project. Participants develop a relationship action plan as part of the workshop.After the workshop the facilitators in their role as evaluators synthesize the objectives tree, the project outputs, vision and timeline into the project IP logic model. The IP logic model is a flow chart that shows both scaling-out and scaling-up processes (Figure 6) by which project outputs are increasingly used and promulgated such that they contribute to developmental outcomes. A published causative theory is integrated into the IP logic models of the projects carrying out participatory research in pilot sites. The theory describes how scaling-out and scaling-up occur as a result of iterative and interactive experiential learning (Douthwaite et al. 2003). The narrative for this change model is as follows:The project partners work in the pilot sites to develop, adapt and validate new technologies and their use strategies, in partnership with key stakeholders. The pilot site trials lead to the participants-farmers, scientists, extension workers, etc.-going through experiential learning cycles that lead to individual and collective changes in attitudes and perceptions, experimentation, adaptation and collective changes in attitudes and perceptions, experimentation, adaptation and adoption (Box 2, Figure 6). End-user adoption increases in the pilot sites based on positive feedback and promotion by the first adopters, and scaling-out begins as the technologies and strategies begin to spread to other villages. At the same time scaling-up begins as the project partners and stakeholders, who are taking part in the field work, gain ownership of the project outputs and begin to promote them in their own organizations. Early adopters begin to see real increases in income as a result of adoption and this helps fuel continuing positive feedback which drives an acceleration of adoption from farmer to farmer (scaling-out). The Impact Group takes the network maps and matrices drawn in the workshop and redraws them using the Social Network Analysis (SNA) software package UCINET and NetDraw in order to make them easier to understand and use. The maps drawn in the workshops show all the relationships (e.g., research, provision of funding, scaling-out) and while useful for showing which are the most central (i.e., most linked) actors, they can be somewhat confusing. The software allows separate maps to be drawn for each relationship which has proven invaluable for clarifying theory-in-use about how relationships currently work and how they need to change in the future. This clarification comes through an iterative question and answer process involved in writing the Impact Narrative.The first step in writing the Impact Narrative is that the Impact Group sends the draft project IP logic model and network maps back to the workshop participants, together with clarifying questions. If the project works in pilot sites, then we explain the Douthwaite et al. (2003) scaling-out and scaling-up theory-of-action and ask them if it applies to their project. Members of the Impact Group, again in their role as evaluators, then write the first drafts of the Impact Narratives based on the answers. This in turn throws up more questions and clarifications. In each round we press the workshop participants to quantify expected outcomes as much as possible for the reasons expressed earlier.The iterative process of writing the impact narrative changes both the IP logic model and network maps as the projects' respective program theory improves and becomes clearer. For example, the Strategic-Innovations-in-Dryland-Farming Project's scaling-out network maps changed radically (Figure 7). The process helped the project clarify that they expect seven different organizations, including their own, to be involved in extending project outputs to the ultimate beneficiaries. At present only three organizations are doing this, so this implies that before the end of the project they need to forge relationships with four new organizations. Not all these relationships are likely to work equally well in scaling-out project outputs, nor had most of the relationships yet been formed. Hence the network maps introduced the ideas that i) work had to be done to build relationships, ii) the relationships are likely to develop in unknown ways, producing both opportunities and threats to the project achieving eventual impact and (iii) these relationships should be monitored. None of this was in the original project description, nor in the IP logic model. Hence drawing the network maps helped improve the project's causative theory by introducing ideas of relationship building and development, uncertainty, non linearity and opportunity.We integrate the IP logic model and network maps in the impact narratives by cross-referencing the network maps as much as possible with the outcomes and the scaling-out and scaling-up processes shown in the logic model. We then present the results of the extrapolation domain analysis and the scenario analysis to provide further quantification of likely impact.The finished output includes a four-page executive summary and the main text (see http://impactpathways.pbwiki.com for an example). The executive summary is designed to be the basis for communication materials such as a press-release, web-page or glossy handout for donors. The main text contains within it sufficient description of the project's impact pathways to be the basis of monitoring and evaluation to test and update the project. Understanding PIPA from an organizational learning perspectiveResearch from the field of organizational learning helps understand how PIPA works. Argyris and Schön's (1974) stated that people act on the basis of theories of action. Theories of action are the mental models that people use with regard to how to act in situations and which influence the ways they plan, implement and review their actions. Argyris and Schön's (1974) distinguish between two types of theories of action -espoused theory and theory-in-use. A project or program's espoused theory is equivalent to its program theory written down in the form of a logic model or impact narrative. A project's theories-in-use are found in the project staff and stakeholders' usually tacit understandings of how change happens that affects how they implement the project. Argyris (1980) and later Patton (1997) state that developing congruence between the two can lead to greater effectiveness, thus suggesting that projects are more likely to achieve their development outcomes if there is closer agreement between program theory and practitioners' theories-in-use. PIPA works to incorporate practioners' theories-in-use into the project theory to achieve this congruence. It also works to include published theory where appropriate.Our initial results suggest that the network mapping in particular is a powerful tool in making explicit project staff's implicit theories about how relationships need to develop to achieve scaling-out and scaling-up. This actor-orientated view of project's impact pathways is usually missing in conventional logic models.Program Theory (Chen, 2005) Normative Theory(What is expected -projec t milestones, etc.)Causative TheoryTheories of Action (Argyris and Schön, 1974) Espoused Theory PIPA uses the outputs of a workshop to produce two descriptions of projects impact pathways: an IP logic model and actor network maps. The process of constructing and refining these two descriptions helps clarify and make explicit (i) assumed causal linkages between project outputs, outcomes and impacts and (ii) the relationships between organizations necessary for this to happen. Much of the clarification and surfacing of program theory come from refining the network maps, while writing the project's impact narrative. The Impact Group, as evaluation specialists, give advice, question assumptions and suggest relevant theory to further improve the theory upon which a project has been conceived.Once developed, the impact narrative helps a project better understand and communicate what it is doing, with whom it is doing it, and why. This makes the project more fundable because it presents a cogent, rational argument for support to funding agencies. It helps with project monitoring and evaluation because it permits managers to compare what they have predicted should be happening with what is actually happening. It also helps the project members develop a shared understanding of their project which can help with implementation, in part by identifying and giving focus to high priority activities and relationships. Moreover, constructing impact pathways for the projects in a basin helps project leaders, the basin coordinator and the CPWF Secretariat better identify complementarities and synergies between projects, thus contributing to the broader field of basin research program development. The workshops themselves have been found to foster better inter-project understanding and programmatic spirit.The added value of PIPA with respect to evaluation and impact assessment in the field of agricultural research-for-development is the explicit use of concepts from program theory (Chen, 2005) and organizational learning (Argyris and Schön, 1974) to clarify and describe projects' impact pathways. These impact pathways are built of a number of hypotheses and assumptions about how research will lead to adoption, changes in peoples' behaviour and developmental outcomes such as poverty reduction. The hypotheses and assumptions may be based on stakeholder-implicit theory or scientific theory. Hence, monitoring and evaluation of project and program impact pathways becomes a research activity with the potential to (i) test stakeholderimplicit theory and publish it as scientific theory and (ii) evaluate scientific theory in new contexts. This research process will yield new knowledge and insights into the processes by which research outputs do or do not achieve developmental impacts. This understanding is increasingly recognized as essential in the adaptive management of existing projects and conceptualizing of new interventions designed to improve living conditions of the rural poor. Such process understanding is also needed to give plausible ex-ante assessments of impact.A second contribution is that this is the first time that concepts from program theory have been integrated with extrapolation domain analysis and scenario analysis to produce a qualitative and quantitative ex-ante impact assessment approach that includes both quantitative and qualitative elements.A third contribution is the emphasis PIPA places on networks. One of the important long-term effects of projects is the networks they form, strengthen or undermine. Actor networks help projects identify linkages, and think about how they wish to alter and strengthen them so as to achieve their purpose and goal. Actor networks, kept up to date, can help projects monitor and evaluate their progress in this regard. Analyzing actor network maps can help projects prioritize their relationships and thus foster a strong network without incurring overly high transaction costs. The analysis can also clarify the essential future partnerships that need to exist after the end of the project.Network maps help projects achieve impact by showing the multiple linkages between partners and thus the multiple ways in which ideas and technologies can interact and be developed and diffused (see Figure 7). This helps people see that they are part of a network, and it is the network, not just their organization alone, that will achieve impact. It also helps people appreciate that the interactions between actors, indicated by the links in the map, make the innovation process inherently unpredictable in the medium and long-term, thus placing more emphasis on the need for continual monitoring and evaluation to support adaptive project management.The novelty of PIPA to the field of evaluation is the use of network maps as a method to describe a project's \"reach\". PIPA follows Mayne's (2004) counsel to make explicit the detailed expectations for each project. The activities involved, including the preparation of current and future network maps helps make explicit practitioners' theories-in-use particularly about the relationships that will be required for their projects to accomplish the results they seek.PIPA supports the ex-post analysis of impact. By making explicit and then monitoring and evaluating progress along impact pathways, the project provides invaluable process documentation for impact evaluation after the project has finished. EIARD (2003) states that one of the requirements of good impact evaluation is that the impact pathways are described, hence if PIPA is carried out the evaluator's job is to verify them.Finally, PIPA offers project managers and evaluators a practical set of tools that can provide (i) a better appreciation of the existing and potential impact of research to justify current and future funding, (ii) a deeper understanding of what impacts projects and programs might attain and how and (iii) the framework for an effective M&E approach that fosters and tracks progress towards achieving impact.Network maps help projects achieve impact by showing the multiple linkages between partners and thus the multiple ways in which ideas and technologies can interact and be developed and diffused (see Figure 7). This helps people see that they are part of a network, and it is the network, not just their organization alone, that will achieve impact. It also helps people appreciate that the interactions between actors, indicated by the links in the map, make the innovation process inherently unpredictable in the medium and long-term, thus placing more emphasis on the need for continual monitoring and evaluation to support adaptive project management.The novelty of PIPA to the field of evaluation is the use of network maps as a method to describe a project's \"reach\". PIPA follows Mayne's (2004) counsel to make explicit the detailed expectations for each project. The activities involved, including the preparation of current and future network maps helps make explicit practitioners' theories-in-use particularly about the relationships that will be required for their projects to accomplish the results they seek.PIPA supports the ex-post analysis of impact. By making explicit and then monitoring and evaluating progress along impact pathways, the project provides invaluable process documentation for impact evaluation after the project has finished. EIARD (2003) states that one of the requirements of good impact evaluation is that the impact pathways are described, hence if PIPA is carried out the evaluator's job is to verify them.Finally, PIPA offers project managers and evaluators a practical set of tools that can provide (i) a better appreciation of the existing and potential impact of research to justify current and future funding, (ii) a deeper understanding of what impacts projects and programs might attain and how and (iii) the framework for an effective M&E approach that fosters and tracks progress towards achieving impact.The Sub-Saharan Africa Challenge Programme (SSACP) is a research effort that seeks to address the failings of the top-down dissemination from agricultural research through extension to smallholder producers, traditionally followed in sub-Saharan Africa. The SSACP seeks to implement and prove the effectiveness of an alternative approach namely Integrated Agricultural Research for Development (IAR4D) in three pilot learning sites (PLS) that represent three African contexts -East and Central Africa, West Africa and Southern Africa (FARA, 2008). In each PLS there are three teams (named taskforces) that will test the concepts of IAR4D.A major component of the IAR4D concept and that which differentiates it from conventional or other participatory approaches is the establishment and maintenance of innovation platforms (IPs). The research design for the proof of concept of IAR4D requires that each of the three task forces in each of the three PLS works on 4 independent innovation platforms (research design ref). Each IP is based in a particular territory, which for the purposes of the SSACP are named 'sites' 1 .The pilot learning site for East and Central Africa is located at the borders of Rwanda, Uganda and the Democratic Republic of the Congo (DRC) and is named the Lake Kivu Pilot Learning Site (LKPLS). Due to the difficulties of conducting research in mountainous environments such as those found in the LKPLS it was agreed by all Task Forces that more then one innovation platform could be located in the same 'site', meaning that six action sites were sought.This report describes the methodology used to select sites for the LKPLS. The first section describes briefly the implications of the SSACP research design on site selection in LKPLS. This is followed by a characterisation of the LKPLS and the stratification of candidate sites. The third section is an account of site selection workshops which determined the levels of interventions by organisations promoting agricultural research and development and an appraisal of the critical issues in each candidate site. The report concludes with the final choices of sites in the LKPLS.Across the three Pilot Learning Sites a consensus has emerged that each 'site' ought to be a local governmental unit. This offers the potential for dialogue with local policy makers and will help ensure that, while desired, positive spill-over effects are confined to the local governmental unit during the project implementation phase.The three task forces within LKPLS are working closely on the interactions between agricultural productivity, natural resource sustainability, markets and policy themes. The interactions between these themes imply that the three task forces work in common sites and potentially with common partners. At the same time the research design asserts that each of the three task forces in LKPLS will work with four innovation platforms giving a total of 12 IPs in each PLS. In order to reconcile a research design of 12 IPs with the need to collaborate 2 it was decided that more than 1 Innovation platform would be formed in each site. Each IP is considered unique because the problem and entry-points are likely to be different for each task force even though some of the partners may be the same.At the same time it was decided that four IPs would be established in each country while each task force ought to establish and develop at least one IP in each of the three countries, and two IPs in one of the three countries; an example framework for task force site selection is shown in Table 1. The research design of the SSACP requires that counter-factual sites are chosen for each action site where IPs will be established and developed. These counter-factual sites must be as similar as possible to the action sites with respect to the agro-ecology, farming system, market linkages, culture and demography. However the counter-factual sites must have experienced greater penetration and coverage by agricultural research for development organisations or projects.Given the limited number of districts (3 rd level administrative units) within the LKPLS and hence the difficulty of finding a suitable counterfactual, the most appropriate size for a site is the 4 th level administrative unit, which is a sub-county in Uganda, a secteur within Rwanda and a groupement within DRC.A plan for site selection was formulated during the period October-December 2007, between the launch meeting of the LKPLS in Kigali and a further meeting of the FARA coordinating team and the taskforce leaders in Kampala in December 2007. During this time the PLS was characterised, and the plan was refined and adjusted to respond to changes in the SSACP research design. The final plan for site selection consisted of 7 steps:1) Census of the sub-counties, secteurs and groupements 2) Definition of low and high market access 3) Modelling of market access 4) Identification of candidate sites 5) Develop diagnostic tool for site selection 6) Appraisal of candidate sites 7) Final selection of sitesMuch information regarding the characteristics of the LKPLS can be found in the original choice of Pilot Learning Sites (Thornton et al, 2006) and the report of the LKPLS validation team (Bekunda, et al, 2005). It was felt, however, that these ought to be revisited and the quantitative approach of the former combined with the qualitative assessment of the latter. In a partner workshop held in Kigali in October 2007 the members of the three task forces listed criteria that could affect productivity and environmental sustainability, and the success of agricultural enterprises (Table 2). The heterogeneity of the variables in Table 2 was also captured, but it was considered by the taskforce leaders that a mapping exercise was necessary to confirm the perceptions of the project partners. The most important criteria to consider in the site selection phase are those variables that exhibit large variation within the LKPLS but which are relatively homogeneous within a sub-county, secteur or groupement. Variables which display large variability in the PLS but little at the site level should be controlled for in the choice of counterfactuals, while those variables that show little variability at the PLS but large variations within sites should be controlled for once sites have been selected.An analysis of the variance of different criteria shows that the standard deviation of values of annual precipitation 3 for the whole PLS has a value of 256. This value is larger than the standard deviation of annual precipitation in every one of the 244 potential sites in the PLS (figure x). The difference between the standard deviation of the elevation 4 values for the whole PLS as compared to the individual sites was not so large although the standard deviation is still large when compared to the individual sites (Figure 1). Terrain -measured here using slope -shows great variation within the PLS as well as within individual sites. The only dataset that shows population density within sites -the LandScan suite of products -is based on a model, rather than observations (ORNL, 1998).An important research question that the task forces are trying to address is the degree to which the biophysical and socio-economic conditions at the site affect the engagement with markets and the enhancement of productivity and investment in NRM. Market access is a key hypothesis for many of the interventions being planned for the Lake Kivu PLS (FARA, 2008) as such it was decided 5 that a key variable to be used in the stratification of sites would be the access to markets. The research design for the proof of concept of IAR4D (FARA, 2008) does not insist on stratification of sites. By choosing sites in the three countries, however, we already introduce limited stratification according to the broad policy environments of each country.The PLS would be stratified to indicate sites accessible to a diverse set of markets (good market access), sites with access to a limited set of markets (poor market access), and sites with very poor access to all market types which would be excluded from the sample of potential sites. Sites would then be selected to ensure that of the 2 sites in each country one would have good market access and the other poor market access, with a counterfactual also selected for each site (Table 3). A number of studies have developed or modified methods of determining access to markets (e.g. You and Chamberlin, 2004;Deichmann, 1997, Baltenweck & Staal, 2007;Farrow and Nelson, 2001). For this study we follow the methodology developed by ASARECA (2005) for a regional perspective of access to multiple markets. The spatial distribution of access to markets is based on models rather than observations but is augmented with expert opinion.The modelling environment is a geographical information system (GIS) and the time is calculated using a costdistance algorithm and the model seeks the shortest path to all potential markets. Both raster (grid cells) and vector (points and lines) based modelling frameworks are possible and each offers advantages. Vector models are useful where movement is principally along paths and roads and where cross-country movement is disallowed. The vector framework is particularly appropriate in urban and developed country settings although it has been utilised (with certain modifications) in Africa (Deichmann, 1997;Baltenweck and Staal, 2007). For more general purposes and in developing countries where data on road quality and tracks are less reliable or up-to-date, a raster approach is often more suitable. In this case a 'friction' surface is created which describes the ease or difficulty of movement. For this application we have chosen to use a raster modelling framework 6 in which the size of the grid cell is set at 100metres by 100metres.The model calculates for each market the time required from to arrive from all the cells in the grid and the path that would need to be taken. Cells are then allocated to their closest market.The algorithm itself is conceptually easy to understand but the credibility of the model results depends on the construction of a friction surface that reflects the prevailing modes of transport and the barriers that constrain movement.Common variables used in what we call the 'friction surface' include roads, land cover, barriers (such as customs posts at national borders, or rivers), and navigable rivers or boat routes (such as on Lake Kivu), and urban areas. Each of these variables has to be given an appropriate friction value depending on the modes of transport most appropriate for a particular context or problem.For the Lake Kivu PLS it is assumed that producers or traders have access to some form of motorised transport and the speeds for the roads (and thus the time required to traverse a grid cell) are set according to the quality of the road where that information is available. Boat services are an important means of transport across Lake Kivu For the background friction, i.e. those areas between the roads, we have used land cover data from the Africover dataset (FAO, 1994), this same dataset was also used to define urban areas.Barriers are limited to lakes and the national borders.There is also another factor that modifies the friction surface which is the slope of the surface. Slope increases the time needed to cross a cell irrespective of the fact that one is climbing or descending, this is less true of a bicycle than of a fully laden truck, but makes the computation easier. The values used for the friction surface can be seen in Table 4. For this study we follow the methodology adopted by ASARECA (2005) and distinguish between four types of markets:• Regional markets • Cross-border markets or transit pointsAll partner institutions were requested to identify markets for each of these classes; those that were located and used in the model are listed in Table 5 7 The accessibility model does not take into account the attractiveness of the markets and the basic algorithm is unable to discriminate between targets. Nevertheless an element of attractiveness can be introduced by considering different thresholds for the time needed to reach each of the market types (Figure 6). A location is considered to have good access to a regional market if it is within 3 hours, while the threshold for a national market would be 2 hours and a local market 1 hour. For cross-border markets the thresholds would be 1 ½ hours for a minor cross-border market, and 3 hours for a major cross-border market. The results of the model can be seen in Figure 7 and it is apparent that the density of the road network in Rwanda facilitates good market access -this is in clear contrast to DRC, where the roads are poor, and in Uganda where the major markets are distant. The quality of the spatial data is again an issue and Rwanda has excellent road data compared to the other two countries.Nevertheless the accessibility model offered information that would have been difficult and timeconsuming to collect otherwise and the project partners were comfortable with the results. The results of this process were shared with project partners at a meeting in Gisenyi in February 2008. Partners were invited to share their thoughts on the process as well as the results and were asked to make modifications to the sets of potential sites (Table 6) and decide on candidate sites which would be further characterised by a field visit and appraisal. In Uganda all sub-counties in the districts of Rukungiri and Kanungu were considered too remote, while sub-counties in Ntungamo and Bushenyi districts were considered to be in agro-ecosystems that were not representative of the LKPLS. As such only sub-counties in the districts of Kabale and Kisoro were included in the stratification.In Rwanda all areas were considered but the group decided to concentrate on the districts of Musanze, Nyabihu, and Rubavu which have similar agro-ecosystems and are located in the corridor between the towns of Ruhengeri and Gisenyi. However other sites along the Ruhengeri-Kigali axis were also chosen for further characterisation.In DRC areas at the northern tip of the LKPLS boundary, and west of Masisi were not considered due to the remoteness of these areas and the insecurity due to various armed groups operating there. The objective of the characterisation of the candidate sites was to be able to choose sites that would allow the investigation of the efficacy of the IAR4D principles and compare the results of IAR4D with conventional agricultural research for development approaches. To enable this investigation it was necessary to ensure that action sites have had as little as possible outside AR4D interventions as possible, while also finding counter-factual sites that have a similar context to the action sites but which have experienced more AR4D interventions. In each country four sites will be chosen, 2 action sites and 2 counterfactual sites. The action and counterfactual sites are stratified according to market access with 1 action site having good market access and another with poor market access, this is repeated for the counterfactual sites.Action sites will be chosen from the list of candidate sites according to the level of agricultural research for development between 2003 and 2008. All the villages in each site will be assessed and will be classified into 2 types: (a) clean villages that have neither had IAR4D nor conventional projects in the last 2-5 years; and (b) conventional approach villages that have had projects identifying, promoting and disseminating technologies in the past 2-5 years. Sites with most clean villages will be chosen as action sites while sites with a mixture of clean and nonclean villages will be chosen as counterfactuals.To this end a tool was developed to ascertain the previous research and development activities in the previous 5 years in both the agricultural and other sectors, as well as to identify critical issues in the sites.There 5 major outputs of the characterisation of the candidate site were:1. Census of villages in each sub-county, secteur or groupement taken 2. For each village the current agricultural research for development activities were determined 3. For each village the agricultural research for development activities in the past five years were determined 4. Inventory of potential stakeholders completed 5. Assessment of critical issues in the sub-county madeThe diagnosis of sites for final selection will rely on key informants from the candidate sites and at the next higher administrative area (district and territoire). A semi-structured questionnaire will be used (Annex 2) and the results compared using methods of triangulation. The questionnaire instrument was filled in during a group discussion. Informants 1. Sub-county or \"Joint action forum\" chairpersons. 2. Sub-county chiefs or executive secretary of the sector. 3. Development extension workers, cellule coordinator, line agriculturists and community development workers in the sub-county/secteur/groupement. 4. Sub-county/secteur/groupement based NGOs and farmer leaders. The tool was developed by project partners but did not undergo pre-testing before being tested in the field. The pilot testing was carried out in Uganda with all taskforce leaders present, most Ugandan partners and some key task force members from Rwanda. Modifications to the instrument were made in situ and were updated for use in Rwanda and DRC ensuring that the instrument was as efficient as possible and was used consistently in all three countries. The location and dates of the group discussions can be seen in boxes 1-3.The teams visited the Sub-Counties in Kabale and Kisoro districts between 17 th and 19 th March 2008 to test the tool for site selection. The itinerary was: Select sites based on criteria A wrap-up meeting with all taskforce members was convened to discuss the selection of sites. Villages with few AR4D activities were found from almost all the sites that were visited. It was noted that the agro-ecosystems of the two districts (Kabale and Kisoro) are different and that it would be difficult to mix action and counterfactual sites between districts. Summaries were made of the sites and decisions were taken on the preferred research sites:Bufundi: (Little intervention -no service providers, steep slopes, access to some water) -Chosen as action site Busanza: (Mixed -involvement of stakeholders, access to water) -Potential action site but no obvious counterfactual site Nyarusiza: (Little intervention-Few actors, little access to water) -Potential action site but no obvious counterfactual site Rubaya: (Mixed -many service providers, steep slopes, access to water) -Chosen as counterfactual siteChahi: (Little intervention -no service providers, volcanic soils, gentle slopes) -Chosen as action site Bubare: (Mixed-livestock activities in valley bottoms) Muko: (Mixed-service providers many; prices determined by traders; close to the main road) Nyakabande: (Mixed, volcanic soils, gentle slopes) -Chosen as counterfactual site 2. Data processing of info collected It was noted in the de-briefing meeting that the decisions on choosing sites should be more systematic and it was proposed to create indices based on the thematic sections of the survey instrument. This would allow the criteria in the tool to be quantified. From the team's experiences in Uganda it was recommended that an additional criterion, be considered, i.e. leadership and commitment at the site level.The purpose of sharing the lessons learnt was to increase the efficiency in Rwanda and DRC. One key lesson was that before the visit, the teams should procure a list for the villages and assign codes. This ought to also include some background information (e.g. development plans) which would support the information for the site selection process.There was discussion on the consistency of the site selection and the critical issues encountered by the lake Kivu Validation team, i.e. poor markets; significant land degradation; polices that inadequately support development; and low adoption of technologies. It was felt by the site selection team that the criteria used to select the action and counterfactual sites were consistent with the validation team's perceptions of the major issues in the PLS.The teams visited the secteurs in Musanze, Nyabihu, Rubavu, Gakenke and Burera districts between 2 nd and 3 rd April 2008. The itinerary was: 2 nd April 2008: Nyange, Kivuruga, Gataraga, and Bigogwe secteurs 3 rd April 2008: Rwerere and Mudende secteursAs with Uganda a debriefing meeting was convened at the conclusion of the group discussions in the candidate sites. Summaries were made of the sites and decisions were taken on the preferred research sites:Poor market access Mudende: (Little intervention -there are very few organizations dealing with agriculture, although several NGOs have an education, peace and reconciliation or HIV agenda, there are volcanic soils with high production potential, with gentle slopes) -Chosen as action site for market and productivity entry points Rwerere: (Little intervention -there are very few organizations dealing with agriculture, although several NGOs have an education, peace and reconciliation or HIV agenda, low potential soils, mainly Oxisols and Ultisols, intensively cropped for long time, with steep slopes) -Chosen as action site for NRM Bigogwe: (Some intervention-non volcanic Oxisols, except in a small portion of the sector. It is a new open land, where soils are still fertile, but fragile with high risk of rapid fertility decline, generally flat and gently sloped with a portion with steep slopes) -flat and gently sloped parts chosen as counterfactual for Mudende, while the counterfactual for Rwerere will be the hilly part of BigogweGataraga: (Little intervention -very few service providers, volcanic soils with high production potential, generally flat and gently sloped with only a small portion with steep slope) -Chosen as action site. Nyange: (Some development activities -low potential soils, mainly Oxisols and Ultisols, intensively cropped for long time) -Chosen as counterfactual for Gataraga sector and has at least 5 villages with little intervention Kivuruga: (Some development activities -non volcanic soils, steep slope) not selected because it presents completely different conditions from other sectors: different soil types and landscape 2. Lessons learnt and to be shared Secondary data collection on the 5 sectors selected for the study, especially quantitative data to support market, productivity and NRM critical issues and their magnitude should be collected. These could include long term weather data, population census and number of households, crop productivity and production, income generating activities, etc.It was recommended that DRC team prepare the list of villages per groupement (soft copy) and secondary data compiled prior to conduct site selection survey. Also the translation of the questionnaire to French was discussed. This was thought essential as all DRC partners are francophone. Even if questionnaire is in French, the final data collected will be translated back into English for entry.The teams visited the groupements in Kalehe (Sud-Kivu), Masisi, Nyiragongo, and Rutshuru territoires between 16 th and 17 th April 2008 and on 21 st May. No decisions were taken on the preferred research sites after the meetings, instead the data were sent to the taskforce leaders to assess the different criteria and choose sites. During the planning one of the sites (Kisigari) was replaced with an alternative site (Kibati).Muvunyi-Shanga: (Little intervention -very few service providers, low prices, soil erosion severe and frequent flood of the lowlands, the landscape is flat along Lake Kivu, that is where banana is produced, annual crops are produced in the hills where soil erosion is severe) -Chosen as action site.Buzi: (Many development activities -same conditions as Muvunyi-Shanga) -Chosen as counterfactual for Muvunyi-Shanga groupement.Kibumba: (Many development activities, but not in agriculture -the main market for foodstuffs for Goma, such as vegetables, but also bean and potatoes. Although the soil fertility is good, the production is low because of poor service to the producers, lack of productive crop varieties. Vegetable production was once very competitive in that area but no longer today. NRM problems are severe soil erosion and fertility) -potential action site but no obvious counterfactual.Kibati: (Many development activities -productive soils are very limited because there are fresh lavas. The main activity is therefore wood production)Poor market access Busanza: (Little intervention -very distant from Goma and security is not guaranteed) Jomba: (Some intervention -Jomba is too distant from Goma, therefore difficulty of accessibility on muddy road) Kamuronja: (Little intervention-productivity is good; soils are fertile without any specific problems. Soil erosion is not a problem. The main crops are sweet potatoes, bean and cassava. Productivity constraints are lack of seeds and poor crop management, as a consequence of poor service to producers) -Chosen as action site but no practical counter-factual Muvunyi-Matanda: (Some intervention but in humanitarian activitiesproductivity is medium. It is the only groupement with the high density of livestock, mainly dairy cattle) -would have been a good control site for Kamuronja particularly that part with more agricultural production. However, there has been some looting on the road in the past month.Security in DRC has been a major concern and as a result of the assessments of the sites it was decided to assess two more groupements with poor market access: Rugari and Kisigari (which was originally chosen as a candidate site).Kisigari: (Little intervention -hilly, land scarcity a problem) -Chosen as action site. Rugari: (Some intervention -hilly, land scarcity a problem) -Chosen as counterfactual for Kisigari.Figure 9 shows the location of the action and counterfactual sites chosen as a result of the characterisation, as well as the candidate sites that were not chosen.The values of the indices for the sites can be seen in Table 7. The maximum possible score was 3 and the minimum possible score was 1. It can be seen that there are greater differences in the agricultural research for development activities between sites than between the three countries. It is also evident that the values in DRC suggest that the counterfactual sites had fewer interventions than the action sites. However, the team in DRC felt that there were enough villages with no AR4D interventions in each site to be able to test IAR4D. Similarly in the counterfactual sites villages that had experienced agricultural interventions in the preceding five years were identified.Differences between poor market areas and good market areas were also not particularly large, but there is a tendency for fewer interventions and stakeholders in the poor market access areas of all three countries. The site selection in the Lake Kivu Pilot Learning Site evolved with the framing of the overall research design for the Sub Saharan Africa Challenge Programme and was accomplished using a mixture of methods, tools and data. While the practicalities of field project implementation were considered they were never the principal reason for choosing sites.The rigour of the SSACP research design ensured consistency in the choice of sites between the three countries and offered an objective measure by which to assess the sites. Apart from the scientific rationale behind the research design there are practical advantages to this approach such as the transparent explanation of the choice of candidate sites to the local participants and policy-makers. Nevertheless the process of site selection allows for the articulation of local needs and the expression of critical issues within the candidate sites, which resulted in a more nuanced set of information on which to base the choice of action sites and ensure that counter-factual sites were as similar as possible. b Bioversity International, Regional Office for the Americas, Cali, Colombia c Bioversity International, Parc Scienfique Agropolis II, Montpellier, France.La Sigatoka negra (SN) es la enfermedad de la hoja de mayor importancia económica del cultivo de banano y plátano. En plantaciones para exportación, la enfermedad es controlada mediante el uso de funguicidas cuyo uso desmesurado y continuo no sólo es extremadamente dañino para el ambiente y la salud de los trabajadores, sino que también está fuera del alcance de los pequeños agricultores -pobres-quienes no pueden pagar los altos costos de producción. El desarrollo y utilización de cultivares resistentes a la enfermedad ofrece una alternativa mucho más sostenible. Basados en los resultados del IMTP (Programa Internacional de Pruebas de Musáceas), presentamos análisis de la interacción genotipo x medio ambiente x patógeno con el objetivo de entender los controles del ambiente sobre la Sigatoka negra, y la respuesta relativa de diferentes genotipos hacia la enfermedad. Se discuten las implicaciones de estos nuevos resultados, dando las bases de un modelo de soporte de decisiones para definir el potencial de diferentes genotipos en sitios específicos, y evaluar el riesgo del ataque de la Sigatoka negra.Palabras clave: banano, Sigatoka negra, IMTP, modelos, medio ambiente, interacción GxExDBlack leaf streak is the most economically important leaf disease of banana and plantain. In export plantations, the disease is controlled by the heavy use of pesticides, which uncontrolled and continuous use not only is extremely harmful to the environment and the health of the workers, but also beyond the reach of poor farmers who cannot afford high production costs. The development and deployment of cultivars resistant to the disease offers a more sustainable alternative. Here we present genotype x environment x pathogen analyses based on IMTP results focused on understanding the environmental controls on Black leaf streak disease, and the relative response of different genotypes to the disease. The implications of these new insights are discussed, providing the basis for a decision support model for defining the potential of different genotypes in specific sites, and evaluating risk of Black leaf streak disease attacks.Keywords: bananas, black leaf streak, IMTP, models, environment, GxExD interactionLa Sigatoka negra (Mycosphaerella fijiensis Morelet) es la enfermedad más destructiva que afecta los cultivos de banano y plátano en el mundo (Fullerton, 1994;Fullerton & Stover, 1990;Stover, 1984); descubierta en 1963 como \"mancha negra de la hoja\", en Fiji, en el distrito Sigatoka (Rhodes, 1964). El patógeno empezó su dispersión desde el sudeste asiático, llegando a África (Zambia) en 1973 ( Gauhl, 1994). Diez años después de su descubrimiento fue observada en Honduras (Stover & Dickson, 1976) y rápidamente se extendió por los países vecinos (Stover & Simmonds, 1987). La severidad del patógeno se magnifica en sistemas como el del banano y el plátano, en los cuales la propagación vegetativa (reproducción asexual) y la ocupación de grandes extensiones de tierras con un clon relativamente uniforme facilita ataques epidémicos de la enfermedad (Orozco-Santos, 1998).La aparición y el desarrollo de una enfermedad es el resultado de la interacción de tres factores principales: planta susceptible, agente patógeno y condiciones ambientalmente favorables (Valadares et al., 2007). El medio ambiente es un componente relevante, previniendo en muchos casos la presencia de una enfermedad incluso cuando tanto el patógeno como el hospedero están presentes. La actividad parasítica de M. fijiensis, por ejemplo, disminuye progresivamente con el incremento de la altitud (Mourichon y Fullerton, 1990;Mouliom Pefoura y Mourichon, 1990;Fouré y Lescot, 1988), y es afectada directamente por la temperatura (particularmente cuando está debajo de 20ºC) llegando a modificar significativamente el número de ciclos del patógeno por cada ciclo de producción del cultivo (Mourichon, 1995;Cordeiro et al., 2005;Valadares et al., 2007;Gauhl, 1994). La adaptabilidad de los genotipos depende tanto de las condiciones bióticas como abióticas de la región de estudio. Esta adaptabilidad puede ser medida en términos de la probabilidad de éxito del genotipo en cuestión o también en términos de la respuesta agronómica de dicho genotipo ante un medio ambiente determinado. En este documento, se usan datos del Programa Internacional de Pruebas de Musáceas (IMTP, por su nombre en inglés) para entender claramente la interacción entre el medio ambiente, la severidad de la Sigatoka negra y el rendimiento de los genotipos (interacción GxAxE).El desarrollo presentado aquí combina dos diferentes ejercicios de modelación: el primero atiende a desarrollar un modelo (o modelos) de presión de enfermedad para mapear la presión de la Sigatoka negra a partir de parámetros climáticos y el segundo pretende analizar el rendimiento y la respuesta de diferentes genotipos ante la enfermedad y los diversos factores medioambientales.Para los parámetros climáticos, usamos diecinueve variables bioclimáticas (Busby, 1991) con 30-arco segundos (~1km) de resolución espacial derivadas de WorldClim (Hijmans et al., 2005), y nueve variables de balance hídrico derivadas de observaciones del satélite de lluvias tropicales TRMM con 15-arco minutos de resolución más la elevación de cada sitio.La modelación de la presión de la enfermedad comprende el desarrollo de modelos matemáticos a través de regresiones multivariadas entre variables de respuesta a la enfermedad y los parámetros climáticos. La construcción del modelo usa dos pasos básicos: el proceso de desarrollo del modelo y el proceso de validación del modelo. Se seleccionaron los genotipos susceptibles Pisang Mas, Pisang Berlin, Niyarma Yik y SF215/NBA14 y se creó un set de datos para cada variable.Pre-selección de variables Se están usando un número considerable de variables independientes para explicar las variables dependientes (HMJM y PDE), por tanto, para evitar problemas con nuestra modelación y de esta manera producir los mejores ajustes para los diferentes sets de datos se usó (1) una regresión de mejor modelo (PROC REG / selection=Rsquare; SAS, 2002) para encontrar el número ideal de variables como el número de variables produciendo el último cambio significativo en el valor de R 2 ;(2) se modeló con todas las variables dependientes (PROC REG; SAS, 2002) para seleccionar las variables descriptoras completamente independientes entre ellas para desarrollar modelos; y (3) regresiones stepwise y backward (PROC REC / selection=stepwise, selection=backward; SAS, 2002) para seleccionar variables por significancia estadística Implementación de los modelos de regresión Se seleccionaron y espacializaron los mejores modelos, cuya cobertura espacial se ajustó a altitudes entre 0 y 1500 m.s.n.m y precipitaciones anuales entre 1000 y 3000 milímetros. Se transformaron a una escala de 1 a 10 usando 1 como el mínimo valor de severidad y 10 como el máximo.Generación del ensamble espacial de modelos Los modelos mapeados fueron validados en un total de 95 sitios usando la Raíz de la Diferencia Media Cuadrada (RMSD). Los modelos con RMSD menor a 2.7 se agruparon y el valor final de la presión de la enfermedad se calculó como el promedio de los modelos que pasaron el proceso de validación. Se calculó la confianza usando el coeficiente de variación (C.V.) de los modelos seleccionados.Modelación de la productividad genotípica Para el proceso de modelación de la productividad de genotipos se utilizaron tres diferentes pasos: (1) organización de los datos de entrada y agrupamiento de genotipos y (3) generación de modelos de productividad para cada uno de los diferentes grupos de genotipos.Datos agronómicos y de enfermedad y agrupamiento de genotipos Se usaron datos de enfermedad y rendimiento de 36 diferentes genotipos de banano y plátano, que incluyen especies silvestres, landraces, híbridos y somaclones. Se usó el peso del racimo como variable independiente. Se usaron dos diferentes clasificaciones de genotipos en este documento: (1) una clasificación de acuerdo al genoma y (2) una clasificación de acuerdo a la respuesta a la enfermedad (clasificación LP, con cinco grupos: altamente susceptible, susceptible, parcialmente resistente, resistente, altamente resistente) y se analizó la estabilidad estadística de la clasificación LP usando la función discriminante (PROC DISCRIM; SAS, 2002) Modelos de productividad por cluster Se desarrollaron regresiones lineales multivariadas (PROC REG; SAS, 2002) para cada uno de los grupos de genotipos para ambas clasificaciones usando las variables climáticas y de enfermedad como predictores y el peso del racimo como la única variable dependiente. La respuesta de cada uno de los modelos se transformó a una escala de 1 a 10 usando una regresión lineal simple. Finalmente se calculan los valores de presión de la enfermedad para cada una de las zonas de productividad de los diferentes clusters así como el tamaño mismo de la zona para evaluar el impacto potencial del ataque de M. fijiensis en el desempeño de los diferentes genotipos de banano y plátano.Variables independientes: clima Un amplio rango de parámetros medioambientales puede usarse para explicar las variaciones en el ataque de la enfermedad, cada variable es identificada con un prefijo y un número excepto la altitud (Alt), la lista de variables bioclimáticas de Busby (1991) y nueve variables derivadas del satélite TRMM: precipitación total anual TRMM 1, precipitación del mes más húmedo (TRMM 4), precipitación del mes más seco (TRMM 3), número de días con lluvia (TRMM 2), número promedio de días secos acumulados (TRMM 5), número de días de días de estación seca (TRMM 6), número máximo acumulado de días de estación seca (TRMM 7), relación Ea/Ep (TRMM 8) y el número de días de crecimiento (TRMM 9).Pre-selección de variables El método de selección de variables usando el coeficiente R2 mostró que para el PDE el número ideal de variables es 4 y 6 para el PDE usando dos modelos, mientras que para la HMJM el número ideal es 6 y 8 usando también dos modelos. La variable PDE se mostró como la de mejor respuesta, con mejores valores de R². Todos los modelos desarrollados con los procedimientos stepwise y backward mostraron tanto diferentes variables como diferentes valores del coeficiente de determinación R².Implementación de los modelos de regresión La extrapolación de la severidad de la enfermedad (figuras 1) cubre las principales áreas de producción bananera en Suramérica, Centro América y el Caribe, África, Asia y las zonas bananeras del norte de Australia. La mayoría de zonas en estos modelos tiene media a muy alta presión (zonas oscuras), lo que puede ser observado en el suroeste de Brasil, sureste de México, Belice, la zona Sahel, el norte de Madagascar, el norte de Zambia, el norte de Angola, Camerún y Costa de Marfil. Las zonas con baja presión se pueden observar en Zaire, el este de Perú y el norte de Venezuela. El modelo 3 muestra alta presión al sur de Brasil y sus límites con Argentina. La mayoría de zonas en Centroamérica y el Caribe, Asia así como el norte de Australia muestran alta y muy alta presión de la enfermedad (zonas gris oscuro y negras); el modelo 4, por otro lado, muestra zonas de alta presión en el sudeste de Brasil y dentro de sus límites con Paraguay y Bolivia mientras que Centroamérica y el Caribe están de nuevo mostrando alta y muy alta presión de la enfermedad.Generación del ensamble espacial de modelos La validación individual de los modelos mostró que los mejores modelos fueron 1 y 2 con RMSD menores a 2.7. El ensamble total de modelos presentó una RMSD de 2.25. El modelo final (figura 2a) muestra patrones de severidad y dispersión de la enfermedad alrededor del mundo que indican que la más alta severidad de la enfermedad está definitivamente en Centroamérica, y especialmente en Belice, Costa Rica, Honduras y Panamá, en donde toda el área se considera de alta presión, el coeficiente de variación (figura 2b) está particularmente mostrando alta confianza, y en donde desde el descubrimiento de la SN es el lugar en donde se han encontrado los más fuertes ataques (Stover y Dickson, 1976). De acuerdo a los modelos, las zonas húmedas con temperaturas entre 20 y 25ºC en África y Latinoamérica presentan alta presión de la enfermedad tal como lo describen muchos autores; estas zonas también tienen baja evaporación a de esa manera un ambiente acorde para el desarrollo y dispersión de la SN. Datos agronómicos y de enfermedad y agrupamiento de genotipos La función discriminante mostró que la clasificación LP es estable excepto para los genotipos FHIA-23 pasando de susceptible a parcialmente resistente, PA 03-22 pasando de susceptible a altamente resistente, FHIA-18 pasando de parcialmente resistente a altamente resistente, Burro Cemsa de resistente a altamente resistente, FHIA-03 de resistente a parcialmente resistente, FHIA-21 de resistente a parcialmente resistente, Pisang Ceylan de resistente a altamente resistente y Pisang Mas de resistente a susceptible.No se lograron encontrar respuestas matemáticas para todos los clusters; sin embargo, las respuestas encontradas para la mayoría de los clusters fueron satisfactorias pese a no estar aún validadas. Los clusters genómicos AAB (R=0.70, 99.9%, 18 datos) (figura 3a), AAAA (R=0.732, 99.9%, 33 datos) (figura 3b) y AAAB (R=0.934, 99.9%, 35 datos) (figura 3c) presentaron respuestas interesantes en términos del ambiente y la enfermedad. Los cambios en productividad de un clima a otro se deben al efecto combinado de las respuestas de los diferentes genotipos dentro del cluster, la influencia del ataque de la enfermedad y el gradiente medioambiental presente entre las diferentes zonas agroclimáticas. El mapa de productividad del cluster AAAA (figura 3a) muestra zonas de alta productividad en el sureste de África y el este de India; sin embargo, hay algunas áreas en Centroamérica (Belice, Costa Rica, Honduras, Panamá), Suramérica (Colombia, Venezuela y Brasil), y el Caribe en el que muchos genotipos muestran bajo desempeño debido a la alta presión; estos sitios requieren posiblemente una estrategia sostenible para controlar la enfermedad. Los genotipos incluidos en el cluster AAAB (figura 3b) muestran en general menos productividad que los genotipos en el cluster AAAA; toda la zona central de Brasil no es adaptable para estos genotipos, aunque por otro lado hay zonas en donde presentan muy alta productividad; las zonas en donde estos genotipos son productivos presentan de 2 a 5 meses consecutivos secos en el año, en dichos meses, el hongo M. fijiensis probablemente sufre un quiebre en su ciclo de desarrollo (Porras y Pérez, 1997).La clasificación LP, por su parte, produjo dos clusters con respuestas definidas, uno con 35 datos y otro con 40 datos, con una correlación de 0.81 (99.9%) (figura 3d) para el cluster parcialmente resistente (PR) y 0.61 (99.9%) (figura 3e) para el cluster altamente resistente (HR). El cluster PR muestra alta productividad considerable en el este de India, norte de Vietnam y el este de Myanmar, mientras las zonas de media productividad sólo son observables en el centro de Zambia, centro de Madagascar, este de Colombia, centro de Honduras, este de Cuba y el noreste de México. Hay zonas marginales y muy marginales (zonas en las que el rendimiento se ve significativamente afectado por la presión de la enfermedad y el clima) que cubren muchos de los países de Latinoamérica (Cuba, República Dominicana, sur de México, Belice, Honduras, Nicaragua, Costa Rica, Panamá, Colombia, Perú, Brasil y Venezuela). El clima más apropiado para el desarrollo del banano es un clima caliente y húmedo a través del año con vientos fuertes; los factores que determinan la distribución de la SN son precipitación en exceso (más de 100 mm por mes) (Simmonds, 1966) y un rango de temperaturas entre 10-40ºC con un óptimo entre 25-30ºC y una media mínima de 15.5ºC. Aunque los genotipos incluidos en el cluster HR son altamente resistentes, no responden con altos rendimientos relativos (máximo 75%) puesto que su constitución genómica no permite tales respuestas, un análisis independiente sobre cada genotipo permitiría determinar cuáles genotipos en especial responden con mayores pesos de racimo que otros.Los tamaños de las zonas en donde los diferentes grupos de genotipos son adaptables varían de un cluster a otro, llegando a variar incluso el número de zonas cubiertas y los valores medios, máximos y mínimos de presión y presencia de la enfermedad (tabla 1). En general, se encontró que la presión de la enfermedad disminuye a medida que la productividad aumenta para los clusters AAAA, AAAB y PR y aumenta para los clusters HR y AAB; esto significa que para AAAA, AAAB y PR la productividad aumenta debido en mayor medida a una disminución en la presión de la enfermedad y en menor medida a la mejora en las condiciones medioambientales específicas de la zona; mientras que para AAB y HR el aumento en la productividad se debe a una combinación de condiciones medioambientales favorables para el crecimiento de estos genotipos en lugar de a una disminución significativa en la presión de la presión de SN. Es importante notar que la mezcla de genotipos en los diferentes clusters genómicos puede llevar a tener respuestas tanto resistentes como susceptibles en un solo cluster y por tanto para un único valor de severidad de la enfermedad podría haber muchos diferentes valores de rendimiento; esto puede llevar a problemas en predicciones y posiblemente a falta de respuestas en algunos clusters. Respecto a la clasificación LP, debe notarse que en este caso el agrupamiento está produciendo una mezcla de genotipos con la misma respuesta pero con definitivamente diferentes características genéticas y por lo tanto diferentes rendimientos.1. La variabilidad espacial de la SN puede ser explicada mediante una serie de variables climáticas, incluyendo la altitud, la precipitación anual, la precipitación del mes más seco y el más húmedo y las temperaturas mínimas y máximas. Este análisis muestra que una combinación de conocimiento experto, datos de campo y datos ambientales espaciales pueden usarse para desarrollar modelos matemáticos que expliquen la variabilidad en la presión de la enfermedad y dilucidar las posibles interacciones ambientales con los patógenos.2. Hay algunas diferencias observables al nivel de clusters cuando se consideran las diferencias entre los genotipos incluidos en cada uno de ellos; el genotipo FHIA-25, por ejemplo, está incluido en el grupo genómico AAB, que de hecho no muestra zonas de alta ni muy alta productividad, pero en la clasificación LP está incluido en el grupo altamente resistente que tiene un área total de alta productividad de 0.67 millones km2; hay ciertas diferencias que deben considerarse antes de tomar decisiones acerca de la posible liberación de los genotipos.4. Dentro de las principales limitantes en la aplicación de estos modelos multivariados están el incremento de la dispersión del patógeno a través del tiempo y el efecto del cambio y la variabilidad climática no sólo sobre el rendimiento y la respuesta a la enfermedad sino también sobre la presión de la enfermedad y la dinámica del patógeno. Bajo condiciones de clima diferentes, estos modelos podrían prestarse para también evaluar posibles cambios temporales en presión de la enfermedad en series de tiempo anuales y por décadas.Investigaciones futuras deben combinar estos datos con otras variables tales como prácticas de manejo y datos de suelos así como también aplicaciones de pesticidas y fungicidas.Nutrient deficiency risk data were combined with crop production and socioeconomic data to assess the suitability of establishing an intervention. Our analysis developed maps of candidate sites for biofortification interventions for nine countries in Latin America and the Caribbean.Results for Colombia, Nicaragua, and Bolivia are presented in this paper. Interventions in northern Colombia appear promising for all crops, while sites for bean biofortification are widely scattered throughout the country. The most promising sites in Nicaragua are found in the centernorth region. Candidate sites for biofortification in Bolivia are found in the central part of the country, in the Andes Mountains. The availability and resolution of data limits the analysis. Some areas show opportunities for biofortification of several crops, taking advantage of their spatial coincidence. Results from this analysis should be confirmed by experts or through field visits.This study demonstrates a method for identifying candidate sites for biofortification interventions. The method evaluates populations at risk of nutrient deficiencies for sub-national administrative regions, and provides a reasonable alternative to more costly, informationintensive approaches.Biofortification is the improvement of agronomic characteristics and the nutritional content of crops through plant breeding or modern biotechnology [1]. Taking advantage of the natural genetic diversity of crops, different varieties of a crop are crossed to develop new cultivars with higher levels of desired nutrients. These new varieties can be disseminated to farmers in areas where nutrient-dense crops could address problems of nutrient deficiency and malnutrition.Several studies have shown that biofortification can improve nutritional status and that it is economically viable [2,3,4,5]. Major international programs have been initiated to breed crops with higher levels of iron, zinc, Vitamin A, and amino acids [6,7] Biofortified crop varieties should be disseminated and used in places where nutrient deficiency is a problem and where the crops of interest are being produced and consumed in sufficient quantity to achieve impact. If these conditions are not met, then investments in biofortified crops will fail to reach the intended beneficiaries. A growing body of research has demonstrated the benefits of geographic targeting for poverty reduction and improving nutrition [8,9,10]. Thus, the targeting of interventions is an important problem that any nutritional initiative must address.Our analysis combines agricultural, nutritional, and socioeconomic information to assess candidate sites for crop biofortification in nine countries of Latin America and the Caribbean.Results for three of the countries are presented here. Candidate sites for biofortification interventions are found in areas where high prevalence of nutritional risks, high production and consumption of target staple crops, and high risk of poverty converge. This analysis is a preliminary step, before more detailed research on the candidate sites can determine their potential for impact.The analysis first employed a procedure to prioritize indicators of nutrient deficiency risk. Next, weighted overlay was used to generate scores indicating the degree of confluence of factors important for biofortification. Data were collected to reflect the demand for nutrition interventions and the presence of the staple crops that are the current focus of biofortification research to improve nutrient content. The method assigned scores to the collected variables that are relevant to targeting biofortification interventions. The variables were weighted according to their importance to the result. The scores were then summed at the pixel level to provide the final result map. The following sections describe the data collected and the weighted overlay procedure.Assessing the demand for nutrition interventions over a large region calls for the development of information characterizing the magnitude and geographic distribution of nutrient deficiencies. A literature review of indicators of nutrient deficiency was carried out to determine the most appropriate indicators and how they could be used. Our assessment of the literature suggested a hierarchical organization of nutrient risk indicators based on how well they depict the problem. Indicators were grouped into three categories -biochemical measures, anthropometric measurements of children, and socioeconomic status (Figure 1). The measures were then classified according to the literature review into risk levels of nutrient deficiency. The class breaks and assignments of scores for the weighted overlay method are consistent with the scientific literature regarding risk levels of the three categories of nutritional indicators. The indicators of nutritional risk were linked to administrative division maps and analyzed in a geographic information system. Biofortification interventions are more likely to be successful where there are substantial rural populations living in poverty. Rural population data were developed from the Gridded Population of the World data set [12]. The 1-km global data set was resampled to 10-km resolution to conform to the framework of the analysis. Poverty index maps were derived from vector maps at the 2 nd administrative level for Latin America based on the basic needs method [13]. These maps were converted to raster format.Biofortification interventions necessarily must be implemented where farmers grow the crop and consumers provide a local market. Several measures of the presence of the target crop for biofortification were collected and mapped. Biofortification is more likely to have a nutritional impact where there is a high level of production and consumption of the crop. Crop data sets for this analysis were derived from 10-km resolution crop production maps available for the world [14,15]. Food consumption data were acquired at department level from the Living Standards Measurement Study [16]. FAO production statistics and food balance sheet data provided contextual information for the analysis [17].The first step in carrying out a weighted overlay analysis was to convert input data to the same spatial format and framework. A raster format was developed with 10-km spatial resolution to match the crop production data. All vector maps were converted to raster formats with corresponding 10-km pixel resolution. The literature review mentioned above had classified risk of nutrient deficiency into low, moderate, and high, and in some cases added an additional category of very high. Values of 3 (low), 6 (moderate), and 9 (high) were assigned when the classification comprised three categories. Values of 3 (low), 5 (moderate), 7 (high), and 9 (very high) were assigned when the classification included four categories. All other data were divided into terciles and assigned three values depending on whether they fell into the lowest ( 3), middle ( 6), or highest ( 9) tercile.The next step was to assign influence weights to each variable according to the importance of that variable to biofortification interventions. The risk of nutrient deficiency and the presence of crop production were considered to be the most important factors, and each was assigned an influence weight of 30%. Poverty intensity and rural population density were both assigned influence weights of 20%, since the weights must add up to 100%. The weighting scheme can be altered in the future, after dialogue with country experts on the preliminary results presented thus far.Figure 2 illustrates the method for the lower left pixel in a hypothetical map [18]. For each pixel, the assigned influence weights were multiplied by the corresponding variable value and then summed to derive the final score:Where a is the indicator of nutrient deficiency risk, b is the level of crop production, c is the poverty intensity, and d is the rural population density. The example in Figure 2 shows a high value of 7 for nutrient deficiency risk and a moderate value of 5 for crop production. With a value of 2, poverty intensity is low for the pixel. A rural population density value of 9 is high. Applying these values to the equation above yields a final score for the pixel of 6 (scores are rounded to the nearest integer). The map resulting from this weighted overlay procedure shows high, moderate, or low scores depending on the confluence of factors relevant to biofortification interventions. The highest scores indicate areas where the combinations of factors suggest a candidate site for implementing a biofortification program. The maps were further improved by eliminating isolated pixels surrounded by non-similar values through application of a spatial filter to the data. Finally, the highest two or three scores were chosen for the final map.Biofortification interventions in Colombia could potentially be implemented in any of the four physiographic regions -the coast, mountains, savanna (Llanos), and Amazon (Figure 3).Population density is highest in the inter-Andean valleys of the mountain regions, areas such as the Bogotá plain (Cundinamarca) and the Cauca Valley. The savanna, Amazon, and coastal regions have far fewer people, but higher proportions of their population living in poverty (Figure 3c and d). MACRO International, 2007 [11] (nutrient deficiency); Schnuschny and Gallopin, 2004 [13] (poverty intensity); CIESIN et al., 2004 [12] (rural population density) All departments in Colombia have either moderate or high risks of iron deficiency as indicated by hemoglobin levels surveyed in the Demographic and Health Survey [19] (Figure 3a). A group of departments in the north has high risks of iron deficiency. The map of stunted children shows a group of four departments with moderate levels of nutrient deficiency risk (Figure 3b). The federal district has high risk of nutrient deficiency as indicated by stunted children.Colombian crops that are the focus of biofortification efforts are found mainly in the hills and valleys of the mountain region (Figure 4). Nariño, Santander, and Antioquia are important regions for beans. Cassava production is most dense in the northern part of the country. Key areas of rice production include the Llanos (Meta department), the Amazon regions bordering the Andes Mountains, and many coastal regions in the northern part of the country. Maize has a fairly wide distribution throughout the country, with high production in Antioquia and Córdoba. You and Wood, 2006 [14] High anemia levels in northern Colombia suggest this area as a best bet for candidate sites to implement crop biofortification aimed at reducing iron deficiency (Figure 5). In particular, the Córdoba department could be a focus for improved cassava, sweet potato, maize, and rice. High scores also were found in the southern parts of both Magdalena and Sucre departments. The result map indicates potential sites for bean biofortification in the northern part of the country and some smaller areas scattered throughout the country. Candidate sites for biofortification with zinc, amino acids, and/or vitamin A are similar to those for iron (Figure 6). The Córdoba department in northern Colombia could be a focus of intervention for all crops. One exception to the focus on the northern part of the country is the pattern for bean biofortification, where pockets of bean production throughout the Andes coincide with moderate levels of stunting or high poverty intensity. Only general deficiency risk, based on anthropometry, could be evaluated for Nicaragua because of the lack of biochemical data on specific nutrients (Figure 7). High and very high risk levels are found in the northern departments. Moderate risks are found in the southeast part of the country, with low risks in the east. Crop production is mostly focused in the western part of Nicaragua (Figure 8). Much of the humid east lacks large-scale production. Maize cultivation is concentrated in the departments along the Pacific Ocean. Bean production is most dense to the west of Lake Nicaragua and a group of departments in the center-north region. Consumption of beans, rice, and maize generally follows production patterns (Figure 9). The exceptions are Río San Juan and Atlántico Sur departments where per capita consumption is high. However, these departments have relatively low population density. Schuschny and Gallopin, 2004 [13] (poverty intensity); and CIESIN et al., 2004 [12] (rural population density).Nicaraguans consume large quantities of maize and beans, moderate quantities of rice, and modest amounts of cassava or sweet potato. Nicaragua neither imports nor exports large volumes of maize, beans, rice, and cassava [18]. Thus, consumption of biofortified varieties of these crops -mostly grown within the country -would be likely to reach the intended beneficiaries.The center-north region stands out as a likely candidate for biofortification interventions (Figure 10). Matagalpa department shows candidate sites for bean, rice, maize, and cassava. Jinotega department shows candidate sites for rice, maize, and bean. Bean and cassava candidate sites are concentrated in relatively small areas in the center-north of the country. Maize and rice candidate sites are distributed widely, following production zones of these crops. Maize is the most important crop of those that are the target of biofortification initiatives in Bolivia (Figure 11). Rice and cassava production are important in Santa Cruz department. Bean production is overwhelmingly concentrated in Santa Cruz, with much of it for export [20] . Santa Cruz department is Bolivia's most important in the context of agricultural production. You and Wood, 2006 [14] Indicators of risk of nutrient deficiency are moderate, high, or very high throughout Bolivia (Figure 12). Both anemia and stunting indicators suggest the poorest conditions in the western, Andean part of the country. Poverty intensity is higher in the west as well. Crop production and risk of deficiencies do not neatly coincide. While Santa Cruz has comparatively lower risk factors for nutrient deficiencies, its high crop production could make it a focus of biofortification to address nutrient deficiencies, even though they are less severe compared to other countries. The Santa Cruz department could also be the source of biofortified foods for the rest of the country, to the extent that it serves as a breadbasket region. CIESIN et al., 2004 [12] (rural population density) Four departments could be strong foci for biofortification in Bolivia -La Paz, Cochabamba, Chuquisaca, and Santa Cruz (Figures 13 and 14). The focus area could extend from the central part of La Paz department towards the southeast near the border with Paraguay. The result maps showed Santa Cruz to be of less interest, mostly due to the relatively lower levels of nutrient deficiency risk. However, Santa Cruz is the most important agricultural region of Bolivia, with good potential for the adoption of biofortified crops. This study revealed candidate sites for biofortification interventions in Latin America. Data availability, scale problems, and issues specifically related to biofortification need to be addressed to improve the capacity to identify the best sites for disseminating nutrient-dense crop varieties in the region. The following discussion addresses some of these issues. This research demonstrated that data limitations for geographic targeting of nutrition interventions can be overcome. However, our data collection effort has shown that simply better information could improve geographic targeting of interventions. Very few surveys provide biochemical data on nutrient status. In the three examples described above, two of the countries had hemoglobin data, and none of them had biochemical information indicating risk of zinc, amino acids, or vitamin A deficiency. Anthropometric measures of childhood nutrition are more widely available, but even these can be outdated, depending on the frequency of surveys carried out.The varying resolution of input data for this geographic targeting exercise reduces its usefulness to some degree. Users of the analysis should be aware of these scale-related problems. The \"ecological fallacy\" especially limits the analysis when department level data is used [21,22]. The level of nutritional deficiency risk reported for a department may be very high in some parts of the administrative unit and very low in others. For this reason, the results reported here should only be used after consultation with experts who know the situation in a country, or after on-theground verification of conditions.Geographic targeting based on identification of the most severe problem areas is sometimes inappropriate because nutrient deficiency risks may be uniformly severe throughout a country. For example, the level of stunting among children less than 5 years of age is very high in every department of Guatemala [23]. Several other countries only have two categories of deficiency risk. Where nutrition problems are severe everywhere, agricultural considerations such as potential for adoption and level of production should take precedence. In other cases, areas with severe nutritional problems could be served by other interventions aimed at reducing nutrient deficiency, such as supplementation or diet diversification programs. Again, Bolivia provides an example. The department with comparatively less deficiencies -Santa Cruz -may have the greatest potential for biofortification interventions. Even though this department is relatively less poor, moderate nutrient deficiencies are present An additional benefit of geographic targeting can be realized by looking for opportunities where more than one crop can be biofortified in a particular region. Programs promoting biofortified crops can realize marginal returns from setting up initiatives for several crops in the same region. These benefits can improve the efficiency of testing biofortified varieties and disseminating them. Ideally, the population of a given place would consume more than one biofortified food. For example, Córdoba department in Colombia could benefit from improved rice, beans, maize, cassava, and sweet potato for supplying diets with higher levels of iron, zinc, protein, and vitamin A.Expert opinion should be used to guide any targeting exercise, thus addressing the data and analysis limitations discussed above. We solicited comments on the results of the weighted overlays from our network of collaborators. There was general agreement about the location of candidate sites for biofortification. Comments tended to focus on contextual conditions for which the analysis could not account. For example, some regions produce crops for export or for animal feed. Others produce crops for urban markets where nutrient deficiency problems may be insubstantial. In other cases, cultural conditions may hinder implementation of biofortification interventions. For example, the people of a region may be accustomed to consuming whitefleshed sweet potatoes -not the high Vitamin A orange-fleshed varieties. Reviews and comments from experts are essential for targeting biofortification interventions.The data sets and methods described in this paper are oriented towards the current status of information available to conduct a multi-country assessment. Recently, new methods have been applied to create high-resolution nutrition deficiency maps [24]. One such method -called small area estimation -relies on both national censuses and representative household surveys. Using sophisticated statistical analysis, a nutrition risk variable in a household survey, such as height for age, is mapped onto the census geography to create maps at the 2 nd administrative level. We are aware of five implementations of this method for mapping malnutrition -in Panama, Dominican Republic,Ecuador,Cambodia,and Bangladesh [25,26,27,28,29]. Until this method is validated and more widely applied, the approach described in this paper provides a low cost alternative for assessing populations at risk of nutrient deficiency.This study demonstrates a method for identifying candidate sites for biofortification interventions. The method uses available secondary data at the finest available spatial resolution. The study and accompanying data can be used for identifying populations at risk of nutrient deficiencies. It allows designers of large regional nutrition interventions to recognize localities that merit further consideration for inclusion in programs to reduce nutrient deficiency. The research combines agricultural production and health information to support decision-making and program implementation, addressing the need to efficiently target interventions to the populations that need them most.EZ, GH, HP, FM, and LV have no competing interests in this study.EZ developed and pre-processed much of the data, designed and carried out the computer modeling, and wrote the initial manuscript in Spanish. GH led development of the database and contributed to the study design and methodology. HP led the development of nutrition data and their classification as indicators of nutrient deficiency risk. FM developed much of the database and linked statistical information to maps. LV conducted a literature search and developed a table of indicators of the risk of nutrient deficiency. All authors participated in the research design and interpretation of results. They all read and approved the final manuscript. n basin and the eastern Andean slopes (herein referred to as the Andes/Amazon ecosystem or region). The Amazon is the largest fresh water system and tropical forest in the world. Large portions of the region are still covered by relatively intact primary forests that provide substantial locally and globally valuable ecosystem services (ES). Rural population densities in the region are among the lowest in the world. As such, the Andes/Amazon is a contrast to other ESPA target areas that are characterized by scarce and degraded resources used by often overwhelming numbers of the poor. Hence, in the Andes/Amazon, ESPA should focus on promoting resource conservation before valuable ES are irreversibly lost due to actions by resource users ranging from poor slash-and-burn farmers to large timber and commodity farming interests. A rationale for this approach is that rebuilding ecosystem services in ecologically degraded areas is generally much more costly than preventing their loss in the first place. As an agricultural colonization frontier, the Amazon has lost some 84 million ha of native forests over the last few decades -a loss accompanied by losses of locally and globally valuable ES.A \"situation analysis\" of ES and poverty in the Andes/Amazon was conducted September 2007 -March 2008. Findings are intended to help guide ESPA in terms of research and capacitybuilding priorities. A macro-scale approach was taken to examine ES, well-being, and management needs. The work was accompanied by an extensive consultation with local, national and regional stakeholders.The introductory chapter sets out the objectives of the situation analysis, and the approach of the study. It also briefly discusses the relationships among ES and poverty in the context of this situation analyses. The discussion settles on key findings of another recent study that has reviewed the literature on this relationship on a global scale. The situation analysis adopts existing definitions of ES, which are understood to be the \"processes and conditions through which ecosystems support human life\" or, more generally, the \"benefits that people obtain from ecosystems\". No single poverty definition is adopted throughout the report. Depending on data availability and analytical approaches it employs different poverty concepts and explores implications if necessary. Stakeholder consultations reinforced the need to adjust standard poverty measures to better capture the ES dimensions of wellbeing in the Andes/Amazon. Moreover, the concept of poverty itself was challenged in favour of a wellbeing oriented approach.The report focuses on key issues: Paramount ES provided by the Andes/Amazon ecosystem to local populations and to the global society, and the main threats and challenges to the provision of these services are identified (Chapter 2). The benefits that local populations derive from using ES are characterized (Chapters 2 and 5 Reducing emissions from deforestation and degradation (REDD) is considered a significant climate change mitigation opportunity. The Brazilian Amazon has traditionally had the highest forest loss in the world and, thus, represents a likely target for future REDD initiatives. This paper presents an ex-ante assessment of the potential REDD costs in two of the three largest states in the Brazilian Amazon using official land use and cover change statistics. The two states, Mato Grosso and Amazonas, have historically experienced rather different land use dynamics.The findings focus on the opportunity costs of REDD and suggest that at least 1 million ha of projected deforestation in Mato Grosso and Amazonas could be compensated for at current carbon prices until 2016. Total costs may differ between US$ 330 million and over US$ 1 billion depending on how payment mechanisms are designed. Implications of payment scheme design for the political economy of REDD are discussed.Key words: Opportunity costs, REDD, payments for environmental services, carbon supply, land use Does REDD make sense in the Amazon region?Both the International Panel on Climate Change (IPCC) and the Stern Review on the Economics of Climate Change reckon that avoiding deforestation accounts for a significant share of the global potential for climate change mitigation through forest related activities (IPCC 2007, Stern 2007). For many years, Brazil has been the country with the highest areas of tropical forest clearing by far. Its dynamic agribusiness sector has led an aggressive expansion of the agricultural frontier in the Amazon region. Chomitz and Thomas (2001) found that, until 1996, more than three quarters of deforested land has ended up under pasture. In fact, extensive cattle production continues to strongly dominate land use in the Brazilian Amazon, even if more recent evidence indicates that cropland now expands faster than pastures in relative terms (Morton et al. 2006). Model based simulations suggest that between now and 2050 primary forest clearing in the Amazon region may release up to 32 Pg of carbon into the atmosphere -an amount roughly twice the global annual anthropogenic greenhouse gas emissions (GHGs) (Soares-Filho et al.While farmers, the local and probably also the national economy have benefited from clearing forests for agriculture (Andersen et al. 2002), continuous deforestation not only accelerates climate change but also threatens the provision of other important globally and regionally important ecosystem services, such as biodiversity protection, hydrological, and local as well as regional climate regulation. Thus, it seems wise to intensify the search for flexible policy mechanisms that translate the demand for such global public services into local economic incentives for conservation.Traditional command-and-control policies have been rather ineffective in curbing deforestation in the Brazilian Amazon. Infrastructure expansion and other development policies combined with high food-commodity prices and rising demand for biofuels will add to Brazilian agricultural land demand and to forest-conversion pressures in the foreseeable future. Enforcing command-and-control policies at the scale of the Amazon region is thus unlikely to work as a stand-alone strategy. It is against this backdrop that the debate on Reduced Emissions from Deforestation and Forest Degradation (REDD) has gained momentum, both internationally and inside Brazil. The COP13 decided to include REDD in future negotiations on mitigation mechanisms for countries that have not adopted any emission reduction targets. Several proposals to implement REDD in the Brazilian Amazon were also presented. Drawing on its experiences with Bolsa Floresta, a pilot compensation scheme for avoided deforestation on smallholdings, the government of the Brazilian State of Amazonas proposed a REDD scheme at the state level (Government of Amazonas 2007). An NGO consortium sketched the outlines of a proposed payment for environmental services (PES) scheme for avoided Amazon deforestation 10 . A sub-group of these NGOs presented a report that provides the scientific underpinning for a national-level REDD scheme to boost Amazon conservation (Nepstad et al. 2007). The evidence presented in the following builds on calculations made by the authors for the first two proposals.The challenge of quantifying potential REDD supply has both a temporal and a spatial dimension. First, credible temporal baselines are needed to project forest-cover change relatively far into the future. Second, the total cost of implementing a payment scheme has to be estimated for different locations with variable environmental and economic conditions. Spatial disaggregation generally contributes to better targeting of direct payments, which will result in more efficient PES scheme (Wünscher et al. 2008). Yet, scientific assessments of the supply side of Amazon REDD have so far been scarce. In a multiple-country background study for the Stern Review, Grieg-Gran ( 2006) estimated avoided deforestation in Brazil to cost US$1.2-1.7 billion, depending on whether timber rents are included. Nepstad et al. (2007) expected avoiding 6.3 Pg of carbon emissions in the Amazon over 30 years to cost considerably more (US$ 8.2 billion) 11 .In spite of the diverging total cost estimates, both studies suggest that REDD at current carbon prices might be competitive vis-à-vis the conservation opportunity costs 12 of private development of Amazon land for crops and pastures.Current Brazilian deforestation can be said to occur at four different levels of (il)legality. First, landowners can legally clear up to 20% of their land area (private landowners in the Amazon are required to keep 80% of their farm area as a Legal Forest Reserve.). Secondly, they could pass that legal clearing threshold and develop a so-called 'environmental deficit' on their land -a phenomenon that is widespread (and tolerated) in many old frontier areas. Third, private individuals could invade and clear forest on weakly enforced state land (terra devoluta), in the realistic hope of establishing land tenure over time. Finally, land invasion could happen in declared national parks, indigenous and extractive reserves, etc.To counteract the third and fourth types of deforestation, international REDD payments could be used for financing improved command-and-control systems. However, at least inside existing parks and reserves, compensation payments would appear pointless, because the Brazilian federal or state governments have legally delimited them to ensure protection. Thus, this study will focuses on direct compensations to private landowners. This refers to the first and, possibly, to the second legality scenario -given strong political pressures to lower the 80% legal reserve threshold or allow landowners to pay their way out of 'environmental deficits'. PES-type compensations will likely become an important element in Amazon REDD schemes. To make forest conservation attractive to landowners, such transfers have to exceed their land opportunity cost -at least as long as command-and-control policies are not duly enforced.Hence, this article aims to contribute to the REDD debate in two ways. First, it evaluates the economic feasibility of REDD using municipal-level production data for the private lands of two of the largest Brazilian states, with a combined area equal to 47% of the Legal Amazon). Secondly, it uses these results to provide guidance for REDD design that combines cost effectiveness with equity concerns.Section 2 provides an overview of the two case study areas and the context for REDD in the Brazilian Amazon. Section 3 describes the methods and data used to arrive at the results presented in section 4. Section 5 interprets the results from a political economy perspective and section 6 presents the main implications of this study. Finally, section 7 discusses some key assumptions and compares the findings with those from other REDD opportunity cost studies. Future perspectives of REDD in the Amazon are discussed as well.Only roughly 25% of land in the Brazilian Amazon is private. About 35% is indigenous territory or protected by federal-or state-level protected areas. The remaining land is considered public with weakly enforced tenure (terra devoluta) (Toni 2006). State indigenous territories or protected areas cover over 30% of total area in Amazonas state and 20% in Mato Grosso. Land concentration is comparatively high in the Amazon (see table 1), with regional Gini indices remaining around 0.85 between 1950 and 1996. During the same period, the Gini index reduced from 0.9 to 0.8 in Amazonas and remained almost constant at 0.85 in Mato Grosso (ADA 2002).Both the small share of private lands and the high concentration of land ownership have important implications for REDD, which will be addressed in Section 5.Figure 1 shows the location of Mato Grosso and Amazonas and the main roads and riverways, while table 1 gives comparative statistical figures. Amazonas is the largest and second-least densely populated state in Brazil. Per-capita income is among the lowest in Brazil --especially outside the capital Manaus with its free-trade zone. Amazonas is remotely located from the main Brazilian markets in the South and its cities are mainly accessible only through fluvial transport.Despite some large-scale cattle operations, smallholders with less than 100 ha own more that a third of private land. Crops (annual and permanent) and pasture each account for about 40 % of total land use. In recent years the state implemented many environmentally friendly policies, increasing protected areas and creating positive incentives for conservation. As a combined result of economics and policies, deforestation in Amazonas has been low, both in absolute and relative terms. In contrast, Mato Grosso lies in the heart of the so-called 'Arc of Deforestation' at the southern edge of the Amazon basin. It has a relatively dense road network and is well connected to the main population centers in Brazil's Center and South. Mato Grosso has a strong commercial agricultural sector, dominated by extensive cattle and soy production (IBGE 1995/6). Soy and cattle expansion are also responsible for Mato Grosso being the Brazilian state with highest deforestation --in the last decade more than one third of total forest loss in the Brazilian Amazon. The state has historically adopted policies that favour land-extensive economic development. In 1999, the government of Mato Grosso introduced a Licensing System for Rural Properties (SLAPR) (Fearnside 2003), which many hoped would help curbing deforestation rates. Today, however, enrolment in the SLAPR is still below 30%, and much of the recent pickup in deforestation has been registered in Mato Grosso 13 . Figure 2 shows the distribution of average 2000-6 deforestation rates in Amazonas and Mato Grosso, which serve as baselines for future deforestation in the REDD opportunity-costs calculations below. Deforestation is far higher in Mato Grosso than in Amazonas both relatively and absolutely. Although growth in total land under agricultural crops (in Mato Grosso, especially soy) has been faster than expansion of pastures, pasture remains the predominant converted land cover in both Amazonas and Mato Grosso. As Figure 3 shows, soybeans have started to dominate the land-use mix in a few municipalities in the centre and southeast of Mato Grosso, some of which lie in the transition zone between Amazonas and Cerrado biomes. In Amazonas, crops generally have a higher share in the municipal crop mix than in Mato Grosso, due to the more diverse and subsistence-oriented smallholder sector. That said, in 2006, municipalities in Amazonas had on average 2% of their total area deforested, as opposed to Mato Grosso, where 21% had been denuded from natural forests. In the westernmost remote municipalities in Amazonas, the little land that was converted during 2000-06 is exclusively covered by crops, which be explained partially by their large indigenous territories. Deforestation rates are high in Mato Grosso in both soybean-and pasture-dominated areas, suggesting both activities contribute considerably to forest loss. One can estimate the opportunity costs of forest conservation using various approaches, ranging from economic optimization or general equilibrium models (Cattaneo 2002, Börner et al. 2007) to using land prices as surrogates for the discounted stream of future deforestation returns -see Grieg-Gran (2006) for a discussion. Nepstad et al. (2007) calculate REDD opportunity costs based on simulated returns to soy and cattle production on land their model predicts will be cleared in the future. In their approach, land opportunity costs depend heavily on distance to roads and on suitable soil and climate conditions.The Nepstad et al. study considers only returns to timber, cattle, and soy bean production. Slashand-burn agriculture, an important element in Amazonian agricultural landscapes was not considered. Moreover, the profit rates are based on simulations and not on actual data. Hence, we believe that the complementary approach presented in this paper (i.e. based on INPE annual deforestation rates and municipal agricultural production data from the Brazilian Institute for Geography and Statistics (IBGE)) can help to complete the picture. The IBGE Municipal Agricultural, Animal, and Extractive Production data bases (PAM/PPM/PEV) 14 holds annual information about total cultivated area, yields, and total production value for all Brazilian municipalities. These data are not field measurements, but expert estimates collected in annual consultations of local extension agents, government officials and IBGE staff. Comparisons with the latest agricultural census (1995/96) show that the expert estimates put forward in the PAM/PPM/PEV data bases largely correspond to measured census data as far as municipal averages of yields and prices are concerned. Satellite-based annual deforestation measurements from INPE are frequently higher than the PAM/PPM/PEV estimates of growth in cattle herds and cultivated area, which leads us to be less confident in the latter. In the Amazon region, technical coefficients 15 and cost information are not available at the municipal level. The estimates thus heavily rely on national-level estimates for main agricultural crops from the Brazilian Agriculture Yearbook (FNP 2007) and Amazon-specific estimates by Margulis (2004) for cattle ranching and Pokorny and Steinbrenner (2005) and Barreto et al. (1998) for timber harvesting. All monetary figures have been converted to 2006 US dollars using the Brazilian consumer price index IPCA and the average 2006 exchange rate.The following opportunity-cost estimation is limited to private landholdings, since direct payments to farmers invading public lands could easily create perverse incentives for additional forest clearing. For Amazonas State, calculations rely on the rural land register published by the National Institute for Colonization and Agricultural Reform (INCRA). INCRA data are often inconsistent with agricultural census information, which reflects the considerable uncertainty with regard to land-tenure data in Brazil. Especially in Mato Grosso, where aggressive land grabbing has taken place for many years, INCRA data are also inconsistent with municipal boundaries. Hence, INCRA data are used only for Amazonas, whereas estimates for Mato Grosso are restricted to farms registered in the SLAPR (i.e. roughly 25% of farms in the rainforest areas of the state).Figure 4 depicts the main analytical steps to calculate opportunity cost of REDD. Past municipallevel deforestation rates are calculated from INPE PRODES 16 data and projected linearly into the future for the period 2007-16. INCRA and SLAPR data serve as the basis for calculating the share of private land in each municipality. While the SLAPR database for Mato Grosso directly records remaining forests on private land, forestland on private properties in Amazonas state needs to be estimated. It is assumed the amount of forest left in Amazonas corresponds to total private land less land currently under pastures and crops. This may overestimate remaining forests in 2006, as one would expect a minor share of private land to be in fallow (3% in the agricultural census of 1995/6). As mentioned, land-use mixes for each municipality are calculated on the basis of PAM and PPM data. PPM data on cattle-herd size per municipality is used to impute pasture cover, assuming 1995/96 stocking rates to remain constant in both states. State-level growth rates of land under pastures and crops (permanent and annual) are then applied to estimate the growth of land in particular land use categories, such as annual subsistence crops produced in slash-andburn systems, traditional cash crops, fibres, and fruits. Each land-use category is represented by the single crop with the highest share in 2000-6 total land use expansion, e.g. soy beans for the category cash crops in Mato Grosso.Gross per-hectare returns of crops were also calculated from PAM and PEV data. No such information is available for timber extraction, so yields and per-ton extraction costs reported by Pokorny and Steinbrenner (2005) and Barreto et al. (1998) were used in calculations for Amazonas. Timber yields for Mato Grosso were adjusted according to estimates provided by the Forest Management Unit of the Environmental Secretariat of Mato Grosso 17 . Gross returns from each selected land-use category were converted to net profits as follows:where П ik is net per-ha profit per ha of crop k in municipality i , GR are annual gross per-ha returns in municipalities calculated from the PAM/PPM/PEV data base, whereas b and c are per-ha gross returns and total costs, respectively, derived from other sources.Profitability of extensive cattle operations was taken from Margulis (2004), assuming his highend estimates to apply for Mato Grosso and low-end estimates for Amazonas --cattle ranching being less capitalized in the latter than in the former. Vosti et al. (2002) and others show that land use after deforestation often follows similar patterns, which we call land-use trajectories. For example, forests are often cleared first for annual subsistence crops, after which land is put under pasture or repeated cycles of fallow-based slash-and-burn agriculture. To calculate REDD opportunity costs, hypothetical land use trajectories were set up that represent a sequence of individual land use categories. Figure 5 shows examples of such trajectories in a stylized form. (2)(3) years Figure 5: Stylised sequences of land uses applied in the opportunity-cost estimations Note: Percentages represent hypothetical shares in the municipal land-use mix Figure 5 depicts how municipal opportunity costs were calculated from individual land-use sequences at the plot level. All-land use trajectories start with timber extraction, followed by subsistence-crop production in the second year, while then some land goes into pasture (1), some into crop-fallow cycles (2), and some is used for cash crops (3). Net present values (NPV) of land-use trajectories in a given municipality were calculated (see equation 2) using a 10% discount rate over a ten-year planning horizon, and are reported in Table 2 below.The same amount of new land was assumed to be opened each year, such that the ten-year period 2007-16 covers the accumulated NPV of the benefits derived from the corresponding land-use trajectories (see Equation 3). This step is necessary, because the NPV of a given 10-year land use trajectory beginning, say, in year 2010 is worth less to the farmer than beginning the same trajectory one year earlier.The municipal land-use mix was adjusted annually according to the state-level growth rates of agricultural land versus pastures during 2000-06. The shares of subcategories within these two broad categories of land use were held constant over time for each municipality.where NPV j is the net present value per ha of land use trajectory j in a given municipality and k depicts the different crops/land uses that follow each other during a ten year planning horizon in j.where NPV i is the net present value per hectare (average opportunity cost of avoided deforestation) in municipality i, s is the share of land use trajectory j in the total municipality's annual land use expansion, and NPV ijt is the net present value of the ten-year land use trajectory j in year t of the REDD scenario, while r is the discount rate.Transport costs are accounted for by creating a cost index, which reduces the municipality's net agricultural returns proportionally to how far it is located from the state capital. Transport costs are assumed to be zero in the municipality of the state capital, and then increase linearly with distance up to a maximum of 20%, i.e. profits in the remotest municipality are only 80% of gains prior to calculating transport costs. We thus ignored for the sake of simplicity that difficult access conditions in the remotest areas could lead to higher reductions in net profits for bulky produce, due to their more pronounced sensitivity to transport costs.Finally, we assumed that carbon dioxide emissions resulting from deforestation correspond to the total carbon content in above-ground vegetation. Hence, opportunity costs per ton of avoided carbon dioxide emissions are equal to per-hectare opportunity costs divided by average carbon content (see next section). Presenting opportunity costs per ton of carbon dioxide (the commonly traded unit on existing carbon markets) allows evaluating the competitiveness of REDD carbon both in terms of municipal averages (see Figure 6 below) and in terms of land-use trajectories (see Figures 7 and 8).Table 2 presents average profits calculated for the main expanding land-use categories in Amazonas and Mato Grosso. It shows that soybean plantations are clearly the most profitable land-use option among those that contribute to forest loss in the two states. For the sake of simplicity, it is assumed that no returns are derived from standing forests, so the profits from converted uses are identical to the opportunity cost of conserving the forest. Note that NPV values for land-use sequences are strongly influenced by the returns to timber extraction in the municipalities that report timber extraction in past years. Due to fallow periods, during which returns to land are zero, the NPV for staple crops is considerably lower than for cattle production, even though average annual returns are equal. Values in the last column of Table 2 show the share of each land-use category in total 2000-6 expansion of agricultural land. In the case of crop categories, these values correspond to the crops shown in brackets in the first column.Opportunity costs per ton of carbon dioxide depend heavily on the amount of biomass and, hence, carbon content per hectare of primary forest, which varies widely across the Amazon region (Saatchi et al. 2007). Houghton et al. (2001) present data from seven independent studies analysing carbon content of forest biomass in the Amazon. To provide a conservative estimate of opportunity costs, this study adopts the lowest estimate presented in the Houghton et al. study (110 tons C per ha) for forests in the state of Amazonas, and assumes that 20% of this would be kept as an insurance reserve. For Mato Grosso, the same procedure was applied to more detailed carbon content data provided to the authors by the Instituto Centro de Vida (ICV) 18 .Figure 6 shows average REDD opportunity costs per ton of carbon dioxide at the municipal level. Average values are highest in Mato Grosso, although many municipalities with high opportunity costs lie in savanna (cerrado) regions 19 with lower natural biomass density. In Amazonas, many high opportunity cost municipalities lie alongside road and fluvial transport ways (see Figure 1). Opportunity cost differences in pasture-dominated parts of Mato Grosso are mainly caused by high returns to timber extraction prior to forest conversion. In general, opportunity costs differ remarkably across space --not only between but also within the two states.Figure 6: Municipal opportunity costs per ton of carbon dioxide in Amazonas and Mato Grosso 19 Municipalities were defined as being \"savanna-dominated\" if savanna areas were larger than forest areas. However, only areas classified as forest in the INPE data base were considered in this study's calculations. For the moment all calculations assume zero transaction costs (to be relaxed in next section). Figures 7 and 8 present carbon-dioxide emission abatement costs (REDD supply curves) for Amazonas and Mato Grosso, respectively. As a benchmark, both figures include 2006 average prices for permanent carbon credits traded at the Chicago Climate Exchange (CCX) carbon market. However, since the authors expect that REDD payments are likely to be introduced in the form of temporary carbon credits, the figure shows a hypothetical price line with a 39% rebate on current CCX prices. The rebate was calculated following Dutschke and Schlamadinger (2003), given that carbon credit buyers will have to reinvest in new credits by the time their temporary credits expire (i.e. here assumed after ten years). The CCX carbon market is voluntary, which means that prices per ton of carbon dioxide are at the lower end if compared, for example, to carbon prices in the European Union Emissions Trading Scheme or project-based transactions under the Kyoto Protocol. Whether REDD carbon will be traded in the form of permanent or temporary certified emission reductions has not yet defined, which is why we consider both options in Figures 7 and 8.The grey 'bands' in Figures 7 and 8 show the result of sensitivity analyses varying key parameters such as product prices and per-ha carbon content by ±30%, to account for expected market fluctuations and perceived uncertainties.The supply curve for Amazonas shows that more than one third of deforestation is worth less than US$1/tCO 2 , and thus profitable to buy out under almost any carbon-market scenario. Going towards the right the curve starts sloping, but there is in Amazonas no deforestation worth more than US$3/tCO 2 --at least at the aggregated municipal-average level. The situation is slightly different in Mato Grosso. While around half of deforestation is worth less than US$3/tCO 2 , with a relatively flat curve, the other half is more heterogeneous and rises to values around US$12/tCO 2 .What does this mean for the competitiveness of REDD as a land-use option? Table 3 compares the opportunity-cost results in Mato Grosso's SLAPR areas and in Amazonas State to three carbon-price situations (rows 1-3):(1) maximum price (i.e. the hypothetical price needed to buy out all deforestation) (2) permanent CCX price (value in 2006) (3) temporary CCX price (same as (2), but with a 39% discount -see above).On the payment side, two generic scenarios (two last columns) are shown. First, \"opportunitycost payment\" (Scenario I) implies that each farm receives differentiated compensation payments corresponding to their pure opportunity cost values. Graphically, this corresponds to the area under the emission abatement-cost curves in Figure 7 and 8. The (extreme) assumption here is that payments can be perfectly differentiated, so that provider economic rents are fully eliminated. Secondly, under \"marginal pricing\" (Scenario II) all providers receive the same uniform payment, determined by the farm with the highest opportunity cost. Graphically, payment value thus not only corresponds to the area under the supply curve, but to the entire price-times-quantity rectangle: cheap REDD suppliers (on the left-hand side of the curve) capture a \"provider surplus\", i.e. the difference between the market price and their individually lower costs of supplying REDD.The maximum carbon price (row 1) needed to compensate all deforestation costs would be almost US$13/tCO 2 -most of all due to a few municipalities in Mato Grosso's SLAPR areas with very high opportunity costs for conserving forests. Focusing first on Scenario I (pure opportunity-cost compensation), this would lead to payments of US$680 million to achieve zero deforestation in all SLAPR areas of Mato Grosso by fully covering all producers' economic returns from deforestation. In Amazonas, the total would be only US$143 million, both because there is less deforestation and because the average per-hectare opportunity cost is lower. The permanent CCX price of US$3.88/tCO 2 in 2006 (row 2), would compensate farmers to reduce Mato Grosso's SLAPR deforestation by two-thirds, at a total cost of US$381 million; the permanent CCX price would also compensate for all projected forest loss in Amazonas. At temporary CCX prices of US$2.32/tCO 2 (row 3) -a conservative estimate -40% of SLAPR areas enter REDD at costs of US$212 million, while US$123 million can compensate for 93% of Amazonas deforestation. Hence, at current carbon price ranges, the bulk of deforestation can potentially be compensated, especially on the low-opportunity cost lands that predominate in Amazonas. What if one has to compensate farmers at a fixed marginally determined price, rather than 'just' their pure individual opportunity costs (Scenario II, last column)? Obviously, this does not change the amount of forest area protected, but distribution-wise a 'provider's surplus' is created, thus increasing costs. Potentially, this economic rent can be sizeable, especially at high carbon prices and heterogeneous producer costs. For the maximum price situation (line 1), costs in Mato Grosso's SLAPR areas would quadruple to US$2.7 billion, three fourths of which would accrue to low-cost suppliers as windfall gains (i.e. compensations paid in excess of opportunity costs). At temporary carbon prices (3), these gains are less astronomic. For instance, for Mato Grosso's SLAPR areas the costs rise only from US$212 to US274, since this corresponds to the low-sloping section of the supply curve. But for Amazonas, costs still more than double, from US$123 to US$239 million, because a large part of Amazonas' potential REDD credits are very low-cost and would fetch economic rents even under moderate prices.These findings for Scenario II have important implications for REDD design. Rising carbon prices would multiply economic rents accruing to low-cost providers. There would thus be large efficiency gains for REDD buyers in introducing some sort of differentiated payment system (according to location, producer types, land values, etc.) that caters to highly variable provider opportunity costs. The flip side is that price differentiation would also eat into the 'provider's surplus', which represents the potential welfare gain on behalf of farmers, including for poverty alleviation. In practice, probably neither a uniform nor a fully differentiated price is very likely, but for analytical purposes they represent extreme scenarios that help us understand the competitive and distributional consequences of different payment modalities.The results prove to be particularly sensitive to the returns from timber extraction. One-off timber rents can in some cases be sizeable, and since they accrue at the beginning of each landuse cycle, they are not being time-discounted. They can thus potentially gain high influence on the overall NPV results. However, timber rents are also often at least partially captured by actors other than the landowner proper, and their harvesting may happen well in advance (and causally divorced) from the deforestation process proper. Setting timber extraction profits to zero, for analytical purposes, would allow REDD transfers at temporary CCX prices to compensate more than 80% of forest loss in Mato Grosso and 100% of forest loss in Amazonas at current (temporary) carbon prices. This reconfirms that the timber economy, and the second \"D\" in REDD, merit further analysis.Apart from timber rents, total opportunity costs are most sensitive to beef prices, e.g. a 30% price reduction decreases total opportunity costs by 9% in Mato Grosso and 10% in Amazonas, followed by soybean prices (Mato Grosso) and food crop prices (Amazonas). That is due to the dominance of the related land uses in overall crop mix. Prices per ton of carbon dioxide are particularly (and proportionally) sensitive to changes in the amount of tradable emission reductions assumed per hectare of avoided deforestation. Finally, discount rate changes also affect total opportunity costs to a considerable extent. For example, reducing the assumed 10% discount rate to 5% would increase total costs in Mato Grosso by roughly one third.Of course, opportunity costs are only one part of the story: transaction costs also need to be paid for through the REDD resources. Relatively little is known about the transaction costs of payments for environmental services (PES) schemes in general, less so for still to-be-developed direct REDD compensations to landowners. Transaction costs are defined as all costs of an environmental services payment scheme that are not transfers proper. Transaction costs occur both on behalf of the carbon buyer (e.g. having to monitor compliance) and the seller (e.g. having to comply with payment modalities).Ex-ante transaction-cost estimates have to be interpreted with caution. May et al. (2003) note that many incipient carbon-based PES schemes have incurred extremely high transaction costs, mainly because of the difficulties involved in developing forest carbon projects in an uncertain market environment. As a consequence, pioneering carbon investors have required projects to repeatedly revise strategies throughout project implementation. In general, PES schemes seem to require relatively large start-up costs, while running costs tend to be more manageable, as shown for a series of carbon projects in Indonesia (Cacho et al. 2005). Turning to South America, in two Ecuadorian PES cases of Pimampiro (watershed protection) and PROFAFOR (carbon sequestration), start-up costs were US$76/ha and US$184/ha, respectively, while recurrent annual per-hectare transaction costs in the operational phase were only US$7 and US$3 (Wunder and Albán 2008). In the Amazon, the authors expect transaction costs to arise mainly in the categories presented in Table 4. Especially if smallholders are to be involved in Amazon-REDD schemes the need to handle a large number of small volume transactions will represent a major challenge for the desing of direct payment mechanisms. Currently, carbon markets are not prepared for large-scale REDD in the Amazon and carbon buyers have traditionally been reluctant to invest in carbon projects in the forestry sector. Procurement costs can therefore be expected to be significant.Large-scale REDD schemes may incur significant negotiation costs, especially if they contemplate payments from national government budgets that need to be negotiated with the civil society.Existing organisations and institutions needed to be strengthened and systems like SLAPR implemented in all areas covered by REDD. Establishing and running payment mechanisms (especially in the case of direct payments to landowners) are likely to contribute the lion's share to this cost item.In some states, rural licensing systems are in place that would allow annual deforestation monitoring at farm-level scales.The technology for satellite-based deforestation monitoring is relatively well developed and much more cost-effective than ground-based monitoring.Enforcement costs might be considerably reduced by delivering payments only after verification of effectively avoided deforestation. Given weakly enforced property rights in large parts of the Amazon, enforcing theses rights (e.g. in and around protected areas) might prove crucial to assuring additionally of REDD and, hence, represent a relevant source of transaction costs.These cost items have shown to be an important barrier for smallscale carbon forestry projects (Cacho et al., 2005), but are expected to decrease with project size. Source: Adapted from Milne (1999) Based on information from Environmental Secretariat of Mato Grosso, a hypothetical state-level REDD scenario was set up. The scenario involves the creation of a carbon payment fund that cooperates with existing government and civil society organizations in implementing direct REDD payments to land owners in Mato Grosso. This allows assessing likely transaction costs in the categories 3, 4, and 7 of Table 4. Start-up costs are estimated at US$7.5/ha and annual implementation costs at US$4.5/ha of avoided forest loss. Recurrent costs are thus slightly higher than what Grieg-Gran ( 2006) calculated for the Costa Rican national PES scheme (US$3/ha/yr). Depending on biomass density, transaction costs in Mato Grosso with these absolute values would range from US$0.07 to 0.24 per ton of carbon dioxide during a 10 year period, or a total of US$49 million. Given temporary CCX prices, thus would marginally shift up the emission abatement cost curve in Figure 8, so that cost-effectiveness in terms of deforestation avoided would be reduced by roughly 3%. This addresses the transaction costs of buyers or intermediaries, but what about service providers? Poor transport infrastructure (e.g. in Amazonas' remote areas) can potentially drive up their transaction costs in negotiating contracts and cash in payments. REDD initiatives might learn important lessons from other experiences with decentralized conditional cash transfers, such as the Brazilian Family Assistance Program (Bolsa Familia) and the Amazon State's avoided deforestation program Bolsa Floresta (Hall 2006).The Amazon framework conditions for REDD described in Section 1 also have implications in terms of:1. Who may be the winners and the losers? 2. Which areas become eligible for REDD? 3. What share of the REDD potential can be considered truly additional? First, REDD will only attract large-scale investments if additional emission reductions can be credibly demonstrated. For a region with highly unequal land and power distribution like the Brazilian Amazon, smallholders and forest-dwelling communities may not be the prime beneficiaries if additionality is put at the forefront. Chomitz (2006) shows that less than 20% of one-time forest clearings in the Amazon are small-scale, i.e. smaller than 20 ha. Larger clearings are generally out of the range of smallholders. To the extent it is necessary to compensate those who would benefit from (legal) deforestation, and thus suffer the opportunity costs of conserving the forest, a rather high share would need to go to medium-sized and large commercial farmers.On the other hand, for a REDD programme to be politically acceptable in Brazil, and to avoid significant leakage to the smallholder sector, it may turn out to be beneficial to invest a share of REDD money that is more than proportional to the related threats into rewarding good forest stewards and local communities for assistance in monitoring protected areas. A general sense of fairness will be crucial for the political acceptance of REDD, both in ES buyer and seller countries.An example may underscore this point. The Forest Valuation Pact, a recently proposed scheme to compensate farmers for not deforesting, to be funded primarily with Treasury resources, received mixed public reactions. It was criticised that Brazilian taxpayers should pay for services that benefit society globally especially when the beneficiaries would be large commercial landowners with a history of aggressive land clearing (such as in Mato Grosso) -i.e. rewarding \"bad\" rather than the \"good guys\". However, public acceptance of such compensations, at national level, would likely be higher if REDD was funded by international carbon markets, rather than Brazilian taxpayers.Second, only some of the highly threatened forests in the Brazilian Amazon can potentially be protected through direct REDD payments, because much of the land cleared is public or has insecure tenure. Direct payments to farmers on land with deficient land tenure rights will be inefficient -and paying land grabbers to desist from invasions would likely create perverse incentives for others to simulate similar clearing threats to claim compensation. As for the large protected areas and indigenous territories, many lie in remote and relatively undisturbed areas where de facto threats are low, and payments here could easily become \"hot air\". Deforestation within protected areas has been relatively low, compared to outside (see Ferreira et al. 2005 for a comparison of deforested areas in and outside protected areas), though part of this may be explained by remoteness rather than protection status. Studies of less remote protected areas in the state of Pará show illegal deforestation there can be almost as high as the regional averages (Velásquez et al. 2006). Yet, from a legal point of view, paying REDD in these areas based on opportunity costs is highly questionable. At best, one could imagine the use of REDD to cofinance the creation of new protected areas, or subsidize recurrent costs in ways that clearly diminish threats to standing forests as carbon stocks.Third, in the opportunity cost estimation it was assumed that all privately owned forests are potentially available for REDD. Yet as mentioned, Brazilian forest retention standards require 50-80% of private property in the Amazon region to remain under forest. Although few farmers de facto comply with this requirement, REDD in these areas would legally not be additional. Conversely, restricting payments exclusively to legally convertible forests on private properties would dramatically reduce the scope for REDD. Some combination of improved command-andcontrol tools and incentives is probably necessary.Finally, a similar efficiency versus fairness trade-off can apply at the level of distinct states within Brazil. The previous discussion showed that the currently competitive REDD options for the environmentally pro-active Amazonas state would allow the state to reduce deforestation in private lands by 92% for a sum of US$123 million, while for Mato Grosso, which has a history of aggressive agricultural expansion, it would cost nine times as much (~US$1.1 billion) to reduce deforestation by less than half (47%). In other words, if funds were allocated exclusively according to the criteria of additionality, Mato Grosso could receive the bulk of REDD payments and still continue clearing forest with high opportunity costs for its economic development, while Amazonas would have receive less transfers and be almost barred from further land clearing. This disparity results from agricultural market dynamics and the basic economics of deforestation, but also in part because Amazonas state previously declared many more protected areas than Mato Grosso. If the federal government operates the REDD system, the distribution of resources between states should surely be guided largely by additionality concerns, but must also reward 'good past stewardship' (e.g. through co-financing for national parks, reserves, etc.). Otherwise, a backlash against these environmentally progressive policies could occur, which would also negatively affect the protection of carbon stocks. Alternatively, states could be allowed to negotiate REDD contracts independently from the federal government. However, such a scenario will be more vulnerable to leakage from states that are successful in capturing carbon rents to states that are not.How do the presented results compare to other REDD opportunity cost studies? Nepstad et al. (2007) estimated potential productivity of beef and soybean production based on suitability of climate and soil conditions and at spatially more disaggregated scales than ours. Hence their emission abatement cost curve does include very high-cost abatement options at its upper end. Including all, not only private, land plus the use of a 5%, instead of 10%, discount rate and a 30, instead of 10, year time period for cost accounting boosts their estimate of total opportunity costs to over US$200 billion for the whole Brazilian Amazon. Because they include not directly threatened, but potentially suitable, forests, the carbon unit-cost estimates in the Nepstad et al. study are not directly comparable with the values presented here. Nevertheless, the authors share the conclusion that REDD in the Amazon is a highly competitive mitigation option given the prices at which carbon is traded on both voluntary and non-voluntary markets. Swallow et al. (2007) estimated emission abatement cost for sites in the Peruvian Amazon. Their approach is based on cost-benefit analyses of existing land-use systems and observed land-use changes. The study presents values that correspond to this study's findings for the state of Amazonas, where more than 90% of emission reductions are competitive at current carbon prices. At a 10% discount rate Swallow et al. estimate that the majority of carbon emitting land use changes between 1998 and 2007 could be compensated for at less than US$5/tCO 2 . This study's approach to estimating opportunity costs of REDD in Mato Grosso and Amazonas required the following key assumptions:1. Deforestation on private land is equal to the municipal level deforestation rate. This potentially underestimates true total opportunity costs, because private deforestation rates are expected to be higher than those in protected areas or public land. Deforestation rates on private land, the actual net returns to individual land uses, and the carbon content of forests can all be expected to vary considerably across the Amazon. The upcoming Brazilian agricultural census will provide more solid data for illuminating the first two factors.Other changes in assumptions could also influence the results. Differentiation of returns for cattle-based activities, i.e. ranching versus dairy farming and land-intensive/ modernized versus land-extensive/ rudimentary operations could reveal more land units at the high-cost end. A more detailed assessment of transport costs would likely reduce the opportunity costs for remote land units (of which there are many in the state of Amazonas) and bulky commodities.The empirical assessment of likely REDD opportunity costs in the Brazilian states of Amazonas and Mato Grosso, based on Brazil's official agricultural statistics, clearly supports previous claims that REDD can be a cost-effective way of reducing deforestation in the Brazilian Amazon. This conclusion is valid in the market-remote Amazonas state with its conservationist policies and low deforestation rates, but equally in the agribusiness-oriented Mato Grosso state with its vibrant soy and beef industries and a history of aggressive forest clearing. A partial assessment of approximate transaction costs does not seem to alter this fundamental conclusion: at current carbon prices, paying for protecting forests is a good deal with wide options.Nonetheless, the comparison of the two very different states in the Amazon also shows that (at current carbon prices and demand) zero deforestation is an unrealistic goal to be achieved through REDD: some high-value uses of converted land cannot be \"bought out\" through REDD.In addition, only a minor share of deforestation happens on lands with private secure tenure, or at the least with effective control over third-party access rights. Direct REDD payments can therefore not fully substitute for improved command-and-control policies in the Amazon region.In fact, REDD could also co-finance this improvement and, at the same time, reduce the costs of enforcement, especially in areas where conservation opportunity costs are low. Hence, direct REDD payments can be a meaningful complementary strategy, providing positive economic incentives, i.e. \"carrots\" that will help increasing the political acceptability of \"stick\" policies to effectively reduce deforestation.At current carbon prices, how much deforestation would REDD really reduce, and at what costs? The answer from above was \"almost all deforestation in Amazonas (525 094 ha), and half to two thirds in Mato Grosso's SLAPR areas (554 842 ha), at somewhere between US$330 million and US$1 billion of total costs\" -depending on the payment modality (uniform rates vs. differentiated cost-aligned compensations) and whether permanent or transitory CCX carbon prices (the latter implying a 39% price discount) apply. Taking the two states together this corresponds to roughly 360 million tons of reduced carbon emissions over a ten year period.Nevertheless, it has to be kept in mind that only about a quarter of private land in Mato Grosso is licensed under SLAPR. Under the heroic assumption that SLAPR-registered farms are fully costrepresentative of all farms in Mato Grosso, state-wide costs would range somewhere between US$1.2 and US$4 billion -again depending on the assumptions about payment modes and carbon prices. This large variance of estimates points to the importance of designing the payment mechanism in a way that combines cost-effectiveness with equity considerations.What else should decision-makers bear in mind when planning REDD initiatives in the Brazilian Amazon?First, given favourable opportunity costs for REDD, it might be beneficial to separate the carbonsupply for the \"deforestation\" and \"forest degradation\" elements. One pathway is to offer payments for reduced-impact logging that minimizes carbon losses. Another option is to adopt a \"log-and-protect\" strategy of extracting only the most valuable timbers and then setting aside the resulting secondary forests for strict conservation. A full assessment of the cost-effectiveness of REDD, however, needed to account for losses incurred throughout the entire value chain of agricultural production in the Amazon. As a result, governments might decide to tax income from private REDD agreements to make up for losses in productive activity, which would further increase total costs. Second, the above observed difficulty of precisely estimating highly variable opportunity costs in space might be alleviated through the use of more sophisticated economic techniques. This study's results suggest price differentiation between REDD suppliers can make REDD considerably cheaper (see Senario I and II in table 3). Experiments with inverse auction systems where producers 'self-reveal' their costs and preferences have progressed sufficiently to also pilot these techniques in the Amazon, thus validating ex-ante cost estimates and avoiding overor underpaying individual farmers due to aggregation errors.Third, who would pay for REDD on a massive scale, and at what price? Only some markets currently accept REDD carbon. With roughly 47 Mt CO 2 /yr (available at current CCX prices) from private lands in Amazonas and Mato Grosso being thrown into the world market, the above assumed constant prices on existing voluntary markets might in fact drop significantly, unless there is a simultaneous hike in demand.Fourth, REDD will have local economy impacts that depend on the degree of diversification of local economies and the potential to maintain output and labour demand at reduced rates of expansion into forest land. Socio-economic impact assessment, therefore, needs to be part of feasibility studies. That said, the lion's share of forest in the Brazilian Amazon is replaced by extensive cattle production, which has shown considerable potential for intensification.Finally, the REDD scenario on which the presented calculations are based would only pay for those private land areas that will be deforested. However, it is illusionary to predict exactly where deforestation is bound to happen. Furthermore, even if this was possible, paying only for threatened areas will relocate part of conversion pressures to areas not covered (leakage). To counteract the inevitable imprecision of spatial predictions and leakage, payment schemes may need to have a broader spatial coverage of all private areas potentially at risk, and/or raise the carbon stocks set aside as 'insurance reserve'. This will make REDD schemes more expensive than suggested above.directly by reducing aggregate breakdown and by enhancing SOM-mediated aggregation (Angers, 1992;Carter, 1992 andBeare et al. 1994).Conservation agriculture is one of these management systems practiced in the watershed of the Fúquene Lake which is located in the valleys of Ubaté and Chiquinquirá, north of Bogotá, the capital of Colombia. These practices were introduced as a measure to control the sediments that are released from potato farms on very steep slopes and that are causing the eutrophication of the lake. This lake provides potable water to more than half a million people downstream. Although the benefits to reduce sediments and to increase net income of farmers are recognized (Rubiano et al. 2006) there are not studies about the impact of these practices in soil carbon protection.In consequence, the objective of this research was to determine carbon content and its stability in stable soil aggregates in two different systems (traditional tillage vs. conservation agriculture -CA). To achieve this, the protected carbon in soil micro and macro aggregates was measured using sonication techniques. The hypotheses were that with CA: 1) soil organic matter content is increased, 2) The stability of carbon contained in aggregates is greater, and 3) the SOM (and the SOC) is more stable in smaller size fractions of aggregates.Two potato production systems (traditional tillage, CA with minimum tillage with incorporation of green manures and permanent plant cover for 7 years) were compared at six sites (3 sites per system) within the Fuquene watershed. The soils are Andisols and are classified as Lithic Hapludands (IGAC, 2000). The sites were selected with the same characteristics in terms of: 1) landscape position; 2) land cover; 3) slope; and 4) rainfall intensity. At each site, two pits were dug, soil horizons were identified, and three soil samples were taken per soil horizon. Fresh samples were segregated and classified by size using dry-sieving with a nest of sieves with 5, 2, 1, 0.5 and <0.5 mm screen size. Additional samples were taken to measure saturated hydraulic conductivity, soil moisture, porosity and bulk density. In general, three horizons were found it in the profiles with average thicknesses of 72 cm (horizon I, top), 21 cm (horizon II) and 56 cm (horizon III, bottom).Soil organic matter content of each aggregate size class was extracted using a sonication procedure (North, 1976;Six et al., 2001). Through this procedure, some of the SOM in the aggregates was extracted while the rest of the SOC remained in the aggregates even after sonication. The organic matter extracted from the aggregate by sonication was called AOM (aggregate OM) as it contained fine organic matter from inside aggregates. Organic matter remaining in the same particle size class after sonication was termed particulate organic matter (POM). Different levels of energy were applied to see how AOM and POM is affected by the degree of disruption. The AOM and POM were measured through the loss on ignition procedure, and %AOM was calculated as percentage of total SOM (AOM+POM). All SOM measurements were converted to estimates of SOC concentration by multiplying by the Van Bemmelen factor of 0.58 (Lal et al, 1998). It was expressed as percent of total organic matter in each sample.The effects of production system on %AOM and SOC were analyzed using analysis of variance (ANOVA) with soil horizon, type of management practice and aggregate size fraction as fixed effects. Differences were considered significant at p<0.05. There were significant effects of horizon and size fraction on %AOM and SOC. Therefore further statistical analysis was done separately for each size fraction and horizon. A post hoc comparison procedure with the Tukey-Cramer adjustment was used. The SOM and AOM values were correlated to physical soil characteristics using a linear model.The average concentration of SOC in the soil profile was not significantly affected by the management system, and averaged 0.12 g/g with CA and 0.09 g/g with traditional tillage. SOC was significantly higher in the top horizon (0.13 g/g) than in the deepest horizon (0.05 g/g).As the ultrasonic energy applied to the soil increased, more aggregates were destroyed, increasing the amount of AOM removed (Table 1). The effect of size fractions on % AOM was highly significant (p<0.01). The 5 mm fraction released significantly less organic matter than the smallest size fraction (0.5 mm). Note: Inside the same column, averages with the same letter are not statistically differentThere was no significant size fraction x tillage system interaction for the AOM. However, %AOM was higher in the 2 and 1 mm size fractions under CA than with traditional tillage (figure 1). Also, %AOM was higher in the horizon II and III with CA than with traditional tillage, but with similar values in horizon I (figure 2) Simple correlation analyses using a linear model showed that, for CA, aggregate organic matter (g/g) was negatively correlated with the aggregate size (5 mm) (p < 0.01; figure 1) and positively correlated with soil moisture (p < 0.05; data not shown). Also, there was a positive correlation of total organic mater (g/g) with hydraulic conductivity, total porosity and macro-porosity in both conservation and traditional agriculture treatments (data not shown). The soil moisture and hydraulic conductivity were higher in CA. The average soil moisture for the soil profile in CA was 52% while in traditional agriculture was 39%. The average hydraulic conductivity was 12 cmh -1 in CA soil profiles and 5 cm h -1 in traditional agriculture.The total organic matter was negatively correlated with bulk density in conservation and traditional agriculture systems. In general, bulk density had a negative correlation with saturated hydraulic conductivity, total porosity, macro porosity and soil moisture.The soils of the study sites are Andisols and according to IGAC (2000) are classified as Lithic Hapludands. The high concentration of organic carbon is in line with the high organic matter concentration characteristic of Andosols.The accumulation of organic matter in these soils is determined by the environmental conditions of the paramo ecosystem, which is characterized by low temperatures and high plant biomass (pastures) inputs and low decomposition rates. The lack of significant differences between SOC concentration in CA vs. traditional agriculture sites may reflect the difficulty of detecting small changes in SOM against such a high background level, even after 7 years of CA in these soils.The high accumulation of OM in these soils is reflected in the large depth (mean 72 cm) of horizon I. Also, the capacity of these high organic matter soils to store further C may be near maximum. Finally, the lack of significant differences between the production systems may be due to the fact that in the traditional tillage system, potato is rotated every 2-3 yrs with 2-3 yrs of pastures (average of 2.7t DM/ha/yr). Therefore the benefits of CA could be more related to nutritional benefits, reduction of runoff, and improvement of water movement in the soil profile rather than change in SOC per se (see below).The results showed no effect of production system on aggregate stability of organic carbon stability in the aggregates, rejecting the second hypothesis. In fact, the aggregates from CA in horizons II and III, and from the 2 and 1 mm size fractions, released more organic matter than the equivalents from the traditional system.The higher stability of traditional agriculture soil aggregates may result from greater drying of the soil than under CA. Soil moisture was higher in CA sites, especially in horizons II (63 vs. 44%) and III (48 vs. 32%). In Andisols, the presence of minerals such as ferrihydrate and allophone results in irreversible hardening when the soil is dried beyond a certain level (Maeda et al.‚ 1977).; the drier the soil, the stronger the aggregates. Other authors have also found that the strength of the bonds between organic materials and mineral particles decreases with increasing water content, resulting in lower stability (Reid and Goss, 1982;Perfect et al., 1990, Gollany et al. 1991;Caron andKay, 1992 cited in Lal et al. 1992). However in the CA sites the risk of releasing that SOC contained in aggregates is low because of the use of minimum tillage.While it is recognized that micro-aggregates protect SOC (Six et al, 2000), we found that in these soils the trend was counter to the third hypothesis, as OM in aggregates of 5mm size fraction was more stable than in the smaller fractions. Similar results were obtained in Spodosols of Florida where the highest strength was obtained in macroaggregates (Sarkhot et al, 2005). This trend is less apparent in horizon III, which could be related to the fact that the content of clay is higher in deeper horizons, making the OM more strongly attached to the microaggregates (the average percentage of clay content in horizon III was 39%, in horizon II 32% and 19% in horizon I).The percentage of OM released after applying higher amounts of energy (11.7-15.4 kJ) was high on most soil samples (>80% of total organic matter), and only 17.4% of soil samples released <80% of the total organic matter of the samples. This means that most of the organic carbon is in the aggregate pool and the remaining is POM. This result is in line with other studies that have found that 90% of SOM was located within soil aggregates (Jastrow et al., 1996). This highlights the importance of conserving the aggregation of these soils and reducing its mechanical breakdown by tillage or soil erosion. It is worth noting that this sonication procedure measures the stability of aggregates to mechanical breakdown and does not indicate the susceptibility to microbial breakdown.In Andisols of this Colombian watershed, CA practices had a negligible effect on SOM and SOC concentration. This may be due to the already high SOM content in these soils. In these soils, the benefits of CA (minimum tillage and permanent cover) are related to improving soil characteristics important for increasing infiltration and storage and reducing runoff and erosion, such as hydraulic conductivity, porosity and bulk density. Probably, it also contributes to increase nutrients availability and to reduce soil runoff. In addition, CA practices did not increase SOM stability in aggregates, which may be related to the higher soil moisture in the CA system.It is important to note that CA ensures that the accumulated OM is not released from aggregates as soil disturbance in minimal in this system.Since more than 80% of the total organic matter is contained in the aggregates it is important to avoid the disruption of aggregates by mechanical forces in these paramo soils. Also the importance of macro aggregates for SOC stability is important in these soils, even more than micro aggregate stability, contrary to our initial expectations.Finally, there is a need to apply the same methodology to explore the effects of CA on SOM and SOC content and its stability in other type of soils with lower C OM and with different clay contents.Soil nutrient depletion is a common problem faced by both subsistence farming and commercial crop production in developing countries and can be attributed to the nutrient uptake by agricultural crops, which is higher than the amount of nutrients available in the soil. This is also a major cause of soil degradation (Frossard et al., 2006). Research carried out over the past decades has clearly evidenced a direct relationship between soil degradation, food insecurity, and poverty (Lipper, 2001).The most important animal production system in developing countries is the mixed livestock production system (von Kaufmann, 1999) and can be found in Nicaragua as well as other Central American countries, where most farms are small, located in hillside areas undergoing different stages of degradation, and combine livestock production with the planting of subsistence crops such as maize and beans (INTA, 2002).Natural pastures are the most important source of feed for livestock but their quality and quantity are seriously limited during the dry season, which lasts from 4 to 6 months, causing shortage of forage and animal undernutrition (PASOLAC, 2002). Furthermore, because of the problem of grass shortage, producers allow cattle to freely graze the dry vegetation, which makes the problem of overgrazing-another major source of soil degradation-even worse (FAO, 2000).On the other hand, milk production significantly decreases during the dry season and, as a result, milk prices increase by 40%-50% as compared with its prices during the rainy season. Improved animal nutrition during the dry season would therefore significantly improve family incomes in these mixed production systems.In the past, several alternatives have been used to correct forage shortage or deficiencies during the dry season. These have included the use of net energy sources, ranging from forage cane to legumes, the latter contributing protein and complementing energy sources and available grasses. However, the competitiveness of using legumes for animal nutrition versus their use to improve soil quality and, as a result, crop productivity has seldom been analyzed.This study therefore assesses the economic benefits of (1) a short-term alternative, which consists of establishing legumes for use as supplement, mixed with crop residues, to increase milk production and farmer incomes during the dry season when milk prices are higher; and (2) a medium-term alternative, which consists of establishing legumes as green manure at the same sites where maize and beans are planted and then incorporate these legumes into the soil to improve its fertility and, accordingly, improve agricultural productivity in subsequent years.The survey also gathered information on how producers perceive the use of the legume C. brasiliensis and what their expectations are to justify the adoption of Canavalia, based on the following: a) the minimum amount of milk that should be produced in excess of the average dry-season production for producers to adopt Canavalia as animal supplement; or b) the amount of fertilizer (i.e., urea) that producers considered that could be saved, while maintaining the same maize and bean production, to adopt Canavalia as green manure.Based on average survey results, an ex ante economic evaluation was made of the economic benefits that would be produced if this legume was cultivated as green manure or used as animal supplement. The ECOSAUT model was used (Quintero et al. 2006). This optimization model uses linear programming, to evaluate land uses under multiple criteria-social, economic, and environmental. These decision-making criteria or variables are defined according to the production system (land use) evaluated and the evaluation objective.The agroecosystem is accordingly simulated to better understand the effects that the incorporation of C. brasiliensis will have on producers' income and if the expectations producers expressed during the field visit are fulfilled.To conduct this evaluation, the following scenarios were analyzed over a 5-year period: Scenario 1. Baseline This is the current land use scenario of the farms included in the survey. For this study, the baseline is defined as a farm type showing the average values of production costs, income, and productivity obtained in the survey. The land use system is mixed-maize and beans are grown and both milk and meat are produced. The farm area is 12 ha, of which 10 ha are sown to Jaragua grass (Hypharrenia rufa) and 2 ha are planted to maize and beans. The Jaragua grass is not fertilized and its biomass production decreases during the dry season, from 1.6 to 0.6 t DM/ha. Milk production also decreases during these months. Maize is planted first, at the onset of the rains (June). Once the maize has formed ears, the plants are folded for drying and beans are grown in half of the area (1.0 ha), using these dry stalks as support. Beans are planted at the end of the rainy season, around September-October, and are harvested at the beginning of the dry season (December-January).Scenario 2. Canavalia for animal nutrition This scenario also corresponds to a combined crop/livestock production system, but C. brasiliensis is also grown, intercropped with maize in the area where beans are not planted (1.0 ha). In this case, the legume is used for livestock nutrition during the dry season to increase onfarm milk production. This evaluation assumed an annual production of C. brasiliensis of 2 t DM/ha. The same distribution of land in pastures and grasses as found in the baseline is maintained.This scenario corresponds to the same scheme described in Scenario 2 above, with the difference that the legume is incorporated into the soil to improve fertility and, as a result, improve the productivity of subsequent plantings of maize and beans. This is why the legume is incorporated into the soil as green manure. It is assumed that the incorporation of Canavalia contributes 64 kg N/ha and replaces the traditional application of N in the form of urea (52 kg/ha) in maize and bean crops. It is only necessary to continue applying the complete fertilizer (12-30-12 NPK) at 82 kg/ha. Scenario 4. Canavalia for animal feeding with sorghum This scenario was developed because many producers (especially those with more livestock) plant sorghum at the end of the rainy season in order to have sufficient biomass to feed livestock during the dry season, in addition to maize stubble. The main objective is to produce biomass as source of forage for livestock. As a result, producers use a high planting density to maximize forage production and not grain production.Scenario 5. Canavalia in rotation with maize to improve soils throughout the farm This scenario explores the maximum potential of the farm in terms of generating income by gradually substituting the area (2 ha/yr) currently under Jaragua grass with a rotation of maize and Canavalia over a 5-year period. The purpose of this scenario is to explore the contribution of C. brasiliensis as mechanism to improve soil fertility and make the system more sustainable by subsequently introducing improved pastures, such as Brachiaria brizantha cv. Toledo, as well as an energy source, for example sugarcane.The environmental ex ante evaluation was focused on the effects that the incorporation of Canavalia brasiliensis into the crop rotation might have on environmental externalities such us sediment and water yields.This analysis was conducted applying SWAT (Soil and Water Assessment Tool) for an area with biophysical conditions similar to those found in the visited farms. These conditions refer to soil, climatic and topographic characteristics and that were collected for the study area.The value of soil characteristics considered in this analysis were obtained from the analysis of local soil samples conducted by the soil research component of this project (personal communication with S. Douxchamps). It includes information of texture and total C for the superficial soil horizon. In addition some information about soil type units was extracted from the Land Use Plan of Estelí (Plan de Ordenamiento Territorial in Spanish) (MARENA, 2001) and use to complement the information on texture and organic matter for subsurface soil horizons.Using the soil texture information, the hydraulic conductivity, available water content and bulk density values were derived using the Soil Characteristic Tool (Saxton and Rawls, 1985;Saxton et al. 1986) that is applicable to mineral soils. In table 1, the values used in the SWAT modeling are shown. The climatic data used consisted on daily values of precipitation, maximum and minimum temperature; and mean monthly temperature, radiation and wind velocity. The data sets for the period of January 1987 -December 2006 were obtained at INETER (Instituto Nicaraguense de Estudios Territoriales)The topographic data was directly obtained from the Digital Elevation Model of the River Pire watershed at a resolution of 90 m. To do this an area of 154 ha was selected near the farms where experiments on Canavalia brasiliensis are being held, and which GPS points where captured during the field visit on 2007.The climatic, soil and topographic data was integrated in SWAT to derive the values of sediment and water yields, surface runoff, lateral flow, percolation, evapotranspiration, and soil water for the following land use scenarios: 1) current maize-pasture system, 2) maize rotated with Canavalia brasiliensis which residues are left on the soil surface as green manure, 3) maize rotated with Canavalia brasiliensis that is grazed after 90 days of growth.In figure 1, the schedule of planting for each scenario is shown. It is worth to note that these scenarios were assessed for the portion of land that is only planted with maize and not followed by other crop such as beans (see above description of scenarios 1-3). Tables 2-5 present the average production costs of maize, beans, milk, and meat as well as average values of productivity, farm area distribution in different land uses, use of family and contracted labor, and herd composition. Table 6 presents the producers' expectations regarding the reduced requirement of fertilizers or the increase in milk production expected with the inclusion of C. brasilensis as green manure (in the former case) or animal supplement (in the latter). Table 7 presents the production costs and expected productivity of this legume.Table 8 shows the values for each scenario used for the ex ante evaluation of potential economic benefits derived from the incorporation of C. brasiliensis into the land use system of producers of the Pire river watershed as well as from the incorporation of other potential energy and protein sources that could help overcome the shortage of feed for livestock during the dry season and recover soil fertility. Benefits of C. brasiliensis under the current land distribution scheme (Scenario 1 versus Scenarios 2 and 3) Based on the results obtained, the incorporation of C. brasiliensis as green manure (Scenario 3) slightly decreased the net income as compared with the baseline (5%). The opposite occurred when this legume was used as animal feed (Scenario 2) because the net income of producers was increased by 5% (Table 8).The urea applied in the baseline scenario is replaced in Scenario 3 with the incorporation of the legume into the soil. The reduction in net income obtained by using Canavalia as green manure can be attributed to the fact that, although the incorporation of the legume reduces the cost incurred for purchasing fertilizers, the requirement of contracted labor to plant the legume increases and the purchase of legume seed implies an additional cost. As a result, the benefit represented in reduced fertilizer costs does not compensate for the additional cost of planting the legume.On the other hand, the increased income due to the incorporation of Canavalia for animal nutrition can be attributed to the increase in milk production, specifically during the dry season. Milk production during the dry season increased from 2 to 3 lt/day, representing a 26% increase in annual production as compared with the baseline. In addition, the increase in income is not only due to a greater volume of milk produced during the dry season, but also the higher price of milk during this time of scarcity (US$ 0.27/lt during rainy season compared with 0.32/lt during the dry season).Therefore the benefits of using Canavalia as animal feed are related to the increases in milk production and not to increases in stocking rate or meat production, which are maintained.Benefits of using C. brasiliensis as animal feed when complemented with sorghum as energy source (Scenario 2 versus Scenario 4) The positive effect of complementing Canavalia with an additional energy source such as sorghum is reflected in the 80% increase in producers' net income as compared with Scenario 2 where only Canavalia is incorporated as additional source of feed for livestock. This increase can be attributed to the fact that milk production increased substantially by 137% due to the merging of three factors: (1) increased production potential from 3.7 to 4.4 lt/day; (2) doubling of animal stocking rate from 7 to 14 cows/farm; and (3) increased sale of milk during the dry season, which took advantage of the better prices that are characteristic of that season. This increase in milk production can be explained by the incorporation of an additional energy source into the system, which allows the additional protein resulting from the incorporation of Canavalia during the dry season to be used more efficiently. In other words, sorghum helps balance the additional protein provided by the legume.Benefits of incorporating Canavalia in the rest of the farm (Scenario 5) This scenario aims to estimate the benefits of gradually replacing those areas sown with Jaragua grass with an improved pasture, for example, B. brizantha. A maize/Canavalia rotation is used to gradually improve the soil in all areas sown to native pastures undergoing degradation. In the case of improved pastures, energy usually becomes a limiting factor so it is necessary to plant sugarcane to improve the nutritional balance for the better-quality pasture. These two factors make it possible to increase the number of cows (although not their production potential) in comparison with all other evaluated scenarios. With the renewal of the pasture and the incorporation of sugarcane, a stocking rate of 30 cows/farm can be used, with a milk production potential of 3.5 lt/day per cow. Compared with the baseline, this increases milk production by 17% and stocking rate 4.3 times.Net income increases 2.8 times as compared with the baseline. The increase in income can also be attributed to the fact that the income derived from maize production increases because the areas that are replaced with B. brizantha were previously planted to maize/Canavalia. In other words, the maize grown in the area sown to pastures is additional to the area normally planted to this crop on the farm.The results from SWAT modeling show that the incorporation of Canavalia brasiliensis reduces both, the sediment and the water yield by 32 and 10%, respectively. This is related with an important reduction on the surface runoff by 35%. The reduction of the surface runoff is related to improvements on water percolation and water lateral flow and the increment of the evapotranspiration (Table 2 and 3). However there were not obtained differences between using Canavalia brasiliensis as green manure or as forage. These two options have the same effects in terms of water and sediment yields as well as on the other water balance variables (runoff, lateral flow, soil water, percolation and evapotranspiration) (Table 2). Although the total annual water yield is reduced with the C.brasiliensis-based scenarios, there are increments on it during the dry months (figure 2). In figure 3, the difference on monthly water yields between traditional maize rotation and C.brasiliensis rotation is shown. It is worth noting that the effect of Canavalia brasiliensis varies throughout the years as the rainfall varies yearly. The precipitation datasets showed that there is a great variation on annual rainfall (figure 4). The lowest rainfall was registered on 1992 with 493 mm/yr and the highest on 1998 with 1384 mm/yr. During the wettest year the sediment yield for the traditional maize rotation is 70 /ha/yr and for the C.brasiliensis-based scenarios is 57t/ha/yr. In the driest year it was 9.6 t/ha/yr and 4.5 t/ha/yr for the traditional and legume-based scenarios, respectively. Is it feasible to achieve this proposed redistribution of land uses in these scenarios? One prerequisite is stability in the prices of maize, beans, and milk, which helps producers perceive greater economic security to incur in the initial investment that this type of change requires. The aversion of producers to assume the risk implicit in the increase of area planted to crops or the introduction of new crops and pastures was confirmed during the field visit, when producers said that price instability was the principal limitation to increasing the area planted to crops. This was corroborated by the fact that the area on farms dedicated to crops is very similar, regardless of the variations in total farm size. For example, a 17-ha farm and an 8-ha farm will always have 2 ha planted to crops. In farms under 5 ha, the area planted to crops is only slightly less.Another factor that could limit the feasibility of incorporating the proposed changes in these scenarios is the local availability of labor. Contracted labor would necessarily increase from 90 to 384 man-days as compared with the baseline, or the family labor dedicated to agriculture activities would increase by more than 100%.Another factor that could currently be hindering the expansion of the agricultural area and the purchase of livestock are the high interest rates reported by producers. These rates range between 10% and 26% in real terms. As a result, the system never generates sufficient surplus to support higher investments in the future. The effective term is substantially reduced, which especially affects long-term investments in livestock.By expanding the area planted to crops, the stocking rate could be increased on several farms of the Pire river watershed and, as a result, the inventory of cattle available in the area could dwindle. This, in turn, would have an impact on the prices of livestock and would not only curtail the feasibility of Scenarios 2, 4, and 5 but also affect foreseen economic benefits. In this sense, it would be better to improve the birth rate of livestock using better-quality forage, for example C. brasiliensis, and improved pastures, such as B. brizantha.The results from SWAT modeling permit to quantify the environmental effects that the incorporation of Canavalia brasiliensis would have on environmental externalities that are important to society such as sediment and water yields. It is clear that the main benefit of incorporating this legume to the current land use system is that the sediment yields could be reduced. This effect is related with the fact that the legume provides some cover to the soil during the wettest months (September and October) (Figure 2). However this is not the case for water yield 20 . According to the results, the water yield is reduced when C.brasiliensis is either planted as forage or as green manure. This reduction is directly related with a reduction on the surface runoff that is too high and is not compensated by the improvements on lateral flow and groundwater. The reduction on runoff might be explained by the improvement on land cover provided by the legume and by an important increment on the evapotranspiration (table 3) with respect to the traditional maize rotation were the only crop is maize.Although this total water yield reduction, the C.brasilliensis scenarios increase it during the drier months (November to March) where water yield is most important as an externality. The benefits of modifying this externality should be valuated to determine if that increment at the watershed level could be significant if the legume is introduced in several farms.In another hand, the lack of differences between using the Canavalia brasiliensis as a green manure or as forage has to be done with the rainfall behavior. It was simulated that both, the cut of green manure and its posterior deposition on soil surface or the grazing of the legume, occurs after December when the crop biomass is high enough for these purposes. Due to on December the rainfall is minimal; the marginal impact of having a cover crop is insignificant because the soil is not exposed to the impact of rain drops.It was expected that the soil water content might change with the incorporation of the legume as green manure. However there were not changes with respect to the scenario where the legume is grazed. Probably the contribution as a green manure is not big enough to counteract the effect of high temperatures and water deficit. The ongoing field measurements of soil moisture and organic matter in the experimental plots will permit to confirm or reject this ex-ante results. An eventual rejection will provide insights for calibrating the model for future ex-ante analysis.In consequence, from the farmer perspective, the environmental benefits of incorporating the legume to its current land use system could be only the reduction of soil loss during the rainy season since the effects on soil water appear to be not greater (only an increment of 3%). However these predicted impacts need to be verified during the implementation of the C.brasiliensis-based scenarios in the selected farms. Besides the farm-level environmental impacts the effects of the legume on subsequent maize harvests need to be measure in the field since the incorporation of OM, N and the possible increment on soil water could increment the maize yields.Apart from the farm-level effects, the aggregated effect of having several farms under the C.brasiliensis-based scenarios in the watershed could be greater and significant in terms of soil loss reduction and water yields. For this purpose it is still indispensable to obtain soil data for all existing soil types in the watershed and river flow measurements in order to run and calibrate SWAT at this scale. This step will be crucial to establish the trade off between reducing sediment yields vs. water yields. In case of confirming the potential reduction on total water yields after the incorporation of C.brasiliensis to the production systems, it will be necessary to compare the total benefits of introducing the legume to the system (economic farmer benefits derived from improvements in dairy or maize productivity + society benefits derived from sediment retention) with the cost for the society derived from total water yield reduction. Also it would be necessary to analyze the cost of reducing total water yield and compare it with the value of benefits derived from the increments of water yields during the dry season.In the survey producers expressed that they would be willing to adopt C. brasiliensis as green manure if the use of fertilizers was reduced in 112 kg urea/year (i.e., 51 kg N/ha) and 112 kg NPK/year (i.e.,. Taking into account that legume productivity in this ex ante evaluation was considered to be 2 t DM/ha per vegetative cycle and that this legume presents 20% protein, producers' expectations would be satisfied because this represents 64 kg N/ha (without counting the N fixed through Rhizobium.Regarding the adoption potential of C. brasiliensis as animal feed, producers said that they would be willing to incorporate this forage into their systems if the daily milk production increased by 1.95 kg/cow during the dry season. If Scenario 1 (baseline) is compared with the other scenarios, the incorporation of Canavalia alone increases daily milk production, but does not succeed in meeting producers' expectations. Production barely increased by 0.7 lt/day in Scenario 2, 1.4 lt/day in Scenario 4, and only 0.5 lt/day in Scenario 5.However, on-farm milk production can be increased beyond the expectations of producers by increasing the carrying capacity of farms as result of incorporating other technologies such as sugarcane and improved pastures.This study is framed within a broader experimental study that tries to measure changes in maize and milk productivity when C. brasiliensis is incorporated into the production systems of selected farms in the Pire river watershed in Nicaragua. The data derived from these experiments will allow these same scenarios to be evaluated ex post.Taking into account the interdependences between income and the different characteristics of production systems, the possible variations in the value of several of these regarding those used in the ex ante evaluation could imply changes in the net income of producers-the objective of this evaluation. These characteristics are listed below and should be taken into account when collecting data during the experimental phase: (a) Increase in maize productivity per ha, due to increases in biomass caused by the incorporation of C. brasilensis as green manure. This study did not assume any increment on maize productivity after incorporating the legume into the soil. (b) Contribution of N made by C. brasilensis. This study assumed a legume production equivalent to 2 t DM/ha, with 20% protein. (c) Frequency of planting of C. brasiliensis necessary to maintain the increases in maize and bean productivity over time. This study assumed that it was necessary to rotate the legume with maize every year. (d) The amount of N supplied by C. brasiliensis that is really tapped by the crop. The study assumes did not discount from the total N contributed the part that may be lost either by leaching or volatilization.Maximum milk production potential of cows on selected farms. This study estimated that these cows would reach a maximum production of 4.4 lt/day with better-quality feed using C. brasiliensis and sorghum.In relation to the ex-ante environmental analysis the results may vary as some input data could change after experimentation and ex-post measurements. These data is related with the following variables:(a) Soil characteristics for the different scenarios: Saturated hydraulic conductivity, organic matter content, organic carbon, available water content and bulk density. Any variation on these parameters will affect the water balance.(b) The real estimation of % of residues remaining on the soil surface after cutting the C.brasiliensis. This will affect specially the surface runoff and sediment yields.(c) Any improvement of maize biomass after the incorporation of the legume as green manure. If the biomass is increased it could reduce the runoff.The improvement on data and a hydrological modeling at the watershed scale will permit to determine accurately the impacts on water and sediment yield in order to establish the trade off between these two environmental externalities derived from different land use scenarios. Family members (no.) 2 1.0 Dedicated to agricultural activities (%) 65 Dedicated to livestock production (%) 35 Contracted (no.) 3 0.19 Dedicated to agricultural activities (%) 100 Dedicated to livestock production (%) 0 1 Same area used (i.e., the same lot) to plant maize and beans. 2 Generally the head of the household. 3 For agricultural activities related to the planting, cleaning, or harvesting of maize and beans. There is now little doubt that the climate is changing and will continue to change. Global Circulation Models (GCMs) all point in the direction of higher mean temperatures and changes in precipitation regimes, indicating that traditional coffee growing regions may disappear and new regions may appear. For sustainable coffee sourcing, participants of the global coffee supply chain need to have an estimate of where coffee will grow in the future and how the suitability of these areas will be. The objective of this paper is to show how coffee production areas change under progressive climate change. The impact of climate change on coffee (Coffea arabica) is assessed.The results of the present study are part of a private-public partnership project called AdapCC (www.adapCC.org) of the \"Deutsche Gesellschaft fuer Technische Zusammenarbeit\" (GTZ) and Cafedirect, a UK-based fair-trade hot-drink company. The ppp project focused on four coresourcing areas in Latin America (Piura in Peru, Nicaragua, Chiapas and Veracruz in Mexico). In continuation the results of the Nicaragua study are presented.The methodology applied was based on the combination of current climate data with future climate change predictions from 4 global circulation models for 2020 and 18 models for 2050.The data of the current climate and the climate change was used as input to Maxent, a crop prediction model. The evidence data used for Maxent were compiled from existing databases, scientific publications, expert knowledge, and Google Earth. The analysis focused on the specific municipalities that were of interest to the regional project partners and provide predictions of the future climate and predictions of the suitability of current coffee-growing areas to continue growing coffee by 2020 and by 2050.In Nicaragua the yearly and monthly rainfall will progressively decrease and the yearly and monthly minimum and maximum temperatures will progressively increase by 2020 and by 2050. The overall climate will become more seasonal in terms of variation through the year in temperature with temperature in specific municipalities increasing by about 1.0°C by 2020 and by about 2.3°C by 2050. In contrast, seasonality of the climate will not change in precipitation with the maximum number of cumulative dry month staying constant at 6 months. Precipitation for specific municipalities will decrease 70 to 100 mm by 2020, and 100 to 130 mm by 2050. The current coffee-growing areas that are today highly and moderately suitable will equally become significantly less suitable by 2020, although there will be some areas that become more suitable by 2020. By 2050 there will be further decreases in suitability to as low as 30 -50%. With progressive climate change, areas at higher altitudes will become more suitable for producing coffee. The optimum coffee-producing zone is currently an altitude of 1200 masl, by 2020 the optimum altitude increases to 1400 masl, and by 2050 increases further to 1600 masl. Increasing altitude compensates for the increase in temperature. Between now and 2020 areas at altitudes around 800 masl will suffer the highest decrease in suitability and areas around 1600 masl the highest increase in suitability. By 2050 the corresponding altitudes will be 1000 masl and 1700 masl. The results show that the change in suitability as climate change occurs is site-specific. There will be areas that become unsuitable for coffee, where farmers will need to identify alternative crops. There will be areas that remain suitable for coffee, but only when the farmers adapt their agronomic management to the new conditions the area will experience. Finally, there will be areas where today no coffee is grown but which in the future will become suitable. These areas will require strategic investments to enable them to develop for production of coffee. Climate change brings not only bad news but also a lot of potential. The winners will be those who are prepared for change and know how to adapt.Jarvis, A., Ramirez, J., Guevara, E., Zapata, E.There is now little doubt that climate change is a reality to which the world must adapt to. Predictions show that climate change will bring both opportunities and challenges for the agricultural sector, although most crops will suffer reductions in productivity with temperature changes > 2 o C. We present analyses on the impacts of climate change on banana production systems.First, we query the likely impacts on banana production sites using 18 global climate models (GCMs) for the year 2050 derived from the 4 th IPCC assessment report. All regions with banana production suffer increase in mean annual temperature within the range of 1.5 -3.2 o C, with West African countries suffering the highest temperature increases. Precipitation changes are highly variables, with Carribean countries suffering significant reductions (>100mm less rainfall per year), whilst East Africa, South Asia and Ecuador having significant increases (>100mm). We also present decadal changes in growing environments for the world's major producing countries, demonstrating different fortunes for countries such as Cuba (significant drying trend) versus Colombia (steady increase in precipitation).Second, we apply broad adaptation models (EcoCrop) for banana under current and future conditions. We show significant losses in climatic suitability for banana occurring in many lowland areas of Latin America (e.g. Amazon, Venezuela) and Africa (coastal West Africa), whilst suitability increases (but with high levels of uncertainty) for many sub-tropical zones (South Brazil, Australia, China) and coastal zones of Ecuador, Peru and Colombia. On average, global suitability for banana increases by 6%, but many of these gains occur in regions with low density of banana production.Third, we analyse the impacts of climate change on potential climate-induced disease pressure for black leaf streak (black Sigatoka), and present some good news for banana producers currently losing productivity to this harmful disease. Almost all major banana producing regions become less impacted by black leaf streak as maximum temperatures in the hottest months exceed the heat thresholds of the fungus. The only areas negatively affected are in Southern Brazil, south-east Paraguay, northern Vietnam and central Myanmar.Finally, we show some adaptation pathways that the research and production communities might take to adapt banana production to changing conditions. We develop a matrix of significant constraints that must be overcome in the future if banana production is to be sustained, or indeed enhanced if the opportunities that climate change presents are exploited fully. Keywords: climate change, banana, adaptation, suitability, black leaf streak.Hay ahora muy pocas dudas de que el cambio climático es una realidad a la que el mundo debe adaptarse. Las predicciones de la comunidad cientifica muestran que el cambio climático traerá tanto oportunidades como retos para el sector agropecuario, especialmente considerando que muchos cultivos sufrirán reducciones en productividad si los aumentos de temperatura llegan a más de 2ºC. Presentamos un análisis sobre los impactos del cambio climático en los sistemas de producción de banano.The 4 th Assessment of the IPCC (IPCC, 2007) concluded that there is now no doubt that humans are affecting the climate. The report outlines how the climate has already changed over the past 100 years, in some cases quite significantly, and provides the latest results of modelling of the global climate system to predict the likely expected changes over the coming century. Depending on how rapidly the world reacts to the climate change crisis, temperatures are predicted to increase by as much as 6 o C on average across the globe to 2100. The implications of such changes are widespread, affecting almost all sectors of the economy. Regardless of whether the change be 2 o C or 6 o C, the various sectors of a country must address the problem by adapting the means by which they operate to maintain or enhance productivity in the face of change.Agriculture is among the most vulnerable sectors of the economy to climate change due to its very direct reliance on the climate for productivity. The IPCC report suggests minor increases in productivity for a handful of well-studied major crops so long as temperatures do not rise more than 2 o C. Given the current evidence, and the latest state-of-the-art global climate models (GCMs), it is highly likely that by 2050 temperatures will have increased by an amount greater than 2 o C. The picture is therefore fairly bleak for many major crops, however we still know very little about the expected changes in productivity, especially for crops that come after the big 4: maize, wheat, barley and rice.In order for society to take measures in adapting to climate change, it's important to have some understanding of what you are adapting to. For that, we rely on GCM predictions of future climate, which come with inevitable uncertainty. Here we provide an analysis of the best-bet impacts and implications of climate change on the banana sector globally, focussing on two specific aspects: productivity and black leaf streak disease prevalence.The analysis is comprised of four stages:1. Compilation of expected changes in climate for current banana production zones 2. Niche-based mapping of suitability change for banana 3. Analysis of impacts of climate change on prevalence of black leaf streak 4. Analysis of some possible adaptation pathways to dealing with climate changeThe IPCC 4 th Assessment report was based on the results of 21 global climate models (GCMs), data for which are available through an IPCC interface (www.ipcc-data.org), or directly from the institutions developing each individual model. The spatial resolution of the GCM results is however inappropriate for analyzing the impacts on agriculture as in almost all cases grid cells of over 100km are used. This is especially the case in heterogeneous landscapes such as those found across the Andes, with just one cell covering the entire width of the range in some places.Downscaling is therefore needed to provide higher-resolution surfaces of expected future climates if the true impacts of climate change on agriculture are to be understood. Two approaches are available for downscaling; 1) re-modeling of impacts using regional climate models (RCMs) based on boundary conditions provided by GCMs to generate climate surfaces with over 20km of spatial resolution for specific regions, or 2) statistical downscaling whereby resolution is reduced using interpolation and explicit knowledge of fine-scale climate distribution and correlations between major climatic variables. Whilst the use of RCMs is more robust from a climate science perspective, it requires significant re-processing, and RCMs are only available for a reduced number of GCM models. It is only realistic to include 1-2 RCMs in any analysis (due to the high processing requirements), and so in the context of this project the use of an RCM for only one GCM would result in the inability to quantify uncertainty in the analysis, which we feel is inappropriate. We therefore have used statistically downscaled data derived from a larger set of GCMs.We downloaded and re-processed IPCC 4 th Assessment climate change results from 18 of the most reputable GCMs (Table 1) and applied a statistical downscaling method to produce 10km, 5km and 1km resolution surfaces of future monthly climate (maximum, minimum, mean temperature and precipitation) for the time period representing 2020 (for 4 models) and 2050 (for 18 models). In both cases the emissions scenario A2a (business as usual) has been used. The statistical downscaling has been performed using the WorldClim dataset for current climate (Hijmans et al., 2005, available at http://www.worldclim.org) and a spline interpolation technique. Specifically, the centroid of each GCM grid cell is calculated, and the anomaly in climate assigned to that point. A spline-algorithm is then used to interpolate between the points to the desired resolution. The higher-resolution anomaly is then summed to the current distribution of climate (derived from WorldClim) to produce a surface of future climate and 19 bioclimatic variables are finally derived from monthly downscaled variables according to Busby (1991). The method assumes that the current meso-distribution of climate remains the same, but that regionally there is a change in the baseline. Whilst in some specific cases this assumption may not hold true, for the great majority of sites it is unlikely that there will be a fundamental change in meso-scale climate variability.In addition to working on changes in the climate baseline we also have available data on year-toyear variability in climate; an important component of climate change which can have significant impacts on agricultural production and food security. We downscaled monthly data from 8 GCMs for each year from the 20 th century through to 2100. Throughout the analysis, the use of 18 GCM models allow the framing of results in terms of the associated uncertainty in future climate.We follow the methodology of Lane and Jarvis (2008) for examining the impacts of climate change on productivity. Physiologically-based mechanistic crop models are available for only a small percentage of the world's crops, and althoguh for banana such models already exists they are not currently applicable worldwide. In the absence of mechanistic crop models, the Ecorop model (http://ecocrop.fao.org/) provides a simple method to evaluate climate change impacts on a wide range of crops, including banana. The Ecocrop model contains information on the edafoclimatic requirements for 1,300 cultivated species considering optimal conditions and limits to adaptation. Ecocrop is implemented in DIVA-GIS (Hijmans et al., 2005) and has been interfaced with monthly precipitation and temperature data to permit mapping of suitability on a global scale based solely on climate data. We apply the banana ecocrop model for current conditions, and for the 18 future 2050 climatic conditions from the different models. We then calculate an average future suitability, and by looking at the difference between future and current adaptability we report a range of basic descriptive statistics on changes in adaptability in different countries and regions of the world. We also report uncertainty in our projected changes by calculating the coefficient of variation (proportion of the standard deviation in the predictions' average) in adaptability change between the 18 different climate models.We follow the methodology of Ramirez et al. (this volume) for analysing the changes in climatically-induced disease pressure from black leaf streak disease (BLS, or black sigatoka). Ramirez et al. (this volume) generated statistical models for predicting BLS disease pressure through analysis of field experimental data. We apply the same model to future climate conditions, and calculate the future level of BLS disease pressure for each of the 18 GCM future climates for 2050. Like for Ecocrop, we take an average and report the change in disease pressure through descriptive statistics for countries and regions, and also classify uncertainty using the coefficient of variation between GCM model predictions.Examining the yearly time-series of change, the climate change trajectories of some banana producing regions for specific countries can be seen (Figure 1). On the whole the trends are fairly gradual and linear, although for some countries there is significant yearly and decadal variability in climate (e.g. Vanuatu). Other countries have non linear changes, for example in Japan where it gets slightly dryer before the trend changes towards increase in precipitation around 2050. The results of the Ecocrop model demonstrate an average increase of 6% in climatic suitability for bananas globally. The average increase in suitability for the ten highest producing countries is also 6%, though it is sub-tropical banana growing regions in China, Brazil and India that contribute most to this increase. Thailand and Colombia both suffer slight decreases in suitability (-5% and -2% respectively). The biggest winners are in Sub-Saharan Africa, especially Kenya (+23%), Rwanda (+23%), Uganda (+24%) and Ethiopia (20%), and sub-tropical Latin America (e.g Paraguay with an increase of 26%). The biggest losers are in the Caribbean (e.g. Barbados with -9% change), SE Asia (e.g. Cambodia with -6% change) and West Africa (e.g. Togo with -8% change). The changes in banana suitability are shown as a map in Figure 2. There is considerable variability in changes within countries (Figure 3). All regions of China, Burundi, Taiwan and Vanuatu experience increases in suitability, whereas in Venezuela almost all regions suffer decreases. The remainder of countries tend to have a range of impacts, with some regions increasing in suitability and others decreasing. A range of adaptation pathways become evident from the above results. The pathways are largely site-specific, and depend on the current banana cropping systems and the predicted changes. In simple terms, the following three options, in order of severity, would be required: 1. Change crop management 2. Varietal change 3. Migrate to different zone or change crop With increasing magnitudes of expected changes, different severity of adaptation measures are needed. As a worst case resort banana producers may need to relocate their crop, or change to a different crop altogether. However, in some cases these pathways may be designed to maximise the potential rather than mitigate negative changes.Cross-cutting across these three types of adaptation is the potential of research and development to provide novel responses to climatic changes. These may lie in the development of new management regimes, promotion of precision and site-specific agricultural approaches that match the management to site-specific edafo-climatic variability, or in technology development, including breeding of new varieties with novel biotic and abiotic traits.We present here the results of a modelling exercise to understand the impacts and implications of climate change on banana productivity and black leaf streak disease pressure. We show that climate change is not all bad news for the banana sector, with average increases in crop suitability, and significant decreases in black sigatoka disease pressure for many tropical countries. However, there are some hotspots where significant problems are likely to be experienced, requiring quite significant adaptations in order to overcome the challenges of climate change.The analysis shown here looks only at two components of the banana production system: adaptability and black leaf streak. Many other facets of the production system have not been analysed and may have even greater significance to the banana sector. No matter what the predictions say, change is inevitable. The banana sector must continually adapt to changing biophysical conditions as well as social and economic changes which have plagued the banana sector in the past decades and will continue to do, most likely at a faster rate than climate change. Nevertheless, fundamental changes in the climate baseline to 2050 will require fundamental changes in production systems, and will likely have profound impacts on the global balance of production, especially with the increasing role of sub-tropical banana production.This paper begins by examining the role of crop insurance in assisting agricultural investment, indicating the potentials, opportunities and pitfalls. While traditional approaches to crop insurance have been lacking, new approaches involving index-insurance weather events linked to yield shortfalls are being tested around the world. To date, these new approaches have largely neglected the potential of site-specific crop growth models that can be linked to specific weatherbased insurance. That is the major focus of this paper. Crop growth simulation models are linked to a weather generation process to estimate risks of dry bean production for different locations in Honduras. The method is demonstrated by linking site-and soil specific plant growth with drought insurance that is risk-rated to cover drought risks for dry beans. Climatic risk is a major problem for poor farmers in the tropics. The fear of climatic risk hinders investment that drives development and so presents a significant obstacle to changes that might otherwise enable people to climb out of poverty. Equally important, just as individual households are beginning to escape the gripes of poverty, weather shocks can and do stop that progress. The literature that describes these poverty traps that are linked to risk is growing (e.g. Stephen Dercon's edited book Insurance Against Poverty). Farmers adopt a range of strategies to cope with risk, including avoidance, management or risk-sharing. Possibly the most widely used method of risk sharing in the developed world is formal insurance. Yet formal insurance is used by very few poor farmers in the developing world, who are obliged to rely almost entirely on less effective mechanisms of risk avoidance, or risk sharing through informal arrangements and selfinsurance.Farmers face crop losses due to drought, floods, frosts, fire, pests, theft and other hazards. Of these, the most prevalent are weather risks that affect hundreds of millions of poor farmers each year. Nearly 80% of farmers interviewed in Ethiopia cited harvest failure caused by drought, flooding or frost as the event that caused them most concern (Dercon, 2002). Pandey et al. (2001) revealed a huge drop in income for rice farmers in Orissa as a result of drought. A review of chronic rural poverty, (Bird et al., 2002) identified exposure to risk as a major modifiable reason for chronic poverty, noting the widespread evidence that correlates risk with poverty. Dercon (2005) has numerous chapters that demonstrate a strong link between shocks and poverty. Increasingly studies are finding that the poor in developing countries are a transitory group that moves in and out of poverty on a regular basis. Shocks from a wide range of risk related events stop progress and send households who are making progress back to the poverty ranks. These poverty traps justify some type of public intervention using both equity and efficiency criterion. As Dercon concludes \"social protection may well be good for growth.\" [page 2, Dercon (2005)].Self-insurance is a common method of coping with risk Farmers are well aware of the detrimental impacts of risks, and instinctively adopt a range of informal self-insurance methods (Table 1). While these methods have been documented to reduce the adverse impact of weather risks on poverty (Webb and Reardon 1992;Morduch, 1999), they do so by spreading investment internally without reference to the actual risks involved, and consequently dampen capital formation through inefficient use of resources (Hazell et al., 2000). Excessive fear of weather hazards also prevents poor farmers from taking reasonable risks that might otherwise lead them out of poverty. Many case studies show how the consequent chronic under-investment holds back farming systems from development (Webb andReardon, 1992 andRosenzweig andBinswanger, 1993). Table 1. Self-insurance measures and their impact (Skees, 2003 andDercon, 2002) Self insurance measure How it acts as a barrier to developmentDiversification is often recommended however it is not beneficial if it involves diversifying away from the most productive practices. Accumulation of financial reserves and stocks on farm Financial reserves are not re-invested but are stored as a preventative measure.This is effective for independent risks, but less so for correlated risks when there is high competition and low wages.Selling assets (e.g. cattle)Selling of assets when everyone is trying to sell lowers prices and it may involve a net loss.Avoidance of investment (e.g. fertilizing)The fear of losing an entire crop due to unfavourable weather holds back farmers from costly but more productive investments (such as fertilizing).Formal insurance is a more effective coping mechanism Insurance enables farmers to take reasonable investment risks, such as buying fertilizer in areas afflicted by occasional drought. By means of indemnity payments farmers can survive periods of financial stress that might otherwise ensue when a hazard strikes. Formal insurance has been used for centuries to manage catastrophic risks by means of a transparently determined estimate of the risky event. This transparent and mutual sharing enables risk to be spread more widely, far beyond the immediate community where the event is sustained, resulting in more sustainable and affordable insurance. The potential impact of insurance relates to two factors: the degree of improvement that insurance is likely to bring to individuals and the number of individuals who are likely to benefit. A well-designed insurance scheme has several major advantages over selfinsurance:• Protection of general capital more rapidly enhancing the opportunity to move to enterprises with higher mean incomes, • After establishment the scheme is self-financing: mutual benefit occurs to both insurer and insured, • Insurance is a tried-and-tested means of encouraging reasonable risk taking while discouraging excessive risk, • Insurance is progressive; insurers can increase the range of hazards they cover as knowledge accumulates about likelihood of events, • Insurance is an effective method for communicating knowledge about risk through prices that reflect the best available scientific knowledge, and improved knowledge about risk can lead to better management practices and • Insurance can help smooth incomes and reduce the frequency of falling into a poverty trap for those who are generally forced to sell off productive assets when there is a shock.Paradoxically people in the developing world who are most seriously affected by risk, are poorly served by insurance (Wenner and Arias, 2003). Insurance nonetheless has been used to manage risk in developed countries for centuries, apparently to mutual benefit. One assumption is that weather insurance does not exist in developing countries because the cost reduces the demand from poor farmers with little surplus. However an evaluation of a micro-insurance scheme by Ahuja and Jutting (2004) concluded that it is not a problem of affordability but organization that could be overcome partially by incorporating insurance into established micro-financial services. Sakurai and Reardon (1997) also found that the demand for formal insurance is likely to be high where alternative self-insurance mechanisms are not adequate for reducing vulnerability. Furthermore, the literature on use of informal credit and the accompanying high cost to the poor suggests that the poor may be willing to pay for effective insurance. Several governments offer crop insurance schemes to farmers to overcome apparent market failure (Table 2). To date most remain either fully government owned or heavily subsidized, mainly due to the fact that no private insurance company considers it prudent to cover such widely correlated risks. Miranda and Glauber (1997) and Skees et al. (1999) add that one of the main reasons for the failure of publicly owned insurance schemes is that they offer either multiple peril or all risk programs, for which indemnity payments are unsustainable on the basis of premiums alone. Administrative problems have therefore contributed to a generally abysmal history, in response to which many governments and private companies decline to invest. Hess (2003), Stoppa and Hess (2003) and Wenner and Arias (2003) In almost all cases, insurance has failed not because of the principle but because of technical and administrative problems. The most common problems are described briefly below:Technical problems • Information asymmetry between insurer and insured: since farmers know more about the likelihood of crop failure on their farm than the insurer, this asymmetry in knowledge will deter development of effective crop insurance. Insurers cannot write policies unless they can estimate, with reasonable accuracy, the likelihood of the insured event. This requires reliable and accurate historical data that are lacking in many poor countries. In most cases accurate estimation of insurable events is not possible and remains a major reason for failure. • Adverse selection and moral hazard: insurance schemes should not preferentially encourage farmers in high-risk situations to buy policies (adverse selection). Nor should policies insure unwise behavior (moral hazard). Historical data are required to identify high-risk farmers and independent estimates are needed to reduce moral hazard. Once again the lack of data is a major obstacle.• Corruption and political bias: several agricultural insurance schemes were initiated by governments and are either damaged by political bias or outright corruption. An example of this has been the corruption of local insurance officials in a Mexican scheme (Wenner and Arias, 2003). • High administration costs: early schemes for pro-poor agricultural insurance were seriously hampered by high administrative costs to oversee contract preparation and payment. Individual contracts are unworkable for small farmers and validation of individual claims is expensive and impracticable. • Lack of Reinsurance: Reinsurance is essential to the long-term viability of nearly all multiple peril crop insurance schemes since risks such as drought risk are highly correlated creating large losses for the insurer. Without Reinsurance multiple peril and geographically concentrated schemes are vulnerable to collapse (Miranda and Glauber, 1997). The Reinsurance market is extremely thin in this respect and offers little support. Alternative financial instruments have been proposed (Goes and Skees 2003) but their use to date has been limited due to many of the fundamental problems associated with organizing abusefree crop insurance schemes. • Lack of organizational infrastructure: a major shortcoming of existing insurance has been its inability to deliver support to poor farmers, who are, by definition, also deprived of access to finance and information technologies. Given high fixed administrative costs, larger policy holders (i.e., farmers of larger operations) are more likely to benefit the most from traditional crop insurance schemes.Whilst it is crop loss that farmers wish to cover, it is more secure for the insurer to offer protection against weather events. Standard and independent procedures for weather data collection exist and hence it is easier to obtain the likelihood of insured events that are likely to create large crop failures. Weather markets took off in the 1990s in the North American energy sector (Turvey, 2001). Given the obvious relationship between weather and crop yield, agricultural economists began to explore the potential for weather insurance to manage agricultural risks. The principles of weather insurance are summarized in box 1 and explained in detail in Hazell et al., (2000); Skees (2000); Varangis, (2001); Skees et al., (2001) and Bryla et al., (2003). Although there remain many challenges to be resolved, weather insurance has the potential to address many of the problems faced by formal insurance as discussed below. We summarize below the potential advantages and disadvantages to a weather based system, together with possible solutions.• Reduction of the information asymmetry problem: quantitative independent estimates of probabilities of weather events at specific sites reduce the risks to insurers, who can consequently lower the cost of premiums to policy-buyers. • Reduction in adverse selection: premiums are based on the most accurate estimates of sitespecific probabilities. While some risk of adverse selection remains where farmers have better estimates of long-term probabilities than the insurer -the risk is greatly reduced. • Moral hazard and corruption: since the trigger for indemnity is unrelated to individual farmer decisions, moral hazard is avoided and corruptions greatly reduced. • Administration costs: the trigger for indemnity payments is an easily measurable weather event, rather than yield loss. This removes the cost of inspection and loss adjustment. Cost can be further reduced by using standard unit contracts (Skees et al., 2005). • Reinsurance: while weather index-insurance does not remove the correlated risk, such contracts offer new possibilities for sharing these types of risks. Jaffee and Russell (1997) argue that on a long-term scale, catastrophic risk sharing is viable. Spatially distributed historical records allow risks to be spread across uncorrelated areas. The geographical specificity of events allows alternative reinsurance schemes to be exploited. • Ability to use existing organizations to access the rural poor: relaxing the need for direct inspection opens up new options for distribution. One of the most widely advocated options is to offer such index-insurance through established micro finance institutions (MFI). In fact there are mutual benefits between the insured and MFI, since high climatic risk is a significant obstacle to credit being offered to farmers (Hess, 2003, Skees 2003). Other options include distributing the insurance via farming co-operatives (Black et al., 1999) or disaster relief organizations (Goes and Skees 2003) Challenges [and solutions]• Lack of historical data: historical data, which is largely unavailable in poor countries, is essential to obtain the frequency of weather events. [Where such data does not exist it can be simulated using grid based weather simulation models.] • Weather must explain variation in yield: while it is an accepted fact that weather explains much of the variability of crop yield, the quantitative nature of this relationship must be established for it to provide a basis for insurance (Skees et al., 2005). [This relationship can be quantified by means of crop growth simulation models.] • Basis risk: temporal basis risk occurs when in total there has been a sufficient amount of precipitation, but the timing has been unfavourable and therefore crops have suffered. Spatial basis risk is whereby the rainfall station being used to administer payments registers adequate precipitation, but in fact a farmer didn't experience the registered amount of rainfall. [Spatial basis risk is greatly reduced by offering site specific insurance.] • Secure measurement: the insurer requires independent and reliable data regarding indemnifiable events. [This requires tamper proof weather stations; an option is for these to be put in place by the insurance provider. This also has the dual purpose of improving the network of climatic data in the region.]The discussion above should make it clear that one needs site-specific weather insurance to offer the most effective risk-sharing scheme. Firstly the evidence is compelling that insurance against weather risks is needed. Secondly a major obstacle to development of sound index-insurance products is the basis risk represented by non-specific schemes. Finally this paper demonstrates a site-specific and soil-specific method of estimating drought risk for bean farmers in Honduras.For a given site and soil the method estimates the frequency of drought events that are associated with crop yield loss and the premium that would be required to indemnify, given the frequency of the event. The basis of this relationship is explained in Box 1.The method breaks down into four steps:1. Establishing a transparent insurance process that relates indemnifiable events, indemnity payments and premiums 2. Generation of weather data for specific sites, from which to determine frequencies of events 3. Relating weather events to their likely impact on crop yield by means of the crop growth simulation model: DSSAT 4. Relating likely yield loss to readily-determined weather indices Box 1: Principles of weather insurance The insurer offers protection against a defined weather event, normally a hazard such as drought, frost or excess rainfall. Since much more is known about the weather than its consequences, these events are of more certain frequency, and provide the basis for policies against which farmers or their advisors can take out policies. The premium relates to the probability of the event and the size of indemnity according to the general formula (Brown and Churchill, 1999): Premium = f (Indemnity. Probability of occurrence) While the relationship between premium and indemnity must be determined solely on the basis of probabilities of events (viz. their expected frequency), certain parts of a scheme are adjustable to suit both parties. The trigger for indemnity payment and its size can be adjusted -through the strike event -to suit the preferences of individual customers. For example, a farmer who believes he can manage all but the most serious events may choose a contract with low premium that pays indemnities only against the most exacting trigger. Conversely, a farmer who is in a more vulnerable situation may prefer a contract that pays smaller indemnities more frequently; or against larger premiums. Insurers may reduce payments to be proportional.Honduras was chosen as an exploratory study site. This country is often hit by droughts that have a serious impact on dry bean crops that are important source of food and income for poor farmers. It is estimated that 16 million kilograms of dry bean yield -more than one third of expected yields -were lost as a result of the drought in 2001 (CEPAL, 2003). This study therefore pursues a bean specific (activity specific) and site-specific rainfall insurance scheme.Insurance premiums were estimated for six locations distributed throughout the bean-growing region of Honduras, as shown in Figure 1. Step 1: Establishing an insurance process In the proposed insurance process the insurer agrees to indemnify policy-holders in the event of drought. A drought insurance premium is established for a particular location on the basis of the average indemnity payment that is expected at the location. This is estimated on the basis of the frequency of the drought events. In any given year, payment is triggered by a drought event, or 'strike'. Drought is deemed to occur when the rainfall falls below a pre-determined 'strike' level. Rainfall is expressed as an index that is weighted to account for the temporally variable effects on crop yield. The size of indemnity payment is scaled according to the severity of drought, up to a maximum limit determined by the insurer. The strike and maximum indemnity may be adjusted by the insurer to improve the viability or attractiveness of the insurance scheme.Step 2: Generating site-specific weather data An insurable event is normally defined on the basis of historical data. Such data does not exist for Honduras (or many other areas in the developing world) at the spatial resolution required, so we start by generating pseudo-historical data using the MarkSim weather-generating model, designed specifically for tropical weather systems. (Jones et al., 2002). MarkSim is capable of simulating daily rainfall and temperature data for any point in the tropics at a resolution of 10 arc minutes (approximately 17km² in the Central American region). Technical details can be found in Jones and Thornton (1993), Jones and Thornton (1999), Jones and Thornton (2000) and Jones et al. (2002). In this study MarkSim is used to simulate long series of climate in selected grid cells over Honduras. The simulated data is then used as input for the crop simulation model and the long data series' are used to calculate recurrence probabilities.Step 3: Establishing an activity specific relationship between rainfall and yield While payment is triggered solely by the weather event, this event has to be defined in a way that reasonably represents the likely degree of yield loss. Accordingly, the weather data is transformed by use of a crop simulation model into weighted indices that incorporate the following factors:• Effect of crop phenology: crop phenology influences the sensitivity of final yield to rainfall shortages at specific times. This is taken into account by weighting rainfall during the growing season according to the degree of sensitivity. The heaviest weights are assigned to periods when the crop appears most sensitive to rainfall deficits. • Effect of soil variation: the crop-weather system also exhibits significant interactions with soil water, through the varying ability of soils to store and release rainwater. This is managed through soil-specific rainfall weighting schemes and contracts (hence premiums) to reflect the different levels of risk in different soils.Weather data was transformed into likely crop yield variation using the DSSAT model.Technical details of the model can be found in Tsuji et al. (1994) and Boote et al. (1998). This crop simulation model operates on a daily time step and represents crop growth features such as sensitivity to water, soil, climate and crop management. The soil is represented as a onedimensional profile, horizontally homogenous but consisting of a number of vertical soil layers (Jones et al., 2003). Researchers around the world have used DSSAT for over 15 years (e.g. Alexandrov and Hoogenboom, 2000, O'Neal et al., 2002and Jones and Thornton, 2003). In this study DSSAT is used to model the growth of dry bean crops in relation to climatic and soil variations. Cultivar and soil input data for the model were obtained from generic databases that accompany DSSAT. For the purpose of this study, we based simulation on the widely adopted cultivar, Rabia de gato+.Step 4: Relating weather indices to yield loss The sensitivity of dry bean yield to rainfall deficits at different times during the growing season was analyzed by modifying the rainfall data input to DSSAT and observing the effect on simulated yield. Ninety-nine years of daily climate data were generated using MarkSim. For each year a likely planting date was estimated based on the temperature and rainfall data. Sensitivity of the crop to rainfall deficits was assessed by comparing the simulated yields with or without 'droughts' in 10-day windows throughout the crop cycle. The analysis used ninety-nine years of simulated climate files. Weights were assigned to each of the 10-day windows according to their relative influence on simulated yield. Table 3 indicates the influence of crop stage and soil type on sensitivity. Crops were most sensitive to drought during flowering or early grain fill (days 30 to 50). Sandy soils were more sensitive to short-term drought because of low water holding capacity. Figure 2 shows the results of simulation from site SIG. The lower than average yields (bar down) correspond partially with lower than average weighted precipitation (dots). When the weighted precipitation index drops below the rainfall strike, payment is made at a level proportion to the discrepancy, up to a maximum payout. (in this case the maximum payment is $100 for a maximum deviation value of zero weighted rainfall). The premium is related to the average payout. For the strike of a 60% negative deviation from the average rainfall, it is estimated at $1.44/ha. This example used a shallow sand soil for simulation and consequently the strike is probably conservative, since weighted rainfall deficit triggers payment only two times, or 1:50 years. After consultation with users the strike would probably be adjusted to allow more frequent claims, against which premiums would increase.Figure 2. Design of insurance for a shallow sand soil at site SIG (note: only lower than average yields and weighted rainfall are shown). For the same soil type, the premiums for six sites within Honduras indicate a more than 10-fold variation in risk (Figure 3). For a strike of less than 65% of the average rainfall, premiums varied between a low of $1.44/ha at SIG to a high of $16.12/ha at SAN. An area average scheme would charge a pure premium of approximately $7.50/ha plus whatever was deemed necessary to cover the uncertainty created by spatial variation. Such a scheme would be unnecessarily expensive and it would also encounter the risk of adverse selection. Farmers at location SAN would be much more willing to pay a premium of $7.50 /ha, since they would be more likely to claim more in indemnities than what they would pay in premiums. Conversely farmers at location SIG may consider this premium unreasonable.The impact of rainfall deficits is strongly influenced by the water holding capacity of the various soil types. In all cases weighting the rainfall improved the correlation between rainfall variation and simulated yield, suggesting that the modelling process improves the representation of variation of drought effects likely to be experienced on various soil types. In the case of sandy soils, correlations remained at only 35%, even after weighting, illustrating the risk of basing insurance premiums on rainfall alone. The indexing method effectively 'normalizes' rainfall on the basis of simulated influence. While this improves the relationship between rainfall and likely yield variation, it also re-scales variation in ways which may call for subsequent adjustment of triggers. Accordingly, strikes may be varied to modify the insurance scheme for soils expected to be of low or high risk. Rainfall indices for clay soils -which have a high available water capacity (AWC)-tend to be conservative. While the correlation between weighted rainfall and simulated yield is good (~60%) -many yield-reducing events miss the trigger because weighting overdampens the influence of drought. In such cases, it would be appropriate to modify the strike to increase the frequency of payment. Silty loams appeared insensitive to short-term rainfall deficits. Indices for growing season rainfall correlated poorly with simulated yield, suggesting that precedent soil moisture is most important for soils with very high AWC.MarkSim has been validated using standard statistical tests, including the ability to simulate monthly averages, variance and wet and dry spell persistence. (Jones and Thornton, 1993). In this case MarkSim was verified by comparing simulated crop specific weighted rainfall data with long-term observations for two sites where data is available. 74 years of historical precipitation data was obtained for Palmira (Valle, Colombia) and 40 years for Guatemala City (Guatemala).The same number of years were simulated for the corresponding locations. Data was compared for the bean growing season only, based on the likely planting date for the primera planting season. This was estimated for both observed and simulated data sets by assuming that planting took place on the first day following a five-day cumulative rainfall of 50mm between the 1 st of March and the 31 st of June. Once the planting date was identified the precipitation-weighting scheme was applied to both modelled and observed data and the cumulative frequency distribution curve was obtained as shown in figure 4. MarkSim appears to simulate well the frequency of low weighted rainfall events for Palmira. The Kolmogorov Smirnov statistic does not indicated a significant difference between sample populations (DeGroot, 1975). Closer inspection however reveals that some discrepancies occur at lower rainfall values that are likely to be of importance to insurers. Taking the weighted precipitation value of 15mm or less for Palmira, MarkSim data suggests that this has a probability of approximately 0.1 (i.e. once every ten years) however the observed data reveals a probability of approximately 0.15 (i.e. once every six or seven years). Similarly the data for Guatemala City illustrate that there are marked discrepancies in the cumulative frequencies of the low values. The simulated frequencies are generally higher than the observed. The MarkSim data suggest that a weighted rainfall value of 40mm or less has a probability of approximately 0.12 (once every eight years) whereas the observations illustrate that it is more likely to be a probability of 0.25 (once every four years). This is bad news for an insurer relying on MarkSim to set premiums. It will almost certainly mean that the uptake of the scheme by farmers will be well accepted but that premiums will eventually rise. More work is required to attach error values to MarkSim generated weather data for each location; this would then allow insurers to reflect the level of accuracy in the site specific premium prices. Furthermore verification of the low yield years identified by the weighted rainfall index is necessary, for this corresponding observed yield data is required. This study demonstrates the potential application of weather generation and crop simulation models to design site-specific and soil-specific drought insurance for less developed countries. Such areas are unlikely to possess sufficient historical data on which to base conventional methods of insurance. The results can be included in weather index-insurance schemes that relate trigger events, indemnities and premiums according to best estimates of drought frequencies and their effects. This method could be repeated for any site in the tropics and for any crop for which DSSAT has been validated. High levels of basis risk are a major source of uncertainty in weather-based insurance. This research demonstrates that spatial variation can introduce substantial basis risk even within the relatively short distances across the bean growing areas regions of Honduras. Sample premiums varied at least ten-fold between sample sites within the bean growing area of Honduras. Insurance schemes that do not include this variation in their estimates expose both insurer and insured to unnecessary serious basis risk. Additional basis risk was identified due to the interaction between climate and soil, in particular due to the different water holding capacities of soils.Although this exploratory study has illustrated how use of simulation models may be able to address some of the problems outlined in the introductory review, many challenges remain. These include:• Further verification of model output: for an insurance product based on simulated data the issue of verification if of great importance, and further verification is needed of the accuracy of MarkSim to accurately simulate frequency probabilities. • Assigning confidence levels to simulated data: future work is required to assign confidence values to account for uncertainties in model estimates. • Mechanism to update premiums during mid-season: it has been suggested that weather index insurance should be sold at the latest up to two weeks before the crop cycle begins. This may prove to be a major limitation for farmers, who may not have funds available to purchase insurance before the crop cycle. Mid-season premiums may be preferred for which an appropriate statistical method of updating premiums based on prior events would need to be identified. However, ENSO signals can be strong in Central America and this challenge can create serious intertemporal adverse selection problems. Weather risk may need to be conditioned based upon the ENSO signal. This could significantly increase the premium rates. • Assessing farmer preferences for insurance contract design: farmer preferences regarding contract design, trigger selection, premium cost, indemnity payments, and distribution need to be ascertained and incorporated into the final product. • Distribution methods: the distribution of such index-insurance directly influences the impact the scheme has on poverty alleviation. There is a need to carefully investigate and design a method for offering and distributing the insurance so that it has the greatest impact on poverty alleviation and that if possible to organize the insurance so that it can be used to promote rural development and adoption of progressive management techniques.Agriculture is inherently risky. A review of rural poverty identified exposure to risk as a major modifiable reason for chronic poverty, noting the widespread evidence that correlates risk with poverty (Bird et al., 2002). Production risks include, but are not limited to climatic hazard, which of all the hazards agriculture faces is perhaps the most difficult one for agriculturalists to manage. Drought is the most serious of the natural hazards globally in terms of loss of life, accounting for 44% of reported deaths in the period 1974-2003(EM-DAT, 2004).The mere expectation of drought is sufficient in some cases to reduce agricultural production. Nearly 80% of farmers interviewed in Ethiopia cited harvest failure caused by drought and other natural hazards as the event that caused them most concern (Dercon, 2001). Pandey et al. (2001) revealed a huge drop in income for rice farmers in Orissa state in India as a result of drought. This work is substantiated further by experience from more recent droughts in the region. The impacts of drought extend beyond the loss of production. Sakurai and Reardon (1997) include increases in local interest rates due to a rise in households seeking credit, a decline in farm labor demand, a reduction in local wages due to greater numbers seeking off-farm employment, drops in livestock prices due to distress sales of livestock and increases in food prices coinciding with low financial resources.In this paper we attempt to set the stage for providing crop insurance as a mechanism for poor smallholder farmers to cope with drought. We firstly review the relation between drought and poverty and then explore some of the issues involved in spreading risk by means of crop insurance and the issues of making it available to poor smallholders. We go on to summarize recent developments in spatial information and insurance products. We follow with a discussion of how pseudo-historical weather may be generated to substitute for inadequate, unreliable or insufficient data as input to crop simulation models to derive relationships between specific weather events and crop yield. We briefly illustrate this with a case study or smallholder producers of drybeans in north-central Nicaragua. We conclude by discussing the hazards in designing crop insurance instruments with emphasis on poor smallholder farmers.Drought is a widespread and common natural hazard Although drought is the major cause of crop loss throughout the semi-arid tropics, in this article we shall focus on Central America, with reference to our work to design a drought index on which to base an insurance product for poor bean farmers (Díaz Nieto, 2006 ). Drought is an especially serious problem for small-scale producers, most of whom do not have access to irrigation, for example, in Nicaragua only 8% of the land is irrigated (World Bank, 2001), and almost none of this is in the central-north region where most poor bean growers are located. Droughts cause food and income insecurity through both acute effects and chronic secondary effects. Acute effects are immediate crop failure, which in extreme cases leads to hunger and even starvation. Secondary consequences of drought include increases in local rates of interest due to an increase in the number of households seeking credit and a decline in the demand for farm labor leading to a reduction in local wages due to greater numbers seeking off-farm employment. Livestock also suffer hunger and starvation leading to falling prices due to distress sales. Food prices increase coincidental with falling financial resources available to rural households as sources of income dry up (Sakurai and Reardon, 1997).The rural poor are often, indeed usually, found on lands that are marginal for one reason or another, such as low fertility soils, steep slopes and remoteness. They are especially vulnerable to drought. Large numbers of people are affected. Numerous studies have shown a strong link between risk, vulnerability and poverty (Rosenzweig and Binswanger, 1993;Mosely and Krishnamurthy, 1995;World Bank, 2000;Dercon, 2001). Poor households lack resources with which to absorb the shocks of natural hazards.Even small disruptions in the flow of income can have serious implications for them, so poor farmers commonly use informal and self-insurance measures to avoid risk. As discussed in more detail below, while these measures can help survival (e.g. Webb and Reardon, 1992), most studies conclude that they are not the most effective tools for risk management, since they reduce the impact of a hazard at the expense of more profitable activities (Morduch, 1995;1999;Barrett et al, 2001).The Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) concluded, inter alia, that climate change due to increasing global temperatures would disproportionately affect the poor, who have scant resources to adapt to its effects (Watson et al., 2001). In particular, the El Niño-La Niña phenomenon in the western Pacific is expected to become increasingly frequent and severe. During El Niño events, rains in Central America are much below average so that droughts will become more common and intense in the face of climate change.Many marginal lands in the tropics are used in some form of slash-and-burn management. As populations increase, the slash-and-burn cycle becomes more frequent and typically harvests decrease markedly caused by soil erosion, nutrient depletion, and weed invasion. These problems will become more acute in the face of climate change.Strategies for coping with risk and their effects on livelihoods Most of the modern risk-avoidance measures are not readily available in developing countries, hence farmers in these regions are obliged to adopt traditional informal risk coping mechanisms (Wenner and Arias, 2003) (Table 1). (Source: Wenner and Arias, 2003;Skees et al., 2001;Hess, 2003) Many argue that informal self-insurance measures are a barrier to poverty alleviation and indeed reinforce poverty (Rosenzweig and Binswanger, 1993;Brown and Churchill, 1999;Barrett et al., 2001). The general effect is that traditional risk-coping mechanisms not only sustain poverty but actually hinder development. They do this because risk-averse strategies firstly generally use resources inefficiently and secondly fail to exploit more productive investments and technologies that in the long term would result in more productive systems (Hazell et al., 2000;World Bank, 2001). For example, when faced with the possibility of losing an entire crop due to drought, farmers may lessen risk by minimizing investment in the crop by not applying fertilizer. They do this because making the additional investment increases their loss should the crop fail.Likewise, selling family assets such as cattle at a time when everyone else is also trying to sell their assets will lower prices. As a result, such assets are of little use in smoothing the effect of the drought shock. Worse, if the asset was bought at a time when prices were buoyant, as in a time of plenty, selling will incur a net loss (Skees, 2003). Furthermore if an animal dies of starvation, all investment in it is lost.Another common risk-coping mechanism is seeking off-farm income. This may be effective for idiosyncratic risks, but the tactic is less effective when a geographically-extensive risk event, such as drought, which is typically wide-spread, occurs. This is because the amount of labor on offer increases so that conditions become more competitive and wages fall. Moreover, as economic conditions worsen, the amount of work available typically lessens as employers seek to cut costs. Informal insurance is therefore a relative ineffective strategy to cope with covariant risk events, such as drought. Repeated shocks further undermine it as a coping strategy (Dercon, 2003).A survey in India found that 30% of respondents cited loss of wages, income or work as the major impact of a risk event (Hess, 2003). Forty-five percent said that they would borrow money to tide them over the crisis, leading to increased indebtedness. In reality, the option to smooth consumption by borrowing is generally not available to small-holder farmers with low incomes. Financial institutions are unwilling to lend to these borrowers precisely because of their vulnerability to drought and the consequent likelihood of default on loan repayments (Hess, 2003). Indian banks, who lend to farmers in irrigated areas, are constrained by the risk of drought from extending credit to farmers in non-irrigated areas (Mishra, 1994). Goes and Skees (2003) argue that ex post disaster-relief plans can have unintended negative impacts on economic development. In the worst-case scenario ex post relief can increase risk exposure in the long-term by promoting dependence on charitable relief. In addition, government assistance has to be very careful not to encourage new economic activity in areas that are unreasonably vulnerable to natural disasters (Skees et al., 2001).Risk sharing through insurance is an option but has traditionally not been available to the poor.The purpose of formal risk-management strategies is to enable investment in more profitable activities through transparent sharing of risk. For the reasons explained above, the informal riskaversion mechanisms that poor households use mean that they are unlikely to invest in new technologies that could lead to increased wealth. For this reason, poor people exposed to risk find it difficult to break out of the poverty cycle.Formal insurance has provided benefits to individual consumers for centuries and in the last few years has also been suggested as a pro-poor tool for managing risk (van Oppen, 2001). A growing number of micro-insurance products (products offered to insure items in the range of a few hundreds of dollars) are now being offered in poor countries in the areas of life, health and property insurance and in some cases, schemes for crop insurance. This growing interest in micro-insurance products as development tools is associated with the expansion of micro-credit schemes (Morduch, 1999). There is also a growing recognition of the mutual benefits of risk management as a tool for poverty alleviation. Micro-insurance is not only justified on the basis of humanitarian need. Properly designed, it also makes economic sense for the organization offering it (Dercon, 2003).Micro-insurance is one of a number of products that can be sold under the collective title of micro-finance and an initial question to consider is whether insurance is the most appropriate of these tools to address weather risks (Brown et al., 2000). Insurance needs to be evaluated against other tools such as savings, mutual plans or credit.Formal strategies such as insurance are most effective where there is a high degree of uncertainty and when there is a lot to lose (Brown and Churchill, 1999;Zupi, 2001) (Figure 1). Weather risks naturally fall into this category. The uncertainty is large because long-term weather forecasting is as yet imprecise. Moreover, the level of loss can be severe because a severe drought may lead to the entire failure of the crop.Figure 1. Illustration of the potential for the insurance in managing situations where there is high uncertainty and a lot to lose. Informal strategies become less effective in these situations.(Source: Brown and Churchill, 1999) Insurance can be thought of as exchanging the irregular uncertainty of large losses for regular small premium payments. A general rule of thumb seems to be that the larger the proportional loss in assets and income to the household, the fewer alternatives there are to recover from the loss (Brown and Churchill, 1999). Insurance is one of the few viable options for poor people to manage uncertain events that can cause large losses.There are few examples of micro-insurance on which to assess its impact. Documented microinsurance schemes operating in poor countries have in general reported encouraging results. In an empirical study of a crop insurance scheme, Mishra (1994) found that although the scheme was not financially viable, it provided many socio-economic benefits for both farmer and the insurer. Farmers benefited from insured production, which led to increased investment and wealth, while the insurers benefited from a broader base of creditworthy customers. If the financial weaknesses of crop insurance in developing countries can be overcome (Bryla et al., 2003), these socio-economic benefits could flow more generally amongst poor small-holder producers.Although we have made the case for crop insurance above, crop-insurance schemes in general in the tropics have a sorry record (Skees et al., 2001). Several governments have developed crop insurance schemes. To date, most agricultural insurance has been either fully publicly owned or has involved large government subsidies to schemes operated by private companies.Unfortunately most of them have failed.The main reason for failure of publicly-owned insurance schemes is because they were either multiple-peril or all-risk programs (Skees et al., 2001). This means that virtually any cause of crop failure has been insured, resulting in excessive indemnity payments. It also results in moral hazard, which is when there is no incentive for the insured to use the best possible practices to avoid yield loss. A second problem is that risks are widely correlated or systemic, that is a weather risk event affects many crops at the same time over an extensive geographic area (Miranda and Glauber, 1997).Related to moral hazard is asymmetrical information, which is when the insured knows more about the risk of crop failure than the insurer. Skees (2003) believes that the problem of hidden and asymmetrical information is the underlying cause of failure of many schemes. A corollary is that a successful scheme requires symmetrical information, where both the insurer and the insured have equal understanding of the risk. A further key factor for a successful scheme is to overcome systemic risk, which requires some form of long-range risk-sharing mechanism such as re-insuranceThere are several further problems that have led to the failure of insurance schemes in the past, and which a successful scheme must avoid:• Adverse selection, where farmers facing lower-than-average risks opt out of the scheme leaving only farmers with higher-than-average risk. • Public insurers are often mandated to extend their insurance cover to small farms and this can add enormously to administration costs. • When insurers know that the government will automatically cover most losses, they have had little incentive to pursue sound insurance practices when assessing risks, a version of moral hazard.of the value of the indemnity payment to the farmer. Governments have also undermined public insurers for political reasons.Weather micro-insurance has been proposed as a viable tool to help poor farmers manage weather risk, which translates into crop production risk. The principles behind weather insurance have been widely discussed (Skees et al., 2001;Bryla et al., 2003;Hess, 2003;Stoppa and Hess, 2003;Varangis et al., 2003). A review of the principles and experience of the insurance processes follows.Two broad principles govern the viability of insurance. The first is that risk-sharing can only occur when both parties (the insurer and insured) have accurate information about a hazard and its likelihood. This has been the basis of insurance for over three centuries and Skees (2003) maintains that a sound weather insurance product is transparent and symmetrical, so eliminating both moral hazard and adverse selection. The second requirement is that the risk sharing must be broad enough to overcome co-variate risk (the risk that all crops insured in a scheme are affected), given that major weather events typically have broad geographic coverage.The probabilities of occurrence of adverse weather event that reduce crop yield can usually be estimated from historical weather data. However, some areas are riskier than others. In an insurance scheme the probability of occurrence must be identified for specific areas and be agreed by both parties (symmetry of information.)Crop yield indices are a relatively new method for insurance products that have been applied as area average indices (Skees et al., 2001). Indemnity payments are made to policy-holders when the area-average yield for a particular season falls below a predetermined long-term area average. The index in this case is some percentage of the long-term area average yield. The scheme is in operation in USA, India, Sweden, Mongolia and Quebec in Canada.Although area average indices avoid the traditional problems of adverse selection and moral hazard, they may not be appropriate for developing countries where long and reliable yield data are not available (Skees et al., 2001). Moreover, yield data for developing countries are normally for research stations. Not only may the research station location not be representative of the area as a whole, but research station yields are known to overestimate farmers' yields by 30% or more (Davidson, 1965).Insurance based on weather indices is another relatively recent development, in which weather events, not yield, are the basis for determining indemnity payment. In the 1990s weather markets started developing in North America, mainly as a result of the privatization of the energy sector in the USA. Producers sought to manage revenue fluctuations associated with weather variation (Turvey, 2001) by means of both the derivatives and insurance markets. Agricultural applications appeared as a spin-off from these markets, since many of the weather risks of concern to the energy sector also affect the agricultural sector through crop losses.Compared to area-average indices, weather-based indices have the advantage that weather data are generally more accessible and reliable than yield data. This is especially the case in developing countries (Skees, 2003). Weather-related crop insurance products succeed or fail on their ability to present accurate information about weather-related risks that are specifically associated with yield loss. The critical step is to identify the relationship between an insured weather event and consequent crop loss.A key attribute of weather-based index insurance is its simplicity and transparency, which not only increase the products' profitability, but also makes them more attractive to global insurance markets (Miranda and Vendenov, 2001). Weather-index insurance also provides a hedge against the cause of the yield loss, rather than its cost, which is the underlying concept of insurance against yield reduction. This removes the need to estimate prices (Turvey, 2001;Skees et al., 2001), a critical component of many of the traditional yield-triggered insurance schemes.The main challenge in developing weather insurance: Basis risk A summary of the main challenges involved in developing good weather insurance schemes are summarized in Table 2 and discussed further below. Security and dissemination of measurements, the insurance will ultimately depend on the objectivity and accuracy of the measurement.Education -customers may not understand this new generation of products Need some education to help customer assess whether it will benefit them or not Marketing -for the product to be successful it is critical to think carefully about how, when and where the insurance product is sold. Including marketing on a higher level i.e. reinsurance markets.Insurance as a component of MFI loans.Payment of the premium -Expecting the poor to pay a premium could be quite difficult Charities may have a role to play (Goes and Skees, 2003). For example charities are always ready to provide support after a disaster -what about providing support before the disaster? Or the insurance cover could be purchased by the charity and the indemnity also be administered by them. Reinsurance is where the primary insurer covers its exposure to a given risk with a third party. Reinsurers typically count on enormous financial resources and spread risk from narrowly-based insurers to a broader, often global, basis. Well-known reinsurers include Munich Re in Germany, Swiss Re in Switzerland and Lloyds in the UK.2 Catastrophe bonds, commonly called CAT-bonds, are financial derivatives used by insurance companies to hedge their exposure to catastrophic risk. They usually pay a higher interest rate than the premiums charged by reinsurers to cover the same risk. In the event that the trigger is met, often that the issuing company's payout for a specified catastrophe is exceeded, the capital is \"forgiven\", that is the bonds become worthless. CAT-bonds are most often issued to cover exposure to risks of earthquakes and hurricanes. (Source: Skees, 2003) The greatest challenge facing weather-based insurance products is basis risk (Miranda and Vedenov, 2001;Skees et al., 2001;Turvey, 2001;World Bank, 2001;Skees, 2003). Basis risk occurs when the insurance index does not accurately represent loss: a weather index may not trigger a payment when there has indeed been a loss; or payment may occur without serious loss. The insurance product will not be attractive to potential customers if they think that the basis risk is too high (Skees et al., 2001).A feasibility study of rainfall indices for Nicaragua concluded that even within departments a single index did not adequately represent the spatially variability of risk (World Bank, 2001). In each department there was at least one weather station where the data were markedly different from the others. A short study by Diaz-Nieto et al (2006a) using simulated data for Honduras also revealed that a single weather index was not appropriate for a country the size of Honduras. Basis risk is caused by the need to model complex heterogeneous systems within a single index. There are three sources of basis risk (Table 3). Table 3. Summary of main challenges that need to be addressed and possible areas of action.(Source: World Bank, 2001) Specialized contracts can be designed to offset much of temporal, spatial and crop-specific basis risk (Miranda and Vedenov, 2001). However, doing so may increase administrative costs and, more importantly, increase the complexity involved in marketing and distribution. An alternative to overcome basis risk is a larger number of standard contracts that cover all possibilities and priced accordingly, and allow the insureds to select the contract they consider most appropriate (Turvey, 2001).The fundamental requirement of a rainfall index is that rainfall must explain a large proportion of the variability in yield (Skees et al., 2001;Turvey, 2001;Skees, 2003;Stoppa and Hess, 2003). As a first step, it is essential to establish the cause and effect relationship (Turvey, 2001), so that the index represents critical rainfall deficits that account for crop yield losses. It is not sufficient, for example, to posit that a rainfall deficit of 30% of the long-term average will trigger payment because this provides no information about the timing of rainfall in relation to crop demands at different growth stages.Temporal risk The level of impact of a weather phenomenon will vary according to the time at which it occurs during the crop cycle. E.g. a shortage of rainfall at just before maturity may kill a crop, whereas just after seedling may have little effect.Indices that represent the temporal variability in sensitivity to rainfall deficit.Spatial risk A rainfall deficiency may occur at one location causing crop losses, but this rainfall deficiency did not occur at the recording location and so no payment is triggered.Offset the risk by offering sitespecific contracts that account for spatial variability.Crop specific risk A rainfall deficiency may kill a drought sensitive crop, whereas a drought resistant crop will survive through longer periods of drought.Offset the risk by tailoring the insurance to specific crops.necessary (up to 4999 sets each of 99 years) of maximum and minimum temperatures, solar radiation and rainfall. Briefly, MarkSim uses a Markov method (sometimes called a Markov chain) to generate weather data. The Markov method is a statistical technique used to describe a time-series of discrete states. For rainfall, the states are either a day in which no rain falls, or a day in which it rains. The Markov method determines the state on any particular day based on the states of the either the previous day or a sequence of previous days. For tropical systems, where the weather is controlled by convective circulation rather than the west to east movement of frontal systems as in temperate climates, a third order model, that is three consecutive days, are required to represent weather satisfactorily (Jones and Thornton, 1997). The generated data can then be used as input to the appropriate simulation model for the crop of interest.Weather data generated according to location and used as input to crop simulation models When no reliable weather data are available, it is possible to use MarkSim to interpolate on a multi-dimensional surface for weather derived from more than 20 000 sites throughout the tropics. A limitation of this approach is that the pixel size is 10 arc minutes a side, about 18 km at the equator. This creates some limitations for very mountainous regions in that the generated weather is a mean distribution for the pixel. It may not be representative of the weather for the extremes of altitude that lie within it. We used this methodology to generate weather indices for bean farmers in north-central Nicaragua. We report on this in more detail below.Crop sensitivity determined by expert opinion and probabilities generated by some method of interpolation of those weather data that are available. This method is considerably less reliable than the methods discussed above, but in some circumstances it may be all that is available. Be that as it may, any scheme based on such an unscientific approach must be viewed with considerable suspicion and due caution used in its application to generate an insurance product. Crop sensitivity determined by expert opinion from similar sites and probabilities generated by some method of interpolation of those weather data that are available.Sites that are homoclimatic can be selected with the Homologue procedure (Jones et al., 2005). This method suffers from the same drawbacks as above, but with the added uncertainty of applying expert knowledge from another place.In a weather insurance scheme it is not the actual crop loss that is insured but the loss-causing event, which in this case is a specified adverse weather event. Therefore the way in which the relationship between weather and crop losses is expressed in an insurance index needs to be carefully thought out and appropriately designed. A producer will be interested in a weatherinsurance scheme that is highly likely to pay out when (s)he does indeed suffer a crop loss.Ideally the relationship between weather and crop yield can be extracted from long historical records of both. In practice, as in the case of drybean yields in Nicaragua, data are typically very scarce. It was therefore necessary to design a methodology that allowed weather insurance to be developed in these circumstances.We used MarkSim to generate 99 years of weather data for each 10-arc minute pixel in northcentral Nicaragua. They used these data as input to the Decision Support System for Agrotechnology Transfer (DSSAT, Jones et al., 2003) drybean model, using a four typical soils with textures ranging from sand to clay and either deep or shallow profile. They used the genetic coefficients for the variety Rabia de Gato, whose physiological characteristics are similar to the traditional varieties grown in the region. In summary, we simulated yields for 99 years for eight soils for each of 151 10-arc minute pixels, that is, almost 120 000 separate crops of drybeans. It is worth adding that the DSSAT drybean model provides detailed physiological and agronomic data and soil-water balance for each of the 71 to 75 days of the crop growth cycle, a total of almost 9 million crop-days of data.For each soil within each pixel, we used the 99 years' data to determine the threshold rainfall necessary in successive 10-day periods during crop growth. They did this by minimizing the residuals using a simplex routine to fit multiple linear regressions. Rainfall less than this threshold was termed a deficit for that ten days. For each of the 99 years where there were deficits, they summed them to give the total deficit for the growing season.Using the relation of total rainfall deficit against yield we set levels of deficit that would trigger an indemnity payout in a hypothetical insurance instrument. The probabilities of reaching a given level of deficit were then calculated for each of the eight soils for each pixel. The probabilities of reaching deficits of 50 and 70 mm, averaged over all eight soils for simplicity, are presented in Figure 2. Based on these data, it was then straightforward to design an insurance instrument for each soil within each pixel. The details of a hypothetical contract are shown in Table 4. Tables 5 and 6 show hypothetical growing seasons that do not reach, and do reach, respectively, the trigger level. TOTAL Rainfall deficit Calculation of indemnity payments:1. MIN is the minimum rainfall that is required for your crop in each of the 10 day windows. 2. RAIN is the rainfall observed at the reference weather stations (you may enter this into the RAIN box, however it is the official rainfall recorded at the weather station that determines whether you are entitled to an indemnity payment). 3. DEF is the rainfall deficit. This is calculated by subtracting MIN from RAIN (only negative values are taken into account). 4. Indemnity payments occur when the TOTAL rainfall deficit is equal to or less than the trigger value. 5. The rainfall deficit is the sum of the 10 day rainfall deficits. This exercise shows that it is feasible for any given location to simulate the yield of any particular crop for which there is a simulation model in the DSSAT series.Sound insurance requires best estimates of hazard probability. It also requires agreement about the likelihood of the hazard occurring. Errors in estimation of the hazard can be due to three sources:• An incomplete model in which the weather event cannot be related to the loss,• Spatial and (b) temporal variation in which the model is complete, but data are incomplete, and • Basis risk.The effectiveness of rainfall is strongly influenced by soil characteristics. In soils that have low water-storage capacity, the impact of rainfall shortages will be felt much sooner than in the case of soils with high water-storage capacity. Conversely, when soils are dry, small falls of rain can be more effective on sandy soils compared with clay soils, which require more water to \"wet up\". Soil texture, soil depth and water-holding capacity are key factors to take into account in designing an effective insurance scheme. Farmers growing crops on very risky soils will need indemnity payments more often than farmers on less risky soils, which must be reflected in both a soil-specific payout structure and in the cost of the insurance coverage.We base our comments here on our experience in the Nicaragua case study described above. We used a range of generic soils with both deep and shallow profiles. As expected, sandy soils were much droughtier than heavier-textured soils and especially if they were shallow. In designing an insurance instrument based on modeling as described above, it is relatively simple matter to obtain the information necessary for the actual soils in question and adjust the index criteria accordingly.Cultivar specificity Rainfall requirements will also vary greatly from crop to crop and within the same crop depending on the cultivar. Drought-tolerant varieties will naturally withstand rainfall deficits more successfully that drought-sensitive varieties. Therefore in order to improve the relationship between the rainfall weather index and crop losses, the rainfall indices need to be tailored specifically to the crop variety.The implications of this for modeling are that the genetic coefficients must be known for the cultivar or cultivars in question. Ideally these should be the outcome of carefully-designed experiments. Nevertheless, it is possible to make some informed guesses as to what the coefficients should be, based on phenological data from different latitudes for the cultivar in question. But the guessing should only be undertaken by experts with a clear understanding of how the particular model represents physiological factors such as photoperiod response and the thermoregulation of plant development.In rain-fed agriculture, which is implicit in designing a drought index, sowing date varies from season to season depending on the onset of rain at the start of the growing season. Since weather insurance schemes will be sold in advance when there is no information about what the weather will be, a transparent system is needed that incorporates variable planting dates into the insurance products. Both insurer and insured will need to know the exact start and end dates within which the observed rainfall will be taken into account for determining indemnity payments. To maximize the effectiveness of the insurance product, the method used to establish the sowing date used in the product must reflect the actual planting date as closely as possible.Crop yields from research stations are typically 30%, or more, higher than those of farmers' fields (Davidson, 1965), so that using them as the basis for estimating the effect of a given weather event on farmers' yields is particularly dangerous. This is apart from the problem of whether or not a particular research station is representative of a given geographic area of interest. Moreover, weather risk varies spatially. To reflect this spatial variation of risk in the premium, methods to estimate it in risk evaluation are needed so that the insured pays the price of the risk they actually confront.There are limitations in generating weather by interpolation on the MarkSim weather surface. For the African and Latin American tropics the resolution is 10 arc minutes, about 18 km near the equator. In mountainous areas, this resolution is simply not fine enough to represent the weather for a particular farmer's field. For Asia the resolution is 2.5 arc minutes, about 4 km near the equator, better, but still a problem in mountainous country. The resolution of MarkSim was at least in some degree constrained by the large size of the data files necessary in relation to the limited capacity of computer hard drives in the relatively recent past. This is no longer much of an issue, so MarkSim could be refined by improving its resolution using the recently-available digital terrain models (DTMs) derived from the Shuttle Radar Topographic Mission (SRTM). The SRTM DTMs have a resolution of 90 m, which is more than adequate for modeling rainfall. This problem can also be addressed if one has actual rainfall data for a given site (for a sufficient span of years, of course). One can then use these data as input to MarkSim. As for temperature data input for MarkSim, one can correct the interpolated MarkSim temperature data for the pixel by correcting the pixel's mean altitude to the actual altitude of the site in question using the adiabatic lapse-rate of 0.6 °C per 100 m. model as they becomes available. Although this approach is scientifically sound, it is unlikely to be thought transparent by either the insured or the insurer. The requirement of a weather index simply means that a complex relationship between one climatic variable, such as rainfall in the case of drought, and crop yield must be converted into a simple index. Moreover, the index must be easily understood by all parties so that the trigger event for an indemnity payment is clearly defined.Accurate estimation of payment probabilities Insurance companies will need to know how often they will be paying out indemnities based on each of the weather stations they are using as a reference for payments. In some cases these weather stations will not have the necessary historical data to determine this probability. A method therefore needs to be established that will enable accurate estimation of the probability at points where the historical data are inadequate or lacking.We present methods of providing low-cost, site-specific drought insurance products for any crop in any location in the tropics. We explain the benefit of insurance to risk takers, and especially those with minimal resources, from which it should become apparent that the major contribution this innovation offers is that it streams best available science about natural hazards directly to decision makers, through the medium of commercially-viable insurance products. Insurance provides decision-support to manage drought risk. The basis of the method, the insurance premium, transmits the best-available estimate of drought probabilities.Estimates are only as accurate as the predictive model that produces them and we reflect here on three sources of basis risk that are likely to occur when modeling crop drought risk: structural uncertainty of the model; spatial error and temporal error. Structural uncertainty increases when the model fails to represent processes that significantly influence drought risk. In this respect, a model that depends solely on correlation between rainfall and yield will not represent systematic and significant yield variations that are caused by temperature, soil, crop variety or a number of other factors. Spatial error introduces a second major source of basis risk, since it is rare that weather data, and even more so, yield data, are available with sufficient density to enable simple interpolation over large areas. Even where dense networks of weather stations exists, the degree of bias towards non-marginal sites is unknown, hence its ability to represent higher risk, marginal areas. Thirdly, error can occur due to unexplained temporal error caused by inadequate data runs. A purely empirical estimation of low probability events requires long-runs of data.As a final comment, there is a need to involve the key stakeholders of the insurance system, the insured, the insurers and the re-insurers, in the definition of models that accurately reflect the risks faced in the farmer's field. Their buy-in is needed not only to ensure ready acceptance of the actual index or indices that are produced, but also for the underlying assumptions on which they are based. This is especially true for the re-insurance firms who will either \"reward\" or \"punish\" the scheme via premium costs depending on what they perceive to be an adequate representation of risk.Elizabeth Barona A. a a Intenational Center for Tropical Agricultural, Cali, Colombia Abstract Crop production in Brazil has changed significantly over the last decade. New crops are being cultivated to satisfy the world's growing demand for Brazilian export products -a demand that has caused substantial changes in land use and cover, mainly characterized by the increase in large-scale mechanization of agriculture, deforestation, and intensification of agricultural land use. Brazil currently provides crop production information at the municipality level. This information was analyzed using Geographic Information Systems (GIS) to examine changes in the spatial distribution of the production of various crops and livestock in Brazil for 1990Brazil for -2006. . In addition, to better understand the relationship between agricultural expansion and deforestation, spatial data on agricultural expansion and deforestation over the Legal Amazon were statistically analyzed for 2000-2006.The results indicate that changes in the spatial patterns of crops have indeed taken place in central and northeastern Brazil as well as in the southern Amazon region. The areas to crops such as soybean and sugarcane expanded, surpassing the total area planted to domestic food crops, which, in turn, recorded a significant decrease in area. This crop expansion has exerted pressure on other crops and livestock, pushing them further into the Amazon forest region during 1990-2006. In the same period, pasture was the predominant land use in the Legal Amazon; however, results indicate that the area planted to soybean increased whereas the area under pasture decreased. Statistical analyses revealed that, in those areas with over 50% forest, deforestation was strongly related to agricultural expansion. Deforestation was related to pasture expansion in the states of Mato Grosso and Rondônia, but not to soybean expansion. On the other hand, soybean expansion in Mato Grosso seems to be correlated to a decrease in pasture. An increase in pasture was also observed in the states of Para, Acre, and Rondônia, leading to the hypothesis that soybean expansion in Mato Grosso displaced pasture to other states, thereby indirectly causing deforestation elsewhere.Table 1, summarizes the percentage of change in area harvested in 31 seasonal crops in Brazil from 1990 to 2006. Soybean, maize, sugarcane, rice, beans, cassava, wheat, and cotton were the eight most important crops in terms of area harvested in Brazil in 1990. However, only soybean, maize, and sugarcane showed an increase in area harvested in 2006. Since early domestication, crops have evolved from their wild relatives, migrating into new areas and being selected by farmers and breeders alike based on favorable traits to the point in some cases where today's crops bear little resemblance to their ancestors. Yet wild relatives of modern and traditional crops still prove to be a useful source of genes for crop breeding for developing resistance to both biotic and abiotic stresses (Hajjar and Hodgkin, 2007). Conventional crop breeders have used crop wild relatives especially for the introduction of biotic resistance into crops (Lane and Jarvis, 2007;Hajjar and Hodgkin, 2007), but the advent of novel molecular tools are overcoming some of the constraints to use and it is widely expected that crop wild relatives will play a more important role in crop improvement in the coming years (Hajjar and Hodgkin, 2007).The challenges associated with climate change are likely to increase the demand for abiotic resistance in crops. In the 21 st century we expect to undergo a global change in climate at a rate not experienced in recent history. Temperatures are expected to increase by 1.1-6.4 o C to 2100, with shifts in total annual precipitation and its distribution through the year (IPCC, 2007).The agricultural sector is faced with the challenge of adapting crops for the conditions to come. Pertinent questions exist as to what the priorities for breeding are, what the biological limits to adaptation are for each crop, and where important traits may be found as input to breeding programs. Here we ask questions pertinent to the latter. Are crop wild relatives likely to provide traits useful in breeding to adapt to expected changes in climate? We use datasets on climate, crop distribution and crop wild relative distribution to evaluate this, focusing on three crops as representative of a broader spectrum of crops.Our approach was to compare the climatic conditions of sites where crop wild relatives occur with the climatic conditions of areas currently under cultivation of their respective crop under both current and future conditions. We assume that a wild crop relative population collected in a specific site is genetically well adapted to the climatic conditions at that site. We are interested in demonstrating if crop wild relatives have unique climatic adaptations that might be of use for crop improvement to address current and future abiotic stresses. Statistical analyses are therefore employed to quantify the extent to which the crop wild relatives overlap with the climatic adaptation of the crop under current conditions, and using the results of global climate models we examine the extent to which these patterns shift into the future. The crops analyzed in this approach were millet (genus Pennisetum and Eleusine), potato (genus Solanum), and wheat (genus Triticum and Aegilops).The Global Biodiversity Information Facility (www.GBIF.org) was used to generate a spatially explicit database of occurrences of crop wild relatives. The crop wild relatives selected for each crop were based on a thorough literature review of taxonomy. A total of 15,005 entries were found including all wild relatives of all genera under analysis.Total world harvested area grids (derived from FAOSTAT) for each of the three crops were used to define the climatic conditions where each crop is found. To reduce the size of the datasets for statistical analysis, representative random points were selected (3 to 5 percent of the total amount of pixels in the crop distribution) to provide 10,000 unique sites were the crop is known to exist.The climate data used was derived from WorldClim (http://www.worldclim.org, Hijmans et al, 2005), representing long term averages of monthly maximum, minimum, and mean temperature and monthly precipitation. The monthly variables were reduced to 19 bioclimatic variables (Busby, 1991) and altitude. Four future calibrated and statistically downscaled global climate grids (available from http://www.worldclim.org/futdown.htm) based on the HADCM3 model and the CCCMA model for the A2a scenario and the B2a scenario and specifically for the year 2050 were used for analyses of future changes in climatic conditions.surface produced after the principal component analysis. Only the first and the second principal component were used for the biplots as these two components explained the great majority of variance for the three crops under analysis. For millet (Figure 1a) there is a great concentration of both wild and common genotypes for negative values of PC2 and positive values of PC1; this concentration can be seen also in potato (Figure 1b) but it is located in the first quadrant of the plane. In the case of wheat (Figure 1c) the wild relative distribution seems to be distributed uniformly in both axes, which indicates that domestication has lead to a broadening of climatic conditions in all directions (greater and lesser temperature and precipitation). Distinctive attributes of the cultivated millets are their adaptability to adverse agroecological conditions, requirement of minimal inputs, and good nutritional properties (Garí, 2001). Wild millets, in the other hand, comprise a diverse range of wild grasses that are related to the cultivated millets, including wild millet relatives and wild millet-like grasses. Wild millets play important roles in local food security, especially during drought crisis or in arid ecosystems. Wild millets, therefore, represent fundamental genetic sources that deserve consideration and integration in biodiversity conservation and rural development programs, because of their role and potential in both food security and agricultural development (Garí, 2001).Potato wild relatives seem be distributed in a relatively uniform way over both components axes. Almost all potato wild relatives are present in environments with low monthly variations in temperature (most limiting factor). There are some wild species (S. colombianum and S. longiconicum) that seem to be adapted to conditions where no crop is grown with altitudes between 2500 and 3000 meters, annual mean temperatures near to 10ºC and annual precipitation between 1200 and 4000 millimeters. This indicates some potential for breeding, as Smillie et al (1983) suggested that wild potato temperature stress tolerance varies according to altitude, and that wild relatives will only be useful as resources for breeding for abiotic traits for certain altitude bands.There are two groups of wheat wild relatives, with the first located in environments with negative values in PC1 and positive values in PC2, and the second located in environments with negative values in PC2 and both positive and negative values in PC1. Most of the wild relatives are present in sites with low precipitations and temperatures near to the crop's global average, while the crop has expanded into zones of high annual mean temperatures where no wild relatives are reported. For wheat there is one wild species (T. cereale) outside of the crop climatic range that is suited to environments with annual mean temperatures between -2 and 10ºC but there are only 13 occurrences of this species. According to Bedõ et al (2005), wild relatives for wheat are especially useful if they are located in cold environments, as they would be useful for winter wheat breeding, and this species shows some promise.Under future climate scenarios the same analyses were performed in order to see if crop wild relatives are more or less important for adaptation to future conditions. The shift in future climate conditions where the crops are currently grown means that the central points of the distribution change relative to the central point for the crop wild relatives, and the shape of the distribution cloud also changes. Table 1 shows the distances between means (DBM) and the percent of wild relatives (WR) outside the crop distribution for each crop and each climate change scenario. In general, it was observed that some wild relatives are increasing their potential usages while other ones are decreasing. Significant variability is also evident between climate change scenarios and models.For potato the potential of crop wild relatives for providing useful traits increases considerably when the future climate conditions of current potato growing regions is examined. A similar increase in potential is evident for wheat, but the potential remains low (under 3% of crop wild relatives have climatic adaptations different to the cultivated crop). Millet wild relatives tend to lose some potential for providing traits for adaptation to future conditions, but still have 18-20% of crop wild relatives providing potentially novel adaptation traits.In all crops studied the wild relatives have a more restricted climatic adaptation to their cultivated crops. This indicates that during domestication, crops have diversified outside their natural environments. However, for some crops there are wild relatives available as sources of traits for abiotic resistances not available in the crop genepool. Millet wild relatives are most distinct, followed by potato and finally wheat. Specifically, wild species such as E. coracana ssp. africana and P. purpureum for millet, S. colombianum and S. longiconicum for potato, and T. cereale for wheat are found in climates distinct from the current distribution of the cultivated crop.In the context of climate change, the wild relatives are shown to become more important for providing useful traits to adapting crops to future abiotic stresses in the case of potato, and continue to be important for millets.","tokenCount":"52878"} \ No newline at end of file diff --git a/data/part_3/2463262219.json b/data/part_3/2463262219.json new file mode 100644 index 0000000000000000000000000000000000000000..778e8963e1e22d3c36b915fdd58ab5a31121f911 --- /dev/null +++ b/data/part_3/2463262219.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"7ff1fd35f3c1566f4263a21a4b289949","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/9273392f-e394-459b-9d6d-006bf4fc7f3e/retrieve","id":"704425936"},"keywords":[],"sieverID":"342b1754-e9ed-450a-a28c-7de78788fc58","pagecount":"2","content":"PENAPH) was formed to facilitate capacity building, research and information sharing among professional interested in participatory approaches to epidemiology. As part of this process, the network wishes to promote minimum training guidelines, good practice and continued advancement of methods.\"The training was very useful, so am sure the network will be more useful.\"Moses Tetui, fellow from the Ugandan Field Epidemiology and Laboratory Program (FELTP)We are all connected together, sharing information, ideas, experiences and most important thing our traditional knowledge and humanity Thanks for all the participants in this network.\"Neama Arif Moustafa, PE/PDS practitioner and trainer, Egypt.• PE is an approach to epidemiology that is sensitive to and benefits local communities -Conducted by professionals -Incorporates diagnostic testing • It's flexible, semi-structured and adaptable to changing situations. Data from multiple sources is rapidly analysed for quick feedback and response.-Research and active surveillance applications • PENAPH is a growing network designed to build communication between those working on PE across the world both in veterinary and public health.Planned activities for 2010:• PENAPH partner meeting -April 2010.• For more information about PENAPH visit the website or contact Saskia Hendrickx (s.hendrickx@cgiar.org)","tokenCount":"185"} \ No newline at end of file diff --git a/data/part_3/2492851218.json b/data/part_3/2492851218.json new file mode 100644 index 0000000000000000000000000000000000000000..c12261bebd8eb20a1896eb5ef5355dac28dbe921 --- /dev/null +++ b/data/part_3/2492851218.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"5aef08e6e8014f3f0ae4a7a4854ec242","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/9793383e-07d2-44b3-ad7f-f1687ec4326e/retrieve","id":"-2069003444"},"keywords":[],"sieverID":"ee4e5a4d-73dd-475b-bede-2edaf5d9409a","pagecount":"54","content":"Resource Recovery and Reuse (RRR) is a subprogram of the CGIAR Research Program on Water, Land and Ecosystems (WLE) dedicated to applied research on the safe recovery of water, nutrients and energy from domestic and agro-industrial waste streams. This subprogram aims to create impact through different lines of action research, including (i) developing and testing scalable RRR business models, (ii) assessing and mitigating risks from RRR for public health and the environment, (iii) supporting public and private entities with innovative approaches for the safe reuse of wastewater and organic waste, and (iv) improving rural-urban linkages and resource allocations while minimizing the negative urban footprint on the peri-urban environment. This subprogram works closely with the World Health Organization (WHO), Food and Agriculture Organization of the United Nations (FAO), United Nations Environment Programme (UNEP), United Nations University (UNU), and many national and international partners across the globe. The RRR series of documents present summaries and reviews of the subprogram's research and resulting application guidelines, targeting development experts and others in the research for development continuum.Figure 1. Annual O&M costs for FS emptying businesses in different regions for a population of 100,000 people Figure 2. Conventional processes implemented for treatment and recycling of FS in agriculture Figure 3. The treatment process for the FSTPs in Ouagadougou Figure 4. The treatment process at Nungua Farms FSTP in Accra Figure 5. The co-composting process used for resource recovery from FS, near Nungua Farms, Accra Figure 6. The FS treatment process at Ekpè, Benin Figure 7. Daily volumes of FS received in 2015 at the FSTPs in Ouagadougou, Burkina Faso Figure 8. Daily volumes of FS received in 2015 at the FSTPs in Greater Accra, Ghana Figure 9. Daily volumes of FS received in 2016 at the FSTP in Grand Nokoué, Benin Figure 10. Annual volumes of FS (m 3 year -1 ) collected and treated at the FSTPs and average amount of FS collected and treated capita -1 year -1 in Ouagadougou, Burkina Faso Figure 11. Annual volumes of FS (m 3 year -1 ) collected and partially treated at the FSTPs and average amount of FS collected and treated capita -1 year -1 in Greater Accra, Ghana Figure 12. Annual volumes of FS (m 3 year -1 ) collected and partially treated at the FSTP and average amount of FS collected and treated capita -1 year -1 in Grand Nokoué, BeninTable 1. Status of sewer usage in selected cities of West Africa Table 2. Status of sanitation and OSS usage in selected urban areas of West Africa Table 3. Description of carbonization Table 4. Average characteristics of different types of FS in Ouagadougou Table 5. Characteristics of different types of FS in Greater Accra Table 6. Characteristics of FS in Ekpè FSTP Table 7. Raw materials available or needed for the composting process Table 8. Key land requirement components (m 2 ) for each site Table 9. Estimated construction costs (EUR) at each site Table 10. Types of machinery and their minimum capacity in metric tons per hour, required at each site Table 11. Total costs and revenues (in EUR) incurred from FS co-compost operations Table 12. NPV and ROI for the tested scenarios in Kossodo, Zagtouli and Cotonou Table 13. Factors that influence the financial performance of FS co-composting businesses Table 14. Staff requirements at the recycling plants, classified according to skills or processing tasks Table 15. FS collection and treatment in Ouagadougou, Greater Accra and Grand Nokoué Table A1. Average volume per trip in Ouagadougou, 2014-2016 Table A2. Monthly volumes of FS collected at each FSTP in Ouagadougou, 2014-2016 Table A3. Monthly volume (m 3 ) of FS collected in Greater Accra between 2010 and 2016 at Nungua Farms and Lavender Hill Table A4. Monthly volume of FS collected in Cotonou/Abomey-Calavi from 2011 to 2016 Table A5. Raw material requirements Table A6. Assumed co-composting products Table A7. Costs per co-composting unit (meter, square meter or cubic meter) Table A8. Assumed production cost factors Table A9 In West Africa, sewer systems are mostly found in larger (originally well-planned) urban areas, but with limited extent and household (HH) coverage. Efforts undertaken in recent years to increase decentralized wastewater treatment remain challenging. Compared to sewers, a much higher HH coverage is achieved through on-site sanitation systems (OSS), which allow for intermediate storage and (pre-) treatment of human excreta within the plot occupied by a dwelling or its immediate surroundings. After collection through vacuum trucks, the fecal sludge (FS) remains a challenge even if it is not indiscriminately dumped. The reasons are that designated treatment plants are often missing, or not within an economically acceptable distance, or their treatment performance is unsatisfactory, usually through overloading.Based on primary data from fecal sludge treatment plants (FSTPs) in three West African urban regions (Ouagadougou in Burkina Faso, Greater Accra in Ghana, Grand Nokoué in Benin), we assessed FS collection and treatment patterns to analyze possible scenarios for resource recovery (RR) through FS co-composting based on our experience in Ghana. To understand the capacities needed, FS collection was analyzed for up to 7 years, in part per day, month and season, as well as FS characteristics to understand peak flows, FS qualities and related variations to plan for appropriate RR technology and capacities.Overall, the collected FS volumes by vacuum trucks were not significantly affected by the calendar days, months or seasons over our period of observation. Nevertheless, we noted a 14 to 26% increase in FS collection during rainy months in Ouagadougou, Burkina Faso, although the same observation could not be established for the other two urban regions in Benin and Ghana. Between 2014 and 2016, the maximum annual FS collection capita -1 and disposal at designated sites was in the range of 0.06 to 0.10 cubic meters (m 3 ) capita -1 , assuming the administrative boundaries for each region were aligned with the operational boundaries of the FSTPs. In addition, FS composition appeared highly variable with pronounced difference in total solids between FS collected from HH versus institutional sources, likely indicating that institutions are served more frequently. Also, the FS collected in Ouagadougou appeared to have higher biodegradability than the FS collected in Accra, indicating similar differences in storage time versus collection.Waste stabilization ponds are the dominant treatment process for FS in the West African region and managed either by public or private entities or through public-private partnerships (PPPs). Despite some differences due to site location and access, most treatment plants appear to be exploited beyond their capacity and need increased capacities or sister plants to meet the growing FS treatment needs. To cater to additional space requirements, it is recommended that FSTPs consider resource recovery and reuse (RRR) from the onset of operation. RRR can turn sludge disposal from a cost into a revenue with co-benefits for farmers and the environment.With RRR, cost recovery will increase and benefit from compost sales, reducing the pressure on tipping fees. Total compost volumes between approximately 750 and 4,500 metric tons (MT) year -1 could be possible in the studied FSTPs in Burkina Faso and Benin. The probability of the added cocompost production being financially viable on its own was 73, 45 and 48% in Kossodo, Zagtouli and Ekpè, respectively, with an earliest breakeven point after 5 to 8 years. However, partial cost recovery might already be possible given the economic benefits of RRR.In Africa, many countries are still exploring sustainable ways to address the severe challenges of solid and liquid waste management, starting with appropriate HH services.For human waste management in particular, the focus in the past was to pursue efforts to increase HH access to sewer systems. However, with a growing understanding of the related costs and water demands for flushing, many countries are rediscovering the benefits of on-site sanitation systems (OSS) that are reputed to be more affordable for HH and the public sector and less water-intensive. This is also the trend in West Africa (ONEA 2017; Roche et al. 2017).One key objective of this report is to close data gaps in the commonly grey area of fecal sludge (FS) management in West Africa, focusing on the examples of Ouagadougou, Greater Accra and the Grand Nokoué area (with its main cities being Cotonou, Abomey-Calavi, Porto-Novo and Sèmè-Podji). The selected three urban agglomerates include the capital cities of Burkina Faso, Ghana and Benin. The study involved analysis of FS volumes and quality as well as FS collection patterns, which influence the technical and logistical designs of fecal sludge treatment plants (FSTPs).We also analyzed the resource recovery potential of selected FSTPs, especially the potential benefits and the profitability of FS co-composting, as it has been tested in Greater Accra.Based on the findings from this work, recommendations are provided for improved FS management (FSM) within and beyond the selected city areas.The findings of this report are divided into the following sections:• Section 2 reviews the status of sanitation in West Africa regarding sewered wastewater and FS generation and management. We discuss the current challenges that liquid waste management faces and we present the avenues that are being considered for these issues to be addressed. • Section 3 focuses on the three target countries and regions to present in detail what is being done locally to manage FS. • Section 4 presents the results of our analytical study. We discuss the FS volumes collected according to days, months or seasons and we analyze the FS quality in the three target regions. We derive the key trends in FS quality and management practices.• Section 5 analyzes the potential of integrating cocomposting at FS treatment plants in Ouagadougou, Burkina Faso and Grand Nokoué, Benin, following the model that has been implemented and is being tested further in Greater Accra, Ghana.In Sub-Saharan Africa (SSA), 28% of the population has access to at least basic sanitation, 18% relies on shared toilet facilities, 31% uses unimproved toilet facilities and 23% practices open defecation (WHO 2017). Beyond toilet access, there is also a need to manage the generated toilet waste safely. There are two main processes for the management of excrement. These involve either the use of a sewer or, more often, OSS. The two systems and their prevalence in the study region are discussed in the following sections.In West Africa, where 46% of the population lives in urban areas, 12% of the total urban population (or 15% of those with access to improved sanitation) is connected to sewers (JMP 2018). Larger centralized sewers are mostly found in selected urban areas. The extent of the network varies widely across the region (Table 1) and available data are scarce.For instance, Abidjan and Dakar, the most populated cities of Côte d'Ivoire and Senegal, respectively, have the highest sewer coverage (about 30-45%) while in Bamako (Mali), sewers are almost inexistent. In between these extremes, many cities in the subregion have small sewer (decentralized) systems but are unable to cover a meaningful proportion of citizens. In some areas (for example in Togo), informal and nonstandard sewer systems have been put in place by local residents but barely function because they have not been designed properly (e.g. the topography prevents proper drainage) (Ahatefou et al. 2013).As sewer coverage is limited, and often poorly maintained, most greywater is channeled into storm water drains, streets, other land or open canals (Soro et al. 2010;Bakenou 2011;Ahatefou et al. 2013;Bah 2013), while black water from toilets is captured on site (see below).Across West Africa, many of the sewer systems were constructed in the 1950s and 1960s or even earlier and require at least renovation or complete rehabilitation to support current population needs. The same applies to the treatment plants (Murray and Drechsel 2011). The extent of these urban sewers has long been outpaced by population growth, not to mention missing connections to peri-urban areas. In recent years, some attempts to increase (decentralized) sewer coverage for institutions, housing schemes and so forth have been undertaken (for example in Ghana, Burkina Faso and Togo), resulting in a slight increase of served HH. However, even with more opportunities to connect, HH often decide against a link because of high connection fees, usually mandatory up-front payments, lack of incentives for HH to connect and other limiting factors.The wastewater collected through the sewer network generally includes domestic wastewater (mostly from kitchens, bathrooms and toilets) to provide sufficient flushing power. On average, wastewater generation for West African cities is between 20-150 liters (l) capita -1 day -1 (Lene 2006;Mohammed 2013). This wide variability reflects different wealth classes as well as access to tap water. Also, wastewater from institutional (e.g. restaurants, hotels, airports) and small industrial sources is collected using the same sewer systems.The presence of a sewer in a city does not necessarily mean the existence of a functional wastewater treatment plant (WWTP) for the collected wastewater (Murray and Drechsel 2011). In many cases, treatment plants, including decentralized institutional plants, are dysfunctional and raw or slightly treated sewage is discharged into the sea or rivers. Also, most (small) industries in the subregion discharge their wastewater effluent without proper treatment, directly into the environment. This has negative impacts on human health and endangers ecosystems. In Bamako for example, it was estimated that 5,000 m 3 of industrial wastewater have been discharged daily into the Niger River without treatment until recently (Keita 2008).There are a few exceptions, especially in Ghana, where industrial wastewater is being treated by the industry itself, such as by breweries (Waterbiotech 2012).In some cases, a WWTP was not part of the initial planning of the sewers (for example in Lomé, which is now building a treatment plant for collected domestic/institutional wastewater). In other cases, the implemented WWTP did not survive over time. In Accra for instance, a modern Upflow Anaerobic Sludge Blanket (UASB) WWTP was built in 2000 but remained out of service for many years because of broken pumps and poor management. This plant was rehabilitated in 2016 (SSGL 2019). Challenges that public authorities face while attempting to operate and maintain WWTPs include lack of adequate finances, incentive systems or in-house capacity (Murray and Drechsel 2011). Moreover, to facilitate HH participation, there is resistance to the implementation/acceptance of fees and where they are being paid, they may hardly cover treatment costs.Complaints regarding high operation costs (for example the electricity cost required for the treatment process to operate) or vandalism (blocked sewers) have also been recorded as challenges (Nikiema et al. 2013;Weissenbacher et al. 2013). Given this predicament, many West African countries promote low-cost technologies for wastewater treatment, i.e. those requiring low energy and maintenance, such as waste stabilization ponds. Another option would be the use of renewable energy (including biogas) to reduce in-house energy demand and allow for a less-expensive treatment process to be implemented (Waterbiotech 2012).In Senegal, at the Camberene WWTP, biogas harvesting and reuse generated a reduction in operational cost of up to 20% (Mbéguéré et al. 2011).Even under optimistic investment scenarios, it appears difficult for sewer systems to keep pace with urban growth and OSS will remain the norm for most African cities (Hawkins and Muxímpua 2015).An OSS allows for storage and (pre-) treatment of human excreta within the plot occupied by a dwelling or its immediate surroundings. For some systems (e.g. doublepit or vault latrines) used in rural areas, excreta treatment is achieved on site through extended in-pit consolidation and storage. With other systems in urban areas (such as septic tank or single-pit systems), the stored waste has to be collected from time to time and treated off site (WHO 2006).FS is a partially digested slurry or semisolid that is extracted from the OSS (Nikiema et al. 2014). It is a mixture of excreta, water and toilet paper and may also contain various other forms of waste, depending on the location. FS is rich in nutrients but also in pathogens. The high density of latrines in West African cities and their poor design contribute to the pollution of ground and surface water (Koné and Strauss 2004). Removal of sludge from OSS and transport of FS to the treatment or disposal site are the first two steps in FSM (Strande 2014). FS can be removed from OSS using manual or mechanized techniques. The specific method utilized will be based on the type of on-site system, accessibility of the site, consistency of the sludge, type of equipment owned by the service provider and the level of expertise. Emptying fees are usually borne by the HH and are USD 60 on average in Africa, ranging from about USD 40 in Burkina Faso and Senegal to up to USD 100 in Nigeria (Chowdhry and Koné 2012).Due to the lack of any larger sewer system in Ouagadougou, OSS are used by 9 out of 10 HH with access to sanitation.A recent study established that 50% of Ouagadougou's OSS has been emptied since they were built, 75% by vacuum truck and the other 25% manually (DGAEUE 2011).Often, use of vacuum trucks is restricted to middle-and high-income HH that have modern OSS facilities (such as septic tanks) with easy access from the street (Zoungrana et al. 2011). Manual emptying is done by low-income HH, particularly those relying on traditional latrine facilities, or in high-density housing areas. It is also practiced for pits with content that cannot be emptied mechanically because it is too compact (dry).In Greater Accra, there is negligible manual emptying (although it occurs to a larger extent in smaller cities in Ghana). Pan/bucket latrines, emptied at central collection points by individuals, have been banned in Ghana but are still in use, for example in slum areas.Similar to Burkina Faso, the collection of FS in Benin is done via mechanical and manual means. In 2015, a study of 480 HH in Cotonou and 289 HH in Sèmè-Podji showed that mechanical emptying is the most common practice (Cotonou: 65%, Sèmè-Podji: 33%). Few people relied on manual emptying (Cotonou: 2%, Sèmè-Podji: 4%). However, 33% of the respondents in Cotonou and 63% in Sèmè-Podji were not able to give information about the modes employed for emptying their septic tanks or pits. The reasons may be that they never emptied their sanitation units during their tenure or that the information they had was incomplete (Abiola 2015). The FS received at the designated/approved sites is conveyed by FS vacuum trucks only.Findings in these three West African countries compare well with other African and Asian locations (Chowdhry and Koné 2012) and reveal significant gaps in the regulatory frameworks around FS emptying and collection. As a result, most people involved in manual emptying do not use the required protective equipment, such as hand gloves or body suits, to reduce contact with faeces. In general, tools used for manual emptying are simple and limited to buckets, shovels, ropes, bare hands and so forth. Therefore, capital costs involved are quite low (USD 20-100 per kit). Workers in this sector earn USD 20-400 month -1 depending on the number of calls. But they are exposed to several sanitationrelated diseases, such as skin rashes and infections (Rao et al. 2016). Otherwise, mechanical emptying relies on the use of vacuum trucks, pumping systems or mechanical augers. This service is provided, for the most part, by small private operators in the informal sector in cities rather than by water and sanitation utilities (Chowdhry and Koné 2012). In this case, there are also issues with monitoring of these entities' practices.One key challenge in the mechanical emptying sector in West Africa relates to the high capital cost involved in acquisition of the truck itself (USD 25,000-45,000), usually via secondhand import from Europe (Mbéguéré et al. 2010;Zoungrana et al. 2011). The operational costs of such business include labor (two to three staff truck -1 ), fuel, and periodic repair and maintenance of the truck, which are substantial for old fleets typically found in the region (Figure 1). Trucks are at least 15 years old when purchased (Zoungrana et al. 2011).Minor costs include telephone expenses and advertising costs (printing leaflets, signboards and visiting cards). There are other more affordable mechanical systems for OSS emptying in other parts of the world such as gulper pumps (USD 40-1,400 unit -1 ), screw augers (USD 700 unit -1 ) and diaphragm pumps (USD 300-850 unit -1 ) (Strande 2014;Rao et al. 2016).FS that is emptied manually is usually disposed of inappropriately. It is either buried in nearby land or dumped in fields or open drains. According to Hounkpe et al. (2014) about 35% of houses in Benin was using manual emptying and dumped their sludge directly into the public drain or onto the street. Similarly, Koanda (2006) reported that 45.3% of sludge removed manually in Ouagadougou was dumped onto the street. However, FS collected through mechanical means (like vacuum trucks) is sent to designated FSTPs when they exist, or to informal dumping sites, which include farmland.There are several possible technological options for FS treatment. Standalone FSTPs exist in many countries (Figure 2). Although the capital costs of FSTPs are considerably higher than the emptying and transport businesses, operation and maintenance (O&M) costs are relatively lower due to lower maintenance cost, especially of pond-based systems with almost no expenses on fuel/ energy for pumping (Rao et al. 2016). But co-treatment with sewerage is also being practiced successfully. Nevertheless, many cities lack treatment facilities that can process FS before it is dumped in the environment. Even when they exist, their operation may not always be optimal. Note: 1 As a rule of thumb, one truck might serve 10,000 people or an area of 2,000-2,500 HH.Resource recovery from FS can deliver several products through different processes. Composting is often considered to be a low-cost and easy-to-operate technical option for FS sanitization in low-and middle-income countries, compared to other recycling options. Composting involves microbial degradation of organic solid waste. It can be achieved under aerobic (i.e. with oxygen) or anaerobic (i.e. without oxygen) conditions and even alternate between the two modes.Open/aerobic systems such as windrows and static piles have been used for dewatered FS composting (Nikiema et al. 2014;Cofie et al. 2009Cofie et al. , 2016) ) and are often preferred to other methods because they allow temperatures to rise during composting and material to be sanitized more quickly.Heating remains the most reliable sanitization method and composting processes which do not result in sufficient temperature increase (e.g. vermicomposting) should be avoided as much as possible because they require longer periods for FS composts to be sanitized, hence increasing storage time and the footprint of the process. To accelerate the process, other more expensive composting variants may be used, which are described in detail by Cofie et al. (2016).Beyond the agricultural options shown in Figure 2, biogas generation from co-digestion of FS is seen as a promising technology, given its potential to produce electricity and feed the national grid in countries where electricity charges or demand remain high. In Burkina Faso, the first FS-based biogas plant, which has capacity of 400 m 3 day -1 , was commissioned end 2016. It is expected to produce up to 2,160 MWh year -1 of electricity (ONEA 2017). Another similar plant has been in operation in Ghana since 2016.On the other hand, dewatered FS may be used as solid fuel for selected industries, such as for curing of clay bricks or to regenerate waste oil, as tested in Senegal (Gold et al. 2017). It may also undergo carbonization through pyrolysis, i.e. thermal decomposition under a limited supply of oxygen (Table 3). This produces FS biochar, which is considered a simple way to sequestrate carbon, if the end use is in agriculture. Biochar has a longer lifecycle in soils than ordinary biomass and can bind organic contaminants and heavy metals for example. The carbonized FS may also be briquetted and used instead of wood-based charcoal, as tested in many places, including Ghana (Tandukar and Heijndermans 2014). Another recycling option is the use of excreta or FS mixed with organic wastes as feedstock for the rearing of insect larvae (such as black soldier fly larvae). Once harvested, the insects constitute a protein source to feed fish and other animals to support an RRR business at scale (Joly and Nikiema 2019).Ouagadougou, the capital of Burkina Faso, had an estimated 2018 population of 2,531,000, 1 representing about 13% of the nation's population. The city's population is growing currently at a rate of about 4.8% year -1 . About 29% of the country's population resides in urban areas (UNDESA 2019).The city lies in the Sudano-Sahelian climate zone that has two distinct seasons: the dry season from October to May and the rainy season from June to September.Ouagadougou has three FSTPs in operation. All FSTPs have similar designs and started operating in September 2014 (Kossodo), October 2014 (Zagtouli) and November 2016 (Gonsin). The main difference between the three FSTPs is the treatment of leachates as described subsequently. There is a high probability of informal dumping sites used by some truck operators, implying that more FS is collected than reported here. Figure 3 shows the FS treatment process in the FSTPs.On arrival, and when they leave the plant, the FS trucks are weighted using a weighting bridge. This helps to obtain an accurate idea of the weight of FS being received. At the FS 1 https://www.macrotrends.net/cities/23192/ouagadougou/population discharge point, the FS is emptied into a chamber feeding alternatively up to two unplanted drying beds. A movable grid is placed at the entrance of each drying bed to hold back coarse elements. The drying beds are sand filtration systems that enable solid-liquid separation to occur. They serve as drying devices, filters and bioreactors.The dewatered FS, obtained after scrapping the drying bed, is stored in the open air near the FSTP. This by-product is not always recycled and its management may constitute a challenge. The filtrates from the drying beds are sent to waste stabilization ponds. At Kossodo, the drying bed leachate is pumped into the nearby municipal WWTP where it undergoes co-treatment with a mixture of industrial and domestic wastewater. However, at Zagtouli and Gonsin, the leachate is treated separately.Accra, the capital of Ghana, had an estimated 2018 population of 2,439,000. For decades, a location called 'Lavender Hill' has been the main FS dumping site of Accra, where depending on the status of other FSTPs, between 30 and 90% of the city's FS was directly released onto the beach (and into the ocean) from septic trucks.In October 2016, the Accra Sewerage Treatment Plant (or the 'Mudor plant') was recommissioned after rehabilitation and subsequently able to treat up to 18,000 m 3 day -1 of sewered wastewater. At the same time, a new FSTP named 'Lavender Hill Faecal Sludge Treatment Plant' or 'Mudor Faecal Sludge Treatment Plant' was built nearby to treat 2,000 m 3 day -1 of FS, i.e. most of the generated FS formerly dumped into the sea at Lavender Hill. The FS treatment process design involves screening and mechanical dewatering of the FS followed by anaerobic treatment of leachate using the UASB reactor system to eventually generate electricity from the biogas (for internal use). The private company in charge of the facility (Sewerage System Ghana Limited) explored sustainable management options for the dewatered sludge, but they were not integrated into the existing plant design. Another FSTP located north of Adjen Kotoku at the Accra Compost and Recycling Plant is currently being managed by the same entity. It can treat 600-1,000 m 3 day -1 of FS (SSGL 2019). It was commissioned towards the end of 2016.In 2004, a smaller FSTP started operations at Nungua Farms between Accra and Tema. The FSTP consists of eight stabilization ponds (four anaerobic, one facultative and three for maturation) and four sand drying beds (240 m 2 each) on a 10-acre plot of land. The FSTP underwent partial rehabilitation during 2011 and 2012. Figure 4 shows the treatment process.Since 2017, a new FS processing unit has enabled dewatered FS to be co-composted with municipal organic solid waste near Nungua Farms through the process described in Figure 5 (also see Nikiema et al. 2020). In Greater Accra, there is also comment about other (informal) dumping sites used by some truck operators; however, no data are available about the capacity of these locations and frequency of use. 2 This implies that the recorded FS volumes are likely to be conservative and do not represent the total amount collected. New FSTPs supported by the World Bank are also in the pipeline.The To date, there is only one FSTP in Benin, which is based on a 100-year land lease agreement between the Government of Benin and the private company SIBEAU, which owns the treatment plant. The plant is located in the Grand Nokoué area in Ekpè near Sèmè-Podji. This FSTP is the officially designated site for receiving all the FS collected in the Grand Nokoué area. It was built by SIBEAU between 1991 and 1994 to treat 180-200 m of FS daily, but shortly after it was asked to also accept trucks belonging to other parties (Abiola 2015).Figure 6 shows the treatment process for FS. A concrete structure with three receptacles enables three trucks to simultaneously discharge their loads. This reduces the overall emptying time for each truck. At each receptacle, there is a movable horizontal metallic grid that is used to filter the raw FS discharged and remove coarse elements.The grit chamber is a concrete structure (16.8 x 5.6 m) with a depth of nearly 2 m. It allows for the removal of sand from the FS. From there, the liquid flows into the treatment system organized as two parallel units, each composed of one Due to overloading, sometimes only one series of ponds receives new sludge, resulting in ponds filling up with sludge, thus reducing the retention time of the wastewater down to less than 1 hour, which has a serious effect on the effluent quality (Hounkpe et al. 2014). According to the World Bank ( 2016), the plant needs substantial repair and it is being increasingly affected by coastal erosion. 4FSTPs and compost stations are normally dimensioned to absorb actual and forthcoming FS volumes. Previous studies have demonstrated that FS generation and characteristics can be highly variable. For instance, while in Dakar, Senegal, the generation of FS capita -1 was 0.99 m 3 year -1 , in Accra, Ghana it was estimated to be 0.36 m 3 year -1 . Variations can be due to different prevalence of flush toilets, differences in social practices, as well as in the hydrogeology (there is a higher water table in Dakar, as opposed to Accra, which infiltrates the tanks), all of which can affect FS composition (Dodane et al. 2012).Understanding the collection of FS is also essential to the design of the FSTPs, including likely extreme values in peak periods, which might be certain days of the week, particular months or climatic seasons. As West Africa did not have long experience in FS treatment, such background information for designing the FSTPs was often not available prior to the construction of the first treatment systems. Therefore, designs were mostly based on small-scale prefeasibility studies, which built on estimates from basic mathematical models and on global knowledge to attempt to give a fair idea of the volume distribution of FS as well as its quality. Moreover, insufficient data available at the time of design have Apart from FS volume, its quality (for example solid and water contents, degree of stabilization) matters for plant design. For example, total solids will inform on the materials that could be available for composting while the degree of stabilization will clarify if FS can be fed directly to a drying bed, or a settling pond should be considered first. Finally, for any compost production, the high variability in the compost nutrient content has to be addressed to give customers a quality guarantee.Since FSTPs have now been running for some time, it has become important to analyze their performance and to compile adequate knowledge to ensure designs of future plants are more robust. Some of the identified gaps could be addressed through relevant policies to ensure the FSTPs continue to operate under the best possible conditions.Data collection focused on the volumes and quality of the collected FS, as they have implications for plant capacity, area needs (for example via drying beds) and technology choice, as well as the financial analysis of an optional co-composting unit similar to the one tested in Greater Accra.For Ouagadougou, only two FSTPs were considered, i.e. Zagtouli and Kossodo. Data were obtained from the National Utility for Water and Sanitation in Burkina Faso (ONEA) database. The volumes of FS were sourced from the monthly and daily reports produced on site and used for the monitoring of the two FSTPs. At each facility, the volume of FS was calculated from the differential weight of the trucks coming to discharge the FS. In rare instances where the weight bridge was not functioning (due to a power failure or technical hitch), data were estimated by the operator from the truck's volumetric capacity.At Zagtouli, the time period chosen was from October 2014 (the date of plant commissioning) to December 2016. At Kossodo, the data were collected from September 2014 (commissioning of the plant) to July 2015 and from November 2015 to December 2016. Kossodo FSTP was closed from August 2015 to October 2015 due to restoration work on the access road to the plant.In Greater Accra, FS volumes were obtained from municipal records and included monthly and daily monitoring reports for each site. In particular, the Accra Metropolitan Assembly (AMA) database provided information on the Lavender Hill site while for Nungua Farms, records from Tema Metropolitan Assembly (TMA) were considered. Monthly records were obtained for 7 years of operation, from 2010 to 2016, while daily records were obtained for 2015 only. Data for November and December 2016 (Lavender Hill) and from November 2015 to February 2016 (Nungua Farms), were not available during the preparation of the document. The more recently established FSTPs in Accra by Sewerage Systems Ghana Limited were only commissioned towards the end of 2016, and therefore were not considered in the study (SSGL 2019).In Benin, data were collected from the SIBEAU database. The volumes of FS were obtained from the monthly monitoring and operation reports of Ekpè FSTP over a period of 6 years of operation (from 2011 to 2016).To analyze the effects of parameters such as workday, calendar month and season on the volume of FS received at each facility, STAT-ease Design Expert 10.0 ® software was used. For other tests, we considered the least significant difference (LSD) to compare means and Tukey's Student Range. Results at 5% (p<0.05) were considered as statistically significant.Sampling intervals: Samples were collected from trucks serving OSS in HH and institutions (including public toilets [PT]).• In Burkina Faso, the sampling was conducted in July 2016 over 2 weeks; four samples of each source (HH, PT) were collected in the first week and one of each source in the second week. The sampling was carried out on Tuesday and Thursday during the first week and on Monday of the second week at Kossodo FSTP. At Zagtouli FSTP, sampling was done on Wednesday, Friday and Saturday during the first week and ended on Tuesday of the second week.• In Ghana, the sampling was conducted over 3 weeks at each FSTP. Two samples of each source (HH, PT) were collected in the first and second weeks and one of each source in the third week. The sampling was undertaken on Mondays at Lavender Hill and on Wednesdays at Nungua Farms during August 2015.• For Benin, samples were collected from Ekpè FSTP over 5 days (from 7 to 12 May 2015). The sampling was conducted manually on 50 trucks (10 trucks day -1 ) from various origins (Cotonou, Sèmè-Podji, Abomey-Calavi and surroundings) and randomly from all kinds of OSS.The sampling was performed in the morning or early in the afternoon and the sampling time varied between 2 and 3 hours each day.Sludge capture: For each FS truck in Greater Accra and Ouagadougou, an equal volume (3 l) of sludge was collected with a bucket during the following points of discharge: the beginning (when valves were opened), the middle and at the end of discharge when pressure was low. In Ekpè, from each FS truck, an equal volume (2 l) of sludge was collected using a bucket (0.5 l) at the beginning when valves were opened, 1 l at the middle of discharge; and 0.5 l at the end of discharge when pressure was getting low. These three fractions were mixed to give a fair idea of the composition of FS in that truck.For each truck from which FS was sampled in Ghana and Burkina Faso, information on the source of FS (pit latrine, septic tank, domestic HH or institutions, such as offices) and the estimated amount that was discharged at the FSTP was collected through interviews with the truck drivers.Sample compositing: Equal volumes of FS from three different trucks at the Nungua Farms, Lavender Hill and Kossodo sites and two different trucks at Zagtouli (given the reduced number of trucks visiting this plant), either from HH or PT, were mixed for each source into a composite sample.In total, 10 composite samples at each location, Nungua Farms, Lavender Hill, Ekpè, Kossodo and Zagtouli, were obtained (five from HH and five from PT/offices; except in Ekpè). The composite samples reflecting the contents of 60 (Ghana) and 50 (Burkina Faso, Benin) FS trucks were each packaged in containers of 1 l and sent for analysis. In Benin, the 50 samples were merged to obtain 20 (4 day -1 ).The results obtained are listed below. All parameters were measured three times from the same sample and data reported were averages of the three values.For the receiving chambers at the FSTP, truck volume and frequency are important: At Zagtouli, it was established that the average volume of FS was 8.7 m 3 truck -1 while at Kossodo, the average volume was statistically higher at 10.5 m 3 truck -1 (see Annex 1, Table A1). As the two plants are in the same country, the difference is probably not due to the size of the trucks but rather to the filling rates of the trucks visiting the different treatment stations. This could be linked to the social status of the communities served by the plants and should be investigated further. In general, higher filling rates should be promoted as they correlate with lower cost of transportation of the waste, which could mean increased affordability.On the other hand, the amounts of FS received at both facilities were not significantly affected by the calendar day, months or seasons over the period of observation.The monthly volume of FS collected between September 2014 and December 2016 at Kossodo FSTP was 6,582 m 3 while at Zagtouli it was significantly less (2,315 m 3 ).The average volume of FS collected and transported over the period to those FSTPs in Ouagadougou was 8,108 m 3 month -1 . Since the commissioning of the FSTPs, 22,891 trips by vacuum trucks had been received at both FSTPs. The average number of trips for each working day was 25 at Kossodo (which has a more central location) versus 10 at Zagtouli, leading to a total of up to 35 trips workday -1 for the entire city on a normal day (i.e. when both FSTPs were in operation).Truck operator services are offered 5 to 6 days a week (Zoungrana et al. 2011). The average amount of FS collected for each working day between Monday to Saturday in 2015 was 237 m 3 at Kossodo while at Zagtouli, it was 87 m 3 (Figure 7). City-wide, FS volume collected and received at the FSTPs was 324 m 3 workday -1 . Based on the average values, the highest volume of FS collected at both facilities was recorded on Mondays (377 m 3 ), the lowest being on Wednesdays and Fridays.FS volumes collected at each FSTP during the rainy season were 14 or 26% higher in Ouagadougou than those measured during the dry season, but the differences were not statistically significant. The average amount of FS discharged at Kossodo from September 2014 to December 2016 during the rainy season was 7,742 ± 3,069 m 3 month -1 ; while the volume of FS discharged during the dry season was 6,130 ± 3,283 m 3 month -1 . This was similar to Zagtouli FSTP (on average, 2,529 ± 542 m 3 month -1 and 2,225 ± 648 m 3 month -1 for the rainy and dry seasons respectively).For design plans, extreme values also matter. The highest monthly amounts of FS discharged at both facilities from 2014 to 2016 were registered in October 2016 at Zagtouli and at Kossodo, i.e. following the rainy season and were 75 to 100% higher than the average values for the period. However, the lowest processed FS amounts (excluding periods of shutdown) were 35 and 65% lower than the average, respectively. The reasons for these observations are diverse (for example more holidays in December), but the important message is that FS volume variation must be factored into the design of the FSTPs to ensure that the treatment remains acceptable at all times.For Lavender Hill, municipal records showed an average volume of 9.7 m 3 FS truck -1 while for Nungua Farms this figure was 13.2 m 3 . Figure 8 The average volume of FS for each truck was 8.6 m 3 over the entire period considered but seems to have been declining over recent years (around 9.0 in 2010 versus 8.1 in 2016). Figure 9 shows the trend of the average volume of FS discharged from Monday to Saturday at the FSTP at Ekpè, Grand Nokoué during 2016. The average amount of FS sent to the FSTP was 382 m 3 workday -1 . The statistically highest volumes of FS for 2016 were registered on Mondays and Tuesdays (average 421 and 418 m 3 workday -1 , respectively) and the lowest statistically significant volume on Saturdays (303 m 3 workday -1 ).The average volume of FS collected monthly at Ekpè during the analyzed six years of operation was 10,525 ± 676 m 3 month -1 showing limited variation without any significant difference. The same applies to seasonal variations. Monthly extremes ranged from 3,046 m 3 in December 2012 (probably due to a partial plant closure) to 13,666 m 3 in July 2011.Over 7 years, certain trends of FS discharge at the FSTPs were observed. These reflect in part the dynamic between population growth and the provision of sanitation services but are also influenced by plant breakdown/renovation or the opening of alternative plants.Overall average (m 3 workday For Ouagadougou, Figure 10 shows a continuous increase in the annual amount of FS discharged at the newly constructed FSTPs and of the ratio of the volume of FS collected to the population of the city. This indicates not only the collection of more FS but also that collection has kept pace with population growth -there was a statistically significant improvement in the sanitation situation (by 86%) between 2015 and 2016. There are no data on how much informal discharge in the environment has decreased. In 2006, at least seven uncontrolled sites were identified where FS from the city was being dumping without treatment and with little control (Ouedraogo 2006). In Greater Accra, the annual volume of collected FS remained in the same range (ca. 370,000-410,000 m year -1 ) between 2010 and 2015 but decreased in when the rehabilitated Mudor plant (and other initiatives) started operations in the second part of the year (Figure 11). Given the population increase in this period, an increase in the FS volume delivered to the FSTPs was expected. However, Accra grows far more horizontally than vertically and septic trucks at the city margin will seek other alternatives to inner-city traffic and loss of time and income. The FS collection rate capita -1 was 0.08 to 0.10 m 3 , higher than Ouagadougou, but (even disregarding 2016), appears to be declining, which is concerning. Figure 12 shows a declining trend for Ekpè, similar to Greater Accra, although the variations in the collected FS volume appeared limited from 2012 to 2015. In 2016, only 76% of the FS collected in 2011 was sent to the FSTP. This corresponded to the lowest fraction over the study period.Simultaneously, the ratio of volume (m 3 ) of FS treated capita -1 year -1 declined from 0.099 in 2011 to 0.056 in 2016. This represented a 43% reduction and has been attributed to the combined effects of a reduction in collected FS volumes and population increase in the target area.To generate the ratio of FS collected/treated capita -1 presented in Figures 10, 11 and 12, it was assumed that the population serviced by the different FSTPs was comparable to the administrative boundaries as defined in this report. However, particularly for Greater Accra and Grand Nokoué, the administrative boundaries may not align with the economic area of operation of the trucks. Therefore, the rates capita At the studied FSTPs, apart from volumetric data, no regular (monitoring) data were collected, such as on the origin of the FS or on its quality. An analysis is, however, important for the treatment as different physical and chemical characteristics can have implications for the design of the FS drying, treatment as well as composting and reuse processes. Bassan et al. (2013b) reported, for example, that the FSTP in Zagtouli was designed based on literature values to treat 125 m 3 day -1 with a TS load of 21,000 mg l -1 resulting in 48 drying beds, each with a surface area of 128 m 2 . Follow-up studies, before the plant's inauguration, on the characterization of the FS revealed that TSS were much lower and the plant was overdesigned by a factor of at least two, which has financial implications. On the other hand, the plant was able to treat 250 m 3 day -1 (Bassan et al. 2013b) and more FS could be directed to it, especially given the high load reported above at Kossodo.Tables 4 to 6 present the results of characterization of raw FS for the three locations. Although there are some trends in view of FS origin and FSTP, variations were generally high and statistically significant differences should be treated with caution. The pronounced difference between Accra's HH and institutional sources in view of TS, OM and COD for example (Table 5) is noteworthy. The higher solid content of institutional FS than HH FS could theoretically result from less water use (like in single pit latrines) but is probably due to a higher desludging frequency (resulting in less stabilized FS) of institutional rather than HH-based systems.Another observation relates to the lower biodegradability (wider COD to BOD ratio) of the Greater Accra FS compared to the FS sampled in Ouagadougou (Table 4). The ratio was 1.9 to 2.1 in Ouagadougou, around 4.2 in the Grand Nokoué area and 4.8 to 6.8 in Greater Accra. The lower biodegradability of FS across Accra could be the result of the sludge generally being stored longer compared to storage in Ouagadougou.For the assessment of co-composting options, it is important to note the high average solid content of FS in Ekpè (Table 6) as this has significant implications not only for the amounts of additional organic waste needed and co-compost which can be produced, but also the related space requirement and so forth. An explanation for the high TS and TSS content might be the relatively high solid waste and sand content of pits, especially in coastal Cotonou and Porto-Novo (pS-Eau 2004). Consequently, it was noted that TP and TK were higher in FS from Ekpè compared to FS from the other locations. However, the TN and NO 3 -N were lower and higher than those in GreaterAccra FS, which is consistent with the previous remark and potentially indicates a higher level of stabilization. Nevertheless, the TS and TSS in Ekpè remained lower than those at the institutional FS in Greater Accra, the institutions being known for their low residence time and water use.In general, and as also reported, for example from India (Jayathilake et al. 2019), most parameters varied significantly, from one region to another and within the same region. This variability is an important factor, which must be managed to enable the smooth operation of an FSTP (Bassan et al. 2013a;Nikiema et al. 2017). It will be important to 'guarantee' a defined nutrient content if the FS is transformed and marketed as compost. To buffer variations in quality, Nikiema et al. (2020) recommended to either present labels with nutrient ranges on compost bags and/or to enrich the compost with key nutrients (NPK) to achieve constant percentages. However, this requires compost analysis for each batch and higher production costs.Source: IWMI Lavender Hill Nungua FarmFSM is a challenge in many West African cities, ranging from overstretched or missing collection and treatment infrastructure to the lack of viable solutions to manage FSM by-products, which accumulate on site. To better understand the current status of FSM, particularly collection and treatment, the study looked at the following different aspects:In the sampled cities, the raw FS sent to the FSTPs was transported by FS vacuum trucks. There was some variation between weekdays, for example with lower collection rates on weekends. This could be related to normal business hours (in institutions for example) but also influenced by cultural factors. Especially in Accra, which has a high share of Christians, large parts of Sunday are reserved for church service by both service providers and HH. The recorded daily discharge rates are, however, important information for the FSTP to understand the frequency of arriving trucks, related parking space requirements, peak desludging rates and overall volumes to be prepared for.The analysis of variations over the year was catalyzed by Bassan et al. (2013a) who indicated that in the rainy season, rainwater or groundwater could intrude into the septic tanks and pits, resulting in more frequent emptying. This could, for instance, be an issue in Cotonou and Sèmè-Podji where the groundwater level during the rainy season is close to the surface (0-4.5 m [maximum]) (SEURECA 2016). However, our data could not confirm a statistically significant impact of the calendar month or season for any FSTP on the FS volumes recorded.The analysis also showed the impact of location. Where septic tanks are emptied by private companies, the number of HH served each day determines the profit. Obviously, FSTPs within HH vicinity are preferred as they minimize transport costs and time, as observed in Greater Accra and Ouagadougou. A related factor is the quality of the FSTP access road. In a study by Anaglate (2013), conducted during the rainy season for the Nungua Farms FSTP in Greater Accra, it was established that FS collected during rainy days was only half of the volumes collected during nonrainy days. This was because truck operators would reduce operations when it rained and red clay roads became a risk, but they would catch up on their rounds during nonrainy days.The development of collected FS volumes at the FSTPs is expected to increase over time with population growth.However, this appears to be confounded by (i) the limits of some of the FSTPs, which have reached their capacity; (ii) the capacity of truck operators (usually small and microenterprises) to serve all HH with their aging (second-hand) truck fleet; (iii) the truck operators' decisions on where to desludge (for example informally) to save costs; and (iv) HH decisions not to engage with an (expensive) truck operator but to manage the FS informally. Except in Senegal, private sector incentives for investment in FS collection that can help to increase the truck fleet are not offered within the West African region (Mbeguere 2014).Waste stabilization ponds are the dominant treatment process for FS in West Africa. These pond systems involve the use of settling ponds and/or sand drying beds to isolate solids and stabilization ponds for the removal of dissolved organic matter in wastewater. With only a limited number of FSTPs in the region, it is however no surprise that their capacities are usually (over)stretched, although data on treatment performance are rare. For example, in Benin, the privately owned FSTP at Ekpè was expected to receive only the trucks of the SIBEAU company (about five a day) but eventually was asked to also accommodate other truck operators in the Grand Nokoué area. Between 2008 and 2010 this resulted in up to 80 trucks a day, exceeding on average 2.65 times the design capacity with severe consequences for the water retention time and treatment quality (Hounkpe et al. 2014). However, the alternative would have been for the truck operators to illegally desludge or to stop their service. Only 20 years after the start of the Ekpè FSTP, funding for one of two new FSTPs has been allocated (World Bank 2016) and construction has started. To meet the regional FS treatment needs, more FSTPs are needed, but also incentives, higher capacities and laboratories to improve performance monitoring (Murray and Drechsel 2011).Not all generated FS is collected in West Africa and not all collected FS is treated. For example, in Dakar, Senegal, only 25% of the generated 6,000 m 3 of FS is collected and ends up in treatment plants (Mbeguere et al. 2011).In Ghana, until recently, nearly 90% of the FS collected in Greater Accra did not undergo any treatment before being dumped officially on Accra's beach (Lavender Hill) due to the dearth of functional FSTPs. Another key reason for FS collection without proper discharge at designated FSTPs is economic, i.e. the transportation distance between HH and the few existing FSTPs. With increasing distances (the urban boundary also has to be addressed), fewer HH are being served every day while fuel costs rise, unless the truck operator finds an alternative (informal) dumping site in the proximity of the served community. Where truck drivers are not monitored, they might opt for the least costly option in terms of truck operations, saving on fuel, time and tipping fees. Zoungrana et al. (2011) reported that fuel can constitute over 50% of the septic truck running costs in Burkina Faso and the truck accounts for 78% of the total business operational costs. To partially address these issues, cities such as Ouagadougou have opted for the construction of multiple decentralized (small) treatment systems to reduce travel distance to each of them. However, this type of solution is usually more costly.Thus, while in Ouagadougou, both FSTPs (Kossodo and Zagtouli) have, according to the design, a FS treatment capacity of 125 m 3 day -1 , the Kossodo FSTP is overexploited and Zagtouli is underexploited. The reason being that the Kossodo FSTP has a more favorable geographical location, close to the city center, where most HH have high incomes and rely on septic tanks. These HH likely empty their septic tanks more often because of their larger water consumption (Nikiema et al. 2017). The plant is also easy to access, well equipped and well known, compared to other FSTPs in town. This is in line with the study of Hawkins and Muxímpua (2015) who indicated that the frequency of emptying the septic tank and the truck rotation depend on the population, the travel distance and the living standard. The same observation is pertinent to Accra, where Lavender Hill is close to the city center with good access roads, receiving most of the FS, while Nungua farms has a more complicated and muddy access road.To avoid long trips to an FSTP, some truck drivers serve farmers who appreciate the low-cost farm-gate delivery of nutrient-rich 'manure'. In countries such as Ghana, Burkina Faso, Mali or Benin, it has been reported that farmers pay truck drivers for the FS, which is changing the 'tipping fee' from expenditure to revenue (Bolomey 2003;Asare et al. 2003;Koanda 2006).If done during the dry season, this practice might not pose any danger because longer FS exposure to the sun will kill pathogens. However, when done during the growing season, such practices could represent a potential health hazard if the workers and/or harvested crop parts make contact with the raw FS (Keraita et al. 2014). The practice might have its roots in the manual emptying of pits and local reuse as manure. In 2006, still 23% of all (mostly manually collected) FS in Ouagadougou was recycled in local farms (Koanda 2006).However, potential reuse risks can be avoided through the destruction of pathogens. RRR processes, such as cocomposting, will not only turn the largest by-product, the generated FS, into a resource but also provide farmers with valuable nutrients and organic matter. To better understand the quantities, qualities and costs associated with FSM and RRR, the study looked at the possibility of an additional fecal sludge + other municipal organic waste co-composting unit.The proposed scenario was analyzed to understand the related implications of the introduction of RRR in terms of staffing, area needs, finance and so forth.In this section, the potential of introducing FS co-composting at the existing FSTPs in Burkina Faso and Benin is assessed, following a model similar to the one already implemented near Nungua Farms, Ghana, and operated by Jekora Ventures Ltd. (see Nikiema et al. 2020).To generate the financial models for Burkina Faso and Benin, we adopted a scenario replicating the experience of the co-composting facility at Nungua Farms FSTP in Ghana using similar design factors and processes (Armah 2016;Nikiema et al. 2020). For the co-composting process, apart from FS, food waste and sawdust were used as the main additional organic waste sources. For other data, like infrastructure and operational costs as well as assumptions on annual sales and likely revenues, see Tables A5 to A9 in Annex 2. The @RISK ® software was used to run the financial simulations.Table 7 shows the total amount of FS and other organic waste materials required for the proposed co-composting processes in Ouagadougou and in Cotonou. These volumes consider the FS characteristics and estimated dewatering performance.Priority should be given to sorted organic waste, which requires less labor for preprocessing and results in lower cocompost production cost. In addition, wastes that are easily biodegradable should be chosen, ideally with a relative wide carbon to nitrogen ratio to balance the narrow one of FS.In our scenarios, we considered a mix of 80% municipal organic solid waste and 20% sawdust (shares in the total mass).Composts and co-composts produced may be sold in their original form or after enrichment with plant nutrients to increase and/or guarantee the compost nutrient value. This 'fortification' can be done with industrial fertilizer, rock phosphate or urine for example. In our scenarios, ammonium sulfate, typically the cheapest mineral nitrogen source, was used to enrich the nitrogen content of the compost to 3% in mass.Finally, Table 7 presents the amounts of co-compost products that could be obtained. There is potential to produce 537 MT year -1 at Kossodo while at Zagtouli, the amounts can range between 198 and 240 MT year -1 for the current and design capacities, respectively. At the larger FSTP in Ekpè, the potential rises to 4,500 MT year -1 . This is mainly due to the 10 times higher TS content in the FS (Table 6), leading to higher amounts of dewatered FS available for co-composting. However, the high sand level in the Ekpè FS will cause challenges for compost quality and (if desired) the machinery for processing compost into pellets (Nikiema et al. 2020).The land requirements for the various additional plant components of a co-composting station at FSTPs are presented in Table 8. To integrate them in the FSTPs of Kossodo and Zagtouli, about 0.4 and 0.2 hectares (ha) are required, respectively. In the case of Ekpè, the additional land requirement for processing the indicated compost amounts rises to 2 ha. This extensive land area may be difficult to source in an urban set up. To reduce the land requirement, it is possible to consider more intensive composting Note: The land requirement shown corresponds to the effective area. This means that space for walkways, cleaning and so forth should also be considered in addition.Typically, a 25% addition for each unit could accommodate these extra areas. Access roads should also be arranged separately. a The total volumes of FS considered were taken from Section 4.2. They correspond to the volume of FS received at each treatment plant for 2016.b From empirical sources, HH FS corresponds to 70% of the FS collected at the site; public toilets account for 30% of the FS collected at the site.c The amount of sorted organic solid waste should correspond in mass to three times that of the dewatered FS produced. As in Ekpè the TS content is about 10 times higher than in Kossodo, also the amount of solid waste can be increased correspondingly.d The scenarios were obtained for the current and designed capacities in Zagtouli. This is because, based on data collected for 2016, the treatment plant at Zagtouliwas not yet operating at full capacity.e We assumed that part of the co-compost product could be enriched with minerals to enhance the compost quality. The percentage of co-compost going through this extra process was triangulated to between 0 and 50% with an average at 30%. The rest of the compost would be sold as regular compost.processes (for example aerated windrow composting or invessel composting) but these scenarios also require higher investment costs, which were not investigated in detail in this study. As the Ekpè FSTP is already overloaded, the operators should also consider decentralized alternatives. This could offer potentially better outreach to compost users as well as reduced transport distances and costs for septic trucks, possibly translating into more HH being served. However, these scenarios can also translate into higher investment costs.is EUR 111,000. In the case of Cotonou, the minimal investment cost calculated amounted to EUR 1.46 million. These investment costs assume in all cities that parts of the needed equipment are already available, such as treatment facilities for FS leachate, which can also absorb leachate from the composting area.The extra infrastructure shown in Table 8 implies additional costs (Table 9). The construction costs were derived from actual construction costs in Ghana in 2016. To integrate recycling at the FSTP of Kossodo, at least EUR 234,000 are required while for Zagtouli, the minimum requirement Depending on the compost volume and particular market demands, additional machinery may be required such as a mechanical sieve, a grinder, a mixer (if enrichment is done) or a pelletizer. Details of machine capacities required (MT hr -1 ), under the scenario described so far, are shown in Table 10. Most of this equipment could be sourced locally, apart from the pelletizer, which involves advanced technology and is better obtained from specialized companies. The cost of securing this equipment will vary, depending on manufacturers, designs, materials used for their fabrication and capacity. Prices could range from EUR 10,000 for a basic set of machinery to EUR 100,000 for a larger imported set (Nikiema et al. 2020). Pelletizer (optional) 0.00 0.00 0.00 0.00 a The capacities of the equipment will change if a higher volume of enriched products is to be produced, compared to our tested scenario.Based on the experience of the plant in Ghana, Table 11 presents the operational costs and revenues as calculated for the three projected FST-cum-co-composting plants in Ouagadougou and Cotonou. These costs increase annually due to inflation, fuel and salary increases, among other factors. The cost items considered included labor, marketing, sales and distribution, transportation of products, utilities, inputs (such as ammonium sulfate), insurance of the plant and equipment, annual write-off, depreciation of equipment and furniture as well as estimated legal and registration charges for the co-compost products.The estimated co-compost production costs for each tonne of compost reflect economies of scale (EUR 159.4, EUR 125.0 and EUR 81.6 for Zagtouli, Kossodo and Ekpè, respectively).The co-compost plants will generate profits from sales of their products, i.e. co-compost and/or enriched cocompost (and possibly compost pellets). To set the sales cost point for the compost, the current sales price for a comparable product in each location was used. To set the price of enriched compost, which has no comparable product in Burkina Faso or Benin, a 65% increase of the sales price for the regular co-compost was used due to the additional production costs (for example mineral fertilizer and electricity for extra processing). In Ghana, previous research has shown that an increase in production cost, for switching from regular compost to enriched compost, could reach 100% and our lower cost assumption should be considered optimistic. Another assumption is that the enriched compost will only be produced based on market demand and acceptance of a premium price. Table 11 shows the results, assuming -on average -a 70 to 30% share of normal to enriched co-compost.The total tipping fees collected at the FSTPs in Ouagadougou and Cotonou ranged from EUR 0.46 to EUR 0.75 m -3 for FS. This income should ideally cover the operational FS treatment costs (which in pond-based systems are relatively low) and in addition support parts of the composting process. As composting sanitizes the sludge, it eliminates the need for safe disposal at a landfill (and thus saves on related costs).Different possible scenarios (see Annex 2, Table A9) show that in comparison with possible revenues from compost sales, tipping fees will only (need to) finance about 10% of the composting process (Table 11).Table 11 presents the annual profit or loss, which could be experienced by each of the three co-composting plants.From this analysis, it appears that the plants in Kossodo, Cotonou/Ekpè and Zagtouli could reach the break-even point after 5, 7 and 8 years of operation, respectively.To cover for the losses that the co-compost plants will experience before they break even, an operational subsidy will be required. Compared to compost sales, the average tipping fee could cover 8 to 15% of the revenues (Ouagadougou) while in Ekpè the share is much lower (2 to 3%) due to the relatively low number of trucks needed for the much higher co-compost production per cubic meter of (high density) FS processed. Table 12 presents the net present values (NPV) and returns on investment (ROI) for the tested scenarios in Kossodo, Zagtouli and Ekpè. For Kossodo, it shows that there is a comfortable 73% chance for the business to be profitable. This is the highest probability obtained in our study. However, as for many waste-based compost plants, the potential ROI considering composting only are rather low, around 30% on average, making full (operational and eventually capital) cost recovery unlikely within the stations' life time unless under very optimistic scenarios. However, partial recovery could be considered an important step towards reduced dependency on subsidies, which remains 'business as usual' in the waste and sanitation sectors. Setting up a recycling plant in Zagtouli would result in a negative NPV of -EUR 6,696, largely due to its relatively lower capacity. The recycling plant in Ekpè is expected to perform slightly better than the one in Zagtouli (Table 12) but may face space availability challenges, as mentioned previously. In addition, marketing such large amounts of compost from one location might be challenging without additional investments, for example, in a partnership with a fertilizer company. Except for Kossodo, the ROI for Ekpè and Zagtouli is almost zero for the first 10 years. Key factors likely to influence the financial performance of the plants are shown in Table 13. The table also draws from IWMI experiences with other composting stations across the subregion (Drechsel et al. 2010;Danso and Drechsel 2014) which indicated that professional market analyses are crucial, especially where subsidies might not last. The market analysis should also look beyond agriculture at other possible market segments, such as housing (real estate) and landscaping, as well as competing products. Another lesson is, that within the agriculture sector, the lowest transaction costs are associated with larger customers, such as outgrower companies and industrial crop plantations that can buy in bulk and often also provide their own transport. The study also stressed the benefits of effective project partnerships linking public and private sectors (such as for compost marketing or with particular buyers through contractual purchase agreements). A detailed market study is required to identify premium customers with high willingness and ability to pay for a safe quality compost, as well as large customers who might expect discounts but can take large amounts of different quality (such as for landscaping) and year round (such as real estate). The analysis should look at existing comparable products on the market to understand customer expectations and to verify the willingness-to-pay results.Competition can be addressed through good marketing of a better product. Setting a cost-recovering price will not always work. Indeed, a local competitor with a lower-priced product that is better promoted or already a trusted brand will generate potentially negative rivalry. Subsidized compost production by competitors can severely undermine fair competition. Also, low-quality products and poor marketing (common among many government compost stations) are severe obstacles to cost recovery.In the Ghanaian FS recycling plant, the compost sales price was set at a low value in the first year to adjustments encourage customers to test and adopt it. Subsequent increase should allow for the attainment of a reasonable (cost-covering) level. However, cost increase can be hard to implement.Authorities have often limited choice in selecting ideal locations for treatment plants. Transport costs to and from the plant for inputs and outputs (waste/FS versus compost) can greatly determine the success or failure of a business, especially if there are competing plants or shops that are better located. Partnerships can partially address geographic disadvantages -for example a fertilizer distributor could support decentralized marketing. Compost prices can also vary among geographies:In Ouagadougou, which has lower rainfall, poorer soils and suboptimal biomass production, compost is rare and can be sold for a higher price than in Cotonou, for example.The FSTP/compost station should either have staff trained in business development, including market analysis and product marketing, or link with partners who are professional in this regard. Most government plants lack the respective staff mix or partnerships. Under an ideal scenario, sales should be aligned with compost production, targeting a high turnover in the storage room.Tipping fees are an important revenue stream for the FS treatment process. In our calculations, they can additionally add about 10% of the total revenues which are dominated by compost sales. Depending on alternative desludging options, and enforced legislation against wild dumping, the fees could be increased although the truck operators would probably transfer any increase to the served HH.The proposed composting process cited here is highly manual and so supports employment (see electricity cost Section 5.6); this means it is not constrained by machinery that breaks down, low institutional capacities and regional power supply challenges. Thus, a decision regarding the pros and cons of manual labor versus electricity (machinery) costs will have to consider more than just monetary values.While compost is generally well accepted, the addition of treated FS could be a concern for some perceptions sectors, like vegetable farming or those relying on export. Such concerns must be addressed through safety controls, product quality monitoring and sensitive marketing/branding.Assuming a farm application rate of 10 MT ha -1 for basic (nonenriched compost), we established that the cocomposts produced through FS recycling can be used to fertilize 70 ha year -1 from the Kossodo FSTP, 25-31 ha year -1 from the Zagtouli FSTP and in Cotonou, up to 588 ha year -1 could be fertilized. The potential is therefore not negligible, especially where alternative organic fertilizers are rare or expensive. Positive impacts can be expected for farmers and consumers who benefit from increased agricultural productivity. In Ghana, revenue increase for maize farmers using co-compost compared to those using inorganic fertilizer reaches 40-50% (IWMI, unpublished data). In addition, jobs are created as shown in Table 14. In Ouagadougou, up to 47 new jobs could be created while for Cotonou, the number rises to 184 people. Many of these jobs do not require a prequalification and can directly benefit unemployed youth and women. The addition of a formal FS recycling process is recommended for any new FSTP. To achieve this, early planning is needed due to the additional space and budget requirements. In our scenarios, the highest implementation potential was identified for the FSTP at Kossodo in Burkina Faso. Comparing the extra costs and benefits, it would take at least 5 years to break even. Only then, any revenues from compost sale could help to sustain the operation of the FSTPs and contribute, for example, to the monitoring of treatment quality as this will also affect compost marketing. Other -not counted -benefits are the reduction of the sludge disposal costs, the reduced volume and disposal costs of the co-composted municipal organic waste, and related greenhouse gas emissions, and the creation of jobs and a safe organic fertilizer that will help farmers to produce more food. Thus, the planning for RRR should look at economic benefits and not only financial cost recovery. As for any business, the success of RRR will also depend on many factors, such as the need for a professional market analysis, strategic partnerships and sound marketing skills which consider cultural perceptions and the competitive landscape. In West Africa, as for the rest of SSA, much of the urban or rural population does not have access to adequate basic sanitation. Apart from toilet access, there is also the need to safely manage the waste generated from toilet use. In this region, sewer systems' coverage in urban areas is limited to 12% of the total urban population and such systems are only found in selected large and well-planned urban areas.Low coverage is partly attributable to the challenges related to sewer design, costs and management. Even the efforts undertaken in recent years to increase decentralized sewer coverage struggled to succeed because, for example, many HH decide against a connection owing to high connection fees, usually required as up-front payment, lack of incentives for HH to connect and other constraints.There are also enormous challenges associated with the treatment of collected wastewater. Consequently, notable volumes of raw or slightly treated sewage are commonly discharged into the sea or rivers. In West Africa, the highest sanitation coverage (85%) is achieved through OSS (42% for septic tanks and 58% for pit latrines or other OSS), which allow for storage and (pre-) treatment of human excreta within the plot occupied by a dwelling or its immediate surroundings.As with sewers, the OSS sector faces challenges related to the removal of FS from OSS and its transport to the site of treatment/disposal. Indeed, indiscriminate dumping is still happening in many cities while treatment performance at designated dumping sites can also be suboptimal.This report has attempted to close some data gaps in the commonly grey area of FSM in West Africa, focusingon the examples of Ouagadougou, Greater Accra and the Grand Nokoué area. The selected three urban regions include the capital cities of Burkina Faso, Ghana and Benin. In Ouagadougou (n=3), Grand Nokoué (n=1) and Greater Accra (n=3) different numbers of official FSTPs are in operation. Over the years, most FSTPs have relied on the use of waste stabilization ponds for treating FS. In Accra, this trend changed recently when (also in response to increasingly limited space) other technologies, including one UASB, have been commissioned (SSGL 2019).In general, the FS received at FSTPs is being transported by means of FS vacuum trucks and such service is offered 5 to 7 days each week. Truck operators operate within an economic area, which may not necessarily align with the administrative boundaries. There is some variation related to the daily volumes of FS received at the FSTPs ( Our analysis of FS characteristics shows that although there are some trends in view of FS origins and FSTPs, variations were generally high and statistically significant differences should be treated with caution. The pronounced difference between Accra's HH and institutional sources in view of TS, OM, COD, for example, is notable. Another observation relates to the lower biodegradability of the Greater Accra FS with COD to BOD ratios of 1.9 to 2.1 in Ouagadougou, around 4.2 in the Grand Nokoué and 4.8 to 6.8 in Greater Accra.Our study also explored the potential for building a circular economy business around the FSTPs constructed in West Africa. For that purpose, we assessed the potential of introducing FS co-composting at the existing FSTPs in Burkina Faso and in Benin, following a business model similar to the one already implemented near Nungua Farms in Greater Accra, Ghana, and operated by Jekora Ventures Ltd. We found that about 750 MT and 4,500 MT of cocompost could be generated respectively at the two regions each year. This would in addition enable about 1,000 MT and 6,000 MT of organic solid wastes to be processed. Integration of co-composting would require some land and finances in the order of at least EUR 235,000 and EUR 125,000 for FSTPs in Kossodo and Zagtouli, respectively. The high land requirement to run the same model at the Grand Nokoué site could be a constraint.The co-composts produced through FS recycling could be used to fertilize 70 ha year -1 from the Kossodo FSTP, 25 to 31 ha year -1 from the Zagtouli FSTP and up to 588 ha year -1 in Grand Nokoué. The potential is therefore not negligible, especially where alternative organic fertilizers are rare or expensive. In Ouagadougou, up to 47 new jobs could be created while for Cotonou, the number rises to 184 people. Many of these jobs do not require a prequalification and can directly benefit unemployed youth and women.To cover the estimated co-compost production costs (EUR 82 to EUR 159 MT -1 ), compost sales will have to carry 90%of the compost production costs, while tipping fees are needed to cover the FS treatment costs and only a smaller share (6 to 10% on average) could support additional resource recovery.Factors that influence the financial performance of the FS co-composting businesses relate to market potential (demand, competition, cultural perception and price) which is affected, inter alia, by the location of the plant and the type of process in place. For Kossodo, there is a comfortable 73% chance for the business to be profitable. This is the highest probability obtained in our study. However, as for many waste-based compost plants, the potential returns on investment are rather low, around 30% on average, making a full (operational and eventually capital) cost recovery unlikely within the stations' life time unless under very optimistic scenarios. However, a partial recovery could be considered an important step towards a reduced dependency on subsidies, which remains business as usual in the waste and sanitation sectors.As a way forward to this study, the potential RRR opportunity for Kossodo FSTP calls for more detailed studies to confirm the actual market demand around this site and eventually to explore real implementation. For the other two FSTPs, there is a need to address the current operational challenges, which may help to improve the business potential compared to what was observed in the current work.Annex 1: Volumes of FS Collected at the Studied FSTPs.Tables A1 to A5 show the monthly FS collection data from the stations in Ouagadougou, Accra, Cotonou and Abomey-Calavi. a The FSTP at Kossodo was closed because of ongoing restoration works. Heavy trucks and rains had damaged the FSTP access road.Consequently, no FS was delivered to the FSTP during that period.b The FSTP at Zagtouli was not yet in operation.c Only one plant in operation during this month.d In calculating these values, we did not consider the monthly average marked.Source: Tanoh 2016, updated. Apart from FS, we considered the use of food waste and sawdust as the main additional organic waste sources for the co-composting process (Table A5). For FS in Kossodo and Zagtouli, we assumed that HH FS represented 70% of the total FS collected. We assumed that the main outputs of the plants were (co-)compost, enriched (co-)compost and, exceptionally, (co-) compost pellets (Table A6). Data in Table A7 were used to establish construction costs. These unit costs were derived from the recent construction of a similar plant in Ghana (Armah 2016). Drying beds, the mixing chamber and most of the external works were not considered as part of the investment required because the existing plants already produced dewatered FS which could feed the proposed co-compost plant. In addition, we considered that (except for pelletizing) no electricity was consumed in the processing of compost or enriched compost. One hundred percent of the electricity for office operations was generated by solar panels. The installation cost was €5,000 on average for Ouagadougou and €10,000 on average for Cotonou.The key general assumptions on production and cost factors are presented in Table A8. The lifecycle of the project was taken as 15 years; but this could last much longer. ","tokenCount":"13450"} \ No newline at end of file diff --git a/data/part_3/2496108022.json b/data/part_3/2496108022.json new file mode 100644 index 0000000000000000000000000000000000000000..3e7650ee86b22eb212c15ad36bb3baddd0e76341 --- /dev/null +++ b/data/part_3/2496108022.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"e9cbb4fe841b44fe9925477cae7c55b8","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/3a0870ba-fdca-4884-92a8-48cc66a0fea0/retrieve","id":"-315604228"},"keywords":["Climate change","crop breeding","drought","farming systems","food security","landscape","water use efficiency","WUE"],"sieverID":"6b2e6233-bcf7-4ad5-b270-5381258fdcf9","pagecount":"19","content":"Water scarcity is already set to be one of the main issues of the 21st century, because of competing needs between civil, industrial, and agricultural use. Agriculture is currently the largest user of water, but its share is bound to decrease as societies develop and clearly it needs to become more water efficient. Improving water use efficiency (WUE) at the plant level is important, but translating this at the farm/landscape level presents considerable challenges. As we move up from the scale of cells, organs, and plants to more integrated scales such as plots, fields, farm systems, and landscapes, other factors such as trade-offs need to be considered to try to improve WUE. These include choices of crop variety/species, farm management practices, landscape design, infrastructure development, and ecosystem functions, where human decisions matter. This review is a cross-disciplinary attempt to analyse approaches to addressing WUE at these different scales, including definitions of the metrics of analysis and consideration of trade-offs. The equations we present in this perspectives paper use similar metrics across scales to make them easier to connect and are developed to highlight which levers, at different scales, can improve WUE. We also refer to models operating at these different scales to assess WUE. While our entry point is plants and crops, we scale up the analysis of WUE to farm systems and landscapes.Agriculture is currently the largest consumer of water. However, as societies develop, the proportion of water use for non-agricultural purposes (industry, domestic) increases, and so does the competition between agriculture and non-agriculture actors. Climate change and its impact on precipitation and increasing temperatures also brings another level of complexity, increasing plant water demand and jeopardizing crop functioning, and indirectly decreasing surface, subsurface, and groundwater resources that supply the crops, whether that be via rainfall or irrigation. Therefore, agriculture in the 21st century needs to become more water efficient, and this goal can only be achieved by considering a holistic approach to water management and use in combination with crop improvement. The purpose of this review is to take that broader look at the functioning of plants and crops and at the multiscale levels of water efficiency, thereby going beyond the usual narrow focus on 'water use efficiency' of the plant science community.Making efficient use of water in agriculture has been the object of much research, and it has been addressed at different scales, with different metrics, and different considerations. In the domain of plant science, 'water use efficiency' and 'transpiration efficiency' have been the main two metrics, broadly representing a quantity of biomass produced (from units of CO 2 to grams of biomass) per unit of water used in the wide sense (plant transpiration or crop evapotranspiration that includes both plant transpiration and soil evaporation), and over a timescale that can vary from sub-seconds to the entire duration of a crop cycle (Farquhar et al., 1982;Condon et al, 2002Condon et al, , 2004;;Vadez et al., 2014;Hatfield et al., 2019). The term 'efficiency' can also be expanded beyond biomass and be expressed (for example) in units of yield, income, calories, energy, feed value, and protein per unit of water use within the perspective of a farming system, giving a socio-economic angle to the notion of water use efficiency. In the domain of farm engineering, the term 'irrigation efficiency' is a common metric that represents the proportion of water (from reservoirs, rivers, and groundwater, for example; often referred to as 'blue water') that eventually reaches the roots of the crop (thus becoming 'green water', i.e. water contained in the soil profile) and is released back to the atmosphere through transpiration. Beyond tracking and minimizing the water that is lost on the way from the reservoirs to the irrigated fields, increasing irrigation efficiency is also about minimizing the fraction of the water that runs off the fields, gets evaporated, or percolates below the root zone. Whilst the quantity of percolated water is considered as a loss from an agronomical perspective, it is not a loss from a hydrological standpoint since this water infiltrates to recharge the groundwater tables and thus remains present to supply irrigation at the same location or elsewhere, and to fulfil ecosystem services. Finally, it is worth noting that the spatial approach we discuss here needs to be combined with a temporal dimension, where water pathways and subsequent availabilities for crops depend upon seasonal dynamics of both meteorological conditions and agricultural practices.Therefore, increasing water use efficiency is in part about improving plant water use efficiency per se at the leaf, plant, crop, species, agronomy, hydrology, farm, and landscape levels. Beyond this, it is also about maximizing the socio-economic returns from water, not only from a monetary standpoint but also its environmental sustainability with regard to its preservation for future generations. In this review we consider how different research domains collectively address the question of making better use of water in agriculture, providing a broader view on what 'water use efficiency' really encompasses, and downscaling its meaning at each disciplinary level. We also aim to find ways, metrics, and equations to connect these scales of analysis. The common theme running through this review is to consider how different traits/crops/plants/anthropogenic actions can contribute to water use efficiency (taken in its broad sense), and whether existing observations and modelling methods can help in connecting these scales.Many studies aimed at a better understanding of transpiration efficiency (TE) have focused on the organ or cell scales in order to avoid confounding effects of canopy architecture or soil-environment interactions (Vialet-Chabrand et al., 2017;Hatfield et al., 2019;Leakey et al., 2019). At the leaf level, TE is referred to as 'intrinsic TE' (TE int ) and defined as A/G s , where A is the CO 2 assimilation by the photosynthetic biochemistry and G s is the stomatal conductance, or it is also defined as A/T, where T is the water lost by transpiration (see Box 1 for details and further derivations of the ratio). The time-frame is a second or less and the scale is that of a portion of a leaf. Equation 1 posits that possible means by which to increase A/T include increasing C a -C i by raising the CO 2 concentration gradient between the atmosphere and the stomatal chamber, improving the photosynthetic capacity or reducing stomatal conductance, or decreasing W i -W a by lowering the water-vapour gradient.Improving TE int by increasing photosynthetic activity is the current object of many studies (Long et al., 2015). In C 3 plants, an exciting avenue for research is presented by converting their metabolism toward a C 4 -like photosynthesis (Tardieu, 2022); however, inserting C 4 metabolism in C 3 plants is a challenging task, as observed in rice (Furbank, 2017;Sedelnikova et al., 2018). A more realistic target might be to concentrate CO 2 towards the Rubisco active sites by increasing mesophyll conductance to CO 2 , especially in leaves exposed to saturating light. To that end, manipulating the expression of plasma membrane intrinsic protein (PIP) aquaporins that are known to transport CO 2 from the liquid phase in mesophyll cells is of particular interest (Israel et al., 2021). The expression and functioning of aquaporins have been associated with TE int in rice (Nada et al., 2014) and in the restriction of transpiration during high evaporative demand in soybean (Sadok et al., 2010), pearl millet (Reddy et al., 2017), and chickpea (Sivasakthi et al., 2020). Another promising means for increasing plant photosynthesis is in accelerating the regeneration of ribulose-1:5 bisphosphate RuBP by increasing the levels of photosynthetic enzymes acting in the Calvin-Benson cycle (Long et al., 2015;Simkin et al., 2017) or by stimulating photosynthetic electron transport by overexpressing the Rieske FeS protein that is a key component of the cytochrome b 6 f complex (Ermakova et al., 2019;Simkin, 2019). In tobacco, overexpression of the enzymes fructose-1,6-bisphosphatase/sedoheptulose-1,7-biphosphatase from the Calvin-Benson cycle together with the red algal protein cytochrome c 6 serves this purpose and improves TE int and plant biomass under field conditions (López-Calcagno et al., 2020). However, whilst increasing TE int by boosting photosynthetic activity has provided promising results at the cell/organ scale, more efforts are still needed to demonstrate its value in whole plants.Limiting G s is another option to increase TE int , but it may appear less attractive because it might result in a decrease in carbon fixation in the linear parts of the A versus G s relationship (Tardieu, 2022), although it could be interesting in the nonlinear parts of the relationship where any further increase in G s is only rewarded by a marginal increase in A. Nevertheless, it is usually assumed that strategies aimed at reducing G s come at the expense of biomass production and yield under optimal conditions (Condon et al., 2002;Blum, 2009;Roche, 2015), and that they might be more useful under water limitation (Hughes et al., 2017;Caine et al., 2019;Mega et al., 2019). However, this assumption is being challenged by an increasing number of reports showing that limiting G s might not necessarily lead to a decrease in A (Franks et al., 2015;Yang et al., 2016;Dunn et al., 2019). For instance, robust and large-scale lysimetric assessments of pearl millet, sorghum, and groundnut have challenged the common view that higher transpiration efficiency is bound to lower productivity, and have shown that higher TE is completely unrelated to total plant water use, which in turn is directly related to plant productivity (Vadez et al., 2014). In another example, transgenic wheat plants overexpressing Epidermal Patterning Factor (EPF) show an increase in TE int with no changes in A, biomass, and yield compared to control plants when the reduced stomatal density is no more than 50% of that of the Box 1. Transpiration efficiency at the leaf scale At the leaf level, TE in often called 'intrinsic transpiration efficiency' (TE int ) and defined as A/G s , where A is the CO 2 assimilation by photosynthetic biochemistry and G s is the stomatal conductance, or also as A/T, where T is transpiration. Two equations describing this basic framework have been proposed by Condon et al. (2004) and updated by Condon (2020), and are presented here. G sC and G sW are the stomatal conductance for CO 2 and water, respectively, C a and C i are the CO 2 concentration in the air and inside the stomatal chamber, respectively, and W a and W i are the vapour pressure in the air and inside the stomatal chamber, respectively. Equation 2 is a simplification of Eqn 1 where the ratio of G sC to G sW is approximated to 0.6 (Condon et al., 2002). Text labels indicate possible levers affecting different terms of the equations. controls (Dunn et al., 2019). Transgenic tomato plants overexpressing 9-cis-epoxycarotenoid-dyoxygenase have higher ABA than the wild-type and show higher TE int because of a lower stomatal conductance (Thompson et al., 2007). Decreasing G s by increasing plant sensitivity to ABA via overexpression of the ABA receptor REGULATORY COMPONENT OF ABA RECEPOR 6 (RCAR6) in Arabidopsis also results in an unexpected increase in A and in a higher TE int (Yang et al., 2016).It is still unclear whether this ABA-related effect on A is the result of an increase in mesophyll conductance to CO 2 , greater Rubisco activity, or is due to other pleiotropic aspects related to the effects of ABA on leaf characteristics, such as stomatal density or leaf epinasty, which could improve radiation interception (Thompson et al., 2007;Yang et al., 2016;Condon, 2020).Another interesting example comes from the overexpression in tobacco of PHOTOSYSTEM II SUBUNIT S (PsbS), which encodes a protein stimulating the non-photochemical quenching that protects the photosynthetic machinery under excessive light (Głowacka et al., 2018). PsbS promotes thermal dissipation of excitation energy under high light and keeps the redox state of chloroplastic QUINONE A more oxidized, with the latter protein being an early signal for stomatal opening when it is reduced. Plants with increased PsbS expression growing in field conditions show increased non-photochemical quenching and lower G s in response to light, resulting in a 25% reduction in water loss per CO 2 assimilated (Głowacka et al., 2018). Limiting night transpiration by limiting G s under dark conditions also contributes to the increase in TE (Coupel-Ledru et al., 2016;Fricke, 2019).The dynamic/temporal responses of G s to environmental conditions have emerged as a novel approach in improving TE int . In the field, fluctuations in light intensity and spectral quality that influence the photosynthetic photon flux density (PPFD) in term have large effects on A and G s (Way et al., 2012). However, stomatal responses are an order of magnitude slower than photosynthetic responses (minutes versus seconds), which leads to a disconnection between G s and A. This relative lag in G s limits A as stomata are slow to open under increasing PPFD, whilst unnecessary water loss continues after A has dropped under decreasing PPFD (Vialet-Chabrand et al., 2017). Simulations suggest that synchronizing the behavior of G s and A could increase TE int by 20% in Phaseolus vulgaris under fluctuating PPFD (Lawson et al., 2014). Manipulating stomatal movements to reduce the G s response time and to improve water use and growth have been achieved in Arabidopsis by overexpressing BLUE LIGHT-GATED K + CHANNEL 1 (BLINK1) specifically in guard cells (Papanatsiou et al., 2019). The mean half-times of stomatal opening and closing upon exposure to light and dark, respectively, were accelerated by ~40% compared with the control plants, resulting in a 2.2-fold increase in biomass under fluctuating light without a cost in water use by the plant, thus increasing TE. Interestingly, large variations have been observed for A and G s both among species (13 species varying in the shape of the stomata guard cells; McAusland et al., 2016) and within species (in wheat, Salter et al., 2019;in sorghum, Pignon et al., 2021), and this has the potential to be exploited.In summary, contrary to common belief, there may be several options to increase TE by adjusting G s without significantly altering A, which would allow the development of water-efficient cultivars without significant yield trade-offs.Transpiration efficiency at the plant and crop levels: interactions with the soil and atmosphereTranspiration efficiency (TE) at this scale is measured in grams of biomass dry weight produced per unit of water transpired (B d /T, g biomass l -1 ), not taking into account soil evaporation. Sinclair et al. (1984) initially expressed TE as k d / e * a − e d , where (e * a e) d is the gradient in vapour pressure between the leaf and the atmosphere at air temperature and the denominator represents a daily mean, and k d is akin to the numerator term of Eqn 2 that reflects the C i /C a ratio (Box 1). In Box 2, we consider how to increase TE via the denominator term, (e * a e) d , which is putatively an environmental factor, looking at daily or seasonal time-scales. The definition of TE implies that it will increase when the integration of the denominator over time is small. At a daily time-scale, this would mean avoiding transpiration during hours of the day with the highest vapour pressure deficit (VPD). At the time-scale of a crop season, avoiding periods with high VPD conditions would have the same effect, for example by early sowing. Although the numerator term is considered as constant for C 3 and C 4 species (4 Pa and 9 Pa respectively; Sinclair et al., 1984), variations in TE among C 4 species have been found (Vadez et al., 2021), which implies variations in the k d term since the experiments were carried out side by side. Measuring TE is difficult, especially in the field (Cooper et al., 1983), as it requires precise transpiration and biomass measurements, although a lysimetric method has managed to reconcile precision and throughput (Vadez et al., 2014). These authors reported large variations in TE among panels of cultivated germplasms of sorghum, pearl millet, and groundnut. Many studies have used 13 C discrimination as a proxy for TE, although a number of them have reported limits to the value of this method (see Vadez et al., 2014, for a detailed discussion and references).Crop simulation has shown that restricting transpiration under high VPD can increase TE (Sinclair et al., 2005). For the plant, this process translates into opening stomata and maximizing A when W i -W a is low due to low VPD in the air (Box 1) and closing stomata when VPD exceeds a certain threshold (Sinclair et al., 2017). Stomatal closure under high VPD will limit A and increase leaf temperature because of decreased evaporative cooling, but since it is restricted to a period of a few hours, it is expected to avoid an excessive trade-off in terms of CO 2 fixation. Integrated over the time-course of a day (e.g. n=12 h; Box 2), the denominator term would exclude the high vapor pressure gradients of the midday hours, and thus increase TE. A similar integration could be carried out over the time-scale of a crop season, for example n=120 d. Clear agronomical benefits of phenotypes that restrict transpiration under high VPD in water-limited conditions have been demonstrated in maize (Messina et al., 2015) and sorghum (Kholová et al., 2014). Experimental evidence of genotypic variation for this trait has been reported in soybean (Fletcher et al., 2007), pearl millet (Kholova et al., 2010), chickpea (Zaman-Allah et al., 2011), sorghum (Choudhary et al., 2014), and wheat (Schoppach et al., 2012).As noted above, the first benefit of restricting transpiration under high VPD is to increase TE, and this has been demonstrated in sorghum lines introgressed with the staygreen QTL (Vadez et al., 2011), which restricts transpiration under high VPD. This study was followed by a modelling assessment of the benefit of the restriction of transpiration on the yield in the same lines (Kholová et al., 2014). In maize, some lines with relatively high TE more tightly regulate their transpiration response to increases in VPD and have a change-point at lower VPD levels than lines with lower TE (Ryan et al., 2016). As far as we know, there have been no other experimental reports linking a milder transpiration response to VPD with higher TE, and additional experimental evidence is needed. Notably, pearl millet genotypes contrasting in their transpiration responses to high VPD (Kholova et al., 2010) do not differ in terms of TE (Vadez et al., 2013), suggesting that restriction of transpiration does not always increase TE. The interpretation given by Kholova et al. (2010) is that the observed restriction of transpiration could result from a mix of fully closed and fully open stomata, giving no benefit in intrinsic TE for the open stomata and yet still reducing the overall transpiration because of the closed stomata.The second, and possibly most important benefit of the restriction of transpiration under high VPD comes from more parsimonious water use at early stages in the life cycle, which subsequently makes more water available to plants for the critical grain-filling stage. This has been shown in a number of crops such as pearl millet (Vadez et al., 2013(Vadez et al., , 2014)), chickpea Box 2. Transpiration efficiency at the plant scale Equation 3 defines TE as the ratio of biomass (B d ) to transpiration (T) and builds on an earlier equation (Sinclair et al., 1984), that gives a daily TE value such as TE = k d / (e * a e) d , where e a * is the saturation vapour pressure at air temperature, e is the vapour pressure in the air, the denominator (e * a e) d represents a daily mean, and the term k d is a factor that reflects the CO 2 concentration in the stomatal chamber, i.e. the C i /C a term of Eqn 2 in Box 1 (Condon et al., 2002). The term (e a *-e) d then represents water vapor pressure deficit (VPD). In Eqns 3 and 4 below, the integration is conducted at the time-scale of days (d) to give a mean value of TE over i=1 to i=d days, and clearly other periods can be considered, such as hours. Text labels indicate possible levers either directly or indirectly affecting the terms of the equations. CPlantBox (Zhou et al., 2020); https://www. quantitative-plant.org/model/cplantbox (Zaman-Allah et al., 2011), and maize (Messina et al., 2015). Similar responses have been observed in modern Spanish durum wheat lines grown under drought stress in field conditions (Medina et al., 2019). Water availability during the grain-filling period is indeed critical, and it has been shown to have a high return in terms of grain yield per mm of water, for example 55 kg ha -1 mm -1 in wheat (Manschadi et al., 2006), ~40 kg ha -1 mm -1 in chickpea (Zaman-Allah et al., 2011), and 37-45 kg ha -1 mm -1 in pearl millet (Vadez et al., 2013). This also tells us that improving transpiration 'efficiency' is not only about improving the physiology of plant transpiration (Box 1) but also about un-derstanding time periods when the crop has critical water needs (Box 3). In that sense, the equation Yield = T×TE×HI, where T is water used for transpiration and HI is the harvest index (Passioura, 1977), can no longer be seen as the combination of linear terms, but as the combination of terms whose importance varies among them and over time (see Box 3, and below). Late-night transpiration, as was reported in wheat (Tamang et al., 2019), has been proposed as an avenue for research towards increasing TE, on the assumption that it would set the plant for an early onset of photosynthesis in the morning under more favorable VPD conditions, possibly related to a Box 3. WUE at the crop/field scale At this scale transpiration efficiency is generally termed water use efficiency (WUE field ) and is the ratio of grain yield to water used, either coming from rainfall or irrigation (Eqn 5). Yield can be disaggregated in the equation Yield = T × TE × HI (Passioura, 1977), where HI is the harvest index, and T and TE are brought in from Box 2. In Eqn 6, this ratio is reduced into a sum of daily ratios of TE to the proportions of water lost to evaporation and to run-off, which is then integrated over a season of n days. This equation indicates that soil evaporation and run-off need to be minimized to maximize WUE. Text labels indicate possible levers directly affecting the terms of the equations. higher pre-dawn water status. That said, night-time transpiration is not associated with any photosynthesis and would need to be limited. Up to 30% of plant water loss can take place at night in grapevines (Coupel-Ledru et al., 2016) and up to 55% in wheat (Schoppach et al., 2014), so that reducing night-time transpiration would be a way of improving TE.According to the gradients in potential, water moves from the soil pores to the roots, and then through the plant to the stomatal chamber to be transpired as vapour into the air (Tyree, 1997). Hydraulic resistances have been identified at different levels in this continuum, affecting the water gradient between the soil and the plant, gradients within the plant, and between the plant and the air. Typically, resistances across the soil, across the soilroot interface, across the root to the root xylem, and along the xylem are used to model water flow through a series of analytical solutions/functions (e.g Couvreur et al., 2012;Abdalla et al., 2022;Koehler et al., 2022). Accurate estimates of how soil water stress affects plant transpiration are essential for reliable mechanistic model predictions (Verhoef et al., 2014) so that reliable exploration of possible effects on TE can be carried out. There is still a need for such estimates, and models that can easily represent mesophyll behavior in response to environmental drivers are still rare (Zhang et al., 2022). Soil hydraulic conductivity can drastically limit water uptake and is considered as a main driver of stomatal closure for plants in drying soils (Carminati et al., 2020;Carminati and Javaux, 2020;Abdalla et al., 2022). Its effects can interact with crop species/genotypes. As an illustration, maize and sorghum genotypes have been observed to have lower TE in a sandy soil than in a high clay Vertisol, whereas TE is similar in both soils in pearl millet (Vadez et al., 2021). It has been proposed that species fitness could be specific to soil type and its interaction with the environment (low/high VPD). Plants respond to soil matric potential (suction) rather than soil water content (SWC), a concept that has long been understood and is widely accepted. The magnitude of matric potential depends on SWC, the size of the soil pores, the surface properties of the soil particles, and the surface tension of the soil water (Whalley et al., 2013). Thus, in summary, a putative role of soil in possibly explaining restrictions of transpiration needs to be clarified (Box 2).Experimental evidence further suggests that root phenotypes such as long and dense root hairs postpone soil limitation in drying soils by reducing the drop in matric potential at the interface between the roots and soil in transpiring plants (Carminati et al., 2017;Cai et al., 2022;Schnepf et al., 2022). The nature of the rhizosphere also has the potential to disrupt the connection between the soil and the plant. Engineering rhizospheric characteristics, for example by increasing mucilage production, might open up new avenues for crop production management and lead to increases in water use efficiency (Ahmed et al., 2018). In addition to their role in water capture, roots have been proposed to act as hydraulic rheostats, able to adjust their hydraulic radial conductance through alterations of apoplastic barriers (Calvo-Polanco et al., 2021;Salas-González et al., 2021) or aquaporin functions (Maurel et al., 2010;Vadez, 2014). A typical example comes from the correspondence observed between aquaporin expression, diurnal variations in root hydraulic conductivity, and transpiration, which can be interpreted as a means for preventing a drop in water potential in the leaf when transpiration is high (Tsuda et al., 2000). Restriction of transpiration under high VPD has indeed been related to root conductance and its control by root and shoot aquaporins (Sadok et al., 2010;Reddy et al., 2017Reddy et al., , 2022;;Sivasakthi et al., 2020), but also to leaf area (Choudhary et al., 2020) and to the root-to-shoot ratio (Affortit et al., 2022). Xylem vessels are responsible for hydraulic axial conductance of water from the roots to the shoots, and reductions in xylem conductance have been associated with increases in TE in wheat (Richards et al., 1989;Hendel et al., 2021).In summary, there are two main benefits to restricting transpiration under high VPD, namely higher TE and more water for grain filling. Several root traits and soil characteristics are likely to have a strong influence on the restriction, and will tend to decrease the denominator term of Eqn 4 (Box 2) and thereby increase TE overall.This scale of assessment is at the level of field plots, and transpiration efficiency is generally referred to as water use efficiency (WUE field ). The usual metric is either grain or biomass yield per millimeter of water used (kg ha -1 mm -1 ) from either rainfall or irrigation (Box 3). For an easier connection to the other scales, WUE field can also be expressed with the metrics presented above (Box 2), by converting yield into the product of plant transpiration T, TE, and the harvest index (HI; Passioura, 1977), and by separating rainfall and irrigation into the transpiration component T minus a component of soil evaporation and run-off (Eqn 5, Box 3). Equation 6is then a daily integration over an entire crop cycle, following the integration developed in Box 2. As a result, it becomes clear that increasing WUE field is about increasing transpiration efficiency (as detailed in the previous two sections) and minimizing soil evaporation and run-off.Run-off occurs when rainfall (more rarely irrigation) is in excess of what the soil can absorb. The term 'precipitation use efficiency' (PUE) can be used and is an integration of the yield increments that occur consecutive to any rainfall. Research on the capacity of soil to store more water has been aimed at improving PUE under such rain-fed conditions (Hatfield et al., 2001). For example, over-tilling of bare soil leads to decreases in its water-and nutrient-storage capacities that in turn decrease the potential WUE of the future crop (Cresswell et al., 1993). A scale-up of PUE is precipitation storage efficiency (PSE), which defines the capacity of a soil to be a more or less useful reserve for future crops. PSE is negatively affected by over-tilling (Tanaka et al., 1987) and it has been reported that it can be increased by up to 40% by using herbicides to control weeds instead of conventional tillage (Wicks, 1968). It has been demonstrated that PSE, PUE, and WUE are related (Nielsen et al., 2005) (Box 3), and thus soil management practices can potentially be used to increase WUE.As far as soil evaporation is concerned, early vigor is a plant trait that has long been favored by breeders, as it ensures rapid coverage of the ground and efficient competition against weeds. A faster soil coverage could also come from an increased sowing density, and this would reduce the evaporation component of the equations for WUE field (Box 3). There are also promising avenues to explore for decreasing irrigation needs and improving WUE field in semi-arid regions by using advanced agronomic practices such as those related to conservation tillage (DeLaune et al., 2012) and mulching (Igbadun et al., 2012;Liao et al., 2021), which are considered as effective means for improving irrigation efficiency by reducing the fraction of water lost through non-beneficial soil evaporation. They can also allow for the control of weeds, reduction of soil compaction, improvements in nutrient management, and the incorporation of additional nutrients into the soil (McCraw et al., 1991;Shaxson et al., 2003). It has been reported that plastic film and straw mulching also reduces the impact of raindrops on the soil surface, subsequently reducing soil dispersion and thereby enhancing water infiltration, reducing run-off, and increasing soil water storage (Li et al., 2013).As far as the TE component of Eqn 6 is concerned (Box 3), the WUE field of crops can be affected by the management applied and be optimized by the right interaction of genotype and management (G×M) for a given environment (E) (Hsiao et al., 2007;Messina et al., 2009). In pearl millet, low soil-P treatments have been reported to decrease WUE (Beggi et al., 2015), and it has been shown that both the intrinsic TE (A/T, Box 1) and TE at the plant level (B i /T, Box 2) are decreased by ~10-fold by a low soil-P treatment (Payne et al., 1992). It should be noted that low P nutrition has also been shown to reduce plant hydraulic conductance (Radin, 1990). A number of studies also show increased WUE as soil fertility increases (e.g. in wheat, Fan et al., 2005;and in maize, Faloye et al., 2019). Therefore, poor fertility is bound to decrease the TE component of Box 3, something that is food for thought when agriculture needs to be more water-efficient while also aiming at using less nutrients. Increasing the sowing density in maize has been shown to increase WUE (French and Schultz, 1984;Hatfield et al., 2001), and is interpreted as an effect of a limited leaf area index. In cotton, a higher sowing density was found to affects the microclimate within the canopy, with light transmission through the canopy in some genotypes increasing light interception (Yang et al., 2014). As an alternative interpretation, the benefit could also have been the result of a combination with a decrease in VPD within the canopy (Box 2), allowing photosynthesis to continue at the lower VPD, and hence achieving higher gains in intrinsic TE int (Box 1). Indeed, recent work on sorghum has highlighted a significant increase in WUE when the sowing density of plants is doubled, with large genotypic variation being found in the response (Pilloni, 2022). This can be contrasted with a lower WUE found in a skip-row planting system and dry environment, and a higher WUE found in a skip-row system and a wetter environment (Abunyewa et al., 2010). In the dense-canopy conditions used by Pilloni (2022), high WUE was recorded in genotypes with a strong transpiration response to the evaporative demand, which was seemingly caused by a higher light penetration within the canopy. The benefit thereby came from the association of an agronomic management modification (density) and a genetic trait related to canopy architecture that allowed light penetration within the canopy. The plant architectural traits seem to have been driving the diversity in the response. According to Niinemets (2010), the traits that most control the distribution and efficiency of light use at the plant level are the angle distribution of the leaves and the spatial aggregation of the foliage. From a canopy perspective, the way leaves are spatially distributed and how biomass is allocated to them varies significantly. Unfortunately, leaf areas are still largely represented using 2D metrics (m 2 ), and more work is needed to better understand and measure leaf areas in 3D, and hence to better gauge the role they play in light distribution through the canopy and what effects they have on the microclimate within the canopy.In the previous section we have shown that adapting the management of an annual crop can directly affect its water budget. The same is true for perennial crops, but in this case the management also needs to be adapted to the landscape. A striking example is that of the vineyard, where the orientation of the rows of plants affects how the soil temperature and water content vary with depth (Hunter et al., 2020), and this can have an impact on water availability at the scale of the landscape. The main factor that is affected by row orientation in perennial crops is the distribution of light resources through the canopy. A change in orientation in a Shiraz vineyard from north-south to east-west was found to significantly reduce the transpiration by up to 13% without any significant reduction in yield and its components, thus leading to an increase in WUE (Buesa et al., 2017). It was suggested that the better distribution of radiation received by the rows orientated east-west during the hot and dry season and the low photosynthetic efficiency of the north-south vines during the afternoon contributed to the increased WUE.These differences in canopy structure and the link to WUE can be also considered in the case of intercropping between annuals or between perennials and annuals. For example, maize yield in a maize-coffee tree intercropping system has been found to be increased by 50-80%, depending on the intercropping distance, compared to maize grown alone (Huxley et al., 1994). This was possibly due to lower direct radiation, a milder microclimate effect due to tree transpiration, and lower exposure of the maize to wind. Reduced exposure to wind would decrease the evaporative demand to the benefit of WUE, and ultimately yield (Chaves et al., 2016;Hatfield et al., 2019). These case studies show the importance of planning combinations of crops within agroecosystems that can best use the different resources and tolerate the environmental constraints that drive the pattern of water consumption (see landscape section below).Irrigation efficiency (IE), defined as the ratio of water used by the crop for transpiration to total water applied, is the traditional concept of efficiency in irrigation engineering (Israelson, 1950, Jensen, 2007). Equation 7in Box 4 separates irrigation into the components directed to crop transpiration, soil evaporation, run-off (similar to Box 3), and percolation below the root zone.Improvement of IE at the field level can be achieved by reducing evapotranspiration from weeds, and by adopting practices such as optimizing the timing of irrigation, reducing waterlogging, and using advanced irrigation techniques to reduce the wetted area (Batchelor et al., 2014;Hatfield et al., 2019). A series of new irrigation practices and technologies have been Box 4. Increasing WUE at the field scale with better irrigation efficiency Irrigation efficiency (IE) represents the proportion of irrigated water that will eventually be used for plant transpiration and hence for growth. Here, Eqns 7 and 8 only focus here on the 'T' component from the previous Boxes 1-3. The integration also in Eqn 8 is done over a season of n days. Equation 7 introduces a component of water percolation below the root zone (Perc). Although they are not represented in the equations, water losses can also occur during the transfer from the source to the field, or during the application of irrigation. This can be measured as the conveyance efficiency, defined as the ratio of water diverted from the source (reservoir, river, pumping station) to the water reaching the field (Rogers et al., 1997;Howell, 2003), and as the field application efficiency, defined as the ratio of water needed by the crop to the amount of water available at the field inlet (Bos and Nugteren, 1990). Text labels indicate possible levers directly affecting the terms of the equations. DI, deficit irrigation; RDI, regulated deficit irrigation; PRD, partial root-zone drying. developed to enhance WUE based on the physiological mechanisms of crop responses to water deficit. These irrigation strategies encompass deficit irrigation, regulated deficit irrigation, and partial root-zone drying irrigation, and can be applied by surface-, sprinkler-, or drip-irrigation methods, or possibly by subsurface methods to avoid soil evaporation (El-Hendawy et al., 2008;Jovanovic et al., 2020).Deficit irrigation (DI) is a water-saving strategy that permits a certain level of crop water stress to exist continuously throughout the season without compromising crop yield significantly (Pereira et al., 2002;Manning et al., 2018). Regulated deficit irrigation (RDI) allows water stress at certain phenological stages during which plants are less sensitive, while fully meeting the irrigation needs of the crop at critical growth stages (Romero et al., 2013). Partial root-zone drying (PRD) irrigation is a technique that allows half of the root system to experience drying while the other half is irrigated. PRD targets the plant physiological response through the production of abscisic acid (ABA) by the drying roots, which reduces leaf expansion and stomatal conductance (thus affecting C i /C a in Box 1) while the wetted roots maintain a favorable plant water status (Galindo et al., 2018). It has been reported that RDI and PRD improve WUE mainly through enhancing the guardcell signal transduction network that reduces leaf transpiration (Schroeder et al., 2001), through optimized stomatal control that improves the ratio of photosynthesis to transpiration (Iqbal et al., 2020), and through a reduction in the evaporative surface area (Xie et al., 2012). However, there is still debate about the importance of ABA signalling in regulating WUE in plants subjected to PRD (e.g. Perez-Perez et al., 2012) because ABA production in the part of the root exposed to drying might not be sustained over time (Dodd et al., 2008).In rain-fed agriculture of semi-arid regions, supplemental irrigation (SI) has emerged as a promising practice for climate resilience. It consists of applying limited amounts of water at critical growth stages when rainfall fails to provide sufficient moisture for normal crop growth in order to improve and stabilize yields (Oweis et al., 2012) (Box 4). Several studies have reported substantial increases in crop yields using this method. For example, Oweis et al. (2000) showed that, in combination with early sowing and the availability of appropriate levels of nitrogen, the WUE of rain-fed wheat can be substantially improved by adopting a level of SI equivalent to only one-third to two-thirds of the full irrigation requirement. Timely SI at the jointing and anthesis growth stages of wheat can result in high grain yields and nitrogen use efficiency while achieving higher WUE (Wu et al., 2018), and chickpea yield can be increased 30% by applying 40 mm irrigation at the beginning of seed growth (Vadez et al., 2011).Finally, crop management and irrigation techniques can be combined to further increase irrigation efficiency. In a modelling study that analysed the effects of mulching and dripirrigation, Zhang et al. (2022) found that a combination of the two treatments significantly improved the crop yield and WUE compared to irrigation with no mulching. The improvements were affected by climatic and soil conditions, crop type, and water consumption, with the technique being more effective in planting areas with rainfall or water consumption less than 400 mm and in areas with soil of medium texture.Water efficiency at the farm level is often calculated as the ratio of total farm production to the total amount of irrigation water used. In economic terms the word 'production' usually means the gross margin of a farm (revenue minus production costs), and so this efficiency can also be expressed in terms of the number of calories produced by the crops grown on the farm, and/or by the negative or positive externalities that a farm can produce, for example the quantity of water used, nitrogen leached, changes in soil organic matter, erosion, and drainage.Efficiency is often considered on a per-hectare basis for easy comparisons at the regional level. To better understand this overall efficiency, it is often necessary to calculate and analyse intermediate efficiencies. These may be expressed by type of crop, crop practice, irrigation system, or biophysical system. The concept of water efficiency at the farm level is rarely used for rain-fed crops. Finally, the concept of irrigation efficiency at the farm level is often used to characterise and analyse the performance of farms with regard to the quantities of irrigation water involved, to put forward and test the effects of technical (e.g. new varieties, new rotation, tillage) and socio-economic (e.g. water pricing, subsidies for more efficient irrigation systems) alternatives meant to improve water efficiency and consequently the overall performance of the farm, or to better understand the determinants that affect overall water efficiency (soil effects, rotation, irrigation systems).The stochastic frontier production approach is the most widely used method to analyse technical efficiency in production (Battesse et al., 1995). Irrigation water technical efficiency (IWTE) measures how an individual farmer's water use compares with that of the most efficient water user. The comparison is made while controlling for the effects of all other factors affecting efficiency (Yigezu et al., 2013). IWTE i , where 'i' represents a farm, is calculated following Karagiannis et al., (2003) (Box 5). This efficiency formulation is based on three considerable simplifications: all production factors other than water are less limiting, all these factors act in the same way on production, and all these production factors are substitutable. For this reason, these factors are often expressed in monetary terms for easier aggregation, such as production costs, and not in quantitative terms; in this case, we refer to irrigation technical cost efficiency, ITCE (Akridge, 1989) (Eqn 10, Box 5). This formulation implies that improving farm efficiency can come from acting either on the denominator (e.g. switching from flooding to drip irrigation), the numerator (e.g. improving crop yields by using more efficient varieties), or both. In practice this concept is complicated to apply, especially in an arid context where several limiting factors act at the same time (e.g. labour, access to resources and the market) and where several production objectives are targeted (e.g. food, economic, social, environmental). In this context, comparing and especially understanding the efficiency of a farm in relation to water involves verifying that no other factor is limiting, and that water is the only determining factor in the total performance of the system being analysed. Here, the main issue in calculating efficiency is not the mathematical formulation of efficiency, but the availability and quality of data (see Appendix S1 for more details).It is often assumed that better efficiency in the use of irrigation water should make it possible to safeguard water resources, improve crop production per hectare, reduce production costs by reducing irrigation inputs, potentially reduce nitrate leaching and, finally and more globally, improve farmer income. This type of assumption must be treated with great caution when the analysis is carried out at the farm level. Several dryland countries have indeed implemented support policies to promote sprinkler-and drip-irrigation instead of submersion, and this has led to higher productivity per hectare. However, intervening on the water component alone has only allowed a modest improvement of irrigation efficiency, because several other production factors have remained limiting (e.g. labour availability, adapted and certified seeds, fertility). In addition, access to water is often not available at the right time for the Box 5. WUE at the farm scale Irrigation water technical efficiency (IWTE) measures how an individual farmer's water use compares with that of the most efficient water user. IWTE i , where 'i' represents a farm, is determined according to Eqn 9, where X 1 represents the units of inputs other than water, W 2 represents the minimum feasible water use needed to produce the optimal units of output, C, and A represents the quantity of non-optimal units of output that would be obtained from the same level of X 1 combined with a non-optimal quantity of irrigation water, W 2 . The ratio W 1 /W 2 expresses the proportion of irrigation water that is lost, or alternatively the proportion saved [1-( W 1 /W 2 )]. It also enables the determination of the maximum possible reduction in water use (W 1 −W 2 ). If water is not available at the right time, this leads to a reduction in the denominator in Eqn 9 (Box 9; quantity of irrigation water, W 2 ) but a fairly small increase in the numerator, mostly expressed by the gross margin on the farm. The irrigation technical cost efficiency (ITCE) is defined for the ith studied farm (ITCE i ) in Eqn 10, where S W,i is the observed share of the cost of irrigation water (W) out of the total of all input costs of the ith studied farm, and S j,i is the corresponding share of the cost of the jth input. By definition, the shares of the costs of all the inputs must add up to 1 and since IWTE i takes values between 0 and 1 (Eqn 9), it implies that ITCEi is the same. crop (e.g. during grain-filling). This leads to a reduction in the denominator in Eqn 9 (Box 9; quantity of irrigation water, W 2 ) but a fairly small increase in the numerator, mostly expressed by the gross margin on the farm. Since irrigation rates are calculated for optimal yields and not yields limited by other factors, then a possible side-effect of not calculating the irrigation requirement correctly can be an increase of leaching as excess water is applied (El Ansari et al., 2020).Based on this, it is essential to combine the irrigation efficiency indicator with indicators that express all the ecosystem services (see also 'WUE at the landscape level' below), with the aim of maximizing irrigation and production while minimizing externalities. This brings us back to a trade-off analysis in which neither efficiency nor production in its different components should be considered separately. This is all the more important as the most efficient farms in the drylands today are those that are poor, with very limited access to resources (low numerator and denominator in Eqn 9.By massively subsidising the renewal of irrigation systems, dryland countries have sought to improve irrigation efficiency, increase farmer incomes, and preserve water resources; however, two unexpected effects have occurred. First, saving water per hectare has also led to an increase in the area of land that is irrigated, and hence in total water use, and second, the improvement of irrigation efficiency has either led to a simplification of the cropping system, or the partial/total replacement of traditional cropping systems based on cereals and legumes with more profitable crops. While this has led to significant increases in farmer income per hectare, it has also decreased the diversity of cropping systems on farms, and increased crop protection treatments. The quest for greater irrigation efficiency via the simplification of cropping systems has also been followed by a reduction in the diversity of food intake in farm households, leading to unbalanced diets as most or all of the production is now marketed (Chenoune et al., 2017). It may seem paradoxical, but the quest for greater irrigation efficiency has been followed by a direct or indirect risk of non-resilience for farms in drylands (Souissi et al., 2018;Hossard et al., 2021), because these farms have either become too dependent on water (Nasrallah et al., 2020), or the simplification of cropping systems that has followed the search for more efficient systems has made these systems less flexible (e.g. in the choice of crop succession or substitution) in the event of a climate shock.Going beyond the farm level is the landscape level, where it is essential to modulate water storage on the basis of trade-offs between the various and possibly antagonist water-user needs (see Box 6). Beyond satisfying those needs, modulating water levels within different compartments (e.g. root zone, aquifers, surface reservoirs) is critical for the sustainability of systems that depend on rainfall directly (infiltration for rain-fed crops) or indirectly (irrigation from aquifers or surface reservoirs).The notion of 'landscape' carries different meanings and its definitions are numerous (Aznar et al., 2006). Landscape is considered in this review as a portion of a territory from a few km² to a few tens of km². Agricultural landscapes are characterized, among other things, by their composition and configuration (Liu et al., 2020). The composition includes the different types of land uses and crops over agricultural soils, as well as various man-made infrastructures that influence water flows. The configuration is the way in which the composition is organized in space. Composition and configuration of agricultural landscapes evolve over time, according to farmer choices. The composition then represents an important lever for WUE at the landscape scale (WUE land ), as this is where the choice can be made between water-efficient and -inefficient crops (Box 6).Analysing and controlling WUE land requires understanding various water uses and related ecosystem services: production of blue water for agricultural, domestic, and industrial uses, availability of green water for non-cultivated terrestrial ecosystems (e.g. forest, scrubland), and preservation of aquatic environments (e.g. lakes, rivers, wetlands). In doing so, the analysis of water availability and uses leads to the delineation of landscapes according to the watershed, a hydrological spatial unit that enables the determination of the drivers of soil water availability such as hydrological fluxes (infiltration, run-off, evaporation, transpiration, groundwater recharge) and their interactions within the hydrological cycle (Vereecken et al., 2015). Increasing the WUE of crops might have a negative impact on other water uses within the watershed that therefore have to be both taken into account and quantified. In other words, at the landscape level, the challenge is to establish trade-offs between one or more ecosystem functions of the soil water supply that we seek to modulate in time and space to increase the WUE of crops, and between other ecosystem functions that we also seek to modulate, such as variations the flow of streams. The landscape approach to WUE must therefore be part of a global approach of water management (Habibi Davijani et al., 2016;Psomas et al., 2016), within which water is considered as a resource for agriculture and other human uses, but also as a living environment for plants and animals. The approach therefore requires involving a diversity of stakeholders and social groups with diverse and possibly antagonistic interests (e.g. national and local authorities, water production and distribution companies, fishermen, environmental non-governmental organizations), a diversity that goes far beyond the circle of farmers or groups of farmers (Koontz et al., 2014).The landscape-specific levers for steering and optimizing WUE land are two-fold (Box 6). The first lever is the choice of landscape composition (Stroosnijder et al., 2012). This involves first determining the crop species and varieties adapted to the climatic conditions and soil-water availability, second specifying agricultural practices to be implemented for modulating rainwater infiltration or limiting evaporation (e.g. type of ploughing and date, seeding density and date, grassing, mulching), and third determining effective man-made infrastructures to appropriately distribute rainwater between landscape compartments (Eqn 12, Box 6). The main landscape infrastructures are rainwater harvesting systems such as reservoirs, terraces, and contour trenches or ridges that follow the topographic levels (Habets et al., 2018;Lasage et al., 2015). The second lever for controlling WUE land consists of determining the landscape configuration, namely the spatial allocation of crops and practices at the scales of sub-fields and field patchworks (Colin et al., 2012), and the implementation of landscape infrastructures Box 6. WUE at the landscape scale WUE at the landscape scale (WUE land ) is presented in Eqn 11 as ratios of different possible metrics, which can include gross or net primary productivity (GPP or NPP). WUE land can also be expressed as an interaction function between the distribution of different crops/species within the landscape (the 'Environment', Envt), the management (Mgt, e.g. rainfed, irrigated, fertilized, weeded), and the crops/species chosen by farmers, averaged across the many crops/species of the landscape, and divided by 'Water'. The latter includes several hydric indicators such as rainfall, watershed wetting (rainfall minus run-off, including infiltration for crops and underlying aquifers), root-zone water content, and withdrawals from reservoirs, and it is akin to the denominator of Eqn 5 (Box 3). The major difference with Boxes 1-4 is that WUE land needs to be aggregated both in time ('i') as seen in Boxes 1-4, and in space ('j'), and this for the many crops/species of the landscape, each occupying a jth portion of the space. This is developed in Eqn 12. The first part of the equation takes into account the 'Environment' and the 'Management' effects, weighted by the area covered by each combination (where m is the total number of combinations). The second part of the equation is akin to WUE field (Box 3) and is an aggregation over time 'i', within each of the jth portions of the space occupied by a crops/species. The text labels indicate possible levers directly affecting the terms of the equations. In addition, the bold arrows and text also indicates unavoidable interactions/ trade-offs; for instance with the WUE of other adjacent landscapes, between the landscape design and non-farming stakeholders, and with the need for ecosystem services such as river flow.Scale/model type in specific areas related to the pedological substrate and hydrographic network. This determination relies on scientific or expert knowledge about the environment, climate, and hydrology across the whole landscape (Laudon et al., 2018). Beyond water resource management, determining the landscape composition and configuration is the basis of landscape agroecology (Jeanneret et al., 2021) (Eqn 12, Box 6).WUE at the landscape level: biophysical metrics and scales WUE land can be quantified in relation to the water pathways at the scale of a local watershed of a few km 2 to a regional watershed of a few tens of km 2 (Wilson et al., 2022) (Box 6). Because WUE land aggregates WUE from the many crops/vegetation within the landscape, the aggregation is at scales of both time (Boxes 1-) and space. Aggregation at small scales of space include the ratios presented in Boxes 3 and 4, and these are expanded to gross/net primary productivity to plant transpiration or crop evapotranspiration at the scale of an agricultural field, and over time-scales that range from days to the full crop cycle (Box 6). Aggregation at larger spatial scales will include a mix of rain-fed and irrigated crops at different sizes and rely on a variety of hydric indicators such as rainfall, watershed wetting (the difference between rainfall and run-off, and including watershed-scale infiltration for crops and underlying aquifers), root-zone water content for crops only, and withdrawals from reservoirs used for irrigation (Du et al., 2018;Abeshu et al., 2021). These large-scale aggregations can be placed into different categories and allow the measurement of efficiency at different scales (land-use classes, watersheds, aquifers). These large-scale metrics are also defined across various time-scales, from days to the whole crop-cycle, including specific periods related to phenological stages when the balance between water needs and water availability is critical, as discussed above (e.g. grain-setting at the beginning of spring for rain-fed crops under semi-arid climates) (see Box 3).WUE can be evaluated using actual data obtained by monitoring the implementation and subsequent impacts of new cropping systems or landscape infrastructures (ex post approaches), or using forecasts to evaluate the potential impacts of changes in landscape composition/configuration (ex ante approaches). Ex post evaluation allows changes to be assessed experimentally in real conditions with non-academic stakeholders, whilst ex ante approaches can provide guidance to stakeholders in the context of long-term adaptations linked to global changes. Both approaches have to be considered simultaneously in the design and assessment of integrated water management policies (Hashemi et al, 2019).At the landscape scale, the current challenge is to evaluate WUE land both from an integrated viewpoint across the water-shed, which is the analysis/decision level of interest for decision-makers, and from a local viewpoint from the perspective of the agricultural field, which is the analysis/decision level for farmers. This scientific challenge presents various research avenues (Eqn 12, Box 6). The first avenue is the development of observation methods at defined spatial scales for characterizing the landscape composition and configuration, including classes, delineations, geometries, and functional properties, and for characterizing these variables in relation to WUE indicators, namely rainfall, evapotranspiration, run-off, and soil moisture. Recent research has focused on various innovations and limitations related to the assessment of these variables using remote sensing (Jacob et al., 2014;Weiss et al, 2020;Deliry et al., 2021;Chen et al., 2022). The second avenue is the design of agro-hydrological models that simulate both crop functioning and water fluxes within a landscape in a coupled manner (e.g., Lebon et al., 2022). Agro-hydrological models are potential tools for exante assessment of WUE at the landscape scale when evaluating possible choices of cropping systems or landscape management modes in accordance with predicted climate scenarios (Krysanova et al., 2015). The third avenue is the formulation of scenarios about how the landscape composition and configuration will evolve. Such scenarios, which should be compatible with the formalisms of agro-hydrological models for evaluation purposes, require the design of landscape modeling tools that can be used with participative protocols in order to take into account the drivers of stakeholder strategies (De Girolamo and Lo Porto, 2012).It is a long way from intrinsic transpiration efficiency at the leaf level to the improvement of water use efficiency at farm system/landscape level. In this review we have attempted to draw a path and show the connections, as well as the tradeoffs, between increasing biological, physical, hydrological, and human scales. While additive efficiency gains can be made at each of these different scales, overall gains in water use efficiency can only be made if the scales are connected and if the numerous trade-offs along the way are meaningfully addressed. In this context, human decisions, often moulded by societal/ policy influences, very likely represent the main level of influence on landscape WUE, for example the choice of a waterefficient crop species, a water-efficient irrigation system, or a landscape allocation/design that will maximize return on water. However, even when these choices are made, there remains a lot of room for WUE improvement from the plant/ crop perspective, following the agronomic levers presented in Box 3, and using water-efficient cultivars developed from plant traits described in Boxes 1 and 2. Equation 12 in Box 6 is our attempt to put together the levers that exist to increase WUE from the organ/plant/crop/field perspective (Boxes 1-4) with the aspects of the human and societal dimension that only","tokenCount":"9935"} \ No newline at end of file diff --git a/data/part_3/2497901201.json b/data/part_3/2497901201.json new file mode 100644 index 0000000000000000000000000000000000000000..a90ffc3cb28d1786364a5919f03416ffcfab7535 --- /dev/null +++ b/data/part_3/2497901201.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"a46299a2421f6b616a7e3ea03e54042a","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/c2a8d0d9-3f69-47cb-b84a-a0e104db114d/retrieve","id":"-1151469726"},"keywords":[],"sieverID":"ffdaa63e-fa03-4c3e-8718-0d78b087a461","pagecount":"1","content":"1. Some cultivated forages show nutritional suitable for pigs, making farmgrown forages a possible supplement instead of purchased concentrates.2. Investigating carefully the identified paradox of feeding forages to pigs may help better understand reasons and conditions of smallholders under which they may adopt cultivated forages or not.3. To improve their adoptability in smallholder pig systems, aspects of integrating cultivated forages into mixed crop-livestock production systems, labour requirements, gender issues, and economic returns need to be considered.4. Generating more knowledge not only on nutritional value of improved forages for pigs, but also on their adoptability can help bridge the gap for smallholder farmers to cope with limited resources for purchasing commercial pig feed.Pigs can play an important role in risk diversification and livelihood security of many smallholder and poor households in Uganda.Women and youth/children provide most of the pig-production labour, especially for forage collection, feeding and watering; being responsible for about 90% of pigs produced in Uganda.In smallholder production systems practiced both in rural and peri-urban areas, a variety of forage species are traditionally used for pig feeding, the majority of them being gathered for several hours every day.There is an over-reliance on feeding crop residues, 'weeds' and forages both through collection and scavenging/tethering, usually not meeting the nutritional requirements of pigs, which results in slow growth rates.Tethered pig under a tree in MasakaFGD Kamuli 2 -men group FGD Kamuli 1 -women group FGD Masaka 1 Focus group discussion Masaka 2Forage research in Uganda has traditionally focused on feeding ruminants, while research on feeding pigs with forages has been neglected.Local forages, e.g., Bidens pilosa, Euphorbia heterophylla or Commelina spp., collected women and youth play a substantial role for feeding pigs in Uganda; they are fed with 30-40% of the total diet, their nutritional quality has been insufficiently studied.A literature review revealed that it is mainly animal nutritionists who research nutritional effects of improved forages on pigs and their suitability as pig feeds, without considering socio-economic, especially gender issues. Some cultivated forages (e.g., Canavalia brasiliensis) are nutritionally suitable for pigs, technically making them an option to supplement pigs with farm-grown forages instead of purchased concentrates.Despite the widely recognized constraint of insufficient animal feeds, especially during dry seasons, adopting cultivated forages in the tropics has been generally slow, and hindering factors have not been fully understood. Investigating this paradox may help better understand reasons and conditions of smallholders under which cultivated forages may be adopted or not. ","tokenCount":"404"} \ No newline at end of file diff --git a/data/part_3/2499328376.json b/data/part_3/2499328376.json new file mode 100644 index 0000000000000000000000000000000000000000..f212e6bd14c95cf990ea4dd4a1fd427efbacdba2 --- /dev/null +++ b/data/part_3/2499328376.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"fda28d14d18d67aaacad00f53efe0e1b","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/b3e573c1-d21f-4bc6-a113-87ad0483b945/retrieve","id":"1535215695"},"keywords":[],"sieverID":"9b8f68d4-b90a-40ff-a1ad-dccbd3b416f9","pagecount":"37","content":"An assessment of the Mush Irrigation Scheme (MIS) in Debre Birhan, Amhara, Ethiopia was conducted during the spring 1 (Tseday) season of 2015. The study aimed to evaluate the operation and efficiency of the irrigation scheme and assess potential cropping and water management alternatives for potato, fodder and other cultivated crops. The evaluation made use of group discussions, farmer surveys and field measurements. This assessment underlies the approach of the Africa RISING Project to facilitate sustainable intensification of agricultural production using a systems (in this case scheme) approach. It evaluated the option of irrigating alternative crops and its potential effect on both crop and water productivity as well as potential irrigation expansion.The operation of the system is constrained by water resource availability and capacity to utilize the limited water resources efficiently. Springs supply the scheme with a discharge of 0.16 m³/s. As the nursery uses roughly 40 % of the available flow during weekdays only 0.09 m³/s is available at the head of the canal for irrigation. As such, the scheme management faces challenges to provide water access to the members of the three groups in an equitable manner. Members currently irrigate an average of 0.34 ha per farmer. Due to the dilapidated state of the canal and leakages from poorly maintained outtakes, transmission losses between 0.25 and 0.67m 3 /hr/m occur. The system, though operating at acceptable system efficiency, has highly variable application efficiencies between different farmers and crops, ranging between 21 and 80%, which partly explained the large variability in land and water productivity observed in the scheme. In spring season (Tseday) land and water productivity were found lowest for lentil (527 kg/ha and 0.51 kg/m 3 , respectively) while higher values were obtained for potato (6800 kg/ha and 6.54 kg/m ³, respectively). While the water productivity is higher, for potato the crop has a higher water demand throughout the season stressing the scheme further. Through efficient management of flood irrigation (70%), the current irrigated acreage of 27 ha could be increased to 45 ha (of potatoes) or 63 ha of irrigated lentil. Improved irrigation methods and/or on-farm water management may lead to even larger increases in irrigable land.Mush Irrigation Scheme in its current state (i.e. including system losses) is presently operating at full capacity, which leaves very little room for temporary storage during the spring season. The potential for storages during the other seasons is feasible given the availability of unirrigated fields and high elevation variability for gravity fed irrigation. This will require further assessments to document flows during these times to design appropriately sized storage structures which, given the land limitation, will need to be considered carefully. The scheme contains several springs. However, their contribution to the scheme throughout the season is not clear. Identification of recharge zones in combination with geomorphology will assist in understanding the contribution of the existing springs to the overall water availability in the scheme. Furthermore, a better understanding of groundwater level fluctuations throughout the year would allow for the investigation into whether over-irrigation or inefficient usage leads to increased groundwater levels in the dry season. This could lead to improved scheme planning and operation.To intensify rural agricultural systems, water availability and access are key factors. The development and performance of smallholder irrigation is highly dependent upon the users' ability to manage such systems efficiently. As such, the managerial capacity of scheme managers and farmers as well as the maintenance of functional irrigation infrastructure is equally important in achieving sustainable irrigation systems (Bembridge, 2000). This is often achieved if a certain level of ownership and responsibility within the smallholder irrigation system is obtained (Garces-Restrepo, Vermillion, & Munoz, 2007). As such, the aim of the project is to: i) evaluate the availability of water resources for irrigation and agricultural productivity within the scheme; ii) assess the management structure and responsibility of the members within the scheme and iii) evaluate whether the scheme could be improved.The study was carried out in a period of one week and thus represents only a snapshot of the state of the system. Furthermore, the quasi-quantitative survey carried out to assess key elements of the research focused primarily on those members of the Mush Irrigation Scheme who are participants in the Africa RISING interventions hence may not highlight the perceptions and actions of all members within the scheme. That said, the responses as indicated below suggest a fair representation of the households as they are generally similar across different participants.The main objective of this study was to assess the performance of the Mush Irrigation Scheme, thereby evaluating the opportunities for best water management operation and practices of the system through a holistic evaluation of the scheme's human and environmental components. During the study, the following objectives were addressed:  Understand the management structure and operation within the scheme with regards to water distribution  Evaluate the current level of water and land productivity through surveys of water use, irrigated acreage and production  Assess irrigation system flows and flow distributions within the scheme in terms of equitable water access The MIS management committee has the overall authority to administer the scheme through construction planning and coordination as well as its management and operation. The management committee also administers the community's financial cooperative that operates a nursery and supplies potato and tree seedlings to farmers. The financial operations of the committee also offer credit and savings facilities to community members.Rainfall occurs during both Belg/autumn (February -April) and Meher/Kremt/summer (June -September) seasons. The average annual rainfall received varies from 950 to 1200mm and mean annual temperature varies between 6 0 C and 20 0 C (Table 1). The black clayey-loam soils, classified as Vertisols and Cambisols, characterize the area. A livelihood profile of Amhara for 2005 (Central Statistical Authority) indicated that Gudo Beret had a population of 6471 comprised of 1502 households. About 30% of the households in the larger Amhara Region were female-headed (Central Statistical Agency, 2007). The major crops grown in the scheme are wheat, faba bean, teff, barley, lentil and field pea.The main economy is based on crop production, supplemented by livestock production. The mainstay of agriculture is the Kremt/long rains (June -September) which support the meher harvest. Areas with irrigation complement the rain-fed cropping with irrigated Tsedy season. Irrigation is practiced in Tsedy during the months of January to May.Group discussions were facilitated with the management committee members and irrigation group leaders to obtain a better insight into water access throughout the irrigation scheme, management structure and operations (see figure 1 in Annex). The group discussion of the MIS management committee was complimented by small group discussions with the leaders of the three individual MIS groups. A discussion with the chairman of the MIS was also held separately as a follow-up on the issues noted from the other discussions. Semi-structured surveys were carried out at different levels of the scheme with stakeholders as well as farmers.The semi-structured surveys were designed to gain a better understanding of the overall scheme management structure, the management within each of the irrigation groups and onfarm water management and agricultural practices.One semi-structured questionnaire was implemented at the Mush Irrigation Scheme committee level to gain insight into the overall scheme management structure and perceived scheme performance. Seven members (6 men and 1 woman) participated in the survey. Each of the interviewees owns fields within the scheme and is involved in irrigation activities aside from their committee responsibilities. This discussion aimed at getting a scheme overview, the committee's vision on the future of the MIS and to fill in missing information arising from the various stakeholder discussions. A second semi-structured survey was implemented with individual group leaders to evaluate the implementation of water allocation within their group as well as their perceptions on the operation efficiency of the system within and among their groups. Additionally, constraints and opportunities at group level were assessed. A third level of surveys were implemented with fourteen farmers from the three groups. The majority of the selected interviewees were farmers participating in the Africa RISING's irrigated fodder protocol located in Group 1. Hence, additional farmers were selected from Group 2 and Group 3 to provide a scheme-wide assessment. From a total of 14 farmers (3 female and 11 male farmers), 6, 3 and 5 farmers belonged to Group 1, Group 2 and Group 3, respectively (Table 2). The scheme layout from the spring until the end of the canal was mapped using a GPS (Figure 1 and in Annex Figures 2, 3 and 14). GPS point locations were recorded along the canal to identify the start and end point of each group along the canal as well as scheme operation and management points of interest (e.g. weed infestation, canal leakage/seepage areas, spring sources). Google Earth was used as a base map for the study area. The flow measurements were carried out during the day. Velocity measurements and canal dimension were recorded at selected points to assess potential changes in hydrological regimes within the system as well as to determine water losses and/or gains along the canals. A simple area (average) velocity method was used to compute the discharges along the canals:where V is the flow velocity (m/s) at a point along the canal, A is the cross-sectional area (m²) of the canal at the flow measurement point and Q is the computed discharge (m³/s).The canal dimensions were measured using meter-rule with accuracy of +/-1 cm. The flow velocities were measured at representative points along the canal using a Valeport 002 flow meter (Valeport Ltd., 1996). Low flow depths and lack of canal uniformity along the canal made the selection of measurement points limited. Measurements only covered Group 1 and sections of Group 2 due to limited water availability. At the time of the field measurements water only reached 45 % of the total canal length (i.e. approximately 1,233 m from the beginning of the scheme). A catchment evaluation was carried out as it became obvious that factors beyond the command area of MIS may play a role in the sustainability of the irrigation system. 1.3 Evaluating current and future productivity of the Mush schemeDischarge at canal diversions, on farm irrigation method, duration of irrigation, number of irrigation events and general irrigation practices were monitored. Water availability for irrigation was estimated based on discharges measured at specific locations along the canal (Figures 1 and 2). Simple calculations using the lowest recorded discharge within a specific canal section resulted in conservative estimates of available irrigation water at plot level. The estimation of water delivered to a particular field was based on the total irrigation time and the assumption that fields received the full discharge determined at a particular canal diversion (Figures 4 and 5 in Annex). To evaluate the benefit of the irrigation season, land and water productivity was calculated for both the kremt and tsedy season (Equations 2-3). Yields were obtained from the farmer surveys. Estimations on irrigated volume were based on duration and discharges associated to flood irrigation as it is the main practice within the scheme. The calculation of total water productivity when supplementary irrigation is performed is highly variable from year to year as it depends on rainfall occurrence and duration. In this particular case the total average rainfall in both the kremt and tsedy season was calculated based on the available time series (i.e. 2000-2014). As land and water productivity are affected by the characteristics of the marketable product (moisture content at marketing point) computations were based on nonprocessed farm weights (farm-gate yield measures):To estimate the irrigation depth for potato and fodder, changes in soil moisture storage was measured using the gravimetric method. Water content of soil samples from the irrigated plots taken before irrigation were compared with those taken 24 hours after irrigation (Black, 1995as summarized by DeAngelis, 2016).AquaCrop (Raes, Steduto, Hsiao, & Fereres, 2012) was used to estimated crop water requirement and productivity for both traditional and newly promoted crops. The irrigation system was noted to operate between the months of January until May. This covers the period of the belg/short rains season. Results were used to determine whether the scheme could be optimized supplying water to a larger command area through either improving on-farm water management or choosing different crops. A comparison of the current irrigated acreage versus potential irrigable acreage under different crops offered insights into possible levels of sustainable agricultural production with optimal water management. To assess the potential irrigable area during the irrigation season irrigation demands for barley, lentil, potato, oats and faba beans were evaluated against the canal flows over the irrigation period. The limitations of detailed on-farm management characteristics constrained the models calibration. Therefore, standard optimal operating standards and guidelines were used. AquaCrop was setup for local climatic conditions and ran based on growing degree days with default parameters for potato and barley as per AquaCrop version 4.0 (Raes, Steduto, Hsiao, & Fereres, 2012). For lentil, faba beans and oats growth parameters were set up employing the FAO-suggested single crop coefficients (Allen, Pereira, Raes, & Smith, 1998).Mush Irrigaton Scheme only operates within the tsedy season (January to May) with the other seasons being rain-fed. The scheme is fed by two main spring sources (Figure 1) with additional springs supplying water within the scheme. The main canal has a total length of 2740 m from which the upper 885 m is lined and the remaining 1850 m is unlined. The irrigation scheme has a planned command area of only 40 ha due to limited water supply from the springs. According to the survey the actual irrigated area is at best 60% as to accommodate all farmers during each irrigation cycle in all 3 groups.The scheme has 230 members with a land ownership between 0.25 and 1.5 ha from which 0.06 to 1 ha is irrigated (Table 3). Members generally own both irrigated and rainfed fields. The average irrigated plot size per farmer is 0.34 ha. The membership distribution across the 3 irrigation groups are 75, 67 and 88 in Group 1, Group 2 and Group 3 respectively. Based on the farmer surveys, the average irrigation capacity under the current management only covers the land holdings for approximately 27% of the farmers. Each group receives irrigation water on a rotational basis for a fixed duration of 10 days per month. The timing for each of farmer within the same group is based on their field location relative to the main irrigation canal. Farmers at the head and near the canal receive water first as it is diverted downstream. In the event that not all farmers receive water within a monthly cycle they obtain priority in the following cycle. All available water in the canal is fully utilized with irrigations carried out both during the day and at night, inclusive of holidays. This thus nullified the proposed objective of incorporating temporary storages of irrigation flows. Women farmers whose irrigation schedule falls during the night either swap with their male neighbors or have male neighbors irrigate for them. Farmers preferred nighttime irrigation as it is cooler, with larger discharge from the canal (no withdrawals by the community nursery).The nursery was noted to withdraw up to 50% of the total available discharge at the onset of the canal during its working times of 8am -4pm limiting water availability for irrigation in the scheme.The farmers expressed the increasing water scarcity and its effect on dry season agricultural production as one of their major concerns. The difference between the potential irrigable area and the area quantified from the surveys point towards potential over-irrigation of fields reducing water availability for the remaining land in the command area. Especially farmers in Group 3, whose access is much more limited due to transmission losses in the system, identified on-farm water management as a way to curb the water shortages.The scheme, a farmer-managed irrigation system, is governed by a committee comprised of 10 volunteering members (3 members from each group and a chairman). The scheme management oversees the operation and maintenance of the irrigation canal as well as the operation of an income-generating nursery that supplies both tree and potato seedlings to the farmers as well as the general market.The scheme membership for life fee is US$2/ha of irrigable area. New membership is required upon change in land ownership (e.g. from parents to children). All children have a responsibility to apply for their personal membership upon land inheritance and/or other acquisition of land within the scheme's command area. It is noted that the membership comprises from as short as 5 years to as long as 70 years depending on the age of the farmer and the gender (Table 4). The average membership duration among the interviewed scheme members was determined as 27 years. The majority of scheme members have a high school degree (Table 5). Access to irrigation water is open to all community members with fields in the command area. Irrigation access is based on a payment of US$2/ha per season. The contribution is used for canal management and inputs needed for the nursery activities. For registered MIS members, the nursery profits are shared annually with scheme members following a shareholding system. This offers a secondary source of income to households. The MIS committee limits the number of shares available for purchase (US$0.50 per share) per member to between 1 and 100 shares each year. It was noted that potato growers are availed more water shares (up to US$200 worth of water shares) while lentil growers receive the least shares (maximum US$5 worth of water shares) to reflect their higher water consumption. This provides the potato farmers with water access at a schedule of every 15 days rather than after 20 days for all other crops. There are no potato growers in Group 3 because implementing the 15-day cycle of irrigation in Group 3 was found to be technically impossible. The average share ownership in 2015 season was estimated at 14.6 shares/member. Farmers are obligated to support the committee in operational and management tasks related to the scheme such as participation in meetings to discuss scheme issues, payments of water rates, labor and monetary support for canal improvement and maintenance, and responsibility in the care of the canal system by informing the management of any concerns regarding matters that may impact the operation of the canal. In case of non-participation in committee mandated canal improvement activities the committee levies a penalty of US$2.50 to the concerned individual.Aside from the additional income from nursery shares household income is mainly based on subsistence agriculture. The labor contribution to paid agricultural activities for male and female members is 1.79 and 2.36 persons/household, respectively. Within the scheme farmers mainly cultivate their own land with very few cases of hiring labor or other payment arrangements. For those community members who engage in paid agricultural labor within the community the payment in terms of produce is on average 216 kg/person per season whereas the labor compensation wage is US$6.8/person per season. Community members working in the nursery are compensated using standard farm labor wages.Aside from water access, the scheme provides support to the farmers with regards to local potato seed and tree seedlings, credit services, dividends from nursery profits, local money saving services, crop marketing of their produce, and linkage to external partners such as NGOs for trainings. The management committee coordinates farmers' access to hybrid seeds of crops that are not easily available within the community and resolves disputes and conflicts within the scheme. The interviewed farmers acknowledged the benefits of being a member in the scheme and supported the scheme management.The flow at the main canal gate was 0.16m 3 /s and dropped to 0.09m 3 /s at Check A point (Table 6 and Figure 2). The 50% reduction is due to the withdrawal of irrigation water for the nursery and corresponds with the estimated redraw mentioned by the MIS management committee during the focus group discussions. Due to the unlined, irregular canal into the nursery no reliable flow readings were obtained. Although no discharge measurements could be carried out beyond Flow measuring point C as the canal was dry, spring sources were noted in some stretches of the canal especially in Group 3 which supplemented some of the farmer's irrigation needs. The increase in discharge at Flow Measuring Point C from 0.06 m 3 /s to 0.12m 3 /s occurred during the close of the nursery withdrawal (Figure 2). This further supports the proportional use of water between the nursery and the farmers' fields. The sharp drop in flow between the Group 2 Start waypoint and the Upstream 3 waypoint was due to leakage from the canal (Figure 6, in Annex).Based on the discharge measurements (Table 5) and the irrigation management within the scheme (i.e. cyclic scheduling of water between groups as well as to individual plots within the group) fields tend to be irrigated with similar discharges as those measured in the canal. Hence, each plot received the full discharge from the main canal at that specific location for the period required before flow was diverted to the next field on the schedule. This confirms the perception of the scheme members that distribution is equitable as they do contribute to planning. As such, when water constraints are observed within the scheme, scheme members accept restrictions to water access or changes in the irrigation schedule.Transmission losses of 0.67 m 3 /hr/m at the distance of 74 to 115 m along the canal as well as flow gains up to 0.25 m 3 /hr/m at a distance of 1206 to 1265 m were observed. The variability in transmission losses are likely to be overestimated due to irregular canal dimensions resulting in a lower accuracy of the determined flow characteristics. However, visual observation of the irrigation canal indicated numerous wet patches around canal stretches in a generally dry landscape outside the irrigated fields does confirm a combination of canal leakages as well as the occurrence of high groundwater tables and springs. Further detailed documentation is needed to quantify the number of leakages along the canal. Especially in the unlined sections where higher losses are expected and contributing towards increased sublateral flow downstream. Minor service works and better controls of diversion gates will be instrumental in controlling these leakages. Discharge along the canal at different locationsRain-fed crops are faba beans, barley, wheat, beans, field pea and potatoes; whereas during the irrigation season lentil, faba beans, wheat, barley, beans, potato and fodder are cultivated.For both the irrigated and rainfed crops the agricultural practices are characterized as labor intensive using low technology inputs. The farmers mainly rely on manual and/or animal labor for field ploughing and manual labor for weed control (Table 7). No usage of pesticide or insecticide was reported among the farmers. Fertilizer has been limited to Diammonium Phosphate (DAP) and UREA fertilizers with application rates frequently below the recommended rates. The farmers within the MIS mainly rely on the kremt/long rain season for unirrigated cultivation and the tsedy/short rains with irrigation supplement for the irrigated cultivation. Depending on the weather some minimal cultivation is carried out in the other seasons. A range of crops are grown based on weather and predicted irrigation water availability with individual farmers making choices on which crops to grow. The scheme community members noted changes in their cropping patterns for the irrigation season. Wheat and barley are being replaced during the spring season by faba beans, potatoes and lentil due to increased water shortages as well as pressure from pests and diseases. Furthermore barley has a relatively low economic return compared to crops like potato even if irrigation rates are decreased due to water shortages. Other crops like faba beans are preferred as they are lower nutrient demanding crops and hence could cope with the noted reduction in soil fertility by some of the interviewees. In general, farmers selected lentil for its tolerance to low water, potatoes for the greater returns even for reduced land size under irrigation, faba beans for better yields under low fertility and field peas for pest-related challenges.Reduction in water availability from the MIS canal was highlighted as a major reason for changes to the farming system. The reductions in water availability were attributed to changes in weather, increased domestic withdrawal at the spring source, increased withdrawal by the nursery and the impact of the eucalyptus plantation upstream of the main spring sources within the watershed.The cultivation intensity and irrigation frequency was evaluated for the tsedy season based on the surveys conducted at farm and scheme level (Table 9). Water availability was generally limited to scarce for all crops. Lentil, barley and beans were generally assessed to receive limited water compared to the other crops.A majority of the farmers practiced flood instead of furrow irrigation by leading the water to the lower end of the field and then irrigating backwards towards the head. This resulted in higher irrigation depths applied to the lower areas of the field compared to the upper part of the field. Given that farmers are not very familiar with furrow irrigation those who do implement furrow still start their irrigation at the lower end of the field. The farmers employing furrow irrigation generally irrigated 3 furrows at a time with furrow lengths of 8 -12 m. The farmers filled the three consecutive furrows at a time before moving to the next set upstream of the inflow. An assessment of the furrow irrigation farmers showed an average irrigation rate of 1.8 m/min furrow flow rate and a filling duration of 0.7 min/m. The recession time recorded was 25-30 min. The method of starting irrigation at the lower end together with the poor leveling of the fields and the furrow slopes being inhomogeneous leads to higher excess flows compared to the flood irrigated fields (Table 8). This leads to significant application losses (over 50%) at plot level, which feed neighbouring \"non-irrigated\" rain-fed plots. A comparison of water contents for fodder and potato fields under furrow irrigation further demonstrates that potato fields gained an average of 8% moisture storage from irrigation while fodder fields only gained 4% storage and never achieved field capacity. Based on the changes in soil moisture larger irrigation amounts were applied to potato fields. A detailed assessment of the water contribution from irrigation was made for four furrow irrigated fields to compute the water application efficiencies of farmer irrigation. Computations are based on changes in soil storage moisture ( Table 10), assuming 40% water losses by surface flow and/or deep percolation of the irrigation application (Table 11). The soil moisture variability is quite high between fields, both before and after irrigation, indicating the subjective farmer determination of appropriate levels of irrigation.Table 11 shows that the application efficiency, derived from soil storage (application depth) compared to the application flows into the fields, are highly variable: from a low of 26% to a high of 80% (Table 11). This has the implication that much of the applied irrigation water was not stored in the soil but was lost as runoff. To assess water productivity, the estimated application rate of 0.52m 3 /ha for the monitored flood irrigated field (Farm #2, Table 8) was assumed to be representative for flood based irrigation within the scheme. The average seasonal rainfall estimates for both the kremt and the tsedy season, used for the total water productivity calculations, were derived from the 2000-2014 database. The total water productivities, reflecting the crops' performance relative to all available water resources are representative of the yield potentials under the existing scenarios of cultivation ( Table 12). Key: LP -land productivity; TWP -total water productivity The results show higher land and water productivity levels for potatoes followed by fodder, in the tsedy season than those found in Derib et al. (2011). The higher water productivity might be positively affected by the higher irrigation availability (4.0 and 3.5 times irrigation frequency) as well as the harvest product having a high moisture content compared to cereal crops. Nevertheless, the total water productivities are considerably higher in Tsedy than in Kremt even though the yields are lower, reflecting the higher utilization efficiency of water in the dry season compared to the rainy season. Tsedy season water productivities are shown to range between 4 to 9 times the levels in kremt season. These results confirm the potential production increases possible with well managed irrigation systems in Mush Irrigation Scheme. The land productivity on the other hand shows variations between seasons and crops. Despite the effect of climate variability, water availability and crop management partially explain the difference in land productivity between the two seasons. However, it is clear that the crop grown has a stronger influence.The surveys and field assessments indicate that Mush Irrigation Scheme is a water-limited irrigation area. This implies that the extent and intensity of irrigated area and production is constrained by water resources rather than land resources. The optimization of the production system thus calls for a program to capitalize on the returns gained from water rather than land. Assuming that farmers maintain current levels of farm inputs the alternative optimization for increased land productivity can only be achieved through increases in water use efficiency. Increases in water use efficiency would require an understanding of the cropping patterns and thus water requirements during the irrigated season, thereby facilitating optimal application of irrigation water as well as reducing off-field losses and over-irrigations. This would offer possible benefits such as increased availability of water to bring more acreage under irrigation and enabling higher returns on the water available for application.Assuming optimal cultural farm practices, with recommended fertilization, pest and weed controls, as well as sufficient irrigation, the model results indicate significant land productivity (yield) increases during the tsedy season relative to the current management level (Table 13). It is significant to note that except for lentil, a reduced total water productivity was obtained for all crops. This is due to the increased irrigation supplied by the model leading to higher yields compared to the current amount of water applied in the fields. As stated before, the implementation of AquaCrop model makes three major assumptions for enhanced irrigated crop production: i) applied irrigation is effectively timed and efficiently utilized by the crops in yield production, ii) all needed agronomic practices are implemented efficiently, and iii) no uncontrollable human and/or natural hazards occur to constrain yield. These are ideal situations that never happen (Oweis & Hachum, 2012) in real life hence the results presented herein are nothing but potential targets.The weekly flow availability (0.062 m³/s) averaged over a week based on the operation plans of the scheme and nursery withdrawal was estimated at 33034m 3 . This flow was taken as the present irrigation potential for the canal for planning a new irrigation model. The computation of potential irrigable area is presumed on the ideal system devoid of socio-economic and cultural factors that could not be assessed within the scope of this study. Based on the FAO indicative field application efficiency for flood irrigation and the estimated irrigation application depths and ETc results (Table 13) (Brouwer, Prins, & Heibloem, 1989) the potential irrigable area was estimated (Table 14). Results suggested the available discharge at the canal (excluding the portion used by the nursery) would be sufficient to increase the current area cultivated in the irrigation scheme. Given that the amount of irrigation frequencies is far below the modelled irrigation depths the areal coverage is on the conservative side. On the other hand, channel losses need to be quantified to ensure the estimated potential. During the walkthrough of the irrigation system the study team observed areas of land slippage into the head gully source of the spring outlets (Figures 7-13 in Annex). Further, significant areas of erosion upstream of the irrigation scheme and cultivation close to the spring sources were noted. Of major concern was the established eucalyptus forest above the irrigation scheme. The forest is characterized by trees approximately 8-12 years old on heavily eroded land. There is almost no undergrowth within this forest area resulting in low erosion production of the topsoil.The upper watershed above the scheme's main spring sources is covered with eucalyptus forests. This may have potential negative effects on the watershed's ability to recharge the groundwater and hence could influence the long-term sustainability of the scheme. The farmers' concerns regarding the state of the watershed and especially the spring recharge in the presence of the eucalyptus forest is noted. Several studies document the concerns regarding the long term impactThe scheme is one of the many small-scale irrigation schemes in Ethiopia that work on a rotational basis. Currently in several of those irrigation schemes the question is raised whether the right crops are grown (high water productivity & market value) and if water productivity and overall irrigation can be improved. Particularly in this scheme a combination of individual water allocations and association nurseries are competing for the same water source. Farmers are still relatively new to irrigation and the concept of optimal water management. Hence, farmers irrigate as much as possible the moment they have water access especially if the rotation to water access is very long. This study gathered the baseline information to evaluate potential gaps for capacity building as well as future research/assessments needed to improve scheme functionality.1.9 On-farm ManagementThe scheme generally does not have significant surface drainage losses out of the command area but in-field losses are extremely high. This status if not managed portends a major threat to the sustainability and reliable operation of the irrigation scheme. The poor in-field water management is a risk factor as it limits access to water by other farmers. Preliminary results show that this leads to low water productivity of the current cultivated crops and a low cultivated area.Half of the scheme's discharge is used for the nursery, leaving the irrigators with an average of about 4500 m 3 /day. Based on the farmer interviews the majority of the area is attributed to less water productive crops due to challenges of water shortage, soil fertility, pest and disease resistance. However, based on the modeling results water and land productivity could be further increased for cereals, fodder as well as potato without reducing areal size. One of the first steps to accomplish this will be through improved on-field water management (e.g. furrow irrigation instead of flood) and better irrigation scheduling where possible.Capacity building can help to improve the application and water use efficiency in the field.Trainings on on-farm management shall include, but are not limited to, better furrow design and maintenance, field bunding to reduce off-field water discharges, flow stream regulation into fields to provide enough opportunity time for effective infiltration, proper design of contoured plots to effectively manage on-field water flows and reduced soil erosion without constraining high Kremt season surface runoffs. A modification of the traditional methods of irrigation (flooding and furrow) with improved techniques of land levelling, optimum furrow forming and basin forming to control out-of-plot losses can lead to considerable savings in irrigation water. Capacity building on on-farm water management might be further achieved when farmers have access to irrigation scheduling tools that provide insight concerning how much water to apply. The question on when to apply is a bit more challenging given the rotational scheduling throughout the scheme. However, given the Aquacrop results area could be extended from the current 27 ha effectively irrigated to 45 ha for potatoes. According to the simulations even greater irrigable areas can be achieved with less water intensive crops. Africa Rising is currently testing whether the wetting front detector, one of the available irrigation scheduling tools are suitable to train farmers in onfield water saving for potato and fodder, two highly demanded crops. Water productivity as a measure of the returns to limited water access is thus a valuable tool to guide the scheme in selection of suitable crops but it should be implemented in conjunction with economic and cultural considerations based on farmer interest for specific production, consumption and market needs.At scheme level, the current operational system is sufficiently managed to ensure maximum use of the available resources. Unfortunately, this does not translate to optimal use with large areas of the command area left fallow due to water shortages. It is noted that due to the round-theclock irrigation schedule no excess flows are available hence there is not potential to remedy temporary storages. To optimize water efficiency it is suggested that the scheme implements a strategy to consolidate areas in the scheme with similar crops and distribute water accordingly. This can be implemented by extending the current system that enables group one farmers marginally greater access to water as they grow more water demanding crops and group 3 less water by requiring production of less water demanding crops. A hybrid system would be to group farmers growing different crops together and supplying water as per crop needs.Aside from the management of the scheme, a high level of maintenance is required. At numerous locations water losses were identified throughout the scheme. Better operation and maintenance to minimize distribution losses coupled with long-term investment in canal lining shall make distribution more amenable to the suggested changes in distribution scheduling. Sections of the spring source gorge are also experiencing soil slumps. Two stone gabions have been constructed across the gorge and a short length of stone retaining wall has been constructed to protect the sides.Mush Irrigation Scheme solely depends on spring sources. A number of low discharge springs and high water table areas were noted within the scheme. The hydrology of these potential groundwater sources is not well understood. Given the increasing demand and the decreasing water availability, a proper inventory of all springs recharging the command area would help to further optimize water requirements and allocation. Groundwater recharge assessments as to determine the potential for targeted recharge ponds in the watershed could supplement the current springs. Tracer studies can be performed to map the age, source and recharge areas of groundwater and help to understand the nature and behavior of these springs. This would also clarify whether some of the wetted areas are created by seepage losses from the canal, fields and lateral flows throughout the command area. The identified recharge zones and low groundwater tables may be utilized as localized sources for irrigation water. These can be tapped as surface flows and/or shallow open dug wells that can be pumped to reduce the pressure from the main canal supply. This report thus suggests a plan to understand the sustainability of these spring sources and formulation of steps to develop protection and conservation initiatives, preferably led by the community's input as a basis of capacity building on their water resources.Community mobilization for watershed management such as constructing stone terraces within the eucalyptus forests to encourage water infiltration and reduce erosion would further benefit the sustainability of the scheme. With the abundant availability of stones in the watershed more work on building stone gabions and retaining walls is needed to both protect the spring sources as well as the neighboring fields from erosion and soil slumps. The community could benefit from trainings on integrated watershed management whilst enhancing awareness on how to sustainably manage spring sources as well as prevent erosion and landslides. Sensitization to the interrelationships between the natural environment, resource access and use should be prioritized, especially in the context of the existing social/economic structure around the Mush Irrigation Scheme. For example, farmer training centers could be used to facilitate trainings on watershed management concepts in the context of existing challenges of agricultural development.The management of Mush Irrigation Scheme is functionally effective in managing the irrigation system with most of the farmers confident in the equity and fairness of the system. This does not negate the great concern by the farmers on the insufficiency of the water supply that has limited their farming activities to one Kremt season crop and one belg/irrigated crop with several months of fallow fields. The cultural field practices, compounded with the tough terrain in the cultivable area has made both farming and the associated irrigation methods unadaptable to the limited water supplies; especially with the highlighted reductions in spring supplies over the past years.Need for capacity development of the farmers on on-farm management is extremely crucial to maintain and/or increase the irrigable acreage of the scheme. The study notes the high potential for productivity increases even under the limited water availability, with opportunities for increasing the irrigated areas as well as improving the yield levels through better on-farm water management. According to the model simulations efficient management of flood irrigation could increase the current irrigated acreage of 27 ha to 45 ha of potatoes or 63 ha of irrigated lentil. Improved irrigation methods and/or on-farm water management may lead to even larger increases in irrigable land.The mobilization of the community to adopt watershed management practices both within the kebele and in private and public forests from which the scheme's water arise should be encouraged. The long-term health of the scheme will greatly depend on the sustainability of the spring sources, which is threatened by both the changes in weather patterns and the human activities within the watershed. Steps towards better agroforestry activities, erosion control and soil cover approaches should be considered. The on-going work by Africa RISING is therefore of significant relevance and pushing forward with these activities and recommendations to ensure sustainable intensification of irrigated agricultural production in Mush Irrigation Scheme will only improve the livelihoods of the community.","tokenCount":"6906"} \ No newline at end of file diff --git a/data/part_3/2520575860.json b/data/part_3/2520575860.json new file mode 100644 index 0000000000000000000000000000000000000000..44760f36bb2383115ed633ad6c89a4f85698e7c9 --- /dev/null +++ b/data/part_3/2520575860.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"5cfb22e0d9f5e19123e06ce65306c007","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/30eaca80-e783-4053-99e4-3b8a628cd760/content","id":"-908013350"},"keywords":[],"sieverID":"5cc48084-7adb-4f09-a413-8e80dc78afa0","pagecount":"30","content":"• SPTA is a non-revenue generating, humanitarian project funded by the Bill and Melinda Gates Foundation -Incorporates Corteva Agriscience intellectual property around a dominant male sterility gene (Ms44) and a unique transgenic approach (SPT) to enable production of non-transgenic, non-pollen producing parent seed -Enables production of high quality, better performing 3-way hybrids at lower cost for small seed companies in Africa• SPTA originated from the Gates-funded IMAS (Improved Maize for African Soils) project, during which Ms44 was shown to improve yield under nitrogen stress On-farm trial summaryValue proposition for seed partners• Objective: Compare yield of detasseled pollen producing (PP) plants compared with non-pollen producing plants (NPP) which were not detasseled.-6 SX native Ms44 hybrids produced and kernel chipped to identify presence of Ms44 -Planted in Kenya at 7 locations -Data collection is ongoing • Tentative plan to continue in 2021 with SPT-produced seed• Hybrid purity -Objective: establish yield impact of single-cross female self-pollination on hybrid yield on-farm -Seed being made in Zimbabwe, purity levels from 60-100% -3 hybrids x 4 purity levels x 20 on-farm locations • On-farm seed recycling trial -Objective: measure yield impact of Ms44 when hybrid seed is recycled","tokenCount":"192"} \ No newline at end of file diff --git a/data/part_3/2533374243.json b/data/part_3/2533374243.json new file mode 100644 index 0000000000000000000000000000000000000000..385ee67bdda09672355ac270412869e7ddd89ddd --- /dev/null +++ b/data/part_3/2533374243.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"4169ab1264fb1985e38fcec5c249d4c3","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/9f26b5d7-c9c9-4ba5-a9f3-7f7f558a76fe/retrieve","id":"1762221170"},"keywords":[],"sieverID":"e831962d-a0f4-48c2-abc6-90e736d88792","pagecount":"186","content":"Bioversity International es una organización internacional independiente, de carácter científico, que busca contribuir al bienestar actual y futuro de la humanidad mejorando la conservación y el aprovechamiento de la agrobiodiversidad en fincas y bosques. Es uno de los 15 Centros que auspicia el Grupo Consultivo para la Investigación Agrícola Internacional (GCIAI), una asociación de miembros de los sectores público y privado que apoya la ciencia para disminuir el hambre y la pobreza, mejorar la alimentación y la salud humana, y proteger el medio ambiente. Bioversity tiene su sede principal en Maccarese, cerca de Roma, Italia, y oficinas en más de 20 países. La organización opera a través de cuatro programas: Diversidad al Servicio¿Cómo conservan los agricultores sus semillas en el trópico húmedo de Cuba, México y Perú?Experiencias de un proyecto de investigación en sistemas informales de semillas de chile, frijoles y maízPrimero queremos agradecerle especialmente al Centro Internacional de Investigaciones para el Desarrollo (IDRC), Canadá, por haber financiado el proyecto \"Manejo adaptativo del sistema de semillas y flujo genético para una agricultura sostenible y mejores medios de vida en los trópicos húmedos de México, Cuba y Perú\" que condujo a la elaboración de esta publicación (IDRC Grant Number 102563-001). En particular queremos expresarle nuestra gratitud a Ronnie Vernooy del IDRC por su asesoría y apoyo durante la implementación del proyecto. La investigación que se describe en el libro se basa en trabajos anteriores apoyados por la Agencia Suiza para el Desarrollo y la Cooperación (SDC), en especial a las iniciativas globales de conservación in situ, así como la estandarización de metodologías. También agradecemos a Mauricio Bellon y Toby Hodgkin de Bioversity International por apoyarnos en la supervisión temática del proyecto. Queremos también reconocer que el proyecto fue originalmente conceptualizado por Devra Jarvis, David Williams y José Luis Chávez. Igualmente agradecemos a Nelly Manosalva por la edición de texto de la publicación. Apreciamos mucho también la ayuda de Victoria Rengifo por la traducción de los capítulos uno y nueve a partir del texto original en inglés. Por último le agradecemos inmensamente a la gran cantidad de agricultores de Cuba, México y Perú por su participación voluntaria en la realización de este estudio.Investigando sistemas de semillas en el trópico húmedo de Cuba, México y Perú: implementación del proyecto, lecciones aprendidas e impactos Michael Hermann, y Karen Amaya Bioversity International, Cali, ColombiaEste capítulo sintetiza los resultados del proyecto de investigación en el que se centra el presente libro. Entre el 2004 y el 2007, con financiación del IDRC y la colaboración de Bioversity International, el proyecto evaluó la manera como los sistemas locales de semilla abastecen y mantienen los recursos genéticos de los cultivos importantes para los medios de vida de los agricultores en comunidades de escasos recursos ubicadas en la zona del trópico húmedo de Cuba, México y la región amazónica del Perú. La investigación se enfocó principalmente en el maíz (Zea mays), el frijol común (Phaseolus vulgaris), el frijol pallar (Phaseolus lunatus) y el chile (Capsicum spp.), caracterizando y cuantificando el flujo de semillas en las redes de agricultores. Se analizó la función de los agricultores nudo en estas redes, y se evaluó el rol de hombres y mujeres en el manejo de semillas por parte de los agricultores. Se identificaron factores que limitan la capacidad de los agricultores para almacenar semilla destinada para la resiembra, o que conducen a la pérdida de semilla, como la deficiencia de métodos y recipientes adecuados para el almacenamiento de las semillas. Se evidenció que factores tales como la falta de información acerca de las propiedades y las fuentes de semilla intercambiada, así como la falta de garantías en la germinación y en el rendimiento asociadas con la semilla, restringen la habilidad de los sistemas informales de semilla para abastecer de diversidad a los agricultores. Se examinaron los sistemas formales de abastecimiento de semilla en los países de intervención del proyecto, y se vislumbra un impacto incipiente del proyecto en términos de vínculos entre los sistemas formales e informales de abastecimiento de semilla. Se discuten las implicaciones de estos hallazgos para el planteamiento de políticas dirigidas a mejorar el manejo y aprovechamiento de la diversidad en fincas y con ello el bienestar de los agricultores. Dentro del marco del proyecto se ha producido un gran número de publicaciones y se han mejorado las capacidades locales a través de varios proyectos de tesis. Los beneficios brindados por el proyecto a los agricultores incluyen capacitaciones, evaluación participativa de sus semillas élite y participación en ferias de semilla, los cuales en conjunto han fortalecido el intercambio de semillas entre comunidades.En cada temporada de siembra los agricultores deben decidir la cantidad de semilla que van a sembrar y buscar dónde obtenerla. Los agricultores frecuentemente dependen de la semilla que ellos mismos han producido, aunque la pueden obtener a través de sistemas formales de abastecimiento de semilla, y en particular de sistemas informales en el caso de los países en vía de desarrollo.El sistema formal provee semilla que se produce específicamente para propósitos de siembra (a diferencia de la semilla que se guarda de la producción agrícola para ser usada en el próximo ciclo agrícola). Esta semilla es producida por compañías de semilla especializadas tanto privadas como públicas, cuyas prácticas están reguladas por políticas nacionales e internacionales. Tanto estas prácticas como la información relacionada con semilla certificada han sido ampliamente documentadas. La semilla que proviene de los sistemas formales, que cuenta con garantías de rendimiento y la debida certificación por parte de las entidades avaladas, es generalmente mucho más costosa que la semilla derivada directamente de la producción agrícola.En vez de depender de la semilla del sector formal como lo hacen la mayoría de los agricultores de países desarrollados, muchos agricultores de pequeña escala en los países en vía de desarrollo participan en redes informales dinámicas de intercambio de semilla, mucho menos comprendidas, pero reconocidas por su importancia para los medios de vida de las comunidades rurales (Louette 1997;Thiele 1999;Badstue et al. 2006). Las fuentes de este tipo de semilla incluyen otros agricultores y otros mercados, y se asocian con una variedad de formas de abastecimiento (compra, obsequio, préstamo, apropiación). Los sistemas informales de abastecimiento de semilla hacen posible que los agricultores mantengan una diversidad de cultivos a través del tiempo, a pesar de las pérdidas en sus reservas de semilla, los cuellos de botella en la producción, y otras pérdidas normales e imprevistas de la diversidad genética de los cultivos. Son estos sistemas, y no solamente los agricultores como individuos, los que facilitan el uso continuo de la diversidad de cultivos en las fincas y los que contribuyen a satisfacer las exigencias de los agricultores en materia de semilla, las cuales no pueden satisfacer por medio de los sistemas formales de abastecimiento de semilla debido al énfasis que estos tienen en un rango limitado de variedades ampliamente adaptadas en ambientes favorables, con una demanda intensiva de insumos, y de relevancia comercial.Trabajos previos realizados sobre los sistemas de semilla han demostrado que aproximadamente un 70% a 90% de las semillas utilizadas por los agricultores en los países en vía de desarrollo se adquieren a través de medios informales como mercados locales, amigos y familiares. La demanda de una diversidad de semillas adquirida de manera informal por parte de los agricultores obedece a una serie de fundamentos, encabezados por la necesidad de adaptarse a los requerimientos particulares del ambiente, minimizar riesgos, preferencias culinarias y estéticas, y por factores de tipo social como la religión y el prestigio, al igual que por las oportunidades del mercado (Smale et al. 1999, Badstue et al. 2006). Además, los agricultores se involucran en la innovación de nuevas variedades buscando semilla nueva de manera activa o guardando semilla de plantas que exhiben nuevos o mejores rasgos. Los agricultores también mezclan de modo deliberado las variedades modernas y las tradicionales. Estos fenómenos sugieren que los sistemas de semilla moldean de manera significativa la diversidad genética de los cultivos, y que los sistemas de semilla actúan como vínculos importantes entre las poblaciones distintas a nivel genético y morfológico.El propósito de este proyecto fue entender cómo los sistemas de semilla contribuyen al mantenimiento de la diversidad genética de los cultivos y a las estrategias de medios de vida de los agricultores. El proyecto examinó los factores que sostienen sistemas de semilla efectivos, y determinó de qué modo estos sistemas pueden recibir un mejor apoyo a través de programas agrícolas de investigación nacional, capacitación local y políticas con fundamentos científicos. Este conocimiento es crítico para el desarrollo de estrategias de manejo que ayudarán a fortalecer los sistemas de semilla de los cuales dependen de forma vital los agricultores, y a promover el manejo in situ de los recursos genéticos de los cultivos. Una vez identificadas las principales limitantes del intercambio y el manejo de semilla, se pueden tomar las decisiones apropiadas para fortalecer esos sistemas de modo que los agricultores puedan tener un mayor acceso y darle un mejor uso a la diversidad genética de los cultivos en beneficio de su seguridad alimentaria.El proyecto se enfocó en los cultivos maíz (Zea mays), frijol común (Phaseolus vulgaris), frijol pallar (Phaseolus lunatus), y chile (Capsicum sp.), ya que representan una amplia gama de sistemas de reproducción (autogamia, alogamia), y además contribuyen al bienestar de las comunidades locales en las áreas seleccionadas para la implementación del proyecto. Los Capítulos 3 y 4 describen la importancia de estos cultivos y su diversidad para los medios de vida de los agricultores en la zona de intervención del proyecto, respectivamente.El trabajo se desarrolló en las regiones del trópico húmedo de Cuba, México y Perú, las cuales ofrecen excelentes oportunidades para conducir estudios de caso comparativos multiculturales, donde se manejan las mismas especies de cultivos. Las comunidades de agricultores consideradas dentro del área de intervención del proyecto incluyeron agricultores de las provincias de Guantánamo y Pinar del Río (Cuba), agricultores mayas de Yucatán (México), y agricultores de las etnias Shipibo-Conibo y Asháninkas, al igual que agricultores mestizos del Ucayali (Amazonia central peruana). Los atributos socioeconómicos de estas comunidades se describen en mayor detalle en el Capítulo 2.El proyecto se propuso los siguientes objetivos: • Determinar cómo los sistemas locales de semilla abastecen y mantienen los recursos genéticos de los cultivos importantes en las estrategias de subsistencia. • Examinar la demanda de variedades con atributos únicos en las comunidades, y hasta qué punto los sistemas locales de semilla proporcionan estos atributos en la diversidad de genotipos mantenidos por las comunidades. • Apoyar los sistemas locales de semilla y el flujo genético a través del mejoramiento de las capacidades científicas, el mejoramiento de las relaciones entre los agricultores, las comunidades y las instituciones, y el fortalecimiento de las capacidades institucionales tanto a nivel local como nacional.El proyecto se valió de varios grupos colaborativos multi-institucionales y multi-disciplinarios dispuestos en los sitios de intervención. Debido a que uno de los mayores componentes del proyecto se basaba en las comunidades, se realizaron esfuerzos concertados con el fin de mejorar la interacción y la comunicación con los agricultores quienes facilitaron los campos para la conducción del trabajo, y cuya experiencia y conocimiento constituyeron un componente central del proyecto.La información se recopiló por medio de métodos participativos y se complementó con los datos obtenidos de hogares, las discusiones de grupos focales, las encuestas de los sistemas de semilla, los ensayos de campo en las estaciones y en las fincas, las mediciones de la diversidad genética en el campo, y los estudios documentales y por Internet.Las unidades clave de observación y evaluación fueron los hogares y los lotes de semilla que ellos conservan. Un lote de semilla de una variedad determinada es la unidad física manipulada por los agricultores para efectos de propagación e intercambio y, por tanto, constituye la unidad empleada por los agricultores para el manejo de la diversidad.Entre el 2004 y el 2007 se llevaron a cabo las siguientes actividades específicas: • Entrevistas con informantes clave para determinar la demanda de atributos únicos en las variedades locales/nativas y las variedades mejoradas, por parte de los agricultores; • Encuestas socio-económicas a nivel de hogar; • Encuestas a agricultores, tanto mujeres como hombres, para determinar los roles relacionados con el género en el proceso de intercambio de semillas; • Encuestas acerca de los flujos de semilla, cálculo de las áreas de siembra por lote de semilla; • Encuestas acerca del almacenamiento de semilla, determinación de las pérdidas de semilla; • Discusiones de grupos focales en torno a las percepciones que tienen los agricultores acerca de los cuellos de botella de los sistemas de semilla; • Inventarios de los nombres de las variedades nativas; • Evaluación de las variedades nativas élite en las estaciones experimentales; • Caracterización morfológica y documentación fotográfica de las variedades nativas de las especies en estudio en las estaciones experimentales; • Establecimiento de parcelas de demostración en las comunidades de agricultores; • Experimentos de flujo genético; • Talleres de capacitación sobre técnicas de manejo de semillas y otros temas de relevancia para los sistemas de semilla;• Ferias de semilla;• Estudios sobre las políticas estatales que afectan los sistemas de semilla;• Bocetos de campo de la ubicación e identificación de los hogares para monitorear y diagramar el movimiento de semilla a través de ciclos agrícolas consecutivos.3.1. La contribución de los sistemas locales de semilla al abastecimiento y mantenimiento de los recursos genéticos de los cultivos importantes para los medios de vida de los agricultores Se encontró que los agricultores emplean primordialmente su propia semilla guardada de la cosecha anterior. En todos los casos, el área sembrada con semilla derivada de la propia cosecha del agricultor sobrepasa el 80% (y a menudo por encima del 95% en los cultivos menos comerciales), y el área restante con semilla adquirida de fuentes externas (sistema formal e informal). Sin embargo, el uso de semilla adquirida, si se expresa como un porcentaje del número de lotes totales de semilla empleados por año, es mucho más alto que las áreas de siembra relativas correspondientes, sugiriendo flujos frecuentes de pequeñas cantidades de semilla entre agricultores de la misma comunidad o de otras comunidades, así como del sector formal. Así, por ejemplo, en las tres comunidades mexicanas estudiadas, el 25%, 35% y el 55% respectivamente de los lotes de semilla de maíz empleados fueron adquiridos con un peso promedio de 10-20 kg por lote de semilla. La frecuencia de las adquisiciones de lotes de semilla de frijol fue muy reducida (comparada con el maíz) y mucho más aún en el caso del frijol pallar y el chile (en su mayoría por debajo del 10% de total de lotes sembrados) y el peso de los lotes individuales de semilla estaba muy por debajo de los 5 kg. Hubo una tendencia clara de cultivar la semilla adquirida a través del sistema informal en la mayor parte del área total sembrada con semilla de fuentes externas. Sin embargo, los lotes de semilla obtenidos a través de los canales formales tienden a ser más pequeños y más frecuentes que lo que sugerirían las áreas de siembra dedicadas a ellos. Este fenómeno podría explicarse desde el punto de vista de los agricultores que están dispuestos a experimentar con germoplasma novedoso, pero que lo hacen en área pequeñas (usan poca semilla) dado los riegos al utilizar semilla mejorada en condiciones adversas. Otros factores explicativos pueden incluir precios diferenciales entre lotes de semilla y las distancias a los mercados donde pueden adquirir semillas mejoradas.Sin embargo, existen excepciones importantes a la tendencia antes mencionada. En México, por ejemplo, los agricultores compraron prácticamente toda la semilla para el cultivo comercial de chile 'Habanero' de fuentes formales (Capítulos 3 y 4).En todas las áreas, surgió un patrón consistente de variedades más prominentes que representan la mayor parte del área sembrada de un cultivo determinado, a diferencia de las variedades cultivadas con menos frecuencia. Este patrón parece ser más pronunciado en los cultivos de mayor importancia nutricional o comercial. Por ejemplo, de 16 variedades de maíz presentes en las tres comunidades mexicanas en estudio -incluyendo variedades nativas, variedades introducidas y acriolladas-las tres variedades más comunes (variedades nativas de maduración tardía adaptadas al estrés por sequía y con buenas propiedades postcosecha) representaron el 58% 86% y 90% del número total de lotes de semilla empleados en determinado año. En cambio, más de un tercio de las variedades de chile y maíz en Cuba solamente se siembran en una sola finca. De este modo, la riqueza que algunos agricultores conservan en las fincas puede ser muy frágil, especialmente en los casos donde existen variedades raras que se encuentran únicamente en pocas fincas y pueden llegar a perderse fácilmente si se presentan condiciones adversas.Además, la frecuencia con la que se intercambian las semillas es mayor cuando existe un mayor número de agricultores que mantienen una variedad específica en el sistema, y viceversa, y esto depende en gran parte de la preferencia de los agricultores.Se encontró que los agricultores intercambian semilla de manera abrumadora dentro de su comunidad y en menor grado fuera de los límites de su población. La dependencia en este sentido hacia las redes sociales tradicionales es aún más acentuada en las comunidades peruanas ribereñas apartadas tanto geográfica como culturalmente. Aun dentro de una comunidad, las transacciones de semilla se realizan de preferencia entre familiares o con otras fuentes conocidas que los agricultores consideran como más confiables y pueden responsabilizarse más fácilmente por la calidad de la semilla. Otras razones con frecuencia aducidas por los agricultores para buscar semilla cerca de sus fincas incluyen una mayor familiaridad con las variedades nativas, las largas distancias que hay con otras comunidades y mercados, las preferencias por las variedades nativas, o simplemente el desconocimiento de la oferta proveniente de fuentes más lejanas.Cuando los agricultores adquieren semilla de fuentes informales lejanas, a menudo ocurre en conexión con visitas a mercados regionales o si está en la búsqueda de atributos de demanda específicos. Las distancias promedio reportadas para las adquisiciones de lotes de semilla para cultivos comerciales fueron mayores que las reportadas para semilla con propósitos de subsistencia (frijol pallar). En México, la distancia hasta las localidades de abastecimiento de semilla fue inversamente proporcional a la cantidad de semilla recibida de estas localidades. Por ejemplo, la adquisición era mínima cuando las fuentes de semilla se encontraban a más de 100 km de distancia.El Capítulo 8 describe las ferias de semilla organizadas por el proyecto, las cuales tuvieron un éxito enorme en cuanto a reunir miembros de comunidades lejanas y a facilitar de modo significativo el intercambio tanto de conocimiento local como de especies y variedades de semilla diferentes a través de grandes distancias y de una forma más focalizada en comparación a las transacciones fortuitas.La información sobre las transacciones de semilla recabada de las entrevistas con los miembros de los hogares de los agricultores permitió la reconstrucción de unas redes de semilla que se pueden visualizar en diagramas como los representados y discutidos en el Capítulo 7. Los diagramas de flujo en Cuba parecen confirmar la hipótesis de la existencia de agricultores nudo quienes se distinguen entre las comunidades como los guardianes de la diversidad de los cultivos. En Asia se ha encontrado que otros agricultores recurren a ellos como fuentes de semilla y de información (Shiva et al. 1995;Poudel et al. 2007). Sin embargo, no se descubrió ninguna correlación entre las funciones de distribución y el grado de diversidad en fincas (como lo expresa la riqueza de variedades de un cultivo determinado). La diversidad en fincas no determina la propensión de un hogar rural a suministrar semillas. Además, la comparación de datos del 2004 y el 2005 permite concluir que aquellos hogares rurales a través de los cuales fluye el mayor tráfico de semilla en un año, generalmente no son los mismos en otro año. Los agricultores parecen funcionar de forma variable como 'fuentes' o 'receptores' de los flujos de semilla, o pueden ser totalmente indiferentes, en respuesta a sus exigencias de cambio o suerte con la producción de semilla. Estas observaciones no disminuyen en lo más mínimo el rol de los agricultores en dinamizar el flujo de semilla dentro de sus redes, aunque los datos sugieren que, en Cuba, las funciones de distribución de semilla de los hogares rurales son de una naturaleza temporal, cuestionando de este modo la noción de que los agricultores individuales tengan ambiciones o capacidades conservacionistas (Capítulo 7).El trabajo con grupos focales de agricultores al igual que las encuestas a los hogares rurales y el cálculo en fincas de las pérdidas de semilla en almacenamiento, permitieron que el proyecto avanzara en la comprensión de los cuellos de botella del sistema informal de abastecimiento de semilla. Los cuellos de botella pueden ser considerados factores que limitan la capacidad de los agricultores de propagar semilla para resiembra y de autoabastecerse con semilla proveniente de redes informales. La identificación de los cuellos de botella es un paso importante en el planteamiento de las intervenciones a nivel de políticas para fortalecer los sistemas de semilla (Capítulo 6).Las encuestas sobre los lotes de semilla en México reflejaron que las pérdidas de semilla almacenada de maíz en el 2005 debido a factores bióticos como los daños provocados por insectos estaban en el orden del 10% del producto agrícola cosechado, aunque algunos agricultores reportaron pérdidas mucho más altas, incluso totales, para años anteriores. Sin embargo, los agricultores no consideraban las pérdidas de semilla necesariamente como un limitante, ya que la semilla dañada por los insectos puede tener usos productivos como, por ejemplo, servir de alimento para animales domésticos.En las regiones de estudio de los tres países, los estreses abióticos (ambientales) como sequías e inundaciones que ocurren periódicamente al igual que otros fenómenos climáticos adversos como huracanes fueron razones con frecuencia aducidas por los agricultores para explicar los fracasos del cultivo y la pérdida de las variedades en fincas a nivel individual. Esto es cierto, especialmente para los cultivos y las variedades que se siembran en áreas pequeñas para propósitos de subsistencia y se propagan empleando lotes de semilla relativamente pequeños, los cuales son particularmente vulnerables (chile, frijol común). Las redes informales de abastecimiento de semilla ofrecen a los agricultores su única oportunidad de restaurar las variedades nativas perdidas (Capítulo 5).Las altas temperaturas y la alta humedad atmosférica en los sitios de intervención del proyecto en el trópico hacen imposible el almacenamiento de semillas por más tiempo del que se da entre dos temporadas consecutivas de siembra.Para el almacenamiento de semilla, se emplea una amplia variedad de recipientes (bolsas de yute, bolsas y envases plásticos, frascos de vidrio, envases antes usados con combustible o pesticidas, mates de Lagenaria, etc.). Los grupos focales de agricultores en Cuba consideraron que la falta de recipientes adecuados para almacenamiento es el limitante principal pero diferían en opiniones acerca de los métodos adecuados de almacenamiento y los tipos apropiados de recipientes. Algunos argumentaban que las semillas 'necesitan respirar' e insistían en el uso de materiales permeables como los costales de yute o los recipientes perforados. Otros, una minoría, acertadamente favorecían el uso de recipientes herméticamente cerrados que evitaran la entrada de insectos, y con esto la necesidad de tratamientos con pesticidas profilácticos, aunque reconocían que esta práctica solamente era posible con semilla que ha sido sometida a un proceso de secado apropiado (Capítulo 5).Estas discusiones revelaron los déficit de conocimiento por parte de un gran número de agricultores en términos del adecuado procesamiento postcosecha de las semillas y el uso adecuado de los recipientes de almacenamiento.Los agricultores en Cuba y México aseveraron que la falta de información sobre dónde y de quién se puede obtener semilla constituye un cuello de botella importante. A menudo los agricultores no eran concientes de la existencia de variedades deseadas disponibles con agricultores en su vecindad.Además, la falta de información confiable sobre la germinabilidad y el rendimiento agronómico de la semilla proveniente de fuentes distantes surgió en las discusiones de los grupos focales como una limitante importante para el sistema informal de abastecimiento de semilla.Gran parte de los esfuerzos de investigación del proyecto se invirtió en la compilación y análisis de la consistencia en la nomenclatura de los nombres de las variedades empleados por los agricultores. Este tema es bastante importante ya que los nombres de las variedades identifican los lotes de semilla y el material sembrado, y el alcance que tiene el uso de los nombres de las variedades impacta de manera consistente el flujo de información asociado con el movimiento de la semilla. Los métodos empleados incluían el inventariar los nombres de las variedades, tomar fotos, hacer muestreos de las semillas de los agricultores y, en algunos casos, sembrar las variedades bajo condiciones experimentales con el fin de confirmar su identidad morfológica. La limitación obvia de este método es la dependencia de la morfología de la planta (complementado con los atributos de uso), pero es un método de bajo costo, y la caracterización molecular habría estado fuera del alcance del proyecto (Capítulo 4).La investigación demostró en general que la consistencia de los nombres aumenta con (1) la proximidad geográfica, (2) la notoriedad de atributos particulares en demanda (como nombres fuertemente asociados con usos alimenticios, o con la duración del cultivo, siendo el maíz en México, un caso clásico), (3) importancia comercial, y (4) la decreciente diversidad lingüística. Sin embargo, aun dentro de las comunidades o entre fincas adyacentes, se pueden emplear múltiples nombres para denotar una variedad morfológica determinada del cultivo. Los agricultores también pueden discutir acerca del uso correcto de ciertos nombres. Esto complica la comunicación en torno a las semillas, a menos que se utilicen especímenes o imágenes de referencia del material agrícola en cuestión para identificar claramente la semilla. Ocasionalmente, los nombres referidos por los agricultores son genéricos (en caso de una baja diversidad en una determinada finca) y corresponden a los términos locales para el cultivo en sí, o los nombres de variedades se complementan con un calificativo que aporta un sentido más o menos lógico (chile picante, frijol amarillo). Aunque otros nombres parecen obedecer al capricho (arroz con pollo picante) y algunos de ellos sugieren que son inventados por los informantes solamente con el ánimo de satisfacer la intención curiosa del científico por obtener una entrada de datos para un cuestionario. Dichos nombres a menudo corresponden a variantes morfológicas particulares presentes solamente en un hogar rural, y sugieren orígenes recientes debido a la hibridación o la introgresión de las especies silvestres (Cachucha de punta, ají cereza, variedades de Capsicum).En conclusión, la consistencia en la nomenclatura en las tres áreas de estudio es baja, con excepción de las variedades prominentes. Esto confirma totalmente la práctica de emplear en el proyecto catálogos ilustrados de la variación de cultivos presentes en las áreas de intervención del proyecto al realizar entrevistas con los agricultores. Estos catálogos muestran imágenes tomadas en un formato estandarizado, los nombres comunes, y proporcionan las características morfológicas y otros atributos de las variedades. Se publicaron catálogos de la diversidad de variedades de los cuatro cultivos objeto en Cuba durante el transcurso del proyecto, además del catálogo peruano que se encuentra disponible en Internet (Anexo 1). Además de facilitar la comunicación en torno a las semillas, los catálogos también proporcionan una impresión visual atractiva de la variación de cultivos locales.La investigación sobre la demanda de características especiales de las variedades confirmó que los agricultores procuran obtener semilla con propiedades particulares en respuesta a unas necesidades específicas. Estos atributos se pueden agrupar en tres grandes categorías: 1) resistencia a los estreses bióticos y abióticos, 2) preferencias de consumo, culinarias y otras de índole cultural, y 3) disponibilidad de la información relacionada sobre la germinación y el rendimiento en campo. Por ejemplo, el maíz de maduración temprana tiene alta prioridad con el fin de aprovechar los períodos cortos de cultivo de la agricultura de secano. En el caso de los frijoles, el sabor y las características del grano (color y tamaño) son atributos que la mayoría consideran críticos. Normalmente, los agricultores sugieren una combinación de atributos; y generalmente enfatizan los atributos en demanda para los cultivos relevantes a nivel comercial o para los cultivos importantes para sus medios de vida.Como resultado de las muchas encuestas socioeconómicas llevadas a cabo, una riqueza de datos ha quedado disponible acerca de los roles de género en el manejo de las semillas, compilada de los tres países y de la mayoría de los sitios de intervención del proyecto (Castiñeiras et al. 2006b). Los datos incluyen las percepciones de hombres, mujeres y niños acerca de los roles del género, por separado o en conjunto en reuniones de grupos de discusión de los hogares rurales, al igual que la cuantificación del tiempo invertido en ciertas actividades de manejo de las semillas (Capítulo 10).Los roles de cada género no parecen estar tan bien definidos como se podría esperar. En Perú, las mujeres y los hombres Shipibo-Conibo, en lugar de designar a un género en particular la responsabilidad de las prácticas de manejo de la semilla, indicaron que la mayoría de las tareas eran compartidas a varios niveles entre mujeres y hombres. El trabajo masculino en general, sin embargo, correspondía a la mayoría de las labores relacionadas con la producción y el manejo de las semillas, especialmente las labores que demandan esfuerzo físico como sembrar (que supone la preparación de la tierra), desherbar y cosechar. Se encontró que las mujeres tenían mayor participación en la limpieza de las semillas (con la ayuda de los niños y adolescentes) y el almacenamiento de las mismas.Con base en los datos, aparece una tendencia que sugiere que los hombres \"se encargan\" de los cultivos relevantes a nivel comercial (maíz, variedades comerciales de chile) y también de vender o comprar lotes de semilla. En cambio, el cuidar de los cultivos/las semillas de alta importancia nutricional (frijol, chile) o de los atributos en demanda relacionados con el consumo, recae dentro de las responsabilidades de las mujeres, independientemente del tipo de actividad involucrada (siembra, cosecha, procesamiento y almacenamiento de las semillas).La investigación econométrica presentada en el Capítulo 9 explica el vínculo entre los sistemas locales de semilla y la diversidad de maíz en Ucayali, Perú. Históricamente, el uso tradicional y la selección de semillas han sido fomentados por las transferencias de semilla in situ entre los agricultores, que a su vez dependen en gran manera de las estructuras sociales y las instituciones informales. Los agricultores con acceso a los diversos sistemas locales de semilla tienen más opciones de abastecimiento de semilla, y la literatura sugiere que esto permite que cultiven una mayor diversidad de maíz. Por otro lado, se espera que el desarrollo del mercado y el rápido ritmo del cambio social y económico en la región disminuyan la diversidad, debido al mayor acceso a productos y servicios que sustituyen la diversidad del maíz. Entretanto, la acción colectiva entre los agricultores puede apoyar los sistemas locales de semilla y de este modo la diversidad.Los resultados econométricos apoyan las expectativas de que los agricultores son más propensos a cultivar diversidad del maíz si, en primer lugar, obtienen su semilla fuera de su propia parcela de semillas, por ejemplo, comprando o prestando en el mismo o en otros pueblos. La diversidad también fue mayor para los agricultores que emplean semilla de otras fuentes diferentes a la compra, en comparación con los agricultores que emplean solamente semilla comprada.De las variables explicativas sociodemográficas, solamente el número de personas en el hogar rural fue significativo. Esta variable tenía un símbolo negativo inesperado, que sugería que la diversidad disminuye cuando el hogar rural es de mayor tamaño. La diversidad de maíz fue mayor para los agricultores involucrados en acciones colectivas a diferencia de los agricultores que no lo estaban. La acción colectiva era medida por la participación del agricultor en la Minga, una institución de integración donde se comparte la mano de obra. Los factores étnicos/culturales tienen un claro efecto previsto, ya que se encontró que el grupo étnico más remoto, los agricultores Asháninka, tenía un 28% más de probabilidad de cultivar mayor diversidad de maíz que los agricultores Shipibo-Conibo.Adicionalmente, el desarrollo del mercado también genera un impacto negativo. Se evidenció que la diversidad aumenta con la cantidad de cosecha de maíz que el hogar utiliza para su propio consumo. Es decir, que los hogares que comercializan menos cantidad de su producción de maíz tienen más posibilidades de asegurar que su producción de maíz sea variada. Los causantes potenciales son el portafolio de manejo de riesgos y una alta diversidad en el autoconsumo con el fin de satisfacer las preferencias culinarias y culturales/espirituales.Las reuniones de los investigadores con los agricultores y el trabajo en campo en los sitios de intervención del proyecto brindaron muchas oportunidades para que dentro del proyecto, se difundiera información a los agricultores y se fortalecieran las redes informales de semilla. Estas actividades, sin embargo, se limitaron en gran parte a los sitios de intervención del proyecto. Dichas actividades también fueron motivadas por la necesidad de compensar a los agricultores por sus esfuerzos y tiempo invertidos en apoyar la investigación, y se ajustaron a las demandas específicas de los agricultores para ayudarlos con problemas agrícolas particulares. Es evidente por la siguiente descripción de eventos de capacitación, que su alcance tuvo que acomodarse a los intereses de los agricultores, los cuales iban más allá del tema estricto de investigación del proyecto.El proyecto organizó un total de ocho ferias de semilla, siete en Cuba (cuatro en Pinar del Río, tres en Guantánamo) y una feria en México (2007) convocando no solamente a productores, sino también a instituciones locales y nacionales, ONGs, y actores del sector privado, con el objetivo de promover el intercambio de semilla mediante la venta y el trueque, y conseguir que estos distintos actores se reunieran e intercambiaran experiencias y conocimiento para intentar establecer alianzas estratégicas para una colaboración futura y contribuir a fortalecer el sistema informal de semilla. Durante estos eventos, algunos agricultores aprovecharon las oportunidades de vender su semilla. La posibilidad de comercializar otros productos de la finca en las ferias de semilla fue un beneficio colateral bien recibido, en especial por parte de las mujeres agricultoras. Las ferias de semilla fueron una ocasión excelente para facilitar el intercambio de semilla basado en la demanda a través de largas distancias; por ejemplo, entre el este y el oeste de Cuba (más de 1000 km de distancia). Los investigadores del proyecto aprovecharon las ferias de semilla para realizar encuestas y entrevistar a los agricultores, y/o para muestrear la diversidad local para los proyectos de tesis. Además, las ferias de semilla han demostrado ser de utilidad tanto en situaciones de emergencias climáticas, como durante condiciones climáticas normales (Capítulo 8).En Cuba, se realizaron seis talleres de capacitación para agricultores con 80-120 participantes cada uno, a los cuales también acudieron otros miembros de la familia, al igual que miembros del gobierno local, profesores de escuelas, la prensa local y representantes de otras instituciones relevantes. El proyecto distribuyó material didáctico a los participantes de los talleres, el cual fue también utilizado como referencia en los talleres. La metodología y el alcance temático de los talleres maduraron durante el desarrollo del proyecto desde un enfoque inicial de familiarizar a los investigadores con los agricultores y la recopilación de información general sobre los sistemas locales de semilla, hacia la realización de presentaciones y discusiones sobre manejo y almacenamiento de semillas. Sin embargo, el proyecto necesitaba responder a ciertas áreas de especial interés para los agricultores que estaban por fuera de la investigación de los sistemas de semillas, como la fertilidad del suelo y el manejo postcosecha o el control de especies de hormigas particularmente agresivas. En el 2007, los talleres introdujeron el concepto de trabajo en grupos de discusión separados, conformados por mujeres, hombres y niños, con el fin de explorar los roles de género y las percepciones con relación a la producción, selección, limpieza y almacenamiento de semillas (Capítulo 10).En México y Perú, los eventos de capacitación para los agricultores se realizaron en forma de parcelas de demostración sembradas con variedades élite de los agricultores para propósitos de evaluación participativa y distribución de la semilla. Estos eventos fueron moldeados en gran parte de acuerdo con las solicitudes de los agricultores de usar variedades particulares y obtener asesoría técnica. En Ucayali, Perú, en donde la pobreza extrema, las inundaciones estacionales y la pérdida de lotes de semilla representan grandes amenazas para la seguridad alimentaria y la erosión genética, el proyecto subsidió en su fase final en el 2007 el aprovisionamiento de materiales élite de variedades tradicionales de maíz, frijol y maní para distribuir semilla a las comunidades participantes en el proyecto. El resultado fue la producción y distribución de 2650 kg de semillas para distribución. Las comunidades consideraron importante esta actividad por su contribución al uso continuado de estas variedades y a la creación de conciencia en torno a su valor.En Perú, el proyecto documentó y analizó las leyes y políticas actuales directa o indirectamente relacionadas con el manejo de la semilla y el germoplasma. El estudio concluye que la mayor parte de la legislación nacional de las comunidades peruanas y andinas guarda silencio en el tema de los sistemas informales de semilla, aunque varios proyectos de ley recientes reafirman la propiedad nacional de la biodiversidad y se interesan por la preservación de la diversidad biológica (no necesariamente agrícola) y la protección del conocimiento indígena asociado (Capítulo 11).El estudio también describe que la legislación peruana regula el sistema formal de semilla y reseña los roles y responsabilidades de las instituciones gubernamentales encargadas de establecer regulaciones y normas específicas para cultivos, al igual que para la producción y certificación de semillas. El texto de la Ley General de Semillas es bastante displicente con la \"semilla que no tiene la calidad y sanidad necesarias para ser considerada como tal\" en referencia a las fuentes informales de semilla y es completamente ajena al hecho de que la semilla utilizada en Perú proviene de forma abrumadora de dichas fuentes.En contraste a la situación en Perú, se está presentando un desarrollo promisorio en Cuba en relación con la fertilización cruzada de los sistemas de semilla formal e informal. Esto ha dado paso a algunas reflexiones y lecciones interesantes aplicables incluso por fuera de Cuba. Desde la disolución de la Unión Soviética, Cuba ha tenido que adaptarse a una fuerte escasez de combustible, fertilizantes y semilla para su agricultura tradicionalmente intensiva en el uso de insumos. En respuesta a la crisis y para asegurar la producción de alimentos para la población urbana del país, Cuba estableció a principios de la década de 1990 su Programa Nacional de Agricultura Urbana (PNAU). La implementación del PNAU implicó partir de la dependencia por los insumos externos hacia un nuevo paradigma de producción agrícola, el cual enfatiza la proximidad a los consumidores, la dependencia por los insumos domésticos y otros principios prestados de la agricultura orgánica, como el uso mínimo de pesticidas y la conservación del suelo.Varios subprogramas conforman el PNAU, uno de ellos se encarga de organizar la producción de semilla para los agricultores urbanos. Entre las instituciones científicas que asesoran este subprograma, el INIFAT desempeña un rol importante como proveedor de tecnologías y germoplasma. El subprograma de semillas supervisa 164 Fincas Municipales de Producción de Semillas, unidades de producción de semillas que abastecen semilla certificada de agricultores individuales mediante la agricultura por contrato. El redireccionamiento de la agricultura urbana hacia los principios de sostenibilidad requiere de la diversidad de la semilla empleada dentro del PNAU, y esto ha generado una demanda por las variedades de los sistemas informales que tienen un buen rendimiento con bajos insumos y satisfacen las preferencias del consumidor local.Sin embargo, aunque existe un 'aumento en la demanda' por parte del PNAU por los atributos proporcionados por la diversidad tradicional en fincas, ha sido el 'estímulo de la oferta' del conocimiento de los sistemas de semilla ofrecido por los investigadores del INIFAT, lo que ha reunido a los sistemas formales e informales. A través de los eventos y reuniones del proyecto a los cuales INIFAT convocó funcionarios relacionados con el PNAU, el INIFAT logró promover activamente una mayor conciencia en torno a los hallazgos del proyecto relacionados con el funcionamiento y la importancia de los sistemas informales, y en particular con la diversidad que ellos mantienen, la cual ha sido notoriamente subestimada en el pasado.El catálogo del INIFAT de la diversidad de maíz, frijol común, frijol pallar y chile en Pinar del Río y Guantánamo (Castiñeiras et al. 2006a) al igual que las ferias de semilla organizadas por el proyecto en estas mismas regiones, contribuyeron de manera especial a sensibilizar a las entidades del sector formal de semilla acerca de la necesidad de aprovechar de una mejor manera la diversidad en fincas de estos cultivos para la agricultura urbana. Actualmente, una gama de germoplasma suministrado por los agricultores en el área de estudio está siendo evaluada por parte del Servicio de Inspección y Certificación de Semillas (SICS), y variedades candidatas de chile y frijol pallar han sido identificadas para su inclusión dentro del Registro Nacional de Variedades. Pronto variedades de chile anteriormente consideradas raras, serán distribuidas para la producción de semilla a través de los canales formales.Las ferias de semilla contribuyeron con un éxito tal a crear una mayor conciencia en Cuba tanto con el sector formal como con los gobiernos locales, que estos últimos les confirieron estatus legal, lo que quiere decir que se seguirán llevando a cabo en el futuro. Sin embargo, en muchos países estas ferias todavía se realizan de forma irregular. Este éxito además motivó el establecimiento de una alianza entre algunas comunidades locales, una ONG cubana e INIFAT, con el fin de crear un proyecto de conservación y recuperación de los recursos fitogenéticos.Es importante notar que el reconocimiento de las variedades de los agricultores y su reproducción y buen posicionamiento dentro del sistema formal de abastecimiento de semilla en Cuba, no es equivalente al \"fortalecimiento\" de los sistemas informales, sino que más bien indica un cambio de actitud del sector formal de semilla y un acercamiento de formas de pensar aparentemente antagónicas. El aprecio renovado por la diversidad en fincas en Cuba no ha pasado desapercibido por los agricultores, y se cree que contribuye a su autoestima e interés por mantener las tradiciones relacionadas con las semillas.Un reconocimiento cada vez mayor de la importancia de la biodiversidad agrícola. En términos generales, el proyecto ha contribuido a crear una mayor conciencia local acerca de la importancia de la biodiversidad agrícola, un área que cuenta con poca financiación y que no es tenida en cuenta adecuadamente en el debate mundial sobre la erosión de la diversidad biológica. Esto se evidenció más claramente en Cuba que en cualquier otro de los países del proyecto, pues este proporcionó la plataforma para que las instituciones nacionales que representan la agricultura y el ambiente adoptaran una agenda más integral y multidisciplinaria en torno a los recursos fitogenéticos para la alimentación y la agricultura.Creación de conciencia acerca de los sistemas informales de semilla y los servicios que proveen. La evidencia anecdótica sugiere que los resultados de la investigación del proyecto han empezado a llegarle a los individuos e instituciones que representan a los gobiernos locales y regionales, y al sistema formal de abastecimiento de semilla. Esto está generando un reconocimiento cada vez mayor de los sistemas informales de semilla como una fuente de bienestar para los agricultores, de materiales genéticos promisorios como insumos en el sistema formal, y la conservación en fincas.Las autoridades locales en Ucayali, Perú, antes de participar en los eventos donde se presentaban resultados del proyecto, desconocían completamente la existencia de la diversidad de cultivos en fincas, y se asombraron al conocer los reportes que reflejaban la amplia variabilidad de los cultivos manejados por los agricultores. Los reportes de prensa sobre el trabajo del proyecto hicieron que una compañía radicada en Pucallpa investigara el potencial de invertir en la comercialización a nivel nacional de las variedades autóctonas de maní amazónico.En Cuba, en especial, el proyecto ha logrado la participación de los gobiernos locales y los actores del sistema formal de semilla, al igual que de los funcionarios de la agricultura urbana en un diálogo que condujo a la adopción, distribución y producción de semilla de cinco variedades de frijol pallar de los agricultores, a través de los esquemas formales de multiplicación de semilla en tres municipios. Más material, que anteriormente era sembrado a escala marginal únicamente, se encuentra en proceso de desarrollo en el Servicio de Inspección y Certificación de Semillas (SICS) de Cuba. El SICS también ha comenzado a registrar y producir semilla de variedades de maíz y chile de los agricultores.Igualmente en Cuba, los gobiernos locales, con el propósito de aumentar la seguridad alimentaria, promovieron la organización de ferias de semilla (ej. la Feria de Candelaria, febrero de 2007) y eventos de capacitación para los agricultores. Dos variedades nativas de chile y una de frijol pallar se registraron oficialmente en Cuba, reconociendo así los derechos de los agricultores para su comercialización.Aunque no podemos proclamar que el proyecto ha influido realmente en las políticas nacionales, creemos que ha logrado cambios en las percepciones locales que tienen el potencial de condu-cir, a largo plazo, a unas mejores políticas con respecto a los sistemas de semilla y a la diversidad en fincas.Mejores capacidades para investigar y fortalecer los sistemas informales de semilla. A través de sus eventos de capacitación, el proyecto llegó a más de mil hogares rurales, y les distribuyó material informativo. Los temas tratados en los eventos de capacitación no se limitaron al tema de investigación del proyecto. En respuesta a los requerimientos de los agricultores, los temas incluyeron inquietudes generales acerca de la producción como manejo del suelo, plagas y enfermedades de los cultivos, al igual que manejo postcosecha.En Cuba, una parte de las capacitaciones para los agricultores estaba enfocada en las mujeres, en particular para promocionar su 'protagonismo silencioso' en los sistemas informales de semilla, y fortalecer su conocimiento acerca de la selección de semillas, su limpieza y almacenamiento, al igual que el conocimiento de sus valores nutricionales.El proyecto brindó una gran oportunidad para la capacitación individual a través de una variedad de actividades, como investigación de campo, participación en simposios y conferencias, capacitaciones con grado académico y poder publicar resultados de investigación, al igual que la incursión en nuevas áreas temáticas (ej. políticas nacionales en los temas de semilla y agrobiodiversidad). La formación de capacidades fortalecerá las aptitudes institucionales de generar impacto en el liderazgo de opinión local y nacional. Por ejemplo, nuestros socios mexicanos del proyecto, gracias a sus credenciales recientemente obtenidas en la investigación de sistemas de semilla, fueron invitados a participar en la red mexicana de recursos fitogenéticos SINAREFI (Sistema Nacional de Recursos Fitogenéticos para la Alimentación y la Agricultura) y en otros foros nacionales de relevancia. La investigación del proyecto influenció la formulación de programas de estudio (en el caso de las instituciones académicas) y las oportunidades de tesis brindadas a través del proyecto captaron el interés de los jóvenes para asumir la causa de los sistemas de semilla.La investigación del proyecto generó aproximadamente ochenta publicaciones, incluyendo artículos de revistas, capítulos en libros, panfletos, afiches, resúmenes y pósteres para conferencias, materiales de capacitación para agricultores, descripciones de variedades de plantas, y catálogos de germoplasma. El proyecto además, generó entre sus resultados varias tesis de grado y postgrado (Anexo 1).Los catálogos de germoplasma de la diversidad de cultivos locales en Cuba y el Amazonas peruano producidos por el proyecto fueron las primeras publicaciones de su tipo. Estos catálogos han contribuido a difundir información sobre la variación y la nomenclatura de los cultivos disponibles, el acceso a la semilla, y los atributos de las variedades. Vale la pena mencionar en especial el catálogo peruano sobre especies amazónicas, disponible en la Internet (Collado et al. 2006).Intercambio de semilla y recuperación de variedades nativas raras. El proyecto estimuló en todos los tres países el intercambio de la diversidad de cultivos entre los agricultores dentro de una comunidad dada, y aún más importante, entre comunidades a menudo localizadas a grandes distancias. Por ejemplo, en México, el proyecto ayudó a aprovisionar variedades nativas de maíz de maduración precoz (Nal tel) en Yaxcabá, que los agricultores creían que ya no existían. Por solicitud de los agricultores, el proyecto facilitó el intercambio de lotes de semilla de un tipo particular de maíz con comunidades fuera de los sitios de intervención del proyecto.Las ferias de semilla fueron especialmente efectivas en la recuperación de variedades cada vez más raras, pero deseadas, que los agricultores creían extintas, y en reintroducirlas a las fincas donde todavía existía la demanda por estas semillas. Dichas ferias surgieron como un medio valioso y poco costoso de impulsar el intercambio de semilla y de mantener vivos los sistemas informales de semilla.Algunos de los lotes de semilla identificados como raros o con combinaciones de rasgos promisorios, fueron introducidos en el banco de germoplasma nacional de Cuba a cargo del INIFAT, y a su vez, este banco de germoplasma repatrió variedades nativas conservadas a las comunidades del proyecto, vinculando de este modo, las estrategias de conservación in situ y ex situ. Este mismo caso se dio en la región de Ucayali, en donde el Instituto Nacional de Investigaciones Agrarias en Pucallpa, Perú, recuperó una serie de variedades raras e incluyó algunas variedades de frijoles en su programa de leguminosas para multiplicar y para propósitos de mejoramiento.Beneficios directos para los agricultores. Los agricultores también se han beneficiado a través de la evaluación participativa de las variedades élite de los agricultores en parcelas de demostración, a través de capacitaciones y otros eventos participativos con una diversidad de actores convocados por el proyecto. Las declaraciones de los agricultores compiladas en los reportes de progreso anuales sugieren que valoraban y elogiaban los eventos de capacitación organizados por los socios del proyecto. Los beneficios directos para los agricultores son en gran parte limitados a las zonas de intervención del proyecto, pero existen indicadores alentadores de un impacto indirecto incipiente más allá de estas comunidades. Por ejemplo, el proyecto logró en el 2007 aprovisionar algunas de las variedades nativas más promisorias de frijol, maíz y maní en Perú, identificadas a través de las actividades del proyecto. La evidencia reciente sugiere que parte de las semillas generadas fue comercializada con comunidades vecinas y difundida posteriormente. En el caso de Cuba, el reconocimiento externo de la diversidad presente en fincas, al igual que las noticias acerca del registro oficial de los cultivares de los agricultores, ha hecho que los agricultores tomen conciencia de su contribución a un bien/servicio público, y ha aumentado su autoestima.Los resultados del proyecto confirman la innegable importancia de los sistemas informales de semilla para el mantenimiento de la diversidad en fincas y el bienestar de los agricultores. Nuestra investigación identificó factores que limitan la capacidad de los sistemas informales de abastecer de diversidad a los agricultores de una manera eficiente. Dichos factores incluyen principalmente segundo, ¿podrían las inversiones en el sistema formal de semilla rendir mejores beneficios para los agricultores que las inversiones en fortalecer el abastecimiento informal de semilla?En este contexto, es interesante notar que muchas medidas sugeridas en eventos del proyecto con el afán de fortalecer los sistemas informales de abastecimiento de semilla, tienden a prestar elementos de los esquemas de certificación de semilla, tales como una mayor información asociada con la semilla, la producción estandarizada y las garantías de rendimiento. El fortalecimiento de los sistemas informales de semilla podría involucrar presiones por una semilla más uniforme, lo cual va en contra del objetivo de mantener la diversidad de cultivos en fincas. En últimas, esto podría acarrear unos intercambios problemáticos entre el bienestar de los agricultores y el mantenimiento de la diversidad en fincas y viceversa. Estas consideraciones son relevantes para el diseño de unas políticas efectivas que apoyen los sistemas de semilla, tanto formal como informal. El estudio del sistema de semillas, tema del presente libro, se desarrolló en el trópico húmedo en Cuba, México y Perú, en regiones que se encuentran entre el trópico de Cáncer y el trópico de Capricornio. Las principales características de estas regiones son temperaturas elevadas, alto índice de humedad relativa durante la mayor parte del año, abundantes precipitaciones pluviales, inundaciones frecuentes, luz solar bastante intensa, y fuertes vientos (Douglas 1968). Los trópicos húmedos presentan una extraordinaria riqueza y diversidad en recursos naturales de flora, fauna, clima, agua y suelos, entre otros, pero lamentablemente, muchas veces, son objeto de uso y manejo inadecuados. La diversidad genética de estas regiones constituye un potencial importante, pues es parte del patrimonio genético con posibilidades productivas que pueden generar bienestar y riqueza para sus habitantes. Esa biodiversidad, sin embargo, se encuentra amenazada por los procesos de intervención masiva del hombre sobre el medio ambiente que está ocasionando la destrucción paulatina de los ecosistemas (Palma 1994).Por otra parte, las características del trópico húmedo afectan algunos aspectos de las actividades de sus habitantes a veces de forma benéfica, pero con cierta frecuencia de manera adversa. Las fuertes lluvias, por ejemplo, aumentan la tendencia a la pérdida de nutrientes y a la erosión del suelo. De manera frecuente causan daños a los cultivos por inundaciones, aunque al mismo tiempo, éstas depositan sedimentos útiles en los suelos. Asimismo, y aunque las altas temperaturas y los altos índices de humedad favorecen el crecimiento y la multiplicación de las plantas, pueden aparecer plagas y enfermedades que causan daños a los cultivos, no sólo en los campos de producción sino también en el almacenamiento de las semillas (Douglas 1968).De la misma manera, así como en el trópico húmedo existe heterogeneidad de ambientes y riqueza biológica, también hay una importante diversidad de etnias que conservan y aprovechan los recursos genéticos por el amplio y profundo conocimiento tradicional que tienen de estos recursos. La diversidad de estas regiones y comunidades, que se detalla en este capítulo, comprende el marco ambiental y social para el proyecto descrito en el presente libro.En Cuba los estudios se realizaron en las áreas de transición de dos reservas de la biosfera: una, en la Sierra del Rosario, situada en la región occidental en áreas de pre-montaña y montaña de la Cordillera de Guaniguanico, en la Provincia de Pinar de Río, y otra, en Cuchillas del Toa, en el área de amortiguamiento del Parque Nacional Alejandro de Humboldt, en la región oriental y montañosa del Macizo Sagua -Baracoa en la Provincia de Guantánamo (Figura 1).En la Reserva de la Sierra del Rosario (occidente) participaron las comunidades La Flora, La Tumba, Los Tumbos, y Río Hondo (Cuadro 1). En esta región la actividad económica fundamental es el desarrollo del turismo ecológico y la producción de café. Además, hay una estrategia de manejo para la conservación del bosque siempre verde y otras formaciones vegetales, entre las cuales se destacan las especies endémicas del área de la Reserva Sierra del Rosario.Figura 1. Localización de las comunidades que se estudiaron en la región occidental y oriental de Cuba. En la Reserva Cuchillas del Toa (oriente) participaron las comunidades La Carolina, La Munición, La Vuelta, Rancho de Yagua, y Vega Grande (Cuadro 1), cuya actividad económica fundamental es la explotación forestal, seguida del cultivo del café. En el Parque Nacional Alejandro de Humboldt se lleva a cabo un manejo sostenible de la biodiversidad, con énfasis en la explotación de los bosques de Pinus spp., mientras que se mantiene un número de hectáreas de bosque natural de especies endémicas de Cuba como Pinus cubensis y Pinus caribeae.En el proyecto participaron 36 familias (18 de cada región), que representan el 10.3% del total de las que habitan en dichas comunidades. En este sentido, uno de los criterios de selección de las familias fue comprobar que conservaran una amplia biodiversidad agrícola, tanto para los cultivos de interés (Phaseolus vulgaris L., Phaseolus lunatus L., Capsicum spp. y Zea mays L.), como para otras especies cultivadas. Otro criterio importante de selección fue que las familias hubieran estado asentadas en el lugar por un tiempo mínimo de 15 años, que no pensaran abandonar los sitios de cultivo, y que mostraran interés en colaborar en la investigación.Las distancias entre las fincas seleccionadas en cada región fueron en promedio de 0.2 a 24.7 km para las de la región occidental, y de entre 0.3 a 12 km para la región oriental. Las comunidades rurales en cada zona se encuentran estrechamente relacionadas entre sí, no sólo por su cercanía geográfica, sino por estar vinculadas a programas de desarrollo dentro de las áreas de transición de las reservas de la biosfera del programa \"El Hombre y la Biosfera\" de la UNESCO (Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura), que incluye como actividad prioritaria la capacitación ambiental.En México el trabajo se realizó en el Estado de Yucatán donde las comunidades se seleccionaron de acuerdo con el sistema de la milpa tradicional que se maneja desde tiempos prehispánicos, la ubicación geográfica de las comunidades, la accesibilidad y la distancia de la ciudad más importante que, en este caso, es Mérida (un centro urbano destacado de la Península).Las comunidades que se seleccionaron fueron Ichmul, Sahcabá y Yaxcabá (Figura 2, Cuadro 1), con una población total por comunidad de 790, 1665 y 2558 habitantes, respectivamente.Para el estudio se tomó como dato base el número de ejidatarios (agricultores) reconocidos por el Registro Agrario Nacional (RAN). Las tres comunidades seleccionadas se reportan con alto nivel de pobreza en Yucatán (CONAPO 2000).• Ichmul, conformada por 300 ejidatarios, pertenece al municipio de Chikindzonot y está localizada en el oriente, a 131 km de Mérida. De su población económicamente activa, 66% trabaja en el sector primario (agricultura), 7% en el sector secundario (industria, agroindustria, etc.), 17% en el sector terciario (servicios) y 10% no está especificado (INEGI 2001). • Sahcabá, con 206 ejidatarios, es una comunidad del municipio de Hocabá localizada a 55 km de la ciudad de Mérida, y ubicada en la región denominada antigua zona maicera. El 34% de la Población Económicamente Activa (PEA) trabaja en el sector primario, 51% en el sector secundario, y 15% en el sector terciario (INEGI 2000). • Yaxcabá, conformado por 522 ejidatarios reconocidos por el Registro Agrario Nacional, pertenece al municipio de Yaxcabá localizada en el centro del estado de Yucatán y se encuentra a alrededor de 112 km al éste de Mérida. El municipio se encuentra ubicado en una región económica conocida como 'la zona maicera'. En este municipio el 65% de la PEA trabaja en el sector primario, 19% en el sector secundario, y 16% en el sector terciario. Aunque de acuerdo con el diagnóstico situacional de Yaxcabá este pueblo se define como campesino (de agricultores), por la falta de producción de maíz debido a la escasez de lluvia, la mayoría se desplaza a las ciudades como Mérida, Yucatán, Cancún, o Quintana Roo en busca de mejores alternativas de desarrollo (Pool 2007).En Perú el estudio se realizó en la Amazonia central, donde el río Ucayali, tributario del río Amazonas, fue uno de los ejes de referencia para la zona, así como sus principales afluentes, el río Aguaytía, el Pichis y el Pachitea. Se calcula que la región posee hasta el 30% de las especies de flora y fauna del mundo (Brack 1994). En esta área se clasifican hasta once zonas de vida que poseen características ecológicas, geográficas y de recursos naturales comunes que las definen como unidades independientes intercomunicadas entre sí (ONERN 1976).Desde el punto de vista geográfico el trabajo se desarrolló en doce comunidades que se seleccionaron por su etnicidad y por trabajar los cultivos en estudio: Tres de ellas pertenecen a la Provincia de Oxapampa, departamento de Pasco; ocho, a la Provincia de Coronel Portillo en Ucayali; y una, a la Provincia de Puerto Inca, departamento de Huánuco (Figura 3, Cuadro 1); elYaxcabá km 20 ¿Cómo conservan los agricultores sus semillas en el trópico húmedo de Cuba, México y Perú? número de familias que integró cada comunidad osciló de 26 a 315, y el acceso a las comunidades fue principalmente por río.En Cuba el área de estudio se ubica en la región oriental, en una zona muy cercana a la de mayor pluviosidad de la isla. Los datos climáticos correspondientes a los años 1999 -2007 mostraron que la precipitación promedio anual para este período fue de 1508 mm, y que el 61% de esas precipitaciones se presentó entre mayo y octubre. La humedad relativa del aire es en promedio superior al 80%, y alcanza 88% entre septiembre y diciembre, con presencia de neblinas continuas en horas de la mañana. La temperatura promedio anual en el mismo período fue de 22.1°C y, aunque las temperaturas son relativamente estables a lo largo del año, siempre son mayores en julio y agosto.Durante el mismo periodo (1999 -2007) la región occidental (Sierra del Rosario) se caracterizó por una temperatura promedio anual de 24.1°C. Aunque la temperatura mensual promedio varía poco durante todo el año, posee máximas bien definidas en agosto y mínimas en enero. Los datos climáticos mostraron que el promedio anual de precipitaciones fue de 2014 mm, con junio como el mes más lluvioso y diciembre, el más seco. El valor promedio histórico de humedad relativa del aire es de 95%, con presencia de neblinas continuas entre febrero y marzo en horas de la mañana.Cuba está situada en un área vulnerable a los huracanes que pueden azotar la isla entre junio y noviembre poniendo en peligro la diversidad agrícola. Otros riesgos importantes son la sequía, las inundaciones y la erosión de los suelos dedicados a la agricultura. En las zonas de montaña estos riesgos son menores (PMA e IPF 2001).En Yucatán, México, las características climáticas son típicas de un clima tropical con lluvias en verano (Illsley 1984). Ichmul se caracteriza por tener una precipitación media anual de 1190 mm y una temperatura media anual de 25.7°C con promedio mensual máximo de 28.1°C en mayo, y 22.7°C de mínimo en enero y febrero. Sahcabá presenta precipitación media anual de 853 mm con 26.4°C de temperatura media anual con un rango de variación promedio mensual de 24.2 (en enero) y 27.4°C (en mayo). En Yaxcabá la precipitación media anual es de 1209 mm, con temperatura promedio mensual que varía de 22.6°C a 29.0°C (para enero y diciembre respectivamente) y temperatura media anual de 26°C (CNA 2006). En términos geográficos la península de Yucatán se encuentra localizada dentro del cinturón intertropical mundial que se caracteriza por lluvias de verano, vientos alisios, ciclones, tormentas tropicales y corrientes de vientos fríos (Arias et al. 2004). Estos últimos se constituyen como los principales riesgos ambientales junto con las sequías que impactan cada ciclo agrícola en la producción que se cosecha.La temperatura promedio anual de Pucallpa es de 24.5°C, y se observa una variación mínima anual de temperatura (Tournon 2002). La precipitación media anual es de 1605 mm. La humedad relativa varía del 82% en febrero al 74% en julio y agosto. Hay una estación llamada seca o 'verano' que se extiende de junio a septiembre y durante la cual se observan las precipitaciones menores, la más baja en junio (60 mm en promedio). La estación de lluvias o 'invierno' ocurre de enero a abril y su mes más lluvioso es marzo con 218 mm. Es muy marcado el hecho de que de octubre a diciembre las lluvias son menos previsibles.Cuando se instalan cultivos en las zonas aluviales bajas en Perú, la incertidumbre por riesgos es permanente pues el intempestivo crecimiento de los niveles del río ocasiona pérdidas parciales o completas. Como este crecimiento se considera como uno de los factores de riesgo más importante para los cultivos, algunos agricultores prefieren combinar terrenos para siembra. Sin embargo, a través de las inundaciones anuales los ríos dejan en su recorrido formaciones de islas y complejos de orillares con terrazas bajas denominadas 'restingas', que se clasifican en bajas, medias y altas (Valdivieso et al. 2001). Las comunidades Shipibo-Conibo, en particular, previenen y eligen lugares apropiados de 'restingas altas' o terrazas altas conformadas de sedimentos, las cuales no se inundan, y en donde pueden instalar sus chacras para cultivos permanentes. De otro lado, fuertes sequías en épocas de verano y la presencia de plagas y enfermedades también afectan los cultivos (Collado et al. 2005).En la región oriental y occidental de Cuba las fincas seleccionadas constituyen agroecosistemas dedicados fundamentalmente a cultivos menores o de subsistencia, con base en sistemas que involucran tubérculos, granos, condimentos, especies de raíces, cultivos medicinales y frutales. Se ha comprobado que la alta diversidad de los cultivos presentes en huertos caseros y fincas conservan el suelo al mantener altos valores de materia orgánica que favorece una buena estructura, y por tanto una relación agua-aire satisfactoria. La distribución de los cultivos en la finca y la rotación de estos y de los terrenos agrícolas permite hacer un uso más racional de los elementos existentes en el agroecosistema (Shagarodsky et al. 2007).En la región oriental abundan los suelos del tipo ferralítico rojo, ferralítico rojo lixiviado y pardo sialítico, mientras que en la región occidental predominan los del tipo ferralítico rojo, ferralítico rojo lixiviado y ferralítico amarillo lixiviado (Figura 4) (Instituto de Suelos 1995). En las zonas de estudio de Yucatán, México, el 95% de los suelos cultivables son calcáreos y pedregosos, con una capa delgada que muchas veces no pasa los diez centímetros de profundidad, una característica que limita el uso de maquinaria agrícola, y que a través del tiempo ha llevado a que se mantenga el policultivo en la milpa (Burgos et al. 2004). Desde épocas prehispánicas hasta la actualidad, la milpa constituye la principal actividad de subsistencia de los campesinos mayas maiceros del Estado de Yucatán. Este es un sistema tradicional de agricultura que consiste en roza-tumba-quema, bajo el cual los agricultores conservan y aprovechan los cultivos que constituyen la milpa (Gómez et al. 2004).En esta región los agroecosistemas presentan una alta dependencia de las condiciones orográficas y climáticas puesto que el área está desprovista de elevaciones y carece de corrientes superficiales de agua. Este hecho, junto con la naturaleza calcárea del suelo, no permite la formación de cuencas para la captación de aguas pluviales. El suelo se presenta en pequeños nichos de poca profundidad entre las afloraciones pedregosas de calizas (Figura 5).En las comunidades de la Amazonia central del Perú, el sistema agrícola ancestral que se utiliza es el de roza, tumba y quema, que aprovecha agroecosistemas de restinga (Figura 6) y altura Figura 6. Cultivo de maíz en 'restingas' en la Amazonia central del Perú. Figura 5. Suelo de Yucatán donde los agricultores cultivan sus milpas. Se observan porciones de suelo poco profundos rodeados de piedras y extensiones pedregosas con pequeñas superficies de suelo entre las piedras que hacen que la agricultura sea muy compleja y de baja producción.(Figura 7). Los agricultores, que se orientan muchas veces por la estación de la luna y el manejo de sus variedades locales, identifican las condiciones adecuadas del suelo que requieren sus cultivos para la siembra, la época del año, y el día de siembra. De acuerdo con estos conocimientos ubican y establecen las chacras o unidades de producción no muy distantes de sus casas, o bien a una distancia que les permita transportar los productos sin mayor dificultad. La chacra amazónica es un policultivo con una buena diversidad de especies. Como primer cultivo en la rotación siembran típicamente arroz y maíz, el primero como alimento directo y el segundo, en general, para alimentación de aves de corral. A estos cultivos sigue la yuca, otro cultivo que satisface las necesidades alimenticias primarias. En algunas comunidades el cultivo de plátano ocupa relativamente grandes extensiones para la obtención de ingresos en el mercado (Eakin et al. 1986).Figura 7. Cultivo de maíz y maní (Arachis hypogaea L.) en zonas altas de la Amazonia central del Perú.A través de las inundaciones anuales los ríos dejan en su recorrido formaciones de islas y complejos de orillares con 'restingas', además de acumulaciones de limo denominadas barrizal, lodazal o suelos de tipo entisol (Valdivieso et al. 2001). Después de cada creciente las 'restingas' forman capas de depósitos de material de textura franco arenoso, franco limoso o limoso con pH entre 6 y 7.5, bajo contenido de aluminio, de medio a alto en fósforo, bajo en materia orgánica, buen drenaje, alta saturación de bases, y se consideran de alto potencial productivo por la calidad natural de sus suelos. Los suelos de altura, localizados en áreas no inundables pueden ser francos, franco arcillosos, franco arcillo-arenoso o simplemente arcillosos con manchas gris parduzco, claro, pardo amarillento claro o con motas rojas en húmedo, pegajosos y plásticos. El pH se encuentra por debajo del 4.7, bajo contenido de materia orgánica (1%), buena a moderada permeabilidad, bajo contenido de fósforo, baja capacidad de intercambio catiónico, y alta saturación de aluminio mayor del 60% (Ríos del Águila 1998).De los tres grupos aborígenes de Cuba de antes de la conquista de América -Siboneyes, Guanahatabeyes y Taínos-solo este último, proveniente de las tribus Arawakas de Suramérica, practicó en la isla la agricultura, que tuvo como base el cultivo de la yuca y el maíz. Dado que durante el proceso de la colonización de Cuba a principios del siglo XVI la población fue prácticamente exterminada, se trajeron esclavos de otras culturas aborígenes de Mesoamérica.Los inmigrantes que llegaban a Cuba en la época de la caña y el café, en particular canarios, se asentaron en el interior del país y se dedicaron de manera principal a la producción de tabaco, entre otros cultivos. En el siglo XVII llegaron también otros europeos (franceses, ingleses, alemanes, etc.), algunos de los cuales se establecieron en el campo y se dedicaron a la producción de cultivos de subsistencia (Esquivel et al. 1992). En el siglo XIX arribaron a la isla alrededor de 60. 000 chinos que fomentaron y diversificaron la producción de hortalizas y frutales, en especial alrededor de La Habana. Este contexto ejerció gran influencia para que la población cubana actual sea una mezcla de culturas y de razas, con un 25% de mestizaje de acuerdo con el color de la piel (Censo de Población y Vivienda 2002). En cuanto a la distribución de razas de las comunidades estudiadas, se puede anotar que el 55% de la población es mestiza, el 28% blanca y el 15% negra.En México la civilización maya se extendió por el sur de Yucatán. Los mayas hablaban diferentes lenguas, y no constituían un estado unificado sino que se organizaban en varias ciudades-estado independientes entre sí que controlaban un territorio más o menos amplio. En Yucatán hoy en día, la mayoría, es decir el 58.5% (971.345 habitantes) de la población total (1.658.210 habitantes) es indígena (Krotz 2004). El perfil indígena de Yucatán posee una especial relevancia porque éste es el estado de la península que concentra la mayor cantidad de población maya. Es por esto que los problemas indígenas son los problemas de la mayoría (Dzidzantun.com 2001). Bracamonte y Lizama (2003) anotan que la mayoría de la población maya trabaja en agricultura o en otras actividades del sector primario como la pesca y la ganadería. Con respecto a la primera actividad, es válido mencionar que en Yucatán existen en la fecha 727 ejidos con alrededor de 180.500 campesinos ejidatarios, muchos de los cuales están organizados en un poco más de 88. 300 unidades de producción. En la zona indígena del sur, del oriente y del noroeste, hay 421 ejidos cuyos integrantes se dedican, en especial, a la milpa de temporal, con el sistema de la roza, tumba y quema para la producción de maíz, frijol y calabaza. En más o menos 80 de esos ejidos también se practica la ganadería extensiva y la citricultura.En la zona noroeste, con un pasado reciente 'henequenero' o de productores de henequén, Agave fourcroydes Lem., existen 272 ejidos colectivos que hasta hace poco estuvieron administrados prácticamente por el Banco de Crédito Rural y por la Secretaría de la Reforma Agraria. Una combinación de producción henequenera en pequeña escala, cultivos de maíz, trabajo asalariado y migración temporal ha permitido el sustento en estos ejidos en los últimos años. Por último, en lo que se conoce como la zona más tradicional del estado -los municipios de Valladolid y Chemax-existen 36 ejidos que subsisten gracias a la milpa y, en muy pequeña escala, a la ganadería extensiva (Bracamonte y Lizama 2003).Por otro lado Bracamonte y Lizama (2003), menciona que \"la castellanización -forzada e incompleta en la mayoría de los casos-que despojó a los habitantes mayas de buena parte de sus bases conceptuales, no pudo brindarles a cabalidad los conocimientos necesarios de la cultura occidental para poder relacionarse en mejores condiciones en ámbitos externos a sus campos de acción local. Uno de los problemas más graves de la historia reciente ha sido el desfase entre una socialización primaria, realizada durante los primeros años de vida de los menores en el seno de la familia maya en su propia lengua, y una socialización secundaria que se efectúa en instituciones sociales rígidas como la escuela, donde se procura la integración de esos menores a una cultura nacional homogénea en lengua castellana. El resultado de la ruptura del proceso de socialización plena en la propia cultura a corta edad, que se enfrenta a la socialización secundaria, que no aporta siquiera las bases lingüísticas mínimas de la lengua 'nacional', se traduce en una situación de amplia desventaja para los habitantes mayas. Ese proceso sólo ha conducido a carencia de preparación educativa, a marginación, a falta de oportunidades y de competencia, y a pobreza\".En la Amazonia peruana, cuya extensión supera el 62% del territorio nacional, existen 42 grupos etnolingüísticos con características culturales, económicas y políticas absolutamente diferentes de las milenarias culturas asentadas en la cordillera de los Andes. Es importante destacar que en el siglo pasado se extinguieron desde el punto de vista físico o cultural al menos 11 grupos étnicos, y que en la actualidad algunas poblaciones indígenas se encuentran amenazadas por la erosión de su cultura. En la zona de estudio, además de su impresionante diversidad biológica en flora, fauna y cultivos tradicionales, habitan más de 25 grupos indígenas con una población superior a los 75.000 habitantes, que conforman una importante diversidad cultural, con raíces lingüísticas propias e historias antiguas y recientes en continuo enfrentamiento con la cultura occidental (Brack 1997).La población indígena vive una situación difícil y crítica pues se encuentra expuesta a muchas presiones que ejerce la sociedad. El desarrollo de políticas incompatibles con la realidad amazónica afecta a estos grupos, provoca aculturación, transforma sus formas de vida con la consecuente erosión o pérdida de su identidad étnica, y compromete el conocimiento local, sus lenguas, tradiciones y costumbres. Diversos estudios sobre las características culturales, socioeconómicas, de organización y de manejo de la biodiversidad de estos grupos alertan y evidencian problemas de identidad cultural y de deterioro del medio ambiente (Bergman 1980;Eakin et al. 1986;Brack 1994;Mora y Zarzar 1997;CONAM 2000).En la Amazonia central, en particular en la región Ucayali, Huánuco y Pasco, existe una gran diversidad sociocultural. Los grupos indígenas se encuentran organizados en más de 220 comunidades nativas pertenecientes a familias lingüísticas diferentes. Las étnias más numerosas son los Shipibo-Conibo (que pertenecen a la familia lingüística Pano), los Asháninkas (familia lingüística Arahuac), y los Cocamas (familia lingüística Tupi-Guaraní) (Vivanco 2004).Los Shipibo-Conibo se localizan, en general, en la llanura aluvial, y son ribereños. Estas comunidades se dedican, en especial a la pesca. Su cultivo predominante es el plátano (Musa sp.), y se encuentran mejor articulados al mercado de la ciudad de Pucallpa (capital del departamento de Ucayali). Los Asháninkas se localizan en la llanura interfluvial (zonas de 'altura'), y su cultivo predominante es la yuca (Manihot esculenta Crantz). Sus comunidades están mas vinculadas a los bosques, se dedican a la caza y se encuentran más distanciadas del mercado. Además de estas etnias, hay en la región otro grupo de pobladores denominados colonos y/o mestizos que se dedican a actividades similares a las de los grupos indígenas que conviven en la zona, y que son originarios de otras regiones del país (Collado 2002).Los agricultores cubanos de este estudio manejan en promedio 11.5 ha incluyendo el área donde se encuentra la vivienda. El tamaño de las propiedades varía entre 0.248 ha y 53.6 ha, en el occidente con un promedio, de poco más de 9.44 ha y en el oriente, de 13.66 ha. De esta superficie total, una parte importante se destina a cultivos de interés nacional como el café en las zonas de montaña, y una menor a otros cultivos. Aunque el núcleo familiar está constituido, en promedio, por 3.6 personas que conviven juntas, un promedio de 13 personas se benefician de la producción de la propiedad.Para el período 2001 -2003 la esperanza de vida de la población de acuerdo con su género fue, en promedio, de 75.1 años para los hombres y de 78.9 para las mujeres, con un promedio general de 77 años. El fenómeno migratorio del campo a la capital del país o a las ciudades cabeceras de provincias fue muy intenso en las décadas de los 80 y los 90 (Castiñeiras et al. 2001). Con relación al nivel educativo de los productores, se observa que al menos el 88% superó el nivel primario, mientras que el 11% terminó estudios secundarios y alcanzó el de obrero calificado. El acceso a servicios de electricidad y letrinas sanitarias es de mediano a bajo, al igual que el número de hogares con televisor Por otra parte, las fincas tienen entre 3 y 71 años de establecidas y cultivan entre 40 y 80 especies. Los agricultores usan fertilizantes orgánicos en la producción, aunque en algunas especies los combinan con fertilizantes químicos. La siembra, deshierbe y cosecha de las diferentes especies en las tres áreas se efectúa mayormente de manera manual y en los huertos bajo manejo de secano. Aunque la producción de las familias cubanas en estudio se orientó en particular al autoconsumo, también se registraron ingresos por venta de productos agrícolas. Estos aspectos socioeconómicos combinados con el exuberante ambiente tropical y el profundo conocimiento agrícola de sus productores, han resultado en un abanico de sistemas de manejo agrícola que han derivado en una amplia diversidad de cultivos y en algunos casos en una gran variación dentro de una misma especie. Un ejemplo de ello es la riqueza de la diversidad que cultivan los productores cubanos y los 85 morfotipos de los tres cultivos estudiados (18 en maíz, 37 en frijol común y pallar, y 30 en chile), todos ellos identificados con su propia denominación local.En Yucatán, México, el 24% de los campesinos mayas encuestados en las comunidades de estudio emigra a ciudades como Mérida (capital del estado) como principal destino y en menor proporción a la región caribeña de México, a Estados Unidos y Canadá. Aproximadamente la mitad de ellos emigran estacionalmente.La edad promedio de los hombres jefes de familia fue mayor de 48 años, de los cuales el 82% tiene como actividad principal la milpa que manejan bajo el sistema Roza, Tumba y Quema (RTQ). La mayoría de las mujeres se dedican al hogar, al cuidado de los hijos, a la elaboración de alimentos, al huerto familiar o solar y en algunos casos, como actividad secundaria, a la elaboración de artesanías y al pequeño comercio.El 62% de los campesinos trabaja sus unidades de producción en forma individual, el 32% lo hace con sus hijos y el restante con sus parientes cercanos. Es válido resaltar que la mayoría de los milperos son ejidatarios, es decir propietarios de la tierra en la modalidad que el estado mexicano denomina Ejido que establece que la propiedad del suelo es heredable a los hijos al cumplir éstos los 18 años (Secretaría de la Reforma Agraria 2008).Las familias campesinas de las zonas de estudio son predominantemente nucleares y cuentan con servicios esenciales de vivienda, electricidad y con acceso a la educación básica y subsidios oficiales para la siembra de cultivos de subsistencia, aunque es aún notoria la falta de servicios sanitarios.En la actualidad el mercado agrícola yucateco es en esencia local y se inicia con vecinos y familiares en la comunidad y en las localidades circunvecinas para después seguir con las ciudades de importancia regional como Mérida y Cancún. Sólo el cultivo de chile habanero (Capsicum chinense Jacq.) trasciende el mercado local, se extiende por la península a gran parte del sureste mexicano y llega a la exportación internacional por contrato.La cultura agrícola de los mayas ha logrado aprovechar en gran medida el ambiente tropical aleatorio, maneja diversos sistemas productivos de temporal y selecciona cultivos básicos adaptados a las restricciones ambientales. Cuenta con alrededor de 30 variedades locales de los cuatro cultivos principales de la milpa (15 de maíz, 6 de frijol, 3 de calabaza y 6 de chile), cada una de ellas con denominación en el idioma de los mayas y en español según Arias (2004). Tal riqueza varietal se aprecia como ingrediente esencial de la rica cocina yucateca rural compuesta por un centenar de platillos según Cazares et al. (2005).En la Amazonia peruana se observó que la edad del jefe de familia no se diferencia significativamente entre los grupos socioculturales en estudio. La edad promedio se encuentra entre 39 y 43 años. El promedio de hijos en familias indígenas fue de cuatro, que es mayor al de las familias mestizas (Collado et al. 2004).El nivel escolar generalizado de los jefes de familia entrevistados fue de primaria o de secundaria sin terminar. En las comunidades Asháninkas esta cifra se mantiene a través del tiempo, en especial debido a las limitaciones de acceso a los centros de estudios que se encuentran muy distantes de sus viviendas. En general, por dificultades económicas los jóvenes abandonan los estudios primarios o secundarios para dedicarse a actividades productivas. Los jefes de familia se encargan del abastecimiento de alimentos para la familia, de la construcción y acondicionamiento de la vivienda y de las transacciones comerciales; aunque muchas de estas decisiones las comparten y asumen con su pareja. En las comunidades predominan las familias tipo nuclear (82%) no obstante la existencia de familias extensas (entre 17% y 32%) que incluyen nietos, nueras, yernos, abuelos, sobrinos y hermanos.La tenencia de la tierra en las comunidades indígenas se encuentra definida por el estado que permite a los agricultores utilizar todo el terreno que puedan aprovechar en sus actividades sin límite de uso. En los caseríos de mestizos se presenta una situación diferente pues los agricultores tienen su propio terreno de tamaño variable y para quienes se observan limitaciones y falta de tierras.Prácticas del manejo de semillas para la conservación de la biodiversidad agrícola tradicional. Material de capacitación para agricultores del sistema informal de semillas. INIFAT, La Habana, Cuba. Tournon J. 2002. La merma mágica: vida e historia de los Shipibo-Conibo del Ucayali. Centro Amazónico de Antropología y Aplicación Práctica (CAAAP). Lima, Perú. Valdivieso M, Moreno T, Soto J. 2001. Diagnóstico y organización de la producción de menestras en restingas y playas del río Ucayali. Documento de Trabajo. Consorcio para el Desarrollo Sostenible de Ucayali (CODESU) y Centro Regional de Servicios Empresariales. Pucallpa, Perú. Vivanco L. 2004. Gran enciclopedia de la región Ucayali. Identidad regional. Primera edición de la serie Amazonia Peruana: Identidad regional. Lima, Perú.Roger Pinedo 1,4 , Luis Collado En sus sistemas tradicionales los agricultores del trópico húmedo de Cuba, México y Perú manejan una gran diversidad de cultivos, dentro de los cuales se destacan Zea mays L. (maíz), Phaseolus vulgaris L. (frijol común), P. lunatus L. (pallar) y Capsicum spp. (chile). Las variedades nativas tienen importancia cultural y socioeconómica por sus atributos culinarios y por su papel primordial en la seguridad alimentaria. En los tres países el nivel de importancia de estas especies se vincula, en particular, con sus características agronómicas, riqueza varietal, distancia al mercado, preferencias de consumo, desarrollo tecnológico, demanda y precios de transacción. Las áreas cultivadas son, en general, mayores para las variedades comerciales, y menores para las de subsistencia. El chile y el frijol común tienen gran importancia comercial en México y Cuba, lo cual contrasta con los cultivos de Perú donde son de modesta comercialización. En los tres países, el pallar se destina a la subsistencia de las familias rurales. En el caso del maíz un grupo de variedades tiene importancia comercial. Por otra parte, no sólo los factores climáticos como sequías, inundaciones, tormentas tropicales y vientos huracanados perjudican los cultivos y comprometen la seguridad alimentaria, sino que la introducción de variedades modernas desplaza las variedades tradicionales. La diversidad de los cultivos tradicionales se ve afectada también por la desinformación respecto a sus atributos, y por la baja aceptación comercial de un importante número de variedades locales, factores que resultan en la reducción de las áreas cultivadas.La conservación y manejo de los recursos fitogenéticos de los cultivos tradicionales contrarresta la producción reducida de alimentos y apoya la solución al problema de seguridad alimentaria. Dentro de estos cultivos se encuentran el maíz (Zea mays L.), el frijol común (Phaseolus vulgaris L.), el pallar (Phaseolus lunatus L. denominado 'frijol pallar' en Cuba, 'ib' en lengua Maya en México, y 'charimentaki' en la Amazonia peruana), y chile (Capsicum spp.; conocido como 'pimiento' en Cuba, y 'chile' en México). Estos cultivos son de gran importancia socio-económica para las familias que los cultivan en los trópicos húmedos de Cuba, México y Perú. Así mismo, su uso como fuente de materia prima de los fitomejoradores es trascendental para la generación de nuevas variedades, para las cuales cada cultivo y/o variedad presenta una relevancia diferente. Todo ello está influido por aspectos culturales, mercado, hábitos y preferencias de consumo, un contexto que determina la mayor o menor diversidad que se debe conservar para satisfacer las necesidades de los pueblos.Tal como ya se ha afirmado en muchos trabajos, dentro de un manejo equilibrado del ecosistema los cultivos tradicionales tienen varias ventajas. Entre ellas se pueden anotar el uso estratégico de estos cultivares por parte de las familias no sólo para prevenir los riesgos inherentes en la producción agrícola, sino también para lograr la seguridad alimentaria en condiciones sustentables mediante el consumo o trueque. Además, la diversidad cultivada puede permitir que los agricultores se articulen con mayor eficiencia al mercado, a pesar de los escasos recursos que poseen (Claverias y Quispe 2002).En el trópico húmedo de Cuba, México y Perú se presenta una situación paradójica en relación con la agrobiodiversidad. Por un lado, existe un serio y progresivo deterioro de los agroecosistemas y una pérdida de la variabilidad genética en los cultivos tradicionales en determinadas áreas, y por el otro, hay un enorme potencial subutilizado por desconocimiento, falta de políticas claras y de voluntad de quienes toman las decisiones. Esto reduce y amenaza el sustento y la seguridad alimentaria.Se conocen diversos trabajos que describen la existencia de un importante número de variedades locales de maíz, frijol, pallar y chiles cultivados en las comunidades del trópico húmedo de Cuba, México y Perú (Castiñeiras et al. 2001(Castiñeiras et al. , 2004(Castiñeiras et al. , 2006;;Arias et al. 2002Arias et al. , 2004;;Latournerie et al. 2002;Burgos et al. 2004;Collado 2002;Chávez-Servia et al. 2004;Collado et al. 2006a). Estas variedades se cultivan con fines de subsistencia desde épocas prehispánicas, y en la actualidad son parte sustancial de la dieta popular en dichos países, un hecho que se constituye en una de las razones principales por las cuales se seleccionaron estos cultivos para la ejecución del proyecto (Figuras 1 y 2).Figura 2. Diversidad de maíz, fríjol, pallar y chile de una región en Cuba.Figura 1. Platos típicos cubanos elaborados con base en las especies en estudio.El maíz, originario de México, se difundió ya domesticado, en particular, hacia el Sur de América. Otra hipótesis indica, sin embargo, que el maíz en estado silvestre llegó a la zona andina de Sudamérica donde posiblemente se domesticó de manera independiente (Sevilla y Holle 2004). En América se encuentran más del 90% de todas las razas conocidas de maíz, de las cuales se han descrito hasta el momento 260. Las razas del maíz se definieron después de haberse colectado toda la diversidad de cada uno de los países de América Latina y el Caribe (Sevilla 2006). Así, por ejemplo, en Cuba se clasificaron siete razas (Hatheway 1957), en México 50 (Goodman y Brown 1988), y en Perú 49 (Grobman et al. 1961).Todas las especies del género Phaseolus se originaron en América tropical, origen evidente por la diversidad genética existente en la región, y por los hallazgos arqueológicos que prueban la antigüedad del cultivo. Tales hallazgos datan de 7000 años atrás en las excavaciones de Tehuacán (México) para el frijol común (P. vulgaris), y de 5300 años en Chilcas (Perú) para el pallar (P. lunatus) (CIAT 1980). En el Perú, se han encontrado semillas del frijol domesticado con una antigüedad de 8000 años en las cuevas de Guitarrero en la sierra del departamento Ancash (Sevilla y Holle 2004).Hay dos grupos varietales en el frijol común: uno de Mesoamérica y el otro de los Andes sudamericanos. Estos grupos se dividen a su vez en seis razas (tres por grupo) con características distintivas y genes particulares (Sing et al. 1991). De las especies cultivadas del género Phaseolus, el pallar es la más distante del frijol común.Los chiles son un conjunto de especies hortícolas de gran demanda en todo el mundo. Estas especies pertenecen al género Capsicum, compuesto por cerca de 27 especies, de las cuales C. annuum, C. chinense, C. frutescens, C. baccatum y C. pubescens se cultivan en el trópico húmedo de México y Perú. En Cuba sólo se reportan cultivos de C. annuum, C. chinense y C. frutescens. Diversos autores reconocen a México como el centro de mayor diversidad genética y como el punto de domesticación de C. annuum L. (Morán et al. 2004). De igual forma, se indica que Perú es otro de los centros de origen y diversificación de gran cantidad de especies de chile. La revisión que hace Pickersgill (1969) menciona que en el período pre-cerámico tardío (2800 a 1800 a.C.) en las excavaciones de Huaca Prieta, en Perú, se encontraron especímenes de C. baccatum var. pendulum y var. baccatum ambos con cáliz. La región amazónica brasileña o peruana se considera un posible origen para Capsicum chinense. Hay una gran diversificación de Capsicum en la Amazonia central del Perú que ha dado origen a las variedades locales más populares de la región (Chávez-Servia 2006).La planta de maíz posee estructuras florales monoicas. Las flores estaminadas se forman en la espiga (panoja) y las pistiladas, en un brote a la mitad del tallo. La polinización se lleva a cabo cuando el polen viable o fértil de las flores estaminadas se transfiere de la panoja a los estigmas u órganos receptores de polen de las flores pistiladas. El viento es el principal agente polinizador en la polinización libre o no controlada de la planta de maíz. Típicamente la fecundación de casi el 95% de los óvulos de un brote ocurre mediante polinización cruzada, y el 5% restante por autofecundación (Poehlman y Allen 2003).Aunque el frijol se considera una especie de reproducción autógama, se tienen referencias de polinización cruzada de más del 20%. La polinización cruzada depende de la variedad, del clima y de los insectos polinizadores. En el caso del pallar, la polinización cruzada puede alcanzar hasta un 80% dependiendo también del ambiente y la variedad.Al chile, considerado en Cuba una especie autógama facultativa, se le ha detectado en ese país la presencia de tasas de alogamia entre 10 a 50% (Barrios et al. 2007). Se han observado poblaciones del complejo Capsicum (C. annuum x C. frutescens x C. chinense) con un alto grado de hibridación. Los híbridos tienden a presentar pocas semillas pero pueden producir 20 a 50% más que los progenitores en cuanto a rendimiento, contenido de caroteno y cuajado de fruto (Sevilla y Holle 2004).En la Amazonia peruana el mejoramiento genético del maíz se ha centrado en la raza 'Cubano amarillo' por ser la preferida de los agricultores y por su importante demanda comercial. En 1983 se introdujo en la región el híbrido 'Marginal tropical-28' que mantiene hasta la actualidad cierta aceptación entre los agricultores por su adaptabilidad a las condiciones de clima y suelo. Más adelante, en 1998, el Instituto Nacional de Investigación Agraria (INIA), Estación Experimental Pucallpa, instaló núcleos de semilla genética de esta variedad para mantener las características varietales e incrementar semilla genética mediante la recombinación y selección de las mejores familias por el método de selección de medios hermanos. Además, se evaluó y seleccionó híbridos precoces con la finalidad de identificar los mejores híbridos simples de cada grupo heterótico.Luego, en 1999, se realizaron trabajos con híbridos simples, dobles y triples y con variedades para seleccionar híbridos y/o variedades precoces con alto potencial de rendimiento para condiciones agroecológicas de Ucayali. En el año 2000 se evaluaron variedades experimentales precoces para seleccionar una variedad con alto rendimiento (MINAG 2001). Por otro lado, la empresa SEM-Perú ha introducido híbridos triples como el 'Colorao', 'Master', 'Inti' y 'Morgan', con los que ha obtenido rendimientos superiores a los 7500 kg/ha. Estos híbridos, sin embargo, no han sido adoptados por los agricultores por el alto costo de las semillas, y por su exigencia de insumos convencionales y manejo, factores que elevan de manera considerable los costos de producción.Carlos González del Valle inició en Cuba en 1936, un programa de mejoramiento de maíz desarrollado con base en formas tradicionales que incluía obtención de líneas puras, introducción, evaluación y aclimatación de variedades y líneas foráneas, mejoramiento de variedades tradicionales, cruces para la obtención de híbridos y variedades sintéticas, y realización de ensayos de rendimiento (Abreu y González 1980). Este trabajo derivó en la obtención de variedades de maíz de los tipos indurata, indentata, saccharata y everta.Dentro de los híbridos con mayor rendimiento, se destacó 'M-11' que se probó en los años cincuenta en muchos países del área tropical. Para dar continuidad a los trabajos de mejoramiento, se han desarrollado híbridos simples y dobles que incorporaron la androesterilidad para facilitar el desarrollo de los híbridos utilizando también formas avanzadas del germoplasma tradicional de Cuba. Las instituciones de investigación han complementado estos trabajos con el desarrollo de variedades comerciales de polinización libre como el maíz 'Francisco mejorado', que tienen gran aceptación por los campesinos. Los híbridos se encuentran incorporados a la producción comercial y, en ocasiones, los agricultores tradicionales de las áreas de estudio acceden a ellos por la cercanía a los centros de producción de semilla comercial que le permite el intercambio con el germoplasma local (Abreu y González 1980;Fernández et al. 2004). Aun cuando el sector formal ha desarrollado estos cultivares, los volúmenes de semilla que producen no satisfacen la demanda nacional, un déficit que cubre el sector informal.En la zona oriental de Cuba se concentra la mayor diversidad de razas locales que pueden presentar cierto grado de erosión debido a la introducción de variedades comerciales. Los agricultores tradicionales manejan y conservan sus semillas, dentro de las cuales se encuentran las variedades 'Tusón' y 'Canilla' que están inscritas en la Lista Oficial de Variedades Comerciales de Cuba. En las zonas de estudio predominan los cultivares tradicionales y se presenta introducción de variedades comerciales que, en ocasiones, los agricultores han adoptado para su producción con destino al mercado. Este es el caso de 'Yanelis', en Guantánamo, una variedad que por sus características organolépticas no se destina para el consumo familiar en esas comunidades que continúan con la producción de las tradicionales.En México, el mejoramiento genético del maíz realizado por diversas instituciones como el Instituto Nacional de Investigaciones Agrícolas, Forestales y Pecuarias (INIFAP), estuvo centrado en la raza tropical 'Tuxpeño' que se presenta en Yucatán y en tres razas para diferentes ambientes ('Chalqueño', 'Cónico norteño' y 'Celaya'). Desde hace poco tiempo, el Centro Internacional de Mejoramiento del Maíz y Trigo (CIMMYT) e INIFAP, vienen realizando esfuerzos agronómicos para el mejoramiento con base en otras razas como 'Bolita', mientras que los productores aprenden, comprenden y practican el mejoramiento genético dada la necesidad de cruzar sus variedades de maíz de manera constante.El ciclo vegetativo es la principal variable que reconocen los productores mayas en su clasificación local del maíz, un ciclo que varía de siete semanas a cuatro meses hasta la fase de elote (madurez fisiológica). Este ciclo se corroboró de manera experimental en lotes de caracterización agronómica que resulta determinante para las condiciones agroecológicas en que se instala el cultivo. El segundo parámetro de diferenciación lo constituye el color del grano, que está relacionado con las necesidades de uso culinario y probablemente con la resistencia a la sequía. Su persistencia se encuentra asociada a la de la milpa o sistema agrícola asociado de maíz, frijol, chile y calabaza (Cucurbita spp.), bajo el sistema roza-tumba-quema. A pesar de los esfuerzos de las instituciones y de los programas de desarrollo, los maíces criollos se mantienen en el 90% de la superficie cultivada en la península de Yucatán (Arias 2004). Sin embargo, cabe señalar que como algunas variedades locales precoces, como el 'Nal tel', se encuentran en baja proporción, se asume que su diversidad genética está en peligro de erosión (Figura 3). En los países de interés del presente estudio se han desarrollado trabajos de fitomejoramiento en maíz que buscan generar variedades mejoradas e híbridos para condiciones agroecológicas particulares y expectativas, socioeconómicas y culturales de los agricultores. Estas variedades no satisfacen las expectativas para el uso culinario en el caso de México, y tampoco se cultivan a gran escala en las comunidades de la Amazonia peruana y en Cuba, debido no sólo al elevado costo de producción que involucra su adopción, sino al hecho de que están orientadas principalmente a una producción comercial. Por esta razón, los agricultores continúan sembrando en sus sistemas tradicionales las variedades locales en extensiones aun mayores que las de variedades mejoradas. A pesar de la importancia que tienen estas variedades para los agricultores, es evidente la pérdida de un grupo de las tradicionales de maíz en las zonas de estudio.En general, en el Perú el mejoramiento genético del frijol común está centrado en la zona de la costa y la sierra. Además de la amplia adaptabilidad de algunas variedades que facilitan la producción durante todo el año, las condiciones agroclimáticas que presenta la costa peruana favorecen el desarrollo de este cultivo. En la Amazonia peruana no se han desarrollado programas formales de mejoramiento genético con las variedades tradicionales existentes. Sin embargo, el Instituto Nacional de Investigación Agraria (INIA), Estación Pucallpa viene realizando ensayos de adaptación con variedades introducidas como el 'Rosiña', de crecimiento determinado arbustivo; 'DOR 801' y 'DOR 797 PO' de crecimiento indeterminado arbustivo; y el cultivar 'Carioca', de crecimiento indeterminado postrado.Estas variedades proceden de una selección de cinco años, en las que se observa comportamientos sobresalientes, aunque aún no se han validado en el ámbito de estudio. Es importante precisar que en el 2007, el INIA Pucallpa logró registrar ante el Servicio Nacional de Sanidad Agraria (SENASA) la variedad tradicional 'Ucayalino'.En Cuba el mejoramiento genético del cultivo de frijol se encuentra en etapa avanzada, y se reconocen muchos cultivares del sector formal dentro del sector campesino. Por más de 30 años la variedad insignia de frijol negro ha sido el cultivar 'CC-25-9' por su rendimiento y calidad culinaria del grano, a pesar de que en todo el país se siembran otros cultivares de este color, seguido de variedades de color de grano rojo y en menor proporción de grano blanco. Se han liberado cultivares de ciclo corto y hábito de crecimiento determinado, con tolerancia a virus del mosaico común (CBMV), virus del mosaico dorado (YBMV), roya, y a factores abióticos como la sequía y con tolerancia a bajos niveles de fósforo en el suelo (Faure et al. 1997;León 2007).Estos resultados se han logrado de la obtención de variedades nacionales, evaluación de viveros internacionales, regionalización, y liberación de cultivares mejor adaptados. En el caso del pallar existen dos tendencias: una orientada a la producción de grano seco desarrollada en condiciones tradicionales por los agricultores, y otra desarrollada por el INIFAT para la producción de granos tiernos o vainas verdes (conocidos como Habas de Lima), para la cual se ha realizado algún trabajo de mejoramiento (Muñoz et al. 1991(Muñoz et al. , 1994)).En la actualidad el Programa Nacional de Agricultura Urbana (PNAU), viene difundiendo cultivares avanzados para el consumo tierno del grano y algunos cultivares de grano seco, obtenidos a partir de los sistemas tradicionales de cultivo. En fecha reciente se inscribió en la Lista Oficial de Variedades Comerciales de Cuba, una variedad para el consumo de grano seco proveniente del sector informal denominada 'Enano pinto' (Castiñeiras et al. 2007).En la zona de estudio de México, los pequeños agricultores de agroecosistemas tradicionales manejan la mayor extensión del cultivo de frijol. Por esta razón, el esfuerzo se ha enfocado de manera estricta sobre el mejoramiento tradicional de las variedades que los agricultores manejan a través del tiempo, en condiciones de conservación in situ desarrollado en las milpas. Este contexto se presenta porque el frijol es un cultivo de asociación de segundo orden dentro del policultivo de la milpa, en el cual el cultivo principal es el maíz, y las especies preferidas son las de período vegetativo tardío, mientras que las precoces se siembran imbricadas y en pequeñas áreas (Ballesteros 1997). Las variedades mejoradas obtenidas por el INIFAP a mayor escala, son del frijol común dada su demanda comercial regional. Este cultivo se siembra en diversas regiones de México, en especial en sistemas de cultivo bajo riego y con uso de agroquímicos. No obstante lo anterior, en la región se han sembrado algunas escasas hectáreas de frijol común mejorado (cv. Jamapa) proveniente de la costa del Golfo de México.En la Amazonia central de Perú no se han efectuado trabajos de mejoramiento para chiles de diversidad local, ni existen variedades mejoradas introducidas. Este es un cultivo dedicado al huerto familiar donde se manejan variedades tradicionales muy populares en la región que, por lo general, no se conocen en el mercado nacional. El interés comercial se centra en un grupo de variedades nativas que demandan los consumidores de la región, dentro de las cuales sobresalen algunas dulces y picantes como el 'Charapita' y el 'Pucunucho'.En Cuba se ha realizado mejoramiento de manera formal para C. annuum, y se han generado cultivares para diferentes propósitos como consumo en fresco, conservas y condimentos. El mejoramiento de C. chinense y C. frutescens prácticamente es nulo y sólo ocurre dentro del sector informal, en donde los agricultores seleccionan y mantienen numerosas variedades tradicionales de las tres especies cultivadas. En la actualidad se encuentran inscritos 53 cultivares de C. annuum, de los cuales 21 son híbridos en su mayoría foráneos (República de Cuba 2008).Entre los híbridos, que se destinan a las casas de cultivo protegidas con sistemas intensivos de producción, se destacan los cultivares del tipo 'California wonder', 'Español' y 'Chay' (Muñoz et al. 1977). De otro lado, se ha trabajado en la producción de híbridos con resistencia múltiple frente al virus Y de la papa (PVY), al mosaico del tabaco (TMV), al grabado del tabaco (TEV), al moteado de las venas del pimiento (PVMV), y al mosaico del pepino (CMV) (Rodríguez y Depestre 2005).El acceso al mercado y la rentabilidad del chile en México han generado un gran interés transnacional por el mejoramiento del chile 'Habanero' que se produce en Yucatán con semilla introducida de compañías de semillas del Estado de California en Estados Unidos. Sin embargo, las siembras en traspatio que realizan los agricultores continúan siendo los reservorios genéticos de las variedades de chile en las comunidades mayas de Yucatán. que proporciona alimento cuando otros cultivos fracasan debido a los incrementos de temperatura y las altas precipitaciones que se presentan en primavera y verano (mayo a septiembre), el maíz se constituye en un cultivo tradicional de rotación con las siembras de invierno. Por otro lado, el maíz se emplea como cultivo secundario intercalado en siembras de frijol durante el invierno, y suele asociarse con la siembra de boniato (Ipomoea batatas), calabaza (Cucurbita moschata), y yuca (Manihot esculenta).En México se ha mantenido el promedio de áreas de siembra en las milpas que cumplen una función alimentaria importante en el campo. Ello se debe a la insuficiente disponibilidad de tierra y a la producción orientada a cubrir las necesidades de la población en las zonas maiceras (Pérez 1984). A todo esto se suma el comportamiento migratorio estacional de la población que busca mejorar sus ingresos económicos (Instituto Nacional de Estadística Geografía e Informática 2000).En el caso del frijol en la Amazonia central de Perú, la variedad tradicional 'Ucayalino' es la de mayor preferencia (85%) de los consumidores con relación a otras variedades. El predominio de esta variedad no solo se debe a la tradición del consumo, y la preferencia de los consumidores por su sabor, sino también al hecho de que muchos agricultores la prefieren por su rendimiento superior (Collado et al. 2006b). En la región occidental y oriental de Cuba, el frijol forma parte de la dieta alimenticia básica, hecho que ha motivado importaciones promedio anuales superiores a las 180.000 t. Para las comunidades yucatecas de México, este cultivo es de gran importancia para cubrir las necesidades alimenticias en especial del campo. Sin embargo, para cubrir la creciente demanda de la ciudad, se importan más de 250.000 t de maíz y de frijol de otras regiones del país o del extranjero.En la Amazonia central de Perú, entre el 2004 y el 2007, el frijol enfrentó una disminución de las áreas cultivadas, de 1114 a 483 ha, además de una reducción del 12% en los precios por kilogramo en la chacra (MINAG 2007). En las regiones de Cuba entre el 2000 y el 2005, se mantuvo la superficie cultivada de 87.800 ha, en especial por ser un componente importante en la dieta alimenticia de la población, con un precio sobresaliente y estable en el mercado. En el caso de México, la superficie de cultivo del frijol ha estado supeditada a las áreas que se manejan en la milpa, por lo que se estima que del total cultivado, solo una fracción se utiliza para frijol y calabaza asociados. Por esta razón los datos de áreas estimadas son poco confiables.Los rendimientos promedio alcanzados en fríjol son relativamente mejores en las condiciones amazónicas de Perú debido a que se cultiva, en general, en agroecosistemas aluviales (restingas, suelos de mejor aptitud), y se obtiene 1457 kg/ha (MINAG 2007), en comparación con las regiones de Cuba, que arroja 1000 kg/ha. Además de que el sector privado es el que obtiene rendimientos promedio superiores al sector estatal, este hecho resalta la existencia de cultivares liberados que presentan potencialidades superiores. En el caso de México, el rendimiento promedio del frijol criollo es de 250 kg/ha (Anuario 2006(Anuario -2008)), teniendo en cuenta que es un cultivo de la milpa (cultivo que se siembra asociado) y las condiciones agroecológicas en las que se siembran (ver capítulo de regiones de estudio) el rendimiento es bueno, pero muy por debajo de los 700 kg/ha que se puede alcanzar en la región con el frijol 'Jamapa' (variedad mejorada).En las zonas de estudio de Cuba, México y Perú, las comunidades tradicionales cultivan el pallar básicamente para el consumo familiar por lo cual este todavía tiene baja demanda en el mercado. Por lo tanto no se encontraron datos de la superficie cultivada, productividad y/o rendimiento promedio para este cultivo.En el caso de Cuba, los chiles y pimientos son importantes desde el punto de vista económico, un hecho que se ve reflejado en el aumento de la superficie cultivada de 5600 a 11.300 ha entre el 2000 y el 2005. La ultima cifra representa el 1.03% de la superficie destinada a cultivos varios (ONE 2006). Al comparar estos datos con el ámbito de estudio en Perú, se observan menores áreas cultivadas, de 96 a 118 ha entre los años 2004 y 2007, donde la comercialización es en pequeña escala (MINAG 2007). En contraste, en las comunidades yucatecas de México, el chile, que llega a las 1000 ha anuales, es uno de los cultivos locales con mejor precio en el mercado interno y con más incentivos para su siembra en las diferentes épocas del año. Los sistemas con riego son los más productivos y rentables, mientras que los tradicionales de temporal, que son los más frecuentes, son los que acusan menores rendimientos aunque requieran menores inversiones.Los rendimientos del chile que se obtienen en la Amazonia central de Perú son bajos, de alrededor de 1000 kg/ha (MINAG 2007), en especial de variedades locales, un hecho que muestra el poco o nada de avance en el mejoramiento genético y desarrollo tecnológico local en este cultivo. Una situación inversa presentan las regiones en Cuba donde sus rendimientos promedios oscilan entre 10.000 y entre 13.000 kg/ha, con los mayores rendimientos en el sector formal. Se han reportado rendimientos incluso de 19.000 kg/ha, en general asociados a las áreas de cultivos protegidos, que son unas 100 ha en todo el país. Estas áreas se encontraban bajo el sistema intensivo con consumo de altos insumos y, en gran medida, con uso de semilla híbrida foránea. En México, se presentan rendimientos promedios de 8000 kg/ha en sistemas tecnificados, mientras que en los sistemas tradicionales apenas alcanzan rendimientos de 200 kg/ha.En las condiciones del trópico húmedo de Cuba, México y Perú, los factores climáticos son la mayor amenaza de erosión para la diversidad. Hay condiciones adversas como períodos prolongados de sequía, lluvias extremas, inundaciones y vientos huracanados, que azotan en particular las zonas de estudio de los tres países. En Cuba y México se presentan, en especial, huracanes y tormentas tropicales que afectan de manera considerable las cosechas y la disponibilidad de semillas.En el caso de las comunidades ribereñas en la Amazonia central de Perú, las comunidades conviven con la incertidumbre permanente de las inundaciones, el cambio de curso del río (Figura 4) y la erosión del suelo, todos ellos factores que están causando la pérdida de plantaciones establecidas, y que, además, influyen en la pérdida o conversión de áreas productivas en \"varillajes\", áreas en las que predomina una especie de caña muy invasiva. En casi todos los países, el factor climático adverso es el de mayor relevancia en la pérdida de la agrobiodiversidad.La incidencia de plagas y enfermedades es una amenaza latente para la preservación de la diversidad, y afecta en mayor o menor grado a los cultivos. A pesar de que agentes bióticos no han ocasionado daños significativos al maíz ni al chile, en las plantaciones de frijol de las comunidades de estudio en Perú se ha presentado virosis que, por un lado han ocasionado pérdidas significativas y, por el otro, muestran que la poca semilla obtenida se encuentra infectada.En el caso de Cuba en los años ochenta se observó un incremento de las poblaciones de mosca blanca (Bemisia tabaci), que alcanzaron proporciones epidémicas, entre otras causas por el uso indiscriminado de insecticidas químicos. Esta circunstancia afectó de manera notoria el cultivo comercial del frijol común, dañando también los cultivos de frijol pallar, pues esta plaga es un vector de virus del mosaico dorado del frijol (BGMV) (Echemendía et al. 2007). De la misma manera, en 1996, la presencia de una nueva plaga (Thrips palmi), afectó numerosos cultivos entre los que se encontraban el frijol y diferentes chiles, y se hizo necesario el desarrollo de una estrategia de manejo integrado, por las grandes pérdidas que este organismo producía (Murgido et al. 2002).Algunas plagas como el gusano cogollero (Heliothis), y las enfermedades virales como el carbón de la espiga, afectan la producción maicera de Yucatán, México de manera leve y ocasional. Tales plagas no causan tantos estragos como la depredación de cultivos que realizan los animales de monte. La luciérnaga ataca de manera ocasional al frijol, pero el mayor daño agrícola en años recientes se presentó en el chile 'Habanero' cuando la mosquita blanca (Bemisia tabaci) infestó los cultivos comerciales (Arias 2004). En general, estas plagas y las enfermedades, salvo el caso de la mosquita blanca, no se consideran como causas potenciales de erosión genética de las variedades criollas en los cultivos de la milpa en México.Los problemas ecológicos causados por el incremento poblacional han repercutido en reducir el período de descanso que se le da al suelo, como parte de las prácticas tradicionales sostenibles del sistema roza, tumba y quema (Figura 5), lo que reduce la capacidad productiva de éste y amenaza la conservación de la agrodiversidad.Figura 5. Quema de un área para establecer una milpa en Yucatán, México.Dentro de los cultivos en estudio, la amenaza de erosión genética se presenta para aquellas variedades que tienen una menor distribución y cobertura de área, como es el caso de algunas variedades de maíz en las regiones de Cuba, y de frijol y pallar en la Amazonia peruana. Así mismo, se tiene el caso de México en donde se presenta una tendencia a la pérdida de las variedades locales más antiguas de frijol y de pallar asociados al maíz, y donde se observan también pérdidas de las variantes de maíz precoz 'Nal-tel' como consecuencia de la menor frecuencia de siembra, que a su vez da lugar a pérdida de diversidad (Figura 3).En las comunidades amazónicas del Perú, el frijol está siendo desplazado por la especie Vigna unguiculata ('Frijol chiclayo'), un cultivo poco exigente en calidad de suelo y de prácticas de manejo, pues aprovecha los sedimentos de arena (playas) en época de vaciante del río. En algunas zonas de Yucatán, la sustitución de la milpa por una agricultura bajo riego ha generado el reemplazo de variedades nativas por mejoradas. Ballesteros (1997) encontró una disminución de variedades locales probablemente por la entrada de frijol 'xpelon' (V. unguiculata) a los sistemas de cultivo tradicional.Los fenómenos antes descritos contribuyen a la pérdida del conocimiento tradicional, a su vez afectado por la migración del campo a la ciudad, en especial por parte de los jóvenes, en busca de mejores opciones de ingresos, modificación de hábitos alimenticios de las familias, y preferencia por variedades modernas.Es posible que en Cuba, el restablecimiento del sistema formal de semillas desde el 2007 y el alza del precio de los alimentos, incremente en un futuro las áreas sembradas de maíz con cultivares modernos que pueden tener cierta influencia en las áreas de estudio. No deben esperarse amenazas de erosión genética a corto plazo pues la estrategia desarrollada por el Ministerio de Agricultura en el 2008 está orientada hacia el incremento de la superficie sembrada con base en el empleo del germoplasma existente en cada región. Por esta razón, aquí predominan las variedades comerciales que se han cultivado hasta la fecha, e incluso también variedades tradicionales como 'Tusón' en el occidente, y 'Canilla' en el oriente.Para el caso de México, el Tratado de Libre Comercio con Estados Unidos generó la pérdida de más de un 1.700.000 puestos de trabajo en el agro, mientras que en el caso de Perú, en particular en las zonas de agricultura tradicional, se cree que existen más de 2.000.000 de agricultores que podrían ser expulsados del campo y convertirse en proletarios sin tierra (Díez 2008).En general, la diversidad genética de los cultivos tradicionales reviste importancia social, cultural y económica para los agricultores que valoran las variedades que conservan por sus atributos inherentes, preferencias de consumo, culinaria tradicional, crianza de animales domésticos, y por sus características agronómicas (rendimiento, precocidad, tolerancia a plagas y enfermedades, y adaptación a los agroecosistemas locales).Cada cultivo y/o variedad específica difiere en grado de importancia económica en el trópico húmedo de Cuba, México y Perú, de acuerdo con la demanda comercial, popularidad de la variedad, distancia al mercado, preferencias de consumo, usos a que se destine el producto, y precios de transacción. Estos factores son determinantes tanto en la decisión de los agricultores, como en la extensión de áreas que destinarán a la siembra para cada cultivo y variedad.En el caso del chile, éste tiene mayor importancia económica en México y Cuba, importancia que se demuestra por el tamaño de área cultivada y los altos rendimientos. En el caso de Perú, por lo general, es un cultivo de huerto con pequeñas escalas de comercialización.El frijol común en los tres países es de suma importancia, siendo su cultivo más dinámico en los casos de Cuba y México, donde para satisfacer su demanda interna se importan adicionalmente cantidades significativas. En el caso de Perú, el frijol atraviesa dificultades tecnológicas por lo que cada vez se reducen más las áreas cultivadas. El pallar en las tres regiones presenta baja preferencia y por lo general se destina para la subsistencia de la familia rural.Algunas variedades de maíz presentan una dinámica comercial en las tres regiones; no obstante esto, un grupo importante de toda esta diversidad se mantiene por preferencias en la culinaria local.Los factores determinantes para la erosión genética de las variedades locales de los cultivos en estudio son de diversa índole. Los factores climáticos (sequías, fuertes lluvias, vientos huracanados y tormentas tropicales) se presentan de manera regular en las regiones del trópico húmedo. En general, en México y Cuba se dan situaciones periódicas de ciclones, mientras que en Perú suceden inundaciones y cambio de curso de los ríos, fenómenos que perjudican en todos los casos los cultivos, y comprometen la seguridad alimentaria de las comunidades que los cultivan. Otro factor es la introducción y difusión de variedades modernas producto de la biotecnología, que están desplazando a las tradicionales debido a intereses económicos, políticas agrarias, globalización, preferencias, y condiciones de mercado.Castiñeiras L, Shagarodsky T, Fuentes V, Moreno V, Fernández L, Fundora-Mayor Z, Cristóbal R, González AV, Sánchez P, García M, Hernández F, Giraudy C, Barrios O, Orellana R, Robaina R, Valiente A. 2004. Diversidad, conservación y uso de las plantas cultivadas en huertos caseros de algunas áreas rurales de Cuba. En: Chávez-Servia JL, Tuxill J, Jarvis DI (Eds. Luis Latournerie Este trabajo, que se desarrolló en Cuba (región occidental y oriental), México (Yucatán) y Perú (Amazonia central) entre 2005 y 2007, se centró en los cultivos tradicionales de maíz (Zea mays L.), frijol común (P. vulgaris L.), frijol pallar (P. lunatus L.), y chile (Capsicum spp.). Su objetivo fue conocer la diversidad que manejan los agricultores en sus sistemas de producción tradicional y la importancia de la misma. Para obtener la información respectiva se entrevistó a los agricultores de las regiones de estudio y en cada caso se buscó cubrir el 10% del total de cada comunidad.Así mismo se recolectaron ejemplares representativos de esta diversidad que se utilizaron para llevar a cabo estudios de caracterización, en particular morfológicos y agronómicos. Con base en los resultados se puede anotar que la diversidad de maíz, frijol y chile que los agricultores conservan y aprovechan es básica para la alimentación familiar de los grupos sociales campesinos de diferentes niveles socioeconómicos, étnicos y culturales. La diversidad que se conserva varía de acuerdo con el cultivo y la región, siendo esta última de gran importancia en los sistemas de producción tradicional. Sin embargo, los productores centran su preferencia en dos o tres variedades que son las que presentan mayor frecuencia entre los productores, comunidades y regiones. La riqueza que conservan en sus cultivos presenta, al parecer, una fuerte fragilidad en particular en aquellas variantes raras que sólo unos cuantos de ellos conservan y que podría perderse por las condiciones adversas en las cuales se siembran. Por esta razón, es necesario implementar programas encaminados a fortalecer estos sistemas de conservación in situ con énfasis en alternativas que permitan asegurar la conservación y la reincorporación de variantes poco comunes ante su desaparición en los sistemas agrícolas.La utilización, el manejo y la preservación de los recursos naturales ha sido una preocupación constante de los grupos humanos. Las culturas mexicanas indígenas prehispánicas contribuyeron con el descubrimiento, el manejo, la utilización y la evolución bajo domesticación de cultivos como maíz, frijol, calabaza y chile entre un centenar de plantas de importancia mundial actual (Hernández 1995). El maíz ha sido el principal cultivo alimenticio de México desde épocas prehispánicas, debido a que su origen y evolución bajo domesticación se inició en Mesoamérica, donde las culturas prehispánicas descubrieron el maíz como alimento sagrado y su proceso evolutivo. Su cultivo se ha continuado en sistemas agrícolas tradicionales como la milpa -siembra en asociación de maíz, frijol, calabaza, chile-y en función del conocimiento agrícola tradicional que conserva una gran agrodiversidad regional necesaria para la subsistencia alimentaria de la población campesina (Hernández 1985). La actual diversidad de variedades locales de maíz se viene estudiando en su aspecto general desde hace más de medio siglo y existen indicios de cierta reducción o pérdida de la variación.Tal diversidad se relaciona claramente con la persistencia cultural, los factores bióticos y abióticos como los suelos, el clima y los sistemas de cultivos tradicionales que utilizan los agricultores locales. Todo ello origina un proceso dinámico de conservación de la agrodiversidad in situ a través del tiempo (Arias 2004). Este proceso es muy importante ya que los cultivares adaptados a micro nichos particulares son, con frecuencia, uno de los recursos de que disponen los agricultores pobres para mantener o incrementar la producción de sus campos agrícolas (Jarvis 2000). Por lo anterior, es importante comprender estos procesos en comunidades rurales donde los campesinos enfrentan transformaciones estructurales de la agricultura tradicional, cambios socioeconómicos y ambientes adversos a la conservación de los recursos genéticos (Brush 2000). Dentro de este contexto, este capítulo se plantea con el objetivo de conocer la diversidad que conservan los agricultores y su importancia en diversas regiones tropicales de Cuba, México y Perú.El trabajo se realizó entre 2005 y 2007 en comunidades de Cuba, México y Perú, e incluyó los cultivos tradicionales de maíz (Zea mays L.), frijol común (P. vulgaris L.), frijol pallar o ib (P. lunatus L.), y chile o ají (Capsicum spp.). El sistema de reproducción de estos cultivos varía de alógama a autógama (esta última puede comprender altas tasas de cruzamiento). La información se obtuvo mediante entrevistas a los agricultores tanto en sus casas como en los campos de cultivo.En Cuba las comunidades seleccionadas se ubicaron en el área de premontaña y montaña que corresponden a la región de la cordillera de Guaniguanico, en la provincia de Pinar del Río, y a la región del Macizo Sagua -Baracoa en la provincia de Guantánamo, ambas ubicadas en el extremo occidental y oriental de la isla, respectivamente. El trabajo se desarrolló con 18 familias de comunidades de la región oriental y 18 de la occidental. Se utilizaron catálogos con fotografías para identificar la variabilidad que se conserva en las fincas de los agricultores.En México el estudio se llevó a cabo en tres comunidades del estado de Yucatán (Ichmul, Sahcabá y Yaxcabá) donde se encuestaron 254 agricultores (101, 90 y 63 agricultores, respectivamente). En Perú el trabajo se desarrolló en los departamentos de Ucayali, Huanuco y Pasco, todos en la Amazonia central del Perú, una región que habitan diferentes grupos étnicos. Se trabajó con 11 comunidades de tres grupos étnicos: 3 de los Shipibo-Conibo, 4 de los Asháninka y 4 caseríos de colonos mestizos. Se entrevistó mínimo 20% de los agricultores de cada comunidad (35 de los Shipibo-Conibo, 36 de los Asháninka y 45 de los mestizos) (Ver detalles en Capítulos 1 y 2).Los datos de las variedades de maíz por raza que manejan los agricultores en Cuba, México y Perú se presentan en el Cuadro 1. Los resultados revelan que en las dos regiones de estudio en Cuba (occidente y oriente), al menos cuatro razas cubanas de maíz ('Criollo', 'Canilla', 'Tusón' y 'Argentino') de las siete reportadas por Hatheway en 1957, se encuentran presentes. Se encontraron 18 variedades, de las cuales la mayor variabilidad corresponde a 'Tusón' con 11 que representan el 44.5% del total. En México se encontraron 15 variedades distribuidas en tres razas ('Dzit-bacal', 'Nal-tel' y 'Tuxpeño') y en el complejo 'Nal-tel' x 'Dzit-bacal' (Figura 1), además de dos mejoradas por un productor de la región que han tenido buena aceptación ('Nal xoy amarillo' y 'Nal xoy blanco'). 'Tuxpeño' es la raza que tiene mayor presencia con ocho variedades representando el 79.5% de la preferencia de los agricultores. En las regiones de estudio de la Amazonia central del Perú se encontraron tres razas de maíz ('Cubano amarillo', 'Pipoca' y 'Piricinco'), la primera de las tres con mayor presencia entre los agricultores con cinco variedades (75.6%).De toda la riqueza que se reportó entre y dentro de las razas, destacan algunas variedades que los productores cultivan con mayor frecuencia como, por ejemplo en Cuba la 'Canilla' o 'Cuña' (25%), y la 'Criollo' o 'Tusa fina y tradicional' (20.8%) son las de mayor presencia, mientras que en México son 'Xnuc naal amarillo' (31.3%) y 'Xnuc naal blanco' (27.1%), y en Perú, la variedad 'Duro' con 46.3% (Cuadro 1). Esto implica que aun cuando los productores manejan en sus cam- pos diversas variedades, ellos prefieren o manejan en realidad unas pocas en mayor cantidad debido, en parte, a que encuentran en éstas, mejores características para enfrentar las condiciones adversas predominantes en las regiones de estudio. Al respecto Yupit (2002) reporta que en Yucatán, México, los agricultores muestran mayor preferencia por las variedades tardías ('Xnuc naal amarillo' y 'Xnuc naal blanco') porque éstas presentan mayor resistencia a la sequía, además de que son resistentes a las plagas del almacenamiento. Perales et al. (2005) enfatizan la relativa dominancia de uno o dos tipos de maíz tanto a nivel de productores como de comunidad. Por esto, es importante entender la razón que lleva a los productores a conservar una amplia diversidad aun cuando centran su atención en unas cuantas variedades por cultivo. Hernández (1985) menciona que la diversidad de maíz que los agricultores siembran se asocia con el régimen incierto de lluvias que se espera en un año particular, el tipo de condición fisiográfica y la urgencia de la disponibilidad del grano. Jarvis et al. (2008) anotan que de acuerdo con las estrategias de diversidad que manejan los agricultores, algunos cultivos se mantienen a nivel de campo y de la comunidad con una o dos variedades dominantes, y que, además, se mantiene un mayor número de otras variedades en bajas frecuencias. Esto sugiere que los agricultores mantienen las variedades de baja frecuencia para asegurarse así contra cambios ambientales o problemas económicos, mientras que en otros cultivos las variedades tradicionales tienen mayor frecuencia de distribución, implicando esto que los agricultores seleccionan variedades que satisfacen necesidades comunes.En la diversidad maíz que se maneja en Perú, se observa que hay un grupo de variedades locales que comparten los tres grupos socioculturales. Al estimar la frecuencia de agricultores que mantienen esta variabilidad o la importancia relativa de cada variedad se encontró que, en general, todos preservan materiales de las razas 'Piricinco' ('Suave', 'Amarillo', 'Blanco', y 'Amarillo suave') y 'Cubano amarillo' ('Serrano', 'Duro', 'Pozuzo', 'Cipa', y 'Marginal 28'). La raza 'Pipoca' ('Cancha amarilla') solo se observó con mayor frecuencia en comunidades de mestizos (Cuadro 2). Esto quiere decir que un grupo sociocultural particular puede ejercer cierta influencia en la preferencia por una determinada variedad dado que ello depende, entre otras, del uso y condiciones agroecológicas en los cuales éstas se cultiven.En cuanto al frijol común, en Cuba se detectaron 22 variedades en fincas tradicionales de occidente y oriente (Cuadro 3). Algunas variedades, sin embargo, son más comunes como la 'Negro sin brillo' ('Negro 90 días'), 'Colorao', y 'Negro 70 días' ('Negro grande') con el 9.7%, 8.2% y 6.3%, respectivamente. Las restantes aparecen con frecuencias inferiores al 4.9%.Figura 1. Parte de la diversidad de maíz de los productores de Yucatán, México, en cuanto a razas presentes. De izquierda a derecha aparecen 'Nal-tel', complejo 'Nal-tel' x 'Tuxpeño', 'Dzit-bacal' y 'Tuxpeño' -las dos últimas, mazorcas.Cuadro 2. Nombres locales, frecuencias y porcentajes de variedades nativas de maíz, fríjol y chile por grupo sociocultural de la Amazonia central del Perú. En contraste con Cuba, en las regiones de estudio de Yucatán en México y de la Amazonia central del Perú los agricultores conservan un acervo con menos variantes de frijoles y en Perú, en particular, sólo utilizan el del frijol común (Figura 2). Los tipos pallar en México son muy importantes, no sólo para la gastronomía yucateca sino también por su uso especial en ceremonias religiosas, como la del día de muertos que se conoce localmente como hanaal pixan y que se celebra en noviembre. Aun cuando en las zonas de estudio solo se identificaron dos variedades, Martínez-Castillo et al. (2004) identificaron 30, además de dos silvestres y dos arvenses de pallar para la región de la península de Yucatán, México (Yucatán, Campeche y Quintana Roo).En México, el pallar no sólo se cultiva para autoconsumo sino que también se comercializa de manera generalizada en la región. Así mismo en esta región se observa que de las seis variedades de frijol que manejan los agricultores, tres predominan en sus preferencias (93.1%). En Perú ocurre igual pues de las cinco variedades que se encontraron predominan dos con el 74%, lo cual indica que éstas satisfacen las necesidades de los productores no sólo por adaptación a los siste- mas tradicionales de producción sino por preferencia para el consumo o comercialización (Cuadro 3). En estos dos casos, sin embargo, la diversidad se ve reducida por especie. En este sentido Aguirre et al. (2000) mencionaron que el potencial productivo de las variedades que manejan los agricultores en maíz puede influir en la riqueza de este cultivo en un área determinada, mientras que la disponibilidad de infraestructura adecuada podría afectar su abundancia. Por otro lado, en Cuba no se tienen variedades de frijol que predominen de manera amplia en la preferencia del agricultor (la de mayor preferencia es del 9.7%), de ahí que buscan conservar una mayor diversidad (hasta 37 variedades) para satisfacer sus necesidades y así garantizar alimento e ingresos por su comercialización.Por otro lado, el manejo que los agricultores le dan a esta diversidad de frijol permite comprender la importancia que para ellos tiene contar con esta riqueza genética que garantiza, en parte, la fuente de alimentos para la familia. En Cuba, por ejemplo, los agricultores que mantienen variedades de frijol común producen tanto para el autoconsumo como para la comercialización. Cuando el grano de frijol común cosechado se les termina, siguen entonces con la cosecha de las variedades de pallar pues como su ciclo de vida es más largo (hasta de ocho meses), ello les permite extender la producción y con esto sus familias cuentan con un grano similar para el consumo. A pesar de esto, en las fincas se siembran sólo unas pocas plantas de pallar (a veces menos de cinco) y, en general, son las familias de los agricultores las que manejan las pequeñas producciones del cultivo para su auto-consumo. La importancia de este tipo de frijol en Cuba se confirma con la reciente inscripción por primera vez de una variedad tradicional de esta especie -'Enano pinto'-por un agricultor en el Registro Nacional de Variedades de Cuba (MINAG 2007) en representación de la comunidad rural de Yateras (Provincia Guantánamo). Esto se constituye como un importante reconocimiento a las comunidades rurales del país por su aporte a la conservación de esta diversidad y, además, es un avance importante en el camino hacia la protección y comercialización de los recursos autóctonos locales de las comunidades donde se originan.Los agricultores de Cuba, México y Perú reconocen diferentes variedades de maíz, frijol y chile a las cuales asignan diversos nombres locales para distinguirlas (Cuadros 1, 3 y 4). Esta diversidad reconocida es de gran importancia pues representa el patrimonio genético que manejan, conservan y aprovechan los agricultores en cada zona. Reconocer los nombres que los agricultores dan a sus variedades es importante dado que la variedad que ellos nombran es la unidad que manejan y seleccionan a través del tiempo (Jarvis et al. 2000). En el caso de Cuba los nombres de las variedades tradicionales de los campesinos coinciden, en muchos casos, con los términos que utiliza Hatheway (1957) para describir las siete razas cubanas de maíz. Esto sugiere en primera instancia, que en las condiciones de manejo tradicional las razas 'Argentino', 'Canilla', 'Criollo' y 'Tusón' se mantienen en la actualidad en las dos regiones de estudio y aún conservan sus características distintivas, tal como lo confirman los estudios realizados en Cuba por Fernández et al. (2004), Fernández et al. (2005), y Fernández et al. (2006).La diversidad que los agricultores manejan en maíz y frijol se asocia con el color del grano. En Cuba se observa que para el maíz hay una marcada preferencia por los materiales de color Cuadro 4. Variabilidad de chile que manejan los agricultores en las áreas de estudio de Cuba, México y Perú. amarillo con variaciones de naranja a rojo (Cuadros 1 y 3). Para frijoles los agricultores tienen preferencias marcadas por las variedades de grano rojo. De igual manera en Yucatán, México, el color de grano favorito es el amarillo y blanco, en particular, para maíz, siendo más frecuentes las variedades de grano blanco. En la Amazonia del Perú el color más importante de grano en maíz y frijol es el amarillo. La variación que se observa con respecto al color del grano de las variedades de maíz y frijol es mayor en las regiones de estudio de Cuba que en las de México y Perú en donde ésta es reducida. En el caso del frijol común la preferencia depende, al parecer, de la región de estudio como es el caso del grano negro en Yucatán, México, y el amarillo en Perú. Al respecto, Aguirre et al. (2000) en un estudio en maíz en Guanajuato, México, encontraron una mayor preferencia por variedades de color blanco, aun cuando también se prefería el amarillo, negro, rojo y pinto. La importancia del color de grano de la variedad varió con la región tal como se observó en el presente trabajo. En este sentido concluyen que la integración con el mercado podría jugar un rol decisivo en la diversidad del color de grano para lo cual es válido anotar que las regiones aisladas manejan mayor diversidad en esta preferencia. En Cuba se observó la influencia del mercado en la diversidad en la cual, en los últimos años, los frijoles con grano rojo han superado en valor comercial a los de otros colores. Castiñeiras (1992), Blanco y Faure (1994), y Miranda (2005) reportaron resultados contrarios, lo cual indica la dinámica en los sistemas productivos tradicionales, ya que en menos de una década cambia de manera notable la preferencia de un tipo a otro.En cuanto a especies de chile, la riqueza que conservan y aprovechan los agricultores en Cuba se centra en C. frutescens, C. annuum y C. chinense (Figura 3 y Cuadro 4) con un total de 21 variedades, de las cuales la mayor diversidad la presenta esta última con nueve (dos semidomesticadas y siete cultivadas), y una mayor preferencia por el 'Ají angolano' (7.8%) y el 'Ají cachucha' (6.9%).Al parecer se prefiere los que no son pungentes (picantes) pues sólo se reportó como tal a la variedad 'Corazón de paloma' (4.3%) y 'Cachuchita picante' (0.9%). De C. frutescens se encontraron seis variedades silvestres semidomesticadas que se cultivan en su mayoría como pungentes; y seis de C. annuum, la mayoría dulces, con excepción de una que tiene uso ornamental, el 'Chile de jardín' o 'Chile ornamental' que es pungente. Entre los chiles de esta especie que, en general, son los que se encuentran ligeramente en mayor frecuencia entre los agricultores cubanos (37.8%), sobresalen las variedades 'Cachuchón' (que recibe diversos nombres como 'Ají cachuchita', 'Ají de gorrita', 'Mandarina dulce' o 'Ciruela') y 'Verano' (11.2% y 10.3%, respectivamente). Comparado con Cuba, en las regiones de estudio en México y Perú se observó una menor riqueza en el número de especies y variedades que los agricultores manejan por especie. En México la mayor diversidad se encontró en C. annuum con seis variedades (71.5%) en su mayoría pungentes (sólo una dulce), con 'Ya'ax ik' (30.9%) y 'Chawa' (28.5%) como las más importantes. C. chinense, representada sólo por la variedad 'Habanero' (28.5%), tiene una amplia aceptación y se puede encontrar tanto en siembras comerciales con semilla mejoradas como cultivada a pequeña escala en forma tradicional con semilla local.En Perú, entre las familias Shipibo-Conibos y mestizas se cuenta tanto con variedades pungentes como de bajo picor o sin picor. De C. annuum se tiene mayor cantidad de variedades de bajo picor llamadas localmente 'Dulce' y 'Bata-yuchi' con 32.4% y 18.7%, respectivamente. De los chiles picantes (C. chinense) la variedad 'Charapita' es la preferida en los tres grupos socioculturales (43.2%), un hecho que refleja que es la de mayor tradición en la región (Cuadro 4). Como el chile es un cultivo de huerto, en general, las familias mantienen de una a tres plantas por variedad que emplean en la culinaria tradicional y que no se comercializa debido a la distancia al mercado y costos en la transacción. Aunque en Cuba y México muchas de las variedades de chile se establecen en el huerto (pocas plantas por variedad), éstas también se siembran en pequeña escala y en algunos casos se establecen a escala comercial.En los huertos familiares de Cuba, se identificaron cultivares silvestres y semidomesticados de C. frutescens y C. chinense que crecían dentro de los jardines de los agricultores o en sus alrededores (Cuadro 5). Los agricultores refirieron que conservan estas plantas con fines medicinales y para el consumo de frutos picantes (Barrios et al. 2007b). En este sentido Guzmán et al. (2005) señalan que las variedades cultivadas conviven con los chiles silvestres o semidomesticados que no se eliminan por su importancia para el consumo humano. Así mismo, Hernández (2000) mencionó el posible flujo genético entre las variedades cultivadas y sus parientes silvestres (C. annuum var. aviculare denominado 'Chile maax') en Yucatán, México. Lo anterior ha generado un sin número de cruzamientos dentro y entre especies de Capsicum que los productores, en muchos casos, conservan y aprovechan. Este es el caso de Cuba que reporta diez híbridos naturales, en particular intraespecíficos, que podrían perderse con facilidad debido a que los agricultores sólo conservan una o dos plantas de cada material. La conservación de estos híbridos depende de su aceptación por parte de los productores, aspecto sobre el cual Barrios et al. (2007a) informaron que sucedía en la región occidental, donde tres campesinos adquirieron semillas de los nuevos híbridos 'Cachucha de punta', 'Angolano puntado' y 'Ají cereza'. En general, el surgimiento de nuevas variantes provenientes de cruzamientos, en especial de Capsicum, se debe en parte a que: (1) la mayoría de agricultores siembran diferentes variedades de una misma o de diferente especie en una misma área muy cerca una de otra; (2) los agricultores siembran más de una variedad de forma simultánea; y 3) las variedades cultivadas conviven con las semidomesticadas y silvestres, circunstancia que facilita el flujo de genes entre éstas. Teshome et al. (1997) argumentan que los agricultores juegan un importante rol en la dinámica de la creación, perpetuación y extinción en los cultivos. En este sentido los agricultores proveen las oportunidades para la hibridación al establecer materiales criollos juntos, los cuales de otra forma estarían aislados geográfica y ecológicamente.El hecho de que una determinada raza de maíz o especie en el caso de frijol y chile, presente mayor riqueza en las regiones de estudio no indica que las otras sean menos importantes. En contraste, sí es de gran importancia que una gran cantidad de variedades de estos cultivos se encuentren en bajas frecuencias: en Perú tres variedades de maíz presentan porcentajes menores a 2.7%, en Cuba seis, una con un porcentaje de 1.4%, y en México seis, con porcentajes menores de 0.6%. Con respecto a frijol común en Cuba, nueve variedades presentan porcentajes de 0.5% y la especie de chile C. chinense presentó cinco con 0.9% (Cuadros 1, 3 y 4). El bajo porcentaje en que se encuentran estas variedades podría poner en riesgo su permanencia y conservación si se presentaran situaciones adversas como ciclones, sequías o inundaciones tan frecuentes en las regiones tropicales.En Cuba, por ejemplo, la variedad de frijol común 'Maní' se perdió en la única finca de la región oriental donde se encontraba. Esta se restauró a partir de la semilla producida y conservada en el Banco de Germoplasma del Instituto de Investigaciones Fundamentales en Agricultura Tropical (INIFAT). Ballesteros (1997) y Arias (1995) atribuyen parte de la erosión genética de algunas variedades que se cultivan en la milpa de Yucatán, México, a la continua aleatoriedad climática que se ve agravada por sequías, paso de huracanes y plagas (en especial la langosta Schistocerca piceifrons) que de manera cíclica azotan la región. Esto también se considera como una de las posibles causas del decaimiento de la civilización Maya en México (Meggers 1979).En fecha reciente Hellin y Bellon (2007) atribuyeron la pérdida de la diversidad de maíz en una región de México al parecer, a la falta de viabilidad económica de los sistemas agrícolas basados en el maíz. Teniendo en cuenta que la diversidad productiva es una estrategia de vida, el cultivo de distintas especies con diferentes ciclos y varios productos en diversos lugares, reduce los riesgos de pérdidas catastróficas debidas a posibles fluctuaciones del ambiente o de la sociedad (Alemán 2007). Por todo esto resulta de suma importancia que las variedades que se encuentran en bajas frecuencias (poco comunes), se tengan en cuenta cuando se diseñen estrategias de conservación por el peligro de erosión genética al que están expuestas.La diversidad que manejan los agricultores en sus cultivos tradicionales varía con el tipo de cultivo y región, y su preferencia por una u otra variedad depende de quienes la conservan. De esta manera, cuando en los diferentes sistemas tradicionales se conserva una amplia riqueza, tal diversidad tiene un uso limitado pues pocas variedades (en general, dos o tres) tienen predominio en la preferencia de los agricultores (más del 45% en maíz, más del 75% en frijol y chile). Esto, sin embargo, no es la generalidad ya que en Cuba no se observó una marcada predominancia de algunas de las variedades en los cultivos de frijol y chile.Al parecer la riqueza que conservan los agricultores en sus cultivos presenta una fuerte fragilidad en especial en aquellas variantes raras que sólo unos cuantos agricultores preservan, y que pueden perderse por las condiciones adversas en las cuales se siembran. Por esto es necesario implementar programas encaminados a fortalecer estos sistemas de conservación in situ, prestando especial atención al monitoreo de las variantes poco comunes y a la búsqueda de alternativas que permitan asegurar la reincorporación de éstas ante su desaparición en los sistemas agrícolas.Los autores agradecen a los técnicos y profesionales de Cuba, México y Perú por la labor que realizaron en campo, y a las diversas instituciones de investigación, educación, y ONG, entre otras, cuya colaboración hizo posible el presente trabajo. Así mismo, expresan de manera muy especial su reconocimiento a los campesinos que durante varios años han apoyado el desarrollo de las diferentes fases del trabajo, esperando que la reseña de su diversidad ayude a valorar la importancia de su papel en la conservación in situ de los cultivos tropicales americanos. El objetivo de este trabajo fue analizar el sistema tradicional de almacenamiento de semilla que manejan los agricultores y el rol que juega en la conservación de la diversidad del maíz, frijol y chile. El trabajo se realizó del 2005 a 2007 en diversas comunidades de la Amazonia central del Perú, de la región occidente y oriental de Cuba y en la península de Yucatán en México, todas ellas regiones del trópico húmedo de estos países. Se efectuaron entrevistas a los agricultores directamente en sus casas o en sus áreas de trabajo, y se realizaron recorridos en campo para conocer dónde y cómo se almacenan las semillas. El número de agricultores varió de acuerdo con el tamaño de la comunidad pero se trató de entrevistar por lo menos al 10% de esta población.Se observó que los agricultores manejan diferentes estrategias de almacenamiento tradicional de semilla, que varían con la región y el cultivo y que les permiten conservar alrededor del 85% (semilla propia y semilla local adquirida) del total de la que siembran los productores de maíz, frijol y chile en las regiones de estudio. Sin embargo, el sistema de almacenamiento aun cuando abastece de semillas de un ciclo agrícola a otro (menos de un año), presenta pérdidas de semillas que pueden ser superiores al 10% dependiendo del cultivo. Dado que ello se constituye como una vulnerabilidad debido al tipo de estructuras o contenedores rústicos que se usan, a las condiciones climáticas adversas y plagas imperantes en el trópico húmedo, es necesario fortalecer el sistema de almacenamiento tradicional con la implementación de mejores alternativas de almacenamiento y la capacitación de los agricultores para un mejor manejo poscosecha de las semillas.Todo ello contribuiría a tener semillas de buena calidad almacenadas por mayor tiempo.Desde hace miles de años, las semillas no son sólo el elemento esencial para establecer, expandir, diversificar y mejorar la agricultura, sino el principal mecanismo por el cual los cultivos se distribuyen en el tiempo y en el espacio. En este sentido la conservación de los recursos genéticos agrícolas que los agricultores efectúan depende, entre otros factores, de poder mantener las semillas de los cultivos en buenas condiciones para su posterior uso o aprovechamiento. Al respecto se han desarrollado diversos estudios relacionados con el sistema tradicional de almacenamiento de semillas que manejan los agricultores por el papel que éste cumple en la conservación de la diversidad (Rodríguez 1992;Conserve 2001;Herrera et al. 2002;Latournerie et al. 2006). Las estrategias de almacenamiento de semillas son de vital importancia pues los sistemas informales de semillas contribuyen con más del 80% de la semilla que los productores utilizan en cada ciclo agrícola en diversas regiones (Almekinders et al. 1994;Ortega et al. 2000;Yupit et al. 2004;Shagarodsky et al. 2007). En este sentido diversos estudios han enfatizado la importancia del sistema informal de semilla como el medio por el cual los productores satisfacen sus necesidades de semillas (Badstue et al. 2003;David 2004;Gómez et al. 2004;Badstue et al. 2006).Los campesinos de diversas partes del mundo manejan diferentes estrategias de almacenamiento ante la necesidad de guardar cada año las semillas de los cultivos en buenas condiciones para el siguiente ciclo agrícola, no solamente para la conservación de los recursos genéticos que manejan sino también para la supervivencia de sus familias. Estos métodos tradicionales de almacenamiento han sido efectivos a través del tiempo para conservar las semillas por periodos cortos. Al respecto Ramírez (1980) menciona que en la mayoría de los casos el almacenamiento de granos y semillas en las zonas rurales presenta instalaciones transitorias, como bodegas y graneros rústicos que los agricultores utilizan para guardar sus granos y que, por lo general, no están construidas y adaptadas para conservar dicho material por tiempos prolongados, y que comúnmente lo hacen por lapsos de uno a doce meses. Dentro de este marco, el trabajo se desarrolló con el objetivo de conocer los métodos de almacenamiento que usan los agricultores en condiciones tropicales para conservar sus semillas y la función que ellos cumplen en la conservación de la diversidad de los cultivos de maíz, frijol y chile.El trabajo se desarrolló del 2005 al 2007 en la región que geográficamente comprende el trópico húmedo en México, Perú y Cuba y se centró en los cultivos tradicionales de maíz (Zea mays L.), fríjol (Phaseolus vulgaris L.), y chile, ají o pimientos (Capsicum spp.). En México se realizó en tres comunidades rurales del estado de Yucatán: Ichmul, Sahcabá y Yaxcabá. Los sitios de estudio o comunidades se definieron teniendo en cuenta que practicaran el sistema tradicional de la milpa que ha perdurado desde los tiempos prehispánicos. En Perú se desarrolló en la Amazonia central, en los departamentos de Ucayali, Huanuco y Pasco, y comprendió doce comunidades de tres grupos socioculturales: Asháninka, mestizos y Shipibo-Conibo. En Cuba se trabajó en las comunidades de La Flora, La Tumba, Los Tumbos y Río Hondo, que corresponden a Pinar del Río en la región occidente, y en las comunidades de La Carolina, La Munición, La Vuelta, Rancho Yagua y Vega Grande, pertenecientes a la región oriental en Guantánamo.Como el tamaño de la muestra se definió teniendo en cuenta el número de agricultores en cada comunidad para cubrir el 10% del total en cada caso, el número de agricultores entrevistados varió notablemente en cada comunidad. Por ejemplo, en algunas comunidades en Perú y Cuba se trabajó con menos de veinte agricultores mientras que en otros casos en México y Perú se trabajó con más de cien. Las entrevistas -que se hicieron directamente en las casas o bien en las áreas de trabajo agrícola dependiendo del género y de la disponibilidad del productor-se realizaron en español. En México, en algunas ocasiones éstas se llevaron a cabo en maya (lengua nativa) con ayuda de un traductor pues los agricultores no entienden bien el español. La entrevista se centró principalmente en conocer las estrategias que manejan los agricultores para el almacenamiento de su semilla de los cultivos de maíz, frijol y chile, así como en los métodos de control o prevención de plagas.respectivamente). En Perú, sin embargo, guardan exclusivamente semilla trillada (100%). Los métodos utilizados en el almacenamiento de frijol son los mismos que se usan para el chile, pero en México se encontró que el 83% de los agricultores guardan sus semillas de chile sin extraerlas de los frutos secos (semilla sin trillar); en contraste con Cuba donde la mayoría lo hace como semilla trillada (84.6%), y con Perú donde todos los agricultores que almacenan lo hacen con semilla trillada (100%). En Cuba el chile es un cultivo dedicado al huerto familiar y muchas veces de materiales silvestres de tipo semi-perennes del cual, por lo general, los productores no guardan semillas. En México y Perú este cultivo no se limita solamente al huerto familiar.Con relación al lugar donde se almacenan las semillas se encontró que en México los agricultores prefieren guardar sus semillas de maíz principalmente en la milpa (56.4%) y en la casa (42%); en Cuba, tanto en la casa (45.5%) como en un almacén o bodegas (33.3%), y con menor frecuencia en la cocina o en el solar de la casa (Cuadro 2). Para frijol y chile la preferencia de un lugar u otro depende de la región o país: en México la mayoría de los productores guardan estas semillas en la cocina (63.9% y 93% respectivamente), y en Cuba preferiblemente en alguna parte de la casa (78% y 96.2%, respectivamente). También se observó que en Cuba una parte de la semilla de frijol y chile se puede guardar en un almacén o bodega, mientras que en México no se detectó el uso de esta alternativa.Al almacenar sus semillas los productores utilizan diferentes contenedores. En México se observa que la mayoría de los agricultores tienden a almacenar sus semillas de maíz en trojes (59%), una construcción tradicional hecha de madera y muy típica en ese país (Figura 1, Cuadro 3). El 40% utiliza sacos de polietileno (nailon) mientras que en Cuba los productores en su mayoría (32.2%) guardan las semillas de maíz en sacos de yute (Corchorus olitorius L.) o en recipientes de vidrio y de plásticos (19.4% y 16.1% respectivamente) cuyas tapas se cierran y sellan con cera (Figura 2). En Perú el contenedor más utilizado son los recipientes de plástico conocidos como 'galoneras' o baldes con tapas que se emplea para semillas de maíz (57.4%) y además para semillas de fríjol a granel (49.2%). En México algunos productores también conservan el maíz en la planta doblada (1%) o en mazorcas colgadas, esta última práctica reportada en Cuba cuando se tiene poca cosecha (en México aunque no se reporta, la practican algunos agricultores de Yucatán) (Figura 3).Figura 2. Recipientes de vidrio usados por pequeños productores cubanos para proteger sus semillas almacenadas contra insectos plagas. Se observa que los contenedores solo permiten guardar muy poca semilla para el siguiente ciclo de siembra (Foto: M. Hermann). Figura 3. Estrategia de almacenamiento en maíz con brácteas que se cuelgan en árboles del solar u otra estructura cerca de la casa que permite su conservación. La foto ilustra la forma en que un productor de Yucatán almacena su semilla de maíz y es un caso muy particular.En Cuba hay preferencia por los sacos de yute como contenedores para el frijol (35.8%), aunque la semilla de chile la almacenan en su mayoría en recipientes de vidrios (40.5%), una tendencia que también se observó en Perú (63.2%). A su vez, en México casi todos los productores almacenan las de chile en sacos de polietileno (98.7%), y el 46% los utilizan para semillas de frijol. En general, para guardar las de frijol y chile se utilizan los mismos tipos de contenedores con algunas excepciones en los agricultores mexicanos que usan los frutos secos de lek (Lagenaria siceraria (Molina) Standl.) (1.3%), o los agricultores cubanos que utilizan papel (24.3%) o sacos de tela (5.4%).Los agricultores tratan de proteger las semillas de sus cultivos de insectos plagas que la dañan durante el almacenamiento. En Cuba el 100% de los agricultores usan alguna estrategia de control para el maíz, en México el 68.8%, y en Perú solamente el 23.3% (Cuadro 4). En México el 68% protege sus semillas de frijol contra insectos en el almacenamiento y en Cuba sólo el 43.1%, mientras que en Perú no se cuenta con información al respecto. En México muy pocos agricultores (28%) protegen sus semillas de chile, y en Cuba no usan ningún método de control de insectos plagas, en particular para los chiles silvestres pues los campesinos sólo los mantienen dentro del jardín o de sus alrededores.Entre los agricultores que protegen sus semillas de maíz, en México el 82 % utiliza cal (hidróxido de calcio) y el restante 18% aplica algún tipo de insecticida agrícola. El uso de insecticidas también se reporta tanto en Cuba como en Perú (12.1% y 22.2%, respectivamente). En Cuba, sin embargo, la mayoría de los agricultores (66.6%) no emplea insumos y/o aditivos para conservar su semilla, sólo las sacan al sol cada dos o tres días, una práctica también utilizada en Perú (18.7%). En Cuba también emplean el guayuyo (Piper aduncum L.), específicamente sus hojas, para frotar las paredes del recipiente (6.1%) y/o combustible, petróleo o gasolina (9.1%) para aplicar a los contenedores. En Perú la mayoría de los agricultores (24%) coloca sus semillas de maíz en la cocina para que el humo del fuego no permita la entrada de los insectos plagas. Así mismo, se reporta que el 76.7% de los agricultores de ese país exponen sus semillas al sol antes de almacenarlas (por única vez). Este procedimiento no se incluyó como un método de control de plagas dado que, en general, los agricultores realizan esta práctica cuando almacenan sus semillas a granel, no necesariamente para controlar plagas sino para que la semilla esté bien seca.En México la forma más común para proteger las semillas de frijol es utilizar el humo del fuego (51%) colocando sobre éste los recipientes o las vainas donde permanecen hasta el próximo ciclo agrícola, una práctica que también se utiliza para proteger la semilla de chile (100%) (Figura 4).Figura 4. Semilla de frijol almacenada en vainas en sacos de polietileno y colocadas en la cocina cerca del fuego para que el humo las proteja de los insectos plagas. Cuadro 4. Protección de semillas almacenadas y estrategias de control de plagas que utilizan los agricultores en la conservación de las semillas de sus cultivos de maíz, frijol y chile. ‡ La proporción relativa de las estrategias de protección de semillas para el control de plagas en el almacén se consideró al 100% con respecto al porcentaje que protege semilla. n.d.= No disponible Otras estrategias contra insectos plagas de los agricultores mexicanos y cubanos es la aplicación de insecticidas órgano-sintéticos (26.5% y 32.1%, respectivamente), además del uso de cal (16.3%) y de recipientes plásticos perfectamente bien tapados (6.1%) en México. En Cuba se emplean otros métodos como la ceniza de carbón vegetal (27.3%) y las hojas de algunas plantas como repelentes (8%), además de algunos otros medios de protección como restos de vainas secas y aceites o combustible (gasolina y petróleo).Las semillas de variedades de maíz que los agricultores sembraron en la región de estudio en Cuba y México en el ciclo agrícola 2005 provino en particular de la de ellos mismos (67% y 62%, respectivamente) (Cuadro 5), mientras que alrededor de un cuarto de ésta la adquirieron por medio del sistema informal de semillas y menos del 9% del sistema formal. La semilla de frijol propia que los productores mexicanos y cubanos sembraron fue mayor al 80%, al tiempo que cerca del 15% provino del sistema informal y menos del 2% del formal. Estas tendencias se observaron también para el chile con excepción de Cuba donde se da una participación relativamente elevada del sector formal (15%) y de la semilla que se adquiere de manera local (41%) en ese ciclo agrícola. Las semillas que almacenan los agricultores cada año sufren daños que ocasionan pérdidas, encontrándose las mayores pérdidas en Cuba (10.5% en frijol, 12.5% en maíz y 17.5% en chiles) y menores en Perú (4.5% en frijol y 7.3% en maíz) (Cuadro 6). Las estrategias que los agricultores utilizan para almacenar sus semillas de maíz, frijol y chile varían de acuerdo con la región. La mayoría de los agricultores mexicanos del área de estudio prefieren almacenar el maíz en mazorca con coberturas (brácteas), tal como reportaron antes Rodríguez (1992) y Latournerie et al. (2006) para Yucatán, México. Sin embargo, en otras regiones de México se reporta que los agricultores, en general, almacenan sus semillas de maíz en mazorca sin brácteas (Louette y Smale 1998; Bellon y Risopoulos 2001), una práctica que también acostumbran la mayoría de los productores de Cuba y Perú. En Perú se reporta otra forma de almacenamiento que consiste en guardar la semilla a granel (trillada o desgranada), lo cual coincide con Tapia y De la Torre (1997) que mencionan que las mujeres de la región andina escogen primero las mazorcas más grandes y mejores, luego sacan la semilla con su envoltura, y finalmente cuando la mazorca ya está bien seca la desgranan y guardan los granos más grandes en costales como semilla hasta la siembra. El almacenamiento de semillas de frijol trilladas o sin trillar parece que depende del tipo de variedad, así que un mismo agricultor puede utilizar una u otra forma de almacenamiento (Latournerie et al. 2005). Este capítulo no pretende explicar la preferencia por almacenar la semilla de una forma específica en una región como el caso de frijol y chile que se almacenan solamente como semilla trillada en el Perú, mientras que en otras regiones se conservan ambas formas (trillada y sin trillar). Se podría pensar que esto ocurre en función de los contenedores que se usan, pero se observó muy poca variación de estos, al menos entre los cultivos y entre las regiones en estudio.El lugar donde se coloca la semilla de los cultivos que se va a almacenar varía según el país y el tipo de cultivo. En Cuba los agricultores almacenan las semillas de maíz, frijol y chile en su casa, es decir, que los productores utilizan las paredes de las habitaciones de sus casas como almacén. En México las semillas de maíz las almacenan en especial en la milpa o unidad productiva y en la casa. En contraste, Terán y Rasmussen (1994) reportaron que en una comunidad de Yucatán, México, la mayoría de los agricultores almacenan la semilla de maíz en el solar, en trojes en sus casas, y algunas veces en trojes en la milpa. Sin embargo, Yupit (2002) encontró que en Yucatán los productores construyen las trojes para almacenar el maíz en la milpa en particular. Esta decisión del agricultor está relacionada con dos criterios básicos: • La distancia que existe entre las milpas y sus casas que hace difícil el traslado del maíz hasta sus hogares y la razón por la cual solamente lo van llevando poco a poco para consumo o venta, y por lo cual la semilla siempre se queda en la milpa. • La protección contra animales domésticos (gallinas, cerdos) que habitan en el patio de sus hogares. Se observa que a pesar de ello los productores usan parte de las casas para guardar las semillas, ya sea en la cocina o en otra parte de ésta.Para conservar sus semillas los agricultores usan diversos contenedores que en su mayoría son los mismos en los diferentes países de estudio y cultivos, tales como sacos de yute, sacos de polietileno (nailon), recipientes de plásticos, de metales y de vidrio, que según el lugar y el cultivo pueden preferirse unos u otros (Cuadro 3). La FAO (2002) menciona que sorprende observar que en regiones muy distantes como África y América Latina los agricultores llegaron por diferentes caminos a tener y utilizar de manera similar diversas estructuras o construcciones. Al respecto, Vázquez (2001) anota que los sistemas de almacenamiento pueden incluir canastas y recipientes pequeños, como sucede en regiones rurales de África, India, México y el resto de América Latina, aunque también anota que se acostumbra a guardar maíz o fríjol en sacos. Por otro lado, se observan casos muy particulares al país y al cultivo como en Perú el uso de cajones de madera para guardar semilla de maíz, y en ciertos casos el uso de frutos secos de lek para chile y en México el uso de trojes para almacenar maíz.En Yucatán, México, la milpa tradicional, cuyas prácticas de almacenamiento comienzan con la construcción de una troje ventilada, es de gran importancia. Esta estructura se construye en el solar o en la milpa donde almacenan las semillas de maíz en mazorcas con brácteas (mazorcas con 'holoch' como se denomina localmente) (Rodríguez 1992;Terán y Rassmusen 1994;Latournerie et al. 2006). Hernández (1985) reporta que la diversificación en los tipos de graneros para maíz fue el resultado de diferencias de climas, diferencias de materiales disponibles para su construcción, rasgos culturales especiales de la sociedad, y variaciones en el nivel cultural. Este granero típico, conocido en Yucatán como troje y construido a base de troncos de árboles o arbustos que crecen en la localidad o de tablas de madera de desecho, tiene piso y paredes de madera y una altura que varía de acuerdo con la cantidad de maíz (FAO 2002).En general, los agricultores buscan conservar sus semillas en contenedores que se colocan en lugares secos, en la oscuridad, en construcciones altas (graneros) o en sus casas para mantenerlos libres de insectos (Baniya et al. 1999). Estos sistemas de almacenamiento varían con el tiempo tal como lo mencionan Collado et al. (2005) con un ejemplo en Ucayali, Perú, donde en las últimas décadas la aparición de recipientes plásticos ha modernizado el sistema de almacenamiento. A pesar de ello, existen familias que siguen utilizando formas y recipientes tradicionales empleando insumos locales o recursos naturales, como los frutos de lek para almacenar semillas de chile.Las estrategias que los agricultores utilizan para proteger sus semillas en el almacenamiento varían de acuerdo con el tipo de cultivo y de la región. En México, por ejemplo, se utiliza en especial cal (hidróxido de cal) para maíz, método que según Yupit (2002) es el más común en Yucatán. La cal se esparce poco a poco sobre las mazorcas dispuestas en una hilera en las trojes y con el ápice hacia abajo.En cuanto a las semillas de frijol y chile, la mayoría de los agricultores mexicanos las coloca cerca del fuego en la cocina para que el humo los proteja de insectos, una estrategia que también se acostumbra en la Amazonia central peruana para el maíz. Latournerie et al. (2005) reportaron el uso de humo del fuego en frijol y calabaza como una práctica común en el control de plagas. El uso de insecticidas en los sistemas tradicionales como otra forma de control no es muy común en las diferentes regiones de estudios (Cuba, México y Perú). Yupit (2002) explica que esto, al parecer, está relacionado de manera directa con el costo que tienen estos productos químicos y con el hecho de que los agricultores desconocen cuáles productos se pueden utilizar. Por otro lado, en Cuba y Perú se usa un mayor número de estrategias contra insectos plagas de maíz, como el uso de cenizas, combustibles (gasolina y petróleo), el soleado periódico de las semillas (sólo para maíz) y particularmente en Cuba se utilizan recursos naturales locales como las hojas de guayuyo y de otras plantas como repelente.El sistema de almacenamiento de semilla que manejan los agricultores en las áreas de estudio en Cuba, México y Perú le permite a la mayoría de ellos contar con la semilla que necesitan para establecer sus siembras de maíz, frijol y chile en cada ciclo agrícola. En diversos estudios se ha reportado que más del 80% de la superficie sembrada con maíz se establece con semillas locales (Almekinders et al. 1994;Ortega, 2000;Bellon y Risopoulos 2001;Herrera et al. 2002;Ix 2002;Perales et al. 2003;Badstue et al. 2006). De acuerdo con esto y con base en el hecho de que sin semilla no hay agricultura es evidente la importancia que tiene el sistema de almacenamiento en las comunidades que trabajan la agricultura tradicional, en la cual los agricultores dependen casi exclusivamente de ellos mismos y de otros productores para obtener las semillas de las variedades requeridas, tal como anota Badstue et al. (2003).La capacidad de los productores para producir y mantener la buena calidad de semilla en sus sistemas tradicionales ha sido y continúa siendo un factor clave en el aprovechamiento y conservación de los recursos genéticos vegetales. Dentro de estos procedimientos, las prácticas especiales de almacenamiento, tales como el uso de cenizas, contenedores sellados y humo del fuego de la cocina, entre otros, parecen ser comunes. Latournerie et al. (2006) mencionan que el sistema de almacenamiento que manejan los agricultores tradicionales parece ser un factor que influye o condiciona la adopción de variedades mejoradas por parte de los productores, ya que éstas no presentan las características que les permitan resistir las plagas del almacén (en especial buena cobertura). Este sistema tiene sus limitaciones en particular porque sólo permite conservar la semilla por un periodo corto de tiempo, cuando las pérdidas de semillas varían con el cultivo y la región. Al respecto Permuy et al. (2008) reportan que en Cuba la pérdida de semilla de frijol común en el almacenamiento puede ser hasta del 10% y que la causan, en especial, hongos e insectos. Lo anterior reviste gran importancia teniendo en cuenta que la conservación in situ de los cultivos depende de que los agricultores continúen sembrándolos en sus sistemas tradicionales. Además, sobre todo esto, en parte, ejerce influencia la disponibilidad de las semillas que requieren los productores que debe conservar su buena calidad en el almacenamiento para garantizar su conservación y aprovechamiento.La importancia del sistema de almacenamiento tradicional de la semilla radica en que asegura por lo menos el 85% de la semilla de los cultivos (incluyendo la propia y la local adquirida) de maíz, frijol y chile que siembran los agricultores en el trópico húmedo de Cuba, México y Perú. A pesar de ello, las condiciones precarias del almacenamiento, las condiciones climáticas adversas y las plagas inducen pérdidas de semillas que pueden ser mayores al 10% según el cultivo en periodos cortos de almacenamiento (no más de un año), y que hacen vulnerable el sistema informal de almacenamiento. En este sentido es necesario buscar mejores alternativas que garanticen la conservación de la semilla en mejores condiciones por mayor tiempo, así como la capacitación de los agricultores para un mejor manejo poscosecha de la semilla como una alternativa para fortalecer el sistema de almacenamiento tradicional.Los autores agradecen a los técnicos y profesionistas de Cuba, México y Perú por la labor que realizaron en campo, y a las diversas comunidades y agricultores sin cuyo apoyo y comprensión no hubiera sido posible llevar a cabo esta investigación. El funcionamiento de las redes informales de semillas en las comunidades rurales es complejo y no sólo depende de la habilidad de los agricultores en el manejo e intercambio de semillas, sino que es la base de la seguridad alimentaria de las familias. Dado que a pesar de esta situación, no existe mucha información disponible sobre este tema, los objetivos fundamentales de esta investigación -desarrollada en 36 fincas tradicionales de Cuba, 254 milpas de Yucatán en México y 152 chacras de la Amazonia central de Perú-fueron evaluar las redes de abastecimiento de semillas dentro y entre las comunidades, e identificar las principales limitaciones que enfrentan los agricultores en los sistemas informales. Para ello se utilizaron cuatro cultivos en los sitios mencionados: frijol común (Phaseolus vulgaris), pallar (P. lunatus), chile (Capsicum spp.), y maíz (Zea mays) entre los años 2005 y 2007. Se encontró que el 90% o más de la semilla que se siembra en las fincas procede del sector informal (incluyendo la semilla propia), por lo que es incuestionable la persistencia de las redes de abastecimiento o intercambio de semillas en los sistemas locales e informales. Las limitaciones más importantes que identificaron los agricultores se relacionan con el ámbito ambiental y socio-económico. Una adecuada capacitación permitiría a los agricultores mejorar la calidad de las semillas de los cultivares tradicionales, para lo cual deben establecerse estrategias locales y nacionales dirigidas a mejorar las habilidades de los campesinos en la producción y conservación, que a su vez serían una contribución a la preservación de los recursos genéticos de los cultivos en los tres países.Los sistemas informales de semillas son aquellos donde los campesinos acceden para obtener la semilla de los diferentes cultivos en las fincas. Estos incluyen organizaciones (redes), individuos, en algunos casos instituciones relacionadas con la producción de semillas, y los procesos de selección, limpieza, almacenamiento e intercambio de materiales. La estructura genética de las poblaciones de cada cultivo es dinámica dentro de los sistemas informales de semillas. De una manera periódica, los agricultores deciden cuántos y cuáles cultivares van a sembrar, para lo cual aseguran un suministro de semillas a partir de diversas fuentes. Ellos no son receptores pasivos de la diversidad, sino que participan en redes dinámicas de intercambio (Jarvis et al. 2000).Los sistemas de suministro de semillas incrementan el uso de la diversidad y satisfacen al mismo tiempo las demandas específicas de semillas del agricultor (Jarvis 2004). A diferencia de los sistemas orientados al mercado o formales (FAO 2007), una de las ventajas de los sistemas de semillas tradicionales o comunitarios es la amplia diversidad que se maneja.Con base en la selección de la semilla para el siguiente ciclo de siembra y posteriormente a través de la red informal, se transmiten de una a otra finca un conjunto de características deseadas de los cultivos para cubrir diferentes necesidades de los agricultores. Los actores locales son los componentes de las familias que deciden cuáles variedades de los cultivos se van a sembrar y acceden a la semilla de acuerdo con sus preferencias, las cuales varían (Almekinders 2007) de un lugar a otro, entre regiones, comunidades y familias, así como entre cultivos y entre variedades, realizando de manera simultánea, la conservación in situ de los recursos fitogenéticos localmente adaptados.En términos de adquisición, producción y conservación de la viabilidad, la seguridad de la semilla para los pequeños agricultores es con frecuencia crítica para su supervivencia. Sin embargo, como los sistemas de semillas en pequeña escala dependen de las condiciones individuales de cada comunidad en cada región y en cada país, no hay mucha información integral disponible sobre el tema (Jarvis 2004). Por ello, las principales inquietudes que motivaron el inicio de esta investigación, fueron evaluar las redes de abastecimiento de semillas dentro y entre las comunidades en el sector informal, y definir sus principales limitaciones a partir de las perspectivas de los propios agricultores de las fincas, chacras y milpas tradicionales de algunas regiones de Cuba, México y Perú. Se utilizaron cuatro cultivos como casos de estudio, frijol común (Phaseolus vulgaris L.), pallar (Phaseolus lunatus L.), chile, ají o pimiento (Capsicum spp.), y maíz (Zea mays L), cultivos que contribuyen a la supervivencia del campesino en las comunidades locales de las áreas seleccionadas en América Latina, donde está representada la variabilidad de los cultivos.Los datos se tomaron a partir de entrevistas tanto individuales como grupales, basadas en una guía semi-estructurada que permitió el intercambio de información con los agricultores de 36 fincas tradicionales del occidente (comunidades La Flora, La Tumba, Los Tumbos y Río Hondo) y del oriente (comunidades La Carolina, La Munición, La Vuelta, Rancho Yagua y Vega Grande) de Cuba. También se realizaron encuestas previamente diseñadas a los agricultores en 254 milpas de las comunidades Ichmul, Sahcabá y Yaxcabá, situadas en la península de Yucatán, México, donde perduran los sistemas agrícolas tradicionales desde tiempos prehispánicos, y de 152 chacras o fincas tradicionales en 12 comunidades de la Amazonia central del Perú pertenecientes a tres grupos socioculturales (Shipibo-Conibo, Asháninkas y mestizos), donde predomina el sistema agrícola de roza-tumba-quema ubicados en los agroecosistemas aluviales existentes.Por el recelo de los agricultores para brindar información a desconocidos, se trazaron diferentes estrategias para ganar su confianza. En el caso de México, quienes tomaron la información vivieron en las comunidades y trabajaron con traductores de maya (lengua nativa) de las propias comunidades. En Cuba los agricultores conocían a los especialistas de los territorios de las Reservas de la Biosfera Sierra del Rosario (occidente) y Cuchillas del Toa (oriente), del Programa El Hombre y la Biosfera de la UNESCO (Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura), pues sus fincas están situadas en el área de transición de las mismas, y estuvieron siempre vinculados a las expediciones de campo y las entrevistas a las familias. Esta misma circunstancia también se dio en Perú donde CODESU (Consorcio para el Desarrollo Sostenible de Ucayali) ha trabajado con las comunidades de la Amazonia central de Perú por más de diez años.Para medir el intercambio de semillas dentro y entre las comunidades se tuvo en cuenta la variabilidad intraespecífica identificada durante la ejecución de la investigación. En el caso de Cuba se identificaron 15 cultivares de pallar y 22 de frijol común, 30 de chile y 18 de maíz, los cuales ya habían sido reportados por Castiñeiras et al. (2006). En las comunidades que se estudiaron en México y Perú, se tomaron los datos a partir de 15 y 11 variedades de maíz, 8 y 14 cultivares de frijoles, y 6 y 8 cultivares locales de chile, respectivamente.Se tomó la información independiente para cada cultivo a partir del número de agricultores que se dedicaban a cultivar al menos uno de los cultivos objetivo en el momento del estudio (Cuadro 1). Los resultados reflejan la información que se obtuvo para toda la variabilidad inventariada dentro de cada uno de ellos. Se consideraron todos los movimientos espontá-neos de semilla (donada y/o recibida) que los agricultores referían durante las entrevistas y que confirmaron los equipos de investigación dentro o fuera de las comunidades, incluso aquellos que se realizaron entre agricultores no vinculados a la investigación.Los datos sobre los movimientos de semillas corresponden a los años 2005 para México y Perú, pero para el caso de Cuba, la información se tomó entre los años 2005 y 2007 pero solo por un año en cada comunidad. A partir del total de la muestra que se evaluó de los cultivos objetivo (Cuadro 1) en el momento de la investigación, se realizaron análisis basados en la descripción y en el cálculo de los porcentajes de las familias que intercambiaron semillas. Para conocer la frecuencia (%) de intercambio de semillas de maíz y frijol común en Cuba, se utilizó la fórmula f = x/y • 100, donde: f = Frecuencia de intercambio x = Número de intercambios que los agricultores realizaron para un cultivar en la misma región y = Número de cultivares por especie identificados en los sitios de intervenciónLa actividad de selección de semilla comienza en la fase de producción en el campo, continúa en la cosecha, en la fase de limpieza, antes del almacenamiento, y luego se realiza una última selección justamente antes de la siembra en el siguiente ciclo. Así fue posible identificar las principales limitantes (o cuellos de botella) que enfrentan los agricultores en las diferentes fases del manejo de semillas del sector informal, desde la producción hasta el siguiente ciclo de siembra. Para ello se trabajó con grupos focales en los sitios de intervención del proyecto en Cuba durante el año 2006 y se encuestaron 25 productores de pallar, 29 de frijol común, 32 de chile, y 33 de maíz. Después de organizar la información que se obtuvo, esta se valoró de manera colectiva y con todos los agricultores participantes en la investigación (36 familias en total), la cual posteriormente fue corroborada durante las expediciones de campo (visitas a las fincas).Por otro lado, en el 2006 se encuestó de manera individual a los agricultores (164 familias) que mantenían el cultivo del maíz en las comunidades Ichmul y Yaxcabá (México), para recopilar información sobre las diferentes limitaciones que ellos enfrentaban en el manejo postcosecha de la semilla hasta el siguiente ciclo de siembra.Del total de familias vinculadas a la investigación en Perú, se tomó el consenso de los agricultores que no se dedicaban a los cultivos objetivo (20 familias para maíz, 106 para frijol y 40 para chile) para capturar la información a través de encuestas diseñadas sobre la dificultad para conseguir semilla desde el punto de vista de disponibilidad y calidad durante el 2005.La semilla que se mueve en el sistema informal depende de los cultivos que se analicen, de las preferencias e intereses de los agricultores con relación a las características deseadas en los diferentes cultivos, de los cultivares que conocen y a los cuales tienen oportunidad de acceder; y de las condiciones específicas imperantes en el momento de la siembra que pueden estar relacionados con factores bióticos, abióticos y socio-económicos. Para abastecer su finca el agricultor utiliza diferentes vías, tales como el uso de semilla propia, el regalo, el trueque y la compra de esta, tanto de cultivares tradicionales como de cultivares comerciales o mejorados. El dinamismo que muestran las redes de semilla está dado por la participación de los agricultores, así como la de las ONG y el sector formal, lo que permite a los campesinos, como actores locales, mantener la producción en sus áreas de cultivo. En ocasiones las cantidades de semilla que se donan y se reciben son pequeñas, pero el agricultor se encarga luego de reproducirla si después de una fase de prueba, considera que debe formar parte de la estrategia varietal de su finca o milpa.La dirección del movimiento de las semillas puede ser hacia dentro o hacia fuera de la finca. Lo primero se da cuando se recibe semilla (se abastece), ya sea desde otra finca de la comunidad, desde comunidades vecinas, o del sector formal; y lo segundo se da cuando se entrega semilla a otro agricultor. Almekinders (2007) y Badstue (2007) expresaron que en los sistemas informales de semilla la mayoría de los intercambios tienen lugar en la comunidad y entre miembros de la misma clase social o grupo étnico pues el intercambio de agricultor a agricultor resulta muy efectivo y rápido.Nuestros resultados coinciden en que los intercambios de semillas dentro de la red de los agricultores ocurren principalmente dentro de las comunidades (en más del 76.0% de los casos), mientras que los intercambios entre comunidades no fueron mayores de 23.9% (Figura 1). En ocasiones la red no se extiende fuera de la comunidad, como en el caso de los tres cultivos objetivo en Sahcabá y los chiles en Yaxcabá (México), situación que indica que la semilla existente en esas comunidades pudo suplir la demanda de los agricultores. La oferta y la demanda de semillas del agricultor en una finca o milpa pueden variar de un año a otro, porque la situación específica que enfrenta la producción cada año es diferente, circunstancia que hace que el sistema informal de semillas sea más complejo. En los casos antes citados los cultivos se sembraron para la subsistencia familiar durante los años evaluados y se necesitaron pequeñas cantidades de semillas que se obtuvieron en las propias comunidades. Una situación particular, sin embargo, se pudo observar en el grupo sociocultural Shipibo-Conibo (Perú) para el frijol, donde el 85% de las familias adquirieron semillas de otras comunidades dado que el cultivo es más frecuente en los grupos mestizos. Las familias Shipibo-Conibo recurren a estas comunidades para abastecerse en el momento de la siembra aunque estos últimos manifiestan poco interés por el cultivo. Esto quizás se debe a que no cuentan con terrenos apropiados para su desarrollo (Collado et al. 2005) y prefieren cultivar el 'frijol chiclayo' (Vigna unguiculata (L.) Walp.) en los lugares donde los ríos forman playas en épocas de menor cauce, y en donde la mano de obra para la preparación de terreno y mantenimiento del cultivo es mínima. La frecuencia con la que se mueve la semilla es superior cuando un número mayor de agricultores mantienen el mismo cultivar en el sistema y viceversa, lo cual, a su vez, depende de la preferencia o la demanda que ese cultivar tenga en la comunidad. El Cuadro 2 muestra un ejemplo de este fenómeno para los cultivos de maíz y frijol común en la región oriental de Cuba, donde se observó que las frecuencias del movimiento de semillas presentaron un valor más alto para los cultivares más comunes como 'Cuña' y 'Criollo' (maíz), y 'Negro sin brillo' y 'Colorao' (frijol común), mientras que los cultivares raros se movieron con una frecuencia muy baja o nula, como 'Argentino' y 'Grano grande' (maíz), y 'Maní' y 'Blanco' (frijol común). Todo esto indica que los cultivares locales raros o únicos en los sitios de intervención del proyecto podrían sufrir erosión genética.Favorecer la dispersión de estos cultivares raros dentro de la red informal de semillas en las comunidades rurales, y conservar muestras de sus semillas en los bancos de germoplasma nacionales (colecciones ex situ), serían estrategias alternativas en los países para apoyar su conservación in situ y evitar su pérdida. En Cuba, por ejemplo, fue posible reponer ocho cultivares de frijoles, uno de chile y dos de maíz durante el año 2007 en algunas fincas de pequeños agricultores vinculados a la investigación, a partir de la semilla conservada ex situ en el Banco de Germoplasma Nacional situado en el Instituto de Investigaciones Fundamentales en Agricultura Tropical \"Alejandro de Humboldt\" (INIFAT) que había sido colectada dos años antes en esas propias fincas.Cuadro 2. Flujo de cultivares de maíz y frijol común en el sistema informal de semillas, y número de agricultores que los cultivan/mantienen en la región oriental de Cuba.Número En los últimos años se ha reconocido al sector informal como el que más abastece de semillas a muchos cultivos y áreas donde la venta de semillas por organizaciones formales es difícil (Bishaw y Turner 2007). En general, los agricultores prefieren las semillas que han sido producidas en su finca (Ortega-Paczka et al. 2000;Arias et al. 2004;Gómez-López 2004), pues ésta es una semilla de calidad conocida (Almekinders 2007) en la cual confían para minimizar el riesgo de obtener una mala cosecha (Badstue 2007). Sólo de manera ocasional (cuando la disponibilidad de semilla dentro de la comunidad es baja o nula) los agricultores adquieren semillas de fuentes externas (Badstue et al. 2006), debido a que las relaciones entre miembros de una misma comunidad, o sea entre conocidos, es más confiable que la intervención de un desconocido en las transacciones, comportamiento que coincide con nuestros resultados. El uso de semilla propia estuvo entre los valores de 67.0 y 87.7% del total del área sembrada para los tres cultivos (Figura 2).En México los materiales de maíz mejorados (híbridos) los distribuyen los programas de gobierno o se compran en las tiendas distribuidoras, tal como lo indican Ortega-Paczka et al. (2000), Ix-Nauta (2002) y Gómez et al. (2004). Los resultados mostraron que la semilla adquirida del sector formal no sobrepasa el 4% como promedio de las tres comunidades estudiadas en los sitios de intervención en México (Figura 2), pero ambos sistemas se complementan y contribuyen a satisfacer las necesidades de semillas de los agricultores mayas, tanto de variedades locales como de material mejorado. Sin embargo en Ichmul y en Yaxcabá los agricultores se autoabastecen con semillas de frijol común, y en Sahcabá el sistema formal distribuye apenas un 2% de los lotes que se siembran. Esto significa que para el cultivo de fríjol el sistema formal de semillas tiene una importancia muy marginal.En el Perú, los Asháninkas sobresalen con más del 72% de familias que se autoabastecen de semillas para los cultivos de maíz y frijol, posiblemente debido a que sus comunidades, por encontrarse más distantes de los mercados y orientar la producción de los cultivos al consumo familiar, optan por conservar su propia semilla. Por otro lado, los mestizos son quienes adquieren mayores cantidades de semillas de maíz pues son ellos quienes destinan un área mayor a este cultivo con una orientación comercial. Pérez (2000) encontró que el chile que más siembran los productores en la milpa de Yucatán (México) es el 'Ya'ax ic' que se adapta a condiciones agroecológicas rústicas y resiste la sequía. El productor conserva esta semilla y la de otros cultivares tradicionales, pero compra la semilla del chile 'Habanero' al sector formal cuando la necesita. El 'Habanero' es un cultivo que no se adapta a las condiciones de la milpa pues requiere de riego y fertilizante. En las comunidades de Cuba (Barrios 2007), México y Perú que se estudiaron, se siembran unas pocas plantas de los cultivares tradicionales de chile alrededor de las viviendas para el consumo familiar, siendo las mujeres la clave para la conservación de estos recursos que se aprecian por su sabor y aroma característico.Figura 2. Procedencia de las semillas que sembraron los agricultores para la producción de los cultivos objetivo en las fincas de Cuba, México y Perú con respecto al total del área sembrada. Lo que hace atractiva la fuente de semilla utilizada, ya sea interna o externa a la finca, depende de las razones y necesidades del propio agricultor. Como principales atributos para el uso de la semilla criolla de maíz en el Valle de Toluca (México) por ejemplo, figuran la adaptación a las condiciones climáticas, el rendimiento y la confianza en la producción (Guillén- Pérez et al. 2002). Otros autores también han notado la preferencia de los agricultores por mantener sus cultivares tradicionales ya que ellos están adaptados a micro-nichos únicos (Dennis et al. 2007).En algunas ocasiones los agricultores acceden a la semilla del sector formal con motivos puramente de producción comercial, aunque las características organolépticas de las variedades comerciales no cumplan las expectativas del consumo familiar. Varios agricultores de la muestra que se estudió en Cuba, adquirieron semillas de algunas variedades mejoradas en el sector formal pues los ventajosos rendimientos de estas, permiten aumentar los ingresos económicos. Los cultivares tradicionales, sin embargo, aunque con rendimientos más bajos, satisfacen las preferencias culinarias de las familias. Dos agricultores de la región oriental vinculados a la investigación adquirieron semillas de las variedades comerciales de Capsicum annuum L. 'Español' y 'California Wonder' para comercializar el fruto en el mercado agropecuario, aunque estas variedades se usan también para el consumo familiar y además para seleccionar los mejores frutos para extraer la semilla que sembrarán en el próximo ciclo.En el caso del maíz, las variedades comerciales 'Gibara' se adquieren en la región occidental y 'Yanelys' en la oriental, pero el color y el sabor de los granos de estas variedades no son los que los agricultores prefieren. Por esta razón, su producción se destina sólo a la comercialización aunque también seleccionan las mejores mazorcas para tomar de ellas la semilla que sembrarán en el siguiente ciclo, pues es frecuente reproducir la semilla en la finca después de que se adquirió por primera vez.La cantidad de semilla de las diferentes variedades de cada cultivo que seleccionan los productores para sembrar en el próximo ciclo puede variar y está condicionada, entre otras razones, por la superficie que el agricultor decida sembrar, la cantidad de semilla cosechada y almacenada en el ciclo anterior, así como por la semilla disponible en cada sitio que proviene tanto del sistema formal como del sistema informal de semillas, justo en el momento en que se va a sembrar cada año.Por ejemplo, en Ichmul (México) los productores de maíz seleccionaron una muestra mayor de variedades introducidas que locales para sembrar en el año 2005, pero después de la cosecha el volumen de las introducidas que almacenaron fue menor y la superficie que se sembró en el siguiente ciclo fue mucho más pequeña para esas mismas variedades. Esto se constituyó en un indicador de la preferencia de los campesinos por las variedades locales. Los productores de Ichmul hacen una primera selección de semilla en la cosecha y unos días antes de la siembra realizan la selección final, tal como lo describen Yupit-Moo et al. (2004). Es en ese momento cuando evalúan y deciden a cuáles variedades van a acceder (demanda), muchas veces dependiendo de la semilla que se encuentre a su disposición (oferta). Para el cultivo de los frijoles en México, la tendencia se encaminó también hacia la utilización de cultivares locales.En los sistemas informales no se realizan siembras cuya finalidad sea solamente la producción de semillas, sino que se selecciona la semilla a partir de la producción del cultivo, es decir, que se aprovechan las áreas de producción. El Cuadro 3 muestra cómo el porcentaje de semilla almacenado es bajo con respecto a la producción total de las fincas, pero este varía dependiendo del cultivo. Los porcentajes que se reportan son mayores en México para los cultivos de maíz y frijol al compararlos con los reportes de Cuba y Perú. También se puede observar que se donó solo una pequeña proporción de la producción total obtenida. Con base en los aspectos relacionados con el manejo de las semillas en los sitios de estudio de los tres países se identificaron las principales limitaciones o cuellos de botella que enfrenta el sistema informal de semillas en sus diferentes etapas. Estas limitaciones se recopilaron y clasificaron en cinco tipos fundamentales: Limitaciones ambientales • Bióticas: Incidencia de plagas y enfermedades en el campo y en el almacenamiento, mantenimiento de la viabilidad de la semilla almacenada y baja productividad de los cultivos. • Abióticas: Fenómenos climáticos (huracanes y largos períodos de sequía) y degradación de las tierras.• Insuficiente conocimiento del uso y de las prácticas de manejo de la diversidad tradicional.• Falta divulgación de existencia de variabilidad en fincas, y baja disponibilidad de semillas en el sistema. • Insuficiente conocimiento sobre la conservación de la viabilidad de las semillas en el almacenamiento. • Largas distancias que se deben recorrer para adquirir semilla.• Deficiente comercialización.• Falta de envases adecuados para conservar semillas.• Bajo poder adquisitivo de las familias para comprar semilla e insumos para controles de plagas y enfermedades en el almacén. • Precios elevados de la semilla, en especial en épocas de desastres naturales.• Bajo precio de venta de la producción del agricultor.• Tamaño pequeño de las poblaciones de las variedades tradicionales que se mantienen en las fincas y poca semilla seleccionada para almacenar. • Pureza genética (no se mantiene el adecuado aislamiento entre variedades de cultivos con sistema de reproducción alógamo como maíz y chile).• Acceso insuficiente a la variabilidad del sector formal.• Apoyo insuficiente a la capacitación en el manejo y conservación de las semillas.Entre los agricultores de Cuba hubo consenso en que el cuello de botella más importante se encuentra en la etapa de producción debido a las condiciones climáticas actuales, en las cuales prevalecen largos y fuertes períodos secos y lluviosos. Una manera en que los agricultores man-tienen la viabilidad de la semilla en sus fincas es sembrando varias veces en el año, por lo que el factor clima puede provocar la pérdida total de un cultivar tradicional.Para los agricultores de Yucatán (México) el cuello de botella más importante es la distancia que recorren para acceder a la semilla de otras comunidades y la pequeña cantidad de semilla que se almacena, la cual muchas veces no permite extender el área de siembra. Es curioso que los agricultores de esta región no hayan definido el factor ambiental como una de las limitantes principales a pesar de que los sitios de estudio se encuentran expuestos cada año a los huracanes luego de su paso por el Caribe. Ellos reconocen, sin embargo, que el precio de la semilla aumenta después de que estos desastres naturales ocurren, es decir, después de la pérdida y de la dificultad que se presenta para encontrar semilla en otras milpas dentro de la comunidad.Los agricultores de Perú también consideraron importantes los factores ambientales, que en este caso se relacionaron con el deterioro de las semillas por el ataque de plagas y enfermedades en el almacenamiento. La limitante más importante para las comunidades Shipibo-Conibo (Perú) es la poca disponibilidad de semillas de los cultivos de maíz y frijol, mientras que para los tres grupos socioculturales fue importante la falta de recursos económicos para adquirir semillas. Es probable que esta sea una de las razones que apoya la utilización de semilla producida en la propia finca del agricultor. Otro de los problemas que afrontan los agricultores de los tres grupos socioculturales para el cultivo de maíz es el bajo precio que tiene el producto en el mercado local.Las pérdidas en el cultivo del frijol común para los productores tradicionales de México y Cuba se asociaron fundamentalmente con el comportamiento de los factores climáticos durante el ciclo del cultivo y a los factores bióticos. En las fincas se han perdido en su totalidad cultivares con escasa tolerancia a la sequía o a la humedad, además del deterioro que han llegado a presentar por el Virus del Mosaico Dorado, en especial en la región occidental de Cuba.Como en las fincas de Cuba la semilla de pallar muchas veces se siembra justo después de la cosecha debido al largo ciclo de vida que poseen los cultivares tradicionales, la semilla se almacena solo por unos días. Por la naturaleza y destino de la producción, uno de los cuellos de botella para este cultivo es el tamaño pequeño de la muestra del material conservado. Por ser un cultivo infrautilizado y no comercial en Cuba, no existe una demanda en el mercado y se ha perdido el conocimiento de su uso y manejo. Esta situación indica la necesidad de divulgar las principales propiedades de este cultivo que se encuentra sólo en las fincas de los agricultores de las áreas rurales del país. Sin embargo el acceso a la variabilidad se tiene solo a partir de semilla proveniente del sector informal. Los agricultores refieren muy pocas pérdidas en la producción y ninguna en el almacenamiento, pues prácticamente no almacenan semillas de este grano, aunque los períodos de sequía provocan la ausencia de floración y fructificación de las plantas, lo que constituye un riesgo importante para la obtención de semilla. Por otro lado, los huracanes y los períodos de lluvia muy intensos afectan la viabilidad de las plantas de esta especie.Un factor importante que pone en riesgo la conservación de la variabilidad de chile es el tamaño pequeño de las poblaciones (a veces entre una y cinco plantas), por el limitado espacio de la finca para el establecimiento de las plantas. Esto trae además, como consecuencia, que se pierda la integridad genética de una población debido al sistema de reproducción alógamo facultativo de la planta y a la escasa distancia entre ellas. Por otro lado, la variabilidad de cultivares tradicionales de chile que se maneja en las fincas de Cuba, no ha ganado un espacio en el mercado; es un recurso sub-explotado y a la población (mercado) llega sólo una escasa representación de la diversidad que existe en la actualidad en las comunidades rurales.Las limitaciones identificadas no permiten a los agricultores en pequeña escala incrementar la cantidad y la calidad de semilla producida, considerando las fases de manejo desde la producción y la selección hasta el almacenamiento. Estos cuellos de botella identificados por los propios agricultores resultan en fragilidad y vulnerabilidad de los sistemas informales de semillas y evidencian la necesidad de trazar estrategias que permitan su fortalecimiento, en especial promoviendo la capacitación de los agricultores en pequeña escala en los sitios, el intercambio de experiencias entre ellos, con las instituciones formales y con las organizaciones no gubernamentales vinculadas al tema del manejo de semillas.Los resultados de esta investigación muestran que el sistema informal de semillas es el sistema que en la realidad hace sostenible la producción agrícola de los pequeños agricultores de las áreas rurales en los trópicos húmedos de Cuba, México y Perú. Es evidente que las instituciones y organizaciones nacionales tienen ante sí el reto de implementar estrategias que permitan fortalecer dichos sistemas en los tres países, con lo cual además se estará fortaleciendo la conservación in situ de los recursos genéticos para la agricultura y la alimentación en el futuro.En más del 76% de los casos estudiados en Cuba, México y Perú los intercambios de semillas ocurrieron dentro de las comunidades (en ocasiones la red de los agricultores no se extiende fuera de la comunidad), mientras que los intercambios entre comunidades estuvieron por debajo del 24%.El 90% o más de la semilla que se siembra para los cultivos objetivo en las fincas vinculadas al estudio procede del sector informal (incluyendo la semilla producida por el propio agricultor). Por esto, es incuestionable la persistencia de las redes de abastecimiento o intercambio de semillas en los sistemas locales e informales, su gran importancia en las fincas a pequeña escala y la necesidad de concretar estrategias para apoyarlas en los trópicos húmedos de Cuba, México y Perú.Las principales limitaciones de los sistemas informales de semillas se asociaron con factores ambientales y de manejo post cosecha, por lo que una adecuada capacitación -que se lograría con el apoyo de instituciones, ONG locales y nacionales-permitiría a los agricultores del sistema tradicional de producción en los tres países, mejorar la cantidad y la calidad de la semilla producida de las variedades tradicionales. Las estrategias locales y nacionales deben dirigirse a fortalecer estos sistemas, incrementar el conocimiento de los campesinos en aspectos medulares de la producción y conservación de semillas de los cultivos.Los autores agradecen a las comunidades locales de los sitios de estudio de Cuba, México y Perú su colaboración, apoyo y confianza durante la ejecución del trabajo de campo, así como a IDRC y Bioversity, la asesoría financiera y técnica brindada para la ejecución de la investigación.en el flujo de material genético y en la dinámica de esos sistemas. En general estos productores, a quienes se les denomina agricultores nudo, mantienen una mayor biodiversidad agrícola en su finca, abastecen de semillas a otros, y se consideran socialmente como personas con mayor conocimiento con relación al manejo de los cultivos porque de manera constante buscan nueva diversidad (Sthapit et al. 2002;Sthapit et al. 2003;Subedi et al. 2003;Bazile et al. 2005;Singh et al. 2006). De acuerdo con Subedi et al. (2003), los agricultores nudo en las redes comunitarias o informales de semillas son un elemento clave en el mantenimiento de la biodiversidad agrícola en la finca, y en el manejo de los procesos involucrados en esas propias redes. No obstante lo anterior, y a pesar de que el intercambio entre agricultores es ampliamente reconocido en las regiones de estudio como fuente de abastecimiento de semillas, es poco lo que se conoce de los agricultores nudo en los trópicos húmedos americanos, en especial en relación con sus características y con la función que cumplen en dichas redes. Dentro de este contexto, el objetivo de este capítulo fue identificar y analizar a los agricultores nudos en la dinámica del sistema informal de semillas en comunidades rurales de Cuba, México y Perú.El estudio se desarrolló en comunidades rurales del trópico húmedo en el occidente y oriente de Cuba, en Yucatán, México, y en la Amazonia central del Perú, teniendo en cuenta cuatro cultivos: maíz (Zea mays L.), frijol común (Phaseolus vulgaris L.), frijol pallar (Phaseolus lunatus L.), y chile (Capsicum spp.). Las metodologías y estrategias que se utilizaron fueron específicas para el desarrollo del trabajo en cada país y se describen a continuación.En Cuba, el trabajo se realizó en las áreas de transición de dos reservas de la biosfera: Sierra del Rosario (provincia Pinar del Río), situada en la región occidental; y en Cuchillas del Toa (provincia Guantánamo), ubicada en la región oriental. En la primera región se trabajó con 18 familias de cuatro comunidades (La Flora, La Tumba, Los Tumbos y Río Hondo), mientras que en la segunda se trabajó con otras 18 familias de cinco comunidades (La Carolina, La Munición, La Vuelta, Rancho Yagua y Vega Grande). Los muestreos se realizaron durante un año así: en el 2005 en La Flora y La Munición; en el 2006 en Los Tumbos y Rancho Yagua; y en el 2007 en La Carolina, La Tumba, La Vuelta, Río Hondo y Vega Grande.El criterio de selección de agricultores para la investigación en Cuba fue escoger familias de agricultores en las cuales se observó una buena variabilidad intraespecífica de los cultivos objetivo en sus fincas, así como una riqueza de especies (30-35 especies como mínimo). Además, se tuvo en cuenta que la familia hubiera estado asentada en la comunidad por lo menos durante 30 años y que no pensara emigrar.En México el trabajo se hizo en la comunidad maya de Ichmul, municipio de Chikindzonot, Estado de Yucatán, solamente en el 2005. Aquí se identificaron primero las familias que cultivaban maíz y frijol y luego de esta muestra se entrevistó a los agricultores que habían donado semillas a otros agricultores a quienes a su vez también se entrevistó para conocer si además habían adquirido semillas de otras fuentes.En la Amazonia central de Perú, la investigación se desarrolló en los departamentos de Ucayali y Pasco, provincias de Coronel Portillo y Oxapampa, respectivamente en seis comunidades de diferentes grupos socioculturales: dos Shipibo-Conibos (Santa Elisa y Santa Rosa de Dinamarca), dos Asháninkas (Nueva Galilea y Nuevo Porvenir), y dos en caseríos mestizos principalmente de colonos (Éxito y Santa Rosa de Masisea). Para estas seis comunidades amazónicas, cuyo estudio se llevó a cabo durante el 2005, el 2006 y el 2007, se preparó primero un croquis de la comunidad. En éste se ubicó el domicilio de cada familia a la cual se le asignó un número de registro con la finalidad de monitorear el movimiento de las semillas durante tres ciclos agrícolas consecutivos. La información resultante fue la base para elaborar los diagramas de flujo de semillas de maíz e identificar los agricultores nudo. Se entrevistaron todos los agricultores que se encontraban en la comunidad en la época del estudio.El tamaño de la muestra fue diferente por país y por cultivo, pues en las fincas escogidas los agricultores seleccionados no siempre cultivaban todas las especies en estudio. En la región occidental de Cuba, 15 agricultores sembraban maíz, 11 frijol común, 10 frijol pallar y 16 chile; mientras que en la región oriental 18 agricultores sembraban maíz y frijol común, 15 frijol pallar y 16 chile. El tamaño de la muestra empleado para la comunidad Maya de México fue de 32 agricultores dedicados a la siembra de maíz y frijol. En el caso de las comunidades de Perú el número promedio de agricultores entrevistados en cada ciclo agrícola fue de 141 que representó un promedio de 24 agricultores por comunidad.Para capturar la información se desarrollaron cuestionarios semiestructurados que se aplicaron durante entrevistas a los agricultores presentes en las comunidades durante el período de estudio (2005)(2006)(2007). El análisis de la información resultante de las encuestas aplicadas a los agricultores dedicados a los cultivos en estudio, permitió desarrollar los diagramas de flujo de semillas que representaron las diferentes formas de abastecimiento de las mismas e identificar los agricultores nudo en cada comunidad.Por motivos prácticos se preparó un esquema de los diagramas de flujo de semillas en los tres países para el cultivo del maíz por ser éste el más dinámico. En Cuba el diagrama involucró solamente las cuatro comunidades estudiadas en la región occidental en diferentes campañas agrícolas; en México se diagramó la comunidad Ichmul en el 2005; y en la Amazonia central de Perú se tomó como ejemplo los diagramas del monitoreo durante las tres campañas agrícolas en el caserío mestizo Éxito.La investigación tuvo como punto de partida la definición de agricultor nudo que brindan Subedi et al. (2003) y Jarvis ( 2004) como aquel que se autoabastece de semillas, y provee de éstas a otros productores de su comunidad o fuera de ella. Este agricultor se distingue como guardián de la diversidad genética, actúa como fuente de diversidad e información en las comunidades rurales y cumple una función importante dentro de las redes locales de semillas. El concepto de agricultor nudo deriva del inglés 'nodal farmer', que en representaciones gráficas del flujo de semillas en la red aparecen como el nudo por donde transitan las semillas con mayor frecuencia.Se consideró como agricultor nudo a aquel agricultor que en Cuba proporcionó semilla a cuatro o más agricultores, en México al que proporcionó semilla a tres o más agricultores durante el mismo año evaluado, y en las comunidades de Perú al que entregó semillas a dos o más agricultores.Por otro lado, se consideró que un agricultor receptor o demandante de semillas es aquel que adquiere o se abastece de semillas bajo las formas de compra, préstamo, regalo e intercambio o trueque de semillas, bien sea de otro agricultor o del sector formal. Además, se consideró que un agricultor de autoabastecimiento es aquel que utiliza su propia semilla para el ciclo agrícola en estudio, no obstante que pueden dar o recibir semilla.Se calcularon los porcentajes de agricultores que se autoabastecían de semillas y los que funcionaban como nudos en las redes informales, así como el de los agricultores que recibían semillas (receptores) a partir del agricultor nudo, de otros agricultores o de otras fuentes (como el sector formal e instituciones nacionales entre otras), con respecto al total de agricultores que se dedicaban a los cultivos estudiados en cada sitio de estudio (comunidad, región y país).En los tres países involucrados en el estudio se detectó un buen porcentaje de agricultores que se autoabastecen de semilla, es decir, que emplean su propia semilla en la siembra (se incluyó en este porcentaje a los agricultores nudo) que en las regiones de oriente y occidente de Cuba alcanzan un promedio de 72% y 73%, y en la comunidad Ichmul en México un 69% (Cuadro 1). En las seis comunidades de Perú (para los tres grupos socioculturales y en las tres campañas agrícolas con-secutivas) el porcentaje estuvo entre el 43% y el 86% de los agricultores (Cuadro 2). En este último caso el resultado del monitoreo en los sitios durante los tres ciclos agrícolas no mostró estabilidad en el autoabastecimiento de semillas pues hubo diferencias entre los grupos socioculturales, entre las comunidades del mismo grupo sociocultural, y dentro de la misma comunidad (Cuadro 2).El porcentaje de agricultores que demandaron semillas de maíz en ambas regiones de Cuba osciló entre el 27% y el 28%. Estos productores se abastecieron a través del regalo y la compra, además del trueque, una forma de transacción en la región oriental. La demanda de semillas en Ichmul en México es ligeramente superior con 31% (Cuadro 1). Para los agricultores de la Amazonia de Perú que adquieren semillas, los valores para los diferentes grupos socioculturales en las tres campañas agrícolas variaron 14% y 57% (Cuadro 2).En cada región estudiada en Cuba se identificó un agricultor nudo; en la región occidental esta función recayó en un agricultor que mantenía en su finca la mayor variabilidad del cultivo, una característica que no se dio en la región oriental. Esto indica que un agricultor que mantiene más diversidad no es siempre el agricultor que dona más semilla (agricultor nudo) dentro del sistema informal.En la región occidental de Cuba (Comunidad La Flora), se identificó como un caso peculiar de receptor y donante de semilla de maíz, a un agricultor de carácter afable y con muy buenas relaciones sociales con los campesinos de su comunidad y de comunidades vecinas. Cuando llega la época de siembra, este agricultor busca y adquiere semillas de otros agricultores para su finca, pero también la comparte con sus vecinos. Es decir, que es un receptor y donante de semilla en la red informal, aunque la semilla que dona no proviene de su finca. Es decir, que no es un agricultor de autoabastecimiento y en el sentido estricto de la definición utilizada en este estudio, tampoco sería un agricultor nudo. Sin embargo, como es un caso inusual y no se tiene una definición estricta para estos tipos de agricultores que le dan gran dinamismo al sistema informal de semillas, se puede considerar ampliar la definición de agricultor nudo observando también otros factores sociales, dado que su existencia no solo depende del conocimiento y el manejo de la diversidad que posee.Cuadro 1. Porcentaje de agricultores nudo y formas de abastecimiento de semillas de maíz, frijol común, pallar y chile en las regiones occidental y oriental de Cuba, y en la comunidad Ichmul en México. En la muestra evaluada en Ichmul, México, se encontró que solo el 10% correspondió a los agricultores nudo (Cuadro 1) que cubrieron una buena parte de la demanda dentro del sistema, y que el movimiento de semillas en su mayoría se realiza entre familiares, y en especial con variedades criollas. No se formaron extensas redes de semillas y los agricultores nudo, aunque no muy numerosos, son los que aportan dinamismo al flujo de semillas en la comunidad. En el diagrama de flujo se observó, además, que los agricultores de autoabastecimiento pueden recibir y proveer semillas a otros (Figura 5), característica que también se detectó en la región occidental de Cuba (Figura 1). En las comunidades de la Amazonia central de Perú durante las tres campañas agrícolas consecutivas, se apreció una baja frecuencia de agricultores nudo. Se identificó solamente uno en siete oportunidades en cinco comunidades del total estudiado, dos en dos comunidades, y finalmente una comunidad con tres y otra con cuatro, datos que corresponden al 3% y al 15% de los agricultores (Cuadro 2). Cabe anotar que en algunas campañas agrícolas no fue posible identificar agricultores nudo para algunas comunidades.En las comunidades Asháninkas Nuevo Porvenir no se detectaron agricultores nudo en el año 2005, mientras que en Nueva Galilea no se presentaron en las campañas agrícolas del 2006 y 2007. Esto contrasta con otras comunidades como la comunidad de mestizos Éxito, donde se identificaron tres (8%) en el 2005, dos (10%) en el 2006, y cuatro (15%) en el 2007, lo cual demuestra que la demanda de semillas de maíz en las comunidades amazónicas fluctúa entre uno y otro ciclo del cultivo. En los diagramas de flujo de semillas de esta misma comunidad, se observa incluso que los agricultores nudo pueden ser o no los mismos a lo largo de las campañas agrícolas (obsérvese en las Figuras 3, 4 y 5 que cada agricultor está identificado con un número diferente). En ambas regiones de Cuba se encontraron variedades de frijol común y pallar en las cuales el movimiento de semillas se realizó, en su mayoría, entre las comunidades de cada región y en menor grado con comunidades más alejadas, con predominio de los agricultores que se abastecen con su propia semilla. En la región occidental el 92% y el 90%, y en el oriente entre el 88% y el 93% de los agricultores se autoabastecen para los cultivos de frijol común y pallar, respectivamente (Cuadro 1).De forma similar en Ichmul, México, predominaron los agricultores que hacen uso de semilla propia de frijol común (94%), mientras que en las comunidades de la Amazonia central del Perú, donde a pesar de que predominaron los agricultores que emplean semilla propia de frijol común, se apreciaron diferencias en los promedios entre grupos socioculturales y para cada campaña agrícola. Estos valores variaron entre 67% y 100% para los Shipibo-Conibo, entre 29 y 100% para los Asháninkas, y entre 34% y 88% para los mestizos (Cuadro 2).En cuanto al abastecimiento de semillas de frijol común en las regiones de Cuba, el regalo y la compra son los medios más utilizados por los agricultores, y en el caso del pallar, sólo el regalo. En la comunidad de México, en general, se utiliza el trueque para frijol común (Cuadro 1), mientras que en las amazónicas de Perú se presenta con mayor frecuencia la compra, seguida del préstamo y por último del regalo (Cuadro 2).En la región occidental de Cuba se identificaron 9% y 10% de agricultores nudo para frijol común y pallar, respectivamente, y en la oriental, 11% y 7%, respectivamente. Los agricultores nudo que cultivan pallar en sus fincas son reconocidos por la comunidad como sobresalientes y mantienen varios cultivares de esta especie en sus fincas, lo cual contrasta con los agricultores nudo que cultivan frijol común que no coincidieron con los que mayor variabilidad mantenían en sus fincas. En la comunidad de Ichmul, México, solamente se identificó un agricultor nudo (3%) para frijol común (Cuadro 1), presencia que también fue muy baja en las comunidades amazónicas de Perú en las cuales se reporta, para las seis comunidades en las tres campañas agrícolas, sólo uno para frijol común en el caserío mestizo Santa Rosa de Masisea en el 2006 (6%) y otro en el 2007 (6%) (Cuadro 2).En Cuba, tanto en la región occidental como en la oriental, se evidenció un predominio de agricultores que cuentan con semilla propia que alcanzan entre el 88% y el 81%, respectivamente (Cuadro 1). Un considerable número de familias cultiva y preserva chile en los huertos caseros de las comunidades amazónicas de Perú como cultivo de subsistencia para la culinaria tradicional. De este cultivo que se reproduce espontáneamente, predominan los agricultores que hacen uso de su propia semilla (entre 50% y 100%) en las comunidades de los grupos socioculturales estudiados (Cuadro 2).Las formas más comunes de abastecimiento de semillas de chiles que utilizan los agricultoresLa mayoría de los agricultores vinculados a la investigación que se encuestaron en las regiones de Cuba emplean su propia semilla (72%-73%) para la siguiente siembra, lo cual corrobora los resultados encontrados por Fernández et al. (2004) quienes indicaron que hasta un 91% de las fincas utilizaban su propia semilla. En cuanto a la procedencia de semillas en la provincia de Guantánamo (oriente), se observó que el 64% se recibió de parientes cercanos y un 36% de los casos afirmaron que se abastecían de semillas de vecinos de la misma comunidad. El 69% de los agricultores encuestados de la comunidad Ichmul en México, se autoabastecen de semillas. Resultados similares obtuvieron Gómez et al. (2004) en Yaxcabá al reportar que más del 82% de los agricultores conservan y utilizan las semillas de sus propias variedades tradicionales que adquieren por la vía del regalo, la compra, el intercambio y el préstamo.El estudio en la Amazonia central de Perú mostró el predominio de agricultores de los diferentes grupos socioculturales en cuanto al autoabastecimiento de semillas de maíz, resultado que también coincide con el de Collado (2002) para ese país. Aunque las formas de abastecimiento de semillas pueden variar en el tiempo, la más frecuente en los grupos Shipibo-Conibo y mestizos fue el préstamo, mientras que en todos los grupos socioculturales fue importante el autoabastecimiento de semillas, observación que también coincide con lo que encontraron Collado et al. (2004).En ese sentido Sunwar et al. (2006) reportaron que una fuente dominante de semillas para las siembras de los siguientes años en Nepal fueron las semillas propias que el agricultor almacena ya sea de verduras, plantas para alimentación animal, frutas y/o especies que se cultivan en los huertos caseros.La demanda de semillas influye de manera directa en la presencia de los agricultores nudo, y cuando se presentan situaciones adversas extremas -tanto climatológicas (sequías, huracanes e inundaciones) como sociales (pobreza de las comunidades humanas), o presencia de enfermedades-aumenta el número de agricultores demandantes. En los sitios que se estudiaron en cada país se dieron características particulares que determinan la demanda de semillas de maíz, como el caso de la región oriental de Cuba donde los agricultores, que consideran que una variedad no debe sembrarse por más de dos años consecutivos en un mismo suelo, realizan un intercambio de semillas entre vecinos colindantes, un criterio que Torres (2007) plantea como \"la renovación de semillas cada cierto tiempo\". Subedi et al. (2003) señalaron que el flujo de semillas puede ser el resultado de varios factores: escasez o necesidad de reemplazar semilla de baja calidad que se mantiene a nivel de familia en Nepal; interés en sembrar mejores cultivares que se observan en los campos de otros agricultores; deseo de probar nuevos cultivares; búsqueda de cultivares adecuados para el reemplazo de otro cultivar para condiciones muy específicas, etc. En la región occidental de Cuba la demanda existente originó un movimiento de semillas en su mayoría entre comunidades de la misma región y en menor proporción dentro de ellas. La reducida diversidad que conservan los agricultores en la región occidental se debe a una tradición menos arraigada del cultivo del maíz, comparada con una tradición más fuerte en la región oriental donde los agricultores mantienen un mayor número de variedades (Fernández et al. 2007).En la región occidental de Cuba en los últimos años ha crecido el interés de contar no sólo con un mayor número de variedades tradicionales de maíz con potencial comercial, sino también con variedades comerciales a las cuales acceden a través de lazos de amistad existentes entre agricultores de comunidades cercanas o mediante el sector formal. Estos aspectos han contribuido a sostener la demanda de semillas que en la región oriental está motivada por el interés de los agricultores en adquirir otras variedades con las que no cuentan en sus comunidades. Tal es el caso de la variedad comercial ´Yanelis´ de alto rendimiento que adquieren en el sector formal, y de la variedad tradicional ´Morao´ que obtienen en comunidades aisladas con fines mágico-religiosos.En el caso de México, los agricultores nudo cubren una parte de la demanda dentro del sistema de abastecimiento informal de semillas, y el flujo de semillas se extiende en su mayoría entre familiares y en especial de variedades criollas. Esto indica que los lazos de confianza, parentesco y afinidad con los demandantes, así como la preferencia de un grupo de variedades influyen en la presencia del agricultor nudo.En el caserío mestizo Éxito de la Amazonia central del Perú sólo se identificó un agricultor nudo que persistió durante los tres ciclos agrícolas sucesivos que se diagramaron (ver agricultor nudo identificado con el número 52* en las Figuras 3, 4 y 5). En el resto de las comunidades se presentaron agricultores nudo de forma ocasional, lo cual indica que la presencia de uno de ellos es variable en el tiempo pues no siempre se mantiene el mismo cada año. Esto se puede observar de igual modo en la misma comunidad anterior (Figuras 3, 4, y 5), donde se observa que, por ejemplo, el agricultor señalado con el número 62* que es receptor de semillas en el 2005, asume el papel de agricultor nudo en el 2006, y en fecha posterior en el 2007 sólo se autoabastece. La baja persistencia de los agricultores nudo parece estar determinada por las fluctuaciones en la demanda de semillas y por las decisiones de siembra de los agricultores.La diferencia en el número de agricultores nudo en cada campaña agrícola en Perú se debió en particular a la inestabilidad en los precios de comercialización de la semillas entre una y otra campaña agrícola. Esto se debe a que en la medida en que mejoran los precios de comercialización, los agricultores establecen mayores áreas para sembrar y necesitan mayor cantidad de semilla con lo cual aumentan la demanda de la misma. Esto mismo ocurre cuando se pierde la viabilidad de la semilla por deficiencias en el almacenamiento o por la incidencia de desastres como inundaciones y sequías en los sitios. Una situación inversa se observa cuando los precios se deprimen, como lo indicó la información estadística del Ministerio de Agricultura de Perú (MINAG 2007).Contrario a lo esperado (Jarvis et al. 2004) se observó que los agricultores nudo no siempre son quienes conservan mayor diversidad dentro de la comunidad, como ocurrió en los sitios de intervención de la investigación en Cuba y México. En Perú, sin embargo, juegan un papel importante en la conservación de los cultivares y son fuentes de conocimiento local (Subedi et al. 2003;FAO 2006;FAO 2008).En las diferentes comunidades y regiones que se estudiaron en Cuba, México y Perú los agricultores, en general, reconocen a algunas personas como las que manejan mayor diversidad. Como usualmente son agricultores de edad avanzada, ello les proporciona reconocimiento y respeto dentro del grupo. de proteína vegetal y apoya a la economía familiar por su comercialización. Los agricultores mestizos mostraron sin embargo, mayor interés en cultivar variedades de frijol. Collado y Pinedo (2007) manifiestaron que en los últimos años se ha reducido el cultivo del fríjol a pesar de que se mantiene la demanda en el mercado regional, un factor que influye de manera negativa en su conservación.Aunque en las regiones de estudio en Cuba algunos agricultores nudo mantienen varios cultivares, estos no siempre son las personas que conservan mayor número de variedades. En la región occidental se identificó un caso particular en el cual un agricultor que conserva la mayor diversidad de frijol común de la región se ha identificado dentro de la red como receptor de semillas.En la región oriental de Cuba se evidenció una mayor tradición e interés por la variabilidad del pallar, mientras que en la región occidental en los últimos años apenas se ha incentivado su producción dado que es un buen sustituto en épocas de escasez del fríjol común. Un agricultor de la región occidental, sin embargo, se ha dedicado a obtener una mayor variabilidad del cultivo y en la actualidad posee una rica colección en su finca que maneja de forma tradicional. Este productor ha podido, por lo tanto, hacer frente a la demanda creciente de otros agricultores de la región de manera tal que este campesino ha marcado el dinamismo del sistema de abastecimiento de semillas. Sin embargo, por ser el pallar un cultivo típico del huerto familiar, sólo se regalan pequeñas cantidades de semillas.En la comunidad Ichmul de México se observó una demanda muy reducida de frijol común. Ello podría justificar el escaso flujo de semillas y la formación de pequeñas redes dentro de la comunidad, en especial porque se cultiva en asociación con maíz, y porque es una especie de orden secundario en la milpa.En la Amazonia central del Perú sólo en una comunidad se apreció la presencia de agricultores nudo en las campañas agrícolas 2006 y 2007, aunque el mismo agricultor no se mantuvo de una a otra. Esto se debió a la fluctuación en la demanda, quizás por las decisiones de siembra de los propios agricultores, o por la pérdida del cultivo debido a condiciones climáticas adversas que se presentaron en ciclos anteriores de siembra.En los Shipibo-Conibo y Asháninkas de Perú el intercambio dentro del sistema fue escaso debido, en especial, al reducido número de familias que cultivan frijoles. Esto fue influenciado por diferentes factores como la reducida disponibilidad de terrenos especiales para su siembra, ya que por el hábito de crecimiento indeterminado del frijol los agricultores utilizan tutores naturales como 'varillajes' o 'chicozales' de caña brava (Generium sagittatum) localizados en las zonas ribereñas. A esto se suma además la preferencia por otra especie de fríjol conocido localmente como \"chiclayo\" (Vigna unguiculata L.), de crecimiento arbustivo, fácil manejo, y al cual lo afectan en menor medida virosis y plagas. Al parecer las comunidades mestizas de la Amazonia central tienen mayor preferencia por cultivar y consumir frijol, un rasgo sociocultural que se debe, entre otras causas, a que estos migrantes provienen de la sierra donde el consumo de frijol es mayor (Chávez et al. 2004).La ausencia de agricultores nudos para chile en la región oriental de Cuba se debe probablemente a diferentes factores. Una de las dos especies que se encuentran en la región, C. frutescens, que presenta formas silvestres que aparecen de manera espontánea dentro de la finca o en sus cercanías, las tolera el agricultor por sus propiedades medicinales o para elaborar a pequeña escala encurtidos picantes. Las formas dulces que se cultivan de esta especie se mantienen por sus atributos de durabilidad y rusticidad para el consumo como condimento fresco. La otra especie, C. annuum, está representada en la región por algunas variedades comerciales. Aunque los agricultores hayan adquirido la semilla del sector formal, continuaron produciendo su propia semilla sin realizar intercambios para evitar el riesgo de pérdida de la germinación y la uniformidad de los frutos por la reproducción autógama facultativa que presenta el género (Barrios et al. 2007).En la región occidental de Cuba, la presencia de un agricultor nudo se debió a que en esta región se maneja una mayor diversidad tradicional del cultivo cuyos atributos son deseables por otras familias, las cuales acuden a este agricultor de acuerdo con sus preferencias y necesidades para el consumo fresco o como condimento. En este caso el agricultor nudo coincide con el agricultor que mantiene mayor diversidad en su finca.La presencia de un agricultor nudo en la comunidad Shipibo-Conibo Santa Rosa de Dinamarca y en el caserío Éxito en la Amazonia de Perú, se observó sólo en una campaña agrícola y como hallazgo fortuito pues la demanda de semillas de chile es nula por no ser un cultivo de importancia comercial. Muchas veces las variedades nativas son de crecimiento espontáneo en el huerto.La presencia o ausencia de los agricultores nudo y su estabilidad en el tiempo dentro de la dinámica del sistema informal de semillas obedeció a la mayor o menor demanda de semillas en la comunidad. Además, sobre tal presencia ejercieron influencia factores tanto sociales como bióticos y abióticos.La importancia de los agricultores nudo en la conservación de la agrobiodiversidad y el dinamismo del flujo de semillas en el sistema informal es relativa para las áreas de estudio dado que un agricultor nudo no siempre es aquel que conserva una mayor diversidad. Asimismo los productores que demandan semilla no siempre recurren a los que conservan mayor diversidad o que tienen mayor dedicación a los cultivos en estudio, siendo cubierta la demanda por agricultores de autoabastecimiento, por proveedores del sector formal y en algunos casos por instituciones que promueven los cultivos en la zona.Se observó una baja consistencia de los agricultores nudo a través del tiempo pues varían de una campaña a otra. Este capítulo describe el aporte de las ferias de agrobiodiversidad y semillas a la conservación de la diversidad agrícola en Cuba y México. Las ferias han permitido fortalecer los sistemas informales de distribución de semillas en estos dos países al favorecer el intercambio entre los agricultores participantes. En México las ferias han sido de gran relevancia al ser un soporte para la restauración de la diversidad de maíz en una etapa posterior al embate de huracanes y sequías. En Cuba éstas han permitido restaurar la diversidad perdida o incrementar la diversidad existente en fincas. La amplia diversidad de cultivares y especies conservadas en Cuba se ha manifestado a través de la venta, el intercambio o la exhibición de no sólo las especies objeto de proyecto como frijol común (Phaseolus vulgaris L.), frijol pallar (Phaseolus lunatus L.), chiles, ajíes o pimientos (Capsicum spp.), y maíz (Zea mays L.), sino que se han exhibido, vendido o intercambiado hasta 130 especies. Esto muestra al agricultor y a las comunidades cercanas la diversidad tanto de cultivos mencionados, como de raíces, tubérculos, frutales y plantas medicinales usadas a nivel de la finca.La preservación de la agrobiodiversidad en sistemas tradicionales campesinos ha sido referida y estudiada en los últimos años como parte de las estrategias orientadas a la conservación in situ de la diversidad agrícola. A partir de proyectos desarrollados a nivel global y también en el ámbito nacional estos estudios han confirmado que los huertos familiares y las fincas son sistemas en los cuales se conserva una alta diversidad de las plantas de cultivo, y que entre sus componentes cuentan con numerosos cultivares tradicionales (Castiñeiras et al. 2002;Eyzaguirre y Linares 2004).Los agricultores mantienes tales cultivares de una cosecha a otra para dar respuesta a los requerimientos de la familia y los intercambian entre familiares, entre vecinos, dentro de las comunidades y entre comunidades. Todo esto contribuye a su supervivencia en el espacio y el tiempo, a través de lo que se conoce como sistemas informales de semillas (Almekinders 2000). Estos sistemas se ven expuestos a numerosos factores que limitan su efectividad y es por ello que entre las estrategias recomendadas para favorecer los flujos de semillas entre agricultores, se encuentran las ferias de semillas (Almekinders 2000;IIAP et al. 2004;Nataniels y Mwijage 2000). Almekinders (2007) considera las ferias de semilla y las competencias de diversidad como algunas de las intervenciones claves para mejorar el abastecimiento de semilla. Junto a éstas se encuentran otras acciones como el mejoramiento de la producción de semilla en la finca en colaboración con agricultores claves o grupos focales, la especialización de los agricultores en la producción de semilla, la realización de pruebas experimentales de demostración para introducir nuevas variedades en las fincas, la distribución de pequeños paquetes de semilla para la introducción de nuevas variedades y semilla de calidad, los bancos comunales de semilla, y la asistencia y rehabilitación de semillas ante los desastres naturales o los causados por el ser humano (huracanes, guerras, etc.). Scurrah et al. (2000) señalan que la idea de exhibir variedades nativas surgió de los antropólogos Gordon Prain y Norio Yamamoto, y del agrónomo Fulgencio Uribe entre 1987 y 1988 en Perú tras observar que cada familia y comunidad mantenía sus propias variedades. Dada la inspiración de las ferias de agro biodiversidad, una de las primeras se realizó en 1989 en ese país. Valdivia (2004) plantea que las ferias tienen una importancia clave en la dinámica de producción en determinadas regiones de Perú, en especial en el período de siembra cuando las familias pueden adquirir pequeñas cantidades de semillas. Dado que los agricultores mantienen un amplio número de cultivares por las normas del sistema formal de semilla y dada a demanda de uniformidad de los productos agrícolas en los grandes mercados, al sistema formal le resulta prácticamente imposible mantener tal diversidad. Al establecer un mecanismo de acceso a los mercados y favorecer los flujos de semilla se logra ampliar la distribución localizada de algunos cultivares tradicionales. Con su comercialización, se logra exponer sus valores para otros miembros de la comunidad de manera tal que se consolide su preferencia.Resulta frecuente observar que la diversidad de productos vendidos en los mercados locales no corresponde a la diversidad inventariada en esas mismas localidades y es la feria de agrobiodiversidad y semillas la que ofrece una oportunidad de acceso a la amplia diversidad y productos derivados mantenidos y utilizados a nivel de finca.En Cuba, al igual que en otros países, se han desarrollado ferias de agrobiodiversidad como parte de estrategias de fitomejoramiento participativo, que se enfocan en áreas en las que es necesario el incremento de la diversidad a partir de diagnósticos que ofrecen estimados de diversidad bajos para determinados cultivos (Ríos et al. 2006;Vernooy 2007), y utilizan la mayor diversidad encontrada en otras áreas. Para este propósito se han utilizado áreas como las zonas de amortiguamiento de las Reservas de la Biosfera, donde predominan los agroecosistemas de montaña y premontaña en Cuba, y en donde se ha identificado un número elevado de cultivares por especie (Castiñeiras et al. 2002). En México el potencial de diversidad de varias regiones se ha estudiado con profundidad para el maíz y otros cultivos (Arias 2000). Esta diversidad referida en ocasiones representa formas únicas en el ámbito local o regional y ha sido derivada del manejo que realiza el agricultor dentro de la finca. Como consecuencia del alto riesgo de pérdida de esta diversidad, es necesario que se logren multiplicar dichos cultivares y una de las opciones para contribuir a su propagación son las ferias de agrobiodiversidad.Este capítulo se desarrolló en el marco del proyecto \"Manejo adaptativo de los sistemas de semillas y flujo genético para una agricultura sostenible y el mejoramiento de la subsistencia en los trópicos húmedos de México, Cuba y Perú\". Su objetivo es describir el aporte realizado por las ferias de agrobiodiversidad y semillas a la conservación in situ de la diversidad tradicional empleando como estudios de caso contrastantes su realización en comunidades de Cuba y México, países que presentan diferentes características socioeconómicas, culturales y políticas y que comparten diversas condiciones ambientales y culturales similares.En Cuba las ferias de agrobiodiversidad y semillas se desarrollaron entre 2005 y el 2007 con representantes de comunidades campesinas aledañas a la Reserva de la Biosfera Sierra del Rosario en la Provincia Pinar del Río en el occidente del país, y del Parque Nacional \"Alejandro de Humboldt\", en las zonas de transición de la Reserva de la Biosfera \"Cuchillas del Toa\" en Guantánamo, provincia más oriental del país (Figura 1, Figura 2). En ellas participaron 38 familias, 20 del occidente y 18 del oriente del país. En ambas regiones se desarrollaron siete ferias en fechas que escogieron los propios agricultores ante la inminencia de los calendarios de siembras para los cultivos meta del proyecto: frijol común (Phaseolus vulgaris L.), frijol pallar (Phaseolus lunatus L.), maíz (Zea mays L.) y los chiles, ajíes y pimientos agrupados en el complejo del género Capsicum (C. annuum L., C. chinense Jacq. y C. frutescens L.). Las fechas para llevar a cabo las ferias se escogieron durante los talleres de capacitación que se realizaron en los sitios de intervención del proyecto con la participación abierta y el consenso de la mayoría de los agricultores (Shagarodsky et al. 2007).Para cada una de ellas se determinó el inventario total de especies exhibidas y vendidas y los precios y su cuantía, de tal manera que pudiera efectuarse un seguimiento al impacto económico y social de las mismas. El interés principal se concentró en los cuatro cultivos meta del proyecto para cuya identificación se empleó el \"Catálogo de cultivares tradicionales\" (Castiñeiras et al. 2006). Cada feria se complementó con actividades en las cuales, además del dueño de la finca, participaron los familiares. Toda la información que se recogió en planillas, se introdujo en bases de datos en formato Excel 2003 complementadas con el registro fotográfico de los productos exhibidos. En la hoja de cálculo de Excel se determinaron los diferentes parámetros estadísticos como el promedio y las frecuencias. Se contabilizó como producto cualquier especie vegetal, animal, sus partes o sus derivados, que fueron exhibidas, intercambiadas o vendidas en la feria.En esta descripción se incluyen los frutos, las semillas, el material de propagación, los productos procesados, y las artesanías.La diversidad de plantas se calculó con base en el conteo de especies presentes en cada feria (Moreno 2001). También se determinó el porcentaje de especies que se llevaron a cada feria con relación al inventario general de plantas registradas para todas las ferias y se expresó como índice de riqueza de especies. La complementariedad (C AB ) entre las especies de los sitios de estudio se determinó según Colwell y Coddington (1994; citados por Moreno 2001) como sigue:Donde: U AB = a + b -2c es el número de especies únicas en cualquiera de los dos sitios S AB = a + b -c es la riqueza total para ambos sitios combinados a: número de especies presentes en el sitio a b: número de especies presentes en el sitio b c: número de especies comunes a ambos sitios C AB : Varía de 0, cuando los sitios son idénticos en composición de especies, hasta 1, cuando las especies de los sitios son completamente distintas.Para validar el impacto de las ferias en los agricultores participantes en el ámbito local, se recogió la opinión de los agricultores involucrados en el proyecto, al igual que la de los dirigentes, especialistas del Ministerio de Ciencia Tecnología y Medio Ambiente (CITMA), y los de la ONG campesina Asociación Nacional de Agricultores Pequeños (ANAP) de la Provincia Guantánamo.En México se desarrollaron siete ferias en comunidades de las localidades maiceras de Yaxcabá y Sahcabá (Yucatán) durante el período 2003 -2007 bajo dos enfoques: 1. Como acciones de emergencia en zonas de producción maicera tradicional para afrontar la secuela destructiva de los huracanes y otros eventos como la sequía, y 2. Como eventos que propician los intercambios entre agricultores para fortalecer los flujos de semillas en épocas donde el impacto de fenómenos meteorológicos extremos no han tenido una influencia negativa generalizada (Figura 3, Figura 4). Esta modalidad se desarrolló a petición de las ONG 'PROENLACES A.C.' 1 (UADY), 'EDUCE A.C.', 'COMADEP' A.C., 'El Hombre sobre la Tierra A.C.', y 'Misioneros A.C.' que desarrollan acciones comunitarias diversas con fondos gubernamentales.En ambos casos el levantamiento de la información se realizó principalmente para el cultivo del maíz, aún cuando los agricultores asistieron a la feria con otros productos diferentes a los cultivos meta del proyecto como calabazas (Cucurbita spp.). Sobre esta base se realizó el censo de demanda y oferta de semilla de maíz en las comunidades de estudio. La información se obtuvo a partir de solicitudes resultantes y de asambleas organizadas por las autoridades ejidales con los milperos, y se identificaron los solicitantes de semilla y los probables donantes con los cuales se logró un arreglo que establecía un precio fijo por kg de maíz. Más adelante, los grupos organizadores acordaron con las autoridades campesinas locales el horario y lugar de la feria que, en general, se realizó durante el fin de semana en escuelas, comisarías y lugares públicos en los cuales se reúnen habitualmente los campesinos. El rango promedio de asistentes por feria osciló entre 20 y 30, principalmente productores hombres en ocasiones acompañados por algún miembro de su familia (esposa e hijos).Las ferias en Cuba se desarrollaron siguiendo estas pautas:• Las ferias se convocaron durante la realización de los talleres o reuniones anuales efectuadas con los agricultores participantes del proyecto y de manera conjunta con los investigadores. Allí mismo se decidió el lugar y la fecha para su realización, y para anunciarlas se aprovecharon las propias reuniones convocadas por la ANAP. En la toma de estas decisiones participaron además de los agricultores, los representantes de los gobiernos locales, la dirección del Ministerio de Agricultura, la organización campesina, las Sedes Universitarias Municipales (SUM), y otros. Durante estos eventos, se precisó el apoyo de los gobiernos locales en forma de soporte logístico como por ejemplo, el lugar donde se ubicarían los agricultores, las mesas para exhibir sus productos que, en general, aportan las escuelas más cercanas, los alimentos de los participantes, la duración de la feria, el transporte de los campesinos y sus productos, la comunicación por los medios de divulgación locales, etc.• En la convocatoria de la feria de una región, se incluyó la invitación a los agricultores y científicos de otra región, y se ofrecieron y coordinaron las facilidades para su alojamiento y alimentación.• En los días próximos a la realización de la feria se visitaron las fincas y se precisaron los productos y la cantidad que se debía llevar de cada uno, para así determinar las necesidades de transporte.• Se invitaron otras entidades como el Programa local de Agricultura Urbana, la Empresa de Semillas y otros funcionarios del Ministerio de Agricultura a que llevaran semillas para la venta de tal manera que los agricultores accedieran a este germoplasma de acuerdo con su propio interés.• Se le permitió al agricultor llevar cualquier producto agrícola libre de impuestos para su venta, intercambio o regalo, incluyendo cualquier planta con propiedades alimenticias, animales (aves y cerdos), derivados de la leche (queso), conservas de frutas y vegetales, o fiambres (de maíz, de malanga, de cerdo y otros) (Figura 1).• La venta de productos y sus precios los decidió el agricultor de acuerdo con la base de la oferta y la demanda, aunque siempre se buscó mantener una flexibilidad según la necesidad de alimentos de la población. En especial, se propició que la población se interesara por el consumo de la diversidad agrícola subexplotada y por la semilla como un insumo para difundir la diversidad particular que cada región poseía, y que era poco conocida por la población en general (Figura 2).• Se incentivó a las mujeres a llevar platos elaborados que mostraran formas de consumo de especies subexplotadas como el frijol pallar.Figura 2. Venta de semilla de frijol negro en la feria de semillas de Candelaria en la Provincia de Pinar del Río (región occidental de Cuba).Figura 1. Agricultores en la feria de semillas y biodiversidad agrícola en la Provincia de Guantánamo (Región oriental de Cuba) mostrando semillas de maíz, frijol común, frijol caballero, y chiles, ajíes y pimientos a otros actores interesados.• Se aprovechó el marco de la feria para hacer público reconocimiento a las comunidades y agricultores que conservaban una alta diversidad que se exhibió y vendió en la misma feria.• El lugar de la feria, los proyectos y las entidades que apoyaron la actividad se identificaron con carteles, y los participantes portaron prendas como camisetas o gorras que identificaban la actividad y a sus organizadores.• Una vez organizadas las mesas individuales por agricultor, con igualdad de oportunidad de venta y exhibición en cuanto a espacio, en primera instancia se favoreció el intercambio entre los agricultores participantes en el proyecto, y luego se abrió la feria al público en general.En México, las principales actividades que desarrolló el equipo de investigación del proyecto para asegurar las acciones previas a la feria fueron:• Asistencia y participación a las asambleas ejidales. Con base en la organización campesina legalizada en México se establecieron contactos con los comisarios ejidales representantes de ejidos, que son las comunidades propietarias y usufructuarias de la tierra según la Secretaría de la Reforma Agraria (SRA 2006). En las reuniones de asamblea mensual que realizan para discutir sus problemas, se consultó con los campesinos y se logró establecer acuerdos para la realización de diversos proyectos, entre ellos el de las ferias de semillas que se han realizado bajo su consentimiento sólo en los años en que se presentaron desastres naturales como sequías y huracanes que redujeron fuertemente su semilla disponible.• Sistematización computarizada de las listas de solicitantes y donantes de semillas para una contabilización adecuada y para facilitar la transparencia del proceso de entrega de semillas que fue parte de los acuerdos de asamblea comprometidos con los agricultores.• Búsqueda de semillas en otras comunidades que ya habían detectado los propios agricultores y que se incluyeron entre los acuerdos de asamblea ejidal. Para esta actividad, el comisario ejidal, representante de los campesinos del ejido, acompañó al equipo investigador a contactar a las autoridades del ejido al cual se solicitó semilla vía la asamblea ejidal. De esta forma se obtuvo la colaboración de los productores para la venta de la semilla previamente seleccionada.• Enlace con autoridades y asistencia a asambleas de otras comunidades. El proceso que se siguió y que ya se anotó, se comentó con otros agricultores de diferentes ejidos que se pusieron en contacto con sus comisarios ejidales y procedieron a contactar a las autoridades campesinas del ejido en el cual se desarrolló inicialmente el proceso para apoyarlos a obtener semillas.• Transporte de semillas y apoyo para su distribución. Dadas las limitaciones de los ejidos, se utilizó el vehículo del proyecto para llevar los bultos de semilla y para luego distribuirlos entre los productores de las comunidades interesadas, según las listas de ejidatarios previamente acordadas en sus respectivas asambleas ejidales.• La comunicación regional de las experiencias del proyecto se realizó a través de programas de radio (Radio Universidad), en los cuales se comentaron las particularidades del proceso de apoyo a la solución de escasez de semillas que dejaron los huracanes y sequías en comunidades maiceras yucatecas.• Realización de ferias y concursos de diversidad en escuelas para motivar el interés familiar para participar en las ferias y enfocar la atención de los jóvenes bachilleres en la problemática agrícola de sus poblaciones. Ello se logró mediante invitaciones -a través de profesores y autoridades escolares-a los jóvenes para que participaran en los concursos sobre una exposición de diversidad de semillas en la que se premiaría con útiles escolares a todos los participantes.En el Cuadro 1 se presenta un total de 130 especies de plantas que se exhibieron o vendieron durante el período 2005 al 2007 en las siete ferias que se celebraron en Cuba: cuatro ferias en Pinar del Río (occidente), -dos en la comunidad de Las Terrazas, y dos en la localidad de Candelaria-, y tres en Guantánamo (oriente) -una en la localidad de Saburén, y dos en la localidad de Palenque-. El promedio general de especies por feria fue de aproximadamente 45, aunque el número por feria osciló entre 15 y 108 (Cuadro 2). En el Cuadro 1 se puede observar la frecuencia de cada especie en un total de siete ferias celebradas, así como la frecuencia de estas especies respecto al total de agricultores. Estos indicadores permiten definir qué tanto estuvo representada la especie en las ferias celebradas, y la representatividad de la misma por agricultor. El Cuadro 2 muestra la heterogeneidad que se exhibió en las ferias de Cuba con base en la riqueza de especies. Se aprecia que el número de especies fue mayor en las ferias celebradas en el occidente en relación con el oriente, siendo las ferias de diversidad y semillas celebradas durante el 2007 en el occidente las que mostraron una mayor riqueza, un 50% o más de la diversidad esperada y, observándose igualmente el mayor valor de frecuencia en Las Terrrazas (83%) con 108 especies. Se muestra además la población sobre la cual la feria pudo incidir en el momento de realización de las mismas que fue superior en la región occidental del país.De un total de 130 especies registradas en las ferias, 34 resultaron comunes a ambas regiones, observándose 89 especies solamente en el occidente y 7 en el oriente. La complementariedad entre regiones en las ferias mostró un índice C AB =0,645 que muestra que existe complementariedad relativamente alta entre regiones, es decir que existe, como se anotó antes, un mayor número de especies diferentes entre las regiones y pocas especies comunes entre ambas. Además, se puede observar una mayor diversidad de especies en la región occidental que muestra rasgos por los cuales se seleccionaron las regiones en cuanto a la diversidad general: el occidente del país muestra una riqueza de especies mayor que el oriente, sin embargo estas regiones se complementan (Castiñeiras et al. 2002).En la medida que la experiencia de los organizadores y los agricultores en el desarrollo de las ferias aumentó, se observó una tendencia notable entre un año y el siguiente al incremento del número de especies y productos exhibidos. Las especies que tienen cierta relevancia para los Número de especies encontradas con relación al número total de las especies observadas en las 7 ferias.Cuadro 1. Continuación ingresos y la comercialización de la familia -como los plátanos y bananos (Musa spp.), el aguacate (Persea americana Mill.), la calabaza (Cucurbita moschata Duchesne), el limón criollo (Citrus aurantiifolia (Christm.) Swingle, la yuca (Manihot esculenta Crantz), y la guayaba (Psidium guajaba L.)-presentaron una frecuencia relativa alta superior al 30%. Del conjunto de productos inventariados en las ferias, un 25% correspondía a especies utilizadas como medicinales y un 27% a frutales. De la misma manera, dentro de una misma especie, se pudo identificar varios productos como el tomate y la guayaba utilizados como frutos frescos para el consumo directo, procesados de diversas maneras como en pastas o dulces, y como semilla. Dada la variabilidad que se observó en las fincas involucradas en el proyecto para los cultivos meta, se estimuló su presentación en las ferias. Las especies más representadas fueron, Capsicum annuum, Phaseolus lunatus, P. vulgaris y Zea mays, y por último C. chinense y C. frutescens (Cuadro 3). El conjunto de cultivares inventariados en todo el país para las especies citadas y publicadas en el \"Catálogo de cultivares tradicionales\" (Castiñeiras et al. 2006) tuvo una alta representatividad. Del cultivo de frijol común se mostraron 22 cultivares que representaron el 100% de los cultivares descritos, y se exhibieron siete chiles, ajíes y pimientos que representaron la totalidad de los correspondientes a la especie Capsicum annuum (100%) que incluían variedades comerciales, cultivares tradicionales e híbridos. Del frijol pallar se mostraron 15 de los 16 cultivares recogidos en el catálogo (94%), y el maíz y las otras especies de Capsicum mostraron frecuencias de cultivares inferiores al 78%. El Cuadro 3 también refleja el porcentaje de familias campesinas que exhibieron las especies meta y sus cultivares.Muchos de los cultivares que se mostraron en las ferias en Cuba presentan una baja frecuencia de distribución en el país y estos eventos son una vía para su diseminación, lo cual ha sido comprobado luego de que agricultores de Pinar del Río (occidente) adquirieran semillas de maíz del oriente de Cuba. Lo mismo ha ocurrido con el frijol pallar del cual el nuevo cultivar tradicional del oriente, inscrito en el Registro Oficial de Variedades como cv. 'Enano pinto', ya se cultiva en el occidente. Estos flujos se han logrado gracias a que se ha propiciado la participación de los agricultores del occidente en las ferias del oriente y viceversa, a pesar de que entre una región y otra hay más de 1000 km de distancia. En cada región, sin embargo, existe un predominio de los cultivares tradicionales aunque en los intercambios se incluyen cultivares modernos, con excepción del fríjol común.Cuadro 3. Presencia de las especies objetivo y de sus cultivares en las ferias de Cuba.Frecuencia El éxito de las ferias en Cuba durante los años 2005 y 2006, la alta diversidad mostrada, y la aceptación de la población local motivaron al gobierno del municipio de Candelaria a desarrollar en el 2007 una feria con características similares en el marco de la celebración del día de La Candelaria (2 de febrero). Los resultados del evento muestran, no sólo acciones que conducen a la sostenibilidad de las ferias de agrobiodiversidad, sino un gran impacto en la comunidad dada la alta calidad de los productos vendidos y la presencia de productos ricos en diversidad de una forma novedosa y atractiva para los pobladores urbanos (Figura 2).Durante el desarrollo de las ferias, los campesinos obtuvieron beneficio económico de acuerdo con los productos que ofertaron. Aunque la tendencia durante el proyecto fue que el promedio de ingreso por familia se incrementara, durante la feria de Pinar 2007 celebrada en la comunidad de \"Las Terrazas\", este promedio bajó relativamente debido a que la misma se celebró en el marco de las jornadas del 5 junio, Día Mundial del Medio Ambiente, en la cual el interés era mostrar la alta diversidad de especies presentes en la finca, y muchos no se interesaron en la venta de productos. Aquellos que vendieron, sin embargo, generaron ingresos generales que se estimaron en más de 415 USD u 11.000 CUP (Cuadro 4). Número En el 2007, cuando se realizó la feria de Palenque en la provincia de Guantánamo, el número total de productos exhibidos por un agricultor fue de entre 2 y 60, con un promedio de 12 por agricultor. Este valor máximo de 60 productos resultó del interés de varios agricultores en mostrar la alta diversidad de especies y variedades de que disponían, más que por el hecho de realizar acciones de comercialización para incrementar su prestigio dentro de la comunidad. En esta ocasión se contabilizó un máximo de 133 intercambios entre el conjunto de los agricultores participantes. El promedio de productos comercializados por agricultor fue bajo, pues varios de ellos no vendieron y sólo intercambiaron su semilla o material de propagación en el marco de la feria. Esto fue motivado por la participación de agricultores del occidente en la feria, como una de las iniciativas de las provincias participantes en el proyecto y que ha sido uno de los incentivos y reconocimientos de la diversidad conservada in situ por las familias. Entre las novedades se destaca la venta de plántulas de canela (Cinnamomun aromaticum) que han multiplicado los agricultores de oriente de manera muy dinámica. La canela fue introducida Cuadro 6. Cantidad de semilla vendida o intercambiada y número de cultivares llevados a la feria para los cultivos de maíz, frijol común, frijol pallar, y chiles, ajíes y pimientos en Cuba.en la región hace más de cinco años como un obsequio del equipo de investigadores de Cuba en el proyecto global \"Contribución de los huertos caseros a la conservación in situ de recursos fitogenéticos en sistemas de agricultura tradicional\" (Castiñeiras et al. 2002), teniendo en cuenta que la especie no estaba en la localidad y de la cual existen pocos ejemplares en el país (Fuentes com. pers. 2007). La respuesta ha sido mayor de lo esperado y el cuidado y esmero de los agricultores ha permitido contar con árboles que producen semillas, que se propagan por estacas y acodos o margullos. Más aún, en la feria del 2007 en Oriente se logró comercializar plántulas de esta especie.En la Feria de Candelaria 2006 la población tuvo una gran sorpresa al ver en algunos casos maíces totalmente rojos, una amplia diversidad de frijol pallar, y chiles del tipo 'Español' procedentes de las montañas donde las temperaturas son más bajas en los meses de junio. Esta riqueza pasará a los nuevos ciclos productivos como lotes de semillas considerados ya como propios aún cuando se conozca el origen. En este sentido se intercambiaron semillas de frijol, maíz, frijol pallar y chiles, además de las viandas y algunas estacas de yuca traídas desde Guantánamo. Durante la feria y el taller, se propiciaron otros flujos de semilla que permitieron a agricultores del occidente, el acceso a nuevos materiales por la visita de sus paisanos del oriente.A partir de la información recopilada en las ferias celebradas en México, se pudo observar que su mayor pertinencia e impacto se logró cuando éstas se organizaron en etapas posteriores a períodos de desastre provocados por los huracanes. La semilla recopilada y vendida fue insuficiente en estos casos dado que la demanda era muy elevada. Aunque el impacto de las ferias a través del tiempo no se ha evaluado de manera cuantitativa, es válido señalar que el gobierno estatal ha considerado apoyar oficialmente estos eventos de semillas como una medida social de emergencia después del paso de los últimos huracanes.En Cuba, el Cuadro 6 muestra las cantidades de semillas vendidas o intercambiadas durante el desarrollo de las diferentes ferias. Se observó que las cantidades de semilla para cualquiera de las especies evaluadas eran pequeñas en relación con la demanda. Estos pequeños volúmenes permiten la difusión de los cultivares a pequeña escala aunque, por su sistema de producción en el caso de especies como los chiles y pimientos, con sólo 1 kg de semilla es posible sembrar una hectárea y generar suficiente semilla en un segundo ciclo para sembrar 110 veces esta superficie, si se tiene en cuenta el coeficiente de multiplicación propuesto por Muñoz et al. (1991).Otra especie que en la feria mostró niveles muy bajos en términos de cantidad de semilla fue el frijol pallar, que al igual que los chiles, ajíes y pimientos, tiene un alto coeficiente de multiplicación. Desarrollar una estrategia de multiplicación de este frijol resultaría válido si se tiene en cuenta que en el caso de Cuba, éste no aparece en los mercados y sólo se mantiene dentro de los sistemas tradicionales de cultivo. La feria podría ser una vía para su difusión. Los agricultores que se interesaran por las semillas del frijol pallar siempre lo ofrecieron como regalo. De las especies que se consideraron en el proyecto, los mayores volúmenes llevados a la feria fueron de maíz y frijol, que tienen gran importancia dentro de la finca tanto para la alimentación humana como animal y cuya siembra se orienta para obtener ingresos económicos para la familia, sobre todo con aquellos cultivares, que por su demanda y precio, presentan mayor rendimiento y atractivo para el mercado.El Cuadro 4 incluye diferentes indicadores que ponen de manifiesto la alta diversidad de productos llevados a las ferias, los volúmenes de los mismos, y un estimado del valor en pesos cubanos de tales volúmenes, junto con el número promedio de productos por agricultor, y el ingreso que ellos obtuvieron en cada evento. Los indicadores muestran el creciente interés por participar en las ferias pues el número de productos del 2005 al 2007 fue aumentando en ambas regiones en los cuales sobresale la alta diversidad durante el 2007. Los ingresos por agricultor también fueron creciendo permitiendo apreciar que los campesinos pueden recurrir a las ferias como una alternativa para obtener ingresos económicos para la familia. Además del valor social de dicha actividad por el aporte de alimentos diversos sobre todo de frutas, raíces, tubérculos, condimentos, etc., la elaboración de conservas de frutas y vegetales permiten dar un valor agregado a muchas especies que sufren un deterioro normal si no son procesadas. Los volúmenes de los alimentos llevados a la feria no son despreciables y promediaron un nivel que superó la tonelada. La alta motivación por participar en las ferias está dada, en parte, por su carácter abierto a través del cual pueden integrarse todos los miembros de la familia, desde los más jóvenes hasta los de mayor edad.En el caso de las ferias en México, sólo se llevaron semillas de algunos cultivos locales, en especial de maíz y frijol, debido a las dificultades de transporte de los productores, los cuales tenían que adaptarse al espacio relativamente reducido que se les podía proporcionar en una camioneta del proyecto para el desplazamiento a los pueblos, sobre todo hasta los más distantes (entre 50 y 100 km).En Cuba las ferias que se celebraron en el marco del proyecto se ajustan en cierta medida a la descripción del diccionario Aristos (1985), 2 pues han sido organizadas en lugares públicos permitiendo a los habitantes de determinadas comunidades -como Las Terrazas con 980 habitantes, o poblaciones más amplias como las cabeceras municipales del municipio Candelaria en Pinar del Río y el poblado de Palenque del Municipio Yateras en Guantánamo-acceder a la diversidad que manejan los agricultores participantes en el proyecto (ver Cuadro 2). De la Fe et al. (2003) describen cómo las ferias han tenido un impacto en la comunidad campesina como parte de las estrategias para implementar los programas de fitomejoramiento participativo y fortalecimiento de los flujos de semillas en Cuba. Sin embargo, las actividades de feria desarrolladas en este proyecto han tenido un mayor alcance en cuanto a diversidad de especies y variedades, y en la población receptora directa de los servicios prestados por las ferias (Figura 1). Así mismo, en este caso el acceso a ingresos económicos adicionales y a la diversidad tradicional, ha favorecido el intercambio de semillas entre los agricultores. Las ferias se han realizado con la amplia participación de los gobiernos locales, otros actores interesados, y la población en general.Se ha logrado, además, promover la adquisición de semillas por los agricultores, lo cual ha permitido asegurar la siembra de los diferentes cultivos sobre la base de las variedades tradicionales y los cultivares avanzados establecidos.Las primeras ferias de agrodiversidad celebradas en las regiones de estudio tuvieron un carácter expositivo, pues las acciones de comercialización dentro de dicha actividad no estaban amparadas por permisos oficiales. Estas ferias se celebraron en la comunidad Las Terrazas y en la Estación Ecológica Sierra del Rosario en el marco del proyecto \"Contribución de los huertos caseros a la conservación in situ de recursos fitogenéticos en sistemas de agricultura tradicional\" (Shagarodsky et al. 2004).Los días seleccionados para la feria de semilla se acordaron siempre con las autoridades locales para los fines de semana (sábado o domingo), cuando la mayoría de agricultores está en el pueblo o regresa de su trabajo fuera de la localidad. Para los agricultores estos días se constituyeron en festivos en los que casi toda la familia participa, y se convirtieron en una oportunidad para socializar con vecinos o agricultores de zonas más distantes. Además, la feria permitió al agricultor obtener material de siembra (semilla o propágulos) o de consumo para la familia. La venta de los excedentes de la producción se constituye como una buena oportunidad para que el agricultor obtenga ingresos económicos a partir de la diversidad que conserva en la finca o el huerto.A pesar de los esfuerzos de varios años de algunas ONG en México por mantener las ferias de semillas, en algunos pueblos de la zona maicera yucateca, éstas sólo han tenido un impacto sujeto a las necesidades inmediatas. Se ha reportado que estos eventos ferias funcionan únicamente en pueblos que han perdido sus semillas en fecha reciente, y que en los años siguientes los mecanismos tradicionales de obtención de semillas mediante redes familiares vuelven a cobrar importancia. En este contexto, en las comunidades de estudio se observó que de la semilla que siembran los productores cada año, más del 70% proviene de su propia semilla cosechada y guardada el ciclo anterior (autoabastecimiento). No obstante este panorama, los agricultores pierden las semillas de sus variedades por diversos factores como sequías, huracanes y daños por animales, entre otros (Arias 2000;Latournerie et al. 2004).La experiencia de las ferias de agrodiversidad y semillas ha sido, en general, fructífera y ofrece un espacio para el intercambio que no existía antes en los sitios de intervención. En la Caja 1 se recogen diferentes apreciaciones y opiniones de agricultores y dirigentes participantes en las ferias celebradas en Cuba. En general, los mercados locales no muestran la alta diversidad exhibida en las ferias celebradas en el marco del proyecto, y por la alta participación de los agricultores, se evidencia el interés por consolidar las ferias de semilla, ya que permiten el acceso a la semilla de manera conjunta con productos alimenticios. Para consolidar estas ferias, será necesaria la participación conjunta de las diferentes instituciones, como la organización campesina ANAP, las instituciones de gobierno como el Poder Popular y el Ministerio de la Agricultura, siendo esta última, la principal institución del país responsable de la producción de alimentos. La Empresa de Semillas del Ministerio de la Agricultura debe ser otra de las instituciones del sector formal que debe interesarse en la difusión de estas experiencias, teniendo en cuenta que ella misma no puede dar cobertura a toda la demanda de semilla del país. Adicionalmente esto debería estar unido a otras experiencias alternativas para la producción y distribución de semillas, como es la vinculada a los diferentes subprogramas del Programa Nacional de Agricultura Urbana, que incluye entre sus estrategias a los cultivares tradicionales.Las ferias de semilla en México se pueden insertar en el mercado informal de éstas aunque no estén reguladas por alguna autoridad y no tengan un espacio físico específico. Según Pool (2007) el sistema informal de semillas ésta regulado y conformado por la fuerza de la relación entre la demanda y la oferta propia de la agricultura campesina de la comunidad. En este mercado los costos de la semilla no expresan los costos de transacción y los costos de oportunidad de los agricultores, y la información de este mercado se basa en la confiabilidad de los agricultores. La fortaleza de este sistema informal radica en que las transacciones se realizan sin dinero o con un costo muy bajo, y por tanto se podría pensar en una economía campesina (distribución colectiva de bienes, beneficios y servicios), o en una economía a escala que proporciona recursos y luego los recupera con la devolución. Sperling (2002) presenta un análisis de las ayudas que se ofrecen a los agricultores en situaciones de emergencia con base en la experiencia de Kenia. Este autor valora diferentes aspectos relacionados con la disponibilidad y el acceso a la semilla en dos escenarios en los que se produce un impacto de estrés agudo y crónico. Ambas situaciones de emergencia provocadas por huracanes o sequías prolongadas se han presentado tanto en Cuba como en México, y las ferias de agrobiodiversidad y semilla han ofrecido una alternativa para la difusión de cultivos y variedades mejores adaptadas a las condiciones impuestas por estos eventos meteorológicos extremos. Esta Caja 1. Percepciones y opiniones de los participantes en las ferias celebradas en el poblado de Palenque (Municipio Yateras, Guantánamo), y en la comunidad \"Las Terrazas\" (Pinar del Río), Cuba, durante el 2007.\"Considero que la feria es muy importante sobre todo por la participación de los campesinos como productores de sus propias semillas. Es de gran importancia lo que se propicia en estas ferias: el intercambio entre los campesinos de la región y el intercambio con campesinos de otras provincias y con pobladores de las comunidades donde se realizan las ferias. Creo que lo que más tiene valor es la protección y conservación de sus semillas; esto es algo que se le debe reconocer al campesino. Estas Ferias se deben realizar con más frecuencia; es un encuentro que se debe hacer extensivo a otras áreas, a otros municipios de la provincia, y poder contar con el apoyo del CITMA y el INIFAT, además del de la ANAP y de otras empresas del Ministerio de la Agricultura, todo para permitir que se conozcan otras variedades con las que, tal vez, las empresas de semillas no cuentan. La ANAP está muy contenta con los resultados ya que ha permitido que lo que tenemos en la provincia se conozca a través de este proyecto en otros lugares del país. Agradecemos al CITMA y al INIFAT el haber podido asistir a esta Feria\".\"Para mí las ferias han sido muy importantes ya que no sólo me dieron la oportunidad de llevar mis semillas, sino que también dieron a conocer que las mujeres también participamos, tenemos responsabilidad y conocimientos para la conservación de semillas. Las ferias son importantes porque se divulgan los distintos tipos de cultivos que tenemos en la finca y porque se intercambian con otras fincas de lugares cercanos y más lejanos\".\"Considero que la realización de las ferias de semillas ha sido muy favorable para el conocimiento agrícola de los campesinos de las comunidades que han participado, ya que se produce el intercambio de las semillas que las empresas del estado no tienen, sino que también se garantiza que se consuman especies que se creía que habían desparecido como algunas variedades de frijoles tal como 'Carne de gallina'. También pienso que estas ferias debían involucrar a otras comunidades y realizarse con más frecuencias\".\"Como estuve enferma no pude sembrar por un tiempo y perdí la semilla de ají que había guardado. Gracias al Proyecto, en la feria pude conseguir semilla nueva para sembrar este año\".Instituto de Investigaciones Fundamentales en Agricultura Tropical \"Alejandro de Humboldt\" difusión se realiza a través de agricultores que no fueron afectados, gobiernos locales y diferentes instituciones del sector formal como las empresas y casas de semillas. La feria puede ser también un escenario habitual por medio del cual el agricultor puede acceder a una semilla con calidad fitosanitaria y fisiológica adecuada. Además, la feria puede ofrecer espacios para facilitar el acceso oportuno a la semilla de cultivares tradicionales y variedades mejoradas.En las ferias celebradas en Cuba, el ingreso promedio general superó los 430 pesos cubanos (alrededor de 16 USD) por agricultor y es posible alcanzar cifras que superen los 800 pesos (alrededor de 30 USD). Estas ferias generan beneficios para la comunidad al permitir observar volúmenes promedio de productos por feria que superaron la tonelada, una cantidad que fue en aumento de las primeras a las últimas experiencias (Cuadro 4).En ambos países las ferias han servido como instrumento para la educación ambiental de la población en general, y han permitido sensibilizar a funcionarios, a financiadores y a tomadores de decisiones (delegados a la asamblea nacional, dirigentes del gobierno, especialistas y técnicos locales), sobre la diversidad existente en los países y sobre la necesidad de su conservación por su carácter único e irremplazable. Es importante, sin embargo, tener en cuenta que una buena parte de la diversidad existente en las fincas, y que se describe en el marco del proyecto en Cuba, es aún novedosa para aquellos conocedores del sector agrícola. El hecho de que se despierte curiosidad cuando el propio agricultor exhibe esta diversidad que mantiene en el contexto urbano, es un atractivo que puede ser la base de un futuro mercado para los productos tradicionales y sus derivados.En México la feria ha permitido a los estudiantes mostrar la diversidad existente en sus comunidades contribuyendo así a la preservación de los cultivares tradicionales y a su conocimiento, y a que las nuevas generaciones campesinas los revaloren. Hoy en día tales generaciones afrontan problemas de educación globalizada y procesos de migración obligados por la falta de oportunidades de desarrollo socioeconómico local como lo señalan Pérez y Arias (2006;2007), que además encontraron que en especial, los jóvenes están interesados en aprender más de su cultura pero en su propia lengua y que resienten los métodos de enseñanza ajenos a su medio y cultura. En el caso específico de las ferias de diversidad que se realizaron entre jóvenes mediante concurso de exposiciones de diversidad de semillas, las opiniones fueron que no tenían idea de la existencia de tantos colores y formas de las semillas y que les gustaría conocer más. A su vez los agricultores opinaron que sabían que había otras clases de semillas pero que nunca las habían visto juntas y que quisieran sembrar algunas de ellas en su milpa.Las ferias de agrodiversidad y semillas han ofrecido un espacio fructífero para el intercambio de germoplasma antes inexistente en los sitios de intervención y han contribuido a la educación ambiental de los agricultores y de la población en general.La realización continuada de las ferias augura que éstas se conviertan en un elemento que permitirá apoyar los flujos de semillas para fortalecer así el sistema informal en los territorios. Además, pueden llegar a convertirse en una actividad social necesaria que motive a las comunidades rurales a exponer, a ofrecer un servicio a la comunidad, y a recibir beneficios de la diversidad preservada a través de los años.Las ferias mostraron su validez tanto en condiciones de emergencia climática como en condiciones normales, un hecho que demostró el interés de los agricultores por participar en éstas sin importar las condiciones existentes.En términos de participación comunitaria, de recuperación y de enriquecimiento de variedades cultivadas en condiciones de agricultura de subsistencia, su validez se ha registrado en ambientes con recientes pérdidas de diversidad por desastres naturales como el paso de huracanes y sequías.Per M. Stromberg 1,2 , Unai Pascual 2 , y Mauricio R. Bellon 3 1 Universidad de las Naciones Unidas, Institute of Advanced Studies, Yokohama, Japón 2 Universidad de Cambridge, Departamento de Economía de la Tierra, Cambridge, Reino Unido 3 Bioversity International, Roma, ItaliaEn este capítulo analizamos cómo las instituciones de sistemas locales de semilla afectan la agrobiodiversidad del maíz, con un estudio de caso del Amazonas central peruano. El uso tradicional y la evolución del germoplasma de maíz se dan en contextos sociales e institucionales dinámicos, lo cual es fundamental para cualquier estrategia de conservación in situ. Entre las amenazas inmediatas para la conservación de la diversidad del maíz, se encuentra el rápido ritmo del cambio socioeconómico en la región, sin embargo, no se entiende muy bien cómo las instituciones locales de semilla intervienen para evitar la pérdida de la agrobiodiversidad. Este capítulo presenta un modelo conceptual que enmarca el vínculo entre los sistemas de semillas y la agrobiodiversidad dentro del contexto cultural más amplio que comprende los factores mediadores como lo son: el patrón de asentamiento, la acción colectiva y la integración al mercado. Los resultados de los datos recopilados en la comunidad y el grupo familiar indican que estos factores tienen un rol importante en el funcionamiento de los sistemas informales de semillas y que a su vez afectan las opciones de los agricultores respecto a la conservación de la diversidad de semillas.Estudios recientes sobre el uso y el mantenimiento de variedades nativas de diferentes cultivos en diversas partes del mundo en desarrollo han demostrado que los agricultores dependen de sí mismos como su fuente principal de semilla, bien sea porque guardan su propia semilla o porque la obtienen de otros que la hayan guardado (Hodgkin et al. 2007). Estas formas de obtener semilla generan flujos temporales y espaciales de semilla y existe una creciente evidencia que estos flujos son influenciados por las relaciones sociales que suponen diferentes tipos de transacciones y normas, y tienen una base de conocimiento asociado importante, que constituyen los sistemas reales de semilla, 1 generalmente referidos como sistemas de semillas locales, informales o de los agricultores.Cada vez es mayor el interés por entender cómo funcionan y evolucionan estos sistemas, y cómo contribuyen al uso y al mantenimiento de la diversidad de los cultivos. Al guardar la semilla, los agricultores están influenciando los genotipos que pasan de una generación a otra, de manera consciente o inconsciente. En algunos casos, este proceso es bien reconocido y manejado por los agricultores mientras que en otros casos no es así. La selección no está ligada únicamente al desempeño agronómico sino también a la entrega de los productos y a sus propiedades específicas, tales como sabor, cualidades de procesamiento, características visuales, etc. El hecho de que los agricultores compartan semilla también implica que los genes y las poblaciones se muevan. Tanto la selección como el flujo de genes son factores importantes que moldean la diversidad que mantienen los agricultores (Bellon 2008).El maíz es un cultivo importante en Perú, y se encuentra desde las tierras bajas tropicales hasta en las grandes altitudes en los Andes. Aunque la selva amazónica no es un centro de do-mesticación, existe una diversidad enorme y una cultura alimenticia importante asociada a él, a sus múltiples usos y formas de consumo. El maíz es un cultivo importante para la subsistencia en el Amazonas, generalmente parte de sistemas complejos que involucran múltiples cultivos y variedades. Aunque hay un conocimiento cada vez mayor sobre los patrones de diversidad de las especies y su variación en el Amazonas peruano (p.e. Reyes- García et al. 2008;Coomes y Ban 2004), se conoce poco acerca de la diversidad (infraespecífica) de las especies de maíz y los sistemas de semillas que influencian esta diversidad. Además, es sorprendente que aunque el maíz tiene una larga historia en la región, es poco lo que se conoce acerca de su importancia tanto para los sistemas económicos como para los sociales y culturales (Smale 2002;Collado et al. 2004). Este capítulo analiza cómo las instituciones de sistemas locales de semillas afectan la diversidad infraespecífica del maíz a través de un estudio de caso del Amazonas central peruano. 2 Se emplea un enfoque econométrico para evaluar la hipótesis de que los sistemas locales de semillas apoyan la diversidad infraespecífica de los cultivos expandiendo las opciones de semilla de variedades locales por medio de tres fuerzas mediadoras, ellas son (i) patrones de asentamiento, (ii) instituciones locales de acción colectiva, y (iii) integración al mercado. 3 La estructura del capítulo es la siguiente: En la próxima sección desarrollamos el modelo conceptual que enmarca el vínculo entre los sistemas de semilla y la agrobiodiversidad en el contexto cultural más amplio. La sección 3 describe el diseño de la muestra y los datos empleados del Amazonas peruano. En la sección 4, se presenta el modelo empírico propicio para las hipótesis verificables sobre el efecto del sistema de semillas y los factores que intervienen sobre las opciones del agricultor para la conservación de la diversidad de las semillas de maíz. La sección 5 muestra los resultados, y la sección 6 las conclusiones.Obtener semilla para cultivar es un problema fundamental para cualquier agricultor, quien enfrenta dos problemas importantes: acceso físico e información veraz. Como lo indican Morris et al. (1998), la semilla no es transparente, uno no sabe los rasgos y desempeño en ella contenidos solamente con mirarla. Adicionalmente, la planta que surge de la semilla necesita adaptarse al lugar en donde será sembrada, de otra manera sería algo inútil. Para un agricultor, la manera más fácil de conseguir semilla es guardándola de su anterior cosecha ya que el agricultor controla el acceso físico al guardar y almacenar la semilla de su cosecha, y tiene información veraz basada en su propia experiencia acerca de las características de desempeño, consumo y producción de las plantas contenidas en la semilla, y puede obtener la semilla a tiempo para su siembra, no tiene que buscar ni involucrarse en ninguna otra transacción.Sin embargo, los agricultores necesitan conseguir semilla de fuera debido a la pérdida de semilla, a la necesidad de renovarla y para propósitos de experimentación. El agricultor puede perder su semilla debido al fracaso del cultivo, lo cual involucra dos aspectos, fracaso total del cultivo, nada de cosecha disponible ni siquiera para guardar semilla, o baja producción forzándolo a alimentarse de la semilla. La otra razón es debido al deterioro del almacenamiento o a la venta de la semilla debido a apuros económicos (necesidad de dinero). Es posible también que el agricultor necesite renovar la semilla debido a una alta carga de enfermedades o \"degeneración\", como la depresión endogámica. Por ejemplo, Louette et al. (1997) mencionaron esta práctica entre los agricultores mexicanos de maíz. A los agricultores les gusta experimentar, evaluar otras semillas para ver si pueden obtener de ellas más beneficios. La fuente de abastecimiento de semilla más sencilla además de uno mismo es con agricultores vecinos en el mismo pueblo. La información sobre la semilla sería fácil de obtener y los ambientes en donde las semillas crecen deben ser bien conocidos. De este modo las redes sociales son la primera fuente de abastecimiento de semilla que no proviene del agricultor mismo. Además, la participación en instituciones de acción colectiva debería facilitar el acceso a la información y promover el capital social que harán que las transacciones con los agricultores vecinos sean más fáciles. Un grupo de agricultores puede mantener un gran número de variedades con una más baja probabilidad de pérdida que cualquier otro agricultor de forma individual (Badstue et al. 2006).Abastecerse de semilla local es un método adecuado para la recuperación de semilla perdida, sin embargo, puede tener un potencial limitado para la experimentación, ya que es posible que el agricultor desee algo diferente de lo que está disponible en el pueblo. De modo que se esperaría que los flujos de semilla dentro de una comunidad o un pueblo estén asociados con la pérdida de semilla; mientras que los flujos de semilla entre comunidades y pueblos se darían en respuesta al deseo de experimentar con las semillas. La semilla para renovación o sustitución puede depender de la distribución de cargas de enfermedades y otros factores, así que no es claro qué puede ser más apropiado, si abastecerse dentro o entre comunidades. De manera que la distancia asociada con los flujos de semilla puede estar relacionada a diferentes razones para obtener la semilla: la experimentación vs el fracaso del cultivo; aunque si el fracaso del cultivo afecta a todos, esto debe forzar a los agricultores a buscar semilla también por fuera del pueblo.Por consiguiente, los sistemas de semillas contribuyen a superar un limitante en el abastecimiento de semilla (ej. Cavatassi et al. 2005). Sin embargo, como se describe a continuación, el sistema de semillas es afectado por su contexto más amplio. Más adelante se describe la hipótesis de que los sistemas locales de semillas apoyan la diversidad expandiendo las opciones de semilla a las variedades locales, a través de las tres fuerzas mediadoras del proceso: los patrones de asentamiento, las instituciones locales de acción colectiva, y la integración al mercado. La Figura 1 resume estos vínculos.Sistem a de semilla sInstituciones de acc ión co lec tiv aFigura 1. Modelo conceptual que vincula la diversidad de semillas y los sistemas de semillas con los factores mediadores en el contexto cultural más amplioLa distribución espacial de los pueblos debería influenciar la diversidad de los cultivos a nivel del pueblo haciendo que los flujos de semilla sean fáciles o difíciles. Entre más dispersos estén los pueblos en el territorio, más difícil es participar en flujos de semilla entre pueblos y son más los incentivos para depender de los agricultores dentro del mismo pueblo donde se encuentran. Por ejemplo, se ha encontrado que el aislamiento de los pueblos estimula el ahorro de semilla a costa de la renovación de semilla, como en el caso del sorgo en Etiopía (Cavatassi et al. 2006). Los patrones de asentamiento afectan los costos de transacción de los sistemas de semillas relacionados con adquirir información acerca de los atributos de las semillas. Dicha información es crucial para la agricultura de subsistencia, por ejemplo, sobre los requerimientos agrícolas de los ciclos de agua, resistencia a las plagas al igual que datos del mercado sobre agentes y sitios para el abastecimiento de semilla (Perales et al. 2005;Dennis et al. 2005;Badstue et al. 2007). Es decir, las transacciones dentro del grupo cultural reducen las asimetrías de la información sobre las propiedades de la semilla, evitan las barreras de idioma y aumentan la confianza.Los sistemas locales de semillas a menudo dependen de la reciprocidad y confianza dentro de las comunidades, por ejemplo, el capital social, para establecer la calidad de la semilla (Winters et al. 2006). Los sistemas locales de semillas además dependen de la realización de préstamos lo cual expone tanto al proveedor de semilla como al que la recibe a la incertidumbre crediticia, debido al riesgo de que la contraparte no cumpla con los términos acordados del canje (Badstue et al. 2006(Badstue et al. , 2007;;Winters et al. 2006). Por ejemplo, la membresía al grupo comunitario se ha asociado empíricamente con el mantenimiento de la agrobiodiversidad (Dennis et al. 2005). 4 Pero Cavatassi et al. (2007) han descubierto que en Etiopía el tener fuertes vínculos sociales dentro de la comunidad está correlacionado con una baja diversidad de los cultivos, mientras que los agricultores que se involucran en el abastecimiento por fuera tienen una alta diversidad de semilla. Así, el capital social y la diversidad de semilla pueden no ir correlacionados automáticamente en cualquier caso.Es importante notar que la información de la semilla está asociada con las propiedades de los bienes públicos (Bellon y Smale 1999). Por lo tanto, asumimos que la acción colectiva permite la captura de efectos positivos de los flujos elevados de información más allá de lo posible con los contratos bilaterales. 5 Sin embargo, instituciones especializadas de semilla serian costosas de mantener (relativo a su beneficio), porque normalmente los agricultores renuevan sus semillas a intervalos prolongados. En cambio, se ha encontrado que el acceso a semillas es a menudo organizado de forma ad-hoc y que se fundamentan en estas redes sociales preexistentes las cuales tienen otro motivo que abastecer semilla, por ejemplo la coordinacion del capital laboral (Badstue et al. 2006;2007). Sin embargo, la aplicación y el alcance de la acción colectiva es afectada por los patrones de asentamiento. Específicamente, se puede pensar que los mercados tienen un efecto negativo. La razón es que el acceso a sustitutos del mercado para la agrobiodiversidad (p.e. seguro \"insurance\"), expresado tanto por la cercanía a los mercados como por los propios ingresos, puede afectar negativamente la confianza en las instituciones locales para proveer atributos buscados de las semillas. Como tal, se puede esperar que las comunidades localizadas más lejos del mercado proporcionen una base más sólida para la acción colectiva. Conclusiones similares se han derivado en otros lugares (ej. Ostrom 1994;Berkhout et al. 2006).La integración a los mercados y la incorporación a las economías en donde el factor ingresos se vuelve prevalente pueden tanto aumentar como reducir la demanda de agrobiodiversidad de parte de los agricultores. En primer lugar, los mercados que funcionan bien proveen productos alimenticios y un seguro (constituido por dinero usable intertemporalmente) que pueden sustituir los bienes y servicios de la agrobiodiversidad. Además, las posibilidades de ingresos aumentan el costo de oportunidad de insumos del proceso productivo tales como la tierra y la mano de obra familiar dedicadas a trabajar la agrobiodiversidad de manera intensiva. Finalmente, se ha descubierto que en general los cambios culturales afectan las preferencias locales tanto por los atributos de consumo de la diversidad de semilla como por las opciones de los medios de vida (Bellon 1996;Brush y Meng 1998;Smale 2005; van Dusen y Taylor 2005; Brush y Perales 2007). De este modo, los agricultores orientados hacia el mercado se pueden enfocar en el monocultivo, y en variedades de semillas más estandarizadas, lo cual reduce el rol de los sistemas informales de semillas y de la adquisición de información proporcionada por instituciones informales basadas en la acción colectiva. 6 Otros autores han encontrado un efecto positivo de los mercados y la entrada de ingresos sobre la diversidad de semilla a través del potencial de mercadeo expandido (King y Smale 2005b). Dennis et al. (2005) han observado que los agricultores con mayor entrada de ingresos tienen mayor probabilidad de invertir en la costosa empresa de cultivar diversas especies, en vez de monocultivo, en este caso de frutos y nueces. Sin embargo, se puede argumentar que los dos mecanismos mediadores, el acceso al mercado y los ingresos, tienen un impacto dependiente del contexto sobre la opción de agrobiodiversidad.Los datos consisten de información socioeconómica del grupo familiar a partir de encuestas estructuradas realizadas a 107 hogares agricultores en 11 pueblos en el Amazonas central peruano, compilados entre el 2005 y 2006. Los datos corresponden a la temporada agrícola inmediatamente anterior. Los pueblos se escogieron con el fin de ganar una representación equitativa de agricultores pertenecientes a tres grupos étnicos diferentes: los Asháninkas, los Shipibo-Conibos y los mestizos. Estos agricultores representan tres grupos culturales diferentes, con patrones de asentamiento distintos, diversas formas de prácticas de acción colectiva y grados de integración al mercado. Los encuestados fueron cabezas de hogar, seleccionados al azar en los pueblos elegidos.Con el fin de mejorar la comprensión de la estructura institucional de los sistemas de semillas, se efectuaron encuestas posteriores con cuestionarios semi-estructurados con agricultores en varias de las comunidades. 7 La información obtenida en las dos encuestas se revisó para verificar su precisión de forma iterativa por medio de la interacción con informantes clave en las comunidades y con los expertos agrícolas locales.La información reunida cubre datos sobre el sistema de semillas de los agricultores y las prácticas de acción colectiva, al igual que datos socioeconómicos sobre la influencia de los mercados externos y las opciones de los medios de vida. Los datos se complementaron con información demográfica secundaria a nivel del pueblo, al igual que con datos geográficos sobre los patrones de asentamiento.El Amazonas central comprende un grupo de diversas zonas agroecológicas, con riberas que contrastan a las regiones de las tierras altas, y diferentes a las regiones con suelos agrícolas pobres. 8 En términos de diferencias culturales, los mestizos, inmigrantes de los Andes, con frecuencia se 6 El cambio cultural también puede aumentar la homogeneidad del grupo y desestabilizar la base sobre la cual se deben construir las normas de la acción colectiva (Cárdenas y Ostrom 2004). 7 Más específicamente la segunda ronda de compilación de información cualitativa fue efectuada por los autores en el pueblo mestizo El Éxito, 1.5 horas río arriba desde Pucallpa y las comunidades Shipibo Nueva Ceylan y San Rafael, 4.5 horas de camino a lo largo de un río afluente del río Amazonas. 8 Se han notado en la región efectos ambientales sobre el fenotipo en el maíz, y se han atribuido a las diferencias en las prácticas de manejo y a la calidad del suelo (Collado et al. 2004).Figura 2. Amazonas central peruano, distribución de los pueblos en el área del estudio de caso a . Fuente: Catálogo de Germoplasma -Proyecto Manejo y monitoreo de variedades locales de cultivos Amazónicos.Consorcio para el Desarrollo Sostenible de Ucayali, Instituto Nacional de Investigación y Extensión Agraria, Instituto Internacional de Recursos Fitogenéticos (IPGRI).a Los símbolos incluyen a los pueblos de nuestro conjunto de datos, al igual que a otros pueblos.Figura 3. Mapa detallado de la región del estudio con las comunidades encuestadas, centros comerciales, ríos principales y fronteras políticas a . Fuente: Google Earth, 15 de abril de 2008.a Claves: Círculo: pueblo mestizo; Triángulo: pueblo shipibo; Hexágono: pueblo ashaninka; Cuadrado: capital de la provincia de Ucayali.localizan muy cerca al principal centro comercial de la ciudad de Pucallpa (Figuras 2 y 3, y Cuadro 1). Además, entre los dos grupos indígenas principales en la región, los Asháninkas tienden a asentarse más lejos que el resto de los pueblos y de Pucallpa, y a comerciar con centros comercia- a Variable categórica para el nivel de educación de la cabeza de hogar: = 1 no ha tenido educación, = 2 empezó primaria pero no terminó, = 3 terminó la primaria, = 4 empezó secundaria pero no terminó, = 5 terminó secundaria, = 6 empezó estudios superiores pero no los terminó, = 7 terminó sus estudios superiores b Ingresos provenientes de la agricultura son de los últimos 12 meses, los de otra naturaleza son de los últimos 6 meses (aproximadamente el valor de 1 Nuevo Sol=USD 3) c El lote de semillas no está ubicado cerca al río (se refiere al lote más grande: solamente un agricultor tenía lotes de semillas ubicadas tanto cerca como lejos del río). d Distancia hasta Pucallpa, excepto por dos pueblos Asháninkas; su ubicación hace que los dos centros comerciales Palcazo y Llullapichis sean sus centros de integración al mercado. La distancia hasta Palcazo se toma por la distancia del camino ya que éste es el modo principal de comunicación allá.e Se refiere a la fuente de mano de obra que el agricultor utilizó, en al menos una de las cuatro fases agrícolas (preparación de la tierra, siembra, limpieza, cosecha). Cuando no se declare lo contrario, todas las referencias a la Minga incluyen también a Corta Mañana, lo cual es un trabajo colectivo similar, pero más corto que la Minga. Se refiere al lote de semillas más grande del agricultor.f Se refiere al 2005. Fuente: censo http://www1.inei.gob.pe/ disponible el 20 diciembre de 2007. g Fuente: CODESU y la medición del autor sobre los mapas físicos, y en Google Earth. a Se refiere al lote de semillas más grande del agricultor, por ej., el campo más extenso sembrado con una clase particular de semilla (ha.). Notar que \"El agricultor sembró semilla guardada\" es una categoría tanto en la ubicación de la fuente de abastecimiento de semilla como en el modo de abastecimiento de semilla, respectivamente.Cuadro 4. Asociaciones entre la diversidad del maíz a nivel de finca, el sistema de semillas (modo y distancia) y la acción colectiva, por grupo étnico (basado en las estadísticas descriptivas en los Cuadros 1-3) a les más pequeños y cercanos. Igualmente, los Asháninkas viven en los asentamientos más pequeños y son los más aislados con respecto a los mercados, aunque no necesariamente con respecto a otros pueblos en la región (Cuadro 1). Los mestizos a su vez parecen vivir en asentamientos más agrupados, dado que ellos tienen la distancia promedio más corta a los pueblos cercanos. Los Shipibos representan un patrón mezcla de pueblos cercanos y lejanos. En general en los diferentes grupos étnicos, se puede describir a la mayoría de los agricultores como semi-subsistentes (Cuadro 1), con al menos alguna entrada de ingresos proveniente de varios centros comerciales. En términos de diversidad de cultivos, los agricultores con frecuencia siembran una combinación de cultivos que incluyen banano, yuca y maíz. Aunque el último es el único cultivo alimenticio que se siembra en todos los tres grupos étnicos y también es puesto a la venta por parte de algunas familias, especialmente por los mestizos. Además es importante notar que los mestizos devengan un ingreso agrícola más alto que los Shipibos y los Asháninkas, tanto en términos reales como en la participación del ingreso total, por ejemplo el ingreso proveniente de la agricultura, sumado al ingreso por fuentes diferentes a la agricultura (Cuadro 1).La principal institución de acción colectiva en el área de estudio es conocida como \"minga\", la cual se refiere al sistema solidario de trabajo, mediante el cual la comunidad del pueblo comparte su propio trabajo de una manera recíproca con un objetivo explícitamente colectivo, que incluye actividades tales como la reparación de infraestructura comunitaria, por ejemplo puentes (Panduro 1999). También se puede usar para ayudar con otras tareas, especialmente en la agricultura. Tal es el caso para el cultivo del maíz, en el cual las familias reúnen a sus vecinos y familiares del pueblo y de pueblos cercanos para ayudar con sus prácticas de cultivo del maíz. Así, la minga es un complemento para la mano de obra tanto familiar como contratada, y ayuda a aliviar los cuellos de botella en el abastecimiento de mano de obra (Panduro 1999). Esto implica que puede potencialmente asumir un rol importante dentro del sistema de semillas, por ejemplo, permitiendo a los agricultores durante sus tareas de trabajo colectivo observar los atributos del maíz de otros agricultores, comparar las características de la semilla e intercambiar información sobre las fuentes de semilla por fuera del pueblo y los mercados locales de alimentos. De este modo, la institución colectiva minga se encuentra asociada con una característica informacional de los comunes incluyendo el acceso a las semillas y su información relacionada que incluye la confiabilidad de los proveedores de semilla. El menor uso de la minga está entre los Asháninkas (ilustrado por un bajo índice de mingas, Cuadro 1), mientras que su uso es mucho más alto entre los Shipibos y los mestizos.Otra información comparativa que es interesante notar es que los mestizos producen el mayor volumen de maíz y devengan el mayor valor de ingresos en promedio (Cuadro 2). Esto sugiere que ellos tienen una gran influencia de los mercados en comparación con los otros dos grupos. Los Asháninkas venden la más baja porción de su producción de maíz, y consumen el mayor volumen, lo cual sugiere que las preferencias propias de consumo propio juegan un papel importante en su elección de semillas.En cuanto a la diversidad del maíz, aquí existen dos variedades nativas principales en el Amazonas, y un total de diecisiete variedades de maíz aparecen en nuestros datos. Los Asháninkas parecen ser los que tienen un mayor número de semilla de maíz en comparación con los Shipibos, seguidos por los mestizos (Cuadro 2).Los agricultores en la región constantemente experimentan con semillas de cultivos como un medio para lograr la variabilidad, 'refrescar' la semilla y aumentar el rendimiento (Panduro 1999;Collado 2005). Estudios previos enfocados en esta región corroboran que el abastecimiento por fuera del pueblo se utiliza para expandir el grupo de opciones para los rasgos, por ejemplo en frijoles (Panduro 1999), y para los cultivos en general (Arévalo 1999). Además, los sistemas locales de semillas de maíz son dinámicos y los agricultores utilizan diversos modos de transferencia y fuentes geográficas de semillas para maíz y otros cultivos clave (Boster 1986;Panduro 1999;Co-llado et al. 2004Co-llado et al. , 2005)). Más recientemente, Collado et al. (2006) han estimado que el 83% de los agricultores Shipibos renuevan sus lotes de semilla a intervalos de aproximadamente cuatro años, con unos ritmos un poco inferiores para los mestizos y los Asháninkas. En el área de nuestro caso, el abastecimiento de semillas desde lejos se hace con frecuencia de manera oportunista, como una actividad complementaria a los viajes para otros propósitos, como una forma de disminuir los altos costos de transacción de los principales medios de comunicación, por vía fluvial.La semilla que se guarda, como elemento clave del sistema de semillas, domina entre todas las etnias (Cuadro 3). La falta de caminos y los altos costos de transacción del transporte fluvial contribuyen a esta estrategia de ahorro de semilla. De acuerdo con los datos, los Asháninkas tienen el sistema de semillas más cerrado y autosuficiente, mientras que los mestizos y los Shipibos poseen sistemas de semillas mucho más abiertos, aunque diferentes en términos del mecanismo utilizado para acceder a la semilla. En contraste, los Shipibos parecen depender de manera considerable de las transacciones no monetarias, basadas en su mayoría en el capital social (Cuadro 3) y de otros pueblos. Finalmente, los mestizos dependen más de las transacciones monetarias, principalmente dentro del pueblo. Por estas razones, el sistema de semillas shipibo parece ser el más abierto de los dos.El Cuadro 3 también muestra que la naturaleza dinámica del sistema de semillas de los Shipibos es además reflejada por su abastecimiento más frecuente desde afuera del pueblo y sus lejanías. Esto posiblemente refleja su posición intermediaria sobre la coexistencia entre la integración al mercado y el mantenimiento de los medios de vida tradicionales, haciendo por tanto necesario un conjunto más amplio de modos para asegurar el acceso a la semilla para los agricultores con diferentes preferencias e ingresos.Según el diagnóstico previo del área y con base en las estadísticas descriptivas, se puede observar que el grupo con menos orientación al abastecimiento externo, los Asháninkas, tiene la más alta diversidad de semilla de maíz, empleando principalmente las semillas guardadas pero de forma interesante con un uso marginal de la minga. Nos referimos a este grupo étnico como el que posee la estrategia de diversidad de semilla con mayor orientación al abastecimiento interno. 9 Además, los Shipibos juegan un papel intermediario en la conservación de la diversidad de semillas y se pueden caracterizar por tener una estrategia con orientación al abastecimiento externo en la medida en que su sistema de semillas depende principalmente de los préstamos, facilitados posiblemente por las mingas inter-pueblos, en lugar de las mingas del mismo pueblo. En cuanto a las características de asentamiento, también están asociadas con una dispersión inferior entre las familias, ayudando de esta manera a la conectividad, contrario a los Asháninkas quienes están más dispersos, lo cual hace que las transferencias de semillas sean más difíciles. El Cuadro 4 detalla las asociaciones entre las características del sistema de semillas, la opción de diversidad y la acción colectiva.El mayor uso de la minga por parte de los Shipibos en comparación con los Asháninkas, y una mayor preferencia por la diversidad del maíz que los mestizos, quienes se encuentran más integrados a los mercados formales del maíz, sugieren que la diversidad de semilla empleada por los Shipibos puede estar influenciada principalmente tanto por la distancia hasta la fuente de abastecimiento de semillas como por el uso de la institución de acción colectiva minga. El vínculo Shipibos-minga en su sistema de semillas es aún más enfatizado por su uso frecuente de los préstamos de semilla, lo cual depende de la confianza y por tanto del capital social. Finalmente, es posible que los Shipibos además tengan una necesidad mayor que los mestizos de flujo de infor-mación debido a su número mayor de lotes de semilla, de semillas que han estado en circulación por más tiempo, y posiblemente de este modo semilla menos estandarizada en comparación con los mestizos. Esto sugiere una mayor especificidad de los activos en la semilla de los Shipibos, y por tanto la necesidad de más transacciones basadas en las relaciones.De manera interesante, los mestizos que son el grupo con mayor orientación hacia el mercado son los que tienen la menor diversidad de maíz. Dentro de este grupo étnico, la minga parece no ser exploatada como un mecanismo de conectividad de semillas entre los grupos familiares. Al contrario, parece que los agricultores mestizos están utilizando la institución de acción colectiva como una institución especializada de reciprocidad de mano de obra pero sin ninguna conexión hacia el abastecimiento de semillas.A partir de esta información, se puede deducir que los patrones de asentamiento de los Shipibos, las instituciones de acción colectiva y la integración a los mercados son factores mediadores importantes que afectan cada uno de los limitantes de los grupos étnicos y la toma de decisiones sobre el nivel de diversidad de semilla de maíz que se usará y conservará. Sin embargo, no existe una sola regla que pueda demostrar si alguno de estos factores afecta la diversidad de semilla de una forma pre-establecida. La siguiente sección presenta un modelo econométrico que controla las variables de los efectos mediadores de varios otros factores contextuales ambientales, económicos e institucionales con el fin de identificar los vínculos entre las instituciones locales de semilla y la diversidad del maíz en la región prestando especial atención a las instituciones culturales, del mercado y del capital social por grupo étnico.Aquí describimos cómo probamos la hipótesis de que los sistemas locales de semillas apoyan la agrobiodiversidad flexibilizando un limitante del abastecimiento hacia las variedades locales de semilla en demanda. Una pregunta relacionada que intentamos responder es hasta qué punto los patrones de asentamiento, de acción colectiva y de integración al mercado que cada grupo étnico representa, afectan las opciones de los agricultores sobre sus enfoques de conservación externa o interna.Las interrelaciones entre la cultura-etnicidad, las instituciones de acción colectiva y los sistemas de semillas hacen necesario un enfoque amplio para efectuar la prueba de la hipótesis principal. Se incluye un conjunto de variables para poner a prueba estos efectos principales con un enfoque especial sobre el sistema de semillas y su contexto facilitador para permitir la conservación de la diversidad del maíz por parte de las familias. Además, con el fin de cubrir los efectos interactivos percibidos entre la cultura, las instituciones y los sistemas de semillas, ponemos a prueba las interacciones entre las variables explicativas que representan a estos factores. El Cuadro 5 describe las variables utilizadas en el modelo.Se utiliza un modelo Probit heteroscedástico para calcular la probabilidad de que las familias cultiven varios cultivares de maíz en lugar de especializarse en solo una variedad de maíz dadas sus características socioeconómicas y el uso del sistema de semillas. 10 A continuación presentamos un conjunto de variables independientes y discutimos su rol potencial en la probabilidad de 10 La dispersión dentro de los subgrupos en la muestra puede variar directamente con el promedio del grupo y ocasionar heteroscedasticidad, lo cual disturbaría a los coeficientes. La variable INGRESOS PROVENIENTES DE LA AGRICULTURA tuvo una alta dispersión. Una prueba de normalidad rechazó la normalidad (chi cuadrado ajus-tado= 72.09), de este modo la teoría sugiere la utilización de un modelo Logit en vez de uno Probit. Sin embargo, ya que en la práctica es difícil justificar el uso del modelo Probit versus el modelo Logit (Borooah 2002), se utilizó un modelo Probit heteroscedástico para de esta manera tambien probar si alguna variable es heteroscedástica (Parikh y Sen 2006). Su prueba de Wald de 3.39 (chi2(1) =3.39, Prob > chi2 =0.0654) confirma la heteroscedasticidad y por tanto utilizamos el modelo Probit heteroscedástico, en vez de un modelo Probit.Cuadro 5. Descripción de las variables incluidas en el análisis econométrico .97..03 5 a El ingreso proveniente de la agricultura se refiere a los últimos 12 meses, el ingreso proveniente de fuentes diferentes se refiere a los últimos 6 meses. b Distancia hasta Pucallpa, excepto por los dos pueblos ashaninka; su ubicación hace que los dos centros comerciales Palcazo y Llullapichis sean su centro de integración al mercado. La distancia hasta Palcazo se toma por la distancia del camino ya que éste es el modo principal de comunicación allá.c Se refiere al lote de semillas más grande de los agricultores d Variable de comparación, es decir, no es visible en los resultados econométricos (Cuadro 6).conservación de la agrobiodiversidad en el sitio del estudio de caso. Estas variables se reúnen en cuatro grupos según reflejen o afecten el uso de las familias de: (i) el sistema de semillas, (ii) el patrón de asentamiento, (iii) las instituciones de acción colectiva, y (iv) la integración al mercado. Sistemas de semillas: Con el fin de poner a prueba el efecto de los sistemas específicos de semillas de los agricultores sobre la diversidad del maíz, se utilizan dos conjuntos de variables. 11 En primer lugar, se puede esperar que el abastecimiento de semillas desde lejos (asociado con la distancia) pueda indicar las características del agricultor tales como el poseer redes sociales que puedan expandir las opciones de acceso a la semilla. 12 En segundo lugar, nos enfocamos en la distancia por vía fluvial hasta la fuente de abastecimiento de semilla, porque éste es el modo principal de transporte en la región. Además, se controla la variable de la forma en que los agricultores adquieren semilla, es decir, si es abastecida a partir de la propia semilla guardada, por obsequio, por préstamos o por compra. Respecto del modo de acceso, aunque la compra implica un modo de acceso monetizado a la semilla el cual puede indicar integración al mercado y así una mayor probabilidad de que los agricultores reduzcan su acervo de variedades de semilla a sólo aquellas que son comercializadas debido a sus características especiales, comprar semilla también se asocia con el acceso por fuera del pueblo, y de esta manera con distancias más grandes y potencialmente con la diversidad. Si el primer efecto supera o no al último es una cuestión empírica.Patrones de asentamiento: A nivel del pueblo, las variables que reflejan la distancia hasta el mercado al igual que hasta el pueblo más cercano están incluidas en el modelo probit heteroscedástico ya que ellas pueden afectar la conectividad con otros pueblos, lo cual puede ampliar las opciones de abastecimiento de semilla y rebajar los costos de transacción para acceder a los sustitutos de consumo y producción (Benin et al. 2003;King y Smale 2005a, 2005b) y así puede influenciar el abastecimiento de semillas, por ej., la adopción de una estrategia de conservación externa vs una interna.Instituciones de acción colectiva: Las propiedades de los 'comunes' de semillas locales justifican el considerar la función de la acción colectiva de una forma explícita a través de la minga. El punto de vista es que los sistemas locales de semillas sí forman parte de una institución de acción colectiva más amplia y por lo tanto hacen parte del capital social de las familias. En nuestro contexto, la acción colectiva se refleja en la participación de los agricultores en la minga. Diferentes variables proporcionan información acerca de la minga, como por ejemplo, la proporción de días que las familias invierten trabajando en la minga del total de la mano de obra invertido en las fincas. Dado el rol específico que esto puede tener para los Shipibos, el análisis también incluye la interacción con la variable ficticia que representa si una familia pertenece o no al grupo Shipibo.El efecto de la minga en la agrobiodiversidad no es categórico. Por un lado, puede flexibilizar limitantes de tiempo y cantidad en la provisión de mano de obra. Esto podría apoyar en particular a la agrobiodiversidad, que en general requiere una labor de mayor intensidad que el monocultivo. Por otro lado, los diferentes tipos de semilla de los agricultores con agrobiodiversidad es posible que tengan ciclos de maduración diferentes y por tanto resuelven los requerimientos de mano de obra con el tiempo de esta manera evadiendo cuellos de botella. El efecto de la mano de obra-agrobiodiversidad de la minga no puede ser alto para los agricultores con agrobiodiversidad. Los dos aspectos de mano de obra de la relación entre la minga y la agrobiodiversidad en parte se compensan mutuamente. Por esa razón, nos enfocamos más bien en el aspecto del sistema de semillas de la minga.Integración al mercado: También se espera que los ingresos disponibles de las familias (tanto totales como de las actividades no agrícolas) afecten la diversidad de semilla aunque sin ningu-na señal esperada de antemano. Los ingresos pueden aumentar las posibilidades de invertir en agrobiodiversidad de alto costo, pero también aumentan la capacidad de sustituir, a través de canales de mercado, atributos ofrecidos por medio de la conservación in situ de diferentes semillas (Hintze et al. 2005;Nagarajan y Smale 2005). Igualmente, se espera que la educación superior aumente la capacidad del agricultor de acceder a los mercados, por ejemplo, adquiriendo destrezas técnicas y fluidez en el idioma español que sirven tanto para aumentar la capacidad de interrelacionarse en un contexto más amplio como para participar en actividades laborales por fuera de la finca. Los agricultores de mayor edad a menudo se relacionan con estrategias de medios de vida más tradicionales que a su vez tienden a ser asociados positivamente con la agrobiodiversidad (Dennis et al. 2005). Además, el número de niños que viven en el hogar puede ser asociado a una mayor agrobiodiversidad ya que esto puede contribuir a resolver las limitaciones de mano de obra (King y Smale 2005). También se puede esperar que lotes de semilla más grandes y más dispersos se relacionen con una mayor diversidad ya que un área más extensa puede sustentar más cultivos y variedades, y más nichos ecológicos (King y Smale 2005;Van Dusen 2004).Con el fin de evaluar el efecto de las cuatro variables arriba mencionadas sobre la diversidad de las semillas de maíz, es necesario controlar los factores de heterogeneidad de las familias en la muestra. Por ejemplo, la etnicidad puede afectar las opciones de los medios de vida y las preferencias de consumo, y así es también probable que afecte la preferencia y la posibilidad de formar y mantener instituciones locales tales como los sistemas de semillas. Las variables del rol de la etnicidad son controladas en el análisis ya que se espera que influencien tanto las preferencias por las semillas de maíz como la conexión a la capacidad de crear confianza dentro de los grupos étnicos y que de este modo impacten la efectividad de la acción colectiva. Igualmente, la etnicidad también representa diferentes clases de patrones de asentamiento de familias y comunidades, las cuales pueden afectar los sistemas locales de semillas.Por ejemplo, las familias mestizas, que tienen una baja diversidad de maíz también a nivel del pueblo, están sujetas a una mayor integración al mercado por su cercanía a Pucallpa, y de esta manera es menos probable que se involucren en sistemas tradicionales de semillas, contrario a los Shipibos y a los Asháninkas quienes, a diferencia de los mestizos, son grupos indígenas. Además, los Shipibos parecen tener una utilización más dinámica del sistema de semillas y emplean la institución de acción colectiva de la minga con más frecuencia. De este modo, damos atención especial a los agricultores Shipibos con el fin de evaluar la interacción de la integración al mercado, la cultura, las instituciones y los sistemas de semillas.Las variables de las características demográficas de las familias también deben ser controladas ya que posiblemente afectan la opción de diversidad de los agricultores. Aquí explicamos algunas de las variables de los efectos que queremos controlar en términos de educación, edad, estructura familiar, niveles de ingreso de los agricultores, y otras características de la finca como su área. Finalmente, debido a que en las locaciones del estudio de caso, las diferencias medioambientales en la región afectan hasta cierto punto la morfología y por tanto la productividad de las diferentes variedades de maíz en diferentes ambientes (Collado et al. 2004), se ha tenido en cuenta la información sobre la altitud en la que viven los agricultores y en que se encuentra el maíz.El Cuadro 6 muestra los resultados del modelo probit heteroscedástico relacionado a los efectos de los sistemas de semillas sobre la agrobiodiversidad, junto con los efectos mediadores: el patrón de asentamiento de las familias, la acción colectiva y el acceso al mercado. Más aún, damos atención al rol de la etnicidad enfocándonos en los Shipibos ya que se presume que ésta afecta la interacción del sistema de semillas y la acción colectiva de forma importante, y ellos tienen características de todo el rango de cada rol intermediador. A menos que se especifique lo contrario, Cuadro 6. Cálculos para el conteo de la diversidad del número de variedades de maíz (modelo Probit heteroscedástico) En cuanto al efecto del sistema de semillas, los datos sugieren que la distancia a la que se encuentra la semilla no es un factor relevante que afecte la probabilidad de tener más de una varie-dad de semilla de maíz por parte de una familia de rango representativo. Sin embargo, la variable de la interacción entre la distancia de la semilla y el pertenecer a la comunidad Shipibo es positiva lo cual sugiere que para los Shipibos, la probabilidad de cultivar más de una variedad de semilla aumenta cuando el agricultor se abastece de semilla proveniente de lejos. Este resultado corrobora nuestra expectativa dado que el análisis cualitativo sugiere que ellos tienen un enfoque de conservación orientado al abastecimiento externo. Así, encontramos evidencia de que la etnicidad afecta los sistemas de semillas por medio del factor mediador de la distancia a la que se encuentra la semilla aumentando las posibilidades de opciones de semillas de los agricultores. No obstante, es importante notar que el enfoque de conservación orientado al abastecimiento externo parece funcionar mejor para algunos y no para todos los grupos étnicos. Adicionalmente, la orientación al abastecimiento interno es también importante, como lo manifiesta el efecto de la semilla que se guarda. Obtener semillas de cantidades guardadas, o recibidas en obsequio o préstamo son todas estrategias asociadas positivamente con la diversidad de semillas, en comparación con la compra de semillas en el mercado.Con relación al efecto del patrón de asentamiento representado por la distancia hasta donde se encuentran los mercados cercanos, se pueden observar dos efectos complementarios. Por un lado, una distancia más larga por vía fluvial hacia los centros de mercado más cercanos tiene un efecto negativo sobre la diversidad de semilla. Esto sugiere que los mercados proveen oportunidades para más opciones de semilla y que el aislamiento de dichas oportunidades desestimula la probabilidad de una diversidad elevada de semillas. Sin embargo, existe una asociación positiva de la diversidad de semilla con la distancia recta hacia el principal centro comercial de Pucallpa. Esto indicaría un efecto negativo del mercado, porque los pueblos ubicados lejos de los mercados tienen una mayor diversidad de semilla. Esto es atribuible probablemente a los patrones socioeconómicos y de asentamiento, como lo es la baja influencia de Pucallpa sobre los Asháninkas. Las diferentes señales no son contradictorias ya que la anterior mide la distancia por vía fluvial y de este modo los costos de transacción, mientras que el último, la distancia recta, hay que reconocerlo, es una medida solamente aproximada de la integración al mercado. De manera similar, Cavatassi et al. (2005) han encontrado recientemente un vínculo negativo significativo entre la distancia a las ciudades grandes, pero no al mercado más cercano, y la diversidad de cultivos en una región de Etiopía. Esto se atribuyó a diferencias en el tamaño del mercado en las ciudades y los mercados cercanos. Esta tercer variable de asentamiento, distancia hasta el pueblo más cercano, no es significativa.De modo interesante, el rol de la acción colectiva, a través de la institución solidaria de mano de obra conocida como minga, en el área del estudio de caso aumenta la probabilidad de que las familias utilicen más diversidad de variedades de semilla de maíz. Una razón puede radicar en que es un mecanismo efectivo que facilita el flujo de información sobre la ubicación, la calidad y la cantidad de abastecimientos locales de semilla y los agentes que la proveen, lo cual es fundamental para apoyar los sistemas locales de semillas. Sin embargo, el efecto es amortiguado por las familias que utilizan la minga intensamente (como lo indica la variable de la proporción). Posiblemente, una mayor utilización de la mano de obra solidaria pueda indicar una familia con una dotación de fuerza laboral familiar relativamente baja, limitando de esta manera las prácticas de trabajo intensivas como el cultivo de la diversidad de maíz, en comparación con los agricultores con acceso tanto al abastecimiento de mano de obra familiar como a la de la minga. Sin embargo, es interesante notar que este efecto no está presente para las familias Shipibo. Esto a su vez también puede indicar que para los Shipibos, la escala y/o efecto del alcance con el cual el mayor compromiso de mano de obra solidaria aumenta los flujos de información, las redes sociales y la confianza, expande así las opciones de semilla. La probabilidad de tener más de una variedad de semillas aumenta con los ingresos provenientes de la agricultura, posiblemente debido a que los ingresos aumentan la posibilidad de invertir en agrobiodiversidad de alto costo.En cuanto a las variables principales de control, los datos sugieren que cuando se consideran por sí solas, ninguna de las variables ficticias de etnicidad parece afectar la diversidad de semilla. Por el contrario, la etnicidad demuestra que influencia el efecto de los sistemas de semilla y los mecanismos de acción comunitaria sobre la diversidad de semilla. De acuerdo a la documentación, también encontramos que la diversidad de semilla aumenta con usos más diversos del cultivo y con el área en la producción del maíz (Brush y Meng 1998;van Dusen y Taylor 2005). La razón radica posiblemente en que los múltiples usos probablemente requieren diferentes atributos del maíz, que se encuentran en diferentes variedades de maíz. En segundo lugar, los agricultores con parcelas de maíz más extensas en funcionamiento tienen mayor probabilidad de tener el espacio y los nichos ecológicos necesarios para cultivar más de una variedad de maíz. Nosotros argumentamos que el efecto negativo de la educación formal sobre la diversidad de semilla proviene de su asociación con el cambio cultural que reduce las preferencias por la agrobiodiversidad. Por último, ninguna de las variables demográficas sociales parece afectar la diversidad ni tampoco la variable para denotar heterogeneidad medioambiental (representada por la altitud de la finca) muestra un efecto significativo en términos estadísticos, descartando así el rol de la heterogeneidad medioambiental como un factor para la diversidad en el área del estudio de caso.En términos de la bondad de ajuste del modelo Probit corregido heteroscedástico, un Chi cuadrado de Wald de 40.31 nos demuestra que nuestro modelo en su conjunto es significativo en términos estadísticos (P<0.01). Es decir, al menos uno de los coeficientes de regresión de los predictores no es igual a cero. El estimador Huber/White/Sandwich de varianza se aplica con el fin de ajustar por variables faltantes (Sribney 1998). Además, dado que el sesgo posible de endogeneidad puede estar presente debido a un vínculo mutuamente causal entre la agrobiodiversidad y el sistema de semillas, se realizó una prueba con un modelo Probit bivariado aparentemente no relacionado y ésta no sugirió que dicho problema de endogeneidad potencial fuera una cuestión trascendental.En este capítulo, hemos tratado el vínculo entre las instituciones locales de sistemas de semillas y la agrobiodiversidad. Un modelo conceptual que trata, primero que todo, de la manera como los sistemas locales de semillas apoyan la diversidad contribuyendo a resolver un limitante en el abastecimiento de las variedades locales en demanda. Una primera subpregunta es si los patrones de asentamiento interpretados a través de la etnicidad pueden o no (nosotros codificamos los patrones de asentamiento por medio de datos sobre la etnicidad) afectar las opciones de los agricultores para elegir un enfoque de conservación de la diversidad con abastecimiento externo o interno, respectivamente. Una segunda subpregunta es si hay o no un alcance para que la acción colectiva influya en la elección de conservación de la diversidad de semilla, es decir, si la acción colectiva, estimulando los flujos de información y la confianza, juega o no un papel en la expansión de las opciones y las oportunidades de acceder diversas variedades de semilla en vez de solamente una variedad. Aún más, la integración al mercado y los ingresos familiares disponibles también se espera de antemano que cumplan una función bien sea a través de la sustitución de productos y servicios, o de mayores posibilidades de invertir en la agrobiodiversidad.Aquí hemos intentado hacer uso de un conjunto diverso de variables cuantitativas para representar el rol de los contextos económicos, culturales y de las instituciones locales, en sus efectos sobre la diversidad de semilla. En este entorno, nuestro enfoque variado en temas de acción colectiva, ecología humana, economía y antropología ha demostrado ser de utilidad en el análisis de los conductores de cambios en cuanto a agrobiodiversidad. Entre los principales resultados, es interesante notar que los agricultores tienen mayor probabilidad de utilizar la diversidad del maíz si, en primer lugar, obtienen sus semillas por fuera de su propio pueblo (reafirmado en el caso de uno de los tres grupos étnicos estudiados, lo cual es en particular interesante para la hipótesis), y en segundo lugar, si ellos acceden a sus semillas a partir de un modo no monetizado. Adi-cionalmente, la distancia hasta los centros de comercio parece afectar la diversidad de semilla de forma negativa, sugiriendo que una orientación al abastecimiento externo no necesita asociarse con la relación integración al mercado -monocultivo. Al contrario, un enfoque de conservación con abastecimiento externo puede de hecho apoyar la agrobiodiversidad.Los datos también sugieren que las instituciones de acción colectiva son instrumentales en el apoyo a la agrobiodiversidad. Los sistemas locales diversificados de semillas son importantes para la agrobiodiversidad y los sistemas de semillas son apoyados por las instituciones locales. Sin embargo, la utilización de los intercambios de semilla sucede con muy poca frecuencia para motivar la creación de instituciones de sistemas locales especializados de semillas. Al contrario, los sistemas de semillas se apoyan en las redes paralelas. Específicamente, los intercambios de semilla y la diversidad de semilla reciben el apoyo de las instituciones de acción colectiva, lo cual puede favorecer los flujos de información y de semilla. También hemos demostrado que no existe endogeneidad entre la distancia del sistema de semillas y la diversidad del maíz.La importancia de los sistemas locales de semillas para una agrobiodiversidad sostenida cuestiona las recientes propuestas legales, a nivel nacional en otras fuentes de origen para semilla, para restringir los intercambios de los sistemas locales de semillas. Este análisis coincide con la idea que la misma supervivencia de las instituciones de sistemas locales de semillas se fundamenta en el libre movimiento de las semillas. Además, los mercados locales y nacionales se pueden explotar para sostener y expandir los mercados de nicho para variedades locales de una forma que hacen que la integración al mercado sea un apoyo para la diversidad. Se necesita de una investigación futura para analizar el rol de las instituciones y los sistemas de semillas en la variedad inter-cultivo, y en la comunidad.Gracias al Consorcio para el Desarrollo Sostenible de Ucayali (CODESU) quienes recopilaron los datos y ofrecieron su apoyo técnico en el campo, en especial a Luis Collado y a Roger Pinedo. Agradecimientos especiales también merecidos para los miembros de la comunidad en el Amazonas peruano y a Manuel Glave, Ricardo Sevilla, Claudia Ituarte, Ernesto Apto, Luis Limachi e Isabel Ore, por sus comentarios sobre los manuscritos anteriores de este capítulo. Agradecemos el apoyo financiero del Cambridge European Trust, CT Taylor Fund y del St Edmunds College, Cambridge. En dos regiones de Cuba y en comunidades de la Amazonia central del Perú se llevó a cabo un estudio para describir el papel de género en el manejo de semillas de maíz, fríjol pallar, frijol común y chile; además, se analizó la demanda de atributos del maíz en comunidades Mayas de México. Se encontraron características particulares de participación en las familias de cada comunidad. En Cuba se observan variaciones en la forma patriarcal tradicional donde el hombre, además de realizar las actividades agrícolas, asume roles domésticos cuando la mujer se ausenta del hogar. El hombre tiene mayor participación en todas las actividades agrícolas; y la mujer contribuye más en las actividades de manejo de semillas. En las comunidades de Perú sobresale la participación de la mujer 'Asháninka' en las actividades de la chacra y en el manejo de semillas. En general la mujer 'Shipibo-Conibo' es más sumisa a las decisiones del hombre y participa menos en las actividades agrícolas, y la mujer mestiza presenta un comportamiento intermedio. Sin embargo, en general, tanto el hombre como la mujer participan y se apoyan en la mayoría de las labores agrícolas, aunque pueden existir actividades específicas por género. En las comunidades Mayas de México se observó que ambos géneros muestran mayor preferencia en cuanto a demanda de atributos agronómicos del maíz, por el rendimiento. Sin embargo existen también atributos de consumo, de manejo y culturales que muestran demanda diferente entre hombres y mujeres, preferencia que depende de factores socioeconómicos y culturales de la comunidad.Desde hace aproximadamente tres décadas, en investigaciones que se realizan en diversas disciplinas vinculadas con las ciencias sociales y humanas, se usa el concepto de género para analizar las relaciones entre mujeres y hombres, la construcción de lo masculino y lo femenino, y cómo éstas relaciones se cruzan y se articulan con otras dimensiones de la organización y el funcionamiento de la sociedad. Se ha afirmado que muchas de las diferencias entre mujeres y hombres no son naturales sino sociales, y que traen consigo la existencia de desigualdades y jerarquías que suelen ubicar al sexo femenino en una situación de desventaja con respecto al masculino (Saenger 2001).En ese sentido es importante conocer de manera general las responsabilidades de cada miembro de la unidad productiva familiar con respecto al manejo de los recursos naturales. El enfoque de género representa una herramienta que permite obtener una visión más rica y compleja de la dinámica que ocurre dentro de los sistemas de producción.Conocer quién, qué, cómo y cuándo se realizan las actividades dentro del sistema de producción de cultivos, permite una adecuada identificación de la participación de los diferentes miembros de la familia al considerar sus funciones, responsabilidades y necesidades. De otro lado acepta también identificar fortalezas y debilidades en áreas específicas que, a su vez, permitirá fortalecer los recursos disponibles, tanto naturales como de capital humano, para su mejor aprovechamiento (Fieldstein y Jiggins 1994;Lope-Alzina y Chávez 2004).A pesar de esto, el ordenamiento social de las relaciones de género varía a través del tiempo, y no es igual en las distintas culturas, ni es inherente a las personas. Los estudios sobre género analizan desde dentro los diversos sistemas sociales y culturales, y permiten comprender a mujeres y hombres como integrantes de una sociedad (Cornway et al. 1997). Dentro de la estructura familiar, hombres y mujeres tienen diferentes funciones y responsabilidades basadas en interrelaciones que no son fijas, lo cual implica que pueden cambiar en respuesta a los cambios sociales (Jarvis et al. 2000).Aunque en el trabajo agrícola las actividades son complementarias, todos los miembros de la familia que pertenecen a una unidad productiva cumplen una importante función, y se observa una brecha de género en el acceso a las tecnologías. La capacitación técnica, en general, se dirigen todavía a los hombres sin tener en cuenta que con frecuencia son las mujeres quienes desempeñan muchas labores agrícolas, que ellas tienen menores niveles de escolarización y que por lo tanto, necesitan metodologías adaptadas a su situación (Saenger 2001).Según estimaciones de la FAO (2005) las mujeres producen más del 50% de los alimentos que se cultivan en todo el mundo. Ellas participan tanto en la agricultura comercial como en la de subsistencia, y buena parte de su trabajo se dirige a la producción de alimentos para el consumo del hogar y la comunidad, un importante factor para garantizar la seguridad alimentaria. Hombres y mujeres suelen compartir trabajos y dividen tareas de producción en las labores de la finca. Cuando existen cultivos comerciales, los hombres se involucran más con estos, mientras que las mujeres asumen la producción de alimentos para el hogar, así como las cosechas comerciales en pequeña escala y con bajos niveles de tecnología.Es importante resaltar que en el contexto global el rol de la mujer se está reconociendo expresamente en cuanto a la conservación y al manejo de los recursos naturales, el cuidado, el sostenimiento y la educación de su familia, y en su función fundamental tocante a la promoción del desarrollo sostenible. Existe consenso en cuanto a que la erradicación de la pobreza con base en el crecimiento económico sostenido, el desarrollo social, la protección del medio ambiente y la justicia social, exige la participación de la mujer en el proceso, con una contribución plena y de igualdad entre los dos géneros en calidad de actores para un desarrollo sostenible (Saenger 2001).En este contexto surgen preguntas en relación con el manejo de semillas y la demanda de atributos: ¿Existen actividades agrícolas exclusivas de las mujeres o de los hombres? ¿Pueden variar en las comunidades los conocimientos asociados con estas actividades entre cultivos o aún dentro de las diferentes variedades de un cultivo? Es evidente que estas diferencias pueden variar de acuerdo con la cultura local y condiciones socioeconómicas, entre otros factores. La hipótesis que se busca probar es si hay percepciones diferentes entre hombres y mujeres que influyen en su participación en el manejo de semillas y en la demanda de atributos de variedades cultivadas del trópico húmedo.En ese sentido, este capítulo tiene como objetivo describir el papel de género en el manejo de semillas de maíz (Zea mays L.), fríjol pallar (Phaseolus lunatus L.), fríjol común (Phaseolus vulgaris L.), y chile, ají o pimiento (Capsicum spp.), en dos regiones de Cuba y en comunidades indígenas y mestizas de la Amazonia central del Perú, y determinar la demanda de atributos de maíz en dos comunidades Mayas de México.El trabajo se desarrolló en regiones del trópico húmedo de Cuba, México y Perú que presentan características particulares en cuanto a aspectos ambientales y socioculturales.Para el caso de las comunidades rurales de Cuba se seleccionaron 36 fincas, 18 de las cuales se ubican en la región occidental, en la zona de transición de la Reserva de la Biosfera Sierra del Rosario (Cordillera de Guaniguanico), en los municipios de Candelaria, San Cristóbal y Bahía Honda; y las 18 restantes en la región oriental en los municipios de Yateras y Guantánamo, dentro de la zona de transición de la Reserva de la Biosfera Cuchillas del Toa (Macizo Nipe-Sagua-Baracoa). Las 36 familias, seleccionadas de manera aleatoria, constituyen el 10,2% de un total de 350 familias residentes en las nueve comunidades de ambas regiones de estudio en Cuba.Se utilizaron como técnicas de investigación cualitativa la de observación no participante y la de entrevistas a los miembros de las familias que permitieron describir la distribución de roles y las concepciones de un miembro de la pareja con relación al otro. El número total de familias entrevistadas en la región occidental se definió por el criterio de saturación de la información obtenida (Acuña 1989) según el cual el muestreo finaliza cuando después de cierto número de entrevistas el investigador concluye que no se está obteniendo información nueva con relación a su problema de investigación. Para profundizar en los aspectos de la vida cotidiana en los cuales se dan diferencias de roles entre el género masculino y el femenino se realizaron 15 entrevistas a parejas, 10 en presencia de ambos miembros y cinco de forma independiente. Ello permitió corroborar y contrastar las respuestas con el apoyo de la información procedente de la observación no participante.Se aplicó un cuestionario estructurado para medir, según género y edad, la percepción de los miembros de las familias con relación al tiempo (horas) que se dedica a las actividades de producción (siembra, prácticas culturales y cosecha), y al manejo de semillas (limpieza, selección y almacenamiento) para un ciclo de siembra en cada cultivo. Las edades se agruparon así: adultos, mayores de 20 años; adolescentes, entre 12 y 19 años; y niños, menores de 11 años. Se realizaron un total de 132 entrevistas de las cuales 64 fueron a hombres (6 niños, 6 adolescentes y 52 adultos) y 68 a mujeres (8 niñas, 11 adolescentes y 49 adultas).Dado que los cuatro cultivos de interés no siempre se encuentran presentes en las 36 fincas seleccionadas, la estimación del número total de horas por actividad para el cultivo de frijol pallar se realizó en 25 fincas, para el frijol común en 29 fincas, para chiles en 32 fincas, y para el maíz en 33 fincas (Cuadro 1). A partir del número promedio de horas dedicadas a una actividad para el mismo cultivo en la finca, se calculó el porcentaje de participación de la familia en las actividades agrícolas y el manejo de semillas para un ciclo de siembra. El trabajo se desarrolló entre 2005 y 2007.Cuadro 1. Participación de la mujer y el hombre en la producción y el manejo de semillas para un ciclo de siembra de los cuatro cultivos en fincas de Cuba. En México el estudio se cumplió en las comunidades Mayas de Sahcabá y Yaxcabá en el Estado de Yucatán. El cuestionario se aplicó a una muestra de productores agrícolas milperos considerados local y familiarmente responsables de las unidades de producción, en su mayoría hombres, padre o esposo de la familia. El número de entrevistados en Sahcabá fue de 43, correspondiente al 41% de un total de 105 milperos, y en Yaxcabá fue de 64, correspondientes a 11.7% de un total de 544 milperos, todos seleccionados por el método aleatorio simple. Las entrevistas, que se realizaron individualmente, se centraron en preguntas relacionadas con las causas o razones por las cuales ellos demandan o prefieren algunos atributos de las semillas de maíz. El mismo cuestionario se aplicó en otra visita a mujeres responsables de la familia de los milperos seleccionados, con el fin de que la presencia del hombre no influyera en sus opiniones. En Sahcabá se entrevistaron 41 mujeres y en Yaxcabá 61.Para el análisis de la demanda de los atributos del maíz, se utilizó la propuesta descrita por Bellon (2004) que considera como atributos muy importantes aquellos identificados por los hombres y mujeres jefes de familia con un porcentaje mayor o igual al 95% del total de entrevistados. Los atributos se calificaron de alta significancia cuando más del 50% del total de entrevistados opinó respecto a determinada variedad que sembraron durante el periodo del estudio, que se desarrolló entre 2006 y 2007.En Perú el estudio tuvo lugar en algunas zonas de los departamentos de Ucayali, Huánuco y Pasco, ubicados en la Amazonia central del Perú, donde coexisten grupos indígenas y colonos Para conocer la opinión de hombres y mujeres jefes de familia en cada uno de los hogares, las entrevistas se hicieron por separado y en forma simultánea: al esposo, un investigador, y a la esposa, una investigadora de origen Shipibo-Conibo. En el caso de las comunidades Asháninkas se acudió a traductores locales. En ambos casos se procuró realizar las entrevistas en el idioma local para mayor comodidad y fluidez de la información. Es válido anotar que las preguntas no se formularon de manera deliberada para confrontar a la pareja, sino para obtener información sobre la apreciación propia de cada género, cómo se ven a sí mismos en el hogar, y cuáles son sus funciones en las actividades de la chacra y en el manejo de semillas de los cultivos. El análisis de la información fue descriptivo y el trabajo de campo se desarrolló entre mayo y diciembre de 2006.En las culturas de las regiones en estudio se reconoce al hombre como el representante de la familia y como el jefe del hogar.En las regiones occidental y oriental de Cuba, en general, las mujeres participan de las labores agrícolas de manera ocasional y sólo en momentos críticos de la campaña agrícola como la cosecha. En la región occidental los hombres expresaron que el aporte de la mujer en las labores agrícolas ocurre si ellos lo solicitan y si existe la disponibilidad para ayudar, asignándole tareas que no requieren gran esfuerzo físico y, lo más cerca posible de la casa. Además, los esposos consideran que dichas actividades no son obligación de la mujer. Una forma en que las mujeres pueden ayudar es atendiendo al esposo en el campo llevándole agua, café y/o algún refrigerio. De igual forma, si bien se reconoce que las tareas del hogar son femeninas, en todos los casos los entrevistados mencionaron que las mujeres también ayudaban con frecuencia en las tareas agrícolas, un hecho que fue corroborado por las entrevistadas.Tres familias de la región occidental de Cuba poseen además de la vivienda en la zona rural, otra en el pueblo o centro urbano, un hecho que influye en la vida cotidiana de las parejas y que evidencia la flexibilidad del sistema patriarcal. En ocasiones la pareja se separa por algún período de tiempo para compartir el cuidado de ambas viviendas al mismo tiempo y, en ese periodo, la mujer está sola en la vivienda del pueblo mientras el esposo permanece en la del campo donde asume el trabajo agrícola, los roles domésticos y el cuidado de los animales. En general, los hombres no reclaman la presencia femenina durante este tiempo pues consideran como normal ese estilo de vida. Asumen de buen agrado la ejecución de todas las actividades domésticas pues afirman que es útil para la vida 'saber hacer de todo', una enseñanza que transmiten a las siguientes generaciones.Las madres de estas familias que permanecen por períodos en la vivienda del pueblo refieren que se dedican, en especial, al cuidado de hijos o nietos por la facilidad de acceso a los centros de educación y a otros servicios que ofrece un área urbanizada. Sin embargo, los esposos explicaron que esto se debía a que las mujeres prefieren la vida en la ciudad y a que tienden a evadir en lo posible la estadía en el campo, lo cual ellos asumen de buen agrado. Los fines de semana, en general, los esposos se trasladan a la casa del pueblo para abastecerse de insumos, materiales, y para cuidar a la familia; de no ocurrir así, las mujeres van a la casa del campo para atender a su esposos. Cuando la mujer está presente junto a su pareja en cualquiera de las casas, los esposos asumen el clásico rol masculino bajo el cual esperan que sus esposas los atiendan.En las familias en estudio se observó que los estereotipos que se fijan culturalmente en una sociedad patriarcal se reproducen (Herrera 2000). No obstante esto, se evidenció un marcado afecto, respeto y tolerancia por sus mujeres en todos los hombres entrevistados explícito e implícitamente paralelo a los rasgos jerárquicos de la figura masculina. Se demostró que si bien es un sistema jerárquico, no es precisamente rígido y prevalecen ideas justas acerca de la relación entre hombres y mujeres. Sin duda alguna, las entrevistas realizadas evidencian una modificación de la conducta patriarcal en las parejas a través de la convivencia equilibrada entre ambos, acorde con los cambios sociales de la sociedad cubana.Las niñas y los niños sólo apoyan las labores agrícolas por momentos, no en forma permanente, y cuando se requiere mano de obra adicional para realizar alguna labor que no permite demora o que no exige esfuerzo físico como, por ejemplo, durante la siembra o la cosecha. Los menores están obligados por las leyes del país a asistir a un centro educativo hasta el noveno grado a estudiar de lunes a viernes durante el día. En los períodos temporales de apoyo a las labores agrícolas de la finca, los niños y jóvenes adquieren conocimientos sobre el manejo de los cultivos.En las comunidades en estudio de la Amazonia central de Perú prevalece el reconocimiento a la función que representa el jefe de familia en los eventos de la comunidad (86.5%). A pesar de ello, al analizar las respuestas se aprecian matices particulares por grupo sociocultural. La mujer Asháninka, por ejemplo, manifiesta que tanto varones como mujeres representan a la familia (38%). Este hecho explica por el liderazgo y espontaneidad que se observa en ellas en comparación con la mujer Shipibo-Conibo que se presenta culturalmente sumisa y dependiente del esposo.A la pregunta sobre quién o quiénes realizan las actividades de la chacra, por lo general, el hombre se proclama responsable en una respuesta que corrobora la mujer Shipibo-Conibo y la de mestizos. En contraste, la mujer Asháninka manifiesta compartir la responsabilidad con el hombre.En las familias Asháninkas las labores de siembra, deshierbe, cosecha y manejo de semillas están asociadas a la mujer que conoce mejor los cultivos que componen la chacra y el huerto familiar. A su turno, la responsabilidad del hombre -quien ocasionalmente apoya a la mujer en las labores agrícolas-se centra en preparar las condiciones para la siembra (roza, tumba y quema) luego de lo cual se dedica a las actividades de caza y a algo de pesca. Es pertinente señalar que en la época de violencia social (narcoterrorismo) ocurrida en el valle del Pichis en la década de los años ochenta y noventa, los hombres Asháninkas abandonaron el hogar, un abandono que trajo como consecuencia que ahora la mujer represente, lidere y asuma los roles del hogar y las actividades de la chacra. En general, en las familias Shipibo-Conibo y mestizas del valle del Ucayali participan tanto el hombre como la mujer en las actividades productivas y de manejo de semillas. En las labores críticas de la actividad participan incluso todos los miembros del hogar. En los tres grupos en estudio el varón constituye la fuerza de trabajo para la subsistencia, en algunos casos alquilando su mano de obra con remuneración económica para la extracción forestal y otras actividades productivas en la zona.En la Amazonia central del Perú se pueden observar además actividades específicas en las cuales participan los diferentes miembros de la familia. Los cultivos de subsistencia, el mantenimiento del huerto casero, la preparación de alimentos y el cuidado de los hijos recaen naturalmente en la mujer. Lo mismo ocurre en comunidades Shipibo-Conibo cercanas a ciudades importantes en las cuales la elaboración de artesanías locales y su comercialización es una actividad femenina. Los cultivos que generan ingresos económicos y la comercialización de los productos agrícolas son responsabilidad masculina al igual que la pesca. En esta última rara vez se observa que participe la esposa a pesar de que ella es quien acondiciona y prepara el producto para la alimentación de la familia. Los jefes de familia reconocen y valoran la participación de los hijos en las actividades del hogar, ello según su edad, el horario y periodo escolar colaboran con el cuidado de los hermanos menores, en la pesca, el acarreo de agua, la preparación de la chacra, la siembra, el deshierbe y la cosecha.En las familias de Cuba en las cuales se muestreó el frijol pallar, el porcentaje de participación de las mujeres adultas resultó mayor en las actividades de manejo de semillas (almacenamiento, selección y limpieza con 36%, 36% y 32% respectivamente), en comparación con las actividades de producción, como siembra, prácticas culturales y cosecha (21% y 28% respectivamente). El mayor porcentaje de participación en las actividades de producción del cultivo (56%) corresponde a los hombres adultos en comparación con las mujeres adultas (Cuadro 1).De igual forma en el cultivo del fríjol común el hombre adulto participa con mayor frecuencia en las actividades del cultivo (48.8%) en comparación con la mujer adulta que presenta en promedio 19%. Sin embargo, ambos géneros, le dedican a este cultivo menor tiempo en comparación con los otros tres cultivos en estudio, pues el fríjol es el único en el cual los adolescentes masculinos presentaron una contribución importante (21.4%) en las actividades de producción. Los porcentajes de participación de la mujer adulta en las diferentes actividades son un poco mayores a los del resto de las actividades sólo en la selección de la semilla para el siguiente ciclo de siembra.En el cultivo del chile la mujer participa más en relación con el resto de los cultivos analizados en términos del tiempo promedio dedicado a todas las actividades agrícolas (38.6%), no obstante que esta participación es mucho menor a la que realiza el hombre (54.8%). El tiempo dedicado por las mujeres a cada una de las actividades de producción y manejo de semillas es similar entre sí, siendo también similares los porcentajes de participación en las diferentes actividades de los hombres (Cuadro 1).En las actividades agrícolas del maíz, los hombres adultos presentaron mayor contribución en cuanto a tiempo dedicado (61.2%), incluso destinando hasta un 72% a la siembra y a las prácticas culturales. Aunque las mujeres adultas le dedican menos de la mitad de ese tiempo al maíz (29.8%), sólo el almacenamiento de semillas puede tomarles hasta un 44%, lo cual corresponde a la mayor contribución del tiempo dedicado por ellas a una actividad en los cultivos en estudio (Cuadro 1).En general, el aporte masculino es mayor en cada una de las actividades en los cultivos objeto de estudio. En particular se presenta una menor participación femenina en las actividades de siembra, las prácticas culturales y la cosecha. Sin embargo, el mayor porcentaje de ellas se concentra en el manejo de semillas (limpieza, selección y almacenamiento). Al considerar el promedio de participación en las diferentes actividades, la mujer adulta se dedica con más frecuencia al chile (38.6%), debido a que este cultivo se utiliza en la finca como condimento y a que se siembra en áreas muy cercanas a la vivienda donde es más fácil tener acceso a éste. Por otro lado, se observó que la menor participación femenina es para el frijol común (19.0%), debido a que la producción se destina, además del consumo familiar, a la comercialización, y son en general los hombres los responsables de ésta con el apoyo de los adolescentes.Como los niños y las niñas asisten a los centros educativos de forma regular, dedican muy poco tiempo a las actividades agrícolas de la finca. La contribución de los adolescentes hombres es mayor en las actividades para el cultivo del fríjol común con respecto al tiempo total requerido para este cultivo. En general tanto ellos (adolescentes y niños) como ellas (adolescentes y niñas) contribuyen poco al tiempo que se necesita para realizar las actividades agrícolas.En las actividades de chacra y manejo de las semillas de la Amazonia central del Perú se observa participación de todos los miembros de la familia según sus posibilidades y circunstancias para realizar las diferentes labores de selección, trillado y limpieza, así como la del soleado y la revisión periódica de semillas en los envases de almacenamiento.Al analizar las respuestas de hombres y mujeres Shipibo-Conibo y de los mestizos con relación a quién selecciona semillas de maíz, se aprecia un consenso relativo. No obstante esto, es impor-tante precisar que el hombre presta mayor atención a esta actividad (Figura 1), dado que el maíz es un cultivo comercial para los agricultores que se encuentran cerca al mercado. A pesar de ello, las respuestas de hombres y mujeres del grupo Asháninka son diferentes a lo que manifestaron los grupos antes mencionados. Con frecuencia estos grupos identifican a la mujer, o a la mujer y al hombre como responsables de realizar esta actividad en la misma medida. Esta es una tendencia generalizada debido a que en este grupo el maíz es un cultivo de subsistencia pues estos agricultores se encuentran a mayor distancia del mercado y el cuidado de los cultivos para alimentar a la familia es dedicación femenina.Una tendencia similar se presenta al analizar las respuestas sobre cuál miembro de la familia con frecuencia se preocupa y guarda semillas seleccionadas de maíz. Las respuestas del hombre Shipibo-Conibo y mestizo muestran que esta responsabilidad recae sobre ellos (53% para ambos grupos), mientras que el hombre Asháninka identifica a la mujer como la encargada de guardar semillas (48%). Al comparar las respuestas de ambos géneros se confirma esta tendencia: la mujer Shipibo-Conibo y la mestiza presentan al hombre como el responsable, mientras que es a la mujer Asháninka a quien se le atribuye la responsabilidad de guardar las semillas de maíz (72%). Ello se explica, al igual que la actividad de selección de semillas, dada la condición comercial o de subsistencia del cultivo que se presenta en los agricultores de cada grupo sociocultural en estudio.El cultivo del frijol común presenta características diferentes al de maíz pues, dados los requerimientos del cultivo, es poco frecuente en las comunidades. Las respuestas de hombres y mujeres en cuanto al manejo de semillas presentan connotaciones particulares entre los grupos socioculturales. El hombre Shipibo-Conibo, se considera con frecuencia responsable de realizar todas las actividades del manejo de semillas en el fríjol común, mientras que la mujer valora la participación de ambos. En las familias Asháninkas y mestizas existe, sin embargo, una respuesta similar de los jefes de familia en la cual se reconoce mayor participación de la mujer con un comportamiento sobresaliente en el almacenamiento y limpieza de semillas. Al consolidar las respuestas de ambos géneros sobre el manejo de semillas para el caso del chile, se observa que la percepción del hombre y de la mujer está de acuerdo en que es sobresaliente la participación femenina, sin mayores diferencias entre los grupos socioculturales del estudio. Como el chile es exclusividad del huerto y se utiliza como condimento en la culinaria tradicional, con frecuencia atrae la asistencia de la mujer y muchas veces la de los hijos menores. Además, en general, el cultivo no requiere mucha atención al presentar crecimiento espontáneo en las comunidades estudiadas.En cualquier circunstancia de pérdida de semillas, en especial de maíz y frijol común, el hombre jefe de familia es el responsable de la búsqueda y abastecimiento de semillas para la campaña agrícola que se avecina. Para ello tendrá que acudir a los agricultores de la comunidad o de otras comunidades, de acuerdo con las referencias que obtenga y las preferencias por variedades que cultiva la familia. En el caso de semillas del huerto y/o de cultivos de consumo familiar la responsabilidad recae en la mujer.En las comunidades Mayas de Yaxcabá y Sahcabá en Yucatán, México, se analizaron las demandas de atributos del maíz, un cultivo emblemático en la cultura del país. En las comunidades en estudio las preferencias por atributos agronómicos, de consumo, manejo y culturales presentan una importante variación debido a la interdependencia de la milpa y/o la dedicación a otras actividades que proveen ingresos económicos a la familia. Se observaron diferencias sustantivas entre las respuestas de hombres y mujeres jefes de familia con relación a la preferencia de atributos, una tendencia razonable debido a los roles que ejercen los integrantes en la familia.Para los hombres de Yaxcabá los atributos más significativos fueron los agronómicos como el rendimiento, la adaptación a las condiciones climáticas y la tolerancia a la sequía. A su turno, en Sahcabá, además de los atributos agronómicos, aquellos relacionados con el consumo y el manejo resultaron ser los más significativos para los hombres (Cuadro 2). El hombre en Yaxcabá considera importantes los atributos agronómicos porque les asegura tener cosecha suficiente durante todo el año para mantener a la familia pues el cultivo es la base de su economía. En Sahcabá, en contraste, se tiene una amplia demanda de atributos debido a que mantienen otras actividades, además de la milpa, que complementan la economía familiar. Para las mujeres de Yaxcabá el atributo agronómico de rendimiento fue el más significativo, mientras que para las de Sahcabá el rendimiento y la tolerancia a la sequía de las semillas fueron los más notables. Además, se demandan atributos relativos al consumo (como el de la preparación de alimentos y la suavidad de la masa, entre otros), así como los relacionados con el manejo (Cuadro 2).Es importante observar un atributo denominado confiabilidad sobre el cual coinciden la totalidad de respuestas de hombres y mujeres en ambas comunidades estudiadas. La confiabilidad es la manifestación de seguridad que el agricultor busca o desea en una semilla y que basa en su experiencia y conocimiento de la semilla del cultivar o en recomendación de otros milperos; una semilla fiable le proveerá buena cosecha.Otros atributos agronómicos que tienen también gran importancia tanto para mujeres como para hombres, son la adaptación a condiciones climáticas y la tolerancia a sequía pues se consideran necesarios para la selección de semillas para una mayor producción en el siguiente ciclo agrícola. Estos atributos, sin embargo, son de mayor importancia para los hombres ya que con mayor frecuencia ellos son los responsables de realizan esta labor y del manejo del maíz en sí en la milpa.En las comunidades estudiadas el peso del grano es un atributo agronómico importante (51%-80%). La facilidad para desgranar es un atributo que mujeres y hombres de ambas comunidades (30%-56%) poco aprecian. Este mismo atributo es aún menos apreciado por los hombres en Sahcabá, no obstante que para las mujeres de la misma comunidad este reviste mayor importancia porque son ellas las que desgranan el maíz, mientras ellos se van a la milpa, de caza, o realizan actividades no agrícolas. Los hombres de Yaxcabá reportaron la mayor demanda por este atributo (56%) debido a que en sus momentos libres ellos apoyan en el desgrane y desean que se pueda realizar con más facilidad y así apoyar mejor a las mujeres.La demanda por atributos relacionados con el consumo es en general alta, tanto para el género femenino como para el masculino. Dado que las primeras son las que se dedican más a la preparación de comida, sorprende que no haya diferencias consistentes entre los géneros en cuanto a atributos más específicos como el rápido cocimiento, y el color y la textura de la tortilla. El maíz que se utiliza en la elaboración de platillos especiales es un atributo que demanda entre el 67% y 81% del total de entrevistados. Las mujeres, sin embargo, otorgan menor importancia que los hombres a este atributo, quizás porque a ellas les interesa más tener maíz para la elaboración de alimentos cotidianos que para la elaboración de platillos especiales (Cuadro 2).Cuadro 2. Demanda por atributos de maíz de mujeres y hombres en dos comunidades Mayas: Sahcabá y Yaxcabá, Yucatán, México. En las comunidades de estudio el color de la masa, en general, presenta mayor demanda por parte de los hombres. Las mujeres de Sahcabá le dan menor importancia a este atributo debido a que prefieren tener más masa para preparar los alimentos indistintamente del color de ésta. No obstante lo anterior, un grupo de mujeres en Yaxcabá demanda más este atributo porque en la comunidad existe una gran diversidad de maíces de grano de color blanco, amarillo, pinto y morado.La demanda del maíz como forraje interesa tanto a mujeres como a hombres en Sahcabá. En Yaxcabá, sin embargo, este atributo tiene mayor demanda por parte de los hombres porque ellos son los responsables de alimentar el ganado, los animales menores y las aves de corral que se utilizan para comercializar, alimentar a la familia o sacrificar para eventos sociales especiales. Además, en ambas comunidades la crianza de animales con maíz como forraje es un ahorro que complementa el gasto familiar. De igual modo, para los entrevistados el costo de producción del cultivo es un atributo importante con una demanda entre el 91% y 98%. Consideran que estos costos se deben mantener bajos y para ello utilizan semillas criollas para las siembras con el fin de evitar la compra y el mantenimiento de semillas mejoradas que se adquieren en las casas comerciales. En algunos casos, en época de sequía o de huracanes cuando se pierde las cosechas, las semillas tendrán un costo más elevado y se incrementan los esfuerzos para conseguirlas. En consecuencia se hace evidente la importancia del sistema informal de semillas y el manejo de las variedades criollas en la comunidad.El análisis del rol de género mejoró la comprensión dentro del diverso contexto sociocultural de las zonas seleccionadas en Cuba, México y Perú respecto la participación y roles del hombre y la mujer así como de los demás miembros de la familia, según las actividades del hogar, el cuidado y alimentación de la familia, el manejo de semillas y cultivos, las cuales son dinámicas e inherentes a los grupos estudiados.Se evidencia también que, en las culturas de las regiones estudiadas se reconoce al hombre como el jefe del hogar y representante de la familia, esta condición prevalece por lo general para las reuniones con instituciones públicas y privadas y en la organización de la comunidad. Sin embargo, a la ausencia del hombre es reemplazado por la mujer asumiendo la jefatura del hogar; esta situación se encuentra evolucionando constantemente, al punto que en las comunidades y sus organizaciones las mujeres ya ocupan cargos de responsabilidad y decisión.Esta realidad general de los roles compartidos en las actividades del hogar y el manejo de semillas y cultivos que realizan los hombres y mujeres en las comunidades de Cuba, México y Perú demuestran una flexibilidad del sistema patriarcal, que se expresa como una ayuda entre ambos miembros de la pareja y los hijos en determinadas situaciones que pueden variar en función a los factores socioculturales, condiciones económicas de la familia, las actividades de comercialización y subsistencia y en la preferencia de atributos de uso.Es importante reconocer y valorar la participación de la mujer y los hijos en las actividades del manejo de semillas, la cual es un aporte significativo en la seguridad alimentaria y la sostenibilidad del sistema familiar y comunitario.María José Pool 1 , Zoila Fundora 2 , Tomás Shagarodsky 2 , Luis Collado En Cuba, México y Perú se llevó a cabo un estudio para describir el marco político y jurídico sobre la conservación de recursos fitogenéticos, y se encontró que en relación con la conservación de la agrobiodiversidad, éste marco es inadecuado para el sistema local de semillas y de las variedades locales e importantes para los agricultores. Se observó que éste favorece las leyes de producción y de mercado de semillas certificadas, uniformes y homogéneas y que deja a un lado las tradicionales que difícilmente pueden cumplir con estos criterios. Estas semillas tradicionales son las que proporcionan un alto porcentaje de la producción de alimentos en los países y dado que hacen parte del acervo cultural deberían conservarse. Por muchos años los agricultores han estado a cargo de esta labor sin recibir a cambio ninguna retribución social y económica. La pérdida de la agrobiodiversidad se debe también al desconocimiento del tema y a la formulación y ejecución de políticas sobre manejo de semillas, variabilidad intraespecífica y sobre derechos del agricultor, entre otros. En este último aspecto se debería trabajar de manera participativa y sistematizada considerando las condiciones locales de los agricultores y sus formas de abastecimiento, así como la información que los científicos puedan proveer al planear una política. El marco político y jurídico sobre agrobiodiversidad en Cuba, México y Perú debe considerar la protección de variedades locales, conocimientos tradicionales, acceso a la diversidad y distribución de sus beneficios y, además, el papel de los agricultores en la conservación y su derecho a participar en la política. Así mismo, debe tener en cuenta el impulso y la promoción de la conservación y la producción de semillas tradicionales entre los agricultores, a través de capacitación, asistencia técnica, desarrollo de parcelas demostrativas y otorgamiento de estímulos. En este mismo sentido, los gobiernos deberían sensibilizar a la población en general, y a quienes toman decisiones sobre la importancia de la agrobiodiversidad, en particular, para que se fomente no sólo la conservación sino también la producción y el autoconsumo local.Durante años en la agenda internacional se han contemplado diversos aspectos de la gestión de la biodiversidad. Los orígenes de esta gestión se encuentran en la Conferencia de las Naciones Unidas sobre el Medio Ambiente Humano, realizada en Estocolmo en 1972, en la cual se identificó la conservación de la biodiversidad como una prioridad. En 1980 ya se había demostrado que la conservación tradicional por sí misma no frenaba la desaparición de la diversidad biológica y que se necesitaban nuevos enfoques en la gestión del medio ambiente y del desarrollo humano equilibrado. Como respuesta a estas preocupaciones surge el Convenio de la Diversidad Biológica (CDB), en vigor desde 1993 (López 2007), que se extiende a toda la diversidad biológica y aporta principios generales sobre conservación, uso sostenible y distribución justa y equitativa de los beneficios de la diversidad a 188 países que se adhirieron y registraron en el año 2004.En fecha posterior, en enero de 1995, entró en vigor el Acuerdo sobre los Aspectos de los Derechos de Propiedad Intelectual relacionados con el Comercio (ADPIC) y que desde el punto de vista jurídico obliga a todos los miembros de la Organización Mundial del Comercio (OMC), entre otras cosas, a ajustarse a las normas mínimas de protección de la propiedad intelectual (Bragdon et al. 2006).En 1996, en Leipzig, con la supervisión técnica de la FAO (Organización de las Naciones Unidas para la Agricultura y la Alimentación) se adoptó el Plan de Acción Mundial para los Recursos Fitogenéticos para la Alimentación y la Agricultura. En 1998 entró en vigor el Acta 1991 de la Unión para la Protección de Nuevas Variedades Vegetales (UPOV) (Grupo Crucible II 2001), un sistema sui generis de derechos de propiedad intelectual que protege las variedades de especies vegetales. Con cuatro versiones (1961, 1972, 1978 y 1991), la UPOV obliga a los países que la han ratificado (67 hasta enero 2009) a realizar o fomentar leyes nacionales que protejan las variedades vegetales (Bragdon et al. 2006). En 1999 la Comisión de Recursos Fitogenéticos para la alimentación y la agricultura de la FAO, continuaba la re-negociación de su compromiso internacional y, como parte de ello, los derechos del agricultor (Grupo Crucible II 2001).En el año 2001 se firmó el Tratado Internacional sobre los Recursos Fitogenéticos para la Alimentación y la Agricultura (TIRFAA) que incluye temas de conservación, usos, cooperación internacional, asistencia técnica y derechos de los agricultores. Este Tratado establece en el anexo 1 un sistema multilateral para un grupo de cultivos con reglas de acceso y de distribución de beneficios para los materiales tanto ex situ como in situ (Bragdon et al. 2006). La solución realmente innovadora del Tratado para el acceso y distribución de beneficios, es su declaración de que 64 especies, que representan el 80% del consumo total del hombre, constituirán un conjunto de recursos genéticos accesibles para todo el mundo. Es decir, al ratificar el Tratado, los países acceden a que su diversidad genética y la información asociada acerca de los cultivos depositados en sus bancos de germoplasma estén disponibles para todas las personas. Este acceso se facilitará a través del Acuerdo Normalizado de Transferencia de Material, donde se reconoce la diversidad de los sistemas legales de las partes contratantes respecto a las normas de procedimiento que rigen el acceso a tribunales y al arbitraje, y las obligaciones derivadas de los convenios internacionales y regionales aplicables a esas normas (FAO 2006).En abril del 2005, en Chennai, India, cerca de cien expertos y gestores de políticas procedentes de veinticinco países participaron en una consulta internacional y adoptaron la Plataforma para la Acción por un Mundo sin Hambre ni Pobreza, que se diseñó para ayudar a los gobiernos nacionales y a los organismos internacionales a alcanzar los Objetivos de Desarrollo del Milenio (GFU et al. 2005).Dentro de este contexto, la agrobiodiversidad se concibe no sólo como un tema ambiental, sino como un tema político en el cual el pensamiento social y jurídico está involucrado. Hoy en día se debaten con amplitud preguntas como ¿Quién debería tener la capacidad de poseer y controlar los componentes de la biodiversidad y bajo qué circunstancias?; ¿Cuál es la mejor manera de conservar y utilizar la biodiversidad?; ¿Cómo se regulará el acceso a los recursos genéticos y cómo se compartirán los beneficios de su utilización, de manera equitativa y sustentable?; y ¿Quién adoptará las decisiones? (Grupo Crucible II 2001). La política nacional de cada país hace referencia a estos desafíos en espacios de acción que representan instituciones, programas, leyes, reglamentos, decretos ó resoluciones y asignación de recursos financieros, humanos y materiales, entre otros.Por lo anterior, cada país establece su marco de acción a través de su propia política. El presente trabajo se planteó dentro de este contexto con el propósito de conocer los instrumentos y tendencias en materia de políticas relacionadas con la conservación de la agrobiodiversidad y, en particular, con el sistema de semillas en Cuba, México y Perú.Se hizo una amplia revisión bibliográfica sobre las políticas, la normatividad, las leyes, los decretos y las resoluciones de Cuba, México y Perú en relación con la conservación de la agrobiodiversidad y el sistema informal de semillas, incluyendo documentos aprobados y publicados desde la última mitad del siglo pasado. Toda la información que se recolectó se concentró y analizó para entender la situación que prevalece en la actualidad en cada país. Dentro de este contexto se proponen acciones concretas a los órganos pertinentes, con la finalidad de contribuir de manera efectiva con la conservación de la semilla, su manejo y el papel de las comunidades locales en este proceso.Desde la cumbre de Río de Janeiro en 1992 -cuando se aprobó el CDB-muchos países han avanzado en el ordenamiento de sus políticas para aprovechar de manera sostenible los recursos naturales. En este sentido, Cuba ha ratificado once convenciones, tratados y convenios internacionales relacionados con la conservación de la diversidad y, en particular, con los recursos fitogenéticos para la alimentación y la agricultura (RFAA) en los cuales se destacan el CDB y el TIRFAA (CNRG 2007). Además, el Ministerio de Ciencia, Tecnología y Medio Ambiente (CITMA) ha establecido, mediante Resolución No. 159 de 1993, la creación del Grupo Nacional de Recursos Genéticos, un organismo que entre sus funciones y atribuciones propone normas para la preservación y administración de RFAA. En Cuba la política de conservación de los RFAA es responsabilidad del Sistema Nacional de Recursos Genéticos (SNRG) y, existe un Mecanismo Nacional de Intercambio de Información sobre los RFAA, junto con un informe nacional actualizado sobre la situación de los mismos.Así mismo, la conservación y uso sostenible de los RFAA están incluidos en los planes nacionales y en la Estrategia Ambiental Nacional (EAN), en el Plan de Acción Nacional 2006/2010 sobre la Diversidad Biológica, y en el III Reporte de Cuba al CDB (CNRG 2007). Por otra parte, se han hecho propuestas de conservación de los RFAA a través de huertos caseros o sistemas de huertos caseros en el país (Castiñeiras et al. 2002). Un ejemplo de estas propuestas son aquellas que se han incluido en el Plan de Manejo de la Reserva de la Biosfera de Sierra del Rosario como acciones para conservar la diversidad biológica, aunque no estén publicadas de manera oficial en su plan de manejo.A su turno, México también ha ratificado el CDB aunque no ha suscrito el TIRFAA en relación con la agrobiodiversidad. Este hecho no significa que no se lleven a cabo acciones relacionados con la conservación de los RFAA. La Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA) es la institución responsable de gestionar las acciones encaminadas a la conservación, el manejo, el estudio y el uso de los RFAA. La política nacional de conservación de los RFAA la lleva a cabo el Sistema Nacional de Recursos Fitogenéticos para la Alimentación y la Agricultura (SINAREFI), que coordina acciones a través de redes de germoplasma de importancia estratégica por medio de grupos interdisciplinarios e interinstitucionales (SINAREFI 2007).En la actualidad se encuentra planteado el Plan Nacional para la Conservación de los Recursos Fitogenéticos para la Alimentación y la Agricultura en México como una propuesta o recomendación de estrategias relacionadas con la conservación de los recursos fitogenéticos mediante la promoción y el fomento de diversas acciones inter e intra institucionales (SAGARPA, SNICS, SOMEFI, SINAREFI, entre otras). En el ámbito internacional ya se han formulado planteamientos para atender la conservación in situ de especies vegetales útiles al hombre como en Plan de Acción Mundial para la Conservación y la Utilización Sostenible de los Recursos Fitogenéticos para la Alimentación y la Agricultura (SAGARPA et al. 2007).Así como Cuba y México, Perú también ratificó el CDB estableciendo dentro de este marco la Estrategia Nacional de la Diversidad Biológica (Decreto Supremo No. 102-2001PCM 2001). En fecha más reciente, la Comunidad Andina de Naciones CAN (Bolivia, Colombia, Ecuador, Perú y Venezuela) aprobó la Estrategia Regional de la Diversidad para los países del Trópico Andino (Galarza 2006). En relación con la agrobiodiversidad, Perú cuenta con el Instituto Nacional de Investigación Agraria (INIA) como el responsable del desarrollo agrícola y, en particular, de los recursos fitogenéticos. El INIA ha designado al SUBDIRGEB (Subdirección de Recursos Genéticos y Biotecnología) como responsable del cuidado, estudio y administración del rico patrimonio de la agrobiodiversidad peruana (Williams 2006). Esta subdirección se encuentra en todas las estaciones del INIA a nivel nacional pero, en general, está bastante limitada por recursos económicos. Dado que en ocasiones no dispone de fondos ni para mantener los bancos de germoplasma y se encuentra en constante reestructuración, esto afecta los trabajos a largo plazo.En cuanto a medidas de conservación de la agrobiodiversidad (CNB 2006;CNRG 2007), en Cuba no existe aún ley alguna de protección de variedades vegetales. No obstante esta situación, hay un régimen de protección parcial concedido por el Sistema de Inspección y Certificación de Semillas, a partir de la inscripción de las variedades comerciales en la Lista Oficial, amparado por el Decreto 175 de 1992 del Ministerio de la Agricultura (Gaceta Oficial de la República de Cuba 1992).México ha designado a la SAGARPA para proteger la biodiversidad de variedades vegetales de dominio público mediante el Artículo 3, Fracción XI, Ley Federal de Variedades Vegetales (Congreso de los Estados Unidos Mexicanos 1996). Además, existe una iniciativa denominada Ley de conservación y aprovechamiento de los recursos genéticos para la alimentación y la agricultura que establece lineamientos de conservación y aprovechamiento de la agrobiodiversidad cuyo centro de origen y/o diversidad sea el territorio nacional y zonas donde la nación ejerce su jurisdicción y soberanía (SOMEFI 2006).En Perú, la conservación de la agrobiodiversidad se refleja en la Ley No. 28477 del 2005 del Congreso de la República de Perú (Congreso de la República de Perú 2005) que declara que los cultivos y especies silvestres usufructuados, son patrimonio natural de la nación. Esta ley asigna al Ministerio de Agricultura, en coordinación con entidades públicas y privadas, la responsabilidad del registro, difusión, conservación y promoción del material genético, y el fomento de las actividades de producción, industrialización, comercialización, y consumo interno y externo de los 45 cultivos y especies silvestres anexas en esa ley. Además, el Decreto-Ley No. 682 de 1991 del Congreso de la República también se refiere al tema de la conservación de los cultivos nativos y enfatiza que el libre comercio no excluye el cumplimiento de las normas destinadas a preservar el patrimonio nativo y mejorado de los cultivos.En Cuba, la Resolución del Ministerio CITMA No. 111 de 1996(CITMA 1996), cubre el manejo y acceso de la diversidad biológica en general, sin especificidad suficiente sobre la diversidad agrícola y la intraespecífica, y tampoco contempla la conciliación entre el CDB y el TIRFAA. En proceso de consulta se encuentra un Decreto-Ley sobre el acceso a los recursos fitogenéticos que incluye el conocimiento tradicional y establece contratos de acceso entre el usuario y el Ministerio de CITMA, con excepción de los intercambios entre agricultores y entidades estatales del Ministerio de Agricultura (CNRG 2007).En México el borrador de la Ley de conservación y aprovechamiento de los recursos genéticos para la alimentación y la agricultura propone evitar la erosión genética y fortalecer prácticas culturales de uso, aprovechamiento y conservación de los recursos genéticos. Además, pretende regular acciones que ponen en riesgo a los RFAA, promueve la conservación in situ y ex situ y se refiere a los límites de acceso y patentes, así como a la prohibición de otorgar material genético a titulo de propiedad privada. Por otro lado, esta iniciativa de ley menciona cláusulas de confidencialidad acerca de los conocimientos empíricos para limitar el riesgo de la privatización de los RFAA y de los conocimientos tradicionales.En Perú la Decisión 391 de 1996 del Régimen Común sobre Acceso a los Recursos Genéticos de la Comisión Andina especifica que los países asociados ejercen soberanía sobre sus recursos genéticos a los que se obtiene acceso a través la autoridad nacional competente. Su objetivo es, por un lado, establecer condiciones para una participación justa y equitativa de los beneficios derivados, y establecer bases para el reconocimiento y valoración de los recursos genéticos y los conocimientos asociados a éstos, y por el otro, consolidar el desarrollo de capacidades a niveles local y nacional, y fortalecer la capacidad negociadora de los países miembros (Comisión de la Comunidad Andina 1996). No obstante lo anterior, según un análisis reciente (Ruiz 2008) más de una década después de la aprobación de la Decisión 391, \"…los países andinos siguen enfrentando considerables dificultades para poner en ejecución el régimen de acceso y reparto de beneficios\" debido a \"los procedimientos administrativos complejos, la incertidumbre en cuanto a su alcance, los excesivos instrumentos contractuales, la necesidad de contar con capacidad institucional estable y experta…\" 3.3. Tendencia de los gobiernos sobre el manejo de la producción de semilla y la protección de variedades En Cuba la producción de semillas del sistema formal está regulada por el Decreto No. 175 de 1992. Este decreto, de carácter nacional estatal e integrado por trece establecimientos provinciales y uno del Municipio Especial Isla de la Juventud, se encuentra bajo la asesoría y el control de los órganos especializados, y bajo el chequeo periódico del Sistema de Inspección y Certificación de Semillas (SICS). El sistema de comercialización, establecido en todo el país, cuenta con catorce oficinas que se encargan de distribuir y vender las semillas a todo el sistema productivo agrícola tanto de producción nacional como importada. El SICS aprueba la comercialización de las semillas previo análisis en sus laboratorios, un proceso para el cual existe una Lista Oficial de Variedades para la inscripción de los materiales producto de los programas de mejoramiento convencionales. En el contexto actual, sin embargo, su cobertura se ha extendido para permitir el registro de variedades tradicionales. En Cuba hay sistemas paralelos de carácter formal que buscan asegurar las demandas de producción de semilla en distintos sectores como fincas de semilla de la agricultura urbana, fincas municipales, productores líderes, jardines de variedades, ferias de agrobiodiversidad, días de campo en el Programa Nacional de Popularización del Arroz, y fincas locales de semillas del MINAZ (Ministerio del Azúcar). El objetivo primordial de estos sistemas es garantizar el material de siembra necesario para el Programa de Diversificación de las Producciones Agrícolas de este Ministerio (CNRG 2007).Además de producir y cultivar sus semillas locales (CNRG 2007), los agricultores cubanos utilizan sin costo alguno variedades que genera el sector institucional. Sin embargo, en Cuba no hay marcos políticos y/o regulatorios que apoyen el desarrollo y la expansión de sistemas locales de semilla para cultivos y variedades importantes para el pequeño agricultor. Por otro lado, los incentivos para la producción de semillas de variedades locales son escasos, y sólo existe un pequeño espacio para la comercialización de productos \"ricos en diversidad\" en los puntos de venta de los sistemas urbanos de producción. Todo ello es insuficiente porque no se promueven precios diferenciales para estos cultivares tradicionales y, por lo tanto, la incentivación económica no es suficiente.Los incentivos económicos más comunes se destinan al desarrollo de la producción orgánica, al fortalecimiento de la cooperación entre productores, y a la celebración de ferias libres donde los productores pueden vender sus productos frescos o elaborados. Otros incentivos de carácter social están relacionados con la posibilidad de registro de variedades especializadas y el desarrollo de iniciativas en las escuelas. Un incentivo de carácter social de fecha reciente fue la inscripción de cuatro variedades tradicionales de frijol pallar, una de maíz y varias de Capsicum.En México la Ley Federal de Producción, Certificación y Comercio de Semilla busca favorecer la productividad y competitividad agrícola ofreciendo condiciones de certeza jurídica, de producción, investigación y comercio que beneficia a grandes comercializadores, obtentores y fitomejoradores de semillas. Como consecuencia de ello, los agricultores que por años han conservado y mejorado diversos cultivos resultan excluidos de estos beneficios. A pesar de ello, el gobierno reconoce el flujo y abastecimiento de semillas entre los agricultores en sus sistemas de mercado local e informal -propio de la economía campesina que caracteriza al país-y no prohíbe la comercialización y libre circulación de las variedades no certificadas, es decir, de las locales y criollas que manejan y cultivan los agricultores en sus agroecosistemas tradicionales. Aquino et al. (2001) y Perales et al. (2003) mencionan que el 79% del área establecida de maíz en México se siembra con semilla de los propios almacenes de los agricultores, en otras palabras, con variedades tradicionales o criollas. La nueva iniciativa de ley de semillas permite la comercialización de semillas calificadas: estas comprenden las certificadas, las habilitadas y las declaradas. Esta última se refiere a que las características de la semilla son informadas por el propio productor o comercializador en la etiqueta y podrán ser comercializadas bajo esta categoría. Lo anterior abre la posibilidad para que los agricultores puedan comercializar sus semillas tradicionales. Sin embargo, no existen programas que apoyen esta posibilidad. Las políticas en materia de semillas en México, se enfocan en promover esquemas para que los pequeños productores tengan acceso preferente a nuevas y mejores semillas.En Perú la Ley General de Semillas, Ley No. 27262 de 2000 (Congreso de la República de Perú 2000), delega al Ministerio de Agricultura las actividades relacionadas con el comercio de semillas. Cerca del 65% de la agricultura nacional depende de los recursos genéticos nativos que son una fuente importante de ocupación descentralizada en actividades agrícolas. Este es un componente esencial de la seguridad alimentaria para las poblaciones locales y una despensa genética para beneficio de la humanidad (Gómez 2006). Sin embargo, el marco legal y político otorga mayor importancia a los sistemas comerciales y al uso de semillas de variedades modernas que representan sólo una porción de lo que los agricultores siembran en realidad y, muchas veces, éstas no se adaptan a las condiciones y manejo tradicional de los agricultores (Soto et al. 2007).En cuanto a la protección de variedades vegetales en Cuba, el Decreto-Ley No. 68 de mayo 14 de 1983 (Consejo de Estado de Cuba 1983) reconoce las variedades vegetales como objetos de invención y confiere un Certificado de Autor. En la actualidad este Decreto-Ley no otorga los derechos que se solicitan porque está en proceso de consulta y aprobación uno nuevo para la Protección de las Obtenciones Vegetales que tiene en cuenta los derechos del agricultor pero excluye la protección de variedades tradicionales. La nueva propuesta se fundamenta en la comprobación de los atributos de distinción, homogeneidad y estabilidad de las variedades, y en que las variedades tradicionales, en general, no cumplen el atributo de homogeneidad. Hasta ahora sólo han encontrado un pequeño espacio en la Lista de Variedades del Ministerio de Agricultura que ampara el Decreto 175 y en la cual se han inscrito, hasta la fecha, una variedad tradicional de frijol pallar (Phaseolus lunatus L.), una de maíz (Zea mays L. ) y dos de chile (Capsicum chinense Jacq. y C. annuum L.). Sin embargo, en un análisis más profundo de la misma resolución se aprecia que ésta exige que las variedades se analicen para comprobar su \"novedad, actividad de inventiva, homogeneidad y estabilidad\", y anota que sólo se autorizarán para utilizar en los planes de producción \"las variedades incluidas en las listas oficiales de variedades comerciales, o aquellas cuyo empleo se justifique excepcionalmente…\". Esto significa, por lo tanto, que las variedades tradicionales por su carácter heterogéneo no están amparadas de manera oficial (CNRG 2007).En México el gobierno reconoce la propiedad intelectual de la producción y el beneficio de las semillas. Tal reconocimiento tomó fuerza por los diversos convenios a los que el país está suscrito como son la UPOV y OMC. Dado que la Ley de Variedades Vegetales de 1996 establece que para tener el derecho de obtentor de una variedad vegetal, ésta debe ser nueva, distinta, estable y homogénea. De esta forma no se reconoce el derecho de obtención y mantenimiento de los agricultores hacia las variedades tradicionales, porque no cumplen con las características antes mencionadas. Sin embargo, la Ley de Conservación y Aprovechamiento de los RFAA propone que los RFAA mejorados por métodos empíricos sean copropiedad de la nación y de los agricultores, y que las variedades mejoradas por métodos convencionales en las universidades públicas y los centros de investigación nacionales sean propiedad de la nación.La Ley General de Semillas de Perú reconoce tres clases de semillas -genética, común y certificada-mencionando que sólo se puede autorizar esta última. La misma ley define la 'común' como aquella que no reúne las condiciones mínimas de calidad y sanidad para su utilización como 'semilla'. Estas son aquellas que maneja el agricultor desestimando su utilidad práctica y sostenible, y favoreciendo la certificada obtenida de los sistemas comerciales. En este sentido la política nacional agraria de Perú, que representa el Ministerio de Agricultura (MINAG), no refleja el tema de la agrodiversidad de forma explícita ni incluye en sus planes regionales ninguna estrategia de conservación, acceso o utilización de los cultivos nativos.La protección de los derechos de los agricultores en Cuba comenzó con la promulgación de la Ley de Reforma Agraria en 1959, y se consolidó con la II Ley de Reforma Agraria en 1963. Esto implicó transformaciones en el sistema de tenencia de la tierra a favor de los trabajadores rurales y del campesinado cubano (Figueroa y Averhoff 2001-2002) dando apoyo financiero, técnico y comercial a los campesinos para la creación de industrias, servicios productivos y desarrollo social, entre otras mejoras. En la década de los años sesenta, el surgimiento del cooperativismo campesino fue una necesidad a partir del régimen social y político del país. De 1966 a 1974 la estatalización hizo que el cooperativismo descendiera casi a cero, y en el sector de los trabajadores agrícolas se multiplicó el desarrollo de pequeñas fincas de autoconsumo y del \"conuquismo\" (huertos caseros, familiares o solares). En el sector agrícola reapareció el cooperativismo en los años setenta bajo el principio de la voluntariedad y, entre 1977 y 1987, surgieron las Cooperativas de Producción Agropecuaria (CPA), así como las Cooperativas de Créditos y Servicios (CCS).El mejoramiento paulatino de la situación del campesinado cubano, unido a otras reformas en educación y salud pública, constituyen los derechos básicos del agricultor. Entre sus principales incentivos figuran la vinculación directa del hombre a la explotación agrícola como forma de estimular su interés por el trabajo y la autosatisfacción de las necesidades familiares. Además, dentro de la nueva Ley de Protección de las Variedades Vegetales se concibe la cobertura específica de los derechos del agricultor, en conciliación con lo estipulado en el capítulo 12 del Tratado Internacional sobre los RFAA. En este sentido los campesinos pueden producir su propia semilla dentro de sus propiedades, así como la de las variedades comerciales que hayan adoptado en fecha reciente, o la de variedades introducidas que incorporen a sus sistemas (CNRG 2007).En México los derechos del agricultor en relación con la conservación de la agrobiodiversidad no los reconoce ninguna ley vigente. Sólo se encuentran incluidos en la Propuesta de Ley de Conservación y Aprovechamiento de los Recursos Genéticos para Alimentación y la Agricultura, que establece que el agricultor tiene derecho a los beneficios del uso de los RFAA. Esta Propuesta de Ley señala que los conocimientos tradicionales de las comunidades locales sobre uso, custodia, domesticación, y selección de RFAA son elementos intangibles que deberán recibir una retribución justa. También especifica que los RFAA mejorados por métodos empíricos son copropiedad de la nación y de los núcleos ejidales y/o comunidades, de los pueblos indígenas y de los pequeños propietarios que hayan participado en su domesticación, selección, mejoramiento y conservación (SOMEFI 2006). Sin embargo, esta iniciativa de ley no indica los mecanismos o estrategias necesarias para llevar a cabo lo anotado con relación a, por ejemplo, incentivos, distribución de beneficios, etc. Por esta razón, este es un tema que sigue pendiente en la agenda nacional.En Perú la Ley No. 27811 del 2002 (Comisión Permanente del Congreso de la República de Perú 2002) es la que establece el Régimen de Protección de los Conocimientos Colectivos de los Pueblos Indígenas. Esta ley declara que el estado reconoce el derecho y la facultad de los pueblos indígenas a decidir sobre sus conocimientos, y establece que se debe realizar una negociación con las comunidades para acceder a los conocimientos colectivos. En el caso en que éstos se requieran para fines industriales y comerciales, se deberá suscribir una licencia en la que se especifique la retribución al acceso, la cual formará parte de un fondo para el desarrollo de los pueblos indígenas (Comisión Permanente del Congreso de la República de Perú 2002).En dos de los tres países analizados -Cuba y México-existe un Sistema Nacional de Recursos Genéticos, así como estrategias de conservación de los mismos que, en la práctica, están en su fase inicial. Al respecto Estrella et al. (2006) señalan que en México falta mucho por hacer en la conservación de la agrobiodiversidad pues se han realizado acciones institucionales dispersas con diferentes objetivos. SAGARPA tiene mucho que gestionar para lograr un marco legal, político y de desarrollo de estrategias que permitan aprovechar de manera sostenible la riqueza genética del país. Sobre el mismo tema en Perú, Soto et al. (2007) indican que las políticas ambientales reflejan que existe interés nacional por la conservación y uso sostenible de la diversidad y dentro de ella, sobre la agrobiodiversidad.Muchas de estas legislaciones y políticas sólo son declaratorias con buenas intenciones pues, en la práctica, su proyección es limitada. Tapia (2003), y Soto et al. (2007), señalan que en este país, a pesar de las intenciones y políticas en materia de recursos genéticos, no existe una estrategia de conservación de variedades tradicionales, quizás porque no se ha demostrado la rentabilidad económica de estos agroecosistemas. El reto sería demostrar a quienes toman decisiones, los diferentes beneficios de la agrobiodiversidad. En este sentido es urgente planificar y establecer prioridades para el desarrollo de una estrategia que permita la protección, conservación y utilización de los recursos genéticos. Wendt e Izquierdo (2000) enfatizan que los Sistemas Nacionales deberían basarse en las características del país y en el número y problemas varios de los actores involucrados en el proceso.En Cuba y México se tiene una propuesta para una ley sobre el acceso y conservación de los RFAA. En Perú, en contraste, sólo existe una implicación legal y política al respecto que establece la Decisión 391 de 1996. Más aún, se necesita esclarecer la relación del TIRFAA con los regímenes de acceso y distribución de los beneficios existentes.Se observó que las políticas en Cuba, México y Perú que se relacionan con el manejo de semillas, favorecen al sistema formal de semillas. Al respecto Baniya et al. (2004) opinan que este sistema formal de semillas funciona a escala comercial, está orientado a obtener ganancias, y se encuentra bajo el control de compañías de semillas nacionales, internacionales o multinacionales. Este sistema, que se fundamenta en principios científicos, tiene el compromiso de proveer semillas de calidad dentro de una organización vertical en la producción y distribución de semillas de variedades mejoradas y utilizando un estricto control de calidad y documentación. Además, este sistema es independiente de los procesos agrícolas y de los productos o bienes finales del proceso (Riesco 2004). A pesar de todo lo anterior, en los sistemas tradicionales los agricultores, en su mayoría, utilizan semillas provenientes de sus propios sistemas tal como lo indican Ortega et al. (2000), Herrera et al. (2002) e Ix (2002) al señalar que más del 80% de la superficie que se siembra de maíz en México se hace con variedades locales. Esto resulta similar a lo que mencionan Almekinders et al. (1994) sobre América Central donde encontraron que en el 80% del total de maíz y en el 71% de frijol sembrados, los productores usaron semillas propias (tradicionales provenientes del sistema informal).De acuerdo con Bellon (2004) el sistema comercial o formal de semillas está a favor de la provisión de semillas de pocas variedades pero en grandes cantidades, y en contra de la diversidad de variedades sembradas en pequeñas extensiones. Es probable que esto suceda dado el interés socioeconómico de los gobiernos en tratar de modernizar la agricultura y promover el consumo de productos específicos, un hecho que influye en la pérdida de la diversidad. En este sentido, Altieri y Merrick (1987) han argumentado que la pérdida de los recursos genéticos de los cultivos puede estar ligada a la expansión de la agricultura moderna en dos grandes direcciones: (1) la adopción de variedades modernas de altos rendimientos, y (2) la plantación de áreas inmensas con cultivos genéticamente uniformes con una productividad vulnerable a diversos factores. Por otra parte, en algunos países, como México, las políticas agrarias nacionales se centran en cultivos importantes para la generación de divisas o que presentan ciertos requerimientos industriales. Este escenario no es compatible con las necesidades de los agricultores que requieren semillas de calidad que se adapten a sus condiciones agroecológicas y objetivos particulares. Así, el estado no concede atención suficiente a los cultivos locales y a la diversidad inter e intra específica.En la formulación de las políticas de producción de semillas es imperativo reconocer el sistema informal de semillas a través, por ejemplo, de una adecuada política de precios, diferenciando su carácter excepcional. De esta manera, quizás, la conservación de la agrobidiversidad no sólo sería rentable de manera privada, sino justa desde el punto de vista social. Para concretar la propuesta anterior, quienes toman decisiones deben contar con información clara y objetiva de la realidad, con base en estudios científicos, técnicos y crear incentivos que incluyan el valor de estos activos ambientales y el riesgo real que implicaría la probable erosión genética.De acuerdo con Vernooy (2007) se requiere un sistema abierto y dinámico de producción y distribución de semillas, incluso para iniciativas locales. Un ejemplo de ello sería la formación y apoyo a miniempresas o asociaciones de producción y venta de semillas, así como nuevas relaciones interinstitucionales que den mayor acceso a la diversidad. Además este autor sugiere el control local sobre el manejo y mejoramiento de las semillas y sobre los productos con valor agregado que resultan de estos procesos como, por ejemplo, variedades mejoradas, semillas producidas, y procesos de investigación más participativos y descentralizados en los cuales los agricultores tengan 'voz y voto'.En México y Perú, las políticas neoliberales y de globalización -la firma del Tratado de Libre Comercio (TLC), por ejemplo-han afectado la agrobiodiversidad. Debido a esto, en México y en un futuro cercano en Perú, los agricultores se encuentran y se encontrarán en desventaja por la entrada en vigor del capítulo agropecuario que libera a este mercado a través de la eliminación de tarifas y barreras arancelarias. Esto entorpece el reconocimiento de acuerdos sobre el medio ambiente, en particular, en cuanto a la agrobiodiversidad, favoreciendo así a grandes corporaciones internacionales, y creando inequidad, desigualdad y falta de condiciones de comercialización entre los agricultores. Lo anterior cobra especial importancia si se toma en cuenta lo que señala Vernooy (2007) en cuanto que en muchas partes del mundo, las comunidades rurales tienen dificultades para mantener la biodiversidad agrícola. Las prácticas locales de experimentación sobre la conservación y mejoramiento de variedades se encuentran debilitadas por fuerzas externas e internas. La comercialización de la agricultura en forma de monocultivos, la privatización de los recursos naturales, la emigración y la pérdida de la cultura culinaria son sólo algunas de las fuerzas de mayor impacto.Otro problema es la falta de apoyo de instituciones formales de investigación, divulgación, crédito y mercadeo, entre otras, hacia la agricultura de subsistencia. Es por todo esto que es necesario que se tomen acciones que protejan a los agricultores, la diversidad de cultivos, su conservación y manejo, y que garanticen la conservación in situ de los recursos genéticos. Dentro de este contexto, si se quiere proteger las variedades tradicionales, quienes toman decisiones deben entender la importancia de la diversidad y cómo conservarla. Además, se deben formular leyes que sean de fácil comprensión y aplicación, sin procesos largos, y contar con personal capacitado para llevar a la práctica esta política. Un buen ejemplo de ello es la protección experimental de algunas variedades tradicionales de Cuba en el Registro Oficial de Variedades que se traduce como un incentivo moral porque reconoce la labor de generaciones en la conservación de la diversidad.Por otro lado, es importante revaluar la cultura de las comunidades pues ésta es una estrategia para la conservación de semillas tradicionales. GFU et al. (2005) señalaron que la agrobiodiversidad y la diversidad cultural ejercen influencias entre ellas. Los sistemas de explotación agrícola locales ofrecen materiales básicos para poemas, canciones, bailes y dramatizaciones. Los sistemas de seguridad alimentaria liderados por la comunidad, que se basan en la conservación, el cultivo y el consumo de alimentos locales, ayudan a preservar la diversidad cultural y étnica respecto a cultivos y preferencias culinarias. En consecuencia, la biodiversidad agrícola ofrece múltiples beneficios de naturaleza ecológica, económica, nutricional y cultural.Dado que en los últimos años en Cuba se ha incrementado el acceso a la diversidad conservada en los bancos ex situ, los campesinos se han visto favorecidos con un enriquecimiento de la diversidad disponible para sus demandas. Esto requiere a su vez un programa de sensibilización y capacitación para que no provoque un detrimento de la diversidad tradicional. Así, el tema de la conservación de la agrobiodiversidad ha aumentando su protagonismo en las decisiones de producción en el país.En México y Perú se observó que sí existe protección de las variedades vegetales y que está representada por el Derecho de Obtentor de las Variedades Vegetales (DOV). Sin embargo, cabe mencionar que sólo México está suscrito como miembro adherente de la UPOV desde 1997, y que forma parte del Acta de 1978 desde el año 1999 (UPOV 2007). Por su parte, en Cuba aún está en proceso de aprobación el Decreto-Ley sui generis para la protección de las variedades vegetales.El DOV permite que las variedades protegidas estén disponibles para desarrollar unas nuevas sin previo consentimiento de quien obtiene la variedad original, y que los agricultores puedan volver a utilizar el material de propagación de una variedad protegida por DOV para su propia siembra. Esta situación beneficia a los pequeños productores que difícilmente cuentan con ingresos para adquirir semillas y que, en ocasiones, las utilizan para obtener semillas para el próximo ciclo de siembra. Sin embargo, esta circunstancia puede ser también utilizada de manera equivocada por algunos agricultores que se aprovechan y venden de formal ilegal parte de su cosecha como semillas.En Perú hay ya una ley aprobada y, en México, una propuesta de ley que contempla los derechos de los agricultores así como las especificaciones de negociación para acceder a los conocimientos colectivos de las comunidades relacionados con la diversidad agrícola que se debe valorar y retribuir de forma justa. En Cuba, aunque no existe una ley al respecto, se ha reconocido al menos de manera social, la contribución de los agricultores en la conservación y mejoramiento de variedades tradicionales.La pérdida de la agrobiodiversidad resulta del favorecimiento diferencial del mercado formal de semillas que sólo promueve la producción, distribución y comercialización de semillas uniformes, de alta calidad y certificadas. Así mismo, deja en el olvido los cultivos y variedades tradicionales, sus técnicas de producción y manejo, el consumo de alimentos 'ricos en diversidad', y los conocimientos populares.Las políticas nacionales de los tres países, en general, no tienen una cobertura apropiada para la conservación y manejo de la agrobiodiversidad tradicional y la producción de su semilla. Tales políticas tampoco son adecuadas para promover el acceso a los recursos genéticos vegetales de manera tal que considere el beneficio de las comunidades locales y los derechos de los agricultores. Desde el punto de vista práctico, el marco institucional jurídico es inexistente, inadecuado o contradictorio.El diseño de políticas y normas jurídicas relacionadas con la diversificación de especies y utilización de la variabilidad intraespecífica, en especial de los cultivares criollos, también está incompleto. Se sugiere promover el uso de estos cultivares como insumo para promover y desarrollar la agricultura orgánica o ecológica de cada país.La pérdida de la agrobiodiversidad se hace evidente, a pesar de los esfuerzos de los agricultores, la cooperación internacional, las instituciones no gubernamentales y las universidades que responden al desconocimiento de los políticos hacia los sectores y actores responsables de conducir los diferentes temas relacionados con los recursos fitogenéticos. Entre estos temas se pueden mencionar el manejo de semillas, los derechos del agricultor, la inscripción de variedades, la conservación in situ y ex situ, el conocimiento tradicional y la variabilidad intraespecífica, entre otros. Así mismo figuran aquí factores como la baja capacidad de desarrollar de manera participativa su marco jurídico y político, su implementación y la dotación de recursos financieros que permitan un trabajo sistematizado y ordenado al respecto.Los gobiernos deben promover, difundir y sensibilizar sobre la importancia de los recursos fitogenéticos y sobre el sistema informal de abastecimiento de semillas a través de programas dirigidos a la población en general y, en particular, a las autoridades, los gobiernos locales y los decisores políticos. De la misma manera es importante también favorecer proyectos que promuevan áreas de siembra con variedades tradicionales, bancos comunales de semillas, y huertos caseros (solares), así como fomentar el consumo de recursos locales, y desarrollar actividades para retribuir a las comunidades con resultados.Se recomienda a las instancias pertinentes de los diferentes gobiernos, el diseño, la revisión y la implementación de normas jurídicas para el acceso a la diversidad, así como la distribución de beneficios derivados de su uso. Estas normas deben reconocer no sólo el papel de los agricultores en la conservación y evolución de la diversidad de los cultivos, sino también su derecho a participar en las decisiones sobre éstos.Otra medida importante es fortalecer la capacitación de los agricultores a través de una apropiada asistencia técnica, desarrollo de parcelas demostrativas, y ferias de intercambios de semillas. Además, es esencial otorgar estímulos a los agricultores conservacionistas y productores de semillas tradicionales que favorezcan la conservación de los recursos fitogenéticos. ","tokenCount":"66205"} \ No newline at end of file diff --git a/data/part_3/2533774700.json b/data/part_3/2533774700.json new file mode 100644 index 0000000000000000000000000000000000000000..8a84a3bb63973ac74c9bf49d184488c2cc45e309 --- /dev/null +++ b/data/part_3/2533774700.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"f6b7e3cf80600b6bd8875cea697ddb60","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/bd3733ba-4dc6-472f-b497-13d5b59fb26f/retrieve","id":"-1620708029"},"keywords":[],"sieverID":"e3951b9d-d502-4341-b65d-b71a76016bfd","pagecount":"5","content":"RCM is a decision-support tool designed for use by extension workers, crop advisors, agricultural service providers, and farmer leaders. It is accessible online on personal computers, tablets, or smartphones. In Philippines, more than 1.7 M recommendations generated for farmers in 2014-2018. In Odisha, India, around 100 thousand farmers have received recommendations in 2016-18.RCM is a decision-support tool designed for use by extension workers, crop advisors, agricultural service providers, and farmer leaders. It is accessible online on personal computers, tablets, or smartphones. The user completes an interview of 20 questions to obtain information about a farmer's rice-farming practices and conditions. After the interview, the collected information can be stored on the computer, tablet, or smartphone until the device is connected to the internet through a web browser. The collected information is then transmitted to the RCM algorithm which automatically calculates and transmits a crop and nutrient management guideline within moments back to the device used in the interview. Each guideline provides an actionable and unique recommendation, which matches the location-specific cropping practices and needs of farmers.In Philippines, more than 1.7 M recommendations generated for farmers in 2014-2018. Monitoring, Evaluation, and Learning conducted for dry season of 2018 and found the results: 25% of respondents have taken up recommended practices from RCM and benefit by 640 kg additional yield and 213 USD added net return per hectare per season more than those who have not taken up the recommended practices. Dissemination of RCM is continuously done through local extension and support of the Department of Agriculture.In Odisha, India, around 100 thousand farmers have received recommendations in 2016-18. The dissemination activities are being carried out through the extension staff of the Department of Agriculture, NGOs, input dealers, and progressive farmers. 10 % farmers are being monitored on use of RCM throughout the season. The data generated from crop cuts show a yield gain 0.5-1 ton and 155 USD added net return per hectare per season from plots where RCM recommendations were followed over that of farmers' fertilizer practice plots. Strategic and adaptive trials are being conducted to further refine and strengthen the RCM recommendations for rainfed rice. Dissemination of RCM is continuously done through various extension channels including local NGOs, progressive farmers, state-level institutes, international centers with support from Department of Agriculture In Vietnam, Indonesia, Bangladesh, and Bihar and Eastern UP, India, apps are developed and ready for release but require funding support for implementation.• https://tinyurl.com/y47ealkd RCM is a decision-support tool designed for use by extension workers, crop advisors, agricultural service providers, and farmer leaders. It is accessible online on personal computers, tablets, or smartphones. The user completes an interview of 20 questions to obtain information about a farmer's rice-farming practices and conditions. After the interview, the collected information can be stored on the computer, tablet, or smartphone until the device is connected to the internet through a web browser. The collected information is then transmitted to the RCM algorithm which automatically calculates and transmits a crop and nutrient management guideline within moments back to the device used in the interview. Each guideline provides an actionable and unique recommendation, which matches the location-specific cropping practices and needs of farmers.In Philippines, more than 1.7 M recommendations generated for farmers in 2014-2018. Monitoring, Evaluation, and Learning conducted for dry season of 2018 and found the results: 25% of respondents have taken up recommended practices from RCM and benefit by 640 kg additional yield and 213 USD added net return per hectare per season more than those who have not taken up the recommended practices. Dissemination of RCM is continuously done through local extension and support of the Department of Agriculture.In Odisha, India, around 100 thousand farmers have received recommendations in 2016-18. The dissemination activities are being carried out through the extension staff of the Department of Agriculture, NGOs, input dealers, and progressive farmers. 10 % farmers are being monitored on use of RCM throughout the season. The data generated from crop cuts show a yield gain 0.5-1 ton and 155 USD added net return per hectare per season from plots where RCM recommendations were followed over that of farmers' fertilizer practice plots. Strategic and adaptive trials are being conducted to further refine and strengthen the RCM recommendations for rainfed rice. Dissemination of RCM is continuously done through various extension channels including local NGOs, progressive farmers, state-level institutes, international centers with support from Department of AgricultureIn Vietnam, Indonesia, Bangladesh, and Bihar and Eastern UP, India, apps are developed and ready for release but require funding support for implementation.","tokenCount":"752"} \ No newline at end of file diff --git a/data/part_3/2534710679.json b/data/part_3/2534710679.json new file mode 100644 index 0000000000000000000000000000000000000000..4e68b49616fa1bf116b0792d19cb182088ebe1d9 --- /dev/null +++ b/data/part_3/2534710679.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"45e2b13cb2c2a92fb8f628c15e45f068","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/f1dcca8d-c64b-4bd2-96e6-4629cbf6a18d/retrieve","id":"1319355562"},"keywords":[],"sieverID":"ef63b893-8b7c-4d0a-84ab-9491e80d3057","pagecount":"4","content":"Climate Smart Agriculture addresses the challenges which climate change (CC) poses to agricultural production. It is a pathway towards sustainable development and food security and is built on three pillars: • Increasing agricultural productivity (crops, livestock and fisheries) and income • Enhancing resilience or adaptation of livelihoods and ecosystems towards climate extremes • Reducing and removing GHG emissions from the atmosphere (FAO 2016) An agricultural technique or practice that contributes to the achievement of these pillars can be considered climate smart. But often, different techniques perform differently over the three pillars, and therefore have to be combined in an integrated CSA approach to complement each other and maximize their benefits (Worldbank 2015, FAO 2015).In the 15 climate-smart villages established by CGIAR in Western Kenya for example, a farm is only counted as climate smart if it applies practices that are strong in all climate-smartness categories: The World Bank in collaboration with international partners has developed three indicator sets to support CSA implementation at the national and sub-national levels. The indicators will guide CSA invest ment decisions, and assist national govern ments, agricultural specialists and natural resource managers in evaluating the productivity and climate benefits of sustainable land management operations.Climate change (CC) is the long-term or permanent shift of average climatic conditions (FAO 2015). They result in changes of weather patterns and directly affect agricultural production. Kenya is highly vulnerable to the impacts of climate change. Some of the most visible changes are: Therefore CSA is a basket of agricultural practices and techniques that not only aims at increasing profits and resilience for farmers but does so without harming, often even bettering, environmental parameters. It improves input efficiency, soil quality and benefit-cost returns for farmers while limiting the expected negative effects of climate change on Kenyan agriculture for producers and consumers (Worldbank 2015, FAO 2016).For Kenya adapted practices include:• Soil and Water conservation measures increase ground cover and use little water.• Manure and compost can decrease use of chemical fertilizers and adequate manure management for biogas production can reduce methane release. • In agroforestry systems trees and crops coexist and benefit from each other.• Inadequate tillage practices that expose the soil release carbon stored in the soil.• Indiscriminative use and wrong timing of agrochemicals harm the ecosystem.• Clearing land and burning plant biomass for farming releases carbon stored in the soil.1 However, more positively, such climate change projections suggest that, in some places, opportunities for crop diversification and intensification may emerge, including options for expanding into places where cultivation is not currently possible.Kenya's agriculture is especially vulnerable to climate changes 1 because of its large dependence (98%) on rainfed agriculture (Worldbank 2015). Depletion of water and pasture resources are expected consequences under which mainly smallholder farmers will suffer. They might lose income and livelihoods through crop failure and livestock losses. A 30% drop is expected for the productivity of crops, livestock,forestry, fisheries and aquaculture, endangering Kenya's foodsecurity and rural livelihoods (FAO 2015).Mankind is, however, not only negatively affected by CC, they also contribute to it by emitting greenhouse gas (GHG) emissions to the atmosphere. Agricultural production is next to industry and transportation a key contributor to CC. Several activities, such as clearing land, burning of biomass or wood, some tillage practices or indiscriminate use of agro-chemicals all amplify the effects of CC by releasing GHG (FAO 2015, Worldbank 2015). On the other hand, agriculture has the potential to contribute to reducing GHG emissions. A variety of adapted agricultural practices, summed up under the term \"climate smart agriculture\", minimize harmful effects or even reduce emission or absorb GHG.Compost is a combination of wet and dry plant material and manure that by decomposing together form a rich plant food. Compost making is a natural process of turning organic material into humus.For making compost the farmer needs (FAO 2015):• Rough matter-twigs or branches • Dry organic matter-Maize stalks or leftovers from other crops, wood shavings, dryweeds, etc. • Green weeds, grass, shrub cuttings e.g. stinging nettle, leguminous trees -anything green • Fresh animal manure • Wood ash • Water Animal manure contains most of the nutrients that crops require in different contents depending on the livestock species. It is therefore very valuable to enrich the compost, but stored and applied poorly, components can convert into Greenhouse Gas (GHG) and foster climate change. Therefore it is very important to collect manure directly, apply soon, store properly (covered, cooled) or compost it which also reduces the GHG emissions of manure. Manure can additionally be used to create renewable energy with a so called biogas digester (FAO 2016, FAO 2015).Composting is an efficient way to avoid wasting useful natural resources. About a third of all household waste can be reused as compost to enrich soils and boost plant growth. Compost is a free of costs, easy and high quality alternative to agro-chemicals that not only fertilizes the soil but also introduces beneficial organisms that help to aerate the soil and break down organic material for plant use. It is a simple way to add nutrient-rich humus which stimulates plant growth and restores vitality to depleted soil. Composting also helps the soil to hold water and keep plants free from diseases. Manure is a very good addition to compost and its use in compost reduces negative emissions that badly managed manure can evoke. Using manure for compost making keeps its good fertilizing qualities without increasing weed growth as manure applied directly normally does (FAO 2015, FAO 2016) ","tokenCount":"909"} \ No newline at end of file diff --git a/data/part_3/2544939078.json b/data/part_3/2544939078.json new file mode 100644 index 0000000000000000000000000000000000000000..0443c33e78f922a66cf904a914e1ca7687fdf970 --- /dev/null +++ b/data/part_3/2544939078.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"32cf9f2063955a891d7a37f29bd14153","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/9391cc11-11d3-47ab-a7f7-dfc4a9f325e0/retrieve","id":"-1843993703"},"keywords":[],"sieverID":"22220bd8-8507-40e0-878a-50b2d669644e","pagecount":"358","content":"The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations or Bioversity International concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO or Bioversity International in preference to others of a similar nature that are not mentioned. The views expressed herein are those of the authors and do not necessarily represent those of FAO or Bioversity International.Committee (2002)(2003)(2004)(2005)(2006), and the Governing Body of the ITPGRFA (2006)(2007)(2008)(2009)(2010)(2011) Plant Genetic Resources and Food Security xii Boxes 1.1 History of genetic resources' development and exchange: A history of agriculture and of cooperation and dialogue among cultures 1.2 Uniqueness of plant genetic resources for food and agriculture and the need for multilateralism 1.3 Illustration of how unexpected international political events may condition the outcome of negotiations 1.4 Balancing the value of genetic resources for food and agriculture and of biotechnologies that use them Dr Pratibha Brahmi is a senior scientist at the National Bureau of Plant Genetic Resources (NBPGR), New Delhi. Holding a PhD from the University of Delhi in botany, she has worked at NBPGR for the past 25 years and has been involved mainly in germplasm exchange and policy issues. She has contributed towards the establishment of a plant variety protection system in India. She was a member of various national expert committees for the implementation of relevant provisions of the Biological Diversity Act 2002 (BDA) of India related to germplasm exchange. She also attended the 3rd Governing Body meeting of the ITPGRFA held in Tunisia in June 2009 as part of the Indian delegation. for the implementation of actions related to in situ, ex situ and on-farm genetic resources conservation and sustainable utilization. He is also responsible for the implementation of the National Agrobiodiversity Program and for all activities related to invasive species. He negotiated the Convention on Biological Diversity (1989)(1990)(1991)(1992), the International Treaty on Plant Genetic Resources for Food andAgriculture (1995-2001) and the Cartagena Protocol on Biosafety (1996Biosafety ( -2000) ) for Brazil, and follows their implementation. He received his master's degree, in 1978, from the Herbert H. Lehman College of the City University of New York.Dr Carlos Maria Correa is Director of the Center for Interdisciplinary Studies on Industrial Property and Economics and of the postgraduate course on intellectual property at the Law Faculty, University of Buenos Aires. He has been a visiting professor in postgraduate courses of several universities and consultant to UNCTAD, UNIDO, UNDP, WHO, FAO, IDB, INTAL, the World Bank, SELA, ECLA and other regional and international organizations. He has advised several governments on intellectual property and innovation policy. He was a member of the UK Commission on Intellectual Property, of the Commission on Intellectual Property, Innovation and Public Health established by the World Health Assembly and of the FAO Panel of Eminent Experts on Ethics in Food and Agriculture. He is the author of several books and numerous articles.Ir Anke van den Hurk is a Senior Adviser at Plantum NL, the Dutch association for breeding, tissue culture, production and trade of seeds and young plants. She participated on behalf of the seed industry in the negotiations of the standard material transfer agreement (SMTA) and in the implementation of the International Treaty on PGRFA. Ms van den Hurk is also the representative of the International Seed Federation (ISF) in the negotiations of an international regime on access and benefit sharing under the CBD. In her daily work she is also involved in various policy areas, like breeders' rights biotechnology and organic seeds that are relevant for the plant breeding sector. Her background is in plant breeding, Wageningen University.Dr Bert Visser was born in the Netherlands in 1951. Since 1997 he is the Director of the Centre for Genetic Resources the Netherlands (CGN) which, under its own mandate, is part of Wageningen University and Research Centre. As the Director of CGN he fulfils an advisory role for the Ministry of Agriculture, Nature and Food Quality on policies regarding agrobiodiversity. His interests and activities concern genetic resources management and policy development, international collaboration in the area of genetic resources management, on-farm conservation of genetic resources, and the interface of agrobiodiversity and biotechnology.The International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA or the Treaty) is all about building bridges and connecting countries and people; it is about pooling collaborative, cooperative and common action. The Treaty provides a framework to allow the global community to work together for food security, adaptation to climate change and the sound management of agrobiodiversity -always keeping in focus the needs of farming communities, the poor and the hungry, and their right to food. States interacting with other states, people interacting with other people, with institutions (whether public or private), with civil society organizations, with research institutes and with commercial entities create multilateralism through their interactions. People are at the core of multilateralism. And it is this kind of collective and cooperative action, oriented towards the attainment of common goals, that the global crises facing the 21st century requires.This book intends to shed light on the institutional set up that took place during the negotiation process between contracting parties and people who made this Treaty possible. By aggregating their interests, these states have established a multilateral instrument aimed at alleviating hunger and poverty in the world. They embrace farming communities, plant breeders, civil society organizations, seed industry or state's representatives.In 2009, this book was merely an embryonic project held in the hands of a young and enthusiastic woman, driven by her will to eagerly understand how this collective action came about, and led to the birth of the Treaty. At that moment in time, the United Nations Secretary General, Ban Ki-moon and the European Commission President, José Manuel Barroso both called for 'a new multilateralism which is centred around the delivery of global public goods' to address the interrelated crises of food, energy and climate. As the Secretary General articulated at the Summit of the Americas:We need a new vision, a new paradigm, a new multilateralism. A multilateralism that is organized around delivering a set of global goods. A Plant Genetic Resources and Food Security xxvi multilateralism that harnesses both power and principle. A multilateralism that recognizes the interconnected nature of global challenges.Today, the International Treaty on Plant Genetic Resources for Food and Agriculture embodies this new paradigm of collaboration in an interdependent world. In that respect, its lessons reach far beyond the food and agriculture sectors. This Treaty was the first of its kind in the 21st century and it remains at the cutting edge of such a new, results-driven and output-oriented multilateralism. Together, stakeholders have established the first system to facilitate multilateral management of global public goods for the 21st century. This system covers a global gene pool of more than 1.3 million samples of plant genetic material that contracting parties govern collectively and multilaterally for the sake of the poor and the hungry. Through this gene pool, the current 127 contracting parties to the Treaty control -and are responsible for -the basis of more than 80 per cent of the world's food that is derived from plants. Moreover, it is also our most important tool for adapting to climate change in agriculture in the years to come.The Treaty first illustrates this new multilateralism in the realms of the multilateral system of access and benefit-sharing. This mechanism is based on a wide partnership, linking the Consultative Group on International Agricultural Research (CGIAR) centres and other national, regional and international institutions and gene banks to facilitate its implementation by contracting parties and users of the system. This multilateral system still raises important questions for the various actors involved: farmers who need to be assured that the seeds, which their communities have developed over generations, will benefit humanity and that they will in return have access to the seeds they need in their farming systems; holders of gene bank collections who need to be convinced that their collections will also benefit from facilitated exchange; users who want to ship seeds but whose legal counsels notify that they first need more information on the meaning of a particular clause in the Standard Material Transfer Agreement before the shipment can take place; researchers who worry about intellectual property rights over their research results; and finally breeding companies, which are willing to share benefits in accordance with the Treaty, but wish to be assured that they will not be accused of biopiracy.The multilateral system has been designed for all of these various actors, providing a framework under which they can cooperate. The framework must balance the needs of these different stakeholders and ensure that they will interact in ways that are both transparent and adequate for their mutual benefit. This collaboration between them is the sine qua non condition for addressing the challenges that the world currently faces: climate change, population growth and persistent poverty, particularly in the rural areas among the small-scale food producers.xxvii Foreword Multilateralism as promoted by the International Treaty does not stop there, with the provision of an appropriate framework for cooperation. It also finds a concrete illustration in the funding strategy accompanying the multilateral system. A first call for proposals under the benefit-sharing fund in 2009 led to the selection of the first 11 benefit-sharing projects in the history of plant genetic resources. The successful completion of this first test-run of benefit-sharing under the Treaty has proven that international benefit-sharing within a binding legal architecture can work on a multilateral basis. Under the framework of the Treaty, international benefit-sharing is now working in practice, on the ground, for those actors who conserve and contribute to the development of the plant genetic diversity that feeds us all. These actors include, for instance, the Andean farming community that conserves in situ old varieties of potato in its centre of origin; the African genetic resource centre that is struggling to adapt its national crops to climate change and ensure food security; the Asian NGO driven by a group of local women that is developing locally adapted cultivars for small scale enterprises to ensure local livelihoods; and the Near Eastern gene bank that is conserving on-farm and in vitro its rich local citrus varieties.While the benefit-sharing fund is still in its infancy, it shall grow rapidly in the years to come. A second call for proposals made in 2010 has led to the selection of a larger number of projects after the Fourth Session of the Governing Body of the Treaty in Bali, in March 2011. In this way, the funding strategy has begun to effectively fulfil its potential to provide tangible support for the three priorities set at the Second Session of the Governing Body, namely on-farm conservation, sustainable use of plant genetic resources and information exchange. In implementing these priorities, special attention should be given to 'farmers in developing countries … who conserve and sustainably utilize plant genetic resources for food and agriculture', as stipulated in Article 18.5 of the Treaty. Thus, the Treaty can complete the virtuous circle of facilitating exchange and practically supporting the conservation and sustainable use of agricultural plant genetic resources, particularly by and for those people who have developed and conserved these resources over the ages.By encouraging capacity-building, the Treaty offers a third example of a new breed of multilateralism suited to an interdependent world. The capacity-building of stakeholders in the conservation and development of plant genetic resources for food and agriculture is a crucial part of this collective endeavour. At the 2nd session of the Governing Body, contracting parties created a 'Capacity Building Coordinating Mechanism' to support the national implementation of the Treaty. Enhanced collaboration between FAO, Bioversity International and the Secretariat of the International Treaty on the one hand and new partnerships on the other hand, led to the establishment of a Joint Capacity Building Programme. This programme provides assistance to developing the policies, legislation and institutional and administrative practices and arrangements necessary to implement this instrument. The International Treaty has also to be able to provide a set of information technology tools and systems that help users to find the material included and to report on their obligations. Furthermore, contracting parties have alsoshowed interest in developing Article 17 on global information systems, taking into account existing information systems, current trends and opportunities.Fourth, the Treaty encourages collective learning and progress through peer pressure towards the fulfilment of the goals it sets for itself. This is clear, for instance, in the area of Farmers' Rights. The International Treaty recognizes: the enormous contribution that the local and indigenous communities and farmers of all regions of the world, particularly those in the centres of origin and crop diversity, have made and will continue to make for the conservation and development of plant genetic resources which constitute the basis of food and agriculture production throughout the world. (Art. 9. 1.) It refers to the responsibility of the contracting parties to realize Farmers' Rights, by (a) protecting traditional knowledge relevant to plant genetic resources for food and agriculture; (b) ensuring that farmers can equitably participate in sharing benefits arising from the utilization of plant genetic resources for food and agriculture; and (c) protecting their right to 'participate in making decisions, at the national level, on matters related to the conservation and sustainable use of plant genetic resources for food and agriculture' (Art. 9.2). While these provisions remain vague and their implementation uneven across member states, the 3rd session of the Governing Body held in June 2009, in Tunis, agreed that contracting parties should review all measures affecting Farmers' Rights and remove any barriers preventing farmers from saving, exchanging or selling seed; and that they should fully involve farmers in national and/or regional workshops on the implementation of Farmers' Rights and report back on the implementation of Farmers' Rights at the fourth meeting, held in Bali in March 2011. This should encourage states to fully implement Article 9 of the Treaty: it illustrates that, for collective action to succeed, it may have to rely on the sharing of experiences and of information, where agreement on a detailed and binding legal framework may not be achievable at the outset.Finally, new multilateralism can be observed within the Treaty Secretariat that developed into a lean, nimble and dynamic institution which, under its parties' guidance, ensures a transparent management of the plant genetic resources defined as a new global public good. Multilateralism also means that the Secretariat should never attempt to substitute itself for stakeholders in the conservation and sustainable use of plant genetic resources. By creating outcome-oriented partnerships, new platforms for cooperation have been provided, so that the whole can be larger than any one input. By acting so, the Treaty has become a model of a forward-looking and dynamic management for the 21st century. It is a light and flexible structure, but it is probably better suited to the task rather than larger bureaucracies whose ability to evolve in a dynamic environment is generally more limited.The Treaty in a changing worldThe Treaty is also becoming a model for other international decision-making processes: for instance, other United Nations bodies, such as the World Health Organization in its process on virus-sharing and benefit-sharing; the Convention on Biological Diversity in the elaboration of its own international regime on access and benefit-sharing; and the United Nations Convention on Law of the Sea, with regard to the genetic resources of the deep sea-bed -all are looking at the Treaty as their reference point in crafting customized multilateral systems. These new regimes for international cooperation in the maintenance and shared use of global public goods form the vanguard of public international law, combining innovative legal frameworks and practical operational systems, for the global gene pool and for the support of conservation and sustainable use through the funding strategy. In the future, similar regimes could develop, for instance to ensure the transfer of clean technologies to developing countries to support them in their efforts to mitigate climate change or to facilitate the management of freshwater resources that is based on cooperation and trust, not competition and distrust.Therefore, the Treaty community needs to keep in mind this bigger policy picture. This international legally binding instrument is more relevant than ever in the broader policy context. It is at the crossroads where many policymaking processes converge: conservation and the sustainable use of biodiversity; recognition of traditional knowledge; trade; sustainable economic growth and development; innovation policy and intellectual property; adaptation to climate change; and above all, food security and the moral imperative to feed a still growing and often unacceptably poor world population to ensure that their human right to adequate food can be guaranteed.May the reader of this book recall that each and every stakeholder plays an important role in reaching the Treaty's objectives of conservation, sustainable use and facilitated access to and benefit-sharing of plant genetic resources for food and agriculture. It is these same actors' interactions, and their resulting collective action, that has allowed for the creation of such an innovative multilateral system designed to safeguard food security and alleviate rural poverty in the world. Trust between the stakeholders involved, both private and public, including both providers and users, is key to the system's harmonious functioning. This book should allow each set of actors to better understand the perspective of the other actors with whom they cooperate. Finally, we deeply thank the authors and editors for their generous, and gratuitous contributions to this volume.Prof This introduction provides readers with a general overview on the content and structure of the book, the context in which the major issues related to plant genetic resources for food and agriculture (PGRFA) emerged, its relevance for humankind and some interesting details of the negotiating and implementation process of the International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA -the Treaty). The authors have taken this opportunity to express their personal views on some of the major challenges ahead of the Treaty, which will be further developed in the concluding chapter of this volume.This book touches upon wide-ranging issues, such as international food policies and governance, economic and social aspects of food and seed trade, conservation and sustainable use of agricultural biodiversity, hunger alleviation, ecological concerns, consumer protection, fairness and equity between nations and among generations, plant breeding techniques and climate change adaptation. It provides for an extensive overview of the ITPGRFA negotiating and implementation process, undertaken by the stakeholders themselves. The authors identified challenges faced by the ITPGRFA and its community of stakeholders during this new and exciting phase of implementation, and explained the different interests and views of the major players in the global food chain.Chapters have been grouped into three parts. Part I provides the views and standpoints of a number of protagonists that were part of national delegations during the negotiating and implementation process. They stand for the seven regional groups of the Food and Agriculture Organization of the United Nations (FAO): Africa, Asia, Europe, Latin America and the Caribbean, Near East, North America and South West Pacific (Chapters 2 to 9). Part II brings together the opinions of key stakeholders involved in the food chain worldwide: farming communities, plant breeders, gene banks, the Consultative Group on International Agricultural Research (CGIAR), the Global Crop Diversity Trust, the seed industry, civil society organizations (CSOs) and consumers (Chapters 10 to 17). Finally, Part III puts forward the opinions of highly recognized experts regarding key aspects of the implementation of the Treaty (Chapters 18 to 20). Five annexes complement information on the ITPGRFA and its negotiation. Annex 1 lists the meetings held at the FAO Commission on Genetic Resources for Food and Agriculture for the negotiation of the Treaty (1983Treaty ( -2001)), as well as the meetings that took place since the signature and entry into force of the Treaty (2002Treaty ( -2011)). Annex 2 provides the list of all contracting parties to the Treaty, by FAO regional groups. Annex 3 details the main components of the Treaty. Annex 4 gives a national perspective on the implementation of the treaty by Brazil; while Annex 5 comes back to specific anecdotes from the inception of the Treaty negotiations which express well the atmosphere in which the discussions on an international instrument for PGRFA began.With a concern for unity, the authors were requested to focus on specific issues, following essentially the guidelines below:• Analyse the regions' and stakeholders' positions during the negotiation process and the early implementation phase. • Analyse the merits and drawbacks of the Treaty.• Examine the practical legal, political, environmental and economic issues that have arisen between all involved regions and stakeholders in the negotiation and implementation, focusing on the obstacles that have been overcome. • Identify the main challenges ahead and summarize some of the options and views on how these could be met as already expressed by regions and stakeholders.Given the nature of the book and the heterogeneity of stakeholders, their different interests and personalities, the chapters differ in style, content and conclusions. It has been the role of the editors to harmonize them, minimize the overlaps, make the appropriate cross-references and include tables, annexes and reference material, in an attempt to ease the book's consultation and use. Every contribution bears in common the invaluable output to provide crucial information on stakeholders' positions regarding the Treaty, information that has not yet been published elsewhere. The book shows that despite the conflicting interests, which are duly highlighted, all players manage to come to an agreement to share and help conserve PGRFA for the sake of global food security and hunger alleviation. This volume also assesses the prospects for an effective and rapid implementation of the Treaty, in some cases by rescuing some old aspirations that were left behind during the negotiation process and by tabling new ideas and innovative solutions.World food context: Plant genetic resources, food security, sustainability and equityStates have repeatedly reiterated the fundamental right of everyone to be free from hunger and the right to adequate food. In 1996, world leaders stated that: 'We consider it intolerable that more than 800 million people throughout the world, and particularly in developing countries, do not have enough food to meet their basic nutritional needs. This situation is unacceptable' (Rome Declaration on World Food Security, 1996). This assertion led to more than just the inclusion of this fundamental human right within the international legal order as such. Indeed, these states committed to implement policies aimed at eradicating poverty and inequality while improving physical and economic access by all to sufficient, nutritionally adequate and safe food. They pledged to eradicate hunger in all countries, with an immediate view to reducing the number of undernourished people to half of their present level no later than 2015. 2 A similar commitment was made at the United Nations Millennium Summit in 2000, and is included in the First Millennium Development Goal (MDGs). Despite these pledges, the situation has worsened. Today, hunger and malnutrition reaches almost 1000 million people. As a consequence, 15 million people die every year, that is to say, more than 41,000 every day, the majority of whom are children. In addition, the world population is expected to reach 8.3 billion by 2030 and the Earth will have to feed an additional two billion people, of whom 90 per cent come from developing countries (SoW2-PGRFA, 2010). 3 It is therefore crucial to ensure not only that enough food can be produced reliably to feed this expanding population, but also that it is accessible to all.Within this context, one should recall that food security greatly depends on the conservation, exchange and wise use of agricultural biodiversity and the genetic resources that constitute such diversity. PGRFA are essential for sustainable agriculture and food production. They provide the building blocks for farmers, breeders and biotechnologists to develop new plant varieties necessary to cope with unpredictable human needs, growing food demands and changing environmental conditions.From a socio-economic perspective, the importance of agriculture varies by region. Only 1.9 per cent of the population in North America is dependent on agriculture whereas this number reaches 50 per cent in Africa and Asia. Agricultural production remains the major source of income for about half of the world's population (SoW2-PGRFA, 2010, p192). In spite of its vital importance for human survival, PGRFA are being lost at an alarming rate. Hundreds of thousands of farmers' heterogeneous plant varieties and landraces, which have been developed for generations in farmers' fields until the beginning of the 20th century, have been substituted by a very small number of modern and highly uniform commercial varieties. In the USA alone, more than 90 per cent of the fruit trees and vegetables that were grown in farmers' fields at the beginning of the 20th century can no longer be found. Today only a few of them are maintained in gene banks. In Mexico, only 20 per cent of the maize varieties described in 1930 are now known. In China, in 1949 nearly 10,000 weed varieties were known and used. By the 1970s, only about 1000 remained in use. A similar picture is reported for melon varieties in Spain. In 1970, one of the authors of this chapter collected and documented over 350 local varieties of melons; today no more than 5 per cent of them can still be found in the field. The picture is much the same throughout the world (SoW1- PGRFA, 1996). This loss of agricultural biological diversity has not only affected small farmers' livelihoods, but has also drastically reduced the capability of present and future generations to adapt to changing conditions.In addition, many neglected crops and many wild relatives are expected to play a critical role in food, medicine and energy production in the near future. The FAO's first report on the State of the World on Plant Genetic Resources (SoW1-PGRFA, 1996) estimated that some 7000 species had been used by mankind to satisfy human basic needs, while today no more than 30 cultivated species provide 90 per cent of human calorific food supplied by plants. Furthermore, 12 plant species alone provide more than 70 per cent of all human calorific food and a mere 4 plant species (potatoes, rice, maize and wheat) provide more than half of all human calorific food.Countries' reliance on foreign PGRFA is one of the oldest forms of interdependence (Frison & Halewood, 2005), which goes right back to the Neolithic when the first crops spread from their centres of origins to the rest of the world. It can be said that today no country is self-sufficient with respect to the genetic resources for food and agriculture they rely on. Indeed, the average degree of interdependence among countries with regard to the most important crops is around 70 per cent (Table 1.1). Paradoxically, many economically poor countries happen to be among the richest in terms of genetic diversity needed to ensure human survival.This table shows, for each region, the mean of countries' degree of dependency on crop genetic resources which have their primary centre of diversity elsewhere. The indicator used is the food energy supply in the national diet provided by individual crops. On the basis of the primary area of diversity of each crop, the estimated dependency, with maximum and minimum indices, has been calculated, showing that there is a high rate of dependency in practically all cases.Interdependence between generations is also strong. Agricultural biodiversity is a precious inheritance from previous generations. We have the moral obligation to pass it on intact to coming generations and allow them to face unforeseen needs and problems. However, up to now, the interests of future generations who neither consume, nor have the opportunity to speak or vote for themselves have not been adequately taken into account by our political and economic systems.Although matters related to the conservation and sustainable use of genetic resources and the management of related technologies may appear to be technical, they have, in reality, strong socio-economic, political, cultural, legal, institutional and ethical implications. Problems in these fields can put at risk the future of humanity. International cooperation in this area is therefore not a choice but a must and should focus on the fair and equitable sharing of the benefits derived from the use of genetic resources, providing an essential incentive to ensure that countries, local farmers and breeders continue developing, conserving and making their genetic diversity available to humanity. Today, the Treaty is the legal and technical instrument specifically designed for this purpose.To accomplish this task, the United Nations, as a universal intergovernmental forum, has a fundamental role to play in the facilitation of the necessary intergovernmental negotiations. In the 1970s, worldwide systematic actions began within the FAO, resulting in the adoption the International Undertaking on Plant Genetic Resources for Food and Agriculture in 1983 and the establishment of the intergovernmental Commission on Genetic Resources for Food and Agriculture (CGRFA), the forum within which the Treaty was negotiated. Stakeholders in the field have also played, and continue to play an important role in the common commitment of alleviating poverty and promoting food security. By their continuous practices of exchanging crops, farmers and researchers have set the ground for the formal realization of the global crop commons (Esquinas-Alcázar, 1991;Halewood and Nnadozie, 2008;Byerlee, 2010). International organizations active in the field, such as the CGIAR (see Chapter 11) also contributed to pave the road for such an open approach in the management of PGRFA for research and breeding (SGRP, 2003;CGIAR, 2009). Box 1.1 illustrates the history of the development and exchange of PGRFA from the dawn of agriculture to nowadays with special details in the last decades.The negotiations of the Treaty were not alien to, but strongly influenced by the historical and geo-political context in which they were developed. In the 1970s and 1980s, when a utopian socialism was still believed to be possible, the almost romantic concept of plant genetic resources, seen as 'heritage of mankind' to be made 'available without restriction', was defended with passion by most of the developing countries and some developed countries. This idealistic vision was In the last millennia: Development of agriculture and agricultural biodiversity• Cultural contacts and interactions result in crop diffusion and global transfer of PGRFA. • Sumerians and Egyptians actively collect PGRFA.• The discovery of America boosts intercontinental exchange.• Charles Darwin's and Gregor Mendel's discoveries prove the importance of genetic diversity for biological evolution and adaptation. • In 1845, the European famine dramatically demonstrates the need for genetic diversity in agriculture. • Between 1920s and 1930s, Nikolai Vavilov identifies the main areas of crop origin and their genetic diversity.• In the 1960s and 1970s, the Green Revolution boosts productivity but contributes to the loss of genetic diversity. • FAO starts technical work on PGRFA collection and conservation, including through a series of international technical conferences. • In 1972, the UN Stockholm Conference on Human Environment called for strengthening of PGRFA conservation activities. The US National Academy of Sciences raises concern over crops genetic vulnerability after a major maize epidemic. • In 1974, what is now the International Plant Genetic Resources Institute was established to support and catalyse collection and conservation efforts.In the last decades: First major policy developments• In 1961, the International Union for the Protection of New Varieties of Plants was established, and revised in 1978 and 1991. National legislation restricts access to PGRFA, including through intellectual property rights. • In 1979, FAO member countries start policy and legal discussions, leading in 1983, to the first permanent intergovernmental forum on PGRFA -the Commission on Genetic Resources for Food and Agriculture (CGRFA) -and to the adoption of the non-binding International Undertaking on PGR (IU). • From 1989 and1991 NGOs promote an International Dialogue on PGRFA, reaching common understandings that feed into the CGRFA's negotiations.reflected in the 1983 International Undertaking (IU). After the fall of the Berlin wall and the start of an era of the so called 'real politics', neoliberal economic theories prevailed. These concepts of 'heritage of mankind' to be made 'available without restriction' were consequently downgraded by those of 'global concern', 'state's sovereignty' and 'facilitated access', as reflected in the 1992 Convention on Biological Diversity (CBD) and the 2001 ITPGRFA.The negotiating processThe ITPGRFA is the end product of a long period of international debates and negotiations in the FAO (Cooper, 2002;Mekouar, 2002;Rose, 2003;Esquinas and Hilmi, 2008). Indeed, the first technical and scientific discussions in the FAO in this area started in the 1950s. Discussions focusing on the economic and social implications started in the 1970s (see Chapters 2 and 10 for more details). While formal mandate to negotiate a binding agreement did not happen until 1993, the political discussion and negotiating process had begun in the FAO Conference (the main decision-making body in the organization) in November 1979, when the Spanish delegation, later supported by numerous countries, proposed the development of an international agreement on PGRFA and a germplasm• In 1992, the first international binding agreement on biological diversity, the CBD, is adopted. Its members recognize the special nature of agricultural biodiversity and support the negotiations in FAO. • In 1993, the CGRFA agrees to renegotiate the IU, resulting in the adoption in 2001 of the legally binding ITPGRFA. • In 1994, the Marrakech Agreement on Trade-related Aspects of Intellectual Property Rights (TRIPS) is adopted. • From 1993 to 1996, the CGRFA develops the Leipzig Global Plan of Action on PGR and the 1st report on the State of the World's PGRFA. • In 1995, the CGRFA broadens its mandate to all components of biodiversity for food and agriculture. • In 2001, the ITPGRFA is signed (for details on the achievements of the Treaty since its inception, see Annex 1 of this book). • In 2004, the ITPGRFA enters into force on 29 June.• In 2006, the 1st meeting of the Governing Body of the Treaty is held in Spain. The ITPGRFA becomes operative with the adoption of the SMTA. • In 2010, the Conference of the Parties of the CBD adopts the Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits Arising from Their Utilization to the Convention on Biological Diversity.Source: Esquinas-Alcázar (2005), updated with the authorization of the author bank under the jurisdiction of the United Nations. In the 1981 FAO Conference, this proposal became a draft resolution written by Mexico and presented by the GRULAC region on behalf of the G-77. As a result, the next FAO Conference (November 1983) approved the first intergovernmental agreement on this subject -the 'International Undertaking on Plant Genetic Resources' (IU) -with the reservation of eight countries 4 (Canada, France, Germany, Japan, New Zealand, Switzerland, UK and USA). The same conference established an intergovernmental body -the FAO Commission on Plant Genetic Resources (today the Commission on Genetic Resources for Food and Agriculture, which includes 167 member countries and the European Community) to monitor its implementation. The IU is a non-binding agreement based on the principle that 'plant genetic resources are a heritage of mankind' that 'should be available without restriction'.More problematically, its definition of PGRFA included commercial varieties and other products of biotechnologies, which was considered by some countries to be incompatible with intellectual property rights (IPR). This particular issue explains why the IU was approved with eight reservations. To resolve this conflict, a number of 'agreed interpretations' of its text were negotiated in the FAO Commission between 1983 and 1991. Through these interpretations, the concepts of plant breeders' rights and farmers' rights were simultaneously recognized, while the expression 'heritage of mankind' was combined with 'subject to national sovereignty' and new concepts such as global concern and fair and equitable sharing of benefits were introduced. 5 International non-governmental organizations (INGOs) played an essential role in this part of the process (for the civil society viewpoint, see Chapter 10). One particularly important initiative was the Keystone International Dialogue Series on Plant Genetic Resources, convened and facilitated by a neutral, non-governmental entity, between 1988 and 1991, during which several points of consensus were identified in a series of informal meetings. The process was chaired by Dr M. S. Swaminathan, who brought together key individuals from government, the private sector, research community, civil society, international organizations, and others in their individual capacity, to systematically discuss and seek consensual solutions to a range of critical issues. This initiative was very useful in paving the road for the formal intergovernmental negotiations in the Commission.From 1988 to 1992, the CBD, 6 which aimed to become the first binding international agreement covering all biological diversity, was negotiated by the United Nations Environment Programme (UNEP) and presented for signature at the Río Earth Summit in June 1992 (Nairobi Final Act). 7 However, this agreement, which also includes agricultural biodiversity, did not sufficiently take into account the uniqueness of agricultural biodiversity and the specific needs of the agricultural sector (see Box 1.2), partly because agricultural experts were barely represented during the negotiation process. Indeed, countries' representatives related to the agricultural sector were only able to unite during the final session of the negotiations in Nairobi in May 1992. This group was able to develop and introduce a resolution at the very last minute on agricultural biodiversity that was then adopted together with the text of the CBD as Resolution 3 of the Nairobi Final Act. 7 This resolution stressed the importance of the agreements reached within FAO and called for the IU to be revised in harmony with the CBD.The adoption of the CBD, and two years later that of the TRIPS agreement in the context of the World Trade Organization (WTO) Uruguay Round, as binding international agreements, was a wake-up call for the agricultural sector. With compliance being voluntary, the IU lacked sufficient weight to defend the specificities and interests of agriculture. Increasing pressure from other sectors, especially the commercial and environmental spheres, made possible what seemed unimaginable not so long ago. Developing and developed countries, the seed industries and non-governmental organizations (NGOs) joined together with one common political objective to transform the IU into a binding agreement that would allow (i) for equal footing cooperation with the trade and environment sectors, and (ii) guarantee conservation and access to agriculturally important plant genetic resources for research and plant breeding through a fair system for access and benefit-sharing. Consequently, the new phase of the negotiations -specifically aimed at the development of the Treaty -commenced in a highly constructive atmosphere.The uniqueness of PGRFA, when compared with wild biodiversity, is based on the following:• They are crucial to satisfying basic human needs.• They are man-made biological diversity being developed since the origins of agriculture. • Because of the degree of human management of PGRFA, its conservation in production systems is inherently linked to sustainable use. • They are not randomly distributed throughout the world, but concentrated in the so-called 'centres of origin and diversity' of cultivated plants. • There is much greater interdependence among countries for PGRFA than for any other kind of biodiversity. • The target for conservation and use are not the species as such, but genetic diversity within each species.The 'special nature of agricultural biodiversity, its distinctive features and problems needing distinctive solutions' was formally recognized by the Conference of the Parties of the CBD in 1995 (Decision CBD II/15), which supported negotiations within FAO for the IT.During the FAO negotiations, the need for distinct solutions became especially apparent, particularly in relation to the application of any bilateral mechanisms for access, to and sharing of benefits derived from the use of PGRFA.The high transaction costs (Visser, 2003) and the technical and legal difficulties (Hardon et al, 1994) in bilateral access systems such as those provided under the CBD, finally led negotiating countries to the multilateral solution: the multilateral system of access and benefit-sharing adopted in the ITPGRFA.These formal negotiations took place between 1994 and 2001. The FAO Commission met in three regular sessions and six extraordinary sessions. In order to speed up negotiations by reducing the number of active negotiators, the Commission appointed a regionally balanced contact group composed of 47 countries. Between 1999 and 2001, the contact group held six meetings to discuss controversial issues and to pave the road for the Commission negotiation. The 6th extraordinary session of the Committee (see Annex 1 of this publication) intended to conclude the negotiations, but its delegates could not reach agreement on several points. These pending issues were resolved during the 121st session of the FAO Council (October 2001). 8 In a euphoric atmosphere, the negotiations were completed during the 31st Conference of FAO, on 3 November 2001, with the adoption of the Treaty (see Annex 3 of this book for a table giving an overview of the main provisions of the Treaty) by consensus with only two abstentions: Japan and the USA. 9 With an expression of disbelief and exultation after the vote, Director-General of FAO, Dr Jacques Diouf, qualified the Treaty as a milestone on North-South relationship.The Treaty entered into force in June 2004, and became operative with the first session of its Governing Body (Madrid, June 2006). This meeting resolved important issues and resulted in the adoption of a standard material transfer agreement 10 that, through the Treaty's multilateral system of access and benefitsharing (MLS), determines the quantity, method and terms of payment related to commercialization. During this first meeting, the Governing Body (GB) made great advances towards the resolution of other issues, such as the mechanisms to promote compliance with the Treaty and the funding strategy. An agreement between the Governing Body of the Treaty and the Global Crop Diversity Trust (GCDT) was also signed. The second (GB-2/07/REPORT, 2007) and third (GB-3/09/REPORT, 2009) sessions of the Governing Body achieved great progress on issues such as the implementation of the funding strategy, cooperation with the FAO Commission, cooperation with the CGIAR and on the sustainable use of genetic resources. It also adopted inter alia resolutions on Farmers' Rights and on the MLS. The fourth session took place in Bali, Indonesia, in March 2011. GB 4 adopted procedures and mechanisms on compliance, reached consensus on the long-standing item of the financial rules of the Governing Body, and adopted, among others, resolutions on the multilateral system, Farmers' Rights, sustainable use, cooperation with other organizations, and implementation of the Funding Strategy.So far, the Treaty has been ratified by 127 countries and the European Union (see Annex 2 of this volume for the list of contracting parties). Significant progress has been made in the implementation of some of its provisions: countries committed to raise US$116 million to support activities for the implementation of the funding strategy during a period of five years, and during the first year US$14 million was raised. In addition, as one of the essential elements of the funding strategy, the GCDT, which focuses on activities related to ex situ conservation, had received US$136 million up to March 2010, and another US$32 million are committed. This includes contributions from public and private sources. With regard to non-financial resources, 444,824 samples of Annex I material from the CGIAR centres were transferred under the SMTA between August 2007 and July 2008, representing more than 8500 samples transferred per week.This book is not intended to present a comprehensive history of the negotiating process. We recognize that the true story of these long and difficult negotiations took place behind the scenes and includes many interesting unpublished anecdotes and semi-clandestine contacts (see Sukhwani, 2003, Chapter 10 and Annex 4 of this book for some stories on the inception of the ITPGRFA negotiations). While it was countries that were sitting around the negotiating tables, the actual negotiators were human beings who sometimes went beyond their own mandates and occasionally in spite of them. The deep and human history which reflects the real soul of the negotiations (Sukhwani, 2003) is only partially captured in this volume.The actual negotiations were technically complex and politically controversial. They were often based on short-term national interests that varied from country to country or within a country over a different period of time (see illustrative example in Box 1.3). However, a number of key negotiators and many observers from INGOs were moved by ideals. The dialogue between all those involved was much easier when taking into account the perspective of future generations, an issue where all interest and ideals converged.Only some of the main protagonists of this long and fascinating process have participated as authors of chapters of this book. We therefore consider it a duty and an obligation to pay tribute in this introduction to some of those that are missing, without whose involvement, courage and perseverance the Treaty would have never been possible. Among the countries' ambassadors and representatives are: José Ramón López Portillo and Francisco Martínez Gómez from Mexico, real pioneers of the political negotiations, Carlos di Motola from Costa Rica, M. S. Swaminathan from India, Javier Gazo from Peru, Mercedes Fermín Gómez from Venezuela, Ulf Svenson from Sweden, Jaap Hardon from The Netherlands, Henry Shands from the USA, Melaku Worede from Ethiopia, Juan Noury from Cuba, Mohamed Zehni from Libya and Jan Borring from Norway. We also would like to extend our appreciation and tribute to many representatives of civil society and INGOs that often have been the real engines of the process, moved by ideals that had the privilege to call things by their name without the handicap resulting from the diplomatic language. Among them and together with Pat Mooney, pioneer and excellent thinker, were Henk Hobbelink, Patrick Mulbany, Rene Salazar, Camila Montecinos, Hope Shands and many others. We also wish to highlight the political realism and the broad vision of some of the members of the private sector such as Don Duvick and John Deusing. They all collaborated with generosity and enthusiasm in this process, facilitating a balanced result and a final consensus. Last but not least, our tribute goes to colleagues in the secretariat of FAO and its negotiating Commission on PGRFA such as Erna Bennet, Clive Stannard, Murthi Anishetty and David Cooper, as well as colleagues from IPGRI (now Bioversity Interna-tional) and the FAO Legal Office. All of them facilitated the negotiating process all the way through with professionalism, generosity and enthusiasm, keeping always in mind that while our duty was to serve all member countries of FAO, our heart and our ideals had to stay with the weakest. Our apologies to the many we have not cited here due to lack of space and memory. Without them the utopia of the Treaty would have never become a reality.The Treaty is a starting point to meet new challenges posed by the 21st century to food and agriculture. Challenges ahead have technical, scientific, socio-economic, legal and institutional dimensions.This anecdote illustrates better than a textbook the strategic importance of genetic resources and the influence of international political developments in the negotiation of the Treaty. One of the most complex and controversial subjects in the formal process of negotiations was the selection of genera or crops to be included in the multilateral system and listed in Annex I of the Treaty. In order to provide a sound scientific and technical negotiating basis to decide which crops should be included in the multilateral system, the following two criteria were agreed: importance of the crop for global food security and countries' interdependence on the crop. After years of negotiations, countries had shortlisted 67 genera. On 1 April 2001, when negotiations on this issue were closing with the aforementioned 67 genera, a conflict over the occupation of China airspace by an aircraft of the United States 11 muddied the negotiations. China is the primary centre of diversity of soybean. The morning following this political conflict, China withdrew soy from the Treaty's list, since the United States is one of the leading soy producers and highly depends on China for this crop genetic resource. As a reaction, Latin American countries, some of which such as Brazil were among the countries most affected by this decision, withdrew peanut and tomato. Brazil and Bolivia indeed contain peanut's maximum diversity; while the Andean region is the centre of diversity for tomato. By retrieving peanuts from the list, these countries tried to force the position of China, where these products are of great importance. This explains why, instead of 67 genera, there are only 64 crops and forages included in the multilateral system of the Treaty. Although the list of crops of the multilateral system can be modified in the future, this would entail the reopening of negotiations, which would have a high economic and political cost, since any change in the text of the Treaty requires a new process of parliamentary ratification by all contracting par ties.Technical provisions of the Treaty, especially those under Article 5 'Conservation, exploration, collection, characterization, evaluation and documentation for PGRFA' and Article 6 'Sustainable use of PGRFA' need to be applied at the national level. Many technical and scientific priorities and challenges for PGRFA today have largely to do with the ways in which we need to adjust our thinking on conservation and utilization methods to cope with climate change, environmental sustainability and food security. This could be facilitated by the development and adoption of a road map with specific and verifiable targets and a realistic timetable . International assistance to meet these targets should be facilitated as needed.Various aspects should be taken into account when defining priorities and targets for a full and efficient implementation of the Treaty, including maintenance and management of genetic diversity, use of genetic resources, climate changes and food security.The following includes a number of priorities identified by countries and the FAO during the preparatory process of the 2nd report on the State of the World on PGRFA (2009):• To carry out systematic surveys and to publish inventories to identify existing GRFA both in the field and in germplasm banks. • To develop methods for reliably estimating plant genetic diversity and to adopt standardized definitions of genetic vulnerability and genetic erosion (FAO, 2002;Brown, 2008). • To give greater attention to the in situ management of wild relatives; neglected crops and promising species, as well as diversity in threatened ecosystems. • To develop a more rational global system of ex situ collections.• To develop and implement national strategies and to strengthen national capacities to manage and use genetic resources, including a greater use of scientific methods and technologies. • To broaden the genetic basis in crop improvement.• To develop appropriate policies, legislation and procedures for collecting crop wild relatives, maybe by revising the 1993 FAO International Code of Conduct for Plant Germplasm Collecting (FAO, 2003). • To carry out ethno botanical and socio-economic studies, including indigenous and local knowledge, to better understand the role of farming communities in the management of PGRFA.Changes in agricultural production methods, in the environment, and in consum-ers' demands are all likely to require a larger use of genetic resources (see Chapter 17). The utilization of a wide range of PGRFA is therefore crucial for food security, environmental sustainability and to face climate change.The main challenge to increase food security is not just food production, but access to food. In addition, it is not simply a matter of delivering more calories to more people. It should be noted that most hungry people in the world (over 70 per cent) live in rural areas. Solutions are needed to improve stability of production at the local level, to provide increased options for small-scale farmers and rural communities and to improve quality as well as quantity of available food. Nutritional security, where dietary diversity plays an important role, is a vital component of food security.To ensure that the benefits derived from plant genetic resources reach all those who need them, public-sector research is needed in areas in which the private sector does not invest. Most commercial crop varieties are not adapted to the needs of poor farmers, especially in many developing countries, who have limited or no access to irrigation, fertilizers and pesticides. A new environmentally friendly, socially acceptable and ethically sound agricultural model is necessary to meet their needs. This could be achieved by publicly supported programmes to breed crops that are able to withstand adverse conditions, including drought, high salinity and poor soil fertility and structure, and that provide resistance to local pests and diseases. Such programmes are likely to build on farmers' existing varieties and local crops, which often contain these traits. This is especially important at times when international prices of major crops have dramatically increased (e.g. world food crisis in 2008) and continue to be volatile and unpredictable.Research emphasis needs to be put at the local level, often on local and underutilized crops, to support breeding and improve performance of a wide range of crops and varieties well adapted to local conditions and needs rather than just seeking uniform 'universal genotypes'. This can only be achieved by a systematic and participatory process of cooperation between breeders, farmers and consumers.Reducing the negative impact that agriculture may have on the environment (e.g. water, energy, pesticides and herbicides) should become an absolute priority. This requires increased use of diversity in production systems through the deployment of a wider range of varieties and crops to ensure better ecosystem service provision. A good example would be the use of diversity-rich strategies to reduce damage by pests and diseases. Research is needed on how to make diversity-rich strategies more effective in terms of reaching better agriculture productivity and management.Each predicted scenario of the Intergovernmental Panel on Climate Change (IPCC) will have major consequences for the geographic distribution of crops, individual varieties and crop wild relatives (see Chapter 7). Some recent studies have used current and projected climate data to predict the impact of climate change on areas suitable for a number of staple and cash crops (Fischer et al, 2002;Jarvis et al, 2008).The challenges we face with PGRFA owing to climatic changes are twofold. First, climate change will accelerate genetic erosion and create a critical need to collect and conserve endangered PGRFA and wild relatives before it is too late. Second, the magnitude of change will require significant adaptation. The use of a wide range of PGRFA will thus become vital in the development of varieties able to adapt to new and unstable environmental conditions; that is to withstand conditions that are not only hotter or drier but also more variable (Hawtin et al, 2010). This will increase the need for adaptability and resilience, properties that have not been usually embedded in traditional breeding. New and innovative breeding approaches would consequently be required. Also, new genetic diversity within and between species is likely to be needed, increasing therefore the potential of underutilized crops and new promising species. All these will drastically increase countries' dependency on foreign PGRFA and therefore the need for international cooperation, in particular by facilitating access to PGRFA.It should be emphasized that for all these areas, the question is not limited to the pursuit and discovery of specific traits from a pool of PGRFA. The research needs to be concerned with functional diversity and with diversity deployment in agricultural systems from farm fields to landscape, watershed and regional scales.The funding strategy of the Treaty needs to become fully operative. Indeed, it aims at developing ways and means by which adequate resources are available for the implementation of the Treaty, in accordance with Article 18. The cost of conserving plant genetic diversity is high, but the cost of not taking action is much higher. Economic resources for the conservation and sustainable use of agricultural genetic resources are well below adequate levels. This problem is particularly serious in the case of in situ conservation of traditional farmers' varieties and, increasingly, of cultivated plants' wild relatives, which are largely found in developing countries. The scarcity of economic resources in these countries is not only an obstacle to the protection of wild species, but also a major cause of genetic erosion, as people search for fuel-wood or convert virgin areas into farmland. It is estimated that conserving 1000 accessions of rice generates an annual income stream for developing countries that has a direct use value of US$ 325 million at a 10 per cent discount rate (SoW2-PGRFA, 2010).The establishment of the GCDT (see Chapter 16), as an important element of the funding strategy of the ITPGRFA, is a step forwards in this direction. However, this fund remains specifically dedicated to ex situ conservation, maintaining the need for complementary initiatives or elements to support other aforementioned pressing priorities.At the Third Governing Body of the Treaty in 2009, a target of US$ 116 million was agreed to be raised for the Treaty's funding strategy within the next five years. Projects have also been developed in a bottom-up, country driven process. However, most of these funds are not available yet and might be difficult to obtain. In this context, it should be recalled that only 4 per cent of Overseas Development Assistance (ODA) goes to agriculture, when more than 70 per cent of hungry people live in rural areas. The conservation and use of GRFA should, however, be seen not only as part of developmental assistance, but also as a matter of relevance to national development and food security.The benefit-sharing fund is crucial to develop a healthy, balanced and selffinanced multilateral system. The future of the Treaty may depend on it (see Chapter 18 on the importance of 'closing the circle of access-benefit sharing'). In this context and in order to ensure transparency and compliance by the users of PGRFA with the obligations established under Article 13.2(d)(ii) of the Treaty, it is important to further explore and promote the 'crop-related' royalty payment modality established by Article 6,11 of the SMTA, as adopted by the Governing Body of the Treaty. The 'crop-related' modality provides an innovative, predictable, verifiable alternative, far less bureaucratic, and much easier to administer and enforce than 'the product-related' payment scheme (see Chapter 19). There are indications that some seed industry circles are interested in investigating more deeply the potential advantages of the crop-related modality as the preferred alternative (see Chapter 12 on the seed industry). This should be taken into account by the Governing Body of the Treaty when renegotiating the level of mandatory payments established in the SMTA, in order to make the 'crop-related' modality more attractive. Other problems that could be identified with the implementation of Article 12 should be addressed by the Governing Body to ensure that there are not disincentives for its use.From a macroeconomic perspective, PGRFA have been considered as an unlimited capital. However, PGRFA are limited resources to be used by all future generations, and their full future value continues to be ignored in market prices. In accordance with Agenda 21 of the United Nations Conference on Environment and Development (UNCED), a sustainable economic solution to the problem should be the internalization of the conservation cost of the resource into the production cost of the product. For example, when buying an apple, we could pay not only for the cost of production, but we could also contribute to the conservation cost in order to allow future generations to continue eating apples. The ITPGRFA provisions concerning benefit-sharing, including the sharing of monetary benefits that are derived from commercialization, represent a first step in that direction. Taking all the above into account, it is easy to ascertain that there is an urgent need for economic research in terms of a better understanding, description and quantification of the true value of genetic resources. Indeed, while conceptual frameworks in terms of use, future and option values exist, there is a definite lack of adequate quantification mechanisms, which would efficiently drive investment decisions and research planning.Following a country's ratification, the ITPGRFA provisions ought to be implemented at the national level, which requires the revision and development of national measures and regulations. In many cases, additional legislation is also needed to prevent genetic erosion, promote the conservation, characterization and documentation of local genetic resources, implement Farmers' Rights, facilitate access to genetic resources for research and plant breeding, and promote an equitable sharing of benefits.Access to genetic resources and related biotechnologies is threatened by the increasing number of national laws that restrict access to and use of genetic resources, as well as by the proliferation of intellectual property rights and the expansion of their scope (Correa, 1994(Correa, , 2003)). In this context the adoption of the Treaty represents an important step to facilitate access to PGRFA for research and breeding. However, the Treaty cannot be seen in isolation from other relevant national and international legislation on biodiversity and related technologies. Complementarities and synergies in the implementation of existing legal instruments related to GRFA in the agricultural (ITPGRFA), environmental (CBD) and trade (WTO/TRIPS) sectors need to be ensured, possibly through the development of national sui generis provisions in line with the requirements of these three international agreements (see Box 1.4) (Esquinas-Alcázar, 2005). In particular, since the adoption of the Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits Arising from Their Utilization in October 2010 (COP 10, Decision X/1), coordination with this new instrument would be of utmost importance. The text of the decision adopting the Nagoya Protocol recognizes the Treaty as a complementary instrument to the international regime on Access and Benefit Sharing (ABS), as well as the special nature of PGRFA and their importance to achieve food security worldwide. It also recognizes its role for sustainable agricultural development taking into account the particular contexts of poverty alleviation and climate change.In addition, the interests of the agricultural sector need to be well represented during the implementation processes of those instruments. The effectiveness of the Treaty in halting or reversing the tendency towards access restriction will depend on how its provisions are interpreted and implemented by individual countries and the international community.However, there are some shortcomings: some of the provisions of the Treaty were left deliberately ambiguous in order to get consensus during the negotiating process (e.g. 'Recipients shall not claim any intellectual property or other right that limited the facilitated access to plant genetic resources for food and agricultural, or their parts or components, in the form received from the Multilateral System' (Article 12.3(d)). This ambiguity allows for different and sometimes incompatible interpretations. The development of new technologies that allows for uses of PGRFA in ways that were not foreseen when the Treaty was negotiated is an added complication in this context.Regarding the implementation of the MLS of the Treaty, the full realization of the expected benefits might facilitate future negotiations in reaching consensus inGenetic resources provide the building blocks that allow classical plant breeders and biotechnologists to develop new commercial varieties and other biological products. Although nobody can deny their importance, neither genetic resources nor the biological technologies that apply to them have an appropriate market value by themselves, while a clear market value often exists for the commercial products obtained through them. Since the 1960s, a number of international bodies and agreements (the Trade Related Intellectual Property Agreement (TRIPS/WTO), the World Intellectual Property Organization (WIPO) and the Union for the Protection of New Varieties of Plants (UPOV), have included provisions setting minimum standards for, or conferring on the developers of biological technologies, individual rights (IPRs such as plant-breeders' rights and patents) that allow the right-holders to appropriate part of the profits from any commercial products that may result from the use of those technologies. Since the 1990s, other international agreements (the CBD, the Treaty, and, more recently, the Nagoya Protocol on Access and Benefit-other controversial and challenging issues, such as broadening the Treaty's scope by increasing the number of crops that are exchanged through the multilateral system. This is especially important at a time when climatic changes are increasing countries' interdependency on PGRFA and many so-called minor and until now neglected crops are becoming increasingly important for food security.Therefore, there is an increasing need to ensure coherence in the implementation of the Treaty and fill in possible legal gaps. To achieve this without having to modify the Treaty's text, 'agreed interpretations' of some of its provisions may need to be developed and negotiated in due time.The full implementation and further development of the International Treaty could be facilitated by a more active, systematic and possibly institutional participation of civil society, especially farmers and other stakeholders' organizations.Although regulatory aspects remain crucial, legal provisions alone are not sufficient as they need to be understood, accepted and implemented. Indeed, it is of the utmost importance that provisions of the Treaty become better known by as many stakeholders and citizens as possible. Training in this area, as well as raising public awareness on the importance of genetic diversity and the dangers of its loss are very important challenges. 13 One should recall that genetic erosion is just one consequence of mankind's exploitation of the planet's natural resources. The fundamental problem is a lack of respect for nature, and any lasting solution will have to involve establishing a new relationship with our planet and an understanding of its limitations and fragility. If mankind is to have a future, it is imperative that children learn this at school, and that adults adapt by integrating this new understanding in their everyday life.The history of the exchange of PGRFA represents somewhat the history of humanity. The struggle to obtain new plants for food and agriculture has been one of the main motivations of human travel from the earliest times, and has often sharing) have conferred equivalent but collective rights (Farmers' Rights and benefit-sharing) on the providers of the genetic resources. This allows for a symmetrical and balanced system of incentives to promote, on the one hand, the developments and application of new biotechnologies and to ensure, on the other hand, the continued conservation, development and availability of genetic resources to which these technologies apply (Frison et al, 2010). It is now up to national governments to implement these provisions, including the development, as appropriate, of national legislation that takes fully into account the two 'pillars' of the system represented in the diagram, thereby allowing for harmony and synergy in the implementation of the various binding international agreements.led to alliances and partnerships, but also to conflicts and wars between different civilizations and cultures.The Treaty provides a universally accepted legal framework for PGRFA and an important innovative cooperating instrument in the fight against hunger. It marks a historic milestone in international cooperation. However, many things still need to be done to fully implement the Treaty, both at national and international levels. To this end, solid mechanisms to promote compliance have to be adopted.The purpose of this book is to allow stakeholders to express their views on where we are coming from, where we are nowadays and where we should go. We are convinced that drawing this picture will help/contribute to a better understanding and implementation of the Treaty, which remains crucial to face current challenges including climate change, food security and environmental sustainability. Throughout history, humanity has suffered from famine. Its causes are multiple and stem, on a case by case basis, from certain human activities, such as war, ethnic, religious and tribal conflicts, as well as bad climate and natural disasters, like droughts, volcanic eruptions and earthquakes. Another danger is genetic uniformity.During the last two centuries, as a consequence of the agricultural and industrial development and the progressive unification of cultural and eating habits, accentuated more recently due to the globalization and interdependence process, the number of crops and the diversity within them has been progressively reduced.Genetic erosion is aggravated as a consequence of the disappearance of local species, wild relatives of cultivated plants, due to massive deforestation or the degradation or contamination of natural habitats: in a nutshell, due to the abusive exploitation of the planet's natural resources.Climate change is greatly affecting the world's agricultural production. For this reason, conservation, maintenance, availability and sustainable use of the diversity of existing crop varieties is an issue of the greatest importance. These tasks are crucial to adequately satisfy the dietary needs of an ever-growing and demanding population as well as to constitute a global response to climate change.It is well known that developing countries are the richest in plant genetic resources for food and agriculture (PGRFA). This set off a search for a reward system that covered the collective innovations carried out by farmers for centuries (for details on farmers' communities, see Chapter 13). Consequently, at the end of the 70s and the beginning of the 80s of the last century, this brought a great debate at Food and Agriculture Organization (FAO) conferences. In 1979, during the 20th Conference of FAO, the parties agreed upon the signature of an international agreement and the formation of a network of germplasm banks with international sovereignty, under the assumption that plant genetic resources are a heritage of mankind and that a legal framework was needed to ensure its unrestricted availability. FAO Conference, in its 22nd session held in 1983, adopted Resolution 8/83 on the International Undertaking of Plant Genetic Resources (see Annex 1 of this volume for the list of all Commission and Treaty negotiating meetings). This was the first international agreement for the conservation and sustainable use of agricultural biological diversity. It is worth noting that the International Undertaking (IU), as an international instrument, was not legally binding, which was why it was adopted by several nations, especially by industrialized ones, with reserves. This was irrefutable proof of the discrepancies between North and South on such an important issue.FAO Conference also approved Resolution 9/83, through which it established the Commission on Plant Genetic Resources, as first permanent intergovernmental body, so that countries could, among other things, monitor the implementation of the IU and advise FAO about its activities and programmes regarding plant genetic resources.These decisions were the result of a delicate political balance among developed countries, which need access to plant genetic resources, and the wish of developing countries for a more equitable distribution of benefits, including monetary ones. The negotiation of several agreements continued, which later became part of the IU. In 1991, the national sovereignty of plant genetic resources, plant breeders' rights and farmers' rights were recognized.When governments adopted the Convention on Biological Diversity (CBD) in 1992, they recognized the existence of two matters that required special treatment, which were not resolved by the Convention: access to ex situ collections not addressed by the CBD (as is the case of collections under the Consultative Group on International Agricultural Research (CGIAR) and the question of the Farmers' Rights (Resolution 3 of Nairobi, 1992). It was necessary that these matters be addressed within FAO's Commission. To that end, the FAO Conference of 1993 requested the Commission to negotiate the revision of the IU, in harmony with the CBD.FAO member nations are subdivided into seven geographic regions: Africa, Asia, Europe, Latin America and the Caribbean, Near East, Northern America and South West Pacific (see Annex 2 to this volume for the list of contracting parties to the International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA) per FAO regional groups). While the existence of these regions responds to technical needs it is also true that this has political implications in the ongoing events of the organization because it allows the rotation among countries in the bureaux of the different organs of FAO, on the basis of equitable and geographical distribution of regions and countries. However, in the Commission on Genetic Resources, during the negotiations of ITPGRFA, the regional groups were represented in the Bureau of the Commission all the time by the same persons, with the exception of Canada which replaced its vice president with another delegate, to facilitate consultations among them when necessary.It is important to note that countries from each region consult among themselves on important decisions in order to adopt common positions. FAO regional conferences (of which Regional Conference for Asia and the Pacific; Regional Conference for Africa; Regional Conference for Europe; Regional Conference for Latin American and the Caribbean and the Regional Conference for the Near East) shall meet once in every two years in regular sessions and involve ministers for agriculture from their respective countries.In addition, there are two major groups of countries: In the G-77 there are countries from the following regions: Latin America and Caribbean, Africa, Asia, Near East and Pacific. • The Organisation for Economic Co-operation and Development (OECD) was created in 1960 with 31 developed countries. Country members of OECD are from North America, Europe, Latin America and Asia and the Pacific.Therefore, in both groups there are developing and developed countries, which sometimes results in confrontation due to conflicting interests. The consultation process to arrive at joint positions in these two groups is progressive. The countries consult among themselves at regional level, and then they meet, as regions, in the G-77 or in the OECD, with the aim of reaching common positions. This process can take a long time and could lead regions to return to regional consultations before finalizing an agreement at the G-77 or OECD level. In any case, as the negotiation progresses and solves some issues and/or others arise, there are consultations, in some cases daily or even two or three times a day within and among the two groups and regions.In respect to PGRFA, there is a great interdependence among regions (see the Introduction to this book). The agriculture of the majority of countries is greatly dependent on a supply of resources from other regions of the world. In fact, one study carried out by Kloppenburg and Kleinman (1987) shows that North America is completely dependent upon species originating from other regions of the world for its major food and industrial crops, while sub-Saharan Africa is estimated to be 87 per cent dependent on other parts of the world for the plant genetic resources it needs. The Mediterranean sub-region is dependent for 98 per cent, and Europe for 90 per cent. A large part of Asia (East and South) is dependent on species originated in other parts of the world for 62.8 per cent and Latin-America for 55.6 per cent.As expected, the intergovernmental forum in charge of completing the revision of the IU was the Commission on Genetic Resources for Food and Agriculture (CGRFA) (initially the Commission on Plant Genetic Resources). The process started in 1994 through its working group (see Annex 1 of this volume for the list of all Commission and Treaty meetings). At the beginning, the IU tried to be consolidated by integrating its annexes, that is, resolutions 4/89, 5/89 and 3/91 of the FAO conferences, as well as harmonized with the applicable provisions of the CBD. It is worth noting that in that moment, maybe as a reflection of the difficulties it was facing, the working group decided to admit it had no mandate to negotiate the revised text of the IU, so it focused on making notes to the draft prepared by the FAO secretariat, which did not compromise governments but otherwise reflected the opinion of the delegates.The Commission essentially focused, during the first two years, on three articles of the revised IU -Article 3 (Scope), Article 11 (Availability of Plant Genetic Resources) and Article 12 (Farmers' Rights). Throughout time, it prepared several drafts of the revised IU, until it reached number four halfway through 1997. These drafts, particularly the last one, contained in some cases several versions, especially in regards to the aforementioned articles. Actually, the text was not useful, since it was a mixture of concepts, without structure or guidelines to guide the negotiation. This was proof of the complexity and innovation of the matter at hand and how conflicted were positions, not only between developing and developed countries, but among the latter, particularly the United States of America, on the one hand, and the European Union, on the other.In May 1997, I was elected for a term of two years as Chairperson of the CGRFA of FAO, which I served, after reappointment to a second term by unanimous vote, until October 2002. During that time, apart from aptly leading the normal tasks of the Commission, I took on the direction and orientation of the negotiations to harmonize the IU with the CBD. These concluded with the adoption of the IU on 3 November 2001. To effect this, I organized and convened twelve official and two unofficial meetings, as well as endless personal consultations.Ever since assuming the Chair of CGFRA, I have tried to give negotiations for the revision of the IU a new impulse, through better organization, both to the process and to the texts to be considered by negotiators, as well as giving a more political view to the negotiating approach. Although there were ups and downs, it can be said that the process had two stages: the first, from 1994 to 1996, the period covering the first four meetings, and the second, from May 1997 to the adoption of ITPGRFA, 1 popularly known as the International Seed Treaty (Rome, 3 November 2001), adding up to a total of 12 meetings (see Annex 1 of this book for a list of these meetings).During the 5th extraordinary meeting, held in Rome between 8 and 12 June 1998, it was confirmed that though progress had been made during the meeting, positions were still different, distant and profoundly diverging. Consequently, time was given to reflect and allow delegations to analyse the different positions, carry out pertinent consultations and identify areas of possible compromise before continuing with negotiations. Based on the above, I carried out consultations as of August 1998, particularly with the countries that had been more active during negotiations, as well as with the other six members of the Bureau, since they represented their regions and had actively participated in the whole negotiating process. My role was to assess the situation and then take a decision about a possible extraordinary meeting that would allow negotiations to continue, so long as there was political will, a flexible attitude and a spirit of commitment among members, as well as the availability of extra-budgetary funds to perform it. I was looking for the conditions to reach an understanding and overcome the impasse under which negotiations had fallen, without generating false expectations. In the particular case of developed countries, besides the usual consultations, I also asked that they inform me whether their governments were willing to contribute financially to the preparation and performance of an extraordinary meeting of the Commission, as well as allowing the participation of delegates from developing countries in this session.From the consultations carried out, I concluded that, although there was ample support for a swift completion of negotiations, the delegations needed more time to make more consultations. The general opinion was that a new extraordinary session of the Commission should not yet be held, and that the available time would be better used in preparing for the continuation of negotiations. As a consequence, the extra-budgetary funds to which countries committed for an extraordinary session were insufficient.I continued consultations during the 115th session of the FAO Council, 23-28 November 1998. On that occasion, I had bilateral or plurilateral talks with the countries more committed to the negotiating process, that is, Angola, Argentina, Australia, Brazil, Canada, Colombia, Ethiopia, the European Union, France, Germany, India, Islamic Republic of Iran, Japan, Malaysia, Mexico, Norway, South Africa, Switzerland, the United Kingdom and the United States of America.I explained that in my opinion, negotiations were completely paralysed in the absence of real commitments and due to a negotiating view where the scientific view prevailed above the political or diplomatic. I considered it necessary to resolve that impasse by calling a meeting with the head of the delegations of those countries. They were asked to act in their personal capacity, so that they could separate themselves from their instructions and negotiating postures and try to determine, jointly, the minimum elements that had to be included in what could be an agreement on plant genetic resources acceptable for all and in compliance with the conference's mandate to harmonize the IU with the CBD. I strongly pointed out that to perform this meeting I would need on the one hand, the good will of all participants, and on the other, the willingness of a country to offer the venue of said meeting and the contribution of sufficient financial funds to afford the tickets of all guests and other related costs. The idea was welcomed and to my satisfaction, the Swiss delegation informed me, in a second meeting, that it was willing to offer Montreux as a venue for the meeting and to contribute sufficient funds thereto. Germany and the United States of America also contributed, providing enough additional funds to support the participation of developing countries in this unofficial consultation meeting.Consequently, FAO's Council decided to unanimously support my proposal to convene an unofficial meeting of experts representative of different regions and different postures, who, in their personal capacity, would deal with the following matters: a way to share benefits, Farmers' Rights, financial mechanism, legal condition of the revised IU, and other issues, such as access to PGRFA. Likewise, it decided to accept Switzerland's offer to organize and host the unofficial meeting at the beginning of 1999, under the responsibility of the Chairperson of the CGRFA. It also decided that should the Chairperson confirm that the results of the unofficial consultation provided possible progress, he would ask the Director-General to hold an extraordinary meeting of the Commission, subject to the availability of extra-budgetary funds.In compliance with the decisions of the 115th session of the FAO Council, as Chairperson of the Commission I summoned, under my responsibility, experts from 21 countries -all of them consulted during the FAO Council plus Poland and Venezuela -and the European Union, to participate, in their personal capacity, in the unofficial meeting, held from 19 to 22 January 1999, in Montreux, Switzerland. This unofficial meeting had the support of FAO's secretariat -Mr José Esquinas-Alcázar and Mr Clive Stannard -and the International Plant Genetics Research Institute (IPGRI, now Bioversity International) Director-General, Mr Geoffrey Hawtin. These three international high officials were very useful during the whole negotiating process, due to their technical knowledge and personal expertise. A critical role was also played by Mr Gerald Moore in all legal aspects.Without the limitations of their official orders, participants discussed the legal condition of the revised IU, the idea that it should be an internationally legally binding instrument being of greater importance, with a secretariat taken on by FAO and closely linked both to this organization and to the CBD. The structure of the IU should be such that would allow an efficient revision of all operational and administrative matters. To allow an understanding in all subjects related to the multilateral system of access and benefit-sharing (MLS), the writing of a less ambitious text with elements that would allow an ample consensus was proposed. The system would cover, at the beginning, a restricted list of crops, based on the criteria related to food security and interdependence, that would be revised and possibly widened on a periodic basis. Likewise, collections from international agricultural research centres (CGIAR; see Chapter 11 for details) would be part of the system as per conditions previously agreed with them. In regards to the Farmers' Rights, their recognition would be necessary on an international basis, understanding that the development of the Farmers' Rights would rely upon each government, who should, in due time and in compliance with national law, protect and promote said rights. Concerning the financial resources needed for the implementation of the IU, these would be obtained through a funding strategy that would use a wide range of sufficient financial resources, based on agreed upon and predictable contributions, to implement plans and programmes, particularly in developing countries.The summons to a meeting of experts to, in their personal capacity, analyse and assess possible areas of understanding was a wise move and a crucial breakthrough, since it allowed negotiators from the main participating countries to debate amply and openly their options. These frank and open debates allowed me to write what was later known as the Chairman's Elements (see appendix to this chapter). These elements were simply a group of consensus proposals prepared under my total responsibility, after listening to and analysing what the Group of Experts, in their personal capacity, considered that the revised IU in harmony with the CBD needed to include to be approved by the international community. The experts did not approve the Chairman's Elements but they did consider the Chairperson had adequately gathered the consensus derived from the unofficial consultation.Subsequently, I submitted the Chairman's Elements to the consideration of the CGRFA, which approved them, for although the elements had been introduced under the sole responsibility of the Chairman, they reflected an ample consensus and provided a solid base for the continuation and progress of negotiations.The Chairman's Elements were adopted by the Commission during its 8th ordinary meeting, held 19-23 April 1999. The Commission decided to continue negotiations on the basis of the elements. Said decision was subsequently supported by the 116th session of the FAO Council and by the FAO Conference in its 30th session, held 12-23 November 1999. This political support at the heart of the Organization was of extreme importance for the continuance of negotiations, since as Chairperson I did not allow negotiators to shift their proposals, in any significant way, away from the Chairman's Elements.One of the innovations I introduced in the negotiations from that moment on was the use of so-called 'contact groups', so in vogue in other negotiations at the heart of the UN. Therefore, I established a Chairperson's contact group, with 41 members (Angola, Argentina, Australia, Benin, Brazil, Burkina Faso, Canada, China, Colombia, Cuba, Ethiopia, European Union, Finland, France, Germany, India, Iran (Islamic Republic of), Japan, Korea (Republic of), Libya (Libyan Arab Jamahiriya), Malaysia, Malta, Mexico, Morocco, The Netherlands, New Zealand, Norway, Philippines, Poland, Romania, Samoa, Senegal, South Africa, Switzerland, Tanzania (United Republic of), the United Kingdom, the United States of America, Uruguay, Venezuela, Zambia and Zimbabwe), which, in accordance with the premise of a fair and equitable geographic representation, represented the seven regions of FAO -Africa, Asia, Latin America and the Caribbean, North America, Near East, Europe and the Pacific Southwest. On countless occasions, one of the vice-chairpersons was in charge of a small contact group, to deal with a specific matter, which results were then passed on to the Chairperson's contact group, who generally accepted what was agreed upon. The Chairperson's contact group met seven times from April 1999, suggesting that the most active and positive period of negotiations was from April 1999 to November 2001. It was two years of intense negotiations and consultations, not only among the countries of the Chairperson's contact group, but also between these and the remaining members of the Commission, through the FAO regional groups.Perhaps the most important innovation was allowing the involvement of important NGOs (see Chapter 10 for details on civil society), in representation of others, in the works of the contact group, such as the Rural Advancement Foundation International (RAFI, see Chapter 10), whose director Pat Mooney is widely regarded as an authority on agricultural biodiversity and new technology issues, and the International Association of Plant Breeders for the Protection of Plant Varieties (ASSINSEL), which gathers at its heart breeders from around the world.In the 8th regular session of the Commission, held in April 1999, the first fundamental article, the Farmers' Rights, already established in the Chairman's Elements, was adopted. Farmers' Rights is a subject that was originally introduced by the FAO Conference in 1989, and has attracted much interest and controversy since that time.The African group, the European Union and the United States of America were an integral part of this agreement. However, the African group, the region that had shown the greatest interest in this topic, was criticized by other delegations, and particularly by NGOs, as they pointed out it had made concessions too soon. The reason for this attitude was the international recognition of the national legislation as the foundation to adopt the appropriate measures to protect and promote Farmers' Rights. In any case, the adoption of said article, which was never again modified, was auspicious for the rest of the negotiating process.For the writing of the list of crops included in the multilateral system, important research was carried out by the IPGRI and officials of FAO, with the support of the Italian government. The results of said research allowed for the negotiation of the list in 2001, particularly during the last days before the adoption of the Treaty, based on criteria of food security and interdependence. Nevertheless, it should be remembered that some regional groups had well-defined positions, as was the case of the European Union which presented a long and ample tentative list of around 270 crops, while the African group preferred a short and concise list of less than 10 crops. The Latin America and the Caribbean region preferred a list of about 40 crops while the other regions, who actively participated in the negotiating process, were not rigid in their position. In truth, last-minute negotiations on this important issue allowed Mexico and Peru to exclude certain sub-species of corn, China soybean and Brazil tomatoes. The most significant food crops missing from the final list are: soybean, cassava, groundnuts, sugar cane and tomato. To conclude, important crops from the South were unfortunately excluded from the final list, perhaps because it was never understood by developing countries themselves how important the link was between said list and the MLS. This perception should be, today, completely different in the light of the implementation of the Treaty.Concerning benefit sharing, particularly monetary benefits, which are the true innovating concept of the Treaty, ASSINSEL (see Chapter 12 for more detail on the seed industry; see Chapter 15 for more detail on plant breeders), who always participated as an observer in the negotiating process, made a fundamental contribution when it stated, in June 1998, based on a decision of its General Assembly held in Monte Carlo on 5 June 1998, that 'in case of protection through patents, that would limit the free access to new genetic resources, the members of ASSINSEL would be ready to study a system in which patent proprietors would contribute to a fund established to collect, maintain, evaluate and strengthen genetic resources. The mechanism used to implement this system needed to be discussed.' From then on, negotiations evolved until reaching what was included in the Treaty.Brazil always kept a conscientious posture in defence of the CBD (see Chapter 6), as it was adopted in Rio de Janeiro in June 1992. Therefore, when I proposed that the agreed upon text be named 'International Convention on Plant Genetic Resources for Food and Agriculture', the delegate from Brazil emphatically opposed the use of the word 'Convention' which led me to the word 'Treaty', that ultimately has a stronger connotation.There are still many unresolved issues to make the Treaty more effective and efficient, and as it happens, the Governing Body is working on them (see Annex 3 of this book for details on the main provisions of the Treaty). However, we believe that although today 127 countries are contracting parties to the Treaty, it is more than necessary to disseminate, for both governments and the civil society, the importance of the Treaty. This can be achieved through workshops, forums and seminars, but particularly by developing and strengthening the regional and sub-regional networks of plant genetic resources in which researchers, breeders, farmers and interested members of civil society can foster the political conditions to achieve the technical exchange between them and contribute to the implementation of the Treaty. Moreover, the formation of National Focal Points in a greater number of member countries has to be promoted.As time has passed, we have ascertained that it would be more important to verify the list of crops included in the multilateral system to include crops of great importance, such as soy and tomatoes, as well as many others from developing countries, in order for benefit sharing in the multilateral system to increase.It is necessary that the text included in Article 12.3d be clarified: 'Recipients shall not claim any intellectual property or other right that limit the facilitated access to the plant genetic resources for food and agriculture, or the genetic parts or components, in the form received from the Multilateral System.' The European Union and several members thereof wrote the following interpretation when they ratified the International Treaty: 'The European Union interprets Article 12.3.d of the Treaty on Plant Genetic Resources as recognizing that plant genetic resources for food and agriculture or their genetic parts or components which have undergone innovation may be the subject of intellectual property rights provided that the criteria relating to such rights are met.' The Governing Body needs to determine which changes will affect intellectual property. It will not be an easy task, but undoubtedly necessary.With the approval of the Treaty and the implementation of several of its mechanisms, such as the standard material transfer agreement and the benefitsharing fund, the regions of the G-77, which are mostly developing countries, are acting more cohesively in order to make the Treaty a tool through which the stakeholders of their countries could obtain greatest benefit. Moreover, the stakeholders, particularly those of developing countries, are participating more actively through the creation of support networks.The Treaty is, without a doubt, an international agreement of the greatest importance for developing and developed countries. Its provisions meet the real interests of all parties. Moreover, it appropriately takes into account the interests of other interested parties, such as autonomous communities, universities, research centres and the private sector in general. This is the first great international agreement of the new millennium.PGRFA are sine qua non for the sustainable development of agriculture, which is why an agreement about the fair and equitable sharing of benefits, including those of a commercial nature, provides an incentive for farmers of every country, especially those from developing countries and countries in economic transition, to conserve and sustainably use plant genetic resources for the benefit of all.Through the Treaty countries agreed that these plant genetic resources are vital for the survival and well-being of present and future generations, which is why conservation, maintenance and sustainable use of these resources are a transcendental cause.1 On 3 November 2001, the 31st session of the Conference of the Food and Agriculture Organization of the United Nations (FAO) adopted, by its resolution 3/2001, the International Treaty on Plant Genetic Resources for Food and Agriculture and Interim Arrangements for its Implementation.Appendix: Chairman's Elements For other uses (chemical, pharmaceutical, non-food and agricultural industrial uses, etc.), mutually agreed arrangements under the CBD will apply.• Access for non-parties shall be in accordance with terms to be established in the IU. c) Equitable and fair sharing of benefits• Fair and equitable sharing of benefits arising from the use of PGRFA, inter alia, through: -transfer of technology; -capacity-building; -the exchange of information; -funding. Taking into account the priorities in the rolling Global Plan of Action, under the guidance of the Governing Body:• Benefits should flow primarily, directly and indirectly, to farmers in developing countries, embodying traditional lifestyles relevant for the conservation and sustainable utilization of PGRFA. d) Supporting components• Information system(s).• PGRFA networks.• Partnership in research and technology development.• Recognition of the enormous contribution that farmers of all regions of the world, particularly those in the centres of origin and crop diversity, have made and will continue to make for the conservation and development of plant genetic resources which constitute the basis of food and agriculture production throughout the world. • The responsibility for realizing farmers' rights, as they relate to PGRFA, rests with national governments. In accordance with their needs and priorities, each party should, as appropriate, and subject to its national legislation, take measures to protect and promote farmers' rights, including:-the right to use, exchange, and, in the case of landraces and varieties that are no longer registered, market farm-saved seeds; -protection of traditional knowledge; -the right to equitably participate in benefit-sharing; -the right to participate in making decisions, at the national level, on matters related to the conservation and sustainable use of PGRFA.Commitment to a funding strategy for the implementation of the IU, which includes:• budget and contributions to manage the operations of the Governing Body/Secretariat etc. (some of their activities could be delegated); • agreed and predictable contributions to implement agreed plans and programmes, in particular in developing countries, from sources such as:-CGIAR, GEF, plus ODA, IFAD, CFC, NGOs, etc., for project funding -country contributions; -private sector; -other contributions; -national allocations to implement national PGRFA programmes, according to national priorities. • priority given to implementation of the rolling GPA, in particular in support of farmers' rights in developing countries.• Governing Body.• Policy direction, and adoption of budgets, plans and programmes.• Monitoring the implementation of the IU.• Periodically reviewing, and, as necessary, updating and amending the elements of the IU and its annexes. • Secretariat. 8. Provisions for amending the International Undertaking and updating and revising its annexes.Today, Africa remains the most disadvantaged continent of the world despite having abundant natural resources. This is due to a variety of reasons, both historical and contemporary. Poverty, malnutrition and poor health, especially in sub-Saharan Africa, affect a large proportion of the people. These poor conditions are intrinsically linked with the access to food and to crops necessary for subsistence farming. For this reason, Africa has placed a lot of hope in the negotiation and implementation of the International Treaty on Plant Genetic Resources for Food and Agriculture (the Treaty or ITPGRFA).According to 2005 estimates, 80.5 per cent of the people in this region were living on less than US$2.50 a day.¹ Africa, which is characterized by rapid population increase over the last 60 years, has now reached one billion people compared with 221 million in 1940.In contrast to these data, Africa is the primary and secondary centre of origin of many important food crops, such as sorghum, millet, yam, oil palm, sesame, date, pea and rice (FAO, 1997). It remains nonetheless highly dependent (88 per cent) on crops (maize, cassava, plantain, banana, wheat, potato, groundnut, etc.) originating from elsewhere as Kloppenburg and Kleinman (1987) have shown in their study.Agriculture constitutes approximately 30 per cent of Africa's gross domestic product with 70 per cent of the population depending on the agricultural sector for their livelihood. Production is mainly for subsistence and is highly dependent on rains. Because of these factors, coupled with poverty in most countries, the continent is very vulnerable to the effects of climate change. Prolonged droughts have, for instance, adversely impacted the agricultural sector in some areas of the continent.The dependence of the so-called modern system of intensification of agricultural production on excessive amounts of agrochemicals derived from fossil fuels exacerbates climate change. The African region, though financially the poorest in the world, is perhaps still the richest in the quickly disappearing capacity of self-reliant smallholder farmers. These smallholder farmers continue feeding the bulk of Africa's population using their self-contained and decentralized agricultural systems tried out over centuries of effective performance. These time-tested and almost carbon neutral ecological systems of agricultural production by the farmers of Africa are particularly relevant for our present era of the threat of a climate chaos. These smallholder farmers and their farming systems have survived in spite of having been continuously undermined by the state and the modern international establishment since the colonial period; however, they still feed their populations in spite of all the odds. Nevertheless, owing to the imbalance of interests entrenched in the Agreement on Agriculture of the World Trade Organization (WTO), their ecologically sound produce can not compete with the heavily subsidized produce of the polluting industrial agriculture of the North. A little formal support given to these smallholder farmers, or even a mere tolerance of their existence, would thus help increase food production and improve food security in Africa.The intimacy of African delegations with the agricultural systems of the smallholder farmers enabled the African group (AG) to have a marked impact on the negotiations of the ITPGRFA in spite of Africa's financial poverty which could have limited our chances of having preparatory meetings.At the regional level, the African Union (AU) formed in 2002 as a successor to the Organization of African Unity (OAU), politically brings together all African countries, except Morocco, with the objective of accelerating political and social economic integration and promoting African common positions on issues of interest to the continent. There is no doubt that the Organization influenced, to some extent, the position of the AG during negotiations for the revision of the International Undertaking on Plant Genetic Resources (IU, adopted in 1983). This influence is tangible, in particular, with the African Model Law for the Protection of the Rights of Local Communities, Farmers and Breeders, and for the Regulation of Access to Biological Resources adopted by the OAU and recommended to African states for their domestication as national legislation.² Africa is also divided into sub-regional political and socio-economic groupings such as the Southern African Development Community (SADC), the Economic Community of West African States (ECOWAS), the Common Market for Eastern and Southern Africa (COMESA) and the East African Community (EAC), which may have impacted on the negotiating positions of the AG to varying degrees.At the international level, Africa operates as a group in all major United Nations forums. As for food and agriculture, the FAO regional group for Africa totals 48 member countries, thereby constituting the largest regional group at FAO (see Annex 2 at the end of this book for the list of countries in the African regional group, including the list of African contracting parties to the ITPGRFA). Even so, participation to the FAO Commission on Genetic Resources for Food and Agriculture (CGRFA), where the Treaty was negotiated, was quite limited.Africa's way of thinking regarding the Treaty: Towards a just international law for plant genetic resources for food and agricultureIn the context of the negotiations of the Treaty, the industrialized North that grew in the wake of Europe still wants to treat crop genetic resources, bred over millennia by farming communities which are mostly found in the global South, as global commons. This approach would allow the Northerners to access plant genetic resources for food and agriculture (PGRFA) from the South at will, while legally protecting through national and international law the varieties that they have bred out of those very same genetic resources from the South. They use the global force of intellectual property protection, especially patenting under the WTO's Agreement on Trade-Related Aspects of Intellectual Property Rights (TRIPS), to achieve that protection.This entrenched advantage of the industrialized North thus works by remote control through the use of skewed international law of which TRIPS is only one glaring example. Therefore, it became easy for the AG to realize that, in order to help in the evolution of a just globalizing world, the strategy should be twofold. On the one hand, it should be proactive in formulating new and just laws for Africa. On the other hand, it should grasp opportunities for fighting as hard as possible, in both making new international laws just and revising existing unjust international laws to make them more equitable. Non-governmental organizations (NGOs) became obvious allies both as sounding boards and as sources of the meagre resources needed for the battle of the AG.An opportunity to make international law on PGRFA more just arose with the revision of the IU.³ In the following narrative of the revision of the IU to negotiate the ITPGRFA, the sources used are the notes taken during the negotiations by the authors of this chapter and the FAO documents that were prepared for those negotiations. A history of the negotiation will not be given here, as it has extensively been presented in other contributions of this volume.The AG entered the negotiations of the ITPGRFA with confidence arising from the modest experience gained in the negotiations of the Convention on Biological Diversity (CBD). However, few African countries were able to provide representatives with the benefit of any previous experience of negotiating in other international forums. This is not to mention the outstanding exception of our leader, Dr Tewolde Berhan Gebre Egziabher, and in later years other Ethiopian representatives, including Abebe Demissie and Worku Damena. In particular, the experience and negotiating skills of Ethiopia proved useful in keeping the African spirit in the negotiations alive, especially in the initial stages. Dr Tewolde, as Ethiopian delegate and chief negotiator for Africa, was instrumental in this regard.Even though African delegations often constituted only one or two people, a positive factor was the fairly consistent composition of the AG negotiators in terms of delegates of key countries who played a more significant role in the negotiations (at least for the last four to five years of negotiations). The major constraint was the lack of diversity in terms of expertise among the African delegates. The African region was further disadvantaged by our lack of legal experts in this field.In the early years of the negotiations in the CGRFA, Africa had the benefit of just one legal expert, namely, Worku Damena from Ethiopia. Because of our poverty, negotiators for the AG were usually one or two from each country, compared to the crowded delegations from developed countries. Therefore, at the 3rd extraordinary session of the Commission, we insisted that negotiations had to take place in plenary only and not to break into working groups. As a compromise, Africa agreed to negotiate as two working groups. At the 4th extraordinary session of the CGRFA in 1994, Africa was slightly represented at the Commission. More disturbing was the fact that while the issues under discussion were specialized, technical and political, very few of the African delegates present were primarily genetic resources specialists, purposely brought from their countries for this meeting. Indeed, at that time, the number of African plant genetic resources (PGR) specialists and national PGR programmes in the continent were still very limited. (In spite of the great wealth of PGR in farmers' fields, Africa held just 6 per cent of the world's ex situ collections.) Consequently, Africa made few contributions on the floor of the 1994 Commission session. Although we had a very strong and experienced champion in the Commission and its Bureau -Tewolde -it was clear that if concerns for the rich PGRFA heritage of our millions of African farmers were to be defended and its conservation and utilization were to be promoted, we would have to increase both the number of African states present and the technical capacity of our representatives in any further negotiations. Lack of funds also impeded the organization of AG preparatory meetings before coming to the negotiations. The extremely slow regional coordination was mainly due to the constant need for translation as delegates often had not had previous access to documents (partly as a result of our poor communication facilities in the early years of the negotiations). Not having had sufficient opportunity to discuss the documents coming up for discussion in the Commission sessions, we found ourselves recapping on previous sessions instead of preparing for future ones. Sweden 4 was sympathetic to our plight and channelled funding through an NGO, the Gaia Foundation of London, UK, to enable us to organize at least one preparatory meeting. The AG thus met on 21-25 April 1997 and revised what colleagues in Ethiopia had written into a full draft protocol to replace the IU as suggested by the Conference of the Parties to the CBD in November 1996.During negotiation sessions, Africa met briefly each day before the beginning or after the end of the formal negotiations. This happened because of a tremendous goodwill to work together. After each negotiation session, Tewolde analysed in writing the next session's negotiating documents to identify inconsistencies, ideas that would weaken the already weak African situation, gaps that would militate against the effective conservation and sustainable use of crop genetic resources and proposed suggestions of what ideas could thus be introduced into the negotiating documents as corrections.In between international meetings, the AG depended on email exchanges to develop a common position on the various divisive issues that always arise in negotiations. Consultations at the sub-regional levels such as the Southern African Development Community (SADC), held immediately prior to Commission or Treaty negotiating sessions (usually during annual Board meetings of the SADC Plant Genetic Resources Centre, a coordinating centre of the SADC PGR network) came up with positions, which were shared with other delegations in the AG, contributing towards regional positions. Even so, most of us from SADC were relatively new to the PGR field. Fortunately for the region, Ethiopia came to almost all Commission and negotiating meetings with a strong delegation of two or three technical experts and with experience from other international fora. Tewolde's analyses of current stages in the negotiations were invaluable to us individually, although we usually had very little opportunity to discuss them as a group. In spite of all the odds, or perhaps because of them, the AG continued as the most united of all regional groups. 5With each succeeding negotiating session, the number of African countries represented increased, as did our technical expertise and sub-regional representation. Following East Africa led by the Ethiopian team, came Southern Africa with strong voices from Zambia and Tanzania. We were joined by other consistent voices for the interests of small farmers, particularly from Burkina Faso and later from Uganda, and PGR experts from Senegal and Guinea in West Africa. On average, about 30 countries were represented during ordinary and extraordinary sessions of the CGRFA, during which time discussions on Treaty negotiations were held.Countries that were consistent in terms of delegates and attendance throughout Treaty negotiations and that made significant contributions, included Angola, Burkina Faso, Eritrea, Ethiopia, South Africa, Senegal, Tanzania, Uganda and Zambia. Ethiopia provided leadership to the AG throughout the period of negotiations (1997)(1998)(1999)(2000)(2001). Angola and Zambia complemented Ethiopia during the latter part of the negotiations from 1998 to 2001, especially in terms of facilitating regional consultations to come up with the AG positions. Angola and Zambia took up increased roles of leading the AG after 2001 during the interim period, when the focus was on the development of instruments to facilitate the implementation of the Treaty, such as the standard material transfer agreement (SMTA), rules of procedures and the funding strategy as well as the initial period of Treaty implementation, for the First and Second Sessions of the Governing Body of the Treaty. In the inter-sessional meetings of the Chairman's contact group, which focused solely on negotiations of the Treaty, the AG was represented by delegates from 11 countries (Angola, Benin, Burkina Faso, Ethiopia, Libya, Morocco, Senegal, South Africa, Tanzania, Zambia and Zimbabwe). Table 3.1 shows in broad terms the growth in African participation in Commission meetings in the principal negotiating period from 1991 to 1997, and that remained at the latter level until 2001.By the time the contact group meetings began in 1999, the AG could call on a much stronger core of eight to ten PGR related delegates for all these meetings, including representatives from all of Africa's five geographical sub-regions. By the end of the negotiations, Africa had become the largest and one of the most united groups.In spite of early weaknesses, when the working group on the SMTA terms and its implementation was set up, the need for African legal expertise became crucial, and by that time we were able to add a few more legal advisers, particularly from southern Africa. This included Antonieta Coelho from Angola, who played an important role in the introduction of the concept of a third party beneficiary, to oversee and ensure the fair application of the SMTA.At every opportunity in Commission meetings, we encouraged delegates from other African countries to become contracting parties to the Treaty, and by the end of the negotiations, Africa had become not only the largest but one of the most united groups. It was an honour for the African region when Godfrey Mwila from Zambia, a consistent negotiator and champion for Farmers' Rights, was elected first as Chair of G-77 and later as Chair of the Commission at the first meeting of the Treaty's governing body in Madrid in 2006.Major contributions of the AG during the Treaty negotiations were on Farmers' Rights and benefit sharing. This is not to imply that the group did not contribute in other areas. Throughout discussions on Farmers' Rights the AG pushed for the recognition of these rights under international law. The AG was also supportive of the creation of a multilateral system, as reflected in one of the statements given on behalf of the group during one of the Treaty negotiation sessions: 'African countries would allow their sovereign rights over PGRFA to be expressed jointly with those of others' (FAO, 1998). It insisted that rights given in the CBD would have to be respected, ensuring that benefits are made communal instead of being individual.The divisive issues in the negotiations of the Treaty became clear in 1996 during the 3rd extraordinary session of the Commission. This session began with the report of the 11th session of the negotiating working group (established by the Commission), which showed that scope, access and Farmers' Rights provisions had been discussed.The AG agreed to push simultaneously for fair access, for Farmers' Rights and for a consistent scope, stating that there would be an agreement either on all three items or on none at all. Therefore, a refusal to agree on one of the three items would destroy the other two. Many delegations including ours 6 and groupings of delegations submitted their suggestions to improve the 'Third Negotiating Draft'. These were made on Articles 3 (Scope), 11 (Access) and 12 (Farmers' Rights).The major push for the acceptance of the inclusion of Farmers' Rights in the Treaty came from the AG in the working group at the 5th regular session of the CGRFA. At a critical point, the group threatened to pull out of the negotiations unless there was a clear position to accept this. The support from developed countries came from Sweden and Norway with some compromise to accommodate this coming from the EU. The AG preferred a broader text referring to 'traditional farming communities' and not 'local and indigenous communities', proposed by some delegates from the Latin and South American region. Farmers' Rights had been discussed by the working group as a mere 'concept' in spite of the long debate that had taken place in Leipzig in June 1996, in which, albeit towards the end, even the United States of America had accepted the need for its recognition. It was thus no longer a 'concept' and legislating for its implementation had been accepted as allowed at least under national law. Therefore, Tewolde objected to the use of the word 'concept' and was joined by other delegates from developing countries. On the contrary, since the beginning, the United States' delegation stated its expectation, which was perceived as unfair amongst the AG: access to all genetic resources should be free, and intellectual property rights should not be raised in this forum.Negotiations on Farmers' Rights started with the United States delegate reiterating that such rights should be left out of the revised IU. He insisted that international law protects only individual and not group rights, and that trying instead to include group rights would destroy individual rights. In our view, his words meant that an individual should have rights, but that two or more individuals should lose those rights if they stand together; this seems somewhat odd and illogical to us. Tewolde mentioned that the rights of individuals, especially the rights of weak smallholder Southern farmers, can be protected if they are not left to fend for their weak selves individually, but rather if they are recognized as a local community, as has been done in Article 8(j) of the CBD. India also argued for community rights, and Sweden, in particular, was very eloquent in arguing for the rights of farmers as local communities. Other Scandinavian countries and all developing countries that commented supported Farmers' Rights. France gave the objection to Farmers' Rights a new twist by saying that the United Nations system recognized individuals and countries, not groups, by arguing that Farmers' Rights would run counter to the United Nations! Ethiopia then pointed out the following: that 'if there is a will, there is a way'; that there were groups whose interests were protected; that existing law should be able to handle Farmers' Rights; that Africa will submit a written text on Farmers' Rights; that goodwill in dealing with Farmers' Rights would generate goodwill in access; and finally, that the absence of it in Farmers' Rights would remove goodwill from access also.Many other developing countries expressed similar sentiments and, unexpectedly, so did the delegate of the United Kingdom. She indicated the following: that, in existing law, groups can have legal identities; that the international community cannot work on a top-down basis; that Farmers' Rights legislation will have to be developed nationally; that the international community can produce an enabling situation; and that examining written suggestions should start. Brazil expressed what all developing countries felt, by stating that, if there were not going to be Farmers' Rights, there would be no access. Many other developing countries and some industrialized countries (notably Sweden) called for fairness in benefitsharing and for support to the farmers of developing countries who have given us and continue to give us the crop genetic resources, that we need to go on living. The spokesperson of the European Union then emphasized that farmers should be fairly treated and should claim their fair share of benefits, but should have no rights to be protected by law. To us, this sounded like 'double speak'.At the end, the Chairman ruled it would be best to focus on identifying the elements and on deciding what steps are required at both the national and international levels. He also stated that identifying elements of Farmers' Rights would be useful at this juncture. After the working group's meeting ended, some representatives of the Asian countries and AGs as well as the Brazilian delegation met and discussed the specifics of merging our texts. Since the Asian text had been the first to be submitted, it was agreed that representatives from Africa and Brazil would be compared with it, and elements, not already included, would be transferred to it. Tewolde submitted the AG's draft on Farmers' Rights to the representatives of the Asian group and to the Brazilian delegation. This was accepted. Then, the Malaysian delegate announced to the Commission that the Asian group, which had submitted a draft, was going to change its submission. This was in order to enable an official submission of the draft from the developing countries (a synthesis of the Asian, African and Brazilian submissions). Norway pointed out to the Commission the need for the disclosure of the pedigree of varieties in intellectual property rights protection. 7 Ethiopia supported Norway, but the United States, Australia and Japan opposed their main argument, believing that such issues are best dealt with in the International Convention for the Protection of New Varieties of Plants (UPOV Convention). However, Ethiopia indicated that most Southern (developing) countries are not members of UPOV and therefore, they cannot use UPOV as their forum. Moreover, since the issue raised is central to the use of PGRFA, the topic should be covered in the revision of the IU. Many developing countries supported the African intervention. The EU's spokesperson (Ireland) gave lukewarm support, stating that he would, however, need to study the wording of the paragraph suggested by Norway. The United States delegate continued his objection stating that the FAO cannot administer intellectual property rights, but the Chairman intervened affirming that the issues raised were not for administration by the FAO. On 11 December in the afternoon, some representatives of the Asian and African groups as well as the Brazilians met and discussed the specifics of merging our texts on Farmers' Rights. Afterwards, developing countries submitted the first, albeit incomplete, draft of a combined document on Farmers' Rights on 12 December.The AG realized that the compilation of the developing countries' text had left out many of Africa's important ideas. In a second exercise, we started to include them. Some representatives from Asia and Brazil were not happy to do this, but we, the AG, threatened to formally withdraw from the exercise and resubmit our own text separately. This forced the Brazilian delegation, who had become the most difficult of the developing countries' negotiators, to accept the need for a revision, and a new text was prepared accommodating all the points that we wanted. This revised text was formally submitted to the negotiation session of the Commission by China on 13 December on behalf of the developing countries.Africa's position on the scope of the multilateral system of the Treaty was principled, pragmatic and flexible. In the interest of feeding the hungry, we proposed to place all the PGR of a short list of six or seven of the world's staple crops (rice, wheat, maize, potato, cassava and sorghum), in a worldwide common pool of facilitated access, since these are the sources of at least 60 per cent of the world's food energy needs. While recognizing that these half dozen crops in no way cover all human nutritional requirements, they clearly include the major hunger-reducing crops. This African proposal was made in good faith, not merely as a first negotiating position. It was a clear statement of generosity in providing access to the germplasm of the most important hunger-reducing crops and it was to be the first and very considerable stage in demonstrating solid commitment on our part, while giving the opportunity to show that fair and equitable benefit sharing would operate in practice. Once it could be shown that fair and equitable benefits were indeed flowing back from open access to these few crops, Africa was quite prepared to extend the list to the PGRFA of all crops. It was not so much as a result of the point blank refusal of developed country delegations to even contemplate an introductory testing period with a very short list, but eventually more in the spirit of collaboration with other developing regions, that Africa agreed to extend the list to include some other crops.The need for scope was agreed to without undue controversy though its formulation obviously invoked all the controversies already pointed out. The working group agreed that the scope should be limited to PGRFA. The issue of whether to include animal genetic resources in future negotiations or not was raised. While all agreed that animal genetic resources should be included, the majority view was for finalizing PGR first. This view was finally accepted by all the negotiators.Possible arrangements of access, based on three lists of species used for food and agriculture, had been explored. These lists were to include species that would be accessed on (i) a multilateral basis, (ii) a bilateral basis and (iii) a combination of a multilateral and bilateral basis. All the listed species were to be accessed under mutually agreed terms consistent with the CBD. Access was, however, even more intimately linked with Farmers' Rights. Though the AG as a whole would have allowed/agreed for an access to all crops, we could only move ahead on the issue if automatic benefit-sharing was to be assured, if Farmers' Rights were to be agreed to, and if intellectual property rights protection could be prevented from withholding genetic resources, thus undoing whatever was agreed to on access.The AG advocated for a twofold approach to benefit sharing -monetary and non-monetary. The group strongly felt that there was need to promote information sharing and technology transfer that would contribute to enhanced capacity among developing countries for sustainable farming and crop production.The debate around this issue came to a head during the 3rd inter-sessional meeting of the Contact Group of the Commission in Tehran, Iran, 26-31 August 2000. Norway had previously suggested that the industrialized countries consult with their respective private sector to voluntarily come up with proposals on benefit-sharing, and this had been agreed to. Therefore, the Chairman asked the industrialized countries to report on the outcomes of their discussions with their respective private sector on benefit-sharing. Nothing definite was stated as an answer by the EU. Canada stated that their private sector feels that benefits to be shared should remain voluntary, minimal and should not affect the application of intellectual property rights. The United States stated that their small firms involved in breeding feel that any sharing of benefits would throw them out of business, but that the larger companies would further consider benefit-sharing. The US delegate emphasized that the government could not pass laws to force the private sector to benefit share.The outcome was not a protocol to the CBD as suggested by its Conference of the Parties in November 1996 (COP 3 Decision III/11, former § 18) but a new treaty, the ITPGRFA under the FAO, as decided by the 31st session of the FAO Conference. The prime objective of the Treaty was to make a significant contribution towards sustainable world food security. This Treaty was, like all outcomes of negotiations, achieved through many compromises and is thus far from satisfactory. Africa wanted Farmers' Rights to be recognized by international law. We managed to get an acceptance of the rights of countries to recognize Farmers' Rights through domestic law if they so wish, as Ethiopia has now done. We wanted the prevention of access to crop genetic materials through intellectual property rights regimes to be stopped. We managed to have the Treaty require those that prevent access through intellectual property rights to pay money into the multilateral system for use to help farmers. We wanted an initial short list of six or seven of the world's staple crops managed in a worldwide common pool and managed to exclude from the multilateral system all but the crops considered the most essential to feed humanity. This makes it possible to negotiate bilateral benefit-sharing agreements for access to the crops excluded from the multilateral system. This is not what we had wanted at the very beginning -we would have been for a totally unrestricted access to all crops if IPRs did not create so many problems.In spite of the success of the negotiations, Africa regards some aspects as deficiencies in the Treaty: the lack of international recognition of Farmers Rights; the weak arrangements for benefit sharing; the emphasis on the multilateral system; and the restriction of access to PGR caused by IPRs. With hindsight, Africa might have made greater efforts to maintain our original position. Now, several years after the coming into force of the Treaty, we have seen very little of the fair and equitable benefit sharing that we thought was enshrined in Treaty articles and that we expected would be as binding on developed countries as the facilitated flow of germplasm from developing ones.The low level of awareness of the Treaty and the underlying issues that underpin its key principles among major stakeholders presented some of the major challenges to the implementation of the ITPGRFA among most African countries. It would seem that stakeholder consultations, which would have helped to raise awareness by the time the Treaty was adopted and came into force, had not sufficiently taken place in most countries. The other compounding factor was that the Treaty was coming onboard during the time when country processes for the implementation of the CBD and TRIPS were underway. In a way, one would say that the Treaty became overshadowed by these and other international instruments. In Namibia, for instance, the government's intention is to wait for the international access and benefit-sharing regime to be finalized within the CBD context before legislation is drafted for the implementation of the Treaty (personal communication, Gillian Maggs Kolling, Head, national Botanical Research Institute, 30 October 2007).There are also conflicts between different institutions responsible for coordination of national level implementation of CBD and Treaty processes. In most countries, the CBD implementation is the responsibility of ministries of environment whereas the implementation of the Treaty is with the ministries of agriculture.In the contact group negotiating the development of the SMTA, 2004-2006, the African continent was represented by ten experts drawn from nine countries (Angola, Burkina Faso, Cameroon, Ethiopia, Namibia, Senegal, South Africa, Uganda and Zambia). This group combined PGRFA technical and legal experts. Among the provisions that the group pushed for was the payment method for monetary benefit sharing. The initial position of Africa on this was to create conditions where payments were mandatory to all recipients accessing PGRFA from the MLS. This implied an upfront payment and would not need to be triggered by the commercialization of a product. Having failed to get this through, the group supported inclusion of a provision that called for voluntary contributions.The other aspect on which the group pushed hard was the rate of payment. The target for the AG was perhaps the highest, being in the range of 6-10 per cent of the commercial value. The final agreed rate was of course disappointingly low for the AG. This led the group to come up with proposals on alternative methods for payment under Article 6.7, which now appears as Article 6.11h, which is a discounted rate but broadly based as it includes sales of other products that are PGRFA belonging to the same crop. All the above positions were meant to guarantee the flow and maximize monetary benefits. The prospects of getting mandatory monetary benefits, in the short term, appeared dim considering how long it could take to develop a crop variety and have it commercialized.In the open-ended working group to develop supporting instruments for the implementation of the Treaty, an average of 27 countries represented the AG with Angola providing leadership. The AG focused its attention on the development of the funding strategy. The group was pushing for provisions that provide clear commitments on the part of developed countries to make additional funds available for the implementation of the Treaty. More specifically, the group wanted to see an indication of targets. Reference was given to failure in the implementation of the Global Plan of Action (GPA) and some of the funding targets proposed during the GPA negotiations. Again, the group was disappointed with the final outcome, in particular the absence of any commitment by developed countries to indicate any funding target. Africa shared its position on the funding strategy with most developing countries within G77+China. Norway, Spain and Italy were the few developed countries who showed sympathy to the African and developing country positions.It would appear that the disappointments on the outcome of both the SMTA and the funding strategy removed much of the enthusiasm regarding Treaty implementation among the contracting parties of Africa and other developing countries at large.Although disappointed with the final outcome of the Treaty, African countries showed a lot of enthusiasm and interest in supporting its implementation, at least in the initial stages. This was evidenced by the relatively large number of African countries that had ratified the Treaty and who became contracting parties by the time of the First Session of the Governing Body in June 2006. Perhaps the election of the Chair from Africa for the Second Session of the Governing Body and his re-election for the Third Session of the Governing Body is testimony of recognition of the role the AG was playing during the early stages of the Treaty implementation at the global level.The main thrust of the AG's position with regard to their expectations in the implementation of the Treaty was an early indication that the benefit-sharing fund under the funding strategy of the Treaty would become operational, as soon as possible, so that benefits could start flowing to farmers and farming communities -especially in developing countries and countries with economies in transition as envisaged under the Treaty. It was felt that this would bring about a balance in the implementation of the main components of the MLS and other components of the Treaty. The group's perception was that there was a lot of emphasis being placed on the MLS, in particular access provisions in terms of Treaty implementation. To the AG, the apparent lack of pace in making the benefit-sharing fund under the funding strategy created a major obstacle in the Treaty implementation. The lack of clear indications on the flow of funds for this purpose created serious doubts in the minds of most African countries as to the sustainability of the Treaty, both in terms of getting contracting parties to implement the Treaty at their country level and attracting non-contracting countries to become parties. Through the voluntary contributions of a few developed-country donors, in 2008 the benefit-sharing fund had just half a million USD available for PGRFA conservation and sustainable use projects in developing countries. By 2010 this figure has risen to USD10 million a year, although we have in mind that just 0.1 per cent of commercial seed sales could provide some US200 million a year.The AG continued to push for the involvement of the Governing Body in the implementation of Farmers' Rights. As was the case during the negotiations, most developing countries were reluctant to accommodate discussions on this, insisting that the Treaty was categorical in stating the responsibility for implementing Farmers' Rights lies with national governments. The group, however, together with other developing countries and Norway, could not accept this argument and at least managed to keep this as an agenda item for the Governing Body. These efforts were made following the realization by most African countries that they were not making much headway in implementing Farmers' Rights at the national level. This was mainly owing to limited capacity in terms of legal expertise and lack of prior experience among countries of implementing such rights in African countries.While African countries appreciate the importance of facilitated access under the multilateral system of the Treaty, they do not seem to have prioritized this in terms of national-level implementation. It may appear that most African countries do not consider access to PGRFA as a major benefit of the MLS mainly on account of their limited financial and/or technological capacity to utilize PGRFA, both conserved in their own gene banks and those they could access from other countries. The general feeling is that access to their national germplasm has been provided and continues to be provided to other countries, especially developed countries through international gene banks, in particular, CG Centre gene banks holding their germplasm. Ethiopia, for instance, has been clear on this view in their country report to the 2nd report on the State of the World's PGRFA.In terms of future expectations regarding the Treaty's implementation, the common position of African countries, which became clear during the First and Second Sessions of the Governing Body, is that the ITPGRFA will have great difficulty in generating new and additional financial resources to support programmes to conserve and sustainably utilize PGRFA at the regional, national and local farming community levels. We also hope to see concrete realization of non-monetary benefits such as information sharing, access and transfer to technologies and capacity building. Expectations regarding the slow pace in the operationalization of the funding strategy and the apparent emphasis on supporting programmes and activities relevant to access to PGRFA under the MLS constitute, to some extent, frustrations, which have been expressed by the AG in past governing body meetings. Finally, the issue of the legal protection of intellectual property rights, that prevents access to genetic resources, also contributes to the stalemate in negotiations in the WTO. Now that the need for adaptation to climate change is adding to the value of crop genetic resources, we believe that the world might have to start examining the issues all over again.The Asian Regional GroupIntroducing the Asian region FAO's Asian sub-region comprises 25 members out of which 9 are not party to the Treaty (including China, Japan, Kazakhstan, Mongolia, Sri Lanka, Timor-Leste, Uzbekistan and Vietnam; Thailand having signed but not ratified the Treaty (see Annex 2 of this book for the table of ratifications per region).Despite rapid economic progress and poverty reduction, Asia and the Pacific accounts for 63 per cent of the world's undernourished (FAO, 2009a); according to the United Nations Food and Agriculture Organization:In South Asia, the incidence of child malnutrition is higher than in any other region. Only a few countries are on track to meet the World Food Summit target of halving the number of undernourished by 2015. Furthermore, future progress is uncertain, especially in the wake of recent substantial gains in cereal prices that make it more difficult for the rural landless and the urban poor to afford adequate nutrition. Interest in bio-fuels as a means to achieve energy security may lead to further increases in commodity prices that will help some farmers but will have negative impacts on food security for many households. (FAO, 2009b) The Asian region has reported that both China and India are well on track to achieving the Millennium Development Goal of halving the prevalence of poverty and hunger, as are 17 other countries. In general terms, accelerating growth in India has put South Asia on track to meet the goal, while East Asia has experienced a sustained period of economic growth, led by China. However, a few countries in the region are continuing to face difficulties in reducing hunger sufficiently to meet the MDG and World Food Summit targets (FAO, 2009c). South Asia has the highest level of underweight prevalence in the world, with almost half (46 per cent) of all children under five being underweight. Three countries in this region drive these high levels -India, Bangladesh and Pakistan -which alone account for half the world's total underweight children. Large disparities exist for underweight prevalence among urban and rural children. On average, underweight prevalence among children in rural areas is almost double that of children in urban areas in the developing world. Malaysia has the fastest rate of improvement (FAO, 2008).Next to these striking data, it is important to stress that already in the 1920s, the Russian geneticist Vavilov had identified Asia as one of the regions in the world with the highest genetic variability of cultivated food crops, through the determination of several important centres of origin including Central Asia, China, India and Indo-Malaysia. According to a background study paper of the FAO Commission on Plant Genetic Resources from 1997, Asia is indeed the primary centre of origin of many important crops such as rice, wheat, sugar, soybean, banana and plantain, grapefruit, rye, pea and onion (FAO, 1997). This study also confirms a finding from Kloppenburg and Kleinman (1987) in that the Asian and Pacific regions are the least dependent upon crop species originating in other regions of diversity for their food production (Table 4.1).Asia is therefore a primary provider of genetic diversity to the rest of the world. This status certainly contributed to the importance given by the Asian regional group to the negotiation and implementation of the Treaty. (1983), and between 1988 and 1991 sat as a chairman of the International Steering Committee of the Keystone International Dialogue on Plant Genetic Resources, regarding the availability, use, exchange and protection of plant germplasm. Finally, India was the first country in the world to adopt and implement legislation on Farmers' Rights, thereby recognizing the primary importance of this question. Second, Asian countries have been very active during the negotiations of several treaties relating to genetic resources, in particular, within the Like Minded group. Asian countries have also often hosted meetings related to the conservation of biological diversity, whether specific for food and agriculture or under the scope of the Convention on Biological Diversity (CBD). In 1995 notably, Indonesia hosted the 2nd ordinary meeting of the Conference of the Parties at the Convention on Biological Diversity (COP 2), where the special nature of agricultural biodiversity, its distinctive features and problems needing distinctive solutions, were expressly recognized (CBD, 1995).Finally, Asian non-governmental organizations (NGOs) have always been very active in the field of plant genetic resources. One of these important institutions is SEARICE, which has strongly promoted and protected farmers' communities' rights in Asia and throughout the world (for more details, see Chapter 13). The officer of SEARICE who represented the Philippines, played an important role in the negotiation on Farmers' Rights in the ITPGRFA (see Annex 3 of this book for details on the main provisions of the Treaty). Other Asian stakeholders, such as breeders and gene bank curators, have also dynamically participated in international networks such as the ones supported by the former International Board for Plant Genetic Resources (IBPGR), which later became the International Plant Genetics Research Institute (IPGRI, now Bioversity International). This significantly contributed to spread the essential need to conserve, sustainably use and share agricultural biodiversity.Besides, I myself had the honour to chair or vice-chair several important meetings during the negotiation of the Treaty (see Annex 1 of this volume for the list of all Commission and Treaty meetings). I was therefore able to witness sensitive discussions, which I have tried honestly to articulate in the personal views expressed in this contribution. Other delegates from Asia were privileged to chair several meetings, contact groups, unofficial meetings and working groups during the negotiations of the Treaty, hereby providing and securing an Asian input in the negotiations of the Treaty. Active participation from delegates of India, the Philippines and Malaysia in the negotiations influenced the final conclusion of the provisions of the Treaty, in particular, the articles on the multilateral system (MLS) and Farmers' Rights. The positioning of the Asian region during the progress of the negotiation, reflected its social economic environment.Today, it is recognized by most stakeholders worldwide, that agriculture and the rural economy play a crucial role in securing sustainable gains in the fight against hunger and poverty, and 'there is much greater appreciation now for the fact that agriculture has strong links with other sectors' (FAO, 2009c). Indeed, many external factors impact on the way Asia manages its plant genetic resources for food and agriculture: the tremendous growth of Asia's population and economy, the rapidly changing climate, a globalizing trade pressure, an increased recognition and implementation of democratic schemes and human rights, in particular, through the growing role played by NGOs and civil societies (see Chapter 10). These factors are taken into account at the national and regional levels, when the Asian group meets to discuss PGRFA issues. In order to facilitate the collaboration between Asian countries and allow them to take decisions on and implement the Treaty, Asian regional meetings are organized prior to each international meeting related to plant genetic resources. This chapter will highlight some of the main issues for which the Asian region has played a role during the negotiation of the Treaty. This contribution will also spot the challenges that the region is facing in the implementation of the Treaty at the national level, as well as more global issues to be specified and agreed upon at the international level to facilitate and increase the efficient participation to the Treaty.The foundation of Asia's position during the negotiation of the Treaty was based on the Common but Differentiated Responsibilities as accepted in Agenda 21. Asia recognized that countries have common responsibilities in the conservation and sustainable use of PGRFA for food security, quality of life and environment well-being. The operational common interests to achieve the objectives of conservation and sustainable use of PGRFA for food security cover the strategic need to have access to genetic resources for research and development, technologies and information. The differentiated responsibilities lie in the strategic need of countries to provide for access to genetic resources, technology, information and financial resources in accordance with their capabilities and capacities.The principle of common but differentiated responsibilities was pushed as the initial positioning of Asian countries. It provided the strong foundation to articulate the pillar of access to genetic resources, technology, information and financial resources. It also supported the pillar of benefit-sharing arising from the use of genetic resources. The initial positioning was necessary to support the determination of the concept of food security as a global public good. However the long and time-consuming negotiation on Farmers' Rights and intellectual property rights (IPRs) soon triggered the change towards the safeguarding of national laws in terms of access to genetic resources and IPRs.The provisions in national laws on access to genetic resources and IPRs have influenced the negotiating position of Asia, which is to have easy access to genetic resources and to safeguard the provisions of IPRs in their national laws. The negotiation on differentiated responsibilities became more difficult as developed Asian countries needed to protect IPRs on technologies. Developed Asian countries also have national interests to protect information, in particular, technological information that gives rise to commercial/competitive advantage. Developing countries, with large rural populations engaged in small-scale agriculture, were interested in safeguarding the informal breeding and seed systems which provide the main source of rural food security and livelihoods. Some of these countries which are country of origin also have the national interest to obtain direct benefits, in particular, commercial benefits. The 5th session of the Commission on Genetic Resources for Food and Agriculture (CGRFA) discussed the timetable for the revision of the International Undertaking (IU) (see Annex 1 of this volume for the list of all Commission and Treaty meetings). The session agreed that the revision should carefully be conducted, as a gradual pragmatic and step-by-step process, building on the consensus already achieved through the Commission's previous discussions, as embodied in the IU and its annexes. Conference Resolution 7/93 requested that the revision of the IU be negotiated (see Chapter 10 for full detail of the IU revision).A working paper on the issues for consideration in Stage II entitled 'Access to genetic resources and Farmers' Rights', was presented to the 9th session of the working group (11-14 May 1994) and to the 1st extraordinary session of the CGRFA (7-11 November 1994). The formal negotiations of the Treaty started with the 1st extraordinary session of the Commission, in November 1994. During this session the Commission only focused on the discussion of Stage I entitled 'Integration of the annexes and harmonization with the Convention on Biological Diversity'.At this stage, the terms of 'free access', 'availability of PGRFA' and 'conditions of access', were discussed within the framework of harmonization with the CBD. Asia pushed for the use of the term 'conditions of access'. In the end, a compromise was established with the use of the term 'facilitated access to PGRFA'.The Annex I List negotiation: An important feature in Asia's position on the TreatyThe finalization of Article 9, Part IV on the MLS, and Article 18 also influenced the concluding negotiation of the Annex I list of crops in the MLS. Asia did not play a major role in the early phase of negotiation of the list. However, Asia had an important role in the final stage of the list negotiations, when national interests of countries of origin prevailed in excluding their genetic resources from the list. This is particularly true for major agriculture exporting countries. Their national interests were the need to safeguard/protect their competitive advantage in the export markets and to use their genetic resources for bilateral exchanges.It was during the 6th session of the CGRFA that the proposals were submitted on a list of genera in Annex I of the proposed article on the scope of the IU, which provided an example of a list containing 231 genus and the scenario to establish a multilateral system or undertaking for those harvested species most used for food and agriculture.Ideas to establish bilateral and/or multilateral agreements in relation to access to PGRFA, were discussed during the 10th session of the working group (3-5 May 1995), where the option for a list of crops was also proposed. This implied adding a list of mutually agreed species to which specific provisions of the undertaking would apply, particularly in relation to access to and the distribution of benefits. This option received fairly good acceptance. The idea of species or gene pool of major relevance to food security and those for which there was strong interdependency between countries was discussed.At the 6th session of the CGRFA, 19-30 June 1995, there were proposals on the Scope of the IU and the list of 231 genera was submitted as an example under Scope. There were also proposed wordings on the Availability of PGR (access). Within the proposals on Availability, there were wordings on benefit sharing. The option submitted by EU listed 231 genus consisting of: major grain crops-grasses (12); minor grain crops (6); major grain legumes (9); minor grain legumes (12); cereals from other families (5); major starch crops (7); minor starch crops (3); oil crops (5); fruits (3); shrub fruits (6); tree fruits (30); vegetable crops (38); nuts (7); species (7); herbs (20); beverages (6); fibre (6); sugar crops (2); industrial crops (6); forage-grasses (22) and forage legumes (19). The list was incorporated into the Third Negotiating Draft.At the 3rd extraordinary session of the CGRFA, 9-13 December 1996, the USA submitted a list of crops (genus) essential to global food security (25 crops plus forages); Brazil submitted a list of crops/genera of basic importance for human world food consumption (25 crops); Africa stated that access to and inclusion of crop species in the system could be willingly decided by members of a multilateral system; France stated that within each species, there will be different classes of genetic material: (a) First Class: designated material with unrestricted access through an international network of collections; (b) Second Class: non-designated material with negotiated access. Brazil wanted to start the multilateral system with a small window, likewise with the USA; the EU preferred it with a large window.At the 7th regular session of the CGRFA, 15-23 May 1997, three options were provided for further negotiation:• Option A: Designated material in the international network or PGRFA (genus) designated by national governments. At this stage of the negotiation, there were many possible scenarios. There were options within options and countries/regions had positions regarding access, benefit sharing and list of crops. The Fourth Negotiating Draft had 58 pages.At the 4th extraordinary session of the CGRFA (1-5 December 1997), a major breakthrough, in terms of a proposal for a multilateral system to facilitate access to PGRFA through a list of major crops, began to take shape. From all the proposals on the list of crops, the Commission agreed to have one Tentative List of Crops for further negotiation. This list contained 37 crops (41 genus), grasses (28 genus) and legumes (33 genus).The informal meeting of experts on PGRFA, in Montreux, Switzerland (19-22 January 1999) (see Chapter 2 for a detailed analysis of this meeting), proposed a multilateral system, including conditions for facilitated access and benefit-sharing to be applied to a specific list of crops. The Montreux meeting thus set a broad framework of agreed principles for further negotiation. The criteria used to establish the Tentative List of Crops, were (i) their importance for food security at local or global levels, and (ii) countries' interdependence with respect to PGR. The 8th session of the CGRFA (19-23 April 1999) agreed that the multilateral system shall cover PGRFA listed in Annex I to the future Treaty and established the criteria of food security and interdependence.At the 2nd inter-sessional meeting of the contact group, 3-7 April 2000, statements were made on whether the window (list of crops) of the multilateral system, should be small or as wide as possible. Brazil wanted it small and the EU wanted it big. The USA has stated its position. Africa has stated its position. Other countries/regions remained silent. It was only at the 3rd inter-sessional meeting of the contact group (26-31 August 2000) that regions submitted a concrete list of crops. The information paper prepared by the Secretariat illustrated what the following regions proposed: Africa -9 crops; Asia -22 crops (24 genus); Europe -273 crops including fruits, vegetables, nuts, herbs, species, forages, beverages and so on; Latin America and the Caribbean -29 crops; and North America -as in the tentative list in Annex I -crops -37 (41 genus), grasses -28 genus, legumes -33 genus.At the 6th inter-sessional meeting of the contact group, Spoleto (22-28 April 2001), members of the working group on the list (Canada and Iran as co-chairs; Angola, Burkina Faso, Zimbabwe for the Africa region; China, Japan, the Philippines for Asia; France, Poland, Sweden for the European region; Argentina, Brazil, Colombia for Latin America and the Caribbean region; USA for North America; and Australia, Samoa for the Southwest Pacific) invited experts from IPGRI and the Secretariat of the CGRFA (FAO) to begin serious negotiation on the list. The working group used the criteria of food security and interdependence to select the crops. The lists submitted by the regions (FAO, 2000) were used as source material and compiled in one working document, comparing commonality of crops among regions. The working group worked on the crops most commonly suggested by the regions. The working group agreed that the working basis should be crops, with genera as indicative of crops, and species designation in cases where required. The working group achieved consensus on 30 food crops (Table I in the working group document). A further group of widely consumed food crops (Table II), where there is considerable support from a number of regions, remains under discussion. In addition, there were crops important to one or more regions that had not been discussed yet. Forage crops were highly important to all seven regions. However, requirements were diverse and highly complex. Discussions on forage crops had just begun and needed considerable further discussion, including advice from forage experts. The working group recommended that:1 A panel of experts be asked to examine the genera in Tables I and II and make technical recommendations (including scientific sources) for further consideration and final confirmation, at the species level when required by the regions, the working group and the contact group. This study would identify and suggest the relevant genetic resources of the crop, including related genera and species that are important for breeding activities and the root stock of the crop, if relevant. 2 An opportunity be provided for discussion of the crops from the lists submitted by the regions, that have not yet been considered. 3 The working group continues to develop, with the assistance of forage experts from the regions, the list of forage crops for the next meeting of the contact group. 4 The working group finishes its work on the list of food crops before the next meeting of the contact group.At the 6th extraordinary session of the CRGFA (25-30 June 2001), the final negotiation on the list took place, mainly among developing countries on the exclusion of such crops as soya bean, tropical forages, oil palm, sugar cane and groundnut/peanut from the list of crops. The active participation of the Asian region was focused on excluding soya bean, oil palm and sugar cane from the list in order to protect national interests in these crops. The final list consisted of 35 crops (36 genus), 15 genera of legume forages, 12 genera of grass forages and two genera of other forages. Most countries in Asia were contented with this final list. However, a few countries were not fully satisfied because rice was included in the Annex.What are the challenges ahead for Asia?The Treaty tried to accommodate most of the contracting parties' common interests in its MLS. However, the need for parties to safeguard their national interests will make it difficult for countries to follow a common framework of implementation at the national level. Some of the provisions in the MLS and the standard material transfer agreement (SMTA) are still very general and can be interpreted differently to suit national interests. Such provisions would require further elaboration by the Governing Body which has to agree on a common framework for implementation at the national level. Such provisions include:Article 12. The rationale to have this definition for PGRFA under development in the SMTA is built on the idea of an unbroken chain of contractual obligations passed on from recipient to recipient until a commercial cultivar is released. It allows identification of how and when the development chain starts and how and when it ends.Other questions that need be to resolved are: The Governing Body of the Treaty has established the Ad Hoc Advisory Technical Committee on the SMTA and the MLS to consider the above issues and other issues raised by the contracting parties and other users of the SMTA and the MLS. Hopefully, the views and opinions of the committee will be useful to guide the operational efficiency and transparency as well as the legal certainty in the implementation of the SMTA and the MLS.Negotiating the Treaty has been a very demanding and creative effort between all stakeholders involved in plant genetic resources and between all member countries. However, the positive outcome of the revision of the IU through the signing of the Treaty and the conception of its innovative multilateral system should not lead to a situation where states rely on what has been done, thus slowing the process down. On the contrary, more efforts should be placed in a common implementation framework to help countries efficiently apply the Treaty obligations at the national level. Particularly in Asia, integrated policy and planning, between line ministries and the private sector, and within and beyond national jurisdictions, first require that the agricultural sector becomes aware of its own environmental externalities, as well as of the impact of environmental change on its economic and societal performance. This will allow the definition of appropriate policy objectives within the agricultural sector, based on negotiated strategic actions and respecting national interests, including legal structures and resource allocation (FAO, 2009c). This will also allow for an effective application of the Treaty and will contribute to enhance and expand the recent positive outcomes of the Treaty in our region and all around the world. European positions in the negotiations on the International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA) (hereafter the Treaty) were strongly influenced by developments in European agriculture during the last century. In particular since the 1960s, as a result of the creation of the European Community and its Common Agricultural Policy, the face of agriculture in Europe changed profoundly, characterized by major-scale increases in production, a strong increase in the use of external inputs at the farm and the development of a strong breeding industry making use of the latest technologies (see Chapter 12 for more detail on the seed industry). Product demands were increasingly driven by the food industry and the retail sector, resulting in a high level of product uniformity. A large proportion of European farmers would increasingly buy their seeds on the market rather than save these on the farm. In this process, genetic erosion of plant genetic resources that had already commenced in the first half of the 20th century, continued. At first this was mainly a concern of breeders who noticed that the very basis of their work was disappearing. In the last decades of the previous century, it increasingly became a concern of segments of the general public, often in a wider context (e.g. loss of biodiversity, the need for protection of the environment and of traditional landscapes, the rise of organic agriculture and the Slow Food movement).From the outset of the negotiations, the European regional group (ERG) attached great importance to the establishment of an international legally binding instrument for plant genetic resources for food and agriculture (PGRFA). Heavy mutual interdependence amongst regions with regard to PGRFA was recognized as a central motive for the establishment of this agreement. Underlying this was the conviction that PGRFA are of a specific nature, justifying specific regulatory measures on access and benefit-sharing (ABS), in line with the decisions laid down in the Nairobi Final Act (1992) on the Convention on Biological Diversity (CBD). Food security as such formed a less explicit but nevertheless quite widely recognized motive in the European discussions and contributions to the negotiations. In particular, a definite resolution of the status of the Consultative Group on International Agricultural Research (CGIAR) collections was regarded as a longterm guarantee for food security in poor regions. Obviously, the two motives of mutual interdependence and global food security are closely interlinked.The European Union forms the dominant political institution in the ERG (see Annex 2 of this book for the list of European contracting parties to the ITPGRFA). 1 Although the sheer size of the European Union (EU) and its single voice made it highly influential, those two aspects did at some points also turn into a disadvantage. The EU position often resulted from lengthy internal debates, in itself a compromise and sometimes a minimum position between the views of the various member states. Such positions could only, with difficulty, be further developed in the negotiation meetings. During the early stages of the negotiations and before joining the EU, Poland played an important role in defending a special position for 'countries with economies in transition'. Moreover, two non-EU member countries 2 -Norway and Switzerland -played an important role in the process mainly because they were able to modify their positions more easily, if new developments in the negotiation process required such. For the same reason, the negotiators of these latter countries could often devote more time to exchanges with other regions. To a major extent, these distinct roles complemented each other in the negotiating process.During the early stages of the negotiations, it appeared that not all regions had similar capacity to participate in the negotiations and to influence the outcome. Several European countries therefore contributed to capacity building as well as support for developing-country participation in the negotiations over the years. Such support was one of the factors that contributed to increased participation, involvement and influence from the African region, with significant results for the proceedings as well as the outcome of the negotiations, as acknowledged repeatedly by the African region itself.At several stages during the negotiations, it also became obvious that the formal setting of the negotiations and the size of the meetings did not always create the best dynamics for exploring the complex issues on the table. Understanding the scientific and practical aspects of the elements under negotiation was at times at least as challenging as dealing with the more generic issues of finance, compliance and North/South perspectives. Therefore, a number of European countries at various times facilitated informal meetings where issues such as the specific nature of PGRFA, the interdependency between regions, and ways to realize benefit-sharing at the international level were explored in more detail. In addition to facilitating a better understanding of the issues at hand, such informal meetings also helped delegates from different regions in getting to know each other better, thereby contributing to better communication between negotiators in general. In a similar vein, the ERG often provided chairs or co-chairs to the contact groups in order to foster making progress in the negotiations.The ERG fully recognized the importance of the CBD and its objectives including the paradigm shift that underpinned the CBD -that is, a change from viewing biodiversity as the heritage of mankind and open exchange of its components to applying the concept of national sovereignty regarding the conservation and utilization of biodiversity. However, for the European region it was important that by the adoption of Resolution 3 of the Nairobi Final Act when the CBD was finalized, the specific nature of PGRFA was recognized, and that the United Nations Food and Agriculture Organization (FAO) was called to bring the FAO International Undertaking in harmony with the CBD.In developing the new instrument, challenging factors included the legal complexities related to pre-CBD material, and the status of the CGIAR collections (for details on the CGIAR, see Chapter 11). In addition, newly enacted access and benefit-sharing legislation in some developing countries based on the CBD were perceived to ignore the needs of the agricultural sector. The challenge was to negotiate an instrument in harmony with the CBD but at the same time accommodating the needs of the agricultural sector.Strong interdependency between regions with regard to PGRFA for important food crops was seen as a central argument for finding more effective solutions than bilateral mechanisms. Also, it was recognized that many crop varieties contained traits derived from genetic material stemming from a large number of countries meaning that frequently no clear 'country of origin' could be identified. Bilateral 'fair and equitable' benefit sharing for such materials would create extremely complex challenges of calculating and apportioning how benefits should be shared between a large number of countries.In the negotiating process, an understanding soon developed in Europe and elsewhere that the CBD in itself did not exclude a multilateral system for ABS, provided that countries used their sovereign rights over genetic resources by agreeing to such multilateral mechanisms. In other words, 'mutually agreed terms' could be understood as multilaterally agreed rules applicable at the international level. Likewise, the scope and contents of 'prior informed consent' could be agreed on a multilateral basis. Based on this perspective, Europe strongly favoured a solution whereby facilitated access would not depend on approval on a case-by-case basis by individual countries. The ERG subsequently played a central role in developing such a model for ABS on a multilateral basis, whereby monetary benefits would flow into a financial mechanism to be managed by the parties to the Treaty for purposes of implementing the Treaty. The first text proposal for a provision linking obligatory benefit-sharing to commercialization in case of restrictive intellectual property rights (IPR) was submitted by an ERG country. Several ERG countries also facilitated informal workshops where options for such mechanisms were discussed in detail.Until late in the negotiations (see Annex 1 of this volume for the list of all Commission and Treaty negotiating meetings), the legal and institutional status for the new Treaty remained undecided, with both a protocol under the CBD and a self-standing agreement under the FAO remaining options on the table. In the end, the ERG was content with the agreement as a self-standing instrument in the framework of FAO. However, in the subsequent negotiations on the standard material transfer agreement (SMTA) for the multilateral system, reservations on certain aspects of FAO's functioning led the EU to only agree with some hesitation to the identification of FAO as the third party beneficiary (see Annex 3 of this book for details on the main provisions of the Treaty).The presence of a strong breeding industry in Europe contributed to the recognition of one of the principle notions in the field of PGRFA: the fact that in many cases breeding strategies had resulted in crop varieties built of building blocks originating from a large number of countries and even continents, rendering the concept of countries of origin largely inappropriate. As a result of this notion, for the European breeding industry access to as many source materials as possible was important, together with the notion that wide access through international cooperation was not only essential for European breeders, but for breeding programmes in all regions alike, including for those of the CGIAR centres, for the purpose of food security.Europe always looked at the free availability of new crop varieties and source materials as one of the most important benefits that could be realized through the development of what was to become the ITPGRFA. In promoting the concept of facilitated exchange, the ERG was willing to offer what it thought to be of high value to other regions in the world: on the one hand access to newly developed state-of-the-art crop varieties, available for further research and breeding by other parties through adhering to plant breeder's rights rather than patent rights as the IPR system of choice in plant breeding, and on the other hand large and relatively well kept gene bank collections (see Chapter 14 for an example of gene bank collections).The European region therefore initially favoured the inclusion of all crops, and later -when this did not appear to be attainable -of a large number of crops in the list of crops that would define the scope of the multilateral system (MLS), not only because of the notion that mutual interdependence was an apparent feature for most if not all crops, but also since food security was not only a matter of access to sufficient calories but also a matter of breadth and variation in diet. During the entire course of the discussions on the scope of the MLS, it therefore defended as long a list as possible. It is a strong view in the European region that the final list is a compromise based on political interests that had little to do with food security and the recognition of mutual interdependence. In the final stage ERG proposed the addition of specific crops (e.g. temperate grasses and forage crops) on the list. They were not contested by other regions because Europe provides the major holdings of those crops.Article 12.3d of the Treaty is the result of lengthy negotiations to reconcile opposing views on IPR systems on germplasm. This text is to some extent ambiguous. What remains a matter of legal interpretation and jurisprudence to be developed is how the phrase on the subject matter to which Article 12.3d applies -'its parts and components' -relates to the phrase 'in the form received'. In the view of the European region the material itself, as obtained from the MLS, cannot be protected, but any product developed from that material can be protected. In fact, any other interpretation would make Article 13.2(d) meaningless. Plant breeder's rights forming the prevalent IPR system in Europe, protected varieties are freely available for further research and breeding and are in full harmony with Article 12. 3(d). The remaining issue therefore regards biotechnological applications. In other words, the question is what really constitutes a 'product' in biotechnological use, and, in particular, whether the mere isolation and independent multiplication and use of a DNA sequence in its original form but in a different genetic environment is sufficient to define that as a 'product'. Such interpretation is, at least in theory, also open for claims for IPR on DNA sequences determined for DNA of germplasm obtained from the MLS. However, over the last few years obtaining patents on such very basic claims has become much more difficult in practice under most jurisdictions. This issue is strongly related to discussions in other organizations on the question of what should constitute an 'inventive step' under IPR regimes. To find generally accepted solutions remains an important challenge in order to avoid potential conflicts with other types of legislation when implementing the Treaty.Although differences of view on some IPR-related issues occurred within the European region, witnessed in the debate on the EU Patent Directive, the ERG does regard intellectual rights systems, including patent systems, as generally beneficial for industry and for economic development and society at large. Thus, it did not accept any attempts to weaken IPR systems by the backdoor since the nature and role of these systems had been agreed upon in the framework of the World Intellectual Property Organization (WIPO) and the World Trade Organization (WTO) Trade-related Aspects of Intellectual Property Rights (TRIPS) agreement. However, on one issue that is negotiated under the CBD process towards a Protocol on Access and Benefit-sharing the region has gradually adapted its position -that is, in considering the advantages and drawbacks of modalities forcing parties requesting a patent right or plant breeder's right to disclose the origin or legal provenance of the germplasm used to develop the product. Whereas originally it questioned the need for such provision, it has accepted its potential usefulness. In the view of the region, such a modality may be integrated in IPR systems, although as an alternative the form of a self-standing requirement to market products based on biological materials was also debated for some time.The negotiations on the SMTA were not part of the Treaty's negotiations but took place after its adoption. This agreement is essential for the implementation of the Treaty. Since the benefit-sharing provisions of the Treaty could not become really operational without an agreement on the SMTA, which in turn meant that the MLS could not start functioning as perceived, the region was of the view that the SMTA was the last essential component to render the negotiations on the Treaty complete.It is the view in the European region that in many cases not the parties themselves but legal and natural entities within its jurisdictions will act as providers of germplasm for the MLS, be it under the control of governments or not. From this perspective it is easier to understand why the European region regards the SMTA first and foremost as a contract between the two signatories of the SMTA, and therefore as a contract under civil law. The only peculiarity of the SMTA is formed by the fact that from its very nature as standard (not as model) it followed that its contents could not be negotiated by its parties/signatories, clearly placing the instrument in a special category. This position also explained the region's pleas during the negotiations of the SMTA to accept recourse to the International Chamber of Commerce as an appropriate component of the SMTA. In line with this position, the region holds the view that any dispute about the adherence to any specific signed SMTA is only a responsibility of its signatories and not necessarily of the parties to the Treaty, in so far as they are not themselves a signatory to that specific agreement. Instead, the role of the parties is to oversee whether the SMTA fulfils its tasks and is appropriate and functional. Only an eventual review of the SMTA is seen as a major responsibility of the parties to the Treaty.Since its adoption in 2006, some countries within the ERG have actively promoted the acceptance and use of the SMTA by its collection holders and by its breeding sector, both the public and the private sector. The European Seed Association has advised its members to accept the SMTA for access to genetic resources under the MLS.The concept of the third party beneficiary was favourably evaluated by European parties. It was realized that in many cases providers of germplasm under the MLS would not have the means to follow up the utilization of that germplasm, including in cases where serious doubts on the adherence to the obligations might arise. For the European region, defining the roles and functions of the third party beneficiary formed a major issue that was only partly addressed in the negotiations of the SMTA. In particular, a development leading to a large number of tasks, an added bureaucracy and inspection of individually signed SMTAs was seen as highly undesirable by the ERG. In particular, some concrete proposals were interpreted as being against the principle of the MLS that no need of follow-up of individual transfers would be needed. At times, some of these proposals were seen as representing a dangerous slide back into bilateral approaches and an emphasis on the countries of origin concept. The interpretation of the relevant articles of the SMTA by the European region is that the third party beneficiary should only act in cases of serious doubts on the adherence to the provisions of the SMTA, and by no means act as an agency controlling the issuing and implementation of the SMTAs.In general, the European region did not show a strong interest in the Farmers' Rights concept, (see Chapter 13 for positions of Farmers' Communities) although some individual member countries were active on this issue. The ERG felt that it would be difficult to develop the concept of Farmers' Rights into a legal mechanism due to a number of inherent complications, such as identification of the rights holder, the absence of novelty in case of traditional farmers' varieties and the challenge to sufficiently define a variety in the absence of uniformity. In addition, it was pointed out that a legal interpretation of Farmers' Rights might clash with the existing IPR systems. The region also noted that some stakeholders in the global NGO community (see Chapter 10 for details on civil society) argued that the legalization of the concept of Farmers' Rights would only introduce private property thinking into the sector of small-scale agriculture that until then still operated under the concept of heritage of mankind.The European region was quite flexible during the negotiations with regard to accepting specific language on the rights of farmers to traditional seed management as long as the language remained within the limits of the TRIPS agreement. However, this possible compromise language became irrelevant when the present wording for this chapter was proposed and adopted, leaving the interpretation of such rights largely to national legislation. Internal differences of views on the balance between IPR protection and Farmers' Rights became visible in the form of country declarations when the Treaty was adopted by the FAO Conference in 2001.During the negotiations the ERG argued for utilizing existing funding channels and for avoiding major additional implementation costs. It was, however, accepted that some specific provisions would be needed for the proper implementation of the Treaty. The funding strategy came to be seen as consisting of three components: obligatory benefit sharing under the MLS, voluntary contributions to the account under the control of the Governing Body, and other self-standing financial mechanisms allowing the implementation of the Treaty. With regard to other funding agencies and mechanisms, at the outset different perceptions within the ERG existed, but gradually a consensus evolved that governments would have a responsibility to act coherently across funding agencies to ensure resources for prioritized activities including the Treaty.In addition, it was recognized that the Treaty's secretariat needed an operational budget, but the European region argued that these needs were to be covered from the core budget of FAO. Furthermore, it pointed to a number of international and bilateral mechanisms in place to implement the funding strategy, and although acknowledging that funds from recipients bound to the obligatory benefit-sharing under the MLS would be slow to come for many years, it did not wish to commit itself a priori to the provision of extra, additional funds for the benefit-sharing fund under the funding strategy. It probably misjudged how developing countries interpreted this as a lack of commitment to the operationalization of the Treaty.In the view of many European member countries the mere existence of the Treaty represents a major merit in itself in that it challenges governments and the community at large to recognize the importance of plant genetic resources.In particular, the reconciliation of different perspectives on the functioning of the Treaty, namely as an international agreement between states, as well as an agreement that should bind legal and natural persons exchanging and using plant genetic resources, is regarded by the ERG as a major accomplishment.For the European group, a major feature and merit of the MLS is that it recognizes that the availability of new plant varieties as such is a major benefit of the MLS. The continued need for a distinction between products that are or are not freely available for research and breeding may be stressed again in future European positions.For the European region, the MLS is the core of the Treaty, although it also places much weight on Articles 5 and 6 on conservation and sustainable use, emphasizing that these articles apply to all plant genetic resources, not just the crops listed in Annex I.A notion widely shared within the ERG was that monetary benefits stemming from the application of Article 13.2 (d) will remain limited at least for a number of years to come, 3 and the volume of such benefits will remain limited given the fact that obtaining plant breeder's rights on a product developed from germplasm accessed from the MLS will not lead to obligatory benefit-sharing.The alternative payment option, proposed by the African region in a late phase of the negotiations on the SMTA, was gradually being perceived as an interesting option (see Chapter 19 for more detail). However, it can be expected that the alternative payment option will only be preferred by users if the ratio of the payment levels between the default payment arrangement (by individual product) and the alternative option (by access to a crop listed in Annex I) would have been substantially larger. Possibly, the alternative payment option may still evolve into a major merit, if the ratio between these two payment levels can be revisited in the future.The Global Crop Diversity Trust (see Chapter 16 for detail on the GCDT) is seen as a major instrument for benefit-sharing, and ERG governments have made substantial donations to the Trust. 4 The ERG regards the GCDT as an essential component of the funding strategy and indeed as a major building block to the Treaty. Furthermore, the grant conditions of the GCDT request that the germplasm that is regenerated or characterized with support from the Trust will be available under the conditions of the SMTA. The Trust currently supports the regeneration and characterization of both international collections of the CGIAR and national collections in a large number of countries. The Global Environment Facility has also been identified as an important instrument to facilitate benefitsharing at the multilateral level. In addition, various bilateral programmes explicitly include the strengthening of genetic resources conservation and utilization. In situ conservation, management and use remains a major challenge, however, although the strategic plan for the implementation of the funding strategy adopted by the Governing Body offers options to specifically address such needs.Although significant progress has been made, the authors of this chapter recognize a number of outstanding issues. In our view, solving these challenges will increase mutual trust between the stakeholders in the Treaty: governments of developing countries and developed countries, the private sector and farmers' organizations, breeders and conservationists alike.Full and proper implementation of the Treaty depends on the funding strategy. Ex situ conservation of Annex I crops is to a large extent taken care of by the contributions of the GCDT. However, the ITPGRFA also refers to the need for complementary in situ measures. In spite of the potential offered by the Global Environment Facility and bilateral funding, a case can be made that the Treaty needs funds under its own control, to develop a coherent portfolio of projects for proper in situ management. An adequate funding strategy is also needed in order to address neglected and underutilized crops, as well as the capacity building needs for the implementation of the Treaty and following from the Global Plan of Action on Plant Genetic Resources for Food and Agriculture.It was a major achievement to reach consensus on the budget during the early stages of the Treaty implementation. Lack of an agreement on the financial rules still hampers the Treaty to fully function at this crucial stage.Various stakeholders in the European region feel that success in fundraising will depend on a clear focus and on the ability to render the benefit-sharing fund attractive to additional non-state donors. In addition to the ground-laying contributions of Spain, Italy and Australia, the innovative Norwegian pledge for benefit-sharing as a function of seed sales in the country (0.1 per cent of all sales), as well as the ensuing strategic partnership between the Treaty and United Nations Development Programme (UNDP) can be seen as highly interesting initiatives.Currently, the major holdings brought into the MLS are those of the CGIAR centres. Large collections maintained by national gene banks and other public sector institutions should also become part of the MLS. To the extent that such collections come under the management and control of the contracting parties and are in the public domain, these collections automatically form part of the MLS upon ratification of the Treaty by the corresponding country. Where such collections are held by institutions outside the government, collection holders themselves should decide to bring their collections into the MLS. 5 The extent and pace by which this can be realized will strongly influence the success of the Treaty.An important challenge will be to aim for the broadest possible participation in the Treaty. Some countries that are important players in the field of PGRFA have not ratified the Treaty yet. Universal membership, expansion of Annex I, filling the MLS and realizing facilitated access for all PGRFA important for food security, will form important goals for the European region in the future, and Europe will have to consider how best to foster such development.The Treaty will also be judged by the progress made with the introduction of the SMTA. A shift to the SMTA takes time, both for technical and for policy reasons. Governments should identify all material that automatically falls under the MLS and promote inclusion of all other germplasm listed in Annex I held in their jurisdictions. Regulatory measures might be necessary to arrange for contributions to the MLS. Providers should develop an administrative system to archive signed SMTAs and to report on such transactions to the secretariat of the Treaty. Clear progress in the introduction of the SMTA, across regions and sectors, should be demonstrable in order to boost the profile and recognition for the Treaty.The issue of misappropriation is clearly linked to the question of how Article 12.3 (d) of the Treaty should be interpreted. The ERG shares the view that nothing in this article should prevent the granting of IPR on products developed from materials from the MLS. However, obtaining such rights should not limit access for others to the same materials in the MLS. It is highly likely that this issue can only be gradually resolved by discussing case studies as they will develop over time in the Governing Body, and resorting to arbitration in those cases where no agreement between the contract partners can be reached.A related challenge is the need to provide sufficient transparency in the transactions that take place with germplasm in the MLS and materials under development derived from that germplasm. The level of detail in the reporting of transactions and the means by which parties can gain access to that information still needs to be elucidated and agreed upon. The ERG acknowledges that reporting is essential, but it also holds that in accordance with Article 12.3 (b) policing of individual transactions in the system should not be an objective of the reporting. In the European view, the provider -whether a provider of germplasm in the MLS or of materials incorporating germplasm from the MLS -remains responsible for documenting and respecting the details of each transaction.Various crop collections that do not fall under the MLS will still play a role in reaching global or regional food security. In the view of the European region, taking into account that it regarded Annex I as too limited, it would be preferable to make germplasm of all PGRFA available under the terms and conditions of the MLS. Some European parties (such as The Netherlands and Germany) have indeed already adopted this approach.Some stakeholders hold the view that the MLS should only effectively deal with access to ex situ collections. However, in the European view this is not in line with the text of the Treaty, and, in particular, Article 12.3 (e) which explicitly refers to access to plant genetic resources being developed by farmers, and Article 12.3 (h) stating that access to plant genetic resources found in in situ conditions may be ruled by national legislation or in accordance with standards as may be set by the Governing Body. Thus, the Governing Body may wish to discuss the need for such standards. In that process, it might be considered to what extent the Treaty can provide any basic rules for access to germplasm held under in situ conditions, and to what extent such access to Annex I germplasm may depend on national policy and legislation. Paying due attention to access and benefit-sharing on genetic resources held on farm or occurring in in situ conditions will greatly increase the impact of the Treaty.In order for the funding strategy to attract sufficient funding, the importance of the Treaty will have to be 'mainstreamed'. The various stakeholder groups should contribute to an increased awareness on the importance of conserving crop genetic diversity and to raise its profile. In addition, for proper implementation of the Treaty more interdepartmental cooperation at the national level will be needed. In the process, the notion that agriculture is simply a threat to biodiversity will have to be replaced by the realization that, as part of agriculture, genetic resources for food and agriculture form a major component of our total biodiversity and should thus be conserved and cherished. In addition, there could be great potential in referring to the cause of food security in order to raise the awareness on biodiversity in general.Raising the profile is not only a challenge at the national level but also at the international level. Whereas FAO has fully recognized the importance of genetic resources, this issue has not been given the proper attention in other multilateral agreements and organizations. In a future in which climate change will increasingly affect agriculture in all regions, conserving our agrobiodiversity should be recognized as an important insurance policy providing us with an essential tool for adaptation to changed circumstances. Some early developments already point to a strong need for more systematic exploration of crop genetic resources in order to adapt to climate change.The ERG member countries regard the ITPGRFA as a very important agreement, that will allow breeding efforts to continue and to develop further in order to meet the challenges of food security, and that -to that purpose -will contribute to an enhanced conservation of our genetic resources in international cooperation. The European region is also aware of the fact that the Treaty will complement and contribute to a future International Regime on Access and Benefit Sharing, that is currently negotiated under the CBD and that will have regard to all genetic resources. It is of the opinion that major first steps towards implementation of the Treaty have already been made, but that continued efforts will be needed to complete the process of implementation.1 Europe's role, positions and perspectives should be understood as those of the European regional group, representing the countries of the region. The European regional group encompasses all European countries including the countries of Central and Eastern Europe. Russia also belongs to the European regional group in FAO. 2 At the start of the negotiating process in 1995, the number of EU member states was still 15, whereas at the conclusion of the Treaty in 2001 the number had increased to 25, and at the 2nd Governing Body meeting it had reached 27 member states. 3 If the breeding cycle is taken as a reference, substantial income can be expected only 7-15 years after distribution of germplasm for the purpose of breeding has occurred. 4 At April 2008, the total payments of European governments to the Global Crop Diversity Trust had reached an amount of US$75 million. 5 A growing number of national collections are now placed in the MLS, as reported on the website of the Treaty. So far, ERG member states have placed more than 200,000 accessions in the MLS or made these accessions available under the terms and conditions of the SMTA.Chapter 6The Latin American and Caribbean Regional GroupA Long and Successful Process for the Protection, Conservation and Enhancing of PGRFAThe process leading to the adoption of an International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA) has been developed in other chapters of this book. This allows starting from the perspective of the Latin American and Caribbean region (LAC), instead of repeating in detail what the scenario was during the last part of the second half of the 20th century, and the complex and at the same time interesting process leading to the adoption of the first environmental multilateral agreement of the 21st century.A key characteristic of plant genetic resources for food and agriculture (PGRFA) is based on what breeders -formal ones in research centres or enterprises as well as farmers and local and indigenous communities -in all countries need: that is, to get access to genes in the form of PGRFA to keep their breeding programmes running, or to maintain and enhance local or traditional varieties for sustaining local communities and cultures. The problem is that all countries are dependant on genes coming from the entire world, as nowadays, there is no single country known to be self-sufficient on PGRFA (Crucible Group, 1994;FAO, 1997;Correa, 2000;Gerbasi 2004;Moore and Tymowski, 2005). Countries, institutions, researchers, farmers and people in general, need this flow of genetic resources to support their breeding programmes and to ensure food security.As a reminder, the most important issue was that PGRFA were considered until the 1980s as a common heritage of mankind. In a way, this concept did not recognize the enormous contributions of people for centuries: mostly farmers and local and indigenous communities who conserved and enhanced the wealth that crop plants can represent to current generations for food, feeding, fibres, housing and so many other uses that man needs for everyday life.In this interesting and unique process, mostly after the 1980s and, of course, after the decisive adoption of the Convention on Biological Diversity (CBD) in Rio de Janeiro, 1992, the international community developed the ITPGRFA on the basis of ensuring the conservation, the sustainable use and the sharing of benefits derived from the use of PGRFA. It is something interesting that the Treaty was able to achieve primarily for PGRFA, what the CBD is still negotiating without a concrete outcome yet, for access and benefit sharing for biodiversity in general.A good support for the efforts developed by FAO, its country members and farmers' communities in the entire world, was the decision adopted during the 2nd meeting of the Conference of the Parties to the CBD in Jakarta, Indonesia, in November 1995. This decision on 'The Global System for the Conservation and Utilization of PGRFA' recognized 'the special nature of agricultural biodiversity, its distinctive features and problems needing distinctive solutions', and at the same time, recalled Resolution 3 of the Nairobi Final Act of the Conference for the Adoption of the Agreed Text of the CBD, which recognized 'the need to seek solutions to outstanding matters concerning plant genetic resources within the Global System for the Conservation and Use of Plant Genetic Resources for Food and Sustainable Agriculture, in particular (a) access to ex-situ collections not acquired in accordance with this Convention; and (b) the question of farmers' rights' (CBD, 1995). This decision gave an inestimable impulse to the process.In the statement delivered during the First Session of the Governing Body of the Treaty in Madrid (ITPGRFA, 2006), it was recalled that the 6th meeting of the Conference of the Parties to the CBD in 2002 'recognized that the International Treaty on Plant Genetic Resources for Food and Agriculture will have an important role for the conservation and sustainable utilization of agricultural biological diversity, for facilitating access to plant genetic resources for food and agriculture, and for the fair and equitable sharing of the benefits arising out of their utilization' (CBD, 2002). It thus recognized that the Treaty will make a significant contribution to the achievement of the three objectives of the Convention in the strategic area of agricultural biodiversity. For this reason, the Conference of the Parties (COP), at the same meeting, stressed the need for the expeditious entry into force of the Treaty and called on the 188 parties to the CBD and other governments to give priority consideration to its signature and ratification. The CBD Secretariat in its message recalled also that the 7th meeting of the COP of the CBD, held in Kuala Lumpur in 2004, again urged parties of the CBD and other governments to ratify the Treaty as an important instrument for the conservation and sustainable use of genetic resources, leading to hunger reduction and poverty alleviation.The complexity of negotiations regarding PGRFA can be explained quickly recalling the close link of agriculture with the fundamental issue of food security, with trade -including the role of the World Trade Organization (WTO) and Trade-related Aspects of Intellectual Property Rights (TRIPS) agreementswithout forgetting that plants are also a major source of pharmaceutical products and products for industrial use (several of them with a very high value) that surpass the value of those plants as food or any other common use. Tobin (1997) made an analysis on this issue and mentioned data from the Rural Advancement Foundation International (RAFI) that estimated losses of Southern nations from forgone royalties for the use of genetic material for the pharmaceutical industry around US$5079 million, and compared the use of genetic resources for agriculture with losses of US$302 million, highlighting that the use of genetic resources for agricultural purposes obviously offers less potential benefits than its use for pharmaceuticals.The fact that the scope of the Treaty includes all 'plant genetic resources for food and agriculture' makes it a very important instrument for the LAC region, which recognized from the very beginning of the process the relevance of having a unique instrument for dealing with the diversity and the uniqueness of PGRFA.LAC is a wide region comprising the southern part of North America (Mexico), whole Central America, the Caribbean and South America, which show different ecosystems, climates, cultures and people. Although mostly tropical climates predominate, also sub-tropical and even temperate climates are present. At the same time, vegetation in LAC goes from sea-level territories to very high mountains, reaching for some of them more than 6000m in height, as the examples of Peru (Nevado Huascaran, 6768m in the Andes) and Bolivia (Nevado Illimani, 6462m, also in the Andean region) considered being some of the highest mountains in the world.All those different conditions contribute to facilitate the existence of a large diversity of genetic resources, which constitute a real wealth for humankind. It is common to have a very wide range of crops, forms and varieties, many of which are still not found, described nor used by people other than some indigenous or local communities that know and use those plants, as they are living in the wilds in close contact with nature.Different cultures living in LAC were developed, in a great extent, having plants and crops closely linked to people. This fact made it easier for those indigenous and local communities to learn the characteristics, properties and usefulness of different plants and allowed them not only to conserve, but also to improve, in a very primary way, those plants leading to improved varieties and crops, that at the same time became closely linked to those cultures. This is a clear example of traditional knowledge incorporated and interlinked with PGRFA.Together with that, LAC is the centre of origin of some of the most valuable food crops for humankind, like potatoes, maize and some very valuable tubers and roots, making an even heavier responsibility for the region, as unique genes have to be preserved to ensure the existence of the necessary and valuable variability on those PGRFA for the future.From a total amount of 126 countries that are parties to the Treaty as of September 2010, 16 of them are countries from LAC (see Annex 3 of the book for the tables of participation to the Treaty by regional groups), and there are still five countries more that signed the Treaty and are in the process of becoming parties in the future.The active role of LAC represented in international negotiations by GRULAC 1 can be pointed out by the fact that Mexico, as part of GRULAC and supported by the G-77, started a decisive debate during the 21st Conference of FAO in 1981. This debate led, two years later, to the adoption of important steps for the international process on PGRFA.As Esquinas-Alcázar and Hilmi ( 2008) rightly pointed out in an article on the negotiations of the ITPGRFA, at the end of the 1970s and the beginning of the 1980s, the problem of PGRFA shifted clearly from a scientific problem to a political problem. The sensitiveness of developing countries raised valid questions as difficult to answer as the following:• If PGRFA are distributed through the whole world, but the majority of biodiversity is present in tropical and subtropical countries where we find most of developing countries, then, when seeds are collected and placed in gene banks, frequently belonging to developed countries, to whom do the seed samples stored there belong? • If the new varieties obtained are the result of applying the technology to the raw material or genetic resources, then why are the rights of donors of technology recognized in the form of breeder's rights, patents, and so on, whereas the rights of donors of germplasm are not?These questions were key for starting a negotiation process. The fact that LAC is a region with a very rich biodiversity, that the region contributed for decades to the collection of gene banks of several international institutions and developed countries, and that some of the mega-diverse countries of the world belong to our region, conditioned an active role of almost all of our countries in the pre-negotiation and negotiation process of the Treaty, leading to its adoption in 2001. The active role of LAC countries, as members of FAO, contributed to set up the scenario for the consecutive steps that allowed: first, to decide during the 22nd Conference of FAO in 1983 to establish a Commission on Plant Genetic Resources, and second, to adopt an International Undertaking (IU) on PGRFA that, although not legally binding, became the first example of the desire of LAC, as part of the international community, to address the loss of plant biodiversity in the world. At that point, nobody could challenge the idea that the process of establishing an international regime for PGRFA was clearly a political issue, requiring negotiations and the establishment of national, regional and international policies to allow all countries to be able to use those fundamental resources to ensure food security for all.The adoption of the CBD in 1992 marked a shift in the process of an international regime for PGRFA. The 1st extraordinary meeting of the Commission on Plant Genetic Resources in 1994 initiated the harmonization of the IU with the CBD; this could be considered a milestone for the process. Participation of GRULAC countries was fundamental in clearly highlighting issues that must guide the negotiations, according to the needs and requirements of developing countries.A significant fact was the decision of the members of the Commission on Genetic Resources to elect Venezuelan Ambassador Fernando Gerbasi as its Chair in 1997. I consider it obligatory, to recognize the role played by Mr Gerbasi from this moment onwards guiding the Commission to succeed in the adoption of the Treaty four years later, making an extremely wise use of his diplomatic skills and unbelievable conciliatory power (see Chapter 2 of this book). This was a clear example of the capacity and commitment of GRULAC with the process on PGRFA. It is an interesting exercise to consult the book of Ambassador Gerbasi (Gerbasi, 2004) that summarizes very well some of the important moments of the whole process of negotiations of the Treaty.We have to mention that, together with the whole community of Latin America and the Caribbean Countries, Cuba, as a member of the Commission on Genetic Resources, played a relevant role, not only presenting the national positions for the negotiations, but also representing GRULAC and the G-77, when this last group of developing countries placed the responsibility on Cuba to be the Chair of the G-77 in Rome during the last part of the negotiating process and the adoption of the Treaty in 2001. This was a responsibility and an honour, that the Permanent Representative of Cuba to FAO in Rome, Ambassador Juan Nuiry, performed with skilfulness and an inimitable ability to bring everybody together, and to allow having a balanced outcome of those difficult and complex negotiations.Developing countries, including GRULAC members, gave the G-77 the responsibility of negotiating on their behalf, with all the power given by the membership of more than 120 countries at that time. 2 We should remember that some of the very skilful negotiators based in the United Nations headquarters in New York were sent to FAO by their respective countries to reinforce the negotiations at the final stage of adoption of the Treaty. Some of the very important and well informed negotiators belonging to the LAC countries that participated in this group.After the adoption of the Treaty, GRULAC continued placing great importance on implementing the instrument that had been adopted. The active role played by GRULAC during the meetings of the Commission acting as the Interim Committee of the Treaty, was fundamental to prepare the arena for the first meeting of the Treaty, once it entered into force in 2004. The financial rules for the Treaty, the rules of procedure, the draft budget for the Treaty, the financial strategy, as well as the first steps for designing a standard material transfer agreement (SMTA) for the multilateral system (MLS), and the draft procedures to promote compliance were the most important negotiations after the adoption of the Treaty. Without those proposals, prepared for the consideration of the Governing Body, the operation of the Treaty would not have been possible (Earth Negotiation Bulletin, 2002).After that, different groups were created under the Commission acting as the Interim Committee for addressing different relevant issues. One of the groups focused on developing the SMTA for the MLS. The countries of the LAC region contributed to a great extent to the design of this valuable instrument.Another group was the 'Open-ended Working Group on the Rules of Procedure and the Financial Rules of the Governing Body, Compliance, and the Funding Strategy', which convened at the FAO headquarters in December 2005 (CGRFA, 2005). This working group prepared draft resolutions for the consideration of the Governing Body at its first meeting. The G-77 proposed the nomination of Cuba as the Chair of the meeting, which was elected and acted as such during the meeting. This again was an expression of the recognition of the active role performed by Cuba and GRULAC.Without being exhaustive, and recognizing the key role played by all LAC countries, I want to mention the active role of some countries during the whole process of the Treaty: Brazil, with substantive contributions in a wide list of issues, placing its well known negotiation capacities and expertise for the benefit of GRULAC; Argentina with a relevant role in the negotiations for the adoption of the Treaty and in the Commission acting as the Interim Committee for the Treaty, mainly through the important contribution of their legal experts, when developing important proposals for the draft SMTA, the rules of procedure, the third party beneficiary mechanism of the MLS, and others; Colombia with the relevant technical expertise on PGRFA and the very important considerations on biodiversity, as a well known mega-diverse country; Ecuador, with the technical expertise as well as diplomatic and negotiating skills of their experts that contributed notably to sustain GRULAC positions; and Uruguay, with substantive technical contributions that allowed progress with a solid text on several occasions, as with the very important contribution for the development and refinement of the financial strategy. Those are only examples, and I want to emphasize my personal recognition to all countries in the region for the wonderful work developed.The need to harmonize existing legislations at national level within countries is a prerequisite for allowing the LAC countries that are still not parties to the Treaty, to complete the process for becoming a party. It is perhaps the case of some very important and active LAC countries in the FAO Commission on Genetic Resources. Ruiz ( 2008) made a good analysis of the implications of some regional decisions and national legislation that consider the issue of access and benefit sharing, like the Decision 391 of the former Andean Pact. As Ruiz rightly commented in his article, some very restrictive steps adopted by some countries are now very difficult to implement in a practical way. An exercise for the harmonization of those national and regional legislation with the Treaty could perhaps allow implementing the latter at national levels without any confrontation with national legislation or with sovereign decisions made by each country.Negotiations for the ITPGRFA were, as in any intergovernmental multilateral agreement, made among government delegations, with civil society representatives included in the delegations.A common theme for almost all LAC delegations was the consideration that the region contributed for centuries to PGRFA and it was not adequately compensated for making this wealth available to countries of all regions of the world. At the same time, during the last decades, some PGRFA from the LAC region were collected by research institutes, international organizations and different groups of collectors, and used in different countries for developing pharmaceutical or industrial products that represented several times the value known for those plants, without sharing a fair part of this value with the LAC countries. LAC countries, like stewards for those materials, had preserved the valuable materials that contained active substances or compounds that were used for saving lives or making human life more comfortable. Correa (1998) mentions concrete examples of a legal dispute, where the The Andean Court of Justice had to rule against the intentions of the pharmaceutical industry to obtain protection on pharmaceutical products already patented, that were produced from plants prospected in LAC.For success in the negotiations towards the adoption of the Treaty, a more political approach was necessary when considering PGRFA and this vision was part of the position of the LAC region for the negotiations. A clear view on what was missing was fundamental for LAC at that time. As a result, LAC contributed in a substantial way to it, with concrete proposals, firm positions, while at the same time showing flexibility and understanding towards the needs and positions of other countries and regions.This situation of inequity marked the negotiations of the Treaty for our region and explains why it was so difficult to reach a final consensus for the agreement in 2001, why there was such a strong position of almost all our countries, regarding the role of indigenous and local communities in the conservation of our resources for centuries, and why in the end we only had a small list of crops in Annex I of the Treaty, constituting the core of the MLS.At the same time, LAC realized that access to PGRFA was also necessary for developing new and important plant forms and varieties, and recognized that all our countries are in need of PGRFA for ensuring food security. Mainly research institutions and gene banks in LAC wanted to have access to the necessary genes for their plant breeding programmes, and negotiators managed the situation in a very smart way, contributing a lot of ideas and proposals that allowed negotiations, although slowly and step by step, to go forward until succeeding.Although the MLS of the Treaty is limited in its scope because of the still limited number of crops included in Annex I, it constitutes an innovative mechanism serving as a model, facilitating the access to genetic resources, and at the same time ensuring that any benefits derived from their use are shared in a fair way with the people that maintained and enhanced those PGRFA for centuries. This is the most novel characteristic of the Treaty, which allowed progress in this very sensitive issue thanks to its objectivity and fairness. To allow the sharing of benefits derived from the use of PGRFA, although in a collective way, as it is designed for being distributed through the benefit-sharing fund to all developing countries, constitutes the first and still unique approach to this aspiration of humankind.At a time when climate change is a real concern for all humankind, the LAC region should focus on putting in place concrete measures, strategies and programmes to address the challenges that climate change will impose on our countries in the future. Highly dependant on agriculture, some recent examples of natural disasters are a call of alert that our agricultural systems must be improved for the imperative of subsistence. Indeed, flooding due to continuous and heavy rains in Central America, heavy storms and severe hydro-meteorological events in the Caribbean, and extreme temperatures and displacement in time of the occurrence of the seasons during the year have affected the planting and harvesting of food crops in all LAC.To cope with climate change adaptation challenges, it is absolutely necessary to have PGRFA available to researchers, farmers and all people involved in plant breeding and in food security issues. Genes that would allow plants to adapt to those changing climate patterns should remain available. Because of the different climates and conditions prevailing in LAC, we will need genes adapted to raising or lowering temperatures; to resist droughts or heavy rains; to be able to grow in altitudes different varieties for crops like potatoes, in places as high as the mountains in the Andean region; or even to adapt crops to migrate to lower or higher latitudes.Because the adaptation of plants to changing climate conditions is not a process that could be achieved in a short time, we give the Treaty a relevant role to guide this process in a way that food security could be achieved in the medium term, in spite of challenges imposed by climate change. Adaptation of agriculture to climate change challenges will require the availability of adequate PGRFA, with enough time to allow its incorporation to new improved and adapted varieties, and a good quantity of work by farmers and researchers.To ensure having an operational Treaty will require sufficient available funding for its implementation as a whole, including the implementation of all and every article of the Treaty, as well as a working funding strategy and an enhanced MLS for access and benefit-sharing, and to ensure that the Governing Body remains sovereign and able to implement the Treaty in the way it decides, without any constraints or limitations. This is crucial if we want to continue supporting developing countries to conserve and use, in a sustainable way, all PGRFA to achieve food security for all their inhabitants and to widely develop further, the innovative concept of Farmers' Rights.Regarding the issue of widening the scope of Annex I of the Treaty, my opinion is that it remains a very sensitive one. As Annex I is part of the letter of the Treaty, its modification would imply opening the letter of the Treaty, and I think that there are some risks that might not be faced, even today. It is true that all countries, developed and developing, are in need of the whole rainbow of plant species and varieties for research and breeding. For example, Brazil has been asking to include crops like garlic and onion, peanuts, tomato, soybeans and sugarcane in the Annex I list, but perhaps at this time we should find some alternative ways to overcome this difficulty. I am sure that the continuous implementation of the Treaty, in the successful way it is occurring, will allow, after a number of years, to reconsider the list of crops included in Annex I. Construction of trust and a successful implementation and operationalization of the MLS, the effective control of the SMTA, the growing and ensured sharing of benefits derived from the use of PGRFA from the MLS with an effective functioning of the third party beneficiary mechanism, will all constitute the basis for this important and necessary step.I see in the future all countries of the LAC region becoming parties to the ITPGRFA. The strength of a whole region, negotiating and constructing an operative and strong Treaty, will be the best contribution we could make to the international efforts to allow all people to have access to food. I am sure that some remaining issues, mainly legal issues on national legislations, could be overcome and the whole LAC region will work together for this aim.The enormous challenge of having an international instrument for PGRFA was faced and overcome by the international community. This is something that seemed impossible 15 years ago. The quick rise in the number of parties to the Treaty, in a very short time for an international multilateral agreement, 3 is a clear response from countries that the Treaty is well designed and responds to the expectations of them all. It is a good reason and a good incentive to continue working very hard to ensure our contribution to eliminating hunger from all parts of the world, and ensuring food security for all.A book addressing the process of the Treaty cannot forget to pay tribute to a very special person, who played a key role from FAO and the Commission on Genetic Resources for Food and Agriculture: Don José Esquinas-Alcázar. A convinced herald for the need to conserve, protect, enhance and use in a sustainable way all PGRFA, our good friend 'Pepe Esquinas' dedicated part of his life to the development of the Treaty. I am sure that Latin America and the Caribbean region will join me in this well-deserved homage in recognition of the work Mr Esquinas-Alcázar and his continuous support to the LAC region for so many years. The Near East region, as defined in the Food and Agriculture Organization (FAO) or some of the other United Nations bodies, covers countries in West and Central Asia and North Africa regions, which encompass four ecological and socio-economical sub-regions:• the Mediterranean region: Egypt, Jordan, Lebanon, Libya, Palestine and Syria;• the West and Central Asia region: Iraq, Iran, Afghanistan;• the sub-Saharan Africa region: Sudan and Somalia;• the Arabian Peninsula region: Bahrain, Kuwait, Oman, Qatar, Saudi Arabia, United Arab Emirates and Yemen.The Near East region also known, by the Consultative Group on International Agricultural Research (CGIAR) circle, as the Central and/or West Asia and North Africa Region (CWANA or WANA), spreads over two large continents -Africa and Asia -and includes some of the largest deserts, highest mountains and deepest land depressions in the world. Although the region is predominantly dry, it is very rich in agricultural plant diversity. It represents one of the three nucleus centres of origin of agricultural crops in the world and encompasses three or four Vavilovian centres of crop diversity (Figure 7.1). Two of these centres (the Mediterranean region and the Near Eastern region) are considered the centres of origin of more than 150 grown plant species. About ten thousand years ago, the Near East region was the centre of domestication (origin of agriculture) for wheat, barley, lentil, forage species and many fruit trees that still support today's agriculture (Zeven and Zhukowski, 1975). It is estimated that the species that originated from this area are feeding over 38 per cent of the world's population. Wheat alone accounts for about one-third of the global food production. The composition of the Near East region may vary because of practical or mandate-related reasons which lead to inclusion or exclusion of certain countries within the regional group (Zehni, 2006;Amri et al, 2008).In the Near East region, which is considered the cradle of agricultural civilization, agricultural systems are seriously threatened with drastic instability in climatic conditions and consequently with the erosion of basic natural resources, supporting agricultural productivity, including soil, water and genetic resources. The Near East is a food insecure area. Member countries spend a significant part of their foreign trade earnings on importing food and feed materials. Productivity levels in the region, both for crops and animals are low. Therefore, the Near East region continues to be a net importer of wheat and other commodities with the exception of Turkey, Syria and Pakistan. Iran has achieved a fragile self-sufficiency in wheat since 2004 (Amri et al, 2008). Agricultural exports of vegetables and fruit trees have increased in the last decade. Conservation and sustainable utilization of the immense agro-biodiversity of the region are key to increasing the sustainability and productivity of agriculture, which will lead to enhanced food security and the livelihood of people in the region. However, this cannot be achieved unless the plant biodiversity is fully and effectively employed to improve high-yielding plantSource: Janick (2002), adapted from Zeven and Zhukovsky (1975) The Near East Regional Group cultivars adaptive for stressed environments. Fortunately, substantial research capacity for plant improvement work exists in the region.Contribution of the Near East region to world food security has been enormous throughout the history of humanity. This region is considered the centre of origin and/or diversity for 22 out of 35 food crops and 19 out of 30 forage crops listed under Annex I of the International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA or the Treaty). The Near East region has also been recognized as the hotspot for genetic diversity of 10 out of 16 crops, whose global conservation strategies have been developed by the Global Crop Diversity Trust (Zehni, 2006).Considering the fact that agriculture is at the heart of sustainable development and that plant genetic resources for food and agriculture (PGRFA) are at the heart of agriculture, PGRFA continue to be an important asset for humanity facing the challenges of global climate changes in sustaining agriculture and the environment. Therefore, unlocking the genetic potential of these resources will play a very effective role in the mitigation of an adaptation to climate change. Also with other new challenges of globalization such as soaring food and energy prices, market demands for 'diversity rich' food, growing environmental concerns of consumers on food safety and debate over genetically modified crops, the need for the contribution of the Near East's plant genetic resources is even greater in the 21st century.Despite the global importance of plant genetic diversity of the region for food security, it is unfortunate that the Near East region witnesses one of the highest levels of genetic erosion in the world due to unfavourable conditions discussed above. This requires immediate attention (FAO, 1995).The Near East region is among those food-insecure regions of the world that are particularly vulnerable to the effects of climate change on crop production. As a result there will be significant risks to wild biodiversity, including crop wild relatives. However, together with rapidly growing and changing demands for greater production, these changes are likely to result in increased pressure to cultivate marginal lands.The range and migration patterns of pests and pathogens are likely to change. Switching to new cultivars and crops adapting to new conditions will require a greatly increased use of genetic diversity and a substantial strengthening of plant breeding efforts. Breeding must take into account the environmental conditions predicted for the crop's target area 10 to 20 years later. Certain underutilized crops are likely to assume greater importance as some of the current staples become displaced. It will be very important to characterize and evaluate a range of germplasm as wide as possible for avoidance, resistance or tolerance to major stresses such as drought, heat, waterlogging and soil salinity. Research is also needed to gain a better understanding of the physiological mechanisms, biochemical pathways and genetic systems involved in such traits. Global partnership for generating, exchange and use of genes and molecular information is crucial for global success in adaptating to climate change.However, having the basic programmes with adequate human and financial resources to screen germplasm and to run variety trials in key agro-ecologies is of paramount importance. This will require global collective efforts and closer collaboration among the breeding programmes of different regions.The use of plant genetic resources as building blocks of agriculture has become even more prominent, facing newly emerged challenges such as global climate change, production of biofuel crops as new sources of energy, and elevated standards of food security, safety and diversity. Progress made in research and development of genomics, proteomics and bioinformatics has drastically expanded the horizon of utilizing these resources. More attention is now being paid to increase the levels of genetic diversity within production systems as a mean of reducing risk, particularly in light of the predicted effects of climate change. Thus, a global strategy should be developed for broadening the genetic base of world agricultural crops through the use of genetic resources of crop wild relatives (Cooper et al, 2001;Mozafari, 2008). Special attention needs to be given to the conservation of crop wild relatives in their centres of origin, major centres of diversity and biodiversity hotspots. The involvement of local communities is essential in any in situ or on-farm conservation strategy for plant genetic resources. Development of an early warning system for monitoring genetic erosion of crop wild relatives, in all countries in the centres of origin and major centres of diversity, should be an important component of such strategy (FAO, 2009).Development of a knowledge base and research capacity for in situ conservation and utilization of crop wild relatives has been tabled as an essential element of global efforts in this direction (FAO, 2008). Studies on the mechanisms, extent, nature and consequences of gene-flow between wild and cultivated populations will provide information needed for development of appropriate strategies or technologies for the conservation and use of crop wild relatives. Lack of skilled staff is considered a major constraint for conservation and the use of poorly researched species.Genetic resources in general and PGRFA in particular, are considered humanity's most important assets for meeting major global challenges, including alleviation of hunger and poverty, climate change and sustainability of agriculture, soaring food prices, demand for bio-energy crops, and growing food safety and environmental concerns. These challenges have put plant genetic resources into the centre stage of agriculture, health, trade and industry sectors.Global common concerns on conservation of and access to these resources spurred international dialogue and coordination during the last two decades for developing a fair and equitable system of access and benefit sharing (ABS) for sustainable use of these resources.The Near East has played a major role in the development of two important international instruments targeting genetic resources: the Convention on Biological Diversity (CBD) and the ITPGRFA. The Near East countries were among the first nations who embraced the CBD (Table 7.1 below) and continue to support this international agreement as an umbrella framework for ABS on genetic resources in general. The recognition of countries' sovereign rights over their genetic resources under the CBD caused a paradigm shift in the legal perception of genetic resources including PGRFA and triggered very significant changes in the international legal and policy frameworks of these resources. However, Near East countries, conceived as the cradle of agricultural civilization, along with the agricultural sector and farmers around the world, were perceived to be interdependent on each other for the plant genetic resources they needed, to produce enough food and to meet the increasing challenges of food security. Therefore, easy access to these resources was practised among farmers of the region for centuries and was still considered essential for sustainable development of agriculture and achieving world food security. Due to the special features and needs of the agriculture sector, the establishment of more specialized ABS systems for PGRFA was favoured in the Near East region.Near East countries unanimously supported the start of the negotiation for revising the non-binding International Undertaking on Plant Genetic Resources (IU) towards reaching a legally binding international agreement on conservation, access, utilization and benefit sharing of PGRFA, in harmony with CBD, in 1993. The Near East representatives were trying hard, throughout the negotiation, to specifically strike a balance among issues such as: sovereign rights of the countries on their genetic resources, intellectual property rights (IPR), facilitating the exchange of both germplasm and technical capacity, fair and equitable sharing of benefits, and taking the fair share of responsibility towards the conservation of PGRFA for future generations. The negotiation was difficult in nature and experienced considerable obstacles along the way (for details on this negotiation, see Chapters 2 and 10 of this book). An important breakthrough in the negotiation was made on the commercial benefit sharing provisions in the Tehran meeting of July 2000, in the Near East region. The Near East was the only region that hosted a round table of negotiation of the Treaty outside Europe (Cooper, 2002).The Near East region, together with the North American region, had also co-chaired one of the most difficult parts of the negotiation and the core of the Treaty -the list of crops in Annex I to the Treaty. The Near East, generally, played a very constructive role in bridging the gaps among extreme views of parties for achieving consensus, before and after the entry into force of the Treaty. One of the major contributions made by the Near East region to the Treaty was the consensus reached on the rate of monetary benefit accrued from the seed sale of a PGRFA accessed under the standard material transfer agreement (SMTA).One of the most important international agreements in the plant genetic resources sector developed in harmony with the principles of the CBD has been the adoption and entry into force of the ITPGRFA. The Treaty draws together the threads of the non-binding IU and those of the CBD based on the principle of national sovereignty over genetic resources, their conservation and sustainable use for a global advancement on food security and sustainable agriculture (Esquinas-Alcázar, 2005). The Treaty establishes a unique multilateral system (MLS) of facilitated access and benefit sharing for those plant genetic resources that are most important for food security and on which countries are mostly interdependent. For such genetic resources, which are listed in Annex I of the Treaty, the contracting parties have agreed on a SMTA that governs the terms and conditions of use of PGRFA accessed from the MLS and the sharing of benefits arising from such use. It is important to note that the Treaty is much more than its MLS and its Annex I crops. It relates to any PGRFA. The list of the Annex I crops of the MLS may be expanded by the decision of the Governing Body of the Treaty. Such decision will depend upon the future developments in the successful implementation of the Treaty and conclusion of the new international ABS regime being negotiated under the CBD.The Treaty creates an enormous potential and paves the ground for significant progress in sustainable crop production. This potential can be materialized through developing and implementing national legislations and policies in line with the Treaty. Such policies should facilitate:• strengthening linkages between policy makers of agricultural and environmental sectors, scientists, educators, farmers and all other key stakeholders of plant genetic resources; • establishing a strong national programme that has a clear national status and mandate to develop and implement policies for management of plant genetic resources; • enhancing capacity in all facets of plant genetic resources management including in situ conservation, application of emerging technologies for ex situ conservation and use, farmer participatory approaches and public awareness methodologies; • streamlining and improving coordination among all gene banks in a given country within the context of one harmonized national PGRFA conservation and utilization programme.Despite the importance of developing a national capacity on policies and legislation related to PGRFA conservation and utilization, harmonizing PGRFA related views, policies, regulations and action plans based on the Treaty at the regional level could be very effective for the implementation of the Treaty. The concerted efforts among countries will synergistically promote the use of PGRFA through the facilitated flow of germplasm, information and technologies, and enhanced seed trade. The international and regional collaboration on effective use of PGRFA in meeting the regional and global challenges of agriculture will produce speedy results on sustainable agricultural development and enhance food security. For this purpose, national and international centres of excellence in the region should be identified and their research and capacity building activities should be increased towards assisting national programmes in unlocking the potential of PGRFA for achieving sustainable development and food security.The establishment of a regional institutional mechanism officially recognized by national governments in the region, such as an intergovernmental working group on genetic resources, can foster such harmony in views, policies and legislation and spur a more effective contribution of the region to harmonized implementation of the relevant international agreements including the Treaty. Similar harmony and integrated cooperation should also be developed among international instruments, international research centres and funding bodies for supporting PGRFA conservation and utilization initiatives at regional and global levels.The agro-ecosystems of the Near East region are facing some of the highest erosion risks in the world. Due to the importance of agricultural biodiversity of the region for world agriculture, this should not be merely considered a Near East problem but a serious world problem (FAO, 1995(FAO, , 2008)). Therefore, it should be considered a global responsibility of all contracting parties to sustain these threatened agro-ecosystems and conserve endangered plant genetic resources. Identifying the agro-ecosystems at risk and closely monitoring the status of crop-associated agrobiodiversity in these hotspots can provide a good basis for developing sustainable PGRFA conservation and utilization options, including among others:• enhancing national capacities in all areas related to conservation, research and management of PGRFA; • promoting a multidisciplinary and integrated approach to in situ conservation activities, involving farmers and farming communities, local governing bodies, scientists and policy makers; • providing greater support for conservation and utilization of wild relatives of crops of global importance within the ecosystem; • establishing a strong research programme in the region which is known as the cradle of agricultural civilization by Near East countries which believe in building a solid knowledge base and developing appropriate approaches for in situ conservation of crop wild relatives. In situ conservation is not only considered the most appropriate strategy for conserving crop wild relatives but can also guarantee the continued evolution of plant genetic resources in their agro-ecosystems and possible development of new genetic resources;The Near East Regional Group 101• assessing and identifying constraints to seed and field gene banks and taking measures to raise the standards and enhancing practices of gene banks; • applying best practices for securing long-term conservation of collections which are kept under unreliable conditions; • making arrangements and mobilizing resources for the safety backups of nationally, regionally and globally important PGRFA collections; • considering climate change, threatened agro-ecosystems and gaps existing in the regional collections need to be identified by PGRFA to be then collected and secured in ex situ collections; • improving documentation systems and developing strong information sharing mechanisms; • promoting the use of new conservation technologies; • strengthening national PGRFA programmes in the region by repatriation of material collected from the region and held in national and international gene banks; • building capacity and developing well trained human resources in all aspects of PGRFA conservation.The effective continuum between conservation and utilization of PGRFA and of the seed system is crucial for commercialization, for generating benefits and for making an impact from the use of these resources. In order to make significant progress in using PGRFA to meet present and emerging challenges, the following points should be seriously considered (FAO, 2008(FAO, , 2009):• developing national strategies and programmes for the utilization of PGRFA involving all key stakeholders; • developing trained human resources, and enhancing research and development capacity in all facets of PGRFA utilization, characterization, evaluation, breeding and seed production; • promoting the application of new tools and technologies such as genomics and biotechnologies; • broadening the genetic base of commercial crop cultivars by utilization of PGRFA adapted to the region and its emerging biotic and abiotic constraints; • enhancing research to improve the productivity and added-value options of landraces and underutilized species for better access to markets; • strengthening seed production and supply programmes; • diversifying farming systems through the use of new and adapted PGRFA and promoting underutilized species to sustain agricultural development; • improving market access and opportunities for farmers of developing countries.In Article 14 of the Treaty, the Global Plan of Action for Conservation and Sustainable Utilization of Plant Genetic Resources for Food and Agriculture (GPA) is seen as an important component and supporting pillar of the Treaty as a whole.The GPA is indeed an essential scientific and technical framework or manifesto for taking action in implementation of the Treaty at both the national and international levels, particularly for the benefit-sharing provisions in Article 13 of the Treaty (Moore and Tymowski, 2005). Thus, the priority activity areas of the GPA have already been integrated in the set of priorities of the funding strategy of the Treaty. Generally, the priority areas are still very effective and applicable; however, in light of the entry into force of the Treaty, the priority areas of activities prescribed in the GPA need to be updated accordingly. The Near East countries The Near East Regional Group 103have recommended several changes to be considered in updating the GPA (Table 7.2). Most of the proposed changes in activities require a strong regional mechanism of cooperation and coordination. Despite the rich genetic resources, the Near East region is presently lacking a sustainable institutional mechanism for an efficient networking and partnership among centres of excellence and regional centres conserving, managing and utilizing these valuable resources.Sustainable agriculture has been defined as agriculture that meets the needs of today without compromising the ability of future generations to meet their needs.In a sustainable agriculture system, special attention is paid to the conservation of natural ecosystems and resources (biodiversity, soils, water, energy, etc.) and social equity. Promoting the healthy functioning of ecosystems helps ensure the resilience of agriculture as it intensifies in meeting growing demands. Biodiversity plays a central role in the sustainability of productivity and other services provided by agro-ecosystems (e.g. nutrient cycling and carbon sequestration, pest regulation and pollination). This is particularly important in the face of increasing global challenges, such as feeding expanding populations and climate change. The role of farmers is very critical to sustaining such ecosystem services and with appropriate support they can enhance and/or manage these ecosystem services.The Near East region has stressed throughout the Treaty negotiation, the importance of breeding for resistance or tolerance to pests and diseases, salt, drought, cold and heat, as a means to reduce pollution and biodiversity loss. Crops that are genetically improved for such resistances can contribute to sustainable agriculture by helping reduce requirements for agrochemicals.Compared to major crops, there is relatively little research or breeding programme on less-utilized species, even though they can be very important locally or regionally. Such crops often have important and unique nutritional qualities or can grow in environments where other crops fail. Production of locally adapted crop species will diversify overall cropping systems and reduce the risk of food insecurity. Therefore, global and/or regional strategies or initiatives should be developed to promote research on, and improvement of, underutilized crops (FAO, 2008(FAO, , 2009)). The livelihood of farmers in the Near East region (West and Central Asia and North Africa) strongly depends upon regionally important crops such as: date palm, pistachio and other nut crops, pomegranate, stone fruits, saffron, safflower and many other local crops. Food security in the region cannot be achieved without enhancing the production of such crops. This requires development of research based on new technologies for the production of such crops.There is also a growing recognition of health problems associated with inadequate food quality and lack of specific nutrients in diets. Different plants are rich in different dietary constituents, the combination of which underlies the health-promoting effects of a diverse diet. Therefore, both problems can be addressed through the increasing diversity of food crops in diets and breeding crops, especially in the major staples for improved nutritional quality (Genc et al, 2009). However, little is known on genetics and breeding of biofortification of specific nutrients in food crops. As far as breeding crops are concerned, varieties that are richer in such compounds, characterization and evaluation of both cultivated and wild germplasm for nutritionally related traits are important steps. The application of biochemistry, genetics and molecular biology used to manipulate the synthesis of specific plant compounds, has been promising for the increased nutritional value of crops (FAO, 2009;Genc et al, 2009;). An example of this application is HarvestPlus, a programme of the CGIAR that targets the nutritional improvement of a wide variety of crop plants through breeding and focuses on the enhancement of betacarotene, iron and zinc.Enhancing global knowledge and developing technical capacity in conservation and utilization of the diversity of crop wild relatives under ever increasing environmental pressure, is crucial for meeting global agricultural challenges and food security, as also highlighted in all global crop diversity conservation strategies. Towards that goal, the establishment of an international research site on conservation and utilization of crop wild relatives in the Near East region will be a practical step forward in enhancing the conservation (both in situ and ex situ) and the use of crop wild relatives genetic resources, regionally and globally. Iran, on several occasions, has volunteered to host such a site (FAO, 2008).Most of the ex situ collections in the centres of origin such as the Near East, are cross-sections of national (local) or regional diversity, which are assumed to be very unique and have not been completely duplicated anywhere else in the world (FAO, 2009). In addition, more than 95 per cent of the accessions in these collections are heterogeneous with a considerable diversity comprising many genotypes within the sample.Regenerating, phenotyping and genotyping these materials remain challenging for most national programmes due to the extent and diversity of species in these countries, and due to a lack of funding, facilities or technical capacity. Lack of facilities and technical know-how, in particular, jeopardize the genetic integrity of the germplasm accessions and lead to their erosions in the gene banks. The problem is even more serious with cross-pollinated species. Such gene banks, in developing countries, holding important collections of cross-pollinated cropsThe Near East Regional Group 105 that are threatened by the loss of viability or genetic integrity, need to be urgently identified for sufficient financial and technical assistance towards the meeting of conservation standards (FAO, 2009).The success of any international agreement is measured by the fulfilment of its objectives. Achieving food security through sustainable agriculture is the driving force for the Treaty, which has been developed in harmony with the CBD. The conservation and sustainable use of PGRFA and the fair and equitable sharing of benefit arising out of their use are identified as objectives of the Treaty. To fulfill these objectives, the MLS and its unique mechanism for access and benefit sharing are particularly important (Esquinas-Alcázar, 2005). The full implementation of the Treaty with its supporting components is a key element to the success of this important legally binding international agreement. Therefore, from the Near-Eastern perspective, obligations of contracting parties as regards to access and benefit sharing should be taken as equally important. Among these obligations, sharing of non-monetary benefits, exchange of technical information, transfer of technology and building the capacity of contracting parties of developing countries are among the main components of the Treaty, which should not be overlooked. Mobilization of the required financial resources for the full implementation of all components of the Treaty is fundamental and therefore should be the prime concern of all contracting parties, but the key responsibility of the contracting parties of the developed countries. It is particularly crucial for developing countries to get due financial and technical support in building their capacities for fulfilling their obligations towards the implementation of the Treaty. Small-scale farmers in centres of crop origin and diversity have contributed enormously to the development and conservation of plant genetic resources. Encouraging governments to address the rights of these farmers, particularly in sharing the benefits, based on model laws, already enacted in some countries such as India, will be very useful for the success of the Treaty.The issue of Farmers' Rights has been a topic of PGRFA discussions for a long time, particularly around the time of the final negotiations of the Treaty. The importance of farmers as custodians and developers of genetic diversity for food and agriculture was recognized in the Treaty through the provisions of Article 9 on Farmers' Rights. Such rights include: the protection of PGRFA associated traditional knowledge; the participation in decision-making mechanisms related to the conservation and sustainable use of PGRFA; equitable sharing of benefits accruing from the use of PGRFA; and to save, use, exchange and sell farm-saved seed/propagating material, subject to national law.In the Near-Eastern countries, no legislation has specifically been developed on Farmers' Rights. Countries that have enacted legislation promoting such rights have done so within their seed acts and plant breeders' rights laws, as, for example, in Iran. Some other countries such as Turkey and Pakistan are currently developing legislation on access to biological resources and community rights.Adoption of specific legislations on Farmers' Rights in India has provided a good example for developing countries. In industrialized countries, where farmers' organizations are well connected to policy processes, there was no need to push for Farmers' Rights and the debate on the use of farm-saved seed is held in the framework of IPR and seed legislation. In Europe, only Italy and Spain have adopted regulations on Farmers' Rights, and a number of countries are considering how they might support the implementation of Farmers' Rights in developing countries (Anderson, 2009).In the Near-Eastern view, taking a sincere, fair and equitable responsibility towards both access and benefit sharing obligations is the key for a successful implementation of the Treaty. Although sharing of PGRFA under the MLS, itself, is recognized as a major benefit, this is true when benefits arising from the use of PGRFA are shared on a 'fair and equitable' basis. The fairness and effectiveness of the benefit sharing arrangement will be reflected on the achievement of food security, enhanced sustainability of agriculture and improved status of PGRFA conservation and use. The exchange of information and results of technical, scientific, and socio-economic research on PGRFA, and access to and transfer of technology are among the most important benefits to be shared. The Treaty lists various means by which the transfer of technology is to be carried out, including participation in crop-based or thematic partnerships, commercial joint ventures, human resource development and making research facilities available. Access to technology, including new PGRFA developed using the MLS should be provided and/or facilitated under fair and most-favourable terms, while respecting applicable property rights and access laws.Capacity building in developing countries through facilitating scientific education and training, development of technical infrastructure for the conservation and use of PGRFA and carrying out joint scientific research, has been envisaged as an important prerequisite for fair and equitable sharing of benefits (FAO, 2008). The financial benefits arising from commercialization form part of the funding strategy under Article 18 of the Treaty. This strategy also includes the mobilization of funding from other sources. It is crucial for the success of the Treaty that all elements of the funding strategy, including the Global Crop Diversity Trust, work in coherence as part of one strategy.As the monetary benefits flow not to the individual country providing the resources, but to the MLS, the provider of the resources from the developingThe Near East Regional Group 107 countries has limited interest and financial resources to enforce the terms of the agreement when they are breached. The role of FAO as the third party beneficiary appointed by the Governing Body to represent its interests and initiate action where necessary to resolve disputes is very important.The Treaty has been perceived in the Near East region as a great achievement at the global level. Its impact on this region can be a good indicator of its success to be seen in the future. That is why there is still a great deal of work to be done by all contracting parties, developed countries, in particular, to successfully implement the Treaty and materialize their obligations. In addition, in defining a comprehensive international ABS regime, the specific needs of the agriculture sector need to be taken into account. Mutual supportiveness between the Treaty and the international ABS regime should also be developed. There is also a need for stronger coordination and synergy in the development of policies, legislation and regulations among the international instruments, various ministries, governments and other institutions having responsibility for different aspects of PGRFA. Countries need to adopt appropriate and effective strategies, policies and legal frameworks and regulations that promote the use of PGRFA, including appropriate seed legislation. Greater efforts are needed in order to materialize the real benefit of the Treaty to increase plant breeding capacity worldwide, especially in developing countries by mainstreaming new biotechnological and other tools in unlocking the potential of plant genetic resources.The Treaty as a whole and its MLS as a unique feature of this Treaty should be put into context of all other related issues and communicated properly to other international agencies beyond the agriculture sector. Enhancing coordination, collaboration and synergy among concerned international agencies is vital for the success of the Treaty. Collaboration of UNDP is particularly important for materializing the funding strategy of the Treaty and its benefit sharing mechanism.The North American Group Globalization That Works Brad Fraleigh 1 and Bryan L. Harvey Scientists and policy makers in North America share the view that genetic improvement of crop plants is a great benefit to humanity. It is one of the least costly and most effective ways to increase production of food, fibre and plantbased products, to resist pests and diseases, to meet new market opportunities, and to address the challenges of abiotic stresses such as drought, temperature and climate change.Three conditions appear necessary for these benefits to be realized: plant genetic diversity for food and agriculture must exist; the plant genetic resources must be available; and the capacity must be present to use them -that is, human, scientific and financial resources. These three conditions gave rise to important issues in the negotiation of the International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA or the Treaty), namely: conservation, access to genetic resources, and sharing the benefits arising from their use, in order to build capacity to generate more benefits.It is well understood that all countries are interdependent when it comes to seeking plant genetic resources for food and agriculture (PGRFA) (Palacios, 1997). There is no country that considers itself to be self-sufficient for all the genetic diversity in all of its crop plants for all time. Each country benefits from having access to plant genetic resources kept in other countries. On the other hand, quite a few countries need better capacity to optimize the use of the genetic resources they might possess or acquire. In fact, the more a country can benefit from the use of plant genetic resources, the more they should be willing to share genetic resources with other countries.The United States and Canada did not endorse the non-binding 1983 International Undertaking on Plant Genetic Resources, which neither country had negotiated. In February 1988, Canada wrote to the Director General of the United Nations Food and Agriculture Organization (FAO) detailing four concerns with the International Undertaking (IU). In particular, its concept of 'common heritage of mankind' appeared to conflict with existing property rights, including real property or intellectual property owned by individuals or governments. The statement eventually adopted by the Commission to the effect that 'common heritage of mankind' was not intended to conflict with national sovereignty or property rights, was helpful in that respect but not conclusive. That is one reason both countries were prepared to negotiate a better instrument when the opportunity arose during the 5th regular session of the Commission on Plant Genetic Resources 2 ('the Commission') in 1993, to adapt the IU in light of the newly adopted Convention on Biological Diversity (CBD).North America was concerned with the growing trend of isolationism and 'access chill' towards the end of the last century, fuelled by unrealistic expectations of enormous profits to be made by selling genetic resources. A number of countries were increasingly reluctant to grant permission to collect crop germplasm or to give access to samples of genetic resources kept in their national collections. At the same time there was continued pressure to increase production to feed the growing world population and reduced ability of developing countries to support germplasm conservation. Thus the time was ripe for the establishment of the Treaty.The first negotiating session, which one of us (Brad Fraleigh) had the honour to co-chair with Dr R. S. Rana (India), took place in November 1994. All told, there were 17 negotiating sessions, including 4 regular sessions of the Commission and 12 extraordinary sessions or meetings of contact groups or working groups, before finalization of the Treaty at the 2001 session of the FAO Conference (see Annex 1 of this volume for the list of all the Commission and Treaty meetings). There were also at least three informal consultations. If everyone realized how long it would take, and how hard it would prove, many people would have thought twice about the whole thing!The North American region at FAO consists of only two countries: the United States and Canada (see Annex 2 of this book for the current list of contracting parties to the Treaty in each FAO regional group). The region is the centre of origin for certain crops such as sunflower, tobacco and Jerusalem artichoke. Wild relatives of cereal crops (e.g. wheat, barley and oats) and small fruits (such as raspberries, blueberries and strawberries) are also found here. Native North Americans developed adapted landraces of crops such as beans, maize and squash.Significantly, both countries are major agricultural producers and have invested in sophisticated national crop research systems. Like every country in the world, we have benefited from the use of germplasm accessed from many locations around the globe (see e.g. Shands andWiesner, 1991, 1992). In return for such inputs to their own agriculture, American and Canadian scientists and researchers have generated an enormous amount of crop genetic diversity and made improved germplasm and associated knowledge widely available for use by plant breeders and researchers around the world. This includes crop varieties, elite germplasm, genetic stocks and breeders' lines. North American institutions have provided funding for capacity building and infrastructure development in numerous developing countries. Thousands of graduate students and postdoctoral fellows have been trained in their universities.Both the United States and Canada have long-standing commitments to conservation and the sustainable use of agricultural plant biodiversity. Each has extensive gene bank collections, which are well characterized. The United States has the largest single national genetic resources system in the world. Canada also has extensive collections of crop species found in temperate climates. According to the second report on the State of the World's Plant Genetic Resources for Food and Agriculture (FAO, 2010), North America preserves almost as many genetic resources samples in its ex situ collections as the entire Consultative Group on International Agricultural Research (CGIAR). Access to collections in both countries has been unrestricted for research and further development.Canada and the United States have a long-standing tradition of cooperation in PGRFA. For example, they have maintained reciprocal membership on their respective national plant germplasm committees, and both use the Genetic Resources Information Network (GRIN) database management system, originally developed in the United States. Given this history of cooperation, it is not surprising that the two countries in the North American region have taken similar perspectives on issues related to conservation and utilization of plant genetic resources. It was therefore relatively easy to develop common regional positions during the Treaty negotiations. Frequent regional consultations were held throughout the negotiation process. It was clear to Canada that it would be essential to reach an agreement that the United States could ratify.It is well known that genetic resources are situated at the intersection of many domains: scientific disciplines like genetics, conservation biology, plant breeding and plant health, and social dimensions related to trade, economics, law and culture. Many issues in the negotiation of the Treaty were closely related to each other, and it was necessary to make incremental progress on all of them simultaneously, or in rapid alternation. Negotiators had to make serious efforts to listen carefully in order to understand different points of view and seek common ground.North America initially proposed that the multilateral system for access and benefit-sharing (MLS) should cover the full scope of the Treaty -that is, all PGRFA. It became clear early in the negotiations, however, that for many delegates the extent of coverage of the MLS was closely related to benefit-sharing. Many developing countries wanted proof that the Treaty would generate benefits for their countries to build their capacities to conserve genetic resources and use them sustainably, and would only agree to address a list of crops as a starting point. In the spirit of compromise, North America agreed; one of us (Bryan L. Harvey) chaired the first committee that discussed this topic, and Canada's John Dueck later co-chaired the committee which negotiated the list that eventually became the Treaty's Annex I. The next logical question was which genetic resources would be covered for a given crop. Until quite late in the negotiations, the North American region affirmed their willingness to entertain two options. In one scenario, the entire gene pool of a crop could be included, provided property rights were respected and monetary benefit-sharing was not directly connected with individual transactions.Maintaining and defending real and intellectual property owned by individuals, including farmers, by legal entities such as plant breeding companies, and by governments, was an important consideration for North American negotiators. The offer made by some African delegates to provide access to 'all our farmers' landraces' if other regions guaranteed access to 'all of the private collections' proved unacceptable to North America, because of the implied expropriation of the private property rights of farmers and other owners of genetic resources.Under the other option, if monetary benefit-sharing was to be directly connected to individual transactions, only genetic resources under the management and control of national governments could be included in the MLS, because governments could not legally ensure that benefit-sharing arrangements would apply to genetic resources owned by other entities. Of course, this option does not exclude coverage, on a voluntary basis, of other genetic resources owned by anyone else. Developing countries eventually preferred this second option, which became the basis of the terms of access and benefit-sharing in the Treaty.The discussions on Farmers' Rights were often quite bewildering for developed countries. Canada, for example, has publicly stated that it takes numerous measures to ensure the contribution of farmers to the conservation and sustainable use of PGRFA, without the need for a specific law on 'Farmers' Rights'. Canadian farmers share in benefits arising from the utilization of PGRFA, in particular, the availability of new crop cultivars that are better suited to the challenges they face and to new market opportunities. Crop research is directed toward developing and evaluating new crop varieties that will enable producers to access new markets, diversify production, improve the quality of their products and enhance resistance to pests and pathogens. Increased crop diversity enablesThe North American Group 113 farmers to use new crops in rotation, aiding pest management strategies and ensuring more balanced soil nutrient distribution both spatially and temporally. Crop breeding programmes emphasize crops that represent large acreage, strong production potential in northern latitudes, or have the capability to act as effective components of a system for diversification or sustainable cropping practices. The production of new crop varieties with pest resistance is a key component. Major pest threats to crop production have been documented and potential new threats are monitored so that all significant pests are considered. Breeding programmes include pest resistance screening as a routine feature, and may use biotechnological tools to introduce genetic resistance into new varieties.Many research centres are studying new crops and varieties for rotation, intercropping, replacement, niche markets and market opportunity. A wider diversity of alternative crop options supports the use of effective crop rotation as pest and resource management tools. Programmes that support crop diversification are carried out in Canada in conjunction with provincial initiatives and in cooperation with the private sector. Better management of inputs is an important aspect of crop diversification initiatives and the thrust is to reduce inputs through the use of new crop varieties, improved management practices and better timing and selection of inputs.Farmers' associations in Canada participate in making decisions at the national level, on matters related to the conservation and sustainable use of PGRFA. For example, many producers' organizations were consulted in the development of Canada's agriculture and agri-food policy framework known as 'Growing Forward' (Agriculture and Agri-Food Canada, 2008).Canada is of the view that all communities create culture and some of these cultural expressions may be considered traditional knowledge. Knowledge, traditional or otherwise, evolves over time. Community-level procedures for accessing traditional knowledge differ from one community to the next, and for many reasons. To a large extent, decisions regarding what is 'protected' are taken by key individuals and/or the community as a whole. In many cases, how an indigenous community achieves informed consent for access to traditional knowledge within its community is privileged information and therefore not for disclosure to users, the public, governments or the parties to the Treaty.The preservation of traditional knowledge may take many forms, including (but not limited to): maintenance and transmission of traditional practices; preservation of aboriginal languages; preservation in national collections (e.g. artefacts and records); support for cultural organizations and activities; and preservation and distribution through print and broadcast media. Under Canada's national intellectual property system, there is no specific protection for traditional knowledge. Nevertheless, a creator or inventor who meets the specific requirements of a particular piece of intellectual property legislation will receive intellectual property protection. Examples of such protection can be found in relation to copyright law, patent law, industrial design law and trademark law. Additionally, trade secrets law may be of use to holders of traditional knowledge if such knowledge is susceptible to commercial application.North America was therefore not initially inclined towards subscribing to the concept of Farmers' Rights in a legally binding international agreement. Moreover the demand for Farmers' Rights was often inconsistent and contradictory. At one point, no less than 13 different themes were proposed by various delegations under this heading! This situation led to many misunderstandings. At one point our Head of Delegation, the late John Dueck, read out a statement explaining that it was a problem for Canada to consider Farmers' Rights as a new 'human right' because in our country human rights were for everyone, and cannot apply to a single occupational group, even one as important as farmers. A representative of a Canadian-based civil society organization (CSO) became upset, stating that if Canada awarded plant breeders' rights to plant breeders we could award Farmers' Rights to farmers. This is inaccurate, because anyone can obtain a plant breeders' right if their crop variety or line meets the criteria in the legislation, and they don't have to be designated as a 'plant breeder'. The CSO representative then announced he would mobilize Canada's farmers against this position. The department of agriculture did in fact receive a letter from the association that represents the vast majority of Canada's farmers, which supported the official Canadian position. Eventually common ground was found among the negotiators, and Article 9 of the Treaty entitled 'Farmers' Rights' was one of the first major issues to be agreed. One essential element was the provision that the responsibility for realizing Farmers' Rights rests with national governments. This remains a challenge for the Governing Body of the Treaty, where certain delegations are tempted to propose resolutions which try to tell national governments what to do.Some delegations presented an 'entitlement' or 'compensation' approach to financial resources under the Treaty. On the other hand, many North American stakeholders pointed out that since everyone would benefit from improved access to crop genetic diversity, there should be no need for any dedicated funding at all for the Treaty. Other North American policy-makers, including the authors (see Fraleigh, 1987), argued that many countries lack capacity, or require additional capacity, to optimize the use of the genetic resources they might possess or acquire. Why, if they are not assisted to build their capacities, would such countries be motivated to share plant genetic resources with others? In definitive, the North American approach to financial resources and benefit-sharing was strongly linked to capacity-building in the conservation and sustainable use of PGRFA.In Canada, there is a strong tendency to consult. Many stakeholders contributed to the development and consideration of the Canadian approach to the Treaty. The country's official positions were determined by a federal government interdepartmental committee on genetic resources at the FAO. This committee wasThe North American Group 115 chaired by the department of Agriculture and Agri-Food Canada and included representatives from federal departments and agencies dealing with foreign affairs, international trade, international development, industry (mostly regarding patent policy), food inspection, environment and forestry. A series of legal advisors working for the Ministry of Foreign Affairs provided invaluable counsel about the conformity of various proposals with Canadian law and international obligations. The Canadian International Development Agency had great influence in determining Canada's positions on financial resources.Advice was requested regularly during the negotiations from other national stakeholders by way of Canada's national expert committee on plant genetic resources. These stakeholders included representatives of provincial departments of agriculture, academia, scientific societies, CSOs and industry associations. The industry associations, especially the Canadian Seed Trade Association, which represents private sector plant breeders, followed the negotiations closely, recognizing that a global agreement on terms of access to genetic resources and benefit-sharing might contribute significantly to legal certainty in their work.Canada had one of the few delegations that regularly included non-government members. Agriculture and Agri-Food Canada offered to fund half the cost of participation of one industry representative and one civil society representative in the Canadian delegation for each negotiating session. These representatives were nominated by the national expert committee, not by government. Industry took up this offer more often, and named one of us (Bryan L. Harvey) as their representative. He later served as Chair of the second meeting of the Interim Committee for the Treaty in 2004 during the period between the Treaty's adoption and the first meeting of its Governing Body. CSOs sent Ms Sharon Rempel, at the time a member of Seeds of Diversity Canada to one negotiating session. She served as a fully fledged member of the delegation and attempted to act as a link between the delegation and international CSOs. As officials representing the Canadian government, negotiators were always cognizant of the need to be aware of the views of all national stakeholders and to understand these as clearly as possible, in order to provide advice on Canadian positions from the perspective of national interest and good public policy.The stakeholders remain involved during the implementation of the Treaty. Canada initiated use of the standard material transfer agreement (SMTA) on 1 July 2008, which leads to monetary benefit-sharing when the recipient commercializes a product under its terms. In 2009, Canada announced its first voluntary contribution to the Treaty's Benefit-Sharing Fund, relative to commercialization of a superior line of triticale developed by Canadian researchers working with the CGIAR and in particular the International Maize and Wheat Improvement Centre (CIMMYT). It will be an annual contribution for the duration of the commercial life of the variety.North America perceives a number of strengths in the Treaty (see Annex 3 of this volume for information on the main components of the Treaty). It recognizes the special status of PGRFA, and was tailored for this sector. Its scope covers all PGRFA, not just Annex I species. Establishment of a multilateral system of facilitated access and benefit sharing for crops important to global food security is a strong positive step. The MLS defines and codifies the rights and obligations of contracting parties to conserve and provide access to their germplasm and to ensure that appropriate benefits flow from its utilization, with a good balance of provisions contributing to both these objectives. It is a benefit that a large number of countries have ratified the Treaty; Canada has been a contracting party since 2002. The United States is in the final stages of its complex international treaty ratification process and is expected to ratify in the not too distant future. This would further strengthen the Treaty. North America views the inclusion of the collections in the international agriculture research centres supported by the CGIAR and other international organizations to be an important positive inclusion.North America has also identified some weaknesses in the Treaty. In the view of its spokespersons, the species list in Annex I is far too short and should be expanded; soybean is a clear example of a crop that should logically be included, because it so obviously fulfills both the criteria of food security and interdependence stated in the Treaty's Article 11.1. It is also a weakness that uses in agro-forestry, industrial agriculture and ornamentals are not currently envisaged, bearing in mind that food security requires that farmers have access to a range of cash crops which can generate revenue for them to purchase inputs and necessities to improve their lives.Benefit-sharing provisions specified in the SMTA may be weaker than they needed to be, and may not optimize the generation of revenue in the short term. There may be more willingness to pay for benefits at a reasonable rate, bearing in mind the very low margins in the international seed industry. Thus, for instance, if an acquired accession contributed more than 25 per cent by pedigree, or contributed a significant trait, such as disease resistance, to a resultant commercial cultivar, then a requirement for payment could be triggered regardless of whether the resulting product was freely available for further research and breeding. The current provision, that a payment is only triggered if the product is not freely available, means that a smaller percentage of varieties will generate revenue for the Treaty. Thus revenue may rely in the short term, for the most part, on voluntary contributions such as Canada has already made.The practical fact that the effective operation of the Treaty will rely on the good sense and good will of the participants is both a strength and a weakness. Implementation of the Treaty will be largely self policing. Fortunately, the overwhelming majority of people involved in crop plant germplasm conservation and utilization are committed to doing the right thing for the betterment of the human condition.Challenges ahead and how these could be metThe major challenges for the Treaty are to articulate and enhance its role to accompany and assist member countries in addressing the interrelated global problems of food security, climate change and habitat destruction, as well as the increasing urgency to address these issues. PGRFA are threatened by these problems but can also contribute to solving them.When the text of the Treaty was adopted by FAO Conference in November 2001, the Earth Negotiations Bulletin wrote:… major hurdles still remain. First is the issue of ratification, which raises the need to educate national policy-makers and those actually using plant genetic resources for food and agriculture on what the system is and how it will work. Several delegates also mentioned that negotiations on the standard MTA could easily occupy them for another seven years. As countries turn to the future they will have to identify the necessary capacity for national implementation, a process well evidenced in delayed ratifications of the Cartagena Protocol on Biosafety and in related discussions on access and benefit-sharing under the Convention on Biological Diversity. Negotiators will also remain busy with discussions on how other ex situ collections of genetic resources … should be handled. (Earth Negotiations Bulletin, 2001) The situation is quite different today in many respects. The Treaty entered into force in 2004 and there are 127 contracting parties at the time this chapter was written -ratification by all eligible countries would be even better. The Treaty's Governing Body adopted the SMTA at its first meeting in 2006, and it is being used in many member countries. Standards for ex situ gene banks are being updated by the Governing Body and the Commission working together. In many areas, science and technology, especially the enhanced use of molecular technologies, have the potential to increase the contributions of plant genetic resources to solving food security problems.Significant financial support has been provided under the Treaty's benefitsharing fund and by the Global Crop Diversity Trust to build capacity in the conservation and sustainable use of PGRFA. However, strengthened research capacity is required in many areas, for example, to address gaps in characterization and evaluation data. Human resource capacity and needs should be assessed and prioritized by countries requiring international assistance, as the basis for drawing up education and training strategies. Human capacity, funds or facilities, are not adequate in some parts of the world to manage ex situ collections at the required standards.The use of plant genetic resources has been stimulated by the creation of FAO's Global Partnership Initiative for Plant Breeding Capacity Building (GIPB), but its investigations have so far demonstrated that overall, global plant breeding capacity has not significantly changed.In Canada, following the entry into force of the Treaty, one of us (Bryan L. Harvey) presented the provisions and impact of the Treaty to several meetings of plant breeders and scientists in academic and government institutions across the country. This was helpful to educate users of plant genetic resources and decisionmakers. However, many feel the Treaty needs to generate more information about continuing genetic erosion, in other words the loss of crop genetic diversity. Genetic vulnerability, which is strongly correlated with the diversity of crops grown in the field, also needs to be accorded more attention. More information is needed for policy-and decision-makers about the contributions of plant genetic resources to solutions for the many challenges faced by agriculture, including the need for increased production, threats from pests and diseases, climate change, and so on.These gaps and needs are detailed in the second report on the State of the World's Plant Genetic Resources for Food and Agriculture (FAO, 2010). Many are susceptible to enhance national implementation. The priority activity areas to address these issues should emerge from the process of updating the first Global Plan of Action on Plant Genetic Resources for Food and Agriculture (FAO, 1996), which will be considered for adoption by the Commission on Genetic Resources in 2011. The updated Global Plan of Action should also establish the funding priorities for the Treaty.North America has evidently maintained its long-term vision of a MLS expanded to cover the full scope of the Treaty, in terms of crops as well as agricultural uses. Views tending in the same direction are being expressed by people in other parts of the globe, and such expansion may well take place in due time, as the generation of benefits thanks to the MLS becomes progressively more evident.In closing, one challenge for the Treaty, at least during the next few years, will be to determine its interaction with and relative field of activity relative to the new 'Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits Arising from their Utilization to the Convention on Biological Diversity'. The Nagoya Protocol was adopted quite recently, in October 2010. Many of its provisions will require interpretation, and will no doubt be discussed for many years to come. The article entitled 'Relationship with International Agreements and Instruments' is particularly interesting for parties to the Treaty. It states in particular that:… the provisions of this Protocol shall not affect the rights and obligations of any Party deriving from any existing international agreement, except where the exercise of those rights and obligations would cause a serious damage or threat to biological diversity. and later in the same article states that:… where a specialised international access and benefit-sharing instrument applies that is consistent with, and does not run counter to the objectives of the Convention and this Protocol, this Protocol does notThe North American Group 119 apply for the Party or Parties to the specialised instrument in respect of the specific genetic resource covered by and for the purpose of the specialised instrument.These provisions may present a useful basis for mutually advantageous interaction between these two legally binding international instruments. The Southwest Pacific Regional Group A View from the Pacific Island Countries and TerritoriesVisitors to the Pacific region are often amazed by the diversity that exists. The region is geographically, ecologically, sociologically and economically diverse. The Pacific region, with a land area of 550,000km 2 surrounded by the largest ocean in the world, is home to 9.5 million people. Five islands (Fiji, New Caledonia, Papua New Guinea, Solomon Islands and Vanuatu) account for 90 per cent of this land area, and more than 85 per cent of the population. In contrast to these relatively large landmasses, the world's smallest island states and territories, for example, Nauru, Tuvalu and Tokelau, can be found in the Pacific (see Annex 2 of this volume for the list of contracting parties by regions). The importance of agriculture in sustaining livelihoods varies across the region. In the larger islands, such as Papua New Guinea, Solomon Islands and Vanuatu, agriculture, and forestry also, remain the mainstay of the economy and employment, contributing significantly to household income and, increasingly, export earnings, whereas subsistence dominates in some of the smaller islands (SPC-LRD, 2008b). Islands, by their very nature, have unique diversity and the Pacific is no exception. The region is the centre of diversity for coconut (Cocos nucifera) and breadfruit (Artocarpus altilis). Secondary centres of diversity have arisen for crops such as sweet potato and yam, moving with people as they migrated from different regions. Banana (Musa spp.), yam (Dioscorea spp.) and taro (Colocasia esculenta) emerged from Southeast Asia, but are now very important staple crops in the Pacific, reflecting the interdependence among regions. This interdependence continues to this day, with pest and disease outbreaks and climate change, highlighting the vulnerability of the majority of Pacific Island countries. The importance of crop diversity to food and nutritional security in the Pacific is further discussed in the following heading.The Pacific region faces numerous social and physical challenges in maintaining and improving the productivity of their agriculture sectors and protecting their biological diversity. The geographical isolation of the region and the small size of many of the islands have resulted in a narrow genetic and production base with limited opportunities for scaling up production. These constraints do little to support recovery from natural disasters which are an increasing occurrence. Movement of goods and people, through trade and tourism, have heightened the risk of introducing unwanted plant and animal pests, weeds, diseases and other alien invasive species, threatening the fragile ecosystems and resource base of the region.Significant social challenges exist which affect the agriculture sector. Populations are projected to grow at an annual rate of 2 per cent in Melanesia, 1.84 per cent in Micronesia and 0.7 per cent in Polynesia. 1 Urban populations are growing at a faster rate, and are expected to double in 25 years in Melanesia. Rural to urban migration has the potential to reduce agricultural production and increase reliance on imports. Diets that include an increasingly higher proportion of imported food with little nutritive value are causing or contributing to escalating rates of non-communicable diseases, malnutrition and micronutrient deficiencies (SPC-CRGA, 2008a).Climate change will exacerbate many of these challenges -the fragile ecosystems and in the majority of cases the fragile infrastructure will be tested to the limits. The region is used to disasters but it is foreseen that these disasters will increase in intensity and become more unpredictable with climate changes. This impact has been demonstrated very clearly in 2009-2010 in Fiji with the occurrence of severe flooding and two cyclones, Cyclone Mick and Cyclone Tomas. These disasters impose serious constraints on development in the islands, so much so that some of the islands seem to be in a constant 'recovery-mode'. With urbanization and an increase in imported food consumption comes also a loss of traditional knowledge and practices of local farmers -this knowledge and these practices are likely to be critical in finding solutions to future challenges, such as climate change.Food security in the Pacific falls under the mandate of the Secretariat of the Pacific Community (SPC), an intergovernmental organization providing technical and policy advice and assistance to its Pacific Island members. SPC was established as an international organization in 1947 and has 26 member countries and territories, 4 of which are founding members (Australia, New Zealand, France and the United States of America). SPC services are provided primarily in the form of technical assistance, training and research. The organization has six divisions, one of which is the Land Resources Division which covers sustainable forestry and agriculture, genetic resources, plant health, crop production, animal health and production, and biosecurity and trade.The Southwest Pacific Regional Group Australia as a founding member of SPC, provides significant support to the organization, through support for ongoing priority core programmes, and also additional funding for the implementation of specific initiatives, such as climate change adaptation through the International Climate Change Adaptation Initiative (ICCAI). It is also the leading donor of aid to the independent countries of the Pacific, and has significant trade and commercial interests in the region -the Pacific is Australia's closest market. Within the context of the International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA or the Treaty), Australia is a contracting party and a member of the Southwest Pacific group (see Annex 2 of this book listing the SWP contracting parties to the ITPGRFA). With its significant capacity advantage in conventions and legal matters, Australia has represented the Pacific region at Treaty negotiations within the Southwest Pacific group.Crop (PGRFA) diversity is an essential tool to assist the region in responding to the many challenges it faces, providing the means to manage climate change, to meet market needs and, importantly, ensure food and nutritional security. A wide range of PGRFA diversity will be required to satisfy this basket of needs. The Pacific is a centre of diversity and/or origin for a number of crops, but in general, due to its history of human colonization, genetic diversity in the mostly vegetatively propagated crops of the region declines markedly from west to east. In 1998, the 'Taro Genetic Resources: Conservation and Utilization' (TaroGen) project, funded by AusAID, 2 was established. Over 2000 taro accessions were collected from within the region. Morphological and molecular approaches were utilized to determine what diversity existed in the collection and to identify accessions for the core collection, representative of the diversity in the whole collection, reducing the size of the collection from 2000 to 200 (Mace et al, 2006). The subsequent molecular comparison between Asian and Pacific taro germplasm confirmed the limited genetic diversity that exists in the Pacific, compared to Asia (Lebot et al, 2004) and set the direction for taro breeding programmes in Samoa and elsewhere.The vulnerability of a limited genetic base was clearly demonstrated in Samoa in 1993 when taro production was brought to a halt by taro leaf blight (TLB), a disease caused by the fungus, Phythphthora colocasiae. Taro was the main staple food in Samoa as well as a lucrative cash crop, with exports worth US$7 million annually. TLB wiped out the entire taro industry in a matter of months, raising food security concerns, and significantly reduced export revenues, which impacted on the nation's foreign reserves. Across the food sector, taro was soon replaced by less nutritious starchy staples in the form of instant noodles and rice. There was also fear that the disease might spread to the Cook Islands, Fiji, French Polynesia, New Caledonia, Niue and Vanuatu, with equally devastating results. At the time of infection taro production was based on just one variety, that of taro Niue, which was highly favoured by the overseas market. Niue was highly susceptible to the disease, and combined with ideal weather conditions and the movement of planting material, these factors enabled the disease to reach epidemic proportions.Chemical and cultural control methods were evaluated but were neither effective nor realistic. At the same time as chemical and cultural control methods were being tested, local varieties were also being evaluated for their resistance to TLB, but no resistance was found; they were all, in fact, highly susceptible. Consequently the call went out to other countries both within and outside the region for taro varieties with known resistance/tolerance to TLB. From outside the region the Philippines was the first to respond and provided a variety known as PSB-G2. Varieties from the Federated States of Micronesia and Palau were also considered, and a variety called Ngerruuch from Palau was particularly successful, both in its response to TLB and also its acceptability by the Samoans. It was therefore PSB-G2 and Ngerruuch that supported the revival of taro production in Samoa, a case of 'crop diversity to the rescue'.The TLB outbreak in Samoa highlighted the importance of diversity, of which there was limited awareness. It had such major consequences for the country, there was no ignoring the fact that diversity was important and should be an important component of any crop production chain. The need to be able to access diversity from elsewhere, demonstrating that no country is self-sufficient in PGRFA diversity, had also been highlighted. Countries can only have access to diversity outside their borders if others are willing to share. This was a key message for the Pacific region where many of the major staple crops, including taro, have very strong cultural associations. This cultural connection strengthened the belief that all crops and varieties required for food security could be found at least within national borders and at most within the region.After 1993 there were a number of developments that acknowledged the importance and renewed interest in PGRFA. Of significance was a meeting in 1996 of the Pacific ministers of agriculture, where they pledged to put in place at the national and regional levels, policies to conserve, protect and utilize plant genetic resources. SPC's response to this recommendation was twofold: the establishment of the then Regional Germplasm Centre (RGC), now the Centre for Pacific Crops and Trees (CePaCT) in 1998 and the Pacific Plant Genetic Resources Network (PAPGREN) in 2001. These two components of the Genetic Resources programme within the Land Resources Division of the SPC ensure an effective regional hub, but equally important, an active and wide-reaching network, which supports both national and regional activities.The basic aim of the CePaCT is to provide the region with the means to safely and effectively conserve their PGRFA, and to facilitate access to useful diversity both within and outside the region. In vitro methodology is used, and collections exist for the aroids, yam, sweet potato, banana, breadfruit, cassava, and other moreThe Southwest Pacific Regional Group 125 minor crops. Since its establishment in 1998, the Centre has significantly expanded its operations, both with regards to collections conserved, crops/accessions distributed and research conducted. CePaCT now holds a globally unique collection of 878 accessions of taro, and is building up its collections of other edible aroids and yam species. CePaCT has generated interest in diversity through its distribution programme; countries are keen to evaluate new varieties, increasingly so with the concern over climate change. The offer of crops and varieties in the 'climate ready collection' further that interest for 'new' diversity.In 2001, PAPGREN was launched, with funding from NZAID 3 and ACIAR. 4 Technical support was made available by Bioversity International. At the time of inception, the membership of the network included 11 Pacific Island countries; membership now stands at 17, and includes 2 French territories. PAPGREN was the perfect framework within which to nurture the importance of diversity and the need to share that diversity. In 2003 a publication commissioned by PAPGREN, 'Policy Issues Relating to Plant Genetic Resources in the Pacific' was released (SPC, 2003). At the First Regional Conference of the Ministers of Agriculture and Forestry Services, held in Fiji ( 2004), a paper was presented that emphasized the importance of the Treaty and urged countries to ratify. At the end of the meeting, the ministers acknowledged:… that access to genetic resources (crop, tree and animal) is necessary to ensure food security in the long-term. Broadening the genetic base of crop, trees and livestock, and genetic improvement and diversification are crucial in coping with climate change. Access to and utilization of genetic resources will be enhanced through active participation in PGR networks, both at the regional (PAPGREN) and international level (COGENT [International Coconut Genetic Resources Network] and BAPNET [Banana Asia and Pacific Network]). To ensure continued access to genetic resources, the countries of the region should consider endorsing the RGC MTA, ratifying the International Treaty, and signing the Establishment Agreement for the Global Crop Diversity Trust Fund (SPC, 2005). (See Chapter 16 for details on the GCDT.)This was basically the first exposure the Pacific region had to the Treaty.In May 2006, a Plant Genetic Resources for Food and Agriculture Workshop was held in Fiji by SPC in collaboration with the Australian Government DAFF 5 and CSIRO. 6 At this meeting DAFF clarified the elements of the Treaty, and participants formed working groups to address the standard material transfer agreement (SMTA); regional issues; Farmers' Rights and implementation issues. The workshop showed there was a general willingness throughout the Pacific to participate in the Treaty and the multilateral system (MLS), as exemplified in the 2004 resolution of the Heads of Agriculture and Forestry Services (HOAFS) meeting. There was consensus that the main challenge for people working in the area of plant genetic resources is the ability to influence their governments on the costs and benefits of the Treaty. The workshop agreed that SPC had, to date, performed a key role in brokering initial information sharing on the Treaty (workshops, policy advice, draft Cabinet submissions). The outcomes from the Fiji workshop indicated that the Pacific region was strongly committed to the Treaty and wished to be fully engaged in the process.The first meeting of the Governing Body of the ITPGRFA was held in Madrid in June 2006 (see Annex 1 of this volume for the list of all Commission and Treaty meetings). Contracting parties attending from the Southwest Pacific region were Australia, the Cook Islands, Kiribati and Samoa. New Zealand and Fiji sent observers. The Southwest Pacific region held discussions prior to the Governing Body meeting, and daily discussions prior to each day's proceedings. At this meeting the Southwest Pacific group agreed that DAFF would represent the region on the Bureau of the Governing Body.During their country presentations at the 2006 annual PAPGREN meeting, the Cook Islands, Kiribati and Samoa encouraged other countries to ratify the Treaty thereby having a voice in negotiations. It was evident at this meeting that PAPGREN representatives fully supported the aims and objectives of the Treaty and would endeavour to progress ratification in their countries. However, the number of contracting parties to the Treaty did not increase until 2008 when Fiji and Palau acceded to the Treaty after PAPGREN conducted national consultations in both countries. One impediment to ratification of the Treaty has been the relatively frequent changes in government in many countries, especially the larger ones. The Treaty ratification process is a lengthy one, and in several cases ratification has not been achieved after significant work has been carried out by the PGR focal point due to a change in government or key people within the government.Although a significant number of countries in the Pacific are yet to accede to the Treaty, the progress made in the overall understanding and acceptance of the importance of sharing diversity has to be recognized. It has been achieved through both a top-down and bottom-up approach, acknowledging the key contributions of the ministers in both 1996 and 2004, and the PAPGREN national focal points. An independent survey recently conducted showed that, since the establishment of PAPGREN, the understanding of PGRFA issues and their contribution to food and nutritional security has significantly increased. Annual meetings mean that PGRFA researchers and workers meet, exchange ideas and skills on how to use and enhance PGRFA. National priorities and problems are highlighted and the network strives to find solutions. This open dialogue has supported the development of a healthy and positive attitude to sharing PGRFA, and the realization that no country has the genetic resources or the human and financial resources to have the answer to all PGRFA issues -and that this dependency exists beyond the Pacific region.The ultimate recognition that the region fully appreciates the importance of sharing germplasm was evident from the formal placing of materials held in the CePaCT into the multilateral system of the Treaty by the Samoan Agricultural Minister on behalf of Pacific Ministers of Agriculture and Forestry at the 3rd session of the Governing Body of the Treaty in Tunis, 2009. The Minister emphasized the importance of agriculture to Pacific Islands and the need to protectThe Southwest Pacific Regional Group 127 biological diversity to ensure food security, especially in light of climate change and natural disasters. He said that the region's significant diversity is not enough to deal with future challenges, and welcomed access to global diversity through ratification of the Treaty.What are the issues faced by the Pacific with regards to the implementation of the Treaty?In September 2009, a workshop on the Treaty was held in Fiji for PAPGREN members. The aim of the workshop, funded by NZAID through PAPGREN and with supporting funding from the Treaty Secretariat under the Joint Capacity Building programme, was to identify and discuss concerns from non-contracting parties regarding accession to the Treaty, and equally concerns from contracting parties regarding implementation of Treaty obligations.The 2009 workshop allowed for very open dialogue on the Treaty and at no point did any of the non-contracting parties express any major difficulties with the Treaty itself. Problems in ratification tended to centre on the issue of logistics, such as changes in government as previously mentioned. Human resources are also a constraint, especially in the smaller countries, where one individual has responsibility for more than one thematic area, and is often required to travel to many international meetings throughout the year. Countries do not have legal expertise in PGR policy, which leaves it to the national PGR focal point to try and explain the benefits of the Treaty to the government legal office. The smaller countries are at a disadvantage due to their human resources and the lack of understanding of legal PGR issues within the government legal office, whereas the larger countries tend to suffer from overly complex procedures. It is interesting to consider the reasons why the Cook Islands, Kiribati and Samoa were the first three countries to ratify. The Cook Islands has relatively limited PGRFA diversity, but because of its exposure to the New Zealand market had a very good understanding of the importance and usefulness of diversity. Kiribati is an atoll, also with limited diversity and much threatened by climate change. Its opportunities for market development are also poor, constrained by land and human resources. The experience of Samoa with TLB was sufficient justification for ratification. However, what all three countries had in common also was the relatively high position of the PGR focal point within the national system and stability of government.Fiji and Palau both acceded to the Treaty in 2008, after national consultations were held in each country. This points to another factor that can delay the ratification process and that is the number of parties involved in the process, making national consultations almost essential, to ensure all stakeholders are involved in the decision-making process. A good example of just how complicated it can get in one island country can be found in the Federated States of Micronesia (FSM). For FSM to accede to the Treaty there would have to be not just approval at the national level, but also at the State level -and there are four States. This is not a reflection of lack of political will but more an indication of limited resources and a basic lack of capacity and knowledge. Despite efforts at the regional level to raise awareness as to the importance of the ITPGRFA, this information and knowledge does not reach all of those involved in the ratification process. For FSM to fully engage in the ratification process, consultations would be required within each of the four States which has obvious financial implications.The contracting parties highlighted a number of areas which they felt were unclear and/or were impacting on implementation of Treaty obligations. The issue of having the capacity to develop genetic resources was raised several times during the course of the meeting, bearing in mind that the Treaty is set up to encourage the development of new varieties that can assist with adapting to climate change and for food security. Bearing in mind the diverse nature of the islands, there is an urgent need for capacity building in crop improvement, at the community level and national levels, preferably using participatory approaches to ensure sustainability.All participants at the workshop -contracting and non-contracting partiesexpressed a desire to have stronger representation at the Treaty meetings. With the current FAO designation, the Pacific Islands are grouped with Australia under the Southwest Pacific region banner. In the discussions, the legal expertise required to negotiate at these meetings was acknowledged and as such, Australia was best placed to represent the region. However, there are many instances where Australia and the Pacific islands would have differing opinions on a Treaty issue. Various approaches were discussed to address this concern, with the drafting of a regional paper prior to any meeting, considered the best option.The Treaty is no exception to the many international frameworks that require implementation and as such the limited capacity in the Pacific region was discussed at length. The number of ways in which this could be supported was highlighted, for example, through education programmes, awareness raising and simply learning from other regions/countries' approaches to implementation. The workshop noted that the regional arrangement with CePaCT acting on behalf of the countries to import crop diversity from outside the region was working well and suggested that this same arrangement could be used to assist countries with implementing the Treaty. The smaller countries were very much in support of this idea. Therefore, it was recommended that SPC, in consultation with the Joint Capacity Building Programme, should draw up a proposal formalizing such a scheme for submission to the 2010 session of Heads of Agriculture and Forestry Services (HOAFS), after consultation at the technical level through PAPGREN. A draft agreement is currently being prepared to address this recommendation. Under this agreement SPC would act as an agent for the countries, both contracting and non-contracting parties.Parties felt that generally awareness of the Treaty at the national level is low (see Annex 3 of this book for details on the main provisions of the Treaty). There is a perception in many countries that the genetic resources of a country should generate funds for the 'owner' of these resources. The need for more awareness was reinforced by some of the non-contracting parties, especially those countries where, prior to any agreement regarding genetic resources, consultation would have to occur at the provincial level. This is possibly a lesson to be learned by PAPGRENThe Southwest Pacific Regional Group 129 in that the momentum on awareness has not been maintained. This is a reminder of the importance of national consultations enabling a wide stakeholder audience to be reached. Case studies are a good tool for promoting any topic. The situation in Samoa raised the PGRFA diversity flag in the early 1990s, but since then there have been no similar situations strengthening that message. The SPC Genetic Resources team are implementing two studies, which aim to show how a fragile agricultural system and ecosystem can benefit from increased diversity, which has been made available through the mechanism of the Treaty. One study was initiated last year in Fiji, with three communities. Discussions with communities were recorded, and the PGRFA diversity for each of the sites, surveyed and recorded. Communities also discussed their observations regarding weather patterns. These results will form the baseline data with which to monitor both the introduction of diversity and its benefits in helping communities better manage climate change. A similar study has been initiated this year in Palau in the Kayangel Atoll.Article 9 is also an area of interest and has been highlighted in Samoa where a participatory taro breeding programme has generated some good taro lines, over which the farmers feel they have ownership rights. This situation once again reinforces the need for awareness and that promoting and strengthening awareness has to be continuous. There is a need to demonstrate to the farmers that these taro lines have resulted from countries sharing their taro diversity and it is important to pursue that route for the sake of global food security. However, this does not negate the important role that farmers have played and continue to play in the conservation and development of plant genetic resources (see Chapter 13 for details on farmers' communities). SPC, with funding support from the Technical Centre for Agriculture and Rural Development (CTA) is conducting a study, the results of which will assist SPC to provide its member Pacific Island countries and territories with the appropriate tools to protect and promote traditional/indigenous knowledge, specifically within the context of the Treaty, at the regional and national levels. The scope of activities will include:• a review of international, regional and/or national and/or local initiatives and best practices to comply with Article 9 of the Treaty; • an assessment of SPC's responsibilities and opportunities for addressing the protection of traditional/indigenous knowledge in relation to the Treaty; • consultations in three Treaty contracting parties (including Fiji) through in-country visits to explore their understanding, application of and concerns around Article 9 of the Treaty; • consultations with key stakeholders at the regional and international level to identify areas for partnership and collaboration to advance the protection of traditional/indigenous knowledge relevant to PGRFA and enhance Farmers' Rights in accordance with Article 9 of the Treaty.Promoting the ITPGRFA in the Pacific region has required discussions with all 22 Pacific Island countries and territories. The five Pacific territories are New Caledonia and French Polynesia (French) and Guam, American Samoa and the Northern Mariana Islands (US). The French territories cannot accede to the Treaty in their own right. The application of the Treaty must be extended to them by France. Since they have autonomy in national legislation, they can then decide to adopt their own legislation for implementation of the Treaty. The French Polynesia General Assembly endorsed the ratification of the Treaty by France, however, New Caledonia is still going through a consultation process. The US territories would be in the same position once the USA has ratified the Treaty.To date, five countries have acceded to the Treaty. As previously stated this is largely due to the lack of capacity and knowledge in the region, which is exacerbated by the fragmented nature of the Pacific and the high cost of travel, making national consultations with wide participation a significant challenge. In addition, the Pacific region was not directly involved in the Treaty negotiations and only started active participation in 2006.Despite the relatively low number of countries that have acceded to the Treaty, significant progress has been made in the last ten years in the area of PGRFA conservation and utilization with the establishment of the regional gene bank, CePaCT and the network, PAPGREN. These two developments have played a significant role in promoting and developing both the concept of sharing PGRFA and the understanding of the contribution PGRFA makes to food and nutritional security. They provide an excellent foundation on which to further accession to the Treaty. The 2009 workshop did much to highlight the issues with the non-contracting parties and the challenges facing the contracting parties. SPC with the Treaty Secretariat and Bioversity International are collaborating to ensure recommendations made at that workshop, such as the agreement that will endorse SPC's role as an agent acting for the countries in the implementation of the Treaty, are acted upon. The climate-ready collection established by CePaCT demonstrates to the countries the importance of accessing PGRFA from outside the region, with its significant number of sweet potato accessions from the International Potato Center (CIP). Activities such as these, and the ongoing case studies, will continue to reinforce the need for crop diversity. Chapter 10International Non-governmental OrganizationsThe Hundred Year (or so) Seed War -Seeds, Sovereignty and Civil Society -A Historical Perspective on the Evolution of 'The Law of the Seed'A half-century lapsed between 1911 when Nikolai Vavilov joined the Bureau of Applied Botany in St Petersburg and when Erna Bennett and Otto Frankel convened the first international technical conference on plant genetic resources in 1961. Twenty years after that, crop genetics suddenly grew into a political intergovernmental debate during an FAO conference that, two years afterwards, created the International Undertaking and Commission on Plant Genetic Resources (IU).It took another couple of decades before the voluntary IU became a legally binding Treaty. When the Treaty's Governing Body convened in Bali to assess its progress in 2011, it had an entire century, 'a 100 Year Seed War', for review and reflection. Most of this past century is a story of scientists and policy makers -'courageous and farsighted leaders' like Nikolai Vavilov and his Russian colleagues, Harry and Jack Harlan, Erna Bennett, Pepe Esquinas, Melaku Worede, Fernando Gerbasi, Tewolde Berhan Gebre Egziabher, Jan Borring, and some others less courageous (some downright cowardly) best unnamed and forgotten.The place and the perspective of civil society, in this century-long history, are less certain. I can only offer this account as a personal remembrance of the past 35 years or so full of the 'mismembering' and myopia of one witness. It is a human weakness that we tend to see ourselves always at centre stage and we forget who was standing there alongside us. My apologies for all of these weaknesses.It is tempting to outdo Vavilov by beginning the story with a Polish-American farmer, David Lubin, and his almost single-handed construction of the International Institute for Agriculture in Rome in 1905. Angered by the grain cartels of that era, Lubin marched off his California farm back to Europe where he somehow arm-twisted the King of Italy into convening the world's first international intergovernmental agricultural meeting. Certainly, Lubin's story is as gigantic and heroic as Vavilov's, but he died in 1919 and there is no evidence in his poorly studied memoirs to indicate that he knew anything at all about plant genetic resources. David Lubin, however, knew something about Farmers' Rights; would easily understand food sovereignty; and would have no difficulty identifying the new integrated multinational cartels that dominate food and agriculture today. Throughout the decades of colourful controversy (from the Green room to the Red room to the Blue room in FAO's building A over the initial IU and later Treaty), David Lubin's legacy has been all around us and most especially in the library named after him on the ground floor of building A. If Lubin were alive today he would be a member of the 'Via Campesina' and he would be preparing to fight for Farmers' Rights and food sovereignty in Bali.However, in the mid-1970s, when Cary Fowler first told me about crop genetic erosion, there was no 'Via Campesina'. When civil society's food researchers first met together in Saskatchewan's Qu'Appelle Valley, in November 1977, there were no farmers among us, and the topic of seeds seemed alien to the much greater interest in monitoring the grain trade, ocean fisheries, the expansion of the dairy industry in Asia, and the campaigns against infant formula. Only Cary and I wanted to talk about seeds. Through his research on 'Food First', Cary had figured out genetic erosion and the links to mergers between seed and pesticide companies. Following his trail, I stumbled on plant breeders' rights. Others did not seem to think it was important.In March 1979, Erna Bennett herself came out to the Saskatchewan prairies to confront the seed trade; do battle against intellectual property over seeds; and advocate for plant genetic resources conservation. Until then, Cary and I had only talked with her on the telephone. No one who attended the packed meeting in Regina will forget her Irish eloquence.By the summer of 1979, I had tortured a long pamphlet into a small book titled Seeds of the Earth but reluctantly concluded that my original target, FAO's World Conference on Agrarian Reform and Rural Development later that year would not yield a sympathetic audience and opted instead, to take the book for its unveiling to the UN Conference on Science and Technology for Development in Vienna. The book 'launch' was singularly unmemorable. I did, however, press a copy into the hands of M. S. Swaminathan who -as Independent Chair of FAO -raised the issue in his speech at FAO's conference a few months later. Knowing that Indira Gandhi would address the next FAO conference in 1981, we opted to try again pushing 'seeds' at FAO.In the summer of 1981, Cary Fowler and I were subcontracted via Art Domick at American University (and an old admirer of Erna Bennett's) to do some work on food policies for the Mexican government. That gave me an opportunity to International Non-governmental Organizations 137 go to Mexico City in September and meet with government officials to propose that Mexico take up 'seeds' at the upcoming FAO conference. A former Mexican minister of agriculture, Oscar Brauer, who had moved on to FAO had already contracted me (through ICDA -the International Coalition for Development Action) to write a report on the implications -if any -of my book for FAO seed policy. Brauer's support probably helped us with the Mexican government.History records that FAO's 1981 conference agreed to consider the formation of a body to study plant genetic resources. The contentious paragraphs were to be considered by the COAG (Committee on Agriculture) at its 1983 meeting and would then be passed on to the next FAO conference in November 1983 (see Annex 1 of this volume for the list of all Commission and Treaty meetings). However, that is getting ahead of things. My own memories of the 1981 FAO Conference are more kaleidoscopic. Cary and I had managed to convince allies at ICDA to join us in Rome for the campaign. We met outdoors in the café across from FAO on the 'Aventino' before the opening session and prepped for the unfamiliar encounter ahead. We were being followed everywhere by a Japanese film crew and when we took our seats in the Observer section of the Blue room for Gandhi's speech, we gathered embarrassing attention. The battery of cameras, trained on the speaker's podium, was interrupted by the Japanese crew's singular focus on our little civil society group off in the corner. The Japanese film crew gave us our first global media coverage. They were unrelenting. Before Rome, they ventured to the ICDA offices overlooking Covent Garden (in the cheap days before the restoration) in London only to find the office door absent and the lone filing cabinet empty. In 1981, we were not impressive.The champion of the 1981 conference was the Mexican delegation led by the very pleasant and charming son of Mexico's former president Luis Echeverría. However, the delegation was intellectually strengthened by Francisco Martínez Gómez (Pancho) who took on the issue as a personal 'cause célèbre'. As civil society, we intervened in the debates as best we could but spent much of the time wringing our hands and anxiously passing notes to the Mexican delegation. Much more effective, I am sure, was Pepe Esquinas who -as a member of the FAO Secretariat in the International Board for Plant Genetic Resources (IBPGR) -seemed to know everybody in Latin America and had his own clandestine avenues. I had met Pepe at FAO either earlier that year or perhaps even the year before -while being berated by Trevor Williams (then, the head of IBPGR) in his office doorway at the time; however, we had not had many opportunities to talk. Most of my links to the internal machinations of the FAO Secretariat were through Erna Bennett who was in the process of being fired. It was only after she left that we realized how strong and important Pepe Esquinas was as an ally and leader.Also in 1981, the IBPGR hosted another International Technical Conference on Plant Genetic Resources at FAO. Cary and I were determined to attend and were made to feel distinctly unwelcome. Erna Bennett had sent me an interoffice memo from Trevor Williams to Dieter Bommer, the ADG for agriculture, warning that I was planning to come and advising that I would not be allowed to enter the building. When I entered, I was confronted by an official who told me I would not be allowed in. I showed him my copy of the memo and pointed out that the meeting was public and that I would go immediately to the media if I was kept outside. I was allowed in. On reflection, it probably would have been more fun to stay outside although we were entertained by Trevor Williams' discourse on the various venues for a world gene bank: the arid south of Argentina, the basement of FAO, or on the frozen island of Svalbard. His best shot: a cupboard on a space station.In March 1983, ICDA scraped together enough funds for me to return to Rome to attend the Committee on Agriculture where the 1981 decision was to be debated again. COAG had set aside one or two hours for the discussion on a Thursday afternoon. Long conversations with Pepe Esquinas persuaded us that we needed to press for three things: the formation of an intergovernmental committee to take on the politics and practice of plant genetic resource conservation at FAO; the formation of a global fund to collect and conserve plant genetic diversity (we thought around $350 million); and (this was at Pepe's insistence) the construction of a World Gene Bank as a backup to other national and regional gene banks.I was the lone NGO observer but, unbeknownst to governments, I had a secret weapon -one of the original IBM PCs. A young high school student named Beverly Cross (whose farm was near my own) painstakingly typed in the entire IBPGR germplasm databook into a spreadsheet. It was miraculous. Suddenly, we were able to identify exactly how much germplasm of which crops every country in the world had either donated or received. I was able to go to literally every delegation in Africa, Asia and Latin America and hand them a note that clearly showed how much germplasm that country had donated and how much it had received -including a list of the countries to which their germplasm had gone. Of course, the figures showed overwhelmingly that the South was a massive contributor of free germplasm and that the North was actively using the germplasm to develop new varieties protected by intellectual property. What was supposed to be a one-hour discussion on a Thursday ran through the afternoon and early evening on to all day Friday and then onward to the following Monday afternoon. Highlights: the Bolivian ambassador demanded that the UN flag be planted on every gene bank and the American delegate advised the other countries present to follow the dictum of Mark Twain ... 'if it ain't broke, don't fix it'. The North was furious. Genetic resources were a non-issue being handled perfectly adequately by existing scientific institutions. They could not understand why the South was insisting that intergovernmental control be asserted over the world gene banks. Manoeuvring in the background all the time was the Mexican delegation led by another son of another former Mexican president -José Ramon Lopez Portilo who later became the Independent Chair of the FAO Council. José Ramon was brilliantly backed by Pancho Martínez, and Pepe Esquinas was everywhere talking to everybody.In the end, COAG produced a report that called for the creation of an intergovernmental FAO committee and Undertaking to address plant genetic resources. The report was to go to the FAO conference at the end of the year.About the time of the COAG, I had a telephone call from Sven Hamrell, the director of the Dag Hammarskjöld Foundation in Uppsala, Sweden. Sven, who I had met once or twice since 1981, wondered if I would write an article for his journal, Development Dialogue, that could be published later in the year. I enthusiastically agreed knowing that the Journal was mass-distributed free to around 18,000 policy and opinion makers around the world.Following the COAG, I devoted most of my time (leaning heavily on Cary Fowler and Hope Shand for advice and research) writing the article that evolved like the pamphlet four years earlier -into a kind of book that the Dag Hammarskjöld Foundation finally agreed to title The Law of the Seed.FAO's November conference was to be the big battle. More than 20 friends from European civil society organizations agreed to join Cary and I in Rome to press for the COAG recommendation as well as for funding and for a global gene bank. I had met Henk Hobbelink earlier in the year and Henk turned into an invaluable colleague and one of the key organizers of our November campaign.We had another secret weapon for the November meeting -Olle Nordberg, Sven Hamrell's accomplice of the Dag Hammarskjöld Foundation who flew to Rome on the opening day of the conference with boxes of The Law of the Seed that he managed to place directly into the box of every government delegation at FAO. Although it seemed unlikely that busy delegates would take the time to read a couple of hundred pages about the politics of genetic resources in the midst of the conference, many of them actually did. On the second day of the conference, we were invited to meet with M. S. Swaminathan who was still Chair of the FAO Council. M.S. had clearly marked out passages he wanted to discuss. Later that morning, we met Mohamed Zehni, Libya's ambassador to FAO who I think was chairing the G-77. Zehni is also a geneticist. He had a copy of the book in his hand when we had coffee and I asked him what he thought of it. He delicately offered the advice that it was 'perhaps a little rich for delegates here ...'. Nevertheless, he had read it! And so had FAO's imperious Director-General, Edouard Saouma. Later in the conference, Saouma's secretary appeared at my elbow cryptically commenting 'the director general is not unhappy with your activities'.The events of the two-week conference are something of a blur. First we fought in the Green room, trying to enlarge the original COAG proposals and then we carried the Commission report to the Blue room where it was debated again.I never fully understood an almost-violent encounter between José Ramon and the FAO Legal Council on the podium of the Green room, which ultimately led to the upgrading of the recommendation to create an intergovernmental committee into an intergovernmental Commission.The plenary battle in the Blue room is probably remembered differently by different folks depending on whether you were sitting on the podium as part of the Secretariat, as was Kay Killingsworth, for example, or if you were ensconced in the NGO cheap seats on the sides (Cary, Henk and me), or if you were in the middle of the fray among the delegates like Zehni and Lopez Portilo. Pepe Esquinas -who never sat -was buttonholing delegates, writing bits of text and stalking the corridors outside -sometimes simultaneously.My fractured memory does recall José Ramon on his feet challenging John Block, the US Secretary of Agriculture who was chairing the Conference session. Block was trying to gavel the issue away but Lopez Portilo was having none of it. The Mexicans wanted a Commission and Block wanted nothing but was prepared to go along with a lower-level committee instead. Block kept calling for a show of hands and concluding that his side had won. The Mexicans kept challenging the count. There may have been as many as six rounds of voting before Block conceded that he had lost. Before that concession, however, he actually called for a timeout, advised government delegations to consult their capitols, and darkly advised delegations to inquire into any undisclosed paragraphs of any bilateral agreements or treaties that they had signed recently. It was all a bit remarkable. At the end of the conference, Mexico had won and I flew happily to Barcelona for the annual meeting of ICDA, leaving Cary Fowler alone to track the FAO Council that immediately followed the conference and was to practically dispose of the conference decisions.Cary called me from Rome while I was in Barcelona reporting that the fight had continued through the Council, with the US and other governments in the North trying to undermine the conference's decisions. Throughout it all, José Ramon -with a growing number of riled-up South governments -held his ground with tactical support from Cary and Pepe. Every few years since that memorable 1983 meeting, I have run into old friends who were in the room at the time. Each adds an anecdote or two and I have noticed that the anecdotes tend to become a little more dramatic and bizarre as the years go by. My own included, I am told.Immediately following the FAO conference -and at Cary Fowler's inspiration -Hope Shand, Cary and I established the Rural Advancement Foundation International (RAFI) and formally set about working together with plant genetic resources as our one and only issue. When I left ICDA, they wisely went straight to Henk Hobbelink and asked him to take over their seeds campaign. Now, the ICDA Seeds Campaign has broadened its work and reputation enormously since then and has become Genetic Resources Action International (GRAIN) -with Henk still brilliantly at the helm. Renée Vellvé joined Henk a couple of years later and immediately became a key player in Commission negotiations.In 1985, Cary and I were given two plane tickets to travel around the world talking to governments about the issues before the first meeting of the FAO Commission. We went first to Rome to talk with Pepe Esquinas before travelling onward through Africa and Asia.Coming out of the 1983 conference, we had both an intergovernmental Commission and an International Undertaking. The Undertaking had some influence but no legal authority and was ambiguous in several areas including the issue of intellectual property. We knew that pressure would be on at the Commission's first meeting to accept plant breeders' rights and to insist that, what we called 'farmers' varieties', and what most scientists preferred to call 'landraces' or even 'stone-age seeds', were to be exchanged freely.Literally en route to the first Commission meeting in Rome, we concocted the idea of Farmers' Rights which we simplistically saw as a counterweight against International Non-governmental Organizations 141 plant breeders' rights. We wanted to insist that farmers varieties were the product of farmer genius and should not be treated in any way as being less than varieties produced by the public or private sector. We were not quite sure what to do with the idea beyond presenting it as a threat and possibly a barrier to accepting plant breeders' rights. With Henk Hobbelink, we agreed to vet the idea at a news conference in downtown Rome early in the Commission's first meeting. We also wanted to find a way to introduce it into the intergovernmental debate. We had not had a chance to talk about the idea with the Mexican delegation or any of our other friends in other countries.In the end, from the back of the Green room, we got the microphone and proposed Farmers' Rights as part of the IU. The lack of interest was deafening. It did not seem that anybody was going to pick up our proposal. Then, Jaap Hardon, the head of the Dutch Gene Bank and Netherlands delegate to the Commission, literally as he was preparing to leave, decided he couldn't resist and took the floor to ridicule Farmers' Rights as romantic and naive. Beside him, the Mexican delegation exploded. Suddenly Jose Ramon was on his feet staunchly defending Farmers' Rights and attacking his good neighbour, Jaap. With Mexico in full rhetorical flight, the Bolivians, Venezuelans, Cubans, Nicaraguans, Ethiopians and many others began waving their flags and championing the cause. Through a messenger, I sent Jaap a note thanking him for his intervention and I heard his hearty laughter as he raced off for his airplane. Although we have often disagreed, Jaap was then and still remains one of my heroes. For that matter, so does his hand-picked successor, Bert Visser.The first meeting of the Commission maintained the ambiguity around intellectual property but included Farmers' Rights. We saw it more as a place marker from which we could launch other battles in the years ahead.At most, the first four sessions of the Commission were heavily influenced by civil society. Governments were still trying to come to grips with the creature they had let others create and those of us at the back of the room still had the advantage in terms of computerized data and political strategy. In 1987, we were able to press for a Code of Conduct on Germplasm Collection and for a study of the possible impact of biotechnology on genetic resources. It seemed that whatever we suggested would be taken up and -more or less -adopted.In 1988, the Keystone International Dialogue on Plant Genetic Resources got underway in Keystone Colorado bringing together 40 or 50 protagonists from various governments, scientific organizations, and a couple of us from civil society. Hope actually attended a preliminary discussion about the dialogue in Washington some weeks earlier but Cary and I were not invited to the first formal meeting until a week or two before it happened. It was clear that many governments in the North were not at all sure they wanted us to be there. Cary could not attend for personal reasons. Chaired by M. S. Swaminathan, the first meeting went surprisingly smoothly as we realized that none of us actually had horns or tails and we could have a decent conversation. It was even pleasant … sometimes.In the summer of 1989, Don Duvick (the vice president for research at Pioneer Hi-Bred) and Henry Shands (of the US government's genetic resources programme) proposed a small meeting in Washington to discuss the possibility of US entry into the Intergovernmental Commission. Much to my surprise and, largely due to the Keystone dialogue process, I was invited to join along with Pepe (representing FAO), Jaap and Melaku Worede. Camila Montecinos (who now works with GRAIN in Chile) also attended at my specific request. Camila is one of the toughest people I know and I did not want to be the sole NGO at the small meeting.Don Duvick was clearly the 'mover and shaker' with the US government and his big concern was that if the North were to join and to eventually provide funding, the South had to guarantee to make all of its germplasm available. There was no way that the South was going to -or should -agree to this. However, in the far-from-perfect IU there was the notion that public and private researchers could identify a category of germplasm that they hoped eventually to commercialize that could remain exclusive. Companies argued that they might have material in the nursery trial stage that was a generation away from being commercialized that should not be just taken by somebody else at the last minute. We argued that the same held true for the South. For example, if Ethiopia has naturally occurring caffeine-free coffee trees that it knows to be invaluable but is still some years away from entering the international coffee trade, it would be unfair to force Ethiopia to surrender such obviously invaluable material. We were all sitting out in Henry Shands' yard when we made our case. Don looked at us, and nodded. The battle was over -hardly even engaged -before it started. We typed up a half page statement and took it to the US undersecretary of Agriculture the next day for his agreement. Don did the talking and the deal was done. The USA joined the Commission. I knew it was not good to have the US 'inside' at that point in the development of the Commission but I could not see how to keep them out. If CSOs had not been there, a deal would have been reached that would have let the United States come in and would not have been in any way to the advantage of the South. As it turned out, both sides were left with 'plausible denial', for virtually any germplasm they wanted to argue was 'still under development'. I received a cheque for the reimbursement of my plane ticket to Washington and my hotel stay from the US Department of Agriculture. That will never happen again, I thought.And it has not.The Keystone process had many important moments as we met in larger or smaller groupings from Colorado to St. Petersburg (then Leningrad) to New York, Madras, Ottawa, Rome and finally Uppsala and Oslo. The process created bonds of cooperation and, sometimes, comradeship that have held up over the years. It did not really cause people to change positions so much, but to at least be able to understand one another's positions and find common ground where common ground was occasionally useful.Three anecdotes stand out: Melaku Worede, Jaap Hardon, Don Duvick, Henry Shands and I were all in the car somewhere in the countryside beyond St Petersburg. It was hot and we had run out of petrol and were waiting impatiently for a Russian host to solve the problem. We had been talking a lot and suddenly Don accused me of not being interested in plant genetic resources at all but just wanting to bash multinational corporations. He was angry. Jaap leaned forward International Non-governmental Organizations 143 from the back seat and calmly said that whatever I felt about multinational corporations, I was dedicated to diversity. Don liked the answer. We got along much better afterwards. A year or so later in Madras, Don and I had been asked to write anonymously about different approaches to funding plant genetic resources. The papers had been circulated to the group a few days before the meeting. At one point in my proposal, I had written that the seed industry's arguments, that farmers should happily give up their own varieties in return for commercial varieties, was like saying that the Greeks should give up their claim on the Elgin marbles in return for the Rolling Stones. Don announced to the room that he was the author! A few minutes later Jaap, who learned nothing from his assault on Farmers' Rights five years earlier, attacked our opposition to the word 'landrace' by insisting that no one named their cars after people either. John Peano jumped in with one word, 'Volkswagen', and I followed with 'Land Rover' and Jaap did what he does best, dissolve into laughter. At another encounter (either Madras or Oslo, I forget) Cary, Pepe and I walked away from a long drafting session where we'd left John Deusing, a lawyer with what was then Ciba-Geigy, to clean up the text for presentation to the whole group the following morning. The sun was already coming up when we realized we had left the final delicate wording to our corporate 'enemy'. We shrugged -knowing that we trusted him to complete our task fairly. The morning proved us right.Of the 1980s, there are still tales that probably should not be told. We all felt sometimes like Jedi warriors taking on the Evil Empire -variously identified as IBPGR, Monsanto or the US government. When Erna left FAO, she shipped us boxes of papers that took weeks to cipher. Other documents were got through US Freedom of Information requests and a few more appeared mysteriously under hotel room doors, behind mirrors in FAO washrooms, pushed across a table during a furtive airport meeting, or passed openly and anonymously via smiling messengers in the Red room. Most of the best information came, however, from Hope Shand's number-crunching through germplasm collections, seed catalogues and plant patent lists. Throughout it all, Pepe Esquinas was an amazing presence -a hybrid somewhere between Don Quixote and Machiavelli (with a pinch of Rasputin), challenging and charming. I have emblazoned in my memory, Pepe, very very late at night in the semi-darkness of his office after a day of Commission drafting trying to cajole a nuance out of the Oxford dictionary that the stuffy volume just could not conjugate. Among us, Pepe Esquinas was 'Wiley Quixote'. Even at his 'wiliest', however, Pepe remained passionately loyal to the loftiest principles of the United Nations and FAO.'Us' in the early days, was a small group. Throughout these years, 'civil society' included both Henk Hobbelink and Renée Vellvé at GRAIN, Camila Montecinos (then at CET now at GRAIN), Rene Salazar at Searice, Vandana Shiva (wherever she wanted to be at), Andrew Mushita at CTDT (Community Technology Development Trust) and Cary, Hope and I at RAFI. In addition, many friends we could call upon if things got tough. Around the time of the Leipzig Technical Conference, 'us' expanded wonderfully to include Patrick Mulvany, Liz Hoskins, Neth Dano, Edward Hammond and many many others.At one point, visiting IBPGR as part of the Keystone process, Dick van Sloten expressed disbelief when I mentioned that I had not been to their offices since they moved to the old cheese factory a few kilometres from FAO. 'Well, not in daylight, anyway', I added. I think he took me seriously! When the curtain came down on the Keystone Dialogue in 1991, the clearly unfinished business was intellectual-property. Jaap Hardon -a glutton for punishment -approached Henk Hobbelink and me about the formation of a second dialogue when we were all in Zimbabwe together in late 1992. A few days later, the three of us were in Nairobi at a CGIAR meeting involving Geoff Hawtin. The final shape of what became known as the 'Crucible Group' was formed in the bar late one night while Geoff and Henk danced on a tabletop secured by Jaap and me. It was Jaap's idea but I claim the name and I spent much of the next several years explaining what a crucible is. Over most of a decade, the Crucible Group produced three books but not much progress. Perhaps because we had already gone through the Keystone Dialogue, Crucible did not have the same spin-off effects.In the almost-intuitive move from Undertaking to Treaty, the 1993-1994 CGIAR stripe reviews of genetic resources suddenly became important. I was invited to join the review and Henry Shands became its Chair. The big change was IBPGR (en route to becoming IPGRI (and, now, Bioversity International) where the palace coup had led to the selection of Geoff Hawtin as the organization's second-ever director. By any definition, Geoff was/is the CGIAR systems best advocate and smartest strategist. He was a breath of fresh air in FAO Commission meetings and became a critical ally (and, sometimes, opponent) from 1991 onward. At Geoff's quiet insistence (from the sidelines), the stripe review came up with the remarkable conclusion that the CGIAR's gene banks should be placed under the auspices of the Undertaking and that gene bank policies should be guided by its Commission. The report was presented to the CGIAR mid-term meeting in New Delhi in May 1994. I attended the New Delhi meeting as a member of the review panel. It was Ismail Serageldin's first meeting as Chair of CGIAR and, of course, as a Vice-President of the World Bank. I was furious when Henry presented our report and then stepped aside from his role as Chair to advise that maybe the CGIAR should rethink the key recommendation of surrendering policy control to FAO. I immediately wrote to Serageldin urging him to move quickly to implement the review's principal recommendation. My letter was followed by a month of silence.Then, as I passed through RAFI's Ottawa office en route to Uppsala (for Sven Hamrell's retirement party at the Dag Hammarskjöld Foundation) and then Nairobi for an organizational meeting of the newly created Convention on Biological Diversity, Bev Cross handed me a fax from Serageldin. I read it standing in the doorway and realized that the World Bank vice-president was saying that it would be 'foolhardy' for the CGIAR to implement the stripe review's recommendation and that he wanted to talk with lawyers at the Bank about other possibilities. I faxed the letter to Henk at GRAIN and to Geoff Hawtin at IPGRI and then headed for the airport. At Sven's party in Uppsala, I met up with Carl-GustafThornström and showed him the letter. He was alarmed and asked to make a copy. On my onward flight from Stockholm via Amsterdam to Nairobi I encountered Norway's Jan Borring and several other delegates flying to the same meeting and handed out copies of the letter. Everybody was shocked. In Nairobi, Henk Hobbelink and I grabbed Geoff Hawtin and persuaded him to attend a news conference on the topic that had been hastily arranged by GRAIN. It is a testimony to Geoff Hawtin's integrity that he agreed to attend.In the intergovernmental biodiversity convention meeting, Sweden and Malaysia joined forces to accuse the World Bank of the 'dawn raid' on the CG's gene banks and of trying to take over the banks to orchestrate access to germplasm for multinational seed companies. Geoff Tansey wrote up the story for the Financial Times and New Scientist, blasting the Bank for the attempted coup. Within two days, Geoff Hawtin read out a letter from Ismail to the Nairobi meeting announcing that he would personally sign the policy turnover to the FAO Commission on behalf of each of the 11 gene banks by the time the CGIAR held its annual meeting in Washington in October.Did the World Bank really intend to take over the CG gene banks? The sequel to the story played out in August 1994 when Serageldin invited me to Washington for lunch to talk about our differences. In a preparatory phone call, it was clear to me that senior CGIAR staff had not bothered to actually review the fax that I had received signed by Serageldin. I was even told that the fax I had received was not the fax they had sent. When I invited them to reread the critical paragraphs, there was a pause on the line as they looked for a copy, and then the quiet comment, 'I can see how you might have formed the impression' from the deeply chastened official. I am not sure if the coup was intended. I am sure that if we had not acted quickly, the agreement between FAO and CGIAR would not have been signed. I am also sure that it would have left the door open to other forces inside the bank and out, and that it might have understood the potential value of the gene banks and sought to use them in other ways. The bottom line is that FAO's weak and voluntary Undertaking and Commission suddenly had high profile responsibility for the world's 11 most important gene banks. The logic of moving from Undertaking to Treaty was becoming more apparent.Many of the most dramatic events had nothing to do with CSOs. Dick van Sloten's own courageous efforts to restore order at IBPGR -a palace coup in fact -remains for others to tell. Rene, Hank and I sat dumbfounded another time as the Brazilian Ambassador accused his American counterpart of 'terrorism'. She broke into tears. There are other stories, I am sure, that we, in civil society, never heard of.If not sooner, the 1991 Commission meeting was certainly the last that was dominated by civil society. By the time governments met again in 1993, the Commission was thoroughly institutionalized and government delegations coming to Rome had marching orders from their capitals that demanded obedience. We could still cajole and tease but we could not decide.Pepe Esquinas consulted widely over the idea of turning the IU into a legally binding treaty. He had the idea that the negotiation of the Treaty could be done in tandem with negotiations leading to a new International Technical Conference on Plant Genetic Resources including a State of the World report and rolling Plan of Action for genetic resources work. It was a bold and complex agenda. I was enthusiastic about the Plan of Action and saw the negotiation of the Treaty as a problematic but useful way to maintain a high profile political agenda for genetic resources work. Cary Fowler, my old comrade-in-arms, with his razor wit and laser focus on genetic resources, had moved to Norway to work with Noragric around the end of the Keystone Dialogue, and was the logical person to take on the Technical Conference and Plan of Action.Cary's so-called 'technical' conference in Leipzig in 1996 brought together the largest number ever of civil society organizations -South and North -in support of plant genetic resources. By then, however, we were more cheerleaders than controllers and we accepted our more traditional role of acting as clarifier's of issues and supporters of the more progressive positions of South negotiators. Our overall influence was modest although our involvement was appreciated. For many at FAO, CGIAR and in governments, we were hard to categorize, since we had the sometimes-unnerving capacity of being 'spoilers' -able to make or break a move or idea or to turn a minor into a major issue unexpectedly. Nevertheless, as useful or concerning as this role is, we were not in the driver's seat anymore.By the time of the 1998 Commission meeting, neither GRAIN nor RAFI were sure we should even be present. All of a sudden, however, two major developments changed at least RAFI's view. First, in March, Hope Shand discovered a joint USDA/Delta and Pine Land patent granted on what they described as a 'Technology Protection System' that rendered GM seeds sterile at harvest time. We quickly called the new technology, 'Terminator'. We wanted FAO and the Commission to condemn the technology. Second, friends inside the CGIAR told us of two plant breeders' rights claims made by Australian agencies on CGIAR gene bank accessions. The two claims presented the first clear examples of 'biopiracy' concerning gene banks. We took both issues to the Commission and eventually got strong support for both. The Australians quickly abandoned their patents and Jacque Diouf, FAO's Director-General, roundly condemned Terminator technology. With enormous help from Geoff Hawtin and Cary, CGIAR also announced that it would never touch the suicide seeds.NGOs were invited into the closed Treaty 'contact group' negotiations because governments wanted industry present and they could not really invite industry without inviting their civil society watchdogs. Ultimately, seed companies would either be required -or 'volunteered' -to pay a proportion of their profits, royalties or revenues so OECD states demanded that they be at the table and the global South knew that no consensus was possible without industry acquiescence. We had no illusions -but participation gave us the opportunity to blow whistles and apply pressure to both our friends and foes around the table.The need to be present was made painfully evident in one of the first meetings of the contact group. Before we -or industry -were invited, the North moved to sideline Farmers' Rights by imposing a 'chapeau paragraph' that rendered the strong affirmative language beneath almost irrelevant. We had always understood that Farmers' Rights would be sacrificed by the South as a bargaining chip but we had hoped it would be better used and carefully positioned for post-Treaty negotiations. I was sharing a hotel room with René Salazar who found himself as an NGO on the Philippine delegation. Returning to the room very late that night, René woke me up, alarmed by the last-minute manoeuvres in the contact group. Only Norway and Poland -and the Philippines -expressed concern over the sudden text changes. Very early in the morning, we both knocked on hotel room doors trying to convince our allies to return to the issue. They all claimed innocence or ignorance and they all advised us not to worry. The deal was done. René -who was powerless to stop it -was heartbroken.Either Silvia Ribeiro (who joined us at RAFI in 1999) or I attended the contact group negotiations. They were usually the worst meetings of our lives.Here and there, we were able to use our civil society independence to speak bluntly and give clarity to points and positions that governments dared not say publicly. This clarifying role was especially helpful during the Spoleto negotiation where the Commission's Chair, Fernando Gerbasi of Venezuela, managed a breakthrough making the final Treaty possible (see Annex 3 of this book for details on the main provisions of the Treaty).Following the adoption of the Treaty at the FAO Conference in 2001 (see Annex 2 of this volume for the contracting parties per FAO regional groups), I was happy to accept Fernando Gerbasi's invitation to a celebration party at his home in Rome. The room was filled with old friends and old enemies but the times had changed -I felt less like Darth Vader and more like Art Deco standing in the corner.What role did civil society really play? Henk and Hope and Camilla and Rene and Renée and Cary and I could debate this to a draw among ourselves. It is a matter of perspective. If I had been in the audience -as most governments were most of the time -I think I would have seen us on the stage all right -stage left, I hope -clowning and conspiring, sometimes loud and pontificating, sometimes in the shadows, often tangled in the curtains or messing with the lighting, and sometimes mischievously inserting text into the teleprompters of other actors.Cary, the inspirational architect behind the now-famous Doomsday Vault, invited me to the Vault's opening in Svalbard at the end of February 2008. There, I began to feel more comfortable with the changes. It was an emotional occasion. I picked up a box of the International Center for Tropical Agriculture (CIAT) bean seeds (appropriate, given our shared legal action with CIAT defending the Mexican yellow beans -first evidence that the FAO/CGIAR agreement could have legal weight) with Clive Stannard and walked down into the vault to place them in storage. Many of us carrying the boxes had tears in our eyes. Ditdit Pelegrina (who had replaced Neth Dano who had replaced Rene Salazar as head of Searice) and I had an opportunity to speak at the seminar that preceded the formal opening of the vault and I recalled our three objectives when civil society first came to FAO pressing the seeds issue back in 1981: we wanted an intergovernmental organization to address the issues; we wanted $350 million a year for genetic resource conservation; and we wanted a World Gene Bank. With the Governing Body of the Treaty (and the new enlarged FAO Commission on Genetic Resources for Food and Agriculture), creation of the Global Crop Diversity Trust, and the establishment of the Svalbard Vault, we had come a fair way to achieving our original goals. Not all the way -but some ways. Amid the good feelings, remains the feeling that we had not asked for enough in the first place. There are other seed wars looming -some bigger than any we have seen before.As a civil society organization, ETC Group (we changed our name from RAFI in 2002) is back to where it was in the late 1970s/early 1980s. We are outsiders once again -with a new agenda that neither FAO nor most governments understand. Our concerns about genetic resources now cover everything from mammals to microbes and our concern about multinational corporations -the ones we've loved to call 'Gene Giants' -and their efforts to monopolize seeds has moved on to include Synthetic Biology, the effort to monopolize biomass, and our opposition to the new 'Biomassters'. We are not only concerned about fighting intellectual property monopolies but also fighting biological and technological monopolies. With climate change, the biggest battle of all is to support the efforts of peasant producers around the world to use the genetic diversity at their fingertips to respond to the changes ahead. There is lots to do. It feels like old times.However, the real change -a century in coming -is David Lubin's legacy. He is no longer alone -a single peasant fighting the grain trade. Now there is 'Via Campesina' -a massive farmers' movement around the world -that is clearly in the lead in civil society and among social movements and has its own plans. Via Campesina has moved us firmly from our narrow focus on Farmers' Rights to food sovereignty. The seed wars have new seed warriors!The Consultative Group on International Agricultural Research (CGIAR) is a strategic alliance of 64 members comprising governments, international organizations and private foundations that support a common mission: to achieve sustainable food security and reduce poverty in developing countries through scientific research and research-related activities in the fields of agriculture, forestry, fisheries, policy and environment. It was set up in 1971 under the co-sponsorship of the World Bank, the Food and Agriculture Organization of the United Nations (FAO) and the United Nations Development Programme (UNDP) to mobilize science to benefit the poor.The CGIAR supports 15 international agricultural centres (CG Centres), whose tasks are, inter alia, to conserve genetic resources for food and agriculture, to develop improved varieties and to promote the sustainable utilization of those genetic resources. The CG Centres maintain collections of plant genetic resources for food and agriculture (PGRFA) numbering over 650,000 accessions, whose importance for food and agriculture has been recognized in the International Treaty on Plant Genetic Resources for Food and Agriculture (the Treaty). 1 A major interest of the CG Centres has been to ensure that PGRFA can continue to be available for research, breeding and training for food and agriculture for the benefit of developing countries, within a stable international system that allows for the equitable sharing of benefits arising from the use of those resources. This chapter examines the history of the involvement of the CG Centres in the conservation and sustainable utilization of PGRFA, and the role played in the negotiating of the Treaty (see Annex 1 of this volume for the list of all Commission and Treaty negotiating meetings).The first international agricultural research centres 2 were established in response to concerns that food resources in developing countries would be insufficient to meet the needs of their growing populations and the need to seek improved varieties to increase food production. A number of new centres were set up within the CG system during the 1970s and 1980s, 3 and yet other existing centres brought within the CGIAR during the 1990s, 4 thus bringing the centres to its present total of 15 (see Table 11.1 below). The need for a more focused system-wide approach within the CG system has been the driving force for reforms over the last few years. The first such reform was the establishment of the Alliance of CG Centres in 2004 as a means of providing a collective unified voice for the centres on matters requiring a common position. Under the Alliance procedures, decisions could be taken by majority vote that would bind all centres. More far reaching reforms have recently been instituted, involving the establishment of a Consortium of CG Centres, with its own legal personality, together with a Fund Council, which, it is hoped, will provide more direction and funding stability for the CG system.5The work of the initial centres, and, in particular, that of plant breeders like Norman Borlaug of CIMMYT, bore spectacular results, heralding the birth of the so-called 'Green Revolution'. At the same time, the introduction of new improved varieties tended to supplant existing local varieties and threatened the very biodiversity on which the original green revolution, and future crop improvements, depended. The CG system responded to this new threat by increasing its efforts to collect and conserve endangered PGRFA.In 1974, the CGIAR set up the International Board on Plant Genetic Resources (IBPGR) hosted by FAO with the task of coordinating an international plant genetic resources programme, and organizing collecting missions as well as building and expanding gene banks at the national, regional and international level. Over the period 1974-1980, IBPGR collected and conserved over 65,000 accessions from over 70 countries. The material collected through these missions, which were for the most part carried out jointly with institutions in the countries concerned, were deposited for conservation in some 52 gene banks. These gene banks included both national or parastatal institutions such as EMBRAPA in Brazil, the Kenyan Agricultural Research Institute (KARI), CGN in The Netherlands, VIR in Russia, and the Rural Development Administration of Korea, as well as international institutions such as the CG Centres, AVRDC and CATIE. In total 8 CG Centres 6 formed part of the nascent network. During the period 1980-2004, the number of new accessions into the CG Centres as a whole has ranged from a high of almost 35,000 per year in 1984 to a low of 5000 in 2004 (Halewood and Sood, 2006). Today, the CG gene banks contain a total of over 650,000 accessions. While this represents only about 12 per cent of the total accessions held in ex situ collections worldwide, the CG collections are particularly valuable in light of the high proportion of landraces and wild relatives. They are also well maintained and documented (Moore and Tymowski, 2005). Improvements in the conservation and maintenance of the CG collections have recently been introduced through the Global Public Goods Project financed by the World Bank. 7 And the financial security of the collections is being secured through a series of long-term funding arrangements with the Global Crop Diversity Trust (GCDT), a new endowment fund set up to ensure the long-term conservation and availability of plant genetic resources for food and agriculture. 8The CG system firmly believes that the true value of plant genetic resources lies in their use. In so far as possible, both unimproved and improved PGRFA are treated as international public goods, and distributed as freely and widely as possible to breeders and farmers throughout the world. Since 1 January 2007, the CG Centres have been distributing PGRFA of crops listed in Annex I to the Treaty under the SMTA adopted by the Governing Body at its First Session in June 2006. At its second session in November 2007, the Governing Body also authorized the Centres to distribute PGRFA of non-Annex I crops collected before the entry into force of the Treaty under the same SMTA. The early experience with use of the SMTA indicated that most of the material distributed consists of improved materials. 9In describing the role of the CG system in general and the CG Centres in particular in the negotiation of the Treaty, it is important first to understand their legal status.The original CGIAR system 10 was made up of the Consultative Group 11 itself (the CGIAR), an independent Science Council 12 and 15 International Agricultural Research Centres.13 Neither the CGIAR system nor the CGIAR 14 itself had any independent legal personality of their own, either under international law or indeed under any system of national law. The International Agricultural Research Centres (IARCs) on the other hand each have their own independent legal personality. Initially there were doubts as to whether some of the CG Centres as originally established had legal personality under international law as opposed to national law. Most if not all of these doubts have been resolved through agreements concluded in the last 15 years explicitly recognizing the international legal personality of the centres concerned. 15 Today, the international legal personality of the CG Centres holding ex situ collections of PGRFA has been recognized and forms the basis of the agreements signed by the Centres with the Governing Body of the Treaty, as mandated in Article 15 of the Treaty.As noted above, the CGIAR and the individual CG Centres have always been committed to ensuring the maximum availability of PGRFA, including both unimproved and improved materials, as a means of promoting agricultural research and breeding for the benefit of farmers in developing countries and elsewhere. Due to the special nature of PGRFA, and the spread of PGRFA across country and continental borders over the centuries, all countries and regions are now highly dependent on PGRFA from other countries and regions to sustain and develop their agriculture and food security (Moore and Tymowski, 2005). This interdependence was recognized in the International Undertaking on Plant Genetic Resources (IU) adopted by the FAO Conference in 1983, 16 which was based on the 'universally accepted principle that plant genetic resources are a heritage of mankind and consequently should be made available without restriction'. 17 Its stated objective was to 'ensure that plant genetic resources of economic and/or social interest, particularly for agriculture, will be explored, preserved, evaluated and made available for plant breeding and scientific purposes'.18The IU also called for the development of international arrangements then being initiated by FAO and the International Board for Plant Genetic Resources, the predecessor of IPGRI, now Bioversity International, to develop a global system for plant genetic resources, including 'an international network of base collections in gene banks, under the auspices or jurisdiction of FAO, that have assumed the responsibility to hold, for the benefit of the international community and on the principles of unrestricted exchange, base or active collections of the plant genetic resources of particular plant species'.A series of discussions were held in the FAO Commission on Plant Genetic Resources during the latter part of the 1980s on the legal arrangements that would be appropriate to establish the international network, which as noted above, covered both national and international institutions. In the end, the Commission decided to go ahead only with the establishment of agreements (the so-called In Trust agreements of 1994) with the CG Centres and gene banks holding the Coconut Genetic Resources Network (COGENT) collections. However, a number of the institutions in the original network as promoted by the IBPGR in addition to the CG Centres are being considered for financial assistance by the GCDT as part of an efficient and sustainable global system of ex situ collections.In the international climate generated by the IU, it is not surprising that the highest rates of germplasm acquisition and distribution by the Centres as a whole were achieved in the years 1983-1985. During the subsequent years, the concept of free availability of PGRFA started to be eroded. From the side of the plant breeding industry came the push to recognize the rights of formal breeders and researchers over the products of their breeding and research (see Chapter 12). From the side of developing countries providers of PGRFA came a countervailing movement for the recognition of the sovereign rights of countries over their natural resources, including PGRFA. The result was the adoption of a series of Agreed Interpretations of the IU recognizing on the one hand that plant breeders' rights, as provided for under the UPOV Convention, were not incompatible with the IU, as well as the rights of farmers arising out of their contribution to the conservation and development of plant genetic resources. The Agreed Interpretations, on the other hand, also recognized the sovereign rights of countries over their plant genetic resources.The concept of sovereign rights over genetic resources and the right of national governments to determine access to those resources in accordance with their own national legislation became a cornerstone of the CBD which was opened for signature in 1992. The CBD provided for access to genetic resources to be subject to the prior informed consent of the country of origin providing the resources and to be on the basis of mutually agreed terms. While there is nothing in the CBD that requires that prior informed consent and mutually agreed terms be on a bilateral basis, this was the way in which the Convention was in practice implemented, at least until the negotiation of a set of mutually agreed terms for access to some PGRFA under the Treaty.In this atmosphere of intense national concern over the sovereign rights of nations over their patrimony, it is hardly surprising that the rate of acquisition of new materials by the CG Centres dropped to an all time low (Halewood and Sood, 2006). New acquisitions in 1993 dropped to under 10,000, almost a quarter of the total in 1984. Although the rate rose again in 1994, this was due more to transfers between centres, or to transfers from developed country gene banks, such as the United States Department of Agriculture (USDA), rather than to new acquisitions from collecting missions in countries of origin (Halewood and Sood, 2006).The need to find a more appropriate system of access to PGRFA, given the dependence of all countries on easy and effective access to PGRFA from other countries and regions, coupled with a lack of clarity over the legal status of the ex situ collections acquired before the entry into force of the CBD, led directly to the conclusion of the In Trust agreements between the CG Centres and FAO in 1994, and the renegotiation of the IU. Both were the subject of Resolution 3 adopted by the Diplomatic Conference that adopted the CBD in 1992. Resolution 3 called for the development of complementarity and cooperation between the CBD and the FAO Global System for the Conservation and Sustainable Use of Plant Genetic Resources for Food and Sustainable Agriculture, and recognized the need to seek solutions to outstanding matters concerning plant genetic resources with the Global System, including, in particular, access to ex situ collections not acquired in accordance with the CBD, and the question of Farmers' Rights.A study prepared by the Legal Office of FAO in 1987 20 pointed out the uncertainty that surrounded the legal status of many of the existing ex situ collections forming part of the international network, including those of the CG Centres. The uncertainties related, in particular, to the legal status of the institutions holding those collections, ownership over the accessions in the collections, and the rights of the host governments over the collections. As noted above, these uncertainties were left outstanding by the CBD, which expressly did not cover ex situ collections of genetic resources acquired before its entry into force.The CGIAR system responded in a number of ways to this situation. The first response was to develop the concept of the 'in trust' status of the ex situ collections held by the CG Centres. Collections held by the CG Centres were not the property of individual nations, nor were they the property of the CG Centres themselves, but were held by the centres 'in trust' for the international community. This concept was first set out in a CGIAR Policy on Plant Genetic Resources adopted in 1989. 21 As can be seen, the concept drew, to a large extent, on the notions set out in the IU. The concept is still referred to in Article 15 of the Treaty.The second response was to clarify the international legal status of the individual centres holding ex situ collections.The third response was to clarify once and for all the status of the collections in agreements with FAO representing the international plant genetic resources community. This was achieved through the signature on 26 October 1994 of a series of agreements 23 between FAO and the 12 CG Centres then holding ex situ collections of germplasm. Under the agreements the centres formally placed their collections of designated germplasm under the auspices of FAO as part of the International Network of ex situ collections provided for under the IU. The agreements also clarified the status of the designated germplasm as being held in trust by the centres for the benefit of the international community. The centres undertook neither to claim legal ownership over the material nor to seek intellectual property rights over it or related information. They also undertook to manage the designated germplasm in accordance with internationally accepted standards and to make samples of it available to users for the purpose of scientific research, plant breeding and genetic resources conservation without restriction. The centres were to ensure that where material is transferred to the recipient and subsequent recipients, these recipients are also bound by the same conditions. Perhaps most significantly, the centres recognized the intergovernmental authority of FAO and its Commission on Plant Genetic Resources in setting policies for the International Network, and to give full consideration to any policy changes proposed by the Commission. The In Trust agreements were to remain in force for four years and be subject to automatic renewal for further periods of four years unless terminated by either party. The In Trust agreements had a double significance for the centres. In the first place they clarified the status of the collections held by the centres. Second, by recognizing the intergovernmental policy authority of FAO and its Commission, they brought the centres on board in the process of renegotiation of the IU. This latter aspect was as important to the centres in safeguarding the future of the collections, as it was to the renegotiations in ensuring that these important collections would be brought within the purview of the new international instrument being negotiated.The CG system was represented at all stages of the negotiations on the Treaty, including in the sessions of the contact group which spearheaded the final negotiations. It was perhaps this continuous presence, coupled with the steady stream of timely, relevant and reliable technical inputs and the political neutrality of the CG system that contributed most to its influence on those negotiations. The role of the CG system, represented primarily by IPGRI, 24 which had the mandate to represent the CG system as an observer in the negotiations, was necessarily limited, given the intergovernmental nature of the negotiations. Nevertheless, it did play a significant part in promoting the concept of a multilateral system (MLS) for PGRFA, and in providing the necessary scientific and technical information that allowed for its acceptance (see Annex 3 of this book for details on the main provisions of the Treaty). It was particularly effective in providing technical information on the current state of gene flows and the interdependence of all countries, including, in particular, developing countries, on access to plant genetic resources for their own agricultural development. In an atmosphere of technical uncertainty that characterized the early stages of the negotiations, this provision of impartial and reliable scientific information was particularly helpful in bringing about a consensus.The role played by the CG system in the negotiation of the Treaty has been examined at some length in an article published in 2003 (Sauvé and Watts, 2003). In the article, the authors found that the CG system 'exerted influence on the issue of the multilateral system of access and benefit … [and] the level of influence it exerted on this specific can be deemed important, but not critical'. It also exerted critical influence to ensure that access for conservation as well as utilization was included in the scope of the MLS. IPGRI (and the CG system) also had an influence on the scope of the MLS, canvassing successfully for the expansion of the MLS to cover most of the CG mandate crops, although they were unsuccessful in achieving complete coverage of those crops in Annex I to the Treaty. They also argued successfully for the coverage of in trust collections held by the CG Centres in a specific article (Article 15) of the Treaty, and for the legal mechanism finally adopted by the Treaty of bringing those collections within the purview of the Treaty by means of separate agreements between the centres and the Governing Body of the Treaty, in recognition of the international legal personality of the individual centres. Most important, however, was the general role of IPGRI and the other CG Centres 'as a leading source of scientific and technical information to delegates, through studies, seminars, formal interventions during the negotiations and personal contacts'. The study had revealed that IPGRI was seen as 'a consistent and reliable presence throughout the negotiations', [had] 'consistently promoted the concept of the Multilateral System', and 'had improved the general understanding of the issues being dealt with in the negotiations and that it shed light on the nature of the interlinkages between issues, especially between the issues of access and benefit-sharing'.The Treaty contains one article dedicated to ex situ collections held by the CG Centres and other relevant international institutions. 25 In Article 15, the contracting parties recognized the importance of the collections held in trust by the CG Centres and called on the centres to sign agreements with the Governing Body placing those collections within the purview of the Treaty. As noted above, this approach was necessitated by the fact that the centres, for the most part, possess their own independent international legal personality but are not States and thus can neither be bound by the Treaty itself nor become parties to the Treaty in their own right.Article 15 sets out the main terms and conditions that are to be contained in such agreements. Annex I PGRFA held by the centres are to be made available in accordance with the same conditions as applicable to collections held by contracting parties -that is, they are to be made available under the SMTA.The conditions under which non-Annex I material is to be made available depend on the date when it was collected.Material collected before the entry into force of the Treaty were to be made available in accordance with the MTA then being used by the centres under the In Trust agreements of 1994. This MTA was to be amended by the Governing Body no later than its second session to bring it into line with the relevant provisions of the Treaty, including, in particular, the provisions relating to facilitated access and benefit-sharing. In fact a decision was taken at the second session of the Governing Body that the centres should use the SMTA itself for transfers of non-Annex I material as well as for Annex I material. The Governing Body agreed to the addition of an explanatory footnote to the SMTA clarifying its application to Annex I as well as non-Annex I material (ITPGRFA, 2007). The centres are to periodically inform the Governing Body about the MTAs entered into in accordance with conditions established by the Governing Body, 26 are to make samples of PGRFA collected in in situ conditions available to the contracting party where they were collected without an MTA, and to take appropriate measures, in accordance with their capacity, to maintain effective compliance with the conditions of the MTA and promptly inform the Governing Body of cases of non-compliance. Non-Annex I material collected after the entry into force of the Treaty, on the other hand, is to be made available for access on terms consistent with those mutually agreed between the centres receiving the material and the country of origin of those resources, or the country that acquired them in accordance with the CBD or other applicable law.Under Article 15 the contracting parties agree to provide centres that have signed agreements with the Governing Body with facilitated access to Annex I PGRFA. They are also encouraged to provide centres with access on mutually agreed terms to non-Annex I material that is important to their programmes and activities.Article 15 also includes general provisions drawn from the former in trust agreements, including: recognition of the authority of the Governing Body to provide policy guidance relating to the collections held by them; the collections to be administered in accordance with international accepted standards; and for technical support and assistance with the evacuation or transfer of threatened collections to the extent possible.The agreements provided for in Article 15 of the Treaty were signed by FAO on behalf of the Governing Body and the 11 CG Centres holding ex situ collections on World Food Day (16 October) 2006. The agreements repeat almost verbatim the relevant provisions of Article 15.At the same time, the CG Centres issued a statement regarding their interpretation of the agreements, on much the same lines as the joint statements issued at the time of the signature of the In Trust agreements with FAO in 1994. The statement clarified the centres' common understanding of certain provisions of the agreements and indicated some actions that the centres would be taking to implement them.On the issue of availability of the germplasm held in trust by the centres, the centres clarified their understanding that while the agreements talked only in terms of making samples of PGRFA available to contracting parties, this would not prevent the centres from also making germplasm available to non-contracting parties, using the SMTA in the case of Annex I materials and the MTA (now the SMTA with footnotes) for non-Annex I material. The centres also voiced their understanding that the agreements did not preclude them from making PGRFA also available to farmers for direct cultivation, as was the case with material made available under the earlier In Trust agreements.The Statement also clarified the steps that the centres would take to promote compliance by recipients with obligations under the MTA, including requesting explanations in respect of perceived violations, informing the Governing Body and taking action with national authorities for violations involving intellectual property rights.In much the same way as the centres had done in their earlier joint statements regarding the implementation of the In Trust agreements, the centres further indicated the way in which they would be implementing the provisions of the agreements regarding the obligation to make PGRFA available. In this respect, the centres made it clear that while they would do their best to respond to all requests as quickly as possible and free of charge, sound management practices as well as practical or even biological constraints (such as seed availability or the health status of a sample) may at times limit the ability of centres to provide PGRFA, and that centres would have to use some discretion in determining the size and number of samples to be provided at any given time to a particular recipient. In some cases, such as for woody species, multiplying and supplying accessions can involve very time-consuming and expensive procedures. In such circumstances it would be unreasonable to expect that centres could guarantee unlimited quantities or immediate availability of all germplasm. At their discretion, centres might request that users cover all or part of the costs involved in multiplication.The agreements with the Governing Body entered into force in January 2007, and the centres chose to implement them in full as from 1 January 2007. In the first 19 months of operation (1 January 2007 to 31 July 2008) the Centres distributed approximately 550,000 samples of PGRFA under the SMTA. Of these, almost three quarters were materials that the centres had been involved in improving.The overwhelming majority of the samples were sent to developing countries (74 per cent) and countries with economies in transition (6 per cent). 28 In only three cases in the first seven months of implementation did potential recipients refuse to accept materials under the SMTA. There were no instances of refusal during the period 1 August 2007 to 1 August 2008. There were, however, a number of queries and concerns raised over the SMTA, particularly during the earlier stages of implementation, including, in particular, its length and complexity. Many of the questions raised are being responded to in a series of Frequently Asked Questions on the websites of the individual centres. Other questions of a more complex nature are being referred to an ad hoc technical advisory committee on the SMTA and the MLS set up by the Governing Body at its Third Session in 2009.On the whole, however, the experience of the centres with the implementation of the Treaty has been positive; even more so since the decision of the Governing Body at its second session to authorize the centres to use the same SMTA for both Annex I and non-Annex I material. This simplifies considerably the task of the centres in making PGRFA available and reduces the administrative costs involved. Even more streamlined procedures for the distribution of germplasm will inevitably come about with the introduction of the computerized one-stop ordering system for the CG system.The CGIAR system has always been committed to ensuring the conservation of PGRFA and the wide availability of both unimproved and improved materials, as a means of promoting agricultural research and breeding for the benefit of farmers in developing countries and elsewhere. It has also been concerned to ensure that a stable global system is in place that would allow the centres to continue to play their part in conserving and promoting the sustainable use of PGRFA as a means of achieving food security. It was with these interests in mind that the CGIAR system has played a significant role in the development of the Treaty, and is now working with contracting parties to ensure its full implementation. SMTA,372,170 (over 68.6 per cent) were of improved material. See 'Experience of the Centres of the Consultative Group on International Agricultural Research (CGIAR) with the implementation of the agreements with the Governing Body, with particular reference to the Standard Material Transfer Agreement', FAO Docs. IT/GB-2/07/Inf. 11 and IT/GB-3/09/Inf. 15, reports submitted to the Second and Third Sessions of the Governing Body of the Treaty, October/November 2007, and June 2009. The CGIAR system is now in the process of reform. The new system will now consist of a CGIAR fund and a consortium of CGIAR Centres now being established as a legal entity, See www.cgiar.org. The Consultative Group is composed of 47 country members and 17 international or regional organizations. The Science Council, which is an independent scientific body of the CG system consisting of a Chair and six members appointed by the CGIAR on the recommendation of its Executive Council. WARDA; Bioversity International (formerly IPGRI); CIAT; CIFOR; CIMMYT; CIP; ICARDA; ICRISAT; IFPRI; IITA; ILRI; IRRI; IWMI; World Agroforestry Centre; WorldFish Center. The CGIAR itself is described in the Charter of the CGIAR system as an informal association of public and private sector members. The CGIAR system is described as a loosely connected network of components. The Policy stated that 'it is CGIAR policy that collections assembled as a result of international collaboration should not become the property of a single nation, but should be held in trust for the use of present and future generations of research workers in all countries throughout the world'. See note 15 above. For a copy of the agreement and the statement made by the CG Centres at the time of signature, see Booklet of CGIAR Centre Policy Instruments, Guidelines and Statements on Genetic Resources, Biotechnology and Intellectual Property Rights, at www.sgrp.cgiar.org/?q=publications. IPGRI (the International Plant Genetic Resources Institute) was set up as an international organization in 1991 as a successor to the International Board on Plant Genetic Resources. Reflecting the fact that the mandate of the organization now covers all forms of biodiversity, it has been operating under the name of Bioversity International since 2006, although the legal name remains unchanged. While most of the provisions of Article 15 apply directly to the collections held by the CG Centres, Article 15.5 also provides that the Governing Body will seek to establish agreements with other relevant international institutions. So far such agreements have been concluded in respect of the COGENT coconut collections, the CATIE Collection, the FAO/IAEA mutant germplasm collection, the cacao network collections held by the University of the West Indies and the ex situ Plant breeding started about 9000 to 11,000 years ago when man started with the domestication of wild plants. Farmers and growers tried to improve their crops with desired traits through trial and error. The evolutionary theories of Darwin and the genetic experiments of Mendel that were developed at the end of the 19th century gave a further impulse to plant breeding and made it more efficient. During the 20th century breeding science was further improved through knowledge of genetics, plant pathology and entomology (Bruins, 2009).The development of hybrids (starting around 1920) was the first technology in plant breeding to offer better plant varieties to growers and farmers. The new varieties were not only uniform but also often performed better than their parents due to the heterosis effect of hybrid vigour. The increasing use of seed treatment from the 1960s onward further improved yields, as the use of the plant protection products was more precise and therefore more effective. The latest step of innovations to further widen the opportunities plant breeding offers is the use of biotechnology. On the one hand biotechnology is used to better understand genetics and enables quicker interference in the breeding process with tools like markers. On the other hand, the precise introduction of genes through genetic modification, in particular for the major crops, has been a major breakthrough for plant breeding. Genetic modification led to an increase in yield, a reduction of the use of insecticides and an increase of income for farmers (Bruins, 2009).Commercial seed industry started around the 1740s with the earliest known seed company, Vilmorin in France. This company was quickly followed by more companies in France, The Netherlands, the United Kingdom and Japan. As indicated above, the plant breeding science became more and more sophisticated and an increasing number of specialized breeding companies were established. It needs to be noted, however, that in the last decennia, consolidation of seed companies took place starting in field crops, now being followed by vegetables and flowers. The global seed market increased from US$12 billion in 1975, to around US$20 billion in 1985 and was estimated at US$36.5 billion in 2007 (Bruins, 2009).All in all plant breeding has become a highly developed science of how to combine desired traits of plants in one variety. Yield has increased, resistances to biotic stress and tolerance to abiotic stress have been incorporated and various qualitative characteristics like taste, earliness, size, nutritional value and so on were improved (Bruins, 2009).Plant breeding would not be possible if biodiversity did not exist. The recombination of required traits in a plant variety is the essence of plant breeding, whatever plant breeding methodology is used. Hence, for the recombination of the required traits, genetic variation is required. For the development of modern varieties plant breeders mainly make use of existing modern varieties that consist of sets of genes that are desirable for agriculture. Through recombination it is hoped to create even better varieties. When specific traits cannot be found in related varieties, other genetic resources like landraces, wild relatives and/or related species may be used. The latter happens at a level of 5-10 per cent at most. Plant breeding is done by many players, by farmers, small-and medium-sized companies and multinationals. It also takes place in different regions of the world, even though the method of breeding and capabilities may differ. These activities do not take place independently, as plants from different users and different regions are constantly intermingled. This means that genetic resources are continuously moved around the world. This flow is essential for the future of plant breeding as it assures breeders that they can utilize the desired sets of genes.Plant breeding is a continuous process of improvement, in which genetic resources are both an input and an output. The genetic resources that have been developed will be input for new breeding processes. Through plant breeding new variation, new diversity may be created (Van den Hurk, 2009). Lang and Bedo (2004) showed a great increase in genetic diversity of the Hungarian wheat varieties registered over the last 50 years. This is the result of breeders using a wide range of genetic resources to come to new wheat varieties. Moreover, farmers use a wider choice of varieties at present than in the past. Van de Wouw et al (2010) demonstrated in two studies that reduction of biodiversity through the modernization of agriculture could be observed in the 1960s when diversity in the crops researched was low. However, diversity was rising again from then on until the end of the century. These trends over the last decades demonstrate that plant breeding has a positive influence on the biodiversity at the genetic level.Recombination and use of genetic resources are not limited to one plant breeder and one region. Plant breeders made, make and will make use of genetic resources from each other, from different countries and backgrounds. Plant species have, for example, moved around the world and may have grown into important species in other parts of the world. It is believed, for instance, that Papua New Guinea and the surrounding region is the centre of origin for sugar cane. From there it moved to northern India, where a secondary centre of origin developed. Then it moved further around the world. Currently Brazil is the top producer (Willy Degreef, personal communication).It is not only that plant species move around the world, but also that those species may be used for different objectives and therefore gain importance. Sugar cane, for example, is not only used as a sweetener, but has also become important for ethanol production. Furthermore, crops may adapt to different climatological conditions and move to new regions. Maize growing, for example, has shifted to northern Europe, while sugar beet has been adapted for tropical circumstances ( Van den Hurk, 2009).From the above it can be concluded that no plant breeder, no nation is completely independent in terms of genetic resources. Both developed and developing countries have come to rely on non-indigenous crops for their food, feed and fibre supplies. A study assessing the degree of a country's dependence on non-indigenous crops (measured in terms of calorific contribution to nutrition contributed by crops whose centre of diversity is outside the country in question) has shown that all countries grow or import crops that come from distant lands (Palacios, 1998).From the above it can be concluded that genetic resources and plant breeding are closely intertwined. As the flow of genetic resources was at stake, it was important for the plant breeding sector to actively participate in the negotiations of the International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA) (see Annex 1 of this volume for the list of all Commission and Treaty negotiating meetings). The focus of input has been on the multilateral system, access, benefit sharing and Farmers' Rights (see Annex 3 of this book for details on the main provisions of the Treaty).With the entry into force of the Convention on Biological Diversity (CBD) at the end of 1993, genetic resources were no longer freely available due to States' sovereign rights. At the time, the International Seed Federation (ISF) was of the opinion that the restrictions probably would have the most effect on public research, small breeding companies and developing countries poor in genetic and financial resources. Large companies and the developed world would be less affected as they have already collected materials from all over. Therefore, ISF supported the development of a multilateral system as proposed in the Global Plan of Action on Plant Genetic Resources for Food and Agriculture. This would leave as much freedom to operate as possible for the breeders (Coupe and Lewins, 2007).The multilateral system should include all genetic resources of importance to present and future food security, and/or agriculture in general, at the level of genera and species: food crops, including vegetables and fruits, forage crops and mixed industrial/food crops. For each genus and species, the genetic resources should comprise wild relatives, landraces, obsolete varieties, and commercial varieties that are in the public domain (ASSINSEL, 1999) (for the list of genera and species, see CGRFA/IUND/4, Rev.1, pp40-43). Unfortunately, the final negotiated list of the multilateral system of the ITPGRFA was limited due to political reasons. Some main food crops like soy bean are missing. Furthermore, most important vegetable species are also missing from the list. Smaller crops like asparagus and strawberry are on the list while important vegetables like tomato, pepper, sweet pepper and onion are not on the list. This means that in the daily practice of plant breeders it is unclear how to deal with access to genetic resources that are not part of the list -leading to limited or no access at present.In the negotiations of the ITPGRFA it was important to explain the interdependence of this treaty and the Union for the Protection of New Varieties of Plants (UPOV) Convention and the plant breeders' rights defined in it, which is so important for innovation and further improvement of varieties in the breeding industry (ASSINSEL, 1999).Breeders' rights provide protection to a genome of the species, but on a specific individual plant variety in the development of which the breeder has invested. It is only limited in time. Moreover, thanks to breeders' exemption, the variety to which the title has been granted is freely available for further breeding and the result of such further breeding is freely marketable, as long as the newly developed variety is distinct, uniform and stable and not a simple copy of the initial variety. In fact, the obligation to avoid plagiarism favours biodiversity (ASSINSEL, 1999). Hence the breeders' exemption was a benefit on its own and ISF is positive that this was recognized in the final text of the Treaty.The breeders' exemption is not applicable in patents, which means that new improved patented material is not immediately available for further breeding. For this reason, ISF members indicated to be ready to study the possibility of balancing the resulting lack of immediate availability. When the results of a breeding/research programme which includes genetic resources provided by in situ or ex situ gene banks, are patented, they agreed to participate in a fund to be established by governments, as decided in FAO resolution 3/91, and implicitly acknowledged in the Global Plan of Action. A material transfer agreement (MTA) that is linked to the multilateral system would be necessary to legalize access and benefit sharing. This ISF position, stated at the 5th extraordinary session of the Commission on Genetic Resources in June 1998, was necessary to finally get to a breakthrough in the negotiations of the benefit-sharing arrangements of the ITPGRFA (Cooper, 2002).Whilst preferring a broad multilateral agreement, ISF acknowledged the need to keep open the possibility of bilateral agreements in exceptional cases (ASSIN-SEL, 1999). This could be, for instance, appropriate when a small number of countries have, or need, access to genetic diversity of a particular species or group of species, and/or when highly expensive and specialized research gives a strong competitive advantage to a single or limited number of institutions. Such conditions could prevail in the case of some industrial crops as, for example, rubber. In addition, bilateral agreements could be tailored to the needs of the parties; they could be created for specific purposes and then dissolved without the need of heavy structures; they could offer greater confidentiality (ASSINSEL, 1999).To implement the multilateral system and make it effective, a standard material transfer agreement (SMTA) had to be developed. ISF supported the fast development of such an agreement and offered its experience with preparing contracts. From the start in 1998 of the negotiations on the agreement that later became the SMTA, ISF already defined several issues which should be considered in the agreement (ASSINSEL, 1999).First of all, the material supplied should be available without any restrictions for the recipient for breeding and research purposes. According to ISF the recipient should neither claim legal ownership nor apply for intellectual property protection over the germplasm received, per se. However, it should be possible to protect plant varieties developed from the material, if the criteria of protectability are met, by plant breeders' rights, or any other sui generis system consistent with the UPOV Convention, or by patent, according to national law. This also meant that cells, organelles, genes or molecular constructs isolated from the material may be protected by the recipient through patents, if the criteria for patentability are met (ASSINSEL, 1999). This approach of ISF was generally accepted and is incorporated in the SMTA (see Articles 6.2 and 6.10).Another important criterion for ISF, which existed as early as 1999 in its official position and occurs for protection under UPOV-like systems, considers that the free access to the new varieties for further research should be recognized as a contribution to benefit-sharing (ASSINSEL, 1999). As stated before, ISF could see that when the results of the research are patented, the recipient should pay to the multilateral agreement fund (the Resolution 3/91 or 3/91-like fund) a certain amount of royalties, to be accepted on a contractual basis (ASSINSEL, 1999).In the negotiations on the SMTA the part dealing with benefit sharing has taken a fair amount of time and the seed sector has been active to participate and provide relevant information. The benefits of the breeders' exemption have been recognized in the final text of the SMTA. According to Article 6.7 of the SMTA there is no obligation for any further benefit sharing; however, voluntary contributions are welcomed according to Article 6.8.To agree to the benefit-sharing requirements, be they obligatory or voluntary, several bottlenecks needed to be dealt with. The first point to discuss is the contribution of the germplasm to the final product. This may be divided into two parts, the amount of work and research that needs to be done to get to a variety, and the contribution of the germplasm to the final product.In the negotiations it became clear that a good balance between the work of the plant breeder and the contribution of the germplasm should be sought. A breeding process takes at least ten years and often longer, in particular, when wild relatives or landraces are used. Moreover, plant breeding companies spend 10-15 per cent of their turnover on research and development.In the discussion on the contribution of a genetic resource the plant breeding sector suggested the following elements to be considered for benefit sharing. First of all, it would look to the amount of DNA that was incorporated in the final product. The plant breeding sector was of the opinion that benefit sharing should only take place when a great part of the genetic resources could be found back in the final product; a minimum of 25 per cent should be incorporated. In addition, benefit sharing should be able to be triggered when an identifiable trait of value or essential characteristic of the genetic resource was incorporated. Secondly, the amount of available knowledge on the genetic resource could be considered relevant. The more you know on the genetic resource, the less risk you need to take to work with the material.The amount of DNA incorporated has been discussed in a great detail. It was not possible to come to an agreement though on what part of the DNA of the genetic resource should be incorporated. The main concerns were the traceability and control of such a system. Therefore, it had been agreed that any incorporation of a genetic resource should trigger benefit sharing be it voluntary or obligatory.The amount of knowledge known beforehand has not been debated any further in the context of triggering benefit sharing. In fact, it was decided that information that was not confidential that became available from research of the germplasm should be shared. Knowledge sharing is considered an important form of benefit sharing.Once it was decided what would be the trigger point for benefit sharing, the benefit sharing itself should be discussed. The seed sector pointed out that the percentage of The Seed Industry 169 the profit to be agreed upon cannot be very high, as any incorporation is a trigger point. Furthermore, they found it important that the percentage would be taken of the net sales, meaning that (i) discounts, customary in trade, (ii) amounts repaid or credited by reason of rejection or returns, (iii) any freight or other transportation costs, insurance, duties, tariffs and sales and excise taxes based directly on sales or turnover or delivery of products and (iv) any licence fees, should be subtracted from the gross income. Especially the developing world was concerned about the net sales; they expressed their concern on transparency on what would be subtracted from the gross income and what would not be. On the other hand it was understood that payment should not be settled on income that the breeder did not receive. To overcome the problem, the plant breeding sector estimated that the income losses of the above mentioned points are around 30 per cent (Le Buanec and Noome, personal communication). In conclusion it had been decided that the obligatory benefit sharing would be 1.1 per cent of the gross income minus 30 per cent.A third issue in the negotiation process that took time and thought was the determination of the exact moment when benefit sharing should take place. In this discussion ISF indicated that double payment should be avoided. Furthermore, ISF was of the opinion that a reasonable point in the development chain should be found for the benefit-sharing moment (Le Buanec and Noome, personal communication). In other words, it would be important that the user of genetic resources is not forced to follow his product to the final consumer. The point of commercialization of a product was finally defined as the moment that a recipient and/or its licensee sell a product on the open market.A fourth issue to be dealt with was the multiple uses of genetic resources in breeding programmes. To simplify the benefit-sharing system and make it work it was agreed that only one payment should be made, even if more genetic resources under more SMTAs were involved.The fact that benefits are only created after a long time was another potential problem. This would mean that benefits would be shared only in a later stage. To circumvent this situation another option for benefit sharing had been designed. Recipients of genetic resources could opt for a lower percentage of the sales, but then on all the sales of a certain product whether germplasm was incorporated or not and/or whether the product would be available for research and breeding or not. The seed sector was involved in the discussions of this option, and saw opportunities in this approach. However, the percentage 0.5 per cent that was finally agreed upon is considered too high.A dispute settlement was agreed upon. For the seed sector it was important that a dispute could only be initiated by either the provider or the recipient. Later, it became also relevant that the third party beneficiary would also be able to initiate this. The seed sector could support this (Le Buanec, personal communication;ESA, 2005).The seed sector was of the opinion that terms on duration and a termination clause should be included as in any contract (Le Buanec, personal communi-cation;ESA, 2005). During the negotiations no agreement on those items was possible and a duration and termination clause was left out.Once the SMTA was agreed upon, it was important to implement the multilateral system of the ITPGRFA. In some countries the implementation was taken care of immediately, while in most countries it seems more difficult to implement the multilateral system and the SMTA. The exchange of germplasm continues with the countries and regional and international institutes that have implemented the SMTA. In countries where the SMTA is not implemented, no or perhaps limited exchange is taking place. For vegetables no examples of bilateral agreements are known, except if they are based on the SMTA.If no agreements are made, benefits are not shared. Therefore, the plant breeding sector stresses the need for an effective implementation of the ITPGRFA, putting the genetic resources into the multilateral system and making them available under the SMTA. Only then, materials may be used in a sustainable manner and can be conserved.The conditions of the SMTA are sometimes also used for non-Annex I crops. This is strongly supported by the seed sector as this creates a level playing field between Annex I and non-Annex I crops. Moreover this may assist in the support for extension of the list of Annex I. That the conditions of the SMTA are useful as a benefit-sharing tool is demonstrated through some collection missions that have been carried out recently by the Dutch gene bank CGN, financially supported by the Dutch breeding companies. In negotiations with Uzbekistan and Tajikistan it was agreed that collection missions on wild spinach could be carried out under the following conditions: the mission would be paid for by The Netherlands and the materials would be shared between the countries and CGN. Moreover, the collected materials can be given out by CGN under the conditions of the SMTA. A similar mission for wild Allium species has been agreed upon with Greece.With regard to the use of the SMTA some bottlenecks need to be further discussed among parties and with stakeholders. The number of SMTAs that are being signed is increasing and the administrative burden may cause unnecessary inconveniences for both user and provider.Another issue for consideration is the passing on of SMTAs to future users and the information that needs to be provided to the third party beneficiary. As the extensive administration may be cumbersome this may limit further distribution of genetic resources.Putting genetic resources into the multilateral system needs to be stimulated and facilitated. Issues of concern for the seed sector doing so are several; the burden of administration is one. Secondly, it is not clear if it is the accession that becomes part of the system or the genetic constitution/information. This may be relevant as seed lots may be split in several parts: one for the multilateral system, one for own use and another for further distribution under own conditions or so. Lastly, it may be important to make arrangements so that providers of genetic resources toThe Seed Industry 171 the multilateral system that for any reason lost their own part of the accession can obtain a copy of their accession though the multilateral system without signing an SMTA; they in the end have brought it in. Finally, the seed sector recognizes that using the SMTA to access genetic resources of Annex I that are maintained in situ is also important and should require more attention.Currently an international regime on access and benefit sharing is being negotiated under the CBD. This regime is dealing with all genetic resources for all uses.The seed sector is of the opinion that the ITPGRFA should be recognized in those negotiations and should be excluded from this general regime. Moreover, it would be good to obtain recognition for the system as a workable system for access and benefit sharing that, in particular, suits industries, like the seed sector, that deals with a continuous flow of genetic resources. In other words it may be useful to extend the rules of the ITPGRFA to the whole breeding sector and possibly other sectors that deal with a continuous flow of genetic resources.The negotiation of the ITPGRFA was not only focused on a multilateral system, but also on Farmers' Rights. This was felt necessary to recognize the contribution of farmers to the conservation of genetic resources. ISF could support recognition for the farmers; and finds it also important to recognize the contribution of the plant breeding sector.During the negotiations, ISF explained that plant breeders' rights do not have any negative impact on the activities and work of farmers and, in particular, subsistence farmers. Furthermore, ISF stressed that UPOV and, in particular, the section on farm-saved seeds would not be undermined.As far as farm-saved seeds are concerned, Article 15 of the UPOV Convention clearly states (i) that the breeders' rights shall not extend to acts done privately and for non-commercial purposes and (ii) that each contracting party [to UPOV] may, within reasonable limits and subject to the safeguarding of the legitimate interests of the breeder, restrict the breeders' rights in relation to any variety in order to permit farmers to use for propagating purposes, on their own holdings, the product of the harvest they have obtained by planting, on their own holdings [a] protected variety.The plant breeding sector was and is of the opinion that any rules on Farmers' Rights should be implemented at a national level as all jurisdictions have different systems to involve stakeholders including farmers in policy development, and benefit-sharing arrangements. ISF, therefore, could support the text of Article 9 of the Treaty, as long as all elements are recognized and respected.Concern about the implementation of Farmers' Rights has been expressed by several parties. ISF supports the fact that Article 9 of the Treaty should be implemented and used to call upon the parties to assume their national responsibility.In their latest position paper on Farmers' Rights adopted in 2009, ISF provided information on the importance of plant breeders' rights for both farmers and plant breeders and also explained the coherence between plant breeders' rights and Farmers' Rights (ISF, 2009).To encourage the continuous and substantial investments required to support breeding and the large-scale characterization and conservation of germplasm undertaken by the commercial sector, ISF is of the opinion that breederswhether companies or individuals -must have the opportunity to protect their new varieties through intellectual property rights in order to obtain fair remuneration. Therefore, ISF strongly supports plant breeders' rights based on the UPOV 1991 Convention as it provides an adequate protection of plant varieties against inappropriate exploitation by others.In relation to Farmers' Rights, it is important to note that this protection is combined with free access and use for further breeding purposes (breeders' exemption) and also the compulsory exception of acts done privately for non-commercial purposes allowing subsistence farmers in developing countries to save and use seed from their own harvests (ISF, 2009).Most national laws recognize and protect intellectual property. They allow protection of new plant varieties created by breeders through years of breeding effort and significant economic investment to the exploration, characterization and development of germplasm as intellectual property. The Treaty does so too. Even as Article 9 calls for Farmers' Rights it does not exclude the intellectual property of commercial plant breeders. Article 9.3 expressly acknowledges that implementation of a system that allows farmers to 'save, use, exchange and sell farm-saved seed' rests with national governments 'subject to national law and as appropriate'. The Treaty recognizes that each contracting party has its own domestic needs and priorities, and recognizes that a contracting party may also have obligations under other international agreements and conventions it adheres to.Farmers are the primary market for new varieties developed and protected by commercial plant breeders. Free and unlimited use of farm-saved seed that is harvested from protected varieties developed by plant breeders destroys the economic incentive for those breeders to continue to conserve, characterize and develop the available genetic resources in important food and feed crops. If farmsaved seed of protected varieties is permitted and used, breeders should receive fair remuneration for that use. Failure to respect and protect the property newly created by breeders will eventually restrict the release of genetically diverse and improved varieties to the detriment of farmers and to society as a whole. However, farmers still have the opportunity to freely use seeds of landraces and seeds of varieties that are not or no longer protected, independently of the consent of the breeder (ISF, 2009).For the plant breeding sector it is important to have sufficient freedom to operate to carry out their breeding activities and have the necessary access to plant genetic resources. This means that a flow of genetic resources should continue to take place. It is important to realize that access is required both in developed and developing countries. In the latter it may become even more important as the plant breeding sector is expanding. Moreover, genetic resources should be available for all type of users, be they small, medium-sized or large enterprises.The value of the breeders' exemption should be continuously recognized. This guarantees a continuous flow of genetic resources of which plant breeders and thus farmers and economies will benefit.As Annex I is only limited, it is important to consider the extension of Annex I. Many important food crops are still not on the list, while they are important for feeding the world and providing the necessary variation in diet. The seed sector would like to invite the member countries to implement the multilateral system, and make access and benefit sharing possible. As long as Annex I is not extended the seed sector urges parties to still make use of the conditions of the SMTA for the exchange of plant genetic resources that are used in plant breeding. This has proven the most successful in recent years.So, it is important not only to implement the ITPGRFA as broadly as possible, but also to take care that the system as such is recognized and respected by the negotiators of the access and benefit sharing regime of the CBD.With regard to Farmers' Rights the plant breeding sector can support Article 9 of the Treaty as long as it is implemented nationally. The Treaty text states the same and therefore should not be changed and/or interpreted differently. It should be realized that the needs of stakeholders and socio-economic context differ from region to region and from country to country.The fact that Farmers' Rights and plant breeders' rights can coexist needs to be recognized and respected in the implementation of Article 9. Contrary to what is argued by some sections of society, Article 9.3 does not provide any legitimacy to save, use and sell farm-saved seed. The ITPGRFA remains consistent in recognizing existing obligations arising out of national legislation on farm-saved seed. Therefore, the special dispositions authorizing the use of farm-saved seed that States have implemented -as part of their national legislations on plant breeder's rights -can remain unchanged.1 I thank Ms Monique Krinkels for her contribution in the writing and finalization of this chapter.Chapter 13A reflection on the Treaty from Small Farmers' Perspectives Wilhelmina R. Pelegrina and Renato Salazar 1The provisions of the Treaty and its implications for smallholder farmers are yet to be substantially 'processed' by farmers and their communities. Civil society organizations (CSOs) with knowledge about the Treaty can only directly reach a very limited number of farmers. Although limited in number, these farmers have substantial understanding of the implications of the Treaty. However, while these farmers are informed and are often involved in the discussions of the Treaty, the issues covered by the Treaty have to compete with other more pressing issues like agrarian reform, access to markets, seed regulations, irrigation concerns and human rights violations. Laws and regulations developed and implemented by national governments have far greater impact on small farmers than international treaties and conventions. The nation states that negotiated, signed and adopted the Treaty (see Annex 2 of this volume for the list of contracting parties per FAO regional groups), and not the Treaty itself, are the ones that can really affect farmers by enacting and implementing laws on seeds, plant varieties, access and benefit sharing, intellectual property rights, commercial regulations development of research and extension programmes. Farmers do not feel part of international policy processes and agreements, but feel very close to national policies and laws that can affect them.It is not surprising therefore that despite attempts to invite farmers and farmer organizations for the negotiations, only a few actively participated during the first Governing Body meeting of 2006 in Madrid. This partly improved in Rome in 2007 and in Tunisia in 2009 with the presence of farmers from La Via Campesina and internationally unaffiliated farmers groups and communities from Asia, Africa and Latin America attempting to make their voices heard. Farmers, from local and national organizations in developing countries, who participated in the Governing Body meetings often wonder whether their presence mattered, as they cannot follow the discussions nor find that their interventions were heard. While there is an openness and good will from the Governing Body and the Treaty Secretariat to allow farmers to attend the negotiations, supportive mechanisms and processes, as well as financing, have yet to be set up to allow for a vibrant and constant engagement with farmers and their organizations. Primarily there is a need to support farmers to 'process' the content of the Treaty, its mechanisms and its implications for their lives. Farmers' participation to the Governing Body is an essential element to ensure that their perspectives and positions on the finer points of the Treaty are heard and deliberated as part of a healthy democratic process, advancement in the global discourse and as an embodiment of one of the Treaty's core components -the recognition of Farmers' Rights.For small farmers, the most important provision is, therefore, the article on Farmers' Rights. Farmers' Rights, as a phrase, is immediately loaded with all the possible 'rights' that farmers are supposed to enjoy. However, the current and most prominent international deliberation and use of Farmers' Rights is limited to issues related to plant genetic resources (PGR) for food and agriculture.In 2003, farmers and farmer groups in the Philippines defined Farmers' Rights to comprise 38 elements covering socio-political, economic and cultural rights (CBDC Network, 2009). In 2007, the Community Biodiversity Development and Conservation Network 2 facilitated a discussion among farmers and farmer groups in Asia (Lao PDR and Philippines), Africa (Malawi and Zimbabwe) and Latin America (Brazil, Chile, Cuba and Venezuela) on their views about Farmers' Rights. Farmers from these countries likewise defined Farmers' Rights comprehensively to include access and rights to land, agricultural resources (water, information, other inputs), appropriate technology, market, the right to organize and participate in policy decision-making processes. For farmers, Farmers' Rights is a bundle of rights. Although most farmers acknowledge the focus of the Treaty on PGR, for them, Farmers' Rights as stipulated in Article 9 of the Treaty cannot be meaningfully realized unless other entitlements are guaranteed. Farmers point out the interrelationship between seeds and land, water, energy, culture, social fabric, household and individual well-being. Farmers and farmer groups are aware that all of these rights (forming the bundle of rights) have their own arenas and institutional locations where these are deliberated and where specific 'battles' are fought, but this does not stop them from looking at the potential of Farmers' Rights, as stipulated in Article 9, to uphold their collective rights. This creates an impression that farmers and farmer groups are merely being rhetorical, contribut-ing to further misunderstanding with negotiators, academic institutions and even CSOs who, in turn, are trying to concretize Farmers' Rights to be limited to seeds.Farmer groups and some CSOs argue that while the Treaty recognized the rights of farmers to save, use, exchange and sell farm-saved seeds in its Article 9, the Treaty did not limit Farmers' Rights to this set of rights. The responsibility to recognize what constitutes Farmers' Rights is subject to decisions of national governments. Farmers and farmer groups recognize the challenges for a legal recognition of their identified entitlements as such articulation may be viewed as a direct challenge to the status quo, rather than necessary measures to ensure national and global food security. At the national level, there are class struggles and structural problems, which will colour the interpretation of Farmers' Rights. This is where the international and global community can play a role, by working to put forth the necessity of recognizing Farmers' Rights as a cornerstone of the country's food security and the security of the global food system. In a way, there are farmers and farmer organizations that see the utility of the Treaty and the spaces provided in the ongoing negotiations to assist them in ensuring legal entitlements to their collective rights.Article 9 of the Treaty allows for a 'human rights based approach'. Farmers' Rights to plant genetics resources is a right that small farmers are to enjoy. However, in the real world and especially in less developed countries, rights are not handed down on a silver platter but are fought for and won. The moral and ethical high ground that underpins the rights of farmers to PGR is meaningless unless the structures and institutions that are responsible for providing this right are confronted. Small farmers who are usually among the poorer and weaker sectors of a country are keenly aware of this reality. For instance, farmers and farmer groups will continue to exercise their customary practices with or without legal recognition. For some, farming and seed saving have become an everyday form of resistance; for others it is simply their way of life; for most, it is the most practical way to survive and produce food for the family and for the community. Article 9 assists small farmers using this approach. Thus, the realization of Farmers' Rights, with the Treaty as a guide, needs to be a result of the assertion of small farmers to enjoy this right. This right should not be a gift patronizingly given to farmers by those who are rich and powerful. Gifts, even good ones, strengthen dependency and weaken the poor. Farmers' assertion of their rights will build confidence and critical learning. This will help address the 'behavioural' poverty of the poor that includes dependency and the lack of understanding of the structures that make them poor.While there are farmers and farmer groups who have started expounding on Farmers' Rights, a large number of farmers and their organizations have yet to identify themselves with this 'social construct' (Kneen, 2009). No one can teach farmers about Farmers' Rights because it is imbedded in them and it is the role of governments and other stakeholders to ensure that farmers can continue with what they have been doing or strengthen their knowledge and skills for global public good. How these different views will play out at national and international negotiations remains to be seen, as the full potential of the Treaty as an instrument of benefit to farmers has yet to be felt and assessed by farmers themselves.Farmers exchange seeds, as genetic material, freely. Traditional agriculture depended on the constant exchange and movement of PGR to manage different biotic and abiotic stresses and to provide for the different needs of farming communities. These natural and farmers' selection pressures developed the plant genetic diversity that the world inherited today. This system of management of PGR becomes even more important as climate change is making the weather, pest and disease resurgence become unpredictable. Diverse, free and democratic management of PGR will allow greater options for climate adaptation. The farmers' system of PGR management will play an important role as they are at the frontline of changing rain pattern and stresses. The right of farmers to save, use, exchange and sell seeds is one of the most basic foundations of the farmers' system of PGR management. This is how PGR diversity is maintained and created.It is clear that traditional agriculture has been altered or modernized as farmers react to market opportunities and as they changed from extensive to intensive agriculture. Consequently, farmers' varieties that fitted the traditional system of production were replaced by new cultivars bred for systems that are more intensive.However, while more modern cultivars are often used, this did not stop the farmers' system from creating diversity, this time also using introduced cultivars as raw materials for their selection. Thus, new types of varieties or populations emerged, selected from modern cultivars, landraces and local varieties. For example, farmers in North Cotabato, the Philippines, developed 120 farmer rice varieties in 6 years, in contrast to the national release of only 55 inbred lines in 10 years from public research institutions. In the Mekong Delta of Vietnam, there are more than 100 farmer varieties covering more than 100,000 hectares of rice area. In the North and Central parts of Vietnam, farmers have developed more than 150 new farmer varieties. Due to traits that fit the market and intensive systems that most farmers now practice, their new rice varieties are also non-photosensitive, of short to medium duration, and are no longer tall. Furthermore, these new varieties carry adapted traits that fit the farming conditions of different macro and micro ecosystems. Saving, using, exchanging and selling seeds among themselves helped create these new cultivars. All traditional or introduced varieties constitute raw materials to be developed and adapted. If the rice varieties were protected with intellectual property rights that discouraged farmers exchanging and selling among themselves, these varieties would not have emerged. This evidence is the moral reason why farmers should be allowed to save, use, exchange and sell seeds among themselves. They already provided all their PGR to the world for free. The materials they continue to create are also free.When the negotiations of the Treaty started (see Annex 1 of this volume for the list of all Commission and Treaty negotiating meetings), there were few evidence-based studies about the ability of farmers to develop new farmer varieties. In prime irrigated areas, modern varieties have replaced landraces, but not the ability of farmers to undertake crop breeding (Salazar et al, 2006). When a germplasm gets into farmers' hands, it enters into an endless process of experimentation -from adaptation to local conditions and farm practices, seed production and distribution (including marketing trials). Farmers are primarily concerned about their livelihood, the return on their inputs and hard labour in the form of sufficient (preferably with surplus) food supply and income. It is natural for farmers to test and innovate as part of risk management measures to ensure their livelihoods. Although there is a mention in Article 9 of the Treaty about the materials that farmers will continue to make, the focus remains on the PGR and not on this dynamic technology development process by farmers. Thus, it appears that the Treaty was negotiated based on the idea that farmers have active roles in conserving local and traditional landraces and varieties, but are not actually innovating. What is being emphasized is farmers' traditional knowledge over traditional resources. This disparity between farmers' practices and realities with that of the prevailing interpretations of the Treaty by negotiators, their advisers and even civil society groups and farmer groups may be an impediment to putting into operation the core components of the Treaty on conservation and sustainable use, Farmers' Rights and the multilateral system of access and benefit-sharing (see Annex 3 of this book for details on the main provisions of the Treaty). At the national level, this disparity in interpretation is apparent in existing seed policies. Those who were involved in drafting the existing seed laws in Bhutan, Laos and Vietnam, for example, admitted that, when they drafted and passed the laws, they were not aware of these realities. In the end, it is not just about protecting the germplasm materials, but the farmers' dynamic and collective system of technology development and diffusion through every season of research, experimentation, knowledge and skill sharing with other farmers and even with public and private entities.The Treaty is not perfect even though it was negotiated out of the collective goodwill of the global community. It is this imperfection of the Treaty that allows for flexibility in the interpretation and negotiation at different levels but which constitute a constant source of frustration for farmers and their organizations. Most do not want to engage in the Treaty discussions and instead use their (time and human) resources towards more direct work in their fields or in their organizations. Farmers have yet to see concrete results out of the Treaty, as translated into national policies (e.g. seed rules) and programmes on PGR. While there are efforts by CSOs to facilitate opportunities for farmers to participate in the deliberations of the Treaty, it may not be enough to ensure farmers' participation and for them to articulate on their own, their views about the elements of the Treaty and their implications. There may need to be institutionalized mechanisms and processes to encourage farmers to participate. In addition, some concrete gesture has to be made. If there is a Global Crop Diversity Trust Fund, why not a Global Fund for Farmers and farmer groups to support their work on on-farm conservation and crop development? While the benefit-sharing fund is a step in this direction, it is too early to tell whether it is sufficient to support what farmers envision. The Governing Body can call on its members to develop mechanisms or compel seed banks to link with farmers, whereby any ex situ conservation efforts should be linked to on-farm conservation work. At the national level, we need to continue to provide space for farmers' discussions and deliberations, so that they can come out with their own take as to what the Treaty and its components mean to them. This can be supplemented with an information campaign to enrich the area of understanding among different stakeholders. Finally, the Governing Body can ensure farmers' right to participate in decision making related to plant genetic resources for food and agriculture, by supporting farmers and farmer communities to engage in the Governing Body process through their own platforms of consultations and processes as they review matters related to the Treaty and beyond. The support and recognition provided by the Convention on Biological Diversity (CBD) for CSOs and indigenous peoples can be a template, which the Governing Body can adopt to support farmers and their organizations. The CBD supports parallel processes and capacity building processes of CSOs and indigenous peoples, even developing platforms for joint publication and regular communication. The Governing Body and the Secretariat can start with a global farmers' conference on the Treaty, particularly on Farmers' Rights to pave the way for smallholder farmers to 'process' the Treaty within their own context. Chapter 14Towards Implementation of the International Treaty on Plant Genetic Resources for Food and Agriculture by the Indian National Gene BankThe Indian subcontinent is very rich in biological diversity, harbouring around 49,000 species of plants, including about 17,500 species of higher plants. The Indian gene centre holds a prominent position among the 12 mega-gene centres of the world. It is also one of the Vavilovian centres of origin and diversity of crop plants. Two out of the 25 global hotspots of biodiversity, namely the Indo-Burma and Western Ghats are located here. India possesses about 12 per cent of world flora with 5725 endemic species of higher plants belonging to about 141 endemic genera and over 47 families. About 166 species of crops including 25 major and minor crops have originated and/or developed diversity in this part of the world. Further, 320 species of wild relatives of crop plants are also known to occur here. Presently, the Indian diversity is composed of rich genetic wealth of native as well as introduced types. India is a primary as well as a secondary centre of diversity for several crops, and also has rich regional diversity for several South/ Southeast Asian crops such as rice, black gram, moth bean, pigeon pea, cucurbits (like smooth gourd, ridged gourd and pointed gourd), tree cotton, capsularis jute, jackfruit, banana, mango, Syzygium cumini/jamun, large cardamom, black pepper and several minor millets and medicinal plants like Rauvolfia serpentina and Saussurea costus. It is also a secondary centre of diversity for African crops like finger millet, pearl millet, sorghum, cowpea, cluster bean (transdomesticate), okra, sesame, niger and safflower; tropical American types such as maize, tomato, muskmelon/Cucumis species, pumpkin/Cucurbita species, chayote/chou-chou, chillies and Amaranthus; and it is a regional (Asiatic) diversity centre for crops like maize, barley, amaranth, buckwheat, proso millet, foxtail millet, mung bean/green gram, chickpea, cucumber, bitter gourd, bottle gourd, snake gourd and some members of the tribe Brassicae.The major share of food comes from cultivated species such as rice, wheat, maize, sorghum, barley, sugarcane, sugar beet, potato, sweet potato, cassava, beans, groundnut, coconut and banana. Crops like chickpea, pigeon pea, pearl millet and other minor millets, cotton, sunflower, soybean, sugarcane, rapeseed-mustard, vegetable and horticultural crops have their regional importance (from the social and economic security view point) for the farming community. Besides, spices, condiments and beverages are obtained from cultivated and wild plant resources.Crop diversity is well represented as developed cultivars, landraces or as folk varieties in different phytogeographical regions of India among diverse crop(s)/ crop-group(s). The western Himalayan region (including cold arid tracts) comprising Kinnaur, Lahul and Spiti and Pangi valleys, Ladakh and adjoining areas of Jammu and Kashmir and Uttarakhand hold rich diversity in wheat, maize, barley (hull-less types), proso millet, buckwheat, amaranth, chenopods, field peas, lentil, rice, French bean, Cicer, leafy Brassicae, pome, stone and nut fruits, medicago/clover, medicinal and aromatic plants. The most extensively cultivated grains in the country are rice, wheat and maize. In rice, both annual and perennial types occur particularly in the eastern and the central peninsular region including north-eastern plains. Oryza nivara, O. perennis, O. officinalis, O. granulata, Porteresia coaractata species and wild forms of O. sativa are fairly evenly distributed. Diversity in scented, deep water, cold and salt tolerant paddy types occur in various parts of the country. Considerable polymorphism is still found to exist in crops like wheat (Triticum aestivum, T. dicoccum and T. durum) and barley (Hordeum vulgare) in northern states in the Himalayan region. Maize has rich diversity in the peninsular tract, western Himalayas and north-eastern states. Fifteen distinct races and three sub-races of maize were recognized in India. Chionachne, Polytoca, Trilobachne and Teosinte also occur in this region. Millet crops have been dominant components of rain-fed agriculture on a regional basis in India. Millets are small grained, annual, warm-weather cereals of the grass family that includes 8000 species within 600 genera, of which 35 species comprising 20 genera have been domesticated. Millet used to be cultivated in an area of 35-37m/ha in India, reduced to 20-22m/ha during the past decade. The word millet was used to connote the following eight crops: great millet (Sorghum bicolor), pearl millet (Pennisetum typhoides), finger millet (Eleusine coracana), foxtail millet (Setaria italica), proso millet (Panicum miliaceum), little millet (Panicum miliare), barnyard millet (Echinochloa colona) and kodo millet (Paspalum scrobiculatum). Their adaptation to harsher environments and diverse cultural and agro-climatic situations is well known. The International Crop Research Institute for Semi-Arid Tropics (ICRISAT) located in India, maintains 44,822 accessions of sorghum, 21,191 accessions of pearl millet and 3460 accessions of small millets.The tribal-dominated areas of North-eastern region and the Eastern Himalaya, such as Mizoram, Meghalaya, Tripura, Manipur, Arunachal Pradesh, parts of Nagaland, north Bengal and Sikkim, are extremely rich in variability in rice, maize (including primitive popcorn), barley, wheat, buckwheat, Chenopodium, amaranth, soft shelled form of Coix, foxtail millet, finger millet, rice bean, winged bean, adzuki bean, sem, black gram, sword bean, soybean, peas, vegetables (cucurbits like Cucurbita, Cucumis, Momordica, Cyclanthera, Luffa, Lagenaria, Benincasa), fruits (Citrus, Musa, pineapple), oilseeds (Brassica spp., Perilla, niger, sesame), fibre crops (tree cotton, jute, mesta and kenaf), tuberous/ rhizomatous types as taro/yam, and bamboos.The eastern peninsular region, particularly the tribal belt of Orissa and Chhotanagpur plateau, holds rich crop diversity in rice, sorghum, finger millet, foxtail millet and proso millet, Dolichos bean, rice bean, chickpea, pigeon pea, horse gram/kulthi, brinjal, chillies, cucurbitaceous crops, mango, niger, sesame, linseed, Brassicae and castor. These areas hold tremendous variability in rice. Western arid/semi-arid region, including Rajasthan, Gujarat as well as Saurashtra region, possesses rich diversity like pearl millet, sorghum, wheat (drought and salinity tolerant types), guar, moth bean, cowpea, black gram, mung bean, Brassicae, sesame, chilli, cucurbitaceous vegetables, minor vegetables and fruits (Capparis aphyla, C. deciduas ber), Citrus, forage grasses/legumes and spice crops (coriander, fenugreek, ajwain, garlic).The central tribal region covering Madhya Pradesh and adjoining tract of Maharashtra are rich in diversity of crops like wheat, rice, sorghum, small millet, grain legumes (chickpea, pigeon pea, black gram, green gram, cowpea), oilseeds (niger and sesame, Brassicae), chilli and cucurbitaceous vegetables. The western peninsular region including the Western Ghats has enormous diversity in tuber crops like Dioscorea, Colocasia, okra, eggplant, chilli and cucurbits, banana and rhizomatous types like Curcuma, ginger, spice crops (black pepper, cardamom, nutmeg), forage legumes and grasses, and areca nut.Through the introduction of high-yielding varieties in major crops (rice, wheat, maize etc.), local landraces of many coarse grain cereals (particularly minor millets), are under cultivation only on a limited scale or have disappeared from their native habitats. Although rice diversity, at a local level, appears to have sustained owing to food preferences and social security of the farmers growing rice, diversity in major cereals/millet crops like wheat, pearl millet, sorghum is decreasing at the local level.The ex situ conservation approach requires systematic long-term conservation of viable propagules of collections outside the natural habitat of species. Realizing the importance of collecting and conserving PGRFA, India has taken strategic steps for their ex situ conservation using appropriate approaches, especially in the last three decades. A majority of this work is carried out under the Indian Council of Agricultural Research (ICAR) by the National Bureau of Plant Genetic Resources (NBPGR), New Delhi, which is the nodal organization for ex situ management of PGRFA. Additionally, several economically important plant species are also conserved in botanic gardens of various plant science based institutes, most of which come under the jurisdiction of the Botanical Survey of India (BSI), Ministry of Environment and Forests (MoEF). The various types of components that constitute the ex situ conservation of PGRFA in India are listed in Table 14.1.The NBPGR has been entrusted with the responsibility to plan, conduct, promote, coordinate and take the lead in activities concerning the collection, characterization, evaluation, conservation, exchange, documentation and sustainable management of diverse germplasm of crop plants and their wild relatives with a view to ensuring their availability for use over time to breeders and other researchers. The NBPGR, with its ten regional stations/base centres/quarantine centres over different phytogeographic zones of the country (Figure 14.1) has an active collaboration and linkages with over 57 National Active Germplasm Sites (NAGS), situated at different crop-based ICAR institutions and state agricultural universities (SAU) and various other crop improvement programmes. Through this network, NBPGR has been spearheading the national activities on PGRFA management. The base collection of germplasm is kept in long-term storage by NBPGR in its National Gene Bank, which is linked to numerous crop-specific active collections that are maintained at appropriate locations. The National Gene Bank of NBPGR has three types of storage facilities -seed gene bank, cryogene bank and in vitro gene bank. The seed gene bank was first established in 1986 and expanded in 1996 and presently has 12 long-term storage modules that are kept at −18°C. There are also six medium term modules maintained at 4-10°C. In addition to seed conservation, other ex situ conservation methods, such as in vitro conservation and cryopreservation, have been employed to conserve species, predominantly having non-orthodox seeds (seeds which lose their viability when dried below critical moisture content and are sensitive to low temperature storage) and vegetative propagated species. The cryobank comprises six extra-large capacity (180 litre) cryotanks that store samples in the vapour phase of liquid nitrogen (from −160 to −180°C), and three smaller cryotanks (30-60 litre) where samples are held in the liquid phase (−196°C). The in vitro gene bank has four culture rooms at 25°C for maintenance of slow-growing cultures. The National Gene Bank of NBPGR has currently over 381,032 accessions of germplasm belonging to nearly 1969 species (Table 14.2).Active germplasm collections are maintained at NBPGR regional stations and the NAGS situated at different crop-based ICAR institutions and SAU, which are held in modules maintained at 4-10°C. Eighteen medium-term storage modules (7 at NBPGR centres and 11 at NAGS) are used for the storage of active Figure 14.1 Location of NBPGR headquarters and its ten regional stations in India collection of seed propagated crops. These centres also manage the field gene banks of clonally propagated crops. The directory of various NAGS, together with the germplasm accessions maintained, is presented in Table 14.3. In addition, there are ten more medium-term storage facilities maintained by other institutions belonging to different public and private organizations. Numerous botanic gardens managed by the BSI and several other organizations help in ex situ conservation of economically important as well as endangered, threatened and rare plant species. The tradition of setting up botanic gardens in India dates back over 200 years when large spaces within major cities in India were set aside for the purpose. The Indian Botanic Garden at Calcutta was established in 1787. It now spreads over an area of 110 hectares and has around 15,000 plants belonging to 2500 species. Presently there are 150 organized botanic gardens or large parks in India, of which 33 gardens are managed by the government, 40 by universities and the rest are managed by state departments or civil society organizations (CSOs). The Government of India has also recently initiated establishment of a National Botanical Garden in NOIDA in Uttar Pradesh. In all, about 150,000 live plants belonging to nearly 4000 species (including 250 endemic species), are conserved in these botanic gardens.For germplasm registration, there is a system operating at the NBPGR, New Delhi. This system is completely different from the registration of plant varieties of the Protection of Plant Varieties and Farmers' Rights Act (PPVFRA). This registration of germplasm is not a system of protection per se but a safeguard of material, developed by a breeder through publication and documentation in the public domain. This germplasm registration can be used as evidence in documentary or other forms to create and establish 'Prior Art'. Germplasm which can be registered at NBPGR could be any good performance material for specific and/ multiple traits (may not be yield superior), mutants or with a different plod level than the normal, with academic/scientific importance, parental lines of inbreds, For information management, database development and its maintenance, upkeeping of the Local Area Network (LAN), computer hardware and software, statistical analysis of PGR experimental data and guidance to the researchers for the experimental designs, the Agricultural Research Information System (ARIS) cell was established at NBPGR in 1997. This cell also takes consultancy related to database management in the plant genetic resources. In addition, this cell also imparts computer training in relation to database management of genetic resources. Many on-line databases related to plant genetic resources, and plant varieties have been developed and are in use by researchers in India. Two databases namely IINDUS (Indian Information System as per the DUS Guidelines) and NORV (Notified and Released Varieties of India) are in use at the Protection of Plant Varieties and Farmers' Rights Authority for the purpose of registration of extant and new varieties.The website of NBPGR is hosted on its own web server at www.nbpgr.ernet. in and is updated/maintained by ARIS cell regularly. This website has information related to all the important activities of the NBPGR, on-line application for 'permit to import seed/planting material/Transgenics/GMOs (for research purpose)', 'Material Transfer Agreement (MTA)', 'Guidelines for Registration of Plant Germplasm', 'Guidelines for Documentation and Conservation of Folk Varieties', 'Guidelines for Submission of Seeds/Propagules with National Genebank', 'Approved Fee Structure for Import of Germplasm Material', 'Guidelines for Filing Application of Plant Varieties for Registration under PPVFRA, 2001' and 'Format of Passport Data Sheet for Allotment of IC No'. In addition, all the announcements for the conferences, training programmes and meetings are regularly updated in the website.Many international developments during the last two decades have directly or indirectly affected the genetic resource management programmes (see Annex 1 of this volume for the list of all Commission and Treaty negotiating meetings). Plant breeders have traditionally relied on open and free access to PGR for developing new, high-yielding crop varieties. With the adoption of the Convention on Biological Diversity (CBD), which advocates national sovereignty over the biological resources, the authority for access to genetic resources rests with the national governments and this access is subject to prior informed consent of the providing country on mutually agreed terms. This led to enactment of the Biological Diversity Act (BDA) for India which governs access to all genetic resources of India and encompasses provisions for equitable benefit sharing. The International Treaty on Plant Genetic Resources for Food and Agricultural (ITPGRFA) is another legally binding treaty which has provisions for facilitated access to 64 crops and forage species, under a multilateral system of access and benefit-sharing (MLS) (see Annex 3 of this book for details on the main provisions of the Treaty). This exchange is under the conditions of a standard material transfer agreement (SMTA). NBPGR, being a single-window system for the exchange of small samples of plant germplasm meant for research, has developed a suitable MTA for providing access to PGR both within and outside the country. After operationalization of the Treaty in India and harmonization of the provision of the BDA with the obligation of the Treaty, the exchange of the PGRFA would be operated through NBPGR. There are some issues as listed further in the chapter, which need to be looked into before such an arrangement is expected to be put in practice.In addition, under the GATT/ WTO/ TRIPs regimes, restrictions have been imposed on free trade in commodities, including the agricultural products. Countries are required to adopt patenting or enact effective sui generis system or a combination of both, for the protection of plant breeders' rights. As a national obligation for the TRIPS Agreement of WTO, the new legislations namely, the Protection of Plant Varieties and Farmers Right Act (PPVFRA) 2001, and Geographical Indications of Goods (Registration and Protection) Act 1999, were enacted and suitable amendments made in other existing intellectual property rights (IPR) legislations, which have a bearing on the product, processes and technologies developed. The Indian plant variety protection is unique in providing equal rights to the farmers as breeder and conserver of genetic resources of local importance. To facilitate this activity with identification of distinctiveness of newly developed varieties, ICAR has provided the requisite support to PPVFR by developing guidelines for distinctiveness, uniformity and stability (DUS). To date, DUS guidelines for 35 crops have been developed and notified. Plant variety protection, under the PPVFRA, currently covers 17 crops; others are to be notified soon. NBPGR facilitates the submission of applications for plant variety registration under the PPVFRA. Over 700 applications of ICAR/SAUs have been submitted through NBPGR.During the long negotiation phase of the Treaty (see Annex 1 of this volume for the list of all Commission and Treaty negotiating meetings) and later as a contracting party to the Governing Body (see Annex 2 of this volume for the list of contracting parties per FAO regional groups), representatives of the Indian Ministry of Agriculture, mainly Joint Secretary (Seeds), Department of Agriculture and Cooperation (DAC) and India Council of Agriculture Research (ICAR) actively participated in the meetings. Their interaction with the Middle East and South Asian countries as part of the group and at individual level with the GRULAC (Latin American) group helped India to understand and consolidate their views and stands taken during these negotiations. This interaction was focused specially on the list of crops to be included in Annex I, the conditions of the SMTA, the role of FAO as the third party beneficiary and on the funding strategy of the Treaty. India has now designated Joint Secretary (Seeds) DAC, Ministry of Agriculture, as the nodal point for implementation of the Treaty. Regarding the obligations of the Treaty, there are various issues which still need to be worked out before effective implementation of the Treaty in the country. Some of these are discussed here.In India, access to genetic resources to outsiders is governed by the provisions of the BDA 2002, which was the outcome of the implantation of CBD in the country. It is the umbrella legislation to govern access to India's genetic resources including the PGRFA. The Treaty also in its Article 12.3(a) provides for access to PGRFA, subject to national laws. Therefore, there is a need to harmonize the provision of the BDA 2002 with the provision of the access to PGRFA under the multilateral system of the Treaty recognizing the legally binding nature of the Treaty. A notification to this effect for exchange of PGRFA covered under Annex I of the Treaty and use of SMTA for such exchange needs to be brought out by the National Biodiversity Authority which is the apex body in India for implementation of BDA 2002.DAC is the focal point in India; the actual custodian of genetic resources for food and agriculture is the ICAR, working under the Department of Agriculture Research and Education (DARE). For effective implementation of the national obligation of the Treaty, greater intervention of ICAR/DARE with DAC is expected, since the PGRFA for exchange needs to be routed through NBPGR for two reasons. First, all germplasm access is being conserved and regenerated through NBPGR. Second, NBPGR is envisaged as the single window for export/ import of PGRFA in the country for research purposes. It also has the authority delegated through DAC for quarantine certification of material under exchange.It is not clear, in India, (i) whether the material has to be accessed through a single window system or (ii) whether it has to be accessed directly from the concerned party. Similarly, when material is being accessed by individuals from IARCs, which is a part of the MLS of the Treaty, the information is not collated at one place in the country. The mechanism is not helping the focal points to have record of the material coming into the country from the MLS of the Treaty.As enumerated above, NBPGR is mandated to conserve PGR and manage PGRFA. Most requests for PGRFA from within India and from abroad are sent to the NBPGR which (i) caters to such request by arranging the material either from its stations or from NAGS, (ii) clears the material from the quarantine angle and (iii) dispatches the material to requesters. All exchanges are recorded and always under an MTA. There are, though, difficulties experienced at each step of such supply:• lack of enough multiplied seed for each and every accession requested for;• passport data of all the material in the gene bank is not available; • recorded ownership of the material especially where no passport information is available.All these problems have delayed the discussion on the identification of the material covered by Annex I of the Treaty. Secondly, the gene bank also holds material received from other countries being a nodal institute mandated to exchange plant genetic resources for research purpose in India. Another apprehension before designation is material of Indian origin available in the IARC. The SINGER data base shows that about 10 per cent of all material available at IARCs is of Indian origin. Such material has already become a part of the MLS through the agreements between the IARCs and the Governing Body of the Treaty. These materials are being supplied by IARCs on a regular basis through SMTA. This should be recognized by the Treaty as a meaningful and substantial contribution of countries like India towards designation of their material.The exchange of PGRFA is crucial for crop improvement programmes and ultimately the food and nutritional security of the world. India has contributed its share of genetic resources to the world through various national and international exchange programmes and would continue in the future also under the new ITPGRFA regime. NBPGR, being the nodal organization in India entrusted with exchange of PGRFA, would be working towards the operationalization of the Treaty under the national exchange guidelines. However, the procedure is taking its own course. A regulation for implementation of the Treaty at the national level is under way and soon the Treaty will be fully operational in India.Ambasta, S. P., Ramachandran, K., Kashyapa, K. and Ramesh, C. (eds) (1986) The Useful Plants of India, Publications and Information Directorate, Council of Scientific and Industrial Research, New Delhi, IndiaChapter 15The Point of View of a Plant Breeder on the International Treaty on Plant Genetic Resources for Food and AgricultureJosé I. CuberoPlant genetic resources (PGR) are the most important tool for plant breeders. Access to these resources was free since the beginning of agriculture. Only in the last 50 years, has the value of the genes, hence of the living organism carrying them, increased in astronomic proportions. This value is translated not only in their monetary price but more importantly also in their strategic and political value as they are the only way to reach food security in the future. Having always been important, food security has reached an even higher level of significance as food insecurity has acquired the unfortunate character of endemic at a global scale (Sasson, 2009). Plant breeding is as old as agriculture itself. In fact, the first farmers also were the first breeders: they sowed what they spared for sowing the previous year -that is, what they selected. The only conscious method of crop improvement was what is nowadays called 'bulk selection', consisting in choosing the seeds of the best individuals, or even the best seeds in the whole harvest, and mixing them to form the sowing bulk for the next season; obviously, there were spontaneous crosses among plants of different plots, but these crosses were done by Mother Nature, not by a careful planning by the breeder-farmer. Hand-made crosses with the purpose of increasing the variation found in the varieties used by farmers was not possible until the sex in plants was scientifically demonstrated at the end of the 17th century by Camerarius (De sexu plantarum epistola, 1694). Other methods were added in the 20th century such as polyploidy, artificial mutation and, recently, genetic engineering (Cubero, 2003). The common practice by plant breeders consisted in applying the chosen method to a suitable variety obtained either by him or by any other breeder. It was not a written statement but a universal practice taken for granted as it can be seen in the first textbook on plant breeding (Bailey, 1895) and all the classical ones in the 20th century (for example, Davenport, 1907;Poehlman, 1959;Sánchez-Monge, 1955, 1974;Allard, 1960Allard, , 1999;;Simmonds, 1979;Jensen, 1988;Hayward et al, 1993). Recent textbooks on plant breeding as those of Cubero (2003) and Acquaah (2009), already include the subject as an important topic for plant breeders.Germplasm collections were freely exchanged and national organizations were happy to provide subsets of their collections under request. Only when the problem emerged of applying intellectual property rights (IPR) to the work performed by plant breeders, was the question of the indiscriminate use of varieties such as a source of genes for own work put on the table and more concise terms were sought to define the practice. Thus, the traditional practice followed by plant breeders had to be modified to accommodate the IPRs to their productions; the concept of breeder's exemption or scientific option was probably coined during the first meetings held on that and related topics (see below) under the Food and Agricultural Organization's (FAO) umbrella in the 1960s. This broad concept was later on defined in Article 15iii of the 1991 UPOV Convention 1 and incorporated in national laws; for example, Spanish Law 3/2000 governing the Protection of Plant Varieties, states in its Article 15 that the varieties protected in Spain may be used as initial source of variation to breed new varieties without requiring the breeder's authorization or generating rights for the owners of the protected varieties used.Since the beginning of agriculture, farmers were accustomed to reserving a portion of the harvest as seed for the next season. Now, when varieties were produced by professional plant breeders (roughly speaking since the end of the 18th century (Cubero, 2003)) and registered, the varieties obtained reached the farmers through seed companies or official agencies, but farmers usually continued with their old practice. At the same time as it was necessary to refine the concept of breeder's exemption (see above), the ancestral practice of farmers had to be discussed as it confronted the implementation of breeders' property rights. The very important concept of farmer´s privilege had precedents in consuetudinary practices in some countries as, for example, the farm saved seed in the US, the semence de ferme in France or the landwirte vorbehalt in Germany (the latter translates exactly as 'farmer's privilege'); it was probably introduced in the meetings in the 1960s as the counterpart of the breeder's exemption; it was finally accepted in the legal texts following the 1991 UPOV Act (Article 15.2) (Sánchez, 2009). The farmer´s privilege meant that farmers can be exempt from paying royalties due to the producer of the variety, provided the farmer kept the seeds for his own use, never to be multiplied and sold in the market. The farmer's privilege has produced a considerable amount of literature in many fields, agronomical as well as juridical (Elena, 2007; López de Haro, 2007;Mateos, 2009).It is not advisable to use the farmer's privilege for a long time because of the varietal degeneration; the best practice is always to resort (if not annually, at least periodically) to reliable private or official seed producers, even in the case of the most favourable materials for the farmer (self-pollinating or vegetative reproduced varieties), but in spite of that technical difficulty, farmers still save seeds for their own use.The conflict between the traditional farmer's practice and the plant breeders' rights as a sui generis system of IPRs was evident and has become even more critical in recent times: valuable cultivars possessing important characteristics were released under contract and royalties were demanded by private seed companies to developing countries which revolted as many of these genes were identified in landraces or wild forms found in their territories. In many cases, developing countries prohibited germplasm recollections without special permission and under agreement of sharing the material collected. In some cases, the germplasm collections were placed under the authority of the defence ministries.Besides, many abuses were committed under the breeder's exemption: to transfer a character by backcrossing is usually easy, especially between modern cultivars; the use of wild or primitive forms is much more complicated because the useful gene is generally linked to undesirable ones and to 'clean' the former requires, in the best cases, many years of painful backcrosses and selection. The temptation to transfer a useless but easily identifiable gene to an outstanding cultivar was very high. Only after a few backcrosses, a variety possessing the whole valuable genotype plus an insignificant new gene would be able to be registered in commercial lists as being distinctive, uniform and stable (DUS in the breeders jargon); but the true value was that of the original genotype. As a solution to these abuses, the concept of essentially derived varieties, to separate what was an important breeding contribution from unimportant derivatives, was launched in the UPOV Act of 1991. The main idea is to preserve the breeder's exemption but maintaining the rights of the first breeder, whose permission would be necessary to market the derived variety (CIPR, 2002). This concept is easier to understand than to put in practice, because in the 1991 Act this concept is not very well defined (for example, would a transgenic variety with a simple but very valuable transferred gene be an essentially derived variety?). This lack of precision and the fact that many countries have not yet signed the 1991 Act are causing many legal difficulties for its application.Other serious concerns arose from IPRs concerning vegetal materials (CIPR, 2002). The Agreement of Trade-Related aspects of Intellectual Property Rights (TRIPS) established that a sui generis system could be applied as property rights for plant varieties, but left somewhat undefined the sui generis concept and, in fact, there are many possibilities to apply it. Europe favours protection as defined by the UPOV Convention revised in 1991, and several other countries led by the USA mainly use the patent system. The USA has indeed a long tradition concerning vegetative reproduced varieties (the seminal Plant Patent Act dates from 1930, later amended and modified; the USA Supreme Court has also decided on plant variety rights in favour of patents in recent times). In fact, the American concept of patent applied to vegetal products is not much different from the European protection concept for the same purpose.Any system designed to protect breeders' IPRs over their varieties could be used provided they have the same legal enforcement. As it has just been mentioned, sui generis systems can be devised for that purpose (UPOV protection is, in fact, one of them) and there are many possibilities between the protection as defined by UPOV and patent. The important objective is to acknowledge the work of the breeders in producing new plant varieties and make available to them the same IPRs due to other innovators. Worth mentioning, patents are much broader than the UPOV protection and much better known for historical reasons by lawyers and judges, a fact that runs in their favour for the future. Besides, a fact adding difficulties to the problem is that several biotechnological innovations are being considered under the umbrella of industrial patent, such as, for example, genes modified in the laboratory by genetic engineering techniques fall under the strict concept of Industrial Property patent (CIPR, 2002).The problem is more complex because although cultivars cannot be patented at present in the EU, genes or genetic constructions artificially produced or modified in the laboratory (transgenes) can be. The consequence is that a transgenic cultivar, that is, a cultivar whose genotype has been modified by genetic engineering, enjoys a peculiar situation: it is protected but the transgene it contains is patented in the current legal use of the concept, the result being a hidden or virtual patent running against many countries and therefore against most plant breeders. In fact, the UPOV Act of 1991 does not exclude the dual possibility of protection and patent for vegetal materials, at the same time allowing for restrictions to the traditional practice of both the breeder's rights and the farmer's privilege. The door is opened for patenting plant varieties as the limits between traditional and modern breeding techniques are more dubious every day. The terra nullius in this field, as in any other, is clearly to the advantage of the people first occupying it, as many court cases demonstrate in recent times.Genetic resources that were of free use some 50 years ago were fully controlled by the end of the last century. Restrictions were imposed by countries, private as well as public organizations, and by breeders themselves. Traditional rights, like the farmer´s privilege and the breeder's rights were or are in the way of being suppressed. It is a revolution in classical agricultural practices, a revolution concerning genetic resources and, especially, their control. Some international action seemed necessary as there were conflicts at all levels: political, geographical, economic and scientific. In a certain sense, genetic resources go beyond strict plant breeding projects. They can be used, for example, in the recovering of degraded areas, but even in this case a breeding effort can obtain better results by improving adequate materi-als. The same can be said of industrial applications: chemical compounds can be obtained directly from wild plants, but the best results are always obtained through domesticated forms of any organisms: genetic resources collections are still a must. Within the industrial uses should be included the new uses of old crops for agro-fuels that is affecting the food security itself (Sasson, 2008). Old crops can be re-domesticated (for example, a forage crop as a seed crop) but there is still an unexplored wealth of genetic resources, both in collections and in the wild, not conflicting with food production: many non-food plants could be used to find new sources of agro-fuels without using staple crops such as wheat and maize for that purpose. No doubt, biotechnology can play a relevant role in this matter (Ruane and Sonnino, 2006), and not only in developed countries but in developing ones (Sasson, 1993(Sasson, , 1998(Sasson, , 2000)).Germplasm collections have acquired a high economic value, obviously related to their strategic importance -a fact bothering the breeders' work, constrained to use what is commercially available to them. Germplasm collections have to be used if they are to be conserved; they cannot be 'stamp collections'. As in many other cases, what is not used easily disappears. International restrictions on the use of germplasm collections, both in situ and ex situ, can lead to their erosion or even their loss in a short period, as their conservation in good shape is expensive and politicians are reluctant to spend even a small budget on something that will not allow them to show up every day in the news.Free movement of germplasm would have undesirable consequences such as the introduction of pests in new environments and the erosion of local landraces and wild forms not only because of the spreading of modern cultivars but also as a result of careless collectors. It is also worth mentioning the inadequate facilities for germplasm conservation in countries that face great difficulties in sharing the collections because of the fear of someone getting valuable genes without any benefit sharing. The experience accumulated on other related challenging threats like pest introduction, land races erosion and biopiracy is also very wide. Nowadays these threats are still recurrent in spite of all the scientific and historical knowledge accumulated on the various topics and in many cases we have not been able to prevent them or minimize their consequences. This is due in part to a lack of social knowledge of the problem and also to a lack of interest in stimulating the social awareness of it.Norms for germplasm collectors were set up to stress the need for them to respect the environment and the local traditions (for some incredible examples of collectors' misconduct see Fisher, 1989), never eroding the local plant populations, emphasizing the right of the prospected countries over their genetic resources and leaving a duplicate of the collected material in the host country. It was an ethical and not compulsory code, and in recent times bilateral agreements between developed and developing countries facilitated the collecting tasks. But it was felt by the international scientific community that this was not enough. Most breeders did accept these rules as they were always respectful of others rights. The problem was the greed of a few and the fear of many to suffer the consequences of the behaviour of the former.The problems just outlined above concern a wide range of matters, not only those relevant to plant breeders. But all of them affect the production, release and spread of new varieties and the improvement of farming around the world.FAO accepted the quixotic task of trying to solve these problems. Several international meetings and conferences have been held since 1965. It is impossible in the space of the present chapter to give an account of the many difficulties in order to reach an agreement valuable for all the interested parties. The matters under discussion went from idealism to pragmatism, and in spite of the great achievements, especially those established in the International Treaty on Plant Genetic Resources for Food and Agriculture (hereafter, the Treaty; see Annex 3 of this book for details on the main provisions of the Treaty), there is still a rough way ahead. Problems concerning plant breeders' versus farmers' rights have produced numerous papers, books and meetings (a recent one covering both matters in spite of its title can be seen in Anonymous, 2007) and a clear and complete review of the history leading to the Treaty is given by Esquinas-Alcázar (2005) (see also the introduction to this book and Annex 1 of this volume for the list of all Commission and Treaty negotiating meetings). Fortunately, from the 1950s until now, the positions seem to have moved from pure idealism (for example, 'natural resources are common heritage of mankind') to real pragmatism ('natural resources belong to the country where they are found'). The loss of ethical value is compensated by the necessity of agreements among countries, private and public agencies and, generally speaking, among all stakeholders. The balance has to be positive.One of the problems in the numerous conferences held in the last 50 years is the fact that genetic resources for food and agriculture were frequently covered (many times even hidden) by the more general concept of 'natural resources' or, even better, 'biodiversity'. One of the great achievements was to separate both concepts, but this did not happen until rather recently.The main dates, at least concerning plant breeding, can be outlined as follows:In 1965 the FAO started the technical work on Plant Genetic Resources for Food and Agriculture (PGRFA) collection and conservation, and triggered a series of international technical conferences on the topic. Although 'for Food and Agriculture' was always present in the meetings, 'Plant Genetic Resources', as mentioned before, were frequently included in conferences on more general topics on environment, as, for example, the United Nations Conference on the Human Environment held in Stockholm in 1972.For plant breeders, an important step was the creation in 1974 of the International Board for Plant Genetic Resources (IBPGR, later renamed the International Plant Genetic Resources Institute -IPGRI -and today Bioversity International), belonging now to the Consultative Group of International Agricultural Research (CGIAR) with the mandate of coordinating collection and conservation efforts. Very important from a legal point of view was the establishment of the International Union for the Protection of New Varieties of Plants (UPOV, see above) to defend breeders' rights; the last revision, as already mentioned, was that of 1991 although it has not been signed by several countries. By then, many countries had already restricted the access to their own genetic resources, and wide discussions between developed and developing countries were on the table. Developed countries favoured IPRs while developing ones tried to focus the discussions on the recognition of Farmers' Rights. The Commission on Genetic Resources for Food and Agriculture (CGRFA; now it includes all components of biodiversity for food and agriculture, including farm animals, forestry and fisheries) was set up in 1983 within FAO and the International Undertaking (IU) on Plant Genetic Resources was adopted, although it was non-binding (see Annex 1 of this book).In fact, the first binding agreement on biological diversity (in general) was adopted at the Rio Conference in 1992 and is known as the Convention on Biological Diversity (CBD); agricultural biodiversity was only related to a set of subjects discussed in the Convention, but under the scope of FAO and its offshoot, the Commission on Genetic Resources for Food and Agriculture. A revision process of the IU led to the adoption of a new binding international instrument in 2001: the International Treaty for Plant Genetic Resources for Food and Agriculture (ITPGRFA). The IU is still applied in those countries that have not signed the Treaty yet (for a history of the revision of the IU, see the Introduction of this volume and Chapter 10).Although its objective was the conservation and sustainable use of biological diversity and the equitable sharing of benefits arising out of their use (Article 1), thus not specifically referred to food and agriculture, the importance of the CBD on the topic was clear. The statements declaring states' sovereign rights over their own biological resources and those on the responsibility of humankind over the biological diversity are since then well established principles. The adequate transfer of technology was also firmly established and 'biotechnology' was defined in Article 2 as 'any technological application that uses biological systems, living organisms, or derivatives thereof, to make or modify products or processes for specific uses'. A financial mechanism (Article 21) was created by developed countries to support developing ones, but rather on philanthropic terms as it was not compulsory.Meanwhile, between 1993 and 1996 the CGRFA developed the Leipzig Global Plan of Action on plant genetic resources and the first report on the state of the world's PGRFA. The FAO conference at Leipzig recognized the role of farmers since the very old times, hence including the indigenous and local communities, as well as that of plant breeders. Equally important was the Global Plan of Action for the conservation and sustainable use of genetic resources for food and agriculture adopted in 1996 in Leipzig; all countries are interdependent concerning these resources. The Leipzig conference also established important actions for breeders such as in situ and ex situ (i.e., the germplasm collections) conservation and the importance of the recovery of infra-utilized species.Unfortunately, all these advances, as well as the financial mechanism established for genetic resources for food and agriculture were accepted concepts without any mechanism to implement them. Financial procedures were not established and, more important perhaps for plant breeders, there was a very light treatment of biotechnology at a moment when (the Leipzig conference was held in 1996) biotechnological achievements via genetic engineering were being introduced in the market; the first transgenic cultivars were in the farm and some medicines, like the 'transgenic' insulin, were already in the pharmacies. For plant breeders, statements on the essential importance of genetic resources as a base for reaching food security sounded logical. They were surprised that an International Conference to establish that obvious principle was necessary. To promote a just and equitable distribution of benefits was out of their scope and possibilities.Resources for Food and Agriculture:After many years of wide conferences and consultancies at all levels, the Treaty was approved by the international community in 2001 (in force since June 2004). It was an International Treaty, hence a legal compulsory instrument in order to ensure conservation and sustainable use of genetic resources for food and agriculture, as well as the equitable sharing of benefits for all signatory countries. An essential difference with all the previous agreements was the multilateral way of access to and benefit-sharing arising out of the plant genetic resources and the establishment of a financial mechanism and a governing body to support the implementation of the agreement. Worth to be repeated, it was compulsory for all the signatories. The Treaty has some important points from the plant breeders' point of view:1 A genetic resource for food and agriculture is considered 'any genetic material of plant origin of actual or potential value for food and agriculture', 'genetic material' being 'any material of plant origin … containing functional units of hereditary'. The definitions are very wide in scope as they include all the plant kingdom. This is a scientifically sound interpretation as, following the success of genetically modified organisms in agriculture, the fourth genetic pool under the Harlan and de Wet system (Harlan, 1992) contains all the living beings. 2 But recipients of genetic resources will not claim for any intellectual property right limiting the access of these genetic resources or their genetic parts or components in the form received by the multilateral system (Article 12.3.d). This statement is confusing and, indeed, provoked a lot of discussion and contradictory explanations between developed and developing countries. 3 The Treaty includes a list of plants included in the multilateral system that is far from complete and acceptable by breeders. Some important crops are lacking and the list, as a whole, seems to be set up more politically than technically or scientifically.Point 2 is especially important for plant breeders. The different points of view expressed between developed and developing countries at the moment of the approval of the Treaty did not leave great room for hope. Breeders from developedPlant Breeders 205 countries (especially those working in private companies) consider the material received from developing countries as not included in the Treaty if it has been modified especially by biotechnological methods. The donors of landraces and wild forms, generally persons or institutions working in developing countries, think differently: they argue that they are the real owners of these valuable genotypes, the operated transformation, even by biotechnological means, being, according to them, of minor importance; thus, they defend that the plant materials they send to developed countries have to be included in the Treaty even if they are later on modified by genetic engineering. A lack of agreement in this sense would likely affect plant breeding at a global scale. Point 3 is also very important. The feeling that it was a political issue is not helping in international relations among plant breeders. It seems as if participants in the Treaty negotiations were more concerned about restricting access to their own genetic resources than in granting access to the global gene pool that so far had been the main factor of agricultural development. This point is very important as many non-classical uses (bio-alcohol and biodiesel among many other industrial applications) will require the study and use of all kind of plant resources. Of course, the Treaty did not close all possible negotiations in 2001; the list of plants contained in Annex I can be modified in the future.Plant breeders experience many constraints in their daily work: asking for permits to import and export his/her own productions and/or national germplasm that could benefit other colleagues in different regions of the world. This is not the traditional behaviour of plant breeders. In recent times, I was able to observe the exchange between breeders belonging to two countries at war at that very moment. It would be paradoxical for the same breeders not to be able to exchange the same materials in peacetime.Farming and plant breeding came about by the same human act of sowing some wild seeds during a certain period of time to solve a problem of food scarcity. The first farmers also were the first breeders: they sowed the seeds that they spare (i.e., select) from the previous year's harvest, and repeated the practice over several years; we now call the method automatic selection to differentiate it from the intuitive (but conscious) one performed by already authentic farmers much later. But in operating in this way, they selected only a subset of the genes present in the previous generation.Hence, the domesticated form (the cultigen) only had a minimum set of the whole amount of genes present in the wild stock. But we do not know about the nature and possibilities of those genes that were not chosen or that later on were discarded when farmers were conscious about the possibilities of their crops. Breeders need that material for their own work. The Treaty, in this sense, while offering many more possibilities than any other agreement on natural resources made up to now, is setting some limits to the free accession to these sources of genes.The work accomplished by plant breeders in the last two centuries has produced varieties of high value, varieties characterized by genotypes not present in Nature. This work has to be recognized, but it would not be a wise practice to hinder its use by other professionals. The advance reached so far would stop. This limitation in the exchange of plant materials can bring negative consequences, especially since genetic engineering is producing new forms by integrating alien genes in plant genotypes. These new breeding forms increase the pool of genetic resources and adding new administrative and cumbersome tasks for their transfer can constitute an additional barrier for further developments.For millennia, farmers were also plant breeders as they selected their seeds for the next sowing season themselves. Generally speaking, the creation of the first seed producer companies (Vilmorin being the very first one early in the 18th century) separated both professions in different persons: the farmer and the plant breeder at the service of his employer. In the countries that adopted both the industrial and the agricultural revolutions -that is, the 'developed-countries-to-be' -marketing strategies were used to sell their seeds to the farmers. Good farmers perceived the advantages of purchasing seeds of good quality for their fields, and little by little, the traditional landraces disappeared in these countries.But the rest of the world still maintained their traditional farming practices, 'farmer' and 'plant breeder' still coexisted in one person. Interchanges were generally performed on a local basis. The amount of genetic variability in crops was still huge.At the turn of the 20th century, the genetic erosion in crops in developed countries was manifest. Breeders such as Henry Harlan perceived the problem and started collecting barley landraces around the world (he described his voyages in One Man's Life with Barley, Exposition Press, New York, 1957); Nikolai Vavilov started in Russia collecting a multitude of landraces of almost one thousand crops, a work that he widened to explore most of the countries where trips could be done in those times.But still the worst was to come. After the Second World War, travelling was easier, routes were safer, marketing techniques were much more elaborate and varieties of developed countries such as the maize hybrid cultivars were almost perfect. Powerful seed companies easily spread these varieties out through the world. The genetic erosion reached most corners in the globe. Many landraces and wild forms persisted in developing countries because of economic or trade difficulties, but in developed countries the genetic homogeneity of main crops was already a very serious problem by in the second half of the 20th century (National Academy of Sciences, 1972).By that time, some developing countries had perceived that many modern cultivars obtained in the developed world but marketed also in their farming areas were carrying important genes transferred from their own landraces that had being Plant Breeders 207 collected in many cases without explicit permission from national authorities. The request by the developed agencies of royalties for using these cultivars sent a fire over all developing countries. They claimed property rights over those genes and, in general, over the vegetal materials taken, with or without permission, in their lands, and accused developed countries of malpractices ranging from abuse to biopiracy. They opposed farmers' privilege to plant breeders' intellectual property rights. One further complication was the introduction of molecular techniques in plant breeding as they rendered the use of a whole plant not necessary by using only a tiny portion of it in order to extract its DNA.The FAO, through its Commission on Genetic Resources for Food and Agriculture, very patiently tried to aggregate both sides. It took a long time before concepts were defined and agreements started to be settled. The painful path to a solution has been described in this and other chapters in this book. The International Treaty on Plant Genetic Resources for Food and Agriculture was finally signed in Rome in 2001. It is a binding tool sharing benefits among those who are able to offer valuable plant materials and those possessing the techniques to modify them, thus increasing their biological value. But the signature has not overcome a wide reticence originated in past behaviours. Claims that the vaults of both private companies and public institutions of developed countries are full of plundered plant genotypes are still alive. Mistrusts among the signatories have not been thrown away. Besides, although the steps already achieved were unimaginable some 20 years ago, there is not yet a common reading by developed and developing countries of at least one crucial article (namely 12.3.d) of the Treaty concerning the modification, especially by biotechnological means, of the material received. It is probable that this difficulty will decrease in importance once developing countries have access to these techniques, as it is in fact the case for Brazil, India, China and several other countries.From the point of view of plant breeders, the already mentioned difference in interpreting some specific (but important) aspects of the Treaty is an added difficulty in their work because they are interested not only in wild forms and in the old landraces produced through the millennia by local communities around the world. They are also interested in the new plant material obtained by applying all kinds of technologies, including 'biotechnology'. If additional progress is required to increase food production in the future, then facilitated access to genetic resources will always be a must.This chapter focuses on the International Treaty on Plant Genetic Resources for Food and Agriculture (the Treaty) and its potential impact on the ex situ conservation of plant genetic resources for food and agriculture (PGRFA), reflecting the mandate and focus of the Global Crop Diversity Trust. Other important areas covered by the Treaty (e.g. in situ conservation, sustainable use or Farmers' Rights) are covered extensively elsewhere and are not considered here.Starting with a look at why ex situ conservation is important and the links between ex situ conservation and crop improvement, the chapter goes on to explore briefly the need for facilitated access as promoted by the Treaty. It then considers the status of ex situ conservation and why the Global Crop Diversity Trust and the Svalbard Global Seed Vault are needed, showing how the Treaty has, among other things, paved the way for both of these important and related institutional developments. Finally, the chapter looks at the relationship between the Treaty and the Trust, and ways in which the Trust is supporting the implementation of the Treaty as an essential element of its funding strategy.The demands placed on agriculture will continue to increase in the future as the human population expands towards nine billion, as climates change, as new pests and diseases are encountered and as human needs and expectations evolve.Meeting these demands will only be possible if we continue to have access to the genetic diversity contained within crop varieties and their wild relatives. This genetic diversity underpins today's agriculture and provides the raw material that enables farmers and professional plant breeders to develop the new crop varieties needed for agriculture to adapt and adjust to changing circumstances. There is a growing consensus among agriculturalists that the development of new varieties will be critical for successful adaptation to climate change and hence ensuring food security in the future.Conserving genetic diversity ex situ is vital if plant breeders are to have ready access to the traits and genes they need to do their work. It would be impossibly complicated and expensive if new materials had to be freshly collected from the wild or from farmers' fields, often in far away countries, every time a plant breeder needed new genetic diversity.While many individual breeders maintain their own collections of the germplasm they are likely to need in the short term, there are clearly considerable efficiencies to be gained through the collective effort underway around the world, mostly supported by governments, to maintain more comprehensive collections for use over the longer term, in more centralized gene banks operating at the national, regional or international level. The value of maintaining collections in such gene banks is considerable; for example:• Having invested in collecting plant material from the wild or from farmers' fields -an expensive exercise -the cost of maintaining it in a gene bank is often small by comparison. • Samples are available from gene banks throughout the year, unlike plants growing in the wild or on farmers' fields that can generally only be collected in certain periods of the year such as at harvest time. • Gene banks are generally able to supply adequate quantities of good quality seed for research and breeding purposes. It is often difficult to collect adequate numbers of seeds of good quality from plants growing in the wild. • Gene banks are generally able to supply seed samples that are free from pests and diseases; it is much harder to guarantee the health of seed collected in the wild without going through expensive indexing and cleaning processes. • Collections maintained in well-run gene banks have minimal genetic drift and remain stable over time, unlike varieties maintained by farmers or populations maintained under in situ conditions. This facilitates research and the generation of reliable information about samples, which, in turn, encourages their use in breeding programmes. • Gene banks offer a 'one-stop' shop for acquisition. Breeders are able to access a large range of diversity, often from many different countries, with a single request. • Well run gene banks have the facilities, administrative systems and experience not only to maintain samples but also to distribute them nationally and internationally.• Ideally, ex situ collections have reliable and readily available accession-level passport, characterization and evaluation data, and, increasingly, data at the molecular level. Such data are critical to the ability of users to make informed choices about which materials to request. • Over time, collections become ever more valuable as the data on the accessions in them become more comprehensive. Useful comparative data can be built up and made available for sets of accessions grown across multiple environments. • Ex situ collections provide a 'safety net' -a last resort -that enables locally adapted varieties and/or unique traits to be reintroduced back into farming systems after they have been lost due to natural or human-induced disasters, changing production systems, or as a result of their replacement by new varieties.Historically there were few barriers to prevent plant breeders from acquiring the genetic diversity they needed for their breeding work. However, over time, and particularly in the 1980s and 1990s, the expanding use of intellectual property protection measures to protect crop varieties, especially though the increased use of patents, resulted in countervailing measures being taken by some countries to restrict the free availability of the raw materials of plant breeding -the varieties and landraces developed by farmers. Accusations of 'biopiracy' were rife.In parallel with this, the increasingly influential environmental movement took action, resulting in the Convention on Biological Diversity (CBD), to counter the threats to the existence of biodiversity and the unequal ability of developing and developed countries to exploit it. Other measures were taken by individual countries or groups of countries and the overall net effect was that the 'rules of the game' became increasingly unclear (Louwaars, 2007) and it became ever more difficult for countries to collect or obtain genetic resources for plant breeding from abroad and even, in some cases, from within the country itself. There is also evidence of a slowdown in flows of materials from gene banks in the 1990s and 2000s (Visser et al, 2000) although this does not appear to have been the case with the distribution of germplasm from the International Agricultural Research Centres (IARCs) of the Consultative Group on International Agricultural Research (CGIAR) (FAO, 2009). Recognition of this situation and concerns about future access to genetic diversity for crop improvement were key motivations for many countries to become involved in the negotiation of the Treaty.While the Treaty has laid the ground rules for accessing PGRFA and sharing the benefits resulting from its use (see Annex 3 of this book for details on the main provisions of the Treaty), there are still a number of issues to be ironed out and the Treaty's impact on promoting increased flows of genetic materials is still uncertain (Byerlee and Dubin, 2010). If germplasm flows are to be further facilitated, it is important that the Treaty build on its positive start and continue to develop ever more effective mechanisms for facilitating access to PGRFA and promoting its use. This might be achieved, for example, through expanding the list of crops in Annex I; ensuring efficient and rational conservation systems are in place and that accurate information on the conserved resources is readily available; appropriate technology is transferred; effective institutions and regulations are in place at the national level; and that there are adequate and effective national and international funding mechanisms.In spite of the need for further development, the Treaty has had the effect of taking some of the political heat out of the debate and as described below, this has paved the way for the creation of new institutions and funding mechanisms aimed at providing greater security and promoting increased use of PGRFA.Access to genetic resources is likely to become ever more important in the future as zones of crop adaptation shift and new crops and varieties are needed to combat evolving pest and disease spectra, different temperature and rainfall regimes and other predicted impacts of climate change (Lobell et al, 2009).As pointed out above, the diversity contained within collections of PGRFA is critical for underpinning crop genetic improvement. However, many collections are in very poor shape and in urgent need of attention.According to the draft Second Report on the State of the World's Plant Genetic Resources (FAO, 2009) there are currently more than 1750 gene banks worldwide, of which about 130 hold more than 10,000 accessions each. They are located on all continents, but there are relatively few in Africa compared to the rest of the world. While it is estimated that about 7.4 million accessions are maintained globally, it is probable that at most only between 25 and 30 per cent of these (or 1.9-2.2 million accessions) are distinct, with the remainder being duplicates held either in the same or a different gene bank. Clearly there is a need for greater rationalization within and among collections.While the majority of collections are maintained nationally, international collections are critically important for their size and coverage, the availability of information on them and the ease of obtaining samples. Eleven of the CGIAR Centres manage germplasm collections on behalf of the world community and of these, the collections maintained by CIMMYT, ICARDA, ICRISAT and IRRI, each comprises more than 100,000 accessions. Collectively, the centres maintain a total of about 685,000 accessions of 3145 species of 508 different genera. National gene banks housing more than 100,000 samples include those of Brazil, Canada, China, Germany, Japan, India, Russia, South Korea and the USA.In spite of the large number of gene banks and collections around the world, many of them, especially in developing countries, are unable to guarantee the safety of the material they house and valuable collections are in jeopardy because their storage conditions and management are suboptimal. As pointed out in the draft Second Report on the State of the World's Plant Genetic Resources (FAO, 2009), much remains to be done.The report states, for example:• While many countries recognize the importance of collecting, conserving, regenerating characterizing, documenting and distributing plant genetic resources, they do not have adequate human capacity, funds or facilities to carry out the necessary work to the required standards. • Greater efforts are needed to build a truly rational global system of ex situ collections. This requires, in particular, strengthened regional and international trust and cooperation. • While there are still high levels of duplication globally for a number of crops, especially major crops, much of this is unintended and many crops and important collections remain inadequately safety duplicated. The situation is most serious for vegetatively propagated species and species with recalcitrant seeds. • In spite of significant advances in the regeneration of collections, many countries still lack the resources needed to maintain adequate levels of viability. • For several major crops, such as wheat and rice, a large part of the genetic diversity is now represented in collections. However, for many other crops, especially many neglected and underused species and crop wild relatives, comprehensive collections still do not exist and considerable gaps remain to be filled. • To better serve the management of collections and encourage an increased use of the germplasm, documentation, characterization and evaluation all need to be strengthened and harmonized and the data need to be made more accessible. Greater standardization of data and information management systems is needed. • In situ and ex situ conservation strategies need to be better linked to ensure that a maximum amount of genetic diversity is conserved in the most appropriate way, and that biological and cultural information is not lost inadvertently. • Greater efforts are needed to promote the use of the genetic resources maintained in collections. Stronger links are needed between the managers of collections and those whose primary interest lies in using the resources, especially for plant breeding.A study was published by Imperial College Wye comparing data from 99 countries collected by FAO in 2000 to similar data from 151 governments collected in 1996. It found that in 66 per cent of countries the number of accessions held in collections had increased over this period, however, in 60 per cent of the countries gene bank budgets had remained static or had been reduced. More than half of developing countries and 27 per cent of developed countries reported an increase in the number of accessions in urgent need of regeneration. The report concluded that:… it is time to think about how to mobilize global resources to meet a global challenge. New and imaginative means of support must be found. Until now, gene bank funding has largely been dependent on annual disbursements from national budgets, which can vary from year to year. However the need to keep crop diversity collections safe exists in perpetuity. To let it lapse even one year may mean the sacrifice of irreplaceable crop genetic resources. Therefore, funding must be stable and forever.To garner these resources, the world community must look beyond the annual budgets of individual countries or donor organizations. Resources can be pooled into one global fund -an endowment for the future of agricultural diversity and a foundation for food security.A substantial endowment would match the perpetual need for crop diversity conservation with a perpetual source of support for the world's national and international plant genetic resources collections. It could support the maintenance needs of the world's most critical collections and help to build the capacity of under-funded collections. An endowment could help realize the ideals of the International Treaty on Plant Genetic Resources by taking as its starting point conservation of the 35 priority food crops and 80 forages listed under the Treaty. Over time, it could grow in size and scope to encompass additional gene bank collections and crops. (Imperial College Wye, 2002) As pointed out above, the Treaty has enabled a number of key institutional innovations to take place that were not possible earlier (see Annex 1 of this volume for explanations on all Commission and Treaty negotiating meetings). Two very significant developments have been the creation of the Global Crop Diversity Trust and the Svalbard Global Seed Vault. With respect to these two institutions, the draft Second Report on the State of the World's Plant Genetic Resources (FAO, 2009) states:• The Global Crop Diversity Trust, founded in 2004, represents a major step forward in underpinning the world's ability to secure PGRFA in the longterm; and • With the establishment of the highly innovative Svalbard Global Seed Vault, a last resort safety back-up repository is now freely available to the world community for the long-term storage of duplicate seed samples.These two institutions are described further below.The idea of establishing an endowment fund to support the ex situ conservation of PGRFA has been around for many years and, as the Imperial College study pointed out, was urgently needed. However, prior to the entry into force of the Treaty, many potential donors had expressed strong concerns that if they provided funds there might be no reciprocal access rights granted to the material conserved, or if funds were provided conditionally on the material being made available, then they feared being publicly accused of biological imperialism or the like. These fears were significantly reduced once it was apparent that the Treaty would become a reality following its approval at the 31st session of FAO Conference in November 2001 (see Annex 2 of this volume for a list of its contracting parties per FAO regional groups). Although it was not until 2004 that the Treaty actually came into force, nevertheless from 2001 it became possible to begin planning the establishment of an endowment fund to support ex situ conservation.An extensive series of consultations with all major stakeholder groups took place between 2001 and 2003, spearheaded by Bioversity International (then the International Plant Genetic Resources Institute, IPGRI) acting on behalf of the CGIAR and FAO, culminating in the drawing up in early 2004 of a Constitution 3 and Establishment Agreement 4 for a new international funding mechanism: the Global Crop Diversity Trust. The Trust was formally established in October 2004 as an independent organization under international law, this status being conferred on it through the signing of an Establishment Agreement by seven states from five of the regions referred to in the basic texts of FAO.The objective of the Global Crop Diversity Trust, as contained in its constitution, is to ensure the long-term conservation and availability of PGRFA, with a view to achieving global food security and sustainable agriculture. More specifically the Trust aims: • To promote national and regional capacity building.Specific activities of the Trust, as listed in its constitution, include:• Establishing an endowment fund to provide grants to support the maintenance of eligible collections of PGRFA that meet agreed standards of management and availability of the genetic resources, related information, knowledge and technologies, and to cover operating expenses and other expenses incidental thereto;• Receiving funds other than funds intended for the endowment fund, to provide grants to support the holders of potentially eligible collections in upgrading their collections so that they can meet agreed standards of management in order to become eligible for maintenance grants.In order to be able to effectively target its limited resources to supporting collections of highest priority, the Trust has sponsored the development of a set of international collaborative conservation strategies. The process of developing the strategies has brought together gene bank managers, researchers and other experts on plant genetic resources from developing and developed countries. Although commissioned by the Trust, the strategies have been developed independently by the different communities involved, and will evolve as the situation of collections around the world changes.The strategies aim to identify:• The collaborative arrangements necessary for efficient and effective conservation; • The collections that are of highest priority for support by the Trust and other donors and the appropriate roles for such collections with a global system; • Major needs in collecting, storage and maintenance, distribution and research; • Appropriate roles for other stakeholders in the conservation, regeneration, documentation and distribution of crop diversity.Two complementary and mutually reinforcing approaches have been taken to developing these strategies: (a) on a regional basis and (b) on a crop basis.Collectively they respond to calls from the Global Plan of Action, to 'develop an efficient goal-oriented, economically efficient and sustainable system of ex situ conservation' (FAO, 1996) and likewise the requirement under Article 5.1.(e) of the Treaty that contracting parties 'promote the development of an efficient and sustainable system of ex situ conservation, giving due attention to the need for adequate documentation, characterization, regeneration and evaluation, and promote the development and transfer of appropriate technologies for this purpose with a view to improving the sustainable use of plant genetic resources for food and agriculture'.By the end of 2009, conservation strategies had been developed and published for more than 30 regions and crops, 5 a major undertaking that has recently been reviewed for eight themes: regeneration, crop wild relatives, collecting, crop descriptors, information systems, user priorities, new technologies and research, and challenges to building a strategy for rational conservation (Khoury et al, 2010).Early in its existence the Trust developed an important strategy document entitled The Role of the Global Crop Diversity Trust in Helping Ensure the Long Term Conservation and Availability of PGRFA which was endorsed by its Executive Board. 6 This document outlined the basic assumptions and principles that underpinned the Trust's conception of how a rational global system might be constructed. It contained an important 'decision tree' that made explicit the basis upon which the Trust would determine funding priorities.The Trust, in accordance with its constitution, consulted with its Donors' Council and the Governing Body of the Treaty in the development of a formal fund disbursement strategy. This strategy was based on the earlier paper on The Role of the Global Crop Diversity Trust. 7 The fund disbursement strategy was endorsed by the Donors' Council and the Governing Body, and then adopted by the Executive Board. The strategy, while directly related to the Trust, also provides a clear and rather specific description of a rational, effective, efficient and sustainable global system, noteworthy in part due to its endorsement by the Governing Body of the International Treaty. 8 Based largely on this constellation of strategies and formal policies, as of March 2010 the Trust has provided long-term maintenance grants to collections of aroids, banana, barley, bean, cassava, fava bean, forages, grass pea, pearl millet, rice, sorghum, wheat and yam. In addition, and in partnership with a large number of other institutions, the Trust has funded numerous projects around the world that have contributed to, inter alia:• The regeneration of collections of priority accessions of more than 20 crops in over 50 developing countries; The second new institution to be considered here is the Svalbard Global Seed Vault, a facility that aims to provide an insurance against both incremental and catastrophic loss of crop diversity held in traditional gene banks around the world. However, unlike many traditional gene banks, the Vault does not house any unique, original material, but aims to serve as a fail-safe back-up facility; a safety net for the world's germplasm collections. The ultimate goal of the Vault is to safeguard a duplicate set of as much of the world's unique crop genetic material as possible.The idea of creating an international back-up seed storage facility has also been around for many years. In the early 1980s the Nordic Genetic Resource Centre (then the Nordic Gene Bank) identified Svalbard as a suitable location for storing seeds in the permafrost and in 1983 began to safety-duplicate its accessions there in a coal mine near Longyearbyen.In 1989, following discussions with the Government of Norway, FAO and the International Board for Plant Genetic Resources (now Bioversity International) undertook a survey of Svalbard to identify a suitable site for an international seed storage facility. Norway offered to cover the costs of the actual construction of the facility, whilst FAO and IBPGR agreed to take care of the administrative and operating costs through the creation of a fund based on capital from external donors. In the event, however, concerns by potential seed depositors and funders over the question of access to, and ownership of any materials stored in the facility, as well as questions about the quality of storage conditions on offer (ambient conditions of about −3.5°C) and the reluctance of the international community to fund the facility, led to the idea being shelved. With the clarity and increased trust among parties that resulted from the entry into force of the Treaty, it once more became possible to consider the development of an international seed back-up facility in the permafrost. Thus, in 2004, the Norwegian Ministry of Foreign Affairs and the Ministry of Agriculture and Food reopened the subject. A group of experts was appointed to carry out a preliminary study, which strongly recommended the establishment of a storage facility on Svalbard. They recommended that storage be offered, at no cost, to all interested gene banks worldwide for them to store a duplicate set of their collections. They further recommended that the facility be located in its own dedicated facility (not in the mine) and that storage conditions meet international standards for long-term conservation.In November 2004, the FAO Commission on Genetic Resources welcomed the proposal, and plans for the facility, named the Svalbard Global Seed Vault, were then drawn up. Construction began early in 2007 and the Vault opened in February 2008. The cost of the construction, some US$9 million, was funded entirely by the Government of Norway, which owns the facility (but not the seed stored within it) and is responsible for maintaining and administering it. Under the terms of a tripartite agreement between the Norwegian Government, the Global Crop Diversity Trust and the Nordic Genetic Resource Center (NordGen), responsibility for managing the Vault lies with NordGen, overseen by an International Advisory Council. The Global Crop Diversity Trust covers the primary ongoing operational costs of running the Vault. The Vault comprises three chambers set back more than 125 metres into the mountainside, each having the capacity to store 1.5 million seed samples. While the chambers are artificially cooled to −18°C, a large measure of security against a prolonged loss of cooling is provided by the fact that they are set deep within the permafrost at a temperature of minus 3-4°C. All the material in the Vault is maintained under 'black box' conditions; that is, with ownership and access rights to the material remaining with the depositor. This means that seed packages and boxes sent for storage cannot be opened or sent to anyone except the original depositor and that the responsibility for testing material and for any subsequent regeneration remains with the depositor.As of March 2010, the Svalbard Global Seed Vault housed some 522,000 seed samples, deposited by 28 institutions in 24 countries. The seed samples themselvesThe Global Crop Diversity Trust 219 were initially sourced by these institutions (a number of them international institutions) from virtually every country in the world. Information on the material deposited can be found in a database on the Vault's website, maintained by NordGen 9 and further information on the Vault can also be found on the website of the Norwegian Ministry of Agriculture and Food 10 and the Global Crop Diversity Trust. 11 The Treaty and the Global Crop Diversity TrustIn drawing up the Constitution of the Global Crop Diversity Trust 12 a very close relationship was foreseen between the Trust and the Treaty, which at that time had yet to enter into force (see Annex 3 of this book for details on the main provisions of the Treaty). Article 7 of the Constitution is solely concerned with this relationship and states:1 The Executive Board shall, as soon as practicable after the entry into force of the International Treaty, enter into an agreement with the Governing Body of the International Treaty, defining the relationship of the Trust with the International Treaty. 2 The relationship agreement shall include the following:-recognition of the Trust as an essential element of the Funding Strategy of the International Treaty; -the authority of the Governing Body of the International Treaty to provide overall policy guidance to the Trust on all matters within the purview of the International Treaty; -reporting obligations of the Trust to the Governing Body of the International Treaty; -recognition that the Trust will be free to take its own executive decisions on disbursement of funds, within the general framework of the overall policy guidance of the Governing Body of the International Treaty.Following discussions between the Trust and the Governing Body, an agreement was signed in June 2006 defining the relationship between the two parties and recognizing the Trust as an essential element of the funding strategy of the Treaty. 13 The Governing Body is responsible for providing overall policy guidance to the Trust and, in addition to the elements of the relationship outlined above, the constitution calls for the Governing Body to appoint 4 of the 11 (or up to 13) members of the Executive Board of the Trust. At least two of these appointees must come from developing countries. The Executive Board is also obliged to consult with the Governing Body before adopting either the Trust's fund disbursement strategy or the principles upon which it will decide on the eligibility of collections, projects and activities for funding.The Trust, as an essential element of the funding strategy of the Treaty, contributes in multiple ways to the achievement of the Treaty's objectives. In particular, it is assisting contracting parties to fulfil their obligations set out in Article 5: 'Conservation, Exploration, Collection, Characterization, Evaluation and Documentation of Plant Genetic Resources for Food and Agriculture'.As the Treaty further develops other aspects of its funding strategy, and in particular the benefit-sharing fund, it is anticipated that there will be many opportunities in the future for the Trust to partner with such bodies and thereby contribute further to the achievement of the overall objectives of the Treaty.While a number of areas covered by the Treaty are still being discussed and developed, its coming into force in 2004 did much to bring clarity to the issues of access to PGRFA and sharing the benefits resulting from its use. This, and the consequent building of trust among the parties, has helped pave the way for some very significant institutional developments that were not possible prior to the existence of the Treaty. The creation of two such institutions is described in this chapter: the Global Crop Diversity Trust and the Svalbard Global Seed Vault.Neither of these initiatives would have been possible without the Treaty and together they aim to make a substantial contribution to the achievement of one of the key objectives of the Treaty, namely the ex situ conservation of PGRFA and promoting their sustainable use.With landraces and farmers' varieties continuing to be lost from farmers' fields, and crop wild relatives increasingly coming under the threat of extinction as a result of changing climates and land use patterns, it is more important than ever that existing crop genetic diversity be adequately and safely conserved. The Treaty and consequent establishment of the Global Crop Diversity Trust and Svalbard Global Seed Vault provide increased confidence that the genetic resources needed to tailor our crops to meet future challenges will continue to be available for a long time to come.The International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA or the Treaty) stands as a tool of governance of plant resources that is, 'the genetic material of plant origin with effective or potential value for food and agriculture' designed to respond at a global level to the objectives of economic solidarity and environmental sustainability.At first glance it could seem to be a matter between governments and farmers: in fact the Treaty, after stating in the Preamble that the contracting parties are convinced of the special nature of plant genetic resources, goes on to recognize that these resources are 'the raw material indispensable for crop genetic improvement, whether by means of farmers' selection, classical plant breeding or modern biotechnologies', affirming that 'the past, present and future contributions of farmers in all regions of the world, particularly those in centres of origin and diversity, in conserving, improving and making available these resources, is the basis of Farmers' Rights' (see Annex 3 of this book for details on the main provisions of the Treaty).In recognizing the enormous contribution that local and indigenous communities and farmers have made, and continue to make, to the conservation, development and sustainable use of plant genetic resources, it is agreed to realize Farmers' Rights. In the Preamble to the Treaty this is emphasized by affirming that the rights to: save, use, exchange and sell farm-saved seed and other propagating material, and to participate in decision-making regarding, and in the fair and equitable sharing of the benefits arising from, the use of plant genetic resources for food and agriculture, are fundamental to the realization of Farmers' Rights, as well as the promotion of Farmers' Rights at national and international levels.Community is one of the key issues. Collective interest in boosting biodiversity and introducing quality in agricultural systems switches the direction of development. Until now advances have been made by researchers using sophisticated improvement techniques or genetic manipulation. Now it is possible to support the free circulation and exchange of seeds by reducing the transaction costs rather than by offering the incentive of exclusive exploitation.Sensitivity towards issues such as the importance, function and protection of agro-biodiversity has grown in the world in general. More specifically, all the work that went into drawing up and ratifying the Treaty has also exerted an educational and cultural impact on contemporary societies.What became clearer and clearer is that a network is needed: governments, farmers and consumers need to take action in a consistent way to protect biodiversity. In particular, governments need to promote information and public participation. Consumers should be well informed about issues related to biodiversity and genetic resources. This would do much to support the rebuilding of a food culture which, in many wealthy countries has been eroded.Rightly, the Treaty has focused on agriculture until now. However, it is time to involve the consumers in the defence of biodiversity. Farmers are, depending on the countries, from 60 per cent to 2 per cent of the population. Consumers constitute 100 per cent and can make the difference. This leads us to think about the importance of educational initiatives and activities aimed at consumers. This can be considered as a way to implement and truly apply the core of the Treaty. It is clear that protecting biodiversity is not possible in the absence of an educated public.Reductionism has influenced 'modern' agriculture and given it a highly industrial profile. The farmer involved in this kind of agriculture behaves in a way very similar to that of a worker in a factory. Moreover, this kind of agriculture tends to adopt a 'singular' approach:• It normally involves not the whole family but the single farmer, and when more than one individual of the same family is involved, he tends to work separately on specific tasks. • It usually encompasses only one gender, the male, women being marginalized by this model of development.• Aiming at the market (not markets), it specializes in products that have to be as uniform and homogeneous and numerous as possible. This is why it handles few products obtained by seeds improved by commercial procedure: combinations of pure parental lines that yield uniform plants and fruit -that is, hybrids. • It is specialized, meaning that it tends to privilege one activity or a few unconnected activities.Industrial agriculture is a linear system: it does not reuse the output of production.In this way it leaves a heavier footprint on resources. It also overlooks many other possible products, either because it has no interest in them, or because, very often 'precisely on account of the production method' some outputs cannot be exploited.One example is manure which, in industrialized livestock farms, cannot in certain cases be used as a fertilizer insofar as it is too contaminated with antibiotics.The only objective of this kind of agriculture is the market, which measures its success on the distance between the place of production and the place of sale, believing that 'the further the better'.Last but not least, this kind of agriculture aims at only one kind of consumer: A consumer whose awareness is low and who takes into consideration only a few factors, the most important of them being value for money. This kind of agriculture also counts on the 'laziness', and lack of information of this kind of consumer, who doesn't want to be involved in collective decisions and follows only some criteria, forgetting the others, exactly as reductionist thought does. In conclusion, this very rigid agriculture applies the same few rules to very diverse situations and thinks it can resolve its own lack of adaptability through external inputs.A specular analysis can be made of traditional farming, which may be described as an integrated system because it tends to reuse outputs and by-products for other production phases or to launch new products. In this way its footprint on planetary resources is lighter and thus lowers production and environmental costs:• It involves both genders and more than one generation, since it is supported by the knowledge and skills of men and women, old and young, without stopping the flow of information that allows people to grow up respecting nature and feeling part of it. • Insofar as the main aim of traditional farming is to harvest to feed the family, it is devoted to the cultivation of more than one species, each of which is cultivated in more than one variety; each variety is produced from traditionally improved seeds and in any given population, shows a high level of variability. All this leads to even higher adaptability to climatic conditions. Whether the season is damp or dry, whether a new or an old parasite appears, there will always be a part of the crop that won't be affected by the problem. • It is not specialized. A traditional farm performs many activities, the most important being growing and breeding. At the same time, processing and selling are present too, along with several 'non-target' activities, such as education, landscape conservation, biodiversity protection and so on.• It has multiple tasks: not only to reach the market, but, first and foremost, to feed the family and its animals, to keep the soil fertile, to create a pleasant environment that can attract visitors. • It has many ways of reaching markets, almost always the closest to the production site. This can be through a farm shop, through local markets, through consumer purchasing groups or associations. It is important to consider 'short-distance' selling because this allows the farm to maintain links with the local culture, while the consumers can judge the quality of a product properly and diminish costs considerably for both sides of the equation. This contrasts with the aforementioned focus of industrial agriculture on 'the' market rather than on markets. • It caters for several kinds of consumers: elderly people, young people looking for reliable information about food, environmentalists who want to be consistent in their behaviour, gastronomes aware that quality starts from production method. All of these people have one point in common: their appreciation for the food they buy, the importance they attach to a food's identity, their consideration of food as a means of expression, a language. They are prepared to pay a fair price because they know that an excessive low price entails many risks. And they know that the end price of a food product is the result, but also the core of a complex system in which you cannot isolate only one factor. • It is an integrated system because it tends to reuse outputs and by-products for other production phases or to launch new products. In this way its footprint on planetary resources is lighter and thus lowers production and environmental costs.Here we are actually referring to man agricultures, in constant evolution on account of the adjustments and integrations they receive from other cultures, industrial culture not excluded. Small-scale traditional or subsistence agriculture knows how to make the best use of all knowledge, refusing to apply the same model to every situation.Further consideration should be given to the trade models of these two different production systems. As we have said, industrial agriculture markets its products through modern food distribution systems, namely large-scale retail. Supermarkets nowadays form part of the huge shopping malls that colonize the suburbs of towns and cities, contributing to the soil sealing process, attracting an uninterrupted flow of consumers thanks to round-the-clock opening hours. In these huge retail spaces they need to present many different food options, which is why they encompass a vast geographical territory. Local origin and seasonality are not considered in this kind of retail: on the contrary the possibility of finding whatever food in whatever season is advertised as an added value.It is not easy to have full awareness of the changes caused by this process, at least as far as our nutrition is concerned. Every day we buy fruit, vegetables, meat and milk without any idea of their distance from their place of origin or about the incidence of transportation, methods of cultivation and the quality of the organization of the labour that has produced them. This kind of market has grown into a technical-economical space, where the need for free circulation of goods has cancelled the productive vocation of single areas, leading us to ignore objective differences in terms of quality and cultural identity.An important role is played by the advertising system only at the end of the process. In fact, the uniformity and anonymity of industrial food would end up being totally unappealing. In order to reconnect the consumer with those forms of reassurance that the industry cannot offer (transparency of production methods, origin of ingredients, naturalness, history and so on), the trade communication system 'dresses' the product with a style that it cannot have per se.What then is the trade model of traditional agriculture? The nearby market, which doesn't necessarily mean the short supply chain? That is an ambiguous idea, since it only takes a part of the problem into consideration. It focuses on the number of transactions that take place between production and final purchase, and on the quantity of time that passes from production to sale, thus ultimately adopting a reductionist approach. You can have a mozzarella from Naples in a NYC restaurant in 24 hours with a direct contact between buyer and seller, but the farmers' market concept is much more than this.As with the supermarkets, it may be useful to consider ideas of time and space. The farmers' market invests in time instead of trying to save it; it takes care of space instead of trying to have huger and huger amounts of it. Time is invested in social relationships, in information, in education: the possibility of a direct contact between the producer and the consumer (who is active and curious, not lazy and indifferent like his supermarket cousin!) gives both new opportunities for learning how to play their respective roles better. From what the consumer asks, the producer learns how to best satisfy him or her; from what the producer answers, the consumer learns about nature, about the labour that goes into food and also 'how to evaluate that food' and 'what a fair price for it should be'.As for space, farmers' markets do not need a lot of it. They are at the service of the surrounding area: the urban centre that receives economic and other benefits from their presence and rural districts that likewise receive attention and consideration, as well as economic benefits. Space should be seen not as surface area, but as the place in which many different kinds of exchange go on, revitalizing channels of social, economic, cultural and natural life that would otherwise risk being totally forgotten. It is in the matter of exchanges and relationships that one of the most important differences between the two production systems becomes evident. Because sustainable and ecological agriculture has one more function: the permanent and mutual educational process that involves farmers, consumers, cooks, school, institutions and research (Petrini, 2009).As Anderson (2009) writes, the most common definitions of economy share the same annoying element: a privileged attention to scarcity, especially to the allocation of limited resources. It is difficult to overcome the importance the concept 'that you cannot have everything for free' has in the economy. The whole discipline is focused on the study of the exchanges and of the conditions in which they happen.Thanks to new technologies, markets have multiplied, as have the potential buyers of each producer and the potential suppliers of each consumer. The number of actors potentially involved in any kind of relationship, dialogue, bargain and creation has grown.Somehow, thanks to the development of innovations, a new era of abundance has opened, but it is unable to fit into the normative patterns set by an economy born and developed in a context of scarcity.But abundance is older than technologies. In fact, not only the world that new technologies have allowed, but also the one based on natural laws, fall under the realm of abundance. This is exactly why the legal solution, which plays a prominent role apropos the use of genetic resources, cannot regulate the realm of life or creativity. In a situation of scarcity, the use of genetic resources would bring about the extinction thereof, which is why it has to be regulated. Yet genetic resources belong to nature, where scarcity is not considered.Farmers learn from nature the language of gifts that is spelled in the alphabet of abundance. Each harvested tomato yields dozens of usable seeds; each harvested ear of wheat yields dozens of grains. Each seed gives life to dozens of seeds, so why skimp? The less you sow the fewer seeds you'll get.The market has been attempting for a long time to appropriate common goods, but it can only do so by ignoring their essence and forcing them into rules that cannot fit -the rules of scarcity, mentioned above.Instead, common goods are characterized by abundance and for this very reason they become revolutionary vis-à-vis the rules of economics. Seeds, as a generic way to mention all the plant genetic resources, are given to us in a regime of abundance: it is their indispensability, not their scarcity, that makes them a common good. If we reflect on the main characteristic of common goods (water, air, creativity), we see how their quantity is always indeterminate, whereas their core feature is that we cannot do without them.So, what does it mean that we have to manage genetic resources in a sustainable way? It means that we have to manage them remembering that they are indispensable for us, for the rest of the living beings, and for future generations. Again: the 'managers' of genetic resources are not only farmers and government, but also consumers. Because if it is true that in the market mechanism lies one of the main causes of the biodiversity erosion, then we have to admit that consumers are among the protagonists and they can play a heavy role in making it worse but also in radically counteracting the whole system.If what we know as a cheap hamburger of any fast food outlet were really to cover all its production costs, we would have to pay tens of euros for it. Because its price should comprise not only the beef itself, the bread, the vegetables and the sauces (not to mention the sugars, unsaturated fats, colouring agents and chemical flavourings) the hamburgers contains, but also the environmental costs of deforestation to make room for intensive livestock breeding in the southern hemisphere, the health costs of the increase in cardiovascular diseases, diabetes and obesity resulting from a diet too rich in sugar and too poor in fibres and vitamins, the social cost of low salaries of workers and consequently fragile trade union relations and last but not least, the ecological costs generated by the incredible amount of energy needed to produce and sell a single kilocalorie (a ratio of around 1:150). All this considered, how much should our hamburger really cost? Probably the same price as a course in a 3-star Michelin restaurant.There are many factors to bear in mind about food in each phase of the process that goes from production to consumption. What is more, such factors interact, and this makes things even more complex.Let us start from what we call production. As happens in any kind of production, that of food relies on natural resources, some of them renewable, others not.First questions: Leaving mere proprietary rights issues aside, non-renewable resources, such as fossil fuels (coal and oil, for example) -who do they belong to? Leaving stock exchange values aside, how much do they cost?Moreover, when we talk about resources, sometimes we refer to energy, but other times we refer just to produce. Think of fish, for example. It is wrong here to consider fish as a 'product', insofar as we are speaking in terms of a withdrawal, the direct use of a resource (which is renewable following the natural rhythms of the sea, not the food production schedules we draw up on dry land). If the market we refer to is the fish market, we have to consider natural resources that 'support' fish production (fossil fuels for boat, for example), but there is also a natural resource that constitutes the basis for the withdrawal: namely, the sea itself.In the same way, biodiversity, meaning also genetic plant resources, is part of the 'natural capital' that we have to keep in mind when we consider production in the classical economic way. We are used to considering two pillars: capital and labour. We need to learn that another pillar is involved: the natural capital made of all the resources we use, directly or indirectly for our production (Tiezzi, 1997).That is not all; other factors need to be added. One such is 'social justice', meaning consideration of the living and workplace conditions of the people who contribute to the productive process. The second is animal welfare, where production presupposes the breeding, catching and involvement of animals. The third is, as mentioned above, the fact that we all live together on one planet, evident to us now thanks to globalization, but a fact since the dawn of time.Arguably the most important and positive result of globalization is that it has given us the perception of being part of a planet, certainty that our actions have consequences not only on our own lives and those of people around us, but also on the lives of the rest of humanity, even far away from us.Globalization helps us to understand that even when the price of our food respects the parameters of ecological economics and the social issues we have mentioned, it still has not done all its job: in this globalized world, consumption and production have consequences that also need to be taken into account.Citizen-consumers can work towards an ethical market, assuming that 'ethics' deal with the individual behaviours and their consequences on the community. Philosopher Emmanuel Kant, in his fundamental law of pure practical reason stated: act only according to that maxim whereby you can at the same time will that it should become a universal law. Which means: if the way you are going to behave could be bearable if everyone in the world did the same, than it is an ethical action. If it can be done only by one person it is not. The western countries are scared at the idea that China, India, Africa start consuming as much fuel, meat, water, as Europe, the USA and Japan are doing. 'It would be unsustainable!' they say. But they pretend not to see that the 'unsustainability' is already in their behaviours without considering developing countries.Through their choices, consumers can orient production, which follows their lead on the basis of pragmatic considerations of customer satisfaction, not necessarily of ethical correctness. Of course a condition exists to make the consumer fully able to modify the market in an ethical sense. That condition, as said, is information. 'Good clean and fair food' (Petrini, 2007) must be recognized by the consumer, hence information must be available and reliable, and the consumer must have enough food culture to decide which is the best food for the common good. The first piece of information that the consumer must have is that food cannot be cheap, because when the price of a food is too low, someone or something is being damaged:• It can be cheap because it is of poor quality, hence harmful for the health of the consumer. • It can be cheap because not all the production costs, such as social or environmental costs, have been considered and have remained hidden. Sooner or later someone (or all of us) will have to pay for this, maybe in a multiplied amount. • It can be cheap because it is the product of subsidized agriculture, meaning that it has damaged other (far away) agricultures and economies.Going back to the example of the hamburger, when we buy it, it ends up being a form of collaboration with a production and distribution system that insists on damaging weak economies, weak workers and weak consumers. It damages health, it creates injustices. It feeds: but a food that just feeds -regardless to all that happens before and after, is a very bad food.The Slow Food Movement was born in Italy in 1986 as an international association concerned with traditional food, good wine and small-scale tourism. Born as a movement for the 'defence of the right to pleasure', it began to consider all the implications of this concept. Pleasure means of course eating good and well identified food, whose origins and processing are known. It also means having a glass of top quality wine or beer or whatever is the traditional drink in the place we are in. Pleasure also means visiting areas whose rural landscapes can tell us their story and their habits, connected to the climate, the religion and the events of the people living there. Also pleasure is much more than that. More importantly, pleasure has to be taken into consideration as everybody's pleasure, and what is served at the table to be eaten is just the tip of the iceberg. Food comes from the land and those who eat must know that the action has been made possible by those who produced the food: farmers, producers, cooks, researchers. Nobody can enjoy their food without thinking that this is a universal right, and that every kind of food, even the simplest, has a story to tell: the story of a place, a population, an identity. Conserving the biodiversity of our crops and animals breeds, in order to save the great diversity of our traditional foods means, among other things:• conserving regional traditions;• encouraging young people to be interested in food and agriculture;• working to avoid or at least curb the homogenization of food culture.We all know the reasons why we have to protect and defend biodiversity: there are agricultural reasons (maintaining resources for disease resistance; the vulnerability of a monocultural rural system); cultural reasons (loss of knowledge, of memory, of culture; the higher adaptation of the traditional food to the needs of a certain population; the central part that farming, food and eating have in the definition of an identity); and economic reasons (small and medium farming has in many countries a big role and it allows the majority of populations to survive. This kind of agriculture is a mixed and traditional one: it has to be like that, for reasons of space, safety and … pleasure, because small farmers grow what their families love to eat). The consumers, in the widest meaning of this word (the people who go shopping for food, but also the restaurant owners who buy the ingredients for their cooking …) are an important part of all this. They have to be informed and they want to be informed.What has happened in a certain part of our world during the last 30 years is that the source of information about food has been lost by the majority of the people. The gap between who produces and who eats has grown bigger and bigger, and very often the young generations are completely unaware of the origin of what they are eating.Again we come back to the theme of information: how important are information and education in the protection of biodiversity? In the last 50 years, food has been treated mainly as a problem of quantity. Starting with the Green Revolution, international attention has been focused on production per hectares, price and nutritional values. This is the quickest and most efficient way to lose biodiversity. And losing biodiversity is the best way to increase the quantity of people starving, making the planet more and more poor and vulnerable.Today the poorest countries are those where the Green Revolution had its experimental and productive bases. The production problem has been virtually and factually solved, if it's true -and it is true -what Kofi Annan said on behalf of the United Nations: the planet is producing enough food to feed 12 billion people, which means almost twice the number currently living on Earth. So where is this food? Where does it go? Who does it belong to? Above all, what kind of food is it?And we need new consumers and new professionals thinking and working with food, people, the environment and sustainability.What the Treaty has successfully helped to understand is that our planet is a solid mechanism held together by thousands of fragile balances, that is protecting biodiversity gently, slowly, respectfully and in a very effective way to save these delicate balances. A big part of it has already been lost, forever. But it is still possible to save an important part of it and we cannot count only on individual wisdoms or commitment: we need laws, policies, and the Treaty is a crucial step in this direction. We have to gauge interventions every time in a different way because every time there is a different balance to save. But accepting complexity is the first step towards understanding this.What is more, a new awareness is growing in the world of food production. Thousands of farmers, producers and even retailers and cooks are working wonderfully to rebuild or protect those products and traditions, and processes whose loss would make all of us poorer. The role consumers can play -together with institutions, researchers, politics, associations -is to help them in working better and better, sharing their experiences and their solutions, their 'seeds' for the future of food production. This is the main aim of Terra Madre, World Meeting of the Food Communities, held in Turin every other year since 2004. This huge meeting, involving around 7000 people working together for 4 days in several different seminars -has been another tool to fortify a new, different way of thinking about food and agriculture, but also about progress and development. As a multitude of studies have shown in the course of the past 30 years, global interdependence on plant genetic resources for food and agriculture (PGRFA) is nothing new, but merely a statement of fact. An often quoted FAO study dating from the year 1998 revealed the knowledge that only four crops (rice, wheat, sugar and maize) account for 65 per cent of the dietary intake worldwide (Palacios, 1998). This is the result of a lively system of global exchange and movements of crops over hundreds of years, paired with the fact that crop varieties, if they are not nurtured through human care, will be neglected and are eventually endangered in their existence.As a consequence of these processes of genetic uniformity and genetic erosion, the food base of humankind is already limited and even threatened to being reduced further through newly arising challenges, most prominently of all through climate change. Global interdependence results from these processes and is likely to increase further in the years to come.The organization of groups of persons in states emerged at a time human needs could be satisfied through either direct access to resources or trade to balance any deficits and surpluses in the domestic supply of such resources. Resource depletion resulting from continued and increasing demand has heightened awareness that the supply of the world's resources is finite. This does not only hold true for non-renewable resources, but also for renewable resources if the use of such resources is not sustainable. Competition among states for such finite resources has prompted the need for international regulation of their exploitation in order to secure their equitable use by present and future generations (Brundtland Report, 1987). Such need was especially felt as regards resources that are not subject to state sovereignty.The prospect of benefits arising from the exploitation of mineral resources that are not subject to state sovereignty has led to the development in the second half of the 20th century of international frameworks for their legal status and use. Such resources can be found in common areas: the oceans, outer space and Antarctica. International agreements have designated the mineral resources of the deep seabed and celestial bodies within the solar system, other than the Earth, to be the 'common heritage of mankind'. 1 This means that there is common ownership over these resources and that their use is no longer free, but subject to international administration. Upon recovery, title to the resources can pass from mankind to third parties, but only in accordance with the applicable international framework. The international administration must secure that their use will be equitable. With respect to non-renewable resources, such as mineral resources, the principle governing their exploitation is the long-term maximization of benefits from the use of such resources. Implementing this principle is not without difficulty due to uncertainty regarding variables, such as the number of future generations and technological innovation that may impact on the use of resources for future generations.In contrast to mineral resources, living resources in common areas have been exploited for centuries and the freedom of their use had long been established. However, the depletion of living resources that are not subject to state sovereignty, such as fish stocks, have led to the development of international frameworks governing their use that are based on different principles as regards their status and use. These resources are not subject to common ownership and the use of these renewable resources has not been subjected to international administration. Title to these resources is acquired through appropriation. However, international agreements limit the right of states, and their nationals, to freely appropriate and use these resources. Equitable use by present and future generations requires the conservation of living resources. The overarching principle guiding their exploitation is sustainable use; and the precautionary approach and the ecosystem approach must be taken into account to determine what use is sustainable. 2 Similarly, concerns over the depletion of renewable resources that are shared by states, such as international watercourses, the ozone layer and the atmosphere, have triggered the development of international frameworks to secure their conservation and sustainable use. At the origin of this development is the recognition of a common interest of states in the conservation of these resources. International agreements related to the navigational and non-navigational uses of international watercourses are founded on the recognition of the community of interest of riparian states in the use of an international watercourse. 3 Similarly, the preamble of the United Nations Framework Convention on Climate Change acknowledges that climate change and its adverse effects are 'a common concern of humankind'. The concern over a common interest forms the basis for the concerned community to act and underlies the introduction of policies and measures by these international agreements to secure the equitable use of these resources by present and future generations (Shelton, 2009, p85).A common interest in the conservation and sustainable use of natural resources is not necessarily limited to resources found in common areas or shared by states. This is recognized in the preamble of the Convention on Biological Diversity (CBD), which affirms that the conservation of biological diversity is 'a common concern of humankind'. This recognition is irrespective of the location of such resources within or beyond the limits of a state's jurisdiction. Accordingly, the location of a component of biological diversity within a state's jurisdiction does not prevent the introduction of internationally agreed policies and measures to control its use. Clearly, any such policies and measures cannot be imposed and must be based on respect for the sovereignty of states over their natural resources. The acceptance of internationally agreed policies and measures to control the use of resources within a state's jurisdiction reflects the exercise of sovereignty. The prevention of genetic erosion and genetic uniformity of plant genetic resources provides an example. This is a common interest and it has been recognized as such by the FAO.The engagement of FAO in plant genetic resources dates well back into the 1960s. The year 1983 saw the adoption of the 'International Undertaking on Plant Genetic Resources' (IU), a voluntary instrument which has remained operational after the adoption and entry into force of the International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA or the Treaty) (see Annex 1 of this volume for the list of all Commission and Treaty meetings). The IU generally aims at the conservation and sustainable use of plant genetic resources. The objective contained in Article 1 states the main underlying principle of resource exchange: 'This Undertaking is based on the universally accepted principle that plant genetic resources are a heritage of mankind and consequently should be available without restriction.'This principle is an expression of the interdependency of all countries with regards to PGRFA. If one looks at the four crops that account for 65 per cent of global energy intake and their centres of origin, it becomes evident how those have moved outside of these centres over the years and have been improved by farmers all over the world throughout the centuries. The diversity and variety of crops available to us nowadays is a result of the joint efforts of farmers and breeders all across the globe and cannot be accounted to one place of origin or one actor/stakeholder alone.Therefore, it is easily understood why this principle found its entry into Article 1 of the IU and was repeatedly reaffirmed in the years to follow its adoption. The meaning of the principle is, however, less clear. The reference to 'mankind' points to the existence of a common interest in the conservation and sustainable use of plant genetic resources. The word 'heritage' connotes a temporal dimension and suggests that the use of the resources concerned should take into account the principle of intergenerational equity. However, the IU does not designate the plant genetic resources to be a 'common heritage'. The adjective 'common' associates the heritage with common ownership. The absence of that adjective in the IU allows for national ownership over the resources that fall within the scope of the IU. Since the IU does not provide for common ownership over plant genetic resources, it is not necessary to provide international administration of the use of such resources. Such international administration would also not seem to be compatible with the provision of the IU of which plant genetic resources should be available without restriction. The recognition of a common interest in the conservation and sustainable use of plant genetic resources, as evidenced by their designation as a heritage of mankind, is nevertheless significant as it provides the basis for the development of internationally agreed policies and measures to secure the equitable use of plant genetic resources by present and future generations. Facilitated access to plant genetic resources and equitable sharing of benefits arising out of the utilization of such resources are policies and measures that contribute to the achievement of this objective.Nevertheless, the acceptance of the principle that plant genetic resources are the heritage of mankind was clearly not that romantic, as it may seem from a distance. Quite a number of developed countries held reservations to adhering to the IU, in particular, as related to plant breeders' rights and Farmers' Rights that might be affected by the application of the heritage-of-mankind principle. They feared that the implementation of the IU might still result in an international administration of resources, which would encroach upon their control over such resources. 4 The romance lasted until 1991, when the FAO Conference gave in to demands to clarify the principle further in its last Agreed Interpretation of the IU:(a) the concept of humankind's heritage, as applied in the International Undertaking on Plant Genetic Resources, is subject to the sovereignty of the states over their plant genetic resources, […] (d) conditions of access to plant genetic resources need further clarification. 5 What happened at that time? It was the point in time when, under the auspices of the United Nations Environment Programme (UNEP), the CBD was being negotiated and was soon to be adopted. This was the time when awareness grew significantly about the value of biological diversity for economic development and also the fear of biological diversity being exploited and degraded by multi-Our Heritage Is Our Future 241 national companies for purely monetary gains. Developing countries sought to prevent external interference with their domestic policies and measures to use natural resources under their jurisdiction. The negotiations resulted in the rejection of a multilateral approach to access and benefit-sharing within the framework of the CBD. The recognition of the sovereign rights of states over their natural resources was linked to the authority of national governments to determine access to its genetic resources. This provision reflects a complete 180 degree u-turn to the approach originally embarked upon by the FAO with the heritage-of-mankind principle and unrestricted availability of plant genetic resources. The only provision supporting the free availability of genetic resources is the call upon parties to endeavour to create conditions to facilitate access to genetic resources for environmentally sound uses. Access, where granted, is nevertheless subject to prior informed consent of the party providing such resources, unless otherwise determined by that party, and to mutually agreed terms. However, the sovereign rights based approach does not exclude a multilateral approach to access and benefitsharing altogether.The Conference for the Adoption of the Agreed Text of the Convention on Biological Diversity agreed that solutions need to be found with regard to access to ex situ collections of PGRFA not acquired in accordance with the CBD and the question of Farmers' Rights. 6 In 1993, the FAO Conference took on those outstanding matters and embarked on adapting the IU to the conditions created by the CBD. A mandate for negotiations was adopted for:• the adaptation of the International Undertaking on Plant Genetic Resources, in harmony with the Convention on Biological Diversity; • consideration of the issue of access on mutually agreed terms to plant genetic resources, including ex situ collections not addressed by the Convention; as well as • the issue of realization of Farmers' Rights. 7Seven years later, in 2001, this resulted in the adoption of the ITPGRFA which is based on a multilateral approach to access and benefit-sharing (see Annex 3 of this book for details on the main provisions of the Treaty).The Treaty's multilateral approach can be depicted as a circular system between access, benefit-sharing and the conservation and sustainable use of PGRFA. This approach gives recognition to the great level of interdependency in the food and agriculture sector as described earlier. The fundamental objective of the Treaty is the prevention of genetic uniformity and genetic erosion and hence, the maximum diversity of PGRFA. Although the Treaty does not designate plant genetic resources as a heritage of mankind in so many words, it appears from the preamble that the communal and temporal aspects of this notion are cornerstones of the Treaty. According to the preamble, the parties are '[c]ognizant plant genetic resources for food and agriculture are a common concern of all countries, in that all countries depend very largely on plant genetic resources for food and agriculture that originated elsewhere' and '[a]ware of their responsibility to past and future generations to conserve the World's diversity of plant genetic resources for food and agriculture'.The Treaty recognizes the sovereign rights of states over their plant genetic resources, including their national government's authority to determine access to those resources (Article 10). In the exercise of its sovereign right over its genetic resources, a party -through the multilateral system of access and benefit-sharing of the Treaty -offers facilitated access to other parties as well as legal and natural persons therein of its plant genetic resources under state control for the purposes of research, breeding and training. This is a formalization of the practices that were in place already for hundreds of years among farmers worldwide. However, this is a system that is adapted now to the new advances in a globalized world and turned towards greater efficiency by minimizing transaction costs. For instance, the exchange of PGRFA takes place based on one standardized material transfer agreement, the SMTA, which lays down the terms and conditions of access to the resource(s) and benefit-sharing from the utilization of the accessed PGRFA.The multilateral system allows any party to tap into the joint pool of PGRFA listed in Annex I of the Treaty and in return maximizes benefit-sharing again through a multilateral approach. For this purpose, the heart of the benefit-sharing approach is a multilateral fund that is, in principle and among other sources, being nurtured by an equitable share of the benefits arising out of the commercialization of a product based on the material derived from the Treaty.The Treaty has one distinct feature that is unique -its multilateral system has created a plant genetic resources pool that resembles a global public good. Public goods are usually described by contrasting them to private goods which can be made excludable and exclusive in consumption. An example of a private good would be a car whose use (or 'consumption') is controlled by the owner in possession of the car keys. By contrast, the air we breathe would be denoted as a public good, as one person is in general not capable of reducing the amount of air available or controlling access to the air. In 1954, the economist Paul Samuelson was the first to describe public goods as '[goods] which all enjoy in common in the sense that each individual's consumption of such a good leads to no subtractions from any other individual's consumption of that good' (Samuelson, 1954, p387). Consequently, global public goods have been described as 'public goods with benefits … that extend across countries and regions, across rich and poor population groups, and even across generations' (Kaul et al, 2003, p3).Plant genetic resources as such would not feature as public goods and the multilateral system certainly is not comparable to the example of the air used Our Heritage Is Our Future 243 above. However, the multilateral system does resemble the characteristics of a global public good, in so far as Article 12 of the ITPGRFA establishes that parties to the Treaty are to provide access -obviously under certain conditions further detailed within the Treaty -to those PGRFA held within the joint pool to other parties and to legal and natural persons under the jurisdiction of any party through the multilateral system. Hence, by the terms of the Treaty, those PGRFA contained in the multilateral system are available to all parties to the Treaty and one party in principle cannot prevent another party from accessing ('consuming') PGRFA held within the multilateral system. Furthermore, the Treaty regards such access as a benefit for all parties: 'The Contracting Parties recognize that facilitated access to Plant Genetic Resource for Food and Agriculture which are included in the Multilateral System constitutes itself a major benefit of the Multilateral System' (Article 13.1).With the creation of the multilateral system, the same problems appear pertinent that are commonly known in relation to public goods, such as: Who feels responsible for maintaining what is contained in the multilateral system and who pays? Is there a free-rider problem and how is this to be addressed? Is the multilateral system in its current form sufficient or does it need to be expanded? The first question on responsibility is the most significant for the purposes of this article.Public goods 'simply put' suffer from the fact that they are being taken for granted. Biodiversity is a shining example of this. However, the most recent 30 years or so have seen a greater consciousness that the loss of biodiversity constitutes a significant cost that only comes to bear over time. However, only from that moment onwards, where this loss of a public good has a tangible impact on the individual, is the individual willing to take a share in the responsibility to address this loss. The Treaty's multilateral system thus also serves the purpose to make a potential loss tangible, palpable. While every party benefits from the access to the plant genetic resources contained in the multilateral system, every party will also lose out when the system is compromised including through genetic erosion that would reduce the availability of plant genetic resources accessible through the system.So, who feels responsible and who pays? The answer to this question is that the Treaty itself foresees an in-built mechanism that allows for the Treaty community as a whole to take responsibility for the maintenance of the core ingredients of the Treaty's multilateral system, that is the PGRFA. That mechanism is twofold: on the one hand, it is the financial support provided by the parties to the administration of the Treaty, as is usual practice in multilateral agreements and, on the other hand it is the benefit-sharing fund as an in-built mechanism of the Treaty, and more widely so, its funding strategy.The funding strategy should close in on the other half of the Treaty's circular system: There are certain limitations to the system and the most important one is that PGRFA constitute a resource that could potentially become extinct. The other limitation is the same as with any other multilateral agreement, its effective implementation depends on a level playing field for all parties in terms of their capacity and ability to implement the system. This is the reason why the funding strategy of the Treaty lays down the three priority areas, namely conservation, sustainable use and assistance (capacity-building and technology-transfer), towards which funding for plant genetic resources for food and agriculture should be directed. For the area of PGRFA, sustainable use is of greatest importance -diversity can not only stem from conserving what is already in major use, but also by making sustainable use of neglected or underutilized crops so as to create incentives for their conservation as well as eventually increasing genetic variety.The funding strategy recognizes the number of finance streams directed towards plant genetic resources and aims at a comprehensive strategy in the best interests of the parties to the Treaty. Its heart is formed through its benefit-sharing fund which holds the financial resources that are within the direct control of the Treaty's Governing Body.The benefit-sharing fund was mainly conceived as the fund that would be nurtured through the monetary benefits derived directly from the utilization of PGRFA. This fund would finance projects in the three priority areas, targeted towards in situ conservation and on-farm management to be able to make full use of the mechanisms of the Treaty. In this conceptualization it would form one puzzle piece in the entire funding landscape for biodiversity, including for PGRFA. As the Fund's resources would be under the direct control of the Governing Body, parties collectively would be able to select projects that would fill urgent implementation gaps and would allow for quick responses.In short: The circular system of the Treaty foresees facilitated access to a joint pool of resources that is being commonly cultivated by all parties and accessible on the basis of a standardized benefit-sharing arrangement. Contributions based on the benefit-sharing arrangement would in return flow back into a multilateral benefit-sharing fund of the Treaty. Apart from capacity-building projects and programmes, this fund should contribute to the conservation and sustainable use of PGRFA, so as to achieve the objectives of the Treaty and maintain maximum diversity of plant genetic resources. In theory, the circle seems complete.Reality could appear different. The entry into force of the Treaty only dates back six years. Therefore, it is still partly adjusting to get into the flow of things. Looking at breeding cycles, direct contributions from commercialization can realistically be expected only in several years time from now. Urgently required capacitybuilding programmes have therefore been facilitated through a newly created Joint Programme on Capacity-Building of the FAO, the Treaty Secretariat and Bioversity International, which not only allows advances towards the required level playing field among the parties but also allows more countries to become parties to the Treaty. Considerable funding flows are taking place towards the conservation and sustainable use of PGRFA (e.g. including through the Global Environment Facility (GEF), or in terms of in situ conservation through the Global Crop Diversity Trust), but they constitute financial resources that are not under the direct control of the Governing Body.The crux: While a common effort was made to building the multilateral system, the in-built mechanism described above had difficulties delivering a tangible perception that the common responsibility for the sharing of benefits was taken seriously.It was only after the Second Session of the Governing Body in 2007 that some parties (Spain, Italy, Norway and Switzerland) committed voluntary contributions to the benefit-sharing fund in order to facilitate the execution of a number of projects selected and approved by the Governing Body. This received great appreciation of all parties at the Third Session of the Governing Body in 2009. The political response to this was twofold. The Governing Body decided, on the one hand, that PGRFA resulting from projects funded by the benefit-sharing fund and listed in Annex I be placed under the multilateral system. On the other hand, the Governing Body has established a target of US$116 million to be reached over the next five years. This constitutes an acknowledgement of the time-lag occurring before the monetary benefits arising from the utilization of PGRFA accessed through the multilateral system will be committed to the benefit-sharing fund. During this time, more intensified provision of voluntary contributions will be required to address conservation, sustainable use and capacity-building needs.Clearly, the benefit-sharing fund cannot assume the role of a financial mechanism of the magnitude of the GEF, for example, and it was not created as such. Yet, the benefit-sharing fund, and more broadly, the funding strategy have two very significant purposes: First, they address needs that are directly related to PGRFA and the implementation of the Treaty, and second, they add greater coherence in the wide and broad funding landscape for plant genetic resources by setting clear priorities and directions. This is the direction towards which the Treaty is currently heading. The fundamental underlying motivation of the global exchange of PGRFA even centuries before its formalization through the Treaty has always been the provision of food crops that fit the climatic and socio-economic environment of a region or country. Food security is the overarching expression for this -it is no coincidence that the first Millennium Development Goal of the United Nations ('Eradicate extreme poverty and hunger') finds its origins in the policies and activities of FAO. In addition to all the obstacles towards achieving this goal, food security is confronted with another threat: climate change.At the 12th session of the Commission on Genetic Resources for Food and Agriculture in October 2009, a study on 'The Impact of Climate Change on the Interdependence of Countries and the Genetic Resources for Food and Agriculture' (Fujisaka et al, 2009) was submitted. This study shows that levels of interdependence of countries on genetic resources for food and agriculture will grow even further through the results of climate change, in particular, for plant genetic resources. Climate change will impact on the suitability of currently adapted landraces and varieties for various regions and increase the demand in general for PGRFA globally. One of the main findings is that '[i]nternational cooperation/coordination between farmers, government institutions, and research agencies will be critical in order to support the moving production system of germplasm from present locations that become unsuitable to future suitable areas as well as to support continued agricultural production in areas that will experience unprecedented climate-related stresses'. This shows that self-sufficiency will also not be possible in the future. The Treaty holds the key for early preventive and precautionary measures to assist farmers to adapt to climate change before the effects of climate change will affect food security, which is expected to take place in the next 30-50 years.Facts show that from one biennium to the next, voluntary funding for the Treaty's benefit-sharing fund increased from a sum of approximately US$600,000 to a sum currently approaching US$13 million and projected to rise further. This is particularly remarkable against the backdrop of the current global recession and economic crisis and a general serious pressure on public spending.While the success of this is surely a combination of factors, it should be taken for what it is in the first place: a conviction of the international community that the multilateral system of the Treaty is to be maintained if we want to secure the conservation and sustainable use of PGRFA. The parties have collectively taken common and joint responsibility for those PGRFA that they have placed in the multilateral system -both in terms of maintenance of the system as well as for maintaining maximum diversity of plant genetic resources. Diversity of PGRFA is of course not limited to those that are currently contained in the multilateral system, even if those selected 64 crops reflect the criteria of food security and interdependence. Growing interdependence and climate change as a serious factor in genetic uniformity and genetic erosion are important arguments that underline the need for a comprehensive approach to food security. In the acknowledgement that the multilateral system is an expression of joint responsibility and joint custodianship, a comprehensive approach to food security could entail that those PGRFA that are currently not covered by the multilateral system might become subject to the system in the future.The ITPGRFA demonstrates that the permanent sovereignty of states over their natural resources does not preclude a multilateral approach to the use of such resources. The common interest in the prevention of genetic uniformity and genetic erosion has induced states to design a system that facilitates international access to PGRFA in return for an equitable share of the benefits arising out of their utilization. This multilateral approach respects sovereign rights over plant genetic resources and is designed to secure their equitable use by present and future generations.There is a delicate balance between access to and use of resources, on the one hand, and the sharing of benefits arising from such use, on the other. There will be no benefits to share without the use of resources, but a system that allows for use An Innovative Option for Benefit-sharing Payment may restrict access for further research and breeding, the likelihood of immediate and substantial payments under the referred Article 13.2 (d)(ii) is low. During the negotiations of the Treaty, there were significant expectations about the funding that the implementation of this obligation could generate; however, its actual potential is probably rather limited.There are two main reasons for this hypothesis:1 Developing a new variety by conventional breeding methods may take several years and, hence, payments by potential recipients may not be received soon.The payment obligation is triggered when a product is 'commercialized'. This means that the product must be actually introduced into commerce. The logical linkage to commercialization rather than access delays the possible generation of income for benefit sharing. In accordance with the Secretariat of the Treaty, 'plant breeding is a slow process and it can take ten years or more for a patented product to emerge from the time the genetic transfer took place which is why the aforementioned governments have backed the scheme'. 12 2 Legal restrictions are likely to arise out only in those few countries where plant varieties are patentable per se. Most countries have implemented the exception specifically allowed by the Agreement on Trade-Related Aspects of Intellectual Property Rights (TRIPS Agreement is Annex 1C of the Marrakesh Agreement Establishing the World Trade Organization, signed in Marrakesh, Morocco on 15 April 1994) and do not allow such patents. 13 As a result, the payment obligation may arise in a relatively small number of countries. 14During the negotiations regarding the text of SMTA, the African group proposed an alternative to the obligation to pay a royalty on each product that incorporates material received from the multilateral system, as described above. The proposal, with some amendments, was finally incorporated in Article 6.11 of the SMTA.The main reason underpinning this proposal was the African group's concern about the long period that would normally be necessary to develop new varieties which would eventually incorporate materials from the multilateral system and the limited circumstances in which the obligation to pay might arise. The proposal emerged from discussions between the African group members and Mr José Esquinas-Alcázar, Secretary of the Commission on Genetic Resources for Food and Agriculture. It essentially aimed at providing a simple method of payment that could reduce transaction costs for recipients in obtaining materials from the multilateral system. At the same time, it would accelerate and increase the generation of income to support the various types of benefit sharing activities contemplated in the Treaty.The proposal suggested another option to the product-related payment obligation. Choosing this alternative was left to the discretion of the recipient because the proposed royalty (as finally established by the SMTA) would be applicable not only to the sales of the product that incorporated the material received from the multilateral system, but to any products that are PGRFA belonging to the same crop to which the material received from the multilateral system belongs. This means that, by selecting this option, the recipient would pay a royalty on all products of a certain crop regardless of whether they incorporate the material received from the multilateral system or whether the further use of the material by third parties for research and breeding is limited. A clear advantage of this option from the perspective of contracting parties is that the payment obligation would be triggered as soon as the recipient sells any product of the respective crop.An important feature of this option is that, once the choice is made, it becomes the mandatory form of payment applicable to the recipient. This means the recipient is free to choose but, after selecting his preferred option, he is bound by the respective terms and conditions of the SMTA.The African proposal was received with some scepticism by some of the negotiating parties. Doubts were raised about the compatibility with the IPGRFA given that payment is not linked to the effective commercialization of a product incorporating material received from the multilateral system. It might even happen that such a product was never developed; despite this, the recipient would be obliged to pay the established royalty. Strictly speaking, there would be no 'benefit sharing' since no such benefit would have been created at that stage. This observation, however, can be dismissed on the argument that the Treaty provides for mandatory and voluntary payments. The African proposal introduced a hybrid solution: it is voluntary to opt for it but, as noted, payment becomes mandatory when the recipient has exercised his right to choose.It was also argued that the Treaty required the establishment of a single level of payment. The commented proposal introduced, in fact, a different (discounted) royalty rate. But Article 13.2(d)(ii) of the Treaty provides that '(t)he Governing Body may decide to establish different levels of payment for various categories of recipients who commercialize such products …'. Recipients that accept to pay a royalty over all the products belonging to a crop may be considered a different 'category' of recipients.The duration of the obligation to pay was also questioned. The mandatory product-related payment under the SMTA has no definite term. It will be enforceable as long as the conditions that trigger the payment obligation continue to exist. Since the African proposal delinked payments from the presence of the received material in the products sold, the determination of a term was necessary and introduced in the adopted SMTA.Finally, doubts were raised about the potential interest of seed companies and other recipients to subscribe to an option that might create a financial burden higher than that emerging from the mandatory payment. However, the African proposal, received support from the representative of the seed industry (for details on the seed industry, see Chapter 12). In fact, it may be particularly suitable to companies that are unwilling or unable to track the presence of a received material in its breeding lines and could eventually become the preferred option for some companies in the seed industry.including the amount of the payment due, and information that would allow for the identification of any restrictions that have given rise to the benefit-sharing payment. 19 Since the product-related payment under the SMTA would be mandatory only when a restriction is imposed by the recipient for further research and breeding by third parties, the recipient would have to assess whether a 'restriction' encumbers a product that incorporates the received material in a way that limits research and breeding by others.The SMTA defines in Article 2 'available without restriction' as follows: 'A Product is considered to be available without restriction to others for further research and breeding when it is available for research and breeding without any legal or contractual obligations, or technological restrictions, that would preclude using it in the manner specified in the Treaty'. This definition suggests that a 'restriction' would exist when the owner of the product is able 'to exclude, prevent, make impracticable' 20 access for research and breeding. This interpretation raises, among others, the question whether the establishment of certain conditions (for instance, payment of a predetermined royalty) to get access to a product would be sufficient or not to consider that a 'restriction' exists. The recipient may have reasonable doubts in these cases about the need or not to effect the payment provided for, and should eventually seek clarification from the Governing Body or any subsidiary body dealing at that time with this issue through the Secretariat. 21 In addition, the implementation of the product-related payment obligation imposes on the recipient the burden of tracking the use of the material received from the multilateral system, keeping separate records of the products that incorporate such material, calculating and paying the established royalty on each of the products in this situation. Further, the recipient would be responsible not only for payment of the royalties calculated on the sales of his own products, but also on the sales made by its affiliates, contractors, licensees and lessees. This might create a significant additional burden on the recipient. 22 Opting for the crop-related payment obligation would not mean that the recipient would be relieved from signing new SMTAs to obtain other materials from the multilateral system, even if they belonged to the same crop as the material obtained under the first SMTA. Likewise, if he had previously signed other SMTAs, he must comply with them, except with regard to the productrelated payment obligation. The integrity of the system, hence, is not affected in any way by the implementation of the crop-related payment option.The crop-related payment option presents some advantages for the operation of the multilateral system set out by the Treaty. They include the possibility of generating income faster than under the product-based modality, as well as of reducing the monitoring costs. In effect, there would neither be a need to verify whether a material received from the multilateral system has been incorporated by a recipient into a commercialized product, nor to establish whether further access for research and breeding is restricted. This would reduce the burden of the third party beneficiary and, possibly, avoid litigation. In addition, as noted, the An Innovative Option for Benefit-sharing Payment income generated by individual recipients may be much greater than under the product-based payment modality, since the 0.5 rate would be applicable to all the recipient's sales of products belonging to the same crop.On the other hand, the modality of crop-related payment may have a number of distinct advantages for recipients as compared to the product-based payment, namely:• No need to track the incorporation of the material received from the multilateral system. • No obligation to provide the Governing Body with information about restrictions for further use. • Straight and simple annual calculation of the royalty payments to be made.• Disputes about compliance with the SMTA are less likely to arise.• Opting for the crop-related modality may be positive in terms of public relations for the image of seed companies (as supporters of the implementation of the Treaty).In sum, this option may be far less bureaucratic and much easier to administer and enforce by recipients than the product-related alternative. There are, in fact, indications that some seed industry circles are interested in investigating more deeply the potential advantages of the crop-related modality as the preferred alternative.The crop-related modality of royalty payment represented an innovative way of looking at the implementation of the obligation established by Article 13.2 (d)(ii) of the Treaty. Through this hybrid (mandatory/voluntary) option, transaction costs may be reduced for both the Governing Body (and FAO as third beneficiary) and the recipients that choose to apply it. The benefit-sharing fund created in pursuance of the Treaty might receive royalty payments earlier than under the product-based modality, given that there will be no need to wait until a product incorporating material from the multilateral system is developed and commercialized. Moreover, since payment is to be made independently of the existence of any restriction for the further use of the improved material, if that option were chosen by a large number of recipients and/or by companies with significant seed sales, it might possibly generate more funds than its contractual alternative. Although the proposal by the African group was essentially aimed at speeding up and improving funding for benefit sharing, the optional mode of payment incorporated into the SMTA may, due to its lower cost and greater simplicity, serve well the immediate and long term interests of a wide range of recipients.Many authors consider that the Treaty provides incentives for stakeholders, in particular, farmers, to conserve and use PGRFA in a sustainable manner, through the recognition of Farmers' Rights and the benefit-sharing mechanism of the MLS (e.g. Chapters 2,3,7 and 17). Nevertheless, some authors point out that for them Farmers' Rights was not a primary concept during the negotiations of the Treaty (e.g. Chapters 5 and 8). For others, the inclusion of a provision for Farmers' Rights in the Treaty is seen as an important first step (e.g. Chapters 3 and 13). They state that the Treaty has allowed for the recognition of farmers' movement and for more coherent and larger organization of farmers' communities (e.g. Chapters 10 and 13). The establishment of a Global Fund for Farmers, similarly as the Global Crop Diversity Trust, to support farmers' work on on-farm conservation and crop development is also proposed (e.g. Chapter 13).Several authors sustain that there is a lack of sufficient international recognition 1 and national implementation of Farmers' Rights (e.g. Chapters 3 and 13). Difficulties in implementing Farmers' Rights at the national level are attributed to a lack of legal expertise and prior experience in the field (e.g. Chapter 3). Moreover, the authors from the chapter on farmers' communities consider that Farmers' Rights should encompass many other rights (e.g. Chapter 13). They argue that Farmers' Rights are a bundle of rights, which should characterize the interrelationships of seeds with land, water, energy, culture, social fabric, household and individual well-being. Authors from the seed industry chapter believe that Article 9.3 does not provide any legitimacy to save, use and sell farm saved seed, and they interpret Article 9 in a limited manner (e.g. Chapter 12). Finally, some authors have stressed the fact that the provisions of the Treaty and their implications for smallholder farmers are yet to be substantially 'processed' by farmers and their communities. A large number of farmers and their organizations have yet to identify themselves within this 'social construct' (e.g. Chapter 13). Still, while some authors stress that it is strictly a domestic issue (e.g. Chapter 8), other authors contend that there is some lack of clarity and no common interpretation of this Treaty provision, which contributes to misunderstandings and requires clarifications (e.g. Chapter 3). Up to now, only a few countries, such as for instance India, have implemented legislation on Farmers' Rights (e.g. Chapter 14). ²The multilateral system of access and benefit-sharing (Articles 10-13 of the Treaty)Part IV of the Treaty is devoted to the Multilateral System (MLS) of Access and Benefit-Sharing. Article 10 recognizes the sovereign rights of countries over their own PGRFA. It states that Contracting Parties establish the MLS in the exercise of these sovereign rights. Article 11 limits the scope of the MLS to PGRFAs listed in Annex I to the Treaty, while Article 12 defines its facilitated access mechanism and Article 13 deals with benefit-sharing.Many authors consider the MLS as the core of the Treaty. The MLS is generally regarded as a unique instrument because it ensures multilateralism (e.g. Chapters 2, 5 and 6). Most authors recognize that the success of the Treaty will depend on the effective implementation of its MLS (e.g. Chapters 3,6 and 19). Several authors recall that the MLS creates a balance between access and benefit-sharing (e.g. Chapters 5, 18, and Annex 4). Some of them express their conviction that a balanced implementation of the MLS, equally fostering access and benefitsharing, is the only manner in which to implement the Treaty in a sustainable way (e.g. Chapter 18).While stories and strategies regarding the design of the scope of application of the MLS differ significantly, most authors contend that the criteria of 'interdependency' and 'food security' led to the designation of a fairly wide list of crops and forages in Annex I to the Treaty (e.g. Chapters 5, 6 and 8). While a few authors indicate that in their opinion the list is too broad (e.g. Chapter 4), a few others propose that the MLS should apply to all PGRFA (e.g. Chapter 12). However, many authors suggest that Annex I should eventually be modified, especially because very important crops, such as tomatoes, soybeans or peanuts are not included in the Annex, and because climate change impacts on the interdependency and relative importance of the crop for food security (e.g. Chapters 5, 7, 8, 15, and Annex 4). Other authors, do not reject the idea of a modification of the list, or even its expansion to all PGRFAs, but they do not support such a development before it is clear that the MLS functions efficiently, in particular, with respect to its benefit-sharing provisions (e.g. Chapters 3 and 6). Some authors, wishing a much broader coverage, emphasize that several countries as well as the CGIAR already use the SMTA to distribute both Annex I and non-Annex I materials acquired before the Treaty came into force, thereby de facto widening the scope of the MLS (e.g. Chapters 5 and 11). Several authors claim that the identification of the material covered by Annex I of the Treaty, which should be included in the MLS (as per Article 11.2), is difficult and remains a challenge (e.g. Chapters 7 and 14).Authors welcome the adoption of the SMTA at the first meeting of the Governing Body and many consider it as an essential element to implement the MLS. SomeThe negotiations of the coverage of the MLS were difficult and often caused considerable tensions. While some Parties initially wanted to apply the MLS to all PGRFA (similar to the other Treaty provisions), others strongly opposed this wide scope of application. Negotiators used the criteria of 'interdependency' and 'food security' to determine which crop should be covered by the MLS. The compromise resulted in the Annex I list of 64 crops and forages.Only a few references are made to information systems, with little specific comment: SINGER is mentioned a couple of times (e.g. Chapters 11, 14) and Genesys is named once (Annex 4 of this book), (see below Part II for more details on the GIS).Article 17 states that Contracting Parties shall cooperate to develop and strengthen a GIS to facilitate the exchange of information, based on existing information systems, on scientific, technical and environmental matters related to PGRFA. Several types of existing information systems could be relevant to its development, such as the World Information and Early Warning System on Plant Genetic Resources for Food and Agriculture (WIEWS) in FAO, the System-wide Information Network for Genetic Resources (SINGER) for the CGIAR, the National Plant Germplasm System and the European Plant Genetic Resources Search Catalogue (EURISCO), and more recently Genesys. 4 Through Article 18 of the Treaty the contracting parties undertake to implement a Funding Strategy for the implementation of the Treaty. The objectives of this Funding Strategy shall be to enhance the availability, transparency, efficiency and effectiveness of the provision of financial resources to implement activities under the Treaty. Several measures are listed, enabling contracting parties to reach these objectives and a funding target has to be periodically established. Funding for priority activities, plans and programmes are focused, in particular, on projects in developing countries and countries with economies in transition taking into account the GPA. Article 18.4(b) states that the extent to which the latter Contracting Parties will effectively implement their commitments under the Treaty will depend on the effective allocation, particularly by developed country Parties, of the resources referred to in this article.Contracting Parties have developed this Funding Strategy between 2006 and 2009. In 2006, the GB adopted its relationship agreement with the Global Crop Diversity Trust (GCDT), 5 recognizing that 'FAO and the Future Harvest Centres of the CGIAR have promoted the establishment of a GCDT, in the form of an endowment with the objective of providing a permanent source of funds to support the long-term conservation of the ex situ germplasm on which the world depends for food security, to operate as an essential element of the Funding Strategy of the International Treaty, with overall policy guidance from the Governing Body of the International Treaty, and within the framework of the International Treaty' (ITPGRFA, 2006) Some authors believe that the Funding Strategy functions as a strategy to primarily mobilize money from existing sources and channels, including the monetary benefits of the MLS (e.g. Chapter 2). Many authors point to the lack of sufficient funds (e.g. Chapters 2,3,7,13,19). Several authors state that the ITPGRFA will have great difficulty in generating new and additional financial resources to support programmes to conserve and utilize PGRFA in a sustainable way at the regional, national and local community level. Some add that although at the third meeting of the Governing Body in 2009 a target of US$ 116 million was agreed to be raised within the next 5 years (implementation of Article 18.3), much of these funds are not available yet and might be difficult to obtain (e.g. Chapter 3). Authors from the European Regional Group Chapter recall that some European countries have contributed to the Benefit-sharing Fund as a response to queries from developing countries for more money. They also note the pledge for benefitsharing from Norway, which adopted a national policy where the equivalent of 0.1 per cent of all annual seed sales is transferred to the Fund.Besides the clear concerns about the lack of funds, authors explain that the GCDT, although an independent institution separate from the Treaty, operates within the framework of the Treaty as it constitutes an essential element of its Funding Strategy (e.g. Chapter 16) and receives policy guidance from the Governing Body (e.g. Chapters 5 and 16). Some authors consider that the GCDT also contributes to an efficient implementation of the Treaty by supporting the benefitsharing and conservation provisions of the Treaty (e.g. Chapter 7). However, other authors consider the GCDT useful but not central to the efficient implementation of the Treaty provisions, since it focuses mainly on ex situ conservation activities (e.g. Chapter 8).This second Part of the conclusion aims at processing the appraisals and concerns regarding the implementation of the Treaty as described by the various authors. In doing so, the editors wish to share possible ways forward to facilitate the further implementation of the Treaty. The purpose is not to be exhaustive but to put forward a preliminary analysis of some of the major constraints on the implementation of the Treaty. While recognizing that many actions could be taken at the local, national or regional level, the editors, following the proposals made by the authors throughout the book, will stay within the limits of actions that can be taken at the Governing Body level. Part Two of this concluding chapter is divided into four sections, as summarized and illustrated in columns 1 to 4 of Table 20.1 below. Section 1 deals with the constraints identified by authors related to the implementation of the Treaty (Table 20.1, column 1). The editors have attempted in Section 2 to categorize these constraints into four types of needs (Table 20.1, column 2). Then, a selection of tools is discussed as possible ways to mitigate the identified constraints and needs (Section 3, Table 20.1, column 3). Finally, the editors point to some of the Treaty articles which have received little attention until now and which implementation or further implementation could contribute to mitigate some of these constraints (Section 4, Table 20.1, column 4). Throughout the analysis, concise and concrete examples are given.In the following text, the editors do not try to be prescriptive neither comprehensive but just to provide an input to promote discussion.The editors have selected some of the major constraints raised by authors of this volume, which are mentioned in Part I of this chapter. The constraints are based on the authors' experience with the implementation of the Treaty. They are very diverse and deal with scientific and technical, legal, political, and/or economic aspects of the Treaty implementation. Many constraints cover several aspects at the same time. This makes it even harder to tackle them. The editors make an attempt to categorize the needs associated with these constraints in order to discuss potential solutions to address them in the following Sections 2 and 3.In an attempt to facilitate the analysis of all the constraints identified, the editors propose to categorize and qualify these constraints into four types of needs: the need for more clarity; the need for review and update; the need for further development; and the need for more coherence and coordination. These four categories of constraints are not exhaustive, and respond to the following four questions.Many authors indicate the need for clarification of various Treaty provisions to guide the implementation, in particular, of Article 11.2 and Article 12.3 (d).A clear example of ambiguity concerns the scope of the following expression 'PGRFA […] that are under the management and control of the Contracting Parties and in the public domain' (see Article 11.2). The need to provide guidance in the interpretation of this and other ambiguities related to the MLS has led to the establishment of an Ad Hoc Technical Advisory Committee by the Govern-by the Governing Body to provide inter alia some guidance regarding the identification of plant genetic resources for food and agriculture under the control and management of Contracting Parties, and in the public domain. 6 Another example relates to Article 12. 3(d), where different interpretations can be given to the terms 'parts and components' and 'in the form received' and therefore to the definition of the material that can be protected by IPRs or not.Is there a need for further development of Treaty mechanisms and strategies?Authors plead in favour of rapid action by the Governing Body to develop further mechanisms and strategies in various aspects. A major example concerns the non-monetary benefit-sharing obligations (Article 13.2 (a), (b) and (c)), which is poorly taking place, according to many authors.A second example relates to the need to further develop financial mechanisms helping countries to implement the GPA priority area activities, and especially the priorities that are not directly covered by funds already established (the GCDT or the Benefit-sharing Fund). Indeed, many priorities of the GPA do not foresee an appropriate and specific financing mechanism to implement them yet. This could perhaps be done taking advantage of the experience of other existing fundraising mechanisms and funding organizations active in the agricultural sector (such as the Global Environmental Facility (GEF), the United Nations Development Programme (UNDP) or the International Fund for Agricultural Development (IFAD)).A third example where further development is needed relates to the Global Information System.The text of the Treaty and its implementation mechanisms and strategies request, in certain cases, such review and update processes. Several examples can be mentioned, such as the review of the levels of payment in the SMTA by the GB (Article 13.2(d)(ii); or the periodic establishment of a funding target (Article 18.3). Another example concerns Article 17.3 of the Treaty, which requires Contracting Parties to collaborate with the Commission on Genetic Resources for Food and Agriculture to periodic reassess the State of the World's plant genetic resources for food and agriculture in order to update the GPA A last example is constituted by the priorities set for the Benefit-sharing Fund, where Annex 1 of the Funding Strategy sets out eligibility, selection criteria and additional requirements, that can be updated regularly by the Governing Body.In addition, the editors further consider the possibility to modify and review Treaty mechanisms and strategies in reaction to external circumstances, which were not foreseen at the moment of the Treaty negotiations and which may have a substantial impact on its implementation. A good example would be the updating of Annex I list as a consequence of external factors. Indeed, the identification of the list of crops and forages were negotiated according to the double criteria of interdependency and food security, which are currently being affected by climate change and technological developments.Many authors have stressed the limited coordination and coherence at three levels, resulting sometimes in numerous competing and/or conflicting international obligations: (1) between governing bodies and secretariats of international institutions; (2) between national representatives attending different but co-related international fora such as the WTO,the CBD and the ITPGRFA;and (3) between different sectors and people at the national level responsible for the implementation of these different international obligations. (1) At the secretariat and governing body level, periodic meetings between Secretaries and joint meetings between Governing Bodies of different international organizations could be two options leading to the development of common programmes and activities, mitigating the limited coordination and coherence problems. An example of successful inter-sectorial cooperation in the negotiating process is provided by the mutual recognition and support between the Treaty and the Nagoya Protocol on Access and Benefit-Sharing. The new Protocol expressly refers to the Treaty as a complementary instrument of the international ABS regime 7 (2) At the national delegation level, common preparatory meetings and inter-sectorial composition of delegations could be envisaged to prepare for international meetings. (3) At the national level, coordination by national inter-sectorial committees could contribute to favour coherence and coordination when implementing international obligations at the national level.The aforementioned needs for clarification, review, further development and coordination require Contracting Parties and the Governing Body to take action to further implement the Treaty. Following directions proposed by authors, the editors limit the discussion to possible actions to be taken at the Governing Body level. Article 19 of the Treaty and its Rules of Procedures empower the Governing Body to take actions to promote the full implementation of the Treaty. In the following section, four possible tools are suggested -each having a different level of obligation -to mitigate the identified constraints and needs. These tools are: to design common implementation frameworks, to develop soft law tools such as guidelines, to adopt agreed interpretations on specific Treaty articles, and to reopen the negotiation of some Treaty provisions. For each constraint, these tools have been classified using numbers from 1 to 3 according to their level of suitability. Where no numbers are mentioned, the tool is found not to be applicable to the specific constraint.Many countries, especially developing countries and countries with economies in transition, experience difficulties in implementing the Treaty due to the lack of legal, technical, economic or human resources. To mitigate this constraint, the Governing Body may establish comprehensive plans and programmes on specific subject matter (as per Article 19.3(b)) or by strengthening existing programmes, for scientific and technical education and training (Article 13.2(c)(i)). Furthermore, Article 14 promotes national actions and international cooperation to provide a coherent implementation framework for the rolling GPA. However, these efforts might appear scattered and disconnected from one another. Therefore, proposing a CIF for the implementation of the Treaty at the domestic level might be a useful tool, in particular, for developing countries. This is not to say that the Treaty would develop a 'one-size-fits-all' tool. On the contrary, such CIF should provide sufficient flexibility to countries to be able to fit their specificities and particularities. The commonality of the framework would lay in the common objectives and principles set out by the GB to help countries implementing the Treaty obligations, through a wide range of diverse information, administrative, legal, scientific and technical systems, instruments, toolboxes etc. This should be accompanied by a roadmap with specific and quantifiable targets (percentage), periodically reviewed, in order to facilitate the development and funding of national strategies in line with international priorities. This approach would avoid the omission of a priority from any funding mechanism. The GPA may partly cover such a CIF for the Treaty with respect to the conservation and sustainable use of PGRFA obligations falling under the 20 GPA activity area priorities. The editors believe there are two options at this point in time. Either the GPA is broadened to become the CIF for all Treaty obligations, or a new other CIF is developed to integrate and complement the GPA. In both cases, this CIF could be broader, taking into account informal networks, or even obligations deriving from other related international instruments. As a matter of fact, these instruments, such as the CBD, the Cartagena Biosafety Protocol and the Nagoya ABS Protocol, TRIPS, WIPO, or the Kyoto Protocol, may compete or overlap with some Treaty provisions. Further coherence and coordination could be reached by way of common programmes and activities aimed at ensuring cooperation and coordination, avoiding duplication, gaining synergies and effectiveness in the use of limited funds, within the ambit of a CIF.It is unlikely that in the short-term, new binding text will be negotiated as a solution for Treaty provisions that need further clarification or development in view of the need for rapid and effective implementation of the Treaty. However, soft law tools, such as guidelines, codes of conducts or standards, might be more adequate to provide prompt guidance. According to Article 19. 3(a) the Governing Body as well as the subsidiary bodies established by the Governing Body should provide policy directions. This could be done through GB resolutions, but also through the design of guidelines, standards or codes of conduct to facilitate countries' implementation of the Treaty. Such tools have been used widely in the past and have proven to be effective. The Treaty specifically states that, in the absence of national legislation dealing with access to in situ PGRFA, the Governing Body may set standards (Art. 12.3(h)). Guidelines are a commonly used tool in many different fora. Without entering into the details of the different types of guidelines, the editors would like to stress the fact that there are very useful instruments to raise awareness, promote public participation and training and allow for the necessary flexibility Contracting Parties often need in order to implement international obligations at the domestic level according to their specificities and needs. A successful example is provided with the Voluntary Guidelines for the Implementation of the Right to Food. These Voluntary Guidelines were developed in the framework of the Committee on World Food Security (CFS) 8 . However, collaboration and coordination between existing national or regional guidelines and the Treaty is important.Such tools might be useful for several constraints identified by authors. The first one to be highlighted regards the national implementation of Farmers' Rights. In this case, voluntary guidelines might be designed. A second example could be the development of guidelines or a code of conduct to help countries and their gene banks in the identification process of designing the material covered by the MLS.In 1983, the FAO Conference adopted the non-binding International Undertaking (IU) by Resolution 8/83. To overcome the reservation of certain countries on the IU, the FAO Conference later adopted further resolutions, which were annexed to the IU as agreed interpretations. Although the Treaty is a binding agreement, and therefore different from the IU, Contracting Parties might envisage developing agreed interpretations through the adoption of a GB decision (on Articles 11.2, or 12.3(d), for example) in order to provide clarity on or review specific obligations. This is consistent with the mandate of the Governing Body, which may take all decisions, by consensus, in order to promote the full implementation of the Treaty. It would be less burdensome to adopt a resolution which would be annexed to the Treaty than to reopen negotiations, however, it might be a risky tool, as it might facilitate attempts to rewrite the Treaty through interpretations. Therefore, this option should very cautiously be envisaged, and surely only to very well defined and limited provisions, with very strict rules of procedures to be applied.Although it is not recommended as primary solution for any of the constraints identified by authors, clarification and further development needs could eventually come about through new negotiations aimed at 'improving' or 'complementing' a very specific provision of the Treaty. Indeed, the Treaty provides for the possibility to amend its text (Articles 19.3 (h,i);23;24). Article 23 states that 'Amendments to this Treaty may be proposed by any Contracting Party [and] shall be adopted at a session of the Governing Body'. Amendment can be made only by consensus of the Contracting Parties present at the Governing Body, and will enter into force following the same procedure used for the Treaty. However, unless this tool is used under very strict conditions, with the understanding that a failure to adopt such amendment would automatically bring Contracting Parties back to the status quo ante, this approach might put at risk the climate of cooperation that exists today, and might facilitate attempts to rewrite the Treaty through interpretations.Moreover, this approach would be quite costly, time-consuming and complex, as the whole national process of ratification, acceptance or approval should again be pursued by each Contracting Party (i.e. be discussed and adopted at National Parliaments).Section 4: Treaty Articles, which further implementation could contribute to mitigate some identified constraints (cf. Table 20.1, column 4) Finally, the editors believe that implementing further Treaty and SMTA obligations that have received little or no attention in the implementation process until now, could actually significantly contribute to solving some constraints identified by authors. The editors will concentrate on three provisions: Article 6.11 of the SMTA; Article 13.6 of the Treaty; and Article 17 of the Treaty. However, other provisions should require more attention some of which are currently under developed, such as inter alia PGR Networks (Article 16), compliance (Article 21) or sustainable use of PGRFA (Article 6).The crop-based alternative payment scheme (Article 6.11 of the SMTA) Some authors stress that promoting the use of the crop-based alternative payment scheme could at least partially mitigate some of the identified constraints (see Chapter 19 for details). Until now, it has received little attention, but it could provide very practical solutions for the funding of the Benefit-sharing Fund within the MLS. In fact, this scheme offers a more general and less bureaucratic approach for dealing with SMTAs, thereby decreasing significantly the administrative burden and increasing transparency. Mandatory monetary benefits would be immediate, thereby providing funds quickly to the Benefit-sharing Fund. The provision allowing the Governing Body to predict contributions and to review periodically the levels of payment in order to achieve fair and equitable sharing of benefits (Article 13.2) could be an opportunity to match the priorities with the monetary benefits to be transferred to the Benefit-sharing Fund. Chapter 5 explains why this alternative payment scheme has not received more attention from users of PGRFA up to now. One of the reasons put forward is that the discounted rate of 0.5 per cent of the sales is too close to the rate in the Article 6.7 (SMTA) payment scheme (of 1.1 per cent less 30 per cent). Perhaps, if the difference between the two rates was bigger, it would render the alternative payment scheme more attractive, thereby answering several of the constraints identified by authors. Implementing further this obligation could therefore mitigate at least two major constraints: the technical and administrative constraints related to the daily use of the SMTA, and the lack of predictability of funds for the Benefit-sharing Fund.Another provision, which has barely received any attention up to now, but which further development and implementation could lead to new and additional monetary benefit-sharing, as well as raising awareness to the wider public, can be found in Article 13.6 of the Treaty. This Article deals with voluntary contributions of the food-processing industries to the MLS. Process and commercialization of wider diversity of crops and crop varieties increases the number of options for consumers and food industry. However, up to now, neither consumers nor the food industry have been much included in the international discussions between the various stakeholders. This is surprising if one considers that we are all consumers, whereas, in developed countries, for instance, farmers represent only 3 per cent of the population (see Chapter 17). Therefore, it is vital to raise awareness amongst consumers and consumer organizations to identify and motivate the food industry to contribute to the MLS and to design mechanisms for this purpose. Strong incentives for the food industry to contribute to the Benefit-sharing Fund are required. An example could be to create a 'green tag' for products coming from these industries contributing to the Fund or for industries agreeing to contribute to the MLS. With this green tag label consumers would be able to decide to buy products that contribute to the conservation and sustainable use of PGRFA. But for this to happen, consumers should be conscious that their choices regarding food products provide them with considerable leverage to influence the food industry's economic and policy decisions. Contracting Parties should therefore target consumers as well as farmers' organizations in their public awareness programmes.The GIS is still at a very early stage of implementation. Contracting Parties requested the Secretariat to develop a vision paper presented at the fourth meeting of the Governing Body (ITPGRFA, 2011). This vision paper takes stock of existing information systems and outlines a process for the development of the GIS. The galaxy of information systems makes it difficult to have a clear vision of the current situation. 9 It is believed that a mere catalogue of existing databases is not enough. It is important to identify the gaps in current information systems and the needs for information of providers and users. The editors are convinced that the GIS should constitute the general and interactive database for all Treaty information, facilitating the implementation of all its provisions, including an information Clearinghouse. 10 The GIS should include online updated information relevant to every Treaty provisions and its implementation, including inter alia scientific and technical information (e.g. genetic diversity, erosion and vulnerability; scientific and technical developments; PGRFA conservation and use; and other areas covered by the GPA), legal and policy information (e.g. policies, laws and regulation relevant to PGRFA and related technologies, including on IPR regulation and traditional knowledge protection; disputes under the Treaty); financial information (e.g. financial contributions, financial disbursement; projects financed through the Treaty; funds availability), as well as the state of implementation the Treaty (e.g. Farmers' Rights; MLS and its SMTA; national and regional reports and inputs being received for the updating process of the SoW and GPA).To facilitate understanding, the following table (on page 276) summarizing and illustrating the findings of the analysis is provided. It contains four columns: 1) Specific implementation constraints identified by authors of the book; 2) Categories of needs associated with the identified constraints; 3) Specific legal tools to improve the implementation of the Treaty; 4) Treaty Articles weakly implemented up to now, which implementation could mitigate some identified constraints. Under the specific tools column, the tools are classified using numbers from 1 to 3 according to their level of suitability; 1 is the option the editors find most appropriate to deal with the concern, 3 is the option found to be the least appropriate to deal with the constraint. Where no numbers are mentioned, the tool is not applicable to the constraint.In addition to the few information systems mentioned by authors, we would like to point to the Global Biodiversity Information Facility (GBIF). GBIF is a multilateral initiative established by intergovernmental agreement (initially 17 countries) and based on a non-binding Memorandum of Understanding. It aims to make the world's biodiversity data freely and universally available via the internet. 10 Coordination between the different existing systems (such as WIEWS, and SINGER, for example) should focus on avoiding duplication. To overcome this duplication problem a database of databases could be created, to be eventually operated through the Genesys initiative. The further development of this Treaty obligation would contribute to partially mitigate many identified constraints, such as the lack of public awareness and policy coherence, or the limited implementation of capacity-building and non-monetary obligations. The development of the FAO Global System on Plant Genetic Resources begins with the establishment of the Commission (see the appendix to this annex for explanations on the Global System).1989 The FAO Conference adopts an Agreed Interpretation of the IU (Resolution 4/89) and a resolution on Farmers' Rights (Resolution 5/89), that became Annexes I and II to the IU. By recognizing that plant breeders' rights are not inconsistent with the IU and simultaneously recognizing Farmers' Rights, the resolutions aim at achieving a balance between the rights of breeders (formal innovators) and farmers (informal innovators). Resolution 5/89 already mentions how Farmers' Rights should be understood and could be implemented, in order, inter alia, to 'allow farmers, their communities, and countries in all regions, to participate fully in the benefits derived, at present and in the future, from the improved use of plant genetic resources, through plant breeding and other scientific methods. 'The Commission calls for the development of The International Network of Ex Situ Collections under the Auspices of FAO, in line with the IU, because of lack of clarity regarding the legal situation of the ex situ collections.1991 The FAO Conference recognizes the sovereign rights of nations over their plant genetic resources in Resolution 3/91 that became Annex III to the IU. The Conference recognizes the important consensus reached on a number of other delicate issues such as access to breeders' and farmers' material and implementation of Farmers' Rights through an international fund.Recognizing the importance of plant genetic resources for food and agriculture, the Conference also agrees that a first State of the World's Plant Genetic Resources for Food and Agriculture should be developed in a country-driven process. In view of preparations of the State of the World's Forest Genetic Resources, the Commission establishes its Intergovernmental Technical Working Group on Forest Genetic Resources.At the Third Session of the Governing Body of the Treaty, the funding strategy is finalized and the strategic plan for the implementation of the benefit-sharing fund establishes a target of US$116 million between July 2009 and December 2014; the third party beneficiary procedures are adopted. Other resolutions are adopted, inter alia on compliance issues to continue designing its procedures and operational mechanism with the help of an ad hoc working group, relationship with the GCDT, the CGIAR and other international organizations, the work programme and budget for the 2010-2011 Biennium and on Farmers' Rights.Eleven projects are approved by the Bureau to be funded under the benefitsharing fund.2011 The Fourth Session of the Governing Body will consider the adoption of the financial rules; a revised draft business plan (expected to play multiple roles, including serving as a planning, fundraising and a communication tool); an instrument to promote sustainable use; procedures and operational mechanisms to promote compliance and address issues of non-compliance. The Governing Body will also review and assess the implementation of the multilateral system and the level of payments under the SMTA.Table A1. 3 Dates and venues of the meetings of the CGRFA acting as Interim Committee (2002Committee ( -2006)), and the Governing Body of the International Treaty on Genetic Resources for Food andAgriculture (2006-2011) Step 1: NegotiationsIn 1993, the FAO Conference requests the Commission on Genetic Resources for Food and Agriculture to provide a forum for the negotiation among governments, for the Revision of the International Undertaking on Plant Genetic Resources. Negotiations take place until 2001. All members of the United Nations were allowed to participate in the negotiations. All international NGOs requesting to participate as observers were admitted in the forum. A text was designed and proposed to the FAO Conference for approval.Step 2: Approval by the FAO ConferenceThe FAO Conference, at its 31st session (November 2001), through Resolution 3/2001, approved the International Treaty on Plant Genetic Resources for Food and Agriculture by consensus, with only two abstentions (the USA and Japan). Step 4: Ratification process or equivalent Step 5: Entry into force of the TreatyIn accordance with Article 28, the Treaty entered into force on the 90th day after the deposit of the 40th instrument of ratification, acceptance, approval or accession, provided that at least 20 instruments of ratification, acceptance, approval or accession have been deposited by Members of FAO. On 31 March 2004, 13 instruments (including the European Union) were deposited with the Director-General of FAO. Having reached the required number of instruments in order for the Treaty to enter into force, the date of entry into force is 29 June 2004.Up 'Adoption' is the formal act by which the form and content of a proposed treaty text are established. As a general rule, the adoption of the text of a treaty takes place through the expression of the consent of the states participating in the treaty-making process. Treaties that are negotiated within an international organization will usually be adopted by a resolution of a representative organ of the organization whose membership more or less corresponds to the potential participation in the treaty in question. A treaty can also be adopted by an international conference which has specifically been convened for setting up the treaty, by a vote of two thirds of the states present and voting, unless, by the same majority, they have decided to apply a different rule [Art.9, Vienna Convention on the Law of Treaties 1969].The instruments of 'acceptance' or 'approval' of a treaty have the same legal effect as ratification and consequently express the consent of a state to be bound by a treaty. In the practice of certain states acceptance and approval have been used instead of ratification when, at a national level, constitutional law does not require the treaty to be ratified by the head of state [Arts. 'Accession' is the act whereby a state accepts the offer or the opportunity to become a party to a treaty already negotiated and signed by other states. It has the same legal effect as ratification. Accession usually occurs after the treaty has entered into force. The Secretary-General of the United Nations, in his function as depositary, has also accepted accessions to some conventions before their entry into force. The conditions under which accession may occur and the procedure involved depend on the provisions of the treaty. A treaty might provide for the accession of all other states or for a limited and defined number of states. In the absence of such a provision, accession can only occur where the negotiating states were agreed or subsequently agree on it in the case of the state in question [Arts. exercise of their sovereign rights over their own PGRFA, agree to grant each other facilitated access to the PGRFA they decide to include in the MLS, and to share, in a fair and equitable way, the benefits arising from the use of these resources. • Article 11 defines the coverage of the MLS. 64 food and forage crops, selected according to the criteria of interdependence among countries and their importance for food security, form part of the MLS. The list of crops is set out in Annex I to the Treaty. • The MLS also includes PGRFA listed in Annex I that are held by the CGIAR Centres or by other entities that have voluntarily included them in the MLS. • Under Article 12, the Contracting Parties agree to take the necessary measures to provide each other, as well as legal and natural persons under their jurisdiction, facilitated access to their PGRFA through the MLS. • Article 12 further states that recipients of material from the MLS must not claim Intellectual Property or other rights that limit the facilitated access to PGRFA in the form received from the MLS, including genetic parts or components thereof. Facilitated access is to be provided through the Standard Material Transfer Agreement (SMTA) of the Treaty. • Article 13 sets out the agreed terms for benefit-sharing under the MLS. Recognizing that facilitated access to PGRFA itself constitutes a major benefit of the MLS, it enumerates other mechanisms for benefit-sharing, including the information exchange, technology transfer, capacity building, and the sharing of commercial benefits. According to the Food and Agriculture Organization of the United Nations (FAO), since the beginning of the agricultural history humankind has already used more than 10,000 plant species for feeding. However, today's food is based on 150 species only, and only about 12 species provide more than 80 per cent of the food calories consumed by humans. In fact, only four species (corn, wheat, rice and potato) provide more than half of the required calories (FAO, 2008). Nevertheless, local crops add to the food consumed by millions every day and help to improve their nutrition.As described in this annex, FAO member countries went to the extent of developing a specific Treaty -the International Treaty for Plant Genetic Resources for Food and Agriculture (ITPGRFA) to provide guidance and awareness about the need for conservation and permanent exchange and research with genetic resources for food and agriculture, not forgetting the need to share benefits and financial help with those farmers that have been developing and conserving these resources for generations.The central pillar of the Treaty is the multilateral system of access and benefitsharing (MLS), designed to provide facilitated access with pre-established, mutually agreed benefit-sharing provisions, in complementary bases and for mutual benefit. The reasoning behind this is that breeding programmes developed around the world need a constant flow of genetic material from different parts of the globe, as no country is entirely self-sufficient when looking at genetic resources for food and agriculture. Interdependency is a real fact and therefore parties to the Treaty recognize that the MLS is an enormous benefit for breeders and farmers. It is, however, worth clarifying that access to genetic resources, to be found in in situ conditions, must be acquired according to national legislation or, in its absence, according to rules to be established by the Governing Body of the Treaty. In the case of Brazil, who ratified the Treaty in 2006, the rules for in situ acquisition of genetic material are established by Law (Provisional Measure nº 2.186-16, 2001), in harmony with the CBD.Taking note that the present Annex I of the Treaty includes only 64 crops representing 52 genera and 29 forage genera (www.planttreaty.org), which were defined basically in accordance with criteria related to (i) their importance for the production of food at global level and (ii) interdependency among nations regarding their utilization for food and agriculture, questions remain for those who were not so involved with the negotiations of the agreement as to why some other important crops for food and agriculture were not included and which are the rules for accession to those genetic materials?The definition of the crops that were listed as the Annex I crops, required very skillful negotiations by countries' representatives. During the many meetings, countries had the opportunity to add or extract any species from the list (Moore and Tymowski, 2005). For Brazil, the final listing requires that the country provides genetic resources of cassava (Manihot esculenta), local varieties of rice (Oryza sativa), beans (Phaseolus vulgaris), maize (Zea mays) and sweet potato (Ipomoea batatas), as well as wild species of Oryza (O. alta, O glumepatula, O. grandiglumis and O. latifolia), Solanum (S. calvescens, S. chacoense and S. commersonii) and Dioscorea (D. altissima, D. dodecaneura and D. trifida).Genetic material of peanuts (Arachis spp.), initially included in the list, was later removed, together with some other crops, such as soybean. Cassava is a crop that has an enormous social value as it is used in most countries as a staple component of the diet, mostly in poor regions of the globe. Brazil, as a supplier of this germplasm, can promote an important impact in Latin America, Asia and Africa. On the other side of the coin, thinking of the food security of the Brazilian people, it is important for the country to access genetic resources of rice, banana, potato, carrot, citrus, coconut, peas, beans, barley, cowpea, sunflower, apple, maize, sorghum, wheat, strawberry and some of the forage species.The MLS is therefore a unique opportunity for Brazil to increase the genetic variability of its gene banks and use the material in breeding programmes, already well known for its excellent outputs in tropical agriculture. It is important that at the same time, Brazil makes a continuous effort to guarantee the equitable sharing of benefits derived from the use of those materials, to promote further their conservation, especially among farmers. According to de Jonge and Korthals (2006), the benefit sharing will not solve the world's hunger problem but it would be a mechanism to stimulate development and the distribution of basic needs that can contribute to social justice.It is true that some other crops of global importance for food and agriculture were not included in the Annex I for lack of consensus. As a matter of fact, several other crops, even though agreed by many regions, were not included in the list. With the decision of not including soybean, some regions (Africa, Asia, Latin America and the Caribbean) decided to step back and removed some species already included in the list. These crops, some of major importance for Brazil, are: garlic and onion, peanut, oil palm, tomato, sugar-cane, minor millets, olive, pear, vine, fruit trees (Prunus), melon and cucumber, pumpkins and squashes and flax (see the first part of Chapter 6 by Modesto Fernandez). New solutions must be found for the exchange of these genetic materials, using the same collaborative spirit of the Treaty, in bilateral agreements which will have to consider national legislations, case by case. With time and hopefully with the success of the implementation of the MLS, the Annex I list could be increased, especially to incorporate the list of crops mentioned above which are also considered of primary importance. However, that can only be done by the consensus of all parties present at the meetings of the Governing Body of the Treaty. This was one of the contributions of Brazil to the ruling of the Treaty, because it worried that the Treaty should not have such an ample scope as to jeopardize the CBD. By ensuring that decisions to change the Treaty or its Annexes cannot be taken unless consensus is reached, Brazil wanted to guarantee equal opportunity for every country to have a voice, and therefore a better chance for total transparency in the decisions of the Governing Body. Also, because the parties of the Treaty are, in their great majority, parties of the CBD, an adequate balance should be present in the exercise of consensus.Regarding the practical implementation at national level, the scope of the Treaty vis a vis that of the CBD still causes some discussions among policy makers. Questions refer mostly to non-Annex I plant genetic resources. Parties to the CBD (mostly the same as to the Treaty, as said above) have been discussing the text of a new binding protocol on access to genetic resources, associated traditional knowledge and benefit sharing. Due to its specific characteristics and problems, serious discussions are taking place on whether the genetic resources of primary importance used for food and agriculture, not only plants, but also domestic animals, microorganisms and aquatic species should receive a treatment similar to that, given to Annex I crops of the ITPGRFA.There are legal constraints that must be resolved because under the CBD scope, there must be a guarantee of fair and equitable sharing of benefits arising from the use of all genetic resources. The Treaty only provides rules on how to deal with the issue of benefit sharing for the Annex I crops. Therefore, innovative solutions will have to be found during the implementation phase of the newly approved Nagoya-Cali Protocol on Access and Benefit Sharing (CBD, 2010).Although relatively slow, national implementation of the Treaty is moving ahead. Regarding exchange of germplasm and the use of the MLS, Brazil has good collections of germplasm obtained from several sources and which were internalized during the 1980s, and therefore the entrance into force of the Treaty and the opportunities presented by the MLS have not yet raised much interest of breeders and research institutions. It could also be because Brazil still does not have a good and rapid quarantine service and delays in the introduction of material are often discouraging. The removal of this bottleneck in two years (new laboratories are being built) will probably boost the germplasm exchange, hence the impact of the Treaty and its MLS. Another boost will come from the perception that new genetic material, from regions that already face climate extremes, will be required by breeders devoting attention to these new challenges for the tropical agriculture.Nonetheless, a major effort should be developed by countries, including Brazil, for the realization of Farmers' Rights, with the development of specific national policies. Informal discussions which took place in 2009/2010 have shown that it will not be a simple task to implement such policies because of the many stakeholders involved and the different views and concerns expressed by each group of participants. Brazil will continue to make its best efforts to discuss and implement these rights.A more positive impact of the ratification of the Treaty by Brazil has been the need to provide better information about the accessions to be included in the MLS. This new responsibility has prompted the Brazilian Agriculture Research Corporation (Embrapa), holder of most of the public gene banks, to review its passport data and improve the characterization reports. The process has been relatively slow but with the necessary political will, the first results should be available in 2011. The new information system will be qualified to link with the new Germplasm Accession Portal Genesys (www.genesys-pgr.org), jointly funded by the CGIAR, the Global Crop Diversity Trust and the Treaty's Secretariat, to be also launched in 2011.During recent years, several activities have been carried out in Brazil by the Ministry of the Environment in partnership with Embrapa and the National Institute for Amazonian Research (INPA) to make a complete inventory of landraces and wild relatives of some of the main crops cultivated in Brazil. These efforts encompass crops listed as Annex I crops, as the case of cassava, maize and rice, and non-Annex I, as it was the case of cotton, peanut, peach palm and pumpkin and squashes. These inventories will continue to cover other crops and their related gene pool, especially peppers, pineapple, passion fruit, beans, sweet potato and cashew. Activities include: (i) the definition of local landraces and wild relatives of each crop; (ii) mapping their geographical distribution; (iii) in situ, ex situ and on-farm conservation status; and (iv) major needs for the maintenance of landraces and wild relatives of each crop.Another major effort to implement the Treaty is being launched in Brazil by the Ministry of the Environment in partnership with Embrapa, Federal Universities and non-governmental organizations for the identification of native plant species of actual or potential economic value used at local or regional level, also since its ratification, stakeholders are beginning to take stock of the need for action and implementation, as the issue of food security is receiving new attention due to food crises (high international prices), global availability versus demand, and mostly because of a better awareness about the impact of climate changes on the planet.National policies are been reviewed to include more attention to genetic resources conservation, sustainable use and benefit sharing, as many new incentives are being discussed to advance Brazil's knowledge of its agricultural biodiversity, its implications for environmental services and the sustainability of the agricultural systems. The discussions regarding the Brazilian Government decision in 2009 to help with the reduction in greenhouse gases to mitigate global warming and the need to develop research to help farmers to adapt to the changing climate, have brought the issue of genetic resources for food and agriculture to the scientific and political screens. 2011-2012 should be special years to prepare and implement incentive policies, in preparation for the Rio plus 20 Conference on Sustainable Development, which will again take place in Rio de Janeiro, Brazil, in 2012. see also Chairman's Elements multilateral system of access and benefitsharing (MLS) 9,10,98,[241][242][243][244][245][246][247]250 African group approach 48,[50][51]52,242,[244][245]246,76,[78][79][170][171][194][195] [191][192]194,195 information management 192 MTA 193 National Focal Index 319patents 166-167, 193, 199-200, 211 ","tokenCount":"104758"} \ No newline at end of file diff --git a/data/part_3/2545351205.json b/data/part_3/2545351205.json new file mode 100644 index 0000000000000000000000000000000000000000..7e5ba15d3285db88ed42bfa0c34ece1b565a82a5 --- /dev/null +++ b/data/part_3/2545351205.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"500b548b74f353170d51a3fefddf34c3","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/c364fa69-6909-4ae3-842a-582b3bec2e9a/retrieve","id":"1014216084"},"keywords":[],"sieverID":"6994f067-d3bb-4cb3-9204-9cf0ab233037","pagecount":"48","content":"Climate change is having a devastating impact on agriculture across ACP states. With severe droughts, floods, hurricanes and other climatic events, many farmers are facing a dire situation. The Caribbean island of Dominica's agriculture was devistated following Hurricane Maria in 2017 (see p8). In Southern Africa, recurrent droughts have significantly reduced yields of staple crops, such as maize and rice. Cape Town has been in the media recently as the first city in the world to impose severe restrictions on its population as it risks running out of potable water. Farmers have now agreed to release water from private dams and restrict usage for agriculture.Worldwide, agriculture uses around 70% of accessible freshwater. Despite progress in recent years, much more needs to be done to efficiently manage use of water resources, such as using climatesmart agricultural farming practices and innovations, including digital data collection tools. Many farmers now receive localised climate information and weather forecasts to their mobile phones, which helps to make informed decisions about when to plant and harvest crops, and take pre-emptive action in an unpredictable climate.Improving farmers' resilience, at the same time as increasing productivity and profitability, is a key focus of CTA's refreshed strategy for 2018 to 2020. CTA's Southern Africa Flagship project offers farmers a bundle of climate-smart solutions, including drought-resistant seeds, index-based weather insurance and timely climate information services. Combining traditional knowledge with science for climate adaption is also part of CTA's intervention, as highlighted by a recent book on Indigenous Knowledge Systems and Climate Change Management in Africa (see p42).Investment in the right technology has the potential to transform smallholder farming and CTA is at the forefront of the move towards precision agriculture for smallholder farmers in ACP regions. With data captured by special sensors on drones, farmers are able to detect weeds and disease among their crops and assess the amount of fertiliser required for optimum yields as Ben Addom, CTA's Team Leader ICT4Ag, emphasises in his interview.In this edition, we also highlight the innovative developments of entrepreneurs from Africa and the Caribbean (see p17). Young people provide enormous potential for economic growth and agricultural development, and supporting youth entrepreneurship, job creation and enterprise development will continue to be a key aspect of CTA's strategy for the next 3 years.even out of ten Africans are involved in agriculture, and investments in this sector are estimated to be two or three times more effective at reducing poverty than investing in other sectors. African farmers are generally poorly integrated into value chains, lack access to technical expertise and markets, and have little access to capital. Among these are many would-be agripreneurs and micro-, small and medium enterprises (MSMEs) -they are too big to get micro-loans, yet too small to access credit or capital from financial institutions. According to the World Bank, 22 million of the 40 million MSMEs across all sectors in Africa are unserved or underserved. Thus, investing in MSMEs, including the 'missing middle' as SMEs are often referred to, is crucial to boosting agricultural productivity and generating employment opportunities.A range of newer, creative financing options are emerging in Africa to fill the financing gap for early-stage enterprises that are getting off the ground, but despite these new opportunities, take-off can be bumpy.Kigali Farms is a start-up agricultural enterprise that launched a mushroom industry in Rwanda to provide farming families with a highly nutritious food and a new source of income. The business has become the largest supplier of oyster mushroom substrate in Rwanda, and the largest supplier of fresh mushrooms as a result of their buy-back commitment to the farmers who purchase their substrate. Agripreneur, Laurent Demuynck, who launched the farm in 2010, found that local banks were not keen to finance agricultural enterprises and that interest rates were upward of 16%. Eventually, Demuynck received a €200,000 grant from DEG, which finances and supports private sector enterprises in developing countries to promote sustainable economic growth and societal impact. This financing unlocked the door to several other grants and social/impact investments. \"Without this seed money, I would not have been able to reach more than 1,700 small farmers, provide employment, or continue to grow the business,\" he emphasises.Agripreneur Claudia Castellanos ran into similar difficulties in Swaziland. After working with a social business that provided local artisans with market access for their crafts, she sought to replicate that business model in the agricultural sector. In 2010, using their own savings, she and her husband launched Black Mamba, a start-up which produces chillis and chutneys sourced from local ingredients. In 2014, they secured a loan from a bank in Swaziland that helps cover operating expenses. They did not have much collateral to offer the bank, only a well-structured business plan, but this convinced the bank to loan them the money at the prime rate (the standard interest rate that banks charge creditworthy customers) plus 4% for the loan. Castellanos says, \"Larger, regular businesses pay only prime +1% and some get loans as good as prime -2%. The small guys pay more.\" However, they plan to pay off the loan by April 2018. \"It was so excruciatingly expensive and almost killed us,\" she adds.In 2014, Black Mamba also received a €25,000 grant from the World Bank's marketing investment fund, which the business used to get their processing plant an FSSC 22000 Food Safety System Certification. Based on ISO standards, FSSC 22000, which is fully recognised by the multi-stakeholder Global FoodAlternative finance in the form of angel investors is providing important seed money to jumpstart agripreneurs and push them to profitability.Yassir Islam TRENDS SPORE 188 | 5Safety Initiative, has unlocked markets for them worldwide. The company also used the funds to buy equipment such as cold storage and a freezing room. Breaking even in 2016, Black Mamba is now on the path to profitability. Both Kigali Farms and Black Mamba exemplify the challenges that start-ups face in attracting capital or credit in order to grow their businesses. Often, they have to resort to a form of blended capital, creatively drawing from a range of institutions and new financing mechanisms. The media platform, Devex notes, \"With a blended capital approach, entrepreneurs can combine grants and investments, filling the gap that exists between philanthropy and public funding and traditional investment.\" Nevertheless, writing grants, applying for loans, or following complex reporting procedures is often beyond the capacity of would-be entrepreneurs.Enter the angel investor. Also known simply as 'angels', these are affluent individuals who invest early in new enterprises in exchange for equity ownership once the business is more established. While angels can be part of a blended capital approach, they usually invest in their own right. Because angels leverage their own financial resources, they typically provide more favourable and flexible financing than most banks and formal financial institutions. Furthermore, they can bypass the onerous application and reporting requirements of formal and blended capital that can thwart undercapitalised agri-enterprises.According to Sheena Raikundalia of IntelleCap, a company that builds and scales social enterprises to attract investors, \"African angels tend to be successful business people who want to give back.They want to go from ad hoc charitable giving to investing in enterprises that can scale and grow and have a beneficial impact on society.\"Idris Bello, a self-described 'afropreneur', is an angel investor, as well as co-founder of The Wennovation Hub (see Spore, Channelling investments into agribusiness: https://tinyurl.com/ybva23ge). According to Bello, angels in Africa are nothing new, but they have generally invested in real estate, oil, mining and similar less-risky enterprises. However, in the last couple of years, there has been more interest in 'impact' or 'social' investments in enterprises that include sustainable agriculture, clean energy and affordable basic services such as education and health.Bello has made a few agricultural investments including one in Rashak, a Nigerian palm kernel oil processing enterprise, in 2016. \"Besides investing TRENDS capital for new equipment and generators, we infuse technology and provide management expertise to help the business scale,\" he says. Rashak works with a cohort of 25 small farmers and buys products directly from them to cut out the middleman. The farmers are organised into a cooperative and given access to other benefits such as credit. This is a small to mid-scale business,\" he notes. \"We don't want to scale too fast.\" The company not only provides employment but is helping farmers with post-harvest storage, since oil palm is a seasonal crop and farmers, instead of being at the mercy of low prices at the end of the harvest season, can have an assured income year-round. Rashak's next step will be to provide other benefits for the farming families involved, such as education and farm extension.Bello states that, \"There is a visibility challenge on several levels when it comes to investing for impact.\" Through Rashak and other social investments he, and other angels, will need to demonstrate that a financial return, as well as social impact, is possible. \"Potential angels need to be moved from an 'either-or' mindset before they will invest,\" he says whilst adding that, \"The best way to do this is to show them results -that you can invest for financial returns and also have social impact.\"Angel investors also need to know where to look for potential enterprises that they can invest in. Raikundalia, who is based in Eastern Africa, stresses that enterprises must first be 'investment ready' to be presented to possible investors. Her team works with selected enterprises and showcases eight to ten of them to their network of potential angel investors several times a year.Similar financing forums and platforms are springing up throughout Africa, playing a crucial role in bringing angel investors together with entrepreneurs who need capital to build and scale their enterprises. In 2012, Bello and some partners, found the Lagos Angels Network (LAN) with technical support from infoDev. LAN has attracted a younger generation of Lagos residents willing to invest money in and mentor entrepreneurs and their start-up enterprises. The network now has more than 40 members and has also led to the creation of the Africa Business Angels Network, which supports early stage investor networks and wants to get more investors excited about the opportunities in Africa.Seeking not just to transform agriculture but also to empower women in Africa, Victus Global Capita Ltd. (VGC) was founded in 2016 by two African-born women, Bo Masole and Zee De Gersigny. VGC seeks to ease the difficulties African women entrepreneurs face in accessing capital by investing in women-led or 50% or more women-owned businesses.Masole who has extensive experience in agri-processing and food manufacturing was surprised to discover that \"Many African countries are large net importers of food and there is very little value addition to food produced on the African continent. There is lack of technical know-how and market access. Not › \"African angels tend to be successful business people who want to give back. They want to go from ad hoc charitable giving to investing in enterprises that can scale and grow and have a beneficial impact on society.\"Black Mamba: Packing a powerful punch to benefit Swazi smallholders Black Mamba chilli sauces may come in small packages, but they pack a powerful punch. The start-up also wants to have a powerful impact on the smallholders who grow the ingredients for their products. They started with 12 farmers and now have about 30 farmers in their supply chain. The company has developed a business relationship with Guba, a local NGO that liaises with local farmers. Guba focuses on food security, so they maintain an emphasis on growing foods but have added a component to generate income for farmers. Guba buys the produce directly from the farmers which then goes through quality control by Black Mamba before it is accepted. High standards are maintained and Guba trains farmers in production techniques. In return, Guba keeps a small percentage of what the farmers grow to fund their activities. Black Mamba sources organic products which command a higher price throughout the value chain. This also benefits the farmers because the price they are paid as part of an annual contract is based on the market plus a margin of up to 30% which is what organic produce commands. Farmers benefit from getting training in permaculture, and then share the techniques learned within their communities. Farmers have also been able to invest in water pipes and fencing, and in one case built a home from the income earned through sales to Black Mamba. Twenty-one out of the 30 farmers working with the start-up are women. \"We want to work with women farmers as women pay the school fees and are more concerned with family care,\" says co-owner Claudia Castellanos. Castellanos says, \"We wanted to make sure we have a sustainable impact on the communities we work with before we scale up to include more farmers. We're not interested in just adding a dollar a day to their incomes. Black Mamba must be profitable for all involved.\" The company is now ready to scale up to reach at least 80 farmers by 2022 and are also beginning to share their model with other African countries with potential to connect smallholders producing high-value agricultural products with markets. Investors will be needed to enable this growth. ACRE, a platform which provides access to technical support and access to rural enterprises with growth potential, connected VGC's Masole and Gersigny with Castallenos to help Black Mamba develop a business plan to attract investors. Gersigny notes that once VGC is operational, \"Black Mamba is the type of company that we would invest in. From an angel investor perspective,\" she adds, \"Black Mamba is a good example of the types of impact investments that are available to investors in Africa.\" SPORE 188 | 7 only can we bring technical expertise, but we have connections with local and regional markets and MoUs with many retailers.\" Leveraging this expertise, VGC seeks to transform agriculture by focusing on food processing. \"There are three pillars to growing the SMEs,\" Masole notes. \"One is market linkages, the second is capacity building and the third is finance. You can't just throw money at the SME -it's not sustainable without the other two. If anything, you have to figure out the other two pieces before you come in with the finance.\"While VGC focuses on women owned agro-enterprises, Masole also emphasises that, \"You need to understand the entire supply chain so that it can deliver -you have to look at what's going on with the farmers and smallholders.\" As part of their strategy, VGC looks at the farmers who supply the agro-enterprises and key metrics such as their average input, cost, farm sizes and livelihood measures to be able to measure social impacts.Gersigny has set up many funds in Africa that traditionally tend to invest in listed equity, credit, and real estate, such as shopping centres or office buildings. \"With Victus we hope to build a €40 million investment fund within the next 2 years that will invest as little as €20,000 and up to €8 million in an enterprise,\" she states. The fund will be 80% institutional investors, mostly from South Africa, and the remaining 20% will comprise of high net worth individuals, or angel investors, and families. The risk-to-reward ratio for investing in SMEs is high, so coupling equity financing and technical expertise with a firm foundation of institutional investors may also encourage wary angel investors to dip their toes in impact investing.In a similar vein, Bello proposes that bringing in experienced angel investors from more developed countries will encourage African angels to invest for impact. He noted that Facebook founder, Mark Zuckerberg's surprise visit to Lagos in 2016 and investment in Nigerian tech start-up Andela, through the Chan Zuckerberg Foundation, created \"a bit of a buzz\" among Nigerian investors and brought credence to investing in start-ups. Raikundalia agrees, noting that in Eastern Africa, \"Expat investors are a big part of angel investing.\" The Somali AgriFood Fund, for example, has unlocked capital from the global Somali diaspora totalling over €800,000 (see Spore, Agriculture -a promising market for the diaspora: https://tinyurl.com/ya8h2gjf).Local co-investors are also attractive to outside investors because they know the local customs and can open doors.While new angel investor networks are cropping up throughout Africa, this form of investment alone is not going to solve the capital and credit gap for MSMEs. However, angels are beginning to serve start-ups and the 'missing middle' by helping to get enterprises off the ground and, once established, enable them to access finance from standard or blended capital sources. By providing equity financing coupled with three crucial ingredients -mentoring, management, and a commitment to social impact -angel investors are demonstrating new pathways to transform agriculture in Africa. Natalie Dookie I n the aftermath of Hurricane Maria, losses of €160 million for the agricultural sector were estimated by a post-disaster needs assessment in Dominica -led by the World Bank, EU and UN. As a first step to rehabilitation, €565,000 for emergency intervention was mobilised by FAO and, in partnership with the Ministry of Agriculture and Fisheries in Dominica, agricultural inputs such as seeds, seedlings, water containers, tools, fertilisers, animal feed and material for animal shelters were supplied and distributed to more than 4,000 households. Emergency projects have also been developed to rehabilitate the fisheries sector, which suffered damage worth about €2.4 million, by providing fishing nets, cooling systems and fishing gear. Farmers will also be trained in climate-smart agricultural production techniques, accessing markets and nutrition.In addition to providing immediate short-term assistance, in coordination with Dominica's Ministry of Agriculture and Fisheries, FAO has identified key priority areas for the long-term rehabilitation of the agricultural sector. \"Road and farm land clearance remain imperative to enable many farmers in the country to resume their agricultural production,\" explains Daniele Barelli, FAO Emergency Focal Point and Disaster Risk Reduction Specialist in the Caribbean. \"There is also a need for the region to conduct agricultural censuses, which are more than 15 years old in most countries, and maintain historical data on the recurrence of natural hazards and agricultural production of the past 5-10 years to act as a baseline, which would make it easier to assess the impact of natural disasters and recommend preparedness, mitigation and recovery interventions to support the sector,\" Barelli adds.Antigua and Barbuda's agricultural sector also suffered damage estimated at €400,000 as a result of the hurricane, including to standing crops, machinery, agricultural input tools and livestock. Prior to the disaster, Barbuda had adopted a 'green island concept' © TOMÁS AYUSO/WWW.IRINNEWS.ORGIn September 2017, Hurricane Maria decimated the agriculture sector in Dominica and Barbuda. By employing climate adaptation and climate-smart agriculture strategies, both countries are working to 'build back better' to ensure their agriculture sectors are more resilient.in losses for Dominica's agricultural sector were recorded after Hurricane MariaAGRICULTURAL PRODUCTION SPORE 188 | 9ustainable land husbandry techniques on Rwanda's hillsides are increasing crop productivity and incomes for smallholder farmers. As part of the government-funded Land Husbandry, Water Harvesting and Hillside Irrigation project, land management practices such as soil bunds, terraces, cut-off drains and reforestation have been implemented across more than 21,300 ha to enable farmers to diversify their crop production, and alleviate poverty in the country's remote rural zones.With funding of €118 million from the Rwandan Government and development partners, graduated terraced farms have been constructed in the fertile hills of 13 rural districts to help conserve soil, water and fertiliser. This practice has improved crop production for hundreds of thousands of poor rural farmers and the land husbandry works have provided more than 35,000 job opportunities. \"I participated in the terracing works and the money I got helped to pay for health insurance for my family and my children's school fees,\" says farmer Joseph Bihoyiki.Prior to the introduction of the new technologies, farmers endured chronic poverty due to rains washing away the precious topsoil. \"Our land was unproductive and barren; we only survived on maize and wheat because that is where we managed to get yields,\" says smallholder Olive Nyirahabimana. \"But after using land husbandry technologies, we immediately cultivated Irish potatoes and the harvest was amazing.\" Since the project's implementation, in some places, potato and maize harvests have increased by up to 500% and 300% respectively. Since practicing terraced farming, smallholder Odette Mukansanga has seen her maize harvest increase and has enhanced her income by €56 (RWF 60,000) a month. \"Thanks to the initiative, my farm output and income have increased more than ever before,\" she says.to build climate resilience and achieve food security. Alternative energy sources, including solar and wind, smart greenhouses, organic agriculture, mechanisation, efficient use of water resources, and adding value to agricultural produce through processing and packaging were all key elements. To build on this concept, a model hydroponics system is being installed at the island's largest secondary school, the Sir McChesney George Secondary School, by the Inter-American Institute for Cooperation on Agriculture, the Caribbean Agricultural Research and Development Institute and other partners. The initiative should be 10-18 times more productive than conventional farming methods and will provide at least 30% of the food required for the school's feeding programme, enable students to gain hands-on-experience of how the system works, and train people nationally to construct and operate the system.To further improve technical and institutional capacity for disaster and climate risk management and sustainable agriculture in the region, FAO is also implementing a project in Guyana, Jamaica and Suriname. In a separate project, the feasibility of offering agricultural risk insurance is being assessed in Grenada, Jamaica, and St Vincent and the Grenadines. \"We have also been providing technical assistance for the development of readiness proposals to Guyana and St Kitts and Nevis, with respect to accessing the Green Climate Fund which invests in low-emission and climate-resilient development,\" says Lystra Fletcher-Paul, FAO Sub-Regional Coordinator for the Caribbean. \"While most Caribbean countries are not large emitters of greenhouse gases the impact of climate change has hit them hardest,\" she adds. As a result, FAO in collaboration with CARICOM and its partners across the Caribbean are also preparing for future extreme weather events by developing a regional Emergency Response Strategy and Action Plan for the agriculture sector -addressing the main response challenges of coordination, data and communications -which should be ready before the start of the next hurricane season.In the remote hilly regions of rural Rwanda, the development of terraced farms is providing employment opportunities for local communities whilst increasing the diversity of crop production.Terraced farms are improving crop production for hundreds of thousands of rural smallholder farmers in Rwanda F armers in Kenya are adopting a new mobile application that enables them to understand the suitability of their soil for various crops, which minimises heavy annual losses associated with inadequate knowledge of soil composition. The app, known as LandInfo, was introduced in Kenya in 2015 by the African Technology Policies Network and provides farmers with a one stop repository of information about soil types and appropriate crops. The application is freely available to download onto smartphones, and also offers up-to-date information on climate patterns to build resilience against harsh climatic shifts.The LandInfo network, which works in collaboration with the United States Department of Agriculture and CTA, allows users to instantaneously access and capture point specific data about soil types and climatic factors, including temperature, rainfall, soil water capacity and aridity. Farmers are able to interpret the information in the context of local conditions for specific purposes, such as crop selection, land use management and climate resilience.Edith Mosop, a farmer and extension officer based in Nakuru county in Kenya's Rift Valley says the LandInfo app enables farmers to better plan with regards to crop cultivation. \"The innovation… empowers farmers to adapt to climate change. This is because they access information on weather patterns and make informed decisions,\" Mosop explains. Patrick Ng'ang'a, a farmer based in Meru county, central Kenya, notes that he has been able to ascertain the most timely period to plant and achieve good harvests during both short and long rainy seasons. \"Accurate weather forecasts have enabled me to select ideal crops for the two seasons annually,\" says Ng'ang'a, who cultivates cereals and legumes.Daniel Kobia, also a Meru farmer, received training on the use of the app in 2016 and says it has enabled him to determine which crops to plant during different seasons and which part of his 2 ha farm to grow them on. Through the information accessed via LandInfo, he has identified sorghum and millet as ideal crops instead of maize and beans, whose productivity had been steadily declining. With the new crops, Kobia's yields have almost doubled, and he urges others to utilise the app, \"Our economy is agriculture based yet we face food insecurity. Adopting such an innovation can reduce poverty and ensure adequate food,\" he enthuses.As part of a SoilCares Scanning for Success project, a separate tool that provides practical soil information to users within 10 minutes has been distributed to over 2,900 smallholder farmers in Kenya. The handheld device connects to a smartphone via Bluetooth and generates a report about the soil's status and nutrient needs. The scanner uses near-infrared sensors and connects to the SoilCares Global Soil Database to accurately determine soil properties such as pH level, organic matter and NPK content. The device allows farmers to apply the exact type and amount of fertiliser that their soil needs, leading to improved yields, lower fertiliser costs and reduced environmental damage. The project also provides training on soil sampling, fertiliser use and soil fertility. \"We believe that closing the food gap begins with closing the knowledge gap. That is why we have developed a series of training materials [in the form of booklets] on soil testing, soil sampling, applying fertiliser, soil fertility and introduction to soil science. We hope these materials will build the capacity of our partners and help them in sharing the information with farmers,\" states Christy van Beek, director of the SoilCares Foundation.A handheld soil scanning device in Kenya is enabling over 2,900 farmers to accurately determine soil properties and nutrient requirements 2,900 Rita Vaz da Silva and Aimable Twahirwa S olar-powered pumps are changing the lives of smallholder farmers in Mozambique and Rwanda by generating the power needed for sustainable irrigation. In Rwanda, the energy produced by this renewable source is used in the savannahs and marshland areas in the east of the country, which have long been plagued by recurrent droughts. In Mozambique, the systems are providing nine communities, which are vulnerable to severe and prolonged droughts and flash floods, with water fit for human consumption, as well as agricultural and irrigation purposes.Plan°C is an international initiative to mitigate climate change in Cabo Verde, Mozambique and São Tomé and Principe. The Community Adaptation Action Plan (PACA) project was implemented in Mozambique between 2013 and 2016 which Inês Mourão, general coordinator for the project, says has 'climate-proofed' previously vulnerable communities. \"The water is pumped from a nearby river or small creek to tanks, drinking troughs and water storage reservoirs,\" Mourão explains. Two years after the conclusion of the initiative, \"More than 10,000 people still enjoy easy access to water, even during drought periods,\" she adds.The low-carbon project reduces the need for fossil fuels to pump water and promotes climate-smart conservation agriculture, such as planting drought resistant crops, establishing horticultural nurseries and implementing new agroprocessing techniques. Based on community needs, new activities are scheduled to be launched throughout 2018, with another 12 communities, selected by Mozambique's Government, set to benefit from the scheme up until 2020.In Rwanda, a pilot initiative using solar-powered irrigation has been jointly implemented by the Rwanda Agriculture Board and FAO since November 2017. The project covers 1,300 ha of marshland areas and has already provided over 580 farmers with sustainable irrigation.Gerard Munyeshuri Gatete, a bean grower in Rwanda's Nyagatare district, uses a solar-powered pump to irrigate his crops during drought periods. Of the funds set aside for the initiative, €163,000 has been allocated to subsidise procurement of pumps for farmers. Gatete and his family paid 25% of the cost of the equipment, which pumps about 3.5 m³ of water per hour. \"Before we had this innovative pump, we would harvest about 1 t of beans per hectare, but now we harvest almost double,\" says Gatete.A FIRST OF ITS KIND immigration policy has been implemented in the tiny Pacific island nation of Palau, whereby visitors are required to sign a pledge to 'tread lightly' and 'act kindly' on arrival. The environmental promise serves to, 'preserve and protect your beautiful… island home', for the benefit of Palau's children. This policy was introduced in December 2017 and in the first 2 weeks 6,000 people had the signed pledge stamped into their passports. Since 1993, the sea level around Palau has risen by 9 mm each year and tourism is believed to have damaged Palau's beaches and coral reefs. This latest measure is part of President Remengesau's plan to halt what he calls, \"Our global warming doomsday.\"For more information visit: https://tinyurl.com/y7syarzsAdding value with waste RURAL ENTERPRISES in Kenya are benefitting from mobile power plant units fuelled by macadamia nut shells, maize cobs, coffee husks and bagasse crop residues. Using 18 kg of macadamia shells or 32 kg of maize cobs, for example, the biomass units can produce up to 10 kW of electricity and 40kW of thermal energy every hour. In Muranga County, Kenya, a women's mango cooperative is using the units to rapidly dry their fruit and thereby significantly reduce the amount of spoilage that occurs with sun drying. Super-heated steam produced by the plant processes 300 kg of fresh mango into 20 kg of dried mango in just 6 hours, whereas sun drying the same weight would take 48 hours. Village Industrial Power, the American start-up which developed the units, say that the innovation is helping farmers to increase the value of their crops by up to 10 times.Solar-powered irrigation has provided more than 10,000 people in Mozambique with access to waterIn drought and flood-prone communities in Mozambique and Rwanda, low carbon initiatives are introducing renewable solar-powered irrigation systems to reduce the use of fossil fuels and increase climate resilience.To promote food security in Uganda among smallholder farmers and refugee communities, new bean varieties have been bred to tolerate the changing climate.n Uganda, high yielding, drought and disease resilient bean varieties are enabling smallholder farmers and over 1 million South Sudanese refugees to boost production and feed their families. The resilient seeds, known as 'NAROBEANs', were bred by the Pan-Africa Bean Research Alliance, the National Agricultural Research Organization and other international partners, to tackle malnutrition and reduce anaemia in the country.Prior to release of the NAROBEANs, 16 different varieties were evaluated for their yield potential, ability to accumulate micronutrients, such as iron and zinc, and farmer preference. Five varietiesincluding three bush and two climber growth types -fulfilled all requirements, were tested for growth suitability across six agro-ecologies in Uganda, and identified for release. Many of the evaluated seeds were sourced from the Center for Tropical Agriculture's (CIAT's) genebank in Colombia, which houses 37,000 common bean varieties -the largest collection in the world. \"These beans have been bred conventionally over many years, combining iron sources from our CIAT genebank in Colombia with locally adapted germplasm,\" says Dr Wolfgang Pfeiffer, global director of product development at HarvestPlus, based at CIAT's headquarters in Colombia. \"It is a long process to track down varieties with higher iron content, and then ensure that they can also tolerate harsh conditions in our environment, like drought,\" Pfeiffer explains.Uganda currently hosts an estimated 1.4 million refugees, most of whom are from South Sudan, and has a progressive policy which provides them with land to live and farm on, encouraging self-sufficiency. In 2017, to further promote food security among refugee communities, FAO contracted a large commercial producer to supply refugee camps with 21 t of the new varieties, which have been found to yield up to three times more than local varieties. \"Instead of buying expensive supplements, communities can now buy and grow these beans as a way of boosting nutrition and reducing anaemia, knowing that they will get yield despite drought,\" says Stanley Nkalubo, team leader and breeder at Uganda's National Crops Resources Research Institute.The 'super' beans have become popular among consumers due to their fast-cooking, superior taste and climate resilient qualities, and Ugandan farmers are able to make a profit of €0.28-0.60/kg (UGX 1,200-2,500) when selling to traders. \"On 1 acre you can get almost 250 kg [of the new varieties], but using the local variety, you get 40, 50 or 70 kg. That is the difference. And the new ones are very easy to cook and don't waste much fuel,\" says Charles Latiego, a farmer in Gulu district, Uganda. Seed companies are also taking up production of the NAROBEAN varieties, including Pearl Seeds Limited whose main objective is to contribute towards poverty eradication and livelihood improvement of small, medium and commercial farmers by providing a constant supply of high quality seeds. \"In a season, we sell about 250 to 300 t of beans. So many people are after them, it's a first come, first served basis,\" says Richard Masagazi, managing director at Pearl Seeds Limited. A new 'push-pull' technology is being implemented across Africa in an attempt to combat the fall armyworm which, since its introduction to the continent 2 years ago, has spread to 43 countries and affected up to 35 million ha of maize.Believed to have been introduced to the continent though imported produce, fall armyworm moths can fly 100 km in one night and lay 1,000 hungry larvae in 10 days, overwhelming smallholders and devastating agricultural produce. However, the introduction of foliage around crop fields to distract, or pull, fall armyworms away from produce, and the practice of intercropping repellent plants into the field to ward off, or push, fall armyworms away from crops is showing early signs of promise. Greenleaf desmodium has proven to be an effective repellent and Napier grass can be used as foliage to entrap fall armyworm eggs in this 'push-pull' technique.Mary-Lucy Oronje, an agricultural researcher from the Centre for Agriculture and Bioscience International (CABI), acknowledges that getting the seeds of the push and pull plants to farmers can be difficult. Equally, in drier environments, some farmers find that the push-pull plants can't survive unless they are using climate adapted seeds. Those who have successfully introduced the technology in Kenya, Tanzania and Uganda, however, are reporting 86% reductions in crop damage and on average 82.7% less fall armyworm larvae per plant.Other suggested solutions include spraying biological pesticides and encouraging natural predators, but \"The push-pull technology is proving to be one of the most reliable methods of controlling the [fall] armyworm, as it uses natural methods,\" says Dr Saliou Niassy from the International Centre of Insect Physiology and Ecology. Across Africa, 140,000 farmers have already embraced the technology and a further 150,000 farmers have been trained in how to plant push-pull seeds correctly.CABI has recently launched a new project which takes a three pronged 'defend, detect and defeat' approach to combatting the pest. The push-pull technology embodies the 'defeat' part of the strategy and although not an immediate fix, it will help to take back control says Trevor Nicholls, CEO at CABI.The 'push' to combat fall armywormAs African farms remain under siege from fall armyworms, new strategies to help control the spread and combat the effects of the pest are showing early signs of promise.Benson Rioba and Alex Miller 140,000 African farmers have introduced push-pull technology to protect their crops from fall armyworms © CABIDefeating stem rust RESEARCHERS have identified genetic clues -which indicate whether or not the stem rust pathogen can overcome rust-resistant genes of the crops it affects -by sequencing the genome of the fungus. Stem rust is one of the most damaging pathogens to cereal crops -and wheat in particular -due to its ability to evolve and adapt to disease-resistant genes. However, Australian researchers have pinpointed the genomic sign that indicates resistance to Sr50 -a rust-resistant gene introduced to high-yielding wheat varieties to combat the disease. This means rapid DNA testing can be carried out on samples infected with the pathogen to determine if the crop needs to be sprayed with costly fungicides for protection, or whether the stem rust will be overcome by the resistant genes, saving farmers unnecessary expenses.GENOME SEQUENCING for seven wild rice varieties has been completed by the International Rice Research Institute (IRRI) 15 years after the study began. Published in Nature Genetics, the study provides a vast genetic resource that compares the genomes of the wild varieties and two cultivated varieties, and guides breeders to the genes plants use to resist pests, thrive in inhospitable environments, and produce abundant amounts of grain. With rice providing 20% of daily calories consumed globally, this important breakthrough will enable scientists to accelerate efforts to develop new varieties that are both higher yielding and sustainable, and \"improve crops with traits that are preferred by farmers and consumers,\" says Ruaraidh Hamilton, lead scientist at IRRI.Local radio adverts and face-to-face training have persuaded Senegal's rural communities to adopt healthy eating and safer hygiene practices.hen Thiane Dramé -a resident of a village in Senegal's Kaolack region -found that she could no longer feed her seven children and four grandchildren, she decided to start growing her own fruit and vegetables. \"My youngest grandchild was always sick,\" Dramé says. \"As soon as I learned that orange-fleshed sweet potato is a nutritious crop for preventing anaemia in pregnant women, improving mothers' breastmilk, and ensuring children grow up healthy, I didn't hesitate [to plant it].\" The USAID-run SPRING (Strengthening Partnerships, Results, and Innovations in Nutrition Globally) project trained Dramé how to grow nutritious vegetables so she could feed her family a more balanced diet.Between 2015 and 2017, the SPRING project helped to improve maternal and child nutrition in three regions of Senegal (Fatick, Kaffrine and Kaolack) -chiefly by delivering healthy eating and safe hygiene training to women, and broadcasting messages on local radio stations which is by far and away the most popular media channel among rural communities in the country. The project teamed up with six radio stations, airing over 14,000 adverts and around 30 programmes in local languages on a variety of nutrition-related topics. The programmes covered simple hygiene measures, such as using tap water and soap rather than communal basins for washing hands, and stressed the benefits of exclusive breastfeeding for infants under 6 months. \"[This is] very problematic as there is widespread belief that infants need to drink water,\" explained Robert de Wolfe, SPRING project manager. But infants regularly fall sick because the water is often not safe to drink.The project worked alongside national authorities and local and regional NGOs to promote healthy eating and nutrition advice to 430,000 women, mostly through radio broadcasts and direct contact with 7,500 households. Senegalese women like Dramé have also been taught how to grow bio-fortified maize and millet, as well as carrots, black-eyed peas and orange-fleshed sweet potato to provide their family with a more varied diet. In addition, more than 500 people working for partner organisations were trained to dispense advice on nutrition. Dramé now enjoys a better standard of living. Like other women who received training, she earns an income by selling her surplus vegetables and raising chickens with a women's group. She also has access to meat, fish and eggs, and is able to feed her family a more varied diet. \"My youngest grandson doesn't fall sick as much now, so we don't have medical bills like before,\" says Dramé, who is now sharing the benefit of her experience with family and friends. \"In my community, all the women have started their own gardens and I invite other women to do the same.\"Alex Miller E ach month, 18,000 financially insecure Haitian households are receiving food vouchers which allow them to purchase otherwise unobtainable, locally grown produce from a network of just under 1,000 food vendors across five of Haiti's ten regional departments. The Government of Haiti, with support from USAID and CARE International, manage this safety net programme in order to provide fruits, vegetables and tubers to households who otherwise would be unable to afford nutritious produce.By relying on local vendors, the scheme is also strengthening local markets. Designated vendors, who accept the food vouchers as payment, can redeem the vouchers for cash. In some cases, vendors are using the money to expand their businesses, through the purchase of livestock, for example. Three quarters of Haiti's population live on less than US$2 a day and so money from the voucher scheme is a vital economic stimulus for communities across the country, and has helped to bolster trade in local Haitian markets since its inception in 2013.The World Bank suggests that 90% of Haiti's population are vulnerable to natural disasters and the poorest households are most susceptible to food price spikes. The voucher system ensures that families are more resilient to such shocks by helping to foster stronger economic frameworks, which can be relied upon in the event of natural disasters or sudden price increases. This community-managed, safety net scheme is believed to have increased household food security in Haiti and reduced the risk of child malnutrition, not only by making local produce more attainable, but also through the use of outreach officers who provide information related to health and hygiene alongside the food vouchers.A 2017 CTA study entitled Building the Evidence Base on the Agricultural Nutrition Nexus: Haiti highlights that Haiti has enough food to feed its population only if it imports approximately half of all the food that it needs. Through the use of the food vouchers, the Government of Haiti is aiming to support local agribusinesses in order to reduce Haiti's reliance on imported produce. \"In order to build a stable and economically viable Haiti, addressing issues such as food security are critical,\" says USAID spokesperson Ryan Essman. \"Assisting Haiti to strengthen its own social protection system will build resilience and help the country better withstand natural disasters.\"IN WEST AFRICA, a nutritious alternative to dairy milk is proving popular amongst health-conscious consumers. Farmers in countries including Côte d'Ivoire and Ghana are producing tigernut milk in their homes and selling the nutrient-rich product at premium prices. Tigernut milk contains oleic acid, a mono-unsaturated fat also found in olive oil and avocado, and is extracted from the nuts of the yellow nutsedge plant. The fibrous nuts are soaked in water, blended and then strained to create a sweet milk, rich in antioxidants. Tigernut milk is also lower in cholesterol than dairy milk and high in iron, magnesium and potassium. In powdered form, the milk is sold for €0.73 (320 Naira) per 100 g in Nigeria, compared to dairy milk which sells for €0.30 (135 Naira) per 100 ml.A safety net scheme in Haiti is providing the country's poorest households with food vouchers to purchase locally produced, nutritious food.A 'safety net' programme in Haiti is enabling the poorest households to purchase healthy foods such as fruits and vegetablesCROPLAND MAPPING and analysis of micronutrient movement through soils and food systems to determine the impact on human health is the focus of a new programme in Ethiopia and Malawi. The initiative, known as GeoNutrition, aims to overcome selenium and zinc deficiencies which are endemic in both countries and known to impair growth, inhibit cognitive development and suppress the immune system. As Southern and Eastern African soils are many thousands of years older than European soils, they often lack sufficient micronutrients to keep cropsand people -healthy. With funding from the Bill and Melinda Gates Foundation, the programme will therefore test the efficacy of organic matter and fertilisers enriched with micronutrients, such as zinc, to biofortify soils and crops.T hree fishing companies -from Palau, the Solomon Islands and Vanuatu -were shortlisted for the finals of the global Fish 2.0 business competition, which recognises businesses in the fishery sector that employ innovative and sustainable approaches to simplify supply chains, while increasing incomes for fishers. In Palau, Indigo Seafood has trained local people to use sustainable methods to farm high value products, such as grouper and giant clams. The company employs over 75 local people, in addition to working with 70 giant clam farmers. To increase growth rates and reduce pressure on wild-caught sources of fishmeal, such as sardines and other forage fish, Indigo Seafood has also developed protein-rich feeds from soy and other grains.\"Our goal at Indigo is building a sustainable aquaculture company to have a positive economic impact for the citizens of Palau, while protecting the pristine coral reef,\" says James Sanderson, co-founder of Indigo Seafood. \"Though we are still a small company, we have been positively impacting the community for several years. With our giant clam exports, we have brought thousands of dollars to local clam farmers and their families,\" he adds. Since 2011, the company has collaborated with the Palau Aquaculture Cooperative Association (PACA) to provide their member farmers with seedlings to culture giant clams, which Indigo Seafood export to Asia, Europe and the US. With access to these profitable markets, Palauan clam farmers can earn around €4,816 per year according to PACA's president, Bernice Ngikrelau.Indigo Seafood has also recently deployed its first two rigid polyhedral Aquapods™. These submerged cages, designed by Mexican company Ocean Farm Technologies, are lowered into deep water off-shore. The free floating, untethered cage is able to change location with the ocean's currents, creatingIn the Pacific, three seafood companies using sustainable fishery practices to conserve the health of marine ecosystems and contribute to the local economy have received international recognition for their novel business models. Algas Organics, the first indigenous agriculture biotech company in the Caribbean, carried out research for 11 months to determine how to extract key nutrients and hormones from the seaweed before identifying a business opportunity to develop it into a liquid biofertiliser. \"Plants have a wider root span, the roots go deeper into the soil, the plant is better able to absorb nutrients and, consequently, produce sugars through photosynthesis which enhances crop yield as well as plant health,\" says Johanan Dujon, founder of Algas and one of the Organisation of Eastern Caribbean States 30 Under 30 Entrepreneurs.Dujon's biotech company was established in 2014 at a time when inundations of Sargassum seaweed in St Lucia had significantly increased due to changes in ocean currents and warmer sea temperatures. Piles of seaweed accumulating along the coast cause problems for the fishing and tourism industries by clogging boat engines and obstructing general vessel traffic. The dead seaweed also generates a strong odour that discourages tourists from visiting the beaches. But this environmental problem has effectively been turned into an agricultural solution through the efforts of this young entrepreneur.During the peak season, Algas Organics employs up to 20 staff to process and collect the seaweed; the company currently sells around 5,000 l of fertiliser annually. However, through funding from the government and other donors, the company recently increased its capacity to produce 300,000 l each year. The tonic is already available in six of St Lucia's major retailers, and is now also being sold in neighbouring Barbados.In St Lucia, an organic seaweed-based fertiliser that enhances plant root development is increasing crop yields whilst removing the invasive Sargassum seaweed which impacts the country's tourism and fishing industries.A biotech company in St Lucia is transforming invasive Sargassum seaweed into an effective plant fertiliser © TRAVELMUSE/ALAMY STOCK PHOTO less stress on surrounding environments and lowering the risk of disease. Being located at least 1.6 km out at sea in deep water protects fish from air and marine predators, as well as rough weather on the ocean's surface. Indigo Seafood employs local people to monitor the health and growth of grouper farmed in these cages, as well as to maintain the cages themselves. The fish grown in the Aquapods™ are not only for export to live seafood markets in China, Hong Kong and Tokyo, but also for local consumption.Didds Fishing Company, a social enterprise based in the Solomon Islands -which was selected as one of the eight Fish 2.0 2017 winners -enables island communities to fish for premium bottom-water species off-shore to relieve pressure on in-shore fisheries. \"Fishing is line-specific, fish-specificwe do not go all out with nets or other unsustainable methods,\" explains Toata Molea, owner of Didds Fishing. \"And because the men are fishing about 6 km off the reef, it relieves pressure on in-shore fisheries so reef fish are actually spawning and thriving,\" Molea adds. The company provides boats, fuel and ice to fishing families in the community of Makwanu. Didds Fishing pays for the fish directly into the fishers' accounts, which they can access at the local village store. The increased access to cash has boosted families' capacity to send their children to school, as well as purchase food and clothing.Shepherd Islands Organic Seafood, a company based in Vanuatu which farms organic sea cucumbers and sea urchins, was also shortlisted for the finals. \"I feel blessed to be part of the Fish 2.0 2017 competition. It's been an amazing opportunity. Through the competition I've become clearer in my vision for Shepherd Islands Organic Seafood and championing sustainable fishing practices,\" says company owner, Obed Matariki. His company has developed a lucrative customer base among Chinese seafood distributors and pharmaceutical companies for its exported sea cucumbers and sea urchins and successfully diverted artisanal fisherman and turtle hunters into more sustainable livelihood activities.To achieve effective agricultural transformation, farmers need tools and technologies that can help them address issues such as low productivity, weak market linkages, and dysfunctional policies -these are all a key part of CTA's strategy. Such a transformation is especially needed in Africa, where smallholder farmers provide about 60% of food for the population.To help farmers increase their production, we need to take advantage of the tools that can provide customised information and messages for farmers on what to do, how to do it and when to do it. This is a role that ICTs can play, helping provide farmers with timely information that is precise and locally relevant. Location-based solutions are enabling producers to find relevant markets for their goods, and consumers to trace the sources of their items. ICTs also have a role in facilitating agricultural transformation at the policy level. CTA works with decision-makers in over 79 ACP countries and these partners need access to accurate data to help them introduce effective policies that drive agricultural processes and the efficient allocation of resources.Agriculture -today and tomorrowis about data. Hence, remote-sensing technologies such as unmanned aerial vehicles -otherwise known as drones -satellite images, and other ground vehicles equipped with sensors are helping to capture data not only on farmers, but also on agro-input dealers, traders, financial institutions and so on -stakeholders along the entire value chain. Using these technologies gives location-specific data which is key to making cost-effective decisions and providing needs-based services. This data can be used to build an inventory of farmers' assets to demonstrate why service providers should engage them in business.Images from satellites and drones, however, only show the surface picture, they don't go down into the soil. Yet, if these images are integrated with soil sensors, water sensors, moisture sensors, etc., then we can increase the value of the data and provide better services to farmers. This is what we refer to as precision agriculture and, at CTA, we are promoting its use among smallholder farmers in Africa. The technology may not be the same as that used by farmers in The Netherlands or the US, but it's still very precise -to the level that smallholder farmers can make better decisions.A variety of ICT4Ag approaches are also working together to increase the productivity and profitability of farmers and help build their resilience to the changing climate. With the right combination of images, sensors and mobile technologies, for example, we are able to know which part of the field needs a particular kind of fertiliser, so we can inform producers on how to apply it judiciously, helping to minimise wasteful use of inputs. A combination of ICT4Ag technologies is also enabling inclusive financial services. In our MUIIS (Market-led, User-owned ICT4Ag-enabled Information Service) project in Uganda, for example, farmers are able to pay for services through their mobile phone. The index-based insurance product provided through this project is based on the GPS location of farmers' fields and they receive their insurance pay outs via their mobiles.Of course farmers have concerns and CTA is also concerned about all the The agriculture of today and tomorrow is all about data Dr Benjamin Kwasi Addom is an agricultural information specialist. As Team Leader ICT4Ag at CTA he focuses on using new ICTs to support extension and advisory services.data we are facilitating. For example, the farmers in our MUIIS project were worried that recording their farms' GPS coordinates and the size of their fields would lead to the takeover of the land by the government. We are gathering data about them and their fields, and they naturally want to know how we are going to use it. I think the most important thing is to create awareness of the value of the data. It takes training, capacity building, education, and awareness creation about the increasing importance of this data for accessing credit and other services. In fact, for the MUIIS project, we are working on a slogan that states, \"The more [data] you give, the better the services we provide to you.\"We also still need to go beyond this to explain how the data is used. A number of projects and systems that we work with will tell you that raw data is not usually used. Most of the time it is processed and then can be made anonymous with identities taken out, but it still has value for end users. For example, in Uganda, we created a huge database with over 150,000 farmers, who each answered more than 20 detailed questions. This is a huge dataset that still has value without farmers' personal details. Financial institutions are looking for this kind of data to have a general idea of how, for example, maize production is distributed in Uganda. They may not be interested in specific farms, but in a region or district. These companies can get all that they need to know about things such as how mobile phones are being used and which mobile network operators are serving different segments of producers without having the personal details of the individuals.So concerns are there, but we have to educate farmers about how their data is being used so that they are willing to release what they have and we can use it to provide better services to them.Of course age is a factor! But we are doing our best to reduce the gap. We are using middlemen to improve digital literacy -young people who are willing to try new technologies and have the desire to use it. Once they take these technologies up, they will be able to convince older farmers to use them as well. But technologies are becoming easier and easier for everybody to use. A few years ago, mobile phones didn't even have camera features, but now even an old lady living in a rural village, like my mum, can take a picture of herself once she has been shown what to press. So the barrier is there but we need to do more to improve digital literacy and this is key to a number of CTA's activities. Through CTA's MUIIS project farmers are trained on the navigation of smart phones. For example, they learn how to send a message and how to take a picture of a disease or pest in their field. So with these efforts, I think the digital literacy barrier may not close completely but will gradually be minimised as the years pass by.The Apps4Ag database aims to achieve a number of goals. One of them is to link young entrepreneurs who have interesting apps to potential investors. So the database is intended to make information about new apps available for investors to quickly find.Another goal is to help young entrepreneurs with the development of new apps. Many of these young people come out of university with their degree in computer science and are eager to develop an app, but they don't carry out market research to see what is already there. Instead, they get straight into developing a new app and sometimes realise that a similar app is already in the market. With the Apps4Ag database, they will be able to look up what is already out there to enable them to identify the gaps in the market, so they don't invest their time and financial resources on something that is already available.© CTA Benjamin Addom explains the key role that ICTs play in CTA's new strategyWe also know that international development partners have difficulties finding the information they need on apps. With this database they can see which apps are located where and with what technology so that they can decide how to integrate them into their projects. Big development players, such as the Alliance for a Green Revolution in Africa, the Bill and Melinda Gates Foundation and others approach CTA to find out about ICT4Ag both in a specific country and across ACP countries. So at the backend of this database, we can pull data together to provide high level information about the use of ICTs in agriculture.The database was launched in December 2017, and it is our intention to improve upon it. We will also work with app developers to regularly feature interesting apps on the front page of the website, new features for a given app, and an app of the week/month, etc.There are three areas that I can talk about that make CTA unique. The first is promotion and awareness creation among youth, the second is scaling out solutions through partnership building, and the third is linking big data analytics with farmer organisations. CTA is supporting ICT4Ag development in several ways and our approach has been to create awareness about the value of ICTs. For example, the Plug and Play events help to organise entrepreneurs and provide them with platforms to showcase their apps. And then there is the Pitch AgriHack! programme, which helps young entrepreneurs to scale up their ICT4Ag start-ups. The participants' apps have already been tested and piloted, but need both business and financial support to become profitable. CTA offers them mentorship and opportunities to showcase their business to investors so that they can gain some extra funding to take their business to scale. The Centre also invests in and supports these entrepreneurs with business development services and seed funding to prepare them to sell their business. Most of these young entrepreneurs are techies; they don't have the skills for business development, hence this support is really useful.Another unique part of what we do is bringing different partners together to scale a given tool or application. An example of this is the MUIIS project, where we have pulled together partners that have the expertise and skills in index-based insurance, weather forecasting, agronomy, ICTs, user engagement and training. This kind of partnership building is unique to CTA. It is often challenging, but we are able to pull such diverse partnerships together and the MUIIS project is working well in Uganda as a result. We have just submitted another proposal for a similar partnership in Ghana and there are other ongoing partnerships operating in Southern Africa and Eastern Africa on climate resilience and livestock information services respectively. All of these are driven by CTA with a number of partners cooperating to scale out new technologies.Finally, a number of our competitors and partners focus on big data, but CTA's emphasis uniquely concentrates on linking farmer organisations and cooperatives with this data to enable them to realise its value. CTA builds the capacity of farmer organisations to become the owners of their data instead of leaving it to the control of governments or private sector companies. We train these organisations to engage in the data profiling process and to manage their database themselves, as well as in data protection and accessibility issues. By taking full ownership of their data, farmer organisations and cooperatives can engage private sector partners for the tools and technologies to transform the raw data into practical information and services.© MUIIS PROJECT MUIIS uses the power of ICTs and big data to support agricultural productivity in UgandaThe informal sector provides income and jobs for the most vulnerable populations in developing countries and, if gradually formalised, has potential to become a major lever for growth and development.Dossier S ub-Saharan Africa is hampered by chronic malnutrition, and access to food is highly dependent on cross-border markets. It is estimated that 75% of intra-regional trade is informal, a substantial share of which constitutes staple foods. Thus, informal trade has a direct impact on food security and according to the International Monetary Fund (IMF) report, Regional Economic Outlook: Restarting the Growth Engine, it represents \"a safety net, providing employment and income to a large and growing working-age population.\"In 2012, an African Development Bank (AfDB) brief, Informal Cross Border Trade in Africa: Implications and Policy Recommendations, estimated that 43% of the African population gained income via informal cross-border trade (ICBT). \"ICBT can have positive macroeconomic and social ramifications such as food security and income creation, particularly for rural populations, who would otherwise suffer from social exclusion,\" the AfDB brief explains. \"If properly harnessed, ICBT has the potential to support Africa's ongoing efforts at poverty alleviation.\"However, informal trade often results in substantial loss of revenue for states, so the key question is how can countries take advantage of the informal economy to create jobs, and support growth and sustainable development?According to FAO's 2017 report, Formalization of Informal Trade in Africa: Trends, Experiences and Socio-economic Impacts, the informal economy, \"includes legitimately-produced goods and services that do not necessarily follow formal processes such as standards regulations, business registration or operational licenses.\" Informal trade is not necessarily illegal, but it is also not really legal, and yet it is vital to developing country economies.The informal sector generates up to 90% of employment opportunities in some sub-Saharan African countries, while also accounting for a significant share of GDP. The sector often supports the most vulnerable people in society, including women, youth and the rural poor, as underscored by the International Institute for Environment and Development (IIED) report, The Rural Economy: Understanding Drivers and Livelihood Impacts in Agriculture, Timber and Mining. AfDB also estimates that around 60% of informal traders at the borders of West and Central African countries are women. The IMF report points out that similar trends prevail in the Caribbean, where the informal sector also accounts for a substantial share of national GDPs (see p26).The ups and downs for agricultureThe informal food sector -from the field to the market -constitutes a large proportion of agricultural trade in developing countries. To harness the potential of this vast section of the economy, policymakers and the private sector must facilitate stakeholders' access to training, financing and technological innovations, whilst also taking their difficulties into account.In developing countries, the informal economy tends to remain very pervasive. Many factors are responsible for this trend, including: lack of trade facilitation, inadequate border infrastructure, limited access to finance and market information, corruption and insecurity, limited knowledge, education and business management skills. Moreover, \"it is the inclusive nature of the informal food economy that explains its resilience,\" says Bill Vorley of IIED. Low-income consumers, which often depend on little cash, can easily find staple and fresh foods, animal products, processed and prepared foods at affordable prices.The problem, however, is that \"informality means that there is no access to the best production technology, financing structures or innovation capacity building instruments. This has all slowed growth,\" says Ousmane Badiane, director for Africa at the International Food Policy Research Institute. Most agricultural processing companies are small, home-based and located far from technological innovation centres. Moreover, no banks will issue loans to unlicensed traders without a clearly outlined development plan. \"Informality creates jobs and wealth, but at a rate that is not sufficient to overcome poverty,\" concludes Badiane.Rural areas are nevertheless increasingly linked to national and international markets. In its report, IIED mentions that \"the traditional informal practices of rural communities now interface with the rules and regulations of urban and global markets.\" Long-standing practices and formal rules form a resilient rural informal economy that runs parallel to the formal economy, interacting with it along the value chain. This is the case for the groundnut, coffee and cotton sectors, for instance, where smallholders sell their crops to duly licensed processing companies, often via intermediaries or cooperatives.Informal trade is most intense at country borders (see p30), as a report by TradeMark East Africa -a non-profit organisation that aims to promote and structure trade in Eastern Africa -points out. At the Kenya-Uganda border, the city of Busia attracts diverse traders, like Harriet Nafula, a Kenyan farmer who has a stall along the main road. She sells pawpaw fruit and pineapples that she buys wholesale and ripens at home. She also grows maize and bananas, which she sells at her farm. She has 10 regular customers, living about 100 km from Busia, who place and pay for their orders by mobile phone. She then ships them their fruit and seed purchases by minibus. › Another major problem is the difference in productivity between informal and formal businesses. On average, based on real output per employee, the productivity of informal firms is only 25% of small formal companies and 19% of medium-sized formal firms. The IMF explains that, \"This likely reflects a lower level of physical capital and skill levels of workers.\" Moreover, according to the already quoted FAO report, working in the informal sector often deprives employees of their rights, such as social and health protection, freedom of organisation and participation in the social dialogue on the transition to a formal economy.Nevertheless, \"Great progress [in formalising the food sector] has been made,\" says Badiane. \"Concerning millet in Senegal, for example, in the 1970s you had to live in the vicinity of a millet cropping area to have access to this cereal. Nowadays, in Washington I can buy ready-to-cook millet-based products from Senegal. It's the same story for Nigerian cassava. Much of the African agriculture sector is becoming formalised.\" According to Badiane, who also underlines that access to financing and training is essential, \"the bottleneck [in formalising agricultural trade] concerns access to innovation technology for processing, packaging, production procedures and the creation of new products.\"However, better access to innovations and technology are often now facilitated by the private sector, which has been encouraged to invest in agricultural value chains due to social transformations that have increased demand for high quality products. \"Formalisation is accelerating because the distribution channels are changing,\" says Badiane. \"There are a lot of mini-supermarkets in urban areas that promote the processing and distribution of conventional agricultural products. Another interesting phenomenon is the rise of the African middle class, which, as affluence increases, is boosting the demand for traditional processed and improved products. This, in turn, stimulates the processing, packaging and branding sectors, [for example] with regard to white maize in West Africa, cassava in Nigeria and millet in Senegal.\"Thanks to the emergence of a strong middle class and the construction of numerous shopping malls, the Kenyan retail sector has become the second most formalised on the continent. In Ethiopia, the return of a large diaspora community and the formation of a somewhat growing middle class have boosted the local coffee roasting market -the capital now counts over 100 companies against In many countries, the informal sector is bigger than the formal sector in terms of employment and output. In many countries, the informal sector is bigger than the formal sector in terms of employment and output.Africa 42% Latin America 40% Asia 35%Source: WIEGO (2014) Statistics on the Informal Economy: De nitions, Regional Estimates and Challenges.In many countries, the informal sector is bigger than the formal sector in terms of employment and output. SPORE 188 | 25 a handful only a few decades ago. In a country where people are used to roasting coffee themselves at home and the best quality beans are exported, this is a significant change.Transformation of the informal sector can also occur through technological innovations. In South Africa, Mastercard and a local technological innovation firm, Spazapp, are offering small staple food shops the possibility of connecting to formal markets and digital payment systems through a mobile phone app. The Spazapp platform gives traders collective bargaining power to order a large variety of products at competitive prices, which they can pay for via their mobile phones using Mastercard's digital wallet, Masterpass. The innovation has already directly linked 4,500 informal traders to leading consumer brands like Unilever and Tiger Brands.A similar initiative, launched in Kenya in 2014 by the Twinga Foods start-up, has already proven beneficial for 2,600 informal traders. The app enables traders to access supplies quickly and reliably, while saving time by having traceable goods delivered. Meanwhile, producers can avoid intermediaries, as well as receive market information and quick payments, overcoming many uncertainties inherent to the informal sector.Rather than deploring informality, authorities are also being encouraged to facilitate a gradual transition to formal trade, as in the International Labour Organization's recommendation 204 adopted in 2015. This primarily involves simplifying customs and tax procedures. COMESA and the East African Community have recently introduced a Simplified Trade Regime aimed at streamlining trade by reducing taxes and simplifying bureaucratic procedures. However, these legislative instruments will only have an impact on the informal sector if stakeholders understand the mechanisms. FAO and the NGO, Catholic Relief Services, have organised information sessions at the Rwanda-Democratic Republic of Congo border, where women cooperative members are able to learn about customs taxation from customs officials and government representatives. In Rwanda, the research paper, Productivity and Informality in Rwanda: Evidence from the Food Processing Sector, revealed that once they are educated and trained, people often turn to the formal sector. Conversely, fiscal and legislative sanctions for informal activities usually have negative impacts.In addition, as a priority, trust in institutions must be restored in order › \"Informality creates jobs and wealth, but at a rate that is not sufficient to overcome poverty.\"Most of the world's poorest and most vulnerable people live and work in the informal economy.Source: IIED (2016) Informality and Inclusive Green Growth.Most of the world's poorest and most vulnerable people live and work in the informal economy. For governments, fostering the right business environment for formal trade is key. For example, providing land titles can improve access to credit and have a positive economic impact as in Ethiopia, where a government programme focused on land certification has improved tenure security, investment and the supply of land to the rental market. Additionally, in supporting smallholder farmers to organise into cooperatives, or similar formal groups, governments can help them to access finances more easily. Being members of such farmer organisations also reinforces farmers' bargaining power and ability to agree formal contracts that provide greater price security, embed quality standards and encourage investment.In Kenya, where the informal dairy sector generates 70% of the 40,000 marketing and processing jobs and 86% of all milk is sold in informal markets, a joint IIED and International Livestock Research Institute study, Legitimising Informal Markets: A Case Study of the Dairy Sector in Kenya, showed that adopting a progressive approach to transforming the sector has paid off, at least initially. Instead of sanctioning stakeholders in the informal dairy sector, the government has offered them the opportunity to be trained on formal production practices and quality control. The study ascertained that, \"Training and certifying informal market traders in Kenya has had sustained benefits: helping the government to protect public health, supporting the livelihoods of producers and traders and increasing the availability of milk to nutritionally insecure households.\" At the same time, producers are earning a higher income and they have greater bargaining power to get the best deals.Such initiatives demonstrate that it is essential to address the needs and constraints of everyday agricultural stakeholders, who often do not have any other option but to trade informally, in order to transform the informal economy into a major lever for growth and development. As Vorley outlines, \"Recognition of the informal food economy and its stakeholders is a key step [towards formalisation], as are meetings with farmers, traders, processors and sellers in their markets.\"The informal sector generates up to 90% of employment opportunities in some sub-Saharan African countries, while also accounting for a significant share of GDP.Since the 2007 global financial crisis, the slowing down of Caribbean economies has resulted in a marked expansion in the informal sector and a rise in small and medium-sized enterprises. The more prominent the agriculture sector, the larger the informal economy. With an estimated tax burden of 43.2%, and the importance of agricultural raw material and food products, which make up 30.7% of total exports, Dominica has a large informal sector. However, it is the only market in the Caribbean where 'hucksters' (independent traders) have formed a formal trade association. Hucksters are the biggest exporters of agricultural products within the Caribbean Community and Common Market. For example, hucksters are the main buyers of fresh produce in Barbados, and of fruit and root crops in Grenada and St Vincent and the Grenadines. These entrepreneurs are very price sensitive; usually operating in the informal sector, hucksters are able to offer lower than wholesale prices and tend to compete with the state marketing boards in each country. To maintain good business, hucksters' buying criteria is based on quality, price and availability. In Dominica, formalisation of the huckster's trade has helped its members overcome difficulties related to market access, creating economies of scale, supply and financing, as well as regulatory and bureaucratic challenges. The Dominica Hucksters Association (DHA) Limited comprises of approximately 120 members, who benefit from a range of services to facilitate formal exporting activities, including training in exporting fresh produce, and support with document preparation and market research on regional and international markets. The main commodities exported by the DHA are banana, plantain, sweet potato, dasheen, tannia, pineapple and passion fruit. The potential for increased business growth through a formal bargaining body has also had positive effects on the local economy through income generation and the creation of employment. Arnold Babwah, a management consultant who produced a Market Study for Fresh Produce in 2016, which included a review of the DHA, states that, unlike many hucksters operating in the informal economy, \"Members of the DHA tend to pay a reasonable price to farmers, usually higher than the wholesale price, as they want to maintain long lasting relationships with farmers in order to sustain their business.\" The key reasons, first of all, are to do with the structure of production. Most African agriculture is carried out by smallholder farmers who produce relatively small quantities that they try to channel to the market to sell. However, because the quantities they handle and sell are so small, the trade ends up being informal. The other reason is that to be involved in formal trade, you have to abide by a number of standards that have been created from a regulatory perspective, especially for food related items. Smallholder producers, and also microenterprises that are involved in agribusiness, don't always meet those standards and, as a result, end up having to bypass the formal system.Informal trade of agricultural produce moves a substantial amount of food from production to consumption centres. If informal trade were not possible, we would be suffering massive shortages in the availability of food, and that would drive prices extremely high. Informal trade does not have to be condemned in totality, but we should be able to address some of the issues so that we can start migrating trade from the informal to the formal level.First of all, policymakers need to appreciate the structural nature of production and trade and that it is highly dominated by small and micro-enterprises and smallholder producers. Then they need to bring in interventions such as the provision of central, suitable market places, with proper marketing infrastructure for food and food items, where smallholders can sell their produce. Providing and investing in market infrastructure in this way also helps to formalise the market by providing access to information such as market prices, and the quantity of produce being sold.There is also need for capacity building and training on food safety and food quality standards so that producers and traders are able to understand what the requirements are, and be able to meet them. This way, they would not be excluded even though they are not formal agribusiness enterprises.One of the definitions of informality is not being able to trace information of exactly what is being sold. ICT systems are able to capture information and data about various products and agricultural commodities that are being traded through informal channels, so by capturing that data and information you are starting to formalise the sector. ICT systems such as RATIN, which monitor the cost and quantity of cross-border trade, disseminate this data to actors in the value chain, including farmers, traders and processors. With this information, a farmer can decide to grow more soya, beans or rice, for example, in response to what the market is looking for.ICTs also help to provide services at the farmer level. We have ICT solutions that are helping to map out mechanisation requirements so farmers can use these applications to book a tractor or a dryer for their farm. Also through ICTs, we are going to get much more integration because the supplier and the producer are connected in a more efficient way. I am very confident that agribusiness will be transformed by ICTs.© EAGCn 2002, Fatoumata Diop set up Oumou-Mountaga to help women formalise their businesses. The organisation's status as an economic interest grouping means that several entrepreneurs can join forces to improve and grow their businesses. Each year, she delivers training to 400-500 women, teaching them how to dry, process, package and sell local cereals, fruit and vegetables. Oumy Diouf, in her forties, is one of those women. Before joining Oumou-Mountaga in 2012, she lived hand-to-mouth by selling fruit and vegetables by the roadside as a bana-bana -an itinerant trader who account for the overwhelming majority of the informal sector. Diouf has been trained in how to make couscous from millet and maize and, since going formal by joining a cooperative, has enjoyed a steady income meaning she can now pay her rent and take care of her mother.For both Diop and the authorities, one of the biggest challenges is persuading people working in the sector that going formal is a good move. \"There's an issue of trust,\" says Ismaïla Dione, head of division at the Directorate for Small and Medium-sized Enterprises (DPME), part of Senegal's Ministry of Trade. \"Many informal traders see formalisation as a way to force them to pay tax. Yet formalising brings many benefits -it can help businesses grow, open the door to exporting (official figures show that only 0.1% of informal production units export their products), boost turnover and allow business owners to pay their taxes.\" \"Formal businesses tend to produce more, generate bigger profits and, in some cases, create more jobs,\" adds Kwaw Taking the brakes off formalising agricultural tradeStrong demand for processed products, and efforts by the government to facilitate administrative procedures, mean that conditions are right for the formalisation of Senegal' s agribusiness sector -but there are still hurdles to overcome. The authorities also struggle to gauge the true scale of the informal sector. The most recent 2016 census of production units (formal and informal), conducted by the National Agency of Statistics and Demography, excluded the agricultural sector because it was too hard to obtain reliable data. The figures nevertheless show that 97% of businesses in Senegal are informal and, according to the DPME, thousands of these informal units operate in the food processing industry.Formalising is a way for farmers to safeguard their income for the long term. \" [Formalising] Although the informal sector provides livelihoods for many people in Senegal, it remains a barrier to development. \"Formalisation is high on the government's agenda,\" adds Dione. \"We need to monitor and quantify the sector so we can devise the right policies.\" In 2014, the government launched the Emerging Senegal Plan (ESP) to foster the emergence of entrepreneurship, to turn the country into a major exporter of fruit and vegetables, and to improve the organisation/structuring of small agricultural producers around modern large-scale farmers through the establishment and promotion of adequate contracting mechanisms. Four years on, no assessment of the impact that the ESP has had on the informal sector is available.Despite a range of incentive schemes, access to funding remains the main barrier for businesses, according to the World Bank. Moreover, processing units -most of which are micro-enterprises operating out of family homes -struggle to find suitable premises, and are often priced out by steep electricity, water and packaging equipment costs. \"Production costs are high,\" explains Diop. \"It can cost as much as €0.80 (FCFA 525) to process 1 kg of millet, so we have to sell at €0.91 (FCFA 600).\" By comparison, figures from Senegal's Food Security Commission show that locally-produced rice goes for just €0.40 (FCFA 263). Rather than selling to the domestic market, Diop sees much greater potential in exporting to France, Italy or Spain, where a bag of millet sells for more than €1.The outlook for the domestic market is nevertheless promising, with an urban population that is enjoying ever more disposable income -the result of a burgeoning middle class, returning diaspora, and growing demand for processed, packaged, traceable, easy-to-prepare food products. As such, private businesses could play a vital role in formalising Senegal's economy by putting in place officially registered production units that comply with food processing standards and regulations, and, in so doing, encourage other value chain actors to follow suit. \"Senegal's emerging middle class is embracing new food shopping habits,\" says entrepreneur Djiby Diagne. \"People are taking a greater interest in local, high-quality produce.\" Diagne hopes to tap into this new trend. In spring 2018, he plans to open a new mango processing unit in Casamance where, he claims, 70% of mango harvests are lost because of a lack of storage and transport infrastructure. The involvement of the private sector and establishment of registered premises and storage facilities should go some way to addressing the issue of post-harvest loss, the same way it has helped sustain Senegal's tomato-growing sector. \"Without the canning industry, Senegal wouldn't be able to grow tomatoes on this scale because harvests would be lost,\" Binson adds.Growing demand for easy-to-prepare food products is driving agricultural formalisation in SenegalBob KoigiA t the Kenya-Uganda border town of Busia, thousands of traders hustle against each other as they compete with trucks to get their goods cleared at the border post. The flourishing cross-border trade stems from the booming demand between the two Eastern African nations, providing livelihoods for millions and a rich source of revenue for the governments of Kenya and Uganda in taxes and custom duties. But, while Kenya has managed to gazette (certify) more than 35 official cross-border points, mostly with Uganda, only recently has positive progress been made to support informal traders, while also increasing protection for women who have traditionally borne the brunt of the risks of informal trading.According to TradeMark East Africa (TMEA) -a key institution for enhancing trade in the region -informal cross-border trade accounts for around 60% of all transactions in the EAC, with women accounting for 80% of all informal traders. \"The issue of informal trade in East Africa cannot be separated from women. It is therefore very important to understand where women are coming from to trade, what information they have received in order to trade, and what they need in order to streamline their trade and ensure they can transact more easily and conveniently,\" says Gloria Atuheirwe, TMEA women and trade programme officer.But formalising the way women do business has not been easy.Traditionally, thousands of traders, afraid they would be forced to pay more at the borders, use alternative, ungazzeted and often dangerous routes, including crossing forests and rivers. Edna Mudibo, a Kenyan trader who has been selling cereals and peanut butter since 2012 has had her fair share of woes. \"I lost count of how many times my goods were confiscated by police for using dubious routes. I would lose all my savings because I used to move with almost all of my cash to go trade. I had no bank or anywhere to store my money. Even after paying hefty bribes to avoid being arrested, we still feared going through the official border points. The custom officials were mean and the amount of money we used to pay was exorbitant,\" she recalls. Mudibo's experiences are corroborated by a 2013 World Bank report, Women and Trade in Africa: Realizing the Potential, which stated that up to 80% of traders in the Great Lakes region (Burundi, Democratic Republic of Congo, Kenya, Rwanda, Tanzania and Uganda) paid bribes. An earlier 2007 survey by UN Women also indicated that bribes are not the only issue and that 26% of the women who were informal traders at that time were raped, predominantly by law enforcers, as they tried to move produce across trade routes. However, with the coming into force of the EAC Custom Union and the Common Market Protocol -which opened up borders to free movement of people, goods and services in 2010 -traders selling goods worth less than €1,700, which are primarily produced in EAC member states are now exempted from custom duty. \"Considering we have informal traders in their thousands crossing the Busia border on a daily basis and trading in small produce, it makes sense to incentivise them to use the official border routes,\" states Atuheirwe.As a result of heightened campaigns on the importance and benefits of crossing through designated border routes, and forming associations that allow informal traders to easily access market information and open savings accounts, women traders are now able to access more funding and collateral to grow their businesses. It is also a lot easier for women to formalise their operations by obtaining certificates of origin to prove their goods have been produced in the EAC and are worth less than €1,700, and attain personal identification tax numbers to speed up clearance at the border. Consequently, since the Custom Union and Common Market Protocol was introduced, at least 8,000 informal cross-border traders in the four major Eastern African border points -Busia and Malaba (Kenya-Uganda border), and Namanga and Taveta (Kenya-Tanzania border) -have moved from using ungazetted routes to mainstream border posts, with the majority coming from Kenya, according to TMEA data.Informal cross-border trade accounts for around 60% of all transactions in the EAC, with women accounting for 80% of all informal traders.One particularly successful association is the Busia Women Cross-Border Traders Association that has more than 3,000 active informal women trader members, with most of them trading in cereals, fresh produce and fish. The women members are able to get commodity prices via their phones, access available markets in the two countries, and get connected to financial and information service providers. In addition, the association also runs a savings scheme to allow members to borrow, or use as collateral when seeking credit.The Eastern African Sub-Regional Support Initiative for the Advancement of Women (EASSI), a body that works with women traders, has also been particularly instrumental in helping to improve custom official and trader relations. Through dialogue meetings, the two groups meet and discuss misunderstandings arising from their interactions. \"EASSI has been quite helpful,\" says Annet Auma, EASSI Busia border project assistant. \"Women get the courage to lay bare issues to the custom officials such as time taken for clearing at the border, which results in them missing buses to the next market, or how some pockets of bribery and harassment still exist at the border. Custom officials, on the other hand, get to explain to traders which specific areas they should queue in to get faster services. As a result of increased understanding of custom procedures, women spend less time at the border, have increased their earnings and built cordial relations with the officials they once feared.\" As a result, TMEA states that Busia has been voted as a model border post in improving relations between custom officials and traders.The Busia women's association, EASSI and Busia county government in Kenya have also been working on assisting traders to obtain the required identification, which costs only €1.23. This provides details of their name and what they sell and makes it easier for the women to get clearance at the border point. \"These businesses are not illegal. As long as they are trading legally produced goods along ungazetted routes, we have a duty to ensure we move them into full registration so that they can be spared unnecessary risks and can also earn decently. We like to call this the first and most fundamental stage of formalisation,\" says Richard Wanzala from the Busia county government.While it has been a relatively smooth experience in getting the traders to embrace formality, there are still too many 'rogue' officials at the border asking for bribes, which is discouraging some traders from using the posts. It is hoped that greater accountability and transparency will soon be possible with the adoption of a formal Cross Border Trade Charter that will ensure that border officials carry identification, and that no male official can conduct a body search on a female trader.TMEA is encouraged to see countries introducing policies and measures like the Common Market Protocol that recognises these traders. \"Our studies have shown that, on average, one informal trader involved in cross-border trade supports about seven dependents,\" Atuheirwe says. \"Moving forward, we look to a time when informal traders will get full recognition for the pivotal role they are playing in driving inter-regional trade.\"From 2005 to 2012, Agnes Opus was in the business of informally buying and selling maize and millet between Kenya and Uganda. It was a tumultuous journey for the 50-year-old, who came up against custom officials and the police due to tax evasion. Opus was introduced to the business by another trader and taught the informal routes to pass through the Busia border, where, if stopped by police, she could be made to pay exorbitant bribes. The informal route from Uganda to Kenya can take up to 4 days compared to a day trip using the formal system. At times, she would cross the river with sacks of cereals using a makeshift raft, or hire the services of fishermen to help her. In her first encounter with police officers and custom officials, they took her bags of millet and all the money she had. However, when an opportunity presented itself through the Busia Women Cross Border Traders Association in 2013, she decided to join and has never looked back. The association, comprising of an estimated 3,000 women traders in Kenya and Uganda has assisted Opus to register herself as a trader, acquire a formal trader's ID and conduct her business legally. \"I am now able to check market prices in real time and find out where demand is ripe,\" she explains. \"I have also managed to save with the cooperative, allowing me to access credit when I need it.\" Having encouraged hundreds of informal women traders to join, Opus is now secretary general of the association in Uganda and regional treasurer of the East African Traders Association. She travels to Kenya twice a week where demand is high and where she is able to make up to €57 (Ksh 7,000) per visit. Such proceeds have enabled her to pay school and university fees for her four children. \"By moving my goods through the formal routes, I earn more, save on time and have reduced numerous expenses like hiring people to help me cross to Kenya illegally,\" she says.\"On average, one informal trader involved in cross-border trade supports about seven dependents.\"Entrepreneurship: rice provides youth with employment opportunities Economy T wo pilot projects are aiming to bring better advice to West African farmers ahead of the crop season and give them access to all-important soil preparation, harvesting and storage machinery. AfricaRice and the Syngenta Foundation trialled the RiceAdvice app and the Farmers' Equipment Service Centres (CEMA) project across several West African countries between 2015 and 2017, in an effort to improve local rice yields, make the crop more competitive and boost farmers' incomes.Initial studies have shown that fertiliser, soil preparation and harvesting machinery are where production costs are steepest. Poor yields and meagre profit margins also mean that farmers find it hard to secure bank loans.But rice is something of a paradox in Africa. Population growth, urbanisation and new food habits are pushing up consumption across the continent, yet in 2016, imports still accounted for between 10% and 90% of domestic consumption in 22 of Africa's 43 countries, at an estimated total cost of €4.46 billion. That said, there is still huge potential for job creation in the rice value chain. However, a lack of education, support and prospects means that young people struggle to seize these opportunities. Meanwhile, active rice farmers have limited access to improved seeds, markets, new technologies and funding.\"Youth employment is one of the key challenges facing the sub-region,\" says Vincent Fautrel, Senior Programme Coordinator on Agricultural Value Chain Development at CTA. \"As urban demand for food products keeps growing, there are huge job opportunities for young people in the agribusiness sector across West Africa.\"RiceAdvice, a mobile app developed by AfricaRice and the Syngenta Foundation, targets one end of the value chain. The app is designed to help farmers make informed decisions as they prepare for the season ahead, covering issues such as target yields, plant nutrition, crop calendars and good agricultural practices. Between 2015 and 2017, AfricaRice and the Syngenta Foundation tested the app in Mali, Nigeria and Senegal. Field visits revealed how, in many cases, poor fertiliser practices were producing low yields, polluting the environment and degrading the soil. A team of 238 specialists was deployed, training 19,000 farmers to use the app. \"Tests have consistently shown that farmers can achieve significantly higher yields when they follow the advice delivered through the RiceAdvice app,\" says Youssou Diagne, regional coordinator at the Syngenta Foundation, which ran the trial in conjunction with AfricaRice. During the trial, farmers using the app reported average yield gains of between 0.6 and 1.8 t/ha, while their average income increased by between €81 and €162/ha (US$100 to US$200). Estimates suggest that, between 2015 and 2017, farmers across the three countries produced an additional 9,323 t of rice to normal production, worth €3.15 million. By the end of the trial, 95% of the farmers said they wanted to carry on using the app.Partners behind the project believe that the app could even spark the emergence of a new rice farming consulting industry and, in doing so, help tackle the scourge of rural youth unemployment.Rice farmers in West Africa are using a decision-making mobile app and mechanised service centres to improve their yields and incomes. The sector is also leading the way in tackling the scourge of rural youth unemployment.Most rice farmers are illiterate and do not own a smartphone, leaving a gap in the market for young people living in rural areas. With the right training and equipment, they could start marketing consulting services to both farmers and cooperatives.The CEMA project, trialled in 2015 in Mali and Senegal, is an altogether different proposition. Under this model, farmers club together to form their own businesses and procure soil preparation, harvesting, processing and storage machinery (such as tractors and combine harvesters) from the centres -an investment they would be unable to fund on their own. \"What makes the CEMA model different is the way the centres are managed,\" explains Diagne. \"Each centre is run privately, or at the very least independently.\" The machinery is owned by a farmers' organisation, but managed by a separate, internal, private entity, which is tasked with running the centre, maintaining the equipment and managing its finances in line with the agreed terms and conditions. During the trial, the Syngenta Foundation set up a guarantee fund and helped farmers write business plans so they could secure bank loans. It also trained them in how to use, maintain and manage the machines.In Senegal, the early trials pushed up the percentage of farmers growing two crops per year from 40% to 88%, because the new machinery meant they could harvest their crops faster and get straight on with preparing the ground for replanting (either rice or market gardening crops). On a similar note, harvest costs were down by between 12% and 16% across different seasons when compared with manual harvesting. \"One of the main benefits of the CEMA model is that it builds trust between farmers and banks,\" adds Diagne. \"Because repayments are made in arrears, service providers are better able to prioritise how they allocate their income.\"\"The advent of ICTs and machinery has paved the way for innovative young entrepreneurs to move into rice farming, processing, marketing and other activities,\" says Mandiaye Diagne, value chain specialist at AfricaRice. \"Now we have to make sure that young agripreneurs and rural young people in general get the right education, training, skills and support.\"CTA, AfricaRice and the Syngenta Foundation have teamed up to launch a new project entitled PEJERIZ (Promoting youth entrepreneurship and job creation in the West African rice value chain), with this very aim in mind -building youth entrepreneurship capacities, forging closer market ties, and promoting wealth-creating activities in the rice sectors of Mali and Senegal. The first phase of the project, which is due to run for T he Caribbean's ability to boost its foreign exchange earnings and access new intra-regional and international export markets has been severely hampered by gaps in its agricultural health, food-safety and fisheries SPS measures. And yet, improving the competitiveness of food products through enhanced SPS measures is known to increase agricultural productivity, help to address supply chain challenges and improve regional food security. In order for the Caribbean to take advantage of export opportunities through compliance with EU measures, and to further integrate the 15 CARIFORUM States (CARICOM plus the Dominican Republic) into the global SPS market, the Inter-American Institute for Cooperation on Agriculture (IICA) launched a 4-year project in 2013 under the 10th European Development Fund (EDF) programme.During the project, EDF stakeholders worked to strengthen legislation, coordination and regulatory mechanisms of the 15 CARIFORUM states to fortify SPS systems. Since project completion in early 2017, model regional plant, animal health, fisheries and food safety legislation are undergoing the final steps towards formal endorsement, and initial strides have been taken towards aIn order to build economic resilience, the Caribbean Community (CARICOM) must expand its more than €16 billion export market by improving regional and international market access. Upgraded sanitary and phytosanitary (SPS) measures can lead to increased production and trade in agricultural and fisheries products that meet international standards, while protecting the environment.© LUCY BROWN/ALAMY STOCK PHOTO SPS guidelines are now available for countries to utilise in the production and marketing of fish and fishery products TRADE SPORE 188 | 37 harmonised SPS approach for the movement of food within the Organisation of the Eastern Caribbean States.Guidelines and protocols are also now available for countries to utilise in the production and marketing of fish and fishery products, including the publication Guide to Food Safety Hazards in Caribbean Fishery Products. Legislation to facilitate modernisation of the honey trade in Trinidad and Tobago has also been updated. \"Additionally, we developed effective national and regional coordination mechanisms in support of the SPS regime, including a framework for regional coordination in the areas of agricultural health, food safety and fisheries,\" explains Dr Robert Ahern, the agricultural health and food safety leader at IICA. \"As a result, active participation of Caribbean countries in the SPS international standard-setting process increased by 50%.\"The final component of the EDF initiative focused on developing national and regional regulatory and industry capacity. \"We were able to improve capability across the region in agricultural health and food safety, contributing to stronger systems and thereby setting the stage for improved market access and the production of safer food,\" Ahern explains. In regards to ongoing issues, Ahern continues, \"The main challenge in the Caribbean has been highlighting the importance of SPS measures, so the required funding, support and personnel resources can be secured.\"To execute SPS actions more effectively and efficiently through a single body, the Caribbean Agricultural Health and Food Safety Agency (CAHFSA) was established in 2014. \"Unfortunately, within member states, SPS requirements can be selectively interpreted, with members discriminating against each other, often citing protection against the spread of diseases as a reason to not let a product enter their domestic market,\" states Simeon Collins, CAHFSA CEO. In order to address this issue, CAHFSA has completed country risk assessments for Barbados, Belize, Guyana, Jamaica, Suriname and Trinidad and Tobago to determine SPS risks for intra-regional trading of agricultural produce. The risks were identified as low or non-existent and, due to this, the Council for Trade and Economic Development has since taken a decision that poultry and duck meat can be traded among member states. Nine poultry processing plants in these six countries have been approved to trade among member states.A number of other trade issues are being addressed by CAHFSA at the CARICOM level, such as intra-regional trade of Caribbean honey. Currently, honey from Guyana must be shipped through Trinidad and Tobago for regional and extra-regional marketing. However, Trinidad and Tobago laws prohibit the transportation of honey within 1 mile of its coastline. \"We are looking at harmonised conditions for a permit controlling the importation of germplasms from animals and plants throughout the Caribbean, so every country will have the same procedure,\" says Collins.Through the Caribbean Development Bank, CAPSHA is also establishing 'reference labs' in the region to analyse animal and plant tissues, and has developed guidelines for preparing market access proposals to gain entry with the least hindrance to trade while, at the same time, preventing the spread of pests and diseases into new countries. \"Finally, in the interest of transparency and knowledge-sharing, regional governments must notify members of any new SPS measures and this is not happening,\" Collins explains. \"Consequently, we are creating four web-based databases related to agricultural health and food safety to improve the exchange of information among technocrats and decision-makers across the Caribbean.\" Byeffe Foods Company is working with a network of over 5,000 young farmers in Uganda to produce value-added, nutritious pumpkin products which are sold across the country.Pius Sawa F atuma Namutosi was 24 years old when she started Byeffe Foods Company (byeffe meaning 'ours') in western Uganda in 2015 to address the high levels of malnutrition in her country. The company now produces 20 t of nutritious pumpkin-based products annually, such as flours and seed snacks, which are supplied to schools, hospitals and supermarkets across the region.After a year spent researching crops that are both easy to grow and nutritious for consumers, Namutosi set up Byeffe Foods Company with an initial capital of €114 (USh 500,000). Her research revealed that pumpkins are grown by most households, and contain a higher level of antioxidants, proteins and vitamins than most vegetables. The leaves can also be boiled and eaten to provide a good source of dietary fiber, protein and vitamins A and E.In order to initially identify local farmers to supply her company, Namutosi worked with USAID's Feed the Future Uganda programme. With the support of the programme, Byeffe Foods trained over 5,000 young farmers in pumpkin production and provided them with seeds to ensure quality control. In 2016, Byeffe participated in a Feed the Future Youth Leadership for Agriculture event to promote the company's business model and products, which led to their partnership with primary schools in the country to supply flour containing zinc and vitamin A.Due to high demand for the healthy products and Byeffe's limited supply of fresh pumpkins, Feed the Future mobilised an additional 1,280 young contract farmers to work with the company. With low production costs and high yields -on average, 1 ha of pumpkins produces between 15,000 and 30,000 kg of pumpkin heads -as well as Byeffe's commitment to provide seeds and extension services, the youth were eager to assist. To produce 1 kg of dry flour requires 10 kg of fresh pumpkins and Byeffe purchases 1 kg of pumpkins from its farmers for €0.07 (USh 300). The pumpkins are then solar dried and milled to produce flour which is packed in 500 g or 1 kg bags -the latter being sold for €0.90 (USh 4,000).Byeffe Foods produces gluten-free pumpkin flours blended with soya and millet, as well as pumpkin leaves and seeds and is currently generating €515,000 annually in sales to schools and supermarkets, and directly to customers. Namutosi aims to expand her network of farmers to produce 50 t of pumpkin products by the end of 2018. \"We do not have the capacity to feed the whole country yet and that's why we need to expand our partnership [with farmers], and build our own production plant,\" says Namutosi. The company is now in the final stages of being certified by Uganda's Bureau of Standards, which will allow them to penetrate new markets for other highvalue pumpkin-based products including wine, juice, and pumpkin seed oil. FinGAP's main focus has been to cultivate a market for business advisory services provision and build capacity at more than 50 financial institutions by providing them with training on financing tools, introducing them to potential partners and clients, and changing the way they approach the agriculture sector. Andrew Ahiaku, head of agribusiness finance at Barclays Bank Ghana says FinGAP helped the bank develop the right structure and capacity to support agriculture financing. Ahiaku has learned that banks must develop a formal agri-lending strategy, create a dedicated team headed by an official who is senior enough to \"engage in a meaningful way\" with top management, and invest in training its members.Although the risk of lending to agriculture is not as high as traditionally perceived, it is vital to guide financial institutions towards available risk management tools, as FinGAP has done, states Ahiaku. A solid risk management strategy meant that Barclays Ghana has suffered just two bad loans since the launch of FinGAP. FinGAP also helped Barclays Ghana limit its risk by introducing it to Eximguaranty, a local provider of credit guarantees to financial institutions that lend to small and medium-scale enterprises in Ghana. Some of the bank's clients have also been supported by the Ghana Agricultural Insurance Pool, a group of Ghanaian insurers that mostly offer drought index insurance for maize and soya.To lend sustainably to smaller agribusinesses, banks must create innovative lending products. FinGAP has introduced banks to more than 33 tools, including collateral-free loans. In 2015, for example, Barclays Ghana indirectly financed small maize producers via a €533,000 (GHS 3 million) loan to a poultry farmer who used the funds to buy and lend them inputs. Collection rates from the smallholders -who repaid the poultry farmer in kind with feed -were above 98%, which encouraged the bank to double the facility in 2016. Barclays Ghana has also introduced collateral-free 'business instalment loans' of up to €35,500 (GHS 200,000) for smallholder farmers and aggregators, who repay them immediately after production has been completed.More than three-quarters of the financing facilitated by FinGAP was at least partly driven by a pay for results scheme that awarded grants to banks that met set lending targets within specified time periods. \"It's worked fantastically as a stimulus,\" says Amanda Grevey, manager of economic growth at Palladium, which implemented FinGAP. By initially targeting banks that already had a clear interest in expanding their agrifinance portfolios, FinGAP was also able to use their earlier success stories to demonstrate to other banks what was possible and create an atmosphere of competition.Through incentives, training and technical assistance, USAID's 5-year Financing Ghanaian Agriculture Project (FinGAP) has changed the way financial institutions and business advisory service providers engage in agriculture.With financing, micro, small and medium enterprises are able to acquire machinery © USAID FINGAPAida: It is important because men and women both play an important role in agricultural production and a lack of access to productive resources is a major limitation to improving productivity. In Tanzania, women constitute more than 50% of the population and they play a very important role in agriculture. As such, studies and experience have shown that including women in agriculture is critical for wide-reaching development because the majority of agricultural workers are women. Agriculture can also serve as a springboard for smallholders to step into other livelihood options, such as providing food services, opening up small shops or buying and selling grains.Fred: Because there is a link between agricultural productivity growth and non-farm activity growth, we need a two-pronged approach: one that addresses the gender gap in productivity in low agro-productive regions while looking for innovative ways of enhancing women's access to non-farm sources of income. Addressing the gender-gap in 'poor' regions requires state-induced investments in infrastructure and new technologiesirrigation, improved seeds and roads, for example. Second, women's non-farm self-employment activities could be enhanced in these regions through targeted credit schemes, which have been shown to enhance entrepreneurship.Aida: Yes and no. In Tanzania the government and other stakeholders have facilitated markets to operate under the liberalised economy. The government has also developed institutions such as cooperatives and infrastructure, such as roads and market places, which facilitate smallholder farmers -and women in particular -to operate as farmers, traders, input suppliers or processors in agricultural value chains. Sometimes, however, the government supports one type of policy but then limits the potential of this support through other policies that contradict growth, such as export bans. This makes it difficult for farmers to move on a sustained trajectory of Fred: Empowerment of women through education and participation in community-level decision-making processes holds an important key to ensuring that resources, including agricultural livelihood assets, are equitably accessed. State-sponsored programmes that encourage technology adoption by women using innovative approaches, such as radio listening clubs and mobile phone voice messages, could boost women's productivity. The private sector is naturally driven by profit motives but the fact that African women are entrepreneurial provides the opportunity for partnership with private sector actors in the form of credit schemes, for example, which could boost agricultural investments.Aida: Drudgery-reducing technologies on the farm, such as tractors and milling machines, and productivity-improving technologies, such as chemical fertilisers and pesticides, allow smallholders to increase their farm income while generating savings and time to engage in more rewarding non-farm activities such as food vending, hair salons and shops.Africa's growing population and its dependence upon climate-sensitive employment sectors demand new solutions to mitigate the impacts of climate change on agriculture, such as the use of indigenous knowledge (IK).ach year, Africa's GDP drops by approximately 1.4% due to the effects of climate change. Given that agriculture is the continent's largest employer and UN global population reports predict a 1.3 billion rise in the African population over the next 30 years, finding different solutions to increase agricultural resilience and enhance food security is becoming an extremely pertinent issue. One solution is to integrate the knowledge held by indigenous communities about their surrounding environment, often referred to as IK, into climate adaptation approaches. Indigenous peoples have developed strategies to cope with unpredictable changes to the local climate, which -if properly documented -can help mitigate the impacts of climate change.Paul Sillitoe, the author of Indigenous Knowledge: Enhancing its Contribution to Natural Resources Management, explains how specialised indigenous veterinary knowledge aids livestock farmers who struggle to keep their animals healthy in increasingly harsh environments. Sillitoe also examines how crop farmers use IK to better defend their yields against pests and weeds, which are becoming an ever-prevalent threat due to climate change. The detailed knowledge that indigenous communities hold about their local environments can be used to improve natural resource management and increase the efficiency and productivity of the land.The benefits of IK are also promoted by the authors of CTA's Indigenous Knowledge Systems and Climate Change Management in Africa, but their analysis of the complexities of gathering IK emphasises the challenges that this method of learning poses. IK is passed down orally through generations and, where knowledge has not been shared with younger community members, it can easily be lost forever. One way to protect and harness IK is to integrate it with scientific seasonal forecasting to create highly informed climate predictions. The lessons learned from IK then need to be properly documented and disseminated into mainstream teaching in schools and universities.Unjust Burden, a recent publication from IRIN, recognises the value that small-scale farmers gain from IK which has been accurately documented and shared. With agriculture helping to lift over 200 million people out of poverty in the last two decades, this publication aims to continue that trend by sharing the wealth of climate-related knowledge that indigenous peoples can provide. In order to shoulder the 'unjust burden' of climate change, smallholder farmers can use IK to spot the early warning signs of disasters and develop effective disaster prevention strategies. Modern society often views IK as inferior to western scientific knowledge, but this marginalisation is showing signs of coming to an end as its potential to aid climate adaptation is realised. In early 2016, the moth Spodoptera frugiperda arrived in Africa from South America. The moth's caterpillar, known as fall armyworm (FAW), feeds on up to 80 different crops. With its presence now confirmed in over 30 African countries, the food and income security of millions of smallholder farmers is at risk. Whilst some strategies to curtail the invasive pest show early signs of success, for example push-pull intercropping (see p13), more information about FAW's behaviour and how to manage it are seen as crucial to controlling it in the future.Fall Armyworm in Africa: A Guide for Integrated Pest Management provides an essential manual to help plant protection professionals, extension agencies, research institutions and governments working with farmers to tackle the voracious FAW. This publication, written by USAID's Feed the Future programme in collaboration with international and national research and development partners, is an informative guide which features a number of clearly laid out diagrams and tables which help to define what the FAW is and how it can be managed. Drawing upon pre-existing knowledge from South America, the chapters focus on FAW's biology, integrated pest management solutions, host plant resistance, biocontrol, and agroecological landscape management, but crucially all within an African context, which enables the manual to be relevant to the current situation across the continent. Some of the new strategies proposed to help control the invasive species, include the use of the pest's natural African enemies, such as parasitoid insects -whose larvae grow inside and then kill the FAW host -and predator insects which eat FAW. These so-called 'beneficial insects' are being mass reared so that they can be made commercially available for strategic introduction around infected fields. This is just one of the many prevention strategies analysed in this manual, which offers an important outline of management practices that are helping farmers effectively control the pest without damaging human health or the environment. In developing countries, far more people now have access to a mobile phone than to sewerage, piped water or electricity. The widespread use of mobile phones and, to a lesser extent, the internet and broadband in these areas mean that ICTs are playing an increasingly significant role in international development. The connection between ICTs and development goals, such as economic growth and environmental sustainability, is referred to as information and communication technology for development or 'ICT4D'. So how -and to what extent -can ICT4D help overcome some of our biggest problems?In Information and Communication Technology for Development, leading ICT4D researcher, Richard Heeks, provides answers to these questions. The first three chapters set out the foundations of ICT4D, including the underlying components needed for ICT4D to work and best practice in implementing ICT4D, whilst the subsequent chapters use real-world case studies from developing countries to analyse key development goals and assess ICT impacts. Extensive diagrams, tables and boxed sections help to illustrate the more abstract theories. Chapter 4 looks specifically at the role of ICTs in delivering economic growth in developing countries. Among other examples, Heeks explains the opportunities for ICTs to reduce costs relating to sales and purchasing for farmers and rural entrepreneurs who, until recently, have spent a significant amount time and money travelling to buy and sell produce/ goods. In Niger, for example, smallholders have to take a 3-hour round trip on average to reach the nearest main market. Substituting that with a phone call in order to gather information saves them around €0.45 (CFA 300). Likewise in Malawi, smallholders using online trading platforms, as opposed to travelling to markets, are estimated to save an average of €0.80 per purchase/sales transaction, with savings calculated in terms of both time and transport.The final chapter of the textbook looks ahead to emerging technologies and models of ICT-enabled development, and predicts that in the near future, mobile device prevalence will continue to grow as will connectivity, cloud computing, and the use of 'smart' systems and digital services in agriculture, health, education and finance. By clearly positioning ICTs within the field of development, the publication will help development students, practitioners, researchers and other readers understand the ICT-enabled changes already underway and the key issues and interventions engaging ICT4D practice and strategy. There are many ways for youth to get into agriculture or offer agri-related products and services to solve problems along the agricultural value chain. However, when starting an agribusiness or agri-related enterprise, young people are often missing the necessary business skills and support. In addition, one of the biggest challenges for young ACP agripreneurs is the difficulty in accessing finance. Lending to agricultural startups entails significant costs due to their high risk ratings, which causes financial institutions to shy away from investing in this area and leaves a significant funding gap. Regardless of the business idea, entrepreneurs need to be able to validate their business model and 'de-risk' their enterprise in order to increase their chances of obtaining finance.Across the ACP, we have lots of agribusiness start-ups, and a growing number of AgTech (agricultural technology) start-ups, which have been supported through incubation or accelerator programmes. However, the reason they are called start-ups is because they have yet to learn how to monetise, validate and test their business model. One of the main reasons that start-ups fail is due to unproven business models; young entrepreneurs need to be taught how to make their existing business models more sustainable.Financial literacy and education are key to developing sustainable business models. Start-ups are often too busy trying to develop and grow their business to put financial systems in place and keep good records. This is really critical because, at some point, they will need to access finance from investors and potential financiers will need to have historical records of the company's financial transactions. Programmes are therefore needed to help start-ups become 'investor ready', by ensuring that their business models have market traction through testing and validation.In addition, these programmes can support entrepreneurs by encouraging them to document their journey and providing them with the tools to produce records, which can be supplied to potential investors. There are a lot more programmes that are now being created specifically focused on 'investment readiness' or 'finance readiness' to help start-ups understand how investors think, how financiers operate and how to better articulate their value.In the ACP, a major gap still exists when it comes to support for investor readiness. But there are also not enough private investors or business angels (people using personal wealth to support start-ups) that sufficiently understand agriculture, particularly the AgTech sector, to invest.Nevertheless, we are just beginning to see an increase in foreign direct investors coming to look for new investment deals to diversify their portfolios and increase return potential. While this is a good opportunity for start-ups, we -in the financial support sector -have a responsibility to ensure that our entrepreneurs are market ready and in a position to pitch a profitable venture to investors, as well as negotiate terms to close an investment. Additionally, start-ups need to be viewed as a new asset class that generate returns worth investing in to unlock more wealth building opportunities.Policymakers also have a role to play in creating a facilitative environment for start-ups to thrive. Start-ups can generate new jobs and technological advancement, not to mention having a direct impact on a country's GDP. It is therefore in the interest of governments to engage and invest in youth entrepreneurship. Some policies that could be encouraged include: simplifying the business registration process; subsidising tariff rates for start-ups wishing to acquire equipment and goods; and the specific allocation of government funds for youth entrepreneurs. Creating an enabling environment for innovation will also support the emergence of alternative funding opportunities that can facilitate start-ups' access to finance.For international donors, capacity building is a very resource-intensive process and, while I am all for new projects, sometimes a 3-year project doesn't allow for true capacity building and growth. International donor organisations have the potential to do more in terms of better coordination with other stakeholders within the AgTech ecosystem, to unlock financing and financial support mechanisms which can contribute to longer-term start-up programmes. African start-ups are the least funded in the world; 80% of funding goes to Kenya, Nigeria and South Africa with most directed to financial technology start-ups. Ensibuuko, a Ugandan company providing mobile finance services, received financial and incubation support as winner of CTA's AgriHack programme in 2013. We are now involved in CTA's Market-led User-owned ICT4Ag-enabled Information Service project. Along the way to becoming Uganda's most funded start-up, we have learnt some key lessons in applying for finance and looking for investment.Time and effort are key. We have attended many events, workshops and even a couple of accelerator programmes. You have to work hard to attract investors and we always did our best to stand out. Over the last few years, we have talked to many people at many events.Building relationships is crucial. You have to invest time in keeping in touch. An encounter with an investor at an event may be a one off, but you have to follow up. Many start-ups fail to do this. Investors take an interest in people they like. So if you invest in relationships, you start as friends, they will want to learn about your business and then they might recommend you to other people who are willing to invest. Too often start-ups get defensive, they want to justify the challenges they face and prove themselves as a business. But it is important to accept that these people are the experts and their advice can help you to improve. Get to know the investors, ask them whether there is someone on their team that can advise you if you encounter an issue, and sometimes they will come back to you and ask \"Did my advice work? Is there any other help I can give you?\"Many times when we approach people for funding, we have only received advice in return, but this always helps us to improve and to look for the next opportunity. However, sometimes when we ask for advice, we get funding.We first met one of our current investors in 2014. He was one of our mentors and often travelled to Uganda. He would make time to visit and we would sit together to work out the issues we were facing. He became really involved in the business, investing emotionally as he got to know us better. Then, when we came to him and said we had worked on achieving a good business model but needed money to progress, he said, \"Ok -I will speak to investors in Canada.\" In the meantime, he told us that he could see we needed cash so he gave us an advance to help us become investor ready. Since his financial investment, he is still emotionally invested and we are constantly in touch, keeping him up-to-date with what we are doing. We know that we can go to him for advice and even get further help with funding.To learn more about Ensibuuko's online banking services visit: www.ensibuuko.com To find out about the entrepreneurship opportunities available through CTA's Pitch AgriHack! programme visit: http://pitch-agrihack.info/ Gerald Otim Co-founder of Ensibuuko, Uganda","tokenCount":"20787"} \ No newline at end of file diff --git a/data/part_3/2556311091.json b/data/part_3/2556311091.json new file mode 100644 index 0000000000000000000000000000000000000000..b50aa8b03ab0d522d6ae1faac48024ab3eaaa6eb --- /dev/null +++ b/data/part_3/2556311091.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"39a71540702c6e039bb12b8aa2bae2d6","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/beff7075-1d5c-4cc4-87df-97803f8a5981/retrieve","id":"1556115736"},"keywords":[],"sieverID":"17347195-e212-46e5-adeb-6c0dfe06e86c","pagecount":"18","content":"It is left in the oven for 24 hours at 105 °C.After 24 hours, it is left in a desiccator until cool.The total weight is taken, and the weight of the dry matter is calculated.The roots are grated and homogenized.The NIRS capsule is prepared with the sample.The spectrum reading is taken at NIRS.The dry matter prediction is made with the calibration curve.Water absorption -Change in weight after boiling computation boiling time 20 minutes (some trials take evaluations at months 9, 10, and 11, and additionally take a date in deferments minutes for example 20, 30 minutes) COMP:00002898 pieces of roots are taken at random.They are placed in a previously weighed container and the pieces are weighed.The pieces and the container are placed in a pot of boiling water.After 20 minutes the container and pieces are removed, and the weight is taken.After 30 minutes the container and pieces are removed again, and the weight is taken.Finally, the water absorption at 20 min and 30 min is calculated.Time of boiling estimation minute boiled root (some trials take evaluations at months 9, 10, and 11) COMP:0000188 9 pieces of roots are taken at random.Each piece is placed in polypropylene mesh.The pieces and the mesh are placed in a pot of boiling water.Every 5 minutes touch all the pieces with a fork.When the fork passes through a piece, the time at which this happens is recorded.Finally, an average of the time between the 9 pieces is calculated.","tokenCount":"243"} \ No newline at end of file diff --git a/data/part_3/2558031057.json b/data/part_3/2558031057.json new file mode 100644 index 0000000000000000000000000000000000000000..ff153d7221a3eb6769b7f7f6da7eb8b2c82dbae7 --- /dev/null +++ b/data/part_3/2558031057.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"004cdeb871d9f20e494764930d403a0e","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/ae0be5f9-75b1-4ea4-b111-d60eb955a48a/retrieve","id":"1811804804"},"keywords":[],"sieverID":"2f1bd74b-2706-4364-8f2f-332ff7d2117a","pagecount":"2","content":"In the Gulu region of Northern Uganda, communities have slowly returned after fleeing the Lord's Resistance Army many years ago. Despite little farming experience, technology and resources, they now have a major task on their hands: supplying food for their own families and communities, and also to those escaping war and hunger-stricken South Sudan.The International Center for Tropical Agriculture known by its Spanish acronym CIAT and Uganda's National Agricultural Research Organization (NARO) and partners are working to supply farmers with high yielding, drought and disease resilient beans to boost yields and improve nutrition among vulnerable refugees and communities in northern Uganda. Despite persistent drought, farmers are now increasing their bean yields for their own families to eat -and to sell to traders who demand particular types of beans -for example the NABE bean series -which have a wide range of benefits, from being tastier and more resilient to climate stresses, to pest and disease resilience -than local varieties.Relief agencies of the United Nations and other organizations are buying the resilient seeds released by the National Agricultural Research Organization (NARO). Stanley Nkalubo is a Team Leader and Breeder of the Legumes Research Program National Crops Resources Research Institute (NaCRRI), part of NARO, said: \"Since 2014, a good majority of seed companies in Uganda supply relief and government organizations with improved, drought resilient and higher yielding seed varieties. These bean varieties are developed together with our research partners -like CIAT -and released by us to deliver to partners, who work with relief agencies. The bean breeding lines used are normally obtained from the CIAT gene bank at Kawanda. It also serves as a back-up store of all these improved bean seeds -it's our refuge in case of any calamity.\" Private sector companies like Equator Seeds Ltd., are mass producing them to sell in bulk to relieve communities in refugee camps along the border with South Sudan, where hunger levels are critical. Felix Otim, Sales Manager at Equator Seeds in Gulu said: \"We don't know the future, we can't really anticipate the positives or negativity off the future. But we have to be ready. For livelihoods, there really needs to be well planned and increased production.\" In the background, seeds bound for FAO are being packed and ready for sending to vulnerable populations and refugees, increasing their capacity to sustain themselves, he added.The Kawanda Genebank in Uganda protects and stores around 4,000 thousand types of beans, especially bred using conventional methods. Many of the beans are sourced from CIAT's genebank in Colombia -which houses the largest collection of common beans in the world. Led by a pioneering team of African breeders, this storage facility is a refuge for beans which can be sent across Africa to boost local supplies of bean seeds, with different useful traits, and alleviate food imports.In recent months, Ethiopia, Tanzania, Rwanda and Burundi have received heat and drought tolerant bean breeding lines. Four micronutrient rich varieties -high in iron and zinc to tackle malnutrition -were released in Kenya. Researchers are also ready to send climbing beans to Rwanda -they can produce more on smaller plots of land, where land availability is a big problem.Yet this refuge for seeds could be under threat, with dwindling funding and fewer resources to support vulnerable national research programs. For example those in South Sudan -mean that researchers are under more pressure than ever to beat increasing weather extremes: drought and flooding -with fewer resources and less capacity. This could critically affect the supply of nutritious beans, an affordable, major staple and source of protein and income generation for many communities across Africa, enabling them to become self-sufficient. CONTACT Robin Buruchara, PABRA Director r.buruchara@cgiar.org","tokenCount":"610"} \ No newline at end of file diff --git a/data/part_3/2574411203.json b/data/part_3/2574411203.json new file mode 100644 index 0000000000000000000000000000000000000000..7b4caf6506fe7978ab07681bea475a4fe08429b3 --- /dev/null +++ b/data/part_3/2574411203.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c2b6c66f8d7d28e3b463c4074073bb3d","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/46c1b660-30e2-486e-b782-8275e97ae4fa/retrieve","id":"-332169625"},"keywords":["Fríjol","Forrajes (trópico bajo)","Yuca Maíz","Trigo Papa","Camote","Raíces y tubérculos Cereales","Forrajes","Garbanzo","Lenteja","Haba Árboles agroforestales Sorgo","Mijos","Gandul","Garbanzo","Cacahuete Guisante","vigna","Yuca","Caupí","Batata","otros Forrajes (trópico mediano-alto"],"sieverID":"ba2dd550-3a87-441a-a82b-f6a0bf2fbb2b","pagecount":"110","content":"Todos los países del mundo son interdependientes cuando se trata de recursos fitogenéticos para la alimentación y la agricultura. Cada uno depende en gran parte de los otros para conseguir las bases genéticas de sus principales cultivos alimentarios y para la seguridad alimentaria \" TEMASEl tratado Internacional sobre los Recursos Fitogenéticos es un acuerdo que entró en vigor el 29 de Junio de 2004. Sus objetivos son la conservación y utilización sostenible de los recursos fitogenéticos para la alimentación y la agricultura y la distribución justa y equitativa de los beneficios derivados de su utilización, en armonía con el Convenio sobre la diversidad biológica, para lograr una agricultura sostenible y la seguridad alimentaria.• El banco de germoplasma de yuca del CIAT es conservado in vitro. Los materiales comprenden razas nativas de América Latina y de Asia, clones elite seleccionados por el CIAT y por el Instituto Internacional de Agricultura Tropical (IITA), situado en Nigeria, y varias especies silvestres de Manihot. (Nro. 2: Fríjoles USDA 14,782;Yuca EMBRAPA 3,902;Pastos Tropicales ILRI 18,661) (Acuerdo firmado con el Órgano Rector el 16 de octubre de 2006) Materiales de germoplasma como Bienes Públicos InternacionalesHacer que el germoplasma y la información pertinente de cualquier material en las colecciones esté disponible a los usuarios en todo el mundo.Mejorar las tecnologías de conservación para que las 66000 accesiones de más de 720 especies puedan conservarse mejor a costos más bajos.Aumentar la pertinencia genética, biológica y social de las colecciones para que los genetistas, mejoradores, biólogos, agrónomos, agricultores y el público en general encuentren la diversidad correspondiente a sus necesidades.Capacitación permanente.Fuente: Santos, PRGCIAT, 2010 Conservar la integridad genética de las accesiones manejadas durante los procesos de multiplicación y regeneración.Llevar cada una de las accesiones al tamaño adecuado que permita cumplir con los propósitos del banco. El fríjol tiene una amplia variabilidad genética y sus caracteres morfológicos, especialmente el color de las semillas y el hábito de crecimiento, han sido utilizados para la selección de variantes.Esa selección y la deriva genética han sido los principales factores evolutivos responsables del mantenimiento y la ampliación de la variación morfológica.Las plantas y los granos de fríjol se identifican por el tamaño, el color de las semillas, el hábito de crecimiento y la adaptación a climas adversos. Se usan los mismos métodos de evaluación de la viabilidad dependiendo de la especie o accesión.Sólo se usa una repetición (menos semillas). Los datos son realmente importantes para determinar la continuidad de las semillas almacenadas a largo plazo.Se realizan monitoreos a semillas que aunque no hayan cumplido meta de cantidad, se necesitan distribuir.Prevenir la diseminación de enfermedades transmitidas por semilla y reducir al mínimo el riesgo accidental de introducir plagas y patógenos en Colombia. Supervisión de los invernaderos de cuarentena en donde se encuentra el germoplasma importado. Inspección de los lotes de multiplicación e invernaderos en donde se realiza la multiplicación del germoplasma. Evaluar la sanidad de la semilla utilizada para los envíos internacionales basándose en las pruebas de sanidad realizadas en el LSG. Para minimizar el riesgo fitosanitario asociado con el movimiento de germoplasma el CIAT sigue un programa de cuarentena y regulación en cooperación con la autoridad fitosanitaria en ColombiaEl Laboratorio de sanidad de germoplasma tiene la responsabilidad de informar sobre el estado fitosanitario del germoplasma que distribuye el Programa de Recursos Genéticos y otros programas del CIAT certificando que este libre de enfermedades cuarentenarias.La metodología empleada para certificar la sanidad del material genético a transferir se fundamenta en:Resultados de la inspección durante la producción y el beneficio de las semillas Análisis de sanidad en el laboratorio Acantoscelides sp. Acantoscelides sp. Zabrotes spp.Zabrotes spp.Meloidogyne spp. Meloidogyne spp. Pratylenchus spp.Pratylenchus spp.Se colocan las semillas sobre papel secante humedecido con 20 ml de agua destilada estéril dentro de cajas Petri (Técnica de Boltter test)Distribución de las semillas en 5 filas y 5 columnas por cajaLavado de las semillas en solución de hipoclorito de sodio al 1% y secado en papel Distribución de las semillas en las cajas Petri con medio PDA Se reciben 200 semillas tomadas al azar, de las cuales 100 se analizan para hongos, en el ingreso se les asigna un número secuencial internoAl finalizar la etapa de siembra, los platos debidamente identificados y sellados, se deben trasladar al cuarto de incubación ajustado a una temperatura entre 22 y 28°C, con ciclo de luz/oscuridad de 12 h/12h, durante 8 a 10 días.Análisis macro y microscópico de las semillas para identificar la presencia y crecimiento de géneros de hongos.El primer paso consiste en suspender 100 semillas por accesión en solución salina fisiológica estéril al 0.85% (preparada con NaCl en agua destilada), en bolsas estériles especiales para muestreo marcadas cuidadosamente con el número de muestra LSG (bolsas de 4 onzas para leguminosas forrajeras y pastos tropicales y bolsas de 7 onzas para fríjol), durante un periodo de 18 a 24 horas a 4 °C. Tamaño de la semilla.Que tan adaptadas están a las condiciones de campo e invernadero = Producción de semillas. 4.Comportamiento en conservación (monitoreo).Cómo ha sido la distribución histórica: frecuencia de solicitudes y envíos de la accesión.Fuente: FAO -IPGRI, 1994\"De acuerdo con las Normas para Bancos de Germoplasma la cantidad aceptable para representar materiales que presentan poca variación morfológica es de 3.000 -4000 semillas y para los que presenta gran variación morfologíca está entre 4.000 y 12000 semillas\"Base: Conjunto de accesiones únicas cuya integridad genética es lo más cercana posible a la muestra original.Es una submuestra genéticamente idéntica a la accesión que está almacenada en otro sitio y se puede guardar de tres formas: * Caja negra * Como parte de la colección base del receptor * Como parte de la colección activa del receptorEs devolver una submuestra idéntica de la accesión, al país de origen del material en caso de que sea requerido.Es el suministro de muestras representativas de accesiones de semillas en respuesta a solicitudes de los usuarios de germoplasma.Es la verificación regular de la calidad fisiológica de las accesiones de germoplasma almacenadas en un banco (cada 5 año en PRG).Es la renovación de las accesiones de germoplasma mediante la siembra y la cosecha de semillas con las mismas características de la muestra original. La regeneración de germoplasma es una operación más crítica en el manejo de un banco de germoplasma.Esta se aplica a materiales que tienen baja viabilidad y/o vigor y que por lo mismo podrían ser perdidos si no se recuperan sus niveles mínimos de calidades germinativas.Los procesos de regeneración incluyen algunas de las actividades del proceso de multiplicación: siembra -desinfección -escarificación -pregerminación-preparación suelo -llenado de potes -trasplante -tutoradoriegos -toma de datos -control de plagas y enfermedades-cosechacaracterización.Permite evaluaciones, pero necesita renovación periódica Riesgo de contaminación en los centros primarios de diversidad Distribución internacional no es permitida • Un banco de Recursos Genéticos internacional, además de conservar y distribuir, pone a disposición de los usuarios la documentación más relevante de sus colecciones con el fin de propiciar el uso de los materiales y generación de nuevo conocimiento.• La documentación juega un papel importante en la planificación y organización de las actividades del Banco de Germoplasma, donde hay un flujo constante de información exacta, confiable y actualizada para funcionar con eficiencia. ","tokenCount":"1188"} \ No newline at end of file diff --git a/data/part_3/2577164718.json b/data/part_3/2577164718.json new file mode 100644 index 0000000000000000000000000000000000000000..df758c8e481cf872919166eca9fa235a2b5e4e4b --- /dev/null +++ b/data/part_3/2577164718.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"d752f207f076d64b87f8aeec9d757944","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/cf456737-e173-4993-b39d-9d5940688e84/retrieve","id":"-1936068155"},"keywords":[],"sieverID":"00cf8c7b-92dc-4da8-b705-e607af9b2fc8","pagecount":"106","content":"The Plants That Feed the World: baseline data and metrics to inform strategies for the conservation and use of plant genetic resources for food and agriculture1.1 The International Treaty on Plant Genetic Resources for Food and Agriculture and development of this study on \"The Plants That Feed the World: Baseline data and metrics to inform strategies for the conservation and use of plant genetic resources for food and agriculture\" 1.2 Relevant background on plant genetic resources for food and agricultureInformation on the use of food and agricultural crops and on interdependence regarding, demand for, supply of, and security of their genetic resources is needed to prioritize conservation and utilization efforts. This information is increasingly available but is scattered through several information systems, databases, and scientific literature. The study \"The Plants That Feed the World: Baseline data and metrics to inform strategies for the conservation and use of plant genetic resources for food and agriculture\" intends to bring together and make widely available pertinent information from these different sources. The aim is to develop a set of reproducible metrics that provide an evidence base for the international plant genetic resources community to prioritize conservation and utilization activities. Measured periodically, these metrics can also provide insights on change over time in the use of crops and issues regarding interdependence on, demand for, supply of, and security of their genetic resources.The main global database sources for this study included: FAO's Food and Agricultural Statistics Database (FAOSTAT), the FAO World Information and Early Warning System on Plant Genetic Resources for Food and Agriculture (FAO WIEWS), the Data Store of the International Treaty on Plant Genetic Resources for Food and Agriculture, the International Union for the Protection of New Varieties of Plants (UPOV)'s PLUTO Plant Variety Database, the Genesys Plant Genetic Resources portal (Genesys PGR), Botanic Garden Conservation International's PlantSearch database, the Global Biodiversity Information Facility (GBIF), the Svalbard Global Seed Vault's SeedPortal, Google Scholar, Wikipedia (pageviews), and the National Center for Biotechnology Information (NCBI)'s Entrez database. Metrics were generated for a total of 355 food and agricultural plants, a list which is inclusive of all those covered in FAOSTAT, in Annex 1 of the International Treaty, and of CGIAR mandate major crops, as well as other crops deemed internationally significant. A total of 98 globallevel metrics were calculated, including 51 metrics on crop use and 22 metrics on interdependence regarding; 7 metrics on demand for; 16 metrics on supply of; and 2 metrics on security of crops' plant genetic resources.The data on crop use show that hundreds of different crops are widely grown, traded, present in food supplies, and researched around the world. Crops that are valuable internationally are found in all the main crop use types examined in this study: ten food categories (cereal, fruit, herb and spice, nut, oil, pulse, root and tuber, stimulant, sugar, and vegetable crops) as well as fiber, forage, and industrial crops.The data also show that crop use is not static and that a plant's utilization can vary widely both spatially and temporally. Crops that were not considered important on a global or regional scale a few decades ago have become widely utilized today. Likewise, plants that are currently grown only on a small scale could become major crops of the future, although it is impossible to predict with high accuracy which crops will flourish, and which will decline in use. The certainty is that the spectrum of globally and regionally important crops will change, possibly substantially, over time. Several boxes were included throughout the study on contemporary issues on PGRFA conservation and use, to further showcase how the management of plant genetic diversity is evolving at present. The data further show that for almost all the most utilized crops, there is a high level of interdependence among countries with respect to their PGRFA. Many of the crops studied have high estimated interdependence values as well as large directly quantified germplasm distributions to recipients in many different countries and regions. This is true not only for the staple food crops but also for a large variety of other plants of various crop use types.All metrics studied showed a wide variation among crops in terms of the amount of PGRFA held ex situ and hence that is available for use. For some crops, especially major, orthodox seed producing commodity crops, there are very large, readily available collections. However, for other crops, collections may be less available or much smaller, including for many of those that cannot be conserved as seed and must be maintained in vivo (in field collections) or in vitro (in specialized IT/GB-9/22/16.2/Inf.1 laboratory or cryopreservation facilities). Agricultural research institutions and botanic gardens appear to complement one another by focusing their conservation efforts on different crops.The data also show that there are significant gaps in many ex situ collections, whether maintained by agricultural research institutions or botanic gardens. The availability of botanical research specimens and genetic sequence data (GSD) and other related data are likewise highly variable among crops, with abundant resources for many crops but substantial gaps for many others.With respect to the security of PGRFA, while much has already been duplicated in the Svalbard Global Seed Vault, particularly for major cereals, pulses, and a few other crop types, the data show that many of the world's ex situ accessions are not documented as safety duplicated. Given the importance of safety duplication, special attention should be given to securing those accessions not currently safety duplicated, including those collections that must be maintained in vivo or in vitro.The findings of the study have significant implications that could be applied to the future development of the Treaty's Multilateral System (MLS) of Access and Benefit Sharing and the crops listed in its Annex 1 as well as, potentially, Article 15 collections. As this study has shown, the contribution of crops to food security and interdependence, the two criteria used to design the Multilateral System, are dynamic, with many crops that are important for food security and sustainable agriculture today not currently included in Annex 1. Moreover, additional crops will almost certainly become more important than they are currently. Given the critical role that the use of PGRFA can play in helping ensure food security, sustainable agriculture, and climate adaptation and mitigation, and the value of facilitated access to PGRFA under the Plant Treaty to achieve these aims, it is hoped that the findings of this study will prove useful in helping to guide discussions on coverage of the MLS.1.1 The International Treaty on Plant Genetic Resources for Food and Agriculture and development of this study on \"The Plants That Feed the World: Baseline data and metrics to inform strategies for the conservation and use of plant genetic resources for food and agriculture\"The International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA, also called the Plant Treaty) is the FAO international agreement for the conservation and sustainable use of plant genetic resources for food and agriculture (PGRFA) and the fair and equitable sharing of benefits arising out of their use.The Plant Treaty relates to PGRFA, so its scope includes the genetic diversity of all the plants used for food and agriculture. Conserving and using this diversity is essential to guarantee food security and sustainable agriculture today and in the future. The provision of baseline data, metrics, and indicators on this diversity is essential for decision-makers at global, regional, and national levels to develop strategies to ensure the adequate conservation and use of these plant genetic resources. The Plant Treaty, through its Article 5, calls for an integrated approach to the exploration, conservation and use of PGRFA.The Secretariat of the Plant Treaty has established partnerships with the CGIAR Centers, the Global Crop Diversity Trust (Crop Trust), and the botanic garden community around a common interest in strengthening the provision of data and science to inform policymaking regarding PGRFA. The Governing Body of the Plant Treaty recommended the Secretariat and the Crop Trust to further enhance its collaboration and complementarity on scientific and technical matters, including through improved linkages in the updating and implementation of Global Crop Conservation Strategies. The Secretariat previously worked closely together with CIAT and the Crop Trust in the preparation of the study \"Estimation of countries' interdependence in plant genetic resources provisioning national food supplies and production systems\" (Research Study 8) (Khoury et al. 2015). The present analysis is a follow-up to the previous partnership, under a plan to be published jointly as a flagship background study for the global PGRFA community. This analysis furthers these longstanding partnerships as well as forms new ones, particularly with the botanic garden community and especially the San Diego Botanic Garden.An update on the on-going collaboration was provided to the Governing Body in November 2019, at its Eighth Regular Session. Through Resolution 10/2019, para.12, the Governing Body welcomed \"the collaboration between the Secretary, the Crop Trust and the International Center for Tropical Agriculture (CIAT) to identify and systematize baseline data of a wide range of crops and their genetic resources that is essential for decision-makers at global, regional and national levels in order to develop strategies to ensure the adequate conservation and use of these plant genetic resources for food and agriculture, including Crop Strategies, and recommend [ed] that the background study resulting from such collaboration and underlying baseline information be made available in a userfriendly manner as soon as possible, including for consideration by the Governing Body at its Ninth Session.\" (FAO 2019b).Information on food and agricultural plants is increasingly available but scattered through several information systems, databases, and scientific literature. Data on the status of cultivation, trade, and contribution to food supply of the most important crops worldwide is provided by FAO's Food and Agricultural Statistics Database (FAOSTAT), while FAO's World Information and Early Warning System on Plant Genetic Resources for Food and Agriculture (FAO WIEWS) provides information about the PGRFA conserved and distributed by national and international genebanks around the world. Several other information systems, including the Genesys Plant Genetic Resources portal (Genesys IT/GB-9/22/16.2/Inf.1 PGR), Botanic Garden Conservation International's PlantSearch, the Global Biodiversity Information Facility (GBIF), and the Svalbard Global Seed Vault's SeedPortal also provide data on the supply and/or security backup of PGRFA. The Data Store of the Plant Treaty and FAO WIEWS, meanwhile, provide information on the exchange of PGRFA, while FAO WIEWS and the International Union for the Protection of New Varieties of Plants (UPOV)'s PLUTO Plant Variety Database offer information on varietal registrations and/or releases. Various other information systems provide data on these and other metrics related to PGRFA at regional, national, and local levels. The scientific literature supplements these information sources with data and analyses at different scales and timeframes.The study \"The Plants That Feed the World: Baseline data and metrics to inform strategies for the conservation and use of plant genetic resources for food and agriculture\" intends to bring together and make widely available, for the first time, pertinent information from these different sources to provide baseline metrics and indicators of the use of food and agricultural crop plants worldwide, as well as information regarding interdependence regarding, demand for, supply of, and security of their genetic resources. The aim is to develop a set of metrics and indicators that provide an evidence base for the international PGRFA community to prioritize conservation and availability for use among crops and PGRFA activities. The methodologies allow these metrics and indicators to be reproducible to enable identification of change over time in status and trends for PGRFA. In addition, the methodologies have been developed to enable future use of data and tools for national-level decisionmakers on Treaty implementation, leveraging the knowledge gained at global level for use at the national scale.The study is one of the main products of this collaborative initiative. The full list of products of this partnership include:1. This background study paper summarizing and analysing the baseline information gathered 2. A full description of the methodologies and materials used for this study and all metrics calculated (provided in Annex 1 of this study) 3. The full data, code, and results, which will be made available through the Treaty website and other means to enable future use by the PGRFA community and partner organizations. The full data contains more metrics than the ones highlighted in this study, as described in the methodology section 4. An interactive website of the results, including visualizations of the metrics and infographics arising from the study, which will be available through FAO 5. Use of PGRFA metrics for individual crops in the development of Global Crop Conservation Strategies, which are facilitated by the Global Crop Diversity TrustThe information being made available is intended to be used by a wide range of experts and researchers in plant genetic resources. By pooling together, from a wide range of sources, information on plant genetic resources, and making these data available in a user-friendly manner, the initiative enables researchers access to a wide variety of pertinent metrics in one combined resource. It is important to highlight that the present work does not create new information systems but gathers and processes in a standardized manner data from various relevant systems. It does not substitute PGRFA indicators (i.e., SDGs 2.5 or 15.6) gathered through country-driven efforts or the Global Crop Conservation Strategies facilitated by the Crop Trust that provide a comprehensive overview for specific crops. Moreover, while these data will be critical for developing future strategies for conservation and use of plant genetic resources, they are most appropriately complemented by other sources of information and analysis that cannot be made available in the form of reproducible metrics, as evident in the development of the Global Crop Conservation Strategies.This initiative has created an initial methodology and set of metrics with the intention to create a benchmark that can be replicated periodically (i.e., every 5-10 years). Such an iterative process would provide valuable insights in how metrics change for individual crops. While changes for some crops (in particular major staples) and some metrics are likely to remain relatively consistent, it is probable that metrics for various other crops will evolve considerably, demonstrating the dynamism in the conservation, use and availability of plant genetic resources.1.2 Relevant background on plant genetic resources for food and agricultureThere are more than 350,000 currently described plant species (Antonelli et al. 2020), with thousands of newly identified species still being added to the global list every year (Cheek et al. 2020). Of these known plants, more than 7000 documented species (Antonelli et al. 2020) and perhaps up to 30,000 plants in total (Wilson 1992) may be considered edible by humans, with at least 7000 having been cultivated to some degree for food and agricultural purposes (Khoshbakht and Hammer 2008;Leibniz Institute of Plant Genetics and Crop Plant Research 2022).Yet only a small fraction of these plants feed humanity in the present. Statistical information published by the FAO both for individually measured crops as well as those included within generalized commodity categories -in combination assumedly representing much of the human diet worldwideis recorded for approximately 255 plants -including around 26 cereals, 17 roots and tubers, 26 pulses, 44 vegetables, 69 fruits, 14 nuts, 28 oils, 24 herbs and spices, 3 sugars, and 4 stimulant crops (this analysis; see https://docs.google.com/spreadsheets/d/1GHH4lp199BhrVOIr4E61C4DxHgD23KNHKNliuhfzNPk/e dit?usp=sharing for the full crop list). More extreme calculations of the same data, generally focused on contribution to calories, lead to assertions that as few as a handful of staple crops provide the bulk of the world's food (FAO 2019).Regardless of the precise number, this relatively small list of highly globalized crops has clearly come to dominate food supplies worldwide, leading to increasing homogeneity in the global diet (Khoury et al. 2014(Khoury et al. , 2016)). Diversity within these crops -both in terms of their varieties and the genetic and phenotypic variation within and among them -is widely considered to have declined in farmers' fields over the past 100 years (FAO 2019; Khoury et al. 2021). Both trends are commonly cited as central reasons why the conservation and sustainable use of PGRFA is essential to humanity's future.To arrive at a more comprehensive account of contemporary food and agricultural plants, additional information is required. FAO statistics also report (production and/or trade) information for 20 fiber crops, 3 forages, and 9 industrial crops. A survey of the Plant Treaty's Annex 1 and CGIAR mandate crops adds dozens of additional forages and a few more food crops, while accounts of other globally significant fruits, vegetables, roots and tubers, and herbs and spices easily add another 30 crops. By our calculations, this more inclusive scope of food and agricultural plants totals around 350 crops (including forages); these are the focus of investigation within this Study (see https://docs.google.com/spreadsheets/d/1GHH4lp199BhrVOIr4E61C4DxHgD23KNHKNliuhfzNPk/e dit?usp=sharing for the full crop list).The crops studied here represent those for which considerable amounts of information regarding their use as well as important metrics around demand for, supply of, and security of their PGRFA exists and is relatively readily available (see the extended Methodology and data sources Annex for a full description). This said, two observations must noted.First, these cultivated plant species have \"wild cousins\" that are referred scientifically as crop wild relatives (CWR). As sources of new genetic diversity, crop wild relatives have been used for many decades for plant breeding, contributing a wide range of beneficial agronomical and beneficial traits. Their utilization is expected to increase because of ongoing improvements in information on species and their diversity and advances in breeding tools (Castañeda-Álvarez et al. 2016). A curated database IT/GB-9/22/16.2/Inf.1 on the taxonomy, distributions, and genetic relationships regarding crop wild relatives of many of the world's food and agricultural crops is available through GRIN Global Taxonomy (USDA NPGS 2022), building on efforts made by national and international partners over the previous decade.Second, it must be noted that many hundreds or even thousands of food and agricultural plants significant to specific regions and localities around the world are outside the scope of this Study. The Mansfeld's World Database of Agriculture and Horticultural Crops contains information on 6,100 crop plant species, including forages but excluding forestry and ornamental plants (IPK Gatersleben 2022). Such crops are often called \"Neglected and Underutilized Species\" (NUS), among other terms, although they are important and thus hardly neglected by the communities they are native to; it should also be noted that various crops within the 355 studied here may be considered by some as NUS.Beyond what is traditionally recognized as food and agriculture, a wide diversity of other plants is also cultivated for ornamental, medicinal, forestry, restoration, and other purposes. These are also beyond the scope of this present Study.PGRFA, including seeds and other reproductive propagules of food and agricultural crop plants and their wild relatives, are critically important resources underpinning the productivity, quality, sustainability, resilience, and adaptive capacity of food and agricultural systems (Hoisington et al. 1999;Esquinas-Alcázar 2005;Gepts 2006). Farmer varieties (landraces) and their wild relatives have been the basis of agricultural production for over 10,000 years (Larson et al. 2014). These plants began to be recognized by scientists as valuable resources in the late 19th and early 20th centuries (Baur 1914;Zeven 1998), in parallel with the rediscovery of Mendel's laws of inheritance and the subsequent development of modern genetics (Harwood 2016;Khoury et al. 2021). Ex situ repositories (genebanks) were subsequently established to maintain genetic resource (germplasm) collections to support the breeding of new crop varieties (Vavilov 1926;Lehmann 1981;Saraiva 2013).In parallel, concerns began to be raised over the loss of crop diversity from farmers' fields and from wild habitats due to rapid agricultural, environmental, socioeconomic, and other changes (Baur 1914;Harlan and Martini 1936). These concerns were voiced at the Food and Agricultural Organization (FAO) of the United Nations and elsewhere in light of the large-scale replacement of traditional crop varieties by modern cultivars worldwide during the \"Green Revolution\" (Bennett 1964(Bennett , 1968;;Frankel and Bennett 1970;Frankel 1974;Pistorius 1997;Fenzi and Bonneuil 2016) and because of increasing awareness of the susceptibility of modern crop cultivars to pests and diseases as a consequence of their genetic uniformity (Tatum 1971;National Research Council 1972;U.S. Senate 1980).These concerns resulted in the expansion of efforts around the world to collect and maintain plant genetic resources ex situ (Plucknett et al. 1987). At the international level, the International Board for Plant Genetic Resources (IBPGR) was established in 1974 to coordinate a global initiative to conserve threatened genetic resources. Collaborating with national and other partners, IBPGR supported the collecting of over 200,000 samples of landraces, crop wild relatives, and other materials in 136 countries between 1975 and 1995, and helped to establish international genebank collections to maintain these samples (Thormann et al. 2019).Over the course of the 1980s and 1990s, while national, regional, and international ex situ collections were amassed, there was growing concern about the vulnerability of these collections, due largely to insufficient funding and infrastructure. Genebanks were encouraged to duplicate their holdings to mitigate these challenges as well as to protect them from natural disasters, war, and civil strife (Holden 1984;Lyman 1984;Peeters and Williams 1984).At the same time, PGRFA were increasingly recognized by the international community as important not only for breeding but also in underpinning the resilience and adaptive capacity of agrarian communities and their agroecosystems (Mijatović et al. 2013;Fenzi and Bonneuil 2016;Sirami et al. 2019). In situ/on-farm conservation support increased (Brush 1991;Wood and Lenne 1997;Bellon 2004), though some questioned its efficacy in the face of widespread environmental and societal change (Frankel and Soule 1981;Zeven 1996;Peres 2016).In the 1990s concern about the loss of biodiversity, in all its forms, became a global priority and resulted in the adoption of the Convention on Biological Diversity (CBD), which mandated its conservation, sustainable use, and the fair and equitable sharing of the benefits arising from such use (CBD 1992). With the coming into force of the CBD, earlier international agreements on plant genetic resources (e.g., FAO 1983) There are now approximately 1750 germplasm collections worldwide (FAO 2010), around half of which are international, national, and regional base/long-term collections (FAO 2022); as a whole these maintain over seven million samples (FAO 2010). Safety duplication of a substantial proportion of this diversity is accomplished among genebanks and at the global backup in the Svalbard Global Seed Vault (Westengen et al. 2013), where over 1.1 million samples are now duplicated (Norwegian Ministry of Agriculture and Food 2022; NordGen 2022). Genetic resources are also conserved by botanic gardens, universities, nonprofits, community seedbanks, local conservation networks, and private companies, while plant breeding and other research programs also store genetic resources, at least for short periods, (Miller et al. 2015;Vernooy et al. 2017). Various initiatives continue to focus on in situ and/or on-farm conservation (e.g., FAO 2022, Stenner et al. 2016;AGUAPAN 2021;Global Environmental Facility 2021). Many hundreds of thousands of plant genetic resource samples are distributed annually by national and international institutions (Halewood et al. 2020;Lusty et al. 2021;Khoury et al. 2022).These efforts around PGRFA conservation and use have been both substantial and global, but gaps continue to persist (FAO 2010;Castañeda-Álvarez et al. 2016;Khoury et al. 2021Khoury et al. , 2022;;Ramirez-Villegas et al. 2022). Two Global Plans of Action for Plant Genetic Resources for Food and Agriculture have been adopted by FAO councils to address these gaps (FAO 1996;FAO 2011). In recent decades, the CBD and the United Nations Sustainable Development Goals have also set targets for enhanced conservation of plant genetic resources (CBD 2002(CBD , 2010;;United Nations 2015). Current negotiations aim to renew these targets, which were not met by the original (2020) deadline (Díaz et al. 2020).Crop-level metrics on the use of food and agricultural plants worldwide and interdependence regarding, demand for, supply of, and security of their genetic resources were created through the compilation, processing, and standardization of data from a wide number of pertinent global information databases and data sources, supplemented by information from regional, national, and local datasets and published literature. Emphasis was placed on curated, openly accessible, comprehensive data sources likely to be available in updated forms in the future, so that these methodologies can be reproduced to discern change over time. Not all possible metrics where systematic information potentially exists were explored. Metrics on demand for PGRFA as measured by patent applications remains to be investigated and possibly developed, for example. Many other sources of information were explored during this study but were not integrated into the analysis at the present time due to insufficiency or inaccessibility of the data.Other potential sources of data were noted but not explored in depth for this present analysis. A process of production of results at a national rather than global scale was also investigated for pertinent metrics but are not reported here. A full description of methods and materials for this study, as well as other sources of information explored or noted as potentially useful, is available in Annex 1 of this study. The full data, code, and results will be made available at FAO; at this time the code is available at https://github.com/CIAT-DAPA/itpgrfa_crop_indicator_code and main results at https://drive.google.com/drive/folders/19Omcz-KuKrMxaUHfX4duRVjzitcKKmgp?usp=sharing. An interactive website of the results will be made available at FAO.A total of 280 crops assessed in this study are reported in FAOSTAT production metrics (277 in the value of production metric), either specifically or within general crop commodities. Likewise, 239 of the crops are reported in FAOSTAT trade metrics, and 252 crops are reported in FAOSTAT food supply metrics, again either directly or within general commodities. After disaggregating values for general commodities (such as \"Vegetables, fresh nes\" in production metrics and \"Vegetables, Other\" in food supply metrics) into their specific crop components, the contribution of each assessed crop to global agricultural production (in terms of harvested area (Ha), production quantity (tonnes), and production value (current thousand US$); to global trade (in terms of export quantity (tonnes), export value (1000 US$), import quantity (tonnes), and import value (1000 US$)); and to the global food supply (in terms of calories (kcal/capita/day), protein (g/capita/day), fat (g/capita/day), and food weight (g/capita/day)) was calculated as an annual average value between years 2015 to 2018.The most utilized crops in terms of global production (tonnes) for eight different crop use types of interest are presented in Figure 1. The results are presented as the proportion of the value of the crop, compared to all crops per crop use type.In terms of the most utilized crops across all metrics and all crop use types, the range of metrics generally provide a consistent picture of the primary reliance in global production systems, trade, and food supplies on major cereal, oil, and root and tuber crops such as wheat, rice, maize, soybeans, oil palm, potatoes, and cassava. Specific metrics further provide insights into the importance of other crops for those particular uses. For example, metrics based on weight, including global production (tonnes) and food supply quantity (g/capita/day), also document the global use of (heavy) fruits such as tomatoes, citrus, onions, and apples, while the protein metric in global food supplies further documents the importance of pulse crops. Production value and trade value metrics, meanwhile, also document the global use of sugar, fruit, herb and spice, and stimulant crops (such as tobacco, cocoa, and coffee). As a whole, significant crops in terms of global agricultural production, trade, and food supplies evidently included a broad range of plants from a variety of crop types.IT/GB-9/22/16.2/Inf.1Figure 1: Use of crops in global agricultural production as measured in terms of production quantity. Metrics are presented per crop as a proportion of total production across all crops within each crop use type. The subfigures display the ten crops with largest use values per crop use type. For crops such as maize or soybeans with multiple uses, these are included in all relevant use type categories; values for these crops are total global, not separated by specific use. Values for general crop commodities such as 'Roots and tubers, nes' are presented as the value of each specific crop included within the commodities (each of these crops has the same value), not as a sum across all crops; due to space limitations each individual crop within these commodities could not be listed within the figure. 'Roots and tubers, nes' includes arracacha, arrowroot, chufa, Jerusalem artichoke, maca, mashua, mauka, oca, sago palm, and ulluco; 'Nuts, nes' includes butter-nut, macadamia nut, pecan, pili nut, and pine nut.Global summary agricultural production, trade, and food supply statistics are useful to identify the most utilized crops globally, but do not provide clear information on the geographic extent or evenness of the use of crops worldwide. To understand the current extent of geographic spread of these assessed crops, for each crop we calculated the number of countries for each production, trade, and food supply metric in which the crop is produced, traded, or used in the food supply at a significant scale, using national-scale data from FAOSTAT. For our purposes, significance meant being within the top 95% of crops reported used in the country for the production, trade, or food supply purpose.The most geographically spread crops in terms of global production (tonnes) for eight different crop use types of interest are presented in Figure 2. The results are presented as the proportion of countries in which the crop is significant compared to the total number of countries reported in FAOSTAT (a total of 205 countries were reported in the production data, 198 countries in the trade data, and 173 countries in the food supply data).In terms of the most geographically spread crops across all metrics and all crop use types, the range of metrics again provide a fairly consistent picture of the primary reliance in global production systems, trade, and food supplies on major cereal, oil, pulse, and root and tuber crops. Additional crops, not as visible in global summary statistical data, are also evidently widespread for certain metrics such as production quantity as well as for fat, calories, and food weight metrics.IT/GB-9/22/16.2/Inf.1Figure 2: Geographic spread of crops in global agricultural production as measured in terms of the proportion of countries in which the crop is significant compared to the total number of countries reported in FAOSTAT (a total of 205 countries were reported in the production data). The figures display the ten crops with largest geographic spread values per crop use type. For crops such as maize or soybeans with multiple uses, these are included in all relevant use type categories; values for these crops are total global, not separated by specific use.Values for general crop commodities such as 'Nuts, nes' represent the value of each specific crop included within the commodities (each of these crops has the same value), not as a sum across all crops; due to space limitations each individual crop within these commodities could not be listed within the figure. 'Nuts, nes' includes butter-nut, macadamia nut, pecan, pili nut, and pine nut; 'Roots and tubers, nes' includes arracacha, arrowroot, chufa, Jerusalem artichoke, maca, mashua, mauka, oca, sago palm, and ulluco.To understand the current evenness or balance worldwide of production, trade, and food supply uses for each crop, we compared each crop's production, trade, and contribution to food supply across world regions. The most geographically even/balanced crops in terms of global production (tonnes) for eight different crop use types of interest, are presented in Figure 3. The results are presented based on a mathematical metric of evenness called the Gini coefficient, in this case with values close to 100 representing high evenness in use across regions, and those close to 0 representing unevenness.In terms of the most geographically even/balanced crops across all metrics and all crop use types, the range of metrics provide somewhat different insights than those offered by the global summary and geographic spread analyses. Note that those crops with the highest evenness values are not necessarily the most utilized around the world, but simply those with the greatest balance in use across world regions.For production metrics, many fruit, vegetable, and pulse crops, as well as cereals such as wheat, maize, oats, sorghum, and barley, are produced quite evenly across world regions. For trade, various fruit and nut crops, as well as tobacco, are quite evenly exported, while assorted fruit, vegetable, and herb and spice crops, as well as wheat, tobacco, and oil palm, are among those most evenly imported.In contribution to regional food supplies, the most balanced crops across world regions appear mainly to be fruits and vegetables.These geographic spread and evenness assessments complement the global value metrics by providing additional insights on extent and balance of use worldwide. This may be particularly useful as a means by which to highlight crops that are produced, traded, and/or consumed extensively worldwide, yet in relatively small quantities. For crops with significant use in many countries, and/or with considerable evenness in use across world regions, perhaps particularly regarding production, these metrics may indirectly indicate a strong degree of interdependence among countries and regions regarding PGRFA. Information on crops' contributions to national food supplies over the ca. 50 years from 1961 to 2009, based on FAOSTAT data, indicates that considerable change has occurred in terms of the diversity and abundance of crops globally. Khoury et al. (2014) documented an increasing richness of internationally traded crop commodities in national food supplies, and greater evenness in the contribution of the individual commodities to these supplies. While major cereals and sugar continued to be dominant, oil crops in particular increased enormously in their availability in food supplies, while regionally important staple cereals and starchy root and tuber species became further marginalized. These shifts have led to significantly greater similarities (i.e., homogeneity) among national food supplies around the world.This current assessment demonstrates that further change in the use of crops worldwide, not only in terms of contribution to food supplies but also regarding agricultural production and trade, is visible even within the four years analyzed (2015 to 2018). The results are presented as the relative change in the value of each crop from 2015 to 2018. Note that those crops with the greatest relative change are not necessarily the most utilized around the world, but simply those with the greatest growth (or decline) in use over the period.In terms of the crops that have changed the most in the period, each of the metrics provides different insights, including not only for those crops with the greatest positive change, but also those with the most marked declines (although for all metrics, there were many more crops that increased in use in the time period than there were crops that declined). Increases in production systems were especially visible for many herb and spice, nut, fruit, and pulse crops, while decreases were evident in an assortment of crops and crop use types. Increases in food supply metrics were particularly visible in crops such as coffee, cocoa, sunflower, dates, and various herbs and spices, while declines were seen in various root and tuber crops such as sweetpotatoes, cassava, and potatoes, as well as for sorghum, among others. Declines in trade were also visible for crops such as sorghum and cassava.Global tracking systems of research publications provide insights into the degree of research activity for the assessed crops. We calculated the number of research publications for each crop found in the Google Scholar online system, published between 2009 and 2019, by querying the titles of research articles based on each crop's common name(s), genus, and taxon (scientific) name (separately). Likewise, we queried the PubMed Central online archive of biomedical and life sciences journal literature for full-text results for each crop, based on its scientific name. Oil crops in particular increased in their availability in food supplies during this time, while regionally important staple cereals and starchy root and tuber species became further marginalized. These shifts have led to greater similarities (i.e., homogeneity) among national food supplies around the world, likely accompanied by losses of locally unique crop species diversity (Khoury et al. 2021). Greater numbers of commodity crops in national food supplies have been attributed primarily to increased international trade (Aguiar et al. 2020), even as diversity in import partners may have narrowed (Kummu et al. 2020), potentially indicating both increasing interconnectedness among, and vulnerabilities within, national food systems.Among the changes in global crop diversity evident in the past half century, the expansion of oil crops stands out as the most significant. In just two decades (1990 to 2010), the world's production of the two most dominant oil crops -soybeans and oil palm -more than doubled (Byerlee et al. 2016).The palm oil trade is the third biggest of all crop commodities, with products from this tropical crop now distributed in almost all the world's countries. Soybeans, meanwhile, have risen to the top of this list due to increase in demand both as a consumable oil as well as for animal feed and other purposes (Byerlee et al. 2016).This rapid expansion in oil crops has led to human health and social concerns due to widespread overconsumption (Popkin 2006;Pingali 2007;Kearney 2010;Byerlee et al. 2016). Major environmental challenges have also been created, including extensive deforestation (Vijay 2016), and significant greenhouse gas emissions (Alcock et al. 2022). Further, and unlike the Green Revolution, where production changed worldwide (Pingali et al. 2012), cultivation of these \"oil crop revolution\" crops has thus far been more restricted geographically, with a handful of countries including Brazil, Argentina, Malaysia, and Indonesia currently providing most of the supply (Byerlee et al. 2016).Current projections indicate that soybeans, oil palm, and other major oil crops including sunflowers, groundnuts, and rapeseeds and mustards are likely to continue to expand in global food supplies (Pacheco et al. 2017) and in terms of the geography of their production, for example with strong growth projected in Africa (Byerlee et al. 2016). A major challenge will be managing this growth while necessarily moving toward greater product quality and environmental sustainability (Byerlee et al. 2016;Voora et al. 2020). Expanding the use of diverse PGRFA in these crops is important to this future growth, including in combating emerging pests and diseases, increasing resource use efficiency, raising yields and creating faster production, adapting to new production areas, and deriving healthier oil products (Byerlee et al. 2016;Alcock et al. 2022).The use of oil crop PGRFA will also be essential to further diversification in the number of important crops in the sector. Though different regions have their preferred consumable oils, vegetable oils are typically comparable substitutes for one another (Byerlee et al. 2016). Rapid recent growth in the supply of avocado oil (Flores et al. 2019) and various tree nut oils (Jinadasa et al. 2022) provides evidence for further opportunities for new oil crops, while also highlighting the need for emphasis on product quality and minimization of environmental impacts (Green and Wang 2020;Maestri et al. 2020;Cervantes-Paz and Yahia 2021).While legume and other high protein crops have played a primary role in human nutrition since the dawn of agriculture, they have been given a new boost through the development of plant-based meat substitutes and analogs (Lemken et al. 2019;Tziva et al. 2020;Cusworth et al. 2021;Ferreira et al. 2021). This trend, and the underpinning momentum toward healthier food as well as environmental sustainability that have motivated it, have opened new opportunities for the cultivation of these plants, which were for some time considered mainly foods for those that could not afford meat (Castro-Guerrero et al. 2016).Modern meat analogs are plant-based replacements of animal meat, developed to mimic the taste and texture of ground beef, sausage, chicken, and other meat products (Kyriakopoulou et al. 2019). These analogs typically have high water concentrations, consist of 10-25% vegetable protein, and have small proportions of flavors, fats/oils, and binding and coloring agents (Egbert and Borders 2016). Modern meat analogs may represent an easier opportunity for meat consumers to decrease their meat consumption than to transition directly to traditional plant-based protein crops and products (Kumar et al. 2017;Hoek et al. 2011), although they present some deficiencies in terms of protein balance and quality compared to their animal protein equivalents (Gorissen et al. 2018;Hertzler et al. 2020).For meat analog purposes, pea protein is a current frontrunner in terms of functional properties and wide range of potential product applications (Krefting 2017;Kyriakopoulou et al. 2019;Boukid et al. 2021). Peas have several favorable attributes as a plant-based protein source: the crop has a high protein digestibility-corrected amino acid score (PDCAAS), it is easily broken down into its functional components of protein, starch and fiber, and its cultivation is considered environmentally friendly. Current pea production occurs in over 100 countries, and the global pea protein market was worth $1.8 billion in 2021; this is projected to reach $4.5 billion by 2027 (IMARC 2022).While peas have recently risen in research focus and consumer popularity due to the burgeoning meat substitute and analog markets, their further potential depends, in part, on the conservation, access to, and use of the crop's PGRFA, all of which have current gaps (Coyne et al. 2020). The same is often true for other major pulses (Ferreira et al. 2021;Bauchet et al. 2019;Considine et al. 2017) and certainly so for the many dozens of lesser-known leguminous crops that could play a larger role in human protein provision given further research and action, both in terms of supply and demand (Cheng et al. 2019;Popoola et al. 2022).Beyond legumes, there continues to be significant interest in the further development of alternative plant-based protein sources within the larger transition toward healthier and more sustainable food. Algal proteins have high protein content and a wide range of useful functional properties such as gelation, water and fat absorption, emulsification, and foaming capacity (Chronakis and Madsen 2011), as well as extremely fast production cycles (Bleakley and Hayes 2017). Intriguingly, algal proteins can balance those amino acids present in pulses and other plants, as the limiting amino acids in many legumes include methionine, cysteine, and tryptophan, while those in algal protein species are mainly histidine and isoleucine (Wang et al. 2021). The future of plant-based protein in the human diet appears to be bright, with extensive research needed to bring this potential to fruition.What people will eat in the future is a topic that has captured the imagination of both the scientific community (Manners and van Etten 2018;Gregory et al. 2019;Yu and Li 2022) and the public (Gertzman 2015;Beggs 2022;Briggs 2022). The assumption -well founded, if historical and current trends continue (Popkin 2006;Kearney 2010;Khoury et al. 2014;Vermeulen et al. 2020) -is that the foods that humans eat are likely to further change considerably in the coming decades.From the human health perspective, crops with greater nutritional quality or density than current staples are often listed as candidates for becoming the crops of the future. Emphasis has mainly been placed on greater consumption of vegetables, fruits, nuts, and seeds (Alae-Carew et al. 2020).Alternatives to major cereals with high nutrient density are also commonly proposed, for example other traditional cereals such as millets and sorghum (Saleh et al. 2013;Anitha et al. 2019), and pseudocereals such as quinoa (Bazile et al. 2016) and amaranth (Baraniak and Kania-Dobrowolska 2022). Less-globalized foods with high nutritional quality, including crops such as bambara groundnut (Vigna subterranea (L.) Verdc.) and other legumes, African eggplant (Solanum aethiopicum L.), and minor millets are also often listed (Gregory et al. 2019) even if they are not yet widely available outside of their regions of origin. Varietal diversity has also been proposed as a path toward increasing nutritional quality, as micronutrient levels can vary widely between crop varieties (Marles 2017;de Haan et al. 2019). Micronutrient density can be increased significantly through breeding \"biofortified\" varieties (Bouis and Saltzman 2017).As overconsumption of calories, fat, and salt are increasingly understood to lead to diet-related noncommunicable diseases including heart disease, Type-2 diabetes, and some forms of cancer (Popkin 2006), foods that are low in macronutrients relative to other nutritional factors have also come to be proposed as candidate crops of the future. While vegetables and fruits have again been the major area of focus, many other crops may contribute importantly to satisfying hunger without contributing excessive calories. Two root and tuber crops in the sunflower family (Asteraceae) with high levels of sweet, non-digestible oligosaccharides and inulin -yacon (Smallanthus sonchifolius (Poepp.) H. Rob.) and Jerusalem artichoke (Helianthus tuberosus L.) -serve as examples (Choque Delgado et al. 2013;Judprasong et al. 2018). Foods without gluten or other ingredients considered by some consumersand often proposed by their influencers -as detrimental to their health are also gaining in popularity (Jones 2017;Niland and Cash 2018), leading to new opportunities for alternative cereal crops and other plants.Environmental, climate change, and various labor and other social factors also combine with health concerns to motivate proposals for the crops of the future. While new ways to produce animal products are being innovated (Stephens et al. 2018), plant-based alternatives to meat and dairy are continuously rising in variety and availability (Haas et al. 2019;Clay et al. 2020) (also see Box 2). High sustainability and \"climate smart\" crops are also often discussed in comparison to current staple commodities (e.g., Jarvis et al. 2012).The specific crops and varieties that will emerge as the \"crops of the future\" are not straightforward to predict. While a general move toward greater consumption of minimally refined plant-based foods, and especially more vegetables and fruits, is widely advisable (Katz and Meller 2014), the true human health, sustainability, and other impacts of different crops and the foods made from them depend on a wide variety of factors (Katz and Meller 2014), with many likely tradeoffs between health, environment, and social goals (Chalupa-Krebzdak et al. 2018;Béné et al. 2019;Scheelbeek et al. 2020). What is certain is that both supply and demand changes can lead to significant shifts in consumption (Vermeulen et al. 2020). Equally certain is that the conservation, availability, and use of PGRFA will critically determine the potential of different crops to sustainably nourish humanity (Sellitti et al. 2020) as well as to adapt to changing environmental conditions (Alae-Carew et al. 2020).Information on national agricultural production, trade, and contribution of crops to food supplies may be used to indicate potential interdependence among countries and regions regarding PGRFA. Khoury et al. (2015Khoury et al. ( , 2016) ) linked the origins and primary regions of diversity of food and agricultural crops, defined as \"areas typically including the locations of the initial domestication of crops, encompassing the primary geographical zones of crop variation generated since that time, and containing relatively high species richness in crop wild relatives\" with their current (years 2009 to 2011) use around the world in national agricultural production and food supplies. Production systems and food supplies were found to comprise a wide range of crops deriving from many different primary regions of diversity, indicating a thoroughly interconnected global food system regarding the geographic origins of food plants. As a global average across countries, 71.0% of total production quantity, 64.0% of harvested area, and 72.9% of production value were of crops whose origins and primary regions of diversity were not in the same region as where currently produced; likewise 65.8% of plant-based calories, 66.6% of protein, 73.7% of fat, and 68.7% food weight derived from crops whose origins and primary regions of diversity were in other regions on the planet from where currently available for consumption.Building on this previous work, this current assessment calculates the significance of each crop in terms of agricultural production, trade, and contribution to food supplies, outside of its geographic origins and primary region(s) of diversity. The underlying assumption is that if a crop has considerable use outside of its origins and primary region(s) of diversity, then that use is likely dependent on PGRFA acquisition from elsewhere, including origin regions. Thus, a crop with a high use outside of its origins and primary region(s) of diversity is likely to be one where there is considerable interdependence globally for its PGRFA.Using the same 2015 to 2018 FAOSTAT data described in the crop use domain, the highest interdependence crops in terms of global production for eight different crop use types of interest are presented in Figure 5. The results are presented as the proportion of the production of each crop outside its origins and primary region(s) of diversity, compared to total production of the crop worldwide.Across all metrics and all crop use types, the foremost insight from the analysis on estimated interdependence regarding PGRFA in terms of global production, trade, and contribution to food supply is that the great majority of crops have high estimated interdependence values. Note that these values do not directly indicate extent of crop utilization around the world, but, rather, simply the high degree of use outside of crops' origins in the context of crops' total use worldwide.In terms of the crops with the highest interdependence values, these include plants from all the crop use types, and also differ across metrics -essentially the high interdependence crops are a global cornucopia of plants. On the other hand, those with the lowest interdependence values are more clearly discerned, as the crops that are primarily still cultivated in their primary region(s) of diversity (such as mate, karite nut, gooseberries and currants, cinnamon, and yautia/cocoyam) and/or are significant in food supplies mainly within their primary region(s) of diversity (such as yams, various millets, dates, and olives). We note that the aggregation of FAOSTAT values in general crop commodities makes calculation of accurate interdependence values for those crops listed within these general commodities particularly challenging.IT/GB-9/22/16.2/Inf.1Figure 5: Significance of each crop in terms of agricultural production outside of its geographic origins and primary region(s) of diversity. The results are presented as the proportion of the production of each crop outside its origins and primary region(s) of diversity, compared to total production of the crop worldwide. The subfigures display the ten crops with largest values per crop use type. For crops such as maize with multiple uses, these are included in all relevant use type categories; values for these crops are total global, not separated by specific use.Change in significance of each crop in terms of agricultural production, trade, and contribution to food supplies, outside of its geographic origins and primary region(s) of diversity Information on change in the degree of estimated interdependence among countries regarding PGRFA over the ca. 50 years from 1961 to 2009, based on FAOSTAT data, has indicated that use of crops outside their origins and primary region(s) of diversity increased in concert with economic and agricultural development and the globalization of food systems, with estimated interdependence regarding production value and production quantity, as well as fat and food weight in food supplies, increasing the most among measurable metrics (Khoury et al. 2015(Khoury et al. , 2016)).This current assessment demonstrates that further change in the significance of crops outside their origins and primary region(s) of diversity is visible even within the four years analyzed (2015 to 2018). The results are presented as the relative change in the proportion of the use of each crop outside its origins and primary region(s) of diversity, compared to total use of the crop worldwide, over this period.The list of plants produced within many countries and regions, and consumed by the majority of humanity, is much longer than just wheat, rice, maize, and a few other staple cereal, pulse, and root and tuber crops. Oil crops such as soybeans, oil palm, sunflowers, and groundnuts, for example, represent not only the most important contributors to fat from plants in global food supplies, but now are among the top ten crops in contribution to total calories (see Box 1).The list of crops upon which the world fundamentally depends for its food also extends to many vegetable, fruit, nut and seed, herb and spice, and stimulant crops. Onions, for example, are important production crops (tonnes produced) in 92 countries (45% of total countries), behind only maize, potatoes, tomatoes, cabbages, canola, and wheat in terms of number of important producing countries and are significant contributors to the food supplies (quantity in g) of 150 countries (86.9%), including being important crops in terms of import value in 116 countries (58.3%). Tomatoes are important production crops in 114 countries (55.6% of countries) and are significant contributors to the national food supply (weight in g) of 155 countries (89.6%), including being important crops in terms of import value in 140 countries (70.8%). Chillies and peppers (Capsicum crops), meanwhile, are important production crops in 56 countries (27.1%). Consumed daily by approximately a quarter of the world's population (Halikowksi Smith 2015), chillies and peppers are significant contributors to the national food supply (quantity in g) of 17 countries (10%) and are important crops in terms of import quantity in 82 countries (41.5%). All three of these essential gifts to the world's cuisines in terms of flavor, acidity, micronutrients, and other nutritional and cultural aspects have very high interdependence values as measured by the substantial degree of production, trade, and contribution to food supplies outside of their regions of origin.Other crops consumed widely around the world are very rarely considered in discussions around genetic resource interdependence and, further, are essentially absent from reported food and agricultural statistics. These include crops consumed in relatively small quantities but present in an enormous diversity of processed products as thickeners or stabilizers, such as gum arabic (various wild-harvested species of Acacia Mill. and occasionally Combretum Loefl., Albizia Durazz., and other leguminous tree genera) and guar gum (cultivated cluster bean [Cyamopsis tetragonoloba (L.) Taub.]) (Mudgil et al. 2014), among others.Finally, while most of the long list of crops that interconnect the world have contributed to global production, trade, and food supplies for centuries, various other crops are rapidly expanding in terms of the numbers of countries producing the plants and the consumers eating them. Quinoa (Chenopodium quinoa Willd.), which has grown from a regionally important crop to one cultivated in over 100 countries within the past half-century (Bazile et al. 2016), is a well-known example. Other examples of crops that appear to be spreading include chia (Salvia hispanica L.) (Bochicchio et al. 2015) and rocket (various Eruca Mill. and Diplotaxis DC. spp.) (Yaniv et al. 1998). As indicated in FAOSTAT in terms of growth in global production quantity (tonnes) solely within recent years (2015 to 2018), hemp, chickpeas, cowpeas, avocados, hops, raspberries, many herbs and spices, and various other crops may also be on a steep upward trajectory currently.While most of the global food and agricultural crop production, trade, and contribution to food supplies, as measured by those metrics reported in FAOSTAT, is of crops currently listed in Annex 1 of the International Treaty on Plant Genetic Resources for Food and Agriculture and thus included in its Multilateral System of Access and Benefit Sharing, the remaining proportion is not. This proportion is substantial, for example approximately 41.0% of total global production quantity and 28.7% of calories in global aggregate food supplies are of crops not listed in Annex 1 (Khoury et al. 2015). The most obvious gaps include oils (groundnuts, oil palm, rapeseeds and mustards, and soybeans) and sugars (sugar beets and sugarcane).If, instead, a comparison was made of the crops listed in Annex 1 versus all crops contributing importantly to global production, trade, and food supplies (even if only those crops for which global statistical information is available), current Annex 1 crops would appear to reflect global food and agriculture much more poorly. Among those on the long list of globally important crops not currently on Annex 1 are almonds, amaranth, apricots, avocados, blueberries, buckwheat, cashews, cherries, chillies and peppers, coconuts, coffee, cotton, cranberries, cucumbers, dates, figs, garlic, ginger, grapes, guavas, hazelnuts, kiwi fruit, lettuce, mangoes, melons, millets (various), olives, onions, papayas, passionfruit, peaches and nectarines, pepper (Piper L.), pineapples, plums, pistachios, pumpkins, quinoa, raspberries, sesame, spinach, tea, tomatoes, walnuts, watermelons, and zucchini.That the world is warming rapidly is no longer in doubt. According to the Annual Report of the National Centers for Environmental Information for 2021, the years 2013-2021 all rank among the ten hottest years on record (NOAA 2022). Not only are temperatures increasing but weather patterns are shifting, and the frequency of extreme weather events is on the rise. The effect of changing climates on the environments in which crops grow are many and varied. While some higher latitude regions might benefit from longer growing seasons (King et al. 2018) and possibly increased CO2 fertilization (Degener 2015), overall, climate change is expected to impact negatively on global agricultural production (IPCC 2019). A greater frequency of early-, mid-or late-season droughts, more intense rainstorms leading to waterlogging or flooding, higher or lower than 'normal' temperatures at different plant growth stages, and a greater occurrence of high winds, will all take their toll.In addition to the direct effects of climate change, agriculture will increasingly have to contend with other related effects such as a shifting spectrum of economically damaging pests (Skendžić et al. 2021), diseases (Luck et al. 2011;Velásquez 2018) and weeds (Vilà et al. 2021), as well as rising water tables, soil erosion, salt intrusion, and damage to infrastructure (IPCC 2019). For most farmers, the coming decades will require having to continually adapt to evolving conditions.IT/GB-9/22/16.2/Inf.1Although increasingly reliable climate modeling will facilitate the development of coping strategies (Joshi et al. 2015), given the inherently uncertain nature of future climates, a broad range of strategies will be needed in the transition to climate smart agriculture. These will involve technological, socioeconomic and policy changes. Practices such as planting dates, irrigation regimes, and pest and disease management will all have to be adapted, updated, and adjusted (Rosenstock et al. 2016).Whatever the agricultural strategy, almost all will depend, to a greater or lesser extent, on the availability of appropriate PGRFA. This will be the case whether efforts are made to increase resilience through the deployment of greater spatial or temporal diversity (Lin 2011), or through introducing and/or breeding new crops or varieties that are better able to cope with changing environmental and agronomic conditions (Joshi et al. 2017). Crops that have an enhanced ability to withstand high temperatures, drought, waterlogging, or high levels of soil salinity, or that can resist or tolerate new pests and diseases, will all be critical (Galluzzi et al. 2020).There are many ways in which PGRFA can contribute to ensuring agriculture will be able to meet future food demands, for example:-Introducing new varieties of currently grown crops that are better adapted to new climatic regimes from areas that have, or had in the recent past, an analogous climate and similar agro-ecological conditions (Bos et al. 2015;Joshi et al. 2017). However, these new varieties must meet local cultural preferences.-Breeding new varieties of locally important crops to be better adapted to new abiotic and biotic conditions, while at the same time maintaining or enhancing their productivity and preferred food and agronomic characteristics (Mickelbart et al. 2015;Rane et al. 2021). In recent years there has been a growing interest in looking for genes that contribute to climate resilience, not only in cultivated germplasm of crop species but also in related cultivated species and in wild relatives (Redden et al. 2015;Cortés and López-Hernández 2021). Genes for heat and drought tolerance, for example, have been successfully transferred from the tepary bean (Phaseolus acutifolius) to the more widespread common bean (Phaseolus vulgaris) (Burbano-Erazo et al. 2021). Given the on-going and rapid nature of climate change, it is important to make every effort to speed up these breeding processes and ensure there is a continuous pipeline of new varieties (Atlin et al. 2017).-Introducing new crops from regions with analogous climates. Growing new and different crops presents an opportunity to adapt agriculture to changing conditions. As temperatures rise, it will become increasingly possible, even necessary, to grow crops that were previously only to be found in warmer climes. The following crops, for example, have been proposed to be produced on a large scale in UK in the future: almonds, avocados, butternut squash, durum wheat, grapes, kiwi, navy beans, nectarines, olives, peaches, sunflower, soybeans, tea and wasabi (Pole and Mills 2008). However, while switching to new crops as temperatures rise may be a viable option for many temperate areas of the world, it may be less appropriate for those mainly tropical regions that are already only able to grow the most heat-tolerant of crops.-Domesticating and introducing new crop species from the wild. De novo domestication could, in certain circumstances, help agriculture adapt, despite the complexity of having to overcome many biological, physical, economic, and cultural barriers. Increasingly, scientists are looking for plant species that could become new crops (von Wettberg et al. 2020). Vigna stipulacea, for example, has fast growth and broad resistance to pests and diseases (Takahashi et al. 2019), and several species of Salicornia L., a potential vegetable crop, can be grown in hot regions with saline soils, where little else will survive (Patel 2016).The examples listed above represent a progression in terms of their ease of development and likelihood of adoption by farmers and consumers. Changes that cause the least disruption to existing practices and preferences are the most likely to be adopted (Rickards and Howden 2012), actualizing the transformational changes required for agriculture to adapt to the new and evolving climates in the coming decades. These processes may also differ with reference to the existing Multilateral System of the Plant Treaty, with accessing PGRFA of major staple cereals, pulses, and some other crops already well incorporated, while PGRFA of many proposed 'crops of the future' (see Box 3) are currently outside the scope of the Multilateral System. Global summary germplasm distribution statistics are useful to identify the most distributed crops globally, but do not provide information on the geographic extent or evenness of demand for PGRFA worldwide. To understand the current extent of geographic spread of demand for PGRFA of assessed crops, for each crop we calculated the average annual number of countries to which the crop was distributed, using the same 2015 to 2019 distributions data from the Data Store of the of the International Treaty on Plant Genetic Resources for Food and Agriculture. The results are presented as the proportion of countries receiving the crop compared to the total number of countries reported in the Data Store during the period (a total of 179 recipient countries were reported in the dataset).In terms of the crops with the greatest geographic spread regarding country recipients of germplasm, across all crop use types, the most widely distributed crops generally paralleled the results for total samples distributed. Global staple cereals such as wheat, rice, maize, and barley were distributed to an average of 100.3, 68.8, 65.3, and 58.8 countries per year, respectively, with pulses such as chickpeas, faba beans, lentils, and common beans also distributed to many countries. Also evident in this dataset was wide variation in numbers of recipient countries across the entire set of crops. As a whole, significant crops in terms of geographic extent of germplasm distributions include a broad range of plants from a variety of crop types.To understand the current evenness or balance worldwide of PGRFA distribution for each crop, we compared its quantities of germplasm received across world regions, using the same 2015 to 2019 distribution data from the Data Store of the of the International Treaty on Plant Genetic Resources for Food and Agriculture. The most geographically even/balanced crops in terms of germplasm distribution, for eight different crop use types of interest, are presented in Figure 7. The results are presented based on a mathematical metric of evenness called the Gini coefficient, in this case with values close to 100 representing high evenness in receipt of quantities of germplasm samples across regions, and those close to 0 representing unevenness. Note that those crops with the highest evenness values are not necessarily the most distributed around the world, but simply those with the greatest balance in quantities of distributions received by all world regions.In terms of the crops with the greatest regional balance regarding receipt of germplasm, across all crop use types, the most evenly distributed crops also paralleled fairly well those most distributed in terms of quantities of samples and geographic spread. Examples of additional crops with relatively high evenness included bananas, eggplants, alfalfa, and sweetpotatoes. Also evident in this dataset was wide variation in evenness of distributions across the entire set of crops. These geographic spread and evenness assessments complement the global value metrics by providing additional insights on extent and balance of demand for germplasm worldwide. For crops with significant distributions to many countries, and/or with considerable evenness in receipt of germplasm samples across world regions, these metrics directly indicate a strong degree of interdependence among countries and regions regarding these PGRFA. In a complementary metric on new crop varieties, we calculated an average annual number of varietal releases for each crop worldwide from 2015 to 2019 using data from the FAO World Information and Early Warning System on Plant Genetic Resources for Food and Agriculture (WIEWS). These data provide information in terms of counts of varieties released of different crops by country, as reported by national focal points to the FAO. Crops with the greatest number of varietal releases globally, for eight different crop use types of interest, are presented in Figure 10. The results are presented as the proportion of releases of the crop globally, compared to total releases of all crops globally per crop use type.Varietal releases of a total of 204 different crops assessed in this study were reported in the FAO WIEWS varietal release dataset, with a total of 5933.3 releases made on average annually for the crops as a whole. Across all crop use types, in terms of crops with large numbers of varietal releases, a variety of crops and crop use types were among the most significant. These included various cereals (maize, wheat, sorghum, rice, and barley), vegetables (tomatoes, cabbages, lettuce, chillies and peppers, cucumbers, onions, beets, and carrots), oil crops (soybeans, sunflowers, and rapeseed and mustards), roots and tubers (potatoes), fruits (melons, watermelons, apples, and peaches and nectarines), pulses (common bean, soybeans, and peas), sugar crops (sugar beets), and forages (lolium and fescue). Also evident in this dataset was wide variation in numbers of varietal releases across the entire set of crops. As a whole, significant crops in terms of global varietal registrations include a broad range of plants from a variety of crop types. The International Panel on Climate Change (IPCC) has estimated that agriculture is directly responsible for up to 8.5% of all greenhouse gas (GHG) emissions, with a further 14.5% arising from land use change, mainly due to deforestation in the conversion of wildlands to agricultural fields (Shukla et al. 2019). While agriculture must adapt to the effects of a warming climate (see Box 5), it is equally important that every effort be made to reduce its carbon and other major GHG footprints. This can be achieved in two main ways: a) increasing the amount of carbon captured and b) reducing the amount of GHG emitted. A third, more controversial approach by which agriculture can contribute to reducing anthropogenic GHG emissions is through increased production of biofuel (see Box 8).While a range of agronomic and other measures can significantly reduce agriculture's carbon footprint, the use of PGRFA to breed new and productive but also climate-friendly varieties should not be overlooked. Increasing carbon capture can be achieved, for example, through:-Breeding larger plants with more extensive and deeper root systems, that have greater above ground biomass or that are better suited to production in high C-capture cropping systems. Such measures are only effective, however, if the carbon remains locked up for a considerable period, e.g., through contributing to a sustained increase in soil carbon. Some major new initiatives are exploring the breeding of crops for greater C-capture (e.g., Salk Institute for Biological Studies 2022).-Planting more perennial crops, which generally capture more carbon than annuals because of their larger root systems and greater overall biomass. There is thus a significant potential to increase soil carbon through replacing annual crops with perennials and by incorporating woody perennials in agroforestry systems (Scherr and Sthapit 2008). It may be feasible to convert annual crop species into perennials, for example maize, oat, rice, rye, sorghum, soybean, sunflower, and wheat (Cox et al. 2002;Porterfield 2019). In the Yunnan Province of China, a perennial rice cultivar (PR23), has been successfully developed through a cross between annual cultivated rice (Oryza sativa L.) and a perennial wild relative from Africa (Oryza longistaminata A. Chev. & Roehr.) (The Land Institute 2022).Reducing agricultural GHG emissions can be achieved, for example, through:-Reducing the need for artificial nitrogen fertilizer, the use, or over-use, of which is one of the main causes of GHG emissions from agricultural production. These arise both as CO2 from fertilizer manufacture, transport and application, and as nitrous oxide (N2O) from the denitrification of nitrate by microorganisms in the soil. While recognizing the importance of N fertilizer in maintaining productivity and hence reducing the need to farm additional land, every effort should be made to produce and use it as efficiently as possible. PGRFA can play an important role in helping reduce the use of N fertilizer through breeding varieties that can uptake and use N more efficiently. Genetic advances in nitrogen use efficiency (NUE) appear possible in many crops (ISAAA 2014; Lammerts van Bueren and Struik 2017).-Reducing nitrous oxide emissions. Nitrous oxide (N2O) is about 300 times more potent as a greenhouse gas than CO2 over a 100 year period. 62% of the world's anthropogenic N2O is from agricultural production and an additional 26% from land clearing and biomass burning (EDGAR 2022). Reducing N fertilizer application is key to cutting N2O emissions. Other approaches are also being explored. Brachialactone, for example, a chemical released from the roots of forage Brachiaria species, can significantly reduce nitrification by microorganisms in the soil, resulting in less N2O release (Subbarao et al. 2009). It should be possible to genetically enhance this effect as well as find or enhance compounds having a similar effect in other crops.IT/GB-9/22/16.2/Inf.1 -Enhancing biological nitrogen fixation. Food and forage legumes get a large proportion of their N needs directly from the atmosphere through a symbiotic association with bacteria of the genus Rhizobium. Residual N from legume cultivation can also contribute to meeting the needs of companion crops or subsequent crops in the rotation. Currently around 30 food legume and 20 forage legume species are used extensively in agriculture (as tracked by FAOSTAT and/or Annex 1 of the Plant Treaty) and a greater use of these, and possibly other species, would help reduce the overall need for artificial N fertilizer. The amount of nitrogen 'fixed' can also be increased through genetic improvement of legume crops or their Rhizobium symbionts (Provorov 2003). Further, several breeding programmes worldwide aim to increase the amount of N fixed by non-leguminous species, in particular maize, rice, sorghum, and wheat (Rosenblueth et al. 2018).-Reducing methane emissions from rice paddies. Methane (CH4) has about 25 times the potency of CO2 as a greenhouse gas over a 100-year period. 40% of all anthropogenic methane emissions are caused by agriculture, of which rice paddies contribute about 8% and ruminant livestock about 32% (UNEP 2021). Reduced CH4 emissions from paddy fields could result from breeding rice varieties that perform well under reduced flooding or that release less C below ground, thereby reducing methanogenesis by soil microorganisms (Aulakh et al. 2001).-Reducing methane emissions from livestock. Several approaches are currently being explored, for example, identifying and/or breeding plant-based feeds that have lower fiber or higher polyphenolic content, both of which have anti-methanogenic properties (Jayanegara et al. 2009) (see Box 2).-Reducing carbon emissions through breeding of crops requiring shorter cooking times and thus less cooking fuel. Promising steps have been taken in this direction for crops such as common beans (Wiesinger et al. 2021).In 1983, the FAO conference adopted the International Undertaking on Plant Genetic Resources, a voluntary agreement that was adhered to by 113 countries. The Objective of the Undertaking was to promote international collaboration \"to ensure that plant genetic resources of economic and/or social interest, particularly for agriculture, will be explored, preserved, evaluated and made available for plant breeding and scientific purposes...\" and furthermore that such resources \"should be available without restriction.\" (FAO 1983).The Undertaking also recognized that the global playing field was far from level and that unrestricted access to plant genetic resources was largely of benefit to those countries and institutions that had the capacity to use them. Article 6 therefore stated that international cooperation \"will, in particular, be directed to … establishing or strengthening the capabilities of developing countries … with respect to plant genetic resources activities, including plant survey and identification, plant breeding and seed multiplication and distribution, with the aim of enabling all countries to make full use of plant genetic resources for the benefit of their agricultural development...\" (FAO 1983).Unfortunately, despite this stated intention and significant advances in many middle-income countries, only relatively limited progress was made in the 1980s and 1990s in advancing the capacity of the lowest income countries to make use of PGRFA (FAO 1997). Thus, the need to strengthen capacity was again reiterated in the text of the International Treaty on Plant Genetic Resources for Food and Agriculture that superseded the Undertaking when it came into force in 2004.Article 13.1 of the Plant Treaty states: \"The Contracting Parties recognize that facilitated access to plant genetic resources for food and agriculture which are included in the Multilateral System constitutes itself a major benefit of the Multilateral System …\" (FAO 2002). However, in the absence of the ability to use the genetic resources to which countries have facilitated access, such resources are of limited value. Thus, Article 13.2 lists training and capacity building among the priority elements of benefit-sharing within the Multilateral System. Article 7.2a of the Plant Treaty, meanwhile, provides that international cooperation between Contracting Parties shall particularly be directed to \"establishing or strengthening the capabilities of developing countries and countries with economies in transition with respect to conservation and sustainable use\" of PGRFA.The second Global Plan of Action for PGRFA (FAO 2011) likewise emphasizes the importance of building capacity to make use of materials in the Multilateral System, with 5 of the 18 priority activities focusing on strengthening institutional capacity and promoting greater international collaboration to support national programs. One priority activity specifically aims to build and strengthen human resource capacity.While it is difficult to get accurate figures on how much institutional capacity has strengthened over recent years, and conversely how much remains to be done, available data would indicate there is still a considerable way to go. For example:-Low-income economy countries as classified by the World Bank received the lowest proportion of total germplasm distributions between 2012 and 2019 made using the Standard Material Transfer Agreement (SMTA) of the Plant Treaty, totaling 10.8% of all distributions worldwide. This said, lower middle-income economies received the highest amount (38.7% of total), with upper middle-and high-income countries receiving somewhere in between (26.7% and 23.8%, respectively). Those 45 countries identified by the United Nations as a least developed country (LDC) were the recipient for 11% of total distributions; those 32 classified as landlocked developing countries (LLDC) 12.5% of total; and those 30 as small island developing states (SIDS) 0.3% of total (Khoury et al. 2022).-In the FAO WIEWS database providing data from 2012 to 2014, three of the 27 countries listed by World Bank as having low-income economies provided data on the number of their cereal breeders: Ethiopia, Madagascar, and Uganda. They reported an average of 2.7 breeders per country. By contrast, the seven countries with high income economies (Australia, Italy, Japan, Estonia, France, Germany, and UK) reported an average of 21.7 cereal breeders per country. This means that, taking population size into account, the low-income countries had less than 30% of the number of cereal breeders per head of population compared to the high-income countries, yet according to World Bank Development Indicators for 2019 (World Bank 2022b), their agricultural sectors were 17x more significant as a percentage of national GDP.-Another indicator of a country's status with respect to its plant breeding capacity is the ratio of public to private breeders. Although there are obvious exceptions, with some countries investing heavily in their public plant breeding sector, for most free market economies, increased economic development has tended to lead to an increase in private sector plant breeding. This is reflected in the FAO WIEWS 2012 to 2014 data for cereal breeders: in the three reporting countries having low-income economies, less than 25% of the plant breeders were in the private sector while about 80% of the cereal breeders in the seven high income countries were working in the private sector.-Membership in the International Union for the Protection of New Varieties of Plants (UPOV) is an indicator that a country has a sufficiently advanced plant breeding and seed sector to want to take advantage of Plant Breeders Rights. While there are political and other reasons why a country might not wish to join, nevertheless it is notable that of the 27 countries classified by the World Bank (World Bank 2022a) as having low-income economies in 2021-22 (having an annual per capita GDP of less than US $1,045), none are members of UPOV. Furthermore, of the 55 countries classified as lowermiddle income (having an annual per capita GDP of between US $1,046 and US $4,095) only nine are members. Indeed, of the 76 UPOV country members, more than 85% are classified as having uppermiddle-or high-income economies.Despite gaps in accurate and up-to-date information, it is clear from available data that many countries still lack the ability to benefit significantly from having access to the vast genetic diversity that is available to them in the Multilateral System of Access and Benefit Sharing under the Plant Treaty.IT/GB-9/22/16.2/Inf.1Global tracking of ex situ crop collections holdings provides insights into the global supply of PGRFA. We calculated the number of ex situ germplasm accessions maintained worldwide for each crop combining data from the FAO World Information and Early Warning System on Plant Genetic Resources for Food and Agriculture (FAO WIEWS), the Genesys Plant Genetic Resources portal (Genesys PGR) , and the Global Biodiversity Information Facility (GBIF) ('living specimens' only included from GBIF). Assessments were made both at the taxon/crop level as well as at the genus level, the latter to be inclusive of supply of associated genetic resources, including crop wild relatives.Crops with the greatest PGRFA supply, in terms of numbers of accessions of the taxon/crop held in ex situ facilities reported in these databases, for eight different crop use types of interest, are presented in Figure 11. The results are presented as the proportion of accessions of the crop, compared to total accessions of all crops per crop use type.Accessions of a total of 354 different crops assessed in this study were reported in the combined ex situ collections dataset, with a total of 3,724,231 accessions at the taxon/crop level and 7,973,490 accessions at the genus level in ex situ collections, as a sum of all crops. Across all crop use types, in terms of crops with the greatest supply of PGRFA, those crops with the greatest numbers of accessions included cereals (wheat, rice, barley, maize, sorghum, oats, and various millets), pulses (common bean, soybeans, chickpeas, peas, groundnuts, cowpeas, lentils, faba beans, and pigeonpeas), forages (clovers, alfalfa, and Lolium), vegetables (cabbages, tomatoes, and chillies and peppers), fruits (grapes and apples), fibers (flax and cotton, and roots and tubers (potatoes). Also evident in this dataset was wide variation in numbers of ex situ accessions across the entire set of crops. As a whole, significant crops in terms of global ex situ supply evidently include a broad range of plants from a variety of crop types.IT/GB- An estimation of the degree to which the global supply of PGRFA represents the range of diversity present in each crops' primary region(s) of diversity was calculated using the same combined FAO WIEWS, Genesys PGR, and GBIF dataset. Coverage was assessed by identifying the number of accessions originally collected within the primary region(s) of diversity and comparing this to the harvested area (Ha) of the crop (FAOSTAT data) within the primary region(s) of diversity. As above, values were calculated both at the taxon/crop and genus level. The results are presented as the proportion of accessions of the crop per unit area in the primary region(s) of diversity.A total of 248 different crops assessed in this study were found to have ex situ accessions originally collected from their primary region(s) of diversity. In terms of crops considered best represented regarding coverage of their primary region(s), these include a broad range of crops of different crop use types, such as pawpaw, jojoba, canary seed, kiwicha, oca, amaranth, ulluco, kaniwa, beets, sweetpotatoes, jicama, mashua, lupins, dill, roselle, arracacha, cherimoya, faba beans, and many others. Also evident was wide variation in estimated coverage of crops' primary region(s) of diversity, across the entire set of assessed crops in this study.Significant ex situ germplasm collections of PGRFA are maintained outside of those national, regional, and international genebanks mainly represented in global databases such as FAO WIEWS and Genesys PGR, for example in botanic gardens. To assess the degree to which PGRFA of the assessed crops are represented in the world's botanic gardens, information on botanic institutes holding collections of each crop was calculated from Botanic Garden Conservation International's PlantSearch database, both at the taxon/crop and genus level.Crops with the greatest PGRFA supply in botanic gardens, as calculated at the taxon/crop level, for eight different crop use types of interest, are presented in Figure 13. The results are presented as the proportion of unique botanic collection records for each crop, compared to total unique botanic collection records across all crops in each crop use type.A total of 354 different crops assessed in this study were reported conserved in botanic institutions. In terms of crops represented in the greatest numbers of botanic gardens, the results are very different from the statistics for ex situ genebank collections. A wide variety of mainly perennial crops and their genera are in the most botanic institutions, with the top crops including apples, beech nuts, pears, sugar maple, currants, chillies and peppers, hazelnuts, lavender, plums, clovers, elderberries, rosemary, and cabbages. These crops represent the spectrum of crop use types, and mainly appear to reflect plants chosen for display in garden settings rather than predominantly for PGRFA purposes. Also evident was wide variation in numbers of botanic institutions across the entire set of assessed crops in this study. As a whole, assessed crops held in botanic gardens evidently include a broad range of plants from a variety of crop use types, and these differ widely from those conserved in national and international genebanks.IT/GB-9/22/16.2/Inf.1Figure 13: Supply of crop genetic resources in botanic garden collections. Metrics are presented per crop as the proportion of unique botanic garden records for each crop, compared to total unique botanic garden records across all crops in each crop use type. The subfigures display the ten crops with most records per crop use type.For crops such as maize with multiple uses, these are included in all relevant use type categories; values for these crops are total global, not separated by specific use.The Global Biodiversity Information Facility (GBIF) is the world's leading global repository for openly accessible biodiversity resources, including research specimens such as herbarium records and their associated data. We calculated research record supply of assessed crop PGRFA based on records reported in GBIF, both at the taxon/crop level as well as at the genus level. The results are presented as the proportion of records of the crop in GBIF, compared to total records of all crops in GBIF.Research samples of a total of 321 different taxa/crops and 348 crop genera assessed in this study were reported available in GBIF, with a sum total of 95,876 records across all crops at the taxon/crop level and 310,985 records across all crops at the genus level found in GBIF. Across all crops and crop use types, in terms of crops with the greatest numbers of GBIF research samples, these include cereals (e.g. sorghum, maize, rice, pearl millet, wheat, barley, and finger millet), pulses (e.g. common bean, cowpeas, groundnuts, bambara beans, lupines, faba beans, and pigeonpeas), roots and tubers (e.g. sweetpotatoes, cassava, yams, and potatoes), vegetables (e.g. eggplants, okra, chillies and peppers, cabbages, and tomatoes), and forages (e.g. clovers, alfalfa, and vetch). Also evident was wide variation in numbers of samples in GBIF across the entire set of assessed crops in this study. As a whole, assessed crops with considerable GBIF records evidently include a broad range of plants from a variety of crop use types.Understanding the availability of nucleotide, protein, structure, genome, genes, and other related information provides insights into the global supply of genetic sequence data (GSD) and other related data related to PGRFA. Policy discussions are ongoing about availability of this data (see Box 9) are ongoing, where the term Digital Sequence Information (DSI), which attempts to encapsulate all these data and potentially other forms of data on PGRFA, still requires a definition.We calculated the supply of GSD and other related data at four levels -nucleotide, protein, genome, and gene -based on information held for each crop taxon in the National Center for Biotechnology Information (NCBI)'s Entrez database. This database comprises one of the three global GSD and other related data repositories, which are connected within the International Nucleotide Sequence Database Collaboration (INSDC). The other two repositories are the DNA Data Bank of Japan (DDBJ) and the European Molecular Biology Laboratory -European Bioinformatics Institute (EMBL-EBI); these share data across their platforms.Crops with the greatest supply in terms of nucleotide sequences, as calculated at the taxon/crop level, for eight different crop use types of interest, are presented in Figure 14. The results are presented as the proportion of nucleotide resources of the crop, compared to total nucleotide resources of all assessed crops.GSD and other related data entries of a total of 352 different taxa/crops assessed in this study were reported in the NCBI database, with a sum of 68,674,745 nucleotide sequences, 47,801,011 protein sequences, 317 genomes, and 6,434,966 gene sequences available. Across all crops and crop use types, in terms of crops with the greatest numbers of nucleotide sequence resources, these included cereals (e.g. wheat, maize, barley, rice, and sorghum), vegetables (e.g. cabbages, tomatoes, beets, chillies and peppers, turnips, and onions), pulses (e.g. soybeans, groundnuts, chickpeas, and common bean), tobacco, forages (e.g. lolium, clovers, and alfalfa), oil crops (e.g. soybeans and rapeseed and mustards), fruits (e.g. various citrus crops as well as grapes), and a variety of other crops such as cotton, hops, sugar beets, and agave. Those crops with the greatest amounts of GSD resources varied by the four metrics (nucleotide, protein, genome, and gene). Clearly evident was wide variation in numbers of GSD resources across the entire set of assessed crops as well as across the GSD metrics in this study. As a whole, assessed crops with considerable GSD resources evidently include a very broad range of plants from a variety of crop use types.IT/GB-9/22/16.2/Inf.1 The subfigures display the ten crops with most nucleotide resources per crop use type. For crops such as maize with multiple uses, these are included in all relevant use type categories; values for these crops are total global, not separated by specific use.While humanity has burned wood and other forms of plant biomass from time immemorial, interest in its conversion into gaseous or liquid fuel (biofuel) has taken off in recent decades as attention has focused on finding alternatives to fossil fuels. Hailed by some as a significant contributor to reducing overall greenhouse gas (GHG) emissions, the net reductions in GHG emissions are frequently less than hoped for and in some situations might even be negative (Jeswani et al. 2020).The real potential of biofuel is likely to be highly plant and process specific. The net reduction in emissions of biofuel compared to fossil fuel depends on many factors including the type of crop and the nature and amount of energy required for its production, processing, and transport. Recent efforts to compare the environmental impacts of biofuels using whole Life Cycle Assessment (LCA) methodologies (i.e., from production to final use) have shown a very wide range of potential impacts (Reijnders 2021).Biofuel crops are also feared to be unwanted competitors with food crops for land and other resources (Muscat et al. 2020). Two main approaches are being explored to minimize resource competition between biofuel and food crops: a) producing biofuels from crop residues and other by-products and b) growing biofuel crops on marginal lands that are unsuitable for food production (or forestry).While many food crops have been considered for use as biofuel material (including maize, canola, sugar beet, sugarcane, coconut, oil palm, and soya beans), it is their residues (straw, husks, etc.), that provide a much less controversial source of biofuel feedstock. The lignocellulose in such residues represents a potentially important source of energy, even though more processing is required than for starch or sugar to produce the sugar monomers required for fermentation into fuel. It thus makes sense to breed varieties of food crops that have more and better-quality straw and other by-products that can be used to produce biofuel after the food harvest. Present-day varieties of many crops having high lignocellulosic straw biomass tend to have a low grain yield potential. However, this association may be possible to break through further genetic improvement (Dash et al. 2021).Many possibilities exist for developing biofuel crops for cultivation in areas not suitable for food crop production. C4 grasses, characterized by a high productivity and resource use efficiency, are among the most productive plants and most promising as cellulosic biofuel materials. Miscanthus spp., switchgrass (Panicum virgatum L.), Napier grass (Cenchrus purpureus (Schumach.) Morrone, syn. Pennisetum purpureum Schumach.) and sweet sorghum (Sorghum bicolor (L.) Moench) have received research attention. All could be significantly enhanced as biofuel feedstocks through improvements to their yield, stress tolerance and the content and composition of their lignin, cellulose, and hemicellulose. To maximize biomass yield, absence of flowering and grain set are considered desirable traits (Jakob et al. 2009).An alternative to cellulosic by-products is the use of vegetable oil to produce fuel (biodiesel). This may be equally or even more problematic to actualize at scale. Vegetable oils tend to make up only a small proportion of most crop residues. Using commercially grown oil crops competes with food production, and in some cases, e.g., palm oil production, is associated with environmental and GHG emissions concerns. Some plants have shown promise for oilseed production from marginal areas, for example Jatropha (Jatropha curcas). However, large scale production has thus far met with mixed success (Lahiry 2018).Despite various concerns, the production and use of biofuels is continuing to expand worldwide, especially for transport and circumstances where renewable electricity is not an option. According to the International Energy Agency (IEA 2021), in 2019, worldwide biofuel production reached 161 billion liters (43 billion gallons), up 6% from 2018, and biofuels provided 3% of the world's fuels for road transport. Given the on-going imperative to cooperate globally to limit greenhouse gas emissions, the exchange of PGRFA for biofuel use, including possibly under the Multilateral System, could be further explored by the international community. These ABS instruments are complex, and their negotiations have been, and remain, among the most contentious of topics within the agreements (Aubry 2019; Rohden and Scholz 2021; Wynberg et al. 2021). Their varied interpretations and implementation across the world create confusion for practitioners and policy makers alike, including who is subject to their conditions, how ABS can be bilaterally negotiated, and how biodiversity outside of the timeframe of the instruments is governed (Bagley et al. 2020;von Wettberg and Khoury 2021).Further complicating matters is the potential that information generated through research that is important to the use of genetic resources, such as genotypic or phenotypic data on crops, may soon come to be subject to ABS requirements alongside the physical genetic resources. The generation, storage, exchange, and use of these data -which are often called \"Digital Sequence Information\" (DSI) in policy negotiations -have all advanced rapidly over recent decades (Arora and Narula 2017;Crossa et al. 2017;Mir et al. 2019), but potentially relevant ABS mechanisms have not kept pace. A concern has begun to be voiced that without updating ABS mechanisms, the increasing use of this information may diminish the power of ABS frameworks governing only physical genetic resources. This has now come to a head, with the CBD, Plant Treaty, and other agreements actively discussing ABS for DSI.These discussions could have major consequences regarding the international flow of information relevant to plant breeding and the conservation of PGRFA. New mechanisms may create increased benefit sharing deriving from the use of DSI, but also may hinder crop research. Since this data began to be generated in large quantities in the 1970s and 1980s, they have commonly been held in open access platforms (Benson et al. 2018;Sayers et al. 2019;Laird et al. 2020), and many crop researchers take the accessibility of DSI data for granted (Woefle et al. 2011). These formats have in many ways powered the genomics revolution (Molloy 2011;Pinowar et al. 2011, Gallagher et al. 2020).In recent years a series of background papers and published research articles have attempted to clarify the issues around DSI and the potential and constraints regarding ABS (Rohden and Scholz 2021;von Wettberg and Khoury 2021). From this body of evidence, several major themes emerge.First, the continued lack of clarity about the subject itself needs to be resolved. DSI (along with \"genetic sequence data,\" \"PGRFA information,\" and various other terms) as placeholders have been in use in the CBD and International Treaty for a number of years, but none represent ideal monikers for the range of sequence data (DNA, RNA, proteins, etc.), phenotypic and morphological information, passport or provenance data, and other information potentially intended to be included in negotiations (Laird and Wynberg 2018;Cowell et al. 2021;Rohden and Scholz 2021).Second, rapid exchange of DSI has provided enormous societal benefits globally (Rohden et al. 2020).Perhaps the most visible recent example is the development and sharing of SARS-CoV-2 sequence information, leading to the quick development of vaccines around the world and critical information on the virus's diversity and adaptive capacity (Maxmen 2021).Third, due to the importance of access to DSI and the lack of clarity around definitions and scope of this data and possible ABS obligations, constraints or nuanced complications regarding exchange are likely to be very difficult to implement and have considerable negative impacts, including on crop research (Bagley et al. 2020;Iob and Botigue 2021;Rourke 2021;Vogel et al. 2021). Multilateral or fully open systems of exchange are generally considered to be preferable for scientists and for managers of genetic resources (Brink and van Hintum 2021;Cowell et al. 2021).Finally, the potential of DSI to contribute to food security and sustainable agriculture, of course, is dependent on the capacity to make use of these ever larger and more complicated datasets. This capacity, as with other aspects of utilization of PGRFA, still varies widely across institutions, countries, and regions (see Box 7) (Rohden et al. 2020). Further capacity building is critically needed for the benefits of DSI to be more widely and equitably realized (Rohden et al. 2020;De Jonge et al. 2021;Rouard et al. 2021).The Svalbard Global Seed Vault (SGSV) is considered the foremost safety-backup facility for ex situ PGRFA globally and is available as a resource for virtually any ex situ collection worldwide, with seed deposits made through a black box agreement (see Box 10). SGSV currently houses more than 1.25 million samples of almost 5500 agriculturally related species, deposited by 89 different genebanks and other institutions around the world (Norwegian Ministry of Agriculture and Food 2022; NordGen 2022).We calculated the total number of accessions for each crop in SGSV based on information from its SeedPortal, compared to the total count of accessions for each crop in all ex situ repositories as reported in FAO WIEWS, Genesys PGR, and GBIF (living specimens) (see the supply domain, subsection 3.4.1). Assessments of safety backup were made both at the taxon (crop) level, as well as at the genus level, the latter to be inclusive of security of associated genetic resources, including crop wild relatives.Crops with the greatest degree of safety backup, as calculated at the taxon/crop level, for eight different crop use types of interest, are presented in Figure 15. The results are presented as the proportion of records of the crop in the SGSV, compared to total records of the crop in all ex situ collections.Accessions of a total of 206 different crops assessed in this study were reported conserved in SGSV if considered at the taxon/crop level (with a grand total of 859,167 accessions stored), and 223 at the genus level (with a grand total of 1,721,409 accessions stored). Across all crop use types, in terms of crops with the greatest absolute quantities of accessions in SGSV, the results largely mirror those of overall ex situ collections, with cereals such as wheat, rice, barley, sorghum, pearl millet, and maize, and pulses such as common bean, soybeans, chickpeas, cowpeas, groundnuts, and pigeonpeas having the largest representation in SGSV. FAO 2010). Genebank facilities range from the rudimentary, perhaps comprising just a small laboratory with an air-conditioned room in which to store packets of seeds, to hi-tech complexes with sub-zero seed storage chambers and automated controls. Yet however securely seeds are conserved, there is always the potential for a disaster to hitfor electricity to be interrupted for an extended period, for a flood, earthquake, or typhoon to strike, or for collections to be looted during war or civil strife. Samples can also be lost through mismanagement or the ravages of pests and diseases (Khoury et al. 2021).The danger of losing invaluable genetic resources, which may no longer be found in the wild or on farmers' fields, led FAO to recommend that a duplicate sample of every original accession should be stored in a geographically distant area, under the same or better conditions than those in the original genebank (FAO 2014). In many cases this has been carried out through depositing duplicate samples in a different country's genebank under 'black box' conditions, by which the depositor retains sole legal rights over the material.It has long been recognized that additional safety measures are desirable if the world's crop diversity is to be truly secure. In the late 1980s the Norwegian government invited FAO and IBPGR (now the Alliance of Bioversity International and the International Center for Tropical Agriculture [CIAT]) to explore the feasibility of creating an international back-up seed store on the island of Spitsbergen in the Svalbard Archipelago. This would be open to deposits by any genebank or other ex situ collection around the world and modeled on a facility previously established by the Nordic Gene Bank (now NordGen) in a disused coal mine. Although found to be technically feasible, the idea was not pursued because of the absence of international, legally binding agreements covering ownership, access, and user rights. However, interest in the idea revived when, with the adoption of the International Treaty on Plant Genetic Resources for Food and Agriculture, an appropriate policy framework was put in place, and the way was open for the creation of the Svalbard Global Seed Vault (https://www.seedvault.no/). While a large proportion of the world's most important crops produce orthodox seeds, i.e., seeds that can be dried and frozen for long-term storage, there are many species that cannot be stored as seed, either because they generally don't produce seeds, e.g., many types of banana, or because their seeds do not breed true to desired type, e.g., potato, sweetpotato, yam, cassava, apple, and orange. In addition, there are crops that produce 'recalcitrant' seeds that cannot survive drying and freezing, e.g., cacao, rubber, coconut, breadfruit, avocado, mango, lychee, and many other tropical crops. Collections of crops that cannot be stored as seed in sub-zero temperatures are most commonly conserved as plants in field genebanks, or as tissue cultures in in vitro genebanks. However, these systems can be expensive and present risks to the long-term security of collections.The securest long-term method for conserving most crops that cannot be stored as seed is to cryopreserve appropriate plant tissues in liquid nitrogen at -196 o C. However, suitable, robust cryopreservation protocols are not yet available for all crops, and some may ultimately prove impossible to conserve in this way. For many, there are also significant differences in how individual varieties and genotypes respond to different freezing and thawing techniques. Although much further research is needed, some crops are already being cryopreserved on a significant scale. In a survey of 15 of the world's leading institutions that hold collections of vegetatively propagated and recalcitrant seeded crops, it was found that of the total, almost 60% of banana, more than 30% of Allium, and about 25% of coffee and potato accessions were cryopreserved (Acker et al. 2017).Unlike the situation for orthodox seeded crops, there is still a long way to go before the global PGRFA community can be confident that it has the necessary facilities and systems in place to ensure that the genetic diversity of vegetatively propagated and recalcitrant seeded crops is adequately safeguarded. A feasibility study in 2017 (Acker et al. 2017) recommended the establishment of a global back-up cryopreservation facility network be set up along the same lines as the Svalbard Global Seed Vault, to accommodate the estimated 5,000 to 10,000 accessions arising from current, on-going cryopreservation activities at CGIAR and other genebanks. These recommendations are starting to be implemented.IT/GB-9/22/16.2/Inf.1This report has assembled data on 355 important food and agricultural crops that are currently cultivated, traded, and/or available in food supplies, and whose PGRFA are researched, exchanged, and conserved around the world. Analyses of these data has concentrated on five major domains:• Use, especially regarding global production, trade and contribution to food suppliesThe data on crop use show that hundreds of different crops are widely grown, traded, present in food supplies, and researched around the world. Crops that are valuable internationally are found in all the main crop use types examined in this study: ten food categories (cereal, fruit, herb and spice, nut, oil, pulse, root and tuber, stimulant, sugar, and vegetable crops) as well as fiber, forage, and industrial crops. Nevertheless, such crops represent only a small fraction of the total number of food and agricultural plants (Boxes 3 and 4). Humanity is making significant use of only a small proportion of the plants available to it.The data also show that crop use is not static and that a plant's utilization can vary widely both spatially and temporally. Crops that were not considered important on a global or regional scale a few decades ago have become widely utilized today (Boxes 1 and 2). Likewise, plants that are currently grown only on a small scale could become major crops of the future (Box 3), although it is impossible to predict with high accuracy which crops will flourish, and which will decline. The certainty is that the spectrum of globally and regionally important crops will change, possibly substantially, over time.The data further show that for almost all the most utilized crops, there is a high level of interdependence among countries with respect to their PGRFA. A country may be the source of extensive genetic diversity of one crop, for example if it is in the crop's primary region(s) of diversity, but at the same time might not harbor substantial genetic diversity of another crop, even if that crop has been widely grown in the country for some time. Many of the crops studied have high estimated interdependence values as well as large directly quantified germplasm distributions to many different country and region recipients. This is not only true for global staple crops but also for a large variety of other plants of various crop use types.There is evidence that the amount of PGRFA distributed between institutions and countries has increased over recent decades (see also Khoury et al. 2022) and it is probable that demand for the PGRFA of many different crops will continue to grow in the future. It is also likely that the specific crops and germplasm requested will shift over time; crops and genotypes that are rarely distributed today may become in high demand in the future as breeders and other researchers switch focus in response to changing opportunities and challenges. Shifts in the crops and germplasm requested may also occur as research programs become more active in various world regions (Boxes 7 and 8).Demand for germplasm of wild relatives of crops and for associated information on PGRFA, such as GSD, will also very likely increase substantially as their uses in plant breeding become more widespread.All metrics studied showed a wide variation among crops in terms of the amount of PGRFA held ex situ and hence that is, in theory, available for use. For some crops, especially major, orthodox seed producing crops, there are very large, readily available collections such as those held in trust by the CGIAR Centers. However, for other crops, collections may be less available or much smaller, including for many of those that cannot be conserved as seed and must be maintained in vivo (in field collections) or in vitro (in specialized laboratory or cryopreservation facilities). Agricultural research institutions and botanic gardens appear to complement one another by focusing their conservation efforts on different crops.The data also show that there are significant gaps in many ex situ collections, whether maintained by agricultural research institutions or botanic gardens. Geographic prioritization of primary region(s) of diversity of crops appears to continue to be relevant, especially for less well conserved crops as well as for the wild relatives of most crops (see Castañeda-Álvarez et al. 2016). Further collecting outside of these regions will also likely provide substantial value for the acquisition of new variants. The availability of botanical research specimens and GSD are likewise highly variable among crops, with large resources for many crops but substantial gaps for many others (Box 9).With respect to the security of PGRFA, while much has already been duplicated in the Svalbard Global Seed Vault, particularly for major cereals, pulses, and a few other crop types (Box 10), the data show that many of the world's ex situ accessions are not documented as safety duplicated. FAO recommends that: \"A safety duplicate sample for every original accession should be stored in a geographically distant area, under the same or better conditions than those in the original genebank.\" Moreover \"To minimize risks that can arise in any individual country, safety duplication will be ideally undertaken outside that country\" (FAO 2014). Given the importance of safety duplication, special attention should be given to securing those accessions not currently safety duplicated, including those collections that must be maintained in vivo or in vitro (Box 11). Such collections frequently have very incomplete coverage and are often inadequately duplicated.The findings of the study have significant implications that could be applied to the future development of the Treaty's Multilateral System (MLS) of Access and Benefit Sharing, and the crops listed in its Annex 1 as well as, potentially, Article 15 (CGIAR collections). In drawing up the original list some 20 years ago, crops were included in, or excluded from, the Annex primarily based on their perceived importance for food security at that time as well as the understood extent of interdependence among countries with respect to their PGRFA. As this study has shown, crop use and PGRFA demand and interdependence are dynamic, with many crops that are important for food security and sustainable agriculture today not currently included in Annex 1. Moreover, additional crops will almost certainly become more important than they are currently for future food security. Given the critical role that the use of PGRFA can play in helping ensure food security, sustainable agriculture, and climate adaptation (Box 5) and mitigation (Box 6), and the value of facilitated access to PGRFA under the Plant Treaty to achieve these aims, it is hoped that the findings of this study will prove useful in helping to guide discussions on the future coverage of the MLS. This is relevant not only for food and forage crops, but also the cornucopia of plants that provide other values such as fiber and industrial uses.This study aims to compile high quality, accessible, replicable information on crop use as well as on PGRFA interdependence, demand, supply, and security, across as many food and agricultural crops as possible. Its integration in one assessment has the potential to provide novel and valuable insights for PGRFA conservation, research, and use activities, including prioritizing across crops and activities. This said, we emphasize that, while crops have different status levels in terms of, for example, demand, supply, and security of PGRFA, every crop has some gaps in some of these aspects, and every crop assessed here is considerably important to many people around the world.We therefore emphasize that not only the crops with the lowest/poorest status should be prioritized for conservation, research, and use efforts, nor only those with the greatest current use or estimated interdependence regarding their PGRFA. Some of the most useful metrics may be those that assess the IT/GB-9/22/16.2/Inf.1 status of crops in relation to themselves, rather than to the other crops, for example the metrics based on degree of coverage of ex situ collections in the MLS, or of their safety duplication in the SGSV.In this same respect, while averaged values across the different metrics, groups, components, and domains assessed here have been provided in the supplementary results for each crop, each of these metrics represent different, and often equally valid or important, ways of understanding crop use as well as PGRFA interdependence, demand, supply, and security. Thus, overemphasis on prioritizing crops based on these averaged values is likely to lead to oversimplification and loss of important detail and nuance.Several other limitations in the data should be mentioned. The metrics on crop use and on estimated PGRFA interdependence rely heavily on FAOSTAT data, which do not currently report production, trade, and food supply information on all crops covered in this study. Moreover, many of the assessed crops that are reported in FAOSTAT are contained within general commodity listings, sometimes encompassing dozens of crops, making accurate assessments of the current use of each specific crop extremely challenging to calculate.Regarding the major global databases on PGRFA demand, supply, and security, including FAO WIEWS, the Data Store of the Plant Treaty, UPOV's PLUTO database, Genesys PGR, PlantSearch, GBIF, and SGSV's SeedPortal, lack of standardized reporting, for example of crop and taxonomic names, both within and between these databases, leads to considerable challenges in assigning values to specific crops.Regarding recommendations to these critically important global information systems and their underlying data providers that, if implemented, would directly improve the quality of these crop metrics, we emphasize that the more comprehensive, disaggregated, verified, and annotated the FAOSTAT data are, the more accurate the metrics presented here are likely to be. Likewise, the more data providers participating in the global demand, supply, and security information systems, and the more that the data provided is consistent and standardized both within and across these systems, the more robust will be these metrics, as well as the more efficient it will be to periodically calculate the metrics.Finally, we emphasize that this novel integration of many sources of data on the use of crops as well as issues around interdependence regarding, demand for, supply of, and security of their genetic resources represents a first iteration. Further sources of data useful to understanding the status of these crops could be explored and potentially integrated, and additional enhancements to the methods used to calculate existing metrics could be implemented. Through further periodic iterations, which will be useful to quantifying change over time in these metrics, we also expect that this resource can continue to grow and improve.IT/GB-9/22/16.2/Inf.1Annex 1. Extended methodology and data sources A1. Crop listTo construct as comprehensive as possible a candidate list of food and agricultural plants to be included in this Study, we surveyed crops covered in FAOSTAT, Annex 1 of the International Treaty, CGIAR mandate major crops, and a variety of other information sources. We aimed to be comprehensive of all cultivated food and agricultural crops, including those used for food (including spices, herbs, and beverages), fiber, forage, and industrial crops. We did not aim to be comprehensive of crop plants strictly cultivated for non-food and agricultural purposes, such as for ornament.For FAOSTAT (https://www.fao.org/faostat/en/), we reviewed in entirety all metadata (https://www.fao.org/faostat/en/#definitions) and added to the crop list all crops mentioned in food supply, production, and trade data, including all those listed specifically, as well as all those marked in the metadata as covered within general/nes commodities. In the compiled crop list, we noted whether the crop is listed in FAOSTAT, including whether or not it is listed specifically in FAOSTAT food supply data, production data, and trade data. The crop list documents the specific FAOSTAT commodity name within which each crop is included.Regarding Annex 1 of the International Treaty (https://www.fao.org/plant-treaty/areas-of-work/themultilateral-system/annex1/en/ ), we reviewed the Annex and included all crops, including forages. The crop list notes whether the crop is included in Annex 1.Regarding CGIAR mandate crops, we reviewed CGIAR mandate lists and included all mentioned food crops. For forages, which are often not explicitly stated at the species/crop level in mandate lists, we included all genera with relatively large (>500 accessions) collections in pertinent CGIAR (i.e., International Center for Tropical Agriculture [CIAT] and International Livestock Research Institute [ILRI]) genebanks, as the list of genera with smaller amounts of accessions was exceedingly long. The crop list notes whether the crop is considered a CGIAR mandate crop.In supplement to the above, we also reviewed and ensured the inclusion of crops:• That have been specifically funded under the International Treaty Benefit Sharing Fund (https://www.fao.org/plant-treaty/areas-of-work/benefit-sharing-fund/overview/en/) • Of priority focus within the Crop Trust's \"Global Systems Project\" (https://www.croptrust.org/our-work/our-projects/) (2001). The exception is that the list submitted by European countries was very long and proposed several very minor crops which were not included. • We also reviewed USDA's GRIN-Global World Economic Plants (https://npgsweb.arsgrin.gov/gringlobal/taxon/taxonomysearcheco) and Mansfeld's World Database of Agricultural and Horticultural Crops (https://mansfeld.ipk-gatersleben.de/apex/f?p=185:3) databases. We found the entire list of potentially applicable plants from those sources to be too long to be pragmatically usable here (e.g., 1,995 \"FOOD\" taxa in World Economic Plants, and 1,795 taxa with pertinent uses in Mansfeld's database). We did not add any additional crops from these sources not already listed due to their inclusion in the databases above. • A few additional crop suggestions made during an expert stakeholder meeting in July 2019 (Annex 2) were added to the crop list.For each crop, the crop list offers one main common name, chosen based on our understanding of the most frequently used vernacular name worldwide. In a separate column we also list alternative common names; this is not an exhaustive list.For scientific names, we first listed the pertinent genera and taxa for each crop, using USDA's GRIN Global Taxonomy (https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysearch) for the main reference source. We included synonyms for some taxa as necessary to cover the majority of names likely to appear in the databases used in the study. In cases of not-clearly-defined taxa (e.g., forages listed in database sources by genus), we reviewed literature and attempted to list the most important taxa comprising those crops globally.We assigned crop use type categories both at the general and detailed levels for each crop based on our own classification system, drawing from categories used by FAOSTAT and World Economic Plants.We developed 13 crop types, including 10 food types (cereal, fruit, herb and spice, nut, oil, pulse, root and tuber, stimulant, sugar, and vegetable), as well as fiber, forage, and industrial crops. Crops were assigned to more than one crop use category as appropriate; we note that many crops have multiple uses, and the alternate/secondary use information is not exhaustively documented in the crop list.We added seed storage behavior information for each crop based on data from the Royal Botanic Garden Kew's Seed Information Database (https://data.kew.org/sid/ ©Copyright Board of Trustees of the Royal Botanic Gardens, Kew). In preparation for the interdependence analyses, we also listed the identified primary regions of diversity for each crop, drawing on literature sources (see the Interdependence Domain section further below).The crop list is available as a supplementary file to this report, currently at: https://docs.google.com/spreadsheets/d/1GHH4lp199BhrVOIr4E61C4DxHgD23KNHKNliuhfzNPk/e dit?usp=sharing. In total, this list contains 355 crops from 307 distinct genera and 536 distinct taxa.The number of crops in each main crop use type category is shown in Table A1. Grand Total many crops are not specifically listed (especially in Food Supply data), but are instead grouped within general commodities (i.e. 'Cereals, Other', 'Fruits, Other', 'Nuts', 'Oilcrops, Other', 'Pulses, Other', 'Roots, Other', 'Spices, Other', 'Tea and mate', and 'Vegetables, Other' in Food Supply data).Applying the full reported values of these general commodities to each crop listed within these commodities would lead to clear overestimations of each crop's value and to a distorted understanding of their value compared to other crops that are specifically measured in the data (i.e., not within a general commodity).To resolve this challenge, we used production information for each crop (using the production quantity metric) as a factor by which to disaggregate the Food Supply values. As a simple example, the 'Tea and mate' Food Supply commodity contains two crops -tea and mate. Global production of these crops in terms of production quantity are approximately 85.8% tea and 14.2% mate, based on a sum of 2015 to 2018 production data. For a final Food Supply value (e.g., calories), the 'Tea and mate' general commodity value for kcal/capita/day was divided, with 85.8% of the total attributed to tea, and 14.2% to mate. Note we were unable to conduct this disaggregation for the various crops in 'Beans' and in 'Millets' Food Supply commodities because production data for crops pertinent to that commodity were also aggregated and thus not specific to individual crops. In this case, all crops in these two commodities were given the full value of the commodity. which should be noted has led to an overestimation of each crop's individual use, especially for the minor bean and millet crops. An alternative could have been to equally divide the general commodity value across the crops within these commodities, but equal dividing led to much smaller values than likely accurate for many of the more major crops within these commodities, so we decided to implement the full value attribution.Following this disaggregation of Food Supply values, the results appeared to be more accurate, except that many of the minor crops that are listed in Production metrics also within general commodities (i.e. 'Agave fibres nes', 'Berries, nes', 'Cereals, nes', 'Fibre crops nes', 'Fruit, fresh nes', 'Fruit, tropical fresh nes', 'Nuts, nes', 'Oilseeds nes', 'Pulses, nes', 'Roots and tubers, nes', 'Spices, nes', 'Sugar crops, nes', 'Vegetables, fresh nes') were calculated to have higher than expected Food Supply values compared to other crops that are specifically listed in Production metrics and which should have higher values than those minor crops (Figure A1). To attempt to resolve this additional challenge, we divided the values for these general Production commodities equally among all crops within them (e.g., bay leaf, dill, fenugreek, saffron, thyme, and turmeric -the 6 crops listed within the Production commodity 'Spices, nes' -were all assigned the same production value, each being ⅙ of the total value of 'Spices, nes'). Following that transformation of Production data, we re-calculated the Food Supply transformation described above and assigned new Food Supply values for these crops. A total of 252 crops on the Crop List are reported in FAOSTAT Food Supply metrics, 280 crops on the Crop List are reported in FAOSTAT Production metrics (277 in the value of production metric), and 239 crops on the Crop List are reported in FAOSTAT Trade metrics. Pertinent fields for crops listed on the Crop List and without data in FAOSTAT were left blank (null values).For each crop and for each of the 11 metrics, a global indicator of the global extent of use was calculated by dividing the value specific to the crop by the sum of values across all crops.The same FAOSTAT metrics described above were used for an analysis of the degree of spread across countries in terms of crop use, using national rather than global data. As with above, 11 metrics in total were calculated, including four in group Food Supply (calories, protein, fat, food weight), three in group Production (production quantity, harvested area, production value), and four in group trade (export quantity, export value, import quantity, import value).This component counts the number of countries in which the crop is reported as within the top 95% of crops in terms of contribution to Food Supply, Production, or Trade. The 95% threshold was selected after an examination of results based on 75% to 100% inclusion criteria; at 75% the list of crops per country became quite short in various cases; at 100% many countries reported almost all crops as contributing at least marginally; 95% provided a reasonable balance between these poles, allowing for a spread of results across assessed crops. This analysis was conducted in early 2022.A total of 252 crops on the Crop List are reported in FAOSTAT count of countries Food Supply metrics, 280 crops on the Crop List are reported in FAOSTAT count of countries Production metrics (277 in the value of production metric), and 239 crops on the Crop List are reported in FAOSTAT count of countries Trade metrics. Pertinent fields for crops listed on the Crop List and without data in FAOSTAT were left blank (null values).For each crop and for each of the 11 metrics, a global indicator of the geographic extent of use was calculated by dividing the number of countries listing the crop within its top 95% of use by the total number of countries in the dataset.The same FAOSTAT metrics described above were used for an analysis of the degree of balance/evenness across world regions in terms of crop use, using regional data calculated from national data. As with above, 11 metrics in total were calculated, including four in group Food Supply (calories, protein, fat, food weight), three in group Production (production quantity, harvested area, production value), and four in group trade (export quantity, export value, import quantity, import value).World region values for Production and for Trade metrics were calculated by summing the individual values of countries included in each region (see the Interdependence Domain for an explanation of regions used in this study). For Food Supply metrics, regional values were created based on weighted averaging of the values of countries included in each region, with weighting based on national population (from the same years as the data -2015 to 2018). See the Interdependence Domain for a full explanation of this calculation.The degree of balance/evenness of crop use across regions was calculated using the Gini coefficient, a metric drawn from economics, which measures the inequality among values of a frequency distribution. The Gini coefficient formula was employed directly within our Python code software. To align this calculation with all other metrics, in which low values (close to 0) represent a poor state and high values (close to 1) represent a high/good state, we calculated our metric as = (1 -the Gini coefficient). The metric thus denotes perfect equality in use across regions when the value is 1, and very unequal use when close to 0. This analysis was conducted in early 2022. For each crop and for each of the 11 metrics, a global indicator of change in the extent of use was calculated as the relative change fraction/quotient.To estimate the degree to which crops are actively investigated in research, we calculated metrics based on the number of scholarly publications/mentions for each crop, drawn from Google Scholar (https://scholar.google.com/#d=gs_asd), similar to an analysis conducted by Galluzzi and López Noriega (2014), and PubMed Central (https://www.ncbi.nlm.nih.gov/pmc/).The total count of publications listed in Google Scholar as published between 2009-2019 (including patents and citations, searching 'in the title of the article') was compiled per crop common name, genus, and taxon. For common names, terms were searched in the singular ('Pea', not 'Peas'). At the level of taxon, in cases where crops had >1 scientific name, the first or most common scientific name was generally searched, with multiple names searched for some crops where multiple names clearly contribute importantly to the crop. This search was conducted in mid 2019. All 355 crops on the Crop List were assessed in this analysis.For each crop and for each of the three metrics, a global indicator of the extent of research attention was calculated by dividing the number of publications for the crop by the number of publications for all crops combined.A few challenges regarding this component should be mentioned. First, Google Scholar does not currently permit automated methods of data retrieval online, thus each search was conducted manually (totaling approximately 1065 searches done manually). Second, the occasional overlap of crop names with terms used in medicine, technology, or other fields likely inflated publication reporting for specific crops, e.g., apple (due to the same name for a technology corporation) and Lens (the genus for lentil, but also a term commonly used in optical research).PubMed Central® is a free full-text archive of biomedical and life sciences journal literature at the U.S. National Institutes of Health's National Library of Medicine (NIH/NLM). The PubMed Central database can be accessed via the National Center for Biotechnology Information (NCBI) portal of the NIH. For this analysis, we accessed the portal using their API query link (https://eutils.ncbi.nlm.nih.gov/gquery), searching for the number of full text results for each crop, based on its taxonomic name, and returning results in xml format. This search and subsequent analysis were conducted in early 2022. All 355 crops on the Crop List were listed in NCBI and were thus assessed in this analysis. A full explanation of the code used is available in the Digital Sequence Information component of the Supply domain.For each crop, a global indicator of the extent of research attention was calculated by dividing the number of full text results for the crop by the number of full text results for all crops combined.To estimate the degree of public interest in and/or awareness of each crop, we calculated metrics based on the number of pageviews of each crop seen on Wikipedia, similar to an analysis conducted by Pironon et al. (2020), using their API query link (https://wikimedia.org/api/rest_v1/metrics/pageviews/per-article/en.wikipedia/all-access/all-agents/).The total count of Wikipedia pageviews for the entirety of the year 2019 was compiled per crop common name, genus, and taxon. The search and subsequent analysis were conducted in early 2022.All 355 crops on the Crop List were assessed in this analysis.For each crop and for each of the three metrics, a global indicator of extent of public interest in and/or awareness was calculated by dividing the number of pageviews for the crop by the number of pageviews for all crops combined.While specific information about crops in Wikipedia may be of varied quality compared to that found in published articles, the analysis described here is not dependent on Wikipedia information quality.Rather, this analysis simply quantifies the degree of interaction between users (searchers/readers) and the Wikipedia website. This analysis searches Wikipedia pages only in English; this may result in underreporting for some crops of primary interest mainly in non-English speaking regions; it should be noted that English is the language with the highest number of Wikipedia pages overall and is often the source of translations into other languages on the website.We calculated crop plant genetic resource interdependence metrics regarding contribution to food supplies, production, and trade, using FAOSTAT data in combination with compiled information on the primary regions of crop plant diversity worldwide (i.e., where crops were mainly domesticated and are recognized to contain high diversity in cultivated [landraces] and wild [crop wild relatives] forms). These metrics are based on estimations of the significance of crops to food supplies, production, and trade, outside of their primary region(s) of diversity.We also analyzed the change over time in crop plant genetic resource interdependence regarding food supplies, production, and trade.The interdependence domain has 22 total metrics in 6 groups in 2 components:• 11 metrics -Significance of each crop in terms of agricultural production, trade, and contribution to food supplies, outside of its geographic origins and primary region(s) of diversity• 11 metrics -Change in significance of each crop in terms of agricultural production, trade, and contribution to food supplies, outside of its geographic origins and primary region(s) of diversity A2.2.1 Component: Significance of each crop in terms of agricultural production, trade, and contribution to food supplies, outside of its geographic origins and primary region(s) of diversity Food and agricultural plant genetic resource interdependence was estimated at the global level by calculating the significance of crops to food supplies, production, and trade, outside of their primary region(s) of diversity (i.e., outside of where the crops were largely domesticated and evolved for hundreds to thousands of years, and where diversity in landraces and crop wild relatives is particularly high). The underlying assumption is that if a crop has considerable use outside of its primary region(s) of diversity, then that use is dependent on genetic resource acquisition from elsewhere (including, notably, from the primary region[s] of diversity). Thus, a crop with a high use outside of its primary region(s) of diversity is likely to be a crop where there is high interdependence globally for its genetic resources.To identify and compile information on primary regions of diversity of assessed crops, data for each crop regarding its origins and regions of diversity of cultivated and wild forms was gathered from pertinent literature (especially Khoury et al. 2015, 2016, USDA 2019), taking an inclusive approach (i.e., likely regions were included, even if some uncertainty exists). This information was converted to the regional level, using FAO regions as per FAO (2010), with modifications to better suit recognized ecogeographic regions of crop diversity (see Khoury et al. 2015Khoury et al. , 2016 for a full explanation of regions and countries within each region. Note that countries can be included in more than one region, and crops can have more than one primary region of diversity. Only primary regions of diversity were identified per crop; secondary or other regions of diversity were not included or assessed here.FAOSTAT food supply, production, and trade data at the national level for each crop (see the Crop Use Domain, component Crop use data from FAOSTAT) was re-calculated at the regional level, using the same regions mentioned above. For production and trade metrics, data was summed across countries comprising each region. For food supply metrics, regional values were calculated by taking a weighted average value across countries comprising each region, with country values weighted by country population (from the same years as the data -2015 to 2018). Finally, for each crop, data was calculated both within the crop's primary region(s) of diversity, and outside of these regions. As with the previous step, production and trade data were summed across regions, while food supply data was calculated by weighted averaging across regions. This analysis was conducted in late 2021.A total of 252 crops on the Crop List are reported in FAOSTAT interdependence regarding Food Supply metrics, 280 crops on the Crop List are reported in FAOSTAT interdependence regarding Production metrics (277 in the value of production metric), and 239 crops on the Crop List are reported in FAOSTAT interdependence regarding Trade metrics. Pertinent fields for crops listed on the Crop List and without data in FAOSTAT were left blank (null values).For each crop and for each of the 11 metrics, a global indicator of extent of global interdependence was calculated as the quantity of use from outside of the crop's primary region(s) of diversity divided by the world total quantity of use. If the numerator (value outside of the crop's primary region(s) of diversity) was larger than the denominator (world value), the final value was set to 1 (the maximum); this circumstance can only occur for food supply values).Through examination of the data and the results, it was noted that some crops have no values within their primary region(s) of diversity, which is highly unlikely, and therefore is probably due to underreporting within FAOSTAT data. To address this deficiency, any crops with null values in their primary region(s) of diversity were excluded from this component. Other challenges/vulnerabilities regarding this component include that a) primary regions of crop diversity do not in actuality follow political boundaries well; thus, some degree of generalization is expected, b) primary regions of diversity are still not well documented for some crops, and new information is continually being generated, for example regarding the origins of watermelon (Renner et al. 2021). Further, genetic resource interdependence exists in the geographic sense not only regarding primary regions of diversity, but also secondary and other regions with particularly high amounts of crop diversity, and because of the locations of ex situ repositories (genebanks and botanic gardens) in particular regions. We note that more direct measurements of demand for crop genetic resources are included in the Demand domain. For each crop and for each of the 11 metrics, a global indicator of change in extent of global interdependence was calculated as the relative change fraction/quotient.We calculated demand for crop plant genetic resources based on germplasm distributions data sourced from the Data Store of the International Treaty on Plant Genetic Resources for Food and Agriculture (Plant Treaty), as well as from the FAO World Information and Early Warning System on Plant Genetic Resources for Food and Agriculture (WIEWS).To better inform the degree to which demand for crop genetic resources is spread/balanced around the world, we also calculated metrics regarding the number of countries receiving crop genetic resources, as well as the relative degree of receipt of crop genetic resources compared across world regions, based on data from the Data Store of the Plant Treaty.We further calculated demand for crop plant genetic resources based on varietal registration/release data, both from the FAO World Information and Early Warning System on Plant Genetic Resources for Food and Agriculture (WIEWS) and from the International Union for the Protection of New Varieties of Plants (UPOV)'s PLUTO Plant Variety Database.The demand domain has 7 total metrics in 4 groups in 4 components: For each crop, a global indicator of the extent of demand for germplasm was calculated as the number of average annual distributions of samples of that crop divided by the total number of average annual distributions of samples for all crops in the dataset.A challenge in the use of these data is that crops/genetic resources are not reported in a standardized manner across all data providers to the Data Store. Matching crop names in the Data Store to the crop list was performed both through manual methods, with a minor degree of error expected.The same Plant Treaty Data Store germplasm distribution data described above was used for an analysis of the degree of spread across recipient countries in terms of receipt of crop germplasm. As with above, one metric in total was calculated, in one group, in one component. This component counts the average annual number of countries to which the crop was distributed within the 2015 to 2019 period. This analysis was conducted in early 2022.A total of 142 crops on the Crop List were present in the Germplasm distributions -Plant Treaty -Count of countries dataset (i.e., these crops had 1 or more distributions listed in the Plant Treaty dataset). Remaining crops were assigned 0 values.For each crop, a global indicator of the geographic extent of demand for germplasm was calculated by dividing the average annual number of countries receiving germplasm of the crop by the total number of countries in the dataset (n = 179 recipient countries).The same Plant Treaty Data Store germplasm distribution data described above was used for an analysis of the degree of balance/evenness across world regions in terms of receipt of crop germplasm, using regional data calculated from national data. As with above, one metric in total was calculated, in one group, in one component.World region values were calculated by summing the individual values of countries included in each region (see the Interdependence Domain for an explanation of regions). The degree of balance/evenness of crop germplasm receipt across regions was calculated using the Gini coefficient, a metric drawn from economics which measures the inequality among values of a frequency distribution. To align this calculation with all other metrics, in which low values (close to 0) represent a poor state and high values (close to 1) represent a high/good state, we calculated our metric as = (1the Gini coefficient). The metric thus provides an indication of perfect equality in germplasm receipt (i.e., demand) across regions when the value is 1, and very unequal receipt when close to 0. This analysis was conducted in early 2022.A total of 142 crops on the Crop List were present in the Germplasm distributions -Plant Treaty -Equality of distributions (GINI) dataset (i.e. these crops had 1 or more distributions listed in the Plant Treaty dataset). Remaining crops were assigned 0 values.For each crop, a global indicator of balance in the geographic extent of demand for germplasm was calculated as the 1-Gini value across regions.We A total of 256 crops on the Crop List were present in the Genebank distributions -FAO WIEWS dataset (i.e., these crops had 1 or more germplasm distributions listed in WIEWS). Remaining crops were assigned 0 values.For each crop, a global indicator of extent of demand for germplasm was calculated as the number of average annual distributions of that crop divided by the total number of average annual distributions for all crops in the dataset.A challenge in the use of these data is that crops/genetic resources are not reported in a fully standardized manner across all data providers to FAO WIEWS, with some reporters combining different crops in their total counts. Matching crop names in the WIEWS data to the crop list was performed through manual methods, with a minor degree of error expected.We calculated an average annual number of varietal registrations for each crop worldwide from 2014-2018 using data from the International Union for the Protection of New Varieties of Plants (UPOV)'s PLUTO Plant Variety Database (https://www.upov.int/pluto/en/). These data were retrieved in 2019, with the analysis conducted in late 2019. These data provide information in terms of varieties registered of different crops by country. We included \"approved\", \"proposed\", and \"published\" records, and did not count \"rejected\" records in the dataset. One metric was thus mobilized (in one group, in one component).A total of 194 crops on the Crop List were present in the Varietal registrations -UPOV dataset (i.e., these crops had 1 or more varietal registrations listed in UPOV). Remaining crops were assigned 0 values.For each crop, a global indicator of the extent of varietal registrations was calculated as the number of average annual varietal registrations of that crop globally divided by the total number of average annual varietal registrations of all crops globally in the dataset. A total of 204 crops on the Crop List were present in the Varietal releases -FAO WIEWS dataset (i.e., these crops had 1 or more varietal releases listed in WIEWS). Remaining crops were assigned 0 values.For each crop and for each metric, a global indicator of the extent of varietal releases was calculated as the number of average annual varietal releases of that crop globally divided by the total number of average annual varietal releases of all crops globally in the dataset.A challenge in the use of these data is that crops/genetic resources are not reported in a fully standardized manner across all data providers to FAO WIEWS, with some reporters combining different crops in their total counts. Matching crop names in the WIEWS data to the crop list was performed through manual methods, with a minor degree of error expected.We calculated supply of crop plant genetic resources based on ex situ collections data from the FAO World Information and Early Warning System on Plant Genetic Resources for Food and Agriculture (WIEWS), the Genesys Plant Genetic Resources portal (Genesys PGR), and the Global Biodiversity Information Facility (GBIF) (living specimens in GBIF). For these data, we also estimated the proportion included within the Multilateral System of Access and Benefit Sharing of the International Treaty on Plant Genetic Resources for Food and Agriculture (Plant Treaty), as well as the relative degree of ex situ collection coverage of each crop's primary region(s) of diversity. We further calculated supply of crop plant genetic resources based on ex situ collections data from the Botanic Garden Conservation International's PlantSearch database.To estimate supply of research materials pertinent to crop plant genetic resources, we calculated supply of herbarium and other records in the Global Biodiversity Information Facility (GBIF) as well as supply of genetic, protein, and other digital sequence data in the National Center for Biotechnology Information (NCBI) global database.The supply domain has 16 total metrics in 7 groups in 6 components: Records from the three datasets were combined, eliminating duplicates as possible (mainly based on institution id), with preference for the original data source (thus records from Genesys PGR present in FAO WIEWS were removed, and only records directly from Genesys PGR included). Assessments of ex situ germplasm supply were made both at the taxon (crop) level, as well as at the genus level, the latter to be inclusive of supply of associated genetic resources, including crop wild relatives. Two metrics were thus mobilized (in one group, in one component).A total of 354 crops on the Crop List are included in this Ex situ collections -FAO WIEWS, Genesys PGR, and GBIF analysis when assessed at the genus level, and 343 crops on the Crop List are included in this Ex situ collections -FAO WIEWS, Genesys PGR, and GBIF analysis when assessed at the species/crop level (i.e. these crops had 1 or more accessions in the genebank dataset). Remaining crops were assigned 0 values.For each crop, a global indicator of extent of supply of genetic resources was calculated as the number of ex situ accessions of the crop divided by the total number of accessions of all crops in the dataset.The main challenges regarding this component include that a) some ex situ collections are not represented in any of these databases, b) the challenge of identifying and removing all duplicates across these datasets, c) the challenge of aligning taxon names in these datasets with the crop list (taxon names are not highly standardized in these datasets), and d) that the assessment at the genus level, while being inclusive of wild relatives, likely overestimates relevant ex situ supply for crops with large genera (e.g. Solanum L.), as it is unlikely that all congeneric species will be used in crop improvement. For these reasons, some degree of error is expected.The same combined ex situ germplasm collections dataset described above was used for an analysis of the degree of current coverage of ex situ accessions in the Multilateral System of Access and Benefit Sharing (MLS) of the International Treaty on Plant Genetic Resources for Food and Agriculture (Plant Treaty) (https://www.fao.org/plant-treaty/areas-of-work/the-multilateral-system/overview/en/). This calculation was conducted in two ways. First, coverage was assessed based on direct notation in the datasets in pertinent fields, e.g., values \"Included\" or \"Not included\" in field \"Status under the Multilateral System'' in FAO WIEWS; and values \"True\" or \"False\" in field \"mlsStat\" in Genesys PGR. Accessions with no notation in pertinent fields were assumed to not be included in the MLS. This analysis was conducted in 2019.Because a large proportion of accessions (approximately 53%) had no pertinent notation, a second methodology was also employed, based on a combination of the country where the ex situ collections were held and the list of crops covered in the MLS (i.e. For each crop, a global indicator of the degree of coverage in the MLS was calculated as the number of ex situ accessions of the crop included within the MLS divided by the total number of accessions for the crop in the dataset.Alongside the challenges to this component already listed in the component above, the large proportion of accessions lacking direct notation of whether included in the MLS, and difficulties in assigning accessions MLS status by institute country and Annex 1 (for example, some institutions in Europe and in the USA treat all their accessions as part of the MLS, regardless of whether they are crops listed in Annex 1) generate some degree of error in this component.The same combined ex situ germplasm collections dataset described above was used for an analysis of the degree of current coverage of ex situ accessions sourcing from each crop's primary region(s) of diversity, i.e., the world region(s) where each crop was mainly domesticated and is recognized to contain high diversity in cultivated (landraces) and wild (crop wild relatives) forms. Primary region(s) of diversity for each crop were identified as described in the Interdependence domain. The number of accessions sourcing from primary region(s) of diversity was calculated using country locality passport information. This count of accessions, which was calculated both at the taxon and the genus level, was divided by the harvested area of the crop within the primary region(s) of diversity, drawing from FAOSTAT production data (year 2014). Harvested area was used as a proxy for the relevant size of the primary region(s) of diversity. Two metrics in total were thus calculated, in one group, in one component. This analysis was conducted in 2019.A total of 259 crops on the Crop List are included in this Ex situ collections -FAO WIEWS, Genesys PGR, and GBIF -primary region coverage analysis when assessed at the genus level, and 248 crops on the Crop List are included in this Ex situ collections -FAO WIEWS, Genesys PGR, and GBIFprimary region coverage analysis when assessed at the species/crop level (i.e. these crops had 1 or more accessions collected from within their primary region of diversity, as listed in the genebank dataset). Remaining crops were assigned 0 values.For each crop, a global indicator of the degree of representation in ex situ collections of the primary region of diversity was calculated as the number of ex situ accessions of the crop sourcing from within its primary region(s) of diversity divided by the harvested area of the crop within its primary region(s) of diversity. Values >1 were adjusted to a maximum of 1.Botanic Garden Conservation International's PlantSearch database (https://tools.bgci.org/plant_search.php) is the leading global information system for botanic garden ex situ collections, holding data on over 1.5 million records, representing ca. 650,000 taxa, held at around 1200 contributing institutions (BGCI 2022). The database currently only documents if a taxon is held at a given institution, not the number of accessions held. We retrieved the entire PlantSearch database and searched for all records for all taxa within the genus and species of the crop, in July 2021. The analysis was conducted in early 2022, with an assessment both at the genus and crop/taxon level.A total of 354 crops on the Crop List are included in this Ex situ collections -Botanic Gardens analysis when assessed at the genus level, and 353 crops on the Crop List are included in this Ex situ collections -Botanic Gardens analysis when assessed at the species/crop level (i.e. these crops had 1 or more institutions listed in PlantSearch). Remaining crops were assigned 0 values.For each crop and for each metric, a global indicator of the extent of botanic collections of each crop was calculated as the number of unique records of the crop listed in PlantSearch divided by the total number of records for all crops in the dataset. Two metrics in total were calculated, in one group, in one component.The Global Biodiversity Information Facility (GBIF) (https://www.gbif.org/) is the world's leading global repository for openly accessible biodiversity resources, including research specimens and their associated data. We searched the entire GBIF database for records matching to our crop list, both at the taxon level as well as at the genus level, on May 22, 2019 (https://doi.org/10.15468/dl.rahcfx). Two metrics in total were calculated (at the genus and crop/taxon levels), in one group, in one component. The analysis was conducted in 2019.A total of 348 crops on the Crop List are included in this Research supply -GBIF analysis when assessed at the genus level, and 321 crops on the Crop List are included in this Research supply -GBIF analysis when assessed at the species/crop level (i.e., these crops had 1 or more accessions listed in GBIF). Remaining crops were assigned 0 values.For each crop, a global indicator of research supply was calculated as the number of samples of the crop listed in GBIF divided by the total number of samples for all crops in the dataset.The National Center for Biotechnology Information (NCBI)'s Entrez database (https://www.ncbi.nlm.nih.gov/) comprises one of the three foremost global biodiversity digital information resource (often called \"Digital Sequence Information\" or \"DSI\" in current policy fora; here called genetic sequence data (GSD)) repositories, which are connected within the International Nucleotide Sequence Database Collaboration (INSDC). The other two repositories are the DNA Data Bank of Japan (DDBJ) (https://www.ddbj.nig.ac.jp/index-e.html) and the European Molecular Biology Laboratory -European Bioinformatics Institute (EMBL-EBI) (https://www.ebi.ac.uk/); the three share data across their platforms.The NCBI database provides species level information regarding the number of nucleotide, protein, structure, genome, gene, and other related sequences/data available for use. We extracted information on the number of nucleotide, protein, genome, and gene resources for each crop, matching taxon (scientific) name to the NCBI taxonomy structure, accessing the portal using their API query link (https://eutils.ncbi.nlm.nih.gov/gquery). Four metrics in total were thus calculated, in one group, in one component. This analysis was conducted in early 2022. All 355 crops on the Crop List were listed in NCBI and thus assessed in this Research supply -NCBI analysis.For each crop and for each metric, a global indicator of GSD research supply was calculated as the number of GSD resources of the crop listed in NCBI divided by the total number of GSD resources for all crops in the dataset.We calculated security backup of crop plant genetic resources based on ex situ collections data from the Svalbard Global Seed Vault's SeedPortal.The security Domain has 2 total metrics in 1 group in 1 component:• 2 metrics -Ex situ backup -Svalbard Global Seed VaultThe Svalbard Global Seed Vault (SGSV) is considered the foremost safety-backup facility for ex situ crop plant genetic resource collections globally and is available as a resource for virtually any ex situ collection worldwide. We calculated the total number of accessions for each crop in SGSV based on the Svalbard Global Seed Vault's SeedPortal (https://seedvault.nordgen.org/) (downloaded March 15, 2019) and compared this number to the total count of accessions for that crop in all ex situ repositories (see the Supply domain, component 2.4.1). Assessments of ex situ germplasm safety duplication were made both at the taxon (crop) level, as well as at the genus level, the latter to be inclusive of security of associated genetic resources, including crop wild relatives. Two metrics were thus mobilized (in one group, in one component). This analysis was conducted in 2019.A total of 223 crops on the Crop List are included in this Ex situ backup -Svalbard Global Seed Vault analysis when assessed at the genus level, and 206 crops on the Crop List are included in this Ex situ backup -Svalbard Global Seed Vault analysis when assessed at the species/crop level (i.e. these crops had 1 or more accessions in SGSV). Remaining crops were assigned 0 values.For each crop, a global indicator of safety backup was calculated as the number of ex situ accessions of the crop in SGSV divided by the total number of accessions of the crop in all ex situ repositories.SGSV is a safety backup only for seed, thus crops mainly conserved through other types of propagules will likely receive low values for safety duplication in this component. Further, a more exact assessment of safety duplication could potentially be made at the accession level (using accession id's); this information is not well standardized worldwide currently. Finally, this component presents the same challenges as do the supply components regarding assessment at the genus level. While being inclusive of wild relatives, the genus-level assessment likely overestimates relevant ex situ supply for crops with large genera (e.g., Solanum L.), as it is unlikely that all congeneric species will be used in crop improvement. For all these reasons, some degree of error is expected.Alongside real calculated values, indicator metrics in all groups, components, and domains were calculated on a scale from 0 to 1, with low numbers (close to 0) representing a low or poor status (low crop use, low interdependence regarding genetic resources, low demand for genetic resources, small supply of genetic resources, low degree of security of genetic resources), and high numbers (close to 1) representing a high or good status (high crop use, high interdependence regarding genetic resources, high demand for genetic resources, large supply of genetic resources, high degree of security of genetic resources). Change over time indicator metrics may also have negative values (decline in importance over time). Methods for calculation of each indicator metric are described in the section above.Indicator results were further produced in normalized forms for each metric, by setting the crop with the lowest value at 0, and the crop with the highest value at 1 (i.e., for each crop, normalized value = (x -min) / (max -min)). This was calculated across all crops, and across the crops in each crop use type (e.g., cereals, pulses, vegetables). When calculated across crop use types, for crops such as maize or soybean with multiple uses, these crops were included in all relevant use type categories; values for these crops are total global, not separated by specific use.The indicator and normalized indicator results were used for cross-group, -component, and -domain calculation, with average results per crop produced at each of those levels. Metrics with no values (i.e., the metric was not calculated for that crop) were not included in/did not influence calculation of mean results. We used simple averaging across metrics after assessing a variety of possible methodologies, including assessing correlations among metrics, and removing overly correlated variables, and weighting different metrics by expert opinion of their importance; we found none of these techniques to provide clear value beyond simple averaging, and note that each introduces further complexity, possible error, and difficulty in repetition in the future. level (i.e. these crops had 1 or more accessions collected from within their primary region of diversity, as listed in the ex situ collections dataset). Remaining crops were assigned 0 values. • A total of 354 crops on the Crop List are included in this Ex situ collections -Botanic Gardens analysis when assessed at the genus level, and 353 crops on the Crop List are included in this Ex situ collections -Botanic Gardens analysis when assessed at the species/crop level (i.e. these crops had 1 or more institutions listed in PlantSearch). Remaining crops were assigned 0 values. • A total of 348 crops on the Crop List are included in this Research supply -GBIF analysis when assessed at the genus level, and 321 crops on the Crop List are included in this Research supply -GBIF analysis when assessed at the species/crop level (i.e., these crops had 1 or more accessions listed in GBIF). Remaining crops were assigned 0 values. • All 355 crops on the Crop List were listed in NCBI and thus assessed in this Research supply -NCBI analysis. Security:• A total of 223 crops on the Crop List are included in this Ex situ backup -Svalbard Global Seed Vault analysis when assessed at the genus level, and 206 crops on the Crop List are included in this Ex situ backup -Svalbard Global Seed Vault analysis when assessed at the species/crop level (i.e. these crops had 1 or more accessions in SGSV). Remaining crops were assigned 0 values.Given the methodologies applied above, values are presented in this analysis for all crops for all metrics in the demand, supply, and security domains, as well as for the Crop research investigation -Google Scholar and PubMed Central, and Crop public interest/awareness -Wikipedia pageviews metrics in the crop use domain. It is thus only for metrics based on FAOSTAT, presented in the crop use and interdependence domains, where there are information gaps for some crops (i.e., approximately 29% of crops in the assessment do not have values in terms of Food Supply metrics, 21.1% in terms of Production metrics, and 32.7% in terms of Trade metrics). These data gaps can only be resolved through the inclusion of more crops/commodities reported in FAOSTAT.Many other sources of information were explored during this study but were not integrated into the analysis at the present time, mainly due to insufficient or inaccessible data. These are described concisely below.Significance of crops to micronutrients in food supplies -the contribution of crops to food supplies is only measured in four ways within FAOSTAT data -calories, protein, fat, and food weight. The contribution of crops regarding micronutrients is not currently reported in FAOSTAT Food Supply data. To attempt to find and use micronutrient data at the crop level for this global analysis, we examined multiple databases and literature sources, and spoke with various authors and experts, including: It has been estimated that there are between 300,000 and 500,000 species of higher plants (i.e. flowering and cone-bearing plants), of which approximately 250,000 have been identified or described. About 30,000 are edible and about 7,000 have been cultivated or collected by humans for food at one time or another.Although several thousand species may be considered to contribute to food security at local level, only a few hundred cultivated plants play a considerable role in food and agriculture at a global level. While the number of plant species that feed the world is relatively small, the genetic diversity within such species is often immense.Investment in the conservation and improvement of these plants will be key for achieving the Sustainable Development Goals, including to achieve food security and sustainable diets, adapt agriculture to climate change or reduce the impact of farming in nature. The provision of baseline data and indicators on the genetic diversity of these plants is essential for decision-makers at global, regional and national levels in order to develop strategies to ensure the adequate conservation and use of these plant genetic resources.The information on the plants that feed the world and of their genetic diversity is increasing available but scattered through a number of information systems, databases and the scientific literature. The publication The plants that feed the world: baseline information to underpin strategies for their conservation and use intends to bring together, for the first time, all the information available from these different sources to provide baseline and indicators for conservation and availability for use of plant genetic resources for food and agriculture (PGRFA). The Secretariat of the International Treaty on Plant Genetic Resources for Food and Agriculture, the Global Crop Diversity Trust and International Center for Tropical Agriculture (CIAT) are working together to prepare and publish this analysis jointly with the hope that it will become a flagship publication for the PGRFA community across the world.The aim of the publication is to develop a reproducible sets of indicators that provide an evidence base to prioritize conservation and availability for use among crops, including: interdependence at global level; demand; supply and risk/resilience. These indicators would be use in a standardized manner for around 350 plants that are being used in food and agriculture. The methodologies being used will allow these indicators to be reproducible to enable identification of change in status and trends for PGRFA in the future.The Secretariat of the International Treaty is organizing a technical consultation from 24 to 25 July in FAO Headquarters (Rome, Italy) with key experts on plant genetic resources and information systems and big data for agriculture to discuss the methodologies used to develop the draft indicator for all crops and enable participants provide suggestions on how to finalize the analysis.Wednesday, 24 July ","tokenCount":"26616"} \ No newline at end of file diff --git a/data/part_3/2610259309.json b/data/part_3/2610259309.json new file mode 100644 index 0000000000000000000000000000000000000000..2bc64be68ae1cea7616aeefbc4b0334a87cd18bd --- /dev/null +++ b/data/part_3/2610259309.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"51ee6852353798f75f4d3eeb0345c89a","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/fdbe3e47-126e-43e3-b4c7-8d8f0d44f4d3/retrieve","id":"-2118866681"},"keywords":[],"sieverID":"78fe7774-d5db-4428-8078-19d157bcb109","pagecount":"2","content":"P274 -Scenario-guided policy and investment planning for food-and nutrition-secure futures under climate change Description of the innovation: A Diet Dimensions game for interdisciplinary project development was developed by CCAFS together with the IMMANA program, and has since found uptake with A4NH. New Innovation: No Innovation type: Research and Communication Methodologies and Tools Stage of innovation: Stage 4: uptake by next user (USE) Geographic Scope: Global Number of individual improved lines/varieties: Outcome Impact Case Report: •851 -Supporting Cambodian climate negotiators for COP -including Brief to the Senate (https://tinyurl.com/2q56xh5j) Description of Stage reached: The Diet Dimensions game has been played with numerous stakeholders in many meetings so far.","tokenCount":"108"} \ No newline at end of file diff --git a/data/part_3/2616466004.json b/data/part_3/2616466004.json new file mode 100644 index 0000000000000000000000000000000000000000..36f690653d2ae310b5e829a7e184b52360cd2450 --- /dev/null +++ b/data/part_3/2616466004.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"e51bf208a513001577226f58f4a26598","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/4d176867-b9e4-4eee-b482-505d128dc17f/retrieve","id":"273534739"},"keywords":[],"sieverID":"77ebc7b5-9d0b-453f-a92c-3e3eed5a69d9","pagecount":"18","content":"Project's capacity to produce verifiable credits .This section of the report consists of a description of the capacity of the project participants in the Trees for Global Benefits project, of ECOTRUST, to sequester or reduce greenhouse gases (GHGs). The description consists of the interventions implemented under the project, roles played by the different project participants and discussion on emerging issues as a result of the participation in the project, related to carbon sequestration and technologies employed.The Trees for Global Benefits project was designed as a cooperative community-based carbon offset scheme with livelihood components emphasizing sustainable land-use practices. The aim of the project is to produce long-term, verifiable Voluntary Emission Reductions (VERs) by combining carbon sequestration with rural livelihood improvements through small-scale, farmer led, forestry/agroforestry projects while reducing pressure on natural resources in national parks and forest reserves (Plan Vivo.org, 2003). Carbon sequestration or emission reduction benefits are generated by a suite of land-use activities involving afforestation and reforestation as well as agroforestry. This mainly involves the planting of native and / or naturalized hardwood and fruit tree species on private land. The communities are currently planting native trees such as Maesopsis eminii, mahogany (such as Khaya anthotheca), Melicia excelsa and Terminalia spp. The fruit trees include Jackfruit, avocado and mangoes. The farmers choose the land-use system they would like to use in their individual Plan Vivos (management plans). Currently there are two options; Maesopsis eminii woodlots or mixed native woodlots.International NGOs, The World Wide Fund for Nature (WWF) has supported conservation activities through funding activities undertaken by the National Forestry Authority (NFA), with regard to boundary management and interaction with communities. In Hoima district WWF has been involved with conservation activities for the biodiversity in the Albertine as well as watershed conservation areas. The Chimpanzee Sanctuary and Wildlife Conservation Trust (CSWCT) is conducting project activities for the conservation of habitat for chimpanzees and other wildlifeThe Trees for Global Benefits Program aimed at: raising awareness of climate change and related issues; increasing household incomes through carbon payments; offering the farmers technical advice and allow them access to other markets such as timber-fuel wood, fruit, fodder and poles; and conserving biodiversity by promoting indigenous tree species. The project works through new and established groups of farmers to plan agroforestry and small scale plantations. The activities include: planting of mixed native woodlot for timber, including mahogany, cedar, African cherry; boundary planting for fuel wood and fruit and timber; and protection of wildlife and native forest remnantsEstimated long term potential carbon benefit tco 2 e Estimated realizable potential Woodlots mixed native AFM-TB01-01 2,000 ha over first 10 years with an estimated 400,000 t co 2 in 25 years Woodlots Measopsis emini AFM -TB02-01 2,000 ha estimated over first 10 years of project estimated 400,000 co 2 e in 20 years Fruit orchards (mango, avocado, jack fruit) 1,000 ha established in project's first 10 years with estimated 100,000 t co 2 e in 20 years Source: ECOTRUST (2003) The progress towards project targets is delineated below based on the project verification reports (Rainforest Alliance, 2009), and progress of the project (http://www.forestcarbonportal.com/project/trees-global-benefits/Forest Carbon Portal/): The overall objective of the ECOTRUST TFGB program was to develop and operationalise a model for carbon trading with small land holders. ECOTRUST undertakes institutional and technical capacity building of institutions that implement carbon projects, participates in determining the baseline of agroforestry and/or forestry activities, establishing an institutional structure for administration of land uses, land cover and forestry projects for carbon trading, and provide technical specifications for different forestry systems developed and tested.The World Agroforestry Center (ICRAF) helped develop technical specifications and carbon monitoring protocols including: definition of selected forestry/agroforestry systems; specification of tree management requirements; definition of baseline biomass conditions to establish carbon stocks; and compilation of biomass data for specified forestry systems. From the private sector, Bugambe Tea Estates is providing a learning opportunity, but not directly involved with the ECOTRUST project. Bugambe is a private company under James Finlay Tea Company, which took over from the parastatal in 1994. The company has 300 ha of forest estate, and is currently pursuing a Rainforest Alliance Certification, working with Unilever in Kenya, Unilever Tea Estates.The companies that have cooperated with ECOTRUST in its initiatives include: Camco, Tetra pak, U&W, Ecosecurites, Live Climate, Climate Path, City of London, Future Forests, Classic Africa Safaris, Uganda Breweries, Geo Lodges Uganda, Alam Group of Companies, AON UgandaThe Local Government in Hoima District provides the governance framework under which NGOs and private sector as well as local government staff or agents operate. However, with regard to PES, the Local Government technical staff have limited knowledge on PES activities or transactions and often have to rely on the expertise of the NGOs. Nevertheless, the ;ocal governments at district and sub-county levels are responsible for administration and in some cases management of natural resources and natural resource use rights. Farmers associations act as the sellers of carbon. They manage nurseries, plant and manage trees. They participate in trainings, monitoring and verification of the carbon stored and other activities of compliance such as ensuring secure tenure of land and trees, and signing MOUs.The The Single Species Woodlot technical specification does state explicitly, and apparently very conservatively, the carbon storage that can be expected over 20 years, which is estimated at 125 TC/ha. The specification states that carbon is 58% of biomass volume, which is an over the more commonly-accepted figure of 50%. The amount of the carbon offset (i.e., net carbon removals) which is stated in the specification is 61 TC/ha. It is not clear how this amount is derived, though it is about 50% of the total accumulation. This amount is also different than the value the project is using to calculate carbon payments, which is 62.8 TC/ha. It is also different than the value on the Plan Vivo website of 70 TC/ha. The graph in the specification would apparently start at zero and accumulate biomass carbon storage over the 20 years, but if the baseline is zero it should be stated. And if it is something other than zero, that should be stated.The Mixed Species Woodlots specification does not state the amount of carbon to be accumulated in the written explanation of the technical specification. There is a graph of the total carbon storage over a period of fifty years. But the graph is not sufficiently explained in the text.Taken together, the Technical Specifications, TGB Operational Manual, and other reports of ECOTRUST (i.e., Annual Reports) on the means of establishing project baselines (for farmer plots or average for Bushenyi) are not clearly stated or explained. The explicit rationale that will be applied for selecting the baseline for pre-project carbon for the Plan Vivos in the TGB project is not stated.The Third Party Verifiers were informed by the District Forest Officer in Bushenyi that there was no government program supporting the growing of indigenous tree species. The only government program supporting tree-growing in the district was for pines, eucalyptus and caliandra. During the audit, there was no evidence of farmers in the TGB project planting those species for their Plan Vivo.The technical specifications and other reports indicate that costs incurred from tree planting would be outside the means of participating farmers, which would indicate a financial additionality test passed. The START report and other progress reports of the project, as well as auditors' observations, indicate that there are technical barriers to planting indigenous species, a hurdle the project is overcoming. The without-project scenario would not likely include planting of indigenous trees species. Trees were observed to have been planted only on agricultural and degraded lands.There were some possible instances where some participants had previously cut down some trees of their Eucalyptus woodlots to make way for planting other trees for the project. The auditors had this confirmed verbally in one interview with a farmer (but not witnessed firsthand). The Project Coordinator stated that this practice is not permitted and emphasized that the stated rules of the project are to plant only bare areas with trees, although admitted that some poorly performing eucalyptus woodlots were thinned and planted with new trees. The START Draft report mentioned clearing Eucalyptus and planting indigenous as a problem, but this report seems to overstate the prevalence of what appeared to be a limited occurrence.With the possible exception of a few Eucalyptus woodlots that were replaced with Maesopsis, the auditors view this project as additional. The project documents do not explicitly state why this project is additional, which should be within a PDD. The report further detailed measures aimed at preventing future re-occurrence. These measures include the development of guidelines that are already part of the recruitment and monitoring criteria as follows: Land with any evidence of cutting trees in the past five years will not be recruited into the programme.  Any farmer who is found cutting trees in order to plant carbon trees will be automatically disqualified from the programme.  The short term (fuel, building poles) woodlots will be kept separate and distinct from the carbon woodlots.  The farmers that have the fuel and/or building poles trees scattered within the carbon woodlots will be guided to only harvest trees in accordance with the thinning practice as indicated in the Plan Vivos.According to the report, these rules are being implemented as follows. Awareness raising meetings took place, during which the rules and guidelines of the programme are explained to the farmers. Farmer baseline information is collected and Plan Vivo conducts ground-truthing visits. During these visits, the project staff gives advice on the species and makes a record of whether there is any evidence of cutting of trees in the past five years, records the current land use, etc. The project staff also monitors carbon activities, verifying whether the activities are according to the information in the plan.Potential risks to permanence of carbon stocks were identified in project technical specifications and effective mitigation measures implemented into project design, management and reporting procedures.There are elements of project management that would enhance the permanence of planted trees, but these have not been defined clearly. Thus risks are not clearly identified with management measures to address them. For example, risks like fire, pest, or disease damage, all of which ECOTRUST staff acknowledges in discussions, may not be readily managed through the existing protocols. There is an absence of a PDD that identifies risks and these within the project design.Producers enter into legal sale agreements with the project coordinator agreeing to maintain activities, comply with the monitoring, implement management requirements and re-plant trees felled or lost. The farmers enter into legal sale agreements, which have fifty-year duration. These are stored in the ECOTRUST files. The farmer payments are completed in a ten-year period. The project has been conducting monitoring of the Plan Vivos prior to determine whether conditions permit payment prior to transactions being concluded.As a minimum, a 10% risk buffer is deducted from the saleable carbon of each producer, where the level of buffer is recommended in the technical specifications according to the level of risk identified, and subsequently reviewed annually following annual reporting. There has not been any case where the 10% risk buffer has been used as yet. Up until recently, farmers' sales agreements entitled them to payment in full (100%) of carbon at year ten.According to the technical specification, risk analysis conducted indicated that the overall risk is very low. Consequently, a 10% risk buffer equivalent to 22.6 tCO2/ha on all project carbon produced is set aside as insurance against any future unforeseen event that might affect the amount of carbon already sold.Potential sources of leakage have been identified and effective mitigation measures implemented. The ECOTRUST Operational Manual indicates that the primary safeguard taken by the project to confront activity shifting leakage is to establish that the farmer has sufficient land for their activities and will not clear other landholdings with tree cover to make up for land/cropping needs. From the Operational Manual: \"The farmer to participate should have enough land for all his/her household food demands. Otherwise the farmer will be tempted to cut down the trees in future, before maturity to plant food crops; which cause a carbon leakage.\" ECOTRUST has not calculated their project emissions from fossil fuel combustion to implement the project (primarily vehicle use) and other sources. There may be some positive leakage, which should be accounted for.A sample taken (by Third Party Verifier) of the payment records between ECOTRUST and the local community banks demonstrated clear traceability of payments to farmers. A review of available contracts and correspondence between ECOTRUST and the purchasers also demonstrated traceability of purchases.ECOTRUST had recently begun using a new database platform to replace an older database. The sales figures provided tracing transactions with buyers, as mentioned, are difficult to follow, because there is not consistent reporting for TC and TCO2e. The reported sales statistics vary between units (as contracts with purchasers and producers use different terms), which lessen transparency of the transactions for outside parties.The monitoring is taking place prior to payments as specified in ECOTRUST documents. The following monitoring targets had been met so far, as applicable:Year 0: 50% Plot planted as described in Plan Vivo; 30% payment of total agreed carbon value Year 1: 100% Plot planted as described in Plan Vivo, 20% payment of total agreed carbon value Year 3: Survival not less than 85%, 20% payment of agreed carbon value Year 5: Average DBH not less than 10 cm; 10% payment of agreed carbon valueThe team inspected a sample of farmers records and saw that they all contained carbon sale agreements and monitoring forms. Reconciliation of monitoring records with payments confirmed that in all cases monitoring occurred before payment and payments were based monitoring reports.Plan Vivo is a voluntary and participatory process that organizes proposed land-use activities. Plan Vivo's projects require a third party verifier. These all had been approved by the ECOTRUST project officers. The team inspected a sample of farms to verify that the Plan Vivo was being implemented as planned. In some cases, there were modifications from the original Plan Vivo (e.g. in terms of the number of species or spacing planned versus the amount planted and actual planting density).The Plan Vivo sketch map appeared to be underutilized and possibly only a marginally effective management planning tool. The Plan Vivo does not have reliable area information or project maps, which could be of great interest to investors if the project was spatially explicit, so that maps from an actual GPS delineated boundary could be prepared (RA, 2009).This component of the baselines survey reviews the management capacity of the project; that is the ability of the project to delivery regularly on the carbon finance commitment it has undertaken. This includes institutional arrangements, partnerships and relationship with farmers groups, among others.The 2. A member voluntarily makes an application (only interested members are encouraged to make application).3. The member has to first agree with family members; that is a wife or spouse and one of the children 4. If the family agrees, a letter is written to the Local Council of the area-all this information is on the application form; and through the Local Council One of the area acknowledgement is made that the member does own land and resides in the area. The applicant is required to take the application form and the land use map or plan vivo to the chairman. The chairman is expected to endorse if the applicant is from his village and that the land is his 5. Then a request is made to ECOTRUST to start planting trees.6. ECOTRUST support and also encourages farmers to develop their nursery beds and acquire high quality seed. The project risks and opportunities are summarized in Tables 3 & 4 below. The risk and opportunities to the project developers and promoters, as well as risk and opportunities for the farmers and CBOs undertaking tree planting and management for carbon sequestration, respectively. 4. learning how to enhance land use both for conservation and livelihoods 5. competition within the household and family over land 5. settling differences over land through community action 6. long periods without cash income, very little cash income from carbon trees 6. long-term planning for sustainable livelihoodsThe project management capacity for the TGB project is reflected in the staff capacity of ECOTRUST, as well as the institutional partners participating in the project (stated in the previous chapter). The total number of staff at ECOTRUST working on the project is eight in addition to Executive Director (Ms. Pauline Kalunda Nantongo), 2 Program Officers, Accounts/Admin, and Database Manager (ECOTRUST, 2010). Three staff members have postgraduate education (qualifications) in environment and natural resource management, and climate change. At least five staff members have over six years experience with ECOTRUST and similar organizations engaged in carbon sequestration. ECOTRUST staff have been the beneficiaries of several training programs organized by CARE, USAID, DFID, ECCM, the UNFCCC Secretariat and several other organizations and institutions engaged in climate change issues. Moreover, ECOTRUST has opportunity to obtain further technical capacity enhancement from the Plan Vivo Foundation, the Rainforest Alliance and ICRAF, among others.The other six technical staff at ECOTRUST comprise of three environment and natural resources management specialists, one business management specialist, and a management specialist. The core finance team is developed around the business management specialist and the Executive Director and the key field staff who are environment and natural resources management specialist with at least six years experience in managing Plan Vivo carbon projects.Based on discussions held with farmers of Kidoma Conservation Development Association, the Hoima District Environment Officer and other project participants in Hoima District, carbon related community activities are organized along the structure proposed (Figure 2). There are several production activities, including the activities of the District Environment officer that influence carbon activities, however, many of these are only indirectly linked to the carbon project. The carbon farmer community structure consists of the farmers at the lowest level who are engaged in tree planting. The farmers are mobilized and meet in groups. The groups are united by the need to be grouped as a carbon group. However, for the most part are engaged in several other activities, many of which are unrelated to carbon sequestration. The CBOs are coordinated by a trained farmer leader who acts as the carbon project coordinator on behalf of ECOTRUST but also represents farmers' interest. The coordinators are selected by ECOTRUST through the regional office. The regional coordination office usually covers at least three districts with active ECOTRUST support, Plan Vivo, projects. In Hoima district ECOTRUST has promoted limited carbon sequestration activities among members of Community Forest Associations such Kidoma Conservation Development Association. ECOTRUST initiated support for the community to form groups based on three main additional sources of livelihoods: (a) bee keeping group (so far 120 bee hives), (b) tree planting group, (c) nursery tree management group. They embarked on planting trees with ECOTRUST and also approached NFA, as they did not have enough land for planting trees, and NFA gave them the grasslands in the Forest Reserve in which to plant their trees.ECOTRUST then introduced the Plan Vivo scheme where they plant indigenous trees, some members were trained on this and also received trainers from the UK. This generated some interest in Plan Vivo and farmers began participating in the carbon trade. The Trees for Global Benefits program targets all people, men and women who have land and are willing and able to plant trees. However, land tenure arrangements in Uganda disadvantages women. Women's rights to land under the vast majority of land holding systems are largely limited to usufruct rights. Also land held under mailo customary tenure is generally inherited by an heir of the deceased person who in most cases is male. This acts as a major barrier to women's participation in decision making to activities which require proof of land ownership (Tukahirwa, 2002). Proof of land ownership hinders the participation of women since most of them do not own land and have to first seek for consent from their spouses.In most areas in the project, a typical meeting would be over 80% men, however, women are not excluded. In Bitereko, Bushenyi where there is a strong network of active women, the majority of participants are women (Carter, 2009). In Bitereko this is a result of the fact that all tree growers in Bitereko sub-county are members of Bushenyi Women in Development Association (Rainforest Alliance, 2008).In order to ensure that women are represented, particular attention must be given to encouraging them to join as they do in Bitereko. Mwesigwa (2005) suggests that men do more of the work in tree planting activities in terms of clearing land, acquiring seedlings, planting, weeding and monitoring and management. However, Carter ( 2009) found out that women did more of the work. This may discourage women who think their workload will increase as a result of participation in the project. Children were also responsible for labour in tree planting so they may also find their work load increases as a result of participation.Firewood is the most commonly used tree product, and every household in the project area uses it. Firewood collection is predominantly a women's role in the family, therefore tree planting benefits women in particular by leaving them more time to do other tasks. In addition, energy saving stoves which have been introduced, particularly in Bitereko region of Bushenyi, also result in the reduction in the amount of firewood used per household (Carter, 2009).Reports from the Verification showed that the Trees for Global Benefits Projects became the first voluntary afforestation carbon project validated by Rainforest Alliance (RA). The Rainforest Alliance a leader in carbon offset project validation and verification services provided independent third-party assurance that the \"The Trees for Global Benefits\" project meets the Plan Vivo Standard. After a comprehensive evaluation of the pilot project site, validation showed that the project activities for TGB are on track to deliver the 50,000 tonnes (55,115 tons) of carbon dioxide over a 20-year period-from the farmers validated (at time of validation). Verification is continuous process which is done annually. The Bushenyi district is a patchwork of subsistence farms planted with bananas, corn, coffee, sugar cane, sweet potatoes and other crops. In addition to the benefits of carbon sequestration, TGB will help the region recover some of its native highland tropical vegetation. The 138 farm plots included in the original audit cover 258 hectares (637 acres) planted with native and naturalized trees, ranging from one to five years of age. Since the audit, further activities have been carried out with the view to generate over 110,000 further Plan Vivo Certificates.The project's focus on agro-forestry systems and small-scale woodlots will lead to improved and diversified incomes and increased access to fuel wood and basic building materials, which will reduce the deforestation pressures on nearby natural forests.The afforestation, reforestation and agro-forestry activities included in the project will be a great boost for biodiversity and surrounding ecosystems. The use of native tree species will expand habitat islands and biological corridors for elephants and chimpanzees. Reforested lands will improve soil stabilization and growing conditions on steep hillsides of the Bushenyi District, an important benefit for the areas' farmers.ECOTRUST also ensures farmers participate in internal monitoring processes and evaluation activities on a number of occasions, the participating farmers have testified on how the project has changed their lives (RA, 2010). Additionally, there are also socio economic studies that have brought out this fact. Internal evaluation of the Trees for Global Benefit Program is provided by both staff, through staff papers based on desk assessments and research and the numerous studies conducted by independent researchers. This ECOTRUST managed project is the most researched voluntary carbon sequestration project in East and Southern Africa (Pers. Comm. Executive Director ECOTRUST). The Edinburgh Centre for Carbon Management and the Plan Vivo Foundation developed the modus operandi for the project, based on previous experience in Mexico with a similar Plan Vivo project, and has helped to market the voluntary carbon credits. The World Agroforestry Centre (ICRAF) developed technical specifications for the tree planting regime (Swallow et al., 2010).In Uganda, natural resource management is based on the Constitution of Uganda (1995), and national laws such as the National Environment Management Act Cap 153 the Land Act Cap 227, and the National Forestry and Tree Planting Act (2003). Other concerns are articulated below:The management of natural resources is legislated under the Constitution of Uganda that guarantees access of Ugandans to natural resources either in form of those managed on their behalf by the government and those they govern on their own. In the Local Government Act, the natural resources that are under the stewardship of local governments such as local forest reserves and other resources such as sand, stones are defined. The National Forestry and Tree Planting Act (2003) established forest governance under the National Forestry Authority (NFA), and that to be managed by the District Forest Services (DFS) under the District Forest Officer (DFO). The DFS manages both local forest reserves as well as forests on individual land. However, the owners of the land on which forests are, own the forests and have the right to make decisions on how the forests will be managed. These decisions include whether or not to sell goods and services from their forest. The rights of access to watershed and biodiversity are different.ECOTRUST has organized communities to participate in voluntary carbon trade arrangements with private buyers from Europe and the United States. Some of these deals are built first on introducing principles of sustainable forest management, such as using indigenous trees delineated under the Plan Vivo arrangement and also as part of collaborative forestry arrangements. However, carbon sequestration projects have also been introduced in Bushenyi district (The TGB Program) under arrangements organized purely between ECOTRUST and farmers' groups. The groups have been educated on the trade arrangement, and they are recruited on the basis of willingness and ability to participate based on whether or not they own land and can plant trees. Other considerations include ensuring that the projects do not interfere with the food security of locations. The arrangement, which is contracted over a number of years includes offering farmers a purchase plan for the emission credits they generate over an agreed number of years, usually 10 years.In general, no government agency exclusively regulates compensation or restitution for ecosystem services. However, under the United Nations Framework Convention on Climate Change (UNFCCC) the Minister of Water and Environment and the Department of Meteorology coordinate the government's engagement in actions regulating emissions of green house gases. In 2009, the Climate Change Unit (CCU) was established in the Department of Meteorology to deal with carbon sequestration and provision of advice, supervision and registration for all projects dealing in carbon emission reductions. Thus far, the CCU has had limited functionality. There are many institutions that are trying independently to initiate PES activities in sectors of energy, forestry, water and agriculture; however, there is generally no coordination of these activities. A new Bill before the Ugandan parliament seeks to convert the meteorology department into a semi-autonomous agency to register, monitor and support the activities of carbon projects.In Hoima District, the case study site area, tobacco production is one of the major farmer-owned activities. These activities are supported by British American Tobacco (BAT) through farm inputs supplied to farmers engaged in tobacco production. These are farmers who have been individually registered within Hoima district and produce tobacco. Tobacco production and curing poses a significant concern through the excessive tree cutting for fuel for curing of tobacco as well as cutting down of forests to expand land for tobacco production. In recent times BAT has been promoting forestry production on farms as well as planting its own wood lots to meet the wood fuel demands of the tobacco processing. However, there is still evidence of unsustainable wood fuel use associated with tobacco production and processing. Whereas the wood fuel production activities of BAT are unrelated to the Trees for Global Benefits project, the high rate of deforestation is in part associated with tobacco production and therefore one of the justifications for the increased need for tree planting.Conservation for the biodiversity in the Albertine rift has been a major pre-occupation of international and national NGOs and local CBOs in Hoima, Bushenyi and Masindi. Organizations such as Nature Harness Initiatives (NAHI), together with the Chimpanzee Sanctuary and Wildlife Conservation Trust (CSWCT), CARE-Uganda and several others are engaged in biodiversity foot printing, as well as community-led biodiversity conservation. These activities are linked with the carbon sequestration activities in terms of reduced deforestation and new forest or tree plantations providing habitat for wildlife and conserving the biodiversity of the Albertine. Therefore, farmers are encouraged by the opportunity to contribute to biodiversity conservation as well.At the District Natural Resources office, a working committee on natural resources issues was formed and it consists of the Resident District Commissioner (RDC), the District Local Government (V) chairperson, the District Natural Resources Officer, the District Lands Officer, the District Forestry Officer, the National Forestry Authority (NFA) representative, Uganda Wildlife Authority (UWA) representative, and relevant NGOS and private sector groups like timber dealers. The aim of this working group is to maintain records on persons who carry out illegal activities in National Parks and Forest Reserves. Secondly, it conducts conflict-management for boundaries with UWA and NFA, as were need on the part of the communities and government agencies. At the beginning in 2000, meetings were held quarterly. Then NFA received financial support from the WWF for biodiversity conservation and programs, and this funding program covered the working group strategy. When the support concluded, the meetings were no longer held regularly and eventually stopped, although the working arrangement remains and can be resuscitated.Further private estate activities include large tea estates such as Bugambe Tea Estates. The company grows and processes tea, and plant trees for factory and domestic use for workers. The company has a 300 ha of forest estate. Forestry practices consist of forestry management cycle that takes 8 to 9 years for eucalyptus. The tea area has been expanding in proportion to the forest estate. The biggest challenge is that most community members do not understand the importance of conservation and easily drain wetlands or cut forests.At the national level, there has been considerable focus on carbon payments projects as delineated in the report on potential investment areas by the Uganda Investment Authority (UIA, 2007). The establishment of the Climate Change Unit (CCU) in the Department of Meteorology of Ministry of Water and Environment and the novel CDM projects run by the NEMA and NFA provide considerable evidence of this focus.At the community level, however, capacity building has been limited to the effort of non-governmental organizations such as ECOTRUST, NAHI, the Katoomba Group, among others. Whereas, for instance, some of the Collaborative Forestry Management (CFM) arrangements between NFA and communities have also resulted into carbon projects, these results have been mostly due to the efforts of the NGOs engaged in developing the CFMs. There is little evidence that NFA, UWA or NEMA and other government departments are investing in technical capacity building beyond the efforts taking place within these organizations themselves.As market arrangements for ecosystems services, carbon payment schemes often have measurement, verification and monitoring plans. Voluntary market and CDM market credits are measured, verified and certified in compliance to the start under which the credits are being sold. In Uganda, Plan Vivo, Verified Carbon Standard (VCS), Climate, Community and Biodiversity Standard (CCBS), and Carbon Fix are involved in the certifying and selling of credits. Enforcement for the voluntary market is often undertaken within the associations or groups that are linked to the supporting or service-providing organization. For the CDM market, the monitoring, compliance and enforcement roles have been left to the agencies that are part of the agreement such as the NFA and NEMA.At the national level, the National Forestry Policy (2001) mentions the need to consider markets for carbon sequestration. In addition, both the National Forestry Policy (2001) and the National Forestry Business Plan (2003) describe other activities within the Community Forestry Management (CFM) arrangements and revenue generation that would be used as a basis for developing payments or compensation for carbon sequestration and biodiversity conservation. However, it does not mention the roles or types of participants in such markets.The biggest danger to forestry within the district is the expansion of farmlands for upland rice under Uganda National Agricultural Advisory Services (NAADS) and tobacco. The greatest threat is to watersheds. People still see tobacco as lucrative and do not want to give it up. However, community resistance to degradation of wetlands and watersheds is growing. There are examples where people sought to sell trees at the riverbank but the community resisted. Moreover, there is limited and inadequate knowledge about payments for ecosystem services and carbon trade, even among technical officers such as the District Environment Officer and the District Forestry Officer.The Trees for Global Benefits project has undergone a pilot phase of limited offset sales. One of the first buyers of the credits generated by the pilot project was an international, UK-based packaging company, TetraPak, who bought the first credits (11,200 tons of CO 2 ) in December 2003 and an additional 9,000 tons of CO 2 in 2004. Carbon sales increased steadily between 2004 and 2007. The carbon offset price has oscillated between USD 3.8 and 5.5/tCO 2 eq, with one particularly high-priced transaction of USD 10.45/tCO 2 eq. The average volume weighted carbon price in the period 2004-2007 was about USD 4.5/tCO 2 eq (Nakakawa et al., 2010).The most easily quantifiable measures of the project impact are the carbon payments. A typical payment is 904 USD for a woodlot on 1 ha, and the majority of participants have between 0.5 and 2 ha (Carter, 2009). The majority of people in the discussion groups suggested using their carbon payments for school fees, maintaining the trees (i.e. supplying labour), buying building materials for home improvements, purchasing more land, clothes, and food, and building an enterprise. Other suggestions included furniture, crop inputs (seeds and fertilizers), durable goods, fencing and livestock.Participating farmers enter individually into an agreement with ECOTRUST. Starting with 33 carbon farmers in 2003 (ECOTRUST et al. 2007), the number of farmers with contracts who had received payments increased to over 170 by the end of 2008. Some farmers have now received their third payment. Contract terms cover a 10-year period and specify the amount of carbon to be sold, the price per ton to be paid (negotiated on a case-by-case basis), targets to be met within each of five established monitoring periods, and a schedule of payments. Disbursement of funds to farmers is conditional on the farmer meeting the targets within the specified time. In addition, farmers must set aside an additional 10% of their total carbon offset potential to cover shortfalls in the event that they fail to meet objectives. The pilot phase (2003)(2004)(2005)(2006) acted as a platform for expansion of the project to other parts of the country. The project has been extended to Hoima and Masindi Districts, where new Plan Vivos are yet to be reviewed and new contracts signed, depending on the availability of more carbon buyers (ECOTRUST 2007).From a financial stability perspective, because there are few employment opportunities, cash in hand is extremely difficult to get for households within the project areas (village surveys). However many community members are involved in casual employment, which can provide between 1,500 and 2,500 USH per day, depending on the type of work and gender of the employee (since it is manual labouroften on a farm, the wage for males is higher than women). Participating in the project diversifies income which helps to mitigate risk in the loss of one or more income sources. In Bushenyi, amongst participants, they have a statistically higher number of income sources than non participants, which is partly as a result of carbon payments.Carbon is largely demand rather than price driven (Harley, 2007) and the price fluctuates for a variety of reasons. This means that producers (smallholder carbon farmers) get different payments per ton of carbon depending on which sale they are allocated. This can cause uncertainty between producers; however, ECOTRUST has regular question-andanswer sessions for participants in addition to the information and training they receive on joining the projects (discussion groups). Viability constraints come from the fact that the market is an immature one that \"is relatively small; the flow of transactions is neither predictable nor steady; and transaction costs are relatively high\" (Harley 2007). This means for new participants, the contracts they are offered may be at a lower value than anticipated based on observations if the price falls. However, once a price is agreed upon, the participants are guaranteed long-term financial stability as the payments are set for the duration of the project at that agreed price.As much 60% of the price of the carbon can be given to the farmer. During the design phase, the price structure is aimed towards that, and while it is sometimes not 60%, the price is often above half the value. The projects have a sliding cost where if a buyer is buying less, they pay a higher price, to cover cost of administration. Carbon prices range from 6 USD to 20 USD per ton of carbon, and a farmer can generally get about 4 USD per ton. The community as a whole benefits, as re-investment of carbon finance accumulates. Socio-economic benefits accrue in the form of village banking, where arbon farmers are members of the village branch, buy shares, and foster a culture of savings and credit. The money from carbon credits can be used for emergencies, school fees, etc. In fact, one farmer bought a primary school from Bitereko. Farmers' preference is to use carbon money for more input expenditures, but instead often use the little savings for nurseries and tree seedlings. The expected carbon payments serve as collateral.One drawback to handing out money in cash is that it can lead to corruption problems.Carbon is a means of conservation and livelihoods improvement. Participants usually do not go for carbon, but go to rehabilitate degraded landscapes. Capacity building in land management is a large part of the project. Every farmer is taught to design a management plan; the farmer gets ex ante payment before they get credits, and uses the money to invest into landscape management. Farmers also invest in other income-generating activities, such as bee keeping, medicinal extracts, fodder, and fuel wood branches before they benefit from timber. Farmers participate in group marketing schemes, using the structure that has been established.To maximize environment benefits, sites are identified where tree planting will provide additional benefits, controlling for soil erosion and siltation of rivers (e.g. River Mobuku) that feed into Lake George and River Rukindagye. Generally, indigenous species are planted, in addition to improved (mangoes, pawpaw avocado) species with no known effect on soil. Eucalyptus and pines are excluded.ECOTRUST does not give any farmers initial money to plant. Only those who have demonstrated commitment receive a payment in the first planting year, after planting. Institutional awareness raising, information, and capacity building help with this first step. There is an arrangement for already participating farmers to get seedlings on credit. Guidelines are available to ensure the process is not abused. When you have planted, you are part of the payment round, and buyers are allocated on a first-come-first-served basis. But if you plant before you have been given a go-ahead, those trees are not cleared.The creation of a bank for carbon credits is also planned. The credits are currently issued by Plan Vivo and Market Registry. ECOTRUST will start buying from all who have trees starting in 2010. However, some buyers want credits that are already in the registry. It is also necessary to plan whether to increase or decrease payment, however ECOTRUST will have to put up a lot of capital to buy credits and to pay the registry.Bank accounts and informal credit institutions are the two ways identified to invest money and where loans could potentially be accessed. Savings clubs are a popular informal credit institution, particularly for women and are often community-based so are more accessible than banks, which are based in the district town. In some villages it was estimated that less than 10% of people used either a bank or an informal credit institution (village surveys). The fact that one of the criteria for joining the project is to have a bank account (ECOTRUST facilitate this for those who need assistance to get an account) is a great benefit to a number of participants. Capacity in terms of financial planning is expanded, and the way the payments are fixed allows future planning to take place.In order to qualify for a loan from a village bank, it is necessary to have a guarantee. The carbon finance contract which is between the participant and TFGB is acceptable security. This was considered one of the major indirect benefits to project participation. Many respondents stated capital as the limiting factor in terms of farm development alone, so the availability of a loan allows development on farm as well as in other areas for example to expand a business (Nakakawa et al., 2009).","tokenCount":"6884"} \ No newline at end of file diff --git a/data/part_3/2618780542.json b/data/part_3/2618780542.json new file mode 100644 index 0000000000000000000000000000000000000000..87d9a74ba69a44a02946263e1197197c75d25f3f --- /dev/null +++ b/data/part_3/2618780542.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"db18dacd3b9944c89af883164c54139f","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/86f0edaf-7e2a-4fb7-aa5c-43a8c58945eb/retrieve","id":"-380351120"},"keywords":[],"sieverID":"56f0b9ad-c0f5-4bf7-b568-4b103375a19d","pagecount":"13","content":"The project 'Towards climate-resilient dairy production in Southern Zambia' envisions contributing to increased livestock productivity in southern province of Zambia. The project aspires while working with cattle producers, to consider and integrate technologies that contribute to increased livestock performance while minimizing environmental footprint. Briefly, the project looks at livestock feed resources, genetic traits of importance to the system context and key livestock health concerns curtailing increased milk production in the area. To address the concerns and encourage sustainability, the project seeks to explore and recommend institutional arrangement for livestock inputs, specifically with involvement of the private sector. Concomitantly and where applicable, infuse targeting tools to help understand livestock production and forage performance under the current and future climate scenarios, especially given the semi-arid nature of southern Zambia province.As a baseline, and to understand the dairy and farming systems in southern province of Zambia the project judiciously aims to apply Gendered Feeds Assessment tool. The tool through rapid and structured responses, provides a clearer and robust understanding on selected site(s), in terms of farming and cropping systems, livestock structure and feed resources, household characteristics and incomes and more importantly points out possible areas of interventions for uplifting livestock production. This report outlines the initial step of training and empowering enumerators to implement G-FEAST in selected districts of southern province of Zambia in line with the livestock improvement endeavor.The Southern Province of Zambia holds an estimated cattle population of 4 million, which comprises 35% of the national population. A livestock policy developed in 2020 help guide development in the different product value chains. Key issues of interest for the livestock sector in the southern province include access to quality feed and feeding systems for cattle, and the choice of breeds for milk production. There are no specific criteria for identifying an ideal breed for the environment. Adoption of Artificial insemination (AI), mainly promoted through the government is low, and existing sensitization processes are not very effective. The global challenge with Covid 19 that began in 2020 has greatly affected livestock development efforts notably in terms of reduced access to inputs and services to support the sector. The country relies heavily on importation of veterinary inputs. There is now a strong need to promote and use locally produced materials in order to reduce reliance on importation. On another hand, the challenge helped to stimulate increased milk productivity as processors raised the farm gate price for milk in order to fill their gap in imports of milk products. This has created an opportunity for interventions that could result in more productive and resilient dairy breedsThe southern province administratively cover seven districts, but for the purpose of the livestock assessment, we selected sites based on agro ecological understanding including; upper plateau, mid plateau and the lower plateau/flood zones, in the end covering the six of the districts where livestock especially dairy is targeted for improvement. Specifically, the districts comprised; Choma, Kalomo, Mazabuka, Monze, Namwala and Zimba Table 1. FEAST is a systematic approach to understanding the overall feeding system and thinking with farmers and local stakeholders about possible interventions. FEAST consists of two parts: (1) a rapid, participatory assessment using focus groups (Figure 2a), and (2) individual farmer interviews (Figure 1b). For the focus groups, the feed assessment is conducted with a group of farmers and other stakeholders and follows a set of guide questions. It identifies problems and opportunities within a given farming system and identifies potential interventions. A subset of farmers is then interviewed individually to generate quantitative information that is entered into a specialized computer application (the FEAST data app) -Figure 1c. The data app generates charts and tables that, along with the qualitative information from the focus groups, reveal the overall feed availability, quality and utilization. The solutions coming out of FEAST exercises are demand-driven and provide practical solutions that farmers can easily take up to deal with pressing feed issues This G-FEAST course was adapted to incorporate extended content in animal health and animal breeding practices. Data for the extended content was collected using the mobile-based Open Data Kit (ODK, https://opendatakit.org/ ).The training program was implemented over 4 days with participants grouped as presented in Table 2. In line with the government protocols for holding meetings during the global Covid-19 challenge period, meeting venues were sanitized, masks provided for participants and social distancing was always maintained. Zambia (Photo by ILRI/Ben Lukuyu)Feedback by course participants following testing of the adapted G-FEAST in Batoka site, Choma district: An interactive session was held with course participants after the field testing of FEAST, animal health and genetics tools. Teams were tasked to identify what worked well, the main challenges experienced and 2-3 key findings they learned through the exercise. These are outlined below:A: Feedback on group participation 1. Farmers need to be encouraged to participate fully. 2. It is challenging to come up with solutions because of individualistic thinking. The communities rarely come together to discuss possible solutions to their problems. 3. Conversing with farmers in \"gendered\" groups enabled them to be open in expressing their ideas. 4. Interviews for women require a lot more consideration regarding personal conveniences-notably for those caring for young children. 5. The more we did the exercise the more we became conversant with the work ahead of us. 6. The exercise generated reliable information that will help us a lot in the field. 7. Farmers should not be kept for a long time as they lose concentration. 8. Farmers have more knowledge on how to manage their livestock and provide details that facilitators had not anticipated. 9. Farmers are open and willing to learning. B: What worked well Feedback about facilitators 1. Teamwork was very good: collaboration between facilitators, timekeepers and notetakers. 2. Facilitation and managing of farmers expectations was good. 3. Good command of the local Tonga language. 4. Questionnaire was well understood by the facilitators. 5. One facilitator wrote 'I leant a lot of things from the farmers that I did not know'. 6. Using questions presented in ODK was quite easy to fill in details, hence saved time. 7. Use of colored cards to gauge farmer responses and ensure inclusivity in responses was very useful. Feedback about farmers 1. Good farmer participation: Farmers were cooperative and committed in answering questions despite the long duration of the process. 2. Farmers understood questions asked and could provide answers better than we had expected. 3. Farmers respected ground rules provided. 4. Some farmers (women) volunteered themselves to provide information for the individual interview prior to being requested. 5. The farmers were very open in their responses and were not shy to outline their experiences within the community.6. All farmers had an opportunity to respond. This made them more confident in participating in the discussions. D: Main Challenges Feedback about facilitators 1. Time management for the focus group discussions was a challenge and this impacted on time for the individual questionnaires. 2. Generating the right probing questions in order to get clear answers to question being addressed. 3. The questionnaire had not yet been fully internalized by the facilitators, hence interview process took long. 4. Relating the paper tools with information in ODK tools was not easy for some teams. 5. Some information required in questions was \"lost in translation\". 6. The rating in percentages was a challenge. 7. Facilitators needed a clearer understanding of the tool to relate to responses and ask probing questions adequately. 8. Facilitators need to learn to adapt energizer activities to keep farmers engaged in discussions.1. It took time for the farmers to reach consensus over some items. 2. Some farmers didn't have phone numbers hence it was difficult to know what contact to include for them in the ODK application. 3. The farmers do not weigh their animals, so they didn't have any idea about weights for different animal age categories. 4. The farmers got exhausted over the long meeting time. 5. Women farmers could not provide accurate details on land ownership issues. 6. Some farmers remain quiet even in interactive sessions, however when requested to vote with cards they participate enthusiastically. 9. The sudden mid-day rain disrupted the discussion as some teams were sitting outside. 10. Venues for farmer interaction did not provide for adequate seating, hence communities were sitting on the ground. 11. Food provided for farmers was not adequate for the whole day activity. 12. Group discussions began late because farmers arrived at venues late. E: Some findings from the focus group discussions 1. Most farmers in the area are in a \"middle age group\" in terms of farming experience. 2. Feed is not the major challenge in the area. 3. Knowledge in animal health and management and water is a top priority for farmers. 4. Farmers lack information on general dairy management practices. 5. Very few farmers have exotic breeds of cattle. 6. Farmers were willing to pay to access bull mating services from their neighbors. 7. Farmers in the area take a keen interest in milk production and practicing milk hygiene.8. Farmers would like to have training on signs and symptoms of different diseases and some clarity on expected treatment required. 9. Traditional medicine is commonly used and is perceived to be quite effective.A schedule for conducting the G-FEAST exercise was discussed by the team and outlined as shown in Table 3. ","tokenCount":"1553"} \ No newline at end of file diff --git a/data/part_3/2629881480.json b/data/part_3/2629881480.json new file mode 100644 index 0000000000000000000000000000000000000000..3ee58f9f6ceba1cd849a0c534c583f31e8437742 --- /dev/null +++ b/data/part_3/2629881480.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"dc98013d7fed0ae45b783b5942201e1e","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/256fb939-5ba5-4d97-8153-e8822370e661/retrieve","id":"-240232346"},"keywords":[],"sieverID":"458db410-e04f-4d3a-9c40-e4409cf6ac22","pagecount":"9","content":"La Iniciativa del CGIAR \"Transformando los mercados y las cadenas de valor para la inclusión y la sostenibilidad\" (Transformando Mercados), la Asociación Regional de Servicios Agropecuarios de Oriente (ARSAGRO), y la Central de Cajas Rurales de Ahorro y Crédito Comunidades Solidarias de Oriente (CECRUCSO) están evaluando el impacto del envío de mensajes técnicos por WhatsApp a productores asociados de frijol en la adopción de prácticas orientadas a mejorar la calidad del grano que producen, y la calidad del grano producido. Esta innovación es parte de un estudio piloto donde se evalúan otras innovaciones, y cuyo diseño se detalla en Reyes et al. ( 2023), el cual se está implementando en el departamento de El Paraíso, en Honduras. Los productores de frijol apoyados por ARSAGRO y CECRUCSO reciben asistencia técnica mediante entrenamientos grupales, donde aprenden sobre diversos temas relacionados con el manejo y la comercialización de frijol. El envío de mensajes técnicos mediante WhatsApp se identificó como una estrategia para reforzar estos conocimientos, especialmente los relacionados con prácticas que pueden tener un efecto positivo en la calidad del grano que se produce. Esta estrategia se identificó de un proceso consultivo de dos etapas, donde en la primera etapa, actores del sector identificaron diversos desafíos en la cadena de valor del cultivo, entre ellos, la dificultad que enfrentan los productores para cumplir con normas de calidad establecidas para acceder a diversos mercados; y en la segunda etapa, los dos grupos de productores mencionados determinaron que WhatsApp era la herramienta más adecuada (y complementaria) para contribuir a solucionar dicho desafío.Nota TécnicaEl contexto en el que se usó WhatsApp para enviar mensajes técnicos a productores tiene dos dimensiones. La primera se relaciona con el perfil de las asociaciones que tuvieron la responsabilidad de preparar y enviar los mensajes. ARSAGRO, es una organización de segundo nivel, con cerca de 600 socios activos (en 2023) en cinco municipios del departamento de El Paraíso. ARSAGRO cuenta con oficinas y una planta procesadora de granos ubicada en la ciudad de Danlí, con una capacidad de procesamiento de frijol de 9,600 quintales mensuales. Esta asociación tiene experiencia en la venta de grano a mercados diferenciados a través de alianzas público-privadas, en la exportación de frijol y en la ejecución de proyectos de investigación y desarrollo. La principal actividad comercial de esta asociación es la compra y venta de granos (frijol y maíz), aunque tiene otras fuentes de ingresos. Entre los servicios que prestan a sus miembros se encuentran la asistencia técnica y el crédito (en efectivo o en especie). En 2023, esta asociación contaba con 25 para-técnicos, que son agricultores líderes que reciben formación de la asociación para poder prestar algunos de sus servicios (principalmente asistencia técnica utilizando la metodología de escuela de campo para agricultores) a sus asociados.CECRUCSO se fundó para establecer una sola organización que pudiera consolidar diferentes grupos legalmente establecidos, incluyendo las Cajas Rurales de Ahorro y Crédito (CRACs). En 2023 contaba con 31 CRACs afiliadas, que en conjunto suman una membresía de más de 360 agricultores en tres municipios del departamento de El Paraíso. CECRUCSO cuenta con infraestructura y equipos que se utilizan para el café y los granos (beneficio húmedo, secadores solares, planta de procesamiento y secado, equipos de trillado y tostado, y una moledora), y tiene experiencia en el suministro de café a mercados locales e internacionales, en la venta de granos a mercados diferenciados del país y en la ejecución de proyectos de desarrollo. La principal actividad de CECRUCSO es asignar créditos a diferentes CRAC para que puedan apoyar a sus miembros en la producción de café, granos y, en menor medida, ganado. CECRUCSO presta servicios de secado (para el café y los granos); de trillado y tostado (sólo para el café); y de asistencia técnica a los agricultores con los que trabajan, centrándose en las buenas prácticas agrícolas y de procesamiento. En 2023, CECRUCSO contaba con tres técnicos de campo que prestaban asistencia técnica a los agricultores.La segunda dimensión se relaciona con las características de los productores que recibieron los mensajes. El 76% de los productores eran hombres, con 49 años de edad, 23 años de experiencia cultivando frijol, un poco más de 5 años de educación formal completados, y con un hogar con 4.4 miembros. La mayoría (92%) era dueño de su casa y el 67% de los hogares contaba con electricidad. Además, el 94% de los productores tenía un celular, el 74% tenía un teléfono inteligente, y el 64% reportó usar WhatsApp para comunicarse. Los productores cultivaban 1.7 mz (1 mz=7,000 m 2 ) de frijol, 89% de ellos usaba fertilizantes, y el 61% vendía frijol; y todos eran miembros de la asociación.Esta nota se preparó para gestionar el conocimiento generado de la experiencia de preparar y enviar mensajes con un contenido técnico, a productores asociados de frijol, a través de WhatsApp. Con ella se pretende que actores del sector interesados en replicar esta actividad con productores en otras regiones del país, o en otros países, en un contexto similar, cuenten con información detallada para poder implementar esta actividad.El envío de mensajes técnicos por WhatsApp fue posible porque las asociaciones de productores proveen asistencia técnica a productores de frijol, de manera grupal. Los mensajes se diseñaron para complementar estos esfuerzos, al reforzar el conocimiento que los productores adquieren durante estos entrenamientos. Los mensajes se enviaron según se detalla a continuación.El primer paso consistió en determinar la estructura que cada mensaje debía tener, como se ilustra en la figura. Para esto, se tomó en consideración aspectos relacionados al contenido, uso de lenguaje sencillo, inclusión (o no) de materiales audiovisuales, tamaño de la letra, y la estructura que tendrían. Los mensajes debían ser sencillos (pero con un contenido técnico), no incluir links ni videos (aunque fotos se consideraron incluir si eran necesarias), y con tamaño de texto legible. Cada mensaje contenía cinco secciones: un saludo (el cual incluyó 3 palabras); una oración de referencia al entrenamiento grupal recibido de parte de la asociación (10-15 palabras); una oración con el mensaje técnico que queríamos transmitir, el cual incluía una descripción del problema y su solución (30-40 palabras); una oración de cierre (6 palabras); y la despedida (9 palabras).Paso 2: Determinación de la cantidad y frecuencia de envío de los mensajesCon la estructura de los mensajes definida, el siguiente paso fue determinar la cantidad de mensajes a enviar y la frecuencia de envío. Al definir la cantidad de mensajes tuvimos en consideración (i) el posible rechazo (por los productores) que puede generar el enviar muchos mensajes y (ii) evitar saturar a los productores con información. Con esto en mente, y para mantener la cantidad de mensajes a un mínimo aceptable, determinamos enviar tres mensajes (con diferente contenido) después de cada entrenamiento grupal (ver figura). Dado que nuestro interés era reforzar conocimientos aprendidos en entrenamientos grupales, se decidió enviar un mensaje diario, a la misma hora (final del día) cada día, por tres días seguidos, comenzando el día después de realizado el entrenamiento grupal. Las asociaciones de productores estuvieron a cargo del envío de los mensajes. Esta estructura permitió que la cantidad y frecuencia de envío de los mensajes fuese la misma, y que se ajuste según la cantidad de entrenamientos grupales que se realicen.Para identificar la plataforma más adecuada para enviar los mensajes, hicimos un análisis de ventajas y desventajas para dos opciones: uso de servicio de mensajes cortos (SMS) y WhatsApp. Las principales ventajas de usar SMS incluyen la posibilidad de enviar fotos de buena calidad y que los mensajes llegan a los productores aún en zonas con limitado acceso a red celular (porque este tipo de mensajes pueden ser recibidos sin tener acceso a internet). Entre las desventajas encontramos que, aunque se podían enviar mensajes grupales, el proveedor puede bloquear el número de teléfono del que se envían los mensajes si detecta un volumen alto de mensajes, cada mensaje tiene un costo, y no permite la interacción entre los productores y las asociaciones (excepto de manera bilateral, lo cual implica que otros productores no estarían al tanto de estas interacciones).Entre las ventajas de usar WhatsApp están que permite crear grupos para envío de mensajes, permite interacción entre los participantes de los grupos (tanto de los productores con las asociaciones, como entre productores), y se puede monitorear la interacción que sucede en los grupos. Las desventajas incluyen que los mensajes no son recibidos si es que los productores no tienen un teléfono inteligente, o si no tienen acceso a la red celular, que tanto el emisor como el receptor deben pagar por el servicio de internet por celular, y que las interacciones en los grupos se pueden desviar de temas técnicos a otros temas (como religiosos, políticos, etc.). Los representantes de las asociaciones mencionaron que la mayoría de los productores, si no tienen red celular en sus aldeas, o si no pagan de manera regular por este servicio, generalmente se conectan a internet por lo menos una vez por semana. Debido a esto, y a la facilidad de usar WhatsApp, determinamos que esta era la plataforma más adecuada para enviar los mensajes.Paso 4: Creación de grupos de WhatsAppCon la estructura, cantidad y frecuencia de mensajes, y plataforma de envío definida, el siguiente paso fue determinar cómo se usaría WhatsApp para enviar los mensajes. Para esto consideramos dos opciones: envío de mensajes individuales a cada productor, o la de grupos para el envío de los mensajes. Dado que esta actividad se realizó en el marco de una evaluación experimental, optamos por crear un grupo de WhatsApp por aldea (o comunidad). La figura de abajo ilustra los pasos que se deben seguir para crear un grupo de WhatsApp. Todos los productores atendidos por la asociación en una aldea se incluyeron en el grupo de WhatsApp correspondiente. Independientemente de esto, consideramos que la creación de grupos pequeños puede facilitar la interacción entre los miembros de los grupos (contrario a crear un solo grupo con muchos participantes) y reduce el esfuerzo de enviar mensajes de manera individual (i.e., a cada productor). Para evitar que los productores ignoren los grupos, éstos se nombraron de una manera llamativa, haciendo referencia al cultivo, la asociación y la aldea (figura a la derecha).Paso 5: Identificación de temas de interés para elaborar el contenido de los mensajes Debido a que el envío de mensajes técnicos por WhatsApp se usó como una estrategia complementaria a los entrenamientos grupales que ARSAGRO y CECRUCSO realizan, el contenido de los mensajes se extrajo del currículo de entrenamientos que las asociaciones prepararon para el ciclo de producción de referencia. Cada asociación determinó, antes del ciclo productivo, qué temas incluiría en los entrenamientos a impartir, y calendarizó dichos entrenamientos. Para cada aldea, ARSAGRO calendarizó tres entrenamientos grupales durante el ciclo de producción, enfocándose en el manejo sostenible de los sistemas productivos (suelo, agua, bosque), fertilización, manejo integrado de plagas, cosecha, manejo post cosecha, y buenas prácticas de manufactura. De manera similar, CECRUCSO calendarizó dos entrenamientos grupales por aldea, enfocándose en la preparación del terreno, siembra, fertilización, control de malezas, manejo integrado de plagas y enfermedades, cosecha, y registro de costos de producción. Los temas para los mensajes se extrajeron una vez que el entrenamiento grupal finalizó (para tener certeza de los temas impartidos). Los temas se seleccionaron para enfatizar la adopción de prácticas que pueden contribuir a mejorar la calidad del grano que se produce (por ejemplo, sistema de siembra), porque ese era nuestro interés. Sin embargo, esto se puede adaptar según intereses específicos que alguna asociación, organización, u otro tipo de actor con interés en apoyar a productores tenga. Además, si no se cuenta con un currículo de entrenamiento, se podrían preparar mensajes según la información técnica que se desee transmitir a los productores.Con los temas identificados, desarrollamos el contenido de cada mensaje, siguiendo la estructura definida (ilustración). Esta actividad la realizamos de manera conjunta entre la Alianza y las Asociaciones. Cada borrador de mensaje fue revisado y aprobado por ambas partes, y luego fue enviado por personal de las Asociaciones a cargo de administrar los grupos de WhatsApp. En la imagen ilustramos el contenido de uno de los mensajes enviados, el cual se enfocó en el pH de la parcela, y como balancearlo.El primer mensaje se envió un día después de finalizado el entrenamiento grupal. Al segundo día se envió el segundo mensaje, y el último mensaje fue enviado tres días después de finalizado el entrenamiento grupal (en la ilustración, el primer mensaje se envió el 27 de octubre de 2023, el segundo el 28 de octubre, y el tercero el 29 de octubre). Este proceso se repitió después de cada sesión de entrenamiento grupal (3 en el caso de ARSAGRO, 2 para CECRUCSO). Dado que entre sesiones grupales hubo varios días (hasta semanas) de diferencia, una vez que se finalizó el envío de la primera ronda de mensajes hubo un periodo de inactividad, donde los productores podían interactuar entre sí y con los técnicos de las asociaciones (persona que administraba los grupos).Por interés del estudio en el que se implementó esta actividad, se monitoreó la interacción que sucedía después de enviar los mensajes, aunque esto lo pueden realizar actores interesados en replicarla, para determinar si se necesitan ajustes en el proceso (por ejemplo, si no se despierta interés de los productores, cómo se podría cambiar esto). El objetivo principal de este monitoreo fue determinar si los mensajes fomentaban interés y discusión técnica (o si se compartían temas no técnicos), si los productores intercambiaban experiencias sobre los temas técnicos compartidos, y si la dinámica era influenciada por pocos miembros de los grupos. Para esto, usamos un registro (Excel), el cual fue completado por la persona que administraba el grupo (de parte de la asociación). Este monitoreo se realizó uno o dos días antes de comenzar el envío de la siguiente ronda de mensajes (ver ilustración).o Los grupos creados se están usando para enviar mensajes técnicos (y no otro tipo de mensajes), lo que ha permitido que haya interés de los miembros en la información compartida.o El tener una estructura definida para los mensajes ha permitido poder prepararlos en un corto tiempo después de que finalizan los entrenamientos grupales (generalmente un día), lo que ha sido clave para poder enviar los mensajes según lo planeado.o Al tener una persona responsable en cada asociación para enviar los mensajes ha permitido que los mismos se envíen a tiempo, dado que no hay incertidumbre sobre quién debe enviar los mensajes.o La comunicación vía WhatsApp ha permitido que las asociaciones se comuniquen con los productores de manera ágil y a un bajo costo.o Definir una estrategia para que los productores que no tienen acceso a WhatsApp (por no tener celulares inteligentes mayormente) puedan recibir los mensajes. Una opción sería registrar en los grupos otro número de teléfono del hogar, en el que se tenga acceso a WhatsApp.o Identificar mecanismos para fomentar una mayor interacción entre los miembros de los grupos, y con los técnicos de las asociaciones. Por ejemplo, se puede fomentar que los productores usen los grupos para hacer consultas técnicas usando imágenes (fotos), porque de esta manera los técnicos de las asociaciones pueden hacer mejores recomendaciones.o Sincronizar mejor los temas de entrenamiento (y por ende el envío de los mensajes) con la etapa fenológica del cultivo, para evitar impartir temas y enviar mensajes que no se pueden implementar debido a que la ventana para su implementación ha pasado.o Obtener o generar un mapa de cobertura de la red móvil en la zona de implementación, para identificar zonas sin señal y el impacto que esto podría tener en el éxito de compartir información con los productores mediante tecnologías de comunicación e información.o Analizar qué plataforma sería más adecuada para enviar mensajes en la zona de acción de las organizaciones interesadas en implementar esta actividad, ya que WhatsApp podría no ser la opción más adecuada.o Dependiendo de la complejidad de la información a compartir, recomendamos considerar el envío de imágenes (o animaciones), para complementar el texto técnico. Esto facilitaría la comprensión por parte de los productores.o Determinar, según las necesidades particulares, cuál sería la cantidad adecuada de mensajes que se deben enviar, sin saturar a los productores.o Además de información técnica sobre el manejo del cultivo, compartir información climática durante el ciclo productivo (por ejemplo, pronósticos de lluvia).Alianza Bioversity-CIAT; ARSAGRO; CECRUCSO. 2024. Potenciando la comunicación: Uso de WhatsApp para fortalecer conocimientos técnicos de productores. Guía de implementación. 8p.CGIAR is a global research partnership for a food-secure future. CGIAR science is dedicated to transforming food, land, and water systems in a climate crisis. Its research is carried out by 13 CGIAR Centers/Alliances in close collaboration with hundreds of partners, including national and regional research institutes, civil society organizations, academia, development organizations and the private sector. www.cgiar.orgWe would like to thank all funders who support this research through their contributions to the CGIAR Trust Fund: www.cgiar.org/funders.To learn more about this Initiative, please visit this webpage.To learn more about this and other Initiatives in the CGIAR Research Portfolio, please visit www.cgiar.org/cgiar-portfolio © 2024 CIAT. Some rights reserved.This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 International Licence (CC BYNC 4.0).","tokenCount":"2848"} \ No newline at end of file diff --git a/data/part_3/2703741617.json b/data/part_3/2703741617.json new file mode 100644 index 0000000000000000000000000000000000000000..d4da12a13f00a335018e99c939e0140f5fd321e6 --- /dev/null +++ b/data/part_3/2703741617.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"6ec7d0ff9cfeefd8e10d10a2189f9ee4","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/3811ed23-0d29-42da-98c9-b8f09a598a51/content","id":"1803612706"},"keywords":[],"sieverID":"17e858c7-342d-4d49-8ba6-83967163bf17","pagecount":"41","content":"The Beta Version of the Solar Irrigation Pump (SIP) Sizing Tool and this User Manual were developed as part of the collaborative work by IWMI, GIZ, ICAR and BISA.The designations employed and the presentation of the material on the maps do not imply the expression of any opinion whatsoever on the part of authors concerning the legal status of any territory, area or city or of its authorities, or concerning the delimitation of its frontiers or boundaries. While all carehas been taken in creation of the maps, the spatial or temporal accuracy of the map or its features or fitness for a particular use is not warranted. The developers reserve all rights to the programming codes and routines used in this tool. No part of codes may be reproduced or transmitted in any form, without the prior consent of the developers. The Solar Irrigation Pump (SIP) sizzing tool does not constitute any form of legal, accounting, tax or actuarial advice. The inbuilt databases used in the tool were adapted from sources that have posted data in the public domain. The sizing of pump is based on data provided by these sources. The developers accept no responsibility for the accuracy or completeness of the underlying information included in these data sources. The developers will not be liable, in any way, for any indirect or consequential loss or damage of any kind resulting from use of the information contained in this document. The authors also declare no competing financial or commercial interests. Under no circumstances and under no legal theory shall the developers or any affiliates, officers, employees, or other representatives be liable to any person for direct, indirect, special, incidental, or consequential damages of any character specifically resulting from the application of the tool.In most regions in the 'Global South', solar photovoltaic pumps can offer 1,400 -2,200 peak-hours of reliable and affordable green energy for irrigation. With unit costs declining by the day, and significant promotion by state and union government, it is not surprising that solar pumps are rapidly expanding in India. Over the next few years, PM-KUSUM, the Government of India's ambitious campaign is expected to invest 34,035 crores (approx. US$ 4.6 billion) to support the installation of 3.5 million solar irrigation pumps. This can help significantly expand irrigated area; make irrigation more affordable and accessible for smallholders; reduce pressure on electricity utilities to supply subsidised electricity to farmers; eliminate pump irrigation's carbon footprint; and improve the overall returns from agriculture.Selection of optimally sized solar pumping systems is a challenging task, not least because farmers' demand for energy for irrigation is a complex, derived demand. Keeping in view the huge investments by the governments in solarization of agriculture, design of pump sets based on scientific protocols therefore has a key role in large scale adoption of solar pumping systems.The sizing of solar irrigation pumping systems involves a set of complex algorithms, each addressing a specific module in the design procedure. Several technical, biophysical and social factors govern the pump set size, which needs to be properly accounted while designing a matching solar pumping system.The Beta version of the Solar Irrigation Pump (SIP) sizing tool is aimed at assisting farmers, researchers and technical persons involved in adoption and promotion of solar pumping systems across India. The tool has universal applicability in the sense that it uses nationwide datasets on climate, soils and crops, wherein users can fetch the required data for the location of interest.The tool presented in this manual is comprised of four modules viz. crop water requirement module, discharge estimation module, head loss estimation module and the pump selection module which works on the principles laid down by the Ministry of New and Renewable Energy (MNRE), Government of India.The manual is designed to offer basic information about solar pump sizing and to provide the step-by-step procedure to work with SIP Sizing tool to solve real-world problems. This technical manual is divided in two parts. The first part explains the basic concepts and procedures in solar pump designing while the second part deals with the step-by-step procedure to use the MS Excel based Beta version of the SIP sizing tool. This 'Beta version' of the tool has been shared with solar pump manufacturers and industry experts during two (virtual) consultations co-organized with GIZ and MNRE. During both of these, the tool received positive feedback and useful suggestions for improvement. The tool was also shared with state nodal agencies for PM-KUSUM during a training workshop organized by MNRE. Going forward, MNRE has suggested that a mobile version of the tool should be developed by HKRP Innovations LLP. IWMI and ICAR have reiterated their commitment to support GIZ, MNRE and HKRP in mobile version development as well as development of future versions of the tool based on user inputs and feedback.A recent report by the International Renewable Energy Agency1 notes that as of 2018, out of 547 MW capacity of 'off-grid solar-powered pumping capacity for agriculture' installed around the world, India is home to nearly 512 MW or 93.6 per cent. This is not surprising given the rapid pace with which solar irrigation pumps have grown in the country -from a couple of thousand in 2010-11 to nearly 272,000 by 31st December 20202. The Government of India's ambitious PM-KUSUM (Pradhan Mantri Kisan Urja Suraksha evam Utthan Mahabhiyan) initiative aims to build on this early expansion and promote more than 2 million off-grid and 1.5 million grid-connected solar irrigation pumps (SIP) through a combination of national and state subsidies, bank loans and farmer contributions. With an expected outlay of 34,035 crores (approx. US$ 4.6 billion) and solar generation capacity target of 30.8 GWp (Giga-watt-peak), PM-KUSUM is indisputably the world's largest and perhaps the most ambitious agri-solarisation program. Yet, even with such impressive growth, it would leave plenty of room for further expansion given that India's massive minor irrigation economy includes more than 15.5 million grid-connected and nearly 6 million off-grid irrigation pumps 3,4.According to one estimate5, solarisation of India's 20 million agricultural pumps can add about 150 GWp of additional solar generation capacity. Doing this would involve significant public investment from the government, civil society and electricity utilities as well as private investments from farmers. To ensure that the assets created through these investments are optimally utilized, 'right sizing' of these SIPs is critical. Negligent 'under-sizing' or unnecessary 'over-sizing' of SIP might lead to poor user experience and this can -in the long runlimit the overall size of the SIP economy.Farmers' demand for irrigation and the derived demand for pumping capacity is complex and depends on a large number of variables. It is important, therefore, for solar developers, bankers and policy makers to have access to a robust decision support tool that can help them understand farmers' demand and work out the matching optimal SIP size. This tool is designed to estimate the irrigation demand, calculate the peak discharge and head requirements to arrive at optimal size of SIP. The tool also considers prevalent irrigation pump sizes (using data from the Fifth Minor Irrigation Census) and different hydrological and management scenarios. In designing a solar pumping system, the tool takes into consideration the agro-ecology of the area, effective precipitation, type and seasonality of crops, number of crops grown, area potential for different corps and the pumping technology used (AC or DC; Submersible or Surface). This user manual describes the procedures and protocols used in the tool and would be useful to Financial institutions, farmers, developers and agencies involved in promotion of solar pumping systems in India. The first part of the manual describes the theoretical background and governing equations of each module within the SIPS. The second part outlines the step-by-step procedure for application of tool in selection of appropriate pump size.The Part-I of this manual describes the overall architecture of the of the SIP Sizing tool. The section describes the data requirements and methodologies for estimation various parameters required in the solar pump sizing procedure.The MS Excel based tool was developed keeping in view the limited or slow internet connectivity in some regions. The excel based version is programmed using the Visual Basic Applications for MS excel. This is very portable and handy tool which can be used on Design considerations in solar pumps limited links to the design of solar pumps per se, it only assists in selection of appropriate pump sizes in relation to climate, soil, groundwater levels, source of irrigation water and water demands.Solar pumping system comprises of a pump (AC or DC), a solar panel to meet the power requirements of the pump and set array of regulatory and storage instruments connected in a sequential manner for the operation of the system. Although, the tool hasThe SIP sizing tool requires data pertaining to climate, soil, water source and plot wise details on crops and cropping systems of the area to be irrigated.Various data requirements and data sources are presented in Table 1 and Table 2. The gridded spatial data on soils and climate at the resolution of 0.5°l atitude x 0.5°longitude is embedded in the tool.Upon selection of a particular location, the soil and climate data of that location is automatically loaded in the tool and is used in the further calculations. The gridded spatial data on soil properties is taken from Harmonized World Soil Dataset (HWSD), Version 1.2 of the Food and Agriculture Organization (FAO)6. Soil type for each grid within the boundary of India is taken from FAO dataset. The general values of related Effective monthly rainfall rainfall that (P e ) is is the portion of the seasonal or effectively been used by the crop in the process of evapotranspiration. It refers to the portion of a rainfall that infiltrates into the soil, is stored in the crop root zone and is useful for the growth of the crop. The Soil Conservation Service effective rainfall estimation method followed by the United States Department of Agriculture (USDA-SCS method) is being widely used. In this method, the upper limit of mean monthly effective rainfall is the 57.5 Where, K is the number of plots considered in the command the monthly area gross of the irrigation solar pumping water requirement system, Irmgj of is jth plot (mm), A j is the area of the jth plot (acre). In tool the number of plots that user can enter are limited to 8. Factor 4000 is added in the denominator of above equation to convert the crop water requirement in the units of litre per month.The simulation starts with computation of 'total water' (TW) which is the total inflow of water in the modelling domain. Mathematically, it is the sum of 'residual soil water' carried forward from previous day and 'rainfall + irrigation' of the present day. This is the total inflow in to the system which will be distributed among different outflow components as the simulation period progresses. Conceptually, TW represents the soil water storage, ponded water, potential runoff and deep percolation on a particular day (Fig. 2). Note that the model assumes that lateral inflows are balanced by outflows and there is no upward flux from a shallow water table. The RZWB subroutine has two irrigation scheduling approaches viz. 'Refill to field capacity' and 'Application of specified depth'. In first option, if the moisture content below carried forward the critical limit (CL), from an previous equivalent dayamount (RSM i ) is of irrigation is added to bring back the soil moisture level to field capacity. In second option, if the moisture content below carried forward from previous the critical moisture limit, a userday specified (RSM i ) is irrigation the root zone. depth In (I both ru ) is the added options to the total total depth soil water of in irrigation added over a growing period is summed up for each month to estimate the monthly irrigation water requirement of a crop. The default value of critical moisture limit is set at 50% of the available water. Available water is the amount of water present between FC and WP of the soil. Total amount of water applied during each irrigation event of the calendar month is summed to get the monthly irrigation water requirement. In tool, the month implies the calendar month of the year.Precise estimation of irrigation water requirement is important task in designing of the solar pumping systems for irrigation purpose. Previous sections detailed the procedure to estimate the monthly gross irrigation requirements. Many a times, because of cloudy weather it is not possible to operate the solar pumping system for all the days of month. The management also has to keep some days reserved for repair and maintenance of the systems and to account for unforeseen breakdowns. The gross irrigation water requirement is converted into volumetric the area of the units respective by multiplying plots.the Volumetric I of each irrigation plot with water requirement for each calendar month m is calculated as; rmg Where, K is the number of plots considered in the command monthly gross areairrigation of the solar water pumping requirement system, ofIjth plot is the (mm), added A inj is the area of the jth plot (acre). Factor 4000 is the denominator of above equation to convert the crop water requirement in the units of litre per month. Further, it is not possible for the farmer to devote all the days of a month for irrigation. Therefore, the number of days the pump can be operated within a month are reduced to some practical limits. If the pump is scheduled to operate on limited days in a month, the discharge of the pump needs to be increased so that the monthly irrigation requirement is fulfilled within the number of days available for irrigation in that month. Decision on number of days available for irrigation in a month is the most critical factor in selecting a matching pump size. Larger number of operational days in a month will lead to lower discharge requirements and the selected pump will be of smaller size. The converse is also true.To ensure that selected pump meets the water requirement of all the months of the year, the month having the maximum irrigation requirement is selected in determining the discharge capacity of the system. From the array of monthly vales, the maximum in determining irrigation the system water requirement discharge is selected (V max ) foras; use = Max(V )......m=1(January) to m=12 (December)The design discharge of the solar pumping system is estimated as; V max mg max is Where, pumping gross irrigation Qs system the requirement design (l/sec), discharge V (l) is the and of maximum N the is the solar user monthly specified value of number of days available for irrigation in a month. Note that the number of days available for irrigation in a month is same for all months. The tool does not allow users to enter different number of days of operation for different months. The factor (6x3600) is added in the denominator to convert the discharge in the unit of l/day to l/s. An extensive review of the literature indicated that the duration of pumping in a day generally varies between 4.5 to 7.0 hrs with 6.0 hrs as median value. Therefore, in tool the duration of pump operation is fixed at 6 hrs per day.Total dynamic head of the system System operation head is another important criterion in selection of solar pump. Total head requirement is combination of geodetic head, friction head, operational head and the elevation head. Total dynamic head is calculated based on user inputs about the pumping water level, distance of the field from water source and the diameter of the conveyance pipe being used to carry water from water source to the field. Geodetic head refers to the actual physical difference in height between the pumping water level of at the water source and the highest point of the discharge. In estimating the geodetic head, the tool considers the elevation of tube well head at the ground surface as the discharge point while in case of other water sources elevation of the delivery side of the pump is considered as the point of discharge (Fig. 3). Friction head is the loss of head on account of friction in the pipes and fittings. Elevation head is the elevation difference between the delivery point at water source and the highest point in the command area of the system. The head required for operation of an irrigation system (say, drip or sprinkler) is termed as operational head requirement. Total dynamic head is calculated as;Where, Ht is total dynamic head requirement of the pumping system (m), H is the geodetic head, Hf is the friction head loss in pipes and fittings, Ho is the operational head requirements for irrigation system and He is the elevation head.Geodetic head Geodetic head depends on the type of water source and the placement of the pump with respect to pumping water level. In case of streams, the geodetic head is the difference in elevation of the pump and the maximum possible lowest water level in the stream. If the water source is an open well, the depth of the open well is considered as the total geodetic head. If the water source is a tube well, 95% of the depth of the tube well is considered as the geodetic head. Geodetic head is limited to the maximum practical suction lift of the centrifugal pump (7.0 m) in the installations where pumps are placed at the ground surface (Table 5). Friction head in pipes and fittings Friction loss through the pipes is function of system discharge tool account (Q sfor ) and the the friction dimeter loss (D) on of suction the pipeline. and delivery sides separately. User input is the diameters of the suction and delivery pipes and the distance of the field from the water source. The length of suction side is assumed to be the same as that of geodetic head.Where, (m), (m), h h is h is sthe the is the friction friction friction loss loss loss on in fittings on thesuction delivery andside accessories side ofof the the pump pump and At the stage of pump selection, if the actual friction loss within the selected system (drip or sprinkler) is known, user can directly input this value in the tool for calculation of the system head. If the water application systems are yet to be designed, but the choice of systems for each plot have been finalised then the friction loss within the water application system is based on some thumb rule and the friction Solar Irrigation Pump (SIP) Sizing Tool loss in these systems is assumed as 10% of the operational heads of these systems.h syst = Micro-sprinklers systWhere, system of h irrigation is the frictional (m), Ho loss in the selected is the operational head of the selected water application system (m). Sprinklers 0.1 X H o Operational head Each irrigation system has its specific requirements for its operation to achieve higher application efficiencies. These head ranges often vary from 2 m in case of gravity fed systems to about 80m in case of rain guns. Variety of water application devises are available in the market with wide range of operational head requirements. It is bit difficult to generalise these ranges for its implementation in the tool. As in case of frictional losses within the water application systems, here also user gets the option to input actual operational requirement of the system or use the default value of the operational head for the selected water application method. The default system operational heads considered in the SIPS are presented in Table 6. 7) as well as for brush less DC motor (Table 8) operated pump sets. In these models, the head ranges for shallow well pumping models varies between 10 to 30 m while that for deep well pumping models it is in the range of 30 to 100m The design discharge and total dynamic head obtained in previous sections is under prevailing set of bio-physical conditions. However, the selection of pump should also consider the futuristic scenarios likely to occur due to adverse weather, changed agricultural scenario and changing water table levels within the region. An under designed pump may not be able to meet the increased water demands under such scenarios. The tool incorporates such scenarios to select a pump which will have enough capacity to cater to the water demands under unforeseen conditions likely to occur in near future.Scenario I: Baseline scenario This is the baseline scenario under prevailing climatic and bio-physical conditions of the region. The system discharge and the total dynamic head selected under this scenario is the same as that estimated using the methodology described in the previous sections. In this usedscenario in selecting the estimated the matching values pump of Q size.s and Ht areScenario II: Increased irrigation The increased irrigation requirements can be result of increased temperature or change in other bioclimatic conditions. Instead of calculating effects of those parameters on irrigation requirements, we adopted simplified approach. We used user specified coefficients to account for increased irrigation requirements. Irrigation requirement increase must be specified carefully considering all the factors on farm. All calculation to estimate coefficient must be done by user externally. Increased irrigation requirements would need higher daily discharge and hydraulic parameters like friction losses are recalculated again for this scenario.With increased competition from non-agricultural sectors, there has been increasing pressure on the groundwater resources. In many parts of the country increased aquifer draft has led to decline in water tables at an accelerated rate. The increased drawdown will increase the geodetic head requirements and the pump discharges will be much lower than the design capacity. Under such conditions, pump selected on the basis of prevailing water table conditions many not be sufficient to meet the discharge requirements under deeper water table conditions. This scenario is accounted in the tool in such way that user gets an option to increase the drawdowns by certain percentage (G). New geodetic head requirements are then recalculated using the user entered value. In this scenario the discharge requirement is same as that of baseline scenario, while the head requirement changes as per the user specified percentage value (G). The new geodetic head requirement is calculated as; Using above, the the Qfinal for baseline pump size scenario is selected and as Ht' per calculated the procedure specified in 'Pump selection' section.Scenario IV: Target discharge This scenario gives the freedom to user to define the target discharge for the system under consideration. Here, the tool bypasses all the discharge calculation protocols and uses the user specified value of discharge scenario head (Q u ) requirement in selecting the is assumed pump size. to be In this the same as that of baseline scenario.Excel based SIP sizing tool is a user-friendly Beta version wherein user can progress through the pump sizing exercise in an interactive manner. The pump selection procedure is completed in six easy steps, with output of one step being used as input to the next step. While executing the protocols/algorithms for selection of solar pump size, the user interface maintains the sequences of selection steps. The stepby-step procedure to work with the Beta version of the tool is explained in the following section.Step 1: Open the excel file SIP Sizing Tool and it will display the 'Start screen'.Step 2: \"Location\" sheet ","tokenCount":"3897"} \ No newline at end of file diff --git a/data/part_3/2750210456.json b/data/part_3/2750210456.json new file mode 100644 index 0000000000000000000000000000000000000000..3f8fd6f60a4ba4cb27bd176b39a0319ca71f961c --- /dev/null +++ b/data/part_3/2750210456.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"6fd044e7bd03ae05008e79d1f0fdbc09","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/62b9ccd3-3727-45ac-8be5-1fcb6f30061f/retrieve","id":"824262593"},"keywords":[],"sieverID":"268c258b-f473-4856-b168-7b2065856628","pagecount":"1","content":"xtreme climate events such as flood, drought, and high temperature are expected to increase in frequency and intensity with climate change. Mapping and characterization of food production areas at risk can help in better targeting innovations and in enhancing the resilience of affected communities. In this study, we used two decades of the Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) [1][2] from 2003 to 2022 to map drought incidence in rice areas in the Mekong Delta, a densely populated region and an important source of rice for domestic and export markets.Our analysis shows that around 63,000 ha of rice land in the Mekong Delta are prone to drought stress. These areas were found to be affected by drought at least half of the time from 2003 to 2022; and 952,000 ha more are moderately at risk, having drought periods in five to nine out of 20 years. Annual maps ( Drought is detected in a given year if at least 3 consecutive ModZ scores (equivalent to at least 24 days) are lower than -1.645 (Z-value at alpha=0.1). Nonrice areas were then masked out from the resulting maps using our MODIS Rice Extent Map.; 2020 [3]. Fig 4 show how severe these events were in terms of vastness of affected regions each year. We were also able to look at the distribution of severity in terms of percent of\uD835\uDC65 \uD835\uDC56 is NDVI at acquisition date i for each year, \uD835\uDC65 \uD835\uDC56 is Median NDVI at acquisition date i across years MAD is the Median Absolute Deviation.time drought was detected, number of events, and longest dry event duration in each year. Majority of the affected regions experience one drought event in a year that lasts about 1-2 months, but there are significant areas which experience more than 4 months of drought that could be one continuous episode or broken into several events in the year. The methodology presented here can be used to map drought incidence and risk in other geographic regions.","tokenCount":"333"} \ No newline at end of file diff --git a/data/part_3/2751367179.json b/data/part_3/2751367179.json new file mode 100644 index 0000000000000000000000000000000000000000..f0f058459f950fa6d15ced92569a03128de7cbfd --- /dev/null +++ b/data/part_3/2751367179.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"684743a61d01334527cc59d2f585a690","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/d86d5c0d-1f90-42a6-9e24-592bd1719c27/retrieve","id":"-2118090504"},"keywords":[],"sieverID":"6659fced-f6e3-4600-8439-9320c521ed53","pagecount":"4","content":"Customizing policy and legislation for effective rangeland management in Marsabit countyThere are a diverse set of types of community organizations involved in rangeland management in Marsabit county, each of them organized differently. Among the most common are community conservancies, community-based natural resource management (CBNRM) committees, and environmental management committees (EMCs).Traditional institutions-especially clan or section councils, such as Gabra Yaa or Rendille Naabo-also play prominent decision-making roles in parts of the county. However, traditional meetings-organized as needed, can be more important than these traditional organizations. Some newer entities, such as EMCs, are hybrids of traditional and modern institutions.However, the effectiveness of nearly all these institutions, either traditional or modern, is constrained by a lack of legal recognition. For instance, a CBNRM committee which decides to limit grazing on a particular pasture for regeneration purposes has little ability to enforce this resolution. Even simply requiring visiting herders to adopt seasonal grazing patterns can be difficult without some form of formal government recognition.Effective rangeland management practices often require communities to make short-term sacrifices-resting particular pastures for example-in exchange for a larger long-term benefit. Without the capacity to enforce grazing plans, management rules, and decisions to set aside certain areas, other communities can easily capture these benefits by moving their herds onto the land when rangeland conditions begin to improve. Consequently, local communities have little incentive to make sacrifices or invest in managing and improving rangelands.At the same time, if community institutions are strengthened, this should not be done in a way that unduly limits mobility. Because of the great variability in rainfall and pasture from place to place and year to year, flexibility and mobility are both normal and essential aspects of the livestock production system.The policy challenge is, therefore, to establish legal framework for formally recognizing management rights of the diversity of existing and potential community rangeland management systems in Marsabit county. The framework needs to empower community management systems without unduly constraining livestock mobility and the sharing of resources between communities, ethnic groups and counties.This section first outlines available frameworks and policy mechanisms-the Community Land Act, county spatial planning and community conservancies-identifying weaknesses, gaps and unexploited opportunities. It then discusses how a county framework could address some of these gaps.Articles 61 and 63 of the Kenyan Constitution establish 'community land' as one category of land tenure. The vast majority of the rangelands in Marsabit fall within this category. The Community Land Act, no. 27 of 2016, lays down the provisions required by the Constitution for the recognition and operationalization of community land as a tenure category, going some way towards addressing the policy challenge at hand. However, as an instrument providing legal backing for the community management of rangelands, it has both strengths and weaknesses.The 2016 Act recognizes the right of communities to establish their own local land-use and grazing plans, and natural resource management systems. It is somewhat flexible with regards to how a 'community' may be constituted. This is important. No two communities are alike, and what is an appropriate way for a community to organize itself for the management of lands in one place may not be suitable somewhere else.However, certain provisions of the Act-with regards to community organization, the functioning of community governance structures, and requirements for the participation of two-thirds of the resident adult population in general meetings-suggest the legislation envisages 'communities' that are relatively small. This raises challenges for the organization of communities in places such as Marsabit, which are characterized by extensive land use and relatively mobile populations. Most rangeland management issues in Marsabit would most effectively be addressed at a larger, inter-community scale.Moreover, it is also important to note that before the Act enters into force, regulations and other measures must first be put into place. It will then take many years before all communities on community land are properly organized, registered and recognized.The community conservancy approach is another option that is appropriate in some places. However, many of the most successful conservancies are in places with high potential for wildlife tourism. Also, places where customary management systems are still vigorous may be less suited for the conservancy approach.County spatial planning is another policy mechanism that could address some, but not all, rangeland governance issues. For instance, it does not address the need for legal recognition of community rangeland management systems.However, a county-level environmental management and natural resource management policy and related instruments, such as county legislation and regulations, are well placed to address existing gaps and help provide an overall framework until operationalization of the Community Land Act. Such policy and associated legislation should be harmonized with the Community Land Act by making provision for communities which in the future will register under the Act, as well as recognizing those that are organized with CBNRM committees, conservancies, etc.Act and the use of county spatial plans as a means of establishing a legal framework for community rangeland management systems.• The establishment of a legal framework formally recognizing management rights of the diversity of existing and potential community rangeland management systems in the county.• The implementation of the framework to empower these community management systems without unduly constraining livestock mobility and the sharing of resources between: communities, ethnic groups and counties.• Provide a legal basis for community rangeland management systems, recognizing the systems and their rights to implement grazing rules and other aspects of rangeland management.• Maintain flexibility in the kinds of community organizations and management systems that can be recognized.• Allow for organization at larger scales, not only local/community levels.• While recognizing the management rights of local management organizations and systems, also maintain flexibility and mobility for pastoralists.• Harmonize with the Community Land Act (2016).Strengths and weaknesses: In terms of policy formulation, this option is simpler. However, both the Community Land Act and county spatial planning will take time and do not address all rangeland governance issues. Ensuring a balance between local community management and ownership, and the need for pastoralist mobility will not be easily addressed through these measures alone.2. Work toward establishing community conservancies across the entire county.Strengths and weaknesses: This option has the benefit of consistency and avoiding an overly complex array of structures. However, it would not take advantage of the existing community organizations and rangeland management systems. The conservancy approach, moreover, is more challenging to implement in areas where education levels and community capacity are lower, and where there is little potential revenue streams from wildlife tourism or payments for ecosystem services.3. Develop county policy and legislation establishing a framework recognizing a diversity of community or inter-community organizations-community conservancies, CBNRM committees, and others-as 'environment and natural resource committees' (ENRCs).Strengths and weaknesses: This option potentially creates a more complex policy environment. It also runs the risk-if the policy and legislation are not carefully crafted-of coming into conflict with the Community Land Act. One benefit of this approach is the framework could be put into place relatively quickly. More importantly, it offers the possibility of developing a framework that takes the specificities of Marsabit's unique situation into account addresses the need to manage rangelands at a larger scale, and strikes a balance between local community ownership and the need for mobility and inter-community sharing of resources.","tokenCount":"1196"} \ No newline at end of file diff --git a/data/part_3/2755710418.json b/data/part_3/2755710418.json new file mode 100644 index 0000000000000000000000000000000000000000..b27c0eb9e0db9d4d80f07f51be898f198a0a5a7b --- /dev/null +++ b/data/part_3/2755710418.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"e630c47383767f403792729d306dfa13","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/b3caf424-2c62-4100-9e63-7678c3c42fb6/retrieve","id":"-949086704"},"keywords":[],"sieverID":"d8c90c47-f858-4b94-b431-cae9e7e5e89b","pagecount":"17","content":"Short-term rainfall forecast data from Open Weather represent lack of rainfall in north, north-central, eastern and south-eastern provinces for the next 7 days and Western and Southern Province will continue to have rainfall in the next 7-10days.Similarly, short-term forecasts from IMD also represent low rainfall for the next 7 days in the northern, and eastern regions of the country.• Despite a revival of the Southwest Monsoon forecast several provinces including northern, north-central, and eastern provinces are recording normal to below average rainfall received from August to October.• Short-term forecast till 12 th September shows a reduction of rainfall including northern, north-central, and eastern provinces. However, the western, southern and central parts of the country will significant rainfall 7 days;• With the significant reduction in rainfall in 25 out of 25 districts last month, fears of drought have been raised in many parts of the island.• SPI 3-month for August 2023 explains the drier condition in the entire country and the dry spell has become more than 15 days in Uva, Eastern, North Central, North and Northwestern provinces of the country.• Vegetation conditions in reference to 16 th July to 15 th August 2023 are poor condition in most of the provinces in the entire country.• It is important the stakeholders adopt timely drought relief and response strategies to mitigate drought risks; • https://reliefweb.int/report/sri-lanka/national-disaster-relief-services-centre-ndrsc-drought-situation-report-04-august-2023• https://www.linkedin.com/pulse/growing-drought-crisis-threatens-sri-lankas-sector-s-t-/• https://www.sundaytimes.lk/230709/business-times/maha-rice-season-to-be-hit-by-drought-524639.htmlDisclaimer SADMS team would like to acknowledge the support from the following partners for sharing the data and access to the geospatial platform.The South Asia Drought Monitoring System (SADMS) was created by the International Water Management Institute (IWMI) with the support from CGIAR Research Program of Water, Land and Ecosystems (WLE); Indian Council of Agricultural Research (ICAR) and Japan's Ministry of Agriculture, Forestry and Fisheries (MAFF). The SADMS tool was developed specifically for the purpose of drought early warning to monitor the near real-time drought situation and enable timely action to be taken by the government authorities and relevant development organizations in South Asia.IWMI, CGIAR WLE, ICAR or Japan's MAFF do not make any warranties on the country or basin boundaries used in this drought outlook, or about the completeness, reliability, and accuracy. Any decisions/actions taken based on this drought outlook are strictly at the discretion of the user, and IWMI, CGIAR WLE, ICAR or Japan's MAFF will not be liable for any loss or damage that may occur as a result of using the tool.","tokenCount":"400"} \ No newline at end of file diff --git a/data/part_3/2758147435.json b/data/part_3/2758147435.json new file mode 100644 index 0000000000000000000000000000000000000000..fd46c544d123e586a000c1c59fab11e674730b3e --- /dev/null +++ b/data/part_3/2758147435.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"18ca218c5f658b5b157af25dbb27c341","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/5f411a60-fafb-4c73-9248-9ba3914e8c80/content","id":"2144259767"},"keywords":[],"sieverID":"5d295558-360e-4047-b028-bc1820cff753","pagecount":"8","content":"TABLE 1 Entries of the Second International Durum Screening Nurs~ry which apparently possess an acceptable level of resistance to Puccini a graminis tritici (stem rust) in both the seedling and adult plant stage of growth. Tabular notations are S (susceptible), R/S (segregating) and X (X type reaction):-The absence of notation indicates resistant reaction. Adult plant reaction notations are the commonly used system of recording field scores. Entries which showed seedling resistance to Puccinia recondita (leaf rust) are noted with an asterisk next to the Row Number. A dash ( -) indicates missing data. IDSN Row No.Late returns lead to serious delays in publication of the results and reduce their value to wheat workers throughout the world.Report on the Identification of Resistance to Puccinia graminis tritici and Puccinia recondita This summary is intended to supply the cooperators of the Second International Durum Screening Nursery with information on the more desirable seedling and adult plant responses ~o selected races of stem rust. Additional data is offered on seedling stage leaf rust resistance. We hope that this information will be of value to participating cooperators.Seedling response: Four selected races of Puccinia graminis tritici were used to test seedling resistance under greenhouse conditions to all entries of the Second IDSN. The races, selected for combinations of genes for pathogenicity, were 15-2,3,4,7; 151-1,2,3,6; 151-4,6 and 12-1,2,3,6 and are identified in the table headings as A, B, C and D respectively. The numbers 15, 151 and 12 correspond to the international standard race system of classification and further identity is provided where 1 = Sr 6, 2 = Sr 11, 3 = Sr 9b, 4 =Sr Tt, 6 =Sr 8 and 7 =Yuma resistance.Adult plant response: Race A (identified above) was used to test all of the Second IDSN entries for adult plant resistance.Results: Second IDSN entries showing an acceptable degree of resistance in both the seedling and adult plant stages of growth to all or most of the races of stem rust employed are listed in Table 1. Table notations indicate susceptible, segregating or \"X\" type reactions to the specific race. Adult plant reaction notations are those commonly used in scoring field reactions to the rusts.Seedling response: Two strains of Puccinia recondita were used to test in the greenhouse the seedling reaction of the entries of the SecondIDSN. These two cultures, identified as distinct on several varieties and CIMMYT lines are tentatively designated herein as cultures 1 and 2 and until more information becomes available on their proper race classification. ","tokenCount":"415"} \ No newline at end of file diff --git a/data/part_3/2767888061.json b/data/part_3/2767888061.json new file mode 100644 index 0000000000000000000000000000000000000000..44f668e37095743e1bea10510dcc55fd1fe744cc --- /dev/null +++ b/data/part_3/2767888061.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"31f00249c3d2026635dc123c14ddea93","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/6b823808-ba92-4377-bdf8-250ad39c5994/retrieve","id":"-1011471731"},"keywords":[],"sieverID":"3e3f8270-5406-4690-8a71-b6c53b27ffda","pagecount":"2","content":"In Uganda, quality commercial pig feeds are expensive, while other locally available feeds are seasonal in nature and often of poor quality. Feed accounts for about 62% of the total production costs in pig farming and the problem is further compounded by farmers' limited knowledge of supplementation strategies. To mitigate feeding costs, farmers often resort to using locally available feed resources, e.g., crop residues, plant leaves (Ficus natalensis), swill and kitchen leftovers to feed their animals. Sweetpotato accounts for about 20% of total crop residues provided by roots and tuber crops and sweetpotato vines are the most common fodder for pigs. Unfortunately sweetpotato vines are seasonal and highly perishable. This results in an excess of vines at harvesting times that are largely wasted while, during the dry season, farmers are forced to sell off some of their animals at give-away prices in a bid to maintain a herd size which they can afford to feed. While pig rearing is a lucrative business, many farmers fail to expand due to limited access to all-year-round feed source. This impacts negatively on small-scale farmers, especially women, who are responsible for feed management. Silage (fermented, high moisture stored fodder) is a relatively easy and affordable technology that farmers can use to conserve roots and vines for feeding pigs in times of scarcity and has the potential to help cope with seasonal feed prices fluctuations that many smallholder pig producers experience.Silage provides an opportunity to reduce postharvest losses by utilizing sweetpotato vines and non-commercial roots that otherwise will be largely wasted. Furthermore, it can contribute to decrease feeding costs while opening up business opportunities for youth and women. Cost-effective sweetpotato silage recipes were developed and tested in Kenya during the Sweetpotato Action for Security and Health (SASHA) Phase 1 project. However, the technology is not known amongst smallholder producers and has not been validated under Ugandan conditions.Small-scale pig farmers in Uganda face challenges in accessing feeds for their livestock. This project aims to counter this problem by investigating options for sweetpotato silage making and supplementation as well as developing business models to produce, conserve and commercialize sweetpotato-based feed.OctoberExpanding utilization of roots, tubers and bananas and reducing their postharvest losses Gerald Kyalo (CIP) gerald.kyalo@cgiar.org Ben Lukuyu (ILRI) b.lukuyu@cgiar.org How are we going to make it happen?We will (i) investigate options for silage making and supplementation; (ii) identify gender responsive models for organizing value chain actors to produce, conserve and market sweetpotato-based feeds; (iii) strengthen existing linkages between pig farmers and sweetpotato traders; and (iv) build business capacity for profitable silage making and pig production. We are validating sweetpotato-based silage using various combinations of sweetpotato roots, cassava flour and legumes (Gliricidia and lablab) at Makerere University. These results will form the basis of on-station feeding trials to evaluate optimal supplementation strategies using sweetpotato silage as a basal diet. This will then pave way for on-farm trials with selected farmers in Kamuli and Masaka districts. Research is also being conducted to determine the best dual purpose sweetpotato varieties and harvesting regimes that will ensure optimal balance between roots and vines production. Promotion and commercialization of silage will be guided by business models that focus on innovative silage production and marketing. In order to understand the economic viability and social acceptability of silage, studies will be conducted to assess farmers' willingness-to-pay for silage as well as the profitability of the silage enterprise.Where are we working and who are we working with? We have adapted and developed protocols to guide silage making and pig feed supplementation. Ten treatments have been tested on sweetpotato silage and supplementation regimes and organoleptic results have been generated. Proximate analysis is being carried out on the samples to assess the nutritive value of each treatment. Trials on dual purpose varieties that would best fit within farming systems in Kamuli and Masaka are also underway, while 16 pilot farmers (50% female) who will host the on-farm feeding trials have been profiled and have already established sweetpotato gardens. A protocol to assess existing feeding practices has been finalized and data collection has started. Silage making manuals in English and a local language have also been developed as well as various communication material. Thirty extension staff and model farmers have already been trained as trainers in silage making and pilot farmers in Masaka have been trained. Selected project partners have already joined existing local and national pig multi-stakeholder platforms where they are kept abreast of pertinent issues in the sector. Three Master's students have been enrolled and are conducting research to complement the project outputs.We are embarking on strengthen the capacities of pilot farmers in Kamuli as well as youth in silage making and feeding. On-station feeding trials are about to commence which will quickly be followed by on-farm trials and economic studies to assess the potential for commercializing silage. Farmer demonstration centers will soon be established and equipped. A gender baseline survey is being planned and the findings will be used to strengthen the gender strategy. ","tokenCount":"829"} \ No newline at end of file diff --git a/data/part_3/2774582774.json b/data/part_3/2774582774.json new file mode 100644 index 0000000000000000000000000000000000000000..6cb16f50a5f5c1bee04109b7f0abae29ad4360a1 --- /dev/null +++ b/data/part_3/2774582774.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"de999c9faa7f08ba138282330070c2ab","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/3e8d5f70-358d-4402-b247-97ba290514d6/retrieve","id":"871386040"},"keywords":[],"sieverID":"90df9e12-834a-492c-b42b-3eb2c8ee0c30","pagecount":"28","content":"Brucella abortus, less frequently by B. melitensis, and occasionally by B. suis• Bovine brucellosis is characterized by one or more of the following signs: abortion, retained placenta, orchitis, epididymitis and, rarely, arthritis, with excretion of the organisms in uterine discharges and in milk (OIE, 2009) • Brucellosis, also known as \"undulant fever\", \"Mediterranean fever\" or \"Malta fever\" is a zoonosis and the infection is almost invariably transmitted by direct or indirect contact with infected animals or their products (WHO, 2006) Objective of study The informants listed rabies (40%), Avain Influenza (24.4%), Leptospirosis (8.9%), Tuberculosis (6.7%), Anthrax (6.7%), and Streptococcus suis (4.4%) as known zoonoses• The important problems for raising cattle in this areas are infertility • The knowledge and perception on brucellosis is very poor in the beef cattle small holders and villagers in the study areas• There are not the same perception between villagers and cattle holders• The disease experience of village has effect on villager's perception• Need further investigation to classify the causes of \"infertility\"• Rapid response necessary to control and prevent the disease• Would be the correct priority level of investment for brucellosis in beef cattle at the national level?• How different of Participatory Epidemiology disease investigation comparing with classical disease investigation and laboratory test of brucellosis on the same area?.Thank you for your attention • The SAT is a very useful test for the diagnosis of human brucellosis when it is performed with a standardized antigen preparation, and titres which can be expressed in International Units (IU) can be correlated well with clinical stages of infection• The milk ring test (MRT) is a simple and effective method, but can only be used with cow's milk. A drop of haematoxylin-stained antigen is mixed with a small volume of milk in a glass or plastic tube. If specific antibody is present in the milk it will bind to the antigen and rise with the cream to form a blue ring at the top of the column of milk.","tokenCount":"330"} \ No newline at end of file diff --git a/data/part_3/2777963826.json b/data/part_3/2777963826.json new file mode 100644 index 0000000000000000000000000000000000000000..b1a593b9aab2a6f24f33cd8a2ab69200f6eaa8e3 --- /dev/null +++ b/data/part_3/2777963826.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"bed8e035825cc1b33ff1e201b7292314","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/33ec1033-810b-43ff-9a34-cc1e10df0740/retrieve","id":"-1357927521"},"keywords":[],"sieverID":"e20cffd7-38d4-4368-be22-2f7cb826101c","pagecount":"1","content":"ILRI thanks all donors and organizations which globally support its work through their contributions to the CGIAR Trust Fund.Develop an engagement protocol that allows decision makers to learn about major environmental dynamics resulting from changes in livestock value chains, identify trade-offs and synergies and develop a vision for an inclusive and sustainable vision of how to transform a livestock value chain to meet future ambitions The transformation game: implementation of the protocol Lessons learnt from Ethiopia, Tanzania and Burkina FasoThe CLEANED R tool becomes a boundary object : a neutral agent in the process that is not fully understood by individuals but every one accepts its resultsIn Burkina Faso:  Crop farmers and pastoralists can co-exist in peace -if the pastoral routes and zones are well managed.In Tanzania:  Improved cattle fed with bran, oil-seed cake and locally planted fodder will reduce pressure on landat the cost of buying staple food from other areas.  The transformation game unlocks the power of imagination. It helps communities get engaged, think beyond individuals and join forces to address challenges that hamper them in achieving their goals.In Ethiopia:  Meat and milk production can be increased without increasing environmental impact from livestock.  Farmers understood why some policies exist while high level policy makers, who are aware of the policy targets, discovered why some policies do not work on the ground. ","tokenCount":"228"} \ No newline at end of file diff --git a/data/part_3/2783535456.json b/data/part_3/2783535456.json new file mode 100644 index 0000000000000000000000000000000000000000..b1dc09232eab8b15a2a5eea62d6e04318adb7c53 --- /dev/null +++ b/data/part_3/2783535456.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"764bcfecb095bf9573f90eac26451872","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/cddf304b-4210-49f2-b282-a9fc0c67867e/retrieve","id":"1455386962"},"keywords":[],"sieverID":"d6126798-349b-4dc1-9de8-64193a072a30","pagecount":"21","content":"An enormous effort has been devoted to studies on the che~istry, functionil and biochemical significante of a special group of the polyphenolic compounds family. This important group of compounds are called \"tannins' . The importance of vegetable tannins lies in their role in several processes: as repellents to predators, animal or microbial; in enzy.e inhibition¡ in the formation of compley.es with dietary proteins and other nutrients¡ in interaction with growth regulators; as potential mutagens; in post-storage hardening and darkening; and probably a large list of other function that still are unknown. In bean knowledge in depth is scarce but the implications of the tannin in the total quality of the bean has a fair amount of e.pirical evidence.The present seminar 15 mainly devoted to ShOH the many facets of tannin in quality of beans, and to pointing out practical problems that need a rapid solution to develop better bean.Tannin definition lhe word 'tannin\" cannot be precisely defined in the che.ical sense and for this reason it has been misapplied and abused in both the botanical and biocheaical literature. lhe .ore accurate description of tannins found in vegetative tissues appear In Table 1.This can be a broad group of co~pounds that are illustrated in Figure 1, where the index N can vary from O to 8-10, resulting in molecules from the size of dimers, .ith ION r. actlvity to poly.erus with high reactivity (Haslam, 1974).Man consume a number of toods containing considerable amounts of dietary tannins, as is shoHn in Table 2, (Rickard, 1986;Rao et al., 1982;Maxon et al., 1972). And in legu~es, co~.on beans and faba beans present the higher limits in the range of content of tannins, these are illustrated in Table 3 (Price et al., 1980;Rao et al., 1982;Cabrera et al., 1986;Strickland, 1984 ),A.ong the several roles of tannins in the plants, an important aspect is that of plant protection. Plants produce protective chemical substances after infection.These compounds Here named phytoalexins, not all are tannins but many of them form part of this group of compounds. Among these are pisatin isolated frcm pea pods (Perrin et al., 1962) and phaseollin isolated from bean (Cruickshak et al., 1963). The evidence with Fusarium solani l. phaseoli ShONS increments in total phenols for material with lo\" initial levels, but small increments in materials with relatively high initial level as is shown in Table 4 (Statler, 1970).Also tannis are often cited as examples of substances than can inhibit the growth of insects (Feeny, 1968). In beans the relationship between tannin content and resistance still i. not clear and is an open field of research.Recent studies have sha\"n that specialized phenal-storing cells occur randomly in many tissues of a considerable number of plants.Following synthesis, the phenols are apparently stored in specialized compartments (vacuoles), and kept in a reduced form within the cells until some disturbance (injury or infection) occurs (Beckman et al., 1970, Esau, 1963) .Several authors noted inhibitory effects of tannins on plant groHth and development. In sorghum the preharvest seed germination has a high correlation (r = -0.81l with tannin level (Harris et al., 1970)(see Table 5), and in the seeds of sericea the effect of tannins in inhibiting gerainatian is evident in studies with whale and dehulled seeds (Logan et al., 1969). This effect is apparently mediated by the inhibitory action of the tannins upon the gibberelins. Evidence exists of this in pea seedlings (Corcoran et al., 1972), and in rice (Harada et al., 1974). No clear evidence af this effect has been studies iry beans.Plant phenolies appear to exhibit a variety af responses to water defieits. In sorghum the water stress during some periods post-anthesis inerease the tannin content, as appear in lable 6 (Hoshino et al., 1982). Low soil fertility apparently inereases these levels too. Addltlon pf S to the 5011 decreased the tannin eontent in Lotus pedunculatus (Barry et al., 1983). Even the amount of Ilght can effect a controlan total phenol biosynthesis (Duke et al., 1976). No controlled studies of all these factors in beans were reported. Our OHn data ShOH sorne relationship between tannin content and grain color, but the ranges for eaeh oolor group are .ide and it is possible to flnd the samE tannin value In beans of very different colors (Table 7). lhat shows that the relationship mentioned in several publications between seed color and tannin content is only valid wlth the color group means and must be evaluated more carefully. lable 1 Hlth seed testa brllllanee sho. that brilliant seed has higher levels (lable B) and high seed tannln levels also are associated \"ith indeterminate bush gro_th habit :traets.The relation \"ith other nutrients is not elearly defined. With respect to fiber the data in Vicia faba ShOH no signifieant relationships (Harquardt et al., 1978), but for sorghum the eorrelation bet»een these are signifieant (Fuller et al., 1966).With total protein the situation is very . diffieult to interpretate.In sorghum some reports shOH a positive eorrelation and other a negative eorrelation. In beans the ~orrelation is positive but not signifieant (Fuller et al., 1966;Fuller, 1964;Arara et al., 19741;Harris, 1973;Bressani et al., 1983).A very elear negative relationship is evident betHeen the globulin fraetion 01 protein and the tannin eontent, in sorghum.This negative relationship, if it exists in beans, is very important for the digestibility of protein problem lJ. mbunathan et al., 1973;Ram.ehandra et al., 1977;Landry et al., 1970).Nutritional effects lhe case of aspeets is insoluble an the 'negative' charaeteristics of tannins in nutritional their eapaeity to interaet \"ith dietary proteins forming ao indigestible eomplex, and by inhibiting the aetion of the 10 ShONS olearly the inhibitiory effeots, but is aJso very eJear that there are big differences among the different speeies evaluated. The similar tannin eontent in ehickpea and pigeon pea inhibit the evaJuated enzymes Nith a difference of a hundred pereent. Apparently the chickpea tannins are more reactive than pigeon pea. This is an !mportant faet whieh shows the need of specifie studies for each type of genetic material.For the relationship between tannin content and digestibility a eoromon feature is the \"ide variabiJ!ty for digestibiJity espeeially in beans (Bressani, 1982;Rodriguez de Mora, D., 1982).Less variabiJity is noted for other grains 5ueh as finger milJet (Ramaehandra et al., 1977). The tann!n ability to interaet with other nutrients is elear from the data showing its interaetion with stareh, which reduces its digestibility to approximately 207. (Desphande, 1982). In other ratios between tannin and iron found in other foods, the tannins can reduce the amount of available iron to praetically null values (Rao et al., 1982). Table 11. An important point to emphasize appears in Table 12, whieh is the small differenee between the 'in vitro' protein digestibility of so.e cooked bean cultivar. The _aximum difference is near to 37. and the range of tannin content is similar.This data shows the role of more than one factor working simultaneously to affect digestibility. The tanins interacting with non-globular protein fractions redueed the digestibility of these .proteins. The denaturalization by heat of the globular fraetion part increases the digestibility of these proteins. These effects in the opposite sense produce the small difference faund. But in general it is important ta point out the relative low digestibility level of bean protein (807.) with respect to other foods (Elias et al., 1979).Tannins play an important role in two aeceptability charaeteristics that ha ve strong effeets on nutritive value. 1) the post-storages hard-seed development by the tanoin polimerization. This is an aecepted eoncept an there e.ists a fair amounts of incidental information, but these still does nat exist a detailed eantrolled study on this i~partant bean aeeeptability factor.2) the same polioerisation causes the phenomena knONn as post-starage darkening and the only repart with detailed data has been made in lentils (Nozolilla et al., 1984).Several analitical procedures have been developed and modified for analysing polyphenolic compounds io plant extraets. The methods can be classified as o.idation-reduction methods, eolarimetric .ethods, gravimetric methods, \"funetional' methods, and separation .ethods as gas-liquid ehromatography, high performance liquid chromatigraphie aod others.But this still does not exist the 'method' for tannin determination. The most earomon method is the vaniJJin assay, whieh \"as developed a century ago by Lindt, but aetually reeognized as the Burns method. This has lo~ specifieity (Sarkar et al., 1976) but is fast and cheap. The most modero assay method iS.the Dr. Lehel Telek (Telek, 1986) method which is very sensitive and specifie but .ith high time, personal and material eost . Qur laboratory adapted and developed a modifieation to the vanillin assay with the goal of inereasing its speeifieity and improving the quality of the data by use of 'real' adequate standards for quantifieation.In Table 13 appear the data of some bean aeeessians by the different methods.The main goal of any wark in tannins is to eantribute to better beans praduetion. This \"ork can best be eandueted at CIAT beeause CIAT has the world's -bean germplasm eolleetion, and the experienee and kno\"ledge 01 the wide range of variables that elfeet the tannin c ontent to aeeurately carry out these types of studies. 77.9 ± 2.5Abridge from Elias. L. G. et al. (1979) . , .. ,• •• t• •.'\" TABLE 13.TANNIN CONTENT BY DIFFERENT METHODS .. . '","tokenCount":"1627"} \ No newline at end of file diff --git a/data/part_3/2784048225.json b/data/part_3/2784048225.json new file mode 100644 index 0000000000000000000000000000000000000000..8075c431cacd304f8690f8a9685c04841235315c --- /dev/null +++ b/data/part_3/2784048225.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"b6183e6aeb0f03e447eee5431f525f16","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/80bc2218-d8a7-4688-88bf-d0b3be5e3b73/retrieve","id":"-550021168"},"keywords":[],"sieverID":"cf017080-1cbd-4783-84e1-37afaae6706d","pagecount":"19","content":"December 23 | Menú de tecnologías validadas para el cultivo de Phaseolus vulgaris, Var. Honduras nutritivo, rojo chortí y variedad local en Occidente de Honduras. Menú de tecnologías validadas para el cultivo de Phaseolus vulgaris, Var. Honduras nutritivo, rojo chortí y variedad local en Occidente de Honduras.En el marco de la iniciativa AgriLAC Resiliente: Sistemas de innovación agroalimentaria resilientes que impulsan la seguridad alimentaria, el crecimiento inclusivo y la reducción de la emigración en América Latina y el Caribe\", La Alianza Bioversity-CIAT y la Comisión de Acción Social Menonita (CASM), firmaron acuerdo de colaboración C23PAL251 mediante el cual se han realizado actividades con el fin de promover y validar el uso de nuevas innovaciones socioecológicas-tecnológicas (SET) sensibles a la nutrición y adaptadas a las necesidades relacionadas con el clima, una de esas innovaciones se enfoca en caracterizar variedades frijol y maíz en diferentes ambientes y con diversos productos ecológicos.• Medir el comportamiento agronómico y productividad del cultivo de frijol de variedades como Honduras Nutritivo, (biofortificada), variedad de frijol mejorada (rojo chortí) y una variedad local de grano negro (vaina blanca), implementando tecnologías de transición a la agricultura orgánica y buenas prácticas agrícolas (BPA) resilientes al cambio climático.• Evidenciar la diferencia de días a floración, días a madurez fisiológica de las tres variedades evaluadas en las dos zonas de ensayo.• Cuantificar parámetros de rendimiento como numero de vainas/planta, peso de 1 libra de grano y determinar rendimientos/área (qq/mz) para cada una de las variedadesLa comisión de Acción Social Menonita en una actividad en conjunto con la iniciativa AgriLAC Resiliente establecieron durante el ciclo de primera (mayo agosto) dos lotes demostrativos de variedades de frijol que incluyen una variedad biofortificada Honduras nutritivo, una variedad mejorada con gran rendimiento, rojo chortí y una variedad local de grano negro (vaina blanca).El establecimiento de lotes demostrativos es una actividad impulsada por la iniciativa AgriLAC en la región occidente del país con la finalidad de compartir con productores de granos básicos información de variedades con características agronómicas interesantes, con buenos rendimientos y sobre todo compartir información de variedades más nutritivas con mayor contenido de hierro y zinc, nutrientes importantes considerados para la nutrición de niños y mujeres embarazas.Las variedades liberadas por DICTA y la EAP-Zamorano, poseen características importantes de adaptación, valor agronómico y valor comercial. En este caso la variedad biofortificada HONDURAS NUTRITIVO, presenta tolerancia a sequía, buen color de grano (rojo claro), de buen valor comercial, posee también hasta un 50% y 54% más de contenido en grano de hierro (Fe), y Zinc (Zn) respectivamente entre otras características de interés.Uno de los ensayos se estableció en comunidad de Mecatales, municipio de Santa Rita, es una zona con altitud de 750 msnm, con clima cálido, las precipitaciones van desde los 1100 mm distribuidos/año, es una zona donde una de las principales actividades es la agricultura (granos básicos), los productores siembran pequeñas áreas desde 1 tarea (437 m 2 ) hasta 2 mz, la topografía del terreno es irregular lo que no permite acondicionar el terreno antes de siembra.Figura 1: Ubicación de parcelas demostrativas de variedades de frijol, en la comunidad de Mecatales, Santa Rita, CopanOtro ensayo se estableció en la comunidad de El Mirador, municipio de Santa Rita, es una comunidad de clima cálido con altitud de 747 msnm, con precipitaciones que van hasta 1200 mm, la comunidad se caracteriza por la producción de granos básicos y hortalizas, en ladera, los productores siembran maíz y frijol en dos épocas del año con rendimientos bajos.Antes del establecimiento de las parcelas se realizaron diagnósticos de parcela, se invitó a los agricultores de cada comunidad, con el objetivo de conocer y caracterizar parámetros físicosquímicos y biológicos del suelo y así poder determinar el acondicionamiento del suelo y demás practicas agronómicas, esta información además de ser útil para determinar el manejo subsiguiente sirvió para exponer y compartir con los agricultores como caracterizar suelos y como interpretar este tipo de información.En las dos zonas antes mencionadas, las parcelas son de ladera (pendiente más del 10%), son suelos con bajo contenido de materia orgánica, poco profundos, de textura franco arcillo limosa, el pH esta entre 5-6.5, un valor donde ciertos nutrientes no están disponibles para las plantas.Para fines de caracterizar las variedades a tener en cada zona, se utilizó un diseño de parcelas apareadas, esto significa un área determinada para cada variedad de frijol, en este caso las repeticiones se representan teniendo las mismas parcelas con igual manejo en diferente zona.Figura No 2. Croquis de parcelas de frijol en diseño de parcelas apareadas.Cada parcela tiene una medida de 10 m de largo x 8 m de ancho igual a 80 m 2 , en cada parcela se sembró una variedad haciendo una suma de 3 parcelas en cada zona donde se trabajó.El terreno se limpió y preparo manualmente, en ambas zonas (Mecatales y El Mirador) se procedió a la formación de surcos a una distancia de 50 cm con longitud de 10 metros, considerando siempre hacer esta práctica comúnmente como lo realiza el productor y en zonas de ladera pues no más orientar los surcos en contra de la pendiente, para ello el productor preparo la tierra con implementos como azadón, piocha etc.En la comunidad de Mecatales las parcelas se establecieron en terreno ligeramente plano, únicamente se procedió hacer la formación de camas de 1 metro de anchas y distribuir las tres parcelas.Se usaron tres variedades de frijol, entre ellas 1 es Biofortificada (Honduras nutritivo) otra variedad mejorada por DICTA, tolerante a la sequía y de buen rendimiento (rojo chortí) y una variedad local como testigo (frijol negro, vaina blanca).La siembra fue realizada manualmente, con el apoyo de productores, la densidad de siembra fue aproximada de 140,000 plantas/mz, esto equivale a sembrar 10 semillas/metro lineal a dos semillas/postura y separados a 50 cm entre surco, es una densidad propuesta por DICTA en la región, que seguramente será nueva para los productores.Para los dos ensayos (Mecatales y El Mirador) se trabajó la fertilización del frijol a base de insumos orgánicos, estos bioinsumos son producidos en pequeñas biofabricas de los mismos productores, para fertilizar el frijol se utilizaron alrededor de 2 productos, cada uno lógicamente con una composición diferente en cuanto al contenido de macro y micronutrientes.Se uso un abono orgánico al inicio es un bocashi, son abonos que nos aportan múltiples beneficios al suelo y a las plantas entre tantos: mejora la estructura del suelo, reduce la erosión del suelo ya que aumenta los niveles de MO, aumenta la fertilidad, es rico en nutrientes como nitrógeno, fósforo, potasio, calcio, magnesio, azufre, hierro y zinc, los cuales son absorbidos y aprovechados por las plantas y promueve la actividad microbiana del suelo.Este abono orgánico se distribuyó antes de la siembra a razón de 5 libras por cada metro lineal, luego se hiso una segunda aplicación a los 45 días, se incorpora al suelo en forma de aporque a cada planta de frijol. También se hizo dos ampliaciónes de Madrifol, a los 15 días y 32 días de cultivo, este es un bio-preparado a base de hojas de madreado (Gliricidia sepium) y otros ingredientes como la cal, ceniza etc., la dosis fue de ½ litro de solución del madrifol en 20 litros de agua. Plagas y enfermedades en frijol se manejaron sin productos químicos, únicamente lo que uso en aplicaciones foliares fue el madrifol, que además de aportar micronutrientes a la planta de frijol, también ayuda al control de ciertos insectos plaga, esta acción la puede hacer de forma repelente o de contacto directo.Ambas parcelas y ensayos se cosecharon de forma manual, esta actividad se llevó a cabo a los 85 días después de siembra, fue el tiempo donde las tres variedades ya tenían madures fisiológica, para esta actividad se cosecho primeramente un área de los dos surcos centrales para fines de colectar datos ya sea de numero de vainas/planta, numero de granos /vaina y el propio dato de rendimiento.Los componentes de rendimiento en frijol (población de plantas, vainas /planta, semilla/vaina, peso de 100 de semillas) son caracteres cuantitativos, altamente influenciado por el ambiente, difiere entre las variedades, Además de diferir entre variedades, los genotipos pueden presentar variaciones incluso a lo interno de cada variedad. Ninguna variedad es superior en todos sus componentes, un alto rendimiento puede expresarse por la combinación de los diferentes componentes, algunas variedades pueden ser alto en vainas por planta, pero bajo en semillas por vaina peso de 100 semillas, en cambio otras pueden ser alto para semillas por vaina, pero bajo en vainas por planta y peso de 100 semillas. A esto se le conoce como compensación de rendimiento.Los días a floración de variedades de frijol pueden variar hasta 2-3 días de una variedad a otra, y de una zona a otra dependiendo de las condiciones agroecológicas, en las dos zonas evaluadas se pudo ver que la variedad Honduras Nutritivo (Biofortificada) necesita más días para que al menos el 50% de sus botones florares estén en floración, esto se pudo evidenciar en los dos ensayos, con 38 días, además es importante mencionar que las dos zonas (comunidades) comparten condiciones agroecológicas similares de altura etc. Las demás variedades (rojo chortí y variedad local) inician su floración a los 36 días después de siembra hasta los 37 días.Figura 3: Diferencia en los días a floración de tres variedades de frijol, evaluadas en dos zonas agroecológicas del municipio de Santa Rita, CopanEsta característica esta influencia por muchos factores entre ellos, hay variedades que se caracterizan por la abundancia de vainas/planta, llegando en algunos casos conteos hasta 60 vainas/planta, también es importante considerar el manejo, una parcela sin plagas, sin enfermedades y con buen plan de fertilización también puede mostrar cantidad de vainas llenas/planta.Para esta caracterización de estas tres variedades se contaron las vainas en promedio de 20 -25 plantas al azar en cada subparcela y se identificó que al menos en los dos ensayos la variedad biofortificada mostro mayor número de vainas/planta (28-29) las demás variedades rindieron de 20 vainas a 24 vainas en ambos ensayos, por lo cual hubo una ligera diferencia para esta variable.Figura 4: Presentación grafica del número de vainas/planta de tres variedades de frijol en dos comunidades del municipio de Santa Rita, Copan.Los días a madurez fisiológica corresponde al momento en que la planta cambia de color verde a amarillo y caída de hojas inferiores además cambio de coloración de las vainas, el grano está a capacidad de materia seca.Este dato se monitoreo después de los 60 días de siembra para ir registrando los cambios y poder determinar alguna diferencia en el número de días para cada una de las variedades. En el caso de las variedades rojo chortí y la variedad local tuvieron una madurez uniforme a los 65-70 días después de siembra, indistintamente de la zona donde estaba el ensayo, ya la variedad Biofortificada se observó que tardo hasta 75 días para lograr una madurez uniforme, comúnmente la variedad biofortificada Honduras nutritivo, tarda más para completar su ciclo productivo, es una planta más voluminosa (mayor área vegetativa).Este dato de madurez fisiológica es interesante para el productor porque tienen que hacer sus planificaciones de siembra más aun cuando tiene problemas de clima, quizás sea una desventaja para esta variedad porque en nuestro medio se buscan variedades de ciclo corto (precoces) para evitar estrés por falta de agua en los diferentes ciclos productivos. Figura 5: Diferencia en los días a madurez fisiológica de tres variedades de frijol en dos zonas del municipio de Santa Rita, Copan.El dato de rendimiento es el valor de mayor interés para los productores de la región, si compartimos variedades con buen rendimiento posiblemente se despierte el interés de más agricultores por retomar nuevas variedades, después de esto lo que interesa es el color del grano, para esta región de Occidente, los productores tienen mucha afinidad por el grano de frijol de color negro, sin embargo es un reto alcanzable dar respuesta con variedades de otro color como Honduras nutritivo, rojo chortí, que además de ser de buen rendimiento, su color es rojo claro, grano de buen tamaño comercial y por ultimo lo más importante para el consumo es que al menos la variedad mejorada biofortificada Honduras nutritivo nos aporta un 53 y 54 % más de hierro y zinc respectivamente para mejorar deficiencias nutricionales en niños y mujeres embarazadas.En estas dos ensayos o parcelas demostrativas se evaluó el rendimiento de tres variedades de frijol para ello previamente se tomaron datos de numero de vainas/planta, numero de granos/vaina, peso de 100 semillas a 12% de humedad etc. Sin embargo, ninguna de las variedades mostro datos superiores en todos los factores de rendimiento.La variedad rojo chortí se evidencio rendimientos que van desde 25 a los 28 qq/mz en ambas zonas, la variedad local lógicamente variedad adaptada a las condiciones y que los productores la conocen puede generar rendimientos superiores a los 30 qq/mz siempre y cuando se mejoren prácticas como la densidad de siembra, control de plagas y enfermedades y un buen plan de fertilización. • La variedad Honduras nutritivo, por lo general responde bien a diferentes condiciones del país, (diferentes alturas) en esta zona de occidente se adapta muy bien, es una variedad que produce mayor contenido de vainas/planta, grano de buen tamaño y por lo tanto buenos rendimientos. En las dos zonas de estudio (Mecatales y El Mirador) se pudo apreciar rendimientos que están dentro del promedio generado por DICTA (25-35 qq/mz), lógicamente con un buen manejo puede ser alternativa interesante para los productores.• La caracterización de variables agronómicas y los factores limitantes del cultivo de frijol en las diferentes comunidades, ha permitido evidenciar características como adaptabilidad (condiciones de 750 msnm), días a floración y madurez fisiológica, así de esta manera esta información ha sido y será útil para los productores para tomar decisiones y poder elegir la variedad que mejor expresa su potencial en la zona.• La variedad local de frijol (vaina blanca), grano de color negro es una variedad adaptada a las condiciones de la zona, quizás es el tipo de grano de preferencia para el consumo de las familias, esta variedad con un buen plan de cultivo puede generar buenos rendimientos. December 23 | Menú de tecnologías validadas para el cultivo de Phaseolus vulgaris, Var. Honduras nutritivo, rojo chortí y variedad local en Occidente de Honduras.• Implementar un sistema de enseñanza a los productores organizados, a fin de compartir información en campo sobre temas de interés durante el ciclo del cultivo, al mismo tiempo establecer parcelas demostrativas para mostrar resultados.• Hay mucha información que se puede confirmar con los ensayos, de parte de los productores resulta interesantes evaluar diferentes densidades de siembra, arreglos topológicos, medir diferentes formulaciones con bioinsumos o probar estas mismas variedades en otros ambientes para dar acceso a otro grupo de productores en otra zona.• Difundir entre los productores de frijol interesados, nuevas variedades de frijol más nutritivas como Honduras nutritivo, importantes para el consumo familiar desde el punto de vista nutricional.Figura 7: Preparación de terreno para la siembra de variedades en parcelas demostrativas en la comunidad de Mecatales, Santa Rita, Copan. ","tokenCount":"2503"} \ No newline at end of file diff --git a/data/part_3/2799724349.json b/data/part_3/2799724349.json new file mode 100644 index 0000000000000000000000000000000000000000..fd08aa2616bfdc55ba885595d20b7e094879e9cf --- /dev/null +++ b/data/part_3/2799724349.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"4dff2762cb23eb2779fe5bdd2cb7073a","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/bd2bc04f-407a-4c63-8229-f3bc74f4dc2e/retrieve","id":"-1686556098"},"keywords":[],"sieverID":"041fa206-9c50-4463-aca0-66e8fba0e7bf","pagecount":"23","content":"Como parte de la iniciativa \"AgriLAC Resiliente: Sistemas de innovación agroalimentaria resilientes en América Latina y el Caribe\", en el marco del paquete de trabajo 1, \"Dando forma a las 'mejores apuestas' socioecológicas-tecnológicas (SET) sensibles a la nutrición\", se ha priorizado el fortalecimiento de las capacidades comerciales y técnicas de los socios y actores clave dentro de la cadena de valor agrícola. Esta intervención tiene como objetivo no solo mejorar la producción, sino también asegurar la sostenibilidad comercial a largo plazo para las asociaciones locales.En este contexto, se ha acompañado a la Cooperativa Agropecuaria Las Dinámicas Limitada COADIL, ubicada en Danlí, El Paraíso, Honduras, compuesta por productores de maíz y frijol, con el fin de optimizar sus procesos de producción, postcosecha y comercialización. Este documento presenta un resumen del plan de fortalecimiento comercial implementado, destacando las acciones realizadas en relación con la comercialización y el análisis de la capacidad productiva.Durante este proceso, se llevaron a cabo talleres con los miembros de la cooperativa, donde se abordaron temas como el análisis de costos de producción, identificación de mercados potenciales y estrategias para mejorar su competitividad. Los datos recopilados en estas actividades resultaron fundamentales para tres objetivos principales:• Análisis y diagnóstico de la situación actual basada en el análisis FODA (Fortalezas, Oportunidades, Debilidades y Amenazas) desarrollado en conjunto con la comunidad. Este análisis permitió identificar áreas críticas para la mejora y definir acciones a corto y mediano plazo, orientadas a fortalecer la situación comercial de la cooperativa y mejorar su posicionamiento en el mercado regional.• Análisis detallado de los costos de producción para los cultivos de frijol y maíz, donde se identificaron los principales insumos y mano de obra para desarrollar la actividad productiva. Este análisis permitió establecer estrategias de reducción de costos, enfocadas en la optimización del uso de insumos y mejor manejo de recursos. Con base en estos datos, se establecieron estrategias para reducir los costos por unidad de producción, contribuyendo así a incrementar la rentabilidad de los cultivos.• Formulación de una estrategia de comercialización adaptada a las necesidades específicas de la cooperativa, alineada con las características de su producto y su mercado objetivo. Esta estrategia contempla el desarrollo de nuevos canales de comercialización y negociación buscando reducir costos y maximizar ingresos.El fortalecimiento en el componente comercial se desarrolló de la siguiente forma:• Análisis y Diagnóstico (Análisis FODA): Identificar áreas críticas para la mejora y sentar las bases para la planificación estratégica.o Ejercicio participativo con la comunidad: realizar un análisis FODA colectivo con los integrantes de la cooperativa para que permita identificar en conjunto aspectos internos (Fortalezas y debilidades) y externos (oportunidades y amenazas) que influyen en los procesos de comercialización.o Priorización de áreas críticas: En conjunto con la comunidad, se priorizan los factores del análisis FODA que tienen mayor impacto en la competitividad de la cooperativa y su capacidad de mejorar su situación comercial.o Definición de objetivos a corto y mediano plazo: Con base en el FODA, establecer metas claras para las áreas críticas identificadas.• Análisis de la capacidad productiva y costos de producción: Establecer etapas productivas de los cultivos y los costos asociados para la optimización de recursos y mejora de la rentabilidad.o Taller participativo con la comunidad: Llevar a cabo un análisis detallado con la comunidad de los insumos utilizados en los cultivos de frijol y maíz, y calcular los costos asociados a cada uno de ellos, incluyendo el costo de la mano de obra.o Evaluación de la distribución de los costos: Analizar el uso de insumos y recursos en el proceso productivo para identificar ineficiencias y posibles mejoras.o Definición de datos claves: de acuerdo con la información recopilada se determina total de costos de producción, ingresos, margen de rentabilidad y costo unitario de producción.• Estrategia y plan de Comercialización: Crear una estrategia de comercialización que se alinee con las necesidades específicas de la cooperativa y maximice ingresos.La cooperativa Las Dinámicas enfrenta una serie de desafíos que limitan su competitividad en el mercado y su capacidad para mejorar la rentabilidad de sus cultivos, específicamente de frijol y maíz. Entre los problemas identificados se encuentran la falta de una planificación estratégica clara, el elevado costo de producción y la limitada diversificación de los canales de comercialización.Por un lado, el análisis FODA con la comunidad reveló áreas críticas que requieren atención inmediata, como debilidades internas en la gestión de recursos y amenazas externas en el mercado, como el alto precios de los insumos. Sin embargo, no se han definido acciones concretas ni objetivos a corto y mediano plazo para enfrentar estas debilidades y aprovechar las oportunidades. Adicionalmente, los costos de producción para los cultivos de frijol y maíz son elevados, lo que reduce la rentabilidad de la cooperativa. A pesar de contar con un análisis inicial de los principales insumos y costos de mano de obra, no se han implementado estrategias eficaces para optimizar el uso de recursos, lo que ha generado ineficiencias en el proceso productivo y ha incrementado los costos por unidad de producción principalmente para el cultivo de maíz.Finalmente, la cooperativa no cuenta con una estrategia de comercialización adaptada a las características específicas de sus productos ni a su mercado objetivo. La falta de canales de comercialización diversificados y los altos costos de producción ha resultado en márgenes de ganancia reducidos. Este escenario limita el posicionamiento de la cooperativa en el mercado y afecta su capacidad para generar ingresos suficientes que aseguren su sostenibilidad a largo plazo.En el 2023 Honduras alcanzó un récord en la producción de frijol, según la Secretaría de Agricultura y Ganadería (SAG) se estima que en promedio se cosecharon 3.4 millones de quintales -15% más que en el 2022 -en una superficie de 232 mil manzanas con un rendimiento promedio de 12 a 14 quintales por manzana. El país cuenta con siete zonas productoras, sin embargo, las regiones con mayor potencial de producción son la región centro oriental y nororiental, donde se siembra el 52% del área total. Este cultivo se produce principalmente en dos temporadas, la primera se da en inicios de mayo al mes de agosto y la segunda (también llamada postrera) sucede de septiembre a diciembre.El establecimiento de los cultivos en los últimos años se ha visto afectado por la variabilidad climática, tal es el caso de la sequía presentada en este año, la cual ha tenido incidencia en los rendimientos y las cosechas de los productos agrícolas.Respecto a las variedades que se cultivan, están los frijoles rojos y negros. Estos últimos se cultivan en menor proporción y son producidos en la región occidental en los departamentos que son fronterizos con El Salvador y Guatemala; mientras que las variedades que hacen parte de los de color rojo son los de mayor uso y consumo en el mercado de Honduras (Escoto, 2015).De las variedades mejoradas de frijoles rojos, que se distinguen como de mayor adaptación a las condiciones agroclimáticas del país y que son mayormente establecidas por los pequeños agricultores se encuentran: Amadeus 77, Paraisito Mejorado 2, Honduras Nutritivo, Tolupán Rojo y Rojo Chortí, además agronómicamente son variedades que presentan valores altos en rendimiento, calidad de grano y mayor resistencia a enfermedades como la mancha angular. Estas semillas son adquiridas de manera oficial y con certificado a través de la Dirección de Ciencia y Tecnología Agropecuaria (DICTA), la Escuela Agrícola Panamericana (EAP), la universidad Zamorano y la Red Pash.Con relación a la asociatividad de este subsector, se tiene que la cadena de frijol está conformada por los comités de los departamentos de Olancho, El Paraíso, Francisco Morazán, Yoro, Santa Barbara, Comayagua, Lempira y Copan. Se estima que existen 151 organizaciones de base en estos departamentos, donde se involucran unos 7,366 productores, de los cuales el 33% son mujeres (SAG, 2024).En lo que concierne al mercado de frijol en Honduras se tiene la participación de las asociaciones de agricultores, intermediarios, instituciones del estado como el IHMA (Instituto Hondureño de Mercadeo Agrícola), el programa de la Organización de las Naciones Unidas PMA (Programa Mundial de Alimentos), mayorista y minoristas (Reyes et al., 2023). Respecto, al precio interno mínimo del frijol (o precio de garantía), este es pactado entre el Gobierno de Honduras a través de la SAG, el comité nacional de la cadena y los representantes de las empresas transformadoras. Cabe resaltar que, en el 2023 el precio de garantía fijado fue de L 1,500 por quintal (aproximadamente 1340 USD/t) y el precio pagado en la comercialización mayorista para la tonelada de frijol en el 2023 fue de 1,859 USD/t (Bucardo et al., 2024).Por último, es importante recalcar que la producción nacional abastece en más del 90% la demanda interna o consumo aparente del país, el restante debe ser importado de países como Nicaragua, Costa Rica y el Salvador, para el 2022 fueron importados un promedio de 450 mil quintales (FAOSTAT, 2023).En 2022, la producción de maíz en Honduras alcanzó aproximadamente los 15 millones de quintales, equivalentes a unas 683.723 toneladas métricas, según la Secretaría de Agricultura y Ganadería (SAG). Los departamentos que se destacan por su mayor producción son Olancho, El Paraíso, Yoro y Santa Bárbara; los que, en conjunto, aportan 83.4% a la producción nacional.Respecto a las variedades de maíz, es importante mencionar que desde 1984 algunos centros de investigación en agricultura como el CIMMYT (Centro Internacional de Mejoramiento de Maíz y Trigo) y la Dirección de Ciencia y Tecnología Agropecuaria (DICTA) han contribuido a la generación de semillas mejoradas, las cuales han sido adaptadas a los diversos climas de las distintas zonas productoras del país, además poseen características importantes como la resistencia a plagas y enfermedades, y una calidad comercial para el mercado. A continuación, se observan algunas variedades e híbridos de maíz liberados en Honduras desde el año 2000 hasta la fecha: Además de estos materiales, el país cuenta con el uso de semillas de materiales genéticamente modificados o transgénicos liberados comercialmente desde el 2002. Se estima que para el año A nivel productivo, es importante mencionar que la mayoría de los productores que componen este eslabón son pequeños agricultores, la mayoría cuentan con áreas entre 1 a10 hectáreas (o 1 a 14.3 manzanas) para el cultivo. Estos pequeños productores alcanzan rendimientos de 15 a 28 quintales/manzana y emplean prácticas agrícolas tradicionales con acceso limitado a tecnología moderna e insumos.Por otro lado, se encuentran los medianos y grandes productores caracterizados por manejar un sistema de producción tecnificado que va desde el uso de semillas certificadas para la propagación, maquinaria agrícola para algunas labores y el manejo integral del cultivo con prácticas como el control de malezas y un programa de fertilización en todo el ciclo. Para este grupo, los rendimientos oscilan entre 80 a 120 quintales/manzana.En lo que respecta al mercado del maíz, se caracteriza por presentar dos comportamientos, el primero se rige por el alto grado de informalidad, en este escenario participan los pequeños productores e intermediarios, que por lo general ofrecen un precio de compra en finca y posteriormente llevan todo el volumen de las cosechas al mercado mayorista. En segundo lugar, están los acuerdos comerciales formales dados entre los productores organizados y las empresas procesadoras. Estos acuerdos de compra por lo general están apoyados por el Gobierno a través de la SAG (Reyes et al., 2023).Las tortillas son un producto esencial y básico en la dieta y la gastronomía de la población hondureña, esto aplica tanto en la zona rural como urbana. Se estima que el promedio del consumo per cápita es de 74 kg al año de maíz (DICTA, 2017). Este grano es consumido principalmente como tortillas elaboradas a base de harina de maíz.En el año 2023, los fabricantes de tortillas pidieron al Gobierno apoyo para subsidiar el gas LPG (combustible usado para las maquinas con que elaboran este alimento), esto como estrategia para no incrementar el precio de las tortillas. Sin embargo, a lo largo de este tiempo el incremento ha sido inminente, no solo por el aumento en el precio del gas, sino también por la subida en el precio del saco de harina de maíz (50 libras). A continuación, se muestra la lista de precios de algunos mercados ubicados en Tegucigalpa y Comayagüela: Respecto a la presentación, es común que en muchos mercados las tortilleras vendan de 10 a 12 tortillas por paquete, por lo general son envasadas en bolsas plásticas, el precio del paquete de 10 unidades es de L.16.Además de las empresas industriales que se dedican a la producción y distribución de tortillas, en el país es muy notable ver que en cada departamento y en cada población existen microemprendimientos liderados por mujeres que ejercen esta labor de realizar tortillas. Las propietarias de estas tortillerías venden 2 unidades de tortillas por L.3. Su principal plaza para la comercialización son quioscos ubicados en los mercados populares y plazas.Imagen tomada de: EL HERALDO Es difícil precisar el número de tortillerías que existen en el país, no se conocen cifras exactas, sin embargo, solo para citar un ejemplo de la magnitud de este mercado se tiene que en el municipio de Danlí -El Paraíso existen alrededor de 350 microempresarias dedicadas a la fabricación de tortillas, además algunas están reunidas en grupos empresariales agrupaciones de más de 5 microempresas.Otro caso que cabe mencionar es el departamento de Francisco Morazán donde existe la Asociación de Tortilleros quienes ejercen un papel importante a la hora de definir el precio de las tortillas, que incluso tiene impacto a nivel nacional. Por último, también está la Asociación de vendedores de Tortillas -AVETOR conformada por 41 mujeres pertenecientes al municipio del Progreso en el departamento de Yoro y en el municipio de San Pedro Sula (departamento de Cortés) se encuentran 45 puestos de tortillas en el mercado Guamilito. Un denominador común en cada una de estas MYPIMES es que son generadoras de empleo local y es un medio de subsistencia para la familia.Con respecto a la elaboración de tortillas de maíz a escala industrial, su comercialización se da en cadenas de supermercados como: Paiz, La Colonia y Walmart. A continuación, algunas marcas de las empresas de tortillas de maíz mencionadas:Precio: L 60.0 30 unidades -750 gr GRUMA -DEMAHSA (de origen mexicano) llegó al mercado hondureño en 1987, con la creación de la empresa Demahsa (Derivados del maíz de Honduras S.A). Está empresa además de producir sus propias marcas de tortillas (Maya, Mission, Guerrero, Tortiricas y Calidad) lidera la producción de harina de maíz nixtamalizado (proceso en el que el maíz es cocido con agua y cal alimentaria), su principal marca es MASECA (normal y extra suave).En promedio se producen anualmente 94.600 toneladas de harina de maíz nixtamalizado, de las cuales 85,6% son destinadas al consumo del país. La materia prima principal es el maíz blanco, que proviene el 25% de Olancho y el 75% restante es maíz importado, en especial de Estados Unidos y México. La harina tiene presentaciones de 1, 5 y 10 libras; así como sacos de 25 y 50 libras (USAID, 2023).BIMBO -Marca: Milpa Real Tortillas de maíz.Precio: L 24.50 14 unidades -310 gr Bimbo inició sus operaciones en Honduras en el año 1994. Salió al mercado en 1995 en San Pedro Sula, Tegucigalpa y La Ceiba. Actualmente, cuenta con una red de distribución y puntos de venta en todo el territorio. Además, cuenta con una planta de fabricación de galletería y pan sándwich.En el 2018 la compañía inició el proyecto Agricultura Regenerativa en México y con algunos proveedores de maíz de Estados Unidos y Canadá, esto con apoyo del Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT). Este proyecto busca a la adopción de prácticas como la labranza cero, la rotación de cultivos, el uso de cultivos de cobertura y la incorporación de residuos de cosechas para obtener mejor calidad de las materias primas y modelos agrícolas más sustentables (Informe anual integrado -Bimbo, 2023).Precio: L 21.50 10 unidades -270 gr Tortillería Exquisita, ubicada en la ciudad de Tegucigalpa, cuenta con registro sanitario y su elaboración contiene preservantes para su conservación.Según estadísticas del Gobierno hondureño generadas por el Instituto Nacional de Estadística (INE) en el boletín de la situación de la mujer hondureña, revela que para el 2022 la población rural alcanzó los 4´280.095 de personas, de esta cifra el 52% son mujeres (2´213.172). El informe también indica que 540.695 mujeres se clasifican en edad de trabajar.Respecto al ingreso per cápita promedio para las mujeres jefas de hogar indica que es más alto en el área urbana (4,218 lempiras o 168 dólares) que en el área rural (2,188 lempiras o 88 dólares). El 7,8% de las mujeres rurales se encuentran trabajando en actividades de agricultura que combinan con actividades concernientes al cuidado del hogar.Con respecto a las barreras que enfrentan las mujeres rurales se encuentran: el difícil acceso y titulación de tierras, problemas económicos y carencia de recursos para invertir en sus proyectos productivos y dificultad para acceder a créditos formales, falta de fortalecimiento de capacidades y acceso a tecnología.Sin embargo, para las mujeres rurales que han logrado formar organizaciones comunitarias, grupales o cooperativas, el panorama se vuelve en cierta medida distinto, ya que, a través de proyectos o iniciativas generadas por algunos entes gubernamentales, ONGs, agencias o entidades de cooperación internacional se brinda apoyo y se hacen aportes económicos para apalancar proyectos productivos agrícolas y emprendimientos.Además, este grupo de mujeres rurales consigue a través de las capacitaciones y fortalecimiento de capacidades un grado mayor de empoderamiento que les permite un mayor desarrollo, que a su vez se traduce en ser fuente de ingresos para contribuir a mejorar la calidad de vida de sus familias.La Cooperativa Agropecuaria La Dinámica Limitada (COADIL) se encuentra ubicada en la Las Camelias en el municipio de Danlí departamento de El Paraíso. Se conformaron de manera organizada hace 25 años, cuentan con una junta directiva compuesta por el presidente, vicepresidente, secretaria, tesorera y vocal.La cooperativa está conformada por 22 socios, de los cuales 16 son mujeres. En la actualidad el 80% de los socios son población mayor con más de 50 años, y el 20% restantes están en una edad entre los 30 a 49 años. Cada socio cultiva en promedio 1 manzana de tierra, donde se siembra principalmente frijol, maíz y paste.Respecto a la producción de maíz cabe mencionar que, de las cosechas obtenidas en toda la cooperativa el 80% de la producción es vendida como materia prima (maíz seco) a compradores intermediarios y al Instituto Hondureño de Mercadeo Agrícola (IHMA). El otro 20% del volumen cosechado es destinado 10% para el autoconsumo y el otro 10% se transforma en tortillas para la venta.Es importante resaltar que, en sus largos años de constitución esta cooperativa ha gestionado proyectos importantes, como por ejemplo la participación en el proyecto Competitividad Rural de Honduras (COMRURAL) financiado por el Banco Mundial, iniciativa del Gobierno de Honduras a través de la Secretaría de Agricultura y Ganadería (SAG).En el año 2022 se inició con la adquisición de maquinaria para una planta procesadora de tortillas de maíz, esta fue dotada de una maquina tortilladora con capacidad de producción de 2500 tortillas/hora, una revolvedora amasadora con capacidad de 50 Kg, una centrifugadora para frituras, un enjuagador para lavado de maíz nixtamalizado con capacidad de 70 a 150 Kg y rodillos cortadores. Toda esta maquinaria tuvo un valor aproximado de L. 445.250. El proyecto fue financiado un 40% por el Banco Mundial, 20% con fondos de la cooperativa y el 40% a través de un préstamo bancario.En la actualidad, la venta de las tortillas es un rubro importante para la cooperativa, la cual ha logrado organizarse por grupos de trabajo para la elaboración y la comercialización del producto. La jornada de trabajo inicia a las 3 am, luego salen 2 conductores en moto para comenzar con la venta y distribución en los mercados locales y un par de restaurantes en la ciudad de Danlí.Por lo general se procesan diariamente 1 saco de maíz (200 Lb) que es abastecido por la misma cooperativa con la producción de los socios (este tiene un precio de L.750). En promedio se genera una venta de L.3000 al día por la comercialización de las tortillas, este es un dato que se lleva sobre la producción de esta, mas no se conoce con exactitud cuantas tortillas se elaboran a diario.Es posible tener un estimado, teniendo en cuenta que en 1 paquete se empacan 15 tortillas por un precio de L.10, es decir la producción diaria de tortillas estaría alrededor de 4.500. Sin embargo, una dificultad que se presenta en la producción de las tortillas es que no se ha logrado estandarizar el proceso de cocción del maíz, lo que genera pérdidas de un numero de tortillas que se doblan y deben ser descartadas, en un día pueden perderse hasta 500 tortillas.Por otro lado, la cooperativa también cuenta con un centro de acopio para frijol con capacidad para almacenar 400 quintales del grano, el centro está dotado con maquinaria para el acondicionamiento y poscosecha del grano que incluye un prelimpiador, pulidor, clasificadora y embolsadora de frijol con capacidad para acondicionar 25 quintales por hora.Este proyecto fue apoyado en el 2018 por medio del Programa Nacional de Desarrollo Agroalimentario (Pronagro), así como también por el Departamento de Agricultura de los Estados Unidos (USDA). A la fecha esta maquinaria no está siendo usada porque desde hace dos años los cultivos han disminuido a causa del ataque de los Trips que afectan en un gran porcentaje la producción del grano. Algunos productores siembran el frijol para el autoconsumo y lo hacen en medio del cultivo de maíz, cuando este ha alcanzado la madurez, por lo general esto sucede en la etapa de postrera.A futuro se espera retomar la producción del grano, para ello la cooperativa busca establecer parcelas pilotos para el establecimiento de nuevas variedades de frijol para evaluar la resistencia a los trips y niveles de productividad.Como parte del análisis de las prácticas comerciales y las brechas que se presentan para la Cooperativa Las Dinámicas, se desarrolló en conjunto una matriz FODA, en la cual se presentan las principales fortalezas, oportunidades, debilidades y amenazas identificadas con los productores de la cooperativa.Este ejercicio muestra, por un lado, los aspectos internos o propios de la cooperativa, y por otro, los aspectos externos sobre los cuales no se tiene el mismo nivel de control por parte de los productores, pero que en definitiva influyen en los procesos y dinámicas alrededor de los mismos. Cabe mencionar que este ejercicio se centra en el análisis de la oferta y la comercialización de los productos agrícolas con énfasis en el maíz y frijol.• Dentro de la cooperativa existen algunos roles definidos (ej. Grupos semanales para la elaboración de tortillas, presidenta, representante legal).• Al ser un grupo numeroso se facilita la distribución de las labores y existe mano de obra disponible (buen trabajo en equipo).• Capacitación constante en temas relacionados con la producción de cultivos y calidad.• Tienen maquinaria para transformación de maíz y algunos procesos poscosecha del frijol• Pertenecen a la cadena nacional de frijol.• Experiencia y tradición en la producción de cultivos como el frijol y el maíz.• Están realizando una transición hacia el uso de agroquímicos• Carencia de algunos insumos de infraestructura para el desarrollo de los cultivos y la transformación de estos.• No existe un mercado seguro para la venta del maíz y el frijol, tampoco para las tortillas.• Aun no tienen un registro de marca ni sanitario para la comercialización de las tortillas.• Falta de recursos para la compra de materia prima como frijol y maíz.• No existe un comité de comercialización que se encargue de buscar mejores precios de venta y acuerdos comerciales directos.• Escases de tierras propias para los procesos productivos.• Poca capacitación en el componente de comercialización.• Valor agregado de los productos, transformación en tortillas u otros derivados.• Exploración de nuevos mercados y canales de comercialización para las tortillas, como lo son pollerías, restaurantes, entre otros.• Tener maquinaria para desgranar el frijol.• Gestionar un registro de marca y sanitario para las tortillas.• Posibilidad de vender directamente al IHMA• Venta de maíz y frijol a Arsagro y Esmuejil.• Alta variabilidad climática que pone en riesgo los cultivos.• Mal estados de las vías terciarias para sacar los productos.• Alta migración por falta de oportunidades.• Poco relevo generacional.• Presencia de plagas y enfermedades (ej. trips).• Alta competencia en el mercado de tortillas.Para el análisis de los costos de producción se realizó un ejercicio junto con los integrantes de la cooperativa que permitió establecer y validar información sobre sus prácticas en el cultivo, el valor del jornal, la cantidad y los costos de los insumos y herramientas. El ejercicio de costos se realizó para los procesos productivos del maíz y frijol.En el caso del cultivo de maíz se trabajó con un maíz transgénico que es el más usado en la comunidad (120 días) Las etapas consideradas como propias del cultivo de maíz fueron: preparación del terreno, siembra, control de plagas y malezas, fertilización y cosecha. Posteriormente, se identificaron los insumos y las herramientas necesarias para su ejecución, y sus respectivos precios en el mercado local. Para los cálculos de los costos se tomó como base un área de siembra de una manzana.La estructura de costos cultivo de maíz, indican que la mayor participación está representada por los insumos (con 44.92% de participación) seguido por la mano de obra (con 34.58% de participación) herramientas (con un 10.64% de participación) y por último el transporte (con un 9.86% de participación). Con respecto al primer rubro considerado el más alto, incluye la semilla, fertilizantes y agroinsumos para la producción y control de plagas y enfermedades. En relación con el presupuesto destinado al segundo rubro las principales actividades de mano de obra son la preparación del terreno, control de malezas, cosecha y doblado estas actividades se realizan en su mayoría de forma manual y se requiere más de 20 jornales para su ejecución.En cifras, los costos totales calculados para el cultivo de maíz fueron de $30,074L; que se distribuyen de la siguiente forma: 13,509L Insumos, 10,400L Mano de obra, 3,200L en transporte y 2,965L en herramientas.De acuerdo con el análisis de la información alusiva a los rendimientos promedio del cultivo de maíz (40 sacos por manzana), y a los precios por bulto de 700L/saco (reportados por información directa de los productores) se realizó el cálculo de estos datos claves: De acuerdo con la información del ejercicio, se puede decir que el negocio de producción de maíz no está siendo rentable porque el costo de producción por saco (752L) es mayor que el precio de venta (700L/saco). Esto genera un margen negativo de -2,048L, lo que impide que el negocio cubra sus costos y obtenga beneficios.Por lo anterior y de acuerdo con el análisis de la información se sugiere actuar el dos frentes principalmente: i) mejora en los rendimientos que implica implementar prácticas agrícolas que aumenten los rendimientos por manzana, lo que puede incluir el uso de mejores variedades de semillas o la aplicación completa del paquete tecnológico asociado con las semillas transgénicas que comúnmente usan, ii) optimización en el uso de insumos que es el rubro que ocupa mayor porcentaje en la distribución de costos con el fin de buscar alternativas eficientes y de buena calidad que permita reducir costos y aumentar la rentabilidad.Para el caso del cultivo de frijol se trabajó con la variedad Amadeus 77 que es el más usado en la comunidad. El ejercicio se estableció para un área de siembra de una manzana y sembrando dos semillas por sitio. Las etapas consideradas como propias del cultivo de frijol fueron: limpieza, siembra, control malezas y plagas, fertilización y cosecha.La estructura de costos cultivo de frijol, indican que la mayor participación está representada por mano de obra (con 55.80% de participación) seguido por los insumos (con 23.82% de participación) herramientas (con un 18.39% de participación) y por último el transporte (con un 1.99% de participación). Con respecto al primer rubro considerado el más alto de destaca la mano de obra para el proceso de cosecha y \"aporreo\" la cual implica más de 25 jornales. En relación con el presupuesto destinado al segundo rubro los insumos que representan mayor inversión son la semilla y los fertilizantes. En cifras, los costos totales calculados para el cultivo de frijol fueron de 17,564L; que se distribuyen de la siguiente forma: 9,800L mano de obra, 4,184L Insumos, 3,230L en herramientas y 350L en transporte. De acuerdo con el análisis de la información alusiva a los rendimientos promedio del cultivo de maíz (7 sacos por manzana), y a los precios por saco de 3000L/saco reportados por información directa de los productores se realizó el cálculo de estos datos claves:Ingresos totales 21,000LMargen bruto de rentabilidad 3,436L Rentabilidad 20%Costo unitario x Saco 2,509LSegún la información suministrada el cultivo de frijol es rentable. Los ingresos totales (21,000L) superan los costos totales (17,564L), generando un margen bruto positivo de 3,436L y una rentabilidad del 20%. Además, el costo unitario por saco (2,509L) es inferior al precio de venta (3,000L), lo que también confirma la rentabilidad del negocio.A través de los diferentes ejercicios realizados con la comunidad que permitieron el levantamiento de información se identificaron brechas principalmente en tres componentes, las cuales se describen a continuación:Productivo Escasa implementación de prácticas sostenible y bajos rendimientos en los cultivos.Los miembros de la cooperativa dependen en gran medida de insumos de síntesis química para llevar a cabo su actividad productiva, lo que genera un impacto ambiental negativo. Además, en el cultivo de maíz, el uso de semillas transgénicas sin el acompañamiento adecuado del paquete tecnológico completo ha resultado en bajos rendimientos, lo que afecta la rentabilidad del cultivo. Otro desafío es que la producción se mide en sacos, cuya capacidad varía, lo que dificulta obtener datos exactos sobre la producción por área.Implementar prácticas de producción sostenible que faciliten la transición hacia una agricultura más limpia. Además, retomar el cultivo de frijol en la comunidad, considerando la rentabilidad comprobada en ejercicios previos. Una vez consolidadas las nuevas prácticas productivas, se debe avanzar hacia la estandarización de la medición de la producción, lo que permitirá reducir pérdidas y realizar un análisis más preciso de los rendimientos.La cooperativa enfrenta una falta de participación de jóvenes en sus actividades, lo que limita la capacidad para aprovechar plenamente las redes sociales y las tecnologías digitales. Esta carencia afecta su proyección y adaptabilidad en el entorno actual. Además, la ausencia de comités especializados en áreas clave como Fomentar la participación de los jóvenes en los procesos de la asociación principalmente en lo relacionado con el manejo de redes y las tecnologías digitales para fortalecer la proyección y adaptabilidad de la organización, así mismo establecimiento de comités.comercialización y gestión de equipos ha generado una dependencia de un único canal de comercialización, restringiendo el crecimiento y la diversificación de su base de clientes. Asimismo, la falta de un comité encargado del mantenimiento de maquinaria ha provocado el deterioro de algunos equipos esenciales, cuyo buen funcionamiento es crucial para mejorar los procesos de poscosecha y aumentar la eficiencia productiva. involucrarlos en diferentes comités para dinamizar los procesos comerciales, mantenimiento y adquisición de equipos.Falta estandarización en los procesos para calcular la capacidad productiva y así acceder a nuevos mercados.Los procesos de valor agregado aplicados al maíz, como la producción de tortillas, no están estandarizados. Esta falta de estandarización impide contar con información clave sobre los costos de producción, el porcentaje de desperdicio, las pérdidas o ganancias, la capacidad diaria de producción de tortillas y sus costos unitarios. Como resultado, se limita la capacidad de la cooperativa para acceder a nuevos mercados que exigen un mayor compromiso en términos productivos, de calidad y competitividad. Además, la falta de esta información dificulta la planificación estratégica y la toma de decisiones informadas para mejorar la rentabilidad y eficiencia del negocio.Estandarizar los procesos de transformación para obtener datos precisos que faciliten la toma de decisiones estratégicas, como la expansión de la base de clientes y canales de venta, así como la definición de precios basados en los costos reales. Esto permitirá aumentar la rentabilidad y asegurar la sostenibilidad del negocio a largo plazo.El análisis FODA, la identificación de las principales brechas que limitan la competitividad comercial del maíz y el frijol, la evaluación del modelo de negocio y el análisis de la capacidad productiva y costos de producción permitieron reconocer las oportunidades de mejora para la cooperativa Las Dinámicas. Estos hallazgos fueron categorizados según las posibilidades de los productores y las instituciones aliadas para generar estrategias y acciones dirigidas a atender los cuellos de botella definidos.Así entonces, se tuvieron en cuenta los siguientes criterios: i) lo organizacional, relacionado con la búsqueda de alianzas institucionales para fortalecer los procesos organizativos y las competencias asociativas con el fin de mejorar la comercialización de los productos agrícolas, además de contar con el apoyo institucional para el acceso al servicio de maquinaria agrícola para las labores y formación técnica de los cultivos; ii) comercialización, hace referencia a la necesidad de explorar nuevos mercados en el departamento, además diversificar con otros productos agrícolas y dar valor agregado a través de la creación de una marca propia y iii) productivo, que se refiere a la posibilidad de mejorar los procesos para que sean las amigables con el medio ambiente, logren mejorar el rendimiento y reducir costos. A partir de lo expuesto, se presentan las estrategias, acciones, resultados y estimaciones del tiempo que puede requerirse para la ejecución de los resultados planteados • Incentivar la participación de los jóvenes del grupo en los procesos productivos y de comercialización a través del uso de nuevas tecnologías.• Establecer comités especializados que fortalezcan los procesos de comercialización y gestionen tanto el mantenimiento de la maquinaria existente como la adquisición de nuevos equipos.• Cooperativa fortalecida en temas de producción orgánica en búsqueda de certificación en BPA u orgánica.• Cosechas diferenciadas con acceso directo a mercados formalizados.• Creación de comité de comercialización y gestión de equipos.Implementar procesos de producción sostenible que permitan reducir costos y aumentar los rendimientos.• Realizar ensayos con nuevas semillas por ejemplo híbridos de maíz y bioinsumos agrícolas que permitan realizar comparaciones relacionadas con rendimiento y costos.• Cuantificar la capacidad productiva de la asociación para obtener datos precisos sobre la producción por área, lo que permitirá optimizar los recursos, identificar áreas de mejora y mejorar la planificación estratégica.• En caso de continuar con el uso de semillas de maíz transgénico, implementar el paquete tecnológico completo asegurando así un manejo adecuado que maximice los rendimientos y• Ensayos comparativos de evaluación de semillas y bioinsumos para evaluar aspectos como costobeneficio, productividad y sostenibilidad.• Formato de registro donde se encuentre la cuantificación precisa de la capacidad productiva para identificar con exactitud el rendimiento por área cultivada y facilite la toma de decisiones. • Realizar un registro de los costos de producción tanto de materia prima como de producto transformado como las tortillas.• Exploración de nuevos canales y plazas de comercialización que permita ampliar el portafolio de clientes tanto para materia prima como productos transformados.• Dinamizar los canales digitales para ampliar la visibilidad de los productos, facilitar el acceso a nuevos clientes, y mejorar la eficiencia en la gestión de ventas y la comunicación con los consumidores.• Plantilla de información de costos de maíz, frijol y tortillas.• Base de datos de clientes potenciales.• Redes sociales actualizadas con la información de los trabajos y productos que ofrece la cooperativa.El modelo de negocio propuesto ha sido diseñado a partir de la información recolectada durante los ejercicios y dinámicas desarrolladas con la comunidad, integrando sus necesidades, aspiraciones y prioridades. Esta propuesta no solo refleja una comprensión profunda de la realidad local, sino que también incorpora la visión a mediano y largo plazo de la Cooperativa, orientada a alcanzar una situación mejorada. El modelo contempla ajustes estratégicos en diversos componentes clave con el objetivo de lograr los resultados deseados y fortalecer la sostenibilidad y el crecimiento del negocio en el futuro.Objetivo: Fortalecer los procesos actuales con el fin de generar estrategias de comercialización sostenibles que permitan ampliar los canales de comercialización del frijol, maíz y sus derivados visibilizando el trabajo de pequeños productores, especialmente mujeres, con el fin de incrementar la base de clientes, aumentar las ventas y la rentabilidad del negocio a mediano plazo. • Acciones relacionadas en los componentes: organizacional, productivo y mercados descritos en el plan de acción.Producimos y comercializamos frijol y maíz, así como sus derivados, de manera sostenible y comprometida con el empoderamiento de pequeños productores, principalmente mujeres. Nuestra propuesta impulsa productos de alta calidad en canales, generando un impacto positivo en las comunidades rurales, mientras aumentamos nuestra base de clientes, las ventas y la rentabilidad del negocio.• Relación directa con los clientes realizando visitas para llevar muestra de los productos y realizar seguimiento. • Ingresos con rentabilidad por la comercialización de: maíz en grano, maíz transformado (ej. Tortillas) y frijol en grano.• La aplicación de herramientas como el análisis FODA y la evaluación del modelo de negocio (plantilla Canvas) permitió identificar y priorizar problemáticas para la Cooperativa Las Dinámicas relacionadas con la comercialización del maíz y el frijol. Las brechas identificadas fueron el punto de partida para el diseño de las estrategias y acciones que se espera contribuyan al fortalecimiento de la cooperativa, de tal forma que puedan mejorar su propuesta de valor y percibir mayores ingresos. Para lograr este propósito y asegurar el éxito del proceso descrito en este documento, es preciso que los productores se familiaricen con el seguimiento la implementación de las estrategias y acciones y trabajen de manera articulada con las instituciones locales para su gestión. Así entonces, será posible mejorar algunos aspectos del proceso de comercialización que permita que se evolucione hacía unos productores más competitivos.• Entre los temas incluidos en el Plan de Fortalecimiento Comercial, los integrantes de la cooperativa manifestaron como crucial y valioso el taller de costos de producción, que permitió determinar el precio de venta y conocer los márgenes reales de ganancia en determinados escenarios (ej. precios bajos en temporada de sobreoferta), sin embargo su desarrollo fue difícil ya que no se llevan registros de los gastos y jornales realizados para cada labor, por esta razón la recomendación fue iniciar con una agenda que permita llevar el control y registro de todas las labores.• En el componente productivo, especialmente en el cultivo de maíz, es fundamental buscar alternativas que garanticen la rentabilidad del cultivo. Esto puede lograrse mediante la implementación de soluciones que reduzcan costos o aumenten los rendimientos. La búsqueda de estas alternativas no solo permitirá mejorar la situación económica de los productores, sino que también contribuirá a la sostenibilidad del cultivo a largo plazo. Además, al optimizar los recursos y adoptar prácticas más eficientes, la cooperativa podrá fortalecer su competitividad en el mercado y asegurar un suministro constante de productos de calidad.• En el caso del cultivo de frijol se recomienda a la cooperativa retomar la siembra, ya que este cultivo no solo forma parte de la tradición productiva de la comunidad, sino que también ha demostrado ser rentable según el análisis de costos realizado. Al reintroducir el frijol, se fortalecerá la diversificación de cultivos, lo que contribuirá a la estabilidad económica y al aprovechamiento de un mercado con demanda. Además, recuperar esta práctica tradicional permitirá preservar conocimientos locales.• Es fundamental involucramiento de los jóvenes en el proceso de la cooperativa para impulsar la innovación tecnológica, asegurar la renovación generacional y aportar nuevas perspectivas que mejoren los procesos y estrategias comerciales. Su capacidad para adaptarse rápidamente y aprovechar herramientas digitales permite diversificar mercados y canales de venta, fortaleciendo la competitividad de la cooperativa. Además, su participación garantiza la sostenibilidad a largo plazo, contribuyendo al crecimiento económico y al desarrollo local. ","tokenCount":"6581"} \ No newline at end of file diff --git a/data/part_3/2811576522.json b/data/part_3/2811576522.json new file mode 100644 index 0000000000000000000000000000000000000000..3115dd9696d46bf4112d00e9b8bbfc47e2713971 --- /dev/null +++ b/data/part_3/2811576522.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"76d3ae259a819c1a601b27727d1e3343","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/8893509a-fac5-4cc3-b671-fab3eb89a1df/retrieve","id":"-1299623742"},"keywords":[],"sieverID":"dd15d69b-dd72-42cf-8c1d-513ef9edb63f","pagecount":"2","content":"Agenda para la Reunión de \"Integración de Sitios ++ Nicaragua\" del CGIAR Consulta Nacional 17 y 18 de noviembre del 2015 Objetivo: basados en las prioridades y demandas del sector agropecuario de Nicaragua, desarrollar un plan de trabajo que oriente el CGIAR a integrar, dentro de su sistema y con los socios nacionales e internacionales, las actividades a ser llevadas a cabo en el país durante la implementación de la segunda fase de los Programas de Investigación del CGIAR (CRPs por su sigla en inglés). CCAFS  HumidTropics  PIM  A4NH  FTA  LWE 13:30 -15:30 Discusión acerca de la mejor forma de integrar los CRPs, entre sí en su accionar en Nicaragua, tanto en lo conceptual como en lo operativo, eso con el objetivo de tener una propuesta conjunta para el segundo día de la reunión.16:00 -18:00 Intercambio con instituciones internacionales mostrando cómo ha sido la experiencia de trabajar en Nicaragua, incluyendo la relación con el Gobierno y socios nacionales.Día 18 8:30 -12:00 Discusión (sin power point) con instituciones nacionales y gremios indicando las prioridades y demandas para el sector agropecuario de Nicaragua.14:00 -18:00 Trabajo conjunto para identificar las prioridades y demandas, e iniciar la construcción del plan de trabajo tomando en cuenta temas como:-Mecanismos de colaboración -Diálogos continuos con socios -Maneras para lograr los objetivos del SRF y los resultados deseados para Nicaragua -Alineamiento de objetivos y actividades de investigación de CGIAR -Uso conjunto de los sitios de investigación y del personal -Mejor co-creación de conocimientos y si escalamiento -Mejor coordinación de las actividades de influencia en políticas","tokenCount":"262"} \ No newline at end of file diff --git a/data/part_3/2824050898.json b/data/part_3/2824050898.json new file mode 100644 index 0000000000000000000000000000000000000000..f43dc70760464190973b7cc67f4f6b91a352dade --- /dev/null +++ b/data/part_3/2824050898.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"f0bbf3a87a1520cf7dd4a821bfc22b22","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/bdbc6533-5da6-4c75-8d41-a36c150d7cf0/retrieve","id":"-1240961072"},"keywords":[],"sieverID":"ffd9a521-0da6-4e54-a2d7-ba6a3c9dff1f","pagecount":"4","content":"Out of Poverty?When people hear about \"mansampalang\" or \"tapioca\" they usually think of poor Isarn farmers that can not grow anything better on their parched dry sandy soils. In fact, those poor farmers may not be so poor in the future, thanks to the \"Green Cassava Revolution\" that is currently sweeping most Southeast Asian countries. \"Cassava\" is actually the correct English term for the crop, while \"tapioca\" is often used for the products made from cassava roots. In Portuguese the crop is called \"mandioca\", in Spanish \"yuca\" and in French \"manioc\"The center of origin of cassava is in Central Brazil, where it has been a staple food for the native Indian population for at least 4000 years, and continues to be so until this day. Brazil is still the second largest producer of cassava in the world, after Nigeria and followed by Thailand. In semi-arid northeastern Brazil, fariña, made from grated and roasted cassava roots, remains a very popular food. In Nigeria and much of West Africa, cassava is the most important food staple, eaten mostly as \"gari\", another toasted product made by household processors from grated cassava roots. Interestingly, being the third largest producer of cassava in the world, Thais have no tradition of eating cassava except as cassava starch in some traditional desserts; they much prefer eating rice.In Thailand cassava production expanded rapidly in the 1970s and 80s in response to an ever increasing demand for dry cassava chips and pellets used as an energy source for animal feeding in Western Europe, especially in the Netherlands. The cassava production area, initially located in the southern part of Thailand, first moved to the eastern seaboard provinces of Chonburi and Rayong, and during the late 1970s and 1980s expanded greatly into the northeast, principally in Nakhon Ratchasima province, but also in the upper northeast of Khon Kaen, Kalasin and Roy Et provinces. Presently about 55% of cassava is grown in the Northeast, 30% in the East and Central Plain and 15% in the Northern region. During the late 1980s the cassava area of Thailand reached a peak of 10 million rai, almost all planted with one variety, called Rayong 1, and almost all destined for the lucrative export market of cassava pellets in Europe. At the insistence of the EU countries, Thailand had a quota of maximum 5.25 million tonnes of cassava pellets that could be imported annually at a low tariff rate. However, changes in the EU's agricultural policies introduced in 1993 lowered the support price of their own grain crops, mainly barley, wheat and oats, and made Thailand's cassava pellets much less attractive as a cheap source of energy in animal feed rations. Thus, Thailand's exports of cassava pellets to the EU dropped precipitously year after year and is now less than 400,000 tonnes. Those poor Thai farmers in the Isarn were stuck with piles of cassava roots that no one wanted to buy, and the price often dropped to less than 80 satang per kilogram. Foreseeing this problem the Thai government tried to decrease the cassava growing area by encouraging farmers to plant other crops like sugarcane, maize, cashew and even rubber trees. However, none of these was as well adapted to the poor soils and harsh climatic conditions in the Northeast as cassava, and farmers continued to grow cassava, albeit in a much reduced area of about 6.20 million rai. But while the planted area was reduced and partially replaced by some other crops, cassava yields started to go up and up, from about 2.24 tonnes per rai in 1995 to 3.55 tonnes per rai in 2006/07. The result was that total cassava production only decreased marginally, from a peak of 24 million tonnes in 1989 to about 16 million tonnes in 1998/99, and back up to 25 million tonnes in 2006/07.So, what does Thailand do with 25 million tonnes of cassava roots if no respectable Thai wants to eat the stuff, and the export market of cassava pellets to Europe has all but collapsed? Fortunately, Thailand has an excellent entrepreneurial class that was able to adapt quickly to a new situation and to turn a potential disaster into a new opportunity. They were also greatly assisted by our big next-door neighbor, China. First, the Thai cassava industry quickly changed from making mainly cassava pellets for export to making more and more cassava starch for both the domestic and export markets. Currently the cassava starch and modified starch industry absorbs over 50% of all cassava roots produced in the country, as compared to 36% in 1991. Secondly, our Chinese neighbours to the north also built more and more starch factories, especially in Guangxi province, to the point that domestic production could not keep up with demand. Besides native starch, these factories also needed cassava for production of various modified starches for the food, paper and textile industries, for production of monosodium glutamate (MSG), sobitol, vitamin C, various sweeteners and alcohol for drinking and industrial purposes. Thus, in 2001 they started importing cassava chips from Thailand, first in very modest quantities, but increasing every year to a level of 4 million tonnes in 2006. Until the end of August 2007, Thailand has already exported 2.5 million tonnes of cassava chips to China. Meanwhile, similar starch-based industries in Thailand as well as the exporters of dry chips keep increasing their need for cassava roots. Finally, in 2000 in response to an expected rise in oil prices, Thailand was one of the first countries in Asia to initiate a \"gasohol\" or E10 program, with the aim of replacing 10% of normal gasoline with fuel-ethanol, which is a renewable energy source made from locally produced sugarcane (or molasses), maize or cassava. Thus, many gas stations in Bangkok and upcountry now sell \"gasohol 91\" and \"gasohol 95\" which are considerably cheaper and can perfectly replace the traditional gasoline 91 and 95, respectively, in most cars. There are several advantages to the use of \"gasohol\" over normal gasoline: 1. It reduces the consumption of imported oil and thus saves foreign exchange and increases the country's energy security; 2. Ethanol is an octane booster and can completely replace the additive MTBE; 3. Ethanol combustion in cars is less air polluting and produces less CO 2 than normal gasoline, thus reducing global warming; and 4. Ethanol is made from renewable and locally produced crops, thus helping Thai farmers increase their sales and improve their income. The rapid increase in demand for cassava roots has already resulted in a doubling of the price of fresh roots, dry chips and starch as compared to 2003. Thus, Thai cassava farmers are earning a much better income, allowing them to take better care of the crop and thus increasing yields and the supply of roots.Presently, Thailand is producing about 1 million liters of ethanol per day, mostly made from molasses and sugarcane. There is only one factory in the country using cassava as the raw material and producing about 80,000 liters of ethanol per day. However, two additional factories are ready to start operation and another 12 factories should be completed by the end of 2008, producing a total of 3.4 million liters of ethanol per day; this will require an additional 6 million tonnes of fresh roots, on top of the 25 million tonnes produced currently. Since the cassava growing area of about 7 million rai can not increase substantially, due to competition from other crops, the increased supply can only be met through increases in yield, from the current 3.5 tonnes per rai (22 t/ha) to about 4.5 tonnes per rai (28 t/ha) in the next couple of years. How can this be achieved? Thailand has currently the second highest cassava yields (22 t/ha), after India (28 t/ha) and nearly double the average yield in the world (11.5 t/ha). The rapid increase in yield from 14 t/ha in 1994/95 to 22 t/ha in 2006/07 was achieved through the hard work and excellent collaboration among the Departments of Agriculture (DOA), the Department of Agricultural Extension (DOAE) and Kasetsart University (KU) as well as with the private processing and trading sector and the Thai Tapioca Development Institute. The latter non-governmental institute was created in 1993 through a \"special fund\" of US$ 30 million to establish the Thai Tapioca Development Institute Foundation; it has provided training to 30,000 cassava farmers and distributed millions of stems of the new high-yielding varieties to cassava farmers.These various Thai institutions have also had a very productive collaboration with an international agricultural research center, called the Centro Internacional de Agricultura Tropical (CIAT) located in Colombia, South America; this Center also has a Regional Cassava Office for Asia in Bangkok. CIAT has the world mandate for cassava research and development, and maintains the world's largest collection of over 6000 cassava varieties, mostly from its center of origin in Latin America, but also about 200 varieties from Asia. The CIAT-Thai collaboration started as far back as 1975 when a group of Thai researchers from DOA and KU spent over a year for training in cassava research at CIAT in Colombia. Over the past 30 years about 40 Thai researchers have received training at CIAT, thus establishing a very close working relationship among the relevant national institutes and with CIAT. In addition, CIAT has provided over the years about 170,000 sexual seeds of cassava from Latin America, each with their own genetic background, to cassava breeders in DOA and KU. Thailand is the only country in the world that has also received in tissue culture the world's \"core\" collection of cassava, which is about a 10% selection (600 varieties) of the whole collection, but representing the whole spectrum of genetic variability of the crop. This collection is presently being maintained and evaluated at DOA's Field Crops Research Center in Rayong.While farmers grow cassava from stem cuttings (each about 20 cm long) using clonal propagation, in order to produce new and better varieties cassava breeders have to make crosses between male and female parents and then plant the sexual seed produced to evaluate the yielding ability and other quality characteristics of the progenies. Usually, from the planting of 10,000 seeds, only one new variety will eventually be released after 8-10 years of intensive and continuous selection. During the past 30 years the Thai breeders have made thousands of their own crosses, often involving Latin American germplasm with their own best varieties, to produce and finally release 11 new cassava varieties. Five of these are now grown by farmers in nearly 100% of the total planted area of 7 million rai, having thus entirely replaced the original Thai variety, Rayong 1. However, the genes of Rayong 1 are still present in three of the five most commonly planted varieties. Among these is Kasetsart 50, selected from a cross between Rayong 1 and Rayong 90 by breeders from Kasetsart University. This is probably the most successful cassava variety in the world, now planted in about 4 million rai (640,000 ha) in Thailand and about 500,000 ha in other Southeast Asian countries. In addition, Thailand has contributed about 100,000 sexual seeds from its own crossing program to its Southeast Asian neighbours, which has resulted in the release of several excellent varieties by those countries.Besides a very strong collaboration in the area of cassava breeding, there has also been a very productive collaboration in the area of agronomy research and the extension of new varieties and improved production practices, especially erosion control, to farmers, using a farmer participatory research (FPR) approach. This program was funded entirely by the Nippon Foundation of Japan, from 1994Japan, from to 2003. . This Foundation is a philanthropic organization which financially supports worthy projects in Japan as well as all over the world, mainly in the areas of education, cultural exchanges, assisting disabled people and agricultural development. During the ten-year period mentioned above, they funded the cassava FPR project in Thailand, Vietnam, China and Indonesia, and since 2004 are also funding a similar project in Laos and Cambodia. The previous project resulted (or at least contributed significantly) to the doubling of cassava yields in Vietnam, a 60% increase in yield in Thailand, and a 20% increase in yield in China since the project started in 1994. Hopefully, similar increases will be achieved in Laos and Cambodia, where traders and cassava processing factory owners from China, Korea and Vietnam are already looking for large new areas to plant cassava to supply their rapidly increasing demand for cassava roots.So what does the future hold for cassava in Asia? In many countries the increasing demand of roots for processing into dry chips, both for domestic use in animal feed rations and for export (mainly to China), for production of starch and starch derived products, for ethanol and for biodegradable plastics, can only be achieved through marked and rapid increases in yield. This will require renewed efforts in breeding, agronomy, biotechnology and improvements in processing technologies, coupled with a dynamic and effective extension program using a farmer participatory approach. It will also require good coordination and collaboration among the various research organizations in Thailand, as well as with international organizations like CIAT. Even though cassava is the third most important food crop in Southeast Asia, after rice and maize, it has always been considered as an \"orphan crop\", with very little funding allocated for research and development. While there are thousands of researchers all over the world working on important crops like rice, maize, soybean, oil palm and rubber, there are only a few dozen researchers working on cassava. Unless this situation improves and the crop receives adequate funding and research attention, it will remain an \"orphan crop\", only grown by the poorest farmers and eaten by the poorest people, except that the increased demand for fuel-ethanol, if not met through rapid increases in production, will push up the price until the poor will no longer be able to afford it.","tokenCount":"2320"} \ No newline at end of file diff --git a/data/part_3/2844615545.json b/data/part_3/2844615545.json new file mode 100644 index 0000000000000000000000000000000000000000..912f28bbacd5bbea778b4507ef8df728235d8b93 --- /dev/null +++ b/data/part_3/2844615545.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"7e709c7339c6f0ff595b95305006c61b","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/c28806b5-f7f0-4636-9540-d53ecdee42fd/retrieve","id":"978698981"},"keywords":[],"sieverID":"2dc010de-f498-4c21-92b0-a70cbe0d4209","pagecount":"2","content":"The last decade has seen various countries, regions, and cities from low-income to high-income economies develop public food procurement (PFP) initiatives designed to use government purchasing power and regular demand for food as a policy instrument to promote sustainable development. 1 These initiativesoften also referred to as institutional food procurement, including school meals programmes and purchase of food for public hospitals, prisons, universities, public building cafeterias, and other social programmeshave been increasingly recognised as an important entry point to trigger more sustainable food systems and healthy diets. [2][3][4][5][6][7][8][9] They are also an important instrument for the achievement of target 12.7 of the UN Sustainable Development Goals (SDGs): \"to promote public procurement practices that are sustainable in accordance with national policies and priorities\".A key feature of PFP is its potential, based on its policy and regulatory frameworks, to establish what food will be purchased (such as local, diverse, nutritious, healthy, and culturally appropriate), from whom it will be purchased (eg, from local smallholder farmers, small and medium-sized food enterprises, women, youth, and other vulnerable producer groups), and from what type of production systems it will be purchased (eg, from agricultural production that ensures environmental sustainability and conserves biodiversity). 1 Considering the extent of public sector demand and how these choices are made, PFP holds considerable potential to shape norms around food, to influence both food consumption and food production patterns and to deliver multiple social, economic, and environmental benefits, including climate resilience, for a multiplicity of beneficiaries. Furthermore, depending on how these choices are made, local, regional, and national governments can tailor PFP to various policy objectives, according to their own priorities and contexts, pursuing different outcomes linked to the three dimensions of sustainability. This flexibility makes PFP a unique crosssectoral instrument, suitable for very different contexts, including from low-income to high-income economies.The transformative potential of PFP has been identified in the dialogues leading up to the UN Food Systems Summit as an important entry point to shape food systems, having a key role in improving the availability and affordability of the diverse and often perishable nutritious food found in small-scale production systems. What happens before and after the summit presents a unique opportunity to reshape government policies and investments in agriculture, infrastructure, and transport that can help grow and shape the market for healthy foods, and for PFP to deliver more nutrient-rich foods sourced locally.For PFP to be truly transformative in the aftermath of the food summit, it is crucial that all complementary game changers and actions-such as improved enabling policy and regulatory frameworks, school food programmes, reduction of the costs and risks faced by the SMEs and smallholder producers of nutritious foods, appropriate supply chain infrastructure, and naturepositive solutions that seek to increase agroecology and agrobiodiversity for diverse production and resilienceare aligned, joined-up, and fully integrated to promote a comprehensive and coherent approach to sustainable public food procurement. That is, a comprehensive approach that recognises PFP as a key instrument to promote the SDGs and its target 12.7 and its linkages with the existing international frameworks and the broader debate on sustainable public procurement. This is crucial not only to ensure availability and affordability of nutrient-rich foods for sustainable healthy diets, but also to foster the recognition of PFP as a multifaceted policy instrument able to achieve multiple social, economic, and environmental outcomes and benefit multiple beneficiaries in very different contexts, including food consumers, food producers, and the local community. Currently, these complementary game changing solutions and actions related to PFP are dispersed and do not allow for the required comprehensive approach to the topic.The considerable potential of PFP to shape food systems comes also with great complexity for its successful implementation. Despite the increasing recognition and potential of PFP, it remains an underexplored topic. The linkages between PFP and the broader sustainable development agenda; the multifaceted nature of PFP and multiple potential benefits and beneficiaries; the many PFP instruments, enablers and barriers as well as the experiences and scaling-up strategies from various cities, regions and countries, still require further analysis. Analysis that calls for a multidisciplinary approach, with contributions not only from different areas of knowledge but also from different actors with different roles and perspectives on the topic. 10 ","tokenCount":"702"} \ No newline at end of file diff --git a/data/part_3/2853184046.json b/data/part_3/2853184046.json new file mode 100644 index 0000000000000000000000000000000000000000..beef458dd84a6b260340f7f1754d564e40593f4c --- /dev/null +++ b/data/part_3/2853184046.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"2907831c7c6d6cadbaf96c2ab90c3e24","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/70fa452b-16fa-45d9-8736-83f6050abb40/content","id":"-1314745641"},"keywords":[],"sieverID":"a4d4bb53-a6c2-429d-a458-d1118029e592","pagecount":"32","content":"A few years ago, CIMMYT started working on the Russian Wheat Aphid (Diuraphis noxia) on a very small scale. Reports on the spread and damage due to this aphid's attack are on the increase in both developed and developing countries. Hence, during the last two crop cycles in Mexico, our efforts have grown substantially and are showing good results. On June 7, 1991, select CIMMYT wheat staff members met at EI Batan to review the current status of CIMMYT's RWA research and to define goals for the future. This report summarizes the presentations and discussions during that meeting.Distribution and Economic Importance of Russian Wheat Aphid P.A. Burnett, virologist/entomologist Distribution The Russian wheat aphid (RWA), Diuraphis noxia, has only recently become a serious pest of wheat and barley. Its effects are being felt in many parts of the world. Originally collected and described in 1900 in the Caucasus area of the southern Soviet Union, it became a pest of wheat in South Africa in 1978. By 1980 it was recorded in Mexico and by 1986 it had reached Texas in the USA. Currently it is reported to be present in Canadian provinces of Alberta, British Colombia, and Saskatchewan and in most of the states of the western USA. It is also now found in Europe (Spain, France, Hungary), central Asia, the Middle East, Pakistan, Afghanistan, Africa (northern Ethiopia and South Africa), North America, and South America (Chile and Argentina). See the world map in Figure 1, which shows recorded occurrences of the aphid.Potential locations Hughes and Maywald (1990) used the CLIMEX computer model to forecast the favorableness of the Australian and other environments for the RWA. The model matches climate to the potential of a location to support population growth of a nonintroduced species such as the RWA. As shown in Figure 2, RWA has the potential to cause severe losses to the wheat crop should it arrive in Australia. Hughes and Maywald (1990) show, in Figure 1, areas of the world already infested with RWA and, using the CLIMEX model, indicate areas that, if they became infested, would support the pest. Figure 3 (Burton 1990) shows the area of the USA that was infested with RWA in 1990 and Figure 4, by comparison, shows Hughes and Maywald's CLIMEX distribution and the actual 1989 RWA distribution in the USA. Figure 5 shows the area of southern Africa delineated by the CLIMEX model as favorable for the growth and survival of RWA.The RWA is a small pale green aphid about 2 mm in length with a supracaudal process, short antennae, and reduced cornicles, which make it distinct from other aphids. On depleting its food source, or under adverse environmental conditions, viviparous winged females are produced from RWA colonies. These winged forms can be borne long distances on wind currents to initiate new colonies. The RWA reproduces almost exclusively by parthenogenesis; very few males have been found. Damage symptoms RWA, which primarily infests wheat and barley but also rye, triticale, and a range of grasses, feeds within tightly rolled leaves. The location of the feeding site makes it difficult for predators and parasitoids to find the RWA and also provides a degree of protection against contact insecticides. Typically in the field, damage symptoms are observed before the aphid is seen. The leaves of infested plants become tightly rolled and the plants develop a prostrate growth habit. Longitudinal chlorotic streaks develop on the leaves and some purple discoloration and necrosis may be observed. The spikes, frequently trapped in the flag leaf because of its tight curling, are often defonned as a result. Plants infested by RWA often exhibit symptoms typical of drought stress when soil moisture is not limited. . The area of southern Africa delineated by the CLIMEX model as favorable for the growth and survival of D. nox/a. The size of the contained circles Indicates the level of favorableness for the aphid In major wheat-growlng areas of the Cape, Orange-Free State, and Transvaal. Source: Hughes and Maywalcl (1980).Reported yield losses caused by RWA infestations have averaged around 50%:• 30-60% in winter wheat in South Africa (Du Toit and Walters 1984).• 40-70% in barley in Europe (Miller and Haile 1988).• 70% in wheat in Ethiopia (Miller and Haile 1988).• 50% of attainable yield in the U.S. (Johnson 1990) In most regions of the world, there are few substantiated data, so we use here data from the USA (Johnson 1990). Approximately 7.7 million hectares (53%) of the winter wheat, 540,000 hectares (11%) of spring wheat, and 870,000 hectares (37%) of barley were RWA-infested in the western U.S. during 1989. In this same area in 1989, some 916,000 hectares of cereals were chemically treated for RWA control at a cost of US$21 million. Approximately 35% of the spring wheat, 8% of the barley, and 7% of the winter wheat were treated twice. Table 1 shows the total economic impact of the RWA in the western US.The estimated cumulative costs of RWA as of 1991 is US$300 million for control plus loss of production (This does not include the ripple effect in the community).Sources of Resistance to RWA • There are numerous sources of resistance to RWA in winter wheats from Iran and the USSR (Smith et al. 1991).• We ha~e field-screened 32 winter wheats identified by Harvey and Martin (1990) as resistant in the greenhouse. There is very good correlation.• Sources in spring wheat are few. We have identified some facultative types from Hakkari in S.E. Turkey. The USA, with the exception of California, is interested in winter wheat.• Durum wheats appear generally very susceptible, but we have identified some T. dicoccum accessions that may be useful sources for getting resistance into durums.• At CIMMYT, there are abundant sources ofresistance in barley. Oklahoma's barleys (Iran) seem to be BYDV susceptible. Sources of resistance are also available in wild barleys.• There are abundant sources of resistance in triticale, rye, and a range of pasture grasses.• Sources of resistance have mainly been identified from greenhouse screening and await field confirmation.• A potential problem is that of biotypes--resistance to one biotype (from a particular area/environment) may not hold in other places under different conditions. Note: J. Robinson can supply a list of references for published results on sources of resistance.Three mechanisms of resistance are involved with the RWA:• Tolerance--the ability of a plant to yield satisfactorily in spite of injuries that would debilitate a susceptible plant. This is solely a plant response, but it can be a complex of physiological factors.• Antibiosis-..the tendency of a plant to injure or destroy insect life. This can be biophysical or biochemical and involves both plant and insect responses.• Antixenosis--nonpreference: plant characteristics that lead insects away from a particular host. These can be allelochemic or morphological and involve both plant and insect responses.The most useful mechanism for plant breeders is tolerance because it does not put selective pressure on the aphid to form new biotypes. It is permanent, but is modified by environmental conditions.Resistance in wheat, barley, and triticale generally appears to be a combination of tolerance and antibiosis. We have demonstrated antixenosis with barleys, but its expression appears to be linked to preconditioning (the plant variety from which the aphid transferred). Oats are highly antixenotic.Tolerance is measured in terms of % uninfested plant height/weight corrected by using weight of aphid colony to remove the antibiosis component (Table 1). S13 is tolerant to RWA in comparison with S16, but it is not known what the tolerance is attributable to. Institute, 1985).Using the barley genotypes S13 (Gloria/Come, relatively resistant to RWA) and S16 (Esperanza, susceptible), Figure 1 indicates that the antibiosis ofS13 is specific to RWA (On, Diuraphis noxia). No antibiosis is shown by S13 to the other five aphid species (Rm, Rhopalosiphum maidis--Com Leaf Aphid; Rp, Rhopalosiphum padi--Oat Bird Cherry Aphid; Md, Metopolophium dirhodum--Rose Wheat Aphid; Sa, Sitobion avenae--English Grain Aphid; Schizaphis graminum--Greenbug). Antibiosis is measured in terms of total nymph production over the complete lifespan of the aphid on whole plants.The antibiosis shown by S13 is maintained over the entire lifespan of the aphid. Daily nymph production (Figure 2) is much reduced on S13 plants in comparison with S16. The antibiosis is not manifested as a reduction in aphid longevity nor as a delay in time to maturity. Aphids feeding on S13 simply produce fewer offspring than those feeding on S16. \" \" \" \" . , Antibiosis can be measured in various ways in addition to nymph production.• Measuring colony growth from a single aphid in terms of aphids produced after a known period.• Weighing the colony in bulk.• Counting embryos with pigmented eyes (in a recently mature aphid).These above measurements confirm the antibiosis of 813 in comparison with 816 and represent alternative and more convenient ways of assessing antibiosis. Care has to be taken not to confound the effects of tolerance.Given a choice of five barleys, RWA chose to settle on 813 significantly less than on the others (Table 2). This effect may be due in part to the preconditioning regime the aphids were subjected to. Damage Scoring • There is an indication that damage scores in the field and greenhouse can be correlated, but timing of scoring is crucial. Too early and the germplasm can't be differentiated; too late and everything appears susceptible.• Damage scores are probably a reflection of all three resistance mechanisms operating simultaneously.• Damage scores are the starting point for selecting resistant plants. Mechanisms of resistance can be assessed if necessary later (in the greenhouse).• It is useful to score for RWA resistance in the field in artificially infested hill plots. Using triticale as an example (Table 3), results have been shown to be consistent over years. Least significant difference between scores at P = 0.05 a R = resistant, S = susceptible. b Mean damage scores from our replicates, three times and 2 years.0.94• Ultimately, resistance has to be expressed in the field and, therefore, field testing is better than greenhouse/growth chamber because useful germplasm is less likely to be overlooked.The following IPM components fit together in an economic framework:Regarding RWA, we are still at the \"best guess\" stage because the pest is relatively new and basic information on its biology/ecology is limited. Host plant resistance studies are progressing.Biological control studies (and some releases of parasitoids/predators) are in motion using various predatory and parasitoid insects and entomophagous fungi. The basic problem is that the RWA successfully protects itself from predation/parasitization by living/feeding within tightly rolled leaves. It is difficult and expensive in view of the need to spray several times in a season and the low produce prices. Contact insecticides are generally not as effective as systemics, but Lorsban (a contact) is able to volatilize within rolled leaves.Grassland management and crop rotation can go some way to reoucing reservoirs of the aphid. However, host plant resistance is the most practical and environmentally friendly solution to this problem.Calhoun, D.S., J. As indicated by J. Robinson, it appears that there are a number of available sources of RWA-resistance material. We have germplasm in the collection that has not been screened anywhere and which might be interesting to evaluate, such as additional T. dicoccum and T. spelta accessions. However, at this point in time, we do not perceive that there is a great need to evaluate more germplasm for resistance to this pest because resistance is available. It should be of a much greater urgency to introduce the resistances identified into the CIMMYT types of spring bread and durum wheats.We have identified resistance in T. aestivum and in T. dicoccum, but neither can be easily used in our breeding programs. The accessions with resistance found in the bread wheat landraces from Turkey are highly susceptible to stem and leaf rust in Cd. Obregon when they were initially grown during the 1987-88 cycle. Most of the emmer wheats are not adapted to Mexico, although some of the RWA resistant accessions are resistant to the rusts. Most are too late in Cd. Obregon to even obtain seed. It appears that, for either source, it would be useful to transfer these resistances to improved wheats.Several strategies can be employed to transfer these resistances to improved wheats, but the screening for RWA resistance, which is necessary, limits the amount of material that can be handled. The strategies to be employed include 1) simple crosses, 2) back-crosses, and 3) population improvement.Simple and back-crosses--These have been made between the Turkish bread wheats and CIMMYT lines. The F1s are being grown in the 1991 EI Batan cycle and BC1 will be made. The parents, the F2s, and BC1 seed will be available to the breeding programs for the Yaqui 1991-92 cycle. The segregating populations could be subjected to the normal selection process and advanced lines (if any) could be screened again.The BC1 generation should be screened against RWA in the winter cycle and resistant plants with improved agronomic type could be selected and advanced by single-seed descent to near-homogezygosity, when they could be re-tested. If necessary, additional back-crosses could be done after resistant plants have been identified. This method should work if the inheritance is simple.Known sources could be crossed to the dominant male-sterile lines produced by R.P. Singh. Such a population could be subjected to infestation of RWA and as susceptible plants most likely would not produce seed, the resistance could be improved over a number of cycles. Selection for plant type could be performed at the same time.Saari: Not much resistance found in the durum wheats to date; need to look at material from N. Yemen and Ethiopia.Varughese: Suggest we screen the durums in our collection from those countries...For sources of resistance for both bread wheat and durum wheat, we currently have about 250 synthetics (T. tauschii x T. durum) to check. If we find tolerance in the resulting synthetic hexaploid, then we can identify the T. tauschii accession that has it because all of our durums are susceptible.van Ginkel: Why not try to make an RWA-resistant Baconora by making 4 or 5 backcrosses?1966-1991 MEXICO CITY, MEXICO --The Soviet Union and the United States may be getting along better than ever, but don't look for the American farmer to invite the Russian wheat aphid to dinner.Unlike your average ambassador, this emissary is a small, pale green insect that is ravaging wheat fields in the United States and other countries around the world. Assessments of damage have been made only in the US, where the insect has hit particularly hard and is now considered the number one pest in wheat. Since 1986, when the aphid was first recorded in the western US, the aphid has cost American farmers more than $300 m1ll1on in crop losses and chemical control measures. Control costs can easily exceed $10/acre.Originally recorded in 1900 in the southern Soviet Union and in Spain in 1945, the Russian aphid wasn't considered a serious pest anywhere until 1978 when it was identlfled as the causal agent of a wheat leaf streak in South Afrtca. The insect has been recorded most of the countries bordering the Mediterranean, to Ethiopia, the Middle East, Pakistan, Mghanistan, and areas as remote as northeastern China. It has now spread to the US and other countries in the Americas.The aphid feeds inside tightly rolled leaves of wheat, barley, lYe, and other small grain crops. Nestled comfortably in the micro-environment of rolled leaves, the insect is protected from cllmatic extremes, insecticides, and predators. The most attractive (inexpensive and environmentally sound) method of controlin\\tolves finding genetic resistance in the collections of wheat, barley, and other small grains stored in the world's \"gene banks,lI and then transferring that resistance to commercial varieties.-More-LIS.OA 27, APDO POSTAL 6•641, 'r\\fOO MExIco, D.F., MEXICO Add I--Russian Wheat Aphid Large collections of wheat, barley, rye, the wild relatives of these crops, and of triticale (a cross between wheat and rye) are maintained by the International Maize and Wheat Improvement Center (CIMMYT), located outside Mexico City, Mexico, and the International Center for Agricultural Research for the Dry Areas (lCARDA), near Aleppo, Syria.CIMMYT and ICARDA are members of the Consultative Group on International Agricultural Research (CGIAR), a union of donors and international research institutions whose mission is to help the poor in developing countries by making their agriculture more productive in ways that protect the environment and conserve natural resources.CIMMYT and ICARDA develop improved plant types of wheat and barley for use by national agricultural research programs in the Third World. These two centers are involved in the search for resistance to the Russian wheat aphid and its incorporation into high yielding varieties. While the experimental materials produced by CIMMYT and ICARDA are aimed at developing country researchers and, eventually, poor farmers, they also make them available to research institutions in the USA and other developed countries.As the search for resistance progresses, the value of the CIMMYT and ICARDA collections is becoming clear. So far, several thousand barleys, wheats, triticales, ryes, and wild relatives of wheat have been tested for resistance. Resistant plant types are most frequently encountered among the barleys, ryes, and triticales. Only a small number of resistant plants have been identified among the wheats, most of which are part of collections coming from the geographic origin of the aphid itself --southem Russia, Iran, and Turkey. Even as the search for resistant plants continues, the sources of resistance already identified will be tapped by the breeding programs of the two centers.The genetics of resistance found in the ICARDA/CIMMYT barleys is now being evaluated, and CIMMYT's Applied Molecular Genetics Laboratory is developing methods for identifying resistance using DNA markers. These activities will eventually help speed the breeding for resistance to this growing menace to the world's supply of small grains.-End-Appendix II. For CIMMYT UpdateA small, pale green menace is ravaging the fields of wheat and barley farmers in both developing and developed countries. The Russian wheat aphid (RWA), Diuraphis noxia, is Itchomping lt its way into new areas at an incredible rate and finding genetic resistance in the accessions of germplasm banks at CIMMYT and other institutions may be the only practical way to stop the insect's onward march.Originally recorded in 1900 in the southern Soviet Union and in Spain in 1945, RWA did not reach pest status anywhere until 1978 when it was identified as the causal agent of a wheat leaf streak in South Africa. Since then, the pest has spread to the Americas, most countries bordering the Mediterranean, Ethiopia, the Middle East, Pakistan, Afghanistan, and areas as far east as northeastern China. It has the uncanny ability to colonize environments very different from its center of origin.Our Wheat Program and our sister institution, ICARDA, are concerned that improved wheat and barley' germplasm may be vulnerable to the RWA. This is of particular significance to poor countries where farmers do not have access to the control measures required to combat the aphid successfully.Assessment of costs as a direct result of the RWA has only been made for the USA, where the insect has hit particularly hard and is now considered the country's number one pest in wheat. Since 1986, when the aphid was first recorded in the USA, RWA has cost more than $300 million in terms of crop losses and chemical control. Control costs have been as high as $25Ihectare.Plant resistance represents the best practical control method. Since the RWA feeds deep within the leaf whorl inside tightly rolled leaves of wheat, barley, rye, triticale, and a range of grasses, the micro-environment of rolled leaves partially protects the pest from the ambient climate, contact insecticides, predators, and parasitoids.With the search for RWA resistance underway, the value of the genetic resources in thousands of small grain accessions stored at CIMMYT and elsewhere becomes readily apparent. Our breeders are able to tap into the vast genetic variability in the CIMMYT Wheat Germplasm Bank. To date, several thousand spring wheats, triticales, ryes, barleys, and wild relatives of wheat have been screened for RWA resistance. The material is field-screened in the central Mexican highlands during the winter season. The plants are inoculated with greenhouse-reared aphids and scored for RWA damage several times during the plants' growth period.It has been possible to identify triticale and rye genotypes in the CIMMYT collection and barleys from the ICARDNCIMMYT program that possess useful levels of resistance to RWA under field conditions. In 1991, two wheat collections from the CIMMYT Germplasm Bank have been tested and some resistant accessions identified. These resistances and those from winter wheat genotypes selected elsewhere will be incorporated into the CIMMYT spring wheat germplasm. This transferred resistance will avert disasters in countries where the RWA has been identified as a pest and perhaps even prevent the aphid from ever reaching pest status in countries, such as Australia, where it has yet to be recorded.A study on the genetics of resistance of the ICARDNCIMMYT barleys is underway. Furthermore, staff from CIMMYT's Applied Molecular Genetics Laboratory are developing methods of discriminating between aphid species and their biotypes by looking at their DNA. Although, to date, no RWA biotypes have been identified, their existence would have obvious consequences for breeding programs and for countries where the aphid has not yet been recorded.It appears that the RWA is becoming increasingly important as a pest of small-grain cereals in both the developing and developed world. Breeding resistant crop cultivars may be the only practical means of limiting the effects of the RWA and will certainly have advantages over chemical control in terms of costs and limiting damage to the environment.-Endtion-along with the ability of farmers to make good money growing crops-can spur food production. Ehrlich and Brown have long predicted that food prices would rise as agricultural production fel1 short of demand, and they have been wrong. India, where 1.5 million people died in a 1943 famine, became a grain exporter by 1977, even as it doubled its population. Farmers planting short, seed-laden wheats developed by Nobel laureate Norman Borlaug at CIMMYT had to post guards to protect the riches in their fields.Beginning in the mid-'80s, however, the momentum ofthe green revolution slowed dramatical1y, especial1y in parts of India, China and Pakistan. In India's Punjab state, yields of rice and wheat have begun to flatten despite increasing reliance on fertilizers and better use of water. Elsewhere in Asia, rice researchers have failed to raise yields significantly for more than two decades. Hidden costs of the green Ecuadorian farmers stili grow tree tomatoes MANY CROPS ARE DISAPPEARING... 'l\". ~•.., food,\" he says. \"In the 1970s the surprise was that India could feed itself. In the coming years the surprise may be that India can no longer feed itself.\" Ever since Thomas Malthus' 1798 Essay on the Principle ofPopulation proposed . that human fertility would outstrip the ability to produce enough food, human ingenuity has consistently belied such predictions. Books such as Paul Ehrlich's The Population Bomb in 1968 and the Club of Rome's 1972 study The Limits to Growth raised fears that unchecked population growth might lead to mass starvation. Later in the '70s, Lester Brown of Washington's Worldwatch Institute argued that the world's farmers were already pushing the practical limits of what good land, highyield crops, irrigation and artificial fertilizers and pesticides could deliver.The Malthusians, howe..~r, have consistently underestimated how much the technological wonders of the green revolu-Appendix III.Bent Skovmand is not exactly a household name, but he has more to do with the welfare of the earth's 5 billion people than many heads of state. As a plant breeder at CIMMYT, the in-ternational1y funded agricultural research station in El Batan, Mexico, he spends his days in silent battle with threats to the world's wheat crop. Recently Skovmand discovered a rare strain of wheat from eastern Turkey that is resistant to the Russian aphid, an invader that has so far cost American farmers $300 million. By using the Turkish strain to develop hearty new hybrid wheats, CIMMYT breeders may help growers outwit the aphid.Unfortunately the strains of crops that seem to have almost magical qualities are becoming ever harder to find. As farmers go for the highest possible yields these days, they al1 want to use the same kind of seeds. Individual crops share more genetic material, and local varieties are vanishing. Moreover, as the explosive growth of the world's population causes mor;: farmers to turn more forest land into fiefds, wild species of plants are getting wiped out. Poten-tial1y valuable food sources are lost-forever-before they are even discovered. The world is losing a marvelou;s diversity of genetic material that has enabled the plant kingdom to overcome pests, blights and droughts throughout the ages.. Plant breeders have used this genetic diversity to help fuel the green revolution and keep agricultural production ahead of population growth. But as the raw material of the revolution disappears, the food supply becomes more vulnerable to catastrophe. Skovmand, for one, is not optimistic about the prospects for the coming decade. \"The world has become complacent aboutAs the diversity of crops declines and the world's population explodes, grain supplies become more vulnerable WiliWe RunLow OnFood?","tokenCount":"4166"} \ No newline at end of file diff --git a/data/part_3/2855566565.json b/data/part_3/2855566565.json new file mode 100644 index 0000000000000000000000000000000000000000..2e62a2c95dff2edd67e2a1241e260f40e9d8888d --- /dev/null +++ b/data/part_3/2855566565.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"0c6de40f08c602a44a3ccf75f0090514","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/5e1be185-ebb5-4067-af98-31ef8e85d0ec/retrieve","id":"1880177273"},"keywords":[],"sieverID":"07185b0a-c643-42f4-946f-83dae724dc06","pagecount":"8","content":"Voluntary Sustainability Systems (VSS) are varied in their commitments, actions and performances on gender equality. But as more VSS seek to address gender inequalities in agri-food value chains, the timing is ripe to reflect on existing evidence to inform future strategies.A recent evidence review sought to understand if and how VSS can support women's full and effective participation and leadership in decision-making in agri-food value chains. It found that while VSS have led to some measurable benefits on certain aspects of women's empowerment (especially on economic inclusion and higher incomes) for some women, VSS can do more to significantly increase women's participation, representation and leadership in decision-making.As more VSS increase their efforts to address gender inequality in agri-food value chains, the timing is ripe to reflect on progress to inform future strategies and research. A recent Strategic Evidence Review revisits the body of evidence on VSS and gender equality through the lens of SDG5.5 specifically, to identify if and especially how VSS may support women's full and effective participation and equal opportunities for leadership in decisionmaking in rural communities.A purposive and iterative search of the literature identified 25 empirical studies with findings relevant to the topic. Of the 25 studies:• • 23 studies involved Fairtrade, either on its own or compared to other VSS. There were also a handful of studies on Organic and Rainforest Alliance/UTZ.• • The majority focus on the coffee value chain, specifically smallholder coffee production. There were also a small number of studies on smallholder cocoa, tea and bananas.This represents the overall mismatch in VSS studies between what is certified and what is studied, with most standards and commodities underrepresented in the literature.The review was also informed by several previous evidence syntheses on the wider topic of VSS and gender equality.Overall, women producers are rarely able to achieve full and effective participation in decision-making or have equal opportunities for leadership, either within producer organizations or in the rural communities where VSS operate. Though VSS have led to some measurable benefits on certain aspects of women's empowerment for some women, it has rarely translated to meaningful participation or equal opportunities for leadership for most or all women.The breadth and depth of barriers to achieving changes in women's participation and leadership in decisionmaking, let alone meaningful changes that pave the way for and reflect true equality, are well-documented. These include:• • Discriminatory social norms and practices;• • Unequal access to productive assets and resources;• • Fear of harassment and violence; and• • A range of personal and relational constraints.These barriers present challenges to women's economic and political participation in general and specifically to women (in all their diversity) joining, actively participating in and benefitting from agricultural producer groups and cooperatives, engaged with VSS or otherwise.Certain facets of VSS engagement have been shown to present particular obstacles given existing inequalities.For example, gender-blind rules or practices of producer organizations associated with VSS, such as narrow membership criteria, high registration fees, inconvenient meeting times or lack of quotas or women-only spaces, can make it more difficult for women to join or benefit from VSS efforts.But VSS can and have taken proactive approaches to addressing some of these barriers, with some successes reported. The table on the following page is illustrative of the different types of approaches and changes that have been identified.Evidence shows that VSS can play a role in changing some of the attitudes, behaviours, skills and practices that undermine women's role in decision-making. But this is a particularly challenging aspect of women's empowerment and there is a long way to go to achieve the lofty aims of SDG5.5 for 'full and effective' participation and 'equal' opportunities for leadership at all levels of decision-making.Approaches that support women's participation and leadership in decision-makingOrganizational structure, policies or activitiesHigher proportion of women become 'active shareholders'.Women-only committees or initiativesWomen members have an avenue to express opinions (including to the executive board) and organize/contest outside of male-dominated spaces; can build women's confidence and lead to more women on the board and/or more women into management; can help channel women's voices to higher-level decision-making when incorporated into larger governance structure. However, evidence shows there can be a risk of elite capture.Bacon ( 2010); Bilfield et al. (2020); Gallagher et al. (2020); Said-Allsopp and Tallontire (2014); Sen (2014); TWIN (2013) Women in leadership and decision-making positionsHigher representation of women's issues and priorities; motivates the participation of other women; more positive attitudes about women in leadership. However, evidence shows that when female leaders make unpopular decisions it can negatively impact attitudes towards women's leadership in general.Mauthofer and Santos (2022); Gallagher et al. (2020); Lyon et al. (2019); Sutton 2019Certified farmers feel more positively about women's participation and representation; leads to higher representation in other committees and/or executive positions. However, women remain a small minority on committees and on boards. Quotas do not work if other requirements (i.e., education) are unrealistic.Fairtrade Foundation (2015); Nelson et al. (2013); Stathers and Gathuthi (2013); TWIN (2013); Sutton 2019Improved transparency contributes to higher proportion of female or joint decision-making (rather than male control) over coffee revenues.Increased number of female farmers and cooperative participation, where women were full-fledged members on their own; correlated with increased women's voice and leadership (in producer organizations and in local community assemblies); women significantly more likely to have served on board of directors than women not involved (but still less than male members). However, this tends to be limited to specific types of women producers (I.e., those with sufficient capital) and excludes women without existing resources.Leadership training Increased women's technical skills, confidence and knowledge of gender equality (as well as men's).Spouses of male farmers attending training on production have increased their involvement; increases women's influence on decision-making.Couples demonstrate changes in attitude towards joint decision-making; changes to intra-household gender relations; contributes to higher proportion of female or joint decision-making (than male control) over revenues. Gallagher et al. (2020); Chiputwa and Qaim (2016); Stathers and Gathuthi (2013); Sutton 2019Transfer of household assets or land shares to womenEnables women to join producer organizations on their own, even when they do not have land titles; leads to increases in women's decision-making (household and community); encouraged men to transfer more assets due to its success.Women's participation increased, especially when paired with training.to support women's effective participation and leadershipWhat can VSS and their partners do to contribute to SDG5.5 or support gender equality in general? The evidence review identified the following key actions to include in their strategies:Tailor interventions to support women in all their diversityIt is critical that VSS develop strategies that recognize differences among women, identify the needs and realities of different groups of women and tailor interventions that support the participation and leadership of a diversity of women. This may require collecting new types of monitoring data (disaggregated according to age, education, ethnicity, etc, in addition to sex/gender) to be able to identify whether certain groups of women are over-or under-represented in interventions. Failing to tailor programming for different needs risks excluding some women or reinforcing existing hierarchies among women.VSS interventions targeting one aspect of women's empowerment (especially economic empowerment) should not be assumed to automatically 'spill over' to other dimensions of empowerment or to different levels of decision-making. Complementary approaches are required that address different and reinforcing aspects of women's empowerment in a holistic way. If the goal is to increase women's effective participation in decision-making then discriminatory perceptions and dominant gender relations have to be targeted directly.Address the structural barriers that limit all womenIf VSS want to extend their reach beyond more than a few exceptional individual women and support changes that go wider, deeper and are sustained, they will need to work more on addressing the structural barriers limiting women's participation in decision-making at different levels. This will likely involve the use of 'Gender Transformative Approaches'. This means interventions that go beyond individual-level change to target the discriminatory informal and formal institutions, systems and structures that limit all women.This could involve advocating for formal laws that secure women's land rights or for policies that support the redistribution of unpaid care responsibilities; it could also involve working with partners to facilitate group reflections on the impact of discriminatory sociocultural norms for both men and women and engaging male allies to advocate against gender-based violence in their communities.A holistic approach is essential to achieving gender equality but no one VSS can directly implement interventions at all levels and regarding all aspects of gender equality. Instead, VSS will need to reflect on their unique strengths and potential contributions to gender equality vis-à-vis potential partners and the larger system that they are embedded in. VSS cannot expect to address all the structural causes of gender inequality but are well-placed to influence the debate and draw public attention to social injustices along agrifood supply chains.Generate more and better evidence on women's participation and leadershipExisting evidence on VSS contributions to women's decision-making is sparse, lacking depth and makes it difficult to generalize across value chains and contexts. There are multiple suggestions for how to improve the evidence base.First, more evidence is needed, especially dedicated studies that explore the impact of VSS on women's full and effective participation and leadership and how change occurs. Secondly, different types of measurement approaches are required to adequately capture women's full, equal and effective participation and leadership in decision-making in different spheres, as well as aspects of individual and collective women's leadership.Whatever the chosen approach, research methods and monitoring tools will need to detect small, slow and potentially negative changes, changes at different levels and for different groups of women. They should also centre women's voices and perspectives so that VSS strategies are led by targeted women's needs and priorities. Responding to the research gaps will be critical to supporting VSS to develop and refine evidence-based strategies in future.The assumption that women want to be leaders needs to be challenged and investigated further. Women may have to (or perceive they will have to) make significant sacrifices to take on leadership roles, including increased tension in their households or communities, less time on food crops, fear of harassment, increased labour burdens and associated time poverty.Any women's leadership initiative needs to understand and strive to reduce the costs and trade-offs of leadership and create an enabling environment that allows leadership to be perceived as a safe, beneficial and empowering option. It is critical to speak to women being targeted by leadership initiatives to understand whether -and more importantly, under what conditions -they want to assume leadership roles.Centring local women's voices (individual and collective) and responding to their needs, wishes and priorities is not just important for shaping VSS strategies related to women's leadership, but for the design of VSS in general. Rural women's representation and leadership in decision-making should be embodied in VSS themselves.","tokenCount":"1792"} \ No newline at end of file diff --git a/data/part_3/2859041766.json b/data/part_3/2859041766.json new file mode 100644 index 0000000000000000000000000000000000000000..e2bc19305a7d364aec8e1f31d0776c07fd913eea --- /dev/null +++ b/data/part_3/2859041766.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"d85f15f5220f8385138a7d8f09a6afad","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/98fbe5a9-d53a-4987-b8e9-8ceba1601228/retrieve","id":"1961988008"},"keywords":[],"sieverID":"c61400bf-f781-4c30-9424-93c3d76d22a8","pagecount":"140","content":"Further ,we are inde bted to the many peopLe and institutions who assisted in the compLetion of this study. The list is extensive.but we would like to mention a few. The Caja de Crédito Agrario Industrial y Minero, the Banco Ganadero, the Instituto Colombiano de la Reforma Agraria, the Instituto Co-Lombiano Agropecuario, and the regional Fondo Ganadero which assisted us in the development of the sample. We are indebted toFOREWOR.D This study describes cattle production systems and their productivity the North Coast Region of Colombia.!t is part or a multi-disciplinary effort to obtain a better understanding of the factors limiting production and productivity in the Latin American cattle industry.The study is based on data obtained from a large number of cattle producers and provides a general descriptíon of the present situatíon. A supplementary study is being planned to gather more detailed informatíon from a designated number of farms, in order to provide more knowledge of the factors in-f1uencing the economics of cattle productíon ín the regíon.It is hoped that the methodology and the results of this study will be useful to national and international organizations in the allocation of resources for research and extension and in the establishment of government policy relating to the cattle industry.Per Pinstrup-Andersen Leader, Agricultural Economics Program Cali, Colombia, December 1973. HIGHLIGHTS 1. This report provides the results of a. study on the cattle industry in the North Coast Region of Colombia where basic data were obtained through a survey of 487 cattle ranches in the region.2. An economic analysis of lhe ranches shows that nel incomes and non-estimated costs per hectare maintain an inverse relationship lo ranch size.3. Even though the area studied is dedicated to beef production, milk production is economicaUy important, particular-Iy on small ranches. Here,milk production is important al as a source of income; b) as a source of family nutrition; cl as a source of cash flow.4. Ca ttle production and productivity in the area were limited mainly by inefficient husbandry practices and poor pasture management; by the inavailability of credit and technical assistance;and by shortages of animal feed during certain seasons. 5. Two key factors of inefficient management are the lack of basic record s and Door training of laborers ,including those in charge of administratíon and management.6. 1 t is recommended that milk production play an integral role in cattIe production research, extension,and in the for_ mulation of government cattle production policies for the region.7. Efforts should be' made to train administrators, foremen and, in sorne cases, the owners of the cattle ranches of the area. 8. It is recommended that economic andj or biological research be conducteu in the following areas: • d) the ídentification of animal health problems and the evaluation of their relative economic importan ce in the regíon; e) the identification of principal diseases. pests and weeds affecting pastures and their estimated economic importance; f) the description and analysís of the cattle marketing process in the region.We at the Centro Internacional de Agricultura Tropical. CIAT, through our Agricultural Economics Program, decided to perform a study on the productivity of the Colombian cattle industry because its potential isconsidered of great importance in the agrarian development of Colombia and other Latin American countries. Colombia has about 43 million hectares of pasture land which represents 38 per cent of the total area of the country, but only 16 million hectares are presently utilized, representing 40 per cent of the total pasture land available 1• It is c1ear that the land not presently used for cattle ranching requires adequate preparation if a profitable operation is to be carried out in terms of pasture area. Colombia however seems to have an excellent potential for beef production.Accurate data on the present cattle population are not available and various statistical sources show different figures. The latest National Statistics Office (DANE) information shows that the Colombian cattle population reached 19.432.000. head in 1970. This is relatively large population if compared with that of major beef producing and exporting countries, such as Australia, whose cattle population is similar to that of Colombia.' In South America, only Brazil and Argentina surpass Colombia's cattle population.In spite of the fact that Colombia possesses the most important conditions for beef production -pastures and cattle, the annual per capita consumption of beef is continuously declining. This is because the growth rate in human population is greater than the annual growth rate in beef production (Table 0.1 and Figures 0.1 and 0 ' . t:U19-t'1l.644(i \" .' 0.8566 \" \" .. \" 66 \" . . Furthermore, the per capita consumption of meat is below the 28 kg per year recommended by nutritionists (Table 0.2). At the present growth rate of 3.2 percent per year, the human population of Colombia will reach 24.7 million by 1975 and the estimated beef production deficit will be in the order of 4 227.2 million kg.• With this prospect in mind, a thorough study of the cattle industry is needed to obtain a clear understanding of the present situation and to strive to make it more productive through better utilization of available resources.An increase in productivity which, in turn, increases production significantly, wiII only partially solve the present nutritional deficit. Even though potential demand may be high, the en tire deficit cannot be overcome because nutritional requirements are higher than the effective demandoThe potential demand do es not genera te higher consumption because this effective demand depends essentially on consumer in come and market prices. Consequently the greatest nutritional deficits are found primarily amonglow•income families. Even if beef production were substantíally increased, it would be difficult orimpossible to raise the nutritional level to a desirable standard without improving the incomes of the lower economic strata of the population.The possible increases in produetion caused by inereased eattle industry productivity may allow the eountry to improve íts eompetitive posítion in the international beef market which, in turn, would increase the flow of foreign exchange needed to finance Colombia's eeonomic development.At present, Colombia is short On data for use in formulating policy to increase catde productivity. For this reason, the present study attempts to attain the following goals: 1) to make an objective diagnosis of the cattle sector of the North Coast Region of Colombia by defining existing problems and estimating productivity rates. 2) within this framework, to formulate possible solutions to the problems and to recommend suí tabIe polícies concerning cattle raising. 3) to support the research staffs at CIAT and other institutions,in their efforts to determine existing problems in the area's eattle industry and cooperating with them in expanding and improving research and credít facili ties. 4) to develop and test methods that can be used in similar studies in other Latin American countries, and to demonstrate their usefulness.There are five well-defined beef produeing areas in Colombia: Ecologically, these areas vary greatly and production systems also differ. Because of soil quality, for instance, the cattle industry in the Eastern Plains is more extensive than in any other area of the country. The North Coast Plains will be studied first because of íts considerable volume of beef production (Table 0.4). The other As one of the main objectives of the study was to compile basic information and to improve the existing data, the first stage of the work was completely dedicated lo obtaining and reviewing a great amount of bibliographical material related to information on cattle raising, with special emphasis on the North Coast Region.Only general information was available on total cattle• population, slaugh ter, pasture, hectarage, etc. There were no specific data on stoeking capability, birth and rnortality rates, production costs, profitabilitv, etc. In sorne cases, the information was contradictor y and inconsistenl whether coming from different sources or from a single source.After a bibliographical review, in the second stage of the study, a survey was carried out in the North Coast Plains to obtain nonavailable inforrnation on beef production. A questionnaire was prepared and tested. It contained the following topies: a) availability of such production factors as land, labor, cattle, rnaehinery and equiprnent; b) production: cattle, milk and cheese sales; e) administration and management pmctices: production records, econornic activity, animal health, feeding, grass and soil management; d) credit and technical assistanc? sitt!ations; e) possible reactions of cattle ranchers to new sltuatlOns.The Caja de Crédito Agrario, Industrial y Minero (Caja Agraria), Banco Ganadero, Instituto Colombiano de la Reforma Agraria (INCORA), Instituto Colombiano Agropecuario (lCA), and Fondos Ganaderos of each region, made available the names and addresses of the cattle producers which directly or in directly deal with these institutions. Names were also taken from the 1971 National Cattle Producers' Directory and an • additionallist of cattlemen was made with names provided by residents of the surveyed area.Names for interviewing were drawn at random from a final list of approximately 4,000 producers.Jt is virtually impossible to establísh a uníverse of the North Coast Plains cattlemen, giving the owner's names, addresses and ranch locations. According to the DANE 1960 Agriculture and Livestock Census, the Atlantic Coast area had 45,653 cattle operations, basically oriented towards milk and beef cattle production (Table 1.1 l.From our directory, which was part of the universe, 487 interviews were conducted initiallv and 20 interviews were cancelled in the field because the' informatíon available contained erroneous data. In the tabulating stage of the survey, sorne of the data originally accepted were discarded because of inconsistenc1' wilh other informalÍon obtained lhroughout the inlerview. In summary, our directory and the sample represented respeclively, 10 percent and 1 percenl of the universe.The lack of record s in most of the places visited was the main limiting factor in this study. For this reason, producers could not answer some of the items in the questionnaire. For example, on the topic of cattle population, sorne producers were unable lo discriminale their herds according to age and sexo Because of the lack of record s it was necessar1' to limit the calculation of birth rates to onl1' those farms supplying aH the necessary data. Another limiting factor was difficulty in locating cattle producers who lived far away from their farms.To obtain specific information, the area was divided into 10 zones, taking into account the degree of ecological homogeneity of each zone and overlooking departmental divisions. The cooperation of trainees from CIAT' s Livestock Production Specialist Training Program, in Sincelejo (Sucre), with their deep insight of the North Coast Plains, was valuable in ¡he zoning process. The Sinú River Vallev is an extensive plain in the departmen! of Córdoba, forme\"d bv the Sinú River and surrounded by branches of the Western Cordillera and the Sierras of Abibe, Cap;t .. :.Barr\"\"high Andean system and the Caribbean sea on the south and north, respectively; on the east by the Sierra Nevada of Santa Marta and the Eastem Cordillera and on the west bv the final branches of the Western Cordillera -the Sierra af Las Palomas, which is a zone of transition to the humid plains of the Pacifico The major SW-NE extension is 320 km and NW-SW is 240 km, excluding the Península of La Guajira. With the exception of the Sierra Nevada, the land structure is gently rolling forming low hills of about 300 meter s above sea leve!.\"The hills in the North Coast Plains range from O to 500 meters above sea leve!.The annual average temperature in the area is more than 27'C. The climate varies, however, in the different areas of the Plains (Table A The rainy season extends from May to October with the highest levels of rainfall in May and October. The dry season stretches from January to April and from November to December (Figure A.l l. The amount oE rainfall increases when moving from the coast to the interior oE the area in the north-south direction. Northern trade winds influence the amount of rainfall. From December to April, these winds cause critica! drought períods especially in January and March. The annua! rainfall lrutltuto Geográfico Agustln Codazzl 1968. Estudio general de suelos, y a¡Jtitud agropecuaria de los MunICIpios de San Onafre, Tolú, Toluvleio y Smcelejo. Vol. IV, N? 10. BOgotá. P. 5.1969. Estudio semidetallado de suelOS para fines agrícolas, del sector plano del Municipio de Fundación. Vol. V, NO 6. Bogotá, P. 4.1969, Estudio general de suelos, para fines agr1colas, del sector quebrado de los Municipios de Santa Marta y Ciénaga. Vol V, NQ 8, Bogotá. P. 9.1969. Estudio semidetallado de suelos del sector plano del Municipio de Ciénaga para fines agrlcolas. VoL V, NO 1. Bogotá. P. 16.Gunl, Ernesto. n. d., COlombia: Bosquejo de su geografía tro-picaL Universidad Nacional de Colombia. Facultad de Ciencias Humanas. Departamento Geografla.The sea son al variation in rainfall influences the production systems. It results in seminomadic cattle onerations. During the dry season cattle must be transferred to the marshes of the Magdalena, Cesar and San Jorge rivers, in search of water and grass.Humiditv also varies in the different areas of the Plains. The weather' bureaus located in the area register relative humidity between 70 and 80 percent; this is a semi-humid environment. There are other environments in the area that could be c1assified as arid, dry, dry mountain shade, semi humid, humid and marshy ( could be classified as arid, dry, dry rnountain shade, sernihurnid, hurnid and rnarshy (Table A.3) .The geomorphology of the area' s soils is varied. The soils may be light or heavy, rnoderately or very acid. The following are sorne descriptions of different soi! characteristics within the area. 1The Cesar River Valley has well drained soils of rnediurn texture, low phosphorus content, fair to low ability to exchange cations, a pH ranging from rnoderately acid to acid and fair to poor base saturation.The soils of the Gulf of Morrosquillo are mostly acid but sorne alkaline soils are found . They are clayey, rich in potassium and nitrogen, have a good saturation base and an excellent ability to exchange cations. The Sincelejo soils, on the Savannas of Bolívar, have a elavey texture, a pH range from neutral to slightly acid, good ability to exchange cations, a low sodium and potassium content, normal nitrogen content and slow permeability. In the Arache-Cereté-Montería areas, the soils are elayey and poorly drained and have a pH ranging from alkaline to moderately acid.The area of Baranoa, Department of Atlántico, has heavy • soils which are difficult to drain. Their pH fluctuates between 4.4 and 9.8 and they are rich in potassium, magnesium and phosphorus.The vegetal formations of the North Coast Plains are varied and inelude mainly xerophytic ando cardonal species, subxerophytic forests, rainv and dry forests and tropical savannas. This vegetatíon ís conditioned to humidity and temperature but it is mainly the varied rainfaIl which determines the type of vegetation in each of the areas.In pre-Columbian times, the territorv kl0wn today as the North Coast Plains was inhabited by abongines belonging to the Karíb and Arawak tríbes: warrior families that were enemies. They fought the Spanish invader when he attempted to settle in theír dominions and destroved the first ci ties founded bv the Spaniards -San Sebastián 'de Urabá. 1509 and Santa María la Antigua del Darién. 1510. In 1525. RodriJ,o de Bastidas founded Santa Marta and protected it from the attacks of the natives. The Spaniards founded several ports on the Caribbean coast, taking: advantage of coastal conditions. However, they did not settle there permanently but used these ports mainly as entrance gates to the interior of the country and as embarkation ports where the weaIth taken away from natives was shipped to Spain. The Spaniardschose the tempera te and cold climates of the mountains to live.Once they had taken aIl the gold used hy the Indians. in their homes and ceremonial temules, they began exploiting natural resources, such as minerals. The Indians died from the inhuman and cruel treatment afforded them by the Spaniards in the mines. It was then that the thírd ethnic element appeared. The Negro was brought from Africa to America as a slave, to work in the mines.The present inhabitant of the Plains is a mixture of Indian, Spanish and Negro, with a high Jndian percentage. He has an extroverted personality and a natural gaiety. The rural population, especially, cIose\\y follows tradition.","tokenCount":"16980"} \ No newline at end of file diff --git a/data/part_3/2886173084.json b/data/part_3/2886173084.json new file mode 100644 index 0000000000000000000000000000000000000000..0a8456114937af6d63433d5b3d8990ad197623c7 --- /dev/null +++ b/data/part_3/2886173084.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"4818111fb1505e19981e1d29ef0737ac","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/1450bd19-340a-4e0c-a072-7515b098581a/content","id":"971768531"},"keywords":[],"sieverID":"da5c2250-3b62-4ea6-9ec3-409520c6fe97","pagecount":"19","content":"The technology of food and crop production has undergone increasingly rapid change in recent decades. In the industrialized countries, technology based on mechanical power and other advanced inputs has progressively made farming more capital-intensive. In the developing countries, however, this level of agricultural production technology has not been widely adopted and, where it has, results have been variable. Farms in the developing countries are normally small, often consist of fragmented plots and often have poor accessibility for mechanical equipment and the supply of other inputs. Most farmers do not have the capital nor the credit available, for the purchase of advanced power machinery. And where these investment constraints have been overcome, farmers are unable to use the advanced technology economically on the average small-farm unit.Developing countries these days have a greater range of technological options when deciding upon the form and level of agricultural mechanization which is best suited to their development objectives and conditions. In the past, much of the mechanical-power technology introduced has not been technically or economically appropriate for individual ownership by small-scale farmers. Efforts were made to meet the needs and desires of these smaller farmers by scaling down the size of farm machinery. The most successful of these efforts has been the introduction of single-axle tractors or 2WTs (power tillers with matched implements and equipment for use especially in paddy production. Similar efforts to design equipment for upland and rain-fed farming situations is going on in an effort to replicate this experience.The agricultural input-output value relationships in most countries of the world have reached a point where the cost of individual ownership and use of powered machinery and equipment on a singlefarm unit has become prohibitive. For large-scale farmers it is increasingly difficult and for small scale farmers it is virtually impossible. The introduction of 2WTs and their accessories have provided a new set of mechanization options for smallholder farmers. Many of these farms are less than two hectares, consist of scattered fields or plots, and are relatively isolated from the infrastructure which has been built up in rural areas close to urban centres. The provision of mechanization hire services for 2WTs and their multifunctional use is one approach to make mechanization available to a larger proportion of farms and to help ensure that the capital investment in mechanization inputs is utilized as efficiently as possible. The case for hire services rests on the premise that it is a practical and realistic means of providing more technologically advanced systems of agricultural mechanization to farmers who:• are constrained by limited farm size;• have insufficient access to investment capital; and • face seasonal fluctuations in labour and machinery requirements.The problems which confront mechanization under small-farm conditions -particularly but not exclusively in the developing countries -constitute the specific background against which to assess experience to date. Even at the most technically sophisticated levels of commercial farming there is machinery and equipment available which offer returns to scale but which are economically unjustifiable for single-farm use. Since fixed costs per unit of work (mainly annual depreciation and interest) vary according to the amount of work done, whereas variable costs per unit (mainly fuel and wages) remain relatively constant, it follows that total operating costs to decrease with the number of hours worked. Hire services is an obvious way of increasing the annual utilization of machinery and equipment, provided that the potential reduction in costs per unit of work is not offset by high overhead costs of administration, failure to collect charges or, in many cases most important, by poor maintenance and idle running between farms.Notwithstanding these potential advantages, there are noticeable challenges. The seasonal nature of agriculture whilst a major justification for machinery hiring services, the time of planting can be very critical and land preparation and tillage through hiring services can be difficult to achieve on an economic basis, especially where uni modal rainfall patterns exist. Labour and power requirements may be at a peak simultaneously on a large number of small farms and if acceptable levels of utilization (hours worked per annum) are to be achieved, not all of them can be cultivated at the optimal time. The difficulties are exacerbated where the majority of small farms in question are all growing a similar range of field crops and similar varieties. Where ecological and economic circumstances allow for more diversification in cropping patterns, this problem is less severe. Hire services also offer (indeed require) more highly skilled work. However, greater technical skill are needed, for example in adjusting equipment to a variety of conditions and in carrying out routine maintenance in the field, transporting equipment, fuel, etc. The provision of adequate training and incentives for operators is therefore of vital importance.As a concept, the provision of hire services provides a practical opportunity to bring improved agricultural technology to a large number of small-scale farmers on a sound economic basis. Of particular concern in this guideline is how 2WT based technologies can best be made available to small-scale farmers. Many important lessons have been learned from the successes and failures of farm mechanization hire services over the past few decades for all types and ranges of farm machinery. This guideline aims at accumulating some of this information whilst providing lessons that could be applicable to 2WT service providers.Organizational forms of multi-farm use systems are many and varied. In a broad sense the forms divide into public and private sector categories but given the dismal record of public sector run tractorization schemes over the last five decades, private sector ventures have been seen to be the only way to proceed. Hiring schemes in the private sector can be conveniently divided into systems of individual ownership and systems of group ownership of machinery. ln both forms of private led system, sound business management principles are crucial and they tend to be more evident than in the public sector systems. As a result, private sector led service provision is likely to be more financially viable whilst providing higher quality services than the farmer would receive from public sector systems.Informal sharing. Informal sharing among neighbours is a common occurrence among small groups of farmers who are well acquainted with one another. The principal motive of neighbourly assistance is based upon reciprocity in time of need, although in many communities social obligations often play a role.Farmer contractors: Farmer contracting is probably the most common system of multi-farm use of machinery in the developing countries. The most widespread arrangement is where farmers use the surplus capacity of a tractor and associated equipment required for their own farming operations to cultivate or harvest the crops of neighbouring farmers at an agreed rate. Normally, this work is done when the farmer contractor has completed his own operations. The amount of work that the farmer contractor can undertake is generally restricted by the requirements of his own farming operations but as long as he gives timely and satisfactory service to his customers, without neglecting his own farming activities, it has potential to be an effective and efficient system.Commercial contractors: Full-time commercial contractors are the main providers of contract services in most developed countries. In developing countries, large commercial contractors, whether individual or corporate, are still relatively rare. Where mechanical skills are not widely diffused, farmers who have learned how to undertake routine maintenance work or have the services of a trained mechanic to support their contracting operations may be in a better position to provide a reliable service than individual small farmers who have little or no experience of machinery maintenance. The full-time contractor differs from the farmer contractor in that his services are not constrained by the need to carry out his own farming operations first. Amongst other things, he may be able to develop a more comprehensive service which could involve the purchase of additional equipment such as trailers for transport and machinery for shelling/ milling Mechanization hubs: Perhaps the most highly developed example of multi farm use of machinery based on individual ownership of equipment is the mechanization hub that provides a range of services as a one-stop-shop. The hub consists of a formal arrangement for pooling machinery with surplus capacity. There are very few mechanization hubs operating in Africa but the concept is catching on and is currently being developed by KENDAT in Kenya. Membership includes both farmers and contractors and the concept aims at developing an economic and cost efficient way to make full use of available machinery. Significant economies are expected to be achieved in the capital investment per hectare in machinery amongst the members, who may number from several hundred to a thousand or more. The basic principle is an extension of the informal sharing of equipment by small groups of farmers personally known to one another, to that of an organization employing a fulltime manager with an office. Charges are expected to be fixed in advance by an executive committee. While the basic idea is simple, the potential exists for the hub to become progressively more sophisticated and efficient, relying primarily on a highly developed communication system and high levels of managerial skill. The existence of well-developed private sector repair and maintenance facilities for use by individual farmers also means that the hub is not obliged to complicate their activities by having to provide such services for their members. It is precisely these infrastructural assets which are lacking in many developing countries. The machinery and equipment would be made available for hire or renting with or without the operator depending on the level of sophistication in use. Other financial forms such as leasing can also be applied for an extended period up to the working life of the machine.Corporations and partnerships: Other categories of group activity in the multi-farm use of machinery are corporations and partnerships (or associations) which are fairly common in developed countries, some of which have created legislation or regulations to facilitate their establishment and operation. Such arrangements can, however, be quite informal with a few partners who are close neighbours or relatives sharing the ownership and use of one or two specific items of equipment which can be easily moved between farms. Where the individual members are legal partners and therefore jointly liable for the debts, investment costs and work charges may be strictly shared according to the size of members' farms and their relative use of the corporation's assets.Cooperatives: Cooperatives as a legal entity on a voluntary basis have historically been well established in agriculture in many parts of the world. In some countries machinery services are provided by multipurpose cooperatives in conjunction with other inputs and services. In others, machinery services may be the only facility provided and the cooperative is established solely for that purpose. During the past five decades governments in many developing countries have taken it upon themselves to establish agricultural cooperatives. Due to the fact that this has been a government initiative the concept of voluntary membership and mutual interest of members has often been lost. In addition, government tends to invest substantial capital into the cooperative as the situation in Ethiopia will testify. It is also common to find that these cooperatives are seen by the government as official instruments of development and are often used to administer government programmes, collect data and/or taxes and fees, channel subsidies to farmers and so on. As a result, many cooperatives cannot function as an economic system for mutual benefit of the small-scale farmers they were meant to serve. There is little difference between these types of cooperatives and government led enterprises. The record for the provision of farm machinery by cooperatives set up by government has generally not been successful, particularly in comparison to marketing and input supply cooperatives. In general, where farm machinery services have been grafted onto an existing multipurpose cooperative it is not unusual to find that the machinery service proves extremely difficult to manage. Staff motivation is often low and optimum levels of operational efficiency are rarely achieved.Farmer groups: In some countries the establishment of farmer groups has been encouraged in order to provide access to machinery, particularly in areas where cooperatives have been unsuccessful. The usual arrangement is that a group of farmers in a single community pool their resources and purchase the required machinery, the title to which is vested in the group as a legal entity. The arrangement is rather more formal than the sharing system described earlier and as such may have advantages with respect to access to credit or supplies of fuel or other consumables but is smaller and less formal than a cooperative society. The groups use the machinery only amongst themselves with each farmer hiring and operating the machinery independently whilst taking responsibility for routine maintenance. In practice, however, this farmer-group system of machinery hiring has also been less successful. While it is easy to generate enthusiasm to form the group, and easy to provide support for the purchase of machinery, the problems of management, maintenance and repair are the same as for other systems of group ownership and these have not generally been overcome.During the promotion of multi-farm use of agricultural machinery and mechanization, organizations or associations of contractors and farmers can play a prominent part. At an early stage where these associations are lacking, the project together with public sector extension services have a role to play in supporting their establishment. A service provider/ contractor association fulfills a function as a forum to exchange ideas and experience, cooperate with farmers' organizations and with policy makers. Whether an organization should include contractors only or both contractors and farmers depends mainly on which type of contractor is concerned. At first, full time contractors will probably prefer their own organization, while farmers and farmer contractors may prefer theirs. The first step may well be an organization of full-time contractors.Contractor's organizations can act as a useful instrument in the hands of extension services. Their members can be invited to meetings to exchange ideas and experience. Subjects of common interest could include: training of 2WT operators; provision of servicing facilities; supplying fuel, oil and spare parts; use of private machinery to extend the working season; introduction of new machines/ equipment; service rates costing.As stated earlier, the organizational requirements for the more simple systems of machinery multifarm use are minimal. Informal sharing, small-scale farmer contractors, and small groups are informal systems organized around the needs and views of the individual owners of the machinery. As the size and scope of the hiring system increases, however, there is likely to be a need to consider an appropriate organizational structure.The organizational structure of the machinery hire business will vary according to the size, scope and formality of its operations. Examples of more formal systems are the machinery rings found in developed countries and more specifically, KENDAT's mechanization hub. The overall structure should basically provide for three main functions:• overall management and financial control; • field operations; and • machinery maintenance and repair.The more formal structure could include a management section, a field operations section and a machinery maintenance section. The management section of the' structure should be the focal point for planning, administration, finance, coordination and monitoring. The field operations section should be responsible for organizing and scheduling field operations and controlling the timing, quality of work and cost efficiency of their execution. The machinery maintenance and repair section could operate stationary and/or mobile workshops and would have overall responsibility for ensuring that machinery is in full operating condition when it is needed for field work. This section might also operate stores for spares, fuel and other operating supplies. In a large-scale system there may be an additional requirement for a training section as is proposed in the KENDAT mechanization hub. The overriding objective of the structure should be to provide a framework which will ensure that effective and efficient services are carried out. The field operations section would, therefore, be the focal point and all other sections are complementary.The key to success for any machinery hiring business is competent people to carry out all the functions for services provided. In the less formal business enterprises the requirement for organizing to meet staff needs will obviously be less than for more formal businesses. Nonetheless the capability of each person in the operation of the system will be critical and needs to be carefully planned for in the organizational phase of establishing the system.In selecting staff members for any system it should be realized that the main purpose of the operation is the performance of the fieldwork and that the quality of this work should always be kept at a high level to ensure a long-term business operation. The responsibility for meeting this objective is in the hands of the manager. Consequently, his or her knowledge, experience and ability are of decisive importance in the success or failure of the enterprise. As a prime requirement, they must have a sound knowledge of, and experience in business management. The manager should be a good organizer and possess the relevant knowledge for the operation, management and repair of farm machinery together with a good knowledge of agriculture. Similar qualifications will be required in the case of the manager of the field operations who will have to organize the field work, and instruct supervisors and operators on how the different jobs should be performed. Therefore, a special requisite is good knowledge and experience of farm machinery operations.In order that the field operations section can carry out its duty efficiently it should be supported not only by field supervisors and operators but also by mechanics and storekeepers based in the main workshop and stores. This structure, however, is only likely to exist amongst the larger more corporate machinery hire service enterprises. For smaller scale businesses it will require collaboration and partnership with other supporting businesses. A so called 'service manager' will need to know how to carry out all the maintenance and repairs of the machinery owned by the service. In addition, the service manager will also have to teach his mechanics the maintenance and repair of the more intricate machinery. Therefore, it is necessary to ensure that he has good technical training and experience.Supervisors, foremen, operators and mechanics will have to be trained for their particular jobs, and in the initial stages this training may have to be provided entirely by the hire service. This is the purpose of the training section, the head of which should possess good knowledge and experience of both farm machinery and agriculture. The project manager and the managers of field operations and the base workshop should be available to contribute to the training, and in the early stages may have to undertake a considerable part of it. The staff who occupy the managerial posts of the hire service should be considered as permanent and may need to be employed on a contract basis. Other key personnel such as supervisors, mechanics, operators and storekeepers may also need to be employed on an annual basis. This is necessary to secure good staff and stability in the organization. It is important to consider carefully exactly how many people in this category are actually required. Experience from developed countries suggest that employment of extra operators on a seasonal basis is likely to be difficult and therefore it is important that operators and other staff employed on an annual basis should be prepared to undertake other jobs when they are not busy with seasonal work.Careful thought needs to be given to the role and scope of the workshop that is attached to hire service hub and to the servicing facilities available from the dealers and manufacturers. The establishment and running of a full-scale workshop capable of dealing with all major repairs and engine reconditioning is a costly undertaking which would have to be added to the overhead charges of the hire services provided by the hub. Wherever possible, therefore, the service should utilize existing facilities for major repairs provided by dealers. The workshop could then be established and run at a much reduced cost by confining itself to general maintenance and the fitting and reconditioning of spare parts. However, it may be necessary to set up a full-scale workshop where the hire service is operating at a considerable distance from a dealer's service centre, or where no such centres exist.In addition to the workshop, a stores section may also be required to deal with the ordering and distribution of all incoming and outgoing machinery, general supplies, spare parts, fuels and lubricants. It may take some time for the hub to reach this level of sophistication but this is likely to be invaluable. The service manager would have to keep a careful check on the fuel consumption whilst ensuring that stocks are replenished at regular intervals, particularly in the case of fast-moving spare parts.Sometimes a hire service may have to be divided into several field units in order to serve different areas and as a means to cut down transport and travelling costs. As the business expands, some consideration could be given to setting up a mobile workshop attached to the base workshop that could provide support on request, to service different work areas in turn. Another course suitable in some cases would be to arrange the machines into groups according to the demands of work in different areas. The operators of such a group can be fed and housed on the spot and remain in the area until all the work required has been performed.As the 2WT based farm machinery in use are made by a variety of manufacturers, several similar machines may be equally suitable for a certain job while in other cases just the slightest difference may be of great importance. Considerable thought needs to be given to the selection of machinery for the hire service enterprise. As a general rule it is advisable to standardize as much as possible, and the fewer different makes of machines there are, consistent with the work to be done, the better. It simplifies the attachment of various implements to the tractors, the purchase and storage of spare parts, the maintenance and repair of the equipment and the training of operators and mechanics. The main point is that machinery must be suitable for the work it has to do.In the initial stages of a hire service it is most likely that the basic operations such as planting, ripping and ridging, will be required by farmers. In fact, in areas where there is an abundance of labour only partial mechanization may be necessary and the greatest benefit is likely to be derived from lowering the costs of operations and ensuring more timely field operations. Farmers using hand tools and animal-draught equipment are often unable to complete cultivation by the optimum planting time, particularly if the land is dry and hard. Under such conditions the tractor hire service may provide the means to an increase in yields. On the other hand, this confines the work of the hire service to a short period of the year during which it can rarely hope to obtain sufficient work and income to cover its costs. Invariably therefore, a hire service is faced with the necessity of diversifying its work over as much of the year as possible, once it has established itself with the basic operations, and its potential has been appreciated by the farmers.The choice of machinery will clearly depend on the conditions under which it will have to work and it may also be necessary to use more than one kind of tractor. This is an observation based on the experience of the machinery hub in Laikipia, Kenya, where a combination of 4WTs and 2WTs was seen to be optimum. There is a good deal of controversy as to the best kind of tractors to be used for a hire service, but there are certain guidelines to correct choice. The 4WT is more expensive than the 2WT to buy and maintain but can easily be moved from one work area to another under its own power. Its work capacity is also higher than the 2WT. However, it may not be possible for a hire service of the kind to find sufficiently large aggregated areas and big fields to justify the use of these very powerful tractors and it may have to rely on the smaller, medium-powered tractors in the 20-40 hp range 2WTs are usually in the 10-18 hp range. They are cheaper to buy than a medium-powered, fourwheeled tractor but more expensive for the available horsepower. They are very maneuverable but their work capacity for cultivation is low, not much higher, if at all, than good animal-draught equipment. On the other hand, the same machine can be used for a variety of work that animals could not do successfully, such as transportation using a trailer, crop cutting, shelling, milling and pumping of water for irrigation. There are also cases where, for example, farms are very small and fragmented and the fields too small for a four-wheeled tractor to operate in. In such cases there may be no alternative except the single-axle tractor. However, many more of these two-wheeled units would be required for a given work-load than four-wheeled tractors and this would increase the investment necessary and also the number of operators required. The working life of these machines is often much less than the four-wheeled types and the need for proper service and maintenance is equally if not more important.While planning requirements and selecting machinery for a hire service it should be remembered that certain basic equipment is required for transportation, depending on the kind of work and the conditions under which the machinery of the hire service is to be used. The efficiency of the transportation system will in turn depend on:• the kind of equipment used;• the distances and the frequency with which equipment has to be taken from one work area to another; and • the speed of travel, which in turn is dependent on the existence and condition of roads.If a group of 4WTs and 2WTs are to work together at a considerable distance from their base workshop, they may be equipped with a trailer fitted up as a mobile field workshop to take care of maintenance and all but major repairs on the work site. With groups of units working at the same site one or two larger trailers may be used to transport all the equipment and supplies for the group. Alternatively a self-propelled, mobile workshop could be provided to service more than one group of units in the field.The long-term viability of any business enterprise depends on income exceeding the costs of doing business in the first instance, and on providing goods and/or services in a manner which will ensure a continuous flow of customers or clients in the second. The task of management is to ensure that both of these key requirements are met, and this is just as true for a machinery hiring services as for any other business. The manager of the hire service must first, therefore, have a sound knowledge of business management. He must understand record keeping and accounting, personnel management, government rules and regulations, procurement and marketing to name only a few of the wide range of skills required. The manager must also have a sound knowledge of the selection, operation, maintenance and repair of farm machinery and a thorough exposure to agriculture and farmers. The manager's task starts with the establishment of what services are to be provided. This is determined primarily by farmer demand in the area to be served. The financial strength, access to machinery and operating •inputs, availability of labour and staff, and government rules and regulations will also influence the type and scope of services offered. Once it has been established what services are to be offered, the manager should proceed to organize business activities so as to ensure a profitable operation. Systems must be established for records and accounting. Supply channels for machinery and operational inputs must be identified. Personnel policy and administrative procedures must be worked out.Facilities such as workshops, storage buildings, fuel dumps, machinery parking, and offices must be designed and built. The provision of seasonal farm machinery services for farmers is not an easy task. Most of the work required is for short periods only during the year and farmer/customers all want their work done at the optimum time. Breakdown of machinery, unfavourable weather or other hazards will inevitably upset the most carefully made plans and schedules, and farmers will understandably be upset and complain. Therefore, it is important that sound public relations with farmers are established and maintained to ensure their loyalty to the hire service in bad as well as good times.A system for scheduling field operations must be established which meets the needs of the farmers and, at the same time, ensures that machinery and operators are employed as continuously as possible and that unnecessary travelling is avoided. Farmers must be interviewed and their applications for field work must be collected and analysed in order to formulate a field schedule and operating plan.It is advisable for the hire service and the farmer to sign written agreements on the work to be carried out. This has been found in practice to be necessary to avoid misunderstandings, and to ensure that capital invested in machinery and the employment of operators is not wasted on verbally estimated work schedules which, when the time comes for the work to be done, no longer appear to exist, or are much less than the verbal estimates. Even when a hire service has continued for some years, it has been found necessary to retain a system of written agreements to reduce the possibility of disputes and dishonesty. See the example in the Annex. When all applications are in, the hire service managers should prepare a plan of operations to meet the needs of the farmers and at the same time ensure that the machinery and operators are employed as continuously as possible and that unnecessary travel is avoided.In many countries payment in kind by a share of the crop is practiced, but mainly by local farmers providing contracting services to neighbours. Payment in kind by a share of the crop means that the contractor stands an equal chance of making a good profit if the farmer has a good harvest, or making a loss if the harvest is poor. Obviously, this method of payment is justified when the work carried out by the contractor can influence the yield of the crop, as in the case of harvesting under difficult seasonal conditions. In general however, contract work does not have such a great bearing on productivity increases. Often payment in kind seems to be applied because it may be attractive to the farmers, and if they are short of cash it may be the only way they can make payment. There is evidence to suggest that some contractors take advantage of these conditions by charging rates in kind which, calculated as money, are much higher than they should be.As a result of experience of the difficulties often encountered in the collection of payment after the work has been completed, hire services now normally demand cash in advance, to be paid at the time the agreement is signed by the farmer. Sometimes however, a part may be paid immediately after the work is completed. The disadvantage of payment in advance is that farmers lacking the cash have to be excluded from the service and if there are private contractors accepting payment in kind, these farmers may be obliged to rely on them and be charged a higher rate. Therefore, it may be useful to make the effort to develop a suitable credit system to enable farmers to pay for work done by the hire service and avoid paying excessively high charges in kind. Where credit is required, it is usually until the crop is sold. For the farmer-contractor carrying out work for a few neighbours only, it may be easy to provide this credit, but for the full-time contractor it is often difficult as he is likely to need the money to carry on his own business. In addition, he may not know all his customers very well, and thus runs the risk that some farmers given credit may not pay at the right time, and on occasion a few of them may not pay at all. Therefore, if a contractor gives credit to people he does not know well he should expect some form of guarantee.General requirements for the setting of rates are that they should i) cover the costs for the work carried out, ii) be easily applied, and iii) if possible provide an incentive to increased efficiency. The data necessary for calculating the payments should be accurate and easily obtainable. In the long run it is also desirable that the method of calculating the charge is easily understood by the farmers, and that all farmers are charged fairly in relation to the cost of performing the work. This cannot be achieved without some differentiation of the rates according to the factors influencing the costs.An important issues is whether contract work should be charged on the basis of the time taken to complete a given amount of work or on the basis of the number of units of work carried out (for example acres or hectatres). The use of units of work is advantageous to farmers because they pay for a given amount of work regardless of the time taken or the sizes of the machines used. The capacity of a machine, however, does not depend only on its size but also on such factors as the dimension and shape of the fields, the yield per hectare and many other conditions. Therefore, the cost of performing the work may vary much from one farm to another. To a certain degree this problem can be met by a classification of the rates according to these factors, without making their application too complicated.The rate can also be combined with a time factor to secure a minimum income, when the conditions are very bad. When planting on a rate based on hectares a minimum number of hectares may be stipulated each hour, and if this number is' not covered due to unfavourable conditions, the charge would be equal to the minimum rate. Similarly, when shelling, and the value of this turns out to be obviously below average, the contractor may stipulate a minimum hourly rate.In some cases, however, it may be difficult to collect the data necessary for calculating charges based on the units of work carried out. For instance, data giving details of the field area must be made available, and this means both staff and time have to be used in measuring irregular fields. Rates based on time are as a rule simple to apply. Timing by a normal watch is sufficiently accurate, but somebody reliable has to do the timing. Nowadays however, most tractors are equipped with hour meters coupled directly to the engine. The hour meter is designed to register the hours run by the tractor engine at a predetermined or average speed, and recorded hours will be slightly more than the actual time taken recorded by a chronometer, or less if the engine is run below the average speed. Classification of the rates on the basis of time according to the different working capacity of the machine is likely to be an easier task than having to classify them on the basis of units of work carried out under varying conditions. Time-based rates are not, however, well suited as an encouragement for contractors to carry out the work quickly. The farmer may face the risk of too low an output in a given time with the result of too high a cost per unit of work. This in turn could be met by a special clause in the agreement between the contractor and the farmer; a minimum output per hour can be stated and if this is not reached the charge can be limited to the equivalent amount 3.5.5. The level of rates:The general requirement that the rate should cover costs is valid and it means that a rate set at the correct level should provide the service provider with an income sufficient to cover the cost of the work, including the risks involved, and in addition to secure a reasonable profit. Accordingly, for a commercial contractor the level of a rate based on the time spent in carrying out the work may be easily calculated by dividing the total yearly cost by the number of hours worked per year and by adding to the result a certain sum to cover the risk and to provide a profit. However, the data necessary for this calculation, namely the yearly costs and the number of hours the machines will be used, have to be determined in advance. The result is therefore uncertain and it should be checked and revised now and then in accordance with experience gained.In practice many factors will arise which will have to be taken into consideration. For example, it may be necessary, when there is a shortage of machines and labour, to reduce the demands for work during a peak season by setting a relatively high rate. Or, on the contrary, there may be a desire to encourage farmers to apply for more work during a slack period, in which case a lower rate would be set. Such a policy in the establishment of rates is justified by the fixed cost and not by the average cost. Once the machines are purchased, labourers employed and the business started, the contractor entails a fixed cost, independent of the hours worked or the amount of work carried out. Therefore, when the variable cost for items such as fuel, lubricants and repairs has been covered by the rates, any additional earnings contribute to the fixed cost, and during a period when the machines and labourers would otherwise be idle, it is sound policy to try to keep them occupied by encouraging farmers to apply for more work. Consequently, one cannot always calculate the profit gained from each job of work by reckoning that it is the difference between the rate charged and the average cost of the machine, or consider it as a loss when the rate does not cover the average cost. The difference between the overall income and the overall expense of the business is the most important factor, not the profit made in each hour or on each piece of work carried out.In some countries, competition is a very important factor regulating the rates. If rates are too high they may provide less profit than lower ones, due to insufficient employment of machines and labour. In this case there is little opportunity for an enterprise to gain unreasonable profits. In fact the profit made must as a general rule be the result of efficiency in the business. It is essential however, both for the contractors and for the farmers served, that the rates are fixed at a level which will allow the business to be continued and, if desirable, extended. In the beginning the rates are often set too low, and later, when it is found that expenses are much higher than expected, it may become difficult to increase the rates sufficiently.Bearing in mind that high rates are a discouragement and low rates an incentive to farmers to use the machines, and the importance of having both the machines and personnel employed over a long period each year, it is certainly no easy task to determine the most profitable level at which to set the rates. What can be done is to calculate as accurately as possible the prospective average costs and then take into consideration the other factors influencing the level of the rates and the risks involved in the business. When the contract service has been in effect for some years, there will be information and data available to check the rates and, if necessary, to correct them.In carrying out contract work there are many occasions when time and effort may be wasted because of lack of cooperation between the contractor and the farmers, and also among the staff of the contracting service. It is advised to try to address this problem in advance to ensure a reasonable degree of efficiency. Means available are standing orders regarding the performance of work and the provision of incentives which will encourage the persons concerned to cooperate and avoid interruptions as much as possible. Standing orders can for instance be applied in order to prevent machines being moved excessively long distances to serve small fields. The avoidance of unnecessary interruptions can be achieved by incentive payments. In the following discussion it is assumed that the employees accept normal regulations and instructions as to how and when they shall perform their duties and what they will be paid for them.There are two general requirements to consider in establishing payments for staff/ operators of a hire service. Firstly, each person entitled to an additional payment should be able to increase this payment by his own efforts, or by cooperation with others. Secondly, it should be paid frequently enough to be felt as an incentive. In addition, the system adopted should not be too complicated and thus cause too much administrative work.Incentive payments should be related to the results achieved by the hire service. Under these conditions therefore, an incentive related to the difference between income and expenses or the actual income or the amount of work carried out is preferable. It is also possible to employ two different incentives, one of which is related to the total results and the other to the results of the particular service provided. The efficiency and success of contract work depend to a large extent on the operators. The time needed for moving a machine from one farm to another should be kept to a minimum and all unnecessary delays avoided. In order to achieve this, the operators may be given a bonus calculated on the hours paid for by the customers or the amount of money earned by their machines. For instance, the operator can be required to fill out a daily record card giving information on his working hours and those of the machine for each customer (see Annex). Accordingly, an incentive can be paid in relation to the hours paid for by the customers. Another possibility is to pay the operators for productive hours only.Mechanics and other staff members also have a great influence on the efficiency of contract work. Close cooperation between all persons concerned is required, and to achieve this, an incentive payment to all staff based on the total results may be applied, in addition to the payment for operators. The advantage of including all staff members in an incentive, scheme is that they will be encouraged to keep an eye on each other's performance and thereby endeavour to increase general all-round efficiency.In contracting, the farmer's help in carrying out the work is invaluable, in order to save time, decrease costs and raise the quality of work performed. When the machines are moved to one village, it saves time and money if all the farmers in the area can arrange matters so that they all have the same kind of work carried out at the same time and before the machines are moved to another village or return to their base. In order to achieve this, all the farmers should be encouraged to apply for the work that requires to be done in good time. It may also be necessary to encourage them to grow the same kind of crops, or even the same variety, in order to enable tillage, sowing and harvesting to be carried out expeditiously.Other examples of ways in which farmers can facilitate contract work are the following:• clearing the fields of stones, roots and tree stumps and levelling the surface; • growing the same crop in one or more fields or field units arranged as closely together as possible; • helping to provide access to the fields. In rice-growing areas where fields are enclosed by earth bunds the farmer should wherever possible level a small length of the bund, so that the tractor and implement can be easily driven in and out of the field; • if the farmer has a draught animal he can mark out the field for planting in advance and for harvesting, where trailer-type machines are used by the contractor, the farmer can open up the field himself by hand-or by animal draught implements so that when the contractor's machine arrives it can start working at full capacity immediately.Through cooperation of this kind the cost of contract work and the price charged to the farmer can be reduced, and the work can be carried out at the right time and with less argument. Moreover, attention to the needs of the machine operator-such as providing him with food and drink in the fieldusually helps to get the job done more quickly.In order to encourage farmers to assist in this way they should be allowed to benefit from their efforts and at least cover their costs. For instance, when the work is charged on the basis of hectares, and no distinction is made between the size and condition of the fields or of access to them, there is no incentive to the farmers to hasten the work. When on the other hand the work is charged on an hourly basis, the farmers have an excellent incentive because the more work performed each hour the cheaper is the unit cost.A common objection to rates on an hourly basis is that they are unfavourable to farmers with small fields. However, if the policy is to increase the size of fields, a hire service would not wish to subsidize and thus perpetuate a system of small fields. There are other possibilities which can be tried. One is to classify the rates according to the size of the fields. In this way the farmers are induced to cooperate in order to aggregate their small fields into larger ones. The benefits of this may be limited however, unless the shape of the fields and the access to them are also considered. ","tokenCount":"7722"} \ No newline at end of file diff --git a/data/part_3/2901674061.json b/data/part_3/2901674061.json new file mode 100644 index 0000000000000000000000000000000000000000..5196ad8b1dade37f7992f802fa55995a6ab92330 --- /dev/null +++ b/data/part_3/2901674061.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"17da8e1c749bb2b938baf28701e3aa4e","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/7ba888f8-c80d-4e44-8d3a-6804fc9f3719/retrieve","id":"607126657"},"keywords":[],"sieverID":"0672d030-0e9c-4fa7-91a1-2d821fd214e5","pagecount":"4","content":"The CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) has a science-driven agenda to meet the priorities of the regions in which it works. In 2010 CCAFS began work in three initial regions, South Asia, West and East Africa. In 2013, Latin America and Southeast Asia were added to the portfolio.In Southeast Asia, focus countries are Vietnam, in which we have three research sites, Laos (two sites) and Cambodia (one site). In addition, Indonesia is the focus of work on the mitigating impact of oil palm as a driver of deforestation, the Philippines on the effect of sea level rise (risk mitigation and coping with tidal surge in coastal areas), and Myanmar as a highly climate change vulnerable area that will targeted for future expansion. This portfolio allows us to carry out research in a diversity of socio-economic, political and ecological settings unique to the region and address a variety of climate challenges. 1 These sites allow us to develop a rich body of evidence on how to achieve food security in smallholder food systems in the context of a changing climate.• Establish a space where research and development practitioners can objectively learn from one another -developing a theory of change (TOC) is a consultative process, not a desk job.• Create time and space for iterative discussion, so that consensus evolves and impact is assured. The process takes time, but ensures that the ideas of various stakeholders are expressed and converge to a plan.• Focus on monitoring, learning and evaluation (ML&E) by treating the theory of change as a working hypothesis, and taking an adaptive management approach to the impact pathway.• The participation of key stakeholders and implementors, not just their representatives, is very important.• Facilitation is the key and it should be consistent.In In Southeast Asia we have involved our partners and next-users from the very beginning of the process, so that their voices and priorities form the foundation of the regional theory of change. We are learning from them, and with them co-developing our research agenda. We organized a workshop in December 2013 for CGIAR Centre partners to develop a preliminary impact pathway, including a regional vision, behavioral outcomes and target research outputs. This was followed by a workshop in March 2014 with partners and next-users in the region.The objectives of the second workshop were to review the draft vision and outcomes, improve the theory of change and impact pathway for the region, and assess the regional landscape of climate change research so as to identify synergies and gaps. Communication, participation and consensus are important aspects of decision-making in Southeast Asia. Because CCAFS was at the beginning of our program of work in the region, we were able to bring key actors together in a deliberative fashion and thereby generate strong ownership of our program amongst our stakeholders. Participants were broken into groups according to their Flagshiprelated expertise.Each group:• Familiarized themselves with the objective of their Flagship.• Identified next-users and changes in behavior that would be key to the success of the Flagship and achievement of the CCAFS vision for the region.• Drafted a regional outcome for their Flagship.• Identified barriers that the next-users faced in achieving their outcome, and knowledge, attitude, skills and practice (KASP) changes that would overcome these barriers.• Identified the major outputs, products and deliverables (major output groups or MOGs) necessary for overcoming next-user barriers and supporting KASP changes.• Identified the major research actions (MRAs) necessary for producing the MOGs.• Mapped ongoing research to the impact pathway, and identified synergies and gaps.At each step in the process the groups recorded the assumptions that they were making and the strategies that could ensure positive results from those assumptions. At times this led the groups to identify an unanticipated activity or project that needed to be included for overall progress along the impact pathway.The process was guided by a set of questions and notes. Each working group was led by a facilitator and notetaker. The team met a day before to review concepts related to outcomes thinking and go over the questions and notes.The workshop was successful in meeting its objectives, and benefited from good participation and feedback from participants. Overall the participants found great value in the outcomes thinking approach used to map the CCAFS research agenda in the region, and endorsed the resulting impact pathways. They were asked to evaluate the workshop in four areas.What new idea, thought or change will you take away from the workshop?Participants noted the value of starting with a clear vision and then working backward to identify the research and other activities that must happen in order for that impact to be achieved.One participant said, \"a logical systematic way of developing an extant impact pathway for programs (not projects or single interventions).\" Participants appreciated the insights gained regarding outcomes thinking, and the need to focus on nextusers. They also appreciated the multidisciplinary approach taken to consultative co-development of research plans. However, they noted missing expertise, especially in economics. Some mentioned the need for CCAFS to build on the ongoing research of national and regional partners, rather than acting in parallel. There was also concern that CCAFS would find it hard to achieve success in the region unless it recognizes what makes the region unique and works with those priorities and characteristics.Where did we need more time, or less time?Most participants found that the workshop schedule was appropriate.The most common suggestion for adjustment was to spend more time documenting and understanding ongoing research in the region, and identifying gaps and synergies. In particular, some felt that more time should have been spent considering each country and its needs, activities, and gaps. Some wanted to spend more time working to define next-Next-users are actors, such as national research institutions, extension organizations, NGOs and others that access CGIAR products directly. Next-users can create an environment that enables the target impact for end-users. They are decision-makers that we want to influence to achieve outcomes. users, their barriers, and changes in their knowledge, attitudes, skills and practices necessary for creating an enabling environment for impact.What is your recommendation for improving the process and/or management?Although most participants said that they did not feel the need for improvement, some suggested using techniques to bring out the ideas of less vocal participants. Several recommended providing a glossary of terms and concrete examples, and that all participants receive the facilitation questions to review prior to the workshop. A few suggested that CCAFS develop a guide or toolkit for building the CCAFS impact pathway with partners and stakeholders. Some felt that overlaps between flagships diluted the efficiency of the workshop. And some suggested that CCAFS and its direct partners do more to develop the upper levels of the impact pathway, including vision, outcomes, MOGs and MRAs, so that when the larger group of stakeholders is convened more time could be spent taking advantage of their detailed knowledge about ongoing research in the region. Said one participant, \"the outcome planning should be left to CGIAR and key partner [s].\"There were suggestions for efficiency in terms of focusing funding on regional priorities, and in terms of positive partnering. \"Less competitive and more fostering of research for development partnership for desired output/outcome.\" Others felt that the plan emanating from the workshop was too wide in scope and needed to be narrowed, again towards regional priorities. Many suggested ongoing sharing of documents, platforms and good communication to raise awareness, particularly with policy makers at the highest levels. There was good interest in partnering with CCAFS to implement the research called for in the pathway, and monitor the results obtained in terms of progress being made towards outcomes and intermediate development outcomes (IDOs).There will be formal and informal sharing and vetting of the Southeast Asia impact pathway with regional stakeholders as it evolves. We will design an M&E system that integrates quantitative and qualitative evidence with collaborative reflection. Reflection will focus on the assumptions and strategies in the regional TOC to assess if they remain valid, or if adjustments to the plan should be made to reflect new learning. Thus, the regional TOC will become a hypothesis that is reviewed annually, and we will move from ex-post assessment towards a system of ML&E (monitoring, learning and evaluation) that will allow us to adaptively manage the pathway. The objective will be to provide CCAFS stakeholders in the region with a detailed understanding of progress and results, while contributing evidence towards the CCAFS IDOs through the four flagships.The experience of this meeting highlighted the importance of a wellfacilitated, neutral meeting space where research and development practitioners have the opportunity to objectively learn from one another and negotiate a common pathway towards impact. At times the facilitators and note takers struggled with the new ideas and approaches to research planning that are inherent in outcomes thinking, and with terms and linkages inherent to the CCAFS impact pathway. This emphasized the benefit of investing in capacity for outcomes thinking in CCAFS personnel and stakeholders so as to increase participation and cohesion within our sphere of influence, and highlighted the need for creating materials and tools to guide our partners in the CCAFS outcomes thinking and impact pathway development process. Interestingly the workshop brought out hidden differences between the research-driven interests of the CCAFS flagships and the climate change and development priorities of regional stakeholders. This highlighted the need for iterative discussion over time of the TOC, impact pathway and ML&E plan to create consensus amongst actors and a harmonized plan with the potential in its synergies for large-scale contribution to the IDOs.Finally, the collaborative process followed in this workshop highlighted the importance of learning in ML&E, by treating a TOC as a working hypothesis and taking an adaptive management approach towards progress along the impact pathway. 5","tokenCount":"1632"} \ No newline at end of file diff --git a/data/part_3/2907844800.json b/data/part_3/2907844800.json new file mode 100644 index 0000000000000000000000000000000000000000..f83618e79113ab32e524f7dafcde045aaba8af06 --- /dev/null +++ b/data/part_3/2907844800.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"81603d2e9b5d236cf6ce19690ab0ef11","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/572c92bf-2f49-4868-8831-c40002c43e5f/retrieve","id":"829064857"},"keywords":["Anacardium occidentale, Vitellaria paradoxa, Parkia biglobosa, Irvingia gabonensis, Dialium guineense, Pentadesma butyracea, Artocarpus altilis, Chrysophyllum albidum, Adansonia digitata and Tamarindus indica. 5.3. Description de l'espèce","Description botanique","Information sur la phénologie 5.4. Taxonomie et nom de l'espèce","Famille : Anacardiaceae","Genre : Anacardium","Nom botanique: Anacardium occidentale","Nom commun : Cajou, Acajou, Anacardier, Pomme cajou, noix cajou.","Noms vernaculaires -Fon, Goun : lacazu, akaju, (tin) -Yoruba, Nagot: kaju, ekaju -Mina: yovo cao, acaoti -Bariba : yuburu somba, yibo somba. 5.5. Origine de l'espèce et principaux centres de diversité 5.6. Propriétés","Propriétés nutritionnelles et toxiques Alanine : 2,35% Histidine : 0,88% Arginine : 2,14% Leucine : 2,62% Cystine : 0,21% Lysine : 0,26% Acide glutamique : 6,51% Tyrosine : 1,42% Glycine : 1,12%"],"sieverID":"f3c2bf1e-75ff-4eab-9d0a-77b758458843","pagecount":"241","content":"L'Institut International des Ressources Phytogénétiques (IPGRI) est un organisme scientifique autonome à caractère international fonctionnant sous l'égide du Groupe Consultatif pour la Recherche Agricole Internationale (GCRAI). Le mandat de l'IPGRI consiste à promouvoir la conservation et l'utilisation des ressources phytogénétiques au profit des générations actuelles et futures. Le siège de l'IPGRI est basé à Rome (Italie) et l'IPGRI a des bureaux dans 14 autres pays. L'institut fonctionne à travers 3 programmes: (1) le Programme sur les ressources phytogénétiques, (2) le Programme international du GCRAI sur les ressources génétiques, et (3) le Réseau international pour l'amélioration de la banane et de la banane plantain. Le statut international a été conféré à l'IPGRI au titre d'un accord d'établissement. En janvier 1998, la liste des signataires comprenait les gouvernements des pays suivants: Algérie,Plusieurs auteurs ont montré l'importance des espèces forestières alimentaires pour les populations rurales et urbaines. Les écosystèmes forestiers africains sont reconnus comme étant les plus importants et les plus riches en terme d'abondance et de diversité d'espèces de plantes. Plus de 130 espèces forestières pour la plupart alimentaires ont été identifiées comme étant très importantes pour les populations locales de Kribi au Cameroun (van Dijk, 1999 1 ). Le nombre de produits forestiers consommés sont divers : fruits, noix, racines et tubercules, feuilles, sève. Les populations locales sont extrêmement dépendantes des produits forestiers comme le gibier, les champignons, les chenilles, le miel et les épices. La demande de fruits et d'amandes de Irvingia gabonensis dans le Sud du Nigeria a été estimée a 80.000 tonnes par Leakey et Maghembe (in Ndoye et al., 1999 2 ). Les produits de Irvingia gabonensis ont généré en 1996 plus de 47 millions de francs CFA et ceux de Cola acuminata, 35 millions de francs CFA aux commerçants camerounais (Ndoye et al., 1999).Cependant, la densité la plus élevée de la majorité des espèces ligneuses de la forêt tropicale humide est de moins d'un arbre par hectare. Les espèces à faible densité sont les plus vulnérables lors d'une gestion irrationnelle. Malheureusement, ces espèces sont souvent celles qui sont les plus surexploitées pour satisfaire les besoins en produits des centres urbains et des exportations. En effet, les méthodes de collecte traditionnelle de ces ressources par les populations locales laisse de plus en plus place à des méthodes irrationnelles de collecte, dans le but de satisfaire la demande croissante du marché. Les lois forestières dans la plupart des pays africains autorisent la récolte des produits forestiers non ligneux (PFNLs). Cependant, les administrations forestières des pays ont, pour la plupart, des connaissances limitées sur l'impact de cette exploitation des PFNLs sur la capacité de régénération des espèces exploitées. Toutefois les pays sont de plus en plus conscients du danger d'une dégradation irréversible de ces ressources importantes en raison de leur surexploitation.L'Institut International des Ressources Phytogénétiques (IPGRI) à travers son Programme des Ressources Génétiques Forestières en Afrique au Sud du Sahara (SAFORGEN) a reconnu l'importance des espèces ligneuses alimentaires et a décidé ensemble avec les pays africains de créer un réseau pilote sur les espèces ligneuses alimentaires dont l'objectif global est d'assister les pays membres à mieux conserver et améliorer l'utilisation des espèces.La première réunion du réseau s'est tenue du 11 au 13 décembre 2000 à Ouagadougou, Burkina Faso. Un total de 20 participants venant de 11 pays d'Afrique au Sud du Sahara ont pris part à cet atelier. Les participants ont élu Dr Haby Sanou (Mali) et Dr Ebby Chagala (Kenya) respectivement comme présidente et vice-présidente du réseau. Chaque participant a présenté le rapport sur les espèces ligneuses alimentaires de son pays. Cinq communications ont été présentées par des experts du domaine. En commission, les participants ont identifié les faiblesses de chaque pays. Les espèces ligneuses alimentaires prioritaires ont été sélectionnées. Elles feront l'objet d'une attention particulière des pays membres qui développeront des projets collaboratifs pour une meilleure connaissance de ces espèces pour leur gestion rationnelle.Cette première réunion du réseau a été financée principalement par l'IPGRI. Le Centre National de Semences Forestières (CNSF) du Burkina Faso s'est occupé de toute l'organisation de la réunion au niveau du pays. Le Projet régional ONCHO de l'OMS basé à Ouagadougou a fourni ses salles de réunion avec les équipements pour l'interprétation.Le Programme IPGRI/SAFORGEN remercie toutes ces institutions et toutes les personnes dont le concours a été déterminant pour le succès de cet atelier.En Afrique en général, et au Bénin en particulier, les forêts renferment beaucoup d'espèces ligneuses qui, sans être productrices de bois d'oeuvre et d'industrie jouent un rôle socioéconomique important en fournissant des aliments et des denrées de consommation variées. Depuis, des générations se sont succédées et elles ont pu se procurer ce dont elles ont besoin pour se nourrir à partir de ces espèces ligneuses alimentaires parce que celles-ci étaient encore disponibles et \"respectées\".Ces espèces interviennent dans l'alimentation des populations rurales du Bénin et font, selon le cas, l'objet tout le long de l'année et de façon rotative, d'échanges commerciaux de grande envergure sur les marchés locaux et parfois avec des pays limitrophes, constituant ainsi de sources diversifiées de revenus pour ces populations. Ainsi, des fruits, des feuilles, des racines et autres organes comestibles des arbres sont facilement et rationnellement prélevés dans les brousses, dans les forêts et autres formations boisées à des fins alimentaires.Aujourd'hui, ces produits ligneux exploités et consommés par les populations deviennent de plus en plus rares. Cette situation s'explique par la pression démographique, la surexploitation de ces ressources et le manque d'informations en matière de sylviculture des espèces concernées en vue de leur reconstitution et pour leur conservation. Ceci menace ainsi dangereusement la sécurité alimentaire ainsi que les sources de revenus d'appoint des populations. C'est précisément le cas des espèces bien connues des populations telles que: Adansonia digitata, Anacardium occidentale, Artocarpus altilis, Chrysophyllum albidum, Dialium guineense, Irvingia gabonensis, Parkia biglobosa, Pentadesma butyracea, Tamarindus indica, Vitellaria paradoxa.Il faut noter cependant que cette connaissance n'est pas généralisée car certaines d'entre elles peuvent être ignorées des habitants d'une région alors qu'elles sont connues dans une autre région voisine et réciproquement.Par ailleurs, très peu d'études ont été menées sur ces espèces afin de connaître l'importance des diverses utilisations qu'ont en fait, le potentiel et l'impact économique de ces produits comestibles sur la vie des ruraux et leur rôle dans l'économie nationale.L'atelier régional de Ouagadougou sur les Espèces Ligneuses Alimentaires se propose de combler ce gap dans les pays membres du Réseau SAFORGEN. Aussi le présent rapport national est-il préparé par le point focal pour la contribution du Bénin à cet atelier. Ce rapport est structuré conformément au canevas de référence élaboré par SAFORGEN.Au Bénin, il n'existe pas de dispositions législatives et réglementaires en faveur des ELA de façon spécifique. Toutefois, il convient de noter que la politique forestière nationale s'est assignée les objectifs principaux suivants:• assurer la pérennité du patrimoine forestier par une gestion durable et une exploitation rationnelle des ressources du domaine forestier (sol, eau, flore, faune); • intégrer la gestion et la conservation des ressources forestières aux politiques environnementale et de développement rural.Il est évident que ces objectifs prennent en compte la meilleure connaissance, entre autres, du potentiel national en espèces ligneuses alimentaires ainsi que leur valorisation. De même, la Loi N°93-009 du 2 juillet 1993 portant régime des forêts en République du Bénin et son décret d'application N°96-271 du 2 juillet 1996 ont publié la liste des espèces forestières protégées. Sur cette liste figurent entre autres les Espèces Ligneuses Alimentaires suivantes: Parkia biglobosa, Dialium guineense et Vitellaria paradoxa. Au terme de cette loi et de son décret d'application, ces espèces concernées sont protégées de l'abattage, de l'émondage, de l'ébranchage, de la mutilation, de l'arrachage, de l'incinération, de l'annelation et de la saignée, sauf autorisation de l'administration forestière.des ELA Les institutions nationales impliquées dans la protection, la conservation et la promotion des ELA sont celles chargées de la mise en oeuvre de la politique forestière nationale. Il s'agit actuellement de:• la Direction Nationale des Forêts et Ressources Naturelles (DFRN), responsable de la planification, de la programmation, de la mise en oeuvre, de la coordination et du contrôle du respect des objectifs de la politique forestière; • l'Office National du Bois (ONAB), responsable des activités d'exploitation et d'aménagement des forêts et plantations domaniales;• l'Unité de Recherches Forestières (URF) et l'Université d'Abomey Calavi qui doivent aménager des programmes de recherche en conformité avec les objectifs de la politique nationale.La poussée démographique a engendré dans le sud du Bénin une forte pression entraînant dans certains départements méridionaux une réduction de la durée de la jachère. Cette situation compromet dangereusement la reconstitution de la friche qui est favorable à la régénération des espèces forestières en général et celle des espèces ligneuses alimentaires en particulier.En outre, le surpâturage et les feux de brousse incontrôlés allumés chaque année par les populations pendant la saison sèche détruisent de vastes étendues de forêts. Ils détruisent également les forêts classées, et constituent autant de facteurs préjudiciables à la conservation des espèces ligneuses alimentaires.• Dans les parcs agroforestiers, le karité est menacé par le raccourcissement des jachères qui ne favorise pas sa régénération. Il est aussi victime des feux de brousse qui ont lieu souvent au moment de la floraison et du ramassage (parfois total) des noix. Par ailleurs les plus vieux individus de karité sont parasités par le Tapinanthus sp. Les semences de karité sont récalcitrantes et ne se conservent au maximum que pendant quelques semaines.• Comme chez le karité et à l'instar de toutes les semences oléagineuses, les graines de Pentadesma butyracea sont récalcitrantes et perdent très rapidement leur pouvoir germinatif après récolte. Ceci constitue un obstacle à la régénération et à la conservation de l'espèce.• L'importance socio-économique et culturelle de néré (Parkia biglobosa) fait que les populations ont tendance à récolter l'ensemble de la production fruitière. Cette pratique empêche ou limite la régénération de l'espèce. La germination des semences de néré sont difficiles car elles sont souvent attaquées par les insectes.• Au sud-ouest du Bénin, précisément dans les départements du Mono et du Kouffo, les populations de baobab (Adansonia digitata) sont actuellement très menacées parce que selon les communautés locales, ces populations de baobab abriteraient des sorciers et autres esprits maléfiques.• L'utilisation de branchage de Dialium guineense pour l'aménagement des enclos piscicoles appelés \"acadja\" est une menace pour l'espèce sur les plateaux du Sud-Bénin.• De nos jours, la principale menace exercée sur Irvingia gabonensis est la cueillette de fruits pour la commercialisation de ses amandes. Cette commercialisation s'effectue aussi bien à l'intérieur qu'à l'extérieur du pays. La pression est forte et ne permet pas la régénération de l'espèce. En outre, les pieds de Irvingia gabonensis observés dans le département du Zou sont parasités par Tapinanthus sp. (Loranthacées), menaçant ainsi gravement la survie de l'espèce.Les stratégies de conservation des ELA ne sont pas différentes de celles évoquées par Agbahungba et al. (2001) pour les ressources génétiques forestières du pays.• Aires protégées Consciente que le Bénin ne dispose pas de vastes étendues de forêts, l'administration forestière a eu pour préoccupation, dès sa création, la constitution d'un domaine forestier de l'Etat. Ainsi de 1941 à 1961, un domaine classé de l'État couvrant une superficie de 2 664 075 ha a été constitué et se réparti comme suit:-Forêts classées: 13 2 863 ha (46 massifs), -Périmètres de reboisement: 4 162 ha (7 massifs), -Parcs nationaux: 777 050 ha (2 massifs), -Zones cynégétiques: 580 000 (3 massifs).Dans le sud du pays, la plupart de ces forêts classées sont dégradées par les populations en quête de terres agricoles fertiles. C'est le cas de la forêt de la dépression argileuse (vertisols) de la Lama. Cette forêt initialement d'une superficie de 11 000 ha de forêt dense en 1946 n'en possède que 1 900 ha, 50 ans plus tard. La particularité des peuplements naturels rencontrés sur ce vertisol a suscité des actions de conservation in situ des espèces présentes dans la partie appelée « noyau central ». Il s'agit surtout de reboisement périphérique de protection, des travaux en vue de régénération naturelle et d'enrichissement ainsi que de la construction d'un réseau de routes latérisées pour la surveillance.A partir de 1994, la stratégie nationale des aires protégées a vivement recommandé la gestion participative et la décentralisation des pouvoirs de l'administration forestière au niveau des organisations locales. Ainsi, la co-gestion des aires protégées avec les populations riveraines est la base de la nouvelle politique du Bénin en matière de sauvegarde de la diversité des habitats et des espèces.• Réserves botaniques Au Bénin, on peut noter la présence de trois réserves botaniques créées par l'Etat. Il s'agit de: Touzoun (Allada) en 1942, Itchèdè-Toffo (Pobè) en 1945 et Pobè en 1945. Faute de moyens, très peu d'actions ont été menées par l'Etat pour la conservation et la gestion de ces réserves.• Aires sacrées Les aires sacrées constituent une forme endogène de conservation in situ des espèces. Au Bénin, 2 940 forêts sacrées ont été actuellement recensées et sont très bien protégées et gérées par les communautés locales. Certaines espèces ne se retrouvent actuellement que dans ces forêts refuges. C'est le cas de Mansonia altissima qui ne se retrouve au Bénin que dans la forêt sacrée de Ewè-Adakplamè.• Systèmes agroforestiers traditionnels Au Bénin, deux systèmes agroforestiers traditionnels ont été reconnus (Sokpon, 1994). Il s'agit du:-Système à palmier à huile et quelques arbres d'intérêt économique pour les paysans, pratiqué dans les départements méridionaux du Bénin, -Système à karité et néré, très répandu dans le Nord du pays (Aghahungba et Dépommier, 1989). Dans ces systèmes, les arbres qui ont un intérêt pour les paysans (économique, culturel ou religieux) sont épargnés et entretenus lors des défrichements.• Périmètres de reboisement Les périmètres de reboisement de l'Etat sont des sites de conservation ex situ des espèces. Ils abritent les grandes plantations domaniales. Il s'agit des plantations de Casuarina equisetifolia, de Acacia auriculiformis, de Eucalyptus camaldulensis, de Melaleuca leucodendron et de Anacardium occidentale à Sèmè; les plantations d'Eucalyptus sp. et d'Acacia auriculiformis de Pahou, les plantations de Triplochiton scleroxylon de Bonou, etc.• Jardins botaniques Nous pouvons citer au titre des jardins botaniques:-Le Centre pilote régional de conservation de la diversité biologique africaine animé par le Prof. E. Adjanohoun qui a pour vocation la sauvegarde des espèces végétales et animales menacées d'extinction et qui sont utilisées dans la médecine traditionnelle. Ce centre collecte, conserve et protège les espèces végétales inconnues ou mal connues des scientifiques.-Le jardin botanique de Porto-Novo.-Les arboreta de la Faculté des Sciences Agronomiques de l'Université d'Abomey Calavi, de Niaouli, de Parakou et de Kpessou. • Jardins de case On retrouve au Bénin et surtout dans le sud, des jardins de plantes, soit médicinales, fruitières ou à épices qui sont représentées par quelques pieds, soit isolés ou groupés dans les cours interne et externe des personnes âgées ou des tradipraticiens.• Banques de semences En dehors de la Faculté des Sciences Agronomiques où l'on note un début de collecte et de conservation des semences forestières, il faut avouer que la recherche forestière sous-équipée ne s'occupe que de la conservation en chambre froide de matériel végétal acquis pour les plantations.• Amélioration génétique Au Bénin, il y a eu quelques essais de provenances pour le teck (Togo, Tanzanie), l'Acacia et l'Eucalyptus (Eucalyptus camaldulensis et E. tereticornis), Hymenia courbaryl, Khaya senegalensis, le Cedrela odorata dans la Lama, Djigbé et à Pahou et Sèmè. En ce qui concerne les essences locales, il y a eu quelques essais de régénération conduits sur certaines essences telles que: Afzelia africana, Terminalia superba, Triplochiton scleroxylon, Dialium guineense. Cependant ces essais n'ont pas été suivis.1. Nom du pays : Bénin 2.Nom et adresse du rédacteur : Dah-Dovonon Zinsou Jean, Directeur de l'Unité de Recherches Forestières. 06 BP : 707, PK3 Route de Fax : (229) 33 -04 -21 ou (229) 30 -07 -36, E-mail : inrabdg4@bow.internet.bj 3. Titre du réseau : Espèces Ligneuses Alimentaires 4. Liste (par ordre de priorité) des 10 plus importantes ELA Les critères de choix des 10 Espèces Ligneuses Alimentaires méritant une attention soutenue et des actions prioritaires au Bénin sont liés à l'importance économique de ces espèces, à la pression qui s'exerce sur elles en ce qui concerne leur utilisation et conservation, aux risques d'extinction et à l'existence ou non d'un programme de recherche ou de développement de leurs populations. Il s'agit de :Anacardium occidentale (l'anacardier) Vitellaria paradoxa (le karité) Parkia biglobosa (le néré) Irvingia gabonensis (la pomme sauvage) Dialium guineense (le tamarinier noir) Pentadesma butyracea (l'arbre à beurre) Artocarpus altilis (l'arbre à pain) Chrysophyllum albidum (la pomme étoile blanche) Adansonia digitata (le baobab) Tamarindus indica (le tamarinier): Anacardium occidentale (Anacardiacées)• Par rapport aux priorités nationales: La noix cajou fait aujourd'hui l'objet de commerce international très important avec des perspectives d'avenir très intéressantes. En effet, la filière anacarde est déjà bien développée dans le pays et présente une certaine effervescente provoquée par l'augmentation régulière des prix à l'exportation.Cette activité constitue après le coton, la principale culture d'exportation du pays. Elle représente une opportunité particulièrement intéressante en matière de diversification dans la mesure où :-la production, principalement exportée, permet à l'Etat béninois de diversifier ses recettes en devises, -les plantations n'ont que peu d'exigences agroclimatiques. Elles ont des effets positifs au plan écologique car elles sont utilisées pour le reboisement et la restauration des sols appauvris et la lutte contre l'érosion. L'anacardier produit également un fruit juteux d'un goût frais et acidulé, très apprécié et faisant l'objet d'un commerce relativement important pour le marché local. C'est la pomme cajou (le faux fruit).• Superficie du pays couverte par l'espèce : Selon différents auteurs, les anarcaderaies couvrent 15 320 hectares, soit 0,14 % de la superficie du pays.• Nombres de consommateurs dans le pays : La noix et la pomme sont consommées un peu partout dans le pays.• Importance économique : La production béninoise d'anacarde est de 2000 à 2500 t/ha et couvre trois départements : l'Atacora, le Borgou et le Zou.• Importance sociale et culturelle :On note un engouement particulièrement marqué de la part des producteurs pour installer des anacarderaies en raison de l'augmentation des prix de la noix au cours de ces dernières années.• Transformation, utilisations industrielles et alimentaires :Il existe vraisemblablement un marché potentiel de sous-produits et des possibilités de transformation de la pomme cajou. Le marché sous régional et international est insuffisamment connu. De façon artisanale la pomme cajou est transformée en liqueur appelée \"Sodabi\" qui est de l'alcool relativement bien apprécié des consommateurs. L'akène, c'est à dire le fruit lui même est grillé et l'amande est très appréciée des consommateurs.Les feuilles et écorces sont utilisées pour préparer une tisane qui sert à guérir la toux et les infections buccales. Les racines ont également des propriétés pharmacologiques.• Bois, filière artisanat Le bois des pieds morts est utilisé comme bois de feu ou transformé localement en charbon de bois.• Fourrage et pâturage :A notre connaissance, l'anacardier n'est pas brouté par les animaux.• Propriétés nuisibles ESPECE N°2 : Vitellaria paradoxa subsp. parkii (G. Don) Hepper (Sapotacées) 5.1. Importance de l'espèce :? 5.2. Utilisation autre qu'alimentaire :? 5.3. Description de l'espèce • Description botanique C'est un arbre des savanes guinéennes et soudaniennes, pouvant atteindre 15 m de haut et 0,50 m de diamètre. Le tronc est tortueux et bas branchu. L'écorce est longitudinalement striée et craquelée. Le passage régulier du feu lui donne une couleur gris noir. Les feuilles sont simples, entières, alternes, rassemblées en bouquets aux extrémités des rameaux trapus. Les fleurs sont des ombelles blanc crème, denses, axillaires regroupées aux extrémités des rameaux. Elles dégagent une odeur agréable. Les fruits sont des drupes ovoïdes de 4 à 5 cm de long et 4 à 5 cm de diamètre. Le péricarpe épais de 4 à 8 mm, lactescent d'abord, puis dépourvu de latex à maturité, est très charnu, sucré et comestible. Les fruits renferment une graine (parfois deux) ellipsoïdes. La graine est oléagineuse et on en extrait le beurre de karité.• Information sur la phénologie :Les grands arbres peuvent produire jusqu'à 8000 fruits. La production moyenne annuelle varie entre 400 et 1000 kg d'amande/arbre. La fructification commence à partir de l'age de 10 ans.L'abondance de la fructification est très variable suivant les années et les arbres. Ces variations sont imputables au cycle végétatif triennal de l'espèce, aux feux de brousse qui peuvent causer des pertes au moment de la floraison, ou à la combinaison de ces trois facteurs.• Famille : Sapotaceae • Genre : Vitellaria • Nom botanique : Vitellaria paradoxa • Synonyme : Butyrospermum paradoxum • Nom commun : Karité • Noms vernaculaires -Fon: kotoblè, limutin, wugo -Nago, Yoruba: akumolapa, emi, emi gidi -Goun: Tagan -Bariba: sombu 5.5. Origine de l'espèce et principaux centres de diversité :? 5.6. Propriétés • Propriétés nutritionnelles et toxiques Le beurre extrait de l'amande du karité fait l'objet d'un commerce important. Les graines sont exportées par le Bénin. La gomme issue du latex est utilisée localement. Vitellaria paradoxa est une plante médicinale.• Fixation d'azote et association mycorhizienne :? 5.7. Ressources génétiques de l'espèce :? 5.8. Amélioration génétique de l'espèce :? 5.9. Ecologie et Agronomie • Climat, sol et besoins en eau de l'espèce :Le karité est la seule espèce de Sapotacées des sols secs sous le climat soudanien.• Distribution géographique de l'espèce :On rencontre l'espèce dans toute l'Afrique occidentale, au Sud du Sahel, au Nord des pays côtiers et à l'Est de manière plus sporadique jusqu'en Ouganda. L'espèce ne monte presque jamais dans les régions montagnardes de son aire.La répartition quelque peu irrégulière et généralement anthropophile ne permet pas de situer son habitat original en Afrique.• Pestes et maladies : L'espèce est parasitée par un Tapinanthus (Loranthacées) • Récolte: La récolte s'effectue entre début juin et septembre selon les arbres.• Rendement: Avec un matériel artisanal, 1tonne d'amande produit environ 140kg de beurre. Ce rendement est multiplié par 3 avec un matériel semi-industriel. La production en beurre d'un (1) hectare de verger est de 30 -60kg/an. • Description botanique C'est une espèce des savanes guinéennes et soudaniennes. Le tronc est tortueux, bas branchu, avec des branches maîtresses bien développées. L'arbre peut atteindre 20-30 mètres de haut. L'écorce est noirâtre, écailleuse. Les feuilles sont alternes, composées, bipennées. Les fleurs sont des pompons rouges, suspendus à de longs pédoncules. Les fruits sont de longues gousses regroupées au sommet du pompon après anthèse. Ces gousses sont de couleur rousse. Elles contiennent des graines rousses enfouies dans une pulpe jaune farineuse sucrée très disputée par les hommes et les animaux surtout les singes et les rongeurs arboricoles.• Information sur la phénologie :? -Fon : ahwatin -Nago: igba -Bambara: nété -Mina: ahwati -Dendi: mari 5.5. Origine de l'espèce et principaux centres de diversité :? 5.6. Propriétés • Propriétés nutritionnelles et toxiques Les graines font l'objet d'un commerce très intense et sont exportées du Nord au Sud dans des sacs de 100 kg. Les graines servent à préparer la moutarde rencontrée dans tous les marchés du Bénin. Parkia biglobosa est une plante médicinale.• Fixation d'azote et association mycorhizienne: C'est une espèce fixatrice d'azote.Ressources génétiques de l'espèce :? 5.8. Amélioration génétique de l'espèce :? 5.9. Ecologie et Agronomie • Climat, sol et besoins en eau de l'espèce :Le néré nécessite un sol profond bien drainé. Il résiste assez bien à la sécheresse une fois qu'il est implanté.• Distribution géographique de l'espèce : Sa distribution géographique part du Sénégal au Nord du Nigeria, à la République Centrafricaine et au soudan.• Rendement Chaque arbre peut donner 25 kg de fruits par an. On note exceptionnellement des rendements de l'ordre de 100 kg de fruits par an chez certains individus. 5.10. Contraintes majeures (limitations) :? 5.11. Recherches supplémentaires nécessaires:? 5.12. Domaines (activités de recherche ou non) de collaboration potentielle:? 5.13. Projets passés, en cours ou futurs conduits sur l'espèce:? Le fût est court, souvent mal formé. L'écorce est blanchâtre et tendre. Les feuilles sont simples, alternes, entières, de couleur vert clair, glabres. Les inflorescences sont de courts racèmes axillaires le long desquels les fleurs sont fasciculées, de couleur jaune verdâtre. Les fruits sont des drupes jaune-verdâtre, ellipsoïdes. Elles contiennent un noyau couvert de fibrilles, noyé dans une pulpe jaune charnue, fibreuse, comestible et odorante.• Information sur la phénologie : La floraison principale a eu lieu en avril -mai avec la fructification en juillet -août. 1794) écrivait déjà que les graines contiennent \"une substance oléagineuse que les indigènes extraient et utilisent avec le riz et d'autres aliments \". Les graisses sont extraites des graines par un procédé identique à celui qu'on utilise pour les graines de karité. Les graines sont brunes, aplaties de section rouge vineux et très amères. Surtout en Sierra Leone, on les a mélangées frauduleusement pendant longtemps avec les noix de kola, mais elles n'en ont pas les lignes rayonnantes à la base, qui marque la séparation en cotylédons.• Information sur la phénologie Ce bel arbre fructifie entre janvier et octobre, suivant les régions, mais probablement aussi suivant des variétés non encore identifiées. Il se régénère très facilement, rejette bien, et fructifie de bonne heure.• Famille : Guttiferaceae • Genre : Pentadesma • Nom botanique: Pentadesma butyracea • Nom commun : Manguier noir, Arbre à chandelles, Arbre à beurre, Arbre à suif • Noms vernaculaires :-Yoruba, Nago: ewe odo, ekuso, orogbo orin -Dendi: itakuna bulanga 5.5. Origine de l'espèce et principaux centres de diversité:? 5.6. Propriétés • Propriétés mécaniques du bois Le bois est jaunâtre avec un coeur rougeâtre. Il est très dur, résistant aux termites et aux tarets; on en a fait souvent des mats, des avirons et des canots.• Propriétés nutritionnelles et toxiques Les feuilles sont recherchées par les porcs-épics. Bien qu'on ait utilisé les graines pour de la margarine, elles sont d'un emploi plus courant dans la savonnerie et dans la fabrication de chandelles. Mais les graines étant quelquefois très colorées, il faut les raffiner pour cet usage. On les utilise aussi comme onguent pour la peau et les cheveux. Les tourteaux obtenus après extraction de l'huile sont impropres à l'alimentation animale. En effet, ils sont très pauvres en protéines, mais riche en tanins.Arbre hybridogène, avec des formes séminifères et des formes aspermes, atteignant 20 mètres de haut. Les feuilles sont divisées en 5 à 7 lobes par de profondes découpures. Le fruit est sucré et fondant mais de saveur forte. Le fruit qui est un syncarpe pesant 1 à 3 kilos, n'a pas de graines, contrairement à celui du rimier ou faux arbre à pain, Artocarpus incisa var. seminifera, aux feuilles moins découpées et sans intérêt économique.Dans la partie la moins sèche de la zone sub-humide, le fruit peut fournir un supplément d'aliment féculent. Le réceptacle du fruit et les ovaires forment une masse charnue, blanche, spongieuse, hérissée de pointes et verte à l'extérieur, même à maturité.• Information sur la phénologie:?• Famille : Moraceae • Genre : Artocarpus • Nom botanique: Artocarpus altilis • Synonymes : Artocarpus communis, Artocarpus incisa • Nom commun : Arbre à pain • Noms vernaculaires -Fon, Mina, Goun : blefutu -Yoruba, Nago: gbere fuutu, kle butu, krebutu 5.5. Origine de l'espèce et principaux centres de diversité • Origine de l'espèce : Inde• Propriétés chimiques des organes de l'espèce Les graines sont riches en protides (13,8 g/100 g de MS) et contiennent un peu de phosphore (0,37 g / 100g MS).• Propriétés nutritionnelles et toxiques La pulpe peut causer des effets indésirables. Il est par conséquent prudent de cuire complètement le fruit et si on le fait cuire dans l'eau, de faire bouillir dans deux eaux (Bois, 1927(Bois, -1934)). 5.7. Ressources génétiques de l'espèce:? 5.8. Amélioration génétique de l'espèce:? 5.9. Ecologie et Agronomie • Propagation L'espèce se reproduit par bouture et par drageon. 5.10. Contraintes majeures (limitations) :? 5.11. Recherches supplémentaires nécessaires :? 5.12. Domaines (activités de recherche ou non) de collaboration potentielle :? 5.13. Projets passés, en cours ou futurs conduits sur l'espèce:? C'est une espèce des forêts denses humides semi-décidues. Elle atteint des dimensions moyennes : 25 m environ de hauteur totale et 0,80 m de diamètre. Le tronc possède un léger empattement à la base. Il est souvent bas -branchu avec des branches -maîtresses en ramifications verticales donnant à l'arbre une importante couronne. L'écorce est vert noirâtre avec des stries profondes verticales. Les feuilles sont entières, alternes, soyeuses en dessous. L'arbre exude un latex blanc quand il est blessé. Les fleurs sont des racèmes blanc-crème axillaires sur les rameaux. Les fruits sont des baies jaunes à maturité. Elles contiennent 2 graines, à tégument dur, noyées dans une pulpe charnue sucrée légèrement collante.• Information sur la phénologie On connaît 7 espèces du genre Adansonia, dont 5 se trouvent à Madagascar. C'est un grand arbre à fût énorme, court, conique et irrégulier, garni d'une écorce grise parfois pourprée, lisse et sans épines. Il atteint généralement 7 m de diamètre, mais difficilement les 20 m de hauteur. Ses branches sont robustes et généralement étalées. Les feuilles sont alternes avec des stipules caduques composées digitées avec en général 5 -10 folioles ovales entières ou denticulées. L'arbre reste totalement défeuillé pendant la saison sèche.Les fleurs solitaires sont toujours très grandes, voyantes de teinte blanche ou rouge tirant vers l'orangé ou bleu rosé. Elles sont hermaphrodites. Chez le baobab, elles pendent en extrémité de longs pédoncules atteignant 25 m.• Information sur la phénologie La période de fructification s'étend de janvier à avril au Sahel. -Fon : zuzon, kpassatin -Yoruba, Nago: otche -Goun: aziza -Mina, Adja: lagba 5.5. Origine de l'espèce et principaux centres de diversité • Origine de l'espèce Le baobab serait certainement une essence de l'ancienne Australie et Malgache. Il est introduit en Afrique par voie maritime et s'est répandu ensuite au coeur du continent.• Propriétés chimiques des organes de l'espèce Les feuilles sont très riches en calcium: 100g de matière fraîche (MV) correspondent à 23 g de matière sèche ( MS) et contiennent 3,8 g de protéines (3,1 g dans les feuilles sèches d'après Bergeret, 1990), 400 à 2600mg de calcium, 50 mg d'ascorbique (Nicolo, 1957), ainsi que 1618 µg.100 g-1 de vitamine A en équivalent rétinol et 2,8 g de cellulose. La pulpe du fruit, généralement blanchâtre, mais pouvant être jaune ou rosé est appelée pain de sucre. Elle est très riche en acide ascorbique (vitamine C ; de 169 à 270 mg pour 100 g en matière fraîche ou 73 mg vitamine C 100 g MS pulpe-1 ) et en thiamine (vitamine B1 : 0,38 mg.100g-1 MV) ainsi qu'en potassium et en glucose : on dit qu'à volume égal, elle est plus riche que l'orange en vitamine C.Le baobab a une grande importance alimentaire au Sahel. Les fleurs, les graines et les feuilles quand elles sont très jeunes (c'est à dire en septembre au Sahel) sont consommées crues ou bouillies, mais le plus souvent on sèche les feuilles, on les réduit en poudre. Cette poudre est utilisée dans la cuisine avec diverses sauces (Owen,1970). La poudre de feuilles séchées est appelée \"lalo\" au ferlo Sénégalais (Becker,1983) et dans le reste du Sénégal. Dans ce pays, elle est fréquemment consommée avec le couscous. Elle est vendue sur la plupart des marchés. On sèche les feuilles quand on veut les conserver très longtemps ; on les vend ainsi sur les marchés sous cette forme ou réduites en poudre, utilisée notamment pour lier les grains du couscous dans des sauces. 5.7. Ressources génétiques de l'espèce 5.8. Amélioration génétique de l'espèce 5.9. Ecologie et Agronomie • Distribution géographique de l'espèce Le baobab se rencontre surtout vers la limite des zones soudaniennes et sahéliennes. C'est une essence de la savane de l'Afrique tropicale.Les fruits bien mûrs sont plus légers que les fruits verts. Ils ont une couleur cannelle ou brun foncé et leur enveloppe se dessèche et devient cassante, se séparant un peu de la pulpe; ils sonnent creux quand on les frappe. C'est alors le moment de les utiliser; plus tôt, ils sont fibreux avec un goût acide.• Information sur la phénologie Les feuilles sont riches en vitamine C avec 14,1% de protéines. Elles sont utilisées ensemble avec les fleurs dans les sauces (Von Maydell, 1983 ). Les fleurs sont aussi mangées en salade (Busson, 1965).• Propriétés mécaniques du bois Le bois est un combustible médiocre. Très dur, résistant aux termites, il est difficile à travailler mais utilisé pour fabriquer des moyaux des roues et les manches d'outils.• Propriétés nutritionnelles et toxiques Dans certaines régions, on décortique les graines et on les mange grillées ou cuites, mais leur valeur nutritive est médiocre. On peut les ajouter aux mets sous forme de farines. Les ruminants étant capables d'assimiler leurs hydrates de carbone, ils peuvent être alimentés avec ces graines ; celles-ci fournissent aussi une huile.La pulpe du tamarinier est utilisée dans la fabrication des sauces \"chutney\", notamment en Inde, mais aussi au Kenya.• Méthode de conservation et techniques utilisées Il y a différentes méthodes de conservation des fruits contre les insectes. La plus simple consiste à sécher les fruits au soleil à l'abri des insectes sous un verre ou une feuille de plastique. 5.8. Amélioration génétique de l'espèce 5.9. Ecologie et Agronomie • Distribution géographique de l'espèce Ce grand arbre est répandu, sans doute par l'homme, dans toute l'Afrique semi-aride, à Madagascar et en Inde.• Rendement Un arbre en pleine production donne entre 150 et 200 kg, ce qui correspond à un rendement de 12 à 16 t/ha/an. 5.10. Contraintes majeures (limitations) 5.11. Recherches supplémentaires nécessaires 5.12. Domaines (activités de recherche ou non) de collaboration potentielle 5.13. Projets passés, en cours ou futurs conduits sur l'espèce 5.14. Noms et adresses des réseaux existants pour cette espèce 5.15. Liste des publications connues sur cette et adresses où on peut les avoir Références AGBAHUNGBA, G. et DEPOMMIER, D. (1989) Aspects du parc à karités -nérés (Vitellaria paradoxa, Geartn f. Parkia biglobosa jacq. Benth) dans le sud du Borgou (Bénin). Revue Bois et Forêts des tropiques n° 222 4è trimestre 1989. AGBAHUNGBA, G., SOKPON, N. et GAOUE, O.G. (2001) Situation des ressources génétiques forestières du Bénin. Atelier sous-régional FAO/IPGRI/ICRAF sur la conservation, la gestion, l'utilisation durable et la mise en valeur des ressources génétiques forestières de la zone sahélienne (Ouagadougou, 22-24 sept. 1998). Note thématique sur les ressources génétiques forestières. Document FGR/12F. Département des forêts, FAO, Rome, Italie. BAUMER, M. (1995) Arbres, arbustes et arbrisseaux nourriciers en Afrique occidentale, Enda-Editions, 260p. HOUGNON, P (1981) Espèces forestières à produits comestibles. Tome 1. Enseignement général, Sciences, Sport. Service 22 GTZ, 59p. SOKPON, N. (1994) Tenure foncière et propriété des ligneux dans les systèmes agroforestières traditionnels au Bénin. Ann. Fac. Sc. Kisangani,n°spéc., Rapport du Burkina FasoNational Forest Seed Centre BP 2682 Ouagadougou, Burkina FasoLe Burkina Faso n'a pas encore établi une politique nationale spécifique aux espèces ligneuses alimentaires. Cependant, la Loi n° 06/97/ADP portant code forestier du Burkina Faso donne une place importante aux produits forestiers non ligneux, dont relèvent les produits alimentaires découlant des arbres. Le programme national d'aménagement des forêts élaboré en mars 1996 soulève la nécessité de prendre en compte les produits forestiers non ligneux dans le cadre de la gestion durable des ressources naturelles.A la suite de ces documents, le programme d'action national de lutte contre la désertification (1999) la stratégie nationale et le plan d'action du Burkina Faso en matière de diversité biologique (1999) indiquent l'intérêt de considérer les produits forestiers non ligneux dans la production nationale.En septembre 1999, s'est tenu un atelier national sur la contribution des produits forestiers dans la sécurité alimentaire. Le rapport qui en est issu mentionne les axes de travail pour promouvoir une gestion durable des produits forestiers alimentaires.Le plan stratégique national de la recherche scientifique définit également des actions pour l'accroissement des productions et la valorisation des espèces ligneuses alimentaires.ligneuses alimentaires au Burkina Faso Les institutions nationales impliquées dans la conservation et la promotion des espèces ligneuses alimentaires au Burkina Faso comprennent : la Direction Générale des Eaux et Forêts avec ses démembrements comme la Direction de la Foresterie Villageoise et de l'Aménagement Forestier, les directions régionales et leurs services…Le Burkina Faso n'a pas encore établi une politique nationale spécifique aux espèces ligneuses alimentaires. Cependant, le programme national d'aménagement des forêts élaboré en mars 1996 soulève la nécessité de prendre en compte les produits forestiers non ligneux dans le cadre de la gestion durable des ressources naturelles. Les menaces qui pèsent sur les espèces ligneuses alimentaires dans le pays sont liées à l'action anthropique, au climat et à la pression parasitaire. Dix espèces ligneuses alimentaires prioritaires du Burkina Faso ont été choisies et décrites en détail. Ces espèces sont les suivantes : Vitellaria paradoxa, Parkia biglobosa, Adansonia digitata, Tamarindus indica, Ziziphus mauritiana, Lannea microcarpa, Detarium microcarpum, Acacia macrostachya, Balanites aegyptiaca, Bombax costatum.A national policy on food tree species is not yet established in Burkina Faso. However, the forest management programme elaborated in March 1996, highlighted the need to take into consideration the non-timber forest products for the sustainable management of natural resources. Human activities, climate changes and pest attacks are the factors threatening food tree species in the country. Ten priority food tree species were chosen for Burkina Faso and described into detail. These species include: Vitellaria paradoxa, Parkia biglobosa, Adansonia digitata, Tamarindus indica, Ziziphus mauritiana, Lannea microcarpa, Detarium microcarpum, Acacia macrostachya, Balanites aegyptiaca, Bombax costatum.les établissements de recherche comme le Centre Nationale de Semences Forestières et le Département des Productions Forestières (INERA/CNRST) ; -Les ONG (NATURAMA) et associations de développement et de protection de la nature ; -Les projets et programmes de développement (PNGT, programmes locaux de développement etc.) ; -Certaines industries agroalimentaires s'investissent aussi dans la conservation de ces espèces (ex FLEX FASO, SAVANA etc.).Les menaces qui pèsent sur les espèces ligneuses alimentaires sont essentiellement de trois ordres :-Les pressions anthropiques et animales (surexploitation des ressources disponibles et système de production inapproprié) ; -La précarité des conditions climatiques (baisse de pluviosité principalement qui entraîne une forte dégradation des forêts et une réduction de la productivité) ; -La recrudescence de certaines attaques parasitaires.1. Nom du pays: Burkina Faso 2. Nom et adresse du rédacteur: Dr Ir. Lambert Georges Ouedraogo. DG National Forest Seed Centre BP 2682 Ouagadougou, Burkina Faso. Tel.: 226 356111;Fax: 226 356110 3. Titre du réseau: Espèces ligneuses alimentaires 4. Liste des dix (10) plus importantes espèces ligneuses alimentaires: Le choix des dix (10) espèces s'est basé sur les divers travaux antérieurs effectués aussi bien sur la biodiversité que sur les priorités des populations locales. Ces travaux sont les suivants :o La monographie nationale sur la diversité biologique; o La prioritisation paysanne des ligneux à usage multiple dans la zone semi-aride du Burkina Faso dont les enquêtes ont été conduites par le DPF/INERA/CNRST; o Le catalogue national de semences forestières du CNSF; o La liste des espèces prioritaires du Burkina établie par le CNSF (1987), le Professeur Sita GUINKO et présentée à diverses rencontres nationales, régionales et internationales ; o Le rapport de l'atelier national sur la contribution des produits forestiers dans la sécurité alimentaire; La comparaison entre ces sources documentaires laisse observer seulement une différence dans la hiérarchisation. Cependant, les espèces ligneuses alimentaires prioritaires ci-dessus présentées ne sont pas classées par ordre hiérarchique d'importance ou d'intérêt :Vitellaria paradoxa est l'un des arbres caractéristiques des parcs agroforestiers des savanes d'Afrique Occidentale. L'espèce est épargnée dans les champs de culture et les jachères. Au Burkina Faso, on la rencontre sur plus 70% du territoire national. Elle est retenue prioritaire aussi bien pour dans les programmes de développement que de recherche forestière. L'exportation des amandes de karité constitue la troisième filière économique du pays après celle de l'or et du coton.Plusieurs utilisations sont faites de ces fruits par l'ensemble des populations rurales ou urbaines. La pulpe est consommée partout dans le pays et peut servir d'aliment d'appoint pendant la période de soudure (saison pluvieuse pendant laquelle les stocks alimentaires sont les plus amoindris). L'amande est très prisée car elle sert à produire des beurres, qui entrent dans la fabrication de l'huile et des savons. L'industrie cosmétique utilise des dérivés de l'amande. Actuellement l'exploitation des amandes de karité constitue une des principales filières de production de devises pour le pays. La transformation semiindustrielle occupe de nombreuses femmes des campagnes et des villes. Cependant, force est de constater que l'utilisation traditionnelle des terres et l'exploitation abusive de ce produit entraîne un vieillissement des populations, une réduction du potentiel de régénération de l'espèce au champ et sa disparition progressive. Par ailleurs, les recherches sur cette espèce de grande importance économique et les plantations restent timides.Il convient de pouvoir améliorer non seulement la productivité, la qualité des produits mais aussi de raccourcir le cycle d'entrée en production des arbres du karité.Le bois du karité donne un excellent bois-énergie (bois de feu et charbon de bois). Il est plus souvent exploité pour la fabrication d'oeuvres domestiques ou culturels et pour la production de bois de service au regard de sa durabilité. L'écorce est utilisée en décoction pour soigner des maladies infantiles. Les abeilles butinent les fleurs de l'arbre et produisent le miel de karité.Le karité est un arbre des zones soudaniennes à soudano-guinéennes pouvant atteindre 15 à 22 m de haut. Il présente un houppier arrondi bien fourni en feuilles. Le feuillage est persistant sur plus de 9 mois dans l'année. L'arbre se dénude juste avant le début de sa floraison. Les feuilles sont en grappe à l'extrémité des rameaux où les fleurs viennent les remplacer en fin de saison sèche. Les fleurs sont fortement butinées par les abeilles qui sont par ailleurs des vecteurs de transport du pollen chez cette espèce.L'arbre semble pouvoir résister aux feux de brousse par son écorce épaisse et crevassée qui présente des fissures relativement profondes. Le caractère bas branchu de l'arbre semble être lié aux passages réguliers des feux de brousse en saison sèche.Famille: Sapotaceae Nom scientifique : Vitellaria paradoxa Gaertn. F. Synonyme : Butyrospermum paradoxum Kotschy, Butyrospermum paradoxum parkii (G. Don) Hepper Nom commun français : Karité Nom vernaciulaires : Moré : Taaga 5.5. Origine de l'espèce et principaux centres de diversité L'espèce se rencontre dans une aire de distribution qui s'étend de l'Afrique de l'Ouest jusqu'en Ouganda et qui couvre les zones de savane. L'origine du karité semble difficile à établir au regard d'une part des différences morphologiques et des variations au niveau des produits de l'arbre (dérivés de l'amande).Des efforts sont faits pour produire le karité en pépinière. Le taux de germination reste néanmoins faible (moins de 50% en pépinière) quelle que soit la période de récolte et de semi. Le greffage réalisé avec succès par Centre National de Semences Forestières (CNSF) du Burkina semble être promoteur à l'amélioration de l'arbre.La pulpe du fruit de karité contient divers sucres et des sels minéraux. De l'amande on peut extraire des acides gras et des phénols dont la consistance est variable suivant les zones géographiques de l'aire de distribution. Le beurre de karité est utilisé pour la protection de la peau. Il entre dans la composition de divers traitements en médecine traditionnelle. Le bois du karité est très dur et utilisé pour la fabrication de divers matériaux.Quelques recherches conduites au Burkina et dans la sous région Ouest africaine ont permis de présumer des variations morphologiques qui pourraient être héréditaires en fonction des gradients géographiques. Ces variations se rapportent à la biométrie des fleurs, la taille des feuilles et les liens dans les acides gras des amandes. L'allogamie semble être le mode de fécondation préférentielle chez le karité.Les semences du karité se conservent très difficilement. Elles sont classées parmi les semences intermédiaires, elles perdent leur faculté germinative deux à six mois après la chute des fruits.Peu de travaux ont été menés sur l'amélioration génétique du karité. Les récents travaux conduits au CNRST et au CNSF du Burkina sont promoteurs pour la multiplication végétative (par greffage) de l'espèce. Ceci permettra d'une part de reproduire des individus performants pour certaines qualités de leur fruit et de diminuer le cycle d'entrée en maturité des arbres d'autre part. 5.9.Ecologie et Agronomie V. paradoxa est typique des zones soudaniennes à soudano-guinéennes. C'est une espèce de savane qui préfère les formations ouvertes voire les champs et les jachères où elle fructifie le mieux.Au Burkina Faso, une plantation de l'espèce a été réalisée depuis près de quarante ans. Pour des opérations de plantation, le karité semble exiger des écartements supérieurs à vingt mètres.La durée du cycle de production est relativement très longue ; ceci décourage les planteurs éventuels de l'espèce. La méconnaissance de la variabilité au sein de l'espèce ne permet pas une sélection appropriée de variétés. La surexploitation des amandes de karité a pour conséquence une forte réduction du matériel de reproduction et du flux de gènes. La très faible régénération dans les parcs agroforestiers est consécutive au mode traditionnel de gestion de ces parcs d'une part (culture sur brûlis) et à la dégradation progressive des facteurs régulant les écosystèmes d'autre part.Etude de la variabilité intraspécifique, sélection de matériel de reproduction sur la base de l'héritabilité des caractères, réduction du cycle de production, étude des facteurs favorables à la régénération naturelle (et par semis direct). 5.12. Domaines de collaboration potentielle avec autres pays Sélection de matériel végétal, collecte de germoplasme, étude de la variabilité génétique.Projet INCO de l'Union Européenne sur le parcs agroforestiers à Néré et Karité.Le CNSF du Burkina dispose de collections de germoplasme de toute l'aire de répartition naturelle de l'espèce. Des recherches sur la caractérisation génétique des populations, sur le régime de reproduction et le flux de gènes y sont entrepris également. On dénombre entre 4500 et 5000 graines par kg de semences.Depuis environ deux décennies des essais de comportement de l'espèce, de comparaison des provenances et de descendances ont été mis en place au Burkina. Les principaux objectifs de ces essais sont d'identifier le matériel végétal le plus résistant à des conditions climatiques déterminées et de déterminer les meilleures sources de matériel pour la production fruitière (rendement et qualité des fruits).La fécondation croisée et l'autogamie sont simultanément utilisée par l'espèce pour sa reproduction. Les semences sont de type orthodoxe et se conservent aisément à température ambiante sur plusieurs années.Des recherches en multiplication végétative sont également en cours. Le marcottage a permis d'obtenir quelques résultats positifs, cependant, les résultats du greffage et du bouturage restent mitigés .Le néré est une espèce très plastique qui exige une pluviométrie annuelle au moins égale à 500 mm et des températures moyennes annuelles comprises entre 26°C et 28°C.Les travaux de domestication sont en cours. La propagation se fait aisément par semis. Le prétraitement des semences pour faciliter une germination homogène est connu. Des rendements moyens allant de 25 kg à 130 kg peuvent être obtenus des arbres.La sylviculture en plantation de l'espèce n'est pas connue. En particulier les écartements en plantation, les sols et les questions phytosanitaires restent à être élucidés.Transformation industrielle des graines et évaluation du potentiel de l'espèce.Evaluation du potentiel de l'espèce.Adansonia digitata ou baobab est très répandu et couvre l'ensemble de l'Afrique. C'est une espèce panafricaine très connue des populations locales sur tout le territoire du Burkina Faso. Celles-ci accordent à l'arbre une importance culturelle et en font des utilisations diversifiées sur le plan alimentaire.Les feuilles du baobab fraîches ou séchées entrent dans la préparation des sauces ou pour engluer certains mets (couscous). Elles sont vendues durant toute l'année, dans les marchés.Les fruits, moins commercialisés que les feuilles, renferment une pulpe blanche autour des graines. Celle-ci est sucrée acidulée, riche en vitamines B1 et C, et transformée pour la fabrication de boissons. Aucune transformation industrielle ou semi-industrielle des produits du baobab n'est connue au Burkina.Malgré cette importance de l'arbre, il n'est pas planté et sa régénération est très faible. Les peuplements se raréfient dans le pays et une menace pèse en conséquence sur la survie de l'espèce.Il est souvent attribué au baobab des pouvoirs magiques ou alors il est considéré comme le protecteur de certaines traditions. C'est pourquoi dans de nombreux villages, des individus de baobab sont intégralement protégés. L'écorce de l'arbre est constituée de fibres que prélèvent de nombreux groupes sociaux pour la fabrication de cordage ou l'habillement des porteurs de masques. L'écorce est aussi prélevée pour des traitements sanitaires. L'exocarpe du fruit est brûlée pour éloigner les serpents ou chasser des esprits maléfiques.Adansonia digitata est l'un des plus grands arbres de la zone soudano-sahélienne où il occupe majestueusement les aires de savane et les steppes arborées. Il atteint 25 m à 30 m de haut avec un diamètre de 1 à 1,5 m. Il a des feuilles caduques qui chutent en saison sèche ne laissant sur l'arbre que des fruits accrochés à de longs pédoncules. Les feuilles sont opposées, longuement pétiolées et digitées avec 3 à 9 folioles entières lancéolées et une surface inférieure souvent veloutée. Elles apparaissent avec le début de la saison des pluies. La floraison survient en pleine saison pluvieuse (juillet-août). La fleur est sphérique et solitaire.Le fruit est sphérique, ovoïde ou allongé. Son exocarpe pelucheux, dur et ligneux renferme une pulpe blanche entourant les graines noires grisâtres.L'écorce de l'arbre est d'une couleur grise argentée. Elle est succulente et épaisse.Famille : Bombacaceae Nom scientifique : Adansonia digitata L. Synonyme : Adansonia sphaerocarpa (A. Chev.) Nom français : baobab Noms locaux : sira ou nsira (Bambara), ziegue ou zengue (Sénoufo), toèga (moré). 5.5. Origine de l'espèce et principaux centres de diversité L'espèce se rencontre sur toute l'étendue de l'Afrique jusqu'à Madagascar, dans les alentours jusqu'en Australie. C'est une espèce pantropicale qui forme des peuplements homogènes dans les aires de transition entre la zone de forêts humides et celle de forêts sèches. 5.6. Propriétés L'arbre mort fournit une importante quantité de fertilisant du sol de part sa taille, sa grosseur et le caractère spongieux de son tronc.Au plan morphologique, on observe des variations dans la forme du tronc des baobab. Ces variations semblent être en rapport avec les niches écologiques et particulièrement la pluviométrie et l'ensoleillement.L'autogamie semble être privilégiée dans le mode de reproduction chez cette espèce. On dénombre en moyenne 2400 graines par kilogramme de semences de A. digitata. Du fait que les fruits sont commercialisés et que la viabilité des graines à téguments très durs se conserve aisément sur plusieurs années, la dispersion des semences est très répandue mais aléatoire. Ceci offre d'énormes possibilités de contact de sources de gènes.Le Département de Production Végétale de l'INERA a entrepris depuis plus d'une décennie des recherches sur cette espèce. Il a pu établir des essais sylvicoles pour en mesurer la croissance et l'adaptation. 5.9. Ecologie et Agronomie C'est une espèce héliophile prospérant sous des précipitations allant de 250 mm à 1500 mm par an. Elle tolère de longue période de saison sèche (plus de 8 mois) mais peut aussi supporter des inondations temporaires. Elle se rencontre aussi bien sur sols sableux, argilosableux que sur des sols ferralitiques indurés ou lessivés. Elle préfère néanmoins les sols profonds suffisamment drainés.La lente croissance de l'espèce et l'espacement nécessaire entre les arbres semblent constituer un facteur limitant à son utilisation dans les programmes de plantation.Il est important de caractériser les qualités de la pulpe du baobab pour savoir quelles en sont les utilisations possibles. Trouver des technologies de transformation de la pulpe etLa lente croissance du tamarinier limite les recherches sur l'espèce. Très peu de travaux ont été effectués sur sa sylviculture aussi bien en plantation qu'en formation naturelle.• Prospection de toute l'aire naturelle de distribution de l'espèce.• En se référant aux qualités des fruits et éventuellement des feuilles des travaux de sélection de matériel de base de reproduction • Sylviculture en plantation de l'arbre.Prospection et cartographie des peuplements de l'espèce.Ziziphus mauritiana est un arbuste des zones arides et semi-arides. Ses fruits sont de couleur rouge -ocres à maturité. Ils sont consommés sur toute l'étendue du territoire du Burkina Faso par les populations. La pulpe, la partie recherchée, est légèrement sucrée et acidulée. Extraite sous forme de farine séchée, elle est comprimée pour donner des gâteaux. Ces gâteaux sont consommés en période normale comme supplément alimentaire pour les enfants. Elle devient un produit de subsistance de première importance lors des disettes.Le bois de Ziziphus mauritiana est utilisé comme bois de feu, bois d'oeuvre ou de service. Il résiste à certaines attaques déprédatrices du bois. Dans la partie septentrionale du Burkina, les feuilles sont souvent consommées par les chèvres. Le caractère épineux de l'espèce fait qu'elle est utilisée aussi bien en haie-vive que pour la confection d'enclos en haie-mortes, défensives. Ces racines sont utilisées pour divers traitements en médecine traditionnelle.Ziziphus mauritiana est un arbuste de savane et des zones steppiques, souvent multicaule de 4 à 6m de haut. Lorsque son fût est assez bien dégagé, il est tordu et crevassé; c'est un petit arbre pouvant atteindre 8 m de haut. Son houppier est touffu. Les rameaux sont blanchâtres, tomenteux, retombants et présentant de nombreuses épines. Ils portent des feuilles simples alternes et trinervées dont le dessous est blanc velouteux et le dessus plus vert. Les fleurs sont jaune blanchâtres, en cymes axillaires sessiles. La floraison est plus abondante de mai à août et la fructification d'octobre à janvier. La fécondation semble être en grande partie sous le fait d'agents pollinisateurs comme les mouches. Les fruits sont des drupes.Fammille : Rhamnacée Genre : Ziziphus Nom scienfifique: Ziziphus mauritiana Lam. Synonymes: Ziziphus jujuba (L.) Lam. Nom commun: Jujubier Noms vernaculaires: Mug-Nugga 5.5. Origine de l'espèce et principaux centres de diversité L'aire naturelle de distribution de l'espèce se rencontre dans les arides et semi-arides d'Afrique et d'Asie. En Inde où la plante est intensément cultivée, son processus de domestication a permis de sélectionner les variétés les plus performantes et de les propager. Du fait de l'existence concomitant de trois espèces de Ziziphus (Z. mauritiana, Z. mucronata et Z. spina-christi) et de nombreuses variantes (le ber, l'umran ...) de ces espèces en Asie, il peut être présumé que le centre de diversité du genre Ziziphus est l'Asie tropicale.Les fruits du jujubier renferment des sucres, des protéines, des lipides du calcium, du fer et de la vitamine C.Trois espèces de Ziziphus sont communément citées dans la littérature: Z. mauritiana, Z. mucronata et Z. spina-christi. Au niveau de l'espèce au moins trois variétés performantes pour la qualité des fruits sont cultivées en Inde. Au sein des populations de l'espèce au Burkina Faso, on observe des variations dans la grosseur des fruits. Les variations observées dans l'abondance et la fréquence de la fructification sont supposées respectivement tributaires des facteurs climatiques et des traitements sylvicoles.Des essais comparatifs de provenances ont été établis au Burkina Faso dans des sites localisés dans deux principales zones agro-écologiques. Il y est appliqué actuellement des traitements sylvicoles (émondages et autres tailles) pour étudier leurs impacts sur la productivité.Ziziphus mauritiana est très plastique au plan écologique. Elle supporte des températures comprises entre 10°C et 45°C, une pluviosité comprise de 250 mm à plus 1000 mm par an, divers sols allant des sols sableux ou des sols argilo-sableux inondables aux sols tropicaux ferrugineux à ferralitiques (à concrétions ou latéritique). Elle est tolérante à la salinité. En zone désertique elle peut être utilisée en culture irriguée.Les fruits du jujubier sont très fréquemment infestés à leur maturité. Les mouches ou d'autres insectes semblent s'attaquer aux fruits pendant leur développement. Le ber introduit au Sénégal ou en Israël requiert une protection des fruits contre les parasites.Du fait de l'existence de variétés performantes pour la production de fruits, les besoins de recherche complémentaires sont:• la mise au point de techniques appropriées de greffage et/ou de bouturage; • l'identification de souches (portes greffes) adaptées aux conditions écologiques;• la recherche de matériel résistant aux attaques parasitaires des fruits;• la lutte non poisonneuse contre les parasites des fruits; • l'accroissement de la productivité (rendement).La collaboration devrait s'articuler sur l'échange de matériel végétal et de formation en technique de multiplication végétative et de lutte contre les parasites des fruits.Lannea microcarpa s'étend du nord au sud et d'est en ouest du Burkina Faso où elle est souvent appelée « raisinier ». Ses fruits, les raisins sauvages, sont mangés par l'ensemble de la population plutôt sous forme de complément alimentaire. Séchés, ils peuvent être utilisés pour la fabrication de jus sucré ou de boisson alcoolisée. La commercialisation du fruit, qui occupe bien de jeunes personnes, est de plus en plus importante en zone urbaine du fait de la raréfaction du produit. L'arbre est rustique et apparaît dans les mêmes conditions que le néré au niveau des parcs agroforestiers de savanes et des steppes. Ses semences se conservent très mal ; c'est pourquoi la régénération de l'espèce est non seulement tributaire des facteurs écologiques mais également de ses semences qui sont du type récalcitrant. Ce dernier paramètre représente un facteur limitant pour la production en pépinière du « raisinier ». L'espèce est ainsi menacée de disparition du fait des conditions écologiques de plus en plus drastiques mais également du fait du faible taux de viabilité de ses semences.L'écorce de Lannea microcarpa est utilisée seule pour le traitement de maladies infantiles. Mélangée à d'autres espèces elle est utilisée pour soulager les maladies gastriques. L'écorce fournit des fibres utilisées pour la fabrication de cordages. Sa partie intérieure est aussi utilisée en teinturerie.Le bois est de moindre qualité comme bois d'oeuvre ou de service mais il est utilisé comme bois-énergie et bois artisanat. Les feuilles donnent du fourrage pour les animaux en début de saison hivernale. Les exsudats de l'arbre fournissent une gomme comestible. 5.3. Description de l'espèce L. microcarpa est un arbre moyen de 12 m à 15 m de haut pouvant atteindre 20 m. Son diamètre est de 40 à 5cm. Souvent bien branchu, en saison de pluies, son houppier forme une boule verte à feuillage fourni. Les feuilles comprenant 2 à 4 paires de folioles apparaissent dès l'augmentation de l'hygrométrie (avril à mai) qui précède la saison des pluies. Elles persistent sur l'arbre jusqu'au mois de janvier ou février. Les fleurs, petites de couleur blanc jaunâtre s'installent sur l'arbre avant la feuillaison à partir de mars. Elles forment des inflorescences souvent en grappes. Les fleurs sont très visitées par les abeilles qui semblent être un vecteur potentiel de pollen chez cette espèce.En juin les fruits entrent en maturité. Le fruit est une drupe à une graine qui passe de la couleur verte à orange puis rougeâtre à maturité. L'arbre semble en productivité aux environs de l'âge de 8 à 10 ans.Famille : Anacardiaceae Nom botanique : Lannea microcarpa Engl. et K. Krause Synonymes : Lannea djalonica A. Chev. Noms vernaculaires : Péku-ba (Bambara) ; Bu-tyabu (Gulmatchéma) ; Sambga (Moré) 5.5. Origine de l'espèce et principaux centres de diversité L'espèce se rencontre en zone de savane sous les climats du type sahélien et soudanien. La multiplication par voie de semis se fait juste après la récolte des fruits sur l'arbre car les semences mises en conservation perdent très vite leur faculté germinative.Les fruits comprendraient des sucres.Les abeilles semblent être des vecteurs de pollen chez cette espèce favorisant ainsi un mode de reproduction croisée ce qui n'exclut pas l'autogamie.Environ 6500 graines sont dénombrées par kilogramme de semences. Dans les conditions ambiantes de conservation, celles-ci sont tout au plus viables pour une durée de 4 à 6 semaines. Cette contrainte limite les contacts de germoplasme au simple transfert de pollen.L'importante teneur en eau des semences constitue le principal problème dans la conservation des semences de cette espèce. Au champ, on a un faible taux de régénération.Un programme d'amélioration de cette espèce devrait s'orienter vers l'augmentation de masse charnue de la drupe et de la teneur en sucres de celle-ci.Au Burkina, des essais de comportement de l'espèce ont été mis en place. 5.9. Ecologie et Agronomie L. microcarpa est relativement plastique ; elle croît sous des pluviométries annuelles de 400 mm à 1500 mm. Elle préfère les sols profonds mais se rencontre aussi bien sur sols squelettiques ferralitiques ou ferrugineux indurés (sur des collines) que sur des sols limonosableux.Les difficultés de conservation à longue durée des semences, le faible taux de régénération au champ et la forte pression humaine sur les fruits constituent les contraintes majeures au développement de Lannea microcarpa au Burkina.Les recherches supplémentaires nécessaires devraient s'articuler autour :• du mode de conservation des semences ; • de la caractérisation des types ou variations morphologiques des fruits ; • de la multiplication végétative soit par greffage soit par bouturage ;• la prospection et la cartographie des peuplements/ variétés/écotypes ; • la sélection de produits.La collaboration est nécessaire en matière de :• la conservation des semences ;• la prospection et la caractérisation des variations ;• la sélection du matériel de base de reproduction.Detarium microcarpum est une espèce à fruits comestibles à l'état naturel ou bouilli. L'espèce, typique au climat soudanien, couvre plus de deux tiers du territoire national. Ses fruits sont largement commercialisés dans le pays, occasionnant une surexploitation de cette ressource. Malgré cet intérêt, aucune transformation des fruits visant une utilisation industrielle n'est faite.Son bois a des caractéristiques très appropriées pour une utilisation en charbon de bois et pour la fabrication d'objets d'art. Cependant la régénération de l'espèce est presque inexistante, due d'une part aux caractéristiques intrinsèques des fruits, à leur surexploitation, aux passages fréquents de feux de brousse dans les aires occupées par cet arbre et l'exploitation anarchique de son bois.De plus c'est une espèce à vitesse de croissance relativement très lente. En plantation, elle est très tôt attaquée par les rongeurs (écorce du collet).Les fruits consommés à l'état naturel permettraient de se préserver contre la méningite. Son bois est l'un des meilleurs bois d'énergie et pour la fabrication d'objets d'art. De l'écorce des branchages, est retiré des fibres pour la fabrication de cordage.D. microcarpum est un arbuste de 3 à 5 m de haut à tronc brunâtre et souvent bas branchue quand elle est en formation protégée.Famille : Ceaesalpinaceae Nom scientifique : Detarium microcarpum Noms vernaculaires : kagdga (moré) 5.5. Origine de l'espèce et principaux centres de diversité Non connue 5.6. Propriétés Les fruits semblent renfermer diverses vitamines.Le transport des fruits au cours de leur commercialisation favorise des contacts aléatoires des matériels génétiques. Un kilogramme de graines comporte un peu moins de 500 graines dont la viabilité est prolongée à plusieurs années même conservées à sec dans les conditions ambiantes.L'INERA au Burkina a mis en place à maintes reprises des essais d'amélioration de cette espèce. Sa croissance excessivement lente, le passage des feux de brousse et les attaques des rongeurs (écorchage du collet) n'ont pas permis de faire une bonne évaluation de ces essais commencés depuis plus de trois décennies. 5.9. Ecologie et Agronomie L'espèce préfère les sols ferralitiques à ferrugineux gravillonnaires dans les champs et jachères. Il colonise les aires ouvertes par l'activité humaine et les formations forestières sèches secondaires.Vitesse de croissance très lente et mauvaise tolérance aux feux de brousse.• Variabilité dans les fruits ;• Composition chimique de la pulpe et leur intérêt en médecine ;• Conservation et transformation de la pulpe des fruits.• Variabilité dans les fruits ;• Conservation et transformation de la pulpe des fruits.Voir INERA-CNRST Burkina Faso.Les graines de A. macrostachya qui étaient jadis essentiellement consommés en période de disette ou de soudure sont de plus en plus prisées par les populations tant rurales que urbaines. Depuis une décennie l'exploitation des fruits de cette espèce est devenue proliférante. Jadis préparées dans les sauces, les graines sont maintenant bouillies et mangées comme celles du haricot local. Ceci a entraîné une surexploitation des fruits alors que l'arbre qui ne vit que dans les jachères connaît une forte régression de ses peuplements (faible durée de la mise en jachère, feux de brousse etc.). Aucune production, exploitation ou transformation industrielle relative à l'espèce n'est connue.Le bois, de durabilité médiocre est secondairement utilisé comme bois de feu. Les feuilles constituent du fourrage pour les animaux dans le système traditionnel d'élevage extensif. Le bois est aussi utilisé pour la confection de clôtures ; sa gomme se mange ; les feuilles, les jeunes rameaux et l'écorce sont utilisés en médecine traditionnelle.C'est un arbuste généralement bas branchu de taille allant de 2 m et pouvant atteindre 8 m. Son écorce est gris clair se fissure souvent chez les adultes. Les feuilles sont bipennées, les fleurs jaunâtres forment des inflorescences en épi. Les fruits sont des gousses contenant 7 à 8 graines aplaties.Famille : Mimosaceae Nom scientifique : Acacia macrostachya Noms vernaculaires : zanmné, karitiga (moré) 5.5. Origine de l'espèce et principaux centres de diversité L'origine de l'espèce n'est pas connue. Cependant elle se confine en zone de savanes en Afrique occidentale. La recherche sylvicole sur cette espèce reste relativement rudimentaire ; aucune plantation n'étant connue pour cet arbuste.Les graines semblent très riches en protéines végétales et en fer et en vitamines (C). En tant que légumineuses, elle serait fixatrice d'azote atmosphérique.L'espèce est beaucoup proche de A. ataxacantha de laquelle elle se distingue très peu. Le nombre de chromosomes est de 2n = 2x = 26. Le système de reproduction est partiellement lié à des vecteurs de pollen comme les abeilles et le vent, avec un taux d'allogamie multiloci de plus du 1/4. Le poids de ses graines est approximativement de 77 g pour 1000 graines. Le taux de germination est souvent moyen la première année de récolte (60 à 70%). Ce taux décroît rapidement à partir de la deuxième année, du fait de l'infection des graines par des larves de bruches. Les fruits légers sont véhiculés par l'homme et facilement transportés par le vent et l'eau, ce qui permet la colonisation facile des jachères et le contact de gènes. Une thèse de doctorat relative au système de reproduction et à l'évaluation par voie enzymatique des variations génétiques de cette espèce au Burkina a été produite (Ouedraogo, 1997).Aucun programme d'amélioration génétique de cette espèce en cours n'est connu. 5.9. Ecologie et Agronomie C'est une espèce rustique et endémique dans les aires dégradées des savanes. Elle préfère les sols tropicaux ferralitiques à ferrugineux souvent gravillonnaires mais tolère aussi les sols sablo-argileux. L'aire de distribution de l'espèce est comprise entre les isohyètes 600 mm et 1100 mm.Les contraintes majeures à la propagation de cette espèce sont le parasitisme des semences, le brout des animaux, les feux de brousse et la faible durée de mise en jachère des terres arables.Les recherches sont nécessaires aussi bien sur la sylviculture de l'espèce et les attaques parasitaires des fruits que sur les possibilités de la conservation des graines et leur transformation à des fins d'exploitation industrielle.La transformation industrielle des graines, la lutte contre le parasitisme des fruits et l'inventaire des variations intraspécifiques méritent des contributions de divers partenaires et pays.• Recherche sur le parasitisme des fruits en plantation et méthodes de lutte contre ses parasites.• Etude du système de reproduction et de la variabilité génétique chez cette espèce.Balanites aegyptiaca ou dattier sauvage couvre l'ensemble du territoire du Burkina Faso. La pulpe des fruits, les graines, les fleurs et les feuilles sont comestibles et nutritives. Très peu commercialisés, les produits de cet arbre très répandu et rustique ne connaissent pas encore de transformation industrielle. Le fruit est un laxatif. Il est fibreux et huileux et contient de la gomme. Les amandes des fruits fournissent des huiles et sont transformées en savon. Dans les zones les plus sèches du Burkina, c'est encore l'un des principaux arbres qui subsistent.Les feuilles constituent du fourrage. Le bois est utilisé comme bois-énergie et pour la confection de toitures, de hangars et d'objets domestiques. Les branches sèches servent de clôtures. L'arbre peut être planté en haie vive.L'écorce et les racines ont des propriétés laxatives et calment les douleurs gastriques. Certaines parties de l'arbre sont utilisées pour purifier l'eau ou pour lutter contre des maladies (maux de dents).Arbre moyen de 6 à 12 m de haut dont le diamètre peut atteindre 40 cm, il a une écorce grisâtre et fissurée voir crevassée. Il porte des épines fortes atteignant 6 cm de long. Les feuilles sont bifoliolées à folioles entières et souvent ovoïdes. Les fleurs sont jaunes verdâtres et placées en racèmes. L'épicarpe du fruit, jaunâtre à maturité, entoure une pulpe non friable et un noyau ligneux qui renferme une amande légèrement graisseuse. De nombreux essais de semis directs, en pépinière et de multiplication végétative ont montré que la reproduction de cette espèce ne rencontre pas de contraintes majeures.Les amandes pourraient renfermer 40% d'huile tandis que la pulpe contiendrait le même taux en sucres et 7% de saponine ainsi que des féculents et des protéine (20-30%).L'étendue des superficies couverte par le dattier sauvage laisse envisager qu'il pourrait renfermer des variations au sein de l'espèce. Jusqu'ici cette variation n'a été observée qu'au niveau de la taille des individus. Le nombre de chromosome est 2n = 18 selon Goldblatt (1979) contrairement à 2n = 16 que propose Mangenot et Mangenot (1957). La pollinisation s'effectuerait par voie de vecteurs de pollen, les insectes étant présumés être les transporteurs de pollen.On compte en moyenne 1200 graines par kilogramme de fruits. Les semences sont du type orthodoxe et se conservent aisément plusieurs années. Pour lever la dormance, un prétraitement à l'acide est utile mais ceci peut être remplacé en décortiquant les fruits. Le transit des fruits dans l'estomac des animaux faciliterait la germination des graines de sorte que le flux de gènes peut être grand en rapport avec la transhumance des éleveurs. Des essais de comportement et des essais comparatifs de provenances ont été établis Burkina Faso sur au moins trois stations expérimentales. La faible vitesse de croissance de l'arbre et le dessèchement périodique des cimes sont à noter.Les essais conduits visent à améliorer la qualité des fruits et la production fourragère chez cette espèce. La méthode utilisée est la sélection massale des phénotypes désirés.Le dattier sauvage se rencontre sous des pluviométries annuelles variant entre 250 mm et 1000 mm. Il supporte une très large gamme de températures allant de 20°C à 45°C. Il préfère des sols profonds notamment ceux sableux à sablo-limoneux mais pousse sans contrainte sur les sols tropicaux lessivés ferralitiques mais rarement sur des sols argileux. Une prospection de la distribution de cette espèce au Burkina a été conduite, il y a une dizaine d'années. Les cartes de distribution tant au niveau de l'Afrique que spécifiquement au Burkina existent. L'espèce se propage bien par semis que par boutures.Pas de transformation industrielle des produits de l'espèce qui susciterait un intérêt pour sa plantation et son utilisation dans le système agraire. Au Sahel et consécutive aux années successives de sécheresse, on observe une forte mortalité de B. aegyptiaca.• Prospection et sélection de variétés performantes pour la production de fruits et de fourrage.• Recherche sur la transformation des produits pour intéresser le marché international.• Etude de l'héritabilité des caractères qui pourraient faire l'objet de sélection.Tous les éléments constituants les besoins de recherche complémentaires ci-dessus.Bombax costatum ou faux kapokier est rencontré au Burkina Faso en zone soudanienne. Les pieds de cette espèce sont protégés dans les champs et jachères et font partie du patrimoine familial. Les fleurs sont la partie la plus exploitée de l'arbre. En particulier, leurs capsules, fraîches ou séchées, servent à faire des sauces ou à engluer de nombreux mets. Sur certains sites, la fructification reste exceptionnelle en raison de l'exploitation importante des fleurs. Ce phénomène conduit à une éradication des possibilités de régénération naturelle de l'espèce par voie de semis. La commercialisation des capsules de B. costatum est relativement lucrative pour les femmes des campagnes. Aussi, la pression élevée sur le kapokier tend donc à le faire disparaître des paysages forestiers de savane.Le bois et les exsudats de l'arbre sont prélevés pour des usages domestiques : bois de feu, bois d'oeuvre (mortier, pilon, pirogue et ustensiles de cuisine) et pour alimentation des enfants. L'écorce, les racines et les jeunes ramifications entrent dans la préparation et la posologie de certains traitements traditionnels.Le kapok issu des fruits sert au rembourrage de coussins et quelques fois de matelas.Arbre pouvant atteindre 25 m de haut, il a une forme étagée des ramifications à son jeune âge. Il porte des épines aussi bien sur les rameaux que sur son tronc. Son écorce est lignifiée et épaisse de couleur brune à grise dont la tranche est rougeâtre. Ses feuilles sont composées digitées à longs pétioles. Les fleurs solitaires, en forme de tulipe, ont une couleur variant entre le jaune et le rouge. Elles apparaissent sur l'arbre quand celui-ci ne porte plus de feuilles (novembre à février).Les fruits sont des capsules ellipsoïdes brunes foncées à cinq valves qui libèrent de nombreuses graines et du kapok lorsqu'elles s'ouvrent. Sa faculté de reproduction par drageonnage de souche laisse entrevoir des possibilités de succès de domestication par bouturage et/ou par marcottage. Au Burkina aucune plantation monospécifique de cette espèce n'est connue. Avant le semi, les graines doivent être ébouillantées puis trempées à l'eau pendant vingt quatre heures. 5.6. Propriétés Données non connues. 5.7. Ressources génétiques de l'espèce L'observation empirique de la fructification sur des individus isolés permet de croire que l'espèce pourrait avoir un taux d'autogamie prononcé ou que ce régime de sexualité est privilégié dans des conditions d'isolement.On dénombre approximativement 17 000 graines par kilogramme qui de fait de leur faible poids, peuvent être transportées par le vent ou par l'eau et par conséquent assurer un important flux de gènes.Aucun programme d'amélioration génétique de cette espèce n'est connu au Burkina. 5.9. Ecologie et Agronomie L'espèce préfère les champs de culture ou les jachères ; elle prospère sur les sols gravillionaires et supportent les sols latéritiques. Elle est rencontrée au Burkina sous des pluviométries allant de 600 mm à 900 mm. Du fait de l'épaisseur de la structure de son écorce l'arbre est très résistant aux passages fréquents des feux de brousse.L'ébranchage est le mode utilisé pour le prélèvement des fleurs ; ceci entraîne des blessures fréquentes de l'arbre et surtout une perte massive des parties qui pourraient renouveler le stock de matériel végétal.Le manque de matériel de reproduction est une contrainte majeure à la régénération naturelle de l'espèce.La recherche sur la domestication en vue de la réalisation de plantations de l'espèce est devenue incontournable au Burkina. Améliorer quantitativement la production de fleurs chez cette espèce soulagerait bien des populations. Des recherches sur la conservation et les transformations des parties utilitaires pourraient permettre d'alléger les pressions sur les pieds en particulier en année de mauvaise floraison.• Inventaire et sélection d'arbre mère apte à donner une production massive de fleurs.• Etude des possibilités de conservation et de transformation de la ressource utilitaire. • zone de forêt dense humide qui est subdivisée en forêt dense ombrophile composée de la plupart des espèces caractéristiques de ce type de forêt et en forêt dense tropophile comportant des essences secondaires et des essences héliophiles à feuilles caduques.• zone de mosaïque forêt-savane pré-forestière arborée aux forêts sèches denses;• zone de savanes boisées et herbeuses jusqu'au 10° parallèle, allant de la forêt claire aux savanes arborées ou arbustives en passant par les galeries forestières plus ou moins denses;• zone de steppe à épineux avec des palmeraies à Borassus sp., sur une étendue sablonneuse, et de savanes arborées ou arbustives plus ou moins clairsemées, au delà du 4° parallèle.La situation actuelle des espèces ligneuses alimentaires est mal connue. Il n'existe pas de données complètes et fiables sur l'ensemble de ces espèces. Aucune politique du pays en matière des Espèces Ligneuses Alimentaires n'a été définie. Toutefois, l'Office de Conditionnement et de Contrôle de Produits Agricoles ( ORCCPA) veille sur la qualité et la quantité des produits forestiers alimentaires destinés à l'exportation.Espèces Ligneuses Alimentaires • le ministère en charge de l'agriculture • le ministère en charge de l'environnement, des eaux et forêts • l'Université de Bangui • les structures de développement: ECOFAC, PDRN, Zangha-Sangha, Programme «Forêt de Bangassou », PDSV, PAPAAV, ACDA, ICRA;En zone de forêt La République Centrafricaine, pays en développement, dépend étroitement de l'exploitation des ressources génétiques forestières pour son développement. En effet les produits primaires (agricoles, pastoraux, miniers) contribuent à plus d'un tiers du Produit National Brut (PNB), à plus de 2/3 de l'emploi et à plus de la moitié des devises du pays. Cette dépendance excessive vis-à-vis des ressources naturelles n'est pas sans conséquence sur l'environnement.Les plantations de type industriel, d'introduction récente à occupé de grandes étendues de forêt. Elles ont entraîné le défrichement de ces forêts, avec une destruction systématique de certaines espèces. A cela s'ajoute l'effet accentué des feux de brousse, l'agriculture traditionnelle de type extensif qui constituent une menace dangereuse pour l'habitat des espèces végétales en générale et celui des espèces ligneuses alimentaires en particulier.L'exploitation industrielle des forêts qui a débuté en 1947 de façon artisanale est devenue de nos jours une activité procurant d'importantes recettes à l'Etat (20% des recettes d'exploitation et 6% du Produit Intérieur Brut). Selon le récent inventaire de reconnaissance, la forêt secondaire qui domine une partie du territoire est liée aux exploitations forestières des dernières décennies. A l'heure actuelle, 2.069.106 ha de forêts de production de la région Sud-Ouest du pays sont concédés à 6 sociétés d'exploitation forestière installées dans le pays. L'exploitation induit de profonds changements dans le milieu forestier ; ces changements sont d'ordre structurel, écologique et évolutif.Les savanes anthropiques sont des îlots de savanes périforestières qui résultent de la dégradation de la forêt pour l'agriculture itinérante sur brûlis, l'exploitation pour le bois d'oeuvre et de service, les incendies répétées et d'autres causes comme la chasse, le pâturage des troupeaux, la récolte du miel. Cette dégradation a certainement entraîné la disparition d'espèces ligneuses alimentaires.La savane boisée centrafricaine constitue un milieu qui offre aux populations locales une étendue de ressources végétales (arbres, arbustes, lianes). Chacune des espèces a des utilisations précises dont alimentaire.Le braconnage excessif des mammifères vivant dans les savanes du Nord du pays est un danger immense pour les espèces ligneuses alimentaires zoochores. Il s'agit principalement des aires protégées qui sont des réserves de faune classées par le Code forestier comme des domaines de l'Etat et gérées comme tel. Ces réserves couvrent une superficie totale de 62.000 km² dont la plupart sont situées dans la zone de savane. Deux réserves intégrales d'une superficie totale de 4.750 km² sont situées dans le massif forestier du sud-ouest. Ces mesures de conservations in situ ne visent pas particulièrement des espèces ligneuses alimentaires rares ou menacées de disparition mais tout l'ensemble de l'écosystème forestier.Les travaux de conservation ex situ des espèces ligneuses alimentaires ne sont pas totalement recensés dans tout le pays. Toutefois, on note des activités de conservation d'une dizaine d'espèces ligneuses alimentaires sur le site ECOFAC de Ngotto ; des parcs à bois sont mis en place récemment dans les centres de recherche de l'Institut Centrafricain de la Recherche Agronomique ainsi qu'à l'Université de Bangui (Institut Supérieur de Développement Rural). Les espèces ligneuses alimentaires des savanes sont les espèces les plus consommées en RCA parce qu'elles sont rencontrées dans la majeure partie du pays, composée de savanes arborées, arbustives et des galeries forestières le long des cours d'eau, qui à elles seules représentent plus de 80% de la superficie du pays soit environ 498.400km2 . Les précipitations dans cette zone varient de 600 à 1200 mm d'eau par an. Ces régions de savanes arborées, savanes arbustives et de galeries forestières sont les plus peuplées. La consommation des espèces ligneuses alimentaire est d'une importance capitale dans cette zone.La République Centrafricaine (RCA) est un pays à vocation agricole où plus de 80% de la population pratique les cultures du coton, du café, tabac, manioc, maïs, riz, arachide, la chasse, la pêche, etc., ce qui fait que les espèces ligneuses alimentaires ne font pas partie, du moins pour l'instant, des priorités nationales. Toutefois, les espèces ligneuses alimentaires comme dans toute tradition africaine, occupent une place dans la vie quotidienne des centrafricains.La quasi-absence de la littérature sur les espèces ligneuses alimentaires en RCA, le manque de temps disponible pour la collecte des informations fiables à l'intérieur du pays dans le cadre du présent rapport, ne nous ont pas permis de fournir en grande partie les informations demandées dans le canevas pour l'élaboration des priorités dans le choix des espèces prioritaires pour le travail en réseau.Cependant la tenue de cet atelier sur les espèces ligneuses alimentaires est la bienvenue pour la RCA. Elle permettra de jeter les bases pour une étude sérieuse et approfondie sur les espèces ligneuses alimentaires. Cependant, une description sommaire de chaque espèce retenue est faite grâce à quelques rares littératures.Consommation des drupes à l'état frais et des noyaux à l'état sec.Espèce de forêt dense humide semi-décidue, elle se distingue des autres Irvingia par ses petites feuilles à base cunée ou légèrement arrondie. C'est un grand arbre à feuillage sempervirent atteignant 35 m de haut et 120 cm de diamètre. La cime est hémisphérique, dense, à branches dressées, très ramifiées et sinueuses. Le fût est légèrement sinueux, cylindrique, à contreforts très élevés, concaves et non ramifiés. Les feuilles sont simples, entières et alternes. Le pétiole est long de 1 à 1,5 cm, grêle et canaliculé avec présence de stipules falciformes, d'environ 2,5 cm de long. Le limbe est elliptique ou obové-elliptique 5 à 11 cm/2 à 6 cm, accuminé à l'apex, cunéiforme à la base, glabre, coriace et luisant sur les deux faces. La nervure primaire est saillante sur les deux faces avec 5 à 10 paires de nervures secondaires saillantes sur les deux faces.Les fleurs sont des racèmes axillaires. Ce sont de petites fleurs jaunâtres à blanc-verdâtre, hermaphrodites. La floraison a lieu de novembre à mars-juin. Les fruits sont drupes oblongues, comprimées, ressemblant à une petite mangue, de dimensions 5 à 6 cm/4 à 5 cm. Ils sont de couleur jaune-verdâtre avec une pulpe charnue fibreuse, entourant un grand noyau dur. Ces fruits sont comestibles. La fructification a lieu d'avril à juillet-septembre. On distingue 4 à 8 paires de folioles opposées à subalternes, plus une terminale. Le limbe est oblong-lancéolé, 12 à 18 cm/3 à 8 cm, longuement acuminé à l'apex, arrondi, cunéiforme ou parfois asymétrique à la base, plus ou moins coriace, glabre et luisant en dessus, souvent pubescent en dessous. La nervure primaire est saillante en dessous. On a 8 à 12 paires de nervures secondaires, camptodromes, saillantes en dessous. Les fleurs sont des panicules étroites et lâches; elles sont petites, hermaphrodites, roussâtres et couvertes de poils étoilés. La floraison a lieu en février -mars. Les fruits sont des drupes ellipsoides-allongées, de 1,5 à 6 cm sur 1 à 3 cm, charnues, violacées à maturité, avec une pulpe à odeur de térébenthine. La fructification a lieu en août. C'est une espèce de forêt dense humide sempervivente et de forêt semi-décidue, à grands fruits ovoïdes jaunes pesant jusqu'à 10 kg avec une odeur aromatique typique. C'est un petit arbre atteignant 20 m de haut et 50 cm de diamètre. La cime est très dense, profonde, large, à branches retombantes. Le fût est droit, court, cylindrique ou légèrement sinueux, parfois empatté cannelé à la base. Les feuilles sont simples, alternes, entières. Le pétiole est long de 0,5 à 1 cm, épais, canaliculé ; le limbe elliptique -oblancéolé mesure 15 à 40 cm/6 à 17 cm. Il est arrondi et brusquement acuminé à l'apex, arrondi à subcordé à la base, subcoriace, glabre ou légèrement pubescent en dessous. La nervure primaire est déprimée au dessous, très proéminente en dessus ; on a10 à 12 paires de nervures secondaires saillantes en dessous, camptodromes, réliées près de la marge.Les fleurs sont des cymes insérées sur le tronc et sur les vieux rameaux. Elles sont hermaphrodites ou mâles, assez grandes, jaunâtres, pubescentes -ferrugineuses. La floraison a lieu de septembre à avril. Les fruits sont des syncarpes cylindriques -ovoïdes, jaunes, de 30 à 50 cm/10 à 30 cm. Ils contiennent de nombreuses graines aplaties noyées dans la pulpe. La fructification a lieu en avril -juillet.• Famille: Annonaceae • Nom botanique: Anonidium mannii. ESPECE N°4: Xylopia aethiopica (Annonaceae)Les graines sont utilisées comme épices et remèdes.Espèce de sous-bois de la galerie forestière, très bien connue par les graines, c'est petit arbre atteignant 17 m de haut et 45 cm de diamètre. La cime est ombelliforme, plus ou moins ouverte, à branches étalées et souvent retombantes. Le fût est droit, cylindrique ou légèrement cannelé et empatté à la base. Les feuilles sont simples, entières et alternes. Le pétiole est long d'environ 0,5 cm, épais, légèrement coudé et glabre. Le limbe est elliptique ou ové-elliptique, de dimensions 8 à 10 cm / 3 à 5 cm, acuminé à l'apex, obtus ou arrondi à la base, glauque en dessus, pubérulent en dessous chez les jeunes feuilles. La nervure primaire est saillante et élargie à la base ; on a 7 à 8 paires de nervures secondaires, peu saillantes en dessous et camptodromes. Les fleurs sont des fascicules de 2 -4 ou solitaires, petites, de couleur blanc verdâtre. La floraison a lieu en mars -novembre. Les fruits sont agrégés, très nombreux, de 5 à 6 cm / 0,4 à 0,6 cm, rougeâtres puis noirâtres à maturité. Ils contiennent 4 à 8 graines noires par carpelle entourées à la base d'un petit arille cupuliforme. La fructification a lieu en octobre -mars.• Famille : Annonceae • Nom botanique : Xylopia aethiopica.5.1. Justification : Consommation des graines 5.2. Description C'est une espèce de forêt dense humide semi-décidue, bien connue par ses grands fruits. C'est un arbre moyen atteignant 20 m de haut et 80 cm de diamètre. La cime est hémisphérique à branches plus ou moins droites et dressées. Le fût est légèrement tortueux, plus moins cylindrique, bosselé, élevé, à contreforts étroits, souvent cannelé à la base. Les feuilles sont simples, entières, alternes. Le pétiole est très épais et mesure 1,2 cm de long. Les stipules sont aiguës, en cornet, caduques, laissant sur les rameaux des cicatrices annulaires.Le limbe est oblong ou ové-oblong, de 10 à 20 cm / 5 à 10 cm, acuminé à l'apex, arrondi ou subcordé et oblique à la base, plus ou moins papyracé, glabre et luisant en dessus. La nervure primaire est saillante en dessous ; on a 8 à 15 paires de nervures secondaires saillantes en dessous, brochidromes. On distingue des fleurs mâles et femelles en grosses boules axilliaires verdâtres qui fleurissent en octobre -fevrier. Les fruits sont grands, globuleux, d'environ 30 à 40 cm de diamètre, spongieux et contenant des petites graines comestibles. La fructification a lieu en fevrier -mars. Le beurre de qualité médiocre sert de combustible ou est transformé en savon, en bougies et en enduits de préservation des huttes. Les résidus de la transformation des graines de karité sont utilisés comme fourrage.Les arbres qui ne produisent plus sont abattus pour fournir un bois d'oeuvre dur, rouge, résistant aux termites, et d'usages multiples. On l'apprécie aussi beaucoup comme bois de feu ou à charbon de qualité excellente. Le beurre s'emploie localement dans la médecine traditionnelle en particulier pour les pommades ou comme cosmétique. Les extraits de racines ont des vertus curatives et sont utilisés pour des bains des nourrissons. Les racines et leurs écorces ont encore d'autres emplois curatifs.C'est une espèce de savane du type soudanien et guinéen. C'est un arbre à feuilles caduques de 10 à 15 m de haut (rarement jusqu'a 25 m), trapu, avec une cime sphérique ou hémisphérique. L'écorce particulièrement épaisse, liègeuse, profondément crevassée en plaques rectangulaires, protège efficacement les vieux arbres contre les feux de brousse. Le diamètre du fût est de 180 cm. Les rameaux trapus portent en grosses touffes serrées les feuilles allongées, finement pubescentes. Les feuilles sont simples et entières, longues de 12 à 25 cm et larges de 4 à 7 cm avec le bord ondulé ; le pétiole long de 5 à 15 cm. Les fleurs sont en touffes de 30 à 40 cm. Elles sont vert-jaunâtre, en forme de corymbes et situées à l'extrémité des rameaux déjà défeuillés pour la plupart. Le fruit est une baie elliptique vert-jaune ou jaune, de 5 à 8cm de long et de 3 à 4 cm de large, entourée d'un péricarpe épais (4 à 8 cm), très charnu, sucré, beurré, visqueux. Il ne contient en général qu'une seule graine ovale arrondie, brun rouge (noix de karité) longue de 2,5 à 4 cm et munie d'une coquille luisante, fragile, de 1mm d'épaisseur. La fructification a lieu d'avril à juin. Les graines riches en matières grasses et en protéines. Elles sont transformées en un fromage végétal de goût relevé, utilisé pour assaisonner les sauces.En pharmacopée traditionnelle, on utilise les folioles pour la cicatrisation des brûlures externes, le traitement des éléphantiasis. Les feuilles en cataplasmes traitent les dermatoses, filarioses, oedèmes et bronchites ; les gousses traitent la dysenterie ; les écorces et les racines sont utilisées pour traiter la stérilité, la bronchite, les trachéites, la pneumonie, etc. Les bois, de couleur jaune-blanc, sont relativement durs et conviennent à la fabrication des ustensiles agricoles.C'est une espèce assez caractéristique du domaine soudano-guinéen. C'est un arbre de 10 à 20 m de hauteur, avec une large cime étalée en parasol, au fût robuste cylindrique et court. Il est facile à reconnaître à l'époque de la floraison grâce aux inflorescences en boules rouges ou orangées suspendues à l'extrémité d'un pédoncule de 20 à 30 cm. Espèce fixatrice d'azote, elle est très répandue dans les champs où elle est protégée par les paysans. Les feuilles sont vert-foncées, biparipennées avec 14 à 30 paires de pinnules plus ou moins opposées avec chacune 50 à 70 paires de folioles de 1 à 1,5 cm de long et 3 mm de large. Les jeunes arbres et les rejets de souches ont des feuilles plus grandes. Les rachis sont grisâtres à brun clair et duveteux. Les fleurs sont des boules rouges ou orangées suspendues à de longs pédoncules, quelquefois en grappes et ayant 5 cm de diamètre. Elles sont hermaphrodites. Les fruits sont longs de 45 cm environ et largeur de 2 cm, légèrement arquées, suspendues en grappes aux réceptacles des fleurs en forme de massue. Ses gousses s'ouvrent à maturité sur l'arbre et contiennent de nombreuses graines noires, aplaties enrobées dans une pulpe jaune riche en saccharose. La floraison et la fructification ont lieu pendant la saison sèche. On utilise des extraits d'écorce pour soigner les maladies de la peau et les maux de dents.C'est une espèce de savane du type soudanien-guinéen. C'est un arbre atteignant 6m de hauteur, qui se distingue des autres espèces de vitex d'Afrique Occidentale, par ses feuilles. Elle prospère sur des stations où la nappe phréatique est subaffleurante, dans des bas -fonds. Les feuilles sont en général simples, entières et non palmées. Dans la jeunesse elles ont, de même que les bourgeons et les jeunes rameaux, un revêtement duveteux épais de fins poils ; à l'âge adulte, ce revêtement n'existe que sur la face inférieure des feuilles. Le pétiole est rougeâtre sur le dessus. Les fleurs sont de longues cymes de 15 cm environ, verdâtres, avec des pétales pourpre violet. Les fruits sont ovoïdes d'environ 1,5 cm de long, verts, ponctués de blanc puis de noir et contiennent trois graines.• Famille :Verbenaceae Il offre, grâce à sa couronne étalée, un bel ombrage.C'est une espèce de zone tropicale semi-aride. C'est un grand arbre atteignant 30 m de hauteur et 1 m de diamètre, à tronc court, sempervirent, sauf dans les régions semi-arides. Le tamarinier possède une grande cime étalée. L'écorce est grise, très crevassée et écailleuse, même sur les ramifications ; sa tranche est rouge pâle, jaune à l'extérieur. Les feuilles sont alternes, pensées, à rachis de 7 à 12 cm portant 9 à 12 paires de folioles, arrondies aux deux bouts, opposées, d'environ 6 sur 18 mm. Les fleurs sont jaunâtres, à dessins rouges, en grappes instables, de 3 à 5 cm de long, groupées par 5 à 10 seules ou en cymes. Les bractées sont caduques. Le calice est à 4 lobes inégaux, imbriqués de couleur jaune alors que la corolles est à 3 pétales oranges, veinés de brun rouge. La fleur comporte 3 étamines et l'ovaire est velu. La floraison a lieu de décembre à mai. Les fruits sont droits ou légèrement courbés, cylindriques, aplatis de 5 à 15 cm de long et 2 à 3 cm d'épaisseur, avec 1 à 10 graines brunes, luisantes, dans une pulpe brune ou rouge brun. A maturité, ils sont brun foncé, mais avant, la couleur est brun jaune. La maturité a lieu en décembre-janvier. • La pulpe huileuse, les graines et la moelle riche en amidon sont des aliments de grande importance.• Les fruits contiennent un jus doux qui se gélifie plus tard et donne du lait consommable.Espèce des zones semi-arides et sub-humides de l'Afrique tropicale, le borassus est un a haut palmier typique, avec un long tronc droit mesurant jusqu'à 60 cm de diamètre. Les vieux troncs sont lisses, les jeunes sont couverts des restes de pétioles gris, de 30 à 40 cm de long. Les empreintes des feuilles bien visibles à l'état frais, puis elles pâlissent. Les feuilles sont flabelliformes et ont jusqu'à 3,60 cm de long. Les fleurs sont dioïques, vertes, inflorescences mâles en spadices ramifiées, jusqu'à 3 m de long ; les inflorescences femelles sont non ramifiées et plus courtes. Les fruits sont des grappes pendantes et sphériques, de couleur orange à brune, en régimes de 25 à 50 kg chacun. La pulpe blanchâtre, huileuse, juteuse, fibreuse en albumen, qui donnent à maturité des graines ligneuses, brunes, creuses et de 5 à 8 cm de grosseur.• Famille : Arecaceae • Nom botanique : Borassus aethiopum • Synonyme : Borassus flabellifer L. var. aethiopum Warb. The Congo food tree species policy is basically included in the global forest resources policy which is part of the National Forestry Plan of Action (PAFN). This policy which deals with Non-Wood Forest Products (NWFPs) rather than specifically the food tree species, aims at a sustainable management of these resources in term of sustained production while ensuring the conservation of the forest ecosystems and the biodiversity. However, NWFPs are still informally exploited and marketed. Ten priority food tree species for the country were identified: Irvingia gabonensis, Treculia obovoides, Grewia coriacea, Raphia hookeri, Raphia sp. Chytranhus mortehani, Trichoscypha acuminata, Afrostyrax lepidophyllus, Cola acuminata, Trilepisium madagascariense.Face à l'exploitation non-rationnelle des forêts et à l'appauvrissement consécutif des massifs forestiers du Chaillu et du Mayombe, le Gouvernement Congolais avait adopté en 1974, une politique forestière globale dont le fondement reposait sur la vision d'une gestion rationnelle des forêts, en vue de garantir une production pérenne soutenue. Cette politique était soutendue par les stratégies suivantes :• la connaissance rationnelle et l'aménagement des forêts ;• la conservation de la faune par la création des aires protégées ;• le développement du déboisement et du reboisement ;• le développement de la transformation locale du bois. Bien que le code forestier actuel prévoie l'octroi de permis spéciaux pour l'exploitation commerciale des produits forestiers non ligneux (PFNL), les PFNLs sont exploités et commercialisés librement à l'exception de quelques produits.Ces activités d'exploitation revêtent donc un caractère informel. A cause de cet état de choses, l'Administration forestière ne dispose d'aucune donnée statistique sur ces productions.Les plantes alimentaires « sauvages » constituent un groupe important de produits forestiers non ligneux. Elles font l'objet, depuis toujours et aujourd'hui encore, d'une exploitation et d'une commercialisation intenses dans le pays. Elles représentent une source substantielle d'aliments. Elles devraient faire l'objet d'une gestion durable pour éviter l'épuisement ou la disparition à court terme.Tenant compte du nouveau contexte politique, social et économique au niveau national, et des exigences de la communauté internationale en matière d'environnement, la République du Congo, a défini en 1995, dans le cadre du Plan d'Action Forestier National (PAFN), une nouvelle politique fondée sur la gestion durable des ressources forestières garantissant leur production soutenue, tout en assurant la conservation des écosystèmes forestiers et celle de la biodiversité.Ainsi, la connaissance, la conservation et la valorisation des produits forestiers non ligneux constituent l'un des maillons de cette politique. Depuis le début des années 1990, dans le cadre des programmes de conservation de gestion durables des aires protégées réalisées avec l'appui du GEF, de l'Union Européenne et de l'USAID, des actions d'inventaire et d'utilisation durable des PFNL ont été initiées. Ces actions sont encore malheureusement timides. La priorité ayant été donnée à la conservation de la faune. Aujourd'hui, il s'avère nécessaire qu'une réflexion soit constamment portée sur la conservation, la production, l'évaluation réelle des produits forestiers non ligneux. Cela permettra de définir un plan d'action beaucoup plus consistant pour le moyen et le long terme. (PAFTC).Le secteur forestier occupe la deuxième place dans les recettes de l'Etat après le pétrole. Il est également le premier employeur du secteur privé avec près de 28% de la population active. Le Gabon, comme d'autres pays du monde, a signé la Convention sur la Diversité Biologique de juin 1992 à Rio, et l'a ratifiée en mars 1997. Cela prouve que les \"Espèces Ligneuses Alimentaires\" qui font partie intégrante de cette biodiversité et dont il est question ici, ne représentent pas uniquement des sous-produits, mais des produits de grande importance dans le cadre de la diversification des ressources alimentaires autres que les produits agricoles pour le bien être des populations.Comme le disait, Auguste Chevalier cité par De Wildeman (1909) dans le journal d'Agriculture Tropicale, \"Plus je parcours cette contrée, plus je constate combien sont variées les choses qu'on y peut faire et qui contribueront tôt ou tard à la richesse de ce vaste pays... non seulement dans chacune des provinces naturelles où les habitants ont leurs aptitudes spéciales; mais les cultures alimentaires même ne sont pas identiques. Je crois que dans ces dernières années nous avons tous eu les yeux fixés beaucoup trop exclusivement sur le caoutchouc et le coton, etc. Au lieu de tendre à uniformiser les productions de ce vaste domaine, il serait bien plus intéressant de chercher à faire produire à chaque région les produits qui sont sa spécialité et que les provinces voisines ne possèdent pas. Au Gabon, Le secteur forestier occupe une place importante dans la création de revenu. Les espèces ligneuses alimentaires constituent des produits de grande importance dans le cadre de la diversification des ressources alimentaires. Les espèces ligneuses alimentaires prioritaires du pays sont : Irvingia gabonensis, Dacryodes edulis, Cola nitida, Coula edulis, Panda oleosa, Dacryodes macrophylla, Dacryodes buettneri, Baillonella toxisperma, Afrostyrax lepidophillus, Trichoscypha acuminata. Les utilisations, la taxonomie et divers travaux réalisés dans le pays sur Irvingia gabonensis sont présentés.In Gabon, the forest sector plays a significant role in the income generation. Food tree species are of great importance in the context of the diversification of food resources. The priority food tree species of the country are: Irvingia gabonensis, Dacryodes edulis, Cola nitida, Coula edulis, Panda oleosa, Dacryodes macrophylla, Dacryodes buettneri, Baillonella toxisperma, Afrostyrax lepidophillus, Trichoscypha acuminata. The uses, taxonomy and various studies completed in the country on Irvingia gabonensis are presented. • Irvingia gabonensis est très prisé pour ses amandes dans la sous-région.• L'espèce a une large distribution, bien que certains groupes ethniques favorisent son implantation.• Les amandes sont consommées à travers tout le pays. Cette consommation diffère selon les ethnies ; elle est régulière chez les unes et momentanée chez les autres.• Ce produit fait l'objet de commerce informel ; on ne dispose pas de statistiques fiables.• L'espèce est très liée à l'homme. Elle est présente dans les champs vivriers, les jardins de case et même dans les cours des villages.• Les amandes sont transformées en « pain d'odika » (chocolat du Gabon) qui sert d'aliment dans les sauces. L'utilisation industrielle n'a connu de succès à cause de la production qui est irrégulière.• Le décocté des écorces est donné en boisson pour traiter les troubles gastro-intestinaux et ainsi que les affections blennorragiques.• La poudre des écorces est prescrite en cataplasmes pour soigner les plaies.• Le bois sert à la grosse charpente (construction).C'est un grand arbre pouvant atteindre et dépasser 35 m de haut. Le fût est cylindrique et la cime est très développée avec des branches très ramifiées. L'écorce est gris jaunâtre, peu écailleuse. Les feuilles sont simples, alternes de taille moyenne, elliptiques, glabres et coriaces. Les fleurs sont petites et odorantes. Les fruits sont des drupes jaune-verdâtres, ressemblant à des mangues.On le rencontre à une densité de 3 à 5 pieds à l'hectare. Sa fructification est tardive (10 à 15 ans). La dissémination est faite par les gros mammifères (éléphants) et la pollinisation est assurée par les hyménoptères (abeilles) et autres insectes.L'espèce aurait une origine probable dans le grand massif forestier Guinéen-Congolais. L'espèce n'est pas domestiquée, mais protégée lors de défrichement. Son évolution est spontanée. Le centre de grande diversité génétique serait les forêts du bassin du Congo.Pour les déterminations de la valeur nutritionnelle des amandes, on s'est référé aux travaux de Okafor (1975). Les amandes auraient 71,91 % de lipides et 8,68 % de protéines. Quant aux propriétés mécaniques, le bois a une durabilité et une résistance très grande (UNESCO, 1980).Les variations inhérentes aux caractéristiques phénotypiques sont observables, mais des études plus approfondies n'ont pas encore démarré. Toutefois le programme sur la domestication des arbres fruitiers locaux est axé sur le type et l'importance de la variabilité au sein et entre les individus d'une même population. Les essais de provenances ont été mis en place à 85 km (Ndouaniang) et à 150 km, (Ekouk) de Libreville. 5.8 Amélioration génétique de l'espèce L'objectif principal de cette opération est d'obtenir des arbres à fructification précoce, afin qu'on valorise à long terme les parcs et les vergers.Des prospections ont été conduites sur l'espèce par une enquête socio-économique à travers tout le pays en 1994. L'espèce a une large répartition sur les terres fermes et dans les forêts inondées. Le niveau de diversité des principaux paramètres: les houppiers, la base du tronc avec ou sans contreforts; la forme des fruits ; la grosseur des amandes. Les semis ont une levée exceptionnelle (95%). La propagation se fait aussi par boutures et par marcottes.Les méthodes de propagation. 5.11. Recherches supplémentaires : Dans le domaine de la physiologie végétale. 5.12. Domaines (activités de recherche ou nom) de collaboration potentielle avec les autres pays. Dans le cadre du projet IFAD/ICRAF, certaines activités sont menées sur la domestication des arbres fruitiers locaux et plantes médicinales. Quatre pays y sont représentés: Cameroun, Nigeria, Guinée-équatoriale et Gabon.Le projet \"Domestication des fruitiers locaux et plantes médicinales de l'Afrique de l'Ouest et du Centre\" englobe trois volets: les marchés des produits issus de l'espèce ; la vulgarisation et les méthodes de multiplication végétative.Pas de réseaux pour le moment. The Guinea policy on food tree species is included in the overall forest resources policy, which is expressed by the forestry Act. There is no specific structure in charge of the conservation or the promotion of these species. However, almost six ministries are involved through their technical departments, in the implementation of the national forest resources management policy. The ten priority food tree species in the country are: Vitellaria paradoxa, Parkia biglobosa, Xylopia aethiopica, Parinari excelsa, Detarium senegalensis, Anacardium occidentale, Landolphia senegalensis, Anisophyllae laurina, Adansonia digitata and Tamarindus indica. Au plan national, il n'y a pas de structure chargée exclusivement des espèces ligneuses alimentaires. Cependant, en matière de gestion des forêts, plusieurs institutions ont des responsabilités plus ou moins étendues. Il s'agit :• Le Ministère de l'Agriculture, des Eaux et Forêts disposant en son sein :• La Direction Nationale des Eaux et Forêts ayant en son sein la Division de l'économie, législation forestière, faune, protection de la nature et autres divisions.• La Direction nationale de l'agriculture : dans laquelle se trouve le Service national de la promotion rurale et de la vulgarisation, l'Institut de Recherche Agronomique de Guinée. • Le Ministère de l'Industrie, des Petites et Moyennes Entreprises, chargé de l'entretien, la vulgarisation et la transformation des produits forestiers comestibles.• Le Ministère des Travaux Publics et de l'Environnement comprend notamment une Direction nationale de l'environnement chargée de mettre en oeuvre la politique du gouvernement en matière d'environnement.• Le Ministère de l'Enseignement Supérieur et de la Recherche Scientifique qui a en son sein l'Institut Supérieur Agronomique et Vétérinaire Valéry Giscard d'Estaing (IVGE) à Faranah. Il forme des Ingénieurs en Agriculture, Elevage, Forêt et Génie Rural.• Le Ministère de l'Enseignement Technique et de la Formation Professionnelle dont dépend l'Ecole Nationale des Agents Techniques des Eaux et Forêts (ENATEF) créée en 1992 avec l'appui de la Coopération suisse.• Le Ministère de l'Administration Territoriale et de la Décentralisation dont dépendent les communautés rurales de développement (CRD), structures motrices du processus de décentralisation.Les plantes ligneuses alimentaires sont beaucoup menacées du fait de leur présence dans les savanes, les forêts et aussi dans les plantations. Les principales activités qui ont un impact négatif sont : -L'agriculture itinérante (sur brûlis) : elle engendre la disparition pure et simple des espèces. Il y a aussi le raccourcissement des jachères entraînant un épuisement des sols.Les systèmes culturaux sont fortement liés à la dynamique de la déforestation et à la dégradation de l'environnement. -L'élevage extensif: contribue à l'extinction des espèces et à l'érosion des sols. -L'exploitation forestière qui consiste à sélectionner des individus les plus beaux, grands et utiles laissant dans le milieu, les individus de mauvaise qualité. -La production du charbon devient de plus en plus accrue par les coupes désordonnées des espèces de toutes sortes y compris les espèces ligneuses alimentaires « sauvages » et cultivées. Par exemple, dans la région de Kindia, on trouve des pieds de manguiers qui sont abattus et carbonisés. -L'exploitation minière, la fragmentation de la forêt, la recherche des plantes médicinales, l'urbanisation conduisent à des destructions abusives des ressources forestières. -Les feux de brousse détruisent d'immenses hectares d'essences forestières.Les plantes ligneuses alimentaires sont sous-exploitées en Guinée. Seules les plantations d'arbre fruitier sont bien conservées. Par exemple, des plantations de palmiers à huile naissent et sont entretenues dans la partie sud du pays (Huilerie de Soguipah à Diécké) et dans la partie ouest de la Guinée (Basse Guinée). Ils y a aussi celles des manguiers, d'orangers, de Kolatiers, de caféiers, de cacaoyers, etc.Les plus remarquables travaux de conservation sont réalisés par la Direction Nationale des Eaux et Forêts pour la culture de l'anacardier qui prend de l'essor au niveau des populations. L'espèce Anisophylla laurina est une des espèces qui bénéficient d'une protection naturelle surtout dans les villages où son exploitation rapporte de l'argent à la population. A Maférinya, dans la préfecture de Forécariah, son fruit est mis en boîte de conserve.Il y a aussi les pratiques agroforestières qui font partie des méthodes traditionnelles de conservation in situ. Dans les forêts classées, les espèces comme Parinari excelsa, Parkia biglobosa, Vitellaria paradoxa et autres sont bien conservées. Ces plantes offrent un microclimat favorable à certaines cultures vivrières. La conservation dans les forêts sacrées, et la conservation ex situ conduite par les institutions de recherche, dans les programmes d'amélioration génétique.Il faut souligner que les espèces ligneuses alimentaires sont totalement incluses dans la diversité biologique. Il n'y a pas une politique particulière pour la conservation de ces ressources. La Guinée applique les mêmes mesures de conservation qui sont dans le sillage des mesures internationales qui stimulent le respect des principes ci-après :• Sauvegarder la vitalité génétique par le maintien des espèces, des écosystèmes et des habitats ;• Respecter les limites physiques de la productivité de la biodiversité et de la beauté naturelle des sites ;• Maintenir et améliorer la productivité des sols ;• Exploiter les ressources dans le respect du fonctionnement des systèmes naturels ;• Procéder pour les activités susceptibles de perturber les systèmes naturels à une évaluation des conséquences prévisibles et envisager les mesures de réduction ou compensation des effets négatifs ;• Adapter toute exploitation aux caractéristiques et limites naturelles des zones et espèces considérées ;• Restaurer les zones dégradées à la suite des activités. • Superficie du pays couverte par l'espèce ou le genre : (en terme de %) ?• Nombre de consommateurs dans le pays : le Vitellaria paradoxa est surtout utilisé et exploité par les habitants de la Haute Guinée. Mais le beurre extrait du fruit est consommé par toute la population guinéenne.• Transformations, utilisations industrielles, alimentaires : le Vitellaria paradoxa est transformé de façon artisanale. Cette méthode de préparation de l'huile de karité ou beurre de karité consiste à débarrasser les fruits de leur pulpe par fermentation et lavage. L'amande est ensuite réduite en pâte par pilonnage et la masse obtenue est jetée dans l'eau bouillante et la graisse est recueillie au refroidissement. Le beurre de karité est consommé par la population en mettant sur le riz (lafidi) ou en faisant des grillades ou des sauces.• Valeur médicinale : l'huile ou beurre de karité est un anti-inflammatoire, antirhumatisme, anti-rhinite. La décoction de la tige est un stimulant. Elle est carminative.• Description botanique de l'espèce : C'est un arbre de 10 -14 m de haut. Il est trapu, à feuillage sombre. Les feuilles sont longues de 22,5 cm sur 8,5 cm de large. Les feuilles sont groupées à l'extrémité des rameaux. Les fruits sont des drupes contenant une graine blanchâtre très grasse.• Classification du genre : le genre Vitellaria est de la famille des Sapotaceae.• Nom botanique reconnu : Vitellaria paradoxa (G. Don) (Kotschy).• Synonymes : Butyrospermum paradoxum (Gaertn. F) Hepper, • Noms communs : Karité • Noms vernaculaires : Se toulou woulou (Guerzè), sii toulou (Malinké), karedé, karé (poular). • Nombre de consommateurs dans le pays : Parkia biglobosa produit une pulpe qui est consommée par presque tous les habitants de la Guinée, mais surtout par les populations de la Haute Guinée et de la Moyenne Guinée.• Transformations, utilisations industrielles alimentaires : le néré est transformé traditionnellement en « soumbara » après fermentation.• Transformation, utilisations industrielles, alimentaires : le fruit fournit une pulpe qui est consommé par la population, elle fournit une pâte acidulée, sucrée et vendue. Sous forme fermentée, elle donne une boisson rafraîchissante. La graine préparée donne un aliment très apprécié appelé soumbara (en malinké). On ajoute à la graine grillée du sel, des cubes maggi et on obtient une poudre sauce.• Valeur médicinale : les feuilles sont utilisées dans le traitement externe des bronchites. La décoction de l'écorce calme les douleurs des maux de dents, consommé comme boisson, elle soigne la stérilité. La pulpe jaune fermenté est un diuérétique.• Les gousses, parfois avec l'écorce du tronc est ichtyotoxique. Les gousses bien cuites servent à noircir les poteries ou auraient la possibilité de teindre en bleu.• Le bois blanc est vite attaqué par les insectes.Le Parkia biglobosa est un petit arbre haut de 10 -15 m, à port en parasol, à feuilles bipennées alternes. Rachis long de 20 -40 cm portant 10 -15 paires de pinnules ou plus. Folioles glabres à bord finement pubescent. Pétiole long de 4 -10 cm. Fleurs petites, rouges, densément réunies en capitules sphériques pédonculés. • Nombre de consommateurs dans le pays : la plante a son fruit qui est utilisé par la majorité des populations guinéennes depuis les villages jusqu'aux villes.• Transformations, utilisations industrielles, alimentaires : le fruit est mélangé avec le thé, et sa décoction sucrée est vendue comme boisson chaude.• Valeur médicinale : remède stimulant et tonique, reconstituant. Les gousses sont contre les éruptions, boutons, les fruits sont prescrits contre les maux de foie, l'expulsion de la bile. Sa décoction est anthelminthique, vermifuge, névralgies, bronchites, dysenterie, toux… • Bois et fibres sont utilisés en artisanat. Son bois blanc sert en menuiserie et en ébénisterie pour la confection des rames, mâts, embarcations, échelles.• Description botanique : arbre haut de 8 -15 m ou plus, à feuilles entières alternes. Le limbe est elliptique long de 10 -15 cm, large de 4 -6 cm à base en coin court, un peu dissymétrique, à sommet en pinte acuminée, à dessus glabre, vert foncé luisant, dessous vert -clair à poils ras. Le pétiole est épaissi, long de 3 -5 mm, jeune rameaux bruns clair, lenticellés de points clairs. Les fleurs sont isolées ou groupées par 2 -3, sur les rameaux dégarnis de feuilles à six pétales linéaires. Le fruit a la forme de gousse linéaire, rouge vif à maturité long de 3 -5 cm. • Nombre de consommateurs dans le pays : Detarium senegalensis est apprécié à cause de la pulpe de ses fruits. Il est consommé par la grande majorité de la population villageoise de la Guinée.• Valeurs médicinales : les feuilles sont antidysentériques. Les fruits sont utilisés contre la douleur chronique du dos et contre la tuberculose. La graine est un antidote contre les poisons de flèche. • Transformations, utilisations industrielles, alimentaires : la pulpe du fruit est surtout consommée crue et aussi bien apprécié des enfants que des adultes.• Valeur médicinale : cicatrisation, antidermatose, antilépreuse, contre l'impuissance, diurétiques, et contre le rhumatisme, etc.• Bois, fibres ou artisanat : charpenterie, menuiserie, charbon.• Propriétés nuisibles : le suc du péricarpe de l'amande est corrosif, fortement vésicant pouvant provoquer une succession d'érésipèles assez dangereux.• Description botanique de l'espèce : arbre à feuilles simples, entières, alternes, coriaces, et glabres, de forme généralement ovale, au sommet largement arrondi, et à la base en coin, rétrécie ou arrondie. Pétiole trapu long de 10 -12 mm. Les fleurs sont petites, vertes ou vertrougeâtres, à 5 pétales aigus, disposées en grappes terminales ramifiées, lâche. Le fruit est un akène réniforme ou noix d'acajou, pendant au sommet d'un pédoncule charnu et aqueux, jaune ou rouge, qui n'est qu'un pédoncule hypertrophié et démesurément développé. • Nombre de consommateurs dans le pays : fruit consommé dans tout le pays, souvent sous forme crue ou préparée en bonbon.• Transformations, utilisations industrielles, alimentaires : le fruit est mis dans des sachets dans lesquels les graines sont décoctées et additionnées de sucres pour être glacées et vendues sous forme de bonbons. Le fruit à peine mur (fruit vert) est consommé avec un peu de sel.• Valeur médicinale : contre la lèpre, les coliques, la tuberculose.• Bois, fibres, artisanat : le latex est utilisé comme caoutchouc ou glu.• Description botanique de l'espèce : C'est une grande liane à latex blanc. Les feuilles sont opposées, le limbe luisant, au dessus glabre, avec des pétioles long de 10 -15 mm. Fleurs blanches, odorantes, en corymbe terminal, à corolle à 5 lobes blanches, oblongs. Le Fruit est une baie sphérique grosse bosselée, longue de 7 -10 cm, large de 6 -8 cm, à pulpe acidulée agréable. • Superficie du pays couverte par l'espèce ou le genre : l'espèce se rencontre en Basse Guinée (1,5% de la végétation) et en moyenne Guinée où elle est un peu rare mais pousse spontanément sans être cultivée.• Nombre de consommateurs dans le pays: le fruit est consommé surtout en Basse et Moyenne Guinée et parfois en Haute Guinée. Le fruit est conditionné en boites de conserve à Kindia.• Importance sociale et culturelle: la consommation et le commerce de l'espèce offrent de l'emploi d'abord aux couches démunies, surtout les femmes et les enfants. Elle est en effet vendue crue ou en décocté sucré dans les lieux publics, écoles, marchés sous forme de bonbons.• Valeur médicinale : les feuilles de Anisophyllea laurina sont fébrifuges, l'écorce est antidiabétiques et antalgique. • Adansonia digitata : l'espèce est de plus en plus utilisée par la majorité de la population et présente un impact culturel et économique non négligeable.• Nombre de consommateurs dans le pays: en Basse Moyenne, Haute Guinée, et en Guinée Forestière, donc dans tout le pays.• Importance sociale et culturelle: Cette plante se rencontre presque dans tous les villages de la Haute Guinée et constitue le lieu de rencontre pour les marchés hebdomadaires, les veillées nocturnes. On l'appelle aussi l'arbre à palabre. Du point de vue sociale, l'espèce fournit une poudre qui est un élément de transaction dans le pays, un élément de spéculation. Ceci augmente le niveau de revenu de la population locale.• Les feuilles ont des propriétés diaphorétiques, hypotensives ; utilisées dans les troubles urinaires (reins, vessie), l'asthme, la dysenterie et pour l'extraction du ver de Guinée (Burkill, 1985 : 273) • Ecorce: Cordage• Description botanique de l'espèce: C'est un arbre de 10 -15 m de haut à tronc énorme de plusieurs mètre de diamètre. L'écorce est lisse et les branches robustes, étalées. Les feuilles sont composées digitées alternes, 5-6 folioles obovales. Le pétiole est de long de 10-20 cm ou plus. Les fleurs sont grandes et blanches, pendent à l'extrémité d'un long pédoncule. Les fruits ligneux sont subsphériques ou ovoïdes de 15 -35 cm de long. Ils contiennent des graines noires arrondies, noyées dans une pulpe farineuse blanche entremêlée de fibres rougeâtres.• Information sur la phénologie: Mode de dispersion des semences et les vecteurs disperseurs): les fruits s'épanouissent le soir et sont fécondées par les chauves-souris.• Classification du genre : le genre Adansonia est classé dans la famille des Bombacaceae • Nom botanique reconnu : Adansonia digitata.• Synonymes : A. Sphaerocarpa A. Chev.• Noms communs: Baobab (arbre) pain de singe (fruit) • Noms vernaculaires : Malinké: séda, sira. Poular : boki. boy, boré. Soussou : kiri 5.5. Origine de l'espèce et principaux centres de diversité : 5.6. Propriétés:• Composition chimique des organes de l'espèce :• Pulpe du fruit: 30% de matières pectiques, sucres, acides organiques, duca, des vitamines, des amino-acides.• Feuilles: 9% de mucilage, des tanins catéchiques, vit. C ou autres, Ca, des amino-acides.• L'écorce contient l'adansonine, antidote du Strophantus, Erythrophloème. • Nombre de consommateurs dans le pays: utilisée surtout par les habitants de la savane de la Basse Guinée et du Fouta, la plante est connue jusque dans les villages.• Transformations, utilisations industrielles, alimentaires: La pulpe des feuilles et du fruit sert à faire des boissons rafraîchissantes. Celle des fruits est préparée dans les bonbons à cause de son goût acidulé. Les bonbons congelés sont vendus dans les écoles, les marchés et partout dans les grandes villes. Cette pulpe est mise sur les bouillies surtout pendant la période du mois de carême musulman.• Valeurs médicinales: la pulpe du fruit est laxative. La plante est cicatrisante, antidiarrhéique, ténifuge, vermifuge, pectorale. La plante présente des propriétés bactéricides, insecticides et laxatives.• Le bois dur est bon pour le charbonnage et la construction. Il est utilisé pour la fabrication des mortiers, des pilons, des manches d'outils, des armatures d'embarcation. Il est aussi combustible.• Description botanique: c'est un arbre de 10 -25 m de haut, à tronc court, cime étalée, et touffue, à tige, à écorce crevassée et écailleuse. Les feuilles sont alternes, composées, pennées à folioles glabres, oblongues, rouge pourpre, à corolle formée de 3 pétales, androcée de 3 étamines soudées à leur base. Le fruit est une gousse.• Le Tamarindus est dans la famille des Caesalpiniaceae • Nom scientifique : Tamarindus indica (L.) • Nom commun : Tamarinier de l'Inde, tamarind (angl.) Tamarindo (esp.)• Noms communs et vernaculaires: Tombi (Soussou), timbimb (Mali), dammi (Peulh)• Origine de l'espèce : Elle serait originaire de l'Ethiopie et de l'Afrique centrale, diffusée dans le monde tropical.• Composition chimique des organes de l'espèce : le fruit contient de l'acide tartrique, des sucres, protéines, matières pectiques et fibres 5.7. Ressources génétiques de l'espèce ? 5.8. Amélioration génétique de l'espèce ? 5.9. Ecologie et agronomie : 5.10. Contraintes majeures (limitations) des espèces ? 5.11. Recherches supplémentaires nécessaires : 5.12. Domaines (activités de recherche ou non) de collaboration potentielle avec les autres pays: 5.13. Projets passés, en cours ou futurs conduits sur l'espèce : Projet sur l'obtention de l'huile de Xylopia aethiopica pour la fabrication des médicaments. Most of the important indigenous food tree species are found in the Arid and semi-arid areas of Kenya. These areas are characterised by environmental conditions that are not conducive for crop production and this leads to recurrent crop failures. However, as these food trees thrive well in these areas, its therefore provides the rural communities with food all year round. These trees provide large quantities of food throughout the year especially during times of drought. Food from these trees are also sold thus earning the resource poor local communities with much needed cash. • Social -cultural importance: Root decoction given to barren women (Tugen).• Commercial: Fruits sold in Kitui and Mwingi.• Fodder and browse: Fruit and leaves are used as fodder for animals.• Medicinal: Roots and bark used for treatment of various ailments.• Timber and crafts: Used as a timber, wood is excellent for making craft furniture such as tables, chairs and benches. Also used for tannin or dye stuff. • Other uses: Fuelwood, beads, hair clips, shade or shelter, acts as windbreak, ornamentalused to make a bonsai (in S. Africa), suspending beehives.Berchemia discolor is a shrub or tree 3-20 m high; with a straight bole; rough, dark grey bark that flakes longitudinally; dense, rounded crown; slash yellow; young branches conspicuously lenticellate; branchlets glabrous to densely pubescent with short, spreading, whitish hairs. Leaves alternate or sub-opposite, entirely or obscurely crenate, shiny above, dull and glaucous below, broadly elliptic, ovate or obovate-elliptic-lanceolate, 2-9 x 2-5 cm, obtuse or acute at the apex, rounded or cuneate at the base; leaf stalks glabrous or pubescent, 1-1.8 cm long. Flowers small, solitary, thick, oblong or ellipsoid, 4-5 mm in diameter, greenish when young, turning yellowish after ripening. Fruit datelike, yellow, up to 20 x 8 mm with 1-2 flat seeds in sweet, edible flesh.• Species name: Berchemia discolor Hemsl.• Family: Rhamnaceae • Synonym(s): Adolia discolor Kuntze.; Araliorhamus punctulata H. Perr.; Araliorhamus vaginata H. Perr.; Phyllogeiton discolor Herzog; Scutia discolor Klotzsch • Common names: Bruin-ivoor (Afrikaans); bird plum, dog plum, mountain date, wild almond (English); mnago (Swahili) 5.5. Origin of species and the important centres of diversity ? 5.6. Properties ? 5.7. Genetic resources ? 5.8. Tree improvement and breeding ? 5.9. Ecology and Agronomy • Climate, soil and water requirements: Grows naturally in various climates. It is found scattered in semi-desert grassland, open woodland or at lower altitudes along river valleys, especially on termite mounds. Tolerates drought but is not resistant to frost or cold wind. Common on riverine alluvial soils, in rocky areas and in light soils. Mean annual rainfall: 250-500 to 760-1200mm, altitude 0-1900m, mean annual temperature 14-30°C.• Distribution: Native to: Angola, Botswana, Eritrea, Ethiopia, Kenya, Madagascar, Malawi, Mozambique, Namibia, Somalia, South Africa, Swaziland, Tanzania, Uganda, Yemen, Republic of Zambia, Zimbabwe.• Reproductive biology: It takes about 4-5 months from flower fertilization to fruit ripening; flowering starts at the onset of rains, while fruit ripening occurs towards the end of the long rains. Fruits in February to March (Meru, Tharaka, Mwingi, Kitui). In South Africa, flowering occurs from October to January and fruiting from January to July. Seed dispersal is by selfmechanism.• Pollinators are insects specifically bees; • Source of germplasm: seed, coppice or root suckers; • Seed weigh: 3-3.5 grams; the viability of the seeds can be maintained for several years in hermitic storage at 3 degrees centigrade with 7-13 % mc.• Propagation methods: Although rare, B. discolor can regenerate naturally from seed, coppice or root suckers. Directly sown seeds germinate easily. Fresh seed can be sown in flat seedling trays filled with a mixture of river sand and compost (5:1). Germination is between 80-100%; pretreatment of seed, such as scarification or soaking in cold water for 12 hours enhances germination. The seedlings should be transplanted into black nursery bags filled with a well-drained mixture of river sand, loam and compost (2:2:1). Vegetation must be partially cleared at planting site as the species is a light demander.• Tree management: Plant in well-drained soil. Growth rate is relatively fast. Applying fertilizer at the time of planting may be useful. Tending the crop should include regular watering, slashing and spot weeding until the plants are well established. Coppicing, pollarding and lopping are all practiced.• Germplasm management: Seed storage behaviour is orthodox. Viability can be maintained for several years in hermitic storage at 30°C with 7-13% mc. There are about 3000-3500 seeds/kg.• Inadequate extension services (lack of creation of awareness; No domestication); • Weak institutional linkages;• Poor processing and marketing;• Lack of proper management and production techniques.Properties, genetic resources and tree improvement particularly yield, origin of species and important centres of diversity.As in 5.11 and also in processing, marketing, management and production 5.13 Achieved, current and new projects? 5.14 Existing networks? 5.15 List of existing publications FAO (1983). Food and fruit bearing forest species. 1: Examples from Eastern Africa. FAO Forestry Paper. 44/1. FAO. Rome. FRIIS I. (1992). Forests and forest trees of northeast tropical Africa. Her Majesty's Stationery Office, London.Hines DA, ECKMAN K. (1993). Indigenous multipurpose trees for Tanzania: uses and economic benefits to the people. Cultural survival Canada and Development Services Foundation of Tanzania. HONG TD, LININGTON S., ELLIS R.H. (1996). Seed storage behaviour: a compendium. Handbooks for Genebanks: No. 4.IPGRI. MBUYA L. P. et. al. (1994). Useful trees and shrubs for Tanzania: Identification, Propagation and Management for Agricultural and Pastoral Communities. Regional Soil Conservation Unit (RSCU), Swedish International Development Authority (SIDA). STORRS A.E.G. (1995). Know your trees: some common trees found in Zambia. Regional Soil Conservation Unit (RSCU). VENTER F and VENTER J-A. (1996). Making the most of Indigenous trees. Briza Publications. SPECIES N°2: Myrianthus holstii Engl.• Part of the plant used for food purposes: Fruit pulp • Number of consumers in the country: Consumed in five districts in the central province.• Commercial: Sold in some local markets in Central Province.Food for silkworms and birds, firewood, windbreaker, fodder, live fencing. Used as timber, roots also create mulches after rotting, hence conserving and improving the soil.• Botanical description: A medium-sized or large tree to 20 m, often with stilt roots, and branches close to the ground into several branches. Bark brown, exuding a watery sap that turns black. Leaves large, digitate or deeply digitately lobed into 5-7 segments. Leaflets often serrated, veins very conspicuous underneath, softly hairy, almost without a stalk. Flowers inflorescences dioecious, borne in leaf axils. Fruit compound, rough, resembling a pineapple or custard apple (Annona cherimola. mtomoko in Swahili), fleshy, to 6 cm across, yellow to orange when ripe. Seeds embedded in pulp. Phenology, origin of species and its centres of diversity, properties, genetic resources, tree improvement, ecology and agronomy.As in 5.11 above and also management, production, processing and marketing 5.13. Achieved, current and new projects? 5.14. Existing networks? 5.15. List of existing publications? SPECIES N°3. Sclerocarya birrea spp. caffra• Part of the plant used for food purposes: All parts of the fruit are edible and also the bark.• Socio-cultural importance. A decoction of the bark is used by some Africans for steaming and is taken internally to prove defilement arising from eating food in the house of relatives where there has been a death without the performance of the necessary purification rites. The Zulu and Thonga use a decoction of the bark as a ritual cleansing emetic before marriage rites. The Thonga celebrate the feast of the first fruits by pouring the fresh juice of the fruit on the tomb of deceased chiefs in the sacred wood. Branches of the tree are also used in the funeral rites of the Thonga.• Commercial: Fruits sold by Pokots and wine made from fruits • Number of consumers: Kamba, Pokot, Maasai, Swahili.• Medicinal: Almost all parts of the plant are used for treatment of a wide range of diseases especially the bark and leaves in humans and domestic animals.• Other uses: The flowers are a source of nectar for honey bees.• Deliterious properties: Fermented fruit is highly intoxicating but is also antiascorbic and a natural antimicrobial agent that prevents food poisoning. The fruit is also a potent insecticide, and traditionally used to kill ticks (on humans and livestock) • Timber, fibres and craft: The bark is used for making ropes and mats. It is also used for preparing dyes, as fuelwood, construction, making beehives, mortars, for woodworkingcarving utensils, plates, bowls; and to make equipment (axe handles, etc.) and for carving drums, etc. Traditionally, African settlers used it for making furniture, tools and floorboards. In the Sudan, the wood is used for carving furniture and saddles, for matchstick making, and for fencing; while outside Sudan, it is known to be used for flooring, printer's blocks, and shoe heels.• Fodder and browse: The fruit, leaves and leafy stems/branches make good animal forage/fodder, both for wild game and livestock.• Gum: Suitable for technological applications, but not foodstuffs. When, mixed with soot and water, it is traditionally used to make ink.• Associated Fauna: A deadly arrow poison is obtained from a beetle larvae (Polydada sp.) that lives on the tree. The leaves are a common food source for the 'mopane worm' a nutritious and important dietary resource traditionally exploited by Africans.• Botanical description: A medium to large tree, usually 9 m tall, but may reach 18 m; it is single stemmed with a dense, spreading crown and deciduous foliage; the bark is grey and usually peels off in flat, round disks, exposing the underlying light yellow tissue; young twigs are thick and digitaliform with spirally arranged composite leaves at their ends. Leaves 18-25 x 8-15 cm, composite, containing 2-23 leaflets, averaging 11; leaflets oblong elliptic with petioles ranging from very short to 20 mm in length. Although male and female flowers occasionally occur on the same tree, it is considered dioecious. Male flowers are borne in groups of 3s on racemes below new leaves, dark red when young, turning pink or white when open. The female flowers are blood red but change colour from purple to white after opening. They occur below the leaves on long peduncles and consist of 4 curling petals, numerous infertile stamens and a long, shiny ovary.Fruit borne in clusters of up to 3, round or oval drupe, usually wider than it is long, with a diameter of 30-40 mm. Marula fruit has a thick, soft leathery exocarp with tiny, round or oval spots, enclosing a juicy, mucilaginous flesh that adheres tightly to the stone. Each fruit contains an exceedingly hard seed, which is covered by fibrous matter. It is usually trilocular, but sometimes only bilocular. Each seed locule contains a single, light nut filling the entire cavity, which is sealed by a round, hard disk.• Species name: Sclerocarya birrea ssp. caffra (Sond.) J.O. Kokwaro • Family: Anacardiaceae • Synonym(s): Sclerocarya caffra (A. Rich.) Hochst.; Spondias birrea A. Rich.• Common names: Maroela (Afrikaans); marula (English); dania (Hausa); mng' ong'o, morula (Swahili); morula (Tswana).Archaeological evidence indicates that the fruit was known and consumed by humans in Africa in 10 000-9000 BC.• Chemical Composition: From work carried out in Kenya, proximate analysis of the fruit pulp gave 85.9% dry matter; 10.8% fibre; fat, 6%; Protein 1.3%; glucose 47%. The ascorbic acid content was reported to be 236.5 mg/100 g fresh weight. Ascorbic acid content of 403.3 mg/ 100 g fresh weight has been reported in Nigeria. Other mineral elements reported in both Kenya and Nigeria include P, Mg, Ca, Zn, Cu, Fe, and Mn. In Kenya, proximate analysis on the nut showed fat content of 58% and 14.7% of protein.Nuts yield oil with a quality (fatty acid composition) comparable with olive oil but with stability, that is 10 times greater (stability is explained in terms of tocopherol/sterol compostion).• Other properties: The amino acid content with the exception of lysine, which is deficient, has been likened to human milk and whole hen's eggs. Proximate analyses performed on fruits from different areas of Southern Africa revealed some variation that may be either genetic or environmental. The bark decoction is non-toxic to rats and mice (LD50 value in mice > 4g/kg) and exhibits hypoglycaemic effects in normoglycaemic rats. It is also active against diet-induced hypercholesterolaemia. Its bark has a tyrosinase inhibitor. The antidiarrhoeal properties appear to be due to a procyanidin (tannin) which inhibits intestinal motility and interferes with muscarinic stimulation. Oral administration (to rats) of a procyanidin isolated from the bark resulted in marked anti-diarrhoeal activity at 150 mg/kg.; and inhibited phasic contractions in a dose-dependent fashion (2.5 micro g/ml to 0.64 mg/ml). The trunk bark, in addition to tannins, shows traces of ('cynahydrique') cyanide, and contains flavones, lantanines, quinones, saponines, and traces of alcaloids. The root bark contains lantanines. The bark varies in terms of its tannin content, from as little as 3.5% to more than 20.5%. The latter was from bark harvested just prior to the leaves appearing, suggesting time of year is a factor. Geographic variability in tannin content is also a possibility. In Kenya, there seems to be variation in potency of tannins from the bark but this remains to be tested. When planed, the wood exhibits good surface, although somewhat open and it takes varnish well. Density of air-dried wood is 0.450 to 0.550.• Genetic variation: Studies conducted using molecular techniques have revealed significant genetic variation both between populations and within populations (Muok, 2000).• Source of germplasm: Vaald products, Kenya Forestry Research Institute, Forest Seed Centre • Sexuality: The species is mainly dioecious but monoecious ones are also known.• Seed viability: Seeds store well at room temperature • Genetic assessment: Genetic diversity assessment has been conducted in some Kenya populations using molecular techniques (Muok, 2000).• Databases: ICRAF Tree Domestication Programme; CABI Forest Compendium • Conservation methods used: No conservation work is in place. The species is facing threats by agricultural activities and being dioecious has poor regeneration. 5.8. Tree improvement and breeding -?• Climate, soil and water requirements: A widely distributed tree in the dry zones. Occurs in wooded grassland, riverine woodland and bushland and frequently on or associated with hills. Especially on sandy loam soil. It prefers a warm, frost-free climate but it is also found at high altitudes where temperatures may drop below freezing point for a very short time. The tree is frost sensitive and moderately drought resistant. Occasionally found in clear stands. Sclerocarya birrea ssp. caffra is known to be highly salt tolerant. In Israel, it grows vigorously when irrigated with salty water. In Kenya found in coastal and adjoining areas. Altitude 0-1200 m. Zones IV-V.• Distribution: Native to: Botswana, Democratic Republic of Congo, Ethiopia, Gambia, Kenya, Malawi, Mozambique, Namibia, Niger, Senegal, Somalia, South Africa, Sudan, Swaziland, Tanzania, Uganda, Zambia, Zimbabwe.• Exotic to:Australia, Israel • Biophysical limits: Altitude: 500-800 m, mean annual rainfall: 200-1370 mm • Reproductive biology: Mostly dioecious, and the monoecious ones are predominantly male. The fruit is abscised when ripening commences so that final ripening takes place on the ground. In Kenya, the tree fruits in April-May in Kerio Valley, Baringo, Makueni and Sultan Hamud and in July in Homa Bay and Lambwe Valley. In South Africa flowering occurs from September to November, and fruiting from January to March.• Propagation methods: A prolific seeder. Between 0.2 and 1.5 tonnes of fruit have been collected from a single tree in one season in the wild. Mature fruit drops when still green and ripens to a yellow colour on the ground; fallen fruit can then be harvested. Seeds should be nicked or soaked in suphuric acid before sowing. Propagation is by seedlings, cuttings or gregarious root suckering. Over 95% success has been achieved by grafting 5-10 cm of scion material cut from the tips of branches. It is essential that scion material be collected immediately dormancy breaks.• Tree management: Truncheons 100-150 mm in diameter and 2 m long can be planted. It is one of the fastest growing trees in South Africa with a growth rate of up to 1.5 m/year. Coppicing is a suitable practice.• Germplasm management: Orthodox seed storage behaviour, although viability is lost in 1 month in open storage. Seeds store well in air-dry storage at cool temperatures. There are approximately 400 seeds/kg. • Pests and diseases: Psyllid mites are the major pest problem affecting both wild trees and nursery stock. Severe infections have been observed on wild trees but the harvests do not seem to be significantly affected. Aphids, white flies and thrips can also become endemic in the nursery, but spraying with dichlorophos or malathion can control them. Wood, if not treated, is susceptible to borer and termite attack. Also attacked by edible mopane caterpillar. Sclerocarya birrea ssp. caffra is liable to sap-stain fungi and other more harmful fungal attacks. Normally the wood of the tree is pinkish-white to light red, sapwood and heartwood being much alike; through fungi and beetle attacks, it is liable to blue discoloration. Powdery mildew can be prevalent under humid conditions and can quickly spread to all seedlings in a nursery. Control is achieved by spraying with copper oxychloride. • Part of plant used for food: Fruit, flower, leaves, gum and resin • Number of consumers: Eaten by Pokot, Turkana, Tugens, Marakwet, Keiyo, Iichamus, Maasai, Kipsigis • Socio-cultural: Fire made using this tree is used to warm beer gourds for the elders (Mbeere)• Fodder: Fresh and dried leaves, and kernel meat (the residue remaining after oil extraction).• Deliterious properties -Bark used for making fish and amphibians drowsy, fruits used to kill the biharzia fluke.• Timber, fibres and craft: A strong fibre is obtained from the bark. Wood is made into yokes, wooden spoons, pestles, mortars, handles, stools and combs. The timber has traditionally been a minor product. Gum or resin is used as glue for sticking feathers onto arrow shafts and spearheads and in the repair of handle cracks and arrows.• Deliterious properties: An emulsion made from the fruit or bark is lethal to the freshwater snails that are the host of miracidia and cercaria stages of bilharzia and to a water flea that acts as a host to the guinea worm. A fish poison can be obtained from the fruit, root and the bark. The active agent of the poison is saponin. The compound is toxic to fish but does not affect mammals and rapidly becomes inert, so that fish retrieved are edible. However, in the Fada region of Cote d'Ivoire, the poison is reported to damage the sight of fishermen after they have used it for 5-6 years.• Medicine: Root, bark and gum are used to treat various ailments in humans and domestic animals.• Other uses: Shade or shelter, boundary or barrier or support, fencing, boundary and amenity plantings, livestock enclosures.• Botanical description: The adult form is a multibranched, spiny shrub or tree up to l0 m high. Crown rounded, dense with long stout branchlets. Trunk and bark grey, deeply fissured longitudinally. Leaves compound and spirally arranged on the shoots, dark green with 2 firm coriaceous leaflets; dimensions and shapes varying widely. Petiole canaliculate, from 5 mm to 20 mm with a short rachis. Margin of each leaflet entire; lamina generally up to 6 cm long, 4 cm broad, but may be smaller (1-3 x 0.3-1.5 cm). Inflorescence a sessile or shortly pedunculate fascicle of a few flowers. Flower buds ovoid and tomentose. Individual flowers hermaphroditic, pentamerous an actinomorphic, 8-14 mm in diameter and generally greenish-yellow. Pedicels densely greyish, pubescent, usually 8 mm in length, rarely reaching 10-15 mm in length. Fruit ellipsoid, up to 4 cm long, green. Ripe fruit brown or pale brown with a brittle coat enclosing a brown or brown-green sticky pulp and a hard stone seed.• Reproductive biology: Pollination is presumably by insects as flowers are scented, and flower structure facilitates insect activity. The 1st fruiting is at 5-8 years, yields increasing until 25 years of age for the tree. The fruit apparently takes at least one year to mature and ripen. Birds and mammals eat the fleshy and edible fruit, discarding, regurgitating or evacuating the stone. In Kenya, fresh leaves are produced in July-August (West Pokot), fruits in March-April (Machakos, Kitui and Kajiado).• Species name: Balanites aegyptiaca (L.) Del.• Family: Balanitaceae • Synonym(s): Agialida aegyptiaca Kuntze; Balanites ferox G. Don.; Balanites racemosa Chiov.; Balanites roxburghii Planch; Ximenia aegyptiaca L.• Common names: Heglig, kuge, zaccone, zachun, zacon (Arabic); desert date, Jericho balsam, simple thorned torch tree, soap berry tree, torch wood (English); dattier du desert, dattier sauvage, myrobalau d' Egypte, myrobalou d'Egypte (French); sumpo (Mandinka); mjunju (Swahili). 5.5. Origin of the species and the important centres of diversity? 5.6. Properties • Chemical composition: From work done in Senegal, the fruit pulp has been reported to be composed of 78.9% dry matter; 4.9% protein; 0.1% fat; 69.9% carbohydrates; 3.5% cellulose; phosphorous 58 mg/100 g; Vitamin B1, 0.27mg/100g; Niacin (Vit. PP), 1.74mg/100 g and Vitamin C, 46 mg/100 g. Leaves, on the other hand, were reported to be composed of 44.2% dry matter; 12.9% protein; 4.8% fat; 52.7% carbohydrates; 13.9% cellulose; phosphorous, 100mg/100g and calcium, 3710 mg/ 100 g. In Nigeria, an ascorbic acid content of 89.6 mg/ 100 g has been reported while in Kenya, the seed has been reported to contain 27% protein, 34% fat and 720 mg/100 g phosphorous.The wood shows no serious seasoning defects and no tendency towards surface checking or splitting. The wood is hard, durable, worked easily saws cleanly and easily, planes without difficulty to a smooth finish and is easy to chisel. It glues firmly and takes a clear varnish. The usually small log size and the prevalence of stem fluting makes sawmill processing difficult. 5.7. Genetic resources? 5.8. Tree improvement and breeding? 5.9. Ecology and Agronomy • Climate, soil and water requirement: Balanites aegyptiaca has wide ecological distribution.However, it reaches its maximum development as an individual tree on low-lying, level alluvial sites with deep sandy loam and uninterrupted access to water such as valley floors, riverbanks or the foot of rocky slopes. It is intolerant to shade after the seedling stage and therefore prefers open woodland or savannah for natural regeneration. Altitude: 0-1 000 m, Mean annual temperature: 20-30°C, Mean annual rainfall: 250-400 mm. The soils in its range tend to be deep sands, sandy clay loams, sandy loams or clays. Zones IV-VI.• Distribution: Native to: Algeria, Angola, Benin, Burkina Faso, Burundi, Cameroon, Chad, Cote d'Ivoire, Democratic Republic of Congo, Djibouti, Egypt, Ethiopia, Gambia, Ghana, Guinea, Israel, Kenya, Libyan Arab Jamahiriya, Morocco, Nigeria, Saudi Arabia, Senegal, Somalia, Sudan, Tanzania, Uganda, Yemen, Republics of Zambia and Zimbabwe • Exotic to Cape Verde, Dominican Republic, Puerto Rico • Propagation methods: Seeds may be collected from fruit that is being processed for other purposes, from dung, and directly from the trees. Soaking in water for some hours and then stirring vigorously separates the stones from the pulp. Seed germination can be improved by immersing the seeds in boiling water for 7-10 min then cooling slowly. The tree also can regenerate by coppice shoots and its abundant root suckers.• Tree management: Coppices and pollards well and can regenerate after lopping and heavy browsing.. • Germplasm management: Seed storage behaviour is orthodox; viability can be maintained for 2 years in air-dry storage at cool temperatures or for several years in hermetic storage at 3 deg. C with 6-10% mc. One kilogram of cleaned, extracted seeds, air-dried to 15% mc, contains 500-1500 seeds.• Pests and diseases: Balanites aegyptiaca suffers from repeated locust and beetle attack and a high degree of parasitic infestation (in Gountoure, Burkina Faso, 50% of the population had leaf galls, bugs or scales). Two microfungi, Phorma balanitis and Septoria balanitis, are the only reported dependent fungi. • Part of the plant used as food: Fruit, leaves, seeds, • Economic importance: Tamarind products are highly developed and widely used in Asia but are and so far little used in Africa. In India and Thailand, cultivars are grown and food industry is active. Tamarind gum (or hydrocolloid) is a polysaccharide polymer obtained from the seed endosperm. It is extracted, purified and refined and used as a thickening, stabilizing and gelling agent in foods especially in Japan. In India, it is the chief acidifying agent in curries and sauces. The gum can also be used as binder in pharmaceuticals tablets as a humectant and emulsifier.• Socio-cultural: Tree is never planted as it is believed that a person may die as soon as it starts fruiting (Luo). It is believed that a person will die without eating its fruit (Kamba) if he attempts to grow it. Sprouting of the young leaves is an indication of approach of rainy season (Kamba).• Commercial: One of the most commonly sold indigenous fruits. Sold in Siaya, Lodwar, West Pokot, Baringo, Kitui and coastal towns of Kenya.• Fodder: The foliage has a high forage value.• Apiculture: Flowers are reportedly a good source for honey production.• Fuel: Provides good firewood with calorific value of 4 850 kcal/kg, it also produces an excellent charcoal.• Timber, fibres and craft: It is used for general carpentry, sugar mills, wheels, hubs, wooden utensils, agricultural tools, mortars, boat planks, toys, panels and furniture. In North America, tamarind wood has been traded under the name of 'madeira mahogany'. Both leaves and bark are rich in tannin. The bark tannins can be used in ink or for fixing dyes. Leaves yield a red dye, which is used to give a yellow tint to clothe previously dyed with indigo. Ashes from the wood are used in removing hair from animal hides. An amber coloured seed oil -which resembles linseed oil is suitable for making paints and varnishes and for burning in lamps. The bark is used as fibre.• Medicine: The bark, seeds, flowers and leaves are used for treating various ailments • Other products: The pulp of the fruit, sometimes mixed with sea-salt, is used to polish silver, copper and brass in India and elsewhere. The seed contains pectin that can be used for sizing textiles. Ground, boiled, and mixed with gum, the seeds produce a strong wood cement.• Services: Shade, shelter windbreak, firebreaks, boundary or barrier or support, ornamental 5.3. Description of the tree • Botanical description: Tamarindus indica is a large evergreen tree up to 30 m tall, bole usually 1-2 m, up to 2 m diameter; crown dense, widely spreading, rounded; bark rough, fissured, greyish-brown. Leaves alternate, compound, with 10-18 pairs of opposite leaflets; leaflets narrowly oblong, 12-32 x 3-11 mm, petiole and rachis finely haired, midrib and net veining more or less conspicuous on both surfaces; apex rounded to almost square, slightly notched; base rounded, asymmetric, with a tuft of yellow hairs; margin entire, fringed with fine hairs. Stipules present, falling very early. Flowers attractive pale yellow or pinkish, in small, lax spikes about 2.5 cm in width. Flower buds completely enclosed by 2 bracteoles, which fall very early; sepals 4, petals 5, the upper 3 well developed, the lower 2 minute. Fruit a pod, indehiscent, subcylindrical, 10-18 x 4 cm, straight or curved, velvety, rusty-brown; the shell of the pod is brittle and the seeds are embedded in a sticky edible pulp. Seeds 3-10, approximately 1.6 cm long, irregularly shaped testa hard, shiny and smooth.• Species name:Tamarindus indica L.,• Family: Fabaceae -Ceasalpinioideae • Synonym(s): Tamarindus occidentalis Gaertn.; Tamarindus officinalis Hook.; Tamarindus umbrosa Salisb.• Common names: Tamarinde (Afrikaans); humer, roka (Amharic); ardeib (Arabic); mushishi (Bemba); magyee, majee-pen (Burmese); tamarenn (Creole); madeira mahogany, tamarind (English); kalamagi, salomagi, sampalok (Filipino); tamarinier (French); dabe, jammeh, jammi (Fula); asam, asam jawa, tambaring (Indonesian); 'am'pül, ampil, khoua me (Khmer); khaam, mak kham (Lao (Sino-Tibetan)); mukoge (Luganda); asam jawa (Malay); timbimb, timbingo, tombi, tomi (Mandinka); mwemba (Nyanja); tamarin, tamarindo (Spanish); mkwaju (Swahili); bakham, makham, somkham (Thai); humer (Tigrigna); musika (Tongan); me, trai me (Vietnamese); daharg, dakah, dakhar, ndakhar (Wolof).The origin of T. indica is unknown. It is generally believed to be indigenous to the drier savannahs of tropical Africa, but certainly became naturalized long ago in tropical Asia. The species was known and cultivated in Egypt as early as 400 B.C. Early Arab and Persian merchants came across the tree while trading in India. It is assumed that these Arabian seafarers and traders brought the seeds to Southeast Asia in very early times. Marco Polo mentions the tree in the year 1298. In the Indian Brahmasamhita scriptures, the tree is mentioned between 1200 and 200 B.C., and in Buddhist sources from about the year A.D.650.Tamarindus indica is now cultivated in all tropical countries, and it is economically important all over Southeast Asia. It was introduced to the tropics in the western hemisphere in more recent times, probably during the early years of the West African slave trade. In Senegal, the capital Dakar, was named after the local word ('dakhar') for T. indica.Chemical composition: Proximate analyses of the fruits in Malawi has shown approximately 73% dry matter containing 85% total carbohydrate, 5.9 % fibre, 1.6 % fat, 4.1 % crude protein and ascorbic acid content of about 19.7mg/ 100 g fresh weight. Analysis done in Nigeria showed an ascorbic acid content of 42.5 mg/ 100g fresh weight. Seed kernels have been found to contain approximately 65.1-72.2 % non fibre carbohydrate; 15.4-22.7 % protein ; 3.9-7.4 % oil and 0.7-8.2 % crude fibre. Other macro elements present in the fruits are potassium (12.3 mg/g), phosphorous(1.1 mg/g) and Magnesium (1.3 mg/g), while calcium, Iron and sodium were in trace quantities.Sapwood is light yellow, heartwood is dark purplish brown; very hard, durable and strong (specific gravity 0.8-0.9 g/cubic m), and takes a fine polish. 5.7. Genetic resources -? 5.8. Tree improvement -? 5.9. Ecology and agronomy • Climate, soil and water requirements: Widespread in the tropics in South East Asia, India and Africa. Grows well over a wide range of soil and climatic conditions, low-altitude woodland, savannah and bush, often associated with termite mounds. It prefers semi-arid areas and wooded grassland, and can also be found growing along streams and riverbanks. It does not penetrate into the rainforest. Its extensive root system contributes to its resistance to drought and wind. It also tolerates fog and saline air in coastal districts, and even monsoon climates, where it has proved its value for plantations. Young trees are killed by the slightest frost, but older trees seem more cold resistant. A long, well-marked dry season is necessary for fruiting. Commonly seen in light clay, loam, sandy and alluvial soils as well as rocky reas. Found in most low parts of Kenya (0-1600m). Rainfall 250-1200 mm. Zones IV-VII.• Distribution: Native to: Burkina Faso, Central African Republic, Chad, Ethiopia, Gambia, Guinea, Guinea-Bissau, Kenya, Madagascar, Mali, Niger, Nigeria, Senegal, Sudan, Tanzania, Uganda Exotic to: Afghanistan, Australia, Bangladesh, Brazil, Brunei, Cambodia, China, Colombia, Cote d'Ivoire, Cuba, Dominican Republic, Egypt, Ghana, Guatemala, Haiti, Honduras, India, Indonesia, Iran, Jamaica, Laos, Liberia, Malaysia, Mauritania, Mexico, Myanmar, Nicaragua, Pakistan, Panama, Papua New Guinea, Philippines, Puerto Rico, Sri Lanka, Thailand, Togo, United States of America, Vietnam, Zambia.• Reproductive biology: Flowering generally occurs in synchrony with new leaves. The hermaphroditic bisexual flowers are probably insect pollinated; however, no specific information has been found on pollinating agents, except that honeybees collect nectar and pollen from the flowers, so, presumably, they contribute to pollination. Usually starts bearing fruit at 7-10 years of age, with pod yields stabilizing at approximately 15 years. Fruits are adapted to dispersal by ruminants; in Southeast Asia, monkeys are among the chief dispersal agents. Fruits are leathery, nutritive pods that do not dehisce until they have fallen from the tree, while the seeds are hard and smooth and therefore hard to chew. Fruits in July -August in Kitui.• Propagation methods: Tamarind may be propagated by seeds, grafting, budding, and stem-and air-layering. Germinates easily from seeds without pretreatment. Seeds germinate after 2-3 weeks. Shield and patch budding and cleft grafting are fast and reliable methods, currently used in large-scale propagation in the Philippines. Budded and grafted trees are planted out to the field at the onset of the rainy season (May to June in the Philippines) at a spacing of 8-10 m.• Tree management: Growth rate is quite high at first but later its generally slow; seedling height increasing by about 60 cm annually. The juvenile phase lasts up to 4-5 years, or longer. Young trees are pruned to allow 3-5 well-spaced branches. Coppices well.• Germplasm management: Seed storage behaviour is orthodox; no loss in viability during 1 years of hermetic storage at 4 deg. C; and viability can be maintained for several years in hermetic storage at 10 deg. C with 7-15% mc. There are approximately 350-1 000 seeds/kg.• Pests and diseases: The most serious pests of the tamarind are scale insects (Aonidiella orientalis, Aspidiotus destructor and Saisetia oleae), mealy-bugs (Nipaecoccus viridis and Planococcus lilacinus), and a borer (Pachymerus gonagra). Other minor pests in India include lac insects, and bagworms. Beetle larvae cause damage to branches in Brazil, while in Florida and Hawaii beetles attack ripe pods. Termites attack the tree in China. Stored fruit is commonly infested in India. Larvae of the groundnut bruchid beetle are serious pests that attack the fruit and seed in India. In some seasons, fruit borers may inflict serious damage to maturing fruits causing a great reduction in marketable yield. Diseases which have been reported from India leaf spot, powdery mildews, a sooty mould, stem disease, stem, root and wood rot, stem canker, a bark parasite and a bacterial leaf-spot. If not well stored, seeds may be damaged by weevils. • Apiculture: Vitex doniana is a favourite tree for hanging bark beehives.• Fuel: Wood is used for firewood and charcoal.• Timber, fibres and craft: Wood whitish to light brown. The tree produces a teak-like termite-resistant timber. It is quite hard and suitable for light building material, furniture, carvings and boats. The bark yields a dye that can be used for cloth. Used as poles.• Medicine: The fruit is used to improve fertility and to treat anaemia, jaundice, leprosy and dysentery. The root is used for gonorrhoea, and women drink a decoction of it for backaches. The young tender leaves are pounded and the juice squeezed into the eyes to treat eye troubles.• Services: Shade or shelter, nitrogen fixing, soil improver (leaves), boundary/barrier/support: Grown in fields and along boundaries.• Botanical description: Vitex doniana is a medium-sized tree, 8-18 m high, with a heavy rounded crown and a clear bole up to 5 m. Bark rough, pale brown or greyish-white, rather smooth with narrow vertical fissures. The bases of old trees have oblong scales. Leaves opposite, glabrous, 14-34 cm long, usually with 5 leaflets on stalks 6-14 cm long. Leaflets distinctly stalked ovate, obovate-elliptic or oblong, entire, 8-22 cm long, 2-9 cm wide. Leaf tips rounded or emarginate, leaf bases cuneate. Dark green above, pale greyish-green below, thickly leathery, with a few scattered stellate hairs on the upper surface, otherwise without hairs. Flower petals white except on largest lobe, which is purple, in dense opposite and axillary cymes. Flowers small, blue or violet, 3-12 cm in diameter, only a few being open at a time. Fruit oblong, about 3 cm long. Green when young, turning purplish-black on ripening and with a starchy black pulp. Each fruit contains one hard, conical seed, 1.5-2 cm long, 1-1.2 cm wide.• Species name:Vitex doniana Sweet • Family: Verbenaceae • Synonym(s): Vitex cienkowskii Kotschy et Peyr.; Vitex cuneata Schum. et Thonn.• Common names: Black plum (English); galbihi (Fula); dinya (Hausa); ucha koro (Igbo); mfudu, mfuu (Swahili); oori-nla (Yoruba). 5.5. Origin of species and the important centres of diversity -? 5.6. Properties • Chemical composition: From work done in Malawi, the composition of the fruit has been reported as 27 % dry matter; 2.6 % crude protein; 0.7 % fat; 5.2 % fibre; 86.7 % carbohydrate. Mineral elements reported are potassium, 21.5 mg/g; phosphorous, 2.8 mg/g; calcium, 0.93mg/g; magnesium, 0.7 mg/g and sodium 0.28 mg/g. In Nigeria the ascorbic acid content was found to be 1.28 mg/100 g. 5.7. Genetic resources -? 5.8. Tree improvement and breeding -? 5.9. Ecology and Agronomy • Climate, soil and water requirement: Vitex doniana is the most abundant and widespread of the genus occurring in savannah regions. A deciduous forest tree of coastal woodland, riverine and lowland forests and deciduous woodland, extending as high as upland grassland. Requires a high water table. Altitude: 0-1850 m, Mean annual temperature: 10-30 deg. C, Mean annual rainfall: 750-2000 mm, Soil type: Occurs on a variety of soils of varying origins, usually alluvial. In Kenya found in south coast, Loima hills, West Pokot, Migori, Kakamega and Homa Bay at 0-950m, more common on light soils.• Geographic distribution: Native to: Angola, Botswana, Kenya, Lesotho, Namibia, Niger, Senegal, Somalia, South Africa, Sudan, Tanzania, Uganda, Zambia • Propagation methods: The tree regenerates naturally by seed, coppice, wildings and root suckers. Forest fires help in inducing germination because they break the hard testa, remove seeds from fleshy pulp and soak them for 24 hours in cold water.• Tree management: Vitex doniana has a medium growth rate. Coppicing and lopping are recommended forms of management.• Germplasm management: Orthodox seed storage behaviour. Dormancy of air-dry stored seeds is considerable; while fresh seeds germinate more easily, moist storage at 3-5 deg. C for up to a year is possible. There are 1000 seeds/kg.• Lack of information in the country;• Inadequate extension services (Lack of creation of awareness; No domestication); • Weak institutional linkages;• Poor processing and marketing;• Lack of proper management and production techniques.• Properties (particularly mechanical, antinutritional and toxic properties, nitrogen fixation and mycorrhizal associations); • Genetic resources, tree improvement, phenology, origin of species andimportant centres of diversity 5.12. Areas of collaborative work As above and processing, marketing, production and management 5.13. Achieved, current and new projects -? 5.14. Existing networks -? 5.15. List of existing publications SPECIES N°7.Garcinia buchananii Bak.Part of the plant used for food purposes: Fruit Hard wood is used for building. • Socio-cultural importance: A ceremonial tree and meeting place (Pokot, Baringo). Leaves are burnt in ceremonies, for sick cattle, for protection during battles and against wild animals, and by young girls before circumcision (Pokot).• Commercial: Boiled cotyledons sold in Lodwar town.• Medicinal value: Boiled root infusion given to a mother after birth to prevent fainting. Leaves pounded, soaked in cold water and solution used as drops for eye disease (Samburu).• Timber, fibres and crafts: Wood used as fuelwood and in construction of huts (Tharaka, Pokot, Turkana), and making furniture. Wood used to make mortars (Giriama), watering troughs, taker (Pokot), containers (Somalia, Mandera). It is, however, soft. Smaller branches used as toothbrushes (Giriama, Pokot, Somalia, Turkana); camel and goat fodder a good shade tree. The species has good timber for making furniture • Fodder and browse: For camels and goats• Botanic description: Evergreen tree usually 4-7 m high with rounded or spreading low crown. Bark dark grey, almost black or light grey, smooth or nearly so with reticulation giving it a false rough appearance. Leaves opposite, simple, entire, dark green or greygreen, ovate to almost round with a fleshy appearance. Flowers greenish white, fragrant. Fruit green, wrinkled, oval, turning yellow-orange when ripe.• Phenology: The fruit ripens during drought, thus making it particularly useful as a source of food. Seeds lose viability rather quickly 5.4. Taxonomy and names of the species • Species name: Dobera glabra (Forrsk.) Poir.,• Family: Salvadoraceae • Synonym(s): A related, almost indistinguishable (and probably the same) species is D. loranthifolia (Warb.) Harms. A medium-sized tree with a rather spreading crown. Leaves grey-green, leathery. Bark corky, longitudinally fissured, flaking off in small patches. Flowers white. Fruits oval, wrinkled, yellow-green on ripening. Fruits are used in the same way as those of D.glabra and the other uses are more or less the same.• Distribution: Kenya, southern Somalia, Tanzania, Mozambique. Altitude: 0-800 m.• Common names: Chonyi: mkuha, Orma: dende, Swahili: msega, mswaki, Giriama: mkuha, Kamba: Kisiu). 5.5. Origin of the species and the important cetres of diversity -? 5.6. Properties -? 5.7. Genetic resources -? 5.8. Tree improvement and breeding -? 5.9. Ecology and Agronomy • Climate, soil and water requirements: Often near watercourses and places with a high groundwater-table in rocky or sandy soils, less often on clay soils. Zones IV (coast) -VII.• Distribution: Widespread in East and North-east Africa. Also in India. In Kenya common at the coast, Kitui and northern areas in dry bushland. Uncommon but may be very common locally. • Other uses Wood is used for dhow ribs and building poles and as fuelwood.SAFORGEN 94• A spreading, often multi-stemmed, shrub or small tree usually to about 5 m, rarely to 15 m. Branches drooping, occasionally touching the ground. Bark smooth, grey. Flowers are cream or yellow-green, in dense panicles. Fruits reddish brown with a thin dry brittle shell enclosing a dry red pulp. Seeds 1 or 2, grey-brown, smooth, shinny, enclosed in a thin soft membrane. Phenology: Fruits in March-April. Fruits may keep for over 2 years. • Medicinal: Used to treat various ailments like fever (Mbeere), Malaria, Snakebite, fractures and injuries (Samburu).• Fodder and browse: Leaves used as goat and Camel fodder. Fruits eaten by goats.• Timber, fibres and craft: The large trunk is carved into stools, beehives, mortars, and drums for storing honey (Kamba, Tharaka). The inner bark is a source of string (Maasai). Fibre from bark used to make grain containers and baskets, syondo (Kamba). The brown dye obtained from bark was used to decorate the baskets. Also used as fuelwood.• Services: A brown wool used for stuffing mattresses is obtained from roots just below the ground surface (Somalia, Kamba, Tharaka, Mbeere). A good shade tree and bee forage.• Botanic description: Much-branched spreading deciduous shrub usually 1.5-4.0m high, with drooping branches and a spiky appearance. Bark dark grey, smooth. Stem base and main roots normally covered with brown, thread-like growths resembling cotton wool. Leaves usually clustered on short shoots and divided into tiny leaflets which are bluntly toothed towards the apex. The leaf rachis is often winged. Flowers borne in inflorescences arising together with leaves from the short shoots, greenish yellow, small, inconspicuous. Fruits up to 2cm across, fleshy, green turning yellow to orange or reddish brown on ripening. Seeds green with a rough surface.• Phenology: Flowers in September-October in Makueni, Tharaka, Kitui and Taita, in December in Tana River. Fruits in February-March in Makueni, Tharaka, Kitui, Taita and Wajir, in May in Mandera, in July-August in Kilifi and Kwale and in December in Garissa. May be locally common.• Species Name: Lannea alata (Engl.) Engl • Family: Anacardiaceae • Common names: Swahili: Mnyumbu, Chonyi: mnyumba, Digo: mnyumbu, Giriama: mnyumbu, Kamba: Kyuasi, Mbeere: muracu, Luo: kuogo Maa: orpande, Marakwet: monwo (singular), Pokot: moino, Samburu: lapurori, Sanya: hadaraku, Somali: deen, Tharaka: muthuchi) 5.5. Origin of the species and the important centres of diversity -? 5.6. Properties -? 5.9. Ecology and Agronomy • Climate, soil and water requirements: Found on rocky hillsides, in Acacia-Commiphora bushland, often associated with Delonix alata, Lannea triphylla, Adonsonia digitata, Acacia tortilis, Sterculia stenocarpa and Grewia species in light red clay and in rocky areas, 0-1,200 m. Rainfall: 400-600 mm. Zones V-VI.• Distribution: A widespread tree in Kenya and in Africa from Sudan to South Africa.Grows in Somalia, coastal, eastern and northern parts of Kenya and northern Tanzania. In Kenya may be found at El Wak (Wajir), Mtito Andei, Kurawa (Tana River), Mutwang'ombe (Kitui).• Management: Needs good management to control the poor spreading habit.• Inadequate extension services (Lack of creation of awareness; No domestication); • Weak institutional linkages;• Poor processing and marketing;• Lack of proper management and production techniques.Phenology; properties; genetic resources; tree improvement, ecology and agronomy 5.12. Areas of collaborative work As in 5.11 above 5.13. Achieved, current and new projects -? 5.14. Existing networks -? 5.15 List of existing publications -?Programme Ressources Forestières, BP 258, IER.Mali.Le code forestier est une disposition réglementaire qui protège les espèces ligneuses alimentaires prioritaires sélectionnées dans le pays. La mise en oeuvre de la politique de conservation de ces ressources génétiques forestières est assurée par l'Institut d'Economie Rurale, la Direction Nationale de la Conservation de la Nature et les ONGs. Les espèces ligneuses alimentaires prioritaires ont été sélectionnées à partir des enquêtes menées en milieu paysan par le Programme des Ressources Forestières. Les espèces retenues sont : Vitellaria paradoxa, Adansonia digitata, Tamarindus indica, Parkia biglobosa, Ziziphus mauritiana, Saba senegalensis, Anacardium occidentale, Detarium microcarpum, Lannea microcarpa et Sclerocarya birrea.The forestry Act protects the priority food tree species selected in the country. The Rural Economic Institute, the National Department for Nature Conservation and NGOs ensure the implementation of the forest genetic resources conservation policy. The priority food tree species selected are extracted from various surveys carried out in the rural areas by the Forest Resources Programme. These species are: Vitellaria paradoxa, Adansonia digitata, Tamarindus indica, Parkia biglobosa, Ziziphus mauritiana, Saba senegalensis, Anacardium occidentale, Detarium microcarpum, Lannea microcarpa and Sclerocarya birrea.Les ressources naturelles renouvelables constituent la base du développement économique et social des populations maliennes. Une enquête menée par le Programme des Ressources Forestières en milieux paysans a permis d'identifier les principales espèces prioritaires suivant : le karité, le baobab, le néré, le tamarinier, le jujubier, le saba, le sclerocarya, le lannea, le detarium. Ces essences sont donc intégralement protégées par le code forestier. Les institutions de recherches en l'occurrence l'Institut d'économie Rurale (IER), la Direction Nationale de la Conservation de la Nature et les Organisations Non Gouvernementales sont des structures impliquées dans la conservation des Ressources Génétiques de ces espèces. Cependant, malgré leur importance économique et culturelle, ces espèces sont menacées de disparition à cause du vieillissement des parcs, de la longue phase de croissance des espèces, de la méconnaissance des techniques sylvicoles, et de la régression des milieux naturels. A cela s'ajoute les effets néfastes des pratiques humaines telles que les feux de brousse et les défrichements. Le karité est un arbre respecté et protégé par les populations africaines. Malgré la crise énergétique du bois de chauffe, le karité est épargné et n'est coupé qu'en tout dernier recours. Il fournit aux populations rurales des produits variés. Il s'avère très précieux comme arbre (fruitier et comme producteur de beurre). En effet, pendant près de deux mois, au moment de la soudure, lorsque les réserves sont épuisées, les fruits du karité constituent le principal aliment d'appoint de certaines populations rurales. La pulpe sert à confectionner une boisson servie aux paysans lors des travaux champêtres. Les fruits sont vendus sur les marchés urbains au même titre que les mangues et les oranges. Les branches des arbres envahis par les parasites sont coupées et servent de fourrages aux ovins et caprins.Cependant, le produit principal du karité reste le beurre qui connaît actuellement un regain d'intérêt de la part des industries de transformation de matière grasse alimentaire. Le beurre est utilisé traditionnellement pour la préparation des aliments, la fabrication du savon, la pharmacopée, l'éclairage avec les lampes à mèches et les soins cosmétiques surtout chez les femmes, même si la consommation locale reste importante. Le beurre de karité est l'un des produits les plus proches du beurre de cacao ; il est donc utilisé comme substitut de ce dernier par les chocolateries. De même, la présence de latex (karitène) dans son écorce insaponifiable (3 à 5%) facilite la confection de feuilletés en pâtisserie. En plus des produits de consommation directe (fruits et beurre), le karité constitue également une source indirecte de produits alimentaires. Le karité est un arbre mellifère très recherché pour l'implantation des ruches en apiculture traditionnelle. Au Mali, la production du miel culmine au moment de la floraison du karité. Les chenilles du papillon Cirina butyrospermi, qui se nourrissent exclusivement de feuilles de karité sont riches en protéines. Ces chenilles sont consommées par de nombreuses ethnies et vendues sur les marchés.Les arbres constituent des lieux de repos pendant les heures de pause et des endroits de conservation des outils de travail et de repos des animaux. Les feuilles de karité conservées dans des compostières se transforment en fumure organique utilisée pour la fertilisation des sols. Les feuilles mortes servent non seulement de fumier mais aussi de barrage pour freiner le ruissellement de l'eau et l'érosion hydrique. Les branches émondées de l'arbre fournissent également un bois d'oeuvre dur rouge, résistant aux termites et servent à de multiples usages (pilons, mortiers, perches, poutre). On l'apprécie également comme bois de chauffe et de charbon.Les feuilles sont utilisées dans le traitement de certaines maladies. Le beurre de karité présente un intérêt certain dans les traitements classiques des dermites, dermatoses, sécheresse cutanée, brûlures. Grâce à sa composition chimique, le beurre de karité est très prisé en cosmétique. On le trouve dans un nombre croissant de produits de beauté, en raison de ses propriétés particulières de douceur et d'onctuosité.C'est un arbre de taille moyenne (10 à 15 mètres de hauteur), assez trapu, à cime arrondie, très branchue et ramifiée. L'écorce est grise ou noirâtre, formée d'écailles très épaisses, carrées. Les feuilles sont ramassées en touffes denses à l'extrémité des rameaux (Cuny et al., 1997). Elles sont alternes, étroitement oblongues, ovales ou elliptiques. Les fleurs sont blanchâtres ou verdâtres, elles sont regroupées en corymbes à l'extrémité des rameaux. Les fruits sont des drupes ellipsoides, ovales ou obovales entourés d'un péricarpe épais. Le nombre de graines par fruit varie entre 1 et 4.La feuillaison commence en mars et atteint son maximum en juin. La chute des feuilles qui débute en décembre, dure trois mois. La phase suivante correspond à la formation des bourgeons foliaires, elle commence pendant que les anciennes feuilles continuent leur chute. Les premiers bougeons foliaires sont observés dans la première moitié de février. La formation de ces bourgeons se poursuit jusque dans la première moitié du mois de mai. Les jeunes feuilles apparaissent dans la première moitié du mois de mars. La formation des feuilles juvéniles se poursuit jusque dans la première quinzaine du mois de mai (Maiga, 1984).La floraison débute par la formation des bourgeons floraux qui apparaissent en janvier. La formation des bourgeons floraux se poursuit jusqu'en avril. Certains pieds se singularisent par le fait qu'ils ont une fructification et une chute de fleurs plus précoces que les autres. Cela pourrait résulter du fait de l'existence comme l'a signalé Chevalier (1948), de deux types de fleurs chez certains pieds. Pour Chevalier, la variété manguifolium porterait à des périodes différentes d'abord des fleurs mâles puis des fleurs femelles. Les fleurs mâles s'épanouissent et tombent sans donner des fruits.Les premières fructifications sont observées en février, la maturation intervient en mai et la pleine fructification est constatée en juin. La chute des fruits qui dénote leur maturation débute en juin et se poursuit jusqu'en août. La dissémination des graines est assurée essentiellement par l'homme et les animaux, tandis que la pollinisation est faite par les insectes (abeilles, papillons, guêpes, mouches, fourmis, etc.) (John 2000).Le karité a été décrit pour la première fois par Mungo Park en 1796 dans la région de Ségou (Mali). L'espèce fut appelée Vitellaria paradoxa en 1805, puis Bassia parkii en 1837 en souvenir de Mungo Park ; l'appellation Butyrospermum paradoxum fut utilisée par Kotschy en 1864. Il existe donc une confusion au niveau de la nomenclature systématique du karité. Cependant sur la base des caractères morphologiques tels que la précocité, la succulence de la pulpe, et la teneur en matière grasse des amandes, Maguiraga (1993), a décrit 3 variétés. Par ailleurs, le nom karité connu par les français proviendrait de l'appellation sarakolé du Mali et ouolof du Sénégal (Ruyssen 1957). Les anglais l'appellent shee ou shea, ce qui correspond à l'appellation bambara ou malinké (ci ou chi). L'espèce appartient à la famille des Sapotaceae et l'ordre des Ebenales. Chevalier (1943) reconnaît quatre variétés : Manguifolium, Poissoni, Niloticum et Paradoxa.L'origine du karité n'est pas encore bien connue. Cependant Smaranz et Wiesman (2000) se demandent si le centre d'origine ne se trouverait pas dans une zone s'étendant entre le Mali et la Guinée. Les résultats préliminaires obtenus par ces auteurs indiquent que le beurre de karité de l'Afrique de l'est est une huile ayant une teneur très élevée en acide oléique et une faible teneur en acide stéarique. En Afrique de l'Ouest le phénomène contraire est obtenu et le beurre a une consistance plus dure. Les échantillons provenant du Sénégal oriental, de la partie occidentale du Mali, et du nord de la Guinée présentent soit une consistance liquide, soit compacte ou alors une consistance intermédiaire. Ces résultats devraient être confirmés ou infirmés en étudiant un nombre d'échantillons plus important et aussi en prenant en compte des marqueurs morphologiques, enzymatiques et moléculaires. On pourrait alors identifier non seulement les centres d'origine mais aussi les centres de diversification et l'évolution des populations à travers le continent africain.La pulpe des fruits contient du glucose, des sels minéraux (Smaranz et Wiesman, 2000). Les amandes renferment des composés phénoliques, des acides gras (acide oléique, acide stéarique, acide palmitique, acide linoléique), (Smaranz et Wiesman, 2000). Selon Terpent (1982) cité par Diane et al., (1995), ce beurre renferme des triglycérides (50%), des diglycérides (4%), des monoglycérides (2%), des esters cireux (7%), et des acides gras (20%).Les ressources génétiques sont mal connues même si les paysans et surtout les paysannes disposent de critères de sélection empiriques telle que la production fruitière (quantité de pulpe, caractère organoleptique, quantité de matière grasse). Il faut également reconnaître que les peuplements de karité subissent de fortes pressions humaines (les feux de brousse et les défrichements). Par ailleurs, le vieillissement des parcs à karité, la régression des milieux naturels ainsi que la méconnaissance des techniques sylvicoles constituent une menace pour la conservation génétique. Pour bien apprécier cette érosion génétique, il faut au préalable identifier les constituants de l'espèce. Or à l'instar des autres composantes de la diversité biologique, le karité souffre encore de la non identification des variétés et même des sous espèces.Au Mali, des travaux d'identification variétale sont en cours, ils portent sur les marqueurs morphologiques en utilisant un certain nombre de descripteurs (hauteur de l'arbre, diamètre, forme du houppier, longueur du limbe, largeur du limbe, inflorescence, infruitescence, etc.). Une fois la diversité connue et en fonction du degré de menace qui pèse sur la diversité, une méthode adéquate de conservation sera proposée.Le poids des semences varie entre 4 à 15 grammes. Les semences sont récalcitrantes, la faculté germinative est de courte durée, et disparaît en quelques semaines, la germination est également étalée.Le karité se caractérise par une très longue période de croissance. Ce facteur en plus du vieillissement des parcs et de la méconnaissance des techniques sylvicoles constituent un obstacle à la domestication de l'espèce. Les objectifs d'amélioration visent la réduction de la période d'adolescence et l'identification de variétés performantes. Dans le souci de réduire cette phase, des méthodes de greffage ont été mises au point : le greffage par placage simple semble donner un résultat satisfaisant (69% de taux de réussite) par rapport au greffage par placage à double fente (54%) et au greffage en tête de rameaux (33%) (Sanou, 2000). Au Mali, des prospections ont été réalisées dans 20 provenances ; une pépinière a été constituée à partir des semences récoltées. Elle permettra d'étudier la variabilité de la phase juvénile. 5.9. Ecologie et Agronomie L'aire de distribution couvre la région phytogéographique soudano-zambézienne telle qu'elle a été définie par Lebrun (1974), cité par Schnell (1976). Elle s'étend des hautes vallées du Sénégal et de la Gambie au Nil. Les limites septentrionale et méridionale s'infléchissent irrégulièrement de l'ouest à l'est vers le sud. A l'exception d'une présence limitée autour de Tambacounda dans l'extrême sud et en haute Casamance, le karité est absent du Sénégal. Des peuplements denses existent au Mali, en Guinée, au Burkina Faso, ainsi qu'au nord de la Coté d'Ivoire du Ghana, du Togo, du Bénin, du Nigeria et du Cameroun. On trouve aussi quelques petites stations en Afrique centrale et en Ouganda (Yossi, 1986).Au Mali, son aire de distribution couvre 194 000 km² (Ruyssen, 1957). Le karité se rencontre entre les isohyètes 600 à 1700mm. Son aire de prédilection se situe entre 800 et 1200 mm et couvre trois zones agro-climatiques : la zone nord guinéenne, la zone sudsoudanienne, et nord soudanienne. Le karité préfère les sols argilo-siliceux ou sablo-argileux, riches en humus. On peut le rencontrer aussi dans les stations pierreuses ou sur les sols latéritiques, la production est alors moins importante. On trouve plus rarement dans les stations marécageuses, les sols argileux humides et lourds. Un sous-sol riche en matière organique et moyennement humide accélère sa croissance. Le karité aime les conditions dégagées ainsi que les terrains réservés aux cultures sèches (mil, arachide, coton). SAFORGEN 100Des activités sont en vue, mais les programmes ne sont pas encore réalisés.Etude de la diversité génétique sur toute l'aire de répartition de l'espèce de l'Afrique occidentale en Afrique orientale en passant par le Tchad et le Cameroun. 5.12. Domaines (activités de recherche ou non) de collaboration potentielle avec les autres pays : L'étude de la diversité génétique nécessitera le prélèvement d'échantillons à partir d'autres pays. 5.13. Projets passés, en cours ou futurs conduits sur l'espèce Il existe un projet régional INCO/karité qui a démarré depuis 1999 pour quatre années. Les thèmes principaux traités par ce projet sont : la constitution d'une base de données sur les facteurs socio-économiques qui influencent la gestion des parcs à karité, l'impact des pratiques paysannes sur la diversité génétique du karité, la biologie de la reproduction, la réduction de la phase juvénile, la lutte contre les parasites (les loranthacées), les circuits de commercialisation. L'écorce est utilisée dans la fabrication des cordes ou comme bois de cuisson en poterie. Les feuilles et les racines sont utilisées en pharmacopée.Le baobab se rencontre dans les contrées à longue saison sèche. Selon Busson (1965), l'arbre a été introduit par voie maritime à partir de la flore australienne et malgache. L'arbre peut atteindre 20 mètres de hauteur et 7 mètres de diamètre, la cime est formée de branches tortueuses et courtes et offre un aspect décharné surtout en saison sèche lorsqu'elle a perdu ses feuilles (Giffard, 1974). Le fruit est une grande capsule pendante reliée à un long pédoncule. La période de feuillaison se situe entre avril et juillet, tandis que la floraison commence en septembre, et la fructification a lieu entre janvier et avril. La pollinisation est assurée par les chauves souris, et la dissémination des graines par l'homme, et les animaux.Genre : Adansonia Nom scientifique : Adansonia digitata. Nom vernaculaire : sira (Bambara ) 5.5. Origine de l'espèce et principaux centres de diversité L'abondance de l'arbre dans les régions maritimes de l'Angola au Sénégal a fait dire à Aubreville (1950), que l'aire d'occupation a d'abord été le littoral. Toutefois des études génétiques devraient permettre d'identifier les centres d'origine et de diversification. 5.6. Propriétés L'intérêt des populations rurales pour le baobab tient au fait que toutes les parties sont utilisables. Les feuilles sont riches en provitamine A (50µg/g), protéines (13,4%), glucides (60 %), calcium (2,6%), phosphore (0,25%), acides aminés surtout acide glutamique, acide aspartique, leucine et phénylalanine (Giffard, 1974 ;Von Maydell, 1983 ;Sidibe, 1997). Les travaux de Sanou (2000) ont permis de montrer qu'il existe une variation importante du taux en sels minéraux en fonction des régions. La pulpe du fruit renferme 80% de glucides, des teneurs importantes en vitamines C, B1, calcium et phosphore. Une étude menée par Sidibe et al. (1996), a montré que la teneur moyenne en vitamine C de la pulpe des fruits peut atteindre 5,5 mg/g. Les racines du baobab entretiennent bien la symbiose mychorizienne.La longue phase d'adolescence, la lenteur de la croissance et la pression humaine constituent des obstacles majeurs pour la conservation des ressources génétiques des essences spontanées. Cependant des efforts de domestication ont pu être entamés. Ainsi, dans le pays dogon, les villageois élèvent de jeunes pieds de baobab à l'intérieur des concessions jusqu'à une hauteur de 2 à 3 mètres pour les transplanter par la suite aux abords des champs (Sidibe et al., 1996).Par ailleurs, la sélection massale a permis aux différents groupes ethniques de distinguer chez le baobab des groupes d'individus à écorce noire (Sirafing), à écorce rouge (Sirablé), à écorce grise (Siradiè), et le baobab légumineux (Siramoloni), (Sidibe et al.,1996). Selon Krings (1992), il existe à l'intérieur de chaque groupe des variations importantes au niveau de la taille, du nombre des feuilles, ainsi que la forme et la taille de l'arbre. Il existe une variabilité en fonction de la forme des fruits (elliptique, ovale, obovale, lancéolé, oblancéolé, fusiforme, circulaire, etc.). Les semences de masse comprise entre les feuilles de baobab et se conservent mieux que celles du karité. L'évaluation génétique par les marqueurs cytogénétique, enzymatique, et moléculaires n'a pas été entamée. Des méthodes de conservation ex situ par la culture in vitro sont envisagées.Les objectifs d'amélioration visent la sélection de variétés performantes, la réduction de la phase juvénile, et la création de variétés réunissant plusieurs critères de qualité. Un programme d'amélioration a été initié par l'IER, les méthodes utilisées sont : la caractérisation morphologique, et génétique, l'identification d'individus performants par analyse chimique des feuilles et des fruits, la réduction de la phase juvénile par greffage et par mutagenèse, et la création variétale par hybridation contrôlée. Le néré (Parkia biglobosa Benth), est une espèce agroforestière à fonction multidimensionnelle qui est largement répandue en Afrique soudanienne et centrale (Ouedraogo, 1995). Le néré figure parmi les espèces prioritaires choisies par les paysans lors des enquêtes effectuées par le Programme Ressources Forestières, sur la prioritisation des ligneux à usages multiples. Il est surtout entretenu pour sa pulpe qui est consommée, les graines servent à confectionner une denrée appelée « soumbala » qui est consommée dans tout le pays. L'espèce joue des fonctions socio-culturelles très importantes.Les feuilles sont utilisées dans la pharmacopée, les branches émondées servent à la confection des pilons et des mortiers, elles sont également utilisées comme bois de chauffe.C'est une Mimosaceae de 10 à 20 mètres de hauteur au fût robuste cylindrique et court, couvert d'une écorce foncée profondément striée. L'espèce se reconnaît facilement pendant la période de floraison et de fructification, grâce aux inflorescences en boules rouges, suspendues à l'extrémité d'un pédoncule et aux fruits réunis en grappes de gousses. Les feuilles alternes et bipennées possèdent 30 à 65 paires de foliollules. La pulpe, jaune à maturité contient des graines ovoïdes entourées d'une pulpe farineuse. La pollinisation est assurée par les chauves souris. La floraison a lieu entre octobre et janvier et la fructification entre mars et juin.Famille : Mimosaceae. Genre : Parkia Nom scientifique :Parkia biglobosa Benth Nom vernaculaire : nere (Bambara) 5.5. Origine de l'espèce et principaux centres de diversité On ignore tout sur le centre d'origine et de diversité de l'espèce. Cependant compte tenu de l'importance de la plante des efforts de domestication sont entamés. Ainsi, dans les régions où il est fortement valorisé, des parcs de néré ont été mis en place puis entretenus. L'impact de ces pratiques humaines sur la diversité génétique a été étudié par Ouedraogo (1995). Ces travaux lui ont permis de mettre en évidence des sous -populations à l'intérieur de chaque population; les pratiques humaines (échange de semences) de même que les agents pollinisateurs (chauves souris) contribueraient à maintenir une certaine hétérogénéité dans la population. La diversité inter-populations serait due aux activités culturelles et aux transactions commerciales.La pulpe des fruits du néré riche en glucides (81%) est consommée fraîche ou sous forme d'une bouillie après séchage. Les graines, bien pourvues de lipides (30%), et de protéines (41,8%), servent à fabriquer le \" soumbala \" utilisé comme condiment et qui donne lieu à un commerce très important pratiqué essentiellement par les femmes (Ouedraogo, 1995). Le néré intervient également dans la médecine et la pharmacopée traditionnelle. En effet, les différentes parties sont utilisées seules ou en association avec d'autres plantes dans les traitements de plusieurs affections en Afrique de l'Ouest, notamment au Bénin, Burkina Faso, Mali, Nigeria, Togo, et Sénégal (Lejoly, 1990).Des études génétiques à partir de marqueurs isoenzymatiques ont été menées au Burkina Faso par Sina (1997), une importante de collection existe également dans ce pays. Au Mali, des études sont en vue sur la biologie de la reproduction, et l'étude de la diversité génétique par les marqueurs moléculaires. Actuellement, aucune mesure de conservation n'a été entreprise, et l'espèce semble être en voie de disparition.Les objectifs d'amélioration visent à réduire la période juvénile, identifier les variétés performantes, et créer de nouvelles variétés intéressantes par hybridation contrôlée. 5.9. Ecologie et Agronomie 5.10. Contraintes majeures : Problème de financement.Il s'avère nécessaire de poursuivre les recherches sur la diversité génétique, la biologie de la reproduction et la multiplication végétative.Une collaboration a existé par le passé, cette collaboration devrait être poursuivie. 5.13. Projets en cours ou futurs conduits sur l'espèce :Amélioration des fruitiers locaux (IER. Le jujubier, Ziziphus mauritiana Lam, est une espèce panafricaine du secteur sahélo-saharien, où il pousse sur tous les types de sols mais surtout en bordure des rivières temporaires (Giffard, 1974). Les fruits sont riches en vitamine C, la pulpe des fruits sert à fabriquer des galettes et des crèmes. Les fruits font l'objet d'un commerce intense entre le Mali et le Sénégal.Les branches servent à protéger les moissons après les récoltes. Les feuilles sont consommées et recherchées par les moutons et les chèvres, mais elles sont inaccessibles aux bovidés à cause des épines. Le jujubier est utilisé dans les plantations pour constituer des haies vives (Sidibe et al., 1995). Ses racines entretiennent bien la symbiose mycorhyzienne (Sacko, 1998).C'est un arbuste buissonnant qui offre souvent l'aspect d'un petit arbre dont la cime touffue peut atteindre 7 à 8 mètres de hauteur. Les rameaux blanchâtres et retombants, changeant de direction à chaque noeud, présentent des épines aiguës groupées par paire, et des feuilles simples alternes et trinervées. Ils portent également des inflorescences axillaires. La floraison s'étale de juillet à novembre, et la fructification de décembre à mars. Les mouches, les abeilles, les fourmis, et les papillons sont les agents de la pollinisation. La dissémination des semences est assurée par l'homme et les animaux.Famille : Rhamnaceae Genre : Ziziphus Espèce : Ziziphus mauritiana (Lam), Noms vernaculaires : n'tômônô (en Bambara), n'tômôlon (en Malinké). 5.5. Origine de l'espèce et principaux centres de diversité Selon Chevalier (1993), sa culture est plus ancienne que celle des céréales. Il est domestiqué en Asie Tropicale, en Océanie, aux Antilles et à Madagascar. On ignore tout sur les centres d'origine réel et de diversification.Le jujubier est surtout entretenu pour ses fruits qui renferment non seulement des teneurs importantes en vitamines C, mais aussi du fer et du zinc (Scheuring, 1998). L'espèce est très indiquée dans mobilisation du phosphore du sol, grâce à la symbiose entretenue avec les mycorhizes.Des études sont en cours sur la caractérisation morphologique et cytogénétique. Dans cette optique, une collection vivante a été constituée dans plusieurs zones agroécologiques du pays. Des échantillons ont été prélevés dans 15 provenances. Les graines ont été semées en pépinière, après un séjour de trois mois en pépinière, les plantules ont été transférées sur une parcelle, la distance de plantation a été de trois mètres entre les plants. Les échantillons ont été cultivés in vitro à partir de graines, et à partir d'explants (fragments de tiges provenant de la pépinière) sur milieu de Murashige et Skoog (1962), additionné de phytohormones. Les vitroplants serviront à la cytométrie en flux.Les objectifs d'amélioration portent sur la réduction de la phase juvénile, la sélection de variétés performantes, et la création de variétés intéressantes. Pour cela, il est nécessaire d'entreprendre la caractérisation, l'évaluation du matériel végétal avant de procéder à des croisements à partir de géniteurs sélectionnés. 5.9. Ecologie et Agronomie 5.10. Contraintes majeures : Problème de financement 5.11. Recherches supplémentaires nécessaires :Poursuite de la caractérisation des ressources génétiques. 5.12. Domaines de collaboration potentielle avec les autres pays 5.13. Projets passés, en cours ou futurs existants pour cette espèce :Amélioration des fruitiers locaux (IER). 5.14. Noms et adresse des réseaux existants 5.15. Liste des publications connues sur l'espèce et adresse où on peut les avoir?.Les fruits sont très utilisés et servent à la fabrication du jus de tamarin. Ils font l'objet d'un commerce important avec le Senegal. Les fleurs sont consommées fraîches en salade ou comme condiment dans les sauces, le jus des feuilles servent à la fabrication des bouillies. Les feuilles et les fleurs donnent un fourrage de haute qualité. On ne dispose pas de chiffre concernant les quantités produites dans le pays.-feuilles (pharmacopée), -bois (construction, mortier, pilon, bon combustible), -feuillage (amélioration du microclimat local), -cendres du bois et de l'écorce (tannerie des peaux).LES RAPPORTS DES PAYS 105C'est un grand arbre pouvant atteindre 30 mètres de hauteur, au tronc court et à cime très étalée dense et de forme hémisphérique. L'écorce est grise, très crevassée, composée d'écailles rectangulaires. Les feuilles sont alternes, pennées, composées de 9 à 12 paires de folioles opposées. Les fleurs sont composées de trois pétales oranges, elles sont seules ou en grappes de 5 à 10 fleurs. L'arbre reste vert toute l'année. Une défeuillaison partielle et échelonnée dans le temps existe : la chute des feuilles a lieu de décembre à avril et les nouvelles feuilles apparaissent d'avril à juillet. La fructification s'étale de mai à août. Les fruits arrivent à maturité de décembre à février. La dissémination maximale des graines a lieu en janvier.Famille : Ceasalpiniaceae Genre : Tamarindus Espèce : Tamarindus indica Noms vernaculaires : n'tomi, domi (Bambara), kataanga (Minyanka), shoshianga (Sénoufo) 5.5. Origine de l'espèce et principaux centres de diversité L'espèce est originaire de Madagascar, elle a été disséminée par l'homme et est actuellement pantropicale. Elle a été introduite très longtemps en Inde et en Afrique.Les fruits renferment de l'acide ascorbique et du glucose.A notre connaissance aucun travail n'a été conduit sur les ressources génétiques du tamarinier.Les travaux d'amélioration menés au Mali ont porté essentiellement sur la réduction de la phase juvénile de l'espèce. A cet effet, les plants greffés ont fructifié en 4 ans au lieu de 17. Des travaux ont eu lieu sur la domestication, ils ont porté sur les techniques de production des plants en pépinière et la transplantation. Les résultats obtenus nous indiquent que le prétraitement à l'eau bouillante puis séjour de 24 heures dans l'eau ordinaire ou alors le trempage dans l'acide sulfurique à 97% pendant 10 minutes permettent d'obtenir un taux de germination de l'ordre de 95%. 5.9. Ecologie et Agronomie C'est une espèce très plastique qui supporte les pluviométries allant de 250 à 1500 mm. Elle est commune des régions semi-arides et est rare dans les zones de forêt. Elle peut s'installer jusqu'à 1500 m d'altitude si la chaleur est suffisante. Ses racines profondes lui donnent une grande amplitude écologique. Elle préfère cependant les sols profonds et perméables et les anciennes termitières.Manque de financement pour étude de la diversité génétique.-Etude de la diversité génétique sur l'aire de répartition de l'espèce, -Impact des pratiques paysannes sur la diversité génétique, -Conservation de la diversité génétique.-Multiplication végétative (greffage et bouturage), -Etude de la diversité génétique. L'on ne dispose pas de chiffres sur les quantités produites, toutefois l'espèce joue un rôle socio-culturel très important au Mali, et elle est surtout utilisée par les femmes.L'arbre donne un bon bois utilisé comme combustible. Cependant dans le sud du Mali, la coutume interdit d'utiliser cette espèce comme combustible lors de la préparation des remèdes car cela leur enlèverait toute leur efficacité. Les graines servent à confectionner des colliers et des ceintures.L'arbre est de taille moyenne (10 mètres) à cime irrégulière et assez ouverte. L'écorce est brun rouge, avec des écailles grises ou noirâtres. Les feuilles sont imparipennées, alternes (7 à 11 cm de long sur 3 à 5 cm de large). Les fleurs sont groupées en panicules axillaires qui peuvent atteindre 15 à 20 cm de long. Les fruits sont des drupes sub-globuleuses brun foncé. Elles mesurent 4 cm de long sur 2,5 cm de large et contiennent un noyau gros couvert de pulpe entremêlée de fibres insérées sur le noyau.La feuillaison a lieu entre mars et mai. La chute des feuilles intervient entre novembre et février. L'espèce connaît une période de défeuillaison totale. La floraison a lieu entre août et septembre, par contre l'arbre porte les fruits en août et octobre.Famille : Ceasalpiniaceae. Genre : Detarium Espèce: Detarium microcarpum Nom vernaculaire: N'tama coumba (Bambara) 5.5. Origine et centre de diversité 5.6. Propriétés 5.7. Ressource génétique : Inconnue 5.8. Amélioration de l'espèce : Néant. 5.9. Ecologie et Agronomie C'est un arbre des zones guinéenne et soudano-guinéenne. Il est commun, mais de distribution souvent irrégulière. Il affectionne les sols sableux ou latéritiques. Il est de tendance grégaire, surtout sur les cuirasses latéritiques et les jachères où il peut former des peuplements purs. 5.10. Contraintes majeures : Manque de financement pour étude de la diversité génétique.-Etude de la diversité génétique sur l'aire de répartition de l'espèce, -Impact des pratiques paysannes sur la diversité génétique, -Conservation de la diversité génétique.-Multiplication végétative (greffage et bouturage), -Etude de la diversité génétique. La conservation des ressources naturelles en général et forestières en particulier est une priorité nationale au Niger. Ceci se justifie par le fait que les ressources naturelles constituent le potentiel de production sur lequel reposent toutes les activités socio-économiques. C'est conscient de ce fait que le gouvernement nigérien a initié plusieurs projets de développement et de recherche qui sont en cours d'exécution sur toute l'étendue du territoire national. En plus de ces projets, il faut retenir que le Niger a souscrit aux différentes activités sous-régionales et internationales qui portent un enjeu sur la conservation et l'utilisation durable des ressources naturelles. C'est ainsi que le Niger fait partie de plusieurs organisations sous-régionales et internationale par l'intermédiaire de ses différents services. Concernant les ressources génétiques forestières, il faut rappeler que le Niger a toujours participé activement aux différentes activités qui ont abouti au processus de la mise en place du programme SAFORGEN (Sub-Saharan Africa Forest Genetic Network). L'atelier tenu à Ouagadougou en mars 1998 a vu la participation du Niger qui a présenté un rapport national sur les ressources génétiques forestières.Le présent rapport complète celui présenté par le Niger lors du premier atelier régional de formation sur la conservation et l'utilisation durable des ressources génétiques forestières en Afrique de l'Ouest, Afrique Centrale et Madagascar tenu en mars 1998 à Ouagadougou notamment sur certains aspects relatifs à la situation des ressources génétiques forestières au Niger. Il traite des espèces ligneuses alimentaires prioritaires du Niger.Le Niger, vaste pays de 1.267.000 km² est de tous les pays sahéliens, le plus affecté par le phénomène de désertification et de la sécheresse. La superficie totale des forêts et autres terres boisées est estimée à 10.442.000 ha en 1990 (FAO, 1995). Les formations végétales ligneuses jouent un rôle stratégique dans le maintien du potentiel de production alimentaire, LES RAPPORTS DES PAYS 109 la satisfaction des besoins énergétiques des populations et la préservation de l'environnement de manière générale.Les ressources génétiques forestières y constituent un patrimoine important au Niger à cause des produits dérivés qu'elles procurent et d'autres biens non quantifiables. A titre d'exemple, il a été recensé 210 espèces dans le domaine de la biodiversité végétale (ressources génétiques forestières comprises) qui présentent un intérêt dans le régime alimentaire des populations rurales (CNEDD, 1998). Beaucoup de travaux de recherches ont été conduits sur ces espèces tant sur leurs utilisations que sur l'écologie et la période annuelle de disponibilité des produits comestibles. Il est à noter que ces travaux loin d'être exhaustifs doivent être poursuivis pour un inventaire complet afin de faire un état de lieu sur la situation actuelle de toutes ces espèces et déterminer les pistes d'intervention prioritaires.Les espèces ligneuses alimentaires entrent quotidiennement dans le régime alimentaire des populations nigériennes des villes et des campagnes. Une étude sur l'intégration des objectifs nutritionnels de la foresterie dans la sécurité alimentaire au Niger à été conduite en 1997 par une équipe des chercheurs de la faculté des sciences de l'Université Abdou Moumouni de Niamey. Au cours de cette étude, 107 espèces spontanées à usages alimentaires ont été identifiées ; les organes consommés, la période annuelle de disponibilité ainsi que leur distribution biogéographique ont été précisés (Saadou et Garba, 1997). Comme pour toutes les ressources génétiques forestières, les espèces ligneuses alimentaires nécessitent un inventaire complet et une prioritisation d'intervention en vue de leur amélioration pour satisfaire les demandes croissantes des populations. Dans une étude récente, Mahamane (1998) a relevé 14 espèces ligneuses disparues et 18 autres en voie de l'être dans le seul Département de Zinder (sud-est du Niger). La même étude révèle que des menaces importantes pèsent sur beaucoup d'autres espèces ligneuses dont les causes sont la pression démographique, l'exploitation anarchique et la précarité du climat.Le gouvernement du Niger, alerté par tous ces phénomènes et conscient du danger qui menacent ces espèces, a, à travers ses services compétents, élaboré des stratégies d'intervention.Dans la politique nationale en matière d'environnement, le gouvernement nigérien a mis en place le Programme National de l'Environnement pour un Développement Durable (PNEDD) avec l'appui des partenaires au développement. L'organe d'exécution de ce programme qui est le Conseil National de l'environnement pour un Développement Durable (CNEDD) a élaboré en 1998, une stratégie nationale en matière de diversité biologique en générale. La vision nationale de la diversité biologique qui est : « pour une société consciente du rôle et des enjeux liés à la diversité biologique, convaincue de ses responsabilités envers les générations futures, et déterminée à utiliser les ressources de manière durable », montre à quel point la biodiversité en générale et les ressources génétiques forestières en particulier constituent une préoccupation nationale.Les objectifs généraux visés par cette stratégie nationale sont : • Assurer la conservation de la diversité biologique ; • Utiliser durablement les éléments constitutifs de la diversité biologique ; • Assurer les conditions d'un partage juste et équitable des avantages découlant de l'exploitation de la diversité biologique.Dans le document de stratégie, les ressources génétiques forestières ont reçu une attention particulière par l'élaboration des projets d'intervention, pour leur gestion durable avec tous les partenaires identifiés.Des textes législatifs existent, notamment la loi cadre sur l'environnement, le code forestier, le code rural, et les différentes conventions internationales signées et ratifiées par le Niger. Tout récemment, des décrets portant adoption du Plan National de l'Environnement pour un Développement Durable, du document intitulé « stratégie nationale en matière de diversité biologique », et le décret N° 2000-272/PRN/PM du 04 août 2000 modifiant et complétant le décret n°96-004/PM du 09 janvier 1996 portant création, attributions et composition du Conseil National de l'Environnement pour un Développement durable (CNEDD), ont été signés par le Président de la République. Tous ces textes législatifs et réglementaires montrent l'intérêt combien important que le Niger attache aux ressources naturelles en général et les ressources génétiques forestières en particulier.Plusieurs institutions nationales et internationales de recherche et de formation, des services étatiques et la société civile sont impliqués dans l'élaboration et la mise en oeuvre de la stratégie nationale en matière de diversité biologique. Les ressources ligneuses alimentaires qui sont une composante des ressources génétiques forestières se situent dans les axes d'intervention de ces dernières. Le tableau 1 donne la liste des institutions impliquées et leurs domaines d'intervention. Ces différents acteurs oeuvrent en synergie pour une meilleure compréhension et une gestion durable des ressources génétiques forestières en général et les espèces ligneuses alimentaires en particulier. Les constats faits sur les espèces ligneuses alimentaires au Niger montrent que ces espèces sont soumises à de multiples pressions notamment anthropiques. L'exploitation anarchique de ces espèces pour l'alimentation humaine limite la régénération naturelle car dans la plupart des cas, ce sont les organes de reproduction qui sont exploités. Pour les espèces dont les feuilles sont consommables, les plantes juvéniles sont souvent arrachées. Ces pratiques ont entraîné l'érosion génétique de la plupart des espèces ligneuses alimentaires au Niger (Mahamane, 1998). Par ailleurs, il ne faut pas perdre de vue les conditions écologiques de plus en plus difficiles pour le développement de ces espèces. Les sécheresses cycliques et le glissement des isohyètes ont entraîné ces dernières années une diminution voire disparition du potentiel génétique des formations forestières.L'augmentation du cheptel ces dernières années constitue une menace non négligeable pour la régénération de certaines espèces ligneuses alimentaires au Niger.Des études réalisées en 1994, 1996 et 1998 par le Département de Recherches Forestières et qui ont couvert les départements de Diffa, Dosso, Maradi, Tahoua et Zinder sur un inventaire des LES RAPPORTS DES PAYS 111 espèces ligneuses disparues ou menacées de disparition, ont montré que beaucoup d'espèces ligneuses alimentaires ont disparu de ces régions et beaucoup d'autres sont menacées.Une sensibilisation sur l'importance et la nécessité de préserver les espèces ligneuses a été entreprise par les services de l'environnement sur toute l'étendue du territoire national depuis plusieurs années. En plus, la vulgarisation des techniques sylvicoles, de protection et d'entretien de la régénération naturelle, a eu un succès important ces dernières années.La responsabilisation de la population sur l'importance et la nécessité de conserver ces ressources a été aussi conçue au Niger comme étant la solution idoine de la conservation des espèces ligneuses.La production et distribution gratuite des plants de ces espèces pour la plantation de masse a été un succès notamment pour les espèces ligneuses alimentaires.L'élaboration des textes législatifs et réglementaires en matière de l'environnement est un point important dans la stratégie de conservation des espèces ligneuses alimentaires. Le décret portant adoption du document de stratégie nationale en matière de diversité biologique est conçu comme un cadre de référence dans la vision nationale.Il faut noter que la majorité des actions de ces structures sont à peu près les mêmes qu'au niveau gouvernemental avec la seule différence que ces projets et ONGs portent beaucoup l'accent sur la sensibilisation et facilitent dans une certaine mesure l'adoption et l'application des techniques à vulgariser. Les approches d'intervention peuvent varier d'un projet à un autre mais les objectifs visés sont les mêmes.La prise de conscience sur la nécessité de préserver les espèces ligneuses en général et les espèces ligneuses alimentaires en particulier par les paysans a été d'un grand apport dans les efforts de conservation au Niger.Le fait que le paysan ait une responsabilité sur l'arbre qui se trouve dans son champ est une bonne stratégie qui a porté ses fruits dans la conservation des espèces ligneuses alimentaires. L'assimilation et l'adoption des techniques de protection et d'entretien de la régénération naturelle et bien d'autres techniques sylvicoles vulgarisées ont permis de voir une régénération naturelle importante se développer dans les champs individuels des paysans. Les espèces ligneuses alimentaires sont plantées volontairement par les paysans soit dans leurs champs soit autour des concessions.Au niveau de la recherche, les stratégies de conservation des ressources génétiques forestières sont surtout axées à la mise au point des technologies de conservation et gestion de ces ressources. La conservation in situ et la conservation ex situ font l'objet de travaux depuis la création du Département de Recherche Forestière (DRF) de l'INRAN en 1963. Les différentes technologies développées sont diffusées, l'application et l'adoption se font à l'échelle nationale. Le Centre National de Semences Forestières (CNSF) en collaboration avec le DRF mène des activités dans le cadre de la conservation des ressources génétiques forestières notamment celles des semences. L'activité principale du centre est la collecte, la conservation et la diffusion des semences forestières et pastorales ainsi que l'identification et le suivi de semenciers à travers le territoire national.La gestion des semenciers se fait à travers un dispositif participatif qui implique les services décentralisés de la Direction Nationale de l'Environnement, les populations locales riveraines de la ressource, le CNSF et le DRF.Plusieurs travaux débouchant à la connaissance des formations végétales et à la mise en place des technologies de conservation sont entrepris depuis plusieurs années à l'Université Abdou Moumouni de Niamey, par les facultés d'Agronomie et des Sciences. Un inventaire des espèces spontanées alimentaires et des travaux sur les espèces médicinales et des essais de dosage de médicaments ont été entrepris par une équipe de la faculté des sciences. 3* : si l'espèce est utilisée pour la production du bois, des produits non ligneux, produits alimentaires nutritifs, aliments des animaux, utilisation en agroforesterie, valeur éthique, culturelle ou en haie-vive. 4* : si l'espèce est gérée pour : protection des sols, eaux ;production du bois ;récolte, etc. 5* : 1: espèce bénéficiant de programmes effectifs de protection ou amélioration ; pas de risques sérieux de pertes génétiques ou de disparition de la population.2, 3, 4 : catégories intermédiaires ; 5: mesures de protection ou de conservation inexistantes ou non efficaces ; risques élevés d'érosion génétique ou de disparition de la sous-population. 6* et 7* : si l'espèce a des utilisations finales, ou des opérations/activités en cours ou en projet (exploration et récolte, évaluation, conservation et utilisation du matériel génétique).Les dix (10) Elle présente une diversité au niveau genre et espèce avec des synonymes soulignés ci-dessus. La variété indienne « ber » donne de gros fruits juteux et savoureux. Elle est tellement intéressante au plan économique que, dans le Rajastam, certains agriculteurs abandonnent leurs cultures de céréales pour les remplacer par des vergers de « ber ».On compte 3600 à 7000 graines par kg. Cette espèce a un bois de très bonne qualité, a un coeur rouge brun, facile à travailler et à polir. Du tanin est extrait à partir des racines et des écorces.Le fruit cru contient des protéines, lipides, calcium et vitamine C. Le fruit sec est riche en protéines, lipides, calcium, fer, vitamine C, Vitamine B1, et en Vitamine A.Cette espèce a deux variétés : Ziziphus jujuba et Ziziphus orthacantha. Du point de vue genre et espèce, la diversité génétique est très importante.Il existe des peuplements importants partout au Niger et beaucoup d'entre eux ont été identifiés et géoréférenciés. Des collectes de semences sont organisées chaque année pour la production des plants dans le cadre de la diffusion par les services de l'environnement.Au Niger, aucun travail d'amélioration génétique n'est entrepris pour cette espèce. Une collaboration avec des collègues sénégalais et maliens est possible pour les échanges d'information et des travaux de recherche dans ce domaine. La multiplication végétative par bouturage et marcottage est possible 5.9. Ecologie et agronomie Cette espèce supporte des grandes chaleurs et sécheresses. Elle évolue dans une zone à pluviométrie allant de 150 à 500mm par an. Elle ne tolère pas l'air humide. Très frugal (sable, pierres, terrains cultivés, rives de cours d'eau et de mares, etc.), elle évolue aussi sur des terres temporairement inondées.Pour la plantation de cette espèce, il est conseillé d'ameublir le sol à 40 cm au moins avant la plantation. L'irrigation favorise la croissance et la fructification. Le semis se fait au moyen des graines scarifiées. Elle germe bien en pépinière. Les boutures s'enracinent bien. Des bons résultats ont été obtenus avec le marcottage. La plantation se fait avec un écartement de 5m x 5m suivant les stations et l'objectif visé. Cet écartement peut être réduit à 1m x 1m pour les haies vives défensives (Mahamane, 1998) et cette espèce se comporte très bien. La fructification commence dès la 4ème année et le rendement optimal est obtenu à partir de la 10ème à la 12ème année.La contrainte majeure de l'espèce est qu'elle est attaquée par plusieurs parasites des feuilles et des fruits au Niger.• Amélioration génétique de l'espèce pour une meilleure production des fruits puisqu'elle s'adapte très bien à l'environnement nigérien.• Enquête pour évaluer l'apport de cette espèce dans le revenu des populations.• Détermination de quantités de fruits produits en moyenne par pied adulte et sur l'étendue nationale.• Possibilité de transformation des fruits pour les boissons et autres produits modernes.Echange d'information sur les résultats de recherche obtenus dans les autres pays et exploration des possibilités de conjuguer les efforts pour d'autres pistes de recherche sur cette espèce. Comme Ziziphus mauritiana, les fruits de cette espèce sont consommés au Niger et vendus sur les marchés. La vente des fruits de cette espèce procure des revenus substantiels aux populations locales.Cette espèce produit un bon ombrage ce qui lui vaut sa réputation dans la partie Est du Niger comme arbre de concession et alentours. Son bois est utilisé pour des manches d'outils, des pieux, des meubles et comme bois de feu à charbon. En médecine, la poudre d'épines calcinées s'utilise contre les morsures des serpents. D'autres utilisations médicinales sont faites comme compresses en cas d'escarres ou pour purifier le sang.Arbuste de 4 à 5 m ou arbre de 15 à 20 m de haut et 50 à 60 cm de diamètre. L'inflorescence en cymes courtes, axiales, avec plusieurs fleurs jaune pâle. Fruits : drupes rondes de 10 mm environ de diamètre, brunâtres.Nom scientifique : Ziziphus spina-christi (L.) Desf. Synonyme : Ziziphus amphibia A. Chev. Famille : Rhamnaceae.Cette espèce est originaire d'Orient et répandue aujourd'hui dans la zone saharienne et sahélienne.Le bois s'emploie en tournage et en ébénisterie.Le genre comporte deux espèces: Ziziphus spina-christi (L.) Desf. et Ziziphus amphibia A. Chev. Il n'existe pas de peuplements importants de cette espèce au Niger, mais des pieds dispersés dans les champs sont en nombre non négligeables. Ces pieds sont bien entretenus par les paysans propriétaires terriens. Cette espèce est aussi entretenue dans les concessions. Des semences sont collectées chaque année pour la production des plants. Les sujets bien portants ont été identifiés et marqués dans la région de Maradi et servent de semenciers.Aucun travail n'est entrepris au Niger sur l'amélioration génétique de cette espèce. Il serait souhaitable qu'un travaille dans ce sens soit entrepris pour la recherche d'un hybride entre le Z. spina-christi et Z. mauritiana ou toute autre forme qui pourrait améliorer la productivité de cette espèce.Cette espèce se trouve dans les rives des marigots ou sur des sols temporairement inondés. Elle se comporte bien en pépinière et reprend correctement sur le terrain. La scarification ou le prétraitement à l'acide sulfurique concentré donne un bon taux de germination. Au Niger, elle est plantée dans les champs individuels des paysans et/ou dans les concessions. Très peu de plantations de grande envergure de cette espèce ont été réalisées.A l'instar de Ziziphus mauritiana, les fruits et les feuilles de cette espèce sont attaqués par des parasites (vers des fruits) et les déprécient considérablement. Les jeunes plants sont sérieusement attaqués en pépinière par des insectes.Des recherches doivent être entreprises notamment sur l'amélioration génétique de l'espèce et le comportement de l'espèce en semis direct pour envisager une plantation de masse de grande envergure. Compte tenu du fait que les fruits contiennent une pulpe importante et que le goût sucré varie suivant les pieds dans une même station, des investigations doivent être entreprises pour déterminer la cause de cette différence et envisager une transformation des produits de cette espèce.Des spécialistes des pays membres du réseau peuvent voir ensemble comme entreprendre des recherches sur la diversité génétique de cette espèce suivant les zones écogéographiques et des analyses au laboratoire, pour déterminer les différents éléments que contient la pulpe. L'amélioration génétique est plus qu'indispensable en plus des autres aspects qui sont méconnus. Le tamarinier est un arbre qui révèle une importance capitale dans la vie sociale, culturelle et économique des populations nigériennes. Cette espèce produit des fruits qui sont utilisés dans la préparation des jus traditionnels et les industries agro-alimentaires modernes. Les fleurs et les jeunes feuilles sont consommées sous forme de salade ou dans les soupes, sauces, etc. Elles donnent aussi un fourrage de haute valeur. Les graines sont mangées grillées ou cuites mais leur valeur nutritive est médiocre et elles sont parfois utilisées dans les mets sous forme de farine. Son ombrage important le prédestine au rôle d'arbres de repos et de palabres. Sur le plan culturel, cette espèce est utilisée pour certains rites par certaines ethnies du Niger.Le bois du tamarinier est utilisé dans la confection des outils agricoles, les mortiers, des jouets, etc. Il est brûlé et dégage beaucoup de chaleur et fournit un excellent charbon. Cette utilisation est faite récemment car dans l'ancien temps, brûler le bois de cette espèce constituait une entorse aux moeurs. La cendre de bois et l'écorce, riches en tanin est utilisée pour épiler et tanner les peaux des chèvres.Le tamarinier est considéré comme une plante curative au Niger. Le fruit mûr a une propriété laxative, utile en cas d'affections intestinales mais soulage aussi en cas d'affections biliaires et d'empoisonnements. Une compresse de pulpe de fruit ou de feuilles combat les enflures grâce à ses vertus astringentes. En outre, il est bon d'ajouter de la pulpe dans les remèdes pour fortifier le coeur et réduire la teneur en sucre du sang. En cas de maux de gorge, une infusion de fruits donne un bon gargarisme. L'absorption de pulpe rendait la sensibilité en cas de paralysie. La cendre des coques de fruits donne une substance alcaline utilisée en association avec d'autres médicaments. Elle est aussi astringente et ordonnée en cas de diarrhée.Une infusion de racines soulage en cas de maladies des voies respiratoires, et mélangée à d'autres produits, agit même contre la lèpre. L'écorce contient des substances astringentes et tonifiantes. La cendre pulvérisée est utilisée en cas de coliques et de troubles gastriques. Une infusion est recommandée contre l'asthme et les inflamations des gencives et des yeux. Les feuilles pilées donnent un liquide acide pris en cas d'affections biliaires et d'hémorroïdes.Grâce à sa résistance au vent, il convient bien pour les rideaux brise-vent.Le tamarinier est un grand arbre atteignant 30 m de hauteur et 1 m de diamètre, à tronc court et sempervirent. Il a une grande cime étalée. L'écorce est grise, très crevassée et écailleuse, même sur les ramifications. Les feuilles sont alternes, pennées, à rachis de 7 à 12 cm portant 9 à 12 paires de folioles, arrondies aux deux bouts, opposées, d'environ 6 sur 18 mm. La floraison commence en décembre et termine en mai et la maturité de décembre à janvier.Famille : Ceasalpiniaceae Genre : Tamarindus Nom scientifique : Tamarindus indica L. Nom commun : le tamarinier 5.5. Origine de l'espèce et principaux centre de diversité Cette espèce est originaire de Madagascar et Afrique Orientale. Elle est actuellement répandue dans toute l'Afrique tropicale et en Inde. On admet que les marins arabes et des marchands ont apporté les graines de l'arbre déjà très tôt dans le sud de l'Asie.Le bois a un poids spécifique de 0,93g/cm 3 séché à l'air. Les fruits sont composés de 55% de pulpe, 11,1% de fibres et 39,9% de graines.Actuellement, c'est la seule espèce qui a été identifiée au Niger. Aucune sous-espèce n'a été signalée. Des peuplements existent dans la frange sud du pays et des pieds sont entretenus et protégés dans les champs des paysans. Des semences sont collectées chaque année par le CNSF et le DRF.Aucun travail d'amélioration génétique n'a été fait cependant, dans la collecte des semences, ce sont les sujets jugés bien portants et portant certaines caractéristiques du point de vue production des fruits, grosseurs des fruits et la teneur en sucre qui sont récoltés pour la production des plants pour la diffusion.La large distribution du tamarinier indique qu'il est une espèce très plastique. Il prospère de préférence dans les régions semi-arides (à partir de 400 mm de précipitations annuelles). Pour le développement des fruits, une saison sèche assez longue et bien marquée semble indispensable. Il est peu exigeant en sol. Il prospère sur des sols très différents, en préférant ceux qui sont profonds et perméables. Au Sahel, il se tient volontiers sur les rivages et les terrains proches de la nappe phréatique. Il tolère une légère salinité et le pH idéal se situe autour de 5,5. Presque aucune végétation ne croît sous lui. Il se mélange parfois avec Adansonia digitata dont les exigences sont semblables.Au Niger, la majorité des sujets existants proviennent de la régénération naturelle. La production des plants en pépinière se déroule aussi depuis des années avec une technique bien maîtrisée. Les plants produits sont plantés dans les champs individuels ou dans les concessions. Une plantation à grande échelle n'est jusqu'à présent pas entreprise au Niger malgré l'importance considérable de cette espèce.Les contraintes majeures pour le développement de cette espèce sont le vieillissement des sujets et l'exploitation anarchique dont elle fait l'objet. La régénération naturelle s'effectue mais très insuffisante pour remplacer les vieux sujets et ceux abattus, mais aussi à cause du broutage des jeunes plants par les animaux.Les recherches supplémentaires nécessaires pour cette espèce pour le cas du Niger doivent être axées sur :(1) l'amélioration génétique de cette espèce ;(2) l'inventaire des peuplements existants et faire un état de lieu sur l'état et le niveau de dégradation de cette espèce ;(3) l'étude des possibilités d'une régénération naturelle à travers le semis direct et autres techniques pouvant rehausser la régénération de cette espèce.Le domaine de collaboration que nous préconisons pour cette espèce avec les collègues des autres pays est la mise en place d'un comité de travail et de réflexion sur cette espèce compte tenu de son utilité dans les industries agro-alimentaires modernes et traditionnelles. Il faut assurer le ravitaillement des industries utilisant cette espèce comme matière première. 5.13. Projets passés, en cours ou futurs conduits sur l'espèce ( ?) 5.14. Noms et adresses des réseaux existants pour cette espèce ( ?) 5.15. Liste des publications connues sur cette espèce et adresses des auteurs ESPECE N°4: Hyphaene thebaica Mart.Hyphaene thebaica est une espèce dont la chair des fruits mûrs (le mésocarpe) et les graines avant maturité sont consommés par la population nigérienne. L'hypocotyle est aussi comestible. L'albumen est consommé par les enfants sous forme liquide ou solide. Solide et sec, il est mâché par les femmes enceintes.En saison de production, les fruits de cette espèce envahissent les marchés ruraux du pays. Ceci suppose que cette espèce procure des revenus importants aux paysans. La conservation des fruits ne cause aucun problème ; ils sont disponibles pendant toute l'année.Les fibres des feuilles donnent des balais ; celles des racines sont extraites après un rouissage de 2 à 3 jours et sont tissées en filets. On façonne des corbeilles, des nattes, des hamacs et des cordes de puits avec ses feuilles. Les feuilles sont utilisées à la fois comme couverture, combustible et fourrage. Le pétiole frais sert à fabriquer des éponges végétales. Le bois durable, très décoratif pour les vieux palmiers, est utilisé dans la construction des maisons. Il fournit un charbon de qualité. Les graines mûrs et séchées sont aussi utilisées comme combustibles au Niger.Dans la médecine traditionnelle, certaines parties de l'arbre sont utilisées pour le traitement de la bilharziose. Le méristème terminal est soutiré pour fabriquer du vin de palme.Arbre dioïque à port caractéristique, polycaule ou monocaule dont la tige de la forme polycaule a une ramification dichotome. Cette espèce possède des feuilles flabellées, atteignant une hauteur de 10 à 15 m, facile à reconnaître par la bifurcation dichotomique répétée du tronc. Les feuilles sont d'environ 75 cm de long et de largeur ou plus. Le pétiole est denté en épines. Les fruits sont lisses, prismatiques ou cubiques avec des arrêtes arrondies, d'environ 5 X 5 cm, brun brillant à maturité, d'un poids de 130 à 150 g, contenant une graine de 2 à 3 cm, de couleur noire.La floraison a lieu en saison sèche, fructification en début de saison de pluies, maturation des fruits en saison sèche froide ; pollinisation entomophile et anémophile.Famille : Palmae (sous-famille : Borassoideae) Genre : Hyphanea Nom scientifique : Hyphaene thebaica Mart. Nom commun : Palmier doum 5.5. Origine de l'espèce et principaux centres de diversité Ce palmier, connu sous le nom de « doum » est d'origine africaine, très répandu au Sahel, de la Mauritanie à l'Egypte, du Sénégal à l'Afrique centrale et à la Tanzanie. Elle est de plus en plus domestiquée par l'homme compte tenu de son importance économique et en agroforesterie.Cette espèce est très résistante aux feux de brousse. Le fruit à maturité pèse 130 à 150 g contenant une graine de 2 à 3 cm. Le bois est très décoratif et fournit un charbon de forge excellent. Cette espèce contiendrait des antioxydants ; l'épicarpe du fruit semble contenir de l'acide cyanhydrique.L'espèce se reproduit par voie de semences et par la multiplication végétative par le marcottage (rhizomes) ; les semences (20 à 50 /kg) germent facilement. Au Niger il existe des peuplements importants de cette espèce spécialement dans la partie est. Des semis directs de cette espèce sont entrepris par des projets de développement et des résultats concluants sont obtenus.Pour le moment, c'est la conservation in situ qui est privilégiée mais dans les agrosystèmes, elle fait l'objet d'une attention particulière de la part des agriculteurs qui la préservent toujours.Vu l'importance de cette espèce, il serait intéressant d'étudier les possibilités d'une amélioration génétique.Il serait utile de bien connaître les populations naturelles existantes, notamment au plan génétique afin de voir s'il n y a pas plusieurs clones et lesquels de ces derniers sont mieux adaptés aux différents bioclimats.La présence de l'espèce dans un milieu indique de bons sols proches de la nappe phréatique. Cette espèce est assez frugal mais craint l'eau stagnante. Elle préfère une acidité très faible, d'un pH de 6,5 à 7,6. Il se trouve dans la plupart des cas sur un sol sableux et dunaire.Cette espèce se régénère soit par semis ou par drageonnage. La régénération naturelle est la seule façon de régénérer l'espèce même si des pieds plantés et entretenus se rencontrent un peu partout dans la zone de distribution de l'espèce. La production en pépinière est très maîtrisée.Les contraintes majeures pour cette espèce sont le vieillissement des sujets, l'exploitation anarchique et l'insuffisance de régénération naturelle. Aussi, il est à signaler que cette espèce ne bénéficie pas du privilège de plantation de masse comme certaines espèces considérées comme importantes au Niger.La majorité des sujets sont vieux et les souches existantes sont couramment mutilées par les femmes qui les utilisent pour la fabrication des nattes et l'alimentation des animaux. Ces vieux sujets sont anarchiquement exploités car leurs bois constituent de très bons matériaux de construction.Il serait intéressant comme annoncé ci-dessus, d'envisager les possibilités d'une amélioration génétique de cette espèce, d'inventorier les peuplements existants et de prévoir un projet d'aménagement de ces peuplements, de faire des essais de semis directs dans toutes les zones de distribution de l'espèce pendant des mois afin d'établir des méthodes de régénération efficientes de cette espèce. Aussi, compte tenu de l'importance économique, agroforestière et alimentaire de l'espèce, il serait intéressant de connaître la physiologie de la germination, de la croissance et de son développement pour mieux asseoir une stratégie d'exploitation durable de l'espèce.Des travaux conjoints doivent être entrepris avec les collègues des autres pays de la sousrégion où cette espèce existe notamment sur les modes de régénération, l'amélioration génétique et l'inventaire des peuplements pour déterminer le potentiel disponible et surtout l'apport socio-économique de l'espèce. Comme le palmier doum, le rônier est aujourd'hui une source d'aliment et de revenu pour les populations vivant dans sa zone de distribution. La sève, la pulpe, les graines et l'hypocotyle sont utilisés en diverses formes dans l'alimentation humaine. La sève contient jusqu'à 20% de sucre qu'on extrait et transforme en boisson alcoolique. La pulpe huileuse, les graines et la moelle riche en amidon sont des aliments de grande importance pour la population locale. Les fruits contiennent un jus doux qui se gélifie plus tard et qu'on consomme comme du lait ou de la noix de coco. L'hypocotyle est récolté et cuit (Miritchi en Haoussa, langue locale), puis vendu dans les villes et campagnes du Niger.Il n'est pas rare de voir des camions chargés de fruits verts de cette espèce en direction des grandes villes en échappant à la vigilance des gardes forestiers. Ces différentes exploitations procurent des revenus importants aux populations nigériennes.Il faut reconnaître que toutes les parties de la plante sont utilisées au Niger. Les noyaux mûrs et les coquilles des graines sont utilisés dans l'artisanat. Le bois est utilisé précieusement dans la construction. Il résiste aux champignons et termites. Les feuilles servent aux travaux de tressage et pour les toitures. Les filets sont confectionnés avec des fibres et les tiges de feuilles sont utilisées dans la fabrication des corbeilles, des meubles, des clôtures et des constructions légères. Les tiges des feuilles pilées servent de fibres pour le nettoyage.La cendre des fleurs mâles donne de la bonne potasse. La décoction des racines est une boisson pour les nouveau-nés. La poudre des fleurs mâles, mélangée à du beurre de karité guérit les escarres. De nombreux autres usages dans la médecine traditionnelle existent : contre les maux de gorge et les bronchites ; le vin est considéré comme stimulant et aphrodisiaque.Le rônier est un haut palmier, dioïque et monocaule, stripe dressé, pouvant atteindre 15 à 20 m au Niger, isodiamétrique mais plus gros vers le sommet avec des feuilles flabelliformes longuement pétiolées, un long tronc droit et un diamètre jusqu'à 70 cm. Les vieux troncs sont lisses et les jeunes sont couverts des restes de pétioles gris de 30-60 cm de long. Les feuilles ont jusqu'à 3,60 m de long. Les rameaux florifères du spadice féminin sont très différents de ceux du spadice masculin ; fleurs mâles en spadices ramifiés de couleur verte et pouvant atteindre 3 m de long, cylindriques ; spadices femelles de 30 cm de longueur non ramifiées. Grappes pendantes des fruits sphériques en régime de 25 à 50 kg sont courant sur l'arbre adulte. Les fruits de 15 à 20 cm de diamètre, lisses verts, jaunes à maturité, parfumés, contenant trois grosses graines entourées d'une chaire fibreuse jaune orange, huileuse. La pulpe blanchâtre, huileuse, juteuse, fibreuse contient plusieurs nucules blanches, cornées, riches en albumen, qui donnent à maturité des graines ligneuses, brunes, creuses de 5 à 8 cm de grosseur. Boscia senegalensis est important au Niger du point de vue alimentaire car elle est consommée en grande quantité surtout aux périodes de famines. Pendant des années, cette espèce a sauvé beaucoup de familles. Les graines et les feuilles sont cuites et mangées par la population locale. Les feuilles sont comestibles comme légumes.L'espèce est broutée par les chèvres et les moutons. Les feuilles sont utilisées contre les névralgies et les coliques ou comme moyen de protection des céréales contre les parasites dans les greniers. En poudre et mélangées avec du sel, les feuilles sont utilisées contre la bilharziose. Les racines sont vermifuges. Plusieurs parties sont utilisées contre la syphilis, les ulcères, les enflures, la jaunisse et pour laver les yeux, etc.C'est un arbuste sempervirent atteignant 3 à 4m de haut, rarement petit arbre avec écorce gris foncé (noire) ; Elle possède de grandes feuilles ovales coriaces, de 4 à 12 cm environ, avec des nervures latérales en arceau proéminentes.L'inflorescence en panicules terminales corymbiforme à parfum sauve, large de 5 à 8 cm. Les fleurs blanc verdâtre, larges de 8 à 9 mm sont sans pétales. 4 sépales oblongs, 12 à 13 étamines longues de 6 mm. Une bractée filiforme longue de 4 à 5 mm, à la base des ramifications du corymbe. Cette espèce fleurit au Niger en fin de saison sèche aux mois d'avril et de mai. La fructification intervient juste après mais la maturation du fruit a lieu en saison sèche.Les fruits sont ronds de 1 à 2 cm de diamètre en petites grappes, avec un épicarpe verrupeux et feutré, vert puis jaune brun à maturité, contenant 1 à 2 graines dont il faut 2500 à 3500 pour 1 kg.Nom scientifique : Boscia senegalensis (Pers.) Lam. Ex Poir. Synonymes : Podoria senegalensis Pers., Boscia octandra Hochst.ex Radlk. Famille : Capparidaceae 5.5. Origine de l'espèce et principaux centres de diversité C'est une espèce africaine des domaines sahélien et saharien. Cette espèce se trouve en Afrique semi-aride, du Sénégal à l'Ethiopie. Une gamme importante de diversité existe tant au niveau du genre qu'au niveau de l'espèce.Dans cette espèce, on a pu mettre en évidence du zinc, du magnésium, du cuivre, du sélénium, du fer, du calcium, des protéines avec notamment des acides aminés comme l'arginine, le tryptophane, la méthionine, la lysine dans les graines, les lipides avec des acides gras comme l'acide palmitique, l'acide stéarique et l'acide linoléique.Beaucoup de peuplements existent dans la partie Nord du Niger. Cet arbuste se développe bien dans les champs et jachères. La multiplication se fait par les graines et la germination est relativement bonne. 5.8. Amélioration génétique de l'espèce L'identification des sites où la production des graines est importante doit être menée pour servir de semencier en vue d'une production et diffusion importantes des plants. 5.9. Ecologie et agronomie L'espèce préfère un sol très sec, rocheux, argileux, pierreux ou latéritique. On la trouve volontiers dans les plaines sablo-argileuses, les dunes consolidées, les anciens champs et les termitières.La principale contrainte pour cette espèce est qu'elle ne se développe que dans la partie Nord du pays où la pluviométrie est relativement faible. Cette espèce, bien qu'elle sauve beaucoup de vies, n'est sollicitée qu'en période de disette.Il est difficile de parler de recherches supplémentaires pour cette espèce car à notre connaissance, aucune étude sérieuse n'a été menée au Niger. Il serait donc intéressant de réfléchir sur des aspects qui pourraient améliorer la productivité de l'espèce dans plusieurs zones écologiques du pays.Les collègues des autres pays qui souhaiteraient entreprendre des travaux collaboratifs sur des aspects d'amélioration et de conservation de cette espèce se concerterons pour développer un projet commun de recherche. Adansonia digitata communément appelé baobab est un des arbres les plus utiles du Sahel, ce qui lui vaut traditionnellement la protection et la vénération de la population. On connaît une trentaine d'usages divers de cette espèce.Du point de vue alimentaire, cette espèce constitue une richesse importante car elle est quotidiennement utilisée dans les mets.Les feuilles fraîches donnent un excellent légume, séchées et parfois moulues, elles sont vendues comme ingrédients de nombreux mets et sauces.Pressée ou séchée, la pulpe des fruits, après dissolution dans l'eau, donne des boissons rafraîchissantes, riches en vitamines B1 et C. Les jeunes plantules et les racines de jeunes plants se mangent comme des asperges. Les fleurs sont mangées crues.Au Niger, cette espèce rentre dans les biens familiaux. Dans le partage de l'héritage, les pieds se présentant dans les champs sont distribués conformément aux lois de partage. Elle procure des revenus substantiels aux familles car les sacs remplis de feuilles sèches sont vendus dans les marchés.Les feuilles et les fruits de cette espèce entrent dans de nombreuses préparations médicinales contre la fièvre, la malaria, les filaires.Les feuilles sont en outre un fourrage de valeur, important surtout au début de la saison de pluies. Les bergers escaladent les arbres et cassent les pousses pour nourrir les animaux. Les fibres de l'écorce sont utilisées pour des cordages, des filets, des corbeilles, des nattes et divers tressages.Une teinture rouge est extraite des racines. Evidées, les coques ligneuses des fruits servent de puisettes à eau ; réduite en cendres, elles deviennent de l'engrais ou de la matière première pour la savonnerie.Grâce à sa grandeur imposante, à son grand âge et à son utilité variée, le baobab joue un grand rôle dans la culture africaine. Comme source d'ombrage, et point de repère dans le paysage, il sert de lieu de rassemblement, de marché ou d'autres manifestations.Presque chaque partie de l'arbre a une ou plusieurs applications médicinales. Les feuilles entrent dans le traitement de : coliques, asthme, vers de Guinée, transpiration excessive, fièvre, diarrhée, inflammations intestinales, dysenteries, affections urinaires (diurétiques).• Ecorce : inflammations, fièvre, rachitisme ;• Gomme : désinfectant pour blessures, calmant pour rage de dents ; • Coques des fruits (riche en vitamine C), dissoute dans l'eau ou pulvérisée : diarrhée des enfants et fortifiant pour ceux-ci.• Graines contiennent de l'adansonine un antidote de la strophantine.De nombreux usages sont connus dans la médecine vétérinaire avec plusieurs parties de l'arbre spécialement pour les chevaux.Adansonia digitata ou baobab est connu dans toute l'Afrique tropicale par son tronc immense et ses énormes branches. L'arbre a un diamètre variant entre 3 et 6 m et une hauteur atteignant 25 à 30 m. L'arbre se dénude en saison sèche. Son écorce a une épaisseur de 2,5 cm environ, tendre, recouverte d'une pellicule gris argent, parfois violacée. La tranchée est marbrée blanc et rouge, exsudant de la gomme.Les feuilles sont longues pétiolées, digitées, avec 3 à 9 (6 à 7) folioles entières, lancéolées, longues de 4 à 15 cm et jusqu'à 5 cm de large, brillantes dessus, poilues dessous.Les fleurs de 15 à 20 cm de diamètre, blanches, solitaires, suspendues à un pédoncule qui peut atteindre 1 m de longueur. La floraison se fait avant la saison des pluies. La pollinisation se fait par les chauve-souris et d'autres micro mammifères, c'est aussi une plante mellifère. La forme des fruits varie selon les variétés. L'enveloppe de fruit de 0,5 à 1 cm d'épaisseur est pelucheuse, dure, ligneuse, dure, ligneuse, vert brunâtre ou jaunâtre gris et rempli d'une pulpe blanche à rosâtre pâle, compartimentée par 10 cloisons fibreuses dans le sens de la longueur. La pulpe contient de nombreuses graines de la grandeur d'un haricot, dures, réniformes, brun noir avec des incrustations brun rouge.Famille : Bombacaceae Nom scientifique : Adansonia digitata L. Synonyme : Adansonia sphaerocarpa A.chev. Nom commun : baobab 5.5. Origine de l'espèce et principaux centres de diversité Adansonia digitata est originaire de l'Afrique tropicale, spécialement dans les régions subhumides et semi-arides au sud du Sahara. Elle ne pousse pas dans la forêt tropicale humide.Le genre Adansonia a 7 espèces à Madagascar et en Australie. Plusieurs variétés existent et se distinguent soit par la forme ou la dimension des fruits.Les feuilles contiennent beaucoup de calcium et de fer. 100g de matière verte contiennent 23 g de matière sèche, 3,8 g de protéines, 2,8 g de cellulose, 400 mg de calcium, 50 mg d'acide ascorbique et 69 calories. La pulpe des fruits est riche en vitamines B1 et C. Les graines contiennent 15% d'huile et plus de protéines que les cacahuètes. La farine de graines contient jusqu'à 48% de protéines et 2% de vitamine B1.Le fruit contient de l'acide ascorbique (169 à 270 mg pour 100g matière sèche/feuille), de la thiamine (vitamine B1), du potassium et du glucose.Au Niger, il existe des peuplements importants dans les régions sud du pays. Les pieds dispersés dans les champs ou dans les concessions se rencontrent un peu partout dans les zones de distribution de cette espèce sous la protection contrôlée des propriétaires.Il y a plusieurs variétés au sein de cette espèce car les consommateurs savent distinguer les pieds d'après leur qualité organoleptique. Des études ultérieures devraient le confirmer.La dormance est levée par le passage de la graine dans le tube digestif des gros mammifères.La forme du fruit et le goût de la pulpe et des feuilles sont variables, ce qui permet de penser qu'il y a des variétés dans les populations naturelles de cette espèce.Beaucoup de travaux ont été menés au Niger par les chercheurs de l'ICRISAT et l'ICRAF en collaboration avec les collègues du DRF. Ces travaux ont porté essentiellement sur la domestication de cette espèce, la propagation végétative, la collecte des semences de plusieurs provenances, etc.Cette espèce prospère avec des précipitations entre 250 et 1000 à 1500 mm. Elle n'a pas d'exigences particulières quant au sol, mais pousse apparemment mieux sur un substrat calcaire ou sur des sols profonds assez humides. Elle est fréquente près des habitations ou comme témoin d'anciens établissements, car, elle est semée et protégée par la population.C'est une essence de lumière comme la plupart des espèces des régions semi-arides et subhumides. Elle a une forte résistance au feu et à la sécheresse car le tronc est succulent. Avant le semis, les gaines sont cuites environ 5 à 7 minutes. Dans la nature, la dormance est levée par le transit dans le tube digestif des animaux. La production des plants se fait entre février et mars pour la plantation.Dans les bonnes stations, on constate une bonne croissance en diamètre et en hauteur. On ne connaît pas d'ennemis au baobab.Le baobab ne présente pas de contraintes majeures au Niger car les plants mis en terre sont minutieusement protégés par la population. Le seul problème qu'on peut souligner est celui des recherches scientifiques pour améliorer la productivité de cette espèce tant sur la production des feuilles que sur les fruits.L'amélioration de la productivité de l'espèce est le seul point sur lequel la recherche doit beaucoup s'appuyer car le produit est très recherché. 5.12. Domaine de collaboration potentielle avec les autres pays L'échange de germplasm des variétés manquantes au Niger pourrait faire l'objet de collaboration avec les autres collègues des pays de la sous région pour les tester et mener des études de comparaison dans tous les aspects. Le Vitex doniana est une espèce très appréciée par la population nigérienne grâce à ses fruits noirs à la maturité. Ses fruits sucrés sont consommés en période de production. Ils abondent les marchés et se vendent relativement bien. C'est une espèce qui est très utilisée dans la médecine traditionnelle.Dans certains endroits, les feuilles sont mises dans les sauces. Les fruits donnent une boisson douce et leur chair serait oléagineuse. Les fleurs de cette espèce sont mellifères.Le bois de cette espèce est utilisable pour des petits travaux. Cette espèce possède divers emplois médicinaux, par exemple, pour favoriser la conception, contre la jaunisse et la dysenterie, l'asthénie, les douleurs stomacales, la lèpre. Les feuilles mâchées sont utilisées sur les blessures. On fabrique de l'encre avec diverses parties de l'arbre. L'écorce et les racines fournissent des colorants, l'écorce et la cendre entrent dans la fabrication du savon.C'est un arbre de 15 à 25 m de hauteur. Il a une cime ronde, vert foncé. L'écorce est brun pâle à gris blanc, avec de longues fentes verticales, étroites et des bourrelets poisseux, avec des écailles gris clair qui tombent facilement. La tranche est très aqueuse, cassante, granuleuse blanc jaune et se colore instantanément en jaune sale à l'air.Les feuilles sont palmatiséquées (5, plus rarement 7 folioles). Les folioles sont obovées, arrondies au sommet, quelques fois très légèrement émarginées ou acuminées, de forme et de disposition variables, avec 10 paires de nervures latérales. Les fruits verts atteignent jusqu'à 3 cm avec de petites taches blanches, plus tard brun jaune, noirs à maturité. La maturité des fruits intervient de décembre à juillet. Ils se trouvent dans une grande cupule (environ 1/3 du fruit) et contiennent un noyau très dur avec 1 à 4 graines. Les fleurs sont blanches ou jaunâtres avec le centre rouge bleu, odorantes, en grands corymbes axillaires pubescentes brunes.Famille : Verbenaceae Nom scientifique : Vitex doniana Sweet Synonymes : Vitex cuneata Schum. Et Thonn., Vitex cienkowskii Kotschy et Peyr., Vitex umbrosa G. Don ex Sabine, Vitex paludosa Vatke, Vitex chariensis Chev.On sait que cette espèce est repartie dans toute l'Afrique, les savanes côtières et les forêts secondaires sèches.Le bois est moyennement dur, fortement attaqué par les insectes, blanc ou jaune, fonçant avec l'âge, à texture fine, difficile à travailler.On pourrait soupçonner que Vitex doniana possède une importante variabilité génétique du fait de l'importante synonymie qui existe au niveau de l'espèce (5 synonymes ont été identifiés). L'espèce se trouve principalement dans la partie sud du Niger et prospère bien dans les champs et à côté des agglomérations.On peut compter jusqu'à 1300 graines par kilogramme.Il n'existe pas de programme d'amélioration génétique pour cette espèce au Niger. Cependant des plants sont produits dans les pépinières forestières à petites échelles dans le pays. Compte tenu de la gamme de variabilité génétique de l'espèce et de son importance du point de vue alimentaire, il est nécessaire d'envisager un programme d'amélioration génétique de l'espèce afin de la rendre plus productive.Cette espèce prospère dans les champs et les jachères, près des rivages et a besoin d'une eau souterraine très proche. Elle est plantée dans les hameaux.La principale contrainte est le fait que l'espèce ne bénéficie pas de programme de plantation de grande envergure comme les autres espèces importantes. Quelques pieds sont plantés par des privés.Comme il a été souligné ci-haut, cette espèce n'a bénéficié d'aucun programme d'amélioration génétique au Niger malgré ses potentialités. L'accent doit être mis dans ce sens.Les travaux de collaboration doivent être axés sur la prospection sous régionale, collecte des différentes variétés existantes et envisager une amélioration génétique de cette espèce. Parkia biglobosa communément appelé néré est une espèce très prisée au Niger car elle est utilisée dans l'alimentation quotidienne de la population nigérienne. Le produit obtenu à partir de ses fruits appelé moutarde ou « soumbala » est très recherché. La pulpe fraîche est très douce (jusqu'à 60% de sucre) et comestible ; fermentée, elle donne une boisson rafraîchissante. C'est un aliment important. Les graines riches en matières grasses et en protéines sont transformées en un fromage végétal de goût élevé (soumbala) et utilisées comme assaisonnement des sauces. Il fait l'objet d'un commerce local et même sous régional. La pulpe jaune produit une farine à multiples usages.Plusieurs parties de l'arbre sont utilisées pour divers usages. Les feuilles sont utilisées pour soigner les brûlures et les hémorroïdes après avoir été débarrassées du pétiole. La pâte des feuilles pilées pendant 15 minutes est ajoutée à des ablutions.L'écorce entre dans divers remèdes par exemple contre les coliques violentes accompagnées de vomissements, contre la diarrhée, la stérilité, les bronchites, les pneumonies, la lèpre, les maladies vénériennes, les caries, les dermatoses, le ver de Guinée et les filaires, les oedèmes et le rachitisme.Les graines sont utilisées comme succédanée de café. Les cosses (avec l'écorce) sont utilisées comme poison à poissons ou comme teinture bleue. Un tanin est extrait de l'écorce. La cendre de l'arbre est utilisée pour faire du savon pour indigoterie.Le néré est un grand arbre de 15 à 20 m de hauteur, avec une large cime étalée en parasol. L'écorce est écailleuse à tranche rouille. Les feuilles sont vert foncé, bi paripennées. 14 à 30 paires de pinnules plus ou moins opposées avec chacune 50 à 70 paires de folioles de 1 à 1,5 cm de long et 3 mm de large. Les jeunes arbres et les rejets des souches ont des feuilles plus larges. La floraison et la maturité des fruits ont lieu pendant la saison sèche. On reconnaît facilement les boules de fleurs rouges ou oranges suspendues à de longs pédoncules (jusqu'à 30 cm), quelques fois en grappes et ayant 5 cm de diamètre. Les fruits sont de longues gousses ( de 45 cm environ) de 2 cm de largeur, légèrement arquées, suspendues en grappes aux réceptacles des fleurs en forme de massue. Ces gousses s'ouvrent à maturité sur l'arbre et contiennent de nombreuses graines noires, aplaties, enrobées dans une pulpe jaune riche en saccharose.Famille : Mimosaceae Nom scientifique : Parkia biglobosa (Jacq.) Benth. Synonyme : Mimosa biglobosa Jacq. Nom commun : le néré 5.5. Origine de l'espèce et principaux centres de diversité Le néré domine dans la zone soudanienne et des forêts sèches dans la zone de transition au Sahel. Il est cultivé en Amérique tropicale et aux Indes occidentales. Le néré ressemble du point de vue botanique et de son utilisation à Parkia clappertoniana Keay.Le bois blanchâtre est utilisé pour des travaux faciles. Il est attaqué par les insectes. On distingue l'aubier et le coeur et celui-ci est moyennement dur, facile à scier, à travailler, à coller et à polir. L'arbre est décoratif, ; c'est un arbre d'ombrage et améliorant le sol par la chute des feuilles.La production est estimée à 25 à 100 kg de fruits par arbre dès l'âge de 15 à 20 ans, soit 900 kg de graines par ha, 2,2 t de pulpe et 1,9 t de déchets de cosses.Parkia biglobosa présente une grande variabilité génétique au niveau du genre et de l'espèce. Cette espèce se rencontre dans la frange sud du pays dans les champs et les formations protégées. Partout où un pied se rencontre, il faut se dire qu'il est protégé soit par les populations riveraines ou le propriétaire terrien.Il faut retenir qu'au Niger, il n'existe pas de programme d'amélioration génétique en tant que tel dans les différents instituts de recherches. Cependant, au cours des travaux inscrits dans le cadre des activités, le CNSF et le DRF ont identifié des semenciers pour la collecte des semences servant à la production et à la diffusion. Le néré ne bénéficie pas d'un programme de plantation de masse vu son importance sur le plan économique et écologique.Le néré prospère près des villages, sur des surfaces cultivées à très courtes rotations, sur des jachères avec peu de buissons. Il aime les sols limoneux et profonds et une précipitation variant entre 500 et 700 mm par an.Le néré est une espèce qui forme des drageons. Les productions de plants se font dans les sachets et même en semis direct. Pour la production des plants, un prétraitement des graines est nécessaire. Il faut bouillir les graines environ 7 minutes et les refroidir pour améliorer la germination. La plantation pourra intervenir après 10 à 14 semaines d'élevage des plants en pépinière.La principale contrainte de l'espèce au Niger, c'est le vieillissement des sujets, ce qui entraîne la mort de bon nombre d'entre eux alors que même le peuplement n'était pas important. C'est un problème crucial vu l'importance accordée à cette espèce. Il n'existe pratiquement pas de régénération naturelle de cette espèce. Les seuls sujets jeunes existants ont été plantés et entretenus.Il serait important pour le cas du Niger de mener un inventaire exhaustif des pieds existants dans le pays et élaborer un programme de plantation de masse dans les zones de distribution de l'espèce. Un travail d'amélioration génétique est aussi nécessaire afin de pouvoir augmenter la productivité de cette espèce.Le principal domaine de collaboration potentielle est l'échange de germplasme entre les pays et ce cadre existe déjà entre le Niger et le Burkina Faso à travers les deux centres de semences forestières. La pulpe des fruits a un goût agréablement acidulé et est utilisée pour faire une bière locale. L'amande du noyau est huileuse (jusqu'à 60% de matière grasse), comestible et vendue sur les marchés. Une tonne de fruits donne 60 litres d'huile.La cendre est utilisée en teinturerie. En saison sèche, les rameaux sont émondés pour le bétail. L'écorce produit une fibre très résistante. Mélangée à de la suie, et de l'eau, la gomme transparente donne de l'encre. Elle est utilisée contre les maux de tête et de dents. En infusion, elle s'administre aux enfants en ablutions contre la malaria ou les inflammations ou comme lavement. Avec une adjonction de bicarbonate de soude, elle soigne la dysenterie. L'écorce donne une boisson laxative. Mélangée à du beurre, on frictionne le mélange en cas de douleurs aux yeux et à la tête. L'écorce mélangées à des éléments d'autres plantes curatives, on l'emploie contre la syphilis, la lèpre, l'hydropisie, etc. Les feuilles, l'écorce et les racines combattent les morsures des serpents soit par friction, soit par ingestion sous forme de boisson.Arbre à feuilles caduques, Sclerocarya birrea, atteint 15 m de haut avec une cime bien développée, vert clair, très fortement charpentée. L'écorce des branches est gris argenté, sur le tronc, gris rougeâtre, avec des écailles qui s'enroulent sur les bords avant de tomber. La tranche est rougeâtre. Les feuilles sont alternes ou en rosettes terminales, imparipennées, rachis de 10 à 15 cm avec 5 à 8 paires de folioles lisses. Celles des rejets des souches ou au premier stade sont rougeâtres, souvent dentées, sinon elles sont entières. C'est une espèce dioïque. Les fleurs femelles sont pédonculées ; La floraison se fait de janvier à avril-mai. Les fruits sont une drupe jaune de 3 à 4 cm de diamètre à noyau épais et pulpe fibreuse. La maturité quant à elle intervient d'avril à juin.Famille : Anacardiaceae Nom scientifique : Sclerocarya birrea (A. Rich.) Hochst. Synonyme : Pourpatia birrea (A. Rich.) Aubr. , Spondidas birrea A. Rich.C'est un arbre de la zone sahélienne avec une large dispersion. Au Niger, on remarque une certaine domestication de l'espèce par les populations à cause de son utilité sur le plan alimentaire et l'ombre qu'il procure. Il présente une variabilité génétique tant au niveau du genre qu'à l'espèce.Le bois comprend un aubier étroit difficile à distinguer du coeur gris à brun rouge. Le bois est tendre et résistant. Il est facile à travailler avec des outils bien aiguisés et donne malgré ses fibres grossières, une surface lisse. Il est facile à scier, à tourner, à sculpter, à polir et tient le clou. On a 400 graines par kilogramme.Comme annoncé ci haut, l'espèce présente une diversité génétique importante. Des peuplements importants sont identifiés au Niger. Il existe aussi des pieds bien entretenus dans les champs et autour des concessions.Aucun travail d'amélioration génétique de l'espèce n'a été entrepris au Niger. Cependant, des semenciers sont identifiés et font l'objet de collecte chaque année dans le cadre de la plantation. On remarque ces dernières années un engouement de la population par rapport à cette espèce. Un travail de recherche doit être entrepris dans le cadre d'une amélioration génétique afin d'augmenter la productivité.Cette espèce est peu exigeante. Elle prospère sur sols sableux, pierreux et sur des croûtes latéritiques. On la trouve parfois en peuplements purs. Cette espèce peut être régénérée par bouturage, drageonnage ou par semis. Pour les semis, il suffisait de ramollir les graines une nuit seulement. Le semis direct est bien possible et les résultats obtenus au Niger sont très encourageants.Contrairement aux autres espèces, il existe une régénération importante de cette espèce au Niger. Il est facile de rencontrer des jeunes pieds de cette espèce dans les champs et jachères. Les paysans entretiennent bien les pieds qu'ils rencontrent même hors de leurs champs. Les dents des animaux constituent une contrainte à la multiplication de cette espèce. Il existe aussi des vieux sujets et peuplements qui sont en voie de disparition.L'amélioration génétique de cette espèce ainsi que des travaux de domestication avec toute la rigueur scientifique doivent être entrepris au Niger afin de mieux assurer une production importante de cette espèce.D'autre part, la fabrication de bière locale avec les fruits de cette espèce doit faire l'objet d'une étude scientifique afin de voir si possible comment rentabiliser davantage ce produit. 5.12. Domaine de collaboration potentielle avec les autres pays Le domaine de collaboration avec les autres pays peut être :• Amélioration génétique de l'espèce ;• Prospection, inventaire et cartographie des peuplements existants dans les différents pays concernés ;• Analyse chimique des fruits de cette espèce afin de déterminer les différents composants chimiques et leurs utilités ;• Conduire une étude économique afin de déterminer l'apport financier de cette espèce sur le revenu des populations. b 5.14. Noms et adresses des réseaux existants pour cette espèce ( ?) 5.15. Liste des publications connues sur cette espèce et adresses des auteurs.Natural forests in the SADC region are rich in plant species of economic, scientific and aesthetic value. The region is known to have about 63940 higher plant species as compared to 270000 in Africa. About 3000 of plant species of the SADC region are known to be endemic, whilst 2000 are threatened.The destruction of many forest ecosystems for timber, fuelwood, agriculture, roads and settlement purpose in the SADC Countries, has badly affected the growing environments of many plant and animal species. This has resulted into loss of products and services to rural communities, whose lifehood depends on resources available in the forests. Logging in the fragmented forest ecosystems has led into fragmented genepools and therefore affecting the perpetuity of important commercially indigenous fruit and timber species. Selective logging that is practiced in many SADC countries, usually involves cutting of superior trees. This removes superior genotypes that are supposed to produce high genetic quality seeds for natural regeneration in the future. Harvesting and selling of indigenous fruits of important tree species such as Uapaca kirkiana and Slerocarrya birrea etc. removes fruits from their natural habitats, thus affecting the natural regeneration cycles.Researchers have largely chosen which species of indigenous fruit-trees should receive their attention. Guidelines are now available that take more into account the needs and desires of various stakeholders in tree cultivation. Priority setting surveys were conducted in Malawi, Tanzania, Zimbabwe and Zambia to determine farmers' choice of indigenous fruit trees for domestication. The survey teams conducted interviews with farmers following protocols, which included participatory appraisal tools and tested structured questionnaires. People interviewed included village leaders, those in farmer households and key information -who included traditional leaders, fruit vendors and other knowledgeable people that farmers identified. Farm and farm families were also stratified to get views from youth under 15 years and from adults 20 years and over.Transect walks were used to establish occurrence, abundance and diversity of indigenous fruits in the study areas. The analyses drew up farmers' priority species for each country and pooled national data to come up with regional relevance of the domestication of native fruits in southern Africa.A concept note on the domestication and commercialisation of indigenous fruit trees in semi-arid areas of the SADC is being developed as part of an initiative to develop a follow on project to the current CIDA funded SADC Tree Seed Centre Network. Indigenous fruit trees were chosen as a priority topic because of their potential to improve food security and rural SAFORGEN 132 incomes in the semi-arid areas of the SADC region. The development of the concept note was based on an inventory carried out by twelve National Tree Seed Centre Managers on current work being undertaken by member states on the subject and a technical workshop attended by forty regional and international experts on the subject. The experts reviewed the state of the art on indigenous fruit trees and suggested a way forward. Presented in this report are some of the indigenous fruit trees that were identified as priority species for domestication within the SADC region. Fruit of Z. mauritiana can be eaten fresh or dried. Fresh fruit can be used to process both alcoholic and non-alcoholic beverages. In Malawi, a raw spirit called \"Kachasu\" is made from fermented pulp. Pulp is also used in candy making and pickling. Dried fruit is used in making confectioneries e.g. cakes and jam. Seed can be eaten raw or can be used in making porridge and as a coffee substitute. However, pulp has a high nutritional value.It is also richer than oranges in protein, vitamin C, sugars and minerals. Leaves are a good source of protein and minerals while as kernels are rich in fat, protein as well as minerals.Wood of Z.mauritiana makes excellent firewood (sapwood has 4900 kcal/kg) and good quality charcoal. This termite-resistant wood provides poles that are used in construction. Z. mauritiana also yields timber -a medium to heavy weight hardwood with a density of 535-1080 kg/m 3 . The leaves provide browse for livestock. The bark provides tannin or dye stuff when pounded and mashed in water. Again the leaves, fruits and bark are used medicinally, e.g., pounded roots are added to drinking water and given to poultry suffering from diarrhoea and to humans for indigestion. Services Deep extensive rooting system of Z.mauritiana helps to prevent soil erosion on terraces. It can be cultivated as a shade tree. Its thorny branches make it useful for live fence. It is planted in crop fields as a windbreak. It is also suited for home gardens as an ornamental.Botanical description: Ziziphus mauritiana is a small semi−deciduous, usually spiny shrub or tree that grows up to 15 m in height. In severe sites, it can grow up to only 6 m. Its bark is dark grey and irregularly fissured. The leaves are simple, alternately arranged, 3-nerved, minutely toothed; ovate to rounded, elliptical and slightly unequal at the base; green and glabrous on the upper surface but cottony and pubescent on the under surface. The flowers are bisexual, cream in colour and occurring in dense clusters in leaf axils. The fruit is a drupe, yellowish to red or brown in colour, ovoid in shape, 2-3 cm long, with a fleshy acid but edible pulp enclosing a hard stone. Phenology: Some cultivars attain anthesis early in the morning; others do so later in the day. The flowers are protandous. Fruit development takes 4 months in early cultivars and 6 months in late ones. Fruit ripening starts between April and May. Fruit dispersal is by mammals and birds.The species is cross-pollinated by insects. There is inter and intra−specific hybridisation.Ziziphus mauritiana. Authority: Lam Family: Rhamnaceae Common names: Indian jujube or Ber (English), Masao (Chichewa).For improved cultivation of this species, deep sandy well−drained loams, with a neutral or slightly alkaline pH (a pH around 9.2), are ideal. Being a drought−hardy fruit tree, it withstands extreme temperatures and thrives under rather dry conditions enough to make mango or citrus fruit culture impossible. It favours mean annual temperatures within the range 37−50 °C, with an annual rainfall within the range, 300−500 mm. It is also tolerant to seasonal waterlogging. Altitudes within the range of 0−1500 m above sea level are considered ideal. Distribution Z. mauritiana has a wide distribution in the drier tropical and sub-tropical regions, particularly India and the Middle East. It is exotic to the southern African region, including Malawi, where it has become naturalised. In Malawi, the species is found in areas lying at altitudes ranging from <200 to 1000 m above sea level, with mean annual rainfall between 700 and 960 mm and mean annual temperatures within the range 21−25 °C in areas such as the Lower Shire Valley, Southern Lake Shore, Salima, Upper Shire Valley. Phalombe Plain, Makanjira, Bwanje Valley, Liwonde and Mwanza.Uapaca kirkiana is a semi-deciduous miombo tree, with a dense, rounded crown. It attains a height of 5-12 m. Reproduction It is dioecious, having male and female reproductive organs on separate trees; male flowers occur in dense masses and female flowers are solitary. Fruiting Flowering and fruiting occur between October and April, and mature fruits are yellowbrown 2-4 cm wide and long with a tough skin 3-4 seeds. The fruit is generally described as drupaceous and borne on a thick short pedicle. All descriptions give the shape of the fruit as globose. Mature and ripe fruits fall naturally from the trees and are easily collected from the ground. The fruits are sold in markets along the roads throughout the natural range of the tree and are significant in the local economy.Family : Euphorbiaceae Scientific name: Uapaca kirkiana Local name: Masuku 5.9. Ecology and agronomy Habitat and distribution Uapaca kirkiana, known in Zambia and Malawi as Masuku, is a southern Africa tree that is highly valued for its fruit, wood and medical product. Uapaca kirkiana is found in areas with 500-1400 mm annual rainfall, falling in a 4-5 month period followed by a dry season of 7-8 months. The tree grows on well-drained escarpments with infertile or gravely acidic soils at altitudes of 500-200m.There are no reports of serious pests attacking the tree. Necrosis, leaf spots, mildews and sporty moulds have been recorded. Phytophagons or leaf eating insects may cause damage to 10-20% of the foliage. Hemiparasites from the Loranthaceae family sometimes attack branches of the tree and reduce fruit production. Management The tree has not been subject to purposeful management. In natural stands, U. kirkiana coppices well after cutting or pollarding and regenerates easily from seed or root suckers. Uapaca grows slowly when it is not managed, but growth rates improve tremendously with inoculation and clean weeding.• Fruits: The fruit of Sclerocarya birrea (morula tree) is very popular and is usually eaten fresh. It is also used to make a potent local \"beer\" which provides many rural brewers with an important source of seasonal income. South Africa produces a good-quality liqueur commercially and there are numerous small enterprises producing morula jam and jelly. Pasteurised juice has also been marketed, though problems were experienced with it \"browning\" and with the flocculation of certain enzymes. The latter problem has since been overcome.• Nuts: The kernels are very popular amongst rural people and are highly nutritious. Oil extracted from the kernels is highly valued, particularly by the cosmetic industry due to its slow oxidizing properties. Palgrave (1977) records Zulu women extracting the oil to use it as a cosmetic.• Leaves: Fox and Young (1982) note that some South African tribes cook the leaves as a relish. In times of drought when there is no pasture, livestock owners will lop branches off morula trees to use the leaves as fodder.• Bark: According to Watt and Breyer-Brandwyk (1962), the bark is widely used to treat a variety of ailments, two of the most common being fever and diarrhea.• Wood: In spite of it being a protected tree by legislation in most SADC countries as well as by traditional culture, the wood is occasionally used for wood carving.• Botanical description: The tree is medium to large, usually reaching 10-15 m in height and well branched with a medium spreading crown. Trees are dioecious, though occasionally reported as having both sexes on the same tree.The flowering times of morula trees are relatively constant regardless of weather conditions. No accurate records have been made of the onset of flowering of male and female trees. The time of the first fall of fruits starts in early January and will last for anything from 2 to 8 LES RAPPORTS DES PAYS 135 weeks for individual trees, averaging about 6 weeks per tree (Taylor and Moss 1982). It has been noted that the morula fruit starts ripening progressively later further north in the country where some morula are still falling in July (Baker and Taylor 1992).The first fruit in Botswana's grafting morula orchard (non-irrigated) appeared on one 2year-old tree which failed to produce any fruit the following year -as did all of the other grafted morula trees. In the fourth year (1994) about 50% of the 20 trees bore their first fruit. The fruit is oval to almost spherical in shape with many provenances having three indefinite points surrounding the apex and measuring 3-4 cm in diameter. Green fruits fall to the ground and ripen to a pale yellow colour within a few days. White flesh surrounds a large nut which contains 2-3 edible kernels. The average weight of fruit is 20 g with the nut weighing about 10g.Many trees produce very palatable fruit but Taylor and Moss (1982) note that a substantial number produce sour fruit, some of which are so highly aromatic and sour that even livestock will not eat them unless food is very scarce. The fruit has a shelf life of 5-10 days after falling to the ground.• Morula occurs in open woodland and frequently on or associated with hills. It shows a preference for well -drained sands and loams and is distributed throughout south-eastern Africa.The trees are known to be highly salt tolerant: in Israel they grow vigorously when irrigated with salty water (Mizrahi 1992). Germination Baker and Taylor (1992) reported a variety of germination trials which revealed that optimum results were obtained from planting untreated seeds directly in plastic bags in a net house (70% germination), but highest survival rates from pricking out were from outside partly shaded seed beds (84-100%) as compared to plastic bags.Over 95% success has been achieved by grafting 5-10cm scion material cut from the tips of branches. It is essential that scion material be collected immediately dormancy breaks and it is preferable if breaking rootstock dormancy occurs before that of scion material. This can be achieved by \"forcing\" the rootstock in tunnel or greenhouse in early August. Truncheons Propagation by truncheons of about 5 cm diameter has been successful. Cuttings There is no reported success in propagation of cuttings.The major pest problem affecting both trees and nursery stock is psyllid mites. Severe infestations have been observed on wild trees but the harvests do not seem to be significantly affected.Powdery mildew can be prevalent on morula under humid conditions and can quickly spread to all seedlings in a nursery net house. Control is achieved by spraying with copper oxychloride. Aphids, white flies and trips can also become endemic in the nursery, but these can be controlled by spraying with Dichlorophos or Malathion. Nutrients and soils Wehmeyer (1980) records the juice as having four times as much vitamin C as oranges; while in 1971 he recorded the nuts as containing 55% oil; composed of 70% oleic and 8% linoleic acid. Yields Yields varied from 17,445 fruit to a maximum of 66,822, the average being 36,550 fruit weighing about 550kg (Taylor and Moss 1983). Many trees elsewhere have been recorded as producing in excess of 1,000kg. A record yield of over 4,500kg has been recorded for an exceptionally large tree in Namibia (Hortzhausen 1993). Effect of drought Fox and Young (1982) noted that the size of the fruit seems to be dependent on the previous season's rainfall. Casual observation in Malawi would seem to support this theory; all the wild fruit trees on the Mangochi site continue to produce fruit throughout major dry years, though with slightly diminished yields. Sweetness, acidity and pH Baker and Taylor (1992) recorded that the degrees Brix (sweetness) can vary between 10.4 and 16.0, while the acidity and pH are 0.97-3.38% and 3.0-4.5, respectively. The most acidic fruit were the most aromatic and unpalatable.The green fruit which fall to the ground can tolerate rough handling for a day or two without adverse effect. When ripe, the fruit still does not bruise easily. If fruits are stored in bulk, they seem to ripen quicker than in the open air. This point needs further research, as does the effect of storage temperature. Only high quality stainless steel or plastic containers should be used for storing/processing of the fruit due to its high acidity.The fruits can be eaten fresh or dried to be eaten later and are also prepared as a relish in traditional dishes. Fox and Young (1992) reported that many farmers' wives use the fruit as a substitute for stewed apple. The dried fruit is occasionally sold in the informal markets for about 4 US cents each.The main potential would seem to be with dried fruit, which can easily be transported in rough conditions, have a good shelf life and can easily be reconstituted by soaking in water. It is unpleasant to chew the bone-hard, dry fruit. Dried fruit are currently sold on the streets for about US 4 cents each.It is a deciduous, scraggy shrub or tree 3-7 m in height. The onset of flowering is variable and is highly dependent on the rains. The fruit can ripen from December through to February. First fruits: Four-year-old plants set fruit. Fruit: Almost spherical, 2-4 cm in diameter and weighing an average of 13.5g; yellow/brown when ripe, having a paper-thin skin and a pasty flesh with a sweet/sour taste like stewed apple. Fruit have an average of four seeds with the size and shape of small cloves of garlic.Habitat and distribution: Occurs in wooded grasslands and rocky hillsides.The seeds are easy to germinate with no pretreatment. Baker and Taylor (1992) report germination success to average between 53 and 79%.No grafting has yet been attempted within the region.Vangueria infausta is very susceptible to eriophyd mites (family Eriophydae) which cause galls on the leaves.In Israel, Vangueria infausta trees were irrigated with salty water and grew well for the first 2½ years but then died (Mizrahi 1992). Nutrient composition Arnold et al. (1985) noted that the fruit-fibre content is favourable and it has a high nicotinic acid content. Yields Taylor and Moss (1982) reported yields varying from three fruit on a small tree to an estimated 1,8000 fruit on a tree over 3 m high.The plant is very drought sensitive and quickly shows stress with all the leaves drying on the tree together with any half-formed fruit. When the rains come, the tree recovers very quickly.The fresh ripe fruit does not handle easily as it has a soft skin which easily ruptures or becomes misshapen. The whole fruit dries readily and then can be roughly handled with impunity. Care must be taken during the storage of dried fruit due to possible infestation by weevils.The only known processing, other than adding as a relish to traditional foods or use as a stewed-apple substitute on white farmers' tables, is to air-dry the fruit. However, it may be possible to produce dried-fruit products (rolls, \"cheese\", etc.) in pure form or as a blend with other fruit.This very popular fruit is usually eaten fresh, though Story (1958) recorded that people sometimes pick the green fruit and bury them in the sand where they will keep for several months while they slowly ripen. (This is probably a ploy to keep the fruit away from baboons who have a special liking for them).• A small tree 2-8m in height, often scraggy, with a rounded crown. It has a distinctive bark which is clearly corcy and ridged longitudinally. Strychnos spinosa, which has a less tasty fruit, looks almost identical to Strychnos cocculoides but lacks the corky bark. Fruit: The fruit, up to 10 cm in diameter, has a hard woody shell, is dark green at first and turns yellowish when mature. A sweet, brown, jelly-like flesh surrounds a few large seeds. Phenology: In Botswana the fruit ripen from August to December.Habitat and distribution: This species occurs in open woodland and on rocky hill slopes. Germination : Considerable difficulty was experienced in germination, the main problems being traced to a fungal infection of the seeds, damping off and the seed coat drying on emergence, preventing the cotyledons from opening. After correction of those problems, up 75% germination rate was achieved.Clonal propagation: Propagation from cuttings was attempted under crude failed. Growth rate : Considerable difficulty was experienced in achieving a noteworthy growth rate. After one year, the plants were little than 30 cm high with indications of trace-element deficiencies, fungal infections and possibly a lack of compatible mycorrhyza. Various experiments are under way to counteract these adverse conditions. Pest and diseases: None have been recorded other than at germination. Salt tolerance : Not tolerant (Mizrahi 1992).• Nutrients and soils : Seeds of one or more of the Strychnos spp. are said to contain minute traces of strychnine, but details are unknown. People eat the fruit in substantial quantities without adverse effects as they spit out the large pips. Yields: Fruits yield of 300-400 per tree have been recorded.Sweetness and pH : Baker and Taylor (1992) recorded that the mean Brix and pH values vary slightly from year to year. For example, on the same tree Brix can vary from 16 to 16.4 degrees and the pH from 3.45 to 3.75 between one year and the next.Effect of drought: The stress factor has not been studied closely, but it has been noticed that in areas where rainfall has been very much below normal, the trees have not broken dormancy, unlike other indigenous species in the area.Handling and storage : Because of the fruit's hard shell it has excellent handling characteristics.Processing: This fruit is not recommended for processing as its fresh value is so high and it has an excellent shelf life. The present demand for fresh fruit far outstrips the supply. Enterprising Zimbabweans export truckloads of the fruit to Botswana where they have a street value of US$ 0.45 each. The hard shell and a good shelf life (if picked before ripening) gives it a good market potential. A major market can be developed in South Africa's black townships.• Traditional uses: The fruits are eaten slightly green or when ripe. Some people dry and reconstitute them later.• Commercial potential: The fruits travel well and have a street value of US $0.10 each. An average tree can produce many hundreds of fruit.A shrub or small tree 3-10 m in height. Flowering starts in January and can continue for several months, depending on the rains. Fruit ripens from July to October. 2-year-old trees flower for the first time.The fruit is a woody capsule 2.5-4.0 cm in diameter clearly divided into five segments and with red silky hairs. The whole fruit, except the seeds, is chewed to yield a sweet glutinous slime which is very popular. There are two distinct shapes of fruit: one is almost spherical while the other is spherical but with a pointed apex. Some people regard the latter as being the sweetest.This species grows in the open woodland in north-eastern Botswana. It is also planted around homes by people. Germination : The Forestry Association of Botswana has recorded 60% germination with no seed treatment (Tietema et al. 1992).• Growth rates: This species is a vigorous grower, reaching up to 3 m in a year • Pests and diseases: Trees became heavily infested with leaf hoppers (family Cicadellidae) both in the field and in the nursery. Control measures include use of Malathion and Dichlorophos.• Salt tolerance : Unknown.• Nutrients and oils : Unknown.• Yields : No written records have been made, but casual observations would indicate that yields in excess of 750 fruits are common.• Sweetness and pH: No recording have been made.• Effect of drought: Trees can show stress in drought conditions, but not to the same extent as• Handling and storage: The hard shell of the fruit ensures that it travels well.• Processing: It is not suitable for processing.Fruits are eaten fresh and dried, the latter often prepared as a relish after soaking in water. The nuts are the most important dietary component of the fruit; some Basarwa consider them as their most important food. Valuable oils can also be extracted from the nuts.The trees have a pale yellow-white wood which is comparatively strong for its light weight, thus making a good substitute for balsa wood.• A large spreading tree 12-15 m in height with a domed crown. The trees are dioecious and can form extensive groves.• Fruit: Oval shaped, approximately 3.5 cm x 2.5 cm, with a grey-green velvety skin and weighing about 10 g. inside the fruit is large pear-shaped very hard nut containing an edible kernel about 1 cm in diameter. Both the flesh and the nut are highly nutritious.• The fruits fall to the ground when almost ripe but, unlike S. caffra, do not rot unless conditions are very damp as the 31% saccharose content (Watt and Breyer-Brandwyk 1962) acts as a preservative. The flesh is tasty but somewhat astringent. According to Mizrahi (1992) irrigated trees bear fruit within four years.The trees occur in open woodland and usually on Kalahari sands, often on top or on the slopes of fossil sand dunes. Large stands, often several kilometers long and a few hundred metres wide, occur in north-east Botswana, but at low densities. The trees are not frost tolerant.• Germination : Considerable difficulty has been experienced in germination of seeds.Pretreatment using an ethyl compound is reported to be successful and will be attempted in 1994. Mizrahi (1982) reported good germination if the woody endocarp shell is removed and the nut planted.• Clonal propagation : It is known that propagation by truncheon is done by Basarwa in north-east Namibia (Powel 1993).• Pest and diseases: This aspect has not been studied, but casual observations revealed that in drought conditions there was severe rodent damage to young shoots, especially in saplings.• Salt tolerance : Unknown.• Nutrient and oil composition : Arnold et al (1985) stated that S. rautanenii fruit compares favourably with the world's most nutritious foods both in energy value and vitamins and minerals. Wehmeyer (1980) reveals that the major fatty acids of the oil are linoleic acid (42%) and oleic acid (18%). The kernels are rich in most minerals and have a high riboflavin content.• Yields: Lee (1966) recorded yields of 20,000-60,000 fruits per tree.• Sweetness, acidity and pH: Unknown.• Effect of drought: Unknown.• Handling and storage: Little known about the fresh fruit but the dried fruit can be roughly handled and stored indefinitely.• Processing: No commercial processing of the flesh has been undertaken but there should be many possibilities similar to those described for Sclerocarya caffra. Arnold et al (1985) reported that thousands of tons were exported from Namibia to Germany before the First World War for the manufacture of margarine.SAFORGEN 140 SPECIES N°8 : Grewia flava (Tiliaceae)The seeds dry easily into sweet \"raisins\" and are a popular food amongst rural people, particularly the Basarwa. Some people eat the seed well. The fruit is eaten fresh and large quantities are either for eating during winter or to sell on the informal markets. The dried berries also make a popular but potent alcoholic brew.It is a Shrub, deciduous, freely branching shrub usually 1-2 m high. Fruit are berries of about 7 mm in diameter with a tasty pulp surrounding a large single seed. The plant will only flower after rain. An absence of rain results in no flowering. Late rain means late flowering. Fruit ripens about two months after flowering and first fruiting occurs one year after planting.• Habitat and distribution: Found throughout Botswana and all neighbouring countries, often in dense stands in the Kalahari.• Superior phenotypes: No work has been done to identify superior plants.• Germination: There is considerable difficulty in the germination of these seeds. The most effective methods found was a 6 hour pretreatment with concentrated sulphuric acid.• Clonal propagation: Propagation by cuttings has been successful with the use of indole butyric acid.• Growth rate: Vigorous, almost to full height in the first year.• Pests and diseases: None recorded.• Salt tolerance: Unknown.• Nutrients: No dried flesh of the raisins contains over 30% sucrose and is high in potassium and nicotinic acid.• Yields: No accurate records have been made but large bushes can produce about 500 g of the small berries.• Effect of drought: The plants are very hardy and will survive the severest droughts.However, if the rains fail after some early rain, the fruit will shrivel and die on the plant.• Handling and storage: The dried berries handle and store well but insect infestation can be a problem.• Processing: Processing is unnecessary as the air-dried raisins are easily marketable in large quantities.• Commercial potential: Good. The informal markets cannot satisfy the demand.Major threats to food tree species are the agricultural expansion, repeated bush fires, overgrazing, lack of natural regeneration, illicit cutting and inadequate conservation measures. Also there is a gap of knowledge on current and potential uses of most food tree species in the country.There is very little in the field of forest genetic resource conservation. Activities directed towards saving gene pools or use or to prevent loss of genes or prevent the extinction of tree species are at infancy. Laws, policies and activities were directed mostly for conservation of forest resources. Hence, the conservation and management of food tree genetic resources is mainly through management and conservation of forest resources in national parks, natural stands and to some extent in plantations. Many food tree species are strongly protected and conserved through local roles and regulations.Many food trees were identified and used by the local people all over the different parts of the country. Beside their food values, they have medicinal and other uses. They are concentrated in the central parts extending from East to West. Some of these species are considered as priority species for the country (A. senegal and A. seyal) and some are considered endangered (Hyphane thebaica and Borassus aethiopum). The priority list below shows those of economic value and most commonly used. • National priority: Gum Arabic produced from Acacia senegal is a major export commodity from Sudan and an important source of income for the local producers. The tree, being a mutipurpose, is the number one priority species for the rehabilitation of arid and semiarid drylands in the country.• Area covered by the species: about 20% of the total area of the country.• Part of the plant used for food purposes: an exudate produced from tapped branches.• Number of consumers: consumed mainly by importing countries in Europe, USA, Japan and China.• Economic importance: provides about 12% of the foreign exchange earnings.• Socio-cultural importance: main source off-season labour and source of social stability. Also regarded as means of poverty alleviation as it provides income to the poor and landless.• Other importance: the tree is an integral part of the crop and animal production systems, hence, maintains land productivity through its contribution to soil nitrogen, carbon and organic matter.• Commercial processing mainly quibbling and spray drying in addition to the primary cleaning and sorting into various grades.• Medicinal value: gum is used for coating medicinal products, preservation and stabilization of some vitamins, treatment of some kidney problems, gastric disorder and diarrhea. Bark is used as a disinfectant for wounds.• Timber, fibres and craft: produces building poles, firewood and charcoal.• Fodder and browse: foliage and pods are rich in protein and constitute an important source of feed to camel, sheep and goats in the dry season. According to NAS (1979) the tree pod contains 22 g protein, 1.0 g fat, 39.9 g carbohydrates, 39 g fibre and 7.1 g ash.• Deleterious properties: not available• Botanical description: Tree or shrub of 2 -12 m high. Very branchy with many upright twigs. Bark light gray to light brown, smooth on young and rough fissuring on older trees. Young branchlets with horizontal slit-like lenticels. Stipules non-spinescent. Prickels at nodes in threes, 2 lateral pointing upward (forward) and one central pointing downward (backward). Leaves 1 -6 cm long, pinnae 2 -6 pairs of 0.5 -3 cm length. Leaflets 8 -18 pairs, linear to elliptic oblong. Inflorescence spicate 2 -10 cm long. Flowers white or cream, sessile. Fruit flat straight oblong membranous dehiscent pods, pale brown to straw-coloured. Seeds vertical on pod, compressed, 8 -12 mm across, yellow or pale brown.• Phenology information:-Tree density: varies in natural stands, with an average of 100 trees/ha and 400 -625 tree/ha in plantation.-Leafing: June to October -Flowering and flower cycle: August -October, annually.-Fruiting period: September -December, seed ripen in January.-Seed dispersion late January to April and dispersals are mainly wind and animals: -Pollinators: insects (types ?) LES RAPPORTS DES PAYS 145 5.6. Properties • Chemical composition: complex polysaccharide and protein as polymer (mixture of arabinose, galactose, rhamnose and glucuronic acid containing 17 amino acids.• Other properties of the gum: prevent crystallization of sugar, emulsifier, stabilizer, jelly agent, thickener, fixative, etc.• Anti-nutritional and toxic properties: non -toxic.• Nitrogen Fixation: fixes about 20 kg N/ha.• Sources of germplasm: seeds from natural stands (cuttings and tissue at research stage).• Seed weight: 11000 seeds kg.• Seed viability: more than 90 %.• Genetic assessment:• Conservation methods and techniques used: only natural seed stands were identified and managed. 5.8. Tree improvement and breeding: ? 5.9. Ecology and agronomy • Climate, soil and water requirement: can grow under 200 mm with 8 -11 arid months to 800 mm with good drainage. It occurs in a variety of soils, ranging from gravelly, sandy, clay and alluvial. It forms pure stands on sandy soils of western Sudan.• Distribution of the species: Grows all over the short grass savanna region of the Sudan covering about 12 states (out of 26).• Geographical trends: A. senegal belt is shifting southwards. Originally was between lat. 10 -14°N, but presently the northern limit is 13°45'.• Seeding: successful on clay plains where rainfall more than 600 mm.• Weeding: twice, and very important at the earlier stages (1-2 years).• Propagation: by direct seeding, seedlings, and coppice.• Pests and diseases: mainly locust and animals viz camel and goats.• Harvesting: gum picking is manual by local producers -up to 7 pickings after tapping.• Yield: variable, in natural stands averaging 250 g / tree and up to 600 g / tree (240 kg/ha) in plantations.Very few, not fire resistant.• Genetic variation.• Tree improvement and breeding.• Functionality -suitability of use of gum in local industries.• Yield forecast, control and stability.• Micro-propagation and tissue culture.• Resource assessment in relation to ecological and socio-economical transformation.• Physiological aspects of gum exudation and behavior of the tree growth.• Tree crop interactions.• Research related to chemistry (mainly functionality) • Micro-propagation • Agroforestry.• Physiological aspects of gum exudation.• UNSO/ Northern Kordufan Gumbelt Restocking Project, 1978Project, -1994, financed by , financed by The Netherlands and Government of Sudan. Total budget was US $ 7.9 million.• UNSO Northern Darfur Gumbelt Restocking Project, 1989 -1993, co-financed by Norway and Government of Sudan. Total budget was US $ 1.9 million.SPECIES N°2: Acacia seyal (L.) Will.• National priority: Gum produced from the tree is of growing economic importance, as it has recently been regarded internationally as Gum Arabic together with that produced from Acacia senegal. The tree, being the main source of charcoal in the country, is among the 7 national priority species.• Area covered by the species: dominant tree species throughout the clay plains of central, eastern and western Sudan.• Part of the plant used for food purposes: exudate • Number of consumers: consumed mainly be importing countries in Europe, USA and Japan.• Socio-cultural importance: source of income for the poor and landless.• Other importance: environmental protection.• Commercial processing: cleaning, grading and to some extent spray drying.• Medicinal value: wood smoking for treatment of rheumatism.• Timber, fibres and craft: main source of charcoal and firewood, small building poles, accented wood used by ladies as cosmetic for skin smoking.• Fodder and browse: foliage and pods are important source of fodder in the dry season.• Deleterious properties: ?• Botanical description: Tree 3 -17 m high. Bark powdery, smooth or sparsely flaking, greenish yellow or orange red, sometimes green and red bark occurs on the same tree. Young branchlets with numerous reddish glands. Stipules spinescent, 10 cm long, inflated in var. fistula and simple in var. seyal. Prickles absent. Leaves 1 -12 cm long, pinnae 3 -9 pairs. Inflorescence capitate, yellows on pedicle 1 -4 cm long. Flower bract 2.5 mm long. Fruit falcate, dehiscent pods constricted between the seeds with conspicuous red glands. Seeds wrinkled, compressed, elliptic on a longitudinal thin white band.• Phenology information:-Tree density: about 100 trees / ha in natural stands.-Flowering and flower cycle: November -April, annual.-Fruiting period: January -May.-Seed dispersion and dispersals: February -May, and dispersals are mainly wind and animals.-Pollinators ? • Seed weight: 23 000 seeds / kg • Seed viability: more than 90 %.• Conservation methods and techniques used: only natural seed stands were identified and managed. 5.8.Tree improvement and breeding: ? 5.9. Ecology and agronomy • Climate, soil and water requirement: annual rainfall rage of 250 -1000 mm. Common on dark cracking clays on higher slopes of rivers and valleys, on the hard clay plains and on clay of seasonally wet depressions. Also found on gravelly or rocky soils at the base of hills. Tolerates periodical inundation.• Distribution of the species: The tree is widespread throughout the semiarid region in central, eastern and western Sudan ( 14 states out of 26) • Seeding: successful on clay plains where rainfall ranges between 600 -1000 mm.• Weeding: twice, very important at the earlier stages (1-2 years). Propagation: by direct seeding.• Harvesting: gum picking is manual by local producers.Mainly agricultural expansion and over use for woodfuel.• Genetic variation.• Tree improvement and breeding.• Quantitative assessment of gum yields.• Micro-propagation and tissue culture.• Resource assessment in relation to ecological and socio-economical transformation.• Physiological aspects of gum exudation and behavior of the tree growth.• Quantitative assessment of gum yields.• Micro-propagation and tissue culture.• Physiological aspects of gum exudation and behavior of the tree growth 5.13. Achieved, current and new projects related to the species 5.14. Networks: ? SPECIES N°3 : Adansonia digitata L.• National priority: fruits have a wide market locally and are also exported abroad.• Area covered by the species: many parts of central, western and southeast of the country (about 10 states out of 26).• Part of the plant used for food purposes: fruits used all over the country as fresh drinks by soaking them in water. Fresh leaves are mixed with peanut and used as salad in many parts of western Sudan.• Number of consumers: not less than half the population of the country.• Economic importance: source of income to many rural dwellers.• Socio-cultural importance: Highly valued and protected by strong local control measures.• Other importance: landmark for defining boundaries and reservoir for storing rainwater in many parts of western Sudan where water is very scarce.• Medicinal value: soft drink from the fruits is used for the treatment of dysentery, diarrhoea, vomiting and fever.• Timber, fibres and craft: bark used in rope making.• Fodder and browse: falling leaves browsed by animals• Botanical description: The tree is deciduous up to 20 m high with vastly thickened trunk.Branches short stout and stiff, wide spreading. Bark smooth gray or pink, fibrous. Leaves digitally foliate, leaflets subsessile, oblanceaolate to elliptic about 12.5 cm long. Flowers axially, large with creamy-white colour and cup-shaped sepals. Fruit woody, oblong, gray-green, 15-22 cm long, pendulous on long stalks. Seeds hard, black-brownish or redbrown embedded in dry white edible powdery pulp. The tree Flowers from May to July and fruits from August to October.• Phenology information:-Tree density: found in its natural habitat as dispersed and scattered individuals and may forms belts in some parts of western Sudan -Leafing: deciduous, April to June.-Flowering and flower cycle: May to July, annual -Fruiting period: August to October -Seed dispersion and dispersals: October to January, by animals.-Pollinators: Bats, small mammals and possibly winds (Mydel, 1990).• Family: Bombaceae.• Synonyms: Adansonia baobab Gaerth., Adansonia situla (Lour.) Spring., Adansonia sphaerocarpa A. Chev., Adansonia sulcata A. Chev., Adansonia somalensis Chior. (Maydell, 1990).• Common names: Tabaldi (Arabic).• Origin: the Sahel • Domestication: Seedlings produced and planted at homesteads. 5.6. Properties:? 5.7. Genetic resources • Sources of germplasm: natural regenerating trees.• Seed weight: 2500 /kg • Seed viability: more than 90% , remain viable for years.• Conservation methods and techniques used: conservation governed by local control.• Climate, soil and water requirement: semi-arid to sub-humid tree, rainfall rage of 250 -1000 mm. Grows well on light soils with good drainage or on sandy pains. Rarely found on heavy clay or seasonally inundated sites.• Distribution of the species: sparsely distributed in western, central and southeast of the country.• Propagation: by seeds.• Harvesting: fruits and leaves are harvested manually by local rural dwellers.Major threats to the species are the intensive browsing, removal of young plants for food by surrounding communities, fires and debarking of mature trees by people for rope making.• Sivicultural aspects.• Genetic variations.• Assessment of yield.• Assessment of the nutritive value of fruits and leaves.• Processing of fruits 5.12. Areas where collaborative work could be conducted with other countries • Sivicultural aspects.• Assessment of yield.• Assessment of the nutritive value of fruits and leaves.• Processing of fruits 5.13. Achieved, current and new projects related to the species: nil 5.14. Networks: ? SPECIES N°4 : Tamarindus indica (L.)• National priority: the fruit are used all over the country, soaked and used as fresh drinks.Marketable in rural and urban markets. Small quantities are exported.• Area covered by the species: Spread throughout the southern region and the southern parts of central eastern and western regions.• Part of the plant used for food purposes: Fruit.• Number of consumers: Almost used by most of the inhabitants in about 22 states.• Economic importance: Provides income for the rural poor, women and landless. Fruits marketed throughout the country and some exported.• Other importance: Avenue and shade tree.• Medicinal value: Fresh drinks from the fruits used for fever and as laxative. Roots used for chest complaints.• Timber, fibres and craft:• Fodder and browse: Leaves, twigs and foliage are good source of fodder.• Deleterious properties: ?• Botanical description: Large tree up to 16 m with stout bole and compact rounded crown.Bark pale grey and fissured. Leaves paripinate up to 15.5 cm long. Leaflets 12 -20 pairs, opposite and narrowly oblong. Flowers yellowish, with red stripes in small terminal, glabrous racemes, 3 -5 cm long. Fruits curved oblong, 10 -17 cm long and 1.5 -2 cm wide, pale brown, each with 1 -10 dark brown seeds. Seeds joined together by tough fibres running through the sticky pulp.• Phenology information:-Tree density: Dispersed as individual trees.-Leafing: semi-evergreen.-Flowering and flower cycle: June -July.-Fruiting period: December -January.-Seed dispersion and dispersors: January -March, mainly by human and animals -Pollinators: ?• Family: Caesalpiniaceae.• Local name: Ardeib.Ingénieur Agronome, BP 90 CRA-F/ITRA Tél / Fax (228) 41 00 60, TogoLa politique du Togo en matière d'espèces ligneuses alimentaires est exprimée à travers deux textes fondamentaux : la politique environnementale et la déclaration de la politique de diversification de la production végétale. Trois ministères sont directement impliqués dans la mise en oeuvre de cette politique à travers leurs directions techniques et les centres de recherches. Il s'agit du ministère en charge de la recherche, celui en charge de l'agriculture et le ministère en charge de l'environnement et des ressources forestières. Les ONGs prennent aussi une part non négligeable dans ce processus. Les espèces ligneuses alimentaires prioritaires du pays sont: Mangifera indica, Coffea canephora, Theobroma cacao, Anacardium occidentale, Vitellaria paradoxa, Parkia biglobosa, Adansonia digitata, Pentadesma butyracea, Dialium guineense, Irvingia gabonensis.The Togo policy on food tree species is expressed through two basic documents: the environmental policy and the declaration of Crop production diversification policy. Three ministries, through their technical departments and the research centers, are directly involved in the implementation of this policy. These ministries are: the ministry in charge of research, the ministry in charge of agriculture and the ministry in charge of environment and forest resources. NGOs play also an important role in this process. The priority food tree species of the country are: Mangifera indica, Coffea canephora, Theobroma cacao, Anacardium occidentale, Vitellaria paradoxa, Parkia biglobosa, Adansonia digitata, Pentadesma butyracea, Dialium guineense, Irvingia gabonensis.Le Togo, pays francophone de l'Afrique Occidentale, s'étend en longueur sur environ 650 km du Nord au Sud entre les 6e et 11e degré de latitude Nord, couvrant une superficie de 56.000 km² . Il est limité au Nord par le Burkina Faso, au Sud par l'Océan Atlantique, à l'Est par le Bénin et à l'ouest par le Ghana. Le pays est caractérisé par deux zones climatiques :-la zone sud, avec un climat de type subéquatorial, se distingue par un régime de pluie bimodal avec des hauteurs annuelles de 800 à 1500 mm. La végétation est constituée de clairières, de savanes et de forêts guinéennes.-la zone Nord avec un climat de type soudano-guinéenne est caractérisée par un régime de pluie unimodale, la saison pluvieuse s'étend de juin à octobre et la pluviométrie varie entre 1000 et 1300 mm. La végétation dominante est la savane. De part sa position et sa forme longitudinale, le Togo présente une flore variée composée de peuplements d'espèces ligneuses et d'un couvert végétal herbacé. Cette flore subit des nuisances de la population dont l'effectif national s'élève à plus de 4.000.000 d'habitants avec un taux d'accroissement global de 3, 2% par an soit 4,4 % pour la population urbaine et 2,4 % pour la population rurale. La densité moyenne est de 70 personnes/km² avec des différences d'une région à l'autre. Ainsi, dans bon nombre de préfectures, la charge humaine maximale que peuvent supporter les terres cultivables est atteinte ou dépassée selon l'indication de la FAO qui la situe entre 65 et 85 personnes par km². Cette pression démographique est de nature à favoriser la dégradation des terres et des ressources phytogénétiques et surtout l'exploitation irrationnelle des espèces ligneuses existantes étant donné que l'homme s'en est toujours servi pour satisfaire ses divers besoins notamment se nourrir et se soigner.Conscient des menaces de dégradation et de disparition de sa richesse floristique et en vue de sauvegarder cette biodiversité, l'Etat togolais a défini une Politique qui précise les orientations, les stratégies et les actions à entreprendre dans ce domaine. La politique nationale en matière des espèces ligneuses alimentaires se retrouve exprimée à la fois dans deux textes fondamentaux :• la politique environnementale, dont l'objectif est de promouvoir une gestion globale et rationnelle de l'environnement pour améliorer le cadre et les conditions de vie des populations dans la perspective d'un développement durable ;• la déclaration de la politique agricole qui met un accent sur l'intensification, la diversification de la production végétale (espèces ligneuses et non ligneuses) et l'accroissement de la production agricole supportable par l'environnement d'où le maintien de la productivité de l'agriculture par la préservation des ressources naturelles et de l'environnement. Cette politique se traduit donc par le développement des cultures conventionnelles tout en respectant l'environnement et la diversification d'où la prise en compte de toutes les espèces ligneuses alimentaires. La préservation et la promotion de celles-ci constituent une des orientations prioritaires des actions de l'Etat.Trois ministères sont directement impliqués dans les activités de ressources phytogénétiques à savoir :-le Ministère de l'Agriculture, de l'Elevage et de la Pêche (MAEP), -le Ministère de l'Environnement et des Ressources forestières (MERF) -le Ministère de l'Education Nationale et de le Recherche (MENR) Les activités sur les ressources phytogénétiques ont pratiquement démarré en 1977 avec la collaboration des institutions étrangères dont l'IBPGR, devenu aujourd'hui IPGRI. Elles se poursuivent encore par des actions concrètes avec l'appui technique et financier constant des institutions internationales.C'est au niveau des ministères, organes gouvernementaux, que sont fixés les objectifs de la politique nationale. Ceux ci assurent également un rôle de supervision. Les structures d'Etat qui en dépendent participent à l'exécution des plans d'action sur le terrain. Parmi celles-ci, on compte entre autres : -l'Institut Togolais de Recherche Agronomique (ITRA) qui coordonne les actions du Programme National de Gestion des Ressources Phytogénétiques. C'est en son sein que se trouve le point focal de Réseaux Espèces ligneuses Alimentaires qui assure la coordination des plans d'activités.-l'Ecole Supérieure d'Agronomie et la Faculté des Sciences participent à l'élaboration et la mise en oeuvre des plans et programmes relatifs aux Espèces ligneuses alimentaires. -D'autres structures gouvernementales y sont plus ou moins impliquées telles que la Direction des Productions Forestières, la Direction de la Protection et le Contrôle de l'Exploitation de la Flore.-les ONG mènent des actions ponctuelles et de moindre envergure (CARE International, Plan International) ciblées sur la sensibilisation et l'assistance aux populations rurales.Toutes ces structures et organisations sont toutes disposées à intervenir de façon plus efficace dans la mesure où les moyens financiers sont disponibles.Il y a quelques années, les espèces ligneuses alimentaires n'étaient guère menacées mais plutôt protégées par les populations environnantes. Actuellement on observe une forte pression sur toutes les ressources naturelles qui se traduit soit par des déboisements incontrôlés soit par une utilisation anarchique. Les espèces ligneuses alimentaires sont sous la menace perpétuelle de l'homme qui utilise ses différents organes en vue de satisfaire ses besoins alimentaires, médicinales ou pour ses besoins en bois de chauffe et matériel de cuisine (mortier, pilon, spatule, etc.). Selon l'espèce, il recherche les fleurs, les fruits, l'écorce, les racines, le tronc, les branches, les feuilles et autres.L'introduction et la vulgarisation d'une nouvelle variété sont aussi à l'origine de l'abandon et même de la destruction des variétés rustiques locales.Les effets naturels tels que les variations climatiques, les foudres constituent également des éléments d'incidences néfastes sur la vie des espèces.Au plan national, des stratégies globales de protection des espèces et de l'environnement sont décrétées pour :-l'instauration des réserves, parcs nationaux et forêts classées ; -la mise à jour des listes d'espèces protégées ; -la réglementation de l'exploitation des espèces -la réglementation des mises à feu de la végétation. Les services gouvernementaux créés à cet effet sont ensuite chargés de l'application des différentes mesures.Quant à la conservation ex situ (pépinières, plantations, banques de semences), elle relève, en particulier, des institutions de recherche notamment l'ITRA, l'Université et des services de développement comme la Direction de la Production Forestière et les ONG. • On retrouve l'espèce dans tout le pays.• Nombre de consommateurs dans le pays: toute la population du pays.• Importance sociale et culturelle : la consommation de la mangue fait partie des habitudes alimentaires de la société.• Transformations, utilisations industrielles, alimentaires: les fruits sont consommés frais et transformés en jus, confiture, marmelade ou sirop.• Valeur médicinale: l'écorce, les feuilles et les racines sont utilisées en médicine traditionnelle.• Bois, fibres ou artisanat : le bois mort est utilisé pour le feu • Fourrage et pâturage : les feuilles servent à nourrir les animaux• Description botanique de l'espèce L'arbre peut atteindre 30 m, avec un port élancé et un système racinaire pivotant. Les jeunes feuilles rougeâtres deviennent vert foncé à l'état adulte et la longueur varie entre 10 -30 cm et 2-10 cm de large. Les panicules terminales portent des fleurs hermaphrodites et mâles. Le fruit (1000 g-1500 g), arrondi à oblongue est une drupe. L'arbre peut porter 8000 à 10.000 fleurs. Les fleurs mâles sont les plus nombreuses ; le noyau du fruit peut servir de semence. • Origine de l'espèce : Afrique • Centres de grande diversité génétique : Afrique, Indonésie, Nord Brésil.• Composition chimique des organes de l'espèce : caféine dans la graine • Propriétés non-nutritionnelles et toxiques : toxicité liée à la caféine• Sources de germplasm (matériel génétique) : introduction de la Côte d'Ivoire.• Type de sexualité : bisexualité (androgyne), avec autostérilité • Système de croisement : allogamie stricte • Poids des semences : 1000 grains pèsent 140 à 180g.• Viabilité des semences : les semences de C. canephora perdent rapidement leur pouvoir de germination.• Méthodes de conservation et techniques utilisées: Conservation ex situ (collection vivante de caféiers) à la station de recherche de l'ITRA.• Principales lacunes dans la conservation des espèces : Perte de clones due à la sécheresse. Le cacaoyer est cultivé pour ses fèves destinées à l'exportation. Elles constituent une source importante de devises du Togo. Troisième produit agricole d'exportation après le coton et le café, le cacao contribue en moyenne à 0,4% au PIB. Ce qui justifie l'intervention de l'Etat à mettre en place les infrastructures nécessaires (services de recherche et de vulgarisation ) en vue de la promotion de cette culture.• Superficie du pays couverte par l'espèce ou le genre: environ 20 000 ha avec un rendement moyen de 400 kg de cacao marchand à l'hectare.• Importance économique: Au Togo, l'agriculture participe pour 39% au PIB ; les revenus dus au cacao sont estimés à 0,43 % du PIB (moyenne de 1990 à 2000).• Importance sociale et culturelle: Le secteur cacao est représenté par environ 20 000 planteurs avec 80% pour la seule zone du Litimé, principale zone productrice située dans la partie sudouest de la région des plateaux du Togo. D'importantes infrastructures ont été mises en place en vue de faciliter l'acheminement du produit vers les principaux centres de commercialisation d'une part et assurer le bien être de la population d'autre part.• Transformations, utilisations industrielles, alimentaires des fèves de cacao : En industrie, elles sont essentiellement transformées en chocolat mais aussi en beurre du cacao, en fondue du cacao et en pâte de cacao. Les sous produits de la transformation sont utilisés pour l'alimentation du bétail, la fabrication d'engrais, en savonnerie et en pharmacie.• Bois, fibres ou artisanat : le bois sec est utilisé comme bois de chauffe• Description botanique de l'espèce Theobroma cacao L. est un arbre de taille moyenne de l'ordre de 5 -7 m (surtout pour les hybrides). Il a une racine pivotante. La croissance de la tige est interrompue à 18 mois par la formation d'une couronne de 5 branches après la mort du bourgeon terminal. Ses feuilles sont entières, lancéolées, penninervées plus ou moins longuement pétiolées. Les fleurs sont groupées, le long du tronc et sur les branches, en inflorescences provenant de la croissance des bourgeons axillaires. Chaque inflorescence est une cyme bipare aux ramifications très courtes. L'androcée (organe mâle) est constitué de 5 étamines alternant avec 5 staminodes stériles. Le gynécée (organe femelle) est pentacarpellé avec un ovaire supère, un style tubulaire et 5 staminodes. Le fruit est une baie indéhiscente renfermant un nombre variable de fèves. La graine (ou fève blanche) à la forme d'une amande dodue recouverte d'une pulpe mucilagineuse, de saveur sucrée et acidulée. • Centres de grande diversité génétique : Bassin de l'Amazonie, Guyane Française.• Composition chimique des organes de l'espèce : les cotylédons contiennent de nombreux polyphénols (dont les tanins, les catéchines, l'anthocyanine et la leucoanthocyanine) et des purines (théobromine et caféine). L'anthocyanine est responsable de la coloration violette des cotylédons. La théobromine est responsable de l'amertume des fèves de cacao (graines ayant subi les opérations de fermentation et de séchage nécessaires à la préparation du cacao marchand). • Superficie du pays couverte par l'espèce ou le genre : très répandu • Nombre de consommateurs dans le pays: il est consommé dans tout le pays. La pulpe sucrée est bien appréciée et l'huile tirée de l'amande est utilisée à diverses fins.• Importance sociale et culturelle : La pulpe tout comme le beurre extrait de l'amande fait partie des habitudes alimentaires. En milieu rural l'huile est obtenue par des procédées traditionnels.• Transformations, utilisations industrielles, alimentaires: Production traditionnelle du beurre de karité. En industrie, il rentre dans la fabrication du chocolat, des produits cosmétiques et des détergents. • Valeur médicinale : utilisation des folioles pour le traitement des brûlures ; les feuilles sont utilisées en cataplasme contre les dermatoses, filarioses, oedèmes, bronchites; les gousses pour le traitement de la dysenterie, les écorces et les racines pour la stérilité, trachéite, les pneumonies, oreillons, etc.• le bois convient à la menuiserie mais est de mauvaise durabilité.• Description botanique de l'espèce C'est un grand arbre de 15-20 m de haut, avec un fût robuste, cylindrique et court. Les inflorescences sont en boules rouges ou orangées suspendues à un long pédoncule de 20-30 cm. Le fruit est une gousse avec l'intérieur la pulpe et les graines. élevé sur les marchés locaux, il procure des revenus substantiels aux producteurs. L'espèce peut être facilement acceptée par les paysans comme une diversification de leurs productions.• Superficie du pays couverte par l'espèce ou le genre: répandue dans les 2 régions méridionales • Nombre de consommateurs dans le pays: la moitié de la population nationale.• Importance sociale et culturelle : le fruit est consommé entre les repas et permet de calmer la fin.• Transformations, utilisations industrielles, alimentaires, etc. : La pulpe est consommée directement.• Valeur médicinale : l'amande aurait des vertus médicinales. agronomique, correspondant à la mise en valeur agricole des pays entrant dans le circuit économique mondial; et un troisième contemporain, « agro-biologique », où, selon les termes de Keilling (1953) cité par Busson (1965), « à côté de la notion de rendement pondéral, objet des études antérieures, apparaissent les notions de valeur biologique des aliments». Adanson (1757) songe immédiatement à organiser des jardins tropicaux pour transporter d'une contrée à l'autre, les végétaux les plus utiles à l'homme. C'est ainsi qu'en divers points de l'Afrique de l'Ouest, des jardins expérimentaux s'établissent: jardin de Sor à Saint Louis (en 1896), de Hann près de Dakar (en 1903), de Kati (en 1897) au Mali, aujourd'hui disparu, de Banfora au Burkina Faso, de Camayenne près de Conakry en Guinée, de Bingerville en Côte d'Ivoire et de Porto-Novo au Bénin (Lanessan, 1886;Sébire, 1899).De nombreux auteurs comme Aké Assi (1984), Guinko (1984), ont montré la place prépondérante des plantes ligneuses alimentaires dans les sociétés africaines.Dans la présente contribution, nous présenterons d'abord l'Afrique Occidentale à travers son milieu physique et son peuple, puis nous aborderons la flore alimentaire avec un aperçu sur les menaces dont elle fait l'objet et surtout les méthodes de conservation de cette diversité floristique pour les générations futures.L'Afrique de l'Ouest s'étend entre les 5è et 20è parallèles Nord, sur près de 4000 Km d'est en ouest et de 1000 Km du nord au sud; elle appartient entièrement au domaine tropical. A l'ouest et au sud, elle est baignée par l'Océan Atlantique, au nord elle est limitée par le plus grand et rigoureux désert du monde et à l'est par la cuvette du lac Tchad et le massif camerounais de l'Amadaoua.En Afrique de l'Ouest, le climat, beaucoup plus que le relief, se comporte comme un facteur phytogéographique de premier ordre et, parmi l'ensemble des facteurs climatiques, ce sont les précipitations, beaucoup plus que les variations de température, qui sont déterminantes pour la physionomie du tapis végétal. Aux trois grands types climatiques qui se partagent l'Afrique tropicale, correspondent les trois grandes zones phytogéographiques suivantes: la forêt dense, la savane et le désert.Au point de vue floristique, la forêt dense est d'une richesse inouïe; en seule Côte d'Ivoire, Aké Assi (1984) a dénombré 3660 espèces de plantes vasculaires parmi lesquelles il y aurait environ 600 espèces d'arbres. Les familles les plus représentées sont dans l'ordre croissant en nombre d'espèces: les Annonaceae, les Sapotaceae, les Moraceae, les Rubiaceae, les Euphorbiaceae et les Léguminosales.La savane couvre de vastes superficies, pratiquement toute l'Afrique intertropicale, à l'exclusion du massif forestier guinéo-congolais. Le couvert végétal est la brousse-parc où dominent les Léguminosales, les Combretaceae, etc., à côté du karité qui, selon un proverbe africain, apparaît là où commence le soudan; on remarque Terminalia macroptera, Parkia biglobosa, Khaya senegalensis, Cassia sieberiana, Prosopis africana, etc. Dans les zones plus sèches, le couvert végétal comprend de petits arbres, souvent rabougris en épineux et comprenant essentiellement Acacia raddiana, Balanites aegyptiaca, Ziziphus mauritiana et Adansonia digitata.Le peuplement humain de l'Afrique de l'Ouest est assez diversifié et complexe; les migrations sont importantes et ne permettent pas de trouver des groupements naturels d'individus présentant des caractères physiques héréditaires communs, quelles que soient, par ailleurs, leurs langues, leurs moeurs ou leurs nationalités. La densité de peuplement pour l'ensemble de l'Afrique occidentale est très faible: 4 habitants au km². En allant du nord au sud, à partir du désert et de certaines régions sahéliennes, on trouve dans la zone nord soudanienne un chapelet de densités élevées. Les principales activités des populations sont l'agriculture et l'élevage.De nombreuses plantes ligneuses contribuent de façon significative à l'équilibre des rations alimentaires des populations rurales en raison de leur richesse en vitamines et en sels minéraux. Par ailleurs, quelques fruits sauvages sont disponibles même en saison sèche quand les autres sources alimentaires sont de plus en plus rares. Les plantes contribuent beaucoup à l'équilibre nutritionnel des populations en leur apportant les vitamines et les oligo-éléments nécessaires pour le bon fonctionnement de l'organisme.Parmi les espèces dont les fruits sont directement consommés, on peut retenir principalement Adansonia digitata, Tamarindus indica, Lannea microcarpa, Detarium microcarpum, Parkia biglobosa, Vitellaria paradoxa, Diospyros mespiliformis, Balanites aegyptiaca, Strychnos spinosa, Ximenia americana, Flacourtia flavescens, Saba senegalensis, Ziziphus mauritiana, Gardenia erubescens, Annona senegalensis, Antidesma venosum, Hexalobus monopetalus, Haematostaphis barteri, Pentadesma butyracea, Dialium guineense, Spondias mombin, Phoenix dactylifera, etc. Ces fruits qui mûrissent à des périodes différentes de l'année, assurent les besoins en vitamines et oligo-éléments des populations sahéliennes. Ils permettent assez souvent la survie pendant les périodes de soudure. En outre, certains fruits peuvent-être transformés en boissons et jus ou en confiture. Par exemple, une société nationale burkinabè appelée SAVANA fabrique des jus de boisson, du sirop et de la confiture à partir des fruits de Tamarindus indica. Les autres espèces comme Flacourtia flavescens, Lannea microcarpa, Ximenia americana, Haematostaphis barteri, Saba senegalensis, Sclerocarya birrea, etc., gagneraient aussi à être transformées à cette échelle. En plus des pulpes des fruits ci-dessus cités, les graines de certains sont recherchées en raison de leur qualité organoleptique ou nutritionnelle. Il s'agit ente autres de Sclerocarya birrea et Cola nitida. Par ailleurs certaines espèces contribuent énormément à l'alimentation des populations pendant les périodes de crises alimentaires. En effet, la poudre de la pulpe de néré et dans une moindre mesure celle de Ziziphus mauritiana ou de Adansonia digitata est très recherchée pendant la période de soudure.Les fruits ou les graines de certaines espèces ne peuvent être consommés qu'après avoir été transformés. C'est le cas de Parkia biglobosa et de Vitellaria paradoxa. Les graines de Parkia biglobosa sont essentiellement utilisées dans la préparation d'une moutarde très recherchée appelée «soumbala ». Ce produit est très riche en protéines avec une teneur pouvant parfois atteindre 40%. Cette moutarde qui est issue d'une longue cuisson des graines de néré, puis fermentées par la suite, fait l'objet de transactions dans les différents marchés de la sous région car elle constitue le principal ingrédient des sauces. Au Burkina Faso, plus de 90 % des ménages utilisent le soumbala (Lamien, 1997).Les amandes de karité constituent le principal produit d'exportation de certains pays sahéliens vers les pays de la Communauté Economique Européenne et l'Asie. Elles sont également transformées sur place sous forme de beurre de karité. Le beurre constitue le produit primaire de la transformation des amandes de karité et représente la principale source de matières grasses des ménages ruraux. Dans l'Ouest du Burkina, le beurre est utilisé plus fréquemment dans la préparation des sauces (89%) que les autres huiles végétales (Lamien, 1996). En dehors de son utilisation traditionnelle pour la préparation des repas, le beurre intervient également dans la fabrication de savons modernes et de produits cosmétiques par des sociétés nationales comme CITEC, SOFIB et PHYCOS. De plus en plus le beurre est utilisé dans les chocolateries et les cosmétiques de sociétés européennes.Les fruits de Canarium schweinfurthii, Vitex doniana et Detarium microcarpum sont également utilisés après cuisson.Les feuilles sont utilisées essentiellement dans la préparation de sauce, de salade cuite et de couscous.Les feuilles de nombreuses espèces sont récoltées pour la préparation de la sauce. Les jeunes feuilles de Adansonia digitata, Ceiba pentandra, Crateva religiosa, Vitex doniana, Moringa oleifera sont cueillies en saison pluvieuse pour la préparation de sauce accompagnant la pâte de mil.Pour le cas particulier de Adansonia digitata ou Baobab, les feuilles sont beaucoup utilisées par presque toutes les ethnies du Burkina Faso comme légume. Elles sont utilisées à l'état frais ou sec pendant toute l'année. Un suivi des ménages a permis de relever que les feuilles de baobab interviennent pour une fréquence de plus de 40 % dans les sauces. Les feuilles qui sont recherchées pour la préparation du couscous ou de la salade cuite sont principalement celles de Afzelia africana, Balanites aegyptiaca, Cadaba farinosa, Maerua crassifolia, Securidaca longepedunculata, Vitex doniana, Strychnos spinosa. Les jeunes feuilles de ces espèces sont ramollies et mélangées à des céréales écrasées puis cuites à la vapeur.Tout comme les feuilles, les fleurs fraîches ou séchées de certaines espèces sont utilisées comme légumes de sauce. Les espèces les plus couramment recherchées sont Bombax costatum, Ceiba pentandra, Annona senegalensis et Tamarindus indica. Dans le milieu sahélien, elles constituent, après les feuilles de baobab, le second légume à être plus fréquemment utilisées dans les sauces durant la période de janvier à juin (Lamien, 1996).Les graines des espèces forestières comme Acacia macrostachya, Capparis corymbosa sont utilisées dans la préparation de mets très appréciés appelés respectivement en langue mooré «zamna» et « lamboè ». Le premier intervient de plus en plus dans toutes les cérémonies populaires comme les mariages, les baptêmes et autres fêtes populaires au Burkina Faso. Les fruits de Elaeis guineensis sont également recherchés pour leur huile très appréciée dans les différents mets, en nature ou après cuisson.Les plantes dites mellifères sont ces nombreuses essences forestières qui produisent du nectar, à l'origine de la fabrication miel. C'est un produit issu de fleurs que les abeilles butinent et stockent dans des endroits appropriés (cavités des troncs d'arbre ou des rochers, ruches traditionnelle ou moderne) pour s'en servir pendant les périodes de pénurie. En outre, les abeilles prélèvent sur les plantes, du pollen, du miellat, du jus sucré et de la résine. Dans les milieux ruraux le miel est consommé à l'état brut ou mélangé à de la bouillie. Il sert à la fabrication d'une boisson alcoolisée appelée hydromel. Ce produit est beaucoup apprécié de certains groupes ethniques du Burkina Faso. Le miel rentre aussi dans de nombreuses recettes thérapeutiques de la médecine traditionnelle. De nos jours, il fait l'objet d'une exploitation intensive par les apiculteurs modernes qui utilisent les ruches adéquates. Sa commercialisation est assez importante et on le rencontre sous toutes ses formes: brut, liquéfié, transformé en hydromel, en savon, en bougie, etc. Ce produit est de plus en plus prisé sur le marché international surtout pour ce qui concerne le miel mono floral. En saison sèche les espèces mellifères sont essentiellement constituées de ligneux (Guinko, 1998).Le rônier ou Borassus aethiopum (fruits jaunes à maturité) et Borassus flabelifer (fruits verts à maturité) possède d'énormes potentialités. Presque tous les usages sont connus des populations mais l'un des plus importants reste le vin de rônier ou vin de palme. C'est en fait une forme fermentée de la sève qui aurait une teneur en sucre pouvant atteindre 20 %. A l'Ouest du Burkina Faso, ce vin de palme constitue la boisson la plus répandue. En général les populations plantent et entretiennent cette espèce dans le but de récolter sa sève en vue de l'élaboration du vin.Les fruits sont très recherchés à deux périodes de l'année :• En janvier-mars, lorsqu'ils ont atteint la moitié de leur grosseur, on trouve à l'intérieur les 3 graines non mûres, renfermant chacune un albumen complètement développé, formé d'une sorte de gelée sucrée, rafraîchissante, dont la saveur rappelle le lait de coco.• De juin à septembre, les fruits mûrs comportent un exocarpe fibreux, diversement coloré avec un mésocarpe charnu, pulpeux, mêlé de fibres, de saveur agréable. Les jeunes pousses sont aussi prisées. On les obtient de la façon suivante: les fruits mûrs sont disposés dans un trou et recouverts de terre. Au bout d'un mois environ, quand les germinations atteignent une certaine dimension, on prend l'embryon très tendre et on le mange cuit. L'axe hypocotyle forme également un renflement fusiforme jaune-blanchâtre, comestible. Enfin, le bourgeon du rônier donne un chou palmiste de première qualité, mais il n'est qu'exceptionnellement consommé car son prélèvement entraîne la mort de l'individu.A l'Est du Burkina Faso et dans l'Ouest du Niger par exemple, l'espèce est principalement recherchée pour la consommation des hypocotyles; en plus de la consommation locale, ces hypocotyles peuvent être vendus dans les autres marchés.Le couvert forestier et partant des ressources ligneuses, a connu une forte régression au cours des dernières décennies. Cette régression est imputable d'une part au recul des superficies forestières et d'autre part à la dégradation des formations sous l'influence de facteurs divers. L'expression de l'état de dégradation de la diversité de la flore ligneuse alimentaire repose sur plusieurs aspects.Partout en Afrique de l'Ouest certaines espèces font l'objet d'une exploitation abusive et anarchique entraînant ainsi leur disparition dans les zones soudaniennes et sahéliennes. Bombax costatum par exemple est une espèce dont les fleurs sont très recherchées sur le plateau central au Burkina Faso pour des buts alimentaires. Le calice de la fleur constitue un ingrédient de choix dans la préparation de la sauce. Certaines personnes n'hésitent pas à couper complètement l'arbre entier juste pour récolter quelques fleurs. Le prélèvement excessif et permanent de ces fleurs empêche la fructification et donc de la régénération de l'espèce. Partant de cet exemple, il est clair que toutes les espèces dont les fleurs sont vivement recherchées, sont menacées de disparition en raison du manque de régénération, conséquence d'une absence de fructification.Les défrichements anarchiques qui précèdent l'installation de nouveaux champs constituent également une cause de diminution de cette diversité. Lors de ces travaux, de nombreuses espèces ligneuses alimentaires sont éliminées sauf quelques rares d'entre elles comme le karité et le néré qui sont épargnés dans les champs. En outre, une sélection est opérée au sein de ces espèces de choix au profit des individus les plus vigoureux et les plus productifs, réduisant ainsi considérablement la diversité des plantes alimentaires sur ces sites.Les feux de brousse qui sont régulièrement pratiqués dans les savanes sont également préjudiciables pour les plantules de certaines espèces fruitières. Ces feux favorisent en outre une sélection au sein de cette flore et ainsi la disparition des espèces vulnérables.En dehors des facteurs anthropiques, la sécheresse climatique qui se manifeste, depuis 1971, par la persistance d'une faible pluviosité constitue aussi une menace sur la phytodiversité alimentaire. On assiste de plus en plus aux glissements des isohyètes vers le sud entraînant ainsi une mortalité massive de certains taxons alimentaires. La dégradation des ressources ligneuses alimentaires est beaucoup plus perceptible dans les zones sahéliennes et soudaniennes. L'absence de régénération de certaines espèces est principalement due à cette sécheresse de plus en plus accentuée et à leur biologie même. Nous notons ainsi un recul inquiétant des aires de distribution de Tamarindus indica, de Bombax costatum, de Vitellaria paradoxa et de Parkia biglobosa au Burkina Faso. Campbell (1978) fait remarquer que les fruits indigènes ne sont généralement pas inclus dans les politiques agricoles des Etats et ont longtemps été négligés par les programmes de recherche et de vulgarisation. De nombreuses espèces sont en danger de disparition si rien n'est fait pour assurer leur survie dans les zones écologiques correspondantes. Il est nécessaire donc de développer des stratégies de conservation pour sauvegarder les ressources ligneuses alimentaires encore existantes, de promouvoir leur exploitation rationnelle et d'améliorer le cadre de vie des populations. Ces conditions sont nécessaires pour un développement durable.Il existe généralement deux méthodes de conservation : les méthodes traditionnelles et les stratégies nationales.Les pratiques traditionnelles de conservation et d'utilisation durable des ressources ligneuses alimentaires sont de 2 types :• Le système de parc agroforestier traditionnel: Dans ce système, l'arbre est maintenu dans le champ parce qu'il procure à l'homme des produits alimentaires. Dans la perception traditionnelle, certains arbres sont « protecteurs et maternels » car ils fournissent à l'homme des biens essentiels à la vie, principalement les aliments. Au Burkina Faso par exemple, les espèces utiles comme Parkia biglobosa, Vitellaria paradoxa, Bombax costatum, Adansonia digitata, Tamarindus indica, Lannea microcarpa, etc., sont épargnées lors du défrichage des champs du fait des divers usages alimentaires dont elles font l'objet par les populations locales.• Les bois sacrés: il s'agit de formations végétales naturelles qui sont conservées grâce aux croyances mystiques. Elles bénéficient d'une protection intégrale contre toute coupe et feux de brousse.En plus du système traditionnel, des stratégies nationales de conservation des ressources ligneuses alimentaires devront être instaurées. On assiste progressivement à la création de forêts villageoises dans certains pays de l'Afrique Occidentale. Ces forêts qui se rencontrent par exemple au Burkina Faso et au Bénin favorisent ainsi la régénération de nombreuses espèces alimentaires et leurs servent ainsi de refuges. Elles jouent également un rôle éducatif et de sensibilisation. Par ailleurs, la délimitation et l'immatriculation des aires classées permettent la conservation de la diversité génétique.Une des méthodes efficaces de conservation pourrait être la promotion de ces produits alimentaires et l'utilisation de ces espèces ligneuses alimentaires dans différentes opérations de reboisement. Des recherches approfondies sur la germination et l'adaptation des espèces devront être entreprises. Au Burkina Faso ces travaux sont menés depuis plusieurs années par le Centre National de Semences Forestières (CNSF) sur de nombreuses espèces alimentaires. Les résultats sont mis à la disposition des vulgarisateurs qui les appliquent directement sur le terrain en associant les populations locales.Enfin il est aussi important de former les paysans dans les techniques modernes d'agroforesterie et de sylviculture.Devant l'importance de plus en plus croissante de la malnutrition en Afrique de l'Ouest en général et surtout en milieu rural, les espèces ligneuses alimentaires occupent une place de LES RAPPORTS DES PAYS 183 choix dans l'équilibre nutritionnel. Si par le passé les plantes étaient sollicitées juste comme des compléments alimentaires et consommées surtout localement, aujourd'hui elles font l'objet d'une exploitation intensive et abusive souvent à des fins commerciales. La conjugaison des facteurs anthropiques et climatiques hypothèque de jour en jour l'existence de certaines espèces. La sélection opérée par l'homme en faveur des espèces jugées prioritaires comme le néré et le karité est préjudiciable à la diversité des espèces ligneuses alimentaires. Qu'arriverait-il si ces espèces sélectionnées venaient à disparaître ? Il convient alors de revoir ces pratiques ou alors de mener des actions complémentaires pour la survie de toutes les espèces. Des structures semblables au CNSF devraient voir le jour dans tous les pays de l'Afrique Occidentale en vue de bien maîtriser les paramètres pouvant assurer la pérennité des espèces. Toutefois, il est important dès à présent de savoir quelles sont les espèces fruitières qui ont une grande importance socio-économique, d'évaluer la production et le potentiel commercial de ces principales espèces et d'utiliser une approche participative pour identifier les préférences des paysans afin d'intégrer leurs critères dans la sélection de ces espèces.Le safoutier, Dacryodes edulis, communément appelé prunier (en Français) ou bush butter (en Anglais), est un arbre fruitier et oléifère des zones équatoriale et tropicale humides de l'Afrique Centrale et de l'Ouest. Ses fruits (les safou) sont des drupes à pulpe comestible. D'après Busson (1965), Ucciani et Busson (1963), la teneur en huile de la pulpe de safou varie entre 33 et 65 % suivant l'origine et le degré de maturité du fruit. Cette huile renferme tous les acides gras rencontrés dans les huiles végétales : acide palmitique (36.5%), acide oléique (33.9%), acide linoléique (24.0%), acide stéarique (5.5%) par rapport aux acides gras totaux. De plus, la pulpe de safou contient une bonne proportion d'acides aminés essentiels et de vitamines. L'importance du safoutier dans la vie des populations se situe à deux niveaux :• Au plan alimentaire La forte teneur du safou en acides gras, en acides aminés et en vitamines en fait, pendant plus de sept mois de l'année que dure la production du safou, un complément alimentaire non négligeable pour les populations rurales et urbaines. Cuite à l'eau chaude, à la braise ou sous la cendre, la pulpe de safou est consommée en plat de résistance avec les aliments de The African plum tree, Dacryodes edulis, is an oil fruit tree species distributed in the equatorial and tropical humid areas of the Central and Western Africa. The species was introduced in tropical Asia, in the Malayan Peninsula. Climatic factors, eating habits and the proximity or not to the great consumption centers affect the distribution of this species in Cameroon. The genus includes 34 species gathered in 3 sections from which Pachylobus section is the only one represented in tropical Africa, with 19 species. Dacryodes edulis includes almost 10 synonyms corresponding to names given at various periods by botanists. The species is dioecious, with mainly allogamic breeding system. It is characterized by a high diversity observed on the vegetative and reproductive organs and on biological cycles. There is not any processing unit of the fruits in Cameroon. However, the pulp provides oil, which can be extracted and used by food and cosmetic industry. Three types of constraints (biological, agronomic and technological, and economic) limit the production of the species.base : maïs, manioc, plantain, etc. D'après les travaux de Umoru Umoti (1987), Silou (1990) portant sur les caractéristiques physiques et chimiques de l'huile extraite de la pulpe de safou, cette huile peut être utilisée aussi bien dans l'industrie alimentaire que dans l'industrie du cosmétique.Dans la partie méridionale du Cameroun, la présence du safou sur les marchés pendant près de 7 mois de l'année en fait une source de revenu importante. La situation du pic de production dans le 2ème semestre de l'année est d'un apport financier considérable pour la préparation de la rentrée scolaire. Ndoye (1997), à la suite de ses travaux sur les Produits Forestiers Non Ligneux (PFNLs) dans la zone forestière du Cameroun, affirme que parmi les quatre principales espèces de PFNL identifiées dans cette région, le safoutier est le plus important aussi bien en terme de quantités produites qu'en terme de valeur économique.A la suite d'une enquête qui a duré 16 semaines et couvert 28 marchés dans la partie méridionale du Cameroun, l'auteur avance le chiffre de 1447 tonnes de safou commercialisées pour une valeur de 301 550 000 FCFA. Ces chiffres, faut-il le préciser ne concernent qu'une partie de la période de production, qu'une fraction des marchés du safou, et ne prennent pas en compte les quantités directement consommées par les populations. Temple (1998) évalue la production du safou au Cameroun à 13 000 tonnes.Au niveau régional les données statistiques sur le commerce du safou entre les pays de la sous région font cruellement défaut. Mais l'importance des transactions commerciales qui s'opèrent bien que dans des circuits informels entre le Cameroun, le Congo, le Nigeria, le Gabon et la Guinée Equatoriale, ne fait l'ombre d'aucun doute.A l'échelon international, les travaux de Tabuna (1999), relèvent que chaque année, environ 105 tonnes de safou sont exportées de l'Afrique Centrale vers l'Europe. Parmi les 105 tonnes enregistrées, 100 tonnes viennent du Cameroun, 3 tonnes de la République Démocratique du Congo et 2 tonnes de la République du Congo. Les prix sur les marchés spécialisés européens sont de 350 FB/kg à Bruxelles, 40 FF/kg à Paris, 50 FF/kg à Lyon.Ceci montre clairement la place qu'occupe le safoutier dans l'alimentation et dans l'économie des populations. La présente communication s'articule autour de quatre axes principaux : l'aire géographique du safoutier, la diversité dans le genre Dacryodes en général et dans l'espèce Dacryodes edulis en particulier, le problème de la conservation et de la transformation, les contraintes à la production des safou et quelques pistes de recherche conséquentes.En Afrique D'après Aubreville (1962) , le safoutier est originaire du Cameroun, du Congo, du Gabon de Guinée Equatoriale et du Nigeria. Dans cette région, Dacryodes edulis soit est planté dans les systèmes de culture traditionnels, soit pousse de manière spontanée en forêt et dans les jachères. Mais son aire de répartition due à la culture s'étend suivant le même auteur, au sud jusqu'en Angola, à l'Est jusqu'en Ouganda, et à l'Ouest jusqu'en Sierra Leone.En Afrique de l'Ouest et en Côte d'Ivoire en particulier, cette espèce, jusqu'à une date très récente était plantée çà et là dans les concessions et dans les jardins de case, encouragé en cela surtout par les ressortissants de l'Afrique centrale. Mais depuis bientôt 3 ans, sous la houlette d'une ONG de développement rural (AGROGAMMA Sarl.), plusieurs dizaines d'hectares ont été plantés dans les villages, aux environs d'Abidjan. L'activité de cet organisme se situe dans un objectif de diversification des productions agricoles par la production et la distribution à grande échelle des plants de safoutier tout en assurant un encadrement technique nécessaire pour la culture et en cherchant les moyens d'écoulement et de transformation de la production.En dehors de l'Afrique, le safoutier a été introduit en Asie tropicale dans la Péninsule Malaise (Aumeerudy et Pinglo, 1989).Toute la partie méridionale du pays, d'Ambam à l'escarpement de N'gaoundéré est propice à la culture du safoutier. Partout dans cette zone, le safoutier pousse en présentant des variations phénologiques en rapport avec les paramètres locaux du climat et du sol (Kengue, 1990).Au Cameroun, les travaux de recherche sur la répartition géographique du safoutier sont dus à Tchotsoua et al. (1997) et Isseri (1998). Selon ces auteurs, le safoutier se développe bien dans les gammes de températures comprises entre 23 et 25°C et sous des hauteurs de précipitations variant entre 1400 et 2500 mm. Du point de vue pédologique, le safoutier préfère les sols ferralitiques profonds et les sols volcaniques. Ces types de sols s'étendent sur près des 2/3 de la superficie totale de la partie méridionale du pays. Les principales zones de production de safou au Cameroun sont les zones forestières et les marges forestières de la région comprise entre les latitudes 1°40'N et 8°N. Dans cette zone prise globalement, il existe des particularités qui permettent de la subdiviser en 3 catégories :• • La troisième aire est celle où 2 facteurs sur les 3 sont limitants. Il s'agit en particulier de la zone côtière (Douala, Limbé, Kribi). En dehors des facteurs climatiques, certains facteurs tels que les habitudes alimentaires, la proximité des grands centres de consommation, expliquent les fortes densités de plantation de safoutier dans certaines zones où les facteurs climatiques sont pourtant défavorables. C'est le cas pour la région de Foumbot et Mbouda dans les environs de Bafoussam, des axes Douala-Limbé et Douala-Muyuka dans les environs de Douala.La province de l'Est dans son ensemble présente des conditions climatiques favorables à cette espèce. Mais ici les habitudes alimentaires et l'absence de grands centres de consommation expliquent le faible développement de la culture du safoutier dans cette région.Le genre Dacryodes Le genre Dacryodes d'après Lam, qui en a publié une révision en 1932, comprend 34 espèces subdivisées en 3 sections :• la section Pachylobus en Afrique tropicale avec 19 espèces,• la section archidacryodes en Amérique avec 2 espèces aux Antilles et au Pérou,• la section Curtisina en Indomalaisie avec 13 espèces.Depuis lors plusieurs autres espèces nouvelles ont été décrites en Amérique du sud et en Afrique, plus particulièrement en Afrique Centrale avec les travaux de Onana (1998) Ici les variations s'observent au niveau du port de l'arbre et de sa physionomie générale comme étant la résultante des variations morphologiques et architecturales des organes à divers niveaux.Les rameaux, qu'ils soient du premier ou du dernier ordre, présentent par rapport au tronc ou aux rameaux de l'ordre précédent, des angles d'insertion très variables pouvant aller des angles aigus, de l'ordre de 30° chez certains individus, aux angles largement obtus où les rameaux sont presque pendants chez d'autres. Dans ce dernier cas (extrême), l'aspect pendant des rameaux est en général la conséquence d'une faible vigueur de ces derniers. En plus, cette ramification peut intervenir suivant les cas, précocement à moins de 0,5 mètre du collet ou plus tardivement lorsque le jeune plant mesure plus de 2 m et sans que les paramètres du milieu soient en cause.Les feuilles sont constituées d'un nombre de folioles très variable. Ces folioles présentent une vaste gamme de formes de couleurs et la surface du limbe peut être lisse ou gaufrée. En terme de grandeur la surface mesurée chez certains individus peut être multipliée par un facteur de 5 ou plus chez d'autres. La couleur des folioles varie du vert -clair au vertsombre. Certains arbres ont des folioles fortement acuminées, alors que d'autres le sont peu. De tous ces caractères, la couleur des folioles, leurs surfaces ainsi que l'aspect du limbe foliaire semblent être des caractères très discriminants.Les variations au niveau des caractères reproducteurs sont marquées sur les inflorescences, les fleurs et surtout les fruits. En dehors de la différence de taille qui existe entre les inflorescences des arbres femelles et les inflorescences des arbres hermaphrodites, on note qu'à l'intérieur de chacun de ces 2 types d'arbres, la longueur des inflorescences peut varier largement d'un individu à un autre, et celles de grande taille sont généralement ramifiées à la base. La couleur de ces inflorescences varie du jaune foncé au brun et semble être également un caractère discriminant.La taille des fleurs, la présence ou l'absence des bractées ainsi que leur morphologie sont des caractères variables. La morphologie et la couleur des fruits sont les aspects les plus frappants de la diversité chez le safoutier. En effet, la gamme est très variée et on rencontre des formes coniques, oblongues, elliptiques, ovales, subarrondies et toutes les variantes intermédiaires imaginables ainsi que des ornementations telles que des sillons, des épaulements entraînant différents types de symétries.Les couleurs à maturité sont tout aussi variées, du bleu clair au bleu foncé en passant par le verdâtre, le noirâtre et le violet. La couleur de la pulpe n'est pas uniforme mais varie relativement peu entre le verdâtre, le blanchâtre, et le jaunâtre, chacune des variantes pouvant être classée dans l'un de ces 3 grands groupes.Le safou renferme généralement une seule graine. Cependant, chez certains individus, les fruits à 2 graines représentent plus de 80 % de la production. Ce caractère est constant pour certains individus et se maintient au fil des saisons. Ceci suggère un déterminisme génétique de ce caractère. Lorsque le fruit renferme 2 graines, ces graines sont généralement de petite taille et donnent naissance à des plants conséquemment peu vigoureux. Par ailleurs, les 2 graines appartiennent toujours à 2 loges carpellaires différentes ; ce qui permet de penser qu'après la fécondation, il existe une compétition entre d'une part les ovules des 2 loges carpellaires, et d'autre part, entre les 2 ovules de la même loge carpellaireOn observe sur les populations se développant dans des conditions de milieu identiques, des variations de comportement phénologique du point de vue de l'alternance de la production, et de la date d'entrée en production.Certains individus possèdent une alternance de longue portée pouvant aller jusqu'à deux ou trois ans. Ainsi, ils ne produisent qu'une année sur deux ou même sur trois, alors que d'autres ont une production régulière malgré leur rendement relativement élevé, suffisant pour justifier, le cas échéant, un repos prolongé comme chez les autres individus. On observe chez certains individus, des comportements erratiques tels que décrits par Scarrone (1969) sur le manguier (Mangifera indica). Ce comportement s'observe aussi bien au niveau des populations qu'au niveau des arbres pris individuellement. Dans la couronne de certains safoutiers, on peut distinguer des « territoires » ayant des comportements phénologiques complètement déphasés. La production elle-même obéit à ce déphasage phénologique : les 2 zones de la couronne ayant des comportements phénologiques différents produisent alternativement l'une après l'autre au cours des années successives. Scarrone (1969) donne à ce type de comportement le nom d'« erratisme ».S'agissant de la précocité ou non de la maturation, on note que, dans la région de Yaoundé par exemple, la maturité chez certains individus intervient au mois de mai. La période de pleine production est située en août. Mais il faut attendre novembre -décembre, pour que les fruits de certains arbres commencent à mûrir. Il s'agit là comme pour les cas précédents d'un comportement d'origine génétique qui échappe au contrôle des facteurs du milieu. Les cultivateurs considèrent la précocité ou la tardivité de maturation chez l'espèce comme un critère positif de sélection. En effet, les safou qui en résultent ont une valeur économique qui peut être environ 5 fois plus grande que celle des fruits de même qualité pomologique et gustative arrivant à maturité en pleine période de production.A maturité, le safou reste attaché au pédoncule. Ce comportement différencie le safoutier des autres fruitiers tels que le manguier et l'avocatier et permet de programmer les récoltes. Mais très souvent, les safous à maturité sont très appréciés des oiseaux tels que les toucans qui peuvent causer de sérieux dégâts si la récolte intervient tardivement.En raison du caractère périssable du safou, il est conseillé :• De programmer la récolte par temps sec lorsque la rosée s'est complètement évaporée,• D'éviter de laisser tomber les fruits récoltés car toute lésion sur le safou constitue le point de départ de son ramollissement précoce, • De couper le fruit avec un petit morceau de pédoncule. Le point d'insertion du pédoncule sur le fruit est généralement le point de départ du ramollissement. Il est clair que toute récolte par temps très chaud ou dans des conditions d'humidité prédispose la pulpe du safou à une dégradation accélérée. De même, toute technique de récolte qui entraîne des lésions sur le fruit provoque sa décomposition prématurée.Quelles que soient les précautions prises à la récolte, le safou, de consistance ferme à la cueillette se ramollit spontanément au bout de 3 à 5 jours seulement lorsqu'il est conservé à la température ambiante. L'aération est une exigence sans laquelle il est difficile de conserver le safou après d'une durée de 48 heures. Pour obtenir cette aération, le safou doit être étalé sur une surface sèche et propre sans entassement.Dans certaines régions du Cameroun, il existe des pratiques traditionnelles permettant de prolonger de manière significative la durée de conservation du safou:• On mélange du citron et du safou dans les mêmes paniers,• On dispose des feuilles de papayer au fond des paniers contenant du safou.Pour le transport, les safou doivent être emballés soit dans des filets a mailles moyennes, soit dans des sortes de paniers en matériaux locaux ayant des trous d'aérationDes travaux de recherche aux résultats concordants parlent de l'extraction d'huile de la pulpe de safou et des perspectives d'utilisation de cette huile dans l'industrie alimentaire et dans l'industrie du cosmétique (Umoru Umoti, 1987;Silou 1990). Cependant, il n'existe aucune unité, même artisanale, de transformation de safou au Cameroun ou dans la sous région. Avec la création de plantations industrielles telles que la Plantation Intercontinentale de Makenene (PIM), la mise en place de techniques et d'unités de transformation de safou devient un impératif et même une urgence. Elles permettraient non seulement de transformer la production des plantations industrielles, mais aussi et surtout de réduire les pertes post récoltes actuellement estimées à 50% dans les plantations paysannes.Nya Ngatchou (1998) identifie globalement 3 types de contraintes à la production des safou.Il s'agit de l'insuffisance des connaissances sur la physiologie de la plante, les facteurs qui influencent la chute des fruits et la coulure des fleurs, l'absence de délimitation variétale au sein de cette espèce dont les populations sont extrêmement hétérogènes.Il n'y a aucun programme de recherche en cours sur la fertilisation du safoutier. Les techniques culturales restent traditionnelles. Il est nécessaire de mettre à la disposition des agriculteurs selon les différentes zones écologiques, des fiches techniques portant entre autres sur des dates, les densités de plantation, la lutte contre les maladies et les insectes.Les pertes post récoltes tant au niveau du producteur qu'au niveau du transport et du marché sont très élevées ; la durée de conservation à la température ambiante ne dépasse guère 5 jours ; l'absence de technologie de conservation et de transformation n'encourage pas la production à grande échelle de ce fruit.Il s'agit de l'absence de données statistiques sur les quantités produites, les quantités consommées et les quantités commercialisées, les circuits de commercialisation et les mécanismes de fixation des prix. Des efforts devraient être faits dans ce domaine en vue de promouvoir des échanges inter régionaux. Tamarindus indica and Dialium orientale are two indigenous tropical African food tree species widely used in Kenya. Tamarindus indica is widely distributed in the country and Dialium orientale grows only in the coastal area. These species are used in the country for their fruits. The fruits of Dialium orientale are sold in a number of coastal towns and its wood is used as building poles and as firewood. Apart from its fruits, Tamarindus indica is used for its timber and other non-wood products. This includes its leaves, pods, seeds, and roots. The high economic value of Tamarindus indica because of its different uses has leaded to its overexploitation within its natural habitat. A project was initiated on the development of conservation strategies for these two food tree species, in Kenya. The project will be based, with few adaptations to african conditions, on the methodology developed by IPGRI for the development of conservation options for forest species. This methodology already used elsewhere in the world, consists in assessing the intra-specific diversity as well as the level of threat faced by the two species, in order to develop relevant conservation options for them.Tamarindus indica is indigenous to tropical Africa and is widely cultivated and used in the Sahel, South East Asia, the Caribbean and Central America. The species grows up to 15 m in height. It is drought hardy, salt tolerate and mainly occurs naturally in arid and semi-arid areas and wooded grasslands. In Kenya, the species is found in dry lowlands at the drier parts of the coast and along rivers and streams in dry Northern and Southern parts of the country.Tamarindus indica is one of the most commonly used indigenous fruits and is an important source of timber and medicine. It is an important component of indigenous agroforestry systems and a source of food and income for the resource poor local communities. As a source of food, young leaves are chewed or boiled as vegetables while the seeds are dried and eaten. The fruit (pods) are either eaten raw or the pulp used for food flavouring and seasoning. For income, pods are sold in small quantities of 4 -10 pods in local markets and in large quantities to middlemen, who transport them to large towns such as Nairobi and Mombasa. The species constitutes an important source of income for the local communities.As medicine, the leaves, bark and roots are used for the treatment of various ailments such as gonorrhea, measles and chicken pox. The tree is used as fodder during dry season, provides mulch and is nitrogen fixing. The species also produces excellent timber used in furniture, boat building, making pestles and mortars, poles and posts. The wood produces excellent charcoal and firewood.High economic value of Tamarindus indica for different uses has resulted in overuse of the species in the natural habitat. Expansion of agricultural land has further been identified as major contributor to erosion of the tree's genetic resources. Extraction of species for timber leads to dysgenic selection due to preference of straight well-formed trees. On the other hand, extraction of non-timber products as in T. indica (leaves, pods, seeds, roots, etc), may be destructive and leads to reduced population sizes and density and subsequently results in inbreeding and reduced fruit set. Use of seeds limits the regeneration potential of species. Due to its wide range of uses, T. indica has been over-exploited in its natural habitat. Increased human activities such as grazing and the fragile ecosystems in which the species thrives in has resulted in reduced regeneration and decline in the species population sizes.In order to develop sound strategies for conservation of T. indica, baseline information is needed on the levels and structure of genetic diversity within and between populations, as well as on the species' actual distribution and demographic status. Futhermore, it is also important to link such genetic and ecological information with socio-economic aspects (such as the trends of its utilization) that affect the species and develop strategies for its conservation and sustainable management.Dialium orientale Bak. F. is an important fruit tree species in the lowland dry forests of the Eastern African coast from Southern Somalia to the North-Eastern Tanzania. In Kenya, it grows in only in the coastal area: Kilifi, Kwale, Tana River, and Lamu at 0 -100 m also in sandy alluvial soils.The tree is a multistemmed shrub or small tree usually about 5 m, rarely to 15 m. Branches drooping, occasionally touching the ground. Its fruits are eaten raw and have an acid taste. The fruit pulp is used for flavouring porridge and for preparing juice. The fruits are sold in a number of coastal towns. The wood is used in dhow ribs, for building poles and for firewood.To develop strategies for conservation and sustainable management and use of Tamarindus indica and Dialium orientale in the dry forests and arid areas.• To assess present distribution and ecological conditions.• To select populations of the target species in selected representative ecosystems.• To assess patterns of genetic diversity.• To assess the level of threats • To identify priority conservation strategies and sustainable use.Objective 1 -Distribution and ecological situations • Carry out Socio-economic and threat survey on use of the species • Undertake eco-geographical survey of the species occurrence.• Delineate and map populations based on ecological, genetic and geographical factors.• Identify major provenance regions/seed zones.Objective 2 -Select populations for investigations.• Select target populations.• Study morphology and phenological characteristics.• Select individual trees for use in identifying molecular markers.Objective 3 -Genetic diversity technique analysis.• Collect plant materials for molecular analysis.• Conduct laboratory analysis for molecular markers.• Describe population structure and their patterns of variation.• Make deductions and inferences on mating systems.Objective 4 -Assessment of the level of threats/risk • Develop conservation guidelines for the species.• Information on the important of the species.• Information and knowledge on ecological requirements determining the species distribution. • Maps of species distribution and documentation of vulnerable populations of the species.• Genecological zonation for the species.• Information and knowledge on morphological and genetic diversity patterns for the species.• Estimates of genetic parameters and level of threats and genetic erosion.• Appropriate conservation strategies.• Study reports and publications.The project started in the month of October with the release of the funds. The following activities listed below are being implemented simultaneously:• Identification of major provenance regions/seed zones.• The herbarium collection was used to identify the distribution of the species in Kenya.• Socio-economic and threat survey on use of the species • Socio-economic survey is on-going to cover the major distribution areas. The areas already covered are Kitui, Mbeere and Isiolo Districts (Eastern Province), Baringo District (Rift Valley Province), Migori and Siaya Districts (Nyanza province).The survey is on-going to cover the major distribution areas. The areas already covered are Kitui, Mbeere, Isiolo, Baringo, Migori and Siaya Districts. Additional data is being gathered from the herbarium collection at the East Africa Herbarium.• Selection of target populations Target populations have been selected from Kitui, Mbeere, Isiolo, Baringo, Migori and Siaya Districts.• Selection of individual tree for molecular marker and sample collectionThe selection is on-going to cover the major distribution areas. The areas already covered are Kitui, Mbeere, Isiolo, Baringo, Migori and Siaya Districts. At least ten samples have been collected from every region.The on going (survey/sample collection) work will be continued to cover populations in the Coast province. Once the samples are collected, DNA analysis will start.Les produits forestiers alimentaires, rationnellement exploités peuvent contribuer non seulement à améliorer de façon significative la qualité nutritionnelle mais également contribuer à l'amélioration des revenus des populations rurales. Les exemples du cacaoyer, caféier, du palmier à huile, plantes des forêts humides qui sont domestiquées en sont des illustrations. Ces plantes sont aujourd'hui intégrées dans les plantes dites de cultures industrielles.On constate actuellement une sous-valorisation de ces espèces. Une politique conséquente en matière de technologies de transformation alimentaire, de conditionnement et de marketing peut améliorer leur intérêt économique aussi bien dans les marchés locaux qu'au niveau international. Ceci requiert une meilleure connaissance du produit et de son potentiel d'utilisation, pour ensuite faire une analyse complète des contraintes liées à la transformation, à la conservation et à la commercialisation.Dans le cadre de cette communication il serait hasardeux d'aborder toutes les espèces ligneuses alimentaires des forêts humides et sèches et des formations des savanes. Nous nous limiterons aux produits des formations végétales du Burkina Faso.En zone soudano-sahélienne sous climat sahélien, à pluviométrie inférieure à 600 mm, on compte déjà près de cinquante espèces ligneuses alimentaires et on a un enrichissement progressif sous climat nord soudanien et sud soudanien avec un nombre avoisinant 150 espèces (Bognounon, 1994).Le tableau 1 présente une liste non exhaustive des différents produits forestiers alimentaires observés sur quelques marchés de l'Ouest du Burkina Faso. Les données (Lamien,1996 ; INERA Station de recherche de Farakô-ba) montrent que certains produits forestiers peuvent procurer jusqu'à 93000 FCFA de revenu brut sans négliger le potentiel d'un marché à l'exportation avec valeur ajoutée.Nous nous intéresserons aux produits forestiers alimentaires majeurs c'est-à-dire les produits qui sont apparus comme intéressants, source potentielle de revenus pour les ménages, et inscrits dans le programme de recherche de l'Institut de Recherche en Sciences Appliquées et Technologies (IRSAT) du CNRST. Ainsi avons-nous retenu les espèces ligneuses suivantes :Vitellaria paradoxa (oléagineux) Parkia biglobosa (protéagineux) Tamarindus indica (boisson, vinaigre et confiture) Acacia senegal (additif alimentaire) Les espèces suivantes ne font pas partie du programme de recherche de l'Institut de Recherche en Sciences Appliquées et Technologies mais elles sont couramment utilisées tout au long de l'année sur toute l'étendue du territoire du Burkina Faso. Elles méritent d'être valorisée : Adansonia digitata ( fruits, légumes) et Bombax costatum ( légumes).-Arbre moyen haut de 10 à 25 m -Feuilles alternes -Inflorescence en petites grappes -Fruit : gousse épaisse, charnue avant maternité couleur grise, roussâtre Distribution géographique : Toute la savane africaine Utilisations : Traditionnellement les fruits et les feuilles du tamarinier sont utilisés pour donner un goût aigre, voire légèrement sucré à certains mets telles que la pâte (le tô) et la bouillie de céréales. Selon la FAO, les fruits du tamarinier renferment pour chaque 100 g de matières sèches, 70,7 g de glucides totaux et 270 kcal et 9 mg de vitamine C. La pulpe des feuilles est comestible (goût d'oseille). Le fruit est transformé en boissons rafraîchissantes, confitures. Le revenu mensuel brut de la vente des fruits du tamarinier dans l'Ouest du Burkina Faso, est de 2250 FCFA à 6750 FCFA. Les données nationales ne sont pas disponibles.La demande en jus de fruit du tamarinier dépasse les frontières du Burkina Faso mais la structure industrielle était incapable de satisfaire cette demande. Nous recommandons une politique conséquente de promotion de ce produit multi-usage qui pourrait constituer une source importante de revenu pour les paysans et pour le pays. • Industrie limonaderie (soft drink, Coca -cola, Pepsi-cola) • Industrie de la confiserie (bonbon, chewing gum, biscuiterie, boulangerie,…) • Industrie vinicole, brasserie • Recherches en cours au DTA/IRSAT : Formulations des boissons locales (jus de tamarin, jus de bissap et jus de gingembre)La gomme arabique ne pose pas de problèmes majeurs de conservation. Après séchage, elle doit être conservée dans un endroit sec et dans un sac en jute à l'abri de la poussière.Au Burkina Faso 1 kg de gomme brute de 1ère qualité rapporte 500 FCFA au paysan collecteur. Les travaux du CNSF montrent que le Burkina Faso dispose d'un potentiel de 4500 tonnes. Ce potentiel est sous-exploité soit un manque à gagner de près de 2 milliards de FCFA. Les productions enregistrées sont inférieures à 100 tonnes par an.Le marché mondial est dominé par le Soudan qui produit 70.000 tonnes par an.En dehors de ces quatre espèces ci-dessus mentionnées, nous citerons quelques légumes très utilisés et ancrés dans les habitudes alimentaires. Ces espèces méritent également une attention de la part des technologues, compte tenu de la place qu'elles occupent dans la consommation annuelle.Les feuilles de Baobab ne font pas l'objet d'une exportation, mais compte tenu de la place qu'elles occupent dans les habitudes culinaires des populations rurales et urbaines, elles ont un marché national très important en période sèche (janvier à juin).Les feuilles fraîches ou séchées (pilées) sont utilisées principalement comme légumes de sauces qui accompagnent la pâte de céréale (tô). Elles sont aussi utilisées dans quelques ménages pour la préparation du couscous ou du fonio afin de faciliter leur ingestion en les rendant un peu gluants.Les feuilles et les graines du Baobab ont des teneurs en calcium et en phosphore intéressantes. Pour une sauce à base de feuilles et de graines de baobab, l'équilibre phosphocalcique serait optimale (rapport Ca/P = 1,4). Le fer qui est indispensable à l'hémoglobine du sang y serait d'un taux de 25 à 50 mg pour 100 g de matière. Toutes ces potentialités font des feuilles du Baobab une ressource alimentaire d'importance considérable dans le milieu rural.Aucune transformation n'est opérée. Les feuilles sont consommées fraîches. Les feuilles sont séchées sur des étalages artisanaux parfois au sol sur une natte pour la conservation. Les femmes rurales maîtrisent le mode de séchage utilisé.Aspect économique L'espèce est très peu représentée dans la nature. Elle se concentre généralement dans les espaces inter-concessions. La taille monstrueuse (3 à 6 m de diamètre et 25 à 30 m de hauteur) des vieux sujets ne rend pas facile la collecte des jeunes feuilles. L'accès limité du produit fait qu'elles sont commercialisées sur les marchés proches des lieux de cueillette. Près de 80 % des ménages acquièrent les feuilles de baobab par achat. Le kilogramme de produit coûte en moyenne 146 FCFA sur le marché villageois. Avant la dévaluation du franc CFA, Hasberg et Coulibaly (1989) ont enregistré un prix trois fois plus cher (516 FCFA/kg) pour les feuilles moulues, sur le marché urbain de Banfora (Ouest du Burkina Faso).Tout comme les feuilles de baobab, les fleurs fraîches ou séchées du kapokier sont utilisées comme légume de sauce. Dans l'ouest du Burkina, elles constituent le second légume après les feuilles de baobab à être plus fréquemment utilisées dans les sauces de tô durant la période de janvier à juin Contrairement à A. digitata, B. costatum est plus représenté en brousse et les vieux sujets sont rarement de très grande taille. Les ménages y ont donc accès plus facilement moyennant souvent un ébranchage, voire l'abattage de certains gros pieds (le bois servant à beaucoup d'autres choses). Néanmoins, les fleurs du kapokier font l'objet de petit commerce sur le marché de la zone d'étude.Le prix du kilogramme varie de 328 FCFA à 417 FCFA/kg sur le marché de Ouagadougou.Les fleurs du kapokier ont des caractéristiques similaires aux feuilles de baobab sur le plan économique. Elles ne sont presque pas exportées à l'étranger. Cependant le marché national est important au vue de leur place dans les habitudes culinaires des populations rurales et urbaines.Au moment où l'on parle de plus en plus de l'agroforesterie, comme approche de gestion rationnelle des terroirs, en tenant également compte de la place des produits ligneux forestiers dans les habitudes alimentaires des populations, il est clair que les centres de recherche en technologie alimentaire doivent intégrer ces produits présentant une utilité économique certaine dans la mise en place des procédés et techniques de transformation.Cette prise en compte doit s'accompagner d'un travail en amont c'est-à-dire une politique nationale de valorisation au sens le plus large de ces espèces alimentaires. Une étude sans complaisance du potentiel national avec les données sociologiques et économiques des différentes spéculations afin de permettre aux technologues alimentaires de disposer des outils décisionnels dans le choix des technologies appropriées. Cette prise en compte doit absolument tenir compte non seulement des impératifs économiques et des contraintes techniques liées à la nature de chaque produit mais également des réalités socio-culturelles.La transformation d'un produit alimentaire qu'il soit d'origine agricole ou forestière est un besoin imposé par son usage ou son intégration dans un processus de fabrication d'un produit tiers. Les techniques de conservation qu'elles soient artisanales ou modernes s'appliqueront à garder les qualités nutritionnelle, organoleptique, microbiologique et technologique. Non-timber forest resources have not been in the main stream of management, research and development objectives of researchers and scientists even though they are of great benefit to the local people (Boef & Asibey, 1997). One of such species is T. tetraptera. The species, called prekese, is a multipurpose biological resource. The fruits of the tree are used as a spice in cooking, the trees may be integrated in agroforestry practices and may be used for the production of fuel or poles. The fruits, bark and root have important medicinal values. Apart from the three northern regions of Ghana, the species is found distributed throughout the country. CBUD is involved in the processing of the fruits of Prekese. At the moment, eight different products have been developed from the fruits. These include tea bags, brandy, chocolate, toffees, baby food, sauce, Prekese flavoured biscuits, and Prekese flavoured palm oil. T. tetraptera is used in the treatment of the following diseases:Tetrapleura tetraptera est une espèce d'arbre à usages multiples dont les fruits sont utilisés comme épice dans la cuisine. L'espèce est distribuée dans tout le Ghana, en dehors des trois régions du Nord. Comme la plupart des espèces dans le pays, Tetrapleura tetraptera est retrouvé dans les réserves forestières avec quelques individus dans les champs des paysans. Les individus présents dans les champs ont été abattus en raison de l'ombrage qu'ils créent sur les autres cultures. Le Centre pour l'Utilisation de la Biodiversité et le Développement (CBUD) est impliqué dans la domestication de l'espèce. Il donne aux paysans les moyens pour planter l'espèce. Ce Centre a intervient aussi dans la transformation des fruits en huit différents produits à base de T. tetraptera : les sachets de thé, le chocolat, les biscuits, etc. Cependant la faible valeur marchande des fruits qui tend à décourager les paysans dans la plantation et la propagation de l'espèce, constitue la principale contrainte. Les besoins de recherche sur cette espèce sont identifiés.Tetrapleura tetraptera is a multipurpose tree species which fruits are used as a spice. The species is distributed throughout Ghana except the three Northern regions. As most of the species in the country, Tetrapleura tetraptera is located in forest reserve with a few individuals in the farmers' plots. Individuals in farmers field had been felled because to create too much shade for crops. The Centre for Biodiversity Utilisation and Development (CBUD) is involved in the domestication of the species. The Centre provides farmers with inputs for tree planting. The Centre has also process the fruits into eight different products including tea bags, chocolate, biscuits, etc. However the major constraints of the species are the low market value of the fruits which is discouraging farmers in propagating the species. Further research needs on this species are developed.• The bark is used in Ghana as an enema for constipation (Irvine, 1961).• The bark decoction of T. tetraptera is used as an emetic (inducing vomiting) (Abbiw, 1990).• The infusion of the fruits is used for bathing in Ghana by malaria patients (Irvine, 1961) • Fruit infusion of T. tetraptera with shea butter and other ingredients is used as a wash for febrifuge (fever remedy) (Abbiw, 1990).• It is known to regulate the blood pressure of hypetensive patients.Other uses of the species include the following:• The wood is used for constructing house posts, doors, window frames, wheelwright work, general carpentry and occasionally canoes (Irvine, 1990). • T. tetraptera is also used for making the wheels of horse drawn carts and wheel barrows (Abbiw, 1990). Even though its use as fodder and browse has not been documented, a few people have observed goats browsing on the leaves of the plant (Afrifa, per. Com., 1999) No deleterious properties of T. tetraptera in the form of weed control, host of pest or toxicity has been observed.T. tetraptera is a medium-sized deciduous forest tree with \" fern-like \" foliage (bi-pinnate). The tree grows up to about 24 m high and 3m in girth. The bole is usually without but sometimes with, small sharp buttresses. It has a smooth bark, which is greyish and very thin, slash is reddish and strong scented. Twigs and young foliage are practically glabrous or minutely hairy with a common stalk 15 -30 cm long; usually opposite but sometimes alternate; 6-12 leaflets on each side of the pinnae stalk. Flowers (January to April, June to July) appearing after the new leaves are fully developed; pink or cream coloured. Individual flowers have slender stalks and ten short stamens, the whole, a little over 6 mm long (Keay, 1989).Fruits (November, March) are very persistent, hanging at the ends of the branches on stout stalks, 15-25 cm long by about 5 cm across the wing-like ribs, dark purple-brown, glabrous and glossy usually slightly curved (Keay, 1989).Two of the ridges of the fruits are woody while two are filled with sugary pulp which are oily and aromatic (Irvine, 1961).Up to ten or fifteen seeds may be found in each pod. However the fruits do not split open to release the seeds. The seeds are only released after the pods are rotten which takes about three to four weeks and on re-opening the seeds germinate around the pods after about one week (Blay, 1997). The seeds are hard, black, flat, oval and about 8 mm long, embedded in the body of the pod (Keay, 1989).One common dispersor of the seeds is the elephant who is attracted to the fruit by its scent (Steentoft, 1998).Taxonomy and names of the species T. tetraptera belongs to the Mimosaceae family and it is commonly called Prekese in Ghana.The CBUD is involved in the domestication of this all-important species. Prior to this, most of the species were located in forest reserves with a few on farmers plots (Blay, 1997). This is because those on farmers' plots had been felled by the farmers with the excuse that it created too much shade on the other crops.At the moment, Prekese seedlings have been planted on a total of 450 acres of land in Ghana by CBUD.CBUD has a target of planting one hundred thousand seedlings next year. CBUD promotes domestication of the species by supplying farmers with inputs such as SAFORGEN 208 wheelbarrows, watering cans, cutlasses, boots, poly bags and seeds to raise seedlings. Workshops on proper nursery management are organised from time to time for the farmers. The farmers are then encouraged to plant the seedlings on their farms at a spacing of 10 m x 10 m so that they can still crop the land for about three to four years by which time the canopy may have closed.This a form of encouragement to the farmers since they will still have land to farm on even after planting the Prekese seedlings. Each acre of land contains forty plants of T.tetraptera.To ensure the effective utilisation of the fruits, CBUD has processed it into eight different products (already mentioned). This tends to boost the morale of the farmers since they know that the fruits would not go waste but would be purchased by people who go into commercial production of the products.Chemical analysis by Jetuah (1999, Per. Com.) shows the presence of the following components in the fruit.Non leguminous protein 7.86% Sucrose 32,2% Invert sugar 22.4% Total sugar 54.6% Protein 3.8% Water 11.04% The fruits and seeds are rich in some macro elements such as potassium, iron, magnesium and phosphorus but sodium content is low.No anti-nutritional or toxic property has been observed for human beings. However, ethnolic extracts from stem bark of T. tetraptera was observed to inhibit the release of luteinizing hormone by cultured rat pituitary cells. This concept or principal finding could be used to explain the use of extracts as natural contraceptives as mentioned in the Ivory Coast pharmacopoeia (El-izzi et al, 1990).Its ability to fix nitrogen or form mycorrhizal association is not yet known. However a few people have observed nodules on its roots (Twum-Ampofo, 2000 per. comm.).In Ghana one other species of Tetrapleura is known. This is T. chevalier. The importance of this species in terms of its use as medicine or spice is not yet known.It is common local knowledge that there are two types or varieties of T. tetraptera. It is not clear to the casual observer, however the farmers separate them into two; \"male\" and \"female\" types. The \"female\" branches at a height of about 1.3 m. It bears fruits heavily but the \"male\" branches at a greater height of about 1.7 -2 m; though it fruits, it does not bear heavily due to its erectness and form.The seeds have been observed to be about 80% viable even though they do not germinate at the same time but over an interval of two weeks.Presently, the only conservation method being used by CBUD is in situ conservation where the species is conserved or planted on farmers' plot. Plans are under way to start ex-situ conservation where the seeds would be conserved in seed banks.The first phase of our breeding programme has begun. This involved the collection of seeds from parent trees based on their form, height, shape or bole, fruit pungency and interviews with farmers. These were coded and given to farmers to nurse and plant on their farms. CBUD intends to follow the growth performance of these plants on farmers' plots and to ascertain whether they are true to type.CBUD has future intentions of engaging in other breeding programmes that would improve the yield of the species. Blay (1997) T. tetraptera can be propagated either by sowing the seeds directly into the soil or nursing them in poly bags or beds before transplanting into the fields. In either case only one seed is introduced into the hole made in the soil.Weeding should be done often to prevent the weeds from competing with the plants for nutrients. Too many weeds on the farm may lead to the destruction of seedlings by grasscutters.Traditionally the fruits are not harvested from the tree but are allowed to drop after which they are collected.The average yield of a matured tree is between five to ten fertiliser bags full per season. A fertiliser bag full of T. tetraptera weighs about ten kilograms.The yield usually depends on the age of the plant. Yield tends to increase with age and branching pattern of the plant.The major constraints of the species are the low market value of the fruits and the absence of a uniform scale for its sale. These two constraints tend to discourage farmers from propagating the species.CBUD has tried to alleviate these constraints by developing eight products from the fruits. These products when commercialised would lead to an increase in the price of the fruit. Also CBUD has introduced a uniform scale in the form of a fertiliser sack unto the market. This was done by using the fertiliser sack as a measure for the purchase of fruits from the farmers.Commission 3 : Espèces Ligneuses Alimentaires (ELA) en zone sèche de l'Afrique de l'Ouest et du Centre Avant de commencer les travaux, la commission a mis en place un bureau de séance composé de : Sibiri Jean Ouedraogo (Président) Mahamane Larwanou et Darnace Assane Mbatta (Rapporteurs). Cette commission a réfléchi sur les espèces ligneuses alimentaires prioritaires de la zone sèche. Cette zone regroupe les pays suivants : Burkina Faso, Mali, Niger, Tchad et le Kenya.La plénière a défini les critères de choix d'espèces :• Les facteurs écogéographiques c'est à dire une subdivision entre les espèces des zones sèches et des zones humides • Le poids des espèces sur la base de la fréquence d'utilisation.Sur la base des critères ci-dessus définis, 8 espèces ont été identifiées comme prioritaires dans la zone sèche. Ce sont :1) Adansonia digitata 2) Balanites aegyptiaca 3) Detarium microcarpum 4) Parkia biglobosa 5) Sclerocarya birrea 6) Tamarindus indica 7) Vitellaria paradoxa 8) Ziziphus mauritiana Les travaux définis par ordre de priorité La commission s'est livrée à un travail de documentation basé sur le remplissage de fiche présentée par le coordonnateur SAFORGEN. Les travaux nécessaires pour les 8 espèces prioritaires retenues sont définis par ordre de priorité dans le tableau 1. • Le nombre d'espèces sur lesquelles les différents travaux vont être conduits dans les cinq ( 5) pays est réduit à trois afin d'éviter les travaux sommaires. Ces espèces ont été choisies sur la base de leur fréquence relative par rapport aux 5 pays des zones sèches concernés. Ces espèces sont les suivantes : 1) Tamarindus indica 2) Vitellaria paradoxa 3) Ziziphus mauritiana • Répartition des tâches en fonction des avantages comparatifs.• Des travaux de terrain seront effectués par des équipes locales dans chaque pays.• Mise en place des moyens de communication pour faciliter l'échange d'informations.Trois idées de projets ont été proposées : Projet 1 : Domestication de deux espèces ligneuses alimentaires de la zone sèche d'Afrique Des travaux ont été faits sur la multiplication végétative (greffage) par le Centre national des Semences Forestières du Burkina Faso (CNSF) et l'Institut d'Economie Rurale du Mali (IER). La technologie de transformation (industrielle et artisanale) des produits de l'espèce et les règles et pratiques de gestion des peuplements à Karité ont été étudiées au Burkina Faso et au MaliLe greffage de cette espèce est bien maîtrisé. L'influence du régime de coupe à différentes hauteurs sur la régénération de l'espèce a été étudiée au Niger. Elle constitue une bonne espèce pour les technologies de haies-vive défensives dans la sous-région.• Bénéfices qui en découlent Des bénéfices socio-économique, environnemental, scientifique peuvent en découler.• Objectif général : Conserver la biodiversité et lutter contre la pauvreté par la promotion des principales espèces ligneuses alimentaires autochtones. Permettez-moi au nom de tous les participants, de remercier Monsieur le Directeur Général du Centre National des Semences Forestières du Burkina Faso pour l'accueil chaleureux qui nous a été réservé dès notre arrivée à Ouagadougou ainsi que pour tous les arrangements effectués pour faciliter la tenue de cette rencontre au Burkina Faso. Je voudrais également lui demander de bien vouloir transmettre nos remerciements aux autorités du Burkina Faso pour avoir accepté d'abriter cette première rencontre du Réseau Espèces Ligneuses Alimentaires du Programme des Ressources Génétiques Forestières pour l'Afrique au Sud du Sahara, dénommé SAFORGEN.Cette rencontre connaît la participation d'une vingtaine de personnes provenant de 12 pays africains.Nous voulons aussi saluer la présence dans nos assises d'un Représentant du CIRAD-Forêt. Ceci témoigne de l'intérêt qu'accordent l'IPGRI et le CIRAD au partenariat au niveau régional mais également entre institutions internationales.L'Institut International pour les Ressources Phytogénétiques (IPGRI) a pour mission essentielle, la promotion de la conservation et l'utilisation des ressources phytogénétiques pour les générations actuelles et futures. Son Programme sur les Ressources Génétiques Forestières a démarré en 1993 et a connu depuis, un développement notable. D'abord avec le Programme européen, EUFORGEN, qui compte aujourd'hui plus d'une trentaine de pays aussi bien de l'Europe de l'Ouest que de l'Est. Chaque pays membre du Programme contribue financièrement et ceci tous les ans, au budget du Programme EUFORGEN. L'IPGRI assure également la coordination du Programme asiatique sur les Bambous et Rotins. Depuis janvier 1999 est né le Programme SAFORGEN pour les pays d'Afrique au Sud du Sahara, dont les grandes lignes vous seront données au cours de cette rencontre.Dans son récent rapport publié cette année, l'Association de lutte contre la Faim (ACF) révèle que plus 200 millions de personnes en Afrique Subsaharienne sont exposées à la famine. Les guerres civiles et autres troubles politiques qui ravagent le continent avec pour conséquence directe le déplacement massif des paysans, en constituent la principale cause. Cependant, dans les autres pays où règne une paix relative, la crise économique a rendu les populations rurales et même celles des villes, dépendantes des fruits, des noix, des tubercules, des légumes à feuilles provenant de la forêt. Ce qui a créé une demande plus accrue pour ces produits. Les méthodes traditionnelles de récolte plus conservatrices de la ressource ont été remplacées par une exploitation de type minier par les nouveaux ramasseurs-cueilleurs davantage attirés par l 'accumulation rapide de richesse. Les nouvelles réglementations de la gestion forestière adoptées par les pays africains n'interdisent pas le ramassage des produits forestiers autres que le bois aux populations riveraines des forêts. Les administrations forestières disposent malheureusement de peu d'informations sur l'impact d'une telle exploitation sur la régénération de la ressource.Quant à l'utilisation de ces produits forestiers, leur consommation se fait soit directement, soit sous leur forme conservée ou enfin transformée. Les technologies traditionnelles de transformation existent et sont disponibles. Elles nécessitent cependant d'être améliorées et vulgarisées pour accroître les revenus des paysans.L'importance des ressources génétiques forestières pour les pays en développement n'est plus à démontrer. En effet on estime à plusieurs millions de dollars US les biens et les services fournis par la forêt en termes de régulation de l'eau et du climat, de conservation du sol, de séquestration du carbone, de contrôle de la pollution et des pestes, etc. Mais de façon plus concrète, plus de 80% des populations des villes surtout des villages africains dépendent des produits forestiers sur le plan nutritionnel et médicamenteux. Mais ces ressources, très importantes pour la survie de nombreuses communautés africaines, sont malgré les apparences, menacées de disparition. En effet selon la FAO, l'Afrique a perdu annuellement une surface forestière de 2,1 millions ha entre 1978 et 1997.Les pays d'Afrique au Sud du Sahara sont de plus en plus conscients de la disparition des ressources génétiques de leurs écosystèmes forestiers. Cette disparition concerne particulièrement les espèces les plus sollicitées pour les besoins du marché. Certaines mesures de protection ont été prises et d'autres sont en cours de développement.La FAO, PNUE, le PNUD et d'autres organisations régionales et internationales déploient de gros efforts pour assurer la sécurité alimentaire dans le monde et particulièrement en Afrique. Mais tous ces efforts risquent de donner des résultats mitigés en Afrique au Sud du Sahara où plus de 60% de la population survivent grâce aux produits forestiers, si des méthodes et stratégies appropriées ne sont pas développées pour conserver et utiliser de façon durable des ressources génétiques forestières, de manière à accroître la contribution du secteur forestier à l'amélioration du niveau de vie des communautés locales et des économies nationales.Ce combat pour la survie de nos populations et en même temps celle de nos écosystèmes forestiers, car les deux sont liés, est un combat qui interpelle chacun de nous à quelque niveau où il se trouve.Le Réseau pour les Espèces Ligneuses Alimentaires devra à travers vous, apporter aussi sa contribution. Celle-ci consistera à mettre à la disposition des gestionnaires et des décideurs de politique forestière, des informations, des outils techniques et des stratégies pour la conservation des ressources génétiques forestières.Dans ce vaste chantier pour l'amélioration de la gestion des forêts, notre Réseau n'est pas isolé, d'autres acteurs sont à l'oeuvre, le Programme SAFORGEN tend ses mains pour se joindre à ces partenaires afin qu'ensemble, nous puissions fermer les trous qui font perdre de toutes parts l'eau de notre calebasse qu'est la forêt. L'Afrique s'est régulièrement illustrée par des histoires de guerres et de famines. Nous pouvons aussi à travers ce Réseau raconté au monde entier des histoires plus gaies de l'Afrique, des histoires à succès. Ce sera là notre modeste contribution pour notre continent. Il ne faut pas beaucoup pour y parvenir ; l'Afrique a besoin uniquement de la volonté des animateurs de ce Réseau que vous êtes. Il suffit que chacun de nous accepte d'y consacrer un peu de son temps et de son savoir-faire. C'est particulièrement la recommandation issue du troisième atelier des responsables des centres et programmes nationaux de semences forestières, tenu à Dakar au Sénégal en avril 1997 qui aura actionné l'appui de l'IPGRI au développement et à la mise en place du Programme sur la gestion durable des ressources génétiques forestières en Afrique Subsaharienne dénommé Programme SAFORGEN.A cet effet, les ateliers successifs de Ouagadougou (1998et 1999) et Nairobi (1999) auront permis de réitérer la nécessité de la création de SAFORGEN, de définir les termes de référence, son cadre institutionnel et son fonctionnement.C'est alors que sous l'égide de la FAO et de l'IPGRI, a été créé le Programme sur les ressources génétiques forestières en Afrique Sub-saharienne : SAFORGEN.Ce programme comporte quatre réseaux qui ont été identifiés lors de la dernière rencontre de Ouagadougou. Ce sont :• le réseau sur les espèces ligneuses alimentaires,• le réseau sur les espèces ligneuses fourragères,• le réseau sur les bois et fibres,• le réseau sur les espèces ligneuses médicinales Aujourd'hui, le Burkina Faso a signé la lettre d'agrément qui le fait membre du programme. En signant cette lettre d'agrément le Burkina Faso a marqué son accord pour sa participation aux activités des quatre réseaux.C'est donc avec un réel plaisir qu'il a l'honneur d'abriter les travaux de la première rencontre sur les espèces ligneuses alimentaires, premier atelier de tous les réseaux.Au nom de Monsieur le Ministre de l'Environnement et de l'Eau, je vous souhaite la bienvenue au Burkina, un agréable séjour et en particulier je vous invite à faire des recommandations pertinentes et exécutoires en vue du démarrage effectif des activités du réseau. En effet, efficaces, les activités de ce réseau permettront de pallier aux insuffisances alimentaires que connaissent nos pays.Permettez-moi également de vous rassurer de la disponibilité des institutions et chercheurs du Burkina impliqués dans ces réseaux pour oeuvrer à rendre efficient le réseau sur les espèces ligneuses alimentaires.Enfin, je voudrais vous rassurer de la disponibilité des membres du comité d'organisation et l'ensemble du personnel du Centre National de Semences Forestières qui accueille vos travaux, pour faciliter votre participation et votre séjour à Ouagadougou.Au nom de Monsieur le Ministre de l'Environnement et de l'Eau et au nom de Monsieur de Secrétaire Général du Ministère de l'Environnement et de l'Eau, je déclare ouverts les travaux du premier atelier du réseau sur les espèces ligneuses alimentaires du Programme SAFORGEN de l'IPGRI. Plein succès à vos travaux. Merci. L'élection de ces éminents scientifiques à ces postes vient formaliser l'organe de coordination des activités du réseau auquel nous avons tous souhaité prendre activement part. Certes, nous attendons tous que cet organe soit disponible pour nous accompagner dans les projets, mais surtout, il nous appartient de lui apporter tout notre soutien si nous voulons qu'il soit efficace au cours de son mandat.Mesdames, Messieurs les coordonnateurs nationaux, Mesdames, Messieurs les points focaux du réseau, Je voudrais vous demander de croire réellement à de prochains succès et vous engager fermement à des projets. C'est la foi que nous aurons en ces actions qui concrétisera les projets, fera grandir le réseau et nous conduira à des succès.L'Afrique reste le continent où sévissent plus de problèmes sanitaires liés à la carence alimentaire, à la malnutrition voire la famine. Mais elle est le continent qui renferme l'une des plus grandes diversités de plantes sauvages. Il est par conséquent trivial de reconnaître qu'il nous faut oeuvrer à valoriser nos plantes afin de juguler le déficit nutritionnel de nos populations.Aujourd'hui nombre de pays ont pour principal produit d'exportation des produits alimentaires issus d'espèces ligneuses. Ceci nous démontre que nos actions peuvent nous conduire non seulement à palier au manque d'aliments dans nos pays mais aussi à assurer une production d'exportation ou d'exploitation industrielle en vue d'accroître les revenus monétaires de nos nations.Mesdames et Messieurs, n'est-ce pas que l'espoir est grand ? C'est pourquoi il faut saluer et soutenir l'initiative de l'IPGRI et de ses partenaires internationaux comme la FAO, le PNUD, le PNUE, l'ICRAF, la CORAF etc. pour avoir accepté nous accompagner sur ce chemin.Je remercie le Programme SAFORGEN pour l'organisation de la présente rencontre d'échanges et de conjugaison d'efforts. En effet, la rencontre aura permis de dégager les attentes des pays pour la mise en oeuvre de la stratégie du réseau. Ces attentes concernent certes la collaboration à tous les niveaux, les échanges d'informations et de matériel végétal que le financement des projets retenus.Le premier atelier du réseau aura également permis d'identifier dix espèces ligneuses alimentaires prioritaires. Celles-ci comprennent quatre espèces communes aux zones sèches et aux zones humides et qui constitueront une sorte de liens entre la recherche dans les zones de savanes avec celle dans les formations forestières.Les recommandations qui sont issues de cet atelier nous interpellent tous. Il nous appartient, une fois dans nos pays respectifs, de sensibiliser les décideurs pour les engager dans nos perspectives.Mesdames et Messieurs, Je voudrais au nom du Comité d'organisation, demander votre indulgence et excuses pour tout aléa que vous aurez dû subir au cours de ce bref séjour à Ouagadougou -Burkina Faso. J'ose toutefois espérer que dans l'ensemble vous avez eu un agréable séjour dans notre capitale et vous souhaite, ainsi qu'à mes compatriotes, bon retour dans vos postes et foyers respectifs.Je suis persuadé que nous oeuvrerons à la réalisation des engagements que nous avons pris à Ouagadougou. Je voudrais vous réitérer la disponibilité des chercheurs et des personnes ressources du Burkina Faso à joindre leurs efforts à ceux que vous voudrez consentir.Au nom du Ministre de l'Environnement et de l'Eau et au nom de son Secrétaire Général, je déclare clos les travaux du premier atelier du réseau sur les espèces ligneuses alimentaires du programme SAFORGEN.I SBN 92-9043-552-6","tokenCount":"63211"} \ No newline at end of file diff --git a/data/part_3/2907991544.json b/data/part_3/2907991544.json new file mode 100644 index 0000000000000000000000000000000000000000..8e323ef4d9f6fe78efe70f8017b91626bffe9036 --- /dev/null +++ b/data/part_3/2907991544.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"69cacd55ad8fdb00f497b319fbe9a1db","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/94ced729-970d-42fd-a3be-8b9ebac36b09/retrieve","id":"63156505"},"keywords":["chemical defense","cyanogenic glucosides","cytochrome P450","Phaseolus lunatus"],"sieverID":"cfc85e0c-1a11-463d-ba6a-42ed182e91df","pagecount":"13","content":"Lima bean, Phaseolus lunatus, is a crop legume that produces the cyanogenic glucosides linamarin and lotaustralin. In the legumes Lotus japonicus and Trifolium repens, the biosynthesis of these two α-hydroxynitrile glucosides involves cytochrome P450 enzymes of the CYP79 and CYP736 families and a UDP-glucosyltransferase. Here, we identify CYP79D71 as the first enzyme of the pathway in P. lunatus, producing oximes from valine and isoleucine. A second CYP79 family member, CYP79D72, was shown to catalyze the formation of leucine-derived oximes, which act as volatile defense compounds in Phaseolus spp. The organization of the biosynthetic genes for cyanogenic glucosides in a gene cluster aided their identification in L. japonicus. In the available genome sequence of P. vulgaris, the gene orthologous to CYP79D71 is adjacent to a member of the CYP83 family. Although P. vulgaris is not cyanogenic, it does produce oximes as volatile defense compounds. We cloned the genes encoding two CYP83s (CYP83E46 and CYP83E47) and a UDP-glucosyltransferase (UGT85K31) from P. lunatus, and these genes combined form a complete biosynthetic pathway for linamarin and lotaustralin in Lima bean. Within the genus Phaseolus, the occurrence of linamarin and lotaustralin as functional chemical defense compounds appears restricted to species belonging to the closely related Polystachios and Lunatus groups.A preexisting ability to produce volatile oximes and nitriles likely facilitated evolution of cyanogenesis within the Phaseolus genus.The legume family contains a large number of economically important crops that are high in protein content. Within the genus Phaseolus, multiple species were domesticated, and in the cases of the common bean (P. vulgaris) and Lima bean (P. lunatus), domestication occurred twice independently (Schmutz et al., 2014;Serrano-Serrano, Andueza-Noh, Martínez-Castillo, Debouck, & Chacón, 2012). The full potential of P. lunatus as a legume crop for food or feed has been hampered by the release of toxic hydrogen cyanide (HCN) from damaged leaves and seeds (Baudoin, Barthelemy, & Ndungo, 1991), whereas P. vulgaris is not known to be a cyanogenic species. Within the genus Phaseolus, cyanogenesis has only been reported for five species cross-compatible with P. lunatus (Baudoin et al., 1991).Cyanogenesis is characterized by the release of HCN from damaged tissues and is an example of a two-component plant chemical defense system (Gleadow & Møller, 2014). Cyanogenic glucosides are synthesized from specific amino acids and the predominant cyanogenic glucosides in P. lunatus are linamarin, which is derived from valine, and lotaustralin, derived from isoleucine.In plant tissues, cyanogenic glucosides are stored separately from the β-glucosidase enzymes triggering HCN release, and the two components only come into contact following tissue disruption, such as caused by feeding insects (Frehner & Conn, 1987;Lai et al., 2014). The hydrolysis of cyanogenic glucosides releases their unstable α-hydroxynitrile aglycone, which dissociates with the formation of toxic HCN.The first biosynthetic pathway for a cyanogenic glucoside to be elucidated was that of dhurrin in the monocot Sorghum bicolor.Dhurrin is synthesized from tyrosine which is converted to an oxime, E-p-hydroxyphenylacetaldoxime, by the action of the cytochrome P450 enzyme CYP79A1 (Koch, Sibbesen, Halkier, Svendsen, & Møller, 1995). A second cytochrome P450, CYP71E1, catalyzes conversion of the oxime to p-hydroxymandelonitrile, which is glucosylated by the UDP-glucosyltransferase UGT85B1 to yield dhurrin (Bak, Kahn, Nielsen, Møller, & Halkier, 1998;Jones, Møller, & Høj, 1999;Laursen et al., 2016). Similar biosynthetic pathways involving oximes and α-hydroxynitrile producing cytochrome P450 enzymes, have been shown to exist for the synthesis of specific cyanogenic glucosides in cassava (Manihot esculenta), the model legume Lotus japonicus, white clover (Trifolium repens), Japanese apricot (Prunus mume), almond (Prunus dulcis), and sugar gum (Eucalyptus cladocalyx) (Andersen, Busk, Svendsen, & Møller, 2000;Forslund et al., 2004;Hansen et al., 2018;Olsen & Small, 2018;Sánchez-Pérez et al., 2019;Takos et al., 2011;Thodberg et al., 2018;Yamaguchi, Yamamoto, & Asano, 2014). Whereas the first enzyme is invariably a cytochrome P450 of the CYP79 family converting a specific amino acid into an oxime, the α-hydroxynitrile producing second enzymatic step can be catalyzed by members of the CYP71, CYP736, or CYP706 families (Bak et al., 1998;Hansen et al., 2018;Takos et al., 2011;Yamaguchi et al., 2014). Although cyanogenesis was initially thought of as an \"ancient\" chemical defense trait because of its widespread occurrence in over 130 plant families (Bak et al., 2006), we more recently proposed that cyanogenesis repeatedly evolved independently in several plant lineages by the recruitment of members from the same or similar gene families (Takos et al., 2011). This type of \"repeated\" or convergent evolution is surprisingly common in plant specialized metabolism (Pichersky & Lewinsohn, 2011).Genome analysis has contributed to the elucidation of the biosynthetic pathway for cyanogenic glucosides in some species.Analysis of the L. japonicus genome revealed that the biosynthetic genes for linamarin and lotaustralin are organized in a biosynthetic gene cluster and helped identify CYP736A2 as responsible for the second enzymatic step (Takos et al., 2011). We also reported the existence of biosynthetic gene clusters for cyanogenic glucosides in the genomes of cassava and sorghum, of which the latter was shown to contain additionally a vacuolar MATE-type transporter for dhurrin (Darbani et al., 2016). A gene cluster in barley (Hordeum vulgare) contains the CYP79 and CYP71 genes that encode the enzymes for the production of five leucine-derived α-, β-, and γ-hydroxynitrile glucosides, including the cyanogenic glucoside epiheterodendrin (Knoch, Motawie, Olsen, Møller, & Lyngkjaer, 2016). Biosynthetic gene clusters are being reported for an increasing number of plant specialized defense metabolites, and may form by selection for reduced recombination between interacting alleles for traits that are under balancing selection, thus promoting the co-inheritance of functional pathways (Boycheva, Daviet, Wolfender, & Fitzpatrick, 2014;Takos & Rook, 2012).Within the legumes, linamarin and lotaustralin are the predominant cyanogenic glucosides found in L. japonicus, white clover (T. repens), and P. lunatus, whereas Vicia spp. produce the phenylalanine-derived cyanogenic glucosides prunasin and vicianin (Ahn, Saino, Mizutani, Shimizu, & Sakata, 2007;Aouida et al., 2019).Recently, Olsen and Small (2018) reported that all the biosynthetic genes for the two cyanogenic glucosides in white clover were orthologous to the ones in L. japonicus and also organized in a biosynthetic gene cluster. Within the legume subfamily Papilionoideae, the genera Lotus and Trifolium are part of the Hologalegina clade, whereas the genus Phaseolus is more distantly related and part of the phaseoloid/millettioid group (Figure 1a; Doyle & Luckow, 2003;Wojciechowski, Lavin, & Sanderson, 2004). Determining if cyanogenesis in the genus Phaseolus evolved independently or not from its occurrence in the Hologalegina clade, will, therefore, provide further insights into the evolutionary dynamics of this plant chemical defense system.Besides being an important legume crop, P. lunatus is also extensively used as an experimental plant in chemical ecology to study variations in cyanogenesis and their effects on herbivore behavior, and the various trade-offs between defense traits (Ballhorn, Kautz, Heil, & Hegeman, 2009;Ballhorn et al., 2011). For example, cyanogenesis as a direct defense was negatively correlated with the emission of volatile organic compounds (VOCs) as an indirect defense against herbivores (Ballhorn, Kautz, Lion, & Heil, 2008). Therefore, identifying the genes encoding the biosynthetic pathway for cyanogenic glucosides in P. lunatus benefits breeding efforts, supports F I G U R E 1 (a) Simplified phylogenetic tree of selected species belonging to the NPAAA-clade within the legume family. It shows the Millettioid subclade containing the genus Phaseolus, and the Hologalegina subclade containing the genera Lotus, Trifolium, and Vicia. The presence of cyanogenic glucosides in a species is indicated by circles: linamarin/lotaustralin (blue) and prunasin/vicianin (red). The age of the Hologalegina diversification is estimated at about 50 million years ago, and that of the Millettioid clade at 45 million years ago (Lavin, Herendeen, & Wojciechowski, 2005). IRLC indicates the inverted-repeat-lacking clade. The phylogenetic analysis is based on chloroplast matK amino acid sequences. For a comprehensive overview of legume phylogeny see Wojciechowski et al. (2004). (b) A phylogenetic analysis of legume cytochrome P450 enzymes of the CYP79D-subfamily. CYP79 protein sequences from six legume species are included: P. lunatus (Lima bean), P. vulgaris (common bean), Glycine max (soybean), Cajanus cajan (pigeon pea), Trifolium repens (white clover), and Lotus japonicus. Names represent GenBank accession numbers and/or with chromosomal locations and assigned names in parentheses. Phylogenetic analyses were performed with the Maximum Likelihood method and the Jones-Taylor-Thornton (JTT) matrix-based model for amino acid sequences, using the MEGA X software. Positions containing gaps were eliminated and bootstrap values (1000x) are indicated at the branch points. Branch lengths are measured in the number of substitutions per site ecological research, and allows a comparative analysis of cyanogenesis and its evolution in a third legume species.The first step in biosynthetic pathways for cyanogenic glucosides in seed plants is the conversion of an amino acid into an oxime by a cytochrome P450 of the CYP79 family. To identify CYP79 candidate genes from P. lunatus involved in cyanogenic glucoside biosynthesis, we used a PCR-based approach using degenerate primers.Four conserved amino acid motifs present in legume CYP79s were selected that distinguish these enzymes from other cytochrome P450 families. The four amino acid motifs were GNLPEMLAN, MKEMNTEIACIRL, LAEMINQPELL, and LGTTMT (V/I) (M/I) LFAR.The corresponding DNA sequences were obtained from L. japonicus (CYP79D3), T. repens (CYP79D15), and P. vulgaris (CYP79D39) and used in the design of degenerate primers (Table S1). Using the primers in different combinations, four separate PCR products of expected lengths were amplified from P. lunatus cDNA obtained from young leaves, a tissue with a high level of cyanogenic glucoside production (Figure S1). Cloning and sequencing of the PCR fragments revealed that they represented fragments of two distinct gene sequences. Subsequent use of gene specific primers (Table S1) in 5′-and 3′-RACE-PCR procedures provided the full-length cDNA sequences for both genes. Phylogenetic analysis of their amino acid sequence placed both cytochrome P450 enzymes in the CYP79Dsubfamily (Figure 1b), and they were assigned the names CYP79D71 and CYP79D72 by the cytochrome P450 nomenclature committee (Nelson, 2009). For clarity, in this paper prefixes are used to indicate the plant species, for example, PlCYP79D71.Although members of the same sub-family, PlCYP79D71 and PlCYP79D72 only shared 65% amino acid identity between them. Both genes have likely orthologs in the available P. vulgaris genome sequence (Schmutz et al., 2014). PlCYP79D71 showed 91% amino acid sequence identity with the enzyme encoded by Phvul.010G076800, whereas PlCYP79D72 shared 92% amino acid sequence identity with the protein encoded by Phvul.006G002300.Of the two, PlCYP79D71 was most closely related to LjCYP79D3 and LjCYP79D4 from L. japonicus and TrCYP79D15 from T. repens, all three of which produce valine and isoleucine-derived oximes in the biosynthesis of the cyanogenic glucosides linamarin and lotaustralin.To evaluate both enzymes for their ability to function in the biosynthesis of linamarin and lotaustralin, the cyanogenic glucosides found in P. lunatus (Figure 2a), both genes were transiently expressed in leaves of Nicotiana benthamiana using Agrobacterium infiltration.Separately, the two CYP79 genes from P. lunatus were co-expressed with LjCYP736A2 and LjUGT85K3, encoding the second and third enzymes of the biosynthetic pathway for the cyanogenic glucosides linamarin and lotaustralin in L. japonicus (Takos et al., 2011).Chemical analysis of the infiltrated leaves using liquid chromatog- linamarin and lotaustralin (Figure 2b). Some lotaustralin was present in the samples extracted from tobacco leaves expressing the gene combination PlCYP79D72/LjCYP736A2/LjUGT85K3 (Figure 2c), but here the main product was a compound with a mass-to-charge ratio (m/z) of 284 eluting at 2.7 min Based on these characteristics, its MS2 fragmentation pattern, and comparison with a standard, this compound was identified as the β-hydroxynitrile glucoside epidermin (Figure 2c, Figure S2). A minor compound with m/z 284 at 5.6 min was identified as the cyanogenic glucoside epiheterodendrin. Both these hydroxynitrile glucosides are derived from leucine and occur naturally in barley (Hordeum vulgare) (Knoch et al., 2016), but have not been reported in P. lunatus. We, therefore, propose that PlCYP79D72 prefers leucine as its main substrate, whereas PlCYP79D71 is the enzyme likely responsible for producing the valine and isoleucine-derived oximes in the synthesis of the cyanogenic glucosides linamarin and lotaustralin in P. lunatus.In cassava (M. esculenta), sorghum (S. bicolor) and L. japonicus, the biosynthetic pathways for cyanogenic glucosides are organized in genomic gene clusters (Takos et al., 2011). Such an organization greatly facilitates gene discovery, but requires the availability of a genome sequence. A draft genome sequence is available for P. vulgaris (Schmutz et al., 2014) and although this species is noncyanogenic, reports of the occurrence of low amounts of linamarin exist (Johne, 1991). In addition, P. vulgaris produces valine, leucine and isoleucine-derived oximes as volatile defense compounds (Wei, Zhu, & Kang, 2006). We, therefore, considered the possible existence of synteny between the P. vulgaris and P. lunatus genomes.In the P. vulgaris genome, Phvul.10G076800, the gene orthologous to PlCYP79D71, is localized on chromosome 10. This genomic region additionally contains cytochrome P450 genes belonging to the CYP83 gene family, the sister-family to the CYP71s (Nelson & Werck-Reichhart, 2011). Oxime metabolizing CYP83s were previously reported in the biosynthesis of glucosinolates, which made these CYP83s plausible candidate enzymes for the oxime to nitrile conversion in the production of volatiles and cyanogenic glucosides (Halkier & Gershenzon, 2006;Naur et al., 2003). Phvul.010G076700 encodes a member of the CYP83-family and is positioned immediately upstream of Phvul.10G076800 in both the original draft (v1.0) and the current release of the P. vulgaris genome (v2.1, https://phyto zome.jgi.doe.gov/pz/portal.html). A second functional CYP83 is encoded by Phvul.010G077000, showing 60% amino acid identity with the CYP83 encoded by Phvul.010G076700, but its relative position to the other two genes is more distant in version 2.1 of the P. vulgaris genome.Based on the DNA sequences of Phvul.010G076700 and Phvul.010G077000 we designed degenerate primers (Table S1) to isolate CYP83 genes from P. lunatus cDNA. Full length cDNA clones of two distinct CYP83 genes expressed in young leaves of P. lunatus were obtained, and the encoded proteins were assigned the names CYP83E46 and CYP83E47 (Nelson, 2009). Both P. lunatus genes were most closely related to Phvul.010G076700, showing, respectively, 90% and 86% amino acid sequence identity. Their similarity to the enzyme encoded by Phvul.010G077000 was much lower at around 60% amino acid sequence identity. CYP83E46 and CYP83E47 shared 82% amino acid sequence identity between them, and as the P. vulgaris genome only seems to contain a single gene copy, they potentially are diverging paralogs.The genomic region in P. vulgaris surrounding the CYP79 and CYP83 genes, does not contain an UDP-glucosyltransferase encoding gene. Known UDP-glucosyltransferases involved in cyanogenic monoglucoside biosynthesis belong to the UGT85 family.The UGT85 encoding genes in the P. vulgaris genome that show most sequence similarity with LjUGT85K3 from L. japonicus are Phvul.006G017500 and Phvul.006G017600. Using degenerate primers based on these gene sequences (Table S1), we isolated a single partial UGT85 gene sequence from leaf cDNA. Using 3′ and 5′ RACE, a full-length sequence was subsequently obtained. The encoded protein showed 89% amino acid sequence identity with Phvul.006G017500 and 69% with LjUGT85K3, and was assigned the name UGT85K31.All P. lunatus genes identified in this study were obtained from the same leaf cDNA sample, indicating that the genes are simultaneously expressed in this cyanogenic glucoside producing tissue. To establish if the genes constituted a functional biosynthetic pathway for linamarin and lotaustralin, we transiently co-expressed various gene combinations by Agrobacterium-mediated co-infiltration of N. benthamiana leaves. Expression of the two possible combinations that made up a full P. lunatus gene set, CYP79D71/CYP83E46/UGT85K31 and CYP79D71/CYP83E47/UGT85K31, both resulted in efficient production of linamarin and lotaustralin (Figure 3). The production of these compounds required the presence of all three genes. These results, therefore, suggest that a functional biosynthetic pathway for linamarin and lotaustralin in P. lunatus consists of CYP79D71, CYP83E46/47, and UGT85K31 (Figure 4). This is the first report of a role for CYP83s in the biosynthesis of cyanogenic glucosides. In L. japonicus, LjCYP736A2 is the enzyme converting the oximes to the corresponding cyanohydrins (Takos et al., 2011). To evaluate if CYP736A2-like enzymes play a similar role in linamarin and lotaustralin biosynthesis in P. lunatus, we additionally cloned a full-length CYP736 gene from leaf cDNA using degenerate primers based on the P. vulgaris genes most closely related to LjCYP736A2 (Table S1). This gene was assigned the name CYP736A222 (Nelson, 2009) and showed the highest sequence similarity (90% amino acid sequence identity) to one of the selected P. vulgaris genes (Phvul.004G159600) localized on chromosome 4. Transient expression of PlCYP736A222 in combination with PlCYP79D71 and PlUGT85K31 did not result in the production of linamarin or lotaustralin, or any other notable compound (Figure S3a). Combining PlCYP736A222 with the pathway genes from L. japonicus, LjCYP79D3, and LjUGT85K3 also did not result in product formation (Figure S3b), demonstrating that PlCYP736A222 could not substitute for LjCYP736A2 from L. japonicus. These results support the notion that within the legumes, different cytochrome P450 families, CYP736 in L. japonicus and T. repens, and CYP83 in P. lunatus, have been recruited for the production of the cyanogenic glucosides linamarin and lotaustralin (Figure 4).Unlike P. lunatus, the common bean P. vulgaris is not known to be cyanogenic, and reports of the presence of small amounts of linamarin in P. vulgaris have been questioned (Johne, 1991). However, P. vulgaris is able to produce the oximes derived from valine and isoleucine, and uses these as volatile defense compounds (Wei et al., 2006). The CYP83E46/47 ortholog present in the P. vulgaris genome accounts for an oxime-metabolizing enzyme. Subsequent glucosylation of the resulting reactive hydroxynitrile compounds, for instance by a promiscuous UDP-glucosyltransferase, would result in the synthesis of linamarin and lotaustralin. This suggests a plausible evolutionary pathway toward cyanogenesis, which would require the additional recruitment of an activating β-glucosidase.To clarify the occurrence of cyanogenesis, we tested the leaves of 60 wild (natural) and cultivated accessions of P. vulgaris and 71 P. lunatus accessions for their ability to release HCN using detection with Feigl-Anger paper, and performed metabolite analysis of leaf extracts using LC-MS (Table S2). All of the P. vulgaris accessions were acyanogenic, and LC-MS analysis showed that they essentially lacked linamarin and lotaustralin. Trace amounts of linamarin seemed to be present in a few accessions (e.g., G24576, a wild type from Oaxaca, Mexico) based on the presence of a matching m/z value and retention time (Figure S4). However, due to the low levels, no MS2 spectrum could be obtained for a more conclusive identification of the compound. In contrast, most of the P. lunatus accessions contained linamarin and lotaustralin and were either HCN positive or polymorphic. Among the five P. lunatus accessions that were acyanogenic in our tests, a single cultivar (G26193, a landrace from Kivu, Congo) lacked both linamarin and lotaustralin. Such polymorphisms typically result from the absence of an activating β-glucosidase or lack of cyanogenic glucoside production, and occur in natural populations as a result of balancing selection pressures (Olsen & Small, 2018).Cyanogenesis was previously reported for P. maculatus, P. marechalii, P. polystachios, P. ritensis, P. jaliscanus, and P. salicifolius, which are all cross-compatible with P. lunatus (Baudoin et al., 1991). In the phylogeny of the genus Phaseolus, these six species belong to the Polystachios group, the sister group to the Lunatus group named after P. lunatus (Delgado-Salinas, Bibler, & Lavin, 2006). We obtained a broader overview of the occurrence of linamarin and lotaustralin within the Phaseolus genus by analyzing leaf extracts from a selection of wild and cultivated accessions drawn from the germplasm collection at CIAT (International Center for Tropical Agriculture) (Table 1, Table S2). The accessions were selected based on established phylogenetic relationships and represented 35 distinct species from all eight groups within the Phaseolus genus. Apart from P. lunatus, three other species belonging to the Lunatus group, P. augusti, P. lignosus, and P. pachyrrhizoides, were cyanogenic and clearly contained linamarin and lotaustralin. We also confirmed cyanogenesis and the presence of these two cyanogenic glucosides in members of the Polystachios group, which included the newly tested species P. rotundatus and P. nodosus. In the accessions of P. marechalli (G40812) and P. nodosus (G40899) we tested, lotaustralin was the more dominant compound.The Vulgaris group of the genus Phaseolus contains several other domesticated legumes, such as P. acutifolius (tepary bean), P. coccineus (runner bean), and P. dumosus (year-long bean). Cultivars and natural accessions of these three species, as well as natural accessions of P. parvifolius, P. albescens, and P. costaricensis, were shown to essentially contain no, or occasionally trace amounts, of the cyanogenic glucosides (Table 1, Table S2). Species in the Filiformis, Pedicellatus, Tuerckheimii, Pauciflorus, and Leptostachyus groups of the Phaseolus genus were represented by a single natural accession of each selected species, and exhibited a similar absence of linamarin and lotaustralin. Our data support the notion that in the genus Phaseolus, the occurrence of linamarin and lotaustralin as functional cyanogenic defense compounds is limited to species belonging to the closely related Polystachios and Lunatus groups.Cyanogenic glucosides occur widely in the plant kingdom as chemical defense compounds, and these α-hydroxynitrile glucosides are synthesized from a selected set of amino acids, depending on the species. The synthesis of dhurrin from tyrosine in S. bicolor was the first biosynthetic pathway for a cyanogenic glucoside to be elucidated, revealing the role of a cytochrome P450 of the CYP79 family (CYP79A1) in the conversion of an amino acid into an oxime, and the role of a CYP71 (CYP71E1) in the production of the α-hydroxynitrile aglycone (Bak et al., 1998;Koch et al., 1995). The conversion of an amino acid into an oxime by a member of the CYP79 family as a first step in cyanogenic glucoside biosynthesis, is observed in both gymnosperms and angiosperms (Gleadow & Møller, 2014;Luck et al., 2017). And although oxime production by members of the CYP79 family has evolutionary ancient roots, cyanogenic glucoside production and cyanogenesis are traits that we now consider to have evolved repeatedly within a number of plant lineages, which is further supported by our present findings (Takos et al., 2011).In cassava (M. esculenta), Japanese apricot (P. mume), and almond (P. dulcis), the second enzymatic steps in the production of their cyanogenic glucosides, are also catalyzed by members of the CYP71 family (Jørgensen et al., 2011;Thodberg et al., 2018;Yamaguchi et al., 2014). However, work on cyanogenesis in L. japonicus revealed that a related gene family, CYP736, was recruited for this oxime-metabolizing step and results indicated that cyanogenesis evolved independently in the three plant lineages leading to either L. japonicus, M. esculenta or S. bicolor (Takos et al., 2011). Recent work in Eucalyptus cladocalyx, which produces the phenylalanine-derived cyanogenic glucoside prunasin, showed that in this species the conversion of the oxime to a hydroxynitrile involves the sequential action of not one but two cytochrome P450 enzymes, CYP706C55 and CYP71B103, providing a further example of the repeated evolution of cyanogenic glucoside biosynthesis (Hansen et al., 2018). This report on cyanogenesis in P. lunatus, adds the CYP83s to the list of cytochrome P450 families involved in a cyanogenic glucoside biosynthetic pathway. Olsen and Small (2018) reported that the genes of the pathway in white clover (T. repens) were orthologous to the ones in Lotus, making the argument that cyanogenesis in these legumes was present in their common ancestor. Whereas TrCYP79D15 is a clear ortholog of LjCYP79D3 and LjCYP79D4 from L. japonicus, the same cannot be said of PlCYP79D71 (Figure 1b). The identification of PlCYP83E46 and PlCYP83E47 as oxime-metabolizing enzymes in P. lunatus supports the idea that within the legumes, cyanogenesis evolved at least twice (Figures 1a and 4), with the biosynthetic pathway in Vicia spp. remaining to be elucidated. Therefore, this study contributes to an emerging picture of variations and flexibilities in oxime-based biosynthetic pathways in plant specialized metabolism, of which cyanogenesis is only one possible incarnation (Sørensen, Neilson, & Møller, 2018).For example, members of the CYP79, or the CYP71 and CYP83 families, acting on specific amino acids or their derived oximes, respectively, have been shown to function in a variety of non-cyanogenic plant chemical defense pathways. In poplar (Populus trichocarpa), the enzymes CYP79D6 and CYP79D7, and CYP71B40 and CYP71B41, produced oximes and nitriles as volatile defense compounds upon herbivory (Irmisch et al., 2013(Irmisch et al., , 2014)). In Arabidopsis thaliana, CYP79B2 and CYP79B3 convert tryptophan into indole-3-acetaldoxime (IAOx), which is the substrate taken by CYP71A13 to produce indole-3-acetonitrile as an intermediate in the biosynthesis of the indole phytoalexin camalexin (Glawischnig, Hansen, Olsen, & Halkier, 2004;Nafisi et al., 2007). But IAOx is also the substrate for the oxime-metabolizing enzyme CYP83B1, which channels it into the biosynthetic pathway for indole glucosinolates (Bak, Tax, Feldmann, Galbraith, & Feyereisen, 2001). In Arabidopsis, CYP79A2 is the first enzyme in the biosynthesis of phenylalanine-derived aromatic glucosinolates, whereas CYP79F1 and CYP79F2 are involved in the biosynthesis of the various aliphatic glucosinolates that are produced from chain-elongated methionine derivatives (Halkier & Gershenzon, 2006). CYP83A1 is the main oxime-metabolizing enzyme in the production of aliphatic glucosinolates, whereas both CYP83A1 and CYP83B1 are involved in the biosynthesis of the aromatic glucosinolates (Naur et al., 2003).Phaseolus tested in this study for the occurrence of cyanogenesis and the presence of the cyanogenic glucosides linamarin and lotaustralin. The species are grouped according to the eight recognized clades within the genus (Delgado-Salinas et al., 2006). P. lunatus and P. vulgaris are indicated in boldThe cytochrome P450 enzymes orthologous to PlCYP79D71 and PlCYP83E46/E47 in Phaseolus species that do not produce cyanogenic glucosides, such as P. vulgaris, are likely to play a related role in plant defense. In P. vulgaris, the release of volatile oximes in response to agromyzid flies was previously reported (Wei et al., 2006). Tissue damage by adults and the leaf mining larvae of two Liriomyza species resulted in the release of 2-methylpropanal oxime, 2-methylbutanal oxime, and 3-methylbutanal oxime. These are the oximes produced from the amino acids valine, isoleucine, and leucine, respectively, by the action of cytochrome P450 enzymes of the CYP79 family (Figure 4). The presence of PlCYP79D71 and PlCYP79D72 orthologs in P. vulgaris, therefore, accounts for the biosynthesis of all three types of oxime volatiles observed. A report of the release of oxime and nitrile volatiles also exist for P. lunatus in response to jasmonic acid treatment and feeding damage by two-spotted spider mites (Tetranychus urticae) (Dicke, Gols, Ludeking, & Posthumus, 1999).The oximes reported by Dicke et al. were O-methylated derivates of the ones observed in P. vulgaris, and part of a complex blend of volatiles from different biosynthetic pathways that attracted the carnivorous mite Phytoseiulus persimilis. These observations support a role for PlCYP79D72 in the production of leucine-derived oximes in P. lunatus, and suggest that PlCYP79D71 has an additional role in volatile production.The preexistence of plant chemical defenses based on the release of volatile oximes and nitriles, would greatly facilitate the subsequent evolution of cyanogenic defense strategies. Possible evolutionary steps may include changes in gene expression, for example from insect damage-induced CYP79 expression (Irmisch et al., 2013) to expression during early leaf development, and the recruitment of appropriate UDP-glucosyltransferase and β-glucosidase enzyme activities. Both of these classes of enzymes are notoriously promiscuous, given for example the involvement of UGTs in the detoxification and sequestration of reactive metabolites and xenobiotics. The traces of linamarin observed in some of the P. lunatus samples, could result from unspecific UDP-glucosyltransferase activities associated with avoiding auto-toxicity issues. Following recruitment, increased substrate specificity may evolve over time (Khersonsky & Tawfik, 2010;Lai et al., 2014).The fact that the biosynthetic genes for linamarin and lotaustralin were clustered in the genome of L. japonicus, aided the identification of LjCYP736A2 as the oxime-metabolizing enzyme (Takos et al., 2011). Although we do not have genomic sequence data for P. lunatus, the initial identification of PlCYP83E46 and PlCYP83E47 was also based on co-localization of CYP79 and CYP83 genes in the related P. vulgaris genome. In addition to L. japonicus, the presence of biosynthetic gene clusters for cyanogenic glucosides or related noncyanogenic β-and γ-hydroxynitrile glucosides has now been reported in cassava, sorghum, white clover, and barley (Ehlert et al., 2019;Knoch et al., 2016;Olsen & Small, 2018;Takos et al., 2011).We have proposed that gene clustering results from and promotes the co-inheritance of favorable combinations of alleles that are under balancing selection pressures, as is the case for the biosynthetic genes of chemical defense pathways that provide a conditional advantage (Takos & Rook, 2012). White clover is a well-studied example of a species in which such an adaptive polymorphism (presence/absence) of cyanogenesis occurs in natural populations by either lack of cyanogenic glucoside production or the absence of an activating β-glucosidase. Interestingly, Olsen and Small (2018) observed that in T. repens the adaptive polymorphism that involves loss of cyanogenic glucoside biosynthesis occurs through presence or absence of the complete gene cluster. Similarly, barley cultivars that lacked hydroxynitrile glucoside production, contained a deletion of the central part of the gene cluster (Ehlert et al., 2019).The genomic organization in a biosynthetic gene cluster is not an inherent trait of the cyanogenic glucoside biosynthetic pathway as it is not observed in almonds (Thodberg et al., 2018) or sugar gum (Hansen et al., 2018). Individuals of these two perennial species are likely to experience seasons with high herbivore pressure during their lifetime and consequently cyanogenesis is more of a constitutively beneficial trait. Our present analysis of cyanogenesis and cyanogenic glucosides in P. lunatus (Table S2), shows the characteristic presence/absence polymorphisms that are observed in other annual legumes, reflecting the balancing selection pressures necessary to promote gene cluster formation (Takos & Rook, 2012).Once a gene cluster is established, the resulting co-inheritance could greatly facilitate co-evolution of the interacting genes and support the formation of alternative biosynthetic routes following local gene duplications and functional divergence. This is observed for a number of biosynthetic gene clusters in plant specialized metabolism. The gene cluster for cyanogenic glucosides in L. japonicus has gained the ability to produce a set of alternative, non-cyanogenic β-and γ-hydroxynitrile glucosides called rhodiocyanosides, with the pathways diverging at the oxime metabolizing step (Takos et al., 2011). This ability to additionally produce rhodiocyanosides is restricted to a single clade within the Lotus genus (Lai et al., 2014).Similarly, the biosynthetic gene cluster in barley contains several members of the CYP79, CYP71 and UGT85 gene families, coordinately producing a mixture of five leucine-derived hydroxynitrile glucosides (Ehlert et al., 2019;Knoch et al., 2016).A genomic, phylogenetic, and biochemical comparison in several species of the genus Solanum was used to describe the evolution of a terpene biosynthetic gene cluster and its various products, which involved gene duplication, gene conversion, pseudogenization, and the functional divergence of terpene synthases (Matsuba et al., 2013). Similarly, gene duplication without translocation and functional divergence played an important role in the evolution of two diterpenoid gene clusters in the genus Oryza (Miyamoto et al., 2016;Swaminathan, Morrone, Wang, Fulton, & Peters, 2009).Our results in Phaseolus suggest that a small clustered pathway for oxime-based metabolism, as present in P. vulgaris, has evolved to produce cyanogenic glucosides. This is supported by the restricted occurrence of cyanogenesis to the Lunatus and Polystachyus clades of the genus, whereas the occurrence in P. lunatus of two paralogous CYP83 genes, PlCYP83E46 and PlCYP83E47, may have resulted from a gene duplication event. The future availability of genome sequences of additional Phaseolus species will provide further insights in the genomic organization of oxime-based chemical defense pathways and their evolution in this genus.Phaseolus lunatus accession \"Hopi Lima\" (PHAS8445) was obtained from the Leibniz Institute for Plant Genetics and Crop Plant Research (IPK) seed collection in Gatersleben, Germany. The seeds were germinated on wet cotton, seedlings transferred to soil, and grown under greenhouse conditions in Copenhagen, Denmark.Similarly, Nicotiana benthamiana plants were germinated from seed and grown in soil. Phaseolus spp. cultivars and accessions selected from the CIAT germplasm collection were grown in the institute's greenhouses in Cali, Colombia.RNA was prepared from P. lunatus leaves accession \"Hopi Lima\" (100 mg) using a RNeasy plant mini kit with on-column DNase I digestion (Qiagen). First-strand cDNA was synthesized from 2.5 μg of total RNA using SuperScript III reverse transcriptase (Invitrogen) in a reaction primed with 50 μM oligo (dT) 20 . PCR products of gene fragments were obtained using Hotmaster Taq DNA polymerase, gel purified and cloned into the pDrive Cloning Vector (Qiagen). 5′ and 3′ RACE PCR were performed using the FirstChoice™ RLM-RACE Kit (Ambion). cDNA clones of complete coding regions were obtained using Phusion High-Fidelity DNA Polymerase, gel purified, and cloned by Gateway recombination reaction into the entry vector pDONOR207 (Invitrogen).Expression constructs containing cDNAs of CYP79D71, CYP79D72, CYP83E46, CYP83E47, CYP736A222, and UGT85K31 from P. lunatus under control of the CaMV 35S promoter, were generated by cloning into the pJAM1502 vector, and transforming the plasmids to A. tumefaciens strain AGL1 by electroporation, as previously described (Takos et al., 2011). Constructs for the L. japonicus genes CYP79D3, CYP736A2, and UGT85K3 in pJAM1502, and transient expression in N. benthamiana leaves by co-infiltration of selected cultures are as described in Takos et al. (2011). After 4 days, leaf disks of 1 cm diameter were cut from the infiltrated leaves and extracted in 85% (v/v) methanol for metabolite analysis by LC-MS.Cyanogenesis was visualized using Feigl-Anger paper, which was prepared as described in Takos et al. (2010). Plant tissue was disrupted by grinding in 300 µl of 20 mM MES buffer, pH 6.5 in 96well plates and exposed to Feigl-Anger paper. After incubation for 10-30 min at room temperature, the paper was removed and HCN release was detected by the development of blue color.For metabolite profiling of hydroxynitrile glucosides, plant material was extracted by boiling in 85% methanol, essentially as described in Takos et al. (2011). Samples of extracts prepared at CIAT were dried down in 96-wells microtiter plates and shipped to Copenhagen for analysis, where they were redissolved in 85% methanol (v/v) and filtered prior to analysis. Analytical LC-MS was performed using an Agilent 1100 Series LC (Agilent Technologies) coupled to a Bruker HCT-Ultra ion trap mass spectrometer (Bruker Daltonics). A Zorbax SB-C18 column (Agilent, 2.1 mm × 50 mm, 1.8 μM) was used with chromatography conditions as described previously (Takos et al., 2010). Compounds were localized in extracted ion chromatograms as sodium adduct ions: linamarin (m/z 270) and lotaustralin (m/z 284).Homologous protein sequences were obtained by database searches using blastp at NCBI (www.ncbi.nlm.nih.gov), Phytozome (phytozome.jgi.doe.gov), and from the L. japonicus genome sequence available at the Kazusa DNA Research Institute (www.kazusa.or.jp/lotus/ index.html). Chloroplast matK sequences were obtained from NCBI by text search for the various legume species. Amino acid sequences were aligned using the MUSCLE algorithm, followed by an analysis of phylogeny in MEGA version X (Kumar, Stecher, Li, Knyaz, & Tamura, 2018).Sequence data of the P. lunatus genes identified in this study have been assigned the following accession numbers: CYP79D71 (LR699072), CYP79D72 (LR699067), CYP83E46 (LR699068),","tokenCount":"5693"} \ No newline at end of file diff --git a/data/part_3/2923210248.json b/data/part_3/2923210248.json new file mode 100644 index 0000000000000000000000000000000000000000..5142cfe58eafa8960003f95f6393197bfc273b74 --- /dev/null +++ b/data/part_3/2923210248.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"aa52723e470e023e5eeabad0e2551922","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/55a07532-da7b-46dd-9972-ddaf534eb7ec/retrieve","id":"-1605149299"},"keywords":[],"sieverID":"265b872f-cd2a-418e-ab9e-80b52d53f29b","pagecount":"3","content":"Resource-poor farmers in low-income and middle-income countries will hugely benefit from improved crop varieties that perform better in terms of nutritional quality, income generation, water and nutrient use, stability of yields under climate change, and the needs of both women and men as farmers and as consumers.However, many smallholder farmers still grow old varieties, in part because they derive inadequate benefits from recent breeding efforts. To trigger timely adoption, new varieties must be widely available and affordable to farmers, and offer a step-change in performance through higher rates of genetic gain. A faster pace of varietal turnover is critical -to enable farmers to adapt and advance rapidly as climatic and market conditions change.Breeding programs also need a greater focus on developing farmer-and consumer-preferred varieties adapted to distinct production environments, markets and end uses. This can be facilitated by smarter design of breeding programs; stronger partnerships between CGIAR, National Agricultural Research and Extension Systems (NARES) and small and medium enterprises (SMEs); and strengthened organizational capacity.• Reorganizing breeding teams to drive efficiency gains through the coordinated engagement of specialists and processes using a common organizational framework, stage gates, key performance indicators and handover criteria. • Transforming towards inclusive, impactful CGIAR-NARES-SME breeding networks with empowered partners, along with customized capacity building, standardized key performance indicators, and by dividing labor and resources across partners according to comparative advantage and aligned with national priorities. • Discovering optimum traits and deployments through agile, demand-driven and effective trait discovery and deployment pipelines, and development of elite donor lines with novel and highly valuable traits. • Accelerating population improvement and variety identification through optimizing breeding pipelines (trailing, parent selection, cycle time, use of Breeding Resources tools and services, etc.), with the goal of assuring all programs deliver market-demanded varieties that deliver greater rates of genetic gain per dollar invested.This Initiative will work with breeding programs serving countries in Sub-Saharan Africa, and South Asia, along with Asia and Latin America. Priority countries for the Initiative include Ghana, Kenya, Nigeria, Senegal, United Republic of Tanzania, Uganda, Zambia and Zimbabwe in Africa, and Bangladesh and India in South Asia.Proposed three-year outcomes include:1. At least 75% of breeding pipelines are oriented towards specific market segments, enabling greater focus on farmers' needs, drivers of adoption, distinct impact areas and the strategic allocation of resources. 2. At least 70% of breeding pipelines use a revised organizational framework that provides operational clarity and effectiveness for specialized teams pursuing breeding outputs. 3. At least 80% of the breeding networks have implemented documented steps toward stronger partnership models where NARES and SMEs have increased breeding capacity, and make greater scientific, operational and decision-making contributions to the breeding process. 4. At least 50% of breeding pipelines are supported by a dedicated trait discovery and deployment program that delivers high-impact traits in the form of elite parental lines. 5. At least 70% of breeding pipelines have increased the rate of genetic gain in the form of farmer-preferred varieties, with at least 50% providing significantly improved varieties delivered to seed system recipients.Examples of projected impacts and benefits 1 include:1 Projected Benefits are a way to illustrate reasonable orders of magnitude for impacts which could arise as a result of the impact pathways set out in the Initiative's Theories of Change. In line with the 2030 Research and Innovation Strategy, Initiatives contribute to these impact pathways, along with other partners and stakeholders. CGIAR does not deliver impact alone. These projections therefore estimate plausible levels of impact to which CGIAR, with partners, contribute. They do not estimate CGIAR's attributable share of the different impact pathways. The Initiative has a wide array of innovation partners, including Breeding Resources and other Genetic Innovation Initiatives, CGIAR breeding programs, institutions under the National Agricultural Research and Extension Systems (NARES), small and medium enterprises in priority countries, and advanced research institutes.For more details on this Initiative, visit the Initiative website.Header photo: IITA Youth Agripreneurs demonstration plot for youth agribusiness training. Photo by IITA.","tokenCount":"656"} \ No newline at end of file diff --git a/data/part_3/2936293792.json b/data/part_3/2936293792.json new file mode 100644 index 0000000000000000000000000000000000000000..e28243fb71b0976365141e7acd9c31bee58319fb --- /dev/null +++ b/data/part_3/2936293792.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"1fd7e9eb93094c9121fde2dedb84a554","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/bca1d443-dbb4-4940-bbcb-6deb3ce6e320/retrieve","id":"515101237"},"keywords":[],"sieverID":"489046a9-6c42-40a7-8ef8-676789d9644c","pagecount":"19","content":"Developing countries have seen the reconfiguration of value chains presenting new opportunities for adding value and raising rural incomes (Gibbon 2001). Supermarkets and large-scale food manufacturers have transformed agrifood markets in much of the developing world (Reardon and Berdegué 2002). There is an extensive literature about the effects of this new economy on the potential exclusion of small farmers, who produce small volumes on dispersed fields and struggle to meet demands for quantity, quality, and timeliness of delivery. The difficulty is compounded by a lack of trust among farmers and other value-chain actors, which generates high transaction costs and short-circuits innovation. A recent review by Reardon et al. (2009) confirmed a mixed picture with some exclusion of small farmers in contexts where small and large farmers coexist, but also evidence of positive effects on income and assets of small farmers where inclusion occurs. Reardon et al. (2009) pointed out the critical nature of nonland assets such as inputs, credit, association, and extension, and the role of government to help small farmers \"make the grade.\" Many ongoing initiatives seek to improve value chains and favor poorer farmers (Harper 2010).1 The authors thank Valerie Gwinner, Laurens Klerkx, Sietze Vellema, and three anonymous reviewers for valuable comments and suggestions on earlier drafts of this paper, and Roger Cortbaoui for encouraging us to develop platform concepts. We appreciate the support of farmers and staff, Ecuador's National Institute for Agricultural and Livestock Research (INIAP), Bolivia's Promotion and Research for Andean Products (PROINPA) Foundation, and numerous other partners and projects acknowledged in the original article, who contributed to developing and testing ideas about platforms. We are especially grateful to SDC and the New Zealand Aid Programme, which provided funding and vision for the work of the Papa Andina program, which inspired this chapter.This chapter was originally published as an article in International Journal of Agricultural Sustainability 9 (3): 423-433 (2011).Chapter 8This chapter explores the role of multistakeholder platforms in promoting inclusion of small farmers. It considers three different platforms with potato value chains in the Andes (Bolivia, Ecuador, and Peru). It presents a framework for characterizing and understanding platforms, with an action arena comprised of innovation and market governance. It then assesses evidence of the platforms' effectiveness and flags areas for future work.The term platform is in vogue. Sometimes it refers to a methodology, such as Farmer Field Schools (FFS), or to any group that comes together for joint action. Building on Röling, Leeuwis, and Pyburn (2002) and Thiele et al. (2005), we define a multistakeholder platform as a space of interaction among different stakeholders who share a common resource and interact to improve mutual understanding, create trust, define roles, and engage in joint action. Henceforth we refer to this as a \"platform.\" It is related to the concept of learning alliances which promotes multistakeholder learning processes for stimulating innovation and business development, but differs in that it has a clearly bounded membership linked to a shared resource (Lundy, Gottret, and Ashby 2005).Platforms involve stakeholders of diverse types, with different interests, ways of making a living, and assets. A producer cooperative is not a platform, because it includes only one type of actor. A platform has value for stakeholders, because they are, or may become, interdependent. Interdependence can create tension, conflict, maneuvering to seek advantage, and even group displacement. But it also opens opportunities for mutual understanding, building confidence, social learning, and joint action (Röling, Leeuwis, and Pyburn 2002). The platform makes possible actions that none of the members could have achieved on their own. Because of its complex membership and potential for conflict, a platform is likely to require facilitation and may have a lengthy initial phase of mutual learning and role definition, before it can get down to business (Thiele et al. 2005).Stakeholders can have different roles in a platform. We distinguish platform members who are the core actors who make up the platform; partners who interact with the platform, contribute to defining its objectives, and share information and other resources; and clients and providers who may receive goods or services from the platform or provide them on a commercial basis. In practice, these categories may be somewhat blurred and some members may be more passive than partners.Multistakeholder platforms were first proposed in the context of naturalresource management, where stakeholders share a common-pool resource, such as access to water in a river basin, and the platform contributes to the collective management of the resource (Röling, Leeuwis, and Pyburn 2002). The use of platforms in the context of value chains is less frequent. A recent overview of collective action for small-farmer market access considered small-farmer organizations, but did not mention platforms (Markelova et al. 2009). One exception is Vellema et al. (2009), who analyze an oilseedsubsectoral platform in Uganda.In a value chain, a platform can perform three different but interlinked functions. First, it can create a space for learning and joint innovation, as innovation intermediary or broker. Second, it can perform a governance function within the value chain to improve coordination of business activities by actors and reduce transaction costs. Finally, a platform can perform advocacy functions to secure policy change or influence. We concentrate on the first two functions.Increasing attention is being given to intermediaries or brokers to promote innovation (Howells 2006). Klerkx, Hall, and Leeuwis (2009) recognize that new types of systemic intermediary are needed to broker innovation in a complex innovation system. Klerkx and Leeuwis (2009) describe the key innovation brokerage functions as: (1) demand articulation, which articulates innovation needs and corresponding demands; (2) network formation, which facilitates linkages between relevant actors (scanning, scoping, filtering, and matchmaking of possible cooperation partners); and (3) innovationprocess management.Platforms have been also used as a type of innovation intermediary in the experiences described here in the Andes. In this sense, they complement, and (in two of the cases, Bolivia and Peru) build on, the Participatory Market Chain Approach (PMCA): a three-stage facilitated process that promotes innovation by strengthening trust and constructive interactions among chain actors (Bernet, Thiele, and Zschocke 2006). In a similar vein, Critchley, Verburg, and van Veldhuizen (2006) have emphasized the role of platforms as a space or theater for innovation involving different stakeholders.Value-chain governance may be provided by: (1) market mechanisms, (2) hierarchical nonmarket mechanisms, and (3) nonmarket-based voluntary coordination between actors of a collective action type (Markelova et al. 2009). Dorward et al. (2009), writing from a new institutional economics perspective, note that coordination provided through different nonmarket mechanisms can help market actors reduce transaction costs and escape the low-level equilibrium trap associated with underdeveloped economies as a weak institutional environment and high transaction risks limit investment opportunities.Developed countries have seen the emergence of supply-chain management, defined as the \"integration of key business processes from end-user through original suppliers that provide products, services and information that add value for customers and other stakeholders\" (Lambert 2008). Given the increasingly \"disintegrated\" nature of supply chains made up of different enterprises in automotive, textile, and electronic industries, Bitran, Gurumurthio, and Lin Sam (2006) postulate the need for a neutral third player or maestro to coordinate the network of suppliers.The need for increased integration in developing countries and the disintegration of more hierarchically organized supply chains in developed countries has created a curious convergence with the need for new types of institutions to facilitate value-chain governance. As we shall see below, platforms have provided one such institutional mechanism for this market-governance function.The Institutional Analysis and Development (IAD) framework was developed to explain the functioning of common-pool resource systems and has been applied in many empirical contexts (Ostrom 2005(Ostrom , 2010)). The focus is on understanding the formal and informal rules that affect behavior in an action arena, where actors interact, make decisions, take actions, and experience the consequences of these actions. Behavior in the action arena is conditioned by: (1) biophysical conditions, (2) the attributes of community, and (3) the set of rules in use. Behavior in the action arena determines outcomes, and these outcomes and the valuation that actors make of them reshape the external variables and the action arena.The present chapter further develops the IAD framework to understand the role of platforms in a value chain (Figure 8.1). It specifies as external variables the biophysical and material characteristics of the value chain, characteristics of the chain actors, and institutional arrangements which can be described as a set of rules. The rules are of quite diverse types, some have to do with who can be a member of the platform and what roles they may perform, and others to with the types of benefit they receive through membership. Some of the rules are implicit, while others, as we shall see, are explicit and written. These external variables jointly determine and shape possibilities in the action arena made up of innovation and governance sub-arenas. These sub-arenas interact as innovation can generate new governance opportunities, and improved governance interacts with innovation processes. Finally, actions in each sub-arena lead to a range of linked outcomes and benefits for actors. Next, we apply the IAD framework to analyze the three platforms and their contribution to stimulating innovation and improving governance.The three platforms we compare are: Andino Boliviana (ANDIBOL) in Bolivia; Cadenas Agrícolas Productivas de Calidad (CAPAC) in Peru; and the Chimborazo platform in Ecuador.2 We begin by examining the three sets of external variables that condition the action arena of the platforms. We describe the platforms in the present tense, and the description relates to their status when this study was initiated. The Chimborazo platform was substantially restructured in 2006. Potato production in the Andes involves a mix of small, medium, and (in Peru and Ecuador) large farmers. Small farmers typically occupy land at higher altitudes, with poorer access, less input use, and often grow a relatively larger area under native varieties (landraces). Medium and larger farmers occupy higher-quality valley-bottom land, with better access and more input use, and typically have a much larger share of marketed production.Most potatoes in value chains in Bolivia, Peru, and Ecuador still go through traditional market channels, with a large number of rural assemblers, supplying wholesale urban markets and a network of urban retail markets with graded potatoes of a considerable range of varieties sold loose to the consumer. In general, this market appears to be fairly efficient, with no clear evidence of excessive levels of intermediation (Scott 1985). The market is dominated by spot prices with high price volatility. Transaction characteristics with small volumes managed by each market intermediary make it difficult to plan for investments in improving product quality, and hinder innovation.The three platforms described link farmers with high-value chains rather than with traditional market chains. These offer more scope for value-added, with potentially higher and more stable farmgate prices (in some cases with forward contracts), but may require considerable innovation for the entry of small farmers if they are to meet stricter quality and quantity criteria. In Peru and Bolivia, the focus is on native potatoes, one of the assets of poorer farmers, grown primarily for home consumption or local markets (Meinzen-Dick, Devaux, and Antezana 2009). Native potatoes were selected as having the greatest probability of generating benefits to poorer farmers as value-chain upgrading takes place. In Peru, the target market for native potatoes centers on high-income consumers in Lima, a large city with a growing middle class and a rapidly expanding agroindustrial sector. The challenge is to create a niche market for native potatoes as part of a more general interest in Andean cuisine. In Bolivia, while the market also centers on native potatoes and derivative products, the middle class is much smaller and there are no large agroprocessors, so nontraditional retail outlets are the primary market. In Ecuador, native potatoes are much less widely grown and the market opportunity is a large agroindustrial chip producer, and fast-food outlets and restaurants which need potatoes for French fries. Medium and large farmers predominantly access this value chain, so the challenge is not to stimulate the creation of a new market, but to create a space for small farmers within an existing one.In each case, an agricultural research organization assumed the role of platform facilitator: the PROINPA (Promoción e Investigación de Productos Andinos) Foundation in Bolivia; Instituto Nacional Autónomo de Investigaciones Agropecuarias (INIAP) in Ecuador; and the International Potato Center (CIP), through the Innovación y Competitividad de la Papa (INCOPA) project, in Peru. All these partners had experience with participatory approaches for on-farm research, but had not engaged multiple stakeholders to work with markets. The research organization learned how to assume a new role in facilitation of the process of platform creation and to \"step back\" and play a subsidiary role in research to address specific market constraints.The CAPAC (Peru) and ANDIBOL (Bolivia) platforms were established by INCOPA and PROINPA, respectively, resulting from applications of the PMCA with native potatoes, as more permanent forums to support the innovation process (Devaux et al. 2009). In the PMCA, the participation of private market-chain actors as members and partners to develop new business opportunities underpins the innovation process (Bernet, Thiele, and Zschocke 2006). ANDIBOL includes food-processing companies, such as Ricafrut, Ascex, and Bolivia Natural; farmer organizations, such as Asociación de Productores Ecológicos de la Provincial Aroma (APEPA); nongovernmental organizations (NGOs), such as Kurmi Foundation; and others (Table 8.1). CAPAC interacts with some private-sector actors as members (formal membership), including Mi Chacra, a supplier of marketing information; the Gastrotur cooking school; potato processors, including Frito-Lay, a multinational chip producer; and the Wong supermarket group. Researchers and other agricultural service providers, including the NGOs Asociación Fomento de la Vida (FOVIDA) and Asociación para el Desarrollo Sostenible (ADERS), promote and support these market-driven platforms.In Ecuador, the INIAP team, which facilitated the creation of the Chimborazo platform, was critical of the PMCA; they felt it paid insufficient attention to farmer empowerment and perceived a risk of capture of the benefits of innovation by the private sector. However, they recognized that broader impact for agricultural research means engaging a broad range of stakeholders with a clearer market orientation. The Chimborazo platform brings together 28 farmer organizations and a group of service providers comprised of three NGOs, two universities, and INIAP itself. Frito-Lay and restaurants serving French fries in Riobamba and Ambato are involved, but as clients rather than full partners. Here the meshing of farmers and service providers in the platform is the driver of the innovation process.Engaging such diverse sets of stakeholders for collective action in value chains requires a broad set of rules to guide and shape their interaction. Some rules are explicitly formulated-all platforms have written statutes that define their mandate or mission, and describe leadership positions (Table 8.1). Other rules are implicit or informal.In CAPAC and ANDIBOL, rules about platform membership embodied in formal statutes give private market-chain actors a privileged position, as their decisions about new market opportunities underpin innovation options. Researchers and other service providers play a supporting role in sustaining innovation.In the Chimborazo platform, INIAP seeks to build on the existing mandates and interests of a group of research and development (R&D) actors or service providers in the potato sector, recognizing that each has a particular competence, but guided by a new set of institutional rules called the \"New Institutionality,\" whereby each can best capture their comparative advantage (Crespo et al. 2005). Farmers organize the production process and demand an array of services provided by R&D organizations; NGOs provide technical assistance; and research organizations develop new technology to facilitate small-farmer entry into markets. Value-chain actors such as restaurants and supermarkets are treated as clients. These rules are most clearly articulated around multistakeholder platforms conceived as local alliances between farmers and R&D organizations. INIAP helped set up four platforms (among them the Chimborazo platform) differentiated by market catchment area. The rules for identifying and engaging actors are specified through a methodology that stipulates a series of steps in setting up the platform around a market opportunity (Reinoso et al. 2007). The steps include stakeholder mapping to identify and engage relevant platform members, and designation of one of the service providers to host the platform and assume more specific facilitation responsibilities.Each of the platforms has different rules regarding the outcomes which they can affect. CAPAC and ANDIBOL have mandates to promote and develop value chains for potato and other Andean tubers and Andean products (Table 8.1). As discussed above, in these platforms it is the participation of private market-chain actors that drives innovation. In order to ensure that benefits flow to small farmers, both platforms have complementary rules, embodied in the formal objectives of the platforms, concerned with the inclusion of small producers and corporate social responsibility (CSR) (Thomann et al. 2011).The Chimborazo platform focuses explicitly on strengthening small-scale potato producers and positioning them in the market for processed potato.Here it is the meshing of small farmers and service providers that drives the innovation process. Many farmers attend platform meetings and are active participants. The Chimborazo platform treats private-sector actors as clients rather than as members or partners, and they do not attend ordinary platform meetings. Initially, the primary client was seen as Frito-Lay, but in practice it was difficult to meet the more demanding quality (levels of reducing sugars), quantity, and continuity requirements imposed by this large agroindustrial client. As a result, the most important group of clients are restaurants serving French fries in the cities of Ambato and Riobamba.We turn now to discuss the action arenas of the platforms.CAPAC as a platform has only one annual general assembly; other stakeholder interaction is project-and activity-specific. In practice, involvement of some private-sector partners is more active than that of some formal members. CAPAC was created as a result of the application of PMCA with the intention to support and consolidate the innovations that had been generated earlier and to promote additional innovation. It has some action in the innovation arena, for example in technical normative commissions that can change product-quality parameters and in promoting the use of CSR among private-sector actors. However, it has become increasingly active in the governance arena, providing business services on a not-for-profit basis for linking farmers to the supply chain of processors like Frito-Lay (for example, contract management, quality control). CAPAC also plays a role in advocacy and promotional activities (for example, as National Potato Day co-organizer). ANDIBOL has regular monthly meetings with a principal focus on stimulating new product development by its members, and supporting innovation to address market constraints. Although set up with facilitation from PROINPA, the interest in developing new businesses has meant that private-sector actors have taken a more proactive role and are seeking additional funding. At the time of writing in 2009, ANDIBOL members are reframing and redefining the set of internal rules and statutes governing the operation of the platform and members' behavior to promote trust and improve decisionmaking. Specifically, they are working on the definition of rules related to the entry of new members and those associated with the use of the \"Chef Andino\" trademark and \"ANDIBOL\" certification hallmark, both created by the platform. The first will be used as a commercial image to introduce new products to urban markets, and the second as a certification label to show that products have been developed with CSR (and generating benefits flowing back to small producers).The Chimborazo platform has monthly meetings which focus on planning production, meeting quotas for delivery to clients, and overcoming technical constraints to improve the quantity and quality of potatoes produced. These platform meetings build on and complement planning by the NGOs and the farmer organizations they work with to meet their shares of the quota. One of the first activities of the Chimborazo platform was to coordinate farmer training through the implementation of FFS. INIAP and other NGO partners had organized FFS previously (Pumisacho and Reinoso 2003), but this was the first time that they were articulated around a specific market opportunity. The FFS covered traditional topics in integrated pest and crop management linked to the introduction of a new processing variety, Fripapa,3 and also included new sessions on marketing, leadership, production costs, and pesticide management. INIAP trained NGO staff and farmer promoters as FFS facilitators, and provided backstopping to FFS implementation. The farmer training linked to the platform was substantial, and played a key role in facilitating technological innovation linked to the new variety to enable small farmers to meet quality and quantity parameters set by the market (Cavatassi et al. 2009).The Chimborazo platform also planned interactions with clients and partners to capture demands and build networks to link producers with suppliers. In 2004, for example, a business roundtable was held with potential clients, primarily restaurants, for the Fripapa variety (suitable for frying) and other improved varieties. This had stands with information about research and training activities of the platform, production plans to assure regular supply, and bags of Fripapa with the CONPAPA label. The Cooking School from the local university Escuela Superior Politécnica del Chimborazo (ESPOCH) prepared French fries and other processed potato products, and restaurants were asked to estimate purchasing needs by variety (Reinoso et al. 2007).CAPAC played a critical role in the creation of trademarks for native potatoes, a type of commercial innovation. First, CAPAC's collective trademark \"Mi Papa\" recognizes quality across a diverse range of potato-based products. Second, the \"Andean Potatoes Label\" is a certification trademark for native-potato trade with CSR. CAPAC participated in the public-private workgroup to define quality parameters tor selling under the label and was chosen by the group to be the legal owner of the brand (Thomann et al. 2011). CAPAC also provides expertise to private partners for the creation of new products. It helped establish \"Ayllin Papa,\" a product owned by a provider of the Wong supermarket, with clean, graded, bagged, and labeled native potatoes, which targets the gourmet high-value market.With regard to technological innovation, production of native potatoes in Peru is highly seasonal, and sprouting and dehydration lead to progressive loss of market quality after the peak period of harvest. CAPAC linked with researchers at CIP to extend the period of supply through modifications to storage methods and the use of sprout inhibitors in stored potatoes (Manrique and Egusquiza 2009).ANDIBOL has also acted as broker for technological innovation. \"Chuñosa\" is a packaged and graded product made from chuño, an artisanally freeze-dried potato that can be stored for long periods of time and is a key ingredient in some local dishes. Chuño is normally produced using very basic technology, under unhygienic conditions, and sold ungraded with impurities. The Ricafrut processing company, which owns the Chuñosa label, wanted to improve the product. They requested help to improve the quality and grading of the chuño raw material. The platform brokered this demand to improve cleanliness, grading, and presentation with PROINPA and Kurmi Foundation, which subsequently carried out participatory research to develop a potato peeler and grader. The manager of Ricafrut visited the production area to see how the machines performed and verify if the chuño obtained met market quality standards.The Chimborazo platform only played a limited role in commercial innovation. This was related to the material characteristics of the market chain. The platform did not develop any new products, but instead sought to exploit existing market opportunities for French fries with restaurants in Ambato and Riobamba. It played a central role in articulating the demand for a potato suitable for frying from the platform's clients, refining the technology for the supply of quality potatoes of the Fripapa processing variety from small farmers through the FFS, and establishing local farmer capacity for multiplying high-quality seed. This was a complex technological innovation. Because processing characteristics are variety-specific, the exploitation of a new market for potatoes for French fries, which involved a specific technological innovation (the new variety), triggered a series of other innovations. For example, restaurants prefer larger tubers for French fries. But Fripapa, initially selected by breeders for chipping, produces predominantly medium-sized tubers. This demand for larger tubers was brokered through the platform and led to the implementation by INIAP of research on planting densities and fertilization to increase the percentage of larger tubers and acceptability by the restaurants.All three platforms stimulated market-linked innovation functioning to differing degrees as innovation facilitators or brokers performing brokering functions described by Klerkx et al. (2009). The type of innovation which occurred was shaped by the material characteristics of the value chains and the characteristics of the participating actors. For CAPAC and ANDIBOL, where a new market opportunity was created, commercial innovation was especially important and specific innovations, such as trademarks, were developed to ensure that benefits from value-chain upgrading flow back to small farmers. For the Chimborazo platform, where an existing market opportunity was exploited and innovation was driven by linking small farmers and service providers, technological innovation around the Fripapa processing variety predominated. The innovation outcomes in all cases were complex and would have been hard to achieve by a single R&D actor on its own. They involved an interaction between commercial and technological innovation, involving both private value-chain actors and service providers in the platforms in Peru and Bolivia, and a complex technological innovation combining varietal change, improvements in quality, and adjustments in cultural practices coordinated between service providers and farmer organizations in Ecuador.In Peru, CAPAC has been instrumental in providing transparent information on price and volumes. It has assumed an important role in market governance by linking farmers' native potato production to Frito-Lay and Ayllin Papa through intermediary NGOs. Indeed, in the areas where no local partner (NGO) is available, CAPAC carries out more specific and local marketgovernance tasks (contract management, quality control, and delivery at the plant) that cannot yet be handled by farmer organizations, and provides them with orientation and capacity building for planning, production, and postharvest management. In these areas, planning meetings among CAPAC and farmer representatives are held at the beginning of every planting season to establish quotas by area and planting times to organize production supply. This direct role as marketing agent may conflict with that of a national stakeholder platform, providing transparent information on native-potato supply and a higher-level integration function with the intermediary NGOs.In Bolivia, ANDIBOL played an important facilitating and coordinating role, linking farmer organizations with exporting companies, and contributing to the supply of quality chuño for the export market. Without ANDIBOL it would have been impossible for chuño to enter export markets (Enrique Rivas, pers. comm.).The Chimborazo platform played the most extensive role in market governance. The platform developed and monitored production plans with farmer quotas by market catchment areas to smooth the supply of potatoes to clients. This supply-chain management function was time-consuming and involved most of the time of the coordinator of the Chimborazo platform working with the intermediary NGOs. In addition, the platform empowered farmer organizations and associations to assume a greater leadership role. This began with FFS, which helped build social capital by creating trained and organized groups and included specific training in leadership with a particular emphasis on women. This process of empowerment led to the creation of Consorcio de Pequeños Productores de Papa (CONPAPA, Consortium of Small Potato Producers), which from late 2006 took over the technical assistance, production planning, bulking up, and marketing functions that the Chimborazo platform had previously performed.The scale, sequence, and timing of the impacts of the platforms-understood as livelihood improvements for small farmers-differed. Platforms in Peru and Bolivia primarily involve the creation of new market opportunities for native potatoes with innovation brokering along a value chain, and benefits flowing back from the value chain to the small farmers. The immediate benefits of innovation brokers are often intangible and the time frame for change to work its way through the innovation system may be quite long (Klerkx et al. 2009). But because private market-chain actors are driving the innovation process, this change may be more pervasive and sustainable. In contrast, in Ecuador the platform was oriented toward existing market opportunities structured around geographically delimited supply areas composed of small farmers, and has primarily addressed market-governance problems in assuring volumes, meeting quality and timeliness constraints, as well as empowering farmers. This generates a more immediate and higher impact but, because engagement of the private sector is weaker, the eventual scale of the impact could be less than in the first case.In 2009 the companies linked to ANDIBOL sold over 9,000 halfkilogram bags of Chuñosa and nearly 3,300 boxes of Chef Andino. Exports have begun to Spain, so far benefiting 70 families directly, who receive US$1.10/kg. These products are still in a pilot stage of development and the final market size and potential for increased farmer income is not yet clear.In Peru, there has been a rapid growth of native potato marketed through CAPAC and its members to Frito-Lay, the fresh market, and as seeds, doubling from 2008 to 2009 and reaching over 400 tons.4 Farmers selling through these channels received around double the price in traditional markets, with a profit margin over 20 percent, and reported significantly higher yields.The clearest and largest evidence of impact comes, as expected, from the platforms in Ecuador (Cavatassi et al., 2009). By 2007, some 1,483 tons of potato from 260 ha were marketed through the platforms by smallholder farmers (average landholding 2.6 ha). Platform farmers obtained an average yield 33 percent higher than nonparticipants. Their input costs were also higher, but despite this their profit (gross margins) was approximately four times greater thanks to the higher yield and a 30 percent higher selling price. Secondary indicators suggest that the linking to the platforms did not lead to negative consequences for farmers from the intensification of agricultural production (careful attention was given to risks and precautions regarding pesticide use and to integrated pest management in FFS training).Despite developing a general definition of platforms and exchanges of ideas among partners, there has been little explicit theory behind the creation of the platforms. One attempt to provide a more general explicit theory was published but not widely applied among Papa Andina and its partners (Thiele et al. 2005). Theory behind platforms has been mostly implicit and the platform facilitators involved followed their noses in pragmatically developing the platforms. Only one platform (Ecuador) had a specific procedure for implementation (Reinoso et al. 2007). This lack of conceptual base, combined with the complexity of the challenges faced in increasing competitiveness of inclusive value chains, may explain why the platforms have sometimes taken on potentially conflicting functions (for example, legal owner of collective or certification brands, and market-chain facilitator for a specific geographic area and/or specific private-sector partners).All three platforms have had subsidies provided through project funding. This was probably a reasonable investment which generated acceptable returns to the use of public funding, as shown by the impact study of the Plataforma program in Ecuador (Cavatassi et al. 2009). But in the longer run, and for scaling up, other funding and management mechanisms should be explored. One such mechanism could follow the lines of US levy boards, which are funded through levies on both potato producers and purchasers (www.idahopotato.com/), or models mixing levies and income from services (www.swisspatat.ch). These are backed by government legislation and function in a very different institutional environment. Securing funding for the function of innovation broker where the services provided are less tangible is a challenge even in the Netherlands (Klerkx, Hall, and Leeuwis 2009).This chapter uses the IAD framework to understand the dynamics of three platforms linked to value chains. While all three platforms share some features, the material characteristics of the market chains they support, the characteristics of participating actors, their different underlying development paradigms, and institutional arrangements, mean that two different types of platform can be distinguished. In the first, the platform brings traders, processors, supermarkets, researchers, chefs, and others together with farmers and their associations to foster the creation of new market opportunities and commercial, institutional, and technological innovation with greater possibility of added-value for small farmers. In the second, the platform is structured around a geographically delimited supply area, meshing small farmers and service providers, and primarily addressing market-governance problems in assuring volumes, meeting quality and timeliness constraints, as well as empowering farmers, with a focus on technological innovation. Both types show indications of success, although the timescales to generate impacts are rather different, and more time is needed to judge which would be most appropriate under what circumstances.The platform in Peru began as the first type, but subsequently shifted toward the second, perhaps because as commercial innovations were consolidated governance became a more pressing concern. This raises a more general concern that, because of the more tangible nature of the services delivered, governance functions in platforms may tend to displace those of innovation brokers. Once this risk is appreciated, careful attention to the institutional rules which guide the functioning of the platforms could help maintain the broker function.The evidence from these cases suggests that platforms can bring together diverse stakeholders and contribute to new products, processes, norms, and behaviors oriented toward value chains, which could not have been achieved otherwise. In addition, platforms can achieve significant outcomes, increase farmer income, and help lift small farmers out of the low-level equilibrium trap (Cavatassi et al. 2009). More systematic evaluation is still needed to assess the impacts of platforms and their cost-effectiveness relative to other types of innovation broker and mechanisms for improving market governance. Up to now, platforms have lacked a coherent theoretical framework, making their assessment more difficult. We hope that this chapter will encourage more rigorous comparative analysis and wider use of multistakeholder platforms in value-chain innovation and governance.","tokenCount":"5586"} \ No newline at end of file diff --git a/data/part_3/2950731923.json b/data/part_3/2950731923.json new file mode 100644 index 0000000000000000000000000000000000000000..3db418bcfe84fa0056325559273302c523fd6863 --- /dev/null +++ b/data/part_3/2950731923.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"6b8694b579178de835930ce9d50bd322","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/30ab0bca-6517-420d-a073-f11b94f21d82/retrieve","id":"1105525759"},"keywords":[],"sieverID":"6587ce38-cdb7-4d4d-84f2-fe0efa234fa4","pagecount":"59","content":"Build stronger interface between formal, informal, and emergency forage feed and seed systems (bridge between productive highlands and drought-prone lowlands in Ethiopia) ❑ Identify role of cultivated forages to develop sustainable business models (using economic analyses) in an inclusive manner ❑ Learn from global case studies to apply novel (cultivated foragebased) feed preservation technologies in EthiopiaWe sincerely acknowledge the following stakeholders for their contribution and support Introduction ❑ Ethiopian livestock sector contributes to 35% -47% of agricultural GDP. Regionally, Ethiopia could potentially also export feed to Eastern and Northern African countries (Ethiopian MoA, 2020) ❑ One of the reasons for low productivity of the livestock sector in Ethiopia is shortage of feed and low quality of available feeds, particularly in the dry seasons. Low adoption and promotion of cultivated forages. (Tolera et al, 2019) ❑ As of 2007, conservative estimates suggested $15M of emergency seed aid in Ethiopia per year -delivered by governmental and non-governmental organizations. As of 2007, this translates to a cumulative total of $0.5B USD (Sperling et al. 2007). It is safe to say that that figure has risen in the last 12 years or so to $0.75B ❑ Lot of work has been done on seeds and feeds, but linkages with the output markets in an economically viable fashion is not common. Also not common is building bridges / interface between development and ECR seed systems. ➢ \"Lack of compelling evidence and knowledge on the comparative economic benefit and role of cultivated forages\" ➢ \"increase in public investment in rehabilitating range and pasture lands to improve feeding management and enhancing the promotion by the GoE extension services of improved feeding..\" ➢ \"Introduce and utilize technologies that enhances better utilization of cultivated forages\" Step 1• Partnership Landscape • Conducted key stakeholder interviews to learn about the forage sector activities in EthiopiaStep 2• Information Gathering • Collected and mapped information of demand sinks and infrastructure facilities: quarantine facilities, feedlots, dairy centers, ware houses, national agricultural research centersStep 3• Global Case studies • Conducted structured interviews with stakeholders in India, Mexico, and Tunisia to determine costs and benefits of foragebased densification • Identify cases from Mongolia, Thailand, and India on role for feed reserves and cultivated forages for dairyStep 4• Demand Estimation • Conduct a rough assessment of the need for cultivated forages in Ethiopia (proxy market demand)Step 5• Conduct Economic Analyses • Calculate cost per nutrient analyses for cultivated forages to supply to identified demand sinks in EthiopiaStep 6 a, when 100% of annual cultivated forage deficit met in the first year by growing simultaneously the four grasses @ 20% each and two legumes (leaving aside alfalfa); b , 10% increase per annum (a life span of 10 years was taken for the perennial grasses); c, for the three perennial grasses.❑ Meru Dairy Union(Central Kenya), an umbrella that houses 55 farmer owed dairy societies,❑ Meru Union processes 200,000 liters /day ❑ Under good weather conditions a certain society delivers 1200 liters of milk daily ❑ but due to the animal deaths coupled with forage scarcity in 2020 dry spell the daily delivery dropped to 200 liter /day ❑ During the dry spell in that area, use of gathered grass from forest increased ❑ Such grass also carries vectors causing disease that led to loss of dairy animals. What happens to feed during droughts?❑ The cost of manufactured feed increases during droughts (by 20%) due to high competition for feed ingredients in the market, resulting in their shortages. The cost of transport of hay in the form bales is much more expensive compared with that of grains or manufactured feed.❑ The region around Adama is the hub for the supply of emergency feeds to Somali (Jijiga) and Afar (Semara) regions. As for the manufactured feed, the cost of hay almost doubles during the dry season.❑ Market distortion also takes place due to purchase of feed ingredients, particularly of hay, grains, brans and oilseed cakes in high amounts for distribution into the drought affected areas. Their free distributions by NGOs and international organizations pose marketing challenges for the private sector.❑ To the best of the knowledge of the stakeholders contacted, feed has not been imported from the adjoining countries during droughts.Densification of forages -a global perspective ❑ Forages in loose form have low bulk density and hence are difficult to handle, transport and store. Densification technologies provide opportunities to increase the bulk density and decrease the cost of transport and storage, the latter also ensuring the continuity of feed supplies and reduction of waste contributing to resilience. The density of pellets is highest, followed by blocks and then bales.❑ Cultivated forages are generally soft and easier to densify, while crop residue such as rice straw is very hard, requires more power to cut and hence needs specialized chopping machine.❑ In most developing countries the livestock management -including feeding of animals -is undertaken by women. The densified feeds are easier for farmers to feed and reduction in feeding time by 75% and in labor cost by 30-40% has been observed when compared with feeding with loose ingredients (FAO, 2012).Case Study: Business approach to fodder cultivation enhanced income, Thailand 34 ➢ Through a technical cooperation project implemented by Department of Livestock Production of Thailand with the technical support of FAO, an innovative approach was used to promote grass cultivation as a business enterprise.➢ The farmers who had some surplus land and the unemployed youth who could lease land at reasonable rental rates were trained in the business of production and sale of high yielding high nutrient grass varieties.➢ The productivity improvement also stimulated private investment by dairy farmers, resulting in larger herd sizes. ➢ In Mongolia, public and private stakeholders including federal, provincial and district level governments take part in storage of feeds for the severe winter period.➢ By issuing resolutions the Government sets the targets of feed supplies for the winter, including volumes of emergency feed reserves to be prepared at aimag (province) and soums (district) level and by herders. Less wastage, higher animal productivity, ease of feeding, smaller storage space requirement, lower transport cost and non-selection of feed ingredients by animals and as a result better utilization of poorer quality ingredients, prevention of fire which could result on storage of forages in loose formEase of handling, no wastage because all is consumption by animals, lesser storage space required and increase in animal productivity.Ease of storage and feeding, and efficient use of locally available feed resources.Ease of storage and/or transportation while maintaining good quality.Lesser time required for feeding.Currently women are involved in forage harvesting, collecting, drying, feeding and dissemination of the technology.Feeding of pellets and blocks takes less time, which is attractive to both the youth and women. Innovative nature of the technology is attractive for youth.Enhancing skills to produce formulations, operate and maintain the machines, and run the densified forage production as a small business would attract youth in this innovative technology.It is also expected to stop the migration of youth which is of particular importance during the COVID-19 situation. Women are exclusively in charge of feeding and their role in feeding of pellets or blocks would be vital.Youth could participate in operation and repair of the machines after undergoing vocational training. They can also participate in the transport of densified feeds, from the factory to the livestock farmers.Women play key role in feeding livestock and would benefit from easy access and storage of forage pellets and from lesser time required for feeding.For youth, opportunities exist in production of forages and processing.❑Easy handling, transportation, storage and feeding ❑Lower cost of transport and storage.❑Good nutritional quality ❑Higher shelf-life than loose forages and baled hay ❑Offer an attractive possibility of setting up of feed banks near to the feed deficit areas.Improved forages provide key nutrients at a much lower cost compared to conventionally used feed ingredients Plantation size and densification units ❑ The cultivation of improved forages could be in large plantation areas, for example 500-ha farm, as has been established in Afar by the regional government or it could be in smaller farms of 50 to 150 ha. ❑ A large farm of 500-ha plantation has potential to produce approximately 10,000 tonnes of dry forage in a year. ❑ To convert such an amount of biomass into pellets, a fixed highpressure pelleting machine of capacity 20-25 tonnes pelleted feed production per 8-h shift is proposed. ❑ For the smaller plantations (50-150 ha), mobile high-pressure pelleted machine of 5-8 tonnes pelleted feed production per 8-h shift could be used. ❑ The forage cultivation and densification sites must be close to each other, to avoid transport of loose forages to the densification unit.A mobile pellet making machine (photo credit: A.K. Verma, NDDB, India)Model -Assumptions ❑ Feed demand calculated using assumptions and literature data represent the true picture.❑ The quarantine facilities would eventually function at its optimal values in the near future.❑ Outreach services would be able to demonstrate the economic and environment benefits of using the diets based on cultivated forages to the commercial feedlot farmers and managers of the quarantine areas.❑ Quarantine areas and commercial feedlots would procure pelleted feed from the densification units or traders.❑ The fixed and operational costs generated from the global case studies (India, Tunisia, and Mexico) surveyed under S34D would be valid in Ethiopia❑ Costs of nutrients from cultivated forages are up to 15 folds lower than those from the conventional feed resources ❑ Densification of cultivated forages decreases the costs of: a) saving animals during a 100-day drought period by 4 times, b) fattening animals by 2.3 times, and c) cost of feed for milk production by 4 times. ❑ It is cheaper to produce meat from animals of good genetic potential (for example those growing at 1 kg/day) than those from animals of poorer genetic potential (for example those growing at 0.5 kg/day. Likewise, it is cheaper to produce milk from dairy animals of high genetic potential. ❑ The greenhouse gas emissions per unit of animal source food production are lower from healthy animals of higher genetic potential fed with high-quality balanced diets.Concluding Remarks (cont.)❑ When we think of seed systems -especially those of forages, we need to think about the interconnectivity with the livestock sub-sector and thus the output markets ❑ Through our research, we have developed a new avenue for demand creation of cultivated forages -feed preservation technology using cultivated forages -that in turn will decouple the spatial dependence ❑ Our analyses show opportunities to strengthen the demand-led growth for the forage sub-sector ❑ The proposed business model(s) suggest PPPs that will provide solution to long dry seasons and recurrent droughts in Ethiopia leading to increased animal productivity, reduced human malnutrition, and increased livelihood resiliency ❑ Solutions proposed here create economic opportunities for smallholders, women, youth, and mitigates climate change ❑ Solutions that transform an emergency focused feed issue into one centered on longterm sustainability. ","tokenCount":"1812"} \ No newline at end of file diff --git a/data/part_3/2982774544.json b/data/part_3/2982774544.json new file mode 100644 index 0000000000000000000000000000000000000000..8a795df13ffd94b50ead613e73bfb48f4b37b696 --- /dev/null +++ b/data/part_3/2982774544.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c2478ef6ca5b51a47745dc6050b8ae6d","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/3ec0406e-825c-455c-b1ae-fc0b523d5f1d/content","id":"1609305568"},"keywords":[],"sieverID":"37a30c83-d939-40e6-96d6-dea0a9ce8ac4","pagecount":"56","content":"Gender, sustainable agricultural intensification, and food security, in the context of climate change: a literature review 1.We used a strategic review methodology, searching for studies performed in low-and-middleincome countries (LMICs) that were released or published in the English language after 2015 and available online. We looked for evidence of how gender was treated in the literature concerning sustainable intensification, with a special focus on Asian and African countries.We conducted our analysis in three steps: First, we conducted an electronic search using the Web of Science search engine, looking for recent reviews about SAI research and SAI articles published since 2015, using the search terms \"women\" AND \"sustainable intensification\"; this yielded 82 articles. We retained these articles and continued to search with other search terms, as the articles did not meet our requirements. We used search terms such as \"gender\" AND \"sustainable intensification\" that yielded 109 articles; \"farmer participation\" AND \"sustainable intensification\" that produced 262 articles; and \"gender\" AND \"sustainable intensification\" AND \"benefit\" that yielded another 24 articles. In this way we made a list of 477 articles and filtered out those that were not relevant for our review. Firstly, we looked for articles that were repeated when we searched using different keywords and filtered out 23 articles. Next, we did additional searches on \"gender\" AND \"sustainable intensification\" AND \"tradeoffs\"; on \"sustainable intensification\" AND \"inequity\"; and on \"sustainable intensification\" AND \"social sustainability\"; and found some additional articles, SAI guidelines and SAI indicators for gender and social inclusion. However, since SAI is referred to in many different ways as explained in the introduction, we kept finding additional articles by looking at different bibliographies of the key articles reviewed about gender and SAI with different titles. Among others, we added articles about \"youth and sustainable intensification\".In the second step, after discarding repeated articles and those not relevant for our study, we reviewed the title and abstract of the articles. Many articles that focused on sustainable intensification did not consider gender and social equity as outcomes of the interventions. Other articles were not focused on LMICs, while the search terms also picked up some articles that did not include any discussions on gender or sustainable intensification. Finally, in the third step, we conducted an in-depth review of 174 articles with these specific research questions in mind:Faced with climate change and environmental degradation, agriculture and food production must be transformed in such a way that a growing world population can ensure food security without compromising the planetary boundaries and while coping with unprecedented climatic risks. This means that food production must be continuously increased to be able to feed a growing population without more resources being available for smallholder farmers. At the same time, environmental damage already caused must be reversed as much as possible.Smallholder farmers and their families produce most of our food worldwide. However, many of them still live in poverty and food insecurity. Agricultural research and public extension services in the past have focused mainly on male household heads and technocentric innovations and have therefore tended to reinforce already existing gender and social inequalities. Gender and social inclusion are still emerging themes in agricultural research worldwide, and this is also true for research about gender and sustainable agricultural intensification. However, the literature shows that if not only male household heads but also women and youths were more explicitly recognized as farmers, the livelihoods of all family members would be improved. If research into and development of agricultural systems focused not only on technical but also on social and environmental innovations and their potential for increasing gender equality at all levels, improving the livelihoods of all the members of smallholder farming households would become a much greater priority for sustainable agricultural intensification and development. This would in turn not only increase smallholder farmers' resilience to climate change but also make possible more rapid changes in food production. This is urgently needed to reduce environmental damage caused in the past, help restore soil degradation, deforestation, and replace other damaging agricultural practices.Sustainable Agricultural Intensification (SAI) stands for a combination of technical innovations that are expected to be effective in transforming food systems and agricultural production in a way that reduces and restores environmental damage. However, the need for social sustainability is often ignored, and the environmental impact of SAI technologies is still in debate. Most agricultural research about SAI has focused on testing the effectiveness of individual technical innovations and their impact on improving the yields of selected crops; transforming food systems under climate change conditions instead requires a more systemic approach so that they become environmentally sustainable and socially just.Recently, agricultural research has begun to consider the perceptions of smallholder farmers and their family members about how their livelihoods are impacted by SAI practices. Although women and youth in smallholder farm households are key actors in the transformation of food systems to make them more resilient to climate change, considering their perceptions of how their livelihoods are affected by SAI practices is a relatively new focus in SAI research. This literature review aims to identify contested issues and missing and emerging themes in gender and SAI research and to make recommendations for future research and development on this topic.Described variously in agricultural research as Sustainable Intensification (SI), Sustainable Agricultural Intensification (SAI) or Sustainable Intensification of Agriculture (SIA), most authors understand that SAI is based on conservation agriculture (CA) or climate-smart agriculture (CSA). Contemporary literature does not offer a uniform definition for SAI, and in this report, we use the term SAI for convenience and relevance. The term Integrated Soil Fertility Management (ISFM) is sometimes used for a specific combination of SAI technologies, as well as Sustainable Land Management (SLM) practices or Sustainable Land and Water Management (SLWM) practices. These abbreviations refer to different packages of technologies because they vary according to the context and specific objectives of the interventions. All these SAI practices include different combinations of improved seed, organic and inorganic fertilizers, minimized soil disturbance, sustainable water management, legume intercropping, agroforestry, integrated soil management, and climate-smart agriculture technologies (Fischer 2022). The principal objective is to get more output from less input (Guo et al. 2020), thus minimizing adverse environmental and social impacts and enhancing ecosystem services (Pretty et al. 2011, cited in Guo et al. 2020). Conservation agriculture, a version of SAI, is a production system based on three interrelated agronomic practices: 1] minimized soil disturbance; 2] maintenance of permanent soil cover; and 3] crop diversification (FAO, 2014).Although SAI practices started in the USA and Latin America, there has recently been a strong emphasis on SAI research in Africa and Asia. In the context of climate change, although social and gender researchers and development specialists increasingly call for more inclusive SAI, including the increased engagement of women and youth (see Grabowski et al. 2021), there are still few research efforts in this area.With this review, we have been looking especially for the perceptions of rural women and men in small farming households concerning SAI technologies in conditions of climate change, and how these farmers are impacted by these technologies in different ways in their local context. To get a clear view of the current state of inclusive SAI interventions in different parts of the world, we have looked at reviews about SAI research since 2015 in order to identify emerging trends as well as gaps in research.1. What are the trends and gaps in the most recent literature about research into sustainable agricultural intensification and gender and social inclusion? 2. What kind of differential impact does the adoption of SAI technologies have on the livelihoods of women and men in small farming households and on food security? 3. How do social and gender structures and norms restrict women from adopting SAI technologies? 4. What is the potential of inclusive SAI and how can this potential be leveraged to transform gender relations towards more gender equality and social sustainability in this time of climate change?At each step, we briefly summarized our findings, trying to be specific about the study context, population studied, timing of study, methods used, and how concepts were measured. An additional consideration during our search was to keep only papers that used a transparent and robust methodology (whether quantitative, qualitative, or using mixed methods) and that had clearly undergone a rigorous peer review, and we did not consider the materials that were based on grey literature prepared for internal documentation purposes.The geographical distribution of the articles included for review is presented in Figure 1. Interestingly, ten articles about review studies conducted on research about sustainable agricultural intensification have been published since 2018 (Table1). However, not all of them included gender in their analysis.Two of them did not include any reference to gender; one was based on a worldwide literature review and included some primary case studies (Weltin et al. 2018); and another one was entirely based on the review of 63 published articles on smallholder farmers' adoption of sustainable agricultural practices worldwide (Foguesatto et al. 2020). One review article based on the African context mentioned gender as one driver for the adoption of SAI technologies by small farmers together with other eight drivers but did not include any gender-specific conclusions (Guo et al. 2020). In the same period, five literature reviews on SAI provided some gender-relevant conclusions (Salmon et al. 2018;Xie et al. 2019;Braidotti et al. 2021;Reich et al. 2021;Snyder and Sulle 2022). Finally, two reviews were specifically about gender and conservation agriculture (Wekeshah et al. 2019 andFlora 2021). The last one also included case studies without specifying how many articles and case studies were reviewed. Interventions towards SAI in livestock systems may not benefit women and men equally. More intensified systems could negatively affect women by increasing their workload and resulting in limited benefits for them. The inclusion of environmental, economic, and social indicators and perspectives would improve the success of SAI efforts.Worldwide Undefined no. of articles reviewedGender differences among heads of small farmer households have been studied mainly in articles about SAI in Africa. Women's rights' constraints are mentioned as influencing their SAI farming practices and technology adoption. Preferences, needs, and women farmers' roles are often not taken sufficiently into account when designing SAI interventions. 6. Braidotti et al. 2021 Worldwide, on the use of soil quality indicators and participatory techniques 43 studies reviewed test Women's involvement in participatory research about SAI is still an exception. 16 of the 17 studies reporting the involvement of women were carried out in African countries. This is related to the fact that women in this region account for about 50% of the agricultural labor force, and that the incidence of women's headship is higher than in other regions.A systemic literature review of 241 articles about SAI in agriculture Gender-sensitivity and adoption are included as \"a social aspect\" along with other economic, environmental, and human conditions and \"social dimensions of sustainability\" (2021: 8) for an inclusive approach. Gender was only found in 4-5 % of all reviewed studies. More participative research on SAI in agriculture is recommended to find out more about labor, gender, and adoption indicators. More research needs to be done on assessing tradeoffs for the environment and social domains. 8. The authors findings coincide with those of Porciello et al. 2021 about consistent gaps in the evidence for outcomes focused on nutrition, social inclusion, and gender empowerment across nearly every domain. Most papers and projects reviewed focus on productivity, followed by the economic domain (often through modelling). Far less attention is given to the environment, human condition, and social domains, and even less to impacts in farmer-managed fields. Evidence about environmental impacts or the social, economic, and political Laos, Bangladesh, Nepal women, men, and other social groups contexts that can hinder or encourage adoption of these impacts is missing. The need for greater participatory action research is emphasized. More involvement of social scientists from the beginning of an SAI project design through to completion is recommended. Very few truly interdisciplinary papers were found: they were either social-science focused or natural-science focused. Some papers suggested that labor increased, while others suggested a decrease, but they did not differentiate by gender. There needs to be better research on how men and women farmers adapt SAI interventions and innovations and how they build on local/existing knowledge. 9.Gender and conservation agriculture (CA) in sub-Saharan AfricaEvidence on gender and CA showed mixed results. Women farmers adopted CA less and disadopted it more compared with men, due largely to gendered barriers, including lack of access to land, machinery, inputs, extension services and credit facilities. CA increased women's income, labor involvement, and household food security. CA also increased the risk for women of land and crop dispossession by men when CA made farming lucrative. It also increased workloads, employment opportunities and health risks for women. CA positively altered gender relations, increasing women's participation in agricultural decision-making at the household level. Research gaps: long-term impact of CA on gender relations and on incomes for men and women, the sustainability of strategies for supporting women's participation in CA, and the dynamics of women's access to local farmland markets in relation to their involvement in CA. Research about gender and CA still fails to provide a consolidated perspective on key issues and lessons, and remains irrelevant to the knowledge of funders, decisionmakers, and agricultural groups. Studies found are described to be limited in number and robustness, short-term, conducted in few countries and with little basis for reliable conclusions. Gender as a dynamic social construct rather than a biological phenomenon hinders a robust appreciation of how it affects and is affected by CA in sub-Saharan Africa.10. Flora 2021 Worldwide, including case studies from Latin America Literature review combined with case studies.Gender-inclusive SAI has the potential to provide a way for rural households to stay on the land in a community with economic security and social inclusion in a healthy ecosystem. Men, women, and youth all have different perspectives on productivity and on economic, environmental, human and social aspects that need to be considered. SAI requires access to and control of natural resources, but unequal access is found to be an important obstacle. Women are found to be more likely to mix different varieties of the same crop in the same plot and to intercrop, which aids in preserving and improving the soil. Women access a wide variety of wild foods, generally observe changes in flora and fauna and adapt their livelihood strategies in response. As keepers of traditional cultural capital, women are more oriented to nature and fellow community members. These relationships are reinforced by rituals of respect for the land and each other. The local language, which women are more likely to speak and thus preserve, is important for SAI, because \"when you can name something, you can act toward it\", as there are many words related to natural capital that do not exist in the dominant language of education. Female-headed households are found to have fewer individuals inside or outside the community on whom they can depend for help (although that varies by country) and less adult-equivalent household labor. Collective knowledge creation, sharing, and implementation are critical. Men and women have different networks: female household heads may disproportionately be members of religious organizations compared to other organized groups, as they meet there with women from other communities. These religious organizations as well as women's organizations are found to be key in adapting and developing technologies for female as well as male household heads. With the introduction of technology, especially when it generates income, gender roles change and men generally take over, particularly when women do not have access to financial capital. Female-headed households have less access to capital, including farming tools and machinery.This section reviews the gendered adoption patterns identified, overcoming the simplified explanations that relate the lack of adoption of SAI practices by women only to less access to resources. It will start with referring to case studies that show how women are interested and eager to learn and adopt specific practices, and even in some cases how women household heads show higher rates of adoption and innovation in agricultural practices than their male counterparts, making them key agents of socioecological changes in their communities. Subsequently, it will explore other SAI gendered adoption patterns such as crop type, purpose of practice, and labor requirements. Finally, by reviewing cases in which women's participation in collective farming groups counterbalances labor and knowledge constraints, it will argue that collective action by women can facilitate the adoption of SAI technologies and can offer an opportunity for delivering agricultural extension services.Most of the research focuses on the adoption patterns of specific technologies or crops by maleor female-led smallholder farm households.In general, adoption of SAI is more frequent when farmers are better off and have greater access to resources. Therefore, the immediate, non-gendered response is to simplify adoption patterns by arguing that farmers with more land and resources are generally more able to adopt SAI technologies than poorer farmers. Consequently, since women in small farming households generally have less access to resources than men, they are less likely to adopt SAI practices. However, this does not always seem to be the case. Several articles argue that women adopt SAI practices more frequently and sometimes more intensively than men (Guo et al. 2020;Musafiri et al. 2022;Fischer et al. 2021a;Mucheru-Muna et al. 2021). It also emerges that gendered adoption patterns of SAI practices overall are very context specific. The cases reviewed demonstrate that adoption of specific technologies is extremely context-sensitive and depends on the local knowledge of farmers and stakeholders (Weltin et al. 2018). Local agroecological and sociocultural contexts are key factors affecting adoption patterns. These include gender normative framework, as well as the specific gendered livelihood strategies influenced by smallholder migration in some areas, and gendered land and agri-food systems (Zimmer, 2015).It is evident that women are interested in SAI technologies and eager to learn about them, while men may be more inclined to cling to their traditional farming practices (Fischer et al. 2021a). For instance, Guo et al. (2020) suggest that female smallholders are more likely than men to adopt SAI. Beshir et al. (2021) found that both female and male farmers are very interested in sustainable intensification technologies. These studies highlight that development actions should consider preference heterogeneities (including by gender) among farmers when developing their programs.Similarly, Musafiri et al. (2022) found that women in western Kenya adopted climate-smart agriculture (CSA) more frequently than men, and that women practiced agroforestry with crops of little or no commercial value. Sumner et al. (2015) studied how in Cambodia, both women and men embraced conservation agriculture (CA) and collectively negotiated the transition to CAbased production systems (Sumner et al. 2015).Mucheru-Muna et al. (2021) observed that gender was a factor that significantly influenced the degree of farmers' knowledge about fertilizer use and integrated soil inputs; female-headed households in Kenya were more knowledgeable about these practices and more willing to adopt an Integrated Soil Fertility Management, (ISFM) package. Likewise, Baba et al. (2016) found that female household heads were more likely to use inorganic fertilizers than male heads, although gender differences did not influence the adoption of other innovations. This shows that women's appreciation of SAI's different attributes is mainly driven by their concern for the food security and nutrition of their households. Women also provide considerable labor in farming and are thus more inclined to learn and implement new technologies.Several articles found that women are better positioned than men to be agents of socioecological change in their communities, and this is an important insight for understanding the gendered dynamics of SAI technology adoption. The reasons for this are rarely explored, though it might be due to women's greater concern for food security and nutrition. One possible sociological explanation is that in areas with high rates of male outmigration, women household heads are increasingly taking on leadership roles in farming both in the household and in the community. A further important finding might be that women household heads are more likely to be innovators because they have more decision-making power and control over their own resources (Farnworth et al. 2017;Mutenje et al. 2019). This is also found in Tran et al. (2020), who show how female-headed households in Vietnam are champions of climate-smart farming technologies.In their assessment of the eco-efficiency of smallholder perennial cash crop production in Ghana and Kenya, Heidenreich et al. (2022) found that gender plays a major role. Eco-efficiency is an important underlying principle in sustainable intensification, as it considers simultaneously the increase in agricultural value added per unit of land and the reduction of related environmental damage. Female-headed households were found to be more open to and better able to manage innovation for increasing agricultural value as key agents of change and innovation in their communities.This finding is also corroborated by other articles. For instance, in a study assessing the impact of an integrated co-learning extension approach to SAI in western Kenya, Marinus et al. (2021) describes how an elderly widowed woman whose fields were heavily infested with striga was successful in intercropping maize with soybean and applying manure in combination with mineral fertilizer. Through this, she became an agent of change in her community and contributed to mindset changes among other farmers. A wealthy male farmer who was skeptical about the new approach changed his mind after visiting the woman's maize field. These findings contradict common assumptions and extension narratives that regard men as being more inclined to take risks and innovate.Similarly, Upadhyay et al. (2020) found that Lao women cassava farmers made decisions about integrated pest management (IPM) and, even if they possessed comparatively little knowledge about the subject, favored agroecological approaches and took on key tasks in selecting propagation material. The study concluded that women were well-positioned to promote IPM practices such as the use of disease-free planting material, and that extension services should build women farmers' knowledge to empower them as agents of change and drivers of IPM adoption. Moreover, female farmers stressed the importance of letting cassava \"grow naturally\", which signals their greater connection to nature and inclination toward agroecological approaches (Griffin, 1978;Merchant, 1989). The authors argue that women understand intuitively how to use natural resources sustainably and embrace ecological values that protect nature.Finally, Zimmer et al. (2015) show how male migration to urban areas and the continued \"feminization of agriculture\" in many smallholder farming systems influences intensification and deintensification in complex ways. While the greater income gained means that the household is no longer solely dependent on agriculture for survival, it often results in the gendering of land use, turning women farmers into the main decision-makers on how to invest remittances from male migration. This investment is crucial for the adoption of innovative techniques, for sustainable intensification, and for increasing socioecological resilience.Gender normative frameworks and gendered livelihood strategies across landscapes affect the adoption of SAI practices. In this regard, a key topic identified in this review was how the type of crop targeted for sustainable intensification has profound gender implications, as crops are linked to traditional gender norms that designate certain crops as the concern of either women or men.Gender preference for specific crops depends very much on the context. Cereals and highly commercialized grain legumes are often considered as \"male\" crops, whereas less commercialized grain and vegetable legumes are regarded as \"female\" crops (Nassary et al. 2020). For instance, in patrilineal Ghana, planting millet that is typically controlled by men does not give women an incentive to adopt the new practices. Conversely, the introduction of a \"more gender-neutral\" crop such as maize enhances women's control and benefits as well as household food security (Fischer et al. 2021a). The same effect is found in the analysis of SAI practices targeting rice-production systems in Tien Geng province in Vietnam (Lovell et al. 2020). Since rice can also be an important cash crop it tends to be dominated by men. Therefore, SAI packages targeting rice as a cash crop will automatically attract more men than women. The most popular SAI practices among men are reduced tillage, water-saving practices, and integrated pest management.Likewise, Fischer et al. (2021a) show that in matrilineal Malawi, while women were typically more interested in SAI than men, this changed when the SAI project introduced a high-yielding, drought-tolerant cowpea variety, which caught the interest of both women and men participants. This led to a renegotiation of intra-household land allocation, with women giving men a separate plot for cowpea farming.Several articles point to the purpose of an agricultural practice as another crucial factor in understanding gendered SAI adoption practices. For instance, women in some contexts are willing to adopt practices if the subsistence consumption and nutrition of the family can be improved. Conversely, men are more interested in applying SAI if it is accompanied by positive marketing options for increasing monetary income. This difference is well illustrated by Kizito et al. (2021) in their analysis of landscape restoration interventions such as terraces and grass strips in Kenya. Women showed a preference for grass strips because they were interested in forage biomass for milk production for home consumption and nutrition. Men rated terraces more highly because they considered social prestige and looked further along the value chain at the quantity of fodder for sale. Sustainable land management (SLM) practices increase soil protection while improving cropland water infiltration. Men tend to prefer soil and water conservation for social prestige and economic gains related to labor demands and land ownership. Tufa et al. (2022) present the adoption rates of technologies by sex of the plot manager. They found that crop rotation was the most frequently adopted technology, followed by the use of improved varieties, crop residue retention, intercropping, manure use and minimum tillage. Intercropping and minimum tillage were practiced more in female-managed plots, whereas improved varieties, crop rotation and crop residue retention were applied more in male-managed plots. There were statistically significant differences between female-and male-managed plots in the adoption of all technologies except for manure use. A plausible explanation of why women were more likely to adopt maize-legume intercropping and minimum tillage could be because of their preference for producing diverse crops to be used for home consumption (Croppenstedt et al. 2013in Tufa et al. 2022) or because of their socially assigned role as food crop producers.It emerges clearly that willingness by women to innovate depends largely on the type of practice. Nevertheless, the existence of marketing opportunities is a driver of SAI for both women and men. Dubbert et al. (2021) found that in cashew production in Ghana, the intensity of sustainable farm practices for female-headed households was 29% points lower than that of male-headed households. However, when they participated in contract farming, the intensity of their sustainable farm practices increased by 47% compared with that of male-headed households. Finally, in some case studies, women were found to be less likely to adopt practices that were labor-and knowledge-intensive. In Sri Lankan rice systems, a variety of practices are promoted to help reduce the sensitivity of the production to water stress. Women were found to be less likely than men to diversify into other crops on uplands during Maha (secondary seasons). Where diversification into other field crops occurred, it was driven primarily by younger and maleheaded households. This was attributed to structural inequalities between men and women in terms of mobilizing labor and capital, but also to the fact that knowledge-intensive practices may be difficult to implement for less-educated women (Bandara, S. et al. 2021). Conversely, women's preference for intercropping in Malawi was also driven by the need to reduce their labor input into weed control (Tufa et al. 2022).Fostering collective action by women is seen as partly counterbalancing not only land-related obstacles to involvement in projects faced by women at the household level, but also the labor and knowledge constraints that women might face in their individual plots. For instance, as shown by Fischer et al. (2021a), in Ghana, smallholder farmers emphasized the unity and mutual support that women had established in their farming groups. This included labor support as well as knowledge-sharing about new technologies. Thus, the way that intensification interacts with exchange networks in the community emerged as an important investigation area.These results highlight the importance of fostering collective action by women through participation by extension in women's groups that help women gain access to new technologies; women's groups can offer an opportunity for the successful delivery of extension services (Kristjanson et al. 2014;Flora 2021). For example, in Bangladesh, the SIAGI (promoting socially inclusive and sustainable agricultural intensification in West Bengal and Bangladesh) interventions were designed to empower individuals and groups to participate in agricultural intensification. These interventions included activities to foster the agency and collective action of women's self-help groups, water user groups and tribal minorities (Merritt et al. 2022). Also, participation in self-help groups in India helped women gain access to new technologies and own livestock. However, the women also reported an increased workload regarding farming and responsibility in terms of loan repayments (Kuchimanchi et al. 2021).Similarly, in an assessment of the SAI of cereal production in Burkina Faso, it was demonstrated that addressing an extension service male bias by engaging with women's groups, along with improving women's access to resources (including credit and equipment) and income, contributed to greater gender equality of interventions (Theriault et al. 2017in Salmon et al. 2018). This is consistent with the findings of the review about gender and SAI by Flora (2021), who found that men and women have different networks, and that organized women's groups can be used to foster certain adoption patterns of SAI technologies.This chapter provides an overview of the gendered impacts of SAI practices on female and male farmers and on food security. However, lack of systematic impact studies makes it difficult to reach robust conclusions regarding the gendered and social impacts of specific SAI packages across rural geographies and socioecological contexts. Overall, it emerges clearly that the impact of SAI on women and men's resilience to climate change; food security and nutrition; and broader social, gender and intergenerational equity; is often unintended, fragmented, and poorly researched. What is clear is that even the most benign technology can change intra-household labor relations and resource-allocation dynamics, sometimes with negative spill-over effects on women's time and well-being.Gendered impact studies are limited, as the primary focus of most articles is on understanding adoption determinants, with gender featuring as an important intersecting factor. This is consistent with findings from a systematic literature review on gender and conservation agriculture (CA) in sub-Saharan Africa (Wekesah et al. 2019), which concluded that only a few studies captured the impact of CA on women's income, health, and food security among femaleheaded households and on gender relations at household levels. The authors conclude that the lack of a focus on gender as a dynamic social construct rather than as a biological phenomenon hinders a robust appreciation of how it affects and is affected by CA in sub-Saharan Africa.In general, there seems to be little emphasis on the different perceptions of women and men in smallholder farming households about how they are directly impacted by SAI technologies. Perceptions are only considered in assessing the differential preferences of women and men for different varieties of specific products, for example by Ronner et al. (2019) in the case of climbing bean cultivation in Uganda. Most of the articles based on household surveys are trying to track some specific technical aspect from the farmers' point of view, for example, whether the productivity of a specific product and water consumption increased); whether nutrition of the family improved (Fiorella et al. 2016); whether plants were protected from specific pests (Upadhyay et al. 2020); or whether soil quality improved, (Tu et al. 2022), etc. Some articles include farmers' perspectives about impacts on their livelihoods, but few relate them directly to specific technical innovations and to how women and men are differently affected by these technologies. Zulu et al. (2021) argue that \"assessments of gender and intergenerational inequities in SAI costs and benefits sharing often remain overgeneralized, theoretical, or locally irrelevant\" (Zulu et al. 2021: 376, quoted in Snyder et al. 2022). Therefore, participatory impact studies are needed that focus on the perceptions of male and female farmers about SAI technologies, in order to develop locally relevant indicators for measuring the gendered impacts of SAI. 2022) address the lack of attention to gendered impacts by showing how integrated approaches (IA) to research-for-development (R4D) around agricultural intensification projects can be used to assess complex social and agroecological problems and different and integrated impact dimensions (e.g., economic, social, gender, food security etc.). The authors state the importance of research activities that embrace co-creation and justice concepts as central to the process. Further approaches that have potential for assessing how SAI has different impacts on the women and men in small farming households include the ecosystem approach (Timberlake et al. 2022;Estrada-Carmona et al. 2020 andFlora 2021), and the so-called network approach that observes a combination of technical, ecological, and social impacts, (Timberlake et al. 2022).One of the most controversial aspects found in our review concerns the impact of SAI technologies on rural women's workloads in small farming households. One of the unintended impacts of SAI technologies is in many cases an increase of women's workloads; this is described in detail in several reviewed articles. But in other cases that we will also refer to in this section, some SAI technologies may alleviate women's workloads in specific contexts. For instance, Fischer et al. ( 2020) documented the labor-saving effect of a push-pull organic pest control system for women in Kenya. According to the authors, the push-pull technology (PPT) reduced the need for weeding, a laborious activity largely undertaken by women in the study areas (Diiro et al. 2021). PPT further serves as a quality source of fodder for livestock production, which can increase farm income and source of animal protein for the household. (Kassie et al. 2015. Dixon et al. (2020) also found evidence that in many South Asian countries, both female-and male-headed households practicing a rice-wheat farming system did not register any increase in labor because of adopting Conservation Agriculture for Sustainable Intensification (CASI). By eliminating tillage and reducing labor and water use, CASI practices saved energy in all cropping systems and increased energy-use efficiency by 13-15% for rice-wheat, rice-maize, and rice-lentil systems. Rola-Rubzen et al. (2016, and 2019quoted in Dixon et al. 2020) emphasize the positive perceptions of CASI by women and men farmers, as well as a variety of direct and indirect benefits. Due to additional income and saving of time, the reported benefits include better nutrition for the family, reduced drudgery for women, more time for other productive tasks or leisure activities, and better education for the children (Rola-Rubzen et al. 2016;Brown et al. 2021).Socially determined gendered patterns of labor distribution in farming greatly influence preferences and adoption. Consequently, some studies have focused on the potential reduction of women's workloads with SAI practices and show how the adoption of certain SAI technologies can generate changes in women's labor requirements, thus discouraging adoption. A notable example is found in Malawi, where enhanced women's empowerment in decision-making is associated \"with a higher probability of planting legumes but a much lower likelihood of manure intensification\" (Mponela et al. 2020). This finding is consistent across research (e.g. Kihara et al. 2022;Mustafa-Msukwa et al. 2011), and may be because women find manure application (e.g. preparation and transportation) too labor-demanding. Where transport facilities are limited, and the usual way of transporting heavy product/s is on people's heads and shoulders, transporting manure is constrained by labor allocation requirements. Related to that is the evidence that livestock are usually owned by men (Kihara et al. 2022). A high number of household dependents was also found to lower the likelihood of applying organic manure and limit the quantity of fertilizer applied (Mponela et al. 2020).The gender impacts and labor requirements of SAI vary across type and number of practices adopted and are highly context-specific. However, evidence from research suggests that a parallel shift from previously male to female tasks often occurs. Additionally, there seems to be a new tendency in agricultural development to promote SAI technologies by arguing that they generally alleviate women's workloads. In response, several authors have shed doubt upon some of these arguments because of lack of convincing empirical evidence.The most common trend is that the higher labor demand for the specific tasks and practices of SAI is often met by rural women, with far-reaching consequences on their time poverty and health. Westengen et al. 2018 refer to the already-mentioned shifts of labor from men to women in the context of SAI.\"Reduced weeding presupposes the use of herbicides as reduced till is associated with a higher weed pressure than ploughing, and the reduced burden on women on land preparation is highly dependent on the type of reduced till practiced. Our focus group interviews (in Zambia) revealed that in cases where labor shifted where land preparation shifted from ploughing to permanent basins, the labor shifted from men to women, since ploughing is considered a male job and hand hoe tilling… a women's responsibility\" (2018: 6).The presumed labor-saving potential of CA has also been challenged by Montt et al. (2020). They argue that the higher labor demand is driven by more work during the harvesting and threshing stages, which is usually provided by women and children. The study also remarks that the laborsaving potential of CA is usually in land preparation, weed control and threshing, as a result of the implementation of minimum tillage. However, minimum tillage is very difficult to adopt as it involves long-term investments to restore soil quality as well as investment in direct-seeding equipment that few people can afford. CA packages also involve a change in the use of various inputs. Too often, CA adoption is not accompanied by these complementary practices in an optimal way (notably chemical inputs, skills, and machinery), leading to lower yields and higher labor demand. Kuya et al. (2021) also found that, while basin planting is effective in reducing the risk of crop loss and cultivating land previously not suitable for cultivation, it is labor-intensive and may induce a shift in labor input from men to women in regions where plowing is done by men. Overall, recent conservation agriculture projects in African smallholder farming that promote agroecologyfriendly technologies sometimes impair their own goals through a burdensome, gendered shift of labor-time responsibilities to women. According to these authors, this is one of the main causes of slow adoption and contributes to ramping up negative perceptions among farmers.In Sri Lanka, Bandara et al. (2021) found that the high investment required for SAI in terms of labor input may force both women and men farmers to abandon off-farm income opportunities, thus dissipating the benefits of SAI in terms of increased income. Alternative recommended options are to replace labor with capital or mechanization for improving welfare, although mechanization is highly gendered and often found to benefit men more than women. Describing mechanized forage chopping in Tanzania, Fischer et al. (2019) showed how labor and income allocation can lead to gender struggles, because although men's appropriation of mechanized chopping may reduce women's labor input, it may also create dependency on male household or hired temporary labor, causing new labor demands that affect women's workloads.A pattern of increased women's workloads is also found in sustainable livestock intensification. In India, for example, the transition to intensive systems that are more market-orientated has been inclusive of both lower caste groups and women in terms of increased ownership of large ruminants and access to technologies. At the same time, intensification has led to an increase in women's workloads in farming, driven by the shift from grazing-based livestock rearing to stallfed market-oriented systems and from rainfed food crops to irrigated cash and vegetable crops (Kuchimanchi et al. 2021). Women reported that rearing improved cattle in stallfed systems demanded more time, e.g., for feeding, cleaning sheds, and animal health care, than was needed for rearing cattle in grazing-based systems. The shift from rainfed food crops to irrigated cash and vegetable crops also increased workloads, particularly for tasks from multiple harvests to packing that is carried out exclusively by women.The potential increase in women's workloads also depends on the number of practices adopted. According to Mottet et al. (2018), an increase in labor demand most affects those households that adopt the three components of CA, namely crop diversification, minimal soil disturbance (notillage) and permanent soil cover. Also, the high labor demand associated with the adoption of a combination of Integrated Soil Fertility Management (ISFM) technologies, which can be empowering if implemented in a gender-sensitive manner (Gartaula et al. 2022), is found to disfavor women in certain areas of sub-Saharan Africa (SSA) (Cyamweshi et al. 2022). Soilmanagement dynamics at the household level are gendered, and plots run by women managers (in both female-headed and couple households) are more likely to have crops with a single ISFM component than plots managed by men. This is because labor demands for both women and men rise with the number of ISFM components, although women's labor tends to be significantly higher. Yet women's interest in soil management practices is confirmed by several studies. According to Burke and Jayne (2021) soil management is a pressing issue, particularly for women as they generally have less access to quality land. According to them, \"interventions to improve the lowest quality soils would benefit the most disadvantaged farmers by default, and these are disproportionately women\" (2021: 8). The tradeoff between gendered labor requirements and the potential benefits of technology adoption emerges as a critical, though poorly-explored issue.Gendered decisions over labor use tend to be male-dominated and are usually informed by traditional and highly rigid norms over women and men farmers' respective roles in decisionmaking. Discussions about the importance of renegotiating the gender division of labor in the context of sustainable intensification are virtually absent in the literature. Men's power to command and mobilize family labor within the household is often justified by the fact that they exert control over land and crops (Fischer et al. 2021a), particularly in highly patriarchal settings.The unintended increase of women's labor is a direct consequence of poorly designed SAI packages, which means that gender and labor dynamics in farming systems are overlooked in technology testing and delivery. For instance, a sustainability impact assessment carried out in Tanzania found that the increased workload and time-intensive nature of agricultural practices under SAI were seen as more problematic for women than for men (Schindler et al. 2016). In Bangladesh, due to cultural dynamics, treadle pumps were designed for male operation but were actually used by women, exhausting them and reducing the time that they could spend on domestic activities.When the additional labor inputs required by the adoption of certain SAI technologies are mostly provided by women rather than hired laborers, it is sometimes seen as a substitution strategy to compensate for the higher costs of the SAI technology packages. For instance, in Ghana, Michalscheck et al. (2018) found that high investment costs and labor constraints were the main obstacles to SAI adoption identified by both low-and medium-resource-endowed households, though these concerns were voiced more by male than by female household members. In Senegal, most of the agroecological systems observed displayed a significantly higher number of working hours by women per hectare and a lower number of wage workers per hectare, suggesting substitution between these two labor types (Laske & Michel, 2022). Montt et al. (2020) also remark how in sub-Saharan Africa the increase in labor demand for CA is largely met by household labor, and to a large extent by women and children with little input from hired labor.Hiring additional laborers might be unaffordable, particularly for poorer households, including households headed by women who already struggle with chronic lack of resources. Yet the increased participation of family labor in intensified production might also lead to job losses for the poorest women wage workers. Such a reduction in the demand for women's as well as men's wage labor can have huge social costs. Gathorne-Hardy et al. (2016) analyze how rice intensification systems in India provide environmental and economic gains, but at the expense of social sustainability. Lower-caste women were found to be less involved in agricultural wage labor, which in turn reduced their ability to meet household food and health expenses. These findings suggest the importance of embedding broader considerations of labor impacts in the analysis of sustainable intensification, along with environmental and productivity concerns. Understanding this is crucial, as it might facilitate or limit the adoption of certain SAI practices. For example, Sinha (2022) analyzed how the change from cotton to paddy cultivation in India has led to a growing number of unemployed landless Dalit women, whose farm labor is no longer needed. This calls for the creation of a politics of labor that is equitable to both gender and caste.Finally, Upadhyay et al. (2020) mention how norms concerning gender roles in farming are important for pest control in cassava crop protection in Laos and Vietnam. These gender roles are described in detail to show how they restrict women's participation in pest control: \"Women's inclination to plant naturally infers a traditional approach to agriculture characterized by low levels of formal knowledge, limited use of external inputs, and minimal involvement of farmers outside the basic tasks of planting, weeding, and harvesting. This markedly passive approach to pest control appears to dominate local farming communities and possibly could be influenced by certain gender-specific attitudes or roles \" (2018: 14) This also relates to the degree of women's knowledge and education, showing how planting legumes is the preferred choice of women because they have greater knowledge of and control over these crops; this is accentuated by gender inequity in access to education in places such as the Tien Giang province of Vietnam. For instance, the average education span of the female household heads participating in training was 3.8 years versus 6.7 years for the males.In some cases, SAI impact on gender division of labor is largely misunderstood and only superficially analyzed. Westengen et al. (2018) report that the framing that women benefit from SAI because it reduces their labor is not well documented (Whitfield et al. 2015b cited in Westengen et al.). Baudron et al. (2018) also argue that since women only make up an average of 30 % of labor in agriculture, their participation and workloads are exaggerated. However, women's participation in domestic and caring responsibilities is overlooked in the analysis. They also wrongly assume that if wage laborers are contracted, women's labor in agriculture can be reduced, without considering women's roles in managing and supervising labor contracts. Mechanization is also said to benefit women as much as men, without considering that women's labor taken over by machines is then generally considered to be men's labor.Studies assessing the impact of SAI on food security and nutrition are also scant and rarely informed by gender considerations, despite the crucial and increasing role played by women as food producers and farm managers. This finding does not coincide with those of the review of Flora 2021, who concluded that in the past, nutrition was the main focus of gender and SAI research. Using the Household Food Insecurity Access Scale (HFIAS) indicator for the measurement of food access, Yahaya et al. (2018) found that households participating in SAI training in north-western Ghana were more likely to have better access to food than nonparticipating farmers. While the gender dimension of this finding is not explicitly assessed, it is stated that more female-than male-headed households participated in training and thus benefited from improved access to food. Nevertheless, the analysis of household food access fails to address the most challenging question of access for whom? This is a critical gap, considering that enhancing food security and nutrition by increasing yield per hectare while reducing environmental damage from agricultural production is one of the main goals of SAI. Lovell et al. (2020) criticize the mainstream SAI paradigm for focusing on productivity increase, thus overlooking social, political, and distributive issues, which are often the root cause of food security problems.Many studies capture SAI outcomes in terms of increased yield, sometimes assuming that this will have a positive spillover effect on smallholder farmers' household food security. For instance, Teklewold et al. (2019) in their analysis of how climate-smart agricultural practices can improve household food security and nutrition, argue that this is driven by increasing agricultural income either through higher yields or by freeing up labor for alternative economic activities. (Teklewold, 2019).In a systematic review of SAI practices, Reich et al. (2021) found that crop yield was one of the top indicators discussed in SAI research up to now. They identified several important research gaps, including more systematic assessments of food security, gender, labor, and wild biodiversity. Snyder et al. (2022) confirm this finding, arguing that increased productivity must be assessed for its other possible impacts beyond profitability -on labor, on equity, on the environment and on food security (2022: 10). While there is positive evidence that SAI interventions improve yields, how this translates into improved income or food security is still unclear. Multiple factors have impacts on food security and nutrition, including post-harvest losses, market access, fluctuations in market prices, etc. (Snyder et al. 2022).From a gender perspective, while acknowledging the vital nexus between enhanced productivity and food security, overemphasis on increased yields fails to address the existing gendered power dynamics within households and food systems, and how these determine women and men's ability to sustainably access resources and a sufficient amount of nutritious food. For instance, Fischer et al. (2021a) show that enhanced productivity per se might actually reduce women's access and control over the harvest in contexts where land and crops are strictly controlled by men, which might undermine household food security and nutrition.Conversely, they remark that when higher productivity is combined with a flexible crop allocation, men's control over agricultural produce tends to relax. This happened in patrilineal Ghana, where the intercropping of legumes with a more flexible crop -meaning neither women's nor men's -such as maize, secured women's access to harvest and benefits. They argue that this is a situation that can be particularly beneficial for women and children.Gender participation in crop sales is also an important factor that influences food security outcomes. Me-Nsope et al. (2016), quoted in Nassary et al. 2020) found that when only men were involved in marketing farm products, the sales did not translate into improvements of the household's food security. Similar outcomes are also observed in intensified dairy systems. For instance, while women in Kenya play a greater role than men in milking, major decisions on trading and the use of income from milk sales are taken by men (Salmon et. al. 2018). Women and men can have different perceptions about the purpose of livestock rearing and intensification, (Heffernan et al. 2003quoted in Salmon et al. 2018): women see it as a means to enhance family food security, whereas for men it is a lucrative investment. These conflicting perceptions can lead to intra-household tensions and jeopardize food security.Therefore, the key question for maximizing the food security impact of SAI is how to ensure that productivity enhancement is accompanied by measures that can enable more gender-equitable resource distribution and control patterns. Wairegi et al. (2018) also provide evidence that poorer female coffee producers continue to experience seasonal hunger despite enhanced productivity as a result of SAI. They report that women and men coffee farmers who adopted SAI practices, had similar yields and level of intensification. Nevertheless, female-headed households were more likely to be food-insecure than households with male managers. While the reasons for this are poorly explored and remain nebulous, the higher dependency ratio (106 vs 82) of households headed by women, combined with more limited access to agricultural inputs, were singled out as the main factors leading to food insecurity.Gender differences in productivity were also identified in some contexts. A study exploring gender differences in technology adoption and agricultural productivity in Malawi (Tufa et al. 2022) found that female-managed plots were 18.86% less productive than male-managed plots. The significant productivity gap between female-and male-managed plots was attributed to several factors, including differences in asset endowments, labor productivity and household dependency ratio, as well as the soil characteristics of plots. Results showed that female-managed plots were likely to be less fertile, steeper, and shallower than plots managed by men.Similar results were also documented in central Malawi, where the promotion of soybean-maize rotations along with appropriate soil and crop management techniques led to larger maize yields, mostly among wealthier, male-headed households (Van Vugt et al. 2018). However, this result was also attributed to the low quality of soils in Dowa, where the majority of women participants came from. The fact that plots managed by women tend to have lower yields than those managed by men is generally attributed to unequal access to agricultural inputs. However, size and quality of land are highly gendered, and women often farm smaller and less fertile plots (Fischer et al. 2021a;Lovell et al. 2020). However, Tufa et al. (2022) remark that even when the resources managed by women and men are similar in both quantity and quality, limited agency and participation in decision-making heavily constrain women's capacity to make the best use of these resources.It is surprising that despite the recent surge of attention to gender and nutrition, this is a neglected topic in SAI research. Schindler et al. (2016) show that the positive impact of SAI on nutrition has mainly been attributed to increased agricultural production, resulting in increased income and therefore in access to the necessary means to diversify the diet. Cyamweshi et al. (2022) argue that the focus of crop associations on legumes either as cereal legume rotations or intercropping contributes to important nutritional outcomes, since legumes are often high in nutrients. Legumes are also gendered crops, meaning that they are often controlled by women. This further enhances the nutritional potential of crop associations.Improvements in the nutritional status of women measured through the Women's Dietary Diversity Score (WDDS) are reported in two articles. Baye et al. (2022) found that in households that practiced irrigation, women were found to have more diverse diets and higher intakes of Vitamin C and calcium than women in non-irrigating households. The statistically significant interaction between irrigation and season illustrates the buffering effect that irrigation can have on the seasonality of diets and energy/nutrient intakes. Fischer et al. (2020) provide a more complex gender assessment of women's nutritional status in the context of SAI in Kenya by demonstrating that the adoption of push-pull technologies (PPT) has a positive impact on nutrition, and that the interaction of women's empowerment with technology adoption maximizes the positive effect. The results suggest that women's empowerment is a vital determinant of dietary diversity. As their empowerment increases, they have greater knowledge of nutrition and health and the power to make decisions, control income, and more time to exercise their knowledge in their caregiving practices. The positive impact of women's empowerment on the Women's Dietary Diversity Score is not only relevant to women themselves but can also impact the health of their family and the development of the next generation.A few articles were also found that acknowledged the untapped potential of SAI on nutrition as a result of gender-blind or \"exploitative\" interventions, meaning that they reinforced rather than challenged the pre-existing gender-discriminatory normative system. For instance, Nischalke et al. (2017) found that women's lack of involvement in agro-forestry in Ethiopia meant that the use of forests as a source of food was neglected, despite the fact that the local inhabitants, especially the men, still had considerable knowledge about edible, (e.g., fruits) medicinal, and aromatic plants. Gender norms played an important role in shaping local livelihood systems and perceptions of wild plants. Indeed, forests were seen as male territory, where men mainly collected firewood for sale and grew coffee in the buffer zone. As a result, the tremendous biodiversity of the forest was not reflected in the study participants' diets.According to some authors, SAI might magnify existing gender inequalities in access to land and resources. Some articles show how higher productivity and incomes could lead to the disempowerment and dispossession of women. This is a typical gender power dynamic whereby male farmers capture the land traditionally farmed by women for home consumption and/or take over the production of traditional women's crops to expand their own income (Fischer et al. 2017). A shift towards a more intensified system could negatively affect women (Salmon, et al. 2018). For instance, in Malawi, (Mponela et al. 2020) women's preference for growing legumes, intercropped with maize, largely reflects the social norm that legumes, including groundnuts, are \"women's crops\" (Nakazi et al. 2017;Orr et al. 2015in Mponela et al. 2020). This is usually the case when legumes are grown for subsistence needs. A shift in control from women to men usually occurs when the legumes acquire a market value, thus changing status from being a subsistence to a commercial crop. Men's participation then increases but largely relies on women's knowledge for efficient management.A gender assessment of the dairy value chain in Kenya (Katothya et al. 2017in Mottet et al. 2018) found that women contributed most of the labor in small-scale intensive production systems but did not own the cows, which resulted in limited decision-making power and poor access to resources and opportunities. Salmon et al. ( 2018) quote a review of African backyard poultry systems to illustrate that it was mostly men who made decisions and controlled the income, despite women providing the majority of care (Guèye, 2000). A clear risk emerges from the literature, therefore, that SAI interventions may increase the workloads of women and girls without commensurate enhanced access to and control of benefits from increased production.Negative impacts on women's access to land is found by Huat et al. (2020) in their analysis of farmers' perceptions of water control systems in Mali. In undeveloped inland valleys, mixed farmers' groups (i.e., containing both men and women) were the main users (75%) followed by groups of men (15%) and groups of women (10%). The situation differed significantly in inland valleys developed using spate irrigation or controlled submersion, where the groups of men were the most dominant with 56% and 50%, respectively, compared with the groups of women at 0% and 11%, respectively. Thus, following inland valley development, men's access to land increased while women's access decreased. Water control facilities also affected access to land by migrant populations. Indigenous farmers were the most dominant in 55% of the undeveloped inland valleys, while mixed groups of indigenous and migrant farmers were the most dominant in more than 50% of the inland valleys developed using spate irrigation and controlled submersion, showing that inland valley development did increase access to land by migrant farmers. This result confirms frequent reports that the construction of a water control facility reduces women's access to lowland use. One explanation for the fact that inland development reduces access to land by women is that in Mali, plots are allocated to individuals within the farm by a male elder following patrilineal inheritance. The most fertile lands are managed by men. Women are allocated the less fertile or more unreliable plots through their husbands or the male farm managers at the beginning of the growing season.This chapter provides a critical review of the main gender constraints found by research about gender and SAI. It emerges that discriminatory social structures and norms shaping the gender division of labor, roles and responsibilities in rural societies, agriculture, and food systems are powerful constraints to gender-equitable SAI adoption and the distribution of benefits. Research highlights the following as the main gendered challenges and constraints:• Women's weaker resource rights and insecurity of tenure; • Women's limited participation in intra-household and collective decision-making;• Difficult access to and control over the labor-saving technologies, mechanization, and irrigation that often accompany SAI packages; • Male bias in extension systems and agricultural institutions.Thus, from the household to the community and to a broader policy context, women face marginalization and exclusion. A more comprehensive analysis and conceptualization of how normative and institutional constraints are addressed and negotiated by women and men in their interaction with SAI is only found in a very few articles.Only three articles adopt a comprehensive gender-transformation approach in the analysis of SAI and address the structural causes of gender inequalities, rather than merely focusing on the symptoms. These articles explore how the interaction of gendered social norms and structures at different institutional levels inhibit women's capacity to invest in and benefit from SAI. They also explore potential entry points for gender-transformative pathways built on Kabeer's social relations framework 1994 (Fischer et al. 2021a). This establishes four key institutional sites for conducting a gender analysis: market, community, government, and household. Each site embeds official and deep-seated rules and norms, which shape gendered patterns of resource distribution, participation, and relations of authority, ownership, and control. Gender inequality results from the dynamic interaction between all four sites. Changes toward more equity in one location may influence changes in other sites or give rise to tensions. Fischer (2022) adopts a framework to show how gender-transformative approaches differ from standard gender approaches to SAI initiatives. She argues that gender transformation is about addressing existing discriminatory gender norms when researching and delivering technologies, studying how intra-household power dynamics affect the adoption of SAI, and involving different actors at multiple levels.A critical perspective in the analysis of the factors perpetuating gender and youth-based inequalities in access to SAI is provided by Mdee et al. (2021). They argue that an identity-labelling approach (e.g., \"women\" or \"youth\" or \"vulnerable groups\" (such as people living with HIV/AIDS))does not allow us to capture the structural processes of class relations, resources control and power that shape and intersect identity-based disadvantage. This homogeneous and superficial view of women and youth usually translates into the definition of specific or targeted projects for them. However, this might ignore the diversity of social and gender relations in agrarian households and fail to address more complex structural disadvantages. They conclude that without a more comprehensive understanding of increasing differentiation within and between rural households, it is unlikely that policy will be able to respond to making agricultural intensification more inclusive.Access to and control of assets are key for achieving the sustainable intensification of agriculture, food security and nutrition, and broader poverty reduction. Evidence is mounting that women's control of assets contributes to positive development outcomes, including greater food security and better nutrition, and more just, resilient, and sustainable food systems for all.Secure access to land and water is vital for stimulating investment in these resources and related ecosystems (CGIAR, 2018). Sustainable intensification requires access to and control of sustainable production and management. Where women and men farmers do not have access to and control over land and natural resources, sustainable intensification is much harder, if not impossible.Gender inequalities in access to and control over land are the most significant underlying factors constraining women's adoption of SAI practices. Looking at the interaction of SAI and land-based institutions, Fischer et al. (2021) remark that SAI conceptualizations of agricultural land use have failed to investigate their implications for prevailing inequitable land tenure systems. They argue that, while the literature has broached the question of how tenure insecurity negatively influences farmers' willingness to adopt SAI -even more so as climate change increases land pressure -gender and land equity issues have remained unaddressed. As an example, Yahaya et al. (2018) identified land ownership in northwestern Ghana as a major factor influencing participation in SAI technologies, which is in line with findings by Manda et al. (2015), Kassie et al. (2015) and Teklewold et al. (2013). As SAI is a long-term investment, non-landowners lack the incentive to invest in land. Yet the gender implications of this finding are not further discussed. Fischer et al. (2021a, quoting Loos et al. 2014: 356) state:Their research demonstrates that women's insecure tenure due to inequitable access to and control over land constitutes a profound obstacle to their engagement with SAI. Land-based institutions interact and mediate SAI processes and outcomes. Therefore, gendered negotiations over SAI adoption are primarily located in gendered struggles over land. The patriarchal bargain varies depending on the local system, whether matrilineal or patrilineal.For instance, in patrilineal Ghana, customary male control over land also implies control over labor and crops. This means that men are the primary decision-makers on whether to adopt SAI, which technology to choose, and on which plot to test it. Women were found to have little room for negotiation (Fischer et al. 2021a), and when they engaged in SAI testing on male-controlled land, men did not encourage them to adopt the practice. This finding is confirmed by Piemontese et al. (2021), who found in their study of sustainable land and water management (SLWM) in Uganda that a rigid patriarchal customary land system, where decisions are taken by the older men of the clan, often represses the initiative to implement SLWM by women in favor of traditional practices. Conversely, in matrilineal Malawi, where the land is retained within the matrilineage, women are found to have more bargaining power in adoption and management decisions.Likewise, In Cambodia land tenure security was recognized as a key factor in determining the adoption of conservation agriculture (CA); insecure tenure by either men or women may decrease interest in implementing CA. Short-term land management arrangements constrain the adoption of CA as its short-term benefits are minimal. Farmers with insecure land tenure arrangements might prefer investments that bear immediate profits rather than increasing the production potential of their soil. Since women tend to have less secure tenure than men, and their name is frequently not registered in ownership documents, whether formal or informal, they tend to be less interested than men in CA practices (Sumner et al. 2015). In Vietnam, there are clear differences in technological adoption between plots on which men have decision-making power (e.g., male-managed and jointly managed) and plots that are female-managed. On average, male influence increased adoption of SAI by 15% (Lovell et al. 2020).Even in contexts where women enjoy access to and control rights over land, outcomes of SAI adoption can be uncertain as women frequently engage in small-scale experimentation on their plots that are smaller and often less fertile than those held by men (Fischer et al. 2020). Khatun et al. (2020) studied how in palm oil intensification in Ghana, gender shaped all the mechanisms of access to both land and resources and thus to adoption of SAI, with male farmers holding rights to larger areas of land and having preferential access to extension support. An interesting finding also came from Vietnam, where female-headed households farmed 0.50-hectare plots, on average, compared with the 0.65-hectare plots farmed by male-headed households. In households run by a couple, the average land size managed by the woman and the man was 0.56 and 0.66 hectares, respectively. In addition, female-managed plots were likely to have greater soil health problems (e.g., salinity, lack of fertility) which constrained the adoption of reduced tillage.The interaction of SAI with customary systems is also a key research area. Yami et al. (2018) highlight the important role played by informal institutions in Uganda in enhancing farmers' investment in sustainable crop intensification (SCI) interventions. The customary system facilitates access to land through inheritance, land rentals, and labor-sharing arrangements. However, informal institutions tend to be biased against non-clan and female members of the community. Some informants (33%) raised concerns over the gender implications of the customary land tenure system in excluding girls from inheritance based on the belief that they will get married and move away. This means that women, and especially girls, have far fewer rights and hence incentives to adopt SCI in the surveyed areas of Uganda. (Yami et al. 2018). At the same time, Fischer et al. (2021a) acknowledge the importance of customary institutions as sites for women to exert their collective agency and negotiate access to land for farming.The ability of women to engage in decision-making in the SAI context is largely affected by intersectional factors, such as marital status and age; women's diverse access and control rights; awareness of new practices; gender division of labor; sense of agency; and whether broader support is provided by extension and research institutions. Gender decision-making traditionally takes place in two domains: within households and in public spaces. Though women's ability to participate in decision-making varies hugely by context, it is broadly recognized that key decisions concerning farm investments are largely male dominated. Mutenje et al. (2019) highlight the following:\"Promoting women's active participation in intra-household decision-making is a critical step that would strengthen the ability of smallholder farmers to select a combination of suitable climatesmart agriculture options.\" (Mutenje et al. 2019: 22).For Theriault (2017), women have less bargaining power than men, which limits their access to and control over household resources, affecting their incentive to make investments for their plots. Upadhyay et al. (2020) show that in northern Vietnam (e.g. Phu Tho), women play a central role in pest/disease monitoring, the selection of planting material, and overall crop management. Yet even in settings where women assume an equal (or larger) role than men in cassava crop management, they take on a relatively minor role in making integrated pest management (IPM) decisions. This differs in Tay Ninh, where women are regularly employed in off-farm activities, manage their own finances, and influence pest management decision-making at the household level. An in-depth analysis of intra-household decision-making over the use of shelling machines in Tanzania shows how male predominance in decision-making is the prevalent pattern. This is likely to be so, even in contexts where new gender norms around jointness or inclusive familybased decisions have started to emerge. The male-predominant role in decision-making is more difficult to relax in contexts where mechanization is part of SAI packages. Tufa et al. (2022) also document that unequal participation in decision-making in Malawi was a key structural factor leading to lower productivity among female-managed plots than among male-managed plots. They suggest that efforts to close the gender productivity gap in SAI should go beyond attempting to create equal access to resources towards addressing the underlying causes of gender inequalities. This requires using gender-transformative approaches to strengthening women's decision-making capacity and negotiation skills, along with challenging existing discriminatory gender norms.An important finding that confirms the importance of addressing women's weak bargaining power in intra-household decision-making is discussed by Mutenje et al. (2018). The study found that women household heads, especially in matrilineal Malawi and Mozambique, were capable of mobilizing family labor and adopting complex SAI packages. The fact that they could exert decision-making power over resource use and labor allocation led to successful adoption.The Water, Land and Ecology, (WLE) Program has found that intra-household dynamics need more attention in SAI research design, data collection and analysis, as well as in development programs, to avoid ineffective interventions (CGIAR 2018). In-depth anthropological analysis of smallholder farming systems could contribute to improving the design of SAI interventions. (CGIAR, 2018) According to Fischer et al. (2022), these are the key questions to be considered at the household level:• Who acquires new knowledge and skills?• Who decides on inputs, varieties, and land use?• How are labor requirements distributed?• Who reaps the benefits of increased productivity?These and other questions are important in designing the dissemination and scaling up of SAI technologies to ensure that women benefit equally from the resulting opportunities.A gendered analysis of intra-household decision-making entails a thorough understanding of the different norms that inform the process and of how this process is actually perceived and performed by women and men. An interesting and in-depth analysis of gendered decision-making patterns over the use of mechanization is provided by Fischer et al. (2021b). The research found that men from male-headed households said that they took the majority of decisions alone or jointly. Women from the same households ranked joint decisions first, husbands' decisions second, and their own decisions last. Where more active female labor was available in households, willingness to rent a shelling machine decreased significantly. The same correlation was not found in households with available male labor. Men's high decision-making power was associated with land ownership, income control, and with the perception that looking for machine services or for hired labor requires leaving the house.People interviewed also mentioned a new emerging trend toward more joint decision-making. However, this was not reflected in the quantitative data. Key informants described two gender norms in this respect which -although contradicting each other -both endorsed men's authority: i) women should not challenge their husband's suggestions, but rather support them.Women who speak first may be perceived as dominating their husband; ii) A woman can make suggestions to her husband. However, in all cases, the man is the ultimate decision-maker. A few people also mentioned households in which important agricultural decisions are taken at family meetings (vikao vya familia). The authors caution that the analysis of \"joint decision-making\" in the survey is incomplete as it is not clear whether this involved meaningful negotiation or just sharing information about male-determined decisions. In conclusion, they argue that such decision-making patterns will hardly change, as they are influenced and reinforced by the rigid patriarchal norms embedded in all institutional structures. Conversely, in Malawi, Fischer et al. (2021a) found that the strong ideology of jointness has actually led to more gender-equitable decision-making patterns. \"Jointness\" is the main narrative promoted by the extension system in the country, and all extension staff have embraced the message that women and men \"should do things together\". This means that all activities, both productive and reproductive, should be shared, and all key decisions concerning what to grow and how to invest family resources should be open to negotiation and consensual.With regard to community-based decision-making, some of the examples provided above show how women's voices in collective management institutions, such as water user associations, (WUAs) tend to be weak. However, the issue of women's participation in community-based decision-making concerning adoption of SAI in the context of common property resources, such as agroforestry or water management projects, has not been identified through research.However, the importance of fostering women's collective agency to harness their knowledge and raise their voices in SAI processes is recognized as a key empowerment and leadership pathway.These important constraints for women are discussed by several articles about gender and SAI. Mechanization is a sub-topic of SAI and is sometimes also included as a complementary intervention of SAI packages. It is an issue of critical importance for women. Lack of farm mechanization means high labor drudgery that affects women disproportionately and especially those who are household heads. Estrada-Carmona et al. ( 2020) affirm that improved access to appropriate, low-cost, labor-saving technologies (e.g. through access to oxen and ploughs), while considering the potential labor demand that alternative practices such as conservation agriculture can pose to farmers is particularly relevant for women, especially in the Western Province of Zambia, where the percentage of female-headed households is greater than the national average (CSO, 2012; see also Cole et al. 2015). Baudron, et al. (2015) identify farm power (quantity and quality) as a major limiting factor on productivity in many farming systems of sub-Saharan Africa. However, labor availability is uneven across countries and most importantly, the quality of labor has deteriorated as a result of an ageing population (stemming from rural-urban migration, and HIV/AIDS) and the subsequent increase in the number of female-headed households among smallholder farmers, which are excessively labor-constrained. Baudron et al. (2015) suggest the adoption and dissemination of small, multipurpose, and inexpensive sources of power such as two-wheeled tractors (2WTs) in combination with the promotion of energy-saving technologies such as conservation agriculture (CA), as a key pathway to SAI in sub-Saharan Africa.The so-called feminization of agriculture often means that women are left to manage their farms with very limited inputs and support and often compensate for the lack of male labor by increasing their own workloads. According to Farnworth et al. (2017, male outmigration in Vietnam has forced women to take over traditional male responsibilities in rice operations, including irrigation, land preparation, dredging field canals, pest management, pest identification, pesticide spraying, fertilizer application, and hauling of paddy sacks. However, women found all these activities very difficult to manage without male support.Women's limited access to farm and agricultural inputs such as seed, herbicides and farming equipment is also mentioned by Wairegi et al. (2018). They report that in Ethiopia, even if men gave women coffee trees and land to establish coffee, households with female-managed coffee owned less spraying equipment (26.4% vs 38.1%), fewer wheelbarrows and carts (16.4% vs 25.1%) than households where the coffee was managed by men.Institutional gender constraints to accessing machinery are pervasive and cut across all institutional sites, namely household, community, market, and extension system. In an in-depth gender analysis of the dissemination and adoption of shelling machines in Tanzania, Fischer et al. (2021 b) show that deep-seated patriarchal norms that govern the distribution of resources, responsibilities, and power across all institutional domains, impede women's effective involvement in mechanization.Decision-making about the use of machinery is heavily male-dominated. The high cost and poor availability of shelling machine services are also identified as key factors that limit their use among the rural population. Women's limited mobility further hampers their ability to access machinery services outside the household, as this is perceived to be a man's responsibility. However, women farmers were found to be more interested in manual labor as they use the maize cobs as fuel. Sometimes, female hired laborers are given the cobs as part of their payment for manual shelling. Women's need for unbroken cobs therefore discourages mechanization. This also demonstrates how women's specific needs and preferences are overlooked in machine designs, thus limiting adoption. The small number of women engineers in the country is also part of the problem.A study that assessed differentiated gender perceptions of risks and impacts related to different agricultural innovations in Tanzania found that intra-family conflicts were triggered by the introduction of maize threshers. Since threshing is normally women's responsibility, men's refusal to let women use the machines was a cause of tension (Schindler et al. 2016).With regard to irrigation, Lefore et al. (2019) found that women in sub-Saharan Africa are typically limited in the extent to which they can access and benefit from advanced irrigation technologies and practices following adoption by a household. Men often exclude women in the household from information and extension services, appropriate more expensive agricultural assets in the household, direct the use of technologies to men's plots, and are more likely to control and benefit from production sales with advanced irrigation technologies. Women also often have limited decision-making power over when and how small-scale technologies are used across seasons and water sources. In many cases, women confront cumbersome customary requirements that reduce their access to family land on which to farm. These intra-household power dynamics further reduce the ability of, and incentives for, women to invest in irrigated production.Research in the Eastern Gangetic Plains (CGIAR 2018) found that gains in irrigated areas and increases in agricultural production largely accrue to a small minority of relatively privileged people; the vast majority are landless and remain poor. In Nepal, despite government subsidies for tube wells and pump sets, the procedures to access the scheme are cumbersome, and social networks are needed to push through applications. This makes it challenging for female-headed households to access these entitlements.Even well-intended pro-women policy reforms often fall short because the contextual social dynamics are not well understood. Women's membership in collective irrigation schemes is frequently constrained, even where national policy supports their participation. Among the many factors that militate against women's participation, the most notable include rules that make membership contingent on land ownership, inconvenient timing or location of meetings, and social norms that limit women's active participation in public forums. When gender quotas are enforced, women are often reluctant to speak in public meetings or see no advantage in participating. They would rather pursue more informal channels to achieve their objectives (Yami 2013;WLE 2017a;Karn et al. Forthcoming) Male bias in extension systems is identified as a crucial constraint in limiting women's adoption of SAI practices. Extension services barely target socially or economically marginalized groups and remain stuck in a top-down technology-transfer approach. Farmer-to-farmer or community-tocommunity knowledge exchange and learning processes are still more the exception than the rule. According to Farnworth et al. (2018) women's lack of self-identification with the concept of innovation is a consequence of their exclusion from extension services. Khatun et al. (2020) found that in palm oil intensification in Ghana, male farmers are able to access support from local extension services because they are often in direct contact with local government extension officers.Women's limited contact with extension services is often due to lack of education and to barriers to accessing local agricultural cooperatives or government extension officers (Brown P. et al. 2021;Muriithi et al. 2018). In Vietnam, extension workers prefer to interact with male farmers, and they usually wrongly assume that information will be shared with other family members; this rarely happens unless it is proactively supported by extension workers through the adoption of familybased approaches. In a sample, only 21% of women received training compared with 50% of men (Lovell, et al. 2020). Lack of a focus on gender transformation in extension activities is also documented in Ghana, where rural extensionists tend to reinforce existing gender norms and inequality in access to resources and decision-making by translating the practices and their labor requirements into a pre-existing gender order (Fischer et al. 2021a).Oyetunde-Usman (2022), noted that constraints to technology adoption among women are pronounced across all stages of technology adoption, which include awareness, tryout, and continued adoption. These constraints are similar to the ones faced in traditional agricultural practices such as, for example, difficulties of access to and use of agricultural inputs; insecure land tenure; access to credit, markets, institutions, and human and physical capital. Fischer et al. (2021b) also found that the lack of women engineers in Tanzania is a factor that limits attention to women's needs in machine design.In Asia, both Vietnamese and Lao women attribute their deficient knowledge of crop protection to limited access to resources, training, or information. (Upadhyay et al. 2020). Agroecological knowledge and practices differ between men and women and among households along a gender continuum. Women's knowledge is often relatively slight, and they have a limited role in pest management decision-making at most sites, yet they play a prominent role in the selection of propagation material and favor agroecological practices. In southern Vietnam, women guide household-level IPM decision-making, but their poor agroecological knowledge further enables the diffusion of insecticide-based pest control locally. Mulema (2019) analyses the factors that constrain women' participation in the different stages of the agricultural research process in Ethiopia. The results showed that input in production decisions, autonomy in plot management, membership of farmers' groups, the ability to speak in public, as well as access to information, extension services, education and land size, all enhanced women's participation, while cultural norms hindered women's empowerment and engagement in research.To successfully scale up SAI technologies, agricultural development actors need to reach out to a diverse group of farmers, including women and men of different ages and different social groups. Extension efforts are frequently targeted at men, which means that women have unequal access to the same information. With regard to gender-related constraints, attention should be paid to identifying the most vulnerable groups in those communities and to the scaling of technologies that provide benefits specifically for these groups. Gramzow et al. (2018) document how the inclusion of both women and men from married couples in Training of Trainers (ToT) activities was key to accelerating technology adoption and dissemination.Studies (e.g., Ragasa et al. 2014) show that technology adoption can be enhanced and made more sustainable when dissemination efforts are broadened to target both husband and wife within a household. Fischer (2022) recommends that extension implements household approaches to create a space for women and men's heterogenous preferences to be considered in negotiations, and to facilitate adaptation within households. She mentions the gender-balance tree developed by the Gender Action Learning System (Mayoux and Oxfam Novib, 2014) as an important tool in this repertoire. Fischer et al. (2021a) also mention the household approach, which is being implemented by the Department of Extension in Malawi as a flagship gender-transformative approach to extension.Little access to extension and agricultural institutions also means that women's traditional knowledge often remains unrecognized. Hence, its value and potential remain untapped, despite the fact that complex interactions of agrobiodiversity and agroecosystems are always mediated by smallholder and gendered knowledge systems (Zimmer et al. 2015).For instance, Kuria et al. (2019) argue that gender has a significant influence on farmers' knowledge of soil quality indicators and soil management practices, suggesting that soil and land restoration interventions that recognize gender-sensitive entry points are likely to be more effective than gender-blind approaches. Bharucha et al. ( 2021) also argue that land rehabilitation projects globally are gender blind and fail to address gender-differentiated aspects of land degradation by ignoring women's knowledge, priorities for land restoration, and resource needs.Overall, few articles emphasize the importance of harnessing the traditional knowledge of women and men in smallholder farm households. In Nepal, women have difficulties in acting on their agroecological knowledge (Jewitt 2000 cited in Timberlake et al. 2022). Estrada-Carmona et al. ( 2020) recommend a gender-sensitive ecosystem services approach to assess local knowledge from women and men and ascertain which SAI services and their sources are most important to them. A third article criticizes the lack of men and women's, but especially women's traditional knowledge, used in fighting pests in agriculture in Vietnam and Laos (Upadhyay et al. 2020).Women's groups can offer an opportunity for the successful delivery of extension services (Kristjanson et al. 2014in Salmon et al. 2018). In an assessment of SAI of cereal production in Burkina Faso, it was demonstrated that addressing a male bias in extension services by engaging with women's groups, along with improving women's access to resources (including credit and equipment) and income, contributed to greater gender equality of interventions (Theriault et al. 2017in Salmon, et al. 2018).As stated by Flora ( 2021), women's organizations could prove useful in adapting and developing SAI technologies for both female-and male-headed households. Fischer et al. (2021a) also highlight the important role of women's collective action in counterbalancing knowledge gaps in SAI.Moreover, Gramzow et al. (2018) found that women-dominated groups in Tanzania tended to outperform men-dominated groups in caring for their demonstration plots. The reason for the gender-specific differences observed here can perhaps be attributed to leadership style. Womendominated groups often had moderate leaders, while in some of the men-dominated villages, strong leaders supported the dissemination of innovations, but in most cases, strong leaders dominated the groups too much, which led to the decreasing involvement of other group members.Innovation platforms (IP) offer opportunities for gender integration in research activities. Schut et al. (2016a) observed that a large share of the current Humid Tropics IP activities focusses on the (participatory) testing and adaptation of technologies (e.g., intercropping) at local levels. Here there is increasing attention to the non-technological dimensions of agricultural innovations such as nutrition and gender. However, these platforms are rarely integrated into R4D activities.Smallholder farmers in general are constantly faced with limited credit facilities that affect the adoption of SAI practices, and in many cases women have even less credit facilities than men. Theriault et al. (2017) analyze how credit access also remains crucial for cash purchases of yieldenhancing and yield-protecting inputs, especially for women who have limited economic control within the household.We conclude in our review that research up to now has produced rather contradictory evidence about the effectiveness and potential of SAI to enable smallholder farmers to improve their livelihoods, and for it to fulfill the enormous expectations related to food security and the recovery of natural resources in this time of climate change. This finding is consistent with the conclusions of several other literature reviews on SAI mentioned in section 3. SAI technologies are not gender neutral as regards labor and capital requirements, empowerment, or economic benefits and costs. Some may worsen women's conditions while others may increase their workloads. SAI might increase existing gender inequalities in access to land and resources. This is because technologies are developed either with only male farmers in mind, or, if focused on women, they overlook how the gender division of labor and women's unequal access to decision-making in the household influences adoption. For example, the design of a mini tiller that can also be operated by a woman (Paudel et al. 2020) may increase production of the commodity. But if the overall time that women need to spend doing household and reproductive work and also operate these machines is not considered, women's workloads may increase too much. Therefore, SAI technological innovations should always consider social, economic, and cultural factors, and not focus exclusively on a single technological innovation or the yield of specific crops.SAI technologies require new ways of working with farm systems and involve a reallocation of men's and women's resources (Farnworth et al. 2015). They have implications for labor requirements, time use, and investment decisions, and may negatively impact the ability to manage a variety of crops, wild plants, and animals for household food security. This is especially relevant for research about how women's workloads are affected by the adoption of SAI technologies. It is not enough simply to measure the time that women need to invest in a specific technology, but a broader focus also has to capture shifts in the labor allocation of women's other productive tasks because of the adoption of SAI technologies.The potential of SAI technologies as innovative approaches to food production that protect the soil while increasing resilience to climate change is important, but the risk of further soil deterioration remains.\"Fertilizer access is not on its own sufficient for sustainable soil management\" and \"crop stover is preferred as feed … rather than to amend the soil\" (Tu et al. 2022: 13).Many studies also focus on short-term research pilots and fail to capture the viability and impact of these technologies over the long term. The reality of rural households and how they transition to SAI is still not fully understood. Long-term studies suggest that environmental, productive, and social sustainability may not be easy to maintain and are not guaranteed over long periods of time (Snapp et al. 2018;Rietveld et al. 2022). The changing demand for certain agricultural products in the market, for example, can lead to the production of new kinds of crops, which in turn may increase the income of some smallholder farmers but may disadvantage others and change the whole dynamic of SAI adoption at the local level.Lower intensity of labor and higher yields are seen when CA is adopted with the appropriate machinery and nutrient-and pest-management practices, which helps mitigate any labor increases in weeding, harvesting, and threshing (Montt et al. 2020). Yield increases are not guaranteed with CA, as CA is a mix of practices best implemented in combination. Moreover, it requires a waiting period for soil quality to recover and a specific mix of chemical inputs, machinery, and skills to produce higher yields and actually reduce labor. As implemented in Ethiopia, Kenya, Malawi, Mozambique, and Tanzania, all three principles of CA are seldom applied together. Disadoption could be the result of the fact that CA benefits take time to materialize (Jat et al. 2018). After accounting for the selection process in CA adoption, we find that CA actually increases the demand for labor. This is consistent with findings from Teklewold et al. (2013) that take a broad look at CA and its effect on labor in Ethiopia.According to Haggar et al. (2021) the literature supports the notion that low adoption often results from promotion of a technological package that does not meet farmers' production conditions and objectives. Agricultural policies often encourage short-term productivity and adoption-focused interventions that disregard the diversity of African smallholder farms and longterm sustainability goals. Facilitating farmers' adaptation of conservation practices to their own conditions and capabilities, by means of farmer-participatory experimental approaches, is presented as a potential way forward.Social sustainability remains a neglected dimension of SAI, although SAI is inherently about the future and sustaining or improving human welfare across generations. Consequently, researchers and development specialists increasingly call for more inclusive SAI, with increased engagement of women and youth (see Grabowski et al. 2020). Promising approaches for finding gender-relevant conclusions and realizing the real impacts of SAI are ecosocial system models or so-called network approaches that observe a combination of technical, ecological, and social impacts (Timberlake et al., 2022;Estrada-Carmona et al., 2020;Flora, 2021) and the participatory monitoring of SAI interventions over long periods of time.Our review has shown that socially sustainable SAI interventions need to take into account that SAI adoption patterns are strongly influenced by gender differences and depend on specific crop or animal types, management, and labor requirements. Rural women can be key agents of socioecological changes, but they need to be addressed directly by institutions and extension services, and their workloads need to be reduced. Women's organizations can facilitate collective action for the adoption of SAI technologies by helping to overcome important constraints such as access to technologies; land, water, and other natural resources; and markets and financial services. A strong focus needs to be on equal benefits from SAI innovations for women and men in smallholder farm households. When incomes are improved, SAI interventions need to ensure that men do not appropriate all the benefits for themselves.Many research studies still do not include gender or women at all (74 % of all the articles found). Only 14 % of the articles were gender relevant. Another 12 % included one or another gender aspect but did not have a systematic gender analysis. 8 % of the gender-relevant articles only included women who were heads of households, while 9.4 % also included women of different ages in male-headed households. Intersectional research about gender and generational aspects is still emerging.Women are often conceived as a homogeneous category; some articles do not even differentiate between women who are household heads and women from couple households. Other intersectional dimensions, e.g., age, social status, ethnic identity, etc., are rarely considered in the literature. However, it emerges clearly that women household heads typically have more bargaining power, greater control over assets and decision-making, and can be better agents of change towards SAI than women in male-headed households. Many households led by women are reported to be keen to learn and to see SAI as a viable solution to enhancing food security and nutrition and to coping with climate-related stresses. However, they face critical labor and resource constraints that must be addressed to enable them to choose and combine multiple practices that can lead to long-term benefits. For instance, evidence is mounting that manure application is often too labor-demanding. Some evidence is also provided that when women farm managers are empowered, they can mobilize family labor or access labor-saving technologies and other incentives that enable them to adopt complex packages, often including a combination of land-and water-management components, crop associations and diversification, and organic fertilizers.Most research does not seem to be interested in the perceptions of farmers themselves about SAI technologies, and even less in differences in perceptions between women and men of different age groups in rural households. There is still a lack of information about how different members of small farming households actually perceive SAI and its impacts on their livelihoods.This seems to reflect prejudice on the side of researchers about the \"unscientific nature\" of small farmers' perceptions vs. scientific findings, or even about whether smallholder farmers with little education are able to think critically and perceive what is going on at the local level. A majority of articles still focus exclusively on quantitative methods to measure technical details. However, the most relevant articles about gender and SAI use either mixed quantitative and qualitative research methods or mainly participatory qualitative methods.The suitability of SAI for diverse African smallholder farming systems has been contested. The dispute has mainly focused on yield benefits, financial investments required, whether labor savings are achievable, and the quantity of crop residues available for use as surface mulch.Overall, there is limited understanding of how different technologies or packages are most suitable for specific socio-ecological contexts, farming and food systems, and household characteristics. This has resulted in top-down solutions and limited adoption and scaling-up.Labor shortages are reported to be an important constraint for SAI technology adoption in Africa, especially when zero tillage is not complemented by the application of herbicides. Genderdifferentiated labor shortages or labor-hiring practices need to be considered, especially for tasks such as weeding. Labor entails the work of boys, girls, women, and men, and has different implications for each of them, but this is not documented in detail. Women's labor is often not interchangeable with men's labor. Women are paid less and since they have many tasks in the household, their work may be less secure.Many articles consider that SAI enhances food security and nutrition through increased yields, which means that surplus can be sold in the market, thus boosting income. However, this assumption is contested, as others argue that such impact has not been adequately documented and that inefficiency in food and market systems might jeopardize food and nutrition outcomes. Gender analysis contributes to questioning the productivity-food-security-nexus by showing how food security and nutrition outcomes are always mediated by multiple factors, including the way women and men negotiate access to and control over resources, income, and benefits.One topic emerging is that investments in SAI often only offer long-term benefits (Snyder et al. 2022). This is a critical constraint to adoption as small farmers, and particularly women, might be unable to invest in technological packages that have financial and labor costs but no immediate benefits. Insecure tenure might further discourage long-term investments in land. There is also ample evidence that the labor costs of CA are too often borne by women, who are already overburdened and unable to take on additional labor without compromising their health and precarious livelihood systems. In those contexts, measures must be adopted that address and minimize those tradeoffs.However, evidence also shows that in matrilineal societies like Malawi and Mozambique, farm households with female heads are more likely to invest in a combination of climate-smart agricultural (CSA) practices (i.e., improved maize varieties, soil and water conservation, and cereal-legume diversification) with medium-to long-term benefits, despite the high labor requirements. This is because women tend to adopt less risky but more labor-intensive CSA technologies if they have decision-making power over their own labor allocation (Mutenje et al. 2019).Another emerging theme in research in Africa is a focus on the perceptions of young people about SAI as well as on generational challenges and their impact on agricultural intensification. Again, several of these studies focus on low yields in SAI adoption even among young people (Lindsjö et al. 2020 and2021), but some new studies focus more than before on social dynamics and SAI, on the intersections between gender and age, and on exclusion from SAI technologies (Zulu et al. 2021 and2022).Many of the reviewed studies about generational challenges point to the growing population and the demand for increased employment opportunities within the agricultural sector, as well as to the mounting pressure on the always-less-fertile land available for agriculture and the need to protect and recuperate natural resources. In Malawi for example, where 85 % of the population is rural and most of the population is young, life expectancy for older farmers has nearly doubled recently (Lindsjö et.al. 2021). The lack of social security imposes a strong interdependence between generations, because young people need to care for old people in their family. Most conflicts within families are reported to be land related, as old people withhold their land longer or prefer to rent out or even sell land instead of transferring it to the younger generations.One of these recent studies (Zulu et al. 2021) (Gujit, 1998;Fraser et al. 2006;Reed et al. 2008quoted by Zulu et al. 2021), a framework with four categories of gender and intergenerational inequities in SAI productive resources: agency, empowerment, capacity, and achievements. The important conclusion is that in order to get holistic and reliable information, one needs to interview multiple members of the household (men, women, male and female youth).Another emerging theme is research and development with a gender-transformative approach to SAI. Fischer (2022) proposed a whole working session with agricultural extensionists about how to \"weave gender into SAI interventions\" with a gender-transformative approach. Fischer et al. (2021 b) have also applied a gender-transformative lens to qualitative research methods about \"SAI and gender-biased land tenure systems\". The authors focus on four institutional domainshousehold, community, market, and government -that shape gender relations and their outcomes and identify how these institutions engrain and perpetuate gender inequality in Ghana and Malawi, how they relate to land use intensity in comparison, and how a gendertransformative approach to SAI could tackle and change these mechanisms. An important conclusion is the need to assess the gender implications of new technologies and their potential to transform existing gender inequalities.Another emerging theme is how to address gendered institutional constraints in gender research.For instance, the extension system is still highly male-focused and male-dominated. Extension messages continue to reinforce existing gender norms and technologies designed with a male farmer in mind. Nevertheless, opportunities are identified in women's collective action and by using women's informal networks and social capital to disseminate knowledge and innovations. Institutional innovations in extension systems, through the use of household methodologies for example, are also singled out as key drivers of gender-transformative SAI. A focus on customary systems and how they mediate gendered access to SAI also emerges as an important research area in the search for transformative solutions.This review has shown the need for more evidence about how gender and SAI technologies interact. More participatory and qualitative research is needed to unveil gender power dynamics by including the perceptions of women and men of different ages in smallholder farming households and not only the perceptions of male or female household heads. Although a focus on female-headed households is important, the preferences of women within male households should also be considered, and the same is true for the preferences of young women and men. Rather than a focus on one or a few particular technologies, which may not reveal the gendered impacts of the technologies, an ecosocial systems approach is recommended.On the one hand, many more small research projects should be undertaken to obtain detailed empirical knowledge from different sites. In particular, the different parts of the production cycle should be examined with a gender lens: e.g., land preparation by manual vs. animal traction; weeding; residue management; crop diversification; gendered crop choices; post-harvest processing; and food and nutrition security. More evidence about how gender and SAI technologies interact could contribute to a better understanding of gender differences in the adoption of intensification strategies; this is crucial for designing effective policies to close the gender gap while sustainably enhancing farm productivity in the context of climate change.On the other hand, more long-term research is needed that has a broader focus on a farm-tofield-to-landscape and an ecosocial-system approach, and on the perceptions of different members of small farming households of different gender and ages, in order to evaluate the potential of SAI for productive, ecological, and social sustainability and for improving the livelihoods of all the family members of these households.Only one article by Farnworth et al. (2017) explored the use of nitrogen fertilizers in the tropics and argued that negative externalities of imbalanced inorganic nitrogen use impact most strongly on women and children. A more balanced use of nitrogen is critical for delivering better gender outcomes in relation to health and livelihoods. More evidence from other case studies is needed about this important aspect.More research is required about emerging themes, such as the Implications of land ownership for the adoption of SAI by women, especially in relation to long-term investments. Sharp differences have been identified between matrilineal and patrilineal societies, with the latter embedding a more rigid normative patriarchal system that impedes women's engagement in SAI. But regardless of the type of customary system, gender struggles over land within households and communities always mediate access to SAI, and this aspect needs to be researched in more areas.The institutional and policy frameworks that shape SAI initiatives should be more strongly considered in research. Very often the focus is strictly on technology, without considering the broader institutional context, how this informs technology development, and what socioinstitutional innovations are needed to promote gender-transformative SAI initiatives. More research on the gender-transformative potential of SAI is needed.Several recommendations emerge for development action and the design of SAI innovation packages for smallholder farmers to assure social sustainability and to avoid unintended negative gender impacts. Among relevant social and gender indicators, the following should be considered: 1) local gender preferences for technologies, crops, varieties or animals; 2) the purpose of production; 3) the level of investments vs. the level of benefits of SAI technologies (immediate and longer-term) for each smallholder farm household; 4) additional incentives offered besides technical advice to improve access to resources, mechanization, financial services, value chains, etc.; 5) the distribution of benefits from SAI adoption between men and women in each small farming household; 6) workload changes for different family members when adopting SAI technologies and compensation measures for rural women; 7) resources offered to support local rural women's organizations.According to Fischer et al. (2022), these are the key questions to consider at the household level in relation to SAI packages:• Who acquires new knowledge and skills?• Who decides on inputs, varieties, and land use?• How are labor requirements distributed?• Who reaps the benefits of increased productivity?Fischer et al. ( 2019) identified three gender-linked pathways to nutrition in SAI:• Women's enhanced participation in agricultural decision-making, which means that they can influence intra-household decisions over allocation of food, health, and care; • The promotion of a healthy balance of time between income-generating activities and household maintenance and caregiving; • The general improvement of their own health (e.g., through less exposure to agricultural chemicals) and nutritional status (e.g., through less expenditure of energy).Gender-transformative approaches to SAI interventions are about addressing existing discriminatory gender norms when researching and delivering technologies. They require studying at local levels to see how intra-household power dynamics mediate SAI adoption and involve different actors at multiple levels. Without a more comprehensive understanding of increasing differentiation within and between rural households, it is unlikely that policy will be able to respond to making agricultural intensification more inclusive (Mdee et al. 2021).","tokenCount":"17783"} \ No newline at end of file diff --git a/data/part_3/2989314752.json b/data/part_3/2989314752.json new file mode 100644 index 0000000000000000000000000000000000000000..a57e66ff3485629f9467a3f95ac8563e6cb2f121 --- /dev/null +++ b/data/part_3/2989314752.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"be973240b3ed37702b8ee4c58838c296","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/56e373f3-2842-451c-94b8-f6e7fd55ea5c/retrieve","id":"-76717345"},"keywords":[],"sieverID":"8e15670b-ea88-4643-ab40-a4804c8c4f33","pagecount":"12","content":"Technical:• Some forages such as grass are perineal and could be planted recurrently once farmers get the initial seed• Some seeds area easy to produce, hence, farmers saved seeds Market and institutional:• Uncertainty about demand: Particularly demand at a real market value• Skewed price: As major buyers are government and nongovernment agencies• Free delivery: Creating seed dependency syndromeAt the end session, learning will be able to;• Describe challenges of forage seed production • Explain the regulatory issues surrounding forage seed production• Describe the key ingredients of scaling forage innovations• Identify story lines on improving forage seed sector and scaling of forage innovationsThe regulatory environment • Initially promoted by FAO, Ethiopia adopted QDS scheme• QDS could be seen as a steppingstone to certification• Producers are empowered to produce seed as per set standardAnnuals: Like Legumes like vetch, and Oat ","tokenCount":"138"} \ No newline at end of file diff --git a/data/part_3/2997900070.json b/data/part_3/2997900070.json new file mode 100644 index 0000000000000000000000000000000000000000..c1b0aff62c7fc9a8eb5412a14af20c2211f0933e --- /dev/null +++ b/data/part_3/2997900070.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c0eab440ee2885ed1e5f4479d83a741e","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/f2e48e52-f899-4876-bc1b-c996eaf42dad/retrieve","id":"-1736898519"},"keywords":[],"sieverID":"085dc2ca-c781-4a75-bf44-227c63501d67","pagecount":"13","content":"In sub-Saharan Africa, there is considerable spatial and temporal variability in relations between nutrient application and crop yield, due to varying inherent soil nutrients supply, soil moisture, crop management and germplasm. This variability affects fertilizer use efficiency and crop productivity. Therefore, development of decision systems that support formulation and delivery of site-specific fertilizer recommendations is important for increased crop yield and environmental protection. Nutrient Expert (NE) is a computer-based decision support system, which enables extension advisers to generate field-or area-specific fertilizer recommendations based on yield response to fertilizer and nutrient use efficiency. We calibrated NE for major maize agroecological zones in Nigeria, Ethiopia and Tanzania, with data generated from 735 on-farm nutrient omission trials conducted between 2015 and 2017. Between 2016 and 2018, 368 NE performance trials were conducted across the three countries in which recommendations generated with NE were evaluated relative to soil-test based recommendations, the current blanket fertilizer recommendations and a control with no fertilizer applied. Although maize yield response to fertilizer differed with geographic location; on average, maize yield response to nitrogen (N), phosphorus (P) and potassium (K) were respectively 2.4, 1.6 and 0.2 t ha −1 in Nigeria, 2.3, 0.9 and 0.2 t ha −1 in Ethiopia, and 1.5, 0.8 and 0.2 t ha −1 in Tanzania. Secondary and micronutrients increased maize yield only in specific areas in each country. Agronomic use efficiencies of N were 18, 22 and 13 kg grain kg −1 N, on average, in Nigeria, Ethiopia and Tanzania, respectively. In Nigeria, NE recommended lower amounts of P by 9 and 11 kg ha −1 and K by 24 and 38 kg ha −1 than soil-test based and regional fertilizer recommendations, respectively. Yet maize yield (4 t ha −1 ) was similar among the three methods. Agronomic use efficiencies of P and K (300 and 250 kg kg −1 , respectively) were higher with NE than with the blanket recommendation (150 and 70 kg kg −1 ). In Ethiopia, NE and soil-test based respectively recommended lower amounts of P by 8 and 19 kg ha −1 than the blanket recommendations, but maize yield (6 t ha −1 ) was similar among the three methods. Overall, fertilizer recommendations generated with NE maintained high maize yield, but at a lower fertilizer input cost than conventional methods. NE was effective as a simple and cost-effective decision support tool for fine-tuning fertilizer recommendations to farm-specific conditions and offers an alternative to soil testing, which is hardly available to most smallholder farmers.The formulation of fertilizer recommendations tailored to specific crops, climate and soil fertility conditions, as well as farmers' socioeconomic status can increase productivity, and reduce climate-related production risks and undesirable impacts of fertilizer on the environment. The need for such specific recommendations is much more so in diverse farm types, in different soil and climatic conditions (Mtambanengwe and Mapfumo, 2005;Zingore et al., 2007;Giller et al., 2011), and in crop systems most vulnerable to changing rainfall patterns (Rurinda et al., 2015;Nezomba et al., 2018), such as in sub-Saharan Africa (SSA). However, the irony is that agricultural advisory services in SSA have been promoting blanket fertilizer recommendations in which a single fertilizer rate is used for large but heterogeneous areas. This leads to unbalanced application of fertilizer nutrients relative to the needs of a crop, and low use efficiency of fertilizer. Further, despite their promotion, many smallholder farmers hardly afford the recommended quantities of fertilizers. Current fertilizer nutrient application rates in SSA average only about 16 kg ha −1 year −1 , compared with over 100 kg ha −1 in Europe and North America, and over 150 kg ha −1 in China in Asia (IFASTAT, 2019). Blanket fertilizer recommendations have been developed with a conventional 'top-down' method, which uses a limited number of field-experimental data points, as investment requirements to conduct such fertilizer trials are considerable. With evolution of computer-based modelling and decision support systems (which have capabilities to simplify and solve complex systems problems by integrating empirical and farmers' knowledge) reliable and cost effective fertilizer guidelines can be developed and delivered quickly. Given that there is increasing number of fertilizer companies that produce more site-and crop-specific fertilizer types in SSA, these decision support systems can also leverage efforts from fertilizer companies to support better access for farmers to knowledge of their soils and crops to adapt fertilizer and integrate technologies to optimize yield.Crop production models have been developed and widely used to test hypotheses, run virtual experiments, and perform scenario and risk analyses at different scales, and enhanced the scientific understanding of complex interactions between soil, crop, environment and management. Examples of such models are WOFOST (van Diepen et al., 1989), DSSAT (Jones, 1993) and APSIM (Keating et al., 2003). Because of their complexity and high demand for input data (i.e. data for model development, evaluation and use) that are seldom available for much of SSA, these models have hardly been used to package and deliver scientific knowledge in a way that can be used by policy makers, extension advisers and farmers. Studies have shown that policy makers, agricultural extension advisers and farmers can only make use of decision support tools when they perform well, are simple, cost-effective and relevant to the user (Rose et al., 2016). The model QUEFTS Fig. 1. Geo-spatial distribution of nutrient omission trials (NOTs) in the studied areas in Nigeria, Ethiopia and Tanzania.(Quantitative Evaluation of Soil Fertility of Tropical Soils), which accounts for interactions among macro-nutrients to estimate balanced nutrient requirements for a crop target yield at a specific location, is generic and requires limited input data (Janssen et al., 1990). It has been calibrated and validated for different crops in varying soils, climate and management conditions in sub-Saharan Africa (Smaling and Janssen, 1993;Haefele et al., 2003;Ezui et al., 2016) and other regions (Witt et al., 1999;Sattari et al., 2014). Consequently, the QUEFTS model enables the development of simple and cost-effective decision support tools for nutrient management and fertilizer recommendations. One such decision support tool is Nutrient Expert (Pampolino et al., 2012).Nutrient Expert (NE) is a simple, computer or mobile phone based decision support tool, developed with a method based on QUEFTS and on-site agronomic information (i.e. climate, inherent soil fertility conditions of the targeted field, previous crop and nutrient management, current and expected yield, availability of fertilizer types, farm inputoutput prices and farmer objectives) (Pampolino et al., 2012). It provides a systematic method to develop strategies for balanced nitrogen (N), phosphorus (P), potassium (K), secondary-and micro-nutrients use on a specific field or in a larger area with similar growing conditions. NE is designed for agricultural extension advisers to provide advice to farmers on best crop management practices and to help farmers maximize the benefits of their investment in fertilizers. It has been developed in a participatory manner, involving researchers, extension service providers and farmers to address their needs.The agronomic and economic performance of NE recommendations has been comprehensively evaluated in Asia (Xu et al., 2014(Xu et al., , 2019)), where NE use increased maize yield by between 0.9 and 1.6 t ha −1 and profits by between US$ 270 and US$ 380 ha −1 as compared to farmers' fertilizer practices (Pampolino et al., 2012). In much more variable and complex farming systems in SSA, such evaluations have been limited. Further, in order to convince agriculture planners and extension advisers of the value of nutrient management decision support tools such as NE, it is crucial to initially evaluate them relative to prevailing blanket recommendations and commonly accepted methods such as soil testing. Although widely used, soil testing method has several challenges that limit its use in smallholder farming systems in SSA, such as: high costs of soil sampling and analysis, the difficulty in taking representative soil samples, ill-equipped laboratories and the time required to produce results. There are also limitations associated with interpretation of soil test results (Njoroge et al., 2017).The main objective of this study was to evaluate soil nutrient constraints for maize production in major maize-based farming systems in Nigeria, Ethiopia and Tanzania, and to use this for the calibration and validation of NE. The study specifically sought to: (i) estimate maize yield response to nutrients supplied from fertilizers and calculate agronomic use efficiencies of N, P and K, (ii) calibrate NE for maize for a wide range of cropping systems, soil and climatic conditions, and (iii) to gain insight into the agronomic and economic benefits of NE recommendations relative to soil-test based and blanket fertilizer recommendations. The focus was on maize (Zea mays L.), as this is a strategic staple crop for achieving food security in SSA. The study was conducted in smallholder farming systems in Nigeria, Ethiopia and Tanzania as together, these countries comprise one-third of the human population of SSA.We calibrated and evaluated Nutrient Expert (NE) for major maize agroecological zones in Nigeria, Ethiopia and Tanzania between 2015 and 2018. In each country, the study areas were selected based on three main criteria: (i) large coverage of major maize producing areas (classified with the Africa Soil Information Service -AfSIS) scheme; (ii) areas with research and development programs that can support the scaling of nutrient management decision support tools, (iii) areas with relatively high human population densities (i.e. > 25 persons km 2 ) and good market access (within 3 h of an urban market), for intensification of maize production. Consequently, the study was conducted in three states of Nigeria: Kaduna, with testing sites in Giwa, Ikara, Kauru, lere, Makarfi and Soba local government areas (LGAs); Kano, with testing sites in Bunkure, Doguwa, Tofa and Tudun Wada LGAs; and Katsina, with testing sites in Bakori, Dandume, Faskari and Funtua LGAs (Fig. 1) (Shehu et al., 2018). In Ethiopia, the study was conducted in the Jimma, Bako, Hawassa, Bulbula and Adami Tullu areas (Balemi et al., 2019). In Tanzania it was conducted in the southern highlands, with testing sites in Iringa Rural, Kilolo, Ludewa, Mbeya Rural, Mbozi, Mufindi, Namtumbo, Njombe Rural, Nkasi, Songea Rural and Sumbawanga Rural districts; and in northern zone with testing sites in Arumeru, Babati Rural, Hai, Hanang, Karatu, Kiteto, Mbulu, Monduli, Moshi Rural, Mwanga and Rombo districts (Fig. 1). The study areas covered a wide range of climatic and soil conditions, cropping systems and farm types, and socio-economic conditions (Table 1). We characterized a few soil properties (i.e. soil organic carbon (SOC), P and texture, Table 1), which are relatively stable in the soil and hence assumed to be good indicators of soil fertility in the context of African smallholder farming systems. In Nigeria, the study areas are characterized by unimodal rainfall from May to November. In Adami Tullu and Hawassa in Ethiopia, the rainfall is bimodal with the short rains from March to May and the long rains from June to November. In Jimma and Bako areas in Ethiopia, the rainfall is unimodal from May to November. The rainfall in the northern zone of Tanzania is bimodal with the short rains from March to June, and the long rains from October to December. In the southern highlands of Tanzania the rainfall is unimodal from November to May.Nutrient Expert is based on the QUEFTS model (Janssen et al., 1990), and follows the principles and guidelines of site-specific nutrient management (SSNM) (Dobermann and White, 1998;Pampolino et al., 2012). The aims of SSNM are to (i) supply a crop's total nutrient uptake requirements tailored to a specific field or larger area with similar growing conditions, (ii) account for nutrients supplied by the soil including nutrients from organic sources such as crop residue and manure, (iii) apply fertilizer at optimal rates and at critical growth stages to bridge the deficit between the nutrient needs of a crop and the nutrients supplied from the soil; and (iv) account for net P and K offtake in harvested produce to maintain long-term soil fertility status for sustainable crop production. NE integrates all this information to determine crop nutrient input requirements. Each of N, P and K input requirement (kg nutrient ha −1 ) of a crop is calculated with an Eq. (1):where N is the crop nutrient input requirement; i is N, P or K; U is the whole-crop nutrient uptake for attainable yield; S is the amount of a nutrient supplied from the soil; and RE is the maximum recovery fraction of the applied nutrient (i).The whole-crop nutrient uptake (U i ) is calculated from the attainable yield (Y a ) and internal nutrient use efficiency (IE, i.e. the relation between grain yield and balanced uptake of nutrients at harvest in kg grain kg −1 nutrient in above ground plant dry matter) with an eq. ( 2):The attainable yield (Y a ) is the yield of a crop for a typical growing season at a location using best management practices without nutrient limitation. It is determined from the NPK treatment in nutrient omission trials (NOTs) if no other deficiencies are yield-limiting. These trials aim to establish crop responses to N, P and K (and in this study also a specific combination of micro-nutrients); described subsequently through treatments that omit at least one nutrient of interest while applying other in ample amounts to determine the limiting effect of the nutrient of interest. The IE is predicted from the QUEFTS envelope functions (Janssen et al., 1990). The QUEFTS model requires the estimation of the minimum and maximum internal concentrations of the macronutrients N, P and K in the economic product of a crop and its residues (i.e. the estimation of the upper and lower borderlines describing the minimum and maximum internal efficiencies). In this study the borderlines excluded 2.5% of upper and lower extreme values and observations with harvest index (HI) of < 0.4 as the data with low HI was assumed to be from a crop suffering from water, poor soil fertility, biotic or abiotic stress (Xu et al., 2019). The NE uses IE for a linear function until a relative yield of about 70-80% of the genetic maize yield potential.The RE, which is the ratio of crop nutrient uptake to nutrients applied from fertilizer, is calculated with an Eq. (3):(Uptake of a nutrient ( ) from an NPK plot-Uptake of a nutrient ( ) from nutrient ( ) limited plot)/Total nutrient ( ) applied from fertilizer i(3)The QUEFTS envelope functions and recovery fractions of N, P and K were calibrated for each study area in each country with fertilizer applications, grain yield and nutrient uptake datasets generated from the NOTs.The amount of a nutrient (i) supplied from the soil (S) is estimated from the nutrient-limited yield, which is the yield achieved when only the nutrient (i) of interest is omitted (is determined from the NOTs). The indigenous N soil supply determines the ratio of N-limited yield (Y s ) to attainable yield (Y a ). Similarly, the indigenous P soil supply and indigenous K soil supply determine the ratio of the P-limited yield and K-limited yield, respectively, to Y a . The indigenous nutrient soil supply varies widely in space and time due to inherent soil properties, climate and agronomic farm management. To account for this variability, NE uses datasets from on-farm nutrient omission trials (NOTs) conducted in a wide range of soil, climate and farm management conditions. Then the 25th percentile, median, and 75th percentile of all nutrient omission trials data for the ratio of Y s to Y a are used as coefficients to estimate the nutrient limited yield for a given attainable yield and soil fertility class. The median represents soils with 'average' fertility, and the 25th and 75th percentile represent 'low' and 'high' fertility, respectively.Given that the amount of nutrients taken up by a crop is directly related to its yield, the attainable yield indicates the total nutrient requirement and the nutrient-limited yield indicates the indigenous soil nutrient supply (Pampolino et al., 2012). Therefore, the crop's nutrient input requirements can be estimated from the expected yield response to each fertilizer nutrient and agronomic fertilizer use efficiency. Therefore, the eq. ( 1) mentioned above is similar to an eq. ( 4), which is used in NE:where N is the crop nutrient input requirement; Y a is attainable yield; Y s is the nutrient limited yield; and AE is the agronomic efficiency of applied fertilizer nutrient input. The yield response is the difference between the Y a and Y s . In other words, the yield response to N, P or K is the yield gap between NPK plots that received ample nutrients and omission plots when one of the nutrients is omitted. The yield response indicates the nutrient deficit, which must be supplied by fertilizers. The AE is kg extra grain per kg nutrient applied and was calculated with data from NOTs with an eq. ( 5).Characteristics of the study areas in Nigeria, Ethiopia and Tanzania; the values are means with minimum and maximum (range) in brackets. Overall in NE, the crop N input requirements are determined based on yield response to fertilizer and agronomic efficiencies of N (the eq. 4). The determination of fertilizer P and K requirements has been modified to consider the internal nutrient efficiency, attainable yield, nutrient balances, yield responses and residual nutrients from the previous crop (Pampolino et al., 2012;Xu et al., 2019) and calculated with eqs. (6 and 7).where (Y a -Y s ) i is yield response (kg ha −1 ), RIE is nutrient uptake requirement per ton of grain yield (kg ha −1 ), RE is recovery efficiency to nutrient application (%), Ya is attainable yield (kg ha −1 ), HI is harvest index, X G % and X S % are the nutrient return proportion of grain and straw, respectively. Further information on the development and parameterization of NE can also be found in the selection from Pampolino et al. (2012).Nutrient omission trials (NOTs) with maize were conducted in farmers' fields in the studied areas in Nigeria (N = 423), Ethiopia (N = 148), and Tanzania (N = 300), following a standardized experimental protocol. The trials were conducted over two agricultural seasons in Nigeria and Ethiopia in 2015 and 2016, and over one season (2016)(2017) in Tanzania. In Tanzania, the trials were conducted for only one season and this was assumed to suffice as the trials were conducted across a wide range of soil, climate and farm management conditions. In Adami Tullu and Hawassa in Ethiopia, and in the northern zone of Tanzania, the trials were conducted during the long rainy seasons only. Experimental fields were selected by delineating each study area into 10 × 10 km grids with ArcGIS software. Each of these 10 × 10 km grids was further delineated into 1 × 1 km sub-grids. A total of five 1 × 1 km sub-grids were selected in each study area to represent major climatic conditions, soil type, common cropping systems and farm management conditions with the aid of agro-ecological maps and local researchers. In each selected sub-grid, a field for experimentation was randomly selected, taking into account the willingness of a farmer to host the trial and availability of land to accommodate all six treatments (described subsequently).The trials comprised six treatments: (i) a control, (ii) an NPK, (iii) N omitted from NPK, (iv) P omitted from NPK, (v) K omitted from NPK, and (vi) secondary and micronutrients added to NPK. The trials were laid out in a randomized complete design replicated across farm. Plot sizes of 8 × 8 m were used in Ethiopia and Tanzania. In Nigeria, a plot size of 5 × 6 m was used because suitable fields were limited; and two trials had to be established side by side on each field -one to evaluate hybrid maize and the other one to evaluate an OPV.The nutrients (N, P & K) were applied with straight fertilizers at rates estimated to achieve the expected attainable yield without nutrient limitation in each study area. The nutrients application rates were calculated depending on the maximum attainable yield as determined based on rainfall and agro-ecological potential (Table 2). Secondary and micronutrients were applied at 24 kg S ha −1 as sulphates of Ca, Mg and Zn, 10 kg Ca ha −1 as CaSO 4 , 10 kg Mg ha −1 as MgSO 4 , 5 kg Zn ha −1 as ZnSO 4 and 5 kg B ha −1 as borax. Nitrogen was applied in three equal splits, i.e. at planting (basal), and at 21 and 35 days after emergence (DAE). All other nutrients were applied as basal at time of planting. Maize was planted at a spacing of 75 × 25 cm (1 plant per hole after thinning) equal to a plant population of 53,000 plants per hectare. A high yielding maize hybrid variety recommended for each study area was used as the test crop. In the Jimma and Bako areas of Ethiopia, the hybrid BH661 (with 160 average days to maturity) variety was used, while in the Hawassa and Adami Tullu areas BH540 (with 145 average days to maturity) was used. In Nigeria, the hybrid varieties used were OBA SUPER-9 (with 105-110 days to maturity) and OBA SUPER-1 (with 105-118 days to maturity) in the 2015 and 2016 seasons, respectively; and the OPV varieties used were IWD C2 SYN F2 (with 105-110 days to maturity) and EVDT W STR (with 90-95 days to maturity) in the northern Guinea savanna and Sudan savanna study sites, respectively. In Tanzania, a number of hybrid maize varieties were used, including SC 403 (with 131 days to maturity), SC 513 (with 137 days to maturity), SC 627 (with 142 days to maturity) each suitable to the locations in which they were planted.The experimental fields were cleared and the residues from previous season's crops removed before ploughing and harrowing to a depth of 20 cm. The plots were weeded manually at least twice during each cropping season. Pests and diseases were monitored regularly and remedial action taken as required. The trials were managed by researchers, but with support from extension advisers and host farmers.Maize grain yield was determined at physiological maturity from a net plot size of 4 × 4.5 m in Ethiopia and Tanzania, and of 3 × 3 m in Nigeria. Plants in the net plot were harvested and total fresh weights of cobs and stover were recorded. Out of the total cobs and stover harvested in the net plot, ten cobs and five stalks of stover were randomly selected and weighed. The grain and stover samples were oven-dried at 60 °C for the determination of dry matter weight. The five cobs were shelled and the shelling factor was calculated as the ratio of grain to total cob weight of the five cobs. The product of total cob weight (kg cobs/net plot) and the shelling factor (kg grain/kg cobs) is the maize grain yield (kg/net plot). Grain yield was then adjusted to 15% moisture content and converted to yield per hectare.Grains and stover samples were taken, dried to constant weight and ground for determination of biomass nutrient concentration. The concentration of total nitrogen in the grain and stover was determined using a micro-Kjeldahl digestion method, while phosphorus and potassium were analysed based on Mehlich-3 extraction procedure preceding inductively coupled plasma optical emission spectroscopy.To evaluate agronomic and economic performance of fertilizer recommendations generated with Nutrient Expert, 368 trials were *Most favourable: high rainfall and high potential maize production with attainable yield of 8-10 t ha −1 ; more favourable: moderate rainfall and medium potential maize production with attainable yield of 7-8 t ha −1 ; favourable: low rainfall and low potential maize production with attainable yield of 5-6 t ha −1 .conducted in farmers' fields in the main crop growing seasons of 2016, 2017 and 2018. Maize yield responses to different nutrients, determined from the NOTs data, were used to guide the selection of these performance trial sites to cover a broad range of response domains in the major maize growing areas. A total of 58 and 108 field trials were conducted in Ethiopia and Tanzania, respectively. In Nigeria, two trials were conducted side by side in the same field to give a total of 202 field trials; one trial was for hybrid maize and the other one for OPV. In each study area in each country, the maize varieties used in the NOTs were also used in the performance trials.The performance trials comprised of four treatments: (i) nutrient recommendations generated with NE, (ii) soil-test based nutrient recommendations (ST), (iii) the current blanket regional nutrient recommendations (RR) and (iv) a control plot (CR) with no nutrients applied. The attainable yields were determined from the NOTs and they were the same for each treatment in each study area.NE was used to generate fertilizer recommendations at each experimental field. Once NE is calibrated and validated for a particular location with data from the NOTs, it estimates the attainable yield and yield responses to fertilizer from site information with decision rules developed from on-farm trials. To enable rapid collection of input data through the NE digital interface, data for a total of only five observable variables (minimum data input) are required to run NE software to generate reliable fertilizer recommendations. The attainable yield is estimated from two variables: (i) farmer's maize yield with current fertilizer management for a growing season with typical rainfall conditions, and (ii) characteristics of the growing environment: water availability (irrigated, fully rainfed, rainfed with supplemental irrigation) and any occurrence of flooding or drought. The growing environment is classified into: low-risk, medium-risk, and high-risk based on the probabilities of flooding or drought. The soil N, P and K supply classes for determining nutrient limited yield are estimated from three variables (i) soil characteristics (i.e. texture, color and content of organic matter), (ii) historical use of organic and inorganic inputs, and (iii) apparent nutrient balance (for P and K) from the previous crop (i.e. crop type, fertilizer input) (Pampolino et al., 2012). The input data are collected from host farmers and extension advisers through NE digital interface with simple questions.Before trial establishment, the soils were sampled with an auger from 0 to 20 cm depth from four points in each trial field using a Vrandom sampling scheme. The four collected samples from each field were thoroughly mixed to form a composite sample. The clods in the composite sample were crushed and the sample sieved through a 2 mm sieve for laboratory analysis. The soils were analysed for pH in water, soil/water ratio of 1:1, (measured with a glass electrode pH meter), texture (hydrometer method), total N (micro-Kjeldahl digestion), and available P and K were analysed based on Mehlich-3 extraction procedure preceding inductively coupled plasma optical emission spectroscopy. The secondary and micronutrients were not included in the analysis as the NOTs results demonstrated that overall maize yield responses to these nutrients were low across the studied sites in all three countries (see Table 3). Based on concepts described by Berger (1954), each of P and K input requirement was estimated for an attainable maize yield (Y t ) with an eq. ( 8):where N is the crop nutrient input requirement; i = P or K; NR is N, P or K requirement per tonne of maize grain; Y a is attainable yield; S i is soil available nutrients derived from chemical analysis; E s is efficiency of soil nutrients, which is estimated from the ratio of a nutrient uptake (kg ha −1 ) to soil test value for available nutrient, derived from the nutrient omission plots. The values of NR, S i , Ya, RE and E s were derived from the NOTs data. The N input requirement for each experimental field was calculated from yield response agronomic fertilizer use efficiencies data generated from the NOTs, and confirmed from literature reported for SSA (Tittonell et al., 2008;Vanlauwe et al., 2010). The method we used for the soil-test based recommendations was an alternative after we recognized that there were no well-established recommendations developed based on this method in each country.The blanket regional recommendations (RR) were acquired from agricultural research institutions in each country. Blanket recommendations are the most commonly recommended type of fertilizer recommendations in Africa. They have been developed for large areas or agroecological zones, and are based on general soil and climate information using limited number of nutrient response trials, and usually take economic cost and benefits into consideration.The three different fertilizer recommendation treatments and the control were arranged in a randomized complete design and replicatedMaize yield response to fertilizer nutrients in major maize production areas in Nigeria, Ethiopia and Tanzania; the values are means, and the values in brackets are 25th and 75th percentiles. 1.9(1.0-3.1) 1.4(0.8-2.3) 0.2(0.0-0.8) 0.3(0.0-0.9) 2.1(1.3-3.3) Hawassa (N = 30) 1.4(0.5-2.3) 0.4(0.0-1.3) 0.2(0.0-0.6) 0.0(0.0-0.4) 1.4(0.5-2.2) Tanzania Zones Southern highlands (N = 108) 1.9(0.7-2.7) 1.2(0.3-1.8) 0.2(0.0-0.8) 0.2(0.0-0.8) 2.4(1.1-3.0) Northern (N = 66) 1.5(0.5-2.4) 0.3(0.0-1.0) 0.1(0.0-0.6) 0.1(0.0-0.6) 1.6(0.7-2.4)The data for Nigeria and Ethiopia was averaged for two cropping seasons (i.e. 2015 and 2016). * Secondary-& micro-nutrients included calcium, magnesium, sulfur, boron and zinc. Yield response to N, P or K is the yield gap between NPK plots that received ample nutrients and omission plots when one of the nutrients is omitted; yield response to secondary nutrients & micronutrients was calculated as yield from plots supplied with NPK + secondary & micronutrients minus yield from plots supplied with NPK. Yield response to NPK was calculated as yield from plots supplied with NPK minus yield from plots with no fertilizer applied. The yield response data for OPV for Nigeria are not presented in this table because the responses were similar to this of hybrid.across farms. The experimental fields were prepared with a plough using draught animals. The size of each experimental plot varied from 90 to 250 m 2 , depending on the size of the field offered by a farmer. Plant spacing of 75 × 25 cm was used to achieve a plant density of 53,000 plants ha −1 . The nutrient sources were urea, single superphosphate (SSP) and muriate of potash (MOP) fertilizers. Nitrogen fertilizer was spot applied in three splits: at planting, at 21 and 42 days after emergence for recommendations generated with each method. All other nutrients were spot applied at recommended rates as basal at planting. Weeds, pests and diseases were controlled by following each country's recommended practice.Maize grain yield was determined with the same method as used for the NOTs. The net benefit of each recommendation method (treatment) was estimated through a partial budgeting approach. Net benefit was calculated by subtracting the total costs that vary across the treatments (i.e. fertilizer cost) from the gross benefits for each treatment. The gross benefits for each treatment were calculated by multiplying the price of maize grain yield per kg by the maize grain yield (kg). Other costs of production such as labour for ploughing, planting, weeding and harvesting were not taken into account since they were similar for all four treatments. Given that the increase in costs is also important in determining the use of a technology by farmers, marginal rates of return were also calculated as the change in net benefits divided by the change in costs that vary, of alternative treatments, proceeding in steps from the least costly treatment to the most costly. This ratio is expressed as a percentage. The prices of fertilizer and maize grain yield at harvest were obtained from local agro-dealers and farmers.Summary statistics including maximum, minimum, median, mean and standard deviation were used to explore the datasets of both the nutrient omission and performance trials for yield response to fertilizer nutrients, nutrient use efficiency. In accordance with the central limit theorem, the data were assumed to be normally distributed because their volume was large (N > 30). A generalized linear fixed model (GLFM) was used to test for significance of the effects of nutrient (in Genstat, version 9.2), season (in case of Nigeria and Ethiopia) and cultivar type (in case of Nigeria), and the two-way and three-way interactions on maize yield. All three factors (nutrient, cultivar and season) were included as fixed. The effects of fertilizer recommendations generated with Nutrient Expert, soil-test based and blanket recommendation methods on maize grain yield and nutrient use efficiencies were also analysed with the GLFM. Means were separated with Tukey's test at α = 5% level of significance.Maize grain yields were on average higher in Ethiopia than in Nigeria and Tanzania for each treatment, with maize yields for NPK treatment ranging between 3.8 and 7.5 t ha −1 in Ethiopia, 4.1 and 5.2 t ha −1 in Nigeria, and 3.7 and 4.6 t ha −1 in Tanzania (Fig. 2). In Nigeria, the maize grain yields realized from OPV and hybrid varieties were similar for each nutrient application category (data not shown), implying that similar nutrient management and fertilizer recommendations can be used for both maize varieties. Compared with the control (no fertilizer applied), maize yield increased significantly at most of the studied sites when NPK fertilizer was applied (Fig. 3a-c).The maize grain yield response to nutrients supplied from fertilizer varied from farm to farm and from season to season. Maize yield response to N averaged between 2.1 and 2.6 t ha −1 in Nigeria, 1.4 and 3.7 t ha −1 in Ethiopia and 1.5 and 1.9 t ha −1 in Tanzania (Table 3). The response of maize yield to P was also positive in the majority of the studied locations, averaged between 1.4 and 1.8 t ha −1 in Nigeria, 1.0 and 1.4 t ha −1 in Ethiopia, and 0.3 and 1.2 t ha −1 in Tanzania (Table 3). Significant maize yield response to K, secondary nutrients and micronutrients were observed in specific areas in each country (Fig. 3d-f, Table 3). Maize yield increased by at least 1 t ha −1 when secondary and micronutrients were applied in Bunkure, Dandume and Soba LGAs in Kaduna, Kano and Katsina States of Nigeria, respectively. Secondary and micronutrients also increased maize yield in Adami Tullu in Ethiopia and Mbozi district in Tanzania.The agronomic, recovery and internal efficiencies of N, P and K use Error bars for all interactions are not shown as they were not significantly different.varied with location. However, the most frequent scores of agronomic efficiencies (AE) of N are lower than 30 kg grain kg −1 N; on average 18, 22 and 13 kg kg −1 in Nigeria, Ethiopia and Tanzania, respectively (Fig. 4). The agronomic efficiencies of P and K were respectively 32 and 2 kg kg −1 in Nigeria, 21 and 3.6 kg kg −1 in Ethiopia and 15 and 0 kg kg −1 in Tanzania (Table 4). The recovery efficiencies of N, on average, ranged from 0.24 to 0.41 in Nigeria, 0.22 to 0.34 in Ethiopia, and 0.21 to 0.23 in Tanzania (Table 4). The recovery efficiencies of P were on average > 0.2 in Nigeria and Tanzania, and 0.1 in Ethiopia (Table 4). The recovery efficiencies of K were 0.5 in Nigeria, while it was 0.1 in both Ethiopia and Tanzania (Table 4). nutrient use efficiencies were estimated at 44 and 103 kg grain kg −1 N, 176 and 608 kg grain kg −1 P, and 38 and 110 kg grain kg −1 K, respectively, in Nigeria (Table 4). In Ethiopia, the maximum accumulation and dilution of the internal nutrient use efficiencies were estimated at 27 and 80 kg grain kg −1 N, 194 and 505 kg grain kg −1 P, and 16 and 87 kg grain kg −1 K, respectively (Table 4). In Tanzania, the maximum accumulation and dilution of the internal nutrient use efficiencies were estimated at 34 and 98 kg grain kg −1 N, 90 and 537 kg grain kg −1 P, and 30 and 126 kg grain kg −1 K, respectively (Table 4).NE recommended lower amounts of phosphorus by 9 and 11 kg ha −1 than soil-test based and blanket regional fertilizer recommendations, respectively, in Nigeria (Table 5). Similarly NE recommended lower amounts of potassium by 24 and 38 kg ha −1 than soil-test based and blanket regional fertilizer recommendations, respectively, in Nigeria (Table 5). Yet, maize yields were not significantly different (at 4.4 t ha −1 ) for the three recommendation methods although the yields varied with location (Fig. 5a). Using less P and K nutrients while maintaining high yield levels, NE recommendations increased the agronomic efficiencies of P and K fertilizer use by 106% and 108%, respectively, over the blanket fertilizer recommendations (Fig. 6b & c). The mean agronomic efficiency of N was 27 kg kg −1 and was similar among the three recommendation methods in Nigeria (Fig. 6a). The cost of fertilizers used in maize production was lower by US$ 77 ha −1 for NE than for the regional fertilizer recommendations in Nigeria (Fig. 7a). Net benefits were also higher by US$ 30 ha −1 for NE than for blanket regional recommendations (Fig. 7b). On average, NE net returns are equal to 97% of the soil-test based net returns, while NE costs are 89% of soil-test based costs. NE is more profitable than soiltest based in almost half of all cases (46%). The marginal rates of return were higher for NE (554%) than for ST (158%) in Nigeria (Fig. 7c). Regional blanket recommendation was excluded from the net benefits curve because it has higher cost that vary, but lower net benefits.In Ethiopia, maize grain yield was not significantly different among the three recommendation methods (Fig. 5b) despite varied nutrient recommendations by the three methods (Table 5). NE and soil-test based methods respectively recommended lower amounts of phosphorus by 8 and 19 kg ha −1 than the blanket recommendations. However, the recommended N rate (120 kg ha −1 ) generated with NE was similar to soil-test based recommendations, but higher by 9 kg ha −1 than the blanket recommendations (Table 5). Fertilizer recommendations generated by all three methods did not require application of K fertilizer in Jimma and Bako regions of Ethiopia, as available soil K was adequate for maize production. However, NE recommended a median of 27 kg ha −1 of potassium (Table 5) for longterm soil fertility maintenance for sustainable crop production as NE is designed to take cognizance of the effect of nutrient mining on long term soil degradation. Consequently, in Ethiopia NE played a critical role as a co-learning tool between researchers and extension to further understand nutrient requirements in the two regions for improved recommendations.In Tanzania, the median N rates generated with the three methods were similar although there were variations in NE and soil-test based recommendations (Table 5). The amount of P generated with NE and blanket recommendations were comparable, but they were respectively lower by 10 and 13 kg ha −1 than recommendations developed with the soil-test based method. The blanket fertilizer recommendations in Tanzania currently exclude recommendations for K fertilizers. However, NE recommended small amounts of K for soil fertility maintenance. Maize grain yields obtained between NE, soil-test based and regional fertilizer recommendations were not significantly different (Fig. 5c). However, maize yields obtained in Tanzania for all the three recommendation methods were highly depressed due to within-season dry spells and infestation by fall armyworm. The low maize yield affected the net benefits and hence they were low and comparable between the three methods (data not shown). The fertilizer recommendations generated with NE and soil-test based methods varied from farm to farm in each country. Consequently, the fertilizer rates developed from NE maintained high maize yield, and increased use efficiency of nutrients and net benefits of maize farmers. In particular, NE recommended lower amounts of P and K fertilizers, yet maize yields were similar to soil-test based and regional fertilizer recommendations in Nigeria. Using the available fertilizer blends in Nigeria, this meant a decrease in the use of NPK fertilizer, resulting in an investment saving of about US$ 80 ha −1 . In Ethiopia, NE also recommended lower amounts of P than the blanket recommendations, but it maintained high yield levels. Using less P and K while maintaining high yields, NE recommendations thus increased the agronomic use efficiency of fertilizer. These results demonstrate that the blanket recommended P and K amounts in Nigeria and P amounts in Ethiopia, are higher than required. However, farmers normally apply lower rates of fertilizer than the recommended rates. At regional and global scales, excess P in the farming systems has a tendency of being washed away by rain water into water bodies leading to water pollution (Nyamangara et al., 2013).In Ethiopia, NE and soil-test based methods recommended higher amounts of nitrogen than the regional recommendations. Yet similar yields were achieved with a lower rate of 111 kg N ha −1 from the blanket recommendation suggesting that NE and soil-test based recommendations underestimated the N that was supplied from the soil. Therefore, further work to improve the understanding of indigenous soil N supply in these regions in Ethiopia in relation to soil types and management history is needed to adjust the N rates recommended by NE. In this case NE was important as a co-learning tool among researchers.All three recommendation methods were in agreement that in most of the studied sites, especially in Ethiopia, the soil K supply was adequate for maize production as no yield penalties were observed when K fertilizer was omitted. This is in accordance with the low maize yield responses to K observed in the nutrient omission trials (see Table 3), as also reported in literature (Nziguheba et al., 2009;Kihara et al., 2016). However, NE recommended small amounts of potassium for soil fertility maintenance based on SSNM principles that provide guidelines for maintenance K application in high potential maize production environments to avoid depletion of soil K reserves in the long-term (Dobermann and White, 1998). However, there is a trade-off between applying K for soil maintenance and profitability of a recommendation. The important implication of this is that there is need to revise the NE algorithm for applying K for maintenance of soil fertility to reduce K application for increased profits of maize farmers in Ethiopia.The variability in fertilizer recommendations generated with NE and soil-test based methods is due to wide variability in yield responses to soil and fertilizer nutrients as influenced by varying inherent soil nutrient supply, attainable yield, recovery and internal nutrient use efficiencies (Tittonell et al., 2008). The soil nutrient supply, attainable yield and nutrient use efficiencies vary due to different soil types with varying mineralogy and soil water holding capacity, rainfall conditions, crop variety and crop agronomic management practices. Results from the nutrient omission trials conducted in this study demonstrated that maize yield responses to soil and fertilizer nutrients and maize yield vary with location and season.Similar to yield responses, the agronomic and recovery efficiencies of applied nutrients also varied with study site. Although agronomic efficiencies of N (AEN) fertilizer vary with location, their mean values of < 22 kg kg −1 observed in each country in this study were much lower than an average value of 36 kg kg −1 observed in well-managed farmers' fields with high organic carbon content (Kurwakumire et al., 2014) and when a combination of mineral fertilizers and manure or compost was used in maize in SSA (Vanlauwe et al., 2010). This demonstrates the importance of improved agronomic management tices to increase efficiency use of nutrients and productivity in these crop systems, especially in Tanzania where the values of AEN are too low (ten Berge et al., 2019). The low values of AEN were, however, comparable with the values reported for SSA for maize applied with mineral fertilizer alone (Smaling and Janssen, 1993;Vanlauwe et al., 2010).The N recovery fractions of < 0.4 observed in this study are lower than a standard value of 0.5 reported for maize under on-farm conditions in sub-Saharan Africa (Janssen et al., 1990;Smaling and Janssen, 1993). However, these low N recovery fractions are similar to values observed in poorly managed fields characterized by low organic carbon (Kurwakumire et al., 2014). The P recovery fractions observed in this study in Nigeria and Tanzania are slightly higher than a standard value of 0.1 reported for maize in SSA (Janssen et al., 1990). The higher values of P recovery fractions may be partly related to build-up of residual P in the soil due to continuous application of excess P fertilizers in the previous seasons. The K recovery fractions observed in this study in Ethiopia and Tanzania are lower than a standard value of 0.5 observed for maize in SSA (Janssen et al., 1990). The yield to nutrient uptake ratios of maximum dilution and accumulation of N, P and K observed in this study are within the ranges of values reported for SSA (Janssen et al., 1990;Smaling and Janssen, 1993;Tittonell et al., 2008) and other regions (Liu et al., 2006;Sattari et al., 2014) suggesting that these values are applicable to a wider range of maize growing conditions.Overall, the wide variation in yield responses to soil and applied nutrients reinforces the need for development of decision support tools such as NE for site-specific fertilizer recommendations in SSA.NE decision support tool has demonstrated its usefulness in formulating fertilizer recommendations that are specific to field conditions, but scaling its recommendations to new geographies demands establishment of fertilizer response trials or mobilization of legacy data from fertilizer trials. Due to considerable financial, time and infrastructural investments, it is difficult to continually establish multi-location on-farm diagnostic fertilizer response trials in a wide range of agro-ecologies. On the other hand, the legacy data on yield responses to nutrients is not available in many areas in sub-Saharan Africa. Geospatial data on soil, weather, crop yield, which have become increasingly available for public use, will create a great opportunity to understand crop response to soil and fertilizer nutrients for larger areas and enable rapid calibration of nutrient management decision support tools such as NE to be able to reach millions of farmers with nutrient management advice. For instance, the soil information project has improved the availability, quality and resolution of geo-referenced data on soil fertility properties and soil water, in SSA (Hengl et al., 2017;Leenaars et al., 2018). Similarly, HarvestChoice has increased the availability of spatial yield data (https://harvestchoice.org), while the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) has increased the public availability of spatial weather data (http://chg.geog.ucsb.edu/data/chirps). However, groundtruthing of geospatial agronomic data is important to improve the predictions as well as to evaluate the uncertainties of fertilizer recommendations provided to farmers.NE can be overlaid on emerging spatial frameworks as the technology extrapolation domain (TED), which is designed to scale out technologies and practices to larger areas (Andrade et al., 2019). The TED framework delineates an area with similar climate and soil factors (i.e. annual total growing degree-days, aridity index, annual temperature seasonality and plant-available water holding capacity in the rootable soil depth) and these factors govern crop yield response in rain-fed cropping systems. Consequently, NE can be used to provide a specific recommendation to a TED, as the domain is assumed to have a similar yield response to soil and fertilizer nutrients.Over 700 nutrient omission trials conducted across a broad range of major maize producing areas in this study reinforced earlier observations that there is a wide spatial and temporal variability in crop yield response to soil and fertilizer nutrients in African smallholder cropping systems. Nitrogen was the most limiting for maize growth followed by phosphorus in each country in Nigeria, Ethiopia and Tanzania. Promoting fertilizers that balance soil N and P dynamics for balanced plant nutrition is important for increased yields and profits of small holder maize farmers as well as protecting the environment. The calculated QUEFTS envelope functions from this study were overall within the range of values reported for SSA and this demonstrates that QUEFTS is generic and can form a basis for developing simple nutrient management decision support systems such as NE that promote sitespecific nutrient management. The nutrients recommendations generated with NE decision support system balanced fertilization and maximized the agronomic efficiency (AE) of applied nutrient inputs. It maintained high yields, but at a lower fertilizer input cost than current recommendation methods. Even though NE performed better, there is still a room to further improve its predictions as more knowledge about local maize production is acquired and capacity to improve the quality of input data is built. NE was effective as a simple and cost-effective tool for fine-tuning fertilizer recommendations to farm-specific soil fertility conditions in wide range of soil and climatic conditions in sub-Saharan Africa. However, NE recommendations need to be evaluated relative to farmers' current fertilizer practices as many farmers in Sub-Saharan Africa do not use recommendations generated with blanket or soil-test based methods. Geo-spatial soil and agronomic information that has become increasingly available for public use will create a great opportunity to enable rapid calibration of nutrient management decision support tools such as NE to provide recommendations for larger areas and reach millions of farmers with improved and sustainable nutrient management advice.","tokenCount":"8125"} \ No newline at end of file diff --git a/data/part_3/3003541522.json b/data/part_3/3003541522.json new file mode 100644 index 0000000000000000000000000000000000000000..8ec596c7a4aca50f9d44d502573ed5ca17caf51e --- /dev/null +++ b/data/part_3/3003541522.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"ba2152635354c17ba46f79f9a44c9aaa","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/db1b1c2c-4a9d-437a-b75d-c66fd34a537b/content","id":"-94764472"},"keywords":["DMLPSI, decorrelated multistage linear phenotypic selection index","LPSI, single-stage linear phenotypic selection index","OMLPSI, optimum multistage linear phenotypic selection index","QTL, quantitative trait locus"],"sieverID":"58350774-6b32-4840-9465-4e07b2c224e9","pagecount":"15","content":"Multistage linear phenotypic selection indices predict the individual net genetic merit at different individual ages or stages and are cost-saving strategies for improving several traits. In a two-stage context, we compared the relative efficiency of the optimum multistage linear phenotypic selection index (OMLPSI) and the decorrelated multistage linear phenotypic selection index (DMLPSI) theory to predict the individual net genetic merit and selection response using a real and a simulated dataset. In addition, we described a method for obtaining the OMLPSI selection intensity in a two-stage context. The criteria used to compare the relative efficiency of both indices were that the total selection response of each index must be lower than or equal to the single-stage linear phenotypic selection index (LPSI) selection response, similar to the accuracy of each index to predict the net genetic merit. Using four different total proportions (p = 0.05, 0.10, 0.20, and 0.30) for the real dataset, the total DMLPSI selection response was 22.80% higher than the estimated single-stage LPSI selection response, whereas the total OMLPSI selection response was only 2.21% higher than the estimated single-stage LPSI selection response. In addition, at Stage 2, OMLPSI accuracy was 62.24% higher than the DMLPSI accuracy for predicting the net genetic merit. We found similar results for the simulated data. Thus, we recommend using OMLPSI when performing the multistage phenotypic selection.T he linear phenotypic selection index (LPSI) (Smith, 1936; Hazel, 1943) is a linear combination of several observable and optimally weighted phenotypic trait values useful for predicting the net genetic merit, which, in turn, is a linear combination of the true unobservable breeding values of the traits weighted by their respective economic values. The LPSI incorporates the genetic correlations between traits in the prediction of the net genetic merit and allows extra merit in some traits to offset slight defects in another, and by its use, individuals with very high merit in some traits are saved for breeding even when they are inferior in other traits (Hazel and Lush, 1942). The main parameters of the LPSI are selection response and accuracy. The selection response is the mean of the net genetic merit (Cochran, 1951) in the selected population, whereas the accuracy is the maximized correlation between the LPSI and the net genetic merit. These two parameters give breeders a clearer base on which to validate the success of the adopted selection method that is technically most effective on an objective basis; they are also useful for comparing the efficiency of different types of selection indices. Cochran (1951) and Young (1964) combined the LPSI theory with the independent culling selection method and developed the optimum multistage (one stage is the animal or plant age at which breeders can measure and select the trait of economic interest) linearphenotypic selection index (OMLPSI) to select several traits in the multistage selection context. Suppose two vectors of individual traits, x and y, become evident at different animal or plant stages. We can make a selection at one stage according to the LPSI using both vectors of information jointly, or we can perform a two-stage selection, in which case, we select x in the first stage, and x and y in the second stage. When we use the OMLPSI in a two-stage context, at Stage 1, we have a partial index, but at Stage 2, we have a complete index. The OMLPSI is more efficient than the independent culling method because it uses all available information at each stage and incorporates the genetic correlations between traits in the prediction. The OMLPSI can be applied to any number of stages.Breeders apply OMLPSI mainly in animal and tree breeding where, due to early culling, OMLPSI is a costsaving strategy for improving multiple traits because it is not necessary to measure all traits at each stage. Thus, when traits have a developmental sequence in ontogeny or when there are large differences in the costs of measuring several traits, the efficiency of OMLPSI over LPSI, in terms of cost saving, can be substantial. The OMLPSI increases selection intensity on traits measured at an earlier age, and, with fixed facilities, OMLPSI selects a greater number of individuals at an earlier age (Xu et al., 1995;Xie et al., 1997;Hicks et al., 1998).Some problems associated with the OMLPSI are the following. After the first selection stage, the distribution of OMLPSI values could be non-normal. For more than two stages, the OMLPSI requires numerical multiple integration techniques to derive selection intensities for each stage, and there are problems of convergence when the trait and index values at successive stages are highly correlated. Also, the computational time may be unacceptable if the number of selection stages becomes too high (Xu and Muir, 1992;Börner and Reinsch, 2012).The decorrelated multistage linear phenotypic selection index (DMLPSI) is another multistage selection index (Börner and Reinsch, 2012), also called selection index updated (Xu and Muir, 1992). It also combines the LPSI theory with the independent culling selection method to select several traits in the multistage selection context. The DMLPSI minimizes the mean squared difference between the DMLPSI and the net genetic merit at each stage under the restriction that the covariance between the DMLPSI values at different stages be zero, thus preventing the correlation between DMLPSI values at different stages; hence the name decorrelated. Under such restriction, the selected individual DMLPSI values after the first selection stage could be normally distributed, and in addition, it is not necessary to use computationally sophisticated multiple integration techniques to derive the selection intensities, and exact truncation points can be determined for a fixed selection proportion before selection is performed (Xu andMuir, 1991, 1992). Problems associated with DMLPSI are that its selection responses and accuracy could be lower than the OMLPSI selection response and accuracy after the first selection stage. The OMLPSI and DMLPSI are extensions of the LPSI theory to the multistage selection context.We compared the relative efficiency of OMLPSI and DMLPSI using a real and a simulated dataset in a twostage context. We obtained the theoretical results of both indices under the assumption that the indices, and the net genetic merit values have multivariate normal distribution at each stage. Under this assumption, the regression of the net genetic merit on any linear function of the phenotypic values is linear (Kempthorne and Nordskog, 1959), and the total selection response for two or more stages is the sum of each response obtained at each stage (Cochran, 1951;Young, 1964).The criteria used to compare the relative efficiency of both indices were that the total selection response of each index must be lower than or equal to the LPSI selection response (Young, 1964;Saxton, 1983) and the accuracy of each index to predict the net genetic merit. Using four different total proportions for the real dataset, we found that the OMLPSI efficiency was higher than the DMLPSI efficiency when predicting the net genetic merit. We found similar results for the simulated data. Börner and Reinsch (2012) reported similar results in the genomic selection context when they used multistage selection indices in a dairy cattle breeding program.The OMLPSI and DMLPSI have four main objectives. The first objective is to predict the individual net genetic merit for n traits, H = w¢g, where w¢ = [w 1 w 2 … w n ] and g¢ = [g 1 g 2 … g n ] are 1 ´ n vectors of economic weights and true breeding values, respectively. The second objective is to select individuals with the highest H values as parents of the next generation, and the third objective is to maximize the OMLPSI (DMLPSI) selection response. Finally, OMLPSI and DMLPSI should provide the breeder with an objective rule for evaluating and selecting several traits simultaneously.When selection is based on all individual traits of interest jointly, the LPSI vector of coefficients that maximizes the selection response is b = P −1 Cw, where C (see Appendix A, subsection \"Phenotypic and Genotypic Matrices for Two Stages\" for details) is the covariance matrix of the true breeding values (g), and P −1 is the inverse matrix of the covariance matrix (P) of trait phenotypic values (y). In addition, k is the selection intensity of the LPSI.Let y¢ = [y 1 y 2 … y n ] be a vector with n traits of interest and assume that we can select only n i of them (n i < N) at Stage i be submatrices of P and G, respectively; when i = j,In Appendix A (Eq. [A1a] and [A1b]), we give additional details associated with matrices P and G. Now suppose that the number of traits selected until Stage i − 1 is n i − 1 and that at Stage i, we select n i traits, such that n i £ n i − 1 . By the results in subsection \"The Multistage Linear Phenotypic Selection Index at Stage i\" above, at Stage i, we shall have n i -1 + n i traits. This means that matrix Q (i -1)i is of size n i -1 (n i -1 + n i ) and can be written asEquation [1b] indicates that Q (i -1)i is a nonsquare and nonsymmetric phenotypic variance-covariance matrix.The selection response (R i ) at Stage i can be written aswhere k i (Appendix B) is the selection intensity, H s ′ = w Cw is the standard deviation of the variance of the net genetic merit (H = w¢g), w¢ = [w 1 w 2 … w n ] and g¢ = [g 1 g 2 … g n ] were defined earlier, Var(g) = C is the covariance matrix of g, and i HI r is the correlation between H = w¢g and the index at StageThe second part of Eq. [2] ( i i H HI k s r ) indicates that, at each stage, the genetic change due to selection is proportional to k i , H s , and i HI r (Kempthorne and Nordskog, 1959). Thus the genetic gain that can be achieved at each stage by selecting for several traits simultaneously within a population of animals or plants is the product of the selection differential (k i ), the standard deviation of H = w¢g ( H s ), and the correlation between H = w¢g and i i iSelection intensity k i is limited by the rate of reproduction of each species, whereas H s is relatively beyond man's control; hence, the best opportunity for increasing selection progress is by ensuring that i HI r is as large as possible (Hazel, 1943). In general, it is assumed that k i and H s are fixed and w is known and fixed; hence, R i will be maximized when i HI r is maximized only with respect to the vector of coefficients b i (i = 1, 2, …, N). To maximize R i , we can either maximize According to Cerón-Rojas and Crossa (2018, Chapter 9), the maximized selection response and accuracy at Stage i are. Thus, for each stage, we should have a selection index with a different number of traits; for example, at Stage i, the index would be, and at Stage N, the index would be Young, 1964), where the double subscript of y ij indicates that the jth trait is measured at Stage i, so that at each subindex I i , all the n i traits are measured at the same age.The vector of scores y¢ = [y 1 y 2 … y n ] can be partitioned into N subvectors as y¢ = [ 1 2, etc., are subvectors of y¢ obtained at Stages 1, 2, etc. Thus, another way of writing the index at Stage i isis the index vector of coefficients at Stage i, and x i was defined above. Letbe a transforming matrix, then for each stage we can construct a multistage index asand y was defined above (see Appendix A for additional details).The above procedure uses a partial index until Stage N − 1, but at Stage N, it uses a complete index (see Appendix A, subsection \"Phenotypic and Genotypic Matrices for Two Stages\" for additional details). This approach should be more efficient than the usual independent culling selection method because, at each stage, the OMLPSI (DMLPSI) uses all available information (Young, 1964;Saxton, 1983).[ ], and, as defined in the subsection above; then, P = {P ij } is the covariance matrix of vector [ ], wherecrop science, vol. 59, may-june 2019respectively, whereas the total selection response is (Cochran, 1951;Young, 1964). Matrices Q ii and A i are phenotypic and genetic covariance matrices, respectively, defined in Eq. [1a]. Note that Eq. [4] gives the maximum value of i HI r .Thus, although i HI r can take any value, r i is its maximum value.Equation [3] and [4] values will change depending on how the vector of coefficients (b i ) is obtained for each index. The OMLPSI and DMLPSI vectors of coefficients will be obtained according to the OMLPSI theory (Young, 1964;Cerón-Rojas and Crossa, 2018, Chapter 9) and the Xu and Muir (1992) method, respectively (see Appendix A, Eq. [A2a] to [A9]).Cerón-Rojas and Crossa (2018, Chapter 9) have shown that the OMLPSI vector of coefficients that maximizes Eq. [2] at Stage i is, and w is the vector of economic weights. To obtain the maximized OMLPSI selection response and accuracy, Eq.[5] must be used in Eq. [3] and [4].In Appendix A (Eq. [A2a] to [A9]), we showed that the DMLPSI vector of coefficients at Stage i iswhere The relative efficiency of predicting the net genetic merit at each stage of OMLPSI with respect to DMLPSI efficiency in percentage terms is j = 100(p − 1) [7] where p = r i /r i ; i w Cw is the standard deviation of the net genetic merit (H = w¢g ). When j = 0, the efficiency of both indices is the same; when j > 0, the efficiency of OMLPSI is higher than DMLPSI efficiency, and when j < 0, DMLPSI efficiency is higher than OMLPSI efficiency. An additional criterion for comparing the indices' efficiency is that the total selection response R t = R 1 + R 2 of each index should be lower than or equal to the singlestage LPSI selection response (R = ks I ; i.e., R t £ R).We show that R t £ R for OMLPSI only. Suppose that the total proportion retained is p = q 1 q 2 (Fig. 1); then, LPSI selection intensity k (Fig. 2) is fixed. In addition, since the LPSI standard deviation (s I ) is fixed in the target population, the maximum LPSI selection response in the selected population is R = ks I , which is the maximum value that is possible to attain for p = q 1 q 2 . In the two-stage context, suppose again that p = q 1 q 2 . Then, at Stage 1,, where the k 1 and k 2 values are associated with the q 1 and q 2 values, respectively. That is, R t = R 1 + R 2 is the total OMLPSI selection response. However, R = ks I is the maximum value that can be attained when p = q 1 q 2 is fixed; thus, R t £ R. This criterion allows breeders to know the maximum value of R t in the breeding context.The number of genotypes in this real dataset was 3330, and the vector of economic weights (w) was w¢ = [19.54 −3.56 17.01 −2.51]. This dataset comes from a commercial egg poultry line (Akbar et al., 1984), and we will use it to illustrate the indices' theoretical results obtained in this work. This dataset is available in the \"Application of a Genomics Selection Index to Real and Simulated Data\" repository at http://hdl. handle.net/11529/10199. It was simulated (Cerón-Rojas et al., 2015) for eight phenotypic selection cycles (C0-C7), each with four traits (T 1 , T 2 , T 3 , and T 4 ), 500 genotypes, and four replicates for each genotype. Data were generated with QU-GENE software (Podlich and Cooper, 1998) using 2500 molecular markers and 315 quantitative trait loci (QTLs). The markers were distributed uniformly across 10 chromosomes, whereas the QTLs were randomly allocated across the 10 chromosomes to simulate one maize (Zea mays L.) population. For each trait, the phenotypic value for each of four replications of each plant was obtained by setting the per-plot heritability of T 1 , T 2 , T 3 , and T 4 at 0.4, 0.6, 0.6, and 0.8, respectively. A different number of QTLs affected each of the four traits: 300, 100, 60, and 40, respectively. The common QTLs affecting the traits generated genotypic correlations of −0.5, 0.4, 0.3, −0.3, −0.2, and 0.1 between T 1 and T 2 , T 1 and T 3 , T 1 and T 4 , T 2 and T 3 , T 2 and T 4 , and T 3 and T 4 , respectively. The economic weights for T 1 , T 2 , T 3 , and T 4 were 1, −1, 1, and 1, respectively. Only for illustration purposes, in this work, we used four selection cycles (C1-C4) of the simulated data to illustrate the theoretical results and the efficiency of both indices. At Stage 1, we selected traits T 1 and T 2 , and at Stage 2, we selected all four traits.The estimated vectors of coefficients for both stages were The total proportions (p) of retained values for this dataset were p = 0.05, 0.10, 0.20, and 0.30 for both indices. For illustration purposes only, at Stage 1, we selected traits RL and SM, whereas at Stage 2, we selected the four traits, according to the Young (1964) in the estimated selection response and accuracy at Stage 2, but not to estimate the vector of coefficients (Cerón-Rojas and Crossa, 2018, Chapter 9, Eq. [9.5] and [9.6]).Figure 1 shows the relationship among the truncation points (u 1 and u 2 ), the proportion retained (q 1 and q 2 ) and the heights of the ordinate of the normal curve ( )and ( )(Appendix B, Eq. [A9]). For Stages 1 and 2, we found the selection intensities k 1 = z(u 1 )/q 1 and k 2 = z(u 2 )/q 2 (Appendix B, Eq. [A9]), as follows. For a fixed value of p = q 1 q 2 (e.g., p = 0.05), we used an iterative process with an R code. By successively changing the possible values of q 1 (q 2 = p/q 1 ), u 1 , and u 2 in Eq. [A9] (Appendix B), we found the maximum value of the total selection response Î and 2 Î , respectively. Thus, the values of the truncation points (u 1 = 1.21 and u 2 = 0.15), proportions retained (q 1 = 0.11 and q 2 = 0.44), and selection intensity (k 1 = 1.69 and k 2 = 0.90) at Stages 1 and 2, respectively, were those associated with the maximum ˆ90.33 t R = value (Fig. 3). In the one-stage case, the selection intensity for p = 0.05 was k = 2.06, and the single-stage estimated LPSI selection response was ˆ88.72 R = . According to Young (1964) and Saxton (1983), the maximum estimated total OMLPSI selection response ( ˆ90.33 t R = ) value should be lower than or equal to the single-stage estimated LPSI selection response ( ˆ88.72 R = ). For this dataset, the estimated total OMLPSI selection response was 1.81% higher than the estimated LPSI selection response.In Table 1, we present additional truncation points, proportions retained, selection intensities, and maximum estimated selection response values for p = q 1 q 2 = 0.10, 0.20, and 0.30. For each of the latter three values, the maximum estimated total OMLPSI selection responses were 2.01, 2.33, and 2.69%, respectively, greater than the estimated single-stage LPSI selection response (Table 1). Thus, for this real dataset, the estimated total OMLPSI selection response and the estimated LPSI selection response were very similar.Figure 4 presents the estimated total OMLPSI selection response values ( ˆt R ) when we obtained the selection intensities using the Cochran (1951) and Young (1964) method for 0.05 and 0.10. Cochran (1951) and Young (1964) found the expectations of a bivariate left truncated normal distribution and used them as selection intensities. When we used the Cochran (1951) method, the maximum ˆt R values were 393.90 and 249.98 for p = 0.05 and 0.10, respectively, and when we used the Young (1964) method, the maximum ˆt R values were 535.27 and 293.27, respectively. This is because both methods overestimated the selection intensities at both stages. These results were inadmissible when we compared them with the single-stage estimated LPSI selection response values for p = 0.05 and 0.10 (88.72 and 75.47, respectively). We obtained similar results for other values. Thus, according to the results of this section, the Cochran (1951) and Young (1964) method should not be used to obtain the selection intensities and total selection responses in the two-stage context. .Because the DMLPSI values were independent between stages, to estimate the DMLPSI parameters at Stage 2, we did not adjust matrices P and Ĉ for prior selection onThe values for truncation points (u 1 = 0.66 and u 2 = 0.86), proportions retained (q 1 = 0.26 and q 2 = 0.20) and selection intensities (k 1 = 1.26 and k 2 = 1.41) at Stages 1 and 2 for p = q 1 q 2 = 0.05, were those associated with the maximum ˆ110.60 t R = value (Fig. 3), which were obtained following the iterative process described by Xu Table 1. Real data for total proportion (p) retained, estimated optimum and decorrelated multistage linear phenotypic selection index (OMLPSI and DMLPSI, respectively) truncation points (u 1 and u 2 ), proportions retained (q 1 and q 2 ), selection intensities (k 1 and k 2 ), and estimated selection responses ( 1 R , 2 R , andfor Stages 1 and 2. Values of R correspond to single-stage linear phenotypic selection index. and Muir (1992). In this case, the maximum estimated total DMLPSI selection response (110.60) was 24.66% higher than the estimated single-stage LPSI selection response (88.72). Thus, for this real dataset, the maximum estimated total DMLPSI selection response was different from the estimated single-stage LPSI selection response.In Table 1, we present additional truncation points, proportions retained, selection intensities, and estimated selection response values for p = q 1 q 2 = 0.10, 0.20, and 0.30 obtained at Stages 1 and 2. In these cases, the maximum estimated total DMLPSI selection responses were 23.39, 21.56, and 20.10%, respectively, higher than the estimated LPSI selection responses (Table 1).The foregoing results indicated that for this real dataset, the average of the estimated total DMLPSI selection response was 22.80% higher than the average of the estimated single-stage LPSI selection response (68.56), whereas the average of the estimated total OMLPSI selection response was only 2.21% higher than the estimated single-stage LPSI selection response for p = 0.05, 0.10, 0.20, and 0.30. Xu andMuir (1991, 1992) indicated that the loss of efficiency in the DMLPSI response is justified because their method for obtaining the selection intensities and total responses gives the breeder the opportunity to implement an unlimited number of selection stages, which otherwise would be very difficult or impossible to do.The estimated accuracies for predicting the net genetic merit for both stages were , meaning the estimated DMLPSI and OMLPSI vectors of coefficients were the same, from where the estimated OMLPSI and DMLPSI accuracies were also the same because this parameter was not affected by the selection intensity. However, at Stage 2, DMLPSI accuracy decreased due to the restriction imposed on DMLPSI to make its values independent among stages (Appendix A, Eq. [A6] to [A8], for details).The estimated OMLPSI accuracies for both stages were To compare the efficiency of the indices, we used Eq. [7]:The OMLPSI and DMLPSI efficiencies at Stage 1 were the same; however, at Stage 2, OMLPSI efficiency was 62.24% higher than DMLPSI efficiency for predicting the net genetic merit. This means that the OMLPSI was a better predictor of the net genetic merit than the DMLPSI at Stage 2.Table 1 presents the OMLPSI and DMLPSI truncation points (u 1 and u 2 ), proportions retained (q 1 and q 2 ), and selection intensities (k 1 and k 2 ) for p = q 1 q 2 = 0.05, 0.10, 0.20, and 0.30 in a two-stage context. Because the u 1 , u 2 , q 1 , q 2 , k 1 , and k 2 and values for OMLPSI and DMLPSI were obtained with a different method, those values were different for both indices. Nevertheless, when the p = q 1 q 2 values changed from 0.05 to 0.30, the u 1 and u 2 values decreased, the q 1 and q 2 values increased, and the k 1 and k 2 values decreased in both indices, as we would expect. That is, when the total proportion retained increased from 0.05 to 0.30, the selection intensity decreased, also as we would expect (Fig. 2). In addition, while the DMLPSI q 1 and q 2 values were very similar at both stages, the OMLPSI q 1 values were lower than the q 2 values, which implies that the OMLPSI selection intensity and selection response were different from the DMLPSI selection intensity and selection response (Table 1).Table 2 presents the estimated OMLPSI and DMLPSI selection responses ( 1 R , 2 R , and) and the true LPSI selection response (R) values obtained in a twostage context for four simulated selection cycles and p = q 1 q 2 = 0.01, 0.10, and 0.20. For p = 0.01 and 0.10, the average of the estimated total OMLPSI selection response () was 61.70 and 6.18%, respectively, higher than the average of the true selection response (15.22), whereas for p = 0.20, the average of the estimated total OMLPSI selection response was 15.37% lower than the average of the true selection response. Thus, for this dataset, the best OMLPSI prediction of the mean of the net genetic merit resulted when p = 0.10, and wrong OMLPSI predictions resulted when p = 0.01 or 0.20.For p = 0.01, the average of the estimated total DMLPSI selection response was 42.71% higher than the average of the true selection response; however, for p = 0.10 and 0.20, the average of the estimated total DMLPSI selection response was 5.32 and 27.0% lower than the average of the true selection response. Therefore, for this dataset, the best DMLPSI prediction of the mean of the net genetic merit resulted when p = 0.10, and wrong DMLPSI predictions resulted when p = 0.01 or 0.20. That is, DMLPSI and OMLPSI were similar when p = 0.10.Based on the foregoing results, the best OMLPSI and DMLPSI predictions of the true selection response resulted when p = 0.10, and wrong OMLPSI and DMLPSI predictions resulted when p = 0.01. This means that for the simulated data, the indices' efficiency depended on the total proportion retained (p). Thus, for the simulated data, when p = 0.10, both indices were more efficient for predicting the true mean of the net genetic merit than when p = 0.01 or 0.20. We believe that the results obtained with the simulated data were due to the number of genotypes used to estimate the parameter. Thus, whereas in the real dataset the number of genotypes was 3330, in the simulated the number of genotypes was 500. That is, in the simulated dataset, we used only 15% of the genotypes used in the real dataset to estimate the index parameters.Table 3 presents the estimated values of the OMLPSI ( 1 r and 2 r ) and DMLPSI ( 1 r and 2 r ) accuracies for predicting the net genetic merit in a two-stage context for four simulated cycles. The averages of the estimated OMLPSI and DMLPSI accuracies at Stage 1 were the same. At Stage 2, however, due to the restriction imposed on the covariance between the DMLPSI values (Appendix A, Eq. [A6] to [A8]), the average of the estimated DMLPSI accuracies was lower than the average of the estimated OMLPSI accuracies (Table 3). According to Eq. [7], at Stage 2 the average of the estimated OMLPSI accuracies was 119.512% higher than the average of the estimated DMLPSI accuracies for four simulated selection cycles. Thus, for this dataset, the OMLPSI was a better predictor of the net genetic merit than the DMLPSI.The Criteria of the Relative Efficiency of the IndicesThe estimated OMLPSI and DMLPSI accuracies for predicting the genetic merit and the assumption that the estimated total OMLPSI and DMLPSI selection response must be lower than or equal to the estimated LPSI selection response (Young 1964;Saxton, 1983) were the criteria for evaluating the relative efficiency of both indices. The two criteria were dependent on the method used to estimate the vector of coefficients of each index. The estimated total selection response predicts the mean value of the net genetic merit in the progeny population, whereas the estimated accuracy indicates how close the estimated index values were to the unknown net genetic merit values.At Stage 2, the OMLPSI variances reduced their size due to the correction imposed on the variance-covariance matrices P and G, which affected not only the selection responses, but also their accuracies. However, DMLPSI efficiency at Stage 2 was affected not by the adjusted covariance matrices, but by the restrictions imposed on their covariance values among stages.For the real dataset, the average of the estimated total OMLPSI selection responses was only 2.21% higher than the average of the estimated LPSI selection response for all p values. In addition, the average of the estimated total DMLPSI selection responses was 22.80% higher than the ˆˆt R R R = + ) for four simulated selection cycles and p = q 1 q 2 = 0.01, 0.10, and 0.20 under a two-stage breeding scheme, and true linear phenotypic selection index selection response (R) values. average of the estimated LPSI selection responses, for all p values. Thus, for this real dataset, we can expect the total estimated OMLPSI selection response to be a better estimator of the mean of the net genetic merit than the total estimated DMLPSI selection responses.For the simulated dataset, the best OMLPSI and DMLPSI predictions of the true selection response resulted when p = 0.10, and the wrong OMLPSI and DMLPSI predictions resulted when p = 0.01. However, note that although the average of the estimated total OMLPSI selection response overestimated the true selection response by 6.18%, the average of the estimated total DMLPSI selection response underestimated the true selection response by 5.32%. However, for p = 0.01, both indices overestimated the true response, but while the OMLPSI overestimated the true selection response by 61.70%, the DMLPSI overestimated the true selection response by 42.71%. Thus, for the simulated data, the total estimated selection response of both indices depended on the total proportion retained. We attributed the results obtained with the simulated data to the number of genotypes used to estimate the parameters. That is, in the real dataset, the number of genotypes was 3330, but in the simulated data, the number of genotypes was only which represents only 15% of the size of the genotypes used in the real dataset to estimate the parameters of the indices. This means that the number of genotypes used to estimate the indices' parameters was an important factor for both indices in the real and simulated data.In this case, for the real and simulated datasets, the estimated OMLPSI accuracies were higher than the estimated DMLPSI accuracies at Stage 2. For the real and simulated datasets, at Stage 1, the estimated accuracy of both indices was the same. At Stage 2, however, for the real data, the estimated OMLPSI accuracy was 62.24% higher than the estimated DMLPSI accuracy for predicting the net genetic merit at Stage 2, whereas for the simulated data, the average of the estimated OMLPSI accuracies was 119.51% higher than the average of the estimated DMLPSI accuracies at Stage 2. Thus, based on the estimated accuracies of both indices, we can expect the OMLPSI to be a better predictor of the net genetic merit than the DMLPSI after Stage 1.The method used in this work to obtain the OMLPSI selection intensities in a two-stage context is simple and can be programmed in a computer using an R code. This method did not overestimate the selection intensities, as the Cochran (1951) and Young (1964) methods did. Thus, the proposed method was useful for obtaining the selection intensity values of OMLPSI in a two-stage context.The DMLPSI imposed the restriction that the covariance between DMLPSI values at different stages be zero. This restriction was to ensure the existence of solutions for the truncation points at different stages without resorting to numerical multiple integration (Xu andMuir, 1991, 1992;Xie et al., 1997). However, the restriction decreased the estimated DMLPSI accuracy and could overestimate the DMLPSI selection response after Stage 1. Xu andMuir (1991, 1992) indicated that the loss of DMLPSI efficiency after Stage 1 is justified because their method for obtaining the selection intensities and total responses gives the breeder the opportunity to implement an unlimited number of selection stages, which would otherwise be very difficult or impossible to do. Xu and Muir (1991) indicated that the restriction imposed on the covariance between DMLPSI values is similar to the Kempthorne and Nordskog (1959) restriction imposed on the expected genetic gain per trait, which prevents some traits from changing their mean values while the rest of the trait means remain without restrictions (Cerón-Rojas and Crossa, 2018, Chapter 3). In effect, Xu andMuir (1991, 1992) and Kempthorne and Nordskog (1959) used a projector matrix (e.g., K) to project the OMLPSI (LPSI) vector of coefficients (b) into a space smaller than the original space of b. The reduction of the space into which the Kempthorne and Nordskog (1959) matrix projects b is equal to the number of zeros that appears on the expected genetic gain per trait, and the selection response and accuracy decrease as the number of restrictions increases (Cerón-Rojas and Crossa 2018, Chapter 3). However, it is not clear if under the Xu andMuir (1991, 1992) restrictions the selection response and accuracy decrease as the number of stages increases. If this were true, the Xu and Muir (1992) method would not give the breeder the opportunity to implement an unlimited number of stages, because the selection response and accuracy would decrease as the number of stages increases and soon would be null. For example, Xie et al. (1997) compared the estimated singlestage LPSI selection response with the estimated DMLPSI selection response for two and three stages and found that at Stages 2 and 3, the estimated total DMLPSI selection response explained only 92 and 87%, respectively, of the estimated LPSI selection response. That is, at Stage 3, the estimated total DMLPSI selection response was lower (5%) than at Stage 2. In addition, Xie et al. (1997) also indicated that under certain circumstances (they did not specify which), the estimated total DMLPSI selection response could be higher than the estimated single-stage LPSI selection response, as we found in this work when we used the simulated data for p = 0.01. However, this is not a good result because the DMLPSI overestimated the true LPSI selection response.Additional Approaches of the OMLPSI and DMLPSI Saxton (1983) and Ayyagari et al. (1985) applied the OMLPSI to five pig and poultry traits, respectively, in a similar manner as we did in this work; however, they obtained the selection intensities in a different way. Saxton (1983) applied a two-stage selection scheme in two ways: first, by selecting three traits and then two traits; and second, by first selecting the last two traits and later the first three traits. Under the first scheme, Saxton (1983) found that the estimated total selection response overestimated the single-stage LPSI response by 3.8%, but under the second, he found that the estimated total selection response overestimated the single-stage LPSI response by only 1.5%. These results were very similar to the results obtained with the OMLPSI in this work when we used real data. Ayyagari et al. (1985) developed six selection schemes with five poultry traits and, in all cases, they underestimated the single-stage LPSI response. That is, the average of the total selection response explained only 70.5% of the estimated LPSI response. These results were not in agreement with the OMLPSI results when we used real data. We believe that these results were due to the way Ayyagari et al. (1985) obtained the selection intensities. Cerón-Rojas and Crossa (2018, Chapter 9) applied the OMLPSI to six chicken traits (Hicks et al., 1998) in a two-stage context. However, these authors used the Young (1964) method to obtain the selection intensities for two stages; thus, the estimated selection response and expected genetic gain per trait values were only approximated. Xu and Muir (1992) applied the DMLPSI to four poultry traits in a two-stage context, by first selecting one trait and then three traits. They found that the estimated total DMLPSI selection explained 90% of the estimated single-stage LPSI response. Xie et al. (1997) found similar results when they compared the estimated single-stage LPSI selection response with the estimated DMLPSI selection response at Stages 2 and 3. They found that at Stages 2 and 3, the estimated total DMLPSI selection response explained 92 and 87%, respectively, of the estimated LPSI selection response. That is, in all cases, the estimated total DMLPSI selection response could not explain all the estimated single-stage LPSI selection response.Results of this study are the first ones comparing (with real and simulated data) the relative efficiency of the OMLPSI with DMLPSI efficiency using the total selection response and accuracy as the main criteria to compare the efficiency of the two indices.We evaluated the relative efficiency of two multistage linear phenotypic selection indices. We determined the efficiency of both indices based on the estimated total selection response and accuracy of each index using a real and a simulated dataset. In both datasets, we found that the OMLPSI was a better predictor of the net genetic merit than the DMLPSI. Therefore, breeders should not use the DMLPSI when performing multistage phenotypic selection.,x g G and this last matrix changes at each stage.Now suppose that traits are measured in N stages (n ³ N ); then y¢ = [y 1 y 2 … y n ] can be partitioned into N subvectors as[ ], where 1 ′etc., are subvectors of y¢ for Stages 1, 2, etc. Let n i be the number of traits selected at Stage i, then 1is the total number of traits measured for N stages. In a similar manner, the phenotypic (P) and genotypic (G) matrices can be partitioned according to the subvectors of [ ] respectively, where Cov(x i , x j ) = P ij is the ijth submatrix of P and Cov(x i , g) = G i is the ith submatrix of G at Stage i (Xu and Muir, 1992).In this subsection, we present the procedure described originally by Xu and Muir (1991), which is useful to understand the DMLPSI theory in the multitrait selection context. Let y¢ = [y 1 y 2 … y n ] be a 1 ´ n vector of trait phenotypic values, where n denotes the total number of traits in which the breeder is interested. Let P be an n ´ n symmetric and positive definite covariance matrix of trait phenotypic values. Then, by the Cholesky decomposition method (Schott, 2005), there is a unique upper triangular matrix T such that P can be written as P = T¢T, where T¢ is the transposed matrix of T. From this result, vector y¢ = [y 1 y 2 … y n ] can be transformed into a new vector x¢where ( )is the inverse of matrix T¢. The variance of x is Var(x) = (T¢) −1 Var(y)T −1 = I n , where I n is an identity matrix of size n ´ n. This means that the elements of the transformed vector x are independent. Note that Eq. [A2a] is equal to ( ) That is, each element of vector x¢ = [x 1 x 2 … x S ] is an index value (x i = I i ). In addition, as Var(x) = I n , the covariance of any two indices is null and the index at Stage i iswhere n i is the number of traits at Stage i, and y ij is the jth ( j = 1, 2, …, n) trait measured at Stage i (i = 1, 2, …, N). Thus, the overall procedure described in Eq. [A2a] to [A3] is a type of multistage selection index. The foregoing selection procedure indicates that, at each stage, the breeder can add only one trait to the index and that matrix (T¢) −1 contains the coefficients of the indices at each stage. In addition, note that the index of Eq. [A3] does not maximized its correlation with the net genetic merit (H = w¢g), and matrix (T¢) −1 does not include the covariance matrix of genetic values (Eq. A1b). Thus, we need an additional procedure to obtain a DMLPSI similar to the LPSI described by Smith (1936) and Hazel (1943).The DMLPSI for Selecting Several Traits at Each Stage Now we extend Eq. [A2a] and [A2b] to select several traits at each stage according to Xu and Muir (1992). Let be a transforming matrix similar to matrix (T¢) −1 , where bis the DMLPSI vector of coefficients at Stage i (i = 1, 2, …, N). With matrix B¢, we can construct a DMLPSI for each stage aswhere vector , , 0 0 0 and is a matrix with the DMLPSI vector of coefficients until Stage i − 1. We need to find the DMLPSI vector of coefficients (b i ) that minimizes the mean squared difference between I i and H = w¢g {E[(H -I i ) 2 ]} at Stage i under the restriction Cov(I i , J i-1 ) =","tokenCount":"7053"} \ No newline at end of file diff --git a/data/part_3/3011070111.json b/data/part_3/3011070111.json new file mode 100644 index 0000000000000000000000000000000000000000..3e582435f26d9ed436f0741fb97ad91696555078 --- /dev/null +++ b/data/part_3/3011070111.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"b48e000847a514869447e9cadeceabc1","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/73bda235-9497-46d6-b86f-2d55012f669b/retrieve","id":"296374505"},"keywords":[],"sieverID":"0ed4311c-8c18-4f6e-861a-6c4f2adcffee","pagecount":"79","content":"We would also like to thank Sarah Gibbons of Oxfam, John Graham and John McMahon from USAID/Ethiopia, and DANIDA for their interest in and assistance towards this initiative. We would also like to thank the International Livestock Institute for all their support (Lucy Kirori, Douglas Ikong'o, Susan MacMillan, Eric Ouma, Grace Ndungu, Carlos Sere, John McDermott, Ade Freeman). We are lucky to have benefited from the excellent writing skills of Andrew Mude, Trish McDermott and Josh Penslar, who helped to make our goal of turning fairly technical research papers into more accessible policyoriented briefs a reality.The most recent drought in East Africa has once again sharply exposed the layers of poverty, underdevelopment, and political marginalization in the region's arid and semiarid lands (ASALs).Like any natural disaster, including the recent Asian tsunami and Hurricane Katrina in the U.S., the poor and vulnerable bear the brunt of such events, and tragically remind us that their short-term suffering is symptomatic of longer-term structural problems of poverty and inequality. Yet, in contrast to most disasters, droughts in East Africa frequently call for renewed efforts to transform -or even abandon -the area's prime livelihood system, mobile pastoralism. In short, the problem often is perceived to be an outdated way of life and a production system ill-adapted to 'modern' contingencies.Poorly understood and the natural bane of governments and administrations, mobile pastoralism serves as a convenient scapegoat for the many social and economic problems of the ASALs that are so graphically exposed during disasters.Understanding the complex relationships and causes of poverty in pastoral areas of East Africa is a necessary first step toward informed and effective policy and programs. There has been considerable research in pastoral areas during the past three decades. This conference aims to highlight key threads of this research. The goal of the conference is to forge stronger links between researchers and policymakers and to motivate a new, more evidence-based discussion of the underlying causes and consequences of poverty and possible approaches towards its alleviation in pastoral areas.For electronic versions of the papers presented at this conference, please visit our website at http://www.ilri.org/research/theme1/ Introduction Sub-Saharan African pastoralism involves highly fluid production systems responding flexibly to variable and unpredictable arid and semi arid rangeland environments. Consequently, a critical feature of the pastoral production system is access to extensive public land offering potential grazing and water resources that afford pastoralists the necessary flexibility to relocate their livestock when local rangelands fail. As such, increasingly restricted access to key resources of pasture, water and through-passage in East Africa has increased pastoralist vulnerability to drought herd loss and threatens the sustainability of the pastoral production system.The research summarized in this brief highlights the consequences of changing land tenure to pastoralist livelihood strategies. In particular, it explores the patterns, scale and trends of livelihood diversification among the Maasai pastoralists of Maasailand who have been particularly affected by the loss of access to key dry season land and water resources. Maasailand, split between Kenya and Tanzania, has witnessed the extensive reallocation of rangelands from open commons accessible to pastoral production to conservation, through the gazetting of protected areas and commercial cultivation, shifting these key resources to largescale cereal farming and intensive irrigation. Remaining rangelands are themselves increasingly privatized through sub-division (Kenya) and allocation of rights for ranching, farming or wildlife enterprises (Tanzania). High rates of internal population growth and in-migration have added to both real and perceived pressures on key resources. Together, the confluence of these events has fueled the increasing diversification of Maasailand pastoralists.The study focuses on the Maasai populations living in the protected area-adjacent zones on either side of the Tanzania/Kenya border. The contrasts between Kenyan and Tanazanian lands potentially offer a controlled comparison, with related issues and factors operating in essentially similar ecological, ethnic and socio-economic circumstances, but radically different macro-economic and political contexts. This analysis of livelihood diversification among the Maasai draws on a large-scale cross-border comparable survey of socioeconomic indicators for the Maasai, collected in 1998 in Narok and Kajiado Districts (Kenya) and Ngorongoro District (Tanzania). This data is supplemented by detailed data from the Mara (Kenya) and Logindo (Tanzania) districts collected in 2002.The large-scale privatization of Maasailand for both commercial and conservation purposes has placed a considerable constraint on the capacity of the rangelands to support pastoralism as a viable livelihood option for the majority of households in the area. As a natural response to the decreasing returns of pastoral production in the area, the Maasai are beginning to diversify their income source portfolios in an attempt to avoid or alleviate poverty as well as to spread the risks associated with the increasingly vulnerable pastoral livelihood. Diversification often involves a change along one or more of the following dimensions; an expansion of the set of income sources, a change in the key sources of income, and/or a change in location.Across the study sites in both Kenya and Tanzania, livestock continues to feature as a source of income with 100% of the Mara households, 98% of Narok, Kajiado and Ngorongoro households, and 95% of Longido households having some livestock. Furthermore, for a majority of households in all areas, livestock continues to be the main source of income. Nevertheless, despite the enduring importance of livestock, the pattern of livelihood portfolios indicate that the Maasai are beginning to diversify into other activities.While Maasai pastoralists across the wealth spectrum are diversifying in response to the changes in land tenure, diversification trends are demonstrably different across different spheres of wealth. Due to the reduced capacity of the rangelands to support pastoralists, poorer households who lose their livestock are less able to recover the losses during favorable periods. As such, the poor are forced to engage in other income-earning activities out of necessity. Better off households, on the other hand, diversify in order to balance risks, buffer shocks and spread investments across a wider portfolio to maximize earnings potential.Poorer sample households generally diversify into unskilled, low-status activities with low returns and little or no job security. They resort to gathering honey, brewing and selling illicit liquor, gathering and selling firewood and charcoal, and engaging in casual farm or construction labor. And while the presence of lucrative wildlife resources and conservation practices offers special opportunities for the Maasai outside pastoralism, access to these opportunities are largely limited to a few wealthier households. Better-off households are also more likely to have members engaged in relatively secure and better paid employment such as teaching and government administration. Furthermore, these households are also more likely to have family or close relatives in urban areas that offer remittance support and provide networks to improve access to jobs, education and health services.The confluence of international conservation pressures as well as considerable commercial and State interests in Maasailand is driving the rapid privatization and enclosure of the rangelands. As a result of these processes, poorer households in the area are particularly vulnerable to poverty as their traditional pastoralist livelihood is threatened. While diversification offers some promise, the poor are especially ill-equipped to diversify into high-return, low-risk livelihood options. A combination of low literacy and educational attainment, lack of familiarity with the national language and powerful cultural divides threatens to further marginalize poorer Maasai households and sink them further into poverty.Extensive pastoralism as practiced by East African pastoralists such as the Samburu of Northern Kenya, is premised on access to relatively large tracts of rangeland. Most pastoral land has been communally managed by groups of pastoralists who have, over time, developed rules and norms for regulating access to and use of the resources. In recent years, however, a number of pastoral groups have begun to privatize land, raising questions about the implications of this shift for pastoral livelihoods and the future of commonly held rangelands.A school of thought prevalent among rangeland scholars suggests that maintaining pastoralists' mobility is critical to enabling them to remain successful herders. Accordingly, privatization of pastoral lands and the trend toward increasing sedentarization of pastoralists appears to be a threat to the continued viability of pastoral production and livelihoods. However, there is little empirical data demonstrating the effect of a shift from communal to private rangeland on pastoralists' well-being or economic survival strategies. The study summarized here offers some evidence on the effect of land privatization. A longitudinal analysis compares the changes in welfare across two relatively similar Samburu communities, Siambu and Mbaringon, that differ in the land tenure systems they follow. While land continues to be considered as communal in Mbaringon, land in Siambu is privatized.The Samburu are semi-nomadic pastoralists who live in the semi-arid Samburu district in north-central Kenya. During the process of land adjudication following independence, the semi-arid and arid lands were exempt from the titling of individual land due mostly to the unproductive potential of the land and the mobility required by its largely pastoralist inhabitants. Titles were instead distributed to groups as a formality required to lay claim to land. However, a small group of Samburu who saw an investment opportunity in privatized land, began agitating for individual titling and petitioned the government for land in the late 1970s. A conflict between the two factions ensued that was finally settled in 1986 when the government decided to sub-divide part of the land under dispute, known as the Lorroki plateau, to the petitioners. This area of privatized land constitutes the community of Siambu. The other sample community, Mbarigon, is located 40 km southeast of Siambu.Data for this study was collected in detailed household level surveys fielded in 2000-2001 and again in 2005 when the initial households were revisited. A total of 159 households, 70 from Siambu and 89 from Mbaringon participated in the survey.As the initial survey was conducted just after the prolonged drought of 1999-2000 that led to large losses of livestock for many households in both communities, the ensuing period is likely to have been one of recovery. However, while both communities post an increase in the mean Tropical Livestock Units (TLU) per household, an increase in average per capita income over the sample period only occurred in Mbaringon. In fact, as the table below reveals, average income in Siambu decreased. By this metric, Mbaringon, which was worse off than Siambu in 2000, becomes better off by 2005. This may be explained by the fact that being nomadic pastoralists, livelihoods in Mbaringon are more centered on livestock which faced high rates of mortality due to the drought. Nevertheless, the slight increase in median income suggests that the welfare improvement in Mbaringon was limited to a few households. It also appears that crop production in Siambu was less effective in supporting household well being in the latter period than in the earlier one. Indeed, inequality analysis reveals a significant degree of stratification. Across both communities, the wealthiest quintile owns more than 50 percent of the livestock while the poorest own less than two percent. An analysis of livelihood portfolios suggests considerable differences, both between and within the two communities. Wealthier households derive the bulk of their income from livestock, largely from sales and home consumption of milk. While livestock continue to be a key source of income for the wealthy in Siambu, the livestock share of total income is declining as households diversify into trade, agriculture, and wage labor. Poorer households in both communities receive the bulk of their income from wage labor and trade.As privatization of land in Siambu created a need for new rules regarding inheritance of land, the authors sought to investigate the emerging norms of land inheritance. This is an important question as the pattern of inheritance that is ultimately established will have important effects on access to key resources for the next generation and is of significance to policy formation on pastoral or mixed use land tenure regimes. In-depth interviews were conducted with those involved with the 10 cases of inheritance that had thus far occurred in Siambu.No single pattern or norm for inheritance seems to have emerged though there was evidence for several competing rationales proffered as the \"right\" way for inheritance to occur. On the one hand, there were those who believed that inheritance of land should follow the norms of livestock inheritance among the Samburu where the oldest son inherits his father's remaining livestock (and other possessions) upon his death. Other proposals, based on concerns for equity, suggested that either land should be divided among all sons, or among younger sons, excluding the eldest who lays claim to other possessions. Nevertheless, the overwhelming majority felt that oldest son should also inherit the land.Understanding the survival strategies of pastoralists is fundamental to designing policies that aim to reduce poverty. The results of this study have a number of policy implications. Interventions that do not take into account the high degree of inequality among pastoralists, and the fact that most of the livestock are held by wealthier pastoralists, may fail to address problems felt by poorer households. For example, many recent development programs in northern Kenya have emphasized the development of livestock marketing infrastructure and improvements in the provision of animal health services. While these are important interventions, they disproportionately favor the relatively wealthy. Poorer pastoralists relying on wage labor and trade would benefit more from support in terms of education and job skills.Land tenure policy is another area of practical application of this research. Much research and advocacy work has focused on securing pastoralists' rights of access to rangelands and in preserving mobility, which are extremely important. However, in some pastoral areas (especially in higher rainfall areas), internal pressures to privatize are a reality and need to be addressed. By providing empirical data on the actual outcomes of privatization in Samburu, this work can contribute to informed policy making. The examination of emerging social norms demonstrates the malleability of social institutions, often accompanied by social conflict and differential gains by various social actors. As such, good land policy needs to be sensitive to the likely effects of legal changes, especially for more vulnerable groups such as women and poorer pastoralists.By Maren Radeny, David Nkedianye, Patti Kristjanson, Mario HerreroThe economic options available to pastoralists are relatively few, and the returns to the various options across households little studied. This brief summarizes an article that addresses livelihood choices and income diversification strategies among agro-pastoralists and pastoralists in the Kitengela area of Maasailand, and the factors influencing the returns to the diverse livelihood strategies being pursued. How variability in income and wealth levels across households can be explained by household-level versus geographic factors is explored.Kitengela is quite unique in that it is very close to a major metropolitan area, Nairobi (and therefore has some very valuable land), is a dispersal area that supports a large and long distance wildlife migration to and from Nairobi National Park (NNP), has seen significant population growth and in-migration of non-Maasai peoples in recent years, and is taking part in a wildlife conservation payment scheme (called the land leasing program) that may or may not be sustainable in the long run.Despite this uniqueness, the adjustments in livelihood strategies and outcomes in terms of incomes and asset levels that we are witnessing in this area have important lessons for other pastoral and agro-pastoral communities facing similar challenges in the future (e.g. land privatization, diversification of incomes, wildlife-livestockpeople conflicts). The information generated in this study can contribute to more evidence-based decision making occurring across pastoral areas and inform policy decisions regarding conservation of wildlife and poverty reduction strategies.In 2004, a formal household survey was carried out on a random sample of 177 households in Kitengela. It builds upon previous household socio-economic studies conducted in the area in 1999, 2000 and 2003. Detailed information was sought regarding household demographic characteristics, revenues, production costs, income sources and income levels under various land-use options as well as offland activities. In addition to this information, spatial variables were generated for each household, including distance to the nearest tarmac road, town, park, permanent water source and primary school. Various other secondary sources of data on crop and livestock prices and other spatial information were also used.A multiple linear regression model was used to look at the determinants of annual total net income (i.e. adding up net income from livestock, crops and off-land activities) -i.e. which of the different household characteristics or geographically determined factors help explain the wide range of incomes that we see across Kitengela. Separate similar regression analyses were also carried out to examine the most important factors influencing the components making up net income (livestock-related and income from other sources), land prices and herd value.The range of household characteristics, size of land and livestock holdings, choice of land-use and other activities is wide across Kitengela. Key informants feel that, on average, family sizes have been shrinking, more children are going to school and for longer, and land and herd sizes are smaller than before. Data from our survey and two earlier ones support these perceived trends, although they only cover a 5-year period.Average per capita herd size in 2004 was 7.1 TLU (total livestock units), slightly higher than the 5 to 6 per capita TLUs considered to be the threshold below which the household can no longer survive purely on livestock. One-half of the cattle are owned by the 20% of households with the highest incomes, earning more than US$4,842/year/household, or US$13/day/household.The lowest income households, on the other hand, own only 11% of the cattle and earn less than US$1,917/year/household, or US$5/day/household). Despite the fact that cattle ownership is not equally distributed, livestock-related earnings (including the value of the meat and milk they consume) still account for over 50% of incomes across all income categories.Poorer households actually have more income sources than the wealthier ones, although non-livestock earnings are considerably lower and from less reliable sources. Higher income-earning households have a larger proportion of their incomes coming from wages and business, for example, while those in the lower ones depend more on petty trading and other informal sector activities to help them diversify their incomes.Looking at the factors influencing overall income levels, the results suggest that almost half of the variation in net incomes (45%) across these Kitengela households can be explained by household level factors alone, including livestock assets (TLUs), education level of the household head, and extent of diversification (i.e. number of off-land activities being pursued).When livestock-related income was considered on its own, the analysis showed that herd size alone is able to explain over half (52%) of the variation in livestock income. Households with larger herds still earn significantly more than households with smaller herds of livestock. The results suggest that a 10% increase in TLU per household (e.g. of 4 TLUs from the average TLU per household of 42) would increase livestock returns by 7.5 percent. Of the spatial variables, distance to the nearest permanent water source was the only one showing up as important, with the implication that households located closer to water points tend to earn more from livestock than those living farther from permanent water sources.The main factors driving returns to activities other than livestock, including crops and off-land activities turned out to be the number of years of education of the household head, herd size (TLU), and the number of off-land activities. The fact that larger herds also mean higher off-land income suggests that in some cases, livestock and milk sales help households pursue other opportunities (although offland income is also used to purchase livestock).Land price per acre was regressed on spatial variables that included average NDVI, population density, distance to NNP, distance to permanent water, distance to town, and distance to school. The results show all of these variables as significant determinants of land price, able to explain 70% of the variation in land prices observed.An examination of land versus herd values for each household highlights the huge trade-off in herd-related versus land-related wealth. Households with larger herds and more livestock wealth tend to be living on less valuable land (farther from Nairobi), versus landowners living on extremely valuable land, that are more likely to be located nearer NNP and good roads, but with smaller herds and generally lower livestock assets.The implications of being able to predict land prices quite accurately, based on spatial, rather than household-level information, are large in this area where these households have had no access to such information. This can empower community-based organizations such as KILA (Kitengela Landowners Association) to pursue more transparent negotiations with district and national officials and others, such as the administrators of the lease program. For example, lease payments in the future may need to be adjusted to account for the varying value of land assets across the Kitengela landscape in order to be sustainable. This model will also allow predictions of land prices into the future, e.g. given different population growth or infrastructural development scenarios.Both household and spatial factors were unable to explain much of the variation across households in livestock asset wealth. Household labor was positive and significant, along with years of education of the household head. So larger and more educated households appear to have an advantage when it comes to accumulating livestock assets. With respect to spatial determinants of livestock wealth, households living closer to livestock market towns tend to be wealthier, as are those that are living further away from NNP.While Kitengela is a fairly unique area, lessons learned here will be valuable for the many other agropastoral communities facing similar issues across the region.Relatively few household characteristics can explain almost half of the variation in income levels across Kitengela (livestock asset levels, education level, landholdings, and diversification of income sources), and location largely determines land prices (70% of the variation in land prices can be explained by four spatial variables -distance to the nearest livestock market town, permanent water source, Nairobi National Park and pasture potential, or NDVI). While the weather cannot be influenced by policy, investments in infrastructure and services can influence the other factors, so these findings and their policy implications are important. For example, the Kitengela community is currently working closely with the Ministry of Lands and local government (OlKejuado Council) to develop the first coherent, evidence-based local land policy for this area; the type of information generated in this study can contribute to these efforts.Despite the rapid economic and social changes the Maasai in Kitengela have been experiencing in recent years, policymakers need to recognize that earnings from livestock are still critical in terms of overall household earnings. Households with larger herds not only have more overall net income, but also more livestock and off-land income, suggesting that livestock/herd size may be driving diversification strategies in some cases (this is a complex relationship, working both ways, since income from off-land is also used to purchase animals). These higher income households also tend to be the ones educating their children past primary school, so they have improved employment opportunities. This is in fact counter-intuitive to conventional wisdom about pastoral families, i.e. a picture of large, uneducated households with huge herds but not much income, and points to the difference that education is already starting to make in this particular area. It suggests that investments in education beyond primary school have potentially high payoffs in this and other pastoral areas (and doesn't automatically signal the end of pastoralism).Sales from milk provide roughly a third of household income in a good rainfall year, and is completely in the control of women. This simple fact has a huge policy implication. Interventions and policies that assist women in improving their earnings from milk have potentially large poverty impacts at the household level. For example, marketing of milk is currently very disorganized, so training and technical assistance in milk handling, marketing and management skills, for example, through women's groups could be very beneficial.Diversification through cropping still appears a quite tenuous option, with many households not getting a harvest even in a year considered to be a 'good rainfall year'. While relatively few households are yet receiving wildlife conservationrelated income, for those that are, it is a more lucrative option than cropping, from which very few are earning positive returns.This kind of information has, and will continue to be, shared with community members and local and national policymakers, as it can contribute to a better understanding of the huge trade-offs that these households are facing, and the information they require as they struggle to adjust their livelihood strategies to cope with widespread and rapid socioeconomic changes. After all, it is the communities themselves that must influence new, and hopefully more evidence-based, land, livestock and other policies that will improve their levels of well-being sustainably over the long run. The absence of a representative and effective pastoral civil society movement capable of articulating the development concerns of its members is one of the key factors that explains the continued marginalization of pastoral communities. Despite decades of empirical research providing evidence of the value and resilience of the pastoral livelihood, many policy makers, government staff, and NGO personnel continue to view pastoralism as a backward, environmentally destructive and unsustainable production system. In the eyes of the State, pastoralists often represent a minority vote, occupy vast areas of relatively invaluable land, and produce livestock products inefficiently. It is thus not surprising that pastoralists and their interests are not very high on national policy agendas.For their part, pastoralists often lack the knowledge, capacity and resources with which to lobby their cause. A considerable constraint to organizing a collective effort lies in the significant heterogeneity that exists among pastoralists. High levels of differentiation according to ethnicity, gender, wealth or political affiliation affects their readiness and capacity to act in solidarity with each other. Historical inter-ethnic animosities arising from recurrent conflicts of land rights and livestock raids poses an additional challenge. Moreover, poverty and frequently recurring droughts limit the capacity of pastoral communities to invest time and resources on a long-term and intangible process of empowerment.Despite these problems (or perhaps in reaction to them), a pastoral civil society movement is gradually emerging in East Africa (particularly in Kenya and Tanzania) as community-based groups and national level associations are galvanized by the increasing support and attention that pastoralist issues are attracting from international organizations. Supporting these organizations to develop the capacity and political leverage to effect substantive policy changes is critical, especially in the face of prevailing prejudices against pastoralists and the constraints to organizing that pastoralists themselves face.One such initiative, spearheaded by the Drylands program of the International Institute for Environment and Development (IIED), has been supporting a process to build the capacity of pastoral groups in East and West Africa to understand, engage with and ultimately influence the overall policy framework regulating their livelihood systems. This process is focused on the design and implementation of a training course on pastoralism and policy. Initially designed in the Sahel, the course has subsequently been adapted for East Africa within the context of the regional program on Reinforcement of pastoral civil society in East Africa.The paper summarized in this brief champions the training course as one important factor for addressing the challenges of poverty and marginalization among pastoralists of East Africa. The authors delineate the core hypotheses underpinning the design and implementation of the training course, describe the training content and its pedagogic approach, and analyses the practical relevance of the training to on-going policy debates and reform processes touching on pastoralism and poverty reduction in East Africa.The The course is delivered as two modules that run for a total of three weeks with a six to eight week break between modules. Module 1 presents and analyses the dynamics of pastoral systems in East Africa. It demonstrates how pastoralism is a \"system\" regulated by ecology and complex modes of social, political and economic organization well adapted to dryland environments. Since the perception of pastoralism is often that it is unstructured, backward and inefficient, the objective of this module is to help participants discover the dynamics and internal logic underpinning the key components of different pastoral and agropastoral systems in East Africa.Module 2 analyses the policy challenges and options for pastoralism in East Africa.The module focuses on how successive policies have sought to either alienate pastoral land for other uses and/or to modernize pastoral systems, nearly all with disastrous effects. The module looks specifically at current reforms with respect to land and natural resource management within the context of national poverty reduction strategies, decentralization and increasing privatization and foreign investment particularly in land and natural resources, and the constraints and opportunities these present for pastoral communities. The module enables participants to identify and analyse the key premises underpinning these policies and to generate alternative policy options based on what was learnt from Module1.In order to assure that the material and method of presentation was relevant and optimally suited to equipping key stakeholders to understand and effectively engage and influence policy relating to pastoralist issues, great care was taken to design and develop the course. As the course is adapted from a similar course designed in the Sahel, it was necessary to assure that the materials were relevant for the East African context. A highly participatory process was adopted, and a core group of partners in East Africa were selected to take the original course and adapt it for the East African context.Although much of the content needed to be changed to reflect the nature and challenges facing pastoral communities in East Africa, the internal structure and innovative pedagogic approach characteristic of the Sahel training was considered highly relevant. In collaboration with leading pastoral experts from within the region, a detailed template for the training course was subsequently developed.On the basis of the template, pastoral and other experts were commissioned to provide the most pertinent data and scientific evidence in their specific disciplines to support the arguments developed within the training. Finally, a series of tests were conducted over eighteen months with representatives of the training's different target groups to evaluate the logic of the arguments presented in the training, the pertinence and accessibility of the evidence provided in support of the arguments and the effectiveness of the pedagogic approach.Challenging the Policy Environment for Pastoral Development in East Africa.The successive waves of policy reform sweeping East Africa in the form of donor initiated poverty reduction strategy processes (PRSP) provide a policy discourse framework that can be used by the pastoral community to leverage resources and influence policy. Indeed, in Kenya, Tanzania and Uganda, pastoral communities have taken advantage of these provisions to assert their rights and articulate their specific needs in poverty reduction.In Kenya these efforts have led the government to devote an entire chapter in its Economic Recovery Strategy for Wealth and Employment Creation to strategies for the development of arid and semi-arid lands. In Tanzania, active advocacy and engagement by pastoral NGOs resulted in the National Strategy for Growth and Reduction of Poverty recognizing pastoralism as a legitimate livelihood system. In Uganda, the 2004 Poverty Eradication Action Plan articulates the interests of pastoralists for the first time with a commitment that \"pastoralists and their farming systems will be a key component in the new (livestock) policy\".While this is a notable step, a gap exists between policy and legislative stipulations one the one hand, and practice on the other. This is partly a function of the failure by key policy makers to adequately understand the pastoral livelihood and the key issues their practitioners face. It is also a function of the absence of a wellorganized, informed and effective pastoral civil society with both strong political legitimacy and the capacity to articulate the value of pastoralism as a land use and livelihood system. The course, Pastoralism and Poverty in East Africa, provides a practical tool to strengthen the voice and capacity of the pastoral civil society, equipping them to build policy support for the pastoral agenda and help bridge the gap between policy rhetoric and practice.By Kejela Gemtessa, Bezabih Emana, Waktole TikiThis study focuses on the way of life of the Borana pastoral communities of Southern Oromia in Ethiopia, documenting a region moving from pure pastoralism to agro-pastoralism. This change is forced by a variety of factors, including environmental conditions, poor pasture and livestock productivity, and population growth. The aim is to contribute to a heightened understanding of the complex economic and social dynamics affecting pastoral communities with an eye to influencing effective policy decisions concerning pastoralist issues.Commissioned by the Pastoral Community Development Project, the study was conducted in Dire District of Borana zone in Oromiya region in 2005. Three communities were chosen from Dire Woreda, a district approximately 665 km south of Addis Ababa. The communities Haralo, Dhasi and Gololcha were selected. Haralo is recognised to have both pastoral and agricultural activity, while Dhasi and Gololcha are classified as pure pastoral communities. However, evidence in the study suggests that elements of agriculture are now present in these latter two communities as well, due to poverty and decreased livestock productivity. The main issues covered in the survey include: land tenure, land and resource management, livestock mobility, livestock markets, sources of income, household expenditures, food security, and major challenges faced.Land is divided into rangeland, cropland, forestland and water resource areas.Rangeland belongs to the clan, and is allotted to members of the community through decisions by the elders, known as the Jarsa Reera. While most grazing land is open to all, the Jarsa Reera fences off an area to be reserved for the dry season, and access to this land, called the \"kalo\", is controlled though the elders.The process for acquiring farming land was similarly simple. Individuals would approach the kebele officials and the Abba Olla, or village leader, and be allotted a plot of land. This land could be passed from father to son, but once abandoned (as the land is fragile and cannot sustain multiple rotations of crops) the land would return to the community. Sadly, due to increased demand, this process is slower and less reliable today. The increase in farmland threatens rangeland, as does the prospect of private ownership. And while owning livestock is a more secure livelihood, it is becoming too expensive for a large portion of the community who need to supplement their income with crops. Community member identify the following factors as a cause of poor productivity of the rangelands: Declining traditional management system, 27%; Increased livestock population, 48%; Climatic Factors including soil erosion, 25%. An important traditional management system was the clearing of brush by bush burning, which has recently been banned. This has led to an explosion of the local tick population and to an increase in the incidence of mastitis, resulting in only 40% of milking cattle having four functional teats.Before moving to potentially better pasture, the leader of the community sends a group of men to scout out the various migration locations. This group, called aburu, determines the presence of natural resources, the carrying capacity of the rangeland, and the presence of any livestock disease. Once a region is selected and the elders have negotiated the move with the locals in the new region, the boys and men set off with the animals, while the women and elderly stay at the permanent homestead. Those who are left behind are now responsible for tending to the new crops. In years of intense drought or conflict, a more permanent move may need to occur.There are also negative effects of mobility. Competition for grazing land and water with the host community is a serious concern, which often spurs ethnic conflict.Greater environmental damage can occur with the greater volume of animals. The spread of disease is also a concern, with more possibility of transmission between herds. During the search for pasture, women are left without access to livestock, depriving them of nutrition.While a market for livestock has emerged, there is little market for livestock products. Livestock have begun to fetch good prices at the districts markets Dubluk and Mega. Moyale's market, a likely source of illegal exports into Kenya, maintains even better prices for both livestock and milk. Milk sales are most often organized by the women, who sometimes consolidate their wares to maintain a higher volume and higher price.The major sources of income for the rich and the medium households are livestock and livestock products, crops, and trading services. Poor and destitute households manage through wages, crop farming, sale of charcoal and firewood, relief food and remittances (payments sent from wealthier relatives). The total annual income for a rich household is approx. Birr 7,800 (US$900), while for a destitute household it is approx. Birr 2,020 (US$233). When divided between a family of six, average per capita income for the rich is US$150 and US$39 for the destitute.All wealth categories spend the greatest proportion of their income on food. The next highest household expenditure is on stimulants (such as tobacco and khat) and beverages, and this total is often close to the percentage spent on food. There are also traditional obligations, such as funeral expenses and gifts given when a son is titled.Rich and Medium households have adequate food supply year round. Poor households are food insecure for about six months, while destitute households are food insecure all year round. Different coping strategies are employed by each group. In a crisis the rich and medium households can sell livestock, while the poor and destitute turn to eating wild root, called Burii. The poorer groups rely on one another through income sharing in times of need. Reduction of meals per day is an option for the rich and medium households, but only a last resort for the poor and destitute, as they are already down to one or two meals a day.Changes are occurring which are making traditional pastoralism more difficult. Border conflicts and population increases are straining rangeland resources. Crossborder trade restriction to Kenya, where sale prices are higher, and a deterioration of traditional support systems are eroding the pure pastoral way of life.Communities that were once able to rely on each other in times of need are now too poor to support the growing numbers of impoverished members.Productivity of the rangeland and croplands are also falling, as is the productivity of the cattle. The falling productivity and increasing volatility associated with livestock production is the single largest contributing factor to the poverty in the region. Livestock represent nutrition, food security, liquid assets and has been the traditional foundation of these communities. The heavy expenditure on addictive stimulants is also cause for concern. There are few support systems in the area for veterinary and human medicine, and no development training or school system.Pastoralism is deeply entrenched in the culture and traditions of the Borana peoples. However, the cons of living a truly nomadic pastoral lifestyle have begun to outweigh the benefits. Disease, drought, damage to the environment, and rising costs of relocation are forcing these communities to become more sedentary, but with scant options for alternate income sources.The Borana people must diversify to support themselves. A new system is required for portioning land to encourage investment in agriculture. There is a need for an appropriate land use policy that can be agreed upon by all community members and officials. A solution is needed to accommodate and ensure the mobility of livestock while being cognizant of environmental factors. Trade can be expanded to create jobs and income. Access to credit and business training is necessary to nourish an entrepreneurial culture and would be especially helpful among already established women's groups.Due to the new reality of a partially permanent agro-pastoral homestead, new infrastructure needs to be put in place to assist these more permanent communities.Construction of roads, schools and reliable water sources can provide stability for this new, diverse livelihood. Education regarding income-diversifying activities, especially for women, can help ease dependence on livestock production.Recurrent droughts and a falling water table have led to increasing scarcity of water for crop farming and livestock watering among agropastoralists of Mieso in Eastern Ethiopia. The increasing pressure on water resources and livestock watering points is threatening traditional norms that govern access rights to water. Livelihoods, which are heavily dependent on water, are largely disrupted and subject to an increasing degree of vulnerability.To address this issue, in 2002 the regional government introduced water harvesting projects in Mieso in order to minimize the disastrous effects of drought and reduce food insecurity. Part of a broader national program, the idea was to harvest rainwater in ponds constructed and managed by organized groups. Supporting collective action efforts at the grass roots level was an explicit policy mechanism that sought to enable the poor to achieve common goals that could not be achieved individually due to capacity constraints or coordination problems.The research summarized in this brief examines the groups formed to harvest water collectively and maintain water wells among agropastoralists of Mieso in Eastern Ethiopia. While studies on collective action have so far been extensively undertaken among smallholder sedentary farmers in the highlands, this study introduces a novel perspective by focusing on semi-sedentary agropastoralists.The data underlying this study was generated from in-depth interviews with various stakeholders at the community level, in several focus group discussions and in individual interviews with 80 households randomly selected in 4 peasant associations from November 2004 through April 2005.The evidence points to two distinct types of collective action institutions that capture the key differences in their organization: 1) internal or self-organized groups, and 2) externally initiated and facilitated groups. This demarcation, defined by organizing influence, also differentiates against several other key group characteristics. The type of water management scheme the groups were involved in defines one such clear difference. Water-well maintenance was exclusively pursued by self-organized groups, largely because the practice was well established within the communities and traditional rules existed that required collective decision-making to enforce these rules. Water harvesting, on the other hand, being a local government program, required external facilitation. The nature of sanctioning and rule enforcement also differs between self-organized and externally initiated schemes. While peer influence and the threat of temporary exclusion from access is the customary practice for water-well management, monitoring by chiefs and the possibility of fines are the mode of enforcement for water harvesting.Differences in the access rights to water wells and water harvesting ponds have important implications for the effectiveness and sustainability of collective management. Water harvesting essentially entails a collective effort to harvest water for the private use of particular members who can thereafter claim ownership of the water -joint production but private appropriation. Water is harvested for each group member on his own farm in a rotating fashion. Those members who fail to contribute labor will be excluded from membership and the mechanism of minimizing free riders is simple. In this type of collective scheme, cooperation is self-enforcing because the institutional arrangements operate on reciprocity basis.Because the water points remain a common property resource, the collective management of water wells relies on the strength of community norms. While the rules governing water well management have historically been effective, recurrent drought shocks and longer migration paths in search of available grazing far away from place of residence has eroded the effectiveness of informal management.Because the wells are essentially a common resource, moral hazards (where the leader hardly monitors contributions to the maintenance) have given way to freeriding. In some instances, the breakdown of informal authority, predicated by increased resource scarcity and vulnerability, have resulted in the neglect and consequent drying-up of several wells.This study examined the way in which agropastoralists of Eastern Ethiopia organized the collective management of water resources. The authors highlight how differences in the production and access rights of water wells and water harvesting ponds critically determine the effectiveness of collective management efforts. The fact that harvested water, though jointly produced, is privately controlled and allocated means that informal organizations can rely on the threat of exclusion to discourage free-riding. As water wells are common property, access rules based on traditionally accepted practice, or informal community control, are less effective in the face of prolonged stress where the strength of cultural norms are trumped by the imperative of survival. Poor techniques of water harvesting and storing, inadequate extension services, and the random grouping of members, on the other hand, impede water harvesting.Development programs and intervening agencies facilitating collective action in such societies must thus be very sensitive to the interaction of cultural and economic factors governing collective action. Mechanisms to adjudicate conflicting claims to traditional water sources need to be put in place. At the same time, water harvesting schemes need the regular support of technical experts in order to be more efficient and to mitigate instances of food insecurity resulting from water scarcity.Collective action is well known as a positive force for improving risk management in many rural communities of the developing world. Group formation can contribute to building social capital, and this, in turn, can have positive effects on human welfare, especially as a result of income generation among the poor. For sub-Saharan Africa, Kenya is noteworthy in having a long history of formal cooperative movements involving smallholder farmers. A wide variety of other, less formal, self-help groups that have recently emerged in rural sites of the Kenyan highlands is also documented. These groups, often numerically dominated by women, undertake many activities that include income generation, asset building, commodity marketing, and social/cultural functions.There is far less evidence, however, of similar forms of collective behavior occurring among rangeland inhabitants in Africa. This is logical given the vast expanse of rangeland areas, the low densities of pastoral populations, and the loosely structured social organizations that have evolved among pastoral societies to accommodate a need for more household-level independence and opportunism to exploit patchy, harsh environments. In recent decades, however, some trends towards sedentarization in higher-potential rangelands may help create subpopulations that are more suitable or amenable to collective action. This prominently includes the swelling numbers of former pastoralists, or semi-settled active pastoralists, now residing near small towns and villages.The main objective of the research summarized here was to document and explore a sample of varied women's groups that have sprung up across northern Kenya. Extensive qualitative interviews for 16 women's groups residing in Moyale and Marsabit Districts in northern Kenya in early 2005 were conducted. The groups were purposively selected from key locations that were readily accessible to data collectors. To promote confidentiality of interview respondents, the names or locations of the groups are not reported. Interview questions were typically open ended and elicited monologues, discussions, or other forms of qualitative responses. Ranking methods were also used in some cases. Interviews were conducted in Kiswahili. While the women we interviewed represented dominant pastoral ethnic groups in the region (i.e., Boran, Rendille, etc.) they pursued sedentary lifestyles and resided in towns and villages. They and their families are linked to a variety of agro-ecological production systems. One women's group was in a farming area while three other groups were in an arid area wholly devoted to livestock production. The remaining 11 groups were in mixed, agro-pastoral locations.At the time of interviews, the groups had existed for an average of 10 years, with two being 18-19 years old. Charter memberships averaged about 24 women, 20 of whom were typically illiterate. Half of the groups had been formed after facilitation by a GO or NGO partner and half formed spontaneously. Groups are governed under detailed constitutional frameworks outlining rights and responsibilities of members. All groups have eventually been registered with the Kenya government.Chairladies of the groups are typically elected to two-year terms. Group applicants and candidates for office are carefully screened.The large majority of the groups indicated that the key reason for organizing was to improve living standards of the members. Major objectives across all groups prominently included the reduction of poverty by increasing incomes via microenterprise development and livelihood diversification. Groups undertake a wide variety of social and economic activities founded on savings and credit schemes and small business development. Across all groups, livestock continues to play a vital role. Commercialized livestock activities provide capital for small business ventures and vice-versa. Secondary objectives, largely pursed by more established groups, include the expansion of education, health service, and natural resource management functions.Groups also serve as a form of social insurance, often supporting members faced with unexpected hardship. Groups appear to vary in their effectiveness of responding to drought. Several mature groups were able to offer drought mitigation assistance to their members. While most of the sampled groups register prolonged periods of hardship, many have weathered the storm and respondents generally indicate improved welfare as a direct result of group membership.The greatest threats to the sustainability of these women's groups come from external factors such as drought, resource scarcity, poverty, and political incitement as well as internal factors such as unfavorable group dynamics and illiteracy. Principles of good group governance and wisdom in business creation and management were repeatedly stated by respondents as the key ingredients for longterm success; making linkages to external development partners is also vital to secure access to technology and small grants.Groups have ambitious plans to further improve their social and economic circumstances. Evidence is shown that rates of group formation in the region appear to be increasing. In a highly risky and poverty-stricken environment such as northern Kenya, such groups help create relatively deep pools of social, human, and diversified economic capital. Many of these processes fill large gaps in public service delivery and should be encouraged by policy makers.What polices are needed to support and encourage the efforts of productive, grassroots organization in pastoral areas? At the micro-and meso-levels, groups need support that runs the gamut from provision of small grants and technology to various forms of capacity building that involve training for people in the areas of leadership, group dynamics, gender dynamics, micro-finance, micro-enterprise, and commercial and non-commercial aspects of pastoral livestock production. Meetings involving women's group representatives and facilitators from GO and NGO partners should be held to directly inform policy makers on the details of priority interventions. At the macro-level, policies that promote investment in rural development-prominently including improvements to physical infrastructure, reducing insecurity, increasing access to education, improving governance, and promoting cross-border trade, could yield many local benefits by widening the economic niches to allow for sustainable growth and proliferation of self-help groups.Increased prospects for regional and international trade could help justify mergers of local groups into larger cooperative associations with possible benefits in terms of the bargaining power of groups and successful market penetration. One recent example of impact that illustrates synergism among the inter-related roles of local group capacity building, aggressive regional networking of buyers and sellers, and involvement of policy makers is provided by the creation of a northbound marketing chain for small ruminants that largely occurs in pastoral Ethiopia. Animal supply originates in northern Kenya and southern Ethiopia, with animals processed in Addis Ababa and products then exported to the Gulf States. Such models illustrate how local social capital in the form of group collective action can be transformed into larger benefit flows via connections to outside markets.By Paulo Santos and Christopher BarrettContemporary policy debates are rife with discussions of \"poverty traps\" which describe structural features of the state of poverty that cause it to persist. Different factors may give rise to different types of poverty traps: there may be groups within a population for whom there exists a unique equilibrium associated with persistent poverty and others who face multiple equilibria and thus face wealth dynamics conditioned by their starting positions. As the policy implications of the different poverty-trap generating mechanisms are markedly different, it is important to identify the causal mechanisms behind apparent poverty traps. The research described in this brief investigates the wealth dynamics of Boran pastoralists in southern Ethiopia and highlights the role that poor weather and herder-specific ability to cope with such shocks play in conditioning wealth dynamics. Building on recent evidence of nonlinear herd dynamics consistent with the hypothesis of poverty traps, the authors find that Boran pastoralists with low ability converge towards poverty regardless of the herd size with which they start with, while those of higher ability exhibit multiple wealth equilibria.Several data sets, all based on Boran pastoralist households drawn from 4 communities in southern Ethiopia (Arero, Mega, Negelle and Yabello), were utilized. The first data set involved a recall exercise among sample households that allowed for the construction of reliable panel data reflecting 17 years of herd histories. The second data set, collected from different households in the same four communities, consists of household data collected every three months, March 2000 -June 2002, and then annually each September-October starting in 2003.The data include detailed information on household composition, migration histories, changes in herds, shocks, etc.Using this same set of households, the third data set consists of subjective expectations of herd dynamics that collected in the following way: the authors started by randomly selecting four hypothetical initial herd sizes for each respondent, one size within each range of previously estimated herd dynamics. Conditional on their seasonal rainfall expectation (good, normal, or bad), the authors then elicited each respondent's subjective, one-year-ahead herd size distribution.Figure 1 below presents the scatter plot and kernel regressions (smoothed continuous version of the scatter plot) relating the one year ahead expected herd size and the initial herd size, conditional on rainfall expectations (bad vs good/normal). The difference is striking and shows that under good or normal climactic conditions, herders expect herds to grow no matter the initial herd size. Under bad conditions, however, expected (negative) growth is dependent on the initial herd size. The dispersion around the expected values is also much bigger under bad rainfall conditions than in a good or normal year: if this is due to differences in individual herding ability, it would seem that ability matters most when times are tough.Based on this year-ahead expectations conditional on rainfall, and using data on the actual rainfall (from the period 1991-2001) the authors simulate the expected 10-year ahead herd dynamics. These results, presented in Figure 2, are remarkably similar to the dynamics revealed by actual herd history data collected amongst households in the area, both in the general shape of the curve as well as in the location of the different equilibria This suggests that Boran pastoralists have a remarkably accurate understanding of the nature of how their herds evolve, including the implied existence of poverty traps. That is, they expect that someone with a small herd -below approximately 12 cattle -will not accumulate wealth, but will instead collapse towards a destitute, sedentarized equilibrium with just one animal. The considerable interhousehold dispersion of beliefs about herd dynamics under adverse states of nature (see Figure 1a) suggests that herder-specific characteristics, perhaps especially unobserved husbandry skills, play a central role in conditioning herd dynamics. The authors investigate this hypothesis through a two-step process: first, they use panel data on actual herd size for these households, collected in the period 2000-03 as part of the PARIMA project, to estimate individual herder ability. After dividing the sample into three subsamples based on herder ability -low, medium and high -they then again simulate the 10-year ahead expected herd size conditional on ability.Figure 3 is the analogue of Figure 2 for each of the three ability classes. The results suggest that herd dynamics indeed differ across herder ability. In particular, low ability herders face a unique dynamic equilibrium at a low welfare level, giving rise to a different sort of poverty trap than that faced by medium and high ability herders, who expect to accumulate wealth if (and only if) they start with an adequate herd size. When the authors take into consideration the role individual difference in herder ability plays in shaping herd dynamics, they find that both average herd size and wealth inequality increase over time, as low ability herders collapse into destitution while higher ability herders are able to maintain or even grow their herds. The natural dynamic of the system is thus towards polarization between viable herders and stockless pastoralists. These different subpopulations require different forms of support.This raises natural questions about existing interventions that do not take herd dynamics and herder ability into account, such as herd restocking, perhaps the most common form of post-drought assistance provided to pastoralists in the region. The authors simulate household herd dynamics under three alternative (equal cost) restocking intervention designs. In the first, which roughly mirrors current practice in the region, the poorest households with livestock are given animals to boost their herd to five cattle. In the second scenario, stock transfers are targeted not to the poorest first but rather in order to maximize expected herd growth from the transfer, assuming there exists no effective mechanism to elicit herder ability. Finally, a third option again targets transfers so as to maximize asset growth, but now assuming one can accurately identify herders by ability group.The results (Table1, below) reveal a tradeoff between the number of beneficiaries, the size of the average transfer and the ex ante wealth of beneficiaries, with scenario 1 providing fewer animals to more and poorer recipients, scenario 3 providing more animals to fewer and wealthier beneficiaries, and scenario 2 lying between these two. As one would expect based on the estimated growth dynamics in the system, restocking targeted to the lower levels of wealth fails to promote growth among the poor, suffering a -4.4% compound annual return on investment in transfer resources, given expected herd losses below the critical herd size threshold. The growth-promoting impacts of herd restocking become more satisfactory in the other two scenarios. Under scenarios 2 and 3, the average net returns to this policy after 10 years are 17% and 122%, respectively, showing that the growth payoff to identification of a reliable mechanism for identifying herding ability is potentially considerable since herder skill seems to matter a great deal to herd dynamics.This research shows that southern Ethiopian Boran pastoralists understand the nature of herd dynamics revealed by herd history data. Moreover, their responses enable us to unpack the herd history data highlighting that the mechanisms that trap people into poverty are diverse. Specifically, even among a homogeneous population with only one livelihood option -livestock herding -differences in structurally important factors, i.e. herding ability, can critically affect wealth trajectories.The policy consequences of these results are important. For those of low herding ability, livestock transfers -e.g., through restocking projects -seem an unwise investment. Identifying herders' unobserved ability may be difficult, and may require community-based targeting methods to take advantage of local information unavailable to central governments and external donors and NGO's. For higher ability herders, the results suggest a need for safety net programs that safeguard minimum herd sizes -e.g., through water point improvements, veterinary treatments, supplemental feed deliveries -or provide restocking to at least the critical threshold necessary to resume herd growth.Beyond Group Ranch Subdivision: Collective Action for LivestockBy Shauna BurnSilver and Esther MwangiRecent developments in ecological and common property theories suggest that mobility is crucial for livestock production in areas where rainfall is low and variable, conditions that dominate throughoutKenya's rangelands. However, a combination of government policy and internal drivers has resulted in the privatization of communal rangelands in most of these areas. In Kajiado District of southwestern Kenya, for example, Maasai pastoralists now face a critical dilemma. They are caught between new land tenure rules associated with the subdivision of communal rangelands, and an unchanged ecology. The trend towards subdivision implies dramatic change in pastoral land use and fewer options for mobility.This paper examines emerging collective arrangements and mechanisms for reaggregating subdivided parcels, and asks why herders are adopting these strategies in a post subdivision setting. We argue that re-aggregation is crucial for maintaining the flexibility that is necessary for livestock production in variable environments, rendered even more risky after subdivision. However, official policy at different governance levels has not kept pace with these ongoing developments.This paper leverages data and results from two PhD studies carried out across eight Kajiado group ranches from 1999-2005. BurnSilver looked at land use and land tenure change and its effects on economic strategies in four group ranches in southern Kajiado district. These included one recently divided ranch (Osilalei) and three Amboseli area group ranches that are largely unsubdivided (Imbirikani, Olgulului/Lolarrashi, and Eselenkei). 184 pastoral households were interviewed in order to gather data on socio-demographic characteristics, economic strategies (e.g. livestock, agriculture and off-farm activities), animal numbers, livestock management, and verbal descriptions of monthly movement patterns for 24 months across a good year (1999) and a bad year (2000).Mwangi examined why Maasai in the central Kajiado District group ranches of Enkaroni, Meto and Nentanai supported group ranch subdivision, how group land was allocated amongst registered members, and the distributional outcomes of subdivision. The data presented in this paper are a subset of 154 drawn from a wider set of 334 interviews with elders, youths, married women and widows from the three study sites. It is used to provide insights into the nature of collective activities that individuals pursue after subdivision and the emergence of pasture sharing arrangements.In general, forage options for individual herders decrease dramatically under privatization. If households share their parcels with other contiguous households within a 5km 2 area, however, access to forage increases. Grazing options further expand through sharing of 1km 2 pastures that are distributed randomly.A range of post-subdivision mechanisms have emerged in Nentanai, Meto and Enkaroni group ranches that act to re-aggregate household access to forage outside of private parcels. Households redistribute portions of their herds and swap/share pastures. Movement of animals occurs between parcels owned by members of extended families (sons, fathers, in-laws) and between those of friends (age-mates, clan-mates and stock associates). Sharing is reciprocal in time and reflects efforts at rotational grazing. Some leasing arrangements based on monetary exchange also occur but these are rare.Herders in Enkaroni, Meto and Nentanai moved their livestock to neighboring parcels, to neighboring group ranches, and to other group ranches and Tanzania during the course of the year. Most (93%) respondents moved their livestock during the dry season and during drought, and those with larger cattle herds were more likely to move. Parcel size did not affect mobility. Although only two surveyed Osilalei households moved off their private parcels in 1999 -the year of normal rainfall, 75% (n=21) of surveyed households migrated in the drought year of 2000.In the unsubdivided Amboseli area of southern Kajiado, sixty-one percent of households moved at least once in 1999; this figure rose to 85% in 2000. Mobility was significantly different between study areas in both years. Households in subdivided Osilalei and agropastoral S. Imbirikani were less mobile overall. Households in the group ranch areas were mobile regardless of herd size.Collective action mechanisms that govern access to shared resources continue to occur in Meto, Enkaroni and Nentanai. Individuals continue to work together to maintain the earth dams, boreholes, roads, schools and health clinics that were constructed when their group ranches were established. These maintenance activities are facilitated by an elected committee, which functions to mobilize labor and finances for the various maintenance activities.The results of 14 focus groups carried out in Amboseli indicate that subdivision, economic diversification and herder efforts to cross breed their animals (particularly zebu cattle) with improved breed Sahiwal and Boran animals were the most critical issues raised. Herders believed subdivision to be \"unstoppable\", and were concerned that privatization would lead to less flexibility. While subdivision was expected to give people the security of a title deed, they feared it could force a decrease in the numbers of livestock held by households. Pastoral households expect to pursue a range of coping strategies in response to subdivision. They also anticipate limitations on livestock mobility. Economic diversification and intensification of livestock production strategies are actions that households perceive will mitigate the impacts of subdivision. Leasing and continuing to use subdivided parcels communally to some degree are seen as potential coping mechanisms.Parcel sharing translates into more grazing flexibility, particularly when it occurs between households in different locations. \"Sharing\" in a post-subdivision environment takes many forms; whether based on redistribution, agreements, pasture swapping, or leasing of pastures based on monetary exchange. The most commonly used sharing/swapping mechanisms are those that are based on preexisting social relationships and norms, e.g. familial ties or friendships.New economic norms of pasture leasing are present, but are not the dominant mechanism of maintaining mobility. Individuals also organize around water and infrastructure provision. Those pursuing collective strategies do so both for economic expediency and for productive reasons -in an effort to access additional forage resources and re-create access to a full compliment of pasture types.These efforts by Kajiado pastoralists to reinstitute mobility and maintain flexibility in the face of subdivision are instructive to policy on several counts. First, contrary to dominant policy and research narratives, privatization does not signal the end of pastoralism as a livelihood strategy; collective action strategies that seek to maintain mobility are emerging in many areas that have privatized.Second, the drive to subdivide among pastoral households arises largely from the perceived need to defend land against external (in-migration) and internal (land grabbing) threats. The fact that parcel re-aggregation is occurring provides a strong case for subdivision as a defensive strategy. There is critical need for policy to recognize group or collective rights, providing them the same measure of protection as it does private, individual rights, especially in circumstances where groups and collectivities continue to use and prefer such arrangements.Third, the ecological exigencies of the semi-arid to arid pastoral environment have not changed. Pastoral households in a post-subdivision environment are seeking ways to enhance the viability of their production system through re-aggregation mechanisms. A policy dialogue between land managers and herders that is supportive of mechanisms to maintain mobility in this setting is crucial.Fourth, group ranch subdivision does not preclude individuals from seeking common solutions to shared problems. There is wide scope for actors in both government and non-government agencies to explore innovative measures to enhance collective action.The ability to forecast the onset, duration and severity of droughts, floods, and disease outbreaks with reasonable accuracy, especially in terms of their prospective human welfare effects, is critical to the design of timely and cost-effective early warnings and emergency response systems that can minimize the suffering of populations adversely affected by such relatively slow-onset events. As the consensus on climate change and its consequences grows, there is an increasing worry that the frequency of climate shocks will rise, with more frequent and serious humanitarian crises and ensuing demand for emergency response.Given the finite resources allocated for emergency response initiatives, there is growing demand for the development of timely, rigorous, efficient and practical methods of emergency needs assessment. To contribute to this effort, the research reviewed in this brief develops an empirical forecasting model to predict the human impact of slow onset disasters for early warning and emergency needs assessment.The research focuses on the arid lands of northern Kenya. Largely populated by nomadic pastoralists and particularly vulnerable to recurring shocks such as droughts and floods, the region is well-suited for the purposes of this study. As part of an effort to address the vulnerability of the region's population, the Arid Lands Resource Management Project (ALRMP) has been collecting data in various communities across Kenya's arid districts since 1996. Data collected include detailed household-level information on livestock such as herd sizes, mortality rates, lactation rates, and managed off-take rates, and child-specific nutritional data, specifically mid-upper arm circumference (MUAC) measures.The ALRMP data are monthly, February 2002 to May 2005, for 54 communities across four districts (Baringo, Marsabit, Samburu and Turkana). The authors supplement the ALRMP data with a rich source of climate and forage availability data collected and produced by researchers of the USAID Global Livestock CRSP Livestock Early Warning System (LEWS) project and its successor, the Livestock Information Network and Knowledge System (LINKS) project. One desirable feature of these data is that they originate with remotely sensed and other data external to communities, so they are information imported into, rather than merely extracted from, the system under study. As changes in livestock fertility, mortality and productivity respond strongly to lagged changes in forage and water availability, use of these variables can improve the precision and forecast lead time of models to predict the human impact of the climate shocks that frequently confront pastoralist communities.Emergency response to widespread acute food insecurity is largely conditioned by the degree and prevalence of gross malnutrition. Acute food insecurity is typically assessed based on the proportion of children whose anthropometric measure(s) of weight relative to height or age reflect widespread high levels of food stress and acute undernutrition, commonly known as \"wasting\". Mid-upper arm circumference (MUAC), a superior predictor of child mortality, is one such measure. A MUAC Z-score of less than -2 is widely regarded as an indicator of severe wasting. (A Z-score is a statistical measure of MUAC values relative to a universal reference population. A Z-score<-2 indicates a child more undernourished than 97.5% of children of similar age.) A food crisis might be objectively defined as occurring whenever twenty percent or more of children are severely wasted.Using this definition of a food crisis, the authors developed a model to forecast child nutritional status (as given by MUAC) based on movements in key explanatory variables several months in advance. Herd dynamics variables (the size of herds, mortality rates, sales and slaughter rates), measures of food aid, as well as variables capturing rainfall and forage availability were used to predict the prevalence of MUAC, and consequently, the likelihood of a food crisis.Effective response to food crisis requires early warning of emergency conditions so as to mobilize resources. Two forecasting models are developed: a one-month forecast and a three-month forecast for the prevalence of severe wasting. While a one-month forecast will typically be more accurate, the short lead time leaves little leeway for food security managers to make effective use of the forecast. The longer forecast horizon afforded by a three-month forecast, however, comes at a cost of diminished accuracy. The inverse relationship between forecasting horizon and forecast precision forces an operational tradeoff between models. Different endusers will favor different characteristics and thus different models.Figure 1 shows the monthly forecasts generated for January 2004 to May 2005 compared against subsequent, actual values. Figure 1a presents the forecasts superimposed on the full sample of actual values -the proportion of children with MUAC Z-scores<-2. The values are smoothed to highlight trends, especially the considerable variability in the prevalence of severe wasting. A food crisis existed during and following the 2000-1 drought, then re-emerged in 2003-4 in these northern Districts, then began reappearing last year. Figure 1b highlights forecast precision by zooming in on the forecasting period and plotting the unsmoothed To test forecast performance operationalized in such a way, a minimum response threshold was arbitrarily set at 66% (that is, the organization deploys aid whenever the forecast predicts a 66% or greater likelihood of food crisis). Defining emergency response when there is actually a food crisis, or no response where there is no food crisis, as 'correct' decisions, one can then calibrate forecasting performance by calculating the fraction of correct decisions generated by this decision rule in combination with the forecast model.The results, presented in Table 1, are quite striking. Decisions based on forecasts are likely to be correct more that 75% of the time -quite an impressive forecast performance. Moreover, the fairly small depreciation in performance as the forecasting horizon increases shows that these models can be used fairly accurately to provide a reasonable, three-month early warning to help with emergency response to mitigate the consequences of impending crisis. Based on data collected from primarily pastoralist communities selected across four districts in Kenya's arid north, the authors have developed an empirical forecasting model that can predict, with reasonable accuracy and at least three months in advance, the expected human impact of slow onset shocks such as drought. Information on herd composition and herd management, climate and forage availability and food aid flows enable reasonably accurate three-month-ahead forecasting of child nutritional status, specifically severe wasting reflect in very low MUAC levels, with impressive precision. Longer lead forecasts may also be feasible and warrant investigation.These forecasts were generated from a relatively small subset of variables that ALRMP regularly collects, augmented by data collected routinely by LEWS/LINKS. These data are not overly restrictive or costly to collect. Limiting data collection to these set of variables, collected consistently through time, might offer a costeffective way to provide effective early warning to policymakers and emergency response professionals. The precision of these predictions appears sufficiently high that delays in acting on this information due to concerns over forecast accuracy should be limited. However, there remains work to be done to establish how best to communicate this information in as clear and timely a fashion as possible to appropriate audiences.The authors recommend that the model be adapted as an effective famine early warning tool. As the model can be easily and regularly updated with new information that should continuously increase its forecast performance, a premium should be placed on developing standardized collection procedures and failsafe methods for entering, identifying and storing the necessary data. Such a forecasting model could prove an invaluable tool for early warning and emergency response to food crises.The settling of formerly mobile pastoral populations is occurring rapidly throughout East Africa. Pastoral sedentarization has been encouraged by international development agencies and national governments to alleviate problems of food insecurity, health care delivery, and national integration. Although the majority of pastoralist households in many areas remain committed to a nomadic livestock production system, many formally pastoral families have settled near towns or on farms to pursue alternate livelihoods that include cultivation, agro-pastoralism, trade or wage labor.Pastoralists settle for a variety of reasons, both in response to 'pushes' away from the pastoral economy and to 'pulls' of urban or agricultural life. Maasai in southern Kenya, for example, have lost grazing lands due to the growth of agricultural and pastoral populations, privatization of land for commercial farms and ranches, and the expansion of tourist game parks. In the more arid and sparsely populated north and northeast of Kenya, many pastoralist families have settled in response to the environmental stress of drought and famine combined with the political violence of livestock raiding and ethnic conflict.While settling provides access to a wider economic resource base that may mitigate the consequence of food insecurity and offer access to alternative livelihoods, it has not been demonstrated that abandoning the pastoral way of life has been beneficial to the health and well-being of pastoral populations. The paper summarized in this brief reviews the outcomes of a long-term study of nutritional and health changes among nomadic and settled Ariaal and Rendille communities in Marsabit District, Kenya.To monitor child growth and health the authors surveyed five Rendille/Ariaal pastoral communities in Marsabit District, northern Kenya, every two months from September 1994 to June 1997. One community, Lewogoso, is fully nomadic with the other four, Korr, Karare, Ngrunit, and Songa, are sedentary communities. Forty women and their under six year old children were selected from each community, for a total sample of 205 adult women and 488 children. Data collected include dietary recalls, anthropometric measurements, morbidity data and economic differentiation and specialization. Monthly household expenditures, wages and sales of livestock, milk and/or vegetables, and mother's reproductive status, (pregnant and/or breastfeeding), were also recorded each visit.Analysis of the growth and morbidity data yielded interesting, if unexpected, results. The authors find far poorer growth patterns in the sample of children from the four sedentary communities relative to the same-aged children from the nomadic community. As Figure 1 shows, the percentage of children in the sedentary community whose weight-by-age Z-Scores are less that -2 (meaning those children whose weight-by-age is 2 standard deviations less than the norm) are much higher than those in the nomadic community. As weight-by-age measures wasting, a good indicator of current nutritional wellbeing, this suggests that nomadic children are larger and healthier than their sedentarized counterparts. Examination of the incidence of respiratory diseases, fevers, and diarrhea among settled and nomadic Rendille children in Marsabit district further revealed that nomadic children suffered significantly less morbidity from diarrhea and respiratory disease than did children from settled towns. This is quite unexpected as the nomads have the most tenuous access to water and no formal sanitation system.The study also revealed strong differences in women's nutrition, with nomadic Rendille obtaining more nutrients, particularly milk protein, than highland farmers.As with children, the most striking dietary change with sedentism for women was reduction in milk intake and an increase in grains. As Figure 2 shows, there is a marked difference in the average daily per capita intake of milk between the nomadic and sedentary communities. Given that milk is such a rich source of protein and micronutrients, this could explain part of the differentials in child growth and morbidity rates. The key finding of this research is the significant difference evidenced in the growth patterns and morbidity of nomadic versus settled women and children. Differences in child growth are attributed mainly to better nutrition, and particularly access to camel's milk within the nomadic communities. The considerably lower incidence of diarrheal and respiratory diseases for the nomadic versus settled communities, coupled with the finding of lower rates of malnutrition and stunting among nomadic children, indicate an unexpected edge for health and nutrition among nomadic pastoralistsThe policy implications of these findings are significant. Although pastoralism is no longer an option for everyone living in dry regions like northern Kenya, the relative health advantage evidenced in nomadic children vis-à-vis their sedentarized counterparts, should be part of decisions affecting social, economic, and health policy for pastoral regions. Specifically the authors recommend that animal husbandry be supported in both settled and nomadic communities, and the production of protein-rich legumes be encouraged among communities of settled farmers and agro-pastoralistBy Elizabeth BishopSince the 1990s, international organisations and funding bodies have become increasingly interested in the plight of pastoralists. Donors have compelled recipient countries with large numbers of pastoralists to take on board this agenda, pressuring governments to focus more on pastoralist issues in their Poverty Reduction Strategy Papers (PRSPs). Increasing donor support for the pastoralist agenda has also led to an increase in the civil society organizations championing pastoralist issues. These factors have led governments with significant pastoralist populations to display, to varying degrees, an increasing concern for the plight of pastoralists. Moreover, if countries are to make progress on achieving the Millennium Development Goals (MDGs), it is recognised that attention will have to be paid to pastoralist areas, which have both a high incidence of 'poverty' (as defined in the MDGs), and low levels of educational participation and attainment.The research summarized in this brief explores the context within which policies concerning education in the pastoralist regions of Tanzania have been formulated and implemented. The study examines the practice of educational provision in these areas and assesses the impact these policies are likely to have on pastoralist poverty.The initial PRSP from Tanzania had very few references to livestock, and none to pastoralism as a livelihood. This neglect was also evident in other earlier policy documents. Where pastoralism or livestock was mentioned, this tended to paint a negative picture and was generally in the context of improving the livestock industry, rather than concern over the situation of pastoralists. More recently, as a reflection of the heightened international focus on pastoralists, and solicited pastoralist input in the 2004 PRSP Review, pastoralism has begun to be seen, at least in policy documents, as a significant issue. For example, the Tanzanian National Strategy for Growth and Reduction of Poverty 2005 states that:\"Achievement of sustainable and broad-based growth will incorporate the following strategic actions …: Promoting efficient utilization of rangeland, empowering pastoralists to improve livestock productivity through improved access to veterinary services, reliable water supply, recognizing pastoralism as sustainable livelihood…\"The extent to which the rhetoric concerning pastoralists mirrors a genuine commitment among Tanzanian policy makers to support the sustainability of pastoralist livelihoods is suggested by the manner in which they tackle the challenges for educational service provision in pastoral areas. Providing educational opportunities for the children of pastoralists poses several unique challenges. Low population densities and the relatively harsh and isolated environments that pastoralists inhabit mean schools are few and distant and qualified teachers are difficult to source. Furthermore, pastoralist mobility and a household economy that is traditionally quite dependent on child labour increases the opportunity costs of schooling for pastoral children. This explains the relatively low rates of educational enrolment in two of the study sample villages: 49% and 52% compared to a national average of 95%.While the Kenyan government has explicitly document a commitment to affirmative action to bridge the education gap between pastoralist children and the rest of the nation's youth, this is not the case in Tanzania. No formal government statement, either in the realm of education policy or a national development strategy, documents any recognition of the unique challenges of providing education in pastoralist areas. While a couple of education programs exist that recognize the specific challenges of educating children from 'disadvantaged' communities, they do not respond to the particular obstacles pastoralists face, nor are they sufficiently operational.The Basic Education Master Plan (BEMP), drafted in 2001, seeks to target and identify the needs of children from communities of hunters, fishermen, pastoralists and gatherers, in order to afford them with specially designed programs aimed at improving their enrolment. However, the BEMP did not progress beyond the planning stage. Another initiative, the Complimentary Basic Education and Training (COBET) program to provide non-formal education to cater for out-of school youth, including \"nomadic Communities, street children, disabled, and orphans\", was initiated in 2003. While the COBET program did indeed get implemented, it was plagued with insufficient funding, ill-equipped and trained instructors, and was never distributed widely across the nation.This research explored the ways in which international and national agendas concerning pastoralism and education are manifested in the policy and practice of educational service provision in pastoralist areas in Tanzania. Pastoralists in Tanzania lack a voice in the policy process, and are ill-equipped to advocate for change in terms of policies or the implementation of policies. The relative unwillingness apparent in Tanzanian policy and practice to address the specific challenges of educational service provision for pastoralists is also related to Tanzania's past and current national ethos of de-emphasising difference and promoting conformity.Current education policies in Tanzania have little to offer in terms of policy changes specifically formulated for Tanzania's pastoral communities. It is insufficiently recognised in Tanzanian education policies that these areas have distinct and chronic problems, over and above those faced by the sector as a whole. This neglect of pastoralist areas in terms of educational service provision in both policy and practice are at odds with the international and (to a limited degree) national rhetoric which aims to support pastoralism as a sustainable livelihood.Changes in policy and practice are essential if education is to reduce poverty and support pastoralism as a sustainable livelihood. Those formulating educational policies in Tanzania need to re-evaluate their agendas concerning pastoralism in order to put into action the Tanzanian government's commitment to recognize pastoralism as a sustainable livelihood. Acknowledging and facing up to the special challenges of providing educational provision to pastoralist areas is an important first step.Influencing and developing good policy in Early Childhood Development (ECD) amongst pastoralist communities in East Africa:The case of Samburu in KenyaBy Tanja van de Linde and Stephen LenaiyasaEarly Childhood Development (ECD) projects in Africa must strike a delicate balance between rigor and cultural sensitivity. The value of such programs, which aim to help pre-school-age children overcome poverty and thrive in later schooling and social life, is not generally disputed. However, assembling a functional program is easier said than done. This is especially true for societies, such as pastoralist communities in sub-Saharan Africa, for whom schooling is a low priority due to their nomadic way of life. In order to be effective, ECD programs should involve all segments of the community and build on the particular strengths, structures and goals of the society in question.The research summarized in this brief evaluates the successes and constraints of an ECD target site in the Samburu district of northern Kenya. Largely inhabited by nomadic and semi-nomadic pastoralists, the Samburu have recently been plagued with recurrent drought, unrest in neighboring countries and various problems associated with gradual sedentarization. In this environment, pre-school programs are understandably not a paramount concern. Earlier attempts to set up EDC projects in Samburu resulted in failure. EDC teachers did not solicit the involvement of the greater community and thus found themselves isolated and without the requisite support. School enrolment rates failed to rise for those children who participated, as they had in other, more successful programs.Lessons learned from the earlier failures of ECD projects in Samburu were subsequently used to modify and improve the structure and program content. The Samburu District Center for Early Childhood Education (DICECE), in collaboration with the Christian Children's Fund (CCF) and with technical and financial support from the Bernard van Leer Foundation, developed culturally appropriate curricula by adapting and enhancing traditional child-rearing methods and placing ownership of the project in the hands of the parents. Called the loipi method, this technique solves problems faced by other programs by embracing, rather than fighting, cultural differences.In keeping with the aforementioned strategy of adapting traditional child-rearing practices into new ECD projects, a tripartite venture by the Kenya Institute of Ecucation (KIE), CCF and Bernard van Leer Foundation has been working since 1996 to integrate the traditional loipi Samburu system of communal child-care into an appropriate ECD program. The program has expanded from two loipi centres upon inception, to six such centres three years later, to 83 today.The loipi system places child-care responsibilities in the hands of the entire community, not solely with the parents. In the traditional system, children were placed under the care of the community's grandmothers in a shaded enclosure (or loipi). As the grandmothers entertained and educated the children with songs, stories and games, the parents were free to supervise the maintenance of the community, gathering water, food and wood. The new Samburu ECD program augments the traditional loipi system by adding the following services and features:1. Health Activities: the collectivised setting is used as an opportunity to administer growth monitoring, vitamin supplements, immunizations, and treatments for common diseases.2. Educational Activities: in addition to traditional songs and games, the children are provided educational toys, play structures, and other avenues to advance intellectual and physical growth.3. Community Development: some parts of the program designed to help children affect the entire community's well-being, including improved water access, food security and parent education.Designed to carry children through to pre-school age-it services children up to four years old-the ECD program has been very successful at preparing children for later schooling. Though Samburu is Kenya's second-poorest district, it leads the country in percentage of children in pre-school, exceeding the national average by nearly 20%. Transition rates to primary school are also very high, though the dropout rate increases in the upper years.Individuals representing the entire breadth of the Samburu community were interviewed for this study to assess the effect the ECD program has had. The response was overwhelmingly positive; many and diverse aspects of Samburu life have been improved, including health levels, social stability, and relations with neighboring ethnic communities. These successes are not exclusively attributed to external organization and resources. The program has given these communities access to health and education services that can be internally sustained. Likewise, the re-establishment of communal child-care by grandmothers and others within the community has enabled mothers to undertake employment through which they can sustain their families and improve their communities' wealth.The success of the Samburu ECD project, developed through close cooperation between parents, community, government and NGOs, is evident in how its childcare model has spread of its own accord to neighbouring communities, where it has been adapted in keeping with those communities' respective traditions and cultures. The policy environment of Kenya, which allows for contextually and culturally selective programs, is cited as a contributing factor to the success of the project.The strengths of this program, and the factors which suggest its sustainability over generations, centre on its generally holistic and organic structure. The program is based in traditional practices, circumventing the natural scepticism that indigenous communities may have for Western intervention. The drive to continue the program comes from within the community, rather than from outside pressure, as community members are motivated by the improvement their children begin to show. Local materials are used in construction of the loipi, and community members are recruited to run it, both of which suggest that self-sufficiency is feasible. Perhaps most importantly, the loipi concept has already begun to spread on its own (as described above), indicating that the program can survive and expand independently.Some concerns regarding sustainability do remain, however. Some of the resources necessary to run a loipi properly are beyond the scope of a nomadic community acting alone, and may be difficult to maintain after the framework of NGO support is removed.Broadly, the ECD loipi program improves pastoralist societies through three avenues, by 1) providing development scaffolding in the extremely sensitive and often overlooked years before primary school; 2) improving the subsequent academic performance of its students,; and 3) effecting non-educational improvements to the society as a whole, reducing gender and income inequalities and providing a generalized positive impact.A child's developing mind performs amazing feats of growth in the first five years of life. This cognitive expansion sets the groundwork for all of the learning, both academic and social, that a child will eventually accomplish. But that child simply cannot approach his or her full potential without certain levels of nutrition, health, and stimulation that are necessary to fuel cognitive growth in the early childhood years. The loipi project, and ECD programs like it, satisfies all three of these needs in an efficient, flexible and culturally appropriate package, providing at low cost a service that is important to the future of pastoralist children as those children are to the future of their societies.Pastoralists who inhabit the African arid and semi-arid lands (ASAL) are among the world's poorest populations. They lack vital infrastructure in the form of accessible roads, electricity and telecommunications, leaving them increasingly isolated. Livestock holdings of cattle, camels, goats and sheep often comprise the bulk of their limited wealth and are an integral part of their socio-cultural life. Herd size is often directly correlated to wealth and social status in the pastoral societies.Along with the unfavorable agroecology of the ASAL and the limited livelihood opportunities, pastoral systems in Africa are exposed to frequent shocks ranging from recurrent droughts and banditry to livestock diseases. Such crisis often result in catastrophic herd losses, making the population increasingly vulnerable to food insecurity and forcing them to frequently rely on famine relief aid. Furthermore, where nomadic or transhumant grazing proved to be a viable coping strategy in the past, increasing population and evolving land rights patterns are reducing its effectiveness. With no mechanisms to insure themselves against the high downside risk they face, pastoralists undertake the costly and inefficient accumulation of stock during favorable periods to balance the high losses experienced during major droughts or disease outbreaks.Despite the problems that beset the pastoral production system, it is an important source of meat for domestic consumption in sub-Saharan Africa. In Kenya, 70% of livestock is raised under pastoral systems and accounts for about 50% of local beef consumption. Demand for meat in the country has steadily increased since the 1980s and is still projected to rise. Much of the increase in demand since the 1980s has been met through unofficial cross border trade with Kenyan neighbors. This suggests that pastoral livestock production in Kenya can continue to be a viable livelihood option so long as the obstacles limiting its productivity and profitability are addressed.One key factor determining the expected profitability and associated risk of the pastoral production system is the hardiness of available livestock breeds to withstand the resource and disease pressures common in such environments while maintaining relatively high rates of productivity. In the face of frequently recurring droughts, lack of water and fodder for grazing is one of the leading causes of livestock mortality. Cyclical resource stress also reduces lactation rates, birthing frequency and leaves animals more susceptible to diseases. Diseases, especially those caused by parasites, are a further constraint to livestock productivity in pastoral areas, contributing to the high rates of mortality and low rates of productivity.These particular set of productivity-limiting constraints suggest a pathway that could enhance the competitiveness of pastoral production systems. Breeding programs which select for livestock traits that result in more robust, drought and disease resistant animals with relatively high lactation and fecundity rates would markedly improve the expected returns to livestock based pastoral livelihoods while reducing their vulnerability. By examining pastoralists' preferences for cattle traits, the paper summarized in this brief sheds light on pastoralists' own valuation of the livestock traits they consider particularly important. Such information can help assure that breed improvement interventions are consistent with the needs of the intended beneficiaries.In order to generate a relative ranking and valuation of the preferred cattle traits, the authors conducted choice experiments. By asking individuals to choose among several different cattle profiles, each of which includes the set of traits to be valued in various combinations, measures of the comparative utility each individual derives from the traits were estimated. The choice experiments were carried out in Mara and Ololunga divisions of Narok district in November 2004. Located in the south-west of Kenya bordering Tanzania to the south, Mara and Ololunga fall in lowland, semi-arid part of Narok, where trypanosomosis disease, mainly transmitted by tsetse flies pose a significant constraint to livestock productivity.Figure 1 presents the study sites and tsetse fly occurrence in the district. Both divisions are primarily habited by the Maasai people who practice nomadic pastoralism and small scale agriculture. The choice experiment was administered as part of a household level questionnaire to a random sample of 172 pastoral households spread among the two sample communities.To identify the relevant cattle traits, given the agro-ecological environment and the specific livestock herding constraints faced in Mara and Ololunga divisions, a set of group discussions was held at each site. Based on the findings, the authors coded a total of eight preferred traits for cows and six for bulls. Each trait was the subdivided into several levels which offered different endowment levels for the trait.Table 1 presents the traits included in the choice experiment and their levels. These traits were then combined to create various profiles of cows and bulls, each of which included a unique level of each trait. Respondents were then offered several pairs of profiles and asked to choose the one they preferred. Their choices revealed their preferences.Results show preference for cows that are typano-tolerant, have high live weight, high milk yields and high reproduction ability. Many of these preferred traits are interdependent. A trypanosomosis infected cow, for instance, is also likely to have low lactation rates, low weight and be less fertile. The key traits preferred in bulls, with the obvious exception of milk yield, are similar. As one would expect given the regular feed and water constraints, traits associated with drought tolerance are also considered important. Willingness to pay estimates indicate that a trypano-tolerant cow or bull is valued at $11 more than a trypano-susceptible one. This compares with the estimated $8.70 annual treatment cost for trypanosomosis per animal. Live-weight increases, which is associated with meat production, is valued at $1.15 per kg. This is comparable with the value of 1kg of slaughter weight of approximately $1.07.The revealed preference for certain cattle traits provides breed improvement programs with important information on the key constraints that pastoralists face.Trypanosomosis disease, which takes a particularly high toll on pastoralists' livestock, and whose impact has serious implications on livestock productivity through weight loss, low milk yield and infertility seems to be of particular concern. Genetically controlled tolerance of the disease by way of systematic breeding of trypano-tolerant breeds offers a potentially effective route for improving livestock productivity. While the positive externalities of trypano-tolerance suggests that average milk yields, live weight, and reproduction rates may improve, breed improvement programs should also integrate other favorable environmental adaptive traits such as drought tolerance into the animals they breed. The possible trade-off between highly productive animals and robust, disease and drought tolerant animals should take into account the environments the breeds will be faced with.Pastoralists in Kenya have become increasingly food insecure and vulnerable to poverty over the last two decades. This is largely a consequence of the increasing frequency of droughts, a rising population and changes in the land tenure system. Livestock, which constitute the foundation of pastoralist livelihoods, are vulnerable to a variety of factors that increase the risk profile of the pastoralist enterprise. Diseases, particularly endemic diseases transmitted by vectors such as ticks and tsetse flies, are a key concern.Owing to the centrality of livestock to pastoral welfare, any poverty alleviation efforts targeted at pastoral communities will have to focus on strategies to improve livestock productivity by minimizing the incidence, and thus the costs, of disease.According to a study based in the pastoral area of Kitengela, livestock health was shown to account for 45 to 48 percent of the total annual expenditures per year per household. This research is concerned with investigating cattle breeding strategies as a means of minimizing the consequences of cattle diseases, especially trypanosomiasis, which is ranked among the top ten global cattle diseases impacting on the poor in pastoral systems.The main objective of this study is to evaluate the potential of conventional and novel genetic breeding methods to improve the genetic merit of African cattle. The authors place an emphasis on studying the generic improvement of cattle traits highly valued by pastoralists, especially trypanotolerance.The use of genetic markers (DNA information) to guide breeding selection is a relatively new and promising methodology. Traditionally, statistical tools were used to compare animals based on the heritability of the traits desired for selection. However, especially for traits that are difficult to measure and that show low heritability, the use of genetic markers has been shown to improve genetic gain by more than 20% depending on the trait. Nonetheless, no study has thus far investigated the potential of using genetic markers in cattle nucleus breeding programs specific to pastoral conditions.To assure the relevance of the results for the target population, the authors chose to limit the traits they focused on to those identified as critical among pastoralists. They use the results of a study by Ouma et al. (2006), which ranked cattle traits among a sample of pastoralists using an experimental method aimed at identifying the relative preference pastoralists have for various traits. The study was conducted in the Mara division of Narok district in Kenya and covered 111 pastoralist households. Trypanotolerance, live weight, milk yield and reproduction potential were shown to be the favored traits and define the breeding objective the authors use.To arrive at the expected economic benefit of breeding schemes that select for certain traits, the rate of genetic transfer of each trait from one generation to the next needs to be predicted and an economic value placed on the trait. Parameters for the heritability of the target traits where drawn from various studies. For trypanotolerance, the trait of main interest in this study, genetic parameters were estimated from a program crossbreeding the N'Dama and Boran cattle breeds. The economic values of different traits were estimated from the Ouma et al. ( 2006), study on revealed preference where each trait was associated with different levels and valued by participating pastoralists.Using the heritability parameters for each cattle trait in the breeding objective and their associated economic values, simulations where run based on two different breeding schemes: the conventional statistical method and a combined hybrid of the statistical method conditioned on genetic marker information. Simulations were iterated several times to mirror the effects of multiple generation breeding. As Table 1 below shows, both breeding methods indicate that crossbreeding will result in higher valued animals. The table displays the additional expected value resulting from crossbreeding, as well as the generation-on-generation marginal change in value. The values are the sum total of the value gains from each of the four traits under consideration: typano-tolerance, live weight, milk yield, and reproduction. As one will note, the conventional method shows a far higher gain from breeding, especially in successive generations of crosses. Given that using genetic markers adds an important source of information to the analysis, and given the unrealistically high gains posted for greater than five generation crosses by the conventional method, the gains derived with the use of genetic markers seem more plausible. The use of genetic markers also suggests a decreasing marginal returns from successive crossings which is consistent with natural laws against unbounded gains from physical traits. Of the individual traits, the value gain on milking yields were the highest followed by live weight. Modest improvements in trypanotolerance were also recorded.Breeding cattle that are more robust to costly diseases and unfavorable climates is a critical component of maintaining the viability of the pastoralist livelihood. The central aim of this study was to estimate the value of a breeding program by predicting the selection response of various cattle traits. The results suggest that crossing the N'Dama and Boran species is likely to result in a hybrid whose production traits and trypanotolerance is superior to those of its parents. As the Boran is particularly susceptible to trypanosomiasis, this is a surprising but encouraging result. Furthermore, the authors show that estimation methods that utilize genetic markers produce results that are significantly different from those generated by conventional methods. This and the fact that detecting markers in the cattle doesn't require the infection of the animals to measure the trait emphasizes the benefits that genetic markers could bring to breeding programs.The demonstrated potential of targeted breeding programs to improve the productive capacity and the disease resistance of cattle justifies a policy agenda that lays out a concrete breeding and dissemination program. Supporting efforts to extract the genetic markers of various traits across several different cattle species, such as the popular Maasai Zebu, and to parameterize the heritability of the different traits across species would be an important first step.Politics, Land Tenure and Livelihoods of the Maasai of Tanzania: Reducing the incentives for conservation through economic incentivesThe Tarangire-Manyara ecosystem of northern Tanzania is a site rich in biodiversity and has the second highest abundance of migratory large mammal species in East Africa after the Serengeti-Mara ecosystem. In addition to the ecological importance of the area, Tarangire-Manyara is the keystone of northern Tanzania's rapidly growing tourism industry. Revenues from the two parks in 2004 earned an excess of US$3.2 million in gate revenues alone. Despite the ecological and economic value of the Tanrangire-Manyara National Parks, tension between wildlife management and local Maasai pastoralists is growing. Nomadic pastoralists, the Maasai livelihood depends on access to wide swaths of open grazing land. The increasing privatization of land that limits the necessary mobility, the increasing shift toward agricultural production fueled by sedentarization and conservation policies largely skewed in favor of wildlife had lead to increasing conflicts.Though the national parks generate substantial amounts of revenue, the earnings have not had a significant effect on either poverty reduction or local sustainability initiatives. This breeds unsustainable natural resource practices with the Maasai increasingly turning key migratory routes into agricultural land and engaging in poaching for revenue or to protect their crops. Along the Kwakuchinja corridor that connects the Tarangire and Manyara National Parks, wildlife biodiversity has decreased by as estimated 72 percent between 1989 and 1998 whereas agriculture has increase by 130 percent.To reverse this worrisome ecological trend, and mitigate wildlife-animal conflicts, efforts are currently underway to harness the economic potential of wildlife to help local pastoralist communities, through community-based natural resource management schemes (CBNRM). CBNRM seeks to negate the chain of cause and effect breeding conflict and threatening biodiversity by placing wildlife tourism programs in the hands of local communities, providing them with a viable and potentially lucrative stream of income and increasing their incentives to conserve and support the wildlife and natural resource base. This study highlights the key social and institutional issues that underpin CBNRM and analyzes the potential costs and benefits of various interventions.Tanzania's legacy of socialism and nationalism is fundamental to understanding the unique challenges to CBNRM in Tanzania. Currently, all land in Tanzania is held in trust by the President. Individuals, communities and commercial entities are thus issued with 'rights of occupancy' for up to 99 years. As such, wildlife management on village lands has tended to lean towards being top-down and state-centric. Outside protected national parks, wildlife management is covered by the Wildlife Act (1974) which has limited provision for community-based conservation.Game Controlled Areas (GCA) are the primary management mechanism supported by the Wildlife Act. GCA's are primarily divided into hunting bocks which are awarded competitively to tourism hunting firms. A single hunting block can overlay several villages, irrespective of village administrative boundaries. This has been a source of much conflict as village lands effectively have wildlife user rights allocated to the private sector with villages having minimal involvement in the decision-making process, management of hunting rights and revenue allocation. In a bid to alleviate the conflict and provide local incentives for conservation, new regulations were established in 2003 that support the creation of Wildlife Management Areas (WMA) which offers legal support for local communities to reap the benefits of wildlife revenue in their area.Essentially, WMA are protected areas specified by local communities in which wildlife utilization activities may be conducted in a policy environment which favors increased direct revenue flows to villages. Where the private sector previously entered into agreements with the state to invest in wildlife based enterprises on village lands, WMAs provide local communities with ownership rights that requires the private sector to contract directly with them. Direct economic gains can thus be obtained through resident game fees, tourist hunting block fees, concession fees, and more.The primary vehicle for delivering conservation-based benefits in northern Tanzania is through the development of community based biodiversity enterprises such as eco-tourism facilities and cultural tourism facilities which generate benefits for local communities through partnerships with private sector investors. Viewed as a way of harnessing the economic potential of biodiversity into conservation initiatives and sustainable development opportunities, biodiversity enterprises are necessarily community-driven, providing economic incentives for conservation efforts at the grassroots level.While institutions such as the Wildlife Management Areas provide a natural vehicle for local communities to initiate biodiversity enterprises, a major obstacle to community centered resource management options is weak community level governance and the potential for elite capture of the benefits. Successful grassroots conservation efforts require the development of effective community based organizations and advocacy groups that can ensure that opportunities and revenues resulting from CBNRM are widely distributed among community members.One of the main policy challenges now is to harness the power of the private sector in making fair and lasting partnerships (which may include equity sharing, leases, management contracts and/or employment and supply/outsourcing contracts) with poor communities. This is particularly true in terms of attracting the lucrative international tourism market, which depends on specialized marketing and distribution channels that may be difficult for local communities to access.The largely agro-pastoralist Maasai population of Transmara district are faced with the difficult challenges that come with living by the periphery of the world famous Maasai Mara National Game Reserve (henceforth, Mara). Though wildlife are supposed to be confined in designated and protected areas (national parks and game reserves), the lack of natural or artificial boundaries inevitably leads to wildlife spillover into human settlement habitats. Many are the instances in which wildlife have destroyed crops, hunted livestock, destroyed infrastructure and even inflicted fatal injuries on humans. Retaliatory and protective measures by humans, not to mention the material incentive of poaching, have in turn resulted in numerous wildlife deaths as well. The consequence has been a significant tension between the affected human population and the national entities mandated to protect wildlife.The Mara is an indispensable natural resource valued for its abundant variety of wild animals. It has significant instrumental value as well, attracting a majority of the tourists who visit Kenya. Because tourism is a key engine of Kenya's economy, and due to lobbying from national and international conservation organizations, wildlife and their habitats are protected by a legally empowerd Kenyan government institution, the Kenya Wildlife Services (KWS). The Maasai population, on the other hand, is disenchanted by policies which they claim favour wildlife over people and do not compensate them sufficiently for the risks and loses that they bear.The research summarized in this policy brief aims at enumerating the various human-wildlife conflicts that occur among a population of households living in close proximity to the Mara. The authors delineate the complexities involved in effectively managing a valuable natural resource that has large and positive global externalities but a non-trivial, negative externality at the local level. The research attempts to ascertain the extent of losses incurred by the sample population and the benefits received by local communities.The study was carried out in the Kirindoni and Lolgoriani administrative divisions of Transmara district. The region lies within the southern rangelands of Kenya and borders the Mara from the northwest. Wildlife-human conflict management is thus an issue of particular concern among its residents. To elicit the main concerns of the sample population, the research team first informally conducting 17 focus group discussions among key informants in both divisions. A follow-up formal survey questionnaire was then administered to 158 households distributed across both divisions. Among the respondents, 63% pursued a purely pastoral livelihood while 37% were agro-pastoralists. The survey solicited information on the nature, the extent, the policy response, as well as the personal perceptions of the conflicts between humans and wildlife in the area.Virtually all the respondents (97%) indicated that human-wildlife conflicts were a major problem in the area. Elephants and baboons were considered to be the most destructive wildlife by a majority of respondents. Because both species travel in packs and feed on crops, they can wipe out several households' entire crop in a single visit. Leopards and hyenas were also among those considered as major threats as they preyed on livestock and small ruminants and were of particular danger to humans as well. As the tables below indicate, these problems are quite significant. Table 1 shows the total proportions of cattle, and sheep and goats (shoats), belonging to respondents that were killed or injured in the past one year of the survey. In Table 2, the fraction of respondent households who indicated having a family member killed or injured in the year preceding the survey is shown. As indicated by the majority of interviewees, school-going children were most adversely affected by the threat posed by wildlife. Fear of attack constrained their activities and posed a considerable obstacle to school attendance, especially since most children often have to walk quite a distance to schools. While the costs of proximity of wildlife with humans are certainly significant, respondents claimed to also receive some benefits and compensation. There is a formal program charged with providing compensation to populations affected by wildlife. Administered by the KWS, the compensation scheme initially included provisions to reimburse property damage caused by wildlife, but is currently reduced to providing a modest compensation allowance of KShs 30,000 (US$375) and KShs 15,000 (US$187.50) for the loss and injury of human life, respectively. The program eventually evolved to include the injection of funds to the local government for the building of infrastructure such as roads, schools and clinics. While the majority of respondents claim to be aware of these compensation schemes and 32% indicated having benefited in some way, the general feeling is that the compensation schemes merely serve to benefit local politicians.One of the statutes in the current version of the Wildlife act indicates that \"wildlife is managed and conserved so as to yield to the nation in general, and to individual areas in particular, optimum returns in terms of cultural, aesthetic and scientific gains as well as such economic gains as are incidental to proper management and conservation\". Within the limits of the act, it is implied that the KWS's role includes, but is not limited to, initiating government policy on wildlife conservation, managing national parks and reserves on behalf of the society as a whole, and helping farmers and ranchers protect crops and livestock from wildlife.The study has shown that the human habitants of Kirindoni and Lolgoriani divisions in Transmara district, particularly afflicted with wildlife conflicts due to close proximity to the Mara, are not quite satisfied that the KWS is living up to its role; especially as it concerns protecting their welfare in the face of wildlife disruption. While the authors note a realization among the people that the wildlife are indeed an important natural resource and a key source of revenue, they do not agree that their concerns are adequately dealt with. Without a well established policy of conflict management that adequately responds to the community's concerns, the community will continue to take their own measures to protect themselves; actions that will inevitably result in both human and wildlife fatalities. Respondents suggest a reinstallation of personal compensation for loss of property, as well as a less bureaucratic and more substantial compensation for human loss and injury. Furthermore, they demand the physical separation of wildlife, either by erecting artificial borders or by increasing policing of the perimeters.Conflict and poverty are a self-perpetuating cycle in East Africa. Scarce resources and an unbalanced social structure lead to disputes, often resulting in inappropriate management and damage of these scarce resources.This paper focuses on a conflict over forest resources in the Loita Maasai area in Narok District, Kenya. The Loita forest holds a wealth of natural resources, as well as a plethora of local species, making it an extremely valuable region for tourism.The forest also holds deep cultural meaning for its people, being the site for many traditional beliefs and rituals. Though the Loita Maasai are still very poor, they have consolidating their social capital, or institutional wealth, to increase their political muscle and protect their land.Previous theories consider an 'indigenous-conservation' model. Using traditional institutions for scarce natural resources can help to fairly allocate resources, and to lessen friction by implementing distribution systems beneficial to all. However, this model cannot control the outside factors of the community at large competing for resources, or corruption within the institutions. And when the perceived legitimacy of mediating government institutions is limited, an essential base for the success of allocation institutions is lost. A solution to this is to merge current traditional institutions that have been very successful in managing the Loita forest upward with government institutions to validate the process of resource management. These traditional management systems limit the forest to use in the dry season, to maximize its water retention potential, and facilitate the sharing of forest grazing with neighboring pastoralists.There are several actors involved in policy decisions and actions surrounding Loita forest. Traditional leaders, NGO staff, appointed government officers and elected leaders have in various constellations grouped themselves in higher-level institutions: Narok County Council (NCC) and the group of Concerned Loita Citizens (CLC) on the one hand, the Loita Council of Elders (LCE) related to the Ilkerin Loita Integral Development Project (ILIDP) on the other. The most influential of these groups is the Loita Council of Elders, established in the past by ILIDP. They currently manage forest use. In addition, ILIDP aims to improve education, livestock and agriculture production, and help the local communities adapt to the economic, political and cultural changes in the region.Violent conflicts related to perceived violations of property rights are endemic in the region. While inter-ethnic conflicts among pastoralists feature occasionally in the history of the region, they are now occurring with greater frequency and intensity. As has been the case, most of the conflicts stem from competition over grazing land and water sources. Extensive livestock raids, driven by the honor bestowed to raiders for their courage, are also a major source of conflict. The infiltration of small arms in the area has further intensified the conflicts and increased the associated level of violence and bloodshed.The conflicts in the study area largely occur between different ethnic groups. Afar pastoralists find themselves in regular confrontation with the neighboring Oromos, Amharas and Somalis. Much of the conflict has to do with the increasing shortage of pasture and water. Resource scarcity is exacerbated by recurrent droughts, vigorous expansion of the Prosopis juliflora bush that is replacing palatable and more nutritious grasses. In addition to resource scarcity, weak and inappropriate formal institutions in pastoral areas coupled with the inability of traditional institutions to manage conflicts and secure property rights have contributed to the intensification of violent conflicts and animosity among pastoral groups.The issue of property rights is critical to pastoral livelihoods. Access to grazing and watering rights across a vast area of land, which is fundamental to pastoralism in the face of seasonal availability of forage and water, is at odds with the notion of private access to land. As development trends support the privatization of land, pastoralists find themselves with a diminishing stock of resources upon which they can support their herds. This study examined the issue from the perspective of several sites in the Afar region of Northeastern Ethiopia that have been affected by an evolving land tenure regime. The author shows how changes in property rights combine with resource pressures and changing socioeconomic conditions to breed violence in the areas.These conflicts pose a major stumbling block to realizing the potential gains from resource sharing through peaceful negotiation. As both the engine of property rights changes and the enforcer of law, the state has a responsibility to facilitate negotiations between conflicting groups and to ensure that property rights laws are inclusive of the rights of pastoralists. A coherent property rights policy, supported by a participatory process, needs to be articulated. Without this, the conflicts are likely to escalate in the face of diminishing access to grazing land.","tokenCount":"19683"} \ No newline at end of file diff --git a/data/part_3/3011726616.json b/data/part_3/3011726616.json new file mode 100644 index 0000000000000000000000000000000000000000..5bbf590f0d78fdc3253fdec52af8c91fffd50267 --- /dev/null +++ b/data/part_3/3011726616.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"7ccfcddc2f251b2bc8fee03dd31f76fa","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/d82da5a1-b192-491e-b027-17aaa2071080/retrieve","id":"1421444418"},"keywords":[],"sieverID":"84fbfcad-c69e-4b99-9907-06211a4b3a5e","pagecount":"10","content":"El CIP es una organización de investigación para el desarrollo dedicada a la papa, el camote y las raíces y tubérculos andinos. Ofrece soluciones científicas innovadoras para mejorar el acceso a alimentos nutritivos asequibles, fomentar el crecimiento sostenible e inclusivo de empresas y empleos, e impulsar la resiliencia climática de los sistemas agroalimentarios de raíces y tubérculos.Con sede en Lima, Perú, el CIP realiza investigación en más de 20 países en África, Asia y América Latina.• Pérdidas significativas en chacra debido a tizón tardío (Torero, 2018)• En Cajamarca, Huánuco y La Libertad, durante 2002 -2006, gasto en fungicidas para controlar la rancha fue de US$ 40.7 millones (Giraldo, 2010)• 20% de agroquímicos usados en Perú se destina al cultivo de papa (FAO, 2003)• US$6 billones anuales de pérdidas y costos de pesticidas (Haverkort et al., 2008) Perú es el primer productor de papa en América del Sur","tokenCount":"147"} \ No newline at end of file diff --git a/data/part_3/3014676306.json b/data/part_3/3014676306.json new file mode 100644 index 0000000000000000000000000000000000000000..169af1a82778d65bf64899de13ebd962029e8444 --- /dev/null +++ b/data/part_3/3014676306.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"90d7464ca0b317521721fe9abf545f16","source":"gardian_index","url":"https://publications.iwmi.org/pdf/H045223.pdf","id":"1575731290"},"keywords":[],"sieverID":"0f43492d-8a71-4af5-a7ea-62ee51f06c0a","pagecount":"55","content":"150 112 2. Number of new commercial activities supported by linking to markets 0 50 47 20/20 3. Land leasing/usufruct agreements issued for establishments and functioning of production companies and commercial activities 0 10 1 1110 4. Training opportunities provided to representatives of NGOs and other private sector organizations in participatory natural resources management 0 10,000 13703 6176/2500 5. Number of officials trained in local level planning, user groups formation, support and collaboration 0 700 911400 6. Number of user organizations conferred with legal status and powers 0 20 39/20 7. Number of NGOs and private sector agencies providing technical, managerial and commercial information to user groups 0 8 9/ 8. Research studies completed on natural resources issues 0 7 3/2 4 .:..Income from Goviso.le Sept. 1995to Deo.1995 -Rs. 52,464.50 Go.lenbidunuwewa. The Physical Progress of the SCOR activities in Huruluwewa Watershed in the 4th Quarter of 1995 is pr(~sented in this report. The weather conditions experienced during the quarter adversely affected on the production protection activities in the watershed. Crop production both in the lowland and highland was dropped. But in the irrigation schemes where dry sowing was practiced, good harvest could be expected.Conservation activities were carried out in the highlands and more time were devoted to maintain the existing conservation measures. Participatory Forestry Programme was successfully implemented in the watershed with the assistance of Forest Department. Two Integrated Pest Management demonstration sites were established in collaboration with the Department of Agriculture. Inland fisheries programme was initiated during this quarter too.During this period the SCOR had close rapport with the linked Departments and Institutions and worked together getting their fullest cooperation. Facilitated the Federation of farmer organization to enter into an agreement with THRlPOSHA to sell their Soya bean production which resulted the fanm!rs to obtain a good price. It is worthwhile to mention that good progress was made towards the institutional development by taking some viable steps to form the Huruluwewa farmers Company. Annex -5 presents the progress by major promised output in a summary form. The indicator directly relate to the output as indicated on this Annex.Trends upto forth quarter 1995 Figure 1 and 2 shows the trends indicating both the growth and possible expansion that can be predict for the project during the next year and beyond.Map 1 shows the distribution of sub-locations, the targets and achievements on the anticipated effects and impact on the adoption of land and water conservation techniques (Strategic level indicator 1) in each sub-location with the number of farm families involved (Programme outcome level indicator 2) under major interventions in the Huruluwewa watershed.Map 2 indicates the potential spread of activities and link beyond Meegaswewa location identified for the seed collection and processing company being formed based on the Meegaswewa and Habarana locations.PROJECT TREATMENT AND EFFECTS-HURULUWEWA \\VATERSHEDSince the rainfall during this quarter was comparatively very low and there were no rains from 15'J Nov., most of the activities planned could not be achieved. However repairs to existing bunds ar,d drains, and establishment of vegetative hedges (Pavatta vesica) for stabilization ofbunds were carried out. Although the establishment ofbunds and drains in new La's locations done by the farmers, they are incomplete in many places as a result of erratic or no rains.This activity conducted in collaboration with the Forest Department, is constrained because of lov/ rainfall. However in total almost 80,000 numbers of plants have been distributed among the farmers by the Department of Forest to be planted in, Reservations, scrub jungles areas, homegardens others. It is expected that there will be a high mortality rate, if this dry spell continues for a Ion£,: r period. The farmers involved in this activities received the dry ration from the Department.Huruluwewa Feeder Canal reservation is used by the farmers for paddy and tobacco cultivation. 1 order to establish reservation, a new cropping pattern with the integration of permanent tree cnp species have been introduced to farmers. The species constituting Banana, Mango, Guava, Promoganate, Coconut, Arecunut, Bamboo, Lime of Lemonine,Mee Kumbuk, and Teak were given on a resource user grant. The trees are planted such a way that all the canopy layers receive full sunlight and form different canopy depths. The resource user right to use the tree products in being worked out. The total area under this activity covers 130 ha.In order to minimize the use of high cost inputs and lower the cost of production, this programme has been initiated in collaboration with the Department of Agriculture. As a start two (02) sites have been identified, namely Kalundewa and Getalawa. The costs are borne by the Department of Agriculture while the SCOR contribution is by way of supplying stationary and farmer participation. The rainfall received in the watershed was uneven and less than the average. Since the commencement of rains got delayed in the Huruluwewa major irrigation scheme the dry sowing was not possible. The short aged paddy varieties were grown at the end of November with the use of ston~d water at the tank expecting the Monsoon rains. After the rains received on November 05th and 6th almost dry weather prevailed in the area till end of December. Therefore the paddy crop in the Huruluwewa is under the threat of water scarcity. Measures have been taken to implement strict water management practices aiming to get the full use of available water at the tank.Some of the minor irrigation schemes received fair amount of rains and distribution of the rain was also in good manner. So that it was possible to implemented the dry sowing (Kakulan Cultivation) in some of the minor irrigation schemes. e.g Maha Meegaswewa, Thelhawadiya, Madawala, Puwakpitiya, Weheragala, Kubukwewa. With Strict Water Management Practices, good harvest could be expected from these schemes.We were able to convince the farmers at feeder canal to start their cultivation with the on set ofrains which resulted to convey some water to the tail end of the feeder canal. As with our experience in The women were trained to use Energy Saving burners minimizing the use of firewood. Leaves and flowers of the trees in the homestead used as fertilizer. 20 Nos Energy Saving burners were Introduced and are being using successfully.Women were also trained to use a Systematic kitchen using row materials, obtained from the garden such as clay, cow-dung and timber, which will save a lot of time of the housewife rather than havin\" a unsystematic kitchen. During this period 6 nos of systematic kitchens were introduced.Women were trained to use surplus fruits and cereals during the off season in using scientifically dried methods. 04 awareness Programmes were conducted in this regards.In addition, 16 heifers of a good breed were given to the Women Groups in Tract-6 with the financia, assistance of the Bank of Ceylon and 05 High Breed Cattles to the Maradankalla Women Groups. Women were also trained to cattle farming and Nursery Management. Awareness Programmes wen\", conducted in areas such as Polatthawa, Nayakumbura, Pahala Arrauta.Women and Youth activities in Utpathgama, Welanagama, Maradankalla, Dutuwewa, Meegaswewa and Kelanikawewa Sub-watersheds are in progress.Integrated Planning and Coordination.During this period the SCOR had close rapport with the linked departments and institutions ani worked together getting their fullest cooperation.The three Task Force are operating in Galenbidunuwewa, Palugaswewa and Dambulla. They me,. . , quite often and take the decisions and implementing the SCOR activities.The meeting was held in Colombo under the Chairmanship of Director-General-Mahaweli to tak: the Hurulu Feeder Canal area under Mahaweli Authority of Sri Lanka. The G.A. MataIe, Mahav>c i; Officials and SCOR Team members attended this meeting. This was the result of the report handeu over to the Director General by the working committee chaired by the Government Agent of Matate.As expected the rains were not in time but as planned SCOR had continued the Participatory Forestry Programme with the Department of Forestry officials. The SCOR had got the fullest cooperation and assistance from the higher middle and lower level. Officials from the department of Forestry.The strong conformity to the group's constitution prepared by the members of the group themselves without outside influence -the rules and regulations in the constitution ha;; already become norms which control and guide the behaviour of its members thrift and credit component -the attempts by the group to raise funds through savinI',:' are clearly visible. Immediate access to credit from the group in case of necessity is a very attractive benefit that the members have from this group. The group plays the role of a village money lender and a prawn broker yet very compassionate to its members mutual help and cooperation -It has become a norm among the group members to help their fellow members in occasions such as funerals, illness etc. The group members have been made to behave as members of a kin group in a traditional villat~t by fusing norms emphasizing mutual help and cooperation to the group through the constitution self-reliance -the group thoroughly depends on its own savings and resources ,it present. It expects to expand its membership in order to have legal recognition \", become an organization eligible for credit facilities from banks and other mOllt' lending organizations to engage in production and protection activities bringing mOll benefits to its members. Since SCOR is an action research project on watershed management, it is required to test organizational and institutional models suitable for sub watershed and watershed management. Water Resource Management Teams, Task forces etc. which have now been formed are higher level management bodies for this purpose. A lower level body for the management of sub watershed is also a key requirement in this context. As an attempt to fill this gap the catalyst working in Kokawewa area, with his experience in dealing with the diverse resource user groups and organizations, has developed a model for the management of sub watershed. This organization which is called \"Upamandalaya\" or sub council has been formed with the involvement of all the farmer organizations including the organizations in major and minor irrigation areas, rain-fed areas and drainage areas within the sub watershed. This model is now being tested in Kokawewa for replication in other areas.(e) Farmer Federations SCOR project is working with three farmer federations formed at Feeder Canal area, Hurulu Command area and Palugaswewa area. The newly formed Palugaswewa Farmer federation is not yet functioning. The farmer federation in Huruluwewa command area initiated soya cultivation in the project area in yala 1995 and purchased soya produced by the farmers. The total value of the soya purchased is Rs.114,214,269.00. The Federation obtained a bank loan amounting to RsA,OOO,OOO.OO and settled it back within a short period. It could also build up a share capital amounting nearly to Rs. 1.4 millions with the savings made by its members during the course of this transaction. It could take the momentum to form Huruluwewa Farmer Company with this share capital. The Federation in Feeder Canal area could persuade its members to limit the cultivation in their area to 112 acre by each farmer during Yala 1995 and convey more water (about 7000 ac.ft) to Huruluwewa.(1) Farmer CompaniesOne Farmer company, The Habarana Green path Company, has been established with the expectation of shares amounting to Rs.I.7 millions from the shareholders. It has plans to collect medicinal herbs,seeds etc. from the farmer organizations operating in the area to produce herbal medicines, oils and other medicinal products. The initial activities to establish Huruluwewa Farmer Company have now been completed. It has a share capital amounting nearly to Rs.l.4 millions from the farmers in Huruluwewa command area as described above. This company will primarily be engaged in input supply activities, sale of farmer products etc. and also will engage in enterprises providing more benefits to its members.Three sub watershed management teams and one Water Resource management Team have been fomled by this time. They function to some extent in Huruluwewa and Palugaswewa areas. The one in Dambulla is not functional at this stage due to lack of cooperation from a key agency. WRMT has met only once after its formation.Other Important Activities Conducted during 4th Quarter 5.1 Tittellawa Farmer Organization -(GOVISEWA SELA)In agreement with the Bank of Ceylon and SCOR, Bank of Ceylon granted Rupees 170,000 to Tittellawa Farmer Organization and this was paid in full during this season. This was remarkable incident in the Bank of Ceylon of Galenbidunuwewa and 1995/96 Maha season Bank granted Rs. 525,000 to the same organization in distributing among 5 Farmer Organizations.The Thriposha Company needs 4000 Tonnes of Soya beans and 8000 tones of Maize in processing of Thriposha yearly. Normally they import entire quantity of maize and nearly 2000 tonnes of Soya beans from abroad. In 1995 April the SCOR had made arrangements with Thriposha Ltd. in supplying of 2000 metric Tonnes of Soya beans. As expected the factory doesn't work according to the schedule and the company could not manufacture Thriposha from June to October, because non-availability of Maize. When it came to operation in October the Company given the 1 st preference to their previous suppliers and the company didn't buy Soya from Huruluwewa farmers. The officials of Federation of Farmer Organization of Huruluwewa met the secretary of Agriculture, Lands and Forestry and explained their plight to him. As a result of this meeting, Secretary Ministry of Health, Highways and Social Services intervened and made arrangements to supply 1000 M.tonnes of Soya from Huruluwewa.In implementing the programme, The Federation of Farmer Organization of Huruluwewa obtained a loan of Rupees Four Million from the People's Bank and settled the loan with the interest with in two months. They obtained an another Rupees Four million from the Ministry of Agriculture, Lands and Forestry and repaid the Three million rupees. There is a balance money due from Thriposha Company and Farmer Organization is waiting to get that money to settle the loan in full. ---------------------------------------------------------------------~ .... .... .'tQ1!\". ' . In order to meet the demand of tea plants for infi 11 ing program in the watershed, users have established nurseries with loans obtained form the Asian Development Bank loan scheme which is implemented by the Tea Small Holders Development Authority (TSHDA). The plant requirements were identified by the resources users. The infilling program of tea is implemented through Mini-Projects prepared by resource users in collaboration with TSHDA and Tea Research Institute (TRI). The loan scheme of TSHDA for purchasing fertilizer was utilized by three Tea Small Holdings Development Societies (TSHDS) to purchase 98 metric tons of fertilizer and 33 metric tons of dolomite. The Service Farmer Organizations further supported this activity by giving loans to TSHDSs.Five farmer organizations purchased 5 two-wheel tractors under the subsidy scheme of the Agrarian Services Department to solve the transport difficulties encountered by them.Divisional Secretaries have shown the advantage of involving Samurdi Niyamakas to facilitate farmer organizations in implementing mini-projects, both already in operation and those proposed, and also giving a role to Samurdhi Niyamakas in implementation of stream reservation programs at the field level. Also, the DAS (Matara) invited SCOR to participate in training of their lOs on institutional development and SCOR attended to this task in order to facilitate the future activities of SCOR in the lower Nilwala Basin.The Provincial Agricultural Ministry has allocated money for the proposed improvements in Pothuvila yaya paddy track on completion of re-allocation of their paddy lot (as first step in land consolidation). The proposal in this respect was made by the Potuwil-Yaya Farmer group with SCOR facilitation.Integrated Rural Development Project (IRDP)-Matara and resources users to make use of the faci 1 i ty of financial support for plant materials, such as banana, and free fertilizers for income generating activities in homesteads of the low income group.22 banana plots have been established in Horagala sws under the above program. SCOR has already established links with National Irrigation Rehabilitating Project (NIRP) and Southern Province Regional Development Project (SPRDP). SCOR facilitated and linked between Intermediate Technology Development Group (ITDG), IRDP and group of farmers at Illukpitiya to undertake the Bovitiyadola micro-hydropower generating project. In this connection, a power house with a 5 kW-capacity generator was completed and 48 direct beneficiaries of this project have installed transmission lines to their homes from the plant. Also 22 houses within the sub-watershed are expected to be provided electricity through batteries charged from this installation. The total ex pend i t u r e was Rs. 63 5 , 7 27 . 00 and I RD P has g ran ted R s 388,951.00. Bovitiyadola Micro-Hydropower Users' Society has taken a credit amounting to Rs. 115,000.00 at an annual interest rate of 2% from the Horagala Service Farmer Organization (SFO) to purchase transmission wires on the agreement to pay back the loan in two years. Rs. 72,000.00 was collected from the users and they further contributed Rs. 174,876.00 in the form of labour and material. The balance work of the project was commissioned by Chief Minister of Southern province on 14/12/95. Government sponsored Samurdhi Program of I I ukpi t iya vi llage joined hands wi th the hydro power society for the construction of the community center together with a fertilizer store and the battery changing center which was declared open on the above occasion. Two more micro-hydropower projects within the project area and one in outside area, requested by people, are already in the pipeline. Micro-hydropower projects are not only linked to conservation of its hydro-catchment for sustained power generation but also provide an alternative and environmentally friendly source of energy in the wake of limited capacity of the national grid to supply energy for rural electrification.The tota I number of Resource Users Groups (RUGs), inc 1ud i ng those newly formed ones, was 80 by the end of December 1995, as follows: The ranking of Resource Users Groups and Organizat ions on the status of their maturity is as follows on the classification based on the criteria given in Figure 1. As at end December 1995, a total of 80 small groups, 4 service organizations and 2 single activity based (viz. non-wood forest product utilization organization and Anthurium growers organization) were in operation. In addition to them, 18 existing organizations are now being strengthened. Four s e r vic e 0 r g ani z at ion s, ( Pin us) 0 leo res in tap pin g (n 0 n -wo 0 d forest producers) organization and Anthurium growers organization were registered under agrarian service act. These groups and organizations were awarded with grants to a value of Rs. 1,975,414.50 to be used as their revolving funds and/or collateral in obtaining institutional credit facilities. The user grants and NGO grants as at end December, 1995 were in annex 01.The current affairs of the Horagala Farmer Organization include collection, transport using their tractor, and marketing of green leaf and export agricultural crops. As a result, small tea land holders have been able to enhance their income from a kilo of green leaf by 10 cts in addition to 10 cts reduct ion in cost of transport whi Ie deal ing wi th 3 factories.Other advantages derived from farmer group involvement in green leaf marketing were the reduction of the earlier 6% of total weight counted for impurities in tea, weight of gunny bags and water by middlemen to only 4% of total weight, further benefitted by elimination of under weighing. Also the organization handle the supply of seed paddy, fertilizer, agro-chemicals, etc., for paddy; and fertilizer, dolomite, and Zinc sulphate for tea on agreement with its members to pay the cost on installment basis. Also a sprayer and a thresher are at the members disposal. The other services of the organization involve the supply of improved plant materials, maintenance of a retail outlet for sale of consumer goods, and provision of agricultural credit facilities. The total turn over of the marketing activities undertaken by the organization during April to August 1995 period has amounted to over Rs. 600,000.00.The access road to Uda-Horagala is in is a dilapidated condition posing a great difficulty in transport of green leaf, other agricultural produces and supply of inputs. Under these circumstances, the farmer organization has taken steps to generate a fund to repair and maintain the road. They collect 05 cts from each kilogram of green leaf supplied to the organization by users and also from other green leaf collectors who use this road (at the rate of Rs 50.00 per month for a two-wheel tractors and Rs 150.00 in the case of a four-wheel tractor). The organization has already collected Rs 2,500.00 and commenced road development activities in a 1.5 km stretch. Surface cambering and drainage system has been laid in the above stretch and concrete layering of steep slopes of the road is in progress. Also the Diyadawa/Tennipita Service Organization is dealing with marketing of inputs and agricultural produce and supply of planting materials. Diyadawa/ Tenipita and Anninkanda Service Organizations and Horgala (East) Farmer Organization continued to assist resources users by offering their agricultural produce a higher price through direct dealing with regional markets.MilIa Ela Service Organization commenced collection of shares from its members to raise an adequate capital to start commercial activities and they have already ventured on sale of input such as fertilizer.With the assistance and facilitation role played by SCOR, four farmer organizations, namely Morawaka, Diyadawa, Bataandura (north), and Horagala (east) farmer organizations, were able to purchase two-wheel tractors with trailers under the loan assistance scheme of the Agrarian Service Department. Under this scheme Rs. 240,000.00 worth tractor and a trailer is given to farmer organization at Rs. 114,000.00 on credit with a down payment of Rs. 18,000.00. These organizations were able to collect shares from its members to meet the initial capital requirement. These tractors are now being used for commercial activities such as transport of green leaf and inputs as well as for agricultural operations like land preparat ion to the benefi t of the members of these organizations.As a result of facilitating role played by SCOR, Bodeniya Tea Small Holders' Society requested from the Tea Small Holding Authority to take steps to grant legal status to such societies to make them eligible for loans from lending institution. This action paved way to a policy decision by the authority and to pass a resolution by the parliament giving body corporate status to Tea Small Holder Societies. A gazette notification in this respect has already been issued on 7th July, 1995.Actions were taken to expedite the release of loans from banks under Asian Development Bank (ADB) loan scheme for replanting and new planting of tea. Discussions in this connection were held with TSHDA, ADB, Central Bank (Matara), and officials of local banks to identify constraints and solutions for them. SCOR catalysts are now working closely with TSHDA filed officers and societies to minimize delays in obtaining loans and also to link interested parties with TSHDA/Banks. Also, a program to re-organize the tea small holders society wi th active participation of TSHDA field officers is already in operation.Tapping of trees was started by Aninakanda Pinuse resin tapping organization and 5,000 Kg of oleo-resin, have been sold by 42 user members to the company at the end of the fourth quarter. A people's company -Janatha Ni lwala Agro Product ion and Processing Co. Ltd., has been registered under the Registrar of Companies Act.Four service organizations received Rs.100,000 each as revolving funds to use as a collateral for obtaining a bank loan to meet a part of the total capital requirement of Rs. 1,000,000.00. Collection of an initial share capital of Rs. 300,000.00 from resource users is in progress. In addition to that people's company received a revolving fund of Rs.74,000 for the production and protection purposes.Kotapola Muti-Purpose Co-operative Society has made a proposal to start a coffee grinding facility to enhance the income of coffee growers in the area through processing of their produce. The planned capacity of the plant is 10,000 kg per annum.Anninkanda service farmer organization has awarded a contract to the Kiriuwanaganga Estate Welfare Society to establish a plant nursery and supply 3,000 fruit plants (Rambutan, Avocado, etc.,), 1500 forest plants and 10,000 Vetiver slips. The total estimated cost of the project is Rs. 121,000.00. SCOR assisted this project by awarding a grant of Rs. 25,000.00 to be used as a revolving fund. This was a breakthrough to eliminate the conflicts between company managed estates and villagers while making use of technology and labour available at the estate sector.Arrangements have been made for granting user rights to 27 users who are engaged in reforestation of 12 ha in Morawak kanda in Milla-Ela area under participatory forestry project (PFP). In this respect, agreements have already been signed between the Forest Department and the users. Also a one hectare of degraded forest in Horagala was reforested under PFP and the users have planted 1,193 seedlings obtained from their own nurseries.The following nurseries, registered with the Forest Department, continued to supply plants for the enrichment planting, agro-forestry, homesteads, and stream and roadside reservation planting in the four sub-watersheds: Nilwala nursery-Olakumbura in Diadawa/ Tennipita with 10,000 plant capacity producing Hora, Mahogany, pihimbiya, Jak, Halmilla and arecanutj Mihituru nursery in Uda-Horagala with 5,000 plant capacity producing Hora, Mahogany, Pihimbia, Lime. Cashew, and arecanut.Bovitiya-Dola nursery in Illukpitiya with 5,000 plant capacity producing Hora, Pihimbiya, Acacia, arecanut and Margosaj Uda-Dola nursery at Beralapanadara with 5,000 plant capacity producing Hora, Acacia, Halmilla, Mahogany, Lime and Pihimbiaj Polgahahena nursery at Talapole Kanda with 5,000 plant capacity producing Arecanut, Acacia, Pihimbia, Mahogany, Margosa and Halmilla; Ayrvedic Hospital nursery at Waralla in Diyadawa-Tennipita with 10,000 plants capacity producing Medicinal plants, Mahogany, Margosa, Pihimbia and fruit plants.Planting of 12,000 seedlings of different species of trees, both forest and fruit plants, in the Dothalugala forest (5 ha) was completed by the Dothalugala Heritage NGO and the maintenance of the plants is attended by the same organization at three month intervals.Establishment of agroforestry systems was initiated in 85 ha, mainly in tea lands encroached into forest reserves and not suitable for a tea monocrop without intensive conservation measures due to their location on steep terrain. In these lands, 16,741 forest/fruit plants were established while encouraging the users to adopt appropriate soil conservation practices. The relevant Divisional Secretaries have agreed to regularize these lands after establishment of sound soil conservation practices and suitable tree species by the users. About 72.5 km of stream reservations were enriched by planting 12,300 forest and fruit plants. Plants numbering 9,300 were established on a 28 Km length of roadside. School Environmental Committees of the area played a major role in roadside planting. Stream and Road reservation task forces chaired by the Divisional Secretaries are examining the possibilities to grant user rights for those involved in stream and road reservation planting.The Forest Department has given a lease for Pinus (oleo) Resin tapping in all the plantations of the Southern Province to Lanka Pinus Industries Ltd. Though this company had no intention of commencing tapping the Uduhupitiya plantation immediately, due to SCOR interventions this company agreed with the \"Shrama Shakthi Non-Wood Forest Product Utilization\" farmer Organization to commence resin tapping in Uduhupitiya. The Forest Department has completed land survey to block out the land in this connection. Members have started clearing of the undergrowth and bark shaving before commencing resin tapping. Lanka Pinus Industries Ltd., has come into an agreement with users to buy Pinus resin. This Pinus resin tapping project covers 112.3 ha benefitting 42 families. The expected income is more than Rs 100.00 per day with a total income generation of Rs 14 million per annum for 43 members. They have agreed to protect the plantation from fire and maintain the access road system. This will also prevent any future encroachment of this plantation for hazardous land uses. It is beyond doubt that if the expected income is derived, they can be encouraged also to invest a part of income on conservation measures adopted in their own lands.Six hectares of Pinus in Ramaniya-Godalla were poor in growth for resin tapping. However, following the discussion held by SCOR with the Conservator of Forest, it was decided to thin out the plantation by removing 50% of the stand and diversify with broad-leaved tree species, such as Mahogany, Hora, Pelen, Bata-Domba and Rattan, as a silvicultural research project. The Forest Department has already agreed with the Shrama Shakthi Non-Wood Product Farmer Organization to complete the diversification on contract basis. SCOR is planning to make related studies in collaboration with the Forest Department.In a discussion held with the Conservator of Forest and other regional and local officials of the Forest Department, many policy decisions were initiated. They showed that in the case of forests that are not within the purview of the FD, the patches of forest lands encroached for permanent crops can be released to the users if the growth is more than 10 years old and the ba lance fores t area cou I d be dec 1ared as f ores t reserves. Also, it was decided that it is suitable to grant permits only to obtain harvests from grown crop if there is substantial number of existing forest trees in encroached lands. Various groups of people had brought forward an issue of widespread illicit logging in a 10 ha forest at the boundary of Deniyaya Estate but without a clear ownership either by the estate or the FD. The Conservator of Forest outlined the procedure that should be followed in order to enable the vesting of such lands in the Forest Department so that the FD could preserve such forests. There were 115 users who have applied for rights to collect six different non-wood forest products from the forest reserves and the Forest Department has agreed to investigate the feasibility for such a venture. The FD agreed to give the technical advice in preparation of resources inventories of natural forests by the resources users with SCOR interventions prior to giving user rights for exploitation of non-wood products such as Rattan (cane) and Wenivelgata. The Forest Department agreed to give rights for extracting other non-wood fares t s product s (wh i ch are non-des t ruct i ve) such as bee honey, sap of Kitul trees, dummala (resin), beraliya and goraka, after due consideration of the applications already made by resources users. in tea estates and small holdings. These practices seem to have a wide spread effect within and outside of the project area.Five user organizations have engaged in input supply for tea and they have supplied 110,000 kg of fertilizer and 36,500 kg of dolomite to their members. Two organization have entered into the green leaf marketing activity in Horagala and Morawaka. The average green leaf sale of Horagala (East) farmer organization is 11,000 kg per month (i.e. 33,544 kg during Oct.-Dece. period) and it is around 2,700 kg per month in Morawaka farmer organization which entered into green leaf marketing recently.A tea nursery of 50,000 plant capacity was commenced at MilIa Ela and already about 10,000 cuttings have been established. These plants are produced for the infilling program planned under the Ihala Millawa production and protection project formulated by the Ihala Millawa farmer organization with the facilitation role played by SCOR. In addition to tea plants, 2,000 pepper plants are also expected to be produced in this nursery.By the end of December 1995, more than 3,000 tea small holders were trained on proper techniques and methodologies regarding soil conservation including demarcation of contours using A frame and regular maintenance of conservation measures; shade management; application of fertilizer and organic manure; pruning and plucking; and maintenance of a plucking table and a good ground cover through the canopy structure. These training programs were arranged by Tea Small Holders Development Authority and Tea Research Institute. These programs included lectures, posters, field demonstrations and video presentations. In addition, Tea extension officers regularly visit some of the selected tea lands in the watershed to enable surrounding farmers to participate in the field training. Also, 10 tea land holders were trained at TRI on nursery management.Apart from group training, SCOR catalysts attended to individual resources users to promote conservation practices by convincing the importance. Also, discussions were initiated with some owners of remote controlled degraded tea lads, who are not resident in the area, to ascertain the possibilities of improving their lands with alternate management arrangements.Interventions, such as renovation of anicuts, improvements in irrigation and drainage channels, have enhanced the production potent ial of 64.5 ha of paddy lands under minor irrigat ion schemes. Soi 1 conservat ion measures were promoted in the highlands adjacent to paddy lands to ameliorate the problem of sand deposition in paddy lands and irrigation channels. With SCOR interventions many other practices such as, bund cultivation, integrated pest management practices, and use of straw and construction of interceptor drains to avoid bronzing cond it ions were promo t ed. Fur t her, t he coord i na t i on be tween farmers and the Divisional Officers of Agrarian Service Department for input supply etc. was promoted. Supply of quality seed paddy contributed to raise the productivity. However, in orde r to overcome the frequen t 1 y encoun t e red problem of shortage in seed paddy, 19.5 ha of seed paddy farms were established to meet the seed paddy requirement of the area. Farmers were motivated to have pre-seasonal cultivation meetings, which were not conducted prior to SCOR interventions, to agree on a proper cropping calendar while minimizing staggered cultivation. Moreover, handling of input supply by farmer organization, in bulk volummes with discounts, reduced the cost of production besides their availability in sufficient quantities in time. All these interventions increased the productivity and profitability of the paddy farming while reducing the crop loss.Improvements to irrigation and drainage systems have been suggested to paddy tracts by Beralapanatara (north) and Batandura (north) farmer organizations. Divisional Secretary (Pasgoda) and Southern Provincial Council have allocated funds for this work and the concerned farmer organizations have planned to complete the work under Samurdhi Program. In Diyadawa/ Thenipita sub-watershed, Nawalahena Farmer Organization proposed to obtain supplementary irrigation facilities to about 30 acre of their paddy land through diversion of a perennial spring situated in Bodeniya area. Feasibility of this is being investigated by SCOR.Under the land consolidation effort, surveying and blocking out of paddy lands were completed in 5 acres among 30 owners of Pahala-Egoda Kumbura; 3.5 acres among 20 owners in Pahala Mulana Amuna Yaya; 3.53 acres among 29 owners in Potuwil-Yaya as the initial step. This was a motivation for farmers to improve the paddy lands in the long-run. Before the intervention, Kattimaru and Thattumaru system of shared cultivation, in turn among the owners, were the practice. Some individual farmers cultivated in different parcels in the same tract in the same season, whereas some others had a chance to cultivate only once in 20 years or so. They had no clear deeds nor permits to claim the ownership. There were many disputes on ownership and sometimes fractions of paddy lands were left fallow due to unsettled plot boundaries at the beginning of a cultivation season.Also, the farmers did not maintain the irrigation and drainage channels properly. As any given plot of land was not cultivated by the same farmer continuously, they were reluctant to apply adequate inputs to obtain good yields.In order to overcome these problems, Farmer Organizations discussed with the farmers and agreed to partitioning of the paddy tract with SCOR interventions. Consequently, lands were surveyed and blocked out giving due consideration to irrigation and drainage facilities. The farmers have accepted the blocked out plots of land.The above process was facilitated by SCOR Catalysts with the corporation of the Divisional Officers of the Department of Agrarian Services. Also, the other problems faced by the farmers, such as Iron toxicity, inadequate drainage facilities and damages caused by sand originating from highlands, and the required measures to overcome them were identified with the farmers. The improvements suggested by the Farmer Organization were accepted by the Divisional Secretaries, Divisional Officers and Institutional Organizers and the Southern Provincial Council. As a result, the Provincial ministry allocated money on the recommendat ion of DS (Pasgoda) to effect some of the improvements. DO (Urubokka) is taking actions to issue permits for re-allocated plots of lands to the farmers.More Farmer Organizations have commenced negotiations and discussions with relevant farmer groups to implement similar type of land consolidation for other paddy tracts covering 15 ha.programs conducted for the paddy sector in collaboration with line agencies included transfer of technology in respect of integrated pest management, seed paddy production, etc. Also, Shramadana Campaigns were organized to clean and maintain streams used as sources of irrigation.Under the homestead deve lopment program, intervent ions were initiated to motivate resources users for production and protection in 218.3 ha of homesteads. The interventions included promotion of appropriate management of existing economic trees/ crops and intensification, proper shade management, diversification with introduction of economically important trees/crops, bee keeping (64 bee colonies), animal husbandry, etc., and soil conservation practices and use of organic manure.Se rv i ce farmer organ i za t ions and resource user groups have supplied 37,5000 plants to 2,540 homesteads (including those adjacent tea lands) by making use of their revolving funds. This was supported by the Forest Department, Department of Export Agriculture and Coconut Cultivation Board. Two homestead clusters were developed to serve as homestead demonstrations in MilIa Ela and Thanipita. Development of 52 homesteads was started in Aninkanda, Diyadawa-Thanipita and Horagala sub-watersheds. Homestead development task force and users of the area have a plan and a time schedule to accelerate the homestead development program of the watershed and which is already in operation.Many training programs were held in collaboration with line agency officials on bee keeping; coconut cultivation; growing, harvesting, processing and grading of export agricultural crops; nursery management; growing of grass species (Bracharia N.B. 21) on road and stream reservations; etc. Practical training classes were conducted for resources users even in places outside of the watershed. For instance, 27 Anthurium growers were trained at the Peradeniya Botanical Garden. Grafting/budding techniques were trained at Labuduwa Agricultural Training Center.A total of 12 ha, hitherto unexploited for any agro-forestry system, were identified for coconut plantations by resource users in Horagala and 11 of them have obtained loans from the Nat ional Savings Bank under the rural credi t scheme for fencing. The balance 13 resources users have obtained loans from the Horagala mUlti-purpose project.Fencing and planting of plots have been completed at the end of December 1995. ","tokenCount":"6413"} \ No newline at end of file diff --git a/data/part_3/3019696491.json b/data/part_3/3019696491.json new file mode 100644 index 0000000000000000000000000000000000000000..4e41442226b50c4db5d093cab5ae01513bd8284b --- /dev/null +++ b/data/part_3/3019696491.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"1eb65e34406e54d4b28a0d7c26fd57fb","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/9e63552b-e71f-4385-be55-1ca41ea611bb/retrieve","id":"123004134"},"keywords":[],"sieverID":"5967fe38-0812-45ac-8829-0fbdc02ee7ac","pagecount":"8","content":"Existen varios métodos para la siembra de la Cratylia argentea, el método más efectivo, aunque más caro, es el vivero. En siembra directa, colocar dos semillas por postura a 2 cms de profundidad, compactando un poco la tierra con el pie, siembre a una distancia de medio metro entre postura y un metro entre hilera, para un total de 20,000 plantas por hectárea o 14,000 plantas por manzana.Vivero de Cratylia en Comayagua.Las leguminosas arbustivas producen más biomasa que las leguminosas herbáceas. Toleran el mal manejo y rebrotan fácilmente produciendo forraje de buena calidad en zonas con periodos secos prolongados. En lo particular la Cratylia argentea supera a la Leucaena y al Madreado (Gliricidia sepium) por su adaptación a suelos pobres y porque produce más cantidad de forraje bajo condiciones de sequia prolongada, lo que la hace una leguminosa arbustiva con un alto potencial para mejorar la producción y la productividad ganadera de Honduras, especialmente en las zonas secas y sub-húmedas del pais con periodos de 4 a 7 meses de sequia.En Honduras la Cratylia argentea fue evaluada agronómicamente en la Estación Experimental Gu anacaste, Coma yagua y en varias localidades del Depa rtamento de Yoro: Yorito, Sulaco y Victoria, por medio del Proyecto \"Investigación Participativa con el Agricultor en Acción\" DI CTAlCIAT/BMZlGTZ, donde se contó con la presencia interactiva de productores, obteniéndose excelentes resultados. A partir de Junio del 2002 se establecieron en estas zonas varios lotes denominados bancos de proteína' para evaluar la re spuesta animal en leche y came , en sistemas de doble propósito. En resultados obtenidos de los ensayos agronomlcos realizados en Comayagua y Yorito, se encontró que la Cratylia presenta altos contenidos de proteína en las dos épocas del año, sin embargo, esto depende de la edad de la planta al momento del corte ; en Comayagua a los 40 y 60 días de establecido se encontraron contenidos de proteína promedios de 19 y 18% respectivamente.En Comayagua la Cratylia rindió 34% de materia seca, con 22 Ton. de MS/ha/año y 66 Ton. de materia fresca/ha/año 60 días después del corte . El cuadro ilustra detalles.\"?~r.IIII?\":' \"'\" ',', . ..Resultados obtenidos por el CIAT, 1997, indican que en vacas de ordeño, de doble propósito (Holstein y Cebú) suplementadas con caña de azúcar y niveles crecientes de Cratylia del 25% a 75% , no registraron incremento significativo en la producción de leche, sin embargo, en vacas con encaste Diámetro cm Altura cm I 9 de MF/planta I g de MS/planta %deMS %dePC Ton de MF/ha/año Ton de MS/ha/añc lechero bien definido, tuvieron un incremento de un 25% en la producción (1.6 Kg/vaca/día) cuando se les ofreció una ración combinada de 25% de caña de azúcar y 75% de Cratylia.La Cratylia argentea es utilizada como banco de proteína y puede asociarse con cualquier pasto de piso en bandas. Al ganado se le proporciona el forraje fresco picado o ensilado, durante los períodos secos o críticos del año.Esta planta presenta un crecimiento lento con una producción baja de biomasa en el primer año de establecida, no obstante, esta situación cambia a partir del segundo año. Para estimular su desarrollo y favorecer los rebrotes se recomienda podar las plantas a una altura de 50 cm . del suelo a los 6 meses después de la siembra.Según el Dr. Pedro Argel del CIAT, \"entre mayores el desarro de la planta al momento del primer corte, mayores serán II rendimientos posteriores de forrajes\".Como material ensilado ha dado excelentes resultados, método utilizado es aprovechar el forraje residual producio durante la época de lluvia. El ensilado puede hacer' solamente con Cratylia o asociarse con otras gramíneas o corte . La Cratylia se corta a los 90 ó 120 días de establecido, l pica en trozos de 2.5 cm, se apila y conforma en silos montón.Fuente: Boletín Técnico 2000 Costa Rica.Lote de Cratylia para la producción de forrajeLos rendimientos y calidad de la semilla, dependen de la edad de la planta , de la época de poda, de las condiciones cli máticas y de la fertilización. Una buena fertilización debe hacerse después de la poda y al inicio de las lluvias, utilizando fósforo en una relación de 150 Kg/ha. Considerando una població n de 10,000 plantas/ha . (lotes para producir semi lla) , a un metro entre planta y un metro entre hileras , se han obtenido rendimientos de 80 gramos por planta (800 Kg/ha).La buena producción de semilla en Honduras, ha se rvido para apoyar esfuerzos de otros paises y al CIAT en Colombia en la liberación de la Cratylia, (2002).La se milla de Cratylia generalmente no prese nta latencia, pero si no es bien manejada después de la cosecha y se expone a altas temperatu ras, humedad relativa y mal almacenamiento , se afecta su germi nación hasta un 80%. También es afectada por hongos porno secar bien la semilla después de la cosecha.En Honduras la Cratylia argentea, ha mostrado tolerancia a plagas y enfermedades, el poco daño registrado se ha obse rvado durante la floración y al inicio de la formación de vain as, controlándose fácilmente con aplicaciones opo rtunas de insecticidas. En algunas ocasiones se observó en varias zonas , daños en el tallo parecido a nemátodos; se tra taron con nematicida y hasta la fecha no se ha tenido más presencia de esta enfermedad.La Cratylia es muy susceptible, las plantas mueren a temprana edad bajo condiciones de humedad y suelos con pH alcalinas.En Hondu ras se tiene muy buena experiencia en la producción de semilla de Cratylia argentea. La floración se in icia al final del período lluvioso, el cual coincide con los días cortos de noviembre a enero . En este período la Cratylia presenta flora ción en forma irregular. Durante el primer año la fioración es po bre por lo que la producción de semilla también es baja. Debido a que lo anterior ejerce el mismo efecto en la formación de vainas y maduración del fruto, la cosecha se extiende de febrero hasta abri l, haciendo cortes de vainas selectivas cada semana.Floración en la cralvlia.","tokenCount":"1007"} \ No newline at end of file diff --git a/data/part_3/3033611018.json b/data/part_3/3033611018.json new file mode 100644 index 0000000000000000000000000000000000000000..96ffa544fa1b413c4c66b2d6d8520c71fb366282 --- /dev/null +++ b/data/part_3/3033611018.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"76c341a0eb5433f1bd03d64f02f81bd6","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/7372c94c-fda6-4016-9053-9787fc88fba7/retrieve","id":"-1501316514"},"keywords":[],"sieverID":"0df657dc-0b5d-41a1-921d-b4c4271ec46a","pagecount":"10","content":"This paper examines how resilience capacity mediates or moderates the relationship between weather shocks and household food security based on two waves of farm household survey and satellite-based weather data in northern Ghana and applying econometric models. Results show that resilience capacity moderate or mediates the negative effects of heat stress and drought on food security. However, the mediating role of resilience capacity in the shock-food security nexus is more stable and stronger than its moderating role. A standard deviation (SD) increase in heat stress reduces household food consumption by 0.71 SD, but resilience capacity effectively moderates this effect by approximately 0.61 SD. For drought, household food consumption is reduced by 0.67 SD, but resilience capacity effectively dampens this negative effect by approximately 0.60 SD. The mediation results, on the other hand, indicate that 537% of the total effect of heat stress on household calorie consumption is explained by the indirect effect through resilience capacity. Similarly, resilience capacity mediates about 74% of the total effect of heat stress on household food consumption. These results suggest that strategies that help improve resilience capacity, such as the adoption of sustainable intensification practices, are critical in enhancing food security in northern Ghana.Households in many African countries rely mainly on rain-fed agriculture, which is exposed to climate change and variability, and other socioeconomic shocks affecting their farming and food systems (Galarza, 2020). Due to the dire negative food security implications of these multiple shocks, the number of studies assessing resilience from the perspective of household food security has been growing since 2008 (see Ansah et al. (2019). However, there is no agreement among scholars on how resilience should be measured or analysed as it is conceptualized in different ways. In the emerging food security literature, resilience is mostly measured as a capacity (Alinovi et al., 2010;Alinovi et al., 2008;FAO, 2016) while Smith and Frankenberger (2018) define resilience capacity as \"a set of conditions, attributes, or skills that enable households to achieve resilience in the face of shocks \" (p.365). In this regard, resilience capacity is a latent variable with multidimensional attributes and indicators that can be measured through multivariate techniques, such as factor analysis and principal component analysis (D'Errico and Pietrelli, 2017). The common attributes of resilience capacity include access to basic services, assets, adaptive capacity and social safety nets, among others (Ado et al., 2019;Brück et al., 2019;D'Errico and Pietrelli, 2017;D'Errico et al., 2020;D'Errico et al., 2018;Dedehouanou and McPeak, 2020;Islam and Al Mamun, 2020;Murendo et al., 2020;Phadera et al., 2019;Smith and Frankenberger, 2018).Empirically, resilience capacity has thus far been assessed in terms of its direct effect on food security by including it as an explanatory variable; or in terms of moderation by including the multiplicative product of shocks and resilience capacity in a regression (D'Errico et al., 2018;Murendo et al., 2020;Smith and Frankenberger, 2018). Jose (2013) defines moderation as the examination of the statistical interaction between two independent variables in predicting an outcome variable. A moderation variable, according to Baron and Kenny (1986),\"is a variable that affects the direction and/or strength of the relation between an independent, or predictor, variable and a dependent, or criterion, variable\" (p. 1174). For instance, resilience capacity, if acting as a moderating variable, is expected to influence the direction and/or strength of the relationship between shocks and food security. This means, for instance, that households experiencing higher intensity of shocks should also report low levels of food security, but resilience capacity should influence this basic relationship. Jose (2013) argues that, in moderation analysis, the relationship between the moderator and the independent variable is not of direct focus but how the moderator and the independent variable interact to influence the outcome variable is of main interest.The empirical literature on shocks, resilience and food security thus far indicates that the moderation condition is not completely met, as resilience efforts and interventions also focus on the link between the two variables. For instance, Brück et al. (2019) found that shocks also affect both resilience capacity and food security, thus pointing to a plausible mediating role of resilience capacity in the link between shocks and food security. Mediation, as defined by Baron and Kenny (1986), occurs when a third variable \"accounts for the relation between the predictor and the criterion\" (p. 1176). For instance, resilience capacity as a mediator is expected to explain the mechanisms through which shocks and food security are related. This hypothesis is plausible due to the multidimensional and latent nature of resilience capacity involving several indicators (Béné et al., 2012;Constas et al., 2014). These indicators are mechanisms that can be considered as predictors of resilience capacity (Knippenberg et al., 2019). The literature shows that several shocks affect food security through processes such as income loss, asset reduction or savings decumulation (Ansah et al., 2019). Households with assets or other accumulated savings may smooth consumption through these mechanisms, minimizing the impact of food prices on their food security (Ansah et al., 2021(Ansah et al., , 2022;;Keil et al., 2008).Further, the core objective in mediation analysis is to quantify a transmission mechanism in which a treatment and a mediator jointly cause an outcome of interest (Baron and Kenny, 1986). Resilience research focuses on the mechanisms through which individuals, households, communities and systems can develop robustness for withstanding the effects of shocks, and not on resilience per se, especially as resilience is a latent variable. D 'Errico et al. (2020) argue that governments and humanitarian aid agencies often invest in specific interventions primarily to build the resilience of vulnerable households. Keil et al. (2008) also report that interventions designed to help farmers adapt or mitigate the impacts of climate change through provision of crop insurance, among others, contribute to enhancing household resilience capacity. In the context of farm households, agronomic practices that enhance their ability to adapt to the changing climatic effects on production systems are essential components of adaptive capacity (Béné et al., 2012;FAO, 2016).There is limited evidence on whether resilience capacity mediates or moderates the relationship between shocks and food security. This study aims to address this gap. We analyze and compare the mediation and moderation roles of resilience capacity, measured through the Resilience Index Measurement and Analysis (RIMA) approach (FAO, 2016), which have not been addressed well in empirical literature. In this regard, we examine the direct effect of resilience capacity on household food security (proxied by household calorie consumption, household dietary diversity score, and per capita consumption expenditure), as well as its indirect, shock-moderating or mediating effects.While many emerging studies use panel data methods to assess household resilience to weather shocks and how it affects food security (Brück et al., 2019;D'Errico et al., 2018;Galarza, 2020;Murendo et al., 2021;Murendo et al., 2020), our study fills a gap in the literature by analysing both within-household and between-household effects. Our econometric strategy relies on the correlated random effects (CRE) model and instrumental variable (IV) regression for moderation analysis, and structural equation modelling for mediation analysis to address these empirical gaps. The use of the CRE allows us to adequately measure the shock effects on food security, considering the effects of timeinvariant factors. The IV approach allows us to address endogeneity due to unobserved heterogeneity and treatment. The structural equation model used in the mediation analysis allows us to assess the proportion of shock effects on food security that is mediated by resilience capacity.Our conceptual model visualizes resilience capacity through the lens of mediation on one hand, and moderation on the other. Fig. 1 displays the conceptual links between shocks, resilience capacity, and food security.Farmers usually meet their food security by directly consuming the crops they produce, buffer stocks and food they purchase from the market financed primarily through incomes they derive from marketed surpluses. Occasionally, some farm households may also obtain food supplies through gifts or barter. Shocks, manifested by droughts, floods, and extreme temperatures, negatively affect crop yields, reducing the amount of food available for household consumption as well income they generate from marketed surpluses. This direct effect of shocks on food security is represented by b 1 in Fig. 1. Without a third variable, b 1 measures the total effect of shocks (S it ) on food security (FS it ), but once a third variable is introduced, b 1 represents a direct effect only. The total effect, which consists of direct and indirect effects, may be mediated/ moderated by resilience capacity (RC it ).The position of resilience capacity as conceptually linking shocks and food security in the context of mediation is supported by literature, yet it ( ) ( )Food security ( ) Shocks ( ) Resilience-enhancing mechanisms, e.g., Sustainable Intensification Practices (SIPs), assets, income, livestock, cash savings, etc. 2020); Baron and Kenny (1986).has not yet been explored. For instance, the literature thus far considered resilience capacity as an intermediate outcome that leads to achieving or improving an overall well-being result such as food security (Béné et al., 2012;Brück et al., 2019;Murendo et al., 2020). According to Jose (2013), mediation emphasizes the mechanism that operates between the two predictors (i.e., S it and RC it ) and the outcome (FS it ). Thus, the interest in mediation is to examine the possibility that S it predicts RC it , which in turn predicts FS it . Mediation explicitly examines the relationship between the independent variable (S it ) and the mediating variable (RC it ), as well as the ability of both S it and RC it to predict the dependent variable, FS it . Complete mediation occurs if variable S it no longer affects FS it after RC it has been controlled, making b 1 zero (Fig. 1). Partial mediation exists if the magnitude of b 1 is significantly reduced in absolute size when the mediator RC it is introduced. The variable RC it is thus considered the mechanism or process through which the impact of S it on FS it is realized.On the other hand, moderation explicitly involves an interaction term between the two independent variables, S it and RC it . The inclusion of the interaction term as a third variable helps explain variability in the dependent variable, FS it above and beyond the two additive effects contributed by S it and RC it . The interaction term provides important information about how shocks and resilience capacity jointly predict the food security. Therefore, in moderation analysis, the interest is not in the causal relationship between S it and RC it , but it is in the interaction between the two variables and its effect on FS it .Thus far, the literature on shocks, resilience and food security adopts the approach of moderation and less attention to mediation. To assess mediation or moderation, we focused on internally generated and externally sourced mechanisms or indicators such as assets, social safety nets, adaptive capacity, among others, of resilience that mediate or weaken the effect of shocks on food security. Resilience capacity is achieved through resilience-enhancing processes, including sustainable intensification practices (SIPs), assets, income, livestock, and cash savings, among others. Adoption of SIPs enhances households' adaptive capacity and consequently improves farmers' resilience capacity, which may dampen or intercede the effects of shocks on crop yields. This is the shock-mediating (γ 2 *b 1 ) or moderating (b 12 ) effect of resilience capacity. In Fig. 1, the direction of b 1 is expected to be negative whether RC it is regarded as mediator or moderator.We used two waves of panel data conducted at onset and towards the end of the Africa RISING project in northern Ghana, spanning six years. The baseline survey data, collected in 2014, sampled 1284 farm households distributed across 50 communities in three northern regions of Ghana namely, Northern (former structure), Upper East, and Upper West regions. The survey was designed based on a quasi-randomized control trial method (Tinonin et al., 2016). A stratified two-stage sampling technique was used to select respondents. The first stage consisted of a random selection of control and intervention communities; in the second stage households within each community were randomly selected. Half of the selected communities were earmarked to receive intervention from the project while the other half were randomly sampled to serve as a control group. About 93% of the sample households in the baseline survey were interviewed during the endline survey (i.e., 450 households from control communities and 744 households from project intervention communities).We relied on the two survey datasets to capture most of the variables in our analysis including, among others, resilience capacity, household food security, and household demography. We used three alternative (interrelated) variables as indicators of household food security namely, household calorie consumption, per capita food expenditure, and household dietary diversity score (DDS). For resilience capacity, we adopted the FAO's RIMA approach, specifically designed to explore the nexus between food security and resilience (Ansah et al., 2019;FAO, 2016). The RIMA approach uses the multiple indicator multiple cause (MIMIC) model, combining factor analysis with linear regression models to generate the latent indicators and the overall resilience capacity index (RCI) (see D 'Errico et al., 2018;Smith and Frankenberger, 2018;FAO, 2016). For the baseline and follow-up surveys we constructed four pillars of resilience and RCI based on variables available in the datasets: access to basic services (ABS), assets (AST), adaptive capacity (AC), and social safety nets (SSN) (see Table A1 in the annex for details of the component variables of the four RIMA pillars).In addition to the survey data, we used long-term meteorological data on precipitation and temperature to generate objective measures of shocks. Precipitation and temperature time-series data during 1981-2020 were obtained from the TerraClimate database (Abatzoglou et al., 2018). This database provides gridded monthly climate data from 1981 to the present with 4 km spatial resolution and global coverage. GPS locations of the survey households were used to extract monthly total precipitation and mean temperature from 2014 to 2020. Monthly time-series climate data for each household were aggregated to annual total precipitation and mean temperature, respectively. Long-term means (LTM) and standard deviation (SD) of the two variables were generated for the same period. Following Muthoni et al. (2019), the difference between annual total precipitation and LTM was divided by SD to derive the standardized precipitation anomaly. Precipitation anomalies indicate the difference between annual precipitation and LTM precipitation, with negative values representing periods of belownormal rains (droughts), and positive values representing abovenormal rains (flood risk). Negative anomalies for temperature indicate cooling, while positive values reflect above-normal heating (heat stress) compared with LTM. Assuming that food security outcomes are more likely affected by the weather conditions of the cropping seasons prior to the time of data collection, we used standardized anomalies of 2013 for the baseline data and those of 2019 for the endline data. Following Azzarri and Signorelli (2020), we derive a measure of drought as standardized anomalous precipitation values below − 2.0 and that of heat stress as standardized anomalous temperatures above 2.0. Thus, in the econometric models, we include shocks as dummy variables in the form of drought and heat stress.Our econometric strategy aims mainly to test and explain the mediation and/or the moderation roles of resilience capacity between shocks and food security. We first discuss the strategy for testing moderation effects in Section 3.2.1 and that of mediation effects in Section 3.2.2 next.In moderation, our main strategy is to examine the statistical interaction between shocks (heat stress/drought) and resilience capacity. Let FS it denote food security outcome indicator for household i in period t; RC it is a measure of household resilience capacity estimated following the RIMA approach based on multivariate analysis (FAO, 2016); and S it is a vector of shocks, mainly drought and heat stress, X it is a vector of control covariates such as the age of the household head, household size, sex of the household head, and education of the household head; A i is an indicator variable denoting participation in Africa RISING interventions for at least three years since 2014; u i is a unit-specific error term assumed to differ between units but constant for any particular unit; and e it is a white noise idiosyncratic error term, and b 1 , b 2 , b 12 , b 3 and b 4 are parameters to be estimated. The basic regression model to test our moderation hypothesis is the following:Eq. 1 represents a multiple regression with three core predictive terms: the key independent variable (i.e., S it ), the moderating variable (i. e., RC it ) and the interaction term of the independent variable and the moderator (i.e., RC it *S it ). Ignoring the control variables X it and A i , we have two main effects (b 1 and b 2 ) and an interaction effect (b 12 ). Note also that the basic relationship we are investigating is the association between shock and food security. We introduce resilience capacity because we are keen to know whether it might influence this basic relationship; we envisage a dampening effect (i.e., the negative impact of shock on food security is expected to be reduced by resilience capacity). The proposed moderation effect of resilience capacity, if it exists, should be evident in the interaction term (RC it *S it ) predicting the outcome variable (FS it ). A standard t-test is used in assessing the operational and statistical significance of the interaction term (b 12 ). If positive and significant, we can conclude that resilience capacity dampens the negative effect of shock on food security. On the other hand, if b 12 is negative and significant, then resilience capacity rather enhances or reinforces the negative effect of shocks on food security.Although there are several options to estimate Eq. 1, researchers have typically used either the fixed effects (FE) or the random effects (RE) model, depending on the assumptions made about u i and e it . The FE approach admits a correlation between the independent variables and u i , and hence eliminates it by group-mean centering the variables so that u i disappears from eq. ( 1) completely. The FE model eliminates any between-household effects and only emphasizes within-household variation, which makes it unable to estimate the effects of timeinvariant covariates. Further, FE assumes a zero correlation between the independent variables and e it . The RE model, on the other hand, allows zero correlation between e it and u i , so that both time-varying and time-invariant effects are admissible. In other words, the RE model assumes that unobserved heterogeneity is uncorrelated with the observed explanatory variables, which is a very strong assumption and difficult to achieve in practice (Wooldridge, 2019).The third estimation option is the correlated random effect (CRE) model. The CRE is becoming a popular choice because of its ability to unify the FE and RE approaches (Joshi and Wooldridge, 2019). It relaxes the assumption of non-zero correlation between u i and the independent variables, and also permits the inclusion of both time-invariant and time-varying covariates. It does so by introducing the cluster means of all time-varying variables in an RE model. In this case, the coefficients for time-invariant variables correspond to those from an RE model, whereas coefficients for time-variant covariates are comparable to the FE estimates (Mundlak, 1978).In the context of the CRE approach, Eq. 1 can be modified as follows:where RC i , S i , X i denote the cluster means associated with RC it , S it , and X it , respectively, which accounts for any correlation between these variables and the error term at the cluster level. The coefficient associated with this variable measures the difference between the within and between effects (Mundlak, 1978).When the time averages of truly time-varying covariates are added, the CRE approach allows the effect of time-varying covariates to be estimated, thereby allowing between-household heterogeneity to be correlated with the time-varying covariates (Mundlak, 1978). Nonetheless, the CRE rules out the possibility that explanatory variables are correlated with time-varying innovations across any period. To address this, we use the control function approach and instrumental variable (IV) generalized least-squares random effects (GLS RE) regression models specified in Eqs. (3a), (3b), and (3c). The GLS RE accounts for the potential endogeneity in resilience capacity and treatment selection.where Z it are selected instruments; u i is unit-specific error term assumed to differ between units but constant for any particular unit; and e it , v 1it and v 2it are white noise idiosyncratic error terms. Since RC it in eq. (3a) could potentially be endogenous due to correlation with u i , we use access to model farmer and mobile phone ownership as instruments. Our exclusion restriction test supports these as valid instruments since they correlate strongly with resilience capacity but not with food security.The treatment variable (participation in the Africa RISING intervention) is also assumed to be endogenous due to potential sample selection, hence, as instruments, we use minimum and maximum distances to the nearest and farthest plots, respectively. These instruments also passed the exclusion restriction tests.The test for mediation effects of resilience capacity between shocks and food security follows the Baron and Kenny (1986) causal four-step strategy. The first step aims to demonstrate that there is an effect to be mediated by examining the correlation between the causal and outcome variables. Thus, we regress FS it on S it to obtain γ 1 , controlling for other variables (Eq. 4a).The second step aims to show that the causal variable is correlated with the intervening variable by regressing RC it on S it to obtain γ 2 as shown in Eq. 4b.The third step aims to test whether the mediating variable affects the outcome variable (b 1 > 0) and whether there is a complete mediation (b 2 = 0) by regressing FS it on S it and RC it .While the situation of complete mediation is rarely observed in social sciences (see Baron and Kenny (1986); Preacher and Hayes (2008); (Jose, 2013), measuring the strength of mediation is appropriate which can be done by testing the significance of the indirect effect of RC it (b 1 *γ 2 ), which is the same as γ 1 − b 1 . Resilience capacity is a mediator if (1) S it significantly accounts for variability in RC it and FS it , (2) RC it significantly accounts for variability in FS it when controlling for S it , and (3) the effect of S it on FS it reduces substantially when RC it is entered simultaneously with S it as a predictor of FS it . Based on these, there can be no mediation, partial mediation, or complete mediation. The methods proposed for testing mediation include a z-test developed by Sobel (1987) (eq. 5a), or the bootstrap test (Zhao et al., 2010) of the indirect effects calculated as in eq. ( 5b).where s 1 2 and s 2 2 are the standard errors of b 1 and γ 2 , respectively. A third approach to assessing the indirect effects is a Monte Carlo simulation procedure (Jose, 2013;Preacher and Hayes, 2008). A nonsignificant indirect effect indicates that RC it does not mediate the shock-food-security relationship. It is also of interest to know the effect size of the mediation, which is based on the formulae specified in eqs. (5c) and (5d) (Mehmetoglu, 2018;Sobel, 1987).The RIT can be interpreted as the proportion of the total effect of the independent variable (shocks) on the dependent variable (food security) that is explained by the mediator (resilience capacity). The RID can be interpreted as how large the effect is mediated compared to the direct effect of the independent variable on the dependent variable.To implement the above tests, we adopted an improved estimation approach designed by Mehmetoglu (2018). This is a structural equation modelling technique that combines the first three steps of the mediation analysis and estimates all parameters simultaneously. We also performed postestimation tests after the simultaneous estimation.Table 1 defines the core variables used in the econometric models and summarizes their values for each survey round and the corresponding differences between the two survey waves. The baseline values of total household calorie consumption and HDDS were higher than their respective endline values while the reverse was true for per capita consumption expenditure. The household heads' average age was about 48 years at baseline and 52 at the follow-up survey. The average household size at the baseline is higher by about one person than the one at the endline. Farm households in the sample generally have less than three years of formal education, increasing only slightly from baseline to endline survey. In both rounds of the survey, only a few households had female heads; the percentage of female-headed households was slightly higher in the follow-up than in the baseline (though not statistically significant).The weather shocks were more severe during the endline than during the baseline. The heatmap in Fig. 2 shows that the average drier conditions in the endline period (Fig. 2b) coincide with significantly warmer conditions (Fig. 2d) in the same period. Comparing the shock conditions in the endline and baseline with their respective food security outcomes, we can infer that the relatively worse outcomes in the endline can be partly attributed to the extreme weather events that occurred.Farmers' resilience capacity during the endline (75.79%) was significantly higher than their resilience capacity during the baseline (57.12%) suggesting that, on average, households' capacity to withstand shocks increased between the two periods. Fig. 3 displays the values of resilience capacity and its components at the baseline year (2014) and the endline year (2020). The figure shows that overall resilience capacity increased by about 33% between 2014 and 2020. The improvement in resilience capacity can be attributed partly to the increase in households' adaptive capacity and improved SSN. The average adaptive capacity of farm households increased by about 10% between the survey periods, and SSN increased by about 50% in the same period. In contrast, the ABS and AST pillars reduced on average by approximately 22% and 38%, respectively (see Fig. A1 for the spatial distribution of resilience capacity).Tables 2 and 3 report results of alternative regression models for testing the moderation hypothesis. We consider CRE and IV regression results as the main results for discussion, and report FE and RE results as robustness checks. The overall, as well as between and within, variation in the dependent variables is moderately high ranging between 45% and 54% for the CRE and IV regression models implying that the independent variables fairly explained the observed variation in food security outcomes.In all the moderation models, both heat stress and drought exert a significant negative influence on food security outcomes as expected, suggesting that farm households that experienced drought or heat stress tended to report lower food security outcomes than those that did not face these shocks. Whether we include only heat stress (models 10-12 in Table 3), drought only (models 13-15), or both as shock predictors (models 16-18), the direction of the effects remains largely similar for heat stress, but varies a bit for drought. Also, the estimated coefficients of resilience capacity (b 1 ) are positive in all the models, suggesting that increasing resilience capacity for a given farm household leads to significantly higher food security outcomes. The main effect of heat stress on food security is qualified by the significant interaction with resilience capacity in all the models. However, the modification of the main effect of drought on per capita consumption expenditure through its interaction with resilience capacity is not statistically significant. Like the CRE, the IV regression results confirm the significant main effect of resilience capacity on food security outcomes. Similarly, the main effect of heat stress on all food security indicators is significantly modified by its interaction with resilience capacity, while the interaction effect of resilience capacity with drought on per capita consumption expenditure is not significant.We run different model specifications combining weather shocks to assess how the effects change when controlling for other shocks in the models. The overall result is that the effects of combined shocks are lower than when they are considered separately, indicating that multiple shocks bear greater effects than individual shocks alone, in line with the literature (Ansah et al., 2021).The time variable is negative and significant which shows that food security outcomes were worse at the endline than at the baseline. This could be attributed to the severe weather conditions observed at the endline (Fig. 2). Also, the coefficient of resilience capacity in the FE model is negative, but after controlling for endogeneity it assumes the expected positive sign, indicating that controlling for endogeneity was necessary to identify the true correlation effects.Table 4 reports the results for the mediation analysis alongside the standardized coefficients results from the moderation analysis. These results show that the conditions for mediation analysis are all met for both heat stress and drought as the main predictor of food security. The total effects, as well as the effect of shock on resilience capacity, or of resilience capacity on food security, are all statistically significant at the 1% level. The direct effects of both drought and heat stress are statistically significant for all food security indicators. However, the direct effects of drought in the moderation models are not significant for per capita consumption, whether based on the CRE or IV approach, and under individual or combined shocks. Therefore, while resilience capacity significantly mediates the association between the two shocks and all food security indicators, the results show a non-significant moderation effect of drought on per capita food consumption. The indirect effects confirm that resilience capacity significantly mediates the relationship between both shocks (drought and heat stress) and food security. However, like the direct effects, the moderation effect of resilience capacity between drought and per capita food expenditure is not significant in the IV models.The significant mediation result across all models means that at least part of the statistical association between shocks and food security is transmitted indirectly through changes in resilience capacity. Consequently, the involvement of resilience capacity explains a significant proportion of the basic relationship between shocks and food security. Specifically, the standardized effect size of 0.060 for heat stress indicates that about 537% 1 (based on RIT) of the total effect of heat stress on household calorie consumption is explained by the indirect effect through resilience capacity. This result indicates a substantial proportion of the total negative effect of heat stress being mediated by resilience capacity, suggesting that such effects are not directly transmitted to household calorie consumption. Similarly, about 42% and 430% of the total effects of heat stress on per capita expenditure and HDDS, respectively, are explained by indirect effects through resilience capacity. Moreover, resilience capacity mediates about 74%, 39%, and 57% of the total effect of drought on household calorie consumption, per capita expenditure, and HDDS, respectively. The mediation results further depict the differentiated indirect effects, whereby the mediation effects for drought are smaller than for heat stress. This trend also holds in both the mediation and moderation models, but the trends for the direct effects are inconsistent across food security indicators.The results show resilience capacity displays partial mediation between shocks and food security. The partial mediation is competitive for household calorie consumption and HDDS, while it is complementary for per capita expenditure. 2 The mediating role of resilience capacity is stronger than its moderating role. While the mediation effect is consistently significant for both drought and heat stress, the moderation 1 The RIT larger than 100% is due to the relatively small negative direct effect but bigger and positive indirect effect, which leads to a smaller total effect than the indirect effect. Since RIT compares the indirect to the total effect, the resulting ratio exceeds 1.2 In competitive partial mediation, resilience capacity mediates the relationship between shocks and food security in such a way that both the direct and indirect effects are significant and point to opposite directions, while in complementary partial mediation, the significant direct and indirect effects point in the same path (Zhao et al., 2010). Coefficient estimates from CRE, FE, and RE regressions for resilience capacity, shocks, and food security. outcomes show that resilience capacity consistently weakens the negative effect of heat stress on food security, but the effect is inconsistent for drought being statistically significant only for household calorie consumption and HDDS. In the moderation analysis, a standard deviation increase in heat stress directly reduces household calorie consumption by about 0.7 SD, but resilience capacity dampens this negative effect, increasing calorie consumption by between 0.6 and 0.7 SD. On the other hand, the mediation results show that the 0.05 SD reduction in household calorie consumption caused by the direct effect of heat stress is partially mediated (by 0.06 SD) by resilience capacity.Our results complement empirical findings in developing countries regarding the nexus between resilience capacity and household food security. For example, D'Errico et al. ( 2018) found that higher levels of resilience capacity reduced the probability of experiencing food security losses among Ugandan and Tanzanian households. Similarly, D'Errico and Pietrelli (2017) reported a negative association between resilience capacity and probability of malnutrition in Malian households. In the face of drought, Murendo et al. (2020) reported direct effects of resilience capacity on HDDS and food consumption. Galarza (2020) also found a positive relationship between resilience capacity and food security, considering the number of weather shocks experienced by farm households. Our findings link these reports to an indirect mediation role for resilience capacity in the association between shocks and food security. Beyond the existing findings, our approach enables us to quantify the extent of mediation that is accomplished by resilience capacity.Heat stress exerts negative effects on food security in all the estimated moderation models, whether or not we control for endogeneity. The standardized coefficients suggest that heat stress has a larger effect than drought on food security outcomes. The literature suggests that high temperatures threaten food production and availability directly through changes in agroecological conditions (Schmidhuber and Tubiello, 2007) or through reduction in crop yields (Tai and Val Martin, 2017). Recent findings show evidence of a warming trend in northern Ghana (Muthoni, 2020), which is expected to accentuate soil water loss through evapotranspiration adversely affecting crop growth and yields. With most farm households deriving their food needs from crop production, heat stress would also be expected to adversely affect their income generation capacity and reduce food security.These results also agree with recent evidence that northern Ghana is experiencing significant warming, whereas changes in rainfall amount remains stable (Muthoni et al., 2020). While other studies in Africa observe that precipitation is the most important limiting factor for crop production (Niles et al., 2015), evidence shows that temperature is the main determinant of crop yields (Lobell et al., 2011;Zhao et al., 2017) and the value of crop production (Maggio et al., 2022). Hatfield and Prueger (2015) reported that temperature rise above optimal range during grain filling stage reduces maize yield by 80-90%. A combination of moisture and heat stress further exacerbates the effect on crop yield. For example, Lobell et al. (2011) demonstrated that about 65% of maizegrowing areas in Africa would experience yield losses due to 10 • C warming under optimal rain-fed management, while 100% of these areas would be harmed by warming under drought conditions. In line with this evidence, this study shows that heat stress is the weather shock that matters most to the resilience of farm households in northern Ghana. As discussed by Muthoni et al. (2019) and Niles et al. (2015), the impacts of precipitation and temperature shocks vary based on several factors, including location, time, farming system, agroecology, and adaptive capacity of farmers.Resilience research has called for interventions and policies that lead to improvements in land use systems for farm households in developing countries and has emphasized the need to promote resilience of lowinputs rain-fed farming systems to maintain their structure and productive potential amidst weather shocks (Galarza, 2020). Adoption of Sustainable Intensification Practices (SIPs) is one of the innovative agricultural solutions that is promoted to increase productivity on existing agricultural farmland while at the same time generating positive impacts on the environment and society (Kotu et al., 2022).This paper examines how resilience capacity enables farm households to cope with the negative effects of drought and heat stress on food security. Resilience was measured based on FAO's RIMA approach, and these measurements were used to examine how resilience capacity mediates or moderates the negative effects of shocks on household food security, accounting for both between-household and within-household effects, as well as endogeneity. The role of resilience capacity as a mediator between shocks and food security is consistent for both heat stress and drought, but its moderating role is inconsistent for the two shocks. The inconsistent moderation effect might be reflected in the indicators used in measuring resilience capacity. As resilience capacity, computed using the RIMA approach, is a composite of several indicators, the possibility that some of the indicators have synergistic effects while others are antagonistic is high.Resilience capacity consistently mediates the negative impacts of drought and heat stress, suggesting that the total effects of these shocks are not completely transmitted to household food security. The role of resilience capacity is to serve as the channel through which shock impacts are transmitted to food security, by absorbing the negative impacts, modifying it and then transmitting the residual effect to food security. With sufficient resilience capacity, the negative impacts of shocks would be significantly reduced and food security improved. Nevertheless, the finding of partial mediation points to other mediators that are not yet included in the food security model (Zhao et al. (2010). Thus, future work should search for other potential mediators that still leave persistent negative and significant direct effects, even after mediation by resilience capacity.This study shows that heat stress exerts a strongly adverse effect on household food security, and hence it demands policy attention. One viable policy option would be scaling up locally suitable SIPs (e.g., promoting heat-or drought-tolerant varieties and moisture conservation practices) among smallholder farmers, thereby improving resilience capacity. Attempts should also be made to boost farm households' knowledge of weather patterns and potential impacts on their livelihoods. This entails provision of accurate and timely weather information and early warning systems based on affordable and efficient dissemination mechanisms. As most of the communities involved in this study have very poor access to infrastructure and markets, a holistic strategy aimed at effectively improving resilience may bring a more sustainable and positive change regarding food security outcomes at household level.","tokenCount":"6406"} \ No newline at end of file diff --git a/data/part_3/3069932112.json b/data/part_3/3069932112.json new file mode 100644 index 0000000000000000000000000000000000000000..44084df8e9922bb006d7cedb79dabb56c99c50cf --- /dev/null +++ b/data/part_3/3069932112.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"ab8c89cb53636196db5b7ed137a74406","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/24735b34-bb50-4e99-b577-9d70ea3ceef5/retrieve","id":"1878923473"},"keywords":[],"sieverID":"0f0c8493-27a5-475f-b0aa-9f07ae033e15","pagecount":"10","content":"Urban agriculture has the potential to improve local food security and reduce greenhouse gas emissions. However, there is an urgent need for better information about who practices it, where it takes place and levels of productivity.The way we produce, process and distribute food will have to change dramatically if we are to provide the human population with adequate nutrition in the coming decades. It is not just the quantity of food that matters, but the way it is grown and reared. Agriculture already takes up 40% of the land surface and accounts for 70% of the freshwater we consume. It is directly responsible for up to 8.5% of all greenhouse gas emissions, with a further 14.5% coming from land use change, much of which involves the destruction of forests to make way for crops and livestock. 1 Total global food demand is expected to increase by between 35% and 56% from 2010 and 2050 to satisfy the world's projected population of 9.8 billion. 2 That means producing more food in the next 50 years than we have in the past 400, at the same time as addressing a whole host of additional constraints, including limits on available land. If we were to persist with current agricultural practices, an estimated 2.1 billion acres of additional land -an area the size of Brazil -would be required to cope with the increase in demand. 3 This simply cannot happen, hence the need to produce more food on land which is already in production, and develop and promote new technologies such as indoor vertical farming.The concentration and consolidation in the production, distribution and retailing of food in the Global North has led to a relatively small number of companies dominating the food system. 4 In the US, four companies are now responsible for 42% of food sales. Much of the food travels huge distances between field and fork, making a significant contribution to greenhouse gas emissions. The system often discriminates against small producers and encourages practices which cause soil erosion, water pollution and biodiversity loss. The globalisation of the food system and economies of scale have reduced prices for consumers in the wealthiest parts of the world, but it has made the food system more vulnerable to shocks such as extreme weather events and pandemics.There is a compelling case to be made for establishing local systems of production which provide access to healthy, affordable, sustainably produced food. Growing more crops and rearing more livestock in and around urban centres must be part of the solution, not least because two-thirds of the world's population will live in towns and cities by 2050. 5 During recent years, billions of dollars have been invested in companies practising high-tech production systems suited to urban areas. But urban agriculture, defined by FAO as \"plant cultivation and animal rearing (including aquaculture) within cities and towns and in their immediate surroundings\", has many manifestations. According to UNDP, by the mid-1990s some 200 million people were employed in urban agriculture and related enterprises, contributing to the food supply of 800 million people. 6 The vast majority of urban farmers are in the Global South; most use traditional methods of production, often on a modest scale. Helping them to become more efficient and productive will be as important as expanding urban food production using the latest advances in technology.Growing crops and rearing livestock in urban settlements has an ancient history. For most of the past 10,000 years, fields, homes and workshops were jumbled together, with locally produced food providing the fuel for increasingly sophisticated societies. Cities established by the Mayans in South America and the Khmer in Cambodia were fine examples of agrarian-based, low-density urbanisation. 7 The Romans developed sophisticated food production systems within their cities; in the Middle Ages, many cities grew crops and reared livestock behind their defensive walls. 8 In European cities livestock production had \"Total global food demand is expected to increase by between 35% and 56% from 2010 and 2050 to satisfy the world's projected population of 9.8 billion.\"of fresh water consumption is linked to agriculture a significant presence until relatively recently. In 1864, for example, there were over 18,000 dairy cows in 1,361 herds in London. 9 The rearing of livestock remains a significant activity in the Global South. 10 About 40% of urban households in Africa are thought to engage in some kind of farming practice, although there is a serious lack of reliable data about its scale and importance in developing countries. 11 Nevertheless, it is clearly a significant activity in many cities. For example, livestock numbers in Nairobi increased rapidly between 2008 and 2011, with the population of broiler chickens doubling, the population of laying hens increasing by 34% and that of pigs by 56%. 12 In 2017, there were an estimated 1.3 million livestock in Nairobi, whose farmers supplied an estimated 25% of the milk and 20% of eggs consumed in the city. A study of 2,687 households in urban areas with populations of less than 200,000 people in Zambia and Kenya found that 33% were engaged in urban agriculture. 13 Urban agriculture also makes a significant contribution to food security in many parts of Asia. Approximately a third of the sewage produced by the citizens of Kolkata, India, seeps into the East Kolkata Marshes and provides nutrition for both fish and vegetables. 14 Every year, 10,000 tons of fish are harvested in the marshland ponds and the vegetables grown on organic waste supply 40-50% of the city's needs. That is why Kolkata has the cheapest food in the country. Backyard poultry keeping is another significant urban farming activity, benefiting an estimated 30 million farmers in India alone. 15 Backyard poultry keepers currently provide 30-35% of India's national egg supply. In China, too, urban food production is of paramount importance. In some cities 85% of the vegetables consumed are grown within municipal boundaries and up to a million migrants from rural areas are involved in food production in the area immediately surrounding Beijing.Urban agriculture in developing countries poses some significant challenges for policy makers. Controlling livestock keepers is difficult for a number of reasons: the inaccessibility of informal settlements, lack of trust in government authorities and the belief among livestock keepers that they are treated as outlaws. Backyard slaughtering and the sale of dead or sick animals on the black market poses a significant health risk to consumers and proximity to urban livestock may increase the risk of urban dwellers catching zoonotic diseases.A recent review of urban agriculture in the Global North identified five main types: allotments; extensive periurban farms; urban community gardens; rooftop farms where crops are grown in greenhouses; and vertical farms. While local governments and communities focus on encouraging, or producing, food from green spaces, financial institutions are pouring money into new technologies associated with controlled environment agriculture (CEA). 16 According to a recent study based on a nationwide analysis of 26 cities and towns in the UK, there is a massive untapped potential to increase the production of fruit and vegetables on urban green spaces. 17 The fact that UK food self-sufficiency is steadily declining makes this all the more important. Between 1996 and 2015, the UK's fruit and vegetable imports doubled and the country is now just 75% self-sufficient in foods that can be grown in a temperate climate. The study calculated that if developed to the upper limit, urban green spaces have the capacity to grow a quantity of fruit and vegetables equivalent to 38% of current domestic production and imports combined. Of course, this assumes that homeowners will be happy to replace roses with rhubarb and peonies with parsnips. But leaving private gardens aside, there is a considerable area of urban green space that could be developed for food production. This is already happening in many towns and cities, encouraged by a range of programmes. Networks like C40 Good Food Cities are committed to developing sustainable, equitable and low-emission food systems. They explicitly recognise the social and health benefits, as well as the environmental and economic advantages, of local communities growing their own food.There are many old, infant and new technologiesmost notably those around CEA -which have the potential to increase food production in urban areas. One of the leading proponents of vertical farming, Dickson Despommier, argued that by growing food in city skyscrapers, using drip irrigation, hydroponics and aeroponics, we could dramatically increase global food supplies. His futuristic vision no longer seems as far-fetched as it did when he wrote The Vertical Farm in 2009. 18 Over the last 10 years there has been a rapid increase in food production systems using hydroponics and other cutting-edge technologies in greenhouses, old shipping containers, underground bunkers, abandoned industrial sites and purpose-built vertical farms.According to a 2017 survey by the AgTech company Agrilyst, 49% of indoor farms in North America were using hydroponics, 24% were soil-based, 15% were producing fish and vegetables using aquaponics, and 6% were using aeroponics. 19 By far the most economically important growing system was hydroponics, yielding revenues of US$848 million in 2017. The lion's share was generated by a small number of companies -two major players in the south-west were responsible for over 50% -operating large-scale greenhouses. Nevertheless, hydroponics is also important for many indoor farming ventures in urban areas.Hydroponics involves growing plants without soil in water enriched with nutrients. The plant roots may be entirely exposed to the liquid solution or they can be physically supported by an inert medium such as perlite or coir. Aeroponics requires no substrate and involves saturating the air around the crop roots with a mist of nutrient solution. Many of the enterprises which practice hydroponics in urban areas use artificial light provided by light-emitting diodes (LEDs). Yields for hydroponic lettuces grown in greenhouses were about 12.6 times greater than those of conventionally grown lettuces, according to the Agrilyst survey of 2017. Yields per unit area can be even greater in vertical farming systems although the productivity figures provided by companies -some are quite staggering -have frequently not been corroborated by independent sources. Aquaculture and aquaponics are both well suited to small spaces in urban areas. The former is solely concerned with fish production; the latter combines fish with vegetable production. Recirculating aquaculture systems are said to use 90% less water than conventional aquaculture techniques such as flow-through raceways and ponds. 20 Aquaponics involves using the water which has been fertilised by waste products from the fish as a nutrient solution which is delivered hydroponically to vegetables. Tilapia, catfish, trout and bass are particularly well suited to these systems, and the vegetables grown are much the same as those which are popular with indoor vertical such as basil, salads, herbs, lettuce and kale.It says much about the nature of indoor food production that many companies talk about their facilities, rather than their farms. In recent years, the sector has expanded rapidly, and will continue to do so. The 2020 State of Indoor Farming report for North America found that 73% of companies which responded had plans to expand within the next five years. Mid-tech, glass/poly greenhouses were expected to double their acreage compared to high-tech glass greenhouses and indoor vertical farms. But the latter, which are particularly well suited to small spaces in urban areas, are also on a rapid upward trajectory.One of the largest enterprises practising vertical farming in the US is Aerofarms. Its vertical 70,000 square-foot facility in New Jersey was supplying over 200 grocery stores with 2 million lbs of food per month -bok choy, spinach, micro broccoli, micro kale -by 2021. Crops are grown aeroponically -nutrients for the crops are supplied in the mist -and Aerofarms uses no artificial fertilisers or pesticides. It claims that it has cut water use by 95% compared to conventional growing methods and that its yields, per unit area, are over 300 times greater than those of conventional farms. It is in the process of establishing a new facility at Danville, Virginia, which will provide 100 jobs in an economically depressed area. It has recently launched a new company to develop the world's largest indoor vertical facility in Abu Dhabi, UAE, and has plans to establish 16 more vertical facilities in the US.Two other leading names in US vertical agriculture are Plenty, whose flagship farm is in California, and Bowery, whose first vertical farming enterprise was established in industrial warehouses in Kearney, New Jersey. The fact that Walmart has bought a significant stake in Plenty suggests that its impressive production claims are credible. According to the company, it uses 5% of the water and a tiny fraction of the land required to produce the same amount of crops by conventional methods. Decades of research and development led to a sudden surge in yields, which increased by a factor of seven in just two years in its leafy green growing rooms. Plants are grown on tall towers with a modular setup, providing a yield 150-350 times greater than conventional farms. Robots are used to plant, feed and harvest crops. \"Plenty,\" claims the company, \"is rewriting the rules of agriculture.\" Bowery is not averse to marketing hype either with its talk about growing \"post-organic\" produce. Like most vertical farms it doesn't use any agrochemicals. It claims to have yields 100 times greater than those of conventional farms and to use 95% less water. By 2021, the company's produce was available in 850 stores. In the same year, it raised US$300 million of finance -bringing the total raised to US$472 million -and announced that it was establishing two more large indoor facilities, one in Georgia and the other in Texas. The company has attracted investment not just from financial institutions, but celebrities like the singer Justin Timberlake and Formula One driver Lewis Hamilton. The two new facilities in the southern states will both employ 100 workers and rely on 100% renewable sources of energy.Japan has taken a keen interest in setting up and supporting vertical farming enterprises. According to an article in the Financial Times, many companies have attempted to set up vertical farms using empty or abandoned factory space, often without success. 21 Indeed, one estimate suggests that over 60% of the vertical farming operations in Japan are only profitable because of government subsidies. Several enterprises, however, buck this trend, one being the Keihanna Facility near Nara, which produces robotically planted and harvested lettuce. Established in 2007 by the company Spread, the Keihanna facility first began making a profit in 2013, automation being a major factor as it reduced labour costs.A major constraint on indoor vertical farming, apart from the high capital/start-up costs, is the cost of energy, most of which goes on providing artificial light with LEDs. Some companies have opted to make use of sunlight in their vertical farms as an alternative. In England, for example, Shockingly Fresh established its hydroponic vertical farming system in 3 acres of greenhouse in 2021. Unlike facilities using LEDs, production is influenced by the seasons and the availability of natural light. However, yields are still four times greater than those of conventional farms. The company now plans to build 40 more farms, including one which will cover some 30 acres in southern Scotland.Singapore has a population of 5 million people in an area of 710 km², which includes just 250 acres of farmland. As a result, 90% of food is currently imported, making the country vulnerable to vagaries in food supply from other parts of the world. The government's \"30 by 30\" strategy, whose aim is to increase food self-efficiency to 30% by 2030, means more space will be devoted to urban agriculture and increasing productivity through the adoption of vertical farming and other technologies. 22 One company, Sky Greens, has developed a soil-based vertical farming system which takes advantage of sunlight to produce one tonne of leafy greens every two days. Crops are sown in growing troughs stacked vertically on 9 m A-shaped aluminium towers which slowly rotate to give the plants equal access to sunlight. A hydraulic system -just 0.5 L of water will rotate a 1.7 t structure -also provides irrigation for the plants. The facility is not only highly productive, but very efficient in terms of its low use of energy.It is estimated that half of all the lettuces consumed in the US will be grown in greenhouses by 2030. While some greenhouses will be close to major urban centres, many will be situated far from consumers, in the countryside or near small towns. This means their produce will often carry a heavy burden of food miles and carbon emissions. One way of establishing greenhouses which produce food for local consumption is by making use of rooftops. In places like Singapore, where land is at a premium, rooftop greenhouse farms have a promising future. Abyfarm's 3,200 square-foot rooftop greenhouse on a city car park is using all the latest technology, including solar-powered sensors which track temperature, rainfall, humidity and sunlight, to produce leafy greens.One of the best-known rooftop greenhouse companies in the US is Gotham Greens, which was established in 2009 with the mission of producing food and revitalising urban areas. Its first commercial rooftop greenhouse covered 15,000 ft² in Brooklyn, New York City. Since then it has established greenhouses -all based on the hydroponic system -in Brooklyn, Chicago, Maryland, Rhode Island and Colorado. It claims that its greenhouses are 30 times more productive than conventional farming systems.LUFA Farms was established in the Canadian city of Montréal in 2009 with the aim of growing food sustainably close to where people live. Three rooftop greenhouses covering 138,000 ft² provide local consumers with 20,000 baskets of vegetables per week. In 2020, the company built the world's largest rooftop greenhouse -164,000 ft² -where it grows tomatoes and eggplants hydroponically in a coconut fibre substrate. It uses biological systems of pest control rather than pesticides. Eventually, its greenhouses should be capable of feeding 10,000 families year round.Rooftops can be used to produce fish as well as leafy greens and vegetables. Brussels Aquaponic Farm was established in 2018 above a food hall in the city centre. The nutrient-rich water from the fish farm, which is situated in a greenhouse, is recycled in a hydroponic system to grow herbs, vegetables and tomatoes in 2000 m² of greenhouse and a similar area of outdoor gardens. Supplementary LED is used in the greenhouse.Equally impressive in terms of productivity is Growing Underground's farm in London. This occupies a World War II air raid shelter 100 feet below Clapham High Street. The company specialises in micro-greens which take just two weeks to grow, including pea shoots, basil, coriander, parsley and rocket. These, they claim, contain 90% more nutrients than their fully grown counterparts. The company's partnership with scientists at Cambridge University has helped it to significantly improve its crop yields. The underground farm produces 12 times more per unit area than traditional greenhouses, although it consumes four times more energy. An estimated 95% of the electricity used in the underground farm goes on powering extraction fans and LEDs.The success of this and other similar ventures encouraged the president of the World Society of Sustainable Energy Technology, Prof Saffa Riffat, to suggest that abandoned coal mine shafts and tunnels could be the perfect environment in which to grow vegetables and herbs, and a cheap alternative to vertical farming in greenhouses. He estimates that one 7 m² reconditioned mine shaft could produce 80 tonnes of food per year.Although vertical farming operations are rapidly increasing in number, particularly in the Global North -one estimate suggests they will generate US$3 billion of revenue by 2024 -their environmental impact is a curate's egg: good in parts, not so good elsewhere. A life cycle analysis conducted by the Markets Institute of WWF and published in 2021 compared lettuce grown conventionally in fields in California and shipped to St Louis with lettuce grown in a range of CEA facilities in St Louis. As far as climate change was concerned, the Californian lettuce had a much lower impact than the St Louis lettuce, despite making a journey of almost 2000 miles. 23 The study modelled lettuce from five systemsconventional, greenhouse hydroponic, greenhouse aquaculture, vertical hydroponic and vertical aquaculture -evaluating their impact on human health, ecosystems, resources, energy demand, climate change and water use. In terms of impact, conventional lettuce scored best, followed by greenhouse hydroponic lettuce. The vertical systems fared worse, especially in terms of their energy demand and impact on climate change.The authors of the report suggested that three things were needed to improve the environmental impact of vertical facilities. Ideally, they should make use of renewable energy sources such as solar if they are not using natural sunlight. If renewable energy sources are not available, vertical facilities should consider co-locating next to enterprises which can provide a free or cheap source of waste heat and power. Finally, improvements in the efficiency of LEDs would make a big difference to the calculation. Over the last five years their efficiency has improved by 40%. If that continues it could significantly reduce vertical facilities' carbon footprint.The relative costs of production of different farming systems is just as important as their yields. At present, crops in vertical farms are far more expensive to produce than crops in open field systems. By analysing the figures provided by various enterprises in North America, agricultural consultant Peter Tasgal was able to calculate the cost to grow and deliver greens in different systems. On conventional outdoor farms the cost was around $0.65/lb, compared to $2.33/lb in a hydroponic greenhouse, $3.07/lb in a vertical farm and $7.14/lb in a container farm. 24 In other words, it is 3 to 5 times more expensive to produce crops in greenhouses and vertical farms then on conventional outdoor farms. However, Tasgal is optimistic about the future of greenhouse and vertical farming, asserting that with today's technology it is possible to deliver locally grown greens to the mass market at a price that is competitive with other similar offerings throughout the year. Furthermore, advances in technology should bring costs down in future.A somewhat gloomier analysis was provided by scientists at Cornell University. They looked at the environmental and social impact of 10 urban farms in New York City, six on roofs which use sunlight and supplementary light and four in buildings or shipping containers. In total, the facilities covered just over 3 acres. 25,26 They found that farms using sunlight -one example was Gotham Greens -performed well from an environmental point of view, but those reliant on LEDs had a negative climate change impact. The authors also criticised the fact that most of the food produced was of low nutritional value and was sold at a premium to relatively wealthy members of the public, rather than at an affordable price to the poor.While conceding that CEA farms use less water, pesticides and fertiliser than conventional farms, they \"The environmental impact of vertical farming is a curate's egg: good in parts, not so good elsewhere.\"were of the opinion that there was \"little evidence that citing CEA farms in New York City is necessary, especially as rural and peri-urban ones can accomplish the same more efficiently.\" The authors concluded that CEA makes most sense in regions with favourable climates where less supplementary heat and light is needed. They also suggested that it would be better if they grew more nutritious crops like spinach and kale that the poor could afford. In the end, they suggested CEA is most beneficial when carried out by institutions and community farms that have demonstrated efficacy with soil-based production and focus on nutrient-rich produce.Urban agriculture encompasses a vast range of activities, from keeping a few chickens in the backyard to intensive pig and poultry units and high-tech vertical farms. This means that there can be no one-size-fits-all policies for urban agriculture. At present, few countries -one exception is Singapore -have developed comprehensive policies for urban agriculture. Some cities in the Global North are beginning to do so. As far as the Global South is concerned, urban agriculture seldom features in policymaking.There is enough evidence to suggest that urban agriculture could make a significant contribution to improving food security and nutrition. However, there is a serious lack of data about urban agriculture. How significant is it in terms of food production? Who are the people who are practising urban agriculture? Can it improve food security and reduce our carbon footprint? Where tradition survey methods are impractical or too expensive, national and local authorities should make use of big data -derived from satellite surveys and the like -to gain a better picture about the prevalence and importance of urban agriculture.It has sometimes been claimed that urban agriculture could dramatically increase food production -particularly through controlled environment agriculture (CEA) such as vertical farming -and as a result reduce pressures which are leading to deforestation and the conversion of peatlands, especially in the tropics. This seems a dubious proposition, not least because forests are generally cleared to make way for livestock and cash crops such as soya and cocoa, not the sort of crops which are grown in high-tech greenhouses and vertical farms. However, urban agriculture could be one of a suite of activities which help to increase food production and take pressure off natural habitats. Other activities which could play an important role in the future include cellular agriculture, still in its early stages but providing promising evidence that meat grown from cells in vitro, or from vegetable matter, will soon provide a significant alternative to livestock raised on grasslands.It is currently estimated that subsidies amounting to some US$750 billion a year will be needed to reduce deforestation and the conversion of peatlands. This sounds like an astronomical figure, but it should be seen in the context of the amount currently allocated to environmentally destructive subsidies. The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) calculates that subsidies to the fossil fuel industry amount to around US$345 billion a year. 27 If externalities that are not included in the price of fuel are factored in, such as pollution and environmental destruction, the cost comes to over US$5 trillion. Reorienting perverse subsidies to promote activities which have the potential not only to improve food security but mitigate climate change should be a priority. Urban agriculture is a prime candidate for targeted support.At the local level, whether in the North or the South, the authorities could introduce policies which encourage and promote urban agriculture. These could include providing secure tenure, especially in informal settlements, making vacant lots and brownfield sites available for food production, providing grants and low-interest loans to encourage urban farming, and ensuring that organic waste is made into fertiliser rather than sent to landfill sites. National and local authorities could also provide training programmes for people who wish to grow food in the urban environment.\"Urban agriculture could be one of a suite of activities which help to increase food production and take pressure off natural habitats.\"","tokenCount":"4491"} \ No newline at end of file diff --git a/data/part_3/3073857006.json b/data/part_3/3073857006.json new file mode 100644 index 0000000000000000000000000000000000000000..1fd98bd21b564b04a1c4fef80e26d236ff9d4ae4 --- /dev/null +++ b/data/part_3/3073857006.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"ad68d345af30b29c51df8770a6bef3a4","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/ab962784-e732-48a1-a457-4b7fc1a24347/retrieve","id":"1527832084"},"keywords":[],"sieverID":"1e279a0b-189b-4fba-b1ac-ee390128d9d2","pagecount":"41","content":"La Plataforma de Bancos de Germoplasma del CGIAR respalda las principales actividades de los bancos de germoplasma del CGIAR, a saber, conservar y asegurar la disponibilidad de la diversidad de cultivos y árboles. Garantiza asimismo que los bancos de germoplasma cumplen las normas internacionales, mejoran su eficiencia y logran hacer un uso más eficaz de los recursos en un entorno normativo propicio. https://www.genebanks.org/ Nota: este documento se ha concebido como un \"documento en evolución\" que se actualizará ocasionalmente. La versión actual se centra en los recursos fitogenéticos. En el futuro se revisará con el fin de incluir también recursos genéticos animales y microbianos. Está disponible en: https://www.cgiar.org/how-we-work/accountability/legal-documents/.Los científicos del CGIAR pueden dirigir sus preguntas o comentarios referentes a estas Directrices a: GRPolicy-¿Cómo pueden los Centros del CGIAR averiguar los procedimientos que habrán de seguirse para obtener acceso a los recursos genéticos de conformidad con el CDB y el Protocolo de Nagoya? ¿Qué se requiere en virtud del Protocolo de Nagoya para obtener acceso a los recursos genéticos? ¿Qué es un certificado de cumplimiento reconocido internacionalmente? ¿Qué debe hacer un Centro del CGIAR si el país proveedor no tiene la intención de solicitar el consentimiento fundamentado previo ni de establecer condiciones mutuamente acordadas? ¿Qué debe hacer un Centro del CGIAR si un país en el que desea adquirir recursos genéticos ha ratificado el CDB o el Protocolo de Nagoya, pero no dispone de mecanismos para regular el acceso a los recursos genéticos? ¿Qué pueden hacer los Centros del CGIAR si adquieren recursos genéticos después de la entrada en vigor del CDB sin la flexibilidad necesaria para 1) transferirlos utilizando el ANTM o 2) utilizarlos en los programas de mejoramiento de los Centros del CGIAR? ¿En qué circunstancias sería aplicable el Protocolo de Nagoya a la transferencia de RFAA por los Centros del CGIAR? ¿En qué circunstancias podría afectar el Protocolo de Nagoya a la capacidad de los Centros del CGIAR para transferir recursos genéticos para fines distintos de los enumerados en el Tratado Internacional (por ejemplo, fines no relacionados con la alimentación humana y animal, o para su cultivo por los agricultores)? ¿Ante quién deben presentar los Centros del CGIAR informe sobre sus transferencias de RFAA? Transferencia de RFAA desde los bancos de germoplasma y los programas de fitomejoramiento del CGIAR 3.Directrices para los Centros de Investigación del CGIAR para operar en conformidad con el Protocolo de Nagoya Interacción con los puntos nacionales de verificación: información requerida de los Centros del CGIAR y los receptores de materiales de los Centros del CGIAR Directrices para los Centros de Investigación del CGIAR para operar en conformidad con el Protocolo de NagoyaAnexo 1: Diagrama para la toma de decisiones por los Centros del CGIAR que adquieren RFAA Anexo 2: Diagrama para la toma de decisiones por los Centros del CGIAR que transfieren RFAA¿Cuáles son las obligaciones generales de los Centros del CGIAR en el marco del CDB y, más recientemente, el Protocolo de Nagoya cuando solicitan el acceso a conocimientos tradicionales asociados con los recursos genéticos y cuando utilizan dicho conocimiento? ¿Cómo pueden los Centros del CGIAR cerciorarse de sus obligaciones concretas con respecto a los conocimientos tradicionales y el Protocolo de Nagoya en un determinado país? ¿Qué ocurre si no existe una ley nacional para aplicar el Protocolo de Nagoya o si existe pero no establece normas en cuanto al acceso a los conocimientos tradicionales?¿Qué medidas prácticas pueden adoptar los Centros del CGIAR? ¿Se aplican en el Protocolo de Nagoya las mismas medidas de control para la utilización de los recursos genéticos y los conocimientos tradicionales relacionados con los recursos genéticos?¿Cuáles son las obligaciones de los Centros del CGIAR al transferir conocimientos tradicionales asociados con los recursos genéticos?Información requerida por los receptores de materiales de los Centros del CGIAR en relación con los puntos nacionales de El Protocolo de Nagoya sobre Acceso a los Recursos Genéticos y Participación Justa y Equitativa en los Beneficios que se Deriven de su Utilización al Convenio sobre la Diversidad Biológica (en adelante, el Protocolo de Nagoya) entró en vigor en octubre de 2014 1 . En enero de 2018, el Protocolo de Nagoya tenía 104 Partes Contratantes, incluida la Unión Europea (UE). El Protocolo de Nagoya profundiza y amplía los compromisos de los Estados Miembros en el Convenio sobre la Diversidad Biológica (CDB) con objeto de establecer sistemas adecuados para regular el acceso a los recursos genéticos y los conocimientos tradicionales asociados y para supervisar y garantizar el cumplimiento por parte de los usuarios de la legislación en materia de acceso y distribución de beneficios de los países proveedores. También establece una infraestructura internacional -el Centro de Intercambio de Información sobre Acceso y Participación en los Beneficios-que constituye un elemento clave para la supervisión y aplicación del Protocolo.A modo de introducción, es importante subrayar que la mayor parte de las actividades de los Centros de Investigación del CGIAR relacionadas con la conservación, la investigación, el mejoramiento y la transferencia de recursos fitogenéticos se rigen por el Tratado Internacional sobre los Recursos Fitogenéticos para la Alimentación y la Agricultura (en lo sucesivo, el Tratado Internacional o TI/RFAA) 2 y no por el Protocolo de Nagoya. Sin embargo, en determinadas situaciones, los Centros del CGIAR habrán de respetar los mecanismos regionales, nacionales y subnacionales establecidos para aplicar el Protocolo de Nagoya, por ejemplo, al acceder recursos fitogenéticos no disponibles a través del sistema multilateral del Tratado Internacional de acceso y distribución de beneficios (en adelante, el sistema multilateral). En enero de 2018, pocos países habían establecido sistemas para aplicar plenamente el Protocolo de Nagoya. Sin embargo, muchos países y regiones de todo el mundo están en el proceso de establecer tales sistemas. A medida que más países ratifiquen y apliquen el Protocolo de Nagoya, una proporción creciente de recursos genéticos que los Centros del CGIAR desean adquirir y utilizar podría verse afectada por leyes de acceso y distribución de beneficios elaboradas en virtud del Protocolo. También es importante destacar que muchos países ya habían adoptado leyes de acceso y distribución beneficios antes de ratificar el Protocolo de Nagoya; leyes que los Centros del CGIAR deberán observar al recolectar recursos genéticos. Con el tiempo, a medida que ratifiquen el Protocolo de Nagoya, los países revisarán o sustituirán la legislación vigente en materia de acceso y distribución de beneficios para reflejar los compromisos contraídos en virtud de dicho Protocolo.La finalidad de las presentes Directrices es ayudar a los Centros del CGIAR a comprender qué aspectos de sus actividades relacionadas con los recursos fitogenéticos podrían verse afectadas por el Protocolo de Nagoya y cuáles son sus opciones en cuanto al cumplimiento de sus obligaciones jurídicas. Las Directrices abordan situaciones en que los países disponen de leyes nacionales en vigor para aplicar el Protocolo de Nagoya, así como situaciones en que los Directrices para los Centros de Investigación del CGIAR para operar en conformidad con el Protocolo de Nagoya países han ratificado el Protocolo de Nagoya o se han adherido al mismo, pero todavía no disponen de las leyes ni los sistemas nacionales necesarios para aplicarlo.En el pasado, los Centros del CGIAR elaboraron Directrices 3 , listas de preguntas habituales 4 y materiales de capacitación para guiar sus actividades dentro del marco del Tratado Internacional 5 . A medida que los Centros del CGIAR adquieren experiencia, estas Directrices se revisan y actualizan. Esta primera edición de las Directrices relativas a las actividades de los Centros en cumplimiento del Protocolo de Nagoya aborda cuestiones que se han puesto de relieve en consultas con los Centros del CGIAR, principalmente con los encargados de los bancos de germoplasma y los coordinadores en materia de propiedad intelectual. Las presentes Directrices también tendrán que actualizarse periódicamente a medida que el Protocolo de Nagoya se aplique de forma más generalizada y los Centros del CGIAR adquieran más experiencia al operar de conformidad con el mismo 6 . Estas Directrices ofrecen una introducción y orientación de carácter general; se entiende que los Centros tienen sus propios expertos legales así como acceso a asesoramiento jurídico independiente que pueda prestarles asistencia a la hora de abordar los casos particulares que surjan en su labor cotidiana.Estas Directrices se centran principalmente en el acceso de los Centros del CGIAR a los recursos fitogenéticos para la alimentación y la agricultura (RFAA) y los conocimientos tradicionales asociados, así como la transferencia de los mismos. Las versiones futuras incluirán secciones sobre cómo afecta el Protocolo de Nagoya al uso por parte de los Centros del CGIAR de recursos zoogenéticos, microbianos y de insectos y los conocimientos tradicionales asociados. Un nuevo tema que considerará la Conferencia de las Partes (COP) en el Protocolo de Nagoya es la distribución de beneficios en relación con el uso de información digital sobre secuencias genéticas. Estas Directrices se actualizarán en el futuro para reflejar el resultado de esas deliberaciones.Después de esta introducción, estas Directrices se dividen en cinco secciones. La primera Sección ofrece una visión general de la relación entre el Protocolo de Nagoya y el Tratado Internacional, los acuerdos entre los Centros del CGIAR y el Órgano Rector del Tratado Internacional concertados en virtud del artículo 15 del ITPGRFA y el acuerdo adoptado en 1994 bajo los auspicios de la Organización de las Naciones Unidas para la Alimentación y la 7 Convenio concertado con la FAO para depositar las colecciones de recursos fitogenéticos de los Centros del CGIAR bajo los auspicios de la FAO, adoptado en mayo de 1994, http://hdl.handle.net/10947/149 (consultado el 18 de diciembre de 2017).8 En el Reglamento 511/2014 de la UE relativo a las medidas de cumplimiento de los usuarios del Protocolo de Nagoya sobre acceso a los recursos genéticos y participación justa y equitativa en los beneficios que se deriven de su utilización en la Unión (2014), Diario Oficial de la Unión Europea L150, se establecen las normas que regulan el cumplimiento de acceso a los recursos genéticos y los conocimientos tradicionales asociados con los mismos y la participación en los beneficios que se deriven de su utilización, de conformidad con las disposiciones del Protocolo de Nagoya. En 2016, la Comisión de la UE aprobó un documento de orientación centrado en el ámbito de aplicación y las obligaciones fundamentales del Reglamento 511/2014. En 2017, la Comisión encargó la elaboración de una serie de documentos de orientación para ayudar a los diferentes tipos de usuarios de recursos genéticos (que incluyen titulares de colecciones de recursos genéticos, investigadores y obtentores) a determinar si las actividades que llevan a cabo recaen dentro del ámbito de aplicación del Reglamento 511/2014. Estos documentos de orientación específicos de cada sector también tienen por objetivo ayudar a los usuarios de recursos genéticos a determinar sus obligaciones de la debida diligencia y el modo en que deberían cumplirse.Directrices para los Centros de Investigación del CGIAR para operar en conformidad con el Protocolo de Nagoya Agricultura (FAO) relativo a las colecciones de germoplasma mantenidas en fideicomiso por los centros internacionales 7 . Este panorama general proporcionará el contexto necesario para analizar, en las secciones siguientes, cómo podría afectar el Protocolo de Nagoya a los Centros del CGIAR y cuáles son sus obligaciones en esos casos. La segunda Sección considera cuándo podría aplicarse el Protocolo de Nagoya a los bancos de germoplasma del CGIAR y a los fito-mejoradores que tienen acceso a nuevos materiales. La tercera Sección analiza cómo la transferencia de RFAA de los Centros del CGIAR podría verse afectada por el Protocolo de Nagoya. La cuarta Sección se centra en cuestiones que los Centros del CGIAR han de tener en cuenta acerca del funcionamiento de los \"puntos de verificación\" establecidos en los países como parte de los mecanismos de supervisión y aplicación generales creados por el Protocolo de Nagoya. Esta Sección se divide en dos subsecciones. La primera subsección se centra en el escenario más común en que los receptores y usuarios de los materiales recibidos de los Centros del CGIAR tendrán que interactuar con los puntos de verificación. En la segunda subsección, se consideran situaciones comparativamente menos comunes en las cuales los propios Centros del CGIAR podrían tener que enviar información a los puntos nacionales de verificación cuando. Estas dos subsecciones se centran, entre otras cosas, en cómo podrían influir los requisitos establecidos por el Reglamento 511/2014 de la UE de aplicación del Protocolo de Nagoya, a los bancos de germoplasma y a los fito-mejoradores del CGIAR como proveedores de materiales 8 . Por último, la quinta Sección considera cómo y cuándo podría aplicarse el Protocolo de Nagoya a los Centros del CGIAR al acceder, utilizar y transferir los conocimientos tradicionales asociados a recursos fitogenéticos.1. El Protocolo de Nagoya, el Tratado Internacional, los acuerdos concertados en virtud del artículo 15 del Tratado y los convenios adoptados en 1994 para depositar las colecciones internacionales de germoplasma bajo los auspicios de la FAO Los objetivos del CDB y el Tratado Internacional son básicamente idénticos, a saber, la conservación y la utilización sostenible de los recursos genéticos, el acceso a los recursos genéticos y la distribución equitativa de los beneficios que se deriven de su utilización. Sin embargo, los sistemas de acceso y distribución de beneficios que han de poner en práctica sus Estados Miembros son muy diferentes. El Tratado Internacional establece un sistema multilateral en virtud del cual los países adoptan un enfoque común para gestionar y compartir los recursos genéticos de las 64 especies de cultivos y forrajes enumeradas en el Anexo I del Tratado para fines relacionados con la agricultura y la alimentación. El ámbito de aplicación del CDB es mucho más amplio que el del Tratado Internacional, al abarcar todos los recursos genéticos y cualquier uso potencial de los mismos, excepto los recursos genéticos humanos y los recursos genéticos que se encuentren más allá de las jurisdicciones nacionales -por ejemplo, en las profundidades marinas o en la Antártida-. El CDB prevé que haya una negociación bilateral de los acuerdos de acceso y distribución de beneficios entre los solicitantes de acceso por un lado y los Estados proveedores y las partes interesadas dentro del país por otro. El resultado de dicha negociación queda sujeta a la obtención de un consentimiento fundamentado previo y las condiciones mutuamente acordadas por las partes. Los Estados proveedores podrán facilitar el acceso a los recursos genéticos respecto a los cuales son países de origen o a los recursos adquiridos de conformidad con el CDB. Como se ha señalado anteriormente, el objetivo final del Protocolo de Nagoya es promover la distribución justa y equitativa de los beneficios que se deriven de la utilización de los recursos genéticos en aras de la conservación y la utilización sostenible de la biodiversidad. También es posible que los usos para los que se solicitan los recursos genéticos no estén regulados en ninguno de estos dos acuerdos. La finalidad de esta Sección es ayudar a los Centros del CGIAR a determinar las normas aplicables caso por caso, y el modo de cumplirlas. El diagrama de toma de decisiones que figura en el Anexo 1 complementa esta Sección.Los Centros del CGIAR adquieren recursos genéticos de especies de cultivos, forrajeras, de árboles y de parientes silvestres de los cultivos para incluirlos en sus bancos de germoplasma y colecciones de campo y para utilizaros en sus programas de fito-mejoramiento. Tienen acceso a estos materiales a través de fuentes diferentes y en contextos diversos. Por ejemplo, trabajando en estrecha colaboración con los programas nacionales de investigación agrícola, pueden organizar o apoyar misiones de colecta para obtener ejemplares de plantas que se encuentran en condiciones in situ en fincas de los agricultores o en áreas silvestres. En el marco de programas conjuntos de investigación y fito-mejoramiento, pueden recibir recursos genéticos de institutos nacionales de investigación agrícola, universidades, empresas privadas, organizaciones no gubernamentales (ONG), agricultores y otros particulares. Pueden recibir materiales de programas nacionales de investigación en el desempeño de su función como coordinadores de redes internacionales de evaluación de cultivos (por ejemplo, la Red internacional para la evaluación genética del arroz) o de consorcios de investigación genómica (por ejemplo, el Consorcio sobre Genómica de Musa). En los distintos casos, los Centros del CGIAR han de tener conocimiento de la legislación nacional aplicable a la adquisición de recursos fitogenéticos por parte de los Centros y de los términos y condiciones bajo las cuales se adquiere el material.Entre las primeras medidas que podrían adoptar los Centros del CGIAR para asegurarse de que sus adquisiciones de RFAA están en consonancia con las leyes vigentes en materia de acceso y distribución de beneficios cabe citar las siguientes: 1) averiguar si el país en cuestión es Parte en el Tratado, el CDB y el Protocolo de Nagoya; en caso afirmativo, 2) ponerse en contacto con los coordinadores nacionales de estos acuerdos internacionales; y 3) obtener información acerca de las medidas de acceso y distribución de beneficios. Para averiguar si el país en cuestión ha ratificado estos tres acuerdos (y, por tanto, si es Parte Contratante en los mismos), se puede consultar la lista de Partes Contratantes mantenida por las secretarías correspondientes de estos acuerdos. Todos los países salvo los Estados Unidos de América y la Santa Sede son Partes en el CDB. La lista de Partes Contratantes en el Protocolo de Nagoya está disponible en: https://www.cbd.int/abs/nagoya-protocol/signatories/; la lista de Partes Contratantes en el Tratado Internacional está disponible en: http://www.planttreaty.org/content/contracting-parties-treaty. Las Partes Contratantes asumen la responsabilidad de aplicar los acuerdos que han ratificado.Para averiguar la situación real de la aplicación de estos acuerdos en un determinado país, lo más sencillo (al menos en teoría) es ponerse en contacto con las autoridades nacionales responsables de la aplicación y administración del convenio en cuestión y de las disposiciones Directrices para los Centros de Investigación del CGIAR para operar en conformidad con el Protocolo de Nagoya Directrices para los Centros de Investigación del CGIAR para operar en conformidad con el Protocolo de Nagoya relacionadas con el acceso y la distribución de beneficios en el marco del CDB y el Protocolo de Nagoya. La lista de coordinadores nacionales del Protocolo de Nagoya está disponible en: https://absch.cbd.int/es/search?documentSchema=NFP; la lista de coordinadores nacionales del Tratado Internacional está disponible en: http://www.fao.org/plant-treaty/es/. Además, las leyes nacionales de aplicación del sistema multilateral pueden estar disponibles en la base de datos FAOLEX, disponible en: http://www.fao.org/faolex/es/.¿Cómo pueden saber los Centros del CGIAR si han de solicitar el acceso a determinados RFAA en virtud del Tratado Internacional, el CDB o el Protocolo de Nagoya?Cuando los países que son Partes en el Tratado Internacional han notificado a la Secretaría del Tratado las colecciones incluidas en el sistema multilateral, los Centros del CGIAR pueden dar por seguro que el acceso a tales colecciones estará sujeto al ANTM con fines de \"utilización y conservación para la investigación, el mejoramiento y la capacitación para la alimentación y la agricultura\" (artículo 12.3 a) del TI/RFAA). Sin embargo, respecto a los demás recursos genéticos, los Centros del CGIAR no pueden saber con certeza el régimen aplicable. Pueden realizar conjeturas basándose en las normas del sistema multilateral (en particular las normas que definen qué recursos fitogenéticos están incluidos en dicho sistema) y en la información que puedan recopilar sobre la situación de la aplicación de los acuerdos internacionales pertinentes en los países en cuestión. Y, lo que es muy importante, pueden comprobarlo con los responsables de las colecciones de germoplasma, las autoridades encargadas de la gestión de las áreas protegidas, los representantes de programas nacionales de fito-mejoramiento y, en última instancia, con las autoridades nacionales encargadas de coordinar la aplicación de dichos acuerdos internacionales.Mucho se ha escrito sobre el ámbito de aplicación del sistema multilateral y los recursos fitogenéticos incluidos automáticamente en este sistema 11 . Por una cuestión de espacio, no podemos repetir aquí todos los detalles. En resumen, todos los RFAA de los 64 cultivos y forrajes enumerados en el Anexo I del Tratado que se encuentran en un Estado que es Parte en el Tratado y que están \"bajo la administración y el control\" de dicha Parte Contratante y en \"el dominio público\" se incluyen automáticamente en el sistema multilateral. El Comité técnico asesor especial sobre el Acuerdo normalizado de transferencia de material y el Sistema Multilateral (el Comité técnico asesor) considera que la expresión \"bajo la administración\" se refiere a la \"capacidad de una Parte Contratante de determinar la forma en la que se manipula el material y no a los derechos jurídicos de disponer de los RFAA\", mientras que el término \"control\" se refiere a \"la capacidad jurídica para disponer del material\". \"Parte Contratante\" se refiere a los gobiernos nacionales y no a los gobiernos provinciales o municipales 12 . El Comité 13 Ibidem. Algunos académicos y organizaciones de la sociedad civil sostienen que esta definición de la expresión \"del dominio público\" se basa en interpretaciones puramente occidentales y no refleja el modo en que los pueblos indígenas administran, comparten y controlan los recursos biológicos. La expresión \"del dominio público\" tiene diferentes significados en función de las distintas jurisdicciones. En el Derecho administrativo y civil de varios países se utiliza para hacer referencia a cosas y bienes que nadie puede apropiarse porque son para uso público, como ríos, lagos y playas o carreteras públicas, y respecto a los que solo el Estado puede conceder el permiso para su uso privado.Directrices para los Centros de Investigación del CGIAR para operar en conformidad con el Protocolo de Nagoya técnico asesor y numerosos analistas afirman que los materiales habrán de considerarse \"del dominio público\" si no están sujetos a derechos de propiedad intelectual 13 Normalmente, se considera que los materiales del Anexo I en los bancos nacionales de germoplasma o conservados por organizaciones nacionales de investigación encajan en esta definición. En la mayor parte de los países, los materiales bajo la administración o el control de agricultores o empresas no estarían incluidos en esta definición. Las personas físicas y jurídicas que conservan RFAA también pueden poner tales recursos a disposición de otros usuarios a través del sistema multilateral. Las personas físicas y jurídicas de otros países que son Partes Contratantes en el Tratado Internacional, los Centros del CGIAR y otras instituciones internacionales que hayan concertado acuerdos en virtud del artículo 15 con el Órgano Rector del Tratado pueden tener acceso a los RFAA del sistema multilateral para fines de investigación, mejoramiento o capacitación para la alimentación y la agricultura. Teniendo en cuenta estos aspectos básicos, los Centros del CGIAR pueden hacerse una idea bastante clara sobre si los materiales que quieren adquirir están o deben estar disponibles en el marco del sistema multilateral. Sin embargo, en última instancia, son las autoridades nacionales competentes las que determinarán esta cuestión: muchos países todavía no han llevado a cabo las medidas necesarias para determinar y confirmar qué materiales están incluidos en el sistema multilateral dentro de sus territorios.Los recursos fitogenéticos que no están disponibles a través del sistema multilateral, o que van a utilizarse con fines no previstos dentro de dicho sistema suelen regirse por las leyes nacionales de aplicación de las disposiciones sobre acceso y distribución de beneficios del CDB y el Protocolo de Nagoya, suponiendo que el país en cuestión haya optado por regular el acceso a los recursos genéticos en el marco del Protocolo y haya tenido tiempo suficiente para adoptar tales medidas. Hay algunos países (por ejemplo varios países europeos) que han decidido ejecutar únicamente medidas para garantizar el cumplimiento de las normas de acceso a recursos genéticos por parte de los usuarios que operan dentro de sus territorios, y no para regular el acceso a los recursos genéticos dentro de sus fronteras. Podría ocurrir asimismo que el uso que se pretender hacer de un material genético no esté regulado ni por las leyes nacionales de aplicación del Tratado Internacional ni por el Protocolo de Nagoya.El ámbito de aplicación del Protocolo de Nagoya incluye la \"utilización\" de todos los recursos genéticos (con exclusión de los recursos genéticos humanos y los que se hallan fuera de la jurisdicción nacional). Por \"utilización de recursos genéticos\" se entiende \"la realización de actividades de investigación y desarrollo sobre la composición genética y/o composición bioquímica de los recursos genéticos, incluyendo mediante la aplicación de biotecnología\" (artículo 2 c) del Protocolo de Nagoya). Esta definición ámbito abarca la mayor parte de los usos que los Centros del CGIAR hacen de los recursos genéticos en sus programas de fito-mejoramiento y en los bancos de germoplasma. Sin embargo, puede haber casos en los que no esté claro si el uso del germoplasma por un Centro del CGIAR constituye \"utilización\" en el sentido del Protocolo de Nagoya. Directrices para los Centros de Investigación del CGIAR para operar en conformidad con el Protocolo de Nagoya Algunas de las actividades que pueden quedar fuera de la definición de \"utilización\" son: estudiar el comportamiento de determinadas variedades con el fin de evaluar la presencia de ciertos características (por ejemplo tolerancia enfermedades, sequía, frío) para, a continuación, decidir si incluirlas o no en un programa de fito-mejoramiento; y la realización de estudios sobre relaciones y diferencias genéticas entre poblaciones geográficamente separadas para comprender la variación genética entre las poblaciones y la presencia o ausencia de ciertas características de interés para los programas de fito-mejoramiento. Es probable que a la hora de regular el acceso a los recursos genéticos y establecer mecanismos de vigilancia en virtud del Protocolo de Nagoya, los países interpreten el término \"utilización\" de diferentes maneras. Algunos países podrían considerar que las actividades que acabamos de presentar constituyen \"utilización\" en el sentido del Protocolo de Nagoya y, por lo tanto, están sujetas a las leyes nacionales en materia de acceso y distribución de beneficios, mientras que otros podrían considerarlas fuera de la definición de \"utilización\". Incluso si hubiera consenso en la COP acerca de que estas actividades no constituyen \"utilización\" en el sentido del Protocolo de Nagoya, los países aún podrían exigir el consentimiento fundamentado previo y condiciones mutuamente acordadas para poder conceder el acceso a los recursos genéticos para tales actividades. Los investigadores del CGIAR deben asegurarse de que cumplen los requisitos de acceso de los países proveedores, incluso cuando no estén seguros de si van a utilizar los recursos genéticos de una forma que pueda o no considerarse \"utilización\" en el sentido del Protocolo de Nagoya. Como se ha subrayado en otra parte de este documento, es esencial que los Centros del CGIAR examinen la ley del país en cuestión para asegurarse de que tienen conocimiento de los recursos genéticos y los usos que están sujetos a regulación.En este contexto, cabe señalar que los documentos de orientación elaborados por la Comisión de la UE para la aplicación del Reglamento 511/2014 de la UE sobre las medidas de cumplimiento en virtud del Protocolo de Nagoya, interpretan el término \"utilización\" de modo que dicho término deja fuera ciertos usos de RFAA, en particular el uso de semillas para la siembra y el cultivo y el uso de material genético con fines de taxonomía y caracterización morfológica 14 . En los documentos de orientación específicos para cada sector que está elaborando la Comisión de la UE para facilitar la aplicación del Reglamento 511/2014 se han identificado diversas \"cuestiones pendientes\" (es decir, situaciones en las que no está claro si el uso de los recursos genéticos puede considerarse \"utilización\" según el Protocolo de Nagoya). Estas cuestiones no resueltas incluyen: las evaluaciones de recursos genéticos a gran escala para seleccionar aquellos que presentan los rasgos deseados, análisis de genética de poblaciones y filogeográficos, y la utilización de variedades comerciales.Directrices para los Centros de Investigación del CGIAR para operar en conformidad con el Protocolo de Nagoya El Reglamento 511/2014 de la UE y los documentos de orientación correspondientes se centran por completo en el establecimiento de medidas para vigilar la \"utilización\" de los recursos genéticos en los países de la UE los cuales proceden de otros países que son Partes en el Protocolo de Nagoya y que han establecido medidas nacionales en materia de acceso y distribución de beneficios; el Derecho comunitario no establece normas para regular el acceso a recursos genéticos en la UE. De nuevo, es importante subrayar que los países proveedores pueden interpretar (y probablemente lo harán) el término \"utilización\" más ampliamente que en la UE, a fin de abarcar una gama más amplia de usos que los incluidos en el Derecho comunitario. Los Centros del CGIAR tienen la obligación de respetar estas interpretaciones del término \"utilización\" al solicitar el acceso a los materiales genéticos en estos países. Sin embargo, cuando el uso de los recursos genéticos no se considere \"utilización\" según la normativa comunitaria, dicho uso no será objeto de vigilancia por parte de los puntos nacionales de verificación establecidos por los países de la UE. En estos casos, por lo tanto, los usuarios no necesitan compilar y presentar pruebas para demostrar a los puntos verificación que han obtenido el acceso a los recursos genéticos de manera legal en el país proveedor. Ello no significa que los Centros puedan hacer caso omiso de los acuerdos que hayan concertado con los proveedores de recursos genéticos. Estos siguen siendo jurídica y moralmente vinculantes para el Centro que los haya concertado. Solo significa que los mecanismos de supervisión y ejecución establecidos en la UE no se aplicarán en estos casos.En los casos en los cuales no quede claro el régimen aplicable a la solicitud de acceso, los Centros del CGIAR pueden consultar directamente con los coordinadores nacionales o buscar el asesoramiento de las organizaciones nacionales con las que normalmente se asocian para realizar trabajos de investigación y desarrollo. Tales organizaciones pueden consultar en su nombre a las autoridades nacionales competentes. Alternativamente, los Centros del CGIAR pueden sencillamente presentar una solicitud de acceso a la organización que mantiene los recursos genéticos de su interés y esperar que esta acción ponga en marcha los procedimientos nacionales necesarios para otorgarles el acceso a dichos recursos.Hay una larga tradición de intercambios informales de recursos fito-genéticos entre los fito-mejoradores. Los acuerdos internacionales adoptados en los últimos decenios -tanto el Tratado Internacional como el Protocolo de Nagoya-exigen cambiar este modus operandi. En la mayor parte de los casos, los recursos genéticos transferidos por las organizaciones nacionales de investigación a los Centros del CGIAR están incluidos en el sistema multilateral. Sin embargo, no siempre es aplicable el Tratado Internacional. Si bien los investigadores y fito-mejoradores de programas nacionales tal vez hayan afirmado en el pasado que podían facilitar recursos genéticos por su propia cuenta, las leyes nacionales de aplicación del Protocolo de Nagoya a menudo exigen a los proveedores que obtengan, además, el consentimiento de las autoridades nacionales competentes.¿Cómo pueden los Centros del CGIAR averiguar los procedimientos que habrán de seguirse para obtener acceso a los recursos genéticos de conformidad con el CDB y el Protocolo de Nagoya?El Protocolo de Nagoya establece que cada parte, en la fecha de entrada en vigor del Protocolo para ese país, deberá designar un coordinador nacional y una autoridad nacional competente y difundir sus nombres e información de contacto a través del Centro de Intercambio de Información sobre Acceso y Participación en los Beneficios mantenido por la Secretaría del CDB (artículo 13.4 del Protocolo de Nagoya). El coordinador nacional deberá proporcionar a los Directrices para los Centros de Investigación del CGIAR para operar en conformidad con el Protocolo de Nagoya solicitantes \"información sobre los procedimientos para obtener el consentimiento fundamentado previo y establecer condiciones mutuamente acordadas, incluida la participación en los beneficios\" (artículo 13.1 del Protocolo de Nagoya). Las autoridades nacionales competentes estarán encargadas de conceder el acceso y de emitir una prueba por escrito de que se ha cumplido con los requisitos de acceso (artículo 13.2 del Protocolo de Nagoya). Además, en el Protocolo de Nagoya se dispone que las partes habrán de publicar a través de dicho Centro de Intercambio de Información las \"medidas legislativas, administrativas y de política sobre acceso y participación en los beneficios\" (artículo 14.2 del Protocolo de Nagoya). Las medidas nacionales para la aplicación del Protocolo de Nagoya están disponibles en: https://absch.cbd.int/es/search?documentSchema=MSR. Actualmente, 50 países han difundido a través del Centro de Intercambio de Información, las medidas políticas, legislativas y administrativas que han adoptado en material de regulación de acceso a sus recursos genéticos y reparto de los beneficios derivados de su utilización. No obstante, puesto que una serie de Partes Contratantes no han publicado todavía la información pertinente, es conveniente ponerse en contacto con el coordinador nacional de acceso y distribución de beneficios además de consultar la información facilitada por el Centro de Intercambio de Información.Además de dirigirse al titular real de los recursos genéticos, los Centros del CGIAR deberán enviar su solicitud a las autoridades nacionales competentes designadas por los países en el Protocolo de Nagoya. Si los nombres y los datos de contacto de las autoridades nacionales competentes no estuvieran disponibles públicamente, los Centros del CGIAR pueden ponerse en contacto con el coordinador nacional de acceso y distribución de beneficios. Algunos países requieren el consentimiento fundamentado previo y/o y la participación de los pueblos indígenas y las comunidades locales para obtener el acceso a los recursos genéticos, de conformidad con el artículo 6.3 f) del Protocolo de Nagoya. En los casos en que los países no hayan establecido normas y procedimientos claros para que los solicitantes obtengan el consentimiento fundamentado previo de las comunidades indígenas y locales, los Centros del CGIAR deben adoptar la buena práctica de facilitar la participación de estas comunidades y obtener su aprobación al recolectar los recursos genéticos que conservan y administran 15 . La Sección 4 brinda orientación sobre cómo involucrar a las comunidades indígenas y locales en ausencia de legislación nacional.15 En el artículo 6.2 del Protocolo de Nagoya se establece que \"conforme a las leyes nacionales, cada Parte adoptará medidas, según proceda, con miras a asegurar que se obtenga el consentimiento fundamentado previo o la aprobación y participación de las comunidades indígenas y locales para el acceso a los recursos genéticos cuando estas tengan el derecho establecido a otorgar acceso a dichos recursos\". Algunos expertos han interpretado que este artículo conlleva la obligación de todas las Partes en el Protocolo de Nagoya de tomar medidas para garantizar la participación de las comunidades indígenas y locales en el proceso de acceso. Teniendo esto en cuenta, si los Centros del CGIAR quieren operar en consonancia con el espíritu del Protocolo, deberían recabar siempre la aprobación de las comunidades indígenas y locales al acceder a los recursos genéticos sobre los que dichas comunidades ostenten derechos, independientemente de que exista o no una ley nacional a este respecto. Este enfoque se refleja en las Directrices de aplicación de los Principios del CGIAR de gestión de activos intelectuales en relación con el artículo 3.2 de dichos Principios, en que se establece que \"el CGIAR pretende ser respetuoso con los esfuerzos nacionales e internacionales destinados a promover y proteger los derechos de los agricultores, según lo previsto por el Tratado y respaldar la elaboración de políticas y procedimientos apropiados para su reconocimiento y promoción\". Directrices de aplicación de los Principios del CGIAR de gestión de activos intelectuales (14 de junio de 2013), https://cgspace.cgiar.org/bitstream/handle/10947/4487/Implementation%20Guidelines%20for%20the%20CGI AR%20IA%20Principles.pdf (consultado el 18 de diciembre de 2017).Una vez que la autoridad nacional competente otorgue el permiso de acceso a recursos genéticos, el país que facilita el acceso tiene la obligación de difundir esta información a través del Centro de Intercambio de Información sobre Acceso y Participación en los Beneficios. La información sobre un permiso determinado publicada en dicho Centro se convierte en un certificado de cumplimiento reconocido internacionalmente, siempre y cuando contenga los siguientes campos de información, de conformidad con el artículo 17.4 del Protocolo de Nagoya:obtengan el consentimiento fundamentado previo de la autoridad nacional competente;manifiesten su conformidad con los términos y condiciones en materia de acceso y distribución de beneficios; demuestren la aprobación de la persona física o jurídica que efectivamente mantiene los recursos genéticos en cuestión;demuestren que las comunidades indígenas y locales aprueban las condiciones acordadas con ellos, en caso de que se trate de recursos genéticos que estas comunidades mantienen y gestionan, o conocimientos tradicionales asociados con dichos recursos, o ambas cosas. En el artículo 6.1 del Protocolo de Nagoya (y en el artículo 15.5 del CDB), se establece que el acceso a los recursos genéticos para su utilización estará sujeto al consentimiento fundamentado previo de la Parte Contratante en cuestión, \"a menos que dicha Parte determine otra cosa\". Algunos países han utilizado esta flexibilidad y han decidido no exigir el consentimiento fundamentado previo para el acceso a sus recursos genéticos, por ejemplo, el Reino Unido y los Países Bajos. En el artículo 6.3 del Protocolo de Nagoya se establece que las Partes Contratantes que exijan el consentimiento fundamentado como condición previa al acceso adoptarán \"las medidas legislativas, administrativas o de política necesarias\" para proporcionar seguridad jurídica en sus normativas nacionales de acceso y participación en los beneficios y determinar claramente las instancias ante las que habrá de presentarse la solicitud de acceso y el modo de hacerlo, entre otras cuestiones. Dicho esto, el Protocolo de Nagoya no incluye ningún procedimiento específico que los países deban adoptar para recibir y examinar las solicitudes de acceso. Las Partes Contratantes tienen una flexibilidad considerable en este sentido. Según varias disposiciones del Protocolo de Nagoya (artículos 6, 13 y 17), cabe esperar que los Centros del CGIAR:El certificado de cumplimiento reconocido internacionalmente sirve de prueba de que se ha tenido acceso a los recursos genéticos que figuran en el mismo de conformidad con el consentimiento fundamentado previo por parte del país proveedor, y de que se han establecido las condiciones mutuamente acordadas con arreglo a la legislación nacional en materia de acceso y distribución de beneficios. Puede facilitarse en los puntos de verificación descritos en el apartado 5 de este artículo como prueba de que los recursos genéticos utilizados se han obtenido de conformidad con los regímenes nacionales de acceso y distribución de beneficios. Es importante subrayar que el país que otorga el acceso es el responsable de difundir la información sobre los permisos de acceso o su equivalente a través del Centro de Intercambio de Información sobre Acceso y Participación en los Beneficios. No existe ningún otro mecanismo por el cual otras entidades (incluidos los Centros del CGIAR) para realizar tales informes.Otro aspecto importante a tener en cuenta es que el certificado de cumplimiento reconocido internacionalmente no es el único documento que los usuarios de recursos genéticos pueden presentar ante los puntos de verificación. Las autoridades nacionales competentes podrían no emitir certificados de cumplimiento reconocidos internacionalmente para cada permiso de acceso y acuerdo de transferencia de material bajo su jurisdicción. En tales casos, los Centros pueden presentar ante los puntos de verificación los acuerdos suscritos por ellos con los países proveedores, incluyendo toda la información no confidencial pertinente como prueba de cumplimiento de la diligencia debida a la hora de obtener el acceso.El artículo 17.4 del Protocolo de Nagoya no prescribe todos los campos de información que se deben incluir en un acuerdo de transferencia de recursos genéticos. Por ejemplo, el Protocolo no indica que el acuerdo de transferencia deba aclarar que la persona que entrega el material tiene efectivamente el derecho de hacerlo. Es aconsejable que los Centros del CGIAR que adquieran materiales genéticos en virtud de acuerdos de transferencia de material (distintos del ANTM del sistema multilateral) exijan la inclusión de esta información en los acuerdos, y a ser posible los detalles acerca de cuándo y cómo el proveedor obtuvo a su vez los recursos genéticos que ahora transfiere a los Centros. Las ediciones futuras de estas Directrices incluirán el texto de cláusulas modelo que los Centros pueden utilizar en sus acuerdos con proveedores.Algunas Partes Contratantes podrían optar por no exigir el consentimiento fundamentado previo ni establecer condiciones mutuamente acordadas como condiciones para conceder el acceso a los recursos genéticos dentro de sus territorios. Los puntos de verificación podrán exigir a los usuarios de los recursos genéticos procedentes de estos países que demuestren que los materiales se han adquirido legalmente. Por esta razón es aconsejable que los Centros del CGIAR obtengan una declaración por escrito de la autoridad nacional competente que aclare que el país proveedor no exige el consentimiento fundamentado previo. Como en muchos casos obtener esta declaración puede resultar difícil, los Centros deben estar preparados para proporcionar a los puntos de verificación información sobre las leyes vigentes en el país en materia de acceso a recursos genéticos en el momento en el que se obtuvo el acceso.Directrices para los Centros de Investigación del CGIAR para operar en conformidad con el Protocolo de Nagoya Los Centros del CGIAR transfieren centenares de miles de muestras cada año de sus bancos de germoplasma y programas de mejoramiento. De conformidad con los acuerdos suscritos en virtud del artículo 15 con el Órgano Rector del Tratado Internacional, los Centros del CGIAR tienen la obligación de facilitar los RFAA del Anexo I del Tratado que se encuentren en sus colecciones mantenidas \"en fideicomiso\" por medio del ANTM. En su segunda reunión, el Órgano Rector decidió que los Centros del CGIAR (y otras organizaciones que hubieran suscrito acuerdos en virtud del artículo 15) también debían utilizar el ANTM para transferir recursos genéticos procedentes de sus colecciones que no estuvieran incluidos en el Anexo I del Tratado internacional, y que hubieran sido adquiridos antes de la entrada en vigor del Tratado. Además, de conformidad con el artículo 6.5 del ANTM, los materiales procedentes de los programas de fito-mejoramiento del CGIAR y que incorporen recursos genéticos del sistema multilateral (denominados \"RFAA en fase de mejoramiento\" en el TI/RFAA) también deben facilitarse por medio del ANTM.Esta situación es relativamente común, habida cuenta del tiempo requerido para adoptar medidas de aplicación en la mayor parte de los países. En países donde no haya medidas de aplicación en vigor, los Centros del CGIAR, así como otros proveedores o usuarios, se enfrentarán a un vacío jurídico en cuanto al Protocolo de Nagoya y el CDB se refiere, al no haberse establecido responsabilidades ni procedimientos al respecto. En tales casos los Centros del CGIAR deben proseguir sus consultas sobre lo que pueden o deben hacer. Los Centros del CGIAR pueden y deben buscar de forma proactiva la manera de cumplir, en la medida de lo posible, el espíritu de estos acuerdos internacionales en colaboración con sus socios en esos países, los coordinadores nacionales de acceso y distribución de beneficios y las autoridades nacionales competentes 16 .En esos casos, los Centros deben volver a solicitar dicha autorización con arreglo a la legislación nacional. Si todavía no hubiera leyes ni procedimientos en vigor, los Centros del CGIAR deberían seguir los pasos descritos en las secciones anteriores.¿En qué circunstancias sería aplicable el Protocolo de Nagoya a la transferencia de RFAA por los Centros del CGIAR?De acuerdo con su mandato, los bancos de germoplasma del CGIAR adquieren nuevos recursos fitogenéticos con el fin de gestionarlos y ponerlos a disposición de los usuarios en los mismos términos y condiciones que los recursos genéticos mantenidos en fideicomiso para toda la comunidad global. Con este fin, deben asegurarse de que han adquirido los nuevos recursos fitogenéticos sujetos a condiciones mutuamente acordadas que les permitan introducir dichos recursos en sus colecciones y transferirlos a cualquier usuario por medio del ANTM. En ausencia de estas condiciones, la gestión y la transferencia de los recursos fitogenéticos en cuestión por parte del banco de germoplasma podrían estar sujetas a cargas administrativas y costos de transacción insostenibles o contrarios al mandato de los bancos.Es posible que los fitomejoradores del CGIAR generen líneas mejoradas derivadas no solamente de recursos fitogenéticos obtenidos a través del sistema multilateral con ANTMs, sino también de recursos fitogenéticos sujetos a condiciones mutuamente acordadas con arreglo al Protocolo de Nagoya. Es importante garantizar que las condiciones mutuamente acordadas permitan al Centro del CGIAR en cuestión transferir las líneas mejoradas por medio del ANTM. Si las condiciones mutuamente acordadas exigen que no se utilice el ANTM para transferir las líneas mejoradas derivadas del material adquirido, los Centros se encontrarán en una situación de conflicto con las disposiciones del Tratado que exigen utilizar el ANTM para esas mismas líneas mejoradas. Como hemos señalado antes, el artículo 6.5 del ANTM exigen que los materiales procedentes de los programas de fito-mejoramiento que incorporen recursos genéticos del sistema multilateral (denominados \"RFAA en fase de mejoramiento\" en el TI/RFAA) deben transferirse por medio del ANTM.Si el Centro del CGIAR en cuestión no pudiera llegar a un acuerdo con los proveedores a esta respecto, el Centro podría optar por no aceptar tales recursos genéticos o no incluirlos en sus programas de fitomejoramiento 17 . En este contexto, es importante señalar que hay una cierta flexibilidad a la hora de trasferir los materiales mejorados de los Centros del CGIAR en comparación con el germoplasma mantenido en fideicomiso en las colecciones internationales. Ello se debe a que al transferir RFAA en fase de mejoramiento, los Centros del CGIAR (o cualquier otro proveedor) pueden agregar términos y condiciones a las cláusulas establecidas en el ANTM. De esta manera, cuando los Centros transfieren RFAA en fase de mejoramiento, pueden incluir, entre otras condiciones, las restricciones impuestas por los proveedores originales sobre el material resultante del uso de sus recursos fitogenéticos. 18 Segunda reunión del Comité asesor técnico especial sobre el Acuerdo normalizado de transferencia de material y el Sistema multilateral (agosto de 2010). Véanse los dictámenes y el asesoramiento del Comité asesor técnico especial sobre el Acuerdo normalizado de transferencia de material y el Sistema multilateral (2015), Dictamen 10, https://www.geves.fr/wp-content/uploads/OPINIONS_MLS_SMTA_v1.pdf (consultado el 18 de diciembre de 2017).Directrices para los Centros de Investigación del CGIAR para operar en conformidad con el Protocolo de Nagoya En una revisión futura de las presentes Directrices se incluirán cláusulas modelo que pueden proponerse a los proveedores de recursos fitogenéticos y a sus autoridades nacionales para incluirlas en los permisos y acuerdos de acceso a recursos genéticos que otorguen a los Centros. La finalidad de estas cláusulas modelo será asegurar que los centros puedan utilizar el ANTM para transferir dichos recursos fitogenéticos a terceras personas, así como los materiales de fitomejoramiento derivados del uso de dichos recursos fitogenéticos. Los artículos 19 y 20 del Protocolo de Nagoya reconocen explícitamente la importancia de las cláusulas contractuales modelo. Se reconocen también en el Reglamento 511/2014 de la UE (pueden encontrarse ejemplos de acuerdos y cláusulas contractuales modelo en: https://www.cbd.int/abs/resources/contracts.shtml; pueden consultarse asimismo códigos de conducta, mejores prácticas, normas y directrices en: https://www.cbd.int/abs/instruments/default.shtml).Como cualquier otro usuario de recursos fitogenéticos, cuando los Centros del CGIAR reciben recursos fitogenéticos con un ANTM tienen la obligación de utilizarlos solo para los fines establecidos en el ANTM. En el caso de que deseen utilizarlos para otros fines, será necesario obtener el permiso del proveedor original con arreglo a las leyes nacionales de aplicación del CDB o el Protocolo de Nagoya. Ello requerirá la negociación de un nuevo acuerdo de acceso a recursos genéticos y distribución de beneficios. En una edición revisada de las presentes Directrices se incluirán cláusulas modelo que los centros puedan proponer a los proveedores de germoplasma y a sus autoridades nacionales con el fin de reconocer la capacidad de los Centros de utilizar y transferir los recursos fitogenéticos para usos no relacionados con la alimentación y la agricultura. No se prevé que el uso de estas cláusulas modelo sea generalizado en el CGIAR, ya que el ANTM cubre la mayor parte de los usos que los Centros del CGIAR y los principales usuarios del germoplasma del CGIAR hacen de los recursos fitogenéticos.En este contexto, cabe señalar que el Grupo especial de trabajo sobre el ANTM y el sistema multilateral establecido por el Órgano Rector consideró que, de conformidad con los convenios de 1994 relativos a las colecciones en fideicomiso, los Centros del CGIAR podían transferir recursos fitogenéticos procedentes tanto de sus bancos de germoplasma como de sus programas de fitomejoramiento para su cultivo directo por parte de los agricultores 18 . En estos casos, los Centros del CGIAR podrán utilizar acuerdos de transferencia de materiales que sean diferentes al ANTM y que no incluyan los usos especificados en el ANTM, es decir investigación, fitomejoramiento y capacitación.Directrices para los Centros de Investigación del CGIAR para operar en conformidad con el Protocolo de Nagoya ¿Ante quién deben presentar los Centros del CGIAR informe sobre sus transferencias de RFAA?Todos los proveedores de recursos fitogenéticos que utilicen el ANTM para transferir recursos deberán, de conformidad con el artículo 5 e) del ANTM, informar a la Secretaría y al Órgano Rector del Tratado Internacional sobre los ANTMs que han suscrito. Esta obligación se establece también en el artículo 2 de los acuerdos entre los Centros del CGIAR y el Órgano Rector del Tratado en virtud del Artículo 15 del Tratado. Según el Protocolo de Nagoya, las organizaciones internacionales no tienen ninguna obligación de informar al Centro de Intercambio de Información sobre Acceso y Participación en los Beneficios sobre la transferencia de recursos genéticos; hasta la fecha, tampoco ha habido ningún debate en la COP en el Protocolo de Nagoya sobre la presentación por parte de organizaciones internacionales de informes voluntarios a este respecto. Sin embargo, en el contexto de la \"vigilancia de la utilización de recursos genéticos\", el Protocolo de Nagoya indica que los países del Protocolo acuerdan \"alentar a los usuarios y proveedores de recursos genéticos a que incluyan en las condiciones mutuamente acordadas disposiciones sobre el intercambio de información acerca de la aplicación de dichas condiciones, incluidos requisitos de presentación de informes\" (artículo 17.1 b) del Protocolo de Nagoya). Con el tiempo, es posible que las organizaciones que proveen recursos genéticos a los Centros del CGIAR, o los propios Centros, introduzcan voluntariamente la presentación de informes como una condición en los acuerdos de transferencia de material que firmen dentro del marco de aplicación del Protocolo. Teniendo en cuenta que nos encontramos en una fase muy inicial de aplicación del Protocolo de Nagoya en la mayoría de los países, no parece que la obligación de facilitar información vaya a imponerse sobre los Centros del CGIAR en un futuro próximo, pero lo Centros deben mantenerse atentos a esta cuestión.información requerida de los Centros del CGIAR y los receptores de materiales de los Centros del CGIAR Los puntos nacionales de verificación forman parte de la infraestructura diseñada por los países para supervisar el cumplimiento por parte de los usuarios de las medidas y acuerdos en materia de acceso y distribución de beneficios en el marco del Protocolo de Nagoya. El artículo 17 establece que las Partes Contratantes designarán uno o varios puntos de verificación para recolectar o recibir \"información pertinente relacionada con el consentimiento fundamentado previo, con la fuente del recurso genético, con el establecimiento de condiciones mutuamente acordadas y/o con la utilización de recursos genéticos, según corresponda\". El punto de verificación proporcionará dicha información \"a las autoridades nacionales pertinentes, a la Parte que otorga el consentimiento fundamentado previo y al Centro de Intercambio de Información sobre Acceso y Participación en los Beneficios\". El Protocolo de Nagoya guarda silencio con respecto al tipo de organización que debe designarse como punto de verificación, pero afirma que los puntos de verificación deben ser eficaces y llevar a cabo funciones que les permitan la recopilación o recepción de la información pertinente relacionada con las cuestiones antedichas. Supuestamente, las Partes Contratantes designarán organizaciones que puedan recopilar la información necesaria en el desempeño de sus funciones ordinarias (por ejemplo, a través de una solicitud de patente en el caso de una oficina de patentes, la notificación de una nueva muestra de una especie exótica en el caso de un jardín botánico, el registro de una nueva variedad de planta en virtud de una ley nacional de semillas, o propuestas de proyectos relativos a recursos genéticos en el caso de organismos de financiación) 19 . Esta información se comunicará al país proveedor del material, que posteriormente podrá utilizarla para supervisar la utilización y para realizar un seguimiento con el usuario si las autoridades nacionales del país proveedor consideran que el uso de esos recursos genéticos va más allá del alcance del consentimiento fundamentado previo concedido y las condiciones mutuamente acordadas. Las disposiciones relativas a la vigilancia de la utilización son una de las innovaciones del Protocolo de Nagoya, por lo que no hay todavía mucha información o experiencia sobre cómo se aplican en la práctica.En el artículo 15 del Protocolo de Nagoya se establece que cada Parte adoptará medidas legislativas, administrativas o de política apropiadas, eficaces y proporcionales para asegurar que los recursos genéticos utilizados dentro de su jurisdicción hayan sido accedidos de conformidad con el consentimiento fundamentado previo y se hayan establecido condiciones mutuamente acordadas como se especifica en la legislación o los requisitos reglamentarios nacionales de acceso y participación en los beneficios en el país proveedor. También se prevé que cada Parte tomará medidas para gestionar las situaciones de incumplimiento. En el artículo 16 se establecen disposiciones similares respecto a los conocimientos tradicionales asociados con los recursos genéticos utilizados en su jurisdicción. En el artículo 18 se estipula que las Partes se asegurarán de que sus sistemas jurídicos ofrezcan la posibilidad de presentar recursos en casos de controversias dimanantes de las condiciones mutuamente acordadas.Dado el modus operandi de la mayor parte de los bancos de germoplasma y programas de mejoramiento del CGIAR, los cuales proporcionan germoplasma y líneas mejoradas a otros usuarios que continúan el trabajo de fitomejoramiento e introducen las nuevas variedades en el mercado, probablemente los puntos de verificación no se pongan a menudo en contacto directamente con los Centros del CGIAR ni supervisen sus actividades. En cambio, dependiendo de la naturaleza del punto de verificación, podría ocurrir con mayor frecuencia que los receptores de germoplasma de los Centros del CGIAR se pongan en contacto con los puntos de verificación -por ejemplo, oficinas de patentes, oficinas de protección varietal, autoridades de registro de variedades y organismos nacionales de financiación, entre otros. En las siguientes subsecciones, se aborda la siguiente pregunta: ¿cómo afectan los requisitos de información de los puntos nacionales de verificación a los Centros del CGIAR directa (cuando son supervisados por los puntos de verificación) e indirectamente (cuando los receptores de materiales de los Centros son supervisados por los puntos de verificación)?Como se ha indicado en la Sección 1, el Protocolo de Nagoya reconoce el sistema multilateral de acceso y distribución de beneficios y los acuerdos suscritos por los Centros del CGIAR en virtud del artículo 15 del Tratado Internacional, da cabida a su aplicación y no afecta a su funcionamiento. De acuerdo con esto, las transferencias de materiales del sistema multilateral quedan fuera del alcance de los sistemas nacionales establecidos para aplicar el Protocolo de Nagoya, incluidos los puntos de verificación. Dicho esto, los puntos de verificación podrían solicitar a los usuarios de los recursos fitogenéticos recibidos de los Centros del CGIAR con el ANTM información acerca del origen de esos recursos y pruebas de la obtención del consentimiento fundamentado previo de conformidad con las leyes nacionales, entre otras cuestiones. Puesto que la fuente de los mismos es el sistema multilateral, el sistema de puntos de verificación del Protocolo de Nagoya no es aplicable a esos materiales. Sin embargo, a menos que el punto de verificación entienda que los materiales se obtuvieron por medio del ANTM a través del sistema multilateral, no podrá saber que ese material en particular queda fuera de su ámbito de competencia. Por tanto redunda en interés de los usuarios proporcionar pruebas de que el material se recibió por medio del ANTM de un Centro del CGIAR (o de cualquier otro proveedor al amparo del sistema multilateral), asegurando así al punto de verificación que el material y su uso, al estar sujetos al ANTM, no entran dentro del marco reglamentario en el que opera el punto de verificación. En teoría, una vez que el usuario presenta esas pruebas, el punto de verificación no debería exigir garantías o información adicionales. De esta manera, los dos sistemas se complementan y respaldan mutuamente.Directrices para los Centros de Investigación del CGIAR para operar en conformidad con el Protocolo de Nagoya Con arreglo a las Directrices adoptadas por la UE de aplicación del Protocolo de Nagoya, los recursos fitogenéticos de los Centros del CGIAR y otras organizaciones que hayan concertado acuerdos en virtud del artículo 15 y que hayan sido adquiridos por usuarios de la UE a través del ANTM se consideran fuera del ámbito de aplicación del Reglamento 20 . Los Estados europeos han comenzado a definir cómo gestionar esta cuestión en la práctica. Algunos han establecido que una simple declaración de haber recibido los recursos fitogenéticos por medio del ANTM es suficiente a efectos del punto de verificación. Este último no podrá obligarles a proporcionar información adicional para demostrar la debida diligencia.La mayor parte de los países aún no ha determinado la información que deben solicitar los puntos de verificación sobre los recursos fitogenéticos obtenidos del sistema multilateral. Por el momento, en la mayoría de los países no es posible saber qué tipo de información o prueba de debida diligencia podrán o deberán solicitar los puntos de verificación. Teniendo en cuenta esta incertidumbre, se recomienda que todos los Centros del CGIAR mantengan registros sobre las condiciones legales bajo las cuales se adquirió y se mantiene cada recurso fitogenético, a fin de poder proporcionar información adicional, en caso necesario, a los puntos de verificación. En el supuesto de que los Centros del CGIAR reciban recursos fitogenéticos en virtud de un instrumento distinto del ANTM, también sería conveniente que dicho instrumento incluyera una declaración del proveedor afirmando que tiene el derecho y la capacidad legal de proporcionar dichos recursos fitogenéticos, teniendo en cuenta el Protocolo de Nagoya y el CDB, entre otros instrumentos. Si bien los Centros del CGIAR pueden no tener ninguna obligación de proporcionar esa información adicional, y el hecho de hacerlo puede suponer una carga administrativa para ellos, los usuarios de recursos fitogenéticos de los países donde los puntos de verificación requieren dicha información agradecerán su asistencia en este sentido.Directrices para los Centros de Investigación del CGIAR para operar en conformidad con el Protocolo de Nagoya 20 En la Sección 5.2.1 de las Directrices de la UE en materia de acceso y participación en los beneficios, se estipula lo siguiente: \"pueden darse varios escenarios en relación con la obtención y utilización de recursos fitogenéticos para la alimentación y la agricultura (RFAA), dependiendo de si el país donde se accede a los recursos genéticos es o no Parte en el Protocolo de Nagoya y/o en el Tratado Internacional sobre los Recursos Fitogenéticos para la Alimentación y la Agricultura (TI/RFAA) (24), y en función del tipo de uso. A continuación, se describe una serie de situaciones a este respecto y se explica la aplicabilidad del Reglamento de acceso y participación en los beneficios de la UE en cada una de ellas. Fuera del ámbito de aplicación del Reglamento de acceso y participación en los beneficios de la UE:Los RFAA enumerados en el anexo I del TI/RFAA (25),incluidos en su sistema multilateral y obtenidos de Partes en el TI/RFAA. Ese material está cubierto por un instrumento internacional especializado de acceso y participación en los beneficios que es coherente con los objetivos del Convenio y del Protocolo de Nagoya y no se opone a los mismos (véanse el artículo 2, apartado 2, del Reglamento y la página 5).Cualquier RFAA recibido en el marco de un acuerdo normalizado de transferencia de material (ANTM) desde centros internacionales de investigación agrícola como los del Grupo Consultivo sobre Investigación Agrícola Internacional y otras instituciones internacionales que han firmado acuerdos con arreglo al artículo 15 del TI/RFAA (26). Ese material está cubierto también por un instrumento internacional especializado de acceso y participación en los beneficios que es coherente con los objetivos del Convenio y del Protocolo de Nagoya y no se opone a los mismos (véanse el artículo 2, apartado 2, del Reglamento y la página 5)\".Respecto a los usuarios de materiales de los Centros del CGIAR en virtud de otro instrumento (es decir, distinto del ANTM), ¿en qué \"situación\" se halla ese otro instrumento en el supuesto de que tuvieran que interactuar con los puntos nacionales de verificación?Como se ha señalado anteriormente, los Centros del CGIAR pueden facilitar materiales resultantes de los programas de fitomejoramiento y recursos fitogenéticos de las colecciones mantenidas en fideicomiso para su cultivo por los agricultores y para fines no relacionados con la alimentación. En estos casos no deben utilizar el ANTM, sino otros acuerdos de transferencia de material. Los puntos nacionales de verificación pueden no estar familiarizados con el hecho de que los Centros tienen la capacidad para transferir recursos fitogenéticos para dichos usos y que en tales casos no utilizarán el ANTM. Por tanto los Centros del CGIAR tienen que estar dispuestos y preparados para aclarar esto. A tal efecto, una opción es incluir esta información en una nota que acompañe a los acuerdos de transferencia utilizados en estas ocasiones, de modo que esté disponible para los puntos nacionales de verificación cuando revisen los documentos que determinan si los usuarios del recursos fitogenéticos han seguido la diligencia debida.En algunas ocasiones, como parte de su estrategia para asegurar la disponibilidad global de los productos derivados de su trabajo y promover su utilización en el mayor número de países, los Centros del CGIAR podrían llevar a cabo actividades que los pongan en contacto con un punto nacional de verificación. Entre otros ejemplos cabe citar los siguientes: cuando un Centro del CGIAR desea obtener derechos de propiedad intelectual sobre material resultante de sus programas de fitomejoramiento y la oficina de propiedad intelectual en el país donde reclama dichos derechos ha sido designada como punto de verificación bajo el Protocolo de Nagoya; cuando un Centro del CGIAR trata de incluir una nueva variedad en un registro o catálogo de variedades comerciales de conformidad con la ley nacional de semillas y la oficina de semillas encargada de gestionar el catálogo o registro es un punto de verificación; cuando un Centro del CGIAR solicita financiación de un organismo nacional designado como punto de verificación.Además, podría exigirse a los Centros del CGIAR que demuestren la debida diligencia en otros contextos, especialmente cuando solicitan financiación a la Comisión de la UE y, posiblemente, a otros donantes, y al presentar manuscritos con vistas a su publicación en revistas científicas. Algunas revistas exigen a los autores que declaren que los recursos genéticos sobre los que versa el artículo en cuestión han sido obtenidos de acuerdo con la legislación nacional en materia de acceso y distribución de beneficios.Directrices para los Centros de Investigación del CGIAR para operar en conformidad con el Protocolo de Nagoya 21 ¿Deberían estar los Centros del CGIAR preparados para hacer declaraciones acerca de los materiales adquiridos después de la entrada en vigor del CDB, pero antes de la entrada en vigor del Protocolo de Nagoya? Estrictamente hablando, los mecanismos que los países están obligados a poner en práctica para supervisar el cumplimiento de la debida diligencia por parte de los usuarios están concebidos para las obligaciones contraídas en virtud del Protocolo de Nagoya (es decir, los recursos genéticos adquiridos después de la entrada en vigor del Protocolo) y todo lo demás queda fuera del ámbito de aplicación de dicho control. Por otro lado, a fin de establecer que los materiales fueron adquiridos antes de la entrada en vigor del Protocolo de Nagoya, sería útil que los Centros del CGIAR proporcionaran algunos detalles acerca de cuándo se recibieron, de quién y bajo qué condiciones o régimen reglamentario. 22 En el artículo 8 j) del CDB, se hace referencia a \"los conocimientos (...) de las comunidades indígenas y locales que entrañen estilos tradicionales de vida pertinentes para la conservación y la utilización sostenible de la diversidad biológica\". Esta cita es la que se utiliza en el considerando del Protocolo de Nagoya.Ni el Convenio ni el Protocolo de Nagoya proporcionan una definición de conocimientos tradicionales 22 . Pueden encontrarse diversas definiciones en publicaciones y códigos de conducta voluntarios elaborados por organizaciones internacionales, pero no existe una definición generalmente aceptada. La expresión \"conocimientos tradicionales\" puede entenderse en un sentido amplio (que comprende el contenido de los conocimientos en sí ¿Qué tipo de información habrá de proporcionar el Centro del CGIAR?Supuestamente, los requisitos solicitados por un punto de verificación deben ser razonables, prácticos y viables para los usuarios de recursos genéticos. Es poco probable que, por ejemplo, los puntos de verificación exijan a los usuarios que demuestren la diligencia debida respecto a todos los recursos genéticos que componen el pedigrí de una línea mejorada o una nueva variedad.Para los Centros del CGIAR, en la mayoría de los casos los recursos fitogenéticos utilizados para producir una línea mejorada o una nueva variedad no entrarán dentro del ámbito de aplicación del Protocolo de Nagoya y de las leyes nacionales que lo aplican, bien porque se tuvo acceso a ellos antes de la entrada en vigor del Protocolo o porque se obtuvieron a través del sistema multilateral u otras fuentes no reguladas por el Protocolo de Nagoya. En los pocos casos en los que el pedigrí incluye recursos fitogenéticos sujetos al Protocolo de Nagoya y a las leyes nacionales de aplicación del Protocolo, un modo práctico de demostrar la diligencia debida respecto a los recursos fitogenéticos del pedigrí es a través de una declaración por parte de los Centros que confirme qué recursos fitogenéticos fueron obtenidos y utilizados después de la entrada en vigor del Protocolo de Nagoya (octubre de 2014) y que aclare que todos los demás recursos fitogenéticos son anteriores a la entrada en vigor del Protocolo de Nagoya o están amparados por el sistema multilateral 21 . Para los recursos fitogenéticos que efectivamente entran en el ámbito geográfico y temporal del Protocolo de Nagoya, el Centro del CGIAR en cuestión debe proporcionar la información exigida por el punto de verificación.Directrices para los Centros de Investigación del CGIAR para operar en conformidad con el Protocolo de Nagoya Solicitando información a los agricultores sobre los recursos fitogenéticos durante las misiones de colecta;Recopilando información acerca de las prácticas de los agricultores asociadas con la gestión y los usos de determinadas especies y variedades (incluyendo prácticas de cultivo, de selección y el almacenamiento de semillas y usos culinarios y medicinales, entre otros);Gestionando proyectos y actividades de selección y fitomejoramiento participativo de variedades junto con los agricultores;Colaborando con las comunidades locales en aras de la conservación in situ y ex situ de los recursos genéticos;Colaborando con las comunidades locales para el establecimiento y la gestión de bancos de semillas comunitarios;Organizando y participando en ferias de semillas;Preparando documentos audiovisuales y publicaciones relativas a prácticas agrícolas y usos medicinales de plantas y animales de pueblos indígenas y comunidades locales. protocolos comunitarios en relación con los conocimientos tradicionales asociados a recursos genéticos y la participación justa y equitativa en los beneficios que se deriven de la utilización de tales conocimientos; requisitos mínimos en las condiciones mutuamente acordadas que garanticen la participación justa y equitativa en los beneficios que se deriven de la utilización de conocimientos tradicionales asociados a recursos genéticos; y cláusulas contractuales modelo para la participación en los beneficios que se deriven de la utilización de los conocimientos tradicionales asociados a recursos genéticos.(En cumplimiento de las obligaciones contraídas en virtud del presente Protocolo, en consonancia con las leyes nacionales, las Partes tengan en consideración las leyes consuetudinarias de las comunidades indígenas y locales, así como los protocolos y procedimientos comunitarios con respecto a los conocimientos tradicionales asociados a recursos genéticos.Las Partes, con la participación efectiva de las comunidades indígenas y locales afectadas, establecerán mecanismos para informar a los posibles usuarios de los conocimientos tradicionales asociados con los recursos genéticos acerca de sus obligaciones, incluidas las medidas publicadas a través del Centro de Intercambio de Información para tener acceso a tales conocimientos y para la participación justa y equitativa de los beneficios que se deriven de su utilización.Las Partes se esforzarán por respaldar, cuando proceda, la elaboración por las comunidades indígenas y locales, incluidas las mujeres pertenecientes a las mismas, de: establecido condiciones mutuamente acordadas con ellas. Con arreglo al artículo 5.5 del Protocolo de Nagoya, cada Parte adoptará medidas \"con miras a asegurar que los beneficios que se deriven de la utilización de recursos genéticos que están en posesión de comunidades indígenas y locales (...) se compartan de manera justa y equitativa con las comunidades [indígenas y locales]\". Además, en el artículo 12 se declara lo siguiente:Directrices para los Centros de Investigación del CGIAR para operar en conformidad con el Protocolo de Nagoya ¿Cómo pueden los Centros del CGIAR cerciorarse de sus obligaciones concretas con respecto a los conocimientos tradicionales y el Protocolo de Nagoya en un determinado país?En virtud del Protocolo de Nagoya, los países tienen la obligación de facilitar información al Centro de Intercambio de Información sobre la legislación nacional pertinente en materia de acceso y distribución de beneficios. Esta información no siempre estará actualizada y, en muchos casos, podría estar incompleta debido a que a menudo la protección y la utilización de los conocimientos tradicionales están sujetas a un conjunto de leyes, políticas y reglamentos diferentes. Esto es particularmente cierto para las leyes consuetudinarias de los pueblos indígenas y las comunidades locales que solo se mantienen en forma oral. Para obtener más información acerca de sus obligaciones en relación con el acceso y el uso de los conocimientos tradicionales, los Centros del CGIAR deben ponerse en contacto con los coordinadores nacionales del CDB y el Protocolo de Nagoya y, en caso necesario o conveniente, con expertos nacionales y/o regionales en materia de acceso y distribución de beneficios, las organizaciones que representan las comunidades locales e indígenas u ONGs que trabajen en estrecha colaboración con estas comunidades.¿Qué ocurre si no existe una ley nacional para aplicar el Protocolo de Nagoya o si existe pero no establece normas en cuanto al acceso a los conocimientos tradicionales?En ausencia de legislación nacional que regule el acceso a los conocimientos tradicionales, los Centros del CGIAR no tienen ninguna obligación jurídica en virtud del Protocolo de Nagoya. Por supuesto, puede haber otras leyes en el país que establezcan normas, procedimientos o prohibiciones con respecto al acceso a los conocimientos tradicionales y su uso. Podría tratarse de leyes establecidas para aplicar otros convenios internacionales o declaraciones internacionales, como la Declaración de las Naciones Unidas sobre los derechos de los pueblos indígenas y el Convenio sobre Pueblos Indígenas y Tribales en Países Independientes, adoptado bajo los auspicios de la Organización Internacional del Trabajo (OIT), en los cuales se reconocen los derechos de los pueblos indígenas y las comunidades locales sobre los recursos naturales y los recursos genéticos 24 .O podrían existir leyes consuetudinarias de pueblos indígenas y comunidades locales. En algunos países, la legislación nacional reconoce o da cabida a la aplicación de esas leyes Directrices para los Centros de Investigación del CGIAR para operar en conformidad con el Protocolo de Nagoya consuetudinarias. En otros no se reconocen oficialmente, pero los pueblos indígenas o comunidades locales afectados podría, no obstante, insistir en que los Centros del CGIAR las reconozcan y que establezcan acuerdos en materia de acceso y distribución de beneficios en consecuencia. Por supuesto, estos protocolos deberán estar en consonancia con las leyes nacionales del país de que se trate. En situaciones en las que pueda haber contradicciones entre los dos regímenes jurídicos, los Centros del CGIAR deberían tratar de colaborar con las comunidades locales y las autoridades nacionales competentes para garantizar procesos y acuerdos mutuamente satisfactorios. Si ello no fuera posible, los Centros tal vez tenga que interrumpir sus iniciativas de acceso a los recursos genéticos o conocimientos tradicionales en esas situaciones.Además, en ausencia de obligaciones concretas definidas por la legislación nacional (o leyes consuetudinarias), como parte de su ética general de investigación, el CGIAR se compromete a operar de conformidad con los principios y normas internacionalmente aceptados en lo que atañe al uso de los conocimientos tradicionales relacionados con los recursos genéticos y, más en general, a colaborar con los pueblos indígenas y las comunidades locales. Estas normas se establecen en los instrumentos internacionales de derechos humanos mencionados anteriormente, así como en el Protocolo de Nagoya, el CDB y el Tratado Internacional. También se establecen en los protocolos de investigación y ética elaborados por las comunidades de investigación, incluido el CGIAR.El compromiso del CGIAR de observar los principios y normas internacionales se refleja en el artículo 3.2 de los Principios del CGIAR de gestión de activos intelectuales en el que se establece que \"el CGIAR pretende ser respetuoso con los esfuerzos nacionales e internacionales destinados a promover y proteger los derechos de los agricultores, según lo previsto por el Tratado y respaldar la elaboración de políticas y procedimientos apropiados para su reconocimiento y promoción\" 25 . Con respecto a países o situaciones en las que no se hayan establecido obligaciones jurídicas concretas las Directrices para la aplicación de los Principios del CGIAR de gestión de activos intelectuales establecen que los Centros deben:Al acceder a los RFAA y/o los conocimientos tradicionales asociados en ausencia de leyes en materia de acceso y distribución de beneficios, velar por que los agricultores que los proporcionan den su consentimiento fundamentado previo. Ello implica tener en cuenta protocolos comunitarios, si los hubiere, y recabar de forma proactiva la participación de los agricultores para garantizar que entienden los usos propuestos de los RFAA o los conocimientos adquiridos. Ello se puede llevar a cabo junto con los asociados en los sistemas nacionales de investigación agrícola, o a través de ellos, u otras organizaciones con las cuales se esté realizando el trabajo y, cuando sea posible, mediante acuerdos por escrito que reflejen su consentimiento fundamentado previo y las condiciones mutuamente acordadas 26 .Las Directrices incluyen otras medidas prácticas que los Centros del CGIAR podrían adoptar, cuando proceda, entre ellas:Estas mismas normas se incluyen en una serie de directrices de ética de investigación desarrolladas en el seno de consorcios y comunidades de práctica científica 27 . Quizá el instrumento que guarda una relación más directa a este respecto es el Código de conducta ética para asegurar el respeto al patrimonio cultural e intelectual de las comunidades indígenas y locales pertinentes para la conservación y uso sostenible de la diversidad biológica, aprobado por la COP en el CDB en 2010 28 . En él se formulan recomendaciones sobre los principios éticos que deben observarse y los aspectos metodológicos que deben tenerse en cuenta 29 . Dado que el Código de conducta se inspiró en el CDB, fue el resultado del programa de trabajo del CDB sobre el artículo 8 j) y fue aprobado por la COP en el CDB, representa una referencia fiable para los Centros del CGIAR para guiar sus acciones en ausencia de leyes nacionales aplicables. Además, el programa de trabajo sobre el artículo 8 j) condujo a la formulación y aprobación (en la 13.ª COP en 2016) de directrices voluntarias para la elaboración de mecanismos para garantizar el consentimiento fundamentado previo de los pueblos indígenas y las comunidades locales, así como otros aspectos en materia de acceso y distribución de beneficios 30 . Si bien estas directrices no se aplican a los conocimientos tradicionales asociados con los recursos genéticos en virtud del Protocolo de Nagoya (como se indica en el párrafo 5 de las mismas) los Centros pueden utilizarlas como referencia a la hora de adoptar medidas para garantizar el consentimiento fundamentado previo y establecer condiciones mutuamente acordadas con los agricultores y otros usuarios locales en los países en que no se aplica el Protocolo de Nagoya. Otra referencia útil es el Manual de la FAO dirigido a los profesionales en el terreno titulado \"Consentimiento libre, previo e informado: un derecho de los Pueblos Indígenas y una buena práctica para las comunidades locales\" 31 .¿Qué medidas prácticas pueden adoptar los Centros del CGIAR?Basándonos en las secciones anteriores podemos indicar tres medidas básicas que los Centros del CGIAR deben adoptar para garantizar que están actuando en consonancia con los principios internacionalmente reconocidos de países donde las obligaciones en materia de acceso y distribución de beneficios no se han definido en los regímenes jurídicos vigentes:Los Centros del CGIAR también pueden tomar estas tres medidas en países donde existen leyes nacionales en vigor y donde la adopción de estas medidas por los Centros del CGIAR no sea incompatible con la legislación vigente.Los Centros del CGIAR tendrán que abordar estas tareas de una manera práctica y realista, dependiendo de sus acuerdos de colaboración con las comunidades que proporcionan conocimientos tradicionales y el contexto en el que se haya producido el intercambio de información entre científicos y agricultores. La mayoría de las actividades habituales de los científicos del CGIAR orientadas a obtener información de los agricultores (por ejemplo encuestas de agricultores, debates entre agricultores, y mesas redondas y talleres con comunidades locales) proveen el marco adecuado para que los científicos obtengan la aprobación de los agricultores de compartir sus conocimientos y convengan con ellos posibles condiciones sobre la utilización de dicho conocimiento por los centros del CGIAR.Antes de que los agricultores comiencen a compartir información con los científicos, estos últimos deben seguir un protocolo para garantizar que los agricultores están plenamente informados y comprenden: 1) lo que los científicos proponen hacer con la información que reciban; 2) los beneficios que los científicos proponen compartir; 3) que los agricultores pueden negarse a compartir sus conocimientos o pueden hacerlo con sujeción a las condiciones que ellos propongan. Para demostrar que se han seguido principios y normas internacionalmente reconocidos, el proceso de obtención de la aprobación de los agricultores debería constar, preferiblemente, en un documento firmado por los proveedores de la información. En caso de que no fuera viable o conveniente obtener la firma de los proveedores, podría ser suficiente con que los científicos plasmaran por escrito el proceso para obtener la aprobación de los proveedores de conocimientos tradicionales;convenir con ellos las condiciones aplicables a la utilización de tales conocimientos; compartir los beneficios, incluidos los resultados de la investigación y el desarrollo, con los proveedores de los conocimientos tradicionales.demostrar la debida diligencia si en la legislación nacional no se hubieran definido o previsto procedimientos a tal efecto.Asimismo, los Centros del CGIAR deben tener en cuenta las dificultades prácticas que plantea la difusión de los resultados de las actividades de investigación y desarrollo de los Centros con los proveedores de conocimientos tradicionales y adoptar medidas para abordarlas. Por ejemplo, si las limitaciones financieras no permiten a los científicos de los Centros del CGIAR organizar talleres informativos y mesas redondas con las comunidades agrícolas, proporcionarles semillas de las líneas mejoradas o difundir publicaciones fáciles de consultar para los agricultores al finalizar un proyecto de investigación en que se hayan utilizado conocimientos de los agricultores, los Centros del CGIAR podrían explorar formas para que sus asociados nacionales dispongan lo necesario con objeto de compensar a las comunidades agrícolas al respecto o adopten medidas que requieran menos recursos, pero sigan siendo eficaces, o bien aborden estas cuestiones.¿Se aplican en el Protocolo de Nagoya las mismas medidas de control para la utilización de los recursos genéticos y los conocimientos tradicionales relacionados con los recursos genéticos?El Protocolo de Nagoya aborda los recursos genéticos y los conocimientos tradicionales conexos de manera diferente. Según el artículo 6 del Protocolo, las Partes Contratantes que regulan el acceso a los recursos genéticos tienen la obligación de proporcionar por escrito una decisión clara y transparente de una autoridad nacional competente. Si se opta por conceder el acceso a los recursos, las Partes Contratantes deberán expedir un permiso como prueba del consentimiento fundamentado previo y de las condiciones mutuamente acordadas. En el caso del acceso a los conocimientos tradicionales, el Protocolo de Nagoya no obliga a los países a emitir ningún permiso oficial. Sin embargo, algunos países exigen y expiden permisos de acceso a los conocimientos tradicionales.El artículo 17 del Protocolo de Nagoya sobre la \"vigilancia de la utilización de recursos genéticos\" limita los mecanismos de control previstos en el Protocolo a los recursos genéticos. Ello significa que no tienen que emitirse certificados de cumplimiento reconocidos internacionalmente para los usuarios de conocimientos tradicionales a fin de proporcionar pruebas de que esos conocimientos se han obtenido de conformidad con las leyes nacionales. También significa que cuando se establecen puntos nacionales de verificación, los países no tienen que incluir la utilización de los conocimientos tradicionales en el ámbito de sus funciones (pero, si lo desearan, podrían hacerlo).El artículo 16 del Protocolo de Nagoya sobre el \"cumplimiento de la legislación o los requisitos reglamentarios nacionales sobre acceso y participación en los beneficios para los conocimientos tradicionales asociados a recursos genéticos\" no obliga a los países a establecer ningún mecanismo de vigilancia en particular, sino sencillamente les exige que adopten medidas \"para asegurar que se haya accedido a los conocimientos tradicionales asociados a recursos genéticos utilizados dentro de su jurisdicción de conformidad con el consentimiento fundamentado previo o con la aprobación y participación de las comunidades indígenas y locales (...) como se especifica en la legislación o los requisitos reglamentarios nacionales de acceso y participación en los beneficios de la otra Parte donde se encuentran dichas comunidades indígenas y locales\". Los países son libres de decidir si quieren o no establecer Directrices para los Centros de Investigación del CGIAR para operar en conformidad con el Protocolo de Nagoya 32 Por ejemplo, la Decisión 486 de la Comunidad Andina de Naciones exige a las oficinas de patentes de los países andinos que recopilen información sobre el origen y las circunstancias de acceso a los recursos genéticos y los conocimientos tradicionales utilizados en las invenciones descritas en las solicitudes de patente y establece que se denegarán las solicitudes de patente si no se presenta un contrato de acceso adecuado o la licencia o autorización correspondiente para la utilización de los conocimientos tradicionales. Sin embargo, esta medida se adoptó antes de la entrada en vigor del Protocolo de Nagoya. En el Perú, la legislación de aplicación del Acuerdo de promoción comercial suscrito entre el Perú y los Estados Unidos de América (Ley n.º 29316, de 14 de enero de 2007, publicada en el Diario Oficial del Perú) modifica este último requisito; existe una sanción respecto al solicitante si no se presenta la documentación requerida, pero ello no es causa de nulidad o invalidez de la solicitud de patente o de la patente aprobada. puntos de verificación para vigilar el uso de los conocimientos tradicionales. No tienen esa flexibilidad con respecto a los recursos genéticos, respecto a los que deben establecerse. Si lo desean, los países pueden aplicar medidas de vigilancia similares o idénticas tanto a los recursos genéticos como a los conocimientos tradicionales y, por lo tanto, solicitar a determinados puntos de verificación que recopilen información sobre el origen y el uso de los conocimientos tradicionales, pero, según el Protocolo de Nagoya, no están obligados a hacerlo. El modus operandi de estos posibles puntos de verificación, como oficinas de patentes y de protección varietal y organismos de financiación, probablemente refleje este tratamiento diferenciado en muchos países que han ratificado el Protocolo de Nagoya, pero no necesariamente en todos ellos 32 .¿Cuáles son las obligaciones de los Centros del CGIAR al transferir conocimientos tradicionales asociados con los recursos genéticos?Los Centros del CGIAR tienen la obligación de respetar los términos y condiciones en los que recibieron los conocimientos tradicionales. Si los conocimientos tradicionales a los que un Centro del CGIAR hubiera tenido acceso estuvieran sujetos a restricciones, entonces no podrían incluirse en la información cuyos enlaces se proporcionan en el ANTM. Posiblemente, la situación sea diferente si se transfieren recursos genéticos por medio del ANTM como RFAA en fase de mejoramiento. En este caso, el Centro tiene la flexibilidad necesaria para aprobar las restricciones del proveedor original de los conocimientos tradicionales respecto al uso por parte de los receptores posteriores de tales conocimientos tradicionales. Por supuesto, el proveedor de conocimientos tradicionales original tendría que aceptar previamente que el Centro del CGIAR transfiera los conocimientos tradicionales de esa manera como parte de las condiciones mutuamente acordadas.Directrices para los Centros de Investigación del CGIAR para operar en conformidad con el Protocolo de Nagoya","tokenCount":"13975"} \ No newline at end of file diff --git a/data/part_3/3092711882.json b/data/part_3/3092711882.json new file mode 100644 index 0000000000000000000000000000000000000000..a317ae7e9490d2ca21787c0fb7c0f4e868f5e3c9 --- /dev/null +++ b/data/part_3/3092711882.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"59c838f79d702478862bdc47c46c906d","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/e1daedf5-ad7d-429a-a0bc-bd16dbfa27b0/retrieve","id":"-247213905"},"keywords":[],"sieverID":"75f59bef-1629-40b9-8780-3715bb5c0005","pagecount":"41","content":"The year 2002 marked the emergence of a new phase for the International Livestock Research Institute (ILRI), when it defined its new research strategy to focus on research that would show significant impact on poverty reduction, using livestock as one of the pathways out of poverty.ILRI's research strategy to 2010 defines ILRI's goal as follows, \"By positioning itself at the crossroads of livestock and poverty and by bringing to bear high quality science and capacity building, ILRI and its partners will reduce poverty and make sustainable development possible for poor livestock keepers, their families and the communities in which they live\".Thus one of the major guiding principles in the planning of ILRI's new research agenda is \"to strengthen the capacity of ILRI and its partners to contribute to identified research themes. This will extend beyond running courses and training students to innovative training activities and research partnerships. \"This implies that ILRI's changing research paradigm will effectively address the issues of poverty reduction and achievement of sustainable livelihoods for the livestock-dependent poor in sub-Saharan Africa and south Asia. So, the main focus in the new strategy is to 'ensure that ILRI's research is directed towards reducing poverty'. In this new strategy, ILRI will primarily focus its efforts towards sub-Saharan Africa and South Asia, where a large number of rural families depend on livestock as their source of livelihood.Analyzing the poverty situation and role of livestock in the livelihoods of the poor, ILRI identified three pathways out of poverty on which it can act, namely: securing the current and future assets of the poor  improving the productivity of agricultural systems of the poor in a sustainable manner and  encouraging participation of the poor in livestock related markets.Success in achieving the ILRI goal will depend largely on strengthening the institutional and individual capacities of ILRI and a range of key partners who share the same vision.We note that the Center Commissioned External Review (CCER) of ILRI's Facilities in Ethiopia (see ILRI 2002) drew special attention to the growing interest in capacity development for the Africa region and the need to focus attention on supporting existing professionals who are unable to adequately organize and deliver the latest science, in addition to developing the next generation of science professionals.Since its inception, the capacity building and strengthening efforts of ILRI and its predecessors, The International Laboratory for Research into Animal Diseases (ILRAD) and The International Livestock Research for Africa (ILCA), have contributed significantly to human and institutional development in sub-Saharan Africa and in the developing world. But declining core funding has resulted in changes in the nature and scope of capacity strengthening activities which are now integrated into donor-restricted research project funding.In the light of the vision and mission reflected in ILRI's new research and development strategy of \"Livestock, a pathway out of poverty\" and the current international efforts in promoting the concept of research for development, it is now vital to review ILRI's capacity strengthening (CaSt) strategy and activities in sub-Saharan Africa and South Asia. The outcome of such a review will help to chart the course of ILRI's innovative capacity strengthening activities in the context of the institutional change and research processes in support of livestock-mediated poverty reduction.A three-member review team (see annex 2) was commissioned to review ILRI's capacity strengthening strategy, role and activities. The observations, findings and recommendations of the review team are presented in this report.The terms of reference for this review were designed to address 4 major aspects namely,  analysis of the evolution of ILRI's capacity building activities  required changes in ILRI's capacity strengthening role to make it consistent with ILRI's mandate and revised strategy.  identification of a set of guiding principles and methods for innovative capacity strengthening activities in support of livestock-mediated poverty reduction and  an approach to implement the proposed new capacity strengthening strategiesThe detailed terms of reference for this review are presented in annex 3.Two members of the review panel, Anthony Youdeowei and Datta Rangnekar were involved in all the CCER activities, while Jon Daane participated in the initial consultation at ILRI in Addis Ababa and subsequently contributed extensively to the exercise through a series of teleconferences, emails as well as critical reviews of the draft reports. This review was conducted in two phases. Phase one consisted of the participation by two review members at the Building African Scientific and Institutional Capacity (BASIC) workshop organized by the Forum for Agricultural Research in Africa (FARA) from 6 to 8 September at the Commission of the African Union in Addis Ababa. The objective of attendance at this workshop was to provide panel members the opportunity to interact with participants at this BASIC workshop and to gain relevant information about proposed collaborative capacity building/strengthening initiatives to improve training in agricultural research for development in Africa. Following this workshop, the panel members participated in a one day expert consultation and brain storming session at ILRI to discuss and finalize the Terms of Reference (TOR) for the review, using some of the lessons learned from the BASIC workshop. The second phase was conducted from October 3 to 16 October, mostly in Addis Ababa including a 2 day visit to ILRI headquarters in Nairobi.Our approach to gathering information was mainly through individual and group interviews and discussions with ILRI scientific staff and management at the Addis Ababa campus and in Nairobi, as well as at the Debre Zeit station. Information was also obtained from documentation and review reports provided by ILRI (see annex 1) and those downloaded from the ILRI website (see annex 7). In addition, we interviewed and discussed with a wide range of ILRI's national agricultural research system partners, individual beneficiaries of ILRI postgraduate training, collaborating universities staff ,other Future Harvest CGIAR centers with activities based at ILRI, as well as other agricultural training institutions in Ethiopia, Kenya, Uganda and Mali(see annex 4). The panel also had the opportunity to discuss and interact with the CCER team on Biometrics in Nairobi. In adopting a participatory and transparent approach to this assignment, we hoped that the review benefited from the opinions of all parties concerned with ILRI's programmes and interests. We also validated our impressions from the discussions. A draft report was shared with ILRI management and a broad range of stakeholders for review and comments in order to obtain inputs to our conclusions and recommendations, but without in any way, compromising our findings and opinions.In conducting this review, the panel received considerable assistance from several persons to whom we are deeply grateful. We are unable to mention all of them here but certain persons deserve special mention. First, we are grateful to Dr Carlos Sere, Director General of ILRI and ILRI management for the opportunity to conduct this review. Dr John McDermott, Deputy Director General (Research) ILRI and Bruce Scott, Director Partnerships and Communications, provided valuable technical information while Dr Jeroen Dijkman, Director Theme 2, who coordinated the entire CCER review, provided the panel with considerable technical guidance, and ensured that the necessary logistic support was provided throughout our mission in Addis Ababa and in Nairobi. Jeroen also critically reviewed the draft reports and provided very useful comments. We gratefully acknowledge the assistance received from Dr. Yilma Jobre, Manager of the CaSt Programme, who spent considerable time organizing our mission, providing relevant documents and discussing technical issues with us. Mekdim Ketsela and Tigist Mamo at ILRI Addis Ababa, and Veyril Adell at ILRI Nairobi, excellently organized our visits and took care of our administrative needs. Finally, we are deeply grateful to all the ILRI scientists and other scientists of the Consultative Group on International Agricultural Research (CGIAR) centres, national agricultural research systems (NARS) partners, and ILRI graduate students who spent considerable time discussing with us during our missions in Addis Ababa and Nairobi.The training programmes of ILRI are designed to build and strengthen capacities in scientific and technical knowledge and skills for NARS scientists and technicians in developing countries. Thus, past ILRI CaSt activities were focused mainly on individual higher degree (MSc and PhD) training for postgraduate students, primarily from Ethiopia and Kenya (i.e. the countries where ILRI is situated and where its predecessors, ILCA and ILRAD, were headquartered). Training consists of three main categories, namely (i) degree training for graduate fellows (ii) non-degree training for research fellows, student associates, technical associates and (ii) attachment associates and group training for scientific and technical staff from the national agricultural research systems of developing countries. Group training courses offered are categorized into core courses, programme courses and network courses; they are usually of short duration with course contents, which include laboratory and field components in a variety of subjects. Over the past 20 years, about 135 short courses have been conducted on topics which are mainly technical although some were policy related (see for example annex 5, table 5.4 ).A training policy and procedures manual has been published to guide the efficient management of ILRI's training programme. An excellent range of high quality training and teaching resources materials in hard copies and electronic formats, that have been developed from these course (see annex 7)are available for use by students, scientists, technicians, agricultural training institutions and trainers in developing countries.In January 2002, the results of an in-house evaluation of the impact of ILRI's graduate fellowship programme was published; this report describes the tools used as a bench mark for similar studies. Between 1990 and2004, 186 PhD, 126 MSc and 437 attachments / student / technical associates as well as 610 participants in group training courses, benefited from ILRI's capacity strengthening activities which involved a total of 1359 persons including 376 women. ILRI's training programmes continue to make significant contributions to building national capacities in research and development of livestock science in Africa and other developing countries (see data in annex 5, tables 5.1-5.4)Discussions were held with scientists and students from various NARS and African universities who have benefited from training and other facilities of ILRI in order to obtain their views, experiences and suggestions for future directions of the capacity strengthening activities of ILRI. Some of the discussions were held with partner universities and research organizations in Ethiopia and Kenya as well as through teleconferencing with those from other African countries. Similar discussions were also held with some senior ILRI scientists at Addis Ababa and Nairobi and graduate trainees working at these two campuses. We also had the opportunity to meet with scientists from other CGIAR Centers posted at ILRI and noted their views on capacity strengthening. Salient observations from these discussions on different aspects of capacity strengthening are summarized below. interviewed have not carried out needs assessment for strengthening their research capacities and no formal discussions were held with ILRI about planning research according to needs. Most of the professors agreed that there is need to assess the capacity strengthening requirements and plan training accordingly, more so in view of pressure from national Governments to upscale output of specialists from the universities. Professors also indicated that there is pressure to undertake livestock research in such a manner that the output is beneficial to small holder resource-poor farmers.  In view of the above, the need was expressed to train university teaching and research staff to upgrade their knowledge and research skills to enable them to effectively plan research to benefit the resource poor and improve rural livelihoods.  Some of the Universities and NARI do not have well established and appropriate linkages or formal MOUs with ILRI for training and research. Even where such arrangements exist, most of the university and NARI staff are not well informed about such arrangements and therefore they are unable to take full advantage of ILRI's facilities. ILRI scientists are generally satisfied with the type of training programmes conducted and there is realization that ILRI should and can make significant contribution towards capacity strengthening of NARS  they feel it is difficult to make changes in the nature, contents and duration of the training programmes in view of limitations of manpower, time and funding support.  scientists fully realize that planning of training programmes with the objective of strengthening NARS based on discussions with different NARS partners is desirable and this would require continuous dialogue with them. it will be valuable to establish a process of interaction with a wide range of actors from the public, private and tertiary agricultural education and training sector to ensure that NARS have the appropriate capacities and skills to respond to the needs of different stakeholders in the livestock development sector.  there has been very little planning effort put into CaSt activities.  there is lack of policy guidance and defined targets for CaSt  there is lack of clarity about an appropriate approach and activities of CaSt in relation to the new strategy and goal of ILRI. However, a few scientists have a good understanding in this regard and feel that CaSt activities can be suitably modified by developing collaborative projects related to sustainable livelihoods.  there are a few projects that are need-based, multidisciplinary, development supporting and promote interaction with local research and development organizations; these offer additional scope for desired capacity strengthening. Such projects could be used as key entry points in a new CaSt strategy.  institutional changes could occur through the engagement of ILRI with NARS scientists in new innovation systems approaches to research, and pattern of implementation to reduce livestock-mediated poverty.Discussions were held with a few scientists from IWMI, ISNAR/IFPRI and CIAT about their interaction with ILRI scientists, involvement in research projects and their perceptions about capacity strengthening activities of CGIAR Centers in general. The observations from these discussions are summarized below: All the scientists of the CGIAR Centres consider capacity strengthening important. IWMI has developed policy guidelines for incorporating capacity strengthening activities in all of its research projects. This policy (reproduced in annex 6, )can be a suitable framework for developing CaSt policy guidelines for ILRI.  ISNAR scientists are keen to interact with ILRI scientists and through the series of training modules they have developed, they can assist ILRI with capacity strengthening particularly in relation to socio-economic aspects, environmental and gender issues, and participatory approaches.  CIAT scientists with livestock background and experience in participatory approaches located at ILRI in Addis Ababa could appropriately complement these approaches already adopted by ILRI's scientists and CaSt activities which are integrated into the research themes.All national scientists, current and past graduate fellows interviewed emphasized the usefulness of ILRI's individual CaSt activities for their research and professional development. Furthermore, co-supervisors from national universities of MSc and PhD students have had only limited involvement in the studies and so they have not benefited optimally through strengthening their individual research capacities and the institutional capacities of their universities.National universities and research organizations consider that ILRI should continue to play an important role in building the scientific capacity of their staff through individual higher degree studies and collaborative research programmes. Our discussions with teaching staff at representative universities in Kenya , Ethiopia and Tanzania as well as with researchers in Uganda and Mali, point to an increasing demand from NARIs and universities for MSc and PhD places at ILRI. For example, the government of Ethiopia has challenged the authorities of the Addis Ababa University (AAU) to increase its postgraduate intake to train scientific staff for the academic departments of the university and other higher agricultural training institutions as well as for the national agricultural research system. Over the next 5 years, postgraduate intake in the department of biology is expected to rise to over 130 students per year, and AAU is relying on ILRI to assist with postgraduate supervision in this ambitious human resources development programme. We doubt whether ILRI can afford the time and resources to respond adequately to such demands from NARS partners. The panel feels strongly that building national scientific capacity is the pivotal role of the universities and a stronger emphasis needs to be placed on developing their own capacity to contribute to this. We suggest therefore that ILRI should move towards focusing its CaSt strategy more on building capacity to build capacity, through institutional strengthening rather than on capacity strengthening per se.Through its CaSt activities over the past years, ILRI has accumulated considerable experience in individual capacity strengthening involving research participation of NARS scientists and technicians as well as university staff in ILRI projects.ILRI's short-term training programmes have provided opportunities which enabled several scientists and technicians from Africa and other developing countries to acquire new laboratory techniques and use sophisticated equipment and thus created a pool of well trained national and international scientists and technicians for work on livestock research and development.These scientists also improved their knowledge and skills in modern information management.The long-term training programme thus assisted NARS to obtain a critical mass of livestock research scientists which would otherwise be difficult to achieve from national resources. These scientists have, to a limited extent, proceeded to establish some levels of national livestock research and development programmes in their countries, promoted sharing and dissemination of information on livestock research and development through national and regional networking. ILRI's research scientists and information management specialists participated fully in the longterm training programmes, through providing excellent research supervision and good guidance for higher degree work. Through these efforts ILRI has contributed to the development, promotion and expansion of livestock research and development in Africa and other developing countries.Furthermore, ILRI has also successfully established functional working relationships with NARS partners in Africa. In the light of recent changes in agricultural and rural development demands, especially from NARS and the international development community , and the needs/opportunities to engage in new partnerships, the panel commends ILRI in its efforts to chart a new strategic direction for its CaSt activities and applying an innovation systems approach to make livestock research more relevant to sustainable improvements to the livelihoods of resource poor farmers in Africa and South Asia.However, the panel considers the following as the major the limitations of ILRI's training programmes  Majority of the training programmes were not directly related to the needs of the NARS programmes. Rather, most of the training programmes are based entirely on ILRI's approved research projects. The effect of this bias for ILRI's research programme focus in training has tended to limit the impact of ILRI's CaSt activities on livestock development in the region.  ILRI training is mostly of a technical nature for skills development. In many cases, the skills acquired could not be maximally used in the institutions of trainees because of lack of equipment and maintenance facilities there.  Young scientists who are accepted to work for higher degrees at ILRI do not have the freedom to choose research topics that are related to on-going NARS research programmes, they are compelled to work on topics within ILRI's research agenda which may have limited usefulness to national programmes.  Research supervisors nominated from universities where ILRI trainees are registered for higher degrees have marginal involvement in planning and conduct of the research as well as follow up of the work of trainees. University staff therefore miss the opportunity of deeper interaction with ILRI scientists and further strengthening of their own capacities for livestock research planning and implementation.  Most developing countries in Africa and elsewhere now need research that would support sustainable improvements in livestock productivity to benefit the resource poor (by improving livelihoods). However, ILRI's current training programmes do not include courses that would strengthen the capacity of NARS for planning and conduct of such research.ILRI's new livestock research and development strategy now calls for the joint development of the capacities of a broader range of partners or stakeholders, including GOs and NGOs, CSOs, farmers' organizations, private sector agencies, and consumers. Adopting this new approach will require that both ILRI as an institution and its scientists strengthen their capacities to work in effective partnerships and mutual learning mode. If ILRI can successfully establish such partnerships and achieve this mind-shift, it will make a significant contribution to CaSt partnerships where its comparative advantage lies in its ability and willingness to bring in the technical strength of its research team and facilities into such mutual learning contexts. ILRI should aim to be a valuable partner and should build effective CaSt partnerships with other organizations which bring complementary advantages in terms of process facilitation and mutual learning, without attempting to cover all aspects of CaSt activities related to innovation systems to enhance rural livelihoods.ILRI's comparative advantage to successfully develop this broader collaborative capacity lies in the existence of excellent research laboratories and facilities for post-graduate training, a well developed and advanced ICT unit and a wide range of high quality training and resource materials developed over several years of capacity strengthening activities. This model can form the basis for developing partnerships for capacity strengthening with research institutions and organizations in South Asia and other parts of the world. Furthermore, the new research paradigm and innovation systems approach to address sustainable livelihoods and livestockmediated poverty reduction provides a framework for effective collaboration with and capacity strengthening of a new range of ILRI partners.However, the current absence of a specific ILRI CaSt policy and strategy, and the limited numbers of scientific staff available to cope with increasing demands for graduate training and expectations from NARS partners, could strongly limit the scope and agenda of such efforts to meet the expectations of ILRI and its partners.To operationalize the concept of pathways out of poverty, ILRI has organized its research efforts around five multi-disciplinary themes as follows:Theme 1: Supporting policy-making and priority setting for livestock research and development: current and future roles of livestock in poverty reduction Theme 2: Enabling access to innovation: adapting and delivering technology and information.Theme 3: Improving market access : opportunities and threats from globalization and the livestock revolution Theme 4: Securing assets: better livelihoods through the application of biotechnology.Theme 5: Sustaining lands and livelihoods: improved human and environmental health. Accordingly, ILRI has to change the way it conducts its research business to ensure maximum impact on poverty, implying the adoption of an explicit strategy that targets poverty, an innovation systems research approach that ensures full stakeholders involvement and focus on markets and market access. This shift in research paradigm also implies a whole series of changes in approach, planning and management of research as well as in attitude (see box 1).In addition to bringing about these changes, there is a simultaneous requirement to develop capacity strengthening within ILRI so that the institute can effectively manage its livestock research and development process to achieve the new goals set for itself and its partners. This should be an important activity in the agenda of a more robust CaSt Unit of ILRI.Furthermore, it is essential to promote the appreciation and common understanding of the implications of development/livelihood issues in research and the concept of need-based capacity strengthening amongst the ILRI research team and its partners. From academic research to development research  From commodity and reductionist approach to whole farm & systems approach  From technology transfer to innovation systems approach.  From mono-disciplinary to multi-disciplinary research, with cutting edge science complemented with soft sciences such as innovation systems analysis, institutional change and learning, and socio-economics.  From planning and evaluation based entirely on scientist's perception to mix of scientist and farmer perception, incorporating gender issues. ) or does ILRI wish to play a more proactive and strategic role in which CaSt is not a spin-off of researcher participation, but an activity in its own right, with its own strategic objectives, like the example of IWMI ( see annex 5 obtained from the IWMI website) that has a clearly defined capacity building policy and strategy. By adopting a pro-active role and strategy for CaSt, ILRI would be better able to strengthen the research capacities of its partners to engage in more effective and productive collaborative programmes to address livestock-mediated poverty reduction in a sustainable way.How then can ILRI successfully organize its CaSt activities to achieve the maximum possible impact on strengthening capacities for live-stock mediated poverty reduction?. The panel recognizes that ILRI is an international research organization, but ILRI's goal in the 2010 strategy elevates capacity strengthening, together with the delivery of high-quality science, as its two main thrusts. However, only limited reference is further made to CaSt in the strategy document. If ILRI decides to go beyond the \"spin-off CaSt mode\", the CaSt Unit needs to place greater emphasis on engaging with national and regional educational , research and development partners, and identifying the type of capacities that will be strengthened, how this contributes to the desired impacts to achieve a multiplier effect, and how it will \"build capacity to build capacities.\" The new ILRI strategy calls for an innovative and strategic approach in the selection of appropriate partners, considering recent changes in research paradigm, and the extension of ILRI's mandate into south Asia. ILRI has a global mandate, but has prioritized sub-Saharan Africa (SSA) and South Asia.Partnerships should be developed with research as well as development organizations with a research base, for desired impact in a reasonable time frame and according to the vision of ILRI. As an international CGIAR center, the mandate of ILRI is to deliver international public goods, therefore ILRI must now move its programme approach to the innovation systems mode. This move involves interactive learning and partnering with relevant institutions and individuals that are also involved in generating, diffusing, adapting and using new knowledge to address poverty reduction. Therefore, the partner organizations selected by ILRI should share the same vision as well as approach to livestock research. Selected partners should have some complementary competencies in research and/or livestock development (including aspects like socio-economics and environmental issues related to livestock production). It is suggested that organizations with competence and experience in farming systems, on-farm farmer participatory research and PRA techniques be chosen in addition to those having well developed research facilities. An additional factor is to choose organizations that will 'expand the capacity strengthening activities of ILRI' and strengthen other organizations. Thus some of the limitations of ILRI can be overcome and these partner organizations can complement ILRI in its effort to strengthen NARS and livestock development programmes.We discuss here establishing partnerships in India as an example to illustrate the elements that ILRI may wish to take into account in the choice of partners to achieve its CaSt objectives. India offers good prospects to develop meaningful partnerships to show impact since livestock development has emerged as a major tool in poverty alleviation programmes and there is a growing demand to make such programmes more effectively address the needs of livestockdependent poor people.It is suggested to initiate a dialogue between ILRI and the Indian Council for Agricultural Research (ICAR), the National Centre for Agricultural Economics and Policy Research (NCAP),a few selected research institutes,agricultural universities and development organizations to discuss areas of collaborative research in which ILRI can effectively contribute towards capacity strengthening and to have an impact on sustainable livelihoods for resourcepoor livestock farmers. NCAP has analyzed livestock research programmes and published policy papers indicating research priorities and these reports can serve as a good base for discussion.The dialogue may be in the form of brainstorming workshops organized initially at the ICAR headquarters, followed by a series of regional workshops (in regions chosen for involvement). Based on the outcome of these workshops, joint projects may be formulated, addressing capacity strengthening needs of the organizations and development needs of the region. The projects should serve as effective demonstration of multidisciplinary and livelihood related approaches to research. Simultaneously, joint projects of technical nature may be developed with research institutes in areas where interest has been shown by ICAR, for example the development of vaccines and diagnostic aids. Research in livestock extension and the development of extension and training material is another area where ILRI can make useful contribution in India.The operation of an umbrella Memorandum of Understanding (MOU) with the National Dairy Development Board (NDDB) and the ICAR would be a first step in the right direction. However, the MOU with the ICAR should be carefully formulated to offer : flexibility of choosing partner organizations and programmes in line with the agenda and mandate of ILRI and in consultation with the ICAR and other NARS partners.  sufficiently long period in order to have meaningful involvement with NARS partners.  scope for separate MOUs for specific programmes/projects with selected organizations (ICAR institutes and Universities), specifying details of activities, roles and responsibilities of each organization (keeping in view CaSt activities).  from the capacity strengthening objective, a desirable approach is to jointly formulate projects/programmes, which include systems and participatory approach, gender and environmental issues and are focused on needs/constraints of the resource-poor livestock farmers. Such approach will provide hands-on experience and ample opportunities for orientation and training. It would be most desirable to involve Non-Governmental Organizations (NGO), sociologists and innovation systems experts as consultants in such projects (Indo-Dutch Biocon Project of the ICAR is a good example).Amongst ICAR and other research-based organizations, partnerships with NCAP should be preferred as it would help in clear understanding and influencing research policies.It is suggested that some of the international organizations such as Swiss Development Cooperation, the Department for International Development (DFID), the Australian Centre for International Agricultural Research (ACIAR), Aga Khan Foundation, Ford Foundation that are interested in supporting development research and capacity strengthening, may be approached for funding support. For technical projects funding can be secured through National Agencies like Department of Biotechnology, Council of Scientific and Industrial Research and the ICAR.The shift in ILRI's research paradigm aims to contribute to poverty reduction through promoting innovations that directly affect the lives and well being of resource poor small holder producers and pastoralists through maintaining strength in mixed cropping-livestock systems and increasing market oriented activities. To achieve these objectives, ILRI has identified a diverse range of institutional partnerships, listed in the MTP 20052007, which involve engagements with appropriate stakeholders and partners to conduct research that is demand-driven and impact oriented. Furthermore, this new research focus demands new kinds of collaborative arrangements that exploit a wider range of opportunities that currently exist in the international agricultural development and poverty reduction arena.  Global Open Agriculture and Food University (GO-AFU) provides opportunities for the development and production of appropriate teaching and resource materials based on ILRI's existing training resources and materials which can be fed into the programme for distance learning in the GO-AFU.  The ICRA Global partnership strategy -This strategy aims to strengthen the capability of educational institutions in developing countries to provide hands-on training in managing rural innovation systems with the participation of a broad range of research and development partners across sectors and scales. Strategic collaboration with this ICRA programme, is an opportunity for ILRI's research themes to strengthen their capacities jointly with those of their partners in innovation systems approaches to agricultural research for development leading to livestock-mediated poverty reduction. Through collaboration with this ICRA programme, ILRI and partners can also contribute to strengthening educational institutions. ICRA's strategy puts a strong emphasis on sub-Saharan Africa. This could be operationalised by establishing joint partnerships in the countries where both ICRA and ILRI are active and using these partnerships to jointly strengthen the capacity of educational institutions to strengthen capacities in applying innovation systems approaches. CaSt activities could be organized around interactive learning experiences in the innovation process in which ILRI and partners are involved (hands-on learning by doing) and lessons learned from these. CaSt could target both current professionals and students in the innovations systems.  Biosciences Eastern and Central Africa (BECA)the goal of this platform is to \"apply bioscience research expertise to produce technologies that target poor farmers to improve their productivity\". Based at ILRI, Nairobi, this facility offers the opportunity for ILRI to strengthen the capacities of African scientists in the application of biosciences to improve the productivity of resource poor livestock producers.  Regional Agricultural Information Network, RAINthe strategic objective of RAIN, which is one of the 17 regional networks coordinated by ASARECA, is to enhance access to and utilization of information for regional agricultural research and development. The goal is to promote the provision and sustainable management of client-oriented agricultural information throughout eastern and central Africa. Emphasis is to strengthen regional capacities to access, generate, exchange, package, disseminate and use information for economic growth. RAIN offers ILRI, through appropriate partnerships, an information management platform to strengthen African regional capacities in information and communications management and the sharing of information in the adoption and use of the innovation systems approach. Using its modern and advanced ICT facilities and expertise, ILRI can strengthen capacities of NARS partners in information and knowledge management exploiting ILRI's comparative advantage and experience of new developments in this area.  CGIAR Centers -the location of certain CGIAR centers at ILRI, namely IFPRI/ISNAR, IWMI, and CIAT should be fully exploited, through joint programmes, to complement efforts at internal institutional capacity strengthening at ILRI and for NARS partners.Partnerships and capacity strengthening activities should be meaningful, \"value-adding\" and mutually beneficial so as to widen the scope and make ILRI's research delivery systems more effective. But the range of partners and the types of partnerships desired, as specified in the MTP, is so wide that it is useful for ILRI to establish a set of criteria to exploit the opportunities for collaborative capacity strengthening. The panel suggests the following guiding principles and methods for collaborative capacity strengthening partnerships  Targeting a limited and manageable number of partner organisations. Building partnerships around opportunities or problems that are jointly recognized by the partners and have significant priority for them.  Diversity of partners so as to cover all partners that are essential for impact in terms of livestock-mediated poverty reduction.  Sufficient duration to achieve the objectives that inspired the collective action of the partners, after which the partnership will disband or be re-constituted to adjust to new needs.  Clear planning and task division, clear commitment to task, good management and recognition of the need to build trust.  Selection of partners on the basis of criteria derived from a list of institutional and individual capacities needed for the new ILRI strategy and research paradigm.  Consistency with ILRI's new vision and strategy so that capacity strengthening activities can effectively contribute to ILRI's research agenda and capabilities.  Shared vision and programme objectives to ensure that the capacity strengthening activities are directed to achieve the same goals.  Equal partnership,and a move towards the concept of \"building capacity to build capacities\" to achieve sustainability.  Strengthening ILRI's institutional capacity to facilitate implementation of collaborative programmes with partners and responding to the new challenges through changes in research approach and mindsets.  Partnerships built on the basis of comparative advantage and complementarity to optimize resource use and expertise of the partners.  Partnerships that foster a culture of innovation, interactive learning and change, developing and enhancing individual awareness, knowledge and skills in a supportive external environment. identify and target capacity strengthening opportunities in regional and sub-regional organizations and programmes.  Undertake detailed surveys of the strengths and weaknesses of potential partners, as well as ILRI, in order to determine the nature of the capacity strengthening partnerships.A rapid assessment approach and mainstreaming of the survey process will maintain close linkages between ILRI and its range of partners and stakeholders which will include NARS, the public and private sector and tertiary agricultural education and training institutions.  Conduct a rapid needs assessment of the capacity strengthening needs of stakeholders and the broad range of identified ILRI partners with the purpose of setting up a process/mechanism that facilitates continuous dialogue to remain relevant, flexible and responsive in order to keep abreast with developments and changing needs in the agricultural sector.  Based on the outcome of the survey, establish formal partnerships with Memoranda of Understanding and Letters of Agreements which outline details on specific programme activities, with clearly defined responsibilities, time-phased targets and outputs.  Formulate an ILRI CaSt Strategy that will address the needs for institutional and individual capacity strengthening of ILRI and its partners.Following exhaustive considerations of the issues addressed during this review, and taking into account the important need for an effective capacity strengthening strategy that ILRI now requires to meet its goal of reducing poverty and making sustainable development possible for poor livestock keepers, the panel makes the following recommendations.Recommendation 1. Managing the new ILRI programme strategy ILRI's new strategy implies a paradigm change requiring new knowledge, skills and mindsets (social sciences, innovation systems approaches and soft skills). These approaches may be entirely new to many staff and partners with specific implications for an internal ILRI capacity strengthening effort requiring strong support from management. Opportunities should be provided to ILRI staff to acquire new soft skills for facilitation of multi-stakeholder innovation processes, communication, facilitation, negotiation, conflict management, teamwork, planning, systems thinking as well as social scientists with practical grasp of policy analysis as well as livelihood and gender analysis. The panel recommends the initiation of CaSt activities to promote internal understanding of the issues of sustainable livelihoods and poverty and their implications for research planning and implementation. ISNAR which is now physically located at ILRI Addis Ababa, and other agencies, such as ICRA, have developed a series of highly relevant learning modules on these aspects which ILRI can immediately access and through the proposed ILRI/ISNAR/ICRA collaboration.According to ILRI's Strategy to 2010, the guiding principle relating to capacity strengthening states as follows: Strengthening the capacity of ILRI and its partners to contribute to the identified research themes. This will extend beyond running courses and training students to innovative training activities and research partnerships.ILRI's NARS partners expect increased and more diverse assistance from ILRI for individual and institutional capacity strengthening. New opportunities are currently available for strategic collaboration with national, sub-regional and international partners for capacity building and these developments demand a new and expanded role for the CaSt Unit.To facilitate the functioning of this Unit, a clearly defined ILRI CaSt Policy and Strategy is required. The ILRI CaSt policy should address the institutional capacity strengthening needs of ILRI and its partners in order to achieve common goals.The policy should also give clear guidelines about coordination of capacity strengthening activities outlined in the MTP, establish effective linkages and collaboration with the Human Resources Unit and the project activities of the five research themes.A re-organized and strengthened ILRI Capacity Strengthening Unit should thus be established with its own, albeit integrated portfolio of activities to operationalise these matters.The re-orgnized CaSt Unit should maintain its current functions but also extensively expand its activities so that rather than being a spin-off of researcher participation, CaSt plays a more proactive and strategic role as an activity in its own right, with its own strategic objectives. CaSt Unit activities should be designed in two directions.First through research participation and short courses (including the development of training materials). The content may change, focusing more attention on new methodologies needed for the new research paradigm.Secondly to design activities to give more structured support to strengthen the capacity of educational institutions thereby building capacity to build capacity for research and development leading to livestock-mediated poverty reduction.We recommend a strengthened CaSt Unit embedded within the Research Theme 2 with its own programmes and budget. The following staffing structure and general terms of reference are recommended.Staffing structure: We further recommend that ILRI may seek funding for the CaSt programmes from international foundations such as the Bill Gates Foundation, Ford Foundation, Rockefeller Foundation, Aga Khan Foundation, Gatsby Foundation and Kirkhouse Foundation as well as through collaborative national, regional and sub-regional projects within the NEPAD and FARA programmes Recommendation 4. Partnerships ILRI's new strategy calls for more formalized joint development of projects with a broader range of partners and stakeholders, including GOs, NGOs, SROs, farmers organizations, agricultural training institutions, the private sector agencies and consumers. The MTP presents a formidable list of partners and the panel is of the view that any attempt to establish collaboration with such a large group of partners may dilute ILRI's efforts and diminish the chances of making the desired impact. We therefore recommend that ILRI adopts a carefully designed strategic approach to the selection of partners in order to achieve ILRI's goals and desired impact. Partnerships and alliances should be maintained only for as long as the relationships are mutually beneficial to ILRI and the partners.Assuming that ILRI management endorses our findings, the following process would facilitate implementation of our recommendations.1. ILRI should appoint a small implementation committee consisting mainly of internal ILRI staff, but with inputs from a few external members. 2. The Terms of Reference of the implementation committee should be carefully formulated to include the following tasks. ","tokenCount":"6782"} \ No newline at end of file diff --git a/data/part_3/3095602552.json b/data/part_3/3095602552.json new file mode 100644 index 0000000000000000000000000000000000000000..384092fd2d5eae98e78c198e1398f0b9b24e06d3 --- /dev/null +++ b/data/part_3/3095602552.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"9ab3689737a19c644abf63de9a21f716","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/184086e6-3a16-43bb-8b07-5dee9b997d59/content","id":"1358671735"},"keywords":["NDVI","series temporales","SPOT","enfoque multiescalar","percepción remota NDVI","time series","SPOT","multi-scalar approach","remote sensing"],"sieverID":"654c2392-8b45-467b-a323-705dfafda557","pagecount":"12","content":"Resumen: Los índices de vegetación suponen una de las principales fuentes de información para el monitoreo y espacialización de la vegetación a distintas escalas, siendo el Normalized Difference Vegetation Index (NDVI) uno de los más utilizados. Este trabajo pretende describir y analizar la tendencia del NDVI en los sistemas ambientales de Uruguay, como una variable síntesis del comportamiento del sistema ambiental. Se aplicó un análisis multiescalar (país, cuenca, sitios), mediante la utilización del análisis de series temporales, siendo las imágenes SPOT 4 y 5, a través del programa del instrumento Vegetation (VGT) la fuente de información. Las series temporales analizadas mostraron un ajuste significativo del modelo de Autocorrelación Integrado de Medias Móviles (ARIMA), siguiendo una autocorrelación de orden 2, con nivel de integración de orden 1, ARIMA (211). Se observó una tendencia significativa a la baja del NDVI para el total de las unidades espaciales, siendo las unidades agrícolas (escala sitio) las que presentaron mayor tendencia a la baja. El desarrollo del estudio permitió construir una base de datos sin antecedentes en Uruguay, junto con la elaboración de una metodología precisa y robusta para el análisis espacio-temporal del NDVI. Se demuestra que la teledetección es una herramienta útil para la mejorar de la gestión de los sistemas ambientales.Los territorios de la cuenca del Río de la Plata vienen atravesando una serie de transformaciones de la cobertura vegetal durante las últimas décadas, impulsadas por un fuerte proceso de intensificación agraria (IAI, 2011). Este proceso afecta al comportamiento y la dinámica espacio-temporal de la vegetación, alterando i) el clima, ii) el uso de la tierra, iii) la biodiversidad, iv) los ciclos biogeoquímicos (Vitousek, et al., 1997;Chapin, et al., 2000;Norris, et al., 2003;Hooper, et al., 2005). Los Sistemas de Información Geográfica (SIG) y la teledetección constituyen herramientas fundamentales que permiten evaluar estos cambios (Guerschman, et al., 2002;Seyler, et al., 2002;C. Zhang, et al., 2007).Durante los últimos años existe un aumento sostenido en la utilización de imágenes satelitales de baja resolución para el monitoreo de la variación anual de la vegetación en escalas pequeñas de análisis. Las bajas resoluciones espaciales son contrarrestadas por altas resoluciones temporales (Carreras, et al., 2002;Guissard, et al., 2004;Tarnavsky, et al., 2008). La evolución y el comportamiento de la productividad primaria, asociados al desarrollo de diversas técnicas que buscan la medición temporal y espacial de la vegetación, suponen un desafió constante en la investigación a partir de técnicas de teledetección (Moulin, et al., 2003;Chiesi, et al., 2005).En este contexto, los índices de vegetación se han convertido en las principales fuentes de información para el monitoreo y espacialización de la vegetación y sus variaciones. El más utilizado es el Normalized Difference Vegetation Index (NDVI), siendo el resultado de la aplicación de operaciones de álgebra de imágenes entre dos bandas espectrales (rojo e infrarrojo cercano). Este índice es un indicador directo de la cantidad de biomasa verde fotosintéticamente activa (Tucker y Sellers, 1986) y se encuentra fuertemente correlacionada con la productividad primaria neta aérea (Prince, 1991;Paruelo, et al., 1997). El NDVI ha sido ampliamente utilizado a diversas escalas: locales (INIA-GRAS, 1999), regionales (Paruelo, et al., 2004), continentales y globales (Zhao y Running, 2010). El estudio de la vegetación con imágenes de alta y baja resolución, permite realizar cartografía de la distribución espacial y temporal, con altos niveles de precisión (Xiao, et al., 2002;Cihlar, et al., 2003). Esta metodología de trabajo permite interpretar la heterogeneidad espacial de la información contenida en las imágenes de NDVI (Chirici, et al., 2007).El Instrument Vegetation (VGT) es un producto generado por la combinación de imágenes del satélite SPOT (Satellite Pour l'Observation de la Terre) del Centro Nacional de Estudios Espaciales de Francia y Bélgica en cooperación con la Agencia Espacial Europea. El sistema SPOT registra información en cuatro bandas espectrales (azul, rojo, IR cercano e IR medio) y permite disponer de imágenes diarias de 1000 metros de resolución espacial para casi la totalidad de la superficie terrestre del planeta. El instrumento VGT fue creado para ofrecer una fuente de información permanente para el monitoreo de la vegetación a nivel global y continental (GMES, 1998), a nivel regional (Carreras, et al., 2002;Telesca y Lasaponara, 2006) y a nivel nacional (Kinyanjui, 2011).La expresión del NDVI se puede visualizar y analizar a distintas escalas espacio-temporales (Simic et al., 2004) siendo de gran utilidad para la identificación de tendencias en distintos territorios. La escala refiere a las dimensiones físicas de los fenómenos y las entidades observables que ocurren en un espacio y tiempo determinado (O'neill y King, 1998 ), en el marco de la interacción permanente entre sociedad y naturaleza. Un mismo fenómeno o proceso, al estar regulado por mecanismos distintos, puede generar patrones a distintas escalas espaciales (Wiens, 1989;Levin, 1992). and a level of integration of order 1, ARIMA (211). A significant decline of the NDVI over all spatial units was found, with agricultural units (site scale) showing the most negative slope. This study provides baseline data on changes in vegetation productivity for Uruguay, and develops an accurate and robust methodology for spatio-temporal analysis of NDVI series. Remote sensing techniques are shown to be relevant to improve the management of environmental systems.En este sentido, para el análisis espacial se va a utilizar la multiescalaridad, entendida como la conjunción de diferentes escalas espaciales, siendo un enfoque epistemológico distinto al análisis de las escalas por separado, y permite analizar la multidimensionalidad de los objetos en estudio (Funtowicz y Ravetz, 1991;Font, 2000). Para el análisis temporal se aplicarán análisis estadísticos de series temporales para identificar la evolución y tendencia del NDVI (Xiaoliang, et al., 2007) utilizando modelos ARIMA (Jiménez, et al., 2006).En el desarrollo del trabajo se abarcan tres escalas espaciales: la escala país, la escala cuenca hidrográfica y la escala sitios. La escala país abarca la mayor superficie de las tres (176.215 km 2 ), y se refiere a la totalidad del territorio de Uruguay. Esta escala de análisis está asociada directamente a las decisiones de las políticas institucionales del Estado, que generan transformaciones en la orientación de la dinámica territorial del sector agropecuario en el Uruguay (García Préchac, et al., 2010) y afectan a las dimensiones sociales, culturales, económicas y biofísicas de los territorios agrarios. Las diversas interacciones que se generan en los territorios agrarios producen un impacto en el comportamiento de la productividad primaria neta.La segunda escala se refiere a la cuenca hidrográfica, siendo seleccionada la cuenca del arroyo Tomás Cuadra (Figura 1a y 1b). Esta unidad abarca una superficie de 1043 km 2 , se localiza en el centro del país, íntegramente en el departamento de Durazno. Se refiere a una unidad de carácter natural que integra diversos procesos biofísicos, principalmente los relacionados con la dinámica del agua. La cuenca se localiza en un área de frontera agrícola que sufre transformaciones en la cobertura del suelo de manera acelerada, principalmente durante los últimos 10 años, pasando de TElEDETECCIóN (2015) 43, 31-42 Ceroni et al.una superficie del 78,0% de pastizal destinado a la ganadería en el año 2000, al 51,9% para el año 2011. Este decrecimiento es producto del aumento de superficie agrícola y forestal. Actualmente, los usos de suelo se distribuyen espacialmente de la siguiente manera: 45% ganadería extensiva, 35% agrícola extensiva, 15% forestal y 5% bosque fluvial y humedal.La tercera unidad de análisis corresponde a la escala sitio, que está integrada por unidades espaciales en función del uso agrario dominante. Las unidades están determinadas por la vegetación dominante, asociada a los atributos edáficos y geomorfológicos y configurando cierta uniformidad en la misma (Gasto, et al., 1987). La cuenca del arroyo Tomas Cuadra está dividida en estas unidades en base a atributos biofísicos, siendo de menor tamaño que las escalas anteriores y de menor complejidad. Presentan la característica de ser unidades relativamente homogéneas en sus atributos de uso, más de un 70% de la unidad es ocupado por el uso productivo que la define. La elaboración fue basada en una clasificación de usos de suelo elaborada mediante imágenes Landsat 5 TM. De esta manera, se elaboró cartografía de la distribución espacial y temporal de la cobertura vegetal con altos niveles de precisión (Cihlar, et al., 2003). A los efectos de minimizar errores en la clasificación, se analizan zafras de cultivos y cosechas opuestas, realizando un ajuste con salidas a terreno. Los atributos estructurales utilizados fueron edafología, geología y topografía. Se consideró la información elaborada por la Comisión Nacional de Estudio Agronómico de la Tierra (CONEAT) del año 1979 para la información edafológica. Para la información geológica, se utilizó la Carta Geológica a escala 1:500.000 (Preciozzi, et al., 1985). Para el caso de la topografía, se elaboró un Modelo Digital del Terreno (MDT) con resolución de 30 m/píxel a partir del satélite Aster-NASA (D 'Ozouville, et al., 2008;Rödelsperger, et al., 2010). Las unidades de uso agrario dominante se realizaron en base a la integración espacial de las variables estructurales mencionadas anteriormente y de variables de uso del suelo, utilizando cuatro clases básicas (ganadería, agricultura, forestación y bosque-humedal) y sus combinaciones. Sobre la base de la distribución espacial de cada variable se identificaron, de forma cualitativa, patrones de uniformidad de los atributos, seleccionando el mejor ajuste espacial. Este procedimiento se elaboró en base a la integración de la información en un Sistema de Información Geográfica para la cuenca. Utilizando esta metodología se identificaron 8 unidades de uso agrario dominante (Figura 1c).El NDVI es un índice de vegetación que combina las bandas electromagnéticas del rojo y del Infrarrojo y se define como (Carlson y Ripley, 1997):(1)donde IR: valores de reflectancia o radiancia espectral de la superficie en la banda del infrarrojo cercano del espectro electromagnético, R: valores de reflectancia o radiancia espectral de la superficie de la banda del rojo del espectro electromagnético.Las imágenes del sistema SPOT-VGT están disponibles en la web a través de la plataforma de VITO (www.spot-vegetation.com) a partir de 1/4/1998. Para cumplir un ciclo completo de 14 años se obtuvieron imágenes síntesis cada 10 días (VGTS 10) mediante el método del máximo valor (Holben, 1986) desde el 1 de abril de 1998 hasta el 31 de marzo de 2012, 504 imágenes en total. Las imágenes síntesis obtenidas presentan su corrección radiometría en todos los píxeles, basada en una función lineal que relaciona los valores de la imagen con los valores TOA (top of atmosphere), presentando un desplazamiento nulo en TOA (www.spot-vegetation.com). Estas imágenes presentan una resolución radiométrica de 8 bits, en donde los valores digitales originales (DN) se presentan en una escala de grises que varía entre 0 a 255. Se realizó una transformación de estos valores DN a valores de NDVI mediante una función lineal (fórmula 2) elaborada por el equipo técnico de SPOT. Finalmente, se aplicó el producto Status Map (SM) para filtrar los datos de NDVI con valores fuera del rango del NDVI (<0; >1).donde: a = 0,004 y b = -0,1La elaboración de las bases de datos consistió, en primer lugar, en la corrección geométrica de cada imagen. Este procedimiento se basa en transformar la imagen del sistema de referencia espacial original, a una imagen con sistema de referencia espacial acorde al área de estudio, considerándose en este caso el datum WGS84 bajo el sistema de proyección Universal Transversa Mercator (UTM) zona 21 sur. Para ello, se elaboró una máscara (600×600 píxeles) de dimensiones regulares, sobre la cual se realizó un grillado de 50×50 píxeles. Posteriormente, se identificaron diferentes puntos de control en el conjunto de la imagen, estableciéndose relaciones geométricas entre las imágenes. Esta georreferenciación se estableció mediante un ajuste de un polinomio de segundo grado (Campbell, 1996;Chuvieco, 2000) con un error medio cuadrático de 7 m. Este procedimiento no contó con normalizaciones de ajuste topográfico debido a la baja topografía que presenta el área de estudio (Riaño et al., 2003).En segundo lugar, todas las imágenes se transformaron de formato raster a vectorial. Dicha transformación es un paso intermedio para obtener una matriz única de datos donde en las filas se ubican los valores de los píxeles y en las columnas los valores de NDVI correspondientes a cada una de las fechas de la serie temporal. La construcciónEl instrumento de análisis estadístico utilizado para reproducir el comportamiento de la variable a lo largo del tiempo, fue mediante el análisis de series temporales. La aplicación de estos métodos permite, por un lado, descubrir el comportamiento de la estructura de los datos observados y, por otro, ajustar modelos y realizar pronósticos sobre las variables analizadas (Jiménez et al., 2006).Para este trabajo se utiliza al enfoque Box-Jenkins como el mejor ajuste al comportamiento del modelado de la serie, ya que se considera que los datos tienen un comportamiento estocástico. Se entiende por proceso estocástico a una familia de variables aleatorias que, en general, están relacionadas entre sí y siguen una ley de distribución conjunta (Gonzáles y Román, 2009). Dentro de este enfoque se trabajó con el modelo de Autocorrelación Integrado de Medias Móviles (ARIMA) (Gonzáles y Román, 2009) para poder modelar la serie y posteriormente realizar los cálculos de la tendencia.El procedimiento consistió en varias etapas: en primer lugar se elaboró la curva del gráfico de los datos originales para tener una primera aproximación del comportamiento de la serie original. Esto permite identificar si a priori la serie presenta una distribución cíclica, con tendencia pronunciada o con estacionalidad. Posteriormente, se obtuvo la distribución de los residuos para analizar la estacionalidad según la media y la varianza, lo que permite eliminar la tendencia determinística existente e identificar la variabilidad de los datos en relación a la media. En esta etapa se aplicó el test Dickey-Fuller (Test DF) para verificar si la serie de datos sigue un comportamiento aleatorio no estacionario o alternativamente un proceso autorregresivo estacionario. Tras identificar la estacionalidad, se analizó la serie mediante la autocorrelación simple y parcial para identificar los retardos de los datos y cómo el valor (n-1) puede estar afectando al valor (n) o (n+1). Finalmente, para asegurar la validez del modelo, se realizó la autocorrelación parcial de los residuos de los datos modelados, observándose si más del 90% de los valores se encuentran dentro del rango de confianza del 95%. Después de la validación del modelo se ajustó el comportamiento de la tendencia utilizando el modelo de regresión lineal generalizado, calculando: el coeficiente angular (a), el coeficiente de determinación (R 2 ) y el coeficiente de regresión (r) con su correspondiente significación.Para poder identificar la distribución espacial de la tendencia de la cuenca se aplicó el modelo ARIMA para cada uno de los píxeles, obteniendo un mapa de tendencia del NDVI para el período temporal analizado.El análisis de tendencias se utiliza como un parámetro estadístico del comportamiento de la productividad primaria neta aérea, ya que permite la comparación directa de las diferentes escalas espaciales y, a su vez, ayuda a entender cómo evoluciona temporalmente la productividad. En definitiva, sintetiza la lectura de la evolución de los datos del NDVI.Para tener una primera aproximación del comportamiento del NDVI para los 14 años considerados se generaron gráficos de la evolución del NDVI a lo largo de cada año para todas las unidades espaciales analizadas (Figura 2). Lo primero que se observa en la figura 2 es que existen dos años (1999 y 2009) donde el NDVI presenta valores bajos y, a partir del año 2001, se registra un incremento sostenido. Si bien no se ha realizado un análisis estadístico causal de por qué existe una disminución sensible en esos años, varios estudios (Fang et al., 2001;Mohamed et al., 2004;Zhang et al., 2011) afirman que existe una relación estadística positiva entre el NDVI y la precipitación. En este sentido se puede afirmar que la disminución del NDVI coincide con dos sequías importantes que se registraron en el país, y el incremento del NDVI con un aumento por encima de la media de la precipitación.La figura 3 sintetiza los comportamientos más diferenciados. En ella se evidencia que la unidad forestal (Z1) presenta valores de NDVI más elevados que el resto de las unidades, debido a la mayor cantidad de biomasa fotosintéticamente activa que existe en las plantaciones forestales artificiales (eucaliptos y pinos). La unidad humedal/bosque fluvial (Z8) presenta los valores más bajos producto de ser una unidad natural donde su vegetación 615 616 617 618 619 620 621 Figura 3 622 es constante durante todo el año, no sufriendo grandes variaciones y buscando equilibrios entre los excesos de nutrientes que pueda recibir de la cuenca y los déficits de agua durante las sequías. Las restantes unidades espaciales presentan un comportamiento similar durante el período, diferenciándose el último año, donde la unidad agrícola-ganadera (Z3) presenta un incremento elevado en relación al resto de las unidades. Esta unidad presentó un cambio de uso de suelo de pastizal a agricultura, lo que conduce a un aumento de la mineralización de la materia orgánica del suelo durante los primeros años del cultivo (Santos y Camargo, 1999), generando un incremento de la productividad agronómica (Deng et al., 2006;Yan et al., 2009).El modelo utilizado para el análisis de las series temporales del NDVI fue ARIMA (2,1,1), lo que establece una autocorrelación de orden 2, con un nivel integración de orden 1 y una media móvil de orden 1. En la figura 4 se observa la distribución temporal del NDVI mensual promedio de la totalidad de los píxeles para cada una de las unidades espaciales analizadas, integrando los datos originales (puntos rojos) y la línea del modelo ARIMA (azul). Además de la distribución de la serie se trazó el modelo de tendencia lineal general (MLG) con sus correspondientes coeficientes. Estos resultados proporcionan una fuerte evidencia de que se registra una tendencia general a la baja del NDVI, concordante con las tendencias encontradas para la región pampeana (Zhao y Running, 2010;Samanta et al., 2011;Barbosa et al., 2013).El análisis multiescalar permite un avance en la interpretación de las tendencias identificadas en las distintas escalas. Los procesos y decisiones que se toman en las distintas escalas influyen en las manifestaciones del territorio. Así, las escalas consideradas no generan unidades espaciales de comportamiento y, por lo tanto, de análisis, independientes. En especial, las políticas agrarias a escala nacional asociadas a la producción global de materias primas (commodities) en función del mercado internacional, influyen en las decisiones prediales que toman los productores. Estas decisiones individuales tienen una expresión particular menor medida de las unidades ganaderas. Merece destacar que sólo el 0,5 % de la cuenca registró tendencia positiva asociada a la unidad forestal, esto se debe a que son píxeles localizados en zonas recientes de plantación forestal (eucaliptos y pinos).Este comportamiento diferencial, conjuntamente con el aumento de los rendimientos de las cosechas agrícolas de secano (DIEA, 2013), sugiere considerar que no solamente al factor climático puede ser una explicación de las tendencias registradas, sino que se deben considerar también los factores de intensificación agraria en el marco del cambio ambiental global que existe en la región.El análisis multiescalar del NDVI permite evidenciar cómo el comportamiento local de la variabilidad del NDVI ayuda a mejorar la interpretación de los resultados obtenidos por Zaho y Running (2010), Samanta et al., (2011) y Barbosa et al., (2012), que realizando un análisis global reportan un descenso del NDVI para la región pampeana.Se ha presentado un análisis espacial y temporal del NDVI para el Uruguay en un contexto de intensificación agraria, elaborando una base de datos sin antecedentes en el país.Del análisis de los resultados se desprende que el descenso del NDVI es producto de un conjunto de factores que operan de forma interrelacionada en todas las escalas analizadas. Se evidenció que a escala local (sitio), donde se encuentran los sistemas más intensivos (agrícolas), los valores de NDVI presentan una mayor tendencia a la baja que los sistemas extensivos (ganaderos), siendo el uso del suelo un factor relevante en esta escala. En la escala regional (cuenca) se podría interpretar que la disponibilidad hídrica es un factor que influye en mayor medida sobre el descenso de los valores de NDVI. Por último, a escala nacional (país) el factor climático asociado a los factores anteriores y a las decisiones de las políticas del estado-nación, parecen ser determinantes para la tendencia a la baja del NDVI. Ceroni et al.A partir de este trabajo, integrando nuevas escalas de análisis se logra una mejor comprensión de la vinculación entre los cambios en el uso del suelo y el comportamiento regional del NDVI.Un aspecto central a considerar sobre el comportamiento del NDVI es la limitante temporal de la serie de datos analizada, ya que se cuenta con una serie de 14 años, debido a la disponibilidad de datos SPOT-VGT. En este sentido, surge la interrogante sobre la escala temporal. Efectivamente, se logra identificar una tendencia robusta del NDVI que indica un cambio del sistema ambiental, más allá de lo esperado por la variabilidad debida a la dinámica interna del sistema. El hecho de considerar 14 años de datos, parecería ser una serie mínima para poder entender este comportamiento, seguramente el avance sobre los procesos con series de mayor duración temporal permitirá generar mejores conclusiones que las obtenidas en este estudio.Finalmente, los resultados de este trabajo permiten, por un lado, disponer de mayor información de base sobre el comportamiento de los sistemas ambientales, y por otro, avanzar aún más sobre el conocimiento de las transformaciones y la dinámica del territorio, siendo la base para mejorar la gestión de los bienes naturales.El desarrollo de este trabajo fue realizado bajo el apoyo del Espacio Interdisciplinario (EI) y la Comisión Sectorial de Investigación Científica (CSIC) de la Universidad de la República.","tokenCount":"3569"} \ No newline at end of file diff --git a/data/part_3/3103561242.json b/data/part_3/3103561242.json new file mode 100644 index 0000000000000000000000000000000000000000..0485afe3a01dab3f1f7254a50deee729bbed301b --- /dev/null +++ b/data/part_3/3103561242.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"dccd11e4bae7fe30d471bd9a2f9c2290","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/947b6a20-854c-4784-af0b-29defc0bcea5/retrieve","id":"1954374759"},"keywords":[],"sieverID":"15368bce-f451-4953-ace0-32a5edd97432","pagecount":"13","content":"The physical & chemical breakdown of dead organic matter C cycling: More than half of net primary production (NPP) is returned to the soil (David et al. 2004) It also results in CO 2 emissions to the atmosphere of about 60 Pg C yr -1 (Houghton 2007Objectives 1) measure changes in manure dry matter, C and N concentrations over time after manure deposition; 2) determine if manure type (i.e. animal species) affects manure decomposition rates; and 3) determine how climate affects manure decomposition.1) manure decomposition would also follow exponential decay; 2) manure decomposition rates would be faster for manure with lower initial C/N ratios and higher initial N concentrations; and 3) manure would decompose faster under wetter and warmer climatic conditions.","tokenCount":"121"} \ No newline at end of file diff --git a/data/part_3/3110018249.json b/data/part_3/3110018249.json new file mode 100644 index 0000000000000000000000000000000000000000..22e8a21fea4f21a6637115c20efc1ae06491f49a --- /dev/null +++ b/data/part_3/3110018249.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"fd3c850e237d07785660647b27c32914","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/f31620be-20a3-48a2-a92b-bcc3e0058d51/retrieve","id":"-890351226"},"keywords":[],"sieverID":"ea4b4b08-ea30-48d6-ba50-d00a1f58feea","pagecount":"2","content":"Monitoring siltation processes in small reservoirs in the Sahel, and mainly in the Volta basin, is not frequent because of the high cost of the operation. We used in this study an alternative method to assess risks of siltation of a small reservoir in the Nakanbe basin in Burkina Faso (upper basin of the Volta basin). A small research catchment (37 km²) was monitored during 3 years (2004--2006) and erosion was measured at plot (1 m²) and catchment scale. At the plot scale, the different soil surface characteristics were equipped and their erosional response was measured. The results obtained at local scale were upscaled at the catchment scale based on the proportion of each soil surface types within the catchment. This gross erosion was compared to erosion measures at the catchment outlet and an exportation fraction was determined. This methodology was applied on the watershed of a smallreservoir in the same area and presenting the same soil surface features. This enabled to assess for these three years (2004, 2005 and 2006) the total annual soil loss on the watershed. This annual soil loss represented the potential soil deposit in the small reservoir at the outlet. We found that the reservoir lost up to 7% of its useful capacity per year, compromising the socio--economic activities (fishery, gardening, etc.) of local populations for the coming years. ","tokenCount":"224"} \ No newline at end of file diff --git a/data/part_3/3110453260.json b/data/part_3/3110453260.json new file mode 100644 index 0000000000000000000000000000000000000000..d37548c3af3a1049f903546b7da9e98e54e4d322 --- /dev/null +++ b/data/part_3/3110453260.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"501e56e8caabea4242b69cba9eddce24","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/bdb8e4cb-8a85-4443-9e32-337d3e5c339d/retrieve","id":"437944051"},"keywords":["Participation","gender and diversity","labour and livelihoods","diversity and inclusion","gender and intersectionality","rural livelihoods","social protection","region: Latin America and the Caribbean"],"sieverID":"0118fbf3-2481-485f-9586-df77fa4cc63f","pagecount":"17","content":"Differences in access to productive resources, education, and credit can affect the productive capacity of cattle producers, especially women. This document analyses gender inequalities in the Colombian cattle sector using census information on the cattle activity, disaggregated at the territorial level. The econometric analysis evidences a negative relationship between the participation of women producers and cattle production at the municipal level. Our findings underscore the importance of improving access to quality education, credit, and technical assistance for rural women, which can benefit agricultural production and national economic growth at large.Cattle are the main anthropogenic form of land use in the world (FAOSTAT 2020). In addition to being a source of income, cattle are among the most valuable assets for rural households, which can be used as a source of wealth accumulation and as insurance against income shocks or insecurity (FAO 2010). For cattle farming, access to land is essential, as the animals live and feed in grazing areas (Ciparisse 2003). Land tenure allows households to face unexpected situations and makes it easier to access credit by serving as collateral (FAO 2004;Kaur and Kapuria 2020;Lawry et al. 2017). Land provides the necessary security to make long-term investment decisions, adopt new practices and technologies, and participate in decision-making (Lawry et al. 2017).Women in particular face more complex barriers to accessing productive resources and participating in decision-making processes than men (FAO 2017). The disparities range from farm size and land tenure rights to natural resource availability (FAO 2002(FAO , 2004)). Women cattle producers have less access to land, and when they do, it tends to be smaller and of poorer quality (Croppenstedt, Goldstein, and Rosas 2013;FAO 2010). Despite participating in most productive activities, their work is often invisible, particularly in the case of milk processing and animal care (Bhanotra et al. 2015;Gumucio et al. 2016;Najjar, Baruah, and Al-Jawhari 2019;Rivas Herrera, Ramírez, and Chacón Cascante 2017), harming their participation in decision-making at home and in their communities (FAO 2009). While limitations to access to quality education and formal credit affect rural households in general (FAO 2017;Kaur and Kapuria 2020), the obstacles are more severe for women. In fact, rural women have lower schooling rates, which limits their access to credit and leads to lower production levels (Croppenstedt, Goldstein, and Rosas 2013;de Castro and Teixeira 2012;Narayanan 2016;Silong and Gadanakis 2020).The Colombian cattle sector is not exempt from gender disparities. Overall, rural women have lower labour participation and incomes (Ramírez et al. 2015). Cattle household activities are marked by gender roles, with men focusing on highly profitable activities, such as marketing, and women on unpaid work, such as caring for and cleaning cattle (Gumucio et al. 2016). Gender roles also contribute to the unequal distribution of the domestic burden: rural women spend up to 18% of their daily time in unpaid care activities (Gumucio et al. 2016;Ramírez et al. 2015). At the same time, these social constructions limit the spaces for women's participation by reducing their negotiating power in decision-making in their homes and communities (Cable 1992;Eccles 1986;Haller and Hoellinger 1994), and restrict their time available for joining cooperatives and attending extension activities (Gumucio et al. 2016;Ramírez et al. 2015). Their financial inclusion is also lower, partly due to difficulties in accessing land or having formal rights over it (Gumucio et al. 2016).Studies that document the gender differences between cattle producers in Colombia are scarce. Although there exists research with both qualitative (Gumucio et al. 2016;Triana Ángel and Burkart 2019) and mixed approaches (Ramírez et al. 2015), to date, there is no quantitative evidence that allows measuring the effect of gender gaps on cattle production. Likewise, there are no studies that analyse the differences with a spatial disaggregation that allows identifying regions with stark gender disparities.This research seeks to explore how gender inequalities in Colombia's cattle sector affect household production, applying a quantitative and spatial approach based on a database that combines information on cattle production, household characteristics, and multidimensional deprivation (Multidimensional Poverty Index, MPI) at the departmental level.Access to land is especially relevant for land-intensive activities such as cattle production (Ciparisse 2003;FAO 2004). In the short and medium-term, owning land provides security for households to make productive investments, allowing them to increase their productivity and income, and in the long term, helps them extend their assets beyond land and workforce (FAO 2004;Lawry et al. 2017;Smith 2004). Households with land tenure rights also have access to more affordable formal credit compared to households with no formal rights over land (Feder et al. 1988;Feder, Onchan, and Chalamwong 1988). When there is limited access to land, households are more susceptible to food insecurity and falling into poverty, since they have less capacity to respond to fluctuations (FAO 2002).Although there are differences in access to opportunities and resources in agriculture at large, women face additional, pervasive difficulties. It is difficult for women to own land, and once they do, it tends to be smaller and of poorer quality (Croppenstedt, Goldstein, and Rosas 2013;FAO 2010). For example, in Colombia seven out of ten productive agricultural units are led by men, of which more than half are larger than three hectares (54.1%). However, only four out of ten of the farms led by women exceed three hectares (39.9%) (DANE and Ministry of Agriculture and Rural Development 2021). While men tend to obtain land through transactions, women tend to depend on inheritance (Croppenstedt, Goldstein, and Rosas 2013). Gender stereotypes reduce women's possibilities to inherit the land, as they tend to be seen as unfit leaders, incapable of handling production challenges (Triana Ángel and Burkart 2019). Agricultural generational transfer in both family businesses and land tenure focuses on first-born sons, excluding daughters (Cavicchioli, Bertoni, and Pretolani 2018;Grubbström and Sooväli-Sepping 2012). Additionally, there are differences in the type of farm animals, with men handling larger and women smaller livestock (FAO 2010), meaning that the value of household livestock assets is different (and unequal) according to the sex of the head of the household (Ramírez et al. 2015).Rural women have lower schooling levels than men, and the time they spend on household chores reduces their participation in extension activities (FAO 2009(FAO , 2010)). Their work in productive activities is less recognised, as it is seen as an extension of domestic work and not as an essential task for economic survival (Triana Ángel and Burkart 2019). The invisibility of their work and the time restrictions it implies translate into lower adoption of new practices and technologies, but also less participation in (productive) decision-making (FAO 2009), even though women are primarily responsible for milk processing and cattle care (Bhanotra et al. 2015;Najjar, Baruah, and Al-Jawhari 2019;Rivas Herrera, Ramírez, and Chacón Cascante 2017). In mixed crop-livestock systems, the economic benefits tend to be concentrated in men, who are responsible for milk marketing and own the cattle (Najjar, Baruah, and Al-Jawhari 2019).There exist gaps in access to credit and the sources from which it comes, with women being more likely to face constraints. A field study in Nicaragua indicates that 23% of rural women but only 17% of their husbands have restrictions in accessing credit (Fletschner 2009). The use of informal credit predominates (USAID, UT Econometría, and Marulanda Consultores 2014), particularly to finance small-scale agricultural activities (Trivelli and Venero 2007). When it comes to formal credit, there are more male beneficiaries, as women resort to informal credit, with lower amounts and more restrictive interest rates (Silong and Gadanakis 2020; USAID, UT Econometría, and Marulanda Consultores 2014). These gaps remain as such for institutional credit sources. Even when women obtain financing, the rate of return on credit is higher for men, contributing to widening the gender gap in income (Sam 2021). These differences not only affect women individually but the entire rural household. Household efficiency can drop by up to 11% when women encounter obstacles in meeting their capital needs (Fletschner 2008).Altogether, limited access to production factors and credit, restrictions on decision-making, lower schooling rates, and time restrictions become obstacles for women producers to match male production levels, thus reducing their income (FAO 2010). Even though women represent about half of the agricultural labour force in developing countries (43%), the division of labour assigns them the care of livestock or the processing of milk and concentrates ownership and marketing of animals in men, which prevents women from receiving the economic benefits of their work (Croppenstedt, Goldstein, and Rosas 2013;Najjar, Baruah, and Al-Jawhari 2019). This division, marked by gender roles and cultural aspects, reduces the bargaining power of women producers (Najjar, Baruah, and Al-Jawhari 2019). The limited empowerment of women in cattle farming is a critical factor, both because of its economic implications and its relationship with the nutritional status of households (Price et al. 2018;Smith et al. 2003). Gender gaps not only restrict women's contribution to family well-being, but also harm agricultural production, economic growth, and the reduction of inequality (FAO 2010;Triana Ángel and Burkart 2019).Cattle are the most important agricultural activity in Colombia, representing around 30.6% of the national agricultural GDP, 19% of the agricultural, and 6% of the national employment (DANE 2019). It surpasses the values of coffee and palm oil production by three and eight times, respectively (Fedegán 2021). In economic and social terms, the Colombian rural sector has stark gender differences. Rural women have lower participation in the labour market, with an employment rate of 28.3% compared to 72.2% for men. Labour income also differs, with an average monthly salary of $294,127 Colombian Pesos for women and $580,000 for men, as of 2013 (Ramírez et al. 2015). Within cattle-producing families, roles and tasks are heavily gendered. While men focus on commercialisation, women spend part of their time on unpaid activities, such as cleaning and caring for cattle (Gumucio et al. 2016). Combined with divergent domestic roles and activities, women have less time available to work in production and commercialisation, participate in cooperatives and associations, and attend extension activities (Gumucio et al. 2016;Ramírez et al. 2015).Despite the growing empirical evidence supporting that female participation in credit programmes leads to lower levels of investment portfolio risk (e.g. in terms of lower write-offs and lower provisions) (D'Espallier, Guérin, and Mersland 2011), the participation of women in microcredit programmes remains low. In addition to informality in land ownership, which restrict women's ability to access formal credit, invest, and participate in decision-making (Gumucio et al. 2016), some studies have revealed other limitations inherent to a dispersed rural context and failures in microcredit governance systems that prevent institutions from reaching a larger fraction of women and support large producers with lower transaction costs for obtaining information, which in some way excludes the poorest households and those with less knowledge of complex financial products (Afriyie et al. 2020;Sarangi 2007;Sharma 2008). Indeed, financial literacy has been identified as a strong predictor of demand for financial services (Afriyie et al. 2020;Brown 2001;Cole, Sampson, and Zia 2009). Afriyie et al. (2020) explore other contextual factors that explain the low request for microcredit by women, among which the influence of conjugal partners in the investment of the borrowed funds stands out (in the initial decision-making or to decide whether to take a microcredit). On some occasions, women do not exercise full control over both the initial capital of the loan and the financed business, which can discourage their participation in applying for microcredits.The cultural context and the characteristics of the Colombian economy also determine gender gaps in cattle farming. Lack of empowerment, social relationships, and patriarchal authority are among the key barriers (Ramírez et al. 2015). This shows that in addition to barriers affecting men and women simultaneously, cultural factors also hold a relevant role in the origins of gender gaps in the Colombian cattle sector (Gumucio et al. 2016;Ramírez et al. 2015;Triana Ángel and Burkart 2019).Different sources of information on cattle production, sociodemographic contexts, agricultural credit, and poverty were gathered to develop the descriptive analysis and the estimation of the econometric model. Table 1 presents the generalities of the consulted databases. Although these sources provide information for the agricultural sector in general, our descriptive and econometric analyses focus on the agricultural production units (UPA 1 ) and cattle farmers.This section presents the specifications of the linear regression models that relate gender with cattle production at the municipal level. The estimates use information from cattle producers obtained Where prod i represents the cattle inventory (heads) or the milk production (litres) of a given r i. part prod i indicates the share of the cattle inventory or milk production in a municipality of the national production. part women i is the percentage that women represent of the total number of cattle producers. area cattle i is the average size of cattle UPAs (hectares), and labor cattle i is the average number of workers in an UPA. cred cattle i indicates the percentage of credits granted to cattle producers in a municipality concerning the total cattle credits granted in the country, and technical assistance i is the percentage of cattle UPAs that received technical assistance in good cattle practices. 1 i is the stochastic error that captures unobservable effects.Among the limitations of this research is the data scarcity on the agricultural sector disaggregated by gender and at the territorial level. Although the consulted census data allows analysis by gender, its cross-sectoral nature prevents observing changes in cattle production over time, which could provide more information on the dynamics within UPAs. Likewise, it does not provide variables associated with beef production. A possible alternative would be to use the ENA, which is available for 2014-2017, but is only disaggregated at the departmental level for 2017 and does not have information on the size of the UPAs or the labour employed. This makes the census source preferable, both for its completeness and representativeness at the municipal level. We counteracted the potential problem of omitted variables in the linear regression model by including information on the productive activity of the UPAs. Specifically, the model includes variables on the size of the UPA, access to credit, labour, and technical assistance, which help control for differences between cattle producers. Additional characteristics that could be included in future research are the educational level of producers (municipality level), poverty, access to roads and markets, and the physical capital existing in UPAs. Likewise, climatic and geographical variables could be incorporated, such as rainfall, temperatures, or altitudes since they can affect production.The applied methodology prevents us from establishing causal relationships between gender and cattle production. Linear regression does, however, allow statistically significant correlations to be established that help us understand the direction of the relationship. Finally, the quantitative nature of this study does not allow the construction of qualitative results that analyse the social and cultural contexts in which cattle producers operate.Figure 1 shows that most cattle producers in Colombia are men, with participation between 74.8% and 77.6% of the total number of producers, while women only represent between 22.3% and 25.2%. Although the participation of women has increased slightly between 2014 and 2017, most of the UPAs are still headed by men. Data shows that about half of the women producers are the main caregivers of their families, with an average participation of 42.2% for 2014-2017. Figure 2 shows a dispersion in the distribution of women-led UPAs at the departmental level, where some regions of the country, such as the Caribbean, have low percentages (between 9.6% and 19.2%), while others, such as the Andes, concentrate a greater number (between 24.8% and 38.5%).Another dimension is the participation of women in decision-making within the UPAs. 2 We found that in cattle UPAs, women make 21.7% of the production decisions, while men occupy 78.3%. Female participation in the cattle sector is, therefore, not only low in terms of leadership but also has a lower weight in production decision-making.Regarding farm size, in 2014, 56% of the UPAs led by men and 69% of the ones led by women ranged between 0 and 100, respectively 76% and 84% between 0 and 300 hectares. In 2017, the share of smaller UPAs was even higher with 84.1% of the UPAs led by men and 91% of the ones led by women ranging between 0 and 100, respectively 85.5% and 92.6% between 0 and 300 hectares. Gender differences are also observed in the largest UPAs (1,000-2,000 hectares) which made up 6.3% of the UPAs led by men and only 2.8% of the ones led by women. This indicates that women, on average, operate on smaller farms.In Figure 3 (left side), we can observe a concentration of granted cattle credits in the departments of Antioquia, Santander, Boyacá, Cundinamarca, Cauca, Nariño, and Caquetá, which each represent between 4.1% and 19% of the granted cattle credits at the national level. The departments with the highest levels of poverty (Figure 4) are also those with the lowest participation in cattle credits: La Guajira, Chocó, Vichada, Guainía, and Vaupés each receiving less than 0.5% of the granted credits at the national level. When analysing access to credit by gender, it is found that women requested fewer credits in 2017 than men (13.6% versus 8.9%). There exist, however, no gender differences in the percentage of granted credits (∼93% each).When it comes to the spatial distribution of credits granted to female producers (Figure 3, right side), it is found that most are concentrated in the departments of Boyacá (14.5%), Huila (13%), Cundinamarca (12.6%), Tolima (10.9%), and Nariño (10.6%). In turn, the departments with the lowest participation are Chocó (0.04%) and Magdalena (0.09%), which might be associated with the high incidence of multidimensional poverty in 2017 (Figure 4).Gender gaps are also manifested in the educational level of cattle producers. Figure 5 shows that most producers only have elementary education (61.2% of men and 66.8% of women in 2016). Although the participation of other educational levels is low, in 2016 and 2017, there were more men with high school (18.7%) and university (10.3%) degrees than women (17% and 6.6%). Table 2 shows the relationship between cattle inventory and milk production as dependent variables and gender. In all model specifications, there is a negative and significant relationship visible, indicating that an increase in women's participation could decrease both the municipal cattle inventory and milk production, both in absolute and relative terms. On average, an increase of 1 percentage point (pp) in women's participation would lead to a decrease of 330 cattle heads and 240 litres of milk, while an increase of 10% would lead to a decrease of 0.02% in the municipality's share of the national cattle inventory and milk production.A positive relationship is found between the size of the UPA and cattle production, indicating that municipalities with larger UPAs have higher cattle production. An increase of 0.02 hectares in the UPAs would lead to an increase of 20 cattle heads at the municipal level, which might be related to the higher purchasing power of larger producers, allowing them to invest in the productive capacity (cattle inventory) of their farms. Similarly, given the extensive nature of Colombian cattle ranching, having larger farms also allows for more cattle, even though stocking rates might be low.The strongest relationship, however, corresponds to access to credit. An increase of 1% in the percentage of granted cattle credits would lead to a growth of 0.19% of the cattle inventory and 0.28% of milk production at the municipal level. This positive relationship may be attributed to higher possibilities for investments in technology, the purchase and care of cattle, and the hiring of additional labour force, in addition to smoothing unexpected shockstranslating into higher production. The number of cattle workers in the UPAs is also related to an improvement in the cattle inventory. Keeping the other factors constant, if the average number of UPA workers in a municipality increases by 1 pp, the municipal inventory can grow by 2,720 cattle heads. Hiring more workers contributes to improving the production parameters of the existing cattle inventory, which can lead to improved income and subsequent expansion of animal numbers. Technical assistance with good cattle practices is the only variable that reports a negative relationship with cattle production. An increase of 1 pp of UPAs that receive technical assistance could reduce the municipal cattle inventory by 620 heads and milk production by 230 litres.The results of the previous section analyse the relationship between cattle production and gender of the main producer at the municipal level. It is possible, however, that the lower participation of women in cattle production (between 22 and 25%) affects these estimates. To verify the negative relationship between gender participation and production, we reconstruct the main estimates at the UPA level, so that the gender of the producer is represented by a dichotomous variable that takes the value of 1 when the main producer is a woman. The other control variables are maintained: the agricultural area of the UPA in hectares, access to credit (the UPA reports having approved agricultural credit), the number of agricultural workers of the UPA, and access to technical assistance in good cattle practices (the UPA reports having received assistance on these issues).Table 3 presents the results of the estimates at the UPA level. Column 1 focuses on cattle inventory and column 2 on milk production, both in thousands. We find that women headed UPAs have (on average) fewer head of cattle and lower milk production. Therefore, the negative relationship between cattle production and gender that we find in Table 2 is maintained when we perform the analysis at the municipal level. The results suggest that women headed UPAs have on average of 20 cattle less and produce 10 litres of milk less than those headed by men. The positive effect between agricultural area and production is sustained, as well the one related to the number of workers (larger UPAs or with more workers report more animals and milk production). However, Table 3. Relationship between cattle inventory and milk production in UPAs according to the gender of the principal producer. things change for technical assistance: at the individual level, production would benefit from receiving technical assistance. The opposite happens with credit. Access to agricultural credit is associated with UPAs with lower cattle inventory and milk production.This research delves into the gender gaps in agriculture using the case of cattle ranching in Colombia. The results show differences in the participation of men and women in multiple aspects. Specifically, it is found that men predominate cattle farming, and women's participation is generally low. This may originate from the difficulties women face in inheriting family businesses and land, given the gender biases in the generational transfer that favour first-born sons over daughters (Cavicchioli, Bertoni, and Pretolani 2018;Grubbström and Sooväli-Sepping 2012). Likewise, women have less weight in productive decision-making. This corresponds to the findings of a study on the participation of women cattle producers in Costa Rica, who actively contribute to productive work but do not have full participation in decision-making (Rivas Herrera, Ramírez, and Chacón Cascante 2017), and studies from Colombia indicating that family structures and gender roles limit the time they can dedicate to decision-making and associativity (Ramírez et al. 2015). Likewise, gender roles can impede women leadership by assigning work to women in private spaces (such as caring for the home and animals) and to men in public spaces (such as the sale and marketing of products) (Bhanotra et al. 2015;Gumucio et al. 2016;Najjar, Baruah, and Al-Jawhari 2019;Rivas Herrera, Ramírez, and Chacón Cascante 2017). This division reduces women's economic power and can be an additional obstacle for them to be the main decision makers.The differences also extend to education, access to credit, and farm size. Although farmers in general experience difficulties in obtaining education and formal credit, the barriers faced by rural women are even more complex (FAO 2010(FAO , 2017;;Kaur and Kapuria 2020). We observed that there are fewer women producers with university degrees and more with primary school studies than men. This echoes findings by FAO (2010) on the lower educational level of women farmers. There is also a greater concentration of women in smaller UPAs. Likewise, women tend to request less formal credit, but once they do, no gender differences are found in the percentage of granted credits.The aforementioned factors can affect the production of women-led UPAs. The estimates of the econometric model reveal a negative relationship between cattle production and women's participation at the municipal level. Municipalities with more women-led UPAs tend to have lower cattle inventories and milk production. This coincides with empirical evidence from other developing countries (Machina and Lubungu 2019;Njuki and Mburu 2013;Waithanji, Njuki, and Bagalwa 2013). Cattle households in Kenya, Tanzania, and Mozambique feature only 25% of women who manage and own cattle, and the number of animals they own is lower than that of men (Njuki and Mburu 2013). In Zambia, women belonging to men-headed households have fewer cattle than male family members, and women-headed/women-only households have fewer cattle than men-headed households (Machina and Lubungu 2019).There are multiple hypotheses about the reasons for the lower cattle inventory when it comes to women. On the one hand, cultural differences and gender roles can hinder women's access to cattle, considering that they play a specific role in production unrelated to administration and commercialisation, but focused on care and cleaning (Gumucio et al. 2016;Machina and Lubungu 2019;Triana Ángel and Burkart 2019). On the other hand, time constraints caused by housework and limited access to information/technical assistance can also impair their ability to maintain and increase cattle inventories (Gumucio et al. 2016;Machina and Lubungu 2019). Farm size is also a determinant of the number of animals, and since farms managed by women tend to be smaller, land can be a limiting factor for production and income generation (Croppenstedt, Goldstein, and Rosas 2013;Machina and Lubungu 2019). These factors, combined with the lower educational level and access to credit found (descriptive analysis), help us understand the reasons behind the negative relationship between cattle production and women's participation (econometric analysis).We also found a negative relationship between technical assistance in good cattle practices and cattle production. Although extension and technical assistance services have been identified as productivity promoters and household income (Anderson and Feder 2004), the empirical evidence on their effectiveness is mixed (Anderson and Feder 2003). Their success depends largely on how they are provided and the conditions of farmers (Anderson andFeder 2003, 2004).Also, it depends on their relevance in the context of rapidly advancing telecommunications in rural areas (Alex et al. 2004;Farrington 1994). This has led to some countries finding positive results from the transmission of information, while others observed difficulties in maintaining well-trained and up-to-date extension workers, leading to negligible impacts on production (Anderson and Feder 2004;Benson and Jafry 2013). The negative relationship found in this study may originate from the limited effectiveness of the service, either because cattle producers receive it infrequently, the information is not relevant to their sociocultural and agro-ecological context, or simply because it is outdated.The wide coverage of the used census data allows the identified relationships to have national scope and manages to represent the situation of cattle producers in rural Colombia. Although the applied methodology does not allow establishing a causal relationship between gender and cattle production, our quantitative findings are in line with the results of other studies conducted in Colombia with qualitative (Gumucio et al. 2016;Triana Ángel and Burkart 2019) and mixed approaches (Ramírez et al. 2015).Considering our results, it is key that future research on gender disparities in agriculture and livestock consider information on the characteristics of the producers, as well as other variables associated with the environmental, economic, cultural, and social contexts of the municipalities in which they live. This can be achieved through the application of mixed methods.This study also highlights the importance of including a gender approach in policymaking to improve rural women's access to land, education, credit, technical assistance, and associativity. Strategies that promote the development in rural areas of developing countries should always include a multiplicity of efforts that must be synergistically articulated. This should not only include the search for objectives, but also control actions in the face of the creation of unexpected dynamics resulting from processes of social intervention. In this sense, it is important to pay attention to strategies such as facilitation of access to credit, which is a useful tool to promote agricultural activities and the empowerment of women in rural areas. Yet, it makes no sense when it is not adequately accompanied by comprehensive strategies that seek to transform other dimensions of the rural context, or in other words: an increase in resources for and access to credit does not solve the structural problems that lead to discrimination and hoarding. In this way, it is not only necessary to support the UPAs led by women with low interest rates to increase their capacities to acquire cattle and productive inputs, but also to accompany them with financial education programmes (for men and women) that contain a financial component to avoid the \"genderisation of credit\" and the proper management of the resources granted, seeking to prevent dynamics observed in the literature (Guérin, Morvant-Roux, and Villarreal 2014;Guérin, Nordman, and Reboul 2019), such as the diversion of women's credits for purposes of social reproduction and the stress derived from non-payment of debts.Furthermore, improving the educational level and the access to quality information/technical assistance can create opportunities for women to generate income and accumulate capital, in addition to increasing their bargaining power over household resources. The presence of gender roles in the division of productive activities in cattle households highlights the importance of awareness-raising activities with both men and women, so that women begin to be recognised as capable of managing and commercialising end-products. In this way, women can increase the compensation for their work and manage the income from their activities, which would benefit their decisionmaking power at home and in their community. In conclusion, improving the production capacity of women not only impacts livelihoods, but also boosts production at the national level, contributes to the development and economic growth, and helps reduce inequalities in the sector.By using census information of national coverage, credit data, and annual statistics of the agricultural sector, this research explored how gender inequalities in the Colombian cattle sector affect household cattle production. Cattle is a key activity for the development and economic growth of (rural) Colombia. Among producers there exist, however, gender differences in access to education, productive resources, and credit, which affect their production capacities.The descriptive analysis shows that only one out of four cattle producers are women, but that nearly half of them are heads of households responsible for the well-being of their families. Women also participate less than men in production decision-making, tend to have lower educational levels, request fewer agricultural credits, and have smaller farms. The econometric analysis found that the municipalities where there are more female producers have lower milk production and cattle inventories, which coincides with the empirical evidence for other developing countries and may originate in the difficulty of women in accessing education, financing, and land, but also in time restrictions caused by domestic work, limiting their participation in extension activities and cooperatives. Likewise, the existing gender roles burden women with unpaid care and cleaning activities, instead of the administration and commercialisation of cattle, directly affecting their ability to own cattle.Our results bring to consideration how gender gaps in agriculture, and particularly in the cattle sector, have the potential to affect national agricultural production, and with it the well-being of rural families that depend on it, highlighting the importance of policy decisions that feature a gender approach. Through an active intervention of the State, particularly through education programmes, credits for rural women, awareness creation of gender roles, and land tenure/inheritance regulations, a first step can be taken towards reducing gender gaps.The quantitative approach and national coverage of this study make it an important contribution to the literature on gender gaps in the Colombian cattle sector and developing countries. This is key, given that, to date, there are no known studies that combine census information with credit data and agricultural characteristics to analyse gender disparities among cattle producers with a spatial approach. Future research could benefit from combining quantitative and qualitative approaches that consider the sociocultural and agroecological contexts of producers since they can permeate gender-related production differences.No potential conflict of interest was reported by the authors.","tokenCount":"5368"} \ No newline at end of file diff --git a/data/part_3/3140810170.json b/data/part_3/3140810170.json new file mode 100644 index 0000000000000000000000000000000000000000..2bb1be5c2f4b070de15e0a36cf9d172c90d115f3 --- /dev/null +++ b/data/part_3/3140810170.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"acde846e74fbfe774b67f5a8781d7f12","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/3d98d618-d1f8-457e-8f81-9c9813e71c3d/retrieve","id":"-1302480563"},"keywords":[],"sieverID":"d02819dd-909d-4371-81f1-f67bddbda8d8","pagecount":"24","content":"º Existen factores transversales que limitan la inclusión de género e interseccionalidad (G&I) en las políticas de tierra, alimentación y clima, como la naturaleza sexista del sector agrícola, la cuestión de la economía del cuidado, el conflicto armado colombiano y la débil posición institucional de género en el Gobierno.º Los factores limitantes son de dos tipos: por un lado, la existencia de grandes brechas entre grupos sociales donde la combinación de factores de género e interseccionales exacerban las desigualdades y, por otro, el sexismo institucional arraigado (entendido en un enfoque institucional feminista).º La actual brecha de género relacionada con el acceso y la propiedad de la tierra (exacerbada por el conflicto armado y la falta de implementación de los Acuerdos de Paz), sumado a que las mujeres no son vistas como interlocutoras legítimas y la complejidad que plantea la propiedad colectiva de la tierra en las comunidades étnicas, constituyen los principales factores limitantes para la inclusión de G&I en las políticas de tierras.º En el ámbito de las políticas alimentarias, las cuestiones de G&I se ven limitadas, por un lado, por la profunda brecha de género en relación con los derechos alimentarios y, por otro, por la naturaleza multidimensional de las cuestiones alimentarias.º Los factores que limitan la G&I en la política climática son la mayor vulnerabilidad que experimentan las mujeres y los niños ante los efectos del cambio climático y el enfoque técnico utilizado para abordar las cuestiones climáticas.º Entre los factores catalizadores de la inclusión de G&I en las políticas de tierra, alimentación y clima se encuentran el papel que desempeñan las mujeres en los movimientos sociales, la orientación y el precedente establecido por los Acuerdos de Paz, el apoyo técnico y financiero proporcionado por la Cooperación Internacional y el recién elegido Gobierno de izquierda. Todo ello ha abierto una ventana de oportunidad para el cambio político hacia una mayor inclusión de G&I en las políticas.º El análisis del discurso se presenta como un método relevante y heurístico para comprender el nivel de inclusión de la diversidad en las políticas, más allá de los documentos de políticas. Esto también tiene el potencial de formular recomendaciones de política.º Las recomendaciones de política están relacionadas con el aprovechamiento de la ventana de oportunidad a favor de la inclusión de G&I, el equilibrio y la diversificación de la participación de los movimientos sociales y la Cooperación Internacional como contrapeso al Gobierno para garantizar la implementación de políticas y la necesidad de abordar el sexismo en el sector agrícola.Como se indica en el informe de la FAO de 2023 sobre la situación de la mujer en los sistemas agroalimentarios, \"las políticas y estrategias formales pueden identificar cada vez más las limitaciones y desigualdades a las que se enfrentan las mujeres, pero pocas políticas nacionales especifican objetivos para abordarlas\" (FAO, 2023: 5). De hecho, aunque la inclusión significativa de las mujeres, como grupo heterogéneo, en las políticas se considera un paso crucial (Ayentimi et al., 2020), el grado en que las políticas agrícolas abordan específicamente la igualdad de género y el empoderamiento de las mujeres varía (FAO, 2023). Además, la inclusión de género en las políticas no garantiza que las desigualdades de género se aborden sistemáticamente a lo largo del ciclo político (Acosta et al., 2019;2020).En este contexto, la Alianza de Bioversity International y el CIAT lidera la Iniciativa de CGIAR sobre Políticas y Estrategias Nacionales (NPS, por sus siglas en inglés). Esta iniciativa tiene como objetivo producir conocimientos para apoyar las políticas en los sistemas alimentarios, terrestres y acuáticos, y así favorecer la obtención de mejores resultados de los Objetivos de Desarrollo Sostenible (ODS) a nivel nacional (CGIAR, 2020). En este estudio, nos enfocamos principalmente en las políticas de tierra, alimentación y clima en Colombia y su potencial para contribuir al ODS 5 relacionado con la equidad de género.Exploramos y definimos los principales factores limitantes y catalizadores para la inclusión de género e interseccionalidad (G&I) en las políticas colombianas relacionadas con la tierra, la alimentación y el cambio climático.En primer lugar, se presenta la metodología y la estrategia de producción de datos utilizada para este estudio. A continuación, presentamos nuestros principales hallazgos en términos de factores limitantes y catalizadores para la inclusión de G&I en las políticas.Por último, compartimos algunas observaciones finales y recomendaciones de política.CIAT/J. MarínEn este estudio, abordamos el género como una categoría compleja que requiere consideraciones cuidadosas sobre qué aspectos del género son importantes para la pregunta de investigación y cuál es la mejor manera de operacionalizarlos en el diseño del estudio (Lindqvist et al., 2021). En nuestro caso y basándonos en Drucza et al. (2020: 2), definimos el género como un \"constructo social que se refiere a las relaciones entre los sexos, a partir de sus roles y responsabilidades relativas\".A d e m á s , m o v i l i z a m o s e l c o n c e p t o d e \"interseccionalidad\", que ha sido utilizado como herramienta analítica para teorizar la identidad y la opresión por académicos feministas y antirracistas (Nash, 2008). La interseccionalidad nos permite ir más allá de los binarismos de género y acercarnos a la identidad de una manera más compleja, formada por el género, la clase, la edad, la etnia, la religión, la geografía y la sexualidad (Ibid). En ese sentido, el género no puede ser utilizado como un marco analítico único sin explorar también cómo otros factores influyen en la experiencia de una mujer como grupo no homogéneo (Samuels & Ross-Sheriff, 2008). Siguiendo a Nash (2008) y basándonos en el trabajo de McCall (2005), adoptamos la interseccionalidad como un enfoque metodológico para documentar las dinámicas de desigualdad entre grupos sociales.Con el fin de operacionalizar este enfoque teórico, movilizamos el análisis de narrativas de políticas (Roe, 1994) para, como explican Acosta et al. (2020), examinar los procesos y estrategias a través de los cuales se construyen, consolidan, cuestionan o resisten ciertas concepciones de políticas en un entorno político particular. La metodología de análisis de narrativas de políticas se utiliza para identificar y comprender las diferentes interpretaciones (factores limitantes y catalizadores) que tienen los actores sobre la inclusión de G&I en las políticas relacionadas con la tierra, la alimentación y el cambio climático.También se utilizaron procedimientos de triangulación que consisten, para el análisis del discurso, en variar a los informantes según su relación con el problema considerado, para incluir varias perspectivas y discursos contrastantes (Olivier de Sardan, 1995). En nuestro caso, el proceso de triangulación se implementó de diferentes maneras. Por ejemplo, cruzamos los puntos de vista de funcionarios públicos de diferentes ministerios sobre la inclusión de G&I en las políticas, o los de diferentes actores (funcionarios, personal de Cooperación Internacional, miembros de movimientos sociales) sobre el mismo tema. Esta forma de triangulación nos permitió poner de relieve las diversas visiones, valores, percepciones e interpretaciones en juego sobre un mismo tema, lo que puede generar tensiones, negociaciones, enfrentamientos y brechas. Este proceso de triangulación también fue útil para confirmar o profundizar las declaraciones de los entrevistados. La entrevista incluyó preguntas sobre el perfil del entrevistado, el nivel de inclusión de G&I en su organización y en el ámbito político en el que trabaja (tierra, alimentación, clima, género), y los principales obstáculos e impulsores relacionados con la inclusión de G&I en la política. Estas entrevistas tuvieron lugar entre septiembre y octubre de 2023.Identificamos narrativas sobre las limitaciones a la inclusión de G&I en las políticas relacionadas con la tierra, la alimentación y el clima, así como narrativas sobre los catalizadores de G&I en las políticas. Estas percepciones son el resultado del proceso de triangulación que proviene de la transcripción exacta de las entrevistas realizadas. Primero, presentamos los factores limitantes y, luego, los catalizadores.Dividimos la presentación de las narrativas sobre los factores que limitan la inclusión de G&I en las políticas en cuatro categorías: (1) factores transversales, (2) factores específicos de las políticas de tierras, (3) factores específicos de las políticas alimentarias y (4) factores específicos de las políticas climáticas.Identificamos cuatro narrativas sobre los factores transversales que limitan la inclusión de G&I en las políticas, compartidas por los informantes.El sector agrícola sigue estando muy guiado por ideas y comportamientos patriarcales y sexistas en todos los niveles (desde el Gobierno hasta los gremios 5 y los agricultores). El conflicto armado exacerba la violación de los derechos de las mujeres y los jóvenes, como la participación política o la posibilidad de permanecer en las zonas rurales. Las mujeres dentro de los movimientos sociales se vieron particularmente afectadas, una de ellas explicó:\"Nuestra organización fue una de las que recibió todo el impacto del conflicto armado. Prácticamente nuestro tejido organizativo estaba destruido, desarticulado. Algunas tuvieron que exiliarse, otras murieron, algunas siguen desaparecidas, algunas tuvimos que buscar estrategias de autoprotección para tratar de sobrevivir\".El conflic to armado suele afec tar de manera desproporcionada a los segmentos más vulnerables de la población. Esta realidad sirve como un punto de partida y un reto a la hora de promover la inclusión de G&I. Al abordar el conflicto armado, el personal de WWF reconoció la importancia de adoptar una perspectiva interseccional para el análisis:\"El análisis interseccional es útil para utilizarlo como base analítica y metodológica para hacer análisis situados, para reconocer las particularidades de cada contexto y ver cómo los diferentes marcadores de diferencia de género, etnia, edad, capacidad física, etc. se cruzan en cada contexto particular, lo que cambia mucho en Colombia, no solo por las diferencias culturales, sino también por el impacto del conflicto\".La posición institucional del género en el Gobierno y en el sector agrícola limita la inclusión de G&I. Las entidades gubernamentales, para solicitar recursos públicos, no tienen la obligación de incorporar un enfoque o componente de género o interseccionalidad. Además, las líneas presupuestarias para indígenas, afrodescendientes y mujeres están separadas y no incluyen enfoques interseccionales. Los indicadores para monitorear y evaluar los proyectos públicos son básicos (cuota de participación de mujeres y hombres).Hay poca flexibilidad para mejorar los enfoques de G&I en el Gobierno. No hay articulación entre los ministerios (lo cual es clave para la inclusión de G&I en cuestiones de alimentación, clima y tierra). Por último, existe una brecha entre el diseño de las políticas y su implementación que también limita la inclusión de G&I. Por ejemplo, un funcionario de la Unidad de Restitución de Tierras compartió el caso de una líder rural transgénero que trabaja en el tema de los derechos a la tierra:\"Fue convocada a la mesa de mujeres, ella encontró más su lugar ahí [no en la mesa de hombres], pero nosotros internamente teníamos retos y dificultades presupuestales. El presupuesto para financiar nosotros y traer a las mujeres en el territorio era presupuesto destinado solo para mujeres. Y como ella biológicamente aparece como un hombre, teníamos dificultades para su financiación\".La capacidad del Gobierno para abordar estos problemas es limitada e incipiente. Por ejemplo, la Dirección de la Mujer Rural del Ministerio de Agricultura no solo es la más pequeña, sino también la de más reciente creación, con menos recursos asignados. Además, el equipo técnico encargado de abordar cuestiones específicas relacionadas con la integración de los géneros y otros grupos sociales en los proyectos suele estar vinculado solo en las últimas etapas de la formulación del programa. Esto retrasa la atención que se necesita para abordar los problemas en los territorios. Adicionalmente, los movimientos sociales y las comunidades no comparten la misma definición y comprensión de género, ni de los conceptos relacionados con el Gobierno (no binario, basados en la familia). Los funcionarios del Gobierno tienen dificultades para comprender la complejidad y la diversidad de las comunidades locales, entender sus dinámicas lleva tiempo.Identificamos cuatro narrativas sobre los factores que limitan la inclusión de G&I en las políticas de tierras.Existe una brecha de género relacionada con el acceso y la tenencia de la tierra (titulación o formalización de la tierra) en Colombia. Por lo general, las mujeres no son dueñas de sus tierras. Sin embargo, muchas de ellas (hogar monoparental) que viven en zonas rurales necesitan tierras. La lucha de la mujer comenzó con la tierra. La falta de acceso a la tierra genera brechas en la obtención de créditos y otros factores productivos en la agricultura. La brecha de género relacionada con el acceso a la tierra también refuerza la vulnerabilidad de las mujeres frente a los impactos del cambio climático.La cuestión del acceso de las mujeres a la tierra constituye un desafío histórico, que se ha complicado aún más por el conflicto armado. Las mujeres que se quedan solas (viudas), debido al conflicto, tienen dificultades adicionales para acceder a la tierra y trabajarla. Además, aquellas que residen en regiones afectadas por los enfrentamientos a menudo dudan en liderar los procesos de restitución de tierras, temiendo por su seguridad y bienestar. Este desafío va más allá de las mujeres y afecta también a los jóvenes y a los grupos étnicos. La implementación del Acuerdo de Paz, particularmente durante la administración anterior (I. Duque), agudizó la brecha de género en el acceso a la tierra.Más allá del acceso legal a la tierra, existe una barrera a la autoridad de la mujer para tomar decisiones sobre su tierra. Resolver el conflicto por la tierra y asegurar el acceso a las mujeres, los jóvenes y los grupos étnicos son factores clave para garantizar la seguridad alimentaria. Al respecto, una representante de un movimiento social de mujeres compartió:\"Una cosa es el acceso a la tierra: puedo tener acceso a la tierra porque la tengo, porque la tomo, porque quiero quedarme aquí, porque pertenece a mi familia, porque pertenece a mi esposo... Pero otra cosa es la propiedad donde puedo decidir cómo la quiero, dónde la quiero sembrar, si la siembro, es decir, tener ese dominio sobre la tierra\".En los programas de acceso y restitución de tierras, las mujeres no son percibidas como interlocutoras legítimas. En el pasado, solo se incluía el nombre del cónyuge varón en el título de propiedad, lo que violaba los derechos de las mujeres. Los funcionarios estatales encargados de recolectar datos para el proceso de acceso a la tierra (solicitudes, restitución y formalización) son hombres con una formación más técnica y no consideraron importante la titulación conjunta.Dentro de la ley de restitución de tierras (para quienes han sido desplazados por la violencia) no se especifica un proceso separado para hombres y mujeres, lo que constituye un riesgo para los derechos de estas últimas.Los hombres (cónyuge o hijo) suelen dirigir el proceso de restitución del hogar.Las mujeres rurales están confinadas a su rol reproductivo y las actividades de cuidado, lo que las limita en el acceso a la información y en liderar el proceso. Además, los testimonios expresan que, si la mujer no cultiva ni trabaja la tierra, no se considera apta para adquirir derechos de titulación. No se tiene sistemáticamente en cuenta la opinión de las mujeres sobre si quieren o no regresar a la tierra de la que fueron desplazadas. Un funcionario de restitución de tierras comentó:\"Hay muchas mujeres que no quieren volver a su tierra. Porque allí fueron sometidas a violencia sexual y regresar profundiza su trauma. Porque son mujeres que el proceso de su tierra ha tomado tantos años que están en una edad avanzada y no tienen las condiciones para estar en la tierra, para trabajarla, porque son mujeres que todavía están a cargo de muchos aspectos de la economía del cuidado y están a cargo de personas con enfermedades o ellas mismas tienen enfermedades graves\".En la misma línea, es complejo trabajar la inclusión de género en la política de restitución de tierras colectivas.Un oficial encargado de los asuntos étnicos de la Unidad de Restitución de Tierras comentó: \"No cabe duda de que los hombres ejercen un control mucho más fuerte que las mujeres en muchas comunidades\".Identificamos dos narrativas sobre los factores que limitan la inclusión de G&I en las políticas alimentarias.Uno de los mayores desafíos en Colombia tiene que ver con el acceso a los alimentos y la inseguridad alimentaria. Histórica y culturalmente, las mujeres han soportado la carga del abastecimiento de alimentos en sus hogares. En consecuencia, son más susceptibles a las enfermedades relacionadas con la alimentación (obesidad, subnutrición).Mientras las mujeres permanezcan confinadas a sus funciones reproductivas tradicionales, con un tiempo mínimo disponible para el cultivo y la producción, enfrentar la provisión de alimentos dentro de los hogares y las comunidades seguirá siendo un desafío. Además, las mujeres a menudo tienen un tiempo limitado para el cuidado personal, lo que les dificulta tomar decisiones con respecto a su propia vida y sus hogares. Esta \"hambre oculta\" que experimentan las mujeres no tiene que ver únicamente con la alimentación física, sino también con el anhelo de autorrealización más allá de los límites de los roles tradicionales. Refleja un deseo de empoderamiento individual y femenino.Funcionarios del Ministerio de Salud explicaron el vínculo entre el género y las enfermedades relacionadas con la alimentación: \"Estadísticamente, las mujeres son las que llevan a cabo todas las estrategias de enfrentamiento en el hogar ante la inseguridad alimentaria\". Una mujer de un movimiento social complementó: \"A veces no es solo porque no hay comida sino porque no hay tiempo\".Un funcionario del Ministerio de Agricultura argumentó a favor de atender el tema de la sobrecarga de las mujeres para abordar la inseguridad alimentaria:\"Si cuidamos a quienes producen alimentos y logramos establecer estrategias para el cuidado de niños, niñas, jóvenes y adultos mayores, podemos compensar [a las mujeres] por el tiempo dedicado al trabajo doméstico y al cuidado de las mujeres que a su vez están sobrecargadas con el trabajo de autonomía alimentaria en sus hogares. Esto también ayudaría a resolver situaciones de inseguridad alimentaria generando primero estrategias de reducción y redistribución del trabajo de cuidado que permitan un equilibrio entre el trabajo de las mujeres y las demás personas que acompañan a estos núcleos familiares\".Los grupos étnicos (especialmente las mujeres étnicas), los niños, los jóvenes, los adultos y las mujeres (hogares monoparentales) se ven particularmente afectados. Los grupos con los niveles más altos de pobreza y problemas alimentarios viven en zonas remotas o con altos niveles de conflicto. Los programas alimentarios no tienen en cuenta las preferencias en los alimentos ni los aspectos culturales, lo que limita su impacto. Para abordar el tema alimentario, el personal de la FAO sugirió la importancia del \"rescate de la gastronomía ancestral, de las prácticas y saberes que existen en torno a la alimentación, no solo en el área culinaria, sino también en el área productiva\" y donde las mujeres pueden jugar un gran protagonismo.La alimentación involucra a múltiples sectores, lo que hace que sea un tema complejo de abordar y refuerza las brechas de G&I. \"Cada uno tiene sus objetivos, sus funciones, y muchas veces las necesidades no siempre están alineadas con las funciones, y ahí es donde entra toda la tensión. Como en todo, es un proceso de negociación y habrá un resultado intermedio, porque al final la comisión busca el consenso. (...)\".Como resultado, hay un problema de corresponsabilidad. Además, la descentralización es un desafío para la implementación de políticas. Las prioridades relacionadas con la alimentación, identificadas en el Ministerio de Salud, no necesariamente se consideran prioritarias a nivel de los Gobiernos locales. Por último, los movimientos sociales deben ser incluidos en la arquitectura institucional relacionada con la alimentación.Identificamos dos narrativas sobre los factores que limitan la inclusión de G&I en las políticas climáticas.Las En la Tabla 1, presentamos la síntesis de los factores limitantes para la inclusión de G&I. Los números corresponden a la frecuencia con la que se menciona este tipo de discurso.Tabla 1. Narrativas sobre los factores limitantes para la inclusión de G&I mencionadas por los tipos de actores Las narrativas más mencionadas están relacionadas con \"la agricultura como sector sexista\" (22 menciones), la \"brecha de género relacionada con el acceso y la propiedad de la tierra\" (20 menciones), el \"tema de la economía del cuidado\" (15 menciones) y \"las enfermedades relacionadas con la alimentación involucran factores de género e interseccionales\" (15 menciones). Para estas, existe consenso entre los tipos de actores (Gobierno, Cooperación Internacional, movimiento social).Algunas narrativas solo son mencionadas por funcionarios del Gobierno, como \"la débil posición de género en el Gobierno rígido\" y \"los programas colectivos de acceso y restitución de tierras para grupos étnicos son particularmente complejos\".A través del análisis de narrativas, identificamos 4 factores catalizadores principales que impulsan la inclusión de G&I en la política: (1) los movimientos sociales de mujeres, (2) el Acuerdo de Paz, (3) la Cooperación Internacional y (4) el nuevo Gobierno. En algunos casos, estas oportunidades conllevan nuevos riesgos (aumento de la burocracia en la estructura de gobierno, agotamiento de los movimientos sociales, etc.).1. Inicialmente, los movimientos sociales de mujeres presionaron por la participación de la mujer en los espacios políticos y por el acceso a la tierra... y prosiguieron su esfuerzo en el marco de los Acuerdos de Paz Los movimientos sociales campesinos impulsaron históricamente, y también en la actualidad, la reforma agraria para mejorar el acceso a la tierra. Esto llevó a la estigmatización y debilitamiento de los campesinos. Los grupos indígenas y afrodescendientes son reconocidos como sujetos de especial protección constitucional en la Constitución de 1991, pero los campesinos no; sin embargo, el actual Gobierno (2022-2026) finalmente los reconoció como sujetos de este tipo de protección.Los movimientos sociales de mujeres han asumido la lucha por el reconocimiento de la mujer en los espacios políticos (Gobierno y movimientos sociales) y el acceso a la tierra, en el contexto del conflicto armado. Las mujeres eran invisibles dentro de los movimientos sociales y discriminadas en el acceso a la tierra; también eran invisibles para el Gobierno como campesinas y como mujeres. Una mujer líder compartió:\"La lucha, el inicio del movimiento de mujeres, comienza con la tierra. Básicamente, en el marco del conflicto. La tierra y la participación de las mujeres. (...) En ese momento, más o menos alrededor de 1994, algunas de nuestras compañeras que ya no están en este mundo, también comenzaron a pensar en cómo eran discriminadas. Las mujeres también teníamos los mismos derechos en cuanto al acceso a la tierra\".Una mujer de ANMUCIC explicó el origen de la organización:\" A nivel territorial, estos grupos trabajan activamente en la reconstrucción del tejido social.Por primera vez, los movimientos sociales participan activa y significativamente en la nueva administración gubernamental elegida (2022)(2023)(2024)(2025)(2026). Sobre los Gobiernos anteriores, una dirigente compartió: \"Nunca nos tomaron en cuenta. Nos mantuvieron entretenidos, pero no nos dieron la oportunidad. Ahora tenemos la oportunidad\".Otras mujeres comentaron sobre el actual Gobierno: \"Dedicamos mucho de nuestro apoyo y fuerza a este Gobierno\".En este contexto, los movimientos sociales impulsan la inclusión de enfoques de género, enfoques de diversidad sexual e identidades de género no hegemónicas en el Gobierno. También presionan para que se tenga en cuenta a los jóvenes en la política y para que el debate sobre la economía del cuidado se lleve a cabo en el Gobierno.Este cambio en el diálogo entre el Gobierno y los movimientos sociales puede desestabilizar a estos últimos. La relación con el Gobierno solía ser conflictiva, ahora es visto como un aliado. Sobre ese tema, una mujer comentó: \"Antes nos peleábamos de frente. El objetivo era enfrentar al Gobierno. Pero ya no, porque es nuestro Gobierno. Entonces, ¿cómo podemos enfrentar al Gobierno? ¿Cómo podemos decir que no estamos de acuerdo?\"La nueva atención a los movimientos sociales por parte del Gobierno actual y la potencial oportunidad de transferencia de recursos (para la implementación de políticas) puede conducir: (1) a un riesgo de agotamiento de la sociedad civil, (2) a la competencia entre los movimientos sociales, y (3) a la creación de nuevas organizaciones que crean tensiones con los \"viejos\" movimientos sociales. Sobre la disrupción causada por el nuevo Gobierno, una mujer explicó: \"Estuvimos unidas mientras no tuvimos la oportunidad. Ahora que tenemos la oportunidad... Otros grupos han formado... Así que hay una competencia entre nosotros\".Los movimientos sociales no están preparados para satisfacer todas las demandas del Gobierno en términos de participación en el diseño e implementación de políticas, y en la ejecución de mayores presupuestos.El riesgo de agotamiento entre los miembros de los movimientos sociales es planteado por un funcionario del Ministerio de Agricultura:\"Hubo una participación muy limitada de la sociedad civil en los procesos de construcción de políticas. Eso se ha ido expandiendo y eso por un lado es obviamente algo positivo... Aunque siento que todavía no lo vemos, a la larga puede tener un efecto negativo, y ese es el tema del cansancio en la participación de la sociedad civil. Esta necesidad excesiva de construcción participativa está dejando en los territorios un cansancio y una sensación de debilidad dentro de las organizaciones que no pueden suplir esta nueva demanda de insumos, de trabajo, de venir a hacer el taller, de venir a construir la política\".Por último, se plantea la cuestión de la no renovación de los liderazgos que surgen en el contexto de los Gobiernos de derecha. Los interlocutores actuales del Gobierno en los territorios siguen siendo los mismos que los promovidos por Gobiernos anteriores. Tienen agendas, intereses y motivaciones específicas que pueden diferir de otras organizaciones sociales menos visibles:\"Desde hace mucho tiempo ha habido figuras políticas importantes dentro de las comunidades que vienen de Gobiernos anteriores que han frenado la acción de nuevos líderes o nuevos espacios de cambio organizacional. (...) [Esto] se ha mantenido igual que antes, con sus dinámicas y sus intereses, privando de un diálogo, de un cambio, quiero decir como el cambio de líderes. (...) Estos pequeños círculos de poder y control en las organizaciones afro, indígenas y campesinas siguen correspondiendo a los de Gobiernos anteriores y a compromisos anteriores a este Gobierno. Por lo tanto, aunque haya participación, no quiere decir que todos estén ahí, los que se fueron con este Gobierno están representados ahí. Por lo tanto, no hay una participación real de la población\".Los Acuerdos de PazLa inclusión de G&I en los Acuerdos de Paz es el resultado de las negociaciones entre el Gobierno, las FARC 7 y los movimientos sociales. Los Acuerdos de Paz sacaron a la luz los impactos diferenciales del conflicto y obligaron a las entidades a tener al menos cuotas de género. Un funcionario del Gobierno comentó:\"Los acuerdos incorporan una perspectiva de género, por lo que obligan a las entidades a tener por lo menos estas cuotas, porque antes ni siquiera estaban obligadas a hacerlo, y también nos hacen tener órganos de seguimiento, parte de esa burocracia, que nos hace cumplir con los acuerdos. (...) El plan marco de implementación de los acuerdos tiene varios indicadores de abordajes diferenciales, con personas reincorporadas, con la población víctima, con afrocolombianos, indígenas, rom, mujeres\".Además, los Acuerdos de Paz permiten la creación de organismos (ANT, URT) específicamente responsables del acceso y la restitución de tierras, que incluyen enfoques de G&I.La alimentación como derecho ha sido promovida a través de los Acuerdos de Paz. Un funcionario del Ministerio de Salud comentó:\"Aunque la alimentación como derecho fue reconocida de alguna manera por la Constitución, solo reconoció el derecho de los niños como tal. (...) El discurso comienza a moverse, sobre todo en el marco del Acuerdo de Paz, de la garantía del derecho a ser universal, a ser para todos, para las poblaciones rurales especialmente, pues por todas las condiciones del conflicto que se estaban viendo en ese momento\".Los Acuerdos de Paz permiten la creación de un sistema de garantía del derecho humano a la alimentación, así como la reestructuración de la CISAN (Comisión Intersectorial de Seguridad Alimentaria y Nutricional) para que esté en línea con este enfoque. Se prevé la creación de instancias territoriales que permitan la representación de las comunidades indígenas, afro, gitanas, campesinas y de mujeres en la CISAN.7 Fuerzas Armadas Revolucionarias de Colombia -Guerrilla colombiana.Los actores de la Cooperación Internacional apoyaron la formulación de un plan de cambio climático del sector agropecuario (PIGCCag), una política afrodescendiente, y una política de agricultura familiar y comunitaria.También participan y apoyan la reflexión sobre temas relacionados con el cambio climático, la alimentación, el acceso a la tierra para las mujeres y la economía del cuidado. Respaldan y promueven un enfoque de derechos humanos con énfasis de género, étnico y territorial.Por ejemplo, en cuanto a la política de tierras, el personal de la FAO compartió una reflexión sobre el tema de la tenencia de la tierra para las mujeres: \"Sí, en los proyectos de ley que se están debatiendo en el Congreso, hemos estado trabajando en este tema\". Un funcionario del Ministerio de Agricultura comentó sobre la política alimentaria:\"Este tema de los sistemas agroalimentarios, la agricultura familiar y comunitaria, se está desarrollando en el marco de un convenio con la FAO. Pero es un esfuerzo que queremos hacer para poder caracterizar y poder destinar la oferta diferenciada de la política a la agricultura familiar y comunitaria, y todo lo que se contempla en materia de juventud y género\".El personal del Programa Mundial de Alimentos (PMA) explicó su papel:\"Mi función es la incidencia en la gestión de políticas públicas sobre el derecho humano a la alimentación. Estamos tratando de cambiar el lenguaje para que ya no se hable tanto de seguridad alimentaria y nutricional, sino del derecho humano a la alimentación. Esto tiene algunas consecuencias, sobre todo en términos de visión, porque ya no estamos hablando de atender a los usuarios, beneficiarios, sino a sujetos de derechos.Esto cambia la relación que normalmente teníamos, que era como si estuviéramos haciendo un favor con estas entregas, y no, no estamos haciendo un favor, estamos cumpliendo con nuestro deber con los sujetos de derecho\". La gran apuesta del Gobierno de izquierda, impulsado y apoyado por la vicepresidencia (Ministerio de Igualdad y Equidad) y el Plan Nacional de Desarrollo (artículo 84), es la creación del Sistema Nacional de Cuidado. El objetivo es medir, valorar y compensar el trabajo de cuidado de las mujeres, y reconocer la economía del cuidado como sector productivo en el medio rural. Un funcionario del Gobierno afirmó que \"es una prioridad de este Gobierno desarrollar la política del Sistema Nacional de Cuidado y trabajar con todos los sectores\".Nunca ha habido la voluntad política de asumir este compromiso. Colombia es pionera (junto con Uruguay) en América Latina en este tema. El sistema colombiano reconoce a la naturaleza, el medio ambiente y a las organizaciones comunitarias de cuidado como parte del sistema de cuidado. Es más, como compartió un funcionario del Gobierno: \"A diferencia de otros países, en Colombia creemos que también hay organizaciones de cuidado comunitario\". Otro aspecto de la conceptualización colombiana del cuidado es compartido por el oficial de la ADR: \"Hay una noción más amplia de cuidado que tiene que ver con el medio ambiente, el cuidado del agua, el cuidado de la tierra, las relaciones humanas no humanas, que creo que es algo muy nuevo para el Estado\".La estrategia de creación del sistema adopta un enfoque de género, interseccional e intersectorial. Los movimientos sociales están involucrados en la discusión, como comentó un funcionario del Gobierno:\"Se están haciendo reuniones con diferentes poblaciones, con la población de víctimas, con nuevas masculinidades, con mujeres rurales, con la población con discapacidad. Encuentros con parteras y mujeres étnicas. Esto lo estamos construyendo colectivamente, tanto con la ciudadanía como con la institucionalidad, porque de hecho partimos del hecho de que la ciudadanía es la que más se preocupa y tiene más herramientas que nos pueden apoyar en la construcción de esta política\". Síntesis de narrativas sobre los factores facilitadores de la inclusión de G&I En la Tabla 2, presentamos la síntesis de los factores impulsores de la inclusión de G&I. Los números corresponden a la frecuencia con la que se menciona este tipo de discurso.El impulsor más mencionado para la inclusión de G&I es el \"enfoque de G&I en los Acuerdos de Paz\" (17 menciones), seguido por el \"gran y real interés del nuevo Gobierno por la inclusión de G&I\" (16 menciones), la \"gran apuesta en el Sistema Nacional de Cuidado\" (13 menciones) y el movimiento social \"papel de los movimientos sociales en el acceso a la tierra\" (12 menciones). Para estos, existe consenso entre los tipos de actores (Gobierno, Cooperación Internacional, movimiento social). En general, hay un consenso entre estas narrativas.El país ha venido teniendo una coherencia donde todos han tratado de incluir el enfoque de derechos, el enfoque de género, el enfoque territorial y el enfoque diferencial.En cuanto a los factores catalizadores, es la combinación del papel de los movimientos sociales de mujeres, la formulación e implementación de los Acuerdos de Paz, el apoyo de la Cooperación Internacional y la voluntad política del Gobierno de izquierda lo que permite una mayor inclusión de G&I en la política. Este contexto aparece como una \"ventana de oportunidad\" para el cambio de políticas (Meijerink [2005], basado en Kingdon, 1995). G&I es reconocido y abordado por el nuevo Gobierno -que proviene y representa a grupos marginados por la política -(problem stream). Las ideas sobre cómo abordar la inclusión de G&I en las políticas son expresadas por los movimientos sociales y la Cooperación Internacional (policy stream). Por último, la llegada de un nuevo Gobierno de izquierda, sensible al tema de G&I y apoyado por los grupos de interés (political stream). La combinación de las tres corrientes (o streams) ha mejorado la inclusión de G&I en las políticas. Sin embargo, el cambio de políticas encierra algunos riesgos, como el agotamiento de los movimientos sociales y el desafío de lograr una agenda más alineada que logre integrar a todos los sectores y demandas.Siguiendo a Crenshaw (1991) citado por Nash (2008), si bien abogamos por luchar contra la exclusión y la marginación desafiando las instituciones y las políticas, y escuchando a los que no tienen voz, es importante estar atentos a cómo se implementan realmente estos cambios sobre el terreno.A través del análisis del discurso, exploramos hasta qué punto la diversidad está incluida en las políticas de tierra, alimentación y clima, reconociendo factores limitantes y catalizadores en las narrativas. Identificamos, por un lado, los factores transversales y específicos que limitan la inclusión de G&I y, por otro, los factores que catalizan su inclusión.En cuanto a los factores limitantes, las narrativas subrayaron las situaciones actuales en las que las mujeres, los jóvenes, las comunidades étnicas y las comunidades rurales son invisibilizados, olvidados en las políticas, lo que generó una brecha importante que debía ser abordada por un sector sexista donde el género se encuentra en una posición institucional débil. La identidad relacionada con el género, la etnia, la geografía y la edad es clave para entender la marginación de ciertos grupos sociales en las políticas. Los resultados también plantean la importancia de adoptar un enfoque institucional feminista que permita comprender cómo se reproducen las relaciones de poder de género y cómo son difíciles de cambiar, centrándose en el papel de los procesos y prácticas institucionales en el refuerzo y la reproducción de la desigualdad de género (Allwood, 2013).Es interesante notar que temas como los conflictos armados y la economía del cuidado aparecen como un desafío para la inclusión de G&I y una oportunidad para el cambio.Recomendaciones de política en términos de participación. Este apoyo puede provenir de la Cooperación Internacional o de organismos de investigación.Los movimientos sociales y la Cooperación Internacional deben continuar su esfuerzo por la inclusión de G&I en las políticas y actuar como agentes de control para la implementación de políticas, más allá de los discursos políticos. Es clave superar la brecha de implementación y hacer realidad todos los insumos/necesidades que se recogieron de los diferentes sectores y movimientos. En ese sentido, es fundamental identificar y empoderar a líderes locales (diversas) (mujeres) para ese propósito. Este enfoque puede producir un doble beneficio: aumentar la fuerza de las asociaciones de mujeres y reforzar la credibilidad de las instituciones gubernamentales.Por último, dado el arraigado sexismo en el sector agrícola, es recomendable establecer espacios mixtos destinados a promover la conciencia sobre el papel y las contribuciones de las mujeres en las comunidades locales. Del mismo modo, se recomienda llevar a cabo actividades de sensibilización sobre cuestiones de género (como las identidades, la sexualidad, la economía del cuidado, la equidad vs la igualdad, etc.). Estos esfuerzos tienen como objetivo cambiar las dinámicas de poder dentro de las comunidades y reforzar la participación de las mujeres en asuntos cruciales como la restitución y el acceso a la tierra, lo que permitirá crear cambios transformadores de género.Los funcionarios gubernamentales, el personal de Cooperación Internacional y los movimientos sociales (de mujeres) deberían aprovechar esta ventana de oportunidad histórica a favor de la inclusión de G&I en las políticas para lograr una integración transformadora (Alwood, 2013) antes de que la ventana se cierre. El avance de la perspectiva de género y la inclusión en las políticas podría impulsarse mediante el fortalecimiento de los marcos institucionales y de gobernanza, incluidos los mecanismos de coordinación. Esos esfuerzos deberían complementarse con campañas y talleres de sensibilización centrados en G&I, dirigidos tanto a las instituciones como a las comunidades a las que sirven. Se sugiere que estas iniciativas se integren en diversos sectores y etapas, desde la formulación hasta la evaluación.El Gobierno debe equilibrar y diversificar la demanda de participación en las organizaciones sociales, buscar una representatividad real de las mismas en sus interacciones (viejas/nuevas, visibles, menos visibles) y hacer un esfuerzo específico para evitar tensiones entre ellas.El monto de los fondos asignados por el Gobierno a las organizaciones sociales para la implementación de políticas debe adaptarse a su capacidad. Paralelamente, es necesario apoyar los movimientos sociales para que mejoren su incidencia política, y su capacidad de ejecutar un presupuesto más importante para la implementación de políticas y para satisfacer la demanda del Gobierno ","tokenCount":"6256"} \ No newline at end of file diff --git a/data/part_3/3175726224.json b/data/part_3/3175726224.json new file mode 100644 index 0000000000000000000000000000000000000000..6e55aee295655e43cf5f82040d8a43e63ad102fc --- /dev/null +++ b/data/part_3/3175726224.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"4b3c92b77f83ba9897d7ab48ecc824a7","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/ecbd6a7c-d74a-45dc-a4ae-14cb50a809d3/content","id":"-708484595"},"keywords":[],"sieverID":"6a446fe4-a125-46ee-834e-d16e329fe7e8","pagecount":"10","content":"The relevance of social interactions (social ties) to farming systems' resilience is widely recognized. However, controversies exist around the contribution that farmers interacting with external actors (weak/ bridging ties) versus with other farmers (strong/bonding ties) have in their resilience strategies through innovation. Farmers use different strategies to respond to their farming systems and contexts' particularities. Comparing the contribution of both strong and weak ties in different farming systems brings variety in resilience strategies. OBJECTIVE: To generate evidence of the complementary contribution of social ties to resilience by comparing indexes associated with strong and weak ties from innovation networks of different farm types. METHODS: This paper applies an ego-centric social network analysis to farm units characterized by a farm typology to compare their strong/bonding and weak/binding ties contribution to innovation networks. It uses data from 29,796 farm units of maize smallholders in different regions from Central and Southern Mexico covering the gradient from commercial to subsistence farming. The analysis estimates two indexes based on actors' similarity/ dissimilarity, that are External and Internal and Specialization Indexes. RESULTS AND CONCLUSIONS: Our findings quantify differential contributions of strong versus weak ties to resilience strategies associated with innovation networks among different types of small-scale maize farmers.Covid-19 has become just the latest of the challenges that farming systems face. It has joined a long list of agricultural challenges, including food availability, natural resource sustainability, climate change resilience, poverty and inequality, and resilience to protracted crises for citing some challenges (FAO, 2017). Resilience plays a critical role in these challenges and is essential for agricultural systems. Nevertheless, how resilience takes place is an open question when considering farming systems' diversity. Farming systems represent how humans interact with their environments, shaping global and local land management landscapes (Václavík et al., 2013). Diversity is at the centre of agricultural resilience. Farmers use various strategies to guarantee their farms' flexibility and adaptability as part of their ability to cope with change and maintain functions, commonly understood as resilience (Bruce et al., 2021). Farms' resilience strategies are resource and contextdependent (van der Lee et al., 2022) including buffer capabilities (the ability to persist or \"bounce back) as well as adaptive and transformative capabilities (the ability to change or \"bounce forward\") (Darnhofer, 2014). Several activities contribute to farming systems' resilience such as increasing productive and economic efficiency, farm diversification, and technological innovation (Bruce et al., 2021).Innovation and resilience tend to be used interchangeably, assuming that innovation leads to resilience and resilience leads to innovation (Díaz-José et al., 2018). However, in scientific literature, resilience is usually used to discuss processes, while innovation represents a pathway for achieving resilience (Zupancic, 2022). The literature on climatesmart agriculture exemplifies this as it typically focuses on technological innovations to increase resilience against climate change (FAO, 2013;Douxchamps et al., 2016). However, technology is not the only angle of innovation. Agricultural innovation systems approaches define innovation as the successful combination of technological innovation (hardware), social innovation (orgware) and knowledge systems (software) (Hermans et al., 2017). In innovation studies, knowledge has received particular attention regarding how knowledge is exchanged and by/from whom.Social network analysis (SNA) has been applied to understand the role of knowledge exchange in innovation processes. Granovetter's (1983) proposal of a systematic analysis of social networks has found fertile ground in research on the diffusion of technological innovation (Rogers, 2003), mainly associated with learning processes and information exchange as strategies for resilience through adaptation and transformation. The tie strength between actors who participate in the information flows for innovation (innovation network) plays a central role in terms of strong/bonding ties (from local actors like relations with relatives, friends, and peers) versus weak/bonding ties (links with external actors and institutions) (Rockenbauch and Sakdapolrak, 2017). It is commonly accepted that resilient farms benefit from combining formal and informal sources of knowledge and having access to a wide range of information (Bruce et al., 2021). However, disagreements exist on what type of ties configuration (weak, strong or both) promotes innovation and how they contribute to resilience. Comparing the contribution of weak and strong ties in different farm units is key to understanding how various resilience strategies take place (Meuwissen et al., 2019).This paper applies an ego-centric social network analysis to farm units previously characterized by a farm typology to compare social network indexes associated with strong and weak ties. It looks to make the case for the importance of diversity in farming systems to define resilience strategies associated with innovations. The paper compares the innovation networks of 29,796 farm units of maize smallholders from Central and Southern Mexico that have been formerly characterized by their differential access to resources, and their distinctive productive as well as social attributes. Findings allow the discussion of how strong and weak ties have a differential contribution to resilience strategies associated with innovation when comparing different types of maize farming systems. Furthermore, they generate quantitative evidence of the joint contribution of strong and weak ties in innovation networks and the importance of considering farm units differences to enhance distinctive resilience strategies.Strong and weak ties have been incorporated into social network analysis. Granovetter (1983) proposed these terms to distinguish the strength of an interpersonal tie concerning \"the amount of time, the emotional intensity, the intimacy and the reciprocal services which characterize the tie\". With time, these concepts have been associated to Putnam (2000) work on social capital; thus, strong ties are generally linked with bonding capital and weak ties with bridging capital. Although Granovetter's original definition of tie strength considers these four attributes, these concepts are commonly used to distinguish between \"people like you or similar\" (strong/bonding ties) versus \"people not like you or dissimilar\" (weak/bridging ties) (Newman and Dale, 2005;Rockenbauch and Sakdapolrak, 2017).As strong ties are shared with similar people, they are considered homophilius and normally characterized by trust and solidarity (Rockenbauch and Sakdapolrak, 2017). These ties are recognized by their bonding function to create solidary and social cohesion (Newman and Dale, 2005). Networks with strong ties promote information sharing and learning and provide mutual help during a crisis (Prell et al., 2016;Fath et al., 2021). In contrast, weak ties involve less frequent interaction with dissimilar actors who creates bridges that foster connections and create heterogenous social networks (Rockenbauch and Sakdapolrak, 2017). These networks offer new ideas as actors have different pools of information (Dapilah et al., 2020).There has been an evolution in the discussion about the contribution of weak and strong ties to innovation and resilience in farming systems.A dominant narrative that started with Granovetter's seminal work exists in innovation studies that promote weak ties from external actors and heterophilic communication networks to facilitate access to new information, opportunities, and resources conducive to innovation (Van Rijn et al., 2012;Hermans et al., 2017). These attributes are also identified when studying the contribution of weak ties to achieve resilience through the sustainable governance of natural resources, as they are essential to promote vertical and horizontal relationships (Marín and Gelcich, 2012). Furthermore, the values of trust, as well as the easiness of communication and learning from strong ties, are recognized by resilience work (Rico García-Amado et al., 2012). These attributes have been essential to contest the dominant innovation narrative and highlight the value of strong ties to promote social learning ( Van den Broeck and Dercon, 2011). This contestation in recent years has brought a joint narrative indicating that farmers use both weak and strong ties in their innovation process and resilience strategies but in context-specific configurations (Cofré-Bravo et al., 2019;Bruce et al., 2021). This paper looks to contribute to the complementary narrative by generating quantitative evidence comparing different strong and weak ties configurations based on actors' similarity/dissimilarity in diverse farm types innovation networks. The use of social network analysis indexes to understand the role of social ties (both strong and weak) has been considered in resilience (Rockenbauch and Sakdapolrak, 2017) and innovation literature (Rost, 2011;Fritsch and Kauffeld-Monz, 2008). Network structure indicators such as density, centrality and homophily, usually are applied (Borgatti et al., 1998). However, when exploring social ties, indicators elaborated from an ego-centric approach facilitate the measurement of weak/ bridging ties and heterogenous networks versus strong/bonding ties and homogenous networks. Some examples of these indicators and indexes are external and internal index, heterogeneity, similar/dissimilar actors ratio, and bridging social capital index (Krackhardt and Stern, 1988;Borgatti et al., 1998;Newig et al., 2010;Rost, 2011;Borck et al., 2015;Isaac et al., 2014;Marín and Gelcich, 2012). This paper focuses on indicators quantifying differences in strong and weak ties contributions between the innovation network of maize smallholder farms in Mexico.Maize-based farming systems in Mexico are widely recognized for their diversity due to agroecological and socio-cultural conditions (Sweeney et al., 2013;Aguilar et al., 2003). Diversity is manifested in farm structures and production orientations (Eakin et al., 2014a), as well as the multiple roles of maize (Appendini, 2009;Appendini and Quijada, 2016). A wide range of farming systems, from small-scale subsistence to large-scale commercial farming systems co-exist (Zepeda et al., 2020). Smallholder maize farm households have raised particular interest concerning their resilience with adaptive strategies such as the: use of maize genetic diversity (Bellon et al., 2011); the diversification of crop, land, and farm management practices (Alayon-Gamboa and Ku-Vera, 2011); and the use of technological and social innovations (McCune et al., 2012;Díaz-José et al., 2018). Innovations have received particular attention in social network studies which tend to highlight the importance of heterogenous networks and weak ties for adopting technological innovations (Zarazúa et al., 2012;Sánchez Gómez et al., 2016;Roldán-Suárez et al., 2019). This paper quantifies the differential contribution of strong/bonding and weak/bridging to resilience through innovation networks of maize small-scale farm units in Mexico characterized by differential access to resources.Data were collected by researchers at the International Maize and Wheat Improvement Center (CIMMYT) and the Research Center for Economics, Social and Technological Agroindustry and World Agriculture (CIESTAAM) from small-scale farmers 1 who cultivated maize in Central and Southern Mexico during 2017-2018. It was a part of the more extensive subsidy programme ProAgro Productivity implemented by Mexican Government Secretaria de Agricultura, Ganaderia, Desarrollo Rural, Pesca y Alimentacion (SAGARPA, currently known as SADER) and CIMMYT that provided technical advisory support to farmers in 1346 localities from 273 municipalities of 16 states from the Central and South part of Mexico (Campeche, Chiapas, Guanajuato, Guerrero, Hidalgo, Jalisco, Mexico, Michoacan, Oaxaca, Puebla, Queretaro, Quintana Roo, Tabasco, Tlaxcala, Veracruz y Yucatan) (see details of locations in Annex 1). As farmers were beneficiaries of ProAgro, the sample is not random and does not intend to represent the 1.99 million farm units that cultivate maize in the country (Bellon et al., 2018).All the data were consolidated into two databases:a) The farm typology database contains information on the structural, functional, and social dimensions of 3811 farms. A semi-structured questionnaire was used to gather information using 47 variables to classify farm types based on structural (mainly resource access), functional (focused on resources management) and social (family demographics) dimensions (Zepeda et al., 2020) (see questionnaire in annex 2). Although this database represents a subgroup of the social network database, its data generates a robust case for a farm typology characterization. b) The social network database contains information to analyze the social network developed around the adoption of agricultural practices by 29,796 farm units. Information was gathered using a structured questionnaire that integrates a catalogue of agricultural practices (innovations) and the following questions \"Which agricultural practices are you performing? If so, from whom did you learn to implement each of these practices?\" Agricultural practices were predefined at the state level by farm technical advisors who identified the state's most relevant technological innovation for maize. Responses were categorized and grouped in a list of stakeholders Source: Roldán-Suárez (2022).described in Table 1. The questionnaire also gathered general information about farm resources, farmers' social attributes, and the maize production system (see questionnaire in annex 3).Data analyses consisted of two steps: (i) extrapolation and description of farm types to the social network database and (ii) network analysis to estimate indexes referring to the configuration of social ties. For this study, we used the open-source program R (V 4.0.4), embedded in R-Studio (V 1.4.1106).This study relies upon a previous farm typology analysis using the farm typology database published by Zepeda et al. (2020). The analysis made a classification based on a Principal Components Analysis on farm resources (land area, livestock, water access, machinery and equipment, labor, etc.), crop management and livelihood strategies (crop distribution, the proportion of on/off/non-farm activities, etc.), farm family social attributes (ethnicity, family age and composition, and education level) and maize production characteristics (yield, genetic material type and production purpose). Five farm types were characterized and named as follows: 1) Commercial and mechanized farm households (commercial), 2) Low mechanized farm households (low-mechanized), 3) Semicommercial farm households of Elder Families (elder families), 4) Farm households with diversified income, (diversified incomes), and 5) Subsistence farm households with women participation (subsistence). Information of this analysis can be found in annex 4. This group's classification was extrapolated to the social network database by using a random forest prediction, through the variables related directly or indirectly. It consisted of the application of the average prediction trees in an aleatoric vector with n-regressions model to draw an average trend (Breiman, 2001). This kind of model has proved reliable for successfully classifying new events in a trained network (Ho, 1998;Breiman, 2001). Means, standard deviation, and the significance for mean comparisons were performed following the Kruskall-Wallis test at the 5% alpha level for information gathered in the social network database. This information covers farmer social characteristics, farm production resources, and maize production orientation, which helped to identify differences between farm types. A most detailed description based on Zepeda et al. (2020) farm types' characterization complemented this characterization.The study used a two-mode ego-centric network approach in which a farm unit represents the first type of actor or mode or ego and alters are represented by actors in other stakeholder's categories who contribute to the adoption of agricultural practices (Ovalle-Perandones et al., 2010;Rost, 2011). The analysis consisted of estimating two indexes to quantify the contribution and configuration of strong versus weak ties for different farm types. The first analysis (a) estimated the External and Internal Index (E-I index) as an index that quantifies the ego-alter similarity that defines the network configuration. The second analysis (b) calculated the value of a Specialization Index that estimated the contribution of strong and weak ties in the innovation network.The EI index proposed by Krackhardt and Stern (1988) has been extensively used in social network analysis to quantify the relational structure within and between groups (Everett and Borgatti, 2012).For the analysis, all the links that ego has with an alter in the category \"farmers\" were considered internal (I). The links between ego and alters in the remaining categories (institutions, input suppliers, clients and intermediaries) were labelled as external. We applied a modified version of the E-I index proposed by Borck et al. (2015), considering the differences between the number of nodes among different farm types. In the formula for calculating this index EL is defined as the total weighted of external connections (sum of the weights of all external ties) and IL is defined as the total weighted of all internal connections for each individual or farmer as follows:Where. EL = the normalized number of external connections for individual i. EL = the normalized number of internal connections for individual i.Since we have weighted data instead of binary data, we normalized the EL number dividing E by the maximum observed value for each farmer or individual as follows:And the same procedure to normalize the internal links (IL):The possible scores for this index encompass from − 1.0 to +1.0. As the E-I index approaches to +1.0, all the links would be external to the subunits. A score of − 1.0 would indicate that all the links are internal. If the links are divided equally, the index will equal to zero. The significant differences between the means of E-I indexes of all farming types were performed following the Kruskall-Wallis test at the 5% alpha level.. The specialization analysis index (d') was proposed by Blüthgen et al. (2006) and performed in Dormann (2022) in ecology studies. This index explores the diversity of relationships between individual farmers and other stakeholders involved in the maize production network. This diversity was used to compare the contribution of stakeholders in different farm-type networks (Table 2).The analysis consisted of building a weighted two mode-network using a W-weighted adjacency matrix (Table 3), with given f farmers and s stakeholders in a matrix X of dimension f x s elements, in which aij = 0 when there is no edge between nodes or smallholder farmers i and stakeholder j, and aij = w when and edge exist (w is a real number) (Amano et al., 2018;Chessa et al., 2014). A contingency table can represent the interaction with f rows and s columns, each cell containing the frequency aij of interaction between a farmer i and a stakeholder j (see Blüthgen et al., 2006).Each interaction was then assigned as a proportion of the total (m) as follows: pij = aij/m, where ∑ f i=1 ∑ s j=1 p ij = 1. P'ij is the proportion of the number of interactions concerning the row total (Aij) and q' the proportion of all interactions by partner j concerning the total number of interactions (m).p'ij = aij/Ai, ∑ s j=1 p′ ij = 1, qj = Aj/m, and ∑ s j=1 q j = 1 The specialization of a farmer i the index d' compared the * Interaction frequencies (aij) between farmers (c) and stakeholders (s). Total rows Ai, columns Aj and total elements m.distribution of the interactions with each partner (p'j) related to the overall partner availability (qj).This index was normalized ranging from 0 (most generalized ties) to 1 (most diversified ties or wider specialization). Here, values near 0 referred highlight the dominance of strong ties and homogenous networks, while a near 1 value reflects more heterogenous networks, including both strong and weak ties.The Kruskall-Wallis test was performed to find statistical differences in the specialization index among the different groups. Finally, a normalized degree index (Martín González et al., 2010) was calculated to identify the centralization patterns by the actors with whom farmers are linked and how these patterns differ among the distinct networks.According to the prediction tree model (Fig. 1), the most relevant characteristics of farm classification (shared in both datasets) were: ethnicity (indigenous or not indigenous), maize genetic material (landrace or improved or hybrid genetic materials), production purpose (self-consumption versus market) and total agricultural land (total). The prediction evaluates one farmer at the time and defines the probability of being grouped in one of the original groups.The results from the descriptive statistics analysis confirm differences between farm types that have been widely discussed (Barkin, 2002;Appendini, 2009;Eakin et al., 2014aEakin et al., , 2014b)). Table 3 presents the values for each farmer type on variables that refer to farm resources and maize production characteristics. The table also presents social variables about the main person farming within the family farm units. There is a clear trend of decremental values in access to resources from commercial (who represent a distinctive group) to subsistence and diversified farm types concerning land, irrigation and machinery, and irrigation. Low mechanized and elder families farm types appear as intermediate groups concerning these farm assets. Differences are also evident in maize production attributes as previously reported by Sweeney et al., 2013 andZepeda et al., 2020). Commercial farm types using mostly hybrid genetic materials and commercializing most of their production are the ones who obtain the highest maize yield. There is a yield gap of more than three Mg (ton/ha) between commercial and the next closest farm type, low-mechanized farmers, who use only hybrids. Landraces are cultivated by elder families, subsistence and diversified income farm units with yields that does not surpass the 2 Mg/ha. Maize sale prices present high values for the farm types selling most of their production (commercial, lowmechanized farm, and elder families) as they have been able to negotiate \"high commodity prices\" (Eakin et al., 2014b). The low sale prices received by subsistence and diversified farm types have been explained in terms of cash losses when landrace maize production is valued at the price of commercially available maize in local markets (Arslan and Taylor, 2009).Social attributes become distinctive attributes of original farm types. The presence of women characterized diversified income and, in some extent subsistence farm types. Ethnicity becomes the primary trait to identify subsistence farmers with the lowest education value. The highest values on farmer age reflect the condition that characterized elder families farm types. However, the predicted new farmer's characteristics approximate to the Zepeda et al. (2020) typology as they are based on the individual farmer instead of the farm household description.A brief description from information reported in Zepeda et al. ( 2020) for the farm typology characterization (see details in Annex 4) is used to complement and contextualize the previous description. The information is helpful to understand distinctive attributes of each farm type as this characterization contemplates other farm resources (such as livestock and labor), farm management and family livelihood strategies (crop distribution, proportion of on/off/non-farm activities, etc.), and farm family social attributes (such as family age and composition).This farm type presents the major land extension in irrigated and flat conditions. Their farms are near urban areas. They present the most considerable quantities of livestock, and most of their cultivation activities are mechanized. Most of their income comes from agricultural activities on their farms, and they are the ones who hire more labour. The gap between this group and the others concerning their total income and their maize yield is significant, representing more than double from the near farm type (low mechanized farms).Their farms are in the lowest altitude regions, far from urban areas with low access to irrigation infrastructure and machinery. Their maize production is manual as they cultivate in hilly and rainfed conditions. However, they are the ones who use more hybrid seeds and reach higher yields. Their primary income comes from agriculture representing 70% of their total income. Like subsistence farmers, their income is one of the more unstable throughout the year.The most distinctive attribute of this farm type is that they present the highest family age rate with an average age of 65 years old and a smaller family size (number of members). Their farms are near urban areas. Their farming activities are semi-mechanized or undertaken by animal traction. Their production is semi-commercial. They commercialize their maize production but cultivate landraces because selfprovision is crucial for their livelihood. More than half of their income comes from agriculture that is complemented by cash transfers of social protection programs.The location of their farms is near urban areas and in some cases peri-urban areas. Although their land area is the smallest, some of agricultural activities are manual and others mechanized as they have access to machinery. Some of their fields are irrigated. Livestock represents a critical income. Their maize production is used for human and animal consumption on their farms. Their income is diversified, and non-farm (temporal migration to cities) activities contribute more than crop and livestock incomes.This farm type presents one of the small land areas, and they are located the farthest from urban areas. Maize is cultivated in mountainous areas or stony soils and that is why most of the activities are manual. These farm type concentrates the major percentage of indigenous people, and they present the lowest years of education. Their agricultural income is the lowest and the most unstable during the year. Their cash transfers from social protection are the highest. They also receive income from selling their labor in off-farm activities. They are the group that buys more maize to satisfy the annual household consumption needs.The network analysis results also show differences between farm types that, in most cases, are significant. This is because they are based on the information flows around maize technological innovations adopted by farmers and the primary source of information. We call them innovation networks because they map the information/knowledge flow for promoting the adoption of agricultural practices for maize production to improve productivity.Differences in the External and Internal Index values between the innovation networks of the five farm types are evident, as illustrated in Fig. 2. The E-I index values for all farm types tend to converge around zero, suggesting an equitable distribution of strong and weak ties within their respective innovation networks. However, it is worth noting that the commercial and elder families' farm types markedly deviate from the remaining farm units, displaying a pronounced inclination towards association with external links, which indicates weaker ties. Conversely, the low-mechanized units occupy an intermediate stance concerning their network connections. Finally, the subsistence and diversified farms have relatively higher level of internal linkages or strong ties.The variation in the specialization index provides important information related to the differential contribution of strong and weak ties. Although most of the values tend to more generalized ties, the commercial network (Fig. 3 C) has the highest d' index, with the weighted mean degree of specialization d' > than the rest of the networks (p ≤ 0.05). Commercial farmers use both strong and weak in their innovation networks. First, input suppliers and, in second place, institutions play an important role in adopting agriculture practices. In contrast, the subsistence and diversified networks are dominated by generalized (low and similar d') centered in strong rather than in weak ties (Fig. 3 A and B). The minor contribution of weak ties in adopting new agricultural practices is first played by institutions and later by input suppliers. Elder and Low-mechanized farmer' networks were located in between generalized to specialized, differing among the two extremes but following commercial farmers in the pattern of external contribution. Although in all the cases, strong ties (links to other farmers and relatives) are the most frequent by the farmers, the normalized degree shows how the commercial networks establish a wider variety of relationships, including weak and strong ties, while the rest of the networks are centered mostly in strong with different magnitude.A clear trend appears when combining the social network index values and the farm typology characteristics. As Fig. 4 shows, the commercial farm type presents the highest values on the social network indexes with significant ties for innovation from peer farmers and input suppliers. Commercial farm types are also characterized by the highest values on farm resources (like farmland area, irrigation, and machinery) and a maize production system using high yielded hybrids varieties for commercial purposes, attributes that characterized this farm type as Fig. 1 and Table 3 illustrate and Eakin et al. (2014b) reported. On the other extreme of the spectrum, the lowest values of E-I and Specialization Indexes are from diversified income units, followed by subsistence farm types who receive support from institutions and later supply inputs. Diversified and subsistence farm types also present the lowest values for farm resources, cultivate landraces for self-consumption purposes, characteristics that distinguish these types in Table 3 that have been documented by Eakin et al. (2014a) and other authors. Finally, lowmechanized and elder families farm types present intermediate values for both social network analysis and farm resources.Findings from E-I and Specialization indexes show that strong and weak ties contribute to innovation networks of different maize smallholder farm types in Mexico. This result is in line with the narrative that values the complementary contribution of weak and strong ties for innovation processes that lead to resilience (Rost, 2011;Cofré-Bravo et al., 2019;Bruce et al., 2021). Results also demonstrate differences between innovation networks that can be explained by farm-type attributes highlighting the context specific-nature of their innovationresilience strategies (Darnhofer, 2014;Rockenbauch and Sakdapolrak, 2017). Each farm type presents characteristics described in literature discussing maize farming systems in Mexico. Nevertheless, for the case of the contribution of strong and weak ties to their innovation networks, findings distinguish three groups. We will elaborate on this discussion focusing on these three groups.The first group is represented by commercial farm units presenting a more comprehensive network and more variety of relationships. Their social ties configuration towards weak ties facilitates the adoption of innovations (Van Rijn et al., 2012). Social networks of commercial farm types are exposed to dynamic processes driven by markets, technology, and competition that increase the dependency on external resources and the need to establish a wider variety of linkages that create social and information proximity (Fritsch and Kauffeld-Monz, 2008). However, the contribution of strong ties (represented by other farmers and relatives) should not be underestimated for the adoption of agricultural practices.Commercial farmers have more access to farm resources to practice highly productive farming systems using external inputs and receiving external support, attributes that have been proven to facilitate innovation (Cofré-Bravo et al., 2019). They form part of what Eakin et al. (2014b) call the agrarian winners of the maize boom in Mexico who have received and negotiated governmental investment and support to modernize their maize farming systems. They not only count on the resources for high productive and commercial production but also on an extensive network that facilitates knowledge flows between them and research centers, transnational enterprises, agroindustry, and farmers associations (Casas et al., 2000). Low-mechanized and elder families farm types represent intermediate points in the gradient of commercial to diversified income farming systems. The contribution of weak ties is similar between these two farm units in terms of input suppliers and institutions playing essential roles in their innovation networks. Nevertheless, low-mechanized farm units have higher values on agricultural land area and maize yields using hybrid materials for commercial purposes, evidencing the importance of resource endowment for social interactions (Cofré-Bravo et al., 2019). They reflect the partial modernization process in some tropical regions of Mexico with limited mechanization and irrigation facilities (Hellin et al., 2013). The location of low mechanized farm units far away from urban areas explains the challenges of interacting with other stakeholders different from farmers (McCune et al., 2012;Díaz-José et al., 2018). However, spatial distance cannot be used to explain the limited contribution of weak ties to elder families' farm units as they are located near urban areas. Elder families farm types commercialize their maize production but cultivate landraces because self-provision is crucial for their livelihood. These farm types illustrate the ageing process occurring in Mexico (SAGARPA and FAO, 2014) and worldwide (FAO, 2017). This distinctive social attribute highlights the relevance of family dynamics for resilience strategies (Darnhofer, 2014). Both farm types illustrate how factors such as rural isolation or stage of life shape the possibilities of social interactions.Finally, diversified income and subsistence farm types are the third group centered on strong/bonding ties. Weak ties from institutions are also present in their innovation networks as they are beneficiaries from social protection programs. These two farm types have less access to farm resources and cultivate maize landraces for consumption. Diversified income but especially subsistence farmers, are the ones that literature commonly identifies as small-scale farmers. These farm types have received particular attention concerning their persistence to survive political and climatic challenging conditions (Appendini and Liverman, 1994;Eakin et al., 2014a;Bada and Fox, 2022). Diversified income farm types receive the lowest values on both social network indexes showing that they rely more on strong ties. This result highlights that more than distance to urban areas, as some of these farm types are in peri-urban areas, is their persistence to grow maize for tradition and consumption the one defining their innovation network (Lerner et al., 2014). Persistence becomes vital due to the socio-cultural significance of producing and consuming maize as part of their culture and traditions (Lerner and Appendini, 2011;Eakin et al., 2014a). The redundancy and self-exclusion of networks as strong rather than weak ties could then be explained to preserve maize culture through time (Wood et al., 2014;Gosnell et al., 2019).Results in this study show visible trends between social network indexes and farm types, illustrating the differential contribution of social ties between farm types. They call to explore further how different configurations of strong/bonding and weak/bridging ties can lead to greater resilience (Newman and Dale, 2005). Farm, farming systems and farmers' attributes, and their contextual circumstances become crucial to find what mixes of strong and weak ties will be strong enough to \"engage in joint problem-solving in the face of adversity but loose enough to give them room to pursue new opportunities\" (Fath et al., 2021). Adaptation is only half the advantage gained by such social networks; further exploration is required to identify persistence's contribution to enhancing the farming system's collective capacity to use innovations as a pathway to resilience. At a time when agriculture faces increasing and diverse challenges, various combinations of strong and weak ties are needed to enhance the resilience strategies used by different types of farmers. Each farm type had developed a functional combination (or adapted to it) based on their access to resources and productive attributes concerning their innovation process. Despite the heterogeneity and diversity of relationships, the balance tends to tilt towards either internal or external links, as farm types seek to position themselves on one side or the other based on their capacity to respond and available resources. Commercial farm units rely on weak relationships to evolve towards new models that enable them to maintain or transform the productive system. In contrast, subsistence farming systems have endured for centuries and find strategies within their environment and their strong ties to resist and maintain the system. They illustrate how diverse possibilities appear when particular attributes and contexts are considered for strengthening strong and weak ties highlighting the need to promote not only weak but also strong ties to increase resilience through innovation. The contribution of weak and strong ties to heterogenous innovation networks has proved crucial for increasing resilience through adaptation. However, it implies different results in the same innovative scale of adoption and production enhancement, and then, food or economic security. Further research is required to explore how weak and strong ties interact and contribute to resilience through persistence in innovation networks.","tokenCount":"5670"} \ No newline at end of file diff --git a/data/part_3/3191532199.json b/data/part_3/3191532199.json new file mode 100644 index 0000000000000000000000000000000000000000..936c84ab882226065b0940aeb652e5f0066f4641 --- /dev/null +++ b/data/part_3/3191532199.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"5a6ae8bc2323aeb32345909d2a608697","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/06021df2-4b36-4026-8bcb-5202b65fba2b/retrieve","id":"832576671"},"keywords":["LONGITUO ••••••• 16 20'W P~EClPlTAC10N 272MM AlTlTUOIMSHfU","l000 \"","S","N","M","NO","OIAS LLUVIOSOS 22"],"sieverID":"9ceab56e-ff81-48ce-a9a9-80641e1550d4","pagecount":"45","content":"El objetivo de este vivero es probar el mejor material, con maduración precoz (100-120 días), seleccionado en varios países, en las condiciones ecológicas de América Latina. Cada programa nacional tendrá opo!. tunidad de observar y evaluar el material en sus propias condiciones ecológicas y seleccionar las lfneas o variedades para ser sembradas y entre , gadas a los agricultores, o utilizar el mejor germoplasma en cruzamientos.El germoplasma de este vivero puede ser nombrado como variedad por cualquier programa nacional, simplemente reconociendo su origen.El Programa de Pruebas Internacionales de Arroz (IRTP) para Anlérica Latina, es coordinador por el CIAT-IRRI. Este, sirve COnlO un vínculo entre el progranla de Evaluación y Utilización Genética del IRRlyel Programa de Arroz del CIAT con los programas nacionales de mejoranliento de arroz.Suministrar el gerrnoplasnla élite mundial a los cien tíficos ar roceros de todo el nlundo.2) Ofrecer a cada científico el rnecanisnlo para que su nlaterial sea evaluado sistenláticamente contra diversos problemas.3) identificar variedades con un anlplio espectro de resistencia a las principales enfermedades, insectos y otros problemas.Evaluar la variación genética de los patógenos e insectos.A través de este progralna, los científicos de varias disciplinas pueden participar en la evaluación sistemática y el desarrollo de diversas variedades de arroz que se requieren para satisfacer, en mejor forma,las necesidades locales de los agricultores en todo el mundo.El autOt' anórnino de esta publicación intenta reflejar el esfuer 20 cooperativo de n1uchos científicos que contribuyeron con su tiempo y esfuerzo. Sin su ayuda esta publicación no 'oublera sido posible. El proyecto cooperativo CIAT -lRRI reconoce y aprecia este esfuerzo conjunto. El diseño experimental consistió en bloques al azar con 3 repetidones. El tamaño de las parcelas fue de 15 m 2 . Se recomendó a los cooperadores sembrar este vivero en la época que correspondiera a una sie~ bra comercial de la región. El método de siembra, fertilización,control de malezas, insectos y enfermedades se dejaron a la decisión del cooperadar. Sin embargo, se recomendó un uso mínimo de insecticidas excepto para las plagas a las cuales las variedades no tengan resistencia.Se solicitó tomar datos de días a floración, maduración, altura de la planta y rendimiento (gr/parcela). Datos de enfermedades y cualquier otro problema serio también fueron solicitados. En la toma de datos se recomendó utilizar las escalas del manual \"Sistemas de Evaluación Está!!, dar para Arroz\" para las caracterfsticas que lo perInitieran. AdeInás, se solicit6 a los cooperadores suministrar la información general relacionada con la localidad donde se efectuó la prueba.El repotteincluye datos de 18 pruebas efectuadas en 11 países de América Latina. La prueba sembrada en ClAT, Colombia se hizo en riego-tran,!.plante y en las otras pruebas la siembra fue directa. Las pruebas de Cam}2i nas(Brasil), Costa Rica, El Salvador, Guatemala, Guaymas(Honduras)y Tocumen(Panamá), corre apanden al sistema de secano favorecido; las demás pruebas se cultivaron con el sistema de riego.En la Figura 1 se indican los lugares donde se efectuaron las pruebas y en la Figura 2 las épocas de cultivo para cada localidad.En los Cuadros 1 a 18, se resumen, para cada localidad, los datos de rendimiento, la duración del crecimiento y la altura de la planta de las 10 variedades del VlRAL-P y el testigo local. El número de cuadro corresponde, en orden ascendente, al número asignado a cada localidad.Los datos se analizaron primero por sistema de cultivo, los de secano independietemente de los de riego y luego se hizo el análisis combinando los dos sistemas. En estos análisis no se incluyeron los datos de tres pruebas, dos de Honduras y una de Panamá, por tener datos incompletos, en variedades y/o repeticiones.En el Cuadro 19 se presentan los rendimientos obtenidos en el germopla,!.IDa, en condiciones de secano favorecido, en 4 localidades. El coeficiente de variaci6n fluctuó de 1O\"!o en Cuyuta(Guatemala) a 27\"!o en Cafías(Costa Rica). El rendimiento promedio, por localidad, varió de 3.4 t/ha en El Salvador a 6. 2 tjha en Guatemala.El rendimiento promedio e índices de adaptabilidad de las 10 variedades se resumen en el Cuadro 20. Las variedades que ocuparon las tres primeras posiciones, por rendimiento, en orden de superioridad fueron: CICA 7 de Colombia, IR2070-414-3-9 del IRRI y BR5l-46-l-CI de Bangladesh.En el Cuadro 21 se resumen los datos de rendimiento, duraci6n del crecimiento y altura de la planta de las 10 variedades sembradas en condiciones de secano favorecido.Los datos de rendimientos de las 10 variedades del VIRAL-P sem bradas en ri ego en 11 localidades se presentan en el Cuadro 22. El coeficiente de variación varió de 9.1% en Sebaco(Nicaragua) a 27.40/0 en Surinam.El promedio del rendimiento por localidad fluctuó entre 2. 8tjha en Guyana y 7.8 tjha en CIAT (Colombia). En el Cuadro 23 se indican el rendimiento promedio y los índices de adaptabilidad de las 10 variedades semb radas en riego en l1localidades. En estas condiciones, las variedades que ocuparon las tres primeras posiciones por rendimiento y en orden de superioridad fueron: IET 2881(RP3l9-34-8-1-3) de la India, BS41b-Pn-S8-S-3-1 de Indonesia e IRIS6I-228-3-3 del IRRI.En el Cuadro 24 se resumen, para las lllocalidades de riego, los datos de rendimiento, duración del crecimiento y altura de la planta de las variedades del VIRAL-P El rendimiento obtenido de las 10 variedades en las 15 localidades se presenta en el Cuadro 25. Combinando los datos de riego y secano, las variedades que ocuparon las tres primeras posiciones fueron: 91.00 I 125.00 OESVIACION ESTANOAR p~t\"eR. -------.-----------------------1-------------------1--------------1-------------------1-------------------1-------------------- .... --------------------------------1-------------------1--------------1-------------------1-------------------(-------------------- ,.'\" .LTITUO'~SNMI.. , _---1$ ..... .,.--\",JI.. BOllao STH.. TEMPER.ATURA M\"X 2q GR.C PH .. ,.. ........... 5.2,\"~ ..... \"\"~ .,CE -----------------I-------------------I-------------------- ---------------------------•---1-------------------1--------------1-------------------1-------------------1-------------------- .00 . lET3262 (RP633-9-5-8-1) 8.7 5.9 5. 1 5.5 4. 3 5.53. 1 6.9 4.9 8.3 2.5 5. 5 4 IET3127 (RP6-516-31-4)6.8 6.9 4.2 4.6 5.0 6.72.4 6.8 5.8 8. 1 3.1> 5. 5 5 B54Ib-Pn-58-S-3 -1 9.2 6.3 4.8 6.5 5.5 7.2 3.0 6.0 6.2 8.6 4.9 6. BR 51-46-1-Cl 9. O 6.9 5. I 5.2 7.4 4.0 4. 2. 5.8 4. 1 2.5 4.9 3.6 4. 7 7. 1 4.8 5.3 IET2881(RP3 J 9-34-8-1-3) 8.7 7. Z 5.3 7.4 8.0 0.9 5.4 6.3 2. S 3.3 7.7 5.6 4.5 8.7 4.7 5.8 IET3Z62 (RP633-9-5-S-1) S.7 5. 9 5. 1 5.5 6.3 3.7 4.3 5. S 3. 1 3. 1 6.9 4.9 3.3 8.3 2.5 5. 2: IET3127 (RP6-516-31-4) 6.S 6.9 4.2. 4.6 6.2 1.0 5. O 6.7 1.3 2.4 6. S 5.8 4. 1 8. 1 3.6 4. 9 B541b-Pn-S8-5-3-1 9.2: 6.3 4.8 6. 5 6.9 3.9 5.5 7.2 2.9 3. O 6.0 6.2 4.2. 8.6 4. 9 5. 7 lR 2070-414-3-9 6.8 4.4 4. 7 5.0 5.3 4.0 4.4 5.6 7.7 2.2. 6.2 5.4 3.9 6.8 4. 1 5. 1 IR 2071-625-1-252 (IR36) 7.9 5. S 5.8 3.8 5.6 4.6 4.2 6. I 4. 3 3. O 6. 1 5. 1 4. 1 6.4 3. O 5. O IR 2307 -84-2-1-2 5. O 3. 7 5. 1 4.8 5.9 4.9 4. 1 5. 1 4.4 2.4 7.8 5.4 4.3 7.2-3.5 4.9 IR 1561-228-3-3 7.5 6.9 5. 1 5.4 5.8 3. O 5. 1 7. O 2.7 3.5 6.3 5.7 4.4 7.1> 3.2 5.3 C1CA 7 8.4 6. 1 4.6 4.3 4.4 4.3 3.8 5.7 9.6 Z.5 6.8 4.8 3.7 7.5 3.3 5.3 Promedio 7.8 6.0 5. O 5.3 6.2 3.4 4.6 6. 1 4.3 Z.8 6.6 5.3 4. 1 7.6 3.8 5. ","tokenCount":"1210"} \ No newline at end of file diff --git a/data/part_3/3224827108.json b/data/part_3/3224827108.json new file mode 100644 index 0000000000000000000000000000000000000000..f14ce5a9d94af6f08e9a9edc3d5be08c2cdde130 --- /dev/null +++ b/data/part_3/3224827108.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"b9ad9c3badc589de7c1fbacc6428d708","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/4876f7eb-2b2d-40d8-ae2d-d10a8b7349fa/retrieve","id":"1516903378"},"keywords":[],"sieverID":"c056b9ad-f41d-4cb6-affa-4f4d1e4bc8bd","pagecount":"132","content":"FAO-RAP and the National Institute of Agrobiological Sciences (NIAS), Tsukuba, Japan, conducted a symposium on Plant Genetic Resources in Asia and the Pacific: Impacts and Future Directions. It was attended by more than 100 participants and included plant genetic resource leaders from 17 countries in Asia and the Pacific. This publication presents the symposium's papers that highlight issues at the farmers' level, such as participatory plant breeding which has been essential for reintroduction of taro production in Samoa and, at the genomic level, improved productivity of crops such as soybean. It is hoped that the perspectives presented in these papers will be useful in providing information and ideas to people working on plant genetic resources in the Asia-Pacific region and beyond.The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned ISBN 978-92-5-107124-3 All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of materials in this information product for resale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission should be addressed to: Chief Electronic Publishing Policy and Support Branch Communication Division FAO Viale delle Terme di Caracalla 00153 Rome Italy or by email to: copyright@fao.orgFor copies please write to:The Senior Crop Production Officer FAO Regional Office for Asia and the Pacific Maliwan Mansion, 39 Phra Atit Road Bangkok 10200 Thailand Tel. (+66) 2-697-4000 Fax. (+66) 2-697-4445 Email: FAO-RAP@fao.orgIn recent years, food security and food price stability have become dominant issues of international concern. FAO estimates that to feed growing populationsexpected to reach 9.1 billion in 2050 -the world has to increase food production by 70 percent. In developing countries, food production has to increase by 100 percent, representing a tremendous challenge. The foundation of a secure and nutritious food supply is diversity in plant genetic resources that provide the genes to cope with the ever-changing agricultural environment. Recently, Asia has experienced massive disruption to food production and supplies because of floods in Myanmar, Pakistan and Thailand. These events remind us that agriculture will have to adapt to the conditions generated by climate change.In the Pacific an entire crop, taro, was decimated by leaf blight disease. New strains of pests and diseases, such as wheat rust strain UG99, are constantly emerging. Hence plant breeders are continuously challenged to stay one step ahead in the production of new varieties to cope with abiotic and biotic changes in the agricultural landscape.A key to future crop production lies in the collections of crops and their wild relatives stored either ex situ, in gene banks, or in situ, growing in farmers' fields and the natural environment.The Food and Agriculture Organization of the United Nations (FAO) has a long history of activities related to plant genetic resources for food and agriculture (PGRFA). In the 1950s, FAO helped to develop global seed systems. In the 1960s and 1970s, FAO held a series of technical conferences that led to the scientific principles on which plant genetic resource conservation is based. One outcome of these meetings was the International Board for Plant Genetic Resources (IBPGR) or Bioversity International, originally housed in FAO. In recent decades, FAO has spearheaded the effort to establish a global system with an internationally-accepted legal framework for access and benefit sharing vis-à-vis plant genetic resources. The first State of the World's Plant Genetic Resources was written and a Global Plan of Action was ratified by the international community in 1996. This led directly to the International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA) that came into force in 2004. Recently, FAO has again reviewed the state of the world's plant genetic resources and in July this year a revised Global Plan of Action for the Conservation and Sustainable Use of PGRFA was agreed by the international community at FAO headquarters in Rome.The underlying reason for the many international developments regarding plant genetic resources is to allow equitable access and sharing of their benefits. All countries benefit from germplasm that comes from another country. Central to the cuisine of Thailand and Sri Lanka is the chili pepper that evolved in Mexico. The main staple of Asia, rice, is now grown worldwide and is a staple in many countries of Latin America where 'rice and beans' is a common dish.The importance of access to well-characterized plant genetic resources will be the key to future increases in crop productivity. Now that the era of collecting germplasm for gene banks has elapsed, the focus is shifting on to how to best use what is available in them. Hence initiatives to characterize, evaluate and promote use of PGRFA have become increasingly important. FAO and partner organizations are therefore very much involved with the Global Partnership Initiative for Plant Breeding Capacity Building (GIPB) programme that promotes the use of plant genetic resources. The FAO Regional Office for Asia and the Pacific (FAO-RAP) has undertaken two projects to introduce a PGRFA monitoring system for national programmes, funded by the Government of Japan. As a result, 15 countries in Asia have National Information Sharing Mechanisms for monitoring the Global Plan of Action (NISM-GPA). Eight have the NISM-GPA in their own national language as well as English. These two projects have enabled the full range of plant genetic resource activities in each country to be combined in one database for the first time. The databases can also be accessed by the global community via FAO's World Information Sharing Mechanism portal.x express my sincere thanks you for this collaboration over the years. I also look forward to that collaboration continuing in the future. I will end by hoping that your visit to Tsukuba will be memorable and that you will share the experience of your visit with your colleagues when you return home. Thank you.From 17 to 19 October 2011 plant genetic resource leaders from more than 17 Asia-Pacific countries gathered in Tsukuba, Japan. Discussions were held on progress in the development of National Information Sharing Mechanisms (NISMs) and how to further sustain this initiative in each country and through regional collaboration. On Day 2 a symposium was held on the topic Plant Genetic Resources for Food and Agriculture in Asia and the Pacific: Impacts and Future Directions. A summary of the more important points and suggestions is provided hereunder. These recommendations complement the Suwon Agrobiodiversity Framework (visit http://www.apaari.org/publications/suwonframework.html).a)The impacts of Plant Genetic Resources for Food and Agriculture (PGRFA) on improving food security, farm productivity and livelihoods in agriculture have been tremendous. These were described by examples of different studies that utilized wild relatives/species to improve cultivated crops exemplified by the restoration of taro production in Samoa, green revolutions in rice, adapting sugarcane to marginal lands and genetic enhancement of carnation for disease resistance and longer shelf-life. The importance of genetic exchange among countries in ensuring food security was emphasized by the examples of coping with taro blight disease and improvement in pest and disease resistance, tolerance to drought and floods, and yield in rice varieties. The impact of PGRFA in the past and their potential to help alleviate problems related to food production and adaptation to climate change in the future should be widely understood.b)The critical linkage between conservation and use of PGRFA was underscored. However, many countries recognize that this relationship needs strengthening. While there are good examples of the success of using conserved genetic resources, all PGRFA workers would like conserved germplasm to be used more for the sustainable improvement of agriculture in the twenty-first century. Therefore, support for bridging this link by national and international organizations is recommended. Current initiatives, such as the Global Partnership Initiative for Plant Breeding Capacity Building (GIPB) (http://km.fao.org/gipb/), should be strengthened in the region.c)The importance of new tools and approaches in exploring the use and conservation of PGRFA was also discussed in the workshop. The effectiveness of modern biotechnology like genomics and cryopreservation was discussed. However these technologies entail investment for use in developing countries. International collaboration, however, can help developing countries access and use these tools for the conservation and use of their PGRFA.Information is key to the successful use of PGRFA and the symposium heard about the rapid improvement in global and national PGRFA databases. However, much more needs to be done in collecting information and maintaining these databases. The 2 nd Global Plan of Action and the International Treaty on PGRFA also stressed the importance of developing these information systems. Among the areas the symposium highlighted for increased and urgent attention was ensuring that 'old data' related to PGRFA is properly available. This may require, for example, scanning handwritten documents and archival work to link conserved PGRFA with passport data that has not been done so far. A call was also made for incorporation of traditional knowledge (TK) associated with conserved PGRFA in the information systems and databases. TK is a very important component in promoting the use of PGRFA. While databases for TK do exist they are not currently linked with the large databases of conserved PGRFA.e)The importance of periodically reviewing and reporting PGRFA status quo, by assessing threats and minimizing or, where possible, eliminating them, was stressed. Designated focal points should convey this information to FAO, and, as appropriate, to the Governing Body of the International Treaty, the Conference of the Parties to the CBD and other relevant bodies. Monitoring and reporting mechanisms for genetic erosion need to be established starting from local and national levels. They could fit within established NISMs and take advantage of NISMs' participatory structure to carry out assessments and coordinate preventive and remedial actions.f) While it is recognized that mega-projects in crop improvement are essential to make groundbreaking progress, such as applying breakthroughs in biotechnology and other advances in science, there is also a place for many small-scale targeted crop improvement projects that have potential for good results at local and regional levels. Strong local and national programmes in the past contributed to the use of more local and introduced genetic materials resulting in broader genetic base. The current reliance of many national breeding programmes on improved lines coming from big international breeding initiatives has narrowed the diversity of varieties popularly planted in many countries. Identifying and supporting excellent scientists and institutes that have great potential, with support from small projects, is recognized as important. The maintenance of strong national and local crop improvement initiatives that use locally-adopted germplasm and introduced materials should be encouraged to better cope with location-specific variabilities.g) Finally, the importance of international collaboration and networking was repeatedly urged by the participants. Countries of different sizes have different strengths and weaknesses. Therefore communication and more importantly support between and among countries can benefit all. In this context, the symposium brought together workers from different PGRFA networks in Asia and the Pacific. While 'big brothers' can help smaller countries, smaller countries may well have comparative advantages in areas larger countries do not (for example rare and exotic species/ diversity). The ability of countries to meet and share experiences both in formal and informal settings, that characterized the Tsukuba meeting, was recognized as beneficial to developing the capacities of different countries and in promoting international collaboration. Therefore support for continuing such meetings was recommended. Introducing new properties such as deep rooting and high ratooning into sugarcane that has comparatively high adaptability to poor environments was attempted. First, interspecific hybridization between sugarcane for sugar production and its wild relative, Saccharum spontaneum, was tested. Strains of sugarcane that showed marked improvements in sugar production owing to better adaptability to inadequate rainfall, high dry matter productivity and multiple rationing capacity were produced. Subsequently, back-crossing of some F 1 lines with sugarcane to develop promising lines with improved sugar contents was assayed. The promising line KYo1-2044 was registered in Japan and TPJ03-452, TPJ04-713, 768 will be registered in Thailand for large-scale experiments for their practical use. The promising interspecific hybrids that were created exhibited relatively high adaptability to poor environments (inadequate rainfall, etc.), but their adaptability to very poor environments was limited. However, a line of Erianthus spp. was shown to grow well even under such unfavourable conditions and exhibited high potential for effective growth of ratooning. Thus, intergeneric breeding between sugarcane and Erianthus spp. for introducing the excellent features of Erianthus spp. (deep roots and high ratooning potential) into sugarcane was attempted. Some of the hybrids created exhibited deeprooting characteristics. For higher adaptability to dry condition, hybrids between Erianthus spp. plants and between Erianthus and Miscanthus spp. were also obtained.Against the background of continued population and economic growth globally, the demand for food and energy has been increasing, resulting in a growing imbalance between demand and supply. Meanwhile, owing to a number of factors, exemplified by escalating desertification, it is becoming harder to maintain agricultural land that is suitable for food crop cultivation.Under such circumstances, it is desirable to develop technology that enables increases in both food and energy production, that is, technology that enables efficient utilization of land for agriculture.In this context, a technology is required that facilitates continuous production of crops serving as raw materials for industry (for example sugar and ethanol) even under environments that are typically unsuitable for food crop production. This includes production on land with insufficient rainfall, low-quality soil and other detrimental features.In Japan, sugarcane is mostly cultivated in the Southwest Islands, which are located in the subtropical zone. The level of annual rainfall is relatively high, but drought often occurs during summer, which results in sugarcane yield that is lower than the global average. To continue sugarcane production as a major crop in a given region with an unfavourable environment, it is recommended that a switch be made from conventional intensified cultivation of high-sugar-content types of sugarcane (solely for the purpose of producing sugar) to cultivation of new types of sugarcane that are highly adaptable to poor environments; they should have energy-and labour-saving characteristics and capacity to preserve the environment. The goal of this switch is to achieve efficient utilization of sugarcane, such as producing not only sugar but also ethanol. This involves the conversion of conventional sugar production to an industry that can optimize the potential of sugarcane as much as possible (Sugimoto and Terajima 2006).Tropical and subtropical zones have extensive areas that are not suitable for the cultivation of food crops or high-yield cultivation of sugarcane for sugar production because of a severe dry season, soil with low-moisture-retaining properties and low fertility, among others. Such areas include Northeast Thailand. With this in mind, attempts were made to develop sugarcane lines that are adapted to poor environments, that save labour costs and facilitate cultivation via the recycling of organic substances; this was carried out in the Southwest Islands of Japan and in Northeast Thailand, with the goal of developing commercially-viable technology related to sugarcane.To modify sugarcane for better adaptation to poor environments, it was considered useful to develop and utilize analogous wild-type plants capable of growing in poor environments. As such, interspecific and intergeneric breeding, involving sugarcane, wild sugarcane (S. spontaneum), Erianthus spp. and Miscanthus spp. was assayed.Initially, interspecific hybridization between sugarcane and S. spontaneum was attempted. Through evaluation of genetic resources, breeding technology (involving adjustment of the heading and blooming time, storage of pollens and other factors) and manipulations through selection in fields with poor-quality soil, many F 1 lines with desirable characteristics, such as high tillering and ratooning potentials were obtained. Juxtaposing the development of materials, methods for better utilization of the characteristics of such materials were devised. Attempts were also made to develop sugarcane for cattle feed and for raw material for the simultaneous production of sugar and ethanol.Furthermore, efforts were made at intergeneric breeding using Erianthus spp., characterized by deep roots and high resprouting potential after harvesting, with the goal of utilizing areas with environmental characteristics (such as very low rainfall) unsuited to agriculture.To date, these attempts have yielded satisfactory outcomes according to the goals and expectations presented below.1. Nagatomi et al. (1988) collected wild sugarcane species distributed in Japan, such as S. spontaneum and closely-related species such as Miscanthus spp. 2. Nagatomi et al. (1982) attempted interspecific hybridization between sugarcane and S. spontaneum, as well as intergeneric hybridization between sugarcane and sweet sorghum. 3. Nagatomi et al. (1985) and Shimabuku et al. (1989) evaluated the characteristics of interspecific hybrids such as the first cross-bred generation, the first back-crossed generation and the second back-crossed generation, revealing general characteristics of these interspecific hybrids. 4. Sugimoto et al. (2004) attempted to develop new sugarcane lines in the context of a plan for multiple uses of sugarcane lines -created by interspecific breeding -that are highly adapted to inadequate rainfall and that exhibit high ratooning potential and high yields. 5. Sugimoto et al. (2004) evaluated the characteristics of the subsequently created sugarcane lines and attempted to cultivate a commercial cultivar for use as cattle feed, focusing on high ratooning potential. This work was efficiently developed by Sakaigaichi et al. (2008). 6. Ohara et al. (2205Ohara et al. ( , 2009) ) developed a technology and system for composite sugar and ethanol production by using interspecific hybrids characterized by low levels of sugar content and high levels of fibre content.1. Nagatomi and Kassem (1980) Fukuhara (unpublished) introduced a technique for checking the hybridity of intergeneric hybrids using 5S ribosomal DNA.5. Terajima et al. (2011) began evaluation of important traits of inter-generic hybrids between sugarcane and Erianthus spp.The lines with high growth potential were evaluated in terms of root system characteristics and other features.Collection, conservation and evaluation of characteristics of wild sugarcane species in the Southwest Islands of Japan Nagatomi (1988) collected many wild sugarcane and related species -S. spontaneum, including a small number of plants belonging to the genus Miscanthus and Erianthus. Wild sugarcane species and similar plants were also collected from the mainland (Ibaraki, Kanagawa and Chiba Prefectures).Collected genetic resources were conserved in an experimental field of Okinawa Prefectural Agriculture Research Centre. They were evaluated by Nagatomi et al. (1982Nagatomi et al. ( , 1985)). Many of the samples of S. spontaneum had excellent tillering and ratooning potential after harvesting (Nagatomi 1982(Nagatomi , 1985(Nagatomi , 1988)). No database on the genetic resources of S. spontaneum has been developed yet.sugarcane cultivars and the characteristics of hybrids created in this manner: Numerous lines have been produced from interspecific hybridization between sugarcane and S. spontaneum. However, because of difficulty in hybridization as a result of factors such as differences in heading time, the current technology has not reached a stage where it can yield any desirable combination. Among the F 1 lines created by interspecific hybridization, many lines had long stalks, many stalks and excellent postharvest ratooning potential. All of these lines had high levels of fibre content and low levels of sugar content in their juice (Nagatomi 1985;Sugimoto 2004;Terajima et al. 2005;Terajima et al. 2007).As the generation advanced from the first generation of interspecific crossing to the first generation of back-crossing with sugarcane (BC 1 ) and to the second generation of back-crossing (BC 2 ), the prominence of characteristics that originated from the wild type decreased, while the characteristics of sugarcane became more prominent. These changes involved decrease in the number of stalks, increase in the diameter of stalks and slight decrease in the length of stalks. The cane yield became smaller. The ratooning potential after harvesting also decreased. The sugar content, on the other hand, increased (Shimabuku and Sugimoto 1989;Sugimoto et al. 1989).These results suggest that BC 1 is optimal as a line to be utilized in sugar production while retaining the most beneficial characteristics of the wild type. Also it suggests that to create ideal sugarcane lines for sugar production, it was necessary to explore species of sugarcane that exhibited a high level of sugar content and a thick stalk (for use as the maternal plant) and wild sugarcane species with a relatively high level of sugar content and a thick stalk (for use as the paternal plant).Characteristics of promising lines yielded from interspecific hybridization and their use in agriculture: F 1 hybrids were primarily tested to select and evaluate lines showing promising characteristics; this was achieved with the participation of sugarcane farmers, regional government staff members and agricultural cooperative union employees. As a result, a first-generation hybrid with high adaptability to multiple harvesting, named S5-33 (yielded from sugarcane NCo310 x S. spontaneum Glagha KloeT), was selected. When the resistance of this hybrid to smut (a disease with a significant impact on sugarcane for sugar production) was evaluated, it was moderately susceptible.It was registered as a sugarcane species for cattle feed under the name KRFo93-1. Efforts to disseminate this species have been initiated. Information about the first sugarcane species for use as cattle feed (KRFo93-1) was disseminated orally among sugarcane farmers. Because the resistance of this species to smut was moderate, its dissemination in regions in which there was a risk of smut was avoided. (Sakaigaichi and Terajima 2008). This study was developed by Sakaigaichi et al. (2008). Another line, KR91-1003, which has resistance to smut was registered as a second commercial cultivar for cattle feed under the name 'Simano Ushie' (unpublished).The possibility of using the created hybrids as raw materials for composite sugar and ethanol production was evaluated in cooperation with Asahi Group Holdings, Ltd. Most of the F 1 lines with high yields were judged to have levels of sugar that were too low. Following this finding, back-crossing was attempted using sugarcane varieties such as NiF3 and NiF8. Back-crossing allowed the level of sugar content and the stalk thickness to be improved, yielding many lines characterized by a relatively high level of sugar content, appropriate stalk thickness (not too thin), a relatively large number of stalks and excellent postharvest ratooning potential. Ohara et al. (2005) showed that desirable features of sugarcane for composite sugar and ethanol production are that the cane yield is twofold, total sugar yield is 1.5-fold greater than that of existing sugarcane and fibre content is more than 16 percent (Ohara et al. 2005;Ohara et al. 2009). The promising lines selected in accordance with these criteria were evaluated in terms of productivity to identify excellent lines, which were then subjected to evaluation in terms of production processes and other factors at the pilot plant experiment station on Ie Island. Through these processes, KY01-2044 has been registered as a variety for composite sugar and ethanol production (Terajima et al. 2010).Exploration, collection and evaluation of the characteristics of genetic resources from wild sugarcane species in Thailand Nagatomi (1980) collected germplasm of S. spontaneum in Thailand and maintained it at Kasetsart University. Sugimoto et al. (1996) collected about 500 accessions of S. spontaneum from across Thailand and conserved them in a test field to evaluate their growth characteristics. Resembling the results from Japan, many accessions of S. spontaneum in Thailand had high tillering and ratooning potential. The samples collected showed wide variation in terms of ecological and morphological properties. The collected species had the following features: most of the stalks below the top of the plant were in water; the stalks growing along a river or on wetlands had long and relatively thick stalks with significant cores inside; the variation in Brix was large (about 20 percent in some cases); they could exhibit active growth even in saline soil. The variation in these species seemed to be larger than that in S. spontaneum in Japan. Many samples appeared to have the potential to serve as good parents for interspecific crossing. No database on S. spontaneum has been developed yet.Although hybridization has been conducted on only a limited number of pairs synchronized in terms of the heading time, it has yielded numerous F 1 lines by crossing with existing sugarcane species exhibiting high ratooning potentials. These lines were small in terms of stalk diameter but had many stalks. The growth after harvesting by ratooning was also excellent. Growth during dry seasons was also substantial compared with that of species used for sugar production. Brix and sugar content were low. On the basis of the experience in Japan, evaluation of these hybrids as raw materials for composite sugar and ethanol production was carried out, and their usefulness as cattle feed was also evaluated with the cooperation of livestock farmers (Ponragdee et al. 2005;Sansayawichai et al. 2005).To improve the stalk diameter and sugar content, back-crossing with sugarcane was carried out to yield numerous lines with relatively high levels of sugar content and improved stalk diameter. From these lines, the following lines were selected as promising back-crossed lines suitable for composite sugar and ethanol production on the basis of the data on yield, ratooning potential, growth with inadequate rainfall and other features: BC03-452, BC04-713 and BC04-768. These lines will be registered as TPJ03-452, TPJ04-452 and TPJ04-768, respectively (Ponragdee unpublished).Characteristics of promising lines from interspecific hybridization and their use in agriculture in Thailand: TPJ03-452 is characterized by high tillering and postharvest ratooning potentials enabling high yield as a ratoon crop. The yield in environments with limited rainfall is much higher with this line than with sugarcane. However, because the sugar content of this line is too low, introduction of new processing technologies, such as technology for composite sugar and ethanol production, is necessary for its commercial use.TPJ04-713 and TPJ04-768 have many stalks and their yield in the form of ratoon crops is particularly high. Their stalks are thinner than those of sugarcane and the commercial cane sugar (CCS) rate is low, but compared with high-yield lines such as TPJ03-452, these two lines have thicker stalks and higher CSS rate. Fibre content is also high with these lines. These features are favourable for their use as raw materials for the production of sugar, ethanol and electric power currently practised in Northeast Thailand. These lines also yield large amounts of organic substances that can be reused on cultivated lands.Although the slightly small stalk diameter, among other features, may be a shortcoming of these lines, we hope to utilize them as raw materials for continued commercial production of sugar, ethanol and electric power in Northeast Thailand.On Minami Daito Island, which has layers of hardpan soil, tests were conducted on sugarcane lines from interspecific hybridization, genetic resources of Erianthus spp. and sugarcane for preliminary evaluation of its adaptability to very poor environments. Under environments like those prevailing on Minami Daito Island, which experiences severe drought during summer and has soil layers made of hardpan, the ratoon crop was markedly shorter even with the first-generation hybrid characterized by relatively deep roots (97S-41). On the other hand, Erianthus spp. was excellent in terms of yield following both new planting and ratooning -the yield after the latter was higher (Terajima unpublished). These results suggest that when sugarcane is cultivated continuously in fields exposed to severe environmental conditions like those on Minami Daito Island, adaptability to the environment is not sufficiently high, even with interspecific hybrids; thus, genetic resources like Erianthus spp. that are highly adapted to such poor environments need to be utilized. For utilization of sugarcane in agriculture under very poor environments (such as those with insufficient annual rainfall), intergeneric hybridization with Erianthus spp. was attempted; Erianthus has remarkably deep and strong roots and thus would be expected to be better adapted to dry environments than hybrids between sugarcane and S. spontaneum. Heading occurred earlier in Erianthus spp. than in sugarcane. We succeeded in synchronizing the timing of heading between Erianthus spp. and sugarcane by delaying the heading of Erianthus spp. using photoperiod treatment (Tagane et al. 2011). The difference in the timing of flowering within the day was also revealed. In addition to the technique for adjustment of the flowering time by dark processing, a technology for short-term storage of pollen was developed, enabling intergeneric hybridization using pollen stored in this way. Hybridity was confirmed by analysis of 5S rDNA, indicating that many genuine intergeneric hybrids had been produced. The characteristics of the F 1 hybrids obtained are now under evaluation. The interim results indicate that hybrids with relatively deep roots have been created (Terajima et al. 2011.) Trials in Thailand: About 150 accessions of Erianthus spp. were collected from across Thailand and maintained in the KKFCRC Tha Phra test fields. Genetic resources collected to date pertain not only to Erianthus spp. but also to other plants that seem to be adaptable to poor environments, such as Sclerostachya fusca and Miscanthus floridulus. Some of the collected Erianthus spp. had deep hard roots that were capable of penetrating the hardpan layer (Sugimoto et al. 1996). The samples stored were divided into Erianthus arundinaceus and E. procerus according to their morphology, geographic distribution and number of chromosomes, among other features. E. arundinaceus was further divided into three subtypes (Tagane et al. 2011).The dry matter productivity of Erianthus spp. was high even with ratoon crops. In Northeast Thailand, which has a severe dry season, its yield was much higher than that of Napier grass and sugarcane for sugar production. (Tagane et al. 2011).We evaluated the timing of heading and blooming in Khon Kaen and have been attempting to synchronize the timing of heading and flowering between Erianthus spp. and sugarcane by means that include light irradiation and dark processing (Irei et al. 2005). We attempted intergeneric hybridization with the methods mentioned. We succeeded in improving the hybridization success rate by using modified mating methods such as strengthening of emasculation. When cultivated, most of the F 1 hybrids showed poor growth, but some hybrids grew relatively well.Perspective for intergeneric breeding: From now on, we will focus our efforts first on creating promising hybrids with deep roots and high ratoon yield through hybridization of various combinations between sugarcane and Erianthus. Then we will develop technology for stable production of the lines created in this way in poor environments, by utilizing the deep root system possessed by these lines. This will be followed by the development of technologies and systems for recycling of organic substances in fields in connection with livestock farming. We will thus improve the level of organic matter in the superficial layers of soil and enhance the basic power of fields (i.e. develop a technology to improve land power for crop production).For higher adaptability to dry conditions: Japanese scientists who have engaged in sugarcane development have a strategy to develop sugarcane as a vehicle for enhancing agricultural areas worldwide. These areas are roughly classified into four categories from good agricultural area (Category 1) to unsuitable agricultural area (Category 4). It is perceived that there can be correspondence between the type of sugarcane and area belonging to a certain category. For realizing sustainable agriculture in Category 4, utilization of Erianthus spp. as a raw material for energy production is useful. For this, improvement of Erianthus itself as an energy crop is necessary. To date some hybrids among different types of Eriannthus spp. and hybrids between Erianthus spp. and Miscanthus spp. have been obtained.Most of the wild sugarcane, S. spontaneum, collected in Japan and Thailand had high tillering and postharvest ratooning potential. The samples had thin and relatively short stalks and Brix in their cane juice was low. The samples collected in Thailand varied greatly among individuals in terms of stalk length, thickness, Brix in cane juice and timing of heading. The variation in these features seemed to be greater for the materials collected in Thailand than for those collected in Japan. In both Thailand and Japan, some areas have not been explored yet. Exploration and sample collection in these areas needs to be carried out as soon as possible.Although hybridization has been conducted on only a limited number of combinations, some of the F 1 hybrids were excellent in terms of yield, ratooning potential and adaptability to insufficient rainfall. Sophisticated control of heading and blooming and hybridization using diverse combinations are expected to facilitate efficient creation of even better hybrids. It is desirable to accelerate establishment of a database on genetic resources of wild species and to evaluate the possibility of combining various pairs of material.Interspecific hybridization, followed by back-crossing with sugarcane, allowed creation of promising lines with relatively high yield in the form of ratoon crops. In both the Southwest Islands of Japan and Northeast Thailand, it is desirable to continue efforts to commercialize this kind of technology, evaluate its usefulness and develop systems for sugar, ethanol and electric power production, making use of interspecific hybrids in environments where the productivity of conventional sugarcane is low.The preliminary study conducted on Minami Daito Island, which often experiences drought during summer and has hardpan layers of soil, revealed that the interspecific hybrids cannot maintain sugarcane production under severe environments. However, Erianthus spp. showed excellent growth under such an environment, resulting in high yield, even in the form of ratoon crops. Following this result, we attempted intergeneric hybridization with Erianthus spp. Although the number of trials was small, favourable outcomes such as acquisition of F1 hybrids with improved root systems were achieved. In the future, it will be desirable to establish a database on genetic resources of Erianthus spp. and to conduct basic evaluation of carbohydrate and fibre productivity in regions not suitable for food crop production (i.e. evaluation of the root system characteristics and ratooning potentials of hybrids) so that the perspectives for the future may be defined clearly. Taro, Colocasia esculenta var. esculenta, is one of the most important members of the aroid family in terms of production, utilization and commercialization in Pacific Island Countries (PICs). Generally, taro is a staple starchy food in the region. It is consumed in large quantities and is the most important traditional starch source in the daily diet of Samoans. From 1987 through to 1990 -before taro leaf blight (TLB) caused by Phytophthora colocasiae -hit the country an average of 32 000 tonnes was consumed annually (Galanis et al. 1995).Generally taro has comprehensive nutritional quality in its edible parts (corm and leaves). Taro corm when cooked is a very good source of energy, high in carbohydrates, potassium, protein and dietary fibre (Manner and Taylor 2010).Recent studies have shown that root tubers (including taro) with coloured flesh are very rich in betacarotene, a component of vitamin A, which is important for the body's immune system (Englberger et al. 2003). Foods with a high level of carotenoids have been shown to protect against chronic diseases including cardiovascular disease and diabetes. Taro leaf is rich in vitamins and minerals, and is a very popular and cheap vegetable in Samoa.As a crop, taro ranks first in cultural and economic importance for Samoans.Taro has a long history of social and cultural attachment in Samoan villages and rural societies and this is also evident in other PIC cultures.Taro is a highly valued commodity for traditional social activities such as weddings, opening of new churches, schools, community halls, funerals and other traditional occasions. It is generally believed that the importance of taro economically and culturally to the Samoan people originates from its unique taste and its early association in the local culture.In Samoa, it is the most important root crop followed by other food crops such as Alocasia sp., Xanthosoma sp., yam (Dioscorea sp.), banana (Musa acuminate) and breadfruit (Artocarpus altilis) in terms of consumption. According to the 1989 Agricultural Census, 96 percent of agricultural households grew taro and it was reported that there were 16 000 hectares planted to taro, compared with only 3 600 hectares planted to ta'amu (Alocasia macrorrhizos) and 2 500 hectares under banana, prior to the TLB outbreak in 1993. Taro leaf blight was first observed on the island of Upolu at Aleipata and two days later in Saanapu and adjacent districts in July 1993. The disease spread rapidly throughout the country, severely affecting all local cultivars, but it was most devastating on the Niue cultivar which was preferred for commercial production because of its quality and taste. Various factors contributed to the rapid spread of the disease. The area planted to Niue at the time was extremely large and effectively ensured a vulnerable monocrop situation. There was a continuous and abundant source of taro for the disease because farmers interplanted on old plantations and staggered their cultivation. Combined with the widespread movement of infected planting material and ideal weather conditions, the disease quickly reached epidemic proportions. Early attempts to control its spread and impact using chemical and cultural control methods proved futile (Hunter et al. 2001).The narrow genetic base of taro in the Pacific was made all too clear in 1993 when TLB arrived.Molecular studies revealed that there were two distinct gene pools separating Asia and the Pacific and diversity was far greater in Southeast Asia than in the Pacific. Greater genetic diversity was found in Indonesia where the two gene pools overlap (Lebot and Aradhya 1991). The studies also showed that the genetic base of taro in the Pacific was narrow with diversity decreasing eastwards towards the Polynesian groups. This was clearly demonstrated when all eleven of the traditional cultivars of Samoa proved highly susceptible to TLB.In 1994, the European Union-funded Pacific Regional Agricultural Programme (PRAP) embarked on a programme to screen and evaluate exotic taro varieties, mostly from Micronesia, which were available in the USP Tissue Culture Unit.Field evaluation of varieties, originating from the Federated States of Micronesia (FSM) 5 and the Philippines 6 , were more resistant to TLB. These four varieties were further multiplied and evaluated in on-farm trials during 1996 to 1998. From these trials the Philippine variety, known locally as Fili, proved to be the most satisfactory in terms of TLB resistance and dry matter content (Brunt et al. 2001;Iosefa and Rogers 1999). 7 It was promoted to farmers by the Ministry of Agriculture and Fisheries and received a high level of acceptance.Introductions from Palau followed, which showed good levels of resistance against TLB. Prior to the commencement of the taro breeding programme, Fili and some of the FSM and Palauan introductions, made an important contribution to resurrecting taro production in Samoa. These introductions were instrumental in getting nutritious palusami 8 back onto the dinner table of Samoan households. However, the release of a few introduced varieties was not sufficient to meet the needs of the growers. Despite their success, the taste and texture were not well suited to Samoan communities, who were keen to try and produce taro with the texture and quality achieved in pre-TLB days.The Samoa taro breeding approach involved the development of complementary regional and national programmes. The Australian Agency for International Development (AusAID) was a major donor and the approach was implemented by the Secretariat of the Pacific Community (SPC), Taro Genetic Resources: Conservation and Utilisation (TaroGen), the University of the South Pacific -School of Agriculture in Samoa and the Ministry of Agriculture and Fisheries.The impact of TLB on Samoa, the subsequent loss of taro genetic resources and the continuing vulnerability of other PICs to the disease was the major impetus behind the development of the regional project: Taro Genetic Resources: Conservation and Utilisation (TaroGen).5Pwetepwet, Pastora and Toantal from FSM.6 PSB-G2 from the Philippines Seed Board.Samoans prefer dry, firm-textured taro and therefore, percent dry weight is one measure of eating quality. Dry matter content of PSB-G2 was 37 percent (Brunt et al. 2001).Palusami is traditional use of taro leaves as a vegetable.Yet, despite the gravity of the situation, it still took five years before a coordinated regional effort would commence implementation. Initially there was a lack of understanding as to the severity of the disease and the general consensus was that the problem would be over within a year. This lack of comprehension was compounded by technical advice from other projects that were promoting cultural control methods and the use of fungicides as appropriate control measures.The five-year AusAID-funded TaroGen project finally began in 1998. The project supported taro breeding programmes in Papua New Guinea and Samoa, the objective being to provide growers with improved varieties to overcome production constraints that had durable resistance to TLB.The TaroGen project supported taro collection and characterization in Polynesia and Melanesia, as well as the evaluation of various ex situ and in situ taro germplasm conservation strategies. In addition the project established key positions, namely the Team Leader and the Tissue Culture Specialist at SPC, Fiji and the services of a part-time breeder/pathologist based at the USP (Alafua) Campus. These positions proved essential in establishing the successful foundations of the taro breeding programme for the work that was to follow.TaroGen provided the structure in which several agencies, each with specific skills and expertise came together to solve two problems -that of TLB in Samoa and erosion of taro diversity in the Pacific. As well as SPC and USP, other key agencies were the International Plant Genetic Resources Institute (IPGRI now Bioversity International), the Australian Centre for International Agricultural Research (ACIAR) and the Horticulture and Food Research Institute of New Zealand Ltd. (HortResearch).IPGRI assisted with the rationalization of collections and identification of core subsets for each country collection. 9 ACIAR, through the University of Queensland (UQ), funded DNA fingerprinting and the virus-testing components. ACIAR also funded the Queensland University of Technology (QUT) to develop methods for diagnosis and detection of taro viruses. This work enabled the safe international movement of taro germplasm, which has been key in supporting the flow of germplasm from the SPC Centre for Pacific Crops and Trees (CePaCT) to the breeding programme in Samoa. 9 TaroGen collected more than 2 200 different accessions (or samples) of taro from across the Pacific region. This large number needed to be reduced to a more manageable core collection. A core collection contains the maximum amount of genetic diversity within the smallest number of samples. This makes long-term conservation much more feasible, particularly where resources are limited. Also with core collections well characterized, this promotes use and exchange (Mary Taylor, personal communication). The more than 2 200 accessions have been reduced to a core collection of 196 which are housed at CePaCT.HortResearch was funded by the New Zealand Ministry of Foreign Affairs and Trade to develop methods to assess leaf blight resistance in populations of progeny for the taro breeding programme.The TLB-resistant lines selected from the Samoa breeding programme are now available to other countries in the Pacific, as well as globally, as shown by a recent distribution to the International Institute for Tropical Agriculture in Nigeria to support farmers in Africa in their battle against TLB.One of major factors contributing to the devastation of taro in Samoa in 1993 was the relative uniformity (lack of genetic diversity) of the crop. Increasing genetic diversity on farmers' fields was identified by researchers at the USP as an important future disease management strategy. Researchers were concerned that lessons had not been learned and that production might revert to the pre-1993 situation if only one or two improved cultivars were widely distributed and promoted.Discussions between researchers and farmers also revealed that some of the released introduced cultivars from Micronesia had a few shortcomings that included susceptibility to the disease in wetter parts of the country, low yields and poor storability. Farmers also raised concern about the length of time it was taking to get access to resistant germplasm evaluated through formal screening programmes.In Samoa, the lack of progress prompted efforts to link farmers to the regional gene bank, to strengthen access to exotic cultivars, and hence genetic diversity, and at the same time to support crop improvement by linking to breeding expertise through the establishment of a participatory improvement programme based at the USP. As a result, in 1999, the Taro Improvement Project (TIP) was established with support from TaroGen (Hunter et al. 2001).The project brought together scientists from USP and the SPC, national agricultural research and extension staff and farmers from the two islands of Upolu and Savai'i and was open to all farmers who agreed to compare taro cultivars using the participatory approach (Figure 1); this required taking part in ongoing monthly meetings, focus group discussions (FGDs) and regular farm visits to review the performance of the taro varieties. Crop-focused participatory appraisals were conducted with farmers' groups to learn about taro production Source: Iosefa et al. (2012, in press). Collection of elite lines identified from each cycle problems, farmers' perceptions of taro cultivars and key criteria important in the selection of cultivars, using various scoring and ranking exercises, FGDs and farm visits (Singh et al. 2010).Taro diversity fairs were employed to showcase the breeding and evaluation work of the TIP. An attempt was made to establish a university taro breeders club at USP in order to integrate the elements of the breeding programme into teaching as well as to have a hands-on approach to allow students to learn about the breeding process in a practical way and to interact on a regular basis with farmers and scientists.The TIP was supported by a regional gene bank (now CePaCT) established by the TaroGen project, which greatly improved access by farmers to exotic cultivars and at the same time provided an opportunity for any breeding lines generated by the TIP to be distributed to other countries (Figure 1).The TIP made some early progress and farmers evaluated and selected from clones of sexual crosses between cultivars from Samoa, Palau and the FSM (Hunter et al. 2001). Although selected lines from these crosses enabled farmers to start growing and eating taro again, there was concern that breeding from such Pacific cultivars alone would not significantly broaden the genetic base of taro in Samoa and might decrease heterozygosity and lead to inbreeding depression (Camus and Lebot 2010).To broaden the genetic base it was felt necessary to provide farmers with access to virus-indexed germplasm from Asia, a bringing together of the two distinct taro gene pools.The main objective of the TIP is to give Samoan taro farmers more options for improved taro production and management of TLB.The first cycle of the taro breeding programme was initiated in 1996/1997 prior to the start-up of the TaroGen project. Cycle 1 combined some Micronesian lines, with PSB-G2 from the Philippines and some Samoan lines. The second cycle included varieties from Palau and combined them with selected clones from cycle 1. In cycle 3, Niue was reintroduced into the breeding cycle because of the importance of this variety for domestic and export markets.Yet the progeny from the top cycle 3 clones showed few Niue traits, probably due to the susceptibility of TLB of lines with Niue parentage (SPC Land Resources News Letter April 2009). However, because of the importance of Niue some of these susceptible lines were still included in later crosses.Cycle 4 consisted of crossing cycle 3 lines. Field observation showed that the progeny from these crosses were very uniform in their characteristics indicating the breeding programme had possibly reached a genetic ceiling. Further progress could only be achieved therefore with infusion of new genetic material from outside the region. It was through TaroGen and the regional gene bank that taro germplasm was introduced from outside the region.Cycle 5 saw the introduction of TANSAO (Southeast Asian) lines from SPC. TANSAO (the Southeast Asia Taro Network) was established through European Union funding. One of the major outputs of this network was the development of a core sample of 120 varieties from Southeast Asia. This core sample was transferred to the SPC/CePaCT, and from there, virus-tested and selected varieties were made available to the Samoa breeding programme. This input of new diversity sufficiently broadened the genetic base to provide the opportunity for developing new varieties with such qualities as greater disease resistance, good palatability and drought tolerance.Cycle 5 is described in the SPC Land Resources News Letter:Taro plants that were dwarf and TLB-susceptible to plants that were large (over 2 m) aggressive and highly tolerant to TLB, from dark to sickly plants to handsomely coloured plants, from single to multiple shoots -some up to 50 shoots and thus threatening invasiveness producing no corms to plants producing consumer preferred corms (April 2009).With the selection of promising lines from such genetic diversity it was possible to breed back Niue to see if the variety's palatability could be achieved without risking disease susceptibility. Several cycle 5 (which had Niue genes from cycle 3 breeding) varieties were selected for the sixth breeding generation.These clones were pollinated using pollen from the Niue variety to generate the Niue 1 st back-cross generation (cycle 6 or sixth generation of breeding). Some of these cycle 6 lines were selected for the making of cycle 7 (the continuation of back-crosses).We crossed our preferred Samoan varieties with varieties from Indonesia and Malaysia that had leaf blight resistance. In that way we could keep the traits of our familiar and locally adapted varieties, and integrate disease resistance. It took time and a lot of work, but ultimately it was successful (ACIAR 2011).Beginning in 2009, some 13 years after the breeding programme began, new varieties began to be widely promoted to farmers for local sale and export; these very desirable varieties appeared on the scene with the vigour of the TANSAO material and the palatability of the Niue cultivar -although the distribution of these varieties is still constrained by the availability of planting material.The problem of TLB has been essentially solved and a satisfactory degree of local market consumer acceptability has been achieved. However, if exports are to be restored to their pre-blight levels, more work is required to determine overseas consumer preferences so that the breeding programme can focus on the preferences of this market, bearing in mind the need to still promote and maintain diversity (McGregor et al. 2011).Emphasis is also now shifting to target drought tolerance in the breeding programme in an attempt to generate lines that can be used to combat predicted climate variables.The establishment of CePaCT and the availability of virus-indexed core collections have allowed farmers in the Pacific much needed access to the diversity of the Asian gene pool. Several accessions from the TANSAO core collection were first introduced into the TIP breeding programme during the creation of breeding cycle 5 in 2005 (Figure 1). To date, seven cycles of breeding including researcher and farmer selection have been completed (Tables 2 and 3). The speed at which improved taro germplasm is distributed to farmers has significantly improved. Over the course of the participatory improvement programme in Samoa farmers have proven adept at handling, evaluating and selecting for their many needs from many clones, lines and cultivars. Some research-minded farmers have managed and selected from large segregating populations.In 2009, the Ministry of Agriculture and Fisheries made recommendations for five cultivars of which Samoa 1 and 2, identified from breeding cycle 5, are the most preferred for the export market. Further, the top selections from each breeding cycle in Samoa have been tissue-cultured and transferred to CePaCT where they have been virus-indexed, and are therefore available for wider distribution. In 2009 the Pacific region agreed that the Annex 1 collections held by CePaCT be placed in the Multilateral System of the International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA). As such these top selections are now available globally to farmers and breeders.The injection of 'new blood' from Asia into the Pacific taro gene pool has opened the door to improved TLB resistance, improved taste, higher yields and nutritional benefits through higher levels of carotenoids in the corm. Now with good levels of disease resistance in the taro crop the focus of participatory improvement work in Samoa has shifted to the identification of climate-ready taro. Again close links with CePaCT will ensure that the work of the programme in Samoa will have regional and global impact. The selected taro will be included in the CePaCT climate-ready collection for evaluation in the 22 SPC member countries and territories, and beyond if requested. However, TLB and other taro pests and diseases do not stand still and the genetic base of taro in other countries and regions of the world remains narrow and vulnerable as the recent outbreaks of TLB in West Africa (Bandyopadhyay et al. 2011) and the Caribbean demonstrate (Rao et al. 2010).The participatory crop improvement approaches developed and tested under TaroGen and TANSAO and their outputs have opened up promising opportunities for taro farmers in other parts of the world which did not exist over a decade ago. TLB-resistant lines developed through the TIP coupled with advanced virus-testing technology have now made it possible for CePaCT to transfer farmer-selected resistant lines, under the auspices of the ITPGRFA, to from for local conditions, using participatory approaches (Iosefa et al. 2012, in press).A major focus of the work of INEA will be to provide support to farmers to help their efforts to improve adaptation of taro to changing climate, especially drought tolerance. INEA is building on the work initiated by both TaroGen and TANSAO which showed the benefits that can be gained by linking farmers with scientists, and building on the practices which farmers have nurtured and developed over centuries, supporting the process of genetic adaptation and thereby enhancing the resilience of taro-based farming systems (Iosefa et al. 2012, in press).Economic analysis suggests that the expenditure on collecting, maintaining and evaluating conserved rice germplasm, well over 100 000 different accessions, is money well spent. In this paper several examples of outstanding sources of stress resistance are given. These examples illustrate several points: (a) time from collection to evaluation and use can span many decades; (b) stress resistance may be found in areas where it might not be expected (allopatric resistance); (c) evaluation is just the first stage in fully understanding useful traits; often identifying stress resistance is not simple and several useful traits may be found in a single accession; (d) while core collection is a useful and cost-efficient approach to evaluation the potential for finding useful traits in the whole collection and in some individuals of heterozygous accessions should be remembered.Rice is the staple food for more of humanity than any other crop. Rice has helped shape our world and human society. Its extraordinary adaptability to different growing conditions and nutritious grain wrapped in a tight protective husk (palae and lemma) are in a large measure why the population of Asia is so vast. Two different plant species in the genus Oryza were independently domesticated in Asia and Africa. But today Asian rice is the dominant species and is a staple in many countries all over the world.The challenge for rice scientists is ensuring that the genes needed for rice improvement in the future are available to complement advances in associated branches of rice agriculture. From 1961 to 1990 yields per hectare grew annually at a rate of 2 percent. However, since 1990 rates of yield increase have dropped to below 1 percent despite astonishing advances in the biological sciences (Fisher 2011).This paper focuses on successful rice germplasms that have provided useful genes for rice improvement. These stories might pave the way for future improvements in rice productivity.Policy-makers want facts and figures that provide evidence that funds are providing a good return on investment. Economists have tried to determine the real return on investment in conserving and evaluation of rice genetic resources (Evenson and Gollin 1997). Initial studies focused on an accession of the wild annual Oryza species O. nivara 2 that provided the only source of resistance to grassy stunt virus. This famous accession was heterogeneous for resistance to the virus with only three out of ten seeds tested showing resistance (Chang 1989). However, the resistant gene from those three resistant plants was transferred to elite breeding lines at IRRI. This gene transfer from wild to cultivated rice has become established in all elite rice lines. The transfer provided the basis for economic analysis and it was estimated that the initial return on the use of that gene was about US$50 million. More than enough to cover all the costs associated with conserving the rice gene pool to that point. The gene still provides resistance so its benefits continue.It is not a simple task to estimate the return on investment of germplasm. However, the simple fact is that the annual global rice harvest has been sufficient to prevent famine despite the decline in land area devoted to rice production as a result of urban expansion and increasing population. This reflects the results of improvement in the genetics and agronomy of rice agriculture as well as infrastructure improvements such as irrigation systems.Self-sufficiency in rice is the aim of all countries where rice is a staple and for most of the last 50 years Japan has been self-sufficient in this respect. However, in 1993, in part due to the effects of El Niño, a wet and cool August resulted in a much-reduced rice crop and Japan was forced to import rice. Rice grows in Japan at some of the highest latitudes for this crop and hence cold tolerance is a very important trait to incorporate into rice-breeding programmes.In 1974 Dr. Antonio Perez (then of IRRI) and Indonesian colleagues were collecting rice on the morning of 15 February, a Friday, the Muslim day of prayer in North Sumatra. That day they visited Kabupaten Simpang Empet near Lake Toba in the highlands at 1 300 metres. This village is located just 3 o north of the equator. There the team of rice scientists collected Page Silewah (Page means rice). In Simpang Empat many of the varieties collected were upland (gogo) rice plants with poor seed quality. Perez writes in his notes about Silewah, \"14-291 Page Silewah/gogo, highly diseased, bacterial leaf blight, neck blast, high sterility, 6.5 months duration.\" This does not sound like good germplasm for rice improvement.Cold tolerance is an important but complex trait because cold tolerance at one stage in the life cycle of rice is controlled by different genes from cold tolerance at another stage. Extensive evaluation to find germplasm adapted to the tropics with cold tolerance at the seedling stage and anthesis was started in the 1970s at IRRI (Vergara et al. 1976). By a sequential process of elimination, the original 24 158 entries in the germplasm collection evaluated were reduced to 11 germplasm accessions tolerant to cold temperatures at the seedling, booting and anthesis stages (Vergara and Visperas 1984). These varieties were evaluated further in Japan and the Republic of Korea. The results of these tests highlighted Silewah as one of the most cold-tolerant varieties (Satake and Toriyama 1979). Consequently, Silewah was crossed with a japonica breeding line, Hokkai 241, in Japan and to IR38 at IRRI. Using the technique of rapid generation advance, these crosses were rapidly taken towards homozygosity and bulked. In 1982, four years after the original crosses were made, lines were being tested in the international rice cold-tolerant nursery (Vergara et al. 1982). Lines from these crosses were tested in international trials for three years in more than ten locations.Silewah has proved to be an outstanding cold-tolerant gene source for rice breeders. In 1990, North Sumatra was again visited by an international team of rice collectors to collect wild rice germplasm that grows on forested upland slopes in that province. The team was collecting wild Oryza germplasm and was close to Simpang Empat therefore it was decided to see if Silewah was still growing there. When the team checked Simpang Empet and surrounding villages late in the day, one farmer recalled a variety he called 'Sileu' but he said it was not a good variety and so no longer grew in the area. Tony Perez noted in 1974 that Silewah was susceptible to pests and diseases; however, on evaluation it was found to be very good with respect to cold tolerance.Studies of Silewah and derivatives in crosses with different varieties in Japan have continued to this day. Silewah is a tropical japonica variety showing partial sterility in crosses between both indica and temperate japonica varieties when crossed (Ikehashi and Araki 1984). Based on a cross between Norin PL8 and Silewah, quantitative trait loci (QTLs) for cold tolerance at the booting stage were found on rice chromosomes 3 and 4 (Saito et al. 1995). Fine mapping of QTLs on the long arm of chromosome 4 indicated two QTLs for cold tolerance on this chromosome, designated Ctb-1 and Ctb-2 and these QTLs were associated with anther length (Saito et al. 2001). Subsequently a 56Kb region was determined as associated with Ctb-1 and seven open reading frames (ORFs) were found in this region. Two ORFs encode receptor-like protein kinases possibly involved in signal transduction pathways. Three ORFs encode proteins that may be associated with ubiquitin-proteasome pathways and two ORFs encode F-box proteins (Saito et al. 2004). Ctb-1 has now been cloned (Saito et al. 2010).Recently breeding lines between Silewah and other Japanese varieties (Kita-ake, Yukihikari and Dohoku 50) were analysed for cold tolerance and genomic regions with chromosome segments from Silewah were found on chromosomes 3, 4 and 11. Analysis showed that the allele from Silewah on chromosome 3 conferred cold tolerance and was designated qCTB3-Silewah (Mori et al. 2011). This suggests that different QTLs might be exploited from the same source in different breeding programmes depending on the genetic background and environmental conditions (Mori et al. 2011).Another example of a variety that is an unexpected source of a useful trait is Goda Heenati. In tests for submersion tolerance this variety was found to be one of a group of varieties that performed very well. The reason why this is a surprise is that it is from Sri Lanka where it is an upland rice. Although some rice varieties have been known to show tolerance to submergence since the 1950s, such as FR13A (Flood Resistant 13A), it has taken more than 50 years to understand the mechanism and get the relevant gene into elite varieties (Bailey-Serres et al. 2010).Brown planthopper is one of the most important rice insect pests not just for the damage it does itself but also because it transmits Grassy Stunt Virus and Ragged Stunt Virus. More than 20 genes for brown planthopper resistance are now known (Jena and Kim 2003). IR64 was developed in 1986 and this had genes for resistance to brown planthopper biotype 1 (Brar et al. 2009). IR64 has been one of the most successful lowland irrigated rice varieties of all time and one reason for its continuing popularity in countries like Indonesia is due to its resistance to brown planthopper based on the gene Bph1. However, in 2009 after more than 20 years the resistance broke down in Indonesia (Sutrisno, personal communication 2011). This has required a hunt for new sources of resistance. One particularly good resistance gene is found in the Sri Lankan variety Rathu Heenati a cultivar that is resistant to four brown planthopper biotypes. The gene Bph3 from this variety has been used in breeding but one problem is that it is closely linked with the waxy locus (Jairin et al. 2009). However, this linkage can be broken. Rathu Heenati also has the gene Bph17 that might explain the broad spectrum of resistance this variety has to different biotypes (Sun et al. 2005).On Sunday, 30 November 1958, the late H.I. Oka, then of the National Institute of Genetics, Japan was in northern Thailand with Thai colleagues collecting rice germplasm. That day while walking along a forest trail at Si Samrong, Sukothai, he made the ninth collection of the trip -Oryza officinalis. Seeds from this population were taken back to Japan, where it was conserved (Oka 1958). In 1964, seeds of that accession (W0065) were sent to IRRI for duplicate conservation and research where it was assigned the accession number 100896.In 1980, the Entomology Department of IRRI screened this wild rice accession along with many others for resistance to various insect pests. The Oryza officinalis from Si Samrong was found to be resistant to races of brown planthopper, green leafhopper and zigzag leafhopper (Heinrichs et al. 1985).In 1984, K.K. Jena crossed this accession of wild rice with elite breeding lines of cultivated rice. After embryo rescue, the hybrid was back-crossed to cultivated rice. In 1987 trials, some back-crossed progeny were the highest yielding in two seasons. In 1989, rice lines with genes from the Thai wild rice entered international yield trials (Vaughan and Sitch 1991). As a result of yield trials in Viet Nam, five of the lines with O. officinalis genes were released as brown planthopper-resistant varieties -MTL98, MTL103, MTL105, MTL110 and MTL114 (Brar 2005).O. officinalis provides resistance to brown planthopper biotype 4 common in South Asia and the gene for resistance has been designated Bph13. Bph13 is located on rice chromosome 3 and a co-dominant linked sequenced-tagged sites (STS) marker has been developed that is 1.3 cM from the gene to use in marker-assisted selection (Renganayaki et al. 2002). Other workers found a different gene for brown planthopper resistance from this wild rice on chromosome 11 that was also resistant to Indian biotypes of the pest (Jena et al. 2003). Japanese scientists have also studied brown planthopper resistance from O. officinalis and found new genes for resistance to biotype 1 on chromosome 3 linked to RFLP marker G1318 and also a gene on chromosome 4. They designated these genes Bph11 and Bph12 (Hirobayashi et al. 2003).Today brown planthopper remains a major problem in Asia, although it is often quiescent. Indonesia in the last few years has seen an increased threat from this pest. The abundant sources of resistance available in both cultivated and wild rice genetic resources plus the new tools available to incorporate these materials into breeding lines should provide the resources needed to control the effects of this pest and its associated virus diseases.On Friday, 6 January 1989, Dr. Songkran Chitrakon and the author visited the deep water lowlands around the ancient city of Ayutthaya, just north of Bangkok, Thailand. To get seeds of the abundant wild rice growing there (Oryza rufipogon) they used a small boat. During the day eight samples from different parts of the low-lying area were collected. At that time the straw of O. rufipogon was used to make rope by local people.These samples are conserved in Thailand and at the IRRI gene bank. Evaluation of a wild rice core collection revealed that samples (particularly 105908 and 105910) collected on that day had resistance to rice tungro (a complex of two viruses) but susceptibility to the virus vector green leafhopper (Kobayashi et al. 1993a, b;Angeles et al. 1998). These were accessions crossed to elite germplasm, including IR24 and IR64. Based on rigorous tests of the best advanced breeding lines with tungro resistance/tolerance from different sources, the source from Thai O. rufipogon showed resistance to spherical tungro virus, and tolerance to bacilliform tungro virus (Angeles et al. 1998). Subsequently a tungro resistance source from O. rufipogon (accession 105908) was released in the Philippines as Matatag 9.More recently the 'apparent' resistance to tungro in Matatag 9 has been studied in detail (Shibata et al. 2007); the 'resistance' from O. rufipogon to tungro virus may be a combination of resistance to green leafhopper and tolerance to tungro viruses (Shibata et al. 2007). Evaluation of germplasm is critical for it to be used. However, evaluation for important pests and diseases is complex, particularly in the case of viruses and their vectors and requires rigorous and multiple testing to ensure that the trait of interest is properly characterized and can be appropriately deployed.Oryza rufipogon grows in waters that are acidic (i.e. black water) rather than alkaline (white water). In the Sepik River of Papua New Guinea, O. rufipogon grows in the Black Water Lake but not in nearby Lake Chambri that has white water. There are some populations in Viet Nam that grow acid sulphate soils that can be readily recognized by the orange colour of the soil. On Thursday, 20 December 1990, a team of germplasm collectors, including Dr. B.C. Buu and the author, went by boat to the village of Hao An in the Mekong Delta, Viet Nam, to collect wild populations of Oryza rufipogon. From the orange colour of the soil there in which O. rufipogon grows it was clear that this population was resistant to acid sulphate soil conditions.The accession collected (106412) was used in crosses with IR64. From the cross, lines were sent to the Chu Long Rice Research Institute (CLRRI) in 1995 for evaluation. Tested in both target and non-target sites three promising lines were selected and sent to CLRRI's yield-testing unit. IR73678-6-9-B (AS996) was released in 2000 as a variety for commercial cultivation in the Mekong Delta and has occupied 100 000 hectares (Brar 2005). AS996 has become an important parent for further rice improvement in Viet Nam and other countries. It is a short duration variety with qualities suitable for moderately acid sulphate soils; it is also tolerant to brown planthopper and blast disease (Brar and Khush 2002). Brown planthopper resistance was shown to be derived from O. rufipogon, in a recessive gene; it has been designated Bph24(t) (Deen et al. no date). The genetics of tolerance to abiotic stress were investigated for this accession and a major QTL for relative root length that is a primary parameter for aluminium tolerance was found to be located on chromosome 3 of the accession (Nguyen et al. 2003).The history of Asia has been shaped by rice. Rice was domesticated originally in China and subsequently two major varietal groups evolved -indica and japonica (Vaughan et al. 2008;Molina et al. 2011). Domestication of rice can be considered 'green evolution' but since domestication of rice four 'green revolutions' of rice can be identified.Short duration rice: Indica and japonica have been grown in China since the Neolithic Era (Bray 1984). However, it was the introduction of short duration varieties into the rice-cropping system of southern China that represented a major agricultural breakthrough. The introduced varieties, called Champa varieties, probably came from Viet Nam. These short duration varieties had two impacts. The first was that rice could be grown and harvested on marginal lands subject to inundation in the second half of the growing season. The second impact was to fit rice into various cropping systems resulting in significant yield increases. The ability to double crop is one reason why the population of China was able to grow very quickly.Mashuri: A second green revolution was the result of a small FAO-funded project that involved indica-japonica hybridization. The hybridization was done at the Central Rice Research Institute, Cuttack, India. A group 65 crosses of which 13 were indica x japonica (F 2 ) lines was received by the Rice Department Malaysia in 1956. The crosses were grown in bulk until the F 7 line was achieved. In the F 7 line, progeny of each cross were put into F 8 rows. Pedigree selection was undertaken in 1959 (F 8 ) and subsequent selection was made after observing a line of two rows consisting of 40 hills. In 1961/1962 main season formal yield trials (F 15 ) were performed; in the F 16 line farmers' trials were undertaken. In the F 17 generation, nine years after the original cross was made, two varieties were released in 1965 as Malinja and Mahsuri (Van 1966). Mahsuri became popular in Malaysia and was also tested in India, but due to susceptibility to diseases it was not recommended for release. However, farmers obtain seeds of the variety and Mahsuri spread across the Terai of India and Nepal. Mahsuri was very well adapted to rainfed lowland conditions and its good quality made it popular. It became known as the green revolution variety of Nepal (Gyan Lal Shrestha, 1988, personal communication). Mahsuri spread to Myanmar and also to northern Viet Nam. In Myanmar a natural short stature mutant of Mahsuri was found in the field and selected. This mutant Mahsuri became popular in Myanmar as it was resistant to lodging. In 2010, 45 years after Mahsuri was released in Malaysia its mutant form was still the most popular variety across the rainfed areas of Myanmar (Ms. Aye Aye Myint, Myanmar Seed Bank, personal communication 2010).The IR series: The great green revolution of the 1960s and 1970s was founded on the introduction of short stature into rice. Traditional varieties of rice are invariably tall and prone to lodging. The IRRI series of IR varieties and derivatives has dominated the irrigated lowlands of tropical Asia since thenthe most famous of which have been IR8 and IR64. This green revolution was not just based on plant breeding but also on associated agronomic practices, particularly application of fertilizers.The development of hybrid rice that began in the early 1970s required a good source of male sterility. Wild rice has been the major source of male sterility including cytoplasm male sterility. It is not uncommon to find sterile plants in wild rice populations (author's own observations). At the end of the twentieth century 90 percent of the area planted to hybrid rice in China traced its cytoplasm to wild abortive (WA) cytoplasm. This type of cytoplasm was found in a wild rice from Hainan Island, China. This wild rice was believed to be a hybrid between the red awned wild rice of the island and a latecultivated rice cultivar. It was discovered in 1970 and the plant had very strong tillering, a slender culm, a narrow leaf and sheath, long red awns, coloured seeds and long seed dormancy. Anthers only dehisce when temperatures are above 30 o C for several days. Hundreds of WA type A lines have been developed by crossing rice cultivars with good maintaining ability.In China commercial production of hybrid rice began in 1976. Production-wise there were 2.1 million hectares of hybrid rice in 1977, 10.9 million hectares in 1983 and 15.3 million hectares in 1997. From 1976 to 1997 hybrid rice enabled China to increase rice production by more than 312 million tonnes (Li and Yuan 2000). The hybrid rice green revolution of China, as with the IR series green revolution, was not based on genetics alone but required a carefully planned agronomic system to ensure its success.Based on various analyses the return on investment in conservation of rice, and other crop genetic resources, has been very high.Systematic and rigorous characterization and evaluation is an essential interface between conservation and use of rice genetic resources. As there is now less emphasis on collecting rice genetic resources the emphasis should shift to characterization and evaluation of these genetic resources. While molecular characterization is receiving much attention, the need for more information on adaptation of genes in rice to changing environments is imperative. Initiatives, such as the Global PartnershipInitiative for Plant Breeding Capacity Building (GIPB 3 ), which promote and achieve characterization and evaluation, should be a major focus of investment.From the examples given in this paper it is also clear that a deeper understanding of useful traits reveals their complex genetic nature. For both Silewah and Thai O. officinalis the trait of interest is not based on a single gene but several and these different genes may be exploited in different circumstances. Characterization and evaluation should not only be systematic and rigorous, but potentially useful germplasm needs to be studied in depth to fully understand traits of interest. This may mean retesting after different crosses are made or selection is made in different environments.It is often difficult to predict where important genes will be found. While resistance/tolerance genes are often found to be associated with biotic and abiotic stresses (sympatric resistance/tolerance) sometimes this association may not be present or at least not apparent. While core, mini-core or specialist collections may be the first place to start when looking for new characteristics, the whole collection should not be ignored if needed traits are not found. • Time between collecting rice germplasm and use can span decades. Success in plant breeding can result in varieties remaining popular with varieties for a very long time, such as Mahsuri, IR64, Khao Dawk Mali 105 and Koshihikari.One of the major problems with germplasm is the difficulty that exists in tracing the route of germplasm from its collecting place to use. Germplasm only has one unique number -the passport number. This may be linked to the accession number given by the receiving gene bank but when that accession is sent to evaluators, plant breeders or other gene banks, the gene bank accession number takes precedence. Once within a breeding programme, the accession number soon becomes a breeding line number and maybe eventually become a variety. Passport numbers for accession numbers can be found for germplasm in the CGIAR 4 system on SINGER (http://singer.cgiar.org/) but for germplasm from other gene banks the importance of passport number is not always realized. Secondary transfer of germplasm, that often happens, further removes the 'unique' number for the germplasm from those using it.• Crop improvement is not just based on genetics but has to be holistic, taking account of all aspects of the crop cycle including water and nutrient requirements as well as pest and disease mitigation practices.The next green revolution is less likely to come from a dramatic increase in yield from the crop because the limits to what can be achieved are known and the 'yield gap' between research station and farmer's field will be difficult to close. It is likely that a large increase in yield may come from opening new areas to rice production or increasing the number of crops from one plot of land. Theoretically, transplanted rice could give four or five crops from one parcel of land annually if water supply is available and gene rotation is actively practised. For five crops it would require 30 days in the seed bed and 60 days in the field with ten days between harvest and transplanting. Looking at the cropping system overall, crop yields in tropical countries could be boosted similarly by ensuring crop turnaround is very fast and complementary crops are planted. Hence an agronomic green revolution may be more likely and perhaps more productive than a genetic green revolution.Masao Ishimoto 1Modern plant breeding has made enormous contributions to increased food production worldwide. On the other hand, the genetic base of recent developed varieties is extremely narrow and these varieties displace diversified indigenous cultivars and landraces. Exotic germplasm, including wild accessions, may serve as sources of foreign genes to increase genetic diversity in the improvement of agronomically important traits such as biotic and abiotic stresses. The introduction of such exotic genes, however, often brings unexpected adverse effects in addition to the target trait. Recently, an integrative genomics database for soybean has been developed based on the whole-genome sequence and many genomic, transcriptional and functional annotated sequences and molecular markers can be retrieved. These molecular and genomic resources provide a range of conclusive opportunities for genetic refinement of target traits in breeding lines by marker-assisted breeding. In addition, the advanced genomic information makes it possible to discover novel alleles and loci from the genetic resources. Thus the genetic resources of soybean, including wild soybean, are being showcased in the postgenomic era.Soybean (Glycine max [L.] Merrill) is one of the most important crops as a staple source for edible, feeding, industrial and pharmaceutical applications. Soybean seeds contain a high percentage of nutritious protein and oil, and are a significant component of traditional foods in many Asian countries. Soybean was planted on more than 102 million hectares worldwide in 2010, yielding 264 million tonnes; more than 80 percent of the production came from the United States, Brazil and Argentina (FAS 2010). In response to recent increases in demand, soybean production has had the highest increase compared to other major crops (Hartman et al. 2011). In this context soybean improvement is urgently needed to accommodate global as well as regional market demand.1 Soybean Applied Genomics Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan.Japan is one of the world's leading consumers of soybeans, importing almost 95 percent of the annual quota. The Ministry of Agriculture, Forestry and Fisheries (MAFF) has released more than 100 accredited varieties publicly over the past five decades in Japan, but the country's average yield of soybeans still remains less than the world average. Whereas the average yield worldwide increased by a factor of 2.5 in the last two decades, reaching 2.5 tonnes/hectare in 2010, in Japan it remained at 1.6 tonnes/hectare during the same period. It is therefore imperative to develop new varieties to address the factors that cause low productivity. The goal is to achieve a stable supply for domestic human consumption that has the required seed quality.The genomic era is now a reality for soybean as well as many other crops. Recently, an integrative genomics database for soybean has been developed based on the whole-genome sequence (Schmutz et al. 2010); numerous genomic, transcriptional and functional annotated sequences can be retrieved from Phytozome (http://www.phytozome.net/soybean.php). In addition to a large proportion of the soybean genome, several resources, including an expressed sequence tag (EST) database, full-length cDNAs and molecular markers have been developed (Stacey et al. 2004;Umezawa et al. 2008); http://soybase.org/ index.php). These molecular and genomic resources provide opportunities for improving soybean by marker-assisted breeding and for understanding its gene function by map-based cloning and reverse genetic approaches.Molecular markers are fundamental to modern plant breeding because they allow the identification of agronomic trait loci, including quantitative trait loci, and an understanding of genetic diversity and the genome structure of genetic resources. Since the 1990s, various types of molecular markers, including restriction fragment length polymorphism (RFLP), random amplification of polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers, have been developed and applied to soybean. Among them, the SSR (also known as microsatellite) marker has been a conventional tool in soybean genetics because of the high allelic diversity (Marino et al. 1995;Rongwen et al. 1995). Thousands of SSR markers have been developed in soybean over the last two decades, with more than 2 000 SSR loci integrated into a common linkage map (Cregan et al. 1999;Hisano et al. 2007;Hwang et al. 2009;Song et al. 2004;Xia et al. 2007). The abundant and well-documented SSR loci allow the relatively unlimited selection of SSR markers on the basis of their diverse length polymorphism and their location on the linkage and physical maps. We selected 304 SSR markers and assembled them into 41 multiplex PCR sets to give a whole-genome SSR panel (Figure 1) (Sayama et al. 2011). This genome panel system has been applied to linkage analysis of more than ten segregating populations so far and it has successfully built the framework of each linkage map (Takada et al. 2010). The results indicate the wide applicability of the genome panel system to various combinations of soybean genotypes. The combination of multiplex PCR and the high-resolution detection system has been also applied to other genotyping studies such as marker-assisted selection and the fine mapping of qualitative and quantitative traits. The re-sequencing of the soybean genome enables the identification of a huge quantity of single nucleotide polymorphisms (SNPs). Furthermore, the recent breakthrough of high multiplexing has moved the SNP into the mainstream of genotyping technology (Fan et al. 2006). Vast numbers of SNPs have been identified in soybean and have been used to design the high-throughput genotyping platforms, which discriminate up to 1 536 SNPs in one reaction (Choi et al. 2007;Hyten et al. 2010;Hyten et al. 2008). On the basis of its high multiplexing capacity, automation and continued improvement, the SNP array is becoming one of most reliable methods for whole-genome genotyping. However, the high-throughput genotyping platform is not flexible for modification of SNP marker selection and is expensive for each reaction set.SSR markers are used in the analysis of genetic diversity and QTLs as well as the construction of linkage maps (Marino et al. 1995;Wang et al. 2001). We selected 377 SSR marker loci distributed throughout the soybean genome and analysed them in 87 cultivated and wild soybean accessions, including Japanese elite varieties and important genetic resources (Hwang et al. 2008). All SSR markers showed polymorphism on agarose gel electrophoresis, which revealed a total of 1 380 alleles among all accessions. The observed genetic polymorphisms of SSR loci were subjected to cluster analysis. The analysis classified the 87 accessions into three major groups segregated almost exclusively into Japanese varieties, foreign varieties and wild accessions (Figure 2). The Japanese cultivars were grouped into three subclusters that corresponded well to their geographic origins. Such clustering may reflect the pedigree relations and commonality of important agricultural traits in cultivars from the different regions. The genetic similarities and distances of the SSR loci indicate a low level of genetic diversity in the Japanese cultivars. In particular, recently developed cultivars are closely related among the cultivars produced at the same breeding stations. Some Japanese cultivars were grouped with the foreign cultivars, indicating pedigree relations. Chinese and United States' cultivars have been used in Japanese breeding programmes, especially in Tohoku and Hokkaido, to introduce exotic genes that confer resistance to soybean mosaic virus or soybean cyst nematode (Zhou et al. 2002). The foreign cultivars have the potential to introduce genetic diversity into Japanese soybean breeding because the genetic base of Japanese cultivars is quite distinct from that of Chinese, United States' and Canadian cultivars (Abe et al. 2003;Zhou et al. 2000).Wild soybean (Glycine soja Sieb. & Zucc.) is presumed to be the most probable ancestor of cultivated soybean (Hymowitz 1970). Wild soybeans are distributed in semi-disturbed habitats of East Asia, China, Republic of Korea, Japan and the Far East of the Russian Federation (Shimamoto et al. 2000). They can produce fertile offspring with cultivated soybean, and both types share Breeding of soybean has improved seed quality in Japanese elite varieties for traditional food products such as tofu and natto (fermented soybean).Introduction of new genetic resources into the gene pool may improve the crop's tolerance to impediments and increase genetic variability to enable the development of high-yielding varieties (Ude et al. 2003). However, the introgression of desirable genes from other genetic resources can cause detrimental changes in agronomically important traits such as seed quality (Jacobsen and Schouten 2007). Many loci associated with the target traits such as disease and insect resistance were successfully integrated into the linkage map. Information on neighbouring molecular markers has been successfully applied to the analysis of qualitative and quantitative trait loci and to markerassisted selection in soybean (Concibido et al. 2004;Cregan et al. 1999;Harada and Xia 2004). Therefore, marker-assisted selection (MAS) is a powerful tool for genetically refining the target traits of breeding lines in the process of selection (Peleman et al. 2005).Advanced molecular and genomic resources make it possible to discover novel alleles and loci from the genetic resources by reverse genetics as well as forward genetics. Target induced local lesions in genomes (TILLING) is one technique for reverse genetics and induced mutants are screened to identify individuals with sequence alterations such as SNPs and In/Del (insertions/deletions) (Barkley and Wang 2008). Genetic resources have been applied to uncover natural genetic variations (Comai et al. 2004) and successfully identify novel disease resistance allele (Nieto et al. 2007). The strategy could be applied to wild and cultivated soybean germplasm maintained and operated by the National Institute of Agrobiological Sciences' (NIAS) gene bank, the National BioResource Project in Japan and the United States Department of Agriculture's (USDA) Germplasm Resources Information Network. Thus germplasm enhances their presence for soybean breeding and the discovery of novel alleles and loci in the postgenomic era.Carnation (Dianthus caryophyllus L.) is one of the world's major floricultural crops along with chrysanthemum and rose. At present, the major production areas are cool highlands with suitable climates for carnation growth, such as those found in Colombia and China (Onozaki 2006a). The amount of cut carnations imported into Japan from these two countries has increased steadily each year. Of cut carnations sold in Japan, 46.2 percent were imported in 2010 (MAFF 2010); therefore, breeding of high-value-added or distinctive cultivars is required in order to overcome the need to import them.progeny for their resistance to B. caryophylli in 1994. No resistant seedlings were obtained from 156 F 1 plants, indicating that the resistant Sandrosa carnation cultivar is unsuitable for use as a parent in breeding for resistance.Therefore, a study of 70 wild Dianthus accessions was undertaken to test their differences in bacterial wilt resistance. The same test protocol was used for these species that was used to screen the carnation cultivars. Based on this testing, two highly resistant wild species, D. capitatus Balbis ex DC. ssp. andrzejowskianus Zapal. and D. henteri Heuffel ex Griseb. & Schenk, were identified (Onozaki et al. 1999b). These two species showed no disease symptoms throughout the experiment.Cultivated carnations were hybridized with D. capitatus ssp. andrzejowskianus to introduce the latter's bacterial wilt disease resistance into carnation cultivars (Onozaki et al. 1998). This interspecific hybridization was very difficult. When carnations were used as the seed parent and D. capitatus ssp. andrzejowskianus was used as the pollen parent, F 1 progeny were not obtained. When D. capitatus ssp. andrzejowskianus was used as the seed parent and carnations were used as the pollen parent, seed was set in only 13 out of 43 crosses (30 percent). Moreover, a large percentage of the resulting seeds was abnormal: most were smaller than the normal black carnation seeds and had a wrinkled brown surface. However, not all seeds were completely empty. The germination percentage was therefore relatively low. Only 50 F 1 seedlings were obtained in crosses conducted from 1990 to 1992.Of these seedlings, 36 survived and were tested for resistance to bacterial wilt using the aforesaid screening method. Eleven resistant lines were selected from among the 36 F 1 plants. The resistance of the Dianthus wild species to B. caryophylli was inherited as a result of the interspecific hybridization (Onozaki et al. 1998). Carnation Nou No. 1 was selected from the F 1 progeny derived from a cross with the spray-type carnation cultivar Super Gold and was registered with Japan's Ministry of Agriculture, Forestry and Fisheries (MAFF) in 1996 (Onozaki et al. 2002).Carnation Nou No. 1 is a carnation breeding line that is resistant to bacterial wilt. This line has a perpetual flowering habit. In addition, the yield of this line (number of cut flowers/plant) is very high; the mean yield is 11.5 cut flowers/ plant, which is higher than that of the control cultivars Super Gold, Scania and Coral. Carnation Nou No. 1 can produce resistant progeny, indicating that it is available as breeding material to introduce resistance into carnation and other Dianthus cultivars (Onozaki et al. 2002).We conducted continuous crossings and selections for bacterial wilt resistance to develop a carnation with resistance derived from D. capitatus ssp. andrzejowskianus. Karen Rouge is the first practical carnation cultivar resistant to bacterial wilt (Yagi et al. 2010). The mean disease incidence of six resistance tests was 7.1 percent in Karen Rouge, which is clearly more resistant than Francesco (87 percent) and Nora (97.1 percent). The flower colour is deep yellowish red (0707: JHS colour chart), almost the same as Francesco. Karen Rouge is a standard-type cultivar with a flower diameter of 7.5 centimetres. The total number of cut flowers/plant is lower than Francesco but more than Nora. Karen Rouge has been developed by marker-assisted selection using STS-WG44 markers linked to a major QTL since 2004 (Onozaki et al. 2004). To our knowledge, this is the first cultivar produced by marker-assisted selection in carnations.The vase life of cut flowers is an important characteristic that determines their quality and their ability to satisfy consumer preferences. Senescence of carnation flowers is normally characterized by a climacteric-like pattern of ethylene production; that is, by a surge in ethylene production followed by a decline (Mayak and Tirosh 1993). The increase in ethylene production is associated with the development of in-rolling flower petals and subsequent wilting (Halevy and Mayak 1981). Carnation flowers are highly sensitive to exogenous ethylene (Woltering and van Doorn 1988). Hence, ethylene is an important determinant of flower longevity, because it induces wilting of petals and autocatalytic ethylene production (Halevy and Mayak 1981).Although the vase life of carnations is about five to seven days in normal Sim-type cultivars, it can be extended by means of treatment with postharvest chemicals, such as silver thiosulfate (STS) (Veen 1979). STS, which inhibits ethylene action, is widely used by commercial carnation producers to extend the vase life of cut flowers because of its outstanding effectiveness. STS is generally applied as a pretreatment solution to cut flowers. However, concerns about potential contamination of the environment from waste STS solutions have increased in recent years (Klee and Clark 2004), so alternative methods for improving the vase life of carnations must be developed. It would be desirable to genetically improve their vase life because the improved cultivars would require no chemical treatment to attain longer vase life. Therefore, a research breeding programme was started by NIFS in 1992 in this context using conventional breeding techniques.Increased vase life of cut flowers is an important breeding target. To improve the vase life of carnation flowers, Onozaki et al. (2001Onozaki et al. ( , 2006bOnozaki et al. ( , 2011b) ) repeatedly crossed and selected promising progeny for six generations from 1992 to 2006. The research-breeding programme began in 1992 using six cultivars (Pallas, Sandrosa, Candy, Tanga, White Sim and Scania) as parental materials (Onozaki et al. 2001). The mean vase life of the parental generation derived from crossing these six cultivars was 7.4 days; in contrast, after six cycles of crossing and selection, vase life had improved to 15.9 days, a net increase of 8.5 days. All selected lines with long vase life showed low ethylene production at senescence. In particular, selected sixth-generation line 532-6 with an ultra-long vase life showed the longest vase life among all cultivars and lines; the mean vase life of line 532-6 was 32.7 days in 2007 and 27.8 days in 2008 (536 and 463 percent the value of White Sim, respectively) at 23 o C and 70 percent RH under a 12-hour photoperiod, without chemical treatment. Closer observation of petals during senescence showed that line 532-6 was characterized by a lack of brownish discoloration of petals, which was a senescence symptom of other selected lines with low ethylene production, when the flower lost its ornamental value (Onozaki et al. 2011b). Evaluation of the progeny by exposure to ethylene at a 2 µL/L concentration showed that two second-generation lines (64-13 and 64-54) were as insensitive to ethylene as Chinera, a cultivar that is known for its low ethylene sensitivity (Onozaki et al. 2001). Thus, many carnation lines with genetically long vase life could be developed using conventional cross-breeding techniques. Miracle Rouge, a red standard-type cultivar, was selected from the third generation of these crosses, and Miracle Symphony, a white standard-type cultivar with red stripes, was selected from the second generation. Both showed very high flower quality and adequate yields of cut flowers for commercial production, in addition to their long vase life.Treatment with α-aminoisobutyric acid, an inhibitor of ethylene biosynthesis (Onozaki and Yamaguchi 1992), or STS, an inhibitor of ethylene action (Veen 1979), did not significantly prolong vase life in either cultivar. In addition, the petals and gynoecium of both cultivars produced only trace amounts of ethylene during natural senescence. These results indicate that their ethylene biosynthesis pathway was almost completely blocked during natural senescence, and that this change was responsible for their improved vase life.Exploration and collection of D. superbus var. longicalycinus and D. superbus were conducted in Mie Prefecture on 13 July 2000, and in Hokkaido from 3 to 5 October 3 2000 in order to utilize them for breeding. A total of 33 collected samples were divided into 12 samples of D. superbus var. longicalycinus from the sea coast in Mie Prefecture and Ishikari, Hokkaido, and 21 samples from the Okhotsk sea coast in Hokkaido (Onozaki 2001).Interspecific hybridization between carnation (Dianthus caryophyllus) lines with long vase life and D. superbus var. longicalycinus, a wild Dianthus species native to Japan, was carried out in order to combine early flowering, high productivity and long vase life (Onozaki et al. 2011a). Although the interspecific hybridization of this combination was very difficult, seed was set in four out of 22 crosses. Moreover, all obtained seeds were abnormal; the seeds were imperfectly solid and had a wrinkled brown surface. However, 15 F 1 seedlings were obtained using normal cross-breeding techniques, without depending on in vitro culture. Selected F 1 lines had fertility in both seed and the pollen parent. SSR analysis proved that all nine selected F 1 lines were interspecific hybrids. In back-crosses between selected F 1 or BC 1 lines and carnation lines with long vase life, the percentage of seed setting was markedly increased, and the germination percentage of obtained seeds was also high. The mean vase life of F 1 generation was seven days; in contrast, the vase life of BC 2 generation, after two cycles of crossing and selection using carnation lines with long vase life, had improved to 14.7 days, a net increase of 7.7 days. Carnation breeding using D. superbus var. longicalycinus was effective for selecting early flowering progenies. F 1 generation exhibited very early flowering; the average number of days to flowering in 15 F 1 seedlings was 135. In BC 1 and BC 2 generations, segregation of seedlings with early flowering was also observed. Our results suggest that flower vase life is not linked to early flowering. Several selected BC 2 lines with long vase life, early flowering and high productivity could be developed, even when using D. superbus var. longicalycinus with very short vase life as breeding material (Onozaki et al. 2011a).Plant Genetic Resources for Food and Agriculture: Future directionsShin-ichi Yamamoto, Kuniaki Fukui and Takao Niino 1A safe and reliable long-term storage system is essential for a gene bank.Cryopreservation is an ideal method for long-term preservation of plant germplasm because it requires minimum storage space, labour and maintenance. Although still limited, cryopreservation techniques are now being adopted in an increasing number of institutes around the world. The construction of a cryobank will contribute significantly to the cost-effective long-term preservation of vegetatively-propagated crops in a stable manner under safe and disease-free conditions. In the NIAS Genebank, dormant buds of 1 283 mulberry accessions have been cryopreserved. But this method cannot be employed for plants that do not form dormant buds. Although existing cryopreservation methods such as vitrification and droplet methods for in vitro shoots can be applicable for these plants, a more systematical protocol is desirable for facilitating an appropriate cryobank. In this context, an efficient and simple cryopreservation method, the V-cryo-plate procedure, was developed. The aluminium cryo-plate is 7 x 37 x 0.5 millimetres in size with ten micro-wells. The successive steps of the V-cryo-plate procedure are preculture, adhesion of shoot tips on the cryo-plate, osmoprotection, dehydration, storage and regeneration. Using this procedure, considerably high regrowth of cryopreserved shoot tips was achieved. The V-cryo-plate method appears to be very systematic and time saving and highly promising to facilitate large-scale cryobanking in gene banks.Conservation of plant genetic resources (PGRs) can be divided into two -in situ and ex situ conservation. Gene banks worldwide have important roles for ex situ conservation of PGRs so a safe and reliable long-term storage system is essential. The PGRs with orthodox seeds can be stored easily in a cold chamber with low temperature and low humidity, while those with recalcitrant seeds or vegetatively-propagated PGRs have to be kept as living plants.The National Institute of Agrobiological Sciences (NIAS) Genebank is the central coordinating centre in Japan for the conservation of plants, microorganisms, animals and DNA materials related to agriculture. It coordinates this activity in collaboration with a network of institutes throughout Japan. 2 The gene bank houses approximately 216 000 registered items. Genetic resources of rice and other cereals (such as various millets) are among them .Approximately 35 000 vegetatively-propagated clonal germplasms come mainly from root and tuber crops, fruit trees, flowers, mulberry and tea, comprising 16 percent of the general stock. This rate is relatively high; in other foreign institutions, the figure is about 10 percent. The genetic resources are basically conserved in the field or greenhouses. However, there are some problems related to their safe and reliable storage. Field conservation costs are high owing to expenses for maintaining the huge space involved and concomitant labour needs.There is also the risk of natural disasters, pests and diseases. Some germplasms are partially conserved through in vitro cultures but costs for subculture and the possibility of somatic mutations or the risk of contamination have to be consideredAs a partial solution, cryopreservation procedures have been developed over the last two decades and cryopreservation is becoming a very important tool for the long-term storage of PGRs for future generations, requiring only minimal space and maintenance. Cryopreservation also has some important advantages.The need for space is not an issue -approximately 1 000 accessions can be stored in a 450-litre liquid nitrogen (LN) tank. Manipulation is only warranted when the germplasms are stored. If the materials are kept at ultra low temperature, all the metabolic activities of the cells are at a standstill and they can be preserved in such a state for extended periods. Also, management is easier than other conservation methods. Because of these characteristics, cryopreservation can be suitable for long-term conservation as an alternative to the field gene bank and in vitro-cultured plants.The demand for long-term storage is expanding to the preservation of cultured cells, somatic embryos, enhancing the preservation of endangered and rare plants, remnant crops or underutilized crops and newly developed crops including genetically modified organisms. The development of a simple and reliable method for cryopreservation should be undertaken to allow transfer of materials directly from room temperature into LN and allow the widespread use of materials that have been cryopreserved. Recently, vitrification, encapsulation-vitrification and droplet vitrification techniques have been reported, and the number of cryopreserved species has increased markedly over the last 10 to 15 years (Reed 2007). Vitrification-based protocols are potentially valuable cryogenic procedures for cryopreserving meristems and somatic embryos grown in vitro. Under optimized conditions, vitrification protocol produces higher levels of growth after LN recovery.This paper describes the present status of our cryopreservation activities and our new cryopreservation technique -the V-cryo-plate method.It is essential to avoid the lethal intracellular freezing that occurs during cooling in LN to maintain the viability of hydrated cells and tissues. Cells and tissues that are to be cryopreserved in LN need to be sufficiently dehydrated before being immersed in LN. There are two types of liquid-solid phase transitions in aqueous solutions. Ice formation is the phase transition from liquid to ice crystal, and vitrification is the phase transition from a liquid to an amorphous glass that avoids crystallization. Vitrification refers to the physical process by which a highly concentrated cryoprotective solution supercools to very low temperatures and finally solidifies into a metastable glass without undergoing crystallization at a practical cooling rate (Fahy et al. 1984). Because glass is exceedingly viscous and stops all chemical reactions that require molecular diffusion, its formation leads to dormancy and stability over time (Burke 1986).In conventional freezing methods, slow freezing to about -30 o C results in sufficient concentration of the unfrozen fraction of the suspending solution and cytosol to enable vitrification upon rapid cooling in LN (partial vitrification, where only the cytosol vitrifies). Vitrification can also be achieved by direct immersion in LN without the freeze-concentration step by exposing cells and tissues to an extremely concentrated solution (7-8 M) of cryoprotectants. This technique is referred to as complete vitrification (as both cytosol and the suspension solution vitrify), and is distinct from conventional slow-freezing methods.Successful cryogenic procedures applying practical cooling rates by either partial or complete vitrification can be divided into four categories based on the dehydration method used before the immersion into LN (Sakai 1995):1. Slow prefreezing (freeze-dehydration).2. Vitrification (osmotic dehydration) with or without encapsulation.3. Encapsulation/dehydration (osmotic dehydration combined with air drying). 4. Air desiccation.In these procedures, cryopreservation using dormant buds and cryopreservation of in vitro-grown shoot tips by vitrification have been used in the NIAS Genebank.In hardy woody plants, using dormant buds is one way of achieving successful cryopreservation. The protocol for their cryopreservation is as follows (Niino et al. 1995). First, the branches of woody plants are collected in winter when their buds are still in a state of quiescence. Axillary buds, with about 10 millimetres of vascular tissue, are removed from the branches. The dormant buds are then put into a polyethylene bag or polyethylene cryotube and prefrozen, with the temperature being decreased by 5 o C each day to -20 o C (mulberry) or -30 o C (pear). Subsequently, they are transferred to a deep-freezer maintained at below -135 o C or a vapour phase of the LN tank maintained at below -150 o C. After storage, the buds are rapidly thawed in a water bath at 37 o C and sterilized. The shoot tips, consisting of the meristem and five to eight leaf primordia, are then dissected and cultured on a Murashige and Skoog (MS) medium. If it is necessary to recover flowering plants faster, micrografting of cryopreserved dormant buds is feasible. The thawed and excised buds with vascular tissue are grafted directly onto one-year-old seedlings.It is very important that cryopreserved shoot tips maintain viability during long-term storage. We examined changes in the survival rates of dormant buds of the mulberry stored at -135 o C for one to eight years using the aforesaid procedure and found no significant changes. Another step in successful cryopreservation is to adapt this method to many mulberry varieties. The survival rates of 376 varieties cryopreserved for five years in a deep freezer at -135 o C were tested, and 279 varieties (about 74 percent) showed survival rates of more than 50 percent. Only 24 varieties (about 6 percent) had survival rates of less than 30 percent. In the case of these low rate varieties, we obtained at least one regenerated shoot (Niino et al. 1995). These results clearly show that cryopreservation using dormant buds is a reliable and safe method for long-term storage. In the NIAS Genebank, 1 283 accessions have been stored already. These methods, with slight changes, have been successfully applied to dormant buds of deciduous woody trees such as apple (Tyler and Stushnoff 1998a, b), pear (Suzuki et al. 1997), blueberry and raspberry (Niino et al. 1990) and persimmon (Matsumoto et al. 2004).For the crops without forming dormant buds and in vitro-cultured materials, shoot tips have to be used for cryopreservation. In the NIAS Genebank, in vitro-grown shoot tips of several plants such as strawberry and mat rush have been cryopreserved experimentally in the LN tank by vitrification.In general, for successful vitrification, cells and meristems must be sufficiently dehydrated with plant vitrification solution (PVS), without causing injury, to be capable of vitrifying upon rapid cooling into LN in the vitrification method. We used glycerol-based, low toxic vitrification solutions designated PVS2 (Sakai et al. 1990(Sakai et al. , 1991)). PVS2 solution contains 30 percent (w/v) glycerol, 15 percent (w/v) ethylene glycol and 15 percent (w/v) dimethyl sulfoxide in a basal culture medium (without growth hormones) containing 0.4 M sucrose (pH 5.8). The key for successful cryopreservation by vitrification is to develop the dehydration tolerance to PVS2 solution. Many papers have demonstrated that the cells and meristems acquired dehydration tolerance to PVS2 solution (the treated control without cooling to -196 o C) by preconditioning and optimizing each step of the procedure. They survived subsequent rapid cooling and rewarming in the excursion of vitrification procedure with little or no additional loss in survival (Yamada et al. 1991;Niino et al. 1992a,b;Matsumoto et al. 1994;Reinhoud 1996). Thus it can be hypothesized that meristems with acquired dehydration tolerance to PVS2 solution can survive during cryopreservation by vitrification. It is still not clear whether the constituent of the PVS2 solution penetrates into the cells during the dehydration process or not.In the vitrification method, the following procedures such as preconditioning, preculture, osmoprotection (loading treatment), dehydration in PVS2 solution and postLN handlings are vital for successful cryopreservation. Several factors enhance post-thaw survival in cryopreservation by vitrification. High survival of in vitro-grown materials is determined not only by the cryogenic protocol itself, but also by the physiological conditions of the materials to be cryopreserved. These include growth stage, preconditioning and the post-thaw medium. To increase the chances of a positive and uniform response to treatment with loading solution (LS) and PVS2, specimens homogeneous in terms of size, cellular composition, physiological state and growth response are used for vitrification.Cold-hardening and preculture of shoot tips with sucrose-enriched media are effective for improving the post-thaw survival of some temperate and tropical species (Takagi 2000). During preculture on a sucrose-enriched medium, concentrations of sugar, starch and proline are greatly increased in the shoot tips and may enhance the stability of membranes under conditions of severe dehydration (Matsumoto 2002). In addition, a cryoprotective or osmoprotective treatment with LS appears promising as a means of enhancing the dehydration tolerance of shoot tips of several species (Matsumoto 2002). The protective effect of this solution in cellular periprotoplasmic spaces may be due to mitigation of the large osmotic stress from exposure to PVS2, as well as to some mechanisms that minimize the injurious membrane changes from severe dehydration (Crowe et al. 1988;Steponkus et al. 1992).The optimal dehydration time with PVS2 is also a key factor. Careful control of the procedures for dehydration and prevention of injury by chemical toxicity or excess osmotic stresses during treatment with PVS2 are important for successful cryopreservation. To determine the optimal exposure time with PVS2 is the first step to develop a cryopreservation protocol of in vitro-grown shoot tips by vitrification. In in vitro-grown apple shoot cryopreservation, the survival rate of vitrified shoot tips increased gradually with increasing time of exposure to PVS2, and reached a maximum at around 80 minutes after exposure (Niino et al. 1992a). Optimal exposure time was species-specific. The exposure time in PVS2 (dehydration time) might vary with the size, stage and morphological state of the shoot tips.Cryopreservation techniques for shoot tips are now well developed. However, practical application to preservation at gene banks for large-scale operation is still quite limited. Cryopreservation of shoot tips of vegetatively-propagated species currently operated at gene banks still tends to be limited to temperate species: potato (International Potato Center [CIP], Dutch-German Potato Collection), cassava (International Center for Tropical Agriculture [CIAT]), banana (Belgium), garlic (Republic of Korea), Japanese wasabi (Japan) and pear (United States). It is probable that this is attributable to problems in storing the large scale of samples, which inhibits the wide utilization of cryopreservation. These problems are: 1) the need for skilful techniques for the appropriate treatment of shoot tips; 2) the possibility of injuring and losing shoot tips during manipulations; and 3) difficulty in treating many shoot tips at the same time. Thus, standard techniques for tissue culture and cryopreservation are needed to enhance cryostorage reliability. Therefore, we try to develop more efficient and systematic vitrification procedure.We contrived and made to order aluminium plates (7 x 37 millimetres and 0.5 millimetres in thickness with ten micro-wells [Plate 1]). The diameter of the wells was 1.5 millimetres. These plates were conformed to fit to a 2-millilitre cryotube. The experimental procedure of the vitrification method using aluminium plates has several steps: establishment of in vitro culture, preconditioning, excision of shoot tips, preculture, adhesion to the cryo-plate, osmoprotection in LS, dehydration in PVS, immersion into LN and storage, rapid rewarming for regeneration and plating on the regrowth medium. This method is based on a combination of droplet vitrification and encapsulation vitrification protocols. We called this vitrification procedure using an aluminium cryo-plate the 'V-cryo-plate procedure'.The case of carnation Carnation is one of the most economically-important flowers cultivated for the market in Japan. According to the aforesaid experimental procedure, practical cryopreservation of in vitro-grown carnation shoot tips by vitrification was conducted (Sekizawa et al. 2011).The different steps of the V-cryo-plate procedure are: 1) Cut shoots (5 millimetres) with a lateral bud and plate on solidified MS medium and culture for two weeks at 25 o C with a 16-hour photoperiod under white fluorescent light (52 µmol/m 2 s: standard condition). Then dissect shoot tips with basal plate (1-1.5 millimetres long x 1 millimetres wide) from the shoots and preculture for two days at 25 o C in the MS medium with 0.3 M sucrose. 2) Place an aluminium cryo-plate in a petri dish and pour a 2.5 µl 2 percent (w/v) Na-alginate solution with 0.4 M sucrose in a calciumfree MS basal medium on a well. 3) Place the precultured shoot tips in the well, one by one, with the tip of a scalpel blade and slightly press the shoot tips to make them fit into the plate's well. 4) Pour a calcium solution drop (about 0.3 millilitres in total) on the section of the aluminium plate where the shoot tips are located until they are covered and leave for 15 minutes to achieve complete polymerization. The calcium solution contains 0.1 M calcium chloride in the MS basal medium with 0.4 M sucrose. 5) Remove the calcium solution from the cryo-plate by sucking it gently up with a micropipette. Shoot tips adhere to the cryo-plate by the alginate gel. 6) Place the cryo-plate with shoot tips in a 25-millilitre pipetting reservoir filled with about 20 millilitres of LS which contains 2 M glycerol + 1.4 M sucrose in a liquid MS basal medium. Shoot tips are thus osmoprotected at 25 o C for 30 to 90 minutes. 7) Remove the cryo-plate from the LS and place it in a 25-millilitre pipetting reservoir filled with about 20 millilitres of PVS2 (Sakai et al. 1990). Shoot tips are dehydrated at 25 o C for 15 to 35 minutes. 8) After dehydration, transfer the cryo-plate to an uncapped 2-millitre plastic cryotube, which is held on a cryo-cane, and directly plunge into LN where it is kept for at least 30 minutes. For long-term storage, the cryotube containing the cryo-plate and LN is capped and stored in the LN tank. 9) For regeneration, retrieve the cryotube from the LN, take the cryo-plate with shoot tips out of the cryotube and immerse it in a 2-millilitre 1 M sucrose solution in a 2-millilitre cryotube. Shoot tips are incubated in this solution for 15 minutes at room temperature and then transferred onto gellan gum-solidified MS medium.Post-thaw regrowth was evaluated after four weeks of culture at 25 o C under standard conditions. In this experimental procedure, osmoprotection and dehydration steps which were decisive for success were optimized.The optimal protocol for carnation is as follows. Shoots grown for two weeks from lateral buds were used. The shoot tips (1-1.5 x 1 millimetre) were dissected from the shoot and precultured at 25 o C for two days on MS medium containing 0.3 M sucrose. The precultured shoot tips were placed on the aluminium cryo-plate containing ten micro-wells embedded with alginate gel. Osmoprotection was performed by immersing the cryo-plates in LS (2 M glycerol and 1.4 M sucrose) for 90 minutes at 25 o C. Then dehydration was performed by immersing the cryo-plates in PVS2 for 25 minutes at 25 o C. After storage in LN, shoot tips attached to the cryo-plate were directly immersed into 1 M sucrose solution for regeneration. Using the optimal procedure, we tested the regrowth levels of vitrified shoot tips excised from four carnation cultivars.Regrowth was very high for all cultivars, ranging from 93 to 97 percent, with an average of 95 percent for the four cultivars. The treated shoot tips resumed growth within three days of plating and developed normal shoots without any intermediary callus formation (Plate 2).In conventional vitrification procedures, small shoot tips are usually treated in a cryotube floating or suspending in a solution. Treatments, like pipetting, result sometimes in the damage and/or loss of shoot tips. In the droplet vitrification procedure, osmoprotected and dehydrated shoot tips have to be transferred onto aluminium strips with a droplet of PVS2 or PVS3 just before immersion into LN, which is cumbersome (Kim et al. 2009). The V-cryo-plate method can overcome these disadvantages because all treatments can be carried out only by moving and transferring the cryo-plate (with attached shoot tips) from one solution to another. The hard cryo-plate makes the manipulation of fragile shoot tips easy.For successful cryopreservation, key factors are preconditioning, hardening, preculture, osmoprotection by LS, dehydration by PVS treatments and postthaw handling (Sakai et al. 2007). In any of the cryogenic protocols, the cells and tissues to be cryopreserved must be in a physiologically optimal status for the acquisition of dehydration tolerance and to produce vigorous recovery of growth (Dereuddre et al. 1988;Withers 1979). Preconditioning of shoot tips is necessary to obtain uniform and vital shoot tips to start with. For this, carnation shoots grown for two weeks from lateral buds were used for shoot tips to be cryopreserved. As such, there is no need for cold acclimation in carnation.Secondly, preculture on MS medium with high sucrose concentrations and osmoprotection was effective for the induction of osmotolerance towards PVS2 (Niino et al. 2003;Niino et al. 2007). In potato cryopreservation by encapsulation vitrification, the LS solution (a mixture of 2 M glycerol plus 0.6 M sucrose) was effective in increasing osmotolerance towards PVS2 (Hirai and Sakai 1999). Also, Hirai and Sakai (2003) showed that in sweet potato cryopreservation, both a higher concentration of sucrose (1.6 M) in the LS and a longer period of osmoprotection (three hours at 25 o C) were necessary to increase the osmotolerance. Kim et al. (2009) indicated for developing a new LS solution for the droplet vitrification procedure, that the loading treatment may act as an osmotic stress neutralizer and/or induce a physiological adaptation of tissues and cells prior to both dehydration and vitrification. Also, they pointed out that appropriate LS should be selected for plant species which are highly sensitive to the cryotoxicity of the PVS solutions. In the case of carnation, 90 minutes' osmoprotection by the LS solution containing 1.4 M sucrose was most effective. The last key parameter for successful cryopreservation by vitrification, are the carefully controlled procedures for dehydration and prevention of injury by chemical toxicity or excessive osmotic stresses during treatment with PVS solutions. With the V-cryo-plate method, it is possible to control these procedures more easily. Using this procedure, in the case of carnation, optimal exposure time to PVS2 has showed a wide spectrum of efficiency (from 15 to 35 minutes). This was also the case when applying the droplet method to shoot tips of black chokeberry (Tanaka et al. 2011). This proves that the cooling and warming rates of the V-cryo-plate method are probably at the same level as that of the droplet method (Yamamoto et al. 2011a).Currently the method is being adapted to other plant species such as Dalmatian chrysanthemum, mulberry, strawberry and mint. Under optimal conditions for each crop, quite high regrowth averages were obtained: 77 percent for six cultivars of Dalmatian chrysanthemum (Yamamoto et al. 2011a); 87 percent for 12 cultivars of mulberry (Yamamoto et al. 2011c); 81 percent for 15 cultivars of strawberry (Yamamoto 2011d); and 88 percent for 16 cultivars of mint (Yamamoto et al. 2011b). Each condition was crop-specific, but the conditions of preconditioning, osmoprotection and dehydration were most important.Key factors for facilitating cryostorage Keller et al. (2008) reported that variation in cryopreservation responses may arise from differences in staff skills and competence as well as differences in equipment and minor technical details. Similarly, Reed et al. (2004) reported that such differences in cryopreservation from laboratories arise from the culture system, technical procedure and operator skill. This procedure was developed to reduce the problems of operator skill and technical difficulty and can be performed by semi-skilled staff with a little expertise in mounting shoot tips (Yamamoto et al. 2011b). We tested the regrowth variations of mint by comparing the results by four operators who performed the experiment with this procedure from excision of shoot tips to plating cryopreserved shoot tips on the medium. The resulting regrowth level of cryopreserved shoot tips showed no significant difference by operators and achieved high regrowth level, indicating wide application and easy adoption of this protocol by semi-skilled persons.Also, practical cryostorage of 29 mint lines has already been stored in the liquid phase of the LN tank. In this trial, the V-cryo-plate method was demonstrated to be very systematic and time saving. For example, for mint, 15 cryo-plates (150 shoot tips) can be treated within two hours from mounting of Na-alginate gel on the plate to storage in LN. Severt-seven germplasms have been cryopreserved in the LN tank using the V-cryo-plate method since April 2011. This method appears to be promising for facilitating large-scale cryobanking in gene banks.In the NIAS Genebank, field collections are maintained using the duplicated conservation system in principle, however, there are some exceptions. These include crops such as mulberry, mat rush and taro, which are maintained in only one sub-bank. Cryopreservation should be considered as a backup to field collections to insure against loss (Reed 2001). In this, we mean the priority of collections to be cryopreserved should be given to the 'at risk' plants that have an increased chance of being lost from a collection. At the same time, we should determine the most practical steps for the crops to be cryopreserved in setting up a storage protocol (including material form), a long-term monitoring system and a database.Regarding the cost of cryopreservation, Hummer and Reed (2000) estimated that the annual maintenance cost of one temperate fruit accession at the Corvallis Repository was US$77 in the field, US$23 under in vitro slow-growth storage and US$1 under cryopreservation, to which US$50-65 per accession should be added as an initial start-up cost for cryopreservation. Although prices of LN, LN tanks and other equipment vary among different countries, undoubtedly, the management cost under cryopreservation for the long-term is nil.Although remarkable progress in cryobiological studies of plant materials and technology development was made in the last decade, cryopreservation as a preservation method for PGRs is still limited in comparison with microbial and mammalian culture collections. Cryopreservation protocols for plant materials were mostly developed following an empirical, trial-and-error approach. Even if a good protocol is established, it cannot be adopted to all other materials, because different species, varieties and tissue types tend to show different responses to cryopreservation protocol.To further improve widely applicable protocol for large-scale utilization of cryopreservation for germplasm conservation, basic research is needed to understand the biophysical and metabolic processes underlying the resistance and sensitivity of plant tissues to cryopreservation. Especially, understanding of cryo-and dehydration tolerance and the basic studies on preconditioning for induction of dehydration tolerance are necessary for further development of cryopreservation of tropical plants. Further research is also needed on 1) genetic integrity of cryopreserved materials and 2) development of techniques for recalcitrant seeds and tropical plant species for which cryopreservation research is much less advanced.The V-cryo-plate method has the following advantages:1. Handling of shoot tips during the procedure is very easy and quick because the handling is carried out only by moving the cryo-plate with shoot tips. 2. The possibility of injury and omission of shoot tips is much lower than other methods.3. The shoot tips can be treated with LS and PVSs without floating and/or clinging to the cryotube inside. 4. Cooling and warming procedures also can be done very easily by only dipping the cryo-plate into LN and 1.0 M sucrose solution. 5. A high or higher regrowth rate might be obtained by the V-cryo-plate method. 6. The method is much less laborious than others. 7. Anyone can do this procedure with a modicum of training in mounting shoot tips.These advantages make the V-cryo-plate procedure a very practical cryopreservation method for several crop germplasms such as carnation, Dalmatian chrysanthemum, mulberry, strawberry and mint. The V-cryo-plate method also appears to be promising for the cryopreservation of other plants.We believe that our cryopreservation method should contribute to and advance the establishment of national cryo-gene banks in each country for storing plant germplasm according to the priority of collections to be cryopreserved.on agricultural production are increasingly emphasizing the need to conserve PGRFA efficiently and to intensify their sustainable use.The Second Global Plan of Action recognizes that effective information management and sharing, by taking full advantage of advanced information technologies, will be an important prerequisite to achieving this objective.Juxtaposing the revolution that communication and information management systems have undergone over the past 15 years, there have been important improvements in the availability and accessibility of PGRFA information.A growing number of gene banks have published part of their germplasm data through searchable web systems. These include inter alia EURISCO, 5 NIAS 6 and GENESYS 7 .Despite these improvements, according to the Second report on the state of the world's PGRFA, the documentation of much of the world's ex situ PGR collections is insufficient. This continues to be a major impediment to the increased use of germplasm in crop improvement and research. In addition, where germplasm data do exist, there are frequent problems in standardization and accessibility, even for basic passport information.The lack of a freely available, flexible and up-to-date gene bank information system that is user-friendly and multi-lingual has constrained documentation improvement in many countries, although in some cases, regional and/or bilateral collaboration has helped to meet information management needs through the sharing of experiences and tools.To fill this gap, a major global project focusing on PGRFA accession-level information management was initiated a few years ago with support from the Global Crop Diversity Trust. The first tested release of an advanced gene bank information management system, GRIN Global, 8 derived from that in use by the Germplasm Resources Information Network (GRIN) of the United States Department of Agriculture, will be made freely available in the coming months.Crop descriptor lists for a number of crops have been developed under the coordination of Bioversity International. 9The World Information and Early Warning System (WIEWS 10 ) on PGRFA has continued to update its database on germplasm holdings from more than 1 750 gene banks around the world and has provided relevant information for the preparation of the Second report on the state of the world's PGRFA. Almost every agreed priority of the Second Global Plan of Action, if not all, stresses the importance of information gathering and exchange as well as the use of improved methods and technologies for achieving the priority objectives.Priority activity 1 Surveying and inventorying PGRFA promotes the improvement and application of methods -such as GPS, remote sensing and molecular markers -for assessing distribution of and threats to PGRFA. Indicators are particularly needed to monitor changes in the distribution of diversity and to aggregate information on individual species and populations.The goal of priority activity 5 Supporting targeted collecting of PGRFA is to ensure adequate collecting of PGRFA, together with associated information, focusing on diversity that is missing from ex situ collections, under threat or expected to contain useful traits. Collected material should be conserved in the country of origin whenever possible and a duplicate sample deposited elsewhere for safety purposes.Priority activity 8 Expanding the characterization, evaluation and further development of specific subsets of collections to facilitate use directly focuses on PGRFA documentation. Information on morpho-agronomic traits as well as on reaction to biotic and abiotic stresses is as important as the material itself. 11. Promoting development and commercialization of all varieties, primarily farmers' varieties/landraces and underutilized species. 12. Supporting seed production and distribution.13. Building and strengthening national programmes. 14. Promoting and strengthening networks for PGRFA. 15. Constructing and strengthening comprehensive information systems for PGRFA. 16. Developing and strengthening systems for monitoring and safeguarding genetic diversity and minimizing genetic erosion of PGRFA. 17. Building and strengthening human resource capacity. 18. Promoting and strengthening public awareness of the importance of PGRFA.breeders, seed producers, farmers and policy-makers, in other words, serving PGRFA national programmes and promoting integration and mutual support.At the international level a number of important developments relevant to PGRFA information management are expected to take place before the XIV Regular Session of the Commission and 6 th Governing Body meeting (scheduled in 2013) with regard to PGRFA information management and exchange and to the implementation of Article 17 on the Global Information System. These include:Indicators and reporting format for monitoring the implementation of the Global Plan of Action will be revised in the light of the Second Global Plan of Action.The Second Global Plan of Action emphasizes that indicators and methods for assessing genetic diversity over time and minimizing genetic erosion and its drivers are required in order to be able to establish national, regional and global baselines for monitoring diversity and developing effective early warning systems. Higher order indicators, in particular addressing genetic diversity and erosion, will be proposed for the attention of the Intergovernmental Technical Working Group on PGRFA (ITWG-PGRFA) which will meet in November 2012.An improved system for monitoring Global Plan of Action implementation and for supporting NISMs will be developed and released in 2012. It will take into consideration the priority activities of the Second Global Plan of Action and allow comparisons with the first Plan.Revised standards for gene bank management of germplasm, including orthodox and recalcitrant seeded plants as well as vegetatively-propagated species will be made available at the next session of the ITWG-PGRFA.Descriptors based on international standards for new and underutilized crops and crop wild relatives (CWR) need to be developed.The Second Global Plan of Action calls for countries to take the lead in the implementation of all its 18 priority activities. A number of relevant informationrelated tasks/policies could boost progress in the conservation and sustainable use of PGRFA at the national level, if pushed forward. These include:• In all gene banks an efficient database management system should be in place and used. Ideally it should allow a careful monitoring of routine activities, allow curators access to records of standardized passport and characterization data but also provide for germplasm evaluators to record genotype x environment interaction data.• A number of significant data sets and knowledge still exists in vulnerable and hard to access forms or systems. The effort required to rescue and share this information is in many cases negligible compared to the benefits that would derive from it.Common standards for passport, characterization and evaluation data need to be applied systematically for fostering data exchange and access, but also to support technology transfer and global, regional and national assessments of PGRFA. PGRFA information management and exchange are top priorities in the Second Global Plan of Action as through them a more rational system for PGRFA conservation and sustainable use can be set up. Progress in this area can have a multiplier effect and benefit the entire PGRFA chain from conservation to seed delivery to farmers.The approval of the Second Global Plan of Action by the FAO Council calls for action at national, regional and international levels and this should involve all relevant stakeholders. Its full implementation will require significant acceleration in the current activities for PGRFA conservation and use, and will also contribute to International Treaty implementation, as the Plan is a supporting component of the Treaty.Countries should make every possible effort to provide, in accordance with their capacities, financial support with respect to national activities to achieve the objectives of the Second Global Plan of Action. The Funding Strategy of the International Treaty, including the Benefit Sharing Fund and the Global Crop Diversity Trust, will be major contributors for its implementation at the international level.However every effort should also be made to seek new, additional and innovative sources of funding to support the implementation of the Second Global Plan of Action. International cooperation for conservation and sustainable use of PGRFA should be strengthened, in particular to support and complement the efforts of developing countries and countries with economies in transition.Plant genetic resources (PGR) should be regarded as essential components of the biosphere. They are vital for human survival, betterment of livelihoods and sustainable development. Their conservation should be promoted as they can deteriorate or be lost easily. However paradigm shifts in ownership have been drastic in the past three decades.Research and development/science and technology can facilitate PGR conservation and utilization but in this context no substantial progress has been realized in backstopping the genetic resources of locally important species; moreover there is differentiation in resource allocation for a few dozen significant crop species and many of the underutilized groups have been orphaned. Related political, economic, social and technological issues are highlighted in this paper.Plant genetic resources (PGR) have contributed to the daily lives of the people worldwide through their domestication and cultivation. They should be regarded as essential components, just as water, air and soil, of the biosphere. They have been recognized in United Nations' forums such as the World Sustainable Summit on Development (WSSD) in 2002 and Millennium Ecosystem Assessment (MEA) report in 2005 as vital inputs for human survival and sustainable development. But the paradigm shifts in ownership have been drastic in the last three decades, and especially swift in the last 20 years. PGR were regarded as a common heritage in the past. Now there are issues pertaining to their ownership, intellectual property rights (IPR, equitable accessibility and benefit sharing.The 10 th Conference of Parties (COP-10) of the Convention on Biological Diversity (CBD) had vigorous discussions with regard to an international protocol for fair and equitable access and benefit sharing (ABS) for PGR 2 besides other outstanding issues.ABS issues have been under negotiation since 2000 starting with the Bonn Guidelines 3 ; COP-7 in 2004 that strongly recommended further exploration into development of an international protocol, which would potentially be legally binding. The major issue has been how biodiversity-rich countries can protect their ownership of PGR and how they can assure benefit sharing with users. Of particular concern has been pharmaceutical product development and profits from intellectual property rights, which hint at vast cash opportunities. On the other hand, ABS discussions in the international arena have often dodged the concomitant risk to users' investment in research and development (R&D) after legal acquisition of the genetic resources and whether they receive any profits generated. Indeed there is a low probability of substantial benefit from a natural substance-based product such as an anti-cancer remedy. However, biodiversity-rich developing countries have insisted on a substantial and mutual benefit-sharing agreement prior to any actual R&D success to protect their ownership against other IPR issues that might arise. Crop genetic resources have been discussed at FAO-based forums; to protect food security and further sustainable development, FAO's International Treaty on Plant Genetic Resources for Food and Agriculture was ratified in 2001 and came into effect in 2004. This international legal instrument has a different spirit concerning genetic resources compared with other forums. With more focus on the human heritage aspect of sharing plant genetic resources, the Treaty supports the many users of PGR. However there has been stagnancy in implementation and ABS is generally a cumbersome issue. Indeed, different forums have been discussing IPR and/or ABS on genetic resources as shown in Figure 1, and complications related to understanding ownerships and rights could impede a healthy and smooth ABS vehicle.The World Intellectual Property Organization (WIPO) 4 has carried out intergovernmental consultation on genetic resources with 17 meetings so far. Meanwhile the CBD-ABS has had nine working group meetings with two conferences plus the ongoing Informal Consultation Group meetings at COP events. The international Union for the Protection of New Varieties of Plants (UPOV) 5 , whose members come from developed countries mainly, has developed variety protection models. Article 27 of the World Trade Organization's Trade-Related Aspects of Intellectual Property Rights (WTO-TRIPS) Agreement is also relevant in the PGR context.One difficulty is parallel discussions at different forums, split in governments sector-wise; for example the CBD addressing environment and/or science and technology, FAO and UPV information technology and agriculture, WIPO and WTO trade and industry. Intersector discussion and integration needs to be streamlined and possible coherence of national policy may be one way to make some progress on ABS (Raman and Watanabe 2000).While laws are regulated by the governments, negotiations on PGR vis-à-vis mutually-agreed terms, transfer conditions and follow-up deals could involve public and commercial mediators such as bioprospecting consultants (Watanabe and Teh 2011). All stakeholders should study the history of the PGR movement to promote, sustain and develop agricultural activities worldwide. No country or territory can survive solely on its own natural genetic resources, so the need for mutual dependency among nations should also be understood with regard to the global sharing of PGR.Many instruments and forums are oriented towards modern industry apropos of IPR-related laws; however, considering the nature of mutual dependency on PGR for supporting the livelihoods of many subsistence users, crop genetic resources may not be dealt with appropriately by legislation (Chapman and Watanabe 2007).Plant genetic resources should have unique IPR protection and ABS based on a comprehensive protection system rather than existing IPR protection by patent. PGR must have a system that is in a class of its own such as plant variety protection under UPOV; a joint effort should be made with major international instruments among CBD, WIPO and others, to form a common forum or commission for users and providers of genetic resources, and benefit-sharing mechanisms for people 'on the ground' such as subsistence farmers.PGR are not only important natural resources, but they also have strong links with environmental conservation issues. For example, tropical forests consist of a complex of plant species, which are essential for the conservation of ecosystems and self-remediation. Thus, the value of PGR cannot be accurately measured now or in the future (Altman and Watanabe 1995).Conservation of PGR, therefore, should be promoted as these resources can be degraded or lost without good stewardship. In the past, more plant species were exploited for various uses compared to the present. Genetic diversity can be expanded or maintained well with different management methods: 1) tomato landrace diversity in Myanmar is very broad with very actively selected and has various uses by local people while tomatoes comes from the New World (San San Yi et al. 2008) and 2) gene bank management approaches alter the genetic diversity in its collections such as in ginger and wheat (Jatoi et al. 2008, Hirano et al. 2010).Advances in R&D/science and technology can support conservation methods, especially ex situ conservation. However legal, social and cultural aspects, especially with regard to ethical, legal and social implications (ELSI) may be separate issues for in situ conservation and/or on-farm management. The following section draws on the assessments of Watanabe and Iwanaga (1999).Conventional conservation of plant species has been conducted in situ by local communities and small-scale traditional farmers. However such efforts are vulnerable to various factors such as climate change, disease and pest epidemics, and arguably the effects of globalization. On the other hand, it is vital to maintain the dynamics of genetic variation by cultivating many geneticallydifferent landraces and by enhancing participatory crop improvement by farmers. On-farm management could complement and reduce the expenses of ex situ conservation (Watanabe and Pehu 1997).Many perennial species, especially trees, lack relevant genetic information so field research favours economically-important species such as Eucalyptus spp. (Mimura et al. 2009).Gene banks have also been engaged in preserving collections ex situ. In this context the focus is on extracting basic PGR data for gene banks.The following subjects are unresolved in many species and need further research:(1) Physiology of flowering and seed propagation;(2) Physiology of seeds for long-term storage;(3) Population size and change in allelic frequencies on rejuvenation of seeds; (4) Increasing opportunities for recalcitrant species, especially in the tropics;To determine the amount of seeds to be preserved, two issues are important: (a) duration of the period of seed storage in each seed generation and statistical probability of viability and (b) genome-wide genetic diversity and preservation of there is the danger of losing precious PGR collections while strong national sovereignty rights are demanded at international forums.Industrial crops assist with the production of basic materials. Planned production to maintain PGR in plantations and agricultural fields would be less damaging than collection/harvest from natural reserves, although serious environmental concerns about pesticide use and erosion exist. As well as agricultural plant species, it should be recognized that a gradual shift from slash-and-burn of tropical forests to scheduled and systematic production has been taking place. This is based on mass production of propagules through the application of micropropagation of industrially-interesting species and extensive public education of the in situ conservation and use of natural forests. On the other hand, only a limited number of species can be employed by such a system due to the unavailability of specific technology relating to particular species; there is differentiation of resource allocation to a few dozen crop species and many underutilized groups (Altman and Watanabe 1995;Watanabe and Pehu 1997;Watanabe and Iwanaga 1999). Also the extreme bias towards selection or monoculture of cultivars/species results in genetic erosion; thus strategic use of technologies should be accompanied by sustainable use of PGR harmonized with genetic conservation. With the advancement of basic R&D in the plant sciences and technologies, the following thrusts should enhance the conservation and use of PGR:(1) Mass propagation by tissue culture for conservation.(2) Photo-autotrophic micropropagation on a large scale for industrial propagule production. (3) Immunological or molecular biological tools for detection of plant pathogens and pests in plant quarantine and gene banks, accompanied by measures to maintain the quality of commercial propagules. (4) Detection of environmental toxins/pesticides in in situ conservation.(5) Genome-wide use of molecular markers for the evaluation of genetic diversity and genetic erosion. (6) Molecular biological approaches to isolate and utilize plant genes in genetic engineering.These approaches are being used in specific cases, however, there is a need to accelerate basic research although some criteria were identified decades ago.Ex situ conservation of plant genetic resources is a notoriously difficult area of work for which to seek funding. Operations are generally routine and generate relatively little immediate impact in terms of improving food security and saving lives. Any gaps in funding lead to backlogs in routine operations such as viability testing and regeneration, which can radically reduce the value of the collection. It is hard to escape the fact that keeping such collections adequately financed from year to year poses a considerable challenge. Yet if crop diversity is not safely conserved, the long-term consequences in terms of food security are potentially catastrophic.The Global Crop Diversity Trust was conceived to address this very challenge. The Trust is an independent international organization, which was established by the Food and Agriculture Organization of the United Nations (FAO) and the Consultative Group on International Agricultural Research (CGIAR) in 2004. The Trust aims to build a rational, effective, efficient and sustainable global system for conserving crop diversity and making it available to breeders, farmers and other users. One of the main objectives of the Trust is to raise funds for and manage an endowment fund, the annual income from which is dedicated to supporting the maintenance of international, globally important crop collections. The endowment, which presently stands at more than US$120 million, is a unique mechanism for providing funding in perpetuity. Once a contract is signed for the support of an eligible collection, the Trust is then committed to providing 'non-stop' funding into the future. At present, the Trust provides this long-term support to contribute to the management costs of 20 crop collections in ten institutes and the Svalbard Global Seed Vault.The One of the main focuses of the Trust's project work, to date, is the regeneration of threatened collections and their duplication in international gene banks. The initiative comprises 56 projects that target 94 996 accessions in 246 collections of 22 crops held by 86 institutes in 77 countries worldwide. The projects are contracted to individual national institutes, and in a few cases multilateral partnerships where a crop or regional network can provide the coordination.So far 67 percent of the target has been achieved, with a total of 63 995 accessions (51 868 seed and 12 127 vegetative accessions) successfully regenerated. Some 26 institutes have also received support to put 5 872 accessions in vitro. The priority collections for regeneration and safety duplication were identified in large part through the processes of developing crop and regional conservation strategies. The collections that received support in the Asia-Pacific region are listed in Table 1.The conservation research activities are aimed at overcoming the conservation problems of coconut and vegetatively-propagated crops. Cryopreservation promises to be a more effective long-term conservation technique for such challenging crops. Six interlinked projects are developing robust protocols for the cryopreservation of sweet potato, yams, cassava and aroids involving two research institutes (KULeuven and IRD-France) and four institutes holding major collections (CIAT, CIP, IITA and SPC). The protocols for yam and edible aroids have provided sufficiently satisfactory results for the institutes involved to initiate steps towards cryobanking these crops.The Trust also contributed to solving the frustrating problem of finding a safe and effective way of moving coconut germplasm around for safety duplication or conservation. Collaborative work led by the COGENT network is under way to test and improve the implementation of a protocol for the transfer of coconut embryos.As a result of three competitive calls for evaluation proposals, 43 projects are underway to evaluate selected accessions of 59 collections for 143 traits of significance to climate change. They involve 58 different national/regional research institutes and eight CGIAR centres in 43 countries.There are nine evaluation projects in the Asian region (Table 2). One such project is being carried out by the Field Crops Research Institute (FCRI) in Viet Nam. FCRI evaluated 200 local rice varieties for drought tolerance, salinity tolerance, brown plant-hopper resistance and bacteria blight resistance. Salinity and drought tolerance were measured at the germination, seedling and early vegetative growth stages using standard protocols in pot experiments. About 45 accessions were identified as of potential use in breeding for drought tolerance, and 40 for salinity. These datasets will be made available through the institute's Web site after publication in the journal of the Vietnam Academy of Agricultural Sciences.Most of the project partners have received visits from Trust or CGIAR staff, and these visits have helped illustrate the constraints faced by many gene banks in their efforts to store seeds in conditions suitable for long-term conservation according to recommended standards (see Box 2).Of the 86 national institutes with whom the Trust is working, we estimate that only around a third of them had the capacity to dry seeds satisfactorily before the initiation of the project. One-third of the institutes do not have any staff dedicated to conservation operations. Less than half can store seed in long-term conditions with a reliable electricity supply. Nearly half of these national gene banks have found that more than one in ten of the accessions selected for regeneration were non-viable, and a quarter of the institutes have found that more than 25 percent of the accessions for regenerationok were non-viable.In numerous cases, stock has had to be replanted more than once in order to attain sufficient seed for conservation and safety duplication. More than 10 000 of the originally targeted accessions are reported by partners to be dead. Some additional equipment and supplies such as silica gel and sealable bags have been provided by the project to ensure seeds are dried and packed adequately from now on.The safety duplication of part of the freshly regenerated stock to international gene banks nominated by the national partners has significantly improved the security of these valuable national collections. So far, some 20 048 accessions have been sent for safety duplication at CGIAR centres and other international gene banks.The number of accessions conserved in the world's gene banks has increased continuously since 1984 and continues to rise. The total reached 7.4 million accessions in 2009 according to the State of the world report, of which perhaps only 2.2 million are unique (FAO 2010). Studies of the costs of gene bank operations undertaken on CGIAR centre gene banks (Koo 2004;Shands et al. 2010) indicate that the annual cost of conserving a single accession varies (from US$3.00 to US$174) depending upon the size of the collection, efficiencies of the gene bank but most importantly the type of crop (whether a clonal crop, a self-pollinator or out-crosser, or wild relative). Very roughly speaking, to conserve correctly a 'low-maintenance' accession -including periodic viability-testing, disease-cleaning and regenerating -it will cost, at• Major problem of sustainable funding and capacity to support basic, routine operations. • Infrastructure is great! Several new gene banks have been built in Asia, but equipment, supplies and secure staff positions are lacking. • Staff turnover can be frequent. There is considerable need for capacity building and transfer of expertise and information. • Severe challenges exist in achieving standards of drying, long-term storage and in vitro conservation. • Passport data are poor and, in many cases, cannot be easily improved. • Poorly-stored seeds and field conditions resulted in germination and replanting.minimum, US$10 per accession per year and probably a great deal more. This suggests that if the global community is to conserve 7.4 million accessions, then it should be investing at least US$74 million in the management of gene banks every year. This, almost certainly, is not the case. As a consequence we can be fairly certain that of these 7.4 million accessions currently documented only a fraction will actually be alive in ten or 20 years.The Trust's vision is to develop a more rationalized approach where roles can be shared; fewer accessions may be conserved in the system (i.e. eliminating duplicates) but much more efficiently. Such a global system is an extension of the international links, connections and interdependency that have driven agriculture for the past 10 000 years. The simplest way to depict this vision is to consider the levels of interaction required for each of the potential roles of a gene bank from conservation to use. Many gene banks (or institutes) and individuals need to interact with farmers at a local level, but fewer institutes need to develop breeding or working collections, which have relevance at a wider local or regional levels. When it comes to conservation, given presentday technologies, communications and transport there is no need to have more than a small number of institutes conserving seed or tissue culture, especially in long-term conditions. Even fewer interactions or institutes are needed to ensure that accessions are safety duplicated or backed up.An example of the opposite extreme to the active and busy interface between farmer and supplier institute is the Svalbard Global Seed Vault (SGSV). The SGSV is alone in the world in providing an extremely low-maintenance, efficient facility for long-term backup. The door of the facility is literally kept closed for most of the year. In fact since its inauguration in February 2008, the Vault has opened for deposits only 13 times. However, the total samples deposited in the Vault to date amount to 665 422 from more than 30 countries.The SGSV is a bright illustration of the global system in action. ","tokenCount":"25207"} \ No newline at end of file diff --git a/data/part_3/3230733762.json b/data/part_3/3230733762.json new file mode 100644 index 0000000000000000000000000000000000000000..bd4ee4818edde382c2d44bdd190afa26d72c2e77 --- /dev/null +++ b/data/part_3/3230733762.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"bca5358e76681b03dd2b3d26ad888d30","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/9e257b0b-2e9f-40bc-846c-d5ad7d146b45/retrieve","id":"-395011602"},"keywords":[],"sieverID":"44ca25b8-215b-46d1-8edd-ae9442fbd4a7","pagecount":"92","content":"Tropical (CIAT) -miembro del Consorcio CGIAR-desarrolla tecnologías, métodos innovadores y nuevos conocimientos que contribuyen a que los agricultores, en especial los de escasos recursos, logren una agricultura eco-eficiente -es decir, competitiva y rentable así como sostenible y resiliente. Con su sede principal cerca de Cali, Colombia, el CIAT realiza investigación orientada al desarrollo en las regiones tropicales de América Latina, África y Asia. www.ciat.cgiar.org CGIAR es una alianza mundial de investigación para un futuro sin hambre. Su labor científica la llevan a cabo los 15 centros de investigación que integran el Consorcio CGIAR, en colaboración con cientos de organizaciones socias.www.cgiar.orgMunicipio de La Cumbre Valle del CaucaLa construcción de este documento se logró gracias al interés y participación activa de los diferentes actores municipales que se involucraron en este proceso. Estos agradecimientos son en especial para Duván Martínez, Técnico Operativo de la Unidad Municipal de Asistencia Técnica Agropecuaria (UMATA) y Ramiro Palma Meza, Coordinador de la Dirección Ambiental Regional Pacífico Este, quienes amablemente apoyaron y promovieron la realización de las actividades programadas; al Comité Municipal de Recursos Naturales y al Comité Interinstitucional de Educación Ambiental (CIDEA), por su valiosa asesoría y acompañamiento en el ejercicio metodológico proporcionado para obtener resultados claros y ordenados en este proceso de adaptación a la variabilidad y el cambio climático.Los actores municipales representaron una fuente invaluable de información para identificar los posibles proyectos municipales de adaptación que aquí se presentan. El cambio climático es uno de los problemas más complejos a los que se enfrentan las comunidades actualmente. Por lo tanto, hacerle frente implica acciones que involucren el conocimiento de los actores desde el nivel local hasta el nacional. En ese sentido, la gestión del cambio climático se convierte en un proceso continuo de largo plazo, que debe abarcar de manera transversal los territorios, los sectores productivos e institucionales y a los grupos humanos, considerando como prioridad la adaptación, ya que de no actuar hoy los impactos económicos, sociales y ambientales serán mayores a futuro.Teniendo en cuenta que todo proceso de gestión y adaptación al cambio climático debe entenderse como un proceso de planificación local para que se convierta en una alternativa de adaptación efectiva, tal como se señala en el Plan Nacional de Adaptación al Cambio Climático (PNACC) en su documento ABC (adaptación bases conceptuales) (DNP, 2012), \"es fundamental contar con información local, dado que cada territorio enfrenta retos particulares debido al cambio y la variabilidad climática. Asimismo, es indispensable vincular la participación comunitaria en el proceso de planificación y definición de medidas de adaptación para lograr una adaptación más efectiva y duradera, ya que son las comunidades las que mejor conocen sus características y necesidades\".Es por eso que la Corporación Autónoma Regional del Valle del Cauca (CVC) y el Centro Internacional de Agricultura Tropical (CIAT) unieron esfuerzos para desarrollar una serie de Portafolios de Estrategias de Adaptación al Cambio Climático para cada municipio, cuyo principal objetivo es fortalecer la resilencia y lograr una mayor capacidad adaptativa en los territorios, lo cual permitirá reducir los efectos del cambio climático, generando así un mayor desarrollo y progreso en las comunidades.http://bit.ly/1ow4PSjEl calentamiento en el clima es inequívoco. Desde 1950, se han observado cambios sin precedentes en el sistema climático, tanto si se comparan con registros históricos observacionales que datan de mediados del siglo XIX, como si se comparan con registros paleoclimáticos referidos a los últimos milenios. La temperatura atmosférica y oceánica se han incrementado, la cantidad de extensión de las masas de hielo y nieve ha disminuido, el nivel del mar ha subido y las concentraciones de gases de efecto invernadero han aumentado (IPCC, 2014).Por lo anterior, según resultados del Grupo Intergubernamental de Expertos sobre el Cambio Climático (IPCC, por sus siglas en inglés), se prevé que el mundo pueda experimentar un aumento de 2 °C más de temperatura a 2100, bajo un escenario moderado, en donde todos actuemos responsablemente con el medio ambiente.Las profundas consecuencias ambientales, económicas y sociales, y las secuelas que puede dejar el cambio climático se presentarán en mayor medida si los territorios no actúan de manera planificada. La adopción oportuna de medidas apropiadas para reducir los impactos de este fenómeno es un aspecto estratégico, pues cada vez será más difícil enfrentar sus consecuencias, y la capacidad de recuperación ante escenarios de desastre será menor.Los portafolios de adaptación municipales surgen por esa necesidad de adaptación desde \"lo local\" que permita establecer acciones y estrategias enmarcadas en el contexto específico de cada territorio, que a su vez permita dar respuesta a las problemáticas propias que presenta cada comunidad dada su exposición, amenazas y vulnerabilidad. El municipio de La Cumbre se encuentra ubicado en el Noroccidente del departamento del Valle del Cauca, en la vertiente Occidental de la Cordillera Occidental, localizado a los 3º 39' 11\" de latitud norte y a los 76º 34' 04\" de longitud oeste meridiano de Greenwich.Al norte limita con el municipio de Restrepo, al sur con los municipios de Yumbo, Dagua y Cali, al oriente Fuente: Elaborado con base en cartografía CVC (2015).Cuadro 1. Datos geográficos e hidroclimáticos del municipio de La Cumbre.Fuente: Alcaldía Municipal de La Cumbre (2000). La división político-administrativa del municipio está distribuida de la siguiente manera: 7 corregimientos, 36 veredas y 11 barrios en la cabecera municipal.(Alcaldía La Cumbre, 2012). El Cuadro 2 describe de manera más detallada la división político-administrativa del municipio y el área que cada una abarca.Fuente: Alcaldía Municipal de La Cumbre (2000). La Cumbre está localizada a una altura que oscila entre 700 y 2.200 metros sobre el nivel del mar (msnm) y los pisos térmicos son templados y fríos, presenta una variación de temperatura entre 18 a 25 °C, dicha variación es poca a través del año; sin embargo, en el día se presentan cambios bruscos.La precipitación promedio en todo el municipio varía entre 950 y 1200 mm anuales; sin embargo, existen zonas como la reserva forestal, la cual presenta la mayor disponibilidad de aguas lluvias, que superan los 1200 mm/año. La humedad relativa media oscila entre el 79 y 83%, presentándose poca variación en el año. La evaporación media mensual varia levemente a través del año con valores que fluctúan entre 35,5 a 50,5 mm/mes. En el día, presenta un rango entre 1,2 a 1,7 mm/día (Alcaldía Municipal La Cumbre, 2012).La extensión completa del municipio forma parte del territorio que define la cuenca hidrográfica del río Dagua. Dentro de esta cuenca, el municipio pertenece a la parte alta, donde depende básicamente de los recursos ambientales de la subcuenca del río Bitaco, que cuenta con una longitud de 66,35 km. En este sentido, la distribución hídrica del municipio está representada como se muestra en el siguiente cuadro. Cuadro 3. Sistema hídrico municipal de La Cumbre.Fuente: Elaborado con base en datos tomados de cartografía CVC (2010).La precipitación en el municipio de La Cumbre muestra un régimen bimodal, presenta los períodos más secos de diciembre a febrero y de junio a agosto. Los meses más lluviosos son marzo, abril, mayo, octubre y noviembre, registrándose el mes de octubre como el más lluvioso con 131.5 mm y, enero como el más seco con 44 mm (Alcaldía Municipal de La Cumbre, 2000).En el municipio de La Cumbre, se presentan seis clases de suelos; sin embargo, el más representativo son los suelos con asociación Sevilla, por situarse en altitudes entre 1.200 a 2.000 msnm. Relieve quebrado a escarpado y pendientes entre 12 a 25%. El nivel de carbono orgánico es de muy alto a normal, con saturación de calcio y magnesio de regular a muy pobre. La saturación de potasio, fósforo aprovechable es muy pobre, lo que reafirma su origen de ceniza volcánica. El contenido de materia orgánica se considera bajo. En general se trata de suelos profundos, bien drenados y ligera a medianamente erosionados. No son aptos para pastoreo por su alta retención de humedad y movimiento de agua en el suelo, alta a muy alta, por lo tanto se requiere de especial manejo, cuidado y conservación (Alcaldía Municipal de La Cumbre, 2012). Figura 3. Red hídrica del municipio de La Cumbre.Fuente: Elaboración propia basada en cartografía CVC (2010).Cuadro 4. Áreas protegidas del municipio de La Cumbre.Fuente: Elaborado con base en datos tomados de cartografía RUNAP (2011). De acuerdo a la clasificación de áreas protegidas del sistema de parques nacionales naturales definida en el Fuente: Elaborado con base en cartografía CVC (2010).Cuadro 5. Uso potencial del suelo en el municipio de La Cumbre.Fuente: Elaborado con base en datos tomados de cartografía CVC (2010). Según datos del DANE (2005) la proyección de la población de La Cumbre en 2015 es de 11.512. Dicha población mantiene una gran influencia paisa con fuerte tendencia a la producción cafetera (CVC et al., 2013).El municipio de La Cumbre, por su ubicación y sus condiciones climáticas, se ha convertido en un gran atractivo turístico, y se ha producido una transformación de terrenos agropecuarios hacia estas actividades de turismo y veraneo. Sin embargo, sigue existiendo vocación agropecuaria, lo cual se observa en el cuadro 9 y 10, en donde más de 1.700 ha están cultivadas, y el café es el cultivo más importante con aproximadamente 812 ha, seguido del plátano con 332 hectáreas y el té con 60 ha. En La Cumbre se presenta ganado, en su mayoría con doble propósito (producción de carne y leche). Su alimentación se basa en pastoreo extensivo, pastoreo intensivo y en algunos casos estabulación con pasto de corte. En el municipio se encuentran 274 fincas, los cuales poseen aproximadamente 6.739 cabezas de ganado (Fedegán, 2012). También el cambio climático puede entenderse según el IPCC, como la variación del estado del clima, identificable (por ejemplo, mediante pruebas estadísticas) en las variaciones del valor medio o en la variabilidad de sus propiedades, que persiste durante largos períodos de tiempo, generalmente decenios o períodos más largos.El cambio climático puede deberse a procesos internos naturales o a forzamientos externos tales como modulaciones de los ciclos solares, erupciones volcánicas o cambios antropógenos persistentes de la composición de la atmósfera o del uso del suelo.La Convención Marco de las Naciones Unidas sobre el Cambio Climático (CMNUCC), en su Artículo 1, define el cambio climático como \"cambio de clima atribuido directa o indirectamente a la actividad humana que altera la composición de la atmósfera global y que se suma a la variabilidad natural del clima observada durante períodos de tiempo comparables\".La CMNUCC diferencia, pues, entre el cambio climático atribuible a las actividades humanas que alteran la composición atmosférica y la variabilidad climática atribuible a causas naturales.Componente gaseoso de la atmósfera, natural o antropógeno, que absorbe y emite radiación en determinadas longitudes de onda del espectro de radiación terrestre emitida por la superficie de la Tierra, por la propia atmósfera y por las nubes. Esta propiedad ocasiona el efecto invernadero. El vapor de agua (H 2 O), el dióxido de carbono (CO 2 ), el óxido nitroso (N 2 O), el metano (CH 4 ) y el ozono (O 3 ) son los gases de efecto invernadero primarios de la atmósfera terrestre. Además, la atmósfera contiene cierto número de gases de efecto invernadero enteramente antropógeno, como los halocarbonos u otras sustancias que contienen cloro y bromo, y contemplados en el Protocolo de Montreal. Mitigación: Intervención humana destinada a reducir las fuentes o intensificar los sumideros de gases de efecto invernadero (GEI). La mitigación también puede entenderse como el desarrollo de acciones y medidas que contribuyan a la disminución del impacto provocado por las emisiones de GEI desde un enfoque multidimensional (clima y ambiente, economía, entornos sociales).Adaptación: La adaptación al cambio climático incluye todas las acciones conducentes a preparar un territorio, su economía, ecosistemas y comunidades, para responder a los estímulos o efectos climáticos (reales o esperados) de manera que se atenúen los daños que ocasionan, o que se exploten o potencien las oportunidades beneficiosas. En Colombia, los principales avances en adaptación se adelantan a través de la implementación de diferentes proyectos dirigidos a la reducción de la vulnerabilidad de comunidades, protección de ecosistemas marinos y costeros y de alta montaña, construcción o reparación de infraestructura vial, salud y seguridad alimentaria, entre otros.Todos los sistemas (humanos y naturales) son vulnerables al cambio climático; por tanto, la propuesta de solución es la Adaptación.Gran parte de los impactos sociales y las pérdidas económicas asociados a eventos climáticos están relacionados con la exposición y la vulnerabilidad, ambas son determinantes clave del riesgo.El riesgo depende del tipo de amenaza, del nivel de exposición y de las condiciones de vulnerabilidad El riesgo climático está dado en función de tres factores:• Amenazas/Peligros (eventos climáticos)• Exposición En Colombia, la adaptación es una prioridad en la política ambiental nacional. La principal herramienta de política pública sobre cambio climático en Colombia es el CONPES 3700 del 2011, en el cual se originan cuatro estrategias para hacer frente a la problemática del cambio climático:• La Estrategia de Desarrollo Bajo en Carbono (mitigación).• El Plan Nacional de Adaptación al Cambio Climático (adaptación).• La Estrategia Nacional REDD+ (Reducción de Emisiones por Deforestación y Degradación Forestal Evitada).Manual Convención Marco de las Naciones Unidas sobre el Cambio Climático.(CMNUCC)Este manual hace referencia a que los PNA (programas nacionales de adaptación) deben prepararse mediante un proceso participativo que incluya, en particular, a las comunidades locales.Con ese fin, las directrices proponen que se establezca un equipo nacional para el PNA, compuesto por un organismo principal y por representantes de las partes interesadas, incluidos organismos gubernamentales y la sociedad civil. El equipo nacional para el PNA designará un equipo más amplio y multidisciplinario al que encomendará la mayoría de las tareas.Internacional CONPES 3700: Estrategia institucional para la articulación de políticas y acciones en materia de cambio climático en Colombia La mitigación y adaptación al cambio climático requieren del desarrollo de estrategias de articulación tanto a nivel sectorial como en los ámbitos nacional y territorial, con el fin de generar una gestión compartida y coordinada, y la información pertinente y oportuna para la toma de decisiones para así contrarrestar de manera efectiva los problemas subyacentes.A partir de 2010, se empezaron a trabajar cuatro estrategias frente a la problemática del cambio climático, las cuales fueron consignadas en el Plan Nacional Busca incidir en los procesos de planificación ambiental, territorial y sectorial de tal manera que se tomen decisiones de manera informada, teniendo en cuenta los determinantes y proyecciones climáticos, reduciendo así efectivamente la vulnerabilidad tanto en poblaciones, ecosistemas y sectores productivos a este fenómeno, y aumentando la capacidad social, económica y ecosistémica para responder ante eventos y desastres climáticos.Cuadro 12. Instrumentos de política y planificación sobre cambio climático y su información relativa a la adaptación local.(Continúa)Estrategia Colombiana de Desarrollo Bajo en Carbono (ECDBC)Es un programa de planeación de desarrollo a corto, mediano y largo plazo que busca desligar el crecimiento de las emisiones de gases efecto invernadero (GEI) del crecimiento económico nacional. Esto se hará a través del diseño y la implementación de planes, proyectos y políticas que tiendan a la mitigación de GEI y simultáneamente fortalezcan el crecimiento social y económico del país, dando cumplimiento a los estándares mundiales de eficiencia, competitividad y desempeño ambiental.La ECDBC es liderada por el Ministerio de Ambiente y Desarrollo Sostenible (MADS), a través de la Dirección de Cambio Climático, con el apoyo del Departamento Nacional de Planeación (DNP) y los ministerios sectoriales de Colombia.Actualmente ocho sectores productivos del país hacen parte de la ECDBC.Estrategia Nacional REDD + Promover a nivel local, el desarrollo de actividades de implementación temprana (proyectos o acciones piloto) para reducir la deforestación, que le permitan al país \"aprender haciendo\", tanto de los temas técnicos, como de los institucionales, jurídicos y de gobernanza local. Lo anterior con el fin de establecer el marco nacional para desarrollar proyectos REDD+.Plan de desarrollo del Departamento del Valle del Cauca \"el Valle vale\" para el período 2012-2015.En el capítulo IV. Armonización del Plan Departamental con las Políticas Nacionales, el Plan Nacional de Desarrollo, incorpora las políticas existentes en cambio climático en el eje 4: Gestión Territorial y Ambiental con Sostenibilidad, con un capítulo especial sobre el tema, en donde se hace énfasis en que para el departamento del Valle, el Plan Territorial de Adaptación al Cambio Climático es la herramienta mediante la cual se va a poder medir el riesgo a los eventos hidrometeorológicos extremos y definir las acciones y proyectos que deberán implementar los diferentes actores a nivel regional para reducir la vulnerabilidad ante estos fenómenos.En cuanto a los programas y subprogramas del plan, 4 de 31 programas incorporan de alguna forma actividades tendientes a la gestión del cambio y la variabilidad climática y 5 de 98 subprogramas de los programas relacionados incorporan en las metas de producto actividades tendientes a la gestión del cambio y la variabilidad climática.Análisis de vulnerabilidad para los Nodos Regionales de Cambio Climático (NRCC) 2011El Instituto de Hidrología, Meteorología y Estudio Ambiental (IDEAM) presenta en el año 2011 el documento sobre análisis de vulnerabilidad para los NRCC, en donde hace relación al Nodo Regional del Eje Cafetero, específicamente en el apartado sobre vulnerabilidad establece lo siguiente:3 En este nodo los climas muy húmedos y húmedos se reducirán para el período 2011-2040, dando paso a la ampliación de climas semihúmedos y semiáridos.3 El índice de sensibilidad permite ver que predomina una categoría de sensibilidad media en el territorio; lo que genera, después de asumir la capacidad que tiene la región cafetera para adaptarse, una predominancia de alta vulnerabilidad en las diferentes corporaciones que la conforman.3 El Nodo Regional de Cambio Climático del Eje Cafetero en general tenderá a una disminución leve de la escorrentía para el período 2011-2040 (entre -30 a -10%), excepto la subzona hidrográfica del río San Juan en la jurisdicción de la Corporación Autónoma Regional de Risaralda (CARDER) donde la afectación al rendimiento hídrico podría ser aún más leve (-10 a 10%).Análisis de vulnerabilidad para la cuenca alta del Rio Cauca -AVA. \"Desarrollo compatible con el clima en el sector agrícola del alto cauca colombiano\". (CDKN, 2013) Reconociendo el deterioro ambiental y la importancia de la seguridad alimentaria en un entorno cambiante, se creó la iniciativa Agricultura, Vulnerabilidad y Adaptación (AVA), de la mano del sector agropecuario y ambiental, con el apoyo de las gobernaciones, municipios, corporaciones autónomas regionales, academia y centros de investigación. Los miembros del proyecto AVA son la Alianza Clima y Desarrollo (CDKN), la Universidad de Caldas, el Centro Nacional de Investigaciones de Café (CENICAFÉ), la Universidad del Cauca y el CIAT.AVA tuvo como objetivo desarrollar una metodología que permitiera cuantificar y analizar la vulnerabilidad del territorio y de los sistemas productivos, para apoyar la planificación integral de los procesos productivos, la sostenibilidad y la conservación de la cuenca alta del río Cauca.Por medio de la metodología de AVA, se midió la vulnerabilidad del sector agrícola para los sistemas productivos de café, cacao, papa, plátano, fríjol y caña de azúcar en 99 municipios que conforman la cuenca alta del Cauca de los departamentos de Caldas, Risaralda, Quindío, Valle y Cauca. En el Valle del Cauca, se realizó en 33 municipios, entre ellos Alcalá, presentándose en este municipio un índice de vulnerabilidad muy bajo de 0,9 en caña azúcar, bajo de 2,6-5,39 y 9,29 en plátano, papa y fríjol, respectivamente; medio de 27,5 en café, y muy alto de 9,63 en cacao.Plan de Desarrollo (2012-2015) \"Primero lo social\"En el Plan de Desarrollo (2012-2015) del municipio de La Cumbre, se establece un programa denominado \"El cambio climático está en nuestras manos\", cuyo objetivo específico es contribuir a la mitigación del cambio climático por medio de alternativas sostenibles de producción y control de contaminación con el fin de reducir impacto negativo y mejorar las condiciones de vida de la población. Mediante la conservación de las áreas de reserva forestal. Dentro de este programa se desarrollan los siguientes proyectos: Elaboración e implementación del plan de manejo de 3.500 hectáreas en conflicto de uso del suelo localizadas en ecosistemas de bosque seco y bosque subandino.Diagnóstico, evaluación y control para las condiciones ecosistémicas de la cuenca.Mantenimiento a los cauces de los ríos y caños de drenaje del municipio.(Continuación)El principal objetivo del portafolio es entregar información verídica, actualizada y útil, entorno a las problemáticas del cambio climático no sólo a los tomadores de decisiones locales, sino a toda la comunidad. La información contenida en este portafolio permitirá incluir acciones de adaptación en los procesos de planificación local, lo cual hará de los municipios, territorios más resilientes y con mayor capacidad de adaptación ante los efectos del cambio climático.El presente documento busca generar un conjunto de acciones de adaptación priorizadas teniendo en cuenta los criterios más relevantes de adaptación, previamente identificados por los actores del municipio. Dichas acciones de adaptación, como se planteó anteriormente en la metodología, tienen en cuenta las características, biofísicas, sociales, económicas, políticas, entre otras, del municipio, lo cual permite que dichas acciones respondan a necesidades específicas del municipio. Estas acciones deben ser implementadas en conjunto por los diferentes actores del municipio, lo cual señala que la articulación institucional es determinante en el proceso de adaptación.Al igual que en el proceso de adaptación nacional liderado por el IDEAM y el MADS, compilado en el Plan Nacional de Adaptación de 2012, y en el CONPES 3700 de 2011, este portafolio pretende generar lineamientos conceptuales y acciones específicas que respondan a las necesidades puntuales del territorio.Es así como la CVC, preocupada y comprometida con la planificación y gestión del cambio climático local, ha venido desarrollando una serie de ejercicios tendientes a la construcción participativa de \"portafolios de adaptación al cambio climático\" en diferentes municipios del Valle del Cauca.Este proceso inició en el año 2013 con la construcción de los portafolios de Tuluá y Guadalajara de Buga mediante convenio con la Unidad Central del Valle del Cauca (UCEVA) y más recientemente mediante convenio interadministrativo No. 033 de 2014 con el CIAT, el cual tiene como objeto aunar esfuerzos y recursos humanos, económicos y técnicos para realizar acciones en el marco de la mitigación y adaptación al cambio climático en el Valle del Cauca se han realizado los portafolios para Cartago y Alcalá, Cali, Jamundí, Dagua, Restrepo y Buenaventura.También es importante resaltar que el portafolio de adaptación debe ser actualizado conforme se vayan modificando las necesidades ambientales, sociales, económicas y políticas del municipio, en aras de que el proceso sea continuo y ayude a evaluar los avances y logros obtenidos, y de esta manera se puedan incorporar nuevas iniciativas en función de las modificaciones reales del clima y los pronósticos de cambio climático.En este punto, se presenta de forma general el procedimiento metodológico usado para la construcción del portafolio de adaptación a la variabilidad y cambio climático del municipio de La Cumbre.El proceso constó de nueve fases. En la fase 1, se llevó a cabo una reunión inicial que permitió recolectar información municipal relacionada con procesos y políticas de adaptación. En la fase 2, se efectuó un taller participativo con el fin de recopilar información primaria a través de dos métodos: cartografía social y prospectiva territorial. En la fase 3, se cruzó la información generada en el taller participativo con la cartografía oficial obtenida de la CVC, el Instituto Geográfico Agustín Codazzi (IGAC), el IDEAM, etc. En la fase 4, se generaron escenarios de cambio climático a nivel municipal. La fase 5 consistió en la identificación de las principales amenazas y riesgos climáticos por municipio. La fase 6 fue la más importante, la cual consistió en generar y priorizar las acciones de adaptación basado en la información anteriormente evaluada y analizada. En la fase 7, se realizó una socialización de los resultados con los actores del municipio, lo cual es el insumo principal para realizar la siguiente etapa. En la fase 8, se hizo la retroalimentación del portafolio. En la fase 9, se desarrolló el portafolio de estrategias de adaptación al cambio climático para el municipio.A continuación, se presenta un resumen del procedimiento metodológico. 7. Socialización con los actores del municipio.6. Generación y priorización de acciones de adaptación al cambio climático.• Análisis jerárquico.2. Recolección de información primaria a través del taller participativo que involucró tres metodologías:• Cartografía social.• Prospectiva Territorial.8. Retroalimentación con base en las consideraciones de los actores del municipio.5. Identificación de principales amenazas y riesgos climáticos por municipio.3. Análisis de la información generada y cruce con información geográfica oficial.9. Generación del Portafolio de Estrategías de Adaptación a Nivel Municipal.4. Generación de escenarios de cambio climático a nivel municipal.Figura 11. Resumen del proceso metodológico para la construcción del portafolio de medidas de mitigación y adaptación al cambio climático.Para el desarrollo de dicho proceso en cuanto a la prospectiva territorial se utilizaron siete instrumentos metodológicos, los cuales se explican a continuación.No obstante, dicha información fue complementaria a la cartografía social, la cual permitió identificar zonas de riesgo y zonas en donde podrían llevarse a cabo procesos de adaptación.Formato 1. Análisis de actores: El objetivo es realizar la identificación de los actores del proceso, su modo de participación y capacidades en la construcción del portafolio de medidas de adaptación. (Para mayor información consultar el Anexo 1. Formato 1: Análisis de Actores).Formato 2. Identificación acciones/proyectos: Tiene como objetivo obtener la información necesaria acerca de los proyectos conocidos. (Para mayor información consultar el Anexo 2. Formato 2: Identificación de acciones/proyectos). Formato 3. Cambios esperados para el futuro (tecnológicos, económicos, sociales, ambientales, institucionales y organizacionales), con el objetivo de identificar los cambios en el municipio relacionados con el cambio climático y la variabilidad climática. (Para mayor información consultar el Anexo 3. Formato 2: Cambios esperados para el futuro).Formato 4. Análisis de debilidades, oportunidades, fortalezas y amenazas -Matriz DOFA: Tiene como objetivo identificar las fortalezas y debilidades del municipio, respecto a la variabilidad y cambio climático, aspectos sobre los cuales se tiene algún grado de control, las oportunidades que existen o que podría aprovechar el municipio y las amenazas que debe enfrentar el municipio. (Para mayor información, consultar el Anexo 4. Formato 4: Análisis de debilidades, oportunidades, fortalezas y amenazas).Formato 5. Ideas/factores más importantes: El objetivo es identificar, según el conocimiento sobre el tema, cuáles eran las ideas más importantes en las que se deben enfocar las acciones y proyectos en cambio climático. (Para mayor información, consultar el Anexo 5. Formato 5: Ideas/factores más importantes). Formato 6. Propuesta de acciones: Tiene como objetivo identificar las acciones y proyectos que aportarían al manejo o solución del factor establecido. (Para mayor información consultar el Anexo 6. Formato 6: Propuesta de acciones).Formato 7. Formato de valoración de criterios para la selección de medidas y proyectos de adaptación al cambio y variabilidad climática. Metodología de Análisis Jerárquico (AHP), el cual consiste en establecer la importancia de cada uno de los criterios que se han definido para la calificación y selección de medidas y proyectos de adaptación al cambio y la variabilidad climática en su municipio. (Para mayor información, consultar el Anexo 7. Formato 7: Análisis Jerárquico -AHP).De acuerdo a la evaluación general de la percepción de los actores sobre la realidad municipal frente a la variabilidad climática y al cambio climático, se presentan entonces los cambios presentidos, anhelados y temidos por los actores para el municipio.• Escasez de agua • Desaparición de fuentes hídricas.• Aumento de la desertificación.• Extensión descontrolada de la frontera agrícola y pecuaria.• Aumento del número de viviendas con fines turísticos.• Desarticulación del Esquema de Ordenamiento Territorial (EOT) con los planes de desarrollo.• Fortalecimiento del comité de recursos naturales.• Uso indiscriminado de plaguicidas.• Deterioro del ambiente y las condiciones socioeconómicos ocasionados por el oleoducto del Pacífico.• Contaminación de fuentes hídricas.• Aumento en la incineración de basuras.• Desvío de la vía Mulaló -Loboguerrero, que no perjudique las fuentes hídricas.• Aumento de las zonas forestales en las cimas de las montañas.• Establecimiento de bosques protectores en las cercanías de los ríos.• Desarrollo de la ganadería y agricultura de manera sostenible.• Consolidación e integración de los acueductos en una organización fuerte y estable.• Capacitación de los funcionarios públicos en el tema del cambio climático.• Continuar con el fortalecimiento social e interinstitucional.• Ordenación de las cuencas hidrográficas.• Reglamentación para las actividades agrícolas y pecuarias de acuerdo al uso potencial del suelo.• Delimitación de las zonas protectoras de los ríos.• Educación técnica y tecnológica para los jóvenes en temas relacionados con el cambio climático y la variabilidad climática.• Fomento de la producción orgánica en los sectores agrícola y pecuario.• Creación de políticas que procuren la conservación y restauración del área de la reserva forestal.• Control estricto de la aplicación del EOT.• Fortalecimiento técnico y financiero de la UMATA.• Siembras de aprovechamiento forestal en zonas altas de la montaña catalogadas como de reserva.• Aumento de los incendios forestales.• Incremento de la minería legal e ilegal.• Desabastecimiento total de agua.• Incremento parcial o total de la pérdida de bosques.• Afectación del acuífero a causa de la vía Mulaló -Loboguerrero.• Aumento de la contaminación por aguas residuales y residuos sólidos.• Escasez y contaminación del recurso hídrico.• Deterioro del suelo y pérdida de capacidad productiva.• Impactos ambientales, sociales y económicos generados por la vía Mulaló -Loboguerrero.• Contaminación de acuíferos.• Insuficiencia en la aplicación de políticas locales para conservación.Cuadro 13. Cambios anhelados, presentidos y temidos por los actores para el municipio de La Cumbre.El perfil de oportunidades y amenazas (POAM) elaborado permite analizar el entorno municipal frente a aspectos externos. La síntesis de estos y la especialización de las amenazas se presenta a continuación:Cuadro 14. Perfil de oportunidades y amenazas (POAM) para el municipio de La Cumbre.• Producción agropecuaria sostenible.• Continuidad y fortalecimiento de las relaciones interinstitucionales.• Compensación ambiental por el desarrollo y ejecución de proyectos en el municipio.• Actualización del EOT.• Promoción del ecoturismo.• Ubicación geográfica estratégica del municipio para potenciar sus servicios ambientales.• Presencia de dos áreas protegidas la Reserva Forestal de Bitaco y el Distrito de Conservación de Suelos Cañón del Río Grande.• Implementación de técnicas sostenible en el sistema productivo cafetero.• Potenciar nuevos productos agrícolas aprovechando la variabilidad climática.• Construcción de la vía Mulaló -Loboguerrero.• Mala planificación del territorio.• Cambios del uso y tenencia de la tierra.• Falta de pertenencia de la población frente a los problemas ambientales del municipio.• Ausencia de sistemas de tratamiento de aguas residuales (AR) y alcantarillado para toda la población.• Ampliación de las fronteras residenciales de los municipios vecinos.• Deterioro de la calidad del aire por influencia de la zona industrial de Yumbo.• Baja producción agropecuaria en el municipio.• Incendios forestales.• Uso indiscriminado de plaguicidas.• Alta incidencia de la población flotante.• Aumento de zonas para bosques comerciales. .Figura 12. Amenazas identificadas para el municipio de La Cumbre.Fuente: Cartografía CVC (2015). El perfil de capacidad interna (PCI), permite tener una visión global de la situación interna del municipio para hacer frente al cambio climático, ya que facilita la identificación de las medidas apropiadas para la adaptación.Partiendo del hecho que el cambio climático es un fenómeno que afectará toda la población, es necesario resaltar la participación y el compromiso interinstitucional de todos los actores presentes en el municipio de La Cumbre, y así desarrollar e implementar acciones y medidas de adaptación al cambio climático en forma integral y localizada.Teniendo en cuenta lo anterior, se presenta a continuación los diferentes actores que participaron en la construcción del Portafolio de Adaptación al Cambio Climático: Asociación de Productores y Comercializadores de Atuncela (ASOPROCAT), Asociación Comunitaria Administradora del Acueducto de Pavas (ACAAPAVAS), Unidad Municipal de Asistencia Técnica Agropecuaria (UMATA), Empresa de Energía del Pacífico (EPSA), Asociación de Juntas de Acción Comunal de La Cumbre (Asojuntas) y las presentadas en la Figura 13.Cuadro 15. Perfil de capacidad interna (PCI) para el municipio de La Cumbre.• Presencia de los diferentes ecosistemas y áreas protegidas en el municipio como; Reserva Forestal de Bitaco, el Bosque Subxerofitico, el Acuífero de Pavas.• Ubicación geográfica propicia para el desarrollo de agricultura.• Empoderamiento social del Comité Interinstitucional de Educación Ambiental (CIDEA), y el Comité de Recursos Naturales.• Emprendimiento rural sostenible.• Instituciones educativas con énfasis rural y turístico.• Iniciativas en el establecimiento de sistemas silvopastoriles.• Presencia de diferentes sistemas productivos como piña, panela, té y hortalizas, lo que conviene al municipio en una despensa agrícola.• Alta diversidad biológica.• Poca cobertura en el abastecimiento de agua potable en la zona rural.• Sistema de alcantarillado insuficiente en todo el municipio.• Presión sobre los recursos naturales en la parte alta de la cordillera, evidenciándose la deforestación.• Manejo inadecuado de los residuos sólidos en las zonas rurales.• Falta de recursos financieros para el desarrollo de proyectos ambientales y de cambio climático.• Baja participación social en todo el territorio especialmente de los jóvenes.• No hay estabilidad del mercado agrícola local, puesto que son llevados a otros municipios del departamento.• Pocas actividades de gestión ambiental.• Falta formación técnica y conocimiento del territorio para la población en general.Figura 13. Mapa de participación de actores en la construcción del portafolio para el municipio de La Cumbre.El análisis de la participación de los actores mostró que el 39% de los asistentes pertenecen a organizaciones privadas, el 35% a organizaciones públicas, el 17% a organizaciones sociales y el 9% a organizaciones no gubernamentales (ONG); quedando excluidos los sectores academia y sociedad civil. Es importante resaltar la necesidad de promover la participación amplia de estos últimos para garantizar que los procesos se desarrollen de manera íntegra y conjunta. En cuanto al análisis de la participación en las fases del proceso de gestión del cambio climático a escala local se encontró, que el mayor interés se encuentra en las fases de formulación e implementación representadas con un 28 y 36 por ciento respectivamente, seguido por la fase de evaluación representada con un 23% y finalmente la fase de seguimiento con un 13%. Es importante resaltar el compromiso de los actores en las primeras fases; sin embargo, sería ideal que se asignara el mismo interés en todas las fases con el fin de darle continuidad al proceso y generar confiabilidad en la población. La Figura 16 representa el porcentaje de recursos ofertados por los actores para el proceso de implementación del portafolio, obteniendo el mayor aporte el de recursos humanos con un 66%, seguido de los recursos físicos con un 19% y por último los recursos económicos con un 15%. Lo anterior evidencia que existe una amplia disposición de participar en el proceso; sin embargo, es necesario buscar financiación económica que puedan soportar la implementación del portafolio, principalmente con el apoyo y participación de los tomadores de decisiones y las instituciones presentes en el municipio. Revisión y análisis de reportes de desastres relacionados con el cambio climático y la variabilidad climática en el departamento del Valle del Cauca y en el municipio de La Cumbre durante el último quinquenio.Las amenazas climáticas de mayor frecuencia en la actualidad para el departamento, en lo que respecta al último quinquenio de mayor a menor son: las inundaciones, los incendios forestales, los vendavales y los deslizamientos. por los municipios de Buenaventura y Jamundí, con un número de personas afectadas que pueden llegar a ser hasta 10 veces mayor que los que se presentan en el municipio de La Cumbre. Estos eventos climáticos sin duda configuran un riesgo en la medida que afectan a los sistemas naturales y sociales. El análisis de esta información nos lleva a concluir la necesidad de realizar acciones entorno a los problemas más importantes a nivel climático en el municipio, tales como incendios forestales, deslizamientos, inundaciones y vendavales; y de esta manera reducir la cifra de personas afectadas (519) en el último quinquenio. Sin duda, este portafolio se convierte en una herramienta fundamental para hacerle frente a estos fenómenos, teniendo en cuenta las amenazas particulares y las características del territorio.A continuación, se muestran el cambio de temperatura y precipitación proyectado por el IDEAM en 2015 en la Tercera Comunicación Nacional de Cambio Climático. Este análisis tiene en cuenta diferentes horizontes temporales (entre 2011 y 2100). Se espera que la temperatura entre 2071 y 2100 aumente en promedio en 2.14°C, mientras que en términos de precipitación los cambios son más variables, por ejemplo, se espera Para fin de siglo, el departamento podrá aumentar en 2,4 °C la temperatura promedio. En particular el municipio de Buenaventura será el de mayor aumento, con valores de 2,6 °C adicionales a los valores de referencia actual (IDEAM et al., 2015).En general, el departamento podrá aumentar en 6% las precipitaciones sobre el valor actual. Particularmente las provincias de occidente, sur y centro serán aquellas que presentan mayores aumentos, con valores de hasta Temp. La temperatura actual de La Cumbre varía entre 15 y 25 °C, y ;a temperatura más alta se concentra en el noroccidente del municipio el cual limita con Dagua y Restrepo, y la más baja se da en el nororiente, el cual limita con Yumbo y Cali.un 20%, al igual que los municipios de Cartago, Ulloa, El Águila, Ansermanuevo y Alcalá (IDEAM et al., 2015).Las estimaciones de cambio climático también se realizaron a nivel de municipio desde el equipo de modelación climática del CIAT, y los resultados para La Cumbre, con el ensamble de modelos globales de cambio climático (GCMs, por sus siglas en inglés) son los siguientes: Los escenarios del cambio climático muestran que para el municipio de La Cumbre se esperan aumentos de temperatura de 1.4 °C a 2030 y aumentos de 1.8 °C para 2050, lo cual sumado con los cambios de temperatura traerá implicaciones importantes en términos de disponibilidad de recurso hídrico, ecosistemas, zonas húmedas y de regulación hídrica como los páramos, etc.Figura 25. Precipitación actual y cambios de precipitación para 2030 y 2050, bajo los escenarios de emisiones RCPs (2.6; 4.5 y 8.5).La precipitación promedio en el municipio de La Cumbre va desde 1.000 a 2.000 mm año, la zona sur es la que presenta la mayor pluviosidad que es la zona de reserva forestal. Por otra parte, los escenarios de cambio climático muestran mayores aumentos relativos en la zona norte, para 2030 se esperan cambios de 11.4% sobre el promedio de lluvias actuales, y para 2050 aumentos de 14.5%. Lo anterior obliga al municipio a llevar a cabo medidas de adaptación que no solo hagan frente a los aumentos de temperatura sino también a los aumentos de precipitación, lo cual implica cambios en los sistemas de producción, protección de ecosistemas, entre otras acciones que serán abordadas en los próximos capítulos. Con el objetivo de implementar las acciones contenidas en el portafolio de adaptación y promover los mecanismos de administración, gestión y seguimiento, se sugiere el siguiente esquema de organización quien contempla la articulación institucional y la optimización de los recursos. El esquema anterior plantea la conformación de un grupo interinstitucional e intersectorial coordinador, asesor y gestor, encargado de la parte técnica, administrativa y toma de decisiones, en el marco de la promoción y desarrollo de las acciones para la adaptación al cambio climático.Dicho grupo optimizará los esfuerzos y recursos existentes, con el fin de evitar la duplicidad en las labores desempeñadas por los actores involucrados. Asimismo es necesario establecer un mecanismo de retroalimentación entre ellos y los componentes que establecen el grupo de concertación. Es importante resaltar la necesidad de establecer una dirección administrativa que se encargue de apoyar los temas de comunicación, educación para el desarrollo y coordinación de las diferentes actividades; todo esto con el ánimo de llevar a cabo el buen funcionamiento del proceso.En síntesis este esquema se presenta como una alternativa de organización y gestión para la implementación de medidas de adaptación al cambio climático, que busca facilitar la armonización de los procesos y realizar acciones interinstitucionales y sociales desde una orientación colectiva.A partir de los talleres realizados y de las indagaciones sobre información secundaria relacionada con medidas y proyectos formulados, en ejecución o en fase de formulación para la adaptación al cambio climático, y con el propósito de priorizar los identificados, se planteó la necesidad de asignar una importancia a los criterios de selección, que permitiera relacionar niveles de preferencia sobre los aspectos más relevantes en materia de adaptación para el municipio de La Cumbre, todo ello desde el conocimiento local representado por los actores sociales y participantes del municipio.La metodología empleada para facilitar el proceso de toma de decisión frente a la configuración de un portafolio de adaptación fue el AHP (Proceso Analítico Jerárquico). El AHP es un método de evaluación y decisión multicriterio, desarrollado por el matemático Thomas Saaty, el cual consiste en formalizar la comprensión intuitiva de problemas complejos mediante la construcción de un modelo Jerárquico. El propósito del método es permitir que el agente decisor pueda estructurar un problema multicriterio en forma visual, mediante la construcción de un modelo jerárquico que contiene tres niveles: meta u objetivo, criterios y alternativas (Hurtado y Bruno, 2005).El AHP se fundamenta en:• La estructuración de un modelo jerárquico (representación del problema mediante identificación de meta, criterios, subcriterios y alternativas).• Priorización de los elementos del modelo jerárquico.• Comparaciones binarias entre los elementos.• Evaluación de los elementos mediante asignación de \"pesos\".• Ranking de las alternativas de acuerdo con los pesos dados.• Síntesis y análisis de resultados.El AHP hace posible la toma de decisiones grupal mediante el agregado de opiniones, de tal manera que satisfaga la relación recíproca al comparar dos elementos; luego toma el promedio geométrico de las opiniones. Cuando el grupo de expertos genera cada uno su propia jerarquía, el AHP combina los resultados por el promedio geométrico de las mismas (Saaty, 1997).De acuerdo a esto se presenta a continuación el desarrollo de este esquema metodológico para las medidas y proyectos identificados, así como los resultados de este proceso para el municipio de La Cumbre.La estructuración del modelo jerárquico para la priorización de las medidas y proyectos identificados, se desarrolla a través de los siguientes componentes metodológicos, que configuran un proceso confiable para la toma de decisiones ante las medidas o proyectos actuales y futuros.Actualmente, en materia de adaptación al cambio climático son importantes los esfuerzos, recursos e inversiones sociales, que hacen parte de los contenidos programáticos de los instrumentos de planificación territorial; las agendas institucionales, los programas locales y las apuestas comunitarias. Todos estos de gran relevancia bajo un contexto general de adaptación. Sin embargo, no todas estas iniciativas responden en igual medida a las prioridades que para el municipio de La Cumbre puede representar el contexto sociocultural, ambiental y económico-político desde el cual busca una adaptación exitosa al cambio climático.Estas condiciones particulares, identificadas en la fase prospectiva de este ejercicio, contienen amenazas y vulnerabilidades que generan escenarios únicos ante los cuales adaptarse. Por tal motivo resulta de interés la priorización de medidas y proyectos que respondan a criterios o componentes de mayor importancia para los autores del proceso de adaptación en el municipio, de tal manera que dichos esfuerzos generen impactos positivos para este en el corto y mediano plazo.El objetivo del AHP en este estudio es el de Seleccionar las medidas o proyectos con mayor impacto potencial sobre las prioridades de mitigación y adaptación al municipio de La Cumbre.Dichas alternativas responden a problemáticas relacionadas con el cambio y la variabilidad climática y configuran un portafolio de medidas y proyectos que responden a este propósito.El departamento del Valle del Cauca ha venido desarrollando en diferentes municipios portafolios de estrategias, medidas y proyectos de mitigación y adaptación, planteando con esto un referente para el abordaje de la temática desde un enfoque articulador y coherente con las perspectivas de los vallecaucanos.Fruto de estos procesos y como resultado de diagnósticos participativos en los diferentes municipios, se evaluaron y validaron en La Cumbre siete criterios, por parte de los agentes claves involucrados en los talleres.Estos criterios fueron empleados para la calificación y selección de un número limitado de medidas y proyectos, las cuales conformarán el marco decisorio para la configuración del portafolio.En este sentido se muestra a continuación una pregunta clave y una breve descripción de cada uno de los criterios. El listado de los siete criterios se enuncia en un consecutivo desde el literal A hasta el G, el orden de estos es aleatorio, no corresponde a su importancia o jerarquía para la toma de la decisión.A. Soberanía y seguridad alimentaria ante el cambio climático Pregunta clave: ¿La medida o proyecto involucra procesos de adaptación relacionados con la soberanía y seguridad alimentaria ante la variabilidad y cambio climático?Por medio de este criterio se busca priorizar proyectos y medidas relacionadas con la adaptación ecológica y cultural de los agroecosistemas a la variabilidad y cambio climático, el reconocimiento y recuperación de saberes y prácticas productivas ancestrales que garanticen la soberanía y seguridad alimentaria ante el cambio climático.A través de este criterio se busca priorizar aquellas medidas y proyectos que involucran posibles adaptaciones desde la gestión del riesgo ante el cambio climático, involucrando obras de manejo y mitigación de riesgos por escenarios de variabilidad y cambio climático, como vendavales, incendios forestales, inundaciones urbanas, avenidas torrenciales, el manejo de procesos erosivos en zonas de ladera, entre otros.Pregunta clave: ¿La medida o proyecto representa posibles adaptaciones para la gestión integral del agua ante escenarios de variabilidad y cambio climático?Este criterio prioriza medidas y proyectos que involucran procesos de gestión del agua a escala de cuenca hidrográfica; desde aspectos ecológicos y culturales relacionados con la oferta, demanda y calidad del recurso, como la protección y recuperación de fuentes abastecedoras, el ahorro y uso eficiente del agua y la salud ambiental.Pregunta clave: ¿La medida o proyecto busca la conservación de ecosistemas estratégicos para la adaptación al cambio y la variabilidad climática?Este criterio busca entregar una mayor prioridad a las medidas y proyectos relacionados con la conectividad ecosistémica, la gestión ambiental en áreas naturales protegidas y la conservación y regulación de fuentes hídricas y de los bosques del Departamento. Involucra además proyectos que contemplan procesos de conservación en el marco de esquemas de pago por servicios ambientales y exenciones tributarias por conservación de áreas ambientales estratégicas E. Procesos y sistemas productivos ambientalmente sostenibles Pregunta clave: ¿La medida o proyecto plantea la incorporación de prácticas y procesos sostenibles en los sistemas productivos como respuesta al cambio y variabilidad climática?Este criterio entrega una mayor prioridad a las medidas o proyectos que incorporan de prácticas de manejo ecológicas en los sistemas productivos del municipio con el fin de hacerlos más resilientes y adaptativos ante el cambio y la variabilidad climática.Pregunta clave: ¿La medida o proyecto proporciona escenarios para la investigación, formación de capacidades o apropiación de conocimientos en torno a la gestión y adaptación ante el cambio climático?Este criterio entrega una mayor prioridad a medidas o proyectos relacionados con procesos de investigación, generación de información, formación de capacidades humanas para la gestión del cambio climático, así como la apropiación social, institucional y sectorial de su conocimiento, la proyección de procesos de educación ambiental enfocados a temas relacionados con el cambio climático y el reconocimiento de las vulnerabilidades e identidades culturales locales.Pregunta clave: ¿La medida o proyecto implica el desarrollo o transferencia de tecnologías ambientalmente apropiadas para la adaptación al cambio y la variabilidad climática?Por medio de este criterio, se otorga mayor prioridad a las medidas o proyectos que plantean procesos de apropiación de tecnologías (tradicionales y de punta) que sirven a posibles adaptaciones al cambio y la variabilidad climática, aplicables en el sector agropecuario, en los sistemas urbanos, o en los sistemas de información para la toma de decisiones, apropiadas en términos de viabilidad socio-económica, ambiental y cultural.Se plantea conforme a la metodología AHP, la estructuración de la jerarquía del problema objeto de decisión. Los criterios ya mencionados y las alternativas, constituidas por las medidas y proyectos identificados en función del objetivo, permitirán la materialización de un portafolio priorizado que atienda en mayor medida las perspectivas en cuanto a adaptación que se tienen en el municipio de La Cumbre.Figura 27. Modelo jerárquico para la toma de decisiones con AHP. Fuente: Adaptado de CVC (2014).Medidas con mayor impacto potencial en el proceso de adaptación Proyectos con mayor impacto potencial en el proceso de adaptaciónAplicación del modelo para la priorización de medidas y proyectosCon el ánimo de determinar las medidas y proyectos idóneos en el proceso de adaptación al cambio climático para el municipio, se compararon los siete criterios descritos anteriormente, usando la media absoluta; sabiendo que esta permite priorizar las alternativas.Posteriormente se realizó este proceso por pares para conocer las preferencias o pesos entre diferentes criterios; y de esta forma establecer una jerarquía, que permitiera la evaluación en forma independiente de cada una de las medidas y proyectos.Cuadro 16. Escala de valoración de Saaty.Fuente: Esquema propuesto por Morales et al. (2011).El objetivo de este ejercicio consistió en establecer la importancia de cada uno de los criterios que se han definido para la calificación y selección de medidas y proyectos de adaptación al cambio y la variabilidad climática en el municipio de La Cumbre.Los resultados de este ejercicio constituirán el insumo base para la realización de un análisis de jerarquías por medio de la metodología AHP, lo que permitirá establecer la importancia de los diferentes criterios.Cuadro 17. Formato utilizado para la calificación de criterios por pares.Fuente: Esquema propuesto por Morales et al. (2011).Para el desarrollo del ejercicio, los actores clave respondieron las preguntas que se encuentran en las columnas dos y tres del Cuadro 17, con base en la información contenida en cada una de las filas. Para el caso de la pregunta ¿En qué grado considera usted que es más importante?, el grado de importancia se calificó con base en la escala de valoración planteada por Saaty, colocando en el espacio del cuadro el valor numérico correspondiente al juicio realizado sobre la importancia.Valor numéricoModeradamente más importante 2Muy poderosamente más importante 4Extremadamente más importante 5En esta etapa del estudio se examinaron los elementos del problema aisladamente por medio de comparaciones de a pares. Las evaluaciones o juicios fueron emitidos por los actores claves interesados, que a su vez hicieron parte del desarrollo de los talleres.Para la valoración de criterios se empleó una escala ajustada a la planteada por Saaty (1997), donde se establece una serie de medidas que varían en un rango de 1 a 5, relacionadas con juicios verbales de tipo cualitativo, los cuales a su vez establecen un grado de preferencia sobre los elementos comparados.¿En qué grado considera usted que es más importante?3. Gestión integral del recurso hídrico 6. Generación de capacidades para la gestión y adaptación ante el cambio climático Cuadro 18. Ponderación de pesos asignados para cada criterio.Como resultado de la ponderación, los actores definieron una jerarquía para los criterios, de acuerdo a los pesos establecidos en las calificaciones, esta jerarquía puede apreciarse en el siguiente Cuadro.Cuadro 19. Jerarquía final de criterios.Una vez realizada la comparación y asignación de pesos con base en la preferencia individual de cada actor involucrado, se procedió a la obtención de una preferencia colectiva, a partir de la ponderación de los valores otorgados individualmente. En este proceso se promediaron las valoraciones realizadas por los actores clave.La preferencia resultante constituyó la jerarquía final otorgada para cada criterio en comparación; posteriormente esta fue relacionada con un valor numérico que finalmente permitiría la evaluación de las medidas y proyectos, a partir de la sumatoria de los valores relacionados con el cumplimiento o no de cada uno de los criterios.La ponderación efectuada, representa la medida absoluta del peso asignado a cada criterio por todos los actores, y puede apreciarse con mayor detalle en el siguiente cuadro.Criterios para la selección de acciones medidas y proyectos de adaptación Medida absoluta 1 Conservación de ecosistemas y áreas de interés ambiental 0,20 2 Gestión integral del recurso hídrico 0,18 3 Generación de capacidades para la gestión y adaptación ante el cambio climático 0,16 4 Desarrollo y transferencia de tecnologías ambientalmente apropiadas para la adaptación 0,13 5 Procesos y sistemas productivos ambientalmente sostenibles 0,13 6 Gestión del riesgo asociado a la variabilidad y cambio climático 0,12 7 Soberanía y seguridad alimentaria ante el cambio climático 0,08El resultado de este ejercicio plantea como el criterio de mayor importancia para el colectivo de participantes, en materia de mitigación y adaptación al cambio y variabilidad climática, los \"Procesos y sistemas productivos ambientalmente sostenibles\", la \"Conservación de ecosistemas y áreas de interés ambiental\" y \"Gestión integral del recurso hídrico\". Estos tres criterios configuran el grupo de mayor relevancia para las prioridades del municipio, evidenciando una perspectiva en la que medidas y proyectos con estos alcances podrían representar un mayor impacto en el proceso de adaptación.El segundo grupo de criterios, con pesos que oscilan entre 0.15 y 0.13, está constituido por el \"Desarrollo y transferencia de tecnologías ambientalmente apropiadas para la adaptación\" y la \"Generación de capacidades para la gestión y adaptación ante el cambio climático\". Estos representan criterios que si bien son relevantes, no son considerados los de mayor importancia.Finalmente la \"Gestión del riesgo asociado a la variabilidad y cambio climático\" y la \"Soberanía y seguridad alimentaria ante el cambio climático\" recibieron la menor calificación en el proceso de priorización. Este resultado no significa que estos criterios carezcan de relevancia, sino más bien que en estos aspectos desde la percepción de los participantes ya se cuenta con avances significativos, y no se percibe una vulnerabilidad considerable.Es importante aclarar que todos los criterios resultan importantes para los procesos de mitigación y adaptación, y que estas jerarquías deben ser interpretadas desde la complementariedad de las temáticas que debe abordar una estrategia, proyecto o medida, de tal forma que involucre más de un criterio y en mayor medida aquellos identificados como prioritarios.Consecuentemente, estos pesos y jerarquías serán de utilidad en el momento de evaluar cada proyecto o medida de mitigación y adaptación, en función de los criterios que resultan prioritarios para las particularidades que afronta el municipio, desde la perspectiva de sus habitantes.Contando con este resultado, a continuación se describen las medidas y proyectos identificados, y se presenta su respectiva evaluación desde las prioridades establecidas anteriormente.Se identificaron un total de 24 proyectos con impacto potencial sobre la adaptación. Estos constituyen las alternativas evaluadas desde los criterios de sostenibilidad aplicados en el marco de la metodología AHP.Para facilitar la comprensión de los resultados obtenidos, se plantea un sistema de cualificación de las medidas y proyectos, basado en los umbrales determinados para cada componente o criterio en el proceso de priorización descrito anteriormente. De acuerdo a la aplicación del sistema de cualificación y priorización de criterios a través de las comparaciones entre ellos, se obtuvo como resultado final el ordenamiento de las medidas y proyectos. Este proceso se desarrolló a partir de la evaluación o cualificación bajo un esquema de pregunta clave con única respuesta, donde cada alternativa fue sometida al cumplimiento de cada criterio de evaluación. El formato utilizado se presenta a continuación Cuadro 21. Formato para la evaluación de medidas, acciones o proyectos en función del grado de aporte a las prioridades de adaptación al cambio y la variabilidad climática en el municipio.Estos umbrales determinan un grado de aporte a las prioridades del municipio en términos de adaptación para cada proyecto o medida evaluada, donde se presentan mayores aportes en aquellos proyectos que responden de manera integral a más de un componente o criterio priorizado. El Cuadro 20 presenta el sistema de cualificación utilizado en el proceso de priorización de medidas y proyectos.A mayor valor obtenido por el proyecto en el aporte a las prioridades del municipio, mayor impacto integral sobre los criterios o componentes de la adaptación Valoración (grado de aporte a las prioridades de adaptación)Hasta el 25%Proyectos identificados que por sus características son importantes para el municipio, pero constituyen respuestas puntuales a temáticas o criterios concretos de adaptación; no obstante, podrían ser desarrollados si las condiciones de gobernabilidád son favorables o son proyectos que pueden ser objeto de revisión para ampliar su impacto sobre los componentes prioritarios. Su implementación debe desarrollarse en el largo plazo.Proyectos identificados que a pesar de su mediano impacto asociado pueden empezar a implementarse a mediano plazo, toda vez que las condiciones para su desarrollo sean adecuadas.Proyectos identificados que por sus características y potencial de impacto deben ser desarrollados de forma inmediata o a corto plazo; representando estrategias integrales que aportan a diferentes componentes de adaptación de importancia para el municipio; no obstante, podrían ser abordadas en un horizonte superior en caso de que sea necesario crear condiciones para su óptimo desarrollo. Se presentan entonces los resultados de la priorización de acuerdo a la valoración de impacto en los componentes de adaptación, presentándose según los resultados proyectos de carácter: prioritario, necesario y de impacto puntual, como se describe en el siguiente cuadro.Cuadro 22. Clasificación de los proyectos de acuerdo a la valoración de impactos en los componentes para la adaptación al cambio y la variabilidad climática.( Siguiendo este orden de ideas se presentan a continuación las iniciativas de adaptación, organizadas de acuerdo a la importancia establecida en la priorización de criterios para la adaptación al cambio y la variabilidad climática.Se presenta entonces una ficha por cada iniciativa establecida, las cuales están conformadas por una descripción de objetivos y metodología para su desarrollo y un mapa con la espacialización de los proyectos más relevantes. Estas iniciativas constituyen una propuesta complementaria desde la prospectiva territorial desarrollada, que refleja en sus plazos los resultados del ejercicio de priorización, constituyendo un insumo desde lo local, para la futura articulación de todos estos en el marco de los contenidos programáticos que conformarán los planes de adaptación al cambio climático a escala regional.Es importante resaltar la necesidad de planear un proceso de adaptación para el municipio de La Cumbre, prefiriendo las medidas enfocadas a la prevención de los riesgos y no aquellas que buscan enfrentarlos. Establecer acciones de manejo, protección y conservación de la Reserva Forestal de Bitaco y el distrito de conservación de suelos Cañon del rio GrandePreservar la diversidad biológica existente en este ecosistema de tal forma que las actividades desarrolladas en el municipio no la afecten.Con el ánimo de determinar las acciones a desarrollar en la Reserva Forestal de Bitaco se describe a continuación una zonificación ambiental que pueda determinar su uso.Las unidades de zonificación se pueden describir así:Zonas prioritarias de conservación: Son las áreas en las que existen ecosistemas o zonas que han permanecido inalteradas y rodeadas de áreas con agroecosistemas o tierras modificadas.Zonas de protección forestal: Son las que deben conservar su cobertura boscosa natural, con el fin de proteger los recursos naturales y brindar otros servicios ambientales.Zonas de protección hídrica: Son aquellas donde se identifican los nacimientos de los ríos principales y secundarios, especialmente los nodos que dan origen a las corrientes de agua.Zonas de restauración: Son áreas que presentan un grado de deterioro ambiental, pero que propiciarán la continuidad de los procesos naturales.Zonas a sustraer de la reserva: Son áreas con obras de infraestructura que han sido construidas al interior de la Reserva Forestal del Pacífico y el enclave subxerofítico, y que hacen parte del desarrollo de la región o tienen alguna importancia local o regional (Henao et al., 2008).Colombia, Alcaldía MunicipalComponente estratégico: Conservación de ecosistemas y áreas de interés ambiental Programa Reforestación de las zonas protectoras de los ríos, especialmente los tributarios del río BitacoMejorar las condiciones biológicas y físicas del río Bitaco y sus tributarios para conservar y mantener en estado óptimo los cursos de agua.La reforestación se presenta como una alternativa para conservar y mantener los cursos de agua, mejorar el paisaje y controlar la erosión de los suelos.Los planes de reforestación deben estar articulados a la situación específica de la zona, es por ello que se debe realizar un estudio del bosque natural y del suelo para identificar las especies de flora nativa, y así realizar un acondicionamiento de estas.Posteriormente, se adecua la zona para la plantación de las especies, se realiza una demarcación de los lugares donde estos van a ser ubicados, se excavan los hoyos y se trasplantan las plántulas, dejando el suelo firme.Es necesario tener en cuenta el mantenimiento que demanda dicha plantación durante los dos o tres primeros años (fertilizaciones, podas, entre otros) y los costos asociados, que deben para ser incluidos en el inicio del plan de reforestación (Miranda y Torres, 2010).Componente estratégico: Conservación de ecosistemas y áreas de interés ambientalRegulación y formulación de políticas municipales que controlen y penalicen el uso inadecuado de los recursos naturalesProteger y salvaguardar los recursos biológicos e hídricos del municipio.La fiscalización de la conservación de los recursos naturales no sólo es tarea de la autoridad ambiental legalmente definida, CVC; sino que también debe incorporar la participación de toda la comunidad y todos los actores que están involucrados en la misma. Esto permite que la formulación de políticas municipales que controlen y penalicen el uso inadecuado de recursos naturales sea un proceso concertado y participativo. En ese sentido se debe propender por establecer lineamientos claros de política ambiental en el municipio que busquen conservar los recursos naturales. Este proceso debe contener al menos estas etapas:1. Establecimiento del equipo de trabajo. 2. Diagnóstico del estado ambiental del municipio, ecosistemas, coberturas, conflicto de uso del suelo, zonas de deforestación, entre otras. 3. Definición de acciones de protección y control. 4. Ejecución de acciones de protección y control. 5. Seguimiento y evaluación del control y la fiscalización ambiental.Componente estratégico: Conservación de ecosistemas y áreas de interés ambiental Programa Delimitación de las zonas protectoras de los ríos y reforestación de especies protectoras en las riberas de estosProteger y recuperar los recursos naturales de los ríos y minimizar las consecuencias generadas por el deterioro de estas zonas.Componente Estratégico: Procesos y sistemas productivos ambientalmente sostenibles Programa Implementar acciones de recuperación y restauración en suelos degradados con un grado alto y moderado de erosión.Estabilizar el suelo erosionado y degradado e incrementar los aportes de materia orgánica para su restablecimiento.La restauración de los suelos incluye acciones de regeneración de los ciclos naturales del suelo mediante revegetación con especies rastreras y arbustivas, reforestación con especies arbóreas nativas, así como trabajos de contención con estacados. La restauración de suelos se desarrolla de acuerdo con las condiciones biológicas y edafológicas particulares del sitio, lo cual también determina la selección de especies a utilizar.Para llevar a cabo un proceso de restauración de suelos es necesario realizar lo siguiente:1. Hacer un diagnóstico del estado del suelo y formular el programa de restauración con apoyo de un técnico.2. Establecer especies pioneras para incrementar la estabilidad y contenido de materia orgánica del suelo.3. Clavar estacas vivas de especies nativas arbóreas, de alrededor de 1,2 m, en los taludes con erosión severa y reforzarlas con estacas perpendiculares a la pendiente del terreno.4. Reforestar con especies nativas de viveros locales o trasplantar retoños de áreas forestales aledañas cuando sea viable. Considerar una densidad media de 1.200 árboles/ha.5. Realizar acciones complementarias para la retención de suelo y agua.6. Realizar tareas de mantenimiento.7. Evaluar y dar seguimiento al programa (PNUMA y Frankfurt School, 2013).Componente Estratégico: Procesos y sistemas productivos ambientalmente sostenibles Programa Diversificación de cultivosAumentar la seguridad alimentaria, aumentar la resistencia a las plagas y los cambios extremos de temperatura, sequía y cambios en patrones de lluvia. También permite distribuir pérdidas en caso de daños a cultivos o menor productividad en las cosechas.El proceso de expansión de la piña como monocultivo genera la necesidad de proponer acciones que ayuden a generar mayor seguridad alimentaria en el municipio y a su vez, permita que la degradación de los suelos sea menor. Es por eso, que la diversificación de cultivos en la zona es una estrategia de adaptación clave para la agricultura, sobre todo con cultivos que no requieran de riego constante como los frutales, y que a la vez ayude a la economía y la seguridad alimentaria de la población.También la diversificación de cultivos según PNUMA (2013) ayuda a reducir insectos, realizar control biológico, mejorar la utilización de los espacios, aumentar la resiliencia y mejorar los ingresos de los productores.Componente Estratégico: Procesos y sistemas productivos ambientalmente sostenibles Programa Manejo integrado de plagas en los cultivos más importantes, como el café, la piña, la caña panelera, entre otrosDisminuir los potenciales daños a cultivos por especies oportunistas que aprovechan cambios en patrones de lluvia o temperatura para propagarse.El manejo integrado de plagas se desarrolla combinando diferentes prácticas agrícolas: rotación de cultivos, control mecánico y control biológico, reemplazando de esta manera el uso de pesticidas, herbicidas y otros insumos químicos.La metodología de implementación abarca los siguientes pasos:1. Identificar y diagnosticar el problema a tratar. 2. Contar con información sobre la biología, dinámica poblacional, hospederos, daños a cultivos y enemigos naturales. 3. Establecer prácticas preventivas como plantas atrayentes y repelentes. 4. Reparar y aplicar herbicidas y pesticidas ecológicos. 5. Implementar control biológico y mecánico. 6. Llevar un monitoreo continuo de plagas y enfermedades que surgen, así como la bitácora de resultados de los métodos empleados (PNUMA, 2013 Todo esto, en aras de que desde la academia se pueda generar el fundamento científico y técnico para la formulación de políticas y acciones que ayuden a la mitigación y adaptación frente a los cambios esperados.En este sentido se resalta una herramienta metodológica que sirve para transversalizar el cambio climático en la planificacion; la Adaptación basada en Ecosistemas (EbA), que asocia la conservación de la biodiversidad como una forma de abordar el cambio climático, proporcionando al mismo tiempo beneficios de bienestar social y conservación de los servicios ambientales que prestan los ecosistemas (Vejarano, 2013).Componente Estratégico: Generación de capacidades para la gestión y adaptación ante el Cambio Climático Programa Fomento de la cooperación interinstitucional entre privados y públicosGarantizar la integración y participación de toda la comunidad y las instituciones presentes en el municipio, en los procesos de adaptación al cambio climático.Como bien se plantea en el Plan Nacional de Adaptación (DNP, 2012), la articulación interinstitucional y la participación de las comunidades es fundamental para llevar a cabo los procesos de adaptación, es por eso que se deben propiciar espacios de concertación que permitan la articulación de políticas encaminadas a la mitigación y adaptación al cambio climático.Empresas privadas, asociaciones de productores, instituciones educativas, fundaciones, centros de investigación, entre otrosComponente Estratégico: Generación de capacidades para la gestión y adaptación ante el Cambio Climático Programa Conformación de una cooperativa agrícola localEstablecer un modelo de producción local sostenible, que permita a los agricultores tener una relación más directa con los mercados, mejorando el bienestar de los asociados asegurando de manera consecuente la autosuficiencia alimentaria, el cuidado del medio ambiente y la obtención de una rentabilidad económica.Las cooperativas agrícolas se convierten en una oportunidad para que los agricultores saquen un mayor provecho de las condiciones del mercado. Esto implica la incorporación de los productores en el proceso de comercialización dentro de la cadena de valor. Una forma de mejorar la capacidad adaptativa de los productores es conformar grupos o cooperativas que permitan hacer los productos más competitivos en el mercado.Componente Estratégico: Generación de capacidades para la gestión y adaptación ante el Cambio Climático Programa Fortalecer la capacitación de la población en temas relacionados con el impacto del cambio climático en la salud públicaSensibilizar, formar y capacitar a la población acerca de los impactos que puede generar el cambio climático en la salud y así establecer algunas medidas preventivas antes estos.El cambio climático y su impacto en la salud pública se consideran un reto destacado a la hora de proteger a los ciudadanos frente a los riesgos sanitarios.Algunos de los efectos directos e indirectos que se pueden generar por el cambio climático en la salud pública son: enfermedades transmitidas por los alimentos, por los vectores, los problemas derivados del agua, el deterioro de la calidad del aire, el aumento de la estacionalidad y la duración de los trastornos alérgicos, entre otros.Razón por la cual es necesario el desarrollo de planes de acción sanitarios para fenómenos meteorológicos extremos, integrados en los planes de preparación de las autoridades y los servicios sanitarios para ayudar al municipio a evaluar sus vulnerabilidades sanitarias ante el cambio climático y a desarrollar estrategias de adaptación sanitaria (COM, 2009).Dichos planes deben tener una comunicación integral y transversal para que toda la población pueda participar e involucrarse activamente. Promover y dinamizar procesos de educación ambiental en el municipio, a través del diseño de estrategias basadas en la gestión ambiental local y en la política nacional de educación ambiental.El plan de educación ambiental está dirigido a las instituciones educativas rurales, urbanas, públicas y privadas del municipio; el sector empresarial y comercial, organizaciones sociales y comunitarias y diferentes secretarías de la administración municipal.El plan de educación ambiental consolida las estrategias para impartir la educación ambiental, favoreciendo la revisión permanente de acciones y el fortalecimiento de los procesos, así como la contextualización del entorno y el desarrollo coherente con los demás planes que se ejecutarán en la ciudad y, que necesariamente impactarán el proceso de educación ambiental.Razón por la cual su institucionalización se hace primordial para avanzar en el desarrollo sostenible del municipio (Montoya, 2012) Formación para el trabajo minero. Esta línea hace énfasis en formar capacidades de capital humano para el desarrollo de la actividad minera, pero sobre todo en adelantar un proceso de acompañamiento continuo a los mineros en procesos productivos y empresariales.Inclusión diferencial y desarrollo social. Esta línea se enfoca en definir herramientas, estrategias y acciones que permitan trasladar los beneficios de la minería a la población.Información para la formalización. Esta línea se enfoca en generar herramientas, instrumentos y sistemas que brinden información confiable, oportuna, pertinente y actualizada del sector minero y de las variables existentes en torno a la formalización de la minería en Colombia.Fortalecimiento técnico, asociativo y empresarial. Esta línea apunta a promover la innovación y el desarrollo tecnológico de la actividad minera con el propósito de lograr mayores niveles de productividad y competitividad.Recursos e incentivos para la formalización. Esta línea se enfoca en establecer programas de apoyo económico al minero informal, a pequeña y mediana escala y facilitar su acceso al crédito, mediante la asignación de recursos financieros.Minería bajo el amparo de un título. Genera condiciones para que el desarrollo de las actividades mineras se realicen en el marco de la legalidad.Normatividad y lineamientos para la formalización minera. Esta línea se enfoca en definir los instrumentos normativos y legales necesarios para la formalización de la actividad minera en Colombia (MinMinas, 2014). Objetivo Formular e implementar las normas y directrices para el manejo y ordenación de las cuencas hidrográficas, con el fin de darle un uso sostenible a los recursos y procesos que en ellas se desarrollan.La formulación e implementación de los planes de ordenación y manejo de cuencas hidrográficas requieren de seis fases:1. Aprestamiento: Se definen; el plan de trabajo, la identificación, caracterización y priorización de actores, la estrategia de participación, la revisión y consolidación de información existente, el análisis de la situación inicial y el plan operativo. 2. Diagnóstico: Se consolida el consejo de cuenca y se determinará el estado actual de la cuenca en sus componentes: físico-biótico, socioeconómico y cultural, político administrativo, funcional y de gestión del riesgo. 3. Prospectiva y zonificación ambiental: Se diseñan los escenarios futuros del uso coordinado y sostenible del suelo, de las aguas, de la flora y de la fauna presente de la cuenca, y se define en un horizonte no menor a 10 años el modelo de ordenación de la cuenca. 4. Formulación: Se define el componente programático, las medidas para la administración de los recursos naturales renovables y el componente de gestión del riesgo. 5. Ejecución y seguimiento: Se establecen las acciones de coordinación que deben adelantar las Corporaciones Autónomas Regionales y de Desarrollo Sostenible competentes para la ejecución del plan de ordenación y manejo de la cuenca hidrográfica. 6. Evaluación: Se aplican los mecanismos definidos en el respectivo plan de seguimiento y evaluación definido en la fase de formulación (MinAmbiente, 2014). Este sistema de tratamiento debe contar con los siguientes componentes:Cámara de rejas: Ubicada antes del dispositivo de ingreso, impide el paso de elementos gruesos o de dimensiones considerables presentes en las aguas residuales.Dispositivo de ingreso: La tubería PVC del emisor, ingresa al tanque mediante una Tee, alargada en la parte inferior, permitiendo verter los desagües debajo del nivel de agua del tanque séptico.Tanque séptico: Es una estructura de concreto armado de forma rectangular, con dimensiones determinadas en función de los caudales producidos en el sistema de alcantarillado. Pueden ser de una o dos cámaras.Dispositivo salida: Está compuesta por una Tee de PVC, en un nivel más bajo que el dispositivo de ingreso. Permite la conducción de la fracción líquida hacia pozos de infiltración o campos de precolación.Lecho de secado: Son pequeñas pozas a donde es trasladado el lodo acumulado en el fondo del tanque séptico luego de un período predeterminado, para que se deshidraten por drenaje y evaporación.Cabe Restauración del humedal la laguna en el corregimiento de Jiguales Objetivo Mejorar la disponibilidad y calidad del recurso hídrico que genera este ecosistema.Los humedales son un elemento del ambiente supremamente importante, ya que cumplen funciones de mitigación de impactos por inundaciones, absorción de contaminantes, retención de sedimentos, recarga de acuíferos y proveyendo hábitats para animales y plantas, incluyendo un número representativo de especies amenazadas y en vías de extinción.Según la Política Nacional de Humedales en Colombia, desarrollada por el Ministerio del Medio Ambiente en 2002, los municipios y distritos al realizar dichos planes deben, entre otras cosas, localizar las áreas con fines de conservación y recuperación paisajística e identificar los ecosistemas de importancia ambiental. También les corresponde clasificar los suelos en urbanos, rurales o de expansión. Dentro de cualquiera de estas tres clases puede existir lo que se define como suelo de protección. También será obligación de la CVC seguir velando por la conservación del humedal de Jiguales. Fortalecer las capacidades de gestión y planificación territorial del concejo municipal y así establecer los cambios en los escenarios de riesgo y las medidas de preparación para la respuesta ante emergencias y desastres.Esta actividad puede ser desarrollada en el marco del programa para la gestión del riesgo en el Valle del Cauca, mediante asesorías directas a los CMGR con jornadas de planeación y entrenamiento para atender las emergencias.En este sentido es necesario el fortalecimiento comunitario e institucional; que se puede llevar a cabo mediante encuentros con las juntas de acción comunal y las instituciones; y así establecer canales de comunicación entre ellos.Posteriormente se dan a conocer las labores que desarrollan cada uno y se canalizan las ideas en un bien colectivo, fortaleciendo entonces la capacidad de gestión de estos.Cabe resaltar que estos procesos de fortalecimiento deben ser continuos, para identificar los escenarios de riesgo y adoptar las estrategias de mitigación, mejoramiento y solución a dichos problemas de manera oportuna (Corporiesgos, 2013) Instrucción 1. Nombre del proyecto/acción. 2. Objeto del proyecto/acción. 3. Criterio. 4. Nombre de la institución y de la persona directamente responsable del proyecto/acción. 5. Datos de contacto de la persona responsable (email y teléfono). 6. Estado del proyecto: En formulación (EF), Formulado y sin recursos (FSR), Formulado y con recursos (FCR), En ejecución (E) 7. Fecha en que fue/será desarrollado el proyecto. Escriba el número del criterio: 1. Soberanía y seguridad alimentaria ante el cambio climático 2. Gestión del riesgo asociado a la variabilidad y cambio climático 3. Gestión integral del recurso hídrico 4. Conservación de ecosistemas y áreas de interés ambiental 5. Procesos y sistemas Productivos ambientalmente sostenibles 6. Generación de capacidades para la gestión y adaptación ante el cambio climático 7. Desarrollo y transferencia de tecnologías ambientalmente apropiadas para la adaptación al cambio y variabilidad climática. Formato de valoración de criterios para la selección de medidas y proyectos de adaptación al cambio y variabilidad climática en el municipio de La Cumbre, de acuerdo a la metodología de Análisis Jerárquico (AHP)El objetivo del siguiente ejercicio consiste en establecer la importancia de cada uno de los criterios que se han definido para la calificación y selección de medidas y proyectos de adaptación al cambio y variabilidad climática en el municipio de La Cumbre Los resultados de este ejercicio constituirán el insumo base para la realización de un análisis de jerarquías por medio de la metodología AHP, lo que permitirá establecer la importancia de los diferentes criterios.Para el desarrollo del ejercicio, se procederá a responder las preguntas que se encuentran en la segunda y tercera columna del Cuadro A2, con base en la información contenida en cada una de las filas. Para el caso de la pregunta ¿En qué grado considera usted que es más importante? (Tercera columna en el Cuadro A2), el grado de importancia se calificará con base en el Cuadro A1, colocando en el espacio respectivo del cuadro, el valor numérico que corresponda al juicio que se realice sobre la importancia. La escala definida para esta valoración (de 1 a 5) ha sido diseñada con base en la metodología de Análisis Jerárquico AHP. Ejemplo de aplicación:En el anterior ejemplo, la valoración efectuada asignó una preferencia al criterio número 6, por encima del criterio número 3; y el grado o valoración de la importancia que se otorgó es de 4, conforme a la escala planteada en el Cuadro A1.A continuación se presenta el formato vacío (Cuadro A2) donde podrá usted efectuar las calificaciones. Recuerde consultar, al final del presente documento, la explicación de cada criterio si tiene alguna duda en el proceso de comparación y calificación. Por favor evite realizar comparaciones cuyo valor de preferencia sea 1 (igualmente importante), reserve dicha opción para casos extremos en que no le sea posible tener una preferencia. Por medio de este criterio, se busca priorizar proyectos y medidas relacionadas con la adaptación ecológica y cultural de los agroecosistemas a la variabilidad y el cambio climático, el reconocimiento y recuperación de saberes y prácticas productivas ancestrales que garanticen la soberanía y seguridad alimentaria ante el cambio climático.Pregunta clave: ¿La medida o proyecto contempla adaptaciones, manejo o mitigación de riesgos relacionados con variabilidad y cambio climático?A través de este criterio, se busca priorizar aquellas medidas y proyectos que involucran posibles adaptaciones desde la gestión del riesgo ante el cambio climático, involucrando obras de manejo y mitigación de riesgos por escenarios de variabilidad y cambio climático, como vendavales, incendios forestales, inundaciones urbanas, avenidas torrenciales, el manejo de procesos erosivos en zonas de ladera, entre otros.Pregunta clave: ¿La medida o proyecto representa posibles adaptaciones para la gestión integral del agua ante escenarios de variabilidad y cambio climático?Este criterio prioriza medidas y proyectos que involucran procesos de gestión del agua a escala de cuenca hidrográfica; desde aspectos ecológicos y culturales relacionados con la oferta -demanda y calidad del recurso, como la protección y recuperación de fuentes abastecedoras, el ahorro y uso eficiente del agua y la salud ambiental.Pregunta clave: ¿La medida o proyecto busca la conservación de ecosistemas estratégicos para la adaptación al cambio y variabilidad climática?Este criterio busca otorgar una mayor prioridad a las medidas y proyectos relacionados con la conectividad ecosistémica, la gestión ambiental en áreas naturales protegidas y la conservación y regulación de fuentes hídricas y de los bosques del departamento. Involucra además proyectos que contemplan procesos de conservación en el marco de esquemas de pago por servicios ambientales y/o exenciones tributarias por conservación de áreas ambientales estratégicas.Pregunta clave: ¿La medida o proyecto plantea la incorporación de prácticas y procesos sostenibles en los sistemas productivos como respuesta al cambio y variabilidad climática?Este criterio brinda una mayor prioridad a las medidas o proyectos que incorporan prácticas de manejo ecológicas en los sistemas productivos del municipio con el fin de hacerlos más resilientes y/o adaptativos ante el cambio y variabilidad climática.Pregunta clave: ¿La medida o proyecto proporciona escenarios para la investigación, formación de capacidades y/o apropiación de conocimientos en torno a la gestión y adaptación ante el cambio climático?Este criterio entrega una mayor prioridad a medidas o proyectos relacionados con procesos de investigación, generación de información, formación de capacidades humanas para la gestión del cambio climático, así como la apropiación social, institucional y sectorial de su conocimiento, la proyección de procesos de educación ambiental enfocados en temas relacionados con el cambio climático y el reconocimiento de las vulnerabilidades e identidades culturales locales.Por medio de este criterio, se otorga mayor prioridad a las medidas o proyectos que plantean procesos de apropiación de tecnologías (tradicionales y de punta) que sirven a posibles adaptaciones al cambio y variabilidad climática, aplicables en el sector agropecuario, en los sistemas urbanos o en los sistemas de información para la toma de decisiones, apropiadas en términos de viabilidad socioeconómica, ambiental y cultural.","tokenCount":"13275"} \ No newline at end of file diff --git a/data/part_3/3241365702.json b/data/part_3/3241365702.json new file mode 100644 index 0000000000000000000000000000000000000000..23e7c46007c6d9ec2f805f848aea3fc5b456b393 --- /dev/null +++ b/data/part_3/3241365702.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"7cf3cc04e2ea731fd419b3808634252c","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/c76f578e-2d04-4b4b-83b3-0e5a403c798b/retrieve","id":"240458297"},"keywords":["• P608 -Activity 2","2","2: Establish protocols for survey of antimicrobial use and for monitoring AMR OICR: Outcome Impact Case Report"],"sieverID":"b6e8f315-ad04-4d73-88d4-a02183259fdd","pagecount":"5","content":"The World Organisation for Animal Health (OIE) is a key institution for global veterinary policy and its outputs help regulate international trade of livestock and livestock products. The guideline was developed in support of the Global Action Plan on antimicrobial resistance (AMR) and helps to identify where private and public sector vaccine research and development activities should focus. ILRI's participation drew attention to developing country issues such as key diseases, challenges for vaccine uptake and the importance of delivery systems.Antimicrobial resistance has been recognized as one of the most significant risks to global health, threatening our ability to treat commons infectious diseases, resulting in prolonged illness, disability and death in both humans and animals. Unfortunately, antibiotics are overused and misused in people and animals and often given without professional oversight, for example, taken for viral infections, given as animal growth promoters or used to prevent diseases in healthy animals.The Global Action Plan on antimicrobial resistance outlines approaches to promote best practices to avoid the emergence and spread of antibiotic resistance, including the optimal use of antibiotics in humans and animals. Vaccines can reduce antimicrobial resistance by: 1) preventing infectious diseases whose treatment would require antimicrobial drugs; 2) reducing the prevalence of viral infections, which are inappropriately treated with antibiotics, and which can give rise to secondary infections that require antibiotic treatment; and 3) developing new or improved vaccines to treat diseases that are becoming difficult to treat or are untreatable due to antimicrobial resistance.An ILRI scientist participated in the World Organisation for Animal Health (OIE) ad hoc group on prioritisation of diseases for which vaccines could reduce antimicrobial use in cattle, sheep and goats. Of the many livestock diseases, the guideline lists the most prevalent and important pathogens in cattle, sheep and goats that result in overuse of antimicrobial drugs and where vaccines could play a role in reducing drug use. Most of these pathogens are problems of intensification. ILRI brought in the perspective of the diversity of farming systems in developing countries and the importance of endemic and vector-borne diseases and ecto-and endoparasites that may not be constraints to large scale livestock farming in the North.Partly influenced by the ILRI inputs to the discussion, the group addressed the challenges of access to vaccines and highlighted neglected diseases which are a problem for poor farmers in developing countries. Specifically, the consensus report covers the following that otherwise risked being missed: 1) Donor support will be critical to ensure vaccine development for neglected diseases that are not financially attractive targets for investments by pharmaceuticals companies.2) Barriers to adoption include vaccine distribution as well as prohibitive costs.3) Contagious Bovine Pleuro-Pneumonia (CBPP) entails high use of antimicrobial agents in Africa and current vaccines are inadequate. 4) Vaccines against multiple tick species could be a useful tool to reduce antimicrobial use associated with tick infestation.• 240 -World Organisation for Animal Health (OIE) guidelines on prioritization of animal diseases for which the use of vaccines could reduce antimicrobial use (https://tinyurl.com/2g2mwzd7)Cluster of activities 3 in the livestock health flagship \"develop diagnostics and vaccines to improve animal disease programs\" focuses on reducing mortality and morbidity due to disease as a component of increasing livestock productivity. Healthier livestock due to vaccination would also mean there is less reliance on the use of drugs, such as antibiotics. The Global Action Plan on antimicrobial resistance (1) outlines approaches to promote best practices to avoid the emergence and spread of antibiotic resistance.The World Organisation for Animal Health (OIE) is the global standard-setting organisation for animal health, providing reference standards, protocols and guidance on diagnostics and setting the list of global notifiable diseases which Member Countries must report. An ILRI scientist participated in the World Organisation for Animal Health (OIE) Ad Hoc Group on prioritisation of diseases for which vaccines could reduce antimicrobial use in cattle, sheep and goats (2), bringing in the perspective of lower and middle income countries (LMICs) raising the following considerations that were adopted by the Group. 1) While regional perspectives should be taken into consideration for some aspects, bacterial and non-bacterial diseases should be ranked based on their global importance. The ToR were amended accordingly. 2) The target audience for the report was public funders, public and private research and development institutions (to help them prioritise their investments), and national and international policy makers in animal health.3) Especially for neglected diseases that are not financially attractive targets for investments by pharmaceuticals companies, donor support would be critical to ensure vaccine development. 4) While the cost of vaccine was important, it was more appropriate to refer to 'barrier to adoption', which encompasses cost-prohibition and also includes vaccine distribution. The ToR were amended accordingly.Contagious Bovine Pleuropneumonia (CBPP, Mycoplasma mycoides subsp. mycoses) is a key disease in Africa, where it entails high use of antimicrobial agents, which could lead to establishment of a carrier state. Vaccines have low efficacy and short duration of immunity and safety issues (residual virulence), with access limited to official control programmes. The Group highlighted that, in some regions, antimicrobial use is associated with tick infestation to control tick-borne pathogens. Vaccines exist against some individual tick species (i.e. Rhipicephalus microplus); vaccines against multiple species could be a useful tool for reducing antimicrobial use. Theileriosis (due to T. parva and T. annulata, depending on the region) is also a major issue.","tokenCount":"884"} \ No newline at end of file diff --git a/data/part_3/3243508039.json b/data/part_3/3243508039.json new file mode 100644 index 0000000000000000000000000000000000000000..8c763d51e71ecc0feb7849bbc5c8685022c130f3 --- /dev/null +++ b/data/part_3/3243508039.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"0681a9978e4b287e179c224520925deb","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/b6a69149-c31d-4c82-a1a2-03acdd89d89a/retrieve","id":"-894797294"},"keywords":[],"sieverID":"a6c6891f-c87b-4bf8-9220-e8038a6c390f","pagecount":"18","content":"In a country of about 200million people, the government has over the years constituted various initiatives to address the issue of unemployment, food security, and youth involvement in agriculture. However, the impact of these initiatives has been minimal due to the inconsistency in government policies, changes in government, inadequate implementation mechanism amongst others. This study, therefore, evaluated the impact of the N-power Agro Program on youth employment and income generation through agribusiness in Nigeria. Six hundred and forty-five respondents were randomly selected from the database of N-Power. Structured questionnaires were used in obtaining the data. The statistical analysis of collected data applied descriptive methods, logistic regression model, and regression discontinuity design. The value of ATE of the regression discontinuity design of the income of the participants of N-Power Agro is greater by N30,191.46 than for the nonparticipants. The result of the logistic regression model shows that age, level of education, years of agribusiness experience, and employment status significantly influenced the choice of creating employment through agribusiness and of participating in the N-Power Agro program. The impact of the N-Power Agro program for Nigeria's young men and women on employment and income generation for participants was shown to be effective and positive with the RDD recording an increase in the beneficiaries' income and a discontinuity in the design. Upscaling this program and wider implementation in other countries in collaborations with youth, rural communities and private sectors will ensure that the government can bridge the skills deficit in Africa's youth, develop their capacities for entrepreneurship, and hence, increase jobs creation.Africa's young people are faced with a major socioeconomic problem of unemployment [1] despite being home to the youngest and most quickly growing population in the world. There are over 330 million people aged between 15 and 30 years, with about 195 million currently living in the rural areas [2], and 60%-70% of the population is below 30 years [3]. According to the United Nations, the youth are individuals within the age group of 15 to 24 years [4]. However, the National Policy on Youth Development in Nigeria defines the youth as individuals within the age group of 18 and 35 years [5]. Since many of these young African men and women resides in rural areas, they tend to have limited opportunities for gainful employment [6]. Nevertheless, they have unexploited potentials to transform the agricultural sector through their youthfulness, innovation, and entrepreneurship [7].Nigeria is a paradigm of widespread youth unemployment which has been a central issue to the economy, particularly as it relates to policies in agricultural transformation. The youth unemployment poses grave economic and social problems and requires urgent attention since the youth are the engine room that propels any society to greater heights [8]. This worrisome situation has led to several debates that have focused on the impacts of various patterns of structural changes in economies on the creation of jobs. Despite the various interventions by successive governments' in reducing the unemployment rate, the percentage remains high [9] and as at the third quarter of 2018, the unemployment rate rose to 23.13%, up from 21.1% in 2010; while the youth unemployment rate stood at 55.4% [10]. Since about 60% of the 200 million population being youth, and of which 55.4% of them are unemployed/underemployed; youth unemployment remains a challenge up until today [11]. Against this backdrop, agribusiness is seen as a good strategy out of this problem, since with increased investment and adequate policies, agribusiness and agricultural programs hold considerable potential to provide opportunities for gainful employment for the teeming Nigerian youth [12], and a few studies, such as Abioye and Ogunniyi; Lyocks et al.; Muhammad-Lawal et al.; Yunusa and Giroh [12][13][14][15] have investigated the role of agribusiness in employment generation for the youth. Although they all assert that the participation of the youth in agribusiness would create more employment and reduce poverty among them, none has been able to evaluate the impact of existing agricultural programs on employment creation among young people in Nigeria. Surprisingly, there is a dearth of evidence on what worked and what did not work well, making it difficult to make informed evidence-based policies.To improve rural livelihood, provide employment (including youths) and ensure food security, the Nigerian government has over the years came up with different initiatives for agricultural development. Between 1985 and 2019, they introduced the small-scale industry and youth employment schemes under the Directorate of Food, Road, and Rural Infrastructure (DFRRI), National Directorate of Employment (NDE), [16], and Youth Enterprise with Innovation in Nigeria referred to as YouWIN. DFRRI was established in 1985 to reduce rural-urban migration and poverty among the youth, but inconsistency in policy and inadequate involvement of rural farmers and young adults hampered the program [17,18]. While certain achievements were visible, others are contestable, depicting that DFRRI was a mixed bag of failure [17]. According to Ejue [17], DFRRI eventually collapsed and died a natural death from the lack of a culture of continuity in government policies and programs. The NDE established in 1986 provided micro-credit to participants to start a project of their choice as well as to become self-employed [16]. Similarly, in 2001, the New Nigeria Agricultural Policy was enacted. The main aims of this program were self-sufficiency in the basic food supply, attainment of food security by introducing improved seeds and recognition of the potentials of youth and small-scale farmers as the main food producers [19]. Although a major part of this policy was in favor of the youth and smallholders, there is no literature capturing the evaluation after the expiration of the policy. Also, the subsequent introduction of the Agricultural Transformation Agenda (ATA) policy in 2011 to address the problems not tackled by past policies shows that the problems are still in existence and there is still much more to be achieved. Despite the restructuring objectives of the ATA policies, a high rate of youth unemployment still exists. There is a high level of importation of agricultural products, with food insecurity still at its peak [20]. Some other programs were the National Economic Empowerment and Development Strategies (NEEDS), National Special Program for Food Security (NSPFS), and Growth Enhancement Support Scheme (GESS) [21,22]. While Yami et al. [23] opine that governments and development partners have implemented various interventions to inspire the youth to engage in agribusiness, agriculture in Nigeria has not received substantial support from the government because the country has failed to achieve the 10% minimum budgetary allocation to agriculture following the Mozambique Maputo declaration in 2014 [12]. This hints at the lack of support for young people since they are the drivers of the economy. To reverse this trend, the federal government of Nigeria (FGN) introduced N-Power as one of the National Social Investment Programs (NSIP) in 2016 which is currently still running.This study, therefore, attempts to examine the impacts of the N-Power Agro Program on creating employment and improving income through agribusiness for the Nigerian youth. The program focused on improving the economy through training and creating employment opportunities for youth in Nigeria [24]. In this paper, after the introductory section, the next section discusses the empirical review of the N-power program. It is followed by the section on materials and methods. The fourth section is on results and their discussion. The article ends with the last section on the conclusion.N-Power program or N-Power, in short, is a part of the federal government of Nigeria's (FGN) Development Plan 2015-2020. N-Power is the largest post-tertiary jobs program in Africa which is coordinated by the Office of the Vice President [25]. As an arm of the NSIP, it is designed to create jobs and empower Nigerians between the ages of 18 and 35 years. With the average age of farmers in Nigeria placed at 50-60 years, the government strategically targets young people with this initiative to encourage their participation in agriculture and agribusiness; this is because the present state of decline in agriculture production is dimming the hope of attaining the vision of food security by 2050. This program, therefore, aims at equipping young men and women with the skills and experience necessary to improve their employability and entrepreneurial potentials. Its modus operandi is based on learn-work-entrepreneurship (LWE) [24]. This is created to helping them in acquiring and developing a life-long skill needed to become solution providers in their communities and vital players in the National and International markets. The core policy thrust of the N-Power Program is large-scale skill development. This program is linked to the government's policies in the economic, employment and social development arenas. It is aimed at addressing the challenges of youth unemployment by providing a structure for large-scale and relevant acquisition and development of work skills while linking its core and outcomes to fixing inadequate public services and stimulating the larger economy [24]. With the empowerment program, the Nigerian government desires to tackle the unemployment challenge while also integrating the youths in agricultural activities. The modular programs under N-Power ensured that each participant learned and practiced most of what is necessary to find or create work. The N-Power volunteer corps involved a wide-scale deployment of 500,000 trained graduates who are assisting in improving the inadequacies in the public services in agriculture, education, health, and civic education. Some of these graduates have been helping in bringing to action Nigeria's economic and strategic aspirations of achieving food security and selfsufficiency and also working as a platform for diversifying the economy. N-Power is preparing young Nigerians for a knowledge economy where equipped with world-class skills and certification, they become innovators and movers in the domestic and global markets. Nigeria will have a pool of software developers, hardware service professionals, animators, graphic artists, building services professionals, artisans and others [26]. It also focuses on providing non-graduates with relevant technical and business skills that enhance their outlook for work and livelihood. Following the wide acceptance of the program, it currently runs across Nigeria's 36 States and the FCT. By the last quarter of 2018, the N-Power program had successfully empowered over 500,000 young men and women nationwide and also currently rolled out applications to empower another 400,000 youth by July 2020. This success was largely attributed to efficient coordination [27]. Operationally, these N-Power volunteers are paid a monthly stipend of N30,000 and given mobile devices with relevant content for continuous learning to facilitate their ability to successfully implement their selected vocation while enabling them to take ownership of their lives.N-Agro volunteers who form part of the 500,000 N-Power Corps participants are trained to provide support and advisory service to farmers across the country by way of disseminating the required knowledge in the area of extension services as well as gathering data of Nigeria's agricultural assets. They have been acting as intermediaries between the farmers and the Research Institutions. They operate as facilitators and communicators, helping farmers in their decisionmaking and ensuring that appropriate knowledge is implemented to obtain the best results on farms [28]. N-Power Agro program is vital to empowering the youth since many of the youths involved in agriculture during the production season often tend to take non-farm jobs to ensure stable income during the off-season, hence the need for an intervention program that will ensure that youths are actively involved in agriculture all year round in order to achieve food security [18]. Therefore, it is one of the ways that the FGN planned to diversify the economy towards attaining self-sufficiency in continuous food production for the country. Furthermore, an effective and well-coordinated agricultural extension system is seen as vital to the attainment of sustainable national food selfsufficiency. To establish this system, FGN engaged qualified young Nigerians through the N-Power Agro program in December 2016. N-Agro relies on the use of technology as the country aspires to identify soil types, farm sizes, and irrigation data, and ensure that our farmers are operating optimally. By March 2017, N-Power Agro volunteers started to function as intermediaries between research and farmers after they had undergone induction training before deployment. Moreover, participants also benefited from a compulsory development program for employability and entrepreneurship skills. Although the government aimed at the attainment of sustainable national food self-sufficiency through the N-Agro volunteers, they also will build the participants for a longlife career around agriculture or in allied fields with destinations such as Agricultural extension services consultant, seeds, fertilizers, and other input aggregators, farm managers, public sector jobs in agriculture, various industries and manufacturers of agricultural products, farming cooperatives management, pest control companies, self-employment or working as a farming consultant [28].The study was conducted in southwestern Nigeria. Our targeted population was the N-Power Agro applicants from southwestern Nigeria (Oyo, Ogun, and Lagos States). These states were selected based on their similarities in terms of regional agricultural engagements and also have a fair representation of larger youth covered by the program.The data for this study were collected using a well-structured pre-tested questionnaire and the N-Power administrative dataset (which contains contact details of applicants and the sampling frame of participants and non-participants). Data were collected on socio-economic characteristics of the youth, mobilization strategies using ICT, incomes, benefits and constraints on mobilization under the N-Power Program. Our targeted population was N-Power Agro applicants from southwestern Nigeria (Oyo, Ogun and Lagos States). Two-stage cluster sampling techniques were employed for data collection for this study. The first stage involved dividing each State into three agricultural zones/clusters. The second stage involved a random selection of N-Power participants and nonparticipants from the nine clusters/villages using probability proportional to size (i.e., more individuals were selected in larger villages). This sampling procedure resulted in a sample size of 645 individuals, 345 participants and 300 nonparticipants. It is important to note that to ensure uniformity, we sampled both participants and nonparticipants that share similar characteristics in terms of sex, age, educational level and income. The survey was carried out using face-to-face interviews with questionnaires by trained enumerators. The questionnaires (See Supplementary Materials for full detail) were administered to the participants during their monthly group meetings at the local government area offices while for the nonparticipants, we visited them individually across the study areas which was very difficult to achieve. The difficulty in obtaining data from the nonparticipants is due to their dispersed nature, therefore, leading to unequal representation from both groups. The data collected from the field were analyzed with the STATA ® 14 software using descriptive techniques (frequency counts, percentages, standard deviation and means) and inferential techniques (logistic regression model and sharp regression discontinuity). Information obtained using the questionnaires include youth perception to agribusiness; factors influencing their decision to engage in agribusiness; the potential of N-Agro to generate employment; online test score during registration; perception about the N-Power in reducing unemployment among the youths; the willingness of the respondent to take up agribusiness as an occupation and the aspiration of the youth after the N-Power Agro program.Descriptive statistics such as frequencies, tables, percentages, mean and standard deviation were used to describe the unique characteristics possessed by young people which are vital for agribusiness development in Nigeria and the perceived benefits for youth involvement in N-Power Agro.Logistic regression was developed by a statistician named David Cox in 1958 [29]. The logistic model (or logit model) is a widely used statistical model that, in its basic form, uses a logistic function to model a binary dependent variable, many more complex extensions exist. Logistic regression (or logit regression) involves estimating the parameters of a logistic model; which is a form of binomial regression. The advantages of using the logistic regression model are; the output is more informative than any other classification algorithms, and it expresses the relationship between an outcome variable and each of its predictors. To analyze the factors influencing the decision to create employment through agribusiness, following Anila and Kiani [30], the logit model was employed to predict the probability of willingness, since the dependent variable is binary. To choose whether to use the Logit or Probit model, we checked the data distribution through \"xy\" scatter plot and calculated the value of kurtosis. Since the kurtosis value was positive, we then settled to choose Logistic regression to analyze the factors influencing the decision or choice of young people to be self-employed through agribusiness. Like in linear regression we assume that some sets of independent variables are useful for predicting the dependent values. The model is specified thus; RDD is an important model in the toolkit of any applied researcher interested in unveiling the causal effects of policies. Thistlethwaite and Campbell [31] were the ones to first introduce the concept regression discontinuity design (RDD), which is an alternative method for evaluating social programs. They were interested in identifying the causal impacts of merit awards, assigned based on observed test scores, on future academic outcomes. Their approach created much criticism which later died down. This approach was later revived by some economists [32][33][34]; Hahn, Todd and van der Klaauw [32] formalized it; Imbens and Wooldridge [35] reinforced its estimation approaches which enables it to be applicable to answer various research questions. Over the last twenty years, the use of RDD has increased exponentially as researchers have used it to evaluate including, antidiscrimination laws; electoral accountability; the impact of unionization; SME policies; social assistance programs (conditional cash transfers program) and educational programs such as delayed school enrolment, school grants and financial aids [32,33,[36][37][38].To evaluate the potential of the N-Power Agro Program to generate income for the youth, the Sharp RD method was employed. We used a ''sharp'' RD design instead of ''fuzzy'' RD design since the treatment variable is a deterministic function of the regression variable (test score). In the sharp version of the RD design, every subject (respondent) is assigned a score and a treatment is given to all units whose score is above the cutoff and withheld from all units whose score is below it. The probability of treatment changes from 0 to 1 at the cutoff. If there are no crossovers and no no-shows, the design is then said to be sharp. Following Rubin; Imbens and Lemieux [39,40], the sharp regression discontinuity (RD) design was employed to estimate the causal effects and treatment effects on the potential outcomes. It is used when treatment status is a deterministic and discontinuous function of a covariate, xi. In the basic setting for the sharp RD design, there are three fundamental components in the RD design which are (i) the score is continuously distributed and has only one dimension, (ii) there is only one cut off, and (iii) compliance with treatment assignment is perfect, i.e., all units with scores equal to or greater than the cutoff actually received the treatment, and all units with scores below the cutoff failed to receive the treatment and instead received the control condition. This setup is known as the Sharp RD design. The effect of the treatment is potentially heterogeneous across units. Let Yi0 and Yi1 denote the pair of potential outcomes for unit i. Yi0 is the outcome without exposure to the treatment and Yi1 is the outcome given exposure to the treatment. Interest is in some comparison of Yi0 and Yi1. Typically, the focus of this study is on the differences Yi1-Yi0. The fundamental problem of causal inference is that we never observe the pair Yi0 and Yi1 together. We therefore typically focus on the average effects of the treatment, that is, averages of Yi1-Yi0 over (sub)populations, rather than on unit-level effects. For unit i is the outcome corresponding to the treatment received and Ti0,1 denotes the treatment received with Ti=0 if unit i was not exposed to the treatment and Ti = 1 if otherwise, Porter [33] states that the outcome observed can then be written asIn the sharp RD design, the treatment assignment (Ti) rule implies that if we know the unit's score, we know with certainty whether that unit was assigned to the treatment or the control condition. This is a key defining feature of any RD design: the probability of treatment assignment as a function of the score changes discontinuously at the cutoff. Sharp RD setup was employed because compliance with treatment is perfect against fuzzy where treatment is imperfect. Thus, in the sharp RD design, the assignment is a deterministic function of one of the covariates, the forcing (or treatment-determining) variable Ti = fXi≥c(3)All units with a covariate value of at least c are assigned to the treatment group (and participation is mandatory for these individuals). All units with a covariate value less than c are assigned to the control group (members of this group are not eligible for the treatment). In the sharp RD design, the focus is on the discontinuity in the conditional expectation of the outcome given the covariate to uncover an average causal effect of the treatment:which is interpreted as the average causal effect of the treatment at the discontinuity pointThere is a possibility of encountering a sharp turn in [ | ] which may be mistaken for a jump from one regression line to another. To reduce the likelihood of such mistakes, we looked only at data in a neighborhood around the discontinuity. Therefore, a nonparametric approach to RD requires good estimates of the mean of yi in small neighborhoods to the right and left of x0. Obtaining such estimates is tricky. The first problem is that working in a small neighborhood of the cutoff means that we do not have much data. In addition, the sample average is biased for the population average in the neighborhood of a boundary (N-Power cutoff score). A solution to this problem is the use of a nonparametric version of regression called local linear regression [34]. The estimation procedure employed in this study is the local linear regression. In the RD context, the straightforward way to estimate treatment effects is to take the difference between mean outcomes for the treatment and control bins immediately next to the cutoff point. However, this approach of comparing means in the two bins adjacent to the cut-point is generally biased about the cutoff point [41]. Using the means for the two bins with bandwidth h immediately to the right and left of the cut-point produces a biased estimator. As the bandwidth decreases, the bias decreases, but it can still be substantial. To reduce this boundary bias, it is recommended that instead of using a simple difference of means, local linear regression should be used [32]. The local linear regression can simply be thought of as estimating a linear regression on the two bins adjacent to the cut-point, allowing the slope and intercept to differ on either side of the cutoff point. Another advantage of the local linear regression is that it does not require functional forms assumption and put more weight on observation closest to the cutoff [35]. This is equivalent to estimating impacts on a subset of the data within a chosen bandwidth h to the left and right of the cut-point, using the following regression model:=the average value of the outcome for those in the treatment group after controlling for the rating variable;=the outcome measure for observation i;=1 if observation i is assigned to the treatment group and 0 otherwise; =the coefficient, for treatment assignment, represents the marginal impact of the program at the cutoff point.Table 1 shows the frequency distribution of respondents according to their socioeconomic characteristics. The majority (76%) of respondents were male, similar to the findings by Enimola et. al.; Ayanwuyi et. al, Ogunremi et al. [42][43][44]. This reveals that males are more inclined to farming (physical strength) and entrepreneurship and also have a higher tendency to utilize ICT better thereby favoring their selection during the application.Most (53.57%) of the respondents that participated in N-Power Agro fall within the age bracket of 26 to 31 years with a mean age of 30 years and a standard deviation of 3.86. This agrees with the definition of youth by FGN, but in contrast to the findings of Enimola et. al.; Ayanwuyi et al. [42,43] that found out that most the participants fell within the age range 21 to 25 years; about 38.74% of those that did not participate in N-Power Agro fall between the ages of 26 and 31 years. About 60% of both groups of respondents (participants and non-participants) were single. This conforms with the findings of Ogunremi et al. [44] who opine that since a high percentage of the youth are single and young; they had latent energy in them to go into entrepreneurship training without distraction from family members. Similarly, the youth do not marry early due to lack of job or just starting on a job which is in contrast with the findings of Ayanwuyi et al. [43] who argue that youth tend to get married early.About 52.50% of the respondents that participated in N-Power Agro attained a BSc degree which is in contrast to the findings of Enimola et al. [42] while about 66.48% of those that did not participate in N-Power Agro also attained BSc degree. The high level of literacy observed among the respondents supports FAO [45], which argued that the youth literacy rate in Nigeria has been on the rise since 1991, it grew from 66.4% in 2008 to about 80% in 2015. It also implies that education is accorded higher importance in Southwestern Nigeria.Most (53.57%) of the respondents that participated in N-Power Agro have the household size that ranges between 4 and 6 people while about 54.95% of those that did not participate in N-Power Agro has the same household size corroborating the result obtained by Hyeladi et al. [46].Most (72.14%) of the respondents that participated in N-Power Agro have agribusiness experience that ranges between 1 and 5 years while about 76.37% of those that did not participate in N-Power Agro also have the same length of agribusiness experience. This result is similar to the findings of Muhammad-Lawal et al. [15].Above 51% of the respondents that participated in N-Power Agro own an agribusiness while about 60% of those that did not participate in N-Power Agro do not own an agribusiness. This result is similar to the findings of Muhammad-Lawal et al. [15]. The high percentage of not owning an agribusiness among the nonparticipants may likely be a result of not benefiting from the program. This shows that N-Power Agro has led to the creation of more employment among the beneficiaries.The majority (87.14%) of the respondents that participated in N-Power Agro had gained various agricultural skills from their higher education institution while about 75% of those that did not participate in N-Power had also gained various agricultural skills. This, therefore, implies that most of them will be willing to invest their savings into various agribusiness ventures. Table 2 presents the results from the logistic regression about the factors influencing the decision or choice of young people to create employment through agribusiness. The model fitted the data well since the LR chi 2 (8) = (21.77) and the corresponding Prob > chi 2 = 0.0034, indicating that all the independent variables taking together statistically and significantly explained the variation in the probability of willingness to create employment through agribusiness by respondents. The age significantly (positive) affected the willingness to create employment by respondents at a 1% level. The sign on the age coefficient implies that a 1% increase in age will increase by 29% the probability of choosing to create employment through agribusiness. This means that the younger the participants, the higher their probability of creating employment. According to Jibowu [47], people in this age category possess some characteristics such as innovation proneness, minimal risk aversion, faster reaction rate, less fear of failure, greater physical strength, greater knowledge acquisition propensity, love for adventure and faster rate of learning among others. This indicated that most of the participants were in their active productive years, which revealed that N-Power trains youth who could be regarded as productive assets to the society and vital sources of employment creation. Therefore, the age variable has helped in creating employment for the participants.The level of education significantly (negative) affected the willingness to create employment by respondents at a 1% level. The sign on the coefficient implies that a 1% increase in the level of education will reduce by 53% the probability of choosing to create employment through agribusiness, meaning the higher the youth become educated beyond a bachelor degree, the lower the likelihood of creating self-employment. The negative significant impact of increasing level of education on influencing the decision of young people to create jobs through agribusiness was expected as many youths see agriculture as unattractive. With most participants having at least a bachelor's degree, their probability of choosing to be self-employed through agribusiness tended to decline especially when they have the opportunity of white-collar jobs and further studies.Years of agribusiness experience were found to be positive and significant at the 10% level. The sign on the coefficient implies that a 1% increase in years of agribusiness experience will increase the probability of choosing to be self-employed through agribusiness by 100.8%.Employment status was found to be negative and significant at the 10% level. The sign on the coefficient implies that a 1% increase in employed respondents will reduce the probability of choosing to be self-employed through agribusiness by in fact 100.7%. The factors influencing the decision or choice of young people to create employment through agribusiness are similar to existing findings Ayinde et al.; Sudarshanie; Ayanwuyi et al. [43,48,49].From the results discussed above, the level of education, employment status, years of agribusiness experience, and age were all significant at 10%, 5%, and 1% probability level with different signs. This implied that the predictors included in the model are jointly capable of predicting the choice to create employment through agribusiness. N-Power participants were selected based on the test score; an online test taken by unemployed graduate youth. RDD was used to determine whether the selected participants for the program can increase their income due to their participation. Sharp RD compares the income of applicants just above and just below the cutoff point (80 marks). It is generally expected that applicants with higher scores to be more likely to earn a higher income by been selected for the program, but this effect was be controlled by fitting a regression to the relationship between income and scores, at least in the neighborhood of the test cutoff. It is this jump in regression lines that gives RD its name [50]. The applicants who scored just below and above 80 (score ranges from 71-89) have similar characteristics such as age, education, and being youth, but the applicants who scored 80 and above got been selected and those below were not., i.e., RDD was used to compare the applicants below and above the 80 marks and consider the differences in outcomes to give the program effect. We now formally exploit the discontinuity in income by estimating the RD models discussed in Section 3.2 above. After some experiments, we decided to limit our analysis to test scores 71-89 because the data outside this range are of little use for helping to fit the model around the discontinuity point. In any case, we showed through RD plots below (Figures 1-4) that our results are very robust to the choice of the test score range. The plots give an idea of the overall fit while also exhibiting graphically the sharp RD estimate. To get the RD plot, we constructed figure using the local sample means over nonoverlapping bins partitioning restricted support of Xi, together with polynomial regression curve estimates for control and treatment units separately. We also included the binned means to capture the behavior of the cloud of points and to show whether there are other discontinuities in the data away from the cutoff.Figures 1-4 illustrate the identification strategy in the sharp RD setup based on the population values, the conditional probability of receiving the treatment, PrTi = 1|X = x against the covariate x. At x = 80 the probability jumps from 0 to 1. There were no crossovers or no no-show and there is a jump in density of observation at the cutoff. Thus, the design is sharp. However, the idea of focusing on observations near the cutoff value-what Angrist and Lavy [33] called a \"discontinuity sample\"suggests valuable robustness. In Figure 1 above, a linear regression line was fitted, and this shows that there is a discontinuity between the regression lines at the cutoff, which leads to the conclusion that the treatment (N-Power program) was effective and there was no manipulation of the assignment variable. In this case, the relationship between the income, test score, and outcome is approximately linear. This is the best-case scenario as we used the data from the whole distribution to identify the slope of the line on either side. To further test the validity of the underlying relationship, a higher-order polynomial fit was imposed on the data in Figures 2-4. The higher-order polynomial regression curves were estimated using the sample means and constructed over nonoverlapping regions of the support of the running variable Xi, for control and treatment units separately. This sample means provided us with an approximation of the population regression functions, but they also help to visualize the dispersion of the data, which was used to detect other potential discontinuities away from the cutoff (80, as a form of a validation test). The graphic illustration in Figures 2-4 reveals that there is a discontinuity in the design and concludes that the treatment had an effect and the interaction term was correctly modeled. Table 3 below shows the estimate of the ATE on the treated. The ATE shows that participation in the N-Power program increased the income of participants on average by N30,191.46 compared to non-N-Power participants and this estimate is statistically significant at 1%. Thus, the N-Power program had a positive impact on the participant's income generation. The diagnostics revealed that the prob > F was significant at 1% which shows that the model is a good fit. Post-estimation tests to validate the ATE shows that the optimal bandwidths of 9.75 at the left and right of the cutoff estimated using the uniform kernel approach and samples nearest to the cutoff were valid. This was revealed in the conventional, bias-correction, and robustness values which were all statistically significant at 1% in Table 3 below. This, therefore, implies that the participants are more likely to engage in agribusiness as a result of their participation in the N-Power Agro program than would be the case among youths not selected for the program. This further implies that participation in the program had a positive and significant impact on their income and on the decision to engage in agribusiness. Table 4 shows the results of the distribution of the perceived benefits by N-Power Agro participants. It shows that respondents selected multiple choices and it was shown that a majority, 48.10% of the participants opted for monthly stipends while a minority, about 5.19%, choose monthly stipends & Extension services. This shows that most of the participants depended on the program due to the monthly incentives (stipends) they are getting from it and not really because of the skills and training. This is similar to the findings of Ogunremi et al. [44]. Figure 5 below shows the results of the savings potentials of participants from their stipends to start an agribusiness venture. It shows that about 80% of the participants cannot start any new agribusiness venture as they do not make enough savings from their monthly stipends. This implies that the government needs to move away from incentivizing youths, but rather empower them to have enough capital to start agribusiness. The centrality of agribusiness as the interface between the youth, agriculture, and the rural sector cannot be easily rejected. Africa needs a vibrant agribusiness sector to create jobs and wealth and that will not be possible without capable and ambitious youth entrepreneurs. This is because agribusiness can create vast employment opportunities, higher incomes, and the poverty reduction mechanism for the crowds of unemployed young people in Africa. Therefore, engaging the youth especially those living in the rural areas in agribusiness has become an important strategy to create employment opportunities globally and Africa in particular. To achieve this, various African governments and organizations have implemented various interventions that facilitate youth engagement in agribusiness for several years. Surprisingly, there is a dearth of evidence on what worked and what did not work well, making it difficult to make informed evidence-based policy. Therefore, in this context, this paper evaluated the impacts of the N-Power Agro Program in creating employment and improving income through agribusiness for the youth. The program aimed to improve the economy through training and creating employment opportunities for youth in Nigeria.Following the completion of conclusive research, descriptive statistics were used to show the unique characteristics possessed by youths which are vital in agribusiness development. Factors such as age, marital status, agricultural skill, agricultural graduate, and employment status significantly influenced the choice of participating in the N-Power Agro program. More than 50% of the participants have attained a Higher Educational qualification at the university level. This implies that education is accorded higher importance in Southwestern Nigeria. Most of the respondents have also gained entrepreneurship skills from their higher educational institutions. This shows the significant role higher educational institutions in Nigeria are playing to enshrine entrepreneurial skills into the lives of their graduates. Similarly, more than 50% of the participants own or have created employment than nonparticipants. This implies that the N-Power empowerment program has been able to create employment and agribusinesses for the participants of this program than nonparticipants through their monthly stipends. Therefore, the N-Power empowerment program implemented to inspire the engagement of the youth in agriculture has succeeded in influencing their willingness towards agribusiness. Finally, the collective entrepreneurial training and skills (gained before or after participation) were paramount to enhancing the self-employment of the youth in agribusiness.In the final stage of the study, findings from RDD established that the impact of the N-Power Agro program on income generation of Nigeria's youth was positive with the regression discontinuity design analysis recording an increase in the participants' income than for nonparticipants. The ATE shows that participation in the N-Power program increased the income of participants on average by N30,191.46 compared to non-N-Power participants and this estimate is statistically significant at 1%. Thus, the N-Power program had a slightly positive impact above their monthly stipends on the participant's income generation.Nevertheless, despite the many positive outcomes of this intervention, with most participants being older in the youth bracket and having at least a bachelor's degree, their probability of choosing to be self-employed through agribusiness tended to decline especially when they have the opportunity of white-collar jobs and further studies. Nevertheless, the majority are willing to venture into agribusiness but are hampered by a lack of startup capital as they are unable to make considerable savings from their N30,000 monthly stipend. Similarly, the requirement of strength demanded by agriculture hindered the females from benefiting much from this program as shown by the large participation by the males.Finally, for Nigeria's and African agriculture to regain its lost glory of ensuring food security and relevance in the world economy through exportation, the aging farmers need to be replaced by vibrant young men and women who can meet up with global technological development that will lead to increased agricultural productivity. In addition, wider implementation of the N-Power Agro program in other countries could help improve incomes, transform employment economies and develop agricultural markets in Africa, but that will require not just innovative thinking and willingness to change within governments and higher education institutions, but also the support of development partners and other key stakeholders. Young people can develop the African agribusiness sector to create youth employment, promote food security, increase consumption, and improve agricultural export earnings. With the multiplier effect, this will raise the standards of living and community welfare, and ultimately stimulate socio-economic transformation in Africa to achieve the African Development Bank's vision of the Feed Africa Strategy which is to transform African Agriculture into a competitive and inclusive agribusiness sector that creates wealth, improves lives and secures the environment.Consequent upon the findings of the study, this study makes the following policy recommendations.1. The government and policymakers should upscale this program by strengthening, monitoring and encouraging measures that would promote more female participation (especially in the input and processing sector) in the N-Power Agro program to provide more employment, job creation, and at the same time increase income generation, hence improving the standard of living of female youth; 2. Rather than scrap or lay-off current participants, the FGN should engage them to grow and supply the necessary agricultural products needed for the Home-grown School Feeding Program initiated by the government. This will surely boost the confidence of the youth to do more and boost food production in the country towards ensuring attainment of the sustainable development goals on food security rather than incentivizing them monthly; 3. Intervention programs that particularly focus on younger people between 20 and 35 years who have much passion for agribusiness should be established; 4. Incentivizing youth through empowerment programs should be discouraged, but rather to empower the youths into active participation by taking ownership of their business venture. The government should rather empower the youth into venturing into agribusiness by supporting them with capital, land, training, and also ensuring proper monitoring; 5. Nigeria's agricultural value chain is slowly evolving with limited diversification in an environment that yet undermines the progress, therefore, there is a need for policy interventions that will address the constraints inherent in the space; 6. The policymakers must know that the central part of policies should target youth as partners and leaders in development. It should be a collaborative intervention that will ensure youths are fully consulted and integrated into the decision-making process.To the best of our knowledge, this study is the first to investigate the impact evaluation of the N-Power program on income and employment creation through agribusiness among the youth in Nigeria using regression discontinuity design. Despite the above important contributions, our study relies on cross-sectional data which limits the generalizability of the results beyond one year. As a result, we could not estimate income changes over time. Moreover, since our data are not nationally representative, the results and policy implications should be interpreted with caution. We hope our approach could be replicated in future studies based on a longitudinal survey that will fill the above gaps. ","tokenCount":"7064"} \ No newline at end of file diff --git a/data/part_3/3246986405.json b/data/part_3/3246986405.json new file mode 100644 index 0000000000000000000000000000000000000000..eb3b9e218ea4f94aec9950980bad41c7614f51c3 --- /dev/null +++ b/data/part_3/3246986405.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"1b268b1b1be081b84378b75b51ef8e90","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/43851264-bb82-4d33-b342-63f395f54370/retrieve","id":"1327574448"},"keywords":[],"sieverID":"1d66c677-8051-4c51-aa31-ee1ae7ec5d1a","pagecount":"8","content":"The need to reduce GHGs from organic waste in landfills is a strong driver for CBE. Regulations incentivizing waste minimization are an important component of this transition including labeling waste as a 'resource' instead of a 'hazard' to banning organic waste from ending up in landfills. Climate change adaptation and related funding are probably a stronger and more tangible incentive for change than the original rationale of the circular economy (CE) of a more sustainable use of our resources than commonly practiced in a linear economy.The current status of CBE in emerging economies CE (or CBE if organic waste is targeted) is still an emerging concept in many countries, despite increasing global dialogue, support (e.g., Green Growth), and related regulatory frameworks targeting sustainable energy, waste management and Resource Recovery and Reuse (RRR) principles. So far, the most prominent laws, policies, strategies, and action plans are those addressing the need for a low-carbon economy that promotes the use of renewable energy resources, particularly wind and solar energy. The more traditional transformation of organic waste to biogas or compost, which would be central to the CBE, receives a lower business interest.However, there are differences in the CBE between countries. For example, India, Cambodia, Kenya, Rwanda and Colombia, are leading other countries within their respective regions by providing fiscal incentives and subsidies for renewable energy including waste-to-energy production and biogas production.Similar to any transition, progress takes place step by step. Most countries still consider solid waste and wastewater as a burden, not an opportunity. Therefore, environmental regulations primarily target risk reduction, with environmental authorities or a 'Pollution Control Board' mandated to implement and safeguard the regulations. The regulatory frameworks are designed to address waste collection and reduction based on environmental and human health concerns, and limited to guidelines and standards to ensure the (risk free) quality of processes and products.Without strict quality controls, RRR might even be disapproved. This applies in particular to wastewater reuse in agriculture Figure 1 outlines the transformation of waste-related regulations towards a CBE in the Global South which involves enforcing environmental safety and waste management regulations, formulation of policies and strategies for eventually promoting resource recovery from waste, and supporting private sector participation through the provision of subsidies, development of public-private partnerships and improving access to new markets as discussed further in the following sections.despite increasingly liberal World Health Organization (WHO) and Food and Agriculture Organization of the United Nations (FAO) guidelines promoting multiple barriers on the reuse pathway (WHO 2006;Drechsel et al. 2023). Some countries such as India, the Philippines, Vietnam and Colombia are, for example, promulgating the implementation of the polluter-pays-principle to address water pollution (Box 1), or charging households a waste collection fee. By imposing additional costs based on environmental impact, the polluterpays-principle² encourages resource-efficient practices, discourages pollution, and stimulates the exploration of internal treatment and reuse options.An important second step is accepting waste as 'materials or resources in transition'. With this, the 3R principles of 'reduce', 'reuse' and 'recycle' are linked to promoting a more wasteconscious consumer and industry behavior supported by positive or negative incentives, including penalties.In 2010, Ghana took this step and identified waste in its National Environmental Sanitation Strategy and Action Plan (NESSAP)³, as \"materials in transition\" (MINT), demonstrating that waste has the potential to reduce costs for waste management and/or can be of value to other sectors. The NESSAP highlighted waste segregation, reuse, recycling, and similar practices as effective strategies to manage waste, reduce environmental impacts, create green jobs, and lower waste management costs.While policy reforms supporting the 3R principles are required, their implementation can face fundamental challenges that must be addressed. The actual enforcement of regulations, especially those based on negative incentives, fails in many countries due to various reasons ranging from low capacities to lack of data, or poor coordination across departments and agencies. In a recent IWMI study, emerging economies 4 with different gross domestic product (GDP) per capita groups 5 were analyzed within their respective regions 6 . GDP per capita is often treated as a proxy parameter for investment opportunities. The countries were selected from different economic groups to compare investment attractiveness with environmental stringency and enforcement (Figure 2). ² The 'polluter pays' principle is the commonly accepted practice that those who produce [water] pollution should bear the costs of managing it to prevent damage to human health or the environment. ³ https://www.ircwash.org/sites/default/files/MLGRD-2010-National.pdf 4 The emerging economies across different regions were selected based on the GDP per capita at current prices provided by IMF (https://www.imf.org/en/ Publications/WEO/weo-database/2023/April/groups-and-aggregates#oem). 5 The representative countries were selected based on their economic performance -GDP per capita at current prices as an indicator for investment attractiveness. The IMF classifies five strata for GDP per capita - (i) USD 25,000 and more, (ii) USD 15-25,000; (iii) USD 5-15,000; (iv) USD 1-5,000 and (v) under USD 1,000 (https: The World Economic Forum (WEF) provides average scores collected from qualitative data (from Executive Opinion Surveys) asking respondents to assess the stringency and enforcement of environmental regulations between 1-7 (1 being low, to 7 being the best score). This classification usually considers the stringency of environmental pollution standards, sophistication of regulatory structures, quality of the environmental information available, the extent of subsidization of natural resources, the strictness of enforcement and the quality of environmental institutions (Koziuk et al. 2019). To analyze the stringency and enforcement of environmental regulations, an average 'country score' was calculated from different rounds of WEF data (WEF 2013(WEF , 2015(WEF , 2017;;Calderwood and Soshkin 2019). These 'country scores' are then compared to regional averages 7 obtained for all countries within the regions classified under the World Bank (Figure 2).The emerging economies across the regions indicate that countries with higher GDP per capita are more stringent and enforce environmental laws. These countries are better placed in terms of waste management and waste resource recovery, as the primary input for the CE is waste. However, except for East Asia and the Pacific, it is notable that a low correlation exists between implementing environmental standards and GDP per capita. Even some low-income countries in Africa are found to have stringent laws with higher enforceability. Most countries of the middle-income group (USD 5,000-10,000 GDP per capita) perform as per regional averages. Considering the region, Latin American countries are better positioned with their environmental regulations and implementation.The effective execution of environmental regulations along with the development and implementation of CE roadmaps, policies and strategies can lead to the evolution of CBE initiatives.Figure 3 When it comes to the transition of CBE from theory to practice from a global perspective, the legislation of most emerging economies is still in initial or progressive stages. A key step is the promotion of public-private partnerships or business models in general (Otoo and Drechsel, 2018) for transitioning waste from a burden to waste as a resource.While in Sri Lanka, for example, more than 120 compost stations were created (as highlighted in Box 2), their main purpose was waste volume reduction, not necessarily the creation of compost for sale. Stations are managed by public health inspectors, not entrepreneurs knowledgeable of compost markets, farmers' quality demands, or compost marketing.Compost sales remained low, however, without an impact on staff salaries. As staff can't be changed, alternative options are needed, such as a business model where compost stations have a contract with a central public or private sector entity which will absorb and pay all produced compost while specialized on selling it. Such a model can be a win-win for all parties involved.While embracing CBE policies is an important first step, improper execution and monitoring constitute a barrier to development. More than 50% of waste-to-energy plants in India, for example, are inoperative due to poor waste segregation within the waste collection system.Many existing regulations are inadequate to provide guidelines and action plans for implementation. For instance, all the countries shown in Figure 3 have a welldeveloped regulatory framework for sustainable waste management. However, solid waste treatment (SWT) efficiency is low with a percentage less than or equal to 40% except for Colombia, Rwanda and Cambodia showing a higher SWT efficiency, and Egypt and Peru showing a higher wastewater treatment (WWT) efficiency.The low waste management efficiency is due to the incapability of administrations to execute laws, lack of monitoring, limited involvement of the private sector and lack of public awareness of proper waste segregation practices that allow authorities to engage in RRR. Therefore, a holistic regulatory framework involving the collaboration of various sectors is necessary for solid progress in CBE. The Sri Lankan compost station (Box 2) illustrates a common gap where regulations started promoting a CBE while the incentive systems to link the waste and agricultural sectors are still missing.A few countries, namely Singapore, Brazil, China, Japan, South Korea and South Africa are setting the standard for favorable regulations on CBE (Box 3). For instance, the regulatory framework of Singapore focuses on establishing several statutory agencies to ensure the implementation of policies and promote the synergy of government with nongovernmental organizations (NGOs), civil society groups, private organizations and community groups to elevate the transition of the RRR approach from theory to practice. In Brazil, the development of legislation related to sanitation and incentive programs for renewable energy sources has paved the way for a transition towards a successful waste-to-energy future.On the other hand, the regulations on wastewater treatment and reuse in South Africa are diverse with various aspects such as accommodating the legal and cost requirements of effluent discharge monitoring, combining legal rights with access to quality water, and involving the development of certification programs (e.g., green drop certification program) to provide the stakeholders of the water industry with adequate performancebased information to improve wastewater treatment facilities. The governments of China and South Korea are focusing principally on the development of mandatory waste sorting policies, as the segregation of waste is the primary step in promoting RRR approaches such as biogas and compost production from waste. As for Japan, the specific legislation governing the waste management system and the stringent landfill policy has led to a successful waste-to-energy sector.Box 2. Gaps between intention and execution. The 10-year waste management program named 'Pilisaru' initiated by Central Environment Authority of Sri Lanka for achieving the goal of 'Waste Free Sri Lanka by 2018' managed to establish about 120 compost stations. However, it was inefficient due to limited institutional commitment, insufficient guidelines for waste segregation, lack of monitoring of composting processes and performance, poor compost quality, and deficiencies in understanding and/or establishing reliable compost markets (Roy et al 2021).Stringency and enforcement of environmental regulations by imposing penalties play a key role in promoting e.g., the 'polluter-pays-principle'. This is an important step in the value chain to minimize harmful waste and initiate CBE solutions at the latter part of the value chain. The development of specific policies and strategies specifically targeting RRR approaches such as materials in transition or waste-to-energy production and composting is required to promote CBE initiatives. Establishing national regulatory agencies and improving synergy between NGOs, civil society groups, private organizations and community groups can enable the transition of the CBE approach from theory to practice.Legal frameworks need to focus on providing financial support in terms of incentives, rebates, green bonds, tax exemptions and subsidies to promote sector growth, as small and medium-scale industries are playing a significant role in the progress of RRR.Where public sector-based structure cannot be changed, innovative partnerships and business models help to link waste and the agricultural sector, for instance, to close the resource loops.While focusing on improving stringency and enforcement of environmental regulations is pertinent, governments of emerging economies should develop policy frameworks and strategies that target the involvement of private investments and operations. Stringent regulations in waste management do not necessarily provide innovative solutions for implementing sustainable waste management practices, instead, it makes private sector efforts to improve waste management futile. An ecosystem allowing public-private partnerships for waste management and resource recovery is imperative to promote CBE. For example, Innovation Hubs can be used by governments by incorporating public agencies, technology providers, private funders, operators and donors to promote the sector (CGIAR 2023).Emerging economies should formulate regulations encouraging the actual use of recovered products, instead of new ones, to create a reliable market for the products. Thus, existing incentives need to promote the reuse of reclaimed water, biogas or compost recovered from organic waste e.g. via taxes on new products or twinning new and recovered resources as described in Box 3.Box 3. Promising regulations of benchmark countries promoting CBE. The Singapore's Public Utilities Board (PUB), together with the National Environmental Agency (NEA) ensure strict enforcement of regulations for effluent discharge by imposing penalties for water pollution, which is fundamental for implementing a safe water reuse program like NEWater, a reclaimed water product for portable and non-portable uses (GWF 2018). To address public perceptions, the reclaimed water is inserted as a smaller percentage into freshwater. Such twinning was also promoted time back in India where industrial fertilizer could only be sold together with municipal waste compost for integrated soil fertility management.The Department of Forests, Fisheries and Environment of South Africa initiated the National Organic Waste Composting Strategy to ensure that organic waste is diverted from landfills to produce compost, and to guide the development of legislation, norms, and standards including South African Certification Standards for compost (DoEA 2013).A policy called PROINFA (Programme of Incentives for Alternative Energy Sources) was established by the Brazilian government aiming to promote electrical energy production using biomass sources such as sugarcane bagasse, rice hull, timber waste and landfill biogas, by setting short-term and long-term targets for bioenergy production. The program however closed in 2011 (IEA 2015).The Chinese central government provided over CNY 24 billion as biogas subsidies in rural areas from 2000 to 2017 which increased the number of household biogas digesters from 10 million in 2000, to 40 million in 2017 (Oos and Martin 2014).The regulations in Japan emphasize the development of a long-term waste management plan by municipalities to treat and recycle their own waste, which facilitates the progress of waste-to-energy production within the municipalities since transporting waste over longer distances is prohibited (Ministry of Environment 2012).In 2005, South Korea banned landfilling of food waste and established a universal system of curbside food waste pickup. Nearly all food waste there is now turned into biogas, compost, and animal feed. The government developed a mandatory composting scheme in 2013, requiring residents to use biodegradable bags for disposing food waste (Broon 2019). The scheme ensures the use of food waste (collected in the biodegradable bag) to produce biogas and fertilizer (compost). The bag charges serve 60% of the costs for running the scheme, which increased the amount of food waste recycled from 2% in 1995 to 95% today. The South Korean government has improved composting to a greater extent by making public participation easy, accessible and affordable.The Ministry of Environment of Rwanda together with the Ministry of Infrastructure and the Global Green Growth Institute (GGGI) launched the 'Waste to Resources' project in the City of Kigali to valorize organic waste and to improve various CBE initiatives in the waste sector such as the transformation of waste to energy (GGGI 2021).The Government of Colombia has developed an initiative called the 'National Circular Economy Strategy' to address environmental issues and promote long-term economic growth by implementing CBE activities including several waste management initiatives such as wasteto-energy production and composting (GIZ 2023).The Ministry of the Environment of Peru together with the United Nations Environmental Programme (UNEP) created the project 'Organic Waste Management in Peru: Accelerating Progress Towards a Circular and Carbon-Neutral Waste Sector' to promote policy reforms for improving waste tariff collection schemes, facilitating the implementation of source separation and streamlining the permitting processes. The project also aims to develop a long-term national organic waste strategy to ensure the implementation of organic waste treatment and landfill gas capture projects (HCH 2021).The promotion of a circular bioeconomy requires regulations, finances, market development and private participation. (photo: chayanuphol/shutterstock).","tokenCount":"2656"} \ No newline at end of file diff --git a/data/part_3/3254551751.json b/data/part_3/3254551751.json new file mode 100644 index 0000000000000000000000000000000000000000..9947355cbbc3b48fbc5590f7dcd6c8073402896c --- /dev/null +++ b/data/part_3/3254551751.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"9c66fb47bb23624dc8b77451bcc2e0d9","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/24be9766-5e64-4f2a-93ef-523754a7cfdf/content","id":"-1681019113"},"keywords":["Funding information Bill and Melinda Gates Foundation, Grant/Award Number: OPP1133199 BLUP, best linear unbiased prediction","CI, coefficient of infection","CMLM, compressed mixed linear model","FarmCPU, fixed and random model circulating probability unification","FDR, false discovery rate","GID, genotype identification","GWAS, genome-wide association study","IT, infection type","LD, linkage disequilibrium","LMM, linear mixed model","MLM, mixed linear model","MTA, marker-trait association","Q-Q, quantile-quantile","QTL, quantitative trait loci","SNP, single nucleotide polymorphism Megerssa, S. H., Sorrells, M. E., Ammar, K., Acevedo, M., Bergstrom, G. C., Olivera, P., Brown-Guedira, G., Ward, B., Degete, A"],"sieverID":"79e39afa-0c70-4904-bbe3-1b946d292ee8","pagecount":"22","content":"Many of the major stem rust resistance genes deployed in commercial wheat (Triticum spp.) cultivars and breeding lines become ineffective over time because of the continuous emergence of virulent races. A genome-wide association study (GWAS) was conducted using 26,439 single nucleotide polymorphism (SNP) markers and 280 durum wheat [Triticum turgidum L. subsp. Durum (Desf.) Husnot] lines from CIMMYT to identify genomic regions associated with seedling resistance to races TTKSK, TKTTF, JRCQC, and TTRTF and field resistance to TKTTF and JRCQC. The phenotypic data analysis across environments revealed 61-91 and 59-77% of phenotypic variation was explained by the genotypic component for seedling and adult plant response of lines, respectively. For seedling resistance, mixed linear model (MLM) identified eight novel and nine previously reported quantitative trait loci (QTL) while a fixed and random model circulating probability unification (Farm-CPU) detected 12 novel and eight previously reported QTL. For field resistance,MLM identified 12 novel and seven previously reported loci while FarmCPU identified seven novel and nine previously reported loci. The regions of Sr7a, Sr8155B1, Sr11, alleles of Sr13, Sr17, Sr22/Sr25, and Sr49 were identified. Novel loci on chromosomes 3B, 4A, 6A, 6B, 7A, and 7B could be used as sources of resistance to the races virulent on durum wheat. Two large-effect markers on chromosome 6A couldDurum wheat [Triticum turgidum L., ssp. durum (Desf.) Husnot] is a tetraploid wheat species grown in different parts of the world with the major production region being the Mediterranean Basin (Letta et al., 2013;Shewry & Hey, 2015;Kabbaj et al., 2017). Stem rust of wheat, caused by Puccinia graminis Pers. f. sp. tritici Eriks. and Henn., is among the most damaging fungal diseases of common wheat (Triticum aestivum L.) and durum wheat worldwide.Stem rust can occur in all wheat production areas where the environment is favorable for disease development (Singh et al., 2008). Susceptible varieties in these areas can incur a total yield loss under severe epidemics (Yu et al., 2014). The stem rust pathogen interferes with the transport of nutrients through the vascular system and results in shriveled seeds at harvest, stem breakage, and lodging (Bhavani et al., 2019). Shriveled seeds harvested from stem rust infected wheat degrade end-use product quality (Singh et al., 2006).Stem rust epidemics have occurred in several regions of the world at different periods and caused varying levels of yield loss (Bajgain et al., 2015a;Nirmala et al., 2017). This damage is attributed to the narrow genetic base of stem rust resistance of cultivars and breeding lines in some regions of the world (Fu & Somers, 2009;Newcomb et al., 2013). During the epidemics of stem rust in the United States, disease occurrence has been effectively controlled by the use of resistance genes in wheat cultivars (McIntosh et al., 1995) and eradication of the alternative host common barberry (Berberis vulgaris L.) near wheat growing areas (Kolmer et al., 1991;Jin & Singh, 2006;Singh et al., 2015;Nirmala et al., 2017). However, the emergence of new virulent races like TTKSK (Ug99) that defeated the resistance conferred by Sr31 (Singh et al., 2011;Bajgain et al., 2015b) and other virulent races unrelated to Ug99 with broad virulence to commercially deployed resistance genes have continued to limit global production of both common and durum wheat. Race TTKSK was identified in Uganda in 1999 and spread to eastern Africa and the Middle East (Singh et al., 2006). This race with 13 variants has been recognized as a severe threat to worldwide wheat production and food security because of its broad virulence to several resistance genes mainly deployed in commercial wheat varieties and germplasm (Singh et al., 2011(Singh et al., , 2015;;Olivera et al., 2012a;Bajgain et al., 2015b;Newcomb et al., 2016;Chao et al., 2017). Race TKTTF is unrelated to the Ug99 group of races and it is predominant in Ethiopia with broad virulence to several Sr genes. This race caused severe yield loss during the epidemics of 2013 and 2014 and devastated the popular bread wheat 'Digalu' grown on over 100,000 ha (Olivera et al., 2015;Singh et al., 2015). Race TKTTF defeated the resistance conferred by SrTmp gene in Digalu. Pathogen races outside of the Ug99 race group and with relevant virulence on durum wheat have also been reported in the past decade. Race JRCQC is unrelated to the Ug99 lineage, and it was identified in Ethiopia in 2009. JRCQC has a combined virulence to Sr9e and Sr13b, alleles of commonly deployed resistance genes in durum wheat (Olivera et al., 2012b;Zhang et al., 2017). This race was identified upon evaluation of durum wheat germplasm from North America and CIMMYT that were mostly resistant to races in Kenya at that time but became highly susceptible when evaluated in the field nursery in Ethiopia (Olivera et al., 2012b;Singh et al., 2015). TTRTF is another virulent race on durum wheat that caused a severe epidemic on durum wheat in Sicily, Italy, after a severe epidemic in 2016 (Bhattacharya, 2017). This race was observed for the first time in Georgia in 2014 and carries broad virulence to several resistance genes in durum and common wheat including Sr9e, Sr13b, Sr35, Sr36, Sr37, Sr38, Sr45, and SrTmp (Olivera et al., 2019). A pathogen survey report from Sicily, Italy, indicated that race TTRTF is virulent on 25 durum wheat cultivars and breeding lines including major varieties grown in the region (Randazzo et al., 2016). Among the resistance genes most deployed in durum wheat in different regions of the world, Sr13a is still effective against the Pgt races virulent on durum, including TTRTF and JRCQC (Zhang et al., 2017;Olivera et al., 2019).The stem rust pathogen evolves continuously, producing new races with virulence to resistance genes commonly The Plant Genome deployed in commercial varieties and breeding lines. The narrow genetic base of stem rust resistance in durum wheat compared with common wheat exposes the crop to a risk of resistance being defeated by an emerging virulent race. Nevertheless, the application of genetic resistance is a preferred method to control stem rust in light of environmental safety and cost efficiency; broadening the genetic base of resistance is paramount. In an attempt to manage stem rust through the application of genetic resistance, over 60 stem rust resistant genes and alleles have been cataloged. However, most of them are major-effect gene resistances (R genes) which are most often effective against specific races (McIntosh et al., 1995(McIntosh et al., , 2017)). Therefore, the continuous evaluation and identification of new sources of resistances to stem rust, characterization of the available sources of resistance in the germplasm pool and their proper use is crucial to mitigate the risk posed by stem rust on global wheat production. Although there is a possibility of incorporating novel sources of resistances in breeding materials from wild relatives or landraces, breaking the linkage drag is often challenging. The current study uses a panel of breeding lines from CIMMYT to evaluate and characterize sources of resistance to virulent races of the stem rust pathogen through association mapping.Association mapping (linkage disequilibrium [LD] mapping) is an efficient approach to identify marker-trait associations (MTAs) (Zhu et al., 2008). This technique exploits genetic recombination that occurred over generations in the population used for study (Zhu et al., 2008;Chao et al., 2017) and is a powerful method for studying simple and complex traits in many crop species (Kushwaha et al., 2017). Mapping resolution is higher in association mapping than linkage mapping because of a higher level of polymorphism on using a population comprised of diverse lines. However, population structure must be considered in genome-wide association study (GWAS) analysis models if the population under study has a stratification which otherwise can result in false positive associations (Yu & Buckler, 2006).Genetic studies to identify and map sources of stem rust resistance in durum wheat using dense marker coverage is limited compared with that of common wheat. Moreover, the panel of CIMMYT durum wheat lines used in the current study have not previously been evaluated for seedling response to TTKSK, TKTTF, the durum virulent races (JRCQC and TTRTF), or field response against single races. Therefore, the objectives of the current study were to (a) evaluate seedlings of a panel of durum wheat lines for resistance to four virulent Pgt races (TTKSK, JRCQC, TKTTF, and TTRTF) and field resistance to races JRCQC and TKTTF and (b) conduct GWAS analysis using single nucleotide polymorphism (SNP) markers to identify genomic regions associated with seedling and field resistances against these races.• A panel of durum wheat lines evaluated for responses to Pgt at the seedling and adult plant stages. • Using 280 lines and 26,439 SNP markers GWAS models were fitted and QTL consistency was assessed.• Genomic regions of Sr7a, Sr8155B1, Sr11, alleles of Sr13, Sr17, Sr22, Sr25, Sr49 were identified. • Novel stem rust resistance loci were identified on chromosomes 3B, 4A, 6A, 6B, 7A, and 7B. • The identified novel loci were consistent across races, seasons, growth stages, and models.A panel of 283 spring durum wheat lines representing the germplasm pool of the CIMMYT durum wheat breeding program was evaluated against four Pgt races in a biosafety level-3 greenhouse facility at the University of Minnesota in January 2019. The four races were TTKSK (isolate 04KEN156/04), JRCQC (isolate 09ETH08-1), TKTTF (isolate 13ETH18-1), and TTRTF (isolate 14GEO189-1). These races were selected based on their broad virulence on commercially deployed resistance genes and their damage on global wheat production. Six seeds of each line were planted in trays filled with vermiculite and replicated twice for each race. Seven-day-old seedlings were inoculated with urediniospores of each race following the procedure by Rouse et al. (2011). Seedlings were scored 14 d postinoculation using the 0-to-4 scale described by Stakman et al. (1962). Accordingly, infection types (ITs) \";\", \"0\", \"1 -\", \"1\", \"1 + \", \"2 -\", \"2\", and \"2 + \" were considered resistant whereas \"3 -\", \" 3\", \" 3 + \", and \"4\" were considered susceptible. This scale was linearized to 0-to-9 scale according to Zhang et al. (2011) as ';' and '0' = 0, '1 -' = 1, '1' = 2, '1 + ' = 3, '2 -' = 4, '2' = 5, '2 + ' = 6, '3 -' = 7, '3' = 8, '3 + ' = 9, '4' = 9 for statistical analysis. Lines with linearized scale ≤6 (IT ≤ 2 + ) and >6 (IT > 2 + ) were considered seedling resistant and susceptible, respectively.The same panel used for seedling evaluation was tested for responses to races TKTTF and JRCQC at the adult plant stage in single-race nurseries at the Debre Zeit Agricultural Research Center, Ethiopia, from 2018 to 2020. The response to race JRCQC was evaluated during main-season 2019 (JRCQC_MS19) and off-season 2020 (JRCQC_OS20), while that of race TKTTF was evaluated during the mainseason 2018 (TKTTF_MS18) and main-season 2019 (TKTTF_MS19). The TKTTF_MS18 nursery was inoculated with bulk of isolates ETH-9TZaTX25, SR-BA-14, SR-BA-28, AM-S, AM-14, AM#-a1, Am-03, while TKTTF_MS19 was inoculated with bulk of isolates AM-A4, Am-A17, AM-B28, DZ-A-8, DZ-A25, and Gonder-A-2. The JRCQC_MS19 and JRCQC_MS20 trials were inoculated with bulk of isolates Ku#3, Ku#22, Ku#30, Am#6, and BD#30 identified in 2015 and 2016. The main-and off-seasons in Ethiopia are from June to November and from January to May, respectively. The nurseries were established in isolation from the international screening nursery, where germplasm screening is done against a bulk of multiple races, to avoid potential contamination. Moreover, the two single-race nurseries were also isolated by distance (∼1 km apart) to control contamination. The lines were planted in double rows (1 by 0.2 m) using a randomized incomplete-block design and two replications.One moderately resistant ('Mangudo') and two susceptible ('Local Red' and 'Arendato') checks were planted after every 50 lines. The 20 stem rust differential lines were planted at the start and end of each nursery. The cultivar Leeds, carrying Sr13/Sr13b and cultivar Digalu carrying SrTmp were planted perpendicular to the plots and surrounding the nursery as spreader rows to initiate infections on the trials of JRCQC and TKTTF, respectively. Moreover, the nurseries were surrounded by oat (Avena sativa L.) (a nonhost for Puccinia graminis f.sp. tritici) to act as a physical barrier to potential spore contaminations. Spores of the bulk isolates of each race were mixed with distilled water and a drop of Tween 20 was added to reduce surface tension of water (one drop per 0.5 L).Each nursery was inoculated twice with this mixture at stem elongation (Zadok's growth stage = 31) (Zadoks et al., 1974).Disease severity was scored according to the modified Cobb's scale by estimating the proportion of the stem area (0-100%) covered by rust pustules (Peterson et al., 1948). Infection response was scored according to Roelfs et al.(1992) based on the size of pustules and amount of chlorosis and necrosis on the stem. The responses classes are '0' for no visible infection, 'R' for resistant, 'MR' for moderately resistant, 'MS' for moderately susceptible, and 'S' for susceptible. The nursery was scored three times for JRCQC_MS19 and TKTTF_MS19 and four times for TKTTF_MS18 and JRCQC_OS20. The severity and response were combined to a coefficient of infection (CI) value by multiplying the severity with a 0-to-1 scale assigned for each response class. The scale was assigned as follows: immune = 0.0, R = 0.2, MR = 0.4, MS = 0.8, and S = 1.0. The mean of the scale of responses was used to calculate CI in the cases where combinations of infection responses were scored for a given genotype (Stubbs et al., 1986). Then, the CI was used for further statistical analysis and the last scoring was considered to calculate the CI in all except TKTTF_MS18, where the third scoring was used.Statistical analysis of phenotype dataThe linearized scale of the seedling response against the four races was used to apply statistical analysis. R statistical software Version 3.6.1 (R Core Team, 2020) was used to plot the distributions of the responses and analyze the correlation between responses against the four races. A linear mixed model (LMM) described in Equation 1 was fitted using the lmer() function of the R package lme4 (Bates et al., 2015) considering the genotype and replication as random:where y ij is the response of the ith line at the jth replication, μ is the overall mean response, g i is the random effect of the ith genotype (line), r j is the random effect of the jth replication, and ε ij is the residual associated with the model. Variance components estimated from Equation 1 above were used to calculate broad-sense heritability (H 2 ) Holland et al. (2003):where H 2 is the broad-sense heritability, V g is the variance resulting from the genotype (line), V p is the variance resulting from the phenotype, Vp = Vg + Ve, and V e is the residual variance. The race × genotype (line) effect was estimated from LMM described in Equation 3 using the lmer() function of R considering genotype or line, race, and line × race interaction as random effects:where y ijk is the response of the ith line in the jth race and kth replication, μ is the overall mean response, g i is the random effect of the ith genotype (line), r j is the random effect of the jth race, gr ij is the interaction effect of the ith line and the jth race as random, R k is the random effect of the kth replication, and ε ijk is the residual associated with the model. The variance components estimated from Equation 3 was used to calculate broad-sense heritability (H 2 ) (Tsilo et al., 2014):where H 2 is broad-sense heritability, V g is the variance as a result of the genotype (line), V gr is the variance as a of the genotype × race interaction, V e is the variance as a result of the error (residual), n(r) is number of races, and n(rep) is number of replications.The LMM was fitted on the CI as a response variable for the JRCQC_MS19, TKTTF_MS19 and JRCQC_OS20, while the square root transformed CI was used for TKTTF_MS18. For JRCQC_MS19 and TKTTF_MS19, the following model (Equation 5) was fit using the lmer() function of the R package lme4 to estimate the variance components:where y ijk is the response of the ith line in the jth column and the kth replication, g i is the random effect of the ith line, C j is the fixed effect of the jth column, r k is the random effect of kth replication, and ε ijk is the residual associated with the model. For TKTTF_MS18 and JRCQC_OS20, the models described in Equation 6and Equation 1, respectively, were fit using ASReml-R (Gilmour et al., 2009) to estimate the variance components. Best linear unbiased predictions (BLUPs) were calculated from the respective models and the broad-sense heritability was calculated using Equation 2 for each race across seasons. The variable R j in Equation 6 is the fixed effect of the jth row, and the remaining descriptions were same as Equation 5:The same panel of 283 lines from the CIMMYT durum wheat breeding germplasm pool used for adult plant evaluation against multiple races in eastern Africa (Ethiopia and Kenya) was genotyped using genotyping-by-sequencing following the protocol described by Poland et al. (2012). Single nucleotide polymorphism genotype calling, data filtering, and data imputation were performed as described in Megerssa et al. (2020) on a GWAS study of the same panel for response to bulk of multiple Pgt races prevalent in eastern Africa. A total of 26,439 SNP markers for 280 lines were retained for GWAS analysis. The LD between pairs of SNPs was calculated as the squared allele frequency correlation (r 2 ) using TASSEL software version 5 (Bradbury et al., 2007) as described in Megerssa et al. (2020). The presence of population structure was assessed using principal component analysis. The extent of LD and population structure was previously reported for this panel (Megerssa et al., 2020).Genome-wide association study analysisGenome-wide association study analysis was conducted using GAPIT (Lipka et al., 2012) by fitting three models: mixed linear model (MLM) (Yu et al., 2006), compressed MLM (CMLM) (Zhang et al., 2010), and fixed and random model circulating probability unification (FarmCPU) (Liu et al., 2016). The mean linearized scale of the two reps for the seedling response to the four races and the BLUPs calculated from the respective models for the adult plant response against the two single races (JRCQC and TKTTF) were used as a response in the fitted GWAS models. The first two principal component analysis scores and the kinship matrix were fitted as fixed and random effects, respectively. The results of GWAS were visualized using Manhattan and quantile-quantile (Q-Q) plots produced using the R package qqman (Turner, 2017) applied on the −log10 P value. The three models were compared based on the deviation of the distribution of the observed −log10 P value from the expected value in the Q-Q plots and results were interpreted from MLM and FarmCPU. Significant markers on the same chromosome were grouped into QTL based on their LD. A false discovery rate (FDR) of 5% was used for multiple comparison adjustment and as a threshold to declare significant MTAs (Benjamini & Hochberg, 1995). GAPIT calculates the FDR adjusted P values and markers with P values < .05 were taken as significant MTAs. The FDR threshold value was calculated using a vector of the P values from the GWAS output sorted from the most significant to the least. Then using a function formed in R, a cutoff was calculated for each test using the following formula: cutoff = (1:N)/N)×FDR, where N was the total number of tests (No. of markers). Then the numbers of significant markers (n) (P values < .05) with the numbers of tests (N) and FDR threshold (0.05) were used to calculate the threshold value using the following formula: FDR threshold value = (0:N/N)×FDR(n+1). The −log10(threshold value) was used to mark the threshold line on the Manhattan plot. Consistent MTAs between races and race or seasons in the field were visualized using the R package Venndiagram (Chen & Boutros, 2011). Markers reported in previous QTL mapping studies on durum and common wheat were gathered, and their sequences were searched from the GrainGenes database. The fasta file of the sequences was searched using the BLASTn program of the IWGSC database. Then the alignment of physical positions of the significant markers identified in the current study with the chromosomal positions of the 'Svevo' reference assembly were compared and resistance genes and alleles were proposed based on the similarity of positions and race specificity of known stem rust resistance genes and alleles.We evaluated a panel of lines representing the durum wheat breeding germplasm pool of CIMMYT for seedling responses to four Pgt races virulent to durum wheat. The distributions of the seedling response of the lines against the four Pgt races was skewed toward the resistant scores (linearized response ≤ 6 or IT ≤ 2 + ) (Supplemental Figure S1). The percentage of resistant lines varied from 56.4% against race TTRTF to 73% against race TKTTF (Table 1). Moreover, the lines exhibited resistance to combinations of races that ranged from 50.9 to 58.3% for combinations of three races and from 52.3 to 67.1% for combinations of two races (Table 2).Of the lines evaluated, 50.2% (142 lines) were resistant to all four races, while 19.4% (55 lines) were susceptible to all the four races. Based on the infection type and race speci-ficity, 8.6% of the lines (24 lines) were postulated to carry Sr13b. These lines showed low infection types for response to TTKSK (2 -) and TKTTF (2 -, to 2 + ), while high infection type was scored for response to JRCQC and TTRTF (3 to 4) (Supplemental Table S1). One line (genotype identification [GID] 7147182) and two lines (GID 7147179 and 7147180) showed an immune seedling response against all four races and three races (TTKSK, TKTTF, JRCQC), respectively. The broad-sense heritability for seedling responses to the four races varied from 0.61 for race TTRTF to 0.91 for race TKTTF (Table 1). The phenotypic correlation coefficients between the responses to the four races ranged from moderate (r = 0.47) between JRCQC and TTKSK to high (r = 0.76) between TKTTF and TTKSK (Figure 1).The panel of lines were evaluated for field responses against two races (JRCQC and TKTTF) for two seasons from main-season 2018 to off-season 2020. The frequency distribution of the CI of lines was normal for JRCQC_MS19, JRCQC_OS20, and TKTTF_MS19 but skewed toward resistance for TKTTF_MS18 (Supplemental Figure S2). The normality of the CI for TKTTF_MS18 was improved after square root transformation and the transformed CI was used for further analysis. The broad-sense heritability for the adult plant responses ranged from 0.59 for JRCQC_OS20 to 0.77 for TKTTF_MS19 (Table 3). Moderate correlations were observed between seedling and field responses to the two races (0.37-0.53 for JRCQC and 0.55-0.61 for TKTTF) (Data not shown).Marker-trait association analysis for seedling responses to the four Pgt races (TTKSK, TKTTF, JRCQC, and TTRTF), and field responses to the two single races (JRCQC and TKTTF) were conducted using GAPIT by fitting three different models (MLM, CMLM, and FarmCPU). The Q-Q plots of MLM andPercentage of common significant markers among seedling responses of lines against four Pgt races identified using mixed linear model (MLM)FarmCPU fitted the data well for all race-season combinations and results were interpreted from these two models.The mean linearized scale of the two replications for the seedling responses of lines against the four races was used as a response variable for GWAS analysis. A total of 114 significant markers distributed along the 14 chromosomes and unaligned contigs were identified for seedling resistance against the four Pgt races using MLM (Supplemental Table S2). Among those, 1, 16.6, 30.7, and 51.7% were associated with seedling resistance against the four races, three of the four races, two of the four races, and a single race, respectively (Figure 2).Five of the MTAs were on unaligned contigs and the remaining 109 were grouped into 17 QTL represented by single and multiple adjacent markers with known chromosomal locations (Supplemental Table S2; Figure 3). The numbers of QTL identified using MLM were six, seven, two, and eight for seedling resistance against races TTKSK, TKTTF, JRCQC, and TTRTF, respectively. This study is the first to report GWAS analysis of durum wheat for response to race TTRTF. FarmCPU identified 34 significant MTAs that were grouped into 20 QTL with known chromosomal locations (Figure 4; Supplemental Table S3). Among the 34 MTAs, a single marker for each was associated with seedling resistance against combinations of two and three races, while 32 markers were associated with seedling resistance to single races. Six QTL located on chromosomes 2B (89-97 Mb), 3A (565 and 614 Mb), 6A (205 Mb and 602-615 Mb), and 7A (686-721 Mb) were consistent between the two models (Table 4). On chromosome 1A, an MTA was identified at 258 Mb for seedling response to race TTKSK (Supplemental Table S1). On chromosome 1B, six significant markers representing five putative QTL were identified (Figures 3 and 4). The 11 Mb locus was associated with seedling resistance to race TKTTF, while the regions at 550, 551, and 587 Mb were associated with seedling resistance to race TTRTF (Figure 3; Supplemental Table S2). The markers at 550 and 551 Mb were in strong LD (r 2 = 0.95) and represent the same QTL that explained 5.1% of the phenotypic variation on average (Supplemental Table S2). The remaining two MTAs, at 22 and 166 Mb identified by FarmCPU, were associated with seedling resistance to races TTKSK and JRCQC, respectively (Supplemental Table S3).On chromosome 2B, a QTL represented by eight significant markers spanning from 89 to 97 Mb (LD, r 2 = 0.81-0.98) was identified for seedling resistance against race TKTTF (Figure 3; Supplemental Table S2). This QTL was consistent between MLM and FarmCPU, and it explained 4.2-5.8% of the phenotypic variation (Table 4).On chromosome 3A, two MTAs consistent between the MLM and FarmCPU models were identified at 565 and 614 F I G U R E 4 Manhattan plots of genome-wide association study for seedling response of durum wheat lines against four Pgt races identified using fixed and random model circulating probability unification (FarmCPU) Mb regions. The 565 Mb locus was associated with seedling resistance to races TKTTF and TTRTF and explained 3.9 and 7.4% of the phenotypic variation, respectively, while the 614 Mb region was identified for seedling resistance to race TKTTF and explained 3.1% of the phenotypic variation (Supplemental Tables S2 and S3; Table 4). On chromosome 3B, significant associations were identified using FarmCPU at 40 and 139 Mb (FDR adjusted p value = .04) regions for resistance against races JRCQC and TTRTF, respectively (Supplemental Table S3).Four significant markers (17, 619, 651, and 718 Mb) were identified on chromosome 4A (Supplemental Tables S2 and S3; Figures 3 and 4). The MTAs at 17 and 619 Mb were identified using MLM for seedling resistance against race TTRTF and explained 5.3 and 4.2% of the phenotypic variation, respectively. The 651 Mb region was associated with seedling resistance to race TTKSK and explained 5.2% of the pheno-typic variation. The 718 Mb locus was detected by FarmCPU for seedling resistance against race TKTTF. On chromosome 4B, one MTA (444 Mb) was identified using FarmCPU for seedling resistance to race JRCQC (Supplemental Table S3).On chromosome 5A, a significant marker (581 Mb) was identified for seedling resistance to race JRCQC using Farm-CPU (Supplemental Table S3; Figure 4). On chromosome 5B, MTAs were detected at 287 and 396 Mb using FarmCPU for seedling resistance against race TTRTF (Supplemental Table S3; Figure 4), while two MTAs, at 61 and 691 Mb were identified for seedling resistance against race TKTTF using MLM and FarmCPU, respectively (Supplemental Tables S2 and S3).Chromosome 6A had the highest number of significant markers (70 markers) with the largest contribution to phenotypic variation (Supplemental Tables S2 and S3; Figures 3 T A B L E 4 Lists of consistent significant markers between mixed linear model (MLM) and fixed and random model circulating probability unification (FarmCPU) for seedling resistance against four races and field resistance against the two races across seasons and 4). These MTAs were identified using MLM and Farm-CPU and grouped into two QTL based on their position and LD. A QTL at 205 Mb identified by both models explained 4.6% of the phenotypic variation for seedling responses to races TTKSK and JRCQC (Supplemental Tables S2 and S3). The significant markers that extended from 602 to 615 Mb may represent a single QTL. The phenotypic variation explained by these markers ranged from 4.5 to 14.5% for race TTKSK, 3.2 to 8.8% for race TKTTF, 4.9 to 11.5% for race JRCQC, and 4.2 to 17.1% for race TTRTF. A marker at 611 Mb (611,495,915 bp) was associated with seedling resistances to all four races and was detected by both MLM and FarmCPU (Table 4; Supplemental Tables S2 and S3). This marker (611 Mb) contributed the most to the phenotypic variation for the seedling response of lines to races TTKSK (R 2 = 14.5%) and JRCQC (R 2 = 11.5%) (Supplemental Table S2). Moreover, the 611 Mb marker was in weak to strong LD (r 2 = 0.13-0.75) with the significant markers extending from 602 to 610 Mb except one at 608 Mb (Figure 5). Markers at 612 Mb (612,832,613 bp) and 613 Mb (613,131,839 bp) contributed the most to the phenotypic variation for the seedling response to races TKTTF (R 2 = 8.8%) and TTRTF (R 2 = 17.1%), respectively (Supplemental Table S1). These two markers were consistent between these two races and were in strong LD (r 2 = 0.94). They were in weak to strong LD (r 2 = 0.12-0.98) with 36 significant markers extending from 612 to 615 Mb (Figures 2 and 5). All the significant markers on chromosome 6A extending from 602 to 615 Mb, except 21 markers, were in weak to moderate LD with the Sr13 marker (r 2 = 0.10-0.40) (Figure 5). On chromosome 6B, five significant MTAs representing three putative QTL were identified (Supplemental Tables S2 and S3). A QTL tagged by two markers at 698 Mb (LD, r 2 = 0.93), identified using MLM, was associated with seedling resistance to race TTKSK and explained 7.2% of the phenotypic variation on average. A region at 693 Mb, identified using MLM for seedling resistance against races TKTTF and TTRTF, explained 3.3 and 5.7% of the phenotypic variation, respectively (Supplemental Table S2). An MTA at 609 Mb was detected using FarmCPU for seedling resistance to TKTTF (Supplemental Table S3). On chromosome 7A, 19 significant markers representing five putative QTL were identified using MLM and Farm-CPU (Supplemental Tables S2 and S3; Figures 3 and 4). Four of the QTL represented by single markers were associated with seedling resistance to races TTKSK (51 and 67 Mb) and JRCQC (17 and 139 Mb). The fifth QTL represented by 14 significant markers extending from 668 to 721 Mb was associated with seedling resistance to races TTKSK, JRCQC, and TTRTF. These 14 markers were in moderate to strong LD (r 2 = 0.29-0.98) and explained 3.3-5.8% of the phenotypic variation (Figure 6). On chromosome 7B, significant MTAs were identified for seedling resistance against races TTRTF at 622 F I G U R E 5 Linkage disequilibrium heatmap of significant markers on chromosome 6A identified using mixed linear model (MLM) and fixed and random model circulating probability unification (FarmCPU) for seedling resistance against four Pgt races and field resistance against two races F I G U R E 6 Linkage disequilibrium heatmap of significant markers on chromosome 7A identified using mixed linear model (MLM) and fixed and random model circulating probability unification (FarmCPU) for seedling resistance against four Pgt races and field resistance against two races Mb using MLM and TKTTF at 698 Mb using FarmCPU (Supplemental Tables S2 and S3). For race JRCQC, MLM identified the QTL on chromosomes 6A only (Supplemental Table S2; Figure 3), while FarmCPU identified additional QTL on chromosomes 1B, 3B, 4B, 5A ,and 7A, albeit represented by single markers (Figure 4; Supplemental Table S3).The BLUPs estimated from the respective models fitted on field responses were used as response variables to fit GWAS models. A total of 108 significant markers distributed on F I G U R E 7 Manhattan plot of genome-wide association study for field response of durum wheat lines against two Pgt races identified using mixed linear model (MLM) the 14 chromosomes and unaligned contigs were identified using MLM for field resistance against JRCQC and TKTTF across two seasons (Supplemental Table S4, Figure 7). Among the significant markers, 12%, 23.2% and 23.1% were associated with field resistance to four, three and two of the four race-season combinations, respectively and 41.7% were associated with field resistance to different single race-season combinations (non-overlapped region on the Venn diagram) (Figure 8). The consistently significant markers across two to four race-season combinations were located on chromosomes 1B, 3B, 4A, 5B, 6A, 6B, 7A and on unaligned contigs (Supplemental Table S5). Among the total MTAs identified by MLM, 101 were on known chromosomal regions and grouped into 19 QTL represented by single and multiple nearby markers (Supplemental Table S4; Figure 7). The FarmCPU model identified 19 significant MTAs on nine chromosomes (none on 1B, 2A, 2B, 3Am, and 4A) that were grouped into 16 QTL (Supplemental Table S6; Figure 9). Among those, three QTL on chromosomes 5B (689 Mb), 6A (615 Mb), and 7A (700 and 717 Mb), were consistent between MLM and FarmCPU (Table 4; Supplemental Table S7).On chromosome 1A, an MTA was identified at 566 Mb for field resistance in TKTTF_MS18 using FarmCPU (Supplemental Table S6; Figure 9). On chromosome 1B, three significant markers (11, 551, and 587 Mb) were identified using MLM. The regions at 11 and 551 Mb were associated with field resistance in JRCQC_OS20 and TKTTF_MS19, respectively. The 587-Mb locus was associated with field resistance in JRCQC_MS19 and TKTTF_MS19 and it explained 6.7 and 5.7% to the phenotypic variation, respectively (Supplemental Table S4; Figure 7). On chromosome 2A, FarmCPU identified significant MTA at 728 Mb for field resistance in TKTTF_MS19 (Supplemental Table S6). On chromosome 3B, four significant MTAs (38, 55, 97, and 669 Mb) were identified (Supplemental Tables S4 and S6). The 55 and 97 Mb regions, representing two QTL, were identified using MLM for field resistance in JRCQC_MS19 and TKTTF_MS19. These two QTL explained 11.7 and 10.5% of the phenotypic variation for field response to races JRCQC and TKTTF, respectively (Supplemental Table S4). The MTAs at 38 and 669 Mb regions identified by MLM and FarmCPU, respectively, were associated with field resistance in JRCQC_MS19 (Supplemental Tables S4 and S6).On chromosome 4A, an MTA at 619 Mb identified by MLM explained 8.6% of the phenotypic variation in JRCQC_MS19 and, on average, 5.9% of the phenotypic variation in TKTTF_MS18 and TKTTF_MS19 (Supplemental Table S4). On chromosome 4B, an MTA at 470 Mb was identified using FarmCPU for field resistance in JRCQC_OS20 (Supplemental Table S4; Figure 9).On chromosome 5A, MTAs were identified using Farm-CPU at 429 and 527 Mb for field resistance in JRCQC_OS20 and TKTTF_MS19, respectively (Supplemental Table S6; Figure 9). Seven significant markers were identified on chromosome 5B using both models. Three MTAs from 689 to 692 Mb (LD, r 2 = 0.85-0.98) representing the same QTL were consistently identified for field resistance against JRCQC across the two seasons and TKTTF_MS19 (Supplemental Tables S4 and S6). The 689-Mb locus identified by both MLM and FarmCPU contributed 5.2-7.4% to the phenotypic variation for field response against the two races. Two loci identified by FarmCPU at 7 (TKTTF_MS18) and 345 Mb (TKTTF_MS2019) were associated with field resistance to race TKTTF (Supplemental Tables S4 and S6).On chromosome 6A, 39 distinct significant markers representing six QTL were identified using MLM and Farm-CPU (Supplemental Tables S4 and S6). Five QTL at 5 (TKTTF_MS18), 28 (JRCQC_MS19 and TKTTF_MS19), 205 (TKTTF_MS18), 334 (TKTTF_MS19), and 347 Mb (JRCQC_MS19) were represented by single markers. One QTL represented by 34 significant markers spanning from 603 to 615 Mb explained 3.7-9.1% of the phenotypic variation (Supplemental Tables S4 and S6). For this QTL (603-615 Mb), the marker with the highest contribution to the phenotypic variation was located at 615 Mb (615,604,035 bp) for JRCQC_MS19 (R 2 = 5.3%), TKTTF_MS19 (R 2 = 9.1%), and JRCQC_OS20 (R 2 = 6.5%). This region (615 Mb) was consistently identified by the two models for all race-season combinations and was in LD with markers extending from 612 to 614 Mb and Sr13 (Table 4; Figure 5). For TKTTF_MS18, a marker at 613 Mb (613,256,520 bp) contributed the most to the phenotypic variation (R 2 = 8.0%) and the 615 Mb region explained 7.0% of the phenotypic variation (Supplemental Table S4). These two markers (613 and 615 Mb) were in weak LD (r 2 = 0.13) (Figure 8). On chromosome 6B, FarmCPU identified significant MTAs at 17 and 471 Mb for field resistances in TKTTF_MS18 and TKTTF_MS19, respectively (Supplemental Table S6; Figure 9). In the same chromosome, MLM identified a QTL represented by two significant markers (686 and 687 Mb) for field resistance in TKTTF_MS18 and JRCQC_OS20 and 4.2 and 4.5% of the phenotypic variation, respectively (Supplemental Table S4; Figure 7).Chromosome 7A harbored the largest number (44) of significant markers representing three putative QTL identified by MLM and FarmCPU (Figures 7 and 9). The MTA at 43 Mb, identified using MLM, was associated with field resistance in JRCQC_OS20 and TKTTF_MS18 (Supplemental Table S4), while the 81-Mb region, identified using FarmCPU, was associated with field resistance in JRCQC_OS20 (Supplemental Table S6). The remaining 42 MTAs extending from 673 to 727 Mb explained 3.7-8.8% of the phenotypic variation for field responses to races JRCQC and TKTTF across seasons. The markers with the highest contributions to the phenotypic variation were in the 700-Mb region (700,805,183 bp and 700,727,874 bp; R 2 = 5.3-8.8%) for field resistance in JRCQC_MS19, JRQC_OS19, and TKTTF_MS19 (Supplemental Tables S4 and S6). For TKTTF_MS18, a significant marker at 721 Mb (721,720,978 bp) contributed the most to the phenotypic variation (R 2 = 5.8%). This marker (721 Mb) was in strong LD (average r 2 = 0.88) with the consistently identified significant markers (700 and 717 Mb) by MLM and FarmCPU across all race-season combinations (Figure 6).On chromosome 7B, seven significant MTAs were identified using MLM and FarmCPU and five of them represent four QTL (Supplemental Tables S4 and S6). A locus at 622 Mb (622,041,448 bp) explained 7.9 and 6.3% of the phenotypic variation in JRCQC_MS19 and TKTTF_MS19, respectively. This marker (622 Mb) was in strong LD (r 2 = 0.64) with a significant marker at 644 Mb and the two may F I G U R E 9 Manhattan plot of genome-wide association study for field response of durum wheat lines against two Pgt races identified using fixed and random model circulating probability unification (FarmCPU) represent the same QTL. Two MTAs at the 681-and 683-Mb regions were consistently identified in JRCQC_MS19 and TKTTF_MS19 using MLM (Supplemental Table S4). The markers at the 281-and 283-Mb regions were physically close but were not in LD, and the two QTL explained 4.2-5.7% of the phenotypic variation across the two race-season combinations. A QTL at 721 Mb, identified using FarmCPU, was associated with field resistance in TKTTF_MS19 (Supplemental Table S6). Novel loci were consistently identified across races and seasons on chromosomes 3B, 4A, 6A, and 7B. Lines that lack Sr13 and Sr58 (Lr46), on screening of the same durum panel with KASP markers designed in the genotyping laboratory and previously reported in Megerssa et al. (2020), carried single to multiple favorable alleles at these novel loci (Supplemental Table S8).The use of genetic resistance is an ecological and economical approach to manage wheat stem rust in different parts of the world. In the current study, we evaluated a panel of spring durum wheat lines representing the CIMMYT durum wheat germplasm pool for the response to four virulent races of the stem rust pathogen (TTKSK, TKTTF, JRCQC, and TTRTF) at the seedling stage and against two of the races (JRCQC and TKTTF) at the adult plant stage. High-density SNP markers were used to fit three GWAS models (MLM, CMLM, and FarmCPU) and genomic regions associated with seedling and field resistances were identified for future utilization in resistance breeding. The Plant GenomeThe high frequency of resistant lines and percentage of phenotypic variance explained by the genotypic component (61% for race TTRTF to 91% for race TKTTF) for response to the four races agrees with the qualitative nature of seedling resistance (Supplemental Figure S1; Table 1). However, seedling resistance should be consistent with the field responses to be protective. The relatively lower percentage of lines resistant to races JRCQC (67.1%) and TTRTF (56.4%) compared with races TTKSK (70.6%) and TKTTF (73.1%) is expected because of the documented virulence of the former two races on durum wheat (Olivera et al., 2012b;Olivera Firpo et al., 2019). The seedling resistances observed in the population ranged from single-to multiple-race resistance indicating the effectiveness of the same resistance source against multiple races (Table 2). Our finding of the moderate (0.47) to strong (0.76) correlation among the responses of the lines to the four races further verify this result (Figure 1).Seedling evaluation is the fastest and the cheapest method for screening a large number of lines. However, seedling evaluation should be confirmed by field evaluation for resistance to be reliable. Considering CI ≤ 18 (30MSMR) as resistant in the field, the high frequency of susceptible lines for response to race JRCQC and the low frequency for response to TKTTF (TKTTF_MS18) was not surprising, as JRCQC is more virulent to Sr13 than TKTTF, which is avirulent on Sr13 (Supplemental Figure S2). The higher proportion of susceptible lines against race JRCQC compared with race TKTTF (TKTTF_MS18) agrees with the findings of Hundie et al. (2019) on evaluation of 14 durum wheat cultivars against four single races. Sr13a is moderately effective against JRCQC; however, the high frequency of susceptible lines to this race could also be explained by the reduced effect of this gene under field conditions (Olivera, et al., 2021), or the temperature dependence of Sr13 effectiveness as reported by Zhang et al. (2017) in greenhouse evaluation of wheat lines, which may apply in the field because of the expected seasonal variation in temperature. The low frequency of resistant lines in TKTTF_MS19 was unusual, as durum wheat is known to have better resistance against race TKTTF. The lower percentage of phenotypic variance explained by the genotypic component for race JRCQC (59 and 67%) than race TKTTF (74 and 77%) across the two seasons indicates the presence of less variation for resistance to race JRCQC than for TKTTF in the population (Table 3). The moderate correlation between the seedling and field response to race JRCQC (0.37 for MS19 and 0.53 for OS20) and TKTTF (0.55 for MS19 and 0.61 for MS18) may indicate that only some of the lines resistant at the seedling stage are consistently resistant in the field. Thus, the lines that showed consistent resistance in the seedling assay and in the field can be deployed as sources of resistance in durum breeding programs and can also be used for combining with known adult plant resistance genes to increase durability of resistance.Comparison of identified QTL with previously published studies and known Sr genes Many of the QTL identified in the current study collocated with previously reported QTL markers on tetraploid and hexaploid wheat and cataloged stem rust resistance genes. On chromosome 1A, a QTL at 566 Mb for field resistance in TKTTF_MS18 may tag a region close to regions reported by Edae et al. (2018) 9; Supplemental Table S4). On chromosome 1B, an MTA at 11 Mb for seedling resistance to race TKTTF and field resistance in JRCQC_OS20 is close to (4.5 Mb away) the Sr31 locus (Edae & Rouse, 2020). Sr31 is located on the short arm of chromosome 1B and transferred from rye (Secale cereale L.) to hexaploid wheat. This gene had been effective for more than three decades until defeated by the Ug99 race TTKSK (Jin & Singh, 2006;Wanyera et al., 2006). Although Sr31 is effective against races TKTTF and JRCQC (Olivera et al., 2015), this gene is not expected in the durum panel. So, the 11-Mb locus is a novel region close to Sr31. A region at 22 Mb (22,978,945 bp) associated with seedling resistance against race TTKSK may represent the same region as (2 Mb away) QTL tagging markers IWB72495 reported by Bajgain et al.(2015b) and IWA64 reported by Chao et al. (2017) (Figure 4; Supplemental Table S2). A QTL at the 550-and 551-Mb regions for seedling resistance against race TTRTF and field resistance in TKTTF_MS19 collocates with (1-2 Mb away) a QTL linked marker barc61 reported by Letta et al. (2014) and is expected to be the same QTL. An MTA at 587 Mb for seedling resistance against race TTRTF, field resistance to JRCQC and TKTTF in the main-season 2019 may map the same region as a QTL tagging marker IWB40197 (1 Mb away) reported by Edae et al. (2018) (Figures 3 and 7; Supplemental Table S1 and S3). Chromosome 1BL is known to harbor Sr14 and the pleiotropic APR gene Sr58 (Lr46/Yr29/Pm39) that are known to be effective against several races (McIntosh et al., 1995;Bhavani et al., 2011). However, none of the loci we detected on chromosome 1B are close to markers associated with Sr14 (barc8 and wPt1876) and Sr58 (wmc44) previously reported by Letta et al. (2013).A single marker (728 Mb) representing a QTL on chromosome 2A associated with field resistance in TKTTF_MS19 is far away from markers reported by Bajgain et al. (2015b) and Mihalyov et al. (2017) and could be a novel locus (Supplemental Table S3; Figure 7). Chromosome 2A hosts Sr38 (transferred from T. ventricosum (Tausch) Ces. et al.) (Bariana & McIntosh, 1994), which is ineffective against race TKTTF (Olivera et al., 2015;Flath et al., 2018). Eight of the lines in the panel are expected to possess Sr38 (Ammar, unpublished data, 2020) but this region was undetected because it was below the MAF threshold. On chromosome 2B, a QTL associated with markers ranging from 89 to 97 Mb identified for seedling resistance against race TKTTF may map the same locus as a QTL marker IWA8599 (1 kb to 7 Mb away) reported by Gao et al. (2017) (Supplemental Tables S1 and S2; Figures 3 and 4).On chromosome 3A, two QTL identified for seedling resistance to races TTRTF (565 Mb) and TKTTF (565 and 614 Mb) (Supplemental Tables S1 and S2; Figures 3 and 4) were further away from wmc264 reported by Letta et al. (2014) in the regions of Sr27 and Sr35, and no other nearby regions were previously reported. Moreover, Sr27 and Sr35 are orginated from rye and einkorn (T. monococcum L.) (McIntosh et al., 1995), respectively, and are unlikely to be present in the durum panel, suggesting that these two QTL are likely novel. On chromosome 3B, no nearby marker is previously reported for loci at 40, 55, 97, and 38 Mb (Supplemental Tables S2-S4; Figures 4, 7, and 9). Chromosome 3BS harbors the known adult plant resistance gene (Sr2) that originated from tetraploid emmer wheat [Triticum turgidum L. subsp. dicoccon (Schrank) Thell.] (McIntosh et al., 1995); however, screening of the panel of lines with an Sr2 linked marker reported in a different study on the same panel (Megerssa et al., 2020) indicated that this gene was absent in the panel. Therefore, these four QTL are likely to be novel.An MTA at 17 Mb (17,308,554 bp) on chromosome 4A associated with seedling resistance to race TTRTF co-locates (789 kb away) with a QTL marker IWB40004 reported by Bajgain et al. (2015b) (Supplemental Table S1; Figure 3). None of the markers previously reported by several authors (Yu et al., 2011;Letta et al., 2013Letta et al., , 2014;;Bajgain et al., 2015b;Chao et al., 2017;Gao et al., 2017) were close to a QTL at the 619-Mb region of chromosome 4A that was associated with seedling resistance against race TTRTF and field resistance in JRCQC_MS19, TKTTF_MS18, and TKTTF_MS19 (Supplemental Tables S1 and S3; Figures 3 and 7). Therefore, the 619 Mb (619,746,683 bp) locus could be novel for multiple-race specific resistance including the durum virulent races. A QTL at the 651-Mb region associated with seedling resistance against race TTKSK maps a region close to a QTL flanking marker (wPt5857, 1 Mb away) reported by Yu et al. (2012) and a region associated with barc78 (4 Mb away) reported by Letta et al. (2014) (Figure 3; Supplemental Table S1). A region at 718 Mb (718944322 bp) associated with seedling resistance to race TKTTF collocates with several markers reported by Bajgain et al. (2015b) including IWB34733, IWB3569, and IWB61312 (809 kb away) for seedling resistance of spring wheat collections against TKTTF, marker IAAV3545 (809 kb) reported by Edae et al. (2018) for seedling resistance of spring wheat against race RCRSC, several markers reported by Edae and Rouse (2020) for resistance of spring wheat against races TKTTF isolate from Ethiopia, (TKKTF-ETH, the closest marker is 5.6 Mb away) and TTRTF (2 Mb away), marker IWA4651 (324 kb) linked to Sr7a reported by Gao et al. (2017) for seedling resistance of spring wheat against race TTTTF (Figure 4; Supplemental Table S2). Olivera et al. (2015) and Bajgain et al. (2015b) reported that Sr7a is effective against race TKTTF isolate from Ethiopia but not against the isolate from Germany (Olivera Firpo et al., 2017). So, based on the proximity to previously reported loci and the race specificity the 718-Mb region likely maps to the Sr7a locus. No markers close to the MTAs at 444 Mb (JRCQC) and 740 Mb (JRCQC_OS20) on chromosome 4B were previously reported. These two loci are possibly novel but they were only identified at the seedling stage and in one season (Supplemental Tables S2 and S4; Figures 4 and 9).On chromosome 5A, an MTA at 527 Mb associated with field resistance in TKTTF_MS19 may be close to a QTL marker IWA2836 (9 Mb away) reported by Bajgain et al. (2015b). A QTL linked marker for resistance of spring wheat against race TTRTF reported by Edae and Rouse (2020) match the 581-Mb locus (5.3 Mb away) associated with seedling resistance to race JRCQC (Supplemental Tables S2 and S4; Figures 4 and 9). A QTL represented by significant markers at 689, 691, and 692 Mb on chromosome 5B collocate with simple sequence repeat markers flanking the region of an all-stage resistance gene Sr49 reported by Bansal et al. (2015) (Supplemental Tables S2-S4; Figures 3, 7, and 9). The consistency of this QTL (689-692 Mb) across races (JRCQC and TKTTF), seasons, growth stages (seedling and adult), and the two GWAS models suggests the reliability of the QTL and the association with multiple-race specific resistance at all growth stages although limited by the low MAF (0.05) (Table 4; Figures 2 and 8). Increasing the frequency of the favorable allele at this locus in the durum breeding lines and incorporating them in future varieties with other resistance genes may prolong the protection against the virulent race JRCQC.Chromosome 6A harbored six QTL represented by single and multiple markers (Supplemental Tables S1-S4; Figures 3,4,7,and 9). A QTL at 5 Mb (5,058,172 bp) region associated with field resistance in TKTTF_MS18 is very close to QTL tagging markers IWA7913 (138 kb) and IWB23519 (146 kb) reported by Bajgain et al. (2015b), IWB72958 (138 kb) reported by Nirmala et al. (2017) as a predictive marker for Sr8155B1, markers IWA7913 (138 kb), and S6A_PART1_3015737/S6A_PART1_3206675 (2 Mb away) The Plant Genome associated with Sr8a reported by Guerrero-Chavez et al. (2015) and Edae and Rouse (2020), respectively. Sr8155B1 is effective against several races but not TTKSK and JRCQC at the seedling stage (Nirmala et al., 2017) and Sr8a is ineffective against race TKTTF (Olivera et al., 2015). Thus, the 5-Mb region likely represents Sr8155B1 or a new allele of Sr8 (Supplemental Table S4; Figure 9). No marker close to the QTL at 28, 205, 334, and 347 Mb was previously reported, and these four QTL are likely to be novel. In addition, consistency of the QTL at 28, 205, and 334 Mb across races, races and models, and races, respectively, suggests the reliability of the QTL and the association with multiple-race specific resistance including the durum virulent race JRCQC (Supplemental Tables S1-S3; Figures 3, 4, and 7). However, further study and validation of these loci is needed. A QTL represented by the markers spanning 602-615 Mb (69 markers) collocated with several previously reported markers in the region of Sr13 including CD926040 and barc104 (Simons et al., 2011;Letta et al., 2013Letta et al., , 2014)), BE471213, BE403950, CK207347 (Simons et al., 2011;Bhavani et al., 2019), CJ641478, CJ6719993, and CJ666008 (Zhang et al., 2017), IWA4918 (Chao et al., 2017), and IWA7495 (Simons et al., 2011). Moreover, screening of the same panel of lines with a marker linked to Sr13 reported in Megerssa et al. (2020) indicated that 69% of the lines in the panel carry Sr13. It is known that Sr13 with its alleles are the mainly used stem rust resistance genes in durum wheat cultivars and germplasm worldwide (Qamar et al., 2009;Olivera et al., 2015;Singh et al., 2015). Different alleles of Sr13 are expected to be present in the durum panel based on the race specificity and the weak to strong LD with the Sr13 linked marker (Supplemental Tables S1 and S2; Figure 5). Sr13a (R1 and R3 haplotypes in Zhang et al., 2017) is effective against races TTKSK, TKTTF, JRCQC, and TTRTF (Zhang et al., 2017;Olivera Firpo et al., 2019), whereas Sr13b (R2 haplotype in Zhang et al., 2017) is effective against the former two races but not against the latter two (Olivera et al, 2012b;Olivera Firpo et al., 2019;Zhang et al., 2017;Randhawa et al., 2018). Accordingly, the SNP at 611 Mb (6A_611495915) that was consistently detected for seedling resistance to the four races may identify allele Sr13a. Moreover, a marker at 615 Mb (6A_615604035) was consistent across races TKTTF, JRCQC, and TTRTF at the seedling stage and all race-season combinations in the field. However, differences were observed in the direction of the effect on the response and the allele frequency of markers in LD with 6A_615604035, indicating that this region could be novel or the region of Sr13a based on the effectiveness against the four and might be originated from different sources (Supplemental Tables S1, S3, and S4). There was no significant SNP specifically shared between TTKSK and TKTTF only (0%; Figure 2) but based on the race specificity and infection types (IT) on 24 lines we were able to postulate Sr13b (Supplemental Table S8). A marker at 612 Mb (6A_612003938) that was identified using FarmCPU for seedling resistance against race TTKSK may map the region of Sr13b. The detection of the favorable allele at this locus (6A_612003938) in 18 of the 24 lines that showed low IT to races TTKSK and TKTTF may support our postulation of Sr13b (Supplemental Table S8). The identification of three markers (606,107,662; 606,304,231; and 607,001,638 bp) that were in LD with SNPs from 602 to 611 Mb (Sr13a region) (Figure 5) for response to JRCQC in the off-season 2020 only could be in agreement with the results reported by Zhang et al. (2017), which indicated the effectiveness of Sr13 at high temperature but additional season data is needed to confirm the result. The 615-Mb (6A_615604035) region identified across all race-season combinations may indicate the effectiveness of the resistance at this locus regardless of the temperature variation in the main and off-seasons. Nevertheless, the Sr13 region on chromosome 6A needs further study to survey the presence of other alleles and develop markers that are reliably allele specific.Several markers (108.9-119 cM) reported by Bajgain et al. (2015b) are very close (195 kb to 4 Mb) to a QTL at the 686and 687-Mb regions on chromosome 6B (Supplemental Table S3; Figure 7). The closest markers that map the location of Sr11, IWB59175.2 and IWA4246, are 195 and 501 kb away from the QTL markers 6B_687598497 and 6B_686489689, respectively. Olivera et al. (2015) reported low infection response (2) of lines carrying Sr11 against TKTTF and high for JRCQC (3 + ) at the seedling stage, but the MTA we detected was at both growth stages for JRCQC and field resistance against TKTTF (Supplemental Tables S1 and S3). This region is close to the Sr11 locus but could very well be novel given the known effects of Sr11. A QTL at 693 Mb identified for seedling resistance against races TKTTF and TTRTF is close to (492 kb to 1 Mb away) several markers (120.3-122.9 cM) associated with Sr11 reported by Bajgain et al. (2015b).The closest marker (IWB46893) is 492 kb away, suggesting that the 693-Mb (693,829,939 bp) region may be the Sr11 locus. Further study on the effectiveness of Sr11 against the durum virulent race (TTRTF) in the field is needed (Supplemental Table S1; Figure 3).Chromosome 7A harbored seven QTL represented by single and multiple markers (Supplemental Tables S1-S4; Figures 3, 4, 7, and 9). The QTL markers wmc479 and IWA7200 reported by Letta et al. (2013) and Chao et al. (2017), respectively, match loci at 17 Mb (17,624,367 bp, 2 Mb away) associated with seedling resistance to JRCQC and at 67 Mb (6 Mb away) associated with seedling resistance against race TTKSK, respectively (Supplemental Tables S1 and S2; Figures 3 and 4). No QTL marker close to the loci at 43, 51, 81, and 139 Mb has been reported previously but only the 43-Mb locus could be a true association as it was consistent between JRCQC_OS20 and TKTTF_MS18 (Supplemental Tables S2-S4; Figures 4, 7, and 9). For a QTL represented by the significant markers spanning 668-727 Mb (43 markers), the most significant markers (700 and 717 Mb) that were in LD with the rest of the MTAs collocate with the region of Sr22 (Figure 6). Markers IWB5070, IWB1874, IWB1830, and IWB62560 reported by (Bajgain et al., 2015b) are 2 Mb away from the 700-Mb locus, while IWB48466 is 5 Mb away from the 717-Mb region. The origins of Sr22 are T. boeoticum and einkorn (Periyannan et al., 2011) and this gene is effective against several stem rust races including the Ug99 groups of races, JRCQC, TTRTF, and several other races in North America (Olivera et al., 2012b;Olivera Firpo et al., 2019). Similarly, we detected this QTL for seedling resistance against all four races and field resistance against the two races using the two GWAS models (Table 4; Supplemental Table S6). The 721-Mb region in the same QTL collocates (718 kb away) with a marker in the region of Sr25 (BF145935) (Liu et al., 2010) and 15 lines are known to carry Sr25 (Ammar, unpublished data, 2020).On chromosome 7B, a QTL at 622 and 644 Mb identified for seedling resistance against race TTRTF, field resistance in TKTTF_MS19 and JRCQC_MS19 is close to (between 7 and 14 Mb) marker wmc517 at the Sr17 locus reported by Letta et al. (2014) (Supplemental Tables S1 and S3). Low IT to race TKTTF (<2 + ) (Olivera et al., 2015) and high IT to race JRCQC (>2 + ) (Olivera et al., 2012b) were reported at the seedling stage on differential lines carrying Sr17; however, we detected the association at the adult plant stage for both races, which indicates that the region could be close to Sr17 but novel. Letta et al. (2013) also reported a QTL flanking marker wPt4045 as Sr17 locus and a QTL at 698 Mb identified for seedling resistance against race TKTTF is 873 kb away from this marker and may represent the Sr17 region (Supplemental Table S2; Figure 3). An MTA at 681 Mb associated with field resistance in TKTTF_MS19 and JRCQC_MS19 is 4 Mb away from a QTL flanking marker wPt4258 reported by Yu et al. (2014) and may be the same locus. A QTL at 683 Mb (not in LD with 681-Mb marker) associated with field resistance in TKTTF_MS19 and JRCQC_MS19 may represent the same regions as a QTL identified by markers wPt1715, wPt4298, and wPt7191 (3 Mb away) reported by Letta et al. (2013) (Figure 7; Supplemental Table S3). A QTL flanking marker (wpt8007) reported by Yu et al. (2014) (2.6 Mb away) and a locus associated with resistance of spring wheat against race TKTTF-ETH reported by Edae and Rouse (2020) may map the same region as the 721-Mb locus identified in TKTTF_MS19 (Supplemental Table S4). We were unable to determine the position of nine significant MTAs that were identified on unaligned contigs.This study revealed that the CIMMYT durum wheat breeding lines harbor race-specific and multiple-race resistance tovirulent Pgt races at the seedling and adult plant stages. Lines consistently resistant in the seedling assay and in the field are being used as sources of resistance in the durum wheat breeding program. We have identified several QTL for resistance to virulent stem rust races at the seedling stage and in the field. Among the 17 QTL identified using MLM for seedling resistance against the four races, eight are putatively novel and among the 20 QTL identified using FarmCPU, 11 are putatively novel. Among the 19 QTL identified using MLM for field resistance against races JRCQC and TKTTF, 12 are putatively novel and among the 16 QTL identified by FarmCPU, seven are putatively novel. Therefore, the stem rust resistance in this study population is controlled by multiple genes. The QTL represented by single markers that were not consistent across races and seasons should be verified before use in future resistance breeding. The markers linked to the six QTL for seedling resistance and three QTL for field resistance that were consistent between the two models can be reliably used in MAS once validated in different populations. Two large-effect markers in the region of Sr13 on chromosome 6A that were consistent between races, seasons, and models may identify the Sr13 haplotypes in different population or Sr13a and novel region effective against multiple races. Since the resistance allele at the Sr49 locus was rare in the population, and this gene is effective against multiple races, this gene should be retained in future selections if no known linkage drag is associated with it. The contribution of the Sr22/Sr25 region on chromosome 7A to the phenotypic variance was comparable to the Sr13 region; however, these genes are associated with undesirable agronomic features such as low kernel weight and reduced yield. New recombinant lines less defective in such traits but harboring these genes, either individually or together, are being developed for further evaluation. The evaluation of a panel of lines against virulent races of Pgt at the seedling stage and in the field enabled us to identify novel QTL regions specific to the durum virulent races that are consistently identified for other races. Therefore, the novel loci on chromosomes 3B, 4A, 6A, 6B, 7A, and 7B are regions to be validated for use as novel sources of resistance and strategically used in breeding programs. Identification of sources of adult plant resistance is also very important in future resistance breeding of durum wheat against stem rust.","tokenCount":"10503"} \ No newline at end of file diff --git a/data/part_3/3272479974.json b/data/part_3/3272479974.json new file mode 100644 index 0000000000000000000000000000000000000000..f05c8d74dc08c88e3541da4f97f028999b05eedc --- /dev/null +++ b/data/part_3/3272479974.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"8e8d19aa93c393afdf225cd5e2fc613a","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/3106e657-b6d1-4988-9b85-94da0e746ca1/content","id":"981729149"},"keywords":[],"sieverID":"4de6b082-c430-4a46-b0eb-280e84500cf8","pagecount":"73","content":"Los siguientes ejercicios han sido desarrollados para beneficio de los becarios en entrenamiento en producción y agronanía, en la sede del CII+1YT en México. Ellos suplerrentan y enriquecen el material sobre el uso de presupuestos parciales desarrollado en el Manual de Econanía del CII+1YT (Perrin et al, 1976). Crearos que este conjtmto de ejercicios ayudará a los becarios a conducir con confianza sus propios análisis econánicos.Los ejercicios presentan, paso ¡x>r paso, los elarentos de presupuestos parciales: ¡x>r 10 tanto, deben ser utilizados en la secuencia en que son presentados. Antes de cada ejercicio se da una explicación de los conceptos fundarrentales; se canienza con conceptos elarentales para luego presentar cacplicaciones analíticas que los investigadores deben frecuent.elrente enfrentar en la práctica.El concepto de Dominio de Recortendación está presente en todos los ejercicios, por 10 que resulta conveniente definirlo en esta introducción. un Dominio de Rea:::mmdación es definido caro tm grupo de agricultores cuyas cirCtmstancias y prácticas son similares, y para quienes una sola rea:::mmdación sería apropiada. La \"identificación de daninios de rea:::mmdación en un área específica no es más que la estratificación de los agricultores en grupos aproximadamente harogéneos.El uso de los daninios proviene del reconocimiento práctico de que (1) no es factible hacer recarendaciones individuales para cada agricultor, y(2) una recarendación glebal general para un área cacpleta de estudio probablemente no será apropiada para muchos de los agricultores en la misma.El concepto de Dominio de Recarendación se hace operacional en el análisis econánico ¡x>r rredio del análisis de datos caIDinados. Dado que una sola reccm:mdación será formulada para un daninio dado, los resultados de todos los experí.nentos serrbrados en el daninio, y para el daninio, deberán ser incluidos en el análisis. La carbinación, se debe realizar a través de los años, así caro a través de los sitios dentro de un daninio. Las técnicas específicas para el análisis de datos cx::ui:>inados son presentadas en los ejercicios.Estos ejercicios utilizan en su mayor parte datos de exper:i.nentos de maíz, aunque los conceptos y procedimientos pueden aplicarse fácilmente a otros cultivos.Agradezoo la ayuda de todas las personas que oo1aboraron en el desarrollo de estos ejercJ.cJ.os. Quisiera. expresar mi especial agradecimiento a Derek Byerlee, econanista del CIMMYT, Federioo Kocher, A.F.E. Pal.ner y Alejan3ro Violic, agr6n.aIDs del CDftiYT; y a los becarios de producción y agronanía en servicio, con los cuales ha sido un placer trabajar.'}/ Costo de transporte ya incluido.SOCClON 1) PROClO DE CAMPO DEL POOOUCI'O Un concepto clave en el manual de econanía del CImYT es el de precio de carcpo del producto: Ej. maíz o trigo. se define caro \"el valor para el agricultor de una unidad adicional de producción en el campo, antes de la cosecha••. \" (Perrin et al, 1976, p. 7).El precio de carcpo del producto se calcula restando del precio de venta del producto (donde, cuando y cém:> lo venda el agricultor), aquellos costos que son aproximad.aIrente proporcionales al rendimiento.Frecuentemmte, tales costos incluyen: cosecha, desgrane, transporte del cartp) al sitio de venta y los costos de almacenamiento del agricultor.(Cuando el agricultor no venda se debe usar un precio de campo de oportunidad, igual al costo de adquisición de una unidad adicional de este producto para consunn) • El concepto de \"precio de campo\" se usa con tres propósitos: 1) Asegurar que los costos nencionados anterio:rnente sean incluidos en el El agricultor vende su maíz en su casa a un intennediario a L 15/qq (lqq = 100 lbs = 45 kg). Tan'bién tiene que pagar los siguientes costos: cosecha de maíz = L 1.20/qq, desgrane = L 1.40/qq Y transporte def canp:> a su casa = L 2.50/\"carga\" (l carga = 4 qq = 400 lbs = 180 kg).Precio de canpo del maíz = L ----.:/kg.El beneficio bruto de campo se define caro: \"Rendimiento neto nultiplicado por el precio de campo de todos los productos del cultivo.En general, esto ppdría incluir beneficios nonetarios o beneficios de oportunidad, o ambos.\" (Perrin et al,p. 8). Los beneficios brutos de campo se deben estimar para cada tratamiento a ser evaluado.El \"precio de campo\" ya se defini6 en la Secci6n (1). \"Rendimiento neto\" se define caro: \"El rendimiento rred.ido por hectárea en el campo, rrenos las pérdidas de cosecha y de almacenamiento, cuando éstas sean aplicables.\" (Perrin et al, p. 7).El concepto de \"rendimiento neto\" se. origina del reconocimiento de que los agricultores fr:ecuenterrente no obtienen los misrros rendimientos que los investigadores, aún cuando aplican \"el misrro tratamiento\". Esto tiene varias causas:1) Manejo. Con frecuencia los investigadores son más precisos y puntuales en la aplicaci6n de un tratamiento dado, e. g. espacio entre plantas, fertilizaci6n y control de malezas, etc.2) Fecha de cosecha. Los investigadores frecuent.errente cosechan los campos cuando las plantas alcanzan su \"madurez fisiológica\", mientras que los agricultores tienden a dejar que se seque el cultivo en el campo. Aún cuando se ajustan los rendimientos de los investigadores y de los agricultores a la misma hurredad constante (ej. 14%), el rendimiento de los investigadores es más alto debido a nenores pérdidas por insectos, pájaros, ratas, pudriciones de la mazorca o desgrane.3) Foma de cosecha. A veces, la cosecha mecanizada que efectúan los agricultores conduce, si el cultivo se ha acamado o los surcos no fueron samrados en foma unifonre, a grandes pérdidas en el campo. En estos casos, una cuidadosa cosecha manual llevada a cabo por los investigadores conducirá a la obtenci6n de niveles de rendimiento que los agricultores no pueden alcanzar.4) pérdidas por almacenaje. Si el agricultor almacena su cosecha para consurro familiar o para venderla más tarde, Y se presentan pérdidas debidas a daños de insectos o ratas, su producción efectiva resultará rrenor que la predicha por los investigadores en base a datos experi.nentales (Nota: las pérdidas por almacenaje no deberán ser tanadas en cuenta si ya se han inclúido en el \"costo de almacenamiento\" usado para calcular el precio de canpo) • 5) Tamaño del lote. Aún cuando los investigadores son cuidadosos al usar técnicas de cosecha que reducen los efectos de bordura, en general los rendimientos estimados de lotes pequeños tienden a ser mayores que aquellos tanados del canpo canpleto.Ejercicio No. 2 -Beneficios Brutos de Carrp:> Calcule el beneficio bruto de carrpo para los siguientes tratamientos de nitr6geno por densidad (N x O). Se considera que los investigadores ebtienen rendimientos más altos que los agricultores (con los misrros niveles de nitrógeno y de densidad) debido a mejor manejo (10%) y a cosecha adelantada (10%). Los agricultores venden su maíz imediataIrente después de la cosecha.El agricultor recibe $6.00/kg por su maíz desgranado. El costo de transporte del carcpo al sitio de venta = $0.40/kg, el costo de cosecha = $1.10/kg y el costo de desgrane = $0.30/kg. (p. 9). El \"beneficio bruto de campo\", se discutió en la sección (2).Los \"Costos variables totales\" se definen caro \"la suma de los costos de carrpo de todos los inSUlTOs que son afectados por la selección entre tratamientos. El cálculo del beneficio neto de cada tratamiento es sólo un paso intenredio en el análisis econánico de los datos agronánicos. No sienpre el tratamiento con el beneficio neto más alto resulta en la rrejor recarendación, ya que factores tales caro la escasez de capital y aversión de los agricultores al riesgo tienen que ser incluidos en el análisis.IDs beneficios netos y los \"costos que varían\" se usan para calcular \"tasas marginales de retorno al capital\" conforne uno se mueve de un tratamiento nenos costoso a uno más caro (secciones 8 y 10). Este \"análisis marginal tl , sin embargo, se puede hacer más eficiente por rredio del uso de un paso intenredio-tlanálisis de daninancia\"--en el cual se descartan los tratamientos obvianente antieconánicos (ver Perrin et al, p. 18).Un tratamiento \"daninado\" es aquel que tiene rrenores beneficios netos y mayores costos que varían que cualquier otro tratamiento en el ensayo. No es necesario considerar los tratamientos daninados en los análisis subsecuentes.El análisis de daninancia puede ser visto gráficanente en la \"curva una vez que han sido descartados los tratamientos daninados, se puede enpezar el análisis marginal. El propósito de este análisis \"es el de revelar la manera en que los beneficios netos de una inversión aurrentan conforne la cantidad invertida crece.\" (Perrin et al,p. 18).El análisis marginal está basado en la \"tasa marginal de retorno\", la cual se define caro el increrrento en beneficios netos dividido por el increnento en los costos que varían conforne uno se mueve de un tratamiento al siguiente. tratamiento más costoso. La tasa marginal de retomo se expresa usua1Irente caro un porcentaje.Ejercicio No. 8 -Tasa Marginal de Retorno COn base en los datos siguientes obtenga para el daninio de recarendaci6n ~, las tasas marginales de retomo y la curva de beneficios netos. Consioérese a un agricultor que invierte $100 en fertilizante. Si el incrarento del valor de la prooucción (debido al uso del fertilizante) fuera exact.arrente de $100, el agricultor indudablerrente se larrentaría por haber carprado dicho fertilizante. Con obj eto de que realIrente le conviniera invertir, él debería requerir no solarrente recuperar los $100, sino ganar además una cierta \"tasa mínima de retomo\". Si esta tasa mínima de retorno requerida fuera 50%, él tendría que esperar obtener un retorno de $150 ($100 + 50%) antes que invertir. Cualquier inversi6n de la que se esperara una tasa de retorno rrás baja sería rechazada¡ de la misma manera, cualquier inversi6n de la que se esperara una tasa de retomo rrás alta que este mínirro sería aceptada (sin tarar en cuenta el riesgo por el rrarento). El problema estriba justaIrente en la estimaci6n de esta \"tasa mínima de retorno requerida\".En algunas áreas, la tasa mínima de retorno requerida Para inducir la inversi6n puede ser estimada direct.arrente. Por ejemplo, en un área la regla de los misrros agricultores fué la de \"2 al\" ¡ o sea, los agricultores exigieron un retorno esperado de $2 por cada $1 invertido.Esto es equivalente a una tasa mínima de retorno de 100% ($1 + 100% =$2) .Usua1.Irente, sin embargo, no existe esta regla general y la tasa mínima de retorno debe ser inferida rrediante la estimación del costo del capital prestado (genera1.Irente, esto es rrás fácil que estimar el costo de oport\\IDidad del capital propio del agricultor) • Suponga, por ejemplo, que un agricultor pide prestados $1000 por ocho ItEses, a una tasa de interés anual de 18%, que paga una cuota de servicio de $30 y que, con el objeto de obtener el préstano, incurre en gastas personales por un rronto de $70. Su costo de capital se estima La tasa mínima de retorno que se requiere para inducir la inversi6n normalmente estará por arriba de este \"costo del capital prestado\".Perrin et al sugieren estimar la tasa núni.ma de retorno añadiendo 20 ¡:mltos de porcentaje (\"margen de seguridad\") scbre los costos de capital así estimados. Aún más, ellos sugieren que una tasa mínima de retorno de un 40%, caro regla, es apropiada para muchas áreas.En Perrin et al, los ténninos \"costo de capital\" Y \"tasa mínima de retorno\" se usan en forma indistinta. En los siguientes ejercicios, se hará referencia 8610 al \"costo de capital\".Ejercicio No. 9 -Costo de Capital al Un agricultor pide prestado $3,000 por ocho neses, a una tasa de interés anual de 20%. Además del interés, él debe pagar un cargo por servicio de $60 y tiene $140 de gastos personales relacionados con la obtención del préstam:>. Asimisrco, tiene que pagar una prima de seguro de $90. ¿Cuál es su costo de capital prestado? ¿Cuál es su costo de capital cuando se añade un \"margen de seguridad\" de 20%? bl Un agricultor pide prestado $2000 al prestamista del pueblo. No tiene que pagar cargo por servicio alguno, prima de seguro Y tanqx:>cO gastos personales. Pero esta persona cc::bra 10% de interés nensual. ¿Cuál es el costo de capital, si lo pide a un plazo de 7 neses? ¿CUál es el costo de capital si se añade un \"margen de seguridad\" de 20%1 SFCCION 10) REX:XMENDACIONES Y IA TASA MARGINAL DE RE'IDRID En los ejercicios previos, se hizo hincapié en el cálculo y estimación de precios de canpo, beneficios brutos de campo, beneficios netos, costo de capital, etc. Ahora, esos cálculos deben ser interpretados, con cbjeto de fonnular una recarendación Para los agricultores.Los investigadores han usado diferentes criterios incorrectos Para la fonnulación de recarendaciones, tales caro: el rendilniento más alto, el beneficio neto mayor, o la máxima tasa marginal de retomo. Todos estos criterios POdrían conducir a la cbtención de resultados incorrectos o equívocos. La manera correcta de interpretar cálculos de presupuesto Parcial es un poco más carplicada e involucra una serie de cc.rrparaciones entre tasas marginales de retomo y el costo del capital. . Considere una curva de beneficio neto, en la cual se han retmido los tratamientos no daninados. Ertpezando con el tratamiento nenos costoso (costos que varían más bajos), calcule la tasa marginal de retomo conforne se mueve hacia el siguiente tratamiento en la curva de beneficio neto. Si esta tasa marginal de retomo es mayor que el costo de capital, el carcbio (o inversión) es aceptada (sin tomar en cuenta el riesgo). Cada canbio sucesivo se evalúa de la misma manera. En resurren, se pide a los investigadores que consideren por seParado cada increrrento de costo; ellos deberían continuar aurrentando los costos hasta que la tasa marginal de retomo se aproxi.ne (pero no quede por debajo) del costo de capital COnfo:rne se desarrollan prácticas nejoradas de producción a través de la investigación en fincas, se crea, la necesidad de Iredir la consistencia con la cual estas prácticas mejoradas demuestran ser superiores, desde el punto de vista econánico, a las prácticas corrientes de los agricultores. Esta Iredida se realiza vía \"ensayos de verificación\", en los cuales se canpara la práctica del agricultor con la práctica nejorada. Esta canparación se lleva a cabo en muchas localidades dentro de un daninio de recarendación.El análisis econánico de los ensayos de verificación es crucial, siendo las ganancias y el riesgo los principales criterios de canparac~on. Si.np1ificando: si no se hace un análisis econánico de los ensayos de verificación, probab1errente no valdría la pena serrbrar10s.Los ensayos de verificación presentan problemas especiales para su análisis econánico. Generalmente, se encuentran TIUchos factores que carrbian sirou1táneamente confo:rne uno se mueve de un tratamiento a otro.La especificación de los \"costos que varían\" debe ser hecha con mucho cuidado con objeto de asegurarse de que todos los costos que varían sean incluidos.Tal caro con otros experi.Irentos, el análisis econánico de los ensayos de verificación se realiza con rendimientos praredio (estimados sobre muchos ensayos) de cada tratamiento, dentro de un misrro daninio de recarenda.ción.Ejercicio No. 12 -Verificaciones Lleve a cabo un análisis econánico del siguiente juego de ensayos de verificación para el daninio de recarendación dos. Incluya el análisis I'llal':ginal y la curva de beneficio neto. ¿Cuál es la recarendación apropiada para el DR 21 Estas \"altas pérdidas ocasionales\" se pueden atribuir a la variabilidad del rendimiento y a la variabilidad de los precios.El n análisis de retornos mínim:>s\" se usa para analizar los efectos de la variabilidad del rendimiento sd:>re los beneficios netos, especia1Irente los efectos de \"desastre\". Este análisis consiste sencillarrente en el examen de los beneficios netos de cada tratamiento en los peores casos.COnsidere, por ejenplo, un juego de 10 ensayos idénticos realizados en un daninio de recarenda.cién. El análisis marginal conduce a la selección de uno de los tratamientos caro recarendación para los agricultores. Sin arbargo, los investigadores deben C'CIl'parar los beneficios netos obtenidos con este tratamiento en los dos o tres peores casos, (apróxirradarrente 20% del nÚIrero total de ensayos) con los beneficios netos obtenidos con tratamientos alternativos en estos peores casos. Si el tratamiento recarendado :muestra que sus beneficios netos en los peores casos son bastante Irás bajos que aquellos obtenidos de otros tratamientos que se puedan considerar caro alternativas razonables, los investigadores tal vez deberían reconsiderar su reCCl'l'endación.Para que el análisis de retornos míni.nos sea válido, todos los ensayos de una clase detenninada que se siembren en un daninio de recarendación dado (excepto aquellos perdidos por el mal manejo del investigador) deberán ser incluidos en el análisis. Específicanente, aquellos ensayos que se hayan perdido debido a causas naturales (inundaciones, sequía, etc.) que los agricultores tienen que afrontar. De no ser así, los riesgos de los tratamientos seleccionados estarían sub-estimados.El análisis de retornos ll\\Í.ninDS es especialmente inportante en casos de ensayos <::lCX1 tratamientos de altos costos, en áreas de oonsiderab1e variabilidad en los rendimientos. Dependiendo de los resultados del análisis estadístico, algunas veces se usan en el análisis los datos provenientes de tratamientos individuales, mientras que otras veces se usan los praredios de los efectos principales.En el presupuesto parcial, el incrarento en \"los costos que varían\" se c::cnpara con el increm:mto en \"beneficios netos\", con objeto de calcular la \"tasa marginal de retorno\". Clararrente, el análisis asurre que los beneficios netos y los beneficios brutos son calculados en base a canbios en los rendimientos que realmente existen y que son atribuibles al efecto de los tratamientos y no a la variación al azar. Si no existen carribios de rendimiento (o éstos no se deben a efectos del tratamiento), entonces los procedimientos de los presupuestos parciales no son canpletanente aplicables. En ausencia de carrbios de rendimiento (y por tanto en ausencia de carrbios en el beneficio neto) nonnal.nente se da preferencia al tratamiento nenas costoso. y La existencia de carrbios reales de rendimiento se detennina por medio del análisis estadístico. Perrin et al, (p. 4) sin embargo, hacen notar dos precauciones.\"La mayoría de las pruebas estadísticas usadas Para detenninar los efectos de los tratamientos experircentales se realizan a niveles de significancia de 5 por ciento ó 1 por ciento. No obstante, los agricultores pudieran estar dispuestos a aceptar una evidencia persuasiva nenor que esos niveles representan. Por ejercplo, si en un experirrentb la variedad A rindió 3 ton/ha en tanto que la variedad B rindió 4 ton/ha, los agricultores pudieran estar satisfechos de escoger la variedad B aún cuando la diferencia de 1 ton/ha señalada, fuera significativa Para un nivel de probabilidad del 10 por ciento.Más aún, es muy posible que las rredias de significativanente diferentes cuando se tara cada pero que las medias de los tratamientos sí tratamiento no sean ensayo separadarrente difieran a niveles significativos cuando los datos de todos los ensayos se carbinan conjuntanente. En virtud de estas consideraciones, se sugiere que se lleven a cabo ambos tipos de análisis, el estadístico y el econánico. Si sólo se dispone de un experircento, se puede decir Imy poco sOOre la pertinencia del tratamiento Para los agricultores del área, a nenas que los resultados sean abrumadores. Cuando se dispone de varios experirrentos (en varios sitios o varios años, o unos Y otros), puede llevarse a cabo un análisis estadístico de los datos carbinados. El análisis de varianza debe incluir tratamientos, sitios, y la interacción sitios X tratamientos caro fuentes de variación.\"Este criterio coincide con el de la estadística clásica de protegerse contral el error de aceptar una diferencia cuando en realidad no existe (error tipo 1). Sin embargo, a veces puede resultar nenas costoso protegerse contra el otro tipo de error, es decir, de rechazar la diferencia cuando ésta rea1rcente existe.Los dos puntos anteriores se refieren a maneras con las cuales se p.1ede facilitar la búsqueda de \" s ignificancia\". Frecuentem:mte los programas de investigación se ven forzados, ya sea Para enfocar el futuro trabajo experi.nental y/o Para hacer recarendaciones preliminares Para los agricultores, a analizar uno o pocos ensayos. Tal es el caso cuando se inicia la investigación en un área nueva de estudio. En estos casos, la \"s ignificancia\" puede resultar elusiva Para ciertos factores. De todas maneras, si no existen diferencias significativas entre tratamientos dentro del universo bajo estudio, ni siquiera el análisis canbinado de datos conducirá al investigador a encontrar diferencias significativas, aún en el caso de que se tengan datos diSPonibles de varios ciclos de experimentación.Los investigadores deben estar preparados, entonces, Para tratar con situaciones en 1aq cuales algunos factores muestran diferencias \"significativas\" entre tratamientos, mientrás otros no 10 hacen. Corro se hizo notar, esta posibilidad crea carp1icaciones especiales en el análisis de ensayos tales ccm::> los factoriales 2 4 •En los procedimientos y ejerrp10s usados por Perrin et al, los tratamientos experi.nenta1es son analizados uno por uno. En el caso de los ensayos factoriales 2 4 , cada uno de los dieciseis tratamientos incluidos en un ensayo dado debería ser analizado; sus beneficios netos calculados, los tratamientos daninados excluidos, etc. Este análisis de tratamiento por tratamiento de los factoriales 2 4 es carplejo debido al gran nÚlrero de tratamientos incluidos en los presupuestos y puede ser equívoco debido a la dificultad de canbinar resultados econánicos y estadísticos.Una alternativa es la de corrbinar los datos usando los praredi.os de rendimiento para los efectos principales. se necesitaría una seParación posterior de estos datos solanente ante la presencia de interacciones significativas. Por tanto, en lugar de un solo presupuesto para 16 tratamientos, puede haber varios presupuestos, cada uno con dos o posib1errente cuatro tratamientos. Sin embargo, el fomato exacto de los presupuestos depende de los resultados del análisis estadístico.15.1) CASO l. ro SIrnIFlCANCIA A veces, el análisis estadístico indica que no hay diferencia significativa en rendimientos a causa de factores principales o interacciones. Ccm:> se dijo, el nivel de significancia requerido depende del investigador y puede ir del nivel .01 (mayor increrrento de costo con una tasa marginal de retomo por arriba del costo de capital) al nivel.20 (menor carrbio de costo con una excelente 'IMR). En este caso, no hay necesidad de usar el análisis de presupuestos parciales debido a que los rendimientos (y por tanto los beneficios brutos) son los misrros para todos los tratamientos. Una carpa.ración de costos es todo 10 que se necesita para seleccionar una recarendación: el tratamiento menos costoso. Esto se puede realizar sobre una base de factor por factor. = $10.00/q:¡ = $34.00/q:¡ = $39.00/q:¡ = $ 3.00/qq = 1 día-hatbre/ha = $ 6.00/día Los agrónaros consideran un increm:mto prcbab1e de 600 kg/ha (prcmadiando ciclos buenos y malos), por tanto, el control químico de malezas aparece caro una práctica prioritaria para la investigación en finca, por 10 menos desde el punto de vista de la prd:>ab1e cbtenci6n de mayores ganancias (nótese que la práctica debe todavía ser prd:>ada en 10 que respecta a riesgos y consistencia con el sistema de producción agrícola) • Ejercicio No. 16 -Presupuestos Parciales para Planificar Ensayos los investigadores concluyeron que la deficiencia de nitrógeno es un factor li.mi.tante principal de la producción de maíz en un daninio de recarerrlación. Ellos pensaron que la aplicación de 150 kg/ha de N podría subsanar esta deficiencia y llevaría a la obtención de un aurrento en rendimiento de una tonelada por hectárea. ¿Es este nivel de aplicación de N prcbablemante rentable para los agricultores? Si no es así, los investigadores podrían fijar los niveles de aplicación de N un poco más bajos. Si el costo del capital = 55%, se deberá recarenda.r el tratamiento 3. (El único carrbio útil es el de labranza convencional a una química con control de maleza.)(3)(5) ","tokenCount":"3839"} \ No newline at end of file diff --git a/data/part_3/3282375445.json b/data/part_3/3282375445.json new file mode 100644 index 0000000000000000000000000000000000000000..28be37d9969038c29582c6c97159a67ed9f639a2 --- /dev/null +++ b/data/part_3/3282375445.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"d0bb351b3aff403d54c788b834b81f02","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/fcb2205d-b3b2-4f92-bd3e-fb06a865d670/retrieve","id":"908424140"},"keywords":[],"sieverID":"0d660712-0fe0-486c-aa23-57706156e14a","pagecount":"29","content":"Fair dealing and other rights are in no way affected by the above. The parts used must not misrepresent the meaning of the publication. ILRI would appreciate being sent a copy of any materials in which text, photos etc. have been used.Editing, design and layout-Case study illustration (designing a nudge for pork value chain retailers)Step 5: Establish evaluation strategy 2.5.1 Background knowledge: Evaluating nudges 2.5.2 Practical application -before and after or randomly controlled trial 2.5.3 Case study illustration (evaluation design for the case study of food borne disease in the pork value chain in Vietnam and nudge intervention to change retailer's food handling practices using a controlled before and after approach) 2.5.4 Practical application -contribution analysis 2.5.5Case study illustration (evaluation design for the case study of food borne disease in the pork value chain in Vietnam and nudge intervention to change retailer's food handling practices using contribution analysis)3 DiscussionTables Table 1. Description of the theoretical domains framework -adapted from Atkins et al. (2017) Table 2. Behavioural aspects relating to hygienic food handling by retailers in Vietnamese wet markets The field of nudge theory -influencing the way people make choices through subtle environmental change -has been used to improve healthy food choices, but to date has not been extensively applied to the livestock and food chain sector. In this document we present a practical guide to the design, implementation, and evaluation stages of food safety nudges, using case studies from the SafePORK project in Vietnam to provide context for the discussion of each stage.We propose that the following five stages should be considered at the start of projects looking to implement food safety nudges; 1) setting out the problem, 2) identifying relevant behaviours, 3) defining assumptions, 4) designing the nudge, and 5) establishing evaluation design.At the outset, clearly setting out the problem to be addressed allows identification of the expected outputs to be observed. We suggest the application of a theory of change framework such as the one set out by Mayne (2015) allowing examination of the various elements needed to achieve a behavioural change.To identify and understand relevant behaviours to be changed we look to two psychological frameworks -the theoretical domains framework (Atkins et al. 2017) and the COM-B model of behavioural change (Michie and West 2013). These frameworks provide insights into behavioural change and can be used to identify suitable nudges in food safety interventions.Defining assumptions allows the different steps and pathways within the theory of change to be connected. Assumptions may be formed using a variety of existing evidence -published literature, expert opinion, surveys, interviews, focal group discussions -i.e. the strength of evidence behind them can vary.During the design of a food safety nudge we look to the following three frameworks; 1) the Nuffield intervention ladder (Nuffield Council on Bioethics, 2007) to consider the level of intrusiveness exerted by the nudge, 2) the EAST framework (Service et al. 2014) to increase the effectiveness of the nudge, and 3) the MINDSPACE framework (Dolan et al. 2012) to consider which behavioural elements to target with the nudge.Finally, establishing an evaluation design needs to consider the level of resources available. We discuss the evaluation of food safety nudges in two scenarios, 1) where it is possible to implement a controlled before and after or randomly controlled trial, and 2) when nudge interventions occur as part of a package of broader interventions and alternative strategies of evaluation such as contribution analysis can be considered.Consideration of the steps outlined in this document from the outset of behavioural nudge design will help to design a nudge and to facilitate subsequent nudge evaluation, which otherwise, due to the inherent subtle nature of nudges, can be challenging. Consequently, in planning projects which aim to use nudges, sufficient budget should be allocated for the evaluation process, thus providing the opportunity to generate evidence on nudge effectiveness for both current and future work.Since its inception and formalisation by Thaler and Sunstein in 2008, nudge theory -a sub-field of behavioural economics -has been used in various settings to guide personal choice through a process of paternal libertarianism 1 . The core tenant of nudge theory is to create an environment -through choice architecture -that guides people to make choices with greater individual and societal benefits without limiting individual freedom. Examples of nudge application in the food and healthcare sector include the use of food positioning to improve healthy food choice (Arno and Thomas 2016;Carroll et al. 2018;Van Gestel et al. 2018;Winkler et al. 2018), prompting devices to improve vaccination uptake (Dubov and Phung 2015;Lorini et al. 2020;Oakes and Patel 2020), and framing to improve outcomes in medical decision making (Aggarwal et al. 2014).In the livestock and food chain sector, elements of nudge theory have been identified in food safety interventions in Vietnam (Hennessey et al. 2020) and European animal health policies (Garza et al. 2020). However, these studies identified nudges retrospectively from pre-existing interventions/policy, and to date little work has been done in this sector to create new interventions using nudge frameworks prospectively.This document is a practical guide to the design, implementation, and evaluation stages of food safety nudges by the SafePORK project (ACIAR LS 2016/143) or other projects with a focus on food safety in livestock value chains. We draw on case studies from the SafePORK project that, among other things, uses nudges to improve food safety in the pork value chain in Vietnam to provide context for the discussion of each stage.Figure 1. Retailer interacting with a customer in a traditional wet market in Vietnam (photo credit: ILRI/Trong Chinh).The following five steps will be described; setting out the problem, identifying relevant behaviours, defining assumptions, designing the nudge, and establishing the evaluation design (Figure 2).Figure 2. The five steps for implementing food safety nudges.For each step, background and theoretical information is given as well as practical advice. Experiences from case studies from the SafePORK project in Vietnam are discussed at each step.2 GuideStep 1: Set out the problem 2.1.1 Background knowledge: Theory of ChangeDuring the initial stages of nudge design, it is important to clearly set out the problem to be addressed and to identify the expected outputs to be observed. For this we look to the theory of change, which is a description of how change is expected to happen in a system over time -including the pathways and assumptions taken to reach a desired change -and how the desired impact can be achieved. It can be represented using diagrams, narratives, or a combination thereof. A useful framework in the context of nudges is the one set out by Mayne (2015). This framework allows examination of the various elements needed to achieve a change, beginning with a change to the environment, followed by a change in behaviour, and the resulting direct and longer-term welfare benefits.Applying the theory of change to a particular problem allows conceptualisation of the sequence of events needed to achieve the outcome.Setting out the problem:Studies have shown a high prevalence of Salmonella contaminated pork purchased from wet markets (28.6-44%), resulting in a high salmonellosis incidence rate (17% per year) within the Vietnamese population (Dang-Xuan et al., 2017). The high Salmonella contamination rate is attributed to a variety of factors which occur along the pork value chain, including: (1) contaminated water sources on farms and in slaughterhouses, (2) slaughterhouse and retail practices which allow contamination and cross-contamination of carcasses, and (3) unhygienic pork handling and cooking practices by the consumer (ibid).Example of targeted behaviour: retail practices (the process of selling pork to consumers) which results in the contamination of pork with SalmonellaPossible expected outputs:1.Change in environment -information available to retail workers on safe food handling 2.Behavioural change -retail workers adopt new food hygiene practices, e.g. increased frequency of hand washing 3.Direct immediate benefits -less cross-contamination of pork with Salmonella occurs 4.Welfare benefits -reduction in the incidence and negative economic impact of Salmonella related foodborne disease Applying the theory of change framework to this case study it is possible to populate the generic framework set out by Mayne (2015) to produce Figure 3. Here, information on safe food handling practices is built into a nudge designed to deliver information to the target audience -retailers, the expected outcome is a behavioural change resulting in more hygienic handling of food. This should have a direct benefit of reducing contamination of pork with Salmonella and a longer-term welfare benefit of a reduction in Salmonella related foodborne disease. The blue ovals illustrate the nested theory of reach for retailers and consumers. These nested theories demonstrate the role of different actors in the overall theory of change. Step 2: Identify relevant behavioursTo identify and understand relevant behaviours to be changed we look to two psychological frameworks -the theoretical domains framework (Atkins et al. 2017) and the COM-B model of behavioural change (Michie and West 2013). These frameworks provide insights into behavioural change and can be used to identify suitable nudges in food safety interventions.The theoretical domains framework separates factors influencing behaviour into 14 domains, each consisting of various constructs (Table 1) (Atkins et al. 2017). The authors of the framework identified numerous theoretical constructs which were then grouped together into domains. The COM-B framework describes the sources of behaviour within three groups: capability, opportunity, and motivation (Michie and West 2013):• Capability -Individuals need to have the capabilities to contribute to positive change -both psychological and physical• Opportunity -Individuals need to have the opportunity to enact the change -both socially and physically• Motivation -Individuals need to be motivated to make a change -both automatically and reflectivelyHere, capability and opportunity can be considered in their effect on the interaction between motivation and behaviour. Individuals must possess both the capability and opportunity to be motivated towards or away from a certain behaviour. These relationships can also have feedback loops, for example, once a behaviour is undertaken an individual may develop certain skills which increase their capability to engage with that behaviour in the future.Once the desired behaviour to be changed has been identified and described in the theory of change, it can be examined in detail using the two frameworks to understand the range of factors influencing that behaviour.Applying these frameworks to our case study of food-borne disease in the pork value chain in Vietnam allows a detailed enquiry into the aspects of behaviour which need to be considered to produce a behavioural change. This process can produce a series of questions which may need to be addressed during the nudge design and implementation. In Table 2 we present each of the theoretical behavioural domains described by Atkins et al. (2017), how these relate to the COM-B model, and pose possible questions to be answered when considering a behavioural change relating to hygienic food handling by retailers in Vietnamese wet markets. The theory of change details several assumptions within the chain of events. Formation of these assumptions allow the subsequent steps within the theory of change to be connected and would typically occur at the start of a project, though this process is not always set out explicitly. Assumptions may be formed using a variety of existing evidence -published literature, expert opinion, surveys, interviews, focal group discussions -i.e. the strength of evidence behind them can vary. Mayne (2015) set out five levels of assumptions within the theory of change:1. A 'reach' assumption is made that the intervention will be effectively received by the target audience, i.e. the nudge is observed 2.A 'capacity change' assumption is made that the target audience have the capacity to interpret the intervention correctlyA 'behavioural change' assumption is made that individuals are able to change their behaviour -that they have the capability, opportunity, and motivation to do this for example 4.A 'direct benefit' and,A 'well-being change' assumptions which describe how the change in the target behaviour are expected to implement a positive societal benefit.Setting out each of these assumptions explicitly allows a critical appraisal of each step, to identify potential weaknesses in the theory of change. In a similar way to a court case, evidence is collated to both support and challenge each assumption. Following this process an assessment can be made about the validity of the assumptions allowing a cumulative evaluation of the entire theory of change.Figure 4 shows the theory of change developed in Step 1 with the addition of blue boxes to illustrate different types of assumptions made in this pathway to the desired change. Each step in the theory of change pathway can be examined for the assumptions needed to move through the whole change pathway from start to finish. Each identified assumption should be backed up with appropriate evidence -for example from appropriate literature or expert opinion, and when none exists, additional information gathered to test the assumption.The table below shows the different assumptions that apply to the behavioural change needed in our case study of pork contamination at wet markets in the pork value chain in Vietnam (Table 3).Table 3. Assessment of assumptions for the case studyReach assumption Retailers will notice the nudge Nudge design is appropriate for context Nudge design tested in a stakeholder workshop to examine impact of images, language, and colour on salience and feasibility of introducing posters to market workplaces (Hennessey et al. 2020) Retailers are able to interpret the information in the nudge and relate this to their actionsRetailers want to alter their practicesRetailers have access to infrastructure to enact change New practices are supported by the market environment Consumers react positively to the changes and are not negatively impacted by the presence of nudges discussing food hygiene Retailers access to water has been observed to vary across markets; some have easy access to clean running water, others do not and have to use water stored in a bucket.Retailers will be provided with additional equipment -coloured chopping boards and knives -during the intervention.During the stakeholder workshop -retailers had concerns that negatively framed language in nudge posters could potentially deter customers (Hennessey et al., 2020) Direct benefit assumption Change in retail practice will result in a lower rate of cross-contamination of pork with Salmonella High Salmonella contamination rate is attributed to slaughterhouse and retail practices which allow contamination and cross-contamination of carcasses (Dang-Xuan et al., 2017).Intestinal offal has a higher contamination rate with bacterial species, especially Salmonella, which can be responsible for food borne disease and can lead to the cross-contamination of non-intestinal offal and skeletal meat products (Erickson et al., 2019).Cross contamination of pork with Salmonella at retail is a significant cause of Salmonella related foodborne disease Studies have shown a high prevalence of Salmonella contaminated pork purchased from wet markets (28.6-44%), resulting in a high salmonellosis incidence rate (17% per year) within the Vietnamese population (Dang-Xuan et al., 2017).Once the theory of change has been set out and the behavioural aspects considered, nudge frameworks -Nuffield intervention ladder, EAST, and MINDSPACE -can be used to begin the process of designing the nudge intervention.The Nuffield intervention ladder can be used to classify interventions depending on the level of intrusiveness they exert on personal choice (Table 4). Interventions with a low level of intrusiveness include 'guiding choice through changing the default', 'enabling choice', and 'providing information' were counted as nudges in line with existing nudge theory (Nuffield Council on Bioethics 2007). The MINDSPACE framework, described by Dolan et al. (2012), considers nine behavioural elements -messenger, incentives, norms, defaults, salience, priming, affect, commitments, and ego -which should be considered when designing a nudge (Table 5). We seek to be consistent with our public promisesWe act in ways that make us feel better about ourselvesOnce the type of nudge -provision of information, enabling choice, or changing the default -has been selected, aspects of the MINDSPACE framework should be examined and the most appropriate elements for the setting used to design the nudge intervention. Each nudge intervention should aim to satisfy all of the EAST framework elements.Example of targeted behaviour: retail practices which result in the contamination of pork with Salmonella Nudge -a poster to provide information of hygienic handling of pork and hand washing (Figure 5). This poster was designed for the stakeholder workshop, during which posters with a variety of colours (red, yellow, green, blue), framing of language (positive, negative), and images (photos, cartoons) were trailed. Participants were asked to rank colours on a numerical scale from 1 (indicating dirty) to 7 (indicating clean), the results of which demonstrated that participants associated red with being dirty and blue and green as being clean (Hennessey et al. 2020). Participants preferred posters with photos instead of cartoons and stated that photos should be appropriate for the local context (Figure 6). 1.Easy -The language used to convey the nudge information must be clear and easily understoodAttractive -Images used on the posters need to reflect the local context to increase engagementSocial -Use respected actors to deliver information on the nudge, such as vets or actors peersTimely -Posters to be placed at convenient places around the market so that retailers interact with them regularlyThe following MINDSPACE elements could be considered important for the nudge:1.Messenger -Selecting the most influential actors to deliver information to retailers could improve compliance with the nudge, previous work has suggested these to be veterinarians or retailers peers (Hennessey et al. 2020).Incentives -Actors' reputation has been reported as an effective incentive for behavioural change (ibid), by adopting an intervention which engages with the topic of food safety, retailers may be able to improve their reputation both within the market and with customers.Salience -If the colours used are bold and appealing this may increase engagement with the nudge.Prime -Several studies into the use of colour to indicate choices have shown green to be associated with healthy options (Levy et al. 2012;Temple et al., 2011), while other studies found colour to have no effect on actor behaviour (Sacks et al. 2011). Results from a stakeholder workshop of pork value chain actors in Vietnam found actors to perceive blue and green as being a clean colour, yellow, orange, purple as neutral and red as a dirty colour (Hennessey et al. 2020).Step 5: Establish evaluation strategyIn some settings it may be possible to implement nudge interventions in a way which can be evaluated as part of a controlled before and after or randomly controlled trial. However, when used in settings when nudge interventions occur as part of a package of broader interventions alternative strategies of analysis may need to be considered.Contribution analysis, an evaluation technique developed by John Mayne, differs from more traditional analyses in that it does not seek to infer a direct causal relationship between a particular intervention and an outcome. Instead, it seeks to build a logical argument for how aspects with an intervention or intervention package could have contributed to an observed outcome (Mayne 2012). This approach is described in six steps. The first three steps of contribution analysis -1) setting out the problem, 2) developing the theory of change and risks to it, and 3) gathering evidence of the theory of change -have already been described in this guide and used to inform the design of the nudge intervention. The subsequent steps -4) analysis of the contribution story, 5) gathering of additional evidence to support or refute contribution claims, and 6) revise and strengthen the contribution story -form the core of the evaluation strategy. Steps four to six are repeated in an iterative manner until a satisfactory argument can be built. Ton (2021), describes an initial preceding step to acknowledge the multiple perspectives of stakeholders, which are then used to inform steps 1 to 3 of the process.As Ton (2017) writes, contribution analysis 'requires reflection on the question, \"what would have happened without the intervention?\"'. Applying this question to food safety nudges, this implies an evaluation of the contributory role of the nudge in inducing behavioural change and longer-term benefits and attempting to disentangle the effect of the nudge from the wider package of food safety interventions being implemented.Should resources be available to implement a controlled before and after or randomly controlled trial, then validated methods of measuring behavioural outcomes can be used to collect evaluation data.2.5.3 Case study illustration (evaluation design for the case study of food borne disease in the pork value chain in Vietnam and nudge intervention to change retailer's food handling practices using a controlled before and after approach)Example of targeted behaviour: retail practices which result in the contamination of pork with SalmonellaNudge -poster to provide information of hygienic handling of pork and hand washingObservation of retailer's behaviour during a typical working day before the implementation of the nudge, monitoring:1.Frequency and quality of handwashing 2.Handling of meat products and the use of mobile phones, personal equipment without washing of hands Observe retailers' behaviour during a typical working day at four time points (day 0, then around days 7, 14 and 28) to measure participants compliance with the nudge, and to see if any non-participants within the market voluntarily adopted the change in practice. Spend one hour observing each stall where the nudge has been implemented. Ideally, a longer term follow up would be implemented to investigate whether people revert to their former behaviours, i.e. the nudge stops working over time. • Capacity change assumption: Retailers need to have the psychological capacity to interpret the food safety nudge correctly before a behavioural change can be induced. Considering this factor, what is the level of awareness of food hygiene issues in retailers working in wet markets?Contribution analysis step 3: Gather existing evidence on the theory of change Evidence from existing literature, the ongoing research project itself, or from expert opinion is used to support (or refute) the relevant assumptions in the theory of change.To date there is little published literature on the use of behavioural nudges in the food safety sector.In their study of behavioural nudges in supermarkets to impact sales of nutritious foods, Chapman et al. (2019), describe how the nudges -arrows to direct customers, informational signage, and product placement -had no effect when used on their own but were associated with an increased sales when used in combination. This could suggest that a single informational poster in marketplaces may not be effective at inducing a behavioural change.During the stakeholder workshop, participants were shown several potential nudges (posters, arrows, and footprints) and asked to evaluate these through discussion and a scoring exercise. After each activity a plenary session took place to allow dissemination of feedback to the entire group. The concept of using posters to display information was well received by the workshop participants. Both positive and negative framing of information were thought to be effective, the choice of which dependent on the target audience. However, when scored by participants, the negatively framed posters scored significantly higher than the positively framed posters, indicating a greater anticipated impact on actor's behaviour. All participants discussed the need to have site specific photos to reflect the real context of the setting to increase engagement with the media. When considering the effect of colour on salience; red was considered dirtiest, yellow, orange, and purple considered neutral colours, and green and blue considered the cleanest colours. The participants thought that the prospect of upscaling nudges to a broader audience of retailers and consumers could be implemented but would need to be supported by competent food safety authorities.Discussions during the workshop with market retailers demonstrated an awareness of stakeholders to the food safety issues surrounding handling of pork. Additional evidence would be needed to investigate how widespread this knowledge is within other retailers, e.g. focal group discussions or observations of retailer behaviour in other markets.Assuming a positive change has been observed in retailer's hygienic handling of food, what contribution did the nudges have within the package of interventions? Due to the subtle nature of nudges, the main criticism to the contribution story would be that the outcomes would have occurred regardless of the placement of the nudge. Additionally, was there any possibility that the nudge had any undesired impact on retailer's behaviour -could the posters have reduced the overall effectiveness of the food safety interventions?Can additional evidence be gathered to remove the weaknesses from the contribution story? This may require further data collection from stakeholders, such as through knowledge, attitude, and practice (KAP) studies, interviews, or focal group discussions to understand how people perceived and interacted with the food safety nudge posters at the marketplace.This document details the various steps to be considered when designing, implementing, and evaluating a behavioural nudge to support food safety interventions in the Vietnamese pork sector.In settings where resources limit the application of before and after or randomly controlled trials, contribution analysis provides an alternative approach to gather evidence to support the claim that nudges make a necessary contribution to desired outcomes.The initial steps within contribution analysis -the incorporation of multiple stakeholder perspectives, clearly setting out the problem to be addressed, developing the theory of change, and gathering evidence to support the theory of change assumptions -can form the foundations of both nudge design and subsequent analysis. The latter stages of contribution analysis seek to assemble and assess the contribution story and challenges to it, gathering data in an iterative manner until a conclusion can be made on the contribution of the nudge.Due to nudges being focused on individual behaviour there is a tendency to overlook the underlying structural elements which create societal behaviours (Prainsack 2020). A growing body of social science literature highlights weaknesses in 'knowledge deficit models' of behavioural change (Tompson and Chandler 2021), where individual's behaviour can be modified simply by providing information to fill a knowledge gap. Consequently, it is increasingly recognised that behaviours or practices are shaped by underlying structural factors. Failure to address these structures is likely to limit, or prevent, behavioural change through nudging.Consideration of the steps outlined in this document from the outset of behavioural nudge design may help to facilitate subsequent nudge evaluation, which otherwise, due to the inherent subtle nature of nudges, can be challenging. Consequently, in planning projects which aim to use nudges, sufficient budget should be allocated for the evaluation process, thus providing the opportunity to generate evidence on nudge effectiveness for both current and future work.","tokenCount":"4338"} \ No newline at end of file diff --git a/data/part_3/3289507290.json b/data/part_3/3289507290.json new file mode 100644 index 0000000000000000000000000000000000000000..0a2ae5ad1964de20368e5dfcccbbe4144f1591be --- /dev/null +++ b/data/part_3/3289507290.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"ad5ec3baf19f06e5b91cea3b0fd89ccf","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/a54c84b5-2434-4e7b-9cda-dff8d25fb0bb/retrieve","id":"-1614219782"},"keywords":[],"sieverID":"731e3825-dc43-4b3f-abf1-554ea6e4b6ae","pagecount":"27","content":"A continuación se presentan las entrevistas realizadas a población vulnerable de Cali.Lo que hice ayer (sábado 31 de octubre, 2015) Alejandro se levanta a las 6:00 Am, a esa misma hora se va bañar, se viste y desayuna a las 6.30 Am. Desayuna 4 cucharadas de arroz, 15 gramos de carne de lentejas y una tajada de pan. Acompaña el desayuno con un vaso de 7 onzas de agua de panela. Todo esto es preparado por su esposa Patricia. Mientras él termina de desayunar, la esposa le empaca el almuerzo para llevar para el trabajo. Echa el almuerzo en su maleta y se sale a trabajar en su moto a las 6:50 Am y llega a la empresa a las 7:30 am. En este día, le toca forrar las paredes de un ascensor de tres pisos. A eso de las 9:00 am , se toma 15 minutos para comer 3 arepas de 25 gramos y un pan queso de 20 gramos que compró en una panadería antes de llegar al trabajo. Lo acompaña con agua de panela que la esposa le empacó en la mañana. Come solo.Son las 9:15 AM y vuelve a su labor. Sigue derecho sin parar hasta las 12: 00 pm. Almuerza a esta hora, destapa el porta-comida que contiene 15 cucharadas de frijoles del día anterior, 3 pedazos de carne de lentejas de 15 gramos cada trozo, también del día anterior, 8 cucharadas de arroz fresco hecho ese día y papas a las francesa fritas en aceite ( una papa partida en trozos). Acompaña el almuerzo con un jugo de maracuyá que su esposa le empaco en un tarro de 500 ml. Alejandro almuerza solo en 15 minutos y se toma el resto de su tiempo de pausa para descansar. A las 1:00 pm sigue en su labor hasta las 5 :00 PM. Comienza a alistarse para ir en casa de su querida madre a visitarla. Ella le ofrece un vaso de jugo de tomate de árbol con azúcar que preparó su hermana. Después de terminar de tomarse el jugo se despide y sale para su hogar. Llega las 6 :00 PM y luego va a la casa de su cuñada para entregarle una plancha de pelo. De ahí sale a comprar una bolsa de empanadas que le encarga su esposa para llevar a las iglesia más tarde en el día.Vuelve a su casa y prepara ¼ de carne de cerdo frita en aceite con ½ maduro en tajadas y frito en aceite (el aceite es reutilizado del día anterior) y lo sirve con 10 cucharadas del mismo arroz que su esposa preparó a la mañana. Acompaña su comida con jugo de maracuyá que ya estaba preparado también de la mañana. Comió solo y se demoró 15 minutos comiendo. Al terminar sale para la iglesia y llega a las 7:30 pm. Ya que hubo una obra de teatro de los niños en la iglesia por el día de Halloween, su esposa distribuye las empanadas que trajo su esposo. Alejandro se come una empanada acompañado de dos vasos de 7 onzas de salpicón de frutas que prepararon en la iglesia donde asiste el con su familia.A las 9:00 pm sale para su casa. Al llegar se da cuenta que hay una reunión de 10 niños y 4 adultos de la iglesia en su casa. A eso de las 9:30 pm sirven helado que compro uno de los adultos y Alejandro se come un vaso de helado sabor mandarina junto a los demás. Después reparte golosinas y él se come una paleta bombón. Se termina la reunión y se sienta con su esposa a mirar un celular que le regalo su hermana Jenny. A las 11:00 PM le da hambre y en compañía de su esposa y de su hija va a comprar una porción de salchipapa en un negocio de comida rápida a una cuadra. La piden para llevar a su casa. Al llegar a casa comparten la porción con su esposa y él se toma una vaso de 7 onzas de jugo de maracuyá que su esposa preparo en el almuerzo. A las 12:00 PM el vecino que estaba en la casa sale a compra 1 litro de leche y un sobre grande de cereales Kellogg's en la tienda cercana. Vuelve y él con la esposa Patricia, Alejandro y su hija se comen cada uno un vaso de 7 onzas de cereales con leche. A la 1:00PM se van todos a dormir.Alejandro está satisfecho lo que comió el día anterior \"gracias a Dios y aprovechar cuando hay\", dice, y también está satisfecho con su alimentación en general. Entre los productos que encuentra en el supermercado o tienda del barrio nos manifiesta que el arroz es un producto en el cual encuentra satisfacción por la calidad.También nos cuenta que está contento con las promociones que encuentra en el supermercado de su barrio.Alejandro recibe de parte de su tía Rosa cada seis meses 4 bloques de panela y una botella de 2 litros de miel de caña. Es una panela de blanqueado que hace la tía en su propia finca. Alejandro se desplaza hasta la casa de su madre que también vive en Cali para recoger estos alimentos. Esto es una costumbre familiar. Alejandro no ha recibido ningún otro tipo de donacionesAlejandro no ha observado cambios en su alimentación a lo largo de su vida.Piensa que sus hijos tendrán una mejor alimentación \"porque siempre se les ha enseñado alimentarse bien\", dice.Alejandro comenta que su alimentación es similar a la de sus vecinos \"porque compran los mismos productos\".Comparando la costumbre alimentarias con las personas de estrato alto \"es diferente porque comen poquito y comen comida integral\".A Alejandro le da miedo quedarse sin comida \"porque piensa en sus hijos que tienen que comer\".Le ha tocado restringirse en comidas como la carne de res, el pollo y las frutas. Esto es frecuente al final de la quincena y también le pasó por cuestión de falta de empleo y a veces por pagar el alquiler de la casa. La manera de solucionar esta situación ha sido buscando trabajo o préstamo de familiares.Alejandro nunca ha recibido información nutricional. Considera buenos para la salud el banano, el aguacate, la cebolla cabezona, la kola granulada, la miel de abeja, la uva y la lechuga Batavia.No conoce productos poco saludables para la salud.Las prácticas alimentarias de su hogar le parecen favorables.Respecto a los complementos alimentarios piensa que algunos son buenos.Trabaja en una empresa llamada construcciones y mantenimiento Filigrana S.A.S. en Cali Edad: 38 años Vive hace 2 años en el distrito de agua blanca. Nació en Cali, valle del cauca tiene 3 hijos y vive con su esposa.Lo que hice ayer (El día viernes 30 de octubre, 2015)Jhon Deiby se levanta a las 6:17 am, se baña, se pone su uniforme del colegio y se va a estudiar. Cuando Jhon Deiby llega al colegio, saluda a la profesora, se sienta y espera a que llamen a los estudiantes del colegio para desayunar en el restaurante. El desayuno tiene un pan mediano, huevos pericos es decir revueltos con tomate y cebolla y una bebida que le sirven en un vaso de 7 onzas que según John Deiby estaba a base de colada con leche. Come sentado en un comedor acompañado de sus compañeros del colegio y se demora 15 minutos en desayunar.Después entra al salón de clase a hacer una actividad. Al terminar, sale al descanso a las 9:15 am y juega con sus amigos hasta la hora de la entrada del descanso que es a las 10:15 am. Entra a la clase de matemáticas y después sigue su horario de clases hasta las 12:00 am, que es la hora de salida para la casa. Al llegar a casa se van junto a su mama y hermanos pequeños al comedor social ubicado en potrero grande. La mama los espera afuera del comedor porque solo los niños pueden entrar en el comedor. Hacen una oración antes de subir a comer, ya que si no hacen la oración, no le dan a comer. Jhon Deiby relata que se come 7 cucharas grandes de arroz y también pasta con carne molida con un \"jugo de helado\" dice John Deiby (es decir una malteada) de chocolisto. Almuerza con todos los compañeros del comedor y se sienta con sus amigos Vairon, Santiago y Daniel. Come en 32 minutos y sale a las 12:45 pm. Después, se vuelven a casa y él organiza las tareas, el uniforme y todo lo necesario para el día siguiente. A las 3:00 pm acaba de hacer sus deberes, se toma un vaso con leche de 1 litro de leche que regaló el comedor el día anterior, y entra a bañarse. Después, toma una siesta y se despierta a las 6:00 pm a ver televisión. Al ver que la mama estaba lavando platos, él se ofrece a ayudarle. Al terminar, juega con sus 6 hermanos. Su madre se va de la casa y él queda a cargo de toda la casa y de sus 6 hermanos menores. A eso de las 8:00 pm, Jhon Deiby hace la comida ya que la mama no está. Pone en la olla una libra de arroz que le regalaron a la mama pero que él no sabe de quién. Le echa medio litro de agua que recogió a donde su tía Clemencia que vive al frente, ya que en la casa de él no hay agua. Calienta manteca para echarle al arroz y le adiciona una pizca de sal. En quince minutos el arroz está listo. En otra olla aparte pone a fritar con manteca dos papas que lavó, y se cocinan durante 10 minutos.Para acompañar la comida prepara en medio litro de agua 15 cucharadas grandes de colada y después le hecha un litro de leche líquida que le dieron en el comedor social el día anterior.A las 8:30 PM comieron juntos los 7 hermanos, algunos sentados en la sala, en un sofá grande para ver un programa de televisión llamado \"la voz kids\". Al terminar de comer y ver su programación de televisión, se alistan para ir a dormir a las 9:15 PM. Su madre regresa de la calle a las 9: 45 pm y come sola la porción que le dejaron los niños. No sobró nada de comida. A eso de las 10:00 pm la mamá lava la ropa de todos. Jhon Deiby se levanta para ayudarle. A las 11:00 pm terminan de lavar la ropa y él se acuesta a dormir.Jhon Deiby está satisfecho con lo que comió el día anterior y también de su alimentación en general.Jhon Deiby dice que a veces si está satisfecho cuando las frutas de buena calidad están a buen precio.Jhon Deiby no está satisfecho con la tienda cerca de su casa ya que no está abierta todo el día y cuando está cerrado a él le toca ir a buscar en otras tiendas más lejanas, pero si le gusta el hecho de conocer al tendero y además en ocasiones le da buenos descuentos.Sus prácticas alimentarias son así en general afirma Jhon Deiby.Mi tía cada 3 meses trae 15 chontaduros, 20 plátanos y 30 manzanas por que trabaja en una finca donde cultivan todos los productos alimentarios dichos anteriormente En el comedor donde asiste desde hace dos años, por primera vez ha recibo una bolsa de litro de leche (la que recibió esta misma semana) y un paquete de galletas.A lo largo de su vida ha tenido cambios en su dieta como por ejemplo hace un mes come menos, toma menos agua y hace mas ejercicio ya que antes tenía problemas de sobrepeso y por eso el decidió hacer estos cambios para mejorar su salud.Piensa que la alimentación de su hogar es diferente a la de sus vecinos \"mis vecinos comen diferente, a veces yo como arroz con papa y mi vecino come arroz, sopa y carne\". \"ellos comen más cosas que yo\"También piensa que la alimentación de su hogar es diferente a la de la clase alta por que dice que la clase alta \"comen bastante, comen más veces al día y porque tienen buenos trabajos\" nos dice John Deiby.Jhon Deiby no tiene miedo de quedarse sin comida. Él también nos cuenta que ha tenido que limitarse en los desayunos, en los almuerzos y cenas. Esto le ha pasado con frecuencia este año \"por qué mama no tiene trabajo y no alcanza la comida que trae\". La manera de solucionar esta situación es que la mamá vende cosas como, por ejemplo ropa, zapatos etc. que no usamos.John Deiby no ha recibido ningún tipo de información sobre nutrición. Los productos que considera buenos para la salud son las frutas y las verduras y los que considera poco saludables son los dulces y las gaseosas. En su opinión el cree que las prácticas alimentarias de su hogar son saludables y no opina sobre los complementos alimentarios.Edad: 12 años Nació en Cali y su familia se compone de 7 hermanos (5 niñas y 2 hombres) mas su mamá en total son 8.Lo que hice ayer (el día 25 de octubre, 2015)Karolayn se levanta a las 11:30 am, desayuna un tostado con café, lo cual el café lo hizo el hermano de 9 años y lo preparo en la cafetera con 12onz de agua, dos cucharadas de azúcar y dos cucharadas de café. Los tostados los compró la mama el día anterior que cuesta 1000 pesos 10 tostadas. Después de eso se siente a chatear.A las 12:20 pm su mama empieza a preparar el almuerzo. Prepara arroz, huevos, tajadas y jugo de banano. Cocina un cuarto de libra de arroz, le agrega al agua hervida dos cucharadas de sal y un chorrito de aceite. Hace 4 huevos revueltos en la paila donde le agrega una pisca de sal. Para hacer el jugo de banano, pica en rodajas 4 bananos, las hechas en la licuadora con dos vasos de 20 ml de agua. Los licua y le echa una cucharada de azúcar. Los huevos y el banano su mamá los compró en la tienda que está cerca de su casa, los tostados los compro el dia anterior y los bananos el mismo día. El arroz que preparó su mamá lo compró en la quincena en ALCOSTO, un autoservicio cerca de su casa.A la 1:30 pm, el almuerzo está listo. Carolayn almuerza con su mama y sus dos hermanos. Después de haber almorzado, ella se siente en el sofá a chatear con el novio.A las 4pm se levanta del sofá para ir a bañarse. Se arregla y a las 4:30 pm sale a visitar a su novio. A las 6:30 pm la mama del novio le brinda una taza de 12 ml de agua panela caliente con un pedazo de pan que compro la mamá de él. Ella, su novio y la mamá del novio se toman cada uno un vaso sentados en la sala. Después de eso se va para la casa a las 9:30pm, se empillama y va a buscar algo de comer porque no cenó. Se come un pedazo del pan que compró su mama para el desayuno del día siguiente (a 2000 pesos) y se prepara un chocolisto poniendo en un vaso de 12 ml de agua dos cucharadas en polvo de chocolisto. Se acuesta a dormir a las 11:10 pm.Karolayn no está satisfecha con el almuerzo de este día ni con la comida que se prepara en su casa en general. Dice que no queda llena, porque es muy poco lo que siempre hay. Karolayn cuenta que \"una vez que fui donde mi novio a visitarlo, después de llegar de la casa de mi novio, llegue con hambre fui a buscar algo para cenar, y no había nada, solo había chocolisto preparado con agua y había un pedacito de pan y como no había más, para calmar el hambre me lo comí\".Con algunos productos Karolayn no está satisfecha. Por ejemplo, con el café que se compra en la casa, lo cual el café lo compra la mama cada quincena y ella es la que siempre compra la remesa y en el hogar y todos los gastos que hallan. El café es de marca \"morasurco\", es el más económico de la tienda, y para obtener el sabor deseado, se tiene que preparar con 3 y hasta 4 cucharadas de café, una cucharada de azúcar y 12 onzas de agua. Karolayn dice que el café \"morasurco\" se acaba más rápido porque en la preparación se le agrega tres cucharadas a 12onz de agua, mientras que con el café \"sello rojo\" basta con una sola cucharada. Es por la situación económica de la familia que ellos eligen la marca \"morasurco\".Entre los productos donde la familia encuentra satisfacción, esta un producto llamado Milo que es una marca de bebidas de Nestlé que consiste en cacao y malta en polvo. En su casa, se compra Milo, el que quedo en la quincena pasada, la cantidad es de 500 gramos. Por varios factores, lo primero es que el Milo ya lleva azúcar y entonces ellos economizan por esa parte y además \"donde yo siempre compro los productos, también consigo el Milo\". Ella a veces va de compras con la abuela por lo que la mama llega muy tarde del trabajo, pero cuando la mama llega temprano va de compras antes que llegue a su casa.Karolayn dice que está satisfecha con los productos donde ella va a comprar, porque hay una buena atención, hay buenas promociones, y le queda cerca a su casa. La tienda del sector donde ella va se llama ALCOSTO y es la única parte donde ella y su madre compran por los buenos precios.Karolayn dice que no recibe ningún tipo de alimentos directamente del campo. Ni tampoco ha recibido ningún tipo de donaciones. Solo fue los abuelos que le brindaron de su ayuda y es alli donde ellos le ayudaron con los gastos de la comida, esto paso cuando la mama estaba sin empleo.Desde hace un año, Karolayn ha observado cambios en su dieta alimentaria por motivos de que su padre fue encarcelado y él era el sustento económico del hogar ya que su madre no tenía empleo y esa situación los llevo a limitarse en su alimentación. Nos cuenta que sus hermanos y ella se levantaban en el horario del medio día para almorzar y no desayunar. También nos comentó que la situación en el colegio era complicada por su situación económica (no tenía dinero para comprar útiles escolares, para llevar comida en los descansos etc.).Nos contó también de los productos que dejaron de consumir porque se salía del presupuesto familiar, bajo los cuales son la carne de res y pollo. El presupuesto familiar \"escasamente\" alcanza para la comida de todos los hermanos y abuelos. Esta situación dejo de pasar cuando su madre consiguió empleo para el sustento de su hogar.Ella dice que su alimentación es similar a la de sus vecinos por el estrato socioeconómico que hay acá.Karolayn piensa que la alimentación de las personas de estrato alto es diferente porque ellos comen alimentos saludables como verduras y cosas que uno no puede acceder por la situación económica.Karolayn afirma no tener miedo porque hasta ahora no se ha acostado con la barriga vacía.Ella se limitaba en la cantidad de comida que servía en su plato para que pudiera alcanzar el alimento a todos los de su hogar. Ahora esta situación no pasa muy a menudo porque ya esta situación mejoro, porque la mama ya está trabajando.Ella tuvo que limitarse a la comida porque su mama se había quedado sin empleo y su padre estaba encarcelado.Karolayn cuenta que en el tiempo que su madre estaba sin empleo y su padre en la cárcel, sus abuelos le ayudaban bastante en esa situación económica.Karolayn no ha recibido ninguna información sobre la nutrición.Ella piensa que los alimentos saludables son las verduras, frutas y legumbres y los que son poco saludables son: la comida chatarra,y para ella la comida chatarra son la pizzas hamburguesas y las gaseosas,\"para mi chatarra es la comida que me puede hacer daño\" Karolayn dice que \"por ejemplo las gaseosas tiene mucho azúcar lo que le hace a uno es engordarle y causarle desnutrición\".Karolayn piensa que las prácticas alimentarias en su hogar no son saludables.Respecto a los complementos alimenticios, Karolayn piensa que son desfavorables para la salud \"porque causa dependencia, y no es lo mismo como comer un plato de lentejas a tomarse un complemento\".Tiene 17 años vive en el distrito de agua blanca, en el Jarillon hace 15 años, 14 años con los abuelos y un años a dos cuadras de la casa de sus abuelo. Actualmente viven con los abuelos porque la situación económica los llevo otra vez a vivir con ellos, vive con su madre, sus dos hermanos, una tía y sus dos abuelos. Actualmente estudia en el colegio y está en el grado 11. Nació en Cali, en el barrio Mojica 2.Luz se levanta a las 4 de la mañana. Hace el desayuno de su familia. Ya que son 6 hijos y su esposo, prepara huevos pericos utilizando 10 huevos, un tomate y dos tallos de cebolla. Luz prepara chocolate utilizando 4 pastillas de chocolate, 1 litro de leche y 6 cucharas grandes de azúcar. Sirve los huevos pericos con las arepas. Como un niño se fue a coger el pan de la cocina, Luz le dijo \"papi siéntese porque yo les voy a dar un pedazo de pan a cada uno\", comer pan es una costumbre. Algunos niños se están bañando mientras otros están desayunando. Luz no desayuna porque prepara todo para que los niños estén listos para el jardín y al colegio. El esposo lleva a los dos niños al jardín y los otros se van al colegio.En las horas de la 7 am, Luz coloca las ollas del almuerzo. Prepara una libra de blanquillos con una libra de pesuña de cerdo. A estos blanquillos, les echa 2 cebollas, 1 tomate, ajo, cilantro y para economizar compró trisazón que es una marca de condimentos que viene 3 en 1 (comino, color (¿), ajo). A parte, prepara una libra de arroz, 2 plátanos fritos, uno maduro y el otro verde, y una ensalada con una cebolla cabezona, un tomate, 3 o 4 hojas de lechuga, 1 rama de apio, una zanahoria rayada y una pisca de sal. Para acompañar estos alimentos, hace un jugo con 4 lulos y 8 cucharas grandes de azúcar blanca. Al mismo tiempo, prepara la colada para que sus dos niños pequeños tomen cuando regresen del jardín infantil a las 4 pm. Esta colada la prepara con 6 cucharas grandes de un sobre de 1 kilo, que se llama \"7 cereales\", le añade leche en polvo y azúcar. Alcanza para que cuando vuelvan del jardín cada uno de los dos niños se tome 5 teteros de 8 onzas.La mayoría de estos ingredientes Luz los compró en el autoservicio a 7 cuadras de su casa, \"El Jardín\", menos el pan que compró en la panadería y las arepas en el asadero.Por lo general compra en el autoservicio para la quincena. A las 9:30 am Luz sale de la casa para ir al trabajo, y un hijo que se queda en la casa apaga la olla del blanquillo a las 15 minutos después, como le pidió su mamá.Luz se demora 1h30 para llegar a una casa donde hace el aseo, aun Luz no desayunó nada y ni se tomó nada, son las 11 am.Son las 3 pm, y Luz se sienta a almorzar con su compañera Xiomara que le comparte su propio almuerzo, que ella compró en el kiosco a dos cuadras de la casa. De este almuerzo, Luz se come 3 papas amarillas, 5 cucharas grandes de arroz, 3 cucharas de ensalada, 4 trozos de carne, medio plato de sopa de guineo, y 6 onzas de jugo de guayaba. Luz, acompañada de su amiga en una mesa, come en 10 minutos.Como la casa tiene también un espacio laboral donde trabajan un grupo de empleados por el dueño de la casa, Luz y otras colegas aprovecharon de una pausa laboral para bañarse en la piscina.Luego, Luz y Xiomana cocinan para compartir un asado con 15 colegas. Mientras los hombres pican 5 libras de carne de cerdo, ellas cocinan 10 papas, y para acompañarlas hacen una salsa de guacamole con 1 aguacate, 1 cebolla, 1 tomate, y unas piscas de sal. A parte pica 3 cebollas, 3 tomates, 2 pimentones y una cabezita de ajo para echar a la carne del asado. Los alimentos del asado fuerón comprados en el supermercado \"súper inter\" a 5 cuadras de la casa. Luz, mientras cocina, se toma un Sprite y un té helado \"suntea\" que ya viene con azúcar y en sobre, que estaba en la casa.Son las 5 pm y empiezan a comer, Luz come ¼ de libra de carne, media papa con guacamole, 2 rodajas de tomate. Al terminar, Luz se alista para irse para su casa, y llega a las 9:30 pm. Recién llegada en casa, lava la ropa de sus hijos y el informe de su marido. Come con su hijo Kevin (el más joven, de 2 años) porque los otros niños habían comido. (ellos comen cuando quieren cuando la mamá no está en la casa para comer con ellos). Come el equivalente de 10 cucharas grandes de arroz, un sudado de pollo, con tomate, cebolla y papa más la ensalada y el jugo de lulo que sobrarón del almuerzo. La comida la preparó su hija de 17 años. Luego, recoge a su esposo al gimnasio y él come cuando llega en la casa.Luz se acosta ese día a las 1:30 am.Luz no está satisfecha con lo que comió ese día porque no comió de forma regular \"como desayuno/almuero/cena\", ella dice. En general tampoco come de forma regular.Luz estás satisfecha con la comida de sus hijos, trata de trabajar para poder darle una buena comida. Está satisfecha con la calidad de los productos que cocina y que encuentra en el supermercado.No está satisfecha con los precios. Por ejemplo, ella que compra salsa (de tomate, de ajo etc.), no compró este mes porque subió el precio, igual este mes para el brócoli y los frijoles (además tenía una reserva de frijoles en casa), y para el arroz, compró otra marca porque la que compra en general había subido de precio este mes. Cuando se agotan algunos productos del supermercado (este mes fue la Yuca y el tomate chonto), Luz como segunda opción de compra, compra en el mercado móvil a dos barrios mas allá de su casa, y en las tiendas de barrio. Cuando el mercado móvil a veces anuncia descuentos para un fin de semana, entonces Luz compra menos en el supermercado.2 veces a la semana, la prima de Luz la llama cuando le sobra comida que preparó para la cena. Si le sobra es porque no vinieron a comer sus hijos. Entonces Luz, en moto, se tarda 5 minutos para ir a buscar la comida. Luz recibe una donación de BienEstar Familiar para los niños. Cada dos meses, les dan 1 kilo de Bienestarina, y una vez recibió en el jardín de su niño una donación que tenía una libra de frijol, 1 libra de lentejas, 1 libra de arveja y una panela.Luz cambió la costumbre de comer comidas chatarras como por ejemplo hamburguesas, perros, chorizos etc. por motivos económicos.Luz responde que la alimentación de sus hijos será mejor que la actual porque ella les enseña con su ejemplo como salir adelante y espera que estudiarán, tendrán más ingresos con sus futuros trabajos y podrán comprar lo que quieren de comida.Luz nos cuenta que uno de su vecino de al frente por costumbres culturales cocina mucha comida del Mar como por ejemplo mariscos, cangrejo, langosta. Ella no cocina comida del Mar porque no está acostumbrada a esta comida.Luz dice que es muy diferente porque la gente de estrato alto come muy poca cantidad mientras los de estrato bajo comen bastante. \"La preparación de los alimentos es diferente, por ejemplo ellos no usan mucho el tomate, también comen lo que ya viene preparado para ahorrar tiempo, yo prefiero comprar fresco porque es más económico y más rico\", no cuenta Luz. Dice que los de estrato bajo comen productos frescos como por ejemplo el pan recién salido del horno en la panadería, las arepas recién cocinadas en la calle, mientras los de estrato alto los compran en supermercados y \"ponen las arepas en el micro-onda y ya\".Luz le da miedo quedarse sin comida porque tiene hijos y no le gusta que aguanten hambre. A ella le pasó no tener la comida suficiente para sus hijos y que \"lloren de hambre\". Luz se limitó con el pan. Ella nos contó sobre su separación con el papa de los 4 hijos mayores y la pérdida de su trabajo en esa época ya que el papa de los 4 niños creaba conflictos para que la despidieran, así duro 6 meses. Cuando Luz tenía 8 años atravesó por una situación similar cuando sus padres se separaron y les toco en su casa limitarse en la alimentación. La solución de este tipo de situación ha sido por medio de préstamos de dinero de parte de su mamá y del trabajo.Hace dos años y medio en el puesto de salud decepas, Luz recibió información alimentaria en general ya que iba con su hijo el menor por una nutricionista.Los alimentos saludables que Luz conoce son las verduras, las frutas y los alimentos frescos. Los que le parece poco saludables son los enlatados, \"traen muchos químicos y preservantes\" dice Luz, y también la comida chatarra (hamburguesas, perros calientes etc.).A Luz le parece favorable para la salud sus prácticas alimentarias y lo que cocina para sus niños y su esposo. Para ella, los complementos alimentarios no son saludables porque \"traen químicos y mientras te pueden ayudar para abrir el apetito y subir de peso no es lo mismo que cuando consumes una comida natural\" opina Luz.De hecho, Luz nos confesa que hace unos años, bajó mucho de peso por pasar por un periodo difícil de decepción sentimental y para recuperar peso, tomó \"Megaplex\" todos los días durante 3 meses. Se preparaba una bebida con 2 cucharas grande de Megaplex, maní, una cuchara grande de helado, un banano y lo hacía en leche o en agua. Fue su instructor de gimnasio quién le aconsejo esta fórmula y se lo tomaba antes o después de ir al gimnasio. En este mismo periodo, tuvo 6 inyecciones de complejo B, 1 inyección cada dos días.Edad: 31 años Luz es una mujer que le gusta trabajar por su bienestar y el de sus hijos. Tiene arranque. Le gusta el deporte. Hace 14 años que vive en el barrio los potreros en Cali, es originaria de Ibagué. Tiene 6 hijos donde el mayor tiene 17 años de edad y el menor tiene 2 años. Vive con su segundo esposo.Lo que hiso ayer (El domingo 25 de octubre de 2015)Sujei se levanta a las 6:00 AM a ayudarle a sacar el carro de arepas que tiene la mama a las 6 :30 AM se come una arepa con mantequilla las arepas son preparadas por la mama un día anterior ella manda a comprar con los niños 12 libras de maíz ,2 panelas, una libra de mantequilla y sal a una medida que la mama tienen en su mente de las 12 libras de maíz salen 80 unidades después Sujei saca en un vaso de café 15oz de un tarro que la mama tiene para vender café preparado con azúcar y agua el café también lo prepara la mamá con un litro de agua y hasta mas echándole una papeleta de café (contiene 50 gramos ). Desayuna sola y se demora unos 30 minutos comiendo. A las 8:30 am se come una arepa con 2 huevos revueltos en aceite de 500 pesos que compro en la tienda se demora 10 minutos preparando los huevos y 30 minutos comiendo. A las 10:00 am les da el desayuno a sus 5 hijos, les da una arepa con mantequilla y café, de nuevo saca 5 vasos pequeños de café de 7 oz del puesto de arepas de la mama. A eso de las 11 :30 am termina su horario de venta y Sujei se va para su casa (la mama vive aparte), (de las 12 a las 4 pm Sujei se toma 5 vasos de agua ) a las 2 :30 pm le hace a los 5 niños una libra de arroz con una pisca muy mínima de sal por temas de salud ya que la presión se le subió a 116 y el medico le recomendó mermar la sal después en aceite frito dos mil pesos de salchicha manguera que equivale a una libra de salchicha y acompañaron con una gaseosa de 1300 pesos llamada big cola almuerzan juntos sentados en el suelo. Sujei no almuerza. A eso de las 5:40 pm se va la amiga Andrea una vecina que arregla uñas y Sujei manda a los niños a que compren una panela y mil pesos en tostados que viene siendo 10 unidades ,en la tienda de su sector todo eso le cuesta mil quinientos pesos en total , a las 7 :00 pm fue con Manuel su \"amigovio\" así lo llama Sujei ya que él le colabora con gastos de la casa pero no vive con el , en esta ocasión van a comprar dos presas de pollo ( una pechuga y un muslo ) con una gaseosa de 1300 pesos (big cola) para que ella coma por que no había almorzado. Manuel paga todo y la acompaña hasta la casa de nuevo ella se come el pollo sentada en una banquita en su casa a eso de las 8:00 pm. Sulei le da dos tostados y ½ a cada niño con un agua de panela que hizo con media panela y 5 vasos de agua. Se demoró 20 minutos haciendo el agua de panela. Comen los 5 niños juntos a las 8:30 pm se van todos a dormir.Sujei está satisfecha con lo que comió el día anterior y con lo que come en general ella y sus hijos (Sujei vive sola con sus 5 hijos). \"Ella no está satisfecha con algunos productos por que están fuera del alcance de su bolsillo como por ejemplo el pescado, las sardinas, los huevos y productos enlatados. Dentro de su sector (sector 3 de potrero grade), Sujei dice que le suben el precio del pollo y además la calidad no es buena \"cuando se cocina suelte un olor feo\". En cuanto el pimentón, no lo encuentra en las tiendas más cercanas de su casa. Sujei no está satisfecha con las tiendas del su sector porque a todo le suben el precio por ejemplo \"uno va a comprar una gaseosa de 1300 pesos en general en las tiendas pero en la tienda de mi sector le suben a mil quinientos\" por eso le toca comprar a fuera de su sector o en otras tiendas o en el supermercado el jardín o el rendidor para economizar.En general siempre es lo mismo los niños entre semana asisten a un comedor también su madre siempre le colabora con la comida de los niños el sábado van al comedor fivida y los domingos siempre es un cuento similar ella nos dice que hay veces que les toca pasar con solo agua .Sujei no recibe ningún alimento directo del campo y tampoco ha recibido donaciones la única donación es la de su madre que vive muy cerca ella le colabora con la comida todo los días de los niños.Los únicos cambios que ha presentado es que ella ya no come de noche y en la alimentación de sus hijos ha sido siempre igual aun que hace un año cuando trabajaba el dinero alcanzaba para comprar un mercado con todo lo necesario. Vivió en Buenaventura 8 años, allá conoció a el papa de sus últimos 3 hijos Billison, Maryuri , Yerlit Lizet ella se separo del papa de sus hijos por eso se vino a vivir a Cali donde tenía a su mama y dice que en la costa comía mas pescado. Ahora que vive hace más de un año en Cali, Sujei no come más pescado porque sale caro y que no son frescos sino congelados. Dice que \"para comer pescado, hay que esperar semana Santa\" porque en esa época, el precio del pescado es más barato.Sujei cree que la alimentación de sus hijos en un futuro será mejor porque ella dice que tiene la esperanza de que cuando ellos terminen consigan un buen empleo \"si estoy viva cuando ellos crezcan y tengo un buen trabajo les ayudare con la universidad\".Lo que piensa de la alimentación de los \"ricos\" \"La comida de los pobres es más rica\".A Sujei la da miedo a faltar de comida porque \"los niños son los que más piden\" ella expresa que \"sufre cuando no comen estos muchachos\". Se ha limitado en la compra de los alimentos en general, y más que todo en el pescado, porque como no tiene trabajo no le alcanza la plata. Para enfrentar estos problemas de limitaciones en los alimentos, Sujei contó que su mama también le colabora con el plato de comida de los niños todos los días.Sujei ha recibido información sobre nutrición de parte de una de sus amigas que se llama Andrea. Ella le contó unas informaciones básicas como por ejemplo que las sopas no eran nutritivas porque al hervir mucho tiempo las papas y las yucas se pierden los nutrientes y también que lo más recomendable para cocinar las habichuelas era en vapor. Sujei aplica un consejo de su amiga que no le dé tanto mecato (osea dulces o comida de la calle como salchipapas). Sujei cree que los alimentos buenos para la salud son las frutas y los granos y dice que los que son pocos saludables son los enlatados. Sujei considera saludable la comida que prepara en general para ella y sus niños no es saludable dice Sujei y no sabe de suplementos no toma nunca nada de eso dice Sujei.Nombre: Sujei grueso Trabajo: no tiene trabajo (ayuda a la mama a vender arepas) Edad: 28 años Historia personal: es una madre soltera, ama de casa. Vive hace un año en potrero grande sector 3. Vivía antes en Buenaventura.Composición familiar: tiene 5 hijos que son luisa Fernanda de 10 años, William Antonio de 9 años, Yerli Lizet de 7 años, Maryuri de 5 años, Billinson de 3 años y ella. En total son 6 integrantes los que componen la familia.Encuesta cualitativa rápida sobre la alimentación -prácticas y percepciones-de personas que viven en los barrios vulnerables de Cali.Metodología y Guía de Mantenimiento OBJETIVO 1. Tener una visión general muy rápida de las prácticas y de la representación de las personas vulnerables de Cali para presentar a la Mesa del 2 de diciembre.2. Hacer suposiciones sobre la alimentación y los problemas nutricionales de las personas vulnerables de Cali, a partir de sus propias opiniones.3. Dar voz a los vulnerables.4. prueba para un método que puede generalizar en 2016.Las prácticas alimentarias de las personas corresponden a todas sus actividades relacionadas con su dieta o aquella de sus familiares (hijos, padres, etc.): Estos son:* Consumo en el hogar o fuera del hogar (en la calle, el restaurante en la empresa ...) * El suministro de alimentos, es decir:-la compra de productos ya preparados o a preparar, -las donaciones de alimentos recibidos de la familia o de instituciones, -alimentos producidos por si mismo, si usted tiene un jardín o una pequeña finca.* La preparación de los alimentos, es decir cocinarlos, * Gestión de los residuos de alimentos de la familia.Cuando se habla de la práctica, hablamos de lo que las personas \"hacen\".Las percepciones relativas a las opiniones, ideas que las personas desarrollan sobre la alimentación. Es subjetivo, es decir, siempre vinculado a la gente y es más difícil de \"capturar\" las percepciones que las prácticas porque no se puede \"observar\". Sin embargo, es esencial conocer las percepciones porque las prácticas son en general vinculadas a ellas. Y si queremos proponer cursos de acción, es importante conocer las percepciones de la gente destinatarios (los pobres).Primero presentarse y presentar los objetivos de la investigación. Presentarse de forma muy sencilla, como personas que se interesan en su en su dieta, y que quiere dar a conocer sus prácticas y percepciones alimentarias a través de un proyecto que se llama \"Cali Come Mejor\" que quiere mejorar el sistema alimentario de Cali (para la población vulnerable, pero no hace falta especificarlo).Llevar a cabo las entrevistas en dos etapas con la gente de un barrio. Porque? Para separar las prácticas de las percepciones.Paso 1: Descripción de las prácticas alimentarias del día anterior El juego es simple: las personas deben contar con detalle lo que hicieron durante 24 horas.Preguntas a hacer:-¿qué has hecho desde el 24 horas?-¿me puede dar muchos detalles acerca de sus horarios de las 24 horas? y a la vez dar muchos detalles sobre lo relacionado con la comida? (acordarse de lo que hicimos con Javier el día sábado 30 de Mayo 2015)Dejar tiempo, dejar a la persona hablar. El investigador en esta etapa debe ser neutral e intervenir sólo para solicitar precisiones sobre los hechos como:*las comidas (desayuno/almuerzo/cena):-qué platos y alimentos (incluyendo bebidas) consumidos?-con quien se ha comido?* las prácticas de adquisición de los alimentos:-Se compró?-¿a dónde?* las prácticas de preparación de la comida es decir cómo se preparó la comida?:-con que ingredientes?-cómo se preparó?Por ejemplo si dice \"salsa de tomate\", hay que preguntar \"en sorbete o tomates frescos cocinados?\" Si dice \"un jugo\", hay que preguntar \"jugo de qué? En leche, en agua? Con que frutas?\"-cuánto tiempo para preparar?-quien los preparó?*Los consumos a parte del desayuno/almuerzo/cena: igual, preguntar:-Que alimentos consumidos?-Que bebidas consumidas?-Si consumo de suplementos dietéticos?-con quien se ha comido?-quién pagó?-¿dónde estaba? etc.*Después de las comidas, que hacen de lo que sobra (si sobra)?Comentario MD: no preguntar primero sobre desayuno/almuerzo/cena y luego sobre los consumos a parte de estas comidas, sino preguntar a lo largo de las 24 horas, a medida de que se desarrolló el día.Al final de la etapa 1, que puede durar entre 1 y 2 horas, el entrevistador plantea cuestiones de percepciones sobre la base de lo que se ha dicho. Además de las percepciones, se hace preguntas para comparar las prácticas de las últimas 24 con lo que se hace generalmente.1. Comparar las últimas 24 horas con -lo que se hace en general (en lo habitual)-con los demás -con su propia historia.Preguntas:-Lo que acabas de describir es lo que sueles hacer en general? Si no, ¿qué es diferente? Explicar.*Recibes a veces alimentos (frutas, verduras, cereales, condimentos, carne etc.) directamente del campo/de una finca?, si es el caso:¿de dónde? qué productos? de quien son (de la familia, de un conocido ..), vas a buscarlos vos? desde cuánto tiempo ? y por qué haces eso? (por el precio / la calidad / la costumbre)?*Recibes a veces alimentos de donaciones? Si es el caso: ¿de dónde? qué productos? vas a buscarlos vos? desde cuánto tiempo ?*autosuficiencia alimentaria: tú mismo o alguien en tu familia tiene una huerta o un gallinero/ ganado (pollo, cerdo, cabra, vaca?), si es el caso :-desde cuánto tiempo ?¿por qué haces esto? (por cuestiones económicas es decir el precio / o la calidad / por costumbre)? ¿Qué interés?* ¿has observado cambios en tu dieta a lo largo de tu vida?¿Qué cambios?-el tipo de producto?-el precio?-la calidad?-el tipo de negocio?-el tipo de abastecimiento?* ¿Piensas que tus hijos tendrán una mejor alimentación que vos? o serán menos bien alimentados?* ¿Piensas que tu alimentación y aquella de tu familia es diferente o similar a la de sus vecinos? Porque? Explicar• ¿Piensas que tu alimentación y aquella de tu familia es diferente o similar a la de la gente \"rica\"? ¿Por qué? Explicar 2. Satisfacción con la alimentación y la oferta alimentaria Preguntas:* ¿Estás satisfecho / a con lo que has comido durante estas 24 horas? * ¿Estás satisfecho/a con tu alimentación, con lo que comes en general, más allá del último 24h? de su alimentación personal? De la de los otros miembros de tu familia: niños, hermanos, padres, abuelos? (si la persona a).¿por qué estás o no estás satisfecho/a? * ¿Estás satisfecho/a con los productos que encuentras en el mercado? sí / no ¿por qué? Especificar productos. Las respuestas pueden ser diferentes en función de los productos.Si no muy satisfecho, es porque:-los productos que desea no están disponibles en los lugares donde vas de compras? Especificar productos.-¿Es porque son demasiado caros en comparación con tus ingresos? Especificar productos.-¿Es un problema de calidad? ¿cuál? Especificar productos.* ¿Está satisfecho con las tiendas/supermercados y la oferta de los productos alimentarios en su barrio? ¿Por qué?Especifique el nivel de satisfacción o insatisfacción para cada aspecto: primero dejar responder de forma espontánea y si no es lo suficientemente preciso preguntar de nuevo su nivel de satisfacción con una escala -Conoces productos que se consideran \"buenos para la salud\"? ¿Cuáles? -Conoces productos que se consideran \"poco saludables\"? ¿ Cuáles? -Según vos, tienes prácticas alimentarias \"favorables\" para la salud? o desfavorable? -Qué piensas de los complementos alimenticios (vitaminas, pastillas, bebidas energéticas ...)? …………………………………………………………………………………………… …………………………………………………………………….Los individuos deben presentarse: -quiénes son, -su trabajo, -su edad, -algo de su historia personal, por ejemplo, si viven en este barrio hace mucho, -la composición familiar.Preguntar a la persona al final de la entrevista en lugar de al principio, pero no olvidar! Pregúntar si está de acuerdo para tomar una foto y también para volver a verla otro día para validar la redacción del \"acta\". Se propone utilizar un apodo si no quiere dar su nombre. Siempre respetar la persona.Interrogar a personas variadas y bastante vulnerables, mujeres, hombres, jóvenes, viejos, negros (¿hay en este barrio) blancos, indios, mestizos ... gorditos, flacos, etc ..... eso si Javier quiere / puede hacer treinta entrevistas. Pero si se hacen sólo 5 entrevistas en esta evaluación rápida, elegir la gente \"ordinaria\" de este tipo de barrio \"vulnerable\" es decir que si otras personas en el barrio leen el informe final, podrían decir: \"es una situación similar a la de mi casa\".Para las \"razas\", variar si es posible. Depende del distrito y de su composición. Entrevistar a gente que puede expresarse con facilidad. Para las 5 entrevistas, elegir: * Uno o una \"joven\" * Dos madres con niños * Un hombre de familia con niños (no de la misma familia) * Un abuelo o una abuela.Adaptar el cuestionario conforme a las personalidades y las actividades de los entrevistados. Por ejemplo, para las personas mayores, preguntar qué ha cambiado si pueden describirlo. Si algunas personas quieren hablar con detalle sobre un tema, escucharlos y no dudar en preguntarlos que expliquen.Varias posibilidades de productos finales de este trabajo:1. Un documental si se puede. El documental es un soporte ideal para liderar una discusión, y que las personas \"vulnerables\" se sienten actores y portadores de su propio discurso.2.Un informe con las actas de las reuniones individuales escritos por un estilo simple, frases cortas y claras, el título será el nombre o apodo de la persona, la foto de la persona, y 2 partes, parte 1 \"lo que hice desde ayer\" y parte 2 \"lo que pienso\". Se puede hacer de una manera muy simple y bonita. Lo importante es llevar la palabra de los entrevistados sin distorsión, sin interpretarlo. Un análisis no es necesario en esta etapa. Sólo una estructura de trabajo.Podría ser una a tres páginas según las personas. Las personas deberían leerlo o si no pueden leer que alguien se lo lee, en todos los casos, obtener su acuerdo sobre el texto (con foto) final.Puede filmar (largo) tomar fotos (más sencillo) y / o hacer grabación de audio (se recomienda para escuchar de nuevo cuando se escribe el informe). Sino, tomar notas en detalle durante la entrevista.","tokenCount":"7993"} \ No newline at end of file diff --git a/data/part_3/3293059383.json b/data/part_3/3293059383.json new file mode 100644 index 0000000000000000000000000000000000000000..584292861c4e64286997b8d4e6b08e642c6bd7ed --- /dev/null +++ b/data/part_3/3293059383.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"4b959d64364b746788a5499228e89495","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/0d082194-25c0-4ad2-81fb-77147cbe41c6/content","id":"-481658161"},"keywords":["Africa south of Sahara","food production","Zea mays","fertilizer application","innovation adoption AGRIS category codes: E14","E16 Dewey decimal classification: 338.16"],"sieverID":"7106ccec-773e-43d6-84d1-285c00eb7672","pagecount":"43","content":"CIMMYT is an internationally funded, nonprofit scientific research and training organization. Headquartered in Mexico, the Center is engaged in a research program for maize, wheat, and triticale, with emphasis on improving the productivity of agricultural resources in developing countries. It is one of several nonprofit international agricultural research and training centers supported by the Consultative Group on International Agricultural Research (CGIAR), which is sponsored by the Food and Agriculture Organization (FAO) of the United Nations, the International Bank for Reconstruction and Development (World Bank), and the United Nations Development Programme (UNDP). The CGIAR consists of some 40 donor countries, international and regional organizations, and private foundations.CIMMYT receives core support through the CGIAR from a number of sources, including the international aid agencies of Australia,Table 1. Year aggregate fertilizer application rate reached 10 kg/ha (NPK). Table 2. Growth in fertilizer consumption per hectare of cropped land and current use, sub-Saharan Africa. Table 3. Fertilizer use by crops, sub-Saharan Africa. Table 4. Fertilizer application rates to maize, sub-Saharan Africa and other developing countries. Table 5. Reported \"agronomic efficiencies\" for maize in Africa. Table 6. Nitrogen-maize price ratios, sub-Saharan Africa and other developing countries. Table 7. Effect of price assumptions on the profitability of alternative maize technologies in 110 on-farm demonstrations, Lilongwe, Malawi, 1990 and1991. Table 8. Explicit fertilizer subsidies in selected African maize-producing countries. Table A1.Fertilizer use by crops, other developing countries. Table A2.Fertilizer application rates to maize, additional developing countries.Figure 1. Elements determining a country's fertilizer consumption. Figure 2. Fertilizer consumption in sub-Saharan Africa. Figure 3. Percentage nutrient (NPK) consumption by crop.Map B1. Optimal means of assuring fertilizer supply at current (1993) consumption levels, sub-Saharan Africa.As is well known, food production in sub-Saharan Africa continues to lag population growth. Although large populations and relatively high income growth in developing countries could give Asia the largest net deficit in cereals over the next decade, per capita cereals deficits in Africa 1 will be much greater. And unless present trends are reversed, 25 years from now Africa will have the world's largest net deficit in cereals, both in absolute and in relative terms. Importing food supplies adequate to offset these deficits will not, in all likelihood, be economically feasible (Mwangi 1995).Soil fertility must be managed more efficiently if Africa is to overcome its food-production problems. Mineral fertilizers and improved nutrient management strategies are crucial to such efficiency. So too are new nutrient sources and more responsive crop varieties. Maize combines widespread importance as a food staple with relatively high fertilizer responsiveness. As a result, maize production and fertilizer use are likely to become even more closely linked than they have been in the immediate past.This paper reviews information on fertilizer use in Africa, particularly on maize. It summarizes incentives for, and constraints to, increased fertilizer consumption, and it outlines key issues in current fertilizer policy. Section II provides an overview of fertilizer's role in agricultural development, the crucial role it might play in Africa, and the complications involved in developing an appropriate fertilizer policy. Section III reviews data on fertilizer use, particularly on maize. Section IV summarizes factors influencing farmers' use or non-use of fertilizer. Section V focuses on supply constraints to fertilizer use in Africa and on past and current policy responses. Section VI presents fertilizer policy options. Section VII presents conclusions.Though the appropriateness of seed-fertilizer technology for sub-Saharan Africa will continue to be debated, the continent can no longer be regarded as land-abundant. That characterization has been one of the major arguments against relying on a seed-fertilizer strategy for agricultural development. Though conditions vary widely (Byerlee and Heisey, forthcoming), many African countries can now be classified as land-scarce (Binswanger and Pingali 1988). Yield increases, rather than area expansion, will thus become progressively more important as a means of increasing crop production.Mineral fertilizers must be included in any agricultural development strategy with a hope of reversing Africa's unfavorable food-production trends. As a result of declining real prices over much of the past century, fertilizer has been vital to the rapid increases in world crop production (Tomich, Kilby, and Johnston 1995). Since the mid-1960s, 50-75% of the cropyield increases in non-African developing countries have been attributed to fertilizers (Viyas 1983). Fertilizers also complement other major inputs and practices (e.g., improved seeds, better water control) that have had the greatest impact on yield.Soil nutrient depletion is a common consequence of most African agriculture (Smaling 1993;Stoorvogel, Smaling, and Janssen 1993). 2 Improved organic techniques of nutrient supply will undoubtedly contribute to future soil health and productivity (Kumwenda et al., forthcoming), but relying only on nutrient recycling, however efficient, will not generate the food-production increases required in sub-Saharan Africa, nor will it restore depleted soils (Janssen 1993). For the foreseeable future, \"the environmental consequences of continued low use of fertilizers\" through nutrient mining and increased use of marginal lands \"are more inevitable and devastating than those anticipated from increased fertilizer use\" (Dudal and Byrnes 1993, p. 152;Matlon and Spencer 1984).In light of these considerations, many observers have called for increases in sub-Saharan fertilizer consumption of 15% or more per annum (Mellor, Delgado, and Blackie 1987;Vlek 1990;Desai and Gandhi 1990;Larson 1993). Based on the experience of other developingworld countries, where aggregate fertilizer consumption has increased far more rapidly than in sub-Saharan Africa, such expansion rates will not be easy to achieve in an economically efficient fashion.Some inherent fertilizer characteristics help to explain both the difficulty of devising optimal policies and the reason such policies are likely to vary in time and space. Fertilizer, like improved seed, is divisible and thus in theory likely to diffuse rapidly-even among small farmers-when agronomic responses and price ratios are favorable. In practice, however, fertilizer costs are a considerably larger part of production-related cash outlays and thus likely to subject the farmer to greater financial risk than do improved seed costs. Even after fertilizer is adopted, the information requirements of determining optimal fertilizer types and application rates pose considerable challenges to agricultural research systems. Farther back in the marketing channel, seasonal demands and bulkiness of product lead to relatively slow stock turnover and considerable storage requirements, which, in turn, result in high financing charges. Distributors are faced with their own credit requirements, as well as the need to offer credit to end users or to work closely with credit agencies (Shepherd 1989).2 Although the information base for the nutrient balance models used in these calculations is not particularly strong, a simple macro exercise yields the same conclusion. Nutrients lost to the system through export crops leaving the continent and locally produced cereals consumed by non-farmers are considerably greater than those added at current consumption rates of mineral fertilizers (P.L.G. Vlek, personal communication). Both micro and macro nutrient balance models are insufficient bases for recommendations concerning fertilizer application rates.In addition, fertilizer production is characterized by considerable economies of scale. To operate at maximum efficiency, for example, an ammonia/urea plant needs to produce about 500,000 metric tons of urea per year. 3 Plants take three or four years to come on-line and another two years to reach full capacity. The economics of fertilizer-production investment depend heavily on potential domestic demand, the availability of local feedstocks, the cost of capital, and ex-factory pricing policy (Segura, Shetty, and Nishimizu 1986;Vlek 1990). Most fertilizer-producing countries tend to plan output to meet domestic demand, with exports occurring as a residual. As a result, world fertilizer prices have tended to be more volatile than those for other commodities, making the decision about whether to rely on the world market or to initiate domestic production a particularly difficult one, even for countries where potential demand is large (Ahmed, Falcon, and Timmer 1989). 4Many knowledgeable observers conclude that \"perhaps more than any other important component of the rural economy, fertilizer use in developing countries is in a continuous state of disequilibrium\" (Ahmed, Falcon, and Timmer 1989, p. 26;Desai and Stone 1987) and that supply side constraints are often more important than demand factors in limiting growth of consumption. In numerous writings (e.g., Desai and Gandhi 1990), Gunvant Desai emphasizes four processes that determine changes in fertilizer consumption: 1) those that influence the agronomic potential for fertilizer use; 2) those that convert the potential into farmers' effective demand for fertilizer; 3) those that determine the growth of aggregate fertilizer supply; and 4) those that develop the fertilizer distribution system. The stylized interactions between these processes are depicted in Figure 1. Although their relative importance is likely to vary among countries and world regions, the framework is nonetheless useful. Policy analysts often focus on price policy, but this has its strongest influence on process 2, with more limited influence on processes 3 and 4. Policy measures affecting process 1 are largely those that determine the amount and type of agricultural research.The disequilibriating features of the fertilizer economy are perhaps even more problematic in most sub-Saharan African countries than in the rest of the developing world. First, in much of Africa, water control, a major complementary factor, is more costly. Second, even for rainfed agriculture, production environments in sub-Saharan Africa may be somewhat more variable over time and space (Kumwenda et al., forthcoming; Byerlee and Heisey, forthcoming); such variation increases the cost of developing information about agronomic potential and of transmitting this information to farmers. Third, because the fertilizer market in many African countries will remain small for the forseeable future, those countries must rely on the world market through trade or aid. Fourth, infrastructure is less developed in much of Africa, which raises the real costs of fertilizer distribution above levels for much of the developing world, reduces farm-level product prices, and in general leads to greater price variability for both agricultural inputs and outputs. Finally, legal and institutional infrastructure in Africa, as well as policy planning capacity, may lag somewhat behind that of other developing countries.Fertilizer Use in Sub-Saharan Africa 5 Table 2 shows growth rates in fertilizer nutrient consumption per hectare of cropped land, as well as current application rates, broken down for specific countries and sub-regions as well as time periods. This breakdown attempts to correct for difficulties in measuring arable land and land in permanent crops. Nutrient use per hectare for Africa in the aggregate is still low with this method, but we feel these figures are somewhat more realistic. Growth rates over time show similar patterns regardless of which estimation is used, but calculation using cropped area rather than arable land shows more clearly 1) the stagnation of nutrient consumption per hectare in early users such as Kenya and Zimbabwe, 2) declines in use for some countries over the past decade, and 3) a slowdown in the increase of region-wide nutrient application rates.Analysts of fertilizer use in sub-Saharan Africa (e.g., Tshibaka and Baanante 1988) often contend that export or plantation crops (primarily cotton, sugar, tea, and coffee) receive the bulk of the region's fertilizer. Although this was true in the mid-1970s (Mudahar 1986), and continues to be true in some countries (particularly countries in Francophone West Africa where cotton is important, and in Kenya), for sub-Saharan Africa as a whole, fertilizer consumption has shifted to cereals, particularly maize (Desai and Gandhi 1988;Gerner and Harris 1993; Table 3; Figure 3). African countries, the proportion of maize fertilizer consumption in total consumption by cereals tends to equal or exceed the proportion of maize area in total cereal area. In other developing countries, maize shows a slight tendency to receive less than its share of total nutrient consumption (Appendix A).Despite the increasing importance of maize in African fertilizer consumption, application rates at the aggregate level generally remain low compared to application rates on maize in other developing countries (Table 4; Appendix A). However, in five African countries-Nigeria, Kenya, Malawi, Zimbabwe, Zambia-about half or more of the maize area was already being fertilized by around 1990; in all these countries, application rates on fertilized areas ranged from two-thirds to over twice the nutrient application rates on rainfed maize in India. But in general the proportion of fertilized area in these countries was lower than it Source: Calculated from FAO Agrostat PC data files. Note: All growth rates are calculated using semi-logarithmic regression. a For each country-year combination, the denominator in all calculations was the sum of all harvested cropped areas. This may still understate application rates in countries with substantial intercropping. In the last row the usual convention of using area in arable land and permanent crops was followed. b Major maize producers in terms of production (over 500,000 mt) or area (over 500,000 ha) excluded from the individual country table include Zaire, Uganda, Mozambique, and Angola, where fertilizer use has remained very low. Regional aggregates include all countries in the region. c Five-year means are presented to abstract from fluctuations in fertilizer use. For the region as a whole, the five-year mean can be compared to data for the latest available year (1993) as shown in Figure 2. d Difference from zero statistically insignificant.10 Note, however, the low application rates in the two Latin American commercialized producers with substantial use of maize hybrids, Brazil and Argentina. As a point of comparison with all developing countries, maize in industrialized nations tends to be fertilized at rates of 250-350 nutrient kg/ha. even further with recent policy shifts (Howard and Mungoma, forthcoming). Consumption in Kenya, Zimbabwe, and Nigeria has been erratic over the same period, with little discernible trend in Kenya and Zimbabwe. In countries where fertilizer policy suddenly alters, reductions in fertilized area may be a more prominent short-run aggregate phenomenon than reductions in application rates on fertilized area.Within sub-Saharan countries, maize fertilizer rates vary considerably. Major conditioning factors include agroecological zone (particularly in Zimbabwe, Kenya, and Nigeria); length of fallow preceding the maize crop (Ghana); structural factors such as the division between large-scale commercial producers and smallholders (Zimbabwe and Zambia); and maize variety (hybrid vs. local maize in Malawi). Partly because of the low overall application rates, partly because of variability within countries, and partly because of other conditioning factors, 11 there is no immediately observable direct relationship between fertilizer application rates and maize yields at the country aggregate level. Within-country micro-data can show the expected relationship: more fertilizer leads to higher maize yields.Several complications affect estimates of fertilizer-response. This section summarizes some reported information on so-called \"agronomic efficiency,\" defined as kilograms of grain obtained by applying one kilogram of plant nutrient; our focus will be on nitrogen, the most widely used and most commonly limiting nutrient. 12 Our aim is to examine responses at 0 kg/ha of applied nutrient. Many cases in the literature, however, are unclear about whether the reported data refer to 1) marginal response at 0 kg/ha of applied nutrient; 2) average response approximating marginal response at 0 kg/ha of applied nutrient; 3) marginal response at current or recommended, non-zero, level of applied nutrient; or 4) average response approximating marginal response at current or recommended, non-zero, level of applied nutrient (Lele, Christiansen, and Kadiresan 1989). All these possibilities could be interpreted economically. In more than a few cases, however, the analyst appears simply to divide increase in grain yield from a (usually large) recommended application rate by that application rate, without any consideration about whether response is indeed linear up to the recommended level.Another complication involves the representativeness of conditions under which response is measured. Many analysts contend that fertilizer response on experiment stations is considerably higher than on farmers' fields, because of greater complementary inputs and practices (e.g., timely weeding). Others argue that, under certain conditions, responses are higher on farmers' fields because fertility at experiment stations is high, and as a result, the nutrient being tested is not really limiting. Depending on the empirical situation, either argument can be valid.Cropping system or rotational effects may also affect fertilizer response. In Ghana, for example, nitrogen response on depleted soils that have been continuously cropped can be twice as high as on soils with high natural fertility that have lain fallow for a number of years (Edmeades, Dankyi, and Marfo 1991). Soil type, planting date, and application method are other conditioning factors. Weather variability may make moisture limiting in some years, and response may differ markedly as a result. 13 Nonetheless, under rainfed conditions, maize in Africa tends to be more fertilizer responsive than other cereals, with the possible exception of rice. Such responsiveness is undoubtedly one reason maize production appears positively linked with fertilizer consumption. 14 Viewed with the above-mentioned qualifications in mind, the data in Demand and supply factors are hard to separate when evaluating farmers' decisions to adopt fertilizer and their subsequent decisions about application rates. For example, many key influences discussed in the adoption literature (farm size, access to credit, membership in cooperatives, contact with extension, access to outside information, availability of inputs, and distance to markets) may be related at least as much to supply side constraints as to farmer demand factors (Mwangi 1995). This section focuses on demand issues, the next on problems of supply.Theoretically, the decision to adopt fertilizer is determined by the interaction between agronomic response and the nutrient-grain price ratio. Agronomic response, in turn, is determined by soil characteristics and climatic factors. If the marginal agronomic response at a level of 0 kg/ha of applied nutrient is greater than the nutrient-grain price ratio, in theory the farmer should adopt fertilizer. In practice, other factors often prove important: the cost of operating capital for the cropping season; information and learning costs; and, perhaps, the effects of risk aversion (considered below) (CIMMYT 1988). Many observers contend that marginal agronomic response must be at least twice the nutrient-grain price ratio (i.e., the marginal rate of return on working capital invested in fertilizer must be at least 100%) for significant adoption to occur.These issues have important implications for the high, intermediate, and low agronomic responses described above. Let us assume that these responses have been measured under conditions similar enough to those faced by farmers so that a yield reduction of 20% indicates the response farmers will actually achieve (CIMMYT 1988). If we also assume that the marginal rate of return must be at least 100%, the implication is that where 25 kg of grain can be obtained with the application of 1 kg of nutrient, farmers will adopt fertilizer as long as the nutrient-grain price ratio is 10 or lower. In areas with an intermediate response, the nutrient-grain price ratio must be 6 or lower for widespread adoption to occur. Where response is low (5 kg of grain for 1 kg of nutrient), the threshold price ratio is 2.In the absence of subsidies, nitrogen-maize price ratios for sub-Saharan Africa are considerably higher than the median for the rest of the developing world (Table 6). 16 Nonetheless, comparing Tables 5 and 6 suggests that there should be considerable high and intermediate potential maize area where some fertilizer use is profitable. Since calculated farmer profitability can be quite sensitive to assumptions about both input and output 16 Fertilizer is subsidized in many of these countries as well, but differentials in nutrient-grain price ratios would be likely to remain even in a completely unsubsidized world. Oyovbisere and Lombim (1991), Nigeria; various sources cited by Heisey and Smale (1995), Malawi; Maturuka, Makombe, and Low (1990), Zimbabwe; Jha and Hojjati (1993), Zambia; Bumb et al. (1994), Edmeades, Dankyi, and Marfo (1991), Ghana; Lele, Christiansen, and Kadiresan (1989), Cameroon; Shalit and Binswanger (1985), \"West Africa.\" a These \"response rates\" were calculated by comparing a particularly high application rate-162 kg/ha-with no fertilizer.prices, however (Table 7), it is important to consider both these sets of assumptions and the prospects for improving price ratios in favor of fertilizer use.Assumed input prices are affected by whether the effects of subsidies and exchange rate overvaluation are taken into account (Martin and Lele 1992) or whether the nutrient source is low-or high-analysis (Marfo and Tripp, forthcoming;HIID/EPD 1994). Assumed output prices can be affected by subsidies and exchange rate overvaluation as well (Martin and Lele 1992;Howard and Mungoma, forthcoming), but maize prices may also be lowered by implicit taxation caused by marketing board policy (Franzel et al. 1989). In countries with wide consumer-producer price margins, whether or not the household is a net consumer will also affect output prices (Table 7).What factors affect current and future nutrient-grain price ratios in African countries? At the world level, real fertilizer prices and the real prices of major cereals have both fallen for much of this century, driven by technical change (Tomich, Kilby, and Johnston 1995). From the early 1970s to the early 1990s, there has been an insignificant, slightly downward trend in the ratio of world urea prices (f.o.b. Rotterdam) to world maize prices (f.o.b. U.S. Gulf). 17 Nitrogen prices may rise somewhat in the late 1990s as capacity lags demand, but cereal prices may stop falling too, making future trends in world price ratios hard to predict. Real border fertilizer-maize price ratios for most African countries have not increased over time, nor are they likely to increase significantly in the immediate future.Instead, fertilizer costs in Africa are inherently high, because of the infrastructural and marketing constraints discussed below. As subsidies are removed and exchange rates liberalized, sharp and relatively rapid increases in the nutrient-maize price ratios almost inevitably follow (Table 6). In some countries, Ethiopia for example (Franzel et al. 1989), liberalization of maize markets can improve maize prices and more than compensate for increased input prices. In other countries, however, liberalization does not appear to halt declines in the real price of maize (Howard and Mungoma, forthcoming; Jayne, Mukumbu, and Jiriyengwa, forthcoming). Thus the overall effect of \"liberalization\" policies on price ratios should be determined empirically.Risk aversion is commonly assumed to play an important part in technology adoption decisions. Many observers conclude, however, that after adoption, risk aversion can reduce fertilizer applications by no more than 20% of the \"optimal\" rates (Binswanger and Sillers 17 This downward trend is even less impressive when one takes into account the speculative nitrogen price rise during the world food and oil crises of the early 1970s. 1983; Shalit and Binswanger 1985;Roumasset et al. 1989). As noted, however, African production conditions for rainfed maize may vary somewhat more than conditions in non-African developing countries. Within Africa, production risk is apt to be considerably more important in marginal areas, such as drought-prone sections of Kenya (McCown et al. 1992) or southern Zimbabwe. 18 Furthermore, Ahmed, Falcon, and Timmer (1989) argue that the studies cited above usually focus only on production risk, not price risk in a general equilibrium context. Certainly output price instability constitutes a risk for fertilizer users in western Africa (Vlek 1990;Byerlee et al. 1994). In eastern and southern Africa, maize prices are probably more stable than prices for certain other cereals (e.g., sorghum, millet), but less stable than maize prices in other developing regions of the world. These details suggest the need for more careful risk assessment in Africa as compared to those other regions.Constraints on cash or credit availability often cause farmer behavior that looks like risk aversion (Masson 1972;Binswanger and Sillers 1983). For many African smallholders, fertilizer expenditures can represent a considerable proportion of the total cash expense for crop production. In Malawi, a liquidity crisis in the smallholder production credit system, not a change in the fertilizer-maize price ratio per se, caused a dramatic reduction in smallholder fertilizer use between the 1992/93 and 1993/94 seasons (HIID/EPD 1994; Heisey and Smale 1995).tend to be twice as high in many sub-Saharan countries as compared to Asian countries. (Shepherd and Coster 1987). Bumb (1988) states that this large difference is the result of the small fertilizer volumes most African countries import. Small volumes increase transportation costs and weaken the nations' position in negotiating for lower prices.In 1990, almost one-third of all sub-Saharan fertilizer imports were financed by aid. In fact, for 21 countries with small markets, all fertilizer was financed through donor programs. Donors impose conditions (such as limitations on origin, transporters, and fertilizer type) that can lead to excessive marketing costs and margins, which ultimately translate into higher fertilizer prices (Gerner and Harris 1993).High distribution costs are another reason for relatively high fertilizer prices in sub-Saharan Africa. First, land-locked countries such as Malawi face additional high transport costs from seaport to port of entry. Second, internal distribution costs tend to be considerably higher than in other developing countries (Bumb 1988), as a result of high transportation costs and other factors, such as the small volume to be distributed. In turn, high transportation costs are the result of poor physical infrastructure. Sub-Saharan Africa lags far behind India and China in km of roads per 100 km 2 (Vlek 1990;Spencer 1994). Other important infrastructural issues include maintaining roads and establishing a balance between rural/ feeder and trunk roads (Mwangi 1995).Substantial credit requirements throughout the fertilizer marketing channel commonly cause late delivery, thus raising the shadow price to farmers. Finally, lack of competition in fertilizer distribution systems, often as a result of public-sector operation, can also contribute to inefficiencies and higher marketing margins (Pinstrup-Andersen 1993).Many sub-Saharan countries have tried to promote fertilizer use through price and/or credit subsidies, even though many other factors are important to the growth of fertilizer consumption. Much of the policy literature on developing-country fertilizer consumption has focused on subsidies, perhaps because their effects on government agricultural budgets are relatively easy to observe. Table 8 provides a brief history of explicit fertilizer subsidies in some major maize-producing countries of sub-Saharan Africa. 20 The table also indicates that, in recent years, fertilizer subsidies have tended to be reduced or eliminated, often as the result of pressure from the World Bank, the International Monetary Fund, or other donors.Numerous indirect pricing effects can be caused by variations in the timing, financing, and institutional management of fertilizer procurement and distribution. Losses by public-sector organizations in trading fertilizer are often made good by the government or offset by profits in commodity trading. Wastage, costs of capital, or costs of extending credit to 21 Pan-territorial pricing for an input like fertilizer means the price to farmers throughout a country is the same, despite differences in transportation, storage, and other marketing-related costs. farmers are often underestimated (HIID/EPD 1994;Shepherd 1989). Perhaps the most universal indirect effects in sub-Saharan Africa, however, are pan-territorial pricing 21 and exchange rate overvaluation.When pan-territorial pricing combines with public-sector fertilizer distribution, marketing organizations are often unaware of the true marketing costs. In effect, these practices offer higher implicit subsidies to farmers in regions with higher transport costs. Even when other aspects of the market are liberalized and subsidies are reduced or eliminated (as in Ghana), pan-territorial pricing may persist (Bumb et al. 1994). One intermediate step toward removing this practice is to control prices up to a country's regional distribution centers, but not beyond them (Shepherd 1989).Exchange rate overvaluation has been a common feature of macroeconomic management in nearly all sub-Saharan countries (Ghura and Grennes 1991), although it is much less evident today than in the past. In the long run, such overvaluation tends to discriminate against the agricultural sector, and it will therefore work against increased fertilizer use. In the short run, however, imported fertilizers, as a tradable input, will be subsidized implicitly by overvaluation.Worsening food-production deficits and concern about soil nutrient depletion suggest to many observers that African agricultural development has been in a state of crisis for some years. But as soil fertility continues its apparent decline and slow growth in food production becomes slower still, we note two factors that may partially counteract negative trends in economic incentives for fertilizer use: 1) declining soil fertility should mean, in many cases, that agronomic fertilizer responses will increase; 2) increasing reliance on food imports should imply, increasingly, that the appropriate price for determining the social value of fertilizer applications will be the import parity price of a major food crop such as maize (Seckler, Gollin, and Antoine 1991;J. Shaffer, personal communication).In this section we consider specific policy options for the fertilizer sector. We first look at the demand side, moving from the relatively short-run question of fertilizer subsidies to the longer-run issues of determining and targeting high-potential areas and developing appropriate agricultural research programs. We then discuss the supply side. Again, shortterm concerns such as donor aid, credit, and distribution costs in general precede intermediate options such as privatization and long-run considerations such as local production capacity and infrastructure development.Prescriptions for fertilizer policy in general and maize in particular must be modified to fit national circumstances. At one extreme is Nigeria: high population pressure on the land, large potential fertilizer demand, and internal sources of fertilizer feedstock make it most likely to benefit from an understanding of fertilizer-sector development in many Asian countries. At the other extreme, the many small countries with low current fertilizer demands face very different sorts of problems.In an excellent approach to fertilizer policy issues, Ahmed, Falcon, and Timmer (1989) state, \"some combination of market forces and government interventions is needed, with the market providing allocative signals, the government stabilizing them around a market trend,\" based in some way on world prices, \"and a competitive private sector delivering the goods at low cost.\" These authors point out that for most Asian and Near Eastern countries, whose fertilizer policies are often seen as \"successful\" from the African perspective, such a fertilizer strategy has not been achieved. 22 Furthermore, as we have argued, solutions to Africa's fertilizer policy problems must go beyond this framework.Though credit subsidies are almost universally regarded as doomed to failure (Byerlee et al. 1994), fertilizer subsidies have received some support from policy analysts. In a world of market and information failures, where policy makers often choose non-efficiency objectives, a subsidy on inputs might be justified (Shalit and Binswanger 1985). 23 If the government's goal is to achieve food self-sufficiency, a subsidy on fertilizer is relatively more efficient, in many cases, than a subsidy on output (Barker and Hayami 1976;Parish and MacLaren 1982;Chambers 1985;Sidhu and Sidhu 1985). 24 Given broader policy objectives such as food security or growth with equity, however, a fertilizer subsidy may no longer be the preferred policy instrument (Quizon 1985). For countries whose goal is to develop local fertilizer production capacity, some form of subsidization might also be part of the policy package (Ahmed, Falcon, and Timmer 1989).Perhaps the most persuasive justification for subsides, with respect to increasing African maize production, is that they might encourage farmers to adopt fertilizer in cases where learning costs and other system bottlenecks tend to slow or halt movement towards a socially optimum level of use (Shalit and Binswanger 1985;Miller and Tolley 1989). Miller and Tolley show that the social benefits from an optimal subsidy policy are expected, theoretically, to be relatively small, although the parameters in their model were derived primarily from Asian, not African or Latin American, experience. In practice, however, reviewers from Dalrymple (1975) to Ndayisenga and Schuh (1995) have concluded that subsidies have not been a particularly efficient means of encouraging fertilizer adoption in Africa. 25 Furthermore, rent-seeking behavior on the part of both public-and private-sector actors can make subsidies difficult to remove.In sum, the question of whether the social return from fertilizer subsidies exceeds returns from alternate forms of investment-such as agricultural research, extension, or infrastructure development-is an empirical one. A complete analysis is likely to be complicated by the fact that the payoff period for these alternate investments tends to be longer than for fertilizer subsidies. Also, there may be some complementarities between fertilizer subsidies and investments with longer horizons.During the period of heavy subsidies in many African countries (lasting until about the mid-1980s), growth in fertilizer consumption was not particularly rapid. Massive subsidization can lead to an inadequate appreciation of fertilizer's actual value and a complete neglect of issues like timeliness and availability. 26 The record from individual countries is mixed. For example, in Nigeria, fertilizer has been heavily subsidized in the past, and Smith et al. (1994) argue that despite problems of fertilizer supply, the subsidy undoubtedly assisted in the adoption and expansion of maize seed-fertilizer technology. Nonetheless, Daramola (1989) concludes that chaotic and untimely fertilizer supply was one of the most important reasons for non-adoption. Moreover, the rapid growth in fertilizer consumption in the 1970s appears to have slowed considerably in the last decade or more. Nwosu (1995) argues that continuing the fertilizer subsidy cannot be justified on grounds of efficiency or equity.In many African countries, both subsidy removal and exchange-rate liberalization have reduced fertilizer consumption, sometimes quite sharply. Ghana and Zambia are examples of major maize-producing countries where policy changes have played a part in such reductions. Similar reductions may have occurred in other maize producers-such as Tanzania and Malawi 27 -where the most recent FAO data (1993) do not yet show diminished fertilizer use. Aggregate data for sub-Saharan Africa as a whole have not yet shown declining total or per hectare consumption, however, because 1) the policy changes in some countries have been quite recent and 2) until recently, fertilizer consumption in Nigeria obscured the effects of cutbacks in smaller countries (see Table 2).Strong arguments have been made that targeting high-potential areas is one of the most effective ways to increase food production. With respect to fertilizer use, such areas are determined by agronomic response and economic potential, the latter being related, in turn, to location and infrastructure (Byerlee et al. 1994). Several considerations should be borne in mind with respect to agronomic response. First, absolute potential yield level is as important as marginal response at zero nutrients. 28 Second, the availability of improved, more-responsive maize varieties is likely to be important. 29 In any case, the need to target high-potential areas has received adequate attention: it is time for proponents to specify where those areas are and spell out the central efficiency, equity, and environmental issues. 30Carefully focused agricultural research is crucial to fertilizer-sector development. The adage about getting the right fertilizer to the right place at the right time assumes that a great deal of information is already available. What, for example, is the right fertilizer? For maize production in sub-Saharan Africa, the following questions are particularly important: What are the major nutrient limitations for current maize production systems? Why aren't response rates to nitrogen higher on supposedly nitrogen-deficient soils (Table 5)? Have responses simply been mismeasured, has the limiting factor been misidentified, or have other means of increasing fertilizer use efficiency been ignored? 3127 Recall that the sharp drop in Malawi's fertilizer consumption in 1993/94 resulted from the collapse of the smallholder credit system, not an abrupt change in the nutrient-grain price ratio faced by farmers. 28 High marginal response to an initial application of fertilizer in an otherwise marginal area with naturally poor soils, where organic matter levels may never support long-term sustainable yield increases, is a much less favorable indicator than high marginal response to fertilizer on relatively good soils and in good growth environments where nutrients have become depleted because of continuous extraction by crops (P.L.G. Vlek, personal communication). 29 This is a different issue from that of improving nutrient use efficiency in high-yielding varieties that are already widely used by farmers. 30 Although the idea of using fertilizer subsidies to counter environmental degradation may be regaining currency, Shalit and Binswanger (1985) argue that such subsidies would only be justified as a special case of the adoptionpromotion argument that focuses on higher potential areas. Targeting subsidies is generally difficult, and attempting to combat environmental problems by subsidizing fertilizer use in marginal areas seems particularly ill-advised. The question of income generation for marginal areas is a larger one than can be addressed in this paper. 31 Nitrogen and phosphorous aside, sulfur, zinc, and potassium might be particularly important for large maizeproducing areas in Africa. Custom blending fertilizers or adding micronutrients tends to increase price by about US$15-20 per metric ton, so even beyond major nutrients, discovering the \"right fertilizer\" has economic implications. According to criteria stated by Vlek (1990), only nine countries in sub-Saharan Africa-Cote d'Ivoire, Nigeria, Sudan, Ethiopia, Kenya, Tanzania, Malawi, Zambia, and Zimbabwe-can cut costs economically through local blending at current levels of demand (Appendix B). With the exception of Sudan, all are major maize producers.Two avenues must be pursued if such questions are to be answered. First, existing soilfertility information must be collected and analyzed with the express goal of making it relevant to fertilizer policy development. Such efforts must go far beyond the repetitive calculation of value-cost ratios that receive little policy interpretation. New datamanagement techniques-such as crop modeling and geographic information systemsmay assist in this enterprise. 32 Accurate data from on-farm research will be much more valuable than results from experiment stations.Second, new knowledge must be developed by extending both the spatial and temporal dimensions of soil fertility research. Even in a country like Kenya, with a relatively long and effective history of such research, available information may be inadequate to develop a comprehensive fertilizer policy (P.L.G. Vlek, personal communication). Although there is evidence that greater research attention is being paid to these issues (Waddington and Ransom 1995), declining support for agricultural research threatens such progress. In countries like Zimbabwe, private-sector initiatives may fill part of the gap, but the necessary long-term research strategies will still require substantial public-sector involvement, which in turn will require higher, not lower, investments in agricultural research.Similarly, the process of developing research recommendations, making them consistent with policy, and turning them into more effective (and often more complicated) extension advice is far from satisfactory in most sub-Saharan countries. Improving that process is crucial to transforming agronomic potential into effective fertilizer demand (Gandhi and Desai 1992). 33Major maize-producing and fertilizer-consuming countries that have had significant amounts of donor-financed fertilizer include Tanzania, Kenya, Malawi, Ethiopia, and Ghana (Gerner and Harris 1993). Donors should quickly remove requirements that particular types of fertilizer be purchased from specific sources and instead provide fertilizer aid in cash rather than in kind (Ndayisenga and Schuh 1995); tied requirements often increase prices and encourage the use of inappropriate types of fertilizer.Other measures to reduce distribution costs include consolidating orders within a country, pooling orders among small neighboring countries, easing the process of obtaining foreign exchange for fertilizer imports, ending public-sector favoritism within the marketing 32 Crop modelling may be particularly useful for such topics as risk assessment. 33 A relatively simple example is provided by Marfo and Tripp (forthcoming). In Ghana, nutrient-grain price ratios in the absence of subsidies are now, at least in part, so high (compare, for example, Ghana with Cote d'Ivoire in Table 6) because Ghana's major nitrogen source has been, until recently, low-analysis ammonium sulfate. On-farm experimentation has shown that higher-analysis urea can be as effective as ammonium sulfate, and at the aggregate level, urea has been substituting for ammonium sulfate. Nonetheless farmers have resisted urea because it needs to be buried rather than broadcast. Farmers have been reluctant to use urea even though merchants, attempting to clear stocks, have discounted its price. Marfo and Tripp conclude that \"privatization has effectively decoupled any link between agricultural research and input policy.\"channel, and reducing bureaucratic obstacles in general (Ndayisenga and Schuh 1995).Countries that have not moved towards the use of high-analysis fertilizers (such as urea, DAP, and TSP) can reduce fertilizer prices by doing so. 34 As we have noted, research and extension measures must accompany changes in fertilizer type.Credit problems are rife at all points in the marketing channel. In Ethiopia, for example, international shippers at the Eritrean port of Assob require a guarantee of U.S. $6 million before fertilizer can be unloaded for transshipment to Addis Ababa. Governmentguaranteed loans to fertilizer importers, wholesalers, and large traders selected by banks on strict commercial criteria would be one way to overcome this problem (Ndayisenga and Schuh 1995). Government-sponsored credit schemes featuring group lending, traderextended credit, and effective rural financial intermediation based on small community savings and credit schemes have all been proposed as solutions to small farmers' liquidity problems. Nonetheless, experience with government schemes has been disappointing (Eicher and Kupfuma, forthcoming), and even credit programs meeting all the standard criteria for success, such as Malawi's, have collapsed (HIID/EPD 1994; Smale and Gerrard 1995). To date, however, experience with and analysis of other ways to provide smallholders with credit have been limited.As an intermediate measure, governments can enhance market efficiency by creating a policy environment that 1) helps develop privately operated businesses in the fertilizer sector and 2) provides basic institutions and infrastructure (Ndayisenga and Schuh 1995;Ahmed, Falcon, and Timmer 1989). Experience with privatization in Africa, however, has been mixed. Private-sector firms are not going to enter a system that proves unprofitable because of larger infrastructural constraints or other factors, such as fixed marketing margins, uneven application of subsidies to different actors in the system, or uneven risksharing in the case of large stock accumulation. Inviting the private sector in at the time a market is shrinking is hardly a prescription for success, as, for example, the Ghanaian case shows (Bumb et al. 1994;Kwandwo Asenso-Okyere 1994). Experience from Cameroon, on the other hand, shows that once a market is developed, the private sector can import and deliver inputs at a lower cost, provided that the public sector provides market information and other appropriate support (Truong and Walker 1990).In Africa, only Nigeria and Zimbabwe produce large quantities of nitrogen fertilizer. Twenty-nine African countries possess phosphate reserves, but only three currently use them to produce phosphatic fertilizers (Gerner and Harris 1993). In the foreseeable future, local production is unlikely to contribute substantially to large-scale increases in African fertilizer consumption. Forty years experience with local production capacity elsewhere in the developing world suggests that, for nitrogen at least, most countries, even those with substantial feedstocks, would have done better to import fertilizer than to manufacture it locally. Economic evaluations of potential plants have consistently over-estimated finishedproduct to feedstock price ratios and capacity utilization. The use of local rock phosphate deposits may prove an exception to this rule, but, nonetheless, projects should be subject to more careful ex ante economic analyses than has been the case in the construction of nitrogenous fertilizer plants (Tomich, Kilby, and Johnston 1995). 35For a bulky input like fertilizer, transportation and storage costs must be reduced if longrun consumption is to approach the social optimum. Since infrastructure affects far more than the fertilizer sector alone, we will not consider it in detail here. However, construction and maintenance of rural/feeder roads, as well as more general attention to maintenance within the transport sector, are likely to play a key role in reducing fertilizer distribution costs. The public provision of legal and social infrastructure may also help to reduce the risks of fertilizer distribution (Ndayisenga and Schuh 1995).Increased fertilizer use, particularly on maize, is essential to increasing per capita food production in Africa. Although region-wide growth in fertilizer consumption has slowed, fertilizer use on cereals in general, and on maize in particular, has become relatively more important. Nonetheless, although several African countries had achieved relatively high rates of maize fertilization by about 1990, in general the proportion of fertilized maize area has remained lower than for developing countries in Asia and Latin America.Until recently, policy debates about the fertilizer sector in African countries focused particularly on subsidies and macroeconomic management, giving little attention to the larger issues of research investments or infrastructural development. Institutional details related to policy making were also given rather short shrift.Without a doubt, subsidies in many countries have been considerably higher than can be justified by any economic rationale. 36 We would suggest that the long-run goal in any country be complete removal of fertilizer subsidies. Countries where fertilizer consumption is limited at present could lift subsidies in relatively short order. In countries where current consumption is higher (say 25,000 nutrient tons per annum on a relatively sustained basis), subsidy withdrawal should be made conditional on the development of a comprehensive 35 The current situation in Nigeria and Zimbabwe gives little cause for optimism. The economics of nitrogen fertilizer manufacture in Nigeria is difficult to unravel. Despite an inability to satisfy the market in Nigeria and neighboring countries that import urea from Europe, the NAFCON plant has to export urea, in some cases to Europe, to obtain foreign exchange (Gerner and Harris 1993). The case of Zimbabwe is somewhat simpler. Protected local ammonium nitrate manufacturers probably could not compete with imported urea were trade barriers removed. 36 Those who argue that Africa is somehow \"different\" should be challenged to develop formal policy models that clearly specify policy objectives. Good examples are provided by Barker and Hayami (1976), Quizon (1985), and Miller and Tolley (1989). Model parameters could then be changed to reflect empirical African conditions.agricultural-sector strategy (Lele 1992). As with economic reforms in formerly socialist economies, opinion is divided between advocates of \"short, sharp, shock\" shifts in policies, and advocates of a slower movement towards a more optimal policy regime. Although phased subsidy withdrawal and similar policies can create opportunities for delay and subversion, our considered opinion is that, given the large possibilities for disequilibrium already present in the fertilizer sector, gradual and carefully planned reforms are likely to give better long-run results than does shock treatment.At present, policy makers often seem influenced more by donor or lending agencies, or by crisis-management imperatives, than by long-run strategic considerations. In some cases, long-established procurement, distribution, and pricing arrangements are changed drastically and at short notice. The result is all too predictable: highly variable and even conflicting signals are sent to public agencies, private-sector organizations, and farmers. As a prerequisite to developing optimal fertilizer polices, decision makers must move beyond crisis management to crisis avoidance. Whether because of subsidy withdrawal or exchange-rate liberalization, mismanagement of a donor-assisted fertilizer grant (von Braun and Puetz 1987), or collapse of a supporting institution like the credit system (HIID/EPD 1994), sharp fluctuations in fertilizer usage are an all too common feature of African agricultural economies.For the fertilizer sector to be effective, the government-in consultation with the private sector and donors-must develop what most sub-Saharan countries lack: a detailed national fertilizer-sector policy and plan that is carefully integrated with a comprehensive agricultural strategy. National policies must be broadly consistent with one another, and present and potential actors in the system must understand policy objectives and the means of attaining them. In turn, governments must develop strong internal policy capacities and the ability to communicate forcefully with donors and the private sector (Martin and Lele 1992). Strengthening policy capacity through better public-service incentives will complement private-sector participation (Ndayisenga and Schuh 1995).Two recommendations follow from these insights. First, over time governments should withdraw from fertilizer procurement, distribution, and pricing; instead they should concentrate on providing information, enhancing legal institutions, and improving infrastructure. Throughout the privatization process, the relationship of government and the private sector must be clearly defined: short-and long-term roles, and how these change as the sector develops, will need to be spelled out if mutual trust and confidence are to develop (Sodhi 1993). Initially, fertilizer distributors may need to be trained. In countries with relatively large markets, a fertilizer industry association can promote dialogue between public and private sectors (Ogola 1987).Some government functions are likely to remain important after fertilizer marketing has been privatized. These include setting and enforcing standards and quality control; estimating demand, in consultation with the private sector; monitoring and evaluating sector performance; establishing mechanisms for consultations between the private sector and the government; creating an environment conducive to private-sector participation;and supporting long-term research and extension, as well as infrastructure development (Sodhi 1993). Appropriate representatives from all these areas should be involved in decisions about fertilizer policy.Second, future studies must devote greater attention to the institutional details of policy making. Any institutional study of reform in the policy-making process should consider how all interested parties can contribute to effective decision making. Government commitment to agricultural development, active collaboration with the private sector, and more thoughtful, coordinated donor action will all be necessary. Comprehensive agricultural strategies, strong government policy capacity, and financially viable privatesector fertilizer distributors are unlikely to come into existence all at once, but institutional understanding should contribute substantially to the design of second-best solutions. a Data from countries where relatively high application rates are reported on a relatively small proportion of total maize area should probably be treated with particular caution.b Although fertilizer use on maize in Pakistan might be somewhat lower than reported by IFA/IFDC/FAO, it is still relatively high, probably covering at least 90% of maize area (Asghar and Longmire 1989). c These application rates appear quite high in view of the reported low yields of maize in Ecuador.","tokenCount":"8089"} \ No newline at end of file diff --git a/data/part_3/3306902522.json b/data/part_3/3306902522.json new file mode 100644 index 0000000000000000000000000000000000000000..9bc62efc6b3130b0a3e96c4a7b222af168709931 --- /dev/null +++ b/data/part_3/3306902522.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"936000b84a4db83e8400798245f00c19","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/0e9fd5a9-a8c0-4263-af6a-b645db1ddb22/retrieve","id":"-1523306711"},"keywords":[],"sieverID":"7d751388-8aaf-4441-8103-e0688092157b","pagecount":"260","content":"Equipos minimos requeridos para el control intemo de calidad.2 Un método simple y preciso para determinar el contenido de humedad de las semillas.3 Prueba del pH del exudado colorimétrico.4 Prueba de tetrazolio.5 Prueba de germinación fisiológica.6 Prueba del verde rápido. 7 Prueba de inmersión en clórox o agua. VIII XII. Página Prueba del cloruro férrico 163. Prueba del hidróxido de potasio 165 para arroz rojo. Construcción de un sicrómetro 167 de voleo. Cálculo del flujo de aire en un 169 secador esta-cionario. XI Página 19 Número del calibre de alambres y láminas metálicas y su respectivo diámetro o espesor.20 Zarandas comunmente uülizadas en el acondicionamiento de semillas de diversos cultivos.21 Separaciones más comunes realizadas con el cilindro indentado.22 Separaciones más comúnes realizadas con discos alveolado5.23 Velocidad calculada de la banda del elevador de cangilones para diferentes diámetros de la polea motriz.24 Area requerida (liflt) para el almacenamien10 de semilla en bolsas según diferentes alturas y diferentes pesos wlumétrlcos.25 Conductillidad ténnica de varios materiales.26 Angulo en grados de la alista fonnada por dos planos Inclinados.realizar el análisis de pureza y la determinación de la presencia de otras especies en el lote de semillas.Factores de descuento de peso 182 para secamiento hasta un 13% de humedad (base húmeda) de acuerdo con el contenido inicial de humedad de un lote de semillas.3 Preparación de las semillas para 184 la prueba de tetrazolio.4 Contenido de humedad en 186 equilibrio (%) para semillas de varios cu~ivos. Datos obtenidos con la ecuación de Roa. Características del ventilador 195 necesario para secar semillas de arroz en silos de fondo falso en capas de diferentes espesores.10 Peso volumétrico, gravedad 196 específica y po-rosidad de algunas especies de semillas.11 Relación entre el contenido de 197 humedad y el peso volumétrico de algunas semillas.x Página Humedad relativa del aire como 198 función de las temperaturas (entre 10 Y 3000) de bulbo seco y bulbo húmedo en condiciones a nivel del mar.Humedad relativa del aire corno 199 función de las temperaturas (entre 30 y 50°C) de bulbo seco y bulbo húmedo en condiciones a nivel del mar.Humedad relativa del aire como 200 función de las temperaturas (entre 50 y 7000) de bulbo seco y bulbo húmedo en condiciones a nivel del mar.15 Cuadro de conversión de 201 temperaturas de grados Celsius a grados Fahrenhelt, y vice versa.Contenido energético de 204 algunos combustibles.Conversión de fracciones de 205 pulgada a milimetros.18 Dimensiones de las perfora-206 ciones de las zarandas de alambre en pUlgadas y sus equivalentes en milímetros.La Unidad de Semillas del CIA T fue creada en enero de 1979 para ayudar al desarrollo de los programas de semillas y a la industria de semillas en América Latina y el caribe. Desde su inicio. el secamiento. acondicionamiento. y almacenamiento de semillas han sido aspectos importantes de los programas de capacitación en los cuales ha estado involucrado el personal de la Unidad.Se han llevado a cabo en el CIA T tres cursos especielizados a nivel avanzado sobre este tema y se ha brindado asistencia a otros cursos efectuados fuera del CIAT. Durante este periodo. se ha sentido la ca• rencie de material de referencia adecuado para los tecnólogos que operan y administran el proceso de beneficio de la semilla. En consecuencia. el personal de la Unidad de Semillas ofrece este MANUAL PARA EL BENEFICIO DE SEMILLAS con la esperanza de que ayude a llenar este vaclo.Se ha reconocido que muchos factores afectan la cali• dad de la semilla desde el momento en que es sembrada en los campos de producción hasta que el agricuHor la utiliza en la producción de granos. El se• camiento. acondicionamiento, y almacenamiento son pasos criticos en el proceso de abastecimiento de semHla al agricultor. En este contexto. se espera que esta publicación sirva para que llegue un mayor volumen de semilla de buena calidad a un número cada vez mayor de agricultores.El MANUAL PARA EL BENEFICIO DE SEMILLAS no habria sido posible sin el continuo apoyo financiero.xv desde la creación de la Unidad de Semillas, de la Cooperación Suiza para el Desarrollo (SeC) y la colaboración desinteresada prestada por todas las personas que en una u otra folma contlibuyeron con este tra-bajO. La Unidad de Semillas también tiene una deuda de gratttud con la Universidad Federal de Pelotas, en Brasil, por compartir el tiempo de uno de sus profesores, el Dr. Silmar T. Peske, quien contlibuyó inmensamente a esta labor durante sus dos aftos como Investigador Invitado en el CIAT.La semilla de variadades de alto rendimiento permite aumentar la producclón agricola y proporcionar artmento a muchos pueblos hamblientos del mundo. Esperamos que los usuarios de este manual, al ofrecer semilla de buena calidad acondicionada en sus unidades de beneficio, contribuyan significativamente a aumentar las tan necesitadas provisiones de semilla de Las operaciones de beneficio de semillas (secamiento, acondicionamiento, y almacenamiento) son tareas requeridas para obtener lotes de semillas de alta calidad, con un mínimo de pérdidas, y en cantidades adecuadas para suplir las necesidades de los agricultores. La realización armoniosa y eficiente de estas operaciones demanda conocimientos teóricos y prácticos básicos; este Manual presenta una recopilación de los conocimientos de varios expertos en las diferentes etapas del beneficio de semillas, con el fin de facllHar el trabajo de las personas que día a día operan una Unidad de Beneficio de Semillas (UBS).Este trabajo no es una deSCripción de los equipos utilizados en la UBS ni de sus principios de funcionamiento o manera de operarlos, pues supone que los operadores ya tienen este conocimiento o pueden encontrar las instrucciones en catálogos u otra literatura de fácil acoeso.El Manual presenta tos detalles técnicos y los procedimientos de las operaciones de beneficio, asi como las precauciones y la conducta que debe seguir el operador de la UBS para realizar un adecuado control de calidad. Al final se han incluido tablas, figuras, y anexos con Información útil y de continua utilización en una UBS. El control intemo de calidad es un requisHo esencial en una empresa de semillas. En la comercialización, la calidad es un factor de competencia de tal importancia que incluso debe figurar en el contrato de compra-venta de [a semilla. Las razones son evidentes, pues ningún agricultor perdonará ni confiará en el productor que le venda una semilla de baja calidad que luego implique daños morales y pérdidas materiales a la empresa. El control de calidad también es importante para verificar la eficiencia y eficacia de la operación de los equipos, para evHar pérdidas innecesarias y mal funcionamiento o para detectar si la semilla presenta algún problema.Un programa de control de calidad debe tener en cuenta los siguientes aspectos: a. Concientización del personal de la Unidad de Beneficio de Semillas (UBS) a todos los niveles de la importancia del control de calidad.b. Intercambio de información y análisis de los éxitos y de los fracasos entre [os diversos niveles de jerarqula.c. Preocupación del personal por la calidad.d. Agilidad para tomar decisiones rápidas por parte del personal encargado de la UBS.e. CapacHación del personal con el fin de mejorar su desempeño.1Manual para el Beneficio de SemiUasEl control de calidad se inicia desde el momento en que se selecciona la semilla que se va a multiplicar y termina con la distribución de la semilla. El beneficio principal de un programa de control de calidad es el conocimiento que se adquiere de los atributos de las semillas que se están produciendo y comercializando.La ficha de registro del lote de semillas permitirá identificar el origen de cualquier problema que se presente, pues son muchos los factores que afectan la calidad de la semilla y que pueden presentarse en la misma empresa, durante el trasporte, en el almacenamiento, o aún en el campo del agricultor, Es importante recordar que:La semilla no miente; s610 puede mostrar la calidad que liene.La semilla es un organismo vivo y se debe tratar como tal, Un adecuado control de calidad resultará en buenas semillas, lo cual produce otros beneficios, como por ejemplo:a. La semilla gozará de confianza entre los consumidores.b. El mantenimiento de la calidad hará que los agricultores soliciten cada vez más la semilla de la empresa.c. Los clientes satisfechos darán buenas referencias a los compradores eventuales que les consulten.d. La empresa no correrá el riesgo de que el comprador devuelva o rechace la semilla,En la recepción del lote de semillas se cumplen tres objetivos principales:a. Caracterizar el lote de semilla que se va a recibir para tomar las decisiones necesarias sobre las operaciones de beneficio requeridas por la semilla y llevar los registros adecuados.b. Evitar la entrada a la Unidad de Beneficio de Semillas (UBS) de materiales de mala calidad.c. Tomar una muestra \"testigo\" del lote tal como llegó a la UBS.Este procedimiento permite obtener una muestra representativa del lole de semillas, con el fin de determinar caracteristicas tales como el contenido de humedad, la pureza, y la viabilidad. En el Anexo 1 se presenta una lista de los equipos minimos requeridos para el programa de control intemo de calidad en la UBS. Con base en estos resu~ados se decidirá el tipo de beneficio que requiere el lote de semillas; en ésto radica la importancia de hacer un buen muestreo. En la Tabla 1 se presenta información de diversos cultivos, con referencia al lamaílo máximo de un lote de semillas y la cantidad de semilla requerida para cada muestra, de acuerdo con las normas de la Asociación Internacional de Análisis de Semillas (ISTA).Para tener una idea de la importancia de hacer un buen muestreo, considere el caso de la semilla de arroz, para la cual:1 g1 kg 1 t 10 t contiene 25 semillas contiene 25,000 semillas contiene 25 millones de semillas contienen 250 millones de semillas (generalmente éste es el tamaño de un lote).En la prueba de viabilidad se utilizan entre 200 ó 400 semillas para representar los 250 millones de semillas presentes en el lote. Es decir, una semilla puede representar un millón de éllas; por lo tanto, el muestreo tiene que ser bien efectuado. La metodología empleada depende de si la semilla se maneja en bolsas o a granel.Normalmente una bolsa contiene 50 kg de semillas; en el caso del arroz esto significa más de 1 millón de semillas. Durante el trasporte las semillas pequeñas y de mayor peso específico tienden a ubicarse en la parte inferior de la bolsa, mientras que las grandes y las de menor peso específico tienden a quedarse arriba; por este motivo es necesario que los caladores utilizados para el muestreo sean lo suficientemente largos para poder recolectar las semillas de diversos puntos de la bolsa. Un buen calador debe tener paredes lisas y una longitud mínima de 60 cm.El calador se debe introducir diagonalmente a lo largo de la bolsa de tal forma que se puedan recolectar semillas a todo lo largo del saco. En el momento del muestreo, el calador se introduce en la bolsa con las aberturas cerradas o hacia abajo (dependiendo del tipo de calado!} para evitar sacar más semillas de un punto que de otro.Un lote de semillas está constituido normalmente por varias bolsas. Lo ideal seria sacar una muestra de cada una; sin embargo, ésta es una operación muy difí• cil y demanda mucho trabajo. Por tal motivo sólo se muestrea un número determinado de bolsas, de acuerdo con el cuadro que se presenta a continuación.Una regla práctica para determinar la intensidad del muestreo es tomar una muestra de cada uno de los sacos, cuando no son más de 6 y tomar una muestra de 5 sacos más el 10% del número de sacos en el lote, hasta un máximo de 50 muestras.Intensidad de muestreo para semillas ensacadas. Normas de la ISTA (1985).Hasta 5 De 6a 30 De 31 a 400 Másde 400No. de muestras 51 por cada 3, m!nimo 5 1 por cada 5, mlnimo 10 1 por cada 7, mínimo 80El problema de estratificación de las semillas, debido a que las pequeñas tienden a deslizarse hacia abajo y las livianas a quedarse arriba, es más pronunciado en Manual P'\" ., aen.nao do SemilJas las semillas manipuladas a granel. Por esta razón, los cuidados deben ser mayores para que el calador saque semillas a lo largo de toda la capa de semillas.Hay caladores especiales llamados estancos, que se usan para sacar y mantener separadas las semillas colectadas a diferentes niveles dentro de la capa. El siguiente cuadro presenta la intensidad de muestrao requerida.En lotes de semillas que no fluyen fácilmente, tales como el algodón y muchas gramlneas forrajeras, el muestreo con caladores se loma muy dificil o impráotico siendo necesario realizar muestreo manual. Este no debe ocasionar problemas siempre y cuando se siga la misma metodologia utilizada con los caladores para semillas ensacadas.Intensidad de muestreo para semillas a granel. Nonmas de la ISTA (1985).Hasta 500 De 501 a 3.000 De 3001 a 20,000 Más de 20,000No. de muestras 5 1 porcada 300 kg, minimo 51 por cada 500 kg, m[nimo 10 1 por cada 700 kg, mínimo 40Son varias las características de la semilla que se registran al momento de su recepción en la UBS.Para decidir el grado de secamiento necesario, se requiere determinar la humedad de diversas muestras primarias, preferiblemente de más de cinco. Es recomendable tomar varias muestras porque la humedad de la muestra compuesta indica un promedio de humedad que puede no ser representativo de algunas bolsas o puntos con humedad alta. Este equívoco puede ocasionar problemas a todo el lote de semillas durante su almacenamiento.Los equipos utilizados para determinar el contenido de humedad normalmente son aceptables, siempre y cuando se sigan las instrucciones que vienen en el manual que acompana a cada uno. Sin embargo, es necesario calibrar periódicamente los determinado res de humedad (2 ó 3 veces al ano), utilizando como patrón los resultados del homo y haciendo mediciones comparativas en lotes de semillas que tengan rangos de humedad amplios (de 9 a 22%). El Anexo 2 presenta un método simple y preciso para determinar el contenido de humedad de las semillas y en la Figura 1 aparece un diagrama del determinador.Manual para el Benendo de SemillasLa determinación de la pureza física de un lote de semillas antes de entrar a la USS tiene los siguientes obje1ivos:a.Establecer la presencia de malezas nocivas o permitidas para decidir. de acuerdo con el grado de contaminación, si se recibe o no el lote.b.De1ermlnar la pérdida debida a la remoción de los materiales contaminantes.c. Definir los equipos que se utilizarán para el beneficio adecuado del lote de semillas.La pureza del lote se puede determinar rápida y eficientemente sin necesidad de utilizar técnicas o equipos especializados. Por ejemplo, para el caso de semilla de arroz, se necesHa una muestra de 40 9 para determinar la cantidad y el tipo de los materiales indeseables y una muestra de 400 g para determinar la presencia de arroz rojo. La Tabla 1 presenta el tamaño de muestra requerida de acuerdo con la especie y el ¡amallo del lote. Para la determinación de la presencia de arroz rojo se necesita una descascaradora; ésta es prácticamente la única prueba que requiere un equipo especial, pues la pureza se puede determinar en cualquier mesa.El análisis de pureza hecho en la USS es un poco diferente al que se hace en un laboratorio de análisis de semillas para fines comerciales. El análisis de la UBS considera indeseables materiales tales como semillas partidas en más de dos partes y las semillas descascaradas, dañadas, pequeñas, o atacadas por Inseo-tos, mientras que en un análisis normal de laboratorio esta semilla se considera pura.El cálculo de la cantidad de semilla deseable, restante después de retirar los materiales indeseables, varía entre especies y en algunos casos, corno en la soya, también depende de la variedad. Sin embargo, hay una regla práctica que permHe calcular las pérdidas:EJEMPLO: En el caso de semilla de arroz, se pierde Total pérdidas (%) 15% 25%Peso final del lote 1700 kg 1500 kg de semillas Al separar semillas de Vígna de un lote de semillas de soya constituido por variedades con semillas pequeflas o no esféricas, la pérdida puede ser mayor del 30% del peso total del lote.Manual para el Bene\"cio de SemillasLas condiciones finales (pos-beneficio) de humedad y pureza física de la semilla generalmente son diferentes de las condiciones iniciales al momento de su recepción, Con el fin de calcular descuentos y precios de compra es necesario hacer la equivalencia entre el peso de la semilla al llegar a la planta y el peso final en condiciones de compra o de almacenamiento, En muchos casos este cálculo se hace (por comodidad o por desconocimiento) usando la regla de tres; sin embargo, el resultado obtenido de esta forma no es cerrecto, con el consiguiente pe~uicio para la empresa y/o el agricultor, Un ejemplo de la manera incorrecta de calcular el descuento por humedad es el siguiente: se tiene un lote de semillas de 15,000 kg de peso con un 24% de humedad y se desea saber el peso final luego de se- Si se considera la sHuación inversa (Ial como se hizo con el ejemplo de la regla de tres) se obtiene: La Figura 2 presenta un monograma que permite calcular el peso final aproximado con base en el peso inieíal y en el cambio en el contenido de humedad. Adicionalmente, la Tabla 2 permite calcular el peso final de un lote de semillas cuando se seca hasta el 13% de humedad.También es posible calcular el descuento debido al contenido de impurezas de un lote de semillas, utilizando una igualdad similar a la anterior.Pi PI '\" PI PI PI '\" Peso inicial del lote Pi = Pureza inicial (%) PI = Peso final del lote PI = Pureza final (%)EJEMPLO: ¿Cuál es el peso final de un lote de semilla con un peso inicial de 8000 kg Y una pureza inicial del 96%, si se desea que la pureza final sea del 99%1 Existe la posibilidad de que lleguen a la UBS lotes de semillas con baja viabifidad (germinación). La presencia de estos lotes, o su permanencia prolongada en la planta, es indeseable. Para evitar estas s~ua ciones existen algunas pruebas rápidas que ayudan al operador de la UBS a determinar la calidad de un lote.Entre estas pruebas están:a. La determinación del pH del exudado, que se puede hacer en 30 min para semillas de soya, fri.. jol, maíz, algodón; en 60 min para semillas de cebada; y en 180 min para semillas de trigo y arroz (Anexo 3).b. La prueba de determinación de la condudividad eléctrica, realizada por medio de un equipo marca ASAC para semilla de soya; esta prueba dura un poco más de 20 horas.c. La prueba de tetrazolio, para casi todas las especies, la cual requiere alrededor de un día para su determinación y que el laboratorista tenga conocimientos básicos de anatomía de semillas (Anexo 4 y Tabla 3).d. La prueba de germinación fisiológica, requiere de 1 a 2 días para su evaluación (Anexo 5).e. La prueba de verde rápido, que se efedúa en pocos minutos y se usa en semillas de maíz para determinar el dallo fislco, el cual está relacionado con le viabilidad (Anexo 5).f. La prueba de inmersión en clórox o en agua para determinar el daño físico en semillas de soya y frijol (Anexo 7).Adicionalmente se pueden realizar otras pruebas rápidas al lote de semillas. Para determinar el dallo físico del lote, comunmente se lleva a cabo la prueba de cloruro férrico (Anexo 8), Y para determinar la presencia de arroz rojo se realiza la prueba del hidróxido de potasio (Anexo 9). La metodologia empleada para cada una de estas pruebas se puede consuRar en los libros de tecnología de semillas. Algunas publicaciones recomendadas incluyen: Amaral, A D. Para un adecuado control interno de calidad también es necesario efectuar un registro en el momento de recibir la semilla. Este registro sirve para identificar el lote y poder determinar en qué proceso se presentaron problemas durante el acondicionamiento del lote de semillas. Los aspectos que se deben registrar son los siguientes: a. La fecha de recibo del lote.b. El peso hectolftrico, principalmente para semillas de trigo.c. La identificación o código del lote. Es el •bautismoa de la semilla en la planta. con números y/o letras.d. El origen.e. La especie y la variedad.f. La forma de recibo, en sacos o a granel.g. El lugar y la fecha de cosecha.En la Figura 3 se presenta un modelo de formulario para el registro de los datos durante el beneficio del lote de semillas.Algunas semillas necesitan operaciones especiales para facilitar las operaciones de secamiento, acondicionamiento o de siembra. A continuación se presentan algunas de ellas.Es la remoción de apéndices o aristas en las semillas de cebada, avena, zanahoria, remolacha, pastos, yaigunas semillas de especies forestales. El trabajo se efectúa por medio de martillos rotatorios que giran a velocidades específicas para cada especie con el fin de no dañar las semillas. El siguiente cuadro muestra las velocidades determinadas para algunos cultivos.la cantidad de semillas y el tiempo que permanecen dentro de la máquina desaristadora, influyen sobra la calidad del trabajo realizado. El operario debe revisar constantemente el material que sale del equipo y las partes de éste para hacer los ajustes necesalÍos y garantizar la buena calidad de la operación.Velocidad de rotación de los martillos (rpm) Consiste en la separación de los granos de maíz de la mazorca. Considerando que la semilla de maíz se cosecha en su mazorca para poder seleccionarla ano tes del desgrane y que la cosecha se debe realizar tan pronto la semilla alcanza la madurez fisiológica, es necesario secar las mazorcas hasta un 14-15%, pues en estas condiciones se minimiza el dano mecánico durante el desgrane. Una vez alcanzado este primer grado de secamiento se procede a desgranar y luego a secar la semilla hasta un 13% de humedad. Cuando no se puede seguir el proceso en este orden, por razones climáticas, de equipo, o de operación, se hace secar las mazorcas hasta el 13% y luego desgranarlas, con la consiguiente pérdida de calidad del lote de semillas debido al daño mecánico. Las desgranadoras de tipo semicónico con dentadura de hie• rro calado ocasionan menos daño a la semilla, especialmente cuando las revoluciones del cilindro se grao dúan entre 400 y 450 rpm. En promedio la tusa representa un 14 a un 20% del peso, cuando tanto la tusa como la semilla tienen un contenido de humedad del 13%.Esta operación se realiza antes del secamiento, pero no es necesaria en todos los lotes de semillas. Con ella se busca reducir la cantidad de material que se debe secar y por conSiguiente la cantidad de agua que se va a extraer. Además, la prelimpieza facilita el paso del aire a través de la capa de semillas. DuranteOpllfllciones Especiales esta operación el operario de la UBS debe tener en cuenta los siguientes factores:a. Es importante prelimpiar toda la semilla en el momento en que se recibe en la UBS.b. La dimensión de los orificios de la zaranda escogida debe ser adecuada para evitar la pérdida de la semilla buena, pues en esta operación es más importante un alto rendimiento de la máquina que una buena calidad de limpieza.Es aconsejable que la máquina prelímpiadora (MPL) efectúe la separación de los materiales livianos mediante corriente de aire (separación por aire) y que remueva los materiales más grandes con zarandas. Es conveniente que estas zarandas sean del mismo tamallo (dimensiones exteriores) que las de la máquina de aire y zarandas para poder intercambiarlas, (IIer Capítulo V, Máquina de Aire y Zarandas,)Las semillas de un gran número de especies permanecen en un estado de latencia que se debe romper para que puedan genninar. En términos generales, la latencia puede ser fisiológica o física (semillas duras, impenneables al agua), Para romperla se usan tratamientos químicos, mecánicos, o térmicos; en algunos casos la latencia cesa con el tiempo.El rompimiento de la latencia física se denomina escarificación y se utiliza en el caso de semillas duras que no embeben agua. La escarificación se puede efectuar aplicando métodos químicos o métodos mecánicos; así como hay muchas especies de semi-lIas duras cuya latencia se rompe con el sólo manipuleo normal en la UBS, existen otras a las que es necesario hacer una pequeña abertura en el tegumento para que la semilla embeba agua y germine, como las de Stylosanthes capitata. Otras semillas son aún más duras y requieren equipos o metodologías especiales para romper este estado. Para escarificar S. capitata químicamente, se utiliza ácido y se procede de la siguiente manera:a. Se prepara una solución de ácido sulfúrico con un 40% de concentración.b. Se colocan las semillas en un recipiente resistente al ácido.c. Se embeben todas las semillas en ácido sulfúrico (100 mi de ácido/kg de semilla).d. Se agitan las semillas durante 15 minutos.e. Se lavan bien las semillas con agua.f. Se reduce su contenido de humedad hasta los niveles aceptables (13%).g. Se remueven los materiales indeseables.En semillas de Brachiaria decumbens se sigue el mismo procedimiento, salvo que se usan 120 mi de ácido/kg de semilla y se embeben en ácido durante 15 minutos. En semillas de Brachiaria dictyoneura se usa la misma cantidad de ácido pero durante 25 minutos. También es posible primero remover mecánicamente (con una peladora de arroz) las vainas de las semillas de S. capitata y posteriormente se sigue el procedimiento anterior, pero dejando las semillas en ácido durante s610 5 minutos, La semilla se escarifica mecánicamente en un equipo sencillo que la frola contra una superficie abrasiva; esta abrasión ocasiona un daño mecánico controlado al tegumento para permitir la Imbibición de agua. Es muy importante utilizar correctamente el equipo pues si está mal calibrado, puede causar daño mecánico severo a la semilla.Es aconsejable sembrar la semilla escarificada dentro de un períOdo no mayor a 60 días después del tratamiento, debido al bajo potencial de almacenamiento de las semillas.En gramíneas como pensacola, arroz, y trigo, normalmente se combina el tiempo de exposición con la temperatura para romper la latencia, tal como se detalla a continuación: Para lograr un mejor acondicionamiento y un mayor potencial de almacenamiento, la semilla debe tener un contenido de humedad no superior al 13%. Considerando que se debe cosechar tan pronto como la semilla alcanza la madurez fisiológica, y esto implica que su humedad probablemente esté por encima del 13%, es necesario realizar el secamiento a la mayor brevedad posible, ojalá inmediatamente después de la cosecha.Durante el secamiento la temperatura de la semilla no debe estar por encima de los 40°C; por esta ra:z:ón se debe controlar la temperatura del aire de secamiento con el fin de mantener este limite. Entre menor sea el contenido de humedad de la semilla, mejor soportará las altas temperaturas. Si el contenido de humedad de la semilla es alto (> 18%), no es aconsejable calentaria por encima de los 35OC; si la humedad es infeñor al 18%, se puede calentar la semilla hasta los 40OC. c. La fecha de cosecha y su coincidencia con el periodO de lluvias.Manual para el B<1nencio de S.mmas d. La humedad Inicial y final de la semilla y el tiempo disponible para el secamiento.Consiste en utilizar la energía solar y el viento para secar las semillas. La metodología es la siguiente:a. Colocar la semilla en el piso de un patio o en una carpa grande, temprano en la mailana antes de que el suelo esté muy caliente y pueda causar dano a la semilla.b. Esparcir la semilla en la superficie en una camada ondulada (para aumentar la superficie de exposición) de máximo 10 cm de espesor.c. Revolver las semillas más o menos cada 30 min para evitar gradientes de humedad altos y temperaturas altas en la semilla y facilitar el secamiento.e. Detemninar periódicamente la humedad de la semilla para saber en qué momento suspender el secamiento.Uno de los problemas del secamiento natural es la dependencia en las condiciones ambientales; por lo tanto, es aconsejable secar tan pronto se recibe el lote de semillas.Otro método recomendable es colocar la semilla en capas de 5 cm, en bandejas de fondo falso suspendidas por lo menos a 50 cm del piso para facilitar el paso del aire por encima y por debajo de las semillas y aumentar así la velocidad del secamiento (Figura 5).Consiste en atterar las propiedades físicas del aire -aumentar su velocidad y temperatura y en algunos casos reducir su contenido de humedad-para secar las semillas. Dependiendo de la forma en que fluyan las semillas en el proceso de secamiento, se pueden considerar tres sistemas de secamiento artificial: secamiento estacionario, secamiento continuo, y secamiento intermitente.Con este método las semillas no se mueven durante el secamiento. Existen varios sistemas de secamiento estacionario; el más común de ellos es el secador estacionario de fondo falso (Figura 6). También existe el sistema de secamiento estacionario formando túneles con las bolsas de semillas (Figura 7).las siguientes son las principales variables que influyen en la semilla y en el secamiento:Humeclad relativa (HR) del aire Durante el secamiento el aire liene dos funciones: absorber la humedad de la superficie de la semilla y lIe• vana hacia el exterior del secador. En condiciones tropicales (aRa temperatura y alta HR del aire) se debe utilizar entre 4 y 17 m 3 de aire/minlt de semilla.Entre mayor sea la humedad de la semilla, mayor debe ser el flujo de aire y viceversa.Entre más alta sea la capa de semilla, mayor será la pérdida de presión y menor el caudal de aire que pasa a través de la capa, por lo cual es necesario que ésta tenga un espesor apropiado para el sistema utilizado. En general, la altura máxima para semillas de tamaflo similar a la de soya es de 1.5 m, a la de trébol de 0.6 m, y a la de malz en mazorca de 3 m. Para te• ner un flujo adecuado de aire es importante seleccionar bien el ventilador.EJEMPLO: Al secar una capa de 1.2 m de semillas de arroz con un contenido de humedad del 20%, en un silo secador de 8.0 m de diámetro y un flujo de aire de 13 m 3 /minlt, ¿cuál será el ventilador más apropiado?Para seleccionar el ventilador se deben seguir los siguientes pasos. (En la Figura 8 se presentan algunas fórmulas geométricas requeridas en estos cálculos.) a.Determinar la presión estática.Calcular el volumen total de aire.Seleccionar el ventilador en la tabla de desempeño.Presión Estática.1 Area del silo Desplazarse horizontalmente desde este punto hasta encontrar la curva para arroz.Desde este punto, bajar hasta el eje horizontal y leer el valor de la caída de presión del aire, que en este ejemplo es igual a 52 mm H2Ü/m de espesor de la capa de semilla.8. Caída de presión total = 1.2 m x 52 mm H2Ü/m = 62.4mmH209. Presión estática = Factorde seguridad x Caída de presión Este factor de seguridad es un ajuste por impurezas, contenido de humedad de la semilla, y otras variables que causan pérdidas de presión en el sistema. Generalmente se utiliza un valor de 1.3 como factor de seguridad en el caso de ventiladores conectados directamente al silo sin curvas, codos, u otras restricciones, que causan pérdidas de presión adicionales y que se deben considerar por separado. Volumen Total de Aire. tes espesores de la capa de semillas. El caudal aumenta linealmente con el aumento del espesor de la capa, pero la presión y la potencia aumentan rápidamente.Cuando ya se cuenta con el sistema de secamiento y se desea vermcar si la cantidad de aire disponible es la correcta, se toma el modelo del ventilador y sus curvas o tablas de desempeilo para determinar la presión y el flujo de aire que ese ventilador produce.Sin embargo, si no se tienen estas tablas, para determinar el flujo del aire se puede utilizar el método descrito en el Anexo 11, el cual se aplica a continuación.Se utiliza un manómetro en ''U\", que se puede construir fácilmente tal como se describe en el Anexo 12 y en la Figura 10. Este manómetro tiene el extremo inferior cerrado y aguzado para facilitar su inserción en la capa de semillas; tiene además varios orificios pequeños, perforados a diferentes ángulos, que permiten medir la presión estática a ese nivel dentro de la capa de semillas.Para medir la presión se debe nivelar la capa de semillas en el silo. El tubo se introduce perpendicularmente en la masa de semillas hasta una profundidad determinada, preferiblemente 1 m. Es conveniente medir la presión estática en varios puntos a una misma profundidad y después calcular el promedio. Conocida la presión estática a esa profundidad, se calcula la presión por metro de capa de semilla. Luego. con este valor y con el diagrama de Shedd (Figura 9), se determina el flujo del aire en m 3 ¡minlm 2 .Conociendo el área de la base del secador es posible determinar el caudal total producida por el ventilador en m 3 /min, y conociendo la capacidad del silo (toneladas de semillas en el secador para esa profundidad de capa), se puede determinar el flujo de aire en m 3 /minlt. Las Tablas 10 Y 11 presentan los pesos volumétricos para diferentes tipos de semillas. Con este dato y el volumen de la masa de semillas se puede calcular la cantidad de semillas que se va a secar.Si este valor se encuentra entre 4 y 17 m 3 /minlt el ventilador está en condiciones de mover suficiente aire para secar esa capa de semilla. Si el valor calculado es menor se debe usar una capa de semillas más delgada, y si es mayor se puede usar una capa mayor, siempre y cuando no sea superior a 1.2 m de espesor. Este método para determinar la presión estética es más preciso que si se mide en el plenum.Un ejemplo del procedimiento es el siguiente: Se introduce el tubo a una profundidad de 0.75 m en diferentes puntos de la masa de 10 t de semilla de arroz contenidas en un silo de 4 m de diámetro. Se determina una presión promedio de 46 mm de H20, que equivale a 46/0.75 = 61.3 mm H20/m. Observando el diagrama de Shedd para semillas de arroz, se determina que el flujo de aire para esta presión es de 10 m 3 /min/m 2 de piso. Como el área es 3.14 x i2 = 12.6 m 2 , el caudal de aire es 12.6 x 10 = 126 m 3 /min. El flujo por tonelada de semilla se calcula dividiendo el caudal de aire por la masa de semillas:En general, se puede asumir que la velocidad de secamiento es constante en el rango de humedad de la semilla entre el 22 y el 13%. Con base en esto se puede calcular el tiempo aproximado que se demorará en secar la capa en contacto con el piso falso.As!, por ejemplo, si el contenido de humedad de dicha capa era de 22% a las 9 a.m. y al muestrearla a las 11 a.m. se encuentra que la humedad ha bajado a 20%, se puede calcular la velocidad de secamiento por hora de la siguiente manera:Si se desea secar hasta el 13% se debe remover un 9% (22 -13) de humedad. Si la velocidad de secado es de 1 %/h, entonces se requerirán 9 h; o sea hasta las 6 p.m. aproximadamente, hora en que se espera que la capa inferior esté seca. A parlir de ese momento es necesario estar tomando muestras de las otras capas para determinar cuándo terminar el secamiento.Este cálculo es aproximado pues son muchos 105 factores que intervienen durante el secamiento, pero es indicativo de la duración del proceso. En general, un secador de fundo falso demora 24 h para secar cada carga.Los secadores con distribución radial de aire están dise/íados para que cada carga demore alrededor de 24 h para secar. Por tanto, dependiendo de la cantidad de semillas, se necesitará una batería de un número adecuado de silos.Es importante resaltar que estos secadores (de fondo falso y de distribución radial) también funcionan como almacenadores; al inicio de la cosecha todos funcionan como secadores y después algunos van quedando como almacenadores; al final de la cosecha es posible que solamente uno funcione como secador.En el secador de fondo falso el frente de secamiento se mueve de abajo hacia arriba y en el de distribución radial se mueve del centro hacia la periferia. Es importante conocer la dirección y el sentido en que se mueve el frente de secamiento para tomar correctamente las muestras y determinar el contenido de humedad; las muestras deben contener semillas de toda la capa evaluada sin mezclarlas con semillas de otras capas. El secamiento del lote de semillas termina cuando la capa de semillas que está más distante de la entrada del aire ha alcanzado la humedad deseada. Es aconsejl!,ble que todas las capas estén secas, pues si una sola queda húmeda ocasionará problemas durante el almacenamiento.Se tiene la idea errada de que durante la descarga del secador se produce una buena mezcla de semillas húmedas y secas; sin embargo, ésto no siempre ocurre y es mejor secarlas todas muy bien.En el secador de distribución radial de aire es muy dificil conseguir uniformidad en el secamiento (la parte superior del secador, distante del tubo central, queda más húmeda). Por tanto, al final del secamiento es recomendable trasportar las semillas a otro secador (o al mismo) con el fin de uniformizar la humedad.En las primeras horas de secamiento se deben tomar muestras cada 2 h, de capas de 30-40 cm, para detectar el momento en que se encuentra seca la capa de semillas que está cerca de la entrada de aire; en este punto es necesario aumentar la HR del aire de secamiento (disminuyendo su temperatura) para evitar el sobresecamiento de esta primera capa. Posteriormente, el muestreo se hace a intervalos mayores; cuando la temperatura y la HR del aire son casi iguales a la salida del silo y en el plenum, el secamiento está en su fase final. Cuando la humedad de la semilla es alta (superior al contenido de humedad en equilibrio) es posible efectuar el secamiento incluso con aire con una HR alta (Tablas 4, 5, Y 6 Y Figura 4).Para estar seguro de que el aire está removiendo agua de las semillas, se puede determinar la HR del aire en el plenum y a la salida del secador. Si la HR a la salida es mayor que la HR del aire en el plenum, se puede concluir que el aire está secando el lote de semillas. Esto es válido especialmente en el caso de semillas con un alto contenido de humedad (20%), las cuales pierden agua incluso cuando se usa aire con altas HR (70-80%) (Figura 4).En la Figura 11 aparece la carta sicrométrica en la cual se relacionan las diferentes propiedades termo- El Anexo 10 describe la manera de construir un s¡\" crómetro de voleo para determinar la HR del aire, yen la Figura 12 aparece el dibujo del sicrómetro. Las Tablas 12, 13 Y 14 permiten también determinar la HR del aire con base en las temperaturas de bulbo seco y de bulbo húmedo. La Tabla 15 permite convertir valores de temperatura de OC a °F y viceversa.En el momento de cargar el secador de fondo falso se recomienda prender el ventilador y colocar una escalerilla amortiguadora para minimizar los danos mecánicos ocasionados mientras se carga el silo. Como este procedimiento no es posible en el secador de distlibución radial de aire, se recomienda bajar el pistón que se encuentra dentro del tubo central y prender el ventilador, haciendo que el aire salga solamente por la parte de abajo del secador y forme un colchón que amortigüe la caída de la semilla.Las semiUas con una humedad inferior a 10% son muy susceptibles al daño mecánico. Teniendo en cuenta que una camada de semilla está seca cuando entra en equilibrio higroscópico, se debe tener mucho cuidado con el aire que pasa por la capa de semilla que queda cerca de la salida del aire pues se puede secar en exceso, especialmente cuando el aire de secamiento tiene menos del 40% de HR (Tablas 4,5, Y 6 Y Figura 4).En las plantas grandes de benefICio el accionamiento de carga de los silos secadores y almacenadores normalmente se efectúa por control remoto, lo cual aumenta la probabilidad de equivocarse y enviar semillas de otra variedad a un secador lleno. Para evitar estos errores, se coloca un desvío en el tubo de entrada de semillas del secador; este desvío permanecerá abierto, cerrando la entrada principal del tubo cuando el secador esté Ueno, Impidiendo que se mezclen las semillas. En las UBS donde se ha instalado este mecanismo, es común ver semillas en el piso cerca de los secadores, demostrando así la utilidad del desvío, que funciona como una válvula de seguridad.Para evitar mezclas varietales es aconsejable utilizar siempre un mismo secador para una misma variedad; cuando ésto no es posible, se deben limpiar muy bien 105 secadores, principalmente 105 que utilizan el sistema de distribución radial de aire, pues las semillas pueden quedarse fácilmente en las aberturas de las salidas de aire en la pared del secador. La limpieza no debe hacerse a la ligera y se requieren varias horas para limpiar cada secador.Se debe revisar el quemador permanentemente para evitar que se dañe o que consuma mucho combustible. También se debe revisar la calibración del humidistato y del termostato. El ventilador, a pesar de ser el \"corazón\" del sistema, exige poca revisión. Es importante mantener abiertas las compuertas de salida de aire del secador, de lo contrario el flujO de aire disminuirá apreciablemente. Para evitar abrir y cerrar continuamente las compuertas superiores de los silos es conveniente reemplazarlas con chimeneas, las cuales permHen el paso del aire y no del agua.Cuando se seca semilla con aire caliente en silos secadores estacionarios es importante no apagar repentinamente la fuente de calor ya que se puede condensar vapor de agua dentro del secador, especialmente cuando el aire ambiente exterior está más frio, tal como ocurre durante la noche y en la madrugada.Esto se explica si se considera que luego de trascurrido un tiempo de secamiento con aire caliente (por ejemplo, a 40\"C). tanto las paredes y el techo del secador como la semilla se calientan por encima de la temperatura ambiental. Si se deja de calentar el aire, el ventilador empieza a pasar aire exterior a través de las semillas, Este aire enfria las paredes y el techo del secador por debajo del punto de rocío, causando condensación dentro del silo y humedecimiento de las semillas, con la consiguiente pérdida de calidad. También puede ocurrir condensación en el exterior del silo no sólo si se apaga la fuente de calor sino también si se apaga el ventilador, pues el aire frío del exterior enfría rápi-damente las paredes y el techo. Para evitar este fenómeno, se debe reducir gradualmente la temperatura del aire, permitiendo que todo el sistema se enfrie simuHáneamente sin causar condensación.Los secadores continuos o torres de secamiento se utilizan para secar grandes volúmenes de granos, tales como el arroz y el sorgo; no son recomendados para secamiento de semillas. En este sistema, el material entra húmedo por la parte superior del secador y va bajando lentamente hasta llegar al fondo. Durante todo este tiempo, una corriente de aire caliente pasa a través del material. Si el grano aún está húmedo al salir del secador, se recircula hasta que alcance la humedad final deseada.En el secamiento continuo la semilla está en contacto con el aire caliente durante todo el tiempo que permanece en el secador; en los secadores intermitentes (que se explican más adelante), la semilla está en contacto con el aire caliente solamente mientras pasa a través de la cámara de secado.A pesar de no ser recomendable, se puede llegar a utilizar un secador continuo para secar semillas si se toman algunas precauciones tales como: Temperatura Debido a que las semillas están continuamante en contacto con el aire caliente, la temperatura del aire no debe ser superior a los 4Q°C.Manual para el Bene6c1o de SemíllasNo es aconsejable secar algunos tipos de semillas de una sola pasada. Por ejemplo, si se tiene la semilla de arroz con una humedad inicial del 20%, se recomienda secarla hasta un 16 o 17% y luego trasportarla a un depósito durante uno o dos días para luego secarla hasta el 13%.Es recomendable tomar muestras de la descarga del secador cada 15 minutos para determinar la humedad de las semillas.Dentro del secador hay muchos sitios donde las semillas pueden alojarse; por tanto la limpieza se debe hacer cuidadosamente, utilizando el siguiente equipo:1. Una luz fuerte para poder mirar dentro del secador.2. Un sistema de aire comprimido.3. Un aspirador portétil con un tubo largo.En algunos modelos es necesario abrir una ventana en el cuerpo del secador para hacer la limpieza adecuadamente.Tal como sucede con el secador continuo, en el secador intermitente las semillas entran por la parte superior y descienden lentamente hasta que son descargadas por la parte inferior, pero entran en contacto con el aire caliente sólo al pasar por la cámara de secamiento (Figura 13).Este proceso se repite hasta que las semillas alcanzan la humedad deseada para su acondicionamiento y almacenamiento. Las caracteristicas principales de este método de secamiento son:Se controla la temperatura del aire, la cual puede ser bastante aRa pues las semillas están en contacto con el aire caliente durante períodos cortos. En los secadores intermitentes rápidos (SIR), las semillas permanecen en contacto con el aire caliente durante ± 1.5 min y luego entran en contacto con el aire ambiente durante 15 min en una relación de 1 :10 (puede ser de 1:8 -1 :15). Es decir, la semilla pasa rápidamente por la cámara de secado.En los secadores intermttentes lentos (SIL). las semillas están en contacto con el aire caliente durante ± 15 min y con el aire ambiente durante los sIguientes 15 mino en una relación de 1:1 (puede ser de 1 :0.5 -1 :3). Se puede hacer manualmente abriendo y cerrando una compuerta ubicada en el conducto de entrada del aire al secador. Cuando se utiliza madera como fuente de energía calórica. se deben regular los cambios en la temperatura colocando un tennómetro a la entrada del aire en un sitio visible. Es aconsejable conectar una alanna al tennómetro para que avise cuando la temperatura pasa de los límites pennitidos.También es aconsejable poner un tennógrafo en la entrada del aire para registrar los cambios de temperatura ocurridos durante el secamiento. Este instru-$ec.mI.nlo mento es muy útil para supervisar el trabajo del personal encargado del secamiento durante la noche, pues mide y registra permanentemente la temperatura y permHe determinar si ésta se mantuvo dentro de los límites establecidos.Manual para el Beneficío da SamiHas El tiempo requerido para el secamiento de un lote de semillas desde un 18 hasta un 13% de contenido de humedad en los SIL es de aproximadamente 4 horas. Si se considera que se requiere 1 hora para las operaciones de carga y descarga, es factible secar cuatro cargas por dia, o sea 32 lidia en el modelo KIN 8, Y 22 lid la en el modelo SV 110.No es recomendable utilizar los SIL a media capacidad pues en estas condiciones las semillas sufren dafio mecánico al caer y golpearse contra los duetos intemos del secador. En los SIR no se presenta este problema, pues no existen tales duetos en la parte superior y la semilla sencillamente cae sobre otra capa de semillas sin ocasionar dalias.Al llegar las semillas a la UBS se prelimpian y pasan a un depósito pulmón (caja o silo de húmedo) mientras esperan que el secador quede libre y se puedan cargar en él. Durante la carga del secador se desconecta el sistema de descarga para evitar atascamientos. En el SIL las semillas deben llenar incluso la parte superior del secador (sombrero) donde no hay duetos, para evitar pérdidas de aire. Después del secamiento se cambia la salida en el elevador para que las semillas sean trasportadas al depósito seco, o caja de homogeneización.Si se tiene que reparar el secador, se debe:1. Desconectar el sistema de descarga.2. Desconeetar el trasportador que conduce las semillas al elevador.Para reiniciar la operación se invierte el proceso asi:1 . Conectar el elevador.2. Conectar el trasportador.3. Conectar el sistema de descarga.Para detenninar el contenido de humedad de la semilla, se toman muestras cada 15 min de la descarga del secador. Como la semilla está un poco caliente y más seca en la periferia que en su interior. es conveniente dejar la muestra en un recipiente hennético durante 10 min hasta que se enfríe y se reduzca su gradiente intemo de humedad. En esta fonna no se tendrán problemas con los medidores de humedad que trabajan con base en la resistencia eléctrica de las semillas y pueden dar resultados erróneos cuando no se tiene esta precaución.Las mismas recomendaciones que se hacen para la limpieza del secador continuo son válidas para el SIR. con la diferencia de que en este caso la tarea es mucho más fácil pues son pocos los sitios donde las semillas pueden quedarse y una persona puede entrar al secador a hacer la limpieza. No es conveniente utilizar como semilla las bolsas que contienen la primera semilla que entró al secador después de un cambio de variedad; es posible que a pesar de la limpieza algunas semillas de la variedad antenor queden dentro del secador.Manual para el Sen.Rei. de Samlnas Se debe revisar principalmente el sistema de descarga, el elevador, y el quemador.Existen muchas fuentes de energla (Tabla 16), cuyo precio varia entre paises dependiendo de la disponibilidad del combustible utilizado. Una de las inquietudes de los operadores de una UBS es el costo del combustible para el secamiento.Secador estacionario de piso falso EJEMPLO; En un silo secador de piso falso se desea secar hasta el 13%, 36 t de semilla con un contenido de humedad inicial del 18%. Si se utiliza combustible diesel ro- Secador intermitente EJEMPLO: Suponiendo que se desea secar hasta el 13%, 6 t de semilla de arroz, con un contenido inicíal del 18% de humedad, en un secador intermitente, utilizando diesel como fuente de energla, con un flujo de aire de 80 ¡nS/minlt (este tipo de secador utiliza flujos altos de aire), y calentando el aire de 25 a 70°C, ¿cuántos litros de combustible se consumirán?ConSiderando que el aire sólo pasa a través del 25% del volumen total de la semilla, entonces: Esta diferencia en el costo de secamiento entre los dos sistemas se debe a que el secador estacionarlo es térmicamente más eficiente que el secador intermitente. En el secador estacionario, el aire pasa continuamente a través de toda la capa de semillas por lo cual tiene mayor oportunidad de absorber la humedad del lote. En el secador intermitente, el aire pasa sólo a través de una parte de las semillas y, por tanto, tiene menos oportunidad de humedecerse.Para evaluar los costos totales de secado de 105 dos sistemes Qntermitente y estacionario) se debe considerar además:El costo inicial de los equipos.El costo de la mano de obra para ambos sistemas.El consumo de energía del ventilador y del equipo accesorio durante el tíempo que dura el secamiento.Además se debe considerar que el sistema más baralo no siempre es el más adecuado; otros factores tales como el tipo de semilla que se va a secar, la región donde se realiza el secamiento, y la época del año cuando se va a utilizar pueden determinar el sistema que se debe utilizar.Los combustibles utilizados para calentar el aire de secamiento varían de país a país y de región a región, especialmente en América Latina. En general, los combustibles mas utilizados son diesel, fuel-oil, kerosene, propano, carbón mineral, madera, y residuos de cosecha (e.g. cascarilla de arroz).Se utilizan intercambiadores de calor directos o indirectos; los primeros son térmicamente más eficientes (80%). Los quemadores de combustible líquido o gaseoso, se pueden controlar por medio de un termostato, y, de ser posible, por un humidistato, de tal forma que el quemador se apague si la HR es muy baja, o si la temperatura del aire es excesiva, y se prenda si la HR del aire es muy alta o la temperatura muy baja. Estos equipos de control se deben instalar siguiendo las instrucciones del fabricante. Es necesario hacer un buen mantenimiento a los quemadores e intercambiadores, especialmente a las partes más delicadas como son los fiftros y los electrodos. Los quemadores de gas son sencillos de operar, requieren poco mano tenlmlento y regulan la temperatura dentro de un mar• gen pequeño de variación.Los quemadores de madera, de residuos de cosecha, y, en menor medida, de carbón mineral requieren revisión constante pues el combustible se consume con rapidez y es necesario estar alimentándolos conti• nuamente para mantener la temperatura dentro del rango deseado. Los homos quemadores deben ser construidos por una persona que tenga experiencia en este tipo de trabajos; éstos deben ser resistentes a las temperaturas altas que se producen durante la combustión. Siempre que sea posible, se debe ubicar el quemador y el intercambiador fuera de los edificios principales de la UBS, debido al calor que producen y al riesgo de incendio.Los quemadores de combustible sÓlido no se pueden prender y apagar tan fácilmente como los de combustibles líquidos y gaseosos. Por esta razón, para controlar la temperatura se usa una compuerta que permHe la entrada de aire ambiente más frío (cuando la temperatura del aire de secado es muy alta). Este control de la temperatura no es tan preciso como el que permite el termostato en los otros quemadores y requiere de una atención permanente por parte del operario.Se debe secar la semilla tan pronto como se recibe en la planta y el secamiento se debe hacer lo más rápido posible, sin deteriorar la calidad de las semi•Ilas. El secamiento es una operación esencial para el almacenamiento; en las circunstancias en que se lleva a cabo es también una operación muy nesgosa, pues se puede causar dan o a la semilla: por temperaturas altas, por sObresecado, por secado muy rápido o muy lento, por dailo mecánico durante el manejo, o por la mazda de variedades. Es recomendable llevar registros de las operaciones para tener la historia de cada lote y poder detectar algún problema en caso de necesidad.Parte del control intemo de calidad incluye tomar una muestra del lote de semilla en el momento de la descarga en la tolva de recepción; esto permite determinar si es necesario prelimpiar y secar. Los danos causados a la semilla durante el secamiento generalmente se manifiestan 2 ó 3 meses después, razón por la cual algunos operadores de las UBS se olvidan del control de calidad durante esta operación. Por tanto, se deben guardar las muestras tomadas durante el secamiento durante 2 ó 3 meses para determinar su viabilidad en ese momento. Las pruebas de viabilidad son sencillas 0Jer \"Pruebas Rápidas de Viabilidad\", Capítulo 11), pues no son oficiales sino pruebas internas de control.Un lote de semillas puede tener hasta 40 t. Muchos modelos de secadores intermitentes no tienen esta capacidad en una tanda, por lo cual es necesario dividirla en sublotes y llevar registros independientes para cada uno de ellos. Por otro lado, pueden sobrar porciones pequeilas de varios lotes y hay que mezclarlas para completar la carga del secador. En estos casos hay que tener cuidado de mezclar sólo porciones de lotes con características similares.Las semillas con un allo contenido de almidón no se deben calentar por encima de los 40°C y las semillas con un allo contenido de aceite no se deben calentar por encima de los 37OC; las semillas de cereales con un 13% de humedad soportan temperaturas de hasta 55°C. Cuanto más baja sea la humedad de la semilla, más alta es la temperatura que soporta; asi, la semilla de arroz con un 4% de humedad soporta 65 e C durante 6 dias.Menual pero el Bene/lcio de S-u que no entiende por qué al tenninar fallan 500 kg de •semilla\" (Tabla 2).Se debe empezar el secado de las semillas con un allo contenido de humedad (20%) lo más pronto posible, pues en un corto espacio de tiempo (24 h) pueden perder su capacidad para genninar. Cuando la cantidad de semilla cosechada es mayor que la capacidad de secamiento, es aconsejable utilizar un sistema pulmón de secamiento, que consiste en un arrume con un túnel en el centro a través del cual se sopla aire con un ventilador (Figura 7). Con este proceso, las semillas pueden mantenerse hasta una semana para después ser secadas en un secador convencional.Para limpiar, clasificar, dar buena apariencia, y proteger los lotes de semillas contra adversidades, se utilizan diferentes máquinas y operaciones en la UBS.Es la máquina básica de la UBS; muchos lotes quedan limpios y dentro de los estándares de calidad al pasar por la MAZ, sin requerir de operaciones adicionales. A continuación se presentan las principales caracterlsticas y aspectos que el operador de la UBS debe tener en cuenta.Son la parte más importante de la máqUina. Existen cuatro tipos, de acuerdo con la forma de las perforaciones de la zaranda, que son:Se especifican por el diámetro del orificio, expresado en millmelros (sistema intemacionaO o en 1/64 o fracción de pulgada (siStema inglés). La Tabla 17 presenta las equivalencias en milímetros de varias fracciones de pulgada. Para convertir de pulgadas a millmetros se debe multiplicar el número de referencia de la zaranda por 25.4 y dividir el resultado por 64.Por ejemplo, el equivalente en milfmetros de una zaranda No. 9 sería:57Manua' para a' B.n.ñclo d. Semillas 9 x 25 4 = 3.57 mm 64La zaranda de perforaciones redondas separa los materiales con base en diferencias de anchura; cuando la diferencia entre los materiales es muy grande, también puede hacer separaciones con base en diferencias de longitud. Esto es útil para operaciones de desbrozado, en las cuales se puede colocar una zaranda con perforaciones redondas de un diámetro equivalente a 2/3 de la longitud de la semilla, puesto que el material más largo (tallos, hojas) tiende a quedarse acostado (horizontal) y no pasa por los agujeros, mientras que la semilla y otros materiales más cortos sr caen por las perforaciones. Esta es la razón por la cual la primera zaranda de la máquina generalmente tiene perforaciones redondas para separar los desechos del cultivo tales como tallos, hojas y vainas.Se especifican en cualquiera de los sistemas de unidades por el ancho y la longitud de la perforación.Separan los materiales con base en diferencias de espesor; normalmente se usan estas zarandas para separar materiales más pequeños que la semilla, y en raras ocasiones para separar materiales más grandes. A diferencia de la zaranda de oriflcios redondos, las semillas largas pasan fácilmente a través de la zaranda de orificios oblongos. Las investigaciones han mostrado que son más eficientes las zarandas cuyas perforaciones oblongas están orientadas en el sentido del flujo de la semilla.Se especifican por la longitud de un lado del triángulo equilátero o por el diámetro del círculo inscrito en el triángulo. Estas zarandas son poco utilizadas; su uso más común es para separar los materiales pequeflos en semillas de cebolla.Pueden ser de abertura cuadrada (tienden a separar por diferencias en anchura) o de abertura rectangular (tienden a separar por diferencias en espeso\". Se especifican por el número de aberturas por pulgada bidireccional; o sea, que una zaranda 8 x 12 tiene ocho aberturas por pulgada en una dirección y doce aberturas por pulgada en la otra.Para determinar el tamarlo efectivo de las aberturas, se debe calcular la longitud de la diagonal del orificio.A continuación se muestra cómo hacer el cálculo para el caso de una zaranda 8 x 12 con alambre calibre 25. Para calcular la aberlura efectiva de la zaranda es necesario descontar 0.2 mm por cada extremo de la diagonal, pues el material o la semilla no llega hasta las esquinas. La aberlura neta es:Asl, una semilla que tenga una anchura superior a 2.60 mm no pasa por la abertura de la zaranda. La Tabla 16 presenta las equivalencias entre pulgadas y míllmetros para las zarandas de malla. La Tabla 19 presenta los calibres para diferentes diámetros de alambre y diferentes espesores de láminas metálicas.En comparación con las zarandas de lámina perforada, las de malla de alambre tienen el doble del área abierta; en ellas las semillas se exponen más a las aberturas debido a las pequeñas ondulaciones que se forman al entrelazarse los alambres de la malla.Las dimensiones de la abertura cambian con el uso. Las zarandas, se desgastan, principelmente si la semilla que se está acondicionando es abrasiva (e.g. arroz); por tal razón, es aconsejable verificar periódicamente la dimensión de la abertura.Las zarandas también se clasifican, de acuerdo con el trabajo que desempeñan, en desbrozadoras y clasificadoras. Se entiende por zaranda desbrozadora aquella cuyos orificios son de mayor dimensión que la semilla, la cual pasa fácilmente a través de la zaranda, mientras que rellene y separa el material de mayor dimensión que la semilla. Por su parle, la zaranda clasificadora tiene orificios más pequeños que la semilla, de modo que rellene la semilla y deja pasar el material Indeseable.La zaranda desbrozadora se coloca en la parte supe.. rior de la máquina. La semilla pasa a través de ella y cae en la zaranda clasificadora. El material indeseable más pequeño pasa a través de la zaranda clasificadora mientras que la semilla ya limpia pasa por encima de esta última zaranda (Figura 14).Para hacer un buen trabajo, la MAZ sólo necesita de dos zarandas. Sin embargo, para aumentar la capacidad se utilizan normalmente cuatro zarandas (la primera y tercera desbrozadoras y la segunda y la cuarla clasificadoras). La zaranda con perforaciones más grandes se coloca de primera y la de perforaciones más pequei'ias se coloca de segunda. Con este arreglo la semilla cae a través de la primera zaranda, pasa sobre la segunda, cae a través de la tercera, y pasa sobre la cuarta zaranda. Los contaminantes más grandes (hojas, tallos, vainas, piedras, tusas) quedan retenidos en la primera zaranda, y los más pequeilos (polvo, tierra, granos partidos) se separan al pasar a través de la segunda.Las semillas de un mismo lote varían en sus dimensiones. Por ejemplo, las semillas de arroz del grupo Patna varían en anchura desde 2.3 hasta 2.9 mm, en espesor desde 1.8 hasta 2.3 mm, y en longitud desde 7.5 hasta 10.5 mm; la anchura de las semillas de soya varia aún más, con diferencias hasta de 3 mm. En estos casos, se escoge una zaranda con perforaciones redondas con un diámetro que sea de 1 a 2 mm mayor que la anchura de la semilla más grande del lote, mientras que la zaranda de perforaciones oblongas requiere que haya una diferencia de sólo 0.1 mm para separar la semilla.Esta variación en las dimensiones se presenta no sólo entre cultivares sino también entre lotes, siendo necesario seleccionar las zarandas para cada lote; esta selección se puede realizar utilizando:Es muy conveniente tener en la UBS zarandas pequeñas (20 x 20 cm) de la misma clase y tamaño de perforación que las disponibles para la MAZ. Con una muestra del lote se sensayan varias de estas zarandas manuales hasta determinar cuál de ellas deja pasar o retiene más fácilmente las semillas. Para estas pruebas se requiere tener el conjunto completo de zarandas pequeñas.Se sacan 25 semiltas y 25 materiales Indeseables de la muestra del lote y se les mide la anchura y el espesor; con base en estas dimensiones y considerando la necesidad de descarte, se selecciona la zaranda. Este método es más difícil pero más preciso que el de las zarandas manuales. Si la separación se hace dificil, es más apropiado el método del calibrador.Para la correcta selección de las zarandas, el operador debe conocer el flujo de las semillas a través de la máquina. Como se ha visto, es necesario determinar cuáles zarandas se van a utilizar para cada lote. Por lo tanto, es de suma importancia tener tantas zarandas para la MAZ como sea posible, pues permiten hacer un mejor trabajo de clasificación. En la Tabla 20 se presenta una lista de las dimensiones de las zarandas que se pueden usar en la MAZ para el acondicionamiento de algunos cultivos. Esta Tabla y otras similares sirven sólo de guía ya que cada lote requiere ser considerado como un caso independiente.EJEMPLO: Si se clasifica semilla de arroz en una máquina de cuatro zarandas (la primera de pefforaciones redondas de 5.0 mm, y las restantes de peñoraciones oblongas de 1.6 x 19.0 mm, 2.4 x 19.0 mm, y 1.7 x 19.0 mm) ¿cuál será el espesor y la anchura de la semilla de arroz?La primera conclusión es que la semilla debe tener una anchura inferior a los 5.0 mm de diámetro para haber caido a través de la primera zaranda. Segundo, que el espesor debe estar entre 1.7 Y 2.4 mm, para que la semilla haya pasada a través de la segunda zaranda y se haya quedado encima de la cuarta zaranda.Las principales técnicas especiales utilizadas para cultivos específicos en el manejo de la MAZ son: a. Se coloca una tira de tela o carpa sobre las zarandas desbrozadoras de tal forma que aquellas semillas que ruedan con facilidad (e.g., soya) se deslicen despacio entre la zaranda y la cobertura.b. Se usan martillos para golpear y mantener limpias las zarandas.c. En las MAZ en las que la primera zaranda (de orilicios redondos) es larga, permitiendo que todas las semillas pasen a través de los orificios de la primera mitad de la zaranda, se cubren con plástico o cartón las perforaciones de la otra mitad para evitar que los restos de cultivo, principalmente tallos, que estén acostados (horizontales), pasen a través de los orificios. Esta técnica se usa con frecuencia para acondicionamiento de arroz, trigo, y cebada.d. Cuando se acondicionan semillas cuya longitud es tres veces su anchura, se observa que dificilmente las semillas quedan \"de pie\" con el movimiento y por tanto no pueden pasar a través de las peñoraciones. Esto se soluciona utilizando zarandas onduladas (Figura 15). Las ondulaciones tienen 2.6 cm de altura y 5.4 cm de base. Esta zaranda no es difícil de fabricar, aunque en algunos modelos de MAZ la armazón tiene que ser especial. Es importante destacar que la zaranda ondulada reduce la capacidad de la máquina en un 30% y se necesitan pelotitas de caucho para limpiar las zarandas, pues el sistema de cepillos o el de rodillos no funcionan con este tipo de zarandas.e. En algunos casos es conveniente colocar pequeftos listones de madera a lo ancho de toda la zaranda, de tal forma que el material pase por encima de ellos. Esto hace que el material dé la vuelta y haya mayor oportunidad para que la fracción que se desea pase a través de las perforaciones.Se puaden colocar vanos de estos listones en la zaranda. El espesor y la anchura deben ser el doble de las dimensiones de la semilla que se está limpiando.La MAZ, además de separar diversos materiales fis¡\" camente diferentes a la semilla, se usa también para retirar del lote otros materiales indeseables, entre los cuales se destacan:Soya partida por la mitadEste material se diferencia por su espesor; por lo tanto se utilizan zarandas clasificadoras de perforaciones oblongas nonnalmente ubicadas en las pos¡\" ciones 2a. y 4a. Las semillas de soya varían mucho en tamaño entre variedades y entre lotes; es aconsejable que la UBS tenga ocho zarandas de orificios oblongos desde 3.00 x 19 mm hasta 4.50 x 19 mm con intervalos de 0.25 mm entre ellas.Su anchura y espesor son diferentes a las dimensIones del arroz con cáscara, especialmente la anchura; sin embargo, es más fácil separarlo por su espesor con una zaranda de orificios oblongos debido a la orientación de la semilla al pasar sobre la zaranda. Es dificil separar todo el arroz descascarado presente en un lote, por lo cual en algunos países existen límites máximos pennitidos. Para lograr la mejor separación posible, es recomendable utilizar una zaranda de orificios oblongos como primera zaranda clasificadore y una redonda ondulada como segunda zaranda clasificadora (ésto para el caso de una máquina de cuatro zarandas).El arroz descascarado también tiene una longitud diferente a la del arroz con cáscara, por lo cual se puede ayudar a desechar utilizando separadores de longitud. como el de cilindro indentado (ver p. 76) Y el de discos (ver p. 78). Además, el arroz descascarado tiene mayor peso volumétrico que el arroz con cáscara, por lo cual se separa buena parte en la mesa de gravedad.El arroz también varía mucho de tamano entre variedades y entre lotes; sin embargo, para las variedades del grupo Patna se recomienda que la UBS tenga las siguientes zarandas para separar el arroz descascarado: oblongas de 1.4 x 19.0 mm hasta 1.9 x 19.0 mm con intervalos de 0.1 mm y redondas onduladas de 2.3, 2.4, Y 2.5 mm de diámetro.El control de arroz rojo se debe hacer en el campo; pero cuando no hay otra alternativa se puede separar gran parte de la semilla de arroz rojo en la MAZ, siempre y cuando existan diferencias en alguna de sus propiedades físicas, en relación con la semilla deseada. Por ejemplo, la semilla de arroz del grupo Palna tiene una anchura menor a los 3 mm, mientras que hay variedades de arroz rojo con anchuras mayores a los 3 mm. A pesar de esta diferencia, la separación de los dos tipos de semilla se dificulta porque en las zarandas planas el grano se mantiene horizontal y no alcanza a caer verticalmente por las perforaciones. Por lo tanto, se recomienda usar zarandas cil[ndricas con perforaciones redondas de 3 mm de diámetro, o zarandas onduladas con perforaciones del mismo diámetro (Figura 15). Asi la semilla de arroz queda inclinada o vertical y cae a través de los orificios. En una máquina de cuatro zarandas, la ondu-lada se coloca en tercer lugar, como segunda desbrozadora.Se utiliza la zaranda de 6.75 mm para separar las semillas partidas.Después de limpiar el maíz, muchas empresas clasifican las semillas de acuerdo con su anchura, espesor y, algunas veces, su longitud. Para hacer la clasificación en la MAZ, una de las altemativas de disposición de las zarandas es la siguiente:1. Zaranda de 5.36 x 19.00 mm (13.5 x 3/4'1 para separar la semilla plana de la redonda.2. Zaranda de 6.75 mm de diámetro (17/64\") para separar la semilla partida.3. Zaranda de 9.50 mm de diámetro (24/64\") que separa la fracción de grano plano grande.4. Zaranda de 8.00 mm de diámetro (20/64\") que separa las fracciones de grano plano de tamai10s mediano y pequeño.Para separar las semillas partidas de sorgo, es conveniente ensayar una zaranda de perforaciones redondas en vez de oblongas, pues algunas semillas al partirse cambian de anchura mas no de espesor.La eficiencia de operación de las zarandas depende de que toda el área de la perforación esté libre; por lo tanto, se deben revisar constantemente para detedar si los orificios se han tapado. Este problema se presenta sobre todo con las zarandas onduladas de malla de alambre y en el acondicionamiento de semillas de arroz.A continuación presentamos algunos procedimientos que se deben tener en cuenta.a. Antes de iniciar cualquier operación cernlne alrededor de la máquina para asegurarse de que todo está en orden.b. Limpie cuidadosamente la máquina antes de empezar cualqúier trabajo.c. Seleccione cuidadosamente y coloque adecuadamente las zarandas.d. Ajuste los cepillos y conede el martillo (si es el caso).e. Cierre la alimentación y los ventiladores (cuando sea posible).f. Ponga en funcionamiento la máquina.g. Abra despacio la alimentación.h. Ajuste el aire superior.i. Ajuste el aire inferior de modo que levante sólo algunas semillas buenas. j. Revise las diferentes fracciones para verificar eficacia y eficiencia de la operación. Si es necesario cambie zarandas.La MAZ debe trabajar siempre a su capacidad máxima pues 105 gastos de energía y del equipo son fijos. La capacidad depende principalmente de la semilla con que se trabaja, del número de zarandas de la MAZ, del tamano general de las zarandas, y del tamaño de 105 orificios de cada zaranda. Con relación a la producción de la MAZ, se puede asumir que por cada metro cuadrado de zaranda clasificadora es posible limpiar 500 kg de semilla de soyalh y 300 kg de semilla de arrozlh.Se dice que la máquina es eficaz cuando tiene la capacidad de hacer la operación deseada; en este caso, una MAZ es eficaz si la semilla sale de la máquina con un minimo de contaminación. Por otro lado, se dice que la máquina es eficiente si puede hacer la operación deseada con el mínimo de pérdidas; en este caso una MAZ es eficiente si hay pocas semillas en la fracción descartada. El rendimiento es el porcentaje de semilla obtenido, mientras que la capacidad, o producción de la máquina, se refiere a la cantidad de trabajo que puede hacer en cierto períOdO de tiempo (en este caso, kglh). Con base en estos términos, lo que se busca en el beneficio de semillas es utilizar la má-quina más eficaz con la máxima eficiencia, rendimiento, y capacidad.Normalmente se determina la efICacia, eficiencia, rendimiento y capacidad de la máquina recogiendo muestras durante 15-20 segundos de las semillas limpias y de las demás fracciones que salen de la máquina; este procedimiento se repite .2 ó 3 veces.Se hace esta operación una vez durante el acondicionamiento para efectuar ajustes y al final del acondicionamiento del lote.El cálculo que aparece en el cuadro siguiente indica que hay una pérdida del 9,09% cuando la semilla se acondiciona en la MAZ; es probable que el aire inferior y el superior estén muy fuertes, levantando mucha semilla buena. Además de verificar el porcentaje de pérdidas, se hace un análisiS rudimentario de la pureza de las semillas limpias (eficacia) y de la cantidad de semilla buena que está siendo rechazada (eficiencia). Con estos datos también es posible calcular la producción de la máquina y el rendimiento del proceso.Material rechazado:-por encima de la 1 a. zaranda -a través de la 2a. zaranda -por encima de la 3a. zaranda -a través de la 4a. zaranda -aire inferior -aire superior f. Revisar el estado y ajuste del alimentador.g. Uevar un registro de las zarandas utilizadas para cada lote.h. Si el lote se va a pasar por la mesa de gravedad, no es necesario usar ventilación de aire muy fuerte.i. Decidir si se van a mezclar los rechazos de la 2a. y 4a. zarandas.Debido a la vibración de la máquina, ésta se debe anclar firmemente al piso, especialmente aquellas que no están dinámicamente bien balanceadas. Generalmente la MAZ se instala sobre un soporte que puede ser construido en ángulo de hierro, teniendo cuidado de que sea firme y permHa la limpieza.La salida de aire de los ventiladores, así como la recolección del polvo que este aire retira del lote, es extremadamente importante para la operación eficiente de la máquina. Para disminuir las pérdidas de presión del aire, los duetos de salida de aire no deben ser estrechos ni tener curvas cerradas o tramos demasiado largos.La máquina se debe instalar de forma que haya espacio suficiente para trabajar alrededor de ella, para remover las fracciones descartadas, para hacer la limpieza e inspección, para cambiar las zarandas, o para hacer el mantenimiento y las reparaciones. Es conveniente instalar un hOfÓmetro que indique las horas de operación de la máquina; ésto facilita la programación del mantenimiento y permite calcular la producción de la máquina.Debe colocarse una tarima con escaleras alrededor de la MAZ para facilitar las labores de calibración. inspección, limpieza, y mantenimiento.La mesa de gravedad se debe ubicar siempre en el lugar donde finaliza el flujo de la semilla a través de la planta, pero antes de la tratadora. Debido a la estrecha relación entre el peso volumétrico de las semillas y su calidad fisiológica, la mesa de gravedad es la máquina que, además de limpiar el lote, puede mejorar su calidad fisiológica mediante la separación de las semillas o materiales de menor peso .específico.La mesa de gravedad es dificil de calibrar por la interacción entre los diversos ajustes (Figura 16); sin embargo, el conocimiento de los principios de funcionamiento de la máquina y del material indeseable facilita el proceso. Los sigUientes son algunos procedimientos útiles:a. Haga un solo ajuste a la vez y espere hasta ver el resultado antes de proceder a hacer otro cambio.b. Si la separación entre las fracciones pesada y liviana no es buena, se debe juntar la semilla en un lado de la platafonna y luego hacer ajustes hasta que las semillas se vuelvan a esparcir en toda la platafonna.c. No olvide que los ajustes principales son el aire, la inciinación lateral, la velocidad de vibración, y la tasa de alimentación.d. Verifique que no se haya obstruido la compuerta del aire, que no esté patinando la correa del mo-Manual para el &neficio de Seminas lar, y que el sentido de rolación de los ventiladores sea correcto.e. Revise los filtros de aire y la parte interior de la máquina para verificar que no hay obstrucciones.f. Asegúrese de que la máquina esté bien anclada al piso.g. Calibre pfimero la máquina anles de operal1a a máxima capacidad.Se puede mejorar la calidad de prácticamente todos los lotes de semillas de casi todas las especies (1l1go, sorgo, soya, arroz, maiz. forrajeras, y semillas de hortalizas) al pasarlos por la mesa de gravedad, la cual separa las' semillas enfermas, mal formadas, descascaradas, vanas, dalladas, o con glumas, de las semillas de buena calidad con mayor peso volumétfico.La separación por peso volumétrico de lotes pequeños de semillas (forrajeras, hortalizas, semilla genética), también se puede realizar colocando las semillas en agua o en soluciones con diferentes gravedades especificas. Las semillas de menor peso especifico flotan en el líquido y las de mayor peso especifiCO se hunden. Este método de separación es más preciso que el de la mesa de gravedad pero tiene el inconveniente de que las semillas se humedecen y es necesario secal1as; además no es práctico para cantidades grandes de semillas.La capacidad o producción de la mesa se puede estimar en ± 700 kglh por cada metro cuadrado de plataforma. Para determinar la eficiencia y eficacia de la separación, se divide la parte final de la plataforma en tffiS partes (no necesariamente iguales), una para cada una de las fracciones obtenidas: una fracción pesada que supuestamente contiene semillas de mayor peso volumétrico, una fracción intermedia con semillas y algún matertal indeseable, y otra fracción, la más liviana, donde se concentra el material de menor peso volumétrico. Se recoge una muestra de cada una de las tres fracciones durante 30 segundos y se determina el porcentaje de cada fracción, así como el grado de separación del material indeseable.Se deben medir también los pesos \\/Olumétricos de la fracción pesada y de la fracción liviana; si la máquina está bien calibrada estos dos valoffis deben tener una difeffincia del 7% o más. Si la diferencia es menor, quiere decir que el lote es tan homogéneo que no es posible mejorarlo o que la máquina no está bien calibrada. En cualquier caso, es preferible no pasar el lote por la mesa de gravedad. En cambio, la mesa de gravedad es muy necesaria en la separación de lotes de semillas de Brachiarla, los cuales contienen mucha semilla vana que la MAl no separa fácilmente y en los que se encuentran diferencias hasta de170\"A. enw el peso volumétrico de la fracción pesada y el de la fracción liviana.Para determinar el peso volumétrico se necesita una balanza y un fficipiente rigido. Una vez tomadas las muestras, se ltena el recipiente con las semillas de la muestra hasta que rebase, se envasa, se pesa, y se repite el procedimiento con cada fracción.Para determinar la diferencia porcentual entre los dos pesos volumétricos, basta dividir la diferencia entre los dos pesos por el peso de la fracción más pesada y multiplicar por 100.Por ejemplo, si la fracción pesada y liviana pesaron respectivamente 127. Este es un equipo que separa con base en diferencias de longitud. No hace un trabajo muy preciso; sin embargo es útil espeCialmente con semilla de arroz, en cuyo caso se usa para separar la semilla de los granos partidos o pelados. Un cilindro de 2 m de longitud tiene una capacidad máxima de separar 1 tlh.El cilindro se usa comunmente para separar semilla de arroz '1 trigo partida por la mitad. pues la anchura '1 espesor se mantienen iguales. Algunas empresas de semillas también clasifican el maíz por longitud. utilizando el cilindro separador.las dimensiones del cilindro se dan con base en la anchura del alvéolo (cónico o semiesférico). expresada en mllimetros o en 1/64 de pulgada. Si el alvéolo es cónico la altura del cono debe ser por lo menos 5/8 de la longitud del material que va a separar para que pueda extraerlo de la masa de semilla; así, si el material que se desea levantar tiene 8 mm de longitud, la altura del cono debe ser por lo menos de 5 mm. Si el alvéolo es semiesférico, su diámetro debe ser 5/4 veces la longitud del material; en nuestro ejemplo, el diámetro mínimo seria 10 mm (26/64 de pulgada). la Tabla 21 presenta las dimensiones de las ¡ndentaciones de los cilindros utilizados para varios cultivos.Al hacer las separaciones, con frecuencia se presentan dos situaciones: a. El material escogido (semilla de grano largo) se levanta con el material descartado (semilla de grano corto). Esto se puede corregir con uno de los siguientes ajustes:1. Usar un cilindro de alvéolos más pequeMos.2 Aumentar el ángulo de inclinación de la bandeja interna.3. Disminuir la tasa de alimentación.4. Disminuir la velocidad de rotación del cilindro (si es posible).b. El material de desecho (corto) se queda en la masa de semillas (largo). Esto se puede corregir con uno de los siguientes ajustes:1. Usar un cilindro de alvéolos más grandes.2. Disminuir el ángulo de inclinaclón de la bandeja interna.3. Disminuir la tasa de alimentación.4. Aumentar la velocidad de rotación del cilindro (si es posible).Nonnalmente se utilizan dos cilindros en paralelo para acompañar el trabajo de la MAZ. Como el cilindro tiene solamente dos salidas es fácil detenninar la eficacia, la eficiencia, y el rendimiento de la máquina.Para detenninar la eficiencia de la separación se recoge una muestra durante 15 a 20 seg del material que se está levantando en los últimos 15 cm del cilindro, que es el sitio donde se hace la separación final. Cuando el porcentaje obtenido para esta fracción es superior al 2% del total del lote, es probable que se esté rechazando mucha semilla buena. Los resultados porcentuales de las fracciones se deben registrar en el reporte de beneficio.Se utiliza para hacer separaciones por longitud. En comparación con el cilindro identado, este separador es poco utilizado en América Latina, debido plincipalmente a problemas de dlstlibución y precio, y no a la calidad de la separación.Nonnalmente se colocan más de veinte discos en un eje común que gira a una velocidad constante de 45 rpm, lo cual aumenta su rendimiento. Los bolsillos o alvéolos de los discos se especifican con letras y números para cada cultivo (Tabla 22).Es similar a la del cilindro, con la diferencia de que puede separar más de una fracción de mateliales cortos. Como el separador de disco trabaja mucho con semilla de arroz (que es abrasiva), es necesalio revisar frecuentemente los discos para verificar el desgaste. Los discos o cilindros desgastados no hacen una buena separación.Se utiliza plincipalmente con semillas de soya. Es una máquina en la que cada caracol generalmente tiene cuatro espirales intemos y cada uno puede limpiar 100 kglh. El separador de espiral es una máqUina senCilla; el único ajuste necesalio es controlar la tasa de alimentación. Uno de los pocos problemas se presenta al separar semillas de variedades ovaladas (e.g., soya, veliedad Davis) o semillas pequeñas (13 semillaslg) porque la máquina llega a rechazar hasta un 30% del material. Para minimizar este problema se tienen dos altemativas:\"'anual para 6/80\",,_ d. S\"\",,7Ias a. Como el espiml no es una máquina precisa, se recomienda volver a pasar el materíal rechazado para recupemr parte de la semilla buena.b. Utilizar un espiral cuyos espirales internos sean menos anchos (14-15 cm) y, en caso de necesitar unos más anchos, colocar retardadores que garantizan el mismo efecto.Otro inconveniente del separador de espiral es el ruido que genera durante la separación; para disminuirlo se pueden colocar los caracoles dentro de una cajaEspesor o Separador de Zaranda Cilíndrica se utiliza principalmente pam clasificar semilla de malz, soya, y man! por tamanos cuando se va a sem-bI'lIr con sembmdora de platos. Algunas empresas de semillas también distribuyen los platos junto con la semilla para tener la certeza de que su semilla quedará bien sembrada. Hay sembmdoms modernas que tmbajan con semillas sin clasificar, pero la gmn mayoría aún necesita que estén clasificadas.Después de haber limpiado las semillas en la MAl este sepamdor clasifica las semillas en planas y redondas utilizando una zamnda de perfomciones oblongas de 5.2 mm de ancho o una de 5.4 ó 5.6 mm (13164\", 13.5164\", 141641. Las semillas planas caen a tmvés de la zaranda y las redondas continúan hasta la descarga al final del cilindro. Posterionnente se utilizan zarandas cillndricas con orificios redondos de 7 a 9.5 mm (18/64 hasta 24/64 de pulgada) colocadas en serie o repasando la semilla a través de las zarandas de diferentes orifiCios, para obtener las fracciones grande, mediana, y pequefla de la semilla plana.Otra mnna de hacer la clasificación, que en algunos casos puede requerir menor cantidad de zarandas que el método anterior, consiste en separar primero con oJificios redondos las fraceiones grande, mediana, y pequei'la y dividir posterionnente cada una de astas en planas y redondas. Es conveniente conocer la proporción del lote que representa cada una de estas fracciones de las variedades e hibridos que lI&gan a la UBS, para detenninar de antemano la mnna más conveniente de organizar las zarandas y el flujo de las diferentes fracciones.La clasificación con el separador de zaranda cilíndrica requiere varias tolvas para el almacenamiento temporal de las diversas fracciones del lote, pues las fasas subsiguientes de acondiCionamiento nonnalmente se hacen con una fracción a la vez.La clasificación pennite imprimir en la bolsa el número de semillas por gramo y por clase de semilla. Mientras que las semillas se sigan vendiendo por peso y se sigan sembrando por número, saklrá ganancioso el agricultor que sepa que una semilla pequeña gennina tan bien corno una semilla grande.La eficiencia de la separación se detennlna por el porcentaje de semilla pequei'la de una ciase detenninada de semillas que se \"cuela\" por la zaranda; por ejem-plo, se pennite hasta un 3% de semillas con anchura menor de 8.7 mm (22164\") en la clase 8.7 -9.5 mm (22184\" -24/64\"). La denominación de las clases varra mucho entre las empresas de semillas, sin embargo, cuando se dice que una semilla es •zaranda\" 8.7 (22184\") significa que no pasó por la zaranda de 8.7 mm sino a través de la de 9.5 mm (24164\").Algunas veces se utilizan zarandas cilíndricas para limpiar la semilla. empleando zarandas desbrozadoras y clasificadoras, y posterionnente se hace la clasificación. Sin embargo, esta limpieza debe complementarse con la limpieza por aire, usando cualquiera de los equipos que separan materiales indeseables con base en la diferencia en el peso. El único ajuste necesario en la zaranda cilfndrica al utilizarla como limpiadora es la regulación de la alimentación la cual no debe ser excesiva.Se utilizan para tratar la semilla con productos quimlcos que la protegen contra hongos, bacterlas, insectos, y otras plagas.Debido a problemas de toxicidad y de manejo con los productos en polvo, las tratadoras que utilizan líquidos o polvos mOjables son ahora las más comunes.La máquina se debe instalar a nivel y de filnna que las semillas puedan fluir por la planta de beneficio. pasando o no a través de la tratadora. (Para lotes pequeños es poSible construir una tratadora tal como la que aparece en la Figura 17.)Normalmente las máquinas tienen dos ajustes.a. La cantidad de producto químico que se aplica por golpe, la cual se puede variar cambiando las cucharas.b. La cantidad de semilla que se va a tratar por golpe, la cual se regula ajustando el contrapeso.Se debe aplicar la dosis adecuada de producto con la cantidad adecuada de agua. Si la cantidad de agua utilizada es insuficiente, la solución no se podrá aplicar uniformemente; si la cantidad de agua es excesiva, tampoco se logrará una aplicación uniforme y además se humedece demasiado la semilla. La cantidad de agua depende del área superficial de las semillas, determinada por el número de semillasJkg; en un lote de semillas con el mismo peso. las semillas más pequeñas tendrán más área superficial que las semillas más grandes, pues hay mayor número de semillas pequeñas por unidad de peso. Por esta razón, por ejemplo, para tratar frijol sólo se neces~an 3 litros de solución o mezclaltonelada de semilla, para tratar soya y maíz se necesitan 5 litrosll, y para sorgo y arroz 8 litros/!. El operador de la UBS debe determinar la cantidad de agua que necesita para los diferentes cultivos y variedades con los que trabaja.Generalmente, como el producto se aplica en forma líquida, las dosis se expresan en litros de productol tonelada de semilla o su equivalente en mililitros o centímetros cúbicos de soluciónlkilogramo de semilla. Una vez se han determinado los productos, las dosis, y la cantidad de semilla a tratar, se mezclan las Manu.1 \"\"ro el a.\",,1fcjo de Semillas proporciones adecuadas con un poco de agua y se contlnlÍa al'ladiendo agua hasta que se complete el volumen de solución requerido. Es conveniente preperar s610 el producto que se va a utilizar en cada aplicación.Una vez preperada la solución. se debe calibrar la tratadora.Si se desea tratar semilla de soya. por ejemplo, y la dosis de solución es de S ml/kg de semilla, los pasos a seguir son:1 , Desconectar la manguera que descarga el producto en las semillas y colocar el extremo en una probeta graduada.2. Llenar los depósitos del producto y de la semilla.3. Colocar las cucharas y asegurar el contrapeso.4. Dejar funcionar la máquina durante un númaro de golpes suficientes hasta que se nonnalicen los flujos de producto y semilla.S. Recolectar simultáneamente la cantidad de producto (mi) y la cantidad (kg) de semilla que ftuyen en detenninado número de golpes. Es recomendable tomar muestras a intervalos regulares para saber si la semilla está quedando bien cubierta con el producto y si hay uniformidad en su aplicación. Al final de la aplicación se toma una muestra para determinar la efectividad del tratamiento a través de una prueba sencilla de sanidad, La producción de la máquina (kglh) se puede aumentar o disminuir abriendo o cenrando la compuerta de la tolva que alimenta la máquina. Nótese que este ajuste no tiene ningún efecto sobre la calibración de la máquina y no altera la dosis de producto que se está aplicando.Es altamente recomendable que la persona que esté operando la tratadora utilice equipo de protección, como respiradores y guantes largos. Si la ventilación natural no es suficiente, es necesario instalar extractores de aire (tal vez un sistema de filtros) que mantengan el área libre de sustancias tóxicas.9. La solución se debe agitar constantemente.b. La bomba necesita mantenimiento constante debido a la naturaleza de los productos.c. La última semilla que se queda en la báscula se debe descargar manualmente.d. Se debe drenar y secar el depósito y el tanque.e. Un poco de dedicación en la limpieza y la protección de la tratadora antes de guardarta aumenta mucho su vida útil.Se requiere conocer algunas caracterfsticas del equipo:a. Para uniformidad de la aplicación, se debe revisar si la mezcladora es mecánica o utiliza un sistema de atomización.b. Las tratadoras que aplican el producto en polvo no son muy eficientes y presentan probtemas de contaminación a los operarios.c. Se debe tener en cuenta el material del cual está fabricada la tratadora para evitar problemas de durabilidad.Los dos problemas principales asociados con el trasporte de semilla son: el dano mecánico y la mezcla varietal.Las semillas se movilizan en la UBS entre operaciones, utilizando varios tipos de trasporte:Las características principales que se deben observar son las siguientes:El elevador debe tener una capacidad un poco mayor que la de la máquina que alimenta o que lo alimenta; ésto con el fin de evitar que los elevadores sean el cuello de botella en el funcionamiento de la planta.En un elevador de cangilones por descarga centrífuga. si la velocidad de la banda es muy alta, la semilla no es descargada sino arrojada de los cangilones, golpeándose con la cubierta de la cabeza del elevador, sufriendo el consiguiente dano mecánico. Por el contrario, si la velocidad de la banda es muy baja, la semilla no es descargada con suficiente fuerza, no alcanza a llegar al tubo de descarga y cae por la piema de descenso, con el correspondiente dano mecánico y merma en la capacidad del elevador.Para que la descarga sea suave es necesario que la fuerza centrifuga. al momento de descarga. se equilibre con la fuerza de gravedad, Este equilibrio se logra cuando se cumplen las siguientes igualdades: donde:V .. En este caso, considerando la gran diferencia de velocidades entre las dos poleas. se obtiene un diámetro para la polea del motor que es demasiado pequeilo para ser utilizado. Este problema se resuelve utili-zando poleas intermedias, las cuales se calculan de igual forma que en el ejemplo anterior. Se debe tener en cuenta que la velocidad del motor y la velocidad y el diámetro de la polea son fijos, y si se aReran se afectarían las condiciones de operación del elevador.A continuación se ilustra cómo calcular la capacidad de un elevador con las siguientes características:Diámetro de la polea superior D \" 0.20 m Velocidad de la polea superior N \" 95rpmDistancia entre cangilonesVolumen del cangilón q \" 400cm 3 \" 0.0004 m3 Peso volumétrico de la semilla p \" 770 kg/m 3 Si se observan superficies pulidas en la cubierta de la cabeza del elevador o en la base del mismo, es una buena indicación de que la semilla está gOlpeando esas superficies, con el consiguiente daño mecánico. Esto se puede corregir, verificando que la velocidad de la banda esté dentro del rango recomendado.otro daño mecánico relacionado con el trasportador puede ocurrir en el tubo de descarga donde las semillas pueden adquirir una velocidad muy atta y sufrir daiíos al momento de caer en la tolva; por lo tanto, es conveniente tener un amortiguador de línea para caídas de más de 3 m. En este caso también es conveniente instalar un amortiguador final.Es muy frecuente que los elevadores sean responsables de que se presenten mezclas varietales; para evitarlo se deba prestar mucha atención a las siguientes partes de los elevadores:Detrás de los cangilones. En el momento de dar la vuetta en el pie del elevador los cangilones que permanecen presionados a la banda se apartan, permitiendo que las semillas se alojen detrás de ellos. Para la limpieza se deben observar uno a uno y limpiarlos con un cepillo. Este problema se minimiza colocando anillos o suplementos de 1.5 cm de espesor entre el cangilón y la banda, con el fin de permitir el libre flujO de las semillas entre la banda y los cangilones (Figura 18). Cabeza del elevador. Normalmente, las semillas se alojan debajo de la polea superior; esto se puede detectar fácilmente al golpear con la mano las piemas del elevador. Para evttarlo. se coloca una lámina en forma de V invertida debajo de la polea para que la semilla que caiga se deslice hasta el suelo y no se acumule sobre la pierna del elevador (Figura 18). Pie del elevador. Siempre se quedan algunas semillas en la parte inferior del elevador; cuando se termina el trabajo se debe límpiar muy bien este sitio. Cuando el pie del elevador queda por debajo del nivel del suelo se debe dejar suficiente espacio alrededor (0.8 m) para que una persona pueda bajar a hacer la limpieza. También es conveniente que el elevador descanse sobre patas o soportes que facilitan la límpieza; la base del elevador debe ser removible para permitir la descarga del material que se acumula en este lugar (Figura 18).Es importante calcular adecuadamente la altura del elevador para obviar problemas en la instalación y para evitar, dentro de lo posible, tener que abrir el techo de la UBS. La altura total de un elevador que alimenta una máquina o una tolva debe contemplar: a. La profundidad del foso (si es el caso). b. La distancia entre el nivel del suelo y el tope de la tolva.c. La distancia encima de la tolva, necesaria para proporcionar una pendiente de 45° entre el tubo de descarga del elevador y la tolva (este ángulo se determina con respecto a la horizontal tornada en el punto más alto del elevado!). Se aconseja una pendiente de más de 45° cuando se trasporta semilla que fluye con dificultad.d. La altura de la cabeza que comprende el espacio ocupado por la polea y la cubierta del elevador.Las distancias de los puntos a, b, y d se obtienen directamente, mientras que la del punto c implica hacer algunos cálculos dependiendo de la distancia del elevador al centro de la tolva. En caso de que el ángulo sea de 45°, la altura del elevador, necesaria para proporcionar esa pendiente, es igual a la distancia desde el elevador hasta el centro de la tolva. Por ejemplo, si las distancias fueran: a = 0.9 m, b = 5.0 m, c = 4.0 m, y d = 0.6 m, la altura del elevador sena igual a 10.5m.Se utilizan dos métodos para disminuir la altura del elevador.8. Acercar el elevador a la máquina y a la tolva.b. Utilizar un trasportador horizontal, del elevador hasta la tolva.El elevador se puede cargar mediante una tolva colocada en la pierna ascendente o en la descendente. SI se carga por la piema ascendente, la tolva debe colocarse por encima del eje de la polea inferior con el fin de que la semilla vaya cayendo en los cangilones cuando Inician el ascenso. Si la tolva se coloca en la pierna de descenso (es decir, que el elevador se carga por detrás), la tolva de alimentación se coloca por debajo del eje de la polea infenor, de tal forma que la semilla se deposite en la base y sea recogida por los cangilones a medida que van subiendo.Se recomienda cargar por la pierna de descenso aquellas semillas que son más susceptibles al daño mecánico.Cuando los cangilones hacen ruido en las paredes del elevador es señal de que la banda está suelta y se debe tensionar. También se recomienda ablir la ventana de vez en cuando y observar la banda. Para estirarla se tensiona la polea inferior (Figura 18).También se deben inspeccionar los cangilones, pues es común que se deformen o se rompan debido a los impactos; estas deformaciones pueden danar la semilla o el elevador.En la selección de un elevador se deben tener en cuenta algunos puntos: a. Facilidad de limpieza.b. Daños mecánicos. c. Capacidad.d. Instalación (espacio y construcción del foso).e. Tipo de elevador.Hay un lipo de elevador denominado de carga y descarga intema que se considera autolimpiable, causa muy poco daño, y liene aka capacidad: sin embargo, es costoso y se necestta más espacio para su instalación,No es el más recomendado para trasportar semillas, especialmente aquellas que son más propensas al daño mecánico, ni es conveniente para trasportar a través de distancias grandes (máximo 3 m). Es útil para rutas cortas en locales congestionados y se encuentra fácilmente en el mercado. Su consumo de energía es relativamente alto. Puede cargar y descargar la semilla en diferentes sitios. Requíere la siguiente atención:Para minimizarlos se debe trabajar con el tomillo como mínimo al 70% de su capacidad: así se disminuye el porcentaje de semillas dañadas por la meción entre la pared y el tomillo del equipo.Siempre se quedan algunas semillas en el tomillo, por lo cual es necesario hacer una buena limpieza al finalizar el trabajo. Los tomillos instalados a la intemperie tienen camisas o carcazas herméticas e impermeables que dificultan su limpieza: algunas empresas de semillas, después de limpiarlOS con aire, utilizan agua en abundancia con el fin de matar las semillas que hayan podido quedar en el tras portador.Es muy útil para distancias cortas (4.0 m), se limpia por si sólo, y ocasiona poco dalia. Es fácil construirlo y tiene múltiples sitios de cargue y descargue. Se debe prestar atención a los siguientes puntos:a. Velocidad de vibración para evitar que las semIllas saHen.b. Soporte y contrapeso del equipo para disminuir las vibraciones indeseables y evitar que se rompa.Cuando se necesita una alimentación precisa (separadores por color, electrostáticos, ó magnéticos), se utilizan trasportado res vibratorios pequeilos con velocidad de vibración regulada electromagnéticamente.El más común consiste en una banda que se desliza sobre una supeñlCie generalmente metálica. Este tipo puede usarse en tramos hasta de 30 m, con capacidades hasta de 50 tIh. Los trasportadores de banda pueden ser alimentados en diferentes sitios pero sólo pueden descargar en sus extremos (cuando son reversibles) a no ser que cuenten con un \"tripper\" (tumbador) o carro que permita descargarlo en diferentes puntos.Cuando se usa para trasportar semillas, la velocidad de la banda no debe ser superior a 1 mlseg y la inclinación de la banda no debe ser superior a 12\" pues de lo contrario su capacidad disminuye considerablemente.El trasportador de banda no causa dan o mecánico a las semillas, pero puede ser difícil de limpiar o inspeccionar, según el diseno.El trasportador debe tener un sistema que permita tensionar la banda. pues ésta tiende a estirarse con el uso.Los hay de varios tipos; el de sección en \"U\" es el más recomendado para semillas. Tienen gran capacidad y permiten cargar y descargar la semilla en diferentes sitios del transportador. Las paletas que arrastran la semilla deben ser de plástico para reducir el dano mecánico. Se debe disenar la cubierta para facilitar la limpieza e inspección del trasportador. Cuando se instalan a la intempelie, el sistema debe ser a prueba de agua. Se debe tener especial cuidado al diSenar los puntos de descarga pues aqui se puede quedar semilla atrancada; este problema se minimiza intercalando cepillos que van barriendo el dueto y ayudando a la limpieza del trasportador. Se pueden instalar con poca pendiente; también son reversibles.Es el más común, al que menos atención se le presta. y el que puede causar mayor daño mecánico. Se utiliza cada vez que es necesario bajar la semilla y consiste simplemente de un tubo o duelo a través del cual caen las semillas movidas por su propio peso. En estos sistemas es muy importante que la pendiente del tubo sea de 45° para facilitar el flujo de la semilla y la limpieza del mismo. Se deben colocar amortiguadores de línea y amortiguadores finales para evitar el daño mecánico. A toda costa se debe evitar que la semilla golpee contra láminas metálicas u otras superficies duras (Figura 19).Después del acondicionamiento (cada lote tiene su histolia). las semillas están listas para la venta, pero antes se deben analizar sus atributos físicos y fisiológicos. Al momento del empaque se obtienen muestras de 10-50 g (dependiendo del lote), preferiblemente de cada bolsa. Después se homogeniza la muestra por división y se envía solamente esta muestra compuesta al Laboratorio de Análisis de Semillas (LAS). Los resuRados del análisis se registran en un archivo especial de acondicionamiento, donde también estará registrado el reporte de beneficio del lote, incluyendo el desempeño de las máquinas (Figura 3).En algunos países o empresas de semillas, donde no se ha adoptada el sistema de certificación, el análisis de calidad hecho a la muestra tomada durante el empaque se utiliza para la comercialización.Cuando se tiene el peso final del lote después del acondicionamiento, se determina el porcentaje de pérdida registrado en el archivo; de esta manera se puede analizar el acondicionamiento como un proceso global, operación por operación. incluyendo el secamiento.Es importante tener en cuenta que una pérdida alta de semilla no quiere decir necesariamente que se mejoró la calidad del lote, pues una máquina mal calibrada puede descartar material bueno. Asimismo una baja producción en una máquina tampoco implica que se está haciendo una buena separación.Recuerde que se debe utilizar la máquina más eficaz. de la forma más eficiente. y en condiciones de alcanzar el mayor rendimiento y producción posibles.El almacenamiento empieza desde el momento en que las semillas alcanzan la madurez fisiológica en el campo y termina con el proceso de germinación en el campo. En todo este tiempo la semilla está sometida a muy diversas condiciones de almacenamiento.En el almacenamiento de semilla se debe tener presente lo siguiente:a. El almacenamiento no mejora la calidad de la semilla pues el proceso de deterioro es inexorable. En consecuencia, si hay necesidad de almacenar semilla por un período largo se deben seleccionar aquellos lotes que tengan la mejor calidad.b. El contenido de humedad de las semillas es función de la HR y en menor escala de la temperatura del aire.c. La humedad y la temperatura de la semilla son, en ese orden, los faclores más importantes del almacenamiento.d. Por cada punto que se reduzca el contenido de humedad de la semilla (por ejemplo, de 19% a 18%), se duplica su potencial de almacenamiento. Esto es válido para contenidos de humedad dentro del rango de 4 a 14%.e. Por cada 5°C que se reduzca la temperatura de la semilla se duplica su potencial de almace-namiento. Esto es válido dentro del rango de O a 50°C. Para almacenamientos a temperaturas in-fefÍores a 5°C, la semilla debe tener una humedad menor del 9%.f. Un ambiente seco, frío, y limpio proporciona las mejores condiciones para almacenar la gran mayoría de las especies.g. El potencial de almacenamiento depende de la especie o variedad.h. Los lotes de semiUa de alta calidad tienen un mayor potencial de almacenamiento que los lotes de baja calidad. Las semillas dañadas, inmaduras, y mal formadas se dañan fácilmente durante el almacenamiento. Se debe evitar el almacenamiento temporal de semilla que tenga muchas impurezas.i. Es muy importante llevar registros del inventario y de la calidad de los lotes. de la temperatura y la humectad dentro del cuarto de almacenamiento, y de las fechas de fumigación. j. Las condiciones de limpieza y sanidad adecuadas son esenciales, no sólo porque la UBS es la vitrina de la empresa, sino también porque un almacén limpío facilita el control de insectos, aves, y roedores.Se utiliza especialmente en almacenamientos a granel para disminuir ylo uniformizar la temperatura de la semilla y evitar la condensación (Figura 20). Para la aireación no se necesita un flujo alto de aire; generalmente, son suficientes flujos de aproximadamente 0,1 m 3 /minft de semilla, Normalmente para esta operación los ventiladores no requieren más de 1,0 kW de potencia, Algunas recomendaciones para la aireación son: a, Es aconsejable airear si la temperatura externa se encuentra, por lo menos, entre 7 y 10°C por debajo de la temperatura de la masa de semilla, b. No se recomienda airear cuando la temperatura externa es mayor que la temperatura de la masa de semillas, c, Se debe airear siempre que se detecten calentamientos de 3°C o más dentro de la masa de semillas, Esta aireación se debe hacer lo más pronto posible, incluso cuando no se cumple el Iiteral\"a\", d, Antes de almacenar las semillas es recomendable prelimpiarlas, con el fin de facilttar la aireación, e. En caso de necesidad se puede utilizar la aireación para remover de un 1 a un 2% del contenido de humedad de la semilla (dependiendo de la temperatura y HR del ambiente). Con temperaturas ambientales por encima de los 25OC, no es recomendable que la aireación remueva más del 1 % de humedad (proceso recientemente conocido como secado-aireación, 'secaireación'¡' f, Se aconseja airear dos veces por semana durante 3-4 horas.Manual para ei Beneficio de Semillas g. Es indiferente si el aire se succiona o se sopla a través de la semilla, excepto que al succionar se pueden obstruir los orificios del fondo falso y el polvo removido pasa a través del ventilador.h. Durante la aireación, la HR del aire tiene poco efecto sobre la humedad de la semilla, pues el flujo del aire es muy bajo y dura poco tiempo.El empaque se selecciona considerando:En semillas con un contenido de humedad por encima del 9%, se debe utilizar empaque permeable a los gases para permitir el intercambio de gases (incluyendo vapor de agua) con el ambiente. Se deben utilizar empaques impermeables al vapor de agua en semillas con un contenido de humedad entre el4 y el 9%, para evitar que la semilla se humedezca. En estos casos se pueden usar materiales tales como lata, vidrio, lámina de aluminio, y plástico con espesores de mínimo 0.3 mm.Los empaques de papel facilitan la publicidad y tienen una mejor apariencia. Es importante que el aglicultor pueda comprar la semilla en el tamano de saco que él prefiera o necesite. Es aconsejable comercializar siempre la semilla con un mismo tipo de empaque.Para el empaque de semillas se requiere que el saco sea nuevo; sin embargo, cuando se trabaja con una sola variedad o con un buen control es posible usar el empaque más de una vez, por ejemplo, durante la cosecha y posteriormente para el empaque final. En caso de usar dos veces el mismo empaque se recomienda colocarlo al revés Qa parte de adentro hacia afuera) en la primera operación. Los empaques de papel no se pueden reutilizar, algunos incluso se dañan antes de la distribución. Los empaques plásticos son resistentes y se pueden utilizar varias veces pero es d lfícíl acomoda rlos en arrumes altos. Los empaques de papel o de plástico dificultan el paso de aire y por tanto dificuHan la aireación, el secamiento o la fumigación de la semilla.La semilla prelimpiada y seca o la semilla limpia puede ser almacenada en sacos colocados en arrumes (Figura 21). El almacén no sólo es el sitio de almacenamiento, sino que representa todo un sistema de manejo de materiales. A continuación se presentan algunos puntos que es necesario tener en cuenta: a. Los inventarios de semillas tienen muy baja rotación.b. Los inventarlos de semillas tienen muchos lotes, variedades, y clases.C. Las semillas pueden requerir condiciones especiales de humedad y temperatura.d. El concepto de \"pnmero que entra primero que sale\" no se aplica para semilla, pues cada lote tiene identidad y calidad propias.e. Se deben hacer los arrumes obedeciendo ciertas normas para facilitar el muestreo, el tránsito, la aireación, y la fumigación.Cuando se manipulan pequeflas cantidades de semilla el operador de la UBS puede saber de memona su disposición y ubicación; sin embargo, con volúmenes y almacenes más grandes, es importante marcar con tinta o pintura en el piso del almacén los sitios de arrume y darles una nomenclatura sencilla y precisa que permita ubicar fácilmente y sin equivocaciones los diferentes loles. Al disponer la ubicación de los lotes en el almacén, se debe tener en cuenta la populandad de la especie y/o variedad, su potencial de almacenamiento, y el volumen solicitado en la orden de despacho.Hay paises donde cada arrume está constíluido por un sólo lote y todos los sacos del arrume se deben muestrear; otros permiten que un arrume eslé constituido por varios lotes siempre y cuando sean de una misma variedad y exigen muestrear sólo cierto porcentaje de los sacos.Se recomienda una distancia minima de 0.8 m de la pared a todo lo largo del perimetro del almacén, 0.6 m entre arrumes, y 1 .5 m libres entre el arrume más alto y el techo. Estas distancias facilitan el tráfico, el muestreo y la circulación del aire. También se debe mantener una distancia de 3.0 m entre lotes para facilitar el cargue y descargue de los sacos. En las bodegas que utilizan montacargas u otros vehículos, el ancho de los pasillos debe ser 1.5 veces la longitud del montacarga para poderlo maniobrar. Se sugiere no hacer arrumes demasiado anchos o largos pues ocupan más espacio que los arrumes cuadrados,Una de las preguntas más frecuentes en la UBS se refiere a la altura máxima del affilme. La altura no afecta la calidad de las semillas; sin embargo, como no es fácil ni seguro hacer un arrume demasiado aHo, por seguridad y facilidad se recomienda que la altura máxima sea de 5.0 m, por lo que se requiere que el techo tenga como mínimo 6.5 m de altura.En general, los materiales que se usan para los pisos de los almacenes (cemento, ladrillo) trasfieren el calor más fácilmente que las semillas, por lo cual es muy frecuente que haya una diferencia de temperatura entre el piso (frío) y la semilla en contacto con él (caliente). En estas condiciones es posible que se presenten condensaciones en la capa de semillas en contacto con el piso, con el consiguiente deterioro. Para evitarlo se colocan tarimas de madera u otro material, que aíslan las semillas del piso, facilitan el paso del aire, y no permnen que las semillas absorban humedad proveniente del piso.Generalmente la semilla se distribuye en sacos o bolsas de papel de 0.70 x 0.40 x 0.08 m, que pueden llegar a contener hasta 0.035 m 3 . Es posible empacar hasta 25 kg de semilla en cada bolsa cuando la semilla tiene un peso volumétrico entre 0.5 y 0.7 tlm 3 .Estas bolsas se arruman u organizan por lotes, teniendo en cuenta los espaciamientos recomendados anteriormente. Las bolsas se deben colocar sobre una plataforma y arrumar hasta la altura necesaria. Si las bolsas se mueven utilizando mulas mecánicas, es necesario intercalar tarimas de madera en el arrume, de tal forma que las uiías de la máquina puedan retirar y arrumar estos lotes, Cuando el arrume se hace manualmente o con la ayuda de bandas trasportadoras no es necesario colocar tarimas intermedias.La Tabla 24 presenta información para calcular rápidamente el área necesaria para almacenar semilla en sacos. Los datos corresponden a semillas de diferentes pesos volumétricos (desde 0,2 hasta 0.8 tlm~ y a arrumes de diferentes alturas (desde 1 hasta 5 metros). El área requerida (¡n2/l) que se indica en la Tabla ya incluye el área necesaria para pasillos y canredores y sirve para calcular el área de almacenamiento requerida con cualquier tamaño de empaque. La altura de la bodega debe ser 1.5 m mayor que la altura del arrume más alto.Los datos que aparecen en la Tabla se obtuvieron considerando que en una estiba de 1.4 x 1.4 m (1.96 rrr) es posible acomodar 8 bolsas de 0.70 x 0.40 x 0.08 m. Se cuenta con un 50% de área adicional para pasillos; es decir. que las 8 bolsas ocupan un área real de 2.45 m 2 (1.96 x 1.25). Para calcular el área requerida por tonelada de semilla (rrrlt). como aparece en la Tabla. se dividió el área ocupada de la bodega por el peso de dicha semilla y se multipliCÓ por el carrespondiente peso volumétrico. Al final de la Tabla se presenta un ejemplo de la manera de utilizarla.Cuando las semillas vienen del campo es aconsejable fumigarlas y proteger el lote de ataques futuros de insectos; para ello se utilizan productos quimicos residuales aplicados alrededor de la semilla. Además es de máxima imporilancia mantener siempre limpias la bodega y demás instalaciones para facilitar el control de los insectos.Hay muchos fumigantes que se pueden usar en las semillas; para seleccionar cuál utilizar es conven• iente que el producto presente las Siguientes ca• racterísticas:a. Bajo costo por dosis efectiva.b. Alta toxicidad para los insectos adultos y jóvenes.c. Alta volatilidad y buena penetración. f. No dañino a la semilla.g. Fácilmente disponible y sencillo y bareto de aplicar.Cuando se van a fumigar lotes de semillas a grenel o en sacos, utilizando fosfuro de aluminio (Fostoxin, Gastoxin, Fosfina, Detra), se debe sellar herméticamente el lote de semilla con el fin de evitar que se escapen los vapores tóxicos ocasionando un aito riesgo pare los operarios y además disminuyendo la dosis de producto aplicada. Pare detectar si hay escapes del insecticida se pueden colocar tires de papel, impregnadas con nitrato de plata, alrededor del anume o lote de semillas. Si hay escape de gas, éste reacciona con el n¡¡reto de plata ennegreciendo inmediatamente las tiras de papel.Se consiguen también en el mercado otras sustancias o productos no tóxicos que se pueden usar pare proteger las semillas del ataque de insectos. Entre éstos, se pueden citar: arena, cenizas, y aceite. Este último ofrece buenos resultados cuando se utiliza con sem~ lIa de frijol en dosis de 1/2 cucharadalkg de semilla.Especies como el trigo, el maíz, y el frijol presentan problemas de insectos, mientres que otras como el arroz. sólo sufren daño si la semilla tiene desprendidas la palea y la lema.La temperature óptima para el desarrollo de los insectos es alrededor de 25°C. A temperaturas inferiores a los 17\"C y en condiciones de HR por debajo del 40%, los insectos no se multiplican.Es diflcil eliminar los roedores en la UBS; sin embargo, se puede controlar el problema de la siguiente manera:a. Minimizar la disponibilidad de alimento yagua para los roedores. Esto significa que se debe mantener la UBS limpia.b. Eliminar los SITios de protección natural, tales como huecos y depósitos de madera y basura.c. Mantener una franja ancha (2 m) limpia alrededor de la UBS; mantener cerradas las puertas, ventanas, y otras aberturas, pues los ratones pueden entrar por aberturas hasta de 5 mm.d. Mantener en la UBS predadores naturales como gatos y boas.e. Mantener los edilicios de la UBS en buen estado, sin huecos en las paredes, el techo, y el piso; tapar las aberturas con malla de alambre y, si es posible, colocar una lámina de metal alrededor de la pared. El mejor control para los roedores es no dejarlos entrar a la UBS.Para combatir los roedores directamente se utilizan: a. Trampas. Sin embargo éste es un proceso que nunca termina.b. Cebos tóxicos. Sirven como control temporal hasla que los roedores aprenden a eVITarlos. Se debe tener precaución con el cebo mismo para no hacer dai'lo a otros animales domésticos. El cebo se coloca inicialmente sin el veneno, Los venenos anti-coagulantes son los mejores pues las ratas mueren días después de comerlo, c. Repelente. Después de un tiempo las ratas se acostumbran a los repelentes que se hayan utilizado, El ultrasonido ha dado buenos resuRados, pero se conoce muy poco acerca de su empleo.d, Control biológico, Hasta el momento no se ha encontrado una manera de aplicar control biológico a los roedores.e, Choques eléctricos, Las ratas cambian sus rutas hab~uales y el mecanismo deja de ser útil.f. Asfixia. Cuando se almacena en cuartos pequeflos y herméticos es posible dejar funcionando dentro del cuarto un motor de combustión intema (podadora de pasto, etc.); éste consumiré todo el oxígeno y produciré dióxido de carbono con lo cual mueren asfixiados los roedores.g. Control ambiental. Los roedores no viven en sitios fríos y secos; por tal motivo los cuartos con atmósfera controlada estén prácticamente libres de este problema.Se pueden almacenar semíllas a mediano plazo (2.5 a/'los), manteniéndolas en un ambiente que tenga como máximo 20°C y 50% de HR; en estas condiciones las semillas alcanzarén humedades de equilibrio por debajo del 11 % Y estarán protegidas contra el ataque de insectos, aves, y roedores. Estas condicio-nes de temperatura y humedad ocurren naturalmente en algunas regiones, generalmente lejos de los sitios de producción de semillas, Cuando éste es el caso, es necesario establecer artificialmente estas condiciones de almacenamiento, construyendo cuartos de atmósfera controlada o cuartos frios y secos para el almacenamiento de las semillas (Figura 22), Se utilizan enfriadores de aire por compresión mecánica en cuartos térmicamente aislados los cuales se enfrian hasta la temperatura deseada, En cuartos pequeí'ios (100 m 3 ) se pueden usar enfriadores del tipo oficina con capacidad de 5 kW (18,000 BTUIh ó 1,5 t de refrigeración), que pueden enfriar el cuarto hasta los 17°C, Las pérdidas de semilla debidas a fallas en el equipo de enfriamiento se evitan manteniendo un equipo de repuesto de tal forma que sí falla el primero el segundo entra en operación inmediatamente, antes de que aumente la temperatura dentro del cuarto, Con el fin de disminuir el paso de calor desde el exterior, las paredes, el cielo raso y el piso se aislan térmicamente con una capa de por lo menos 5 cm de espesor, fabricada con materiales tales como fibra de vidrio, poliuretano, o icopor (Tabla 25), La HR del aire se mantiene por debajo del 50%, evitando el paso de vapor de agua desde el exterior y remcviendo la humedad proveniente de las semillas, de las personas que entran al cuarto, y del aire que se infiltra, Lo primero se logra colocando una barrera de vapor en las paredes, en el techo y en el piso; esta barrera de vapor puede ser una película de polivinilo, plástico o una capa gruesa de pintura asfáltica o a base de caucho, Es muy importante evitar grietas o fISuras que permnan el paso de la humedad en los traslapes entre paredes, techo, y piso. Por esta mis-ma razón, el cuarto no debe tener más aberturas que la puerta y ésta debe sellar bien, de tal forma que no haya infittraciones de aire. La humedad dentro del cuarto se puede remover con un deshumidificador, ya sea de los detipo unidad de refrigeración o de los que trabajan con sílica gel.Los costos aproximados de este tipo de cuarto son de US$60/m 2 de superficie, incluyendo mano de obra y materiales (aislante térmico, barrera de vapor, y malla de alambre). Este valor no incluye la obra civil: paredes de ladrillo, piso, techo, etc. Un acondicionador de aire de 5 kW de capacidad cuesta aproximadamente US$500 y un deshumidificador de 15 IHros de capacidad puede costar alrededor de US$300.Finalmente, es necesario proteger el cuarto contra aves y roedores; por eso es conveniente colocar malla de alambre en aquellos lugares por donde se pueden entrar al cuarto: cielos rasos, paredes de madera, o puertas con grietas.Durante el almacenamiento normal se recomienda tener en cuenta los siguientes controles:Es aconsejable controlar la humedad de la semilla cada dos meses durante su almacenamiento y necesariamente en el momento del despacho para hacer los descuentos y ajustes debido al cambio de peso. Normalmente, el patrón de comercialización es del 13%; sin embargo, no es fácil convencer al agricuttor que un saco de semilla con un 10% de humedad que pesa 48.3 kg es equivalente a un saco de 50 kg con 13% de humedad.La calidad fisiológica de las semillas se controla durante el almacenamiento, practicando una prueba de germinaCión cada dos meses. El periodo entre análisis puede ser más largo en regiones frias y puede incluso ser hasta de seis meses si se almacena en cuartos fríos y secos. Es importante recordar que la prueba de germinación no indica el potencial de almacenamiento de un lote de semillas. Un lote con bajo vigor puede perder rápidamente su potencial de germinación.Se debe llevar un registro minucioso de todos los lotes de semilla que entran y salen del almacén. En el momento de despachar un lote de semillas es altamente recomendable guardar una muestra testigo en un recipiente que pueda ser 'lacrado' por la persona encargada de trasportar el producto; de esta manera, y si se presenta algún problema, se puede aclarar si éste sucedió antes o después del despacho.Al comprar equipos para la planta se deben considerar los siguientes aspectos:a. Que haya sido disef\\ado para trabajar con semillas; es decir, que no cause daño mecánico a la semilla 'i que sea autolimpiable.b. Que sus partes se puedan cambiar fácilmente: zarandas, cilindros, discos, etc., 'i se consigan los tamaños requeridos para los diferentes cultivos.c. Que sea fácil de inspeccionar, limpiar, mantener, 'i reparar.d. Que tenga la capacidad apropiada para la línea donde se va a instalar.e. Que sea estable 'i dinámicamente balanceado para evílar vibraciones excesivas.1. Que permita tantos ajustes como sean necesarios para el tipo de semillas con las que se va a trabajar.g. Que no tenga partes o elementos que puedan causar daño mecánico a las semillas.h. Que el fabricante demuestre confiabilidad, conocimiento, y responsabilidad.Obtenga catálogos de los equipos que desea comprar o guarde los catálogos de los que ya tiene. La información que incluyen es muy útil.Siempre que ordene la compra de un equipo o repuesto. especifique bien la marca, el modelo. el tama-110. el peso. la capacidad. los requerimientos de energía. y el material de fabricación. Entra más detalles se especifiquen, menor será el riesgo de recibir el equipo errado. Es conveniente conocer las partes de la máquina que sufren mayor desgaste para ordenar algunos repuestos en el momanto de comprar la máquina; ésto evita paros innecesarios o retrasos en el futuro.En el momento de recibir el equipo o los repuestos es necesario constalar que cumple con las especificaciones y que todo está en perfecto estado. En caso contrario se debe devolver inmediatamente al proveedor.No olvide incluir dentro del precio del equipo los coslos del flete y del seguro. Es conveniente incluir dentro del pedido un equivalente al 25% del costo del equipo para repuestos y partes que requieran ser reemplazadas frecuentemente y que sean diflciles de conseguir.Siempre que sea posible, asesórese de personas que hayan trabajado con el equipo y conozcan su funcionamiento.Cuando se trata de equipos, existe siempre la posibilidad de que algo funcione mal. En tal caso, o tan pronto como se detecte una anomalia, se debe llamar al técnico especializado; asi se ahorra tiempo y se evitan riesgos innecasarios. En caso de necesitar entrenamiento en el manejo y mantenimiento de los equipos, se debe contratar este servicio con el fabricante en el momento de hacar la compra. Aclare muy bien con el vendedor todo lo referente a garantías y seguros.Es recomendable que cada equipo tenga su propio registro de mantenimiento; se debe tener especial cuidado con la máquina de aire y zaranda, la mesa de gravedad, los elevadores, la máquina de discos, el separador de cilindro indentadO, las zarandas cilindricas, el deshumidificador y el secador. Las partes móviles necesitan mantenimiento constante.s. Ensenar a los empleados la necasidad e importancia del mantenimiento.b. Mantener las herramientas necasarias y los equipos accasoríos en buenas condiciones.c. Exigir que solamente las personas autorizadas trabajen con el equipo especializado (soldador eléctrico, de acetileno, etc.) d. Además de los equipos de mantenimiento, revisar los extintores de incendio, el gas para soldadura y los terminales eléctricos.e. Mantener las escaleras de trabajo siempre despejadas e impedir que se utilicen como soporte, f. Evitar que las bandas de una misma polea tengan diferentes grados de desgaste, Cuando se cambie una banda de éstas, es requisito cambiarlas todas.La longitud (L) de la banda que conecta dos poleas se puede calcular con la siguiente fórmula: El cálculo se puede hacer usando cualquier unidad (metro, pulgadas, etc.) siempre y cuando se hagan todas las mediciones en la misma unidad. Para medir la distancia entre ejes (e) se deben colocar las poleas a una distancia intermedia entre el máximo y el mínimo permisibles.g. Disponer de diferentes tipos de grasas y lubricantes para los diferentes equipos y sus partes.h. Limpiar el exceso de grasa o aceite; en caso contrario se acumula polvo, el cual ocasiona problemas de funcionamiento.i. Limpiar regulalTIlente los filtros de aire. j. Revisar si hay sobrecalentamiento de los motores eléctricos. Medir el amperaje y revisar los rodamientos. No usarlos sin el elemento de seguridad.k. Mantener un inventario de aquellas piezas o repuestos que se requieren con regularidad o de aquellas de dificil consecución y que pueden fallar en cualquier momento, paralizando la operación de la planta.1. Verificar regularmente los nivetes de aceite y mantener limplos los filtros. Cambiarlos cada vez que sea necesario.m. Mantener tuercas y tomillos ajustados, especIalmente en aquellas máquinas que están sometidas a vibración.n. Revisar los conectores eléctricos regularmente, ajustándolos y manteniéndolos en buen estado, al igual que los contactores eléctricos.o. Programar el mantenimiento general de la planta y las reparaciones mayores para la época de poca actividad. Preparar un plan de trabajo y conseguir con tiempo los repuestos y materiales que se van a necesitar para las diferentes actividades.p. Instalar un horómetro a los equipos más importantes para conocer la producción de la máquina y programar su mantenimiento de acuerdo con el número de horas trabajadas.q. Las tolvas deben tener 45° de inclinación (60 0 para materiales brozosos) para garantizar que no se queden materiales en ella, facilitando así su limpieza. La Tabla 26 presenta el ángulo que forma la arista formada por dos planos inclinados, la cual es útil cuando se van a construir las tolvas.Recuerde io que se dice sobre el mantenimiento:Cuando todo va bien nadie recuerda que existe.Cuando algo va mal todos dicen que no existe.Cuando se deben efectuar gastos se dice que no es necesaJio.Pero cuando no existe, todos concuerdan en que debería existir.Normalmente las personas toman conciencia del peligro y se mantienen alerta solamente después de que ha ocurrido un accidente. A continuación se mencionan algunos procedimientos que pueden evitar o disminuir muchos accidentes de trabajo.a. Usar equipo de protección para los ojos en sitios donde haya polvo, soldaduras, esmeriles, hornos, o vapores tóXicos.b. Ubicar las sellales de peligro y las recomendaciones de seguridad industrial en puntos visibles de la planta.c. Usar máscara protectora cuando se limpien los silos, el almacén. o los locales empolvados.d. Cubrir la cara, las manos y 105 pies cuando se trabaje con pesticidas.e. Proteger los ordos en locales de alto ruido.f. Colocar guardas en los sitios donde hay partes móviles, tales como poleas, bandas, motores, etc.g. Instalar interruptores y fusibles para todos los equipos.h. Colocar plataformas, rampas, y escaleras que faciliten el ajuste, la inspección, el mantenimiento, y la limpieza de los equipos.123Manual para el BeneDcio de SemiJlas Pesticidas a. Exigir a los empleados el uso de caretas protectoras mientras se hacen aplicaciones de los pesticidas. Siempre debe haber como mínimo dos personas al hacer aplicaciones en recintos cerrados.b. Avisar a todos los empleados cuando se vaya a hacer una aplicación y colocar avisos en la planta.c. Colocar señales de 'No Fumal\" en los locales donde se almacenen pesticidas y en general en todos los espacios cerrados de la UBS.d. Prohibir a los empleados consumir alimentos cerca de los sttios donde se almacenan los pesticidas.e. Identificar claramente la clase de pesticida utilizado y conocer su antídoto.f. Ofrecer capacttación a los operadores que trabajan con pesticidas y enseñarles cómo actuar en caso de intoxicación.g. Realizar análisis periódicos de colinesterasa entre los empleados con el fin de detectar a tiempo intoxicaciones por contacto prolongado con productos químicos.a. Dar a conocer a todos los empleados los procedimientos de seguridad.b. Proteger las bandas, cadenas, poleas y partes móviles de las máquinas.c. Tener siempre presente las medidas de protección que se deben tener cuando una máquina está en operación.d. Destacar los sitios de peligro con tinta o pintura roja.a. Recubrir los alambres que estén expuestos.b. Proteger las cajas y los tomas de comente.c. Conectar a tierra todos los equipos.d. Identificar en la caja de interruptores (\"breakers\") los equipos a los que corresponde cada circuito.e. Tener un arrancador para motores de más de 5 hp.f. Evitar que el agua se acumule en sitios donde hayan circuitos eléctricos.g. Señalar los lugares de alto voltaje.Areas de Trabajo a. Proporcionar suficiente espacio a los empleados en el área de trabajo.b. Mantener las salidas libres de todo obstáculo.c. Asignar dos personas como mínimo para el ma-neJo de la semilla.d. Mantener cerraduras de seguridad en 105 cuartos frios y secos.e. Mantener accesible la caja de prtmeros auxilios.f. No fumar dentro de la UBS.a. Mantener los extintores de incendio dellipo apropiado, cargados, en perfecto estado de funcionamiento, y en un Jugar visible y de fácil acceso.b. Ubicar en un lugar visible los números telefónicos de emergencia (bomberos, hospital, ambulancia, etc.) c. Brindar instrucción a los operadores sobre cómo actuar en caso de incendio. e. Mantener limpia y despejada una franja de 2 m alrededor de la UBS.La limpieza de la planta, cuando se va a empezar a trabajar con una nueva variedad o cultivo, es uno de los aspectos más importantes en el manejo de una Unidad de Beneficio de Semillas. De lo contrario se presentan mezclas valietales y se perjudica seri&mente la empresa.Es conveniente evitar que diferentes variedades del mismo cuttivo pasen consecutivamente por la misma línea de beneficio; se deben atiemar cultivos para facilitar la limpieza y disminuir los riesgos de contaminación.Cuando cambia el lote pero se sigue trabajando con la misma variedad, no se requiere una limpieza estricta de la planta pero sí se debe pasar primero todo un lote y luego hacer una limpieza general, para comenzar posteriomJente el acondicionamiento del otro lote.Se supone que los equipos disei'iados para el beneficio de semillas se limpian por sí mismos; de todos modos hay sitios donde se puede acumular la semilla.El operario debe familialÍzarse con estos sitios y revisarlos cada vez que limpia la planta.Se debe hacer la limpieza de la planta siguiendo una secuencia lógica y teniendo en cuenta que se debe empezar a limpiar de arriba hacia abajo: a. Al iniciar la limpieza, abrir totalmente las compuertas de las tolvas y remover aquellas partes de las máquinas que faciliten el acceso a sitios escondidos. Es importante ubicar los sitios díficiles de limpiar y aquellos lugares donde se acumula la semilla. En lo posible, se debe resolver el problema pero si no, es necesario tener en cuenta estos lugares y prestarles especial atención durante la limpieza.b. Tapar todos los huecos, grietas, o rendijas en las tolvas, paredes, y pisos pues en estos sitios se deposita semilla y se dificuita y demora la limpieza.c. Poner a trabajar los equipos de la planta en \\lacio, particularmente la MAZ, los elevadores, las bandas, los trasportadores de cadena, la mesa de gravedady el sistema de extracción de polvo.d. Lavar la tratadora con agua cada vez que se utilice, pues los residuos quimlcos son aHamente corrosivos.e. Remover las zarandas de la MAZ. poner los ventIladores con el máximo flujo de aire, y aumentar la vibración de las zapatas.f. Remover las tapas de los amortiguadores de caldas y demás ventanas de inspección para facilitar la salida del material.Se debe supervisar estrictamente la operación de limpieza si se desea garantizar su eficiencia y eficacia, especialmente en el caso de algunos equipos que pueden tomar varios dias para limpiarlos 51 esta actividad se deja a libertad de los operarios (e.g., los cepillos de la MAZ). La planta se debe limpiar de la mejor manera en el menor tiempo posible.Durante la limpieza es conveniente también revisar las máquinas para detectar posibles dallos o desa• justes que, corregidos a tiempo. pueden evitar dallos mayores. Asimismo, esta revisión permite detectar si• tios en donde la semilla puede estar sufriendo dallo mecánico.El equipo de limpieza necesario incluye aspiradores, sopladores. aire comprimido (150 Iblplg2), Y sobre todo escobas, las cuales son esenciales para una buena labor.Finalmente. se debe crear conciencia entre los operarios de la importancia de la limpieza. no s610 desde el punto de vista de la calidad de la semilla sino también porque la UBS es la vitrina de la empresa.Generalmente el precio de venta de la semilla es como mínimo 1.5 veces mayor que el precio de venta del grano; entre las causas de este sobreprecio está el costo de beneficio. Al igual que en todo cálculo de costos de producción, no es fácil delenninar cuánto cuesta exactamente beneficiar una tonelada de semilla; sin embargo, se pueden hacer cálculos aproximados, los cuales son muy útiles para evaluar el desempeño de la empresa.A continuación se presenta un ejemplo de cómo calcular aproximadamente los costos de beneficio:Especificaciones 1. Edificios (700 m2) Nótese que los costos fijos representan el mayor porcentaje de los costos totales. Los costos fljos/kg de semilla disminuyen a medida que aumenta la producción de la planta.Equipos minimos requeridos para el control intemo de calidad, Un método simple y preciso para determinar el contenido de humedad de las semillas, Prueba del pH del exudado colorimétrico, Prueba de tetrazolio, Prueba de germinación fisiológica.S Prueba del verde rápido.Prueba de inmersión en clórox.Prueba del cloruro férrico.Prueba del hidróxido de potasio para arroz rojo.10 Construcción de un sicrómetro de voleo.11 Cálculo del flujo de aire en un secador estacionario.12 Utilización del manómetro de tubo en 'U', b. Otro electrónico basado en la resistencia eléctrica o constante dieléctrica de la semilla.2. Muestreadores para granel y en sacos.3. Descascarador de arroz (o tener acceso a uno prestado).4. Báscula con una precisión de 1 gramo.5. Termómetros (rango O-100°C).6. Termómetros de bulbo húmedo y bulbo seco.7. Higrotermógrafo.8. Implementos para determinar viabilidad y daílo mecánico.a. Equipo para la prueba del exudado (Anexo 3).b. Equipo para la prueba de tetrazolio (Anexo 4).c. Equipo para la prueba de verde rápido (Anexo 6).9.Cuarto de almacenamiento de muestras (1 kg de cada lote vendido).10. Soporte para el mechero y el Erlenmeyer.11. Probeta graduada.B. Procedimiento 1. Se pesan 100 g de semillas, si son de cereales, Ó SO 9 si son semillas grandes como las de café o cacao. La muestra se coloca dentro de un Erlenmeyer o cualquier otro recipiente de vidrio al cual se allade aceite hasta que SObrepase la muestra en un centimetro.2. Se cierra el frasco con un tapón de caucho al cual esta conectados el tubo curvo y el termómetro; este último debe tener su extremo sensible sumergido 1 cm en el acaite. El tubo curvo se conecta con el que va a la cámara de condensación.3. Enseguida se vierte agua fria en la cámara, llenándola hasta 2 cm por debajo del borde. Debajo de la cámara se coloca la probeta graduada.4. Una vez armado todo el equipo, se enciende el mechero para calentar la muestra hasta que la temperatura del aceite alcance 180•C. Se apaga el fuego y se espera hasta que se haya evaporado toda el agua.S. Finalmente se hace la lectura en la probeta graduada. Cuando se han usado muestras de 100 g, la lectura corresponde directamente al contenido porcentual de humedad; si la muestra es de SO g es necesario mu~iplicar este valor por dos.1. Utilizar muestras sin material vegetal extral\\o.Repetir la prueba si se observa agua en los tubos.3. Sumergir el termómetro en el aceRe teniendo cuidado de que no toque el fondo del recipiente.EvHar la salida de vapor por cualquier abertura.5. Trabajar en sHios donde no haya corrientes de aire.Limpiar los tubos entre una determinación y otra.6. Mezcle la solución con el exudado.7. Haga la lectura. Las semillas viables producen exudados rojos y las semillas muertas exudados incoloros.Para otras semillas, se necesita calibrar el método, disminuyendo o aumentando la concentración de Na2CO;¡. Para semilla de frijol se deben utilizar alrededor de 3 g, Y para semillas de maiz amarillo 4.8 g de Na2C03llítro de agua.La prueba de tetrazolio ha sido diseñada para medir la viabilidad de la semilla.A. Materiales 1. Sal de tetrazolio (fZ), 2. Coloque las semillas entre papeles para embeber durante toda la noche o en un recipiente con agua durante 3-4 h a una temperatura de 30°C, Las semillas estarán listas cuando estén embebidas y se pueda hacer un corte a través del embrión, 3, Sumelja la semilla en la solución de TZ durante un periodO de tiempo determinado (Tabla 3). Las temperaturas entre 2Q°C y 45°e no afectan la precisión de la prueba, por lo tanto, no se deben usar temperaturas inferiores o superiores a este rango. Por regla general, el proceso de linción se acelera a mayor temperatura (a 35 e e es dos veces más rápido que a 25°e).Se deben conocer las estructuras esenciales de la semilla en las cuales las partes rojas son tejidOS vivos. Un embrión rojo no muy oscuro es indicativo de una semilla viable.En caso de utilizar arena para semillas grandes como las de frijol, éstas se deben sembrar a 2.5 cm de profundidad.4. Una vez sembradas, coloque las semillas en un ambiente a 25°C.5. Haga una lectura de la germinación de acuerdo con los intervalos de tiempo especificados para cada cultivo en la Tabla 3. Es más exacto hacer dos conteos, removiendo en el primero las plántulas normales y las muertas.6. Sume las plántulas normales del primero y segundo conteo de cada repetición.7. Sume el número de plántulas normales en cada repetición y divida por el número de repeticiones para determinar el porcentaje de germinación del lote.C. Observaciones 1. Se define como anormal una plántula que no tenga la capacidad de desarrollarse en una planta normal cuando se la cultive en condiciones favorables, debido a que una o más de las estructuras esenciales de la plántula resulten defectuosas (plántulas dañadas, deformadas, desequilibradas, o podridas por infección).2. En muchas regiones tropicales, donde la temperatura promedio es de 25°C, basta colocar las semillas a germinar en un recipiente que evite la evaporación del agua pero que permita el intercambio gaseoso. Esto se logra Anexos colocando las semillas enrolladas en las hojas de papel, como se describió antenormente, en una caja de madera o de otro material, o simplemente en una bolsa plástica con peñoraciones. Recuerde que es muy ímporiante que el sustrato tenga suficiente humedad durante el tiempo en que la semilla está germinando.La prueba del verde rápido se usa para revelar la extensión del daño del pericarpio en semilla de maíz (Zea mays). El dano en el pericarpio de la semilla de mafz se puede detectar usando un estereoscopio; sin embargo, la prueba del verde rápido es un método simple y rápidO que no requiere equipo de laboratorio costoso. El verde rápido FCF (oxalato verde de malaqutta) se puede adquirir generalmente en cantidades de lOó 25 9 en cualquier almacén de productos químicos.La prueba del verde rápido también se puede utilizar para detectar daño en la cutícula de semilla de leguminosas tales como alfalfa (Medicago satíva), trébol •Crimson\" (Trirolium íncamatum) y otras semillas de leguminosas de tamano similar.El verde rápido en concentraciones bajas no es tóxico para los embriones y las plántulas pequeñas. Por lo tanto, se pueden poner a germinar semillas coloreadas y las plántulas normales o anormales se pueden examinar para observar la naturaleza del daño.A. Materiales 1. Verde rápido.2. Vasos de precipttado de 250 mi o recipientes de capacidad similar.3. Un recipiente de 1000 mi para mezclar el verde rápido en agua.B. ProcedimientoPrepare una solución de verde rápido ai 0.1 % (e.g., 1 gIl 000 mi de agua común).2. Separe al azar repeticiones de 100 semillas.Coloque cada repetición en un vaso de precipitado.3. Vierta suficiente cantidad de solución de verde rápido en cada recipiente para cubrir la semilla. Agite la semilla a intervalos durante los primeros 30 segundos. Déjela reposar durante aprOximadamente 2 minutos más.4. Vierta la solución de verde rápido y enjuague la semilla en agua corriente.S. Extienda las semillas sobre una toalla absorbente o en papel secante.6. En cada repetición, cuente las semillas que presenten rupturas teñidas en el pericarpio. Calcule el promedio de semilla con daño, con base en todas las repeticiones.C. Resultados 1 . Si se encuentra que el lole presenta un porcentaje de daño al pericarpio de la semilla de maiz. entre el 30 y el SO%. el productor de semillas debe tomar las medidas necesarias para reducir el daño durante el manejo y desgrane de la semilla de maiz. Un lote con más del 50% de daño se debe descartar aunque la semilla esté tratada. pues causa pérdidas significativas en el rendimiento. D. Observaciones 1. La prueba del verde rápido no es confiable para detenninar daño mecánico en semilla de soya porque incluso algunas de las semillas sin daño absorben la solución, conduciendo a una apreciación equivocada.Anexo 7Esta prueba se usa en el laboratorio para determinar el porcentaje de dallo ocasionado durante la cosecha o la trilla a semilla de soya (Glycine max) y se puede adaptar para realizarta en el campo. También se puede utilizar con frijol (Phaseolus vulgar/s) y algunas semillas dicotiledóneas grandes.A. Materiales 1. Dos o más bandejas, preferiblemente plásticas, con capacidad para aproximadamente 100 semillas.2. Clórox (hipocloñto de sodio al 5.25%) yagua común.B. Procedimiento 1. Mezcle aproximadamente 3 onzas (85 mi) de clórox en 1 gal de agua.2. Descarte la semilla que tenga fisuras profundas y la semilla partida.3. Para cada repetición, separe al azar 100 semillas y coloque cada repetición en una bandeja.4. Vierta la solución de clórox sobre las semillas hasta cubrirlas completamente.5. Después de 10 min, vierta la solución de clórox, retire las semillas y extiéndalas sobre una toalla de papel para revisarlas.6. Cuente el número de semillas hinchadas. Si se han hecho varias repeticiones, calcule el promedio de semilla dañada.Sí en el campo se encuentra un porcentaje de semillas hinchadas superior al 10%, se deben hacer ajustes a la combinada. En una planta de beneficio se debe determinar el porcentaje de semillas hinchadas en un lote, antes y después de la limpieza para detectar el daño causado por el equipo.D. Observaciones 1. La soluCión de clórox puede dallar superficies pintadas o embamecídas.2. Sí las semillas se dejan en la solución de clóroxdurante más de 15 mín, las semillas sin dallo también absorberán la solución, alterando los resultados de la prueba.3. La solución de clórox se puede reutilizar en el mismo día; después de este tiempo la solución se desnaturaliza.4. En el caso de semillas de soya y mjol, la prueba se puede hacer utilizando solamente agua en lugar del ciórox.Anexo 8Las áreas de la semilla de leguminosas que han sufrido daiío físico se vuelven negras cuando se colocan en una solución de cloruro férrico. Este es un método práctico que permtte hacer una estimación rápida del porcentaje de anormalidades que se puede esperar de un determinado lote de semillas. Es uiía prueba que se hace en el sitio y permite ajustar el equipo de la planta de beneficio para reducir el daño al resto de la semilla.A. Materiales 1. Cloruro férrico (FeCI). (Se obtiene generalmente como reactivo en grado de terrones.)2. Un mortero y su majador o cualquier otro medio para moler.3. Platos de petri o recipientes similares.B. Procedimiento 1. Muela en un mortero los terrones de cloruro férrico hasta pulverizaños.2. Prepare una solución de cloruro férrico al 20%, ai\\adiendo cuatro partes de agua a una parte de cloruro férrico por peso.3. Ai\\ada media cucharadita de detergente líquido a la solución.4. Separe al azar por lo menos dos muestras de 100 semillas cada una y colóquelas en platos de petri. Si el tiempo lo permite se deben hacer dos o más repeticiones para aumentar la precisión de la prueba.5. Vierta suficiente solución en cada plato para cubrir completamente las semillas. Verifique que las semillas livianas puedan flotar.6. Pasados 5 min, empiece a separar las semillas que se colorean de negro, aunque la mancha sea muy pequeña. Es importante determinar que sea una mancha negra y no un color natural café oscuro.7. Continúe separando las semillas negras hasta pasados 15 min de añadida la solución. No separe semillas después de 15 min.8. Cuente el número de semillas que se han coloreado de negro en cada repetición. Calcule el promedio para todas las repeticiones.Generalmemte todas las semillas tenidas están muertas o se convierten en plántulas anormales cuando germinan.La solución se puede reutilizar. El bulbo del termómetro de bulbo húmedo debe estar cubierto por un material higroscópico que permita el paso del aire, por ejemplo, tela de algodón. Este material debe permanecer húmedo mientras se está usando el sicrométro. Si el bulbo húmedo se seca, medirá la misma temperatura del termómetro de bulbo seco.El aire en contacto con el bulbo húmedo evapora el agua de éste. El agua al evaporarse toma energía del bulbo húmedo, reduciendo así su temperatura. Si la humedad relativa del medio ambiente es del 100% no habrá evaporación y los dos termómetros registrarán la misma temperatura.Tampoco habrá la evaporación requerida cuando no hay movimiento de aire alrededor del bulbo húmedo; para lograr el proceso de evaporación se requiere que la corriente de aire tenga una velocidad mlnlma de 1 mlseg para determinar correctamente la temperatura de bulbo húmedo. Cuando la corriente de aire tiene una velocidad menor a la requerida, es necesario hacer girar el sicrómetro durante aproximadamente 2 minutos, a una velocidad mínima de 1 vuelia/seg.El bulbo húmedo se debe humedecer con agua limpia a una tempE'ratura mayor o igual a la del aire del ambiente que se desea medir. Para mantener seco el bulbo seco se recomienda fijarto por encima del bulbo húmedo.Finalmente, para determinar el contenido de humedad con base en las temperaturas de bulbo húmedo y de bulbo seco, se utiliza una tabla de conversión, como la que se ha incluido en las Tablas 12 y 13, o se puede utilizar la carta sicrométrica (Figura 11).Cálculo del Flujo de Aire en Secador EstacionarioLas recomendaciones principales para el secamiento de semillas en secadores estacionarios son:1. Calentar el aire a temperaturas que no excedan los 40\"C.2. Secar con aire cuya humedad relativa esté entre 40 Y 70%.3. Secar una capa de máximo 120 cm de profundidad.4. Utilizar un flujo de aire entre 6 y 10 m 3 /minlt de semilla.La temperatura y humedad relativa del aire y la profundidad de la capa de semillas son relativamente fáciles de medir y de controlar, pero generalmente es muy difícil medir el flUjo de aire, especialmente cuando no se tienen las curvas características del ventilador ni del sistema de secado.Sin embargo, existe una manera fácil y práctica de calcular el Hujo de aire del ventilador y, por consiguiente, determinar si se está utilizando el caudal apropiado.Cuando haya llenado el secador con la semilla que se va a secar, efectúe los siguientes procedimientos:1, Determine el área del piso falso del secador (ver las fórmulas geométricas de la Figura 8), 2. Determine la profundidad de la capa de semilla, Antes de tomar la medida asegúrese de que la capa esté aplanada, formando un plano paralelo al piso falso.3. Determine el volumen de semilla que se desea secar, multiplicando el área del piso falso del secador (paso 1) por la altura de la capa de semillas (paso 2), 4, Calcule la masa de semillas contenida en ese volúmen determinado, muttiplicando el peso volumétrico de la semilla que se va a secar (Tabla 10) por el volumen de la semilla (paso 3).5, Determine la caida de presión del aire al pasar a través de la capa de semillas, Para hacerlo se requiere un manómetro de tubo en \"U\", el cual se puede construir de acuerdo con las indicaciones que aparecen en el Anexo 12. El ventilador debe estar funcionando para hacer esta medición.6. Cuando tenga el manómetro, coloque suficiente agua en el tubo de tal forma que los brazos o ramales de la \"U\" queden a medio llenar.7. Apoye el manómetro en una superficie horizontal y marque el lugar donde las columnas de agua se equilibran.a. Una vez registrada la marca, introduzca el tubo metálico del manómetro dentro de la capa de semillas, Entre más se introduzca el tubo menor será el error de lectura; por esto, se debe ¡ntro-Anexos ducir desde la parte superior de la capa hasta que toque el piso falso del secador o hasta que haya penetrado por lo menos 1 m.Al introducir el tubo metálico. el aire que sale del ventilador hace subir el agua del manómetro separando los niveles que estaban equilibrados (uno sube y el otro baja). Esta distancia entra los dos niveles es la caída de presión del aire al pasar a través de la capa de semillas. 9. Determine la distancia entre los dos niveles (mm) y dividala por la profundidad hasta la cual se introdujo el tubo del manómetro (m); en esta forma se obtiene la caida de presión en mm de agua/m de capa de semillas.10. Determine el flujo de airefárea del secador. utilizando el Diagrama de Shedd (Figura 9). Con el dato de caida de presión (paso 9). siga la linea vertical en el Diagrama de Shedd hasta que se cruce con la línea inclinada correspondiente a la semilla que se está secando. En la intersección de estas dos líneas. siga en sentido horizontal hasta el eje de la izquierda donde se puede leer el caudal de aire en m 3 de aire Iminfm 2 de área del secador.11. Determine el caudal total de aire (m 3 /min). muHiplicando el área del secador (paso 1) por el caudal de aire (paso 10).12. Finalmente determine el caudal de airefmasa de semillas. dividiendo el caudal total (paso 11) por la masa de semillas (paso 4). El resultado indica los m 3 de aire/minlt de semillas.Con el fin de ilustrar el método descrito para calcular el flujo de aire, a continuación se presenta un ejemplo: Se está secando semilla de arroz en un silo cilindrico de piso falso. La capa de semillas se ha nivelado y el ventilador está funcionando.a. Para determinar el área del piso falso se mide el diámetro del silo, el cual es 4 m, y utilizando las fórmulas geométricas de la Figura 8, se calcula que el área del silo es 12.6 m 2 .b. Se introduce una regla y se determina que la altura de la capa de semillas es igual a 0.9 m. c. El volumen de la semillas es igual al área del silo multiplicada por la altura de la capa de semillas 12.6 m 2 x 0.9 m = 11.3 ¡n3 d. El peso volumétrico del arroz es 0.58 11m 3 (Tabla 10); entonces, la masa de semillas es igual a: 0.58 11m 3 x 11.3 m 3 = 6.55 t e. Una vez se ha colocado agua en el manómetro y se ha marcado el punto de equilibrio de los brazos, se introduce el tubo del manómetro hasta el fondo del silo. La distancia entre los niveles de los brazos del manómetro en este ejemplo es de 54 mm para una capa de semillas de 0.9 m; la caída de presión será Igual a: 54 mmJO.9 m = 60 mm de agua/m de capa de semillas f. En la Figura 9 se observa que a una caída de presión de 60 mm de agua/m de semilla.corresponde un caudal de 10m 3 de aire/minlm 2 de área de silo para secar semilla de arroz.g. El caudal total de aire será igual al área del silo multiplicada por el caudal de aire.12.6 m 2 x 10m 3 de aire/minlm 2 de área = 126.0 m 3 de aire/min h. Entonces, el caudal de aire que se está utilizando para secar la masa de semilla será igual al caudal total de aire dividido por la masa de semillas, así:126.0 m 3 de aire/min 6.55t = 19.2 m 3 de aire/minlt Este valor está muy ~or encima del caudal recomendado (de 4 a 17 m Iminlt); por lo tanto, no habrá ningún problema en la velocidad de secamiento de este lote de semilla. En estas circunstancias se puede aumentar el espesor de la capa de semilla hasta 1.2 m, con la seguridad de que se podrá secar sin ma-yores inconvenientes. Incluso, se puede pensar en utilizar el mismo ventilador para secar semilla en otro silo de tamafio similar.Si en otro caso se obtiene que el caudal requerido es menos de 4 m 3 /minlt, se debe disminuir el espesor de la capa de semilla pues de lo contrario el tiempo de secado sería muy largo con el correspondiente riesgo para la semilla. otra posibilidad es disminuir el área del secador o cambiar el ventilador por uno de mayor caudal.Si la potencia del motor del ventilador es superior a la fuerza que requiere el ventilador, se puede aumentar la velocidad del ventilador cambiando las poleas. Antes de hacer este cambio, verifique que el consumo de energla del ventilador (amperaje) es menor que el valor recomendado por el fabñcante (el cual aparece en la placa del motor). y que no se está excediendo el limite de velocidad del ventilador. Si tal es el caso. se pueden cambiar las poleas para aumentar el flujo de aire. Una vez realizados estos cambios, es importante medir de nuevo el caudal de aire para verificar que se encuentra dentro del rango recomendado.Utilización del Manómetro de Tubo en \"U\"El manómetro de tubo en \"U\" permite medir directamente la presión del aire expresada como la aHura de una columna de agua. Una presión equivalente a 1 atmósfera (101.3 kPa) sostiene una columna de agua de 10.33 m de altura, y una columna de agua de 1 mm de aHura equivale a una presión de 9.8 Pa, En sistemas de aireación y secamiento de semillas, se requieren presiones relativamente bajas (hasta un máximo de 200 mm H20 o sea 1.96 kPa).Este manómetro se construye con un tubo transparente doblado, según se muestra en la Figura 10; uno de sus extremos está abierto a la atmósfera y el otro se conecta al tubo que se introduce en la capa de semillas. Se añade agua dentro del tubo hasta que los brazos o ramales de la \"U\" queden a medio llenar. (El agua se puede teñir para facilitar la lectura.) La presión de aire hace subir el nivel del agua de uno de los brazos, mientras que baja el nivel del brazo opuesto. La distancia entre los niveles del agua en cada uno de los brazos de la \"U\" representa la diferencia de presión ejercida por el aire entre los dos extremos del manómetro.La presión se exprese en unidades de fuerza sobre área (1 N/m 2 = 1 Pa) o en mm H20. El diámetro del tubo puede ser de cualquier tamaflo; generalmente se utiliza una manguera de plástico de 5-10 mm de diámetro.1 Tamafto máximo del lole y tamaño mínimo de la muestra de envío (ISTA No. 13, Vol 2, 1985) para realizar el análisis de pureza y la detenninación de la presencia de otras especies en el lote de semillas.2 Fadores de descuento de peso para secamiento hasta un 13% de humedad (base húmeda) de acuerdo con el contenido Inicial de humedad de un lote de semillas.Características del ventilador necesarío para secar semillas de arroz en silos de fondo falso en capas de diferentes espesores.Peso volumétrico, gravedad específica, y porosidad de algunas especies de semillas.Relación entre el contenido de humedad y el peso volumétrico de algunas semillas.Humedad relativa del aire como función de las temperaturas (entre 10 y 30°C) de bulbo seco y bulbo húmedo en condiciones a nivel del mar.Humedad relativa del aire como función de las temperaturas (entre 30 y 50°C) de bulbo seco y bulbo húmedo en condiciones a nivel del mar.Humedad relativa del aire como función de las temperaturas (entre 50 y 70°C) de bulbo seco y bulbo húmedo en condiciones a nivel del mar.Cuadro de conversión de temperaturas de grados Celsius a grados Fahrenheit, y vice versa.Contenido energético de algunos combustibles.17 Conversión de fracciones de pulgada a milimetros.18 Dimensiones de las perforaciones de las zarandas de alambre en pulgadas y sus equivalentes en milímetros.19 Número del calibre de alambres y láminas metálicas y su respectivo diámetro o espesor.20 Zarandas comunmente utilizadas en el acondicionamiento de semillas de diversos cultivos.Separaciones más comunes realizadas con el cilindro indentado.Separaciones más comúnes realizadas con discos alveolados.Velocidad calculada de la banda del elevador de cangilones para diferentes diámetros de la polea motriz.Area requerida (m 2 1t) para el almacenamiento de semilla en bolsas según diferentes alturas y diferentes pesos volumétricos.Conductividad térmica de varios materiales.Angulo en grados de la arista formada por dos planos inclinados. EJEMPLO: Cuál es el peso final de un lote de semiBas oon un peso inicial de 20,000 kg Y un contenido ini<::ial de humedad 00121.6%, si se seca hasta el 13%1En la Tabla encontramos que ei fador de descuento (F) es 0.901, Ent()fl('leS, Peso final .. 0.901 x 20,000 kg = 18.020 kg con un oomenido fmal de humedad del 13%. Para calcular los descuen10s de peso para una humedad final diferente 8113%. se puede U$Sr la lSigukmttl fOrmula:Pr \"\" (l00-Hl) x PI (100 -Hl)AsA, por ejemplo para el lote del ejemplo anterior. cuál sera el pe$O final si la semilla se s.eea hasta un 12.5% de humedad?'\" = (100 -21.~ x 20.000 kg (100 -12.5) = 0.896:x 20,000 kg '= 11.920 kg ron un 12.5% de humedad TABLA 3. Preparación de la. semillas para la prueba de tetrazollo. TABLAS . Desempeno de ventiladores vano--axiaies.-----_.-. ~ .. _~------_ ..Flujo 25 mm H20 50mmH,o 75mmH20Modelo de aire --_ -----_. ----------_.Ejemplo p3ffi fa uiilizaclión de la tabla: Temperatura bulbo seco '\" 25\" e, Temperatura bulbo húmedo'\" 20\" e, ootonCfl: Humedad l'$lativa 63%.TABU\\ 13. Humedad relatiVa del aire como función de las temperaturas (entre 30 y SO\"C) de bulbo seco y bulbo húmedo (O msnm). 0.10 0,13 0,15 0,18 0,20 0,23 0,25 0,28 0,30 0,33 0,38 0,38 0.41 0,43 0,46 0,46 0,51 0,58 0,61 0.76 Soporte para la cámara de condensaciónCémara de condensación (30 cm x , 3 cm} 3.Tubo de condensación (preferiblemente de cobre) 4. Tubo de coneccíón (plástico o caucho) 5.Tubo curvo (preferiblemente de cObre) 6. Termómetro 12000C¡ 7. Tapón de caucho 8.frasco Erlenrneyer {500 mI} 9.Mechero (fuente de calor} 10. Soporte para el mechero y el Etlenmeyer ,\\6T,14 '1,l611e&l --'155\"1 Pu,vn. ¡\"6I?é:SO PAIl4 ,*\",,~*io 1>6' -' \" a&lE~•!ao ~55q ;ZIG:¡ 5392-'F~,\"\"\"''''1»!' ~~~N70. Amortiguador final con tapa para limphua Amortiguador de linea Figura 19. Tipos de amortiguadores. ","tokenCount":"26830"} \ No newline at end of file diff --git a/data/part_3/3309957085.json b/data/part_3/3309957085.json new file mode 100644 index 0000000000000000000000000000000000000000..fad8ad2e8bf4e48fdeebff959e7679265044b880 --- /dev/null +++ b/data/part_3/3309957085.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"92f77104c837ab7da1426f8b70815f3e","source":"gardian_index","url":"https://www.cifor.org/publications/pdf_files/Books/Gender_Equality_ID.pdf","id":"-1461601924"},"keywords":[],"sieverID":"c9538131-3f5c-4f8c-a4a0-7714bca7e3e2","pagecount":"156","content":"Gambar 3. Karakter persinggungan dari pola-pola diskriminasi struktural gender.Sumber: UN Women (2018b).Panduan praktisi ini menjelaskan bagaimana cara untuk mendorong reformasi tenurial hutan dalam rezim hutan berbasis masyarakat. Ini ditujukan pada mereka yang mengambil tantangan ini di negara-negara berkembang.Tidak ada pendekatan tunggal untuk mereformasi praktik-praktik tenurial dalam rangka mewujudkan kesetaraan gender dan pemberdayaan perempuan.Sebaliknya, proses ini lebih pada memanfaatkan peluang-peluang yang muncul dalam berbagai arena kelembagaan seperti pembuatan dan implementasi kebijakan dan perundang-undangan, administrasi pemerintahan, tata kelola adat atau tenurial berbasis masyarakat, atau restorasi hutan pada skala bentang alam. Tujuan umum adalah untuk mendorong tata kelola tenurial hutan yang bertanggung jawab yang memenuhi kepentingan baik perempuan maupun laki-laki dengan semua latar belakang.Buku pedoman ini menyediakan beragam bentuk panduan: ide konseptual, arahan operasional, praktikpraktik terbaik, wawasan studi kasus, temuan penelitian dan sumber-sumber lain untuk eksplorasi lebih lanjut dari Afrika, Asia dan Amerika Latin. Ini dirancang untuk mendukung beragam praktisi, perempuan dan laki-laki, dari berbagai lembaga seperti kantor-kantor PANDUAN PRAKTISI SECARA SINGKAT pemerintah, organisasi nonpemerintah, lembaga swadaya masyarakat, lembaga donor, organisasi perempuan, juga berbagai jaringan kerja dan federasi.Termasuk di dalamnya adalah para ahli gender yang bertanggung jawab untuk mengintegrasikan kesetaraan gender dan pemberdayaan perempuan ke dalam organisasi mereka, dan mereka yang secara umum bekerja dalam dunia tenurial lahan, tenurial dan tata kelola hutan, restorasi bentang alam hutan, wanatani, pengembangan rantai nilai dan usaha-usaha yang berdampak sosial. Kami tidak mengejar partisipasi perempuan untuk meningkatkan statistik, tapi untuk terlibat aktif dalam setiap proses. Kami juga secara bersamaan terlibat dalam membentuk kesadaran bahwa selain menjadi penerima manfaat dari mengelola hutan, perempuan juga bertanggung jawab untuk setiap kehilangan yang terjadi. Kami mendorong perempuan untuk memimpin dalam kegiatan-kegiatan peningkatan kapasitas seperti pelatihan, lokakarya, berbicara di depan publik. Dengan demikian, mengidentifikasi kebutuhan perempuan dan orang-orang yang terpinggirkan, memberikan mereka prioritas kebijakan dan mendukung mereka telah mewujud dalam bentuk keterampilan dan kemampuan kepemimpinan.Dalam pembangunan gender, peran laki-laki sama pentingnya. Pada banyak kelompok pengguna kehutanan, laki-lakilah yang menekankan partisipasi perempuan yang lebih besar dan peningkatan kapasitas mereka. Kita harus memberikan kesempatan kepada siapa saja yang posisinya kurang diuntungkan. Dalam masyarakat terdapat orang-orang dengan kepentingan dan kebutuhan yang berbeda, dan kesempatan harus disesuaikan untuk masing-masing kelompok kepentingan. Kita harus mengarusutamakan praktik tersebut pada semua desa di daerah pedalaman. FECOFUN telah memainkan peran penting di seluruh bagian negara pada tingkatan yang berbeda.Mayoritas hutan di negara berkembang dimiliki oleh publik. Namun demikian, terdapat peningkatan tren menuju hak tenurial dan kepemilikan hutan yang dipegang oleh masyarakat, individu dan perusahaan swasta (Sunderlin dkk. 2008;Larson dkk. 2010;FAO 2011FAO , 2015a;;RRI 2015RRI , 2018)). Selama empat dekade terakhir, pemerintah di Asia, Afrika dan Amerika Latin telah merevisi undang-undang pertanahan dan kehutanan untuk memberikan pengakuan hukum yang lebih besar (de jure) bagi hak tenurial hutan masyarakat adat dan penduduk lokal (indigenous peoples and local communities, IPLC). Walaupun jumlah total kawasan daratan di luar yurisdiksi negara masih rendah, transisi tenurial hutan merupakan sebuah tren devolusi yang berpengaruh dengan konsekuensi positif yang signifikan (Sunderlin dkk. 2008;Larson dkk. 2010;Dahal dkk. 2012;Alden Wily 2014;Sunderlin 2014;RRI 2018).Namun, dalam proses devolusi ini, hanya beberapa negara yang menangani masalah kesetaraan gender dan pemberdayaan perempuan (lihat Lampiran 1: Istilah Umum tentang Gender). Walaupun pemrograman gender dan kehutanan telah dimulai sejak tahun 1980-an (lihat Rojas 1993;;FAO 1997;Hoskins 2016), kemajuannya masih terbatas. Jelas bahwa hak masyarakat tidak sama dengan hak untuk perempuan pada sektor kehutanan saat ini. Terdapat diskriminasi struktural yang mengesampingkan pengaruh perempuan terkait bagaimana sumber daya hutan digunakan dan dikelola dalam kehutanan berbasis masyarakat. Sebagai contohnya, perempuan jarang terwakili sebaik laki-laki dalam badan tata kelola hutan. Walaupun begitu, dimensi gender dalam tenurial hutan di setiap tempat dapat secara signifikan berbeda karena hal ini merupakan hasil dari adanya proses historikal yang kompleks (seperti kolonialisme), pergerakan perempuan, transformasi kebijakan dan hukum serta dinamika institusi lokal (lihat, sebagai contoh, Elmhirst dkk. 2017).Tercapainya peningkatan sosial dan lingkungan secara keseluruhan dari transisi tenurial hutan yang sedang berlangsung sangat bergantung pada kemampuannya 1.1 untuk secara inklusif mendukung beragam kebutuhan perempuan dan laki-laki (FAO 2018c). Walaupun pesan tentang pentingnya kesetaraan gender sudah semakin bergaung, hal ini tidak selalu diikuti oleh aksi transformatif yang nyata di lapangan (Monterroso dan Larson 2019a). Untuk mempercepat perubahan pada praktik, kita perlu lebih memahami beragam jalur untuk mencapai kesetaraan gender dalam tenurial hutan. Ada banyak yang bisa dipelajari dan menjadi sumber inspirasi. Jalur mana yang telah berhasil mengurangi kesenjangan gender? Dengan melihat kesuksesan dari negara-negara tertentu dapat membantu yang lain untuk melakukan perubahan terkait gender. Khususnya belajar dari kegagalan dan kebutuhan untuk mengidentifikasi cara agar praktikpraktik yang dilakukan perempuan dapat tertanam dan terjejaring secara sosial, serta sisi multidimensi dari agensi perempuan dapat mengarah pada transformasi yang nyata dan berkelanjutan (Rao 2017). Ini adalah tujuan dari Menganalisa, Menyusun Strategi, dan Mewujudkan jalur yang disebutkan dalam publikasi ini (Gambar 1). Dibutuhkan aksi-aksi dari berbagai rencana yang berkelanjutan, yang diurutkan dengan tepat, untuk dapat maju secara sistematis.Tenurial hutan merupakan sebuah konsep luas yang mengacu pada siapa yang memiliki hak atas lahan hutan, dan siapa yang menggunakan, mengelola dan membuat keputusan tentang sumber daya hutan (lihat Lampiran 2: Istilah-Istilah Umum tentang Tenurial) (Larson 2012;Larson dan Springer 2016;Bank Dunia 2019a;lihat juga Borelli dkk. 2019 tentang tenurial dalam wanatani). Tenurial hutan mencakup pengaturan kelembagaan yang beragam dalam kategori yang luas, seperti kontrol negara, kepemilikan, penguasaan, tenurial berbasis masyarakat dan tenurial adat (atau de facto) atas hutan. Bahkan istilah seperti 'tenurial adat' adalah istilah yang sangat luas dengan cakupan jenis-jenis sistem tenurial yang beragam (Chimhowu 2019). Masing-masing memiliki pengaturan tata kelola tenurial dengan tingkatan partisipasi dan kolaborasi dengan pemerintah yang beragam. Sering kali, hutanMemahami pencapaian, serta tantangan dan kebutuhan di masa mendatangMenetapkan strategi yang efektif untuk mewujudkan perubahan dalam jangka waktu tertentuMengimplementasikan strategi melalui serangkaian kegiatan yang berurutan dan terjadwal, memadukan refleksi dan pembelajaranyang dimiliki bersama merupakan bagian dari kawasan adat (Alden Wily 2014;Jhaveri dkk. 2016). Setiap jenis tenurial berdampak pada perempuan dan laki-laki yang tinggal di dalam dan sekitar hutan dengan caracara tertentu. Ketika mengamati sekumpulan hak yang dimiliki perempuan dan laki-laki (Gambar 2), terlihat gambaran yang kompleks untuk semua lahan berhutan. Perempuan biasanya memiliki hak-hak untuk sumber daya hutan, seperti pakan ternak, kayu bakar, tumbuhan obat, dan beberapa hasil hutan bukan kayu (HHBK) yang bernilai komersial. Laki-laki biasanya memiliki hak atas sumber daya hutan yang bernilai ekonomi lebih tinggi, seperti kayu dan HHBK bernilai tinggi. Selain itu, laki-laki biasanya lebih memiliki kewenangan dan pengaruh tentang bagaimana aturan tentang hak dibuat, seperti terkait akses, pemanfaatan, pengelolaan dan alienasi, sementara perempuan sering bekerja dengan cara yang lebih informal dan melibatkan proses negosiasi untuk mendapatkan hak tenurial mereka.Jika melihat bagaimana hutan dimanfaatkan dari perspektif rumah tangga, ada proses negosiasi antara perempuan dan laki-laki tentang siapa yang akan memanfaatkan sumber daya hutan tertentu dan bagaimana pembagian manfaatnya. Seringnya, normanorma sosial yang menentukan distribusi tersebut. Setiap rumah tangga memanfaatkan serangkaian sumber daya di wilayah bentang alam mereka: wilayah budidaya pertanian (irigasi dan tadah hujan), hutan dimanfaatkan secara bersama, kebun-kebun rumah dan persemaian di sekitar rumah tangga, plot-plot wanatani swasta dan bahkan wilayah konsesi hutan tempat berlangsungnya kegiatan pemanenan hutan. Selain pemanfaatan sumber daya, perempuan dan lakilaki dapat bekerja pada hutan-hutan tanaman, seperti kelapa sawit, kacang Brasil atau produksi kakao. Namun demikian, kehutanan berbasis masyarakat berlangsung dalam konteks yang lebih luas yang di dalamnya terdapat wilayah untuk produksi pertanian serta kontinum 'bentang alam-hutan-pohon' yang kompleks (Parrotta dkk. 2016).Cara perempuan dan laki-laki dengan tingkat aset sosial dan finansial yang berbeda terlibat dalam pembuatan keputusan dan pengelolaan hutan yang digunakan secara bersama oleh masyarakat memiliki implikasi yang penting. Hal ini berpengaruh pada kondisi hutan, juga keamanan pangan, pengentasan kemiskinan, penghidupan dan perolehan pendapatan (lihat IFRI dan RRI 2016;Larson dkk. 2019c). Tidaklah bermanfaat untuk memandang perempuan sebagai sebuah kategori monolitis. Sebaliknya, analisis interseksionalitas gender membutuhkan identifikasi berbagai jenis diskriminasi struktural yang secara bersama-sama membentuk hambatan bagi kelompok-kelompok atau individu perempuan (Gambar 3). Perempuan dan laki-laki akan menggunakan manfaat yang diterimanya dari sumber daya hutan dengan cara yang berbeda, baik untuk penggunaan personal atau untuk kebutuhan keluarga. Catatan: Kerangka kerja sekumpulan hak tenurial atau hak milik ini telah berkembang dari waktu ke waktu (lihat Bank Dunia 2019a). Terdapat argumen baru-baru ini untuk membingkai ulang kerangka kerja ini karena banyak pemangku kepentingan selain masyarakat lokal yang terlibat dalam rezim tenurial (Sikor dkk. 2017).Sumber: Diadaptasi dari Larson (2012); FAO dan RECOFTC (2016); Larson dan Springer (2016); Doss dan Meinzen-Dick (2020); Bank Dunia (2019a); FAO (2019a).Secara keseluruhan, transisi tenurial hutan yang sedang berlangsung ini memiliki dampak positif yang penting karena dapat memberikan insentif bagi IPLC untuk secara aktif terlibat dan mendapatkan manfaat dari pengelolaan hutan lokal. Oleh karenanya transisi ini mendorong stabilitas dan keamanan sosial dengan mengurangi kemiskinan dan perselisihan. Mulai muncul konsensus bahwa apabila serangkaian kondisi tata kelola baik, tenurial hutan masyarakat memiliki potensi untuk mengurangi deforestasi, meningkatkan penyimpanan karbon dan memperluas pilihanpilihan penghidupan bagi masyarakat setempat jika dibandingkan dengan hutan-hutan yang dikelola negara (lihat, misalnya, Stevens dkk. 2014;Ding dkk. 2016; IFRI dan RRI 2016;Stickler dkk. 2017;Bank Dunia 2019a;Hajjar dkk. 2020). 1 Selain itu, terdapat pengakuan bahwa kesetaraan gender menjadi katalis bagi dampak-dampak1 Topik penelitian ini tidak bersifat konklusif -lihat Runsheng dkk. (2016) dan Ojanen dkk. (2017).Rumah tanggal IPLC yang berbeda memiliki jaringan sosial yang berbeda di dalam masyarakat lokal dan memiliki pengaruh terkait bagaimana hak-hak tenurial ditetapkan dan diterapkan baik dalam badan tata kelola hutan maupun dalam praktik sehari-hari. Hak-hak tenurial bekerja secara formal dan informal. Selain itu, ketika sumber daya baru, misalnya karbon, ditemukan dalam hutan, peraturan tenurial akan serta merta berubah untuk merefleksikan tujuan-tujuan baru yang diperkenalkan. Perubahan dalam peraturan tenurial dapat berasal dari banyak sisi: tidak hanya perubahan iklim, tapi konstruksi infrastruktur jalan baru, pembangunan pasar, tekanan untuk mengkonversi lahan berhutan menjadi pertanian atau membentuk konsesi hutan untuk produksi kayu dan lain-lain. Daftar ini terus berlanjut.berganda positif untuk berbagai isu-isu pembangunan, baik bagi hutan, kesehatan atau pendidikan (UN Women 2018a). Mengingat sudah terbukti bahwa pengetahuan perempuan dan laki-laki tentang hutan dan pohonpohon yang spesifik cukup berbeda dan dapat saling melengkapi, kontribusi bersama mereka dibutuhkan untuk mewujudkan bentuk-bentuk kolaboratif bagi pengelolaan hutan berkelanjutan (FAO dan RECOFTC 2016;Colfer dkk. 2017;Kristjanson dkk. 2019). Dengan mengumpulkan sumber daya finansial mereka dari hutan, masyarakat dapat membangun klinik-klinik lokal, fasilitas jalan yang lebih baik, infrastruktur dan teknologi yang mengurangi beban pekerjaan perempuan. Dengan cara ini, perempuan dan laki-laki dapat secara efektif berpartisipasi dalam pembuatan keputusan yang secara bersama menciptakan kesejahteraan sosial. Dalam hal manfaat rumah tangga, perempuan biasanya menggunakan pendapatan mereka dari sumber daya hutan untuk membiayai kebutuhan anak-anaknya, baik itu kesehatan, pendidikan dan lainnya. Secara keseluruhan, peningkatan inklusivitas seperti itu dapat mengurangi konflik dan memperkuat ikatan masyarakat. Menggabungkan upaya-upaya perempuan dan lakilaki meningkatkan peluang kesetaraan, efisiensi dan efektivitas dalam bentang alam berhutan. Hal ini juga dapat mengurangi kemiskinan dan memperkuat manfaat pembangunan.Saat ini terdapat suatu gelombang baru reformasi tenurial hutan yang mengangkat profil kesetaraan gender dalam rezim-rezim tenurial hutan berbasis masyarakat. Tujuannya adalah untuk mengubah sistem diskriminasi yang telah tertanam. Keragaman yang tinggi dalam pengaturan reformasi tenurial hutan berarti bahwa mewujudkan reformasi yang responsif gender membutuhkan perhatian yang detail. Dengan menggunakan analisis gender situasional, sebuah strategi dapat dirancang untuk menginformasikan serangkaian urutan dan intervensi bertahap yang spesifik yang dibutuhkan untuk mencapai visi. Perubahan aktual dalam jalur tenurial hutan melalui intervensi ini , tentunya, tidak serta merta berjalan linear atau dapat diprediksi. Reformasi tenurial hutan berbeda dari reformasi agraria karena tidak melibatkan redistribusi lahan, namun berfokus pada bagaimana tata kelola lokal dan kepastian hak-hak disusun secara bertanggung jawab. Untuk dapat memenuhi harapan-harapan pembangunan dan kesejahteraan lingkungan hidup bagi semua membutuhkan berbagai perubahan dalam rezim tenurial: memungkinkan perempuan dan laki-laki untuk berpartisipasi secara berkesetaraan, secara kolektif menetapkan peraturan yang inklusif secara sosial, membangun hutan yang berkelanjutan, membagikan manfaat yang terdistribusi secara adil dan memanfaatkan sumber daya hutan untuk pengembangan bisnis. Memajukan kesetaraan gender dan pemberdayaan perempuan akan melibatkan jalur perubahan yang inklusif serta berfokus pada perempuan dan laki-laki.Dorongan untuk kesetaraan gender dalam rezim tenurial hutan berbasis masyarakat muncul dari berbagai arah: perempuan lokal, penggerak laki-laki, organisasi perempuan, organisasi kehutanan, kelompok masyarakat sipil, Lembaga Swadaya Masyarakat (LSM) lokal dan internasional, parlemen, lembaga donor, dan yang penting, dari agenda pembangunan dan kebijakan pemerintah. Reformasi semacam itu tidak terjadi dalam satu malam atau dengan cara yang linear: perubahan dapat bersumber dari atas maupun bawah. Semua peluang yang signifikan harus dimanfaatkan. Berbagai kebijakan dan pedoman global dapat memainkan peran penting dalam mendorong perubahan pada tingkat nasional. Pada skala global, terdapat konvensi internasional dan deklarasi terkait hak-hak asasi perempuan yang menginspirasi dorongan bagi kesetaraan gender. Sumber: UN (2017).Menghapuskan segala praktik-praktik yang membahayakan, seperti perkawinan paksa, perkawinan anak atau dini dan sunat perempuan. Memperbanyak penggunaan teknologi terapan, khususnya teknologi informasi dan komunikasi, untuk mendukung pemberdayaan perempuan.Mengadopsi dan menguatkan kebijakan yang praktikal dan penegakan perundang-undangan untuk mendorong kesetaraan gender dan pemberdayaan semua perempuan dan anak perempuan. Secara paralel, laporan tersebut menyerukan suatu pendekatan yang inklusif gender karena pengakuan hakhak perempuan atas lahan dan keterlibatan perempuan serta pengetahuan mereka tentang pengelolaan lahan ke dalam pembuatan keputusan terkait lahan dapat memungkinkan penetapan langkah-langkah adaptasi dan mitigasi yang terintegrasi. Yang terpenting adalah, adanya pengakuan bahwa karena perempuan bukanlah kelompok yang homogen, sehingga dibutuhkan pendekatan interseksional (lihat Lampiran 1: Istilah-Istilah Umum tentang Gender). Penelitian mengenai hubungan perubahan iklim-gender perlu dilakukan sebelumnya agar perangkat-perangkat berbasis hak dapat dimanfaatkan untuk menciptakan perubahan, baik bagi adaptasi maupun mitigasi.Perubahan kebijakan global tentang kesetaraan gender dan tentang hutan menyediakan sebuah landasan yang kuat bagi pengenalan reformasi tenurial hutan yang responsif gender di tingkat nasional dan lokal. Memajukan jalur tenurial hutan untuk kesetaraan gender membutuhkan kreativitas, determinasi dan perlu dengan cepat mengambil peluang yang muncul di depan mata. Pada akhirnya, kondisi yang berkesetaraan gender dalam bentang alam berhutan yang digunakan bersama akan terwujud.Pada tahun 2006, \"Mengamankan Hak Masyarakat Hutan Melalui Undang-Undang Suku Terasing (Scheduled) dan Penghuni Hutan Tradisional Lainnya (Pengakuan Hak-Hak atas Hutan)\" (atau Undang-Undang Hak Kehutanan (Forest Rights Act, FRA)) ditetapkan. Undang-undang ini bertujuan untuk mengatasi ketidakadilan historis dan mengembalikan hak atas tanah dan hutan bagi masyarakat tergantung hutan yang secara tradisional tinggal di lahan yang tercatat sebagai hutan negara. FRA membentuk suatu paradigma baru untuk tata kelola hutan berbasis hak dengan pengakuan dua jenis hak atas hutan: hak hutan individu dan hak hutan masyarakat untuk perempuan dan laki-laki. Penghuni hutan dari sejumlah suku terasing (Forest Dwelling Scheduled Tribes, FDST) maupun penghuni hutan tradisional lainnya (Other Traditional Forest Dwellers, OTFD), terdapat sekitar 250 juta orang tinggal di dalam dan sekitar hutan, berhak untuk mengajukan klaim di bawah FRA. Walaupun lembaga yang memimpin pelaksanaan adalah Kementerian Urusan Kesukuan, dalam praktiknya implementasi ini dilemahkan oleh berbagai undang-undang, kebijakan dan program yang dilaksanakan oleh Kementerian Lingkungan Hidup, Kehutanan dan Perubahan Iklim yang jauh lebih kuat.FRA memberikan hak-hak yang berkesetaraan bagi perempuan atas lahan individu maupun sumber daya hutan masyarakat dan bermaksud untuk memastikan keterwakilan perempuan. Namun demikian, ketentuan-ketentuan dalam hukum ini sebagian besar diabaikan (TISS 2018; lihat juga Tyagi dan Das 2018). FRA memungkinkan perempuan untuk mengklaim hak milik bersama dengan pasangan sebagai anggota rumah tangga, dan memungkinkan rumah tangga untuk mengajukan klaim dengan perempuan sebagai pemilik utama (misalnya perempuan tanpa pasangan atau rumah tangga yang dikepalai perempuan). Selain itu, sepertiga dari anggota Komite Hak atas Hutan (Forest Rights Committee, FRC) yang berada di bawah Gram Sabha 1 (badan permanen untuk tata kelola desa yang bertanggung jawab untuk memproses klaim FRA) harus merupakan perempuan. Komite tingkat subdivisi dan komite tingkat divisi yang terlibat dalam pemrosesan klaim hutan juga harus memiliki anggota perempuan terpilih.Namun demikian, terdapat kesulitan dalam berbagai dimensi yang telah diidentifikasi dalam implementasi FRA yang berkesetaraan gender (Bhalla 2016). Pemikiran patriarkis yang berlaku pada berbagai lembaga negara berarti bahwa perempuan dianggap sebagai perambah alih-alih sebagai pemegang hak milik yang sah (Ramdas 2009;TISS 2018). Perempuan FDST sering tidak menyadari persyaratan bahwa sepertiga kehadiran pada pertemuan Gram Sabha harus dipenuhi oleh perempuan. Mereka tidak mengetahui peran mereka dalam FRC, dan tidak memahami pentingnya berpartisipasi pada proses verifikasi lapangan (Working Group of Women and Land Ownership 2018). Selain itu, tidak tersedianya layanan publik yang memadai untuk air, kesehatan dan lain-lain, membuat perempuan mengalami kesulitan untuk secara signifikan meningkatkan kondisi ekonomi, meskipun mereka memperoleh hak-hak FRA (Zaidi 2019). Di sisi lain, perempuan Bhil di bagian selatan Rajasthan, yang telah mengelola sumber daya hutan berbasis masyarakat dalam masyarakat mereka yang lebih egaliter, mengalami perampasan kewenangan ketika FRC (dengan hanya 30% keanggotaan perempuan) mengambil kendali atas sumber daya kehutanan masyarakat (Bose 2011). Situasi keterbalikan ini menunjukkan pentingnya memahami pola pola akses dan penggunaah hutan sebelum memobilisasi program untuk kesetaraan gender.Terakhir, meskipun FRA memungkinkan pemegang hak milik untuk menjual HHBK yang mereka pilih, pada praktiknya hal ini jarang terjadi. Pada beberapa negara bagian, seperti Madhya Pradesh, di mana FRA membatasi monopoli keuntungan besar dari dauntendu yang dilakukan departemen kehutanan (HHBK yang biasanya dikumpulkan dan dijual untuk membuat rokok beedi), staf kehutanan akan menyita daun tendu jika tidak dijual langsung ke departemen kehutanan (Kukreti 2017). Tidak seperti Maharashtra, Madhya Pradesh belum mengubah undang-undang kehutanannya untuk mengakui hak HHBK yang diberikan di bawah FRA. Terlepas dari kendala tersebut, terdapat beberapa perubahan positif dalam pemberdayaan perempuan karena dukungan kerja dari organisasi masyarakat sipil (CSO). Di Rajasthan selatan, setelah perempuan memperoleh hak FRA, mereka dapat mengakses lahan hutan dengan lebih mudah tanpa menghadapi perilaku sewenang-wenang dari pejabat dan tanpa kewajiban membayar atas kegiatan pengumpulan pakan ternak (Zaidi 2019). Kepastian hak atas lahan juga memungkinkan mereka untuk menjual produk pertanian di pasar lokal. Hal yang penting, dengan memiliki aset lahan FRA kepercayaan diri di kalangan perempuan telah meningkat, terutama para janda, dan praktik-praktik regresif seperti poligini telah ditentang.Rekomendasi untuk memperkuat hak-hak gender di bawah FRA di dalam negara bagian Odisha dan Jharkhand termasuk di bawah ini (Bhalla 2016;Richardson 2016):• meningkatkan keanggotaan minimal perempuan dalam FRC (dari satu pertiga menjadi setengah), Komite Tingkat SubDivisi, dan Komite Tingkat Divisi;• memberikan mandat kepada perempuan untuk menjadi pemimpin perwakilan dari FRC;• memastikan bahwa anggota CSO pada Komite Tingkat SubDivisi dan Divisi telah terbukti memiliki rekam jejak kerja FRA;• mensyaratkan waktu wajib bertugas bagi anggota komite yang tidak didasarkan pada siklus pemilihan nasional;• mengintegrasikan modul tentang pengarusutamaan gender dalam pelatihan FRA untuk anggota komite;• memilah data menurut jenis kelamin, kasta, etnis dan kategori terkait OTFD.• mendukung lembaga-lembaga pemerintah melalui pelatihan dan penyadaran bagi para pejabat pemerintah;• bertukar praktik-praktik terbaik dan pembelajaran, termasuk verifikasi lahan hutan untuk hak-hak individu dan masyarakat dan mendokumentasikan sertifikat FRA;• mendukung pemohon dalam mengukur manfaat sertifikat individu versus bersama atau kombinasi dari keduanya, masing-masing dengan aliran manfaatnya;• mendorong keterlibatan yang mendalam pada masyarakat sasaran untuk mengubah kebiasaan dan praktik lama yang bertentangan dengan kesetaraan gender;• sering mengadakan pertemuan kelompok-kelompok perempuan untuk membantu pemberdayaan perempuan;• menginisiasi pertukaran tentang pengarusutamaan gender dan integrasi dari kelompok-kelompok terpinggirkan (misalnya, perempuan, OTFD) dalam proses implementasi FRA;• mendistribusikan edaran tentang kemajuan pemerintahan FRA di Odisha ke negara-negara bagian lain;• mengadakan konsultasi pada tingkat kabupaten untuk mengeksplorasi pembelajaran positif yang dapat diimplementasikan di negara bagian yang lain.Dukungan kuat dari LSM dan organisasi masyarakat sipil (CSO) untuk membantu perempuan mengenali dan menegaskan hak-hak mereka dapat menciptakan perubahan fundamental dalam kehidupan jutaan perempuan terpinggirkan dan miskin di seluruh wilayah persukuan terpenting di India.Memiliki undang-undang yang mendukung prinsip-prinsip kesetaraan gender adalah sebuah titik awal yang penting yang memungkinkan adanya berbagai kegiatan pendukung yang lain (biasanya melalui LSM dan CSO). Hal ini penting untuk mencapai tujuan: memperbaiki peraturan, mengubah praktik-praktik yang berlaku, kegiatan penyadaran gender, program peningkatan kapasitas, mengkaji aliran manfaat dan lain-lain. • Kurangnya pemahaman tentang pentingnya kesetaraan gender dan pemberdayaan perempuan secara luas dalam sektor kehutanan, khususnya isu-isu tenurial.• Terdapat kecenderungan kuat untuk mementingkan perolehan dan penguatan hak tenurial tingkat masyarakat daripada berfokus pada hakhak spesifik perempuan dan laki-laki.• Kurangnya dukungan langsung dan konsisten dari LSM dan federasi akar rumput untuk masyarakat lokal dalam memperoleh pengakuan tenurial dan menegaskan hak perempuan dan lakilaki melalui peningkatan kepemimpinan perempuan untuk partisipasi efektif dalam badan tata kelola hutan.• Program dan intervensi oleh pemerintah, lembaga donor atau LSM bersifat buta gender.• Kebutuhan yang berbeda dari perempuan dan laki-laki dan bentuk-bentuk diskriminasi interseksional tidak dikenali.• Pengusul proyek memiliki pemahaman dan pengakuan yang buruk tentang peran perempuan, dalam lembaga hak adat dan penduduk asli secara de facto dan sah dalam implementasi kebijakan dan hukum.• Staf kurang peka terhadap masalah gender.• Sumber daya anggaran atau teknis yang dikhususkan untuk perbaikan tenurial hutan yang responsif gender tidak memadai.Gambar 5. Kesenjangan gender dalam lembaga tenurial hutan.• Kebijakan dan hukum kehutanan pemerintah bisa jadi tidak membahas kebutuhan gender sama sekali, atau jika ya, menindaklanjutinya tanpa menyentuh persoalan substansi atau dengan panduan implementasi yang tidak jelas.• Laki-laki yang tidak menyadari tentang tanggung jawab kesetaraan gender mendominasi lembaga pembuat keputusan yang penting.• Lembaga pemerintah dan lembaga kehutanan kunci yang lain memiliki pemahaman, kapasitas dan anggaran yang lemah untuk melaksanakan kegiatan tenurial hutan responsif gender.• Pembagian sektoral antara lembaga kehutanan dan lembaga lainnya seperti Kementerian Perempuan, Kementerian Lingkungan Hidup, atau Komisi Perencanaan Nasional menghalangi integrasi dan koordinasi gender di sektor kehutanan.• Terdapat kekurangan data terpilah gender untuk memahami bagaimana dan mengapa gender penting untuk mendukung pengentasan kemiskinan, penghidupan dan kesetaraan lokal, pengurangan konflik, serta pengelolaan hutan yang efektif di antara tujuan-tujuan lain.• Hak tenurial hutan tidak tercatat secara terpilah gender.• Kurangnya penelitian berbasis bukti tentang berbagai tema-tema penting terkait gender dalam tenurial hutan mulai dari skala lokal, regional sampai ke nasional.• Dukungan pendidikan dan penelitian dibutuhkan untuk para peneliti baru (serta pihak lain, seperti pejabat pemerintah, akademisi, dan LSM/ CSO) tentang integrasi pendekatan gender ke dalam penelitian dan analisis beriorientasi aksi mereka.• Temuan penelitian tentang gender dan tenurial hutan tidak dikomunikasikan dengan cara yang dapat dipahami kepada pembuat kebijakan, anggota parlemen, pemimpin lokal dan pemangku kepentingan relevan lainnya.• Kuatnya norma gender dan gagasan moral patriarkis terkait peran perempuan yang membatasi pelibatan aktif perempuan hanya dalam kegiatan pengumpulan makanan, bahan bakar dan pakan ternak sementara mendukung kebebasan laki-laki dalam bergerak, berbicara di depan umum dan memiliki kewenangan, serta membatasi berbagai jenis penggunaan hutan.• Kendala yang dihadapi perempuan dalam hal beban berat tanggung jawab rumah tangga dan mengasuh anak menyebabkan terbatasnya waktu dan mobilitas dalam keterlibatan partisiptif yang efektif di tata kelola tenurial.• Konflik jangka panjang atas hak tenurial hutan secara negatif berdampak pada kemampuan perempuan untuk mengakses dan mengelola sumber daya hutan.• Kebijakan dan hukum kehutanan tidak mengakui secara eksplisit pentingnya, dan oleh karenanya dukungan yang dibutuhkan untuk kesetaraan gender telah mendorong adanya pembatasan gender dan hasil yang eksklusif dalam masyarakat lokal.• Perempuan dan laki-laki mungkin tidak menyadari ketentuan dalam hukum, peraturan atau kebijakan terkait kesetaraan gender serta bagaimana seharusnya mereka diimplementasikan.• Perempuan dan kaum terpinggirkan sering tidak dimasukkan dalam badan tata kelola hutan dan juga tidak memiliki kewenangan, legitimasi atau keterampilan kepemimpinan untuk memengaruhi pembuatan aturan.• Peran, hak dan tanggung jawab, khususnya bagi perempuan, tidak jelas atau tidak pasti, mendorong terjadinya pengelolaan yang buruk, konflik dan kemiskinan.• Hak khusus perempuan atas pohon dan hutan tidak diakui dalam rencana pengelolaan hutan berbasis masyarakat.• Perbedaan pengetahuan perempuan dan laki-laki tentang hutan selama siklus tahunan tidak diakui dalam proses kebijakan, rancangan proyek dan tata kelola hutan.• Perempuan biasanya menerima manfaat keuangan yang lebih rendah dari penjual hasil hutan atau pembayaran jasa lingkungan (payment for environmental services, PES) dibandingkan laki-laki. Mengingat peran dan relasi gender ditentukan oleh ruang dan waktu, Anda perlu bersiap untuk memodifikasi dan mengadaptasi metode dan perangkat yang Anda pakai untuk konteks yang berbeda.Peran dan relasi gender berbeda-beda di setiap tempat dan waktu. Oleh karenanya, sangatlah penting untuk mempelajari seperti apa dinamika gender di tingkat lokal. • mengakui pentingnya kesetaraan gender dalam undangundang badan pengelolaan pada kerangka kerja hukum kehutanan masyarakat yang ada;• menetapkan batas minimum atau kuota untuk partisipan perempuan;• mengupayakan setidaknya 30% representasi oleh perempuan pada struktur pengelolaan lokal, dengan mengupayakan hingga 50% pada akhirnya;• mendorong munculnya pemimpin perempuan;• mencatat pengetahuan dan praktik-praktik oleh perempuan terkait hutan;• menyusun inventarisasi dari praktik-praktik kolektif yang ada;• mengembangkan indikator yang mengukur keterlibatan kuantitatif dan kualitatif perempuan, serta manfaat yang mereka peroleh;• menyelenggarakan kegiatan-kegiatan tertentu, seperti kelompok terarah atau pemetaan, dengan kelompok perempuan secara terpisah;• memastikan bahwa redistribusi pendapatan secara langsung menguntungkan perempuan;• mendorong jejaring kerja antar perempuan dari komunitas yang berbeda;• melanjutkan upaya peningkatan kesadaran pada kelompok-kelompok laki-laki yang berbeda (para tetua, kepala rumah tangga, kaum muda);• mengidentifikasi 'penggerak' kesetaraan laki-laki.Pada akhirnya, analisis gender ini menghasilkan aksi- Sekarang Koalisi ini memobilisasi perubahan serupa di provinsi Mai-Ndombe, Sud Kivu dan Kongo Tengah.Tindakan ini bisa menjadi momentum untuk pengakuan hak perempuan atas hutan pada tingkat nasional.Bekerja secara cepat untuk mengidentifikasi tantangan gender dalam menghadirkan kerangka hukum baru untuk kehutanan masyarakat dengan melakukan penilaian gender. Proses ini dapat menyediakan suatu rangkaian intervensi responsif gender yang sesuai dengan kondisi lokal bersamaan dengan revisi kerangka hukumnya. RRI (2017RRI ( , 2018RRI ( , 2019)).• Harus menjadi bagian dari agenda reformasi yang holistik dan terintegrasi untuk sektor kehutanan yang sejalan dengan kebijakan tentang kesetaraan gender dan inklusi sosial, juga pengentasan kemiskinan.• Perlu dikaitkan dengan tujuan keseluruhan agenda pembangunan nasional, termasuk tentang kesetaraan gender.• Dapat memanfaatkan agenda global seperti Agenda Pembangunan Berkelanjutan 2030, Kesepakatan Paris VGGT, REDD+ dan Restorasi Bentang Alam Hutan untuk membangun momentum.• Memanfaatkan momentum untuk memastikan bahwa tindakan tersebut memiliki peluang yang lebih besar untuk mencapai tujuan reformasi tenurial hutan yang diinginkan.• Mengidentifikasi agen perubahan yang kuat: memperkuat perempuan, masyarakat dan organisasi adat serta para penggerak tenurial sehingga mereka dapat mendukung agenda tenurial hutan yang responsif gender.• Mempraktikkan proses berulang yang melibatkan kolaborasi, pembelajaran dan refleksi dalam transisi menuju kesetaraan gender.• Mengumpulkan dan berbagi pelajaran tentang pencapaian dan tantangan lembaga dan perusahaan pengelolaan hutan tingkat lokal dengan menelusuri perubahan.• Membangun pendekatan responsif gender ke dalam kerangka hukum dan kebijakan yang mendorong perlindungan dan penguatan hak, serta kesetaraan sosial, namun secara proaktif mempertimbangkan bagaimana implementasi dapat secara praktis diterapkan dengan cara yang efektif.• Meninjau kerangka prosedur dan kelembagaan untuk memastikan adanya peran, panduan dan ketentuan yang jelas untuk mengkoordinasi implementasi responsif gender pada semua tingkat tata kelola.• Bertujuan untuk menyelaraskan sistem tenurial hutan dengan sistem tenurial lahan.• Mengidentifikasi apakah terdapat proses desentralisasi yang konstruktif yang devolusinya dapat berfungsi untuk mendorong perubahan responsif gender.• Membangun jaringan yang suportif untuk membantu gender focal point di kementerian kehutanan dalam melaksanakan pekerjaan mereka.• Bertujuan untuk memahami keterikatan budaya dan sosial dari praktik-praktik tenurial dengan mengidentifikasi berbagai jaringan lokal yang memengaruhi bagaimana arena pembuatan keputusan berfungsi.• Bekerja menuju lembaga tata kelola tenurial yang transparan, akuntabel dan partisipatif yang berorientasi pada kepentingan multipihak.• Jika terdapat kerangka kerja yang baru untuk bentuk-bentuk tenurial masyarakat, lakukan uji coba dan selanjutnya perluaslah skalanya sehingga hak dapat diterjemahkan menjadi manfaat yang bernilai dalam praktiknya.• Berusaha keras untuk memastikan tidak ada pengembalian atau pengurangan hak tenurial IPLC.• Memastikan bahwa aturan tenurial hutan sesuai dengan kondisi, kebutuhan dan tujuan lokal -aturan yang rumit memberikan peluang implementasi yang lebih rendah dan biaya transaksi yang lebih tinggi.• Membantu untuk fokus pada hukum dan kebijakan, dan • Mendukung dan memperkuat kesetaraan sosial secara keseluruhan dalam rezim tenurial masyarakat melalui jalur yang saling menguntungkan (win-win) menjalin kerja sama dengan penggerak laki-laki.• Membangun sistem kepatuhan gender dengan aturan tenurial hutan untuk memastikan rendahnya biaya transaksi dan kemampuan penegakan hukum yang maksimal.• Memulai uji coba dengan sektor swasta dalam penguatan hak tenurial hutan yang setara gender yang dipegang oleh IPLC untuk mendorong perusahaan sosial (social enterprise) dan pertumbuhan ekonomi secara keseluruhan.Gambar 10. Arena aksi utama untuk memastikan reformasi tenurial hutan yang responsif gender.Sumber: Diadaptasi dari Bank Dunia (2019a).• Pengakuan semua hak dan pemegang hak, termasuk perempuan dan laki-laki dengan status yang berbeda.• Pengakuan sekumpulan hak yang kuat yang secara inklusif dialokasikan untuk semua perempuan dan laki-laki.• Pengakuan 'kumpulan sumber daya yang holistik' yang mendukung potensi perempuan dan laki-laki.• Prosedur yang dapat diakses dan efisien yang cocok untuk perempuan dan laki-laki.• Pengakuan formal atas lahan adat dan masyarakat.• Tujuan pengelolaan yang memperhatikan kebutuhan perempuan dan laki-laki.• Peraturan yang sederhana, meminimalisir biaya transaksi dan yang sesuai dengan tujuan pengelolaan.• Implementasi proses perizinan yang efisien.• Pengakuan keragaman penghidupan berbasis sumber daya.• Proses partisipatif dan adaptif untuk pembuatan keputusan dengan partisipasi setara dari perempuan dan laki-laki.• Komitmen politik dan tujuan yang selaras termasuk kesetaraan gender.• Mandat yang jelas dan saling mendukung untuk lembagalembaga yang bertanggung jawab yang mengikutsertakan kesetaraan gender.• Kapasitas dan sumber daya finansial untuk transformasi kesetaraan gender melalui peran implementasi pemerintah.ARENA AKSI UTAMA DIMENSI ARENA AKSI UTAMA DIMENSI ARENA AKSI UTAMA DIMENSI• Lembaga dan proses pengambilan keputusan yang inklusif yang melibatkan perempuan dan laki-laki dengan status yang berbeda.• Aturan dan/atau rencana yang ditetapkan masyarakat untuk tata kelola lahan dan sumber daya.• Kapasitas dan sumber daya keuangan untuk kepastian tenurial dan peran lembaga tenurial.• Kaitan multilevel ke mobilisasi sosial, advokasi dan organisasi pendukung seperti organisasi perempuan dan federasi kehutanan.• Kerangka kerja yang memungkinkan untuk pengembangan usaha.• Informasi yang akurat dan terpilah berdasarkan gender.• Aksesibilitas dan keterjangkauan sistem untuk mencatat, memelihara/memperbarui dan berbagi informasi tentang hak tenurial.• Kapasitas yang sensitif gender dan saling mendukung antara lembaga yang bertanggung jawab untuk penegakan.• Implementasi sistem pemantauan dan penegakan yang efektif yang melibatkan perempuan dan laki-laki.• Kejelasan hukum dan mekanisme penyelesaian konflik untuk koherensi kebijakan pedesaan dan lingkungan hidup.• Pengamanan yang kuat untuk menghindari pelanggaran hak tenurial -termasuk persetujuan atas dasar informasi awal tanpa paksaan (FPIC) serta standar lingkungan hidup dan sosial.• Mekanisme yang dapat diakses dan kompeten untuk menyelesaikan perselisihan yang diprakarsai oleh perempuan dan laki-laki tentang hak tenurial.• Resolusi perselisihan sensitif gender yang efektif. Pikirkan pentingnya pemetaan partisipatif responsif gender ketika meletakkan landasan kerja untuk pengakuan tenurial hutan adat dengan memahami kekhasan gender setempat dan membangun kepemimpinan perempuan dalam organisasi-organisasi penting nasional dan resmi. • Perkaya pandangan Anda tentang jalur perubahan dan agen perubahan -jangan selalu memilih hal yang sudah umum; pikir dan pikirkan lagi.• Identifikasi agen perubahan perempuan -dalam organisasi perempuan serta pemimpin perempuan yang berpengaruh, namun juga mereka yang menjadi dirinya sendiri melalui pengalaman yang memadai dan motivasi yang sungguh-sungguh.• Bekerja dengan laki-laki sebagai sekutu dan mengidentifikasi penggerak laki-laki dan pemimpin organisasi yang secara aktif mengupayakan kesetaraan gender di sektor kehutanan.• Luangkan waktu untuk mempertimbangkan siapa yang kemungkinan menentang perubahan dan bagaimana mereka dapat diajak ke dalam proses dan dialog untuk perubahan.Gambar 11. Empat ruang aksi untuk reformasi tenurial hutan yang responsif gender.Sekumpulan hak dan tanggung jawab tertentu yang dialokasikan untuk perempuan dan laki-laki IPLC menurut kerangka kerja kesanggupan dan badan tata kelola hutan lokal.Organisasi dan jaringan kerja yang memobilisasi perubahan.Kerangka kerja dan proses kebijakan, hukum, peraturan dan administrasi pemerintah di tingkat nasional dan lokal.Tata kelola tenurial responsif gender di tingkat lokal atau masyarakat.• Membangun secara aktif kapasitas dan efektivitas anggota koalisi dan jejaring kerja kunci untuk mendukung tujuan rencana strategis sehingga perubahan dapat dilakukan pada tingkat nasional dan lokal.• Bersama memikirkan bagaimana keterlibatan yang kuat dapat diwujudkan sehingga para pemimpin yang berpengaruh, seperti para anggota parlemen dan pembuat kebijakan lain atau kepala desa, dapat terinspirasi untuk mengambil alih tantangan jangka panjang reformasi. Beberapa rekomendasi yang menawarkan solusi (Weah 2012) termasuk:• menginisiasi dialog nasional untuk bertukar pikiran dan menyepakati jalan ke depannya;• membangun kapasitas LSM yang menangani isu-isu gender dan perempuan;• membangun kapasitas organisasi berbasis masyarakat;• demokratisasi pengambilan keputusan lokal;• membangun aliansi dan jaringan kerja;• memperluas pilihan mata pencaharian perempuan.Memiliki konstitusi yang melindungi hak berkesetaraan gender dan sebuah kebijakan gender nasional tidak secara otomatis membuka jalan untuk hukum atau kebijakan kehutanan yang responsif gender: sebuah strategi harus disusun yang bertujuan untuk membuat perubahan tersebut. Hukum yang mengatur lahan dan hutan masyarakat 12 Pada sebuah telekonferensi global oleh jaringan kerja pada Mei 2020, seorang laki-laki tidak dikenal yang tidak terdaftar mengganggu acara melalui konten seksual eksplisit dan asusila yang dibingkai dengan cara yang kasar (Giri dan Dangal 2020).Pelecehan tersebut dilaporkan ke pihak berwenang dan protes digital diluncurkan yang menjangkau 64.000 orang secara daring.berasal dari pemerintah dan sektor nonprofit sedang berfokus pada mengubah bentuk-bentuk hegemoni maskulinitas yang lazim. Melalui jejaring kerja tersebut, perempuan dapat menantang paradigma yang berlaku saat ini untuk perubahan yang lebih mendalam dan bertahan lama. Terakhir, dan yang penting, walaupun Forest Dialogue telah melaksanakan pelibatan multipihak global terkait berbagai tema hutan selama 20 tahun, pada tahun 2020, dua pemimpin perempuan dalam industri kehutanan terpilih menjadi ketua bersama untuk pertama kalinya dalam sejarah (Santiago 2020). Kondisi ini mewakili berbagai jenis perubahan yang mengarah pada semakin banyak perempuan yang memasuki dan mengambil posisi pemimpin dalam profesi kehutanan. [FAO] Food and Agriculture Organization. 2017. Creating a system to record tenure rights and first registration. Governance of Tenure Guide no. 9. Roma: FAO.[FAO] Food and Agriculture Organization. Untuk mencapai pemantauan dan evaluasi responsif gender yang efektif, baik untuk implementasi kebijakan dan hukum maupun untuk proyek, dibutuhkan data terpilah gender kualitatif maupun kuantitatif. Data ini menyediakan bukti empiris tentang bagaimana tenurial hutan yang responsif gender berdampak pada berbagai jenis jalur perubahan dan hasil. Namun demikian, masih terdapat kekurangan data yang besar, dan karenanya terdapat pemahaman yang timpang tentang bagaimana sebenarnya transformasi kesetaraan gender terjadi dalam hal tenurial hutan (FAO 2018c(FAO , 2019c)).Merangkai indikator yang jelas untuk mengukur kesetaraan gender dan pemberdayaan perempuan yang mencakup jangkauan dan kedalaman program dan proyek pada sektor kehutanan diperlukan untuk mengukur dan memperbaiki kinerja kebijakan, hukum dan proyek. Mengidentifikasi kesenjangan data gender membantu dalam mengidentifikasi indikator mana yang paling sesuai dengan kebutuhan, cakupan populasi dan relevansi kebijakan. Indikator tersebut akan digunakan dengan cara yang berbeda: oleh lembaga dan kantor dengan mandat untuk mengimplementasikan dan menelusuri lembaga kehutanan yang didelegasikan; oleh proyek yang dijalankan oleh donor atau LSM/CSO; atau oleh lembaga tata kelola kehutanan pada tingkat lokal. Pada kasus percontohan, data dan indikator terpilah gender dapat membantu merancang proses peningkatan skala. Dengan berfungsi sebagai platform data, penyesuaian kegiatan proyek dapat berlangsung, sehingga antisipasi hasil dan dampak pada kelompok sasaran perempuan dan laki-laki dapat mudah terwujud.Serangkaian indikator tertentu, tentu saja, akan perlu disesuaikan dengan tujuannya namun beberapa panduan ilustratif dapat bermanfaat membantu perancangannya (lihat Gambar 20). Sementara banyak terdapat indikator kuantitatif yang sering disusun untuk mempermudah perbandingan (secara nasional atau global) atau yang kompatibel dengan format pengumpulan data statistik yang lebih luas, mereka tidak serta merta membantu penerima manfaat proyek untuk merefleksikan persepsi mereka sendiri atau perubahan nyata yang telah mereka alami (Colfer dkk. 2013). Metodologi pengumpulan data, oleh karenanya, tidak hanya perlu dilakukan dengan cara yang responsif gender (lihat Elias 2013; Doss dan Kieran 2014), tapi juga mempertimbangkan bagaimana analisis akan dimanfaatkan dan oleh siapa.Hasil dari pekerjaan evaluasi semacam itu dapat berkontribusi pada beragam jenis kegiatan pemantauan (lihat World Vision 2020). Selain itu, juga dapat membantu rancangan rencana aksi gender untuk sektor kehutanan. Selain terdapat inisiatif untuk melacak kesetaraan gender seperti sampai sejauh mana pemerintah telah mencapai SDG (UN Women 2018a), jenis-jenis pemantauan inisiatif global yang lebih spesifik yang berfokus pada isu tenurial juga semakin berkembang. Data semacam itu juga dapat menjadi bagian dari pelacakan implementasi VGGT dalam sektor kehutanan. Panduan dan perangkat untuk mendukung pemantauan implementasi VGGT yang sensitif gender telah tersedia (lihat Seufert dan Suárez 2012; Action Aid 2017). Perangkat pemantauan lain untuk melacak tingkat integrasi gender dalam penelitian kehutanan juga telah dikembangkan (CGIAR FTA 2019;Paez dkk. 2019). Menggunakan Kesetaraan Gender dalam Skala Penelitian, misalnya, suatu kuesioner penilaian mandiri untuk digunakan oleh pimpinan atau tim proyek setiap tahunnya, dan oleh karena itu memberikan gambaran yang lebih baik untuk mengintegrasikan gender ke dalam penelitian (CGIAR FTA 2019). Terdapat tantangan yang biasa dihadapi: tidak hanya sekitar 80% pemilik lahan hutan kolektif adalah laki-laki (yang mendapatkan manfaat dari berbagai subsidi dan program pendukung), namun struktur tata kelola juga didominasi oleh laki-laki (PROFOR 2017). Selain itu, sektor kehutanan berfokus pada produksi kayu yang didominasi oleh laki-laki dan kurangnya peran aktif dari perempuan.Untuk itu, CONAFOR telah meluncurkan serangkaian inisiatif responsif gender termasuk (PROFOR 2017):• membentuk unit gender pada lembaga kehutanan utama;• meluncurkan suatu jaringan kerja gender yang menjangkau semua negara bagian;• mendorong budaya kelembagaan pemerintah dengan perspektif gender (disebut transversalitas gender);• menyiapkan jendela pendanaan khusus untuk perempuan;• membentuk brigade perlindungan kebakaran perempuan yang pertama di Meksiko.Skala dan kecanggihan pendekatannya membuat CONAFOR menjadi contoh global yang cemerlang (Kristjanson dkk. 2018). Selain itu, walaupun dengan inisiatif baru yang mulai dijalankan, sejumlah pembelajaran juga didapatkan tentang cara merancangnya. Ambil kasus \"Proyek Kehutanan Produktif untuk Perempuan\" yang dimulai oleh CONAFOR pada tahun 2017 (Kristjanson dkk. 2019). Dari 51 aplikasi yang diterima, Diperlukan berbagai inisiatif responsif gender untuk mengubah keseluruhan budaya dan operasional kerangka regulasi tenurial kehutanan yang berlaku saat ini untuk mewujudkan perubahan yang berkelanjutan.Tampaknya, berfokus pada hubungan dinamis antara laki-laki dan perempuan (alih-alih hanya pada perempuan saja) memiliki peluang yang lebih besar dalam memberikan panduan bagi perubahan untuk lembaga, kebijakan dan praktik-praktik yang relevan untuk transformasi ketidaksetaraan gender. Namun demikian, fokus semacam itu harus menghindari pertentangan 'satu menang yang lain kalah' (zero-sum) antara laki-laki dan perempuan. Untuk memengaruhi perubahan, peran penelitian gender adalah untuk mengungkap 'para petani' dan 'pilihan-pilihan'; untuk mengidentifikasi peluang yang mendorong pemberdayaan dan perubahan inklusif; dan untuk melibatkan berbagai aktor perubahan seperti pemerintah, masyarakat sipil dan komunitas donor.Koordinator Regional Asia Tenggara, World Agroforestry (ICRAF) (Catacutan dkk. 2014b, ix) Proses devolusi tenurial hutan telah menyebabkan lahan hutan berada di bawah kendali lokal IPLC melalui hak, kebijakan atau tindakan hukum yang sah secara Semua rezim kehutanan berbasis masyarakat melewati fase-fase perubahan: menyesuaikan rezim mereka 13 Dalam sebuah studi, lima faktor keberhasilan yang saling terkait untuk kehutanan masyarakat telah diidentifikasi (Baynes dkk. 2015). Ini berdasar pada pengalaman di Meksiko, Nepal, dan Filipina, tetapi juga mempertimbangkan pengalaman negara lain di Afrika, Asia, dan Amerika Latin. Lima faktor keberhasilan tersebut adalah: hak kepemilikan (pohon dan tanah) yang terjamin; pengurangan perbedaan sosial ekonomi dan ketidaksetaraan berbasis gender untuk mengurangi konflik dan meningkatkan kohesi; bentuk-bentuk tata kelola kelompok kehutanan intrakomunitas yang demokratis dan adil dalam hal kepemimpinan, pemungutan suara dan pembagian manfaat; dukungan pemerintah untuk kehutanan berbasis masyarakat (seperti pembuatan undang-undang atau insentif positif) dan manfaat material bagi anggota masyarakat (seperti pendapatan dari penjualan HHBK, pekerjaan atau pembayaran untuk jasa lingkungan). Apakah migrasi keluar laki-laki membuka peluang untuk partisipasi perempuan yang lebih besar dalam tata kelola kehutanan masyarakat? Migrasi keluar laki-laki tidak secara umum membuka peluang untuk kepemimpinan dan partisipasi yang lebih besar oleh perempuan: penelitian mengindikasikan pentingnya memahami beragam bentuk dari dinamika sosial yang ada.biasanya mengakui peran besar perempuan dalam meningkatkan standar hidup keluarga, namun penting bagi mereka untuk juga menyepakati bahwa agar perempuan dapat terus memainkan peran itu dan bahkan meningkatkan peran tersebut, mereka memerlukan kepastian atas lahan dan hutan.Koordinator, Jejaring Perempuan Afrika untuk Pengelolaan Hutan Masyarakat (REFACOF) (Mwangi dan Evans 2018, 3). Gambar 24. Bagaimana cara untuk mendukung hak tata kelola tenurial lahan hutan perempuan adat dan pedesaan.Sumber: RRI (2019).Mengakui bahwa perubahan sosial membutuhkan waktu: kegiatan yang berhasil memberikan cukup waktu untuk mengubah perilaku patriarkis terhadap peran gender dan untuk mewujudkan perubahan normatif yang berpihak terhadap hak tata kelola lahan perempuan.Keterlibatan seluruh masyarakat sangat penting untuk kemajuan yang berkelanjutan dan meluas. Proses dan intervensi yang sukses bertujuan untuk mencapai perubahan berkelanjutan dan luas dalam memberdayakan perempuan dan memperkuat hak tata kelola mereka sebagai bagian dari proses yang berlanjut dan kolaboratif yang melibatkan seluruh masyarakat.Libatkan tokoh masyarakat: proyek yang berhasil kerap menerima dukungan dari pemimpin masyarakat laki-laki dan perempuan.Sediakan dukungan yang sesuai budaya: kegiatan yang berhasil yang dilaksanakan oleh organisasi di luar masyarakat dirancang bersama dengan anggota masyarakat, selaras dengan norma budaya masyarakat dan memprioritaskan lembaga masyarakat. Menjaga dan meningkatkan tutupan hutan dan jasa ekosistem. Badan tata kelola hutan lokal dapat menyediakan bukti empiris dan mendukung penelitian yang berorientasi aksi tentang bagaimana kesetaraan gender dalam tenurial hutan menciptakan efek akselerator untuk berbagai tujuan pembangunan. Penelitian berorientasi aksi ini dapat mendukung pengembangan kebijakan dan reformasi hukum.Badan tata kelola hutan lokal dapat membentuk dan bergabung dengan aliansi yang memobilisasi reformasi kebijakan dan hukum tenurial hutan terkait isu-isu seperti representasi yang proporsional dalam badan tata kelola hutan, pembagian manfaat antara perempuan dan lakilaki, serta FPIC yang berkesetaraan gender.A pakah semua perempuan dan lakilaki dalam masyarakat dapat menjadi anggota badan tata kelola hutan berbasis masyarakat? Apakah terdapat persyaratan bahwa 30 sampai 50% dari anggota komite eksekutif adalah perempuan? Apakah terdapat ketentuan bahwa jabatan pengurus dilakukan bergiliran antara perempuan dan laki-laki? Apakah perempuan juga memiliki kewenangan untuk mengelola dana kehutanan berbasis masyarakat? Kegiatan peningkatan kesadaran dan perubahan peraturan daerah perlu dilakukan sehingga badan tata kelola hutan dapat mengamanatkan bagaimana representasi yang berkesetaraan gender (dalam beragam bentuknya) dapat dicapai.A pakah terdapat suatu rapat umum yang semua anggota rezim tenurial hutan berbasis masyarakat dapat berpartisipasi? Jika demikian adanya, dapatkah semua anggota perempuan dan laki-laki dewasa dari rumah tangga menjadi peserta? Apakah waktu dan tempat pertemuan sesuai untuk perempuan dan laki-laki, yang dekat dan jauh?Peraturan daerah dapat diamandemen untuk mempersyaratkan semua anggota perempuan dan laki-laki dalam suatu rumah tangga dapat bergabung dengan rezim kehutanan berbasis masyarakat.Diskusikan dalam rapat umum tentang di mana dan kapan pertemuan yang sesuai untuk perempuan dan laki-laki yang datang dari tempat yang dekat maupun jauh; mengatur tempat duduk pada pertemuan sehingga perempuan dan laki-laki dapat berpartisipasi secara aktif. B agaimana proses pembuatan keputusan? Apakah terdapat serangkaian peraturan daerah atau aturan yang mencakup sekumpulan hak tenurial yang lengkap atas sumber daya hutan bernilai tinggi dan rendah? Apakah sekumpulan hak tersebut kuat dan bertahan lama? Apakah mereka mengakui jenis-jenis hak berbeda yang diperlukan perempuan dan laki-laki untuk mengelola sumber daya hutan secara berkelanjutan, membangun penghidupan dan menjalankan usaha? Bagaimana peraturan daerah diperbarui? Apakah sebagian besar masyarakat terlibat dalam pengambilan keputusan tentang perubahan peraturan perundang-undangan?Melatih perempuan tentang kebijakan dan hukum yang relevan sehingga mereka dapat berpartisipasi secara luas dalam rapat komite eksekutif.Melatih perempuan tentang bagaimana komite eksekutif dan rapat umum dijalankan dengan fokus pada bagaimana memperkenalkan dan mencapai perubahan yang mendukung kesetaraan gender.Memberikan keterampilan bagi perempuan untuk berpartisipasi secara efektif dalam pengambilan keputusan dengan melatih mereka untuk berbicara dan berdebat di depan publik untuk mewujudkan tujuan yang ingin dicapai dan membangun kepercayaan diri.Memastikan bahwa semua perempuan dan lakilaki memahami pentingnya menyelenggarakan pertemuan yang mempertimbangkan komitmen waktu, persyaratan mobilitas, dan norma-norma budaya sehingga perempuan dapat berpartisipasi dengan nyaman.A pa tujuan kebijakan badan tata kelola hutan? Apakah tujuan ini mengakui pemanfaatan multifungsi dari wilayah berhutan? Bagaimana perempuan dan laki-laki memanfaatkan sumber daya dan zona hutan yang berbeda? Bagaimana tujuan pengelolaan hutan terkait dengan perubahan iklim, pertumbuhan pasar, dan perubahan tujuan pembangunan nasional?Mendukung serangkaian lokakarya bertahap tentang mengidentifikasi tujuan kebijakan melalui masukan dari semua pemangku kepentingan kunci dalam rezim kehutanan berbasis masyarakat; dengan memanfaatkan fasilitator yang sensitif gender.A pakah terdapat inisiatif dari badan tata kelola hutan untuk memahami pola-pola diskriminasi, kemiskinan dan kesejahteraan dalam masyarakat?Melatih pemimpin dan pengguna rezim kehutanan berbasis masyarakat tentang diskriminasi, kemiskinan dan kesejahteraan untuk memahami cara-cara penggunaan hutan dan pembagian manfaat dengan mengakui pentingnya kesetaraan sosial untuk pengelolaan hutan yang efektif.A pakah batas geografis dari rezim kehutanan berbasis masyarakat telah didefinisikan secara jelas? Apakah batas-batas ini dipetakan dengan melibatkan perempuan dan laki-laki dalam masyarakat? Apakah proses ini melibatkan desa atau gugusan desa atau kelompok rumah tangga yang bergantung pada wilayah berhutan tertentu? Apakah peta ini (dalam bentuk kertas atau digital) ditempatkan di kantor rezim kehutanan berbasis masyarakat, atau di pemerintah daerah? Adakah sumber daya audiovisual yang terkait dengan peta yang mencerminkan kawasan berhutan (atau zona) yang biasanya digunakan oleh perempuan dan lakilaki dengan cara berbeda?Lakukan pemetaan partisipatif (bekerja sama dengan LSM) dengan melibatkan perempuan dan laki-laki secara berkesetaraan sebagai kontributor pengetahuan untuk konsultasi awal, persiapan peta, sebagai pembuat peta dan analis data.Upayakan untuk menyimpan peta dan data audiovisual pada lokasi yang mudah dijangkau dengan biaya yang murah.A pakah peraturan daerah (dengan peta dan rencana pengelolaan hutan terkait) serta daftar anggota rezim kehutanan berbasis masyarakat dicatat pada kantor pencatatan tenurial lokal maupun digital? Apakah dokumen-dokumen ini mudah diakses dengan biaya rendah?Bekerja sama dengan pemerintah daerah untuk mencatat hak tenurial dengan cara yang terpilah gender. Pastikan bahwa catatan mudah diakses dengan biaya rendah dan dapat diperbarui.A pakah perempuan dan laki-laki samasama terlibat dalam menyiapkan rencana pengelolaan hutan? Apakah terdapat pemahaman yang disepakati dengan baik tentang bagaimana pemanfaatan dan metode pengelolaan hutan oleh perempuan dan laki-laki berlangsung (lihat Ombogoh and Mwangi 2019)? Apakah survei sosial ekonomi pada tingkat rumah tangga diperlukan untuk memperoleh gambaran situasi yang akurat? Dokumentasikan pengetahuan perempuan dan lakilaki tentang berbagai wilayah hutan dan pepohonan serta sumber dayanya, juga pemahaman mereka tentang adaptasi dan mitigasi perubahan iklim.Tentukan apakah terdapat kesesuaian antara kondisi ekologi setempat dan berbagai aturan tentang pemanfaatan dan pengelolaan oleh perempuan dan laki-laki.Libatkan perempuan dalam pengelolaan silvikultur dan pengembangan rencana operasional hutan.Libatkan perempuan secara aktif dalam perencanaan khusus proyek seperti untuk REDD+ atau PES atau adaptasi sejak dari awal (lihat FAO 2018b).B erdasarkan rencana pengelolaan hutan, perlu disusun seperangkat aturan dalam peraturan daerah tentang sekumpulan hak tenurial yang mencakup: akses, pemanfaatan, pengelolaan, pemantauan, resolusi sengketa, alienasi, dan lain-lain. Apakah beragam tenurial hutan sesuai dengan kondisi ekologi dan sosial ekonomi? Apakah aturan tersebut jelas dalam hal kapan, di mana, tingkat pemanenan dan teknologi yang dapat digunakan untuk melaksanakan pemanfaatan dan pengelolaan yang berkelanjutan?Berpartisipasi dalam proses multilangkah untuk \"menyuarakan\" aturan yang ada yang berdampak pada perempuan dan laki-laki: aturan-aturan ini kemudian dikaji dua atau tiga kali sebelum dimasukkan ke dalam peraturan internal; menciptakan kesadaran tentang prinsip-prinsip VGGT dalam prosesnya akan menjadi penting.B agaimana berbagai manfaat yang disediakan oleh beragam sumber daya dari hutan termasuk konservasi air dibagikan di antara perempuan dan laki-laki dalam masyarakat dengan status sosial dan lokasi geografis yang berbeda? Apakah manfaat ini diperoleh individu, rumah tangga atau pada tingkat kolektif dalam masyarakat? Ketika rencana pengelolaan hutan disusun, serangkaian diskusi akan diperlukan tentang bagaimana manfaat (sebagian berupa barang dan sebagian dalam bentuk pendanaan) akan dibagikan kepada perempuan dan laki-laki dengan mempertimbangkan perbedaan kebutuhan dan kepentingan.A pakah badan tata kelola hutan lokal memiliki hubungan informal atau formal dengan badan tata kelola lain pada bentang alam tersebut, atau secara nasional dengan federasi? Apakah perempuan menerima informasi terkait bentang alam hutan seperti halnya laki-laki?Telusuri peluang bagi perempuan dan laki-laki pada badan tata kelola hutan lokal untuk mengembangkan hubungan jaringan kerja dengan badan tata kelola hutan lainnya dalam bentang alam maupun secara nasional.A dakah jenis-jenis sengketa tertentu yang umum terjadi? Bagaimana perselisihan kecil dan konflik yang lebih besar ditangani? Apakah komite eksekutif dapat mengatasi isu-isu tersebut dengan biaya yang rendah? Apakah mekanisme penanganan konflik sensitif terhadap kebutuhan gender dimana perempuan dapat berbicara dan kekhawatirannya didengarkan?Libatkan perempuan ke dalam setiap badan resolusi konflik (idealnya mereka yang terlibat dalam pekerjaan pemantauan), atau sediakan badan resolusi konflik khusus perempuan bagi perempuan yang melanggar aturan; memberikan pelatihan untuk meningkatkan kapasitas teknis sehingga mereka dapat melaksanakan tanggung jawab mereka secara efektif.J enis sanksi apa yang akan dikenakan pada mereka yang melanggar aturan? Adakah seperangkat sanksi bertingkat yang berkaitan dengan tingkat keseriusan dan konteks pelanggaran?Gunakan suatu kesempatan tahunan untuk merefleksikan sanksi bertingkat yang telah ditetapkan untuk meninjau apakah sanksi tersebut memenuhi kebutuhan perempuan dan laki-laki yang memiliki ketergantungan berbeda pada hutan.S iapakah yang memantau kondisi hutan dan kepatuhan pada peraturan di wilayah yang berbeda? Bagaimana orang yang melanggar aturan akan diidentifikasi? Apa rangkaian tindakan selanjutnya? Apakah perempuan lebih mampu menghukum perempuan lain yang tidak mematuhi aturan?Lakukan patroli dan pemantauan oleh perempuan dan laki-laki dengan membentuk tim yang dipisahkan berdasarkan gender dengan tanggung jawab khusus.S ampai sejauh mana badan tata kelola tenurial memiliki otonomi dalam hal merancang, mengimplementasikan dan menindaklanjuti kebutuhan gender baru yang muncul? Adakah keterlibatan pemerintah tingkat rendah maupun tingkat tinggi dalam rezim kehutanan berbasis masyarakat? Apakah pejabat pemerintah peka terhadap permasalahan gender?Selenggarakan pertemuan dengan staf pemerintah daerah (yang memegang kewenangan dan memiliki kekuasaan pembuatan keputusan) tentang berbagai kebutuhan perempuan dan laki-laki yang muncul sehingga mereka memahami pentingnya otonomi untuk keberhasilan pengelolaan hutan. Sediakan pelatihan tentang pentingnya FPIC yang berkesetaraan gender dalam konteks proyek donor yang mencakup tema seperti inisiatif kehutanan berbasis masyarakat, REDD+ dan PES.Saat investor sedang menjajaki peluang, lakukan kerja sama dengan LSM untuk mengidentifikasi cara terbaik melakukan pelibatan awal, negosiasi selanjutnya, serta menyiapkan perjanjian investor yang memperhatikan kesetaraan gender.A pakah anggota masyarakat percaya bahwa pemerintah mengimplementasikan hukum dan kebijakan secara efektif, khususnya yang mendorong kesetaraan gender? Apakah terdapat layanan jasa yang baik dalam hal dukungan teknis untuk pengelolaan hutan, penegakan hukum kehutanan, atau dalam inkubasi bisnis untuk pengembangan usaha?Bangun suatu hubungan kerja yang positif dengan pemerintah daerah sembari memperkuat aliansi dengan LSM/CSO yang berpengaruh untuk memperbaiki administrasi dan layanan jasa pemerintah terkait gender dan tenurial hutan dalam proses yang sedang berlangsung.BEKERJA DENGAN PEMIMPIN LOKAL S ampai sejauh mana para pemimpin lokal, baik laki-laki maupun perempuan, bekerja mendukung kesetaraan gender dalam tata kelola tenurial hutan? Bangun, dukung dan kenali cara kerja penggerak kesetaraan laki-laki.Pupuk kerja sama dengan para perempuan berpengaruh seperti istri yang menjadi pemimpin dan kepala suku untuk menggerakkan perubahan positif terhadap kesetaraan gender.K elompok perempuan seperti apakah yang ada di masyarakat? Kelompok swadaya? Kelompok menabung? Kelompok para ibu? Dalam hal apa mereka dikaitkan dengan kegiatan sektor kehutanan? Dapatkah aliansi dibangun dengan mereka untuk memperkuat kesetaraan gender dalam tenurial hutan? Kembangkan kelompok pendukung khusus perempuan untuk membantu perempuan dalam badan tata kelola hutan, dan bangun hubungan dengan kelompok perempuan lain untuk memengaruhi perubahan yang lebih cepat.B agaimana cerita perubahan positif dan kepemimpinan inspiratif yang mendorong kesetaraan gender dikomunikasikan dalam masyarakat? Melalui ruang pertemuan khusus atau perkumpulan kolektif adat?Temukan peluang berkala untuk berbagi pengetahuan tentang ketergantungan khusus perempuan dan laki-laki atas hutan dan apa artinya bagi pengembangan masyarakat secara keseluruhan.Kumpulkan dan bagikan cerita positif tentang perubahan terkait kesetaraan gender dalam rezim tata kelola hutan seperti pada pengelolaan hutan, aturan pemanfaatan, pembagian manfaat atau pengembangan usaha.A pa norma gender yang berlaku di antara kelompok-kelompok dengan hierarki, status dan kelas sosial yang berbeda di dalam masyarakat? Bagaimana mereka memengaruhi cara perempuan dan lakilaki mengakses dan memanfaatkan hutan? Bagaimana norma gender memengaruhi partisipasi perempuan dalam pertemuan tata kelola? Siapa yang menjadi teladan baru bagi anak dan remaja perempuan, serta anak dan remaja laki-laki?Mengubah norma gender melalui upaya bertahap dan berlanjut dalam berbagai bentuk intervensi, baik melalui dialog inklusif dengan masyarakat dan pemimpin agama yang berpengaruh; mengkomunikasikan pesan-pesan yang ditargetkan melalui radio dan teater; memberi penghargaan terhadap pencapaian publik, dan lainlain; membutuhkan pendekatan yang menyampaikan pentingnya inklusivitas dan kesetaraan gender antara perempuan dan laki-laki dengan latar belakang berbeda.Program bimbingan dapat disiapkan untuk mendukung perempuan dan laki-laki muda yang mulai aktif dalam tata kelola dan pengelolaan hutan.S ampai sejauh mana perempuan dan lakilaki memiliki pemahaman tentang hutan dan peraturan perundang-undangan terkait? Apa yang mereka ketahui tentang hak mereka untuk mendapatkan dukungan dalam peraturan perundang-undangan tersebut?Selenggarakan kegiatan kelompok kecil (untuk perempuan dan laki-laki secara terpisah) untuk meningkatkan pemahaman tentang hukum, bagaimana hukum diterapkan pada praktiknya, dan layanan pendukung apa yang tersedia.A pakah kerangka kerja regulasi mendukung masuknya perempuan ke dalam penyelenggaraan usaha berbasis hutan? Adakah insentif terkait registrasi atau pajak untuk mendukung perempuan? Apakah perempuan dalam masyarakat memiliki peluang untuk bergabung dalam pelatihan tentang memulai suatu bisnis berbasis hutan? Dapatkah mereka bergabung dalam kegiatan studi banding ke masyarakat lain yang memiliki usaha berbasis hutan yang menguntungkan? Apakah pelatihan disediakan tentang menjalankan bisnis? Tentang teknologi untuk pemrosesan hasil hutan? Apakah terdapat pusat inkubasi bisnis yang memperhatikan kebutuhan gender?Identifikasi sumber-sumber investasi yang fokus pada perempuan untuk mengembangkan usahausaha berbasis hutan yang menguntungkan.Memberikan keterampilan bisnis bagi perempuan yang berkeinginan memulai satu jenis usaha berbasis hutan yang sesuai dengan konteks lokal.A pa jenis intervensi khusus yang dapat mendukung pengurangan tanggung jawab berat yang dipikul perempuan dalam rumah tangga seperti memasak, mengumpulkan bahan bakar, merawat anak, merawat orang tua, memelihara ternak dan lain sebagainya.Lakukan penelitian aksi tentang apa yang diyakini oleh perempuan dan laki-laki sebagai intervensi prioritas, untuk mengurangi beban kerja rumah tangga dan waktu yang dihabiskan untuk mengumpulkan sumber daya hutan yang membantu penetapan keputusan akan aksi dukungan terbaik.A pa saja ancaman kekerasan dan pemaksaan yang dilakukan terhadap perempuan dan laki-laki, baik fisik, emosional, psikologis maupun seksual terkait masalah kehutanan (Camey dkk. 2020)?Ubah pola SGBV melalui suatu pendekatan multidimensi yang menindaklanjuti norma gender, bentuk kekuasaan patriarkis, maskulinitas dan meningkatnya kerentanan laki-laki karena kemiskinan dan kehilangan penghidupan.Siapkan kebijakan \"perlindungan dari pelecehan dan kekerasan seksual\" untuk membantu memotivasi perubahan perilaku. A pakah masyarakat memiliki dana kolektif (dari misalnya, penjualan HHBK) untuk mendukung perempuan dengan teknologi baru untuk mengurangi beban pekerjaan rumah tangga mereka yang berat? Bagaimana cara perempuan dapat memanfaatkan hak tenurial hutan mereka untuk mengakses pinjaman bank untuk memulai atau mengembangkan usaha terkait hutan? Bagaimana pinjaman semacam itu dapat mendukung jalan masuk ke simpulsimpul pemrosesan, pemasaran, dan retail dari rantai nilai? Berapa banyak perempuan yang memiliki rekening bank sendiri? Dapatkah rekening ini diakses melalui telepon seluler?Bentuk dana masyarakat bagi perempuan agar dapat memenuhi kebutuhan mereka untuk mengurangi beban waktu dan tenaga kerja.Sediakan kredit atau hibah bagi pembibitan pohon atau usaha berbasis hutan yang dipimpin oleh perempuan yang berkaitan dengan penguatan pengakuan hak tenurial hutan perempuan.Dukung perempuan dalam membuka rekening bank sendiri, idealnya dengan layanan mobile banking.Sejak awal tahun 2000-an, tema yang mendominasi penelitian tentang gender dan tata kelola kehutanan masyarakat adalah isu terkait partisipasi perempuan (Mai dkk. 2011, lihat Sumber: Agarwal (2001). Meskipun peningkatan partisipasi perempuan yang diberdayakan dalam lembaga tata kelola hutan jelas penting, angka saja bukan merupakan faktor penentu mengingat bahwa pengaruh substantif yang dapat dilakukan oleh perempuanlah yang mendorong perubahan positif untuk keadilan gender. Untuk memastikan partisipasi perempuan dalam penataan batas wilayah adat, pemerintah perlu memperjelas aturan dan mekanisme tentang bagaimana cara pemetaan partisipatif gender harus dilaksanakan. Langkah ini akan memungkinkan inisiatif pemetaan dan pengelolaan data untuk melacak kemajuan pemerintah. Walaupun demikian, yang terjadi adalah akses terhadap pohon shea telah menjadi semakin kompetitif. Sebagai akibatnya, perempuan dari keluarga adat berupaya untuk memperkuat relasi kerja sama informal di antara mereka sendiri (khususnya untuk membatasi akses bagi perempuan pendatang), sementara perempuan pendatang (yang berada pada posisi sangat tidak menguntungkan) memilih untuk terlibat dalam pembuatan produk-produk shea yang bernilai lebih tinggi, juga membentuk kerja sama yang formal (Poudyal 2009).Masalah lebih besar yang dihadapi semua pemanen perempuan merupakan akibat dari liberalisasi industri shea pada tahun 1990-an. Kondisi ini membentuk struktur oligarki dari pedagang grosir yang didominasi laki-laki (Rousseau dkk. 2015;Chen 2017). Upaya untuk mengelak dari para pedagang ini melalui proyek perdagangan yang adil yang dapat menguntungkan perempuan pemanen hanya berdampak kecil pada dinamika rantai nilai yang dominan.Perempuan yang memanen buah shea menghadapi beban ganda: tidak hanya tingginya persaingan di antara perempuan atas buah karena masuknya perempuan pendatang, namun tidak adanya hak formal tenurial pohon bagi perempuan berarti bahwa mereka tidak dapat mengakses modal yang dibutuhkan untuk memasuki simpul pengolahan yang bernilai lebih tinggi pada rantai nilai. Pengalaman Malawi mengindikasikan bahwa proses NFLRA responsif gender dapat memperoleh manfaat dari: membangun dan melatih ahli gender dari berbagai sektor untuk bergabung pada kelompok spesialis gender; memasukkan anggota dari kelompok spesialis gender dalam berbagai kelompok kerja teknis untuk memastikan integrasi gender; mengumpulkan data yang relevan untuk menyiapkan GPA; dan melakukan analisis gender menggunakan kerangka analisis FLR yang responsif gender. Terdiri dari kantor pemerintah, departemen, komisi atau kementerian yang memberikan kepemimpinan dan dukungan untuk aksi-aksi pemerintah dalam rangka mencapai kesetaraan gender yang lebih besar.Berikut ini adalah glosarium ringkas untuk istilah-istilah yang digunakan dalam publikasi ini. Panduan praktisi ini menjelaskan bagaimana cara mendorong reformasi tenurial yang responsif gender dalam rezim hutan berbasis masyarakat. Panduan ini ditujukan bagi mereka yang mengambil tantangan tersebut di negaranegara berkembang. Tidak ada pendekatan tunggal untuk mereformasi praktik-praktik tenurial dalam rangka mewujudkan kesetaraan gender dan pemberdayaan perempuan. Sebaliknya, proses ini lebih pada memanfaatkan peluang-peluang yang muncul dalam berbagai arena kelembagaan seperti pembuatan dan implementasi kebijakan dan perundangundangan, administrasi pemerintahan, tata kelola adat atau tenurial berbasis masyarakat, atau restorasi hutan pada skala bentang alam.Buku pedoman ini menyediakan beragam bentuk panduan dari: ide konseptual, arahan operasional, praktik-praktik terbaik, wawasan studi kasus, temuan penelitian dan sumbersumber lain untuk eksplorasi lebih lanjut dari Afrika, Asia dan Amerika Latin. Buku ini dirancang untuk mendukung beragam praktisi, perempuan dan laki-laki, dari berbagai lembaga seperti kantor-kantor pemerintah, organisasi nonpemerintah, lembaga swadaya masyarakat, lembaga donor, organisasi perempuan, juga berbagai jaringan kerja dan federasi. Termasuk di dalamnya adalah para ahli gender yang bertanggung jawab untuk mengintegrasikan kesetaraan gender dan pemberdayaan perempuan ke dalam organisasi mereka, dan mereka yang secara umum bekerja dalam dunia tenurial lahan, tenurial dan tata kelola hutan, restorasi bentang alam hutan, wanatani, pengembangan rantai nilai dan usaha-usaha yang berdampak sosial.Tujuannya adalah untuk berjalan di sepanjang jalur menuju reformasi tenurial hutan melalui sebuah proses tiga langkah: Menganalisa, Menyusun Strategi dan Mewujudkan. Analisis diagnostik terfokus untuk membentuk landasan empiris bagi perubahan dapat mendukung rancangan intervensi sekuensial (bertahap) untuk mendorong reformasi tenurial hutan yang responsif gender pada berbagai skala. Untuk tujuan tersebut, panduan ini ada pada waktu yang tepat untuk mendukung intervensi berdampak tinggi yang sesuai untuk mempercepat perubahan dalam konteks nasional dan lokal di rezim tenurial hutan berbasis masyarakat.CIFOR meningkatkan kesejahteraan manusia, kesetaraan dan integritas lingkungan dengan melakukan penelitian inovatif, mengembangkan kapasitas para mitra dan terlibat secara aktif dalam dialog dengan semua pemangku kepentingan untuk memberi masukan terhadap berbagai kebijakan dan praktik yang memengaruhi hutan dan masyarakat. CIFOR merupakan bagian dari Pusat Penelitian CGIAR, dan memimpin Program Penelitian CGIAR pada Hutan, Pohon dan Wanatani (FTA). Kantor pusat kami berada di Bogor, Indonesia, dengan kantor wilayah di Nairobi, Kenya; Yaounde, Kamerun; Lima, Peru dan Bonn, Jerman.","tokenCount":"9294"} \ No newline at end of file diff --git a/data/part_3/3311286561.json b/data/part_3/3311286561.json new file mode 100644 index 0000000000000000000000000000000000000000..4bbb5bd92aaf30d0342371c86e1e7f929965b545 --- /dev/null +++ b/data/part_3/3311286561.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"fb6b1cbb95433535fdeab623615e119f","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/e96fd1e2-0b66-45e2-a9e5-72ea4f676376/retrieve","id":"-1424363097"},"keywords":["Ruminant feed","multi-objective pareto-based optimization","farm bioeconomic model"],"sieverID":"d4a28051-830a-4d66-9218-31b971cc9b7b","pagecount":"27","content":"We investigated alternative cropping and feeding options for large (>10 cows), medium (5-10 cows) and small (≤4 cows) mixed crop -livestock farm types, to enhance economic and environmental performance in Jhenaidha and Meherpur districts -locations with increasing dairy production -in south western Bangladesh. Following focus group discussions with farmers on constraints and opportunities, we collected baseline data from one representative farm from each farm size class per district (six in total) to parameterize the whole-farm model FarmDESIGN. The six modelled farms were subjected to Pareto-based multiobjective (differential evolution algorithm) optimization to generate alternative dairy farm and fodder configurations. The objectives were to maximize farm profit, soil organic matter balance, and feed self-reliance, in addition to minimizing feed costs and soil nitrogen losses as indicators of sustainability. The cropped areas of the six baseline farms ranged from 0.6 to 4.0 ha and milk production per cow was between 1,640 and 3,560 kg year −1 . Feed self-reliance was low (17%-57%) and soil N losses were high (74-342 kg ha −1 year −1 ). Subsequent trade-off analysis showed that increasing profit and soil organic matter balance was associated with higher risks of N losses. However, we found opportunities to improve economic and environmental performance simultaneously. Feed selfreliance could be increased by intensifying cropping and substituting fallow periods with appropriate fodder crops. For the farm type with the largest opportunity space and room to manoeuvre, we identified four strategies. Three strategies could be economically and environmentally benign, showing different opportunities for farm development with locally available resources.Mixed crop -livestock (MCL) farming systems with a focus on dairy production have the potential to be more productive, climate-resilient and sustainable than intensive and specialized systems (Bullock et al., 2017). These MCL systems also are key contributors to income and nutrition security in smallholder livelihoods (Sekaran et al., 2021). In the dairy production sector, 240 million people are employed worldwide; 133 million dairy farmers keep at least one milking cow (Bos taurus), and dairy products directly and indirectly contribute to the livelihoods of up to one billion people globally (FAO, 2016). World annual milk production is about 718 million tons from 264 million dairy cows; however, this will be required to increase by 147 million tons by 2030 to fulfil the increasing demand and nutritional needs of the growing global population (FAO, 2020;OECD-FAO, 2021). To produce the amount of milk demanded in 2018, total global compound feed production was 1.103 billion tons for all species; 237.8 million tons was used as cattle feed (dairy, calves and beef) (Koeleman, 2019). To meet the desired production level for 2030, a larger quantity of feed and increased feeding efficiency will be required (FAO, 2016;Mottet et al., 2017).Although Bangladesh is ranked fifteenth in the world in terms of number of dairy cows, total milk yield per animal is low. This results partly from the lower yield achieved by rural (1.2 litres cow −1 day −1 ) and peri-urban farms (3.5 litres cow −1 day −1 ) compared to more intensive dairy farm types (9.8 litres cow −1 day −1 ) (FAO, 2016;Huque & Sarker, 2014). Despite this, dairy farming in general is marginally profitable, while farmers have ample opportunities to increase output by using more aggregate feed, high yielding breeds, land and labour inputs (Skider et al., 2001). Shortages in on-farm production of feed are, however, an important challenge contributing to the low milk yield (Quddus, 2018). Producing feed on-farm -for example, by integrating green fodder into cropping systems -could potentially relieve this constraint and would be expected to positively influence milk yield (Ehsanul, 2016), but studies are rare which identify what farm reconfiguration (including differing allocation of land to different fodder species) is most advantageous to increasing yield while at the same time achieving profitability increases and limiting environmental externalities.Cognizant of the need to enhance national milk yield, in 2007 the Government of Bangladesh revised its first national breeding policy (1982) to produce the National Livestock Breeding Policy 2007 (Bhuiyan et al., 2017;NLDP, 2007). These guidelines focus mainly on crossing indigenous with high-yielding cows, mostly Holstein-Friesian and Sahiwal. As a result, milk yield has increased marginally by up to 1.2 percent annually (Huque & Sarker, 2014). Breeding efforts have also been complemented with the growth of commercial artificial insemination entrepreneurs and increased prominence of the Department of Livestock Services (DLS), which provides technical backstopping and extension advice to farmers. The DLS (2021) suggested that as a result of its support, milk production increased by 7.6 percent in 2019-20 compared to the previous year. However, to achieve the potential of the improved genotypes of graded and crossbred cows which are now available to farmers, animal demand for nutrient-rich feed needs to be fulfilled. Since increasing genetic potential through crossbreeding increases milk production, the cow should be provided with sufficient nutrients through feed, depending on the type of production and productivity level. However, this can be challenging when feed is scarce (Khan et al., 2009).To address feed shortages, efforts have been made to encourage farmers' adoption of cultivated fodder, for instance Napier grass (Pennisetum purpureum Schumach.), and to increase the use and quality of crop residues. The latter is important, as most farmers in Bangladesh provide rice (Oryza sativa L.) straw -which tends to be nutrient poor and difficult for animals to digest -as the primary source of feed, sometimes following urea treatment (Khan et al., 2009). In addition, the use of silage (processed and prepared from maize, Napier and others types of forage) may be useful in situations of feed shortage (Khan et al., 2013). On occasion, various fodder trees and weeds may also be fed to livestock (Ehsanul, 2016;Khan et al., 2009). Although fodder crop production is increasing in Bangladesh (Sarker et al., 2021), a shortage of fodder of about 45% remains (Huque & Sarker, 2014). This is due partly to the scarcity of land available for feed production compared to the cultivation of other economic and food crops. As a result, farmers are increasingly using concentrate to meet the required demand for nutrients needed by animals to ensure appropriate levels of milk production. While this approach has provided a partial stop-gap solution, up to 80 percent of the concentrates used as feed is imported from abroad, making them costly for smaller and resource-poor farmers to access (Huque & Sarker, 2014;Quddus, 2009). An assessment of the use of imported concentrate is needed to decide whether alternative and more self-reliant options might lower costs and increase profitability for farmers. If alternative options can meet the nutritional requirements of cattle in terms of maintenance and production, this has the potential to improve selfdependency in feed production, which will in turn affect sustainability.Sustainability is a multi-dimensional concept (Calker et al., 2005;Cornelissen et al., 2001); in the case of dairy production in Bangladesh, key indicators for sustainability include economic (feed costs, price of products, profits and productivity to ensure food security), environmental (lowered nutrients losses, maintenance and improvement of soil OM balances, reduced greenhouse gas emissions) and animal welfare (health, feed and management of cows) (Cornelissen et al., 2001). These issues are directly or indirectly affected by farmer decision-making (Calker et al., 2005). Although farmers tend to be more concerned about economic than environmental or animal welfare matters (Ahsan et al., 2016;Cabrera et al., 2008), convincing farm configuration and management options could be made available which simultaneously improve farm economic performance and address sustainability objectives. When the synergies and potential trade-offs among indicators for different sustainability dimensions are clear, informed choices can be made to direct dairy farm management towards a more sustainable future (Cortez-Arriola et al., 2016;Mandryk et al., 2014).Farm sustainability assessments can be based on farm monitoring studies and on in silico modelling, both of which can be used to quantify a suite of sustainability indicators. Modelling tools can be used for farm diagnosis, assessment, re-design, and the analysis of trade-offs and synergies among diverse objectives such as those described above (Groot et al., 2010). Exploratory models for MCL farm analysis could also support the re-design of farm management strategies (Cortez-Arriola et al., 2014). Simulations permit model users to explore the relationships between various farm performance indicators and to assess options to improve sustainability in an integrated manner (Groot et al., 2012;Uddin et al., 2012). In this study, we used the whole farm model FarmDESIGN (Groot et al., 2012) and the Feed Assessment Tool (FEAST) framework as a discussion support tool to collect field and farm data in focus group discussions related to livestock production and feeding (Duncan & Lukuyu, 2017).This study explored options for improved feeding strategies for small, medium and large dairy farms in two major milk-producing districts in Bangladesh, to enhance sustainability while considering multiple objectives and indicators. The following specific questions were addressed: (1) How do farms of different size categories (i.e. farm types) perform in terms of profitability, resource use efficiency and environmental impact? (2) Which synergies and trade-offs exist between economic and environmental indicators of sustainability for each farm type? and (3) In which ways can the sustainability of smallholder dairy farms be improved?The study was conducted in the western part of Bangladesh namely Meherpur (71,600 ha) and Jhenaidha (196,500 ha) districts (Figure 1). These districts are located at an elevation of 13-19 m above sea level, with ambient temperatures ranging between 25-35°C across the year and yearly rainfall ranging between 1374-1857 mm in 2018 (BWDB, 2019). The districts were purposefully selected according to four criteria: (1) they feature high density livestock and dairy farms (DLS, 2016), (2) the farms commonly raise both indigenous and crossbred cows, (3) farmers choose to cultivate fodder in addition to non-fodder crops, and (4) farmers in these districts were willing to participate in the study. Most farms in the two selected districts can be characterised as MCL systems and according to DLS (2016), arable land for crop cultivation in Meherpur and Jhenaidha -paddy, maize (Zea mays L.), wheat (Triticum aestivum L.) and lentil (Lens culinaris Medik.) -encompasses 65,680 and 173,626 ha, respectively. In terms of livestock found in the two districts, there are 0.14 (Meherpur) and 0.53 (Jhenaidha) million large ruminants (cattle and buffalo), and 0.27 (Meherpur) and 0.49 (Jhenaidha) million small animals (goats and sheep). Data collection for this study was achieved through focus group discussions (FGDs) with dairy farmers, as well as in-depth surveys with subject matter experts in Bangladesh to hone-in on data required for subsequent simulation modelling.The permission for carrying out FGDs was granted by the district livestock officer, and recruited a local facilitator to manage the process and to purposively identify the focus group areas. We then selected farmers for the FGDs using a snowballing sampling method. A total of 15 farmers verbally agreed to participate in each FGD where we found 2:1 male-to-female ratio. The FGDs lasted about 90 minutes and were held in March 2018 and April 2018 in Dakkhin Shalika (Meherpur) and Bijoypur (Jhenaidha) areas, respectively. Along with the moderator and facilitator, the district livestock officer and local livestock representative joined in the discussion. A village-level approach is typically used for FGDs; instead, we selected questions from the Feed Assessment Tool (FEAST) as a discussion guide. FEAST is an assessment tool developed to collect and analyse data in case study sites on livestock feed resources from animal and crop farming communities (Duncan & Lukuyu, 2017). FEAST includes modules that we employed to assess the diversity of farming systems and management strategies in each study district, including those used for livestock management. We used questions from FEAST in order to obtain an overview on farm size, area, animals numbers, crop yields and animal products at the village level. Our questions were therefore focused on general farming system descriptions, management of mixed-crop livestock species, problems and opportunities within the livestock system, and distribution of wealth, land, and other assets among farmers.Following each FGD, depending on the currently available supplied feed, animal numbers, arable land, year round crop-livestock production and farm records, upon their verbal consent, we selected nine farmers from each district to conduct detailed data collection. This was based on Hemme et al. (2004), who suggested and modified a farm typology (small ≤4 cows, medium = 5-10 cows and large ≥ 11 cows) to categorize resource and farm diversity on a generalized basis. In this study, we randomly chose three farms which met these classifications and then one representative farm within the group was selected on the comparative basis of crop cultivation areas, grassland areas, cropping pattern and number of milk producing cows between the farms. To simplify the modelling in FarmDESIGN, one dairy farm was selected from each group. This resulted in six farms (JDL: Jhenaidha large; JDM: Jhenaidha medium; JDS: Jhenaidha small; MPL: Meherpur large; MPM: Meherpur medium; MPS: Meherpur small) being chosen for whole-farm modelling and multiobjective exploration using the FarmDESIGN model. For each interview, a survey tool was prepared to collect detailed data for FarmDESIGN; we collected data from March 2018 to May 2018. In addition to the formal survey, researchers also visited each farm for direct observation of the farming system, and measurement of supplied amount (kg) of daily feed, and of body weight using Schaeffer's formula (Wangchuk et al., 2018). When available, we also assessed records kept by farmers on the use of feed, yield of milk, management of cows, and economic information associated with dairy and farm production. This generated a dataset with a range of information described in Table 1, which was used for subsequent modelling efforts.FarmDESIGN is a farm-household bio-economic model which quantifies annual farm socio-economic and environmental indicators and allows the performing of multi-objective optimization to explore potential improvements in farm configuration and performance (Ditzler et al., 2019;Groot et al., 2012). The model requires a range of information such as soil and climate data (BMD, 2018;SRDI, 2018), information on farm socio-economic conditions including interest rate (BB, 2022;BKB, 2022), and costs, labour availability and prices, which we obtained from surveys and farm records as well as from market in the surveyed period. Farm surveys also provided data on cropped area, production, external and farm-grown feed sources, and labour demand and costs. Data on crop and fodder nutrient composition were obtained from the National Research Council (NRC, 1988). Observations on animal herd and composition were generated from farm visits, while surveys were used to quantify farm physical assets, dairy herd management and productivity levels, and to identify nutrient requirements, as well as the destination (that is, for consumption or market) for the dairy and other livestock products produced. Finally, surveys were used to generate estimates of manure production and management. The nutrient content of manures produced were sourced from NRC (2001,1989).FarmDESIGN can be used to compute and optimize indicators of feed selfreliance (increasing on-farm feed production and reducing reliance on external feed imports), feed balances, flows and balances of OM, carbon (C), N, phosphorous (P) and potassium (K), operating profit, and feed costs per year (Groot et al., 2012). In this study, we selected five important attributes and relevant sustainability indicators for a dairy farming system: operating profit, OM balance and feed self-reliance, feed cost and soil N losses.The farm operating profit (FP) was calculated as the difference between gross margins of crop and animal production (M C and M A , respectively) and fixed costs for assets (C F ), labour costs (CL) and general costs (CG): The feed self-reliance was the percentage of dry matter in the animal ration that was derived from on-farm produced feeds. The feed costs were the summed costs for all feeds supplied to the livestock. The organic matter balance (OM B ) was calculated at soil level from the difference between OM inputs in crop residues (OM C ), green manure and mulch (OM G ), feed losses and bedding material (OM F ), on-farm produced manure (OM M ) and imported manure and fertilizers (OM I ), and degradation of manure (OM D ), soil organic matter (OM S ) and erosion losses (OM E ):Soil N loss, is the amount of nitrogen that can be potentially lost by leaching or denitrification, is calculated from the difference between inputs to and known outputs of the soil component, and thus forms the balancing item.A more detailed description of the calculations is provided in Groot et al. (2012).To perform multi-objective optimization, the model uses an evolutionary algorithm (Differential Evolution, or DE; Storn & Price, 1997) to generate alternative farm configurations which are evaluated for their performance for selected indicators and iteratively improved. The user can parameterize the algorithm by specifying ranges for decision variables which are related to the production and use of crops, animals, manures on the farm (currently used or newly introduced), and the import and export of resources such as fertilizers, feeds and pesticides. The user can also set ranges for constraints on particular indicators such as feed balance items (for example, intake capacity, dietary energy and protein) and soil nutrient balances (to avoid excessive surpluses or nutrient mining), and determines which indicators are minimized or maximized by the algorithm, that is, sets the objectives.In the multi-objective optimization, we maximized operating profit, OM balance and feed self-reliance, and minimized feed cost and soil N losses (Calker et al., 2001(Calker et al., , 2005)). The multi-objective optimization algorithm generates different reconfigurations of farms by allocating different crop and fodder species to different land areas within the farm, but without expanding farm size or changing the number of fields that farmers reported in surveys. Different types of feed were also included, based on all available options identified by farmers during the FGDs and surveys. We also permitted the model to manipulate the number of animals and source of feed for cows, to improve nutrient composition of on-farm and purchased feed items, and to optimize the existing and future possibility of produced and imported feed options. For the multi-objective optimization algorithm we applied 1,000 iterations to ensure stable outcomes during the optimization process, with DE parameters of 0.85 crossover probability, 0.15 amplitude, and a result set of 1500 alternative solutions.The result set from multi-objective optimization for the Meherpur large farm was analysed in more detail, because this is where we found the largest room to manoeuvre, and we further explored the opportunity and solution spaces with principal component analysis (PCA) and hierarchical cluster analysis (HCA). Finally, we analysed the Euclidian distance of decision variables (D V ) and decision objectives (D O ) relative to the original farm configuration for each of the clusters. D O is a measure of the improvement which is achieved, while D V signifies the magnitude of change required in resource allocation, crop area and number of animals; thus, D V reflects the complexity of adjustment needed to reach improvement in the objectives.Three farms representing the large, medium and small farm types were selected from each district for detailed analysis using the FarmDESIGN model. Selected farm characteristics are presented in Table 1, and a complete overview of farm characteristics in Table S1. The average crop cultivation area for all farm types was lower in Jhenaidha district (1.3 ha) than Meherpur district (2.6 ha). The use of on-farm feed per livestock unit per year was lower (1,763 kg dry matter (DM)) in Jhenaidha than Meherpur (2,964 kg DM), whereas external feed use per livestock unit was higher in Jhenaidha (2,024 kg DM) than Meherpur (892 kg DM). Milk yield tended to be lower in Meherpur (4.5 kg cow −1 day −1 ) than Jhenaidha (9.5 kg cow −1 day −1 ). The number of milk-producing animals per farm ranged from 13 to 14 in large farms, between 5 and 8 in medium-sized, and 2 to 4 in small farms, in both districts. The proportions of external feed use were 71%, 59% and 46% in large, medium and small farms in Jhenaidha, respectively. In Meherpur, all farm types used lower proportions of external feed compared to Jhenaidha (63%, 30% and 34% for large, medium and small farms, respectively). In terms of fodder produced on-farm, rice straw and rice bran were common feeds in both districts. The majority (71%) of farmers in Jhenaidha district also produced \"vura\" (local grasses available are vura, durba and baksha) and lentil hay; the farmers of Meherpur district produced Napier, wheat grass, maize leaf and maize flour (processed from harvested kernels) for animal feed. In addition, a few farmers bought or processed silage or hay as external feed.Self-reliance on feed was conversely generally low, regardless of farm size, at 17-57% of feed DM derived from the own farm. Farms in Jhenaidha appeared to have a higher risk of soil N losses and a lower OM balance than the farms in Meherpur. The JDS farm had a high operating profit, while the MPS farm had a high OM balance. The MPM farm demonstrated the highest self-reliance, with low feed costs and soil N losses, although the management practices on this farm, which included a high amount of on-farm fodder production and less dependency on external feed items, were also associated with low profits. Conversely, the JDL farm had a low OM balance (the result of a lower amount of crop residue, and animal and green manure use) but high feed costs, leading to it having the lowest self-reliance.Optimization modelling of the five sustainability indicators showed how the reconfiguration of components of each farm type could lead to substantial improvements in feed self-reliance, operating profit and OM balance, as well as lower feed costs and soil N losses. Pareto-based multi-objective optimization using the five objectives resulted in contrasting opportunity spaces for each of the three farm types in both districts (Figure 2). A trade-off was observed between OM balance and N losses (Figure 2j), in which higher OM balances caused by higher feed imports (and thus lower self-reliance; Figure 2g) were also associated with increased N losses.Our model explorations indicated that larger farms in both districts appear to be able to maintain larger livestock numbers than small and medium-sized farms (Figure 3). Larger farms in Jhenaidha had more dairy cows, while the number of heifers and bulls was greater on large farms in Meherpur (Figures 3f-g). Rather than showing a trend towards increased self-reliance in terms of feed, larger livestock numbers on these farms were associated with more imported feed (Figure 3e), with the large farms in Jhenaidha more dependent on imported feed than in Meherpur (Figure 3e). Land area devoted to paddy production (Figure 3a) and improved or modified cropping systems (Figure 3d), and imported feed imports and animal numbers (Figures 3e-g) was considerably greater on Meherpur's large farms than for the other farm types. This was clearly reflected in the larger opportunity space to improve the economic and environmental indicators (Figure 2).Because the Meherpur large farm had the largest opportunity space (Figure 2) and room to manoeuvre (Figure 3), we further analysed the opportunity and solution spaces of this farm type using principle component and cluster analysis to discern patterns which could indicate coherent strategies for farm development (Figures S1-S4). Hierarchal clustering analysis identified four distinct clusters (Figure S3). Sustainability indicators (Figure 4) and decision variables (Figures 5-7) suggested that contrasting approaches would be required to reach one or more objectives in unison. Here, cluster 4 (shown in orange in Figure 4) could potentially allow farmers to reach high levels of profitability and self-reliance, although this was associated with intermediate levels of feed costs and OM balances, and N losses from the farming system. Cluster 2 (shown in red in Figure 4) attained high selfreliance, low feed costs and N losses, but low profitability and OM balance. Clusters 1 and 3 showed a tendency towards higher feed costs and lower selfreliance in feed production and use (cluster 1, shown in green in Figure 4), and/or with high N losses (cluster 3, shown in blue in Figure 4), which were considered a medium performance for profit.Model optimization suggested that clusters 1 and 3 could cultivate larger areas of paddy rice, while clusters 2 and 4 could engage in farm diversification with the production of lentil, wheat and maize, all of which could be used as a green fodder (Figure 5d-e). Areas of single cropping or less intensified cropping systems -wheat, lentil and paddy rice (non-irrigated) -were limited in the optimized solutions (Figure 5a-c).The observed clusters suggested the need for different feeding strategies in order to achieve farm improvement. Cluster 2 contained farm configurations using a small amount of external feed (maize bran, wheat bran, rice straw, maize silage and treated rice straw), while cluster 1 consisted of redesigned farms which would have the highest amount of external feed (Figure 6), resulting in the lowest self-reliance. In clusters 2, 3 and 4 the use of maize and wheat bran as feed tended to be limited (Figure 6a,b); cluster 3 used the largest amount of maize silage (Figure 6d); farms in clusters 1, 3 and 4 used large quantities of rice straw with or without ammonia treatment (Figure 6c-e). Cluster 2 options had low numbers of animals (Figure 7); cluster 4 had the largest number of dairy cows and a low number of bulls. For all clusters, the number of heifers was relatively stable (determined by a decision variable of between 4 and 6).Cluster 2 comprised solutions that would reduce the intensity of farming activities to increase feed self-sufficiency, which would lead to low profitability and OM balance. At the same time, losses of N to the environment were lowest for this cluster. Cluster 4 was livestock-oriented, with the most intensified and profitable farm configurations and a diversified cropping pattern allowing relatively high self-reliance, resulting in an intermediate OM balance and high N losses. Similarly, Cluster 1 was also livestockoriented but focused on externally obtained feeds. As a result, farms in this cluster would have higher feed imports and associated costs; self-reliance was thus low and profits intermediate. Finally, Cluster 3 appears to have the highest OM balance but also high N losses and feed costs. This is representative of the input-intensive nature of this farm cluster that tended to achieve relatively high profits during simulation.Figure 8 shows the Euclidian distance of decision variables (D V ) and decision objectives (D O ), respectively relative to the original farm configuration for each of the clusters. Although the required adjustments increased for consecutive clusters 1-4 (Figure 8a), the relative improvement was the same for clusters 2, 3 and 4 (Figure 8b), although the clusters performed differently for the various objectives.Our simulation modelling of dairy operations in MCL farms in Bangladesh showed that increased profitability could be reached by adjustments in cropping patterns (that is, crop sequencing in the field), crop cultivation areas (allocation of different cropping patterns within the farm to different fields and field sizes), sources of external feed acquisition and on-farm feed production, and number of animals and their productivity. We found profitable and intensified livestock-oriented farm configurations with diversified cropping patterns, whereas the trade-offs with environmental indicators resulted in intermediate OM balances and higher N losses. The use of external feed sources, particularly maize silage, could possibly influence higher farm profits.Although challenging in Bangladesh's land-and labour-scarce agricultural systems, adjustments to cropping patterns are achievable, as demonstrated during the survey by farmers neighbouring our sample, who we found had started to practice the cropping patterns we had proposed. Modelling found that replacing paddy or increasing cropping intensity, with Napier grass, maize, lentil hay, wheat grass and legumes (maskalai) cultivated as fodder to reduce feed costs, would result in major changes. On-farm feed production can be increased by cultivating leguminous or short-term feed-producing crops in the fallow periods (between or after 2 paddy or other crops). We found that farmers can grow a wide variety of crops, and that replacing species or changing crop rotations or adding additional crops may be possible using existing land areas and resources, at least for the farms studied in this paper. In MCL systems, crop intensification is mainly achieved by changing the crop rotational pattern or adding crops. For example, where soil moisture or irrigation are not limiting, farmers could make use of the fallow period between economic crops to cultivate fodder crops. Utilisation of fallow land and alternative feeds from irregular sources has been effectively used by MCL farmers in India (Alam et al., 2022(Alam et al., , 2023;;Srinivasa Rao et al., 2016), and seasonal fallow played a role for fodder production in Nepal (Alomia-Hinojosa et al., 2018). The utilisation of fallow land, e.g. at the roadside, farm boundaries has played an additional role in meeting the demand for animal feed in sub-Saharan Africa (Paul et al., 2020). In addition, the utilisation of alternative feed resources could improve production and reduce the environmental impact (Jaleta et al., 2013). Other studies have demonstrated that intensification through integrated mixed-crop-tree-livestock systems can increase sustainable production based on improved fodder production systems (Notenbaert et al., 2021;Paul et al., 2020).We simulated the consequences of maximizing operating profits and self-reliance (by increasing on-farm feed production), and minimized feed costs, by decreasing the use of external feed (mostly wheat bran and rice straw) and increasing the production of on-farm feed. Our model results suggested that these changes could be associated with a large reduction in wheat bran and rice straw as external feed in most feeding strategies (clusters 2, 3 and 4; Figures 6a,b). To compensate for this, we identified solutions incorporating increased use of urea-treated rice straw and maize silage as a new external feed, and vura, Napier, maize and lentil as green grass as on-farm feed. As the top 10 rice-producing countries, including China, India, Indonesia, Bangladesh, Vietnam, Thailand, Myanmar, Philippines, Brazil, and Japan, collectively generate over 227 million tons of rice straw as a low-cost natural by-products annually (Sarnklong et al., 2010). Consequently, the proper utilization of rice straw has become a significant concern. Treated rice straw, employing methods such as physical, chemical, and biological treatments, has been frequently employed for animal feeding in countries like India (Malik et al., 2015), Bangladesh (Uddin et al., 2012), Egypt (El-Dewany et al., 2018) and several other rice-producing nations (Sarnklong et al., 2010). In the interest of environmental preservation, biological treatment has been widely recommended (Srinivasa Rao et al., 2016).A study focused on Asian small scale mixed crop livestock systems and found that the use of maize silage in feed rations increased milk yield by 11% over a milk production year, compared to the use of dried leguminous hay (Paris, 2002). In addition, silage can be preserved on-farm and used to feed animals economically during times of feed scarcity (Densley et al., 2011). Although this has various positive impacts, the processing and adaptation of maize silage is new in Bangladesh, but farmers have 12% more milk yield with a higher profit by using silage from low-cost silage processing technology (Khan et al., 2009). They also reported on interest among farmers in using silage as animal feed in future farming. A few silage entrepreneurs currently supply silage throughout Bangladesh on a basis which, although commercial, is still cost-effective as animal feed. Other South Asian countries, including India, Nepal, Bhutan, Sri Lanka, Maldives, Afghanistan, and Pakistan, have highlighted the significance of employing silage for animal feeding, especially to address feed shortages (Samanta et al., 2019). Comparable suggestions have also been put forth for nations in sub-Saharan Africa, including South Africa, Kenya, and Nigeria (Balehegn et al., 2021).On-farm fodder production has the potential to decrease external feed dependency and reduce feed costs as a result. Val-Arreola et al. (2004) optimized small-scale farm practices in Mexico by linear programing land use, fodder yield and nutrient availability for cows, concluding that on-farm feed production increased nutrient availability and milk yield (by 40%). Another study conducted by Khan et al. (2009) looked at the effects of feeding strategies on indigenous and crossbred cows in Bangladesh. They found that crossbred cows fed higher grass produced more milk than indigenous cows fed lower grass. Profit was also higher in higher grass fed cows than in lower grass fed cows. An increasing relationship between fodder cultivation and higher profitability was also found by Roy et al. (2012) in Meherpur. The reliance on on-farm feed production for economic sustainability was observed in India (Mahanta et al., 2020). This approach has also been recommended in the broader Asian context (Devendra & Leng, 2011).During modelling, we used locally available feed items (such as wheat bran and rice bran) as external feed, and similarly suggested locally cultivated crops or grass species (such as wheat grass and maize grass) as feed, which, if used scientifically, fulfilled dairy cow nutrient requirements in terms of both maintenance and production ration. However, in Bangladesh, farmers generally lack awareness of scientific feeding strategies and how to practice them: most provide rice straw as basal mixed with grass and concentrate as a matter of course, resulting in a highly varied fulfilment of nutrients (Khan et al., 2009). Participatory training and awareness raising efforts regarding the relationships between fodder quality, animal health, and milk yield therefore need to be intensified in Bangladesh. The use of locally available feed items was highly frequently was very common as animal feed in India (Alam & Silpa, 2020;Alam et al., 2022;Samanta et al., 2019). In recent years, urban farmers have been trying to collect food waste from the food industry, restaurants and supermarkets as an alternative feed for their animals (Alam et al., 2023;Reichenbach, 2020).As discussed above, the maximization of OM balance and minimization of soil N losses could, according to simulation results, enhance the environmental sustainability of farming systems and could potentially be achieved by changing cropping pattern and/or intensity. The opportunities for changing cropping patterns were however found by this study to be greater for large farms than for medium and small farms, owing to the larger crop cultivation area. This presents a social-equity dilemma that will need to be addressed in agricultural development efforts that include dairy feed and milk value chain components, as solutions beneficial to more marginal farmers remain a key area of concern.Environmental improvement opportunities were also found for clusters 1 and 4. However, due to the trade-off between OM balance (which is higher largely when feed imports are higher) and N losses, compromises would be needed. We identified solutions which had the potential to benefit economic and environmental objectives simultaneously, in particular for cluster 4, that provided compromise solutions with high operating profit and feed self-reliance. Improvement of OM balance by introducing on-farm improvements (rather than by increasing the use of imported feed) could be achieved with the introduction of maskalai, vura, lentil and maize grasses (instead of irrigated paddy rice cultivation) on ca. 13 percent of the farm area. This would reduce the year-round rice yield by a minute amount, while at the same time the altered crops would add crop residues as green manure to the soil and, if fed to animals, result in more manure production. The improvement of soil health can be improved through crop residues (Jaleta et al., 2013). In addition, crop rotations with temporary fodder species, where possible, improve soil quality compared to annual crops (Viaud et al., 2018).Our simulations suggest that farmers' dependence on inorganic fertilizers could be reduced as a result of the inclusion of lentil, maskalai, Napier, wheat, vura and cabbage. This is because leguminous crops symbiotically fix atmospheric nitrogen and non-legume crops require less inorganic fertilizer than paddy cultivation. The decision to introduce new crops or replace others is dependent on soil type, weather and farmer interest. A study of different annual crop rotations in the tropics (specifically, India) (Chander et al., 1997) found that green manuring improved the OM level and soil microbial activity (the latter being vital for long-term soil productivity and nutrient turnover). Incorporating leguminous crops can accumulate 2.6 kg N ha −1 day −1 (Fageria, 2007). The practice of green manuring with intercropping, specifically focusing on leguminous crops to improve soil fertility, was also practised in sub-Saharan Africa (Bationo et al., 2007;Lupwayi et al., 2007).Model-based explorations for six MCL farms focusing on dairy production demonstrated that options exist for simultaneously increasing operating profit, self-reliance and OM balance, and reducing feed costs and soil N losses by using existing farm resources, and adjusting and intensifying cropping patterns. Our trade-off analysis showed that increasing profit and OM balance was however often associated with higher N losses, due to larger input levels. For the farm with the largest opportunity space and room to manoeuvre, we identified four strategies for farm development, of which three are likely to be economically viable. Our study also demonstrates how an integrated analysis of alternative feeding systems for sub-tropical dairy farms can enhance understanding of the potential for combined economic and environmental benefits in MCL production systems, thereby overcoming apparent trade-offs and offering farmers a suite of management options to explore. Improvements appear to be achievable with the careful inclusion of fodder and crop species, and through the objective-oriented reconfiguration of existing farm practices. Simultaneously, the four identified strategies for farm development can significantly contribute to the success of integrated crop-livestock farming systems in South Asia and other countries where integrated crop-livestock farming is prevalent.","tokenCount":"6180"} \ No newline at end of file diff --git a/data/part_3/3341783897.json b/data/part_3/3341783897.json new file mode 100644 index 0000000000000000000000000000000000000000..faba6b93cf81d05756cfa4e65584a0edddb7e9e3 --- /dev/null +++ b/data/part_3/3341783897.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"728a52de820549a3155733b1b577d0fb","source":"gardian_index","url":"http://ciat-library.ciat.cgiar.org/Articulos_Ciat/agricultural_research_poverty_reduction.pdf","id":"-1227035631"},"keywords":["AGRIS subject category","E14 Economía y políticas de desarrollo / Development economics and policies LC classification","HC 79 .P63 A4"],"sieverID":"cfa1a95b-5585-45de-ab05-634a53aec94d","pagecount":"266","content":"Local descriptors in English:1. Research impact. 2. Gender analysis. 3. Cassava. 4. Beans.Lennart Båge* At a time when donor support for international public goods research is gradually declining-or, at best, 'stagnant', the need to assure ourselves and the international community at large of the direct relevance and impact of our investment in agricultural research endeavors on rural poor people becomes a very prominent issue on the global agenda.The importance of assessing the impact of agricultural research, particularly in terms of pinpointing its role in poverty reduction, is not something new. Back in the 1970s, when I represented the Swedish Government at the Consultative Group on International Agricultural Research (CGIAR), I argued strongly in support of more rigor in ex-post evaluation of research investments. In fact, my call was echoed by my colleagues around the CG Table, with the result that a large number of excellent studies and impact-research initiatives have spawned over the past 2 decades. Most of these studies spoke out very clearly on the notion of high rates of return to investment in agricultural research.In the more recent past, some important investors in agricultural research (such as IFAD, USAID, DFID 1 , and the World Bank) have been pressing to ascertain the extent to which the research they so generously supported-together with others in the donor community-has responded to the particular needs of the rural poor in developing countries, for whom it was originally intended.As President of IFAD, I am very pleased indeed to see that the Fund has played a leadership role within the international donor community, in this regard. Not only has it consistently highlighted the need for targeted research and diffusion of pro-poor technologies, but also it has stressed the compelling obligation to assess the effective impact of the adopted research products on poverty reduction, and on improving the livelihoods of rural poor people throughout the world. vi It must be noted, however, that in the recent past, IFAD has gone far beyond these debates. It has led several efforts to support the development of analytical tools and methodologies for examining the impact of improved technology on the various income and non-income dimensions of poverty. Such methodologies are not limited to merely measuring higher on-farm yields and biophysical productivity, but also capture other benefits. These include, for instance, expansion of farm employment opportunities and higher wages, the growth of non-farm activities, lower food prices, reduced vulnerability to production-system and other risks, and the processes of truly participatory research systems that also foster benefits such as the empowerment of the poor and disadvantaged persons. Special emphasis is placed on the interrelationships between technological improvements and the empowerment of women-meaning a more decisive role for women in decision making, both within and outside the household. This important publication is the result of the work of specialized authors brought together by Shantanu Mathur and Douglas Pachico to examine both the methodological issues related to impact assessment, and other aspects of the technology system. These include policy formulation and decision making, generation of new pro-poor knowledge, the diffusion of new techniques, and, most importantly, the factors that influence their profitable and sustainable utilization. Spillover benefits, social goals, and environmental impact are also discussed.Of particular relevance among the many issues discussed in this book, in relation to poverty reduction, is the dominating fact that the research community has not paid sufficient attention to clearly demonstrating the impact of their otherwise fruitful research outcomes on these other dimensions of rural poverty, which are just as important as improved productivity and pecuniary benefits.It is true, of course, that research and development have been off the radar screen for some time now. Although R&D was a key issue in the 1970s, it fell sharply over the last decade. Meanwhile, bilateral and multilateral financing has considerably diminished. At the Millennium Summit, we committed ourselves to the ambitious poverty eradication agenda, agreed on by world leaders. Concomitantly, R&D priorities have found their way back to the Agenda. The high-level Intergovernmental Summit of the Economic and Social Council of the United Nations (ECOSOC) reconfirmed this, and new bilateral investors in agriculture and rural development are slowly reappearing on the horizon. I quote from Rodney Cooke's Epilogue to this book that \"the proportion of Official Development Assistance for agriculture fell from 20% in the 1980s, and remains only at around 12% today.\" The recent Monterrey Financing for Development International Conference (FfD) and the Johannesburg Earth Summit certainly provided up-front platforms for reiterating a strong commitment to the agricultural sector, as a mechanism vii for sustainable development. This notwithstanding, and despite the international community's Millennium Development Goals (MDG) pledge, which focuses so sharply on the livelihoods and welfare of the poorest communities, we have yet to see any significant move forward in global support to agricultural R&D.The MDG pledge was strongly reconfirmed during the recent 25 th Anniversary Session of IFAD's Governing Council, on 18-19 February 2003, and it is hoped that we will soon see some positive movement in investments targeting pro-poor research. One consolation-and, indeed, positive indication-in this direction comes from IFAD's having just concluded a highly successful Sixth Replenishment cycle, and obtained a contribution of a magnitude that is second only to that which led to the establishment of the billion dollar IFAD, 25 years ago. Inconfutable proof of the impact of our investment in agricultural research will help in strengthening our support to this important area of rural development.I take this opportunity to thank the authors of this compendium, each of whom has provided comments on a vast range of issues related to the impact of research investments on poor rural people. I applaud their depth of thought, and the rigor of their carefully-nuanced and well-articulated analysis, which doubtless will appeal to those entrusted with the task of financing and leading poverty reduction-oriented research in the years to come.The chapters in this book have been mostly chosen from original presentations given at the International Workshop \"Assessing the Impact of Agricultural Research on Poverty Alleviation\", which took place on September 14-16, 1999 in San José, Costa Rica. The papers chosen have been extensively rewritten and updated since then and two new ones were especially commissioned (Chapters 1 and 2). Chapter 1 is based on Michael Lipton's synthesis presentation given at the close of the workshop and gives an excellent overview of the workshop itself. One hundred and fifty six participants from 37 countries and 81 organizations attended the workshop, which was funded by 16 donors 1 .It is well known at the broad context level that agricultural research has major impacts that go beyond farm households and rural communities on the effect on urban food prices, employment, and overall economic growth. This section of the book does not look at those broad effects of agricultural innovation, but rather at what specifically happens at the rural community and household level. These are studies that are not really trying to aggregate up to the national or sub-continental regional level about what the impacts of agricultural research are. They are not studies trying to show what the total returns to agricultural research are. They are studies trying to look at small specific cases, of what is happening on the ground. They seek to understand at the micro level how some of these more aggregate-level impacts are occurring.The release of this volume, although appearing 4 years after the San José Workshop, comes at an opportune moment. The World Summit in Johannesburg, 26 August to 4 th September 2002, and the World Food Summit: Five Years Later, held in Rome from the 10 th to the 13 th of June 2002, have called renewed attention to the issues of poverty and sustainability. The World Food Summit: Five Years Later called for an international alliance to accelerate action to reduce world hunger. It also unanimously adopted a declaration calling on the international community to fulfill an earlier pledge to cut the number of hungry people to about 400 million by 2015. That pledge was made at the original World Food Summit in 1996-the largest-ever global gathering of leaders to address hunger and food security-and progress towards it remains disappointingly slow (www.fao.org/worldfoodsummit).At the 1992 Earth Summit in Rio, the international community adopted Agenda 21, an unprecedented global plan of action for sustainable development. But the best strategies are only as good as their implementation. Ten years later, the Johannesburg Summit provided an exciting opportunity for today's leaders to adopt concrete steps and identify quantifiable targets for better implementing Agenda 21. The Johannesburg Summit 2002-the World Summit on Sustainable Development-brought together tens of thousands of participants, including heads of State and Government, national delegates and leaders from nongovernmental organizations (NGOs), businesses, and other major groups to focus the world's attention and direct action toward meeting difficult challenges, including improving people's lives and conserving our natural resources in a world that is growing in population, with everincreasing demands for food, water, shelter, sanitation, energy, health services, and economic security.\"Over half the world's extreme poor depend on farming or farm labor for their livelihoods. Alleviating this poverty will require that, at a minimum, we help these communities double agricultural productivity from the 2000 level by 2015\" (page 7 of Johannesburg Summit Brochure, www.johannesburgsummit.org).This volume helps us understand how some of the strategies might work that can enable us to better overcome these problems and meet these goals on poverty issues. The editors wish to give special thanks to Grant Scobie, who was the intellectual inspiration and guiding spirit of the whole effort that brought about the San José Workshop. This chapter is a series of reflections, based on the proceedings of a wonderfully stimulating and well-planned conference. A few outstanding lessons emerged and it is worthwhile summarizing them.What has changed since, for example, 1960-in what we know about how agricultural research affects poverty, and in what is happening to them? How was the new knowledge used and carried forward in the workshop? What can and should be done as a result?In 1965, we had reliable nationwide household survey data for expenditure or income, per person or per adult equivalent, for 5 to 10 developing economies. Today the number is over 50, many with reserves, and some (notably India) with long series of good data. Valdés (1999) and de Janvry and Sadoulet (2000) used these data to show the substantial fall in the incidence of rural and urban \"absolute consumption poverty\" in Latin America. The falls were faster and more dramatic in Asia, especially, but not only, East Asia. The intensity of poverty-incidence multiplied by the \"depth\", which is the proportion by which consumption per equivalent adult fell short of the \"poverty line\"-has fallen similarly. In these continents both rural and urban poverty incidences have probably fallen more in the past 50 than in the previous 500 years.However, globally, the absolute numbers of poor remain huge, at about 1.3 billion. Rural poverty is especially large (the urban-rural poverty gap has risen in about as many times and places as it has fallen). Some areas, including most of Africa and large regions almost everywhere, have seen CHAPTER 1Michael Lipton* little poverty reduction. Perhaps most worrying of all, both the rate of poverty reduction, and its responsiveness to faster economic growth, were substantially less after 1985 than in 1975-89 (as Valdés [1999] ] and de Janvry and Sadoulet [2000] show for Latin America). López (1999) suggested that, for incidence, this is because the \"core poor\" are further below the poverty line than are those who escaped poverty in the earlier period, and globally this is true. Around 1995, the average poor person in Africa appeared to survive with a command of only 61 c/person per day (in 1985 prices and exchange rates) over the global consumption bundle, as against 71 c in South Asia, and more elsewhere. However, it does not explain why the depth of poverty, too, has been falling more slowly since the late 1980s.Most evidence suggests that differences over space and time in rates of growth in average real consumption explain about half the differences in poverty incidence and intensity. But the effect of growth on poverty has been weakening in many countries because inequality has been risingspectacularly so in Russia and some other transitional economies, and substantially also in parts of Africa and in much of the East (although not, on evidence so far, South) Asia. There are other, although linked, reasons for the slowdown in poverty reduction. The core poor, having proved immune to global growth in the past-sometimes, but not always, because their countries have not shared in it-will clearly be increasingly hard to reach by global growth in future. Growth continues to do too little to reduce poverty in, for example, North and West China, Bihar in India, or the hilly areas of Latin America. These areas tend to be remote, and to contain high concentrations of the illiterate, those at ethnic or linguistic disadvantage, and households with high child/adult ratios. Thus, emigration is more difficult, and local poverty has been slower to decline than in better-endowed rural areas, whether or not its initial levels were higher.The workshop revealed continuing disagreement on this subject. \"Marginal areas\" were seldom precisely defined or disaggregated, but presumably connote mainly arid or semi-arid tropics, uplands, and other unreliably watered areas. Certainly \"regionalization of poverty\" has occurred globally and within nations. China more or less abolished food poverty in the southeast (India did almost as well in the Punjab and Haryana) in 1978-85. However, other regions proved much less responsive, even to China's combination of fast agricultural growth, radical individualistic land distribution, less distorted and less extractive farm prices, and rapid technical progress. This was presumably because they missed out on one of the four, probably the last. In India, the coefficient of variation of poverty incidence and depth grew among both States and Districts between the early 1970s and the late 1980s. Africa, of course, is as a whole an increasingly marginalized region with many agro-ecologies sharing (except in South Africa) absence of much irrigation and water control. If water shortage and unreliability underlie increasing concentration of poverty in ill-watered regions, then the ongoing waterdiversion from agriculture-and increasing water scarcity-presents three big challenges to agricultural research to:(1) Produce varieties using water more cost-effectively;(2) Develop, with hydrologists and economists, employment-intensive and otherwise poor-friendly approaches to crop/soil/water management; and (3) Produce varieties and/or crop population patterns that owe their yieldraising power to enhanced performance under moisture stress.This last is the most familiar, but perhaps the most difficult, given the many genes, environmental features, and genotype x environment interactions involved.Lack of assets is another familiar cause of poverty. However, these illwatered, high-poverty areas are less amenable than others to a remedy often proved effective against poverty-land reform (which can often be consensual). Small farms are more labor-intensive and therefore usually produce higher yields from given non-labor inputs; and poverty is strongly linked to land ownership. But both the linkage and the high-yielding, labor-intensive options are not quite so clear in semi-arid areas. Another asset, education, is also normally a strong weapon against poverty, but in areas with few chances for agricultural progress in a marginal (or just underresearched!) rural area it is hard to use extra skills within it to generate extra income within it.So the poor have special problems with the exit option from marginal rural areas; and it does not help them to pour resources into hopeless places (see Lele's [1975] work on priorities within Africa). But, before despairing of such areas, we should recall the converse: it does help the poor to divert resources to promising, but underresearched, regions. The 64-crore rupee question is which these are. That question has scientific, administrative, and economic aspects. On the scientific aspects I am unqualified to comment. On administrative aspects, it cannot make sense from a poverty-reduction standpoint for National Agricultural Research Systems (NARS) to devote only a small proportion of resources to adapting research by the Consultative Group on International Agricultural Research (CGIAR) and others to (normally highly diverse) marginal areas, while the CGIAR system claims to devote 60% of its research resources to generating products for these areas. On economic aspects, we need to consider (1) Hazell and Ramasamy's (1991) evidence of very high returns to research in some marginal areas, and (2) the fact that any case for pessimism applies only to areas inherently marginal-systematically underendowed for sustainable profitable agriculture by nature. It does not apply to the areas, probably containing far more rural poor, that have had marginal status thrust upon them by deprivation or research, or that can benefit from careful research planning of new \"biotecknowledge\" about to come onstream.Agricultural research may urgently need to consider another possible source of poverty slowdown, a source that, like that slowdown itself, is not confined to marginal areas-the flattening-out of growth in tropical staple yields, itself partly due to the prolonged flattening-out of growth in yield potentials. Growth rates of food production in developing countries, driven by the declining yield growth of main staples, fell from 3% per year in the 1979s to about 1% in the 1990s. Is the yield slowdown responsible for much of the slowdown in poverty reduction? Did the yield slowdown, by changing the composition of gross national product (GNP), reduce the effect of economic growth on poverty? Work by Datt and Ravallion (1998) in India-where poverty, after fluctuating around 55% through 1960-75, fell to around 38% by 1989-shows that poverty fell faster in times and places where agricultural GNP was growing faster. This is not mainly because later Green Revolution growth in food grain production meant more food (it mainly meant less imports, and besides, India has enormous food grain stocks, often rising well above 20 million tons), but because the extra food:• Was substantially located with the rural poor-most of the laborers, and many of the small farmers, that grew it-and, even more, • Lowered and stabilized food prices, helping net food buyers, who predominate among the urban and even rural poor, and • Created extra workplaces much more affordably (in terms of capital cost per job) than other forms of economic growth.Obviously, the staples yield slowdown-and agricultural \"progress\" increasingly focused on displacing labor with tractors, on herbicides, and now on herbicide-resistant (instead of yield-enhancing) genetically modified crops (GMs)-also meant a slowdown in the reduction of poverty, as observed in India after 1989, and in China after 1985.What of the role of the rural non-farm sector (RNFS) in poverty reduction? Evidence at this workshop was mixed. Renkow (2000) argued that the RNFS provided big proportions of rural employment and income. This suggests that agricultural research should be reduced relative to RNFS research (or, if that is unpromising, RNFS support or promotion), or should shift priorities to meet the needs of poverty reduction via the RNFS (presumably by addressing more issues of processing, choice of locally made inputs, etc.). Renkow's (2000) data on the large and growing RNFS are telling, even more than those presented earlier by Chuta and Liedholm (1979). However, much so-called \"off-farm\" or even sometimes \"non-farm\" income and employment involve only hired labor on the farms of other people. Other RNFS is often dependent on linkages to agriculture (see Hazell and Ramasamy, 1991). Greeley (1987) has shown for Bangladesh that 25% of the value of rurally purchased rice is added after harvest, much of it laborintensively. Also, it is not always clear whether the RNFS is more, or less, likely to engage, and provide income for, the poor than the rich- Reardon et al. (1999) and de Janvry and Sadoulet (2000) suggest opposite results for West Africa and Latin America (FAO [1998] reviews these issues well).Even if the RNFS overrepresents the income or employment of the poor, does this imply that RNFS growth especially favors the poor (so that agricultural and other research should be steered to advance RNFS growth), or that RNFS membership helps perpetuate poverty? This depends partly on which part of the RNFS we are considering. The traditionally boosted crafts sector is usually in decline. However, the agriculture-linked sectors of trade, transport, small catering, and (above all) construction, are dynamic. Yet their growth, while helpful to poverty reduction, is strongly linkaged to agriculture. In any event, overaggregation of RNFS impedes findings, and advice, about it. A sector, even one as diverse as farming, is less difficult to research or prioritize than a \"non\"-sector whose components include doctors, bricklayers, in India traditional caste sweepers, in Nigeria women who market farm produce at a distance, etc.Apart from overwhelming static evidence of the concentration of poverty in families of five or more with high child/adult ratios, we know much more about the demographic dynamics of poverty that even 10 years ago. We have long known that falling child mortality leads, as predicted in Malthus's 1830 Britannica article on population (and much more quickly than had been thought by, for example, Warren Thompson in 1959), to falling fertility. We have experienced in almost all of Asia and Latin America, and in its early stages most of Africa, the consequent rise in adult/child, and worker/dependent, ratios. This reaches the rich first, but finally reaches the poor, as does the subsequent rise in the proportion of aged dependents that is affecting East Asia. We have learned, after much controversy, that the fertility transition is a major contributor to poverty reduction, working about equally through its effects in speeding growth (Kelley and Schmidt, 1994) and, 10-15 years later, in improving distribution (Eastwood and Lipton, 2000).Reduced fertility probably reduces poverty mainly by raising the price of labor and lowering the price of food-Malthus's key insight (rather than his famous, simplistic, and mostly early formulations of a food-population \"race\"). The expenditure surveys consistently show that below the 1985 real dollar poverty line over 60% of expenditure is on food, about half on staples. Because, as modem demographics (again echoing late Malthus) confirm, higher incomes induce higher standards for living and thus lower fertility, raising food yields and employment intensively remains crucial for poverty reduction. This is less because the higher yields raise food availability-the bigger pile of rice-than because they raise the poor's real income, and restrain and stabilize local food prices, by affordable rural job creation. From the standpoint of poverty reduction we were hugely lucky that the Green Revolution, driven largely by pile-of-rice logic, also happened to be employment-intensive and thus extremely poverty reducing. But the revolution slowed down after the mid-1980s, and its employment-intensity started to decline much earlier (Lipton and Longhurst, 1989), so new impetus is needed. Also, both the yield revolution and poverty reduction have yet to spread to Africa, although the demographic transition, while delayed, is well underway there (see Cohen, 1998). This, as in South Asia, presents a \"window of opportunity\", but also a window onto fear, for the poor. The opportunity is for a new, probably GM-based, Green Revolution to employ the extra workers, using them as a major source of growth as East Asia did (Bloom and Williamson, 1997), and providing them with extra farm and RNFS opportunities that will dramatically cut poverty. The fear is that lack of productive work expansion will turn the extra workers, relative to dependents, from a blessing to an impoverished curse. This could happen if GM is held up by misguided critics, or if it continues to be diverted into a search for povertyirrelevant traits by profitability considerations uncorrected by appropriate and properly funded pro bono research.Rural poverty incidence, intensity, and sheer numbers substantially and persistently exceed urban. But the urban share in the sheer numbers of poor people is growing. Probably, poverty among urban residents is much higher among those whose income is derived mainly from agriculture (whether for subsistence or as employees, and whether within cities, periurban, or commuting). Policies for agriculture, including research and extension, cannot therefore neglect urban agriculture, as they almost invariably now do.Hence it is important that Perlman (1999) placed 26% of the Latin American agricultural workforce in the urban sector. This high proportion may be because of definitions-several Latin American countries put the rural-urban borderline at only 2000 population, as against 5000 in most of Asia. But even in India, urban areas, including cities, have 6%-10% of workers dependent mainly on agriculture, and the African proportions are generally higher. Hence agricultural development can in principle address urban poverty by creating more attractive and rewarding farm output and employment-not just indirectly, through lower prices for net food buyers.How can the direct poverty impact of agricultural research (on-farm employment and real wages) be pro-poor as well as the indirect, foodbuying impact (on food prices)? Assuming a land constraint, there are two simple, but little recognized, \"tightrope conditions\" for favorable all-round impact.First, labor productivity must rise, but land productivity must rise faster. Technical progress has to raise yields (strictly, net value added) per area (A) faster than labor productivity (strictly, net value added [Q] per unit of labor [L]); because if Q/A exceeds Q/L with A fixed then L must fall and farm laborers lose. But the rise in Q/L must be positive (else there will be net decline in incentive to employ or to work in self-employment).Second, food prices should and normally do fall (or are restrained) by research-induced higher growth of national food output. But the price fall must be slower than the rise in total factor productivity in food farming if net food sellers are to gain as well as poor net food buyers.Both these tightropes were successfully walked, for most poor regions and staple crops, by the Green Revolution. So poverty fell fast where it took hold. We were lucky! Developing-country working-age populations are scheduled to grow by 2% annually while dependents increase much more slowly thanks to demographic transition. Thus, in future, poverty-focused agricultural research, if it is to exploit the \"window of opportunity\" rather than jump out of it, needs to consider employment impacts much more explicitly than before. Farmers and researchers normally treat employment as a cost, but wages form part of value-added and GNP, and the poor increasingly comprise laborers rather than farmers. A range of options, from mechanical rice transplanters to GM priorities aimed at complementarity with labor-displacing herbicides, indicates the dangers. Schuh (1999) was absolutely right to emphasize, in his closing remarks, the danger of too many, too complex research aims. He argued that one activity, such as the CGIAR's agricultural research, cannot be competently planned if it has more than one maximand, and that the system therefore performed best when that maximand was clear-to grow more food. In some ways I go further: having stressed the need for other considerations than yield potential in agricultural research in the 1970s, I now feel the pendulum needs to swing back. It is just that \"the bigger pile of rice\" is not the right single aim for the CGIAR system. That single aim should be \"maximum addition to poverty reduction through research impacts on agriculture, including secondary effects\". Sometimes maximizing the \"pile of rice\" will conduce to that aim, sometimes not.Much of this concerns risk and farmers' responses to it, and was reviewed and enlarged by several contributions to the workshop and its working groups. The poor face greater farm as well as non-farm risks (e.g., are less likely to have irrigation and more likely to face illness through unclean drinking water). The poor have less access to means of risk mitigation (loans for smoothing consumption when income is hit), and therefore adopt more risk-averse production systems (e.g., more robust, but lowervalue crop and variety mixes).We have much more evidence than in 1960 that some agricultural research generates substantial rural and urban poverty reduction. Countries, and within countries (and despite migration) regions, districts, and households with higher rates of adoption of Green Revolution technology show faster poverty reduction; and causality from the first to the second is often traceable.As indicated, these are of many different agro-ecological and economic types, and often lose or acquire marginality over time, so we are less sure about the impact of agricultural research on such areas. Sharp divergences of experience by crops and regions were reported at this workshop. Fan et al. (2000) showed higher overall returns to agricultural research in rainfed than in irrigated regions, and/or in unreliably watered than in other rainfed regions in many, but far from all, Indian cases. Walker (2000) stated that returns to potato agricultural research had long been better in more marginal regions. Otsuka (2000) provided evidence, for several Asian countries, that rice research is more cost-effective in raising yield in irrigated than in reliably rainfed regions, and least of all in unreliably rainfed regions. He concluded, not that these should be left to their fate, but that agricultural research there should shift to less thirsty and more robust crops. He emphasized cash crops, but some staples (millet, sorghum, cassava), some Janus-crops facing both subsistence and markets (beans), and sometimes animals, often promise the best returns to research for marginal areas. Also, as Conway (1998) has argued, GM may have an especially important role to play for some marginal areas. Voss (remarks to this conference) agreed on the excessive single-crop concentration of decisions about agricultural research allocation.Three overarching issues need emphasis. First, one needs to check why a region is marginal-because genuinely \"low-potential\", because underresearched, or because its infrastructure, especially for water management, is underdeveloped? Second is the need to focus on agricultural research's impact, not only on yield or stability in marginal regions, but also on these and others that contribute to \"the poor's\" use and productivity of marginal environments, and indeed on the poor's total income sources and the impact of agricultural research on these. Third is the special threat to the poor in irrigation-supported areas of regions otherwise classified as semi-arid by the steady, and often justified, drift of water away from agriculture. Hence the special need, in poverty-reducing agricultural research, to seek water-saving varieties, methods, and cropmixes.This was perhaps the orphan of this workshop. However, Reardon et al. (1999) robustly argued that, from Latin America to India, domestic foodmarket integration, notably through supermarkets and their supply channels, was transforming the definition of what would, and would not, work to reduce rural poverty. For those disconnected from such channels, whether by agricultural research achievements or inadequacies or otherwise, deepening marginalization was assured.Little was said about the poverty impact of agricultural trade liberalization-reduction in agriculture's often highly effective protection rates, which are normally positive in developed and negative in developing world-or, more generally, of falling barriers (and costs) for international farm investment, trade, and transport. Yet such changes could utterly transform (e.g., as per the last paragraph) earlier paradigms for the sort of agricultures, and agricultural research systems that are sustainable poverty-reducers. Low-trade isolates, even within progressive agricultural research, could be much less able to survive. And, in a liberalized environment without GM research reform and public-sector agricultural research revival, GM-backed cash crops from the developed world (and from giant farms in Argentina and Brazil) could compete away GMneglected small or labor-intensive farms in developing-world ecologies.The growth impact of agricultural trade liberalization has been much analyzed in the economic literature, the distribution effects much less so. Currently many, perhaps most, developing countries have gone far to reduce the massive negative effective protection of agriculture documented by Valdés (1999) and Krueger et al. (1991), among others. However, the anti-agricultural impact of public-expenditure assignments remains, and (especially under fiscal pressures) may even have increased to offset the pro-farm movement in domestic terms of trade. We do not know. The complex long-run vs. short-run considerations regarding the poverty effects of price changes, touched on earlier, apply here too, of course.Developed countries can be divided into the Cairnes group, net exporters of cereals and/or animal products with little or no effective protection, and the European Union (EU) and Japan. The last two, and probably the group as a whole, have probably liberalized agricultural trade less than many, perhaps most, developing countries. If, as in the past, EU enlargement brings more people behind the common agricultural policy (CAP) wall without offsetting liberalization, on balance effective agricultural protection in the developed world will increase. This will happen despite the Uruguay Round and the serious prospect that the next World Trade Organization (WTO) round will concentrate substantially on agriculture. Yet the huge and continuing reduction in transport and communication costs, relative even to production costs, is likely to lead to continuing liberalization of agricultural trade and investment. And the poverty impact of that-and the consequences for agricultural research-needs to be explored, not least via the food-feed mix.A main message of poverty research is that many anti-poverty policies, from slum upgrading through targeted agricultural extension to microfinance, are often good at reaching the poor, but not the poorest. Is this also true of agricultural research? Does its rate of return-high, although as Thirtle et al. (2000) have shown, less so than some estimates suggest-and its poverty-reducing impact conceal a failure to reach the poorest? Is the surest way to do that to raise supply of food staples, produced labor-intensively to create work-based income entitlements to food, and available locally, reliably, and at moderately falling prices relative to the unskilled wage rate? The answer depends partly, in the very long run, on whether agricultural liberalization will mean much more specialization. This would mean that more of the poor come to depend for their staples not on growing them or working for those who do, but on staples-crop or non-farm production followed by trade, or employment followed by purchase. If so, the sort of farm activity, to which pro-poor agricultural extension research is most relevant, will eventually be transformed. However, the poor's gains from agricultural research in the foreseeable future will depend significantly on non-staples or industrial crops. They may depend partly on the composition of agricultural research, inevitably and rightly profit-led in the private sector, and able to shift towards poverty reduction even if unprofitable only in the hardsqueezed pro bono sector.The poverty impact of agricultural research depends partly on whether agricultural research improvements concentrate on staples grown and eaten by the poor. Byerlee (2000) showed that in Pakistan a commodity reranking of agricultural research, designed to improve such congruence, in partial equilibrium would raise the poor's share of gains from 22% to 27%. Many thought this small. Yet if the total benefit is little affected-and if the proportion is no smaller in general equilibrium (probably it is larger, through employment and price effects alike)-the implication is a 23% rise in poverty-reducing benefits for the same agricultural research outlay.It is vital, literally, that pro-poor agricultural research concentrates on making more readily and cheaply available the plant traits that interest the poor as producers, consumers, and workers. These are traits such as higher yield, stability, water-saving, and micronutrient content-not traits such as herbicide resistance or ready combinability that usually do little to stimulate higher production, encourage labor displacement, and are used mainly by wealthy farmers. Nor do they include, as a rule, traits such as shelf life, of interest mainly to wealthy consumers, food processors, and (except for some fruits and vegetables) non-poor suppliers and workers.Theme 2 group's report stressed that \"the scope of targeting agricultural research on the poor depends on a favorable political environment\". This can be disaggregated! Some governments want growth above all; do not much care about poverty reduction except as a means to growth (and to political peace, also a means to growth); but are reasonably effective and consistent about seeking growth. In such cases, agricultural research can be targeted, as little else can, to steer the sources of growth towards laborusing, food-yield-raising, and stabilizing ends. So for growth-only governments (and there are many more such than admit it) agricultural research can be targeted on the poor.The poverty impact of agricultural research, as Anderson underlined in the Theme 11 group report, also depends on the stability of its outcomes. Panel-survey data suggest that, depending on region, one quarter to one half of rural people measured in a given year as being in absolute consumption poverty are \"transient\", not poor in most years. Many of the transient poor are in poverty because of downturns in farm income, often covariate among persons in an area and thus hard to avoid by loans or transfers among them. Transient poverty cannot be dismissed as less important than chronic, because it is often deeper (Gaiha [1988]; Gaiha and Deolalikar [1993] have shown this for rural India), harder to avoid, and focused on households with high ratios of vulnerable children to adults. Hence agricultural research that stabilizes farm incomes has a major anti-poverty impact.Nutrition. This remains a key area for agricultural research impact on poverty, slightly neglected in this workshop; micronutrient breeding is receiving some deserved and long-delayed attention.GM policy priorities for poverty reduction. These were touched upon. Pineiro (remarks to this conference) pointed out that it matters greatly for poor, but market-oriented, farmers to have access to technologies that as they developed remained competitive with those private-sector elite lines that were being increasingly patented, terminated, etc. This needs pro bono (including public-sector) focus on such things, but may conflict with the CGIAR's food-crop remit.Poverty environment: Vicious circles? These were intensely discussed in plenary and a series of group meetings. Many interesting results were presented. But the \"conclusion\" appears to be that environmental decay is sometimes not due to poverty, but to the search for riches. It is sometimes self-correcting as it increases incentives to adopt less exhaustive patterns (of inputs, outputs, or transformations) and sometimes self-worsening past irreversible thresholds (because of tragedies of the commons, or rather of open-access, or otherwise). Can something more general be said? Is environmental sustainability usually helped or harmed by equality? By participation rather than authority, for example, in water management (where Sri Lankan history suggests otherwise)? On this topic one point, at least, seems clear. Real long-term interest rates have been about double the historical norm. They have pervaded international finance since 1979 and surely (accompanied by financial liberalization) have reached even the remotest village by now. This penalizes (1) borrowers as against lenders, and hence the poor as against the rich, and (2) those who plan for the long term as against those who seek maximum income soon, and hence the soil/water-miners as against the conservers.Raising unskilled wage-rates and employment, relative to the price of food staples, is the main way for policy to help the poor. That is because the poor are mainly, and increasingly, workers and net food buyers, and because they spend most of their income on food and much of that on staples, yet often remain undernourished. Hazell (Chapter 3) admirably summarized his and Kerr and Kolavalli's (1999) evidence that most agricultural research helps most of the poor most of the time-and their quest for more evidence; but a participant rightly remarked that we need to record and explain the exceptions frankly. The problem is that sharp exceptions, and a few severely agriculture research-damaged poor, rightly shout loudly; but, less rightly, a boring public-relations silence is generated by a strong general rule, and a billion people helped slowly by agricultural research just over the poverty line. The high-quality BBC2 10.30 News program on 4 October 1999 rightly highlighted the failure of supposedly weevil-resistant cotton in Andhra Pradesh in 1997-98 and the hundreds of following suicides. But it called this typical of the failed promise of the Green Revolution, without reference to the tripled wheat and doubled rice yields that have slowly, but surely, pulled tens of millions out of poverty, and probably saved hundreds of thousands of infant lives, in India alone. Unbelievers, if strongly biased (such as the \"organic\" lobby), will select evidence to support what they want to believe. Meanwhile, as Rausser et al. (2000) showed, leading-edge agricultural research is being remorselessly privatized. We need, perhaps, to find new ways to communicate and explain what pro bono agricultural research is doing.The focus of aid is increasingly on poverty. Aid was itself declining in the late 1990s for the first time for almost 40 years. We urgently need to sharpen the focus of pro bono agricultural research on hard-core poverty, and to improve the incentives to the private agricultural research sector to cooperate in this endeavor. In a new, agriculturally liberalizing, demographically transforming, water-scarce, and perhaps GM-dominated world, poverty-focus will require as large a change in the structure of research institutions as was Sir John Crawford's creation of the CGIAR system.The importance of impact achievement and assessment in international agricultural research, relatively secondary in the past, has now become a very prominent global agenda. This is partly in response to the declining generosity of the donor community-ostensibly, in general criticism (not entirely unfounded) of the practical relevance of much of global agricultural research. The latter is based on perceptions that the international research community is often preoccupied with enriching the shelf of technologies that do not find their way into production systems.One reaction of the international research community has been to focus on improving the adoptability of their research results and to focus efforts on factors that influence widespread take-up. Other dimensions attractive to the development community are gaining prominence and visibility. For instance, large and growing shares of the resources of the Consultative Group on International Agricultural Research (CGIAR) have been diverted from merely producing higher yielding, less extractive, and more robust germplasm (more explicitly than in the past) towards environmental and social goals. The donors, however, have failed to provide funding commensurate with such goals (Lipton, 1999). To view this merely as a response to inadequate budgetary means would be unfair, albeit funding does remain a formidable issue in itself (Mathur, 2000).Sometimes it is asserted that the analysis of the benefits of agricultural research should be confined to broadly interpreted efficiency gains (Alston and Pardey, 1995). These include sustainability (i.e., to the extent that there are net benefits from the development and adoption of more sustainable resource use patterns), environmental benefits (e.g.,Shantanu Mathur* and Raghav Gaiha** reduction in pollution), and nutritional benefits (i.e., improvements in dietary quality and health). But desired income distributional changes-or more specifically, poverty alleviation-should be excluded from the analysis as these are better accomplished through other policies (i.e., lump sum taxes). Although this is a familiar argument, it is often overlooked that a lump sum tax is not feasible. Moreover, there is a risk of overstating the distinction between efficiency and non-efficiency gains. For example, given the International Fund for Agricultural Development's (IFAD's) focus on smallholders in resource poor regions, some overlap is likely to occur between the efficiency and poverty alleviation objectives.One issue is that the research community has not given adequate attention to demonstrating the impact of their otherwise fruitful research outcomes on rural poverty in clear and unambiguous terms. From this perspective, an assessment of the impact of agricultural research on poverty may help draw attention to the potential of enhanced donor funding for poverty alleviation. Motivated by this concern, some key issues in analyzing the impact of agricultural research on poverty are briefly discussed here. (We interpret agricultural research broadly to include agriculture and other related activities, for example, food processing.)The objective is not to resolve these issues, but to discuss how they could be addressed in broader terms, including within a sustainable livelihoods framework, and from IFAD's perspective. In doing so, we shall limit ourselves to specifying the building blocks of such a framework, with some necessary overlap. Although some links among them are indicated, a fully integrated version is not feasible at this stage without detailed experimentation/application. We draw upon a major new initiative supported by IFAD, the Department for International Development (DFID), and others, proposed in IFPRI (2000), and some illustrative evidence obtained in the first wave of case studies phase. Among these, of particular interest are Adato and Meinzen-Dick (2002) and Hazell and Haddad (2002).Agricultural research leading to the adoption of improved technology may reduce rural poverty in many ways that are not necessarily mutually exclusive. It can impact on various income and non-income dimensions of poverty, inter alia, through: (1) higher on-farm yields, (2) expansion of farm employment opportunities and higher wages, (3) growth of non-farm activities, (4) lower food prices, (5) reduced vulnerability to crop and other risks, and ( 6) empowerment. Some of these linkages would help explore aspects of food security (e.g., improvements in nutritional status) and whether the benefits are equitably shared by gender. Also, an attempt could be made to examine the interrelationships between technological improvements and empowerment of women, that is, a more decisive role for women in decision making both within and outside the household.Much of the recent literature and empirical work concentrates on the yield and income effects of agricultural research. An exposition of some of the analytical issues is given below. Some specific questions that arise in this context include:(1) What is a desirable measure of successful research in a research and development (R&D) continuum? What is the probability that basic research will be successful (e.g., serendipity)? (2) If it is successful, how soon will the results be available for adoption;how widely applicable will be the results; and when will they be adopted by various farm groups and for how long? (3) Once adopted, what is their contribution to productivity and incomes of different farm groups-especially smallholders?An exposition of some methodological considerations in assessing them is given below, followed by a brief discussion of how this methodology could be broadened and extended to address some major concerns of the sustainable livelihoods approach.Designed to deepen understanding of the multiple and interacting causes of poverty, and to prioritize interventions, the sustainable livelihoods approach focuses on:(1) How vulnerability to natural and economic shocks influences choice of livelihood and technology; (2) Interactions among different forms of assets-physical, natural, financial, human, and social capital-and technology; (3) Multiple livelihood strategies that the poor pursue and the constraints on technological choice that result from this; (4) How policies and institutions condition livelihood strategies, outcomes, and impacts of interventions; and (5) The need for disaggregation by ethnic group, gender, and other forms of social differentiation in understanding technological choice and its impact. 1Building on a somewhat conventional formulation, a brief description of how some issues that are central to a sustainable livelihoods approach could be addressed is given below. In arguing for a \"mix\" of largely qualitative case studies and econometric applications, attention is drawn 1. For an admirably clear and succinct view of impact assessment in the CGIAR and its limitations, see Pingali (2001).to the considerable potential of the latter that could be exploited to address poverty-related concerns. A broad schematic framework is delineated in Figure 1. 2. Or, given the possibility of overdispersion, a negative binomial regression model could be used. For an intuitive exposition of the assumptions involved in these distributions, see Meyer (1971). 3. A difficulty, however, is that the lags between an invention and its adoption may be long. For an insightful exposition, see Evenson (2001).Research outcomes. As the outcomes of basic research in general and agricultural research in particular are largely uncertain, basing the analysis on a specific probability of success is risky. One option is to use a few, specific, past experimental results for their illustrative value. Another, and a more rigorous, option is to approximate outcomes of research/inventions as a stochastic process, conditioned on a measure of basic agricultural research, among others. A Poisson regression model could be employed to examine this relationship. 2 Incorporating predicted values of inventions in a production-function type of specification, along with other variables such as factors of production, climate, soil quality, rural infrastructure, and farmer knowledge and skills, the economic impact of inventions could be assessed. 3 But the feasibility of this procedure will depend essentially on how rich are the data on experimental results. However, much of the focus of our exercise, as also of the empirical literature, is on impact assessment of applied/adaptive research (synonymous with agricultural research and extension), controlling for the effects of household, community, and regional characteristics. There are at least two reasons for this. One is that the links between productivity and applied/adaptive research are of considerable interest in themselves from a policy perspective. Another reason is that the complexity of technological choice, given a shelf of technologies, requires a detailed and careful treatment. For the present purpose, therefore, we shall use the salient features of a \"reduced\" form estimation linking outputs to inputsincluding a measure of applied/adaptive research-as described below.Production function. Either a production function, a cost function, or a supply function could be used at the aggregate level to assess the contribution of research to output. For expositional convenience, we confine ourselves to a production function approach. 4 An extended version of the conventional production function could be specified to capture the impact of knowledge on agricultural output. In this relationship, output (or productivity) depends upon conventional inputs and uncontrolled factors (such as weather), current and past investments in agricultural research and extension, factor prices, and infrastructural variables that directly influence output and institutional aspects of the research system (with implications for the resource cost of generation and transfer of new knowledge). Prices are not commonly included in a production function, but there is a justification in the context of the induced innovation hypothesis. The contribution of research to output is then the basis of an assessment of its direct impact. However, this must be supplemented by an assessment of its indirect effects, the importance of which we discussed earlier.New knowledge or technologies produced in, or targeted for, a region can spillover into other regions. Technology adoption in one region may also lead to significant price changes in another. If new technologies are adopted in one region, but not in another, producers in non-adopting regions can experience price reductions without a corresponding reduction in costs. These spillovers need to be assessed while deciding whether to focus attention on developing technologies to maximize productivity gains in a specific production environment or to maximize smaller productivity gains in a wider range of production environments. As available evidence points to significant spillover effects, this choice is not unimportant (Bantilan, 1994). 5 A straightforward extension of the basic model specified above will yield useful insights. 6 4. For an algebraic exposition of this and other approaches and their relative merits, see Alston et al. (1995), Gaiha (1997), andEvenson (2001). 5. Spatial spillovers have been ignored in several studies on the presumption that spill-ins are offset by spill-outs. In those that deal explicitly with spillovers, some have utilized geoclimatic region data to specify them, while a few others have focused on barriers to them (Evenson, 2001). 6. See, for example, Evenson and Mckinsey (1991), Alston et al. (1995), andEvenson (2001).Cross-commodity effects. The impact of research on one commodity may be transmitted to another through cross-price effects and technology spillovers. The cross-price effects on commodities that are substitutes or complements in demand are likely to be significant in case the commodity on which the research is focused has a relatively inelastic demand. However, the effects on supplies of commodities that are substitutes in production may be relatively small, because the lower unit costs of production due to new technologies can be partly offset by lower prices for the commodities affected. Although cross-commodity effects require relatively straightforward extensions, data constraints may limit the analysis. 7Economy-wide (general equilibrium) effects. Through output market adjustments, technical changes in agriculture may affect the relative prices of agricultural and non-agricultural products not directly affected by the new technology. These indirect changes in product markets may lead to further changes in factor markets. Thus agricultural productivity changes may affect foreign exchange earnings, food prices, domestic capital generation, labor use in non-agricultural production, rural markets for non-agricultural goods, and relative factor prices. Although, in general, predicting the nature of these responses is difficult, it is plausible that under certain conditions non-agricultural production responses would reinforce the direct impacts from a partial equilibrium analysis of the agricultural sector. An analysis of the general equilibrium effects is, however, far from straightforward. Few general equilibrium models are designed for allocating research resources, mainly because the data and computational requirements are much too demanding. 8 A compromise would be to extend/modify a multi-market formulation, given suitable data. 9Diffusion. A richer analysis of production-technology relationship could be carried out by modeling diffusion of technology across space and different groups of farmers. A two-stage procedure could be employed in which the first stage focuses on the diffusion of the new technology across different farm-size groups, and the second on the technological impact. Given the data on adopters and non-adopters, it could be hypothesized that the adoption of the new technology depends on personal characteristics (age, gender, and education) of the farmer, access to credit, extension, relative factor prices, technology used in the previous year, and number of current users of the new technology, and soil and other agroclimatic features. In the next stage, a production function could be used with farm output as the dependent variable, and conventional inputs and a probability of adoption (obtained from the first stage) as the explanatory variables. In the Heckman procedure, the first stage uses a 7. For details, see Alston et al. (1995). 8. For a sceptical view based on such considerations, see CGIAR (2000). 9. See, for example, Binswanger and Quizon (1988).probit and the second an OLS (Greene, 1993). This specificationespecially that of the first stage-is motivated by several considerations. Adoption rates often vary by region and size-class of holdings, with smallholders being often the slowest. Going by International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) field evidence, the adoption lags could be long among smallholders. 10 One reason is their risk aversion-especially if they are on the verge of subsistence. Although the IFPRI (2000) proposal emphasizes production risks (e.g., because of uncontrollable variables such as weather), it does not address the issue of risk-aversion in any detail. Our presumption is that a failure to incorporate this in the analysis may distort the results. An issue then is whether it is an attitudinal trait or a reflection of the constraint set (e.g., limited access to credit). The results based on a gambling experiment in the ICRISAT villages in a semi-arid region in south India are particularly relevant. At high pay-off levels, virtually all individuals are moderately risk averse with little variation according to personal characteristics. Wealth tends to reduce risk aversion slightly, but the effect is not statistically significant. Extrapolating the findings to farming decisions, it is pointed out that differences in investment behavior observed among the farmers facing similar technology and risks has more to do with differences in their constraint sets (e.g., access to credit, marketing, or extension) than in their attitudes. 11 Hypothesizing that risk aversion is a reflection of the constraint set, there is a case for including some aspects of the constraint set as explanatory variables. Other considerations that impinge on adoption are path dependence and across-farm externalities. Path dependence (or technological inertia) on account of, for example, onfarm learning could slow the switch from an old technology to the new. Some insights into this process may emerge from whether an old or new technology was used in the previous year. In addition, other things being given, decisions of other farmers may exercise an important influence. This may be captured through the number of current users. If this variable is considered endogenous, an IV estimation procedure could be used. The superiority of a technology by itself does not guarantee its adoption. 12 Poverty. Two approaches could be used: One is a familiar econometric formulation in which an index of rural poverty, say, the head-count ratio, is postulated to be a function of agricultural output/ productivity, prices, and a measure of inequality in endowments (e.g., distribution of land). Variants of this formulation have been widely used in the Indian poverty literature. 13 To the extent that the effects of agricultural research are reflected in higher agricultural productivity and 10. For details, see Reddy andNigam (1994), andSingh andBantilan (1994). 11. For details, see Binswanger (1980). 12. For an exposition of the dynamics of switching from chemical controls to integrated pest management (IPM) and reswitching to chemical controls, with some illustrative evidence, see Cowan and Gunby (1996). 13. For a sample, see Bardhan (1985), Gaiha (1989;1995), and Datt and Ravallion (1998).price changes, in a given setting, their implications for rural poverty could be assessed in a multi-stage procedure. The two-stage procedure sketched earlier could be extended to examine the relationship between rural poverty and agricultural research induced changes in productivity and prices. 14 Although this procedure is undoubtedly useful for policy purposes, the results may be sensitive to the poverty cut-off point and the poverty index. In principle, this difficulty could be overcome through a sensitivity analysis, but it will be tedious to do so. It may therefore be worthwhile to supplement the econometric analysis of changes in rural poverty with tests of stochastic dominance. These tests have the merit that they allow comparisons of two different cumulative income distributions (of, say, adopters and non-adopters, or before and after the technological innovation) over a wide range of poverty cut-off points and a class of poverty indices. 15Undernutrition. We shall concentrate here on the demand for nutrients in response to price and income changes. As price and income responses are conditioned on household characteristics (e.g., size, age, gender, and education), an appropriately specified demand function could be used. These household characteristics matter because they help capture the effects of differences in nutritional \"requirements\" of women and children, economies of scale in consumption and tastes. 16 Thus, depending on income and price changes as a result of technological innovations, the implications of these household characteristics for improvements in the nutritional status of vulnerable sections in the rural population (e.g., agricultural laborers, and marginal and smallholders) could be ascertained. An issue that has figured prominently in a few recent studies is whether higher income alone can bring about a significant improvement in nutritional intake, given the preference for some non-nutritional attributes of food (e.g., packaging, flavor, spiciness, and variety) at higher levels. In other words, 14. It is arguable that, as markets become more global, agricultural innovation at the national level has less effect on local food prices, especially in urban areas that are well connected to world markets. However, in isolated rural areas, production gains are likely to help the poor by making food cheaper (Pachico and Russell, 1999). 15. Suppose two cumulative income distributions, A and B, are given. If, over a range of incomes, A lies above B everywhere, it follows that there is more poverty in A than B, no matter what the poverty cut-off point (within the admissible range) or the poverty index in the Foster-Greer Thorbecke class (FGT). This is first-order dominance. If, however, these two distributions intersect, the second-order test is applied. In case the area under A exceeds that under B everywhere over the range in question, it follows that poverty is greater under the former, regardless of the poverty cut-off point or the poverty index except the head-count index. For a generalization to higher order dominance tests, see Ravallion (1992). 16. Some authors are skeptical of fixity of food energy requirements. They emphasize that energy intakes could vary within a homeostatic range in the short-term without affecting health and work capacity. Also, adaptation to long-term changes in food energy intake is possible with modest effects on health and productivity. For a sample of applications to the demand for food or nutrients, see Alderman (1989) and Gaiha (1999).substitution of more expensive food items for those consumed at lower income levels may not necessarily be more nutritious. 17Intrahousehold distribution. Intrahousehold distribution of resources-especially food-is often inequitable, with women and children bearing the brunt of deprivation. Available evidence for South Asia points to glaring inequities. 18 If the gender bias is pervasive, undernutrition of women and female children may persist, despite rising incomes. Because intrahousehold food intake data are expensive to collect with (possibly) large margins of error, a direct assessment of the impact of technological innovations may not be feasible.An alternative approach relies on the presumption that off-farm employment opportunities for women add to their bargaining power in household decision making. In that case, the extent to which technological innovations favor activities/crops that are female intensive, the effects on intrahousehold distribution would be favorable. Regardless of whether a neoclassical (essentially Beckerian) or a bargaining model of household decision making is postulated, an improvement in outside employment opportunities for women has favorable effects on intrahousehold distribution of food and other resources. So, although discriminating between these two formulations empirically is not straightforward, some doubts about the plausibility of the Beckerian formulation with a benevolent household head are hard to resist, given the high incidence of domestic violence against women. Although a precise assessment of the effects on intrahousehold distribution may not be feasible, some inferences about likely changes could be drawn. For a more definitive assessment, use could also be made of anthropometric indicators (e.g., wasting and stunting of children).That smallholders are subject to crop income and idiosyncratic shocks is well known. Crop income shocks may affect an entire farming community (e.g., when rainfall is deficient) or may be confined to a subset (e.g., farms in the vicinity of a canal may get flooded when the water level rises unexpectedly), while idiosyncratic shocks affect specific households (through, for example, illness and accidents). However, some recent evidence suggests that such shocks may not involve liquidation of assets (e.g., cattle and land) if other ex-post adjustment mechanisms exist. 19 Depending on the possibilities of borrowing and/or higher labor earnings, the adjustment to shock through liquidation of assets may be avoided. In a 17. For a sample of the debate using Indian consumption surveys, see Behrman and Deolalikar (1987), and Subramaniam and Deaton (1996). 18. For a sample, see Chen et al. (1980), Sen (1988), Sen andSengupta (1983), andGaiha (1993). For details, see Hoddinott (1992) and Gaiha (1993). 19. In an important contribution, Kochar (1995) questions the finding that households in the ICRISAT sample (for the semi-arid tract in rural south India) are more likely to sell bullocks when profits are low (Rosenzweig, 1989). He does so on the following grounds: (i) the analysis does not relate bullock sales to any exogenous measure of shock; (ii) it does not use instruments to control for the endogeneity of profits; and (iii) since there is an underinvestment in bullocks, it is plausible that households will use bullocks for consumption smoothing only under extremely adverse conditions.meticulous econometric analysis with the ICRISAT data for rural south India, Kochar (1999) demonstrates that labor income adjustments are more likely than borrowings when negative crop shock is small. But in a more recent analysis that models income and asset dynamics, the effect of a crop shock on a measure of persistent poverty is significant (Gaiha and Imai, 2002). So variability of incomes to a crop shock may be high, not just in the same period, but also in subsequent periods.In order to capture the effect of technological innovations on variability of household incomes, two sets of (complementary) exercises could be carried out, depending on the availability of detailed household data.(1) Suppose household income data by source are available for adopters and non-adopters (or, before and after a technological innovation for a given set of households. Ideally, for obvious reasons, a with and without comparison must be combined with a before and after comparison). A comparison of the coefficients of variation of the sum of profits and labor income (or, for that matter, of another measure of variability of income) for these two groups may reveal that the innovation is income stabilizing. A disaggregation of the analysis by landholding size-class may further indicate that the effects vary for different groups.(2) As this analysis is not sufficiently detailed to control for differences in age, skills, and labor endowments between the adopters and nonadopters, an alternative econometric approach could be employed. A two-stage Heckman-type procedure would be appropriate in which the first stage focuses on the determinants of adoption of the new technology (along the lines of the specification suggested earlier) and the second on the possibility of whether adoption of a new technology offsets the effect of a shock, taking labor and asset adjustments into account. If panel data sets are available, such an analysis may lead to more definite inferences about the income stabilizing effects of technological innovations. 20Empowerment. 21 Empowerment is interpreted in many different ways. As a general proposition, it is taken to imply whether the poor as \"individual or collective actors are capable of exercising a decisive influence over their institutional environment to serve needs that they define themselves\" (Howe, 2000). More specifically, in the present context, the concern is whether institutional structures and smallholder capacities exist to make public and private sector agencies more responsive to their priorities in both technology and output mixes. With a view to addressing this concern, some key issues in the linkage between empowerment and 20. A variant of the methodology developed in Gaiha and Imai (2002) could be used to assess the impact of a new technology. 21. This section draws upon Howe (2000) and Mathur (2000).technological innovations are identified first, followed by a brief discussion of methodological considerations. Specifically, as pointed out below, given that empowerment is qualitative in nature, econometric analysis is likely to be of limited value unless of course it is combined with a few carefully designed case studies.The global agricultural research system is on the verge of a significant shift in so far as a new framework is being emphasized in which the rural poor and research institutions are viewed as equal partners, each contributing to technological changes based on their comparative advantages. This shift reflects a growing recognition that local farmers' organizations have access to location-specific information, both agroecological and socioeconomic, and are thus better equipped than their upstream research partners to help carry out applied and adaptive research. Moreover, they can play a critical role in facilitating the community level application of fundamental/basic and strategic research results and in translating them into adaptable technologies by providing insights into traditional practices and innovations, helping discern the incentive structure of communities in natural resource conservation and management, and developing and managing agricultural systems under specific local conditions. As an illustration, IFAD is promoting collaboration between local research entities and farmer-run private microenterprises to produce urea super-granule briquettes. This farmerdriven partnership is proving successful in optimizing the management of soil nutrients in resource-poor rice growing areas of Bangladesh, India, Indonesia, and Nepal. But, equally importantly, it is creating a vibrant local economy in areas where the technology has found rapid adoption as a source of off-farm income for the rural poor. For details of this and other illustrations, see Mathur (2000).Taking complementarities into account, IFAD (2000) emphasizes that, while indigenous research and extension systems alone may help maintain yields in less-endowed rainfed areas, they must get strong support from public sector and other research agencies to make a dent in povertyespecially in those parts of rainfed areas experiencing rapid population growth and worsening land and water stress. Some important questions are:(1) Are local institutions in place to ensure a sufficient supply of skills to support high quality research initiatives? (2) How can farmers' associations and related social organizational structures be systematically empowered and included as stakeholders in the technology-generation process? (3) Is there scope for improving the ownership of the beneficiaries in these research undertakings?Although a definitive analysis addressing these questions may not be feasible, the exercises (based on a mix of case studies and econometric formulations) described below may throw light on the underlying concerns.A few case studies of farmers' associations would be useful, focused on:(1) The participation of smallholders, (2) Their familiarity with indigenous knowledge systems and local agroecological and socioeconomic conditions, (3) Their willingness and ability to understand new technological advances, (4) Their adaptability to the conditions prevailing in their villages, and(5) The nature of their interactions with public sector and other research agencies. 22 Such case studies could help identify a few key indicators. Combining these indicators with other explanatory variables in the model of diffusion (as outlined under \"Diffusion\", above), an assessment could be made of whether the involvement of smallholders in designing/adapting technologies results in their quicker adoption. Besides, if the benefits of such interactions include higher returns or reduced vulnerability to pests, a similar specification could be employed in the second stage as well.If the process of empowerment is a self-reinforcing one, some insights into this process may emerge from case studies designed along the following lines. A plausible hypothesis is that moderate, but sustained, economic betterment may induce greater participation of smallholders in technological innovations and their diffusion, and this in turn would lead to a more rapid economic betterment over time (for some corroborative evidence, see Gaiha [2000]). If, for example, active participation of a farmers' association results in a successful technological adaptation in a given agroclimatic context, it may broaden the sphere of collaboration between the farmers' association and research agency. Moreover, if there are dynamic social network externalities, successful adoption in one village could induce a similar adoption in another, and that in turn in a third village over time, and so on (for an exposition and review of evidence, see Dasgupta [1999]). Transmission of such effects would of course depend on whether the benefits exceed a certain threshold level, whether the smallholders have cooperated before, and whether the public/private research agency is responsive to their concerns. This qualitative assessment through case studies could be supplemented by an extended 22. In Mexico, for example, \"creolized\" varieties of maize or crosses between improved and local maize varieties-developed by farmers-have proved more resistant than the improved varieties to drought and pests, and require less labor at critical times (Adato and Meinzen-Dick, 2002).version of the diffusion model (as outlined earlier) in which a successful technological adoption in a neighboring village is incorporated as an explanatory variable.The related issue of how such interactions/partnerships could be promoted is of course largely a question of designing appropriate incentives. An option is the patenting of, say, new crop varieties, and designing mechanisms for sharing of royalty between farmers' associations/village bodies and research agencies. Farmers' associations could be promoted by nongovernmental organizations (NGOs). Alongside, there is a case for promoting village committees/bodies that could forge links between farmers' associations and research agencies as well as facilitate diffusion of new technologies. The International Centre for Research in Agroforestry (ICRAF) and its partners in western Kenya, for example, have focused on building social and human capital through working with village-level committees that disseminate soil fertility replenishment technologies among local farmers (Adato and Meinzen-Dick, 2002).On the \"ownership\" of technical innovations, a basic consideration is the sharing of the gains from them. If the gains are widely shared in the village community, and community resources are mobilized through a village development fund for promoting such innovations, a sense of \"ownership\" is likely to be inculcated over time. Much of course will depend on the awareness of potential gains from these innovations and whether there is a representative village body that could administer the development fund in a transparent manner. 23 However, a successful technological adoption geared to the needs of smallholders runs the risk of usurpation by more influential groups with a strong vested interest. The dynamics of the distribution of gains from such adoptions are not easy to capture in an econometric analysis. Thus, a few case studies focused on inequality in the distribution of land, distribution of gains from technological innovations by size-class, rights to common property resources, and dispute resolution mechanisms could help understand better why some institutional structures are more prone to usurpation by locally influential groups.Although there is some overlap between the formulation(s) described in the section above and the concerns of the sustainable livelihoods approach, a few extensions/modifications are suggested below to specifically address these concerns. Without aiming to be comprehensive, we shall confine ourselves to a few propositions that have been emphasized/validated in the first phase of the International Food Policy 23. Gaiha (2003) provides illustrative evidence in the context of watershed development in Mewat, one of the poorest regions in north India.Research Institute (IFPRI) project. These are extracted from Adato and Meinzen-Dick (2002).As noted under \"Vulnerability\", above, a broader focus on well-being must incorporate a measure of vulnerability. In line with the sustainable livelihoods approach, the Heckman-type, a multi-stage procedure could be specified as follows. In the first stage, adoption rates may be conditioned on a wider range of socially differentiated groups, institutions (e.g., security of property rights, and collective action) and (lagged) measures of different forms of capital. 24 In the second stage, an attempt could be made to examine the impact of adoption on income variability (as already discussed), and, in the third, on investment in different forms of capital (e.g., education, farm equipment, and land) in subsequent period(s). An important point is that technologies that stabilize yields and reduce vulnerability may be more important for improving people's livelihoods and well-being than technologies that maximize average production, but with higher fluctuations.Thus, a comparison of the differential effects of technological choices on vulnerability, as also on the asset structure, would be feasible. 25 Are multiple livelihoods a constraint? Typically, rural householdsespecially poor households-are engaged in more than one activity in pursuit of income, food security, and protection against natural and other shocks. These activities include farming, self-employment in non-farm enterprises, and wage employment. As a consequence, time allocation has strategic importance. Depending on the nature of technical change (whether it is labor intensive), it may constrain the pursuit of multiple activities. Analytically, therefore, the feasibility of new techniques may depend on time allocation, among other factors. An option is to analyze technical choice in the context of household welfare maximization, subject to time constraints on various livelihood activities. It may be worthwhile to experiment with a variant of the model developed for assessing the role of rural public works by Datt and Ravallion (1994).There is often a presumption that the roles of cultural, historical, and other initial conditions are hard to capture in an econometric formulation (Adato and Meinzen-Dick, 2002). This assertion cannot be rejected outright. However, 24. Some illustrations from Hazell and Haddad (2001) may be helpful. For example, IPM requires that all farmers in an area cooperate; so collective action is an important requirement. But, because the returns are relatively quick, security of property rights is not so crucial. By contrast, watershed development requires secure property rights, because to carry them out involves long-term investments in check dams, land contouring, and tree planting in water catchment areas, as well as community mobilization. 25. For an insightful exposition of why a grouping by gender matters, see Pingali (2001). some useful insights cannot be ruled out from a careful econometric analysis that incorporates some aspects of social differentiation (e.g., ethnicity) and attitudes towards or receptivity to external interventions, and dynamics of adoption rates (e.g., lock-in effects). How these insights are incorporated in the model specifications may make a significant difference to the quality of results obtained.Pro-poor outcomes of research. An important point is that technology is a somewhat blunt instrument for targeting the rural poor except mainly through a concentration on certain crops (important to the livelihoods of the poor) and certain areas/regions (of endemic poverty). Assuming that such technological options are correctly identified, an issue is whether there are some institutional arrangements that are likely to result in greater impact on the rural poor. We have drawn attention to a few key institutional variables that could accelerate diffusion as well as add value to livelihood outcomes. With a view to deepening our understanding of such impacts, simulations involving different mixes of institutional variables (e.g., property rights and collective action) would be worthwhile.In this chapter we have attempted to outline some important building blocks of an analytical framework for exploring the linkages between agricultural research (broadly interpreted) and rural poverty (including undernutrition, vulnerability, and exclusion) in a broad sustainable livelihoods framework. Although important links among them were delineated, a fully integrated framework was not specified. This should be explored further through application and detailed experimentation. In any case, a \"mix\" of econometric applications and case studies along the lines suggested above is necessary for a deeper understanding of the linkages between agricultural research and poverty, mainly because some aspects of the latter are essentially qualitative in nature and thus not amenable to traditional econometric analysis. Some of the formulations are, therefore, tentative, and refinements or extensions are subject to empirical validation. Nevertheless, a point of departure of the preceding exposition is the emphasis on the potential of econometric applications in addressing some key strategic concerns in rural poverty alleviation.A major priority for agricultural research is to address integrated farming systems moving beyond component technologies, and discerning synergies and trade-offs. Pro-poor options in such contexts involve building on indigenous knowledge systems and traditional practices, while trying to transcend yield barriers in neglected dry lands and uplands based on sustainable natural resource use and management. In support of such concerns, attention must be given to fostering and promoting strategic partnerships and innovative institutional arrangements, including farmers' associations. A challenge then is to incorporate these concerns systematically in a broader analytical framework. Our present attempt to address some major concerns is no more than a modest extension of current approaches.Each year, donors and national governments spend about 8 billion US dollars on agricultural research in the developing countries. Of this amount, the Consultative Group on International Agricultural Research (CGIAR) system spends $300 million (or less than 4%). Widespread evidence shows that this research has led to significant increases in agricultural productivity and incomes in the developing world (Lipton and Longhurst, 1989;Walker and Ryan, 1990;Hazell and Ramasamy, 1991;Kerr and Kolavalli, 1999). Research by the CGIAR has been further credited with generating the increases in food production that have outstripped population growth and thus averted widespread shortages (Tribe, 1994). Moreover, publicly funded agricultural research has been found to have an exceptionally high rate of return (Alston et al., 1998). Yet, despite such indications, the impact of CGIAR research on poverty remains controversial. New seed technologies have been seen at times to benefit the rich rather than the poor, the landed rather than the landless, and men rather than women and children.Critics have focused on three areas of concern. First, that the uptake of modern technologies associated with commercialization is an inequitable process that at best increases rural inequality, but more likely augments absolute poverty. Second, that in the shift to cash cropping, small-scale farmers sacrifice their own food crops and expose their families to higher food insecurity. Third, that commercialization worsens regional inequities because it favors areas that have greater potential for agricultural production. This chapter reviews the empirical evidence on each of these issues, but first lays out a conceptual framework for analyzing impacts. Agricultural research that leads to improved technologies has five potential ways in which to benefit the poor. It can:(1) Benefit poor farmers directly through an increase in their level of ownfarm production. This may involve producing more or better food for their own consumption, or increasing the output of marketed products that increase farm income.(2) Benefit small-scale farmers and landless laborers through greater agricultural employment opportunities and higher wages within the adopting regions.(3) Benefit a wide range of rural poor within adopting regions through growth in the local non-farm economy. (4) Increase migration opportunities for the poor to other regions and urban areas. (5) Lower food prices for all. But these benefits do not necessarily materialize for the poor, because innumerable conditioning factors help determine who benefits. These factors work in a myriad of complex and often conflicting ways, and the outcomes are difficult to determine a priori.Only by adopting new technologies will poor farmers obtain on-farm benefits from them. This requires that the new technologies are appropriate and profitable for the farming conditions of poor farmers and that they have access to the necessary knowledge and inputs to adopt the technology. In principle, improved crop varieties are scale neutral and can be adopted by farms of all sizes, but the same is not always true of other technologies or of complementary inputs such as irrigation and machines, and access to fertilizers and credit. If the institutions that provide these services and inputs are biased in favor of large farms, then the poor may not be able to adopt, or only be able to do so much later.Poor farmers also need secure ownership or tenancy rights if they are to invest in new technologies that do not have immediate returns (e.g., improved tree crops or better soil management techniques), and to obtain credit to finance such technology investments. Insecure rights to land may also increase poor farmers' vulnerability to eviction should larger-scale farmers and landlords decide that they want to expand their own, cropped area as the result of more profitable technologies. Insecurity problems can be particularly severe when land is highly concentrated and most farmers only have very little land at the outset. Some tenancy contracts offer security, but reduce incentives to adopt new technologies because the tenant bears all the costs and risks of production, yet has to share the crop output with the landlord.Under risky agroclimatic conditions, poor farmers may be reluctant to adopt profitable new technologies because they require investments in inputs that could be lost in an unfavorable year. On the other hand, larger-scale farmers are more likely to be able to handle such risks because they have larger reserves and better access to credit and insurance.Farmers who adopt new technologies often succeed in lowering their production costs per unit of output (although not usually per hectare), and hence can better compete in the market. Moreover, if the technology is widely adopted and market prices fall as a result, then the decline in unit costs may be essential for maintaining farm income. In this case, farmers who do not adopt will be disadvantaged not only by stagnant production, but also by declining prices and tighter profit margins. This profit squeeze can be detrimental to non-adopters within adopting regions, and to farmers who live in regions that are not appropriate for the new technology. However, poor farmers who are net buyers of food may benefit more as consumers from the price decline than they lose as producers.Even when poor farmers do benefit from significant productivity gains, these benefits are not always shared equitably amongst household members. In many societies, men and women have responsibility for growing different crops, and which crop benefits from technological change will also determine who has control of the increased production. Technological change for women's food crops may more easily translate into improved nutrition and well-being for women and children than does technological change for men's cash crops.Many yield-enhancing technologies increase total on-farm employment, particularly if they expand the gross cropped area (e.g., irrigation and short-season crop varieties). But whether this translates into higher wage earnings for the poor largely depends on the elasticity of the supply of labor. If labor is abundant in the adopting region, then the additional employment will have little effect on wages, and farmers will have limited incentive to invest in labor-replacing machines. But, if labor supply is inelastic, then wages will rise sharply and labor-displacing machines may become attractive. The initial mechanization may be targeted on laborintensive tasks such as plowing and threshing, but once farmers invest in tractors then the incremental costs of mechanizing other tasks may become relatively low, and more widespread displacement of labor can occur. Mechanization may also occur prematurely if government policies, such as cheap credit for large farms, make it less costly than it would be otherwise.For local poor people in adopting regions, seasonal or permanent migrants from other regions may dilute the additional wage earnings induced by technological change. This can be an effective way of spreading the benefits to the poor in other regions, but will not be of benefit to the local poor. Population growth has a similar diluting effect.Agricultural growth generates important income and employment multipliers within the local non-farm economy. These are driven by increased farm demands for additional farm inputs, investment goods, and marketing services (demands that often increase per hectare with technological change), and rural household demands for consumer goods and services as farm incomes rise. These multipliers can be large, often with US$0.5 to $1.0 of additional value added created in the local nonfarm economy for each dollar of additional value added, created in agriculture (Haggblade and Hazell, 1989). The rural non-farm employment elasticities are also large; each 1% increase in agricultural output is often associated with a 1% increase in rural non-farm employment (Hazell and Haggblade, 1991). Multipliers of this size mean that technological change in agriculture can potentially generate significant new opportunities for the poor in non-farm income earning activities. These may arise in the form of greater non-farm employment opportunities and higher wages, and in opportunities for starting or expanding non-farm businesses of their own. The increasing competition for labor between agriculture and the local non-farm economy can also contribute to higher agricultural wages, adding to agricultural wage earnings for the poor. A considerable body of empirical evidence shows that small-farm and landless-labor households typically obtain significant shares of their total household income from non-farm sources (Hazell and Haggblade, 1993). They are therefore already well positioned to gain from growth in the rural non-farm economy.The benefits of growth in the rural non-farm economy are more concentrated in rural towns than in the villages, so they impact on an important segment of the urban poor as well as on the rural poor. The distribution of the benefits between rural areas and local towns depends largely on the state of infrastructure connecting the two, on population density, on government policies, and on average per capita income levels (Haggblade et al., 1989).Technological change in agriculture is typically site specific and does not benefit all regions equally. The Green Revolution, for example, was initially concentrated in irrigated regions, and only later spread to some of the more favorable rainfed areas. Technological change can, therefore, contribute to widening disparities between regions. But interregional migration acts to buffer these gaps, and provides an efficient way of spreading the benefits to poorer regions that have more limited agricultural growth potential.As mentioned above, rapid agricultural growth also stimulates important rounds of secondary growth in the rural non-farm economy, and this provides increased opportunities for the rural poor to migrate and settle in local towns. But these growth impacts also spread more widely, and agricultural growth contributes to that of the national economy at large (Mellor, 1976). This generates additional migration opportunities for the poor to larger towns and cities, and can lead to greater remittances back to the rural poor.Technological change can lead to an increase in the aggregate output of affected commodities.If the national demand for these products is downward sloping (i.e., trade policy or high transport costs constrain export opportunities) then the output price will fall. Lower food prices are of benefit to rural and urban poor alike, and because food typically accounts for a major share of their total expenditures, the poor gain proportionally more than the nonpoor from a decline in food prices. These price reductions may not be very large in an open economy with low transport costs, and more countries now fall into this category than before because of recent rounds of market liberalization policies. But many poor countries continue to face high transport costs because of poor infrastructure, remoteness from world markets, or inefficient marketing institutions, and may still face considerable domestic price endogeneity even after market liberalization. In many landlocked African countries, for example, domestic prices still fall sharply when domestic food production increases suddenly.The food price benefits may also be enhanced if technological change leads to a reduction in production costs per unit of output, because farmers can then maintain or increase profits even at lower sales prices. But whether consumers benefit from these lower costs depends on whether the food marketing and distribution system is sufficiently competitive that cost savings at the farm gate are passed up through the marketing chain. In some cases, the cost savings are simply captured as additional profits in the marketing chain.Technological changes that smooth seasonal food supplies (e.g., irrigation and short-season rice varieties) can also help smooth seasonal price variation, and this can be of considerable benefit to the poor. The rural poor may also obtain enhanced food security from increased production within their region if it displaces food purchases from outside the region that previously had to be priced to cover high transport costs.As discussed above, many factors condition whether technological change will benefit the poor, and these factors also interact in complex ways. Predicting whether poor people will gain in each of the five ways discussed above is therefore difficult. The problem is even more challenging because poor people have complex livelihood strategies, and are often part farmers, part laborers, part non-farmers, and always consumers. They may gain or lose in each of these different dimensions at the same time, so that the net impact can remain ambiguous. Poor farmers, for example, might be able to gain from increased on-farm production as technology adopters, but may lose or gain from increases in agricultural wages or reductions in food prices depending on whether they are net buyers or sellers of labor or food. Again, a small non-farm business entrepreneur might gain from cheaper food, but business profits might fall or rise depending on whether or not hired labor costs rise faster than sales. Understanding household livelihood strategies is therefore fundamental for assessing the impact of technological change.Given the complexity of the factors conditioning the impact of technology on the poor, assessing impact empirically is a complex task. Not surprisingly, many studies have proved inconclusive or questionable; they were simply not well designed for the task.Many studies have proved misleading for a variety of reasons. Some were based on anecdote rather than fact or failed to establish an adequate counterfactual situation or to identify the true causality of change. Some were not representative. Others were too narrow in scope and did not consider all the indirect ways in which the poor are impacted, or were too short term in perspective. Some of the key analytical issues that need to be addressed in impact studies are reviewed below.Many studies have focused on the direct impact of improved agricultural technologies on poor farmers. But this is often only a small proportion of the overall impacts on the rural and urban poor. The direct effects are captured by poor farmers who adopt improved technologies in the regions in which they are released, and who produce more output that they can consume themselves or sell. However, important benefits spillover to other households or regions. These include the benefits that may arise from the generation of new employment, higher wages, and less costly food. These spillover effects have received inadequate empirical attention, despite their enormous potential impact on poor people, including landless laborers, the non-farm rural poor, and the urban poor. To capture these different effects requires a research design that operates at different scales of analysis (household, village, regional, national).Inter-household and interregional effects form one important dimension to the scope of the analysis. Intra-household effects form another. Recent work undertaken by the International Food Policy Research Institute (IFPRI) and others shows that significant biases along gender and generational lines can arise when the distribution of production increases within households. It also shows that technologies can reduce or reinforce these biases depending on who grows or owns the crops that are affected. Assessing the impact of improved technologies at this level requires information about individuals within households.To assess the impact of a new technology on poverty, the researcher must be able to assess what the situation would be like if the technology had not been adopted-the counterfactual situation. Many studies fail to establish an effective counterfactual situation, and often rely on a simple before-and-after analysis. This can be considerably misleading, for many other factors may have changed along with the technology. Some critics of the Green Revolution, for example, tend to use the situation before the Green Revolution as a counterfactual, and conclude that many of the poor would be better off if a switch back to the old technologies occurred. But these critics forget that populations have grown enormously since the Green Revolution began, and that the situation would be drastically worse for the poor today if yields were to return to their pre-Green Revolution levels.The best counterfactual is a comparable region or group of farmers who are identical in all respects to the adopters except that they have not had a chance to adopt the technology themselves. Such situations are extremely rare, and most often comparator groups have to be used that differ in other attributes too. The danger of this is that systematic reasons may explain why the comparator group has not adopted (e.g., the technology is not appropriate to their conditions, or they do not have access to credit). These other reasons would also have affected the impact of the technology had it been adopted. Such sample biases can be controlled through econometric techniques, but this requires the collection of particular types of data. Establishing appropriate counterfactuals for assessing the indirect benefits of technological change is even more difficult, and the need for sophisticated modeling or econometric approaches is difficult to avoid.Many other factors besides improved technologies affect changes in agricultural production and its impact on the poor. At the farm level, prices, access to inputs, credit, and markets, educational levels, and the distribution of land affect both the rate of uptake of improved technologies and the extent to which they benefit the poor. Improved technologies may fail to benefit poor farmers not because they are inherently biased against the poor, but because the distribution of land or access to inputs and markets is unfair. Only when these are taken into account does it become possible to explain why similar technologies can have highly different impacts on the poor in different regions, or at different points in time. The need to control for other factors is even more challenging when assessing the indirect benefits for the poor. For example, changes in rural employment opportunities and wages in the farm and non-farm sectors are affected by macro, trade, and agricultural sector policies, as well as by prevailing prices, public investments in rural infrastructure, health and education, and public employment programs. Teasing out the specific impacts of production increases caused by improved technologies needs to be done within an analytical framework that allows for all these important factors. Similar problems arise in trying to assess the indirect benefits to the poor resulting from changes in food prices, or from improved migration opportunities. Such difficulties can only be resolved by examining countries over longer periods of time, and by comparing the experiences of different countries, or regions within a country (see, for example, Datt and Ravallion, 1997;1998;Fan et al., 1999).Long time lags often occur between expenditures on agricultural research and the widespread adoption of improved technologies that the research develops. Further lags may occur between the adoption of improved technologies and their production and poverty impacts. For example, some technologies require long-term investments (e.g., farm trees, livestock improvement, and watershed development) before any additional production is achieved. Most of the indirect benefits arising from improved technologies also take time, because factor and product markets must adjust. The analytical framework must be sufficiently dynamic to capture and aggregate these kinds of lagged benefits.Agricultural production is inherently risky, and yields and prices can fluctuate markedly from one season to another, particularly in rainfed farming systems that are home to many of the rural poor. Assessments of the impact of improved technologies on the poor need to average out these random effects either by taking enough years in \"with\" and \"without\" analyses or by using an analytical framework that specifically controls for weather and price variables.To have impact on the poor, good science must be targeted on the right problems and the resulting technology must reach and be adopted by farmers. Inadequate information flows, adverse incentive structures (e.g., top-down), and overly complex organizational structures can thwart the effective design and implementation of technically sound interventions. Whenever possible, these institutional features conditioning the relationship between agricultural research and the poor must either be controlled for, or explicitly studied.New technologies, practices, and policies can potentially affect a wide range of indicators. Process indicators assess whether the new intervention is being used and used as intended. Intermediate outcome indicators assess intermediate outcomes of the intervention, such as impacts on crop yields, postharvest losses, soil fertility, and improved forest management. Welfare outcome indicators assess the well-being of adopters and non-adopters of the intervention. Welfare can be measured in a number of ways (e.g., income, expenditure, food consumption, nutrition status, and decision-making ability), at a number of different levels (e.g., community, household, and individual), for different types of individuals (e.g., adopters, non-adopters, farmers, non-farm rural, and urban).Despite the difficulties of designing and implementing sound impact studies, a wealth of relevant empirical material is available in the literature. Lipton and Longhurst (1989) definitively reviewed this, and Kerr and Kolavalli (1999) have provided a recent update. Because relatively little of this evidence derives from rigorous studies with sound counterfactuals, synthesizing the findings remains a subjective and potentially controversial task. The following section represents the joint views of the author and his IFPRI colleague, Mark Rosegrant (Rosegrant and Hazell, 2000).Concerns about the adverse impact of modern agricultural technologies on the poor reached their zenith in the 1970s when critics debated the negative impacts of the Green Revolution. Critics argued that, because of their better access to irrigation water, fertilizers, seeds, and credit, largescale farmers were the main adopters of the new technology. Smaller-scale farmers were either left unaffected or were made worse off because the Green Revolution resulted in lower prices, higher input prices, and efforts by larger-scale farmers to increase rents or force tenants off the land. It was also argued that the Green Revolution encouraged unnecessary mechanization, with a resulting reduction in rural wages and employment. The net result, some critics argued, was an increase in the inequality of income and land distribution, an increase in landlessness, and a worsening of absolute poverty in areas affected by the Green Revolution (see, for example, Griffin, 1972;1974;Frankel, 1976;Farmer, 1977;ILO, 1977;Pearse, 1980). Some village-and household-based studies conducted soon after the Green Revolution technologies were released lent some support to the critics (e.g., Farmer, 1977). However, the conclusions have not proved valid when subjected to the scrutiny of more recent evidence (Barker and Herdt, 1978;Blyn, 1983;Pinstrup-Andersen and Hazell, 1985;Lipton and Longhurst, 1989;Hazell and Ramasamy, 1991). Although small-scale farmers lagged behind large-scale farmers in adopting the Green Revolution technologies, most of them did eventually adopt and benefit from increased production and from greater employment opportunities and higher wages in the agricultural and non-farm sectors. Nor did the distribution of land worsen in most cases (Rosegrant and Hazell, 2000). Many other poor people also benefited from the Green Revolution through increased employment and business earnings in the farm and non-farm sectors and from lower food prices (Pinstrup-Andersen and Hazell, 1985). This is not to say that the Green Revolution was equitable everywhere, but that the conditions under which it and other yield-enhancing technologies are likely to be equitable are now reasonably well understood. They include:(1) A scale-neutral technology package that can be profitably adopted on farms of all size; (2) An equitable distribution of land with secure ownership or tenancy rights;(3) Efficient input, credit, and product markets so that farms of all sizes have access to needed modern farm inputs and receive similar prices for their products; (4) A mobile labor force that can migrate or diversify into the rural nonfarm economy; and (5) Policies that do not discriminate against small farms (e.g., no subsidies on mechanization, or scale-biases in agricultural research and extension).Critics of commercialization also fear that small farms will be left out of the commercialization process and will be unable to compete in the market as competition increases and prices fall. At the same time, they fear that if small farm households forgo some or all of their traditional food crops to grow more cash crops for the market, then this will increase their dependence on purchased foods. This will expose the household to higher food security risk because of volatile market prices and uncertain income from cash crops. It will also lead to a reallocation of income within the household in favor of men (who typically grow cash crops) with possibly adverse nutritional consequences for women and children (e.g., Gross and Underwood, 1971;Hernández et al., 1974;Lappe and Collins, 1977).A recent study (Von Braun and Kennedy, 1994;Von Braun, 1995) refutes the critics of commercialization. The study summarizes a series of comparative studies of selected sites where farm households had recently switched from semi-subsistence staple food production with low levels of external inputs to production of more crops for sale in the market or to production with more purchased inputs. These studies find that, with few exceptions, commercialization of agriculture benefits the poor by directly generating employment and increased agricultural labor productivity. Both the households that are commercializing their production and the hired laborers receive direct income benefits. Further, in all but one study site, the increased household income generated by commercialization was associated with improved nutrition for children in the household.However, although commercialization by itself rarely has adverse consequences on household welfare, it can be damaging when combined with failures of institutions, policies, or markets. Government policies must therefore facilitate the transition to commercialized agriculture in a manner that benefits the poor and does not simply replace subsistencerelated production risks with new market and policy failure risks, which may be even more devastating to the poor. Important policy goals should include avoidance of trade shocks and appropriate sequencing of input and output market reforms.It has also been argued that agricultural intensification and commercialization that proceeds in certain regions, but not in others, can worsen regional disparities, with lagging regions falling farther behind as commodity prices drop in the wake of increasing productivity in the rapidly growing regions. The widening productivity gap between commercializing regions and slower growing, subsistence-oriented regions could both accentuate relative income differences and even cause an increase in absolute poverty in the lagging regions. In the study sites examined in Von Braun (1995), however, indirect income benefits were generated through the increased demand for goods and services by the direct income beneficiaries as well as by increased demand for inputs for commercialized agriculture. The wage rate and other employment benefits from commercialization spread to other regions when labor migrates from other regions into scheme areas. The more mobile the labor force, the more the benefits from commercialization will spread across the economy and other regions. Similar results have been found for the spread of modern rice technology in Asia (a classic process of commercialization). In a comprehensive cross-country comparative study, David and Otsuka (1994) found that the differential impact of new rice technology across regions did not worsen income distribution because of the significant indirect effects that worked through labor, land, and product markets. Interregional labor migration from unfavorable to favorable regions tended to equalize wages across regions, allowing landless labor and small-scale farmers in unfavorable areas to benefit also. Landowners in lagging regions were sometimes worse off, but also partially protected their incomes through diversification out of rice.Although well-functioning product and factor markets help to equalize wages and incomes across regions, they are not always sufficient. In India, for example, many areas of low potential rainfall have seen little improvement in poverty levels even while irrigated and high potential rainfall areas have progressed (Fan and Hazell, 1999). Regional inequalities have also worsened in China in recent years (Knight and Song, 1992). Worsening regional disparities seem most likely to occur when agriculture is still the predominant source of national employment, and when the non-farm economy is growing at only moderate rates. In these circumstances, the opportunities for out-migration from, and rural income diversification in, backward areas is likely to be smaller than needed. Where regional disparities worsen, increased public investment is needed in backward areas, particularly in roads, agricultural research and development, and education (Fan and Hazell, 1999).Despite more than 40 years of research on the food problems of the developing world, and despite dramatic increases in food production as a result, controversy still abounds about whether agricultural research is beneficial to the poor. A huge body of empirical evidence has relevance to this theme, but it includes few studies that meet acceptable standards of analysis. This is particularly so with respect to establishing an adequate counterfactual (without technology) situation for comparative purposes, controlling for the many other variables that condition the multifaceted impacts of technological change on the poor, and assessing the indirect as well as the direct impacts.Without such studies, drawing simplistic and misleading conclusions is all too easy. The most dangerous of these would be that governments and donors should cease to maintain adequate levels of investment in agricultural research on the food problems of the poor. No sound empirical basis exists for such a conclusion, yet if adopted and subsequently proven wrong, the consequences for the poor would be dire indeed. Agricultural research is a longer-term endeavor with long lead times between the initiation of new research and impact in farmers' fields. Funding decisions today will largely determine the kinds of research outputs that will be available to benefit the poor 10 to 20 years hence. More representative and best practice case studies are urgently needed to resolve this controversy once and for all.Legitimizing funding for agricultural research increasingly depends on demonstrating a visible impact on social and economic developmentespecially on poverty prevention, food security, and environmental protection. Impact assessment has become an important theme. In November 1999, for instance, the European Consortium for Agricultural Research in the Tropics (ECART) and the Association for the Strengthening of Agricultural Research in Eastern and Central Africa (ASARECA) organized a workshop in Uganda that aimed to establish impact assessment as a regular professional activity of agricultural research in the region. The focus was on institutional rather than on methodological issues. Like the CIAT 1999 poverty workshop, the ASARECA workshop also looked at the linkages between research and development.Conceptual clarification is needed. Parallel to the increase of awareness for impact assessment a revitalization of linear models of innovation can be observed (Figure 1). Assessing impact might look easier if one could, at least in theory, establish a straight causative line between research and development. In reality, however, things are hardly ever that simple, especially when it comes to evaluate the really important development impacts such as poverty reduction. Although it is still comparatively easy to measure changes in the poverty level of a country or region over time, it is very rarely possible to attribute such changes to a single project, let alone specific agricultural research results. There is no use in playing down such attribution difficulties; the challenge is to deal with them productively.With this intention, I present the argument of modern innovation research that innovation is a complex social process that cannot be reduced to a linear model. This done, I refer to some recent conceptual work of the internal evaluation team of the German Agency for Technical Cooperation (GTZ) that supports the conviction that, despite the complexity of the matter, impact assessment can be accomplished. The aim is to learn from science for the practice of impact assessment. In order to understand how agricultural research does impact on development, we need to understand how it could have such impacts. To develop this understanding is the subject of innovation research. Let us try a rough sketch of how this important branch of social science started out with linear concepts, modified them, and eventually arrived at the notion of innovation as a social process.Reviews of early concepts of innovation usually begin with Schumpeter who, in keeping with his dramatized notion of the entrepreneur, saw innovation as a sudden, outstanding event that takes its origin from science, breaks through established technological barriers, and thus changes society. Up to the 1970s, the general consensus is that research and development (R&D), diffusion, and adoption are the main successive phases of any innovation process. Aregger (1976), in a standard work on innovation in social systems, spoke of \"R&D-type models\". Characteristically, they give research the decisive role in innovation, separate the whole process into distinct phases, and follow a linear, causative logic. The basic idea is that research has an output-a new technology and new practice, or a new object-that must be adopted in order to translate into economic and social development. Hence, the focus is on adoption or, to be more precise, on the \"enablers\" of adoption. Anything that might play a role in getting farmers to accept and apply an innovation is thoroughly investigated. How important are the characteristics of the innovation itself? What are successful communication channels? How do differences in education, location, or social interaction influence the adopters/receivers of an innovation? These are the main questions considered to merit scientific attention. Early innovation research has a clear \"push-bias\". Whilst agricultural research is associated with the source (or origin) of the innovation, farmers are seen to be at the receiving end. Aptly named the \"receivers\", they are mainly thought of as individuals who do not play an active role in the innovation process. Rogers (1971) gave an overview of innovation research at the end of the 1960s, looking at some 1500 individual studies. As Rogers himself concluded, the survey revealed a considerable bias:• Most of the studies dealt with results from physical or biological science such as fertilizers, herbicides, or antibiotic drugs; whereas innovation in the areas of ideas, political behavior, or human learning was almost totally excluded. • The attention of the researchers was turned towards the individual adopter; group and system aspects of innovation hardly played a role. • Innovation processes in modern (western) countries were much more thoroughly investigated than innovation and diffusion processes in traditional societies. • Practically all of the 1500 studies reviewed dealt with the antecedents of adoption, whereas only 38 of them investigated consequences.In the 1970s and 1980s, innovation research gradually departed from this uniformity. Rogers (1971) introduced an important modification of the linear model. Citing Sharp's investigation of the introduction of the steel axe to a tribe of aborigines 1 , he warned of the assumption that innovations would only have intended desirable consequences. Negative effects could not be excluded and farmers could not be expected to accept a new technology merely on faith. Research, therefore, should investigate and explain consequences, and conceptualize innovation as a process that includes not only R&D, diffusion, and adoption, but also consequences. Rogers acknowledged that studying consequences requires more time, deals with things that are difficult to measure, and has a big problem of attributing observed changes to individual research initiatives. Nonetheless, he urged all change agents to recognize their responsibility for the consequences of the innovations they introduce. To this end he proposed a new model for innovation research that integrated antecedents, process, and consequences into one coherent frame. At the same time, the model acknowledged the influence of norms and variables of the social system. Rogers' new model was a big step in directing research towards what we now call impact assessment. However, the individual farmer was still in the center, and Rogers continued to assume that individual knowledge and innovativeness, the degree of persuasion, and the individual decision-making process were the main determinants of adoption. Like most of the researchers of the 1950s and 1960s, Rogers built on a linear, causative linkage between research and development, with the difference that his new model did not stop at adoption, but continued the line to include the consequences of an innovation.Other modifications of the linear model followed. One I would like to mention here has come to be known under the name of \"induced innovation school\" (Hayami and Ruttan, 1985). According to this theory, innovations are \"pulled\" rather than \"pushed\". Successful adoption mainly depends on economic incentives, especially on a shift in relative factor prices. Such a shift is considered sufficient to cause farmers to search for technical alternatives. The induced innovation theory has contributed considerably to making the economic conditions that enable or constrain innovation explicit. But it is still a linear concept that sees innovation essentially as a one-dimensional process that answers, in this case, not to the \"push\" of supply, but to the \"pull\" of demand.More or less the same can be concluded from a further modification that Aregger, in his already mentioned investigation, classified as \"problem solving\". Today we would call this type of research \"client-oriented\" because it identifies the needs and abilities of the user (the farmer) as the decisive factors of any innovation. The problem-solving model is, so to speak, \"twodirectional\". A feedback loop to the innovator is to assure that the output of research is compatible with what users need. The model has particular merits in giving a strong incentive for client-oriented research. However, for the argument presented here, it is of secondary importance whether the link between researchers and farmers is forward, backward, or twodirectional. The question that needs to be answered is whether a linear model of any kind is an acceptable generalization of the reality of innovation.To structure my review of new insights of research in innovation I return to the main stages of the process, that is:• R&D (the source),• Diffusion (the channel), and • Adoption (the receiver).The analytical strength of these distinctions is convincing. There can be no doubt that research and development exist and produce a potentially innovating output, that R&D results are made known by the originators and tested by the users, and that adoption occurs. The difference between old and new research approaches is not about the analytical distinction of these steps, but about their properties and interconnection.If we say that a process consists of \"steps\", which are different, but connected, we actually give a general description of a \"system\". Coughenour was one of the first to conceptualize innovation in such terms by distinguishing an \"innovation system\", a \"linkage system\", and a \"practitioner system\" as the constituting elements (or subsystems) of the overall innovation system (Coughenour, 1976;Chamala and Coughenour, 1987). The three subsystems directly correspond with the three phases constituting the linear model. So far, therefore, the system view is not much of a new insight. But it leads there. Whilst the constituting parts of the innovation process were formerly conceived as universally valid and separated, they are now seen as specific and connected.Without differences there would not be new ideas. Different views, options, and horizons are, as Engel (1997) observed, a precondition for innovation: \"Nothing\", he said, \"could be worse than a contented network of social actors who agree on everything\" (Engel, 1997, p. 151). Fortunately, such dull networks do not exist. The widely confirmed observation that specific \"mental models\" guide human action also holds for research communities. Johnson (1995, p. 31-34) gives a good description of the specificity of mental models frequently found amongst R&D personnel. He pointed out that the search for new knowledge is never totally unprejudiced: \"The specific combination of skills, education, knowledge, and experience which characterizes the personnel of the R&D department, will influence ... the problems formulated, the methods chosen, and the solutions sought\". This means that new ideas, procedures, objects, or technologies resulting from research cannot be equated with progress per se. They represent a specific form of progress that corresponds to, and carries the marks of, the routines and habits of thought of the R&D-community.Research results are specific for other reasons too. With examples taken from the history of technology, Schmookler (1962) convincingly demonstrated that inventions follow economic incentives. Their frequency corresponds with capital investment rates and the expectation of increased profits will influence not only the topics of research, but also the solutions. Johnson (1995, p. 24) pointed out that institutional factors play an important role inasmuch as they have a fundamental influence on information flows and learning. The technological capability of a national system is conditioned by its institutional setup and this setup changes from nation to nation: \"National economies differ regarding the structure of the production system and regarding the general institutional setup. Specifically, we see basic differences in historical experience, language, and culture reflected in the national idiosyncrasies...\" (Lundvall, 1992, p. 13). Dosi (cited in Lundvall, 1992) spoke of \"technological trajectories\", meaning a specific concept of progress that is rooted in the institutional and economic setup, remains stable for long periods, and determines the general direction of progress. Following these trajectories leads research to solutions that look generic within the boundaries of one institution, but reveal themselves as quite specific when taken outside.If the innovation system produces specific solutions, the user system has specific requirements for accepting them. This becomes apparent if users are seen not as passive, individual receivers of a new technology, but as social groups that play a decisive role in shaping it. Innovation in agriculture happens through the interaction of farmers, veterinary doctors, district extension managers, farm advisers, technical specialists, and many more. But their interaction not only serves the transfer of knowledge and information, it also reflects social power and influence, the particular interests, concerns, and preferences of different social groups. It is on the basis of a thorough analysis of the characteristics of this interaction that today innovation is understood as a social process (Engel, 1997, p. 126).The recognition of innovation as a social process replicates some of the technology debate of the 1970s. In this debate, a technical perception of technology development was gradually replaced by the recognition that technology is basically a social construct. It might therefore help to recapitulate some of the major arguments. Several of them came from Stewart. In her path-breaking analysis of technology in developing countries she explored the topic of technological compatibility (Stewart, 1978). By analyzing technical requirements and the process of technology choice, she gave a concrete description of how a new technology must \"fit\" into its environment in order to be introduced and applied. Stewart spoke of four requirements that impose restrictions on any development of productive technology:(1) The nature of the product, (2) The resources used for its production, (3) The scale of production, and (4) The complementary products and services needed.Any or all of these requirements determine whether or not a new technique fits into an existing system. It is the degree of \"fit\" that decides over adoption or rejection. If the technique produces things that no one wants, if it uses resources that are not available, if it operates on an inappropriate scale, and if it requires complementary products and services that are not there, the technology will not be accepted, irrespective of how \"good\" the proposed innovation might be in technical terms and how much \"push\" is applied to its diffusion. In this way the user system heavily influences technology development.The user system also influences technology development through the process of technology choice. A new technique or technology must fit existing requirements, as we just saw. But the requirements are different for different social groups. What is available or appropriate for one may not be available or appropriate for another. It is therefore important to understand the process of technology selection. Stewart showed how technology decisions by, for instance, subsidiaries of multinational companies differ in a systematic way from decisions made by local, small, self-employed enterprises. Her case studies supplied convincing evidence that technology choice varies in accordance with the nature of the decision maker. The findings of Stewart's research can be summed up as follows:• Technology is not with an accidental agglomeration of hardware, but an integrated technical and social system that exhibits specific characteristics and constraints. • In order to be adopted, a new technique must be compatible with the specific characteristics of the existing technology system. • Adoption of a new technique happens on the basis of a selection process that varies in accordance with the nature of the decision maker. • Decision makers interact not as isolated individuals, but as social groups with specific interests, preferences, and patterns of perception.A new technique, in order to be adopted, must be adapted. Through a process of modification, alteration, and complementation it must be made compatible with the specific technical and social features of the existing system. If we distinguish between what an innovation is and what it means, even the meaning of an innovation must be in congruence with the value system of the receiver. Clearly such a complex process of adaptation could never be the result of purely intentional actions.Innovation is not a single event, but a continuous process. It is the outcome of many incremental improvements that result in progress not because of a governing idea, but because of a highly recursive process of adaptation and assimilation. Adaptation happens in the user system through the users themselves, who play an active role in innovation. But adaptation happens in other places too, practically during all stages of the transformation of an idea into practice.To account for the complexity of the process, Engel has proposed an \"interplay model\" that breaks the linear logic of earlier conceptions of innovation. It describes innovation in agriculture primarily as an achievement of the interaction of multiple social actors with highly diverse interests and perceptions. The diversity of types of knowing relevant to agricultural innovation is explicitly acknowledged. There is no straight, causative line, neatly divided up into phases and leading from one end to the other. The distinctions between individual phases are blurred. It even cannot be maintained that innovation always starts with research; users may just as well start it, it requiring an element of research only at a later stage.Compared with a linear model, the interplay model seems chaotic. My attempt to draw a graphic of this model resulted in a sponge-like structure with dozens of larger and smaller cells and a cross-pattern of causation arrows laid over it (Figure 2). Each cell can be thought of as a social actor-a group, an institution, the lobby organization, extension services, etc.-with its own habits of thought, interests, and traditions. In such a structure, innovation is never totally accidental because it runs in \"trajectories\" that span larger groups of actors and have a high degree of stability over time and space. But the concrete overall result of intentional actions for diffusion is unpredictable. \"Pushing\" an innovation can be done of course, and will often make a difference, but not a big one. Sooner or later, the effects will get tangled up in a maze of complexities and become indistinguishable. If innovation happens like this, what does it mean for impact assessment? Innovation as the result of social interaction-such a concept not only stands against planned impacts, but it also seems to make impact assessment impossible. If we look at the process from the research side, aiming for highly aggregated development results like poverty prevention, food security, and environmental protection, we are bound to acknowledge that such results are outside the control of the intentional actions of a single project. A project can work towards such goals, but what it does on its own will hardly ever guarantee that they are actually reached. If, on the other hand, we look at the impact chain from established development results, aiming to attribute them to a particular research activity, we cannot find (except under very special circumstances) a trace back to the actor. What presents itself as an \"impact gap\" when looked at from the research side, turns into an \"attribution gap\" when seen from highly aggregated development results. The \"impact gap\" affects management; the \"attribution gap\" affects impact assessment.Much is to be said about the \"impact gap\" and how to deal with it in management. However, as an outsider to agricultural research, I would rather leave such advice to others. Röling has extensively written on the issue (see Röling and Jiggins [1998] for improved version). My impression is that his premises are much like the ones I have been following in this chapter. Although he seems to have done his earlier research on the basis of a linear innovation model, he now considers such models no longer an acceptable guideline for action. He confirms that innovation must primarily be understood as an outcome of social interaction. This, he says, has thrown agricultural research into a fundamental policy crisis. Röling's contributions to a new policy suggest that the recognition of innovation as a social process is a necessary conceptual basis for achieving full management effectiveness.I have the same optimism with respect to impact assessment. Of course, things would be easier if we could work with a straightforward linear model instead of one that leads into an impenetrable maze of social interaction. Impact assessment for the Green Revolution was easier. The R&D output was a \"hard\" technology and it was indeed possible to trace a major agricultural innovation directly back to research. However, today such a case is rare. More typically, researchers produce \"soft\" results, such as information or advice that other actors use as inputs in broad innovation processes. The researchers contribute to the innovation process, but others contribute even more. In such cases, analysts usually encounter very significant challenges in attempting to attribute broad development impacts to one actor or another-particularly to the researchers who do their work so far back in the early stages of the innovation process. Nonetheless, impact assessment has become a must for agricultural research, and can be done. To say that impact assessment is difficult does not mean that it is impossible. Rather, it helps to develop impact assessment in appropriate forms.To propose a possible approach I would like to share with you some of the conceptual thinking that my colleagues and I recently did for preparing the setting up of an internal evaluation unit in GTZ. As you may know, this organization has quite a track record in utilizing a goal-oriented planning method called Zielorientierte Projekt Plannung (ZOPP), based on a causative impact chain of the 1970s (called logframe). The ZOPP method nourishes the belief that a project that executes planned activities (a), (b), and (c), in an environment corresponding with the assumptions of the plan, will produce outputs that, by fulfilling the project purpose, contribute to the overall development goal. The method supports a comparison of planned and achieved results of projects and programs up to direct, empirically verifiable benefits. But beyond such a point it tends to be counterproductive. Even though technical cooperation may be said to be closer to development results than research, a \"maze of complexities\" remains in between. This maze does not allow for clear cause-and-effect linkages. In dealing with highly aggregated development results, the \"factor weight\" of a single project is far too small to be isolated from a mass of other causes.Learning from field experience, my colleagues and I modified the ZOPP impact chain in two rather central aspects. First, we redefined the steps by which a project or program typically achieves results. While the original ZOPP only considered five such steps, we now distinguish seven:(1) Inputs, (2) Activities, (3) Outputs, (4) The use of these outputs, (5) Direct benefits, (6) Indirect benefits, and (7) Highly aggregated development changes.Second, we cut the hitherto continuous \"impact chain\" in two, acknowledging an \"attribution gap\" between direct and indirect benefits. With these modifications, the impact model allowed us to separate a seemingly unfeasible impact assessment into two doable tasks (Figure 3):(1) Projects and programs are expected to deal with the lower part of the model. They are required to reliably and systematically monitor their work from inputs up to direct benefits. At the same time, they are no longer expected to account for indirect benefits, let alone their contribution to overall development change.(2) The upper part of the model, beyond the attribution gap, describes the task of project-independent evaluation. In contrast to the focus of project evaluation-\"Has the project done what it planned to do?\"project-independent evaluation works with a regional or sector perspective. The question to be answered is about development results irrespective of any contributor.Engineers know that building a bridge from only one shore usually does not work. However, building it simultaneously from two shores, constructing half an arc on either side and making them meet in the middle, mostly succeeds. The same, I believe, is true for impact assessment. A project knows everything about its activities and outputs, but cannot verify its effect on overall development. On the other hand, observed development results usually cannot be traced back to a single project. But if project monitoring and evaluation describe the project from inputs to direct benefits and if, at the same time, project-independent evaluation provides a general pattern of development change, then chances are high that a plausible connection can be established. In today's international evaluation debate it is widely accepted that, with respect to highly aggregated development results such as poverty reduction, project impact assessment must abandon the false ideal of \"scientific proof\". Instead, it should aim for plausibility. In the political arena, where the funding decisions are made, plausibility lies at the core of credibility. I would argue that, with the media full of environmental destruction, poverty, and war, nothing could be more devastating for the credibility of a development organization than an \"82.3% success rate\" reported in a glossy report with photographs of smiling target groups. People know that development is difficult and complex. Whilst they expect accountability, they will, in the long run, believe plausible arguments more than bombastic \"proofs\". Stories without facts will not do. Accountability requires facts about the (research) project as well as about development change. It is a realistic assumption that we can get these facts, provided we know what to expect from project monitoring and what to leave for others. It is also realistic to assume that, with project performance and results on the ground established, a plausible connection can be found (GTZ Working Group, 2002). Impact assessment is possible. If agricultural research makes use of this possibility, it will not have a problem with answering today's demands for accountability.Increased agricultural productivity has been a primary engine of economic development in less developed countries (LDCs). Technical change in agriculture, the major source of increased productivity, requires sustained investments in agricultural research and extension. Substantial returns to agricultural research and extension have been reported in different countries throughout the world, including countries of sub-Saharan Africa (SSA). Masters et al. (1998, p. 84) report that \"returns to research in Africa are similar to those found elsewhere, showing high payoffs for a wide range of programs.\" A notable exception is the low rate of return to research reported from Malawi. Frisvold and Ingram (1995, p. 59) report \"… research has yet to generate broad sectoral productivity growth in SSA agriculture.\" Ahmed et al. (1995) question how accurate are conventional estimates of rates of return to agricultural research in SSA countries because of the prevalence of policy distortions. On the other hand, economic development in SSA has lagged behind other regions, largely because of the stagnation of agricultural productivity, especially among smallholders (Frisvold and Ingram, 1995).Increased agricultural productivity can benefit the rural poor in a number of ways, especially when it raises returns to their meager asset base. However, debates are ongoing on how the benefits of technical change are distributed among subgroups within countries. Historically, many of the benefits of agricultural research and extension have accrued to better-endowed farmers and to urban consumers, bypassing poor rural producers (Binswanger and von Braun, 1993). During the 1990s, many SSA countries experienced numerous policy changes whereby traditional biases against agricultural and rural sectors were reversed. Also, the need for active pro-poor policies and investments is receiving increased attention. For example, agricultural research and extension was largely oriented to meeting the demands of export agriculture and paid little attention to the production constraints faced by smallholders, but is increasingly being redirected toward the needs of smallholders and the rural poor (Pardey et al., 1997;Rukuni et al., 1998). However, public investments in research and extension are under increased scrutiny as budget pressures tighten. In fact, in many SSA countries, budget allocations for agricultural research have been declining, and dependence on external financing (e.g., donor expenditures) has increased (Pardey et al., 1997). Policymakers are increasingly calling upon research managers to consider poverty reduction objectives when making resource allocations.Exercises in research priority setting help managers understand how to allocate research investments to achieve progress toward objectives, which include economic efficiency. However, others such as poverty reduction are also important. It is often argued that agricultural research is a blunt instrument for obtaining non-efficiency objectives and, therefore, that research budgets should be allocated with efficiency alone in mind, leaving poverty reduction objectives to be addressed through alternative policy instruments (Alston et al., 1995). Given the increased povertyreduction focus, it is appropriate for ex-ante planning and ex-post evaluation to include measures of the impact of agricultural research programs on the poor.The primary means of evaluating the impacts of agricultural research is through economic surplus analysis in a partial equilibrium framework (Alston et al., 1995;Mills, 1998). When surplus analysis is used to examine the impacts of agricultural research on the poor (producers and consumers), they are usually grouped according to expenditure quintiles, or through the use of some other means of distinguishing between poor and non-poor households. Parameters (such as technology adoption, and supply and demand elasticities) are estimated for the respective subgroups (e.g., smallholders vs. commercial farmers, by agro-ecological zone, household headship), and the surplus gains and losses associated with each research portfolio are evaluated. Although gains and losses can be disaggregated by subgroup, there is no direct measure of the impact on the absolute or relative poverty of the subgroups or between them, and differences among households within broadly defined subgroups are ignored. Mills (1997) and Mutangadura and Norton (1998) are recent examples of analyses based on economic surplus methods that focus on the distributional impacts of agricultural research. Mills (1997) evaluated, exante, the expected impacts of sorghum research on producers and consumers in Kenya using a spatial multi-market model on four different agroecological regions. Mutangadura and Norton (1998) used farm types (large-and small-scale farmers), and natural region (high/low potential) to distinguish ex-ante between agricultural research impacts on different producer groups in Zimbabwe. Researchers were asked to estimate the productivity gains and probability of adoption of their research results under assumptions of zero funding increase and a 50% increase in their budget. The economic surplus gains and adoption rates for producers were estimated separately for the farm types and regions. These estimates were combined with crop acreage and yield information (by farm type and natural region) to generate net present values (NPV) that were incorporated into a multi-objective linear programming model. To examine how distributional concerns would affect the optimal research portfolio, and to assess the efficiency losses (i.e., tradeoffs) associated with targeting research toward the benefit of smallholders, the model was run with different weights placed on research objectives. These objectives were (1) efficiency, and (2) distribution of benefits. The model was run with different assumptions about budget constraints.Economic surplus methods provide several advantages, including ease of use, theoretical soundness, and consistency with other measures of economic benefits and costs. Thus, for example, the impact of a sorghum research program on the poor can be compared to alternative povertytargeted investments. A disadvantage of surplus methods as they are commonly applied is that they do not provide clear-cut evidence about the impact of a research program on aggregate poverty. Although rigorous application of an economic surplus analysis to agricultural research on the poor can provide evidence about which groups benefit most, it will not show how different measures of poverty change. Thus, research priority setting (and evaluation) efforts and national dialogues about poverty reduction tend to be disconnected. In such national dialogues, commonly understood measures of poverty are used, and policymakers and research managers need information on how a changing research portfolio will affect these measures. Such information should facilitate and improve communication on objectives and tradeoffs subject to budgetary constraints.Poverty profiles (e.g., Alwang and Siegel, 1994;World Bank, 1996) are used to focus policy discussions, design and target specific programs, and as baselines for systems of monitoring changes in poverty over time. A typical poverty profile begins with a quantifiable poverty line, uses household data to measure incomes or consumption relative to this line, and aggregates over households to create a measure of poverty. This measure, often of the Foster, Greer, Thorbecke (FGT) class, can be decomposed to show how poverty varies across subgroups of society, such as region of residence, household headship, or sector of employment (Foster et al., 1984). The FGT class of poverty measures is defined as:(1) where i is income or expenditures of the poor, z is the poverty line and is measured in the same units as is i, and α is a parameter of inequality aversion. When α = 0, then P α collapses to the headcount index (the prevalence of poverty), and when α = 1, then P α gives the poverty gap index. For different values of α, the index provides information on different dimensions of the poverty problem. The FGT indices are often used because they are additively decomposable, which facilitates analysis. Additive decomposability means that the aggregate poverty measure, θ, can be decomposed as:(2) Where there are m population subgroups (indexed by i), for example, regions of the country, i f is the proportion of households in the i th subgroup , and θ i is the measure of poverty for the i th subgroup. See Ravallion (1992) for a detailed discussion of additive decomposability, which he calls additivity. Using additivity, the contribution to overall poverty coming from a population subgroup can be decomposed rigorously. Similarly, the impacts on poverty of income transfers or economic growth in general can be assessed.Typically, a poverty profile contains estimates of the impact of overall growth on poverty. These measures, called growth elasticities, are computed using the assumption that the overall distribution of well-being is unaffected by the change in question. As an example, consider the headcount (H) index of poverty (the percentage of total population below the poverty line, z). It is well known (Datt and Ravallion, 1992) that the headcount of poverty is related to mean consumption (µ) via the formula µL'(H) = z, where L'(H) is the slope of the Lorenz curve evaluated at z. A simple growth elasticity can be obtained using this relationship. L'(H) can be inverted to examine the sensitivity of the headcount to changes in µ, holding the Lorenz curve fixed. The other FGT indices can be obtained using analagous relationships (see Datt and Ravallion [1992] for details). The advantage of these relationships is that secondary data (e.g., information used to create the Lorenz curve) can be used to fit a paramereterized Lorenz curve and yield the elasticities without reverting to the primary data (which can often be difficult to access).The problem with such methods is that growth is rarely distributionally neutral. Specifically, agricultural growth occurs through sequential adoption of technologies by regions, crop, agroclimatic conditions, etc. When growth is sector-specific or affects the distribution of well-being, then these simple methods are inappropriate. Productivity growth can be directly incorporated into measures of sector-specific, poverty-growth elasticities by reverting to primary data, or by developing a more detailed decomposition of the poverty-inequality-growth relationship (i.e., modeling shifts in the Lorenz curve).The impact of increased agricultural productivity on income distribution and poverty reduction depends on a number of factors. Often these factors and their impacts are not easily quantifiable. For instance, if increased productivity stimulates the demand for labor and the poor tend to be large-scale suppliers of off-farm labor, then indirect labor market effects may outweigh the direct effects of productivity gains on farming incomes of the poor. The methodology proposed here ignores many of these higherorder effects and focuses on the first-order impact of yield changes on household incomes. With household-level data, income growth associated with crop-specific yield changes can be aggregated to create measures of change in poverty and inequality.The approach combines well-established methods for decomposing inequality by source of income with methods for decomposing changes in poverty measures into growth-and distribution-related sources. Kakwani (1993), for example, shows that changes in a poverty index (θ, often an FGT class of poverty indices, but not restrictedly so) can be decomposed into a component associated with changes in mean incomes and one associated with changes in inequality (usually summarized by shifts in a Lorenz curve). He goes on to show how the impact of sector-specific growth on overall poverty can be predicted, as long as the sectors are mutually exclusive (for example, growth in maize-related incomes are independent of changes in groundnut incomes). Under such conditions, the additive decomposability of the poverty measure can be used to partition changes in aggregate poverty into their sector-specific sources.For instance, define as the measure of poverty, µ j as mean income for the j th sector, m ij as income of the i th person or household from the j th sector-specific income source, and S j as the share of j th sector income in total income. Changes in θ can be written:Changes in overall poverty are thus attributable to a pure sectoral growth effect (the first portion of the RHS), the impact of sectoral growth on changes in distribution (the second component), and a pure redistribution component. The second effect arises because different households along the total distribution of well-being are affected differently by a change in sector-specific income. For instance, if only relatively welloff households grow burley tobacco, an increase in its productivity will shift the Lorenz curve in such a way that it lowers the slope (L'(H)) at z. Thus, although the first component would predict a fall in aggregate poverty, the fall would be offset by the sector-specific redistribution component, ignoring labor market effects.Households in most LDCs, especially in rural areas, receive incomes from a variety of sources, so that the partition of a poverty measure into mutually exclusive groups based on sector-specific sources of income is inappropriate. (This is particularly true for the many households with small landholdings in SSA countries.) For example, it is impossible to discuss poverty in agriculture alone, because few families receive income only from agriculture. Likewise, within agriculture, different crops represent different components of income. Instead, we need to partition aggregate income inequality into its component sources. The third component of Equation 3 captures this source-household specific effect. Sector-specific changes in income accruing to individual households along the well-being distribution lead to changes in overall inequality depending on the sources of income of the poor. By measuring, for example, how agricultural income contributes to inequality in rural areas, we can determine how growth in agricultural income will lead to changes in overall inequality. Similarly, we can decompose agricultural income into its (crop-specific) sources to determine how technical change or policy change will affect income inequality. In fact, several decompositions of inequality exist and can be used to predict how total inequality will change following a change in income. These changes in inequality can then be combined with the poverty decompositions to tell how sector-specific income sources are likely to affect overall poverty.A straightforward decomposition of inequality attributes overall inequality (as measured by a Gini coefficient) into its contributing sources (say K different income sources exist). Denote i i as the total income of household i (i = 1,…,n) and i ik as the income of household i from source k. The distribution of total household income can be written I = (f(i 1 ), …., f(i n )), where f(i i ) is the rank of household i divided by the total number of households when households are ordered in terms of increasing income. Similarly, the distribution of income component k can be written I k = (i 1k ,….,i nk ). Using this notation, the Gini coefficient can be written (see Stark et al., 1986):To decompose the Gini coefficient by source of income, some additional notation is needed. Denote S k as the share of income from source k in total income (that is S k = µ k /µ), and G k as the Gini coefficient for income inequality from source k (that isThen, the overall Gini can be written: (6) Income from source k affects the overall distribution of income in three ways: via its share of total income (the S k component); through the inequality within the sample of income from source k (G k ); and through the correlation between source k income and total income (R k ). This decomposition can be incorporated into the Kakwani (1993) decomposition of poverty to separate the mean and the distribution effects of a change in a specific source of income on the aggregate measure of poverty. The decomposition can be applied either ex ante or ex post. Ex ante, a change in component-specific income can be used to predict the overall change in inequality and poverty. Ex post, we can examine how a change in inequality or poverty is caused by changes in component-specific income.To combine these effects, the analyst needs to model the relationship between a change in the Gini coefficient (from the inequality decompositions) and the change in the Lorenz curve (from the poverty decomposition). Unfortunately, there is no one-to-one mapping in the required direction (infinite combinations of changes in the Lorenz are consistent with a given change in the Gini). However, quick inspection shows that if sufficient information is available to measure the change in inequality from sector-specific changes in income (via Equations 5 and 6), then the shift in the Lorenz curve is directly inferable. We can always revert to primary data to forecast the change in income for specific households and thus measure the sources of change in poverty or inequality. Alston et al. (1995) give a detailed account of issues such as adoption lags and technology depreciation, details that we are ignoring here. Four components then affect the impact of crop-specific research (and technical change) on household income and poverty. The first is the existingallocation of acreage to each crop (a ij , with the vector of this acreage for the i th household being denoted a i ). The second is the forecasted change in yields caused by the new technology. This effect is denoted y j (1+d j ), where d j is the percent increase in yield associated with the new technology, y j is the \"base yield\" for crop j and y i is the (Jx1) vector of yields for the i th household. Define ∆ as the (Jx1) vector of 1+d j . The third component of the effect of research is the probability of adoption of the new technology (p jthe vector being p i ). The final factor is the per-acre cost of production associated with existing and new technologies (c i ). A specific research program may affect the yield, the probability of adoption, or the cost component, or combinations of each effect.Data on acreage distributions, yields, and costs can be obtained from household agricultural surveys. The remaining components can be elicited from the scientists, using expert opinion, participatory methods, or in a number of ways (see Alston et al. [1995] or Mutangadura and Norton [1998] for examples). In practice, scientists need to be involved in the elicitation process, but participatory methods focused on farmers can help understand the determinants of technology adoption.Each of the n potential resource portfolios can be evaluated in such a way, and nx3 vectors of yield changes, adoption probabilities, and cost changes can be constructed. Just as the \"base yields\" will vary from farm to farm, adoption probabilities will depend on considerations such as asset bases, access to credit, and agricultural services. In the following example, we assume that adoption probabilities are constant throughout the income distribution. These probabilities are, however, likely to vary substantially.If these components are combined, then in matrix form the expected impact of the research vector is expressed:(7) Equation 7 is used to create a predicted agricultural income. This income (computed at the household level using primary data) is then used to recompute the poverty or inequality indices. In practice, p i , the vector of adoption probabilities, needs to be defined for each household. In order to compute the change in poverty, each household must be assigned a realized ex-post income level. Thus, multiplying y ij by adoption probabilities is not correct; a threshold adoption probability must be adopted, and if the household-specific probability exceeds the threshold then the yield change associated with the technology should be applied. Because the poverty and inequality measures rely on household-specific information, forecast technology parameters (yields) have to be householdspecific. Note that if an approximate measure (i.e., Equation 3 or 6) is used, then expected adoption rates can be used with group mean incomes.We give an illustrative application of the method using data from Malawi, a country of interest because it has a history of policy biases that adversely impacted the rural poor. The government recently declared its intent to use agricultural research as a means of reducing rural poverty. With its history of research and extension priorities that either ignored, were inappropriate, or were inimical to the majority of the rural poor, Malawi's policymakers and the research-extension establishment continues to struggle with setting priorities that reduce, rather than perpetuate, widespread rural poverty.Agriculture in Malawi has been characterized by a high degree of dualism between smallholder and estate subsectors. About 90% of rural households are smallholders. Production, marketing, and pricing policies reinforced Malawi's dualistic agricultural sector, maintained through its land policies. Smallholders were permitted to grow staple food crops and some cash crops, while marketing restrictions and pricing policies were enforced through the state marketing agency. Smallholders also faced restrictions with respect to input markets and prices (in some cases inputs were subsidized to \"compensate\" for low producer prices). In contrast, estates were permitted to produce lucrative export crops (notably burley tobacco, tea, and sugar), and to market them at international prices. Also, estates were allowed to import inputs. This dualistic system was designed and justified to stimulate agricultural-led growth. Estate-based, exportoriented agriculture was intended to be the engine of growth. Smallholders were to provide cheap food and labor for the estates, with income generated in the estate subsector supposed to be the vehicle for poverty alleviation. This \"trickle-down\" strategy failed because of several reasons, including the failure of agricultural research and extension to make significant inroads in increasing smallholder productivity. See Sahn and Arulpragasm (1991;1993), Smale (1995), Zeller et al. (1998) for reviews of past policies.Smallholders constitute about 80% of the population of Malawi and about 90% of the country's poor (World Bank, 1996). The median area under cultivation in the smallholder sector is about 0.6 hectares. Smallholders use hand hoes and other simple implements during cultivation. Production is almost exclusively rainfed with a single rainy season, which results in pronounced seasonality in factor and product markets. On the average, smallholder households receive about 70% of their cash and imputed income from on-farm production (poorer households with smaller landholdings tend to obtain a higher share of income from off-farm sources).Smallholders devote the vast majority of land to the production of food staples, with maize accounting for about 70% of area planted to crops (World Bank, 1996). Per capita maize consumption in Malawi is the highest in the world. Although the objective of most Malawian smallholders is to be self-sufficient in maize, most are not (Smale, 1995). Small landholdings and low yields explain this failure to achieve maize self-sufficiency. Low maize yields and small landholdings are linked, because smallholders, who are unable to produce enough maize, seek offfarm employment to finance maize purchases and other consumption requirements, and often neglect their own fields (Alwang and Siegel, 1999).Publicly funded (by government and donors) research and extension, mostly provided by the Ministry of Agricultural and Livestock Development (MoALD), serves smallholders. The estate subsector has its own research and extension services, generally funded by members. The major estatefocused research entity is the Agricultural Research and Extension Trust (ARET), which is funded by a 1% levy on tobacco auction floors. The main MoALD research institution is the Department of Agricultural Research and Technical Services (DARTS). Agricultural research funding levels have been below the 2% target share of total agricultural gross domestic product (GDP), and about half of the budget is donor-funded (Pardey et al., 1997;GoM, 1999).Agricultural research in Malawi has been based on a distinct commodity-based approach, with the division of the research establishment into commodity groups. Commodity-based research programs are linked to international crop research centers, such as the Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT) for maize and CIAT for beans. The international crop research centers have strongly influenced research priorities within the commodity groups, with development of high-yielding varieties being a major objective. In the case of maize, until the early 1990s, priority was on open-pollinated, fertilizerresponsive maize varieties. It was thought that hybrid seed was too expensive and required better-input supply networks. However, adoption of improved maize and bean varieties has been constrained by the introduction of high-yielding varieties that Malawians dislike because of their unfavorable taste, processing, storage, and cooking qualities (Ferguson et al., 1990;Smale, 1995;Rukuni et al., 1998). The major success story of the early 1990s was the introduction of flinty hybrid maize varieties, locally bred, that solved these problems (Smale, 1995;Rukuni et al., 1998).Over the years the GoM has made concerted efforts to promote improved technologies among smallholders through maize credit clubs, subsidized seed and fertilizer, and even free seed and fertilizer packages (distributed on several occasions in the 1990s as a response to widespread drought). Often these programs were targeted to \"compensate\" smallholders for legal, institutional, and policy biases. However, the majority of smallholders were not beneficiaries of this \"system\" of compensation, which created \"dualism within dualism\" in the smallholder subsector (Sahn and Arulpragasam, 1993). In 1993, about 30% of households had access to maize-linked credit and about 35% of maize plantings were hybrid varieties (Smale, 1995;Zeller et al., 1997).Following the demise of the Banda dictatorship in 1994, the elected Government of Malawi (GoM) has attempted to articulate and implement a strategy that makes smallholder-led growth and poverty reduction the cornerstone of its development strategy (GoM, 1995). The major thrust of this strategy is guaranteeing the food security (actually maize selfsufficiency) of smallholders. The 1994 MoALD Strategy and Action Plan (GoM, 1994) established the Maize Productivity Task Force based on the conclusion that \"increasing the productivity of smallholder maize production was the key to the development of the agricultural sector and the reduction of poverty\" (Rukuni et al., 1998(Rukuni et al., , p. 1082)). However, although the agricultural research system has publicly declared poverty reduction to be among its top priorities, the \"system\" has not been significantly restructured. An exercise in research priority setting undertaken in conjunction with working groups preparing the MoALD Strategy and Action Plan ranked the objectives of increased productivity, efficiency, growth, and equity in descending order of importance (Babu and Khaila, 1996). This raises some questions about the declared, versus the perceived, priorities.Reforms instituted through the structural adjustment program, adopted by the GoM in 1996, were a watershed in officially making povertyreducing, smallholder-led development the foundation of its development policy. Reforms included annulment of legal restrictions on the production and marketing of crops by smallholders, and rescinded legal restrictions on input marketing and purchases by them. As of the 1996-97 crop season, smallholders were free to select crop production and marketing mixes. However, lack of confidence in food markets and the lack of financial markets, along with the lack of appropriate research and extension for high-value crops for smallholders, perpetuates the vicious cycle of poverty (Zeller et al., 1998;Alwang and Siegel, 1999). Further, the dualism within the smallholder subsector persists, because the better-endowed smallholders are those capable of adopting improved hybrid maize technologies and higher-value crops (notably burley tobacco).To provide a baseline, we begin by calculating poverty indices (headcount, depth, and severity) for Malawian smallholders. The data are from the National Sample Survey of Agriculture (NSSA), which was carried out during the 1992-93 season (see World Bank [1996] for details). As can be observed in Table 1, poverty is pervasive among Malawian smallholders, with about 42% of all households below the poverty line. Some regional differences exist, with poverty most pronounced in the more densely populated southern region, where landholdings are smallest and soil-water conditions are less favorable.Table 2 presents the relative distributions of scientist research time and smallholder crops. Although most smallholder land in 1992-93 was planted to cereals (about 70% of total land area was planted to maize alone), a much smaller percentage of total scientist time is devoted to cereals. In contrast, a relatively high proportion of scientists' time is devoted to tubers compared to the land devoted to such crops. Overall, scientists devote about three fifths of their time to staple food crops (cereals, tubers, legumes, and oilseeds), which account for about four fifths of land use by smallholders, and the remainder of the time to fruits and ornamentals, industrial crops, and vegetables and spices. The allocation of scientists' time seems to reinforce the traditional bias of \"smallholder crops\" being staple food crops. Smallholders' cropping and land use patterns are likely to have changed significantly since the time of the survey (because of reforms and other factors such as changing relative prices). Burley tobacco acreage is likely to suffer from severe underreporting of problems because smallholders were prohibited from planting and marketing most types of tobacco at the time of the survey, but they have significantly increased plantings since the 1995-96 season (Zeller et al., 1998).In practice, because of the fragmentation of agricultural research in Malawi, each institution or organization conducts planning and priority setting . The National Research Council of Malawi is supposed to serve as a coordinating body of agricultural research (GoM, 1999). The national planning process needs to be formalized and integrated on a real-time basis with the planning of the individual research institutions and organizations. As part of a priority-setting exercise conducted in 1994 by DARTS, research managers were asked to estimate crop-specific yield increases associated with a 50% increase in their budget. Table 3 presents a subjective combination of these forecasted yield increases. A notable problem with these elicited values and one that tends to be common with ex-ante studies is that the forecasted yield changes show only small differences across a wide variety of research programs. Such similarities obviously increase the influence of current (in the survey year) cropping patterns on the research's poverty-reducing impact. The information on adoption rates in Table 3 was not used in the subsequent application of the model, but is presented for interest (as explained earlier, the model requires household specific assumptions about adoption rates). Another problem evident in Table 3 is the absence of burley tobacco, whose spread to smallholders has been touted as a main engine of poverty reduction in Malawi (Zeller et al., 1998). Because burley tobacco research is conducted by ARET, it is not included in DARTS planning and budgets. Clearly, this is an instance where priority setting for poverty reduction needs to be completed at the national level, incorporating the planning mechanisms of all research entities. An obvious issue is how to break down the official barriers perpetuated by the dualistic smallholder-estate system, and to translate policy reforms into institutional reforms and actions.An important advantage of the model is that it can be used to create a profile of the impacts of research allocations on specific subgroups of the poor. For instance, research impacts are disaggregated by region of residence in Table 4 and by household headship in Table 5. To generate results in Tables 4 and 5, Equation 7 was computed using the forecast yield changes from Table 3 as an estimate of ∆. The headcount index of poverty following implementation of each research program was recomputed using the \"forecast\" income from Equation 7. [1996] for information on the poverty lines used).According to Table 4, maize research has the biggest overall potential impact on poverty reduction, and has a particularly strong potential impact in the north and the south. In the north, the impact is because of the high concentration of maize production. Maize is also widespread in the south where poverty rates are highest. Vegetable research should also reduce poverty, particularly in central Malawi, where agriculture is more diversified, and vegetable production is most common. With its relatively large share of the research budget and limited plantings, additional funds for research on tubers and roots would not have much of an impact on poverty reduction.Across the board, the measured impacts on poverty of changes in the agricultural research portfolio are relatively small. This small impact is caused by several factors, including the flatness of the Lorenz curve near the poverty line, evidenced by the relatively large poverty depth index in Table 1. Other factors behind the relatively small poverty-reducing impact of changes in the research portfolio include the high degree of dependence on off-farm income for the poorest of the poor, and the relatively small percentage yield increases forecast by the scientists. Because the impacts on poverty are so small, changes in depth and severity indices-which are even smaller-are not presented here (although they are straightforward to compute).The impact of increased research on burley tobacco is not shown in Table 4 because, as mentioned, burley was not part of the DARTS research portfolio. The poverty indices were recomputed using an illustrative 20% predicted yield increase from a 50% increase in the tobacco research budget. As of 1992-93, few poor smallholders grew burley tobacco. Because of this, the results indicate that burley tobacco research would have a negligible impact on poverty. However, since 1992-93, burley production has spread dramatically among even poor smallholders, particularly in the central region. To obtain a reasonable estimate of the current poverty reduction impact of increased burley tobacco research, new household data, such as those currently being collected by the National Statistical Office (the Integrated Household Survey Programme) need to be used in the future. These data reflect more accurately the postreform cropping patterns and include measures of income and expenditures.Smallholder households that are male-headed are much less likely to be poor and extremely poor than female-headed households. Such findings are common in SSA countries. As Table 5 shows, research has a slightly different impact on each subgroup. Although both subgroups benefit most from maize and vegetable research, a higher proportion of female-headed households are lifted out of poverty through this research.In addition, research on legumes has a stronger poverty-reducing impact among female-than among male-headed households. Research on rice, roots and tubers, groundnuts, cotton, and oilseeds has virtually no effect on poverty among any of the subgroups.Agricultural research alone is likely to have only a small impact on rural poverty reduction in Malawi, although there are some differential impacts by region and headship. Based on the results presented in Tables 4 and 5, priority areas for poverty reducing research should be maize and vegetables, whereas crops like roots and tubers, sorghum and millet, oilseeds, and cotton have negligible poverty-reducing impacts. As mentioned previously, these results might not be appropriate for current research priorities, because they are based on data that were collected before significant reforms took place. These reforms have changed the opportunity set and incentives facing smallholders, and resulted in changing cropping patterns, and the model needs to be updated.The results reflect the problems encountered when using agricultural research for poverty reduction. Because Malawian smallholders (and those from other SSA countries) have smallholdings, depend on off-farm income, and face multiple constraints, many will be hard-pressed to benefit from agricultural research. The poverty problems faced by a large proportion of Malawi's smallholder population require a broader rural research and extension strategy in combination with policy reforms and instruments to enhance smallholders' meager asset base (Sahn and Arulpragasam, 1991;1993;Rukuni et al., 1998;Alwang and Siegel, 1999). In order to appraise accurately the impact of research on smallholders, however, a comprehensive effort to model labor and commodity market effects is required. The method used in this paper can be easily combined with such broader modeling efforts.The method presented in this chapter can provide a basis for dialogue between policymakers and agricultural research managers when deciding on resource allocations and assessing the impacts on poverty reduction. In contrast to widely used economic surplus methods, the proposed method has the advantage that it is consistent with commonly used measures of poverty. This should be helpful for research priority setting exercises.Considerable attention has been devoted to developing measures of poverty and decomposing these measures in order to understand better how different factors influence household welfare. These existing measures and decompositions can easily be fine-tuned and applied to answer questions about poverty impacts of alternative agricultural research agendas. The major strength of the method is that it produces measures that are common \"language\" in national poverty debates. It also can be easily applied to widely available household survey data. These poverty measures have great flexibility, for example, when partitioning subgroups and comparing impacts on different subgroups. This is important because of the heterogeneity that exists in rural areas of developing countries. In the example, we disaggregated the sample of households by region and headship. It would also be possible, for example, to disaggregate the sample by \"remoteness\" based on distance from markets, rather than by a broadly defined \"region\" (where not all households might be remote).Although the method can be implemented with relative ease using household surveys, the baseline data (e.g., cropping patterns and prices) generate a bias, especially in countries undergoing reforms and economic adjustment. A major weakness of the model, like many economic surplus measurement techniques, is that it reinforces existing (at the time of data collection) policy biases. In the Malawi case, policies in the early 1990s were biased toward maize production, and existing acreage reflects this fact. Following price and market reforms, the relative profitability of different crops has changed dramatically. Because of adoption lags, however, the full impact of policy reversals is not yet evident in cropping patterns and yield data. Thus, the household survey data need to be updated.In addition, for rural households that obtain a significant percentage of income from off-farm sources, the proposed method (as presented) does not account for factor and product market effects that result from technical change. Also, because economic models on the impacts of agricultural research largely depend on data from research scientists, on expected yield responses, adoption rates, etc., more attention needs to be devoted to the generation of such data. Agricultural scientists and economists need to work together to improve these data.In the application, we did not apply all of the poverty decompositions that could potentially be carried out. Application of these decompositions can provide information on which income sources are contributing to overall poverty reduction, and how agricultural research (and other public investments) can impact poverty. This should be a focus of future analyses.A more forward-looking application of the method might involve the modeling of household adoption, production, and consumption decisions in a liberalized regime; the results of these models, disaggregated by region and farm type, could be used to predict the effects of different research portfolios on aggregate measures of poverty. Estimates of household income (from farm and off-farm sources) can be generated using programming models, which take into account different constraints and policy regimes (e.g., Alwang and Siegel, 1999). Alternatively, multi-market models (e.g., Mills, 1997), or computable general equilibrium models could be used to generate forecasts of price changes and to capture labor market effects. In short, changes in cropping patterns, yields, and household income need to be estimated, and then poverty measures can be recomputed, using the household data, to assess the impact of agricultural research on poverty.Another extension of the model would be to construct optimization models for a country's agricultural research portfolio, such as Mutangadura and Norton (1998), with measures of poverty (e.g., headcount indices) as elements in the objective function. Using such an approach, efficiency-equity tradeoffs can be quantified and the marginal contribution on poverty reduction of budgetary outlays on different research topics (e.g., a given crop, or a broader theme such as soil conservation) could be calculated.Women constitute nearly 60% of the world's one billion poor. Of one-third billion people living in absolute poverty, over 70% are women. Over the 1980s and 1990s, the number of women living in absolute poverty has risen by 50% (in contrast to 30% for men).As the world population doubles, the need for food will more than double, and world agricultural output per unit of labor will need to increase by a factor of 10, mostly in the Third World (Marris, 1999). Food and Agriculture Organization (FAO) estimates show that women account for more than half the labor required to produce the food consumed in the developing world. In Africa, where female farming is of paramount importance, nearly 70% of the staple food in the continent is produced by women farmers and is of increasing importance as more men migrate from rural areas in search of work (Saito et al., 1990). This makes women in the Third World an important group, not only as beneficiaries of poverty alleviation, but also as contributors to the economic growth required to end poverty.The different roles, rights, and resources that men and women have in society are an important determinant of the nature and scope of poverty. This is especially (although not uniquely) the case among rural populations in the Third World, where there is a central relationship between the capacity of rural households to produce enough income or food year round to meet their basic nutritional needs and the control women have over inputs and outputs in the food production-toconsumption system. Numerous studies show that rural women have not benefited as much as have men from decades of technical change in CHAPTER 6 agriculture, but that new technologies contributed to reducing their control of assets within their household, increases in their workload as family laborers, displacement of their wage labor, reduced income-earning opportunities, and a lowering of their own and their children's nutritional status (for a summary, see Kaaria and Ashby, 2000). Although studies analyzing gender inequity abound, international agricultural research remains at best complacent, and at worst indifferent in the face of the rising poverty of rural women. There is a persistent reluctance in agricultural science bureaucracies to act on the need for a fundamental reorientation in order to be responsive and relevant to the special needs of poor women for technical innovation. The way agricultural research is organized, its problems defined, its priorities determined, and its resources allocated needs to change if there is to be any hope of making research accountable for an impact on the poverty of women.This chapter examines the dimensions of poverty and the relationship between gender and the poverty of rural people in the Third World. This analysis is applied to formulate a strategy for the application of science and technology to improving food production and environmental protection, an agenda of central importance to rural women in the Third World.Between 1965 and 1992, according to Marris (1999), global poverty was reduced by about one third to the extent that half a billion people came out of absolute poverty. Nonetheless, the absolute numbers of poor remain huge, at about 1.3 billion.Absolute material deprivation is one dimension of poverty. The United Nations (UN) Human Development Report (UN, 1997) for example, uses five statistical indicators, all of which affect men and women differently, and are pertinent to describing gender-differentiated deprivation:(1) Life expectancy, (2) Malnutrition under 5 years of age, (3) Illiteracy, (4) Access to safe water, and (5) Health services.These indicators help to signal a degree of deprivation below which material survival is severely threatened, but they cannot tell us much about a number of other dimensions of poverty that are especially important to women.Income is a key aspect of poverty because in the absence of any other material assets, it reflects the capacity of the individual or household to obtain the minimum amount of goods needed to survive in society by sale or exchange of their labor. For example, the UN classifies a Third World person as poor if trying to live on less than US$1 per day (adjusting for international differences in price levels). For the poor who lack material assets (the \"laboring poor\"), their income depends on the value of their labor. One interpretation is that unemployment, underemployment, low paid work, and unpaid work necessary to the maintenance of social lifeand performed largely by women-subsidizes the cost of wage labor in the market and provides a pool of cheap labor when required, thus keeping down overall wages and production costs. Thus, efforts to reduce the poverty of low-wage people, and particularly women, through income generation need to take into account the possibility that poverty based on the low value of their labor is a functional component of global as well as local market structures. Alleviation of this kind of poverty over the next half century will depend on increased overall economic growth, population control to keep the supply of labor from growing faster than demand, and a demand for labor that exceeds supply (Marris, 1999). This has some important gender implications, explored in the next section.Any discussion of the dimensions of poverty needs to go beyond the measurement of income required to provide the minimum amount of goods for survival. A useful framework for analyzing the gender dimensions of poverty differentiates four dimensions that complement one another: starvation, subsistence, social coping, and participation (Dean, 1999, p. 8, after George andHowards, 1991). Relative poverty is as important as material poverty once starvation is overcome or basic physical survival is achieved. Inequality therefore, remains an important dimension of poverty even when we consider subsistence, which has socially defined standards that vary from one culture to another. Projections suggest that the richest countries of the First World (about one tenth of world population), with over half of world gross domestic product (GDP) will soon be more than 10 times better off than the poorest countries of the Third World (Marris, 1999). Some analysts show that wealth is becoming more concentrated. According to a UN report, the world's 358 billionaires in 1996 were wealthier than the combined annual incomes of the poorest 45% of the world's population (2.3 billion people). Whereas the richest 20% of the world's population were 30 times better off than the poorest 20% in 1960, by the mid 1990s they were 61 times wealthier (cited in Dean, 1999). Sen (1997) provides a concept of relative poverty highly pertinent to analyzing the gender dimensions of poverty based on the individual's capacities or capability to do many of the things valued in the society. This is similar to Runciman's (1966) concept of relative deprivation and Peter Townsend's (1979, p. 31-57) concept of relative poverty, defined as the \"lack of resources to obtain the types of diet, participate in the activities, and have the living conditions and amenities which are customary, or are at least widely encouraged and approved, in the societies to which they belong.\" An important contribution by Townsend was to define the poverty line as a situation in which people are excluded from participation in key aspects of the public life of ordinary citizens, a concept that others have built upon (e.g., Scott, 1994) to interpret poverty in terms of either participation in, or \"social exclusion\" from, the ordinary things that other members of society enjoy.The high degree of global material inequality at the end of the 20th century influences what it means to be poor in relative terms. An example is the emergence of a privileged group in the labor force and among consumers whose members have access to personal computers from childhood, are highly computer skilled, and are Internet literate. Their influence in the global economy can make access to computers and computer skills an important element of relative deprivation and social exclusion and, ultimately, determine the value of the labor of vast numbers who have not acquired these skills.The concept of social exclusion is important for rural women because it provides a framework for understanding poverty in terms of different dimensions of participation, whether privileged participation or deprived participation. Jordan (1996) distinguishes between communities \"of fate\" and communities \"of choice\" as dimensions of poverty or wealth. Communities of fate are entrapped by a particular set of social and ecological circumstances, including coercion and subordination, both highly relevant dimensions of the poverty of women in Third World societies, as discussed in more detail in the next section. Communities of choice, in contrast, have the freedom and the power to define and benefit from social exclusion and privilege.Powerlessness is therefore a key dimension of a definition of poverty, although it is poorly operationalized in research. One way to conceptualize poverty in terms of powerlessness is to analyze the social distribution of risk or opportunity. At the negative end of this powerlessness spectrum might be the risk of loss of control over one's own body (e.g., of being sold into slavery or prostitution). At the positive end of the spectrum might be the opportunity to migrate to wealthier and higher-wage societies.Understanding poverty in terms of powerlessness has to be related to lack of resources as well as to social exclusion from participation or levels of income. For this reason, the concept of asset accumulation is an important one. Assets may be material capital (land, usufructory rights of important natural resources, savings, jewelry, livestock, or other kinds of physical capital), human capital (education and skills), or social capital (organization). Different categories of impoverishment can be identified from the cross-classification of income with asset accumulation. For example, people with relatively high income, but low asset accumulation, will be more vulnerable to unemployment or business downturns that pitchfork them into poverty, than will people with lower incomes, but enough assets to tide them over difficult times. Asset accumulation is therefore particularly important to identifying poverty in terms of exposure to the risk or vulnerability.In summary, some dimensions of poverty can be usefully defined for analyzing relationships between gender and poverty related to starvation (or absolute material poverty), subsistence, social coping, and participation. Income levels and, in the absence of other assets, the value of labor are essential determinants of absolute material well-being as well as the capability to achieve the minimum goods defined by the society in question as necessary for subsistence. Beyond material survival, socioecological factors (race, gender, geographical location) can be as important as income in determining access to or exclusion from the things that society defines as important for well-being, as well as degrees of participation and powerlessness. Asset accumulation is a factor in the capability of individuals to cope with hardship and to manage risk.The different roles, rights, and resources that men and women have in society are an important determinant of the nature and scope of their poverty. These differences are culturally constructed and historically determined; they are supported by social organization and economic systems. As such, they can change; and it is a widely held thesis that the allocation of work and the valuation of women's labor have to change if the poverty of men and women is to be eliminated.The relationship between poverty and gender is especially important because of the positive effect that increasing women's incomes and education has on nutrition, child survival, and, as child survival rates improve, on declining birth rates. When unwaged household production is valued, women's contribution is estimated at between 40%-60% of total household income (Goldschmidt-Clermont, 1987). This means that efforts to control population growth and provide employment for the poor must build on the provision of decent incomes and education for poor women.Different types of women experience different degrees of poverty or wealth in society. Third World rural women may be unpaid or paid family laborers; they may be wage laborers outside the household, independent or joint entrepreneurs involved in a small business or in trading; they may be landowners in their own right or jointly with relatives. It is therefore erroneous to discuss Third World women and poverty as if one generic situation were common to all women. Unfortunately, however, there is a dearth of comparative studies that relate different types of women to corresponding levels and types of poverty, taking into account the several dimensions of poverty discussed in the previous section, and compare their poverty with that of men. This is a serious gap in the research.At present, therefore, the best we can do is to draw together a series of observations based on individual studies, each of which offers some insights for the overall picture of gender-related poverty and inequality.A number of studies conducted in the last decade show that poverty and food availability depend on women's income, because men and women spend income under their control in different ways. The level of women's income is substantially and positively related to household calorie availability, child health, and survival. Women typically spend a high proportion of their income on food and health care for children; men use a higher proportion for their own personal expenditures (Von Braun and Pandya-Lorch, 1991). For example, one study in Guatemala estimates that average yearly profits from nontraditional export crops would double household food expenditures if women, rather than their husbands, controlled them.Unequal rights and obligations, heavy time pressure to do multiple jobs, lack of access to land, capital, and credit, low levels of participation in agricultural extension support programs, education, and collective organizations all prevent women from achieving the same levels of productivity as men. Many examples of these constraints have been documented. For example, plots of land controlled by women have lower yields than those controlled by men because of lower access to technology and inputs such as fertilizer and labor. The potential for growth and food security that could result from improving women farmers' access to resources, technology, and information are as large or larger in some cases than the gains expected from breeding \"super-plants\". Some estimates show that reducing the time burdens of women could increase household cash incomes by 10%. Estimates of how much women farmers' yields could increase, just by giving them the same level of inputs and education as men farmers enjoy, range from 7%-24% (Scott and Carr, 1985;Von Braun and Webb, 1989;Buvinic and Mehra, 1990;Carney, 1992;Alderman et al., 1995). Rural women's constraints to labor productivity, their confinement to drudgery in traditional, low-return activities, their restricted opportunities for asset accumulation, and their unequal access to property rights, capital, education, information, and knowledge are features of poverty in the form of the deprived participation that characterizes \"communities of fate\" entrapped by social and ecological circumstances, including coercion and subordination (Jordan, 1996).The failure of technological innovation in agriculture to make a substantive improvement in the well-being of rural women is a dimension of their poverty rooted in their powerlessness and social exclusion. The record is mixed with respect to new agricultural technologies that have not been designed to benefit women, but have had unintended or indirect effects on women; in some cases, women along with men, have succeeded in adopting new varieties and other production technologies; in other cases, women have been unable to process high-yielding varieties developed without attention to postharvest qualities; in other cases, women laborers have been displaced by the introduction of high-yielding varieties together with less labor-intensive or more male labor-using technologies. In contrast, technology transfer aimed at women has been largely restricted to a few of women's existing activities, in particular traditional work related to housekeeping and childcare. For example, cooking stoves have received a vast amount of attention worldwide. There have been several large-scale initiatives, such as the United Nations Development Fund for Women (UNIFEM) global program, along with a vast number of projects attempting to provide improved technology to women in their traditional productive work, but \"the transfer of larger and more complex technologies to women has been virtually non-existent\" (Everts, 1998). Much technology transfer aimed at women has been carried out in isolation from research, hampering adaptations of inappropriate technologies and novel inventions responsive to women's needs and constraints, even where understanding of these is comprehensive.A different example is the Women in Rice Farming Systems (WIRFS) program developed at the International Rice Research Institute (IRRI) to institutionalize gender concerns within agricultural research (Paris et al., 1995). This program found that a research agenda that incorporated women's priorities took the program beyond rice commodity research to address other features of farming, such as small livestock, the benefits of which accrued specifically to women, but which by definition were outside the mandate of the Rice Research Center and Networks. By taking women's needs and constraints as a starting point and relating these to the division of labor and power within households, the WIRFS program was able to identify new priorities for research. This enabled the program to develop innovations that simultaneously reduced drudgery, increased women's labor productivity, and provided increased income over which women retained control. Despite its impact in reorienting research and technology development \"from within\" to specifically benefit women, the WIRFS program remains an isolated example of success within the research institution that initiated it.The violence that affects the lives of poor women in the Third World is better documented now than previously and shows the many facets of their powerlessness in the most elementary respects: millions of female babies destroyed at or soon after birth such that there is a big \"population gap\" in female vs. male births in the Third World; the sale of young girls into forced labor, prostitution, or as child brides; the ritual mutilation of female sexual organs; and physical violence used to control women's labor in the household. Other forms of social violence include abandonment of mothers to cope in female-headed households, and denial of property rights.Poor rural women are highly vulnerable to deprivation in terms of nutrition, health, education, asset accumulation, skill building, and participation in collective organization because they tend to provide the \"safety net\" that protects their children and household against catastrophic poverty. The foundation of this safety net function is the division of labor that allocates a disproportionate share of un-waged or under-waged household and family maintenance work to women. The United Nations Development Programme (UNDP) estimated the value of this type of work at $16,000 billion of global output; of this, women carried out $11,000 billion worth (UNDP, 1995).Third world women's un-waged work includes activities (e.g., cooking meals, fetching water and firewood, or caring for the sick) that make it possible for laborers, small farms, and businesses to work and produce at lower returns to labor and capital than they could otherwise manage. One example illustrates this process. We costed the labor family women put into a single activity, cooking for field workers in the course of production of a field crop, at what it would cost the male head of household to hire a non-family member to do this task. The cost of hiring made the production of the crop unprofitable; and the conclusions of the economic analysis were borne out by the decisions of male producers in the community not to produce this crop if they did not have a family member to cook for the field workers (Ashby and Guerrero, 1985).A detailed case study carried out in Kenya illustrates a situation of which there are multiple examples: women are increasingly the sole providers of labor on farms, because men migrate to higher wage opportunities, and women's labor is of lower value in the labor market. The added pressure on women's time led to low labor productivity on farm, particularly in female-headed households where women neglected on-farm tasks in order to hire out their labor to obtain income to meet the immediate food needs of the household (Mutoro, 1997).Another study suggests that women's small enterprises, such as food processing and trading, provide a similar \"safety net\" function. Most of the enterprises owned by women are very small (maximum 25 employees), have low profit margins, are part-time or seasonal, and are frequently run from the home so as to be combined with household responsibilities. Female entrepreneurs often do not increase investment in one specialized activity in order to maximize growth in their business; instead, they diversify to minimize risks to stabilize income, which guarantees basic food security. This safety-first orientation is often a response to the more risky strategies undertaken by other family members that are underwritten by the women's provision of a safety net (Downing, 1991). This finding that innovators' risk taking in poor households is underwritten by the family, and in particular by women, who provide basic food security, is similar to the results of a study that examined the family background of poor farmers introducing risky new agricultural technologies and found that the early innovators were more likely to belong to extended families. The individual innovators were young men who did not own much land and who worked as sharecroppers or farm laborers, but who belonged to an extended family unit with assets of land and household labor that enabled them as a group to absorb losses and cushion the individual from economic catastrophe. Young women did not have access to this pattern of familial support for agricultural innovation (Rivera and Ashby, 1985).The low value of women's time and women's work is an important reason why development efforts that provide technologies and income earning opportunities directed at women's traditional activities have largely failed to have a significant impact. Unless there is an activity with a higher return to labor that generates additional income and that does not undermine the \"safety net\" function of women's economic contribution to the household, women have no incentive to save time in traditional activities, especially if this requires expenditure on new technology. Therefore, one of the key interventions needed in poverty eradication is the identification of new opportunities for income generation that has superior returns to labor compared with women's traditional work. These need to be combined with support mechanisms for the \"safety net\" functions for the household provided by women's work and income.Several actors in the international development effort to eliminate poverty have taken important steps towards mainstreaming attention to gender and impact on poor rural women over the past 3 decades. In 1979, the UN Convention on the elimination of all forms of discrimination against women was adopted. In 1989, the declaration on violence against women followed. The Beijing declaration and platform for action formulated in 1995 at the UN Fourth World Conference on Women was another milestone. Other important commitments are stated in the World Bank since the publication of its paper \"Enhancing Women's Participation in Economic Development\" in 1994. The Organization for Economic Cooperation and Development (OECD) gave its position statement \"Gender Equality: Moving towards Sustainable People-Centered Development in 1995; and the European Union policy statement \"Integrating Gender Issues in Development Cooperation \" was also issued in 1995. However, action lags far behind the statement of good intentions. For example, the Consultative Group on International Agricultural Research (CGIAR), a $360 million consortium supported by the same donors who issued the above statements, integrated gender analysis as a program in its mainstream research agenda in 1996. A headcount of the number of research studies considering gender reported shows a rise from 140 studies in 1995 to 227 in 1998. There is no reason for complacency about this steady improvement. An analysis of these studies shows that only 11, or 14%, of the studies reported were specifically developing technology to benefit rural women.The full integration of gender analysis and the participation of men and women farmers as partners in international agricultural research and technology development requires a three-pronged strategy that consists of:(1) Catalyzing collaborative research to generate sound evidence on the benefits in terms and impact of differentiating the needs of men and women as users of technology, and recognizing their different contributions as participants in research.(2) Supporting capacity building with the centers to increase skills and knowledge to use gender analysis effectively and appropriately. (3) Promoting information dissemination and exchange about best practices and lessons learned.If we are to take the phrase \"empowering women in agriculture\" as more than a cheap slogan, then we have to work from the foundation relationship between gender and the several dimensions of poverty outlined earlier. Mainstreaming gender into the existing research agenda will not be enough if that agenda is systematically failing to take into account the sources of income and the assets upon which women in poor households depend. The effects of globalization create a pressing need to find alternative sources of income in situations where traditional means are no longer economically viable. These effects require us to go beyond adjusting technology to fit with the traditional responsibilities and constraints faced by poor men and women farmers. We need to be actively looking at new alternatives in the global economy and the genderdifferentiated needs for technology, skills, and information required for a frontal attack on poverty.Strengthening the capacity of global agricultural research to take on this task has at least three important elements. The first is to identify new livelihood opportunities for the poor in relation to a changing demand for agricultural technology that is analyzed separately for men and for women. A coordinated diagnostic research initiative is needed to identify rapidly the priority geographical areas and populations in which genderdifferentiated research and technology development has potential for high payoff in combating poverty. This diagnosis needs to include the development of a geographic information system (GIS) minimum database, using available data with expert input to identify areas of the world where women's special needs require priority attention. The diagnosis also requires the design sample of areas using the GIS minimum database to define priority geographic areas for rapid appraisal of gender differentiated opportunities and needs. Another necessity, in sampled areas, is to network with grassroots organizations and nongovernmental organizations (NGOs) to select technology innovation opportunities that look promising for rural women.The second element of a strategy for action is to organize research so that it is more responsive, relevant, and accountable to specific client groups, especially poor rural women. Researchers and client groups need to make use of the large body of information already in existence on gender, agriculture, and technology for women. Research systems need strong interactions among technology designers, technology producers (such as small-scale artisans, some of whom may be women in the Third World), and technology users (see for an example, Everts [1998]). Working together, this is a constituency that could select priority entry points where research is needed to promote the development of innovative agricultural technology by and for rural women in selected areas, and the policy interventions needed to ensure access. Research organizations, such as the CGIAR centers and national agricultural research programs, need to institutionalize regular technology evaluations by a network of gender-differentiated user groups, as feedback to research on technology design. A consolidated, interactive, user-friendly database on evaluations of technologies for women, with regular consultation to update the diagnosis of needs and the evaluation of technologies, and monitoring and evaluation of impact of gendered research would provide a solid foundation for relevance to poor women.As a third element, strategy for action must include support for rural women to increase their access to and control over assets, whether in the form of physical, human, or social capital. The development of technological innovations to benefit women is essential. The focus should be on poverty alleviation, and protecting women's traditional rights to land and other resources, including water, forest, and grazing. Often this requires enabling policy in tandem with participation in an effective, collective, community-based organization. In general, women's access to collective organization for resource management, health and childcare, credit, information, marketing, and small enterprise development needs strong support. Formal education and access to informal education and skill building is an essential ingredient of the effort to build women's access to secure non-traditional sources of income with forward linkages to improving child survival rates and decline in the birth rate.Poverty and gender are fundamentally related through the powerlessness of women. The control women have over assets, inputs, and outputs in the food production-to-consumption system, including income, is a key determinant of their family's capacity to meet basic nutritional needs year-round. Few poor rural women exercise much choice over their bodies or their lives. They are members of a community \"of fate\", constrained by intra-household dynamics in which their bargaining power is weak, their access to assets constrained, and the pressure on their time to undertake the drudgery of domestic production and reproduction is relentless. Research and development is still pitifully inadequate to address the need to improve the appropriateness of technology that can relieve drudgery, increase the value of women's time, enhance food security, and increase the income they control. Preaching about poverty and gender is tiresome and there is a surfeit of analysis. Action is needed to change agricultural research and development institutions so that they become responsive to the huge, unarticulated demand of poor rural women for technical innovation.Despite rapid urbanization and the convergence in poverty rates between rural and urban areas, rural poverty remains an important welfare problem in most countries of Latin America, a huge wastage of human resources, a frequent source of political destabilization, and a cause of environmental pressures. The policy record in dealing with rural poverty has been highly uneven and generally disappointing, with the sources of gains in reducing the relative number of rural to urban poor mainly due to population shifts as opposed to successful rural poverty reduction. We venture to say that an important reason why the policy record has been lacking is that there has been much misunderstanding on the causes and dynamics of poverty. Setting the record straight regarding what creates rural poverty and how specific individuals and communities have escaped poverty is thus an important part of a solution. With significant progress in democratic rights, the decentralization of governance, the thickening of civil society organizations, and the potential offered by new technological and institutional innovations, times may be right for improved information about the causes of poverty and the paths out of poverty to be used for the design of more effective anti-poverty strategies. It is the objective of this chapter to present this information and to show how it could be used for improved anti-poverty policy design. We explore in particular the role that technological change in agriculture can play as an instrument for poverty reduction, and the conditions under which it can be made to be more effective for this purpose. In the aggregate, the performance of Latin America toward rural poverty has been favorable, at least compared to urban poverty (Figure 1). E+07 1970 1975 1980 1985 1990 1995 1970 1975 1980 1985 1990 1970 1975 1980 1985 1990 1995 1970 1975 1980 1985 1990 1970 1975 1980 1985 1990 1995 1970 1975 1980 1985 1990 Figure 1. Rural and urban poverty, Latin America. Data for \"Latin America\" are the population weighted aggregates for Brazil, Chile, Colombia, Costa Rica, Honduras, Mexico, Peru, and Venezuela. These eight countries with consistent data over the period 1970-97 account for 80% of the population of Latin America. Over the last 27 years, the incidence of poverty in the rural sector has fallen, and the number of rural poor has also declined, while the incidence of urban poverty failed to decline and the absolute number of urban poor rose sharply. This overall performance, however, hides considerable heterogeneity and is dominated by successful rural poverty reduction in Brazil. For the rest of Latin America as an aggregate, the incidence of rural poverty has been constant or rising, and the number of rural poor has been increasing. Heterogeneity is thus an important issue and global statements have to be looked at with caution.We start by characterizing the nature of rural poverty in Latin America and how it has evolved between 1970 and 1997 (Table 1, and below).Using a poverty line defined as twice the expenditure to achieve a minimum nutritional requirement, the incidence of rural poverty was 51% across Latin America in 1997 (own calculations based on data in CEPAL [1999]). It was above 50% in half of the 12 countries with data, namely Mexico (53%), Colombia (54%), Peru (61%), El Salvador (62%), Guatemala (75%), and Honduras (80%). Thus, despite relatively high income levels, the Latin American countries have high incidences of rural poverty because of the unequal distribution of income that characterizes them, both between sectors and within the rural sector.In 1997, the ratio of headcount ratios for the rural and urban sectors was 1.7 for Latin America. It is greater than one in all countries. For many countries (Chile, Colombia, Costa Rica, Guatemala, Mexico, and Panama), this ratio is 1.4. It reaches 1.6 in El Salvador, 1.8 in Brazil, 2.3 in Uruguay, and 2.4 in Peru. There is hence a huge gap in the incidence of poverty between the rural and urban populations, to the disadvantage of the former.For Latin America, the share of the rural sector in total poverty is only 30%. In the aggregate, poverty is thus principally urban. However, rural poverty accounts for a majority of the total number of poor in Panama (52%), Honduras (55%), Costa Rica (58%), El Salvador (62%), and Guatemala (68%).Defining extreme poverty as the income necessary to cover the cost of the minimum nutritional requirement, extreme poverty characterized 27% of the rural population in Latin America in 1997. It affected 41% of the rural population in Peru, 53% in Guatemala, and 59% in Honduras. The ratio of extreme poverty headcount ratios for the rural and urban sectors was 2.8 for all of Latin America. It reached 2.0 in Chile, 2.3 in El Salvador, 2.5 in Mexico, 2.9 in Brazil, and 5.9 in Peru. Extreme poverty is thus a phenomenon that disproportionately affects rural households.The incidence of rural poverty declined rapidly in the 1970s (from 62% to 55%), increased in the 1980s (from 55% to 57%), and has declined sharply since (from 57% to 51%). The number of rural poor has also declined. This is a remarkable success. However, much of this effect is due to the rapid decline in rural poverty in Brazil. For the \"rest of Latin America\" in Table 1, the incidence of rural poverty has failed to decline (it rose from 51% in 1970 to 54% in 1997) and the absolute number of rural poor increased by 16%.While the headcount ratio in the rural sector remains higher than that in the urban sector, the two ratios have been converging in basically every country. For Latin America, the ratio P 0 r P 0 u fell from 2.1 in 1970 to 1.7 in 1997. For most countries, this ratio was above 2 in the 1970s, falling to 1.4 in the late 1990s. This suggests that labor markets have become increasingly integrated both through permanent and seasonal migration, and that off-farm sources of income are increasingly the same in the two sectors.This decline has been quite dramatic. We analyze later the determinants of this decline. For Latin America as a whole, rural poverty accounted for 61% of total poverty in 1970, but only for 30% in 1997.Overall, rural poverty fell during the 1970s, rose during the 1980s when most countries were affected by the debt crisis, and it has fallen again in the 1990s with economic recovery. In specific countries that were affected by economic crises in the 1990s, rural poverty rose again. This was the case in Mexico during the peso crisis , and in Venezuela (1990-94). Rural poverty is thus anti-cyclical with aggregate economic growth. In general, however, rural poverty is less sensitive to aggregate income growth than urban poverty, and it is also less sensitive to downturns than urban poverty.Although evidence is weak, rural inequality seems to have increased during the 1980s while countries were adjusting to the debt crisis. In the 1990s, the recovery of growth does not seem to have led to declining rural inequalities. This is consistent with data on inequality at the aggregate level (Londoño and Székely, 1997;de Janvry and Sadoulet, 1998). Thus, although late growth has been effective in reducing poverty, this does not appear to be the case for inequality. Hence, if high inequality is a policy concern, it needs to be addressed through direct instruments as opposed to indirectly through growth.Income is an important dimension of welfare. The welfare contribution of income is measured by indicators of income poverty, income security, and income inequality. Control over income is an important determinant of consumption expenditures. Poverty is, however, multidimensional, including such other elements as basic needs (health, education), the satisfaction of being employed, empowerment, the strength of community relations, legal and human rights, and political freedoms (World Bank, 2000). In general, the satisfaction of basic needs in rural areas is only a fraction of what it is in the urban sector. In El Salvador, infant mortality is 17% higher in rural than in urban areas, while it is 31% higher in Guatemala. Hence, for rural households, basic needs poverty generally compounds income poverty. However, it also says that poverty in a broad sense can be attacked not only by income gains but also by gains on many other fronts. In Chile, for instance, while gaps persist in the incidence of income poverty between rural and urban sectors, health achievements (infant mortality under 5 years of age) have reached parity (Valdés and Wiens, 1996).Poor rural households are highly heterogeneous in their control over productive assets. These assets are multidimensional. They include:• Land and other natural assets: water, animals, trees, soil fertility.• Human assets: number of working adults in a household, education, experience. • Institutional assets: access to credit, access to insurance, access to extension and information, transactions costs in relating to markets. • Social assets: social capital, membership to corporate communities.• Public goods assets: access to public goods such as health services, educational facilities. • Regional assets: location in areas with neighborhood effects, agroecological niches.It is important to observe that household positions relative to these different assets tend to be correlated at low income levels, while not at higher income levels. Hence, while there are important substitution effects among assets in generating income, households in poverty are poorly endowed in all assets. This can be seen from the characterization of the asset positions of poor and non-poor households in the Mexican ejido in Table 2. It is notable that the group of rural poor has lower endowments in all assets.Because of high transactions costs on product and factor markets, rural households are differentially integrated into markets: some are net sellers, some net buyers, some self-sufficient (i.e., not integrated into markets), and others both sell and buy during the same agricultural season. This distinction is important because a same price effect will have markedly different consequences on a household's real income according to the nature of its market integration. For instance, a fall in the market price of maize in Mexico due to the North American Free Trade Agreement (NAFTA) will hurt net sellers, leave autarkic households unaffected, benefit net buyers, and some net sellers become self-sufficient, while some autarkic households become net buyers.Data for Nicaragua (Davis et al., 1997) These data show that, contrary to conventional wisdom, most landed rural households are not net sellers of these major food crops. A price policy that turns the terms of trade in favor of these crops will consequently not benefit a majority of the households.Access to credit and technical assistance is overall minimal among the rural poor. In the Mexican ejido, the main technical assistance program, Alianza para el Campo, only reaches 13% of the households, and only 18% have access to formal credit (World Bank, 1998). In Nicaragua, 9% of all farm households have access to technical assistance, and 9% to formal credit. These institutional gaps lower the income-generating capacity of the meager asset endowments that the poor have.Heterogeneous access to assets, heterogeneous exposure to market failures and to institutional gaps, and heterogeneous access to public goods induces income-earning strategies that are highly diverse across households. This can be illustrated with information for the Mexican ejido sector and landed households in Nicaragua (Table 3). The data are striking in that, among these landed households, 75% in Mexico and 34% in Nicaragua derive more than half of their income from off-farm activities. Off-farm sources of income serve as substitutes for farm incomes derived from access to land. Thus, in Mexico, the share of total household income derived off-farm falls from 76% on small farms to 42% on larger farms. In Nicaragua, where access to off-farm incomes is less, this share falls from 68% to 16%. What is interesting, however, is that control over the assets needed to derive income from off-farm activities rises with access to land. As a result, those with larger farms are able to derive larger incomes from off-farm activities, even though off-farm incomes rise with farm size less than do farm incomes. In Mexico, offfarm incomes yield 4242 pesos on small farms and 8726 pesos on large farms. In Nicaragua, small farmers earn 702 cordobas off-farm while larger farmers earn 1498 cordobas. Among off-farm sources of income, agricultural wage income is the most equalizing, while other incomes (non-agricultural wage income, self-employment in micro-enterprises, migration, and rents) are highly related to land assets. Land-poor households are thus confined to easy-entry, farm labor market activities that are low paying, while wealthier households can enter high paying activities. Hence, due to extensive credit market failures, land endowments are important in explaining relative abilities to diversify in non-farm activities.Success in rural development initiatives should help reduce the number of rural poor relative to the number of urban poor. Over the 1970-97 period, this ratio has indeed declined markedly, from about 1.5 to 0.4 (Table 1). We can ask whence this success has come. It could have come from a decline in the headcount ratio in the rural sector, an increase in the headcount ratio in the urban sector, and a shift in population from the rural to the urban sector.Let the ratio of the number of rural (R) to urban (U) poor be written as:(1)where P 0 r is the headcount ratio in the rural sector and in the urban sector, and r is the share of rural in total population. The change in this ratio between two periods can be decomposed into four effects as follows: Results of this decomposition are presented in Table 4. In the 1970s, the incidence of rural poverty was declining relative to the incidence of urban poverty, and population was rapidly leaving the rural sector. R/U was consequently falling for two reasons: a faster decline in the incidence of rural than urban poverty and rapid outmigration. However, the population effect was dominant, explaining 76% of the fall in R/U while the decline in P 0 r only accounted for 28% of the decline. -r(1 -r)P 0 dP 0 r u r(1 -r)P 0 dP 0 r u P r 0 P u 0 During recession in the 1980s, the incidence of urban poverty was rising much faster than that of rural poverty, but rural-urban migration was continuing. The fall in R/U was consequently explained at 39% by rising P 0 and at 61% by outmigration. Population movements were thus still the dominant force in reducing R/U.Finally, in late recovery , R/U was falling even though urban poverty declined more rapidly than rural poverty because there was continuation of migration. The falling incidence of rural poverty explained only 16% of the fall in R/U, while population movement contributed 235% of the decline in R/U.Similar results are obtained for Brazil and the \"rest\" of Latin America. These results show that, in all three growth episodes, population movements were the dominant force in explaining the decline in R/U. By contrast, we observe the relatively weak performance of growth and of rural development interventions in reducing total poverty through falling headcount ratios in the rural sector. Note that this analysis underestimates the role of migration in explaining R/U since migration is likely to help reduce and to increase . Hence, the result we present here on the role of migration in affecting the number of rural poor relative to the number of urban poor errs on the conservative side.We now turn to household-level data to analyze the determinants of poverty and incomes among rural households. We use for this a data set for the Mexican ejido, a population of smallholders benefited by the Mexican land reform among whom there is extensive poverty. Results show that access to land is an important determinant of total income, particularly irrigated land, which yields six times more income per hectare than rainfed land (Table 5). One hectare of irrigated land increases household income by 21% among the lowest 40% of farm sizes. Human assets (number of adults and average level of adult education in the household) also create large income effects. Remittances from migration to the United States are the third important source of income. For migration to be successful, the size of the migration network to which a household has access is key (Winters et al., 1999). Ethnicity has a high income cost (at a low level of significance). Indeed much rural poverty in Mexico is tied to the status of indigenous. Finally, there remain regional effects even after controlling for the differential assets position of households, with households in the Center differentially poorer than those in the North.Disaggregating income by source and analyzing the determinants of each source shows the relative importance of particular assets for each income source. We find the following points. While access to credit (18% of the households) and technical assistance (7% of the households) is dismally low among ejido households after withdrawal of the state from delivering these services, these two services make very high contributions to agricultural income. Hence, what matters for poverty reduction is the complementarity between access to land and institutional development to help achieve more productive use of the land.Adult education has positive payoffs in agriculture, livestock, nonagricultural wage income, and self-employment income. There is, however, a hierarchy in the way these sources of income valorize an additional year of adult education in an ejido household:• Livestock income: NP$206 • Self-employment income: NP$640 • Agriculture income: NP$642 • Non-agricultural wage income: NP$1983Hence, rural education is best valorized in non-agricultural labor markets, indicating that the type of education that has the highest payoff in rural areas should prepare adults to access non-agricultural employment. Education has a negative role on agricultural wage income because educated household members seek employment on more remunerative markets. Similarly, education is negative on remittance income because the better educated migrate less to the United States since they are better able to take advantage of their (modest levels) of education on the Mexican urban labor market.Migration assets are measured as the number of members from the immediate and the extended family of a household who are migrating or have had recent migration experience. Existence of these networks is key for success in receiving remittance income. Networks serve the function of providing information about how to migrate and find employment in the United States, and provide assistance to cover the costs involved.Even after controlling for the asset position of households and their access to infrastructure, regional effects are important for wage income, with North and Gulf favored over the other regions. Hence, there is a regional dimension to poverty suggesting the validity of regional targeting in poverty reduction.We have characterized the importance and the recent evolution of rural poverty in Latin America, and sought explanations for rural poverty at both the aggregate and the household levels. We concluded with a concern with the increasing inability to attack rural poverty through a declining incidence of poverty among rural populations. This raises the question of what can be done to attack rural poverty other than through migration. Determinants of income have shown the importance of assets endowments, including institutional and social assets. Also important in determining income levels is the productivity of assets use. This is affected by technology. We should consequently ask how agricultural technology is expected to influence income levels among the poor, both rural and urban.Technological change in agriculture can act on poverty through two channels. First, it can help reduce poverty directly by raising the welfare of poor farmers who adopt the technological innovation. Second, technological change can help reduce poverty indirectly through the effects which adoption, by both poor and non-poor farmers, have on:• The price of food for consumers.• Employment and wage effects in agriculture.• Employment and wage effects in other sectors of economic activity through production, consumption, and savings linkages with agriculture (Adelman, 1975), lower costs of agricultural raw materials, lower nominal wages for employers (as a consequence of lower food prices), and foreign exchange contributions of agriculture to overall economic growth.Through the price of food, indirect effects can benefit a broad spectrum of the national poor, including landless farm workers, net foodbuying smallholders, non-agricultural rural poor, and the urban poor for whom food represents a large share of total expenditures. Indirect effects via employment creation are important for landless farm workers, net labor selling smallholders, and the rural non-agricultural and the urban poor. Hence, the indirect effects of technological change can be very important for poverty reduction not only among urban households, but also in the rural sector among the landless and many of the landed poor.When are there trade-offs between the direct and the indirect effects of technological change? Within a given agro-ecological environment, if land is unequally distributed and if there are market failures, institutional gaps, and conditions of access to public goods that vary systematically with farm size, then optimum farming systems will differ across farms. Small-scale farmers will typically prefer farming systems that are less capital intensive and less risky, while large-scale farmers would prefer farming systems that are less intensive in labor and they can afford to assume risks. In this case, unless land were equally distributed, heterogeneity of farming systems prevails and there are typically trade-offs between indirect and direct effects. The more unequally land is distributed and the more market failures, institutional gaps, and access to public goods are farm-size specific, and in Latin America in general, the sharper the trade-off.The degree of tradability of commodities benefiting from technological change is also key in determining the relative importance of direct and indirect effects. With non-tradables, or within the range of price bands between export and import prices, falling prices extract the net social gains from technological change to the benefit of rural and urban consumers. However, even in an open economy where the price of food is internationally determined, indirect effects are important through the multiple roles of agriculture in economic development (financial contribution and foreign exchange contribution).Quantifying the relative magnitudes of the direct and indirect poverty reduction effects of technological change is quite difficult because these effects are interrelated and depend on the structure of the economy, the characteristics of poverty, and the nature of technological change. Because general equilibrium effects are involved, we can use a computable general equilibrium (CGE) approach. We constructed a model that typifies the structure of Latin American countries importing cereal (Sadoulet and de Janvry, 1992).We can use this model to simulate the impact of a 10% increase in total factor productivity due to technological change in all crops. Results show that, in Latin America where urban poverty dominates aggregate poverty, the urban poor capture 70% of the aggregate increase in real income. Overall, indirect effects account for 86% of the total effect on the real income of the poor. With high levels of urbanization and a large share of the rural poor households highly dependent on off-farm income sources, the indirect effects of technological change are thus largely dominant.Technological change in agriculture can thus serve as an instrument for poverty reduction. But the distribution of these gains between direct and indirect effects, and hence across households in poverty, depends on the structure of the economy, the nature of poverty, the focus of technological change by crops, farming systems, and traits, complementary rural development programs to target diffusion on specific social sectors, and policy interventions in price formation (degree of tradability). How to best use the technology instrument for poverty reduction thus depends on each particular context. Employment creation in agriculture, the design of improved production systems for small-scale farmers, and aggregate productivity effects will be the dominant instruments for poverty reduction according to particular contexts. The allocation of budgets to research, particularly when smallholder farming systems differ from those of commercial agriculture and when labor-saving technological options are available, needs to be adjusted to each particular situation.There are several caveats to these results. The first is that, at a lower level of aggregation, one would find situations in particular regions of Latin America where direct effects dominate. Hence, the optimum balance between direct effects and indirect effects needs to be determined for each particular regional context. The second is that the dilemma for research budget allocation between generating direct and indirect effects disappears with certain types of research. Biotechnology, for instance, helps dissociate research on traits from research on varieties, by contrast to traditional breeding where they were confounded. Research on genes that convey different forms of biotic and abiotic resistance may be neutral to varieties and farming systems, and hence achieve both direct and indirect effects.In reviewing the status and the determinants of rural poverty, we have made the following observations:(1) Rural-urban migration has been a major contributor to the decline in rural poverty. Hence, there exists an \"exit path\" to rural poverty and this path has been very important in Latin America. The existence of this path out of poverty is not a surprise, but the surprise is how important it has been quantitatively in explaining declining rural poverty relative to urban poverty whenever declines occurred, and yet how little policy has done to optimize the economic and social impact of these transitions.(2) For households with sufficient access to land, and with market, institutional, public goods, and policy conditions that allow them to achieve high productivity in resource use, to have low transactions costs in relating to markets, and to face favorable prices on markets, there is an \"agricultural path\" out of poverty. This path has been surprisingly weakly prevalent, and apparently weaker in the 1990s than in the 1970s. This is the path that traditional approaches to rural development have pursued. Weak success in the 1990s should raise concerns about the effectiveness of rural development interventions and stress the need for a major overhaul of such interventions.(3) For a very large majority of poor rural households in Latin America, the income strategy they pursue is one that combines cultivation of a small plot of land with access to off-farm sources of income. The double element of surprise here is how pervasive this income strategy is today, and how some microholders have been quite successful in using this strategy to overcome poverty despite low farm assets. There thus exists a \"pluriactive path\" out of poverty that has been very important for the households that did not abandon rural areas. Yet, most scholars have systematically ignored it until recently and policymakers continue to ignore it, and major administrative gaps exist in dealing with its needs for public support.(4) Finally, there also exists an \"assistential path\" out of poverty. The key policy issue is one of targeting and transfer of the right type of assistance to help households in this path escape poverty. This regroups several situations: (i) Chronic poor that were in poverty traps because of insufficient control over a minimum bundle of assets to allow them to escape low-level equilibria and move on to higher income levels. This is the \"assistential path out of poverty traps\", where assistance consists in a one-time transfer of productive assets. (ii) Chronic poor that are unable to help themselves, even with asset transfers. This includes many of the young, the aged, the disabled, etc. In this case, transfer is of a flow of income or food to reach the poverty line. This is the \"assistential path into sustained welfare\". (iii) Transitory poverty that is due to shocks such as illness, bad weather, or macroeconomic crises. Provision of safety nets is important, not only to prevent distress, but also to avoid irreversibilities whereby the poor respond to crises by taking children out of school, where nutritional deficits lead to stunting of children growth, and where farmers decapitalize by selling productive assets. This is the \"assistential path through safety nets\".What can be said about the role of agricultural technology for each of these paths out of poverty? Exit path. If the exit path is to be promoted as a way of reducing rural poverty, the key is to assist migrants relocate among the non-poor, otherwise all that is achieved is a sectoral relocation of poverty. Agricultural technology has a clear indirect role here in inducing overall economic growth, and thus employment and wages for migrants. There are also ways in which exit can create positive externalities on those who remain in farming, including through the adoption of technological change. Key for successful exit is education of a type that prepares rural children for non-farm jobs. The more labor markets are integrated across sectors, and the more economic activities are decentralized so that rural households can participate in similar non-agricultural activities as urban households, the easier the transition. And, as networks of migrants from the community become thicker, migration is made easier, but also harder to detain through local rural development interventions (Winters et al., 1999).Agricultural path. This is the path that has been most classically pursued in land reform and rural development programs. Where this is being pursued through land reform to create \"viable\" family farms, complementarity between land and institutional reforms in support of the competitiveness of beneficiaries has been a condition for success (Warriner, 1969). Where this has been pursued via rural development programs for the existing smallholders, key aspects of interventions have focused on:• Reducing market failures for smallholders (Carter and Barham, 1996).• Constructing agrarian institutions for the delivery of credit, the supply of technical assistance, availability of ex-ante safety nets for the provision of risk-coping instruments, and the reduction of transactions costs. • Technology for smallholders: direct effects can be achieved through the supply of improved crops, farming systems, and traits specific to this clientele. Technology should address not only production issues (through precision farming, production ecology, and biotechnology), but also information technology to identify market opportunities and reduce transactions costs. • Provision of public goods accessible to smallholders and complementary to their particular types of investments. • A macroeconomic and sectoral policy framework that does not discriminate against agriculture and smallholders.Because of the heterogeneity of poverty, and hence also the heterogeneity of potential solutions to poverty, local information is key. Rural development initiatives have been reorganized since experiences with integrated rural development in the 1960s to mobilize local information and engage the poor in the identification of solutions (World Bank, 1997). For this reason, new approaches to rural development have stressed:• Decentralization and improved capacity of local governments, • Promotion of grassroots organizations often assisted by nongovernmental organizations, • Participation of organized beneficiaries, • Devolution to user groups of control over common property resources and local public goods, and • Collective action for the management of common property resources, the delivery of local public goods, and bargaining over policymaking.In technology, considerable broadening of the range of traits potentially available for smallholders through new advances in precision farming and biotechnology also calls for using a participatory approach (Ashby and Sperling, 1995). While the transformation is still largely experimental, traditional state-led approaches to technological innovations have been replaced by negotiated partnerships between public, private, and civil society representatives.Pluriactive path. In this path, land and hence technology are important, but the way land is used, labor mobilized, and which technology is needed are strongly conditioned by the totality of the household strategy. This strategy differs markedly from that of a household on the \"agricultural path\", most particularly regarding household time allocation. Households on this path have a double set of activities. As part farmers, they can benefit from the direct effects of technological change; as part workers and microentrepreneurs, they can benefit from the indirect effects of technological change.(1) Households as part-farmers. For these households, farming is part time, often in the hands of women and elders more than of adult men, and often with discontinuous presence of adult labor and decision makers on the plot. Hence, technology should be labor saving as opposed to labor intensive, a common mistake in the design of technology for smallholders that are perceived as having a labor surplus because they engage in off-farm activities. Technologies should also not be excessively sensitive to discontinuities in the presence of adult workers on the farm since they have to pursue the vagaries of job opportunities on labor markets and immediate availability has a high premium. Much of the production is food for home consumption. Since, due to transactions costs in accessing food markets, shadow prices (for self-sufficient households) and purchase prices (for net buying households) are higher than prices for net sellers, this farming can be economical even when market prices are too low for net sellers to be competitive (Fafchamps et al., 1995). This agriculture can absorb modern technology with purchased inputs despite lack of a marketable surplus: cash expenses are met with revenues from wages and other off-farm activities. Yet its specific technological demands have been grossly neglected by formal research.An important contribution of technology is to increase labor productivity in food production to free labor for more productive pursuits off the farm. Another important contribution is to increase the productivity of z-goods production. In subsistence farming, households members, particularly women, devote a high share of working time to gathering wood, fetching water, preparing food, and tending to children. These tasks are like fixed costs on the household, absorbing a high share of disposable working time. If these tasks can be made more efficient (e.g., planting energetic trees on the land lot, for instance as hedges), considerable income gains may result. Yet, the technology of z-goods production has been badly neglected in the setting of research priorities.(2) Households as part-workers and microentrepreneurs. As part-workers, these households depend on employment creation in agriculture, particularly if they have few other assets. Agricultural technology has important roles to play through indirect effects. One is by employment creation in the fields of large-scale farmers. Pro-poor technology should thus be labor intensive (as opposed to technology for part-farmers, which should be laborsaving, an apparent paradox). Laborsaving chemical herbicides, Roundup-ready seeds, and mechanization are not favorable to part-workers (Nuffield Foundation, 1999). Another indirect effect is through linkage effects with agriculture in non-agricultural activities. A dynamic agriculture helps create local demand for non-tradables through the expenditure of farm incomes. Chile has been successful in reducing rural poverty not through an \"agricultural path\", but through employment creation in labor-intensive field activities (fruits and vegetables) and in agroprocessing (López and Valdés, 1997). Off-farm employment in non-agricultural activities is enhanced by infrastructure investment, the decentralization of economic activity, the development of secondary towns, neighborhood effects, and coordination in the location of economic activity.That the pluriactive path can be an effective way out of poverty is demonstrated by contrasting the income strategies of non-poor and poor smallholders (households with less than 5 hectares of land) in the Mexican ejido. In support of the proposition, we observe that 35% of these smallholders are above the poverty line. Non-poor minifundists rely more on non-agriculture wage income, self-employment, and remittances from the United States than do poor minifundists. Non-poor minifundists have greater endowments in human assets (number of adults, educational levels, and migration assets) and are less ethnic. They are also geographically concentrated in specific regions, particularly the North and North Pacific, while at a disadvantage if in the South. Land reforms that create access to a small plot of land can thus be successful in bringing households out of poverty provided these households have high human and social asset endowments and are located in regions that offer them non-farm income opportunities. Creating \"viable\" family farms through land reforms is thus not necessary. Part-time farms are cheaper to set up if these other conditions hold.Even though rural poverty in Latin America has declined, and aggregate poverty is increasingly urban, the number of rural poor remains high and there is considerable heterogeneity across countries. More importantly, we have shown that the decline in the relative number of rural to urban poor has been fundamentally the result of rural-urban migration that displaces poverty to the urban sector. With rural poverty creating not only hardships for large numbers of households in the rural sector, but also negative externalities on the urban sector, this observation stresses the urgent need of identifying instruments to raise rural incomes. We have shown that household asset endowments, and the institutional, social, and geographical context where assets are used, are key determinants of rural incomes. Productivity of asset use is also important in determining the income-generating value of asset endowments. This is where agricultural technology has a role to play. We showed that technology could affect poverty through both direct and indirect effects. The relative importance of these two effects depends on the structure of the economy, the characteristics of poverty, and the nature of technology. Using a general equilibrium model that captures the archetype features of a Latin American economy, we found that indirect effects that materialize through employment creation, higher aggregate income growth, and lower food prices are more important than direct effects in reducing aggregate poverty. The rural poor capture one third of the benefits, while the urban poor capture the remaining two thirds. Where rural poverty is large, direct effects on the rural poor are evidently important as well.We have shown that, corresponding to the heterogeneity of asset and contextual positions of rural households, a multiplicity of pathways out of poverty exists. The dominant form of exit has been migration that has largely relocated poverty to urban environments. For this path, agricultural technology has a role to play in enhancing indirect effects through food prices, employment creation, and higher aggregate growth. The agricultural path out of poverty has been traditionally pursued in rural development programs. Its success depends importantly on the development of new farming systems for small-scale farmers. Identification of these systems requires a participatory approach to research because local information is highly imperfect for scientists. The most important path out of poverty for the Latin American rural poor should, however, rely on pluriactivity. This path has not been recognized in traditional rural development programs, and neither has it been sufficiently taken into account in the design of technology. For these households, technology has an important role to play both through indirect effects as workers and net buyers of food, and through direct effects as producers of part of their own food needs. Catering to this path out of poverty requires a redesign of rural development, focusing on a territorial and multisectoral approach that provides institutional support to the multiplicity of sources of income that characterize the vast majority of the Latin American rural poor.Rural development initiatives must thus seek complementarity of interventions between building the asset position of the poor and improving the productivity of asset use, in particular through technological change. The delivery of technological change for rural poverty reduction needs to be tailored to the specific features that poverty takes, in particular regional settings. A regional approach to using technology for poverty reduction is thus essential. And this approach needs to give an important role to participation to adjust the setting of research priorities to the heterogeneous demands of the rural poor, and to achieve an optimum balance between direct and indirect effects on aggregate poverty.This chapter presents a methodology for estimating the impact of agricultural research, development, and extension on the rural poor and for incorporating these estimates in order to set priorities for agricultural research and development (R&D) projects and programs by taking into account their impact on poverty. This methodology has the following main components:(1) Estimate the impact of R&D projects on the yields and the level of output of the relevant crops, (2) Estimate the resulting effects of these crops on market prices and on the incomes of farmers who grow them, (3) Estimate the effects on the income of poor farmers, (4) Estimate the effects on the purchasing power of the poor consumers in rural and urban areas, and (5) Evaluate the effects on the incidence and depth of poverty.Poverty has clear geographical dimensions. Large differences between the standard of living of the populations in different geographical areas and \"pockets of poverty\" are common in all countries, developed and developing. The reasons for these differences in the standard of living and the incidence of poverty are the differences in the agroclimatic conditions, the geographic conditions (particularly distance to main urban centers and main transport routes), the endowments of natural resources (including water), and the terrain. In addition, government policies that reflect a host of economic, political, or demographic considerations all too often have a regional bias that augments rather than mitigates the differences. • Mean per capita consumption of the rural population in the Indian state of West Bengal is only half of the consumption level in the Punjab, and the Headcount measure of poverty in West Bengal is nearly four times higher than its level in the Punjab (Datt and Ravallion, 1993); • The incidence of poverty in the \"inland\" provinces in eastern China is much higher than in the coastal provinces; • In Bangladesh, the Headcount measure of poverty in rural areas varies between less than 10% in some districts and more than 60% in others (Ravallion and Wodon, 1997); • In Nigeria, more than two-thirds of the rural poor households concentrate in less than 20% of the villages; • In Burkina Faso, the incidence of poverty in around one-fifth of the villages is less than 25%, whereas in more than half of the other villages the incidence of poverty is well over 60% (Bigman et al., 2000); • In Ecuador, the incidence of poverty varies between less than 10% in some districts to nearly 60% in others (Hentschel et al., 1999).Indeed, in many developing countries the differences in the standard of living between regions are often larger than the differences within regions.Poverty has geographical dimensions also at more local levels. Districts and even villages within the same agroclimatic regions can differ considerably in their standard of living. This can be because of differences in their proximity to the urban centers or to the main transport roads, the quality of the access roads, the availability of public services, and/or the distance to the source of drinking water. Households in villages close to the city have much greater trading opportunities and can be engaged more in non-farm activities; farmers in more remote villages, or in villages without access to transport roads during the rainy season, must produce mainly for self consumption. Differences in access to public services, including agricultural extension services, and in the quality of the road infrastructure are often the main reasons for the large differences between villages within the same region and they reflect mostly the bias in government policies (Table 1). Agricultural research, development, and extension services also have clear geographical dimensions: The larger the country and the more varied its agroclimatic conditions, the larger the differences between the crops grown in different regions and between their farming systems. As a result, commodity-based research programs affect mostly those regions in which these commodities are the main crops, and thematic research programs affect mostly the regions that have the specific conditions (soil, climatic, etc.) that are the subject of the research. Even a relatively small country such as Kenya exhibits considerable geographic diversity in agricultural production because of significant differences in climate and soils between regions. In the densely populated medium-rainfall zone, the main crops are coffee and horticulture products, whereas in the arid and semi-arid lands, where the population density is much lower, farming is more subsistence oriented with the main crops being maize, beans, and cassava. Farmers in the semi-arid and arid zone will therefore benefit only marginally and indirectly from a research program on cash crops such as horticulture products, sugarcane, or coffee, but they are the main beneficiaries of a research program on cassava.Agricultural R&D also has significant geographical dimensions at more local levels. In some regions, neighboring areas differ in their crop selection because of location-specific soil problems, such as acidity, alkalinity, salinity, etc. In other regions, particularly in countries of sub-Saharan Africa (SSA), the distance to the urban center and the access to an all-weather road are factors that have a strong impact on the farming system and on the selection of crops. As noted earlier, farmers that reside further away from the urban center or from the main transport road must grow crops mostly for self-consumption, whereas farmers in the same agroclimatic region, but closer to the urban centers, can specialize in high-value crops. In Kenya, maize is grown in all geographical areas. In some areas, however, it is grown primarily by small-scale producers for home consumption, while in other areas production is predominantly in large-scale mixed farms that produce maize, wheat, and barley (Table 2; see Kilambya et al., 1998). However, these different systems require different production technologies, different genetic material, and a different organization of extension services. Research and development projects that improve production technologies used by large-scale farming will benefit the small-scale producers only marginally.There are large differences in the standard of living and the prevalence of poverty between different geographical areas on the one hand, and differences in the cropping patterns and farming systems between many of these areas on the other hand. This suggests that agricultural R&D programs combined with well-designed extension services can be an important policy instrument to reduce poverty. By targeting agricultural R&D on commodities that are common in the farming systems of the poor, and targeting the extension services on areas where the poor concentrate, these measures can bring about an increase in output and/or reduction in production costs of the poor. Thus incomes would be raised and the incidence and depth of poverty reduced. 33).The method developed in this chapter for assessing the impact of an agricultural R&D program on poverty has three stages. First, the geographical distribution of the gains from the research program is estimated. Second, the impact of the program is evaluated on the incomes of the rural population in these geographical areas. Third, the effects of these income changes on the spread and depth of poverty are calculated in each of the areas and in the country as a whole.The general method of estimating the costs and benefits of projects has been developed in the International Service for National Agricultural Research (ISNAR) and the International Food Policy Research Institute (IFPRI) (see Alston et al., 1995). The method consists of the following steps:(1) Estimate the potential for developing a new technology in the research project, the expected increase in yield as an effect of adopting this technology, and the probability that farmers will adopt it. On the basis of these estimates, the economic costs and benefits of the research project can be estimated for the main population groups-the farmers that adopted the new technology and the consumers that benefited from lower prices. (2) Estimate the economic costs and benefits of this innovation. These costs and benefits are estimated for each year over the entire period during which the innovation is expected to be operative. (3) Calculate the net present value of the innovation as the discounted value of the stream of costs and benefits during this time period.The first step of estimating the research potential has, in fact, two components: One is estimating the probability that the research will be successful in that it will generate the \"technological innovation\" that will yield the desired outcome, namely the increase in yields or the reduction in costs. The second component is estimating the probability of adoption, that is, the \"adoption profile\" (Mills and Kamau, 1998). This probability depends on the expected increase in the yield, the expected additional costs of adopting the new technology-that depend, in turn, on the additional inputs that are required for implementing the new technology-and the prevalence of the farming systems for which this technology is most suitable. The probability of adoption may also depend on local spatial variables, primarily the distance to the urban center and/or to the main transport routes. These spatial variables are significant for several reasons. First, the costs of adopting the new technology include the costs of transporting the necessary inputs and/or outputs. Second, the frequency of the visits of extension workers tends to decline with the increase in the distance from the urban centers. Third, the distance from the village to the urban center reduces the capacity of the local farmers to adopt production technologies for tradable crops. Fourth, the distance to the urban centers also reduces the farmers' capacity to obtain the credit that may be necessary to buy the new inputs. The geographical distribution of the gains from the outcome of the research program thus depends not only on the agroclimatic conditions (determining the crops that farmers can grow) in the country's regions, but also on these local spatial conditions (Table 1).The impact of the local spatial conditions on the one hand, and differences in the socioeconomic characteristics between villages (including differences in the size of the plots under cultivation) on the other hand, are the reasons for the multiplicity of farming systems within the same agroclimatic region. In Kenya, the Kenyan Agricultural Research Institute (KARI) estimates that there are 33 major farming systems in the country's five agroclimatic regions. In the coastal area, KARI identified nine farming systems, ranging from farms that concentrate on high-value crops such as coconut, mango, and citrus, to subsistence-oriented farms in which maize, beans, and cassava are predominant. Table 2 gives details of these farming systems in order to highlight the large differences between them. In the more arid zones, the farming systems are fewer in number and less varied, but farming systems dominated by maize and beans and farming systems in which livestock dominate are significantly different (Kilambya et al.,.In Ethiopia, the Household Survey of 1988 shows that the average landholding of the households in the lowest quintile was only 5% of that of the households in the highest quintile, and they have a much higher degree of specialization. The coefficient of variation of the areas allocated to different crops for households in the lowest quintile varied between 0.70 and 0.85, depending on the agroclimatic region, whereas the coefficient of variation for households in the highest quintile varied between 0.4 and 0.5.In some regions, farming systems in smaller geographical areas tend to be relatively similar, because the same agroclimatic local geographic conditions affect them all. In these regions, the smaller the geographical area for which the outcome of the research is estimated, the smaller the difference between households within these areas, and the larger the differences between areas. In other regions, particularly in countries of Latin America and the Caribbean, differences in the size of the plots owned by the farmers and the forms of ownership-anging from the giant plantations of the rich farmers to the poor sharecroppers-determine the differences in their crop selection within relatively homogeneous agroclimatic conditions.The second part of estimating the impact of agricultural R&D programs on the incomes of the poor requires a detailed mapping of poverty in the country. The method of estimating the spatial distribution of poverty in a country will be discussed and illustrated later. Once this mapping has been accomplished, the final step is to evaluate and compare the performance of targeted programs in order to select the most desirable one(s). This evaluation requires proper performance measures that express the social costs and benefits from the program. The measures that are commonly used for evaluating the performance of poverty alleviation programs are:• Type I \"error\"-The \"error of inclusion\": The size of the non-poor population that is covered by the program because of inaccurate targeting, and their share in the total population that is covered by the program (also referred to as \"vertical inefficiency\"). • Type II \"error\"-The \"error of exclusion\": The size of the poor population that is excluded from the program because of inaccurate targeting, and their share in the country's total poor population (also referred to as \"horizontal inefficiency\"). • The budgetary costs of the program-including the program's administrative costs. For agricultural R&D programs, these costs include those of conducting the research and those of disseminating the new technology. • The effects of the program on the behavior of households and the implications of these effects for the households' welfare and the government budget. (Targeted income transfer programs often give incentives to households to alter their personal characteristics or change their work effort in order to qualify for the program.) • The effects of the program on poverty reduction.The performance of the program thus depends on the criteria that are used to determine eligibility for the program, the instruments that are used to implement the targeted program, and the performance measures that are used to evaluate the program.The extent to which poverty was reduced as an effect of the program is obviously the most direct and self-evident performance measure for evaluating a poverty alleviation program. The specific indicator to be used for measuring the reduction in poverty must be carefully selected, however, and this in turn requires a proper selection of the poverty measure. If poverty is measured by the Headcount measure, for example, then a program that raises the income of the target population would achieve the greatest reduction in poverty if it is targeted on those areas where the individuals are the least poor, leaving out the more extreme poor. For this reason, the Headcount measure is not a suitable performance measure for evaluating a program aimed at alleviating poverty, and this example only highlights the potential problem with using an improper performance indicator.Among the criteria noted above for evaluating a targeted program, the errors of inclusion and exclusion generally received most attention, because of their intuitive appeal. But these criteria do not provide a complete measure for the budgetary implications of a program. Clearly, however, the larger the Type I error, the higher the costs of the targeted program. Likewise, the larger the Type II error, the smaller the cost increase with a non-targeted program that provides the same reduction in poverty. For income transfer programs, Ravallion and Chao (1989) suggested a performance measure that defines the gains from targeting as: \"…. the amount by which the budget for a non-targeted program would have to increase in order to achieve the same reduction in poverty that can be attained through targeting.\"They termed this measure the \"equivalent gain from targeting.\" This performance measure may not be a good criterion, however, if the corresponding poverty measure is the Headcount ratio because it would leave out the areas in which households are the poorest. Ravallion and Chao did not constrain the poverty measure in their definition, but in their illustration they used the Poverty Sensitivity measure.For geographical targeting in general, and for geographical targeting of agricultural R&D programs in particular, the performance measure is based on a comparison of the program's performance in one area with its performance in another (and this comparison may also include a nontargeted program). The performance measure used in this chapter for ranking alternative geographically targeted programs is: \"A program targeted on one geographical area is more beneficial than a program targeted on another area if, with the same budgetary costs, the reduction in poverty with the first program is larger than the reduction in poverty with the alternative program.\"The impact of an agricultural R&D program targeted on specific crops on a country's poverty depends on the following factors:• The increase in the yield of these crops as an effect of the technological innovation resulting from the research program, • The number of poor farmers that adopted the new technology, and • The share of these crops in their farming system.The agroclimatic regions in which these crops are grown and the share of these crops in the farming systems of the poor in these regions thus determine the geographical distribution of the program's impact on poverty. The impact of the new technology that resulted from the commodity program on the yield of the target crop(s) depends on the specific research project that was carried out within this program, that is, the specific factor input (e.g., seeds, fertilizers, or machinery) that was the subject of the research. Clearly this is a simplifying assumption because some research projects are not part of a commodity program. To highlight the contribution of each of these factors, we introduce the following analytical model.be the production function of crop A that is the subject of the research program, where (X A1 ,..., X Ap ) are the quantities of the p factor inputs required for production. The technological innovation that resulted from the research program is assumed to have the effect of a factor augmenting technical change. That is, a technological innovation that \"augments\" the input (measured in efficiency units) of the production factor that was the subject of the specific research project within the commodity program. Let the increase in input of the k-th factor, measured in efficiency units, as an effect of the research project be denoted as ∆X Ak . The increase in the ratio 'yield/output' as an effect of this increase in input productivity is given by: ∆Q A = F' Ak • ∆X Ak ; where F' Ak = ∂F A /∂X Ak is the marginal product of F A with respect to the k-th factor input. The extent to which the technological innovation that resulted from the research project \"augmented\" the input of that factor is assumed to be function of the direct research expenditures on that project, and given by:The parameters ρ Ak and ε, which measure the impact of the innovation on the productivity of the k-th factor, indicate, in turn, the average and marginal \"productivity\" of the research expenditures in this program, namely their contribution to raise the average and marginal productivity of the specific factor input.The increase in the income of farmers who adopted the new technology depends on the share of the commodity in their farming system, and on the increase in the output of that commodity as an effect of the innovation. It also depends on the price elasticity of demand for the product-in the event that the increase in supply is large enough to affect the market price. In the present analysis, we assume that this effect is small in order to simplify the notations. For an individual farmer in the i-th geographical region, this increase in income is given by:where w iA is the share of commodity A in the farming system of that farmer in the i-th area. To simplify the notations, we assume that an area is defined as a farming system within a geographical area.The probability that farmers in a given area adopt the new technology is a function of the dissemination costs in that area and the socioeconomic characteristics of the local farming population. The probability of adoption may also depend on the socioeconomic conditions in the region. In Zambia, a relatively small proportion of the rural population adopted new maize varieties developed in the 1980s because the new technique added to peak labor demand (Collier and Cunning, 1999, p. 81). The dissemination costs are a function of the size of the rural population in that area, and they are given by D i = α i {S i • N}, where S i is the share of the i-th area's (rural) population in the country's total (rural) population and N is the country's total (rural) population. The proportionality factor, α i , which determines the dissemination costs per household, is primarily a decision variable, but it is also affected by the distance of the area from the urban center, the quality of the roads, and possibly also by other area-specific characteristics. The probability of adopting the new technology is assumed to be determined as an exponential function of the dissemination costs as:This formulation assumes that the probability of adoption by an individual farmer is increasing with an increase in the population density in the region, and the parameter θ > v represents the sensitivity to this effect. This parameter reflects the importance of access to information through social learning mechanisms that, in SSA, is often more important than either the extension services or the household's educational endowment.The total increase in the income of the entire poor population residing in that area is therefore given by:(5)This increase in the income of the poor will also be (approximately) equal to the reduction in the poverty gap. The quality of that approximation depends on the extent to which the increase in the income of the poor changes the number of the poor in the region. Two groups of variables determine the size of that increase. One is the group of variables that measure the increase in the income of a farmer who produces commodity A as an effect of the technological innovation that resulted from the R&D project. The other is the group of variables that measure the impact of that increase on the overall increase in income of the poor populations in the target area, taking into account the rate of adoption of the new technology, the share of commodity A in the farming system in that area, and the share of the poor in the overall population in that area.Three alternatives must be considered in evaluating the desirability of a research program targeted on commodity A and on area i:(1) Targeting the program on another area-by targeting and redirecting the dissemination expenditures; but this would be a different project (i.e., item no. 2) (2) Targeting a different commodity program on the same area-by redesigning the R&D project; and (3) Targeting a different commodity program on another area-by redirecting both the R&D and the dissemination expenditures.Let us examine each of these alternatives sequentially. First, targeting the same commodity program on another area: From Equation (5) we can conclude, after some algebra, that, with the same budgetary costs, a program targeted on area i will bring about a larger reduction in poverty than the same program targeted on area j if, and only if:Equation ( 6) clarifies that the selection of the area for targeting depends not only on the incidence of poverty in that area, but also on the likelihood that the farmers in the target area will adopt the new technology, and on the share of that commodity in their farming system., where the first expression indicates the share of the commodity in the farming system of the country's total poor population, and the second expression indicates the impact of the area's socioeconomic characteristics on the probability of adoption.The second alternative is to target the research program on a different commodity, but in the same area. (Another possibility, closely related to this alternative, is selecting a different research project within the same commodity program, namely a project that will be targeted on a different factor input.) From Equation ( 5) we can conclude that, with the same budgetary costs, targeting a different commodity program on the same area will be less beneficial, in the sense that it will bring about a smaller increase in the income of the farmers in that area, if, and only if:The latter condition clarifies that the selection of a proper commodity program depends not only on the prospects of achieving a large increase in yield, but also on the value of this increase for the farmers, and on the share of the commodity in the farming system in that area. It should be noted, however, that implicit in the condition in Equation ( 7) is the assumption that the probability of adoption depends on the socioeconomic and geographic conditions in the area, but not on the characteristics of the specific crop. It may be the case, however, that the adoption rates differ between crops because of, for example, significant differences in the costs of the necessary inputs. In India, a main obstacle to poor farmers' adoption of high-yielding cottonseed is the need for expensive fertilizers and new hybrid seed each year. Indeed, the specification of the various conditions in our model is primarily illustrative and would have to be reexamined and econometrically tested in empirical studies.The third alternative is to target the research on a different commodity program in a different area. Equation ( 5) clarifies that the decision depends on the following measures:• The impact of the innovation on the income of farmers in that area who adopted the new technology, given by:The decision variable that determines this impact is the direct R&D expenditures R Ak. The actual impact of this decision depends, however, both on the marginal productivity of the R&D project-measured by the increase in yield as an effect of the innovation that resulted from the research-and on the share of the commodity in the farming system in the area, and on its market price. The market price is relevant to farmers who can engage in trade. • The probability that farmers in the area will adopt the new technology, given by:The decision variable that determines this probability is the dissemination costs per household in the area, α i , but the rate of adoption depends also on area-specific socioeconomic and geographic conditions. • The size of the general population in the area.• The incidence of poverty in the area-as indicated by the Headcount measure.These conditions emphasize that a successful implementation of an agricultural R&D program aimed at reducing poverty depends both on the choice of crops that are grown in the farming systems of the poor and/or on the choice of geographical areas in which the incidence of poverty is high. Equally important for the success of the program are area-specific socioeconomic and geographic characteristics that determine the effectiveness of the dissemination program. Agricultural R&D, therefore, may not be a suitable policy instrument for poverty reduction in areas where the rate of adoption of the new technology is likely to be very low, and other policy instruments should therefore be considered. Even in these areas, however, the effectiveness of agricultural R&D as a policy instrument for poverty reduction should be evaluated against the costs and benefits of available alternative policy instruments aimed at achieving this goal.The same conclusion also applies to other programs. The impact of an anti-poverty program targeted on specific areas depends both on the relative size of the poor population in the target areas and on the socioeconomic, agroclimatic, and geographic conditions in these areas, because these conditions determine the program's effectiveness. In some geographical areas, agricultural R&D may prove to be the most effective policy instrument for raising the income of the rural poor, while in other perhaps equally poor areas, other policy instruments could be more effective. The selection of an effective anti-poverty policy therefore requires two types of decision-first, a choice of the area for targeting, and second, a choice of the most effective instrument for implementing that policy. These choices cannot be made sequentially, however, because the effectiveness of most programs depends on the socioeconomic and geographic conditions in the area in which they are implemented.Using the same set of equations, we can also calculate the increase in the total income of the population in each area as an effect of an agricultural R&D program, and the conditions for selecting the target areas in order to maximize the increase in farmers' total income. These conditions are likely to be considerably different from the conditions for maximizing the reduction in the poverty gap, and the differences are larger the larger the difference between the poor and more affluent farmers in their farming systems and in the rate of adoption of a new technology. As a result, the commodity programs and the areas that will be selected for targeting poverty-reduction programs are likely to be considerably different from the commodity programs and the areas that will be selected in order to maximize the total income of the rural population. A direct result of these differences is that commodity programs targeted on specific areas with the objective of maximizing the increase in total income are likely to lead to an increase in income inequality among the rural population.The difference between these two goals-maximizing the increase in total income, and maximizing the reduction in poverty-has important implications for the selection of agricultural R&D as a policy instrument for the reduction of poverty. To illustrate these implications consider the case in which area i is the area selected on the basis of the criteria for maximizing the increase in total income. Assume, however, that with the same budgetary costs a program targeted on area j can bring about a larger reduction in poverty. In this case, the larger the difference in the increase in total income between these two programs, the larger the increase in income inequality as a result of targeting the program on area i rather than on area j. This difference in the increase in total income therefore represents the opportunity costs of targeting the program on area j in order to achieve the maximum reduction in poverty. This difference also has another interpretation, however. If the economic costs of re-distributive measures aimed at bringing income inequalities back to their previous level are larger than this difference, then a combination of measures will be less desirable than the direct measure of targeting agricultural R&D in order to achieve the maximum reduction in poverty. The combination of measures includes targeted agricultural R&D aimed at achieving the maximum increase in total income together with redistributive measures aimed at preventing an increase in income inequality.In the SSA countries, geography is often the single most important factor that determines the incidence and depth of poverty. However, the mapping of poverty in these countries cannot be determined by agroclimatic conditions alone for two reasons. First, differences in these conditions provide only a partial explanation for differences in the incidence of poverty. In semi-arid regions, for example, production is intrinsically risky and large areas are too dry for rainfed agriculture; these areas are generally the poorest, but in these areas the population pressures on the land are still relatively small and households' plots tend to be relatively larger. Farmers with larger plots are generally more affluent despite the difficult climatic conditions. In the more humid regions, by contrast, the fertile lands attract many migrants and, with the rise in population density, the average size of the plots is shrinking, the share of landless rural workers is rising, and, as a consequence, the incidence of poverty is also rising. Moreover, local factors are equally important in determining the incidence of poverty. Thus, for example, in many humid regions the soil quality is relatively poor and many of these areas are more prone to malaria, which can significantly reduce farmers' production capacity and income. Distance to the urban center and the quality of the road are often equally significant factors that determine crop selection because they determine the capacity of farmers to market their products. As a result of these additional factors, many studies that focused on the production potential of the area as the principal explanatory variable that determines the incidence of poverty in rural areas did not produce a conclusive result (see Heisey and Edmeades [1999] for a list of references).Poverty mapping in the SSA countries therefore cannot be determined on the basis of the agroclimatic conditions alone and must incorporate additional and more direct indicators that can explain variations in income and consumption in the different geographical areas. In the absence of reliable data on income or consumption, indirect indicators such as life expectancy, child mortality, and child morbidity in different geographical areas may also be used. The main source of direct data on income or consumption in a country is the Household Income and Expenditure (HIE) Survey, which collects detailed data of a representative sample of households in the country's main administrative regions. In many SSA countries, the income data were found to be deficient, however, and the poverty assessment had to be based on the expenditure data. The sample of households in the survey is generally selected so as to provide a statistically adequate representation not only of the entire population in the country, but often also of the population in the country's main administrative regions. This sample is not sufficient, however, to determine the geographical distribution of poverty in small geographical areas or in the agroclimatic areas-the areas relevant for the analysis of the impact of R&D projects-for two main reasons:(1) In most cases, administrative regions have considerably different boundaries than the agroclimatic areas. Without additional information, it will not be possible therefore to stratify the sample of households that were included in the Income and Expenditure Survey according to the agroclimatic areas in which they reside.(2) The administrative regions are relatively large and often quite heterogeneous in terms of the standard of living. In many SSA countries, there are considerable differences in the standard of living between districts and villages within the same administrative regions as a result of differences in local geographic conditions. The sample size of the survey in these smaller areas is far too small, however, for statistically valid inferences.The objective of this section is to describe the method of using the HIE Survey data for mapping poverty in smaller geographical areas of sub-districts, or even villages (for details, see Bigman et al., 2000). The method is based on using the HIE Survey data in combination with data from a wide variety of other sources that provide information on the characteristics of these areas and their populations. The first and most important step is to bring together the information from the different sources at the level of the village on the basis of the geographical coordinates and organize the data as a geographical information system (GIS). Information on larger areas (districts, climatic regions, etc.) will be incorporated into the system according to the coordinates of their borders. The complete method of estimating the incidence of poverty in small geographical areas involves the following four steps (the description below is for mapping poverty at the level of individual villages.)(2) This data set, together with the detailed data of the HIE Survey, is used in an econometric analysis to construct a prediction model of the probability that a household in that village is poor-as a function of household-, community-, and regional-level variables. In this analysis, the dependent variable is the probability that the household is poor (using logit or probit econometric estimation) and the analysis is conducted for all the households that were included in the survey. The household-level explanatory variables can therefore be divided into two groups. The first is the group of variables that describe the relevant characteristics of the individual households that are available in the Income and Expenditures Survey (e.g., the size of the household, age and sex distribution, school attendance, etc.). The second is the group of \"area\" (village, district, etc.) explanatory variables that characterize the area in which the household resides. These variables are identified according to the coordinates of the village in which the household resides and the coordinates of the \"area\". These explanatory variablesThe classification of villages according to the above four categories of poverty represents, in fact, different levels of the poverty line. In the study on Burkina Faso, three poverty lines were selected and they determined, in turn, four categories of poverty for the villages-ranging form the \"extreme poor\" to the \"non-poor\". This classification significantly reduces the error of inclusion (Type I) of a program targeted on the \"extreme poor\" villages. The villages in this category in the study in Burkina Faso were 25% of the total number of villages, but they included about two-thirds of the rural poor households. This classification also reduces the probability that villages classified as \"non-poor\" (which could therefore be the target of cost-recovery programs) have a large number of poor households. The objective of the study in Burkina Faso was to examine criteria for targeting government health and education programs on the poor villages. For targeting agricultural R&D programs the relevant target areas is often much larger, according to the country's agroclimatic regions. In some regions, however, where significant differences exist between farming systems in subregions because of local geographic or soil condition, targeting agricultural R&D on smaller geographical areas will be desirable.In 1997, the Consultative Group on International Agricultural Research (CGIAR) system adopted new policy guidelines that gave the highest priority to alleviating poverty by means of targeted resource conservation and management, targeted research and development to increase the productivity in the farming systems of the poor, improvements in the policy environment, and support to the national research capacity. These guidelines evolved from the CGIAR policy goals of 1990 that gave the highest priority to enhancing the nutritional status and well being of the low-income people (see Anderson, 1998). The implementation of these guidelines requires a methodology for assessing the impact of agricultural R&D projects on poverty. To make these assessments, a considerable amount of analytical work has been devoted in the past 2 years to the development of a methodology for identifying the geographical areas in which the poor concentrate. The analytical model presented in this chapter indicates that this is only one part of the methodology required for that evaluation. Other important parts are a detailed mapping of the incidence of the benefits from the R&D program across geographical areas and farming systems, and a method for estimating the incidence of poverty in the target areas.The analytical framework requires also an assessment of other possible policy tools to assist the target population because the goal of poverty reduction can be achieved by other measures that are more costeffective than agricultural R&D. The impact of a new technology that was developed in a given research program depends not only on its contribution to increase yields, but also on the rate of adoption of this technology. The impact on the poor farmers may therefore be reduced if the rate at which they adopt the new technology is particularly low. The rate of adoption among the poor may be slowed down either because of the initial investments that are required to adopt the new crop (new seeds, fertilizers, etc.) and because of the lack of the necessary know-how. This lack of know-how is one of the major hurdles in the adoption of nontraditional crops. To increase the impact of agricultural R&D on the poor, it is therefore necessary to complement the R&D project with intensive efforts of the extension services to disseminate the new technologies and direct assistance to the farmers that adopt these crops.Water availability and natural resource management (NRM) are key limiting factors in dryland agriculture. This chapter presents highlights of research on the links between these factors and rural poverty alleviation in West Asia. There is a widespread perception that poverty determines natural resource degradation and that, in turn, resource degradation exacerbates the poverty of the natural resource stewards-the rural poor. The relationship between poverty and environmental degradation was determined by studying various NRM scenarios and assessing their impact. Elements from two case studies of water management (in Pakistan and Syria) and one of land and soil conservation (in Yemen) were selected as most relevant for discussion. Aspects of poverty and environmental degradation within the three study areas are examined and conditions for possible future improvements outlined. Caution must be used to avoid generalizations of poverty levels in NRM scenarios without considering the distribution of resources. Evidence from West Asia shows that wealth and resource degradation are related through livelihoods that take advantage of market, institutional, and policy failures. For the poor and the wealthy, savings on household resources, increased yields, or increased net benefits constitute incentives to adopt improved NRM technologies. However, depending on the context, these incentives may not be enough to guarantee adoption.Balochistan is the least developed province in Pakistan. It hosts less than 7% of the national population and has the lowest population density. However, indigenous water management practices in the harsh semi-arid and temperate environment of the highland area of this province have allowed the establishment of relatively large concentrations of people (AZRI, 1994). Various endogenous and exogenous factors have determined transformation, substitution, or expansion of the systems, which are:• The Karez system (Qanat in Persian or Foggara in Arabic)-developed to supply drinking water and irrigation; uses tunnels to carry water from the foothills to the cropped valley (Ahmad, 1990); • Spate irrigation (sailaba agriculture)-used in the cropping areas, relies on the torrential water flow from the hillsides or on natural water catchment (Kahlow and Hamilton, 1996); and • Khuskhaba agriculture, which \"harvests\" water in the flatlands adjacent to the cropping areas (AZRI, 1994).The Karezes in the Quetta valley began to dry up in the 1970s because of the introduction of tubewells adjacent to water collection sites. Groundwater surface irrigation systems proliferated and, eventually, groundwater extraction exceeded the rechargeability of the aquifer. During the 1980s and 1990s, farmers had to drill deeper boreholes or rely on khushkaba or sailaba agriculture (AZRI, 1994). The deterioration of the tribal regulatory framework for access and extraction of groundwater, the availability of extremely low-cost electricity from the government, and the favorable market for subtropical fruit in national markets contributed to the decay of the karezes and led to their replacement by tubewells (van Steenbergen, 1997). For the last 20 years, the inhabitants of highland Balochistan have faced declining water tables and the continued expansion of fruit and vegetable exports by those who own tubewells. Therefore, distribution of wealth is a function of arable land and access to water.Sailaba agriculture irrigation systems provide a livelihood for families living in the mountains or the foothills. These systems are designed to cope with uncertain amounts of water runoff by varying the levels of irrigation in terms of time and space. Water availability determines different levels of irrigation in small plots divided by bunds. Well-defined land tenure determines the sequence of irrigation and, depending on the number of plots and irrigators within a catchment area, specific irrigation rules prevail to ensure equitable access to water and to offset the otherwise inevitable polarization in water distribution (Ahmad et al., 1998).Because of the torrential nature of the water flow, coordination among farmers to divert water and repair damaged bunds and weirs is essential. This system is expanding, but whether or not it can accommodate the rate of agricultural intensification is unclear. At present, some farmers are extracting groundwater from 10-to 20-m wells. Vegetable and fruit production from small plots (0.02 to 0.1 ha) has enriched the household diet and increased income (through smaller income outlays for home consumption and/or sales at nearby markets). Small-scale, low-pressure irrigation systems, as a complement to sailaba agriculture, provide a potential means for sustainable increased income.Khuskhaba agriculture is common in the valley floors, where large extensions of arable land are available for use by farmers with land titles or as tenants. In this system, part of the land is used for water catchment, with the remainder used for cropping. Water runoff from the catchment area is transferred to the cropped area to boost yield. The objective is to stabilize and increase yield at the expense of the arable land not used for cultivation. A large proportion of farmers in highland Balochistan depends on this type of agriculture. They tend to be less market oriented than are farmers practicing spate irrigation. Flocks of small ruminants, owned by farmers or semi-nomadic and nomadic herders, graze cereal stubble in sailaba and khushkaba lands. Unfortunately, a major part of these animals' diet comes from the rangelands, which have become overgrazed in many areas of highland Balochistan (AZRI, 1994).In the late 1980s, the International Center for Agricultural Research in the Dry Areas (ICARDA), in collaboration with the Arid Zone Research Institute (AZRI), began to work with farmers on the valley floors. The aim was to improve the food security of the khushkaba end-users and to search for a way to ameliorate pressure on the rangelands (Rees et al., 1991). Adaptive research over 7 years showed that low-input, microcatchment water harvesting in khushkaba land did not actually improve yields of wheat (Triticum sativum Lam.) when taking into account the amount of land used to harvest the water. Rather, it increased gross margins by 23%-through a reduction in variable costs-and reduced its variability by 19% (Rodríguez et al., 1996). This would appear to make micro-catchment water harvesting marginally attractive to farming families practicing khushkaba agriculture in a high-risk environment; the adoption rates of this technology are low, possibly because net yield increases are more relevant to subsistence farmers. A similar scenario was identified regarding the use of micro-catchment and water tanks in India (Thomas Walker, personal communication, 1999).Research shows that it is difficult to create a strong incentive for water harvesting on lands with a low resource endowment (e.g., valley bottoms). Available statistics suggest that, on the average, only about 150,000 of 700,000 ha of rainfed land in highland Balochistan are cropped (AZRI, 1994). An estimated 40%-50% of the rainfed land is in the valley bottoms. Clearly, farmers are reluctant to adopt new NRM practices in highly risky environments. Therefore, while the challenge to increase khushkaba farmers' income through improved and sustainable NRM remains, ICARDA has shifted its research efforts toward the sailaba agricultural systems (WRRI, 1998). At least three factors hinder the widespread adoption of khushkaba agriculture-the fluctuating population of Afghan refugees affecting the livelihoods of farmers in the Quetta valley, variable wheat import policies in the province, and farmers' perceptions of the benefits of tubewell irrigation compared to those of improved water harvesting technology. In addition, sailaba irrigation accrues more water per unit of cropped area in micro-watersheds with higher net yields and economic benefits (Ahmad et al., 1998). Populations in the mountainous areas are less exposed to these exogenous factors. Thus, higher payoffs for research can be attained with lower population densities and higher yielding technology.Most farmers in highland Balochistan are khushkaba and sailaba subsistence farmers. A relatively small group of farmers practice tubewell irrigation, mostly in the valleys. The poorest farmers practice khuskhaba agriculture and there is little option for improving the performance of rainfed agriculture, even with water harvesting techniques. Their communal grazing grounds in the foothills have been continuously overgrazed. Sailaba farmers, still poor, but better off than khuskhaba farmers, are more isolated in the mountainous environments, but have better chances to improve their livelihoods because their investments in landscape, designed to catch and convey torrential rains, result in more reliable water than in khuskhaba agriculture. Grazing lands are in better condition than in the valleys or foothills. Tubewell agriculturalists in the valleys are the wealthiest, market-oriented, with good land endowments, and only pay extraction costs for the very scarce groundwater.For the last 2 decades, a major part of Syria's agricultural investment has been devoted to the development of irrigation. Currently, 60% of its irrigated land is dependent on groundwater. The number of registered wells has increased from 45,000 in 1970to 47,200 in 1980, and 143,000 in 1994(ESCWA-FAO, 1996). This increase was encouraged through government loans for tubewell installation. The Syrian government has emphasized self-sufficiency in cereals as a means toward achieving food security. As a result, Syria became self-sufficient in wheat in 1994. In its quest for food self-sufficiency, Syria has seen a parallel decline in its groundwater tables, not necessarily because all water is allocated to wheat production, but because whenever a farmer has access to irrigation water, there are incentives to grow high-value crops in addition to cereals. Whether or not the country should use its limited groundwater to grow staple or high-value crops must be determined according to national priorities and policy objectives.The study area is located in Aleppo province, in the northwestern part of Syria adjacent to Turkey. It comprises a cross-section of four out of five agricultural stability zones (Rodríguez, 1997;Ahmad and Rodríguez, 1998). Annual precipitation in the \"high-rainfall\" section of the study area exceeds 350 mm, and at least 300 mm in 2 years out of 3. The main crops are cereals, food legumes, fruits, vegetables, and summer crops. The \"lowrainfall\" part of the study area has 200-250 mm annual rainfall, and no less than 200 mm in 1 year out of 2. There is limited production of vegetables, food legumes, and wheat where irrigation is available. Because the area includes the outskirts of Aleppo City, it is affected by the agricultural product market there, which is continually growing to satisfy the higher and more diversified demands of urban dwellers. As one might expect, poverty is inversely related to the availability of water and arable land.Farmers believe that \"those who own wells are entitled to as much water as they want.\" Wells are perceived as \"land improvement\", and farmers believe \"it is not proper to interfere with land use\" (Rodríguez, 1997). Land tenure in this area determines access or exclusion and withdrawal rights to groundwater. In Islamic tradition, water is a gift from God and belongs to the community. However, value added as a result of investments in distribution or conservation may create a qualified right to ownership and thus permit appropriation and local water marketing (Aptekman, 1973;Mallat, 1995). In the drier areas, farmers suffer extreme water scarcity and well interference is evident. The simultaneous pumping of contiguous wells exhausts the water, making it necessary to wait for a few hours for the wells to recharge. This creates an endless cycle of competition for water extraction.During discussions about the potential savings in pumping costs if irrigation scheduling were implemented, farmers raised the issue of cheating as a major concern and cited the inevitable limitations of such a system: \"nobody will know whether someone is pumping water\", and the fact that monitoring costs would be prohibitive. Some pointed out that \"if we could see the water in the channel, nobody could cheat\". Farmers are convinced that they will eventually return to the traditional barleylivestock systems. In the meantime, the race for more water is evident in the growing numbers of unofficial wells. Well-drilling is a risky endeavor, but one with which farmers in the drier areas are willing to live. The drier the land is, the higher the frequency of more than one well per farmstead (Mueller and Rodríguez, 1997).In Zone 4, however, extended families comprising three or four households share a well for irrigation and domestic purposes in their farm premises, and cooperation in irrigation scheduling is more the exception than the rule. Recent work in the province (NRMP-DIWU, 1999) showed that 94% of the irrigators in Zone 4 were willing to share water for irrigation, and 69%-84% of the irrigators in other zones were willing to do so. As groundwater resources decrease, farmers may reconsider their right to appropriate water and their willingness to cooperate. There is a contradiction between what farmers genuinely believe about cheating and the cooperation they would like to see happening in the drier areas. Their real concern and a hypothetical willingness to cooperate are part of the perceptions on resource scarcity and management that need to be incorporated in the design sustainable policies.Price incentives have induced farmers to adopt a cropping pattern that has pushed the agricultural frontier to the drier areas. Wheat is the dominant crop produced under rainfed and supplemental irrigation (SI) conditions in Aleppo (SI is defined as \"the application of small amounts of irrigation to essentially rainfed crops normally grown at that location, to increase and stabilize yield levels\"-ICARDA, 1995, p. 9). Of the 49,900 ha planted to wheat, 40% is under SI. The Directorate of Irrigation and Water Use (DIWU) and ICARDA have been collaborating to improve the water-use efficiency in wheat.While rainfed wheat production is financially and socially profitable, wheat under SI is largely dependent on location (stability zone) and the level of irrigation (Table 1). When the social domestic resource cost (DRC) is accounted for, rainfed wheat cultivation uses resources efficiently (DRC values less than 1). Rainfed wheat in Zone 1 (350-mm rainfall) and Zone 2 (300-mm rainfall) are more efficient than rainfed wheat in Zone 3 (250-mm rainfall). There are two examples of scenarios under SI: one where rainfall is 350 mm (Zone 1), with 150 mm as SI; and the other where rainfall averages 200 mm (Zone 4), with 150 mm as SI. In the first example case, both private and social profitability are positive. In the second example, private profitability is positive, but social profitability is negative when domestic resources are fully paid. Supplemental irrigation (150 mm) in the lower rainfall areas (200 mm) had a DRC ratio well above 1. Because the cost of the fuel is substantial (an average 20%-25% of variable costs), the response of social profitability in wheat to changes in the social price of diesel was examined. Four water regimes comprising different combinations of rainfall conditions and SI were plotted (Figure 1) according to six price variants for diesel (4, 6, … 14 SL/L, with US$1 = 42.5 SL). These types of water regimes are commonly found in Aleppo province. As the price of diesel increases, the social profitability of wheat decreases at different rates. The steepest decline in social profitability occurs under 300-mm rainfall and 250-mm SI, with the second biggest drop at 300-mm rainfall and 150-mm SI. The decline in social profitability under (a) 200-mm rainfall with 200-mm SI, and (b) 250-mm rainfall with 150-mm SI is highly similar, but under the lowest rainfall, social profitability becomes negative when the social price of diesel was above 10 SL/L. Thus, increasing prices of diesel will not necessarily modify the unsustainable path of groundwater use. Private profitabilities, used by farmers to gauge the performance of a technology, are above the social profitabilities. For the policy analyst, the social profitability in Zone 2 with 250 mm SI at 14 SL/L is similar to that of 150 mm SI at 4 SL/L; in Zone 3, the social profitability is still positive for the range of diesel prices considered. For farmers who perceive that they could easily jump from one stability zone with less rainfall to another with more rainfall, using SI as a vehicle, the analysis of tradeoffs is not obvious. This is because SI is a highly noble technology (i.e., more yields with more water, farmers easily perceive benefits in terms of production levels). However, the largest share of groundwater use in Aleppo is in Zone 2 and only 20% is used for wheat under SI, the rest of the groundwater is used for high-value crops with larger gross margins per unit of water used (Rodríguez et al., 1999). Increasing costs of diesel alone is not enough to curtail groundwater use.A sustainable groundwater policy requires strengthening the cohesion within the communities in order to perceive monitoring of water use and compliance of communal agreements for water extraction as a service to the community rather than as impinging the \"rights\" of individuals to water. Pricing of water, electricity, or diesel is necessary for farmers to realize the costs of these resources in the production process. Policy analysts could help to diffuse benefits and costs associated with rainfed and irrigated agriculture in different stability zones and help irrigators realize the competitiveness of different crops in the stability zones. Through their research, ICARDA and DIWU have realized that SI is only one aspect of farmers' multiple use of groundwater that must be addressed in terms of resource sustainability. The DIWU is interested in evaluating irrigation practices in terms of net returns per cubic meter of groundwater, for each stability zone. Efforts to sensitize the technical staff about the environmental and economic value of water should complement efforts to promote viable options developed by policymakers and local institutions.Wealth and resource degradation in the context of groundwater irrigation in northwest Syria is a fact that must be accepted for the longterm strategy of the agricultural sector. The resource-poor groundwater irrigators in stability Zone 3 or 4 are generating a negative externality, as measured by declining water tables. However, this is of considerably less magnitude compared to that of wealthy farmers in Zone 2 who are using 80% of their groundwater to produce high-value crops to feed the city of Aleppo. Undervalued or un-priced groundwater, weak institutions at the community level, and lack of sensitivity of the technical staff towards the economic and environmental value of water work together to form the unsustainable pattern of water use.Abandonment of terraced agricultural land in the highlands of Yemen resulted in the degradation of productive land, historically constructed and sustained with indigenous knowledge and by cooperation within local communities. The dramatic social and economic changes of the last 30 years following the revolution, the oil boom in the Gulf region, road improvement, and increasing job opportunities in the rapidly growing urban centers as well as overseas led to the increasing migration of people 1. The work in this section is based on Aw-Hassan et al. (1997).from the rural areas of Yemen. Thus, agriculture has become less important as a source of income as better opportunities emerge in urban centers and abroad. Reliance on the land for food supply has declined because of the availability of imported food grain, particularly wheat, and the restoration of many degraded terraces may not be economically feasible under the prevailing conditions. However, the good agricultural land that still remains on the mountain terraces could be sustainable if the institutional and economic environments favor land-use practices that yield long-term benefits.Ownership of cultivated land comes through private, state, or endowment systems (waqfs). There is also communal land, which includes the vast mountain slopes used as rangelands. However, there is no agricultural land registration, and current statistics on land properties are only estimates. At the local (subdistrict or Uzla) level, a trusted person, locally known as an amin, keeps records of land transactions such as sales and tenancy arrangements. The Ministry of Local Administration encourages this system. Most (70%) of the private land is cultivated by owners, but it may also be rented out to tenants under sharecropping arrangements that depend on the crop, the agro-ecological zone, the availability of irrigation water, the cost-sharing arrangements, and terrace maintenance. Tenants under sharecropping cultivate both state and waqf lands.Customary tenure systems in Yemen are flexible and accommodate investment in land improvement by tenants. However, this flexibility was developed with expectations of returns on investment. The customary rule on land improvement investment is more likely to apply where high-value crops such as qat and coffee (Coffea L.) are grown, and less likely where rainfed food crops are cultivated. Nevertheless, food crops were more frequently cultivated than qat or coffee on the reclaimed land over the last 5 years, financed mainly by farmers.Farmers in the Hajja province ranked state land as the most degraded, followed by waqf (endowed) land. Private land was considered the least degraded. Furthermore, terraces cultivated by landowners had a lower number of broken walls per area than those cultivated by tenants under sharecropping arrangements. Even though the customary tenure system clearly defines the respective responsibilities of tenants and landowners for the maintenance and cost sharing of terraces, no effective mechanisms for enforcement exist. Farmers stated that proper enforcement of the customary rules would significantly increase investment in land improvement, particularly terrace maintenance. However, tenant farmers are in a relatively weak position to seek enforcement of these rules.All farmers polled in the terracing study reported a high number of broken walls, with the number increasing over time. This indicates a need for research on the economic viability of land improvement in the mountain terraces, as well as an assessment of policy and/or technological measures that could enhance land improvement, particularly for food crops. Government support of local institutions is needed to strengthen land registration systems and documentation of sharecropping contracts, to increase agricultural credit services targeting land improvement, and to improve farmers' access to technology and information. Research suggests that if returns to investment increase, for example, through better price policy and/or improved agricultural technology, tenure systems will accommodate private investment in land improvement.Various aspects of poverty and environmental degradation within the context of the scenarios described above are included in Table 2. The effect of different degrees of each attribute under similar conditions is indicated for comparison. Because of the qualitative and quantitative variation reflected in these attributes, however, comparisons across countries cannot be applied.Land and freshwater endowments are highly variable in highland Balochistan (Pakistan) and in Syria. Variations in location and altitude are closely associated with levels of rainfall. The ability to extract or divert water from another source, even if it is temporary, makes a great difference. In the Hajja province of Yemen, it is difficult to assess household resource endowment because many households own land distributed across different ecological floors, all with different attributes. The population growth in highland Balochistan and Aleppo is high; while in the Hajja province out-migration occurs.Endogenous poverty is generated by environmental degradation, while exogenous poverty is caused by factors not related to such degradation (Duraiappah, 1998). Contrary to the generalized perception that poverty causes environmental degradation, Boyce (1994) states that this degradation is caused by a combination of economic power and the desire for short-term profits. Duraiappah proposes several relationships to explain the existence of a poverty situation that generates the extreme use of a natural resource. Economic power, greed, exogenous poverty, and the institutional and market failures constitute key factors for these relations. These factors, individually or interacting, determine the environmental degradation and therefore endogenous poverty. Poverty that is solely endogenous exists only in the khushkaba lands of the Quetta valley, where population growth and low resource endowment have been the major factors in the impoverishment process. It should be noted that many khushkaba farmers are also involved in semi-nomadic pastoralism in highland Balochistan, Pakistan, and in Afghanistan, where the incidence of endogenous poverty among pastoralists is high (Buzdar et al., 1989;AZRI, 1994). Exogenous poverty is not homogeneous among the people making a living from tubewell agriculture in Balochistan or in Zone 2 in Aleppo; many of them are laborers. The attributes of arable, available land in these areas vary greatly, skewing the distribution of agriculture benefits. Favorable terms of trade for the export of fruits and vegetables, or for small ruminants from the highlands to the lowlands, do not necessarily include the environmental costs of irrigation and grazing. In the long run, what appears to be an economic incentive actually represents a disinvestment in environmental capital (declining groundwater or loss of vegetation). In the Hajja province, incentives for the younger sector of the population to migrate to urban areas or overseas are very strong. Land availability is also a constraint in Hajja (much less so in Balochistan or Aleppo).Allowing for average estimates of agricultural income, the poorest of highland Balochistan are the khushkaba farmers, followed by the sailaba farmers. A quantum decrease in poverty occurs for those practicing tubewell agriculture. Interestingly, the lowest level of poverty in Aleppo is in Zone 2, rather than Zone 1, which has conditions more favorable for agriculture. The difference is because of larger availability of land per household in Zone 2. The ability to extract water in Zones 3 and 4 decreases dramatically, increasing extraction costs, because of hydrogeological factors (Wagner, 1997). Care should be taken to avoid generalizations of the poverty levels in the NRM scenarios without considering the distribution of resources. For example, as cited previously, farmers in the Hajja province have land distributed across different floors of the altitudinal gradient. However, 41% of 2-to 5-ha landholdings belongs to 15% of the farmers, while 6% of the landholdings smaller than 0.5 ha belongs to 24% of the farmers (Aw-Hassan et al., 1997). Across the four stability zones in Aleppo, the highest inequality in land endowment and agricultural income occurs in Zone 2, the most prosperous zone in the province (NRMP-DIWU, 1999). While 75% of the agricultural land in Zone 2 is owned by 25% of the farmers in the rest of the zones, 50% of the land is in the hands of 25% of the farmers (Figure 2).Market failure is based on environmental costs such as declining water tables, erosion, and other external costs in the agriculture and water sectors. These costs are not taken into consideration in markets in highland Balochistan and Aleppo. This includes time wasted chasing water and drilling deeper wells when the supply runs dry, and the associated inefficiency in irrigation, higher extraction costs, and the pollution of wells. Likewise, the long-term costs of downstream sedimentation, loss of soil fertility, and the domino effect of broken terraces caused by excess runoff are not included in the produce prices of farmers in the Yemeni mountain terraces.This institutional failure is because of the lack of well-defined and tradable property rights, improper regulatory frameworks, unbalanced land tenure arrangements, and open access to undervalued water resources that encourage the depletion of groundwater. The fugitive nature of groundwater makes it extremely difficult to design effective monitoring systems, even if there is willingness to comply with hypothetical groundwater management policy. In the Yemeni case, the land tenure system could be improved so that the land markets would better reflect the future value of land investments and yield expectations. Policy failure is attributed to price distortion, or under-pricing the resources needed to produce a commodity. Subsidized pricing for electricity and diesel discourages farmers from taking advantage of watersaving technologies. In addition, overvalued currency and price controls grossly bias the incentive structure within which farmers operate in Aleppo (ESCWA-FAO, 1996). While the economic value of water is acknowledged, no serious consideration is given to developing appropriate policies because of political instability and because tariff and pricing policies are not considered viable (Ahmad, 1996). Furthermore, the spontaneous emergence of alternative productive and non-productive uses of water and water markets in dry countries is not perceived as a phenomenon deserving attention in order to help reinforce policies and/or local and national institutions (Waughray and Rodríguez, 1998).Collective action in sailaba agriculture and in the mountains of Hajja still plays a vital role in traditional irrigation and soil conservation systems and includes:• Maintenance and repair of irrigation structures and terraces, • System monitoring, and • Compliance with customary rules.Collective action and customary rules in sailaba agriculture minimizes \"head-tail\" asymmetries in agricultural income. The position of the command area with respect to the head or tail of the watercourse and the ownership of land were not significantly related with household agricultural income. This is because the rules for water allocation compensate for the position in the watercourse. Agricultural income was significantly related to the command area and number of livestock, differentiating the very small and small systems from the medium and large ones (Ahmad et al., 1998). However, the efficacy of collective actions across a section of NRM scenarios has not been quantified.Tubewell irrigation has the highest contribution to resource degradation (i.e., declining water tables) in both highland Balochistan and in Zone 2 in Aleppo simply because of the large volumes of irrigation water used compared to the other zones. However, there is also a correspondence between resource degradation and contribution to the agricultural gross domestic product. Because of a combination of market, institutional, and policy failures, resource users are not encouraged to internalize the environmental costs; rather, the society as a whole is absorbing them. Strong interactions with overgrazing occur in sailaba and khushkaba agriculture in Balochistan and in Zone 4 in Aleppo. Because of the increasing number of broken walls in the terraces in Hajja and the associated downstream costs, there is a danger that the terraces will be lost as agricultural and cultural patrimony of the Yemeni highlands.Although endogenous poverty is present in khushkaba agriculture, there is no apparent or documented on-site resource degradation. Off-site degradation is likely to be present through overgrazing and shrub uprooting for fuelwood. However, off-site transfer of degradation because of the impoverishment of khushkaba farmers has not been quantified. Low-input, micro-catchment water harvesting offers a moderate increase in gross margins and a modest decrease in its variability, but it is not a net yield-increasing technology. This is not enough incentive for subsistence farmers who also depend on extensive livestock production. In contrast, in situations where there is exogenous poverty, there is a high occurrence of in-situ resource degradation. Both the incentive structure and the associated institutions encourage resource degradation by the relatively wealthier farmers (i.e., fruit exporters in Balochistan or farmers in Zone 2 of Aleppo), who follow market signals closely. The evidence from Balochistan and Aleppo suggests that natural resource degradation is not directly linked with poverty. Rather, resource degradation is related to the quantity of natural resources accessed by the different sectors of the population without internalizing the environmental costs. Poverty, in turn, may or may not be related to environmental degradation. Market and institutional failures must be acknowledged to design incentives that could shift changes towards sustainable resource use.Other than khushkaba agriculture, few environmentally friendly technologies are higher yielding or higher income generating, and therefore suitable for low potential environments. What margin of gain makes a technology appealing to the poor? Subsistence farmers are more inclined toward higher and more stable yields than higher and more stable gross margins, but no cereal variety is better than the barley or wheat landraces already grown on khushkaba land. Livestock production, complementing khushkaba agriculture, occurs on overgrazed tribal rangelands with deteriorated grazing rights (Buzdar et al., 1989). Thus, the adoption of environmentally friendly water-management technologies needs to be coupled with improved livestock management, and the latter is largely limited by socioeconomic constraints. Should resource degradation be attributed to the poor? In answering this question, it is useful to distinguish the effect of different income strata in the degradation process. For example, the highest mean income per household occurs in Zone 2 in Aleppo, but in terms of land distribution, this is the least egalitarian of the four zones. Depletion of fossil water from the deep aquifers (Wagner, 1998) is faster in Zone 2 than in Zones 3 or 4. This is not necessarily because of SI of wheat, but may also be attributed to the incentives to grow high-value crops with undervalued water in a system that lacks effective self-regulatory mechanisms for water extraction. Farmers take advantage of the failures of the system to avoid paying environmental costs. The most economically prosperous sector of the population is responsible for rapidly declining water tables and the pollution of wells. Market and institutional failures are in place in both cases.In the context of terrace agriculture, what would it take to entice a young farmer to remain in Hajja as a steward of the terraces? Can agricultural options compete with those presented by urban and overseas migration? Even if a household is above the investment poverty line (Reardon and Vosti, 1995) and is willing to invest in land improvement, it would have to absorb the cost of increasingly scarce labor for the rehabilitation and maintenance of terraces. We need to achieve an understanding of the types of incentives required to encourage expatriates and urban dwellers to invest in rural environments. Households may decide to invest in education or small businesses rather than in land improvements.In the hill torrent areas of Pakistan, available capital is used collectively to grant credit at competitive rates for productive and nonproductive household investments, with a high rate of loan recovery. However, there is a need for better integration of existing incentives in the strategy for resource management interventions (Shahid Ahmad, personal communication, 1999).Even though our NRM scenarios do not agree with the perception that poverty is related to resource degradation, this does not imply that options for improving the livelihoods of the lower income population or minimizing environmental degradation by the wealthier sector of the population should not be put forward. For the poor and the wealthy, net savings of household resources and higher yields or net benefits are incentives for improved resource management. The latter also should imply the identification of economic, institutional, or policy failures, and the design of mechanisms and practices to offset them.Three sets of conditions are critical for environmentally prudent behavior by the poor:(1) Clear, secure, and tradable property rights to land and water, to ensure that expected future values of natural resources are realized. (2) Less risky and higher income-generating options, to ensure a clear focus on the rewards associated with NRM interventions. This may require the integration of soil and water management actions with other resource management options, such as range and livestock. (3) NRM practices that are gender-sensitive, developed according to previously identified intra-household decision-making processes (Griffin, 1996).Complementing these conditions is the need to institutionalize NRM research in national programs through multidisciplinary and participatory approaches (Aw-Hassan and Saigher, 1996).Often, efforts in NRM have been diluted by exogenous factors that affect economic efficiency (land tenure and water rights, overvaluation of currencies, subsidies in inputs and outputs, central planning, and international comparative advantages, among others). In this era of globalization, there is a need to identify what resource-poor farmers can produce better than other farmers in other regions of the same country or abroad. Policymakers and national research programs must nurture local solutions to local problems and encourage decentralized decision making, policymaking, and monitoring and evaluation of environmental impact.The impact assessment of NRM interventions will remain complex because of various exogenous factors that determine how events unfold over a long enough period to show impact, (i.e., 5 to 10 years). Certain elements in a technology package can be adopted to impute indirect effects on the environment and direct effects on farmers' income. Baseline surveys and monitoring systems allow researchers to gauge changes in poverty indicators at the community or watershed level, and identify those factors that are most effective in poverty alleviation. Natural resource management research needs to be included in local and national development efforts to ensure demand-driven agendas with interventions that can be sustained long enough to generate visible results.Evidence from literature shows that agricultural research has been instrumental in introducing improved technologies that have raised agricultural production, stimulated economic growth, and benefited the poor through lower food prices and higher incomes (Lipton and Longhurst, 1989;Tribe, 1994). However, there are legitimate concerns that researchled technological change in agriculture has favored wealthy farmers at the expense of poor producers and laborers (Pearse, 1980;Freebairn, 1995). Concerns regarding the environmental impact of new technologies have also been expressed. The relationship between poverty and environmental degradation is especially of importance in the world's semi-arid tropics (SATs). Peter Hazell and others have recently emphasized the importance of investing in less favorable, marginal, and resource-poor areas to achieve greater impact in terms of poverty reduction (Hazell and Fan, 2000). Discussion on related issues has led to work on the development of typologies for assessing and establishing research-technology-poverty reduction linkages (de Janvry and Sadoulet, 1996;de Janvry et al., 1997).This paper shares the experience of the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) in understanding and assessing the linkages between research, technology adoption, and poverty alleviation, and the opportunities made to enhance these linkages for greater impact. We analyze impact studies with a view to understanding these linkages. Results from preliminary surveys of a project aimed at directly capturing the nature of these linkages are outlined. Existing literature (Kerr and Kolavalli, 1999) in this area has identified several major issues of relevance for these linkages. Four major processes were identified that link agricultural research and development to poverty alleviation:(1) Technology adoption, (2) Agricultural intensification, (3) Changing land relations, and (4) Public investment and institutional arrangements.This chapter is primarily concerned with the first process, technology adoption, which may sometimes result in the second, agricultural intensification, and thereby have an enhanced impact on poverty. The chapter also recognizes that the other factors act as facilitating conditions or intervening factors for adoption to result in positive impact. Studies (Bantilan and Joshi, 1994;Kerr and Kolavalli, 1999;World Bank, 1999) reveal that technologies generated through research may alleviate poverty by:(1) Raising farmers' production income through increasing yields, (2) Generating agricultural employment, (3) Improving food security and accessibility, (4) Reducing food prices, (5) Reducing risk and increasing stability, (6) Diversifying crops, (7) Triggering economic growth in other sectors of the rural economy, (8) Reducing inequalities at community and household levels, and (9) Empowering different groups involved in agriculture.Thus, agricultural innovations have the capacity to bring about welfare changes by improving productivity through improved crop and natural resource management (NRM) options and developing new sustainable systems of agriculture.Advances in resolving the following issues or questions are important in understanding and enhancing the poverty impacts of agricultural technology.(1) Are technologies not scale neutral, that is, do large-scale farmers benefit to a greater extent than do small-scale farmers, resulting in increasing inequalities? (2) Is the knowledge regarding the typology of target households essential for generating and targeting appropriate technologies? (3) Do gender differences and differential needs of social groups involved in agriculture have a bearing on adoption and impact?(4) Does the development of appropriate technologies require analysis of agro-ecological and socioeconomic factors?Studies on these aspects provide important feedback for the development of agricultural research strategies, especially with reference to desired characteristics or traits for specific target clientele, environment, and sector. Intervening conditions that influence adoption and impact are also important. These include:(1) Government policies and interventions (infrastructure, subsidies, credit), (2) Institutional factors (seed sector, markets, extension), and (3) Other socioeconomic factors (human capital-age, education, health and nutrition; and asset base-ownership of land, resources, etc.).Differential access to institutional support and information, and unequal distribution of assets, may constrain large-scale adoption of technologies and result in unequal impacts.Depending on the way in which the enabling conditions influence technology effects, several types of poverty impact can occur. Impacts can be direct, that is, in terms of improved income, yield, and stability; or they can be indirect through their influence on markets, commodity prices, and general growth of the rural economy. Impacts can occur at different levels-household, village, social groups (women, marginal groups), and regional economy. First-level impacts, which can be easily measured and assessed, would include changes in income, yield, employment, and stability. Secondary changes deriving from these include health and nutrition, food security, equity, sustainability, and empowerment. Based on an analysis of existing literature as well as ICRISAT's past work, current research seeks to measure impacts through the indicators listed below that are related to human capital, assets and access, and that capture changes beyond, but inclusive of, improvements in yield and income.(1) Education and literacy.Rural literacy rates by gender. Rural schooling. (2) Health, nutrition, and food consumption pattern.(3) Rural total fertility rates. (4) Rural sex ratios.Three kinds of impact resulting from research and development were identified:(1) Output of ICRISAT breeding efforts/genetic enhancement research;(2) Improved crop and resource management options; and(3) Spillover effects of germplasm research.The actual impacts observed and analyzed from technology adoption were mainly in terms of yield enhancement, unit cost reduction, income increase, high net present value (NPV), and internal rate of return (IRR), sustainability, and gender. Below, we present a summary; a brief discussion of the nature and kinds of impact follows.(1) Impact on efficiency.Wilt disease resistance research: pigeon pea (Cajanus cajan [L.] Millsp.). 60% adoption in wilt-endemic areas. 43% yield gains on-farm. 45% unit cost reduction (US$89 per ton). $75 million NPV. 65% IRR.(2) Impact on food security.Early-maturing sorghum (Sorghum bicolor [L.] Moench) and pearl millet (Pennisetum glaucum [L.] R. Br.) for drought-prone areas of Africa allowing more stable yield. Reduced risk of crop failures. Savings in food aid far greater than the cost of research.(3) Impact on sustainability.Diversifying monocrop systems by introducing short-duration legumes as in the case of pigeon pea in drought-prone areas of India. 57% adoption. Diffusion in five states. New income from double cropping. Improved soil fertility.(4) Benefits to women. Groundnut (Arachis hypogaea L.) production technology resulted in: Easier weeding and harvesting. Higher employment. More involvement by women in decision making.A study by Bantilan and Joshi (1996) on the impact and spread of ICP 8863, an improved wilt-resistant variety of pigeon pea, found that in comparison to the best cultivar previously available in the target zone, this new variety gave 57% higher yields, reduced unit costs by 42%, and matured slightly earlier. The total NPV of benefits from collaborative wilt research is about US$62 million, representing an IRR of 65%. The results, in addition to clearly quantifying the impact of wilt research, also provide important lessons for research and extension policy and for the formulation of future research priorities.In a case study on impact assessment of groundnut production technology, Joshi and Bantilan (1998) found partial and step-wise adoption of different components of the technology that range from 31% to 84%. In comparison to the prevailing technology, the groundnut production technology gave 38% higher yields, generated 71% more income, and reduced unit cost by 16%. The technology also contributed in improving the natural resource base, and eased certain women-specific agricultural operations. The total NPV of benefits from collaborative research and technology transfer was more than US$3 million, representing an IRR of 25%.A study by Bantilan and Parthasarathy (1999) established an important connection between farmers' concerns regarding sustainable farming and the adoption of improved technologies. Results from a formal on-farm survey and rapid rural appraisals conducted in a drought-prone area in central India revealed that:(1) Farmers are well aware of the effects of intensive cultivation of cash crops, such as sugarcane (Saccharum officinarum L.) or cotton (Gossypium hirsutum L.) in irrigated tracts, in terms of reduced yields and increasing use of inputs; (2) Appropriate crop/varietal adoption and management practices are consciously implemented to maintain long-term productivity levels for existing and desired cropping systems; and (3) Farmers strive to increase or maintain soil fertility by including nitrogenfixing legumes in crop rotations-in this case, short-duration pigeon pea.Widespread adoption of short-duration pigeon pea (56%) made farming profitable in the short term (from higher yields and income) and helped sustain productivity in the long run via crop rotation to maintain soil fertility. Kolli and Bantilan (1997) studied the gender-related impacts of a crop and resource management technology package in Maharashtra, India. The following indicators emerged with strong implications for gender because of the introduction of the technology:(1) Labor-activity pattern and time allocation, (2) Decision-making behavior of men and women with regard to resource use and utilization of crop products, and (3) User perspective-differential perceptions of men and women with implications for technology development.The study indicates that to ensure effective and committed involvement of men and women in agriculture, views and perceptions need to be incorporated of both genders of the farming communities during technology generation and development. A research and development agenda that incorporates analysis of gender-disaggregated farmer perspectives is likely to lead to a more appropriate and acceptable technology that will gain further and wider adoption. Yapi et al. (1999) evaluated the impacts and research spillover effects of adoption of sorghum variety S 35, a pure line developed from the ICRISAT breeding program in India. It was later advanced in Nigeria and promoted and released in Cameroon and Chad. Farm-level impacts were found to be larger in Chad, where yield gain was 51% higher and cost reduction 33% higher compared to the best local varieties. The NPV of benefits from S 35 research spillover in the African region was estimated to be US$15 million in Chad representing an IRR of 95%, and US$4.6 million in Cameroon representing an IRR of 75%.A study (Rorhbach et al., 1999) clearly showed that the high NPV of return from pearl millet variety Okashana 1 in Namibia resulted from the use of germplasm originally developed by ICRISAT, thus cutting the time and costs involved in variety development and testing. It was also found that early involvement of farmers in varietal selection, rapid release in response to farmer preferences, and government commitment to the rapid multiplication and dissemination of high quality seed were instrumental in the high level of return.Thus, most of the REIA adoption and impact studies documented clear impact in terms of increased yield and income. The extents to which these impacts have actually translated into welfare changes are being documented by an ongoing project \"Technological Innovations in SAT Agriculture and its Impact on Poverty in India.\"Adoption and impact studies were of crucial significance for ICRISAT by enabling researchers to learn lessons for providing feedback and identifying research priorities. These studies identified knowledge gaps especially in the research process-poverty alleviation linkages. Currently, knowledge gaps refer to these aspects:(1) The process whereby technology adoption has consequences for poverty alleviation and reduction (there is also a question of attribution), (2) Direct, indirect, and differential impacts of technology adoption, and (3) The role of intervening factors/enabling conditions.Existing literature, while opting for quantitative studies of impacts because of ease of measurability and comparability (of indicators such as income and yield), however, are unable to throw much light on the actual process by which adopters of agricultural innovations have benefited. Actual improvements in terms of empowerment, equitable distribution of benefits at the household level, access to institutions, and improvements in human capabilities have been especially difficult to assess. The current project aims to integrate quantitative and qualitative impacts in an integrated framework using different types of methods and techniques. Figure 2 illustrates the conceptual framework, showing the technology adoption-poverty alleviation linkages that were developed following an extensive survey of the literature.The poverty impact analysis covered a set of case studies covering NRM and germplasm innovations. Two case studies are underway:(1) Groundnut production technology (GPT), an NRM package of practices introduced in Maharashtra, India. The GPT was specifically developed for cultivation of groundnuts in dry areas, especially to promote cultivation in summer using an improved package of practices that included improved cultivars, as well as soil, water, and nutrient management options.(2) Participatory plant breeding and adoption of improved pearl millet (bajra) cultivars in Rajasthan, India. Rajasthan includes some of the most arid environments in India, and has the largest area under pearl millet in the country. Studies have shown widespread adoption of improved pearl millet cultivars developed by ICRISAT in collaboration with its national program partners. Research efforts here incorporated participatory varietal selection by farmers in some districts.Results from preliminary surveys on these two technologies are presented in the following section.A benchmark survey in the early 1990s showed that adoption was reasonably widespread, but did not reveal an appreciable impact. However, significant changes were noticed with respect to the gender issue, especially the intra-household distribution of benefits, and changes in access to and control over different postharvest products. Based on a pilot survey (1999)(2000) almost a decade after the technology was introduced, it was found that technology adoption has contributed to welfare changes in direct as well as indirect ways. Rather than a particular path (of benefits) flowing from technology adoption there seems to be a stream of benefits flowing, each of which leads on to other changes in the agricultural system as is shown in Figure 3. Significant impacts on a number of indicators to diverse social groups were evident during the pilot surveys.Using participatory rural appraisal (PRA) techniques and focused group interviews, we carried out a before and after analysis, which revealed that many welfare changes have occurred as a result of the adoption of the GPT that can be summarized as follows.(1) Adoption of GPT has contributed directly to an increase in income and yields. (2) Greater stability of the cropping system has been achieved.(3) Indirectly, it has improved food availability, improved nutrition, led to crop diversification, and ownership of assets. (4) Assets acquired for GPT are being used for other crops, and have enabled cultivation in other seasons. (5) Initial benefits in the form of higher profits and income were reinvested in order to obtain long-term benefits and to stabilize the farming system. ( 6) Stability of the farming system increases the freedom of farmers to take decisions regarding the cropping pattern (cash vs. subsistence crops or market vs. subsistence orientation, investing in production vs. investing in education, housing, household assets, etc.). ( 7) Positive changes in the condition of labor. Out-migration of labor has been replaced by immigration of labor. Employment opportunities for women have risen. (8) Credit rating has risen. (9) Families and households have been enabled to fulfill social and family obligations (marriage of children, providing hospitality to household/village/community guests, increased capacity to perform traditional cultural activities, such as celebrating festivals, going for pilgrimages etc.). ( 10) Government programs have enabled purchase of accessories; equally government programs have targeted the village after its \"visibility\" improved because of technology adoption and resultant impact. (11) There have been general improvements relating to health, sanitation, housing, common facilities, etc., as also an improvement in the level of food security, especially for the marginalized groups in the village. (12) A feeling of empowerment has shown-a general improvement in self-esteem, confidence, ability to innovate, etc. Empowerment is also reflected in an increased choice of crops that are cultivated, choice of investments, access to credit, information, and agents of various government bodies. Agricultural workers Socially marginalized Farmers 1987 1 9 8 8 -9 0 1 9 9 0 -9 2 198 8 onw ard s• Government programs have targeted the village after its \"visibility\" improved because of technology adoption and resultant impact. • General improvement in self-esteem, confidence, ability to innovate, etc.• Increased capacity to fulfill social and family obligations. • General improvement in common facilities. (13) The social distance between groups of different social status has reduced; feelings of social isolation both within the community and with reference to the wider world have decreased. The community has become more socially inclusive, with greater interaction between members of different social categories. This is a direct consequence of GPT that made farmers more dependent on labor for a longer duration.Most earlier breakthroughs in pearl millet both from public and private sector agencies were in the form of hybrid varieties. These seeds need to be bought every year and need a higher level of inputs, which most poor households could not afford. Open-pollinated varieties developed and introduced by ICRISAT and its national program partners in Rajasthan provide yield increases without the disadvantages inherent in hybrids. Farmers can save and plant their own seed, and yield increases over local varieties are considerable, even without the use of yield-enhancing inputs. Many of these varieties were developed through farmer participatory trials and are therefore more suitable for local conditions.Major benefits perceived by households in villages of western Rajasthan where large-scale adoption of ICRISAT-developed varieties have been adopted for over 10 years include:(1) An improved choice of varieties to suit the weather; farmers are able to better manage risk arising out of climatic factors through the availability of varieties of different duration to suit the rainfall pattern.(2) Reduction of risk has led to greater stability of the cropping system; farmers are able to plan better in advance and take decisions regarding the cropping pattern. More importantly, stability has led to long-term risk reduction, especially by building up grain stock for lean years.(3) The cropping pattern has changed because of decreased risk and higher yields. Farmers choose an optimum mix of cash and subsistence crops to harvest grain yield for consumption, and cash crops for purchasing other necessities, and invest in inputs that lead to higher yields and productivity. In particular we observed land augmentation because of technology adoption-stable yields of pearl millet have enabled farmers to plant lesser area to millets and more to other, particularly cash, crops. (4) The construction of \"pucca\" houses seems to be high on priority; most households first seek stabilization of their cropping system, and investment in productivity increasing ventures. Subsequently, they give importance to construction of a shelter to significantly improve their earlier \"kuchcha\" structures. (5) Given the high-risk environment and extreme nature of economic backwardness in western Rajasthan, a premium seems to be placed on investing in community-level facilities. Thus, in several villages, households pool resources to enhance their education and health facilities. Communities also invest in symbolic and non-tangible ventures, whose benefits are not increasingly apparent, but which enhance social status and have long-term benefits, such as temples, and \"kabutarkhanas\" (bird houses).Based on the above preliminary findings, we are now developing a rigorous methodology to survey and quantify the observed impacts on a larger scale.At this point we wish to mention three distinct features that accompany the process of technology adoption resulting in poverty reduction. These we believe are essential for positive impacts on the poor.(1) Asset generation. It is important to focus on increased productivityrelated investments. Any on-farm investment that occurs after technology adoption points to positive impacts and is likely to result in sustainable, long-term development. Continuing on-farm investments are a key indicator of farmers' self-reliance, leading to exit paths out of poverty. In general we observed that on-farm investments are in the form of purchase of land, investment in irrigation (pump sets, wells), motive power (livestock, tractors, power tillers, threshers), and land improvement measures. In Rajasthan, we also observed that, when income surpluses accrue or are sustained over a few years, one of the first items that farm households invest in is a pucca house. Shelter for the family as well as for farm animals comes across as most important for farm households.(2) Improved access. Farmers practicing traditional agriculture, those using little inputs and local cultivars, are usually the more isolated ones who have less access to government agencies. They have less contact with extension agents; they are less integrated into various kinds of markets; and have little access to non-exploitative institutions, such as those for credit. In both Rajasthan and in Maharashtra, farmers reported increased visibility of their villages after technology adoption, and resultant improvement in their socioeconomic status. Their credit worthiness improved (among banks as well as input suppliers). Consequently, government programs targeted these villages, and they became better integrated with the larger community in a general way.(3) Empowerment and human capital enhancement. A key feature of most villages where we carried out our pilot surveys was that, overall, farm households experienced an expansion of choice-choice of cropping pattern, choice of investment strategies, and choices to better manage risk and instability. Binding constraints were lifted to enhance economic decision making, which resulted in empowerment at the household and community level. For example, in Rajasthan where PRAs were carried out among women and men, improved welfare after technology adoption was revealed through increased rates of schooling, especially for girl children, and community-level support for education. In the Maharashtra study also, literacy and education levels markedly improved, especially among marginalized (tribal) groups.Much of the current debate on agricultural innovations and consequences for poverty essentially revolve around the nature and extent of positive or negative impacts on the poor, on inequality, and on the environment and its implications for larger economic growth. Methodological issues have mainly addressed measurement of these related impacts. Although issues such as risk and institutional constraints have also been the focus of studies, systematic analysis focusing on the nature of the linkages between research, technology adoption, and poverty and the actual process of impact have not been tackled adequately. This paper's primary focus is to seek an understanding of linkages and the actual process of benefit flows, and to establish a basis for confirming questions related to measurement of poverty impact in an adequate manner. This understanding provides feedback regarding the precise way in which a technological innovation effects improvement in welfare, and thereby helps in planning appropriate research strategies.Participatory approaches enhance human capabilities, specifically those related to knowledge regarding innovations and the use of innovative techniques. Human capital enhancement in the form of knowledge regarding technological options expands choices available to farm households, and reduces risk. Expansion of choice reduces constraints on economic and social decision making. Technologies arising out of such approaches therefore are more likely to reduce poverty in the long run.Poor people have few assets, and access to common property resources is also on the decline. It is therefore necessary to understand how technologies and intervening factors enable or constrain farm households in acquiring a wide range of assets and in gaining access to decisionmaking processes, resources, and markets, and benefit from them.The need for increasing sustainable crop yields continues to grow with increasing population and environmental limitation. This is especially true in the case of China, which is the most populated country with the most limited amount of arable land per head in the world. China is a country probably occupying one of the highest positions on the international food security agenda in the coming century. However, food security is a complex and debatable issue. Food productivity and availability do not necessarily equate with food security for all. Poverty is a major determinant of chronic food insecurity. In this chapter, the impact of agricultural research on food security, at both national and household levels, and on poverty alleviation is addressed through the impact study of the Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT) Program in the context of China. Southwest China hereon refers to this CIMMYT Program area, including three provinces-Guangxi, Yunan, and Guizhou.In collaboration with the Chinese Academy of Agricultural Science (CAAS), CIMMYT initiated a maize (Zea mays L.)-breeding program in southwest China. The general objective was one of poverty alleviation at the end of the 1970s. The maize-growing area in China can be roughly divided into two distinct parts, the northern plain and the southwest. The former is relatively similar to the Corn Belt of the USA in soil types and climatic conditions. Maize production there is mainly for feed. The southwest is a remote mountainous area with a tropical and subtropical climate. The 25 million poor farmers who reside in this area basically depend on maize for their staple food, but production circumstances are quite different from the northern \"Corn Belt\", as are the socioeconomic conditions. The present chapter, which is based on the impact study, intends to address the interrelated national and household food security and poverty alleviation issues by assessing the impact of the Program and analyzing the capabilities of public research and farmers' indigenous knowledge to deal with these issues at different levels. It concludes by suggesting that China will benefit from a combination of a modern technology-oriented approach and a participatory approach. Collaboration between the formal and farmers' knowledge systems are highly necessary for the design of agricultural research projects that could better address the challenges to be faced in poverty alleviation, food security, and natural resource conservation.China turned to the power of modern agricultural technology to solve the problems revealed by the great famine at the end of the1950s to the early1960s. The most noteworthy development was the establishment of the public agricultural research and extension systems for modern varieties. Some 30% or so of Chinese food security since then is attributable to the development and rigorous promotion of improved planting materials, especially hybrid wheat, rice, and maize (Fan and Pardey, 1997;Lin, 1998). China was the first country in the world to plant significant areas of genetically modified crops in the early 1990s. But the modern technology approach cannot work in all areas or for all farmers. Besides, the social context and natural environment are rapidly changing, and the poor, with limited resources, are the most fragile group to adapt to the changes.The Chinese rural economy has experienced a rapid growth since the adoption of a broad program of rural economic reforms beginning in 1978, and China is widely recognized for its achievements in reducing absolute poverty since then. Nevertheless, about 60 million people still live under the absolute poverty line, and they comprise most of the food-insecure population. They are mainly farmers cultivating in resource-constrained, remote upland areas, where the agro-ecologically diverse, resource-poor, and risk-prone regions in southwestern and northwestern China are located. These small-scale subsistence farmers have an average land size of less than 0.2 hectares. Although these poor have land use rights, in most cases the land itself is of such low quality that subsistence levels of crop production cannot be achieved. Consequently, most poor consume grain and other subsistence foods beyond their own production levels, and are negatively affected by price increases for these products after reforms (UNDP, 1995;World Bank, 1995). Minority peoples are known to represent a highly disproportionate share of the rural poor.Feminization of agriculture is strong; women constitute more than 80% of the agricultural work force because of male out-migration (Gao, 1995;Song, 1998). This is especially true in the remote and upland communities, where most of the male farmers have migrated to urban and economically booming areas for income earning opportunities. Women, who were left behind in agriculture, were overburdened with low or nonprofit agricultural activities as unpaid laborers within the household. There were fewer opportunities for women-headed households to adopt modern varieties (MVs) because of their limited access to resources and services (Ashby, 1985;Jiggins, 1986;Song, 1998). These poor, womenheaded households are facing problems of food insecurity, and poor access to basic health and education services and other public services. They comprise the poorest group of the poor.Meanwhile, when we discuss food production and security, especially with respect to the rural poor, the issues of environment and biodiversity conservation also should be addressed. Some researchers argue that poverty and environmental degradation are closely linked, often in a selfperpetuating negative spiral in which poverty accelerates environmental degradation, which in turn results in, or exacerbates, poverty. Continuing to neglect these less-favored, vulnerable areas where many of the poor live will make degradation worse and perpetuate poverty. Continuous exploitation is guided by the state's single-minded aim of targeting only yields to ensure national food security since the Green Revolution era. With little regard for the chaotic variation in environment and emerging changes in social contexts, this exploitation has tended to degrade natural resources and agro-ecology. For example, the wide adoption of MVs was accompanied by the disappearance of indigenous varieties, by soil erosion resulting from overuse of chemical fertilizer, and by insect resistance because of overuse and repeated use of pesticide. This, in turn, has tended to destroy the resilience of the ecosystem and the sustainable livelihood of farmers, particularly the poor, and mainly women.In China, rice (Oryza sativa L.), wheat (Triticum sativum Lam.), and maize have long been the three traditional main food crops. Each of these grains accounts for roughly 100 million tons of the 340 million tons annual grain harvested. However, rice and wheat are now the two national staples, with rice dominating in the south and wheat in the north. Maize used to be the staple food in the northeast, southwest, and northwest. Maize is now the most important feed crop (about 70% of harvest used as feed [Dong, 1995]) and the third most important food crop in China. More importantly, it is the main staple food crop for the rural poor in the remote upland areas in the northwest and southwest. The latter is an agroecologically diverse area and the major source of maize genetic diversity in China. Previous research revealed that the narrow genetic base is a main technical constraint in maize plant improvement in China (Li, 1990). Recent studies and evidence further show that these local varieties and landraces are disappearing at a rapid rate. Genetic base broadening and biodiversity enhancement have a crucial role to play in sustainable food production and food security in China.Under such circumstances, research questions arise such as: what has happened in areas where environmental resource endowments are too variable and marginal for modern technology strategies to succeed? What are poor farmers in these areas looking for in improved planting materials? And how have their needs been met? What can agricultural research, in our case plant breeding, do to better address the confronting inter-linked issues of food security, poverty alleviation, and natural resource conservation in a sustainable and equitable way? The impact study intended to answer these questions by assessing the impact of the MVs and analyzing the capabilities of public research and farmers' indigenous knowledge to deal with the food security and poverty alleviation issues at different levels.The impact study was made at five levels (i.e., state, province, county, village, and farmer household), by using exploratory qualitative methods and quantitative formal survey methods. The impact assessment (at both macro and micro levels) and the comparative analysis of formal and informal breeding with in-depth case studies provide a comprehensive view of the Program. The Program's general impact is impressive. A farmer survey and indepth case studies in the region revealed that 65% of the total maize area is covered by MVs (46% hybrids and 19% improved open pollinating varieties [OPVs]), while the rest are landraces. About 957,000 hectares are planted to the CIMMYT-related materials every year, comprising about 43% of the total maize area in the three provinces. Of the total local releases, 73% has been based on improved germplasm during the period from 1980 to 1996. Of the MVs currently used, about 87% are CIMMYTrelated materials. The total adoption of improved germplasm has been growing for both favored and less-favored areas during the implementation of the Program in the last 15 years. There is little doubt that the wide adoption of MVs has contributed significantly to the continuous increment in maize production and productivity over that period (Figure 1). Despite the impressive achievement at the macro level, further indepth case studies and participatory observation have revealed great variation among regions and differentiation among farmers in coping with the MVs. A farming-level study showed that the types of materials adopted are obviously different in different environments. Improved OPVs are adopted mainly by farmers in environmentally harsh and rainfed areas. For instance, the three improved populations from CIMMYT (Tuxpeño 1, Tuxpeño P.B. C15, and Suwan 1) have had an annual adoption of 310,000 hectares, comprising about 15% of the total maize area since the early 1980s. They are mainly cultivated by poor farmers in the marginal and environmentally less-favored areas with difficult and complex maize farming systems. The three improved populations, which were held and directly used by farmers, have become dominant varieties and contributed significantly to household food security and poverty alleviation in the rocky mountainous areas in the southwest. Although this is not reflected in the state's statistic of modern technology (mainly hybrid) adoption, great impact through farmers' informal systems has contributed considerably to the realization of the general objective of the Program for poverty alleviation. In the environmentally favored areas, top-cross and three-way cross hybrids are widely accepted and dominant, such as Guangxi Topcross 1 to 5, which have dominated in the relatively favored areas in Guangxi for about 10 years. These are CIMMYT-related hybrids. The adoption of the government-recommended, single-cross F 1 hybrids is limited despite the large number of releases available at the public breeding institutions and with strong government recommendation and intervention. A large gap exists between (1) farmers' heterogeneous needs and interests, and (2) the formal breeders' single-minded pursuit of yield and their profit incentive in hybrids. Most public efforts went into the development and diffusion of several uniform, high-yielding hybrids. As a result, the formal knowledge system largely neglects regional variation and user differentiation in terms of gender. This has resulted in the activation of the farmers' indigenous system for OPV improvement, landrace maintenance, and seed exchange, because few public efforts were made to distribute and improve these varieties as a result of the public seed system's low interest in OPVs.Consequently, the impact of CIMMYT's maize germplasm is actually being achieved through both the formal system and farmers' systems. The macro-level impact is mainly achieved through the public breeding efforts, and is reflected in the adoption of CIMMYT-related hybrids and yield increments, which, however, have limited benefit for resource-poor farmers in marginal rainfed areas. The considerable impact of the improved maize germplasm on the household food security and poverty alleviation of the poor and women farmers is achieved through the informal system, which has assured the wide distribution of CIMMYT's improved populations through farmers' own systems.The great famine in China in the late 1950s to early 1960s, and the poor socioeconomic situation of agriculture at the time, stimulated the construction of a modern technology-oriented approach. Since then, national food security via food self-sufficiency has been the central government's number one goal for agriculture. Government policy started to emphasize modern inputs in terms of MVs, fertilizers, and irrigation schemes. The most noteworthy development was the establishment of an agricultural research and extension system for MVs. The development and distribution of MVs for the three main staples (rice, wheat, and maize) has been the core task and first priority for this system from the very beginning. F 1 hybrid breeding has become a universal tool for the formal plant breeding system to achieve the overall goal of national food security.In 1990, the government started to reform its agricultural research funding policy. The government reduced its fiscal appropriation for agricultural research, shifted funding from institutional supports to competitive grants, and encouraged research institutes to commercialize their technologies, using part of the proceeds to subsidize their research (Lin, 1998). The agricultural research institutes have had to become more profit driven either through their research or other activities. For this reason, hybrid breeding and hybrid seed production have drawn more attention and effort than ever before. This has resulted in a strong public sector focus on several profitable hybrids and neglect of non-profitable OPVs needed by farmers in unfavorable marginal areas.Unlike the situation in other developing countries, in China, CIMMYT's breeding material goes entirely through the dominant public system(s) (Figure 2). Obviously the formal system's program followed a top-down linear technology transfer process, through which CIMMYT's breeding materials made their way to farmers. With the single purpose of increasing productivity to ensure national food security, most public efforts went into the development and distribution of several uniform high-yielding hybrids, particularly single-cross F 1 hybrids. This is especially true after the 1990 policy reform. The formal breeding and seed distribution system has increasingly been forced to commercialize its operations, leading to an increasing focus on hybrid breeding and seed production and to an increasing neglect of OPVs and the deterioration of the quality of hybrid seed.Fieldwork revealed that 48 maize varieties released by the formal breeding system in the southwest from 1980 to 1996 consisted of 39 hybrids and only nine OPVs (Table 1). Within the 39 hybrids, 31 are combined with one parent line from CIMMYT. The study also shows that CIMMYT germplasm has been playing an increasingly dominant role in formal, mainly hybrid, maize breeding (Figure 3). However, Table 1 also illustrates the worrisome trend for the total number of releases by public breeding to decrease considerably after 1985, especially after the 1990s. This is mainly because of the government's reduced funding for public research resulting from structural adjustment and privatization. As a result, the hybrid policy together with the reduced funding situation and the inadequate profit incentives led the formal seed system to provide fewer and more limited options for farmers.Geographical variation is a major characteristic in Chinese agriculture. Regional variability in farming systems and differentiation among users are increasing as a result of the changes that emerged after the recent reforms (e.g., the development of rural industry, the commercialization of agriculture, and the feminization of agriculture). Farmers dependent on varied farming systems with diverse patterns of usage of maize have quite different and heterogeneous needs for, and interests in, technology and genetic diversity. The big gap between the breeders' limited supply and farmers' diverse needs led to the activation and development of indigenous knowledge systems through which farmers work on the neglected improved OPVs and landraces to meet their own needs. Owing to the The two cases below of Zhichen and Wenteng villages represent the two contrasting environmental and economic conditions of maize farming in southwestern China. Zhichen represents the poorest remote mountainous communities, which use maize for subsistence food production, while Wenteng represents relatively better off communities in the valleys and flat areas that use maize as pig feed. Zhichen villagers considered improved OPVs and some landraces as appropriate technologies to meet their needs in their harsh environment, whereas Wenteng villagers used to cultivate hybrid maize. However, most of them recently have shifted to improved OPVs, mainly because of the decreasing quality of government-supplied hybrid seed. As a result, Tuxpeño 1 has now become the dominant variety in both villages.Tuxpeño 1 (local name Mexican 1) is an improved population that CIMMYT developed from a landrace that originated from Tuxpau, Mexico. Tuxpeño 1 was introduced in southwest China in 1978, originally as a constituent for variety improvement and hybrid combination. However, it was rapidly disseminated through the three provinces, mainly through informal seed exchange. Because of its broad adaptability and stability, and strong tolerance to stress, especially lodging resistance, it became particularly popular with farmers in difficult farming systems in the remote mountainous areas. It has contributed significantly to household food security and poverty alleviation in the last two decades in those areas. Meanwhile, because of the poor quality of government-supplied hybrid seed, farmers in relatively favorable areas have increasingly adopted Tuxpeño 1. However, because maize is an out-breeding crop, without improvement effort from formal breeding, Tuxpeño 1 has degenerated greatly by out-crossing, resulting in decrease of yield, increase in plant height, and loss of stress-resistant characteristics to a certain degree. Farmers requested the government to assist them to improve the material, but no government attention was received. This led to significant efforts by local women farmers to engage in regeneration of Tuxpeño 1 (see under Wenteng case below).The two case studies below illustrate women farmers' initiatives and methods in maintaining and improving Tuxpeño 1 and three landraces in two villages.Wenteng has a relatively favorable environment, people are better off, educated, and integrated into the market economy. Maize used to be traditional staple food, but is now mainly used as pig feed. Pig raising is the main source of income for most villagers.Because of the lack of institutional support, and the popularity of Tuxpeño 1, women in Wenteng village have organized themselves to maintain and improve the variety since the late 1980s. An innovative woman, who had tried to maintain Tuxpeño 1 since its adoption, initiated this activity. The crop development methods used by the women include spatial separation through use of plots at different locations, temporal isolation, and seed selection. These methods are critical for population maintenance. The women explained that because of the popularity of Tuxpeño 1 and the women's initiative in selection, it is easy to organize women farmers to grow the variety in adjoining fields, isolated from other varieties. The main selection method the women farmers use is mass selection in field and postharvest. In breeding terms, it is stabilizing selection for population maintenance. The three steps in seed selection are:(1) Select best plants in the field (ideal phenotypes with big ears and other preferred agronomic traits in the middle of the field); (2) Then select best ears (based on cob size, length, and number of seed rows); and (3) Then select best grains (from the middle part of the ears, seeds are selected for kernel size, shape, quality, and color).The women farmers claimed that their skills mainly have been passed on for generations, because they have also used similar techniques for the maintenance of landraces. They also added that some of their selection knowledge and techniques are gained from barefoot scientists 1 (breeders) in Mao's period by their parents or by themselves. As a result, the quality of Tuxpeño 1 in Wenteng village has been maintained and even improved in the sense that it is better adapted to the local conditions than before. Most villagers now consider it a local variety rather than a foreign one. It is not surprising that the improved Tuxpeño 1 has spread rapidly to the neighboring areas through farmers' informal seed exchange systems. Now Wenteng has become a source for quality Tuxpeño 1 seed for a large area.The Zhichen case. Zhichen has a harsh and rugged environment. Farmers plant maize in minute pockets of soil on steep mountain slopes and between rocks in flat fields. There are no roads, and access to markets is very limited. Maize is produced for consumption. It has been a traditional staple crop in the area, which has a diversity of maize landraces. For instance, waxy maize is considered to have originated from this area (Liu, 1991;Zhang, 1995;Song, 1998).Tuxpeño 1 was introduced in Zhichen at the end of the 1970s and quickly became the dominant maize variety. In Zhichen, 90% of the farmers surveyed in this study said that resistance to lodging and higher yield are the most important criteria for their selection. Other preferred characteristics include white kernels, a good stalk with strong root system, relatively short plant stature, wide adaptability, and little external input (e.g., seed and fertilizer). In the last 3 to 4 decades, the cultivated landraces have been disappearing. From 20 local maize varieties planted in the 1960s, Zhichen villagers now only plant Tuxpeño 1 along with three local varieties (Local Sticky, Duan 1, and Local White). However, Tuxpeño 1 has degenerated greatly in Zhichen, as have the three landraces, as a result of outcrossing.In contrast to Wenteng farmers, Zhichen villagers did little to maintain Tuxpeño 1 themselves; instead they maintain preferred landraces. Zhichen villagers feel that Tuxpeño 1 has degenerated beyond their skills to improve it. They hope that the government will improve the variety, because they consider this a government or foreign variety rather than a local one. Yet, they also know that they have to maintain their local varieties because no outside help will ever bother to do so. The farmers chose to maintain and improve the three local varieties based on their complex farming system and livelihood. Some farmers maintain the local white variety for its sweet stalks, which children enjoy chewing like sugarcane (Saccharum officinarum L.). Local sticky is a waxy variety used as a specialty food for local festivals. Almost every household maintains a small plot in its vegetable garden, despite low yield. Duan 1, an OPV improved by the county extension station in the 1960s, is maintained because of its strong drought resistance. Despite its low yield, farmers grow the variety in the second cropping season in the autumn, when no other variety survives the severe drought. The methods used by women farmers to maintain the three local varieties include spatial isolation (grown in isolated gardens or separate valleys) and postharvest seed selection for the best ears and then best kernels. Zhichen villagers also claim that their ancestors passed on this knowledge. Compared with the women farmers in Wenteng, farmers in Zhichen have less access to the outside world and less influence from external knowledge, and they maintain more diversity for risk management.Wenteng has maintained and improved Tuxpeño 1, while Zhichen has chosen to maintain local landrace varieties. The different choices made by the two villages offer insights into farmers' selection strategies. Given the fact that maize is their staple food crop, Zhichen farmers strategically chose maize varieties that reflect their risk-aversion strategies. Despite the agronomic popularity of Tuxpeño 1, for Zhichen farmers in subsistence agriculture and risk-prone environments, other varieties were maintained and improved because of a combination of nutritional value, cultural practices, and reliable supply in the most adverse environmental conditions. The poorer villagers chose to maintain more diversity for managing risk. On the other hand, in Wenteng, Tuxpeño 1 fits the requirements for a commercial crop. The surplus in production extends the readiness of Wenteng's women to take risks. In addition, their more advanced knowledge and skills in varietal improvement and seed selection also reflect their greater external influence and better access to information and education compared with Zhichen, where women farmers live in isolation and often are illiterate.Farmers' contrary adaptive strategies towards Tuxpeño 1 in the two cases show that their selection priorities and objectives reflect their environmental conditions, market and institutional relations, socioeconomic positions, and risk management.The case studies also illustrate farmers' potential capability in selection and their benefit from exotic varieties such as this one. Some questions arise from the case studies. Why has Tuxpeño 1 such broad adaptation and why is it well accepted by farmers? Can the formal system pay more attention to these types of varieties by bringing more appropriate germplasm for the needs and interests of the poor farmers as well as for genetic base broadening in the agro-ecological diverse, remote, and resource-poor upland areas? What should international organizations and Chinese national agricultural research systems do to enhance the local process that already exists and to expand the base that farmers already have genetically and institutionally?The impact study has clearly shown that agricultural innovation and the diffusion of new technologies are important factors in addressing food security (both at national and farmer household levels) and poverty alleviation. This is especially true with the case of maize, which is often grown in less favored areas and remote uplands, and is usually the primary base for diets in these areas. However, farmers adopt an innovation only if it will work in their fields. The modern technology approach in China, which has contributed considerably to the national food security, does not work in the remote, resource-poor, upland area. And the uniform MVs, mainly hybrids, are not sufficient to meet the heterogeneous needs of farmers, especially the poor and women in the marginal areas. In order to address the food security issues and to attack poverty and hunger, it is critical to direct agricultural research to cover these marginal areas and reach the un-reached poor populations by developing appropriate technology to meet their needs and interests.An abundance of evidence and cases found in the research suggests that the real causes for the failure of the formal breeding program to address the variation of farming systems and to respond to the heterogeneous needs of farmers in marginal areas are institutional rather than technical constraints. These institutional constraints are related mainly to the research priority and focus and partially to the inefficiency and ineffectiveness of the formal system. Some technical factors, such as variety characteristics and environmental conditions, are responsible for the failure at first sight. However, technical constraints can be overcome by breeding varieties with desired traits for target areas (CIMMYT, 1996).The impact study provides us with a comprehensive picture of the great impact achieved through the public system and farmers' indigenous system and the operation and functioning of the two systems at different levels. The study also revealed a wide and growing gap between farmers' diverse needs in terms of stability, quality, yield, and other agronomic and postharvest characteristics, and the formal system's single interest in yield increase through F 1 hybrid breeding and distribution. This resulted in the initiatives of farmers and the activation of their indigenous system to meet their own needs and interests.The experience of Tuxpeño 1 shows the impact of CIMMYT material on household food security and poverty alleviation and the potential role of CIMMYT through the farmers' informal system. When CIMMYT's technologies reached the limit of success in terms of reaching the poor through the formal system, their impact continued through the farmers' system. This implies an urgent need for better institutional linkage and collaboration between the farmers' and formal systems in crop improvement in order to explore local dynamics and potential farmer capability.The impact study also revealed that the \"feminization of agriculture\" is an impressive phenomenon in the remote upland areas. Women there are playing a predominant role in subsistence agriculture and food security. Seed maintenance and selection is carried out entirely by women based on their own knowledge. However, the women's access to resources and public services is much more limited than that of men. A gender analysis and involvement of women's participation and their expertise in technology design and development is vital in technology design and development to meet their specific needs and interests. This could substantially contribute to reduce poverty and ensure food security at the farmer household level (Jiggins, 1986;Quisumbing et al., 1995;Song, 1998).Considering the main policy issues arising from the impact study, and given the specific situation in China, a twin-truck approach (i.e., a combination of the present modern technology-oriented approach and participatory approaches) can be an alternative to address food security and poverty alleviation. It could also enhance the sustainable use of genetic resources and biodiversity. In the same way, a combination of traditional technologies from the farmers' indigenous level and modern technologies from the scientific level might provide a great opportunity for additional food production and productivity gains while conserving natural resources. Farmer's indigenous knowledge systems have a close relationship to the complex natural ecosystem and diverse farming systems. Farmers know their farming system best and scientists have the knowledge of scientific principle and biotechnology. A cooperative and complementary relationship between the two systems, rather than a separated and conflicting one, is a logical combination to meet both the state's need for national food security at the macro level, and the farmers' diverse needs and interests in different areas at the micro level.China should certainly take the technological high road in uniform and well-favored environments to insure national food security. In addition, reconsideration and adoption of the Chinese traditional ecological knowledge and indigenous farming practice are highly necessary to maintain land productivity and minimize the negative side of the modern technologies on the environment and natural resources. But, in the more remote and difficult regions, research on more location-specific technologies is needed to produce a wider range of technology options tailored to diverse environments and complex and fragile ecosystems.Decentralization of the formal systems and involvement of farmers, mainly women, in the technology design and development process is necessary and essential to stimulate collaboration between the two systems through mutual communication and understanding. The informal sector needs to know more about the complexity of biotechnology, while the formal system needs to know more about the complexity of poor farmers' farming systems and their livelihoods. For instance, the importance of farmers' knowledge of landraces and their understanding of the micro-variations in the environment could become the basis for local-level breeding or locationspecific breeding. Through farmers' participation and cooperation, breeders can gain new insight into the criteria, objectives, or evaluation techniques of farmers and the differentiation between regions and types of farmers (in terms of gender). As a result, appropriate varieties within a wide range of options can be produced to meet the heterogeneous needs resulting from regional variation and user differentiation.We can conclude that interaction and collaboration between formal and informal knowledge systems through participatory methods and gender analysis is critical, not optional, in the design and development of agricultural technology that could better meet the needs and interest of the poor and of women farmers. In return, it could substantially contribute to reduce poverty and ensure food security.Cassava (Manihot esculenta Crantz) is an important crop throughout the tropical world for small-scale farmers with access to marginal lands. Its high tolerance to seasonal low rainfall, high temperatures, and intermediately fertile soils makes it an essential source of food security and cash income in areas where few alternatives exist. For example, smallscale farmers of the semiarid North Coast of Colombia obtained 40% of their cropping income by marketing cassava (Janssen, 1986). The crop represented an important food source for the farmers and their families as well as an employment generator, creating about 7.3 million wage-days per year. Despite cassava's socioeconomic significance, the quick deterioration of cassava roots rendered its marketing difficult. During the 1970s and 1980s, farmers in Latin America had limited marketing outlets for their cassava production; most of the production was for on-farm consumption and sold on fresh markets. A marketing channel made up of several intermediaries ensured the supply of roots from the farm gate to the urban consumers. The short shelf life of harvested fresh roots made marketing cassava a risky business; losses were high and fluctuations of daily price were large.Market alternatives were needed. CIAT identified dried cassava chips for the animal feed industry as a potential market alternative. The Integrated Cassava Research and Development (ICRD) Project, 1981Project, -1989, was set up to widen market opportunities for small-scale farmers, secure a price floor for cassava, and thus provide a sustainable source of income for the farmers. The program's strategy was to link small-scale farmers with the expanding market for animal feed concentrates (Best et al., 1991) of less than 20 hectares. The project's main hypothesis was that with secure and profitable markets, cassava farmers would be more likely to adopt improved production technologies that were cost reducing, thus improving their cassava production and, consequently, their incomes.We evaluate the main hypothesis driving the ICRD Project and its overall impact on poverty. To determine whether the project reached its goal, we focus on assessing the project's impact on participating communities in terms of poverty alleviation within them. We also aim to identify the avenues by which the project brought about these changes. Thus we analyze:(1) The emergence of cassava drying organizations, and the expansion of cassava drying capacity in the region;(2) The short-run, intermediate effect of the new alternative market developed for cassava roots;(3) The new market influence on the adoption of modern varieties; (4) The contribution of the ICRD Project to poverty alleviation; and (5) The sustainability of the impact after the project ended and after the national economy opened up to international competition.Lessons learned from the project's experience indicate that interinstitutional partnerships played an important role in reaching the targeted population and implementing the project and that the market alternative created by the drying agro-industry stimulated the adoption of new technology.In the early 1980s, the Colombian cassava market experienced particularly depressed prices, partly a result of an intensification of cassava production. Taking advantage of a credit program offered by the Colombian government's Integrated Rural Development Program (DRI, the Spanish acronym), cassava farmers increased their production in the late 1970s (Janssen, 1986). By 1981, cassava production was extremely high and unable to find buyers; many farmers plowed their crops without harvesting.With prices falling below production costs, problems of massive credit default appeared. Limited markets for cassava belied the DRI's basic premise that production increases would improve the income of small-scale farmers. After the 1981 debacle, farmers were afraid to increase cassava production. Small-farm development in the North Coast region clearly did not depend on production increases alone, but also on marketing. The DRI therefore began searching for alternative markets for cassava.In the same period, CIAT was concerned that, constrained by lack of markets, cassava farmers in Latin America were not adopting improved production technologies developed during the 1970s. The Center therefore studied alternative uses for cassava to identify markets with growth potential, the most promising of which was the use of dried cassava chips as an energy component in animal feed concentrates (Pachico et al., 1983). This industry was originally developed in Asia, where millions of tons of dried cassava chips had been produced for export. After conducting economic studies, CIAT initiated an integrated approach to cassava research and development to introduce this market opportunity to South America (Cock, 1985;Lynam and Janssen, 1988).For the DRI, also facing the challenge of finding alternative markets for cassava, CIAT was a natural partner because it had already identified such possibilities. The Center had also begun developing appropriate cassava processing technology, and conceptualizing the ICRD strategy. In 1981, together with the DRI Program, the ICRD Project was implemented through an integrated set of institutional, organizational, and technological interventions designed to link small-scale cassava farmers to expanding markets, thus to stimulate their demand for improved production technology with potential to improve their income and welfare.To establish an agro-industry based on drying and chipping cassava roots required the construction and operation of small-scale processing enterprises, owned and managed by small farmer associations. The technology was brought from Asia, but was tested, adjusted, and diffused with small-scale farmers' participation. This low-cost and appropriate technology consisted of chipping cassava roots, which were then spread on cement floors and sun dried. The North Coast region of Colombia was chosen to elaborate the project because of the importance of the cassava crop to the region. In the early 1980s, the region grew 35% of the country's total cassava production. Moreover, the region had a high proportion of small-scale farmers, with 80% of farms of 20 hectares or less representing less than 10% of the total farmland (DANE, 1974). The North Coast region featured all the characteristics desirable to develop and implement the ICRD.The ICRD Project was coordinated by the DRI, in collaboration with other decentralized public and private institutions. Each institution assumed an agreed set of responsibilities in accordance with their own mandates and capacity (summarized in Table 1). The ICRD Project was executed in four phases (Best et al., 1991).The project began with a group of 15 farmers, selected from the municipality of San Juan de Betulia, Department of Sucre. A pilot plant was built, the processing technology was evaluated and adapted, and an operational scheme was developed for local conditions. Seven tons of dried cassava chips were produced and distributed to several animal feed firms to obtain feedback on their potential interest in buying the product and the price they would pay. As a result, one firm committed itself to buying the entire production of the next cassava season. The pilot plant became semi-commercial, with the farmers taking full responsibility for its management. This period provided reliable data on the plant's operation and consolidated the market for the product. A technological and economic feasibility study was conducted, and its positive results prompted the DRI to create a line of promotional credit for establishing additional drying plants. The pilot plant expanded its capacity and was used as a demonstration and training model for other farmer groups interested in building drying plants in their communities.Drying plants were replicated at other sites in the North Coast. At the same time, the development and validation of production technologies were intensified, and a methodology of farmer participation was incorporated into technology development. By 1989, small-farmer cooperatives were managing 39 drying plants, and five plants were privately operated. As dried cassava chips production reached 5600 tons, the product had to be promoted among a larger number of buyers. The National Association of Cassava Producers and Processors (ANPPY, the Spanish acronym), an association of small-farmer cooperatives, was created and took responsibility for marketing the dried cassava chips. In 1989, the ICRD Project ended as a formal interinstitutional activity.By 1993, 138 processing plants for drying cassava were operating. Smallfarmer cooperatives managed 101 plants, while private individuals who had adopted the processing technology, but not the organizational model, built the remaining 37. The total drying capacity of all 138 plants was 179,715 m 2 , of which private entrepreneurs installed 28% (Figure 1). The rapid growth in private investment occurred mainly during this phase, when the technology was completely adapted to local conditions, the market already established, and the economic feasibility of the investment proved. The private entrepreneurs therefore assumed a lower risk. In 1993, dried cassava production reached 35,000 tons, valued at US$6.2 million, and requiring 90,000 tons of fresh roots. This volume represented 10% of total cassava roots marketed in the region. Probably 36% of small-scale cassava farmers in the region were selling cassava roots to the dried cassava agro-industry, and 15% of all small-scale farmers were members of a cooperative. 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 Figure 2 illustrates the conceptual framework of the ICRD Project, its expected impact, and its links with the adoption of cassava production technology. The promotion of small-scale, cassava-based, drying firms was expected to create an alternative market for cassava roots that would contribute to establish a price floor for the product in the fresh market, narrow price fluctuations, and enhance farmers' bargaining power. These changes in demand and prices should thus reduce market risks faced by cassava farmers and create an incentive to increase cassava production.Over the short term, cassava farmers would increase their production by expanding the area planted to cassava. The reduced market risk, over the longer term, would stimulate the adoption of improved cassava production technology, therefore improving productivity. Cassava production in the region would be reflected by increased cassava area and crop productivity.Hence, the changes in prices and production, hypothesized as being brought about by the technological changes in the region, would be translated into changes in consumer, processor, and producer surpluses. Income would be raised and employment would be generated, not only as a consequence of increased cassava production in the region, but as a result of the established agro-industry. The increased income and additional employment opportunities for small-scale and landless farmers in the rural communities would be expected to encourage overall community development, foster social organization, and reduce poverty levels in the population.To assess the impact of the ICRD Project, we break down the analysis into five levels. First, we model the emergence of the drying plants to understand the conditions that favored the implementation of the program. Then we evaluate if the drying plants contributed to securing a floor price for cassava. We examine the adoption response to the new market alternative followed by the impact on poverty alleviation within the community. Finally, we discuss the sustainability of the program. We analyzed the emergence, technology adoption, and impact on poverty using regression techniques. The framework used for each is explained below.Using the Colombian municipality as our definition of a community, we first model the farmers' decision to enter the market of dried cassava chips, that is, to build one or more cassava drying-plants in the community. Farmers will decide to build a plant if the profits from its operations outweigh the fixed costs involved in organizing the cooperative and building the plant. They first determine what the profits will be, which directly depends on the quantity of cassava chips they can produce, or the total drying capacity. A desired drying capacity will be determined given the cassava roots production, the transaction costs, and the demand for fresh cassava in the municipality. This desired drying capacity is such as to maximize the profits from the drying activities. Let DC* for municipality k represent this desired drying capacity, then:The vector S k represents the factors affecting the potential supply of fresh cassava roots, that is, the land available for growing cassava, the productivity of farmers, and the farm size found in the municipality. The greater the potential supply of cassava to the drying plants, the greater the total drying capacity needed in the municipality. The more land that is available to grow cassava (from increases in cropped land or substitutions of other crops for cassava), the greater is the potential supply of roots to the drying plant, and thus the desired drying capacity. Similarly, higher productivity suggests greater potential supply. Three measures of productivity are used: the percentage of farmers treating their seeds, the percentage of farmers using pesticides, and the average experience at growing cassava. The last factor affecting potential supply is farm-size distribution in the municipality. Traditionally, small-scale farmers grow cassava as a cash crop, large-scale farmers growing it only as feed for their cattle. Thus, a smaller average farm size and a more uniform distribution of small farms should indicate greater potential supply to the drying plants.The variable D k represents the demand for fresh cassava roots in the municipality. The greater the demand for fresh cassava roots, the less the alternative market of dried cassava chips is needed as an income generator. The desired capacity should therefore be lower with a higher demand.The TC k coop and TC k fresh variables capture the transaction costs of selling the cassava to the drying plant and to the fresh urban markets. The higher the transaction costs of selling cassava roots to the drying plant, the lower the farmer's profits for their sale. A lower potential cassava supply to the drying plants is implied and, as such, less drying capacity will be needed. On the other hand, the higher the transaction costs in selling the roots to fresh urban markets, the greater the potential cassava supply for the local market, including a drying plant. The distance to the urban markets dictates transport costs and thus the transaction costs, which increase with distance. To capture the expected transaction costs to the drying plant, the average distance from the farm gate to the municipality center is used, while the distance to the department capitals proxies the costs to the large fresh urban markets.Once the profits are determined, the farmers compare them to the fixed costs of building the plant. The group of farmers will decide to build the desired drying capacity if the net benefits are positive. This comparison can be represented by a net benefits index function:S k, D k , TC k coop , and TC k fresh capture the profits just as in desired drying capacity (Equation 1). The organizational costs, F k , are the fixed costs of building the drying capacity. The vector F k consists of variables that affect the organization of the cooperative and building of the plant specifically. These are the previous experience with local community associations, presence of institutions in the municipality, average formal education level of cassava farmers, and commitment of farmers to the community as represented by the percentage of farmers who own land in the municipality. The institutions include CIAT and Instituto Colombiano Agropecuario (ICA) research programs on cassava-production technology, and extension activities of ICA, Instituto Colombiano de la Reforma Agraria (INCORA), and Caja Agraria (see Table 1). The first three F k variables capture the human and social capital found in the municipality. Previous experience with associations, measured by the number of community associations, and average formal education indicate the capacity and ability of the community to organize itself and how its members can work together. The presence of institutions involved in the innovation and diffusion of cassava technology encourages and helps provide the social and human capital necessary to organize a cooperative.The cassava-drying capacity of a municipality will equal the desired capacity if the benefits index is greater than zero. The complete decision process can be summarized:A two-part model allows the econometric implementation of this decision. In the first stage, a probit over the presence of cooperatives in the municipality will estimate whether the benefits NB k * were positive. Then, using the prediction on the probability of organizing a cooperative, the amount of drying capacity built will be estimated by an ordinary least square regression. The econometric system is therefore:All the variables are measured as of 1985, thus prior to any drying plant operating. This system answers questions such as: Did the project successfully reach the targeted population of small farms? And what were the community's characteristics that drove, or refrained from, the implementation of a drying plant, and how much capacity was built?To analyze the long-term impact of the ICRD Project on the adoption of modern varieties requires a conceptual framework of the individual adoption decision. The farmer can adopt a new variety and yet decide to continue planting some of his cassava area to a traditional variety. His decision consists therefore in choosing the proportion of cassava area to plant to modern varieties (M i ). To make this decision, the farmer will consider the factors directly affecting its production, opportunity and transaction costs, and the availability of information about the new varieties and their seed.Factors affecting production include the farmer's productive assets, such as the amount of land owned and farmed, formal education, experience in growing cassava (Z i ), and the availability of credit and technical assistance (Z k ). Off-farm work constitutes an opportunity cost for a farmer (C k ), and will influence all his cropping decisions, including whether to plant modern cassava varieties. It is captured by the agricultural wage in the municipality. The transaction costs to the fresh market will also influence the adoption of the new varieties, because intermediaries and consumers prefer the old varieties. The distance to the large urban market thus enters C k .The presence of community organizations and public institutions will influence adoption by providing information and planting material of the new varieties (I k ). Drying plants also provided information and planting material to farmers, and to capture this diffusion channel, two variables will be included in the analysis: the distance to the drying plant and the presence of a drying plant. The distance to the drying plant also captures the transaction costs the farmer must bear to sell his production to the drying plant (included in the C k vector for purposes of estimation). The actual presence of drying plants in the municipality cannot be used directly because of possible correlation with the farmer's and his land's unobservables that influence the adoption decision. A farmer who is technologically inclined will both show interest and get involved in creating and operating a drying cooperative in the community, and will adopt more readily new production technology. The past involvement of the farmer in setting up a drying plant or actual involvement in operating it are not observed. Additionally, the past and present quality of land influences the production of the farmer and his need for and interest in a market alternative, and thus for a drying plant in his community. Using the predicted probability estimated in the previous step (Pr(C ≥ 1) avoids the introduction of a possible bias in the estimation. The farmer's adoption decision will be a function of all these factors:)) 0 ( r P , , , , (Because the decision is measured as a percentage, truncated at 0 and 1, a tobit regression will be estimated. Such a framework will allow us to answer questions such as, did the presence of drying plants influence the adoption of new cassava varieties? Did the implication of both local and national institutions influence the diffusion and adoption of the new varieties?Ultimately, the interest of this analysis lies in whether the project helped reduce poverty within the participating communities. To measure this contribution, we used changes in poverty levels from 1985 to 1993 at the community level. The presence of cooperatives in the communities (Pr(C > 0) and the adoption of modern varieties (M i ) should partially explain these changes in poverty. These two parts of the ICRD Project will be included as the predictions from the previous calculations, because these contain the full information about the different decision levels. Community associations may also have a direct impact on poverty reduction (Ca). Therefore, they should be included as an aggregate to the analysis. Finally, poverty levels can be affected by diverse factors other than the project. To capture these external effects, we include variables meant to characterize the municipality. These are the rate of urbanization (U), the distance to the department capital to measure economic opportunities (Km) and average family size (Fa) to measure poverty at the family level. Equation 6summarizes the quantitative analysis performed.) , , , , ), 0 ( r (PThe analysis will be carried out on two measures of poverty: the percentage of households with unsatisfied basic needs, which measures the percentage of people below the poverty line, and the percentage of households living in absolute poverty.Data sources used in the analysis were a 1991 survey on adoption among cassava-farmer households conducted by CIAT (Henry et al., 1994(Henry et al., ), 1985 and 1993 census data from the Colombian Department of Statistics (DANE), and a 1981 national household survey conducted by DANE and DRI (Sanint et al., 1985).Table 2 shows that cooperatives emerged in communities with higher potential production surplus, and higher social and human capital. With respect to cassava supply conditions, cassava drying plants tended to emerge in municipalities with cassava cropping land of higher potential, and with more productive farmers (see Pr(C ≥ 1) column, Table 2). The productivity of farmers is captured by the treatment of seeds, the extent of pesticide use, and the average experience growing cassava. The negative sign on the pesticide use contradicts intuition about productivity. A possible explanation may be that pesticide use may have a double purpose: to enhance productivity and to improve the appearance of the roots for fresh consumption marketability. The average experience growing cassava is also another proxy for productivity. It suggests, like the treatment of seeds, that communities with higher productivity are more inclined towards creating a drying cooperative. Existing local demand for cassava also had a negative impact on the establishment of cassavadrying plants. Hence, these results indicate that dry cassava agroindustries did tend to emerge in communities with higher potential cassava production and lower fresh demand. Human capital played an important role in the emergence of cooperatives as captured by the average education of farmers in the community. Human capital influenced the capacity that the community had for becoming organized and asking for institutional support to build a processing enterprise. Although the public and community associations did not influence the cooperative emergence individually, their interaction and cooperation stimulated the creation of the drying plants. Through cooperation with local associations, research and public institutions can reach more effectively the targeted population by taking advantage of the infrastructure already in place. The local association can serve as intermediary for diffusion purposes of new technologies or for provision of complementary technical assistance and other type of services.The results show the importance of community associations, institutions, and education to the establishment of the dried-cassava agroindustry. Technology development institutions and community organizations jointly influenced the project's implementation, suggesting that research institutions should work in partnership with local community organizations to enhance the probability of project success. For the communities that created one or more cooperatives (see right-hand column, Table 2), the built capacity was mainly determined by the productivity of farmers as captured by the extent of the pesticide use. It indicates that communities with more productive farmers, and thus with a greater potential cassava supply, built more drying capacity.As was hypothesized by the ICRD methodology, the development of the dried-cassava agro-industry in the Colombian North Coast created an alternative market for cassava roots. A price floor for cassava was established and over the short term, farmers reacted by increasing their cassava area. As shown in Figure 3, prices for fresh roots rose between 1983 and 1993 at an annual rate of 2.5%. Also, the price paid for cassava roots by the cassava-drying industry started to provide a price floor, which provided a secure market for cassava farmers. If the price of fresh cassava roots fell under the price floor or the quality of the roots was not acceptable to the fresh market, farmers had the option of selling their product to a cassava-drying plant. Cassava farmers of Socorro (at San Juan de Betulia in 1993) expressed it thus: \"I remember when I was child, some producers were left with their cassava…there were no markets for the product.\" And \"… of course, it's the cooperative that has practically given life to cassava cropping in this region. Before, some years nobody would buy the cassava, there was no market, and the roots were completely lost.\" By linking farmers to expanding markets, the cassava market situation was improved. \"…Now, we have different market alternatives, the fresh market, the drying plant, and the new starch plants that are being built. If the fresh market offers a better price, then farmers try to sell their roots to this market, but when things become complicated, farmers sell their crop to the drying plant\". Over the short term, this new market alternative created an incentive to increase the area planted to cassava. As shown in Figure 4, the area under cassava in the Colombian North Coast increased at an annual rate of 7% between 1983 and 1993. Results from a 1991 cassava-farmer survey show that about 43% of cassava farmers increased their area planted to cassava between 1983 and 1991. Of farmers who responded that their cassava area was increased, 50% said it was because the market for cassava had improved, 22% said that land availability had increased, 12% had substituted yam for cassava because of the incidence of a serious yam disease, and 5% received credit for cassava cropping. Alvaro Meza, cassava farmer and cooperative associate of Sabanas de Beltrán, Los Palmitos, Sucre describes this short-term effect of the project: \"The construction of the drying plant was a major achievement of this community, and the changes in the standard of living are obvious. The association has improved the market for cassava. Before, farmers only planted a quarter or half a hectare with cassava… mainly for home consumption. Now, farmers plant 2 to 3 hectares of cassava because they have a secure market. The drying plant pays members and nonmembers in cash, therefore they increase their cassava cropping area, and this means a higher income.\"The long-term impact of the new agro-industry was hypothesized to foster the adoption of improved production technology, such as new varieties to increase cassava yields. The results in Table 3 validate this hypothesis. About 77% of cassava farmers in the region adopted the variety Venezolana, and 5% the variety MP-12. On the average, cassava farmers also planted 82% of their cassava area to modern varieties. First, the existence of a drying plant in the community modestly encourages the adoption, by increasing the area planted in modern varieties out of the total cassava land by 0.4%. More importantly, the proximity of the farmer's field to the nearest drying plant has a positive impact on the adoption of modern varieties, with an increase of about 4% of the total cassava land in modern varieties for every 10 km closer to the drying plant. On the average, farmers have to travel over 40 km to bring their roots to the drying plant. This result captures two possible effects of the drying plant on technology adoption. The first is related to the new market alternative and more stable fresh prices as discussed previously. As such, farmers have more incentive to increase their production by either increasing the area planted or adopting new technology to increase yields. The other effect of the drying plant is to enhance technology diffusion in three ways. First, technological programs found cassava-drying cooperatives to be natural partners for technology diffusion, by allowing them to reach more farmers. Cassava farmer associations also foster farmer-to-farmer networking, which in previous adoption studies was This analysis allows us to conclude that the cassava-drying agroindustry influenced the adoption of modern varieties both directly and indirectly through the transportation costs that farmers faced in marketing their cassava. It also provided a more secure market and a platform for diffusing technology and planting material. Adoption was also encouraged by the presence of technology research projects in the communities. Therefore, the presence of institutions and the presence of and access to drying plants each played an important role in the adoption of modern varieties.In the early 1980s, the Colombian North Coast was characterized by poverty levels that were higher than the national ones: 76% of the population had unsatisfied basic needs compared with 64% at the national level, and 55% were living in absolute poverty compared with 36% at the national level (DANE, 1985). The small-scale farmers targeted by the ICRD Project were therefore among the poorest populations of the region, already poor by national standards. Can a project like the ICRD help alleviate poverty?Table 4 shows the impact of the ICRD Project on poverty reduction. Changes in the \"absolute poverty\" levels (measured as the percentage of households living in conditions of absolute poverty) and in the unsatisfied basic needs show that the ICRD Project contributed to poverty reduction. It did so, not directly through the emergence of cassava-drying cooperatives, but through the provision of new production technology and its diffusion as captured by its adoption. The higher the percentage of cassava area planted to modern varieties in a municipality, the greater was the reduction in poverty. An increase of 10% cassava area under modern varieties will reduce the percentage of households living under the poverty line by 0.8% and of those living in absolute poverty by 1%.An economic surplus model applied to the ICRD Project by Gottret et al. (1994), which shows the distribution of returns among the different groups of society, supports the above results. The study concluded that the direct benefits generated by the processing technology were US$1.6 million for the 1984-91 period (8.5% of total benefits). However, it was the indirect impact of the agro-industry on the adoption of improved cassava production technology that generated most of the economic surplus, estimated at US$18.6 million.Beyond what these results can explain, the project had other direct impact on poverty in the communities that built drying plants. It created employment and stabilized incomes. As a focus group in Socorro expressed: \"There's been a big change since the drying plant was built. Before, labor was only used for cassava cropping (planting, weeding, and harvesting). Now things are different, and see the income that the crop generates for the community! A farmer eats from cassava if he harvests it, transports it to the drying plant, works in the drying plant, processes it, grinds it, sells it, or even owns the truck that takes it to the feed plant. This is a source of employment and income…\" The plants also provided some informal credit, with which farmers could buy durable goods or face health needs.\"… a few years ago, in my house there was no television, no refrigerator, or stove. I didn't have money to buy shoes for my children or send them to school. Now, I don't have that much money, but if I need some, I can go to the drying plant manager and ask him to give me some in advance in exchange for cassava, and he will lend me the money.\" Moreover, income generated from cassava cropping has been used as a means to accumulate capital goods such as cattle, which most farmers aim to own. As expressed by farmers in Socorro: \"… farmers planted 4 to 5 hectares of cassava, and with what was left they would buy a cow… of course, with the profits obtained from cassava.\"The following testimony by Don Carlos, a cassava farmer and cooperative member of Segovia, Sampués, Sucre, validates the findings of the econometric model on the contribution of the ICRD Project to poverty alleviation.\"Before, our situation was critical. We only had one pair of pants each; we were all day workers. For example, we didn't eat three meals a day… if we had breakfast; we didn't have lunch. And now… I said that there was a change. If you walk around the village, you can see that almost all the houses are built of brick and cement. The village has a water supply and part of the village has a sewage system, and all of this we got with the little we earned. We don't live in adobe houses anymore, where you could see the beds from outside. The hammocks used to be made with jute, and now we have at least a more comfortable bed. Now we have money to send the children to school and to dress them, to buy shoes and socks, and we have enough to eat three meals too… and well… sometimes we even have enough to buy some beers…\" He laughs.In conclusion, the ICRD Project directly and indirectly reduced poverty by creating an alternative income-generation activity through selling roots, creating employment, and reducing production costs through improved production technology. The organization of communities around a tangible activity that generates income and employment also fostered existing levels of social and human capital and therefore further empowered the communities.Four years after the project officially ended, some institutional support for cassava continued in the region, but this terminated after 1993. At the same time, the Colombian Government moved toward a neoliberal system by opening up the economy to international competition (economic opening) and decreased its presence, both in size and intervention. Figure 5 shows that, after 1993, prices of both dried cassava, paid by the agro-industry, decreased at annual rates of 5.5% and of fresh roots at 4.3%. These steep decreases in prices were a result of Colombia importing grains for animal feed at lower prices, which were at that time particularly low, reducing to almost zero the profit margins received by cassava-drying organizations. During the same period, the collapse of institutional support eliminated the availability of credit at low interest rates for use as working capital. These two shocks, combined with the lack of accumulation of working capital by most associations, forced 28% of the cassava drying plants to stop processing between 1992 and 1993. Eight cassava associations also closed down because their members were displaced by violence in their communities. Hence, dried cassava production dropped from 35,000 tons in 1993 to only 7,000 tons in 1994.In 1999, even though cassava farmers had faced these two major shocks to the dry cassava agro-industry, 56 cassava-drying plants were still operating. Of these, 43 belong to small farmer cooperatives although 15 rent their plant to individual entrepreneurs. Figure 5 also shows that dry-cassava production is starting to increase again as grain imports are becoming more expensive because of the recent devaluation of the Colombian peso. These results show that the sustainability of the program is highly dependent on the macroeconomic environment, which directly affects the viability of the developed marketing alternative. As the analysis shows, the emergence of the cassava-drying agro-industry encouraged both directly and indirectly the adoption of modern varieties, which, in turn, contributed to poverty alleviation. The central hypothesis of the ICRD Project methodology was therefore validated: if agricultural research institutions want to make a difference for the poor they should not concentrate uniquely on production technology development, but also on postharvest and market research. Such process requires agricultural research to be based on a broader, demand-led development process. This integrated approach allows (1) better identification and articulation of farmers' needs in terms of production and postharvest technology and market research; (2) development of an accordingly more complete set of technology; and thus (3) a more efficient contribution to poverty alleviation.The interinstitutional partnership among local, national, and international institutions involved in technology research and rural development contributed to the success of the ICRD Project. As the cooperative emergence results show, the interaction of the different organizations helped to reach the targeted population and to implement the project. The partnership allowed the conduct of demand-led research that was articulated to a multipurpose support system. Such cooperation among institutions led to the inclusion of a broader range of services, such as technical assistance on production, processing, marketing, management, and organization, as well as credit. Coordination with other governmental programs such as land reform was also possible. The partnership built around the needs of targeted groups permitted the consortium to respond adequately and directly to the communities' demands and needs and then feed back to them with solutions.The experience of the ICRD Project in the Colombian North Coast shows that agricultural research can contribute tangibly to poverty alleviation. However, it requires three highly important components. First is the integration of market and postharvest research and development into the production technology research agenda. Second is the use of interinstitutional partnerships, where each institution provides its own expertise, comparative advantage, and mandate to respond to the demands of community organizations and individuals. Third is the fostering of an intimate networking among institutions and local social organizations and individuals, building on existing local social and human capital.Rupert Best (Leader) and Christopher Wheatley (Agribusiness Specialist) of the Rural Agro-enterprise Development Project at CIAT, and Bernardo Ospina, Executive Director of CLAYUCA 1 , provided valuable information on the ICRD Project, thus improving our understanding of the intervention; they also made helpful comments on the paper.A special recognition goes to all those cassava farmers and their families in the North Coast of Colombia who were interviewed and who freely collaborated with their time. Without them, this study would not have been possible. The United Nations World Food Program provided the funds for the fieldwork conducted in 1999 to interview cassava-drying cooperative members.Other people and institutions who also deserve special thanks for their contributions to our data collection are Rafael Vergara from the Federación 1. CLAYUCA = Latin American and Caribbean Consortium to Support Cassava Research and Development based at CIAT, Colombia.The common bean (Phaseolus vulgaris L.) plays a paramount role in human nutrition and market economies throughout rural and urban areas of eastern Africa. While beans are considered a low status food, the \"meat of the poor\", they provide the second most important source of protein after maize (Zea mays L.) and the third most important source of calories after maize and cassava (Manihot esculenta Crantz) (Pachico, 1993). Beans are also highly valued by the poor because all parts of the plants can be consumed: the grain is eaten fresh or dried, the leaves are used as vegetables, and the stalk is used to make soda ash.This chapter explores the contribution of bean research to poverty alleviation in eastern Africa by asking three basic questions in the context of a specific community in Uganda: can modern bush bean varieties improve the welfare of small-scale African farmers, and if so, how, and to what extent? We examine the impacts of market-and subsistence-oriented bean technologies on household income, on food security and consumption patterns, and on gender relations.The field study used in this chapter is set in the maize-based farming system of eastern Uganda in Mbale District, Nabongo Parish, the study community. This parish was selected to represent high-potential areas of the country where small-scale farmers grow beans both for food and sale. including the agricultural research system. Uganda in the 1990s is acclaimed as a development \"success story\" because of macroeconomic stabilization, sustained economic growth over a decade, relative sociopolitical stability, modest gains in social provision, and progress towards achieving democratic governance. Although recent evidence shows modest declines in absolute poverty (UNDP, 1999), Uganda remains a poor country.In 1995-96, 50% of 16 million rural Ugandans were poor, meaning they could not meet their food requirements (UPPAP, 1999). Nationally, 26% of the population could not obtain sufficient food or non-food essential requirements (e.g., shelter, clothing, health care, and basic education). The main material indicators used by local people to measure poverty are: lack of sufficient food and income, lack of livestock, inability to educate children, insufficient or lack of land, and poor housing and clothing (UPPAP, 1999). Non-material indicators included poor health, idleness, having no one to help with problems, and a sense of helplessness. Despite improved statistics on poverty, a recent study reports that local people feel that poverty is increasing (UPPAP, 1999). According to the UNDP (UNDP, 1999), the major causes of poverty in Uganda can be grouped into four categories:(1) Institutional constraints (lack of social and economic infrastructure such as favorable marketing facilities, inappropriate structural organizational systems), (2) Lack of requisite resources (land, credit, agricultural inputs, etc.), (3) Political instability, epidemics, and natural disasters, and (4) Socio-cultural practices and belief systems that retard human development.In the 1960s, Ugandan health officials identified a high incidence of malnutrition among children (Fina Opio, personal communication, 1999). The Ministry of Agriculture responded by initiating bean research at Kawanda Research Station. The bush variety K20, released in 1968, was the first product of bean research activities and is currently widely grow in Uganda, Kenya, and Tanzania (Grisley, 1994) for its marketability and yield stability. In 1994, 26 years after the release of K20, the Uganda National Bean Program released two CIAT bred lines: K131, a red-mottled seed type beige variety similar to K20, and K132, a beige, small-seeded type red variety, previously unknown in Uganda. In the remainder of this chapter we will refer to K132 as Kawomera or the red variety and to K131 as Kabalira or the beige variety. An important point worth noting is that Kawomera is highly marketable, while Kabalira is shunned by traders in most parts of the country because of its small seed size.No precise figures are available on the amount of seed distributed by formal institutions, but estimates suggest 450 tons of Kawomera and 600 tons of Kabalira by 1999 (PABRA, 1999). Adoption studies show and predict modest uptake of the red variety in most parts of the country (ADC-IDEA, 1996;David, 1997), but low adoption of the beige variety in the south and central regions (David, 1997;Kato, 2000). However, observation suggests a higher rate of adoption for the beige variety in the east and north. In the absence of nationwide adoption studies, extrapolations based on seed sales and knowledge about diffusion offer estimates of impact for the two varieties (PABRA, 1999). By 1998, the red variety was sown on an estimated 4100 hectares with a production increase of 290 tons valued at US$87,000 (farmgate price). The beige variety was sown on an estimated 45,000 hectares with a production increase of 6303 tons, having a farm value of US$1,891,000.In 1994, K20 was the major variety sown in Nabongo, accounting for 74% of the 40 hectares of beans sown by surveyed households. In Nabongo, beans may be grown both on household plots and on plots belonging to individual men or women. Women provide much of the labor in field and postharvest activities, but male participation in field activities (both on household and personal plots) and sales has increased with commercialization (David, 1999).Seed distribution and research activities concentrated on three neighboring villages (Bwighonge, Bunywaka, and Bumulaha) between 1995 and 1999. To achieve rapid adoption, nearly 400 kg of seed of both varieties were sold in the study sites over three seasons (1995)(1996)) through women's groups and individual sellers. The seed was priced at Ush 600-800 per kg and buyers were limited to purchasing 1 kg per variety. The rate of exchange was US$1 = Ush 960 in 1994, and US$1 = Ush 1265 in 1998. Seed was sold at the official price set by the Uganda Seed Project.The impact of new bean varieties was assessed through a longitudinal study using a combination of quantitative and qualitative data collection methods. This chapter mainly draws on results from a 1998 survey of 100 adopters (henceforth the impact sample), although reference is made to baseline surveys conducted in 1995 and 1996 (David, 1999), a 1998 adoption study conducted in three non-study villages (henceforth the adoption sample), and a 1998 food security survey. Most respondents in the impact and food security surveys were women or farm couples. The reference period for yield, income, and other quantitative data is the first season (A) of 1994 and 1998. The discussion provides both a cross-sectional and historical perspective of change in bean production on both household and personal plots between 1994 and 1998 by drawing on baseline data collected in 1995.A predominant proportion of the sample was drawn from average (42%) and poor (44%) households, while the rich represented 4%, and those above average, 10%. Table 1 summarizes the main wealth indicators identified by key informants. A resident male headed 81% of households; femaleheaded households (14% of the sample) were disproportionally drawn from the average and poor wealth groups. The mean age of heads of households was 46 and household size ranged from 4-7. Although all households regularly cultivated beans, 44% considered it their highest source of crop income. It is significant that a relatively higher proportion of poor households (51%) compared to wealthy (43%) and average (38%) households depended on beans as a principal source of crop income. Poor, bean-growing households in Nabongo face a classic dilemma-low production due to small farm size, labor, and other constraints, few cash crop options and a high dependence on beans as a source of protein. Yet these households sell a high proportion of their bean harvest compared to better off households that tend to have more diverse income generating opportunities and therefore sell a lower proportion of their bean harvest. An important demographic difference worth noting between adopters and non-adopters in the food security survey is that poor and femaleheaded households comprised a larger proportion of the sample of nonadopters compared to adopters.Households in both the impact and food security surveys preferred the red variety: 98% of the households sampled in the impact sample and 100% in the food security sample sowed the red variety in 1998-compared to 47% in the impact sample and 43% in the food security sample sowing the beige variety. High adoption rates in neighboring non-study communities (72% for Kawomera and 22% for Kabalira) suggest that the introduction of the varieties as part of a research activity did not artificially stimulate adoption, but adoption is clearly higher in the study communities. Adoption was influenced by wealth. Poor and average households were more likely to adopt only one variety (usually the red variety) and a higher proportion of wealthy households (64%), compared to average (43%) and poor (45%) households, adopted the beige variety. The preference for marketable varieties can be explained by the greater dependence of poorer households on beans as a source of income, as mentioned earlier. Nearly all farmers who discontinued growing a new variety (51%) dropped the Kabalira mainly because of lack of market (67%).Only seven seasons after introduction, the two bean varieties accounted for 74% of the total bean area sown on household plots by surveyed households (Table 2). The total bean area, and the area planted to both new varieties, differed significantly by wealth because a few wealthy households sowed 1 acre or more of the new varieties (Table 3). Seasonal differences in area sown (hectares) to the new varieties (15.4 in 1997B, 16.7 in 1998B, and 23.1 in 1998A) show that farmers expect a better performance in the first season (A). The farmgate value of production in the first season of 1998 was US$2833 for the red variety and US$287 for the beige variety. In most cases, both varieties were intercropped with maize. It is also notable that the total bean area among the households surveyed in 1998A was 5% larger compared with 1994A, although the average bean area was 0.36 hectares, a decline from 0.49 hectares in 1994A (David, 1999). A major factor that could account for the decreased bean area in 1998 were cattle raids that occurred in April, interrupting the planting and causing many farmers to flee their villages. A few adopters also reduced the amount of bean seed sown because of better germination (nine cases), the need to sow the red variety at a wider spacing (seven cases), and the higher yields of the new varieties (three cases).Mean yields (Table 4) were high for intercropping. The lower than expected yields of the beige variety (11% less than the red variety) may have been because of a mid-season dry spell that depressed yields of this longer maturing variety. The yield advantage of the two modern varieties over the dominant local varieties indicates that they brought about significant productivity increases on farms where they were adopted. Farmer opinions showed that the performance characteristics that encouraged adoption of the red variety included high yields (100%), marketability (92%), fast cooking time (93%), high grain density (85%), drought tolerance (83%), and taste (80%). The major disadvantage of the variety mentioned by 71% of adopters was the need to plant at wider than normal spacing to discourage common bacterial blight. Resourcepoor households more frequently mentioned this problem, together with late maturity (20%) and susceptibility to diseases (13%). The beige variety was appreciated for its high yields (93%), taste (89%), and drought tolerance (54%); but it was disliked because its grain stays whole when cooked (83%) and it has a limited market (70%). Disadvantages of the new varieties specifically mentioned by women are discussed later.The adoption of modern varieties is often accompanied by a change in the cropping system. In Nabongo, over half (55%) of adopting households stopped growing one or more local varieties or earlier generations of improved bean varieties. The most frequently discarded variety was K20 (95%), showing the new improved varieties displacing this earlier generation. Low yields (56%) and poor drought tolerance (55%) were the major reasons for dropping a variety. We recorded seven varieties compared with eight in 1994, suggesting that, at the community level, bean varietal diversity had not changed. Notably, however, compared to 1994, fewer households sowed minor landraces and areas sown had reduced.Of adopters that sowed the new varieties on household plots in 1998 (n = 86), 66% have changed some aspect of bean cropping or agronomic practice since 1995. In 75% of cases, the higher productivity and market value of the red variety motivated increased bean production and hired labor (number and frequency). Reasons for the reductions in seed rate were mentioned earlier.Of those adopting the red variety, 88% reported income gains because of higher productivity and price. Middle category households perceived increased income as most important, whereas a higher proportion of the poorest and wealthiest households emphasized the food security and health benefits of the red variety, despite their greater dependence on beans as a source of income. Traders quickly accepted the red variety, and by 1997 it had captured the market for Calima-type beans, commanding a premium price of Ush 150-500 per kg in 1998, Ush 50-100 above the price of K20. Kanyebwa fetched the highest farmgate price for beans (Ush 200-700 per kg). Bean farmgate prices did not change between 1994 and 1998.On the average, in 1998A, adopters sold 92 kg of the red variety at a farmgate value of Ush 26,169, compared with 48 kg for all other bean varieties combined, valued at Ush 17,400. The red variety provided 90% of bean earnings in the major season of 1998. It is unclear why, despite its higher productivity, mean average bean sales were significantly lower in 1998 compared to 1994 (97 kg compared to 137 kg). In both years, there was a statistically significant relationship between bean sales and wealth. But, whereas wealthy households had the highest sales in 1994 (P ≤ 0.02), in 1998 households of average wealth sold the most beans-208 kg compared with 170 kg for the wealthy and 129 kg for the poorest group (P ≤ ≤ ≤ ≤ ≤ 0.06) (Table 5).Because of lower bean sales in 1998 compared with 1994, no income gains show among adopters overall. In fact, bean earnings showed a slight drop in actual value and a significant drop in 1994 values. It is significant, however, that only the average wealth group recorded income gains, a finding corroborated by farmers' perception of impact, although not by their ranking of income sources.Farm families used income gains from the red variety for both shortterm consumption and productive investments including household items (soap, paraffin, candles, sugar, and salt-88%), food (69%), medical expenses (68%), clothes (66%), personal items (e.g. bicycles and radios-39%), school fees (28%), livestock (23%), renting land (18%), hiring farm labor (17%), building materials (e.g., iron sheets) to improve or expand houses (14%), and paying taxes (11%). Household items were the most important area of expenditure for the poor (44%) and average (49%) wealth groups, while school fees topped the list for wealthy households. Food was the second most important area of expenditure for all wealth categories.Beans, eaten fresh or dried, are an important and highly valued protein source in Nabongo Parish because few households regularly consume animal protein. Groundnuts (Arachis hypogaea L.) and an assortment of domesticated and wild vegetables (including bean leaves) are the other major sauce ingredients that accompany the principal staples of maize, cooking bananas (Musa spp.), and sweet potatoes (Ipomoea batatas [L.] Lam.). Food consumption patterns differ significantly by wealth and season, with the poor eating fewer meals than better-off households eat at certain times of the year, particularly January to April and September to December (David, 1999).Improved food security and health were important benefits mentioned by adopters of both varieties, although the relative importance varied by wealth, variety, and season. Wealthy and poor adopters of Kawomera were more likely to mention food security and health benefits, while households of average wealth stressed financial benefits. The major benefit of Kabalira for all wealth groups was improved food security. As expected, more farmers reported impact on food security in the dry season compared to the rainy season for both varieties. Adopters reported various improvements in food security (Table 6). The beige variety had a greater impact on bean availability, especially during the dry season, while a significant number of red variety growers were able to diversify their diet in the dry season with sale earnings and increased bean consumption.Both quantitative and qualitative data confirm higher bean consumption from 1995 levels among adopters. Change was greatest in the dry season, normally a time of food shortage. Compared with nonadopters, adopters across all wealth categories were more likely to have a larger amount of beans in store and consume more during periods of food shortage (Table 7). On the average, households growing the new varieties ate beans at five meals per week during the dry season compared to two for non-adopters, and they prepared mixture dishes (which require larger quantity of beans) more often. Increased frequency of bean consumption during the dry season was reported by 48% of red variety growers and 71% of beige variety growers. Since bean availability and consumption may be determined by a multiplicity of factors not related to production (e.g., food choices made by individuals, marketing vs. consumption decisions, and emergency situations forcing a household to sell much of their harvest), attributing change among adopters exclusively to the introduced varieties is implausible. However, four factors strongly suggest that the varieties contributed directly and significantly to improving food security among adopters-improvements across wealth groups, the varieties' higher productivity, limited opportunities to market the beige variety, and anecdotal evidence. At 214 g, the median value for per capita bean consumption in September 1998 (a period of moderate bean insecurity) was significantly higher than the 166 g recorded among non-adopters in September 1996 for all wealth groups. A significant proportion of adopters reported increased bean consumption (Table 8), although the largest consumption gains appear to have gone to the wealthy and average groups. Increased bean consumption is expected to contribute to improved nutrition and health, although measuring nutritional impact was beyond the scope of the study. Farmers' perceptions of health benefits provide some evidence of impact. The increased yields of both varieties meant that women spent less time foraging for wild vegetables during the dry season. This shows an important impact on food security. Significantly, a higher proportion of poor households mentioned a reduction in foraging as a secondary benefit of growing modern varieties. However, no quantitative data are available on the amount of time saved, a positive impact for women, with potentially negative nutritional implications. Although both varieties improved bean availability, fewer opportunities for selling the beige variety meant that it was more likely to be stored during the dry season. In response to an open-ended question regarding impact, 30% of beige variety adopters surveyed in September, compared to 21% of red variety growers, reported spending less time foraging for wild vegetables. About half of the farmers interviewed for the food security survey had reduced the time they spent foraging since using the new varieties. A higher proportion of households growing the beige variety (13% compared with 5% of those growing the red variety) stopped foraging altogether.The introduction of higher yielding varieties of beans, a traditional \"female crop\", had both beneficial and negative impacts on the organization of production and gender relations. We expected that women would show greater interest than men in sowing Kabalira on personal plots because of its food security value. Women noted an increase in their workload caused by three factors associated with growing Kawomera: increased bean area, the need for more careful weeding to avoid diseases, and frequent redrying of seed to reduce weevil infestation. Most adopters sowed both varieties only on household plots, but, contrary to expectation, more women than men sowed both varieties on personal plots each season during the study period. In 1998A, women farmers sowed a larger total area than did men to all bean varieties and to the red variety (Table 9). But, contrary to our expectation that women would show a stronger interest in the beige variety, mean areas for it were similar for both sexes (0.25 for men and 0.23 for women), with men sowing a larger total area to that variety. In 1998A, the red variety covered 60% of bean area sown by women and 61% by men, while the beige variety covered 19% of women's bean area and 17% of men's. We discuss three areas of gender-related impact: changes in women's and men's personal production between 1994 and 1998, differences between men's and women's bean incomes, and increased conflict over bean earnings. Since 1995, some important changes have occurred in women's and men's personal production of beans. Women sowed larger bean plots in 1998 compared to 1996: a mean of 0.4 hectare compared to 0.2 hectare in the major season. Farmers indicated that much of this expanded production was in direct response to the new varieties. Half of the independent women farmers (n = 20) increased the amount of beans sown, mainly in response to the higher productivity of the varieties, while half of the male farmers (n = 14) sowed more seed and increased the number of plots. As a result, the significant gap observed in 1994-96 in mean area sown to beans on men's and women's plots was less apparent in 1998. Both new varieties represented similar proportions on men's and women's personal plots.What are the implications of increased independent female bean production? Although the data do not allow us to quantify impact from this development, we infer some plausible outcomes. Because women farmers grow beans on personal plots to meet both food security and income objectives, whereas men concentrate more on the latter (David, 1999), increased female production is likely to result in higher household consumption as well as higher earnings, both of which contribute to improving household welfare. This conclusion is supported by the finding that while most men and women farmers used the red variety grown on personal plots in the major season of 1998 to feed their families, women were more likely than men to use a larger amount for home consumption. Yet, surprisingly, men and women sowed the same area to the beige variety, which has limited market value. The gender implications of higher earnings are discussed below.Although, on the average, bean area between men and women showed little difference, in 1998A, men's sales and earnings from beans generally, and from Kawomera, were significantly higher than women's (Table 9). Men sold a mean of 276 kg of beans of all varieties and 214 kg of Kawomera; women sold an average of 110 kg of beans and 99 kg of Kawomera. Average bean incomes increased significantly for men and women over 1994-96 figures: by 103% for men and 63% for women (1994 values). The gender division of responsibility might account for gender differences in bean sales and earnings. Women's greater responsibility to provision their households means that a higher number (six out of 14 compared to two out of 11 men) did not sell Kawomera in 1998A. Gender differences in the proportion of the harvest sold were noted above.Informal discussions, rather than formal surveys, proved more appropriate for exploring other impact areas of concern to women, notably the extent of income-related marital conflict caused by the new varieties. Some women complained that higher bean earnings encouraged their husbands to take greater control over income from both household and personal bean plots. An impact diagram drawn by farmers shows that increased income from the red variety caused more drinking among both men and women, which led to more domestic violence, divorce, and sexual infidelity, and ultimately an increase in the incidence of Acquired Immunodeficiency Syndrome (AIDS). Conversely, a perceived benefit of the beige variety was the absence of marital conflict over earnings.This chapter provides evidence of the significant contribution, in just 4 years, of two modern bean varieties to food intake, nutritional status, and health in a rural Ugandan community. Our findings suggest, however, that modern bush bean varieties are likely to bring about modest, but important, impact in the areas discussed. Although the data drawn from one season did not show income gains over the baseline reference season, the higher price and productivity of the red variety plus farmers' reports of higher earnings suggest that adopters received significant financial gains. Additional economic benefits, from reduced labor requirement and lower use of firewood among others, were not quantified in this study. This case study showed that, although the varieties were appreciated for different reasons, better-off households were more likely to grow both, and sowed a larger proportion of total bean area to the beige variety. Households in the average and poor wealth categories were less likely to cultivate the beige variety or sowed small amounts. Although impact of the new varieties was wealth neutral, the evidence nevertheless suggests that the greatest benefits went to households of average wealth. Probably because of lack of land, labor, and other resources, the poorest households were unable to increase production significantly. Women farmers were as likely as men to adopt the varieties, and overall, both appear to have bettered women's lives by improving household welfare, increasing both household and personal income and reducing their labor, despite the negative implications of expanded bean area and increased marital conflict reported by some households.We pose two related questions of broad theoretical importance: What factors reduced or enhanced the positive impacts of the new varieties? Is this impact success story likely to be replicated elsewhere in Uganda? Income benefits from the new varieties were reduced by low farmgate bean prices, while food security benefits were lessened by farmers' high dependence on beans as a cash crop, which results in a selling-rebuying cycle. Appropriate solutions to the pricing dilemma could include direct sale of crops by farmer trading cooperatives to traders rather than through middlemen, improving farmer access to information on markets, and communal level interventions that promote crop storage until prices are higher, while providing farmers with a cash advance. The introduction of high-value cash crops would also improve bean availability at the household level.We maintain that three major factors enhanced the impact of the new varieties in the study community:(1) Access to markets. Location on a main highway (being tarmacked at the time of writing) makes Nabongo highly accessible to traders from both Uganda and neighboring Kenya. Elsewhere in Uganda, access to markets varies considerably. (2) High yields per hectare. Because of moderate to high soil fertility, Nabongo farmers realized yields of both new varieties comparable to onstation yields even when they were intercropped. In much of Uganda, soil fertility is moderate to low compared to Nabongo. (3) Access to seed and seed quality. In a situation where farmers, especially the poor, find it difficult to retain bean seed, a reliable seed supply system enhances adoption and consequently impact. In response to continued high demand for seed and to improve seed supply and quality, a group of four farmers in Nabongo set up a business on their own initiative to produce good quality seed of both new varieties. For smallscale farmers elsewhere in the country, regular access to good quality seed of new bean varieties at an affordable price continues to be problematic.Some mechanisms and avenues for strengthening the agricultural research-poverty linkage include improvement of the extension system, use of non-traditional approaches and channels for technology dissemination, stronger linkages between agricultural and health care institutions, policy changes, microenterprise development and credit facilities, improvements in farmer access to information on local, regional, and export markets, and development of appropriate organizational structures, among others.Honduras is one of the poorest countries in the Americas. Per capita income is less than US$2000 per year and nearly half the population lives on less than US$1 per day (UNDP, 1998). Most of the population and much of the poverty is rural. Beans (Phaseolus vulgaris L.) are one of the two most important crops in Central America in terms of both production and consumption. They are a traditional part of the diet in Central America and, along with maize (Zea mays L.), often form the main food source of the poor. Therefore, when the bean golden mosaic virus (BGMV) began to spread through Central America in the 1970s, it posed a threat to a particularly vulnerable population. Controlling BGMV became top priority among bean breeders in the region, and by the late 1970s their efforts had resulted in the release to farmers of a first generation of virus-resistant bean varieties, which were quickly and widely adopted. By 1996, an estimated 40% of the bean area in Central America was planted to resistant varieties, often reaching as high as 80% in BGMV-affected regions (Viana Ruano et al., 1997;Viana Ruano, 1998). The success of this effort is widely recognized. In 1984, CIAT was awarded the King Baudouin Prize for its work on BGMV in Central America. The cumulative value of the increased production that resulted from the new varieties has been estimated at over 200 million US dollars in 1998 (value in 1990 US$) (Johnson et al., 2003). In 1998 alone the impact was estimated at over US$17 million.Although these benefits are large, they probably underestimate the impact of the new varieties, especially their impact on poverty. One reason for this is that the economic estimation was based on the varieties' capacity to increase yields rather than to avoid losses. The total benefits of the CHAPTER 14The Impact of Crop Improvement on Rural Poverty: An Analysis of Bean Varieties Resistant to Bean Golden Mosaic Virus in Honduras Nancy Johnson* and Justine Klass** varieties would be higher if the benefits of losses avoided could be measured. They are particularly relevant for poverty alleviation. First, because many of the benefits accrue to poor farmers. Second, because the nature of the innovation-risk reducing versus yield enhancing-directly addresses a main characteristic of poverty, namely the inability to manage risk and to cope with a crisis such as crop loss.This chapter analyzes the impact of BGMV-resistant bean varieties on poverty, taking into consideration recent conceptual and empirical advances in our understanding of both the impact of innovations and the nature and location of poverty. The case chosen for analysis is Honduras, where a lot of agricultural, climate, and poverty data is available that permits a multi-perspective, multi-method analysis. First, the magnitude and distribution of the economic benefits of the resistant varieties were estimated using the results of a climate-based technique of geographic information systems (GIS) for creating BGMV risk maps. These estimates were then compared against poverty maps to assess to what extent the benefits were realized in areas of significant poverty. The results of participatory poverty assessments that go beyond monetary and material measures to develop a series of locally relevant indicators of poverty were identified. They were used to draw a closer causal link between the impact of the innovations of resistant-bean varieties and any changes in human well-being.How to define poverty has become an important research question both conceptually and empirically. Traditional measures such as income or expenditure are increasingly being criticized as inadequate indicators of human welfare. Although such monetary measures have advantages in terms of comparability across space and time, they often fail to capture non-monetary aspects of the standard of living-highly important in many developing countries. Such measures can also be difficult to estimate reliably because individuals are reluctant to reveal how much they earn. Alternative methods are being developed to more accurately identify and understand poverty.In recent years, Honduras has been the focus of several different exercises to measure poverty at country level. Oyana et al. (1998a) used census data to create a national poverty map that ranks each village according to the degree to which residents' basic needs were satisfied. Ravnborg et al. (1998) focused on identifying and understanding local people's perceptions of poverty. Although this study does not provide a national map of poverty, it does provide a more nuanced definition of poverty and indicators of well-being that are clear and easy to observe. Because the poverty indicators are in terms of local people's activities, assets, and livelihoods, they make it possible to relate the impact of technical interventions, such as new crop varieties, directly to changes in poverty.In 1996, CIAT undertook a project to measure and map poverty in Honduras based on census data (CIAT, 1997;1998;Oyana et al., 1998a). The data come from the 1988 Honduras Population Census and are calculated at the aldea (village) level (SECPLAN, 1991). The approach was called the Unsatisfied Basic Needs (UBN) method and involves selecting criteria of basic needs and identifying measurable indicators of the level at which these needs are satisfied (Boltvinik, 1996). In the case of the CIAT study, the basic needs identified were housing quality, access to basic services, ownership of non-land assets, and education. For each of these, several measurable indicators were also identified. In the case of housing quality, for example, the measurable indicators were the materials used in constructing the walls, floor, and roof. In the case of basic services, measurable indicators were water source, use of latrine, presence of electricity, and fuel source (Oyana et al., 1998b).After selecting the criteria and indicators, minimum standards and level of nonsatisfaction were identified. Communities were rated according to their average level of satisfaction with the minimum standards. Five levels of poverty were identified. Level 4, the so-called threshold level, includes communities that on the average meet the minimum requirements. Figure 1 shows the distribution of statistically significant areas of poverty in Honduras according to the UBN criteria.In 1996, the Inter-American Development Bank (IDB), Danish International Development Agency (Danida), and CIAT carried out a participatory poverty assessment (PPA) in the states of El Paraíso, Yoro, and Atlantida in Honduras (Ravnborg et al., 1998). The poverty index identified by the PPA has 11 components (Table 1). The components of this index were statistically validated and can be considered representative of the larger population that the sample communities represent. Some indicators, such as income, housing quality, and asset ownership, are also elements of more conventional poverty measures. However, according to the PPA, local people complement these measures with others such as the ability to contract day laborers, degree of involvement with agricultural output markets, access to health and health care, participation in financial markets, and food security. It is also interesting to note what potential indicators did not turn out to be significant in the PPA well-being index. In terms of agricultural production, the production of basic grains alone was not a distinguishing factor between rich and poor households. This is probably because most households were producers of basic grains. Identifying the poorest farmers will require going beyond crop choice. Grows coffee or cacao, or does not buy basic grains and sells half or more participation of its production of basic grains.Does not grow coffee, but both buys and sells basic grains, or does not buy basic grains and sells less than half of its production.Does not grow coffee or cacao and buys basic grains in addition to using all of its production for home consumption.Has a savings account or makes loans to others.Does not save nor make loans.No one in the house was ill, or if someone were ill s/he paid for adequate health care either with own money or by selling assets.Lowest Someone in the household has health problems and was treated by asking relatives for money, borrowing money, or by going to the herbalist, or was untreated for lack of money.Has not experienced a food shortage, or did so for less than 1 week and solved the problem without having to ask others for food or money, reducing number of meals, or sending the wife or children out to work.Experienced a food shortage for more than 1 week, or for less than 1 week, but had to solve the problem by asking for food, borrowing money, or sending wife and children out to work.a. 1 mz (manzana) = 0.704 hectares. SOURCE: Adapted from Ravnborg et al., 1998. ownership In a companion study for three Honduran watersheds (Saco River in Atlántida, Cuscateca in El Paraíso, and Tascalapa in Yoro) aimed at understanding the relationship between poverty and natural resource management (NRM), residents were surveyed about agricultural and NRM practices (Leclerc et al., 1999). Their answers were later classified according to well-being level, as determined by the participatory index described above. The analysis finds no significant difference between well-being levels in terms of land use or production practices, as measured by land preparation, use of chemical inputs, or use of crop varieties. Rich and poor in these watersheds do not use different agricultural technologies or practices, at least not in the production of basic grains such as maize and beans. Although this finding is encouraging in the sense that it shows that improved technologies are not being appropriated just by richer farmers, it also means that we cannot use production practices to distinguish between rich and poor farmers.Honduras is the third largest bean producer in Central America after Nicaragua and Guatemala. In 1998, 83,000 hectares were sown to beans, slightly more than in 1970, but less than the high of nearly 120,000 hectares planted in 1994 (Figure 2). Production has been similarly variable. During the period 1970-98, the area planted increased by 16% and production increased by 18% with the difference caused by small increases in yield. In 1997, per capita consumption was reportedly between 9 and 21 kg per year, however it varies greatly depending on the economic level of the consumer (Viana Ruano et al., 1997). Within the category of basic grains, beans are second only to maize in area planted, and they are the top source of farm income (Viana Ruano, 1998).The main bean production area is in the central and central-eastern part of the country, producing about 60% (Martel and Bernsten, 1995). A 1993 study by the Bean-Cowpea Collaborative Research Support Project (CRSP) conducted in this zone found that one third of Honduran farmers planted beans. The farms were generally small-average area planted to beans was 1.08 hectares-and were considered noncommercial in the sense that their production was primarily for home consumption, although surpluses were sold on the market. The degree of market participation of bean farmers has grown over time (Schoonhoven and Pachico, 1998). In the past, most farmers produced primarily for their own consumption, however, according to the survey, in 1993 only 13% of farmers neither bought nor sold beans. Half reported selling, and 37% were net buyers.The survey also found that smaller-scale farmers plant relatively more beans than do larger-scale farmers. Large-scale farmers are more commercially oriented, but the income earned from beans is relatively more important to the small-scale farmers because it makes up a greater portion of their income. In terms of production practices, chemical use does not differ between small-and large-scale farmers (Martel and Bernsten, 1995).The main production constraint in the region is BGMV (Martel and Bernsten, 1995). The virus arrived late to Honduras, where the first reported incidence was in 1985. In 1989, severe outbreaks occurred with crop losses ranging from 10% to 100% (Rodríguez et al., 1994). Whiteflies cause extensive crop damage. Specific whitefly species act as a vector of plant pathogens and transmit plant diseases, such as Bemisia tabaci, which transmits BGMV in a semi-persistent manner. This means the virus needs time to be acquired and transmitted (Morales, 1994).The first resistant variety, Dorado, was released in 1990 and several others soon followed The varieties spread quickly, and by 1996 adoption rates were as high as 80% in some areas (Martel and Bernsten, 1995;Viana Ruano et al., 1997). No association was found between the adoption of Dorado and farm size, suggesting that smalland large-scale farmers are equally likely to adopt the variety (Martel and Bernsten, 1995). This is logical because resistant varieties, unlike some high-yielding ones, are not dependent on costly chemical inputs or optimal growing conditions to make them perform. They can be Area planted (ha) Production (t/ha) Year adopted without significant changes to the production system. Martel and Bernsten (1995) find an association between farm size and adoption of another improved variety, the high-yielding but non-resistant Catrachita, which was released in Honduras in 1987. This may also reflect greater risk aversion on the part of small-scale farmers because it appears that yield alone is more attractive to larger-than to smaller-scale farmers.In terms of yield, which variety is highest yielding depends on many factors, and is therefore highly variable. Honduras has two growing seasons, the primera, or first growing season, from May to September, and the postrera or second growing season, from September-October to December-January with the latter being the main production season. Martel and Bernsten (1995) found that Catrachita is highest yielding during the primera and Dorado during the postrera season. These results are consistent with the fact that the virus is only a problem in the postrera. Dorado offers no significant advantage over traditional varieties in the primera, but does in the postrera. The fact that the resistant variety appears to offer a yield advantage only in the virus season supports the idea that it is not the variety's yield potential, but rather its reduced yield variability, that makes it valuable to farmers. In Honduras, yield advantage of BGMV-resistant varieties has been observed to be between 0% and 38%, averaging about 18% (Martel and Bernsten, 1995;Viana et al., 1997;Viana, 1998).In terms of price, traditional varieties generally sell for higher prices than improved varieties. This reflects the fact that farmers have selected traditional varieties over generations to exhibit the desired production, processing, and consumption characteristics of the region. Improved varieties must often sacrifice certain desirable characteristics in order to obtain high yield or disease resistance. In the case of beans in Honduras, for example, Dorado does not have the light red color that is most valued in the region, and is also reported to have some undesirable cooking characteristics. This accounts for the improved variety's lower market price relative to the traditional variety.The impact of an agricultural technology is generally measured in terms of its ability to increase yields. In the case of varieties whose main advantage is a high yield, the comparison between traditional and improved varieties may be appropriate because the observed yield increase is the main benefit of the variety. In the case of resistant varieties, however, observed yield differences may not tell the whole story. The value of a resistant variety may not be that it obtains higher yields than were possible with traditional varieties, but rather that it maintains its yield in the presence of pests and diseases.The benefits of disease-resistant varieties cannot be easily measured using farm-level production data on observed yields (Otsuka et al., 1994). In trials conducted to rigorously compare varieties, plots are either selected randomly or are chosen with great care to ensure that different varieties are grown in similar conditions to be able to compare the results. We would not expect farmers to make planting decisions based on either of these methods. Farmers decide what to plant where, based on their own criteria, among them how to obtain the highest output. If the location of the field or choice of cropping pattern affects the expected damage from BGMV, then we would expect farmers to take this information into consideration.For example, one would expect areas where the likelihood of virus damage is high to be planted to resistant varieties, whereas areas where the probability of virus damage is low may be planted to the higher priced traditional varieties. In a sense, what farmers are trying to do is minimize the observed difference between traditional and improved varieties, planting traditional varieties where possible and improved varieties where necessary. Therefore we can say that if certain conditions exist then the observed yield difference between traditional and resistant varieties will underestimate the true production benefits of the resistant varieties. The conditions are that farmers have a choice between traditional and improved varieties, that probability of virus is not random, but rather correlated with farm characteristics, and that farmers maximize profit.One way to more accurately estimate the benefit of improved varieties would be to use data from trials that control for the biases described above (Morris et al., 1994;Smale et al., 1998). A sample of data for Honduras shows that the resistant variety (Dorado) has a yield advantage of between 0% and 59% over the traditional local varieties (Oswaldo Voysest, personal communication, 1999). Caution must be used in interpreting results of experimental trials because observed yields are generally much higher than in farmers' fields. However, the results of the trials do suggest that in areas where disease pressure is high, the benefits of improved varieties may be greater than what we observe in the field.If information is available about the determinants of disease incidence and intensity, it may be possible to estimate what production would have been in the absence of new varieties. This provides another way of estimating the benefits of improved varieties. Klass et al. (1999) describe several methods for predicting the probability of virus occurrence based on the geographical and climatic characteristics of an area. The dynamics of BGMV are complex and are determined by many factors; however, virologists consider geographical and climatic conditions to be significant determinants of virus occurrence. Therefore statistical analysis can be used to predict the probability of occurrence based on where the virus has been observed in the past. It should be noted that this GIS model will be expanded to include other factors that affect BGMV, perhaps most importantly the cropping pattern in the area. Figure 3 shows the results of the analysis for Honduras. Klass et al. (1999) test several techniques for predicting the occurrence of BGMV in Central America. For the case of Honduras, the most accurate appears to be a Fourier transform with principle components analysis, a process developed to help scientists and other plant collectors identify likely areas for finding specific plant species (Jones et al., 1997;Jones and Gladkov, 1999).Using this information we can calculate the expected value of production with and without improved varieties, allowing us to estimate the full benefit of improved varieties, including crop losses that did not occur because resistant varieties were available. For the calculation, we need data on yields and on damage from the virus. In terms of virus damage, observed crop losses caused by the virus range from 10% to 100% in Honduras. In the absence of information on the geographical determinants of virus intensity, we analyze for different levels of crop damage, and compare the results.Table 2 presents the other parameters used in the simulation. For simplicity, we will only consider the cases of one traditional variety, Rojo de Seda, and one improved variety, Dorado. Because in the primera, traditional and improved varieties show no yield differences, we use yield from that season as base estimates of yield potential of the variety. As discussed earlier, the price of traditional varieties is generally higher than resistant varieties because of their market characteristics. In this case, the traditional variety sells for 19% more than the resistant variety.In the absence of resistant varieties, we can estimate the total expected value of production as:where p is the probability that the virus occurs, Y is yield of the traditional variety, L is loss caused by virus, H p is the number of hectares with probability p, and P is the price of the traditional variety.Take the case where farmers have the choice to plant either improved or traditional varieties. If each farmer wants to maximize the expected value of production, then we can determine aggregate production by determining the threshold probability above which no one will plant the traditional variety.The analysis was done for bean-producing areas of the states of Francisco Morazán and El Paraíso. Tables 3 and 4 present results. As shown in Table 3, depending on the level of crop damage associated with the virus, the production gain with improved varieties ranges from 7% to 58%, which is above the range of field observations and in line with what experiment data suggest. According to the simulation results, the level of adoption of the new variety ranged from 61% when crop damage was 90% to only 30% when crop damage was 25%. Actual adoption of improved varieties is about 73%, with 50% of that area devoted to Dorado (Viana Ruano, 1997). Given that some of the improved varieties are not resistant, the actual adoption level of resistant varieties is slightly lower, in the range of 65%. These results suggest that, if the model is accurate, the expected crop damage from BGMV is quite high.Table 4 reports the average yields with and without resistant variety. When we use data from farmers' fields, we are comparing yields between traditional varieties (Yield TR ) and improved varieties (Yield R ) under scenario 2. Under this scenario, in which improved varieties are available, the average traditional yields were between 5% and 6% higher than the average improved yields. However, when we compare the traditional yield under scenario 1 (Yield TT ) with the average yield under scenario 2 (Yield A ), we see that the latter is up to 11 times greater than the former, depending on the level of crop damage. If the level of crop damage is low, then Yield TT and Yield A show little difference, but when crop damage is high, the difference is very large.These results clearly demonstrate that appropriate specification of the alternative scenarios-with and without the technology-can be potentially highly significant in estimating the impact of a new technology. Both the experiment data and the simulation results suggest that estimates based on observed data underestimate the total impact of resistant varieties because an important part of their contribution is to maintain yields.The previous section demonstrates that the total magnitude of the benefits is likely to have been much larger than previous estimates suggested. This sections looks at what those benefits imply for poverty alleviation. We can first determine where the benefits occurred, something that can be done given that the analysis was spatial. Overlaying the poverty map and the bean production map reveals a significant area of overlap. Adding the virus map reveals that the target area for disease-resistant varieties also coincides with areas of moderate to extreme poverty. Because the poverty map is from 1988, before the release of the first resistant variety, it can be interpreted as the \"before\" picture unaffected by the impact of the release of resistant varieties. According to the results of the analysis in the previous section, 40% of the total economic benefits from new varieties occur in areas of statistically significant poverty.Although the geographical coincidence of poverty and economic benefits from a new technology is certainly suggestive of an impact on poverty, it alone does not guarantee that poverty was reduced in those areas; nor does it mean that poverty was not reduced in other areas.To address these issues, we need to know more about what happens at the individual and household level as a result of the technology adoption. This is the type of information we can obtain through an analysis of the results of the PPAs, which provide links between household characteristics, economic activities, and the underlying determinants of poverty. Conventional welfare analysis equates an increase in production, other things being equal, to an increase in welfare. The PPA helps make the link between aspects of agricultural production and poverty explicit for the case of beans in Honduras.A key result of the PPA is that production practices in basic grains do not differ significantly between rich and poor households. Past empirical evidence has suggested that technologies such as fertilizers and varieties are divisible and scale neutral, making them adoptable by both rich and poor (Ruttan, 1977). The results of the PPA confirm this for the case of beans in Honduras, and allow us to assume that if varieties were adopted in a region, they were as likely to be adopted by poor as by rich households.The local poverty indicators offer several ways in which increases in production can be linked not only to increased economic well-being, but also to poverty alleviation. First, experiencing food shortage is an indicator of poverty; if an increase in production reduces the chance of food shortage, then it contributes directly to poverty reduction. Another component of the PPA well-being index has to do with market integration, particularly with respect to basic grains (maize and beans). Self-sufficient producers and net buyers are considered to be less well off than net sellers. Increases in production mean that net buyers moved closer to selfsufficiency, while self-sufficient producers and net sellers increased their incomes. According to the PPA index, this change would represent an improvement in producers' well-being. Third, to the extent that producers increase their cash income as a result of the new variety, the index offers several avenues for linking increased cash income to well-being, for example, improving housing quality, purchase of animals, or savings.Beyond production increases, disease-resistant varieties can also contribute to poverty reduction by reducing the risk associated with production. A vast literature is available on the relationship between risk aversion, wealth, and agricultural production, in particular on how risk affects small farmers (Moscardi and de Janvry, 1977;Dillon and Scandizzo, 1978;Binswanger, 1980). Both theory and empirical evidence suggest that small-scale, poor farmers are risk averse, which means that they would be willing to trade gains in average yield for reduction in variability of yield. A technology such as a disease-resistant bean variety, whose main benefit is to reduce the probability of a large, negative outcome such as crop loss, would be particularly beneficial to small-scale, poor farmers.Several of the indicators in the participatory well-being index directly link reduction of economic risk to increases in well-being. In the indicators concerning health and food security, what distinguishes the non-poor from the poor is their ability to cope with a crisis such as an illness or a food shortage. Those who have the resources to handle these problems on their own without having to seek help from others are considered to be much better off than those who have not. One way in which people handle these crises, according to the index, is by using savings or by selling assets such as land or livestock. Therefore the value of these assets-in themselves indicators of well-being-is also related to risk reduction. Selling the assets allows households to smooth their consumption in the face of highly variable production and income.The importance that poor people place on security and independenceon not having to ask for money, food, or employment from family and friends-appears to be a highly important aspect of well-being that is not captured by conventional poverty measures (Ravnborg, 1999). Eight of the 11 participatory indicators (land ownership, selling day labor, income, cattle, animals, money, health, and food security) have some element of risk coping or reduction, reflecting the truly profound role that risk plays in determining the well-being of poor households in Honduras. Diseaseresistant bean varieties contribute to the reduction of uncertainty and dependency by maintaining yields and reducing variability associated with bean production. Thus they contribute significantly to poverty alleviation.This chapter demonstrates the importance of disease-resistant bean varieties in Honduras, both in terms of their economic impact and their impact on poverty alleviation. By taking into account both the production increases observed and the losses that were avoided, we arrive at a significantly higher estimate of the economic contribution made by the disease-resistant varieties.The results have several lessons for research and for policy. The first is that accurate impact assessment requires accurate definition of the \"with\" and \"without\" situations. Often the appropriate counterfactual is difficult to identify, and even harder to measure. More attention must be paid to measuring the benefits of varieties that are pest and disease resistant, rapidly maturing, low input, or easy to process. Often, in impact assessment, non-yield characteristics still are not accorded the importance of increased yields simply because there is no easy way to measure their benefits. Empirical implementation of these studies will also require new data collection and methods of data analysis.The second conclusion is that targeting research towards poverty alleviation appears to be possible by mapping poverty and areas of impact. In this analysis, the overlaying of bean production, virus incidence, and poverty accurately identified some critical areas. Adoption studies show that these areas were in fact where impact occurred. Because agricultural research affects poverty through many mechanisms, the geographical coincidence may not be necessary for a project to be well designed and successful. However, if the goal of the technology is to benefit producers directly, then this type of spatial analysis can be valuable. The increasing availability of data and sophistication of analytical tools is making this work much more efficient and effective.Finally, in having an impact on poverty, the way a technology works may be as important as where it works. The more detailed and dynamic definitions of poverty that are resulting from recent research on well-being and poverty can be highly useful in identifying which types of technologies will most benefit poor farmers and why. In the case of beans, the fact that varietal selection was not something that was systematically related to wealth suggests that crop improvement may be an appropriate way to target agricultural technology to poverty. Similarly, technologies that reduce risk rather than simply increase average yield may be particularly beneficial to the poorest farmers because they reduce the chance that these farmers will face an agricultural or economic shock with which they are ill prepared to cope. These concepts of risk aversion and biasing technologies towards small-scale, poor farmers are by no means new (Pachico, 1983). What is new is our better understanding of poverty and our better ability, via new empirical methods, to identify specific characteristics of poverty in specific environments with sufficient precision that they can be useful in the process of developing agricultural technologies that contribute to the reduction of poverty.I was asked to actively participate in a session on Donor Perspectives, at the International Conference on Impacts of Agricultural Research and Development, \"Why Has Impacts Assessment Research not Made more of a Difference?\", 4-7 February 2002, San José, Costa Rica. During the rich discussion in that session, several important issues emerged, of direct relevance to this book.Here, I would like to briefly recapitulate my summary, for further thinking and debate on some of the concerns expressed by we Donor Representatives at that Session.At the outset, an underlying observation was that if we do not care about the impact of agricultural research and development \"we are dead in the water\". In other words, we must be concerned about demonstrating cost-effective interventions with widespread impact on rural poverty, arising from donor investments in pro-poor research. Donors are anxious to find out the extent to which proven technologies (from the research communities' standpoint) are accepted and adopted by those for whom such technologies were intended and, indeed, the change such adoption has brought about in the livelihoods of the adopters. Responses to the former question are not adequately reassuring in the context of public goods research. A major reason for this has been the lack of investment in types of research to develop technologies that are more in consonance with the actual needs of targeted communities. There is a long-standing perception among the more discerning donors that even applied, adaptive research, seemingly targeted to poor farming community requirements, has been often based on top-down governance structures. This is often accompanied by disconnected phases of adaptive research followed by extension, which can also lead to difficulties in subsequent \"take-up\" or sustained adoption on the part of the intended \"recipients\".Rodney D. Cooke* programs, and to develop innovative ways of helping demonstrate the impact of such investments.Agricultural research leading to the adoption of improved technology may reduce rural poverty in many ways. Thus, we must get away from the too simplistic internal rates of return analysis based on adoption of highyielding varieties. These ways can include a range of benefits:• Higher on-farm yields, • Expansion of farm employment opportunities and higher wages, • Growth of non-farm activities, • Lower food prices, • Reduced vulnerability to crop and other risks, and • Empowerment of the poor and of their organizations.I emphasize the last item, Empowerment, as an important outcome in itself that has gained increasing attention in recent years. Unless the poor have the power to participate in deciding which technology to use, they are unlikely to benefit from it. In other words, better farm technology will most benefit the farmers who are active partners in setting priorities of R&D and in the conduct of the research itself, contributing their own knowledge and wisdom to formal science.IFAD has supported the SPIA in the CGIAR system as part of the contribution to the reform and refocusing of the international agricultural research system.One of the most relevant aspects of this San José conference was the SPIA program itself, which has been looking at methods for evaluating the impact of agricultural research on poverty in the context of different agricultural technologies and within different country, social, and institutional settings. Several interesting case studies from all the developing regions were presented. Key aspects of the framework include:• Expanding the understanding of the dimensions of poverty and how to measure it; • Emphasis on vulnerability to natural phenomenon, market shocks, and trends (this also relates to livelihood strategies); • Examination of the five asset types (Sustainable Livelihoods framework) and how people combine these in livelihood strategies; and • Understanding how the institutional environment at the micro and macro levels influences these livelihood strategies.These relate to three areas. The first lies in matching Impact Assessment (IA) outputs to decision makers' priority needs. Second, IA outputs must be made more credible, plausible, and understandable, without losing rigor in the process. Third, methods need to be improved, particularly in terms of developing a set of impact indicators for a broader array of impacts beyond the traditional economic ones.In terms of these three areas, there exist various needs and opportunities. Major user groups consist not only of funders of research (an accountability function mainly), but also of the planners and decision makers who are shaping future programs, that is they want ex post and ex ante IAs as input in making decisions about such programs.The results of IA need to be effectively publicized and disseminated. All the disparate information on IA being generated by the centers need to be brought together at the system level. For example, a Web page \"IA in the CGIAR\", could serve as (a) a central repository of credible impact information (peer reviewed); (b) a channel for exchange of information; (c) a means of reporting results to users; and (d) other functions as needed.Attempting to attribute impacts separately to each research partner may not be feasible. In fact, it can be counterproductive to attempt such attribution since it can threaten good working relations within the partnership. This point needs to be understood, particularly by funders and decision makers who promote partnership as a means of making research more effective and efficient.The IAs should not be limited to success stories. Honest attribution of project shortcomings as well as benefits is required. Recognition of risk and uncertainty associated with successes must be transparent in order to gain the confidence of those who use IAs.Impact Assessment needs to be fully institutionalized as a management function (e.g., for priority setting, resource allocation, feedback to program planning). In many research organizations, it is often carried out in response to external demands rather than as an integral part of planning.A set of realistic strategic guidelines should be formulated for future ex-post IA in the CGIAR, highlighting good, credible studies as models to follow (e.g., IA of soybean technology).Finally, more resources should be devoted to developing methodologies/procedures for:• Multidisciplinary IA based on a problem-driven approaches; • Upscaling and synthesizing (of case studies, smaller studies); • Rapid, low-cost data collection, as long as it results in acceptable levels of accuracy; • Modeling adequate counter-factual estimates; and• IA and evaluation methods for capacity building, NRM, and other areas that have proven elusive in terms of application of existing IA methods.I am pleased to share some of the collective thinking of IFAD, and of other donor-partners supporting international agricultural research for development, on the subject of poverty impact of their research investments. These are, by no means, to be considered an exhaustive list of issues but are meant here, at the end of this book, as a collection of thoughts for further reflection as we contemplate future support to the important area of pro-poor technology development. ","tokenCount":"77744"} \ No newline at end of file diff --git a/data/part_3/3348354510.json b/data/part_3/3348354510.json new file mode 100644 index 0000000000000000000000000000000000000000..29587c96980068c7b728f28eeea4688836a9953b --- /dev/null +++ b/data/part_3/3348354510.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"6c9ff40f7feb1354352c43eea95fbc76","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/e3abca50-257e-4b5f-8904-31095fd85b48/retrieve","id":"530621073"},"keywords":[],"sieverID":"a9a8b99d-cc36-4c7b-918c-ce01693984cd","pagecount":"1","content":"Vietnam is a tropical country with high temperatures and precipitation which may provide good conditions for climate sensitive diseases. Limited studies have been conducted to evaluate the level of aflatoxin B in maize and zoonotic diseases in pigs in Vietnam. In addition, no previous studies have been conducted to evaluate the perception and knowledge of aflatoxins in Vietnam. Therefore, the main objective of this study was to determine the prevalence of aflatoxin B in maize and two zoonotic diseases (Japanese encephalitis and leptospirosis) in pigs, as well as to evaluate perceptions and knowledge of aflatoxins among people in the study areas.A total of 2,370 maize samples were collected from six provinces and analyzed. Among collected samples, 799 samples (33.71%, 95% CI: 31.81%-35.66%) were above 5 µg/kg, and 687 samples (28.98%, 95% CI: 27.17%-30.86%) were above 20 µg/kg (Table 1). A total of 1,959 sera samples were collected from five provinces and analyzed. Overall, the sero-prevalences of leptospirosis were 8.17% (95% CI: 6.99-9.47) and serovar Tarassovi Mitis (2.19%) had the highest prevalence followed by Australis (1.94%), Javanica (1.68%) and Autumnalis (1.17%) using a cuto titer of ≥ 1:100 (Figure 2) while 3.98% (95% CI: 3.16-4.95) for JE was detected (Table 2).Maize and pig samples were randomly collected from six provinces based on high maize production to represent six agro-ecological zones : Son La, Hanoi, Nghe An, Dak Lak, Dong Nai, and An Giang. Samples per province were collected using multi-stage sampling (province-district-commune) (Figure 1). Maize was tested for aflatoxin B with ELISA and calculated the mean, median and range while pig sam- Hu Suk Lee , Hung Nguyen-Viet 1 , Nguyen Viet Khong 2 , Ha Minh Thanh 3 , Bui Nghia Vuong 2 , Nguyen Van Huyen 2 , Johanna Lindahl 2: Percentage with 95% confidence interval of sero-positive samples by serovar in each province using cuto titer ≥ 1:100","tokenCount":"310"} \ No newline at end of file diff --git a/data/part_3/3353151448.json b/data/part_3/3353151448.json new file mode 100644 index 0000000000000000000000000000000000000000..1827f789ffef38ea90682f3d73f49e76bc647b31 --- /dev/null +++ b/data/part_3/3353151448.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"817401966aefe6eb3632b57dd32563ff","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/144c9d74-40e2-4c4f-9769-0ca5858a7e6a/retrieve","id":"1538037032"},"keywords":[],"sieverID":"4f136edf-a1e9-43e5-9de6-bdf7b6a8c5cf","pagecount":"19","content":", as well as on the experience and knowledge of different experts in the field of research and development in African smallholder agriculture. Characteristic of this approach is the explicit focus on the diversity of farming households and the adoption of a system perspective in order to better identify, combine and assess technological and institutional innovations at farm level. Thus, the approach seeks to avoid simplistic views that single technologies or only technologies can solve the problems of smallholder agriculture in sub-Saharan Africa (Tarawali et al., 2011;Giller et al., 2011;Hounkonnou et al., 2012).The original plan was to conduct two workshops (one to discuss the principles to follow, the other to redefine the final approach) but, because the partners lacked time, we were not able to organise the first workshop. The development and description of the AR&D approach (see annex 1-5) is based on the feedback of different experts, fieldwork, review of relevant literature and the final workshop.Locations/sites where activities took placeThe fieldwork took place in the kebele (sub-district) of Bekoji (Arsi Zone, Oromia Region), located 7°35'0\"N, 39°20'0\"E (click here) in the Ethiopian highlands. This site was selected because other fasttrack projects were already working there.This project proposed a generic but flexible AR&D approach to ensure a more demand-led process in Africa RISING, particularly based on the needs and interests of smallholder farmers. With this approach, we explain how Africa RISING could include in its research and development activities a system perspective and pay attention to the diversity of households, while engaging stakeholders to better ensure the adaptation, combination and integration of both institutional and technological innovations for sustainable intensification.We propose to apply, document and assess this AR&D approach in the different regional projects of Africa RISING to analyze, compare and improve demand-led processes at a farm-level explicitly targeting rural livelihoods and sustainability of agro-ecosystems. This approach is still generic and it should be adapted to the specificities of each project (e.g. target population, scale, indicators). A system perspective is required to obtain an integrated site description (e.g. agroecological and institutional context, major farming systems, household diversity and farmers' aspirations) in order to better understand major options and constraints for sustainable intensification in the study sites.  Identifying and characterising diverse livelihoods (assets, strategies and production orientations) through the construction of typologies that improve the targeting of institutional and technological innovations.  Related to that, participation processes are valuable to develop a system perspective and to characterise livelihood diversity among farming households, as well as to engage stakeholders for a better reception of innovations.  Participation is time consuming and a complex process, requiring commitment by all involved partners, as well as champions, good facilitators and documentation to ensure genuine stakeholder engagement.  Collaboration between (local and international) partners will need to improve to ensure continuation of the process after Africa RISING finalises its activities.  In the Ethiopian highlands, gender is a major factor to take into account when organizing participatory AR&D processes and requires very specific attention.In sub-Saharan Africa (SSA), smallholder farm productivity is generally low due to limited access to improved technologies, input and output markets, a lack of pro-poor policies and effective institutions, and agro-ecological limitations. This has increased food insecurity, risks and vulnerability of farming households in trying to make a living, particularly of disadvantaged groups in rural areas.Agricultural research and development interventions seeking to overcome this low productivity in SSA have often generated a lower impact than expected. There are multiple reasons for this including:To tackle this low agricultural productivity in smallholder farming, the Africa RISING programme of USAID proposes to combine both research and development objectives in order to identify and evaluate demand-driven options for sustainable intensification (SI). In addition, it seeks to facilitate the dissemination of integrated innovations and to develop an integrated out-scaling initiative that aligns with policy and larger-scale programmes. The purpose of this programme is to:To achieve the goals of Africa RISING, this early win project proposes a generic but flexible agricultural research and development approach (AR&D) to ensure a more demand-led process, particularly based on the needs and interests of smallholder farmers. This approach builds on previous work (e.g. Collinson, 1981;Scoones, 1998;Ellis-Jones et al., 2005;Gonsalves et al., 2005), as well as on various experts' knowledge and experience in research and development in agriculture.This approach aims at explicitly including diversity of households and a system perspective to better identify, combine and assess technological and institutional innovations at farm level, in collaboration with different stakeholders, while avoiding simplistic views that single technologies or only technologies could solve the problems of smallholder agriculture in SSA (Tarawali et al., 2011;Giller et al., 2011;Hounkonnou et al., 2012). This annex explains the major principles that a demandled process in Africa RISING should include, as well as suggest how these principles can be applied within an AR&D process to sustainably intensify agricultural production at farm level.limited appreciation of farmers' knowledge, production orientations and livelihood strategies; -weak exchange mechanisms for knowledge sharing among stakeholders (farmers, extension, researchers, market actors, etc.) -(single) technology-focused interventions that disregard the various sub-systems (farm, household, village) and their interactions through which they need to function; -lack of integration of bio-physical and socio-economic understanding of farming systems; -disregard of the diversity among smallholder farmers in their farming systems and in the related institutions.\"Provide pathways out of hunger and poverty for smallholder families through sustainably intensified farming systems that sufficiently improve food, nutrition and income security, particularly for women and children, and conserve or enhance the natural resource base\" (Africa RISING, 2012).The proposed AR&D approach hinges upon three major principles: A system perspective, a focus on diversity of livelihoods and farming systems, and stakeholder participation.Adopting a system perspective allows for a better contextualisation of the potential adaptation, integration and impact of technological and institutional innovations. This implies giving greater consideration to the agro-ecological and socio-economic environment of smallholder farming practices and sustainable intensification (SI), as well as developing an interdisciplinary, multi-scale perspective on heterogeneous smallholder farming systems and rural livelihoods. Particularly the existing farm practices and options for SI need to be understood in the context of specific farming systems, gender division of labour, and livelihood strategies. A system perspective can also reveal the potential impact of SI practices at the farm scale on processes at higher scales, such as water availability and quality among other potential ecosystem services. Finally, a system perspective includes the dynamics of households and agro-ecosystems, allowing the analysis and exploration of current and potential future trajectories of SI.An understanding of diversity in farming systems and livelihoods allows for better identification of potential technological and institutional innovations for SI in smallholder agriculture (Knowler and Bradshaw, 2007;Baudron et al., 2012). The characterisation of this diversity should include whether farmers can and want to follow certain strategies, taking account of their assets, activities, production orientations and aspirations. This means that the potential adaptation and integration of technological and institutional innovations depend on the household properties, given the agroecological and institutional context.Demand-led processes should ensure the engagement of farmers and other stakeholders to guarantee relevance of any AR&D process. In fact, taking a system perspective and accounting for diversity require participatory processes with stakeholders so that researchers gain the required insights into the existing farming systems. This will increase the impact of research and development, as well as lead to better collaboration and communication among stakeholders and will empower smallholder farming households, particularly disadvantaged groups in rural areas (Johnson et al., 2003;Rusike et al., 2006).Participation needs to be a multi-level process engaging actors at different levels of the social structure within the communities as well as of the organisational structure in the research, extension and development organisations, acknowledging that the adaptation and integration of promising innovations also depends on institutions (e.g. social rules, markets). Finally, participation processes need to take differences in power and equity into account and address them deliberately (Cooke and Kothari, 2001).The implementation of this AR&D approach, including the major principles listed above, consist of six major steps combined with an M&E process (Figure 1). Principally, the approach adds preliminary steps (Step 0 and 1) to the participatory AR&D cycle. Specific methods to achieve this implementation can vary depending on the context and project objectives (for an example of methods, see Annex 4). Step 0 Site selection & description: Site selection needs to include definition of the spatial extent, e.g. kebele, wereda (district), etc., where the project will be implemented. This spatial delineation will help us understand the potential up-scaling of the results of this AR&D approach. Additionally, a description of the study site is required to give an overview of the agro-ecological and institutional context of farming and livelihoods, as well as to be able to better understand major options and constraints for SI. Finally, this step requires entering a community and building trust to facilitate the whole AR&D process by explaining and discussing the project. Activities that can be undertaken to describe sites include:a. Situational analysis: to understand the major options and constraints for SI, a literature review, an institutional analysis and/or consultations with local experts/resource persons need to be conducted; this will generate a system overview on drivers, institutions, diversity and dynamics of the agro-ecosystem. b. Farmer consultations: the situational analysis should be complemented with group discussions to identify and understand major aspirations, strategies and activities of farmers -particularly women and disadvantaged groups -to gain their livelihoods, as well to identify main constraints to possible institutional and technological options from their perspective. c. Quick survey: based on the situational analysis and farmer consultations, quick surveys can be designed and conducted to better understand and characterise the diversity of households within the study site. These surveys should combine generic indicators (linked to the overall M&E component of Africa RISING, led by IFPRI) and site-specific indicators to quickly characterise livelihoods, production orientations and assets (e.g. annual cereal production, livestock holdings and their purposes, cultivated area, labour availability, percentage of off-farm income, sold/hired labour).Step 1 Diversity description: The diversity of livelihoods (assets, activities, strategies and aspirations) within a study area needs to be explicitly mapped and characterised. For example, livelihood strategies based on non-agricultural activities might not be a priority for a project promoting SI. To describe the local diversity, four major activities need to be conducted: a. Identifying the target population: given the objectives of Africa RISING, it needs to be decided whether the AR&D approach will focus on specific targeted subgroups of the population (e.g. those prone to food insecurity) or will include the entire population of the study site. b. Mapping diversity: typologies are the main tool to simplify and to map the diversity within the target population. Depending on how they are going to be used, typologies can be constructed either by researchers on their own or through farmer consultations. In the first case, typologies are used to characterise diversity so as to better target the technological innovations to be introduced (see example in Annex 3). They are constructed based on key indicators for assets, activities and production orientation as captured in the quick surveys (e.g. labour-limited, land-limited, market-oriented, alternative off-farm income, purposes of livestock holdings). In the second case, typologies are used to better understand household diversity, livelihoods, options, constraints and aspirations so as to identify relevant innovations, both endogenous and exogenous. The typologies are constructed based on group discussions with different subgroups of the target population generating groups of farmers that can be clearly differentiated from each other (see example in Annex 3).Step 2 Identification of options: Based on the diversity of options, constraints and aspirations, stakeholders -including the farmers in the target population -can identify promising technological and institutional innovations for SI. Three major activities can be carried out in this step:a. Identification of institutional processes: based on the major institutional constraints and options identified in focus-group discussions with farmers, groups of relevant stakeholders might need to come together to find ways to strengthen or create institutional arrangements (i.e. innovation platforms) that can enhance SI. b. Identification of endogenous innovations: past and current innovations in place related to SI that have been developed within the target community can be identified through participatory mapping of current practices and highlighting \"positive deviance\". c. Identification of promising technologies: based on pretested (by research or other processes) and matrix ranking exercises with the target population, the most promising technologies that research and \"positively deviant\" farmers have to offer to cope with the major challenges mapped in Step 1 can be identified. These should include only \"best-fit\" or \"bestbet\" technologies to be tested by farmers on farm (Step 3).Step 3 Institutional & technological work: Based on the identification and prioritisation of potential institutional and technological options and relevant stakeholders, an action plan to work with innovation platforms or technologies can be designed. In this step, two major processes can take place:a. Institutional work: identify and support the management / decision-making skills that farmers would require to operate these action plans and fill the gaps as required through capacity building, including mentoring of farmer groups/organisations involved; this may also include identification of institutional innovations that are already underway locally or could be tried out by the farmers involved, such as new ways of organising marketing (see detailed examples in Hounkonnou et al., 2012). b. Technological work: select, adapt and test innovations or combinations of innovations with interested farmers. To identify these common-interest groups, a \"market of technologies\" can be organised, where promising endogenous and exogenous technologies are presented to farmers by farmers and researchers. With these common-interest groups, six activities could be carried out:-Selecting innovations: these can include single or combinations of technologies that farmers want to and can test in their farms. -Selecting indicators: farmers should be involved in participatory ranking exercises to select the indicators to be used for monitoring the progress and assessing the results of their on-farm experimentation; these should include indicators at different scales, e.g. subunits of household where applicable (especially in polygamous households), household and community.-Designing experiments: with stakeholders, using approaches such as those described in van Veldhuizen et al. (1997), Horne and Stür (2003) or the mother-and-baby or mother-and-daughter trial approach (Snapp 1999; see also Step 5). -Ex-ante evaluation: together with the farmers, identify the likely consequences (social, economic, environmental etc.) of single or a combination of technologies to be tested, in order to assess risks, using ex-ante and participatory modelling techniques.-Skill identification and strengthening: identify and support the management / decision-making skills that farmers would require to operate their on-farm research plans and fill the gaps as required, through capacity building and mentoring. -On-farm experimentation: selected farmers from the common-interest groups, together with their external research partners, compare the jointly selected single or combinations of new technologies with locally common practices in farmer-led onfarm trials. This might require iteration with the previous activities to adapt or improve the on-farm experiments and the technologies being tested. Activities and methods would largely depend on the technology selection and experiment design; some guidelines for this can be found in the references mentioned under \"designing experiments\".Step 4 Sharing lessons: Stakeholders involved need to evaluate the experimentation process and the results and to draw lessons for improving their work and for wider sharing. Three major activities may take place in this step:a. Evaluation of innovations and process: Results of on-farm experiments can be evaluated by using indicators in the middle and end of the season, identified in participatory way with the common-interest groups by using participatory M&E, budgeting and ranking. b. Drawing lesson learnt: This is a learning process that includes attention to both the achievements and weaknesses in AR&D process and in the results obtained. Stakeholder discussions within and between focus groups (e.g. farmers and scientists separately, men and women separately), as well as field days hosted by the experimenting farmers are necessary to adapt the AR&D process and possibly also the technologies being tested for the next season. c. Local and regional markets: Based on the promising institutional and technological innovations identified at the end Step 3, local and regional \"innovation markets\" are organised to present the lessons learnt; these can be linked to the stakeholder discussions and field days bringing together famers and other stakeholders from different regions.Step 5 Impact assessment: This is a prospective evaluation that attempts to determine whether the tested institutional and technological innovations brought about positive changes on farmers' lives and if these changes are, in fact, due to the AR&D (as opposed to other processes). Most impact evaluations test the efficiency and effectiveness of a particular innovation (e.g. use of improved seeds and tools). However, since the AR&D approach is a participatory process and builds upon the farmers' own experiences and priorities, this type of impact assessment will be more difficult. For this reason, the AR&D impact assessment will seek to measure the impact of the AR&D cycle on key outcomes that are common across all villages. In particular, this will involve five major activities, some of which can be part of previous steps:a. Household surveys (during Step 0): Collect baseline data from a subsample of farm households in all eligible communities prior to the AR&D work, primarily on sociodemographic information, agricultural knowledge and practices, assets, SI, social capital and other sources of livelihood. b. Target population (during Step 1): identify common-interest groups / farmer types with which to collaborate. c. Farmer selection (during Step 3): based on the common-interest groups, select similar farmers (e.g. belonging to the same type) who will not participate in the process to do the assessment described below (at least during the first year). d. Panel surveys: after each AR&D cycle, it is necessary to collect follow-up data from the same farm households (a panel) using a similar type of survey instrument. e. Assessment: comparative analysis can elucidate the potential impact of the AR&D approach and the innovations tested. This can be done by comparing the panel surveys, or the population of farmers who participated in the process and those who did not. After this step, the AR&D can go into a new cycle by either analysing diversity again or by identifying new options in a new growing season.M&E M&E is fundamental to analyse the whole AR&D approach, specifically to describe, analyse and understand what sets of technologies are selected by researchers and farmers, why they were selected, how the technologies were adapted and what the characteristics of farmers in the interest groups are. This information is essential for better understanding how to enhance the adaptation and integration of promising institutional and technological innovations by smallholder farmers in the target area and in other areas. This process should also ensure that interactions take place between institutional and technological work when needed. Although this M&E process differs from the overarching M&E of Africa RISING, they should share some of the major indicators. Activities would include:a. Selection and comparison of indicators and development outcomes: with stakeholders to assess the results of the whole AR&D approach. This will include quantitative and qualitative indicators (see Roche, 2002) at different scales including household, community and landscape, identified through participatory ranking & selection. This should be linked to Step 0. b. Documentation: records the whole process systematically, facilitating the communication, analysis and learning throughout the AR&D process.c. Facilitation: creates the necessary environment for challenging and empowering stakeholders to participate and learn throughout the AR&D process.Annex 3: Testing participatory and researcher-led livelihood typology construction in the fieldAs indicated above (in Annex 1), mapping of livelihood and farming system diversity can be either a researcher-driven process or, alternatively, organized in a participatory manner, involving farmers.The field visit took place in Bekoji, Arsi Zone (Ethiopia), where 30 farmers were invited to discuss and identify major livelihood strategies in the area. The main objective of this visit was to document, discuss and redefine the construction of a participatory livelihood typology. Identification of livelihood types was based on farmer discussions led by a facilitator, researchers and local translators. Given gender-based differences in farmer participation in the discussions (i.e. women less likely to speak up if in the company of men), two groups were formed: one with women and one with men. Time limitations did not allow the complete characterisation and validation of the identified livelihood types. However, this simple exercise generated a common understanding among farmers of the livelihood diversity among farming households in the area. It also generated relevant lessons and recommendations related to the feasibility of this AR&D approach within Africa RISING.Five major steps were taken in constructing this participatory typology:a. Farmer selection: a broad group of 30 farmers was invited (half women and half men) by the extension officer. Most of them were living in or nearby the village. b. Introduction: participants' introduction, explanation of the exercise and the programme by facilitators. c. Common understanding of classification and livelihoods: exercises on how to classify in different groups (e.g. leaders vs. no leaders), explanation of the livelihood concept based on the major production activities that farmers follow in terms of labour and time allocation. d. Type identification: separation of the group by gender to identify and characterize the major livelihood strategies in the kebele. Then, the whole group met to agree on the overall typology. e. Type characterisation: separation of the group into types to characterise their respective assets, current strategies and aspirations.Farmers in Bekoji Kebele also hosted another fast-track project studying the potential role of feed resource management in SI in the Ethiopian highlands. The first step in this project was to develop and implement an approach to household stratification based on participatory identification and scoring of livelihood capital asset indicators (human, social, financial, natural and physical capitals). This approach could be applied reasonably rapidly (<3 days) in the field and was effective in discriminating household types based both on a one-dimensional benchmarking analysis (top 25% vs. bottom 25% on average asset scores) and a PCA / cluster analysis to identify strata across all the livelihood indicators assessed. Whilst the approach requires further testing, initial indications are that it is effective. The livelihood strata identified were interpretable in terms of independent biophysical and socio-economic variables collected for the participating households. Furthermore, clear differences were observed between strata in the variables used by a study to characterise feed resources that was conducted independently on a subset of the households. A sharing of experiences between the \"SI Indicators\" and \"Participatory Typologies\" teams is suggested. There is also likely to be some value in exploring possibilities for using the two approaches in combination.Annex 4: Some suggested methods to carry out the proposed activities ","tokenCount":"3749"} \ No newline at end of file diff --git a/data/part_3/3357546993.json b/data/part_3/3357546993.json new file mode 100644 index 0000000000000000000000000000000000000000..7f8b451355748f8aad600d6666b935c79fc47a41 --- /dev/null +++ b/data/part_3/3357546993.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"cd5e99fdd8dcc3180d43eef1b55a467d","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/f2d14360-90cd-4c7e-8448-2a10e2c73089/retrieve","id":"-447667845"},"keywords":[],"sieverID":"ad8da6d6-39fa-436e-9b5c-93a03b6a151f","pagecount":"25","content":"The high eastern plain~ of Colombia (altillanllra in Spanish) include some x miUien ha ef llI'allsland savanna where the predominant prodllctien system lS extensive cattle ranehing based upon native grasslandll. Sinee approx. 1980, extensive areas ef Brachiaria decumbens have been Astablished, lnitially by vegetative propagation then by aeed. Leve la of animal productivity are relatively low and the mana~ement aystema are simple and involve many absentee ownera. Kleinheillterkamp and Habich (1982) .In the more fertile piedemonte (01' foothillR) re~jon, rice is the major crop, as well as cotton and sorghttm, while soya beana are expanding. A well developed Reed induRtry serves theee agricultural crops and in addition offerll grasa seedB, sorne .produced locally, 01' imported froroPasture research in the regíon has been centered traditionally at CNIA Carima¡;¡ua with collaoorative research by lCA and CIAT ainee the mid 1970'R. While early rAaearch emphas:Ízed animal health and hero management studies, the main thru.\"!t has been to improve the quantity and quality of forage.An extenRive effort of plant introduction was followed by agronomic then animal !waluation of grass and le¡ttune epecies, planted either alone (grasses), 01' in associations.In addition to on-atation experimente. seriea of en farm experimenta and monitorjng has been cenducted to aeaese persistance, productivity and the economiCR oi paeture improvement.Based upon resulta of these efforte, several species, totally new to agriculture, the regíon and graziers, have been relea.sed by lCA. Included herein al\"e the grasaes, Andropogon gayatlUEl -Carima¡ttls ' released i.n 1980, Brachiaria dictyoneura 'Llanero', in 1987, Brachiaria brizantha 'La Libertad-, in 1983, and the legtunes, Styloflanhtes capitata 'Capica', tn 1982. and CentroAema acutifolium 'Vichada', in 1987, Aee Tal;>l!:..J.• Official releMe of theee new matarials raieed expectationa of reaearchera for adoption and led to the initation in 1989 of a technology tranafer program organized by CRECED-Altillanura, baRed at Puerto Lopez. CIAT haa provided technical aaaiatance in eatabliehment /lnd mana¡:!:ement and in Reed production activitiea in aupport CRECED.Thia papel' /lima te describe and aaaeaa a aeed project deai~ed to aupport the paature technology tranafer initiativea in eaetern plaina of Colombia between 1989-1991, with a particular emphaaia upon aeed supply development experiencea with cv Capica. cv Vichada and cv Llanero. Ob,iectiveeWhile the goal of the aeed pro,iect waa te initiate a flow of Reeda to allow ~azier adeption of new pasturea aper.iea, apecific Qbiectivea were:generate and deliver an initial aeed aupply of the moat relevant materiala for the farm pasture proyect oí CRECED-Altillanura.increaae and conaolidate the participation of graziera and aeed enterpriaea in activities of production, harveating, conditioning and marketing of seeda of the new apeciea and cultivara.identification of the principal constraints to an exPaueion of aeed aupply for the new apecies and cultivara and initiate relevant reaearch .promote communication and interaction between the various poesible participanta in both reeearch and development of improved paaturea and aleo the production and marketing of aeeda.tlateriala. See Table 1.EXPaI\\sion of seed production was promoted by means of:1.Self-production.Share-farming with graziers.aeed producti.on. 'l'he contracto 3.Contract quantity field area at a defined value with a apecifiea a defined set maximum of aeed quality standards. The contract defines the responsabiHties of both the multiplier a.nd CIAT and also provides a summary of a~onomic practices for seed erop managernent. 'l'he multiplier assumes a11 th\", coste and risks of 'Produetion plue the implementation. CrAT providel'l baeic aeed. technical aesist,anee aOO responde for \"purehaae of eeed wh1ch meet oontract apeoificat10ne.Teehnioal assistanee to novioe multipliere.Manag1ng or rotating Fund for sead produotion/\"purohase marketing.Promoti~ the atrategic role of aeede.In the prevailing environment, (within researoh teohnology tranafers and grazier oireles), seed issues had little ol' no tradition and were rarely viewed in proper perspeetive. It was neoessary to promote; seed ae limited strategie resouree, not available by purchase (as were other phyeieal in\"puts sueh !lS. fertilizer, posts, etc.), requirin~ a relevant priority in the ovarall planning of the paature project, in aeed diatribution, etc. etc. sead deliverv to selected graziers for a real (caah) value.primary utilization aa baaie aeed (i.e. tor multiplieation) followed by utilization for plantinga of pasture.the need to multiply basie aeed, prior to release of new cultivare.Seed dietribution/Utilization.Seeda ~enerated by sharefarmin~, eontract or purchase and received into the rotatin~ fund were aold to the ~raziers aeleeted aa partiei?anta by CRECED. In addition. seede were aald to paatura reaearchere conducting relavant proJects.Applied research on Ased production technology.Thia waa conduced aR a secondary and compJementary activity to sesd productjon.Three main projecta were; comparieons of harveet methods in B. dictyoneura; agronomic management of C. amltifolium; seed quality of B.dict.YOnetlr8.In addjtion, the conduct of the entire project allowed progreeaive definition of real conatraints to aead supply development particular to \"aah \"pecies.Snch a diverse array of activities range of partidllante aee 'fable 2.was aimed at an expanding number snd These included the following grnups; In the firat three yeara oí the project, a compoaite total of_ §~ tona oí aeed were produced, aee Table 3. Hy far, the greateat proportion W8a of 'r~pica', approx 38 tona í.e. 68%, followed by approx 0.6 tona of 'Llanero' 17% approx 4 tona of 'Vichada' í.a. 7%; and 8pprox 3 tona of macrocarpum 5%. In 1990 (year 3), there waa a aignificant production for the fiNlt time Arachia and a larga incraaae in the production of '¡,lanero' .Over the three yeara, total production waa v\"'''''' llnifoJ\"ll\\, approx l8.5 tona/yr, the proportion of total production which waa received by CIAT, as ahare of contracta or aharefarming, ranged from 48% (9 tona) to 33% (6 tona) with a tendancy to decline in the third year, Annual cOl1rpoai te total production, during the firat three yeara waa very uni form a'Pprolt HL 5 ton.<¡/yr. Of thia total, the prl')portion which waa receivea Jnto the rotatjng fund of CIAT, (froro both ahare farming and t.he contract production agreementa) range from 6.6 tona (46%), 9.0 tons (48%), and 6 tona (33%) for yeare 1, 2, 3 reapectively. Thua, there waa a tendancy for a greater proportion to remain in the handa of multipliers in the third year.The volumea of aeeda not received into the CIAT rotating fund were principalof 'Gapica' and 'Llanero'. t10st of the -Capica-tended to be planted on farm by the same grazier while there was trading Qf 'Llanero' .~eli .Utilj;¡:ati<.ID. See Table 4.1.Selected grazier ahare farmere.From the beginning of their on farm involvement, both CIAT and CRECED entered into, seed production sharefarming arrangementa with 80me early adopting graziere. These graziera contributed land and rnanagement, while the project (CIAT and/or CRECED) contributed technical asaistance ~nd harvesting capacity. With two combinea in the region, CIAT waa in a etrong poaition to contribute a pioneering harveating capacity in return for 25-40% of the aeed harveat.The project benefited from theae activitiea generated in the realitiee of on farro in many 'laya. aeed production Seed and waa crop performance and the co~~trainta there to Naturally, some graziera were not intereated nor attracted to thia ne'l activity. They tended to aak for more and more contributions from the project, which soon became untenable.Each year eome graziera new to the project explored thia aharefarming approach while a few who had had a aucceaaful first experiE'nce, continued. The project attempted to conduct eharefarming with thoae graziera with the best chancea for success plus those judged to be likely to continue this activity.Efforts were then made to establish contacts between these graziers and existing aead enterprisaa the objective being that latter could replace the project in contrib\\ttions auch aa barveating, seed conditioning, technical aasistance, and aeed marketing.In 1988 and 1989, CRECED-Altillanura utilized seed purchased froID the CIAT aeed project essentially for establiahing improved pastures. In 1990, a aignificant IDodification of atrategy was made wharaby CRECED utilized approximately 30% of available aeed of 'Capica' and 'Llanero' tor the establishment of lIeed lllultiplication areas.In these cases, CRECED-Altillanura responded directly to the selected grazier for technical assistance, while CIAT providad technical collaboration to CRECED. In this way the pasture develo~ent pro,iect becatlle more a more integrated seed-and-pasture development project. With this added input of technical asaiatanca, the total number of seed multipliera increased to 17, due mainly to increased participation by graziars. (Tabl~. This improvement in congruance between graziers participatin~ in both sead production and pasturas development ia both highly logical and beneficia!.In the case oí C. acutifolium 'Vichada', however. such congruence ia not feasible because such con¡¡;ruence is not feaRible bacaulle ita seed production potential is hi¡!'her outside the area of utilization as a forage (Tabl~).Seed enterprises.All exiatin~ aeed enterpriaes were offered production contracts the comencement oi the seed projecting 1989. Initial participation was high. from a combination of curioEdty and optimismo The ofier of ~ontracta definitly stimulated seed enterpriRe participation with these new material s as it removed any risk assoclated with seed marketing. They were willing to aBsume the costa and riaka of production.Most tended to accept new contracta with one or two materiala on1y.Moat encountered difficultiea immediately, ref1ecting the fact that they were not organized towarda agricultural prodnction. Contracta with anch enterpriaes were very demanding of technical asaiatance from the aeed project. Several contracta failed to reau1t in aucceaaful establishment oí field areaa aa conAequence oí peor aite selection, bad accesa, failure at plantina or from weed invaaion. Converaly aome enterpriaea performed very wel1. In 1990 an analyaia was made of aeed enterpriae performance and attitudea and contracta were only offered to thoae judged most capable and interested.When negotiating contracta, aeed enterprísea were encouraged to plant additiona1 plana areas (í.e. without a contract). Thia waR eaay in the r.ase of 'Llanero' but more dificult with 'Capica'. 'Vichada' provided the case with most production failures, mostly becanae of Factor X.One enterpriae, in addition to ita contracta to the aeed project with , [,lanero' .became j nvol ved in ahare farming and contract harveat ing wi th graziera. Thia 1413.8 a very pOaitive evolution in their evolvement and illustrates the probable mode of expansion for moat aeed enterprisea \",ho wiah to expand their non contact production.Tn the cont~xt of their geographic relation8hip with the ~razier8 of the CRECED pl.\"oject, Reed enterpriaes fell in t\",o groupa, These were a) 10<,;a1 or ad.i a<,;ent and b 1 p.xternal or di8tant. The local gronp tended to be more in contact with graziera end the CRECED project which was advantagiouR. ibe external or distant group tended to be aeeking better locations for 8eed production than waa available in the altillanura. Thia applied especlally to 'Vi.chada', but in 80me case8 to 'Llanero' The seed project sought. to explore production POtential outaide the \"ltillanura, especial1y in the case of Arachía pintoí where potentials were unknown.lndiridual S~(LPerfQ=Ilc.e..Capica.Tn the r:afle of S. capit.ata 'Gapiea', total seed prOduc\",d waa 13 tona with all produced froro wjthin the Rame regíon where thiR specieR il'l recommended as a forage. Seed yieldR (podal with combine harvesting frnm 13 araas of 11 ha average ranged froro 23-298 kg!h.a with an average of 125 kR.!h.a. Al' a. Reed crop, 'Capiea' is relatively easy to manage and harvest. and prevides high yielda at mínimum rísk. Graziers can practice on-farro produetion ... ith harvesting capacity being their major liroitatíon. Future levals of aeed.production are limited only by demand forces baRed upon ll'raziers attitudea to 'Capiea' as a forage.Vichada.In tha case of C.'Vichada', total production was I'l.pproximately one ton, with all production froro outsíde the regíon of utilization as a forage (alti llanm'a). Seed yie1ds from 6 areaa averaging 1.6 ha ranged from 39-350 kg!ha with an average of 106 kg/ha. ~:eonomic losaes were allain encountered from the dieback ayndrome (Factor X). Aa a seed erop, 'Viehada' requírea intenaive manap;ement and hand harveating, and ia a high risk crop with variable aeed yield.At preaent it appears that p;raziers have little chance for on-farro production in the high plaina while apecialized aeed Dlqltipliera .. in require a lower coat production aystem to the post-wire 5upport syatem. ()nly hip;h and RURtained demand froro graziera for thia apecies wil1 al10w reso]ution of theae seed production limitationa.Llanero.¡ In the case of B. dictyoneura \"Llanero', a total of approximately 4.3 tona of classified aeed waR produced, both froro within and outside the eastern plaina. Yielda of pure aeed ranged froro 3-122 kgjha with an average 79, 30, and 60 for manual, beater. and combine harveating, respectively. AA a aeed crop, . Llanero' reguirea management to intenaify flowering, plus a capacity for rapid harveating. Graziers can i practice on-farm production with the additional benefit of a long period of utilization for grazeing. Deroand for aeed ia strong, the material ia widely diAtributed and production wil1 continua to expando Reduction of ! aeed dormancy remaina a problero.Awl~ReBe¡;.rcll. Further expanaion of aeed aupply ia limited by a diverae array of variablea:1.The alow nature of perennial pasturea improvement.To a traditional grazier, paature improvement is an expanaive step into the unknown. He has to face the cost, procurement and organization of, land preparation, fertilizera, fencing, aeeda, labour and machinary. Only a few are prepared to accept theae committments and challengea. Sorne newer grazier-farmera are accustomed to the purchase of inputa but Aven they firat e~lore the procesa in a limited area. Thia e~loratory phase can take 2-4 yeara before concluaiona are drawn.Perennial pa~ture improvement ia a thus a alow and prolonged procesa. Demand for aeed ia a derived Bub-proceR5.Thu5 only as pasture improvement gaina momentum, will demand for aeeda expand concurrently, reflecting a chicken and egg relationahip between the two.~he nature of demand for aeeda of paature speciea.'l'he limitad availability tachnica\"¡ aeeiBtance.Ae paeture ilDprovement, il'! a new activity for moet ¡¡(raziel'a, they t.end to eeek ol' requil'e techntcal aaaiatance.Obvioualy there are aevere limitatione in reaource a11ocation toward thie objective, aa we11 as in the number oí technicana available with the neceeary akille and expel'ience.Novice aeed multipliel'e alao want technical aaaietance in aeed crop Aatablishment, management aeed harveating and conditioning.r~w focua on aeed iaauea by re4ional l'eaearch and development inatitutiona.Actual aeed production of each material.tn general, the total novelty of the new legume apecies tended to reatrict initiativea in their aeed production.The lack of known individual identity for each new apec!ea waa very negative in thia regard al'! it complicated perBpectivea of future demando On farro aeed production within the altillanura haa been ahown to quite feaaible \"With Capica and Llanero, but not \"11th Vichada. With Capica, graziera fil'at enconnte!:' difficultiea in obtaining contl'actora with cOllÍbineR fol' aead hal'Veatin¡;, followed by a lack of aead conditionin;¡ to remove weeda (Paspalum panicum and Sida Bpp. eepecially). They alao have limited contacte for marketing.With Llanero, they aleo hava hal'Veating pl'obleUk~, to contract either combinea or beater hal'Vestel'a for a crop w1 th a very ahort period of harveat maturi ty. Seed conditionin;¡ ja alao l'equil'ed to l'emove empty apikelete.Cl'op manap,ement must aleo be tim,ü~.a fact that ¡;waziel'a tend to tUldereetimate.Seed pl'oduction by aeed entel'pl'ie8a evolve~ only as the enterpriae hecome aware oi or asaumea incl'eaainp, demand for aeed froID graziera.Theil' involvement tends to stal't in the Ahare farming context, by their conducting hal'vesting, then expanding into aeed conditioning and marketing.Dn-farro Aeed production and graziera.Raed production by seed enterpriaes.(L I!'u.tl.u'e P J sma (1991 ) ~echnical aastatanca to CRKCED will be continued. They will be Ancouraged to concentl'ate grazier multipliera in adjacent groupa to facilitate the involvement of contl'act aeed harvestera.(mECED will be encourap,ed to expand their technical aasiatance to multipliers, auch of aead available a stratep,ic will progressively increaae the proportion • from on tarm prodnction by participating graziera.Contract aeed production will ba continued only with enterprises that have damoatrated a production capacity. Contracta will be reduced with •(~pica• and •Llanero• becanae of the evolving product identity and market expanding seed. In the caae of C. macrocarpum, contracta will be suspended untE seed inventory ls reduced. With Arachia pintoi, r.ontracts will be expanded but only in with those enterprisea with a harveat capacity in favoured regían and sites. Share farming will be reduced draatically and phaaed out.It is too demanding on CIAT-Sl'S for direct participation tn harvesting and too coatly for combine maintenance. This activity haa served ita pioneer ro.le and will be aurpJanted by increaaing participation froro a few aeed Anterprisefl.IV _ OONCUnHONS 1.On-farm technology tranafer projects in pasture improvement, involving new spacies, require a aeed Jrimize the efficiency oí utilization of initial aeed atocke, mobility and technical aaaiatance.Contract aeed production and ahare farming agreementa are relevant and powerful aeed generation (or procurement) mechanisms, capable of contributinR significantly te both. a rapid rate of Reed generation and the involvement oi an expanding number of new multipliere.A Hotating FW1.d for seed production/purchaae/marketing ia a powerful operational mechanism. providing flexibility not normally aaaociated with a reaearch budJ0.05) among the agro ecologies addressed. The prevalence of varroa mite was also found to be higher in bees kept in the apiary management system (86.3%) than bees kept in the backyard (Table 16). However, statistically significant differences (χ 2 =0.305; p>0.05) were not observed among varroa mite prevalence in the different colony management systems (apiary and backyard). Furthermore, the higher varroa mite prevalence observed in apiary management system might be associated with the different contacts among colonies and the introduction of unkown sources of colonies for transfeing to the modern hives. In most cases beekeepers sell colonies with inferior in their performance and/or weakened by parasites infestation. As a result of the introduction of such types of honeybee colonies in the apiaries, the distribution within the apiaries increased.Colonies who were arranged very close to each other in the apiaries have been believed to facilitate transmission of varroa mite among the colonies through swarms, drifting and robbing activities. Beekeepers probably spread an infestation from one colony to another through frequent apiary manipulations. Infestations also are spread as a result of drifting (especially drifting drones) from one apiary to another and swarming bees (MAREEC, 2004).In regions with a high density of honey bee colonies the population dynamics are influenced by a permanent exchange of mites when foragers or drones enter foreign colonies or by robbing (Goodwin et al., 2006). It is interesting to note that the robbing bees will \"\"receive\" the mites from the victim colonies, which often are already weakened through a high Varroa infestation, and that the effective \"\"robbing distance\" is more than 1 km (Renz and Rosenkranz, 2001).Tehulederie district has the highest prevalence of 96.6% (57/59) of varroa mite in the investigation area followed by Dehana district of 95.5% (63/66) among the sampling districts while Dessie Zuria experienced comparatively with low prevalence of 72.7% (56/77) with significant difference (χ 2 =22.217; p<0.01) among the sampling districts (Table 16).Moreover, the major risk factors for the prevalence of varroa mite were also assessed using the logistic model, and the analysis indicated that 89% of the total variation for varroa prevalence was explained by logistic model. Chi-square also showed that the parameters were significantly different from zero at p<0.01. The explanatory variables that fit the model: type of management, hive type, agro-ecological zone, altitude and rainfall were found to be significant as hypothesized (Table 17).in the amount of rainfall increased the odds of varroa prevalence by a factor of 1.01 (Table 17).Concerning to the infestation rate of varroa mite on adult bees per hundred bees calculated in colonies located in the high, medium and low altitude areas, higher infestation rate was observed from colonies located in the highland areas both in phoretic (6.26±0.51) and reproductive (9.73±0.97) phases (Table 18 & 19).There was a statistically significant difference among the three agro-ecoogies in the infestation rate of varroa mite in the phoretic (F=13.86; p<0.001) and reproductive (brood cells) phase (F= 3.592; P<0.05). The higher varroa mite infestation rate per hundred bees observed in higher altitude areas than the other altitudes might be associated with the abundance of pollen source plants and tendency of bees to rear brood for a relatively extended period of time in the highland areas which might also favor higher mite reproduction in this altitude than colonies in mid and lowland representations.The laboratory diagnosis confirmed that higher varroa infestation rate per hundred brood cells (9.23±1.5) was observed in apiary management systems than the backyard beekeeping systems (6.88±0.57). However, varroa mite infestation rate showed no statistical significant difference between bees kept in apiaries and backyard management system in the phoretic (F=1.88; p>0.05) and reproductive (brood cell) (F=3.002; p>0.05) phases (Table 18 & 19).This in turn indicated that colonies kept at the backyard have been observed to be better adapted to the prevailing environment and disease and parasite resistance than the newly established apiaries. Moreover, the honeybee colonies brought to new apiaries have been observed to be more prone to varroa mite infestation. Based on the calculated infestation level in different districts, 30 (53.6%) and 24 (38.7%) of the total positive colonies from Dessie zuria and Dehana districts respectively were found to be infested with >5% infestation level. With this, there was a significant infestation level differences between the six districts (χ 2 =52.943; p<0.01). Furthermore, in the United States (US), it has been recommended that honeybee colonies need to be treated against Varroa mite when 5-20 mites have been detected in 300 bee samples during the fall (Ellis and Macedo, 2001). However the survival of our local honeybee colonies with out any medication for long might evidenced the tolerance of the local honeybee races for higher varroa loads. The results in the relationship between the major parameters for the honeybee colony strength and varroa mite infestation levels on colonies assigned for monitoring at six different apiaries (Jari, Gerado, Harbu, Jinkaba, Tsitsika and Kewzba) has been presented in table 22. Number of frames covered by bees was higher in Gerado (9.83±0.17) and Jari (8.67±0.16) locations and was significantly (p<0.01) lower in three locations; Jinkaba (6.78±0.22), Tsitsika (6.20±0.21) and kewzba (6.97±0.32). Besides, brood area was higher in Jari (2339.58 ±80.76cm 2 ) and Gerado (2283.33±154.1cm 2 ) apiaries and lower in the other four apiaries (Table 22). The amount of pollen grains stored as a protein source for brood rearing was higher for Jari (871.88±18.83cm 2 and Gerado (763.33±58.23cm 2 ) sites; and was significantly lower in Tsitsika (386.67±39.75cm 2 ), Jinkaba (386.67±39.75cm 2 ) and Harbu (483.33±37.69 cm 2 ) apiaries. However, nectar storage didn\"t show a significant difference among the representative apiaries (F=36.96, p<0.09). The lowest level of varroa mite infestation was worker bees infestation level has been observed to reduce (6.16 mites per 100 bees). Further, mite infestation has been observed to slightly increase after the fall in brood rearing activities from May (6.61mites per 100 bees) to June (7.01mites per 100 bees) (Figure 8). The present findings have been, partially, found to be in agreement with Allisop(2006) who reported the peak infestation level at November(8.7 mites per hundred bees) in south Africa and those of Ghoniemy, et al, (1991) and the percent infestation levels on worker bees were 2.9%, 10.2%, 13.2% & 5.1% for summer, autumn, winter and spring respectively with significant difference among all values. Allam (1994) reported that infestations reached their highest levels during autumn and spring, followed by winter and recorded their lowest numbers during summer. Harbo and Zuhlke (1988), in the USA, found in early February, that the number of mites per 100 adult bees ranged from 7 to 136 (average 19). Matthes et al. (1991), in their 2-year study, also found that maximum Varroa infestation level in worker brood was in March (101.7 female mites/100 cells) and January (67.5 mites/100 bees).The result indicated that the highest brood rearing activity was observed in September while the least was observed during November to April. The smallest brood area coverage has been observed to coincide with seasons of rainfall. This result indicated that at the beginning of September and during the active season when flowering plants are at bloom, colonies tend to build up their populations and as a result, the numbers of frames covered by bees were increased from September to November (figure 8).Table 23 below shows the correlation matrix between the tested colony strength parameters and infestation rate of varroa mite. Accordingly, Varroa infestation levels have a significant weak negative correlation with bee colony strength parameters such as number of frames covered by bees (r= -0.133, p= 0.021) and brood rearing area (r= -0.156, p= 0.008) but no significant negative correlation was observed between pollen grain (r= -0.045, p= 0.453) and nectar (r= -0.007, p= 0.913) storages of the colonies. The weak relationship observed might suggest that the effect of varroa mite on colony strength was at its early stage and/or Varroa alone does not appear to strongly impact honeybee colonies in the Eastern Amhara. Besides, the effect of varroa mite was more prominent on weaker colonies than stronger ones.The present result agree with Allisop( 2006) who reported varroa level were negatively correlated with number of frames covered by bees,amount of drone brood and stored pollen in south Africa. There was a significant positive correlation between Varroa levels with elevation (r= 0.42, p< 0.001) and rainfall (r=0.17, p< 0.003), suggesting that environmental factors (climate, landscape ecology) may play a key role in mediating this host-parasite interaction, and perhaps honeybee health in general. Though, the effect of these environmental factors needs to be explored in much more detailed and larger scaled studies. This result is in agreement with the findings of Muli et al., (2014) who reported that Varroa levels were positively correlated with elevation (r(53)=0.44, p=0.001 in Kenya. observed between brood removal percentage and altitude (r= 0.020, p= 0.811) and rainfall (r= 0.066, p= 0.425) (Table 24).As foraging behavior majorly depends on the availability and type of floral resources in the area, the honeybees adjust their foraging activity according to the flowering periods of the available resources in their surroundings. Accordingly, foraging behavior of the A. m. monticola honeybee race in Harbu showed a higher competence to the natural resources by exhibiting early foraging as early as 5:41am (Table 25). The colonies were also observed coming back from foraging as late as 6:43pm at Kewzba site. The result showed that there was a significant difference in early foraging time (F=3.936; p<0.001) among the different monitoring apiaries. However, late foraging time didn\"t show a statistical difference (F=0.848; p=0.518) between colonies assigned at different locations.There was a significant positive correlation between Varroa mite load in early (r= 0.610; p<0.001) and late (r= 0.434; p< 0.001) foraging times. This result might explain that the influence from the parasite load on the host, which could cause the honeybees to fly longer or may not return back at all, possibly due to impaired orientation, was considered to be one of might be associated with the modern hives\", kept close with minimal spacing, exposure to drifting and robbing. Generally, bee lice prevalence in the different hive types used showed a statistically significant difference (χ 2 =34.07; p<0.01). Furthermore, our result was found not to be inline with the results of Gizachew Gemechu et al., (2013) who have reported that the highest bee lice prevalence (48.5%) was observed in traditional hives at Holleta.On the other hand, higher bee lice prevalence was observed in honeybee colonies located in the medium altitude areas (46%; Table 26). In this case, a statistically significant difference was observed in bee lice prevalence among the different altitudes (χ 2 =24.959; p<0.01). This higher bee lice prevalence in the medium altitude areas than to that of the highland and lowland representations might be associated with the difference in environmental factors like temperature which might also affect the multiplication and occurrence of this pest. In this study, the honeybee colonies kept in established apiaries showed the higher bee lice prevalence (69.3%) (Table 26). Moreover, there was a significant difference (χ 2 =23.210; p<0.01) in bee lice prevalence among the two types of colony management systems (the backyard and established apiary) the higher bee lice prevalence in the established apiary management system, we believe, might be associated with the contact among colonies and the introduction of colonies from unkown sources. The colonies in established apiaries have been found to be close to each other, hence, facilitating the transmission of the pest among the colonies through swarming and drifting.Tehulederie district has the highest prevalence of 47.5% (28/59) of varroa mite in the investigation area followed bySekota district of 45% (36/80) among the sampling districts while Kalu experienced comparatively with low prevalence of 3.6% (2/56) with significant difference (χ 2 =48.623; p<0.01) among the sampling districts (Table 16). Diagnosis made on honeybees in field and laboratory at the study area revealed a very law prevalence of 1.3% (5/384) of nosema infection at Dehana district of Amdework sampling locality with no significant effect on the colony performance which can be explained that there was no nosema incidence in the sampled colonies of the study area.The diagnostic survey also confirmed that amoeba was detected with an overall prevalence of 8.3% (32/384) of sampled colonies without any significant effect on the colony health at Jinkaba sampling localities of Sekota District, at Chilla sampling site of Dehana district and Gerado sampling localities of Dessie zuria district.In this survey work among all colonies inspected for disease, all inspected colonies in all locations were found to be free of American foul brood, and European foulbrood there was no sign of American and European foul brood disease symptoms both in the brood and in the comb. Even in suspected case of abnormal brood of two colonies from Dessie zuria locations, the negrosine test was negative for both brood diseases.In this particular diagnostic survey period, it was able to observe the disease in only 0.78%(3/384) of the total sampled colonies at chila sampling site of Dehana district. From the result, it can be explained that there was no chalk brood incidence in the sampled colonies of the study area, however some beekeepers have reported the occurrence of the disease some three years back.In this survey work, laboratory test was carried out for the presence of Acarine mites that enter and block the respiratory systems of the adult bees. However in all samples tested, there was no positive result indicating for the presence of the Acarine mite.According to the results of this survey, the main annual crops grown in the study areas were teff, sorghum, wheat, barley, bean, maize and pea. In addition, Tomato, onion, and potato were also grown in irrigated lands. Among the perennial crops, mango, orange, lemmon, banana, Avcado and papaya were also produced widely in the study area. The area of land covered by different crops has been indicated in table 26. Of the total respondents interviewed, 52.9% of them were using irrigation and 47% of them were producing only rain fed crops. About 42.5%, 51.5% and 6% of the total respondents were producing once, twice and three times a year respectively.In the current investigation, teff (87.1%), wheat (70.3%), barley (64.8%) and chat (66.7%) have been identified to be non-attractive to honeybees. On the other hand, tomato (86.3%), onion (78%), mung bean (60.7%), potato (51.4%), avocado (69.1%), papaya (51.2%) and apple (60%) were identified to be attractive to honeybees. In addition, sorghum (94.3%), maize (85.5), bean (87.7%), lemmon (98.2%), orange (83.8%), banana (80%) and coffee tree (97.1%) were found to be excellent attractive honey plants to honeybees (table 26). Although sesame, cowpea and Grass pea were not widely grown in the study area, they were found to be excellent attractive crops to honeybees in the lowland areas. In this study, 82.4% of the respondent beekeepers were using agrochemicals in their localities.This result has been found to be higher than results of Desalegn Begna, (2015) who has reported that 54% of his respondents used pesticides and among which about 61% of the pesticides used by the farmers were identified as herbicides, 21% insecticides and 18% both types at western Amhara. Our study has also verified that 78.9%, 57.6% and 40.4% of the sampled respondents were using pesticides to protect the crops from pests, herbicides to control weeds and chemicals (DDT) as anti malaria respectively (Figure 13). Furthermore, the result has revealed that 91.4%, 5%, 2% and 1.7% of the respondents were applying the chemicals as liquid spray, granules, dust spray and as a wettable powder respectively (Table 27). This agrees with the findings of Desalegn Begna (2015) who reported 85.03% (124/147) farmers apply in liquid (emulsified), 8.84%(13/147) in powder and 4.6% (8/174) both in liquid and powder forms in western Amhara. In general, majority of the respondents (89.6%)were using these agrochemicals for cereals followed by pulses (14.7%) and fruits (14.6%).However, very small numbers of respondents were also found to use these agrochemicals for \"chat\" and leguminous crops (Table 27). Among crops which are more attractive to local honeybees, majority of the beekeeping respondents (60.7%) didn\"t use chemicals for sorghum crop. But, these respondents have complained that they were facing a threat from wider chemical application by non-beekeepers to this crop (Table 28). Moreover, the rest of the respondents described that they were using karate (22.7%), Malathion (12.7%) and DDT (2.6%) as pesticides. The majority of the respondents were also claiming that they were using Malathion on Cow pea and Grass pea to control crop diseases and pests. This claim (the application of Malathion on Cow pea and Grass pea) which caused a devastating effect was higher in the lowland represtations.The majority of respondents were also using karate (38.2%), DDT (10.9%) and Malathion(1.8%) for the control of pests in maize crop. In the study area, Endosulphan was also widely used on tomato (41.2%) followed by Mung bean (14.5%) crops (Table 28). DDT had been widely used on chat (90%) which is one of the non-attractive plants to honeybees. Moreover, very few respondents were also using DDT on lemmon, orange and maize which are considered to be attractive to honeybees. Malathion is an organophosphorus, synthetic insecticide used widely in agriculture and also against insects to protect public health. This pesticide is categorised as a highly toxic to honeybees (Lowore, n.d.). The Pacific North-west Extension Publication: How to reduce bee poisoning from pesticides has clearly stated that Malathion should never be applied to flowering crops and plants. Furthermore, the chemical has been blamed for its 2-5 day residual toxic effect on lives. The Apiculture Programme of North Carolina State University stated also that Malathion is a \"highly toxic\" and a \"severe bee losses may be expected\" when used in the vicinity of the honeybee colonies. Ri & Bura, (2013) have also explained that Diazinon could have the same effect with its residual toxic effect for about 2 days and should not to be applied on flowering plants. at blooming (Table 29). Few respondents also reported their application of pesticides on barley and Mung bean after flowering and on maize and sorghum at any stage of the crop growth when disease signs were observed. pesticides before the crops bloom, 25 both before and during the crops in bloom. This indicated that colonies at the eastern Amhara due to the experience of pesticide application during the crops in bloom are more exposed to pesticide risks than the western Amhara honeybees.According to the result of this survey majority of the respondents apply the chemicals at the early morning (67.9%) of the day and about 40.51% the respondents apply the chemicals during bees\" active foraging time including late morning (14.9%), middle of the day (11.3%) and early afternoon (14.31%). Only few respondents (1.6%) were applying the chemicals at the late afternoon (Table 30). According to the results reported by Desalegn Begna (2015) though 64.4% of the users\" at wesern Amhara prefer 6:00-9:00am as appropriate spray time, applications times are fixed by Knapsack renters and forced to spray at convenient time of knapsack renters. The effects of the poisonous plants mentioned below were observed on bees and or humans.Some of plants kill the forager bees by poisoning them and others have the physical body damaging effect. Honeys from some of these plants were also reported to cause an ailment or discomfort to the consumers by causing irritation on consumers\" throat, diarrhea. According to the respondents, Helliantus anus and Agave species have a damaging effect due to their producing a tar which bees get stuck and sometimes expose the foragers to bird attacks.Similarly the effects of Azadirachata indica and Lanthana camara were reported as repellant and bee killers. On the other hand Acacia saligna were responsible for the dwindling of colonies during their flowering period. Honey from 'Digita', Aloea spps, 'kalkalda', Parthenium hysterophorus, kuliza, Euphorobia spps, Guizotia scarab and Azadirachta indica cause irritation on consumers\" throat (Table 35).The result is in agreement with Yetimwork Gebremeskel et al 2015, who reported that plants like Acacia saligna, Euphorobia spps, Melia azedarach and Azadirachta indica were identified as poisons in Kilte Awulalo district of eastern Tigray. Keralem Ejigu (2002) reported Gumero, yefrenj Digit (Cassia slamea), Bisana (Croton macrostyches), Eret (Aloea According to the respondents, 88.7% were facing a problem of absconding (Table 37) and evidence of relationship with agro ecology was obtained in this study (χ 2 =13.388; sig=0.001).More prevalence of absconding was reported at lowland (95%) (Table 36).From the total colony owned per year by the interviewed beekeepers the number of absconded colonies larger number of absconded colonies (>10) per individual beekeeper were reported from ziquala and sekota districts representing lowland and midland areas of waghimra zone respectively and from Kalu and Tehulederie districts of south wollo zone representing lowland and midland agro ecology. This result shows that more number of honeybee colonies was absconded at the lowland areas and relatively lower at the highland areas. In this survey, 61.3% of the respondents claimed that the main reason for absconding of honeybee colonies in the study areas was due to poor management followed by the nuisance from pest and predators attack (56 %). Some respondents also reported shortage of food (29.8%) as the other reasons for honeybee absconding (Table 37). The rest 0.9% of absconding was due to lack of shelter. This result is not in line with the result of Adebabay and his groups (2008) and Tessega Bellie (2009) that indicated shortage of bee forage was the main reason for absconding in the Amhara region and Bure districts respectively. Keralem Ejigu (2005) reported invasion of ants (40.5%) and attack by honey badgers (38.7%) as most common causes of absconding at Enebse district.The interviewed beekeepers involved in the survey indicated that the prevalence of absconding was more prevalent at dearth period especially from March to June with a peak time at June in lowland and midland and at May in the highland. Due to a prolonged dearth at lowland areas, relatively the prevalence of absconding had started earlier starting from January. Besides absconding of bee colonies in the other months of the year starting from July to December was less prevalent. This agrees with the report of Adebabay Kebede et al (2008) and Tessega Bellie (2009), absconding of colonies in Amhara region and Bure district respectively mostly occur from March to May. The results of the cross sectional study have identified ants, wax moth, birds, varroa mite, Wasps, Lizards, Spider, Bee Lice, Death head Hawks moth and Hamagot were the major honebee pests and predators in order of their importance.This study also revealed that the presence of real threat to beekeeping from varroa mite infestation. Higher prevalence of the varroa mite in all sample districts showed that there have been negative health consequences as the mite were moving easily through higher mobility or marketing of bee colonies and swarm catching with less or no any cautions. The higher infestation rate of varroa mite especially greater than 5 mites per hundred bees alarmed the local honeybee colonies need close monitoring as infestation levels greater than 10 mites per hundred bees could result a colony collapse in western honeybees. Having a very promising trait in hygienic behavior of the local honeybees in the study area, we could have better opportunity to develop a varroa resistance line. Varroa level reached its peak following the main honey flow season implying that there is a need to close monitoring and take proper control measures.In the areas, most of the farmers extensively apply different pesticides for different purposes (to control different pests, weeds and mosquitos). As a result, pesticides have caused considerable effects in killing honeybees and their products decline. Those factors which have been identified to cause negative effects on the honeybee production were application of chemicals when bees are actively foraging, spraying on plants that are highly attractive to honeybees at their blooming stage and application of chemicals that are highly toxic to bees with longer residual toxicity. The existence of some poisonous plants grown in the area have poisoning effects on bees while ingesting their nectar or pollen and/or have physical damaging effects while some others had effects on consumers upon consuming honey. general colony seasonal management practices, apiary cleaning and strengthening, regular colony inspection and disease diagnosis shall be considered and advocated as potential possible solutions to minimize honeybee death and colony decline due to honeybee pests and diseases. awareness creation using possible methods to advise all actors in the value chain to take important cautions while performing bee colony purchasing, swarm catching, and transporting from doubtful sources to minimize bee pests and disease fast spread  The presence of Varroa mite in the study area is highly significant and might affect the international market accreditation process of the country. Strong national and/or regional enforcements that could regulate the illegal colony movements and marketing should be in placed as soon as possible to hold the pest and minimize the threat posed to the market and growth of the sector. Trainings on varroa mite diagnosis and monitoring, its economic importance and means of reducing its transmission and spread, should also be given to different actors. Immediate research agendas should be developed and promoted before mite population densities reach the threshold levels in each of the agroecologies. The presence of different varroa related diseases (bacterial and viral) in the country in general and the study area in particular should be addressed and studied. Non-chemical varroa mite control options like use of a screen bottom board, sanitation (comb culling), drone brood removal, re-queening with resistant stock, use of powdered sugar method, should be tested and verified through research in accordance with the local prevailing conditions. There must be due attention in minimizing the effect of agro-chemicals with the involvement of regional government through the development of coppingup strategies and policies to local conditions. Advise farmers to avoid the application of bee-toxic agro-chemicals on blooming plants and it is a good idea to check for the presence of other blooming plants which might attract bees. We need to be wise and active enough to advise people in selecting and applying less hazardous chemicals to honeybees before blooming and when honeybees are not foraging a food at least to minimize the direct application of the chemicals on honeybees which are working in the field. We need to advise farmers also to apply pesticides when honeybees are not flying.Evening application allows time for these chemicals to partially or totally decompose during the night. Programmed chemical application could be used as an option according to the prevailing conditions in each of the localities. In this case cooperation from farmers is mandatory to genuinely notify ahead of chemical application in command areas. The use of a product with less and short residual toxicity effects to honeybees and of course to human lives shall get due emphasis among users and product providers.More specifically, Malathion and Diazinon, known for longer residual effects shall better be substituted by other products. ","tokenCount":"20822"} \ No newline at end of file diff --git a/data/part_3/3402351946.json b/data/part_3/3402351946.json new file mode 100644 index 0000000000000000000000000000000000000000..6fcea1d311dfa5a82a04321e48fcfd846f21215e --- /dev/null +++ b/data/part_3/3402351946.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"d0e677ce76aa387febccc9eca0ae0f5d","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/db6c8123-53b5-493a-bb64-82afb0e0ecc8/retrieve","id":"778256075"},"keywords":[],"sieverID":"01c03ca0-bc4f-4585-9ebd-1a4422344f37","pagecount":"1","content":"Esta investigación se dedicó a investigar la conservación de semillas de frutos jugosos de gran importancia en la industria frutícola Colombiana. Estas semillas tienen un comportamiento diverso en el almacenamiento.Por ejemplo, frutos del género Solanum, son principalmente ortodoxos (Flynn et al., 2004). En contraste las especies de Caricaceae, en particular C. papaya, ha sido reportada contradictoriamente como intermedia y ortodoxa (Ellis et al., 1991;Salomao & Mundim, 2000). Las especies de Passifloraceae, han sido reportadas como intermedias (Flynn et al., 2004) y otras investigaciones han encontrado tolerancia en las semillas a la desecación (Becwar et al., 1983).El objetivo de este estudio fue dilucidar el comportamiento de las semillas al almacenamiento de frutales de Solanaceae, Passifloraceae y Caricaceae, para asegurar su conservación ex situ.Esta investigación fue posible gracias a la beca para estudio de Posgrado en el exterior de COLCIENCIAS/LASPAU y el apoyo del CIAT.Las semillas extraídas y acondicionadas se secaron a varios contenidos de humedad, se sellaron herméticamente en bolsas de aluminio y se conservaron a diferentes temperaturas siguiendo el protocolo de Hong y colaboradores (1996).Una prueba de germinación se realizó antes y después del secado, y antes y después de la conservación.Se aplicaron los tratamientos para romper latencia y los regímenes de germinación escogidos previamente en esta misma investigación. Se evaluaron plántulas normales y anormales, y a las semillas duras se les hizo prueba de sal de tetrazolium (ISTA, 2005). El porcentaje de germinación normal se transformó a ángulos para realizar el análisis de varianza. En los análisis factoriales la germinación inicial fue tomada como co-variable (SAS, 1999). Figura 1. Efecto de la desecación ( ) en la germinación normal (%, escala angular) de tres lotes de semillas de Carica papaya, y el almacenamiento hermético durante 120 días a +20 ºC ( ), +5 ( ), -20 ºC ( ) y -196ºC ( ).Figura 2. Efecto de la desecación ( ) en la germinación normal (%, escala angular) de semillas de Solanum betaceum cv. Tamarillo, y el almacenamiento hermético durante 120 días a +20 ºC ( ), +5 ( ), -20 ºC ( ) y -196ºC ( ).Figura 3. Efecto de la desecación ( ) en la germinación normal (%, escala angular) de semillas de Passiflora edulis f. flavicarpa, y el almacenamiento hermético durante 120 días a +20 ºC ( ), +5 ( ), -20 ºC ( ) y -196ºC ( ).Todas las especies de Caricaceae tienen categoría intermedia al almacenamiento, mientras que Solanum betaceum es ortodoxa y Passiflora edulis es aparentemente ortodoxa. Semillas de S. betaceum toleraron desecación entre 2.5-9.9 % m.c. y almacenamiento a temperaturas bajo cero sin perder viabilidad. En contraste, todas las especies de Caricaceae investigadas (Vasconcellea cauliflora, V. goudotiana y C. papaya), perdieron la capacidad de germinar cuando se conservaron a -20 ºC, pero no cuando se conservaron a temperaturas más frías (-86, -196 ºC) o temperaturas más cálidas (5, and 20 ºC).El daño en la semilla almacenada a -20 ºC fue muy rápida y se registró desde el primer mes de conservación. El daño en la semilla ocurrió en un rango determinado de temperatura bajo cero y está aparentemente relacionado con la pérdida de estabilidad del estado vítreo, que le confiere tolerancia al secado y asegura la quiescencia en el tiempo. Sin embargo, las especies de Caricaceae presentaron tolerancia a la desecación (desde 1.8 hasta 14.3 % m.c.), fenómeno que ocurre en otras especies intermedias. En semillas de P. edulis no hubo pérdida sustancial de la viabilidad en el almacenamiento. Hubo cierta reducción en ultra secado (i.e. 2.2-2.8 %), pero la germinación se incrementó después del almacenamiento. Esto sugiere que la población adquirió latencia con la desecación.","tokenCount":"603"} \ No newline at end of file diff --git a/data/part_3/3409277153.json b/data/part_3/3409277153.json new file mode 100644 index 0000000000000000000000000000000000000000..ce13a7a18f2510cd071d447cef25cf637545c0f0 --- /dev/null +++ b/data/part_3/3409277153.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"95711b4537e4d81e7d38ecc60350325c","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/b7e8f976-5b06-47c2-b33d-051e3282575b/retrieve","id":"-70296409"},"keywords":[],"sieverID":"0876915c-a79b-4d00-8650-8345c30cc676","pagecount":"1","content":"• Poultry producers must contend with how to manage their operations with disease as a constant threat. They may use preventative strategies to avoid widescale outbreaks or reactive strategies in response to an outbreak in the case that there is one.• Given the costs involved for each of these different strategies, producers must develop the cost-efficient strategies while mitigating risk.• With increasing concern on antimicrobial use and their effects on human and animal health, especially antimicrobial resistance, additional pressure exists for producers to reduce their use, while maintaining the profitability of their farms.• Easy-to-use user interface with flexible parameter changes showing simulation results immediately (Figure 2).• In an example scenario combating a Gumboro outbreak, the preventative intervention (vaccination) was found to be more effective in combating disease, ensuring productivity while using less antimicrobials than the reactive intervention (generalized treatment; Figure 3). • Model developed to assess the trade-offs on productivity (income) and antimicrobial use with different possible preventive (antistress, vaccination, biosecurity) and reactive (isolation, culling, limited and generalized treatment with antibiotics, hygiene) interventions.• Model to aid researchers, veterinarians, producers and policy-makers to make informed decisions about production strategy, understand the dynamics of disease spread and how to prevent and react to it, and develop policy on antimicrobial use and poultry production.ILRI thanks all donors and organizations which globally support its work through their contributions to the CGIAR Trust Fund.• Structures adapted from differential equations-based infection models with both chicken-to-chicken and environmental (fecaloral route) spread of disease represented (Figure 1).• Model adds antimicrobial use outcomes and calculates weight gain, egg productivity (for layers) and cost and revenue outcomes and antimicrobial use. • Development of the model followed the System Dynamics methodology.• Initial model calibration based on data collected from the Senegalese context (broiler farms) and expert review.• Partial-and full-model validation: Simulation results were compared with data and critiqued by experts. • Further adaptation to other contexts (e.g. Kenya, Uganda), layers, village system, especially where data on antimicrobial use and resistance is available to strengthen the model and study the effects of heat stress and humidity.","tokenCount":"344"} \ No newline at end of file diff --git a/data/part_3/3413659477.json b/data/part_3/3413659477.json new file mode 100644 index 0000000000000000000000000000000000000000..02fe7646fbd557a3de89ac729b58325d4887d548 --- /dev/null +++ b/data/part_3/3413659477.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"e2f79b2727c505b7c5e08c08b4cb4c1d","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/b00ce6b7-7f3e-4eb9-a527-870fe67d73a8/content","id":"1948019004"},"keywords":[],"sieverID":"e19217b4-a106-4df2-bbc4-16504d8ed868","pagecount":"11","content":"Zinc (Zn) deficiency is a major risk factor for human health, affecting about 30% of the world's population. To study the potential of genomic selection (GS) for maize with increased Zn concentration, an association panel and two doubled haploid (DH) populations were evaluated in three environments. Three genomic prediction models, M (M1: Environment + Line, M2: Environment + Line + Genomic, and M3: Environment + Line + Genomic + Genomic x Environment) incorporating main effects (lines and genomic) and the interaction between genomic and environment (G x E) were assessed to estimate the prediction ability (r MP ) for each model. Two distinct cross-validation (CV) schemes simulating two genomic prediction breeding scenarios were used. CV1 predicts the performance of newly developed lines, whereas CV2 predicts the performance of lines tested in sparse multi-location trials. Predictions for Zn in CV1 ranged from -0.01 to 0.56 for DH1, 0.04 to 0.50 for DH2 and -0.001 to 0.47 for the association panel. For CV2, r MP values ranged from 0.67 to 0.71 for DH1, 0.40 to 0.56 for DH2 and 0.64 to 0.72 for the association panel. The genomic prediction model which included G x E had the highest average r MP for both CV1 (0.39 and 0.44) and CV2 (0.71 and 0.51) for the association panel and DH2 population, respectively. These results suggest that GS has potential to accelerate breeding for enhanced kernel Zn concentration by facilitating selection of superior genotypes.time-consuming. However, with the recent advances in genomics, new methods for plant breeding such as genomic selection (GS) can be used to identify genotypes with enhanced Zn concentration more efficiently and rapidly.Kernel Zn concentration is determined at the end of a plant's life cycle, so GS can enable selection of promising genotypes earlier in the life cycle. This reduces the time and cost of phenotypic evaluation and may increase the genetic gain per unit time and cost (Heslot et al. 2015;Manickavelu et al. 2017;Arojju et al. 2019). The utility and effectiveness of GS has been examined for many different crop species, marker densities, traits and statistical models and varying levels of prediction accuracy have been achieved (de los Campos et al. 2009Campos et al. , 2013;;Crossa et al. 2010Crossa et al. , 2013Crossa et al. , 2014;;Jarquín et al. 2014;Pérez-Rodríguez et al. 2015;Zhang et al. 2015;Velu et al. 2016). Although the number of markers needed for accurate prediction of genotypic values depends on the extent of linkage disequilibrium between markers and QTL (Meuwissen et al. 2001), a higher marker density can improve the proportion of genetic variation explained by markers and thus result in higher prediction accuracy (Albrecht et al. 2011;Zhao et al. 2012;Combs and Bernardo 2013;Liu et al. 2018). Importantly, higher prediction accuracies have been obtained when genotypes of a population are closely related than when genetically unrelated (Pszczola et al. 2012;Combs and Bernardo 2013;Spindel and McCouch 2016).Initially, GS models and methods were developed for single-environment analyses and they did not consider correlated environmental structures due to genotype by environment (G x E) interactions (Crossa et al. 2014). The differential response of genotypes in different environments is a major challenge for breeders and can affect heritability and genotype ranking over environments (Monteverde et al. 2018). Multi-environment analysis can model G x E using genetic and residual covariance functions (Burgueño et al. 2012), markers and environmental covariates (Jarquín et al. 2014), or marker by environment (M x E) interactions (Lopez-Cruz et al. 2015). This approach to GS can successfully be used for biofortification breeding of maize because multi-environment testing is routinely used in the development and release of varieties.Modeling covariance matrices to account for G x E allows the use of information from correlated environments (Burgueño et al. 2012). Mixed models that allow the incorporation of a genetic covariance matrix calculated from marker data, rather than assuming independence among genotypes improves the estimation of genetic effects (VanRaden 2008). The benefit of using genetic covariance matrices in G x E mixed models is that the model relates genotypes across locations even when the lines are not present in all locations (Monteverde et al. 2018). GS models capable of accounting for multi-environment data have extensively been studied in different crops (Zhang et al. 2015;Cuevas et al. 2016Cuevas et al. , 2017;;Velu et al. 2016;Jarquín et al. 2017;Sukumaran et al. 2017a;Monteverde et al. 2018;Roorkiwal et al. 2018). In those studies, incorporating G x E demonstrated a substantial increase in prediction accuracy relative to single-environment analyses.Kernel Zn has been investigated in several quantitative trait loci (QTL) analyses in maize and each study has reported that Zn concentration is under the control of several loci. The phenotypic variation explained by those loci ranges from 5.9 to 48.8% (Zhou et al. 2010;Qin et al. 2012;Simić et al. 2012;Baxter et al. 2013;Jin et al. 2013;Zhang et al. 2017a;Hindu et al. 2018). A Meta-QTL analysis across several of those studies identified regions on chromosome 2 that might be important for kernel Zn concentration (Jin et al. 2013). Additionally, genomic regions associated with Zn concentration were recently reported in a genome-wide association study of maize inbreds adapted to the tropics (Hindu et al. 2018). Whereas some of the regions were novel, four of the twenty identified were located in previously reported QTL intervals.A wide array of maize genetic studies has reported considerable effects of G x E interactions for kernel Zn concentration (Oikeh et al. 2003(Oikeh et al. , 2004;;Long et al. 2004;Chakraborti et al. 2009;Prasanna et al. 2011;Agrawal et al. 2012;Guleria et al. 2013). However, genotypes with high-Zn concentration have been identified in both tropical and temperate germplasm (Ahmadi et al. 1993;Bänziger and Long 2000;Brkic et al. 2004;Menkir 2008;Chakraborti et al. 2011;Prasanna et al. 2011;Hindu et al. 2018). Additionally, evaluation procedures for kernel Zn are labor-intensive, expensive and time-consuming (Palacios-Rojas 2018). To the best of our knowledge, no study has examined the predictive ability of GS methods that incorporate G x E for Zn concentration in maize. Within the framework of the reaction norm model (Jarquín et al. 2014), the potential of GS for Zn using maize inbreds adapted to tropical environments were assessed. The objectives of this study were; (i) to evaluate the prediction ability for Zn using an association mapping panel and two bi-parental populations evaluated in three tropical environments, (ii) to assess and compare the predictive ability of different GS models, and (iii) to examine the effects of incorporating G x E on prediction accuracy for Zn.The ZAM panel consists of 923 inbreds from maize breeding programs of the International Maize and Wheat Improvement Center (CIMMYT). The panel represents wide genetic diversity for kernel Zn concentration (Hindu et al. 2018).From the ZAM panel, four inbreds with contrasting Zn concentration were selected and used to form two bi-parental (doubled haploid [DH]) populations. DH1 was derived from the F1 generation of a mating between CML503, a high-Zn inbred (31.21 mg/g) with CLWN201, a low-Zn inbred (22.62 mg/g). DH2 was derived from the F1 generation of a mating between CML465, another high-Zn inbred (31.55 mg/g) with CML451, a moderate-Zn inbred (27.88 mg/g). DH1 and DH2 were comprised of 112 and 143 inbreds, respectively.Zinc association mapping (ZAM) panel: The ZAM panel was grown at CIMMYT research stations in Mexico, during the months of June through September and November through March at Agua Fria in 2012 and 2013, and Celaya in 2012. Plot sizes and the experimental designs (Hindu et al. 2018).Bi-parental DH populations: The DH populations were grown at CIMMYT research stations in Mexico; Celaya in 2014 and Tlaltizapan (18°41'N, 99°079 W; 962.5 m asl) in 2015 and 2017. In 2014 and 2015, both populations were evaluated in single-replication trials (Hindu et al. 2018). In 2017, a randomized complete block design (RCBD) with two replications was used. The rows were 2.5 m long and 75 cm apart and each genotype was grown in a single row plot. All plots were managed according to the recommended agronomic practices for each environment.From the ZAM panel and each DH population, four to six plants in each plot were self-pollinated, hand-harvested at physiological maturity, hand-shelled and dried to a moisture content of 12.5%. The bulked kernels from each plot are considered a representative sample and were used in subsequent Zn analyses as described (Hindu et al. 2018).Genomic DNA was extracted from leaf tissues of all inbred lines (ZAM panel and DH populations) using the standard CIMMYT laboratory protocol (CIMMYT, 2005). The samples were genotyped using the genotyping by sequencing (GBS) method at the Institute for Genomic Diversity, Cornell University, USA (Elshire et al. 2011;Crossa et al. 2013). The restriction enzyme ApeK1 was used to digest DNA, GBS libraries were constructed in 96-plex and sequenced on a single lane of Illumina HISeq2000 flow cell (Elshire et al. 2011). To increase the genome coverage and read depth for SNP discovery, raw read data from the sequencing samples were analyzed together with an additional 30, 000 global maize collections (Zhang et al. 2015).SNP identification was performed using TASSEL 5.0 GBS Discovery Pipeline with B73 (RefGen_v2) as the reference genome (Elshire et al. 2011;Glaubitz et al. 2014). The source code and the TASSEL GBS discovery pipeline are available at https://www.maizegenetics.net and the SourceForge Tassel project https://sourceforge.net/projects/tassel. For each inbred, the pipeline yielded 955, 690 SNPs which were distributed on the 10 maize chromosomes. After filtering using a minor allele frequency of 0.05 and removing SNPs with more than 10% missing data, 181,889 (ZAM panel) and 170, 798 (bi-parental) SNPs were used for genomic prediction.For the ZAM panel, broad-sense heritability (H 2 ) across environments was estimated as:where s 2 G is the variance due to genotype, s 2 GE is variance due to genotype x environment, s 2 e is the error variance, l is the number of environments and r is the number of replications using multienvironment trial analysis with R (META-R) (Alvarado et al. 2016). For the DH populations, variance components based on the genomic relationship matrix were computed using BGLR package as implemented in GBLUP (Pérez and de los Campos 2014). An estimate of narrow-sense heritability ( ĥ2 ) for each DH population was calculated as:where ŝ2 g is an estimate of the additive genetic variance and ŝ2 e is an estimate of the residual variance.Correlation coefficients between Zn and environments, descriptive statistics and phenotypic data distribution using boxplots were generated in R (core Team 2018). Line means (genotypic values) for the ZAM panel were estimated as Best Linear Unbiased Estimators (BLUEs) with a random effect for replications nested within each environment. Raw data (values) were used for the DH populations.Genomic models used in this study were based on the reaction norm model which models the markers (genomic) by environment interaction (Jarquín et al. 2014). This model is an extension of the Genomic Best Linear Unbiased Predictor (GBLUP) random effect model, where the main effects of lines (genotypes), genomic, environments and their interactions are modeled using covariance structures that are functions of marker genotypes and environmental covariates.In this study, environment is the combination of site and year (site-by-year) and the adjusted means (BLUES) to be used in the genomic prediction models are obtained by fitting the phenotypes y ij as:this linear model represents the response of the j th (j = 1,. . .,J) genotype/line tested in the i th (i = 1,. . .,I) environment and fy ij g as the sum of an overall mean m plus random environmental main effect ½E i iid Nð0; s 2 E Þ; the random genotype effect½L j iid Nð0; s 2 L Þ, the random interaction between the j th genotype and the i th environment ½LE ji iid Nð0; s 2 LE Þ and a random error term ½e ij iid Nð0; s 2 e Þ. From this linear model, N(.,.) denotes a normal random variable, iid stands for independent and identically distributed responses and s 2 E , s 2 L , s 2 LE , s 2 e are the variances for environment, genotype, genotype by environment and residual error, respectively. The model above does not allow borrowing of information among genotypes because the genotypes were treated as independent outcomes.Thus, models used in this study were derived from the baseline model above by subtracting terms or modifying assumptions and/or incorporating genomics/marker information. A brief description of the genomic models used in this study are given below.This model is obtained by retaining the first three components from the baseline model (overall mean, random environment main effect and random line main effect) while their underlying assumptions remain unchanged.Here environments were considered as site-by-year combinations.Another representation of the random main effect of line L j in the previous model is considering a linear combination between markers and their correspondent marker effects, g j ¼ P p m¼1x jm b m , such thatwhere b m iid Nð0; s 2 b Þ represents the random effect of the m th (m = 1,. . .,p) marker, x jm is the genotype of the j th line at the m th marker and s 2 b its correspondent variance component. Therefore, g ¼ ðg 1 ; . . . ; g J Þ 0 , is the vector of genetic effects, and follows a normal density with mean zero, and a co-variance matrix CovðgÞ ¼ Gs 2 g with G ¼ XX ' p being the genomic relationship matrix (Lopez-Cruz et al. 2015) that describes genetic similarities among pairs of individuals. In this model, the line effect L j is retained to account for imperfect information and model mis-specification because of potential imperfect linkage disequilibrium between markers and quantitative trait loci (QTL).This model accounts for the effects of lines L j ; of markers (genomic) g j , of environments (E i ) and the interaction between markers (genomic) and the environment ðgE ji Þ. The model includes the interaction between markers (genomics) and the environment via co-variance structure (Jarquín et al. 2014). The model is as follows:Where gE ji is the interaction between the genetic value of the j th genotype in the i th environment and gE ¼ fgE ji g Nð0; ðZ g GZ, where Z g and Z E are the correspondent incidence matrices for the effects of genetic values of genotypes and environments, respectively, s 2 gE is the variance component of gE and # denotes the Hadamard product (element-to-element product) between two matrices.Models were first fitted to the entire data set to estimate variance components using the R-package BGLR (de los Campos et al. 2010; de los Campos and Perez-Rodriguez 2016). The information generated from the full data analyses was not used as prior information for the cross-validation schemes (CV1 and CV2) used for assessing the prediction accuracy of the different models.Two distinct cross-validation schemes that mimic prediction problems that breeders may face when performing genomic prediction were used (Burgueño et al. 2012). One random cross-validation (CV1) evaluates the prediction ability of models when a set of lines have not been evaluated in any environment (prediction of newly developed lines). In CV1, predictions are entirely based on phenotypic records of genetically related lines. The second cross-validation (CV2) is related to incomplete field trials also known as sparse testing, in which some lines are observed in some environments but not in others. In CV2, the goal is to predict the performance of lines in environments where they have not yet been observed. In this study, CV2 mimics a situation where lines are evaluated in two environments but missing in the third environment. Thus, information from related lines and the correlated environments is used, and prediction assessment can benefit from borrowing information between lines within an environment, between lines across environments and among correlated environments.In CV1 and CV2, a fivefold cross-validation scheme was used to generate the training and validation sets to assess the prediction ability for Zn within the ZAM panel and each DH population. The data were randomly divided into five subsets, with 80% of the lines assigned to the training set and 20% assigned to the validation set. Four subsets were combined to form the training set, and the remaining subset was used as the validation set. Permutation of five subsets taken one at a time led to five training and validation data sets. The procedure was repeated 20 times and a total of 100 runs were performed in each population. The average value of the correlations between the phenotype and the genomic estimated breeding values (GEBVs) from 100 runs was calculated for the ZAM panel, and each DH population for Zn in each environment and was defined as the prediction ability (r MP ).All models were fitted in R (core Team 2018) using the BGLR package (Pérez and de los Campos 2014). All phenotypic and genomic data can be downloaded from the link: http://hdl.handle.net/11529/ 10548331Mean values of kernel Zn concentration were estimated for each environment and across environments (Tables 1 and 2). For the ZAM panel, kernel Zn ranged from 14.76 to 39.80 mg/g in Celaya 2012, 15.16 to 42.52 mg/g and 17.05 to 46.52 mg/g in Agua Fria 2012 and 2013, respectively (Figure 1). The highest mean (29.53 mg/g) for Zn was observed in Agua Fria 2013. DH1 had Zn values ranging from 16.00 to 48.00 mg/g in Celaya 2012, 16.00 to 35.00 mg/g in Tlaltizapan 2015 and 15.50 to 39.00 mg/g in Tlaltizapan 2017, while the respective values for DH 2 were 17.70 to 43.14 mg/g, 15.60 to 37.80 mg/g and 14.70 to 37.60 mg/g (Figures 2A and 2B). the ZAM panel was 0.85 (Table 1) and the ĥ2 for DH1 and DH2 were 0.83 and 0.76, respectively (Table 2). There were significant positive correlations between environments for Zn (Table 3), accounting for the moderate to high heritability estimates.Principal component analysis for the ZAM panel suggested presence of a relatively diverse set of lines, and 452 principal components (PCs) were needed to explain 80% of the genotypes' variance (Figures 3A and 3B). The first two principal components explained 3.85% of the total variance. For the DH populations first two eigenvectors separated the two groups (DH1 and DH2) and 56 principal components were needed to explain 80% of the genotypes' variance (Figures 3C and 3D). The first two principal components explained 27.50% of the total variation for the DH populations.Variance component estimates for all models were derived from the full-data analysis (Table 4). In the ZAM panel, variance components for M1 ranged from 16.18 to 7.01 with the main effect of environments explaining the largest proportion (46%). When marker information was incorporated (i.e., M2 and M3), the estimated variance due to environments was reduced to 9.46 for M2 and 8.11 for M3. Inclusion of the interaction term (genomic x environment) reduced the residual variance component by 30%, from an estimated residual variance of 7.01 in M1 to 4.92 in M3 suggesting that some components of differences among genotypes cannot be fully captured by the main effects of markers and environments. Similar trends were observed in DH1 and DH2 except for M1 of DH1 where the main effect of lines accounted for a slightly higher proportion of the total variance (38%) than the main effects of environments (35%).The residual variance component values for all models of DH populations were slightly higher than those for the ZAM panel (Table 4), possibly because the populations were evaluated in singlereplicated experiments at Celaya and Tlaltizapan (2014 and 2015, respectively). However, estimates from M3 of the DH populations suggest that $ 60 of the within-environment variability can be explained by main effects of lines, genomic (markers) and their interaction term. The proportions of within-environment variation explained by the interaction term were $ 10% for the ZAM panel and DH populations suggesting the importance of considering such interactions in genomic prediction models.Cross-validated r MP values for kernel Zn were estimated for the ZAM panel and DH populations (Tables 5, 6 and 7). The average r MP values in CV1 were consistently lower than those in CV2, suggesting the importance of using information from correlated environments when predicting performance of inbred lines. The mean r MP values in CV1 and CV2 for the ZAM panel were 0.39 and 0.71, respectively (Table 5). For the DH populations, average r MP values were 0.53 for DH1-CV1, 0.44 for DH2-CV1 (Table 6), 0.70 for DH1-CV2 and 0.51 for DH2-CV2 (Table 7).In the ZAM panel, the highest values in CV1 (0.47) and CV2 (0.72) were obtained in Celaya and Agua Fria 2012 (Table 5). For the bi-parental populations, both under CV1 and CV2, higher r MP values were observed for DH1 compared to DH2. The highest values in CV1 (0.56) and CV2 (0.71) were observed in Tlaltizapan 2017 and 2015, all for DH1 (Tables 6 and 7). The consistently higher r MP values in CV1 and CV2 of DH1 could be attributed to the higher (0.58 to 0.62) correlation values between environments (Table 3).Comparing the r MP values obtained from each model, M1 had the lowest (-0.001, -0.03 and 0.04) accuracies in CV1 for the ZAM panel and DH populations (Tables 5 and 6). Those values were improved in CV2 because the predictions benefited from previous records (collected from other environments) of lines whose Zn values were being predicted. When M1 was expanded to M2 by adding the main effects of markers, the r MP values at each environment and across environments were increased. For example, in CV1, M2, .100-fold increase in r MP values were observed for the ZAM panel and DH populations, and in CV2, M2, average r MP values increased by 2.98%, 2.94% and 11.11% for the ZAM panel, DH1 and DH2, respectively (Tables 5, 6 and 7).The multi-environment model (M3), which includes the interaction between markers (genomic) and the environment ðgE ji Þ gave higher prediction accuracy than single-environment models (M1 and M2). In CV1, mean r MP values increased from 0.37 (M2) to 0.39 (M3) for the ZAM panel and from 0.43 (M2) to 0.44 for DH2 (Tables 5 and 6). Similar trends were observed in CV2 for the ZAM panel and DH2 (Tables 5 and 7). However, in both CV1 and CV2 of DH1, incorporating gE ji did not improve r MP values for Zn (Tables 6 and 7). For CV1, M3, r MP values for Zn in individual environments ranged from 0.34 to 0.47 for the ZAM panel (Table 5), 0.51 to 0.55 for DH1 and 0.35 to 0.50 for DH2 (Table 6). For CV2, M3, those values ranged from 0.69 to 0.72 for the ZAM panel, 0.68 to 0.70 for DH1 and 0.43 to 0.56 for DH2 (Tables 5, 6 and 7).Overall, moderate to high prediction ability values for kernel Zn were observed for the ZAM panel and DH populations. This could be attributed to the heritabilities observed for kernel Zn (Tables 1 and 2). Similar observations were reported for Zn concentration in wheat (Velu et al. 2016;Manickavelu et al. 2017). Higher predicted values with high accuracy for GS programs are expected for traits with moderate to higher heritability estimates (Combs and Bernardo 2013;Lian et al. 2014;Muranty et al. 2015;Saint Pierre et al. 2016;Manickavelu et al. 2017;Zhang et al. 2017bZhang et al. 2019;;Arojju et al. 2019). Consistent with a study on Zn and iron (Fe) concentration in spring wheat, the prediction accuracies in this study are sufficient to discard at least 50% of the inbreds with low-Zn concentration (Velu et al. 2016).Additionally, the moderate to high prediction accuracies reported in this study shows that GS can be used in maize breeding to improve kernel Zn concentration. Assuming two possible seasons of Zn evaluation per year, the predicted genetic gains can be estimated from prediction accuracies and genetic variances of the training populations. The genetic variances for the ZAM panel, DH1 and DH2 were 12.38, 12.20 and 14.88, and prediction accuracies were 0.71, 0.70 and 0.51, respectively. If the inbreds in each predicted population are ranked based on their predicted Zn values and the top 10% selected, then their expected average Zn values can be estimated from the proportion of inbreds selected, their respective training population genetic variances, prediction accuracies and the time interval for evaluating the lines. With reference to this, the expected average values of Zn are approximately 31 mg/g for the ZAM panel, 30 mg/g for DH1 and 27 mg/g for DH2. These averages are higher n■ Table 3 than the averages of the respective training populations (27 mg/g for the ZAM panel, 25 mg/g for DH1 and 26 mg/g for DH2) suggesting that the prediction accuracies achieved are sufficient to select at least 10% of the predicted inbreds with higher Zn concentration.Data from both bi-parental populations and diverse collection of inbreds have been used for GS and based on cross-validation (CV), it has been established that prediction accuracies could also be affected by the relatedness between training and prediction sets (Habier et al. 2007;de Roos et al. 2009;Asoro et al. 2011;Daetwyler et al. 2013;Cericola et al. 2017;Crossa et al. 2017). In this study, average predicted accuracies were higher for CV1 of the bi-parental populations (0.53 for DH1 and 0.44 for DH2) compared to the ZAM panel (0.39). Higher predicted values in CV1 of the DH populations could be attributed to the closer relationship among DH lines in the training and prediction sets, maximum linkage disequilibrium (LD) between a marker and a QTL, and controlled population structure (Bernardo and Yu 2007;Albrecht et al. 2011;Zhang et al. 2015). In collections of diverse inbreds, prediction accuracy may depend on the ancestral relationships between the lines. So, in experiments using such collections of lines, prediction accuracies have been more variable than accuracies achieved using bi-parental populations (Spindel and McCouch 2016).Cross-validation (CV) schemes are used in genomic prediction to estimate the accuracy with which predictions for different traits and environments can be made (Burgueño et al. 2012;Zhang et al. 2015;Saint Pierre et al. 2016;Velu et al. 2016;Sukumaran et al. 2017aSukumaran et al. , 2017b;;Monteverde et al. 2018;Roorkiwal et al. 2018). In this study, two CV schemes (CV1-predicting the performance of newly developed lines, and CV2-predicting the performance of lines that have been evaluated in some environments, but not in others) were used. The utility of these schemes indicated that prediction values for newly developed lines (CV1) were generally lower (0.39 for the ZAM panel, 0.53 for DH1 and 0.44 for DH2) than the values for lines which have been evaluated in different but correlated environments (CV2; 0.71, 0.70 and 0.51 for the ZAM panel, DH1 and DH2, respectively). Such observations indicate the importance of using information from correlated environments when predicting the performance of inbred lines. However, selection of new lines without direct field testing, as simulated in CV1, may enhance the breeding process by replacing the time and labor-intensive field testing for Zn with genomic-estimated breeding values. But, the prediction accuracy values obtained may be n■ Table 4 lower such that the annual rate of genetic progress in a GS program is compromised (Burgueño et al. 2012). So, the ultimate decision of how a breeding scheme should be structured could depend on the compromise between the desired prediction accuracy and the generation interval (Burgueño et al. 2012).Genotype by environment interaction is an important factor affecting kernel Zn concentration in maize and genomic prediction models that incorporate G x E may enhance the potential of GS for biofortification breeding. For different crop species and traits, genomic prediction models which incorporated G x E achieved higher prediction accuracies in both CV1 and CV2 schemes relative to models which did not include G x E (Burgueño et al. 2012;Guo et al. 2013;Jarquín et al. 2014;Lopez-Cruz et al. 2015;Zhang et al. 2015;Monteverde et al. 2018). In this study, the impact of modeling G x E variance structures for multi-environment trials was investigated and results indicated that the average predicted values from M3 (G x E model) were higher (0.39 and 0.44 for CV1 and 0.71 and 0.51 for CV2) than the values from M2 (non-G x E; 0.37 and 0.43 for CV1-M2, 0.69 and 0.50 for CV2-M2) for the ZAM panel and DH2. These findings agree with those reported on Zn concentration in wheat (Velu et al. 2016), providing evidence that incorporating G x E in GS models can enhance their power and suitability for improving maize for kernel Zn concentration. Conversely, the average predicted values for CV1 and CV2 of DH1 were higher in M2 (0.53 and 0.70) than in M3 (0.53 and 0.69). Except for differences in population size (112 lines vs. 143 lines), this was unexpected since DH1 and DH2 were grown in the same environments.The gains in prediction accuracies for the GS model that accounted for G x E were dependent on the correlation between environments and CV method used. In this study, the phenotypic correlations between environments were all positive (ranging from 0.58 to 0.62 for DH1, 0.29 to 0.46 for DH2 and 0.61 to 0.66 for the ZAM panel). Such correlations can be exploited using multienvironment models to derive predictions that use information from across both the lines and environments (Burgueño et al. 2012). For instance, although the phenotypic correlations between environments for DH2 were positive (0.29 to 0.46), the lowest average prediction value (0.51) for CV2 was observed for this population. This was expected because CV2 uses phenotypic information from genotypes which have already been tested; hence, effectively exploiting the correlations between environments (Burgueño et al. 2012;Jarquín et al. 2014;Crossa et al. 2015;Pérez-Rodríguez et al. 2015;Saint Pierre et al. 2016;Monteverde et al. 2018). However, for CV1, the information between environments could only be accounted for through the genomic relationship matrix (Monteverde et al. 2018). Hence, the gains in CV1 may likely attribute to more accurate estimate of environment-specific marker effects (Guo et al. 2013). In contrast, when multiple environments are weakly correlated, prediction accuracies from across environment analyses can be negatively affected relative to prediction accuracies within environments (Bentley et al. 2014;Wang et al. 2014;Spindel and McCouch 2016). Thus, before designing a GS experiment, identifying correlated environments where environments can differ in terms of site, year or season in which data were collected is of great interest (Spindel and McCouch 2016).However, the prediction accuracy values were of lower quality when genomic predictions were conducted across populations. For instance, when the ZAM panel was used as the training population, prediction accuracies for DH1, DH2 and DH1+DH2 were 0.15, -0.10 and 0.09, respectively. When DH1 and DH2 were used as a training and prediction set for each other, prediction accuracies were 0.08 and 0.16 (Unpublished data). These prediction accuracies are n■ Table 6 Correlations (mean 6 SD) between observed and genomic estimated breeding values for Zn in the three environments for three GBLUP models for cross-validation CV1 of DH populations considerably lower than those reported in this study and the differences may be attributed to: (i) weak genetic relationships between the training and prediction population sets and (ii) different methods of analysis because the prediction accuracies reported in this study were partly achieved by modeling the random-effects environment structure to account for G x E while for the unpublished data, the randomeffects environment structure of G x E was not included. The ability to predict kernel Zn concentration using highthroughput SNP markers including G x E interactions creates an opportunity for efficiently enhancing Zn concentration in maize breeding programs. For instance, during early generations of a breeding program, GS can be utilized to identify genotypes with favorable alleles when numbers of progenies and families are large. This could potentially reduce the resource-intensive evaluation process and advancement of false-positive progenies (Velu et al. 2016). Coupled with advances in technologies for assessing Zn, plant scientists can more rapidly measure Zn concentration in maize kernels using the energy dispersive x-ray fluorescence (XRF) assays (Guild et al. 2017). Thus, with more validations and model refinements, GS can potentially accelerate the breeding process to enhance Zn concentration in maize for a wider range of environments.","tokenCount":"5307"} \ No newline at end of file diff --git a/data/part_3/3414638507.json b/data/part_3/3414638507.json new file mode 100644 index 0000000000000000000000000000000000000000..fececcb1e2d48bfad2bf71f5009859999b3f3966 --- /dev/null +++ b/data/part_3/3414638507.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c88233e203c0e2f9d45615165bad37fc","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/2cb8eb35-180d-457c-8972-9a1d4de170f2/retrieve","id":"-168194105"},"keywords":["Viet Nam","food systems","diet quality","nutrition","agriculture"],"sieverID":"70f86fd9-f7d6-49ca-98f2-cc8e53b87d07","pagecount":"127","content":"established in 1975, provides research-based policy solutions to sustainably reduce poverty and end hunger and malnutrition. IFPRI's strategic research aims to foster a climate-resilient and sustainable food supply; promote healthy diets and nutrition for all; build inclusive and efficient markets, trade systems, and food industries; transform agricultural and rural economies; and strengthen institutions and governance. Gender is integrated in all the Institute's work. Partnerships, communications, capacity strengthening, and data and knowledge management are essential components to translate IFPRI's research from action to impact. The Institute's regional and country programs play a critical role in responding to demand for food policy research and in delivering holistic support for country-led development. IFPRI collaborates with partners around the world.Achieving a world with no poverty, zero hunger, reduced inequalities, and responsible production and consumption are all key challenges of the Sustainable Development Goals (United Nations 2015). A food systems perspective provides a unique entry point to asses and potentially address all of these issues. Fueled by economic growth and rapid urbanization, low-and middle-income countries (LMICs) are undergoing the nutrition transition from mostly starchy, low-fat, high-fiber diets, to increased consumption of ultraprocessed foods that are higher in fats, sugars, and salt. As a consequence, LMICs now face not only undernutrition and micronutrient deficiencies, but have also experienced the most rapid increases in the prevalence of overweight, obesity, and other diet-related non-communicable diseases (NCDs) (Global Panel on Agriculture and Food Systems for Nutrition, 2016; Kelly, 2016;Popkin, 2014), defined as the \"triple burden\" of malnutrition. Viet Nam's specific context demonstrates this example: during the country's rapid economic growth, following its liberating reforms in 1986 and the rapid rate in poverty reduction in the 1990s, the average caloric intake increased in almost all regions of the country, albeit with diverging intensity (Molini 2006). Despite the dominance of small-scale production and supply through traditional informal markets and small retail stores, the penetration of international food and standards, coupled with large-scale Vietnamese private sector investments, and the trend towards an increasingly meat-based diet, are transforming the agrifood sector from predominantly smallholder farming into largescale enterprise oriented farming.The transition to larger-scale, enterprise-oriented farming has been associated with a small decrease of the rural population engaged in agriculture-related income (8 percent decrease in 2016 from 2011), who moved into non-agricultural or remained unemployed (7 percent and 1 percent increase in 2016 from 2011).Still, agriculture, fisheries, and forestry continue to be a major contributor to the Vietnamese economy, comprising nearly 15 percent of Viet Nam's GDP in 2018 (General Statistics Office of Viet Nam 2018c).Just under half the population are involved in agriculture production, with 14.5 million farms comprising approximately 70 million land parcels. Of these, there are nearly 12 million hectares of arable land destined for annual crops (7.7 rice, 1.1 maize, 0.93 vegetable, 0.27 other) and just over 3 million hectares under perennial crops (including 0.67 coffee, 0.30 cashew, and 0.93 fruits) (General Statistics Office of Viet Nam 2018d).The continuing substantial decline in a diet of mainly starchy staples and increases in consumption of meat, fish, and dairy products has helped to lower the prevalence of undernutrition (Do T.P. Ha et al. 2011). However, this has also marked Viet Nam's transition from traditional diets towards unhealthy food consumption patterns such as high consumption of salt, ultra-processed foods (including instant noodles), and sweetened non-alcoholic beverages, as well as lower consumption of fresh fruit (in decline since 2000), vegetables, and seafood (T. T. Nguyen and Hoang 2018).Understanding the food system factors behind these diet transformations is critical, as they have been linked to the country's increased prevalence of overweight and obesity (Do T.P. Ha et al. 2011) and an increased burden of disease and prevalence of NCDs (Bach Xuan Tran et al. 2018), all of which increase pressure on the national health care system (T. T. Nguyen and Hoang 2018). Viet Nam's rapid urbanization rate is expected to remain above 3 percent annually, and the country's now-globally integrated economy, whose trade volume accounts for 17.8 percent of its GDP (World Bank, 2017), will continue to be catalysts for the nutrition transition currently underway. This overall picture makes Viet Nam an excellent case study for understanding food systems frameworks with their dynamic drivers.Acknowledging the national context, the Vietnamese government has demonstrated its commitment to addressing these emerging challenges by issuing strategic policies. Three key food and nutrition strategies have been rolled out through the National Nutrition Strategies (NNSs) for 1996-2000, 2001-2010 and, currently, 2011-2020. The NNS aim to improve meals \"in quantity and balance in quality, ensuring safety and hygiene. Childhood malnutrition will be significantly reduced, enhancing the stature and habitus of the Vietnamese people.\" The nutrition policies have been typically guided by national development and socioeconomic targets. Resolution 100/2015/QH13, issued by the Prime Minister, emphasizes two main national target programs for the period between 2016-2020: (i) Building new countryside, and (ii) Sustainable poverty reduction. Both of these cover various aspects of food, nutrition, and rural development. The current nutrition policy also aims to limit obesity and chronic noncommunicable diseases related to nutrition.Food safety policies are also a high national priority, and consumer concerns regarding food safety are high (Nguyen-Viet, Chotinun, et al. 2017;World Bank 2017). The Food Safety Law provides policies to accelerate the application of good agricultural practices in crop production and good animal husbandry regulations on quality management of agricultural products. Besides policies related to nutrition and food safety, the country leaders also govern the Vietnamese food systems with policies affecting the availability and affordability of food (Tran Cong Thang and Nguyen Le Hoa 2016). The wide range of policies suffer from a lack of coordination and implementation, often driven by a weak evidence base and limited crosssectoral coordination (World Bank, 2016, 2017). Capacity building and research will be critical to help implement and adapt a systems approach to the Vietnamese contexts.This review seeks to describe and contextualize the current food systems in Viet Nam, by reviewing the current literature and using updated frameworks for food systems characterization. It also aims to identify research and action priorities for food systems for healthier diets in Viet Nam. We undertook the following steps to prepare this review: First, we carried out a rapid identification of the main themes related to Viet Nam's food systems to facilitate a stakeholder co-planning workshop in Hanoi. Second, we used the entry points provided by the planning workshop (e.g. key words, research gaps identified by participating stakeholder's concerns) as the primary inputs for further analysis of the literature and existing data sources. Third, combining global food systems frameworks with further literature review and secondary data analysis, we characterized the food systems in Viet Nam, and created a food systems profile for Viet Nam. Upon completion, we formulated and prioritized research questions that might address the gaps and drive research priorities. Finally, we validated our findings and gathered feedback to finalize the paper through a consultation with key national stakeholders and experts in a workshop held in Hanoi on June 20, 2019.In identifying research priorities, we adhered to two key criteria. First, Viet Nam's prioritized research questions should align with existing international and global agendas on food systems research. In particular, those which could directly contribute to building the evidence base to strengthen policies that state the importance of focusing on a 'high quality diet', building more data and metrics for diet quality and food systems, better evaluation of policies and policy actions, climate accounting, and incentive structures (e.g. Global Panel on Agriculture and Food Systems for Nutrition, 2016;IFPRI, 2016)). Second, we acknowledged and considered national priorities as outlined in key policy documents. The objective of the review is to facilitate both national and international learning, as well as describe the transition of the Vietnamese food systems as they strive to become healthier, safer, more nutritious, and sustainable.Poverty, food insecurity, and undernutrition have been rapidly decreasing in Viet Nam. Improvements are largely credited to new economic policies introduced in the late 1980s (IFPRI 2016), which opened the country's market to the world. As a result, the average Vietnamese diet has undergone significant changes, although two percent of the population still remains severely food insecure (FAO et al. 2018).Over the past ten years, the prevalence of undernourishment has decreased from 18 to 11 percent (FAO et al. 2018). Undernutrition of children under the age of five improved significantly, with chronic malnutrition of children (stunting) falling from 32 to 19 percent between 2007 and 2013. However, the latest figure from 2015 sits at 24.6 percent, suggesting a slight regression from the improvements seen in 2013 (UNICEF-WHO-World Bank Group 2019). Disparities in wealth, region, and ethnicity prevail. Underweight and stunting remain a problem within specific pockets of poverty. In 2011, roughly one third of children in the northern midland mountainous areas and the central highlands were stunted, and 41 percent of ethnic minority children under five were stunted (Chaparro, Oot, and Latest figures place overweight children and adolescents at 9.7 percent (WHO 2016). Two percent of adolescents, 25 percent of women, and 20 percent of men are overweight (Figure 1.1) (WHO 2018).Obesity in children under age five in Ho Chi Minh City increased threefold from 3.7 percent in 2000 to 11.5 percent in 2013. In urban areas, these figures have been attributed to a more sedentary lifestyle, as well as changes in eating habits marked by eating out of the home more frequently; the introduction of Westernized and fast foods containing more fat, salt and sugar; and poor coordination among schools and families in managing children's food intake. Meanwhile, for children in rural areas, frequent consumption of foods high in fat and increasing prevalence of advertisements for processed foods have been significantly associated with the increasing prevalence of overweight and obesity (Minh Do et al. 2015;Nguyen Thanh Tuan, Pham Duy Tuong, and Popkin 2008). Low levels of physical activity are also contributing to the rise in overweight and obesity, with more than a quarter of the adult population engaging in little or no activity Micronutrient deficiencies are still a concern, especially relating to women and children (Table 1. Nam is now among the top 20 countries with the highest levels of iodine insufficiency (Iodine Global Network 2017) worldwide, especially after the end of government-subsidized iodized salt supplementation (Codling et al. 2015). Non-communicable diseases (NCDs) are currently the primary cause of death in Viet Nam, with the top seven out of ten mortality causes related to cardiovascular disease, chronic obstructive pulmonary disease, lung cancer, Alzheimer's, diabetes, and cirrhosis of the liver (GBD 2017Risk Factor Collaborators 2018).Poor diet quality is attributed to have significantly determined/influenced the burden of disease of many NCDs in Viet Nam in 2017 and, in particular, was a primary risk factor for those with ischemic heart disease (69 percent); stroke (50 percent); diabetes (29 percent); colorectal, stomach, esophageal and lung cancers;and chronic kidney disease (39, 28, 19, 10 and 11 percent respectively).In terms of links to diet, Vietnamese salt consumption is high, estimated between 9g and 22g/day (Jensen et al. 2018; T. T. illnesses are scarce, it has been estimated that foodborne diseases may be responsible for around 7 percent of the infectious disease burden, ranking 29 th in Viet Nam, making it more prevalent than measles (World Bank, 2017). During 2014 and 2015, there were almost 370 outbreaks of food poisoning in Viet Nam involving more than 10,000 cases and resulting in 66 deaths -although it is worth noting that the estimated number of food poisoning cases in Viet Nam is highly under-reported (World Bank, 2017). For consumers, between 2002 and 2010, the majority of food poisoning cases resulted from people consuming food at home (61 percent), in canteens (13 percent), and at parties/social gatherings (9 percent). During the same period, the contaminants related to reported food poisoning outbreaks included microorganisms (33 percent), toxins (25 percent), agrochemicals (11 percent), and unknown (31 percent) (Nguyen Thi Duong Nga et al. 2014).Sustainability concerns are high on the agenda for food systems research in the context of climate change, biodiversity loss, and unsustainable practices within the entire food system (Haddad et al. 2016). As Viet Nam's agriculture has expanded and intensified over recent decades, its environmental footprint has grown, especially among the most dynamic areas of Vietnamese agriculture, creating agro-environmental hotspots (Table 1.3). For example, the marked increase in staple food production (T. T. Van Cong 2017;World Bank 2016). In the production of livestock, Viet Nam generates an estimated 80 million tons of animal waste per year. Only around 60 percent of this is treated, with the remainder often discharged directly into the environment (dumped on land, in fishponds, canals, rivers, etc.) (Tung Xuan Dinh 2017). The livestock sector's contributions to water pollution and global greenhouse gas emissions is worrying for the national government. For instance, Ammonia (NH3) and Hydrogen sulfide (H2S) gas concentrations in air emissions from pig farms in the northern region were reported to be 7 to 18 times and 5 to 50 times, respectively, higher than the nationally permitted levels (Vu Chi Cuong 2014). The agricultural sector's increasing effect on the environment has been attributed to three groups of issues: (1) policy and administrative failures;(2) market failures; and (3) knowledge and information gaps (World Bank 2016). Environmental costs associated with the intensification and extensification of Vietnamese agriculture have mostly not been quantified. From the consumption side, food has been found to be the most promising category through which to engage people in adopting more sustainable lifestyles. However, the decision to consume food sustainably is mostly based on health motivations and less driven by an intention to protect nature (De Koning et al. 2015).Various programs oriented around national or international standards have been initiated in VietNam to promote more sustainable agricultural production. Adoption rates of some appear to lag compared to other countries in the region. For example, in 2013, less than 3 percent of Viet Nam's tea production was Rain Forest Alliance-certified, much lower than India (34 percent), Sri Lanka (10 percent) and Indonesia (34 percent) (World Bank 2016). Although Viet Nam has the largest number of sustainability-certified aquaculture farms in the world, thanks to its export-oriented sector, a large majority of the shrimp growing area is not yet monitored (or certified) for environmental management practices (World Bank 2016).The rapidly growing body of literature on food systems has produced a number of conceptual frameworks to illustrate and analyze the complexity of such food systems and their drivers. Earlier conceptualization is owed to Ericksen (2008bEricksen ( , 2008a) ) who contrasted biophysical and socioeconomic factors driving global environmental change with their linkages to food system activities and outcomes. More recently, the focus of food system frameworks has been broadened by allowing for the various stages of agrifood value chains, from production, storage, and transport, via processing and packaging, to wholesale, retail, and consumption. Such frameworks also provide a more detailed breakdown of food system drivers and account This particular conceptual framework was selected to help focus our analysis on factors contributing to healthy diets, as a meter of comparison with the Vietnamese dietary trajectory, and to inform corrective/supportive policy options. The sections of this paper move from right to left of the modified HLPE framework, beginning with an overview of the current nutrition status and health and environment setting in Viet Nam, working backwards from these outcomes to analyze factors influencing diet and driving consumer behavior and dietary choices, the food environment, the food supply system, and finally ending with five food system drivers. Our focus on food systems and the food environment highlights the importance of availability, accessibility, affordability, and acceptability of healthy foods as key determinants of food choice, in line with frameworks proposed by the Global Panel on Agriculture and Food Systems for Nutrition (2016) and Haddad et al. (2016). In this context, availability refers to producing such raw materials and fresh food in sufficient quantities and delivering them to where they are processed or consumed. Accessibility stands for physical access to food in nearby retail (e.g. wet markets, small stores, and supermarkets) and food outlets (e.g. restaurants, kiosks, and food stalls). Affordability, in turn, relates to economic access to certain foods in dependence on purchasing power. Finally, acceptability reflects ultimate food choice and consumer preferences. Our framework points at the interrelations between these key determinants along the nodes of agrifood value chains. Food produced for direct household consumption set aside, a challenge of food system transformation is to ensure healthy, diverse and affordable food options among low-income consumers, who constitute the bulk of malnourished people, while offering attractive farm-gate prices to producers who supply these in a sustainable fashion.Rice is the staple food of preference in Viet Nam. However, with improvements in diet, between 1985 and 2010, daily intake of rice declined (from 458 to 373 gram/person/day), while intakes of most other food groups substantially increased ( Total energy intake remained unchanged from 1985 to 2010 (~1925 kcal), but diet was more balanced, with the proportion of total dietary energy from carbohydrates decreasing (83 to 66 percent) and the proportion of energy from protein (11 to 16 percent) and fat (6 to 18 percent) increasing. These ranges are within the ranges of population nutrient intake goals set by WHO (2003) of 15 to 30 percent dietary energy from fat, with Viet Nam at 18 percent and 55 to 75 percent from carbohydrates.Despite these overall dietary improvements, diet quality in Viet Nam is constrained by several challenges, which are presented together with the key outcomes in sections 3.1 to 3.4.Using data from four Viet Nam General Nutrition Surveys (see footnote in Table 3.1), which were conducted in 1985, 1989, 2000, and 2010, we are able to capture the trend in dietary patterns between 1985 and 2010. These are the nationwide food consumption surveys, led by the Viet Nam National Institute of Nutrition (NIN), using a detailed quantitative 24-hour recall, and representative of all 63 provinces in Viet Nam. It is clear that dietary patterns have changed significantly over time. Viet Nam has evolved from a predominantly rice-based diet to a more balanced one. The proportion of animal protein/total protein in the diet increased from 26 percent (1981)(1982)(1983)(1984)(1985) to 41 percent (2010) and animal lipid/total lipid intakes from 53 percent (1981)(1982)(1983)(1984)(1985) to 62 percent (2010). Proportions are higher in urban than in rural areas and tend to be higher than the recommended proportion (40 percent for protein and 60 percent for lipid) (Viet Nam Just over 75 percent of children are currently consuming diets with the minimum dietary diversity (foods from at least four food groups), with a higher prevalence in urban than rural areas and in majority ethnic (Kinh) compared to ethnic minority groups, and in higher compared to lower economic quintiles (General Statistics Office of Viet Nam and UNICEF 2015). A very similar trend was found in the proportion of children receiving a minimal acceptable diet -meaning that both minimal dietary diversity and minimal meal frequency were met. Also here, large disparities are found across ethnic minority subgroups compared to the majority Kinh ethnic group (T. T. Nguyen et al. 2016). In addition, Vietnamese infants and young children share similar disparity across wealth quintiles and between urban and rural areas (DevelopmentThere are currently no national representative data available on women's dietary diversity, however, the 2017 Global Nutrition Report (Development Initiatives 2017) provides some insights into food group consumption trends relative to global and regional values. Generally speaking, diet diversity is improving across Viet Nam, driven by a decrease in rice consumption in favor of more nutritious foods.Viet Nam consumes higher average quantities of nuts and seeds than both global and regional averages.Whole grain consumption is well below global and regional averages, which is reflected in a strong dietary preference to refined white rice (and products such as noodles) and white bread.Meat intake has increased dramatically, particularly since the initiation of market reforms in 1986.The average yearly consumption in 1986 was 14 kilograms per capita, increasing to 55 kilograms in 2013, with pork representing the bulk of the meat consumed (Hansen 2018). In 2016, consumption of processed meat among men and women aged 25 and over was on average less than 2g/day, significantly lower than global and regional averages, however, red meat intake was above regional averages, and just above global consumption trends of nearly 30g/day (Figure 3.1). Despite this, saturated fat intake was lower than both regional and global averages, which may be a reflection towards a preference for leaner breeds or cuts of meat. The consumption of animal foods may even have been higher, as these figures often neglected to include dog and wild game as sources of meat. Regarding the consumption of nutritious food groups, despite the rapid increase in milk Van et al. 2016;Nguyen Tuan T. and Hoang Minh V., 2018). Despite this, Viet Nam is still consuming more vegetables compared to both regional and global averages (Development Initiatives 2018a), however, consumption of fruit is particularly low.Despite tofu being a traditional and important food in the Vietnamese diet, legume consumption overall is quiet low compared to regional and global trends. This may be due to a trade-off in the diet with shifting preferences to increased consumption of red meat and other animal source proteins, which are above global averages (Development Initiatives 2018a).The last nationally-representative nutrition survey conducted in 2010 showed that micronutrient intakes for vitamin A, iron, zinc, and iodine are sub-optimal for children age 24-60 months (Table 3.2). A study on a subset of the population showed insufficient micronutrient intakes, with the proportion of women of reproductive age having intakes at 25 percent for iron, 16 percent for zinc, 54 percent for folate, 64 percent for vitamin B12, and 27 percent for vitamin A, below the estimated average requirement (P. H. Nguyen et al. 2014). Staple foods provided most iron and zinc in the Vietnamese diet but have lower bioavailability due to phytates. Only a small portion of iron and zinc sources are derived from foods with higher bioavailability such as animal products, which only account for 10 percent of iron and 18 percent of zinc intake.Micronutrient deficiencies can be attributed to multiple factors including insufficient absorption within the gastrointestinal tract, insufficient consumption of micronutrient-rich foods and diets based on the consumption of foods that limit or inhibit the bioavailability of micronutrients. For Viet Nam, it is estimated that there is a relatively low bioavailability of iron, zinc, and calcium (Viet Nam National Institute of Nutrition and Ministry of Health 2015) because of the phytate-rich rice-based diet. Another factor as to why iron and zinc intakes are still low, despite increasing intakes of animal foods, with some of the highest average intakes within the region and compared to countries with similar GDP, may be due to the main sources of animal products in the diet coming from pork, fish, and chicken, which are lower in zinc and iron than beef (Hansen 2018).There has been inequity regarding micronutrient intake, particularly for the rural, poor, and minority populations. These vulnerable groups consumed lower amounts of animal source foods and had less total dietary energy from fat, with higher consumption of cereals and other starches (Nguyen Minh Thang and Popkin 2004). Compared to women in the highest quintile of intake, women in the lowest quintile consumed 26 percent less iron, 19 percent less zinc, 36 percent less folate, 82 percent less vitamin B12, and 47 percent less vitamin A, mainly due to consumption of foods with low iron and zinc bioavailability (P. H. Nguyen et al. 2014).Current strategies for preventing micronutrient deficiencies are the simultaneous integration of multi-sector solutions. Micronutrient supplementation is an important and necessary solution to promptly resolving micronutrient deficiency status. Micronutrient fortification in food is a medium-term solution.Dietary diversification is a long-term and more sustainable measure to reduce micronutrient deficiencies, but might not be sufficient for certain population groups like young children and pregnant women. Bien, Ninh Thuan, An Giang, Kon Tum, and Dak Lak (MDG Achievement Fund, 2013). Through its broad stakeholder involvement, from international to national to grassroots level, the initiative has confirmed the importance of understanding the need for synergies between the health and agriculture sectors to improve maternal and child nutrition. The initiative also contributed to shaping national legislation on maternity and breastfeeding protection as per UNICEF/WHO recommendations, including the extension of paid maternity leave from 4 to 6 months in the 2012 Labor Code Amendment, and a ban on marketing of breast milk substitutes and related products for children under 24 months in the 2012 Advertisement Law (MDG Achievement Fund, 2013).The Vietnamese diet is emerging with increasingly unhealthy consumption patterns associated with noncommunicable diseases, including high intakes of salt, sugar, and fat (Nguyen Tuan T. and Hoang Minh V., 2018; World Instant Noodles Association, 2018) from ever-increasing consumption of instant noodles(5.1 billion packs/year) and sweetened beverages high in sugar and energy (925 million lt/year) (Viet NamProcessed meat consumption is on average less than 2 grams/day, significantly lower than global and regional averages. However, with increasing shopping in supermarkets and convenience stores where these foods are more widely available, this consumption pattern is likely to increase (Development Initiatives 2018a).Fast-food has traditionally been an integral part of the Vietnamese diet, with street vendors and mobile peddlers providing quick, cheap, and relatively nutritious food options. Western and modern fastfood options were not available 20 years ago, but their presence has steadily increased in cities, on sale mostly in supermarkets, convenience stores and small family-owned stores, which has increased the availability of and access to ultra-processed, ready-to-eat foods that are high in fat, sugar, and salt. Thistrend has yet to be readily observed in rural and remote areas, while there are higher rates of consumption of processed foods in the major cities, especially Ho Chi Minh and Hanoi, as well as in the Mekong River Delta region. Sugar-sweetened beverage consumption by children aged 24 to 60 months is highest in the southeast, where daily intake is more than double the national average at 18ml/day. The north-central and central coastal areas and Mekong River Delta regions consume between 4 and 10ml/day, and the lowest intakes are in the Red River Delta, northern midlands, and mountainous regions.Consumer behavior has changed, especially over the past 30 years, as the country has undergone significant changes in its economy, which have led to increases in income, education, household demographics and dynamics, food aspirations, and food environment. The opening of the Vietnamese economy to foreign investment and markets has seen the introduction of, and an increase in, Western and international foods and modern retail outlets that has markedly changed how people are acquiring and consuming foods.Similarly, cinema, music, and the internet have increased Vietnamese consumer demand for modern and Western types of food.Consumer behavior varies considerably between urban and rural populations, largely because of the nature of their immediate food environment and differences in primary sources of food (urban is purchased while rural is from own-production agriculture). However, there is a growing trend that has seen a slow convergence: driven by food safety concerns related to food products from long value chains that are perceived to be the most 'risky' foods, urban consumers are turning to products produced through urban agricultural schemes, and are directly sourcing from rural areas, which they perceive as a way to improve their ability to control the quality (especially freshness) and safety of the foods they are purchasing.Conversely, rural consumers are gradually increasing their use of retail outlets, particularly convenience stores and processed packaged foods, to complement their diets. Intergenerational food preferences are also changing consumer behavior with shifting taste preferences and food aspirations.Concerns around food safety also greatly influence consumer behavior in Viet Nam. The lack of standard food safety enforcement mechanisms has resulted in asymmetric information and distrust between producers and consumers (Mergenthaler, Weinberger, and Qaim 2009a). Limited studies on some fruit, vegetables, and commodities (Mergenthaler, Weinberger, and Qaim 2009b;Nguyen Van Phuong, Tran Huu Cuong, and Mergenthaler 2014) provide insights from the consumer demand side regarding the importance of trust, quality, and safety standards. Integrated sociological and nutritional perspectives are productive in rapidly generating evidence to comprehend the complex trade-offs between food safety and nutrition in everyday food consumption practices (S. C. O. Wertheim-Heck and Raneri 2019). Civil society and consumer groups are playing an increasingly important role and have a bigger voice in advocating for consumer rights with regard to food safety management and sustainability practices (see section 3.2.4 for in-depth insights into food safety). Nutrition education is another driver of consumer behavior, and this is explored in detail in sections 3.3.3 and 3.3.4.The following sections explore the major drivers of consumer behavior with regard to food acquisition and consumption practices.Viet Nam is a diverse country, culturally, ethnically, and agroecologically. The result is a country rich in differences in regional food preferences, tastes, and patterns, based on ethnic group and climate (e.g. noodle soup in the north, rice in the south) and seasonal availability preferences. Although the majority (~85 percent) of the population are practicing Buddhists, very few Vietnamese observe a vegetarian diet. Most only abstain from consuming meat one or two days per month and, on these days, many will eat a variety of faux meat, such as soya-based meat substitutes.Rice is the main and preferred staple food consumed by almost the entire population every day.Vietnamese dietary patterns are shifting from predominantly starch-based diets to those containing more meat and fish. Findings from the Viet Nam Urban Food Consumption and Expenditure Study showed that meat accounts for the largest share of the monthly food expenditures (37 to 44 percent) (The University of Adelaide 2017). Among different types of meat, pork is the most widely consumed, with strong preferences for fresh pork, lean pork, and particularly pork from black indigenous pigs, which is often perceived to be of better taste and quality (Lapar and Nguyen Ngoc Toan 2010). With the growing trend in pork consumption, pork consumers are increasingly concerned about pig diseases, chemical residues, and unhygienic conditions at the point of sale.Vegetables, particularly green leafy vegetables, are an integral and preferred part of the Vietnamese diet. Indigenous varieties of green leafy vegetables are increasingly becoming popular across the country.Improved road infrastructure and investment into minority ethnic food systems and livelihoods has seen the rise in value chains that are supplying urban markets with indigenous species and varieties such as Thai mustard. The perceived freshness and safety of vegetables is often a driver for consumer choice of which product to purchase (Wertheim-Heck, Raneri, and Oosterveer 2019).Milk and dairy products are not a traditional part of the Vietnamese diet and are often are not preferred food choices due to cost and food safety concerns. Low dairy consumption is often regarded as a cause of insufficient calcium in the diet (Tu 2001). Furthermore, many Vietnamese adults are lactose intolerant. Despite this, there is a public awareness campaign designed to increase the consumption of dairy as part of the public health and nutrition strategy to increase the average height of the population, given the nutrient density of dairy foods.In fact, there is growing tension between choices around foods that are viewed as nutritious (which tend to be traditional foods) and more 'tasty' foods (which tend more to be Western foods high in fat, sugar, and salt). Aspirations for food are changing, especially between generations, with youth preferring more modern Western foods, and older generations still preferring a more traditional diet and foods. This preference towards these 'tastier' foods among the younger generations may impact diet quality.Eating out of the home has become more common, particularly in urban areas and for adolescents (Lachat et al. 2009), who see it as a more convenient and enjoyable experience, saving time on food preparation, and often cheaper than purchasing the ingredients to self-prepare. Moreover, there is a greater variety of foods on offer than what is typically offered at home, and out of home eating options are often located within close proximity (Lachat et al. 2011). Adolescent behavior associated with increased patterns of eating out found that their diets were different: there was a higher presence of desirable foods and nutrients, but also a higher percent of energy intakes from products abundant in fat and sugar (Lachat et al. 2009). However, there were also nutrition and food safety consumer concerns with regard to hygiene, fat, and salt content of the food prepared out of the home.Consumers are increasingly aware of the health concerns regarding the risk of NCDs related to high consumption of meat, salt, processed, and unhealthy foods. This is causing some shifts in food preferences, particularly in wealthier urban populations who began prioritizing meat consumption as the 'preferred food' as incomes increased, back towards a high plant-based diet. However, there are economic and perception barriers to the accessibility of vegetarian and vegan restaurants. As they are still a niche market, they are often expensive, offering plant-based menus within the same price range as meat-based menus; they can therefore be seen as poor value for money and also only attract wealthier clientele.Results from the Viet Nam Urban Food Consumption and Expenditure Study (The University of Adelaide 2017) showed that the key factors influencing where consumers shop for foods are: price, freshness, quality, and food safety. Traditionally, Vietnamese consumers mainly relied on wet markets to purchase fresh meat, fish and seafood, fruit, and vegetables. Consumers of all socioeconomic strata acquire food at traditional markets because these offer several advantages. These include accessibility (including by scooter), freshness of produce (particularly vegetables, meat, and fish), exclusive availability of specific foods, and, importantly, also social interactions associated with trust and food origins (Wertheim-Heck, Raneri, and Oosterveer 2019). However, the number of consumers in urban areas using modern markets such as supermarkets, mini-marts, or convenience food outlets is on the rise, due to higher incomes, Western lifestyles, and perceptions that these outlets sell higher quality and safer food. According to Euromonitor data, over the period from 2011 to 2015, while sales by traditional grocery retailers grew by 184 percent, sales by modern grocery retailers grew by 224 percent (Vo and Smith 2017).Over the past decade, Vietnamese shoppers have been offered a much broader choice in where to shop (Nielsen 2013). Shopping nowadays can roughly be subdivided into a daily household chore, on the one hand, and leisure time on the other. The latter particularly applies to hyper-and supermarket shopping, especially within the recently constructed mega-malls where grocery shopping is combined with window shopping and eating out. Regarding everyday food shopping as a household chore, practices are driven by a combination of: (i) taste and daily meal diversity, (ii) food safety, and (iii) health (Le Chi Cong, Olsen, and Ho Huy Tuu 2013;Wertheim-Heck, Vellema, and Spaargaren 2015;Mergenthaler, Weinberger, and Qaim 2009a). Although Vietnamese consumers are becoming more aware of health and nutrition, food safety is the primary concern in providing tasty and diverse meals. Food safety is a well-recognized dilemma by consumers, and influences what they purchase and where (Raneri and Wertheim-Heck 2019).Vietnamese consumers draw from a broad portfolio of food acquisition practices, ranging from self-provisioning -the practice of growing one's own food, which includes rural rice farming, as well as inner-city rooftop gardening -to convenience store and hypermarket shopping (Wertheim-Heck and Spaargaren 2015). With differences across the country and between urban and rural areas, seven prevalent practices can be distinguished (Table 3.3) in which variations of more local 'space of place'-bound direct personalized trust mechanisms coincide with variations of more indirect abstract food safety systems. There is therefore a clear differentiation as to where Vietnamese consumers acquire different food items.Commonly, rural households grow part of their food for home preparation, and even in the peri-urban districts of Viet Nam's major cities it is common for households to grow crops or raise small numbers of livestock (Pulliat 2015;NguyenThi Tinh et al. 2007).Self-provisioning Growing one's own produce in small areas, (vacant lots, balconies, rooftops, parks and side roads) for selfconsumption and neighborhood barteringThis practice is motivated by the need to re-establish a direct link with production and keep cultivation under their own control.This practice is motivated by concerns about the safety of the food provision in the city. In the practice of kinship shopping the control on food safety builds upon the ease with which family members are trusted in their good intentions ('they care for me') and the conviction that people in the countryside know how to produce safe foods. Farmer shopping This is the practice of buying directly from the growerThe reconnection with farmers is sought as an alternative to anonymous food shopping, and is based on blind trust that local farmer products are safer.Purchasing fresh produce daily at formal wet markets or more informal street markets Personal (long-term) relations with market vendors provide a sense of food safety.Purchasing foods at dedicated outlets explicitly claiming to sell 'safe' or highquality foods, either at brick and mortar shops or through online ordering servicesShopping at these specialized outlets is driven by concerns about food safety and a search for acclaimed quality, but is accessible only to shoppers from highermiddle and upper income classes.The practice of shopping in a clean and orderly indoor airconditioned environment and purchasing larger quantities of both fresh and processed foods, to be stored at home Food safety is 'guaranteed' through 'company reputation' in combination with explicit food safety assurance through certification, labels and brands at product level.Small-sized family-owned grocery shops (Mom & Pop stores) and more recently chain convenience stores (VinMart, Circle K)Convenient close-to-home location mainly for purchasing cooking oils, spices and condiments, beverages and dried goods.The dominant food purchasing practice is shopping daily for fresh foods at markets (Nhung Tran Thi Tuyet and Hara 2017; Wertheim-Heck, Vellema, and Spaargaren 2014; Wertheim-Heck and Raneri). Shopping at markets, whether at formal wet markets or more informal street vending structures (see 3.3.1), is estimated to account for about 90 percent of total vegetable sales. Supermarkets are mainly a weekend destination where food shopping is combined with spending leisure time and eating out. Although supermarket sales have been growing over the past two decades, it is mainly in non-food and ultra-processed food categories. Although supermarket shopping is becoming more normal in daily life and losing its novelty edge, the majority of consumers in Viet Nam still prefer to purchase food by the meal, or at least by the day, at fresh markets.There is certainly a relationship between income, shopping frequency, and choice of shopping outlet (Table 3.4 In conclusion, the overall pattern of Vietnamese consumers is to purchase fresh foods from markets, and beverages, dry goods, and processed foods from convenience stores (mostly family-run stores) or hyper-and supermarkets. With regard to fresh foods, most recently a shift is being observed towards online purchasing via the ordering services of specialized food stores and through more informal networks (see above). The rise in online food ordering is mainly driven by food safety concerns. The advance in online food ordering indicates a remarkable shift from tangible food quality checks to trusting abstract quality guarantees without being able to visually inspect the actual produce personally at the purchase site (Wertheim-Heck and Spaargaren, 2015). It is expected that online shopping will expand and broaden to the larger retail chains, motivated by convenience.Since fresh foods are preferably purchased on a daily basis, convenience is an important factor in Vietnamese food shopping practices. Vietnamese consumers also demonstrate an ability to skillfully balance convenience with their high concerns over food safety in their everyday food shopping.In the practice of purchasing daily foods, consumers appear to make constrained choices and two dominant types of shopping patterns are distinguished (Wertheim-Heck, Vellema, and Spaargaren 2014).People are either taking their time when purchasing fresh foods, 'walking and talking,' or they quickly walk through or drive along and do their 'shopping without stopping.' Food purchasing is not only regarded as a household necessity but is also, importantly, enjoyed as a much-valued social interaction within the local neighborhood community. Time is not, as yet, scarce. Two aspects importantly define this practice. The first aspect regards the consumers' radius of action. Most urban shoppers rarely travel outside their local community and their lives are commonly organized around the house. Everything outside their action radius is considered inconvenient, which is explained by limited transportation means (whether unavailable, unable to drive, or constrained by small children). The local neighborhood market is the preferred place for daily fresh food purchases. The second aspect regards the concept of kinship. Within local communities, the social cohesion is strong and builds on inter-dependence. Livelihoods still largely rely on the traditional insurance system of mutual indebtedness. Personal contact during daily shopping is vital to prevent isolation and fosters community spirit. Price negotiations are an important act of interaction; although the idea of bargaining is to reduce the price, it is also enjoyed as an interactive, habitual and social game.Food shopping, for the time-constrained, is regarded as a time-consuming activity that conflicts with other activities in everyday life, particularly for populations leading more modern, urban lifestyles.These consumers opt for time-saving strategies and regard food purchasing more as an economic transaction than as social interaction. For this segment of the community, the priority is to reduce shopping time through for drive-through purchasing -shopping without stopping -from vendors along the roadside.Other time-reduction strategies include a reduction in shopping frequency and shortening food preparation time.In Viet Nam, food consumption is traditionally influenced by beliefs around the health properties of food and with food 'taboos' tending to be temporary and context specific (Avieli 2019). Many Vietnamese follow the Chinese yin-yang (âm-dương in Vietnamese) theory of diet categorizing food as dương (hot) or âm (cold) (Chen and Swartzman 2001). Hot foods include red meat, alcohol, and ginger; cold foods include noodles and bananas. Some foods are neutral (e.g. rice, pork or sweets). Moreover, people believe that certain animal organs such as pig heart, kidney, and brain are suitable for infants and elderly people, whereas other foods should not be given because they are likely to be unsafe or not nutritious (personal perception). Raw pork is rarely eaten except for fermented pork (nem chua), and sometimes raw blood pudding (tiết canh). Gender also influences consumption. For example, some risky foods like tiết canh, mainly from pigs and poultry, are mainly eaten by men.Post-partum, women are reported to avoid 'cold' foods in order to restore their vitality, and encouraged to consume animal source foods that are 'hot' and promote blood generation and flow (Köhler et al. 2018). Fresh fruits (those that are fresh, 'itchy,' and with white sap) and vegetables (that are bitter, fermented, fresh, green leafy, hairy, strong smelling, yellow flowering) are regarded as 'cold' and as such are avoided during pregnancy and post-partum (Köhler et al. 2018). A common post-partum dish that is encouraged to be consumed for two months after birth to promote breast milk production is a combined dish of pork trotters with either papaya or red beans and potato (Lundberg and Trieu Thi Ngoc Thu 2011).Wild foods are becoming more of a taboo as forest conservation efforts are reducing or limiting access to forest lands, which, in some cases, make it illegal to hunt or collect wild foods. While these foods are not traditionally a taboo part of the diet, they are becoming so given their legal ambiguity.As Viet Nam has a rich diversity in ethnic groups, there are a wide range of food taboos and practices that are specific to individual groups, particularly minority ethnic groups. For example, the Cham Balamon practice a taboo on eating beef and the Bani on pork (Hardy, Cucarzi, and Zolese 2009).Over the last 30 years, food demand patterns have changed significantly in Viet Nam. The rapid economic growth that followed the Doi Moi reforms of 1986 determined significant improvements in living standards and in the quality of diets (Le Ngoc Dien, Nguyen Minh Thang, and Bentley 2004;Glewwe, Agrawal, and Dollar 2004;Mishra and Ray 2009;Nguyen Minh Thang and Popkin 2004;Molini 2006). From 1992 to 2004, the share of expenditures on meat, fish, and dairy increased, while expenditures on rice declined significantly (Mishra and Ray 2009). However, expenditure shares and dietary patterns differ across regions and between poor and non-poor households (Nguyen Minh Thang and Popkin 2004;Molini 2006; V.Based on the results of the Viet Nam Household Living Standard Survey (General Statistics Office of Viet Nam 2016), in the period from 2006 to 2016, the share of living expenditures allocated to food and drink (eating, drinking, and smoking) declined from 53 percent to 51 percent. Within this budget, shares on food and foodstuffs declined from 40 percent to 35 percent, yet the share of food expenditures increased on meat, sugary products 4 , and fruits, while budget shares on rice declined significantly (except for 2008),indicating that purchasing power slightly increased over time (Figure 3.2). From 2006 to 2016, rural residents increased their expenditure mainly on meat (from 21.5 percent to 24.6 percent) and sugary products (from 3.8 percent to 6.9 percent), while budget shares declined on pulses (from 0.4 percent to 0.2 percent) and fats (from 2.3 percent to 1.7 percent). Budget shares for urban residents declined on fish (from 9.8 percent to 8.3 percent) and slightly declined for most of the food items, except for sugary products (from 6.3 percent to 8.1 percent) and fruit (from 4.5 percent to 5.1 percent). Individual consumption (per month) increased for most of the food groups, in particular for proteinand lipid-rich foods, such as meat, fats 5 , eggs, and tofu, but also for sugary products, alcohol 6 , and other drinks, while consumption of rice declined significantly (Figure 3.3). Quantity of pulses and vegetables consumed declined from 2006, while fruit consumption remained stable over time despite the increase in share of expenditures for this item. However, consumption patterns vary across income quintiles. In 2016, the top income quintile (Q5) consumed more meat, fats, fish, eggs, pulses, tofu, fruits, vegetables, sugary products, alcohol, and other drinks, and consumed less rice compared to the bottom income quintile (Q1) (Figure 3.3). This trend is in line with the study by Hoa Hoang and Meyers (2015), who found that expenditure elasticities on rice are negative to income growth and its demand is expected to decrease in the next 15 years. Both urban and rural residents increased the consumption of meat, eggs, and other drinks (e.g sugary drinks and alcohol), while consumption declined for vegetables and declined slightly for pulses.Consumption of fats and tofu increased for rural consumers, while it declined for urban residents. The quantity of fish and fruits consumed remained stable for both rural and urban residents (Figure 3.4) (General Statistics Office of Viet Nam 2016). Purchasing power and consumption patterns also differ by living area. In 2016, share of food and foodstuff expenditures were higher for rural (38 percent) compared to urban (30 percent) consumers. Urban residents spent a higher share of their food and drink budgets (eating, drinking, and smoking) on out-ofhome meals (15 percent) compared to rural residents (10 percent). Share of expenditure on out-of-home meals increased significantly in both rural (from 5 percent to 10 percent) and urban areas (from 10 percent to 15 percent) and vary between the top (6 percent) and bottom (14 percent) income quintiles. Consumption of food out of the home is becoming increasingly popular, especially among young people, and can 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10. potentially lead to consumption of more nutritionally-diverse foods, but also to an increased intake of fats In conclusion, food demand patterns show similarities with those described for other LMICs, indicating they are influenced by income and urbanization (Popkin 1998;Pingali 2007). Demand for animal-based products has increased, while demand for staple foods, such as rice, is progressively declining and this trend is more evident for urban areas.Although this ongoing trend has led to more diversified diets compared to the past decade or so, the poorest households are the most vulnerable to sudden price shocks, which impedes their ability to afford a diversified diet (Hoa K. Hoang 2017).The food environment in Viet Nam has undergone a dramatic transition over the past decade (van improvements throughout the entire supply chains, and Vietnamese conglomerates are increasingly seizing the economic potential, with the potential promise of improving food safety and quality to consumers.Although small-scale production and the flow through traditional or informal markets still dominates most of the country's agricultural value chains for domestic use, the penetration of international food standardization and management, combined with large-scale investments in the agrifood complex, is driving the development of closed and controlled value chains. This is pressing the agrifood sector to transform from predominantly smallholder farming into larger-scale farming. Another alternative trend is the development of participatory guarantee systems (PGS), a reliable and affordable quality assurance that enables farmers to increase their income while helping to build consumers' trust in their food (Moustier In this transforming food environment, consumers are being faced with an increasing number of food quality identifiers in which global standards compete with local standards and in which formal, stateregulated certification coexists with more grassroots-initiated qualification schemes. Moreover, consumers are facing an accelerating increase in food choice. This is tangible in the fresh food category, for instance the introduction of kiwi fruit since 2009, but most notable in the category of (ultra-)processed foods and beverages like milk, soft, and alcoholic drinks. This development coincides with the advance of branding -both producers' branding and retail private labeling. All these developments in product choice, quality guarantee systems, and marketing communication are aiming to influence consumers in their everyday food choice within a changing food retail environment (see 3.3.1).Consumers in Viet Nam have access to food through a wide selection of food retail channels. The system of food retailing in Viet Nam consists of a formal provisioning structure planned and managed through business registration by the central government and the local People's Committees, and an informal structure characterized by unlicensed, unregistered business operations (Table 3.5). No formal rental fees apply in these markets, though more informal organizational arrangements do exist. The global integration and the advancement of international supermarket chains in Viet Nam has dramatically impacted the food availability in the country. Many elderly consumers still vividly remember the rationing system in the late 20 th century, in which even the most basic foodstuffs were scarce. WhenViet Nam entered the global economy in the late 1990s, this not only increased rice and other staple exports, but it also opened the country to an exponentially increasing influx of novel and counter-seasonal food products. This development accelerated through foreign direct investment of transnational food producers and retail corporations. In particular, the assortment in processed foods and beverages has expanded exponentially in the last decade. The widest selection of foods is nowadays being offered in hypermarkets and supermarkets (Nielsen 2013) in addition to fresh foods, including a broad range of packaged food products, including snacks and bottled beverages. However, traditional wet markets still offer a larger choice to consumers for fresh produce and animal source food varieties and breeds, especially traditional types such as pork.Seasonality of fruit and vegetables is an issue at play mainly limited to rural areas and lower urban income groups. With the integration of Viet Nam in the Association of Southeast Asian Nations (ASEAN) and the wider global economy, food availability in urban areas has become less dependent on seasonality. The Vietnamese urban diet is incorporating an increasing amount of foods produced outside the country, including fresh foods, most importantly in the fruit category.It is mainly vegetable consumption that has, to date, remained susceptible to seasonal fluctuations and variations, although cultivation in mountainous areas, like the central highlands of Viet Nam and MocChau in the north, allow for nearly year-round domestic availability of more temperate vegetables, especially the subtropical climate in the Northern Red River Delta, results in seasonal variations.Seasonality is also reflected in the prices of products that are offered all year round. For instance, in the Red River Delta, summer season temperate vegetables offered from more distant mountainous areas can be twice the price of similar products offered during the winter months sourced from within the Red River Delta (insights from Fresh Studio). Thus, seasonality is reflected in price levels, and particularly impacts lower income populations.Price is often assumed to play a major role in the preference for markets above supermarkets. However, the vegetables sold in supermarkets are generally rather similarly priced to vegetables sold in markets; even produce with an explicit food safety claim is generally not priced more than 10 percent higher than conventional produce at markets (Wertheim-Heck, Vellema, and Spaargaren, 2015). Ultra-processed foods are increasingly becoming more affordable to consumers, as is reflected in increasing rates of consumption, especially in urban areas. Fresh, quality, imported foods are less affordable than locally-produced foods, although this can fluctuate. clearly understand nutrition labeling, so they do not feel empowered to make informed food choices, yet they are also not aware that this information could be available and useful to them. As such, Vietnamese food companies do not feel pressure from consumers to invest in food composition analysis or calculation for labeling.Currently, there is no nationally representative data available on levels of nutrition knowledge in Viet Nam, and no data on this has been included in the 2010 general nutrition survey. Individual studies of poorer populations in both urban and rural areas have shown that nutrition knowledge is limited; basic concepts on diet diversity, balanced meals, vitamins and minerals, food pyramid, and why these are important for nutrition, are often missing (Raneri et al. 2017).Knowledge on infant and young child feeding is a critical determinant of child nutrition. Women in Viet Nam have knowledge gaps regarding exclusive breastfeeding up to 6 months and appropriate timing for the introduction of complementary foods, with mothers often introducing these foods too early or too late (Alive & Thrive 2012).With transitioning diets, younger generations are losing knowledge about traditional and healthy foods, as they are often not cooking and prefer to eat out of the home and/or are choosing more Western non-traditional foods.There has been little nutrition education mainstreamed through the Vietnamese higher education systems, with university lecturers' and school teachers' level of nutrition knowledge being limited (Quynh instruction on all the components of a healthy, balanced, and diversified diet. These messages were promoted together with information on breastfeeding, complementary feeding, and consumption of both animal and plant foods and limiting sugar and salt intakes.Home gardening, fish ponds, and small-scale animal husbandry were promoted to encourage diversified and balanced family meals. The FBDG have since been revised three times (in 2001, 2006, and 2013) based on the national food consumption, nutrition, and health data. With each revision, the messages were progressively made simpler and shorter and rearranged upon the defined nutrition and health priorities of the time, and currently address newly-emerging problems such as the rising incidence of overweight and NCDs.FBDG have been used as the main nutrition education material for the implementation of the NNS. The development landscape in Viet Nam is dynamic and complex, since a multitude of government bodies have a stake in nutrition or programs that might impact nutrition, such as social safety nets and poverty More recently, there has been a drive to promote healthier diets for control and prevention of obesity and non-communicable chronic diseases due to the rapid increase of nutrition-related NCDs under the NCDs prevention and control programs and projects.In Viet Nam, several nutrition-sensitive agriculture (NSA) 7 community interventions have been implemented on a small scale, targeting poultry, fishponds, home gardens, bean and inter-cropping, sloping land crop diversification, among others (Berti et al. 2016).Most children spend six to eight hours at school, where they will eat lunch and snacks, from the time they begin preschool until they leave school for higher education. School meal programs, therefore, play an Over Besides pesticides, other hazards can be associated with fresh produce contamination, such as microbiological pathogens and heavy metals (Pham V. Hoi et al. 2016;Rubin 2018).In 2016, the report 'Food safety risk management in Viet Nam: Challenges and opportunities' was produced by the World Bank and partners at the request of the Vietnamese government with the following conclusions:• Food safety is a major concern for the public, with high levels of anxiety each time there is a highprofile food safety incident.• The level of contamination found in Vietnamese food for domestic consumption justifies public concerns.• Increasing urbanization puts pressure on traditional ways of providing food.• The primary cause of food-borne illnesses comes from bacterial contamination, rather than from chemicals, which could be prevented by better levels of food hygiene throughout the value chain.• High use of agricultural inputs such as antibiotics, pesticides, and chemical fertilizers; poorly regulated or illegal imports; lack of traceability; and cross-contamination are also important factors in assuring safe food, but the biggest challenge lies in changing the practices of vast numbers of small producers.• Viet Nam has a modern food safety regulatory framework with foundations in place for further improving food safety performance and outcomes but much more could be done to make it resultsfocused.Food safety is a controversial issue in Viet Nam. The cost of foodborne disease was estimated at up to US$450 million in 2003, with 128 million reported cases of food-related illnesses, of which 27 million patients needed medical care, including 3.5 million hospitalizations (World Bank 2006).Food safety has attracted the attention of media reports, scientific literature, policy makers, and consumers, and is considered one of the largest food system problems in Viet Nam (World Bank, 2017).Vietnamese consumers have a lack of confidence in the safety of food they consume, which can influence consumers towards favoring more imported and packaged foods (Nguyen-Viet, Tuyet-Hanh, et al. 2017).Farmers are reported to be struggling to producing 'safe' or safer foods (organic or lowagrichemical use) for their own consumption or marketing. A recent study conducted among 300 households producing vegetables in Hanoi showed that farmers are indifferent to adhering to production under safe vegetable requirements when they are controlled by the farmers' organization. They prefer to produce under safe vegetable requirements if it is controlled by an external organization. They are very much against organic production, whether it is controlled by the farmers' organization or by an external organization. They prefer pesticides to be provided in kind or in cash by the buyer, when they can sell more of their produce to one buyer, and when the agreement lasts longer (T. L. Nguyen 2019b).There is little trust among stakeholders, but this is not the fault of individual farmers and traders.Rather, it is the predicament of a food system that has developed in a way that provides few rewards for those who implement good food safety and hygiene practices, but inadvertently high rewards for those who carry out unsafe practices (Viet Nam News 2016; Nguyen-Viet, Tuyet-Hanh, et al. 2017).Vietnamese consumers are particularly concerned with the safety of fresh fruit and vegetables, especially with respect to residues of heavy metals or bacterial or pesticide contamination (Muriel Figuié Another major issue is that many traditional traders do not want to sell safe vegetables, mainly due to the insufficient/poor supply of safe vegetables; customers' low demand for expensive and less varied safe vegetables; customers' preference for buying conventional vegetables in more convenient places; the strong competition between traditional and modern retailers; a lack of sufficient livelihood assets for traditional traders; and the weak and loose market governance (H. X. Nguyen 2019).Public concern around food safety is so high that is was ranked first of the two highest concerns (above employment) -even higher than education or healthcare (Van Duan and Nguyen Huong 2016;Ha, Shakur, and Pham Do 2019;USAID 2015).The ADB Survey (Asian Development Bank 2018) shows that contrasting perceptions on food safety prevail: 89 percent perceive food as unsafe compared to 5 percent who view it as safe; only 38 percent state they are well-informed about it, and 38 percent report an average level of information. By contrast, 96 percent consider managing to purchase safe food, and trust that they know some (69 percent) or the full (17 percent) origin of their food. Recent retail transformations influence food safety strategies: people indicate first relying on certified products (49 percent) for ensuring food safety, then on knowing the seller (43 percent), and going to a specialized shop (32 percent). The survey has demonstrated that 'origin' is often used as a proxy for food safety. The survey further indicates that 97 percent consider information on origin as important; it is stated as the second-most important attribute for purchasing both cabbage and pork, and is the third-most frequent answer for defining safe food (29 percent). Sources of information on origin are derived first from product labels (57 percent) and store displays (51 percent), ahead of the seller (39 percent), also indicating a shift from traditional forms of trust toward formal guarantees. If import is not necessarily seen as safer (36 percent say imported food compared to 35 percent who say home-produced), buying local produce is not considered a food safety strategy. Food safety is understood primarily as the absence of chemicals (51 percent). The main source of information about food safety remains traditional media, specifically television (90 percent). Seventy-four percent consider that the State should be responsible for controlling food safety.Food safety is a concern for both urban and rural consumers. However, urban consumers feel that they are more at risk because they have limited or no access to self-produced food, which is often regarded as the only guaranteed source of safe food, given the mistrust in retail outlets (Ha, Shakur, and Pham Do 2019; Wertheim-Heck, Vellema, and Spaargaren 2014). These food safety concerns are largely a perceived risk, so there is a need for Viet Nam to create a culture of evidence-based decision making (World Bank 2017) regarding food safety standards, which is largely missing now. There is little data available to inform and guide policy makers regarding food contamination along the value chain, and nationally-representative cases of foodborne disease. For example, there are some efforts to measure pesticide residues in many commodities, but the link between contamination and public health risk or food safety outbreaks has not yet been verified by concrete evidence. A recent study showed that, while zoonotic diseases are strongly related to consumer food safety, there was little knowledge of zoonotic diseases amongst Vietnamese consumers (Hung Nguyen-Viet et al. 2019). While the trust in pork quality was high, microbial and physiochemical analyses suggest further studies were needed to address consumers' concerns about chemical contamination. Most market pork samples were not within Viet Nam's allowable range of standards for bacterial contamination: 90 percent did not meet standards for tuberculosis and 98 percent did not meet standards for coliforms. Salmonella contamination in pork and other animal source foods from slaughterhouse and markets is common with reports ranging from 20 to 75 percent. This broad range is thought to be due to the varying quality of regulation of the different market and value chain processes that coexist in Viet Nam.The annual costs of pesticide-related consequences for domestic human health and costs of lost export opportunities has been estimated at US$700 million, a huge cost for Viet Nam. Foodborne diseases and food poisoning are a public concern in Viet Nam. It was recently reported that nine tons of salbutamol were legally imported for medical purposes in 2015, but only 10 kilograms were actually needed yearly for human use -the rest was likely used for livestock growth promotion (Nguyen-Viet, Tuyet-Hanh, et al. 2017). Outbreaks of food poisoning occur regularly (e.g. more than 4,000 in 2016), infecting hundreds of thousands of people. Biological risks are the most important cause of foodborne illness (Government of Viet Nam, 2017; World Bank, 2017). However, it is largely understood that this official reporting greatly underestimates cases in the community, as only a small proportion of foodborne disease is ever recorded as an outbreak. While data on food contamination is available, the evidence of its impact on health is limited (World Bank 2017).The Viet Nam MoH outlines three main causes for food contamination. Food safety communication remains a major challenge in Viet Nam. Risk communication is key to managing food scares and building trust in the food system, but little attention has been paid to this to date.It is important to build capacity in the techniques of risk communication, but also to develop over-arching strategies for dealing with food safety scares, as these are likely to continue (World Bank 2017). Many cases show that there was no consistency of risk communication from the media, scientists, and policy makers for a specific food safety incident. This often creates panic and alarmism, rather than helping consumers to make the right food choices. Consumers normally do not think about risk in the same terms that experts do. Therefore, for consumers, risk is highly subjective and in Viet Nam in recent years the public has considered the risks associated with chemical hazards in foods to be extremely high. Risk assessment of chemical, biological, and physical hazards in foods is crucial to provide scientifically-based information on actual risks and to inform official risk communication activities (Tran Thi Tuyet-Hanh and Hung Nguyen-Viet 2013).The government regards safe and healthy food provisioning as important for social stability and applies strategies to mitigate food safety risks that importantly build on approaches to sourcing, retailing, and purchasing structures developed in Western settings (Henson and Caswell 1999). The government explicitly aims to reduce food safety incidents through a combination of legislation and retail modernization. requiring all foods entering modern retail outlets to possess a certificate issued by official government authorities verifying that the vegetables have been produced in accordance with national regulations on safe vegetable production. These policies address both the application of agrichemicals as well as hygiene practices. Retail modernization is regarded as an important instrument in both respects, as supermarket chains are known to implement private food safety management systems and maintain food hygiene standards (Reardon 2006).This retail modernization policy marries well with the government's ambition to transform Viet Nam into a civilized modern society. It therein strives to reduce the provision of food via wet markets and informal street vending while stimulating the development of supermarkets and convenience stores. The expectation of policy makers is that reducing long-established modes of provision results in higher sales penetration of the more controlled, 'modern' and thus safer alternative of super-and hypermarkets.Despite the best intentions, the application of food safety policies in Viet Nam remains problematic.First, the government's ability to control food safety is weak. The country does not have a strong legal basis to control all types of food along the value chain. As a result, contaminated food can enter the food market illegally or even legally, since the law technicality allows contaminated food to enter the market easily (H.V. Pham and Dao 2016) (Pham and Dao, 2016). The national surveillance system is inconsistent and inadequate to monitor the large population and the amount of food produced. For example, in 2012, the whole country had only 300 food safety inspectors for 90 million people, while in Japan, there are 12,000 inspectors for 127 million people (Pham and Dao 2016; Naziri et al. 2014). There is also a high level of corruption among food inspectors, which makes it more difficult to have a transparent and fair inspection among food practitioners (World Bank 2006;Naziri et al. 2014). Furthermore, Viet Nam's production system is still small and fragmented, and lacks investment in technology. Therefore, the government cannot control all the stakeholders in food provisioning because smallholders are often exempted from business registration and legal administrative supervision (Pham and Dao, 2016). Lastly, even when a case of bad food practices is uncovered by the authorities, the system for implementing sanctions is not strong, and therefore there is no strong deterrent to prevent food producers and traders from continuing to perpetrate their profitable yet unsafe practices (Pham and Dao, 2016).Food loss and waste (FLW) is a global problem that negatively impacts the bottom line of businesses and farmers, wastes limited resources, and damages the environment. More than 40 percent of fruits and vegetables in developing regions spoil before they can be consumed (Foundation for Food and AgricultureResearch 2019). Viet Nam is included among with the worst performing countries in regards to food loss and waste globally (Gustavsson et al. 2011), with food waste contributing to more than half the total landfill weight in Viet Nam.In Viet Nam, the issue is shocking. The survey conducted by CEL Consulting in 2018 revealed that, on average, a quarter of the food produced within the three studied sectors is lost before it actually reaches processing plants or distribution centers (five percent higher than FAO's Seed Security Assessment results). Adding retail and consumer waste could increase this to 60 percent for fruits and vegetables. Total losses are estimated at 8.8 million tons or US$3.9 billion (32 percent of Viet Nam's GDP and 12 percent of Viet Nam's GDP derived from agriculture). The CEL Consulting survey estimates that, continuing along this path, the total average loss and waste for Viet Nam would reach more than half of what is produced in the short term future (CEL Consulting 2018).The fruit and vegetable food group accounts for the worst food loss percentage (32 percent of production). This represents approximately 7.3 million tons of fruit and vegetables lost per year. For the meat industry, losses reach 14 percent (roughly 694,000 tons per year (General Statistics Office of Viet Nam 2018a). In the fish and seafood group, losses represent 12 percent of production (about 804,000 tons per year).Food loss and waste affects the vast market of fresh goods in Viet Nam and contributes to raising prices, thus further preventing poor consumers from accessing fresh food on a daily basis. Evidently, food waste and loss is an issue across the entire Vietnamese food system -from production and marketing to the end user and consumer. From the production end, pest and diseases are a major contributor to food waste, accounting for 37 percent of rice yield losses (Sivapragasam A et al. 2017). Changing climate conditions and extreme weather events are also increasingly causing yield losses, and contributing to food wastage (FAO 2011). Poor post-harvest storage facilities, and in particular a lack of utilization of cold-chain storage facilities lead to significant losses as well, especially for fruit and vegetables. In addition, Viet Nam has traditionally been composed of remote, smallholder farms that, combined with poor road infrastructure, lengthy value chains consisting of many middle men, inefficient packing materials, and poor cold storage technologies available nor utilized, made transporting fresh produce difficult before spoilage occurs difficult. From the consumer end, there is a lack of awareness about the impact of food waste beyond the obvious implication to household income use efficiency; the environmental and socioeconomic impacts are often unknown, or undervalued. However, the increasing awareness and concern around food safety is showing the power that consumers have to elicit changes within the food system in an attempt to decrease spoilage, improve safety and therefore decrease wasteage of food in Viet Nam.The government issued a legal document (Prime Minister's Decision No. 68/2013 / QĐ-TTg) on supporting policies to reduce losses in agriculture; the implementation of this policy is still lacking, including the development of effective farmers' cooperatives, cold chain technology, and the participation of different stakeholders. The Ministry of Industry and Trade is responsible for the trade aspects of exported products. However, in terms of import and export controls, the respective ministries are responsible for their groups of products.Similar to the case of food safety management, each ministry handles its surveillance and control role differently, and coordination needs to be strengthened to ensure a comprehensive food control system (World Bank 2017).While legal documents have been issued to prevent low quality products from entering the country, the import control process is not well implemented, e.g. limited checks at borders and no evidence of a common import control procedure based on FAO norms and guidance, causing concern to both domestic producers, who feel that they are treated unfairly, and consumers, who do not have confidence in imported products (World Bank 2017). Export products, on the other hand, follow the standards of importing countries, and the government, especially MARD, who is responsible for the main export products of the country, has placed a high priority on supporting the export sector to enhance its competitiveness and expand international trade markets. This includes the maintenance of an effective export control system, with different types of inspection (document check and on-site), level of oversight, and inspection frequency based on the high/low risk products (World Bank 2017).Although international trade increasingly plays a vital role in its economy, Viet Nam has yet to provide regulations to limit the trade impacts on the development of food environment policies, where there might be a conflict of interest with the national nutrition improvement. The implications of international trade for Viet Nam's food systems will be discussed in more detail in the section on 'Drivers.'In the framework applied, the food supply is channeled through four connected subsystems: (1) the agricultural production subsystem, (2) the storage, transport, and trade subsystem, (3) the food transformation subsystem, and (4) the food retail and distribution subsystem.Viet Nam has multiple agroecosystems and rural socioeconomic realities. Typically, eight regions are recognized, each with multiple production subsystems: (1) northwestern highlands, (2) northeastern highlands, (3) Red River Delta, (4) north central coast, (5) south central coast, (6) central highlands, (7) southeastern lowlands, and (8) Mekong River Delta. Since the Doi Moi reforms, huge leaps in agricultural follow the rainy season with peak harvests at the end of the rainy season (October and November), most of the important annual food crops, such as rice and vegetables, have multiple seasons (Pham Thi Thu Huong et al. 2013;Laborte et al. 2017). Out of 3.4 million hectares under perennial crops, 2.4 million hectares were destined for export in 2017, including rubber (972,000 hectares), coffee (665,000 hectares), cashew (298,000 hectares), pepper (152,000 hectares) and tea (129,000 hectares). These products will likely not end up on a Vietnamese table, but will add to rural income generation and buying power. National fruit production, on the other hand, does reach Vietnamese consumers. In 2017, fruit crops covered 925,000 hectares of land. This is a 21 percent area increase compared to 2014 when national fruit production occupied 765,900 hectares. The most important fruit crops in terms of area are bananas, orange, tangerines, mandarin, lemons, pomelo, kumquat, pineapple, litchi, rambutan, longan, mango, and dragon fruit. Viet Nam is a hotspot of diversity and origin of many of these fruit species (Wu et al. 2018). The 14.9 million hectares under forestry also provide food such as wild catch, insects, mushrooms, bamboo shoots, wild vegetables, and other edible non-timber forest products (Ogle et al. 2003;Shairp et al. 2016).products is also soaring, and represented an import value of US$865.4 million in 2017. In 2015, the country's imported meat value is estimated to have reached US$234.7 million, an increase of 143 percent and 14 percent compared to 2010 and 2014, respectively. Although the import value of poultry increased by US$34.8 million between 2010 and 2014, its contribution to Viet Nam's meat imports decreased from 72 percent to 51 percent, whereas the share of bovine meat rose sharply during the same period. Bovine meat's import value saw a fourfold increase, from US$25 million to US$92.5 million, accounting for 45 percent of the total meat imported to Viet Nam in 2014. Viet Nam was able to generate a total pork export value of US$46.6 million in 2014. The reasons behind this significant increase are considered to be falling oil prices, a decrease in local cattle head between 2017 and 2012, and growing demand for beef. Trade agreements with Australia and New Zealand also facilitated the wave of imported beef in Viet Nam.Viet Nam's livestock production systems range from low-input backyard rearing, to intensified small family businesses with 50 to a few hundred head of animals, to high-input mega-stables with thousands of animals (FAO, 2008;Udo et al. 2011). The country's meat consumption has risen significantly over the last five years, from 3.5 million tons in 2013 to 4.2 million tons in 2018 (Table 3.9). In 2017, Viet Nam had 27.4 million head of pig, making it the sixth largest producer after China, the European Union, the United States, Brazil, and Russia. National pork production increased from 3.0 to 3.7 million tons between 2010 and 2017 (General Statistics Office of Viet Nam, 2018). The bulk comes from exotic pigs, including Yorkshire, Duroc, and Pietrain breeds. However, Viet Nam is also a genetic reserve of on-farm pig diversity, with significant variability of I pig, Mong Cai, Muong Khuong, Meo, Ba Xuyen, and Thuoc Nhieu breeds (Ministry of Agriculture and Rural Development 2009;Lemke et al. 2008). Vietnamese indigenous pig breeds offer quality meat and commonly fetch high market prices in both domestic and foreign markets.Poultry production has expanded from 300.5 to 385.5 million head between 2010 and 2017 (70 percent chicken / 30 percent duck). The production of meat from poultry increased from 0.6 to 1.0 million tons for this same period, and egg production from 6,421.9 to 10,637.1 units (General Statistics Office of Viet Nam 2018a). Even after the first avian influenza crisis of 2003, consumption and small-scale production remained widespread with 92 percent of Viet Nam's rural population raising backyard poultry (M. Figuié and Fournier 2008).There are about 2.5 million buffaloes in Viet Nam used for animal traction, transport, meat, and milk. The highest density of buffaloes (1.4 million) is found in the northern midlands and mountain areas where the animal is still highly valued as a capital asset. Buffalo meat production has remained reasonably Fishing from sea and inland catch, as well as aquaculture, are important activities in Viet Nam, providing valuable dietary nutrients, as well as export revenue (Table 3 Viet Nam's agricultural production is at the foundation of the national food supply and rural economy. The accelerated growth of the agricultural sector for both national food supply and export revenue has led to a series of challenges. Smallholder inclusion and sustainable intensification are particularly important challenges as Viet Nam transitions from a logic of production maximization to optimization with an eye for eco-efficiency and quality. Small-scale family farming poses a challenge for standardized quality standards, traceability, and market system logistics overall. Conflicting strategies have been pursued by both the government and the private sector. On the one hand, land consolidation and vertical integration of production at scale are widely seen as essential for raising productivity and sustaining growth of agricultural exports. In parallel, approaches that seek to organize family farmers in cooperatives or producer groups towards inclusive market integrations are also widely promoted.The overuse of agricultural inputs such as inorganic fertilizers and pesticides is negatively affecting the health of producers, consumers, and the environment (Dasgupta et al. 2005;Nguyen Huu Dung et al. 1999). Limited use of native genetic resources and sizeable imports of high value seed, particularly in the vegetable seed sector, have led to increased genetic uniformity. While there is an ongoing effort to promote better practices and traceability schemes for the national food supply, the widespread over-and misuse of agrochemical inputs remains a key challenge (Mergenthaler, Weinberger, and Qaim 2009b;Muriel Figuié et al. 2004). Attention to product quality and environmental sustainability are relatively new national priority areas. Good agricultural practices involving integrated crop management and semi-organic production involving trust-based participatory guarantee and direct marketing systems have been steadilygrowing, yet are generally inaccessible for poorer consumers. It will remain difficult to reduce the use of agrochemical inputs without profound changes to the production system, with attention to soil health, crop rotation, and better use of agrobiodiversity. Climate change and extreme weather events have also affected the regions differently during the last decade, with floods in the north-central coast, saltwater intrusion in the Mekong River Delta, and droughts in the central highlands (Nguyen Tam Ninh et al. 2017). Data on agricultural use of antibiotics in Viet Nam is limited. In livestock, antimicrobials are often added to animal feed as AGP. According to a study conducted in 2016, 42.2 tons and 981.3 tons of antimicrobials were added to feeds for Vietnamese poultry and pig production, respectively (Van Cuong et al. 2016). The larger amount of AGP in feeds for pig production reflects the higher antimicrobial content in pig, higher feed conversion factor in pig, and larger pig production compared to chicken production in Viet Nam. It may therefore not be surprising that the second report of colistin-resistant Escherichia coli isolated from food came from Viet Nam (Malhotra-Kumar et al. 2016).In aquaculture, antibiotics are often used haphazardly with little control and enforcement of regulations. In shrimp production, which has increased by 17-fold in volume and 40-fold in monetary value since Doi Moi, antibiotic residuals often exceed the acceptable limits by international standards. It explains why Viet Nam has experienced a large number of rejections of shrimp at the port of importing countries (Lee, Suzuki, and Vu 2019). In fish and lobster production, many antibiotics used are listed as important for human use by WHO, such as tetracycline, rifampicin and enterocaps, and each costs around US$2 for a cartridge of 100 doses (Hedberg et al. 2018). These antibiotics were generally bought at the local pharmacy in the form of pills manufactured to treat infections in humans. Farmers often crush the pills and mix them, with bare hands, with the trash fish used as feed. Antibiotics are either applied prophylactically at fixed intervals of one to seven times per month, or used therapeutically treat the stocks immediately or several days after the disease was observed until the stocks look healthy. The drivers of antibiotic use in smallscale aquaculture are often the low cost of antibiotics, poor knowledge of alternative disease management, and lack of a stringent regulatory environment (Lim et al. n.d.). Thus, responsible use of antibiotics in aquaculture is contingent on the regulation of antibiotics sales for the animal sector and knowledge exchanges with farmers on disease management.Viet Nam has adopted a One Health approach to incorporate human and animal health sectors, but the surveillance of the animal health sector remains weak, and inter-sectoral activities are limited. The One Health approach was reflected in the 2013 Global Action Plan, which planned for surveillance to be conducted at the hospital, community level, and of food-producing animals. However, it was not until 2017 that the specific description of the animal sector surveillance was detailed. In addition, while pharmaceutical companies are required to report sales of antibiotics, feed mills are not mentioned in the official documents despite their role as main providers of antibiotics for animal production (Bordier et al. 2018). The One Health cross-sector collaboration was stipulated and initiated at the policy level through the National Steering Committee established in 2016, but its activities remain highly silo-oriented.Surveillance activities are monitored by separate departments with limited cross-departmental collaboration and communication. The full operationalization of the One Health approach would require not only stronger adhesion of the key stakeholders to the Action Plan, but also regional collaboration to exchange lessons learned and identify successful programs that can be adapted in Viet Nam (Nguyen-Viet, Chotinun, et al. 2017).In terms of storage and distribution, Viet Nam presents a case of traditional and mixed food supply chains as categorized by HLPE (2017). Like other growing Asian economies, transformations have been most evident in the post-farm gate segments of the food supply chains, including logistics and cold chain (Reardon and Timmer 2014). Logistics improvement is considered a key competitive factor for Viet Nam, including its food production systems.In Viet Nam, post-harvest loss in the agricultural value chain is significant: the loss of fruit and vegetables (see section 3.3.3) can be up to 45 percent, and up to 35 percent for seafood products (Viet Nam Ministry of Industry and Trade 2017). Besides low mechanization of agriculture, low capacity in storage and transport has been cited as one key reason for this inefficiency (Viet Nam Ministry of Industry andTrade 2017). The increased consumption of meat and export requirements have been driving up the demand for frozen food storage (Viet Nam Ministry of Industry and Trade 2017). Besides, the low penetration of fresh food into Vietnamese modern distribution is attributable to the difficulty and preference expenses of sourcing and distributing perishable products, while the consumers still hold a marked preference for fresh fruit and vegetables (World Bank, 2017). Although cold storage capacity has increased four times over the past ten years, it has been mostly focused in southern regions, serving the export markets, while being very limited in domestic restaurants and supermarkets. Most of the logistics providers in the agricultural sector are small-sized purchasers, transporters, and processors who often lack the equipment and infrastructure to effectively operate a cold supply chain. Additionally, agrobusinesses and logistics providers have yet to develop close connections and long-term commitment (Viet Nam Ministry of Industry and Trade 2017).The rise in the demand for cold chain services has mostly been associated with seafood and pork exports.Cold chain development for national food supply chains is developing fast, especially for the dairy sector.The food processing capacity in Viet Nam is large and predominantly export-focused, with coffee, pepper, rice, cassava, and seafood being primary commodities for value addition. Growth of sugar-sweetened carbonated beverage sales in Viet Nam, led by foreign-owned companies, has significantly accelerated after trade and investment liberalization (Schram et al. 2015). As the Vietnamese processed food market has been experiencing steady growth rates (Viet Nam Net 2016) and expenditure on processed food has seen an upward trend, research and policy responses to navigate the relationship between trade liberalization and nutritional implications are very needed 8 . Viet Nam's agricultural products processing industry has achieved substantial growth: Over a period of five years (2007 -2012), its increases in added value were 5 to 7 percent, contributing to the export sector. Estimated to be employing about 1.6 million people in 7,000 modern industrial processing companies as of 2018, the sector is still largely dominated by smallholders. For example, the fruit and vegetable sector has around 150 industrial scale (over 500 thousand tons in annual production volume) processing facilities, while there are thousands of small-scale processors of products like lychees, longans, gherkins, etc. (Department of Planning 2018). In the coffee sector, foreign direct investment and multinational companies like Nestlé, Olan, Neumaan, etc., still account for the largest share of processed coffee products. Fifty percent of coffee grinding facilities are small-scale household businesses (Department of Planning 2018). In the livestock meat processing sector, it is estimated that only about 3 percent of slaughterhouses are those of industrial scale. These large-scale slaughterhouses can only work up to 30 percent of their capacity due to the competition from small slaughterhouses as well as local consumers' preference for freshly prepared meat products.Despite the growth of the sector, the processing industry is estimated to account for only 5 to 10 percent of the total volume of agricultural products. For example, only about 5 percent of the total fruit and vegetables are inputs for the processing industry. Even for the agricultural products with the most advanced processing capacity, like cashew nuts, seafood, coffee, etc., raw, unprocessed products still account for up to 70 to 80 percent. For of some agricultural products, the preference has not been given for higher valueadded processed products, such as white pepper over black pepper (Department of Planning 2018).The agricultural products processing industry in Viet Nam is still in its infancy and faces many barriers. Among them are the limited application of science and technology to increase productivity; the lack of connectivity among value chain stakeholders, which in turn leads to the unguaranteed quality and unsustainable inputs for the industry; and insufficient incentives for larger corporations to apply new technologies and expand the market for processed products. Post-harvest loss is still an issue, which creates uncertainties for the quality and quantity of agricultural inputs. Instead of using safe, modern, and natural techniques, several processed products in Viet Nam are susceptible to unsafe use of toxic chemicals in postharvest storage, which can lead to disqualification from several important markets. Viet Nam has also not taken advantage of by-products of processing, such as bagasse and bran, to create extra added values.Parallel to the growth in consumption of processed food and the domestic food processing industry, the domestic printing and packaging sector, according to Mr. Hoang Quang Huy of the Association of Research and Development for Innovation, has enjoyed growth of 15 to 20 percent in recent years (Duc 2019;Huynh 2018). Between 2012 and 2015, the food processing and packaging sector was the second largest employer in Viet Nam. Inevitably, this saw the country become a prime target for processing, packaging, and labelling machinery makers (T. V. Pham 2016).Currently, Viet Nam has more than 900 packaging facilities, mostly located in the southern provinces (Kanepackage Viet Nam 2018). The market has two main segments: smallholder packaging businesses serving small producers, and large companies serving big clients. Not surprisingly, the domestic companies are mostly small scale, while the foreign direct investment companies have more advantages in terms of technologies and financial capital.Packaging costs are currently high, accounting for more than 50 percent of the cost of certain products, and food processors are looking for ways to cut packaging costs, including through the use of automation.Overall economic growth, including a sizable young population, rapid urbanization, and concerns about hygiene and food safety are driving notable changes in consumption patterns. The formal food retail system can be subdivided into more recent, and what are considered to be 'modern' types of food retailing, which include: hypermarkets, supermarkets, and chain convenience stores; and more 'traditional' forms of food retailing, such as family-owned stores (known as mom-and-pop stores in Viet Nam), as well as wet markets that are state-planned and governed by a management board, where vendors pay a fee to be allowed to sell their products.While Viet Nam's food retail sector is still dominated by these small traditional outlets, they are increasingly under pressure from the nationwide retail modernization, in which modern retail channels are rapidly expanding in response to growing consumer demand (Table 3.11). The trend has been coined'supermarketization' (Reardon, Berdegué, and Timmer 2005), and started in the late 1990s, initially with domestic state-owned enterprises, but later, and especially since 2009, took off with an acceleration in foreign ownership (Nguyen Hai Thi Hong, Wood, and Wrigley 2013). These modern channels are characterized by a high level of global food system integration.End user or consumer retail of food for home preparation in Viet Nam is provisioned through several outlets, depending on scale of wealth and convenience, and are, in order of current frequency: (1) traditional wet markets, (2) street sales, (3) small-to medium-sized neighborhood and convenience stores, (4) supermarkets and hypermarkets, and (5) social and online networks.Consuming food away from home is common in Viet Nam, for both occupational and recreational reasons (Lachat et al. 2011) and is provisioned through the following channels: (1) restaurants, (2) street food, (3) school meals, and (4) work canteens. Restaurants and street food are accessible in small towns and cities, and delivery services are readily available in cities. Companies in Viet Nam's industrial zones frequently provide canteen lunches in the workplace. There is also a country-wide program that provides milk to kindergartens and primary schools. In some provinces, these are sponsored by food companies (e.g.,Ajinomoto, Rue Milk) and in some provinces and cities school lunches also are provided. These are meant to provide a balanced meal for children and serve as an education and communication tool to influence students' dietary habits (Duc Son Nguyen Trung Le 2011). Traditional wet markets continue to play a key role in food retail in both urban and rural food provisioning in Viet Nam. Independent of household income category, they account for the largest share of urban household food expenditure (CGFAR 2018b). However, there have been numerous government initiatives -also with World Bank support (LIFSAP 2018) -to redesign, upgrade and reorganize traditional market infrastructure. Within and among wet markets, there is considerable variability. Some are directly managed by the government marketing boards that report to the local People's Committee, while others are managed by private companies with a public history. Inside wet markets, there is commonly a section for fixed stalls (full-time traders) and for occasional mobile vendors (part-time traders and often producers).Temporal street markets and mobile street vendors are common in villages and large cities alike.Street markets are typically mounted early morning until late afternoon. However, they have come under increased scrutiny from government authorities who are closing them down to supposedly improve security, orderliness, and urban development (Turner and Schoenberger 2012). They have also come under criticism by permanent market sellers who perceive them as unfair competition. Informal street vendors commonly roam around outside traditional markets and many mobile vendors patrol the streets with push carts, bicycles, scooters, or simply on foot using traditional shoulder poles. Informal mobile food selling is commonly linked to relative poverty and gendered livelihood strategies (Kawarazuka 2016). There is little quantitative data on this type of food provisioning. While not representing a dominant food retail subsystem at the same level as the permanent traditional markets, the temporal street markets and mobile street vendors represent a decentralized, wide-reaching and opportunistic form of food retail.Small-to medium-sized neighborhood and convenience stores in Viet Nam come in many shapes and sizes. First, there are thousands of small, family-owned grocery stores, on almost every street in Viet Nam's villages, cities, and along major traffic routes. They offer anything from processed food and vegetables to meat, in what can range from an extended living room to a fully-fledged shop. A second type of outlet are small-to medium-sized convenience stores or mini-marts that are part of commercial retail chains such as Circle K, VinMart+, and B's Mart. These types of outlets are spreading rapidly, especially in the cities. Viet Nam is forecasted to be the fastest-growing convenience store market in Asia by 2021, with a growth rate of 37 percent according the International Grocery Research Organization. Scientific literature has not caught up with the phenomenon of Viet Nam's mini-mart boom. A third type of small retail outlet concerns safe food and organic stores. These include stores like such a Bac Tom, NaturallyViet Nam, and Organik. While potentially in high demand, such stores currently hold an upscale niche market of higher-income consumers.Supermarkets have expanded rapidly throughout Viet Nam (Table 3.11). There is a wide diversity of supermarket chains, ranging from nationally-owned supermarkets to foreign investments (Nguyen Hai Thi Hong, Wood, and Wrigley 2013), including VinMart, Big-C, AEON, Co.op Mart, Lotte Mart, MegaMarket, and others. Government policy frequently assumes that supermarkets with stricter food safety and hygiene standards are a logical progression to modernize food retail and will replace traditional markets. However, while the 'supermarketization' in Viet Nam is progressing at a steady pace (Coe and Bok 2018), these outlets are as yet not necessarily replacing the traditional outlets. Clearly, household food expenditure shares at modern retail outlets increase with income. The current supermarket model, while being attended for selected food purchase by the middle-and high-income groups, is not necessarily accessible for the poor (Wertheim-Heck, Vellema, and Spaargaren 2015). A recent study found that lowincome households in Hanoi and Ho Chi Minh City spend about 2 percent and 19 percent of their food budget at supermarkets, respectively (CGFAR 2018b). The aspiration of modern shopping at supermarkets is closely tied to urban lifestyles and increasing labor emancipation of young Vietnamese families. This trend is likely to continue in the years to come (EVBN 2018).Food purchase through social and online networks is a niche informal mechanism for urban food provisioning that has gained importance, yet remains largely invisible. It involves food remittances from the home town to the city. These clearly reflect the intergenerational shift of people from the countryside to the city (Tarp 2017). Additionally, in response to food safety concerns, informal social mobilization to acquire 'safe vegetables' is a common phenomenon (for example, at the workplace). Moreover, Facebook and social media groups have sprung up to provide direct access to 'safe' and organic produce. Formal ecommerce and online food purchases are growing in the Vietnamese food retail space and are predominantly associated with convenience and price (Anh Kim Dang et al. 2018). Yet the share of online food purchases in Viet Nam's major cities is still very minor (CGFAR 2018a).Drivers of food systems are governed by food system actors' decisions and their behaviors, which affect the components of the food system's organization and ultimately shape food system outcomes. Here we discuss the most relevant food systems drivers in Viet Nam under the four groups of drivers described in the conceptual framework: (1) Environmental changes; (2) Science, technology, and infrastructure; (3) Policies, laws, and institutions; and (4) Socio-cultural drivers.Viet Nam is ranked 16 th among countries in terms of largest share of biodiversity. It is home to a wide array of species whose contributions to the economy are particularly significant in agriculture, fisheries, and tourism (Asian Development Bank 2013; Viet Nam Ministry of Natural Resources and Environment 2015).However, the introduction of new, high-productivity varieties and hybrids has caused a reduction in the planted area and in genetic diversity of indigenous varieties. For example, 80 percent of traditional rice varieties, 50 percent of local corn and bean cultivars, 90 percent of tea and fiber crop varieties, and 70 percent of local fruit species can no longer be found in the production system (Vu Dang Toan 2015). Forest flora resources, livestock, and aquatic genetic resources are also deteriorating in a similar manner. To combat biodiversity loss, an impressive number of national strategies, programs, and plans for biodiversity conservation have been issued, including measures to control activities that have negative impacts on biodiversity. Admittedly, there has been a conflict of interest between meeting the local economic growth targets and conservation and sustainable use of biodiversity (Vu Dang Toan 2015;Viet Nam Ministry of Natural Resources and Environment 2015). Over-exploitation and changes to fishing, harvesting, and products resulting from agricultural, forestry, and fisheries' breeding practices have been cited as a major cause of natural resource depletion. How Viet Nam will balance its economic needs, especially in feeding a large part of its highly resource-dependent poor populations, and resource preservation, deserves continual attention.Agriculture, the bedrock of food systems, can only be sustainable if natural resources are well managed. The case of rice farming in Viet Nam demonstrates that the aforementioned dilemma can be a win-win situation for both natural resources and production. In the Mekong Delta region, more intensive farming methods and increased use of pesticides and fertilizers have increased yields and reduced poverty, however, this has also led to negative impacts on the environment and health. In a study that investigates and compares farming strategies among rice and rice-fish farmers, integrated rice-fish farming and integrated pest management strategies were found to provide sustainable options to intensive rice farming, because of a more balanced use of multiple ecosystem services (Berg et al. 2017), reducing the need for chemical inputs. It has also been indicated that alternative farming systems, such as rice combined with vegetables, fisheries, or other flood-based livelihoods, could offer greater benefits than intensive rice monocultures, without the environmental costs and impact currently endured across the delta with triple rice cultivation in high dikes (D. D. Tran et al. 2018).Prospectively, about one-third of the current paddy land in Viet Nam is projected to shift to alternative agricultural land uses, e.g. aquaculture and vegetable ornamental plant production, or ecosystem services by 2030, which will help to accelerate agricultural growth (World Bank 2016).There is a significant body of literature on how climate change impacts food availability, food access, food utilization, and the stability of the food system (Wheeler and Braun 2013) among the older population (Rocklöv et al. 2014). Policy responses to nutrition therefore need to expand to respond to climate-related volatilities. \"The nutrition transition will unfold in parallel with climate change in coming decades, but very little research on the potentially reinforcing effects of these phenomena has been done\" (Wheeler and Braun 2013). This statement is also true for Viet Nam, where in-depth research depicting how climate change is influencing the nutrition transition is not available. Conversations on agricultural development in Viet Nam have also involved adopting both technical solutions and a systems lens to innovation, so that actors' innovative capacity can be harnessed. For example, the Vietnamese agricultural extension system, while trying to move away from a purely modelbased technology transfer approach towards participatory forms of extension, still faces cultural and institutionalized stereotypes that prevents attributing a more active and knowledgeable role to disadvantaged farmers in the innovation process (Friederichsen et al. 2013). Although infrastructure improvement has been integral to all policies guiding agricultural and rural where physical connectivity is a big concern and transportation costs make up a high share of the total costs, it has been argued that the construction of roads per se may not always be a priority if the supply of transport services is not adequate (Lançon, Sautier, and Dao The Anh 2014). In several areas across the country, local private collectors and traders have developed marketing systems that provide outlets to most of the local producers and overcome the physical linkage difficulties (Hoang Xuan Thanh et al. 2015;Lançon, Sautier, and Dao The Anh 2014). The scope of the accessibility issue is not only limited to the cost-effectiveness of transport functions, but also provision of credit, logistics services, and institutional arrangements among the stakeholders (Lançon, Sautier, and Dao The Anh 2014). There is a lack of collective action, e.g. the dearth of well-functioning, commercially-oriented cooperatives and producers' organizations, that could aggregate commodities and provide a wide range of services, which raises the transaction costs, including post-harvest loss (World Bank 2016).From the centrally-planned approach to the economy following Reunification (1976Reunification ( -1986)), to economic reforms of the Doi Moi (1986)(1987)(1988)(1989)(1990)(1991)(1992)(1993) that turned the country from a rice importer to the world's third-largest exporter in 1989, public investment and various forms of government support have played very important roles in Viet Nam's agricultural development (OECD 2015). Policy liberalization and privatization led to a minimization of successive governments' direct role in the food systems, increased private sector small and medium enterprises, entry of large-scale domestic and foreign firms such as processors and supermarket and fast food chains, as well as large input firms (Reardon et al. 2018). However, the effectiveness of different types of markets in the food systems is still constrained by the situation of 'too much state, too little governance:' the presence of state-owned enterprises with their privileges, which has tied up government resources in comparably unproductive activities, is arguably still an obstacle to the private sector and the development of high caliber systems for food safety and biosecurity management. The state's ownership of agricultural land and control of bulk water delivery has caused high transaction cost and low productivity. A focus on quantitative production targets that do not incorporate systems for food quality, food safety, and environmental management has caused concerns among consumers and heightened risks for farmers and firms (World Bank 2016).Recognizing these challenges, the government has begun to shift from a supply-oriented focus on agricultural production, to a focus on market responsiveness and sustainability, as signaled in Viet Nam's Agricultural Restructuring Plan 2014 (World Bank 2016). To achieve this change, the shifts in government roles are also desirable, as summarized by the World Bank (Table 4.1). Since the country's economic reforms that culminated in its WTO accession in 2007, Viet Nam's international trade has experienced steady growth, fueling its economic growth and now accounting for 178 percent of its GDP (World Bank 2017). Trade agreements pursued (16 trade agreements were signed between 1995 and 2016) have removed several tariff barriers and opened doors to new markets. The expansion and deepening of its export portfolio demand the move from quantity-driven to quality-driven exports, for example, by strengthening its current weak quality and safety standards to meet the increasingly stringent standards set by the international market, including environmental and social standards. The invisibility of the country's export products to the users and consumers also raised the need for differentiated commodities or higher value-added products (World Bank 2016). These upgrading requirements, in turn, have important implications for the country's production system that still covers mostly smallholders with limited financial and human capital.Viet Nam provides a good case study of local food systems coexisting with exporting food systems (Dao The Anh and Sautier 2011). In theory, foods that are traded could either harness both quality and safety standards of produce for both export and domestic markets, or they could bifurcate, leading to a situation in which high-quality products are exported, and low-quality remain within the domestic market.The imbalance in surveillance and control practices for export versus domestic market has been noted (World Bank, 2017). These observations demonstrate the need for linked research between trade and food quality.The increasingly open markets have also given rise to the influx of foreign products and investment, not only facilitating access to a higher variety of products, improved technologies and production models, but also creating more competition that demands quick restructuring efforts for the relevant sectors. For example, Viet Nam is increasing its imports of not only processed foods but also frozen meat. In the scenario of increased free trade agreements, Viet Nam's livestock sector at the current low level of competitiveness has been predicted to suffer from output and welfare decline (Nguyen Duc Thanh et al. 2015). The increased liberalization of trade also introduced new sources of vulnerabilities to the food systems, such as dumping and illegal imports, and legal import of agricultural inputs such as antibiotics and pesticides that jeopardize the safety of Vietnamese products (World Bank 2017). From the consumption side, while reductions in barriers to trade can increase consumer food choices, the large increases in imports and domestic production of processed foods may skew the food supply towards an over-supply of highly processed foods (Friel et al. 2013).Modernization policies aim to improve food safety by promoting the closure of open-air markets in favor of supermarkets and convenience stores. Traditional open-air markets are the urban population's main source of food, but don't provide formal food safety guarantees, whereas modern retail outlets provide safety guarantees but are not utilized by the urban poor for multiple reasons, including shopping preferences, habits, and convenience (hours of operation, formality, cost, and perceived freshness (Wertheim-Heck, Raneri, and Oosterveer 2019). These modern outlets were designed to increase the consumption of safe foods in Hanoi, however they may also stimulate the consumption of unhealthy ultraprocessed foods (Wertheim-Heck and Raneri 2019).As one of the world's largest exporters of agricultural products, Viet Nam's local food prices and policy responses are strongly linked to world food prices. Viet Nam's essential rice sector serves as a good illustration. In 2008, amid rising world prices for rice, the government imposed a temporary export ban due to concerns for food security and a desire to stabilize the domestic price of rice. This policy, while contributing to pushing the world price higher, kept the domestic peak price much lower than the international one. Meanwhile, in 2011, variations in the world markets were transmitted to the domestic market fully. The price volatility between 2008 and 2011 prompted the government to adopt a broad range of policies targeting various stakeholders involved at the different stages of rice production and trading, e.g. reduction of post-harvest losses in agricultural production, ensuring profit margins for farmers, and rice export management (Tran Cong Thang, Do Lien Huong, and Le Nguyet Minh 2013).Since the average Vietnamese households spend half of their income on food, higher food prices may have significant effects, although the impacts are different for net buyers (most urban consumers) or net sellers (most rural households). Vu and Glewwe (2011) estimated the impact of the 2007-2008 food price hike on welfare in Viet Nam. The findings show that higher food prices made most households worse off: a uniform increase in the price of rice would reduce the welfare of about 54 percent of rural households and 92 percent of urban households. All of the within-group impacts are sensitive to differences between the changes in producer and consumer prices, and the southeast and central highlands would be impacted the hardest (Linh Vu Hoang and Glewwe 2011). In a more recent study, Hoa K. Hoang (2017) projected a 30 percent increase in rice prices (observed during the 2007-2008 food crisis) would cause households, especially low-income households, to shrink their calorie intake and demand for rice as well as for some, if not all, other food groups (Hoa K. Hoang 2017). Policies are therefore necessary to address the shortterm and long-term impacts of food prices on food security and nutrition, covering social protection programs and price stabilization measurements (HLPE 2017).Agricultural land in Viet Nam was decollectivized in 1988 and the subsequent 1993 Land Law and its revisions gave households the power to exchange, transfer, lease, inherit, and mortgage their land-use rights.As one of the largest rural titling programs in the developing world, Viet Nam's tenure formalization has raised the incentive to use land more efficiently and led to significant increases in the share of total area devoted to long-term crops and in labor devoted to non-farm activities, thanks to the increased security of tenure (Quy-Toan Do and Iyer 2008).In a country where agricultural land holding is dominated by very small farms, land consolidation is important to upgrading production systems and product quality (World Bank 2016). Agricultural land consolidation remains at an early phase in Viet Nam. Although the government has been implementing land consolidation in many communes, in most parts of the country the land rental market, an important pathway to land consolidation, remains underdeveloped due to limits or restrictions on land holding sizes and uses, high transaction costs in land transfers, and the administrative setting of land price values by provincial bodies (World Bank 2016).Land use planning by the state at multiple levels designates a certain amount of land dedicated to rice cultivation. Long-standing restrictions on the use of paddy land helped to ensure food security in the past, yet comes at the cost of productive and allocative efficiencies: Quy-Toan Do and Iyer (2008) cite restrictions on crop choice as one reason why increased land titling has had limited impact on investment in perennial crops. Decree 35, released in February 2015, enhanced the flexibility of rice-land with a provision under which rice land can more easily be put to alternative agricultural uses, including the cultivation of other seasonal crops and aquaculture. Removing the land designation policy has been projected to benefit agriculture by facilitating more diversified land uses, shifts to higher return crops and/or aquaculture for which domestic demand is growing rapidly, without compromising food security in Viet Nam (Giesecke et al. 2013). However, land use decision can come at environmental costs: in upland areas, for example, the expansion of coffee, rubber, and cassava plantings has cut into natural forest, contributing to biodiversity loss and land degradation. The growth of shrimp aquaculture in the 1990s and early 2000s was blamed for the destruction of nearly half of the Mekong Delta's mangrove forests (Nair (2015) as in (World Bank 2016)).For a country whose food consumption is so deeply ingrained in its particular cultures and behavior that the word for 'eating' is part of many words for special occasions 9 , culture and social traditions dictate a large role in Vietnamese food systems. Failure to account for cultural acceptability and indigenous knowledge (including agroecological norms) can damage the effectiveness of the government's agenda for agrarian transition: e.g. Hmong farmers in the northern uplands still preferred their local varieties over introduced hybrids, and subtly challenged the full adoption of hybrid maize as an 'agricultural technology' (Kyeyune and Turner 2016). As illustrated elsewhere in this paper, the retail modernization policy has failed to account for the traditional vending structures in a large population in Hanoi. Such policies are yielding undesirable effects, such as increasing the consumption of ultra-processed foods, as well as increasing inequitable access to retail outlets that further alienates the urban poor (who cannot access supermarkets) from safe and nutritious foods, as they turn to more informal street vending structures in the absence of formal wet markets (Eidse, Turner, and Oswin 2016;Wertheim-Heck, Vellema, and Spaargaren 2014).The cultural perspective, including taboos and beliefs (see section 3.2.4), also explains the types of food people eat and the implications for their nutritional status. A good example of this is traditional Vietnamese postpartum practices that discourage women from eating certain foods defined as 'cold', such as certain fruits and vegetables, in favor of 'hot' foods that are believed to increase their 'vital energy' and aid production of breastmilk. However, such practices can lead to vitamin deprivation and constipation and also conflict with WHO's worldwide '5 a day' fruit and vegetable policy for better health and wellbeing (Lundberg and Trieu Thi Ngoc Thu 2011). Understanding the importance of culture and taking such observations into account can help to adapt the nutrition interventions to be culturally appropriate and thus be more readily adopted and effective.As culture is dynamic, capturing the changing culture is essential to understand trends in the food systems. As Viet Nam is increasingly integrated into the global economy, its culture is also being influenced from multiple directions. This can be most observed in big cities, where, for example, the rise of Korean influence has been cited as leading to the growth in consumption of dairy products, especially cheese, among the younger generation (Decision Lab 2016). While sharing a communal meal at home is typical of a traditional Vietnamese family, the rapidly 'modernized' life has led to the rising popularity of eating out, demonstrated by the increased share of food away from home in the total food consumption of an average Vietnamese (Linh Vu Hoang 2009).Women play a vital role in agricultural production and the food systems, and gender equality leads to superior agricultural and development outcomes, including increases in farm productivity and improvements in family nutrition (Asian Development Bank and FAO 2013;UNDP 2016). In Viet Nam, 63 percent of working women were engaged in agriculture, compared to 58 percent of working men (UN Women and FAO 2014). In livestock value chains, for example, most animal source food products are produced by smallholders, many of them women, and sold in traditional open markets where women also predominate as retailers (Nguyen Thi Duong Nga et al. 2014). According to the Viet Nam Country Gender Assessment, despite its progress in narrowing gender equality, the country still exhibits significant gaps, for example, women typically have more limited access to and control over key productive resources such as land, and to services such as credit, less access to healthcare, lower wages, more involvement in ownaccount work, and unpaid family labor (World Bank 2011).The Vietnamese government has recognized gender equality in its Law on Gender Equality and its National Strategy on Gender Equality. As a policy response to empower women, the Land Law 2003 stipulates that the land use right certificate carry both the wife's and husband's names, aiming to enable women to participate more actively in household economic production, and to protect the rights of the woman in the event of civil disputes. Improved Vietnamese women's land rights has been found to positively impact household welfare, including access to credit for agricultural production (World Bank, 2008), increased women's self-employment in agriculture (Menon, Van der Meulen Rodgers, and Kennedy 2017), increased household food expenditure (Newman 2015), and reallocation of household expenditures toward food and away from alcohol (Menon, Van der Meulen Rodgers, and Huong Nguyen 2014).However, as of 2008, the majority of land use right certificates still did not include the wife's name, and access to larger funds often requires other kinds of collateral than the certificate (World Bank 2011).A recent study (Viet Nam National University of Agriculture and Rikolto 2018) revealed that women often had more experience in agriculture than men and that they participated mainly in the production processes of value chain activities. Driving the increase of women in agriculture was also the increasing shift of men moving towards non-farm employment. Women were empowered to make decisions regarding agricultural production, however, they still lacked capacity and empowerment compared to men in regard to selling land, deciding land use purpose, and taking loans for agricultural production.A barrier to the engagement of women in innovative approaches to agriculture is the difficulty associated with inciting their participation in trainings due to higher household demands and expectations, including farm labour, household chores, and caring for a family member and/or young children. In addition, trainings are often targeted towards cooperative members and realistically the voice and presentation of men in both formal and informal groups is higher than that of women.In 2018, the number of young Vietnamese people aged from 16 to 30 was estimated at 23.3 million, accounting for 24.6 percent of the country's population. Despite the central role of agriculture in the rural social systems, little progress has so far been achieved towards raising the income and living standard of youths engaged in its practice. So while young people have the potential to feed growing urban populations and transform the food system, their potential is often overlooked. As yet, there are very few young people involved in agrobusiness or incentivized to be, due to (1) generational break in family and community traditions of smallholder farming; (2) lack of voice and agency; (3) poor image of agribusiness; (4) lack of access to skills and knowledge; (5) poor access to finance; (6) poor access to ICT and connectivity;and (7) poor access to land (T. L. Nguyen 2019a), as well as challenges such as poor access to farm inputs, good market channels, and other services (Vietnam National University of Agriculture and Rikolto 2018).After increasing rapidly over the years, the Vietnamese population, ranked 15 th globally at 92.7 million in 2016, had stabilized at a growth rate of around 1 percent in 2017. Its urbanization rate has been on a continual rise, becoming the key demographic driver of food systems transformation. Around 35 percent of the total population resided in urban areas in 2016, from 20 percent in the 1980s. The urban population growth rate is much higher than the rural rate, standing at around 3 percent in 2016 (United Nations 2018).Urbanization has demonstrated its driving force in the transformation of several components of the Vietnamese food system: diet change, for example towards more processed foods in urban total food expenditure (Reardon et al. 2014); modernization of the food distribution system (Wertheim-Heck et al.; conversion of agricultural land into commercial use and diversification of agricultural products (Van Dijk et al. 2012;Hoang Xuan Thanh et al. 2013); more complex rural-urban linkages promoted by various market agents, entailing not only rural-urban supply but also urban-rural flows and the rise of urban and peri-urban agriculture (Hoang Xuan Thanh et al. 2013).It has been argued that urbanization provides massive agrobusiness opportunities (for importers, local farmers, processors) but also challenges for city planners in terms of physical infrastructure, as well as new ownership and management models (Tschirley 2017). In Viet Nam, where urban areas have expanded spatially at almost 3 percent per year, among the fastest rates in the region (Tu Hoang 2015), considerations about food retail, food waste, and other food-related issues have not been integrated into urban planning. For example, in Hanoi, retail modernization policies, as an effort to cope with rising food safety concerns, have failed to account for the dominance of existing wet markets in consumers' everyday shopping practices (Wertheim-Heck, Vellema, and Spaargaren 2014). By marginalizing the wet markets, the policies also run the risk of further excluding urban and rural poor female smallholder vendors and lowincome consumers, which calls for flexible approaches to retail modernization (Kawarazuka, 2016;Wertheim-Heck et al. 2015). This example in the food distribution sector demonstrates that characterizing the winners and losers of urbanization in the food supply chains and proposing appropriate policy responses is crucial.Internal migration rates, especially rural-urban migration, have been rising in Viet Nam, due to better prospects of employment and income opportunities (General Statistics Office of Viet Nam and UNFPA 2016). There has been some evidence that migration, especially short-term as a mechanism by which households maintain food security, has a positive impact on overall per capita food consumption (Nguyen Minh Cong and Winters 2011), for example, thanks to more adequately supplied and accessible markets 10 . However, as Viet Nam's high proportion of migrants are characterized by a lack of permanent residential registration status, limiting their access to public services (Demombynes and Linh Hoang Vu 2016), internal migration can increase the pressure on urban poverty and aggravate nutrition deserts for the urban poor.How out-rural migrants benefit their home agricultural production and food security is multifaceted and highly context-dependent, for example, on how remitted money is used, how new knowledge is transmitted, and how rural labor structure is affected (Hoang Xuan Thanh et al. 2013). On the one hand, agricultural production investment is an important expenditure for remitted money, and many migrants who return to their home areas with a 'brain gain' help improve agricultural production, as well as household and local incomes. On the other hand, migrants may have to depend on home-based relatives for food when prices rise in urban areas (ActionAid and Oxfam 2012).10 Using panel data from the 2004 and 2006 Vietnam Household Living Standards Surveys, the authors find that short-term migration has a positive impact on food consumption through increased per capita food expenditures and greater calories per capita consumed. Households with short-term migrants appear to increase food consumption and calorie intake from a number of food categories. However, for long-term migration, they find minimal evidence of increasing per capita calorie consumption and no evidence of a broader increase in per capita food expenditures or food diversity (General Statistics Office of Vietnam 2006Vietnam , 2004)).Viet Nam has a young population, with the working-age (15 to 64) comprising around 84 percent of the total population. More than half of the Vietnamese population is under 34, born after the economic reforms, and play a significant role in food system transformation, especially through consumption practices. For At the same time, Viet Nam is among the countries with highest speed of population ageing in the world. As diet-related non-communicable diseases are the biggest health threat to the Vietnamese elderly (Viet Nam Net, 2017), food systems interventions increasingly have to take into account their needs, especially in the context of inadequate healthcare and public service systems (Hutt 2017). The absolute number of people of working age is expected to peak in the mid-2030s (World Bank 2016), which will also affect the domestic labor market for agriculture and other components of the food systems.Food systems outcomes reflect complex causal processes that can involve interactions among various drivers (Ericksen 2008b). In Viet Nam, for example, the combination of the upward trend of international trade volume, increased urbanization, and a young population enables stronger effects on diets and domestic markets (Vo and Smith, 2017;World Bank, 2017). In another instance, climate change impacts on food production are also subject to the future trends in domestic consumption and export opportunities (World Bank 2016). One therefore must always consider the pathways and extent to which a driver affects the food system components in a broader context covering relevant drivers.Besides synergies, trade-offs are inevitable in harnessing the implications of various drivers. The conflict between meeting the local economic growth targets (economic drivers), which has accounted for the country's dietary improvements in the past period, and sustainable use of biodiversity (biophysical and environmental drivers) could translate into the trade-off between dietary outcomes and environmental outcomes. Although some examples demonstrate that win-win solutions are plausible, it requires a strategic lens to tackle specific problems. While Viet Nam has eagerly embraced world-class knowledge, modernization, digitalization of production processes, and high-tech farming (innovation, technology, and infrastructure drivers), its ambition can be set back by deeply-rooted cultural characteristics (social-cultural drivers). While making use of the opportunities brought about by international trade in terms of diversity and raised standards, Viet Nam's trade policies should also carefully consider the implications of the influx of ultra-processed products that cater to the large young populations and growing numbers of urbanites.Everyday shopping practices are importantly shaped by constraints that drive the trade-offs people make around food safety. Food safety concerns are not the principal factor determining Vietnamese consumers' buying behaviors; the primary choice is about the selection of the preferred retail outlet and location and buying power, which is mainly convenience-driven. These factors hamper the active search for alternative sales locations that might offer better food safety guarantees, like supermarkets, which are being promoted by public policy.As Viet Nam has opened its economy and increased regional and global trade that has brought a decrease in poverty and overall undernutrition across the country, the trade-off has been an increase in the prevalence of consumption of Westernized processed foods and consumption patterns that are shifting nutrition-related problems towards overweight and obesity associated with increased consumption of salt, fat, sugar, energy, meats (including ultra-processed meat products), and insufficient quantities of fresh fruits, vegetables and legumes. The 'meatification' of the Vietnamese diet has serious trade-offs for the sustainability of the Vietnamese food system. Meat production is often less resource-efficient than for crops, however, the increase of meat in the diet is undoubtably a considerable factor in the improvement in nutrition observed over the past 20 years. However, the distribution of meat consumption is likely unequal -with poor populations who are still undernourished and not consuming sufficient quantities, and wealthier populations now facing the burden of overweight and obesity, often consuming in excess.The traditional Vietnamese diet is seasonal, but this is now changing with the increased presence of supermarkets that aim for a consistent supply of food, and better value chain connections that can connect urban consumers with year-round produce that can be grown at different times of the year, utilizing the diverse agroecological landscapes available in Viet Nam. Improved value chain efficiency is increasing the availability of preferred foods, such as indigenous varieties of green leafy vegetables and breeds of black pig, for urban consumers. Foods are therefore available to consumers for longer periods throughout the year than could previously be supplied by the immediate peri-urban food system that previously acted as the primary food bowls for major cities like Hanoi. As such, there is a risk that dietary patterns will shift away from more traditional diets that reflect the seasonality of the immediate and local food system, in favor of a more unified seasonal availability across the country. This may eventually lead to a reduction in the diversity of foods consumed across the year, in favor of preferred (and now more available) foods that are consumed more frequently.The Vietnamese MARD is looking to invest in larger-scale agricultural production systems that will rely more heavily on agrochemical inputs, and longer, more complex value chains. While these efforts are designed to make food cheaper and easier to access, the trade-offs might be at the cost of the variety and quality of foods consumed in terms of safety, healthiness, and nutrient content. Food systems outcomes do not only entail nutrition and health outcomes, but also environmental and socio-economic outcomes (impacts). Evidence has been limited in how the drivers affect these nondietary outcomes in relation to nutrition and health outcomes.With a view to determining key areas for research and investment for government policy makers, researchers, and development programs, the coauthors of this paper developed a draft set of questions based on research and policy gaps arising from the food system thematic areas corresponding with each section of this paper. The paper and draft set of priority research questions were circulated to 57 stakeholders (listed in Annex 2) from national and international agencies with specific areas of expertise, including: food supply chains, food environment, consumer behavior, diets, food safety, nutrition and health, and drivers, for their review, prior to a participatory stakeholder consultation workshop, at which the key questions would be discussed and prioritized. Stakeholders who would not be able to participate in the workshop were invited to provide their full feedback prior to it. During the stakeholder consultation workshop on June 20, 2019, in Hanoi, participants contributed to refining the content of the paper and identifying areas that required extrapolation. From among the invited stakeholders, some volunteered to contribute to these sections, and were included as co-authors.Following review of the paper's content, the draft set of research questions was reviewed.Participants then broke up into parallel working groups, to further refine and add to the set of proposed questions. Following the workshop, these questions then went through an online prioritization exercise using Google Forms, where stakeholders were asked to identify their top 15 priority research questions out of the full list of 56 that resulted from the workshop, across all thematic areas. The results of the 30 priority research questions are presented in Table 5.1. Annex 3 shows the results of the full ranking, and Annex 4 synthesizes the prioritization of all questions within each thematic area. Have dietary consumption patterns followed agricultural production patterns or vice versa? How could the demand and supply relationship between production and consumption be better understood to shape healthier food systems, through shaping both agriculture and nutrition policies?Synergies & trade-offs 20 30 What is the evidence of health benefits/harm of modernized diets compared to traditional ones?Nutrition and consumer behavior 30Viet Nam is an excellent example of a country in which local food systems coexist with exporting food systems (Dao The Anh and Sautier 2011). Vietnamese food systems are undergoing rapid transformation, with important implications for human and environmental health and economic development. Notable transitions are being experienced, with population migration from rural to urban areas, and from traditional to modern retailing.Yet Viet Nam is still at the intersection between the old and the new, traditions and modernization.While its economy is bolstered by participation in global markets through its rice exports, Viet Nam is still struggling to balance modernization with sustainable agricultural practices that will support sustainable growth and safe and improved nutrition, while dealing with climate change and its effects on agriculture and food production. With an appetite to become a modern economy participating competitively nationally and in the global arena, Viet Nam is held back by lagging innovation and technology with few high-tech agrobusinesses, pockets of widespread poverty, the limited scale and the low quality of infrastructure, the presence of state-owned enterprises with their privileges that have tied up government resources in comparably unproductive activities, and the state's ownership of agricultural land and control of bulk water delivery that has caused high transaction costs and low productivity. Clearly, quantitative production targets that incorporate systems for food quality, food safety, and environmental management are needed, both to appease consumer and government concerns around food safety and to lower the risks for farmers and firms (World Bank 2016). Food systems interventions in Viet Nam need to be linked to enhancement in multiple sectors, including innovation and technology, infrastructure, trade and investments, policies related to food prices and volatility, and culture and social traditions, which need to be taken into account if Viet Nam's retail modernization and food systems policies are to flourish without undesirable effects, such as increased consumption of ultra-processed foods, as well providing equitable access to retail outlets and safe and nutritious foods for all strata of society, including the urban poor who currently source their foods from the informal street vending structures or formal wet markets (Eidse, Turner, and Oswin 2016;Wertheim-Heck, Vellema, and Spaargaren 2014).The last general nutrition survey was conducted in Viet Nam nearly 20 years ago; as such, this nationally-representative data likely does not accurately represent the current state of diet quality or nutrition within the context of this rapid food system transition. Similarly, data gaps exist for the other key food system dimensions of agricultural production, food safety, and, in particular, food processing and value chains. Where data exists, it is often not easy to aggregate with data from other food system dimensions, making an informed analysis of current and potential food system trade-offs for Viet Nam difficult. This paper has clearly outlined key areas for priority investment of research, government, and development programs to build the evidence base around inclusive food system interventions that aim to result in healthier diets and more sustainable food systems for Viet Nam. It is recommended that these areas of priority be reviewed once the latest general nutrition survey has been completed.","tokenCount":"22086"} \ No newline at end of file diff --git a/data/part_3/3417256368.json b/data/part_3/3417256368.json new file mode 100644 index 0000000000000000000000000000000000000000..cfa077a697542788fdfabbdd8c6bd2cba38cbe8d --- /dev/null +++ b/data/part_3/3417256368.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"77e6ad79dc1d632fb6ce456dc5f15fd5","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/6d3e0bdf-795f-4c9a-9600-3a0986343581/retrieve","id":"-1660857101"},"keywords":[],"sieverID":"750843de-3e86-4f0d-80b5-77d7a8e6c0bc","pagecount":"1","content":"Low temperatures cause poor and delayed germination. Germplasm tolerant in germination stage allows seeds to growth faster and scape from soil pathogens. Thus the crop could have better and more uniform plant population and so better competition against weeds. Fast seedling emergence is also important to short crop cycle.Low temperatures cause retarded seedling growth, yellowish, delayed panicle initiation and even death of plants, in early vegetative stages of sensitive rice to cold. Tolerant material at this stage helps to reduce crop cycle.One of the most important damage from cold stress is the sterility caused during reproductive stage because it directly affects grain yield.Dry seeds are disinfected, planted on paper towel moistened with a fungicide solution, and then placed to germinate in a cold room at o 12 C.The scoring is doing when the tolerant check (Quilla 66304) has 80% of its coleoptiles with a length equal to or greater than five millimeters. Those lines scoring above 60% are considered tolerant and transplanted to the field for subsequent selection.Tolerant check Quilla 66304Susceptible Check Oryzica 1 The methodologies of evaluation under controlled conditions permit a fast generational advance with germplasm selected for cold tolerance. This type of stress is difficult to predict under natural conditions because of the timing, duration or intensity with which it occurs. Therefore it would prove advantageous to use controlled conditions and subsequently verify reactions in the field. This process greatly reduces populations that go to the field increasing efficiency of the whole program.Each year FLAR's breeding program for temperate region evaluates thousands of lines in germination and seedling stages and makes nurseries with F population to be sent to 3 our partners in the Southern Cone.","tokenCount":"279"} \ No newline at end of file diff --git a/data/part_3/3420906581.json b/data/part_3/3420906581.json new file mode 100644 index 0000000000000000000000000000000000000000..eaa598d95914e1bec664d8fb73fe957a97a20adc --- /dev/null +++ b/data/part_3/3420906581.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"1210d25f2d6a5f016088f3c186b7b4ca","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/19a73450-4bd3-4695-b3d6-dbdef485a24a/retrieve","id":"850158495"},"keywords":[],"sieverID":"b5a005d4-d4ac-405c-86a7-d3138fd65045","pagecount":"65","content":"CGIAR is a global partnership that unites organizations engaged in research for a food secure future. The CGIAR Research Program on Livestock provides research-based solutions to help smallholder farmers, pastoralists and agropastoralists transition to sustainable, resilient livelihoods and to productive enterprises that will help feed future generations. It aims to increase the productivity and profitability of livestock agrifood systems in sustainable ways, making meat, milk and eggs more available and affordable across the developing world. The Program brings together five core partners: the International Livestock Research Institute (ILRI) with a mandate on livestock; the International Center for Tropical Agriculture (CIAT), which works on forages; the International Center for Research in the Dry Areas (ICARDA), which works on small ruminants and dryland systems; the Swedish University of Agricultural Sciences (SLU) with expertise particularly in animal health and genetics and the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) which connects research into development and innovation and scaling processes.The Program thanks all donors and organizations who globally supported its work through their contributions to the CGIAR Trust Fund.Section 1: Background Introduction Gender norms and division of labor in livestock management expose women and men to different levels of zoonotic disease risks. Studies reveal that women are more exposed to zoonotic diseases, and when sick, they do not receive the same level of care as male members of the household (Kristjanson et al. 2010).In Ethiopia, the CGIAR Research Program on Livestock (CRP) focuses on gender capacity development at institutional level. Awareness raising activities at community and household level to transform gender relations have not yet been done to overcome restrictive gender norms and reduce zoonotic disease risks. Community members accept the division of labor and traditional animal source food handling practices as normal, thereby increasing their exposure to zoonotic diseases.Community conversation (CC) is a participatory approach to engage community members in discussions about issues that matter most to them. Changing the mindset of community members is possible through engaging in conversations over a period of time. CCs aim not only to create awareness among community members, but also take action to change constraining gender relations and minimize zoonotic disease risks.CC is a participatory process which brings together community members and encourages them to think, discuss and explore gender relations in livestock and the associated risks to zoonotic diseases. It is based on the recognition that people have the knowledge and capability that can bring about positive gender and animal health outcomes individually and collectively, once the community perceives ownership of the problem.CC gives a chance for community members to listen to each other attentively and speak out about what they think is best. It also helps people to feel included in the process of decision making about gender and zoonoses issues. The community members taking part in the conversation will feel empowered and they can question their values and consider their cultural and traditional practices.The approach engages women and men in examining, questioning, and most fundamentally, shifting discriminatory gender norms, attitudes, behaviors and practices and the related imbalances of power. Such shifts can reduce norm-based constraints on women's roles, decision making, mobility and burdens (for example, shifting intra household sharing of livestock husbandry practices), undesired perceptions about women's roles and control over animals and other resources. It does so by creating a space for communities to share their perceptions, learn from one another and engage in dialogues. This can create a suitable environment for collective ideas to evolve and form a critical consciousness, which contributes to change in restrictive gender norms and practices.CC sessions are facilitated using a set of interactive and reflective techniques such as visuals, role plays, visioning, storytelling and video clips among others. These are used to prompt and stimulate discussions, reflections and sense making around gender roles, gender norms, access to and control over livestock resources, men and women's position in the community and perceptions and practices about zoonotic diseases. The CC process will lead to changes in community member's knowledge, attitude and practices (KAP) regarding gender relations in livestock management and the risk to zoonotic diseases. These changes will be captured by administering pre and post CC KAP assessments. Moreover, early signs of change in practice, appreciation of work men and women do, change in division of labor and time allocation and changes in behavior in risk situation (particularly handling and consumption of animal source foods) will be monitored and reflected during the CC implementation process (see Annex for tools). The guide focusses on four dimensions of gender relations: gender division of labor, access to and control over resources and benefits, decision making and gender norms.The success of a CC process depends on the quality of the facilitation process where CC facilitators play a key role. This CC facilitation guide is designed to help CC facilitators effectively engage with community members in conversations to increase knowledge, change attitudes and improve practices of community members regarding gender relations in livestock husbandry and prevention and control of zoonotic diseases. It provides a process guide, a set of participatory tools, techniques and tips to organize, facilitate and document CCs around issues of gender and zoonotic diseases. The purpose of the CC guide is to motivate and enable community members to adopt and sustain healthy and gender equitable livestock husbandry practices that challenge the constraining gender-based norms in livestock production in Ethiopia.The CC facilitation guide has three sections: introduction, methodological background and CC delivery process. The introductory section provides contextual background regarding gender relations, animal health and zoonotic diseases. It introduces CC as a community-based approach to transform constraining gender relations in livestock husbandry and prevention and control of zoonotic diseases.The second section provides methodological background. It describes a set of participatory methods and tools that will be used to facilitate and document CC sessions.The final section provides a step-by-step process and learning activities that will be conducted during and after CC sessions. It also provides facilitators with resources and tips on facilitation and note taking techniques and background reading on technical issues. Additionally, the annexes provide guidelines for facilitation and documentation of the CC process.In this guide, you will learn about:• What community conversation is and what its advantages are.• Methods and processes used for community conversations.The goal of the CC guide is to equip community facilitators with knowledge and skills in the planning, implementation, documentation and evaluation of CC sessions particularlt on the topic of gender relations in livestock husbandry and prevention and control of zoonotic diseases.When you use the guide effectively, participants will be able to:• Think and talk about gender relations in their households and community• Discuss and explore zoonoses risks due to their differential gender roles• Explore and question their perceptions, attitudes and practices about gender relations, decision making and zoonotic diseases• Discuss questions they have about zoonotic diseases• Plan actions to change gender relations and reduce zoonoses risks at the household and community levelLearning content• Gender roles in livestock husbandry• Attitudes and perceptions about women's ownership and control over livestock assets• Knowledge, attitudes and practices about zoonotic diseases• Institutional and structural factors in prevention and control of zoonotic diseasesThis section aims to provide a methodology for planning and organizing CC events. It describes the overall approach and some participatory methods. Depending on the scope and context of issues under discussion, a combination of collaborative learning methods can be used to facilitate CC sessions. CC facilitators should be creative in using and adapting methods depending on realities on the ground.As a community-based participatory approach, CC is used to engage a cross-section of community members in discussions that matter to them. It helps community members identify issues; question their values, perceptions and practices about the issues at hand; and have a shared vision for community wide actions towards changing constraining gender relations and practices that expose them to zoonoses. An appreciative inquiry approach to CCs helps facilitators and community members search for what works, focus on visions and enable them to dwell on possibilities and options to bring about and sustain changes at the household and community level.Participatory and active learning methods and tools drawn from different sources can be used to prompt and facilitate CCs about gender issues and zoonotic diseases. CC facilitators are encouraged to adapt and be innovate with different visualization and collaborative learning techniques depending on specific situations. Several ways of prompting and facilitating CCs can be used depending on the scope of the issues under discussion and the composition of community groups. This guide only provides an example of methods and processes that could be used in CC sessions. No one method is enough by itself and a combination of methods should be used to promote understanding, learning and action during CC sessions.Some of the methods that will be used in the CC process include:Storytelling: Stories help CC facilitators relate discussion issues to the experiences and values of participants in ways that appeal to their feelings and they could identify with. Experiences and values of participants around an issue can be shared as a story to form a common ground and provide a positive and reflective tone to begin CCs about gender roles, access to and control over resources and benefits, decision making and zoonotic diseases.Stories can be gathered or created around themes (main points) of an issue. Participants' aspirations, experiences and concerns around the issue can be presented as a story which can be used to prompt conversations and explore emerging themes and messages. People feel comfortable telling stories of their experiences, perceptions and challenges, and they become open to others' views, values, experiences and perspectives. This can help them engage in meaningful discussions to identify aspirations, concerns and solutions.Probing questions: Asking insight provoking questions stimulates exchange of experiences, indepth description of a problem or situation and elaboration of solutions. Questions help CC participants reflect on their experiences and imagine and envision possibilities for change.Role plays: Role playing takes place between two or more people who act out roles to explore a scenario or problem situation. It helps get a sense of what other people are likely to think and feel in the particular situation and engage them in reflective discussions exploring their views, attitudes and perceptions.Panel discussions: A panel of farmers and animal health service providers can discuss specific issues to facilitate CCs. Facilitators identify key discussion points to engage panelists in discussions and reflections followed by questions and feedback from participants.Pictures/posters: Picture supported communication techniques suchc as using materials like posters, drawings or photos can be used to prompt CCs and stimulate reflections and sharing of stories and experiences. Pictures increase attention and memory, help people to speak and interact actively and facilitate open sharing of experiences and stories. Pictures are particularly useful to engage with illiterate community groups. Reflections and stories can be told around pictures so that community members question their own values and perceptions about issues under discussion. Use illustrations to start conversations and do not overuse them as training tools. Once people start talking, focus on their experiences and stories using a set of probing questions.Community theaters: Theatrical performance made by, with and for a community addressing local issues is engaging and can easily catch attention of community members. It can be made entirely by community members or with the assistance of professional theatre artists. Community theatre plays a role in developing social capital of community members and addressing community issues such as gender and animal health issues. They can be used to stimulate discussions and reflections on issues and help community members uncover and question values and perceptions.Participatory videos: Videos made by community groups to feature innovation processes and community engagements are great ways of bringing people together to explore issues, voice concerns and tell stories of experiences and challenges. Community videos can reduce social distance between community members and outsiders. Watching videos of people in similar contexts can be motivating and community members identify with fellow farmers and can be influenced by their actions and experiences.Entering the community is an important task that CC facilitators do to understand the community leadership structure and mobilize the community.• Identify elders, community leaders and influential people.• Introduce yourself to community leaders and influential opinion leaders.• Explain the purpose of the CC to community leaders and influential opinion leaders.• Get the buy-in and support of community leaders in community mobilization and implementation of CC sessions.• Ask community leaders for contact persons in the community who could provide support in the implementation and follow up of CC sessions.• Identify and get the support of contact persons such as animal health workers, development agents, health extension agents, women groups and farmer development groups.• Request for the presence of community leaders and elders in the opening and closing sessions so that community members see the issues and actions are important.• Strive for a diversity of opinions, perspectives, gender and age to achieve a richer dialogue.• Avoid inviting only the obvious people, such as model farmers, to CC events.• Aim for more representative and diverse groups of the community.• Involve community members who have more experience in life, a vision for their community and who can actively participate and contribute to conversations.• Make personal contacts to invite people and ensure that community members realize their voice is essential. • Review the list of participants for gender, diversity and participation.• Identify community workers (animal health workers, health extension agents, development agents), school teachers or literate community members (leaders of women groups, farmer development groups and cooperative breeding groups) who can help with community mobilization, small groups facilitation and note taking and documentation.• Identify and train CC facilitators and note takers (development agents, health workers, veterinary officers) to cultivate full participation, document each CC session and the overall CC process.Process documentation and monitoring methods • After each CC session, plan follow up action such as forming discussion and dissemination groups to allow social learning to continue. Until the next CC session, learning groups can continue interacting and reflecting on the issues discussed and applying the actions proposed.• Provide support to learning and action groups through monitoring visits and capture performance of groups in terms of disseminating information and engaging in social learning (see Annex 6).• Flipcharts• Flipchart stands (could be locally made)• Markers• Sign-in sheets In this session, you will learn about the purpose of CC and the methods and processes of conducting it.The session aims to:• Explain the purpose, objectives and process of CC sessions.• Introduce key issues that will be addressed through CC sessions.• Clarify roles of community members during CC sessions.• Agree on ground rules for CC sessions.• Agree on time and place of CC sessions.• Identify expected outputs of CC sessions.The introductory session aims to bring community members together, create a rapport and build relationships among community members and facilitators to create conducive learning environment for consecutive CC sessions. It can be held alone or combined with the second session depending on time availability. For year-long conversation sessions, it may be helpful to have a separate introductory session to establish rapport, clarify expectations and identify and agree on change indicators from the beginning.By the end of the CC session, you will be able to:• Bring a cross-section of the community together and introduce the purpose and process of CC sessions.• Do the ground work for a trusting relationship among community members and facilitators throughout the CC process.• Have motivated and confident community members that have interest to engage in CC sessions.• Clarify expectations and concerns for CC sessions.• Establish ground rules and clarify roles of participants for CC sessions.• Participants' and facilitators' introductions• Purpose, objectives and process of CC sessions• CC issues• Role of community members• Ground rules for CC sessions• Expected outputs of CC sessions.Learning methods and materials Try to understand the diversity of participants by asking participants to stand in groups, such as religious leaders, elders, community leaders, couples and other participants. This will help you identify influential people and you will take care so that they do not dominate the discussion. There could also be a tendency of participants to easily agree to the views of community or religious leaders.The group introduction method is appropriate when there are many participants (it saves time) and when the venue does not allow participants to move around.Alternatively, if there is enough space, ask participants to stand, move around and meet as many people as they could. Limit the time. Ask them to share their hopes for women and men in their community and health of their animals.Introduce the facilitation team including note takers. Introduce the team using hand drawn self portraits that describe their roles during CC sessions. This can help create a relaxed atmosphere and create rapport with the participants.In plenary, ask participants how they felt after the introductions. Tell them that they will know each other more as they work together and have a series of conversations.3. Introduce the purpose, objectives and expected outputs of the CC event. Before the meeting, write the purpose, objectives and expected outputs of the CC event visibly in the local language on flipchart papers.Explain the need for and purpose of CC and key issues that would be discussed during CC sessions using flipcharts. Make sure everyone is clear about why they are gathered and how the CCs will work.Monitor how fast you speak and make sure that participants follow you fully. Observe body language and ask for feedback from participants to make sure that they are comfortable.4. Explain the process of the CC event and seek agreement on time and place of CC meetings. In small groups, ask participants to discuss and agree on place and timing for the CC sessions. If necessary, group men and women separately to create an environment where women can freely discuss without fear and to also aid gender analysis of the information gathered.On a flipchart, write the task clearly and make sure that groups understand it.• What meeting place would be convenient for most participants (men and women)? Why is this place convenient?• What meeting frequency would you suggest (fortnightly or monthly)? Why?• What meeting time would you suggest (first or second week of the month, Sunday of the first or second week of the month)?In plenary, ask groups to share their suggestions. Record suggestions visibly on a flipchart and encourage discussion on the suggestions to agree on place and time for CC events. Write the agreed upon time and place on a flipchart and make sure that participants get it right.Ask participants to identify focal persons who would communicate with organizers (facilitators) and mobilize participants for subsequent meetings. Assure participants that you would follow up on this with them to make sure that everyone participates in subsequent meetings.5. Establish ground rules. Prepare conversation ground rules beforehand. Tell participants that the success of the CC meetings depends on the contributions of everyone and observation of meeting rules which participants agree and commit to.Share ground rules with participants and encourage discussion to agree on and commit to meeting rules that should be observed and respected throughout the CC sessions.During the discussion, participants may leave out some rules and add others. Write down agreed upon meeting rules on a flipchart and place them in a visible place for everyone to see. Make sure that you place the meeting rules in a visible place and remind participants to observe them every time CC meetings are held.6. Clarify roles during the CC sessions. There are three roles in CCs: facilitators, participants and notetakers.Introduce the facilitation team's role: 'My role is to guide and facilitate conversations by asking questions about issues related to gender and zoonoses. I will not take part in the discussions and offer my views. The notetakers will take notes during the discussions. I will regularly check with the notetakers to make sure all of the key discussion points are being captured.As participants, your role is to share your knowledge, experiences, perspectives and values on issues relating to gender relations and zoonotic diseases. You can also play different roles throughout the CC process. Some of you can serve as feedback groups, others can tell stories as energizers, and still others can welcome and thank participants on behalf of facilitators.'Ask for men and women volunteers to play different roles.7. Reflect, give feedback and close. Reflect on the process and summarize main points.• What is clear for me today is …In plenary, ask participants to reflect on their learning experiences and identify their concerns. Write responses on a flipchart. Identify and reflect on common themes and try to address concerns.Thank participants for their time and express your hope that they will continue to consistently participate in successive CC sessions.Facilitator's resources CC meeting objectives• Advance understanding and broaden perspectives of community members about gender relations in livestock husbandry and zoonotic diseases by providing a neutral setting in which they can come together, interact with one another and share their views and perspectives.• Encourage community members to think and talk through basic values, concerns and assumptions that underlie their views and aspirations about gender relations in livestock husbandry and prevention of zoonotic diseases.• Encourage community members to consider what they might do individually or what they would like to see the community do to address gender constraints and risk of zoonotic diseases in livestock husbandry.• Improved community awareness and knowledge about consequences of unequal gender relations in livestock management• Better community acknowledgement and appreciation of women's role in livestock and willingness to share roles among household members• Change in community perceptions and practices about women's ownership and control over livestock resources• Enhanced community awareness and knowledge about the causes and consequences of common zoonotic diseases• Improved community awareness and knowledge about prevention and control of common zoonotic diseases• Steps taken to formulate and implement actions at household and community levels to transform constraining gender relations in livestock husbandry and prevent zoonotic diseasesEngage participants in discussion and consensus regarding the place, date, time and frequency of the CC sessions. Meeting place and time can have a big impact on the success of CCs. The place and time of meetings can affect who can attend each CC and the quality of the conversation.• Check local calendars to avoid conflicts. Consider use of local events such as iquib, iddir and mahiber in case finding appropriate time for community meetings is difficult.• Agree on duration and frequency of CC sessions which are convenient for both women and men participants. A typical CC session can take 3-4 hours. CC sessions can be held fortnightly or monthly. Make sure that participants agree on the timing of CC sessions. The advantage of having CC sessions fortnightly is that participants can easily maintain the flow of conversations.A wider spacing between meetings can dilute the energy of the conversations as participants may forget the ideas discussed in previous meetings.• Ensure that participants are comfortable in and commit to agreed location and timing of CC sessions.• Participants are familiar with it and use it frequently• Part of the community• Offers a comfortable or safe environment• Not too noisy or full of distractions• Easily accessible to all participants (men and women).• Be on time.• No phone calls during sessions.• Do not interrupt others while they are speaking.• Appreciate differences in thinking and perspectives.• Respect the views of everyone.• Don't dominate discussions.• Accept reality.• Listen carefully to what others are saying.• There are no wrong answers.• Keep an open mind.The purpose of this session is to make women's roles in livestock more visible so that men and other community members acknowledge and appreciate the roles women play in livestock husbandry. The session aims to develop better recognition, understanding and appreciation of the unbalanced division of labor and women's invisible roles in livestock. It aims to bring a more equitable and balanced livestock husbandry role sharing and value among household members.By the end of the CC session, CC participants will be able to:• Identify livestock husbandry activities that men, women and children do.• Identify activities women are responsible for and compare them with that of men's in terms of labor and time demand and explain how it is valued by the community. • Explore perceptions about gender division of labor and consequences for livestock productivity and household welfare. • Identify opportunities and propose actions for equitable gender division of labor in livestock.• Activities men and women carryout in livestock production Display ground rules in a visible place and remind participants to observe them.Voluntarily assign feedback groups who will make observations, gather feedback from participants and provide feedback to facilitators.2. Introduce the CC topic using the daily agenda. You can introduce it by saying, 'today we are going to discuss about the roles of men and women in livestock husbandry, how these roles are valued and how the position of women is seen in the household and community.' Make sure participants are clear with the agenda and learning objectives for the day. Ask participants for feedback by asking questions like \"Is it clear? Do you have any questions? Can we go this way?\" Always appreciate feedback from participants and encourage them to participate.Participants may expect facilitators are there to train them. Making the purpose of the session clear and managing expectations from the start will help make participants to work together and find answers to their own concerns.3. Deliver the CC session. Use pictures that show activities of men and women to prompt a conversation around gender division of labor and value of men and women's activities in livestock husbandry.Distribute pictures that show the gender division of labor in livestock husbandry. Ask participants to look at the pictures and discuss in pairs what they mean to them. Make sure that everyone understands the activity, feels comfortable to share freely and listens to the views of other participants. Consider having separate men and women's groups, if necessary.In plenary, ask participants to share stories of their experiences regarding gender division of labor in their households/community. Participants may tend to over refer to the pictures. Use pictures to start conversations, and once people start talking, focus on their experience and stories using probing questions. Initially, participants may tend to portray normative behavior (what they believe to be rather than what is) but uncover this perception through dialogue using probing questions and get to the crux of the issue. Through probing and sharing of stories, they will develop trust and confidence and become critical of their own views and perceptions.When people become active and want to talk, don't interrupt the momentum of conversation by trying to summarize each participant's views. Allow participants to speak and only summarize when you feel participants have sufficiently expressed their views on the conversation topic. After summarizing, probe further or proceed to the next discussion topic.In a plenary brainstorming, ask participants to identify roles of men, women and children in livestock production. On a flipchart, write what has been said.Reflect on the results. Probe by asking participants: 'Which of these activities are demanding (in terms of labor and time)? Which of these activities are most valuable (most important)? Why?Unpack the issues related to gender division of labor and invisibility of women's role by asking probing questions about the causes, manifestations and consequences of gender division of labor and the undervalued role of women.Use and/or adapt the probing questions as appropriate (can also be written at the back of each picture for easy use) to unpack the issues related to gender division of labor and value of women's role in livestock production.• How does the story in the picture show/reflect the situation in your household/community?• How do the gender issues we are talking about affect your household, community or you personally? What personal experiences have you had? How about your household members?• Who does what in your household/community in livestock husbandry by livestock species?• What is the social and cultural basis for this role division?• Is this role division fixed or can somehow be flexible? Under what conditions could it be changed?• Who in the household does more activities and works longer hours in the day? Do you think there is a fair share of roles among men and women in livestock husbandry?• What is not acceptable for a man to do in your household/community regarding livestock husbandry? Why?• What is not acceptable for a woman to do in your household/community regarding livestock husbandry? Why?• Do you agree that men's roles are more important (valued) than women's roles in livestock husbandry? Why?• Are there households in the community where livestock husbandry roles are somehow equally shared between men and women? What makes these households different from others in your community?• What kind of division of labor do you want to have in your household/community? Why is that important? How is that different from the way things are now?• What could you do to have the kind of gender division of labor you want in your household/community?• What could keep you from having the kind of division of labor you want in your household/community? On a flipchart paper, write down themes (main points) that arose from the stories shared during the discussion around gender division of labor and recognition of women's roles. Pay close attention to any variations that might emerge from men and women.Summarize emerging themes from the discussion as key messages and reflect on experiences, stories, values and perspectives that have surfaced during the conversation for a deeper level of understanding and sense making.Communicate messages that state explicitly the actions participants should take and the benefits of the recommended behavior. You could say something like, 'what emerges clearly from our conversation is …'• Recognizing and valuing women's role in livestock production is important to increase their access to information and services. • A more balanced and equitable gender division of labor increases productivity and welfare of your household. • Collective decision and action among household members increases livestock productivity and income of your household.Get feedback from participants and make sure they take on these messages.After you summarize the main themes from the conversation and communicate key messages, you can now engage participants to come up with actions that they will take individually and collectively.In plenary, explain that the conversations have identified important issues regarding gender division of labor in livestock husbandry and the status/position of women and communicate messages that they should take home and act upon accordingly. You can say something like: 'now, we will propose and agree on actions that we should take individually and collectively to apply the messages in our life and bring about changes to gender relations that negatively affect livestock productivity and household wellbeing.'In plenary, ask participants to identify actions that they will carry out individually and/or collectively to bring changes in gender relations and balance the gender division of labor.• What actions would you like to take in your household and/or community to address the unbalanced gender division of labor? Record results on a flipchart and highlight actions that might be specific to either women or men or both. Motivate participants to implement the proposed actions/behaviors through telling stories of consequences and benefits to individuals and groups. Make sure that participants identify with the cause, implications and have motivations to commit to solutions proposed and agreed.Identify focal persons for each action and learning group for follow up and to serve as monitoring and feedback groups. Teams constituting both men and women are recommended.Assure groups that you would follow with them and provide support to enable them to continue the learning until the next CC session.4. Reflect and end the CC session. You can say, 'we are now coming to the end of our conversation. Let us wrap up and reflect on the main points, insights, aha's, surprises and next steps.'Write reflection questions on a flipchart:'What stands out for me from the conversation is ….'• Ask each participant to have moments of reflection.• Ask participants to share their insights as it pops up.• Write insights/reflections on a flipchart.• Review reflections and highlight common themes.• Record the themes on a flipchart.Tell participants how great they have been in learning and thank them for the work they have done.At the end of the session, sit with the notetaker, reflect on the process, review the notes together and fill in any important missing information. Write your reflective notes and reports immediately after the end of the session.Overview of gender issues in livestock• Women are responsible for labor intensive livestock activities, such as fetching water and cleaning the barn; but their work is invisible, less appreciated and valued. Sociocultural values, attitudes, practices and norms underestimate the role of women in livestock management and in their society as a whole.• There is unbalanced labor distribution among household members regarding livestock husbandry practices, with women undertaking more roles. This could vary across livestock species.• Men have an upper hand in decision making over animals and benefits generated from them although women are the key players. Women have limited access to and control over animals.• Women have limited decision-making power in households, even when it comes to their own labor. Women's economic dependence limits their ability to decide on their needs and interests. In some communities, women have autonomy over small amounts of income from selling livestock products, petty trade or casual labor, which minimizes their total dependence. Also, large sums of income from sale of livestock might be collectively decided upon in some households.• Women have limited access to and benefit from extensions services, training and livestock technologies.• Therefore, awareness creation and recognition of these problems by men and women and more focus on transforming constraining gender relations is needed to change this situation but also to encourage ongoing good practices.• Build on the previous session and create continuity and advanced understanding on individual reflections, review of action points, reflection on learning and dissemination plans of groups.• There are different ways you can conduct recap sessions. These may include small group reflections, plenary reflections, common themes, big circles, report from learning journals, report of recap from groups etc.• You may use pictures or illustrations to help participants recall discussions and refresh their memories. It is important to do this to motivate and help them reflect on their experiences.Further reading The purpose of this session is to explore perceptions and attitudes about women's ownership and control over livestock resources, and how this influences women's access to extension services, decision making, livestock productivity and household welfare.By the end of the CC session, participants will be able to:• Explore and question perceptions, attitudes and practices regarding women's ownership and control over livestock assets.• Identify and analyze causes and manifestations of women's limited ownership of livestock assets.• Identify and question gender stereotypes regarding women's livestock ownership and their consequences on women, the household and the community.• Act to address perceptions, stereotypes and practices that limit women's ownership and control over livestock assets.Session content Write recap statements clearly on a flipchart paper:• What we discussed in the previous meeting was ____• The actions we agreed in the last meeting were ____• The changes I start to make are ____ If time and space allow, ask participants to sit in a circle. Explain the task and ask them to reflect individually on their experiences (main ideas, insights and action points) from the previous session by completing the sentences.Give a moment of reflection and then start plenary. You may start from a volunteer and go around the circle. Encourage participants to share any experience in no particular order and they do not have to think seriously. Encourage illiterate and passive participants to reflect on their learning experiences by giving examples. Encourage women to participate. Make the experience rewarding and less threatening.Appreciate responses and write them on a flipchart paper. Review the responses and connect them with the CC agenda for the day.Display ground rules in a visible place and remind participants to observe them.Voluntarily assign feedback groups.Introduce the CC topic using the agenda for the day.You can say, 'today we are going to discuss women's ownership and control over livestock assets. We will explore perceptions, attitudes and practices regarding women's ownership of animals and the manifestations and consequences of these perceptions and practices. You will attend a short role play acted out by people from this meeting. Watch out carefully and attentively, and we will then reflect on and discuss perceptions, attitudes and behaviors reflected in the role play'.We will then reflect on our life experiences and observations and share stories of practices about how women own and control livestock assets in our community. Once we explore the challenges, causes and consequences of women's ownership of animals, we will then propose and commit to solutions to address this challenge.'• What is bad/good about women having ownership and control over livestock?• In your community, what proverbs or expressions are there about women's ownership and control over livestock assets? What does the proverb mean? Do you agree or disagree with the proverb? Why? What are the implications of these expressions/proverbs?• Do you think that men would lose authority/power if women own and control livestock assets? Why?• In your household, how do you make decisions regarding the sale and/or acquisition of livestock? Why? Tell your stories.• Given what we discussed, how do these dynamics affect women, livestock productivity and household welfare?On a flipchart paper, write down themes (main points) that arose from the experiences and stories shared during the conversation. Piece together what participants are saying. Summarize emerging themes from the discussion as key messages and reflect on experiences, stories, values and perspectives that surface during the conversations.Communicate messages that state explicitly the actions participants should take and the benefits of the recommended behavior.You can state these messages as follows.'What clearly emerged from our conversation is:• Women's lack of livestock ownership and control can limit their decision-making ability and access to information and services.• Joint ownership and control of livestock empowers women, increases their participation in decision making and increases livestock productivity and household welfare. Now we will propose and agree on a course of action that we should take individually and collectively to apply the key messages in our lives, continue the learning and reflection until the next session and bring about change in women's ownership of animals.'In plenary, ask participants to identify actions that they will carry out individually and/or collectively to address perceptions and attitudes and bring about change towards women's ownership and control of livestock assets and the proceeds from them.• What actions would you like to make in your household and/or community to address perceptions and practices limiting women's ownership and control of livestock resources? • How do you plan to disseminate the key messages and ideas from the conversations in your household and neighborhood? • How do we know what changes have taken place? What might you see that would tell you your actions are bringing change?Record the results on a flipchart and highlight proposed actions.Motivate participants to implement the proposed actions/behaviors by telling stories of consequences and benefits to individuals, groups and households. Make sure that participants identify with the cause and have motivations to commit to solutions proposed and agreed.Reflect on key learnings and insights and end the session. You can say, 'we are now coming to the end of our conversation. Let us wrap up and reflect on the main points, insights, aha's and surprises.'Write a reflection question on a flipchart:• What is emerging for you personally from the conversation?Ask participants to have moments of reflection in pairs and share what stands out in their mind.In plenary, ask participants to share their insights as it pops up. Write the insights on a flipchart and review responses for common themes. Record the themes on a flipchart. Highlight actions that might be specific to either women or men or both. Tell participants how great they have been in learning and thank them for the work they have done.Thank note takers. Announce the date and agenda for the next meeting and express your hope that they would make it happen.Access is the opportunity to use a resource without having the authority to make decisions to sell, exchange or modify it. Access may apply at different levels of decision making (little control, some control, full control).Control is the full authority to make decisions about the use of a resource including to buy, sell or modify it.Generally, ownership of livestock belongs to men and if women own animals they usually own small animals like sheep and goats. This is because if a woman owns and has control over animals, participates in public gatherings and travels away from home, men fear loss of their influence/leadership in the family. In other words, if women own and control livestock assets and participate in social groups such as livestock-based cooperatives, men fear losing their roles as head of the household (threatened masculinity).Ownership can vary across regions. It can be joint, or individual. So, it is important to understand the dynamics in each context.Part of the reason why the number of women in social groups including breeding cooperatives is very minimal or nil is the prevailing wrong perceptions about women's ownership.Men's upper hand in all aspects of livelihood of the family is reenforced again and again by men, women, community and development practitioners-externals consult men, work with men and provide services to the family through men. Women and men accept this as normal and an appropriate practice. This systematically excludes women from decision making and accessing stocks of productive resources including live animals, capacity building opportunities, technologies and information and advisory services. Women lack capacity to fulfill the conditions required to be members of social groups that would enable them to exercise voice and their rights.Women are key players in livestock management and their participation in decision making over productive resources enables them to improve livestock productivity, ultimately improving the livelihoods of the family. Therefore, there must be attitudinal changes from both sides on this issue.The kind of attitudes and behaviors we want to promote relate to livestock ownership, control and decision making.We seek to encourage men to act in the following ways:• Seeking relationships with their spouse based on equality and partnership rather than conquest. This includes believing that men and women have equal rights and that women have their own needs, desires, priorities, knowledge and right to exercise their choice and voice as men do.• Recognizing and appreciating women's role and knowledge in livestock management.• Seeking women's involvement in decision making and supporting them to participate in capacity building initiatives, livestock extension activities and livestock related groups.• Taking initiative to discuss unbalanced gender roles, mobility, decision making and control over resources with their partner.• Challenging negative perceptions about women's ownership of livestock. This include men's perceptions that if women own and control animals, participate in public gatherings, travel away from home, men are likely to lose their influence/leadership/upper hand in the home. • Appreciating the importance of livestock as an asset to women and their influence on household food security by increasing household dietary diversity and food adequacy.Galie, A., Mulema, A., Mora Benard, A. M., Onzere, S. and Colverson, K. 2015. Exploring gender perceptions of resource ownership and their implications for food security among rural livestock owners in Tanzania, Ethiopia, and Nicaragua. Agriculture and Food Security 4:2.Njuki, J., Waithanji, E., Bagalwa, N. and Kariuki, J. 2013. Guidelines on integrating gender in livestock projects and programs. Nairobi, Kenya: ILRI.The purpose of this session is to explore knowledge, attitudes and practice of community members about the causes, transmission pathways and prevention and control of major zoonotic diseases. First, it deals with the knowledge women and men possess about different animal diseases. Then, it explores knowledge, attitudes and practice of men and women about zoonotic diseases and their level of exposure due to their gender roles in livestock husbandry and handling and consumption behavior of animal source foods.By the end of the CC session, participants will be able to:• Recognize and value knowledge women possess about animal diseases.• Identify which animal diseases are zoonotic.• Explore and question their own knowledge, attitudes and practice regarding causes, transmission and prevention and control measures of zoonotic diseases.• Explore attitudes about consumption of animal source foods and handling of sick animals.• Articulate the consequences of zoonotic diseases on the productivity and welfare of the household.• Act to involve household members in decisions and actions regarding animal health management and prevention of zoonotic diseases.• Adopt safe behavior regarding consumption of animal source foods and handling of animals to reduce zoonoses exposure.• Knowledge of men and women about animal diseases• Recognition of women's knowledge about animal diseases• Knowledge and attitude of men and women about zoonotic diseases• Handling practice and consumption behavior of animal source foods• Exposure to zoonotic diseases due to gender roles and differences in decision making power Write recap statements clearly on a flipchart paper:• What we discussed in the last meeting was ____• The actions we agreed in the last meeting were ____• The changes I've started to make are ____ If time and space allow, ask participants to sit in a circle. Explain the task and ask them to reflect individually on their experiences (main ideas, insights and action points) from the previous session by completing the reflection sentences.Give a moment of reflection and then start plenary. You may start from a volunteer and go around the circle. Encourage participants to share any experience in no particular order and they do not have to think seriously. Encourage illiterate and passive participants to reflect on their learning experiences by giving examples. Encourage women to participate. Make the experience rewarding and less threatening.Appreciate responses and write them on a flipchart paper. Review the responses and connect them with the CC agenda for the day.Display ground rules in a visible place and remind participants to observe them.Assign voluntarily feedback groups.2. Introduce the CC topic using the agenda for the day. You can start by saying, 'today we are going to discuss about knowledge men and women possess about animal diseases and perceptions and practices related to zoonotic diseases. You will hear a story of a household affected by a zoonotic disease. You will also see drawings/pictures about transmission, consequences and prevention of zoonotic diseases. We will then reflect on attitudes and behaviors reflected in the story and drawings. You will also reflect on your own life experiences and share stories of practices about animal diseases and disease transmission from animals to humans.'3. Deliver the CC session.Prompt the conversation with pictures of animals affected by diseases.Ask participants to identify the diseases and the clinical signs.Divide participants into women and men groups.Ask women and men groups to:• Identify animal diseases (local names) they know and which animals these diseases affect.• Explain the causes and prevalence periods of these diseases.• Identify clinical signs of these diseases.• Explain effects/consequences of these diseases on livestock productivity and household welfare.• Identify traditional/scientific prevention and control mechanisms.In plenary, ask small groups to share their results. Record results of men and women groups separately on flipchart papers. Compare women and men's groups results and explore the results further.If the group results show that women have comparable or even more knowledgeable about animal diseases than men, find out what the reasons are.Ask women and men participants if it was what they expected and why. Use probing questions. Discuss implications (consequences) of acknowledging or not acknowledging women's knowledge of animal diseases. Find out what participants would do to acknowledge and/or improve women's knowledge and decisions about animal health issues in their household/community.Probing questions:• Is animal health women's or men's issue? Why? Is it a household or community issue?• Who is more knowledgeable about animal diseases (men or women)? Why?• Who has more access to training, information and advisory services about animal diseases in your household? Why?• Why is women's knowledge about animal diseases invisible (not recognized) by community?• What is the implication of this in terms of women's access to services, training, information, technology and their ability to make decisions?• What is the benefit of involving women in animal health management interventions?Topic 2: Knowledge and attitudes about zoonotic diseases Explore participants' thinking about zoonotic diseases. Find out if they think animals can or cannot transmit diseases (bacteria, parasite, fungi and virus) to humans.In plenary, ask participates: 'Do you think that animals can transmit diseases to humans? How or why?Explore further on participants' responses.If participants don't think that animals can transmit diseases to humans, explore it with more stories and examples of human illness that could result from disease transmission from animals. Stimulate the discussion with a picture and/or story of households affected by zoonotic diseases. Encourage participants to tell stories of their experiences and observations around the picture and story. Probe into the stories and experiences to uncover underlying thinking and attitudes about zoonotic diseases. Take nothing at face value. Notice the words and phrases people use.Summarize and paraphrase what was learned from the stories and experiences.If participants think that animals can transmit diseases to humans, ask them to identify diseases (and clinical signs) which can be transmitted from animals to humans. Record results on a flipchart paper separately for women and men and compare results.Summarize main points.• Animals can carry harmful pathogens that can be shared with people and cause illness.• Not all animal diseases are zoonotic diseases.• There are many different zoonoses (such as rabies, anthrax, Coxiella, toxoplasmosis and brucellosis) and each has different transmission pathways and clinical signs.Probing questions:• Do you think diseases can transmit from animals to humans? If yes, how and which diseases?• Who is more knowledgeable about zoonotic diseases (women or men)? Why?• Who has more access to information and advice about zoonoses in your household? Why?• Who is more exposed to zoonotic diseases (men, women or children) in your household? Why?Have a poster presentation of common zoonotic diseases (Anthrax, Coxiella).Tell participants that they are going to work in groups to identify which livestock husbandry activities may expose people to which zoonoses.Divide participants into women and men groups. In each group, place papers on the floor labelled 'common zoonotic diseases', 'livestock activities', 'consumption of animal source foods' and 'who does what'.Under the 'common zoonotic diseases' label, place names of common zoonotic diseases (rabies, anthrax, toxoplasmosis, brucellosis and Q-fever) that could be caused by livestock related activities.Under the 'livestock activities' label, place pictures of different livestock husbandry activities (milking, cleaning barns, attending births/sick animals, slaughtering, carcass disposal, sharing shelter with animals, etc.) that women and men do and that may expose them to zoonoses.Under the 'consumption of animal source foods' label, place different pictures that show handling and consumption of animal sources foods (drinking raw milk/blood, eating raw meat) by women, men and children that could expose them to zoonotic diseases.Under the 'who does what' label, place pictures of men, women and children that do different livestock husbandry activities and consume animal source foods that could expose them to zoonotic diseases.In each group, ask female and male volunteers to play with the picture cards matching items from the labels. For each zoonotic disease, groups identify which livestock activities and consumption of animal source foods could be associated with and who could be more exposed to the disease due to their gender roles in livestock husbandry.Ask female and male volunteers to place cards with drawings of actions related to livestock husbandry and consumption of animal source foods to where they think they are relevant for transmission. Discuss who in their household is normally doing the action and consume animal source foods.Ask groups of women and men to:• Identify which livestock husbandry activities may expose one to which zoonotic diseases.• Identify which handling practices and consumption of animal source foods may expose them to zoonotic diseases.• Name different zoonoses that could be associated with different livestock husbandry activities and consumption of animal source foods.• Identify who could be more exposed to these diseases due to their gender roles in livestock husbandry and consumption behaviors of animal source foods.For each arrangement of the cards, pause and ask questions. Probe into their reactions and listen for perceptions and attitudes about the causes of common zoonotic diseases.In plenary, ask groups to share their results. Record results by men and women groups and compare the results. Discuss the different zoonoses.For selected diseases (anthrax, Coxiella), explain the resulting human clinical signs (cutaneous anthrax, fever, diarrhea, abortion, etc.).Probing questions:• Which zoonotic diseases are you aware of/familiar with?• How can these diseases be transmitted from animals to humans?• Do you think drinking raw milk and eating raw meat can expose you to zoonotic diseases? If yes, which diseases and why?• Do you think sharing shelter with animals can transmit diseases from animals to humans? Why?• Are you aware of the clinical signs of the zoonotic diseases you know? If yes, what are these?• What farm activities can expose you and your household members to the zoonotic disease you know?• Which handling practices and consumption of animal source foods can expose you and your household members to the zoonotic disease you know?• In your household, who do you think is more exposed to zoonotic diseases due to their gender role in livestock activities and consumption of animal source foods? • Do you report animal diseases to animal health professionals?• Do you regularly vaccinate your animals? Why?• Do you wash your hands after milking your cows and cleaning animal sheds? Why?• Do you use protective materials such as gloves and masks in handling sick animals? Why?• Do zoonoses affected women receive the same medical care as men in your household?• Where do you get information about zoonotic diseases? Is this information source reliable and provides adequate and relevant information?Summarize main points (themes) from the discussions as key messages and reflect on experiences, stories, values and perspectives that surface during the conversation.Tell participants how great they've been in learning and thank them for the work they have done.Thank participants and note takers. Announce the date and agenda for the next meeting and express your hope that they would make it happen.Women play a key role in livestock husbandry. Nevertheless, community members, particularly men, perceive that women do not know much about animal diseases. In fact, one's knowledge about certain activities depends on one's level of engagement in those activities. So, it follows that women could know animal husbandry practices in which they are involved better than others and may notice animal diseases that are prevalent at those transmission paths and their control strategies.However, due to existing social norms about women, their knowledge is not acknowledged at household level and not used by outsiders for development. This perpetuates gender inequality in terms of exercising their own agency and providing or accessing information and extension services, thereby hampering the development of livestock and household welfare. Hence, there is a need to create awareness on this fact and enable men and development practitioners to engage women in animal disease surveillance and development of control strategies.There are several diseases that can be transmitted from sick animals to human beings. Although, men and women know some of these diseases, they lack the knowledge of what these diseases are, how they can be transmitted to human beings from diseased animals and their control methods.Traditional practices regarding the use of animal source foods and wrong perceptions about animal diseases expose household members to risk of zoonotic diseases. Meat, milk and their products are consumed raw as it is believed that cooking meat and boiling milk destroys the nutritional value of the food. Men and women assume that human beings do not get diseases from animals.Diagnostic studies in pilot communities show that men and women believe that use of raw meat and milk does not have any problem. Moreover, communities assume that certain groups of people (adults) do not get diseases from animals. Some practices about animal source foods are assumed appropriate for certain groups of community members (particularly for adults and children).Studies reveal that women are often more exposed to zoonotic diseases, and when sick, they do not receive the same level of care as male members of the household (Kristjanson et al. 2010). Lack of awareness on zoonotic diseases was apparent, and there are several social and structural barriers to the prevention and control of zoonoses and care for diseased individuals. By the end of the CC session, participants will be able to:• Identify sociocultural and structural factors that influence women's mobility and access to information and services.• Explain the position of women in the community and social groups (for example, breeding cooperatives).• Evaluate values and norms that define women's relations in the household and community.• Identify communication and information sharing patterns in the household and community and explain its consequences on women's ability to avoid risks to zoonotic diseases and their participation in animal health management interventions.• Women's membership of community groups and cooperatives• Norms and values that shape women's relations and access to information in the household and community• Consequences of women's limited mobility and relational capacity• Influence of income and resources on women's ability to manage risks and prevent zoonotic diseases.Learning methods and materials Write recap statements clearly on a flipchart paper:• The main points we discussed in the previous meeting were ____• A new understanding and insight I have gained from the previous meeting was ____• Implications and benefits for my life were ____ If space allows, ask participants to sit in a circle. Explain the task and ask them to reflect individually on their experiences (main ideas, insights and action points) from the previous session by completing the sentences.Give a moment of reflection and then start plenary. You may start from a volunteer and go around the circle. Encourage participants to share any experience in no particular order and they do not have to think seriously. Encourage illiterate and passive participants to reflect on their learning experiences by giving examples. Encourage women to speak out.Appreciate responses and write them on a flipchart. Review the responses and connect them with the CC agenda for the day.Display ground rules in a visible place and remind participants to observe them.Assign voluntarily feedback groups.2. Introduce the CC topic using the agenda for the day. You can start by saying, 'today we are going to discuss the values, norms and relations within our community and how these influence women and men's access to livestock related information and their ability to prevent and control zoonotic diseases. You will hear a story. We will then reflect on perceptions, attitudes and behaviors from the story. You will reflect on your life experiences, observations and share stories of situations where community values and norms influence the way men and women interact and relate with different actors within households, communities or markets. You will also reflect on how the rules and norms within the community influence women and men's access to resources and opportunities and under what conditions.'There is a strong interrelationship between changes in division of labor, control over resources and institutional structures. This interrelationship plays a strong role in helping communities manage their health and that of their animals in a more gender equitable manner. This is one of the stepping stones to empower women by helping them exercise their voice and make informed choices.• How have you influenced your household and neighbors because of your participation in the CC sessions?• How would you like the CC sessions to improve? What challenges have you faced in participation and implementation of the learning?• How would you evaluate your experience in the action and learning groups?• What would you do individually and collectively to sustain the changes made because of the CC session?In plenary, small groups present their results. Record responses on a flipchart and highlight common themes from the presentations.Invite community leaders/officials to attend the final session. Engaging officials to open and close the review session can help create acknowledgement and institutional ownership, thereby sending the message of commitment to ensure sustainability of the changes.Arrange for video and photo documentation of the review process and presentation of sustainability action plans.Interview a few women and men participants about their CC experience, key learnings, changes in their lives and plans to sustain the changes and the learning.5. Thank participants for their great work and tell them that the session is almost complete.Use participatory feedback survey to evaluate the CC process.Develop a few evaluation statements such as these:• The discussion points were relevant and address challenges in our community.• There was lively discussion and community members actively engaged in the conversations.• The time and place of community conversations was appropriate.• The right people were engaged in the community conversations.• My experience in the community conversations was rewarding and I now feel empowered to actively engage in community meetings.Place cards labeled 'Highly satisfied', 'Satisfied', 'Somehow satisfied' and 'Dissatisfied' on the ground horizontally. Tell participants that you are going to read out evaluation statements and ask them to stand on a card to identify their level of satisfaction in the CC process. Act it out yourself to make the task clear.Read out evaluation statements. Ask groups to indicate their level of satisfaction. As they stand, ask them why they stand on that degree of satisfaction. Record feedbacks/comments on a flipchart.Invite a community leader to thank participants, assure continuity of the changes and close the CC session.Finally, thank participants for their time, ideas and participation in the CC sessions. Also thank note takers for the great job they have done in facilitating small group tasks and documenting each CC sessions.Facilitation and group management tips:• Conversations can take place in an open air or in a room with enough air.• Avoid sitting on a chair if participants are sitting on the ground.• Utilize active methods and activities to engage illiterate participants.• Contextualize activities and languages to make sense to participants-use local examples, cases and contexts when you present information.• Summarize and paraphrase discussion to feedback participants and note takers and help them get the flow of information. • Create a safe environment, keep conversation on track and manage the time that the meeting takes.In your facilitation, use:• Open ended questions to stimulate many responses• Wait for responses to give time to think of an answer• Eye contact and names to encourage people to contribute• Listen carefully to understand, rephrase and lead a discussion• Encouragement to promote more responses• Rephrasing to clarify understanding and show appreciation• Redirecting to get others involved• Probing to get out more information and views• Observing to check on who is not participating• Active listening to listen with the eyes as well as the ears and check out body language cues• Summarizing to help participants understand and reach an agreement Annex 5. Paraphrasing and summarizing techniques• Restate the ideas that were said using descriptive language.• Summarize if the speaker used a lot of sentences to describe his or her idea. • Always ask for and get acknowledgment from the speaker that the paraphrasing was correct. This can be a verbal check-in: 'Does that sound like what you were saying?' or a nonverbal look.• If an 'Okay' was not received, ask for clarification until the facilitator can understand and repeat the idea correctly. One way to do this is to 'draw out' the speaker by prompting him or her with• In the market place, observe number of women selling livestock and livestock products, which livestock species (e.g. sheep, goat, oxen, etc.), write their names and find out if there were issues with selling livestock in the market. Take picture of women selling livestock in the market, take picture of livestock market where women are part of market transaction agreements.• Encourage religious and community leaders to share information and hold conversations about gender equality and balanced gender role sharing in community gatherings, such as church gatherings or community meetings, during home visits and social and religious events. Observe and note down when religious and community leaders talk about gender equality and women's work burdens in community meetings. Write down who said, what they said, when and where. • Identify participants who have not made changes because of the conversations and find out the constraints for change. Identify men and women participants who were nicknamed or ridiculed when practicing what they learned from the conversations and note down their stories.Indicative outcomes for documenting early signs of changes • During home visits, talk to different household members and find out if information from the conversations regarding women's ownership and control over of livestock assets is shared, discussed and reflected. § Find out if there are changes/agreements made between couples regarding decision making, ownership/control over livestock and income from livestock. § Find out what children are learning or how parents are teaching new dynamics of gender relations regarding the power to make decisions and ownership and control over of livestock and income from livestock.• In the community, find out if women participate in community meetings or community breeding groups in which decisions are made. Note down and talk to these women and their husbands about the dynamics of gender relations in their households.• In the market place, observe women selling livestock and livestock products, which livestock species (e.g. sheep, goat, oxen etc.), write their names and talk about how they make decisions about livestock and income from livestock and if there were issues with selling livestock in the market. Take picture of women selling livestock in the market, take picture of livestock market where women are part of market transaction agreements.• Encourage religious and community leaders to share information and communicate messages about trust, open discussions, shared and consulted discussions about ownership and control over livestock and income from livestock in community gatherings, such as church gatherings or community meetings, during home visits and social and religious events.Observe and note down when religious and community leaders talk about women's ownership and control over of livestock and income from livestock in community meetings. Write down who said what, when and where.• Identify participants who have not made changes because of the conversations and find out the constraints for change.Indicative outcomes for documenting early signs of changes• Improved intra household decision making Þ Open discussions between couples and other household members regarding ownership, control over livestock and income from livestock Þ Trust and respect between couples Þ Confidence and ability of women to make proposals/plans for the acquisition or disposal of livestock and the use of income from livestock Þ Women's increased control of income from livestock/ability to make decisions regarding what to do with the income Þ Confidence and ability of women to ask their husbands and hold them accountable regarding the amount and use of income from livestock Þ Involvement of children in consultations and decisions regarding ownership and control over of livestock and income from livestock • During home visits, talk to different household members and find out:","tokenCount":"11120"} \ No newline at end of file diff --git a/data/part_3/3422951340.json b/data/part_3/3422951340.json new file mode 100644 index 0000000000000000000000000000000000000000..667f21bd33c378de11bc88d06ce7ba02d436281c --- /dev/null +++ b/data/part_3/3422951340.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"6c907a14d2001cbae600035ce2a207ed","source":"gardian_index","url":"https://data.iita.org/dataset/4f74b75f-a25c-4304-aad2-bbd0952f60ce/resource/39631643-9635-4cf8-b8f8-cd9223cb30a9/download/sop02-phenotyping-for-c.-sordidus-resistance-270722.pdf","id":"138416178"},"keywords":["Crop","Banana Function","Screening for banana resistance to weevils SOP # IITA-BP-SOP02 Revision # IITA-BP-SOP02-01 Crop","Banana Function","Screening for banana resistance to weevils SOP # IITA-BP-SOP02 Revision # IITA-BP-SOP02-01"],"sieverID":"50e0a320-2805-4280-b949-d4f304666cea","pagecount":"11","content":"Last Reviewed/Update Date SOP Owner Postdoc fellow (Nakato Valentine) Approval Datedescribes standard operating procedures (SOPs) for screening for banana resistance to weevils in a reliable, resource-saving manner.Banana weevils are a very important pest that contributes to the decline in production and disappearance of bananas in some regions of Uganda (Gold et al., 1993). This pest can cause yield loss ranging from 5% in the first cycle to 40% in the fourth ratoon cycle (Rukazambuga et al., 1998). However, a loss of up to 100% can also be obtained starting from the fourth ratoon cycle (Sengooba, 1986;Gold et al., 2004). The measures used to control banana weevil damage vary widely depending upon the type of banana production system practiced (Padmanaban and Sathiamoorthy, 2001). One of the control measures is the use of chemicals (Masanza, 2003), mainly in commercial production (Gold and Messiaen, 2000). Cultural control strategies are also being applied and they are of greater significance to resource-limited farmers cultivating bananas for subsistence production (Padmanaban and Sathiamoorthy, 2001). Biological control measures like the use of exotic natural enemies, endemic natural enemies, secondary host associations, and microbial control, for example, entomopathogens, endophytes, and entomo-phagous nematodes (Gold et al., 2001). Germplasm improvement to develop resistant cultivars is the most sustainable solution to control of banana weevils (Tinzaara et al., 2009).However, the genotypes used in the banana improvement for weevil resistance need to be evaluated for resistance against banana weevils. Banana being a long-cycle crop, field screening for weevil resistance takes a long time (Kiggundu et al., 2000). This document Field Assistants are responsible for weevil collection.Step 1: Experimental Planning (Pathologist/ Research Assistant)1) Tissue culture generated plant material including: 1. The genotypes to be screened are generated from tissue culture (TC).2. These are left in the nursery in a humid chamber for 4 weeks and later hardened under shade in the nursery for four more weeks. (Refer to IITA-BP-SOP06-06Weaning SOP)3. After hardening off, genotypes are planted in 13-litre volume plastic buckets that are filled with a mixture of sterilized topsoil, farm manure, and saw dust in the ratio of 3:1:1 respectively.4. Buckets are then sealed off with weevil poof nets to prevent weevils from the nearby fields from entering them. The buckets are then organized according to the design in open space under shade.5. Genotypes are allowed to establish themselves for three months in order to attain a suitable corm size before the introduction of weevils.6. Watering is done regularly to enable the establishment of the suckers.Step 3: Design of an experiment (Research Assistant)A suitable experimental design should be selected considering the prevailing factors in terms of space, time, materials, and data quality.In this case, we are going to focus mainly on the partially replicated design. A partially replicated experimental design (P-Rep) with three blocks will be adopted, with each test genotype occurring in duplicate and the checks in triplicate for the entire experimental set up. Each plot will have four plants per genotype. The P-rep design is useful when plant N.B Because infestation of the genotypes with weevils is done by adding 3 female and 3 male weevils (when using tissue culture plantlets) to each pot/bucket, it is important to determine their sex. When using suckers, the ratio of male weevils to female weevils should be 5:5.1. Once the weevil colony is established, the sex of each weevil is determined by viewing the weevil through a stereo microscope.2. The male has a fully punctuated rostrum and the female has less than half a punctuated rostrum (Viljoen et al., 2017) -Appendix 13. The sex of the banana weevil may also be determined based on the shape of the last abdominal segment.4. When the last abdomen segment is viewed laterally, it curves more sharply downwards than that of the female, which is flatter (Roth and Willis, 1963).Step 5: Experiment Inoculation (Research Technician and Research Assistant)1. Three months after the establishment of the experiment, three female and three male weevils are placed at the base of each plant in the 2. Then each bucket is sealed off again using a weevil-proof net to prevent the introduced banana weevils from escaping.3. After 60 days from the time of banana weevil introduction into the buckets, the plants are uprooted and the damage caused by the banana weevils is estimated based on the cross-section method as described by Gold et al. (1994).Step 6: Data collection (Research technician and Research assistant)1. Banana weevil damage is assessed 60 days after inoculation.2. The following traits are evaluated: f. Total cross-section damage (%).3. The cross-section damages are assessed by cutting a transverse cross-section both at the collar (upper cross-section) and 2 cm (which can be adjusted depending on the size of the corm) below the collar (lower cross-section).4. Weevil damage is scored as percentage damage on the upper cross-section and lower cross-section for both the inner corm (central cylinder) and the outer corm (cortex)-Appendix 2 5. For each cross-section, weevil damage is assessed independently for the central cylinder and the cortex by estimating the percentage of corm tissue damaged by the weevil in each area.6. The mean of the four scores (inner upper cross-section, inner, outer upper crosssection, inner lower cross-section, and outer lower cross-section) is calculated to generate a total cross-section damage estimate.","tokenCount":"871"} \ No newline at end of file diff --git a/data/part_3/3424807770.json b/data/part_3/3424807770.json new file mode 100644 index 0000000000000000000000000000000000000000..3993b93be916fdeddb371713d82da5ebc6a563ce --- /dev/null +++ b/data/part_3/3424807770.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"cf3c9561eb48b39a9c67c48c6e0407d1","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/63c50c69-349e-4162-b03c-a19e0d9e8dbe/retrieve","id":"331339649"},"keywords":[],"sieverID":"2351f90d-ab15-4783-89ba-050d24320831","pagecount":"1","content":"Description of the innovation: CIAT has developed climate risk profiles to guide CSA investments and priorities at sub national level. the profiles provide an analysis of the underlying causes of vulnerability, ongoing adaptation strategies and existing off-farm services available for combating the risks associated with the hazards, with recommendations for potential adaptation options. New Innovation: No Innovation type: Research and Communication Methodologies and Tools Stage of innovation: Stage 4: uptake by next user (USE) Geographic Scope: Global Number of individual improved lines/varieties: Outcome Impact Case Report: •1898 -P4S is changing the landscape on CSA in Africa (https://tinyurl.com/2ztd6ovl) Description of Stage reached: Fifteen Climate Risk Profiles were piloted in a phase 1, and has now been scaled out to an additional 16 Kenyan counties (31 counties in total), with 15 additional profiles under negotiation, and scaled out to Ethiopia, Tanzania, and the Philippines.","tokenCount":"144"} \ No newline at end of file diff --git a/data/part_3/3425286530.json b/data/part_3/3425286530.json new file mode 100644 index 0000000000000000000000000000000000000000..5ef6ed058bd26900dee807a40af0d1b72476722b --- /dev/null +++ b/data/part_3/3425286530.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"2b5ef2c81869372e1822d3c726823883","source":"gardian_index","url":"https://apps.worldagroforestry.org/region/sea/publications/download?dl=/RP00348-20.pdf&pubID=4818&li=9008","id":"-171225214"},"keywords":[],"sieverID":"69adb466-ee40-46e4-a496-bd98756b437d","pagecount":"79","content":"Additional support for forestry and agroforestry research and development to increase productivity Helping to organize smallholders and communities so that they can enjoy economies of scale, become more eligible for accessing finance, and gain negotiating powerList of Tables Table 1. Areas of forest land under the private sector from 1970 to 2018 (,000 ha) The underlying causes of deforestation in the Philippines include policy, institutional and governance issues, such as unstable, confusing and conflicting forest policies and mandates; logging bans as perverse incentives; open-access forest lands due to lack of clear tenure; limited coordination with other sectors; poor monitoring and law enforcement; and the inability of institutions to adapt and carry out effective strategies.The current policy and regulatory framework overseen by the Department of Environment and Natural Resources (DENR) and the Forest Management Bureau (FMB) are largely influenced by extractive-driven systems from the period when Timber License Agreements were the dominant tenure instrument and \"underlines the failure to adjust policies and strategies that respond to devolved, holistic, interconnected, and community-managed ecosystems\" (Carandang 2008:35).The promulgation of the Local Government Code in 1991 has not been followed up by adequate decentralization of human and financial resources to govern natural resources at the provincial, city, municipality and barangay levels. This is manifested in terms of shortages of staff and limited budgets in local government units. This has been compounded by the continued (over-) regulatory and tree-planting focuses of DENR and FMB, the changing tenurial arrangements (for example, following the promulgation of the Indigenous Peoples' Rights Act in 1997 and the expiry and non-renewal of 50% of the former Certificates of Stewardship Contract issued by DENR during the Integrated Social Forestry Program, which started in 1982) and restricted capacity development of, and coordination with, local government units and other \"third-party\" forest managers (for example, non-governmental and civil-society organizations, academe, the private sector). It is not known how many Co-Management Agreements and/or sub-management agreements have been reached between DENR and local government units to co-manage public forest lands.These factors have all contributed to restricting DENR's abilities to either significantly improve the management of open-access forests or restore degraded forest lands by mobilizing private-sector investment. Major investments are needed to develop the capacities of local governments and other third-party forest managers. One key recommendation of the Commission on Audit 2019 Performance Audit Report on the National Greening Program was to make community-organizing a pre-requisite before proceeding with the Enhanced National Greening Program.The Government has poured billions of pesos into reforestation programs for over a century. The country has undertaken reforestation programs from 1916 through to the launch of the National Greening Program in 2011 and the extended Enhanced National Greening Program in 2016. The Revised Master Plan for Forestry Development adopted in 2003 estimated that only 460,000 hectares (ha) of fully established and well-managed forest plantations were needed to meet the country's plantation-wood requirements.Several federal programs, including reforestation, industrial tree plantations, and social forestry were adopted to regenerate forest resources during the period before 1980 through v Executive summary to 2001. An estimated 1.4 million ha of plantations were established up to 2001, of which only 150,190 ha were planted by the private sector (10.7%). Only 78,440 ha of industrial timber plantations (5.5% of the total) were established during the same period, suggesting that the range of incentives provided was ineffective. The major constraint was probably limited financial resources for extensive planting as no substantial credit support was provided by either Government or financial institutions. Hence, the only alternative was to generate revenues from exploiting natural forests to finance plantation development.The recurrent costs of reforestation and afforestation programs could be effectively reduced if the Government were to adopt a more supportive enabling environment to promote the emergence of, for example, community-based timber enterprises. The standing volume of second-growth production forests is estimated at more than 217 million cubic meters (m 3 ), representing a natural resource asset worth more than USD 13 billion (at USD 60 per m 3 ) that could generate 60,000 full-time jobs by selling 500,000 m 3 of timber per year. DENR FMB needs to simplify the regulations for smallholders to trade timber to help in reducing the transaction costs associated with timber marketing and processing.There is a critical need to move beyond a \"culture of tree planting\", \"meeting planting targets\" and providing direct incentives, such as tree seedlings, to one that also recognizes the critical role of indirect incentives, such as an appropriate enabling environment that establishes an overarching climate of an enterprise. This will include greater recognition of the phasing of incentives and the importance of smallholders' tree and forest management and facilitating entrepreneurship and the marketing of timber and non-timber forest products (NTFPs) by smallholders. The latter will also require good end-markets for smallholders' processed timber. Both are already present, for example, in Caraga Region (Carandang et al 2015, Wardell 2020).Private investment needs stable and consistent policies as well as clarity about the boundaries between public forest lands and alienable and disposable lands. Clear tenure arrangements are necessary on all lands to maintain forest cover, biodiversity, environmental services and the confidence of potential investors.The preparation of the Forest Investment Road Map is a welcome recent initiative of the Forest Investment and Development Division of FMB, with the vision of \"Revitalized Philippine Forestry Investment towards inclusive growth and sustainable development through local and foreign direct investment to increase the gross domestic product contribution of the forest sector in the national economy\".The Road Map was formally adopted by DENR as DENR Administrative Order (DAO)-2019-22 on 2 December 2019. DENR leads in creating an enabling environment through responsive policies, one of which is to rise to the challenge of mobilizing new forestry investments to make sustainable forest management more commercially competitive and economically attractive to investors be they small-to-medium-sized or international businesses. The Forest Investment Road Map was developed, partly, in response to Republic Act (RA) 11032 s. 2018, on the Ease of Doing Business and Efficient Government Service Delivery, as a way to reduce regulatory transaction costs associated with the production, harvesting, transport and processing of timber from private lands, thereby making timber plantations a more attractive business for smallholders. To this end, DENR is confronted with three key challenges.1. How to address the main barriers to financing private-sector investment in sustainable forest management.2. How to develop clear implementing rules and regulations for the seven strategic components of the Forest Investment Road Map (FIRM 2019:46), including the \"Institutionalization of forestry investment support mechanisms\".How to reduce the regulatory transaction costs associated with the production, harvesting, transport and processing of timber from private lands to make timber plantations an attractive business for smallholders.Forest investments are allocated unevenly among regions and countries. Tree-growing conditions, access to markets, and quality of the business environment, including political and economic stability and security of land tenure, are major determinants of investment flows.Most investors are concerned with gaining new markets and maximizing risk-adjusted returns and prefer investing in countries with a combination of good growing conditions and a stable investment environment.In 2011, there was an estimated 65.7 million ha of commercial, production-oriented forest plantations in developing countries, of which about a third were privately owned, with significant regional differences. The amount of privately owned, established plantations in Latin America was 18.7 million ha, (78% of total commercial-production plantations), 5.1 million ha in Asia and Oceania (14%), and 0.3 million ha in Africa (6%). Total private-sector plantation investment in developing countries was estimated at USD 1,763,000,000 in 2011. 1 Most of the investments are in industrial pulpwood production 2 . Investments in Latin America account for a large majority of the global total amount -USD1,464,000,000 (83%) -while investments in Asia and Oceania were estimated at USD 279 million (16%). 3 Even within Latin America, Brazil accounts for over 80% of the regional total.International timberland investments by timberland fund managers, financed primarily by institutional investors such as pension funds and endowments, have emerged as a new source of financing of sustainable forestry in developing countries. Total assets under management have already reached an estimated USD 80 billion worldwide. The total volume of institutional timberland investment into developing countries is still, however, quite limited and heavily focused on a few countries in Latin America.Several opportunities exist to improve other elements of the enabling environment for investments in the Philippines and to influence the investment decision-making of smallholders, communities, small-to-medium-sized enterprises (SMEs), and large domestic and international companies and timberland investors. These are related to national 1 Excluding investments in Reducing Emissions from Deforestation and Forest Degradation (REDD), landscape restoration and investments by households and communities as well as by most small-to-medium-sized forest enterprises 2 Critical gaps in information exist in terms of financing the management of natural forests and domestic investment flows in plantation development and wood processing 3 Estimated annual average private investment in plantation forests in Africa is very small in comparison, at about USD 20 million or 1% of total value vii Executive summary policies, legislation, regulations, governance, transparency, availability of information, and infrastructure.There are several major barriers to financing private investment in sustainable forest management in the Philippines.Higher real and perceived risks than in Latin American and industrialized countries. These include political risks, unsecured land tenure, currency risks, social and environmental risks, as well as reputational risks.Limited availability of, and access to, both domestic and foreign equity and loan financing. International equity financing is especially difficult to secure for projects under USD 20-25 million.Forestry businesses face unfavorable terms for financing. Even if domestic debt financing is available, the interest rates can be excessively high (in local currency) and loan payback periods very short (from six months to three years).Higher up-front costs of preparing investment projects in the forestry sector due, among other things, to a lack of reliable information on forests and higher transaction costs throughout the investment cycle for small and medium-sized projects.The need for tax reform. In 2017, PHP 441 billion of foregone revenues (representing 2.8% of GDP) was provided as tax incentives to 3150 companies, including the elite top 1000 companies. This excluded SMEs that paid the regular 30% Corporate Income Tax. A comprehensive tax reform package aims to lower the rate from 30% to 20% and to reorient fiscal incentives to strategic growth industries and provide incentives to investors who make \"net positive contributions to society\" (Department of Finance 2020).Some of these issues are addressed by the different clusters of recommendations grouped as direct and indirect incentives below.2.1 Facilitate production of tree seedlings by people's organizations through community-managed procurement in locally funded projectsSeedling production represented the largest component cost of the National Greening Program, accounting for 34% of the Program's total costs in 2019. The dominant direct incentive provided by DENR before and during the implementation of the National Greening Program has been the supply of free tree seedlings produced either in one of 11 \"mechanized\" DENR FMB nurseries and/or procured from private nurseries. Fast-tracking by DENR to meet National Greening Program targets has resulted in \"missed financial opportunities for people's organizations\", particularly after 2016 (CoA PAO-2019-01:52). The implementing rules and regulations of the Government Reform Act 4 allow a procuring entity, as a contract manager, to use negotiated procurement as a means to engage a community to implement a locally funded community-based project. DENR is authorized to award the contract of seedling production to the people's organizations themselves.DENR needs to change its approach to seedling production and distribution in favor of giving the time and training to support people's organizations to produce the tree seedlings themselves. This will ensure that the people's organizations will be able to maximize the socio-economic benefits of the National Greening Program. DENR will be able to \"lessen the risk of fraud and corruption\" associated with seedling procurement (CoA PAO-2019-01:52) and it may assist the people's organizations to transform themselves into cooperatives, thereby gaining access to credit facilities and finance, equipment and technical assistance from other Government agencies. 5 In effect, this represents a shift from a direct incentive to an indirect incentive by improving the enabling environment for people's organizations. initiative by creating an in-house \"clearing mechanism\" mechanism for available grants, credit facilities and training support services and their respective requirementsThe National Greening Program and the Enhanced National Greening Program were designed as a \"convergence initiative\" that planned to involve many Government agencies and local government units (Figure 2). Financing Program. This aims to assist in the development and maintenance of existing tree plantations, assisting communities and tree growers to improve their economic conditions, and further address deforestation by reducing the susceptibility of communities to natural disasters. The Technical Bulletin for implementation is pending approval by the Policy Review Committee of FMB.DENR establishes an in-house \"clearing mechanism\" to compile information about available grants, credit facilities and training support services from various Government agencies and the respective requirements to access each of them to facilitate a strengthened Enhanced National Greening Program convergence initiative.DENR and the Development Bank of the Philippines develop clear and transparent guidelines on the types of financial services available through the Bank's Financing Program and the conditions of access for different types of investors. DENR will also explore the potential to establish a memorandum of agreement with the Land Bank of the Philippines.xIncentive structures for CFISPForest-sector SMEs, like SMEs more generally, suffer in the Philippines from limited access to business and financial services, lack of support to enhance their competitiveness, regulatory measures that constrain their ability to operate in a \"legal\" space or that create perverse incentives, and limited access to markets. These and other challenges and constraints for SMEs have been widely identified but recommendations and efforts to address them have often been fragmented and sector-bound, limiting the effectiveness of the intervention.The Forest Investment Road Map (DAO 2019-22) refers to incentives about only one of the potential investment areas (FIRM: 14-38): the planting, development and processing of biomass resources (FIRM:24-25), specified as: \"Fiscal and non-fiscal incentives include Income Tax Holiday, Exemption from Duties on Renewable Energy machinery, equipment and materials; tax exemption of carbon credits; financial assistance program, etc while incentives for farmers engaged in the plantation of biomass resources shall be entitled to duty-free importation and exemption from payment of value-added tax on all types of agricultural inputs, equipment and machinery within ten years from the effectivity of the Act, subject to verification by the Department of Energy. \" (FIRM:25).DENR develops detailed guidelines on the fiscal and non-fiscal incentives available to prospective investors in the forest sector for all potential investment areas identified in the Forest Investment Road Map (roundwood and wood-based products, bamboo, rattan, biomass, high-value crops including coffee, cocoa and rubber, cattle grazing and ecotourism). DENR should focus on grants, tax concessions, differential duties and fees, subsidized loans, and cost-sharing arrangements for each of the potential investment areas. Although the forestry sector's contribution to the country's gross national product has declined from 2.4% in the 1980s to 0.07% in 2006, it remains significant in diminishing the impact of poverty by providing habitats for formal and informal settlements and resources to sustain livelihoods. The forestry sector's underestimated value can be observed in its contribution of PHP 5.26 billion (0.12%) to the GDP of the Philippines in 2013 (Carandang 2012, SEPO 2015, Esplana and Quizon 2017).The share of gross value added in forestry to GDP progressively declined from 2006 to 2016 (FIRM:41) in contrast to the projections of both the Philippines Revised Forestry Master Plan ( 2006) and the Philippines Forestry Sector Outlook (DENR FMB 2010) suggesting that significant improvements to the enabling policy and institutional environment are needed.There are four Indirect incentives proposed to draw on the findings, conclusions, and recommendations of the Report on policy review and institutional analysis for development of commercial forestry investment sub-projects (ICRAF 2020a).The Revised Forestry Code of the Philippines enshrined in Presidential Decree 705 s. 1975 remains the only overarching policy framework to govern the use, management and protection of the country's forest resources even though \"most of its provisions have become obsolete, particularly the allocation of forest lands and tenure\" (FIRM:47 Although significant progress has been made to introduce Community-Based Forest Management Agreements, DENR's continued focus on regulation and extractive timberdriven systems drawing on past Timber License Agreements experience underlines the failure to fully adjust policies and strategies that respond to devolved, holistic, interconnected and community-managed ecosystems coordinated by local government units. This will necessitate a further redefinition of roles among stakeholders at the national, regional and local government unit levels. DENR will need to further decentralize functions and to delegate greater responsibility to regional DENR offices, as well as Provincial and Community Environment and Natural Resources Offices. DENR regional and local offices will need to be more facilitative and less regulatory in promoting sustainable forest management with third-party forest managers. DENR and FMB at national level will continue to define key policy, strategic and regulatory frameworks of the forest sector whilst facilitating devolved implementation by others.There is a critical need to move beyond a \"culture of tree planting\", \"meeting planting targets\" and providing direct incentives such as tree seedlings to one that also recognizes the critical role of indirect incentives, such as an appropriate enabling environment to establish an overarching climate of an enterprise. This will include greater recognition of the phasing of incentives and the importance of smallholders' tree and forest management and facilitating entrepreneurship and the marketing of timber and NTFPs by smallholders.The recent adoption of the Forest Investment Road Map (DAO 2019-22) in December 2019 is a welcome initiative by DENR'S Forest Investment Development Division to attract new domestic and foreign direct investment in the forest sector. The Vision, Goals, and Objectives of the Road Map include a seven-point strategic framework (FIRM:45-81) that will collectively assist in facilitating a change in the organizational culture of DENR FMB whilst contributing to the requirements of RA 11032 s. 2018 on the Ease of Doing Business and Efficient Government Service Delivery.DENR focuses on two policy areas in the context of the recommendation that DENR adopt new Sustainable Forest Management Agreements as a simplified, harmonized and streamlined tenurial arrangement (see above), as follows.The dominant tenure instrument in the Philippines is now the Community-Based Forest Management Agreement (1884 agreements with people's organizations covering more than 1.6 million ha). 6 Several studies highlight that community-based forest management has not met its socio-economic targets (see Tesoro 1999, Guiang et al 2001, Harrison et al 2004, Rebugio et al 2010).Current forest management planning, regulation, monitoring and policy making remains influenced by the timber-oriented rules and regulations of the Timber License Agreements era. The strict requirements for obtaining approvals to cut and transport timber products are preventive measures to eradicate the proliferation of illegal logging but are, in essence, the same for community organizations and private-sector tenure holders. The high degree of regulation is similar to that formerly applied to holders of Timber License Agreements and Integrated Forest Management Agreements.Four processes could be streamlined or developed by DENR to ensure the continuity of Community-Based Forest Management Agreements to improve development outcomes in terms of livelihood benefits to local communities and indigenous peoples.It will also be important for DENR to also harness the lessons learned by the Japan International Cooperation Agency-financed Forestland Management Project, notably, in terms of securing land-tenure rights and enterprise development for food security and income (DENR FASPS n.d.).Forest-sector SMEs, like SMEs more generally, suffer in the country from limited access to business and financial services, lack of support to enhance their competitiveness, regulatory measures that constrain their ability to operate in a \"legal\" space or that create perverse incentives, and limited access to markets. These and other challenges and constraints for SMEs have been widely identified, but recommendations and efforts to address them have often been fragmented and sector-bounded, limiting the effectiveness of the intervention.The Forest Investment Development Division of FMB has already initiated the development of a specific database for plantation investments. The Division formulated an Investment-Ready Registry for use at both national and regional levels, which is being piloted in eight regions (CAR,2,3,6,10,11,12,13). The Technical Bulletin on the development of the Registry is pending approval by the Policy Review Committee of FMB.Five processes could be streamlined by DENR to facilitate the emergence of SMEs in the Philippines. The adoption of the Forest Investment Road Map (DAO 2019-22) provides new opportunities for DENR to build, strengthen and sustain alliances with partners and existing tenure holders, explore new partnership mechanisms between the Government and the private sector and develop six new approaches to marketing strategies (FIRM:75-81). The latter may include the marketing of products from commercial forestry investment subprojects (conservation farming, agroforestry, and commercial tree plantations), drawing on lessons learned by successful private-sector initiatives (Report on policy review and institutional analysis for development of commercial forestry investment sub-projects, ICRAF 2020a: Section IX).Improving access to private financing will require a number of different initiatives encompassing, among other things, active investment promotion with targeted incentive schemes and new financial instruments favoring long-term investments; reducing investment risks through guarantees, public-private partnerships and innovative financing schemes;provision of reliable information on forest lands; recording and publishing information on domestic investments; collecting, collating and improving access to information concerning the availability of suitable land for investments, growth and yield, growing conditions, risks etc; conducting ad hoc surveys and establishing specific databases (for example, on plantation investments); improving forest-sector governance and transparency; additional support for forestry and agroforestry research and development to increase productivity; helping to organize smallholders and communities so that they can enjoy economies of scale, become more eligible for accessing finance, and gain negotiating power.Additional incentives such as tax breaks on revenues, provision of low-interest and longmaturing loans, less stringent requirements for wood processors, improving access to price information, improved maintenance of farm-to-markets roads used by tree farmers and opportunities to export plantation logs may enable other provinces to replicate the success of Caraga Region.Investors are mainly interested in maximizing risk-adjusted returns. FMB 1980FMB , 1990FMB , 2000FMB , 2018 law enforcement; and the inability of institutions to adapt and carry out effective strategies (Guiang 2008, Carandang et al 2013).The current policy and regulatory framework overseen by DENR and FMB are largely influenced by extractive-driven systems from the period when Timber License Agreements were the dominant tenure instrument, and \"underlines the failure to adjust policies and strategies that respond to devolved, holistic, interconnected, and community-managed ecosystems\" (Carandang 2008:35).The recurrent costs of reforestation and afforestation programs could be effectively reduced if the Government were to adopt a more supportive enabling environment to promote the emergence of, for example, community-based forest enterprises. The standing volume of second-growth production forests in the Philippines is estimated at more than 217 million m 3 , representing a natural resource asset worth more than USD 13 billion (at USD 60 per m 3 ) that could generate 60,000 full-time jobs by selling 500,000 m 3 of timber per year. DENR needs to simplify the regulations for smallholders to trade timber to help in reducing the transaction costs associated with timber marketing and processing at central, regional and local levels (Pulhin and Ramirez 2016).There is no single agreed definition for incentives (Meijerink 1997). Many equate incentives with subsidies, such as Gregersen (1984), who defined incentives as \"public subsidies given in various forms to the private sector to encourage socially desirable actions by private entities\". For this report, incentives include both direct incentives -such as cost-sharing, subsidized credit, provision of tree seedlings, fiscal incentives, reduction of uncertainty through loan guarantees, insurance, forest protection agreements and security of land tenure (Gregersen and Houghtaling 1978) -and indirect incentives, such as changes in policy and institutional mandates to facilitate investments by the private sector, provision of market information, and targeted extension, education and research (Keipei 1997). Direct and indirect incentives can be provided by governments as well as through projects funded by development banks (both national and multilateral) and official development assistance organizations (Table 2).There is a critical need to move beyond a \"culture of tree planting\", \"meeting planting targets\" and providing direct incentives, such as tree seedlings, to one that also recognizes the critical role of indirect incentives, such as an appropriate enabling environment that establishes an overarching climate of an enterprise. This will include greater recognition of the phasing of incentives and the importance of smallholders' tree and forest management and facilitating entrepreneurship and the marketing of timber and NTFPs by smallholders. The latter will also require good end-markets for smallholders' processed timber. Both are already present, for example, in Caraga Region (Carandang et al 2015, Report on policy review and institutional analysis for development of commercial forestry investment sub-projects, Wardell 2020).The types of incentives used in the Philippines are presented in Table 3. 8Three phases of incentives to promote plantation development are typically recognized: a) initiation; b) acceleration; and c) maturation (Figure 1). The Philippines is still in the initiation phase but has the potential to accelerate with revisions of enabling policy and institutional environment.Three phases of incentives to promote plantation development are typically recognized: a) initiation; b) acceleration; and c) maturation (Figure 1). The Philippines is still in the initiation phase but has the potential to accelerate with revisions of enabling policy and institutional environment. Experience from other countries in Southeast Asia indicates that the businesses of most smallholding timber growers are not strictly market-oriented. Consequently, opportunities to make a better income from timber sales are often lost although timber plantations do generate important additional income for farmers. There is often a wide range in timber prices at village, watershed, provincial and regional levels but the farm-gate price generally lies at the lower end of the range. This is generally because of a) poor quality of logs produced by farmers; b) low bargaining power of farmers; c) high transaction costs due to cumbersome timber market regulations; and d) transport costs (Rohadi et al 2015).The The objective of this report is to complement the Report on policy review and institutional analysis for development of commercial forestry investment sub-projects (Wardell 2020) by presenting an overview of the evolution of incentives and disincentives in the forest sector in the Philippines during the period 1946 to the present. The report focuses on incentives and their impact on plantation development given the widespread depletion of natural forests, and the nationwide moratorium on logging of natural and residual forests (but excluding plantations) introduced in 2011. The National Greening Program was started in the same year and extended in 2016 through to 2028.The report comprises five sections after this Introduction: Section II presents an historical overview of incentives during the logging era and subsequent communitybased forest management Component 2 of INREMP focuses on smallholder and institutional investments, which include commercial forestry investment sub-projects (Table 4) with the overarching aims by end 2020 of planting being as follows.Over 14,000 ha of agroforestry with community participation 3000 ha of commercial tree plantations established Over 3000 ha of conservation farming demonstrations established \"Commercial forestry investment sub-projects\" are project \"constructs\" rather than Government policy in itself and, to this end, three INREMP Technical Bulletins were issued by DENR during 2015-2017: #2 Sub-project development in agroforestry (9 March 2015); #4 Sub-project development for commercial forest farm and tree plantations (9 March 2015); and #10 Sub-project development on conservation farming (17 May 2017). The first two Technical Bulletins issued in March 2015 were intended to assist all field implementing units in the four provinces and provide cost standards with beneficiary contributions per hectare to establish agroforestry (essentially fruit trees) and commercial tree plantations. This included details of the procurement process for engaging people's organizations or community participation to ensure consistency with the Government Procurement Reform Act RA 9184 and six guiding principles: a) equity; b) participation; c) responsiveness; d) accountability; e) transparency; and f) value for money. 9The Technical Bulletin on conservation farming was developed more than two years later. It provides more detailed guidance to all field implementing units in the four regions in terms of technical considerations, selection criteria, a 24-day conservation-farming \"process\", the types of technologies and activities to be supported by INREMP, and other \"support facilities\" that could be funded under the livelihood enhancement support sub-projects of INREMP. It also provides an outlined Work and Financial Plan with indicative annual costs and a 12-stage indicative payment schedule. Conservation farming -as distinct from agroforestry and commercial tree plantations -requires a (contractual) Forest Management Partnership Agreement and includes explicit reference to the need to comply with the social and environmental safeguards as prescribed in the INREMP Project Administration Manual, adopted in October 2012. Multi-strata agroforestry systems mimic natural forests in structure by blending an overstorey of taller trees and an understorey of one or more layers of crops to maximize both horizontal and vertical space. Multiple layers of trees and crops achieve better natural resources management while securing food and nutritional security and incomes. The exact blend of crops and trees varies by region and culture but the spectrum includes macadamia and coconut, black pepper and cardamom, pineapple and banana, shade-grown coffee, cocoa, rubber and timber. Annex 3 presents an overview of multi-strata agroforestry, conservation farming and commercial tree plantations developed by ICRAF in the Philippines. Additional technical details can be found in Kummer (1992), Tacio (1993), Belino (2014) and DENR DAO 2005-25.A key challenge for DENR is to mainstream key lessons learned during the implementation of commercial forestry investment sub-projects to avoid a repetition of the all-too-common end of initiatives upon completion of a project. For example, the majority of the 300 Multisectoral Forest Protection Committees established during the World Bank Environment and Natural Resources Sector Adjustment Loan project collapsed after the completion of the project (Cruz and Pulhin 2006:3). This is currently a critical challenge for INREMP, which is due to close at the end of 2020. The \"transfer\" of commercial forestry investment sub-projects to the National Greening Program is one option for DENR to explore whilst building social capital with local government units, people's organizations, and non-governmental and civil-society organizations.This section summarizes the types of incentives used during two periods in the Philippines that were dominated by logging and forest-based industrialization The timber boom was driven by the vast profits that logging companies accumulated because the Government was unable to capture an appropriate share of resource rents through forest revenue systems. Forest taxes and fees amounted to only 0.5 to 1.3% of total Government revenues during the 1970s. For many years, the primary revenue source was a volume-based charge that ranged from 0.6 to 3.5 pesos per m 3 , depending on timber quality.Other volume-based charges were imposed to finance reforestation, extension, and research and development. Total volume-based charges amounted to PHP 6.35 to 9.35 per m 3 for logs used domestically, and PHP 10.85 to 13.25 per m 3 for exported logs. These fees were consolidated in 1980 to a charge of PHP 20 pesos per m 3 and raised by 50% to USD 1.52 in 1984.Government revenues averaged only 8.8% of the sector's export values during 1970-1982, an indication of the Government's failure to capture rents. Concessions of from 1-to-10 years granted in the 1970s provided concessionaires with few incentives to practise sustained-yield management. Concessions were later extended to 25 years, with potential for renewal for an additional 25 years, but these were still short relative to the 70-year growing cycles of many tropical species. The effects of excessive rents and short-term leases were compounded by the structure of forest charges, which failed to differentiate forest charges by timber grade, species, and accessibility and instead based charges on the volume cut rather than on the volume of merchantable timber. Weak enforcement of regulations on harvesting methods, stand improvement, and forest protection also contributed to the problem due to inadequate funding and personnel to supervise private loggers.The Philippine Government's program to develop the wood-processing industry had four main goals: a) increase foreign exchange; b) create domestic value addition; c) stimulate employment; and d) use dwindling forest resources more effectively. The first attempts began in the late 1960s, when concessions were issued preferentially to companies that agreed to establish lumber and plywood mills. In 1967, a Government directive required all harvesters to build processing plants and progressively reduce log exports. Many companies complied by building small, inefficient and little-used mills while continuing to export logs. Sixty-seven percent of log production in 2017 came from Region 13 (Caraga). Eight-seven percent of lumber was produced in Regions 10 and 13 in the same year.Since the early 1900s, Government policies have provided incentives by distributing public forest lands to the landless and poor. Whilst the population remained relatively small, no dramatic forest-cover changes occurred but as population growth increased after World War 2, pressures on forests increased. During the 1960s, the Government encouraged settlements in forest lands to broaden the economy's agricultural base. The single most important such initiative was the \"land for the landless\" program, which led to the conversion of 100,000 ha of forestland per year for farming during 1959-1963. Before this, the Homestead Act 1924 granted every Filipino the right to 24 ha of public land supported by a Torrens Title. In 1961, the Manahan Act amended RA No. 1199, otherwise known as the Agricultural Tenancy Act of the Philippines. This resulted in the conversion of occupied forests to agriculture by as much as 200,000 ha per year.In 1975, the Government allowed farmers to occupy 5 ha of the land they tilled for up to 50 years. Deforestation left upper watersheds unprotected with significant effects on river flows, fish populations, agriculture and upland communities who relied on forests for fruit, game and other non-wood forest products for their livelihoods.Incentives and the plantation development and reforestation era (1982-2019) 11 Several federal programs, including reforestation, industrial tree plantations, social forestry, and, after 2011, the National Greening Program, have been adopted to regenerate forest resources during the period before 1980 and up to the present. The incentives used by the different programs are presented in the following sections.Estimates of the areas of plantations that have been successfully established (as distinct from the number of tree seedlings planted) are variable but it is clear that DENR has been the dominant actor, particularly after Presidential Letter of Instruction No. 145, s.1973 was issued to determine which alienable and disposable lands should be converted into industrial plantations and tree farms.An estimated 1.4 million ha of plantations were established up to 2001, of which only 150,190 ha were planted by the private sector (10.6%) (Table 5). Only 78,440 ha of industrial timber plantations (5.5% of the total) were established during the same period, suggesting that the range of incentives provided was ineffective. The major constraint was probably limited financial resources for extensive planting as no substantial credit support was provided by either Government or financial institutions. Hence, the only alternative was to generate revenues from exploiting natural forests to finance plantation development.Forest plantation development before 1980 was mandated by command-and-control rather than economic or financial incentives. Most plantation development was funded by direct public investment through annual appropriations to Government agencies, primarily, the- In 1980, LOI 423 sanctioned the establishment of industrial timber plantations to \"intensify and accelerate forest ecosystem management\" and led to the creation of the Program for Forest Ecosystem Management, which aimed to re-establish forest cover nationwide by calling on all Government agencies to undertake \"tree planting' in watersheds, along roads and in parks\". Much of the tree planting was ceremonial or cosmetic and there was little follow-up or maintenance. Areas planted in \"critical watersheds\" were under de facto control of upland farmers who regarded Government-mandated tree planting as a threat to their claims to the land. Fire was often used as a weapon of the weak (Scott 1995) to destroy the planted areas.Presidential Executive Order (EO) No. 725 of 1981 established the Industrial Tree Plantation program and accelerated the establishment of plantations in open, denuded, brushland and poorly-stocked areas. Timber License Agreement holders were given six months to a) apply for an Industrial Tree Plantation lease agreement over suitable areas not exceeding 30% of their respective Timber License Agreement areas; and/or b) implement an approved sevenyear reforestation plan within their areas. The Government also founded the National Industrial Tree Corporation, a subsidiary of the Government-owned National Development Company, offering a number of incentives.A nominal application fee of PHP 0.50 per ha 12 Forest charges are royalties collected by the Government from timber concessionaires based on the net timber volume extracted from the forests. During the time the Reforestation Fund (1950s to late 1960s) was in effect, the forest charges were about USD 0.50-1.00 per m 3 of timber, depending on species, at the-then exchange rate of PHP 4.00 = USD 1.00 13 These were projects funded by general Government appropriations, as distinct from \"foreign-assisted projects\" funded by official development assistance loans and grants (Pulhin 1997) to introduce and develop both community forestry and watershed management. Most of these reforestation programs at the time continued to depend on local communities providing a source of labor rather than as partners in forest conservation and development (Pulhin 2002).The processes and institutions developed under the Integrated Social Forestry Program shaped the national community-based forest management strategy adopted in 1995. The anticipated large-scale reforestation by upland communities was constrained, however, by unclear policies, technical problems, and market-related flaws. It was unclear from the outset how the timber produced on Integrated Social Forestry Program farms was to be marketed and sold. Harvesting permits from local government forestry offices were required even for tiny volumes from individual woodlots. Forestry extension services provided poor technical advice on plantation management, resulting in low-quality plantations, low productivity and, hence, unattractive revenues. Wood-processing facilities were not structured to process small-dimension timber economically and the availability of cheap illegal timber from natural forests further depressed prices for plantation wood.A new Philippine Constitution was promulgated in 1987 and had a profound effect on the re-orientation of Philippine forestry in the post-Marcos era. A significant new development was the identification and proclamation of a 600,000 ha \"timber corridor\" in north-eastern Mindanao, together with a 200 ha \"wood-based economic zone\" for an integrated wood-processing facility. This was intended to attract foreign and domestic investors.Presidential EO No. 318, Promoting Sustainable Forest Management, issued by then-President Gloria Arroyo in 2004, underlined the need to harmonize policy reforms adopted since PD 705 in 1975 and to \"pursue the sustainable management of forests and forest lands in watersheds\" (Section 1, EO 318). The necessity for such an instrument reflected the fact that a draft Sustainable Forest Management Act and both a National Land Use Act and a Land Administration Registry Act had, by then, been languishing in the country's legislature for more than two decades.Three milestone policy instruments adopted in the 1990s underscored the role of public and community involvement in land and forest resource management. These were the Local Government Code (RA 7160) in 1991, the National Integrated Protected Area System (RA 7586) in 1992 (as amended by RA 11038, the Expanded National Integrated Protected Area System Act of 2018), and the Indigenous People's Rights Act (RA 8371) in 1997. These instruments culminated in a changing and increasingly complex policy arena as the number of local government units and national government agencies implicated in the sustainable management and development of forest resources in the country increased significantly.Unclear institutional mandates and jurisdictional limits led, in some cases, to still-unresolved conflicts.This was compounded by \"policy inflation\" as the Government of the The Commission on Audit report aimed to determine: a) the extent the program made an impact on the environment; b) the extent the program made an impact on its beneficiaries; and c) the extent the DENR ensured that the program was administered following established policies and procedures. To answer the aforementioned objectives, the audit team conducted a document review and interviewed program officials. To validate the information gathered, the audit team visited Program sites and conducted group discussions with the people's organizations implementing the program on the ground. The audit scope covers 2011 to 2018.Program implementers, including people's organizations, identified various problems, such as the distance of the areas, calamities and insufficiency of the contract payments. However, the Commission found that the most crucial issue was DENR's strategy of fast-tracking the program. Fast-tracking led the DENR to a) impose targets on its field officials beyond their absorptive capacities; b) proceed with the program without conducting a survey, mapping, and planning; c) include far untenured areas, which will be abandoned after the term of the maintenance and protection contract; and d) cause the people's organizations to miss financial opportunities, such as profits from seedling production.According to field officials, the targets were too ambitious. Instead of increasing forest cover, fast-tracking reforestation activities only increased the incidences of wastage. Based on the latest Philippine forest statistics, forest cover increased marginally by 177,441 ha; from 6,836,711 ha in 2010 to 7,014,152 ha in 2015. This is only 11.8% of the 1.5 million ha target of the National Greening Program under EO No. 26. Even if the 85% standard of survival rate of 1,275,000 ha is used, the accomplishment will still be at a low rate of 13.9%. On a positive note, it was enough to reverse the previous downward trend.The Commission found pieces of evidence showing that the Program contributed to the reduction of poverty, however, it could not conclude as to its scale due to the insufficiency of data. Generally, beneficiaries narrated how the program payments helped augment their household budget. There were exceptional groups and communities, who were able to transform themselves into cooperatives, thereby gaining access to credit facilities and finance, equipment, and technical assistance from other Government agencies. With additional capital, they were able to create additional sustainable income streams.The crucial factors in the success of these beneficiaries are a) the preparedness of the beneficiaries to implement the program; and b) the convergence of different agencies, including the private sector. However, community organizing is not the priority of the National Greening Program. This is the reason why dependent people's organizations are still prevalent. Convergence, on the other hand, is a requirement under EO No. 26, s. 2011. DENR was not able to implement this on a national scale. The pockets of success were caused by individual ingenuity at local level.The key recommendations of the Commission on Audit Performance Audit report were as follows.Offices, private sector and beneficiaries in formulating the action plan and targets.Ensure that the people's organizations benefit from seedling production by providing them enough time to produce the seedlings themselves. 17 The Forest Investment Road Map was formally adopted by DENR as DAO 2019-22 on 02 December 2019 shortly before the Commission on Audit Performance Audit Report on the National Greening Program was published.The Road Map constitutes the country's blueprint to encourage private-sector investment in forestry and provides a general overview of the country's forest resources, tenure instruments and key investment opportunities that will hasten the country's progress and socio-economic development through the optimization and wise use of forest lands under the purview of sustainable forest management.The Forest Investment Road Map aims to revitalize forestry investments through local and direct foreign investments in an environmentally sound, economically viable and socially responsible manner towards inclusive growth and sustainable development. It will also prescribe guidelines on how industrial-level partnerships can be strengthened to transform production forests into a significant contributor to the national economy (from 0.01 to 0.14% by 2028). The Road Map has several goals, as follow.Provide an enabling environment for investments in forest and forest-based products and services to assure investors of stable policies, secure tenure, incentives, and technical support.Generate additional and sustained forestry investments to meet the demands for forest and forest-based products and high-value-added commodities and services.Ensure the sustainable supply of raw material to produce globally competitive forestbased products and services.Promote equity and social justice by uplifting the socio-economic status of women and men in forest-dependent communities.There are several more specific objectives of the Road Map.Identify and delineate potential investment areas based on regional comparative advantages. Potential investment areas include forest plantations for timber, NTFPs, fuelwood, biomass, and high-value crops (coffee, cocoa and rubber) as well as cattle grazing, ecotourism outside National Integrated Protected Area System areas and other ecosystem services (FIRM:14-38).Develop and maintain 1,438,298 ha commercial forest plantations by 2028.Establish and maintain 297,234 ha of fuelwood and biomass energy plantations by 2020.Develop and maintain 500,000 ha of NTFP plantations and high-value crops by 2028 through community partnerships with private investors.Develop and maintain 111,000 ha of grazing land by 2028.Formulate or amend policies and guidelines related to forestry investments.Establish specific guidelines for implementing payment for ecosystem services.Provide appropriate tenure instruments for private investors or community partnerships with private investors.Increase by 50%, on average, annual income of upland communities.Place 75% of open-access forest lands under appropriate management arrangements.Establish forest-based industries with sustainable source of raw materials.The seven strategic components on how to achieve the goals and objectives are listed below.1. Provision of stable enabling policy and investor-friendly environment.3. Identification, mapping and assessment of potential investment areas.Provision of secure tenure and partnership agreements.Development and management of potential areas for forestry investments.Strengthening and sustaining partnerships with existing tenure holders.7. Marketing strategies.The projected additional contribution of several commodities to gross value added and gross domestic product in 2028 under the Road Map is presented in Table 8 below. Policy development that will further support and strengthen implementation of the Road Map include the following.Advocacy for the passage of the Sustainable Forest Management Bill that will replace PD 705.Review and amendment of guidelines on permitting, utilization and transportation of forest-based products.Harmonization of guidelines and process by DENR, other Government agencies and local government units on the issuance of necessary clearances for the approval of tenure and permits that are overseen by these agencies. A perverse policy incentive is an incentive that produces unintended and undesirable results, contrary to the intentions of the policy. Similarly, a perverse program generates results that are contrary to the intentions of the program. The complexity of forest management in the Philippines from licensing through management, harvest and sale to renewal has involved multiple sets of policies and guidelines as well as changes and reversals of the same, some of which can be considered as perverse because they contributed more to deforestation and forest degradation than to conservation. The following section summarizes examples of perverse policies and programs in the Philippines, focusing on the period after PD 705 in 1975. 18The Revised Forestry Code of the Philippines (PD 705, as amended by PD 1559) remains the basic law governing the management of the entire forests and forest lands of the country.Issuing timber licenses and permits to private sector concessionaires (holders of Timber License Agreements) invariably entailed peripheral operations that became the underlying causes of deforestation such as building roads, logging camps, and initial settlements for forest workers. The 1987 Constitution, however, no longer allowed the granting of any Timber License Agreements and permits with its new focus on production sharing, joint venture, and co-production. TLAs were phased out and many logging companies stopped operations. Abandoned Timber License Agreements became open-access areas and accessible loggedover areas were settled by former Timber License Agreements employees and new migrants.Logging roads provided easier access and facilitated timber cutting and the transport of illegal timber and other forest products.Over-regulation and corruption in the transport and processing of logs harvested from private landsSecuring permits to harvest and transport timber harvested from smallholder private lands is a complicated, costly and cumbersome business (Pulhin and Ramirez 2016). To compound matters, roadside checkpoints, manned by composite teams of DENR, police, military and customs personnel, established as a measure to address illegal logging, have become an instrument of extortion (Tesoro and Angeles 2008). Over-regulation and corruption are two of the reasons hindering investment in the forest sector in the Philippines. Even if the logs and other forest products are properly documented, personnel manning the checkpoints still demand payment. Thus, recycling of permits to transport often happens with the connivance of those who are regulating the movement of logs and other forest products. Spot-checks of wood-processing plants can also involve corrupt payments during DENR inspections of products for both domestic and export markets. Per RA 11032 s. 2018 on the 'Ease of Doing Business and Efficient Government Service Delivery', DENR at both national and regional levels has increased its efforts to eradicate corruption in the transport and processing of logs harvested from private lands, and to reduce transaction costs for the private sector and smallholders. 19 Rewards to informers of forest violations To curb rampant illegal logging, a nationwide moratorium was declared by issuing EO No. 23 on February 1, 2011. By the time the moratorium came into effect, an estimated 70% of all 77 provinces in the Philippines were already covered by logging bans or moratoria issued during 1968-1994 (Guiang 2001, GIZ andDENR 2013). Specifically, DENR issued a DAO in 1991 that banned timber harvesting in all old growth and virgin forests and in areas above 50% slope and higher than 1000 meters above sea level. The experience in implementing logging bans in natural forests has been mixed and very variable. EO 23 did not initially deter illegal logging as evidenced by the large-scale timber smuggling that occurred in 2012. This resulted in the confiscation of illegally sourced timber and the relief of key DENR officials in Regions 11 and 13. The nationwide moratorium has not worked as domestic demand for timber products in the Philippines has remained strong and access to an estimated 5 million ha of forest lands is open due to weak enforcement capacities. For example, the devolution of forest protection authority to Provincial and Community Environment and Natural Resources Offices was not complemented with additional labor or fiscal resources: \"Existing forest guards were each left in charge of between 4000-7000 ha of forest, which was too large for accurate monitoring and too open to armed threats with little to no security detail\" (Domingo and Manejar 2019:44).The logging bans have also led to reductions in Government revenues as well as incomes and employment in the logging and wood-processing industries. It may also have led to increased costs associated with forest protection efforts that are not as effective as those provided by local landholders (Mickelwait et al 1989). The major reasons for the persistence of illicit logging are socio-economic factors, such as a lack of alternative livelihood options, and limited capacities to protect forests. Without addressing these issues, the logging moratorium became a perverse incentive. Despite evidence to the contrary, a total commercial logging ban (or a more drastic total ban on all forms of tree-felling) is still regarded by several environmental advocates as the only rational way to conserve the Philippines' forest resources.PD 705 mandated the Government to conduct reforestation activities. Section 33 states that the Government shall reforest bare or grass-covered tracts of forest lands, brushlands, open tracts of forest lands, and other areas needing reforestation. Multiple reforestation projects and programs were established with the secondary aim of employing upland people. The reforestation audit in 1987 highlighted that replanting often happened several times in areas already reforested. Furthermore, project workers were found to burn planted areas as a way of securing continued employment. The contract reforestation program in the 1990s also had little success due to limited ownership by local communities to maintain and protect the reforested areas, corruption, and inadequate monitoring.The promulgation of the Local Government Code in 1991 has not been followed up by adequate decentralization of human and financial resources to govern natural resources at the provincial, city, municipality and barangay levels. This is manifested in terms of shortages of staff and limited budgets at the local government unit level. This has been compounded by the continued (over-) regulatory and tree-planting foci of DENR, changing tenurial arrangements (for example, following the promulgation of the Indigenous People's Rights Act in 1997 and the expiry and non-renewal of 50% Under the Local Government Code (RA 7160), the devolution of DENR functions is limited to certain functions but does include authority to apprehend violators of forest laws (Section 28). This can be seen as a perverse policy with considerable risks of graft and rent appropriation by local actors due to the non-enforcement of forest laws (see, for example, Wardell and Lund 2006). Furthermore, under Section 7 of the Code, the creation of a local government unit or its conversion from one level to another level (e.g. from sitio to barangay) shall be based on verifiable indicators of viability and projected capacity to provide services. In some cases, forest lands have been subject to conversion by qualifying as a barangay, such as the Upland Land Grant in Real Quezon in the 1980s.The Municipality of Narra in Palawan was originally a resettlement area for landless people from Luzon created through Proclamation 190, s, 1950. EO No. 355 . 196, s, 1990 declared certain areas in Quezon Province as production forests subject to the coverage of the Comprehensive Agrarian Reform Program despite its declaration as a national park in 1977. This proclamation contributed to the rapid loss of forest cover as communities cut trees not only in the resettlement area but also in the surrounding protected area for charcoal and other wood uses.RA 7076 s, 1991 established a DENR-coordinated People's Small-Scale Mining Program to promote, develop, protect and rationalize viable small-scale mining activities to generate more employment opportunities and provide equitable sharing of the nation's wealth and natural resources. Small-scale mining contracts are under the jurisdiction of local government units. Many small-scale mining activities throughout the country have led to deforestation exacerbated by new migrants due to limited capacities to regulate and monitor. In 2004, the Philippine Government adjusted its development strategy further toward neoliberalism, a centrepiece of which was tariff liberalization. EO No. 264 committed the Philippines to bring down tariffs on all but a few sensitive products to 1-5% by 2004. This led to a large increase in mining applications from foreign firms. On Palawan, particularly in the south, this resulted in 350 approved mining applications and more than 400 pending applications (Rasch 2014:241) Incentives have been used to develop plantations, to support the establishment or expansion of forest industries, and as a way to reduce harvesting of natural forests in the Philippines. Incentives are appropriate when the private net returns, including externalities, are greater than the returns from alternative land uses. However, rates of return also have to be compared with investments in other sectors and other regions and countries. In the Philippines, the majority of plantation establishment has been carried out by the Government or in tandem with Government incentives. The country is still at the initial stage of plantation development as the involvement of the private sector is in its infancy. The imposition of a nationwide logging ban in 2011 was not accompanied by appropriate measures to promote new wood supplies. Region 13 (the so-called \"timber corridor\") is an exception to this rule.Private-sector development in the forestry sector has never really got off the ground in the country even after the Asian financial crisis in 1997.The Revised Forestry Code of the Philippines enshrined in PD 705 (1975), as amended by PD 1559 (1978), remains the only overarching policy framework to govern the use, management and protection of the country's forest resources even though \"most of its provisions have become obsolete, particularly the allocation of forest lands and tenure\" (FIRM 2019:47). Currently, there are an estimated 97 laws, EOs and AOs governing land and forest administration in the Philippines (Domingo and Manejar 2019:17). A draft Sustainable Forest Management Act and both a National Land Use Act and a Land Administration Reform Act have been languishing in the country's legislature for more than three decades. The enactment of the Sustainable Forest Management Bill remains elusive due to the lack of widespread support from members of both Houses in Congress.In the absence of an overarching framework law on forestry, a Presidential EO No. 318 was adopted in 2004: Promoting Sustainable Forest Management in the Philippines. Section 2.4 includes the following provisions in terms of \"Incentives for enhancing private investments, economic contribution and global competitiveness of forest-based industries\".A first attempt by DENR FMB to develop implementing rules and regulations in 2004 was not endorsed or implemented. A new draft DAO -Implementing Rules and Regulations of EO No. 318 of 2004 -was submitted to the DENR Secretary in mid-2019 following an 18-monthThe national policy framework of incentives for enhancing private investment and the economic contribution of the forest sector consultative process conducted by the Forestry Development Center of the University of the Philippines Los Baños, guided by a technical working group comprising representatives of Government (65%), people's organizations (17%), private sector (6%), non-governmental organizations (6%), academics (3%) and Food and Agriculture Organization of the United Nations' Forest Law Enforcement, Governance and Trade (FLEGT) (3%), with financial support provided by FAO, European Union and FLEGT. The draft implementing rules and regulations are still with the DENR Secretary and include new proposals for \"Incentives for enhancing private investments, economic contribution, and global competitiveness of forest-based industries\" (Table 9).There are three key challenges for DENR FMB.1. How to address the key barriers to financing private-sector investment in sustainable forest management in the Philippines.How to reduce the regulatory transaction costs associated with the production, harvesting, transport and processing of timber from private lands to make timber plantations an attractive business for smallholders.How to develop clear implementing rules and regulations to implement the seven strategic components of the Forest Investment Road Map (FIRM 2019:46), including the \"Institutionalization of forestry investment support mechanisms\".DENR is leading efforts to simplify both tenurial agreements and licensing procedures whilst increasingly recognizing the multiple uses and benefits of forest lands. It is planned to replace existing agreements established since the 1980s with sustainable forest management The Government shall provide a favorable and stable policy and investment environment that shall promote the development of efficient, globally-competitive and environment-friendly forest-based industries, ensure their sustainable raw material supply and encourage value-added processing in-country to boost rural employment and the economy.Filipino entrepreneurship in forestry shall be encouraged and supported.A package of incentives and services that are responsive to the development of forest in private and public forest lands shall be adopted to encourage the development of private forests and privately planted trees and enhancement of capacities of stakeholders to engage in private forest development and related activities.The development of high-value crops and non-timber forest crops in public forest lands, private lands and in-home forest gardens shall be promoted and encouraged to enhance economic and ecological benefits and attain self-sufficiency in the country's wood requirements.Incentives shall be provided to encourage co-management of forest resources involving national and other government agencies, local government units, civil-society organizations and the private sector.agreements. 21 However, there are currently no DENR FMB guidelines or regulations for this. The Road Map adopted by DENR FMB as DAO 2019-22 on 2 December 2019 does, however, provide a general framework -Identification/validation, mapping and assessment of potential investment areas (FIRM:48-49) -which represents a promising new initiative to simplify, harmonize and streamline land tenure to stimulate new domestic and foreign direct investment in the forest sector. Additional efforts will still be needed to support the implementation of JAO 2012-01 to manage tenurial conflicts and to resolve jurisdictional issues among different agencies. The promulgation of the proposed National Land Use Act would provide additional clarity as an overarching legal framework to promote sustainable and equitable land use.The Forest Investment and Development Division of FMB have already initiated the development of a specific database for plantation investments. The Division formulated an Investment-Ready Registry for use at both the national and regional levels, which is being piloted in eight regions (CAR,2,3,6,10,11,12,13). The Technical Bulletin on the development of the Registry is pending approval by the Policy Review Committee of FMB.Similarly, the Forest Investment and Development Division initiated the signing of a new MOA in August 2019 with the Financing Program of the Development Bank of the Philippines. This aims to assist in the development and maintenance of existing tree plantations, assisting communities and tree growers to improve their economic conditions and further address deforestation by reducing the susceptibility of communities to natural disasters. The Technical Bulletin for implementation is also pending approval by the Policy Review Committee of FMB.The Road Map (DAO 2019-22) refers to incentives about only one of the potential investment areas (FIRM:14-38), namely, the planting, development and processing of biomass resources (FIRM:24-25), specified as, \"Fiscal and non-fiscal incentives include Income Tax Holiday (ITH), Exemption from Duties on Renewable Energy machinery, equipment and materials; tax exemption of carbon credits; financial assistance program, etc while incentives for farmers engaged in the plantation of biomass resources shall be entitled to duty-free importation and exemption from payment of value-added tax (VAT) on all types of agricultural inputs, equipment and machinery within 10 years from the effectivity of the Act, subject to verification by the Department of Energy (DOE). \" (FIRM:25).A summary of the outcomes of the recent implementing rules and regulations' consultative process about Article V of EO No. 318 on incentives is presented in Table 10. Forest plantations for timber production were encouraged through deregulation and providing incentives for establishing them on private land. The success in Caraga Region was due, in part, to the regional DENR lifting restrictions on the harvesting, transporting and sale of firewood, pulpwood or timber planted on private land, through DAO No. 4, 1987. Private tree plantations still need to be registered per the DMC No. 97-09 (DENR 1997) to ensure proof that those timber products came from private land. A cutting permit was no longer required and Private Tree Plantation Ownership Certificates for tree plantations within private and titled land or tax-declared alienable and disposable land were issued per DENR MO 99-20. Plantation logs were also exempted from payment of forest charges.A series of policy restrictions on commercial operations in natural forests and the nationwide logging moratorium ban introduced in 2011 triggered a shift in accessing timber from natural forests to plantation forests. 16 out of 29 wood-processing plants in Talacogan stopped operations. Due to the difficulties in accessing forest lands to establish tree plantations, many farmers in Mindanao shifted to planting trees on private land. This had several advantages, including the price of plantation wood remaining stable given the lack of wood supply from natural forests, a good road network existing for easy transport and marketing and the remaining wood-processing plants in Butuan City (six veneer and seven plywood plants) served as a ready market for plantation wood for the smallholding tree farmers holding Private Tree Plantation Ownership Certificates. Many downstream industries such as trading, trucking and final processing were also created.Tree plantations of fast-growing species, such as 'falcata' (Paraserianthes falcataria) on private land in Talacogan, Agusan del Sur, Caraga Region represent a thriving business. Tree farmers' gross income per ha ranges USD 2222-13,333 per rotation of 8-10 years. With estimated plantation establishment cost of USD 93 per ha and a harvest and roadside transport cost of USD 17 per m 3 , a smallholding tree farmer could generate a net income of USD 4444-5,555 from an average yield of 220 m 3 per ha (Carandang et al 2015).The Philippines operates a complex system of registration for smallholders' tree farms, which is designed primarily to prevent illegal timber logging and transport (Calub 2005).The Community Environment and Natural Resources Offices are responsible for tree-farm registration and maintain an inventory. Electronic processing and management of this data is limited. Most tree farmers only register when they wish to harvest trees for sale. 22 Some provinces introduced \"environmental protection fees\". In Talacogan, tree farmers were affected by such a regulation as the local government collected USD 0.78 per m 3 . Other tree crops being planted by smallholders in the province and other parts of the Philippines include rubber (Hevea brasiliensis), Gmelina arborea, Acacia mangium and Swietenia macrophylla.Establishing falcata plantations is a viable business in terms of an internal rate of return and annuity value of about 48% and USD 668, respectively. As a short-rotation tree-crop aged 12 years, falcata has a net present value of USD 4140 at 12% (Carandang andCarandang 2009, Carandang et al 2015). Additional incentives, such as tax breaks on revenues, provision of lowinterest and long-maturing loans, less stringent requirements for wood processors, improving access to price information, improved maintenance of farm-to-markets roads used by tree farmers and opportunities to export plantation logs may enable other provinces to replicate the success in Caraga Region.A vertically integrated plantation and processing company in Aurora Province and Caraga Region The proposed forest investment assumes that migration into the forested uplands of the Philippines will increase pressures on natural forests and hence create opportunities to establish new plantations as an alternative resource, conditional on stable and clear Government policies that respect the security of land tenure and encourage the utilization of planted timber resources. The promulgation of EO 23 s. 2011 effectively did this.The socio-economic status of smallholding farmers and local market demand will dictate which species are to be planted and the cutting cycle of the investment. A balance needs to be achieved between ensuring uniformity of product to create volumes to attract buyers whilst avoiding the risks associated with monocultures. The Corporation's forest plantation investment aims to develop 1020 ha of degraded forest lands by combining different tree species based on site conditions and local market demand, encompassing fastgrowing fuelwood species (Madre de cacao on a 4-year cutting cycle to create cash flow, intercropped with high-value timber species (Swietenia macrophylla) on an 8-12-year cutting cycle (Table 11)). Infrastructural support ensures that road networks, planting methodology and tools, forest harvesting and handling technologies, and downstream manufacturing technologies are assessed before attracting private equity investment to ensure the sustainability of the project.The high-value timber products will comprise doors, furniture, mouldings, plywood and veneer with an anticipate log volume of 1553 m 3 per year. This will generate up to 107 jobs as plant employees, generate sales of about PHP 80 million per year, and investments of around PHP 50 million for infrastructure and woodworking equipment. The estimated total project revenues and community benefits from the investment are presented in Tables 12 and 13, respectively. The success of the proposed Corporation's plantation highlights the critical need for clarity and stability in the forest policy and regulatory framework; security of land tenure; the ability to generate sustainable livelihoods for the upland farmers, that is, a bottom-up approach with farmers' incomes in mind; lower cost of materials and cheaper handling costs; certified highvalue timber; and creating a broad base of raw material to facilitate downstream investments to create livelihood opportunities in the lowlands, thereby limiting further migration to the uplands.Poor quality of the business environment, including political and economic stability Lack of security of land tenureThese form major determinants of investment flows.Most investors are concerned with gaining new markets and maximizing risk-adjusted returns. They prefer investing in countries with a combination of good growing conditions and a stable investment environment. In 2011, there were an estimated 65.7 million ha of commercial, production-oriented forest plantations in developing countries, of which about a third were privately owned, with significant regional differences.The amount of privately owned (established) plantations in Latin America is 18.7 million ha, (78% of total commercial-production plantations), 5.1 million ha in Asia and Oceania (14%), and 0.3 million ha in Africa (6%). Total private-sector plantation investment in developing countries was estimated at USD 1,763,000,000 in 2011. 24 Most of the investments are in industrial pulpwood production. 25 Investments in Latin America account for a large majority of the global total amount -USD 1,464,000,000 (83%) -while investments in Asia and Oceania are estimated at USD 279 million (16%). 26 Even within Latin America, Brazil accounts for over 80% of the regional total.International timberland investments by fund managers, financed primarily by institutional investors such as pension funds and endowments, have emerged as a new source of financing of sustainable forestry in developing and emerging countries. Total assets under management have already reached an estimated USD 80 billion worldwide. The total volume of institutional timberland investment into developing and emerging countries is still, however, quite limited, and heavily focused on a few countries in Latin America.Several opportunities exist to improve other elements of the enabling environment for investments in the Philippines and to influence the investment decisions of smallholders, communities, SMEs, large domestic and international companies, and timberland investors. These are related to national policies, legislation, regulations, governance, transparency, availability of information, and infrastructure.There are several barriers to financing private investments in sustainable forest management in the Philippines.Higher real and perceived risks than in Latin American and industrialized countries. These include political risks, unsecured land tenure, currency risks, social and environmental risks, as well as reputational risks.Limited availability of, and access to, both domestic and foreign equity and loan financing. International equity financing is especially difficult to secure for projects under USD 20-25 million.Forestry businesses face unfavorable terms for financing. Even if domestic debt financing is available, the interest rates can be excessively high (in local currency) and loan payback periods very short (from six months to 3 years).Higher up-front costs of preparing investment projects in the forestry sector due to a lack of reliable information on forest and higher transaction costs throughout the investment cycle for small-to-medium-sized projects, among other things.The need for tax reform. In 2017, PHP 441 billion of foregone revenues (representing 2.8% of GDP) was provided as tax incentives to 3150 companies, including the elite top 1000 companies. This excluded all SMEs who paid the regular 30% Corporate Income Tax (CIT). A comprehensive tax reform package aims to lower CIT from 30% to 20% and to reorient fiscal incentives to strategic growth industries and make incentives available to investors who make \"net positive contributions to society\" (Department of Finance 2020).Some of these issues are addressed by the different clusters of recommendations grouped as direct incentives and indirect incentives below.Facilitate production of tree seedlings by people's organizations through community-managed procurement in locally funded projectsSeedling production represented the largest component cost of the National Greening Program, accounting for 34% of the total costs in 2019 (Table 14).The dominant direct incentive provided by DENR before, and during, the implementation of the National Greening Program has been the supply of free tree seedlings produced either in one of 11 DENR FMB nurseries and/or procured from private nurseries. Fast-tracking by DENR to meet targets resulted in \"missed financial opportunities for people's organizations\", particularly after 2016 (CoA PAO-2019-01: 52). The implementing rules and regulations of the Government Reform Act 27 allow a procuring entity, as a contract manager, to use negotiated procurement as a means to engage a community to implement a locally funded communitybased project. DENR is authorized to award the contract of seedling production to the people's organizations themselves.DENR needs to change its approach to seedling production and distribution in favour of giving the time and training to support people's organizations to produce tree seedlings themselves. This will ensure that the people's organizations will be able to maximize the socio-economic benefits of the Program, DENR will be able to \"lessen the risk of fraud and corruption\" associated with seedling procurement (CoA PAO-2019-01: 52) and it may assist the people's organizations to transform into cooperatives, thereby gaining access to credit facilities and finance, equipment and technical assistance from other Government agencies. 28 In effect, this represents a shift from a direct incentive to an indirect incentive by improving the enabling environment for people's organizations. Program -may also be necessary to reflect the preferences of people's organizations for plant fast-growing exotic species rather than the prescribed shift from the use of exotic to indigenous species.Strengthen implementation of the convergence initiative by creating an in-house \"clearing mechanism\" of available grants, credit facilities and training support services and their respective requirementsThe National Greening Program and the Enhanced National Greening Program were designed as a convergence initiative involving a large number of Government agencies (Figure 1).\"High investments are needed to unleash the full potential of the forestry sector in driving economic productivity and growth coupled with the responsible and sustainable provision of ecosystem goods and services. The task is enormous that no single entity like the government or DENR can do it single-handedly\" (FIRM 2019:75). Recommendation: DENR establishes an in-house \"clearing mechanism\" to compile information on available grants, credit facilities and training support services from different Government agencies, and the respective requirements to access each of them, to strengthen the convergence initiative.Recommendation: DENR in collaboration with the Development Bank of the Philippines develop clear and transparent guidelines on the types of financial services available through the Bank's Financing Program, and the conditions and requirements to access these for different types of investors. DENR will also explore the potential to establish an MOA with the Land Bank of the Philippines.Forest-sector SMEs, like SMEs more generally, suffer in the Philippines from limited access to business and financial services, lack of support to enhance their competitiveness, regulatory measures that constrain their ability to operate in a \"legal\" space or that create perverse incentives, and limited access to markets. These and other challenges and constraints for SMEs have been widely identified, but recommendations and efforts to address them have often been fragmented and sector-bounded, limiting the effectiveness of the intervention.The Forest Investment Road Map (DAO 2019-22) refers to incentives about only one of the potential investment areas (FIRM: 14-38), namely, the planting, development and processing of biomass resources (FIRM:24-25), as per below.\"Fiscal and non-fiscal incentives include ITH, Exemption from Duties on Renewable Energy machinery, equipment and materials; tax exemption of carbon credits; financial assistance program, etc while incentives for farmers engaged in the plantation of biomass resources shall be entitled to duty-free importation and exemption from payment of VAT on all types of agricultural inputs, equipment and machinery within ten (10) years from the effectivity of the Act, subject to verification by the DOE. \" (FIRM: 25).Recommendation: DENR develops detailed guidelines on the fiscal and non-fiscal incentives available to prospective investors in the forest sector for all potential investment areas identified in the FIRM (round wood and wood-based products, bamboo, rattan, biomass, highvalue crops including coffee, cocoa and rubber, cattle grazing and ecotourism). DENR should focus on grants, tax concessions, differential duties and fees, subsidized loans, and costsharing arrangements for each of the potential investment areas. Although the forestry sector's contribution to the country's gross national product has declined from 2.4% in the 1980s to 0.07% in 2006, it remains significant in diminishing the impacts of poverty by providing habitats for formal and informal settlements, and resources to sustain livelihoods. The forestry sector's underestimated value can be observed in its contribution of PHP 5.26 billion (0.12%) to GDP in 2013 (Carandang 2012, SEPO 2015, Esplana and Quizon 2017).The share of gross value added from forestry to GDP has progressively declined from 2006 to 2016 (FIRM:41) in contrast to the projections of both the Philippines Revised Forestry Master Plan ( 2006) and the Philippines Forestry Sector Outlook (DENR FMB 2010), suggesting that significant improvements to the enabling policy and institutional environment are needed.The indirect incentives are proposed to draw on the findings, conclusions and recommendations of the Report on policy review and institutional analysis for development of commercial forestry investment sub-projects (Wardell 2020), as follows.Clarity and stability in the overarching forest policy framework Recommendation: DENR finalizes and approves a DAO and attendant implementing rules and regulations to simplify, harmonize and streamline current tenurial arrangements as Sustainable Forest Management Agreements of variable duration (25-50 years) depending on the species to be planted. Additional advocacy may be needed to facilitate the promulgation of both the National Land Use Act and the Land Administration Reform Act.These activities should be accompanied by targeted information and education programs for national Government agencies, local government units, non-governmental and civil society organizations and the private sector, including investors.Over the past century, the forest policy of the Philippines has evolved from a corporate Timber License Agreement approach to forest management towards a community-based forest management system. After four decades since the inception of the Integrated Social Forestry Program, forest policy now recognizes local communities and indigenous peoples as joint forest managers, if not the custodians of the land and forest resources.Three milestone policy instruments adopted in the 1990s underscored the role of public and community involvement in land and forest resource management. Facilitating a change in the organizational culture of DENR FMBAlthough significant progress has been made to introduce Community-Based Forest Management Agreements, DENR's continued focus on regulation and extractive timberdriven systems drawing on past Timber License Agreements' experience underlines the failure to fully adjust policies and strategies that respond to devolved, holistic, interconnected, and community-managed ecosystems coordinated by local government units.This will necessitate a further redefinition of roles among stakeholders at the national, regional, provincial and local government unit levels. DENR will need to further decentralize functions and to delegate greater responsibility to regional DENR offices as well as Provincial and Community Environment and Natural Resources Offices. DENR regional and local offices will need to be more facilitative and less regulatory in promoting sustainable forest management with third-party forest managers. DENR and FMB at the national level will continue to define key policy, strategic and regulatory frameworks of the forest sector whilst facilitating devolved implementation by other actors.There is a critical need to move beyond a \"culture of tree planting\", \"meeting planting targets\" and providing direct incentives, such as tree seedlings, to one that also recognizes the critical role of indirect incentives, such as an appropriate enabling environment to establish an overarching climate of enterprise. This will include greater recognition of the phasing of incentives and the importance of smallholders' tree and forest management and facilitating entrepreneurship and the marketing of timber and NTFPs by smallholders.The adoption of the Forest Investment Road Map (DAO 2019-22) with its seven-point strategic framework (FIRM:45-81), will collectively assist in facilitating a change in the organizational culture of DENR FMB whilst contributing to the requirements of RA 11032 s. 2018 on the Ease of Doing Business and Efficient Government Service Delivery.Two policy areas merit particular attention in the context of the recommendation to DENR to approve and adopt new Sustainable Forest Management Agreements as a simplified, harmonized and streamlined tenurial arrangement, as follow.Simplifying and harmonizing the continuous implementation of Community-Based Forest Management Agreements to improve development outcomes Reducing investment risks through guarantees, public-private partnerships and innovative financing schemes as well as through access to, and provision of, reliable information.A country's physical and institutional infrastructure (roads, ports, electricity, labor markets).Collecting, collating and improving access to information on the availability of suitable land for investments, growth and yield, growing conditions, risks etc.Improving forest sector governance and transparency.Additional support for forestry and agroforestry research and development to increase productivity.Helping to organize smallholders and communities so that they can enjoy economies of scale, become more eligible for accessing finance, and gain negotiating power.","tokenCount":"13152"} \ No newline at end of file diff --git a/data/part_3/3457135068.json b/data/part_3/3457135068.json new file mode 100644 index 0000000000000000000000000000000000000000..e7efcd20ab5052ea913e2d5d368e27a12362cf73 --- /dev/null +++ b/data/part_3/3457135068.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"4b2a0cb90acccfccbc788b0a2b739d24","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/fb0eec9a-7749-4ae9-8b51-62ee8c9ed6e9/retrieve","id":"-509591143"},"keywords":[],"sieverID":"7206b629-4d4b-49fd-bca0-dc6ef40e0ecc","pagecount":"30","content":"OUTPUT 1 Genetic base of cassava and related Manihot species evaluated and available for cassava improvement: higher nutritional quality.The overall objective of this output is to generate genetic stocks and knowledge about genetic variability for nutritional quality traits in cassava. The main activities focus in developing and identifying cassava germplasm whose roots have higher carotene contents. Protein, Zn and Fe contents are also considered. The scope of research does focus on nutrients concentrations, related agronomic characteristics and the effect of processing. Related issues are the need for a better understanding of the biochemical and genetic basis of these high nutritional quality traits.Because of the nature of the research described in this output, it is one of the many collaborative activities between projects SB2 and IP3, as well as the HarvestPlus Challenge Program. To maintain some coherence through this report some of the activities reported herein may also be reported by SB2 and/or HarvestPlus. Several scientific articles are currently under revision or have been accepted for publication in peer-reviewed international journals. Many of the activities and results related to Output 1, therefore, are going to be presented through the Materials and Method, Results and Discussion sections of the respective manuscripts. Since some of these manuscripts use data generated after many years of research, some results may involve data reported earlier. Since there are many references shared by the different manuscripts all references are pooled together at the end of Output 1.Activity 1.1. Variation of quality traits in cassava roots evaluated in landraces and improved clones (Euphytica).A total of 2457 cassava clones have been evaluated and a description of the origins of this germplasm is provided in Table 1.1. There were two types of clones, those produced from breeding projects at International Center for Tropical Agriculture (CIAT, Colombia), International Institute of Tropical Agriculture (IITA, Nigeria) or Rayong Experimental Station in Thailand, and clones from landraces from the germplasm collection held at CIAT.Table 1.1. Summary of the origin of the cassava clones evaluated in one or more of the different analyses described in this article.Output 1-2Because of limitation in the number of samples that can be analyzed at any given time and the impossibility of storing the roots, the evaluations were carried out through a period of four years since 1998 through 2001. Plants maintained at the in vitro germplasm collection were hardened in greenhouse conditions and, after two months, transplanted to the field. Evaluations were unreplicated, because of the lack of planting material and the time required to multiply it. Tissue samples from no less than three roots per accession were taken 10 to 11 months after transplanting. All plants evaluated were grown at CIAT station in Palmira (Valle del Cauca Department, Colombia).The extraction procedure outlined by Safo-Katanga et al. (1984) was modified by extracting root parenchyma with petroleum ether, as described and utilized by Iglesias et al., 1997. The modified protocol included several extractions with petroleum ether (35-65 ºC).Approximately 5 g of tissue was obtained from representative and randomly selected roots from plants of each clone. The use of alternative solvents has been suggested more recently (Rodriguez-Amaya, 2001) and incorporated in more recent quantifications, which are not reported in this article. The quantification was done by visible spectrophotometry using a Shimadzu UV-VIS 160A recording spectrophotometer. Detection was done at l = 455nm (Rodriguez Amaya 1989;1990;Scott & Hart, 1993).Five commercially sized roots (minimum length 18 cm) were randomly chosen. Roots were analyzed using the method of Wheatley et.al. (1985), with one modification: prepared roots were stored under ambient conditions for 7 days instead of 3 days. The proximal and distal root ends were cut off and the distal end was covered with clingfilm. After one week, seven transversal slices, 2 cm thick were cut along the root, starting from the proximal end. A score of 1-10 was assigned to each slice, corresponding to the percentage of the cut surface showing discoloration (1=10%, 2=20%, etc). The mean score of PPD for each root was calculated by averaging the score across the seven slices.The sampling procedure was the same as for the evaluation of carotene content. Roots were dried, ground to powder and sent to the Analytical Laboratory of University of Adelaide were the samples were analyzed by inductively coupled plasma atomic emission spectrometry. All sample processing was carried out to avoid as much as possible contamination from soil, which has mineral concentrations higher than that of vegetal tissues. Protein content was estimated by multiplying N concentrations by a constant of 6.25, although Hock-Hin & Van-Den reported in 1996 that in the case of cassava this figure is probably ranging from 4.75 to 5.87. The original conversion factor has been maintained to facilitate the comparisons with previous reports. N quantification was based on dried root flour. Therefore, HCN had already been released before the quantification and no nitrogen from cyanogenic compounds should have remained.Dry matter content was estimated using the well-known specific gravity methodology (Kawano et al., 1987). Approximately five kilograms of roots were weighted in a hanging scale (WA). The same sample was weighted with the roots submerged in water (WW). Dry matter content was estimated with the following formula:where WA= weight in the air and WW= weight in water.A 1 to 9 scale for the visual estimation of root coloration was developed and printed for a uniform estimation of color intensity. The color of root parenchyma can vary from white, cream, yellow, and orange. Pinkish roots (score 9) have also been observed in cassava. Total and reducing sugars were estimated following the procedure outlined by Cronim & Smith in 1979. Cyanide potential (HCN) was quantified following the colorimetric procedure suggested by Essers et al. (1994).Table 1.2 presents a summary of measurements for dry matter, HCN, total carotene for roots and leaves, as well as color, PPD and sugars in the roots. Descriptive statistics make use of all the data available for each variable. However, for the association between two traits, only data taken on the same roots for the traits whose association is analyzed were used.The observed values for dry matter content and HCN in roots agree with those reported in the literature (Buitrago, 1990). The average for PPD was 24.47%, with individual values ranging from 0 to 100%. Distribution of PPD was asymmetrical with a longer tail to the right, and concentration of frequencies around the low-PPD values. Carotene content in the roots ranged from 1.02 to 10.40 µg / g fresh tissue (FT), demonstrating the potential of cassava clones with yellow roots to contribute overcoming VAD in regions of the world where this malady is a chronic problem. There was a clear asymmetrical distribution for carotene in the roots, which concentrated frequencies in the lower values to the left of the plot (Figure 1.1), and a long tale to the right (skewness value = Project IP3: improving cassava for the developing world Output 1-42.64). The visual scoring of root color, based on a sample of 788 clones also had a higher frequency of roots with light or white coloration, with fever cases of roots with intense coloration (skewness = 1.73).Table 1.3 presents the correlation coefficients among different root traits. There was a clear and positive association between carotene and HCN in the roots. This association, as suggested by Graham et al. (1999), is probably due to the fact that clones with yellow roots are commonly found in the Amazon basin, where highly cyanogenic (bitter) lines are also preferred. It is possible, however, to obtain clones with intense yellow coloration in the roots yet low levels of HCN. For instance, the elite clone CM 2772-3 developed for the Putumayo Department in Colombia's Amazon Basin, has yellow roots with a relatively high concentration of carotene (the average from two evaluations was 0.51 µg / g FT) and low level of HCN (93.5 ppm from the same samples were carotene were measured). Phenotypic correlation between total carotene content in the roots and root color score (n=788) based on the visual scale was very high and positive (ρ = 0.860). This value demonstrates that the identification of cassava clones with high carotene density in the roots can be easily and effectively done through a visual evaluation of their parenchyma color. The higher the color intensity, the higher the amount of carotene present, supporting the reports by Iglesias et al. (1997) and Graham et al. (1999) but based on a considerably larger sample.Because of the economic importance, the association between PPD and other traits was also analyzed. The correlation coefficient (ρ = 0.348) indicates that there is a positive association between dry matter content and PPD, further supporting previous reports (Jennings & Hershey, 1985;van Oirschot et al., 2000). This is an unfortunate situation because, in general, breeding projects look for higher dry matter content, which leads to a faster or more serious PPD. HCN does not seem to have a strong effect on PPD, whereas carotene seemed to reduce and/or delay the onset of PPD (ρ = -0.123). 1.1 illustrates the relationship between PPD and carotene, and suggests that with increased amounts of carotene there is an apparent reduction or delaying of PPD onset. The exceptions can be explained by samples having higher than average dry matter contents.Figure 1.1. Relationship between carotene content (µg / g FT) and PPD (%) analyzed in a sample of 1315 cassava roots. Most data points in the upper periphery of the distribution came from root samples with dry matter content (%) considerably higher than the average for the sample analyzed.Evaluation of PPD is prone to large experimental errors, because roots are left at room temperature (Wheatley et.al., 1985, Zapata, 2001) for seven days. Current measurements on PPD had to be carried out at different harvesting times, because of restriction in the availability of planting material from the germplasm bank and limitations in the number of clones that could be processed at any given time. Therefore, PPD estimates were probably affected by variations in the environmental conditions under which they were taken.Other associations involving dry matter content. Van Oirschot et al. (2000) reported a negative correlation between dry matter and sugar contents in cassava roots. This relationship was established on six cultivars and upon preharvest pruning of stems. In this paper, the association between these two variables is further confirmed but on a much larger sample (1374 clones) and with no pruning being involved. Project IP3: improving cassava for the developing worldOutput 1-6Trace mineral concentrations. All measurements were taken in mg kg -1 or % and on a dry tissue basis. Because of their nutritional relevance, results from few elements were highlighted. Roots showed an average of 17.1 mg kg -1 for iron, 7.5 mg kg -1 for zinc, and 0.076% for calcium (Table 1.4). Significant but weak relationships between total carotene content and Mn, and Ca were found (correlation coefficients of 0.15 and 0.13, respectively). In general, the correlations between PPD and mineral concentrations in roots were low. The higher correlation coefficients found were negative: K (ρ = -0.29); S (ρ = -0.24); and N (ρ = -0.21). There seemed to be an inverse relationship between these minerals and PPD. Table 1.4 also presents the estimates of crude protein content in root tissue. Averages for roots are slightly higher than those reported in the literature (Buitrago, 1990). A weak positive correlation (ρ=0.14) was also observed between nitrogen and HCN contents in the roots. Table 1.5 lists the best 30 clones regarding protein content in the roots. A high frequency of these clones come from Meso America.The results presented in this study are exploratory in nature. The correlations among different variables, because of the size of samples involved, are very useful in suggesting associations that can be exploited to facilitate cassava genetic improvement. Furthermore, one of the main purposes of this study was to evaluate the nutritional properties of cassava both for human and animals. It was of particular interest to determine the potential of cassava to provide carotenes through the diet as a contributing factor for alleviating vitamin A deficiency in human populations. The lack of replication for the large number of genotypes screened is a strong limitation in this study. However, the variation associated with the experimental error of carotene concentration in the roots, has been measured (CIAT, 1999). Standard deviations for measurements of roots from different plants of the same clone, of different roots from the same plant and of different samples from the same root represented 7.7, 7.0 and 2.8% of the mean carotene concentrations, respectively. Carotene content is a stable trait and genetic differences remain relatively constant even when clones are grown in different locations as indicated by a preliminary study to measure the importance of genotype by environment interaction (CIAT, 2002). Likewise, estimates of the experimental errors associated with crude protein estimations are available. Crude protein content has been measured in roots from 132 clones in repeated occasions (from 2 to 4 measurements in the same genotype) always in different years and often using a different biochemistry laboratory. Mean protein content was 3.561 and the average standard deviation in these measurements was 0.282. Coefficient of variability for crude protein content in cassava roots was low (8.72%). Observed differences in crude protein content from the sample of 600 genotypes reported here, therefore, are expected to be largely genetic in nature. CIAT is currently growing a set of contrasting clones to measure the stability of Fe and Zn measurements and the relative importance of genotype by environment for these two traits. shown to contribute increasing hemoglobin content (a typical symptom of Fe-deficiency) as reported by Kolsteren et al.(1999) and Mwanri et al. (2000).Results observed in the large samples analyzed demonstrate that cassava roots are a valuable source of carotene, which can help alleviating chronic vitamin A deficiency in human populations suffering from it. Although the negative association between carotene content and PPD is still preliminary it is a relevant issue: if higher carotenes in the roots reduce or delay PPD, this would encourage farmers to grow cassava clones with yellow roots, therefore helping to overcome the frequent reluctance by subsistence farmers to adopt new varieties. Further studies, under better-controlled conditions for measuring PPD, however, are needed for corroborating the preliminary evidence already found and are already underway.The range of variation observed in the 1789 measurements was narrower than that reported by Iglesias et al. (1997). The highest value observed in the current analysis was 10.40 µg / g FT, whereas in the previous report as much as 25.5 µg / g FT have been reported for MBRA 516. In the current analysis, carotene content in the clone MBRA 516 was measured in two different opportunities providing values of 7.8 and 8.3 µg / g FT. After Iglesias et al. (1997) publication, which was a preliminary report, carotene quantification was changed to be based on the spectrophotometry because of problems with the HPLC protocol employed that had became evident through time. The current results, therefore, are more consistent and reliable than those of Iglesias et al. (1997).Regarding protein content in the roots (estimated through N measurements), the mean crude content of 3.06 % agrees with those reported in the literature. However, the few clones with high protein content (ranging from 5.75 to 8.31%) are remarkable. New root samples from the same clones will be evaluated again to confirm current expectations, and to have a better estimation of the effect of genotype by environment interaction in the expression of this trait.The weak correlation between nitrogen content and cyanogenic potential would suggest that a fraction of the nitrogen detected originated in the cyanogenic glucosides. This association, if confirmed, seems to be low enough to allow for the possibility of developing clones with high protein and low HCN in their roots.A remarkable feature regarding protein content in the roots is that 12 out of the best 30 clones originated in Meso-America: Costa Rica, Guatemala and Mexico (Table 1.5). This proportion (40 %) is much higher than that of clones representing this region (6.3%) in the total sample of 600 clones. This would suggest that a genetic introgression from Meso-American, non-cultivated Manihot species might have occurred, resulting in a high frequency of cassava clones with increased protein content in their roots. About a dozen Manihot species grow wild in Meso-America (mainly M. aesculifolia, M. gualanensis, M. isoloba, M pringlei, and M. oaxacana), and can readily cross with M. esculenta (Brücher, 1989). Distinctive characteristics of cassava clones from this region (particularly Guatemala) have been reported using simple sequence repeat markers (CIAT, 2001). Cassava clones from this region are currently recovered from the in vitro collection and will be carefully analyzed for their protein content in the roots in November 2004. If only a few of these clones did reproduce the high concentrations (above 5%) reported in this study, it would already be a major finding in cassava research with enormous potential in Asia, Africa and Latin America.Activity 1.2. Variation in crude protein content in cassava (Manihot esculenta Crantz) roots.The preliminary results described in Activity 1.1 suggested a good potential for genetic variability of protein content in cassava roots. Therefore, an extensive data search was conducted to identify cassava germplasm whose roots had been analyzed for protein content more than once. A total of 133 clones from the germplasm collection at CIAT, as well as a few improved clones (1.6), whose roots had been analyzed more than once were found. For each clone, the analysis was conducted in different years and on different roots from plants grown in different environmental conditions. One genotype had root samples analyzed four times.Seven clones had three quantifications on crude protein content and the remaining 125 clones had two different evaluations for protein content in their roots.Dates reported in this study started to be generated in 1991, when roots from 125 clones were analyzed. In 1993 a second group of roots from 107 clones that had been screened in 1991 were evaluated again. The process continued with another sampling in1995 (roots from 13 clones); 1999 (roots from 21 clones); and years 2000, 2001 and 2004 with three additional clones each year. Two plants per clone were harvested and the roots from the two plants combined. From all the roots harvested from a given clone 4-5 roots were randomly selected. Selected roots were peeled and washed. From the proximal, central and distal sections of each root a slice was taken. Samples from each root were mixed together and chopped into small pieces. Resulting chips were properly mixed to obtain a uniform sample of root tissue from the 4-5 original Project IP3: improving cassava for the developing world Output 1-10 selected roots. A 100 g sample was then taken and dried in an oven with forced ventilation at 60 °C for 24 hours. Dried samples were then grinded in a mill with stainless steel grinding tool. All sample processing was carried out to avoid as much as possible contamination from soil or any other source.All solid samples were analyzed on an oven-dried basis. In the year 2000, root samples were sent to the Analytical Laboratory of University of Adelaide where the samples were analyzed using the total combustion gas chromatograph or Dumas method (Colombo and Giazzi, 1982). A Carlo Erba Instrument (model is NA 1500 series 2 Total Combustion Gas Chromatograph) was used in the quantification on 10-15 milligrams of samples. The limit of determination for the sample is calculated as 10 X the standard deviation of the blank.All the remaining samples were analyzed at the plant tissue analytical laboratory at CIAT. Nitrogen determination was based on a modification of the Kjeldahl method (Skalar, 1995). The root samples were digested with a mixture of sulphuric acid, selenium and salicylic acid. The salicylic acid forms a compound with the nitrates present to prevent losses of nitrate nitrogen. The digestion of the samples started with hydrogen peroxide and with this step the larger part of the organic matter is oxidized. After decomposition of the excess of H 2 O 2 , the digestion is completed by concentrated sulphuric acid at elevated temperature (330 °C) with selenium as catalyst (Walinga et al. 1989;Novozamsky et al. 1983). Nitrogen was quantified colorimetrically on a Segmented Flow Analyzer. In the coloring process, salicylate, nitroprusside (catalyst) and active chlorine are added to form a green colored complex with the ammonium ion. The absortion was measured at 660 nm (Krom, 1980;Searle, 1984).Protein content was estimated by multiplying N concentrations by a constant of 6.25, although Hock-Hin & Van-Den reported in 1996 that in the case of cassava this figure is probably ranging from 4.75 to 5.87. The original conversion factor has been maintained to facilitate the comparisons with previous reports. N quantification was based on dried root flour. Therefore, HCN had already been released before the quantification and no nitrogen (or trace amounts) from cyanogenic compounds should have remained.Statistical analysis was made using the square root transformation because the original data ranged from 1 to 8% (Gomez and Gomez, 1984). Because roots from one clone were measured in four different occasions, roots from seven clones in three occasions and the remaining 125 clones were evaluated only once, the harmonic mean (2.04), rather that the actual average was used in the estimation of a common standard error for the comparison of the means of two different clones.Table 1.6 describes the origin of the 133 clones evaluated and main statistical parameters for clones grouped depending on their origin. The samples of clones evaluated should not be considered as representative of each country within the accessions included in the cassava germplasm collection at CIAT. Perhaps the only relevant information about the grouping of clones made for Table 1.6 is the remarkably low levels of proteins in improved cassava germplasm. The important information from Table 1.6 is the range of variation for protein content in the germplasm evaluated. The highest level was observed in an accession from Colombia with 7.56 % of crude protein. The lowest level was observed in a Thai variety with only 1.12% crude protein.The analysis of variance for the variation in protein content (√ %) is presented in Table 1.7. The data analyzed did not come from a study designed for this purpose. It is the consolidation of information taken over the years and includes only data on protein content from roots of cassava clones that had been evaluated more than once. Data analyzed was based on the square root transformation. Results from Table 1.7 provide a strong evidence to support the hypothesis of a genetic variation in protein content in cassava roots. In other words the variation ranging from 1.12 to 7.54% crude protein to a considerable extent has a genetic origin. The relative magnitude of the error (variation from sample to sample from roots of the same clone) was small as well as the coefficient of variation, which was only of 5.56% (Gomez and Gomez, 1985;Steel and Torrie 1960) The total variation among the 133 clones evaluated is illustrated in Figure 1.2. The standard error for the difference between two means is also provided in this Figure . As expected the differences among means and the size of the standard error clearly suggest statistical differences among the germplasm evaluated.Relatively little efforts have been made to learn about variation in nutritional quality of cassava roots. In general, it is considered that the only contribution of cassava roots is in term of energy from the starch present in then. This article provides information that demonstrates that cassava roots can also be a valuable (or at least a better) source of proteins. Chavez et al. ( 2004) provided additional information on the nutritional quality of cassava roots in terms of carotene, Fe and Zn contents.Results from this study are indeed very promising. It should be highlighted that results from only 133 clones have been analyzed and that the world cassava germplasm collection has more than 6000 accessions. Therefore, it is valid to assume that there are excellent possibilities of finding cassava clones with roots with as much as 8% (or above) protein content. The possibilities of further increasing the natural range of variation for protein content through traditional recurrent selection methods are also very encouraging. This activity will come to support on going research to increase protein content in cassava roots through interspecific crosses (CIAT, 2003) Based on the promising results reported in this article a group of \"high-protein clones\" have been planted and the protein content in the roots will be analyzed along as the genotype by environment interaction assessed to understand the relative importance of inheritance and Project IP3: improving cassava for the developing worldOutput 1-12 environment in the expression of protein content in the roots. Amino acid profiling of the protein in these roots will also be attempted.It was surprising to observe the poor performance (for protein content) of the four improved clones included in this study. Although this is not conclusive evidence, these results would suggest that improving cassava for higher productivity might result in a gradual loss of high protein content originally present in the landraces, unless proper efforts are made to quantify and use protein content as criterion in the selection process. Roots from a total of 101 cassava clones have been evaluated and a description of the origins of this germplasm is provided in Table 1.8. There were two types of clones, those produced from breeding projects at International Center for Tropical Agriculture (CIAT, Colombia) and clones from landraces from the germplasm collection held at CIAT.Randomly selected roots from plants of each clone were harvested after 11 months of planting and the carotene analysis was done immediately after harvest. Sqrt (% protein)The extraction procedure outlined by Safo-Katanga et al. (1984) was modified including several extractions with acetone and petroleum ether (35-65 ºC). Two or three commercially sized fresh cassava roots were peeled and cut into small pieces. The pieces were grated and blended using a household food processor. Approximately 5 g of tissue was obtained for extraction. Carotenoids extract was obtained by homogenization using a polytron homogenizer, followed by centrifugation to separate the liquid extract from the solid residue.The quantification was done by visible spectrophotometry using a Beckman DU 640 recording spectrophotometer. Detection was done at λ= 450nm (Rodriguez Amaya 1989;1990, 2001;Scott & Hart, 1993). Five commercially sized roots (minimum length 18 cm) were randomly chosen. Roots were analyzed using the method of Wheatley et.al. (1985), with one modification: prepared roots were stored under ambient conditions for 7 days instead of 3 days. The proximal and distal root ends were cut off and the distal end were covered with clingfilm. After one week, seven transversal slices, 2 cm thick were cut along the root, starting from the proximal end. A score of 1-10 was assigned to each slice, corresponding to the percentage of the cut surface showing discoloration (1=10%, 2=20%, etc). The mean score of PPD for each root was calculated by averaging the score across the seven slices.Because of the limitations in the number of roots whose carotene content could be determined each day, harvest took place from April 12 to April 28, 2004. Each day a sample of roots was taken for carotene quantification and another sample was used for PPD determination. To avoid variations in the environmental conditions in which the roots were maintained for PPD quantification, the roots were kept in a controlled environment chamber at 25 °C and 60-80% moisture. Dry matter content was estimated by weighting 20-30 g of chopped fresh roots and, then, drying them in an oven at 60 °C for 24 h. The relationship between dry and fresh weights (expressed as percentage) was used for estimating dry matter contents.A 1 to 9 scale for the visual estimation of root coloration was developed and printed for a uniform estimation of color intensity. The color of root parenchyma can vary from white, cream, yellow, and orange. Pinkish roots (score 9) have also been observed in cassava.The relationship between variables was evaluated through regression analysis Different alternative models were considered for each case and the best one selected to be presented.In the case of PPD, a variable measured as percentage which presented many cases of values between 0-10 %, data was transformed using the Arcsin √ percentage transformation (Steel and Torrie, 1960). Dry matter content is also expressed as percentage. However, no data below 17% (only one data point) was found and, therefore, the Arcsin √ percentage transformation was considered not necessary. Table 1.9 presents the descriptive statistical parameters for color intensity, carotene content, PPD and dry matter content from the roots of the 101 clones evaluated. The range of variation (from 1.79 to 7.74 µg / g FT) and average (2.06 µg / g FT) for carotene content Carotene content (µg / g FT) PPD (transformed) agree with those reported earlier (Chávez et al., 2004). Average PPD (20.08) and dry matter content (34.52%) also agree with previous results (Chávez et al. 2004;Cortés et al. 2002).Figure 1.3 depicts the general relationship between post-harvest physiological deterioration and carotene content in the roots. As expected, roots with low carotene content (white parenchyma) were more frequent resulting in a clear asymmetrical distribution for carotene in the roots, which concentrated frequencies in the lower values to the left of the plot, and a long tale to the right (skewness value = 1.34). PPD values varied considerably (from 0.0 to 73.1%) at carotene contents lower than 1.0 µg / g FT, but then tended to have a ceiling (27.1%) at higher carotene contents (Figure 1.3).Results from Figure 1.3 suggest that other factors may play a role in determining PPD when carotene contents are lower than the 1.0 µg / g FT threshold. Regression analysis resulted in the equation PPD = 26.981 -11.657 Ln (carotene content), with a coefficient of determination R 2 = 0.515. These results clearly indicate that PPD is negatively associated with carotene content (regression coefficient significantly different from zero with P < 0.0001) and that a significant proportion of the variability measured for PPD could be explained by the independent variable (carotene content). Project IP3: improving cassava for the developing world Output 1-16Figure 1.4 illustrates the relationship between carotene content and color intensity in the root parenchyma. In this analysis one data point (color score = 8; carotene content 4.81 µg / g FT) was clearly outlying and was not considered in the analysis. The regression analysis suggested an exponential relationship (carotene content = 0.196 e 0.627(color intensity ), with a coefficient of determination R 2 = 0.769. Finally, the relationship between post-harvest physiological deterioration and dry matter content in roots is illustrated in Figure 1.5. This relationship is not as clear as the previous ones with a linear regression PPD = -10.66 + 0.985 (DMC), which resulted in a coefficient of determination R 2 = 0.100. This relationship is clearly a weak one.Our results agree with those from van Oirschot, et al. (2000) who reported that PPD is positively correlated with dry matter content in the roots. This is an unfortunate situation because an important objective in cassava breeding projects is to increase root dry matter content, which in turn, will aggravate the PPD problem. However, in this study the relationship was a weak one with a small R 2 value. The most significant findings in the current study are the excellent association of carotene content in the roots with reduced or delayed PPD (R 2 = 0.515) and increased color intensity (R 2 = 0.769). The negative association between carotene content and PPD is very promising because it suggests that yellow, high-carotene cassava roots are not only more nutritious, but also would have a better marketability because their reduced or delayed PPD. It should be mentioned, however, that high-carotene roots could have an increased shelf life of just one or two additional days. The beneficial effect of carotenes, in other words, is far from enough for overcoming this serious problem for marketing cassava roots. On the other hand this beneficial effect should encourage farmers to grow yellow rooted cassava clones.The relationship between carotene content in the roots and color intensity is also relevant. Adequate laboratory facilities for the quantification of carotene contents in many developing countries and, particularly, in those regions where cassava is an important crop, are missing. The association between color intensity and carotene content clearly indicates that a simple selection based on visual scoring of color intensity should be enough for an initial selection of clones with high carotene content in their roots. Because of the exponential nature of this association, efforts should be directed at improving the color chart on which the color intensity score was based, particularly from scores ranging from 4 to 8.Two similar experiments were conducted for two consecutive years. The first one involved the evaluation of roots from four cassava clones. The second experiment was conducted on root samples from three different cassava clones. In both experiments, carotene contents were measured in fresh roots and after processing through different methodologies: boiling, ovendrying, sun-drying, Gari, shadow drying, and lyophilized (lyophilized results are reported only for the first experiment and shadow drying only for the second one).Randomly selected roots from plants of each clone were harvested after 11 months of planting and the carotene analysis was done immediately after harvest.The extraction procedure outlined by Safo-Katanga et al. (1984) was modified including several extractions with acetone and petroleum ether (35-65 ºC). Two or three commercially sized fresh cassava roots were peeled and cut into small pieces. The pieces were grated and blended using a household food processor. Approximately 5 g of tissue was obtained for extraction. Carotenoids extract was obtained by homogenization using a polytron homogenizer, followed by centrifugation to separate the liquid extract from the solid residue. The quantification was done by visible spectrophotometry using a Beckman DU 640 recording spectrophotometer. Detection was done at λ= 450nm (Rodriguez Amaya 1989;1990, 2001;Scott & Hart, 1993).From the reading performed with the spectrophotometric quantification of total carotenes, aliquots (15 ml) of petroleum extract were partially dried by rota-evaporation and completely dried by nitrogen flux. Immediately before injection, the dry extract was dissolved in 1 ml of HPLC grade acetone and filtrated through 0.22 µm PTFE syringe filter. Twenty microliters were injected in the HPLC system using a YMC-C30 Carotenoid S 5µm (250 mm x 4.6mm, Waters) column. Separation was performed by a isocratic elution with a mobile phase of methanol:methyl-t-butylether, 85:15 v/v, during 90 minutes at 0.8 ml min -1 and 23°C. β-Project IP3: improving cassava for the developing world Output 1-18 carotene was detected by monitoring absorption at 450 nm. Identification and quantification were performed by comparing retention times and visible spectra with a standard of βcarotene.The processing methods employed were:Boiling roots: Each root is split in two upon harvest. Half of it goes to boiling. The five halfroots are then mixed and a sample taken for measurement. This treatment takes places the same day the roots are harvested. The half of each root, which is not boiled, will be used for the rest of the treatments. Root samples will be mixed and then undergo the different processing methods.Oven drying: Samples are dried at 60 ºC for 24 hours. Roots are coarsely chopped to simulate what is done in the chipping and drying facilities.Liophylization: Samples are placed at -20 ºC for 36 hours under vacuum conditions. After 36 hours samples are already dry. They are ground and are ready for analysis. This information is important for storing and/or shipping root samples until quantification can be made.Sun-drying: Roots are coarsely chopped and placed under the sun for 2-3 days (depending on environmental conditions). As can be seen in the chronological table, there is room for making the quantification of sun-dried roots on Wednesday or Thursday of each week. If it is necessary to do it in the Thursday, then the Gari evaluation (planned to be made on Thursdays) can be moved one day ahead.The same kind of root samples used for sun-drying, will also be dried under the same conditions but not under direct sun light. Since drying may require a longer period the analyses of these samples will take place five days after harvest on Fridays.Gari: During the seventh week the gari preparations from the three replications will be boiled. Therefore, we will have an estimation of further losses of carotenes upon boiling the gari. There will be no replication for these treatments but a trend analysis after 3, 4 and 5 week of storage of the gari.Table 1.10 provides the analysis of variance for the first experiment and Table 1.11 the averages and retention values after different processing methods. Results are based on the colorimetric and the HPLC quantification procedures separately. In this case the results from the HPLC quantification involves all carotenoid pigments and, therefore, it is equivalent to the total carotene measurements detected by the colorimetric method.The variety by processing method interaction was significant for the colorimetric and HPLC measurements (Table 1.10) as were the differences among processing methods. On average, the differences between the four varieties were not significant, although the average carotene contents when measured in the fresh roots were very different.Based on the results from Table 1.11 the lyophylization recovered the highest levels of carotenes. However, this is not actually a processing method but rather an approach included to develop alternative storage protocols. The work on carotenes in cassava roots is always affected by the fact that roots cannot be stored for a long period, and the carotenes themselves are very liable. Since only a limited number of samples can be analyzed per day there is an ultimately strong limitation on the number of varieties, replications and/or processing methods that can be analyzed at any given time. Lyophylization was among one of the alternatives evaluated for storing cassava root samples until they can be analyzed for carotene content. The actual processing method that retained the highest levels of carotenes was boiling the roots (Table 1.11) with retention levels around 56%. Oven-drying resulted in an average retention (combining data from the colorimetric and HPLC quantification methods) of about 29.8 %, followed by sun-drying (27.6%) and finally gari (16.6%). In general the colorimetric method resulted in higher readings that the HPLC method. One interesting result from this evaluation is the good correlation observed for colorimetric and HPLC measurements shown in Figure 1.6. Results from this plot suggest that the less expensive and faster colorimetric approach is precise enough to distinguish the roots or tissue samples with higher levels of carotenes. The data from the first experiment, summarized in Table 1.11, are also presented graphically in Figure 1.7.Results from the second experiment are summarized in Table 1.12. The most important difference from Tables 1.11 and 1.12 is that in the later β-carotene, rather than total carotenes, were considered for the HPLC measurements. In general results are comparable to those observed in Table 1.11. Boiled roots retained the highest levels of carotenes (68.8% combined across the two measuring procedures), followed by oven-drying (60.6%), shadowdrying (47.9%); sun-drying (29.7%) and gari (27.8%). In general recovery levels in the second experiment were higher than equivalent ones in the first experiment. Another difference between the two experiments was that HPLC measurements for β-carotene were frequently higher than colorimetric measurements for total carotenes. In Figure 1.8 the relationship between total carotenes measured through the colorimetric method and β-carotene measured through the HPLC approach is illustrated. It is clear that the colorimetric method is also appropriate for a quick assessment of the amount of βcarotene present in cassava roots and/or processed tissues from cassava roots. Figure 1.8 provides the regression between colorimetric measurements and β-carotene levels, as well as the r 2 values for that regression line (0.8725), which is quite satisfactory.Project IP3: improving cassava for the developing worldOutput 1-22Figure 1.8. Relationship between total carotene content (colorimetric method) and total βcarotene (HPLC method) measured in different samples of unprocessed or processed cassava tissue.Figure 1.9. Effect of processing cassava roots from four different varieties on carotene content measured with the colorimetric method. Data from the second experiment. Results from the second experiment showed unusual variation for boiled roots. CIAT will conduct further work for better understanding why in one case (MCOL2401) boiled roots contained more carotenes than fresh roots. One feasible explanation is that in some cases the boiling of the root tissue could release from the matrix higher levels of carotenes in one clone and much lower in other clones (i.e. MBRA 1324).Results from this study are important for several reasons. The deployment of carotene-rich cassava cultivars depends on the proper selection of elite germplasm, including the capacity of identifying carotene-rich clones. Because of the difficulties in shipping and storing cassava roots selection for the high-carotene trait has to take place (at least for the time being) where the plants are grown. This implies that every country where Harvest Plus will conduct research with cassava needs to have the capacity of identifying high-carotene cultivars. Results from the different studies conducted in the last few years provide evidence that the selection of cassava clones whose roots have higher levels of carotenes can be conducted in a step-wise fashion. A first selection can be made through the visual scoring of color intensity, which as demonstrated by Activity 1.1, provides enough accuracy for sorting out high and low levels of carotenes. Roots selected for their high color intensity can be further screened by a more precise approach with the colorimetric protocol. This second selection will be able to more precisely detect those clones that, having approximately the same color intensity in their roots, vary in the actual levels of total carotenes. The colorimetric method allows as many as 40-50 evaluations per day, requires a relatively simple-equipment (the most sophisticated would be the spectrophotometer) and can be established or is already available in all the countries where HarvestPlus will implement research with cassava. Eventually it may be useful to get more precise information on the type of carotenes present in the few clones selected after the colorimeter phase. If that were the case, then roots could be analyzed through HPLC. In this case, because the number of clones and samples to analyze is considerably smaller, it is feasible to think about special deliveries of roots away from the place where the plants were grown.Another important conclusion is that boiling roots provides the highest levels of recovery of carotenes. This information is very useful for determining regions where the bioavailability could be conducted.Those communities that consume cassava by boiling the roots are those more likely to benefit from carotenes present in the roots. Oven drying allowed the recovery of as much as 60% of the original levels of carotenes. This is also important because dried yellow roots could be a valuable source of pigments for the poultry feed industry, which could replace artificial drying products with natural pigments from cassava roots. If the industry becomes more interested in yellow roots, an obvious consequence is that there will be more yellow cassava roots in different communities and eventually more frequent consumption of this type of roots by humans.Further information has also been obtained from the HPLC analysis of fresh cassava roots and after they were processed in the second experiment. This information relates to the proportion of different isomers of β-carotene (All trans β-carotene; 9-cis β-carotene; and 13-cis β-carotene). Results from this study suggests that about 60% of the β-carotene measured in fresh or processed cassava roots are trans β-carotene, the remaining 40% are equally distributed with 9-cis β-carotene; and 13-cis β-carotene. This information is important because it suggest that the relative proportion of different isomeric forms does not change substantially with different processing methods. Different isomers have different capacity to be turned into retinal (vitamin A).Project IP3: improving cassava for the developing world Output 1-24A major bottleneck for research on carotene content in cassava roots is their rapid deterioration, which prevents storage between harvest and analysis time. In addition, carotenes are liable and can easily degrade in the presence of light, for example. Therefore, further studies were conduced to evaluate alternative storage conditions that will allow delaying the analysis of carotenes without their degradation. In many ways this activity is related to Activity 1.4.The experiment was conducted on root samples from three different cassava clones. Carotene contents were measured in fresh roots and after different storage conditions: storage at -20 °C; storage at -80 °C; lyophilized. Table 1.13 lists the main treatments evaluated through different cassava tissue, under different conditions, and at different time periods. In addition to these treatments the gari produced as described in Activity 1.4 was evaluated 3, 4 and 5 weeks after preparation. All treatments will be compared with the original levels and types of carotenes measured in fresh roots soon after harvest. The extraction procedure outlined by Safo-Katanga et al. (1984) was modified including several extractions with acetone and petroleum ether (35-65 ºC). Two or three commercially sized fresh cassava roots were peeled and cut into small pieces. The pieces were grated and blended using a household food processor. Approximately 5 g of tissue was obtained for extraction. Carotenoids extract was obtained by homogenization using a polytron homogenizer, followed by centrifugation to separate the liquid extract from the solid residue. The quantification was done by visible spectrophotometry using a Beckman DU 640 recording spectrophotometer. Detection was done at λ= 450nm (Rodriguez Amaya 1989;1990, 2001;Scott & Hart, 1993).From the reading performed with the spectrophotometric quantification of total carotenes, aliquots (15 ml) of petroleum extract were partially dried by rota-evaporation and completely dried by nitrogen flux. Immediately before injection, the dry extract was dissolved in 1 ml of HPLC grade acetone and filtrated through 0.22 µm PTFE syringe filter. Twenty microliters were injected in the HPLC system using a YMC-C30 Carotenoid S 5µm (250 mm x 4.6mm, Waters) column. Separation was performed by a isocratic elution with a mobile phase of methanol:methyl-t-butylether, 85:15 v/v, during 90 minutes at 0.8 ml min -1 and 23°C. βcarotene was detected by monitoring absorption at 450 nm. Identification and quantification were performed by comparing retention times and visible spectra with a standard of βcarotene.Harvest of the roots began in May and the last quantification of carotene contents (after 24 weeks) will take place during November, 2004. The evaluations evolved without major problem or unexpected difficulties. As soon as the last samples are measured the results of the chromatograms will be integrated for final analysis and publication in a refereed journal.Since no data has been completely analyzed, no conclusion can be mentioned regarding the results. However, it should be emphasized that the information generated by this study will be very useful for facilitating the logistics of research of carotene content in cassava roots. For example, by the end of year 2004 a collection of intensely pigmented roots in the North Eastern State of Maranhão in Brazil has been planned. Carotene data from the many samples to be hopefully harvested was highly desirable. Otherwise an additional year would be required to grow the plants from the collected stakes. However, the conditions where collection is expected to take place do not allow for the proper and immediate analysis of root samples. Knowing about the effect of different storage conditions would greatly facilitate this work.Activities 1.4 and 1.5 were technically supported by P. Nestel (Nutrition Coordinator, HarvestPlus) and D. Rodriguez Amaya (expert in carotene measurements at Universidad de São Paulo, Campinas, Brazil). Their contributions are herein acknowledged and thanked.As described in the article presented as Activity 1.1, interesting results were observed for Fe and Zn contents in cassava roots. These results would suggest that there is ample genetic variation for these traits and, therefore, hopes for developing and deploying high-Fe and or High-Zn cassava cultivars. One major problem of the data so far generated, however, is that they were based on single flour samples. This activity aims at measuring the relative importance of environment and genotype in the amount of Fe and Zn in cassava roots from different clones.A group of clones was selected because of their contrasting levels of Fe and Zn in their roots (Table 1.14). These clones will be used for further studies to measure the heritability of the trait, genotype by environment interaction, and eventually in breeding work. Below is the result of the most important characteristics of the four groups identified and selected. Carotenoid content was not considered as a selection criterion, but was measured in these Project IP3: improving cassava for the developing world Output 1-26 samples, nonetheless. These clones are currently recovered from the germplasm bank to produce planting material and are hardened in greenhouse conditions. By October 2004 the hardened seedlings will be moved to the screen-house and early 2005 will be transplanted to the field for evaluation. Harvest will take place during the second semester, 2005. The purpose of the study is to quantify the relative importance of GxE interactions in carotene, Fe and Zn contents in cassava roots. A group of ten clones were planted in four diverse environmental conditions, with three replications per location. Trials will be harvested in November 2004. Clones that have yellow roots (with certain variation in intensity) were included. Among the clones planted one has been found to contain higher than average Fe in its roots, and two lower than average Fe in their roots. It is important that soil samples are taken from each location as well, so soil samples will also be analyzed for their mineral contents.","tokenCount":"8238"} \ No newline at end of file diff --git a/data/part_3/3465779058.json b/data/part_3/3465779058.json new file mode 100644 index 0000000000000000000000000000000000000000..2b664a924f8496b51c12a85d522533583b77c325 --- /dev/null +++ b/data/part_3/3465779058.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"f34c99316309bd7e055369001d2c23b4","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/ac7431ab-2b7b-46bc-90b0-240445d17bac/retrieve","id":"-1095403203"},"keywords":[],"sieverID":"60f10a47-da0d-425d-a664-d194462db381","pagecount":"12","content":"Common bean (Phaseolus vulgaris L.) is an important crop with potential for improving food and nutrition security, economic opportunities, and agroecosystems. Burundi and Zimbabwe are at risk of food and nutrition insecurity and a substantial proportion of the population is malnourished, mainly in rural areas. Domestically, 34.5% and 28.9% of women 15 to 49 years old suffer from chronic anemia, while 54.0% and 23.5% of the children under 5 years of age are stunted in Burundi and Zimbabwe, respectively (UNICEF, 2021; USAID, 2018) 1 . Common beans potentially provide a sustainable option for addressing these food and nutritional challenges and enhancing income, particularly in rural areas, through increased bean production, distribution, processing, and consumption. Therefore, investing in bean value chains would provide a sustainable source of protein and micronutrients, particularly iron and zinc, needed for a healthy life for women of reproductive age (15-49 years) and children under five years who mostly suffer from malnutrition.Consequently, investments in beans by the Swiss Agency for Development and Cooperation (SDC) were timely and generated significant beneficial impacts for many people and actors in Zimbabwe and Burundi. This study provides evidence of the economic benefits resulting from the flagship project implemented in both countries that advanced bean production and consumption for better livelihoods, especially for smallholder households.From 2015 to 2022, the Pan-Africa Bean Research Alliance (PABRA) 2 led by the Global Bean Program of the Alliance of Bioversity International and CIAT, together with the Institut des Sciences Agronomiques du Burundi (ISABU) and Department of Research and Specialist Services (DRSS) in Zimbabwe implemented a flagship project titled \"Improving food security, nutrition, incomes, and natural resource base and gender equity for better livelihoods of smallholder households in sub-Saharan Africa.\" Through a demand-driven breeding approach, PABRA developed and promoted more than 659 marketable, nutritious, resilient, and high-yielding bean varieties across the 31 member countries during the past 25 years. By combining enhanced partnership and regional network research approaches, PABRA facilitated and empowered national agricultural research systems 1. USAID(NARS) members to conduct demand-led research and to develop institutional innovations that catalyze partner development organizations and other actors to invest in bean value chains.Project investments enabled the development and release of 18 new bean varieties in Burundi and six in Zimbabwe during the project life (2015-2022). Public promotion efforts spurred their cultivation by bean producers in both countries. The project also promoted: integrated crop management practices for enhancing bean yields, access to bean products for nutritious food consumption, and better linkages to profitable markets for improving farm income and laying the foundation for efficient and inclusive bean value chains. This evidence-based assessment will provide insights into the impacts of the catalytic SDC and PABRA investments in bean value chain actors facilitated by NARS in the two countries. This analysis estimates the magnitude of how PABRA has achieved a greater impact within two challenging national contexts. Beans enabled Burundi and Zimbabwe to overcome serious -but different -socioeconomic troubles. Burundi, the country with the lowest gross national income (GNI) per capita (USD 732 in 2021) 3 , continues to recover from the social unrest of the 1993 to 2005 civil war and political coup in 2015. Burundi had a population of 12 million as of 2020, with more than 85 percent living in rural areas 4 . Bean consumption in Burundi is the highest in the world (41 kg annually per person) 5 , providing 50% of the daily protein and 20% of caloric intake 6 In contrast, Zimbabwe has a per capita GNI that is five times larger (USD 3,810) than that of Burundi. Nevertheless, political and economic upheaval has caused severe inflation and currency devaluation. The population is estimated at 15 million, with more than 70% living in rural areas 7 , making legumes, including common beans, a major source of protein and macronutrients for many households. Although bean consumption is approximately 12 kg per person annually, the processing of nutritious bean products is attracting new consumer interest -both in and outside of Zimbabwe 8 . This analysis used both primary and secondary data obtained from interviews and project documents, respectively, to estimate:The additional investments from both public and private sources attracted by the initial SDC investments.The counterfactual or business as usual (BAU) context in which a \"without project\" is compared with a \"with project\" scenario. The counterfactual hypothesizes what would have happened if PABRA had not promoted improved bean varieties and complementary technologies resulting in producers' continued cultivation of local varieties. The different estimated benefits between the two scenarios are assumed to be the incremental benefits generated by the PABRA flagship project.Gender implications and other socioeconomic benefits such as job creation, enterprise development, and the distribution of economic benefits by gender.The economic benefits and their distribution among five links along the bean value chain: seed multiplication, seed distribution, bean production, trade, and bean processing. Measures of net present value (NPV), internal rate of return (IRR), and benefit-to-cost ratio (BCR) were estimated.In Burundi, project investment funds of USD 1.47 million came from four sources: SDC (79%), Technologies for African Agricultural Transformation (TAAT) (6%), Syngenta (12%), and Global Affairs Canada (GAC) (3%). In Zimbabwe, two sources invested USD 1.78 million: 96% came from SDC and 4% came from TAAT.Investment in beans functioned as an effective catalyst in generating significant additional funding and follow-on financing from a variety of private and public stakeholders. In Burundi, an estimated USD 249 million in additional investments were made by farmers, processors, traders, and other public and private stakeholders during the project period from 2015 to 2022, with farmers and traders investing more than 96%. In Zimbabwe, additional investors contributed about USD 732 million, with more than 95% being invested by farmers, traders, and processors during the same period (Figure 1). Our study estimated the investment levels for a 20-year period (2015-2035), which is a common analytical financial approach for agricultural projects accounting for longer-term funding. If the investments were to continue in the two countries up to 2035, approximately USD 2.2 billion (NPV; 12% discount rate) in Burundi and USD 3 billion in Zimbabwe would be invested by other value chain actors, including farmers and traders.Bean yield increased by 70% in Burundi and almost doubled in Zimbabwe from 2015 to 2022 because of the enhanced use of improved varieties and complementary integrated crop management practices, particularly among women, who represent more than 60% of the bean farmers in both countries (Figure 2). Investments in the bean value chain, both project-based and additional investments, generated substantial economic benefits. The SDC catalytic project-based investments and additional investments by farmers and public and private bean value chain actors generated substantial benefits.For instance, Burundi evidenced a total of USD 310 million (NPV) and a net incremental economic benefit of USD 263 million from 2015 to 2022, generating a BCR of 2.05. 9 The incremental NPVs were calculated by subtracting the NPVs for the business as usual or counterfactual from the total NPVs for the project (Table 1). The investments in Zimbabwe generated an estimated net economic benefit of USD 312 million from 2015 to 2022, with a BCR of 1.51.If the project or investment continues to 2035, net incremental economic benefits of USD 3.2 billion in Burundi (BCR 2.46) and USD 1.92 billion (BCR 1.64) in Zimbabwe would be generated from 2015 to 2035. The BCR is greater than 1 (2.05 in Burundi and 1.51 in Zimbabwe), indicating that the project benefits are greater than its costs. This means that every USD 1 invested generated USD 2.05 in Burundi and USD 1.51 in Zimbabwe, making the SDC project a sustainable venture 10 . The performance results are robust for the economic shocks within both the best-and worst-case scenarios during the project period and up to 2035 11 .Grain traders and bean farmers benefited the most in Burundi. Bean traders and bean farmers earned more than 99% of the net incremental benefits (traders 22.5% and farmers 77%). The remainder of the benefits were earned by seed merchants (0.04%), multipliers (0.7%), and processors (0.04%). However, in Zimbabwe, producers, traders, and processors were the main beneficiaries, accounting for 41%, 24%, and 23% of the benefits, respectively. The balance was shared among seed houses (8%) and seed multipliers (2.8%). The main strength of this study is that the analysis adopted a value chain approach, while similar studies concentrated on individual actors, mainly farmers. Farmers and traders are the main beneficiaries, receiving 99% and 65% of the generated net benefits accrued in the bean value chain in Burundi and Zimbabwe, respectively 10. IRR is a discount rate that makes the NPV of all cash flows equal to zero.11. Sensitivity analysis for the project assumed changes at 10% in costs and in project benefits, or both, to create worst-case and best-case scenariosProcessors, seed merchants, and multipliers in Zimbabwe earned higher net economic benefits than their counterparts in Burundi. This implies a betterestablished food processing sector and seed system in Zimbabwe.Overall, 60% of the benefits generated by farmers accrued to female farmers in Burundi, whereas, in Zimbabwe, 40% and 10% of the benefits were earned by women and youth, respectively. In addition, in Burundi, 50% of the net benefits went to villagebased small traders while 20% and 30% accrued to large and medium traders, respectively. These results demonstrate that investments in bean value chains benefit not only large traders but also vulnerable small traders, who are mostly women in both countries. Investments in the bean value chains also helped generate more job opportunities and private enterprises. In Burundi, three processors (Totahara, Kaflobe, and Rengerubuzima) are linked to the creation of at least 145 new product outlets/enterprises, including 142 traders and 3 cooperatives. During the project, the number of small and medium seed enterprises increased from 15 producing 10 tons in 2014 to 315 (55% of them women-led) producing 1,595 tons of certified and quality-declared seed by 2021. 12 In addition, an estimated 1,969 traders benefited from increased production, resulting in greater harvests being available for sale/trading. These enterprises created employment opportunities for at least 1,162 people, 51% of whom were women. This is in addition to many more casual labor and other indirect employment opportunities.In Zimbabwe, the project supported the creation of more than 15 new seed enterprises, more than 50% led and owned by women, while indirectly supporting many more individuals and seed enterprises. These provided more than 1,100 direct employment opportunities (56% female) as well as many more indirect employment opportunities for women and youth. The percentage of women employed in seed companies and aggregator businesses grew from 10% in 2014 to 38% in 2021, while the number of processors increased from 5 in 2015 to 15 in 2022, which significantly increased the investment in the bean value chain in Zimbabwe.Women bean producers and small traders are the main beneficiaries of the SDC investments in the bean value chain in Burundi and Zimbabwe.12. For details, see the link https://www.pabra-africa.org/empowering-women-entrepreneurs-to-deliver-quality-bean-seed-in-burundi/In Burundi, the project influenced the recognition of high-iron bean (HIB) varieties within the input agricultural support program of the government. The use of high-iron beans was further institutionalized in government sectors and integrated into the school feeding approach to improve the nutrition of school meals with HIB for kindergarten and primary school kids and in training school children on the nutritive value and the various ways of preparing bean-based products.On the other hand, the promulgation of a mandatory food fortification policy in Zimbabwe resulted in increased demand for biofortified beans and processors began to commercialize them. The project influenced the government to support the bean subsector by recognizing beans as a strategic crop and included it in the Pvumvudza Presidential, a conservation farming program launched in 2021. This program is distributing small packs of seeds in partnership with DRSS and the Ministry of Health. ). This demonstrated that bean is an important crop, particularly in Burundi, where it significantly contributes to gross domestic product. However, if investment continued for another 13 years up to 2035, it would generate higher net incremental benefits of USD 3.2 billion in Burundi and USD 1.92 billion in Zimbabwe. Grain traders and bean farmers benefited the most in Burundi, earning more than 99% of the economic benefits, whereas, in Zimbabwe, they earned 65%, followed by processors (24%), seed merchants (8%), and multipliers (3%). These findings imply that Zimbabwe has a betterestablished food processing and seed system sector.The performance of the project in the base scenario (2015-2022) is considered robust for changes in cost and benefit estimates within best-and worst-case economic scenarios during the project period and in the future up to 2035. This clearly indicates that such interventions are sustainable and can address the food and nutrition security challenges and enhance income through increased bean production, distribution, processing, and consumption. In addition, positive NPVs and a BCR greater than 1 imply that the economic benefits of the bean value chain improvement project in the two countries are larger than its costs and that the project is sustainable and can be replicated in other countries in sub-Saharan Africa and Asia.Women bean producers and small traders are the main beneficiaries of the SDC investments in the bean value chain in Burundi and Zimbabwe. These results run counter to the common criticisms that development in sub-Saharan Africa often focuses on the needs of large commercial producers, traders, and merchants instead of facilitating the participation of women and less commercial traders (Siri et al., 2020; Ranjitha et al., 2021). 16 These results demonstrate that investments in bean value chains benefit not only large traders but also vulnerable small traders, who are mainly women and youth in both countries. More women bean producers benefited from the improved bean value chains because most of them were more likely to adopt non-purchased integrated crop management technologies such as organic soil fertility management practices and improved varieties than their male counterparts (Katungi et al., 2020a).With increased consumption of beans and their products, the project contributed to the sustainable supply of nutritious high-iron beans needed for the healthy life of women of reproductive age (15-49 years) and children under five years who mostly suffer from malnutrition. The project helped improve the nutrition of children and women and facilitated the creation of private enterprises that generated employment opportunities that benefited women and youth. This is in addition to the many casual labor and other indirect employment opportunities.Finally, the project also influenced government policy and programming by ensuring recognition of HIB varieties within the agricultural input support program of the government and integrated HIB and bean-based products in the school feeding program to improve the nutrition of school learners in Burundi. The integration of biofortified beans in the school feeding program was supported in collaboration with the World Food Programme (WFP), World Vision International, and other partners. Biofortified beans have also become one of the major value chains promoted by the Burundi First Lady's Foundation, known as the Umugiraneza Good Action Foundation. In Zimbabwe, the promulgation of the mandatory food fortification policy resulted in increased demand for biofortified crops such as beans and processors began to commercialize biofortified beans. The project influenced the government to support the bean subsector by recognizing beans as a strategic crop and included it in the Pvumvudza Presidential, a conservation farming program launched in 2021. This program is distributing small packs of seeds in partnership with DRSS and the Ministry of Health. These achievements demonstrate that beans have been recognized as an important crop with potential for improving food and nutrition security, economic opportunities, and agroecosystems in Burundi and Zimbabwe.SDC-led investment of about USD 3 million from 2015 to 2022 attracted investment from bean value chain actors, which together generated net incremental benefits of USD 264 million in Burundi and USD 312 million in Zimbabwe during the project period and would generate net incremental benefits of USD 3.2 billion in Burundi and USD 1.92 billion in Zimbabwe if investment continued up to 2035.The Swiss Agency for Development and Cooperation-funded bean flagship project has exceeded its intended objectives of improving household food and nutrition security and income in Burundi and Zimbabwe through increased bean production, distribution, and consumption. The economic benefits of the project exceed the costs, as demonstrated by the positive NPVs and BCR greater than 1. This indicates that the project not only increased the income of the value chain actors but is also sustainable for addressing food and nutrition challenges. In addition, the project influenced government policy and programming. Collaboration with the Institut des Sciences Agronomiques du Burundi and other development partners (e.g., NGOs), farmers, and the emerging private sector resulted in annual multi-stakeholder fora to review and plan bean value chain activities. In addition, the use of biofortified beans has been institutionalized in government sectors, and biofortified beans have been integrated into school feeding programs to improve the nutrition of school meals for learners in Burundi. In Zimbabwe, high-iron bean was included as a strategic crop. The project contributed to inclusivity and equity since women and small traders emerged as the main beneficiaries of investment in the bean value chain in both countries.There is still, however, room for additional improvement, especially with respect to the following: (1) strengthening demand-driven bean breeding programs, including developing climateresilient and consumer-and farmer-preferred varieties;(2) the deepening and commercialization of seed systems to attract more investments along the bean value chain;(3) increased adoption of biofortified bean varieties at the farm level; (4) increasing and diversifying the consumption of biofortified beans at the household level; and ( 5) developing and optimizing convenient, highly nutritious bean-based products while fostering women and youth entrepreneurship. The following are recommendations for different actors.X There is a need for long-term commitment from donors to ensure continuous research and development, along with learning processes in demand-driven programming, and thus be able to improve livelihoods.X Donors can fund projects that replicate the PABRA approach demonstrated in Burundi and Zimbabwe to realize suitable economic benefits by catalyzing investments in value chains from both public and private actors.Research organizations X Co-develop research products between CGIAR and NARS to ensure constructive problemsolving, national ownership, and mindset change while also catalyzing other public and private investments to increase bean production and income.X Foster institutionalization of demand-led research that attracts private enterprises that contribute to the scaling out of the research products, improve their relevance, create jobs, and provide inclusive market opportunities to smallholder farmers. X Continue to support activities that achieve positive progress toward gender equity and social inclusion. The bean value chain is an important instrument for women's economic empowerment, including breaking social norms and systemic barriers that hinder the engagement of women in decision-making and in the bean value chain.All partners and CGIAR X The PABRA flagship project in Zimbabwe and Burundi laid sustainable foundations for future research and investment in bean and other crop value chains. Thus, as a lesson, One CGIAR can explore how to expand the PABRA approach to other commodities in sub-Saharan Africa.X Notably, other economic impacts of the flagship program involve attaining gender equity and inclusion. The project supported women running small and medium seed enterprises and women scientists engaged in bean research and development. This confirms that the bean value chain is an important instrument for women's economic empowerment, including breaking social norms and systemic barriers that hinder the engagement of women in the decisionmaking process.","tokenCount":"3214"} \ No newline at end of file diff --git a/data/part_3/3491720252.json b/data/part_3/3491720252.json new file mode 100644 index 0000000000000000000000000000000000000000..628c2d0fc501d9f1acb00f2c0a9318d1d30d6a33 --- /dev/null +++ b/data/part_3/3491720252.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"15e581e45ef80bb8e2a31801028e745a","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/21bd671a-a246-4408-9569-a42c6c57370b/retrieve","id":"1554151598"},"keywords":[],"sieverID":"ee4b35a9-f1d2-41f4-976b-9a7a47422be1","pagecount":"4","content":"particular the portion in Ghana, the study seeks to concentrate on the Dapola, Noumbiel and Vonkoro sub--catchments which fall within the Upper West Region of Ghana. These were located in four out of the eight districts that makes up the region. The table below gives site names, interventions and geographical coordinates of the research sites.Due to the importance of agriculture to the economy of the study area, and the impact of agricultural water on the productivity levels the following research questions were posed which helped guide the research.1. Thus the potential to increase agriculture water productivity exist in the current situation? 2. Is there an AWM intervention that has the potential to improve livelihood in a sustainable way? 3. Will increased dry season agriculture activities help reduce poverty? Key findings:The research revealed the following key things about agriculture and agricultural water; that dry season gardening is considered by the indigenes as one of the means by which poverty and transitional (seasonal) hunger can be reduced.Those agriculture water management (AWM) interventions that allow individual farmers to irrigate independently throughout the season (dry) produced crop water consumption factor that was close to the optimum value of zero.For those agriculture water management (AWM) interventions considered within the study area potential to increase agricultural water productivity exist, with the highest existing in gravitational flow based water interventions.The physical crop water productivity (PCWP), economic water productivity (EWP), and agriculture land productivity (ALP) were generally low as compared to FAO values for sub-saharan areas having similar biophysical characters.From the research the following were recommended;Farmers and WUA's should be trained on good agronomic practises and efficient water use for gardening and also on simple maintenance and repairs of water pumps.Appropriate water measuring instruments/structures should be fitted at the sites to help in applying the right amount of water to the fields. Further research should be conducted at each intervention site to ascertain site specific biophysical characteristics and impact of farmer attitude on the intervention and establish its influence on the physical crop water productivity.","tokenCount":"337"} \ No newline at end of file diff --git a/data/part_3/3511837651.json b/data/part_3/3511837651.json new file mode 100644 index 0000000000000000000000000000000000000000..b2c8357e760115635490dec2561ffb57c793046a --- /dev/null +++ b/data/part_3/3511837651.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"968631198aa6e80362bf2889735c625b","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/b1a32f32-25cb-4f4a-8527-afa75df69880/retrieve","id":"-1133471745"},"keywords":[],"sieverID":"ecd09007-4a56-422b-a6cb-e9f04c1f3bfd","pagecount":"4","content":"Burkina Faso, plus de deux tiers de la population dépendent de l'agriculture pluviale comme source de nourriture et de revenus. Cependant, la rareté et l'insuffisance de l'eau ou l'irrégularité de la pluviométrie expose les agriculteurs à des risques de perte de leurs récoltes. Le changement climatique aggrave la variabilité pluviométrique et rend la pluviométrie moins fiable. Néanmoins, les différentes catégories d'usagersagriculteurs, pêcheurs, éleveurs, usagers domestiques, citadins, industries émergentes -et les écosystèmes dépendent de l'accès à l'eau en qualité et en qualité suffisantes en temps opportun.Depuis les années 90, le Burkina Faso promeut des politiques de gestion intégrée des ressources en eau, enréponse à la tendance de développement mondial d'une part, et pour parvenir à une distribution plus équitable de l'eau d'autre part. Cependant, les autorités locales peinent à gérer les ressources en eau de manière intégrée, et l'écart entre les politiques nationales et la gouvernance locale de l'eau reste important. L'un des défis majeurs est l'absence d'une compréhension commune du concept de gestion intégrée des ressources en eau entre décideurs politiques et les usagers de l'eau.Au cours de la seconde phase (2010)(2011)(2012)(2013) de la recherche du Challenge Program on Water and Food (Programme de défi pour l'eau et l'alimentation, CPWF) du Groupe consultatif pour la rechercheLa modélisation d'accompagnement a motivé les membres du Comité Local de l'Eau dans le bassin versant de la Bougouriba à se rencontrer plus souvent, à élaborer un plan de gestion, et à assumer leur rôle de mise en oeuvre de la gestion intégrée des ressources en eau.Le potentiel de développement de l'utilisation de la modélisation d'accompagnement existe. La modélisation d'accompagnement peut aider à opérationnaliser plus de trente comités locaux de l'eau et à faire progresser la mise en oeuvre de la gestion intégrée des ressources en eau au Burkina Faso. ","tokenCount":"295"} \ No newline at end of file diff --git a/data/part_3/3514838920.json b/data/part_3/3514838920.json new file mode 100644 index 0000000000000000000000000000000000000000..4e9648426fbfabc7c6ef24b57adfcf1df7d6af43 --- /dev/null +++ b/data/part_3/3514838920.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c2436e32c4c9cc4727067ccf489f5538","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/aef50d86-5155-4af8-b891-af6c217e4773/retrieve","id":"-35900121"},"keywords":[],"sieverID":"559c5ee5-3c9f-41a2-b441-26ff58c7a7d2","pagecount":"4","content":"Framework (SRF) 2016-2030, site integration aims for CGIAR entities to \"coordinate with each other to ensure that, in key geographies, (their) activities are aligned for maximum impact.\" This offers a valuable entry point for achieving coordinated, aligned and collaborative capacity development (CapDev) activities at country-level as a key delivery mechanism towards impact.Capacity Development in Systems -Practice Brief # 8CapDev is a strategic enabler of impact, particularly through building and sustaining capacity of national partners and beneficiaries. National research and development organizations, of which CGIAR partners with, often face constraints to their ability and effectiveness to identify and respond to challenges and opportunities that supports the transformation of agriculture and sustains inclusive growth in their country. CGIAR aims to enhance institutional and individual capacity of both research and development organizations, and of poor, vulnerable communities. The second phase of CGIAR Research Programs (CRPs) will each now have a CapDev strategy covering a range of activities guided by a CapDev Framework. However, despite this increased recognition of the need for CapDev as reflected in the individual CRPs, there is little indication of further coordination of these activities across the whole portfolio of research programs. This may result in a potentially fragmented approach that not only misses out on opportunities for a greater scale of impact, but also runs the risk of duplication or conflict between approaches and content of CapDev interventions.Site integration is aimed at supporting effective research for development (R4D) along the whole impact pathway. It provides an additional avenue for methods and lessons from systems research, now integrated into agri-food system research programs and supported by global integrating research programs, to be applied on the ground, particularly through the multi-stakeholder processes (MSP) it promotes. Site integration therefore provides a useful structure for improving the implementation and impact of CapDev activities as well. Additionally, implementing site integration provides the opportunity to build capacity of CGIAR and national actors to work in an integrative and collaborative manner towards targeted goals.Site integration will be implemented towards five key objectives:1. Establishing and sustaining coordination among CGIAR entities.2. Engaging with national actors and agencies along the whole impact pathway. The way in which these objectives will be reached are outlined in site integration plans developed in each country.Through site integration, CapDev interventions proposed by individual CGIAR entities can be coordinated and targeted. An integrated CapDev program can be designed and carried out, guided by a CapDev needs assessment for the country. Site integration should provide the impetus and mechanism for CGIAR centers, CRPs and partner organizations to collaborate on a range of CapDev activities including training, fellowships, and the development of tools and approaches. Arrangements for sharing facilities and staff for CapDev can also be explored. Since site integration will involve CGIAR staff working together, and with others, in new ways, this will likely require additional and even new capacities to be developed amongst all actors. Site integration therefore offers a prime case for understanding the gaps and needs of capacity to innovate, and provides a real opportunity for this particular type of capacity to be developed.Three organizational requirements for CapDev to play a key role in the delivery of outcomes are:• A broad set of well planned and resourced CapDev activities for every program.• Coordination across CapDev activities in an organization to ensure quality and cohesion.• ","tokenCount":"552"} \ No newline at end of file diff --git a/data/part_3/3538269130.json b/data/part_3/3538269130.json new file mode 100644 index 0000000000000000000000000000000000000000..8373008fea6fc2b6a4249ae66ace0fba4ef1148a --- /dev/null +++ b/data/part_3/3538269130.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"56d2a4c553074daaa6e92dbdb7ca4712","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/e16a0cb2-785a-4bd6-9c78-982d2e4c45eb/retrieve","id":"-683853460"},"keywords":[],"sieverID":"99fe08a6-4d9c-4983-a5fd-229def068347","pagecount":"6","content":"As Rwanda emerges from the effects of COVID-19 and global price shocks caused by the Russia/Ukrainian conflict, there is an opportunity to focus on agricultural fundamentals to drive its economic transformation. One aspect of the transformation is how farm households are engaging in crop commercialization. This policy note outlines basic findings and suggested recommendations derived from a 2022 Rwandan commercialization household survey. Our basic unit of analysis is total crop sold divided by total value produced, averaged at either the household or individual crop level. Key findings include:  Approximately 20% of our sampled smallholder households do not sell any crops. However, contrary to a subsistence/commercial farm dichotomy, most households sell on a broad continuum ranging from 1 -100% with an average of 33% of their total crop production marketed.  Crop value per hectare increases with greater marketed sales, indicating that farmers switch from lower value food crops (e.g. beans, cassava, maize) to cash crops such as fruits and vegetables where they market higher percentages.  Crop value per hectare is not correlated with land size, revealing that crop choices drive value and not increasing land-related economies of scale. This finding underscores the pivotal role of crop selection in determining agricultural productivity and economic returns, rather than mere expansion of land holdings.  Irrigation, land size, hiring labor and input purchases increase market participation as well as percentage of sales. Conversely, a larger family size has a negative effect on both.In theory, a farmer with perfect information, competitive markets, and no transaction costs would choose to produce the crop that maximizes their profit, from which they would sell all their crops and use the revenue to purchase food and other consumer goods that maximizes the household's welfare. An economic explanation for subsistence, or less than full commercialization, is linked to a violation of any of these concepts and research generally attributes lower levels of commercialization to three potential problems that include transaction costs, risk and a lack of assets.A central component of Rwanda's Fourth Strategic Plan for Agriculture Transformation (PSTA 4) is the commercialization of the country's smallholder production systems during the period 2018-24. Efforts to address issues around accelerating smallholder commercialization are limited by the absence of data and analysis on returns to commercial production systems. This analysis is based on the results of a national and province level representative smallholder farmer survey conducted in late 2022 of 2,020 agricultural households. 2 Most of the results are presented in graphical format, cross tabulating crop type by level of sales. In order to determine drivers of crop commercialization we made a couple of basic assumptions. Regarding crop marketing in the regression model, we assume that Rwandan smallholder farmers make two separate, but interrelated, decisions and use a model, referred to as a double hurdle model, to incorporate these economic decisions. The first step (hurdle) estimates whether or not farmers market any crops at all and is called the participation decision. The second hurdle estimates the conditional outcome, level of sales, for those who have decided to market crops and is referred to as the quantity decision.Our survey finds that approximately four out of five farmers currently sell crops, which indicates significant market participation by most smallholder farmers. However, average sales by the typical household are only 33 percent which highlights that two-thirds of crop production is either used for own consumption, saved for next season planting, or other uses. While high-value crops are grown and sold, a disproportionate number of smallholder farmers produce lower value food crops for their own consumption. Graph 1 depicts average sales by crop to show the relative importance of their commercialization. The left axis estimates the percentage of each crop sold and the right axis indicates the projected number of farmers who produce the crop. Interestingly, many of the most commercialized crops, including coffee, rice, tomato, and avocado, are sold at higher percentages but are not commonly produced by farmers. Following this level of commercialization is sorghum, Irish potato, and cassava which typical percentages sold are between 40 to 60% and produced by about 20% of farmers. Cooking banana, sweet potato, bush and climbing beans are less commercialized but are much more commonly produced. Maize is an exception as it is commonly produced by over half of our sample and about 44% of the total crop is sold. This unique crop typically serves as a food crop for most household consumption but is also highly commercialized by a select group of larger landholding farmers.Source: Authors' calculations Graph 2 presents the top six most produced crops by sales category and reveals that as households undertake higher marketed sales, they alter crop choice from principally consumed crops to those produced almost exclusively for sale. For example, the top row identifies, of those selling zero percent, the most produced crops include climbing bean (24.2% of all value produced in this category), bush bean (20.8%) and maize (13.3%). A few crops, including maize and sweet potato, are both consumed directly by those that have low levels of crop sales and are sold by those farmers who sell more of their crops. Banana for beer, paddy rice and coffee are almost exclusively represented by those selling between 75 and 100%. While coffee, rice and tomatoes are grown by less than 15% of our sample, banana for beer is much more commonly grown by smallholders (over 40%), suggesting that it is a key cash crop for many agricultural households. Source: Author's calculationsWhile basic statistics can depict relationships between two variables, econometric models, control for a variety of potential influences to better understand and isolate the effects of key variables of interest. These commercialization drivers are important for understanding motivations of how Rwandan farmers engage in market activity and identifying these relationships is important for potential interventions to enhance market activity and accelerating the agricultural transformation. Graph 3 uses icons representing statistically significant regression coefficients, derived from the models, into a matrix of possible outcomes to identify how they influence either participation or level of sales. For example, consider female household heads, the icon in the top left square reveals that women headed households equally participate in crop commercialization but do not sell as high a percentage as male headed households (i.e. first hurdle insignificant, second hurdle negative).Located in the top right panel, icons depict variables that exhibit positive contributions to both participation and the percentage of crop value sold and include agricultural inputs such as land, fertilizers, hired labor and irrigation. The statistical significance of these variables predicts that expanding any of these variables would increase both crop market participation and sales. Conversely, a larger household size negatively affects both commercialization and amount sold Targeted credit (input credit and tool credit) positively influenced either sales or participation, respectively. In terms of interventions, engagement in the farmer field school suggests increased participation in commercialization but not increased levels of sales.Source: Author's calculationsThis paper explores agricultural commercialization among smallholder farmers in Rwanda and how increasing crop commercialization would have the potential to enhance the welfare of rural households and accelerate the agricultural transformation. A key finding is that value per hectare rises with crop sales, and it is the crop choice, over productivity increases, that increases market value. This insight suggests that policies should consider farmers across various land sizes and encourage the cultivation of more profitable crops to boost household income. The impacts of agricultural interventions could be viewed between the twin goals of either encouraging participation and/or increasing crop sales. Articulating intervention objectives between these strategies could improve targeted efficiency of programs.  Increase access to irrigation. While irrigation levels are currently at relatively lower levels, this research found it to be highly impactful on commercialization. Predictable access to water likely alters crop choice including reorienting towards higher value cash crops.  Improve agricultural labor markets. Better developed labor markets could facilitate improved access to additional labor and increase commercialization. Expanding farmer capacities via farmer field schools. Empowering farmers to participate in crop commercialization could likely improve overall sales and improve income.  While improved credit access assists overall crop commercialization, different types of credit might better target commercial objectives. This research suggests that credit for agricultural tools could increase participation and credit for inputs could increase marketed percentages. Depending on intervention goals, these types of credit could be used.  Further research regarding how land consolidation improves market sales and participant welfare seems warranted.  Research to better understand larger family motivations related to crop choice seems important for designing improved strategic interventions to enhance welfare. This is likely due to perceptions of risk.  Further explore motivations on why some farmers do not sell crops. Twenty-two percent of all sampled smallholders did not sell any crops and targeted research on why this is the case would likely improve potential strategies for commercial engagement. ","tokenCount":"1475"} \ No newline at end of file diff --git a/data/part_3/3542765399.json b/data/part_3/3542765399.json new file mode 100644 index 0000000000000000000000000000000000000000..571ec824efff57e4b6e8ad7f233567ad866e99bc --- /dev/null +++ b/data/part_3/3542765399.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"55765f950e946d48f2c53fdc400edc0e","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/d070d31b-d96a-4186-bde6-dc7157b76f31/retrieve","id":"1870904500"},"keywords":[],"sieverID":"33691198-ed5f-4efe-93bc-25d8e6e5c88c","pagecount":"12","content":"Breeding programs that respond to the future needs and preferences of stakeholders require forward-looking and participatory demand-elicitation approaches. We elicited farmers' preferences for rice varietal trait improvements (VTIs) through the Investment Game Application (IGA). IGA enables farmers to design their ideal future varieties by strategically allocating a fixed breeding investment fund among 10-11 VTIs that could enhance their most preferred varieties, while accounting for breeding costs. A sample of 1,198 male and female farmers across Southern Asia and South-eastern Asia used IGA to design their future varieties for irrigated rice systems under varying levels of exposure to information on future market and climate change trends. Farmers mainly prioritized biotic stress tolerance over all other traits, followed by market-driven grain quality traits. They invested 33-65 percent of their funds in rice breeding for insect and disease resistance, mainly to address stem borer and blast. In line with market trends toward finer rice grains, they allocated 11-43 percent of their investment funds to grain quality traits such as slenderness. While farmers' priorities largely corroborate the current seed product market segments and the traits prioritized in the corresponding target product profiles, they argue for a stronger emphasis on biotic stress resistance relative to abiotic stress tolerance, which was further confirmed through strong consensus between women's and men's trait priorities. Insights from IGA experiments can guide demand-driven and gender-intentional target product profile design in breeding pipelines to potentially accelerate varietal turnover in farmers' fields.Breeding programs continuously introduce new varieties into seed product markets and refine target product profiles in response to current and future stakeholder demands. Unfortunately, varietal adoption and turnover rates of modern crop varieties-critical success metrics in breeding programs-are still below potential (Singh et al. 2019;Thiele et al. 2021). Farmers continue cultivating old, popular varieties that are susceptible to pests and diseases (Laborte 2015;Begho 2021). Breeders are operating under resource constraints and a continuously changing environment in terms of markets and climate. Ensuring that breeding programs efficiently respond to the future needs and preferences of stakeholders requires more forwardlooking and participatory demand-elicitation approaches that directly inform stakeholders about future market and climate trends and early on incorporate their informed voices into product design (Custodio et al. 2016;Lenaerts et al. 2019;Donovan et al. 2021).This brief presents the key findings from a novel digital data collection tool that directly involves farmers in product design in the field. The next section briefly presents the Investment Game Application (IGA) as a digital data collection tool and the setup of the IGA experiments. We then use the results of the IGA experiments to corroborate the current seed product market segments (SPMSs) and verify whether the corresponding target product profiles (TPPs) and the traits they propose are aligned with farmers' priorities. This will enable us to provide some recommendations for the refinement of the SPMSs and TPPs in the subregions where the market intelligence was collected.In capturing rice farmers' preference trade-offs for varietal trait improvements (VTIs), we developed a tablet application, the Investment Game Application (IGA). The application consists of an econometric model that simulates the cost and risk trade-offs that rice breeders face under resource constraints and the returns farmers can gain from cultivating improved varieties. This is the result of a series of framed expert elicitation experiments with senior rice breeders from the International Rice Research Institute (IRRI) and national agricultural research and extension systems (NARES) partners from Southern Asia. Figure 1 shows the interface of the digital tool offering an investment platform with 10-11 VTIs that rice farmers can invest in to improve their \"replacement variety,\" usually their most popular variety that they seek to improve. The VTIs are categorized into (1) grain quality traits such as slenderness, unstickiness/stickiness, aroma, and head rice recovery; (2) biotic stress tolerance traits such as disease and insect resistance; (3) abiotic stress tolerance traits such as drought, salinity, and submergence tolerance, (4) agronomic traits such as lodging tolerance, reduction of shattering, and earliness; and (5) by-product traits such as straw digestibility, where applicable. The IGA is customized based on the subregion's dominant consumer preferences and markets, for instance, stickiness in Southeastern Asia, unstickiness in Southern Asia, and straw digestibility in India, Bangladesh, and Cambodia. Each VTI features a bar indicating the level of improvement of the trait relative to a baseline (i.e., replacement variety) and up to a maximum threshold. The pie charts visualize the investment risk through breeders' predicted probability of success (green) or failure (red) of achieving the selected VTI level, while the budget bar displays the remaining funds available for investment. While investment games have been used in the past to measure trust (Berg et al. 1995), using investment games to elicit farmers' preferences for technologies such as varietal trait improvements is a novel methodology. The IGA was conducted in major irrigated-rice growing areas in Southern Asia (India and Bangladesh) and South-eastern Asia (Philippines and Cambodia), where most of the farmers cultivate rice during two growing seasons (wet season and dry season). We invited 1,198 men and women farmers who produce rice and plan to sell rice for the market in the near future (the next six years, after our IGA experiments). We then created a temporary investment market and invited farmers to become shareholders of a public rice-breeding program aimed at developing their future varieties.The IGA experiment involved five main sections: (1) introduction to the experiment, (2) training on the tablet application, (3) introduction of IGA and rice varietal traits and targets for varietal trait improvement, (4) demonstration of the IGA, and (5) implementation and closing of the IGA experiment (technical details and experimental protocol in Maligalig et al. 2019). Men and women farmers were endowed with an investment fund worth approximately USD 0.80-2.10 (specifically, BDT 100 for Bangladesh, INR 100 for eastern India, PHP 100 for the Philippines, and KHR 4,000 for Cambodia) and identify the replacement variety (explained to the farmers as \"the most common or popular variety in the region or any variety-grown or not grown by them-they want to improve\"). Farmers were then invited to invest their funds in the VTIs to design the ideal variety that would be available to them in six years' time.To assist farmers in designing forward-looking rice varieties for future market and growing conditions, we randomly assigned farmers to different treatment groups and presented varying levels of information on future market and climate change trends (Figure 2). This enabled disentangling the effect of forward-looking information on trait priorities, the results of which are beyond the scope of this brief. Husbands and wives then independently used IGA to design and improve their chosen replacement varieties in two growing seasons. Finally, they repeated the exercise as couples to reach a consensus on the optimal future varieties for both seasons. The administration of IGA was complemented with a paper-based survey questionnaire to obtain individual and household-level information about the farm households. The IGA experiments were conducted during 2015-2018. As the experiments preceded IRRI's global market segmentation efforts, we retrofitted the collected data to the current rice SPMSs published in the Global Market Intelligence Platform (GloMIP) (CGIAR 2023), following the standardized market segmentation framework (IRRI 2021; Donovan et al. 2022;CGIAR 2023). The classification of IGA experimental sites was then verified through geospatial information and discussion with IRRI breeders.Aligning the IGA data with the current SPMSs allowed us to corroborate the SPMSs and verify whether the VTIs proposed in the TPPs correspond to farmers' nearfuture requirements (in six years' time). VTIs are relative to the replacement varieties that farmers propose. In the interpretation of the results, we jointly considered (1) the characteristics of the most common replacement varieties that farmers proposed as a basis for improvement and (2) the VTI investment portfolios they constructed to improve these varieties, with the aim of designing their ideal future varieties. We present these data, disaggregated by SPMS, season, and gender.Table 1 shows the regional and country information of the specific rice SPMSs, their descriptors, and the location of IGA experiments retrofitted to the SPMSs. The SPMS short names are derived from the first letters of the rice SPMS descriptors, e.g., TEMS-I refers to Transplanted, Early maturing, Medium grains, Soft texture, Irrigated seed product market segment. Using the SPMS criteria, coupled with geospatial information and consultation with IRRI breeders, the IGA experiments were mapped to four rice SPMSs-(1) Rice 4 SA/TEMS-I for Jessore, Bangladesh, (2) Rice 16 SA/TLaMF-I for Rangpur, Bangladesh, and West Bengal and Odisha, India, (3) Rice 13 SEA/DELS-I for Prey Veng and Takeo, Cambodia, and (4) Rice 2 SEA/TMeLS-I for Nueva Ecija, Philippines (Figure 3). This section discusses the key results of IGA experiments conducted in 2015-2018 with irrigated rice farmers in Southern Asia (India and Bangladesh) and South-eastern Asia (Philippines and Cambodia). It is important to note that all rice SPMSs are based on farmer requirements for wet season rice cultivation. Our IGA experiments yield results for both the wet season (WS) and the dry season (DS), but we will focus on WS data to corroborate the current SPMSs and corresponding TPPs. In Annex A, we juxtapose the essential traits that have been included in the TPPs with the average VTI investment shares farmers proposed for their wetseason replacement varieties across the four SPMSs.Figure 4 summarizes rice farmers' top three replacement varieties measured by the frequency of their proposal were proposed as a basis for improvement and the average investment portfolios of VTIs they constructed to improve these replacement varieties, disaggregated by SPMS, season, and gender. Overall, the proposed replacement varieties had been available for at least 10 years, confirming the slow varietal turnover in these SPMSs.When given an opportunity to act as investors empowered to improve their preferred varieties (or as \"citizen-breeders\" co-designing future varieties), irrigated rice farmers generally prioritized biotic stress tolerance traits over all other traits. They invested 33-65 percent of their breeding investment funds in insect and disease resistance; this priority was further amplified when the couples reached consensus. In addition, farmers investing in biotic stress tolerance identified stem borer (26-80 percent) and brown planthopper (2-30 percent) as the most common insects (Figure 5). The most problematic rice diseases reported by farmers were blast (8-42 percent), a rice disease critical to dry and rained environments, bacterial leaf blight (4-19 percent), and sheath blight (0-13 percent): it is critical to address them in these SPMSs.As our application of IGA focused on commercial rice farmers and future varieties tailored to the market, we observed strong alignment between genders and consensus in prioritizing VTIs. In line with market trends toward finer rice grains, farmers further allocated 11-40 percent of their investment funds to grain quality traits such as slenderness.Annex A suggests that farmers' trait priorities largely corroborate the traits that have been included in the TPPs, with a few notable exceptions. In each SPMS, the top three VTI investment shares-indicated in bold-correspond to traits that have been prioritized as essential in the TPPs, e.g., slenderness in Rice 4 SA/TEMS-I) and Rice 13 SEA/ DELS-I and lodging tolerance in Rice 16 SA/TLaMF-I and Rice 2 SEA/TMeLS-I. Demand for insect resistance seems to be the highest across all four SPMSs, mainly triggered by stem borer (Rice 4 SA/TEMS-I, Rice 16 SA/TLaMF-I, and Rice 2 SEA/TMeLS-I) and brown plant hopper (Rice 16 SA/TLaMF-I and Rice 13 SEA/DELS-I), all of which have been included as essential traits in the corresponding TPPs. Demand for disease resistance features in the top three traits in all SPMSs and is mainly triggered by sheath rot (Rice 4 SA/TEMS-I) and blast (Rice 16 SA/TLaMF-I and Rice 13 SEA/DELS-I), priorities that are captured in the corresponding TPPs. The only notable exception is that the TPP for Rice 2 SEA/TMeLS-I seems to have missed farmers' demand for tungro resistance. Finally, we also observe a strong emphasis on abiotic stress tolerance in the TPPs for all four SPMSs, exemplified by the fact that these traits are prioritized as essential traits for improvement, while most biotic stress tolerance traits are prioritized as threshold traits (except for neck blast). This emphasis is not corroborated by the farmers' investment shares, which are in the range of 4-11 percent and, hence, second in importance in their priorities relative to biotic stress resistance. Although the TPPs largely address rice farmers' demand, the list of essential traits is long and warrants prioritization.Following, we provide a summary of the key insights by SPMS (Figure 4 and Figure 5).SPMS 1: Rice 4 SA/TEMS-I (Jessore, Bangladesh). Growers in this SPMS require early maturing, medium length, and soft grain rice seed products during WS cultivation. This is somewhat corroborated by the WS results, where we see some investment in earliness for late-maturing replacement varieties like BRRI dhan49 (WS), similarly to BRRI dhan50 in the DS. The evidence also suggests that farmers prefer slenderness, e.g., for BRRI dhan49 (BRRI 2011). This investment behavior is consistent in a market where demand for finer rice grains is increasing (Mottaleb et. al. 2017), and slenderness is considered an essential trait for premium rice in Bangladesh, to the point that it is sometimes mechanically generated by millers through double polishing (Custodio et al. 2016). Breeding slenderness into the variety, therefore, potentially shifts the market rents from millers to farmers. The TPP largely reflects farmers' trait priorities in this SPMS (Annex A).Lodging tolerance in the dry season also appeared as one of the priority traits, suggesting a need to reduce income losses by growing the long slender, and aromatic premium variety, BRRI dhan50. 2021). Farmers' investment in slenderness to improve Guti Swarna, a popular high-yielding and medium-bold grain variety (Sarkar 2022) and-to a lesser extent-BRRI dhan28, a medium-slender grain variety released in 1994 (BRRI 2011; Dikitanan 2022), is consistent with market trends. The market value of the latter variety attracts additional investment in risk and loss-reducing traits such as lodging tolerance, head rice recovery, and reduction of shattering in the dry season. The essential traits included in this SPMS' TPP are largely aligned to farmers' demand (Annex A). Consistent with Cambodia's focus on high-value export markets (such as the European Union and China), farmers invest highly in grain quality traits such as slenderness, aroma, and head rice recovery (29-44 percent) resulting in the highest investment shares in value-adding traits among the SPMSs. These investments aim at increasing the market value of top replacement varieties such as Phka Rumdoul, a long-grain jasmine-type variety released in 1999 (IRRI 2014), and IR504, a high-yielding variety with high amylose content (low stickiness). Given the high value of these varieties in export markets, farmers plan to further minimize future income losses by investing in lodging tolerance and biotic stress tolerance. The TPP for this SPMS reflects these priorities well (Annex A).This SPMS attracts the most diverse VTI investment portfolio. The replacement varieties Rc222 and SL-8H are both firm and medium-duration, deviating from the SPMS descriptors (i.e., soft grain). Largely focused on replacing variety Rc222, a popular variety due to its adaptability to different environmental conditions (Balang-er 2018), and SL-8H, the highest-yielding hybrid variety, farmers generally prioritized loss reduction by investing in lodging tolerance, abiotic and biotic stress tolerance, reduction of shattering, and head rice recovery to mitigate the adverse effects of typhoons experienced in the country. Investment in slenderness is in line with regional trends toward finer grains (Custodio et al. 2016). Farmers' demand for tungro resistance is not met in the corresponding TPP (Annex A), which warrants further refinement of the TPP. The IGA enables farmers to design their future varieties by strategically investing in genetic improvement of their currently preferred varieties. Using IGA, a sample of 1,198 men and women farmers across Southern Asia and Southeastern Asia allocated a fixed breeding investment fund among a predefined set of 10-11 VTIs to improve their most preferred varieties and design their ideal future varieties under varying levels of information on future market and climate trends. Since IGA models the breeding costs associated with the various VTIs, the resulting investment shares can be interpreted as farmers' trait priorities in terms of the VTIs they require in order for them to replace their most preferred varieties.Farmers generally proposed old replacement varieties as a basis for improvement, confirming the need for eliciting demand for VTIs that may help in accelerating varietal turnover. Generally, the VTIs proposed to improve the top replacement varieties for each segment were aligned with the SPMS criteria (i.e., grain shape, texture, and maturity) and the traits included in the corresponding TPPs. However, the relative magnitude of farmers' investment shares suggests that TPPs for SPMSs in irrigated production systems need to place a stronger emphasis on biotic stress resistance relative to abiotic stress tolerance. The TPPs' strong focus on the latter may stem from IRRI's recent success with submergence tolerance technology. Rice farmers instead generally prioritized biotic stress tolerance (insect and disease resistance) over all other traits, mainly to increase the resilience of their rice crops against blast and stem borer. The fact that biotic stresses are more visible in farmers' fields than abiotic stresses could have contributed to this emphasis. Breeders can use this information to reprioritize essential traits in the current set of TPPs.In line with market trends toward finer rice grains in domestic and export markets, farmers in Bangladesh and Cambodia invested a sizable share of their funds in grain quality traits such as slenderness to tap into high-value markets and in lodging tolerance to avoid future income losses. The most complex investment portfolios were observed in the Philippines, where climate vulnerability due to typhoons compels farmers to invest in a diverse mix of resilience and loss-reduction traits, such as biotic and abiotic stress tolerance, lodging tolerance, head rice recovery, and reduction of shattering. These priorities were reflected in the TPPs. Consistent with the TPPs, we did not observe strong demand for by-product traits such as straw digestibility across the four SPMSs.Since the IGA experiments were conducted in irrigated areas where rice is cultivated during two seasons and farmers focused on future rice varieties for the market, we observed strong convergence between women's and men's trait priorities leading to a conclusive consensus that biotic stress tolerance is a top priority for rice breeding programs in all four SPMSs. While the TPPs align well with farmers' needs, they can be further refined through trait prioritization based on forward-looking market intelligence from a broader set of value chain actors (e.g., consumers and processors) in combination with estimates of impact opportunities in GloMIP. The processes and results of such prioritization exercise will be documented in a forthcoming Market Intelligence Brief. We conclude that digital tools such as IGA offer an innovative, participative, and demanddriven platform for eliciting stakeholders' priorities for varietal trait improvements that can aid in the development of gender-intentional TPPs that maximize impacts of breeding pipelines across multiple impact areas targeted by CGIAR Research Initiatives and ultimately accelerate varietal turnover in farmers' fields. ","tokenCount":"3132"} \ No newline at end of file diff --git a/data/part_3/3546775814.json b/data/part_3/3546775814.json new file mode 100644 index 0000000000000000000000000000000000000000..cd88b4b9aafd2f3fb5fe689cadd519545e920076 --- /dev/null +++ b/data/part_3/3546775814.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"7f59c3dff1d982a27f73124f1c2138ac","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/386f0719-35a3-4408-a2d9-5fbab0f84a5d/retrieve","id":"760676801"},"keywords":[],"sieverID":"1954692e-4b5d-40b9-aa35-f69ab0a9ddf0","pagecount":"28","content":"Ro be rto Rid olfi , dir ect eu r de la cro iss an ce et du dé vel op pe me nt du rab les à Eu rop eA id, Com mi ssi on eu rop ée nn e Le magazine du développement agricole et rural des pays ACP http://spore.cta.int N°180 MARS-AVRIL 2016 AGRICULTEURS CONNECTÉS Nouvelles perspectives pour l'agricultureAGROALIMENTAIRE Petits producteurs, gros marchés FORMATION AGRICOLE Nouveaux défis, nouvel élan 2 | SPORE 180 | MARS-AVRIL 2016 TechSoup a aidé plus de 600 000 ONG et bibliothèques dans le monde entier, à accéder aux technologies et à en développer l'usage. Nous sommes heureux de vous annoncer que vous pourrez également bénéficier de notre soutien à partir du 1er octobre 2015. Pour en savoir plus, consultez www.techsoup.global. Soutenant les structures comme la vôtre depuis 1987. Soutenant les structures comme la vôtre depuis 1987 … Baisse des prix alimentaires -restons vigilants Éditorial SOMMAIRE TRENDS INTERVIEW DOSSIER SPORE N° 180 -MARS-AVRIL 2016 4 12 13 FORMATION AGRICOLE Nouveaux défis, nouvel élan ROBERTO RIDOLFI Financer les petits producteurs : des risques aux opportunités AGRICULTEURS CONNECTÉS Nouvelles perspectives pour l'agriculture 4 | Tendances 6 | Production agricole 7 | Environnement 8 | Business 9 | Commerce 10 | Économie bleue 11 | Nutrition et santé 12 | Interview 13 | Dossier Agriculteurs connectés : nouvelles perspectives pour l'agriculture Connectés, les producteurs ont un meilleur accès aux connaissances, aux marchés, aux services financiers et de santé, et bénéficient de chaînes de valeur plus productives et transparentes.FAO des prix des produits alimentaires, qui mesure la variation des cours internationaux de cinq denrées alimentaires essentielles, a chuté de 16 % entre janvier 2015 et janvier 2016, prolongeant ainsi une baisse plus ou moins constante depuis cinq ans. La chute des prix du pétrole brut -de plus de 120 $ US le baril en 2011 à moins de 30 $ US début 2016 -est l'un des principaux facteurs expliquant cette baisse. Le pétrole moins cher entraîne une baisse du coût des engrais minéraux, des carburants et des transports. Des experts prédisent que les prix du pétrole pourraient rester bas pendant encore dix ans.Cela peut sembler être une bonne nouvelle. À première vue, c'est une bonne chose que la nourriture soit moins chère, au moins pour les consommateurs, et surtout les plus pauvres qui dépensent une grosse partie de leurs revenus pour se nourrir. Cela bénéficiera aussi aux nombreux pays ACP importateurs nets de denrées de base, comme le riz et le blé.Le danger, à long terme, est toutefois que des prix alimentaires bas réduisent la pression exercée sur les gouvernements pour investir dans l'agriculture. Les crises des prix alimentaires de 2007-2008 ont incité les gouvernements et organismes de développement à accorder une attention sans précédent à l'agriculture. Elles ont suscité maintes initiatives en faveur d'une augmentation des investissements dans le développement agricole.Sans prix alimentaires élevés, les gouvernements continueront-ils à investir dans l'agriculture ? Les bailleurs de fonds considéreront-ils toujours l'agriculture comme un secteur prioritaire ? Sans investissements, d'où viendront les innovations qui permettront l'accroissement massif de la production alimentaire nécessaire dans les prochaines années ?Le CTA et ses partenaires sont déterminés à créer un avenir dans lequel l'agriculture offrira des emplois décents aux jeunes et aux femmes, produira des aliments nutritifs et sains et favorisera une croissance inclusive et une prospérité réelle pour des millions de gens. Nous espérons que la baisse des prix alimentaires ne freinera pas le fort engagement mondial pour l'agriculture durable observé depuis 2008.Michael Hailu Directeur -CTA B eaucoup a été fait, mais beaucoup reste à faire pour construire et mettre en oeuvre des stratégies efficaces en matière de formation agricole dans les pays en développement. Les gouvernements ACP, les universités, le secteur privé et leurs partenaires sont conscients des enjeux. Une nouvelle dynamique est à l'oeuvre.En Afrique, la Banque mondiale dresse un bilan assez sévère de la situation dans un rapport daté de 2014, constatant principalement la faiblesse du niveau du capital humain dans le secteur agricole, contrainte encore importante à la croissance, à la réduction de la pauvreté et à la sécurité alimentaire sur le continent. Plus positif, le même rapport note que les dirigeants africains considèrent désormais l'agriculture comme un moteur susceptible d'entraîner le développement de l'ensemble de l'économie (avec 32 % du PIB et 65 % de l'emploi revenant à l'agriculture), et qu'ils ont exigé une approche \"radicalement nouvelle\" pour l'enseignement agricole, le système actuel étant déconnecté du marché du travail.Selon le professeur Didier Pillot, de l'institut agronomique français Montpellier SupAgro, la situation des universitaires s'est notablement améliorée par rapport à il y a une dizaine d'années. Il indique : \"Pour les États africains, il est redevenu attrayant d'investir intellectuellement dans l'université. Des pays comme le Ghana, l'Ouganda, ou le Kenya mais aussi le Sénégal ou la Côte d'Ivoire font preuve d'une réelle volonté politique pour investir dans la formation des jeunes générations. Les conditions salariales des universitaires sont ainsi plus favorables que par le passé.\" Didier Pillot regrette la permanence des difficultés des universités à se brancher sur le secteur privé, même si des initiatives vont dans le bon sens, à l'instar de programmes d'incubation agricole, telle l'initiative UniBRAIN portée par le Forum pour la recherche agricole en Afrique (FARA) (voir dossier de Spore 179).Dans le Pacifique et les Caraïbes, l'éducation agricole est confrontée à des défis qui sont assez similaires au contexte africain. Mais, point positif pour l'enseignement agricole, dans de nombreux pays du Pacifique, l'agriculture fait partie intégrante des programmes scolaires, elle est même parfois obligatoire dans l'enseignement secondaire (entre 12 et 17 ans). Pour autant, il existe un vrai fossé entre le secondaire et l'enseignement supérieur. Et les programmes d'enseignement auraient, pour beaucoup, besoin de sérieuses mises à jour.Le manque de participation des organisations de producteurs à la rédaction des programmes de formation et un manque de communication entre universités et centres de recherche demeurent. Le financement incertain en provenance des gouvernements nationaux est aussi un obstacle important à la création d'une économie de la connaissance.Un signal important des évolutions en cours est l'impact institutionnel des transformations. De nouveaux cadres politiques et institutionnels émergent, porteurs de nouvelles mentalités et valeurs.Les chefs d'État et de gouvernement de l'Union africaine (UA) ont ainsi adopté, en 2014, à Malabo, une stratégie pour les Sciences, la technologie et l'innovation pour l'Afrique dont la priorité numéro 1 est d'éradiquer la faim et assurer la sécurité alimentaire. L'UA a également signé un protocole d'entente avec le RUFORUM (un réseau de 42 universités africaines) pour le renforcement des capacités en Afrique de l'Est et australe. Le RUFORUM, dont le CTA est partenaire depuis 2004, est un pionnier en matière d'échanges et de partenariat. Il a organisé, en collaboration avec le président du Malawi, Arthur Peter Mutharika, une session parallèle lors de la 70 e Assemblée générale desLa formation agricole est un élément clé du développement agricole et agroindustriel. Une éducation de qualité est rien moins que l'Objectif de développement durable (ODD) n° 4, proclamé par l'ONU à Washington en septembre 2015. Plus que jamais, l'enjeu est politique… Tour d'horizon des initiatives.Nations unies à New York sur le thème \"une stratégie pour renforcer l'enseignement supérieur en Afrique pour la mise en oeuvre des ODD\".La collaboration et la mise en réseau sont indispensables à l'innovation, et l'on constate des liens de plus en plus forts entre les universités des pays ACP, tout comme entre elles et les universités des pays membres de l'OCDE et des pays émergents. Ces partenariats ont contribué à relever le niveau, l'accessibilité et la disponibilité de l'enseignement supérieur en Afrique.De son côté, le NEPAD a adopté un cadre stratégique 2015-2025 pour la formation agricole et le renforcement des compétences dans le contexte du Programme détaillé de développement de l'agriculture africaine (PDDAA). Le professeur Hamidou Boly, coordinateur pour la formation et l'éducation à l'agriculture du NEPAD, le présente comme un élément d'harmonisation des approches qui devrait permettre d'accroître le capital humain nécessaire pour atteindre les objectifs du PDDAA et des déclarations de Malabo (2014) et d'Addis-Abeba (2015) sur le développement de l'agriculture africaine.Dans le Pacifique, le réseau des universités du Pacifique insulaire (PIURN) a été formellement constitué le 10 juillet 2013, dans l'objectif de renforcer la collaboration académique entre 11 universités du Pacifique Sud en matière de recherche, de formation et d'échanges. Le réseau PIURN est inscrit parmi les initiatives recensées par le site Partenariats pour les ODD (http://tinyurl.com/j8fxuhs).WaterCAP, à l'initiative de RUFORUM, est un partenariat entre des universités kényane, ougandaise et autrichienne, financé par la coopération autrichienne. Il vise à mettre à la disposition des petits producteurs sévèrement touchés par le changement climatique des technologies et innovations peu coûteuses et à leur portée. Le programme permet des interactions et une formation mutuelle entre les étudiants chercheurs et les communautés rurales. Fait nouveau, les étudiants sont amenés à travailler \"avec\" les producteurs et non pas \"sur\" les producteurs. Ensemble, ils contribuent ainsi à l'atténuation du changement climatique dans des régions fortement touchées.Dans les Caraïbes, le Centre international pour l'innovation du cacao fin (IFCIC) est en voie de création, à Trinité-et-Tobago, avec un financement de l'Union européenne. Le professeur Pathmanathan Umaharan, directeur du Centre de recherche sur le cacao (CRC), est à l'origine du projet. Il décrit ainsi le centre : \"L'IFCIC sera une installation polyvalente avec une usine de chocolat et un incubateur d'entreprises comprenant un département consacré à la formation.\" Ce modèle intégrant agriculture, transformation, recherche, formation et commercialisation est dit \"du labo à la tablette de chocolat\", une intégration exemplaire.UNITECH, l'université technologique de Papouasie-Nouvelle-Guinée, a lancé une réflexion sur le rôle de l'université dans l'amélioration de la sécurité alimentaire et nutritionnelle dans le Pacifique. La mise en place d'un Institut de l'agriculture et du développement rural du Pacifique Sud (SPISARD) est au coeur d'un mécanisme proposant des \"villages modèles\" implantés dans différentes zones agroécologiques du pays et bénéficiant de formations variées (culture, transformation, entrepreneuriat de base, etc.).Renforcer l'engagement des instituts de formation agricole dans les processus politiques pour la sécurité alimentaire et nutritionnelle est un enjeu crucial. L'université de Wageningen et le CTA ont ainsi développé, en partenariat avec des réseaux régionaux et dix universités ACP, un outil pilote : l'instrument d'audit en ligne pour la sécurité alimentaire dans l'enseignement supérieur (AIFSHE). Cet outil est disponible en ligne depuis 2015 (http://aifshe.cta. int/fr/). Une façon très concrète d'essayer d'atteindre par une même action deux des ODD définis par l'ONU en septembre 2015 : \"faim zéro\" et éducation de qualité… Le partenariat public-privé conclu entre le ministère de l'Agriculture et la brasserie Diageo a permis d'augmenter les revenus de 10 000 petits producteurs camerounais. Depuis 2011, les besoins croissants en sorgho des brasseries ont entraîné une augmentation de la production de 6 millions à plus de 9 millions de tonnes et une hausse des prix de 0,76 à 1 €.En Côte d'Ivoire, le programme \"Cocoa Life\" du fabricant de chocolat Mondelēz International a permis de développer la chaîne de valeur du cacao et d'augmenter les rendements et les revenus des producteurs. Plus de 20 000 cultivateurs ont été formés en prévention des maladies, désherbage, élagage, récolte et postrécolte, qualité des sols, replantation et compostage.Le Cap-Vert a organisé son premier recensement agricole depuis 10 ans, une étape essentielle pour avancer dans la modernisation de son agriculture et réduire sa dépendance aux importations. Outre l'agriculture, cette étude s'intéressera à l'aquaculture, l'élevage, la sylviculture et les ressources en eau dans les neuf îles habitées de l'archipel.Un groupe d'agriculteurs de Gwanda, au Zimbabwe, a eu l'idée géniale d'utiliser l'eau retenue dans une mine désaffectée pour développer avec succès des activités agricoles dans une région sujette à la sécheresse. Les revenus des agriculteurs ont ainsi augmenté grâce à la vente de choux, épinards, tomates et oignons frais.La première dose de AVIVAC i2 a été inoculée à un poussin dans le village de Fana au sud du Mali, en octobre 2015. Ce vaccin, considéré comme révolutionnaire, combat la maladie de Newcastle, cauchemar des aviculteurs maliens.e Dr Boubacar Diallo, directeur du Laboratoire central vétérinaire malien (LCV), aime dire tout le bien qu'il pense du vaccin AVIVAC i2. Son laboratoire produit et commercialise ce nouveau vaccin \"facile d'application et d'une efficacité meilleure\" pour combattre la maladie de Newcastle. Cette maladie est la plus redoutée des éleveurs locaux, qui peuvent perdre jusqu'à 80 % de leur cheptel aviaire (poulets, pintades, dindes, canards, pigeons, oies, cailles) dès que leur poulailler est touché.Pour beaucoup de spécialistes, ce nouveau vaccin va soulager de nombreux éleveurs de volaille, notamment ceux pratiquant l'aviculture traditionnelle. Le Mali dispose d'un cheptel aviaire très important, qui s'élève à plus de 36 millions de sujets, dont 80 % relèvent de l'aviculture villageoise.Le nouveau vaccin lève la contrainte de la chaîne du froid qui était la difficulté à laquelle les vaccinateurs étaient confrontés, ce qui expliquait le niveau élevé d'échecs des vaccinations. En effet, le transport, dans des conditions peu optimales pour atteindre les élevages villageois, s'avérait très aléatoire et anéantissait les chances de réussite des campagnes de vaccination aviaire.Contrairement aux précédents vaccins, très sensibles à la température, les chercheurs ont mis au point un vaccin thermo-tolérant, conservable à température ambiante. D'après les chercheurs, l'éleveur villageois peut ainsi garder le vaccin sous la jarre parce qu'il ne nécessite pas une chaîne de froid particulière.Le vaccin est aussi facile à inoculer, le produit pouvant être dilué dans l'eau de boisson de la volaille, ou administré directement dans les narines ou les yeux des volatiles. Cette facilité de vaccination lève la contrainte de l'injection souscutanée, pratiquée essentiellement par un spécialiste que l'éleveur devait faire venir.Le taux de réussite de la vaccination est de 100 %, car les sujets qui s'échapperaient pendant l'opération bénéficieront des effets bénéfiques du gène dès qu'ils réintégreront le poulailler grâce à la diffusibilité du produit. Le nouveau vaccin sera commercialisé au Togo, au Burkina Faso, au Bénin et en Angola ainsi que dans tous les pays qui en feront la demande, d'après les responsables du laboratoire malien.© Getty Images/J.-P. Klazek Les spécialistes prédisent que ce nouveau vaccin facilitera la vie de nombreux éleveurs au Mali.L'organisation Plant with Purpose a travaillé en Haïti avec 714 exploitations familiales dans 105 localités pour construire 200 km de barrières pour la conservation des sols. Les agriculteurs ont également planté différentes cultures pour fixer les nutriments, tel l'azote. Depuis 1997, 2,4 millions d'arbres ont été plantés pour un usage domestique, la production de fruits et la vente de bois de construction.La start-up B Energy produit du biocombustible portable -une alternative propre et bon marché à la cuisine au feu de bois. Le gaz est produit à partir de déchets et conditionné dans des ballons de 2 m de long, contenant de quoi cuisiner pendant 5 heures. L'entreprise distribue en Éthiopie et au Soudan et prévoit d'élargir ses activités en Afrique. Les ballons sont vendus 0,44 € pièce.Pour relever les défis du changement climatique, les experts et décideurs du secteur agricole ont réuni l'Assemblée pour l'adaptation basée sur les écosystèmes pour la sécurité alimentaire, afin de promouvoir les systèmes alimentaires durables en Afrique subsaharienne.Les Tonga et la Papouasie-Nouvelle-Guinée (PNG) ont signé en 2015 le Traité international sur les ressources phytogénétiques pour l'alimentation et l'agriculture (TIRPGAA). Grâce à cet accord, les deux pays auront accès à une banque de gènes contenant plus de 1,6 million d'obtentions végétales, parmi lesquelles les plus importantes plantes comestibles de la planète.Le mucuna est capable de se développer à partir d'une pluviosité annuelle de 300 mm répartie sur 4 à 6 mois.À Djambala, dans le département des Plateaux, à environ 450 km au nord de Brazzaville, les agriculteurs expérimentent la culture du mucuna pour fertiliser le sol et éviter de longues périodes de jachère, développant une agriculture de toutes les saisons.A dapté aux conditions climatiques du Congo, le mucuna est capable de se développer à partir d'une pluviosité annuelle de 300 mm répartie sur 4 à 6 mois, et produit rapidement de la biomasse tout en étant une source notable d'azote pour le sol. Cette plante dont la partie aérienne présente des poils irritants, sur les feuilles, les tiges et les gousses, et qui peut mesurer plus de 15 m de haut à maturité a un grand pouvoir fertilisant lorsque ses feuilles tombent. On les enfouit alors dans le sol, ce qui donne par la suite un fumier très efficace Le mucuna est une plante de couverture utilisée en tant que pratique agroécologique pour faire face à un grand nombre de problèmes auxquels sont confrontés les producteurs congolais, comme le faible accès aux intrants, l'érosion des sols et la vulnérabilité face au changement climatique. Son importante biomasse étouffe les mauvaises herbes, ce qui dispense les producteurs du travail de sarclage. Le mucuna améliore également le sol, permettant en effet une fixation d'azote pouvant aller jusqu'à 170 kg/ha et une production d'azote restitué par les résidus allant jusqu'à 200 kg. L'importante biomasse produite permet de lutter efficacement contre l'érosion éolienne et hydrique (ruissellement).\"Au mois de novembre dernier, nous avons récolté 3 sacs de 50 kg de graines de mucuna, que nous comptons distribuer à des femmes ou groupements multiplicateurs. Ainsi nous pensons avoir dans chaque village où sont constatés les problèmes d'appauvrissement du sol un remède à cela\", déclare Dzaba Ivanovo Brucelov, chef du secteur agricole de Djambala. Dans cette région de la République du Congo, la direction départementale de l'agriculture expérimente depuis plus de trois ans la culture du mucuna pour fertiliser les sols.L'ensemencement du mucuna peut se faire dès les premières pluies et jusqu'au mois de mars. La plante possède un cycle de vie de trois mois (les récoltes peuvent commencer en mai-juin). Elle peut être associée à d'autres cultures telles que le maïs et bien d'autres céréales. Pour ce faire, il est conseillé d'attendre le premier mois de développement de la culture principale avant de mettre en place le mucuna pour éviter la concurrence. \"L'avantage de cette plante, là où elle est plantée, c'est qu'il n'y a pas de mauvaises herbes\", constate Joëlle Martine Gabio, productrice de pommes de terre à Abala-Ndolo, à environ 12 km de Djambala.En dehors du département des Plateaux, le mucuna est aussi actuellement expérimenté dans les départements de la Cuvette centrale et de la Cuvette-Ouest de la République du Congo.Plus de 10 000 petits producteurs mozambicains, regroupés au sein de 11 associations de producteurs et 232 clubs d'agriculteurs, ont triplé leurs revenus grâce à un système de commercialisation collective. Lors de la saison 2015, Macelino Malissane, producteur, a gagné 267 euros grâce à la vente de 20 sacs de pois d'Angole, soit trois fois plus que la saison précédente.Vingt-quatre \"pôles de développement\" ont été classés zones économiques spéciales au Mozambique pour leurs conditions climatiques/de culture, leurs infrastructures et leur positionnement. Les producteurs de soja, blé, haricots, maïs et riz, ainsi que les éleveurs de volaille et de bétail y bénéficieront d'exonérations fiscales pour pouvoir investir et produire davantage.Grâce à des bassins sous serre, l'exploitant kényan Onesmus Githui élève désormais plus de 35 000 poissons en cinq ans, contre 200 auparavant. Les températures sous serre permettent aux poissons d'arriver plus vite à maturité. De l'engrais biologique est utilisé pour améliorer la production d'algues permettant de nourrir et de protéger les poissons.La cinquième plus grande entreprise laitière du monde s'implante au Nigeria et au Sénégal. Arla Foods, société danoise, entend quintupler ses revenus dans la sous-région d'ici à 2020. Quelles conséquences pour les producteurs et consommateurs locaux ? L a coopérative laitière basée au Danemark, détenue par 12 700 fermiers européens, se lance à la conquête du marché laitier ouest-africain. Au Nigeria, où elle est déjà présente, Arla Foods a décidé de s'implanter directement dans le but de tripler son chiffre d'affaires. Elle a donc créé Arla Dairy Products, qui, dès septembre 2015, est en charge de l'emballage, du marketing de la vente et de la distribution des produits Arla, de marque Dano, dans le pays. Au Sénégal, où elle n'était pas encore présente, la société crée une filiale dont elle détiendra 75 % du capital, Arla Sénégal SA, qui aura les mêmes attributions, pour le Sénégal, que sa consoeur nigériane. Le marché sénégalais du lait est déjà occupé par plusieurs grandes entreprises, tels les français Lactalis ou Danone, partenaire de l'entreprise locale la Laiterie du Berger (voir article dans Spore 162). \"L'Afrique de l'Ouest affiche un déficit en lait qui nous donne une opportunité de fournir de la poudre de lait et des produits laitiers pour satisfaire les besoins des consommateurs. Nous sommes ici pour construire un business à long terme, ce qui requiert de solides partenaires locaux\", a déclaré dans un communiqué de presse Steen Hadsbjerg, responsable pour la région Afrique subsaharienne au sein d'Arla Foods.Mais au Sénégal, les \"partenaires locaux\" évoqués ne sont pas les producteurs de lait… Dans un rapport interne, Arla argue de la faible quantité et qualité du lait local pour justifier un approvisionnement exclusivement basé sur des importations. Dans ce même rapport, Arla note les possibles conséquences négatives d'importations massives sur le secteur local… Et les consommateurs s'habituent à ne boire plus que du lait en poudre, tandis que les éleveurs peinent à trouver des débouchés.Ainsi, selon Guillaume Bastard, expert filières agricoles, représentant du GRET au Sénégal, mieux vaudrait, pour soutenir le secteur laitier, aider les producteurs à améliorer leur production en qualité et quantité. \"Certes, la construction d'une filière laitière locale est un véritable défi, mais les produits laitiers sont aujourd'hui, en valeur, la seconde denrée importée au Sénégal, pour un montant annuel de 65 milliards de francs CFA (39 millions d'euros), et les opérateurs nationaux, l'État et les éleveurs ont tout intérêt à ce qu'elle soit mise en place pour permettre une redistribution de la valeur vers les populations rurales les plus marginalisées\", conclut-il.Un premier container de 100 tonnes de bananes bio haïtiennes a été chargé à destination de l'Allemagne. C'est l'aboutissement du projet de la société Agritrans, soutenu par le gouvernement haïtien, qui prévoit de planter deux millions de plantules sur 1 000 hectares. D'ici à 2017, 450 conteneurs de bananes devraient partir pour l'Europe chaque semaine.La filière banane joue un rôle important dans l'économie ivoirienne.São Tomé et Príncipe a commencé à exporter ses excédents agricoles vers le Cap-Vert, notamment l'ananas, la goyave et la tomate. En échange, les équipes techniques du ministère de l'Agriculture de São Tomé recevront, au Cap-Vert, pays expert, une formation en culture hydroponique et en irrigation goutte-à-goutte.L'ONG iDE Zambia a développé Lima Links, un outil d'information commerciale via téléphone mobile qui met les petits exploitants en contact avec les marchés. Agriculteurs et acheteurs sont informés, sans frais d'appel et en temps réel, de l'état des prix et de la demande pour les dix principaux légumes cultivés. Plus d'informations sur : http://tinyurl.com/jedorok SERRA DA XIXILALe premier vin totalement angolais vient d'être lancé sur le marché. Le \"Serra da Xixila\" est produit dans la province de Kuanza-Sul. Les premières 60 000 bouteilles de 750 ml -rouge et blanc confondus -ont été produites à partir de la récolte 2013, après des décennies de discussions sur le fort potentiel de production de vin angolais de qualité.Le corossol, un fruit jusqu'il y a peu uniquement produit et consommé localement, devient source d'un marché florissant pour les agriculteurs de la Grenade. En 2014, l'île a exporté pour plus de 540 000 € de corossols vers le Canada, le Royaume-Uni et les États-Unis.Second pays ACP exportateur de bananes vers l'Europe, la Côte d'Ivoire en est le 13 e producteur mondial. La filière représente 8 % du PIB national. Si l'Europe est le principal destinataire des bananes ivoiriennes, cela n'est pas sans conditions. Éclairage… Face à ces défis commerciaux, plusieurs stratégies sont envisagées, de la réduction des coûts de production à l'exploration de nouvelles variétés ou l'obtention de labels pour se positionner sur des marchés de niche à plus forte valeur ajoutée.La certification des plantations est devenue incontournable pour demeurer sur le marché international. Les sociétés de plantations sont certifiées selon les standards de la distribution européenne et font tout pour maintenir leur certification. De multiples certifications existent, présentant chacune des caractéristiques particulières (ISO 14001, Globalgap, Tesco Nature's Choice, Rainforest Alliance, etc.) qui visent toutes à répondre aux exigences des clients européens en matière de sécurité alimentaire et sanitaire, de respect des conditions de travail et de respect de l'environnement. Les Palaos ont classé 500 000 km2 (80 %) de leur territoire maritime en zone totalement protégée ; ils deviennent ainsi la plus grande zone économique exclusive au monde consacrée à la protection marine, et la sixième plus grande surface protégée. Les 20 % restants des mers des Palaos sont réservés à la pêche locale pour les particuliers et les petites entreprises, avec limitation des exportations.Selon une étude de l'Institut de recherches environnementales à Amsterdam (Pays-Bas), classer 10 % des océans en Aires marines protégées générerait un bénéfice économique global estimé entre 570 et 846 milliards d'euros pour la période 2015-2050. Les services écosystémiques concernés incluent la protection des côtes, la pêche, le tourisme et le stockage du carbone par les récifs coralliens, les mangroves et les zones humides côtières.La FAO et l'UE ont déployé 25 \"dispositifs de concentration du poisson\" le long des côtes somaliennes. Formés d'une bouée et d'un \"tapis habitat\" sous lequel se développe une vie végétale attirant les poissons, ces \"aimants\" constituent de nouvelles zones de pêche à haute densité. Ce système encourage les petits pêcheurs à déployer leurs filets loin des habitats vulnérables, en toute sécurité.Le Mécanisme régional pour la pêche dans les Caraïbes (CRFM) travaille au développement de nouveaux marchés pour les pêcheurs caribéens. Il les aide notamment à mieux respecter les normes sanitaires et phytosanitaires (SPS) permettant d'accéder à des marchés plus rémunérateurs (Europe, Canada). Une vidéo présente le projet. Plus d'informations : tinyurl.com/hj9cb9o ÉCOTOURISME BALEINIERAu large des côtes du Bénin, on trouve nombre de baleines, dauphins, tortues marines, entre autres. Contribuer à la sauvegarde de ces espèces menacées, tel est l'objectif des croisières qu'organise l'ONG béninoise Nature tropicale, en partenariat avec l'UICN.est au cours de l'année 2000 qu'ont eu lieu les toutes premières expéditions scientifiques réalisées par le Centre béninois pour le développement durable (CBDD), chargé de la mise en oeuvre de l'accord sur le développement durable des Pays-Bas avec le Bénin. Elles ont mis en évidence la présence, sur les côtes béninoises, de baleines jubarte ou \"baleines à bosse\" (Megaptera novaeangliae) et de plusieurs espèces de dauphins. Ces mégaptères sont des animaux migrateurs qui se déplacent continuellement entre les régions polaires où ils se nourrissent en été et les eaux tropicales où ils se reproduisent en hiver. Dans le golfe du Bénin, les mammifères marins transitent par diverses eaux territoriales au sein desquelles ils sont observés avec une assiduité et des moyens très hétérogènes. Les données existantes sont donc dispersées et ne sont jusqu'à ce jour pas encore intégrées à une base régionale, ce qui empêche une évaluation précise de l'état des stocks.La présence de mammifères marins sur les côtes du golfe de Guinée contribue depuis plusieurs années au développement d'une forme d'écotourisme connue sous le nom de \"whale watching\" ou \"observation en mer de mammifères marins\". \"Pour les pays qui ont la chance de posséder un tel patrimoine, les enjeux scientifiques et économiques sont très importants\", affirme Joséa Bodjrenou, directeur exécutif de l'ONG Nature tropicale. Chaque année, depuis 2000, Nature tropicale organise des expéditions en mer ou l'écotourisme baleinier de mi-août à mi-novembre. \"Ce sont des occasions exceptionnelles pour observer et admirer les baleines à bosse\", explique Joséa Bodjrenou. Ces cétacés peuvent atteindre 12 à 14 mètres de long et peser 30 à 40 tonnes.Au cours de la saison 2015, six expéditions en mer ont été programmées à raison d'une sortie toutes les deux semaines. En raison de la faible mobilisation des participants, seules quatre sorties ont pu être effectuées, rassemblant tout de même plus de 200 touristes. Les quatre expéditions ont permis à l'ONG Nature tropicale de gagner plus de 5 400 euros dont 50 % serviront à la poursuite des activités de suivi des tortues marines tout le long de la côte du golfe de Guinée. Les tortues marines qui viennent sur le sable pour la ponte sont en effet souvent capturées par les pêcheurs, ce qui menace leur existence. Une activité permanente de surveillance est ainsi nécessaire à leur sauvegarde.En 2016, le système scolaire public angolais a lancé un programme d'éducation à la nutrition.L'Angola, qui enregistre le plus fort taux de mortalité infantile au monde due à la malnutrition, à savoir plus de 400 décès par jour, a pour la première fois intégré l'éducation nutritionnelle dans son cursus scolaire. D epuis le début de l'année scolaire, en février 2016, quinze écoles primaires de Luanda dispensent des cours de nutrition. La phase initiale de ce projet s'adresse à plus de 2 000 enfants de 6 à 12 ans et vise à réduire la mortalité infantile en Angola, premier pays au monde à être touché par ce fléau.En Angola, le taux moyen des décès chez les enfants de moins de 5 ans est de 167 pour 1 000 naissances vivantes. Selon l'Unicef, un enfant sur six meurt avant son cinquième anniversaire. La mortalité néonatale est très élevée, principalement due à la malnutrition associée aux affections respiratoires aiguës, à la malaria et à la diarrhée.Pour tenter de combattre ce fléau, un groupe d'experts et de nutritionnistes des ministères de l'Éducation, de la Santé et de l'Agriculture a mis au point, avec le soutien de Nestlé Angola, des manuels sur la nutrition destinés à la formation des professeurs ainsi que des livres d'activités s'adressant aux enfants de 6 à 12 ans. À raison de 15 minutes trois fois par semaine, des sujets comme la pyramide alimentaire, la sécurité alimentaire et l'activité physique seront abordés en classe, puis intégrés dans des disciplines telles que l'étude du milieu, le portugais et l'éducation morale et civique.Dans un pays où la sous-alimentation chronique touche un grand nombre d'enfants, les taux d'obésité sont, eux aussi, préoccupants. L'Angola arrive juste derrière la Guinée-Bissau parmi les pays africains lusophones qui enregistrent les plus forts taux d'obésité, à savoir 18,7 % chez les femmes, 12 % chez les hommes et 6 % chez les jeunes et les enfants.Dans une étude élaborée par Oxfam, en 2014, l'Angola figure parmi les trois pays qui affichent les plus mauvais résultats en matière de nutrition et de comportements alimentaires. Plus de la moitié de la population se nourrit principalement de glucides et l'accès à l'eau potable est très problématique. Les carences en vitamine A et en fer sont, elles aussi, fort préoccupantes.L'indice HANCI, qui mesure l'engagement des gouvernements dans la lutte contre la faim et la malnutrition, classe le gouvernement angolais en avant-dernière position sur un total de 45 pays. Un nouvel indicateur que le ministère de l'Éducation entend bien contrecarrer en étendant, à court terme, le programme de cours de nutrition à toutes les provinces du pays (18 au total) et aux plus de cinq millions d'élèves qui fréquentent l'enseignement primaire.La culture de patate douce à chair orange, riche en vitamine A, révolutionne le menu alimentaire rwandais. Elle offre une valeur nutritionnelle élevée et est aussi \"riche en vitamines C, B3 et B2\", d'après Regis Umugiraneza de Carl Sweet Food qui transforme la patate en biscuits, beignets et spaghettis…Au Rwanda, une coopérative d'agriculteurs, appuyée par l'ONG HarvestPlus, cultive de nouvelles variétés de fèves riches en fer. \"Les nouvelles variétés sont savoureuses. Leur teneur en fer est grande. On récolte plus de trois tonnes par hectare contre moins d'une tonne pour les variétés autochtones\", affirme Hélène Mutezintare, membre de la coopérative. On dit que que le financement des petits exploitants et entreprises agricoles entraîne des coûts de transaction élevés, offre de faibles retours sur investissement et soit très risqué. Est-ce un mythe ou une réalité ?À nos yeux, qui dit financement inclusif dit disponibilité à long terme, capitaux patients et mécanismes de financement adaptés aux petits producteurs et micro-, petites et moyennes entreprises (MPME). Le secteur agricole souffre de sous-investissement depuis des décennies, surtout l'agriculture familiale. La FAO estime qu'il faudra investir 240 milliards d'euros par an pour éradiquer la faim d'ici 2030. Les petits producteurs représentant plus de 95 % de l'ensemble des exploitations agricoles, c'est à eux que doit revenir la majeure partie de ces investissements.Il est indéniable que toute production agricole induit des risques importants. Cela s'explique par les risques de production et de marché tels que les conditions environnementales, la quantité et la qualité des produits et la volatilité des prix. Ce risque est souvent perçu comme plus élevé avec les petits producteurs, du fait En ce qui concerne les risques, AgriFI adoptera une double approche : il s'agira d'abord de réduire les risques du côté du producteur -services commerciaux et de conseil, compétences, technologies et innovations ; et ensuite d'offrir davantage de financements supportant le risque.Nous offrons aussi une plus grande capacité à supporter le risque grâce à l'utilisation de fonds publics pour attirer des financements privés sur des investissements viables, qui ne se réaliseraient pas autrement. AgriFI vise à financer des initiatives qui ont un net impact en termes de développement pour des populations généralement exclues, comme les petits producteurs peu axés sur les marchés, les groupes vulnérables, les femmes, et les jeunes.Comment AgriFI sera-t-elle mise en oeuvre ?AgriFI permettra la mise en oeuvre de divers programmes et leur financement à partir de différentes sources. Les financements proviendront de multiples programmes thématiques, régionaux et nationaux, mais il y aura aussi évidemment des aides sous forme de prêts assurés par les banques de développement, les institutions de financement et le secteur privé.La plupart des investissements d'AgriFI se feront dans le cadre d'un panachage au sein de l'UE. AgriFI se veut une initiative souple. Il est en principe possible d'utiliser tous les instruments associables tels que les subventions directes à l'investissement, l'assistance technique mais aussi l'apport de capital à risque, de garanties ou d'autres mécanismes de partage des risques. Étant donné que la petite agriculture et les MPME agricoles sont considérées comme à haut risque, le recours à des mécanismes de partage des risques est particulièrement important.Comment convaincre un prestataire de services financiers d'investir dans les MPME agricoles ?Nous pouvons proposer un partenariat fiable et de confiance aux investisseurs. Ces partenariats offrent des avantages s'agissant de la répartition du risque et de l'engagement à long terme. Un autre argument est qu'il est impossible de garantir l'approvisionnement alimentaire mondial sans exploiter le potentiel sousutilisé des petites exploitations agricoles. Ce sont ces producteurs qui nourrissent actuellement 80 % de la population du monde en développement, et leur activité sera vitale pour assurer la sécurité alimentaire mondiale. Nous devons donc dès maintenant mieux saisir ces enjeux ensemble, sans quoi nous n'atteindrons jamais l'impact nécessaire à l'échelle requise. Alors comment analyser la \"connectivité\" des agriculteurs ? On peut définir les agriculteurs comme étant connectés horizontalement les uns aux autres, verticalement aux autres acteurs ou globalement en tant qu'éléments d'un système intégrant le contexte et la complexité de ces connexions.Au cours des dernières décennies, les connexions étaient souvent linéaires et plutôt limitées. Les agriculteurs pouvaient recevoir des conseils en matière de vulgarisation, mais peu d'informations sur les marchés. La mise en place de coopératives et d'organisations de producteurs leur a permis de partager leurs expériences, d'agir en collaboration et de vendre collectivement, mais les connexions étaient plutôt passives et les échanges d'informations lents. Si les agriculteurs restent au bas de la chaîne d'information, il leur est impossible d'optimiser leur productivité et de mieux gérer leurs entreprises.Pour aider les agriculteurs à se connecter aux autres, les acteurs du développement ont mis l'accent sur l'accès à l'information et le renforcement des liens au sein de la chaîne de valeur afin d'améliorer les débouchés et les prix. Toutefois, pour faciliter la décision en fonction des risques climatiques et commerciaux et des opportunités de cultiver/élever le bon produit au bon moment et au bon prix, les agriculteurs ont besoin d'un accès immédiat à davantage de connaissances.Avoir accès à des prévisions météorologiques fiables est essentiel pour les producteurs, pour prendre les bonnes décisions pour le calendrier de leurs activités agricoles, de la production à la récolte. Dans les tropiques, les prévisions les plus fiables ne sont toutefois précises qu'à 40 %. Le climat tropical est localisé et les modèles climatiques classiques n'ont pas réussi à offrir la précision dont les agriculteurs ont besoin. Toutefois, ISKA TM \"Nous avons eu des difficultés avec la volatilité des prix, mais grâce à l'abonnement à ce service les producteurs peuvent maintenant plus facilement s'informer sur les marchés locaux\", déclare Nana Kwaku Siaw, qui pratique l'aquaculture. \"Les agriculteurs ghanéens sont encouragés à se lancer dans la pisciculture pour fournir une source alternative de protéines à la population. Je peux maintenant accéder à l'information dont j'ai besoin sur ce qu'il faut faire et à quel moment.\" En plus des messages vocaux, Farmerline dispose d'une équipe d'assistance qui répond aux questions des agriculteurs. À l'échelle régionale, l'entreprise assiste aussi les firmes agroalimentaires internationales, les gouvernements et les agroentreprises en matière de communication en gestion agricole, de collecte des données et de traçabilité afin d'assurer une meilleure gestion et connexion avec plus de 200 000 agriculteurs et acteurs des chaînes de valeur dans cinq pays d'Afrique de l'Ouest.Les TIC sont de plus en plus importantes pour relier les producteurs et fournir des informations. Toutefois, les circuits traditionnels (audio, radio et vidéo) utilisés de manière novatrice -y compris en association avec les TIC -continuent à jouer un rôle vital dans la communication.Pour inspirer les agriculteurs, Access Agriculture utilise des vidéos de formation \"de paysan à paysan\" en langue locale. Sur le site web de l'organisation, plus de 700 vidéos peuvent être téléchargées en 60 langues différentes. Le producteur ghanéen Yakubu Rahman témoigne : \"La vidéo a été filmée au Mali, mais elle me parle dans une langue que je comprends.\" Pour les agriculteurs des zones où l'électricité, Internet et le réseau de téléphonie mobile sont peu fiables Au Malawi, des points vidéo vendant ou louant des DVD chargent des vidéos agricoles sur des cartes micro SD qui peuvent être visionnées sur des téléphones portables de base. Dans l'un des points vidéo d'une petite ville, Andrew Njorinjo, producteur, explique : \"C'est bien. En regardant ces films, j'ai appris à vaincre le striga (kaufiti) dans mes champs.\" Bien que ne possédant pas de smartphone, il peut, pour quelques kwachas (monnaie locale), visionner des vidéos dans sa propre langue, le chichewa. En janvier 2016, au Malawi, l'ONG Access Agriculture a donné une formation à la traduction de vidéos en quatre langues locales -sena, yao, chichewa et tumbuka. Ainsi les agriculteurs aurontils bientôt accès à davantage de programmes dans l'ensemble du pays.Grâce aux possibilités qu'offrent les services mobiles dans trois domaines (diffusion d'information, services financiers et services liés au commerce agricole), le revenu agricole de 26 pays pourrait augmenter d'environ 138 milliards US$ (123 milliards €) d'ici 2020 ; cette progression profitera en grande partie à des pays en développement. On estime qu'au total, 549 millions d'utilisateurs seront connectés à ces services.Les plus fortes hausses de revenu agricole peuvent être enregistrées dans les pays en développement. La communication mobile est la forme de communication la plus répandue dans les marchés émergents et est de plus en plus accessible dans les endroits reculés. En ce qui concerne les pays en développement d'ici 2020, les régions les plus propices à l'augmentation du revenu des petits exploitants agricoles grâce aux services mobiles sont l'Afrique, l'Inde et le Moyen-Orient. ou indisponibles, les vidéos sont accessibles grâce à un \"projecteur intelligent\". \"Le kit comprend un projecteur et un haut-parleur alimentés par une batterie solaire rechargeable. Il tient dans un sac à dos, ce qui permet à toutes les personnes exerçant une activité de vulgarisation de le transporter aisément\", s'enthousiasme Bob Muchina, président du Forum sur les services de conseil agricole récemment créé au Kenya. Au Malawi, les vidéos peuvent être téléchargées directement sur les téléphones portables des agriculteurs dans des \"points vidéo\" (voir encadré). Dans toute l'Afrique, l'ONG Radios rurales internationales (RRI) favorise une méthode d'apprentissage semblable, d'agriculteur à agriculteur, en aidant les stations de radio locales et communautaires à développer des programmes pour l'écoute collective. L'une des principales technologies participatives utilisées par RRI est un système interactif de réponse vocale. Ce système permet aux agriculteurs d'accéder à d'importants messages et alertes, de réécouter les programmes radio et de partager leurs expériences de terrain en laissant des messages vocaux aux stations de radio.Les TIC contribuent à maintenir l'engagement des jeunes dans l'agriculture. \"J'utilise Internet tous les jours, et en particulier les réseaux de médias sociaux, pour obtenir des informations et communiquer avec le secteur agricole\", observe Devica Sookoo, une jeune productrice de melons de 25 ans, directrice de la Société agricole de Trinité-et-Tobago. \"J'espère inciter d'autres jeunes à s'engager dans l'agriculture en partageant mes connaissances et expériences, bonnes comme mauvaises.\" Elle ajoute : \"Grâce à la formation du Réseau des agriculteurs caribéens (CaFAN), j'ai aussi appris que les médias sociaux sont un excellent outil pour m'aider à commercialiser mes produits et attirer directement la clientèle.\" (voir le reportage : Le marché en ligne -une connexion pratique) Parallèlement à la commercialisation sur les médias sociaux, des plateformes numériques interactives plus sophistiquées permettent aux agriculteurs d'être mieux connectés. La plateforme \"e-granary\" de la Fédération des agriculteurs de l'Afrique de l'Est (EAFF) relie les producteurs aux acheteurs. \"Chaque agriculteur affiche la quantité de riz qu'il veut vendre et à quel prix. Lorsque les négociants ont reçu l'information, ils nous (les agriculteurs) appellent\", précise William Juma, un riziculteur de Busia, dans l'ouest du Kenya. \"Cette plateforme contribue aussi à stabiliser les prix des céréales. Après la récolte, les producteurs établissent un prix équitable fondé sur nos dépenses de production, qui nous procure des bénéfices tout en restant favorable à DOSSIER Afin d'aider les producteurs à partager et utiliser les connaissances en matière de développement agricole, le CTA, la FAO, le FIDA, l'IICA et leurs partenaires développent un nouveau projet de \"capitalisation d'expérience\". L'initiative formera les organisations partenaires à recueillir les expériences des producteurs en décrivant les difficultés qu'ils rencontrent, leurs approches pour les surmonter et les enseignements tirés de ces expériences. Ces \"histoires\" seront complétées par les points de vue personnels intéressants qui se dégageront tout au long du processus. L'objectif du projet est de permettre aux organisations de producteurs d'appliquer les techniques de capitalisation d'expérience, de partager les connaissances et de prendre conscience des avantages de cette approche pour, à terme, l'institutionnaliser. nos acheteurs.\" La plateforme a été développée et élargie à toute la région, et les agriculteurs pourront désormais être reliés à des services financiers et d'assurance. (voir le point de vue : Créer des liens : une approche visionnaire) Au fur et à mesure de l'évolution des nouvelles technologies, le rôle de \"l'intermédiaire\" -celui qui achète aux producteurs et vend aux consommateurspeut s'adapter aux nouvelles dynamiques et offrir des services qui améliorent la commercialisation collective, la stabilité des prix et la négociation. Ainsi, Tech4farmers, en Ouganda, est un prestataire de services qui gère une bourse numérique d'échange de marchandises et un système de récépissés d'entrepôt pour 6 300 agriculteurs et 87 entreprises. Les récépissés d'entrepôt sont remis comme garantie des grains et céréales qui bénéficient d'un stockage sécurisé. \"La couverture des transactions que permettent les échanges en ligne de Tech4farmers diminue nos risques commerciaux et augmente les retours sur investissements car les transactions sont garanties par les banques\", déclare Hajji Ahmed Naleba, riziculteur dans le district de Butaleja. Ce mécanisme de financement favorise la transparence dans les chaînes de valeur, limite les ventes parallèles et améliore la traçabilité des produits puisque agriculteurs et entreprises peuvent librement échanger leurs récépissés sur la bourse numérique.\"Le fait d'être connecté permet d'avoir accès en temps opportun aux informations cruciales et appuis nécessaires pour mener pleinement son activité agricole comme une entreprise\", conclut le directeur général de Tech4farmers, Deogratius Afimani. Néanmoins, pour que tous les producteurs soient connectés, les défis auxquels ils sont confrontés nécessitent des innovations permanentes dans les TIC et un appui stratégique approprié.En cette ère numérique, qu'est, selon vous, un \"agriculteur connecté\" ?Un agriculteur connecté possède un téléphone portable pour faire des transactions, se procurer des intrants, recevoir les alertes météorologiques, appeler le vétérinaire, etc. Pour pouvoir attirer les investisseurs, les agriculteurs doivent utiliser les TIC. Celles-ci sont en train de révolutionner l'agriculture et ouvrent de vastes perspectives. Les producteurs doivent toutefois changer d'état d'esprit -ils doivent davantage considérer leur activité comme une entreprise et vouloir faire partie du secteur privé plutôt que de compter sur l'aide d'organismes de développement et de bailleurs de fonds.Nous avons eu beaucoup d'innovations intéressantes à la conférence ICT4Ag, mais les producteurs et leurs organisations restent insuffisamment impliqués. L'EAFF s'est associée aux prestataires de services, et en particulier aux partenaires financiers et acheteurs de produits de base, pour développer une plateforme mobile interactive appelée \"e-granary\". En regroupant les agriculteurs dans 30 coopératives pour le maïs et le riz, nous pouvons identifier les agriculteurs selon leur genre, âge, entreprise, type de culture et le moment de la plantation. Cela nous permet de réaliser des prévisions de récolte. Même avec un téléphone de base, les agriculteurs peuvent interagir avec la plateforme. Au cours des deux premiers mois d'essai, nos avons enregistré 20 000 agriculteurs. Au fur et à mesure, nous ajouterons de nouveaux services, comme la vulgarisation, l'accès aux intrants, à l'assurance et au crédit.La création de plateformes numériques est coûteuse. Pour prendre part au processus, les agriculteurs ont besoin de compétences et doivent renforcer leurs capacités. Des mesures incitatives sont aussi nécessaires pour favoriser leur participation. Par exemple, l'association doit les aider à commercialiser leur production. Même si nous disposons d'un excellent système, si les gens ne savent pas comment l'utiliser, ça ne servira à rien. Les données générées peuvent aussi permettre de mettre en lumière les difficultés auxquelles les agriculteurs sont confrontés afin d'éclairer les politiques et de susciter le changement. Market Movers est une initiative innovante qui établit une connexion directe entre les agriculteurs et le marché en permettant aux consommateurs d'acheter des produits alimentaires en ligne. Elle propose des produits de niche locaux tels que du chocolat haut de gamme ou des spécialités difficiles à trouver et des produits bio (légumes, viandes et produits laitiers). Les consommateurs commandent d'un click et D'Market Movers leur livre directement les produits. \"Je cultivais des salades et je les vendais sur des marchés de gros\", déclare le fondateur de D'Market Movers, David Thomas. \"Nous avions l'habitude de vendre à des intermédiaires mais j'ai réalisé que nous pourrions doubler ou tripler nos bénéfices en directement aux consommateurs.\" Pour permettre aux agriculteurs d'accéder directement aux consommateurs, éliminer les intermédiaires et augmenter les revenus des producteurs, l'entreprise a lancé un modèle de vente en ligne grâce à l'expertise en matière de TIC de sa partenaire commerciale Rachel Renie. D'Market Movers est maintenant l'un des meilleurs exemples d'agroentreprise prospère fondée sur l'utilisation des TIC à Trinité-et-Tobago.C'est l'aspect pratique qui attire les consommateurs sur la plateforme en ligne. Les producteurs, eux, veulent travailler avec l'entreprise pour l'accès qu'elle offre à une vaste clientèle. D'Market Movers, qui propose maintenant plus de 140 produits, poursuit son expansion et cherche à pénétrer le marché des exportations avec des yaourts glacés aux fruits.\"Notre entreprise est dynamique parce que nous gardons en permanence à l'esprit que nous travaillons dans l'agriculture, qui a un caractère saisonnier et périssable et dépend de l'offre, de la demande et du climat\", affirme Rachel Renie. \"Qui plus est, nous n'oublions pas à qui nous vendons. Tous les clients ne sont pas fidèles. C'est l'un des principaux enseignements tirés de notre expérience.\"Cette philosophie a incité les cofondateurs à recueillir régulièrement les commentaires des clients sur les produits disponibles et à en tester de nouveaux. L'entreprise communique avec les consommateurs par les médias sociaux et son site web. \"Nous sommes toujours en quête de commentaires. L'un des avantages d'être une entreprise en ligne, c'est que nous pouvons facilement recueillir des données et analyser les tendances pour définir de nouvelles stratégies\", ajoute David Thomas.Un nouveau service personnalisé, appelé \"Notre table mobile\" (en anglais \"Our Moving Table \"), encourage les consommateurs à acheter des aliments locaux. Ce concept, qui fait appel à des partenaires, entreprises agroalimentaires et chefs locaux, propose des repas conviviaux permettant de présenter les produits locaux. Le menu est entièrement élaboré à partir de produits que l'on ne trouve qu'à Trinité-et-Tobago. Cette rencontre mensuelle itinérante, aussi appelée \"buffet paysan\", organisée à l'extérieur, encourage les consommateurs et le grand public à soutenir les producteurs locaux lorsqu'ils sortent pour manger. \"Nous assurons la promotion de Notre table mobile dans les médias sociaux et, pour l'instant, chaque rencontre a affiché complet. Nos clients se sentent plus proches de nous et des producteurs qui fournissent les aliments parce qu'ils savent d'où ils proviennent\", s'enthousiasme David Thomas. Rachel Renie s'occupe de l'entreprise, utilise les médias sociaux pour interagir avec les consommateurs, tandis que David Thomas, ancien producteur lui-même, assure le contact avec le réseau de fournisseurs. Ces agriculteurs sont nombreux à cultiver sous serre, dans des zones insulaires éloignées, des produits de grande qualité mais périssables pour lesquels ils n'arrivaient pas à obtenir de bons prix sur les marchés locaux. En créant une demande sur sa plateforme en ligne, D'Market Movers a augmenté leurs gains et les producteurs recommandent maintenant l'entreprise à d'autres agriculteurs.\"D'Market Movers nous aide à commercialiser nos produits périssables\", déclare Dereck Legall, producteur de poivrons et tomates. \"C'est très important pour nous de convenir d'un prix stable toute l'année pour garantir des bénéfices constants\", dit-il. Il ajoute que l'initiative Notre table mobile a aussi été encourageante pour les producteurs. Pour permettre à D'Market Movers de prévoir plus précisément les produits disponibles, Dereck Legall tient l'entreprise informée de son cycle de production. Parallèlement, il s'est orienté vers la culture de produits de niche pour répondre à la demande des consommateurs. Par exemple, au lieu de cultiver la variété courante de chou chinois (bok choy), il produit maintenant des blettes. D'Market Movers poursuit son expansion en proposant de nouveaux produits et services innovants. En s'intéressant aux commentaires des consommateurs, l'entreprise optimise leur satisfaction tout en maintenant ses valeurs essentielles fondées sur la santé et le bienêtre de la clientèle. Les agriculteurs tirent profit non seulement de leur rapport avec D'Market Movers mais aussi des relations qu'ils nouent entre eux ; le réseau de producteurs de l'entreprise s'est étendu grâce aux recommandations et références. En interagissant et en partageant ce nouveau marché, les agriculteurs travaillent ensemble à établir de bonnes connexions avec le marché local. CHAÎNES DE VALEUR P lusieurs conditions doivent être réunies pour que les petits producteurs ACP soient capables de fournir une filière. Cela va de l'accès aux financements et technologies à la présence d'autres acteurs disposés à entraîner les petits producteurs dans leur sillage. Le cas du secteur haïtien de la mangue montre comment les petits producteurs contribuent à alimenter durablement un secteur agroalimentaire dans un pays ACP. L'Association haïtienne des producteurs et vendeurs de fruits du Sud organise la cueillette, le tri et le lavage de la production de ses 750 membres. Les fruits de qualité sont vendus à l'un des plus gros exportateurs locaux de mangues fraîches. Ceux qui n'ont pas la qualité requise pour l'exportation sont achetés par une usine de transformation locale qui les sèche pour le marché intérieur, apportant ainsi une valeur ajoutée à ces fruits qui seraient normalement jetés. Dans ce cas, le moteur renforçant la chaîne de valeur est essentiellement le regroupement des producteurs en une association unique qui gère avec une grande compétence professionnelle les opérations de cueillette et de postrécolte. La participation de l'entreprise exportatrice contribue aussi au succès de l'opération. La faiblesse des besoins en fonds de roulement, qui peuvent ainsi être assurés par les agriculteurs euxmêmes, est aussi un facteur de réussite. Au Vanuatu, la Farmers Support Agency (Agence d'aide aux agriculteurs) a relié les agriculteurs des villages isolés à une entreprise de transformation et commercialisation, tout en offrant des formations et un appui technique. Ceci s'est révélé avantageux pour tous les acteurs de la chaîne de valeur ; les formations, l'appui technique et l'organisation ont permis aux petits exploitants de prouver qu'ils pouvaient produire des denrées de qualité pour l'exportation. L'extrait de vanille du Vanuatu est maintenant vendu à des fabricants de crème glacée de Nouvelle-Zélande, et l'extrait et la pâte sont exportés en Australie. L'engagement d'un transformateur-exportateur proactif a constitué un puissant \"facteur d'entraînement\" dans la chaîne de valeur.En Afrique de l'Ouest, Unilever développe un modèle inclusif de fourniture d'huile de palme qui garantit des marchés aux petits producteurs s'ils adhèrent à des normes de production. L'intégration des petits producteurs dans la chaîne de valeur de l'huile de palme génère des revenus qui sortent les ménages de la pauvreté et leur permettent d'envoyer les enfants à l'école.De même, l'un des principaux acteurs de la chaîne de valeur du maïs du Ghana, où le maïs est un aliment de base, fournit des intrants (semences à haut rendement, engrais et matériels agricoles) et des services (formation, prêts en nature) aux petits agriculteurs en échange d'un engagement à le choisir comme canal commercial privilégié. Le renforcement des liens avec la chaîne de valeur permet à l'entreprise commerciale de bénéficier d'un approvisionnement plus sûr et conséquent, et aux agriculteurs d'augmenter leurs production et bénéfices.Ces arrangements ne vont pas sans certains inconvénients. Le rapport commercial penche souvent en faveur de l'acheteur qui peut utiliser son pouvoir de négociation pour baisser les prix ou imposer une technologie qui n'est pas nécessairement la plus appropriée. D'autre part, ce rapport risque d'être compromis si les agriculteurs vendent à d'autres acheteurs.Les conditions susceptibles de renforcer les capacités des petits agriculteurs vont des aides pour l'accès aux financements et technologies à la mise en place d'un environnement commercial adéquat. Ces conditions se reflètent clairement dans le \"CaFAN Regional Value Chain Alliance Project\" (projet régional d'alliance pour les chaînes de valeur du CaFAN), qui met l'accent sur le renforcement des capacités, le développement organisationnel, la formation technique, les échanges régionaux d'apprentissage, et l'engagement du secteur privé, entre autres. Jethro Greene, coordinateur principal, déclare : \"Le CaFAN vise à renforcer les capacités des responsables agricoles en aiguisant ces outils [de la chaîne de valeur] et en élaborant des stratégies pour améliorer et exploiter les chaînes de valeur pour des cultures spécifiques.\"Les petits producteurs des pays ACP s'éloignent de plus en plus de l'agriculture de subsistance et démontrent leurs capacités à fournir le secteur agroalimentaire de façon fiable. Le point sur les conditions nécessaires à cette transition.Nouveau venu dans la collection coéditée par le petit éditeur camerounais ISF Cameroun et le CTA, cet opus est dédié par son auteur aux agriculteurs familiaux, qui \"exercent l'un des plus beaux métiers de la terre\". D'emblée, le ton est donné pour cet ouvrage qui, en un peu moins de 60 pages, se donne pour ambition de renforcer les capacités techniques et organisationnelles des organisations paysannes d'Afrique subsaharienne.L'ouvrage s'adresse aux responsables paysans, membres de groupements, de coopératives et d'OP, cadres et agents de développement en quête d'outils pour la professionnalisation. Vie associative, administration, gestion financière et comptable, communication sont les principaux domaines abordés par ce petit guide qui deviendra vite indispensable à ses lecteurs. Outre qu'il regorge de conseils pratiques et d'outils techniques indispensables (formulaire de demande d'adhésion, exemples de carte de membre, d'organigramme, tableaux de planification et de suivi des activités, bilans techniques, comptes prévisionnels, documents comptables, etc.), ce manuel est très bien illustré, ce qui en rend la consultation agréable. En cinq parties, ce second numéro de la revue Chantiers démontre la richesse et la diversité des savoirs locaux en Haïti, allant de la médecine traditionnelle aux problématiques du droit et de l'éthique, et aborde bien sûr l'agriculture. Réagissant à une étude réalisée par le CIRAD sur la capacité de l'Afrique subsaharienne à relever le double défi de nourrir sa population future et procurer des revenus décents à ses agriculteurs, la Fondation FARM s'interroge sur les mesures à mettre en oeuvre par anticipation pour aider ces pays. Elle en appelle à \"injecter de l'économie politique dans la prospective\". Cette nouvelle édition d'un manuel Agrodok sur l'utilisation des résidus de cultures dans l'alimentation animale vient combler un vide, car jusqu'alors cet important sujet n'avait pas fait l'objet d'un traitement aussi complet. Ces résidus de cultures sont également appelés \"pailles\" tout au long de l'ouvrage, par souci de simplification (définies comme \"les parties fibreuses de la biomasse végétale, à l'exclusion des racines, mais y compris les mauvaises herbes et les grains tombés ou non mûrs des mauvaises récoltes\"). Ils sont d'autant plus importants que la pression sur le fourrage est croissante, et qu'ils jouent un rôle dans la conservation des sols.Après avoir effectué un quasi-tour du monde des pratiques tant auprès des chercheurs que des agriculteurs, les auteurs recensent ici les différentes utilisations de la paille dans l'alimentation animale. Diversité des pailles, faisabilité, type d'utilisation et traitement dans les étables constituent l'essentiel des 100 pages de l'ouvrage, qui comprend également un chapitre sur les pâturages. Ce manuel se destine en priorité aux éleveurs mais il intéressera aussi sûrement les jeunes en formation et tous les publics intéressés par l'élevage.Longtemps chargé de la communication de l'Association interprofessionnelle du coton (AIC) du Bénin, Joachim Nounagnon Saizonou, également correspondant de Spore, fait ici oeuvre d'historien et d'analyste. Un ouvrage qui met en lumière bien des défis auxquels sont confrontées toutes les interprofessions. Vous pouvez, soit acheter les ouvrages auprès des éditeurs ou en librairie, soit les télécharger sur http://publications.cta.int si elles sont en accès libre. Plus de la moitié de nos titres sont téléchargeables gratuitement ! Les titres précédés du symbole sont disponibles à l'achat chez les éditeurs mentionnés ou en librairie.L'objectif de l'édition 2015-2016 du rapport biennal de la FAO sur la situation des marchés des produits agricoles est d'atténuer la polarisation actuelle des points de vue relatifs aux impacts du commerce des produits agricoles sur la sécurité alimentaire. Ce rapport devrait ainsi permettre d'éclairer les choix de politiques et de mieux estimer les améliorations nécessaires à leur efficacité. Les nouvelles technologies sont-elles suffisamment disponibles aujourd'hui pour que les paysans puissent les utiliser, notamment en milieu rural ?Les TIC sont de plus en plus disponibles, même en milieu rural. Le téléphone mobile toutefois est beaucoup plus présent que l'accès à Internet en luimême. En Afrique, il y a plus de 70 % d'abonnements à la téléphonie mobile mais seulement 29 % de la population a accès à Internet. Internet coûte encore cher, l'électricité est très instable ou inexistante, mais les choses évoluent. Au Bénin, 41 % des riziculteurs utilisent le téléphone mobile et une de nos enquêtes montre que plus de 90 % des jeunes agriculteurs en sont adeptes. Par ailleurs, beaucoup font appel à des applications L'année dernière, vous avez remporté un prix récompensant vos activités pour les jeunes. Pouvez-vous nous en parler en quelques mots ?Il s'agissait de l'édition 2015 du Prix du Forum SMSI (Sommet mondial sur la société de l'information) organisé par les Nations unies. Nous l'avons gagné dans la catégorie \"e-agriculture\", après un vote à l'échelle mondiale puis une évaluation par des experts internationaux. Il récompense la promotion des TIC dans l'agriculture et donc, dans notre cas, Talents AgriHack et notre concours de blogs agricoles YoBloCo Awards. Il s'agit d'une reconnaissance internationale qui nous encourage à faire encore mieux. Nous sommes d'ailleurs en train de lancer d'autres activités qui toucheront encore plus de jeunes et nous permettront d'avoir un impact encore plus grand.","tokenCount":"9889"} \ No newline at end of file diff --git a/data/part_3/3563418613.json b/data/part_3/3563418613.json new file mode 100644 index 0000000000000000000000000000000000000000..91e01edc071af2a8dd2555ac83d3057288790b3d --- /dev/null +++ b/data/part_3/3563418613.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"13a396d9bef5e14b449355101b9a8a5d","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/d54557d3-b5c7-4c38-bfa7-800cda5a1e39/retrieve","id":"324868027"},"keywords":[],"sieverID":"269b4875-d270-4c19-8751-a9526cbaece3","pagecount":"8","content":"THE SUSCEPTIBILITY of stylo to anthracnose was evaluated on 17 Stylosanthes guianensis lines acquired from the Centro Internacional de Agricultura Tropical (CIAT), Colombia, and on two reference materials, Cook and Verano stylo. Except for CIAT lines 184 and 136 and Verano stylo, all other accessions succumbed to anthracnose during the rainy season.The genus Stylosanthes is one of the most important sources of pasture legumes for the tropics (Edye and Cameron, 1984). In West Africa, Stylosanthes features prominently in pasture work aimed at improving the nutrition of ruminants.The pasture potential of Stylosanthes spp was first realised about 50 years ago, but intensive adoption around the world has occurred only during the past two decades. Although Stylosanthes was introduced into Nigeria in 1940, serious efforts to evaluate its pasture potential along with other legumes did not begin until 1956, when initial evaluations took place in Ibadan, in the subhumid zone, and in Shika, in the semi-arid zone (Agishi, 1982). After screening, five Stylosanthes species were recommended as suitable for use: S. gulanensis cultivars Cook, Endeavour and Schofield, S. hamata cv Verano and S. humilis (Townsville stylo).Stylosanthes species have a high climatic and edaphic adaptability, good feed quality and good soil conservation properties, but, as was shown by subsequent research, susceptibility to anthracnose(Colletotrichum gloeosporioides) can limit the adoption of most commercially available cultivars.The International Livestock Centre for Africa (ILCA) started screening forage legumes at its subhumid zone research site in Kaduna, Nigeria, in 1979. The objective of the research was to improve the productivity of cattle owned by settled agropastoralists. Since protein deficiency in natural herbage was identified as the major constraint to animal productivity in the zone, three of the five recommended stylo cultivars --Schofield, Cook and Verano -were initially screened in pasture trials. From 1980 onwards, they were also grown as companion crops to cereals in various combinations and sequences, and also in densely sown, fenced legume pasturesthe fodder banks.However, after a year of intercropping, the Schofield and Cook cultivars were found to be susceptible to anthracnose, and the research on animal nutrition in different production systems was continued only with Verano stylo. This research has since demonstrated various methods of producing and using Verano stylo for the benefit of large and small ruminants (Mohamed-Saleem, 1984;ILCA, 1987). It has also highlighted the need to identify more productive, anthracnose-tolerant stylo lines as alternatives to Verano stylo. Since 1981, more than 300 stylo lines have been introduced into Nigeria for screening.In 1987, an ILCA scientist visited the Centro Internacional de Agricultura Tropical (CIAT) in Cali, Colombia, and brought back 17 S. guianensis lines selected for their tolerance to anthracnose. These stylo lines were evaluated on ILCA's experimental sites in subhumid Nigeria. Preliminary observations made on their performance as compared with the Cook and Verano cultivars are presented in this report.Seventeen S. guianensis lines acquired from CIAT were sown on 25 May 1987 into boxes filled with the topsoil of tropical ferric luvisol, sieved through a 2-mm screen. Fifteen of these lines (CIAT 11362 to 11376) were F 4 selections of 'common' S. guianensis var. vulgaris (J. W. Miles, CIAT, Colombia, personal communication). All the CIAT seeds planted were scarified at source with concentrated sulphuric acid and treated with Difolatan and Malathion to prevent seed-borne diseases, especially anthracnose.Seedlings were transplanted in two separate experiment sites, one in Kaduna and the other in the Kachia Grazing Reserve. The latitude, soil types and monthly rainfall at each site during 1987 are given in Table 1. Details of the experiments are given below. This experiment was conducted at ILCA's research site in Kaduna. Seedlings of S. guianensis were transplanted from boxes into unreplicated plots on 19 June 1987. The plots measured 1 × 1 m and were separated by 0.5-m-wide paths. A total of 150 seedlings were planted on each plot. The experiment area had never before been under stylo, but in the adjacent area, Cook stylo had been planted during the 1986 growing season and harvested in December the same year.Two stylo cultivars --S. hamata cv Verano and S. guianensis cv Cook -were used as reference materials. On the day of seedling transplantation, 0.5 g of seed was sown in each experiment plot to simulate repeated flushes of germination which are typical of field conditions.All plots were fertilized with single superphosphate at the rate of 250 kg/ha. The fertilizer was worked into the soil one day before transplanting. Plot borders were periodically trimmed.On 18 September 1987, all plots were sprayed with an aqueous extract from stylo plants severely affected by anthracnose. The extract was obtained by collecting, at random, a 10-kg sample from diseased stylo plots, mixing it with clean water in a bowl and agitating the contents overnight. Before spraying, the liquid was decanted and diluted. Susceptibility to anthracnose was determined in the third week of October, using the scoring scale shown in Table 2. On the day of the visual scoring, about 10 plants were cut (5 cm above ground) at random from each plot to prepare material for pathogen isolation and analysis at the Pathology Laboratory of the Institute of Agricultural Research (IAR), Zaria, Nigeria. Pure cultures were prepared as follows.The cut plants were washed in water. Surface-sterilised using sodium hypochlorite, washed again in sterile distilled water, and then plated on potato dextrose agar streptomycin (PADS) medium. After 3 days, the organisms growing out of the plated specimens were subcultured into fresh PADS. The subcultured organisms were allowed to grow for 6 days, after which attempts were made to identify; under a light microscope, the genera of the organisms found on each stylo line.At the end of October 1987, herbage growing on two 0.5 m 2 quadrats delineated in each plot was cut to 5 cm above ground level and dried at 60°C for 48 hours to determine dry matter This experiment was set up at the Kachia Grazing Reserve. A 21 × 7 m plot, which had been under Stylosanthes guianensis cv Cook for 3 years and had had a history of persistent anthracnose attack, was trimmed to 5 cm above ground level. The plot was divided into four 21 × 1 m blocks separated by three 1-m paths. Within each block 19 strips 0.3 m wide were made by hoeing out the Cook plants.Ten seedlings from each of the 17 CIAT lines as well as the two controls, Cook and Verano stylo, were transplanted into the strips, each line to a strip, in four replicates. The seedlings were taken from the same nursery boxes as those used in experiment 1.Five plants within each strip were tagged and allowed to grow along with the Cook stylo regenerating outside the strips. The tagged plants were scored for disease symptoms in October 1987, using the scale given in Table 2. They were then cut and taken to the Pathology Laboratory of the Institute of Agricultural Research in Zaria for identification of pathogens.Because of lack of irrigation facilities at the Kachia site, the observations could not be continued during the dry season.High incidence of anthracnose was observed 6 weeks after seedling transplantation in experiment 2. This was indicated by leaf spots with a pale centre and dark margins. The stylo lines in experiment 1 did not show such symptoms until late September 1987. i.e. after they had been sprayed with an extract from the diseased plants. The fungal associations identified in the two experiments were similar, and results for both sites are shown in Table 3. Once anthracnose symptoms developed, some lines lost all leaves and succumbed very quickly to the disease. By the end of October 1987, CIAT lines 11364 and 11366 and Cook stylo were parched and failed to produce any new shoots after harvest. A few stems survived in CIAT lines 11369 and 11374, but other lines regenerated normally. Three lines -CIAT 136 and 184 and Verano stylodid not show any disease symptom at any time.A variety of fungal organisms were isolated from the different stylo lines, the pattern of fungal associations being similar in both experiments. Colletotrichum species was predominant in the October samples of all the stylo lines evaluated, although the frequency of Helminthosporium and Phoma species was high as well (Table 3). Two other types -Stylos can be grown in fodder banks or as companion crops with cereals. However, their susceptibility to anthracnose can become a serious hazard. Countries such as Côte d'Ivoire, Senegal and Zaire have already experienced devastation of large-scale stylo pastures on account of anthracnose (Lazier, 1984).The presence of certain 'typical' symptoms in this evaluation, and of Colletotrichum species, suggests that the disease to which the screened stylo lines had succumbed was anthracnose.Free water is necessary for the development and spread of anthracnose (Irwin et al, 1984). Both Kaduna and Kachia had heavy rainfall between June and the end of September, so there was enough moisture trapped under the well developed vegetation canopy to favour anthracnose development.The CIAT lines 136 and 184 and Verano stylo carried Colletotrichum organisms during the wet season but despite conducive environmental conditions, the fungus appears to have caused no reaction in these lines. Even though a latent infection is possible at plant reproduction and senescence (Irwin et al, 1984), they remained disease-free throughout the study.The immunity of these three stylos to anthracnose appears to have contributed to their high DM yields compared with the other stylo lines screened. Because of this, they should be considered for multiplication in areas where other lines of stylo have been found useful as feed for ruminants. In some parts of Nigeria, Cassia rotundifolia and Centrosema pascuorum, which have shown promise in screening trials, could also be used to replace anthracnose-susceptible stylos.Plant samples taken from experiment 1 in February 1988 did not contain Colletotrichum. Rainfall during November 1987 to April 1988, i.e the dry season, was negligible. However, test plots were irrigated, and it is possible that another factorlow diurnal temperatureinhibited the life cycle of some of the fungi, including Colletotrichum. At the beginning of the dry season, temperatures are highly variable, and from December to February, diurnal temperature frequently drops below 15°C, remaining low for a number of consecutive days. This is far below the temperature (20-34°C) found most suitable for the development of anthracnose (Irwin et al, 1984).Anthracnose could have been introduced to West Africa, particularly Nigeria, through seed imported from Australia. There is no evidence in the literature suggesting any other major diseases resulting from the other fungal associations with stylo except Phoma species, which has been found to cause black spots in S. guianensis (Lenné and Calderon, 1984). As long as production of pasture seed is not well developed in West Africa, the temptation to import seed will be great. However, caution is required to prevent importing disease as well, and it may be desirable to multiply promising species in the country of use.Stylo pastures are expected to last for many years. However, the risk of anthracnose increases with the age of the pasture. This could be controlled by chemicals, but their high cost prohibits their use over large areas of pasture. To produce anthracnose-free seed, Lenné and Sonoda (1982) have suggested strategic use of Benomyl fungicide in seed multiplication plots at the time of flowering. Also, it is desirable to cultivate a food crop every 2 or 3 years after stylo (Mohamed-Saleem and Otsyina, 1986), since the 'stylo-free' period may even help inhibit the proliferation of cropspecific pathogens in the soil.","tokenCount":"1900"} \ No newline at end of file diff --git a/data/part_3/3565323550.json b/data/part_3/3565323550.json new file mode 100644 index 0000000000000000000000000000000000000000..3f1b40a98f4075f2bae63bc9e6cefa8e6ec25440 --- /dev/null +++ b/data/part_3/3565323550.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"8603cc255a38902b40d1017d72cca54b","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/6b4066ac-3413-4833-9047-6f4e0d119f1a/retrieve","id":"320019260"},"keywords":[],"sieverID":"b9133386-6091-4625-a756-26e6b6533d72","pagecount":"13","content":"Ensuring the availability of the broadest possible germplasm base for agriculture in the face of increasingly uncertain and variable patterns of biotic and abiotic change is fundamental for the world's future food supply. While ex situ conservation plays a major role in the conservation and availability of crop germplasm, it may be insufficientto ensure this. In situ conservation aims to maintain target species and the collective genotypes they represent under evolution. A major rationale for this view is based on the likelihood that continued exposure to changing selective forces will generate and favor new genetic variation and an increased likelihood that rare alleles that may be of value to future agriculture are maintained. However, the evidence that underpins this key rationale remains fragmented and has not been examined systematically, thereby decreasing the perceived value and support for in situ conservation for agriculture and food systems and limiting the conservation options available. This study reviews evidence regarding the likelihood and rate of evolutionary change in both biotic and abiotic traits for crops and their wild relatives, placing these processes in a realistic context in which smallholder farming operates and crop wild relatives continue to exist. It identifies areas of research that would contribute to a deeper understanding of these processes as the basis for making them more useful for future crop adaptation.agriculture, conservation, crop wild relatives, landraces, plant genetic resourcesProtection and maintenance of the world's agricultural germplasm resources has never been more vital. The collection, maintenance, and classification of genetic resources of plants used in agriculture and forestry are vital processes underpinning the steady improvement of crop yields and humankind's ability to feed, clothe, and house an ever-increasing global population. In response to these needs, protection of germplasm resources has received more or less international attention for the better part of a century (since Vavilov's pioneering work, see Vavilov, 1992), but current changes in global climate patterns with their significant regional implications have greatly enhanced concerns about the adequacy of protection measures (Food and Agriculture Organization of the United Nations [FAO], 2010[FAO], , 2012;;Intergovernmental Panel Climate Change [IPCC], 2014; Parmesan & Yohe, 2003). In this continuing challenge, ex situ collections play a major role in providing a readily available source of germplasm for the plant breeding community and in preserving geographically variable sources of genetic variation that might otherwise have been lost due to habitat loss. Furthermore, studies of individual and population samples of landraces and wild relatives deposited in ex situ collections have been an important source of knowledge regarding patterns of adaptation within species to a range of climatic, edaphic, and biotic factors (Franks, Sim, & Weis, 2007;Nevo et al., 2012;Thormann et al., 2017b;Thormann, Reeves, et al., 2017a). Such associations have been used for predictive characterization of germplasm (Bari et al., 2014;Thormann et al., 2014;Thormann, Parra-Quijano, et al., 2016) and to guide the gathering of additional germplasm.Despite their undoubted value, ex situ collections have a fundamental limitation in that they are \"frozen snapshots\" reflecting the structure and genetic variation in individual populations at the time of collection (Brush, 2004;De Haan, Nuñez, Bonierbale, Ghislain, & van der Maesen, 2013;Wang et al., 2017). Once assembled, the alleles collected are fixed, and if not curated sufficiently well, will decline through genetic drift due to inappropriate regeneration procedures during storage (Gale & Lawrence, 1984;Harrington, 1972). In contrast, in situ conservation aims to maintain target species and the collective genotypes they represent growing within their natural environment (Brush, 2004). A major rationale for in situ conservation is to allow for the continuing evolution of target species in the face of changing selection pressures both naturally occurring and farmer-induced that reflect altered agronomic practices, human preferences, and uses (Brush, 2004;Gepts, 2006;Vigouroux, Barnaud, Scarcelli, & Thuillet, 2011). This rationale is based on the likelihood of two components-(i) that continued exposure to changing selective forces will generate and favor new genetic variation and (ii) that existing rare alleles that may be of value to future agriculture are maintained (Bellon, 2009).Here, outcomes may be influenced by a wide range of factors including population size, generation time, the intensity of selection pressure, the genetic basis and heritability of the traits involved, the inherent plasticity of the species in question to abiotic stresses, and the extent to which local farming practices alter gene flow and selection through conscious retention of preferred variants.However, the evidence that underpins this key rationale remains fragmented and has not been examined systematically, thereby decreasing the perceived value and support for in situ conservation for agriculture and food systems. In turn, this may lead to the maintenance of fewer options to sustain the genetic diversity needed to ensure crops can adapt in the face of global change. Furthermore, these evidentiary constraints limit the capacity to design and implement in situ conservation strategies and interventions that are practical in the real-world contexts in which smallholder farming operates and crop wild relatives continue to exist. The aim of this study was to review basic premises regarding the likelihood and rate of evolutionary change in both biotic and abiotic traits for crops and their wild relatives, and particularly to place the former into a realistic context in which smallholder farming practices provide a dynamic, and potentially ever-changing, overlay of human-influenced selection pressures that can directly affect the evolution of new, or currently rare, genetic variation of value to the future of agriculture.In both natural and agricultural settings, microevolutionary change in the relative frequency of disease resistance alleles already present within individual populations can occur over just a few years (Burdon, Groves, & Cullen, 1981;Ibrahim & Barrett, 1991;Meyers, Kaushik, & Nandety, 2005;Thrall et al., 2012;Webster, Saghai-Maroof, & Allard, 1986). Such studies demonstrate the evolutionary pressures imposed by pathogens, underlining the importance of rare, preexisting resistance alleles as host populations change and diversify in the face of selection (cf. Red Queen dynamics; Hamilton, 1980). Theoretically, while a sufficiently large sample of individuals might be made as to capture all the extant genetic variation in a population, such samples would have to be improbably large. In contrast, given sufficient time and selection pressure, in real-world populations, alleles that at one point in time were extremely rare may increase in frequency to the point at which they would be easily gathered in a subsequent sample (Frankham, Ballou, & Briscoe, 2010).While microevolutionary changes are extremely important in the structuring and short-term response of plant populations to selective pressures, from the viewpoint of justifying continuing efforts in in situ conservation, the more relevant question is how do novel resistance specificities at existing loci arise, and at what rate? Indeed, to date no studies have been reported that unequivocally demonstrate the de novo appearance of truly novel resistance alleles.The use of a range of molecular technologies and extensive sequencing of genes in a wide range of plant species has generated a picture of five different classes of gene-for-gene resistance (R) genes, the majority of which are characterized by a consistent nucleotide-binding site leucine-rich repeat (NBS-LRR) motif (Dangl & Jones, 2001;Meyer, Nelson, Clement, & Ramakrishnan, 2010). The generation of polymorphism in these resistance genes involves gene duplication, followed by DNA-sequence divergence by point mutation, deletion, or duplication of intragenic DNA repeats. This variation is further diversified by reassortment between related genes (Ellis, Dodds, & Pryor, 2000). To directly address the question of whether reassortment can generate novel resistance specificities, Richter, Pryor, Bennetzen, and Hulbert (1995) screened 176 genetic recombination events within the Rp1 locus in maize (Zea mays subsp mays). Most events (>95%) showed no change in specificity; of the remainder, only four events were explained by the appearance of unaccountable novel specificities. The occurrence of these novel specificities aligns well with extensive occurrence of resistance gene analogs in a diversity of plants (Li et al., 2010;Quirin et al., 2012) and suggests that similar events are likely to arise on a continuing basis, albeit at low frequency, in most plant populations.NBS-LRR and other gene-for-gene type resistances are complex structures that are unlikely to evolve de novo again. However, there are a few documented examples where the same resistance gene confers protection to different pests (e.g., the tomato Mi-1.2 gene confers resistance to root knot nematode, aphid, and whitefly in tomato: Nombela, Williamson, & Muniz, 2003). This raises the possibility that at any existing R gene, novel resistance specificities affecting previously untargeted pathogens may evolve through changes within those genes. This evolution could only occur in in situ situations. It is pertinent to note here that allelic series of different resistance specificities are commonly found in cultivated plant species e.g., wheat, maize, tomato, flax: (Chávez-Medina, Leyva-López, & Pataky, 2007;Hulbert, Webb, Smith, & Sun, 2001;McIntosh, Wellings, & Park, 1995) and evidence to date suggests that unequal crossing over during recombination is a major mechanism in generating such diversity (Hulbert et al., 2001;Zhu, Bennetzen, & Smith, 2013).While still controlled by the action of single genes, the structure and function of APR genes in cereals is quite different to qualitative resistance genes. APR genes are also effective against multiple pathogens (Lagudah et al., 2009;Mago et al., 2011) with only two to three base pair changes differentiating the resistant and susceptible alleles (Krattinger, Lagudah, Spielmeyer, Singh, & Huerta-Espino, 2009). The small changes occurring between the susceptible and resistant alleles raise the interesting possibility that novel APR genes may arise within populations conserved in situ.Resistance controlled by the action of many genes each of different but relatively small phenotypic effect is a particularly common feature of plants attacked by necrotrophic fungi that kill host tissue. This resistance is associated with factors that may reduce infection rates (e.g., hairy leaves, few stomata) or slow the rate of spread within the plant (e.g., thicker cell walls, phenolic concentrations). Because many of these traits are continuous in their response, small changes in resistance are often difficult to detect (Burdon, 1987;Burdon, Barrett, Rebetzke, & Thrall, 2014). Furthermore, changes in resistance in response to pathogen attack may be correlated across multiple pathogen species (Mitchell-Olds, James, Palmer, & Williams, 1995).There are very few studies that provide direct evidence of temporal change in the resistance structure of wild populations even though this may occur with surprising rapidity (less than 6 years in Linum marginale L.; Thrall et al., 2012). Studies that compare the genetic structure of a recent sample with one from the same area that was deposited in an ex situ collection some time before are fraught with major problems of interpretation given the potential for temporally separated collections to target spatially close but separate populations (Jensen, Dreiseitl, Sadiki, & Schoen, 2011), and the inability to control for changes that may have occurred during storage (Parzies, Spoor, & Ennos, 2000).Physiological traits associated with nutrient uptake, response to cold, heat, and water stress tend to be controlled by the action of multiple genes (quantitative trait loci: QTLs) each of small phenotypic effect and in which genotype-by-environment effects are often very strong (Des Marais, Hernandez, & Juenger, 2013;Lowry et al., 2013). The genetic architecture of such traits-how variation is distributed in the genome; the extent of pleiotropic effects, and of plasticity-plays an important role in determining evolutionary responses to complex abiotic stresses (Alonso-Blanco & Mendez-Vigo, 2014;Clauw et al., 2016;Juenger, 2013). Because of the importance of developing coadapted gene complexes, the rate of evolutionary response to selection on many physiological traits is likely to occur at a slower rate to those controlled by genes with major phenotypic effect. However, because polygenic traits tend to evolve by subtle changes in gene frequency at many loci (Anderson, Willis, & Mitchell-Olds, 2011), the potential for change is usually readily available. In this respect, the plasticity of individual genotypes will be of particular importance in the overall evolutionary response of populations to changing environments. Gradual changes in the environment are likely to be accommodated through plastic responses while abrupt changes will force more rapid selection (Nicotra et al., 2010). This may occur through recombination of existing QTLs, or through mutation including the formation of novel epialleles which can be triggered by various environmental stresses including drought (Golldack, Luking, & Yang, 2011;Shaik & Ramakrishna, 2012;Zhang, Fischer, Colot, & Bossdorf, 2013).In contrast to selection for pest or disease resistance where the appearance of a new race or biotype may generate intense shortterm directional selection within individual populations, the greatest intensity and consistency of change in environmental variables tends to occur among populations across eco-geographic clines. Adaptive differentiation as demonstrated by clinal patterns of response (e.g., to drying conditions: Shapter et al., 2012) attests to genetic changes by populations over broad geographic scales (Mercer & Perales, 2010).Examples of such broad-scale adaptation are widespread including clines in freezing tolerance (Zuther, Schulz, Childs, & Hincha, 2012), seed traits influencing life cycle timing (Montensinos-Navarro, Pico, & Tonsor, 2012), and flowering time (Keller, Levsen, Olson, & Tiffin, 2012). Notwithstanding this, even within individual populations, microenvironmental differences can sustain differential selection pressures leading to small-scale spatial patterns and the maintenance of genetic variation responsive to abiotic factors (Nevo, Beiles, & Krugman, 1988;Verhoeven, Poorter, Nevo, & Biere, 2008).Selection for phenological traits may occur very rapidly-with a number of studies showing responses in flowering time (Franks et al., 2007;Nevo et al., 2012). In a comprehensive study of the response of pearl millet (Pennisetum glaucum (L.)R.Br.) in the Sahel to recurrent drought over the last quarter of the 20th century, no major changes were detected in the main cultivated varieties. However, common garden comparisons of landraces collected at the same locations 27 years apart found significant shifts in adaptive traits-reductions in plant size, spike length, shorter life cycles, and an increase in the frequency of a flowering gene known to affect development (Vigouroux, Cedric, et al., 2011). In this situation, short-term adaptation to climatic variation was driven through selection on existing variation in in situ populations-not through the adoption of new varieties. Again, this provides a powerful message about the importance of allowing continued evolution in the face of changing environmental conditions. In situ conservation maximizes the chances that rare alleles are potentially available to allow plants to adapt through the development of new combinations of existing variants; standard sampling strategies for ex situ conservation, on the other hand, will fail to capture such variation, thereby reducing future options.Traditionally, in situ conservation has included consideration of (i) landraces of mainstream agricultural crops, and underutilized and neglected crops, as well as (ii) wild crop relatives and forest tree resources. While these two categories have a number of issues in common, in reality there are also significant differences. In situ conservation of wild relatives and forest tree resources focuses on responding to the drivers and pressures that threaten the natural populations so as to maintain the genetic diversity and geographic range of species, thereby maximizing their potential to respond to natural or human-made environmental change. In contrast, in situ conservation of landraces of mainstream agricultural crops and of underutilized and neglected crops represents a more complex selection environment where the impact of response to naturally occurring selective forces is overlain with conscious selection by farmers, with deliberate movement and incorporation of germplasm from close and more distant sources (including both more advanced cultivars and wild relatives), and with a range of cultural practices.In the case of crops, a large amount of diversity is still retained in developing countries by smallholder farmers (Van de Wouw, Kik, van Hintum, van Treuren, & Visser, 2010), particularly for many crops in their centers of domestication and diversity. There, farmers continue to grow landraces and maintain traditional knowledge and seed management practices (Brush, 2004;Jarvis et al., 2008), a process known as de facto conservation (Brush, 2004). There is an increasing body of literature that documents how these farmers maintain and influence important amounts of phenotypic and genetic diversity of crops with different reproductive systems and evolutionary histories, for example, for maize in Mexico (Orozco-Ramirez, Ross-Ibarra, Santacruz-Varela, & Brush, 2016;Perales, Benz, & Brush, 2005;Pressoir & Berthaud, 2004a,b), potatoes (Solanum tuberosum L.) in Peru (De Haan et al., 2013;Quiros et al., 1992), rice (Oryza sativa L.) in China (Wang et al., 2017), barley in Ethiopia (Samberg, Fishman, & Allendorf, 2013), sorghum (Sorghum bicolor (L.) Moench) in Cameroon (Barnaud, Deu, Garine, McKey, & Joly, 2007) and in Kenya (Labeyrie et al., 2014(Labeyrie et al., , 2016)), pearl millet in Kenya (Labeyrie et al., 2016), and cassava (Manihot esculenta Crantz) in Guyana (Elias, McKey, Panaud, Anstett, & Robert, 2001) among others (see Supporting Information for some relevant results from these studies).Farmer seed management is a strong determinant of spatial structure in crop genetic resources-a fact that highlights the importance of intermeshing social, landscape, and genetic data into the design of germplasm conservation strategies (Labeyrie et al., 2014(Labeyrie et al., , 2016;;Orozco-Ramirez et al., 2016;Samberg et al., 2013). Recognition of this human involvement and its significant effect on the structure of local and regional crop populations increases the need to recognize in situ conservation on-farm of crop species as a dynamic evolutionary process (Barnaud et al., 2007;Labeyrie et al., 2014Labeyrie et al., , 2016;;Orozco-Ramirez et al., 2016;Pressoir & Berthaud, 2004a,b;Samberg et al., 2013;Vigouroux, Barnaud, et al., 2011;Wang et al., 2017) It is distinctly different to that occurring in wild relatives and noncrop species where the homogenizing effects of seed exchange/sharing and the accelerated selective forces of rogueing of susceptible individuals are not imposed.The justification for in situ conservation on-farm depends on the existence of crop evolution under farmer management. To date, the most comprehensive experimental evidence of crop microevolution we are aware of has been gathered for bread wheat (Triticum aestivum L.) by scientists at the French National Institute for Agricultural Research (INRA) under an approach they call dynamic management (DM) of crop diversity. For a review summarizing their results see Enjalbert et al. (2011), key relevant findings are presented below. The approach consisted of planting composite diverse wheat populations under a range of environmental conditions across France and letting them evolve while monitoring the process. While the approach did not involve farmers per se (comprising INRA research stations and agricultural high schools) and was carried out in a developed country, it is quite relevant to in situ conservation on-farm as they were able to measure specific results of evolution in crop populations for over 26 years. Results show increases in plant height, rapid evolution in earliness traits, and divergent selection on flowering time responding to climatic conditions. In particular, for the latter, in two of three environments studied, different allelic combinations were selected and the emergence of new alleles that were not detected in parental lines was identified. They concluded, however, that to maintain crop populations with good agronomic value-thus useful for humans-require the involvement of human selection for some key traits. They also report on how networks of farmers have been involved in efforts that build on the DM approach to generate varieties suitable for organic farming and low-input agriculture. They show, for example, that the diversity conserved on farm is not a duplicate to that conserved in the gene bank, the diversity of the former was greater than that of the latter, and alleles present on farm were different from those in gene bank accessions.Landraces and the farmers who maintain them essentially constitute \"coevolving\" sociobiological systems (Bellon, Gotor, & Caracciolo, 2015a). For any given crop, farmers influence through their knowledge, preferences and practices, the alleles and genotypes that pass from one crop generation to the next (Bellon, 2009;Gepts, 2006;Vigouroux, Barnaud, et al., 2011). Traditional practices of saving and sharing seed in network structures that connect farmers and landraces within and across environments underpin these sociobiological systems and are an essential component to understand the spatial structure of crop genetic resources and their dynamics (Labeyrie et al., 2014(Labeyrie et al., , 2016;;Pautasso et al., 2013;Samberg et al., 2013).These systems depend crucially on farmers' incentives, institutions, and social organization (Bellon, 2004;Brush, 2004;Negri, 2003;Zimmerer, 2010). De facto conservation continues because the farmers involved obtain direct benefits from the diverse landraces they grow, such as (i) optimizing crop production under agroecological heterogeneous conditions, particularly in marginal areas; (ii) managing risk; (iii) producing a variety of products with different uses; (iv) profiting from commercial opportunities in niche markets; (v) providing themselves with appreciated varieties due to consumption qualities or cultural significance; (vi) managing labor during the agricultural season (Bellon et al., 2015a) and thus have incentives to maintain them. In fact, de facto on-farm conservation may be the only way some farmer communities manage to obtain benefits from many crops that are important to them but neglected by formal research or commercial entities or under conditions where there is no institutional support to address their needs (Padulosi, Heywood, Hunter, & Jarvis, 2011). The challenge however is that many of these farmers increasingly face strong incentives to abandon their landraces and the processes that sustain them due to social, economic, environmental, and cultural changes (Bellon, 2004;Negri, 2003;Van de Wouw et al., 2010;Zimmerer, 2010). These drivers are complex (Bellon, 2004;Brush, 2004;Van de Wouw et al., 2010). As summarized by Bellon et al. (2015a), specific reasons to abandon crop diversity include the following: (i) availability of scientifically bred varieties with higher yields and better disease resistance, that, together with of the use of external inputs such as fertilizers, may foster specialization and the replacement of a broad array of local varieties for just a few; (ii) development and increasing reach of modern value chains that may make traditional value chains linked to niche markets uncompetitive, leading to fewer commercial opportunities for marketing diverse varieties or products derived from them; (iii) availability of new products may compete with products derived from traditional crops or local varieties in terms of price and convenience, which together with changes in taste, or an increased perception that traditional crops and varieties are associated with poverty or low social status, may reduce their appeal; (iv) increased migration and off-farm labor opportunities can decrease the feasibility of maintaining crop diversity on-farm, by decreasing labor supply and increasing its opportunity cost. Indeed, migration and off-farm labor opportunities also can provide alternative sources of income to manage risk, thereby reducing the need to maintain crop diversity. In particular, increased availability of formal seed systems may lead farmers to abandon traditional seed management practices such as seed saving, selection, and sharing in favor of purchasing seed and through this, stopping processes of crop evolution (Vigouroux, Barnaud, et al., 2011). Furthermore, there is increasing evidence that farmers see value in incorporating improved varieties into their systems where they are subject to the same evolutionary processes as landraces, also known as \"creolization\" (Bellon, Adato, Becerril, & Mindek, 2006;Westengen, Ring, Berg, & Brysting, 2014). Supporting in situ conservation on-farm in these sociobiological systems may increasingly require outside intervention to ensure that incentives are sufficiently attractive to farmers (Bellon, 2004;Jarvis, Hodgkin, Sthapit, Fadda, & Lopez-Noriega, 2011;Narloch, Drucker, & Pascual, 2011).In the last 20 years, many projects have been implemented worldwide to support on-farm conservation of different crops. An extensive review (Jarvis et al., 2011) identified 59 different types of interventions for supporting on-farm conservation worldwide, but there has been little empirical evidence that they actually made a difference beyond what de facto conservation already achieves. Efforts have tended to be ad hoc, small scale, fragmented, and uncertain in terms of their impact (Bellon et al., 2015a). There is, however, some recent systematic evidence that interventions implemented to support onfarm conservation can lead to higher levels of phenotypic diversity and livelihood benefits than would have been possible without them for Andean crops (Bellon, Gotor, & Caracciolo, 2015b) and for phenotypic diversity only in the case of fruit trees in Central Asia (Gotor et al., 2017). To our knowledge, there is still a lack of evidence that interventions associated with on-farm conservation projects lead to additional outcomes related to genetic diversity and crop evolution-an area that merits further research.The potential value of the genetic variation under evolution for use in other regions, under different circumstances, or changing conditions is fundamental because it is this value to broader society that justifies supporting specific sociobiological systems. A key question is how to harness this value? Our argument suggests that a guiding principle should be identifying rare or new variation associated with adaptive traits under changing or contrasting conditions and makes this variation available to other farmers, communities, breeders, or others where it can be useful. Implementing this principle requires strong collaboration among farmers, scientists, other social actors (e.g., extension workers, activists), and institutions (e.g., NGOs, local governments, schools), as well as more concerted and systematic efforts that build on the best available biological and social sciences. This may require the creation of mechanisms to monitor the status and trends of crop diversity, adaptation, and evolutionary processes, based on methodologies and mechanisms to target where and with whom to carry out the monitoring and how to identify useful variation (Caldu-Primo, Mastretta-Yanes, Wegier, & Piñero, 2017). Adapting methodologies such as predictive characterization that have been used to identify populations likely to contain specific traits and thus guide targeted collection and germplasm collection (see Thormann et al., 2014 for a review) could be used to guide and target the monitoring and recurrent sampling of locations where new useful genetic variation of a crop is likely to appear. Mechanisms should build on the knowledge and methodologies of studies on the structure, evolution, and adaptation of landraces under farmer management reviewed above (Mercer, Martínez-Vásquez, & Perales, 2008;Pressoir & Berthaud, 2004a,b;Vigouroux, Cedric, et al., 2011), as well as take into consideration the broader social and ecological landscapes where diverse landraces are maintained by different farming communities (Labeyrie et al., 2014(Labeyrie et al., , 2016;;Samberg et al., 2013). The institutional, scientific, and physical infrastructure that has been developed as part of ex situ conservation can be also an asset for these efforts. Gene banks are more than repositories of seeds-they contain a great deal of information about diversity (genetic, geographic, phenotypic, etc.), and very importantly, experience on how to access and monitor crop diversity at national and global levels. For example, comparison of accessions from gene banks to samples collected periodically from farmers could provide a means of assessing genetic changes (see Section 7 below).Monitoring efforts should not only focus on genetic variation, but also assess the incentives that farmers have to maintain crop evolution in their fields. In many circumstances, farmers may continue to have It is important to emphasize that the value of novel or rare genetic variation should not be seen only through the lens of its use in formal breeding efforts; rather, it is crucial to recognize its direct benefit to farmers (Perales, 2016): for example, the identification and sharing of \"interesting\" landraces among farmers in different locations (Bellon et al., 2003), the integration of this variation into participatory plant breeding efforts with local communities (Cecarrelli, Grando, & Baum, 2007), or through evolutionary breeding efforts (Murphy, Bazile, Kellogg, & Rahmanian, 2016;Perales, 2016;Raggi et al., 2017).An important consideration for the contribution of on-farm conservation to the enhancement of the capacity of crops to adapt to novel future conditions is to recognize that evolution is a \"numbers game.\"It is not enough just to have a few farmers or communities maintaining crop diversity and associated practices; rather successful on-farm conservation needs continuing commitment by numerous farmers and communities to participate in the process. For example, in Mexico, the center of origin and a center for diversity of maize (Doebley, 2004;Hufford et al., 2012), about 2 million smallholder farmers (Fernandez Suarez, Morales Chavez, & Galvez Mariscal, 2013), planted around 4.7 million hectares under rainfed conditions in 2010 (Table S1), most of them relying on traditional practices of saving and sharing seed. If one assumes a planting rate of 30,000 plants/ha (Mercer et al., 2008), this means that circa 141 billion maize plants growing across 11 distinct biogeographic regions (Perales & Golicher, 2014) are subject to onfarm evolutionary pressures every year. As a consequence, the probability that mutations appear, or rare alleles are maintained, that could be adaptive in the future is substantial. Assessing these numbers is beyond the scope of this paper but an important task for the future.Creating and sustaining mechanisms that build on the experience and knowledge of farmers to support and monitor crop evolution on farm and make its outcomes available to other users face multiple challenges. A major risk inherent in these sociobiological systems is their dependence on the decisions of many households who may decide not to continue to be involved (Brush, 2004). At the same time though, this is also a strength as it increases the probability that at least some participants will remain involved in the long run. There are important policy barriers that may limit the viability of these mechanisms, particularly increasing local and global restrictions on access to seeds and germplasm (Gepts, 2006;Halewood, 2013;Louafi, Bazile, & Noyer, 2013;Louafi & Schloen, 2013). Local constraints often reflect national policies that favor the recognition of uniform, scientifically bred varieties over more heterogeneous, variable landraces; global constraints result from countries asserting sovereignty over plant genetic resources found within their national boundaries (Halewood, 2013;Louafi & Schloen, 2013;Moore & Hawtin, 2014). The belief that significant monetary benefits can be gained from \"sovereign\" seed (genetic resources over which a native community has controlling rights) can encourage restriction of access and contribute to reductions in the global flow of plant genetic resources (Falcon & Fowler, 2002;Louafi & Schloen, 2013). Furthermore, issues of obtaining prior informed consent to collect and share material and benefit sharing mechanisms are important considerations that have to be taken into account to insure that the benefits from evolutionary processes are shared equitably (Louafi & Schloen, 2013).On-farm conservation as a strategy for conserving and using plant genetic resources is then about maintaining dynamic sociobiological systems as sources of currently rare or new genetic variation of value to the future of agriculture. It builds on farmers' knowledge, practices, incentives, and the crop populations they manage, recognizing these farmers as key actors in the process. Maintaining these systems must be compatible with improved livelihoods and well-being for them while simultaneously creating equitable mechanisms that allow society at large to access this novel variation to face the challenges posed by ever-changing environments.Crop wild relatives (CWR) are wild species living and evolving in natural, semi-wild, and/or human-made habitats where their genetic diversity is affected by a wide range of factors including habitat fragmentation and degradation (Millennium Ecosystem Assessment[MEA], 2005). Their genetic relationship with cultivated land races is summarized in the concept of primary, secondary, and tertiary genepools (Harlan & de Wet, 1971). Wild relatives that are part of the primary, secondary, and tertiary genepool of a crop potentially can continue to contribute to ongoing genetic change in the crop variety; however, depending on the genepool level, the ease with which genes can be transferred to crops is progressively more difficult (Harlan & de Wet, 1971;Maxted, Ford-Lloyd, Jury, Kell, & Scholten, 2006).Losses in intraspecific genetic variation within populations affect their ability to respond to evolutionary pressures engendered by environmental and climatic change and may result in reduced fitness, loss of ecosystem functioning, and recovery (Reusch, Ehlers, Hammerli, & Worm, 2005;Whitham et al., 2003). Ultimately, this may jeopardize population persistence (Spielman, Brook, Briscoe, & Frankham, 2004) as well as the species richness of plant communities (Booth & Grime, 2003). In situ conservation of CWR is often limited to species occurring in protected areas established with other reasons in mind (Dulloo et al., 1998;Maxted, Dulloo, & Eastwood, 1999). Few reserves have been established with the specific purpose of CWR conservation, but see, for example, for wheat relatives in Armenia (Avagyan, 2008) and Israel (Anikster, Feldman, & Horovitz, 1997), and teosinte (Z. diploperennis) in southwest Mexico (United Nations Educational, Scientific, and Cultural Organization [UNESCO], 2007). As a consequence, where CWR populations occur in protected areas, they are largely conserved passively (Maxted & Kell, 2009) and are thus still threatened by invasive species, habitat degradation, and untargeted management (Hunter & Heywood, 2011).With limited resources available for conservation, the challenge for in situ conservation of CWR is to first prioritize species and the number of populations that would conserve the maximum genetic diversity (Dulloo et al., 2008;Magos Brehm, Maxted, Ford-Lloyd, & Martins-Loução, 2008;Maxted, Ford-Lloyd, & Hawkes, 1997). Many different genetic approaches based on evolutionary isolation and phylogenetic relatedness have been proposed for prioritizing species and populations. For example, Weitzman (1992) used expected diversity to identify the set of taxa that would retain the most diversity on a future phylogenetic tree, given some measure of diversity and a probability of persistence for each potential combination of taxa. Bonin, Nicole, Pompanon, Miaud, and Taberlet (2007) also showed that the principle of complementarity deserved to be used more often. Importantly, they argued the need to focus on adaptive traits within wild species and developed a new index that takes account of the adaptive value of populations. Furthermore, they demonstrated that using more traditional neutral markers as opposed to adaptive methods resulted in different populations being selected for protection. In practice, the principle of complementarity is used in designing genetic reserves to make the optimal use of available resources and maximize the number of protected species (Cabeza & Moilanen, 2001;Margules & Pressey, 2000). Other predictive characterization methods, including Focused Identification of Germplasm Strategies (FIGS; Street et al., 2008) and the ecogeographical filtering method (Thormann et al., 2014), have been used to identify adaptive abiotic and biotic traits in wild populations of CWRs.In the past, domestication has typically been associated with marked genetic bottlenecks as one or a limited number of events are involved, and subsequent conscious or unconscious selection by farmers leads to a further narrowing of the gene pool. However, the widespread use of marker technologies has led to a revision of this view with domestication now seen as a continuum of ongoing processes, involving the initial extraction of plants from their wild habitats and subsequent further diversification events (Gepts, 2004;Shigeta, 1996).The contribution of wild relatives to this secondary diversification of crops is receiving increasing attention and includes repeated episodes of temporally separated introgression from wild relatives into apple (Malus pumila Miller, 1768;Cornille et al., 2012), almond (Prunus dulcis (Mill.) D. A. Webb; Delplancke et al., 2011), and maize (Hufford et al., 2013). These studies, among others, revealed that secondary introgression of wild genepools into crop species has significantly contributed to shaping current crop genetic diversity although the extent of this varies among species. In barley (Hordeum vulgare subsp. vulgare), significantly higher levels of diversity are encountered in wild, compared to cultivated forms (Russel et al., 2004(Russel et al., , 2011)). In contrast, gene flow between cultivated carrot (Daucus carota subsp. sativus) and its wild relatives has been so intense that there is no evidence of a genetic bottleneck in the cultivated form (Iorrizo et al., 2013). It is highly likely that this continuing process of wild plant-crop introgression contributes to crop adaptation to specific conditions in many species. Domestication and introgression events affecting food resources are not the sole preserve of the past. Particularly in traditional, subsistence-oriented, agroecosystems, ongoing evolutionary processes involving wild relatives of mainly \"minor\" crops have been documented. In Ethiopia, despite the vegetative mode of propagation of Ensete (Ensete ventricosum (Welw.) Cheesman), gene flow from the wild population to the crop occurs through the regular incorporation of seedlings within cultivated plots (Shigeta, 1996). In Benin, another vegetatively propagated crop, yam (Dioscorea cayenensis subsp. rotundata (Poir) J. Miege) is regularly re-domesticated as farmers collect, test, and select plants from neighboring natural populations (Chaïr et al., 2010;Scarcelli et al., 2006), while the columnar cactus Stenocereus pruinosus (Otto ex Pfeiff.) Buxb. is also undergoing frequent wild-to-crop introgression through the regular incorporation of cuttings collected in the wild (Parra et al., 2010). These examples highlight continuing interaction between wild crop relatives and their domesticated brethren, and the importance of the former in influencing on-farm evolution of cultivated crops. In these interactions, local farmers play a vital role.Ex situ and in situ conservation are today considered as complementary conservation strategies, as both have specific advantages and disadvantages, and neither is sufficient in themselves to conserve the existing and evolving diversity of a species (Dulloo, Rao, Engelmann, & Engels, 2005;Gepts, 2006;Hunter & Heywood, 2011;Maxted et al., 1997). The final choice of specific in situ and ex situ conservation actions depends on the following: (i) considering the species biology and its performance under storage; and (ii) the intended use of the germplasm being conserved. Crop wild relatives, whose main value is considered to be the provision of adaptive genetic diversity for plant improvement, are preferably conserved in situ as this allows further evolution to occur (Maxted et al., 1997). However, in some cases, exposure to the natural environment constitutes a threat to the survival of part or all of the diversity of a species (e.g., due to habitat destruction). In these cases, complementary ex situ conservation can contribute to achieving optimal and safe conservation of the species' genetic diversity. Germplasm stored ex situ can also support in situ conservation efforts by providing a source of material for the reintroduction of species that have disappeared from their natural environment.Plant material from ex situ collections may also be used in enrichment plantings or reenforcement of threatened CWR populations and those which are not regenerating in the wild (Dulloo, 2011).Ex situ conservation and in situ conservation are also complementary from an evolutionary research point of view. To understand evolutionary responses induced by biotic and abiotic pressures, ex situ collections potentially can be very useful sources from which to resurrect historical genotypes to compare with contemporary populations (Franks et al., 2008;Thormann, Fiorino, Halewood, & Engels, 2015). Large numbers of samples of threatened landraces and crop wild relatives collected in the past are stored in gene banks. Many of the collecting missions were sufficiently well documented as to allow precise identification of past collecting sites, thereby allowing sites to be revisited and populations, if still extant, recollected to compare with historical seeds (De Haan et al., 2013;Thormann & Dulloo, 2015;Thormann et al., 2017b;Thormann, Reeves, et al., 2017a;Vigouroux, Cedric, et al., 2011;Wang et al., 2017). As noted earlier, historic and contemporary genotypes of wild cereals (Nevo et al., 2012) and of field mustard (Franks et al., 2007) sampled from the same locations showed evidence of advancement of flowering time due to climate change. While ex situ collections provide historic data and material for in situ monitoring of diversity and assessment of evolutionary changes, in turn, the results of such studies will inform and improve in situ conservation strategies. Ex situ conservation is a vital component of endeavors such as \"Project baseline\" (Franks et al., 2008), which is monitoring contemporary populations of a wide range of wild species in conservation sites and aims to regularly collect and store seeds from these populations in order to make available collections of time series samples for future evolutionary studies.It is vital that the genetic diversity underpinning the world's crops is protected and enhanced. There are multiple paths to achieving components of that aim. Here, we provide examples of research topics that would contribute to a deeper understanding of the processes whereby existing variation is maintained and new variation generated in wild reserves and farmer's fields and could be the basis for making these processes more useful: A good measure of the effectiveness of in situ conservation of germplasm depends on evidence of continued evolution and diversity within and among populations, and on the use of these diversity and evolutionary outcomes beyond the situations where they take place.Clearly, a solid body of empirical evidence in support of this will take time to accumulate. However, circumstantial evidence provided by geographic-scale patterns in diversity that correlate with major biotic and abiotic factors backed up by an increasing number of examples of short-term evolutionary responses to pathogens and climate variability already provides strong support for the evolutionary rationale for in situ conservation.Ex situ conservation of genetic resources is an extremely important endeavor providing security against loss of diversity in the field and ease of access, and hence usage, by plant improvement and breeding programs. However, even in the most extensively collected species, concern still exists as to the geographic and environmental representativeness of collections. While rapid advances in molecular technologies suggest that artificial evolution in some traits (e.g., some types of disease resistance) may become increasingly important, within-species evolution of more complex traits (e.g., multigenic disease and pest resistance; drought tolerance) is still well beyond the horizon. For less well-collected species such as many crop wild relatives and the large numbers of neglected and underutilized species that have little or no representation in ex situ collections, these concerns are magnified many times.In situ conservation on-farm remains a vital part of ensuring germplasm availability for use by future generations. Evolution in these highly important situations is determined by a complex of interactions between crop, environment, and humans at a range of spatial scales.Social factors involving the full gamut of interactions from relationships between adjacent and more far-flung communities, to taste preferences and traditional beliefs, ensure that farmers and landraces constitute a complex coevolving sociobiological system. There is strong circumstantial evidence that even without the added human dimension, evolution can lead to the de novo appearance of novel alleles or the selection of favorable gene complexes that adapt plants to changes in their biotic and abiotic environments.The added human component that is an integral part of in situ conservation on-farm can drive evolution at an even faster pace through measures that lead to repeated introduction of additional genetic variation, while simultaneously enforcing tough selection pressures through active management of less desirable characteristics.Understanding the extent of this process and its impact on the genetic identity of landraces used in subsistence agriculture is a vital component in ensuring the maintenance of diversity into the future.","tokenCount":"6946"} \ No newline at end of file diff --git a/data/part_3/3567461895.json b/data/part_3/3567461895.json new file mode 100644 index 0000000000000000000000000000000000000000..418d8b261bcec299b6f171dde8b3be8d5d22840c --- /dev/null +++ b/data/part_3/3567461895.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"e83a52a9252a16fcb53473ead1ec4728","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/f21b2b4c-09b1-45c8-914e-fdf1f300555a/retrieve","id":"-433465076"},"keywords":[],"sieverID":"620ba2a8-5ef5-4780-8ae1-a059d0840a24","pagecount":"2","content":"The impacts of climate change in Eastern and Southern Africa (ESA), are already well known to farmers. Over 2 million people in Kenya face threat of food insecurity due to climate change.Maize production is particularly vulnerable to climate change. It is projected to face not only 15% climate-related declines in yield without adaptation but also challenges from diminished cropland suitability and poor agronomic inputs and management; degraded environmental bases with declining soil fertility and degraded water systems are already apparent.Given that maize-mixed systems cover over 75% of the cropping land in many places, it is critical to build climate resilience and de-risk through diversification.Crop diversification seeks to promote crop diversity by crop rotation, multiple cropping, or intercropping, with the goal of improving productivity, sustainability, and supply of ecological systems.You can choose from many different types of crops, and you can plant them in different combinations. This involves growing two crops in the same field, one after the other in the same year. Growing two crops may also be possible if there are two rainy seasons, or if there is enough moisture left in the soil to grow a second crop.Examples: Planting alternating rows of maize and beans, or growing a cover crop in between the cereal rows.This means growing two or more crops in the same field at the same time.Mixed intercropping: This involves broadcasting the seeds of both crops, or dibbling the seeds with out any row arrangement.It is easy to do but makes weeding, fertilization and harvesting difficult. Individual plants may compete with each other because they are too close together.Row intercropping: Planting both the main crop and the intercrop in alternating rows. Such systems may include alternating single rows of maize and legume (MOJA MOJA System), one row cereal vs two rows of legume (MOJA MBILI systems). two rows of cereal alternated with two rows of legume (MBILI MBILI System). Such innovative intercropping systems reduce crop competition and he amount of shading on the legume rows resulting in better productivity. This involves planting broad strips of several crops in the field. Each strip is 3-9 m wide. On slopes, the strips can be laid out along the contour to prevent erosion. The next year, the farmer can rotate crops by planting each strip with a different crop.• It produces a variety of crops • The legume improves the soil fertility • The rotation helps reduce pest and weed problems • The residues from one strip can be used as soil cover for neighboring strips. • Compared to intercropping, managing the single crop within the strip is easy, and competition between the crops is reduced.DiversifieD Cropping systems for inClusive anD resilient agri-fooD system in embu County This is growing one crop, then planting another crop (usually a cover crop) in the same field before harvesting the first. This helps avoid competition between the main crop and the intercrop. It also uses the field for a longer time, since the cover crop usually continues to grow after the main crop is harvested.Certain insect pests and diseases may spread easily from one crop to the next through the crop residues. Avoid crop combinations where this is a problem.Markets do not always exist for new crops you may want to plant as part of your rotation. Intercropped systems may produce diverse but lower amounts of each crop making commercialization a challengeManaging rotations properly requires more skills than a single crop. It also needs work at different times of year. People may be reluctant to try out new crops because they are not used to growing or eating them.Consider cropping systems that are friendly and acceptable for men, women and children","tokenCount":"609"} \ No newline at end of file diff --git a/data/part_3/3578826754.json b/data/part_3/3578826754.json new file mode 100644 index 0000000000000000000000000000000000000000..28ba78371873c68449cd64576fe7266ba0d93585 --- /dev/null +++ b/data/part_3/3578826754.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"65fa5d0683bdee590196f7f3802cf5e6","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/9a02d060-b337-440f-abdb-0ca692fee672/retrieve","id":"-563799519"},"keywords":[],"sieverID":"a6d66b21-b024-4b8b-b543-c4b334dbe3aa","pagecount":"12","content":"Sweet potato (Ipomoea batatas) is one of the ten most important staple crops and provides a livelihood for many people around the globe. to adapt to ever-changing circumstances farmers and breeders need to have access to a broad diversity of germplasm. this study focuses on the development of a cryopreservation protocol that allows the long term storage of different sweet potato cultivars. For this, a droplet vitrification protocol was optimized, comparing several parameters; preculture method (0.3 M sucrose vs no preculture); meristem position (axillary vs apical); plant age (3 to 9 weeks); regeneration medium (MS + 2.22 µM BA, Hirai and MS); and length of loading solution treatment (20 to 360 min). Two months after cryopreservation, the regeneration rates of the meristems were compared, which resulted in significant differences for the preculture method, meristem position and loading solution. With these new insights an optimized droplet vitrification protocol was developed with the following parameters: use of 3-9 week old axillary meristems, no preculture phase, 20 min LS treatment, 30 min PVS2 treatment, exposure to liquid nitrogen by droplet vitrification, warming treatment in RS for 15 min, 1 day 0.3 M sucrose recuperation culture, 1 month MS + 2.22 µM BA followed by 1 month of MS cultures. This protocol was subsequently tested on 10 representative accessions resulting in a post cryopreservation regeneration rate of more than 40% for 70% of the tested cultivars, showing that this protocol could be implemented for a large portion of existing sweet potato collections.Sweet potato (Ipomoea batatas (L.)) was domesticated multiple times in different places in Central and South America more than 9,000 years ago 1,2 and is currently grown in every continent, excluding Antarctica, for its tuberizing roots which are rich in carbohydrates and carotenes 3 . While sweet potato was originally only grown in the tropics, its cultivation has now spread to more temperate regions, like central Europe, where it is grown as an annual crop 4 . Each year, around 112 million tons of its storage root are produced globally. This makes sweet potato, in terms of production figures, the 15th most important crop in 2017, and if only staple foods are considered, it becomes the 8th most important (after, maize, wheat, rice, potatoes, soybean, cassava and bananas). Following the current trend, its production is suspected to further rise considerably in the coming years 5 .The cultivation of sweet potato is hampered by different factors, such as drought, pest and disease, which can all cause severe crop losses. The two most common viruses, the sweet potato feathery mottle virus and the sweet potato chlorotic stunt virus, can cause the sweet potato virus disease when both are present in the plant causing a yield drop over 50% 6 . These viruses are often transmitted via vectors, e.g. white flies (Bemisia tabaci (Gennadius)), which enable them to spread easily from plant to plant 7 . Once infected, removal of the virus in the field is nearly impossible, eradication of the virus is only possible in in vitro plants and is practiced through, for example, cryotherapy, meristem culture and thermotherapy 8 . Abiotic stress such as drought is suspected to become more severe due to climate change 9 .The reaction to each of these stresses, however, is genotype-dependent. The different responses to drought stress can be explained by the broad range of adaptations that some cultivars have acquired over time, such asan adapted stomatal conductance or leaf area index 10 . Besides drought resistance, variation can also be observed in other traits like taste, colour and the response to other stresses such as virus infections-with some cultivars showing less or more severe symptoms 11 .Access to this wide genetic diversity is important for farmers and breeders, as it allows them to adapt to changing environments. Resistant sweet potato cultivars could be introduced directly in regions that are plagued with certain diseases or indirectly by crossing them with other cultivars. National and international gene banks play an important role in this interaction between nature, farmers and breeders, since they provide easy access to such materials. The largest sweet potato genebank is hosted by the International Potato Center (CIP), with 8,054 accessions as reported in 2018 12 .While seed conservation is considered as the most convenient method to store crops' genetic resources, this is not always an option; there are plants that do not produce seeds (sterile crops like edible bananas), that produce non storable, recalcitrant seeds (cacao, avocado, coconut) or that, in the case of sweet potato, are clonally propagated-since its offspring does not have the same genetic set up when propagated by seed 13 . These clonally propagated crops have to be conserved in a different way and are therefore often kept in a field, greenhouse or in vitro collection 14 . The maintenance of such a collection, however, is labour intensive. Moreover, in vitro collections come with a cost and with the possibility that somaclonal variation will occur over time 15 .Cryopreservation can solve these issues as it allows to store plant genetic resources at ultra-low temperatures where biological, enzymatic and chemical activities are halted. This causes the tissue to be suspended in time as long as it is kept at these temperatures 16 . For sweet potato, some reports have already been published on the development of cryopreservation protocols, using techniques such as vitrification 17 , encapsulation vitrification 18 , encapsulation dehydration 19 and droplet vitrification [20][21][22] . These techniques all revolve around the prevention of ice crystal formation during cryopreservation, in the vitrification based techniques crystallization is prevented by vitrifying the explant by replacing the water that is present with cryoprotecting substances combined with rapid freezing, causing the water in the plant to go into an amorphous glass phase. Dehydration, meanwhile lessens the chance of freezing by removing as much water as possible without the addition of other molecules. In encapsulation based protocols the explant is encapsulated in an alginate bead before being cryopreserved. However, improvement is still needed, since many of the earlier reports only evaluated the survival and not the regeneration of the tissues 20 , or are using only a small selection of cultivars 18 . Vollmer and co-workers reported successful cryopreservation of apical meristems with a regeneration rate higher than 40%, in 38% of their 24 tested cultivars 21 .The objective of this study was to develop a user-friendly cryopreservation protocol thereby improving regeneration rates of sweet potato plantlets after cryopreservation via droplet vitrification 23 . By optimizing different parameters (such as preculture, regeneration medium and meristem type) of the cryopreservation protocol and apply the optimized method to a range of cultivars that is representative of sweet potato diversity.The plantlets which were propagated on the two different media, Murashige and Skoog medium (MS) and CIP medium, differed significantly (P < 0.05) with respect to the number of new nodes that they produced after 6 weeks. This was both the case for all four cultivars combined and individually. The number of nodes on the plantlets grown on the MS tube medium resulted in one extra node per subculture compared to those grown on the CIP medium. These results are visualized in Fig. 1, where the range of both groups is approximated by a Gaussian distribution, with the curve peaking at 7 and 6 nodes for MS and CIP respectively. This higher number of nodes was also positively correlated with the average length of the plantlet, giving the plantlets grown on the MS medium longer shoots. There was also more callus observed on the plantlets on the CIP medium, but for all other visual markers (roots, leaf size, etc.), no significant differences were observed.The three different LS durations did not significantly influence the survival rates of the meristems (Fig. 2). Nevertheless, when compared to the control plants, that were not treated The effect of plant age. A significant difference between the survival rates of the non-cryopreserved meristems that were excised from 3-week-old and 6-week-old plantlets was observed, with later plantlets reacting better to the treatment (Table 1).However, such a plant age effect could not be statistically proven for all other parameters. This shows that apical and axillary nodes of different ages, within the tested timeframe, can be used for cryopreservation.The effect of a 0.3 M sucrose preculture. A 1-day preculture on 0.3 M sucrose shows a significant positive effect on the survival rate of both control and cryopreserved meristems (Fig. 3). However, for the regeneration rate the opposite is observed. This could be due to the fact that the preculture also increases the cryopreservation ability of more hydrated non-meristematic (and thus non-totipotent) cells. It could thus become The effect of meristem type. The overall survival rate showed a significant difference between the two groups, with axillary meristems showing an overall higher rate (~ 7% more, results not shown). On a cultivar level, some differences among the 3 cultivars could be observed. The overall regeneration rate of the axillary meristems showed a similarly significant behaviour and were significantly better than that of the apical meristems on both cryopreserved and control samples. On cultivar level there was a similar trend to the survival rate where CMR and IBA show the same significant improvement when using axillary meristems compared to apical ones, while this is not the case for CIN (Fig. 4). These results show that a cryopreservation protocol for sweet potato preferably uses axillary meristems because (i) post-thaw regeneration rates are generally higher and (ii) more meristems can be excised from one plant (6 axillary meristems from a six-week old plant and only one apical).The effect of regeneration medium. Both control and Cryopreserved meristems survive significantly better on the 2.22 µM BA compared to the other media, with a survival rate of 96.8 and 69.2% respectively. This effect was observed on 3 of the 4 cultivars tested (results not shown), only in case of IBA no significant differences were observed. The regeneration rates, however, did not show any significant differences resulting in an average regeneration rate over all media of 29% and 82% for the cryopreserved and controls respectively (Table 2). A general observation, however, was that meristems growing on 2.22 µM BA produced a lot of callus. This callus, however, originated from the wound tissue beneath the meristem and not from the meristem itself (examples are shown in Fig. 5). The shoots that thus emerge do not originate from callus tissue but from the original meristem, an observation that is important for conservation purposes, as shoots originating from callus tissue are more prone to somaclonal variation.Based on the results of the experiments described above, an optimal droplet cryopreservation method is formulated using the following parameters: use of axillary meristems; no preculture; LS treatment 20 min; PVS2 treatments 30 min; RS treatment 15 min and the use of a 2.22 µM BA regeneration medium. This protocol was subsequently tested on a broad range of cultivars. Recovery for 2 cultivars, CMR and TAN is shown in Fig. 6. Different regeneration rates for the different cultivars were observed (Table 3). Three different groups according to their regeneration rate can be distinguished. The first group, consisting of CMR, IBA, TAN and TRUJ, responds satisfactorily to the developed cryopreservation protocol and could be considered as easily cryopreservable, with post-cryopreservation regeneration percentages ranging between 58 and 85%. The second group consists of CIN, ESP and MAN, which are intermediately cryopreservable and show regeneration rates around 50%, a rate that is considered high enough for cryobanking. The third group consists of the difficult to cryopreserve cultivars (CAM, JEW and TIS) with low regeneration levels ranging between 9 and 22%. .Droplet vitrification for the cryopreservation of organized plant tissues can be considered as a generic cryopreservation method as it has already been applied to many different unrelated crops, such as banana 24 , magnolia 25 , Arabian pea 26 , garlic 27 and apple 28 . Its main advantage, compared to other methods, such as encapsulation and slow rate cooling, lies in its simplicity and time efficiency 29 . Nevertheless, this method always needs to be adjusted to the different plant species and tissues. Panis and co-workers developed a methodology to determine optimal parameters for each species, following a step-by-step plan 23 . These parameters include: optimize the quality of the starting material including absence of endophytes, define a suitable multiplication medium, define a meristem tip regeneration medium, screen LS toxicity and PVS2 toxicity at 0 °C. This research focuses on some of these parameters, since earlier reports already determined a few of these parameters, e.g. the optimal PVS2 length (30 min) 21,30 .The steady supply of material of high quality is a prerequisite to a cryopreservation protocol with a high reliability In this research, material that was already sterile and devoid of endophytes, was acquired from CIP, which was then further propagated. Since the amount of material increases more than six fold every 6 weeks with the propagation method, there is no need for another mass propagation method such as (in)direct organogenesis or embryogenesis, as these tend to show a higher risk at somaclonal variation 31,32 . The MS medium that we applied increased plant growth compared to the CIP medium. These results are contra-intuitive since the addition of gibberellic acid to a culture medium results for most of the plant species in an elongation of the internodes and therefore results in longer plants 33 . However this growth discrepancy could be explained by the lower nutrient concentration that is present in the CIP medium (MS vs half strength MS), which is in line with the results reported by Arrigoni-Blank and co-workers 34 .For our tested time window of 3 till 9 weeks after subculture, no significant differences were found that are related to the age of the material in present study. This means that for genebanking purposes, more material is readily available since plantlets of different ages can be used. The utilization of older material also provides more meristems per plantlet; From a 6 week old plantlet on average 7 meristems can be excised, which is significantly more than a from 3 weeks old plant with, on average 5 meristems. Nonetheless, the age can still be an important parameter for other crops. This is especially true in woody plants where older meristems change their cell wall composition over time, which can either result in an increase of regeneration in the case of apple buds 28 or a decrease in the case of silver birch 35 . This age effect is also present in several non-woody plants such as Chrysanthemum 36 and potato 37 .The meristem type did show to significantly affect the regeneration rate after cryopreservation, with the use of axillary meristems resulting in higher regeneration rates than their apical counterpart. However, the magnitude of this effect was shown to be cultivar dependent. Other plant species show varying results; axillary meristems are optimal for Chrysanthemum 36 while in the case of Dianthus, apical meristems give better results 38 . While we can see that this clearly leads to different outcomes, reports comparing these two kinds of meristems (including sweet potato) are rare. Another advantage in using axillary meristems is the number of meristems per plant that can be used, depending on the age, 6 or more meristems per plant are available. In many plant species and multiple plant cryopreservation protocols, a preculture phase is applied to increase the regeneration rate of the cryopreserved meristems. In this study, a 0.3 M sucrose preculture shows a significant improvement on the survival rate, which is not mirrored by an increase in the regeneration. The higher survival rate could be caused by the increased cryopreservability of more water containing non-meristematic cells that normally do not survive without a sucrose preculture. These cells form callus and overgrow the surviving meristem thereby \"suffocating\" it. This could explain the drop in regeneration; however, this decrease is in conflict with earlier reports in sweet potato 22,39 .No significant differences between the regeneration rates of the plantlets on the three different media were observed; however, this was again not the case for the survival rate. This difference could be due to the BA in the medium which helps non-meristematic cells grow and form callus and which might explain the higher survival rate. In other reports on sweet potato cryopreservation, BA is used multiple times. However, it is often combined with other growth regulators 17 , or applied for a shorter amount of time (~ 7 days) 18 . Such adaptations could reduce the growth of callus, yet we determined that the callus growth did not interfere with the growth of the meristem into a full grown plantlet. The callus growth induced by BA, is thus not considered as a negative factor, so further optimization of this step is not a priority.While LS is important to increase resistance toward the toxic effects of the vitrification solutions, it also induces toxicity after prolonged exposure. These observations are in line with reports on other crops where a decrease in regeneration has also been observed. The severity of this effect is very crop dependent; Citrus madurensis already shows a steep decrease in regeneration after 30 minutes 40 while for banana the LS treatment time can be stretched for at least 7 hours 24 . Other reports of sweet potato suggest a longer treatment time (1 h) as an ideal instead of the 20 min 18 . However these times cannot really be compared, since the latter involves encapsulation and this generally requires longer treatment times than droplet vitrification due to the need for the solutions to diffuse into the beads. Provided the toxicity would have been insignificant for longer periods, our cryopreservation protocol could have been simplified and excised meristems could have been directly stored in the LS after excision. However since prolonged exposure induces a toxic effect this is not an option.We observed that sweet potato cultivars react very differently to the cryopreservation protocol. Some of the cultivars achieved a regeneration rate of more than 80% while others barely reached 10%. One would assume that a cryopreservation method would have a similar effect on plants of the same species, however our results are in agreement with literature. Multiple plant species, including sweet potato, already showed huge variation within their species, regarding cryopreservation ability. Nevertheless, it would be interesting to link drought resistance data of these sweet potato plants in the field with their cryopreservation ability. It was proven before, that post-thaw regeneration rates of banana, apple and cassava in the field could be correlated with variety characteristics 24,41,42 . While many drought resistance experiments have been executed on a wide variety of sweet potato cultivars; results including one of our 10 studied cultivars are scarce. Omotobora et al. included 2 of the cultivars, JEW and TAN, in a series of preliminary drought experiments that were executed on 50 accessions. JEW and TAN proved in their pre-screening trials to be intermediate tolerant and susceptible to droughts respectively 43 , which contrasts with the earlier notion that more drought resistant plants cryopreserve better in general.While seven out of ten cultivars reacted satisfactory on the optimized cryopreservation treatment, 3 of them still show a regeneration rate that is critical for cryobanking. All three show a similar low regeneration rate after cryopreservation but the reason of this varies greatly, suggesting that developing one method for all accessions might not be feasible. For instance, CAM meristems show a lot of problems with hyperhydricity, likely due to the long BA treatment 44 . This could be overcome by shortening the BA treatment or decrease the BA concentration in the medium. TIS meristems on the other hand, show good growth of control meristems but this is not reflected in the cryopreserved meristems in contradiction with the other cryopreservable cultivars. The main bottleneck here was thus, the cryopreservation step itself. For this cultivar an alternative vitrification solution or treatment time could be applied, as the meristem might not be protected (dehydrated) enough. Finally JEW also shows a low regeneration rate in its non-cryopreserved control, suggesting that the problems might be more tissue culture related in general or it could be related to toxicity towards the PVS2 treatment. Observation during the regular subculture also showed that this cultivar was growing much slower compared to the other cultivars, adding credit to this hypothesis. This means that further improvement is still possible.The regeneration rate of the optimized droplet vitrification protocol reached more than 40% for 7 out of 10 tested cultivars. These regeneration rates combined with the simplicity of the protocol (no need of a preculture, or extra encapsulation step, the fact that by using axillary meristems more material is available, etc.), make it an acceptable and reliable protocol for genebanking purposes of sweet potato. A trained technician following this protocol can excise and cryopreserve more than 180 meristems in one day. These results improve on earlier reports in several ways. Firstly, the use of meristematic tissue limits the chance of somaclonal variation which is not desirable for conservation purposes. The droplet vitrification of meristems thus contrasts with early cryopreservation protocols which made use of embryogenic tissues 19 . Secondly, the cryopreservation protocol was tested on more cultivars than most previous studies. Some previous studies only used one 20,22 , two 17 or three 18,45 cultivars, which might result in biases when interpreting the results and overgeneralizations, since this report shows that the cultivar type is a very important parameter, with 83.9 and 9.5% regeneration rate of the best and worst cultivar respectively. However, there is a trend in using multiple cultivars (≥ 5) when reporting on cryopreservation protocols 21,46 . Thirdly, the research makes use of a well-defined post-cryopreservation reaction categorization, which is a valuable addition to the survival rate or \"shoot elongation\" often used in earlier reports 20,46,47 . This distinction is important since we show that survival does not equal plantlet regeneration, sometimes it is not even correlated. There are different stages where shoot growth stops and does not result in fully regenerated plantlets. This problem has also been observed in other crops, e.g. cassava 48 and potato 49 . To confirm plant regeneration after cryopreservation, regeneration should be followed over a longer period, to avoid false positives. Fourthly, it is an easily executable protocol with less steps, as it requires no preculture (≥ 16 h) 18 or encapsulation (~ 30 min) 18 , and the cryoprotective steps (LS & PVS; total of 50 min in present method) take less time compared to those of encapsulation dehydration (~ 4 h) 18 and plate vitrification (~ 2 h), making it possible to treat more meristems per day. Lastly, we report higher regeneration rates compared to similar studies on sweet potato, taking into account the parameters; use of meristematic tissue, use of multiple cultivars, correct use of the term regeneration and, use of droplet vitrification. Vollmer and co-workers followed a similar protocol on 24 different accessions, but with some key differences such as a different preculture and apical meristems, which have been shown here to significantly influence the regeneration, this resulted in regeneration rates between 1.7 and 68.5% 21 . However, to truly compare with our results, the same cultivars should be tested.We can conclude that firstly the use of axillary meristems for the cryopreservation of sweet potato is an interesting option and could even be an improvement for other plant species. Secondly, the optimized droplet vitrification protocol showed regeneration rates of cryopreserved meristems ranging from 9.5 to 83.9%, with 70% of tested cultivars having regeneration rates higher than 45%. While this protocol should still be optimized for certain \"difficult\" accessions, we conclude that this protocol is applicable for long-term conservation for most of the sweet potato collections.plant material. In vitro-grown plantlets of ten different Ipomoea batatas cultivars; Camote Mata Serrano (CAM; Cip-420530); Cinitavo (CIN,Cip-440669); CMR 1112 (CMR; Cip-440145); Espelma (ESP, Cip-421028); Ibarreno (IBA; Cip-400989); Jewel (JEW; Cip-440031); Manchester Hawk (MAN; Cip-400040); Tanzania (TAN; Cip-440166); Tis 87/0029 (TIS; Cip-442764); and Trujillano (TRUJ; Cip-420665) were supplied by CIP (Lima, Peru). These ten cultivars were chosen to represent the diversity of the cultivars present at the sweet potato genebank of CIP as they originate from a broad range of countries over 4 different continents.plant multiplication. In vitro plantlets were propagated on \"CIP medium\" and plain MS medium 50 ). The CIP medium contains half strength MS salts (Duchefa Biochemie, M0221) supplemented with 30 g/L sucrose, 2.8 g/L gelrite, 2 mg/L calciumpanthotenate, 100 mg/L calciumnitrate, 200 mg/L ascorbic acid and 10 mg/L gibberellic acid, pH was set to 6.12 before autoclavation (b.a.). The MS medium contains MS salts and vitamins (Duchefa Biochemie, M0222) supplemented with 25 g/L sucrose and 2.8 g/L gelrite, pH was set to 6.12 b.a.. Nodal fragments from the in vitro plantlets were excised in a sterile laminar flow bench. This was done by removing the leaves and roots of the plantlet, after which 1 cm stem fragments were cut, each containing one axillary meristem in the middle. Three fragments were transferred to each culture tube and grown in a 24 °C growth room on a 16/8 h light/dark regime with the light being provided with 36 W (cool white)/ 840 Lumilux fluorescent lights. The material was subcultured every 5-6 weeks.Six weeks after initiation, the number of new nodes was counted. This experiment was initially executed on the following 4 cultivars: TIS, IBA, JEW and TAN. Further propagation of all 10 cultivars was done with the medium that proved to be the most productive.Two meristem types were excised using a binocular microscope; apical and axillary meristems. The apical meristems were excised by trimming the top leaves until the apical meristem is visible. Then a cut is made in the stem underneath the apical meristem, leaving the apical dome with 2 to 4 leaf primordia (Fig. 7). The axillary meristems were excised by first removing the leaves completely, including the petiole. From this a small cube of 1mm 3 was excised containing the axillary meristem on one of the sides (Fig. 7) A movie demonstrating this process is added as supplementary information in the digital version of this paper (see Online Supplementary Resource 1). The exact position of the axillary meristem on the stem was not taken into account in this research, since it was proven that this had no significant impact on the survival rate after cryopreservation 39 . preculture. In the \"no preculture method\", the excised meristems are transferred on top of a sterile filter paper placed on a MS plate (MS, 30 g/L sucrose and 3 g/L gelrite, pH set to 6.12 b.a.). As soon as sufficient meristems for that specific experiment are excised, they are subjected on the same day to the cryopreservation procedure. In the \"preculture method\", the excised meristems are transferred on top of a sterile filter paper placed on a 0.3 M MS plate (MS, 102.7 g/L sucrose; 3 g/L gelrite, pH set to 6.12 b.a.) and kept on this medium in the dark for14 to 16 h before cryopreservation takes place.The difference between precultured and non-precultured meristems was tested by comparing the post-thaw survival and regeneration rate of 950 of both axillary and apical meristems originating from 3 different cultivars (IBA, CIN, and CMR). These were cryopreserved via the droplet cryopreservation protocol using the following parameters: Loading solution (LS) 20 min; Plant Vitrification Solution (PVS2) 30 min; Recovery Solution (RS) 15 min and 2.22 µM BA regeneration medium.Precultured or non-precultured meristems were transferred to a sterile 30 ml plastic tube containing 15 ml of LS ( MS supplemented with 2 M glycerol and 0.4 M sucrose; pH 5.8), where they remain at room temperature for 20 min. Then the LS was removed from the tube with a sterile plastic boll pipette, taking care not to remove or damage the meristems.The empty tube was then filled with 15 ml chilled PVS2 51 with the Murashige-Tucker medium replaced by MS ( MS supplemented with 30% glycerol, 15% ethylene glycol, 15% DMSO and 0.4 M sucrose, pH 5.8) and subsequently placed in an ice bath for 30 min 21,23 .Of each sample of 10 meristems, 3 were directly transferred from the PVS2 to the RS (MS supplemented with 1.2 M sucrose, pH 5.8) at room temperature to act as a control. The remaining 7 meristems were transferred with a plastic boll pipet to a sterile aluminium foil strip (4 × 15 mm). From this strip, the remaining PVS2 fluid was removed until only a thin layer of PVS2 surrounds each meristem. Subsequently the aluminium strip was plunged into liquid nitrogen (LN). When the LN surrounding the aluminium strip stopped boiling, the strip containing the meristems was transferred to a 2 mL cryotube filled with liquid nitrogen where the meristems remained for at least 30 min. To warm the meristems, the aluminium strip with meristems was removed from the cryotube with liquid nitrogen and directly plunged in the RS at room temperature.Both control and cryopreserved meristems were exposed to the RS for 15 min. Following this, they were placed one by one with a plastic boll pipette onto a filter paper placed on a MS plate containing 0.3 M sucrose. The plates were then sealed with parafilm and stored overnight in darkness at a temperature of 24 °C. The next day, the meristems were transferred on to the regeneration medium in an upright position, with the meristematic domes not fully submerged in the medium. The meristems were left in the dark for 7 days, where after they were moved into the light.After 1 month they were moved from the regeneration medium to new MS plates (Fig. 8).Effect of the age of the in vitro plantlet. Effect of toxicity of the loading solution. For this experiment 24 apical and 72 axillary meristems of the cultivars TIS, TAN, IBA and JEW were subjected to 3 different LS treatment times (20, 180 and 360 min).After the LS treatment the meristems were transferred to a MS plate containing 0.3 M sucrose for one day plate after which they were transferred to an MS plate. Thereafter, the survival and regeneration rates were compared. post-cryopreservation regrowth. Observations were executed one and two months after cryopreservation using a binocular microscope.To express the results of the regrowth(survival) and regeneration, 7 categories of post thaw reactions are distinguished. In case of doubt, the lower growth category is taken in order to avoid false positives. The categories are summarized below and a visual representation of a typical meristem in each of the 7 categories is shown in Fig. 5.Full regeneration (F) are those meristems that have grown multiple leaves, each containing a new meristem in the axil, and that are growing visible roots. These plantlets are able to regenerate into a new plant that can be subcultured and transferred to the soil. A Hyperhydricity (H) score is given to meristems which do form new leaves and meristems, but are growing abnormally. These plantlets have narrow leaves with a thick stem and roots that grow upwards. These are not categorized as regeneration as subculturing these plants will not lead to plantlets that can be transferred to the field. Shoot growth (S) is linked to meristems that produced a limited number of leaves, around 3, and then stop growing. They remain rootless. Tip growth (T) means that the meristem is visibly growing but shows no unfolded leafs. A callus (C) score is given when there is no visible growth other than callus. Black (B) or White (W) is given to meristems that have died either after or before/during cryopreservation. In many cases, callus growth is associated with one of the above categories.To calculate the post thaw regeneration rate of a plate, the Full regeneration (F) meristems were counted and divided by the total number of meristems on the plate. The survival rate was calculated by counting all meristems with living tissue (F, H, S, T and C).The comparison of the number of nodes after 6 weeks on the 2 propagation media was executed using a one-sided tail, student t-test (homoscedastic) with a P-value < 0.05, when the variances were considered equal. When the variances were not considered equal, the student t-test (heteroscedastic) was performed.Excel was used to collect the data from the various experiments. The raw data that was obtained in these experiments, has been made available on the Mendeley data repository 52 . The regeneration and survival data were transformed using the formula y = arcsin x 100 to create a normal distribution, wherein x = regeneration rate (%) or survival rate (%). This data was then analysed using the JMP statistical software to identify significant factors on a P < 0.05 level with an ANOVA test in combination with a Tukey HSD test.","tokenCount":"5446"} \ No newline at end of file diff --git a/data/part_3/3581327159.json b/data/part_3/3581327159.json new file mode 100644 index 0000000000000000000000000000000000000000..dfe676d0e17184a5414d733a533a932f8f1946ad --- /dev/null +++ b/data/part_3/3581327159.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"60bc26e0f6152c354364e4f1af13c99a","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/d9661c4d-f901-417c-bc5b-7c2a473fffbc/retrieve","id":"367219535"},"keywords":[],"sieverID":"ab9e5c50-f21f-4123-b2fc-e2de3a8a6e82","pagecount":"174","content":"The Regional Strategic Analysis and Knowledge Support System (ReSAKSS)Established in 2006 under the Comprehensive Africa Agriculture Development Programme (CAADP), the Regional Strategic Analysis and Knowledge Support System (ReSAKSS) supports efforts to promote evidence-and outcome-based policy planning and implementation. In particular, ReSAKSS provides data and related analytical and knowledge products to facilitate CAADP benchmarking, review, and mutual learning processes. The International Food Policy Research Institute (IFPRI) facilitates the work of ReSAKSS in partnership with the African Union Commission (AUC), the NEPAD Planning and Coordinating Agency (NPCA), leading regional economic communities, and Africa-based CGIAR centers.Boosting intra-African trade and deepening regional integration offer an effective vehicle to speed up Africa's economic transformation. Increasing the volumes of intra-African trade in agricultural products and the elimination of non-tariff barriers have the potential to boost industrialization and enhance competitiveness, at country and industry levels, through higher investments in connectivity and infrastructure, both physical and digital.Policies that enhance intra-regional trade in the continent such as the Continental Free Trade Area (CFTA) and the Tripartite Free Trade Agreement (FTA) will be crucial to building a single continental market for goods and services, along with free movement of labour and capital and greater harmonisation in standards and procedures.The CFTA will have a combined GDP of about $2.3 trillion and a population of more than 1.2 billion people, with more than half comprising the youth. It will open up the continent to new investors and better opportunities for its entrepreneurs.Given the large amount of money spent on imported food, the demographic changes taking place, the huge opportunities offered by urban markets across the continent not to mention the immense productive potential for agriculture in Africa, it is evident that there are both significant opportunities and a pressing need for greater intra-African and intra-regional agricultural trade.To maximise the benefits of regional integration and look for new opportunities for agricultural competitiveness, policymakers, the private sector and development partners need access to accurate, comprehensive and reliable data on intra and inter-regional agricultural trade in Africa.It is in this context that we launched the first annual edition of the Africa Agriculture Trade Monitor (AATM). The Report is the fruit of a collaborative endeavour between the International Food Policy Research Institute (IFPRI) and the Technical Centre for Agricultural and Rural Cooperation (CTA). It builds on the work of the Regional Strategic Analysis and Knowledge Support System (ReSAKSS) and the African Growth and Development Policy Modelling Consortium (AGRODEP) on trade, both facilitated by IFPRI under its work in support of the African Union Commission's Comprehensive Africa Agriculture Development Programme.The 2018 edition of the AATM examines the status and trends in competitiveness of African countries in global as well as intra-African agricultural markets. The report also analyses key determinants of trade performance among African countries, as well as opportunities to expand trade within regional blocks and at the continental level. We believe that the report will make an important contribution towards the data and analysis needed to advance efforts to promote intra-African trade and better integrate agricultural markets across the continent.This report reflects IFPRI and CTA's commitment to advancing sharing of knowledge and best practices relating to agricultural trade in Africa. We hope the data and findings in the report will generate great interest and value among policy-makers and practitioners.Director CTADirector Africa IFPRITrade is an important avenue through which countries transform their economies and raise standards of living. For African countries, trade in agricultural products offers great potential to boost incomes for farmers, processors and other agricultural value chain actors; increase incentives for productivity-enhancing investments along the value chain; and gain foreign reserves that can be used for imports of products not produced at home. Intra-regional trade also offers considerable potential to reduce the vulnerability of economies both by presenting an alternative to international markets in the case of global price shocks, and by smoothing the effects of local production shocks through better access to less volatile regional food supplies.African countries have increased their agricultural trade at the global and regional levels in recent years. However, Africa's agricultural trade remains low and below its potential. Despite the importance of agriculture in African economies, the continent accounts for only a minor share of global agricultural exports.Recent growth in intra-regional trade notwithstanding, Africa's countries trade with each other far less than do countries in other world regions. The challenges faced by African producers and exporters are many. Constraints to global and regional trade include the poor quality of physical infrastructure, inefficient customs processes and high harassments costs, inconsistent regional standards and regulations, and nontariff trade barriers including stringent food safety and traceability requirements in importing countries. Agricultural trade is also affected by wider challenges facing agriculture as a sector, including constrains to increasing productivity; underdeveloped connections between smallholder producers and other value chain actors; and increasingly frequent and severe weather shocks in the context of climate change. In the 2014 Malabo Declaration, African leaders committed to addressing many of these challenges and to tripling the level of intra-regional trade by 2025.The 2018 Africa Agriculture Trade Monitor, the first in a series of annual reports, assesses long-term and emerging trends and drivers of Africa's global, intra-Africa, and intra-regional economic community trade in agricultural products. It examines Africa's recent performance in different markets and identifies changes in the composition and direction of trade. It evaluates determinants of trade volumes and competitiveness and reviews developments in and outside of the agricultural sector at the Africa and global levels that affect Africa's trade performance. Trends are described at the continental level as well as among four major regional economic communities (RECs): the Common Market for Eastern and Southern Africa (COMESA), the Economic Community of West African States (ECOWAS), the Economic Community of Central African States (EC-CAS), and the Southern African Development Community (SADC). The report also contains a feature chapter on West Africa, which examines the potential for trade within the region to increase the resilience of food markets, and reviews potential interventions to increase intra-regional trade. Findings from the report and related policy implications are presented below.Africa's agricultural trade has increased over time, with faster growth in imports contributing to a growing trade deficit. Africa's agricultural imports and exports have both increased significantly in the past decades. The continent's agricultural exports tripled in value between 1998 and 2013, while the value of imports increased fivefold, due in part to strong growth in population and incomes and increased food demand. Following accelerating import growth, Africa's agricultural trade balance turned negative in the early 2000s and has widened rapidly thereafter. The trade deficit was reflected in most regions of the continent; of the major RECs, only SADC showed a trade surplus over the 1998-2013 period. In 2013, imports from North and South American countries made the largest contribution to Africa's agricultural trade deficit, although the continent maintained smaller deficits with European Union (EU) and Asian countries. Major imported commodities contributing to the deficit included sugar, maize, and wheat from North and South America; wheat, milk and cream from the EU; and rice, palm oil, and wheat from Asia.Despite the importance of agriculture in African economies and recent export growth, the continent plays a relatively small role in global agricultural trade, accounting for around 4 percent of global agricultural exports. The share of agricultural products in Africa's total trade has also declined sharply as exports of textiles, minerals and fossil fuels increased their share. In 2013, agricultural products represented 11 percent of Africa's total exports, a decrease by almost half from 19 percent in 1998.Africa's agricultural trade has diversified in terms of export commodities as well as trade partners. Africa's agricultural exports have long been concentrated in a narrow range of products. Although traditional export commodities continue to dominate, exports have significantly diversified over time. The top 10 exported agricultural products represented 57 percent of all agricultural exports in 1998, but this share had decreased to 43 percent in 2013. Cocoa beans were the top export in both years, accounting for around 13-14 percent of agricultural exports. Coffee and cotton, the second and third most exported products in 1998, remained important in 2013, but export shares for both products had declined.Cotton remained the second-most exported product in 2013, while citrus fruits became the third-most exported product, and frozen fish, cigars and cigarettes, and oilseeds entered the top ten.Africa's imports have remained more stable than exports in terms of composition and shares. The top ten imported products represented 52 percent of total agricultural imports in 1998 and 49 percent in 2013. Product categories remained similar, with eight commodities featuring among the top ten during both years. Wheat was the largest import by far in both years, accounting for 16 and 13 percent of agricultural imports in 1998 and 2013, respectively. Rice rose in prominence as an import over the period, and by 2013 gained the second largest import share. Sugar was the second-most imported product in 1998 and the third in 2013. Palm oil showed a large gain in importance over the period, becoming the fourth-most imported product in 2013. Meat and cigars and cigarettes, which were not among the top ten imported commodities in 1998, had entered the ranking by 2013.In 1998, the EU accounted for over 60 percent of Africa's agricultural exports and over 40 percent of imports. Although the EU remains Africa' dominant agricultural trade partner, its share of both exports and imports has declined over time, to under 40 percent of exports and 30 percent of imports in 2013, while shares of other regions have increased. In 2013, Asia was a close second to the EU in terms of both imports and exports. Agricultural exports to Asia and the EU tend to be high-value products and cash crops such as cotton, coffee, flowers, fruits, tea, tobacco and fish. North and South America account for a relatively small share of Africa's agricultural exports, but are much more important as a source of imports, with a share that has surpassed that of the EU in some years.Intra-regional trade in Africa is increasing, but remains below its potential. Although Africa's level of intra-regional trade is still low compared to that of other regions, intra-regional trade has increased over time. The value of intra-African agricultural trade increased by 12 percent annually over the 1998-2013 period. This rapid growth caused the share of intra-regional trade in Africa's total trade to increase from 8 percent in 1998 to 21 percent in 2013. Many factors have limited the growth of intra-regional trade in Africa, including insufficient trade-related infrastructure, limited private sector participation in regional integration initiatives, and challenges related to institutional quality. Of the major RECs, SADC had the highest intra-regional trade share during the period, while ECCAS had the lowest. However, ECCAS showed the most rapid growth in intra-regional trade volumes and values over the period. Many REC member states tended v to trade more within their REC than with other African countries, with ECOWAS and SADC countries showing particularly high concentrations of intra-REC trade.The composition of intra-African trade remained similar over the 1998-2013 period, but several product groups gained or lost share. Processed food products accounted for around 40 percent of intra-African trade throughout the period; fish products and cereals accounted for a further 8 and 7 percent throughout the period, respectively. However, coffee reduced its share from 10 percent during 1998-2006 to 7 percent during 2007-2013. At the level of individual products, frozen fish was the third-most traded commodity during 1998-2006 but replaced cotton as the most-traded commodity during 2007-2013. Sugar was the second-most traded commodity during both subperiods; cigars and cheroots increased their share and moved from eighth to third place between the two subperiods.African countries lost competitiveness in global markets but gained in intra-regional markets. Around 65 percent of African countries lost some competitiveness in global agricultural markets during the 1998-2013 period, increasing their exports less than the group of their competitors. The lowest-performing countries were Equatorial Guinea, Western Sahara, Angola, and Chad. Among the more than 35 percent of countries which outperformed their competitors, Cabo Verde, Somalia, Algeria and Djibouti showed the highest increases in competitiveness. However, most of Africa's major exporting countries experienced little change. Of the major RECs, ECOWAS countries were the most successful in increasing competitiveness in global markets, while ECCAS and SADC countries tended to lose competitiveness.At the commodity level, African exporters increased their competitiveness in global markets for three-fourths of the commodities studied. The largest increases in competitiveness were for rye, barley, and oats; soybean oil; cattle; silk; and dairy, eggs, and honey. Most losses in competitiveness were modest; the products with the largest losses were ground-nut oil, meat and edible offal, and chemicals. Most traditional African cash crops, including cotton, coffee, cocoa beans, tea, groundnut oil, and palm oil, either lost competitiveness or experienced small gains. However, many new export products, such as wool, soybeans, soybean oil, live trees and plants, and cocoa preparations, showed strong gains in competitiveness, suggesting the potential for diversifying exports by expanding trade in these areas.African exporters showed stronger competitiveness gains in intra-regional than in global markets, reflecting the significant growth in intra-regional trade over the period. 60 percent of countries increased their competitiveness by expanding exports to intra-African markets faster than their competitors, with Djibouti, Comoros, Egypt, Algeria, and Ethiopia showing particularly strong gains. The largest losses in competitiveness were seen in Mali, Central African Republic, Chad, and São Tomé and Príncipe. On average, COMESA countries were particularly successful at increasing competitiveness in intra-African markets. African exporters increased competitiveness in intra-African markets for around half of the commodities studied. Commodities showing particularly strong performance included rye, barley and oats; olive oil; and gums and resins. The commodities showing the largest competitiveness losses in regional markets were organic chemicals, soybeans, and groundnut oil.Africa's agricultural export performance can be attributed to domestic as well as global factors, including trade infrastructure, institutional efficiency, and nontariff trade barriers. Domestic supply-side factors appear to play a stronger role in determining the level of Africa's agricultural exports than global or demand-side factors; however, both categories are relevant in explaining export performance. Supply-side factors that affect agricultural exports include agricultural productivity, government expenditures, and trade-related institutions and infrastructure. Land productivity positively affects agricultural export performance, but labor productivity has a negative effect; this may reflect the fact that countries with higher agricultural labor productivity are those which are undergoing structural trans-formation and where export composition is shifting to nonagricultural products. The quality of port infrastructure and the efficiency of customs clearing both have strong positive effects on trade performance. This underlines an urgent need to improve port quality and customs efficiency in Africa, both of which are much lower than in other world regions. Public agricultural expenditure in exporting countries is used as a proxy for government support to agriculture, including extension services, financial services, and support of market access.Overall, public agricultural expenditures significantly improve export performance, although the effect does not hold everywhere, likely due to the differing focuses of public expenditure in different countries. Being a member of a REC also increases exports, demonstrating the positive trade creation effects of economic and trade integration efforts among REC members.Trade policies in importing countries also affect Africa's agricultural trade performance.Tariff rate increases reduce agricultural exports from Africa, and nontariff barriers show an even stronger trade-reducing effect: in particular, sanitary and phytosanitary requirements relating to food safety and health and export subsidies decrease African agricultural exports. Support to domestic agricultural producers in OECD countries also reduces Africa's trade. African countries have limited control over trade policy in other countries, but they should continue to take part in global efforts to lower trade barriers. In addition, much can be accomplished by addressing the domestic constraints to expanding trade.Expanded intra-regional trade can increase the resilience of markets. Analysis of production and trade patterns in West African countries demonstrates the potential for expanded intra-regional trade to increase the stability and resilience of markets and food supplies. If production instability patterns in neighboring countries differ sufficiently, then production shocks affecting one country can be offset by supplies from another country, making regional food supplies more stable and smoothing price volatility. The report finds that in nearly all West African countries, with the exception of only Côte d'Ivoire, national production was more volatile than regional production during the 1980-2010 period. There is therefore real scope for expanded regional trade to reduce the volatility of food supplies. In addition, West African countries' production and export patterns are sufficiently dissimilar as to allow opportunities for expanding trade. The region shows high levels of overlapping trade flows, indicating that many of the products being imported from outside of the region are also being exported by other West African countries to markets outside of the region. The products with the highest overlapping trade flows are, in most cases, products in which West Africa has comparative advantage, indicating significant scope to expand crossborder trade by redirecting these trade flows. Trade within West Africa has expanded considerably since 1998, and simulations suggest that trade will continue to grow in the next decade. However, intra-regional trade growth can be accelerated significantly by reducing the cost of trade or increasing agricultural yields. For instance, simulation results show that the elimination of harassment costs, a 10 percent reduction in overall trading costs, or an equivalent increase in yields would raise intra-ECOWAS trade in staple crops by between 10 and 28 percent.To improve trade performance, action is needed to raise productivity along the value chain, reduce trade costs, and eliminate barriers to trade. African policymakers recognize the importance of agricultural trade for economic development and have committed to tripling the level of intra-regional agricultural trade by 2025. Several emerging developments at the regional, continental, and global level provide opportunities to improve Africa's trade performance and meet high-level goals. However, participating in regional and global markets also present challenges that need to be addressed.Africa's growing population is becoming richer and more urban, leading to changes in the composition of diets and stronger demand for higher-value and processed food products. Policymakers should continue efforts to raise agricultural productivity, including by allocating greater public expenditures to agriculture and to agricultural research and development in particular. Productivity enhancements should be promoted all along the value chain, in processing and marketing as well as on the farm. In addition, efforts must be made to integrate smallholders into value chains, helping them access inputs and service providers as well as link with processors and markets. Governments can provide an enabling environment for value chain development by strengthening market institutions and investing in infrastructure. African countries should take advantage of global capacity building efforts to strengthen trade facilitation, while also supporting agricultural producers in meeting international requirements. African countries and regions should continue their progress in enhancing regional integration and work to dismantle administrative and regulatory barriers to regional trade.Ousmane Badiane, Sunday Pierre Odjo, and Julia CollinsTrade provides the potential for improving consumer welfare and producer incomes, boosting overall economic growth, and reducing poverty. In Africa, greater and more diversified agricultural trade at global and regional levels could leverage efforts to raise productivity at all stages along the value chain, thereby facilitating the transformation of African agriculture into a high-productivity sector, providing adequate incomes for producers and stimulating growth throughout the economy.Increasing agricultural trade also has the potential to improve food security and contribute to stabilizing local and regional food markets by making them less vulnerable to shocks.In addition to the benefits of global trade, intra-regional trade has been increasingly recognized as a key element of efforts to increase food security and agricultural development across Africa. The 18th African Union Summit in 2012 took the theme of \"Boosting Intra-African Trade,\" then in 2014-as one of a limited number of commitments in the Malabo Declaration on Accelerated Agricultural Growth and Transformation for Shared Prosperity and Improved Livelihoods-African leaders committed to tripling intra-African trade in agricultural commodities and services by 2025. The trade commitment included accelerating the establishment of a continental free trade area and a continental common external tariff, as well as taking measures to increase investments in trade infrastructure and enhance Africa's position in international trade negotiations.Despite longstanding recognition of the benefits of trade and the importance of improving competitiveness, Africa is performing beneath its potential in global and regional agricultural markets. Recent growth in exports has been offset by even larger growth in imports, leading to a deterioration of Africa's trade balance. Intra-regional trade in Africa is growing, but it remains significantly below the levels seen in other parts of the world. These challenges result from a host of factors, including historical trends and more recent developments both within and beyond Africa. Action is needed on many fronts to remove constraints to improving the competitiveness of Africa's producers.In 2013, the Regional Strategic Analysis and Knowledge Support System (ReSAKSS), the official monitoring and evaluation body of CAADP, published its Annual Trends and Outlook Report (ATOR) under the theme of \"Promoting Agricultural Trade to Enhance Resilience in Africa.\" The report reviewed patterns in Africa's global and regional agricultural trade, and examined the relationship between agricultural trade and the resilience of African countries and regions to shocks, including food price volatility and weather shocks. The report detailed the significant progress that has been made in improving Africa's trade performance in recent years, as well as the challenges that remain at global and regional levels.The Africa Agriculture Trade Monitor (AATM) builds on the analyses presented in ReSAKSS's 2013 ATOR by providing detailed descriptive assessments of the status and recent trends in Africa's trade performance and competitiveness at the continental and regional levels, as well as more in-depth investigations of the determinants of trade performance and the relative importance of different drivers and constraints. The report represents the first in a series of yearly publications examining the status, trends, and outlook of Africa's trade performance, the goal of which is to provide comprehensive and timely evidence and analysis to inform policy discussions on measures to enhance trade performance at global and regional levels.and changes in the composition of Africa's exports and imports, to provide a comprehensive overview of Africa's agricultural trade with the rest of the world.Chapter 3, by Anatole Goundan and Cheickh Sadibou Fall, addresses regional trade, discussing Africa-wide and regional trade patterns.The chapter reviews intra-regional trade performance for the continent as a whole and for its major regional economic communities (RECs). It then proceeds to analyze the direction of trade, examine the role of individual RECs and countries in intra-regional trade, and discuss the key commodities in intra-regional trade.Chapter 4, by Sunday Pierre Odjo and Ousmane Badiane, presents a detailed analysis of the competitiveness of African agricultural exports in global and regional markets.The chapter aims to shed light on the factors behind recent improvements in trade performance in order to further accelerate gains and reduce trade deficits. The study ranks countries and commodities according to their competiveness in export markets at the global, continental, and REC levels. The chapter then summarizes an econometric analysis of the drivers of changes in competiveness at different levels, and presents recommendations for further improving competiveness.Chapter 5, by Getaw The chapter also focuses on recent regional integration efforts within Africa, and major multilateral and bilateral agreements with global trade partners. The chapter presents recommendations on managing current and likely future developments in order to maximize benefits and minimize threats to food security and trade performance.Chapter 7, by Sunday Pierre Odjo and Ousmane Badiane, focuses on the outlook for expanding intra-regional trade within West Africa, the focus region of this issue, and the potential effects of expanded trade on regional food markets. The chapter reviews recent trends in intra-regional trade and examines the possibilities for increased regional trade to reduce food price volatility. The study then evaluates the scope for increasing trade within the region. A simulation model is used to examine the effects of alternative policy scenarios on regional trade and on the stability of regional food markets.Chapter 8, by Ousmane Badiane, Sunday Pierre Odjo, and Julia Collins, provides a brief summary of the findings of the preceding chapters, synthesizing the results and policy implications of addressing the constraints to improving Africa's agricultural trade performance. 2 A country's normalized balance is calculated as its agricultural exports minus its agricultural imports, divided by its total agricultural trade (imports and exports). The resulting index ranges between -1 and 1.The region recorded a negative value in its net exports between 2001 and 2013, a pattern confirmed by the normalized trade balance (Figure 2.1). 2 The main drivers of this surge in imports were rapid population growth and urbanization, income changes due to economic growth, and changes in dietary patterns. Among the RECs, SADC was the only region to register a consistent trade surplus.Noticeably, Africa's trade flows to and from the European market trended downward, whereas trade with regional partners and Asian countries continued to rise. Africa also registered a decrease in the concentration of its exports during 1998-2013. Another interesting feature is the relative decline in agriculture's share of total African exports, indicating that the main source of foreign earnings now comes from nonagricultural products. Overall, however, despite the region's attempt to become integrated into the global market, work remains to be done in the areas of diversification, integration, and meeting international standards.This chapter examines Africa's global trade patterns for the 1998-2013 period. Specifically, the next section highlights trends in Africa's agricultural trade, both in terms of value and volume, focusing on key agricultural commodities. This is followed by a discussion of changes in market shares and net agricultural exports, detailed analyses of the direction of African's exports and imports, a discussion of the changing composition of agricultural exports and imports over time, and of changes in unit values of agricultural exports and imports. The final section presents conclusions.AFRICA'S GLOBAL TRADE PATTERNS 1 9 9 8 1 9 9 9 2 0 0 0 2 0 0 1 2 0 0 2 2 0 0 3 2 0 0 4 2 0 0 5 2 0 0 6 2 0 0 7 2 0 0 8 2 0 0 9 2 0 1 0 2 0 1 1 2 0 1 2 2 0 1 3 The income effect due to economic growth was at play in some countries like Ghana and Mozambique, with consequences for dietary patterns.For instance, with higher incomes, consumers demand more protein (such as meat, fish, milk, and peanuts). The other cause of increasing imports was population growth and rapid urbanization in Africa with a concomitant increase in rural population. Africa is indeed the most dynamic region in terms of demographics: the population in Africa south of the Sahara more than doubled between 1985 and 2013, and as of 2013, one third of people were living in cities (World Bank, 2015). By comparison, the world's population grew by 45 percent during this timeframe. The consequence of the rapid urbanization and population growth was increased consumption of more diversified and richer animal products, and of imported cereals (wheat, rice, and maize) rather than the more regularly consumed local cereals (such as millet), roots, and tubers (FAO 2015). This trend has continued since 2013, and will continue into the future given that Africa's population growth rate is twice the global average. The increase in imports also reflects agricultural constraints, such as the region's inability to sufficiently raise supply to meet the food requirements of the growing population. Low and slowly rising agricultural productivity, water constraints, low fertilizer use, and low mechanization are key underlying factors (FAO 2015).Most regions recorded a trade deficit over the period-with the exception of the SADC region, which recorded a surplus for the entire period (see Appendix 2B). The trade deficit is particularly important for North African countries, which are huge cereal importers. According to recent studies, 23 African countries are highly import-dependent, having normalized trade-balance index values ranging from -1 to -0.1, while 37 countries are net importers of food (FAO 2015).The growing agricultural trade deficit suggests that it is necessary for African countries to take relevant steps to improve export performance based on the region's \"agrarian\" environment.African agriculture must gradually be transfor-med from being subsistence-oriented to having a more commercial focus, as doing so-in addition to other measures, such as improved technology and skills-will greatly improve agricultural exports.African shares of world exports have fluctuated below 4 percent with a few exceptions, the lowest share being 3.8 percent in 2008 (Figure 2.3). Shares of world exports have followed similar trends in the countries of Africa south of the Sahara (SSA) as those of Africa as a whole, with respect to the years of peaks and troughs, meaning that North African countries do not significantly contribute to the region's agricultural exports. Trends clearly show that shares of agricultural exports are generally low by world standards, both for Africa as a whole and for SSA (Figure 2.3). The evolution of Africa's share of global exports is linked to the evolution of its competitiveness in world markets. Indeed, two-thirds of African countries registered a loss in competitiveness, whereas the remaining one-third managed to expand their exports in world markets faster than their competitors (see Chapter 4, this volume).Africa's low share of world agricultural trade contrasts with the fact that agricultural products continue to constitute a high share of GDP in most African countries, and that agriculture employs a large proportion of the workforce (World Bank 2015). Some have explained this by the fact that, compared with other countries or regions, agricultural production in Africa is largely on a subsistence scale (Collier and Dercon 2014;Bryceson 2015) In general, trends in the market shares for the main RECs follow those of Africa as a whole (Figure 2.6). The evolution in some groups, however, is more pronounced than for others. ECCAS, which has the lowest share, also recorded a secular decline for the entire period. This pattern is confirmed by a lack of competitiveness during 1998-2013, compared with its main competitors (see Chapter 4, this volume). After a rise in its market share in the late 1990s, SADC also recorded a relative decline during this period, with a decline in competitiveness. ECOWAS's market share fluctuated but improved in the most recent years, whereas COMESA's market share remained relatively stable. The divergent evolution of the subregional market shares stems from their differences in terms of commodities exported (see Appendix B), and to their ability to respond to rising prices and to compete with other exporters in global markets. The Evolution of Some Key Export Commodities This section focuses on some key commodities, particularly citrus, coffee, cocoa, and cotton (the main commodities exported in 1998) and fish and related products that are not part of the World Trade Organization agreement on agriculture. In terms of volume, although citrus was the second most exported commodity after cocoa during 1998-2002, it outstripped the volume of cocoa exported during 2002-2013 (Figure 2.7). Notwithstanding, cocoa was the most exported commodity in terms of value during 1998-2013, with the values of citrus, coffee, and cotton all performing below that of cocoa over the same timeframe (Figure 2.8).Globally, the prices of cocoa and coffee have risen continually since 2000 (Figure 2.9). Nevertheless, with the exception of the 2001-2004 period, the price of coffee grew faster than the price of cocoa. In addition, the cotton price maintained a relatively stable growth rate during 2000during -2009 (Figure 2.10) (Figure 2.10). By 2011, the price of cotton had more than doubled its 2000 level, although the peak in 2011 did not last.What is interesting is the imperfect and even opposite correlation between the volume of exports and world prices at the end of the period, with the exception of cocoa (Figures 2.7 compared with Figure 2.9). Despite the huge drop in the world prices of cotton and coffee, export volumes continued to rise after 2011. This may be due to an imperfect transmission of international price shocks to local producers' prices (due to stabilization mechanisms in play, exchange rate movements between the US dollar and local currencies, and so on), but also to an income effect that gave producers incentives to supply more when prices fell (Yotopoulos and Lau 1974). Fish and related products represent a huge share of agricultural exports for some African countries (such as Senegal) but are not part of the World Trade Organization agreement on agriculture. During 1998-2013, on average, fish exports represented 15 percent of total agricultural exports. Africa's and SSA's exports of fish and related products doubled during this timeframe, rising from $3.12 to $7.17 billion and $2.29 to $4.98 billion, respectively (Figure 2.11). In general, for both Africa and SSA, exports of fish and related products rose during 1998-2008, fell during 2008-2010, then rose again during 2010-2013. Trends were similar for the 1998-2013 period (Figure 2.12). It is worth noting that Africa's average share of global fish exports is higher than its average share in agricultural product exports, indicating a greater role in, and potential for, that particular market. (Otsuki and Sewadeh 2001;Kareem 2014). It is also worth noting that EU negotiations with some of Africa's competitors, such as Asia and Latin America, create the risk of erosion of preferences for African countries for some commodities, such as cocoa and bananas. Exports to Asia (and Europe) are mostly high-value, low-calorie agricultural products. Notable among them are cotton, coffee, flowers, fruit, tea, tobacco, and fish. Exports of agricultural products to Asia increased at a slower rate between 1998 and 2012, whereas exports to the Americas-that is, both North America and Latin America-have been fairly low (Figure 2.14). Until 2012, the share of exports to the Americas was less than 9 percent. The highest export share to the Americas between 1998 and 2013 was 9.7 percent in 2012, but the 2013 share fell to 5.6 percent (Figure 2.13). Europe, on the other hand, received the highest share of Africa's exports, at 37.5 percent in 2013 (Figure 2.13).On the import side, in 1999 12.5 percent of the region's imports came from within Africa (Figure Africa experienced a significant increase in the value of both its exports and its imports over the 1998-2013 period, boosted by increased international commodity prices. However, from 1998 to 2013, imports grew more rapidly than exports, in both percentage and value terms, yielding a growing trade deficit. This trend was driven by increased imports, mainly due to population and economic growth, changes in dietary patterns, increasing income levels, and the lack of competitiveness of the domestic sector. Among the main RECs, the SADC region is the only one to record a surplus for the entire period.Africa's share of global trade in agriculture remained stable around 4 percent, with some small fluctuations between 2010 and 2013. -3,645,536 -2,476,702 -2,854,856 -3,007,422 -3,613,922 -3,114,786 -4,259,976 -3,897,613 -4,111,052 -7,211,631 -11,385,353 -7,949,526 -10,246,405 -14,473,184 -15,168,869 -15,776 Obstacles to increasing performance of intraregional trade in Africa include weak productive capacity, lack of trade-related infrastructure and services, the limited role of the private sector in regional integration initiatives, low levels of diversification of traded products, the small size of consumer markets, and the quality of institutions (see Chapter 2, this volume).Source: Authors' calculations based on CEPII (2015).Note: Africa, America, Asia, and Europe refer to all countries for which data were available for the selected region. America includes countries of North, Central and South America This chapter presents an in-depth analysis of the state of intra-African trade in agricultural commodities for the 1998-2013 period. The analysis (a) assesses Africa's current intra-regional trade performance; (b) explores the level and direction of regional trade, the in-tra-regional trading role of each REC, and each country's contribution to intra-regional trade; (c) examines the main agricultural products traded; and (d) presents the trends in the unit values of imports and exports.During 1998-2013, the export of all goods by African countries to the rest of the world grew rapidly, by an average of 14.6 percent per year (Table 3.1) 5 . Imports of these products from the rest of the world also grew significantly during this period, but to a lesser degree (12.0 percent per year on average). Agricultural trade among the RECs showed positive average yearly growth during 1998-2013 (Table 3.1). However, for all African countries and each REC, average growth in imports was greater than average growth in exports. Consequently, the normalized trade balance for agricultural products was negative in several cases (Africa, ECCAS, and COMESA). African agricultural exports to the rest of the world represent about 10 percent of their total exports to these destinations. (SADC) to 87.5 percent for ECCAS countries (Figure 3.2). The other top commodities included gold, platinum, coal, wood, cobalt, natural rubber, aluminum, copper, cotton, coffee, and cocoa beans. The top agricultural commodities were cocoa beans, cotton, bananas and plantains, coffee, tea, sugarcane, and tobacco. Note: The top-five export products are calculated as their share of total exports; the top-five agricultural export products are calculated as their share of all agricultural exports.Source: Authors' calculations based on CEPII (2015).Note: The top-five export products are calculated as their share of total exports; the top-five agricultural export products are calculated as their share of all agricultural exports.Source: Authors' calculations based on CEPII (2015).Note: The top-five export products are calculated as their share of total exports; the top-five agricultural export products are calculated as their share of all agricultural exports. Note: The top-five export products are calculated as their share of total exports; the top-five agricultural export products are calculated as their share of all agricultural exports. Source: Authors' calculations based on CEPII (2015).Note: The top-five export products are calculated as their share of total exports; the top-five agricultural export products are calculated as their share of all agricultural exports.This section focuses on trends in intra-regional agricultural trade among African countries. Before analyzing trends in the volume and value of trade, the discussion focuses on the evolution of intra-regional trade shares of both agricultural and all commodity exports for each REC (Figure 3.7). 7 Africa-wide, the share of trade within Africa grew throughout the 1998-2013 period. Initially, the shares were around 5 percent for all products and 8 percent for agricultural products, but by the end of the period they reached about 13 and 20 percent, respectively. Results are similar for individual RECs. The SADC region recorded the largest share of intra-regional trade during 1998-2013 (an average of 8.1 percent for all commodities and 12.4 percent for agricultural commodities). The ECCAS region had the lowest intra-regional trade share for the period, averaging 1.9 percent for all commodities and 7.3 percent for agricultural commodities. The value of intra-African agricultural trade grew rapidly, from $2.2 billion in 1998 to $12.8 billion in 2013 (Figure 3.8). Overall yearly growth during this period was around 12 percent. Looking at two subperiods-before and after the international crisis-trade in agricultural products increased from 11.5 percent per yearon average during 1998-2006 to 13.6 percent per year during 2007-2013. In terms of volume, trade in agricultural products across Africa grew at an average yearly rate of 15.8 percent for the entire period, which is higher than the nominal trade growth rate, indicating that, in general, growth in agricultural trade among African countries during the selected periods was not accompanied by price increases. The value of agricultural trade within the ECOWAS region grew by an average annual rate of 12 percent and hence increased from $494 million in 1998 to $2.84 billion in 2013. Despite this significant growth, however, agricultural trade among ECOWAS countries was highly erratic. In fact, growth was negative in seven years within the considered period. Whereas the ECOWAS and ECCAS regions recorded major differences between the two subperiods, the difference in the rate of growth between the two subperiods was relatively small for the COMESA region (less than 3 percentage points). Across the entire 1998-2013 period, the volume of agricultural trade among COME-SA countries rose significantly (by 22 percent overall).The value of trade in agricultural commodities among SADC countries grew at the lowest yearly rate (10 percent), and the nominal value increased from $871 million in 1998 to $3.82 billion in 2013. During 1998During -2006, the value of agricultural trade rose by 8 percent per year, compared with 13 percent during 20007-2013. In terms of value, agricultural trade within the SADC region rose after the international food crisis, but the trends in the volume of trade differ between the two subperiods. The average increase in trade volume was higher during 1998-2006 (16 percent) compared with 2007-2013 (13 percent). Hence, the nominal increase in trade among SADC countries was essentially the result of a price effect. Nevertheless, for the entire 1998-2013 period, the volume of intra-regional trade grew by 14 percent, which is higher than growth in terms of value (10 percent). The Direction of Agricultural Trade within African and Intra-Regional MarketsThe focus of this section is an examination of which RECs and countries had the highest intraregional trade performance during 1998-2013. To begin, the average value of regional imports and exports during 2010-2013 is presented (Table 3.3).One interesting statistic is the ratio of trade within each of the four RECs to the total trade of each REC within Africa as a whole. This shows how one REC's trade across Africa is concentrated in that REC; it can be seen as an indicator of participation in intra-African trade.Simply put, the lower the ratio, the more the REC under consideration contributes to intra-African integration. Results show that ECOWAS had the highest concentration of trade within the REC during 2010-2013, with a ratio of 0.79, followed by SADC with 0.77, COMESA with 0.65, and finally ECCAS with 0.52. Therefore, ECCAS member countries contribute the most to trade integration within Africa, followed by COMESA. To a larger extent, SADC and ECOWAS tend to trade within their respective blocs. For example, ECOWAS's intra-regional agricultural trade represented around 80 percent of its total trade within Africa during 2010-2013, on average.As destinations or origins of intra-African trade, COMESA (42 percent of exports and 34 percent of imports) and SADC (37 percent of exports and 42 percent of imports) are the , 1998-2006, 2007-2013, and 1998-2013 1998-2013 1998-2006 2007-2013 6.3 Many initiatives and political commitments exist within RECs to promote political cooperation and economic integration. As demonstrated, those commitments led to higher levels of intra-regional trade over time. The objective of the following analyses is to highlight the importance of different countries' imports and exports within their REC. Individual countries' shares in intra-regional imports and exports are presented in Tables 3.4 through 3 , 1998-2006, 2007-2013, and 1998-2013 1998-2013 1998-2006 2007-2013 Within ECOWAS, Côte d'Ivoire remains the largest exporter of agricultural products, with about 26 percent of intra-regional trade in agricultural commodities. Other important exporters within ECOWAS are Niger (15.5 percent), Senegal (11.3 percent), and Mali (10.1 percent). In terms of destination, Nigeria is the main importer of these commodities (23.1 percent of total intra-regional trade), followed Among ECCAS member countries, Cameroon recorded the highest share of intra-regional agricultural exports during 1998-2013 (around 43 percent), followed by Rwanda (18.1 percent), Gabon (18.0 percent), and the Republic of the Congo (13.1 percent). In terms of destination, the Republic of the Congo (18.5 percent), the Democratic Republic of the Congo (15.9 by Côte d'Ivoire (13.5 percent) and Senegal (10.2 percent). The export performance of some countries deteriorated over time, whereas for other countries it improved. For example, Burkina Faso's export share fell from 14.8 to 4.2 percent between 1998-2006 and 2007-2013, whereas Ghana's export share rose from 3.7 to 11.1 percent between the two subperiods.percent), Gabon (15.7 percent), and Cameroon (14.4 percent) were the main importing markets for agricultural products. It is worth noting the impressive performance of Rwanda, whose export share rose from 1.2 percent during 1998-2006 to 18.1 percent during 2007-2013 on average.REGIONAL TRADE PATTERNS ACROSS AFRICA , 1998-2006, 2007-2013, and 1998-2013 Table 3.7. Share of agricultural trade within the SADC region by country, 1998-2006, 2007-2013, and 1998-2013 1998-2013 1998-2013 1998-2006 1998-2006 2007-2013 2007-2013 REGIONAL TRADE PATTERNS ACROSS AFRICA Within SADC, the countries of the Southern African Customs Union (SACU)-which comprise Botswana, Lesotho, Namibia, Swaziland, and South Africa-constituted the major exporters, with around 57 percent of intra-regional trade in agricultural commodities. In terms of imports, SACU countries were the second-largest market (14.3 percent) behind Zimbabwe (21.7 percent). Mozambique was the thirdlargest market for this region's agricultural products, accounting for 13.5 percent of intraregional trade during 1998-2013.Changes in Exports and Imports in Intra-African and Intra-Regional Agricultural MarketsThe next sections present results on changes in the value and volume of imports and exports between 1998-2006and 2007-2013. In Figures 3.11 through 3.18, the rate of growth in the average value of trade between the two subperiods is represented on the x axis. The rate of growth of the average volume of trade between the two subperiods is representedIn the aggregate, the value and volume of intra-regional trade among ECOWAS countries more than doubled between the subperiods. At the country level, the value of imports at least doubled between the two subperiods for all countries (Figure 3.11). In terms of volume, all the countries of the ECOWAS on the y axis. Each circle represents a country, and the size of the circle indicates the country's average GDP during 2007-2013. This type of graph was chosen to capture whether the observed changes in trade stem from a price effect or a volume effect. In addition, the graphs provide an indication of the size of the national economies within each REC.region increased the quantity of their agricultural imports from within their REC, at least doubling imports in most cases. Between the two subperiods, the largest increases in imports occurred in Cabo Verde (not shown), Sierra Leone (not shown), Nigeria, Liberia, Burkina Faso, and Mali. Average aggregate agricultural trade within the ECCAS region more than doubled in terms of both value and volume between the two subperiods. Without exception, all the countries in the region increased their volume and value of intra-regional agricultural imports On the export side, other than Burkina Faso, Mali, and Cabo Verde, the other countries at least doubled their value and volume of average agricultural exports within the ECOWAS region (Figure 3.12). Guinea-Bissau (not shown) experienced sharp increases of over 1,000 percent in the value and volume of its exports, due to low levels during the first period.Ghana experienced the next-largest growth in exports, with an increase of over 700 percent in terms of value and over 1,000 percent in terms of volume. Nigeria, Cabo Verde, and Gambia also showed export value growth of over 500 percent, and Benin registered similar growth in terms of export volume. Burundi experienced impressive growth in terms of both the value and the volume of its intra-regional agricultural exports (Figure 3.14). In fact, Burundi's exports rose by 396 percent in value and by 809 percent in volume, on average, between 1998-2006 and 2007-2013. This performance was surpassed only by Democratic Republic of the Congo and Rwanda (not shown), which both increased their export value and volume by over 2,000 percent. All ECCAS countries showed growth in intra-regional exports between the two periods, with the most modest growth, of less than 50 percent in terms of both value and volume, in Angola and Chad. All of the COMESA region's countries saw positive growth in intra-regional exports (Figure 3.16), and most countries at least doubled their sales of agricultural commodities in terms of both volume and value, with the exception of Djibouti, Sudan, and Zimbabwe. In Djibouti and Sudan, values doubled, but quantities increased more modestly; in Zimbabwe, import value and volume increased by 84 and 37 percent, respectively. In contrast, intra-regional agricultural trade grew fifteenfold in Egypt in terms of value, such that it became the region'sThe Common Market for Eastern and Southern AfricaIn the aggregate, agricultural trade within the COMESA region intensified over time, more than tripling in terms of both value and volume. All countries in the region at least doubled the value of their agricultural imports from their neighboring countries (Figure 3.15). Most countries doubled import volumes as well, with the exception of Ethiopia, Malawi, and Zam-bia. Libya (not shown) was an outlier with exceptional growth in import value and volume, due to very low imports during the first period; the next highest growth in intra-regional agricultural imports was seen in Sudan, which increased its import value more than sixfold, and in Zimbabwe, which increased its import volume more than sevenfold. largest exporter of agricultural products within COMESA, ahead of Kenya, Uganda, and Zambia. Libya (not shown) experienced extremely high percentage growth due to low levels of exports during the first period. Eritrea also showed a very large increase in its export value, while Rwanda and Uganda increased both their value and volume of exports within the region by around sixfold. Compared with the ECCAS region, the countries of the COMESA region trade more within their REC. In the aggregate, trade within the SADC region more than doubled in terms of value and nearly doubled in terms of volume between 1998-2006and 2007-2013 (Figures 3.17 and 3.18) (Figures 3.17 and 3.18). It should be noted, however, that the BACI database (CEPII 2015) groups data for South Africa, Namibia, Botswana, Swaziland, and Lesotho within SACU, so data were not available for these individual countries. All SADC countries for which data were available at least doubled the value of their agricultural imports from within the region. All countries experienced positive growth in import volume, and most countries increased import volume by at least 50 percent. The largest increases in agricultural imports occurred in the Democratic Republic of the Congo, where the value rose by 382 percent and the volume by 233 percent, and in Zimbabwe, where the value increased by 449 percent and the volume increased by 305 percent. In terms of exports to destinations within the SADC region, Zambia and Mauritius recorded the highest increases (Figure 3.18). In addition, the value and volume of exports within the region rose for all countries between 1998-2006 and 2007-2013, with all countries except Democratic Republic of the Congo at least doubling the value of their intra-regional agricultural exports. In terms of volume, all countries except Angola, Democratic Republic of the Congo, Madagascar, and Malawi doubled their agricultural exports between the two subperiods. The discussion of trade composition in this section focuses both on groups of products, in efforts to provide a better overview, as well as a comparison of the ranking of individual traded commodities between the two subperiods under consideration, 1998consideration, -2006consideration, and 2007consideration, -2013 (Table 3.6 (Table 3.6). In the aggregate, ce-The composition of individually traded agricultural products across Africa did not change significantly between the two subperiods under consideration (Figure 3.19). Indeed, only two products present in the top-10 during 1998-2006-cotton and food preparation items not specified elsewhere-were not also present in reals maintained a relatively stable share of trade among African countries over time, at around 7 percent. Shares of dairy products and other livestock products, fruits and processed food all increased between the two periods. In contrast, trade in coffee and oilseeds fell slightly over time. the 2007-2013 ranking; these products were replaced in the more recent subperiod by vegetables and wheat flour. Notably, between the two subperiods, frozen fish products rose from third to first place in the top-10 ranking.The next subsections deal with the changes in individual commodity rankings with each REC.In terms of commodity groupings, ECOWAS member countries increased their trade in cereals, coffee, frozen fish products, dairy products, meat, and processed food within the region over time (Table 3.8). With an increase of almost 20 percentage points between 1998-2006 and 2007-2013, processed food accounted for almost the half the intra-regional trade in the more recent subperiod. Following the trend for Africa as a whole, cotton was the most-traded commodity within the ECOWAS region during 1998-2006 (25 percent), butThe Economic Community of West African States Within the ECCAS region, processed foods accounted for about two-thirds of total agricultural trade in both subperiods, despite an approximate nine-point decline in the share of this group of products between the two subperiods (Table 3.8). Cereals and fish products were the other most traded groups of commodities.Sugar remained the most-traded agricultural product among ECCAS member countries in both subperiods under consideration,In both subperiods, the top-ranked commodity group traded among COMESA member countries was processed food, with a share of over one-third of all trade within the COMESA region (Table 3 The Common Market for Eastern and Southern Africa although its share declined during 2007-2013 (Figure 3.21). Overall, the composition of trade in the ECCAS region changed very little, but a declining trend was noted for those products appearing in the top-10 ranking in both subperiods-for example, trade in cigars and cheroots fell by half between the two subperiods. In terms of newly traded products, wheat flour, sauces, and milk and cream were among the top-10 traded products during the second subperiod.In addition, trade in dairy products and live cattle also increased over time.In general, the composition of the top-10 traded products within COMESA changed little between the two subperiods under consideration (Figure 3.22). Only cotton, other oil seeds, and vegetables dropped out of the top-10 ranking in 2007-2013. They were replaced by palm oil, dried leguminous vegetables, and cigars and cheroots. As in the other RECs, processed food products were the most important group traded within the SADC region over time, representing nearly half of all agricultural trade in both subperiods under consideration (Table 3.8). The shares of trade in fruit and oilseeds also remained unchanged between the two subperiods. All product groups recorded declines in their trade shares within the region between the two subperiods, with the exception of frozen fish products, which increased their share of intra-regional agricultural trade over time.The Southern African Development Community within the region remained fairly stable. Sugar ranked first among the top-10 traded commodities in both subperiods, and its share of intra-regional trade also changed little. Maize and tobacco completed the top-three listing in both subperiods, although their shares fell somewhat in the more recent subperiod. Frozen fish products rose from sixth to fourth ranking, and doubled their share of intra-regional trade over time. Oil trade increased during the second period, with both cottonseed oil and soybean oil entering the top-10 ranking during 2007-2013, while water and beer made from malt fell off the list (Figure 3.23). Trade unit values are usually used as proxies for trade prices. They are calculated as the total value of trade shipments for individual commodity classes over a particular period, divided by the corresponding quantity being traded (IMF 2009). In analyzing these trends for Africa-wide and intra-regional trade, the trade unit values dataset by Berthou and Emlinger (2011) was utilized. This database contains bilateral trade unit values to the HS6 level. The following discussions concern unit values of agricultural trade among the 45 African countries represented in the Berthou and Emlinger database.Between 2000 and 2013, the average unit values for Africa-wide agricultural trade rose at rates of 3.5 percent per year for exports, and 2.9 percent per year for imports (Figure 3.24). Unit values for exports grew at slightly higher rates during the 2007-2013 subperiod (3.9 percent) compared with the 2000-2006 subperiod (3.1 percent). In contrast, unit values for imports grew more slowly in the postcrisis period (1.3 percent) relative to the earlier timeframe (4.8 percent). Export unit values for agricultural trade within the ECOWAS region fell at 4.7 percent per year over time (Figure 3.25), but import unit values grew at 3.2 percent per year. For almost the entire period, import unit values were greater than export unit values; this suggests that existing trade agreements within the region are facing challenges to produce the expected results. Since important progress toward economic integration has been made, especially in terms of tariff measures, the price gap between imports and exports may be attributed to the existence of non-tariff barriers in crossborder trade within the region. An index of export/import values was calculated for agricultural and nonagricultural products following the methodological note by OECD (2011) and using the Fisher index (Fisher 1922). Thereafter, the terms of trade were derived for different commodity groups (Figure 3.29).Before the global food crisis of 2007/2008, African economies exported cheaper agricultural products but imported more expensive ones. However, the terms of trade for nonagricultural products indicate that ECOWAS, COMESA, and SADC all received better prices for those products.Unit values for imports and exports within the SADC region grew steadily throughout the entire period considered (Figure 3.28). Export unit values grew at 7.5 percent per year and imports at 5.7 percent per year. This chapter investigates the patterns and determinants of changes in export competitivenessThe ModelCompetitiveness has been widely explored through the Constant Market Share (CMS) decomposition model as a means of assessing how countries compare with their competitors in terms of their trade performance across time. Since its first application to trade analysis by Tyszynski (1951), the CMS methodology has been refined and expanded through alternative model formulations attempting to enrich its analytical features (Leamer and Stern 1970;Richardson 1971a;Richardson 1971b) Finally, an econometric model of the determinants of changes in country competitiveness in alternative agricultural export markets is proposed, the main findings are summarized, and recommendations for policy action are offered.or to deal with issues arising with its applications (Cheptea, Gaulier, and Zignago 2005).The formulation used in this chapter was developed by Magee (1975). It explains the growth in a country's or region's share of world markets by decomposing it into two major growth sources: (1) structural changes in market distribution and product composition, and(2) changes in competitiveness. The market share growth model starts with the following identity.where and denote the shares of a given country or region in total world exports in the beginning and end periods and , respectively. represents a relative growth factor defined as follows:where and stand for the compound yearly growth rate (between the beginning and end periods) of total exports of country or region and of the world , respectively. Equation (2) expresses the growth of country or region s exports relative to the world's exports and can be rewritten as where denotes export products, and stands for the country's or region's exports of product and its total exports of all goods to world markets in the first period.where denotes the country's or region's exports of product to destination in the first period.Expressing for the different export products and destinations in (3), multiplying by and by , and summing over and yields the following, after rearranging and substituting the new expression for (3) in (1): with with(2)(1)The objective in this chapter is to rank African countries and agricultural commodities on changes in their competitiveness in different export markets, including global markets (treated as one market entity); intra-African markets (treated as one market entity); and the regional markets of COMESA, ECCAS, ECOWAS, and SADC (each treated as one market entity). Therefore, the model is applied in three different settings corresponding to different levels of exporters and products aggregations as indicated below.In the first setting, represents Africa as a whole and the model decomposes the growth in Africa's share of world exports of each of 59 agricultural commodity groups . The second setting is a variant of the first, where stands for each REC as an aggregate exporter instead of Africa as a whole. Thus, the model explains the growth in the REC's share of world exports of each of 59 agricultural commodity groups. In the third setting, denotes each of 51 African countries, and is an aggregate agricultural good. The model decomposes the growth in a country's share of world aggregate agricultural exports. In all three settings, calculations are carried out for representing, in turn, global markets, intra-African markets, and each of the regional markets of COMESA, ECCAS, ECOWAS, and SADC. With exporters and products aggregated as defined in the three settings, equation (4) simplifies toIn the case where represents global markets, equation ( 4) further simplifies to From equation (1) it is clear that whether a country's or region's share of world exports increases or diminishes during the considered time period depends on whether the growth factor is greater or less than unity. Given the reduced expression for in equation ( 5), the contribution of a destination to the performance of a given country or region (in terms of the change in its export share) can be decomposed into two components: a competitive effect and a market effect.The competitive effect corresponds to the first expression (a) of the right hand side of equation ( 5). It is a measure of the change in competitiveness experienced by country or region in exporting a good to destination . If it is greater (or smaller) than 1.0, the competitive effect translates some gain (or loss) of competitiveness by the country or region compared with the group of its competitors in the export destination considered. The market effect corresponds to the product of the terms (b) and (c) in equation ( 5). It measures the portion of the country's or region's export share growth which is due to faster or slower growth of world exports of good to destination markets compared with global markets. It reflects the change in the importance of as a destination for the country's exports attributable to the expansion of markets . For instance, in the case where denotes the regional markets of a REC, the market effect translates as the change in the importance of the community markets as a destination for its members' exports which is associated with the expansion of the regional markets. For an easier interpretation, the market effect can be derived in value terms from the simplified expression in equation ( 5) as follows:The value of measures the magnitude of the positive or negative impact of the expansion of markets on the considered country or region's export performance. As it appears in equation ( 6), it is clear that no market effect can be derived in the case where global markets are the destination under consideration. For this analysis, bilateral export values are first aggregated so as to construct the variables of each country's total exports to world markets, to intra-African markets, and to each REC's regional markets. These are then aggregated to construct the variables of Africa's and each REC's aggregate exports to the different export markets under consideration.In addition, bilateral export values are aggregated from the BACI database to construct the variables of the world's total exports of the different agricultural products to the different export destinations under analysis. In order to reduce the number of HS4 product lines, the different variables were aggregated from HS4 to HS2 level, except for a few HS4 lines of interest that were kept as such.The final dataset used for the CMS model comprises 59 commodity groups (hereafter designated as commodities or products) and 51 individual countries, including the SACU country aggregate described above.The dataset includes all 11 ECCAS members and all 15 ECOWAS members. SADC enters the dataset with 10 individual member countries, while its other 5 members are aggregated as one case (SACU countries). With Swaziland among the aggregated countries, COMESA is left with 18 of its 19 members. The dataset also includes some countries that are not members of any REC, including Algeria, Mauritania, Morocco, Saint Helena, Somalia, Tunisia, and Western Sahara. 8 The Harmonized System (HS) is an international nomenclature for the classification of products that allows participating countries to classify traded goods on a common basis for customs purposes.Only competitive effect values are reported and analyzed in this chapter. In addition, the chapter does not present results of the application of the model under the second setting (where the model decomposes the export share growth for each REC as an aggregate exporter). Thus, in the following development, the results that refer to the change in a REC's competitiveness reflect averages of changes in the competitiveness of its member countries. Unsurprisingly, such averages reveal more meaningful differences across RECs than do the results obtained from modeling the RECs as aggregate exporting entities.The values of the competitive effect derived from the decomposition analysis of growth shares for individual African countries are presented in Table 4A.1 in Appendix 4A. They reflect the changes in competitiveness of African countries compared with their competitors as a group in selected agricultural export markets during 1998-2013.The coefficients of the competitive effect in global markets are smaller than 1.0 for 32 of the 51 countries under analysis, which means that those countries have underperformed the group of their competitors in global markets (Figure 4.1). The countries with the largest declines in competitiveness include three ECCASmembers (Equatorial Guinea, Angola, and Chad) for which estimates of the competitive effect are not greater than 0.9. Between the 0.9 and 1.0 thresholds are the values of the competitive effect estimated for all other ECCAS members, with the only exception being Rwanda. Apart from Angola, almost two-thirds of the other SADC members recorded a competitive effect within the 0.9 to 1.0 interval, the three exceptions being Mozambique, Tanzania, and Zambia. As many ECCAS and SADC members are also COMESA members, up to two-thirds of COMESA members are among the countries that underperformed the group of their competitors. For ECOWAS, half of its members are also among underperforming countries. Note: The change in competitiveness is measured by the coefficient of the competitive effect derived from export share decomposition analysis for individual countries. However, for 19 of the 51 countries considered, the coefficients of the competitive effect are greater than 1.0. These countries succeeded in raising their levels of competitiveness by expanding their exports to global markets faster than their competitors. The strongest increases in competitiveness were achieved by Cabo Verde, Somalia, Algeria, and Djibouti, where estimated values of the competitive effect are greater than 1.1. The other 15 countries more modestly outperformed their competitors, with competitive effect values between the 1.0 and 1.1 thresholds. These countries include the other half of ECOWAS members (Niger, Burkina Faso, Guinea-Bissau, Sierra Leone, Liberia, Ghana, and Nigeria). Tunisia also falls within the outperforming countries, as do Tanzania, Mozambique, and Zambia within SADC and Uganda, Rwanda, Ethiopia, and Egypt within COMESA.In sum, ECCAS appears to be lagging behind in its attempts to increase its competitiveness in global agricultural export markets, but the shares of underperforming countries within COMESA, ECOWAS, and SADC are also of concern. In order to get clearer insight into the differences among regional country groupings, average sizes of the competitive effect were plotted (Figure 4.3 An analysis of variance was undertaken to statistically test the difference between each regional country grouping and the rest of Africa (Table 4.1). The results confirm that the size of competitive effects are, on average, significantly lower for ECCAS and higher for ECOWAS compared with other African countries/regions. However, variations across groups contribute minimally to the overall variations among countries. This means that the larger part of the variations in the change in competitiveness between countries is not related to regional factors, but to domestic ones, such as changes in total factor productivity and the competitiveness of most exported commodities by individual countries. Indeed, as postulated by Hausman, Hwang, and Rodrik (2005), what countries export matters for their overall competitiveness.African exporters lost competitiveness in global markets in the exports of 15 of 59 commodities. Important food staples affected include groundnut oil, meat and edible offal, poultry, palm oil, fish and seafood, and some cereals (within the commodity group comprising buckwheat, millet, and canary seed). However, the size of the Table 4A.3 (in Appendix 4A) presents the values of the competitive effect calculated for agricultural commodities through the decomposition of Africa's commodity-specific growth in export shares in alternative export markets during 1998-2013. The values capture the magnitudes of changes in competitiveness that Africa achieved compared with its non-African competitors in the different export markets. In Figure 4.4, commodities are sorted in increasing order of changes in competitiveness in global markets.In addition to the threshold of 1.0, demarcating commodities in which Africa lost competitiveness from those in which Africa gained competitiveness, thresholds of 0.95, 1.05, and 1.10 are also presented to more clearly differentiate between lower and higher losses or gains.loss in competitiveness was modest (the corresponding estimates of the competitive effect fall within the 0.95 to 1.0 interval).For the majority of the commodities under analysis, Africa increased its competitiveness in global markets by expanding its exports of Note: Change in competitiveness is measured by the coefficient of the competitive effect derived from commodity-level export share decomposition analysis for African countries as a group. The same conclusions are illustrated in Figure 4.6, which shows a scatter plot of changes in commodity competitiveness against commodity shares in Africa's global agricultural exports (presented in Table 4A.4 in Appendix 4A). Changes in competitiveness were generally achieved for commodities that account for small shares of Africa's global agricultural exports.So far the analysis has focused on changes in competitiveness for countries and commodities in global markets. The next section explores changes in the competitiveness of countries and commodities in intra-African markets compared with the results for global markets already discussed.Changes in the competitiveness of individual African countries in global and intra-African agricultural markets were measured by the coefficients of the competitive effect derived through country-level share growth decomposition (Figure 4.7 and Table 4A.1). In the case of intra-African markets, only 20 countries re-Conversely, commodities that represent higher export shares recorded little or no change in competitiveness. Thus, the performance of African exporters mostly improved in minor export products like rye, barley, and oats; soybean oil; and cattle, whereas their performance stagnated in major export products like edible fruit and nuts, cocoa beans, fish and seafood, coffee, cotton, and cane sugar. Saint Helena, Mali, Central Africa Republic, and Chad strongly underperformed, with competitive effect values lower than 0.9.At the top of the ranking, 12 countries strongly outperformed, with estimates of the competitive effect greater than 1.1. The top-five ranked countries are Djibouti, Comoros, Egypt, Algeria, and Ethiopia. It is worth recalling that only four countries reached that level of increased competitiveness in global markets. More interestingly, almost all the outperforming countries performed better in intra-African markets than in global markets (Figure 4.7). And conversely, almost all underperforming countries lost more competitiveness in intra-African markets than in global markets. The results of paired-sample T tests for no difference between competitive effects in global versus regional and intra-African markets are presented in Table 4.2. The last row of the first panel shows that changes in competitiveness in intra-African and global markets are weakly and positively correlated. In other words, overall, changes in competitiveness were higher in intra-African markets compared with global markets, but not consistently for all sample countries. It also appears that a significant difference exists in the magnitude of changes in competitiveness between intra-African and global markets. On average, changes in competitiveness were higher by 0.033 points in intra-African markets than in global markets.It is of interest to see how the member countries of the different RECs performed in intra-African markets, on average. COMESA members generally achieved higher gains in competitiveness than the rest of African countries in intra-African markets (Figure 4.8). Indeed, seven COMESA members ranked in the top ten (Djibouti, Comoros, Egypt, Ethiopia, Burundi, Rwanda, and Eritrea), and only Kenya ranked within the bottom 20 (Figure 4.7). An analysis of variance of the competitive effect in intra-African markets confirms that, on average, COMESA members performed significantly better than other African countries (Table 4.3). In contrast, no perceptibly significant difference exists among the members of ECCAS, ECOWAS, and SADC in terms of changes in their competitiveness in intra-African markets. This may be due in part to differences in competitiveness gains achieved for particular export commodity groups. 4A.3. For 29 of the 59 commodities under analysis, Africa underperformed the group of its competitors in intra-African markets. The corresponding number in the preceding ranking relative to global markets is 15 of 59 commodities. Furthermore, in terms of commodity competitiveness gains, it appears that Africa's performance was generally lower in intra-African markets than in global markets, as appears to be the case for the majority of commodities (Figure 4.9).The statistical significance of these comparisons was analyzed through a test for equality of changes in commodity competitiveness in global markets compared with intra-African and regional markets. Competitiveness changes in intra-African and global markets are positively but weakly correlated (Table 4.4, last row). Simply put, changes in competitiveness tend to be greater in global markets than in intra-African markets, but not consistently across all commodities. At the 10 percent significance level, competitiveness changes were indeed lower in intra-African than in global markets; however, the average difference is as small as 0.014 points. Note: Change in competitiveness is measured by the coefficient of the competitive effect derived from commodity-level export share decomposition analysis for African countries as a group. Many staple food products are among the commodities for which Africa underperformed, including onions and substitutes, sheep and goats, meat and edible offal, poultry, sorghum, maize, wheat, and other cereals. Africa strongly or weakly outperformed its competitors in global markets in exporting some of those staples (onions and substitutes, sheep and goats, wheat, maize, and sorghum). Similarly to its competitiveness in global markets, Africa experienced positive changes in its competitiveness in intra-African markets for a number of other important foodstuffs, including roots and tubers; cattle; other live animals; dairy, eggs, and honey; rice; potatoes; tomatoes; and fish and seafood. In contrast, and as in global markets, Africa lost some competitiveness in intra-African markets for its traditional cash crops, such as coffee, cocoa beans, tea, cotton, groundnut oil, palm oil, groundnuts, and other oilseeds.The products that showed the highest competitiveness increase in intra-African markets, including rye, barley and oats (maintaining the highest ranking) and soybean oil, also topped the rankings for global markets. It also appears that African exporters did better in intra-African markets than in global markets in exporting emerging export products like olive oil, soybean oil, gums and resins, other (than cotton) vegetable textile fibers, hides and skins, and spices. The top-15 commodities only accounted for 24.5 percent of intra-African agricultural exports during the timeframe under study, and the top-25 commodities did not reach the 50 percent share threshold (Figure 4.5). However, the contributions of the same numbers of the top-ranked commodities in global markets to Africa's global agricultural exports were much smaller-that is, more commodities with relatively higher export value gained competitiveness in intra-African markets compared with global markets (Figure 4.5). This is in line with the faster growth of intra-African agricultural trade in terms of value over the period under analysis.The analysis now turns to exploring the scope of Africa's competitiveness gains or losses in regional markets during the 1998-2013 timeframe, ranking African countries in increasing order of improvements in their competitiveness in the agricultural markets of each REC and comparing changes in competitiveness in regional markets with those in global and intra-African markets.Ten countries (Cameroon, Central African Republic, Kenya, Madagascar, Mali, Niger, São Tomé and Príncipe, Togo, Zimbabwe, and SACU countries as a group) underperformed in all four regional markets (Figure 4A.1.in Appendix 4A). Similarly, nine countries (Algeria, Egypt, Ethiopia, Malawi, Mauritania, Morocco, Nigeria, Rwanda, and Senegal) outperformed in all regional markets. As a general trend, changes in country competitiveness in regional markets were lower than in broader intra-African and global markets, particularly among the lowest-ranked countries.Results from the test for equality reveal that average changes in competitiveness were significantly lower in ECCAS markets than in global markets (by 0.03 points); no significant differences were identified among the other regional and global markets (Table 4.2). Nevertheless, the test indicates that changes in country competitiveness were significantly lower in all regional markets than in the broader intra-African markets, with differences ranging from 0.024 to 0.069 points, on average.Results provide clearer insight into Africa's performance in regional markets, with a breakdown of both underperforming and outperforming countries by regional grouping (Table 4.5; Figure 4A.1). More than half of African exporters (26-28 countries) underperformed their competitors in ECCAS, ECOWAS, and SADC markets, with effects being smaller than 1.0. Relatively fewer of African exporters also underperformed in COMESA markets (19 countries). Indeed, at least half of each REC's member countries outperformed their competitors in COMESA markets, recording competitive effects greater than 1.0. For the COMESA region, for example, only 4 of its members underperformed in their intra-regional markets compared with 11 members in more distant extra-regional ECOWAS markets (Table 4.5, first row of the upper panel).Conversely, up to 14 of COMESA's members outperformed their competitors in their intra-regional markets compared with only 7 members in extra-regional markets within ECOWAS (Table 4.5, first row of the lower panel). Similarly, a smaller number of ECOWAS members underperformed in intra-regional markets than in the remoter extra-regional SADC markets. The same is true for the SADC region, where results show fewer underperforming members in intra-regional markets than in the remoter ECOWAS and ECCAS markets. Surprisingly, however, more ECCAS members underperformed and fewer outperformed in intra-regional markets compared with extraregional markets.On average, the change in competitiveness among COMESA members was positive in intra-regional markets, and to a lesser extent in SADC markets, but negative in the more distant ECCAS and ECOWAS markets (Figure 4.10). On average, ECOWAS members also raised their competitiveness in intra-regional markets and reduced their competitiveness in extra-regional markets, with the largest average reduction incurring in the remotest SADC markets. The average competitiveness level of SADC members remained virtually unchanged in intra-regional and COMESA markets, but fell in ECOWAS markets and more notably in ECCAS markets. The patterns are different for the ECCAS region, which underperformed in all regional markets and, more remarkably, in intra-regional markets as well.The statistical significance of pairwise comparisons of average changes between regional markets and Africa-wide markets was also tested (Figure 4.10; Tables 4B.1-4B.4 in Appendix 4B). It appears that the COMESA region raised its competitiveness in intra-regional and SADC markets significantly more than the rest of Africa. The ECOWAS region only performed significantly better than the rest of Africa in SADC markets. The ECCAS region underwent a significantly stronger loss of competitiveness compared with the rest of Africa in intra-regional and COMESA markets. These patterns of disparities between regional groups of countries suggest that differences in country competitiveness stem from factors other than trading distance or costs. Differences in the competitiveness of most traded goods in individual countries may have been a contributing factor.For some commodities, mostly those ranked highest, changes in competitiveness were higher in regional markets than in global and intra-African markets, whereas for other commodities, mostly those ranked lowest, the reverse was true (Figure 4A.2). In order to assess the consistency and significance of these differences, paired-sample T tests of the equality of changes in competitiveness were carried out, comparing regional markets with global and intra-African markets (Table 4.4). Changes in commodity competitiveness in global markets were positively but weakly correlated with changes in COMESA, as well as in ECCAS and SADC markets (Table 4.4, upper panel).No significant correlation was found in changes in competitiveness in global and ECOWAS markets. On average, the changes were lower by 0.037 points in ECCAS markets compared with global markets at the 1 percent significance level, versus 0.020 points in ECOWAS markets at the 10 percent significance level. In contrast, on average, no significant difference was identified in changes in competitiveness in global and COMESA or SADC markets.The analysis found positive and weak correlations of commodity competitiveness changes in intra-African and intra-regional markets, except for COMESA and SADC, where competitiveness changes were more strongly associated with changes in intra-African markets ( On average, changes in the competitiveness of commodities were lower by 0.022 points in ECCAS markets than elsewhere in Africa at the 5 percent significance level.The loss of competitiveness by African countries affected a greater number of commodities in ECCAS markets compared with the other regional markets (Table 4.6). For a total of 32 commodities, the competitive effect was smaller than 1.0 (including 26 commodities with small losses in competitiveness, but only 6 with high losses).Commodities that lost competitiveness in at least three regional markets included cotton, wheat, sorghum, some oilseeds (excluding soybeans and groundnuts), meat and edible offal, groundnut oil, and tea-all of which were also ranked among products with no or low competitiveness gains in intra-African markets and (with the exception of wheat and sorghum) in global markets. Among the highest ranked commodities, many-including rice, potatoes, onions and substitutes, fish and seafood, sheep and goats, other live animals, 9 and roots and tubers-had gained competitiveness in at least three regional markets.Conversely, the gains in competitiveness among African exporters benefited a greater number of commodities in COMESA markets compared with other regional markets (up to 31 commodities with small gains, and only 8 with high gains). Nevertheless, the number of commodities with increased competitiveness was still greater in global markets than in regional markets. In other words, room exists to expand Africa's share of total world agricultural exports by aligning changes in competitiveness in regional markets with improvements being made outside Africa.These commodities all gained in competitiveness in global markets (with the exception of fish and seafood), as well as in intra-African markets (with the exception of onions and substitutes and sheep and goats, which lost competitiveness in ECOWAS markets).In efforts to assess the importance of the highest-ranked commodities, the cumulative share of Africa's total agricultural exports to alternative markets was analyzed in terms of the contributions of the commodities with the highest gains in competitiveness in those markets (Figure 4.11). As in global and intra-African markets, the highest-ranked commodities in regional markets accounted for small shares of African exports to these markets. As already noted, however, the top-ranked commodities represented higher cumulative shares of ex- Note: Change in competitiveness is measured by the coefficient of the competitive effect derived from commodity-level export share decomposition analysis for African countries as a group.Export marketsGlobal marketsCOMESA markets SADC markets ports in intra-African markets and in regional markets than in global markets. Results indicate that the top-five and top-ten commodities weighed more heavily in ECOWAS markets than in other intra-African markets. For instance, the top-five commodities in ECOWAS markets accounted for 10.8 percent of Africa's exports to that region, whereas the corresponding sharesIn exploring scope for expansion of exports both within and beyond Africa, it would appear that no single set of commodities gained competitiveness equally in different export markets.In contrast, the commodity rankings are quite dissimilar across markets (Figure 4.12). In those cases where commodity rankings are the same across markets, the top K ranked commodities in each market would be found in a unique set of K products (depicted in the figure by the 45 degree line). The greater the size of the set is than K, the greater the dissimilarity in the various rankings. The distance from the curved line to the straight line indicates the level of dis-in all intra-African markets and in global markets were 1.3 and 1.8 percent, respectively. Thus, the products with the highest gains in competitiveness in the different markets are not among the most exported ones, indicating that competitiveness gains occurred among products that could be further exploited by the relevant African countries to increase their export base.similarity among the rankings. For instance, the curved line shows that a set of 16 commodities encompassed the top five across all rankings.Similarly, a set of 32 commodities comprised the top ten across all rankings. In other words, the commodities with the greatest competitiveness gains are not the same across different markets, which justifies the inference that scope exists to expand the export base through commodity diversification in the markets under analysis. More simply, nontraditional export products are gaining competitiveness in different markets and hence are good candidates for export diversification and expansion. The preceding analyses have highlighted considerable variation across African countries in terms of changes in their competitiveness compared with the group of non-African competitors in agricultural export markets. These patterns of competitiveness changes differ not only across export markets, but also according to membership in the different RECs. Trading distance and costs appear to have affected the changes in competitiveness of REC members in intra-regional compared with extra-regional markets.Nevertheless, the larger part of the differences across countries appears to have more to do with country-specific production and trade environments than with regional differences. Indeed, the analysis of changes in commodity competitiveness suggests that differences in productivity gains and domestic market conditions may play a large role in the differences in gains or losses of competitiveness achieved by African countries for the different commodities. A linear regression analysis was conducted, whereby the series of changes in country-level competitiveness in the various export markets were pooled to form a single variable, which was then regressed on the country-level indicators noted above taken as potential explanatory variables, controlling for REC membership and export markets (Tables 4.7 and 4.8). This procedure is formally summarized as follows:COMPETITIVENESS OF AFRICAN AGRICULTURAL EXPORTS (8) where is the pooled variable standing for the change in competitiveness for country , which is a member of the regional economic community , in export markets .represents dummy variables for the different RECs, are dummy variables for the different export markets, and....... stands for the different indicators considered above as potential explanatory variables. A subset of explanatory variables provide the best model fit (Table 4.7). As previously established, changes in country competitiveness are higher in intra-African markets than in global markets. The changes appear to be positively affected by the Doing Business-Distance to Frontier score, the quality of institutions, country market size, and the quality of the customs service. Surprisingly, the model revealed that changes in country competitiveness are negatively associated with the ease of international shipments and changes in total factor productivity. The model accounts for nearly two-fifths of the variation in changes in competitiveness (Table 4.8).Results of the analysis presented in this chapter indicate, almost consistently, that in all export markets under consideration, ECCAS members underperformed their competitors, on average, whereas SADC, COMESA, and ECOWAS members either maintained their competitiveness or outperformed the group of their competitors. In addition, changes in country competitiveness were, on average, lower in ECCAS markets and generally higher in intra-African markets than in global markets.The analysis also indicates that competitiveness gains for COMESA, ECOWAS, and SADC members were significantly greater in intra-regional markets than in extra-regional markets.For ECCAS, rare increases in country competitiveness occurred in extra-regional markets but not in intra-regional markets. It should be noted, however, that although ECCAS lags behind the other RECs in terms of its competitiveness, the shares of underperforming countries within COMESA, SADC, and ECOWAS are also a concern.The analysis of Africa's competitiveness at the commodity level revealed significant losses for some important products, although the majority of commodities gained more competitiveness in global markets.The levels of commodity competitiveness are lower, however, in intra-African than in global markets. They are even lower in regional markets, except in COMESA markets, where the commodity competitiveness level is higher than in global and intra-African markets.In Note: Change in competitiveness is measured by the coefficient of the competitive effect derived from commodity-level export share decomposition analysis for African countries as a group. Note: Change in competitiveness is measured by the coefficient of the competitive effect derived from commodity-level export share decomposition analysis for African countries as a group.The series of competitive effect values derived for all countries and commodities and for different export markets were used to carry out two statistical comparison procedures. The first, an analysis of variance (ANOVA), was used to test the hypothesis that the means of competitiveness changes are equal across country groups.The second, the paired-samples T test, was used to test the hypothesis that changes in competitiveness in two export markets are equal. These tests were run for changes in both country and commodity competitiveness. Results are presented in Tables 4A.1-4A.4 in Appendix A, and in Tables 4B.1-4B.4 below.Prior to running these procedures, the onesample Kolmogorov-Smirnov test was first performed to confirm the assumption of the normality of the distribution of competitiveness change indices in each of the country groups under comparison. The same test was carried out to check the assumption that, for each pair of export markets, the differences in competitiveness changes in those markets follow a normal distribution. The Levene's homogeneity-of-variance test was also used to check the assumption that the country groups under comparison come from populations with equal variances. In the large majority of comparisons, the Levene's test confirmed an equality of variances across groups, allowing the performance of an ANOVA procedure using the standard F statistic. However, in the rare comparisons where variances were significantly different, a robust ANOVA procedure using the Welch statistic was also performed to check whether the p value associated with the standard ANOVA F statistic could be trusted.The results of the Kolmogorov-Smirnov test and the Levene's test are presented in Tables 4B.5-4B.8. Notes: The change in competitiveness is measured by the coefficient of the competitive effect derived from commodity-level export share decomposition analysis for African countries as a group. The probability of the Z statistic is above 0.05, meaning that the normal distribution is a good fit for the differences of competitiveness changes in pairs of export destination markets. Supply-side determinants affect the competitiveness of a country in global or regional markets through their impact on costs of production and trading. These constraints include the nature and extent of resource endowments, pro-ductivity (including technology), the quality of the infrastructure and institutions that facilitate trade, and domestic agricultural support services provided to smallholder producers and traders in exporting countries. Demand-side constraints usually result from factors that (unsurprisingly) affect demand in importing countries, such as income growth, trade policies, and competitors' sales. Africa exports more than 75 percent of its agricultural production outside of the continent, and many of its trade partners impose several tradeprotection measures that directly or indirectly limit agricultural exports. This is particularly the case for processed agricultural products and certain commodities, such as tobacco, cotton, coffee, cocoa, and oilseeds, in which Africa has the comparative advantage. In these as well as many other markets, African exporters compete with suppliers from other parts of the world. Therefore, close monitoring of the extent and nature of these constraints and their linkages with the flow of agricultural exports is required to guide effective, evidence-based trade policymaking in Africa.The purpose of this chapter is to offer comprehensive and updated evidence on agricultural exports from Africa by examining the determinants of performance and competitiveness in order to isolate the key areas that should receive priority attention in policymaking at continental, regional, and national levels. Africa aspires to triple the current level of regional agricultural trade by 2025, which requires a wide range of interventions in the form of policies and investments. For these interventions to be effective and achieve their intended targets, key areas of intervention have to be identified, prioritized, and regularly monitored. This chapter presents a review of existing evidence, identifies key determinants of trade in general, and describes how these determinants are specifically important to African agricultural trade. Empirical evidence is provided to show the relative importance of trade constraints, how those constraints have changed over time, and how they vary across countries.The next section briefly reviews specific factors included in each of the five major determinants of trade, along with their conceptual and empirical links with trade. Thereafter, an empirical assessment estimating the relative importance of trade determinants is described, as are the data sources, the variables used, and Agricultural export performance is determined by many domestic and international factors from both the demand and the supply sides. Theoretical and empirical evidence suggests that these factors can be broadly classified into the five major categories indicated above:Production capacity refers to those factors that affect the level of supplies from a given country, including resource endowments and other technological and institutional factors that enhance a country's productivity and comparative advantages in global and regional markets. Both classical and neoclassical theories have exhaustively explained the importance of comparative advantage for improving performance of trade among countries. Nevertheless, the source of this production capacity and, hence, the source of comparative advantage has been strongly contended. While the Ricardian hypothesis advocates the importance of technological (or productivity) change as the major source of comparative advantage, the Heckscher-Ohlin hypothesis argues for the importance of relative factor endowments as a prime source of trade competitiveness. According to the the overall model results estimated for global-African and intra-African bilateral export trade.The subsequent section describes, discusses, and tracks the major determinants of export flows; their magnitude, significance, and trends; and the conditions under which a factor becomes detrimental. The final section summarizes the major findings and draws conclusions of relevance for policy dialogue and action.production capacity, the cost of trade, trade policies, domestic agricultural supports, and global market shocks. These constraints influence imports and exports in different ways and at different magnitudes.Ricardian theory, the relative efficiency of producing goods and services determines the direction and magnitude of trade between two countries. In contrast, the Heckscher-Ohlin factor endowment theory predicts that countries with an abundance of one or more of the factors of production (land, labor, and capital) will specialize in commodities that require much of the abundant resources. However, empirical studies have confirmed that differences in productivity (technology) and factor endowment only explain a very small part of trade performance variations over time and across countries (Bergstrand 1990;Bernstein and Weinstein 2002). Moreover, recent evidence suggests factor endowment has greater relative importance over productivity or technology in explaining international trade performance (Amoroso, Chiquiar, and Ramos-Francia 2011).Production CapacityFactors exacerbating the costs of trade are highly diverse. The two most important factors are poor infrastructure and institutional inefficiency related to trade services-in addition to other costs, such as financial fees associated with export and import activities. The role of infrastructure in enhancing trade has been widely discussed in policy circles and in the literature (Bougheas, Demetriades, and Mamuneas 1999;Francois and Manchin 2007;Bouët, Mishra, and Roy 2008;Moïsé et al. 2013). Empirical studies have generally confirmed positive and significant effects of infrastructure quality on trade values in exporting countries.COMPETITIVENESS OF AFRICAN AGRICULTURAL EXPORTS However, therelative importance of infrastructural elements varies across studies. While road density has significant positive effects on trade volumes in low income countries, the effect of cellular phone density has been found to be less significant (Bouët, Mishra, and Roy 2008).Institutional efficiency refers to the ease of doing business in relation to agricultural imports and exports. It includes procedures and delays in customs clearing, access to finance for traders, and the strength of contractual enforcement.Although customs and administrative procedures are essential for facilitating trade and implementing trade policies, they have the potential to restrict trade, particularly in countries where administrative systems are less automated, capacitated, and transparent.Trade policies include measures aimed at protecting trade through tariffs and nontariff barriers. The effect of tariffs on trade performance has been studied using economywide simulations (for example, Bouët et al. 2005), gravity equations (for example, Bouët, Mishra, and Roy 2008), and trade restrictiveness indexes (for example, Croser and Anderson 2011). Although the magnitudes are different, all the studies indicate that the effect of import taxes on trade volumes is convincingly and significantly negative. Bilateral, regional, and international trade agreements either reduce tariffs or other regulatory requirements to facilitate crossborder trade. The most important of these agreements for African countries are trade preferences, particularly nonreciprocal ones, which aim to open up markets to developing countries, either individually or in groups. This involves complete or partial lifting of import tariffs and quotas for specified products. Preferences are usually designed to offer commercial opportunities for developing countries but are widely criticized for not being used due to rules of origin, their focus on commodities for which beneficiary countries have little competitive advantage, and the presence of associated stringent standards related to sanitary and phytosanitary requirements (Brenton 2003;Panagariya 2003;Topp 2003).These procedures and requirements delay delivery and cause extra costs related to storage fees and losses. Empirical studies have indicated that a 10 percent reduction in the time spent to clear exports, the number of signatures required to clear exports, or the number of documents needed to cross borders increases trade by 6 to 11 percent globally (Wilson 2007).Trade is more responsive to the number of documents than to the other metrics.Despite these criticisms, recent studies have shown that preferences are still useful and beneficial, particularly for African countries (Wainio and Gehlhar 2004;Bouët, Fontagné, and Jean 2005;Bouët et al. 2012).Nontariff measures include trade barriers that limit the quantity and volume of imports through a variety of technical and nontechnical standards. The United Nations Conference on Trade and Development classifies nontariff trade measures into 16 broad categories, each of which comprises several specific classifications.The major ones are sanitary and phytosanitary requirements and technical barriers to trade, which include packing and labeling, standardization, price controls (anti-dumping), licensing, quantitative restrictions, export subsidies, and export taxes. Nontariff barriers constrain trade by increasing the cost of inspection, certification, and testing. This is particularly important for developing countries, which have poor quality assurance infrastructure and technological capacity to conduct these processes and, hence, have to recruit third parties to access the services.Both developed and developing countries provide financial and technical support to their agricultural producers for different reasons.The support provided by industrial countries to protect their agricultural sectors has been considered to be the most damaging for trade from developing countries. Supports in these countries take the form of border measures (import tariffs, export subsidies) and domestic measures (production and input subsidies). Domestic supports can be implemented through markets or through direct payments.Both approaches have the potential to reduce the amount of imports from foreign countries. These supports raise the price received by the producers of the supported country above the world price so that they become artificially more competitive than imports from outside the country. Empirical studies assessing the link between domestic subsidies and trade have revealed mixed results depending on the type of commodity and support (coupled or decoupled). Many have argued that the removal of European Union (EU) and U.S. agricultural subsidies could have a significant effect on the world prices of some commodities, such as cotton, tobacco, and soybeans (Bouët et al. 2005;Bureau, Jean, and Matthews 2006). However, the impact of domestic subsidies Global food, financial, and oil markets are increasingly interconnected (Tadesse et al. 2014). Shocks to any of these markets would likely affect the nature and extent of agricultural trade. The 2007/2008 food price crisis, for example, caused many countries to impose export barriers and relax import restrictions on food products, which further aggravated the problem of price spikes and adversely affected agricultu-is lower than other crossborder measures (Hoekman, Ng, and Olarreaga 2004;Anderson and Martin 2005).Payments that are less related to the quantity produced (decoupled) have lesser impacts than payments directly related to production (coupled). As a result, many Organisation for Economic Co-operation and Development (OECD) countries are moving toward payments that are less tied to the quantity of domestic production (Urban, Jensen, and Brockmeier 2016). Developing countries do also provide technical, financial, and institutional support to smallholder producers to boost productivity and improve market efficiency, thereby enhancing agricultural exports. The extent of agricultural support provided to smallholder farmers depends on the size, allocation, and efficiency of public agricultural expenditures. These expenditures serve to accumulate capital stock that would enhance the production, as well as the trading capacity of smallholder producers (Benin, Mogues, and Fan 2012). However, the actual effect on trade depends on the focus and efficiency of public investments. Investments focused on export sectors would likely improve trade more than those investments focused on domestic food production or food security.ral trade (Yu et al. 2011;Anderson and Nelgen 2012;Bouët and Laborde 2012;Anderson 2014;Anderson and Thennakoon 2015). Similarly, the ongoing oil price crises may also affect the level of agricultural exports, particularly in those countries that are oil dependent. When the price of oil declines, oil-dependent countries may try to shift export dependence from oil to agricultural products, for which prices are relatively stableGlobal Market ShocksGravity-type econometric equations were used to examine the empirical and relative relevance of the determinants listed above in the African context. Models were used to estimate the logarithm of bilateral agricultural export values of African countries over a number of demandand supply-side factors. Four of the major thematic determinants described above were included 10 , as well as scale variables used to control for the size of importing and exporting economies and income differences between trading partners. Two to five specific variables were chosen as proxies for each of the major thematic determinants. Total gross domestic product (GDP) of both importing and exporting countries was used as a proxy for the size of partnering-country economies. Per capita GDP in importing countries was used to capture income effects, and per capita GDP in exporting countries was used as a proxy for capital endowment. Other assets, such as farm machinery, irrigation facilities, and so on, would have been a good indicator of capital for agriculture, but the data on these variables had a large number of missing values. The quantity of land and labor were included to measure resource endowments; road density, quality of port, index of trade infrastructural quality, index of customs clearing efficiency, and financial fees for exporting were used to measure costs of trade; frequency of nontariff measures, average ad valorem equivalent tariff rates, and regional trade agreements were considered as proxies of external trade policy; and the ratio of the agricultural producer price index to the manufacturing producer price index of importing countries and agricultural public expenditure of exporting countries were used to measure the effect of domestic agricultural policy in importing and exporting countries, respectively. The list of determinants considered in the analysis and the metrics used to estimate their magnitudes are described in Appendix All the regressions were estimated using cross-sectional data from 2013, the most recent year for which adequate data were available for many of the determinants. One-year lagged values were used, however, for some variables (productivity and public agricultural expenditure) that were deemed to be endogenous to export values. Visualization of trade data over years indicates that no extraordinary events occurred in 2013 that could bias the results.Two groups of models were estimated. The first group was used to estimate African agricultural exports to the global market. In this model, only African countries were included as exporters (i). In addition to African countries, countries from all continents that had frequent transactions with Africa were included in the analysis as importers (j). In general, a total of 49 exporters and 161 trade partners were considered 11 .A second group of models was used to estimate intra-African exports, with African countries as both exporters and importers.11 The countries of the Southern African Customs Union-Botswana, Lesotho, Namibia, South Africa, and Swazilandwere treated collectively as one country because many sources aggregate the trade data for these countries; in some instances, the average or sum of all or some of the countries was used, depending on the variable.African exports to the rest of the world were also estimated for comparison purposes.Of all possible pairwise transactions between the 49 exporting and 161 importing countries, about 58 percent had zero trade transactions. Excluding these transactions would likely cause selection bias, whereas including them would cause censoring bias. Although other studies excluded them and controlled for the selection bias using the Heckman approach, the current study included them and addressed the censoring bias using a Tobit model approach. Zero trade was assumed to be as a country's optimal outcome rather than a strategic choice not to trade with a specific partner.Due to multiple data sources for different variables, the dataset was seriously affected by missing values. To overcome this problem, several specifications were considered through step-wise inclusion of explanatory variables that had different sets of observations and Results of the six specifications for African global agricultural exports are shown in Table 5.1. The table's six columns present the results of the different specifications to help test robustness under different numbers of observations and to examine the predictive power of additional variables. In general, many determinants show the theoretically expected signs, with the exception of resource endowment, which seems to be a less important factor for African agricultural trade. Variables related to infrastructure and institutional efficiency are more significant than other domestic factors.These variables explain about 11 percent of the variation in agricultural export growth among African countries. Public agricultural expenditure appears to have a positive and generally significant effect on trade. Trade policy variables appear to be important determinants, next to the cost of trade, although significant variation exists among policy instruments. Nontariff barriers and regional trade agreements appear more important than tariffs. The effect of producer price ratios, which represent domestic agricultural support in importing countries, seems significant but requires further explanation.represented specific sets of determinants. A total of six specifications were estimated for African global exports. The first model estimated the effect of resource endowments together with scale variables.In addition to the variables in this first model, the second model incorporated infrastructural and institutional variables, and the third model added public agricultural expenditure. All three models shared a common feature: they only considered domestic (supply-side) constraints.The fourth model included international (demand-side) variables, such as nontariff barriers, tariffs, and regional trade agreements.The fifth and sixth models were Tobit specifications with and without the agriculture-tomanufacturing price ratio variable that represented domestic agricultural supports by OECD countries. Since the price ratio was calculated for OECD countries only, the number of observations was greatly reduced in the final specification.The results of comparisons between determinants of intra-African trade and African exports to the rest of the world are shown in Table 5.2. Here, the comprehensive models (four and five) were used as agriculture-to-manufacturing price ratios were not available for most African countries. The results indicate that many of the determinants are equally important for African exports, whether within or outside Africa. The level of per capita income in importing countries is more relevant for intra-African trade than for African exports to the rest of the world, which can be explained by the lower level of incomes and higher elasticity of demand for agricultural products, and in particular for food, in Africa. Similarly, resource endowments and nontariff barriers are not as relevant for intra-African trade as they are for African trade with countries in other regions. This is consistent with the fact that resource endowments within Africa are closely similar, and nontariff barriers are not as stringent as they are outside Africa. Public agricultural expenditures are more relevant to reaching markets outside rather than within Africa. (2) (3) (4) (5) (6)Source: Authors' estimations based on model results.Notes: All the determinants except being in the same regional economic community are in logarithmic form, hence, the coefficients are elasticities; i countries refers to the 49 exporting African countries and j countries include importing countries all over the world. The lagged value of public agricultural expenditure was used to control for possible endogeneity. OLS = ordinary least squares; *, **, and *** indicate significance at the 10, 5, and 1 percent levels, respectively. Notes: All the determinants except being in the same regional economic community are in logarithmic form, and hence the coefficients are elasticities; i countries refers to the 49 exporting African countries and j countries include importing countries all over the world. The lagged value of public agricultural expenditure was used to control for possible endogeneity. OLS = ordinary least squares; *, **, and *** indicate significance at the 10, 5, and 1 percent levels, respectively.Since the determinants for intra-African and global African exports are similar, the next section focuses on why some variables are more significant than others, and on tracking trends and distributions of key determinants using the results of the global-Africa agricultural export estimations. The importance of a determinant for intra-African trade is briefly discussed where relevant.Resource Endowment and ProductivityThe econometric results described above indicate which variables determine the level of agricultural exports by African countries. The following section details each of the determinants and their role in shaping export performance among these countries.As this study exclusively considers agricultural products, it is assumed that agriculture is both land and labor intensive in the African context, but less capital intensive compared with other sectors' products; capital is therefore expected to have a negative effect and land and labor a positive effect on agricultural exports. Nevertheless, all three resource endowment variables-labor, land, and capital (represented by exporters' per capita income)-show negative effects on agricultural exports (see Table 5.1).According to this result, countries with a higher per capita income are less likely to export agricultural products than countries with a lower per capita income. This is in line with the relative resource endowment theory, which predicts that a country specializes in an industry that requires less of the scarcest resource in the country. Hence, as countries grow (accumulate capital), their export portfolios shift from agriculture (less capital intensive) to sectors that are more capital intensive. Thus, capital endowment reduces exports of primary agricultural products.The results also suggest that countries with scarce arable land and agricultural labor export more than do countries with abundant agricultural land and labor endowments. The negative effect of land on agricultural exports is due to the exclusion of land productivity from the models. When land and labor productivity are included in the model, the results become significantly different (Table 5.3).If productivity is controlled for, land positively affects the performance of agricultural exports both to the world and within Africa, although the elasticity is greater for intra-African trade than for global trade. The impact of labor remains negative. Labor-abundant countries export less than labor-scarce countries, keeping productivity constant. This could be because African agriculture is not as labor intensive as expected. Alternatively, in an area where labor is abundant with low productivity, agricultural production may serve only for household subsistence without any significant contribution to exports.Similarly, while countries with high land productivity perform better than do countries with low land productivity, countries with high labor productivity perform worse than do countries with low labor productivity. Labor productivity negatively affects trade performance, probably because wherever the productivity of labor is high, the local market becomes more attractive to producers than the export market. Increased agricultural labor productivity might be good for reducing poverty, but it seems to negatively affect agricultural export performance in Africa.The negative effect may indicate the extent of economic transformation. Countries with higher labor productivity are countries in which economic activity is shifting from agriculture to nonagricultural sectors, and hence where the composition of exports is shifting from agricultural to nonagricultural products. These results imply that, while availability of arable land and increased land productivity can positively affect agricultural trade, having abundant labor alone does not necessarily lead to higher export trade; rather, it may retard Africa's global and intra-regional trade. Moreover, trade seems more elastic with respect to land productivity than to land availability, implying that investment in land productivity-enhancing technologies or institutions would help not only to increase farmers' incomes, but also to boost regional trade. Results indicate that a 1Variables addressing the quality of ports and transport, road density, efficiency of customs clearing, and financial export costs explain a significant part of the variation in agricultural export performance among African countries (Table 5.1). However, there appear to be significant differences among cost indicators in explaining trade flows. Road density and financial export costs do not have statistically significant effects on export performance. In contrast, the quality of port infrastructure and the efficiency of customs clearing consistently and positively affect trade performance. Since the cost of trade affects not only export performance, but also trade competitiveness (defined as the ratio of a country's exports to total African exports to the world or to the African market), further percent increase in land productivity increases trade flows by about 6 percent to the global market and 7 percent to the African market. Land productivity has a stronger effect on intra-African trade than on global trade, which further explains the importance of improving land productivity to triple intra-African trade. This is because many African countries have similar resource endowments and closely similar trade facilities, so their competitiveness in regional trade mainly depends on the extent of agricultural productivity.analysis was carried out to shed light on how cost indicators affect the competitiveness of a country in global and regional markets.Results of the analysis of the effects of trade cost indicators on global and regional competitiveness show that, although road density and financial export costs have no effect on export volumes, they do have significant effects on competitiveness (Table 5.4). This is particularly significant when it comes to financial payments to clear exports. Financial export costs include all costs exporters pay for documents, administrative fees for customs clearance and technical control, customs brokers, terminal handling charges, and inland transport, and these costs are found to be crucial for tradeCOMPETITIVENESS OF AFRICAN AGRICULTURAL EXPORTS Source: Authors' estimation based on international sources Note: Estimations include additional variables for which results are not presented here. competitiveness. The lower these fees, the more likely a country becomes competitive both in regional and global markets. Unfortunately, financial fees for exports have been increasing over time in Africa south of the Sahara (SSA), particularly for landlocked countries (Figure 5.1). Sixteen African countries do not have their own ports and, hence, incur higher financial export costs per unit than do coastal countries.The cost gap between these groups of countries has widened over time. Lack of port access may induce preferential fees for port services and increased inland transport costs that raise export costs. Lack of port access also creates business insecurity.Although the effect of road density on export performance was insignificant in most specifications (Table 5.1), it appears to have a significant and positive effect on competitiveness (Table 5.4). This could be because the African road networks are biased toward connecting local markets more than regional markets (Gwilliam et al. 2008). Even though domestic road networks have improved in many African countries in the past two decades, they are not well-connected to regional roads. As a result, they failed to support increased export volumes but did contribute to the countries' competitiveness. Unlike export volumes, which primarily depend on external efficiency, competitiveness mainly depends on internal efficiency. A country might be competitive compared with other producers, but its export volumes may not grow faster than others. This is exactly what the road density results demonstrate. Improved road density improves a country's internal competitiveness to supply cheaper products to external markets, so that the country's supply share is relatively higher than countries with lower road density. Yet, since the roads do not adequately connect local markets with regional or global markets, their effect on absolute export volumes remains insignificant. Despite the significance of road density, Africa remains poorly connected both internally and externally. According to the World Bank Rural Accessibility Index, only 34 percent of the rural population of SSA lives within 2 kilometers of an all-weather road (Carruthers, Krishnamani, and Murray 2010).Port quality is important both for absolute export volumes (Table 5.1) and for trade competitiveness (Table 5.4). However, Africa has the lowest port quality of all regions of the world. Based on the quality of port infrastructure, the World Bank ranks ports from 1 (extremely underdeveloped) to 7 (efficient by international standards). According to this classification SSA scores 3.65, which is 13 percent below the world average and 29 percent below the average for high-income countries. This indicates an urgent need for African countries to invest in port infrastructure to improve both regional and global trade.Other variables related to transport infrastructure and institutional efficiency are important for export performance but not for competitiveness ( The effect of domestic agricultural support in exporting countries could be an important determinant of export growth in developing countries because farmers and traders in these countries are poor and less commercialized, and therefore less able to facilitate production and trade by themselves. The support provided in these countries is different from the support provided in high-income countries.In developing countries support is given to facilitate provision of agricultural extension, advisory, market access, and financial services. Public agricultural expenditure (PAE) is used as a proxy variable to measure the significance of government support in promoting agricultural exports in Africa. The empirical results reveal a positive and statistically significant association between PAE and export performance. On average, a 10 percent increase in PAE relative to agricultural GDP increases agricultural exports in the following year by about 2 to 4 percent.The correlation between public agricultural spending and export performance significantly varies across countries (Figure 5.4). Unexpectedly, PAE has either no correlation or a negative correlation with exports in many countries. While Ethiopia stands out as having the largest negative correlation, Rwanda takes the lead as the most successful country from the positive perspective. Many factors could explain why countries experience a negative correlation. First, they might have focused more on domestic food security, so public expenditure has little or no relevance in promoting external trade. This is the case in Ethiopia, where a significant part of the public budget is allocated to large food security projects, such as the Productive Safety Net Program, and extension personnel who primarily provide services for food crop production. The country's competitive commodities, such as coffee, oilseeds, and hides and skins, have received very little financial support relative to their importance as exports. Second, these countries' investments in export commodities might be less efficient in facilitating trade and production. Third, a decline in the terms of trade could explain part of the paradox, but empirically this should have little contribution to the negative correlation. In contrast, many countries utilized the public budget as a policy tool to create incentives for agricultural exports (Figure 5.4). Rwanda is followed by Liberia, Ghana, and Zimbabwe, in which expenditures and exports are strongly correlated, with coefficients above 0.8. Public Agricultural Expenditure The overall trade creation effect-as captured by the REC variable (taking the value of 1 if the importing and exporting countries are from the same REC and otherwise zero)-has a positive and statistically and economically significant effect on export performance. Being a member of any of the RECs increases a country's export value by 3 to 5 percent. This effect captures not only the effect of free trade agreements, but also the effect of trade facilitations commonly targeted for crossborder trade. Countries within the same REC are geographically closer to each other, so this variable may also capture proximity effects. In any case, the trade creation effects of African RECs are convincingly large and significant.The trade diversion effects of these RECs are not yet significant and uniform. The effects were captured by including dummy variables for each REC (taking the value of 1 if the importing country is a member of a given REC and the exporting country is not, and zero otherwise). This variable measures openness of member countries to nonmember countries. The variable representing ECOWAS has a significant and positive effect on exports, implying that being an ECOWAS member makes countries open to nonmembers, signifying a positive trade diversion effect (Figure 5.5). SADC has a protective effect, but it is only significant at the 10 percent (90 percent confidence) interval. COMESA and ECCAS show positive and negative trade diversion effects, respectively, but the coefficients are not statistically significant. These results are consistent with previous evidence (Makochekanwa 2012).Since welfare depends on the extent of both trade diversion and trade creation, policymakers should target increasing the diversion, as well as the creation effects. Internal institutions and efficiency may explain the differential effects of RECs on trade diversion. Note: The value range for REC (Regional Economic Community) indicates the combined trade creation effect for all communities. RECs is a dummy variable that takes the value 1 if both importing and exporting countries are from the same REC and zero otherwise. Effects denoted by each of the REC indicate the trade diversion effects. For example, the value under \"COMESA\" indicates the effect of a variable that takes 1 if the importing country is a COMESA member and the exporting country is not, and zero otherwise. It therefore measures the trade diversion effect of COMESA, and the same holds for the other RECs. The figure shows coefficients and 95 percent confidence intervals. If zero is included within the confidence interval, the coefficient is interpreted as statistically insignificant.The average tariff rates imposed by selected countries on agricultural products imported worldwide, from least developed countries, and from within SSA are presented in Figure 5.6. Although India and Pakistan impose the largest tariff rates on global agricultural imports, they impose lower rates for imports from SSA. Other countries, such as Canada, Russia, and the United States, also impose lower average duties on imports from SSA. As expected, the countries of SSA impose lower taxes on imports from within the region than from outside it. In some countries and regions, including China, the EU, and the Middle East, agricultural products from SSA are being taxed more than the world average. This could be because selected products are given preference, especially by the EU. If exports from SSA are not among Despite declining trends in tariff rates imposed on agricultural products worldwide, tariffs are still important determinants of trade. The modeling results of this study estimate that a 10 percent increase in tariff rates reduces African agricultural the preferential products, they would be subject to higher tariff rates than those imposed on preferential products from other areas.In many countries, African products are taxed at higher rates than the average for other developing economies or least developed countries. This indicates that, although several preferences are enacted in the EU and the United States, African products are still highly taxed compared with other developing countries. Most importantly, on average, SSA countries impose a higher rate of import tax on other SSA countries than they do on all least developed countries. This implies that some African countries provide a lower tax rate for non-African countries than they do for African countries.exports by about 3 percent (Table 5.1), which is closely similar to previous studies (Bouët, Mishra, and Roy 2008;Moïsé et al. 2013). Luckily, Africa, particularly SSA, is increasingly receiving tariff preferences from importing countries. Notes: Tariff rates are weighted averages based on the amount of imports. Each country or group of countries levies different rates for different countries for the same products. The rates are averaged for all countries, for least developed countries, and for Africa south of the Sahara.Source: Authors' estimation based on WITS ( 2016).An encouraging trend is that tariff rates applied on imports of agricultural products from any part of the world have declined sharply over time (Figure 5.7). Average tariff rates fell from more than 12 percent in 2005 to close to 8 percent in 2014-a 3 percent yearly rate of decline. Multilateral negotiations through the World Trade Organization and the increasing global food demand as demonstrated by the food price crisis in 2007/2008 might have contributed to this effect. The decline is proportionally similar among the rates applicable to the world as a whole, to SSA, and to least developed countries. Globally, African products have been taxed at lower rates than the world average since 2009, and the gap between these tax rates has widened since then. On the other hand, African exporters have consistently faced higher taxes than other developing countries. Note: Values indicate rates of preferences and are calculated as the average tariff rates imposed by all countries, by the EU, and by the United States on world imports, minus tariff rates imposed on SSA imports.Much empirical evidence, including the findings of this chapter, indicates that trade is more responsive to nontariff barriers than it is to tariffs (Table 5.1). This shows the increasing importance of nontariff barriers following the declining trends of tariffs due to bilateral and multilateral trade agreements and prefe-Despite clear evidence that, on average, greater preferences are given to African exports than to those of other regions, there is broad debate about the benefits of such preferences in enhancing African trade 12 . One of the criticisms is that preferences are given to commodities or products for which Africa has no comparative advantage. Although this criticism applies to comparisons of manufactured and agricultural products, it can also be applicable to agricultural products. Significant variations exist in the preference rates given to SSA by the world, the United States, and the EU across different agricultural products (Figure 5.8). The United States provides preferences for a wider range of products rences. Yet, despite the growing understanding of the significance of nontariff barriers to trade, certain issues are still unclear, including (1) which type of nontariff barriers cause significant impacts on trade, (2) which type of nontariff barriers are prevalent in agricultural trade, (3) how these measures are evolving, and ( 4) what strategic options African countries have to reduce the effect of nontariff barriers on trade performance.The prevalence of different nontariff barriers across major African trade partners, which import about 90 percent of African agricultural than do the EU and others; however, the United States does not provide preferences for silk or tobacco. In contrast, the EU provides the highest preference for tobacco. The United States provides the highest preference for dairy products, followed by sugar, and then hides and skins. Although some African countries could have a comparative advantage in sugar and in hides and skins, many countries may not have a global comparative advantage in dairy products (Badiane, Odijo, and Jemaneh 2014). While preference rates for cocoa are reasonably significant, preference rates for coffee and tea are minimal, confirming that preferences are given irrespective of a country's comparative advantage.average tariff rates on imports from the world and imports from SSA.-15 -10 -5 0 5 10 15United States European Union All countries exports, is shown in Figure 5.9. Of all the countries, the United States takes the lead in terms of the number of measures imposed on the import of agricultural products. During the 2012-2015 period, the United States imposed about 1,000 measures per year, which were counted across products and types of nontariff barriers (WHO, 2016). Close to 50 percent of these relate to sanitary and phytosanitary measures, which-followed by technical barriers to trade-are the dominant type of nontariff barriers in many countries. Quantitative restrictions are widely prevalent in the EU. Unlike many other measures, sanitary and phytosanitary requirements are politically and environmentally acceptable because they relate to health, safety, and hygiene. Unfortunately, these requirements have a greater impact on trade than do any other measures (Figure 5.10). A 10 percent increase in the number of products affected by sanitary and phytosanitary measures reduces trade by about 3 percent. This result is consistent with a previous study indicating that sanitary and phytosanitary measures penalize poor countries more strongly than other countries (Disdier, Fontagne, and Mimouni 2008).Export subsidies, which are prevalent in the EU, Turkey, and the United States, have the nextlargest negative effect on African agricultural trade. In contrast, the involvement of state enterprises in imports and exports positively affects African exports, probably due to the discretionary preference that these enterprises may provide to African imports. The involvement of state enterprises in agricultural trade is most prevalent in China and India, and in some EU member states. In general, the number of nontariff barriers has been steadily increasing over time in both the United States and the EU, which impose the largest number of trade-reducing nontariff barriers of all of Africa's trading partners (Figure 5.11).The significant impact of nontariff barriers on trade, and their growth over time, present significant challenges to policymakers as to how to minimize the adverse effects of these measures. Given public concerns, reducing the prevalence of nontariff barriers through international negotiation is unlikely. Rather, African policymakers should focus on reducing the vulnerability of their trade to these measures, the majority of which demand certification and labeling and, hence, involve increased costs.Efficient institutional and infrastructural arrangements are required to reduce these costs.Establishing a certification and accreditation center for an individual country could be costly and, in some cases, impossible. Therefore, regional cooperation should be an important area of policy focus. Furthermore, areas exist where individual countries could facilitate exports by establishing facilitation centers to assist exporters in fulfilling the requirements imposed by importers. Notes: SPS = sanitary and phytosanitary measures; and TBT = technical barriers to trade based on United Nations Conference on Trade and Development classifications. The frequency of nontariff barriers is measured as the sum of all types of measures for all HS6 classified products. For example, if two measures are imposed on one product, three measures on three products, and zero on all other products, the frequency will be 2*1+3*3=11.- The empirical link between domestic agricultural supports in OECD countries and the value of agricultural exports in African countries was assessed using the ratio of agricultural and nonagricultural producer prices. This price ratio may capture the effect of all border and domestic supports, including tariffs, export subsidies, and production and input subsidies.Since tariffs and nontariff barriers are included as explanatory variables, the price ratio should predict the effect of domestic supports. The effect of this price ratio is negative and statistically significant (Table 5.1). According to this estimation, a 1 percent increase in the price ratio reduces African exports by about 5 percent. However, the implication of this elasticity depends on the actual correlation of the price ratio with domestic support. Many economists argue that, since most payments to agricultural producers are made through direct payments, the impact of agricultural subsidies on trade is limited (Hoekman, Ng, and Olarreaga 2004;Anderson and Martin 2005;Croser and Anderson 2011). But when comparing producer prices of agricultural and manufacturing products, in many cases the resulting ratio is greater than one, implying that agriculture is treated preferentially and that this treatment restricts imports from developing countries. Generally, this leads to the conclusion that, although the effect of domestic support might Both the empirical analysis presented in this chapter and recent public support estimates trends suggest the importance of domestic support in high-income countries for the performance of African exports. Nevertheless, African countries, in particular, and developing countries, in general, have few policy options to curb the adverse effects of this domestic policy action in foreign countries. Although multilateral trade negotiations through the not be as large as crossborder measures (such as tariffs and nontariff barriers), it still plays a significant role.It appears, however, that the rate of agricultural support has generally declined over time in many OECD countries (Figure 5.12). Of all the countries considered, EU countries provided the highest support throughout the two decades to 2015. Emerging economies, such as China and Russia, are also increasingly supporting their producers despite the instability and unpredictability of that support, which is said to mainly take the form of tariffs and nontariff barriers rather than subsidies.World Trade Organization are usually of limited effectiveness, they remain the most likely avenue for developing countries to compel high-income countries to reduce or redesign their agricultural supports. Economic growth in many African and Asian countries, and the increasing threat of climate change, may create leverage for developing countries to organize themselves and enforce effective global policy actions through the World Trade Organization. African countries continue to strive to expand market opportunities for domestic producers both regionally and globally; however, this effort is being impeded by emerging and evolving constraints. Although many of the constraints seem conventional and traditional, the nature and extent of these constraints are evolving dramatically following global and regional shocks and opportunities. The examination of the key determinants of trade presented in this chapter generally found the existing evidence to be insufficiently comprehensive, lacking in the needed focus on Africa, and in need of updating. Realistic and updated assessments are required to feed the increasing policy momentum to improve African agriculture. The analysis did confirm that agricultural trade determinants are both diverse and complex, ranging from farm-level, supply-side constraints to global-level, demand-side barriers. Consequently, they call for regular monitoring and prioritization to facilitate immediate policy and development actions.The empirical analysis, which aimed to identify and track key determinants of trade, indicated that supply-side constraints, including production capacity and the costs of trade, are more important determinants than are demand-side global constraints. This offers African policymakers the opportunity to focus on domestic production and trade facilitation, which can easily be influenced through national and regional policies and investments. A lot can be achieved simply by focusing on domestic factors instead of assuming that international factors are the culprits for low and, in some countries, declining agricultural exports.This does not, however, rule out the importance of cooperation, both regionally and globally.Regional cooperation is key to enhancing trade by reducing trade barriers and increasing productivity. The empirical analysis clearly confirmed that Africa's RECs had significantly contributed to agricultural export growth. These regional entities can be further utilized to reduce regional as well as global trade barriers. One important function of regional bodies could be joint trade facilitation initiatives that help fulfill the growing nontariff trade requirements facing African trade partners.Despite a growing tendency toward import tariff reductions, partly due to preferential trade, nontariff barriers are significantly increasing and affecting African exports more than tariffs. This trend demands not only regional cooperation, but also global cooperation.Ensuring global cooperation has always been a challenge for developing countries, but growing opportunities exist that can enhance the bargaining power of developing countries in general, and African countries in particular. These include the growing importance of the continent as a consumer market and investment destination, given rising incomes and populations.In addition, Africa can play a pivotal role in mitigating the global climate threat. Nevertheless, global cooperation should not be viewed solely as an instrument for influencing international trade policies; rather, Africa should also seek this cooperation to facilitate trade and enhance domestic agricultural value addition.Total GDP and per capita GDP were used to control for the size of both importing and exporting economies. GDP was measured as real values deflated by 2005 constant prices in billions of U.S.dollars. Per capita GDP was measured in U.S. dollars per person. In both cases, the 2013 values were used. Missing values were replaced by values of the previous year.Land and labor for exporting countries were chosen to test the role of resource endowments for trade. Land was measured as the total arable land in millions of hectares and labor was measured as total agricultural labor in millions of persons. The productivity of these resources was also included at a later stage of the analysis to test the relevance of endowment vs. technology. Land productivity was measured as agricultural value-added per hectare of land; similarly, labor productivity was estimated as the ratio of agricultural GDP to agricultural labor force. All data were from ReSAKSS (2016).Road density, port quality, and quality of trade transport infrastructure were used to measure the effect of infrastructure on trade performance. Data on road density were obtained from NationMaster ( 2016), with road density measured in terms of kilometer of road per square kilometer. Indexes of port and trade transport qualities were obtained from the World Bank \"Doing Business\" survey.The indexes were represented by scalar cores ranging from 1 to 7 (1 being extremely poor/inaccessible and 7 being very efficient/accessible). Since the survey data cover different years for different countries, the averages of available data for the 2010-2013 period were used.The World Bank Logistics Performance Index, specific to the efficiency of customs clearance processes, was used as a proxy for institutional efficiency related to trade. The index aggregates the respondents' rankings of the efficiency of customs clearance processes (that is, speed, simplicity, and predictability of formalities), on a rating ranging from 1 (very low) to 5 (very high). Scores were averaged across all respondents.Infrastructural quality and institutional efficiency, which were used as a proxy for costs of trade, do not capture all costs involved in the export of import of commodities. The cost of exports estimated by the World Bank was used to control for unaccounted trade costs. The indicator measures the fees levied on a 20-foot container in U.S. dollars. All the fees associated with completing the procedures to export or import the goods are included (the costs for documents, administrative fees for customs clearance and technical control, customs broker fees, terminal handling charges, and inland transport). Tariffs and trade taxes are not included. The average cost of the exporting country for the 2010-2013 period was used.This variable was included to examine the empirical link between public investment and trade performance. While it is highly relevant from a policy perspective, it may cause endogeneity problems and may also correlate with other explanatory variables. To avoid these problems, its lagged value was used for the regression analysis. The nominal value was normalized by agricultural GDP.This variable was included as a dummy variable, taking the value of 1 if both trading countries were members of the same regional economic community (COMESA, ECOWAS, SADC, and ECCAS), and otherwise zero. At a later stage dummy variables were also included for each regional bloc to measure the trade diversion effects of each REC. In this case, for example, a dummy for COMESA was included, taking 1 if the importing country was member of COMESA and otherwise zero. Similar dummies were used for the other RECs. Aggregation is the primary concern for measuring the effect of tariffs on trade. The use of tariff indexes, such as the trade restrictiveness index, ad valorum equivalent, trade reduction index, and nominal rate of assistance, is quite common to aggregate the different tariff lines. These indexes are preferred over averages because simple averages of tariff rates of the different agricultural lines will include untraded products and the weighted average based on imports will be endogenous to trade. However, an all-inclusive index for all the countries considered in this study is not available.Thus, a mix of weighted and simple averages of ad valorum rates from WITS (2016) was used as a proxy for the effect of tariffs on trade. Weighted averages were used to aggregate tariff rates on products up to the HS2 level and rates imposed on different countries, and then simple averages were used to approximate a tariff rate imposed by a country on global imports. Since only exports of African countries were considered in the analysis, the weighted tariff rates of other countries are less likely to be endogenous to trade, as the share of imports from Africa is relatively small.The total number of nontariff measures imposed by the importing country, which is the sum of all measures reported to the World Trade Organization (WTO 2016), was used to capture the effect of nontariff barriers on African trade. Measures were counted across products and types of measures.Alternatively, the frequencies of six major types of nontariff measures were used separately. Only measures applicable to all World Trade Organization members were considered. Nontariff measures imposed bilaterally were not considered because they are mostly for non-African countries.Unfortunately, not all countries reported to the World Trade Organization, so this variable had many missing values.Data on the extent of domestic agricultural support specifically for production and input subsides are not available for all countries. The ratio of the agricultural producer price index to the manufacturing producer price index for OECD countries was used as a proxy to represent domestic agricultural support. The agricultural producer price index was obtained from FAO (2016), and the manufacturing producer price index was collected from the OECD (2016).Source: Authors.Notes: COMESA = the Common Market for Eastern and Southern Africa; ECCAS = the Economic Community of Central African States; ECOWAS = the Economic Community of West African States; GDP = gross domestic product; REC = regional economic community; and SADC = the Southern African Development CommunityNontariff measures Domestic agricultural supports Numerous regional and global issues, both within and beyond the agricultural sector, affect Africa's trade performance. Key issues include trends in national and regional production, consumption and demand; regional integration; international trade regimes; and constraints to linking farmers to markets. This chapter presents a summary of the current literature on these issues, answering strategic questions regarding opportunities and challenges affecting Africa's trade, some of which governments and other stakeholders can influence, and others which are less under the control of African countries and must be anticipated and responded to. As increasing agricultural production and cost efficiency are basic factors enabling the expansion of trade, Africa has undergone dramatic changes in the past two decades. After a long period of economic stagnation and rising numbers of poor, the continent embarked on years of strong economic growth in the 2000s, accompanied by rising living standards. Africa's agricultural trade expanded, with growth in exports and sharper increases in imports (see chapter 2, this volume); however, Africa's global and regional trade performance remains below its potential.Although the strong economic growth rates of the 2000s have decelerated somewhat, rapid socioeconomic and technological changes continue to occur, affecting the composition of demand, the structure of value chains, and prospects for future growth. The chapter begins by summarizing key issues and trends in Africa affecting production, agroprocessing, and markets in the region. In the second section, it looks at broader global developments affecting Africa's agricultural trade performance. The third section presents interventions and mechanisms which could potentially be scaled up to allow Africa to take advantage of trade opportunities. The chapter concludes with recommendations for improving Africa's regional and global agricultural trade performance while increasing the resilience of agricultural producers.This section reviews developments occurring within Africa with the potential to affect its trade performance at the regional and global levels. These include socioeconomic changes affecting the volume and composition of food demand; the growth of domestic agribusiness; rising attention to sustainability in national development strategies; efforts to increase regional integration and raise the level of intra-African trade, which remains far below its potential; and the growth of information and communication technologies. In some cases, these developments may open up new opportunities to expand exports; in others they may affect Africa's trade balance by accelerating the growth in imports.presents significant opportunities for economic growth and social transformation. The demand for food in local, national, and regional markets is projected to increase fourfold by 2030, which will trigger demand for a wide range of Despite vigorous economic growth since the beginning of the 2000s, Africa's poverty rates are still the world's highest (ECA-AU-ADB-The Push for an Inclusive, Green Economy Implications of dietary changes for agroprocessing and trade. Demographic changes are giving rise to shifts in diets and in the composition of food demand. Increasingly affluent consumers, subject to rising time pressures associated with urban lifestyles, are seeking higher-quality and more convenient foods. In addition to overall higher food demand, rising incomes have led to increased diet shares of processed foods and higher-value foods such as meat and dairy (Hollinger and Staatz 2015;Tschirley et al. 2015). These demand changes are creating opportunities for domestic producers and agroprocessing firms. Recent studies document rising numbers of local firms processing staples for urban consumption, including, for example, the rapid expansion of teff millers and retail shops providing teff flour and ready-to-eat enjera in Addis Ababa, and the development of branded ready-to-cook or readyto-eat millet products in Dakar (Badiane andUlimwengu 2017, Reardon et al. 2015).However, rapidly increasing imports of processed and high-value foods are giving rise to concerns that the opportunities associated with rising demand in Africa will be seized by producers and firms in other regions (Traub et al. 2015). Projections of food consumption through 2040 in Eastern and Southern Africa (Tschirley et al. 2015) and in Western Africa (Zhou and Staatz 2016) suggest that overall food demand will continue to increase rapidly, and that much of this demand will be met by imports, in the absence of policy action and investments to raise productivity and upgrade domestic markets. In some cases, however, African agroprocessors are serving domestic markets by adding value to imported raw materials. Hollinger and Staatz (2015) point out that in West Africa, imports of unmilled wheat are growing faster than imports of wheat flour and processed wheat products including breakfast cereals and macaroni, suggesting that local firms are increasingly producing processed products themselves using imported inputs. Larger and more successful agroprocessors tend to be those which make use of imported inputs such as wheat, fruit juice concentrate, and powdered milk (Hollinger and Staatz 2015).Growth in food demand also provides opportunities for the expansion of regional trade. An inventory of processed grain products for sale in Dar es Salam, Tanzania found that domestically produced processed products accounted for around 60 percent of the products inventoried, with products from neighboring countries accounting for another 10 percent (Snyder et al. 2015). In West Africa, strong projected growth in demand for meat in coastal areas offers potential for major expansion of intra-regional livestock exports from Sahelian countries (Hollinger and Staatz 2015). In general, the extent to which both regional and local producers and agroprocessing firms will capture the growing African food market will depend on African countries' abilities to raise productivity at all stages of value chain and increase the efficiency of markets and trade.Intra-African trade can create wealth and improve food security, and should be encouraged in response to global climate change and international food price volatility (Odozi 2015). Yet, at an estimated 20 Deepening regional integration will help African countries both increase regional trade and more effectively participate in global value chains (Toledano 2015). This can be achieved by developing regional infrastructure to ensure a flexible agriculture and food sector that is able to respond to regional demand (European Union 2013).Countries should also exploit current regional integration agendas to support crossborder trade and investments. Some countries and regional economic communities (RECs) have achieved more success in increasing economic integration than others and, consequently, have reaped rewards from lower trade barriers (Barclays 2015). The region's less industrially developed economies could learn from those already participating in global markets. Domestic enterprises have a higher probability of succeeding in regional markets initially. \"Learning by doing\" prepares these small businesses for the greater complexity of and competition within global markets (WEF 2015). As a result, lead firms in more regionally integrated countries are benefitting from economies of scale in production and distribution and enjoy expansive market access for end products. Many East African Community (EAC) and Southern African Development Community (SADC) countries are leaders in terms of regional linkages, having a propensity to work collaboratively in developing regional agricultural strategies and associated services. EAC has integrated quickly, largely due to opportunities arising from integrated trade policy and the willingness to enforce it (Barclays 2015).sustainability of the continued growth required to reduce poverty is a major challenge.A number of African countries, such as Ethiopia, Ghana, Rwanda, Senegal, and South Africa, are already experimenting with green economic policies in order to ensure the environmental sustainability of economic growth, and several have developed green economy strategies (UNEP 2015). Green public procurement practices are enabling the development of markets for renewable energy, energy efficiency, and sustainably produced food in Ghana and South Africa (Hanks, Davies, and Perera 2008;Liebert 2012). The key strategic goal is to establish regulated and harmonized crossborder trade in agricultural produce. Regional trade and investment agreements (RTAs) are assisting in developing regional value chains and bolstering efforts to add value throughout Africa. Regional value chains exemplify the vast potential of RTAs to support broader cooperative efforts targeting trade liberalization, facilitation, and investment and the implementation of joint investment mechanisms and institutions (OECD, WTO, and UNCTAD 2013). A small number of RECs have achieved their intraregional trade targets, butwithin Africa-the proliferation of multiple RTAs, institutions, and initiatives can at times constitute a barrier to progress on trade (Mbekeani 2013).Reducing tariff and nontariff trade barriers is vital to increasing the competitiveness of African trade. Nontariff measures account for a large share of trade costs and limit the participation of African agribusinesses in global value chains, as well as hampering intra-African trade (WEF 2015; also see Chapter 7, this volume). Barriers range from trade policies, such as export bans, to regulatory failure that results in high transport, border-crossing, and agricultural input costs (Brenton, Portugal-Perez, and Regolo 2013). Lack of coordination across departments, onerous border procedures, weak crossborder cooperation, and corruption also constitute barriers to intra-African trade (Barclays 2015). To improve the unsatisfactory performance of Africa's logistics and transport sectors, deliberate efforts must be made to establish effective and more competitive licensing procedures (WEF 2015).Some of Africa's RECs have played a role in increasing trade flows within Africa by reducing trade barriers. However, intraregional trade is still negatively affected by high tariffs; incompatible rules of origin; and issues with the implementation of trade policies and regulations (WEF 2015). To spur rapid growth, SADC is now promoting an agenda of industrialization by greatly reducing most tariffs. Member countries are enabling firms to take full advantage of the tariff reform by working to strengthen the enabling environment through improved port facilities, energy and water supplies, transport networks, and trade administration (Barclays 2015). ECOWAS is working toward achieving a free-trade area in the region by encouraging member state governments to remove barriers to trade (Hollinger and Staatz 2015).Non-tariff barriers and regional trade. Policies related to standards and rules of origin can play significant roles in affecting market access and trade between countries. While liberalized agricultural markets require an effective standards system, enforcement regimes can present a barrier to trade in crops and farm inputs due to the low capacity of most countries to ensure adherence to regulations. In addition to the free movement of products across borders, regional food market integration would facilitate routine and less costly food safety checks, including control of disease and pests and plant health inspections (World Bank 2012).World Bank (2012) reports that most African RTAs focus on harmonizing standards and instituting cross-country cooperation. Some RECs have begun developing frameworks for this purpose. The Common Market for Eastern and Southern Africa (COMESA), for example, has instituted regionally harmonized standards for around 300 commodities, including staple grains and cereals. In addition, the \"COMESA Green Pass\" is a harmonized sanitary and phytosanitary regime that includes a regional certification system. Other RECs-ECOWAS, EAC, and SADC-are also working to harmonize regional standards, but implementation is inadequate (within SADC, for example, as of 2012, only Swaziland and Namibia had adopted all 78 of the region's harmonized standards).Current rules of origin unduly restrict market access among African countries. To increase foreign direct investment (FDI) and intra-industry trade within Africa, market access must be expanded; national-level reform is needed to streamline rules of origin and harmonize mutual standards (Mbekeani 2013). Promising initiatives exist but need development. (WEF 2015).The rise of regional trade hubs and regional value chains. The expansion and advancement of strategic regional value chains offer significant trade opportunities. That is why most RECs have focused on regional value-chain development and market access as a means of promoting intraregional trade. As part of the Malabo Declaration, African leaders pledged to establish public-private partnerships to develop at least five strategic regional value chains strongly linked to smallholder agriculture (ECDPM 2014).Given Africa's high and increasing level of food imports, significant scope exists to expand intra-regional food trade through greater integration of national and regional markets. Growing specialization of crossborder value chains presents further potential for development, growth, and job creation and has contributed to changes in trade and investment patterns and trade policy (OECD, WTO, and UNCTAD 2013). The growing importance of rice in national consumption and in trade in West Africa, for example, has enabled Nigeria to become the hub of a strategic regional value chain. Nigeria is a huge rice producer and consumer in the West Africa region and any policy actions it takes have impacts across the region.The Barclays 2015 Africa Trade Index assesses African countries on their openness, market opportunities, and connectivity. Several East African countries receive high ratings, partly because of the region's economic growth and increasing regional integration. Kenya, which is ranked third in the index after South Africa and Nigeria, serves as a hub for East African trade and has a leadership role in facilitating intraregional trade and advocating for harmonized regulations and policies. Ethiopia and Tanzania also perform well in the index, reflecting the growing importance of East Africa as a global, as well as intraregional, trade hub (Barclays 2015).The private sector is responding positively to the above developments. Private firms are increasingly investing in the infrastructure needed to expand their operations, which contributed to an 8 percent increase in intra-African investments during 2009-2013. Shoprite, a South African supermarket chain that has developed distribution centers, has helped to facilitate crossborder trade, including power generation and transport infrastructure (Barclays 2015).Expansion of regional infrastructure and development of trade corridors. The development of effective regional infrastructure systems opens up opportunities and enhances competition. Greater investment in prioritized infrastructure at national and regional levels will promote trade, provided there is sufficient political will to do so. Multi-country resource-based development corridors can be an important tool to promote regional trade. By leveraging economies of scope, such corridors subsequently support investment in multiple types of infrastructure-such as electric power, fiber optic cables, and water distribution-and facilitate the development of other sectors, including agriculture (Toledano 2015). A study by Barclays (2015) ICTs have revolutionized information access needs of smallholder farmers, other value chain actors, governments, and consumers. Agronomic information on inputs and planting seasons and advisory services can now be easily accessed via user-friendly ICT platforms. The impact of ICTs has been particularly strong for smallholder farmers, increasing their uptake of new technologies, expanding their economic opportunities, redressing some of the information asymmetries they face, and increasing their efficiency. ICTs are also connec-ting farmers to knowledge networks and providing real-time information on market prices, weather conditions, and financial resources and services including credit and insurance.The importance of social media as a tool for marketing and client interaction is rising. ICTs are also providing the means to track the progress of crops, animals, and products along the value chain, from farm to purchase, providing the necessary information for traceability by the increasing number of highly informed and health conscious urban consumers (Table 6.1) (KPMG International 2013).ICTs, particularly mobile phones, have often been found to increase market efficiency and integration within a country and to facilitate farmers' access to markets (e.g. Jensen 2007, Aker 2008, Muto and Yamano 2009). The impact of ICT on international agricultural trade has been less studied. To the extent that they reduce production costs, ICTs can be expected to improve countries' trade competitiveness. ICTs can also reduce trade costs; for example, internet usage by businesses has been found to facilitate exports (Yushkova 2013). In addition, ICTs have the potential to help farmers access international value chains by improving their ability to meet traceability requirements (Karippacheril, Diaz Rios, and Srivastava 2017). Mobile and web-based virtual markets which connect buyers and sellers can facilitate and improve the efficiency of international as well as domestic trade. The virtual marketplace and market information service operated by Esoko in Ghana and several other countries was found to simplify the procurement process for a plant product exporter and increase the producers' and traders' share in the export price (Donovan 2017). The recent signing of economic partnership agreements between the European Commission (EC) and Africa's RECs may encourage increased engagement with Africa from the United States and Asian countries, as they seek to keep or retain access to markets and suppliers (Barclays 2015). Key developments are discussed below, which offer major opportunities for African exports as well as potential challenges.Economic partnership agreements. Economic partnership agreements (EPAs) between the EC and three RECs-EAC, ECOWAS, and SADC-were completed in 2014 (Barclays 2015). The agreements are reciprocal free trade agreements with development objectives that replace previous unilateral preference arrangements. The agreements ensure access to European markets for African exports, at the same time giving African countries the ability to protect certain products in their markets (Ramdoo 2014). Proponents of the EPAs suggest that they will support both global and regional integration of African countries and catalyse agricultural investments and economic transformation (EC 2016a; EC 2016b). However, others have argued that African industries could be harmed by competition from European imports (Njehu 2015) and that growth in trade with Europe may reduce intra-AfricanCompliance with international standards requires public and private sector participation.In Kenya, green bean producers and exporters have been successful in making the required adjustments to meet increasingly strict EU food safety standards (World Bank 2013). This has involved certifying producers according to the new standards and developing market infrastructure including cold chains and certified packaging facilities. The Kenyan government invested in road and air transport infrastructure and provided extension services and market information, while the private sector played a key role in coordinating producers. Originally, large exporters contracted with smallholder producers, helped them access inputs and equipment, and provided technical assistance and monitoring. Later, producer organizations took on the role of coordinating smallholders.trade-an effect that can be mitigated by more concerted efforts to establish a continental free trade area in Africa (Karingi, Mevel and Valensisi 2015). Capacity building support and value chain development initiatives can help African countries to derive greater benefits from the EPAs (Woolfrey and Bilal 2017). Increasing the Use of Warehouse Receipt SystemsSmallholder farmers face many obstacles in reaching markets, including lack of market information, storage capacity, and the ability to share risk and information with other farmers based on their geographical remoteness. Increasing access to markets and market information improves farmers' bargaining power and allows them to make better-informed decisions about production and marketing. The Ethiopia Commodity Exchange (ECX) demonstrates the potential of institutions to link smallholder farmers to markets, and share the benefits of agricultural growth more widely. In addition to facilitating agricultural commodity sales, ECX provides market information and Warehouse receipt systems are an innovative risk management strategy that enables farmers to store their crops in private warehouses and receive a receipt-that can be sold or used as loan collateral-specifying the quantity and quality of the commodity as proof of ownership.The system helps farmers and buyers manage risk in several ways. First, the system can mitigate seasonal price fluctuations by allowing farmers to store commodities during periods of low prices and sell when prices are higher. Second, the system facilitates farmers' access to credit by providing receipts that serve as collateral. Third, the system makes large quantities of a given quality of agricultural produce manages a certification system that ensures a premium price for high-quality output. (Beck and Cull 2014). Further advancement in finan-Futures markets, which offer contracts for food commodities to be fulfilled at a future date, offer one method of ensuring that food supplies remain available without maintaining physical reserves. In order to allow for effective hedging against price risks, contracts must be credible and provide countries with the options (a) of buying given quantities for a previously determined maximum price, or (b) of declining to execute the contract in the event that existing food supplies are sufficient. African countries have very few high-volume futures markets, however. The best example is the South African Futures Exchange (SAFEX), which offers call options on futures contracts for yellow maize, white maize, sorghum, and wheat.Information System 2015). Regional market information systems would also benefit African countries by enabling them to enact trade policies that better account for regional food availability. Some progress has been made by African RECs, such as the regional food balance sheets being developed by COMESA and EAC. International partners can play a role in supporting these efforts to improve agricultural market information in Africa (World Bank 2012). cial sectors will be required to facilitate the investments necessary to allow African firms to increase their value added and their access to value chains (WEF 2015).Improving access to financial services through innovation. Kenya's experience demonstrates the potential for rapidly expanding access to financial services through mobile technology. M-Pesa, a virtual money transfer platform launched in 2007 by Safaricom, allows customers to make transactions using mobile phones. M-Pesa has more than 20 million subscribers, more than the combined total of Kenya's five largest banks; related platforms linked to M-Pesa provide access to insurance, loans and other services (Africa Contracts are purchased and may be executed or closed according to a country's needs, and physical commodities do not change hands unless contracts are executed. The government of Malawi has used SAFEX contracts to save an estimated US$60 per ton over spot (that is, current) prices for imports (Nijhoff 2009). Futures and options markets present interesting potential to insure against food price risks. Sufficient funds must be available to purchase commodities from futures markets (which could take the form of a regional fund). Governments will need to determine whether the private sector can play a role in using futures markets to offset risk (World Bank 2012). More needs to be done to remove barriers to trade and market integration. Countries and regions should continue to promote the free movement of people, goods and services across the continent. Further efforts are needed to enhance regional integration and increase trade flows in order to take advantage of the potential of regional trade to stabilize food markets. In order to meet the Malabo Declaration goal of tripling intra-regional trade in agricultural goods and services, Africa's countries and regional economic communities must advance efforts to harmonize food safety and quality standards and regulations as well as reducing other barriers to crossborder trade. The more countries find ways to accelerate the pace of trade growth within Africa, the larger that influence is expected to be in the future.This chapter assesses the future outlook for intra-regional trade expansion in West Africa and the implications for the volatility of regional food markets. The chapter begins with an analysis of historical trends in intra-regional trade of major staple food products, as well as the positions of individual West African countries in the regional market. This is followed by an exploration of the potential of regional trade to contribute to stabilizing food markets, and an assessment of the scope for expanding crossborder trade. The chapter then presents results from a regional trade model used to simulate alternative scenarios for increasing trade and reducing volatility within West Africa's regional market. Finally, conclusions are presented.In that period, the region more than doubled its level of trade in cereals in the early 2000s; however, the regional cereals market contracted heavily during 2011-2013. (20.6 and 18.4 percent, respectively). Thus, these major importing countries accounted for 89.4 percent of the regional import market, the remaining 10.6 percent comprising imports by Benin, Ghana, Guinea, Mauritania and Togo. In contrast, Niger (50.5 percent) and Mali (43.2 percent) were the largest regional net exporters of live animals, followed by Burkina Faso (6.2 percent); other countries contributed negligible shares. In concluding the focus on historical trends in intra-regional trade, it is important to analyze harassment practices, which are perceived as bottlenecks to the free movement of goods (and people) across the region. Survey data on checkpoints, bribes paid, and delays along major crossborder transport corridors in West Africa are summarized in Figure 7.3. The average values plotted illustrate the importance of abnormal trade costs to traders ope-rating within the regional West African market.As of 2010-2012, at least two checkpoints were encountered every 100 kilometers, and a minimum of 2000 West African CFA francs (CFAF) were paid in bribes across the surveyed transport corridors. More than three checkpoints were found along the corridor connecting Bamako (Mali) and Ouagadougou (Burkina Faso), and bribes exceeded CFAF 6000 on average. The variability of domestic production is a major contributor to local food price instability in low-income countries. The causes of production variability mean that an entire region is less likely to be affected than are individual countries. Moreover, fluctuations in national production levels for different countries tend to partially offset each other, such that fluctuations are less than perfectly correlated. As a result, food production can be expected to be more stable at the regional level than at the country level. In this case, expanding crossborder trade and allowing greater integration of domestic food markets would reduce supply volatility and price instability in these markets.Integrating regional markets through increased trade raises the capacity of domestic markets to absorb local price risks by (1) enlarging the area of production and consumption, thus increasing the volume of demand and supply that can be adjusted to respond to and dampen the effects of shocks; (2) providing incentives to invest in marketing services and expand capacities and activities in the marketing sector, thereby raising the capacity of the private sector to respond to future shocks; and (3) lowering the size of needed carryover stocks, thereby reducing the cost of supplying markets during periods of shortage and hence decreasing the likely amplitude of price variation. is the adjusted coefficient of determination of the linear trend model fitted to the series. Next, an index of regional cereal production volatility was derived for the ECOWAS region as a weighted average of the trend-corrected coefficients of variation of its member countries with the formula (Koester 1986):This section presents a simple comparison of the variability of cereal production in individual countries against the regional average to illustrate the potential for trade and local market stabilization through greater market integration (Badiane 1988). For that purpose, a trend-corrected coefficient of variation was For almost all countries, national production volatility was considerably larger than regional level volatility during 1980-2010, the exception being Côte d'Ivoire (Figure 7.4). Gambia, Liberia, Mali, Niger, and Senegal all recorded considerably higher volatility levels than the region. As a result, these countries would be the biggest beneficiaries of increased regional trade in terms of greater stability of domestic supplies.where and are the trend-corrected coefficients of variation in cereal production in countries and , is the number of ECOWAS member countries, and are the shares of countries and in the region's overall cereal production, and is the coefficient of correlation between the series of cereal production quantities in countries and . Finally, the trend-corrected coefficients of variation calculated at the country level were normalized by dividing them by the regional coefficient. used as a measure of production variability at the country and regional levels. Following Cuddy and Della Valle (1978), the trend-corrected coefficient of variation in cereal production was calculated for each member of the Economic Community of West African States (ECOWAS) as follows:However, the likelihood of a given country benefiting from the trade stabilization potential of less volatile regional production also depends on the correlation between the fluctuations in its production and that of other countries in the region: the weaker the relationship, the more likely that regional production will be able to fill national shortfalls. Despite the recent upward trends, the level of intra-African and intra-regional trade is still very low compared with other regions. Intra-African markets accounted only for an average of 34 percent of all agricultural exports from African countries between 2007 and 2011 (Badiane, Makombe, and Bahiigwa 2014). A host of factors may be behind these low levels of intra-regional trade, not only making trading with extra-regional partners more attractive, but also raising the cost of supplying regional markets from intra-regional sources. The exploitation of the stabilization potential of regional trade, as described above, would require measures to lower the barriers to and bias against transbor-However, the share is less than 30 percent for some countries, including Guinea-Bissau, Liberia, and Senegal. The division of the region into two nearly uniform subregions (Sahelian and coastal) may explain this. In general, the patterns and distribution of production fluctuations across the region's countries are such that increased trade could be expected to contribute to stabilizing domestic agricultural and food markets. That is only one condition, however. The other is the actual potential to increase crossborder trade, which is examined in the next section. der trade so as to stimulate the expansion of regional supply capacities and of trade flows across borders. This assumes that sufficient scope exists for specialization in production and trade within the region. It is often assumed that neighboring developing countries would exhibit similar production and trading patterns because of the similarities in their resource bases, which would leave little room for future specialization.Several factors, however, may cause different specialization patterns among such countries, including (1) differences in historical technological investments and thus the level and struc- where and are the production and export similarity indexes, respectively; and.......... are the shares of a product in the total agricultural production of countries and , respectively; and and.... are the shares of a product.... in the total agricultural exports of countries and . , respectively. The level of importance or position of each product was then compared for all relevant pairs of countries within the region. 20 The indexes have a maximum value of 100, reflecting complete similarity of production or trade patterns between the considered pair of countries. ture of accumulated production capacities and skills; (2) the economic distance to, and opportunity to trade with, distant markets; and (3) differences in dietary patterns and consumer preferences that affect the structure of local production. The different patterns of specialization in Senegal compared with the rest of Sahelian West Africa and in Kenya compared with other Eastern African countries illustrate the influence of these factors.Consequently, a series of indicators was used to assess the actual degree of specialization in The more the value of the indexes tends toward zero, the greater the degree of specialization between the two countries. The results of the calculations cover 150 products in total (Figures 6.6 and 6.7).The vast majority of country pairs fall within the 0-50 range. A value of less than 60 is conven-agricultural production and trade, and whether real scope exists to expand transborder trade as a strategy to exploit the less-than-perfect correlation among national production levels to reduce the vulnerability of domestic food markets to shocks. The first two indicators are the production and export similarity indexes, which measure and rank the relative importance of the production and trading of individual agricultural products in each country. These two indexes were calculated for country pairs using the following formulas: tionally interpreted as compatible with higher trade exchange between the considered pair of countries. The estimated index values therefore suggest sufficient dissimilarity in current country production and trading patterns exists such that there is scope for transborder trade expansion in the region. A third indicator, the revealed comparative advantage (RCA) index, was computed to further assess the degree of trade specialization among countries within the region. This index was calculated according to the following formula (Balassa 1965):where is the export value of an agricultural product from country to destination , and is the world export value of the same product to the same destination.The RCA index compares the share of a given product in a given country's export basket with that of the same product in total world exports. A value greater than 1 indicates that the considered country performs better than the world average. The higher the value, the stronger the performance of the country in exporting the considered product. Of the nearly 450 RCA indicators estimated for various products exported by different ECOWAS countries, 73 percent recorded a value higher than 1. Following Laursen (2000), the RCA index is normalized through the formula Thus, the normalized RCA (NRCA is positive for RCA indicators that are greater than 1 and negative otherwise. For very high RCA indicators, the normalized value tends towards 1. The 20 products with the highest normalized RCA index values are presented in Table 7.3. All the products in the table have normalized RCA values above 0.98. The rankings reflect the degree of cross-country specialization within the ECOWAS region. For instance, 12 products spread across 8 of the 15 member countries account for the region's highest 20 normalized RCA indicator values. Source: Authors' calculations based on FAO (2014).So far, the analysis has established the existence of dissimilar patterns of specialization in production and trade of agricultural products among ECOWAS countries. Two final indicators, the trade overlap indicator (TOI) and trade expansion indicator (TEI), were calculated to examine the potential to expand trade within the region based on current trade patterns. These indicators measure how much of the same product a given country or region exports and imports at the same time.The TOI measures the overall degree of overlapping trade flows for a country or region as a whole, while the TEI measures the overlapping trade flows at the level of individual products for a country or region.The TOI and TEI are calculated as follows :where and denote the values of the exports and imports of an agricultural product by a country . The TOI varies between 0 and 1 and will be 0 if the country only exports or imports any individual products. It will be 1 in the unlikely situation in which the country both exports and imports all traded products by an equal amount. The TEI indicates the percentage of the country's exports (imports) of a product that are matched by the country's imports (exports) of the same product (Figure 7.8 and Table 7.4). The figure indicates a considerable degree of overlapping trade flows: 25 percent for Africa as a whole and as much as 17 percent for the ECOWAS region. Normalized TOI values obtained by dividing country TOI values by the TOI value for the region can be found in Badiane, Makombe, and Bahiigwa (2014). In the vast majority of cases, they are significantly less than 1. The overlapping regional trade flows must therefore be from different importing and exporting countries. In other words, some countries are exporting (importing) the same products that are being imported (exported) by other ECOWAS member countries, but-in both cases-to and from countries outside the region. By redirecting such flows, countries should be able to expand transborder trade within the region.The TEI indicates which products have the highest potential for increased transborder trade based on the degree of overlapping trade flows. The 20 products with the highest TEI value for the region are listed in Table 7.4. The lowest indicator value for any of the products is 0.41, and the average value is 0.56. RCA values for the same products, presented in Badiane, Makombe, and Bahiigwa (2014), are all greater than 1, except for fresh fruit. The fact that products with high TEI values also have high RCA values points to real scope for transborder trade expansion in the region. The findings presented above point to the existence of a real potential to expand intra-regional trade within ECOWAS beyond its current levels, even with current production and trade patterns.The remainder of the chapter therefore analyzes the outlook for expanding intra-regional trade and the expected impact on the volatility of regional food markets from 2008 to 2025. This is done by simulating alternative policy scenarios to boost intra-regional trade, comparing the effects on the level and volatility of trade flows against historical trends and outcomes under a baseline scenario that would continue those trends.The preceding analysis presented evidence showing that ECOWAS countries could use increased regional trade to enhance the resilience of domestic markets to supply shocks. The high cost of moving goods across domestic and transborder markets and outwardly biased trading infrastructure are major determinants of the level and direction of trade among African countries. A strategy to exploit the regional stabilization potential must, therefore, include measures to lower the general cost of trading and remove additional barriers to crossborder trade. This section simulates the impact on regional trade flows of changes in that direction. Simulations of changes are carried out using the regional Economywide Multimarket Model of the International Food Policy Research Institute (IFPRI) described below (see Diao et al. 2007 andNin-Pratt et al. 2010).The original model has been augmented in this study to account for intra-versus extra-regional trade sources and destinations, as well as informal versus formal trade costs in intra-regional trade transactions. In its original version, the model solves for optimal levels of supply , demand and net trade (either imports or exports ) of different commodities for individual member countries of the modeled region.Supply and demand balance at the national level determines domestic output prices as stated by equation (1), while equation (2) connects domestic market prices to domestic output prices, taking into account an exogenous domestic marketing margin . The net trade of a commodity in a country is determined through mixed complementarity relationships between producer prices and potential export quantities, and between consumer prices and potential import quantities. Accordingly, equation (3) ensures that a country will not export a commodity as long as the producer price of that commodity is higher than its export parity price, where is the country's free on board (FOB) price and is an exogenous trade margin covering the cost of moving the commodity from and to the border. Having determined export quantities and prices by destination and import quantities and prices by origin, the regional market clearing price, , can now be solved. Equation ( 17) imposes the regional market balance constraint by equating the sum of intra-regional export supplies to the sum of intra-regional import demands, with standing for discrepancies existing in observed aggregate intra-regional export and import quantity data in the model's base year. Thus, is determined as the price that ensures the regional market balance:Calibration is performed so as to replicate, for every member country within the region, the same production, consumption, and net trade data observed for different agricultural subsectors and two nonagricultural subsectors in 2007-2008. Baseline trend scenarios are then constructed such that, until 2025, changes in crop yields, cultivated areas, outputs, and GDP reflect the same observed changes. Although the model is calibrated to the state of national economies seven years earlier, it closely reproduces the countries' current growth performance.Four different scenarios are simulated using the model. The first is the baseline scenario described above, which assumes a continuation of current trends to 2025 and is used as a reference to evaluate the impact of changes under the remaining three scenarios. These other scenarios introduce three different sets of changes to examine their impacts on regional trade levels:1. A 10 percent reduction in the overall cost of trading across the economy;2. Removal of all harassment costs (that is, a reduction of their tariff equivalent to zero); and 3. A 10 percent increase in yields across the board.These changes occur between 2008 (the base year) and 2025. The change in crossborder exports is used as an indicator of the impact on intra-regional trade. In the original data, large discrepancies exist between recorded regional export and import levels, with import levels often being a multiple of export levels. The more conservative export figures are therefore the preferred indicator of intra-regional trade.(Simulation Results for Intra-Regional TradeAssuming a continuation of current trends, intra-regional trade in ECOWAS is expected to expand rapidly, but with marked differences across crops (Figure 7.9). The aggregate volume of intra-regional trade in staples approaches 3 million tons under a scenario where the current rates of growth in yields, cultivated areas, population, and income are sustained to 2025. Cereals undergo the smallest gains, whereas trade in roots and tubers and other food crops undergo much faster growth.The cumulative changes in intra-regional export levels by 2025 were compared against baseline levels to determine what would result from a reduction in total trading costs, removal of harassment costs, and an increase in yields (Figure 7.10). The results invariably show considerable increases in intra-regional trade in cereals and roots and tubers, the main food crops, in response to changes in trading costs and yields. Intra-community trade levels in ECOWAS climb by between 10 and 35 percent for most products over the entire period. The volume of cereal trade increases by a cumulative total of between 200,000 and 300,000 This is in line with the current structure of and trends in commodity demand and trade. While the increase in demand for roots and tubers is being met almost exclusively from local sources, the fast-growing demand in cereals is heavily tilted toward rice, which is supplied from outside of the region. The two leading cereals that are traded regionally, maize and millet, therefore benefit less from the expansion of regional demand and have historically seen slower growth in trade than roots and tubers.tons for individual products, and that of overall trade in staples by between 1.5 and 4.0 million tons by 2025, compared with baseline trends. In general, cereals seem to respond better than other products. It also appears that removing harassment costs has the strongest impact on trade flows across the board. Countries respond more significantly to the removal of harassment costs than to the reduction of normal trade costs, except for Benin, Guinea-Bissau, Niger, and Sierra Leone, which appear to be more responsive to increases in crop yields than to reductions in normal trading costs or harassment costs (Table 7.5). Under each scenario, the model's simulated quantities of intra-regional exports, , are used to estimate an index of future export volatility at country and regional levels as follows. First, a trend-corrected coefficient of variation, , is calculated for each country:where is the coefficient of variation in the series of the intraregional exports of staple food crops by a country from 2008 to 2025, and is the adjusted coefficient of determination of the linear trend model fitted to the series.Then an index of regional volatility, , is derived for the ECOWAS region as a weighted average of trend-corrected coefficients of variation for its member countries with the formula.where and are the trend-corrected coefficients of variation in the export of staple food crops in countries and , is the number of ECOWAS member countries, and are the shares of countries and in the region's overall intra-regional exports of staple food crops, and is the coefficient of correlation between the food crop exports of countries and . Finally, the coefficients of variation at the country level are normalized by dividing them by the regional coefficient. The historical and simulated levels of volatility of crossborder trade in food staples in the region under historical trends and each of the alternative scenarios are reported in Table 7.6. Volatility levels under historical trends are calculated based on bilateral export volumes from the Trade-Maps database (1996)(1997)(1998)(1999)(2000)(2001)(2002)(2003)(2004)(2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012). Simulated volatility levels under the various scenarios are compared with the historical levels of volatility, with the difference expressed in point changes (Table 7.7). As can be seen from the figures in the two tables, regional crossborder trade volatility decreases with a reduction of overall trading costs but rises under the removal of crossborder trade barriers or with increases in yields. The magnitude of the changes are, however, rather small across all three scenarios. The results also show that under the continuation of current trends of rising volumes of intra-regional trade, the volatility level in the region is expected to decline compared with historical trends. A better comparison, therefore, is to contrast changes under the two trade policy scenarios and the productivity scenario with expected volatility levels under the baseline scenario.Furthermore, the direction and magnitude of changes in the level of intra-regional trade volatility are determined by the combined effect of changes in the level of volatility, as well as the shares of crossborder exports by individual countries (Figure 7.11).The dots in the figure indicate the position of different countries under the three scenarios.The tilted distribution of country positions to the left of the x-axis indicates that exports by most countries would experience a lower level of volatility under regional policies that would reduce the overall cost of trading, eliminate harassment costs by dismantling administrative and regulatory obstacles to transborder trade, or raise yields of staple crops in member countries. Changes in country production patterns resulting from the simulated policy actions lead to changes in both the volatility and export levels, hence the shares in regional trade for each country (Table 7.8). The magnitude and direction of these changes determine the contribution of individual countries to changes in the level of volatility in regional food markets. to significantly boost the pace of regional trade expansion, which in turn would contribute to creating more resilient domestic food market through a modest reduction in the overall cost of trading, a similarly modest increase in crop yields, or the removal of barriers to transborder trade. More importantly, the simulation results also suggest that such policy actions to promote transborder trade would reduce volatility in regional markets and help lower the vulnerability of domestic food markets to shocks. This report has presented an examination of the recent trends, current status, and future outlook of African agricultural trade in global and regional markets. In this final chapter, the report's findings are briefly summarized, and general conclusions and policy recommendations are presented.The findings presented in Chapter 2 indicate that, although African exports have grown over time, imports have increased more rapidly, leading to a growing trade deficit. The increase in imports was due to demographic changes, as well as the low competitiveness of domestic producers. Despite the increase in agricultural exports, their share of Africa's total exports fell by half during 1998-2013 based on more rapidly rising exports of minerals and oil. Africa's agricultural exports appear to have become moderately more diversified during this timeframe, whereas imports remained fairly stable. The European Union (EU) remains Africa's top trading partner, but both imports from and exports to the EU declined during 1998-2013. Trade with Asia increased, such that-if these trends continue-Asia is likely to replace the EU as Africa's top trading partner. Efforts to pursue increased economic integration led to significant increases in intra-regional trade during the period, although, as of 2013, the overall level of intra-regional trade remained low.Chapter 3 focused on intra-regional trade patterns, both Africa-wide and among the four major regional economic communities (RECs): the Economic Community of West African States (ECOWAS), the Economic Community of Central African States (ECCAS), the Common Market for Eastern and Southern Africa (COMESA), and the Southern African Development Community (SADC). Findings indicate that intra-African trade expanded significantly during 1998-2013, increasing by about 12 percent per year on average. The largest increase occurred in the ECCAS region, whereas the lowest increase was in the SADC region. Regional trade integration-measured as the ratio of trade within each of the four RECs to the total trade of each REC across Africa-was highest in ECOWAS and lowest in ECCAS.Ousmane Badiane, Sunday Pierre Odjo, and Julia Collins COMESA and SADC play larger roles as destinations for and origins of African trade than do the other two RECs.Chapter 4 presented a review of changes in the competitiveness of exports of different countries and agricultural products during 1998-2013, and investigated the determinants of these changes through econometric analysis. Findings indicate that, in most RECs, member countries increased or maintained their competitiveness in global and regional markets; the exception was ECCAS, whose member countries tended to lose competitiveness. Improvements in the competitiveness of the member countries of COMESA, ECOWAS, and SADC primarily occurred in intra-regional markets. With some exceptions, the majority of African export commodities gained competitiveness in global markets. The most competitive commodities accounted for fairly small export shares, however, suggesting that potential exists to expand exports by leveraging gains in competitiveness. Determinants of competitiveness improvements were found to include the ease of doing business, institutional quality, the size of the domestic market, and the quality of customs.Chapter 5 presented an examination of factors contributing to Africa's improved agricultural export performance, using a gravity model to assess the importance of different determinants of trade and of the constraints to further improving exports. Findings indicate that supply-side constraints (including production capacity and the cost of trade) affect trade performance to a greater extent than do demand-side constraints (including trade policies and agricultural supports in importing countries). This suggests a focus on removing domestic constraints to increased trade. Nontariff barriers to trade were also found to be increasing and to present larger obstacles to exports than do tariffs. Findings highlight the potential of RECs to promote the removal of barriers to trade at both the regional and global levels, as well as the continued importance of global cooperation to facilitate trade.Chapter 6 presented a review of a broad range of domestic and global factors within and beyond the agricultural sector that affect African trade performance and outlook. Emerging issues, such as climate shocks and increasing nontariff barriers to trade, present threats to trade performance. The chapter also addressed a variety of developments with the potential to boost African trade, including the development of a modern agribusiness sector, increasing regional integration, changing perceptions of agriculture on the part of youth, investments in hard and soft infrastructure, and efforts to increase domestic capacities to engage in trade. Evidence indicates the need for action on a wide range of fronts, including increased smallholder productivity and commercialization, increased regional integration and harmonization of standards, and continued investments in infrastructure and financial services.Chapter 7 presented an examination of the potential for increased intra-regional trade in West Africa, the feature region of this report, to stabilize domestic food markets in the region. Findings indicate that the distribution of production volatility among West African countries suggests significant potential to lessen the impacts of domestic shocks through increased regional trade, while patterns in agricultural production and trade show scope for increasing regional trade levels. Analysis of a simulation model shows that intra-regional trade is expected to increase under current trends. Intra-regional trade growth can be accelerated through small reductions in trading costs, small increases in crop yields, or a reduction in trade barriers. The increased intra-regional trade resulting from these changes would reduce food price volatility in regional markets.The analyses presented in this report demonstrate undeniable improvements in Africa's trade performance since the late 1990s, in both global and regional markets, as is reflected by the overall increase in competitiveness for the majority of countries and commodities. Nevertheless, progress has been uneven, with some regions and countries consistently underperforming others. Challenges remain in further enhancing Africa's competitiveness in global markets and in increasing intra-regional trade, which remains below its potential despite significant recent improvements. The findings of Chapter 4 point to the importance of the institutional and business environment in improving a country's export competitiveness, while Chapter 5 also emphasizes the role of domestic factors in increasing exports, including production capacity and trading costs. Global trade policies and international cooperation also play a large role in facilitating trade, as is discussed in Chapter 6. Chapter 7 focuses on West Africa, demonstrating the role of potential domestic and regional policy actions to increase intra-regional trade and enhance the stability of regional markets.The chapters suggest a series of recommendations for policymakers, including (1) efforts at country and regional levels to increase agricultural productivity along the value chain, improve market access, and improve the functioning of institutions; (2) regional actions to enhance economic integration and harmonize standards and procedures; and (3) Africa-wide efforts to promote trade facilitation in international negotiations. Policy actions such as these can influence the trends described in this report and accelerate improvements in Africa's trade performance, thereby increasing incomes and improving food security across the continent.","tokenCount":"31883"} \ No newline at end of file diff --git a/data/part_3/3600018980.json b/data/part_3/3600018980.json new file mode 100644 index 0000000000000000000000000000000000000000..835875d9270ae1fb5823fd70f184d7f3c5d51e20 --- /dev/null +++ b/data/part_3/3600018980.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"d950073a6a0ed4b59b408e558f27de17","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/1bb6e59b-997f-4991-8b6a-8ee28bdfbbad/retrieve","id":"299065663"},"keywords":["• Stage 3: Household Level Treatment Status -Stratification: Household Head Sex -Group: Low voucher","High Voucher","No voucher"],"sieverID":"13f297bb-aefa-42ab-9018-9c3c051ad321","pagecount":"28","content":"Voucher explains:• The value of the Voucher (1k, 1.5k ETB) • End date for redemption (March 2023) • Potential service provider(s) with contact number, etc.• Human muscle and draft animals are the major power sources in Ethiopian smallholder agriculture.• There are different initiatives in developing agricultural mechanization in the country (both on 2WT and 4WT).• Government intervention in supplying 2WTs from China under METEC (Metals and Engineering Corporation).• 2WTs were distributed to youth groups and individual farmers (entrepreneurs) on loan basis to those who provided support letters from District Offices.• Most of these 2WTs were used for threshing.• In areas where there is 2WT-based machinery services, demand for machinery service is low.• Identifying constraints and taking supportive measures could help in expanding the use of 2WT-based machinery services in rural areas of Ethiopia.Both supply and demand side interventions Three stages of randomization of treatment Balancing sample HHs Ever Used Machinery Service?(for any type of operation)Relatively men-headed households are more experienced in machinery service use (63% vs 49%). In farming operations mechanized, there is not much difference in the proportion of women-headed households from the total farmers used machinery services.(for those HHs who had experience in mech service use)Relatively, farmers in East Shewa Zone use mechanization services for large number of operations.(Farmers' report)• Land preparation, harvesting and threshing were reported as operations with more drudgery.• Any mechanization action should prioritize these operations in crop production.Probability a household has experience in mech service use ","tokenCount":"242"} \ No newline at end of file diff --git a/data/part_3/3609443567.json b/data/part_3/3609443567.json new file mode 100644 index 0000000000000000000000000000000000000000..ad20558298aacf5bd57443c57f4b73ab09381e09 --- /dev/null +++ b/data/part_3/3609443567.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"043226e8f2837e35a5a5068274e0f1e9","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/d836983b-3f51-423e-9b05-4d69fab29668/content","id":"-1138308106"},"keywords":["Tesfaye, A.A.","Aweke, B.G.","Sida, T.S.","Osgood, D.E. Enhancing automated machine learning","crop phenology","deep learning","remote sensing","sensor fusion","smallholder","wheat","yield prediction"],"sieverID":"3a0d13b4-82f2-4b51-8644-cfda8d77d9ce","pagecount":"22","content":"Field-scale prediction methods that use remote sensing are significant in many global projects; however, the existing methods have several limitations. In particular, the characteristics of smallholder systems pose a unique challenge in the development of reliable prediction methods. Therefore, in this study, a fast and reproducible new approach to wheat prediction is developed by combining predictors derived from optical (Sentinel-2) and radar (Sentinel-1) sensors using a diverse set of machine learning and deep learning methods under a small dataset domain. This study takes place in the wheat belt region of Ethiopia and evaluates forty-two predictors that represent the major vegetation index categories of green, water, chlorophyll, dry biomass, and VH polarization SAR indices. The study also applies field-collected agronomic data from 165 farm fields for training and validation. According to results, compared to other methods, a combined automated machine learning (AutoML) approach with a generalized linear model (GLM) showed higher performance. AutoML, which reduces training time, delivered ten influential parameters. For the combined approach, the mean RMSE of wheat yield was from 0.84 to 0.98 ton/ha using ten predictors from the test dataset, achieving a 99% confidence interval. It also showed a correlation coefficient as high as 0.69 between the estimated yield and measured yield, and it was less sensitive to the small datasets used for model training and validation. A deep neural network with three hidden layers using the ten influential parameters was the second model. For this model, the mean RMSE of wheat yield was between 1.31 and 1.36 ton/ha on the test dataset, achieving a 99% confidence interval. This model used 55 neurons with respective values of 0.1, 0.5, and 1 × 10 −4 for the hidden dropout ratio, input dropout ratio, and l2 regularization. The approaches implemented in this study are fast and reproducible and beneficial to predict yield at scale. These approaches could be adapted to predict grain yields of other cereal crops grown under smallholder systems in similar global production systems.Smallholder systems, which refer to farm units less that are than 2 ha in area and managed by family labor, are important global agricultural systems [1]. Low crop productivity has been one of the salient problems of these systems and affects food security in many parts of the world. For instance, Ethiopia, where smallholder systems are predominant, imported wheat with a value of USD 431,176 thousand in 2020 [2,3].Crop yield prediction is one of the tools that enables decision makers to enhance yield and increase profitability [4,5]. Since crop productivity influences the overall supply chain, crop monitoring and early prediction are vital in food security, crop insurance, marketing, and financial decision-making projects. Remote sensing (RS)-based prediction methods are preferred over traditional agricultural surveys. Yield estimation methods based on the vegetation index (VI) and derived from optical sensors are the most widely exploited methods. These methods, which can be placed under the parametric regression group, were developed based on an explicit association between spectral information and a given bio-physical variable [6]. That is, crop yield has an inherently functional relationship with canopy characteristics, biomass, and chlorophyll content. Remote sensing-derived indices represent a canopy-level reflectance response that is related to canopy attributes (biochemical, physiological, and morphological).In general, the development of robust field-scale prediction methods have well-known constraints. However, these constraints increase both in number and complexity under a smallholder system. Existing prediction methods, which often operate at national and regional scales, exploit the potential of the well-established coarse spatial resolution sensors (for instance, MODIS, which has a 250-1000 m spatial resolution) and medium temporal resolution sensors (for instance, Landsat, which has a temporal resolution of 16 days). Nonetheless, the resolution of these sensors has limited their application for field-scale prediction and, more importantly, for smallholder systems with peculiar characteristics such as small farm sizes. For instance, in Africa, the median size of a crop farm is between 1 and 2 ha, and most farms are less than 5 ha [7]. To this end, the availability of high-temporal and -spatial resolution sensors that are in the public domain, such as, Sentinel-2 have introduced a big opportunity for field-scale yield prediction.Some studies have applied high-resolution sensors for monitoring smallholder systems. Multiple sensors, including skysat, RapidEye, and Sentinel-2 (S2), have been applied to monitor smallholder maize fields in Kenya. The MERIS terrestrial chlorophyll index (MTCI) utilizes the red edge band and showed superior performance over commonly used vegetation indices. Landscape heterogeneity, small field sizes, and intercropping practices challenged yield mapping [8]. The leaf area index (LAI) is a major morphological variable that is a useful proxy for yield forecasting and crop management practices [9,10].Radar remote sensing, notably synthetic aperture radar (SAR), is another type of RS used for crop monitoring. It is advantageous over optical sensors due to its capacity to penetrate clouds and its independence from sun illumination [11]. Moreover, it is sensitive to changes in the canopy structure and biomass as well as to the water content of an earth's surface, which means that it has wider applications in agriculture. Sentinel-1(S1) is recently available SAR data with a high temporal resolution (at every 5-6 days) that is under the public domain [12][13][14]. It has been applied for studying crop productivity. The time series backscatter cross-polarization ratio (VH/VV) derived from S1 was applied to provide information about the yield of wheat at the field-scale. The duration of full vegetation showed a positive association with yield (r = 0.61). Conversely, the day of the year with the maximum VH/VV value was negatively associated with yield (r = 0.56) [15].Over the years, despite the types of VIs having increased, most of them have lost their predictive power when applied in other observation setups. This is associated with their inherent formulation. That is, originally, they could be developed under specific experimental designs, scales (leaf, plant, and canopy), sensor types (multispectral, hyperspectral or SAR), and environmental conditions. During verification studies and/or in scaling environments, the adoption of an environment similar to that of the original setting is often difficult; hence, achieving reproducibility is problematic. Moreover, factors, such as variability in the surface properties as well as in the sun and viewing geometry influence their capacity [16,17].Data mining methods, which describe the relationship between the vegetation indices used as predictors and field-collected data, for instance, crop yield used as a response, are other key components of prediction methods. There are three major categories, namely statistical, machine learning, and deep learning that constitute data mining approaches. Compared to the widely used traditional statistical methods, machine learning and deep learning are both promising and contemporary methods. Deep neural networks (DNNs) are networks with many hidden layers and represent an upgrade to shallow neural networks (SNNs). A study evaluated several vegetation indices and LAI derived from simulated S2 and hyperspectral images for maize biomass prediction using deep neural networks. The DNN algorithm helped to improve the estimation accuracy of maize biomass; the threeband water index was the superior model, with R 2 , RMSE, and RRMSE values of 0.76, 2.84 t/ha, and 38.22%, respectively [18].Though machine learning and deep learning methods have revealed superior performance over classical statistical methods, as they are developed using big data, their successful application often demands many observations. Field-collected crop yield, which is a response variable in the regression process, is expensive data, and hence, it is rarely available. Inherently, crop yield is a function of several parameters that pertain to climatic (temperature, rainfall), soil, input (crop variety, fertilizer, herbicides), management practices, and cropping patterns. A reliable and robust prediction method needs to incorporate the parameters that influence crop yield. This results in the addition of many potential predictors in the regression process. Thus, the application of data mining methods should be implemented within the context of small datasets and in contexts with higher data dimensionality. Nonetheless, recent studies have also applied deep learning methods with small datasets. The key motivation for using neural networks in deep learning is that they are ideal for processing multiple array formats in non-linear modules [19].Under heterogeneous, small farm fields and small observation datasets, a robust predication method will ideally have the following characteristics: the integration of influential predictors derived from vegetation indices that are a proxy of crop-growing factors and the application of sensors with an appropriate resolution capacity; in particular, the spatial resolution will enable smaller field sizes to be represented, while the temporal resolution will be good enough to monitor crop phenology. Such models would also utilize mandatory field-collected data, including data regarding the measured yield, input applied, management practices, and phenological information. These data mining methods also need to represent the complex relationship between the predictors and response variables powerfully using a small number of observations. Moreover, the method would be required to be repeatable and reproducible so that it could be applied in similar contexts and be scaled up. Previous research has applied machine learning to wheat yield prediction in Ethiopia. For instance, a study assessed the potential of an NDVI predictor with cloudy restored values for wheat yield prediction [20]. Nonetheless, the study was limited in terms of spatial area coverage, farm heterogeneity, the number of field-collected yield data, and the number of potential predictors considered and was incomprehensive in addressing the diverse data mining methods.In this regard, this study was motivated by the general objective of integrating machine learning and remote sensing technology for farm-level wheat yield prediction in smallholder systems. Within this framework, three specific objectives were set: First, the study aimed to evaluate the potential of selected vegetation indices derived from Sentinel-2 data that were representative of an optical sensor as wheat yield predictors. The second objective was to evaluate the potential of selected SAR indices derived from S1 data as wheat yield predictors. The third aim was to apply fast, reproducible, and open-source statistical, machine learning, and deep learning algorithms for wheat yield prediction under a small dataset domain.This study was located in one of the predominant wheat-growing regions of central Ethiopia (Figure 1a), which covers three districts (locally known as weredas): Arsi Sire, Dodota, and Ludehetosa (Figure 1b). The total area coverage is estimated to be 125,492 ha. Though elevation ranges between 1263 and 2984 m above sea level (masl), low-and mid-altitude landscapes dominate (Figure 1b). The farming system of the study area is characterized as rainfed and smallholder; this study selected 165 wheat farm fields through randomization (Figure 1b). The area of the study farms spans from 0.12 to 2.13 ha, with an average area of 0.53 ha, and most of them, as shown in the histogram in Figure 1c, have an area that is less than the average farm size.This study was located in one of the predominant wheat-growing regions of central Ethiopia (Figure 1a), which covers three districts (locally known as weredas): Arsi Sire, Dodota, and Ludehetosa (Figure 1b). The total area coverage is estimated to be 125,492 ha. Though elevation ranges between 1263 and 2984 m above sea level (masl), low-and mid-altitude landscapes dominate (Figure 1b). The farming system of the study area is characterized as rainfed and smallholder; this study selected 165 wheat farm fields through randomization (Figure 1b). The area of the study farms spans from 0.12 to 2.13 ha, with an average area of 0.53 ha, and most of them, as shown in the histogram in Figure 1c, have an area that is less than the average farm size. In this study, two major groups of datasets were applied: field-collected agronomic data and satellite images. The major field-collected data included yield harvest, input utilization (fertilizers and herbicides), and crop calendar data. Wheat fields that were selected through randomization were demarcated using GPS (Global Positioning System), and the accuracy of each farm's unit boundaries was checked and corrected by overlaying the polygons on Google Earth.The study applied S2 and S1 images, which represent the optical and synthetic aperture radar (SAR) groups of satellite sensors, respectively. Sentinel-2 images are higher resolution (10 m spatial and 5-day temporal resolutions), while S1 SAR images equipped with a C-band have a spatial resolution of 10 m and temporal resolution of 12 days. Temporally, this study focused on the year 2020 during the major crop growing season, which spans from July to November. The multispectral analysis of the S2 data focused on the post-grain-filling period, which is a critical period for wheat yield prediction [21,22]. The specific dates that were analyzed were 5 October 2020, 10 October 2020, 15 October 2020, and 20 October 2020. On the other hand, the S1 data analysis included the whole wheat-growing period and considered 12-day intervals. Seven S1 images taken from 4 August to 27 October 2020 were used in this analysis. Based on wheat phenology, images In this study, two major groups of datasets were applied: field-collected agronomic data and satellite images. The major field-collected data included yield harvest, input utilization (fertilizers and herbicides), and crop calendar data. Wheat fields that were selected through randomization were demarcated using GPS (Global Positioning System), and the accuracy of each farm's unit boundaries was checked and corrected by overlaying the polygons on Google Earth.The study applied S2 and S1 images, which represent the optical and synthetic aperture radar (SAR) groups of satellite sensors, respectively. Sentinel-2 images are higher resolution (10 m spatial and 5-day temporal resolutions), while S1 SAR images equipped with a C-band have a spatial resolution of 10 m and temporal resolution of 12 days. Temporally, this study focused on the year 2020 during the major crop growing season, which spans from July to November. The multispectral analysis of the S2 data focused on the post-grainfilling period, which is a critical period for wheat yield prediction [21,22]. The specific dates that were analyzed were 5 October 2020, 10 October 2020, 15 October 2020, and 20 October 2020. On the other hand, the S1 data analysis included the whole wheatgrowing period and considered 12-day intervals. Seven S1 images taken from 4 August to 27 October 2020 were used in this analysis. Based on wheat phenology, images from the dates 4 August 2020-21 September 2020 represent the tillering and grain-filling stage, while those from 3 October 2020-27 October 2020 represent the post-grain-filling stage [23].The retrieved raw S2 images were preprocessed from level-1C to level-2A using the SNAP atmospheric correction algorithm. A resampling procedure was applied to obtain quality scene classification output, which was then used to prepare the cloud mask layer. The presence of many vegetation indices revealing various levels of accuracy and potential for crop yield prediction resulted in it being difficult to pick the best-performing ones. Thus, to achieve a full representation of the various categories, eight indices from four major categories (green VI, water index, chlorophyll index, and biomass index) were applied [24,25]. The selected indices as well as with their respective formulae are presented in Table 1. Chlorophyll Index [31] LAI: Leaf Area Index Dry Biomass Index [32] Fapar: Fraction of Absorbed Photosynthetically Active Radiation Dry Biomass Index [32] All the vegetation indices were derived using the SNAP platform in the Thematic Land Processor. The green, water, and chlorophyll indices were computed under the toolsets of the radiometric vegetation index and water radiometric index processors, while the Dry Biomass Indices were computed using a biophysical processor.A total of 8 Level-1 Ground Range Detected (GRD) Sentinel-1A interferometric wide images with a 10m spatial and 12-day temporal resolution were downloaded from the Copernicus Open Access hub. Conventional SAR preprocessing operations, viz. applying the orbit file, thermal noise removal, radiometric calibration, multi-looking, speckle filtering, terrain correction, and radiometric normalization were applied. The output SAR data were then projected onto WGS 1984 Universal Mercator (UTM) coordinates for further processing.Sentinel-1 data are available both in single-and dual-polarization modes. This study refers to previous studies [33,34] and selectively applied σ 0 during VH polarization, as it revealed higher potential as a crop yield predictor. The C-band of the polarimetric SAR data has a limited capability to penetrate into the crop canopy, making less affected by the soil background. Thus, these data were considered to be a suitable candidate for the biomass estimation of crops [34]. In this study, two groups of indices: the single-date and combined-date indices were derived using σ 0 during VH polarization. The singledate indices were computed for each of the eight dates, whereas the SAR normalized difference index (SNDVH), SAR simple difference index (SSDVH), and SAR simple ratio index (SSRVH) were the combined-date indices (Table 2). Combined dates (F = 16 August and P = 3 October) [33] Simple Ratio Index (SSR VH )Combined dates (F = 16 August and P = 3 October) [33] * F denotes tillering and grain-filling stage, and P ** denotes post-grain-filling stage.All of the vegetation indices derived from the S2 and S1 sensors, comprising a total of forty-two indices, were aggregated per farm boundary to set the final predictors. Thus, for each of the farms, a mean value of all of the pixel values per farm boundary was calculated. Then, the mean values for each farm unit were weighted per the farm area to standardize the per hectare area. Finally, these values were added as predictors to develop predictive regression models. The overall methodology followed by the study (from input to output) is presented in Figure 2. In general, as presented in previous studies, there is an exponential relationship between the crop yield response and some SAR indices [33]. Thus, this study applied a In general, as presented in previous studies, there is an exponential relationship between the crop yield response and some SAR indices [33]. Thus, this study applied a non-linear model, which is abbreviated as nlsLM, to fit the relationship [35]. For the response variable (wheat yield (ton/ha)), as part of data preprocessing, outliers were identified and removed. Due to the small number of observations employed, a leave-oneout cross-validation (LOOCV) technique was applied. LOOCV is a special case of the k-fold cross-validation technique in which the number of folds is the same as the number of observations. It reduces bias and randomness and controls overfitting, and it offers a comprehensive evaluation, as it uses all of the samples for validation. The model's goodness of fit was assessed using the root mean square error (RMSE) and leave-one-out cross-validation root mean square error (LOO RMSE) [36].Machine learning algorithms have been effective in modeling the complex relationship between predictor variables and crop yield. Among the available options, this study applied the H 2 O machine learning platform, as it is in the public domain and includes various machine learning algorithms [37]. For the effective and systematic exploitation of the platform, we applied three methods: AutoML (automated machine learning), GLM (generalized linear model), and deep learning. Automated machine learning methods are more recent algorithms that are becoming increasingly popular. Automating the end-toend machine learning process enables quick and straightforward solutions and models. The AutoML process in H 2 O provides a model explainability interface that enhances our understanding of the learning process against the very black-box nature of machine learning methods. Another interesting feature of H 2 O's AutoML process is that it is designed as a package that contains various sub-algorithms, including GLM (generalized linear models), GBM (gradient boosting machine), DRF (distributed random forest), XRT (extremely randomized trees), deep learning, and stacked ensembles. The steps of the learning process applied in this study are as follows: First, an AutoML was implemented using a dataset partitioned into 80:20 ratios for training and testing, respectively. Second, the top algorithm from AutoML was picked for further in-depth hyperparameter optimization in a stand-alone GLM model. This process was repeated 30 times, and the hyperparameters with the lowest RMSE values and that appeared more frequently on both the training and test datasets were selected as the best ones. The number of repetitions kept at 30 because, in general (even though it was possible for some parameters to be determined earlier), it was possible to determine the most frequently appearing best values across the hyperparameters at that point.Then, the best hyperparameters were applied using 80:20 ratios for training and testing. Due to the stochastic nature of machine learning methods, with every run of an algorithm potentially giving a different output, mean values were reported with their confidence intervals. As the nature of the population distribution and standard deviation of the population are unknown, the t-interval was used. Therefore, the algorithm was run 30 times, which is the minimum number of samples required to apply the t-interval.This study implemented a deep learning algorithm using the total number of forty-two predictors as well as the 10 most influential predictors obtained from AutoML. The learning process of deep learning models may involve searching for the optimal values of many parameters. However, in this study, the learning process focused on the architecture of the neural network and on controlling overfitting problems. Moreover, as deep learning in H 2 O uses an adaptive learning rate, it does not require tuning. To exploit the potential of the algorithm, the study followed the following steps:1.Search for an optimal number of neurons for one, two, and three hidden layers using a separate setup for each using a grid with a random discrete search strategy using the training dataset.Search for the optimal values of the hyperparameters, such as type of activation function, hidden dropout ratios, input dropout ratios, l1 regularization, and l2 regularization, using the training dataset. The range of the values that were searched is presented in Appendix A.Select the best combination of tuned hyperparameters and apply them to the training, cross-validation, and the test datasets. 4.Tweak parameters for controlling overfitting, such as hidden dropout ratios, input dropout ratios, l1, and l2, using the training, CV, and test datasets. 5.Apply the final selected parameters thirty times (due to stochasticity) and compute the CI for the mean value.Based on the non-linear modeling, there is an exponential relationship between the single-date SAR indices and the wheat grain yield (ton/ha). Figure 3 shows the results of the non-linear model plots (represent by black fitting lines) for four dates within the tillering and grain-filling growth stage (Figure 3a-d represent non-linear models for the dates of 4 August, 16 August, 9 September, and 21 September, respectively). On the other hand, the three plots in Figure 4 present outputs for three dates: 3 October (Figure 4a), 15 October (Figure 4b), and 27 October (Figure 4c) for the post-grain-filling stage. The comparisons between the two stages: the tillering and grain-filling stage (Figure 3) and post-grain-filling stage (Figure 4), revealed a closer result. Across all of the dates and the two growing stages, the RMSE, with one exception (Figure 4b with 1.23 RMSE value), was 1.22 ton/ha, whereas the LOO RMSE ranged from 1.22 ton/ha to 1.73 ton/ha, showing closer results between the stages. In general, across the two stages, the plots between the single-date σ 0 VH,F and σ 0 VH,P indices and wheat grain yield (ton/ha) revealed an exponential function.Agriculture 2022, 12, x FOR PEER REVIEW 9October (Figure 4b), and 27 October (Figure 4c) for the post-grain-filling stage. comparisons between the two stages: the tillering and grain-filling stage (Figure 3) post-grain-filling stage (Figure 4), revealed a closer result. Across all of the dates and two growing stages, the RMSE, with one exception (Figure 4b with 1.23 RMSE va was 1.22 ton/ha, whereas the LOO RMSE ranged from 1.22 ton/ha to 1.73 ton/ha, show closer results between the stages. In general, across the two stages, the plots between single-date σ 0 VH,F and σ 0 VH,P indices and wheat grain yield (ton/ha) revealed an expo tial function. Similar to the single-date indices, the combined-date VH polarized indices resulted in an RMSE of 1.2 ton/ha (Figure 5). Nonetheless, the SND (Figure 5a) and SSR (Figure 5c) showed better performance and revealed closer values between LOO RMSE and RMSE, implying the absence of overfitting. For SND (Figure 5b), the LOO RMSE and RMSE achieved results of 1.32 ton/ha and 1.24 ton/ha, respectively. For SSR, 1.20 ton/ha and 1.22 ton/ha were obtained for the LOO RMSE and RMSE, respectively. Conversely, the SSD model had an RMSE of 1.2 ton/ha compared to a higher value of 1.79 ton/ha for the LOO RMSE. The higher value of the LOO RMSE could be due to the presence of more noise in the dataset, which, in turn, is associated with the wider data range in the SSD value (−5-10). Similar to the single-date indices, the combined-date VH polarized indices resulted in an RMSE of 1.2 ton/ha (Figure 5). Nonetheless, the SND (Figure 5a) and SSR (Figure 5c) showed better performance and revealed closer values between LOO RMSE and RMSE, implying the absence of overfitting. For SND (Figure 5b), the LOO RMSE and RMSE achieved results of 1.32 ton/ha and 1.24 ton/ha, respectively. For SSR, 1.20 ton/ha and 1.22 ton/ha were obtained for the LOO RMSE and RMSE, respectively. Conversely, the SSD model had an RMSE of 1.2 ton/ha compared to a higher value of 1.79 ton/ha for the LOO RMSE. The higher value of the LOO RMSE could be due to the presence of more noise in the dataset, which, in turn, is associated with the wider data range in the SSD value (−5-10). Automated machine learning, AutoML, offers a quick method for training and can achieve satisfactory results in a short amount of time. In this study, the process of training an AutoML started by using all forty-two variables as predictors. To obtain conclusive output, AutoML training was implemented repeatedly. Out of the ten runs of the Automated machine learning, AutoML, offers a quick method for training and can achieve satisfactory results in a short amount of time. In this study, the process of training an AutoML started by using all forty-two variables as predictors. To obtain conclusive output, AutoML training was implemented repeatedly. Out of the ten runs of the AutoML method, the GLM model, which is one of the components of the AutoML method, was the top-performing one as it came first in seven cases (see Table 3 for an average value of the ten runs). According to the average values, the GLM 1 model revealed average values of 0.93 ton/ha, 0.87 ton/ha, and 0.74 ton/ha for the RMSE, MSE, and MAE, respectively. The stacked Ensemble Best of Family algorithm was the second-best performing algorithm. Various GBM were also among the top algorithms, and, most importantly, they constitute the top models, appearing repeatedly at the top of the list. Given the small number of observations in this study on the one hand and the large number of predictors on the other hand, it is imperative to select the most important variables. Thus, according to the variable importance plots developed using the two best performing models, viz. GLM (see Appendix B) and GBM (see Appendix C), the ten most important variables were selected: LAI1020, LAI1010, NDVI1020, VH1015, MCARI1005, NDI451015, Fapar1020, NDWI1005, GNDVI1010, and NDWI1020. Of all of the predictors, LAI became the most influential predictor. Moreover, the predictors derived from S2 were found to be more important than those derived from the S1 sensors.The most important variables were selected using an AutoML algorithm. The GLM model was found to be the top model compared to the other components of the AutoML. In this section, to fully exploit the potential of the GLM model, hyperparameter tuning was implemented by employing the top ten most important variables. For the GLM model, alpha was the most important hyperparameter; a grid search process was implemented to obtain the best value of alpha and the corresponding lambda value. Thus, alpha = 0.0 and lambda = 0.02808 were found to be the best hyperparameters. These hyperparameters were applied using five-fold CV. Due to the stochastic nature of the machine learning algorithms, we determined the CI for the population mean (Table 4) of wheat yield. Accordingly, we achieved a 99% confidence level for the unknown RMSE (ton/ha) of the mean of the population on the training dataset, with a value of 0.84 to 0.88. Likewise, for the test dataset, the 99% CI was 0.84-0.98.In addition to the average values that were reported, scatter plots were also helpful to examine the correlation between the estimated (predicted) and measured yields. For the test dataset, six scatter plots for six GLM models using different seeds were computed (see Figure 6). Accordingly, the correlation coefficient (r) between the estimated and measured yield ranges from 0.69 to 0.19. Since the study was implemented using a small dataset domain, careful handling of the outliers is critical, and outliers were removed. However, by summarizing the information from the six scatter plots, it can be ob served that the performance of the models is weak at higher yield values (beyond ton/ha). This could partly be associated with the non-normal sample distribution prop erty of the response variable (measured yield). The response variable has an averag value of 2.88 ton/ha and a median of 2.62 ton/ha, which are almost the same. Howeve the dataset has a range of 0-7 ton/ha, and this resulted in the histogram being skewed t the left (see Figure 7). Even after outliers were removed, the models showed limitation at higher values. However, by summarizing the information from the six scatter plots, it can be observed that the performance of the models is weak at higher yield values (beyond 4 ton/ha). This could partly be associated with the non-normal sample distribution property of the response variable (measured yield). The response variable has an average value of 2.88 ton/ha and a median of 2.62 ton/ha, which are almost the same. However, the dataset has a range of 0-7 ton/ha, and this resulted in the histogram being skewed to the left (see Figure 7). Even after outliers were removed, the models showed limitations at higher values. When applying deep learning models, the number of neurons is the most importan parameter. In this study, tuning for the optimal values for the number of neurons wa implemented separately for one, two, and three hidden layers. In general, among th three groups, models with two hidden layers were inferior. Since the purpose of th study was to find the best model, the results below focus on the other two groups; how ever, the summary for all three groups will be presented later on (Table 5). Accordingly for one hidden layer, as shown in Figure 8, two major characteristics were observed. In tially, as the number of neurons increased the error decreased; however, it started to in crease as the number of neurons increased further. In particular, the error values in creased steadily as the number of neurons passed a value of 1000. Thus, the number o neurons in the region where the global minimum was expected ranged from 0-1000. When applying deep learning models, the number of neurons is the most important parameter. In this study, tuning for the optimal values for the number of neurons was implemented separately for one, two, and three hidden layers. In general, among the three groups, models with two hidden layers were inferior. Since the purpose of this study was to find the best model, the results below focus on the other two groups; however, the summary for all three groups will be presented later on (Table 5). Accordingly, for one hidden layer, as shown in Figure 8, two major characteristics were observed. Initially, as the number of neurons increased the error decreased; however, it started to increase as the number of neurons increased further. In particular, the error values increased steadily as the number of neurons passed a value of 1000. Thus, the number of neurons in the region where the global minimum was expected ranged from 0-1000. As a result, out of the total range (0-7000), the learning process targeted the limited range (0-1000) to identify the global minima value. Thus, detailed learning was implemented, and results are displayed using Figure 9.Likewise, Figure 10 presents the performance for three hidden layers. Based on the three metrics used, lower error metrics were found when the number of neurons was less than 100.however, the summary for all three groups will be presented later on (Table 5). Accordingly, for one hidden layer, as shown in Figure 8, two major characteristics were observed. Initially, as the number of neurons increased the error decreased; however, it started to increase as the number of neurons increased further. In particular, the error values increased steadily as the number of neurons passed a value of 1000. Thus, the number of neurons in the region where the global minimum was expected ranged from 0-1000. As a result, out of the total range (0-7000), the learning process targeted the limited range (0-1000) to identify the global minima value. Thus, detailed learning was implemented, and results are displayed using Figure 9. Likewise, Figure 10 presents the performance for three hidden layers. Based on the three metrics used, lower error metrics were found when the number of neurons was less than 100. As a result, out of the total range (0-7000), the learning process targeted the limited range (0-1000) to identify the global minima value. Thus, detailed learning was implemented, and results are displayed using Figure 9. Likewise, Figure 10 presents the performance for three hidden layers. Based on the three metrics used, lower error metrics were found when the number of neurons was less than 100. In the previous section (Figures [8][9][10], the overall trend of the number of neurons against the error metrics was presented. To identify the optimal number of neurons yielding the lowest error value, the lowest three error values for each of the three hidden layers were computed (Table 5). The comparison across the three groups of hidden layers showed that 55 number of neurons of the three hidden layer group revealed the lowest MAE and RMSE values of 0.95 ton/ha and 1.18 ton/ha, respectively.Nonetheless, for one hidden layer 80 and 75 neurons revealed an RMSLE value of 0.31 ton/ha, which was the lowest one in the group.Therefore, for subsequent parameter tuning, 80 neurons were selected for one hidden layer, and 55 neurons were selected for three hidden layers. Among the various hyperparameters available for deep learning, in this study, we selected the most important ones: the type of activation function, the hidden dropout ratio, output dropout ratio, l1 regularization, and l2 regularization. These parameters were searched using a grid search strategy, and the optimal hyperparameters were obtained and are presented in Table 6. In both groups, tanh drop out activation function and input dropout ratio values of 0.5 are the best values. Finally, for two hidden layers, the best hyperparameters were applied, and the CI was computed. Thus, Tables 7 and 8 revealed that the mean RMSE of wheat yield at a 99% CI for one and three hidden layers, respectively. For the networks with one hidden layer, the RMSE on the training dataset was 1.24 ton/ha, while a value of 1.42 ton/ha was obtained on the test dataset. This result was obtained using the total number of predictors (42) used in the study. Compared to the outputs obtained using one hidden layer, three hidden layers revealed better outputs. As shown in Table 8, mean RMSE values of 1.20 ton/ha and 1.34 ton/ha were obtained using the training and test datasets, respectively. These values were obtained using 10 predictors identified based on their variable importance using the AutoML algorithm presented under Section 3.2. Although the ten parameters were applied for one hidden layer, the performance did not improve.In addition to metric-based validation, model performance was assessed using scatter plot analysis. As shown in Figure 11, six scatter plots for six DNN models using three hidden layers using the test dataset were prepared. The scatter plots present the correlation between the estimated yield and measured yield. In general, there is a positive correlation, and a strong association is displayed in the range of less than 4 ton/ha. Similar to the GLM model performance discussed in Section 3.4, the DNN model showed limitations at higher values.Agriculture 2022, 12, x FOR PEER REVIEW 16 of 23 three hidden layers using the test dataset were prepared. The scatter plots present the correlation between the estimated yield and measured yield. In general, there is a positive correlation, and a strong association is displayed in the range of less than 4 ton/ha. Similar to the GLM model performance discussed in Section 3.4, the DNN model showed limitations at higher values. This study aimed to develop a method for remote sensing-based wheat yield prediction in smallholding and heterogeneous farming systems. The study obtained predictors from vegetation indices derived from high-resolution optical and SAR sensors. Eight vegetation indices were computed from S2 optical sensors, and five SAR indices were calculated from the S1 sensor data. Considering the complex relationship between the predictors and response variables, data mining methods, which can be grouped under three broad categories: statistical, machine learning, and deep learning, were applied. Unlike common approaches to machine learning and deep learning implementation, due to the scarcity of the response variable (field-collected wheat grain yield), in this study, data mining methods were implemented under a small dataset domain.In harnessing the phenological information of the wheat, VH backscatter SAR indices were computed for single and combined dates. Single-date indices were calculated for two stages: the tillering and grain-filling stage and the post-grain-filling stage. For both stages, as determined in previous studies [33], an exponential relationship existed This study aimed to develop a method for remote sensing-based wheat yield prediction in smallholding and heterogeneous farming systems. The study obtained predictors from vegetation indices derived from high-resolution optical and SAR sensors. Eight vegetation indices were computed from S2 optical sensors, and five SAR indices were calculated from the S1 sensor data. Considering the complex relationship between the predictors and response variables, data mining methods, which can be grouped under three broad categories: statistical, machine learning, and deep learning, were applied. Unlike common approaches to machine learning and deep learning implementation, due to the scarcity of the response variable (field-collected wheat grain yield), in this study, data mining methods were implemented under a small dataset domain.In harnessing the phenological information of the wheat, VH backscatter SAR indices were computed for single and combined dates. Single-date indices were calculated for two stages: the tillering and grain-filling stage and the post-grain-filling stage. For both stages, as determined in previous studies [33], an exponential relationship existed between the single-date SAR index and wheat grain yield. The non-linear modeling of the two stages revealed closer outputs. For the two stages, the LOO RMSE ranged between 1.22 ton/ha and 1.73 ton/ha, while the RMSE was 1.22 ton/ha. The similarity of the outputs from the two stages suggests that the SAR indices could be used by either of them, offering comparable results.The smaller gap between the RMSE and LOO RMSE values, the combined-date indices, such as SND and SSR showed relatively improved performance over the rest of the SAR indices. SND and SSR achieved values of1.32 ton/ha and 1.20 ton/ha as well as values of 1.24 ton/ha and 1.22 ton/ha for LOORMSE and RMSE, respectively. This shows that the combined-date indices offer increased capacity over single-date indices. It is intuitive to expect indices to integrate wider phenological information to outperform narrow ones.Overall, in this study, the performance of the SAR indices as wheat yield predictors compared to other predictors is weak. Since the SAR parameters are sensitive to many biophysical variables, including the plant structure, leaf size, stem density, biomass, and plant water content, they have immense potential to determine important crop parameters [38]. Nonetheless, the application of the SAR signal in agriculture is complicated, as the signal is sensitive to soil moisture and surface roughness, and SAR backscatter is also influenced by the inherent properties of the SAR signal, such as its frequency, incidence angle, and polarization [39]. On the other hand, some previous studies revealed strong prediction capability. For instance, using the SSD VH predictor, rice yield was estimated with RMSE value of 0.74 ton/ha and with a relative error of 7.93% [33].For wheat, it was asserted that the relationship between the polarimetric SAR parameters and wheat height is complex. Weak correlations are reported at the early and late growth stages. At the stem elongation stage, relationships are negative, and correlations are weak between most of the polarimetric SAR parameters and wheat height. A relatively good but negative association with wheat height was revealed using HV and Yamaguchi helix scattering with R 2 = 0.57 and R 2 = 0.39, respectively, during the middle growing stage [40].Among the constituent algorithms of the AutoML package, the GLM and GBM yield improved performance. Using the ten influential parameters, the GLM model revealed an RMSE of 0.84-0.98 ton/ha for the mean population at a 99% CI on the test dataset, while the performance on the training dataset was 0.84-0.88 ton/ha. The narrower gap between the two performances implies that the model has a good generalization error. This model used an alpha value of 0 and a lambda value of 0.02808. An alpha value of 0 represents ridge regression that is theoretically expected to offer better results when the prediction power is spread out over the various features. This is well-observed in this study, where a number of predictors were found to be important (see Appendix B).Among the 42 predictor variables derived from both optical and SAR indices covering the tillering and grain-filling stage and post-grain-filling stage, in the post-grain-filling stage (i.e., LAI1020), the leaf area index is the most influential parameter. In maize fields, the leaf area index obtained from field instrument measurements outperformed fifteen vegetation indices, showing a higher association with biomass, with R 2 = 0.89, RMSE = 2.27 ton/ha, and RRMSE = 30.55%. In particular, in good agreement with this study, the leaf area index obtained during the grain-filling stage (relative root mean squared error (RRMSE) = 29.83%) shows improved performance over early stages (RRMSE = 38.87%) [16]. Likewise, the LAI from the Sen2-Agri estimates derived using inverse radiative transfer modeling revealed better capability than various vegetation indices, with R 2 values of 0.68, 0.62, 0.80, and 0.48 for cotton, maize, millet and sorghum, respectively [24]. This implies that the S2-derived leaf area index is good enough for monitoring yield variability and can be used to replace the field-measured leaf area index. On the other hand, the rest of the predictors representing the green, water, and chlorophyll index groups showed closer potential and were inferior to the biomass indices (in this case, the leaf area index).The present study implemented a deep learning model emphasizing the architecture of the neural network. Due to their inherent complexity, deep learning models are likely to overfit during training. This is especially more likely when using a small dataset. Deep learning models apply several regularization techniques to control overfitting. This study applied the three widely applied regularization techniques: L1, L2, and dropout. In general, regularization techniques, when applied in deep learning models, offer a robust model via reducing the complexity of the network. L1 regularization forces the weight parameter to become zero, whereas L2 forces the parameters towards zero. Dropout methods make the training process noisy. In neural networks, dropouts are implemented per layer, i.e., on hidden layers and on the visible or input layers. In this study, three number ranges of neurons: 0-6000, 0-1000, and 0-500, were searched for one, two, and three hidden layers. A model with three hidden layers with 55 neurons each and with the tanh dropout activation function showed improved performance. At a 99% confidence interval, the mean RMSE was 1.31-1.36 ton/ha on the test dataset. Moreover, this model had hidden dropout ratio, input dropout ratio, and l2 regularization values of 0.1, 0.5, and 0.00001, respectively.On the other hand, the model with one hidden layer revealed a 99% CI of 1.41-1.43 ton/ha for the mean RMSE. The optimal hyperparameter values of the model are 80 neurons, the tanh dropout activation function, a hidden dropout ratio of 0.5, an l1 regularization value of 0.1, an input dropout ratio of 0.5, and an l2 regulation value of 0.1. The deep learning model using three hidden layers had a 99% CI of 1.31-1.36 ton/ha for the mean RMSE and outperformed the model with one hidden layer, indicating that this could be associated with the former model that used the ten most influential parameters and the later model using the full set of predictors. Nonetheless, the combination of the ten influential parameters with a model with one hidden layer did not show any improvement over using the full number of predictors.Deep learning methods are applied because they are expected to deliver better results compared to machine learning algorithms. Comparing the machine learning and deep learning approaches for crop yield prediction is not a straightforward process. This is because the design and implementation of various studies are characterized by a diverse set of factors, viz. different algorithms, data sources, platforms, crop types, features (data groups), categories, and evaluation performance metrics. Moreover, there is also diversity in the motivation of deep learning, such as processing multiple array formats in nonlinear modules, integrating multiple parameters accurately, automating and/or simplifying tasks, capturing time dependencies, and the capability of generalizing and revealing superior models [19]. Nonetheless, there are some relevant studies. Convolutional neural network (CNN), deep neural network (DNN), and long short-term memory (LSTM) are the bestperforming deep learning algorithms used in crop yield prediction. Wheat is second to maize in terms of the most studied crop in deep learning. Supervised deep learning is the most widely applied deep learning method for crop yield prediction [19].With the ultimate objective of developing a better model, this study applied three major methods, namely the non-linear model, automated machine learning, and a deep learning model. Among the constituent algorithms of the AutoML package, the GLM model was the top one. Thus, the study proceeded with the GLM model via hyperparameter tuning, which resulted in a significant improvement, causing it to outperform the rest of the models. Accordingly, a GLM model employing the ten most influential parameters revealed the best prediction results. Thus, the developed method employs both the capability of the AutomL package as well as the capability of GLM to search for hyperparameters. In terms of performance, revealing higher wheat prediction capability, this combined approach seems synergetic and fast compared to deep learning and non-linear models. Moreover, as the study was implemented under a small dataset and because the AutoML offered the ten most influential parameters, this contributed to the obtained performance improvement. From a practical perspective, this has invaluable significance. The efficient and effective training of machine learning models is often a very daunting task. Nonetheless, in this study, better results were obtained using an automated machine learning method that can be easily implemented by experts with limited skills in data mining methods. This implies the scalability of the approach to environments with limited access to well-skilled experts and robust off-the-shelf data mining platforms.The comparison of the performance of the three data mining methods should be considered under the context and purpose of the study. First, the results from the nlsLM model were inferior to those of other models, mainly because it only used one type of predictor (derived from SAR). Initially, this method was chosen by referring to previous studies in which robust prediction capability was reported, hence causing it to be selected as a standalone method [33]. However, as the variable importance plot (see Appendices B and C) showed the importance of several predictors, the use of a single predictor might not offer satisfactory results. Second, for the combined method, an AutoML with tuned GLM, was the superior model. This was largely because it was determined the AutoML method offers a better fitting model after comparing the range of sub-algorithms that constituent the model. For instance, in this study, the AutoML revealed that the GLM model was better fitting compared to models such as the deep learning and stacked ensemble models, among others. Third, the performance of deep learning models should also be interpreted cautiously. This study applied a comprehensive (considering networks with one to three layers) and a rigorous (several hyperparameters) implementation approach. However, due to the wider complexity and resources of the deep learning models, different untested configurations might be possible and could unleash different capability.The implementation of the current study under a small dataset domain resulted in both pros and cons. The advantages include, for instance, the LOOCV technique in nlsLM, which is theoretically expected to offer less biased model performance output, being easily implemented because the computational demand was inexpensive. In H 2 O platform's reproducible results could be obtained using a deep learning algorithm if the system was deployed using a core and the same seed. In this regard, the use of a small dataset enabled availing reproducible results. Additionally, when the deployment of the algorithm did not offer reproducible results, for instance, the GLM model in H 2 O did not support reproducibility, the use of a small number of observations eased algorithms used to compute a CI from running repeatedly.On the downside, machine learning and deep learning methods are commonly developed using big observation datasets, and the adoption of such methods under a small data set is associated with major constraints, such as controlling the bias-variance tradeoff, overfitting, and the careful handling of outliers. As a solution, in this study, several techniques were applied during data preprocessing, model development, and validation to address the constraints of the small dataset. Outlier removal and LOOCV were used during nlsLM modeling. Average values of error metrics were computed while the GLM and deep learning models were developed. Moreover, relevant predictors obtained from the AutoML model were used to develop the GLM algorithm. Furthermore, the mean and confidence interval values were computed to develop and validate the tuned GLM and deep learning algorithms.This study was set to evaluate the potential of selected vegetation indices derived from Sentinel-2 and Sentinel-1 data as a wheat yield predictor. Moreover, it applied fast, reproducible, and open-source statistical, machine learning, and deep learning algorithms for wheat yield prediction under a small dataset domain.The study successfully derived wheat yield predictors using optical (S2) and SAR (S1) sensors. The development of the indices considers the representation of important phenological information and various groups of indices. The study exploited the potential of three groups of data mining methods and presented fast and reproducible wheat yield prediction approaches.A combined method, the AutoML with GLM hyperparameter tuning, showed higher performance over the rest of the methods. The AutoML, with minimum effort and within a short amount of time, was good enough to deliver the ten most influential parameters and was the top-performing algorithm among its constituents. The method revealed a mean RMSE of 0.84-0.97 ton/ha at a 99% CI using the ten parameters. The leaf area index obtained from the post-grain-filling stage was found to be the most influential parameter compared to all the rest of the optical and SAR-derived parameters.Though the study applied a wide range of values for one, two, and three hidden layers, the lowest error metrics were found using a small number of neurons. A deep neural network with three hidden layers using the ten influential parameters outperformed networks with one and two hidden layers. It revealed a mean RMSE of 1.31-1.36 ton/ha on the test dataset at a 99% CI. This model used 55 neurons with hidden dropout ratio, input dropout ratio, and l2 regularization values of 0.1, 0.5, and 0.00001, respectively.The optimal models obtained from the three data mining approaches take advantage of the phenological information, and the information from the post-grain-filling stage in particular.Although various machine learning and deep neural networks have been developed and are widely available, the effective and efficient training of them is challenging. In this regard, the AutoML with GLM hyperparameters method is especially useful, as it is fast and reproducible and can potentially be applied in similar crop production systems. Moreover, it could be adapted to predict grain yields for other cereals crops using high resolution satellite sensors. Furthermore, as H 2 O is available under the public domain, it could be widely used in resource-poor setups. Future studies might compare the current approach and platform with widely used platforms for crop yield prediction, such as Keras and Tensorflow [19].On the other hand, improved performance in terms of reliability and robustness could be sought by incorporating additional potential predictors that represent, for instance, soil and climatic variability, among others.","tokenCount":"8728"} \ No newline at end of file diff --git a/data/part_3/3617324216.json b/data/part_3/3617324216.json new file mode 100644 index 0000000000000000000000000000000000000000..86dab486d16750bebf61d8d31aed01964d191702 --- /dev/null +++ b/data/part_3/3617324216.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"49429c5a0152ececa3923c0e66b66a67","source":"gardian_index","url":"https://dataverse.harvard.edu/api/access/datafile/:persistentId/?persistentId=doi:10.7910/DVN/0R5WTU/NFDCXT","id":"-1373579670"},"keywords":["MODULE A","HOUSEHOLD IDENTIFICATION Household Identification Code Interview details Code Acholi……","……………1 Langi……","……………","2 Muganda…","…………3 Musoga…………………4 Others (specify)","……","5 RELIGION Muslim…………………","1 Hindu","…………………","2 Christian-Protestant… 3 Christian-Catholic……","4 Christian-Pentecostal","5 Sevent Day Adventist","6 Other (specify)……","…","9 OUTCOME OF INTERVIEW Completed…","…………","1 Incomplete……………","2 Absent…","…………","…","3 Refused………………","4 Could not locate…","…","5"],"sieverID":"300e0699-cc0e-4be7-bb1b-cbb217ecdf6f","pagecount":"10","content":"This instrument is the same version as the original household questionnaire included in the second Women's Empowerment in Agriculture pilot survey for Uganda. This information can be used in conjunction with the Individual level questionnaire to construct and validate the index. Note that this instrument must be adapted for country context including translations into local languages when appropriate.Informed Consent: Before beginning the interview, it is necessary to introduce the household to the survey and obtain their consent to participate. Make it clear to them that their participation in the survey is voluntary. Please read the following statement in the language of interview:Thank you for the opportunity to speak with you. We are a research team from Associates Reseach Uganda Limited working in collaboration with International Food Policy Research Instiute We are conducting a survey to learn about agriculture, food security and wellbeing of households in this area. You have been selected to participate in an interview which includes questions on topics such as your family background, dwelling characteristics, asset ownership and income earning activities. The survey includes both a section to be asked about the household generally, in addition to sections which will be asked to a primary adult male and female in your household if applicable. These questions in total will take approximately 2 hours to complete and your participation is entirely voluntary. If you agree to participate, you can choose to stop at any time or to skip any questions you do not want to answer. Your answers will be completely confidential; we will not share information that identifies you with anyone. After entering the questionnaire into a data base, we will destroy all information such as your name which will link these responses to you.We will also interview other households in your community and in other parts of Uganda. After we collect all the information we will use the data to make a study about how various programs can be most helpful to the people in this area. Do you have any questions about the study or what I have said? If in the future you have any questions regarding study and the interview, or concerns or complaints we welcome you to contact XXXX, by calling XXXX. We will leave one copy of this form for you so that you will have record of this contact information and about the study.Participant 1: YES NO Participant 2: YES NO I ____________________________, the enumerator responsible for the interview taking place on __________________, 2014 certify that I have read the above statement to the participant and they have consented to the interview. I pledge to conduct this interview as indicated on instructions and inform my supervisor of any problems encountered during the interview process.If the household does not give consent to all of the data collection, stop the interview and inform your team leader. Team leaders will discuss the reason for this refusal and decide whether a partial data collection is possible for this household.Informed Consent for Women's Empowerment in Agriculture Index DUPLICATE: Enumerator: Tear out this page, and leave it with the household.Informed Consent: Before beginning the interview, it is necessary to introduce the household to the survey and obtain their consent to participate. Make it clear to them that their participation in the survey is voluntary. Please read the following statement in the language of interview:Thank you for the opportunity to speak with you. We are a research team from Associates Research Uganda Limited working in collaboration with the International Food Policy Research Institute. We are conducting a survey to learn about agriculture, food security and wellbeing of households in this area. You have been selected to participate in an interview which includes questions on topics such as your family background, dwelling characteristics, asset ownership and income earning activities. The survey includes both a section to be asked about the household generally, in addition to sections which will be asked to a primary adult male and female in your household if applicable. These questions in total will take approximately 2 hours to complete and your participation is entirely voluntary. If you agree to participate, you can choose to stop at any time or to skip any questions you do not want to answer. Your answers will be completely confidential; we will not share information that identifies you with anyone. After entering the questionnaire into a data base, we will destroy all information such as your name which will link these responses to you.We will also interview other households in your community and in other parts of Uganda. After we collect all the information we will use the data to make a study about how various programs can be most helpful to the people in this area. Do you have any questions about the study or what I have said? If in the future you have any questions regarding study and the interview, or concerns or complaints we welcome you to contact XXXX by calling XXXX. We will leave one copy of this form for you so that you will have record of this contact information and about the study.Please ask the participants (male and female) if they consent to the participation in the study (check one box):Participant 1: YES NO Participant 2: YES NO I ____________________________, the enumerator responsible for the interview taking place on __________________, 2014 certify that I have read the above statement to the participant and they have consented to the interview. I pledge to conduct this interview as indicated on instructions and inform my supervisor of any problems encountered during the interview process.If the household does not give consent to all of the data collection, stop the interview and inform your team leader. Team leaders will discuss the reason for this refusal and decide whether a partial data collection is possible for this household. A household is a group of people who live together and take food from the \"same pot.\" In our survey, a household member is someone who has lived in the household at least 6 months, and at least half of the week in each week in those months. Even those persons who are not blood relations (such as servants, lodgers, or agricultural laborers) are members of the household if they have stayed in the household at least 3 months of the past 6 months and take food from the \"same pot.\" If someone stays in the same household but does not bear any costs for food or does not take food from the same pot, they are not considered household members. For example, if two brothers stay in the same house with their families but they do not share food costs and they cook separately, then they are considered two separate households. Generally, if one person stays more than 3 months out of the last 6 months outside the household, they are not considered household members. We do not include them even if other household members consider them as household members.Exceptions to these rules should be made for:Consider as household member:  A newborn child less than 3 months old. Someone who has joined the household through marriage less than 3 months ago.  Servants, lodgers, and agricultural laborers currently in the household and will be staying in the household for a longer period but arrived less than 3 months ago.Do not consider as household member:  A person who died very recently though stayed more than 3 months in last 6 months. Someone who has left the household through marriage less than 3 months ago.  Servants, lodgers, and agricultural laborers who stayed more than 3 months in last 6 months but left permanently.This definition of the household is very important. The criteria could be different from other studies you may be familiar with, but you should keep in mind that you should not include those people who do not meet these criteria. Please discuss any questions with your supervisor.The primary and secondary respondents are those which are self identified as the primary members responsible for the decision making, both social and economic, within the household. They are usually husband and wife, however can also be another member as long as there is one male and one female aged 18 and over. It may also be the case that there is only a primary respondent if that person is a female and there is no adult male present in the household.Enumerator: Ask these questions about all household members. The respondent should be the one most knowledgeable about the age, completed education, and other characteristics of household members.Respondent ID:First, we would like to ask you about each member of your household. Please list the names of everyone considered to be a member of this household, starting with the primary respondent. ","tokenCount":"1460"} \ No newline at end of file diff --git a/data/part_3/3620935926.json b/data/part_3/3620935926.json new file mode 100644 index 0000000000000000000000000000000000000000..c8de9ec93c732c35103e9930e297aa3e1e81efc2 --- /dev/null +++ b/data/part_3/3620935926.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"a323459a965c5bd1851631d0ac89bc9e","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/306f3f4a-a98b-4f3b-98cd-8a5dc2191996/retrieve","id":"330271775"},"keywords":[],"sieverID":"88aefb95-a6e1-43b2-8782-e609130ccf03","pagecount":"68","content":"Tempera te Crea m 1lght Small 52 ( 25 4) 34 (16 6) 91 (44 4) 9 Bush Tempera te tan bp1nk Cream 11 ght Med1um 10 (14 3) 9 (12 9) 44 ( 62 9) tan 10 Bush Tempera te Ye11ow llght Large 30 (50 8) 11 (18 6) 13 (22 O) tan gray 11 C11mb1ng Tempera te B1ack Small 6 (28 6) 3 (14 3) 4 (19 O) 12The Bean Team uses a three-phase distr1bution of experimental lines system for evaluation and 1 .., 1 ¡/ 1The Bean Team Nursery (VEF) is the first uniform and mult1d1sciplinary evaluation for adaptation and disease and insect resistanceStarts on July 1 and concludes on December 31 2The Preliminary Yield Tria! (EP) is the second uniform and multidisciplinary tria! Only selected materials from the previous year's VEF proceed to this nursery Starts on January 1 and finishes on December 31 3The International Bean Y1eld and Adaptation Nursery (IBYAN) is the third phase of the progeny evaluation scheme Materials selected from the previous year s EP tr1al are included in this nurseryStarts on January 1 and concludes on December 31The following section includes discussions on between July 1 and December 31 1981 the 1981 EP correspondent VEF reported last year and the 1980 were selected from the 1980 EP 1981 VEF Bean Team Nursery the 1981 VEF grown selected from the IBYAN whose entriesThe 1981 Bean Team Nursery (VEF) was formed by 1110 entries 235 of these being climbers almost a 50% increase over last year's VEF Most of the material came from the CIAT bean germplasm bank or improvement program but other institutions from different countries forwarded bean germplasm for evaluation as well (Table 1) Entries were distributed within the 16 groups of beans in Latin America based on growth habit and grain characteristics Table 2 shows the allotment of VEF entries in each group As stated previously the main objectives of the VEF nursery are 1 To evaluate multiple-factor linea for overall agronomic merit 2To evaluate specific character lines to determine their value as parents in crosses 3To assess the annual progresa for specific factors and in the recombination/reselection of multiple factorsResults in 1981 for reactions to bean common mosaic virus (BCMV) rust anthracnose angular leaf spot common bacteria! blight and leafhopper are summarized in the following paragraphs Resistance to BCMV is a precondition for materials entering the VEF Further tests on VEF entries confirmed this resistance in all 1981 en tries A total of 22% of each of the bush and climbing bean entries showed resistant reaction to rust and another 21¿ of the bush and 25% of the climbers were intermediateThe highest proportion of resistant entries among bush beans was found among lines of groups 7 (Sir) and 4 (46%) i e the large-seeded yellow cream red and red-mottled grains for temperate and moderately tropical climates Among climbing beans with the exception of the large-seeded entries for the Andean Zone (group 15) each of the rest of groups showed more or less one-fourth of the lines with resistant reaction to rust (Table 3) Of 1086 entries tested only five showed some degree of resistance (2 5 rating on a 1 to 5 scale) to common bacter1al blight A small percentage (4 3%) showed an intermediate reaction among the large number of entries with a variable reaction many plants showed resistance reactionIn general however the large numbers of bean lines tested turned out to be susceptible All resistant and intermediate reactions were found among bush entries (Table 4)The best entries for rust or common bacterial resistance under Palmira conditions are listed in a Numbers 1n parentheses 1nd1cate percentage of entr1es w1th1n the group b lnc1udes so1ld as we11 as mott1ed stn ped and speck1ed types The 1981 EP trials consisted of 191 l1nes selected from the 542 entries evaluated 1n the 1980 VEF Of these 56 were climbing beans Table 6 shows the frequency of the different growth hab1ts seed sizes and matur1ty in each class of beans Type II beans formed the most numerous group likewise small-seeded and early materials predominated over the restAs previously determ1ned all materials entered into the EP must be res1stant to the Florida and New York 15 stra1ns of BCMVThe frequency of materials w1th res1stance to common bacteria! blight rust anthracnose ascochyta angular leaf spot root-rot complex and web blight are shown in Table 7 For common bacteria! blight ascochyta and anthracnose only intermediate and susceptible reactions were found for rust root-rot complex angular leaf spot and even for web blight a good number of entries showed resistanceThe frequency of materials with different degrees of resistance to 1nsect pests is shown in Table 8 Bush BeansThe 135 bush and 56 cl1mbing bean lines of the 1981 preliminary y1eld trials were evaluated for yield at CIAT-Palmira and CIAT-Popayan Sorne changes were introduced into the yield evaluat1on method from last yearThe most important one was to have more than one semester of y1eld testing to provide more reliable y1eld data Exper1ence from the past 2 years showed that when the advanced breeding lines were tested only 1n one semester there is a yield inconsistency over years This was shown clearly in the elite checks of 1979 that were retested in 1980 the best-y1elding el1te check of the prev1ous year was only slightly above average 1n the following yearThe superior materials however ma1nta1ned the1r above-average yield levelsThe yield data of the second semester planting is shown elsewhere in this reportThe second change was to regroup the entr1es with their standard checksIn previous years the materials were grouped according to growth habit and seed color but seed size was ignored This year the advanced breeding lines and the1r checks were d1v1ded into 10 groups (for bush lines)Bean types such as Caballero or Cristal and Alubia were not represented this year Yield trials were conducted again under both chemically protected and nonprotected cond1tionsAt CIAT-Popayan disease pressure 1n the nonprotected field was so severe that only those materials w1th anthracnose resistance produced Red aOther co 1 ors • l dude sol1d as ell as ottled stnped and speckled types The calcium content is also high and no aluminum toxic1ty symptoms were observed Available soil manganese phosphorus and magnesium are low only 9 2 ppm 1 7 ppm (Bray 11) and O 60 meq/100 g soil respectively Phosphorus-fixation capacity of the soil 1s high In arder to reduce the P fixation 2 t/ha of dolomitic lime and 500 kg complete fertilizer (10 30 10) were added Rainfall distribution was good this year and no water stress occurred 1n these trialsThe improved performance of the breeding lines was more obvious at CIAT-Popayan than at CIAT-Palmira (Table 9)Only a few breeding lines were resistant to bacteria! blight (the BAC series) and since CIAT does not breed for tropical mite resistance only a few materials were resistant to f latus The highest yielders at both testing sites were the breeding lines and the d1fference with the highest yield1ng check was largest under nonprotected conditions at CIAT-Popayan Under the heavy pressure of anthracnose and ascochyta in Popayan l1ne A 114 produced more than 2 t/ha under nonprotected conditions whereas most checks produced less than 100 kg/haThe international checks performed slightly better Under protected condit1ons physiological maturity was delayed more than under nonprotected condit1ons at CIAT-Popayan the growth cycle was more prolonged than at Palmira Th1s was also expressed in yield performance Table 10 l1sts the breeding lines and their checks showing the lowest yield losses in Popayan and Palm1ra in both protected and unprotected plotsThe percentage of yield reduction at CIAT-Palmira was much lower than at CIAT-Popayan representing the disease pressure of the testing sites Only a few materials showed less than 30% y1eld reduction at CIAT-Popayan whereas at CIAT-Palmira more than 10 breeding lines showed less than 104 yield reductionThe only check materials with less than 30% yield loss at Popayan were Zamorano 2 (294) and the elite check BAT 445 (8%)None of the international checks showed less than 30% yield reduction At CIAT-Palm1ra the five checks showed less than 10% yield reduction CIAT-Palmira trials Group 1Black small seed size for Central Amer1ca Mexico Brazil Cuba and Venezuela (Table 11)Only nine entries were tested this year and their yield ranged from 1510 to 2092 kg/haThe lowest y1eld (1500 kg/ha) of the breeding l1nes was above the average yield (1415 kg/ha) of the standard checks under nonprotected conditions The average of the breed1ng lines of this group was 363 kg/ha higher than the average of the standard checks while the average of the international checks was slightly higher than that of the standard This means that in general the yield potential of the breeding lines of the black-seeded mater1als was high With no fertilizers used on the CIAT farm the yield could be 1ncreased by an average of about 400 kg/ha by providing adequate plant protection Group 2Red small aeed size for Central America (Table 12)This group ahowed the greatest improvement this year All breeding linea outyielded the beat check by at least 500 kg/ha under both protected and nonprotected conditions BAT 1206 and BAT 1102 were the highest y1elders under nonprotected conditions and WIS 784134 and BAT 1289 under protected conditions Yields of the checks almost doubled through protection against bacteria! blight and tropical mite but they were still far below the yields of the breeding lines Group 3Red mottled small to medium seed s1ze for Car1bbean Islands (Table 13) Yields of the breeding lines of thia group were variableThe lowest yielded 914 (not shown) and the highest 2049 kg/ha under unprotected conditions Only six out of 12 lines tested could outyield the standard check variety (Pompadour 2) for this group under nonprotected conditions Under protected conditiona three linea yielded better than the check BAC 57 showed the value of bacteria! blight resiatance aince the yield was about the same under both protected and nonprotected conditions Group 4Red or mottled large seed size for Andean regions (Table 14)Although the average yield of the 10 best breeding lines was higher than that of the check average only two breeding lines out of 25 tested outyielded the best of the standard check group Cuarenteño (G 0118) under both levels of protection This shows the difficulty of improving this grain typeThe international check Diacol-Calima was inferior to !CA L-24 Group 5White small seed size for Chile and Peru (Table 15)This year only seven lines entered yield testing and five were better than the checks while BAC 38 and BAC 77 yielded less than the checks under both protected and nonprotected conditions Groups 6 and 7 were not represented in the 1981 EP Group 8Cream-striped brown, yellow amall seed aize for Brazil (Table 16)The 10 best lines of 47 materials tested showed higher yields than the average yield of the standard checks but only a few (9 out of 47 under unprotected conditions and 2 under protected) outyielded the Carioca check These materials also showed their high yield1ng ability which is almost similar to the black small-seeded group 1 under protected conditions This group of materials came from the screening for acid soil tolerance intended for production areas in Brazil Group 9Cream-striped speckled gray small to medium seed size for Mexico (Table 17)The average yields from protected and nonprotected plots were higher than those of their checks Only Gray yellow and light tan medium to large seed Chile and Peru (Table 18)The two breeding l1nes were to BCMV but the yield performance of the lines needs to be Lack of adaptat1on was the main problem Group for diverse color and seed sizes for breed1ng purposes (Table 19)Only a few materials could outyield the check G 4000 but all these materials have multiple disease res1stance and w1ll be used for breeding purposes onlyIn general y1elds under unprotected field conditions were low due to high anthracnose and ascochyta pressure In addition to these diseases angular leaf spot gray spot and Oidium also heavily attacked sorne linesThe average y1eld under these two testing conditions differed more than in CIAT-Palmira This difference was also observed last year Group 1 Black small seed size (Table 20) Under nonprotected conditions the highest yielder was the standard check Puebla 152The best breeding line yielded slightly better than the average check EMP 60 gave the highest yield under both conditions By providing adequate plant protection the average yield 1ncreased trifold This indicates that this group needs resistance to anthracnose more than other groups Group 2Red small seed size (Table 21) Only BAT 1252 gave an equivalente yield to the best check Zamorano 2 under nonprotected conditions under protected conditions BAT 1252 1192 and 1217 and BAC 37 were superior to Zamorano 2The average yield of the 16 breeding lines in this group was lower than the average of the standard checks under both nonprotected and protected conditions Group 3Red-mottled small to medium seed s1ze (Table 22) The results from this group are comparable to those from CIAT-Palm1ra Under nonprotected conditions only five lines outy1elded the check but under protected conditions nine lines yielded more than the check Group 4Red or mottled large seed s1ze (Table 23) The average of the 10 best materials was h1gher than the best yielder of the standard check group under nonprotected conditionsThe yield of most checks was low due to severe anthracnose and ascochyta incidence Under protected conditions line A 185 yielded more than 2700 kg/ha and outyielded the best check by more than 1100 kg/ha Group 5White small seed size (Table 24) Yields of all the breeding lines were inferior to the check Nep 2 under both nonprotected and protected conditions lOS Groups 6 and 7 were not represented Group 8 Cream-str1ped brown yellow small seed size (Table 25) This is the group that showed the lowest yield difference between protected and nonprotected conditions which means that this group has the highest level of resistance to anthracnoseThe breeding lines (not only from CIAT but also from other institutions) all outyielded the standard checks except the improved Carioca type under nonprotected conditions Line A 176 yielded 3060 kg/ha the highest of the experimenta of 1981 under protected conditions and outyielded the best check improved Carioca by more than 500 kg/ha By protecting this line against diseases y1elds were increased by 1000 kg/ha Group 9Cream-striped speckled gray small to medium seed size (Table 26)Under unprotected condit1ons most of the breeding l1nes outyielded the best of the standard check group under protected conditions only A 114 outyielded Flor de Mayo Line A 114 yielded 2075 kg/ha (the highest of the trial of this year) under unprotected conditions and 2784 kg/ha under protected conditions This indicates that A 114 is highly resistant to anthracnose and to a lesser extent to ascochytaGray yellow light tan med1um to large seed size (Table 27)The two breeding mater1als represented in this group under both unprotected and protected cond1tions were outyielded by the check Tortolas-Diana Another check T1tan did not produce at all under nonprotected conditions and produced only 630 kg/ha under protected conditions Group for diverse color and seed sLzes for breeding purposes (Table 28)BAC 24 performed well under protected and nonprotected conditions and outy1elded the check G 4000LineA 117 under protected conditions and BAT 1270 under unprotected cond1t1ons also outy1elded the checkCl1mbing bean lines were divided into six groups according to seed color s1ze and target-area cl1matic conditions (see Table 15 Chapter In general yields seldom reached 1400 kg/ha under d1rect association and nonprotected conditions but this 1s higher than average farmer yieldsThe growth cycle of the climbing beans was at least 30 days longer than that of bush beans Group 11Black small seeded for cool climates (Table 29) Only four lines of 11 y1elder (1343 kg/ha) that of the G l1nes entries yielded over 1 t/ha G 6040 was the best The average yield of the checks was higher thanBlack small seeded and Group 13Red small to medi~ seed 30)In both groups few breeding lines average yields of the breed1ng 11nes and for warm climates (Table 29) size for cool climates (Table outyielded The the checka were almost equal Group 14Red aeeded for warm climates (Table 30) In thia group the three breeding lines were outyielded by the three checks Group 15Various colors and sizea for cool climatea (Table 31)Several of the materials aelected from the germplasm bank y1elded significantly higher than the checks Th1s group showed the beat improvement in the climbing bean trials Group 16Various colora and a1zea for warm climates (Table 31)No significant yield 1mprovement waa observed in this groupIn general yield performance of the climbing beans was alightly better than the checka Yielda were mostly low but the range between the loweat and the higheat y1elder was aufficient for evaluation The low yield was due to the direct association Most of the breed1ng l1nes were resistant to anthracnoae Aacochyta damage on the climbers was almost negl1gible compared to that of bush beans IBYAN -International Bean Y1eld and Adaptation Nuraery A total of 23 buah and 27 climbing bean lines and varietiea selected from the 1980 EP were tested in the 1980 IBYAN trial The 1 IBYAN atarted in 1976 as a buah¡bean trial with a single trial where all aeed colora were studied together In 1977In 1978In and 1979 black and colored entries were kept separate in two d1fferent triala Climbing bean trials atarted in 1978 with color aeparationa For the 1980 tr1ala the IBYAN waa increased to aeven different nurseriea to cover most of the baa1c bean groupa It ia eat1mated that by 1984 the EP will be providing material to eatabliah all the IBYAN nuraeriea required to comply with the needa of the apecific types preferred in the primary bean-production areas The characteristics compoaition and number of entriea in the 1980 IBYAN tr1ala are ahown in Table 32 As of October 30 1981 data had been received from 82 trialaThe reaults of the internat1onal bean yield triala are published in aeparate reportaThe present discusaion includes only the triala planted in Colombia by the Bean Program Four different tr1als for bush beans were planted at CIAT-Palm1ra and at CIAT-Popayan Jamapa and Porrillo Sintetico for blacks D1acol-Calima for reds Ek Rico 23 for whites and Car1oca for cream-seeded materials were considered as international checks A local variety and an outstanding l1ne from previous trials were the local and elite checks respectivelyTrials at CIAT-Palmira were conducted without chemical control for diseases Black-seeded trials (group 1)The results for the IBYAN tr1als planted in 2 semesters are shown 1n Table 33 Of the four new lines tested BAT 910 and BAT 873 were the best none of these was signif1cantly better than the checks These two lines plus ICA P1JaO BAT 304 and BAT 58 were the outstanding materials in these tr1als Small red-seeded tr1als (group 2) for the IBYAN trials planted in 2 semesters were outstand1ng among the new breed1ng lines 21 outyielded all materials The resulta for the IBYAN trials planted in 2 semesters are shown in Table 35 BAT 482 was consistently better than all the other lines in both seasons Another elite check BAT 338 outyielded most of the material tested Among the new breeding l1nes 78-0374 and A 48 were the best Small cream-seeded tr1als (group 8)The results for the IBYAN tr1als planted in 2 semesters are shown in Table 36 BAT 85 was cons1stently the best material in both semesters Among the new mater1als BAT 477 was the highest y1elderThese two lines plus Car1oca and BAT 336 were the best lines selected from these tr1alsTr1als at CIAT-Popayan were conducted w1th and without chemical control of diseases Black-seeded trials (group 1) Two IBYAN trials were planted in each semester Anthracnose and ascochyta were the predominant d1seases in nonprotected nurser1esThe resulta for the two trials conducted during the second semester 1980B are shown in Table 37 BAT 873 and BAT 527 were the best materials both with and w1thout chemical control for diseases BAT 873 was also among the outstanding materials at CIAT-Palm1ra but BAT 527 did not do as well at Palmira as at Popayan (see Table 33) BAT 910 a good l1ne at Palmira was among the lowest yielders at Popayan BAT 1057 proved to be a good material at Popayan when subjected to chemical controlIn general lowest yielding materials lost 40% more due to diseases than the highest yielding lines Red-seeded trials (groups 13 and 14) Red-seeded cl1mbing beans were grown in the same placea in Colombia as were black-seeded to observe their adaptation to areas similar to where they are usually grownThe results are shown in Table 47 Beans and maize were planted s1multaneouslyGenotype-by-location interact1on was not as marked 1n this type of bean as it was with the black-seeded ones Two entries G 2333 and G 2371 were among the best yielders at both Palmira and Popayan Large grains are preferred for the cool highland conditions of the Andean zone and in Mex1coMater1al for these areas was included in the tria! planted at Popayan and at La Selva Antioquia one of the Colombian s1tes chosen as representative of the areas where large-seeded red beans are grownThe tria! in La Selva was planted in association w1th maize and in Popayan in relay with maize Table 48 shows the results of this tr1alAll entries except G 11820 at Popayan outyielded the local check ICA Viboral a newly released var1ety Y1elds were generally doubled at Popayan over those at La Selva Line G 2331 performed well at both places l1ne G 12488 an otherwise excellent variety tested at several international sites did not do well at Popayan ","tokenCount":"3598"} \ No newline at end of file diff --git a/data/part_3/3668040827.json b/data/part_3/3668040827.json new file mode 100644 index 0000000000000000000000000000000000000000..338ccf957ecde0cf708f5b67574653a8ecc48497 --- /dev/null +++ b/data/part_3/3668040827.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"0d98cc21dbc38d30c3415ca168005af7","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/2261770f-b1a6-4205-94ff-d5b906921a9d/content","id":"516146424"},"keywords":["sustainable development","landscape approach","food security and nutrition","remote sensing","tropical forest conservation and restoration"],"sieverID":"cebf86b4-c9e3-4cc8-963e-257bda459587","pagecount":"13","content":"Malnutrition linked to poor quality diets affects at least 2 billion people. Forests, as well as agricultural systems linked to trees, are key sources of dietary diversity in rural settings. In the present article, we develop conceptual links between diet diversity and forested landscape mosaics within the rural tropics. First, we summarize the state of knowledge regarding diets obtained from forests, trees, and agroforests. We then hypothesize how disturbed secondary forests, edge habitats, forest access, and landscape diversity can function in bolstering dietary diversity. Taken together, these ideas help us build a framework illuminating four pathways (direct, agroecological, energy, and market pathways) connecting forested landscapes to diet diversity. Finally, we offer recommendations to fill remaining knowledge gaps related to diet and forest cover monitoring. We argue that better evaluation of the role of land cover complexity will help avoid overly simplistic views of food security and, instead, uncover nutritional synergies with forest conservation and restoration.O ver two billion people suffer from deficiencies in essential vitamins and minerals, a problem known as hidden hunger (Development Initiatives 2018). Improving diet quality is part of overcoming micronutrient deficiencies while also contributing to better health outcomes. Poor quality diets (such as low consumption of whole grains, fruits and vegetables, or high consumption of red meat, processed foods, salt, fat, and/or added sugars) are associated with higher risk for many chronic diseases and are now among the leading modifiable risk factors for mortality globally (Development Initiatives 2018, Afshin et al. 2019).Dietary diversity is associated with higher dietary quality (Ruel 2003, Kennedy et al. 2011). When considering not just calories alone but diet quality and diversity, forests are an important contributor to human diets (Ickowitz et al. 2014, Rowland et al. 2017), particularly for those living in proximity to forests. For example, forests and trees are sources of several food groups containing micronutrients of global nutrition concern including iron, zinc, vitamin A, and folate (Powell et al. 2013a). These food groups include dark green leafy vegetables, fruits, and meat. A growing body of evidence links tree cover (i.e., the percentage of the land area under tree canopy) to dietary quality and diversity, along with other indices of nutrition (Johnson et al. 2013, Ickowitz et al. 2014, Galway et al. 2018, Rasolofoson et al. 2018, Hall et al. 2019, Lo et al. 2019). For example, across 21 countries, Ickowitz and colleagues (2014) demonstrated that the dietary diversity of children was positively correlated with the percentage of tree cover surrounding their communities. For 27 developing countries, Rasolofoson and colleagues (2018) estimated that living in highly forested areas increased the dietary diversity of children by 25% compared with those in less forested areas. Across 15 African countries, Galway and colleagues (2018) showed that child dietary diversity was negatively correlated with forest loss. However, the mechanistic pathways explaining these relationships remain poorly resolved.In current debates about how to feed the world's growing population, a focus on yields and calories has placed a pervasive emphasis on agriculture, livestock, and fisheries (Ickowitz et al. 2019). We argue that this has contributed to blind spots in the role of landscape diversity, especially where agriculture is situated within a mosaic of trees and forest. Although ten crops account for two-thirds of global cropland (Dawson et al. 2019), their perceived advantage relies heavily on measures of yield and less on nutrition (Remans et al. 2014, DeFries et al. 2015). Such a singular focus on agricultural yields and calories arguably oversimplifies food-forest-conservation debates. As a result, forests and trees are rarely integrated into food security, nutrition, and agricultural development strategies (Ruel and Alderman 2013, HLPE 2017, Downs et al. 2020). We posit that diet and nutrition, particularly dietary diversity, can benefit from a broader landscape perspective that not only addresses agriculture but also integrates forest conservation and restoration. Approaches that place dietary quality and nutrition more centrally and that seek to understand dietlandscape relationships are integral to meeting twenty-first century nutrition and food security goals, especially in many low-income rural regions of the world (Remans et al. 2011, DeFries et al. 2015, Powell et al. 2015, Ickowitz et al. 2019, Sunderland et al. 2019).In the present article, we aim to foster the integration of forests into strategic thinking about agriculture, nutrition, and food security in rural tropical regions. To do so, we first explore the empirical basis of how forests, tree cover, and landscape diversity help support dietary diversity. We then identify remaining knowledge gaps with respect to the role of landscape diversity in enhancing dietary diversity. Finally, to strengthen research, we present a conceptual framework for guiding synthesis on the role of forests and diverse landscapes in enhancing dietary diversity. In addition to filling this conceptual gap, we also propose ways to fill remaining knowledge gaps through enhanced monitoring of forests and diets. We conclude by connecting our perspectives to synergistic outcomes for conservation and forest restoration. Taken together, we frame a comprehensive research agenda to help answer the question How might forests and landscape diversity support dietary diversity?Forest foods. Significant evidence is emerging that forests, agroforestry systems, home gardens, and trees on farms provide nutritional benefits to millions of people, complementing other agricultural production systems (Kumar 2006, Powell et al. 2013a). Forests-defined as areas with tree canopy cover exceeding 10% and larger than 0.5 hectares (FAO 2010)-contribute to nutrition through a variety of direct and indirect mechanisms that have only recently become more widely acknowledged (HLPE 2017). Forests contribute directly to diverse, nutritious diets (pathway 1 in figure 1) by serving as a source of wild foods, the most commonly consumed being vegetables, mushrooms, fruit, insects, and wild meat, including birds and fish (Boedecker et al. 2014, Powell et al. 2015, Tata et al. 2019). Forests also contain habitat for a variety of wildlife species (bushmeat and fish) that provide critical micronutrients (e.g., iron; Fa et al. 2003, Blaney et al. 2009, Golden et al. 2011, Nasi et al. 2011, Lo et al. 2019). Furthermore, women rely on forest products differently from how men do (Sunderland et al. 2014), with far-reaching effects on household diets, given women's decision-making and control over food provisioning (Herforth andAhmed 2015, Malapit andQuisumbing 2015).Tree-based agricultural systems. Agroforestry is the deliberate retention or integration of trees on farms, either alongside crops or in rotation (Leakey 1996). Trees in agroforestry systems produce food directly (via fruits and nuts) but also support the productivity of crops and livestock via ecosystem service benefits (Reed et al. 2017) that include moderating harsh microclimates (Sida et al. 2018a), promoting the return of organic matter to soils (via litterfall and root turnover), and improving soil fertility (Kumar 2006). Deep tree roots can also mobilize nutrients and access water deep below ground and can reduce erosion (Garrity 2004, Kumar 2006, Jamnadass et al. 2013, Zomer et al. 2014). Forests and trees in agricultural systems also provide habitats for natural enemies of crop and livestock pests (Bianchi et al. 2006). As a result of these types of regulating and supporting ecosystem services (pathway 2 in figure 1), some crops grown in agroforestry combinations achieve higher yields (Kumar 2006, Sida et al. 2018a). And further, soils with increased nutrients can translate into micronutrients in food (Frossard et al. 2000, Lal 2009, Arhin and Kazapoe 2017, Wood et al. 2018). The inclusion of fruit trees in agroforestry systems is also important to improving fruit consumption (McMullin et al. 2019).Home gardens are small plots of cultivated land typically located close to the homestead (Powell et al. 2015). They often include overstory trees, crops, and a mix of wild and semidomesticated species (Freedman 2015). The biotic diversity of home gardens, along with their close proximity to homesteads, makes them an important source of nutritionally important food (Kumar andNair 2004, Powell et al. 2015). Four separate reviews of the affects of agricultural interventions on nutrition outcomes (Tontisirin et al. 2002, Berti et al. 2004, Girard et al. 2012, Masset et al. 2012) each noted that home garden interventions are one of the most successful types of agricultural interventions for improving diet and nutrition (Powell et al. 2015). The type and diversity of home gardens have been found to be more important for diet quality than the size of the garden (Bloem et al. 1996). Home gardens are particularity important in marginal arid lands, which are home to 33% of the global population (Hori et al. 2012). In such landscapes, the nutrient flux from surrounding forests and trees not only maintains agriculture (such as row crops and livestock) but can also provide nutrient inputs that support home garden soils (Baudron et al. 2017).Landscape diversity. Despite their nutritional advantages, many diverse agriculture systems that include trees are increasingly being replaced by commercial monocultures (Kumar andNair 2004, Padoch andSunderland 2014), with complex effects on nutrition. In some regions, access to cash income enables households to purchase foods that diversify their diets (Sibhatu et al. 2015, Remans et al. 2014). Also, a number of studies have shown market access to be associated with greater dietary diversity (Sibhatu et al. 2015, Jones 2017). However, higher household cash flows may also be associated with more numerous, frequent, and larger-quantity purchases of highly processed andmicronutrient-poor foods (Popkin 2004, Reyes-Garcia et al. 2019). For example, in Ghana, the introduction of commercial cacao production was associated with lower nutritional diversity (Anderman et al. 2014, Remans et al. 2014). As such, a view toward the interaction of forests with various forms of agriculture nearby is needed.Landscape diversity-the number and types of different land cover and their spatial distribution (Gergel and Turner 2017)-is an emerging and essential component of nutrition-sensitive landscapes (Powell et al. 2013a). Nutrition interventions alone, such as supplementation and fortification of single nutrients in single crops, cannot meet global targets for reducing all forms of malnutrition. This has led to increasing calls for cross-sectoral attention to nutrition and diet quality, especially in agriculture (Ruel and Alderman 2013). As a result, nutrition-sensitive landscapes are gaining attention, with the goal of building ecological and nutritional diversity into landscape policy and planning (Powell et al. 2013a). The approach aspires to provide multiple sources of nutrients to people along with other ecosystem services (Reed et al. 2017). To achieve this goal, nutrition would be necessarily integrated into policies and programs that are also cognizant of environmental targets. Wild forest foods, for example, would be assessed in hunger and poverty alleviation programs, as well as in protected area management. However, this new appreciation of foodforest-landscape dynamics lacks a full understanding of how various configurations of forests, trees, and fields interact to buoy dietary diversity (Rasmussen et al. 2019).We argue that operationalizing the concept of landscape diversity with regards to diet and nutrition is underdeveloped from both conceptual and technical perspectives. In the present article, taking a broader landscape perspective, we place particular emphasis on the availability of and access to forests and trees, as well as their type, stand age, and travel distance, all of which potentially influence the ways forests and trees affect diverse diets. Concepts and approaches from landscape ecology and spatial analysis are well suited for providing insights into how landscape structure and configuration can support dietary diversity.Food for thought: Hypotheses to deepen our understanding of the nutritional function of landscapes Building on the evidence base above, we further integrate landscape ecological principles into four landscape-level hypotheses (H1-H4) that provide a rich arena for additional research, refinement, and evaluation.Disturbed and secondary forests play an underappreciated role in providing wild foods. Younger recently disturbed forests and those regenerating after disturbance likely support dietary diversity in different ways than older or more intact forests because their function, structure, and composition differ (Brown and Zarin 2013, Tropek et al. 2014, Sutherland et al. 2016, Watson et al. 2018). For example, in Tanzania, wild leafy greens collected from disturbed forests are an important source of nutrition largely unavailable in primary forests (Powell et al. 2013b, Magnago et al. 2015). Many wild foods are found within forest fallows (i.e., young regenerating forests on previously cropped fields; Brookfield andPadoch 1994, Broegaard et al. 2017). Fallows support legacy species from prior cultivation, as well as from previously discarded pits and seeds (Wood et al. 2016), along with intentionally planted species (Sanchez 1999). Fallows and secondary forests are often important sites for hunting (Naughton-Treeves 2002, Smith 2005, Nasi et al. 2011). Initial evidence suggests that landscapes that include fallows and swidden agroforestry are associated with higher consumption of micronutrient-rich food groups than are landscapes with simplified agricultural systems (Ickowitz et al. 2016).These relationships are complex, however. In the Brazilian Amazon, primary forests could sustainably provide more wild meat (per hectare) than secondary forests (Parry et al. 2009). However in the Bolivian Amazon, the density of useful plant species was lower in mature forests than in secondary forests (Toledo and Salick 2006). In the Peruvian Amazon, young fallows provided fewer useful species than secondary forest, but their total monetary value was greater (Gavin 2004). Finally, tree species composition within planted and regenerating stands likely affects their function, in part, because of the simplified forest structure of some forest plantations and managed secondary forests that have less diversity of tree and understory species (Nájera and Simonetti 2010). As an example, within some Amazonian riparian areas, extensive açai palm forest management has produced monodominant forests (Weinstein and Moegenburg 2004).Forest edge habitats as nutritional ecotones. Over 70% of the world's remaining forests are within 1 kilometer of a forest edge (Haddad et al. 2015). Forest edge ecotones-where forests meet other land cover types-consist of altered light, moisture, and nutrient conditions and are characterized by higher species diversity of plants and animals. This fundamental edge effect principle of ecology (Saunders et al. 1991, Haddad et al. 2015) potentially influences the type and amount of forest foods available near forest edges. Species preferring high light environments, such as pioneer or weedy species, thrive at forest edges (Magnago et al. 2015). Guava (Psidium guajava) serves as a prime example; it can be invasive along forest edges but provides an important fruit resource for people and animals (Berens et al. 2008). Forest edges also provide improved access points into forest interiors from which wildlife (for bushmeat) and fuelwood (for cooking) can be extracted.Forests also affect adjacent agricultural lands (Mitchell et al. 2015) and, in doing so, can indirectly influence dietary diversity by affecting agricultural productivity. Among the most well understood positive influences is the impact of forests on crop pollination (Ricketts et al. 2004, Bailey et al. 2014). Roughly a third of global food comes from pollinated crops, many of which are also nutrient dense (Eilers et al. 2011). Insects at forest edges can enhance pest control (via natural enemies) or result in damaging crop herbivory (Bianchi et al. 2008). Raiding of crops and livestock by forest wildlife can create significant vulnerabilities for food security of rural households, however (Dorresteijn et al. 2014). Other disservices may include negative impacts on agricultural yields through competition for light, water, and nutrients (Akbar et al. 1990, Reynolds et al. 2007, Sida et al. 2018b). On balance, edge effects on agricultural production appear to be positive (González et al. 2016).Interestingly, the total amount and arrangement of forest edge habitats can alter ecosystem services and disservices provided by forest-agricultural landscape mosaics, and the impacts may be perceived differently among various households (Dorresteijn et al. 2014). Furthermore, the total amount and arrangement of forest edge habitats can function in nonlinear ways to affect ecosystem services in landscapes composed of forest and agriculture (Yang et al. 2020). Because edge influences can permeate forest interiors to a depth of 100 meters or more (Laurance 1997, Chaplin-Kramer et al. 2015), a substantive area of the world's forests is potentially subject to edge influences. Therefore, recognizing trade-offs among ecosystem services and disservices is critical for human well-being (Shackleton et al. 2016, Power 2010), and this challenge may be particularly acute near forest edges.Access mediates the impact of forests on dietary diversity.Households further from forests and trees may have less diverse diets because they lack routine access to forest foods. As the distance to a forest increases, forest foods are likely to be more costly to obtain (in terms of both time and effort; Baudron et al. 2017). In contrast, close proximity to forests can provide opportunistic access to bushmeat species abundant at the forest edges, whereas fruit-bearing trees planted near villages may attract a variety of animal species (rodents and monkeys; Berens et al. 2008, Sunderland andRowland 2019). Importantly, people may travel much further or deeper into the forest interior for hunting, fishing, or specialty forest foods (e.g., orchid tubers and mushrooms; Cunningham 2011). Although travel distances and movements can be very site specific and are affected by cultural food preferences and terrain, the distance to forests and trees likely affects consumption of forest foods.In addition to location, permissions and land rights affect access and therefore mediate the role of forests in influencing dietary diversity. For example, despite the high availability of wild foods in protected forests (Ratsimbazafy et al. 2012), National parks and protected areas with restrictions on access or extraction may result in fewer dietary benefits than accessible communal areas (Sylvester et al. 2016). Similarly, rules governing access and extraction rights around private or community-managed forests can limit the harvest of resources (Robinson andLokina 2011, Jagger et al. 2014). Importantly in some landscapes, forest resources serve as an economic equalizer, making disproportionate contributions to livelihoods for resource-poor, land-poor, or female-headed households (Kamanga et al. 2009). Therefore, the loss of access may disproportionally affect such households and their diets. Thus, the presence of forest within landscapes may not be a straightforward predictor of improved dietary diversity if the local people do not have access (Naidoo et al. 2019).Landscape diversity can bolster dietary diversity. When considered collectively, the aforementioned patterns suggest that diverse heterogeneous landscapes may be better equipped to support diverse diets, particularly in rural landscapes in which market access is low. Where local landscapes-landscapes on which people rely-provide reasonable access to the ecosystems and land cover types needed for diverse foods, it is more likely people will have access to diverse diets. For example, in Tanzania, many of the vegetables consumed grow as wild species along forest edges or within fallows (Powell et al. 2013b). Consumption of fruit relies on agroforests, scattered trees, and disturbed or edge forest (Powell et al. 2015). Meanwhile, home gardens often support species not found elsewhere (Powell et al. 2015). In many parts of the world, meat consumption requires access either to large forest tracts with wild game or to areas producing feed or fodder for domesticated animals. Finally, grains, legumes, and some roots or tubers require farmed land.Simply put, different species and food groups require different ecological niches, but rarely are all these drivers of dietary diversity examined in a unified way. However, such diversity in local landscapes can enhance dietary diversity by providing a variety of nutrient-dense food items in addition to what can be procured in markets. It is precisely in such rural landscapes where forest and biodiversity loss are of concern (Dawson et al. 2019), along with food security and poverty alleviation, further emphasizing the need to clarify the significance of forests in concert with other land cover types.In addition to landscapes composed of many land cover types, the type and spacing of agricultural fields may also provide an indication of available dietary diversity (Kumar et al. 2015, Herrero et al. 2017, ). Larger fields (i.e., clumped, unified parcels) comprising inedible cash crops or monocultures (e.g., palm oil) are typically indicative of specialization. Specialized production systems and monoculture-dominated landscapes are less likely to directly provide diverse dietary resources, especially to local residents. In contrast, landscapes with smaller fields are more likely to include traditional forms of agriculture, involving intercropping, rotations, and mixed crop-livestock production, as well as agroforestry and, therefore, a potentially greater range of agricultural products (Fanzo 2017, Herrero et al. 2017).The majority of fruits, vegetables, and pulses are produced in more diverse agricultural landscapes (Herrero et al. 2017), and the majority of food in sub-Saharan Africa, Southeast Asia, South Asia, and China is produced in small farms (Herrero et al. 2017). Therefore, there is evidence that small, diverse farms are key for supplying nutrient-rich foods in many regions of the world. Incorporating more complex aspects of landscape diversity, both within and beyond agriculture, takes a step further in generating an understanding of landscape features important in diet diversity. Fully recognizing the role of landscape diversity could help integrate the various aspects of forests, trees, and farms capable of supporting diverse diets.A way forward for filling knowledge gaps Several conceptual and methodological gaps currently stymie our ability to uncover the role of landscape diversity in supporting dietary diversity. We propose several ways forward to help better understand these relationships.Less compartmentalized approaches are needed to understand the many pathways to dietary diversity. First and foremost, a guiding framework to support transdisciplinary approaches is essential because landscapes can contribute to dietary diversity through many interacting pathways (figure 1), and the understanding of each requires expertise from many disciplines. The direct pathway from forests to dietary diversity (pathway 1 in figure 1) captures the known direct contributions of forests to diets in the form of wild or forest-sourced foods, ranging from fruits and vegetables to fish and bushmeat (Fa et al. 2003, Vinceti et al. 2008, Nasi et al. 2011, Termote et al. 2011, Powell et al. 2013b). In addition, forests also affect dietary diversity via less direct agroecological pathways (pathway 2) through which forests support agriculture. The agroecological pathway includes a wide variety of ecosystem services that support agricultural production (including the maintenance of soil fertility, pollination, and pest control; Ricketts et al. 2004, Bianchi et al. 2006, Reed et al. 2017, Wood et al. 2018). Furthermore, forests serve as a source of feed and fodder for livestock, which then produces animal products for direct consumption (meat, milk, eggs), as well as soil amendments (manure) for row crops and home gardens (Baudron et al. 2017). The fuels pathway (pathway 3) highlights how forests and agroecological pathways can ameliorate energy poverty for households with insufficient energy to cook or for those spending hours on fuelwood collection (Wan et al. 2011, Baudron et al. 2017). Fuelwood from forests, along with dung from livestock, not only facilitates cooking a range of foods for many households but also supports the preparation of nutrient-dense foods with long cooking times, such as legumes (Powell et al. 2015).Market access can either amplify or counteract the dietary benefits of forests. Finally, the role of income and market access (pathway 4) in supporting higher dietary diversity is complicated in rural forested areas, with important caveats and trade-offs (Pfund et al. 2011, Angelsen et al. 2014). Forest-adjacent communities are often some of the most remote and poorest in a country or region. Despite the many forest products that can be sold to generate income, the importance of income from forest products relative to other sources is mitigated by market access and other factors. The relative importance of income from the sale of forest products may change in times of crises (e.g., drought, illness, or other shocks). Although the sale of forest products can provide rural households with an income safety net (Shackleton and Shackleton 2004, Shackleton et al. 2007, Arnold et al. 2011), other coping strategies may be more common (Wunder et al. 2014). In Honduras, the sale of forest products, although it is not the most common coping mechanism to deal with hurricane related crop loss, was used most commonly by young, poor, and land-poor households (McSweeney 2004).Whether or not increased market access or income will improve diets depends on aspects of the nearby markets. In rural areas in which local infrastructure (electricity, refrigeration, transportation, etc.) is not well developed, highly perishable foods (such as fresh fruits, vegetables, fish, and meat) do not travel long distances. In such places, markets may only supply locally produced perishable foods, in addition to nonperishable processed foods from regional or global markets (Ickowitz et al. 2019). Because of this, greater market access can be associated with higher access to and consumption of processed foods (Reyes-Garcia et al. 2019), which are micronutrient poor and high in energy, salt, sugar, and fat. Therefore, although markets can enhance dietary diversity by providing access to a wider range of foods, there are complex interactions among forests, market access, and nutrition that have yet to be well understood.Because the majority of fruits, vegetables, and pulses are produced in diverse agricultural landscapes (Herrero et al. 2017), markets are also key for ensuring that nutrient-rich foods reach consumers outside of such origin or production landscapes. Therefore, markets bring some of the benefits of the nutrient-rich foods from diverse landscapes to other consumers (beyond the landscapes in which the food was produced) in both rural and urban landscapes. To fully appreciate the role of markets, nutrition-sensitive landscapes should be studied as socioecological systems (Kalaba 2014) that involve the choices of local farmers and their relations with other beneficiaries (either directly or indirectly through markets or teleconnections). Such perspectives are critical to understanding the dynamics between rural areas and growing urban centers, inform debates on local versus global food sourcing, and indicate the scale and intensity of land use required to feed the global population with a diversified healthy diet.To understand these four pathways and evaluate the strength of evidence supporting or negating each, several monitoring gaps must be filled. Methods for improving the empirical assessment of forest cover and dietary information are explained next.Evaluating the direct contribution of forests to diet (as in pathway 1 in figure 1) requires an understanding of the origin of food products. Unfortunately, several methodological issues surrounding collection of dietary intake data limit our ability to understand the importance of this pathway. First, research on dietary intake does not routinely determine the origin of food, be it nearby forests, a farmer's own fields, or markets. Food from markets may also be of indeterminate origin (fields or forests) or may come from different countries. Because very few studies gather this level of detail, most studies cannot provide direct attribution of forest-sourced foods, much less the type of forest from which a food was collected. Many large, publicly available data sets contain information at the food group level (fruit, meat, dairy, etc.) and therefore lack the species or varietal information needed to trace a food's origin (e.g., https:// dhsprogram.com). Such coarse levels of information hinder our understanding of forests' contribution to nutrition.Seasonality affects the availability and use of forest foods; therefore, diet diversity can change seasonally (Waswa 2016, Stevens et al. 2017). In Malawi and Zambia, the proportion of women meeting minimum diet diversity requirements fluctuated widely depending on the month of data collection (Ahern and Kennedy 2018). In contrast, dietary diversity did not change across seasons in Tanzania; however, the source of foods did change, whereby wild food consumption was greater during the food-insecure season (Powell et al. 2013b). Although consumption of wild foods is highly seasonal, it is unclear whether this is driven by need or availability (Powell et al. 2015). Seasonal nutritional patterns must be better characterized if we are to understand the contributions of forests to nutrition.A greater depth and nuance in dietary diversity metrics could also improve our understanding of landscape-diet relationships. Diversity indices are quite well developed and routinely used in ecology to characterize species and land cover diversity, probing well beyond just total species counts. For example, tracking identities (species, cultivars, and varieties) would be useful in determining how local (alpha) diversity is generated. Furthermore, the benefit of using more complex diversity indices would enable analysis of diversity differences among households (such as beta diversity), and their contributions to the total diversity in a landscape (gamma diversity). Lachat and colleagues (2018) used dietary species richness (DSR) to explore diversity beyond food groups, thus capturing the biological diversity of diets. DSR has been validated and shown to be positively correlated with micronutrient intake and diet quality across multiple countries (Lachat et al. 2018). Nutritional functional diversity has also been linked to dietary quality (Lachat et al. 2018) and lower incidence of child malnutrition at the national scale (Remans et al. 2011). Because some such metrics can be challenging to interpret, Wood (2018) developed the potential nutritional adequacy score, a simplified but intuitive indicator capturing multiple dimensions of nutritional diversity. It has been used to assess how different production systems contribute to nutritional needs in Senegal (Wood 2018).In summary, to better understand the contribution of diverse landscapes to dietary diversity, dietary intake assessments must pay more attention to food origin, seasonal variation, and consider a greater more creative range of diet diversity metrics.Improved monitoring and mapping of trees and forests Advances in remote sensing could help evaluate the attributes of forests, woody vegetation, and scattered trees which are important to diets but are not typically captured in routine forest cover mapping. Several knowledge gaps could be filled by the use of high spatial resolution imagery, a better characterization of seasonal forest phenology, and a clear understanding of historical forest change.Unfortunately, many definitions of forest used in monitoring not only underestimate tree cover (Chazdon et al. 2016) but potentially underestimate forest types of value to nutrition, as well as to ecosystem services (Gross et al. 2017). As such, the definitions of forest and nonforest used in satellite remote sensing (Chazdon et al. 2016) are important to reconsider in light of forests' role in food security and dietary diversity. For example, minimum thresholds for tree canopy cover and forest patch size are often used in mapping to delimit an area as forest. Notably, over 40% of agricultural lands worldwide have more than 10% canopy cover (Zomer et al. 2014), coincidentally exceeding the 10% canopy threshold often used to define an area as forest (FAO 2010). Use of 0.5-hectare minimum patch size thresholds (as in http://mapbiomas.org) disregards small forests fragments and remnants, such as sacred forest patches, home gardens, narrow riparian forests, live fences, and scattered fruit trees. Such fine-scale features are generally missed by the spatial resolution of sensors on satellites in routine use historically (such as 30-meter Landsat), making such features difficult to monitor (Gergel 2007). Such forest mapping criteria influence the detection, classification, and characterization of landscape diversity, particularly so in places with sparse tree cover or small forest fragments (Chazdon et al. 2016). Although food resources from small forest patches and scattered trees have largely been overlooked by the development community (Kumar 2006), they are, in addition, simply not well captured in routine forest monitoring.The use of high spatial resolution satellite imagery (e.g., WorldView-3, Quickbird, SPOT, and RapidEye) can capture individual trees (Li et al. 2017), riparian forests (Johansen et al. 2007), and sparse savanna tree cover (Boggs 2010). Colgan and colleagues (2012) successfully combined high spatial resolution aerial imagery and lidar to map tree species in South African savannas. High resolution imagery has been used to generate settlement maps across several developing countries (e.g., Tatem et al. 2007), which could be used to estimate the occurrence of home gardens. Although the ecological importance of large scattered trees is appreciated (Manning et al. 2006), understanding the role of scattered trees or sparse woody vegetation in nutrition will Downloaded from https://academic.oup.com/bioscience/article/70/7/563/5855870 by guest on 16 December 2020 necessitate the use of higher spatial resolution approaches to capture fine-scale attributes because fruit consumption relies on agroforests, scattered trees, and home gardens (Powell et al. 2015).Temporal aspects of food-forest dynamics require forest tracking across different timeframes from the short term to the longer term. Throughout much of Africa, vegetation greenness varies dramatically across the year (Zhang et al. 2018) affecting forest resources. For example, in Burkina Faso, edible leaves from trees (such as the baobab tree, Adansonia digitata) provide up to 60% of consumed vegetables. As a deciduous species that loses its leaves in the dry season, its availability to produce food is highly seasonal. As a result, to ensure vegetable consumption in the dry season, people must either dry tree leaves or have access to irrigated gardens (Mertz et al. 2001, Lykke et al. 2002). Such phenological changes present challenges for deriving accurate consistent vegetation information because satellite imagery often provides coverage at either high spatial resolution over infrequent intervals or at frequent intervals but with coarse resolution. Among possible solutions include use of high spatial resolution imagery to train more frequent moderate resolution imagery (e.g., Brandt et al. 2018), as well as the inclusion of mapping targets (such as buildings) that lack phenological variability.Distinguishing between older forest remnants and newly established forests is not only important for ecological reasons (Chazdon et al. 2016) but, as was previously discussed, is potentially of great importance to nutrition. The structure and composition of new tree cover and younger forests differ from those of older forests (Brown andZarin 2013, Sutherland et al. 2016). Although many regions of the world now lack large tracts of primary undisturbed forest, many forest assessments do not distinguish between planted and naturally regenerated forests or between stands of different age. Without such distinctions, the expansion of plantations may be portrayed as a gain (or no net loss) of forests (Puyravaud et al. 2010, Chazdon et al. 2016, Petersen et al. 2016). Even Hansen's extremely useful and ambitious map of global deforestation classifies rubber, oil palm plantations, and other monocultures as forest cover (Hansen et al. 2013, Tropek et al. 2014). Gaining a deeper perspective of forest trajectories and how they affect forest foods will necessitate longer-term image time series from sources such as Landsat (Hansen et al. 2013) or historical archival aerial photography (Morgan et al. 2010).In summary, detailed tracking of forest landscape mosaics over time could be a powerful approach for prioritizing nutrition-based interventions. However, evaluation of nutrition-sensitive landscapes will remain challenging until such mapping is refined.Implications for land-use planning, conservation, and forest restoration Our efforts to theorize and monitor the pathways leading from landscape diversity to dietary diversity can contribute to the goals of several emerging landscape approaches in land-use planning (Sayer et al. 2014, Laestadius et al. 2015) and have implications for conservation, agriculture, and forest restoration, as well as human well-being. Understanding landscape diversity and improving the tools used to measure it will improve our ability to balance the multiple functions and multiple stakeholders that landscapes must support (Sayer et al. 2014).High spatial resolution mapping and monitoring has the potential to not only aid nutritional planning but also yield benefits to conservation and restoration initiatives often occurring within the same landscapes (Fisher and Christopher 2007), ensuring nutrition and human wellbeing are not ignored. For example, tracking small linear forests that provide waterway protection or remnant forest patches and scattered trees that support habitat conservation and connectivity are also useful in planning for landscapes that can support diverse diets. High spatial resolution remote sensing needed to inform landscape pattern and connectivity assessments for conservation could simultaneously contribute information about the types of foods potentially available in a landscape.Over 500 million smallholder farming households rely on their local landscapes for much of their nutrition (Lowder et al. 2016). Furthermore, small farms in diverse landscapes are producing the majority of the world's food, especially in terms of fruits, vegetables, and important micronutrients (Herrero et al. 2017). However, declining farm sizes in many low-income countries (Lowder et al. 2016), along with transitions to large-scale corporate agricultural production, is placing these farming landscapes under increasing pressure. Higher land-use intensity has been associated with lower use of wild foods (Cooper et al. 2018). Therefore, with increasing land-use intensity, the diets of farming households producing the world's food may change irreplaceably (Ickowitz et al. 2019). Finally, in the face of climate variability, landscape diversity may play an increasingly important role in coping with food shortages (Koffi et al. 2016).Some nutritionally important foods may be more dependent on ecosystem services such as pollination (Gallai et al. 2009, Eilers et al. 2011, Smith et al. 2015), and as a result, land-use change and homogenization could lead to their decline (Reed et al. 2017). Fortuitously, in the case of forest restoration, there is a growing emphasis on landscape approaches. The term forest landscape restoration encompasses a broader view that recognizes diverse options for both forestry and agriculture (Laestadius et al. 2015). The approach looks beyond site-level technical interventions toward balancing multiple benefits and mitigating tradeoffs across landscapes (Laestadius et al. 2015). In fact, the IUCN (International Union for Conservation of Nature) has recently recommended that the World Bank consider landscape approaches in reviews of forest policy (Laestadius et al. 2015). Despite the integral importance of forests to diets, forest resources are not well integrated into poverty alleviation or into nutrition strategies (Oksanen andMersmann 2003, Powell et al. 2015), but the opportunity exists for their improved integration. Therefore, a landscape perspective on nutrition is both timely and commensurate with emerging priorities for forest restoration.Understanding the role of landscape diversity in supporting diet diversity, diet quality, and nutrition is a research imperative. Tackling this challenge requires better integration of expertise that spans multiple disciplines and newly available geospatial information to rigorously evaluate landscape-diet relationships. In the present article, we offer a way forward in addressing the complex interactions between landscape diversity and that of human diets in the rural tropics. First, we summarized the state of knowledge regarding diets obtained from forests, trees, and agroforests. We then hypothesized how specific forest types, as well as overall landscape diversity, can function in supporting dietary diversity. In doing so, we built a framework illuminating four pathways (direct, agroecological, energy, and market pathways) connecting forested landscapes to diet diversity. Finally, we offered recommendations to enhance monitoring of human diets and forest cover designed to help illuminate these pathways.Biodiversity conservation, climate change, land-use change, agriculture, human health, and nutrition are all integrally affected by landscape structure and diversity. The conceptual and technical approaches we have presented can improve the way competing demands for land are contextualized when food security and nutrition are considered along with forest conservation. The nutrition community is increasingly attentive to issues of sustainability in global diets and dietary recommendations (Hirvonen et al. 2019, HLPE 2019, Willett et al. 2019). Commitments such as the United Nations' decade of action on nutrition note synergies between the goals of global nutrition and conservation. Also highlighted is the need to move away from an overemphasis on increasing production of staple crops and calories without due attention to diet quality, protection of poor farmers, and sustainability. Along with the United Nation's decade of ecosystem restoration for 2021-2030, such growing national and international commitments across research and policy communities demand transdisciplinary and integrated approaches. Therefore, an opportunity exists to use national and global dietary recommendations to improve the sustainability of food production landscapes around the world while also achieving forest conservation solutions. Truly finding balanced solutions for the multiple functions needed from landscapes will require understanding how landscapes shape diverse nutritious diets.","tokenCount":"6487"} \ No newline at end of file diff --git a/data/part_3/3669323726.json b/data/part_3/3669323726.json new file mode 100644 index 0000000000000000000000000000000000000000..59b1c397a47b852ccf2ece4fa7d8896e2ff4b3a1 --- /dev/null +++ b/data/part_3/3669323726.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"33e139ddaa7ca8f170e37e2757b4b8b0","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/07e7a322-9c6f-4c7f-900f-d6548d2036c4/retrieve","id":"1104973838"},"keywords":["biofortification","iron","macronutrients","micronutrients","pearl millet","zinc"],"sieverID":"05cf4f7f-22e6-45f6-9b85-0e82b8d6c52f","pagecount":"12","content":"Micronutrient deficiency is most prevalent in developing regions of the world, including Africa and Southeast Asia where pearl millet (Pennisetum glaucum L.) is a major crop. Increasing essential minerals in pearl millet through biofortification could reduce malnutrition caused by deficiency. This study evaluated the extent of variability of micronutrients (Fe, Zn, Mn, and Na) and macronutrients (P, K, Ca, and Mg) and their relationship with Fe and Zn content in 14 trials involving pearl millet hybrids, inbreds, and germplasm. Significant genetic variability of macronutrients and micronutrients was found within and across the trials (Ca: 4.2-40.0 mg 100 g −1 , Fe: 24-145 mg kg −1 , Zn: 22-96 mg kg −1 , and Na: 3.0-63 mg kg −1 ). Parental lines showed significantly larger variation for nutrients than hybrids, indicating their potential for use in hybrid parent improvement through recurrent selection. Fe and Zn contents were positively correlated and highly significant (r = 0.58-0.81; p < 0.01). Fe and Zn were positively and significantly correlated with Ca (r = 0.26-0.61; p < 0.05) and Mn (r = 0.24-0.50; p < 0.05). The findings indicate that joint selection for Fe, Zn, and Ca will be effective. Substantial genetic variation and high heritability (>0.60) for multiple grain minerals provide good selection accuracy prospects for genetic enhancement. A highly positive significant correlation between Fe and Zn and the nonsignificant correlation of grain macronutrients and micronutrients with Fe and Zn suggest that there is scope to achieve higher levels of Fe/Zn simultaneously in current pearl millet biofortification efforts without affecting other grain nutrients. Results suggest major prospects for improving multiple nutrients in pearl millet.Micronutrient malnutrition affects more than two billion people worldwide (1)(2)(3)(4). The most prevalent forms of malnutrition are those arising from deficiencies of iron (Fe), zinc (Zn), vitamin A, and iodine (I), which occur particularly among women and children in developing countries. In these countries, more than 40% of preschool children are stunted because of Zn deficiency, whereas 30% of preschool children are anemic because of Fe deficiency (5,6). For instance, India loses about 4 million children every year to disability-adjusted life years (DALYs) caused by Fe deficiency or anemia (7), with another 2.8 million children lost to DALYs because of stunted growth caused by Zn deficiency (8,9). Humans require more than 40 nutrients that are essential to meet the metabolic needs of the body including proteins, lipids, macronutrients, micronutrients, and vitamins. Inadequate consumption of any of these will result in adverse metabolic disturbances, leading to sickness, poor health, impaired development in children, and a large economic cost to society (1). Men and women aged between 25 and 50 years require a daily intake of 800 mg of calcium (Ca) and phosphorus (P), 280-350 mg of magnesium (Mg), 2,000 mg of potassium (K), 10-15 mg of Fe and Zn, 2-5 µg of manganese (Mn), and 500 mg of sodium (Na) to meet the Recommended Dietary Allowance (RDA) (10)(11)(12). This is reason enough for developing public health policies that encourage the consumption of micronutrients at the RDA levels. Evidence suggests that the main cause of hidden hunger in developing countries is the unavailability of essential minerals in staple diets, particularly those comprising cereal-based foods that are inherently low in micronutrients such as Fe, Zn, and vitamin A (13)(14)(15)(16). Efforts are underway to breed for increased Fe, Zn, and vitamin A content (17,18). The agronomic or genetic enhancement of essential micronutrients and vitamins in edible parts of staple food crops is called biofortification. Genetic biofortification is a one-time investment and has no genetic erosion such as the dwarfing genes that catalyzed the Green Revolution in wheat and rice. Biofortification breeding is currently limited to a few crops, including iron-fortified pearl millet and beans, zinc-fortified wheat, rice, and maize, and vitamin A-fortified orange sweet potato, cassava, and maize (18) (www.harvestplus.org). There are biofortification initiatives in other crops such as lentils (19).Pearl millet is grown on 26 million ha globally, of which 7.4 m ha are in the most marginal arid and semiarid tropical regions of India, particularly in Maharashtra, Rajasthan, Gujarat, and Uttar Pradesh states (20). It is an important staple food for millions of people and a major source of dietary energy and nutritional security for the vast rural communities in these regions (21). Pearl millet is also the cheapest source of not only energy and protein but also of Fe and Zn (22). Given its high nutritional value, pearl millet can contribute significantly to improve the nutritional status of millions. However, all the released and commercially grown pearl millet cultivars have low levels of micronutrients, especially low Fe (42 mg kg −1 ) and Zn (32 mg kg −1 ) (23). A few studies (24,25) have reported crop breeding efforts that have significantly contributed to improving grain yield in commercial cultivars, but with reduced grain nutrient concentrations compared to landraces. The International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) initiated biofortification research under the umbrella of the HarvestPlus Challenge Program of the CGIAR, to develop high-Fe open-pollinated varieties (OPVs), improved breeding lines, and hybrid parents for high Fe and Zn contents. Wide variability for Fe and Zn contents and their genetic inheritance are well documented (26,27). These two micronutrients are governed by additive-effect genes (23,26,28). Among the micronutrients, Fe and Zn can be significantly improved through biofortification breeding. While the pattern of association between Fe and Zn is being studied, the association of these two traits with other important macro-and micronutrients has not been studied extensively in sizeable pearl millet breeding materials. As part of the HarvestPlus-supported biofortification program, this study assessed the available variability for grain micronutrients (Mn, Na) and macronutrients (P, K, Ca, and Mg) and their relationship with Fe and Zn content (current biofortification target nutrients) in different pearl millet breeding trials, including germplasm accessions, hybrid parents, and commercial cultivars to develop cultivars with improved iron and zinc content.This study consisted of 928 entries in 14 replicated trials during the 2012-2013 crop season in India. The details of the experimental materials and trials are given in Table 1. All these field trials were evaluated during the rainy season using a randomized complete block design with two replications (trials 7 and 8 were replicated thrice) in an Alfisol precision field at ICRISAT, Hyderabad, India (latitude: 17.51 • N, longitude: 78.27 • E, altitude: 545 m) (Table 1). Entries in trials 1-4 were planted in two rows of 4 m-long plots. Entries in the remaining trials were planted in one-row 2 m-long plots, with an interrow spacing of 75 cm and intrarow spacing of 15 cm. In all the field trials, fertilizer was applied as per standard recommendations for the site to maintain good soil fertility of the experimental fields to ensure trial precision. Openpollinated main panicles of five random plants with good seed sets were harvested from each plot at or after physiological maturity in all the trials. The harvested panicles were sundried on a tarpaulin sheet for 12-15 days, stored in cloth bags, hand threshed, and the grains were divested of glumes and foreign matter, if any, to produce grain samples for laboratory analyses.Grain macronutrients such as P, K, Ca, and Mg and micronutrients such as Fe, Zn, Mn, and Na were analyzed following the methods described by Wheal et al. (29) at Waite Analytical Laboratory, Adelaide University, Australia. Grain samples were finely ground and oven-dried at 60 • C for 48 h before analyzing their nutrient content. This help to reduce the uniform moisture of the grain samples at ∼12%. The ground samples (0.2 g) were transferred to 25 ml polypropylene Plasma Preparation Tube (PPT) tubes and digestion was initiated by adding 2.0 ml of concentrated nitric acid (HNO 3 ) and 0.5 ml of 30% hydrogen peroxide (H 2 O 2 ). Tubes were vortexed to ensure the entire sample was wetted and then predigested overnight at room temperature. Tubes were vortexed again before being placed in the digestion block. They were initially heated at 80 • C for 1 h followed by digestion at 120 • C for 2 h. After digestion, the volume of the digest was brought to 25 ml using distilled water and the content was agitated for a minute in the vortex mixer. The digests were filtered and the nutrient content was determined using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Estimation of aluminum (Al) as an index of soil or dust contamination was done in the grain samples of all the trials using the procedure followed in wheat (30).Data analysis was done using SAS University Edition (SAS/STAT R , SAS Institute Incorporation, Cary, North Carolina, USA). The analyses of variance of all the trials were done following Gomez and Gomez (31). This study applied the Generalized linear model (GLM) statistical analysis since most of the trials consisted of fixed-line materials (no early stages of a selection). Broad-sense heritability (H 2 ) was calculated following Hallauer et al. (32). Correlation analysis among grain minerals in all the trials was done as per Al-Jibouri et al. (33) and the significance of the correlation coefficients was tested using the standard table in Snedecor and Cochran (34). Genotype (G) and traits (T) analysis were performed using the \"Genotype-by-Trait\" module of the genotypes, and genotype × environment interaction (GGE) biplot software (35) (http://ggebiplot.com/biplot-breeder's_kit. htm).This study emphasized total variability for multiple grain nutrients to establish a baseline for most nutrients in pearl millet. Therefore, the results and their interpretation mostly focused on the magnitude of variability of each trial (hybrid parents, commercial/released hybrids, and germplasm accession) and Fe/Zn association with other nutrients under highly managed precision fields. All the 14 trials had quality data, as indicated by the Coefficient of variation (CV)% of each trial. The magnitude and significance of genetic variability are prerequisites for an effective pre-breeding program enabled through the efficient selection of these minerals for genetic improvement.The analysis of variance showed that the differences among the genotypes were highly significant for Fe and Zn in all the trials. Variation attributable to genotypes was not significant for Mn, Ca, Na, and Mg in one trial and P and K in two trials. Significant genotypic differences were also observed for other grain mineral content (Table 2). The nonsignificant values observed for very few macronutrients in three trials were not expected. This could possibly be because the trial consisted of genotypes that had been selected either for grain yield traits or partially for grain micronutrient (Fe/Zn) content during line development. A further investigation of these specific pedigrees and genetic backgrounds is warranted for a better understanding of variability. The results also showed that compared to other minerals, there was substantial genetic variability for Fe and Zn in the elite materials. For instance, the genotypes in the commercial hybrid trial, released cultivar trial, and designated parents of the seed (designated B-lines) trial were directly selected for grain yield and its components, whereas those in the other trials were mainly selected for Fe and Zn contents. Across the 14 trials, the means of P, K, Ca, and Mg content were 369, 489, 12, and 130 mg 100 g −1 , respectively (Figure 1; Supplementary Table 1).The variability for these macronutrients across the 14 trials ranged from 275 to 495 mg 100 g −1 for P, 340-725 mg 100 g −1 for K, 4-40 mg 100 g −1 for Ca, and 94-189 mg 100 g −1 for Mg. Similarly, the mean micronutrient content across the 14 trials was 53 mg kg −1 for Fe, 41 mg kg −1 for Zn, and 13 mg kg −1 for both Mn and Na (Figure 2; Supplementary Table 2). The magnitude of variability was higher for macronutrients than for micronutrients. Mean and variability range of eight minerals were in the order K > P > Mg > Ca > Fe > Zn > Na > Mn. The results also revealed larger variability for P, K, Ca, Mg, Fe, Zn, Mn, and Na in parents/inbred trials compared to the hybrid trials. The variation for macronutrients (P, K, Ca, and Mg) in parent/inbred trials ranged from 25 to 157% and the variation for micronutrients (Fe, Zn, Mn, and Na) in parent/inbred trials ranged from 16 to 139% compared to those observed in the hybrid trials. These significant differences in grain mineral content among diverse sets of genetic materials suggested the promising prospect of enhancing these mineral nutrients in pearl millet, in addition to Fe and Zn. Previous studies in pearl millet have revealed wide genetic variability in grain micronutrient contents of Fe and Zn to be highly heritable (26,(36)(37)(38)(39). A couple of studies have reported breeding approaches that have significantly improved grain yield in commercial cultivars, but reduced grain nutrient concentrations compared to old cultivars (24,25). This study revealed the presence of adequate variation for Fe and Zn in elite genetic backgrounds for further breeding. All these lines were initially bred for yield-related traits as a part of mainstream breeding and subsequently screened for micronutrients. This showed the prospects for genetic enhancement of pearl millet with respect to these grain minerals, along with productivity traits, which would further make pearl millet a cheap source of Fe/Zn. Heritability estimates provide information about the proportion of phenotypic variation that is genetic and allow for the prediction of genetic gains following selection. In this study, broad-sense heritability (H 2 ) estimates, averaged across 14 trials, ranged from 0.58 to 0.73 for macronutrients and from 0.67 to 0.70 for micronutrients (Table 3). This implied that, in general, slightly greater selection progress would be possible for grain micronutrients than for grain macronutrients in pearl millet. The heritability observed in inbred/parental trials was higher than that in hybrid trials for both macronutrients and micronutrients. These high heritability values suggest high genetic gains in phenotypic selection since these micronutrients are largely controlled by additive gene action (26,28). These results are consistent with earlier studies on progeny phenotypic selection, which was highly effective in improving Fe and Zn in pearl millet (26,40). Previous studies have reported high H 2 for grain Fe and Zn contents in pearl millet (38,41,42). Therefore, the availability of highly heritable variation for these macronutrients and micronutrients suggests that genetic improvement in pearl millet is highly feasible through progeny selection.Correlation among different traits is very important to ensure success in indirect selection in a crop breeding program. Therefore, associations between Fe and Zn and their relationship with other grain macronutrients and micronutrients are critical for the success of the genetic biofortification of pearl millet with respect to Fe and Zn. The correlation coefficient between Fe and Zn ranged from 0.58 to 0.79 in hybrids and from 0.64 to 0.81 in inbred and iniadi germplasm (early maturing, large-seeded, originated from Togo regions of West Africa), with an overall correlation coefficient of 0.79 (Table 4). Three hybrid trials, five inbred trials, and a germplasm trial showed a high magnitude of correlation (r ≥0.70; p < 0.01). This implied that Fe and Zn content were closely linked within the common genomic region or via interconnected physiological mechanisms for their uptake and translocation into grains. A similar positive and significant correlation between Fe and Zn has been reported in earlier studies in pearl millet (28,(43)(44)(45)(46), which can be attributed to the co-segregation of alleles for these micronutrients and the colocalization of quantitative trait loci (19). The results of this study suggested breeding for Zn concentration to be the secondary target while maintaining the focus on Fe content in pearl millet. Fe and Zn showed mostly positive association with P, and the association was significant only in two trials for Fe (r = ≤0.40) and three trials for Zn (r = 0.36-0.47). Such significant association was observed in released cultivars and designated hybrid parents trials and not in other trials. The hypothesis is, such significant association exist due to homeostasis cross-talk between P, Zn, and Fe for better crop survival and fitness (47) as the designated parents and released cultivars consisted of welladapted materials across regions [nitrogen (N), phosphorus (P) and potassium (K) (NPK) applications for better yield], while others are in pipeline testing and yet to be tested for wider adaption. Therefore, breeding for P improvement in hybrid parents and cultivar breeding is highly possible together with Fe and Zn in pearl millet. The association of Fe and Zn with Ca was mostly in the positive direction and significant in five trials with Fe (r = 0.26-0.61) and Zn (r = 0.21-0.53). While Mn showed a positive association with Fe and Zn in all the trials, a significant association was seen in 10 trials with Fe (r = 0.24-0.50) and eight trials with Zn (r = 0.14-0.52). This positive association of Fe and Zn with Mn, and to some extent with Ca, suggested the possibility of improving Fe and Zn along with these micronutrients. Positive or negative correlations of other minerals with Fe and Zn content were not always significant. For instance, Mg had a positive and significant association with Fe in two trials (r = 0.27-0.42) and with Zn in three trials (0.31-0.52), while the association was significant and negative in one trial (trial 11) with both Fe (r = −0.29) and Zn (r = −0.25). Na had a negative and significant association with Fe (r = −0.35 to −0.53) in four trials and with Zn (r = −0.37 to −0.51) in five trials. Fe and Zn had a significant negative association with K only in two trials (r = −0.16 to −0.40). On the contrary, Zn had a positive and significant association (r = 0.48) with K in one trial (trial 8). Very few germplasm-based studies in pearl millet revealed that Fe and Zn were significantly negatively correlated with P and no correlation was detected between Ca and Fe, Zn, and P (42,48). The order and magnitude of the interrelationship of Fe and Zn with these grain minerals suggest that similar genetic and physiology/molecular mechanisms control Fe and Zn mobilization, uptake, distribution, and accumulation in pearl millet without much interference or adversely affecting the accumulation of other nutrients in the grain. These two micronutrients were weakly correlated with K and Na. Such weak and negative trait linkages can be broken using a directional selection in a larger segregating population (early generations). It can also be executed using genomic marker technology, identifying single-nucleotide polymorphism (SNP) markers associated with the target nutrient traits (so-called diagnostic markers) in early generation breeding pipelines. Interestingly, positive and significant associations of Fe and Zn with P, Ca, and Mn were observed in released cultivars (trial 6) and with P, Ca, Mg, and Mn across 14 trials that consisted of hybrids, inbreds, and germplasm. This implies that genetic improvement of productivity traits in advanced breeding lines, hybrid parents, and hybrids with micronutrients and macronutrients is highly feasible in pearl millet. Correlations indicate that Fe and Zn can be improved simultaneously with a few nutrients such as Ca and Mn. Capitalizing on the available latent genetic variation for grain nutrients and the absence of significant negative associations among these traits is a promising prospect for mainstreaming nutrition traits in pearl millet in the near future.Phenotypic correlation of pair traits among genotypes is largely dependent on previous breeding objectives for a given trait and likely to be misguided because of the effect of a different trait. Therefore, critical analysis and visualization are required to choose desired traits-based germplasm. This study demonstrated eight nutritional traits association across a different set of genotypes to guide multitrait selection strategy in pearl millet. The genotype (G) by trait (T) biplot is becoming a better tool for depicting correlation among traits across genotypes (35). The relationship among the nutritional traits studied in 14 trials using the GT biplot is shown in Figure 3. The GT biplot explained 49.1-63.1% of the total variation in hybrid trials, while it was 57.4-65.8% in parents and germplasm trials, suggesting substantial trait variations explained for each trial and confirming the significant variance in the analysis of variance. Longer vector lengths, mostly observed for Fe, Zn, P, K, and Na, indicate wide variations among test genotypes (in hybrids, parents, and germplasm), whereas the shorter vector length specifies minimal variation among genotypes for other traits in almost all the trials. In such cases, the use of three-dimensional plots may help to visualize the spread variations. It is important to note that the test materials originated from the regular breeding program chiefly targeted for improving productivity traits. The correlation coefficient among traits presented for each trial (Table 4) supports the results of the GT biplot with a similar direction. For instance, Fe and Zn were always positively associated in all the trials (Figure 3) except for one trial (HT-2), where the association was positive but weak. The positive relationship of both Fe and Zn with Ca and Mn is similar to the correlation matrix. Findings suggest that the breeding for Fe is likely to improve Zn in pearl millet, and interestingly the two nutrients traits can be genetically improved independently from other nutrients. GT biplot delineated the best genotypes as potential sources for one or more desired nutrient traits in pearl millet. A similar pattern of a positive association between Fe and Zn in the GT biplot was reported in pearl millet (49). The GT biplot serves as a quick breeder tool for the selection of nutri-dense entry for each of the nutrients as well as more than one nutrient can be selected for in potential parents (trait donor).This study revealed the potential genetic variation for eight pearl millet grain nutrients coupled with relatively high heritability and significant positive association especially with Fe and Zn content in diverse breeding materials (>900 entries). Released cultivars had low-to-moderate grain mineral variability in the diverse high-yielding backgrounds, suggesting the need for monitoring grain minerals in future cultivars. Parents and germplasm had higher nutrient content; the identified mineral-dense genotypes merit exploration for hybridization to improve grain mineral contents in next-generation breeding progenies and cultivar breeding. The findings of this study indicate that genetic selection for Fe will improve Zn as an associated trait in pearl millet. In addition, the Fe and Zn relationship with other macronutrients and micronutrients suggests increased prospects to achieve multiple nutritional gains in the ongoing HarvestPlus-supported pearl millet biofortification breeding. The results of this study warrant a further systematic multilocation testing to ascertain the magnitude of G × E interaction concerning micronutrient traits selection accuracy, stability, and inheritance to assist in devising appropriate breeding strategies.","tokenCount":"3741"} \ No newline at end of file diff --git a/data/part_3/3673225816.json b/data/part_3/3673225816.json new file mode 100644 index 0000000000000000000000000000000000000000..c302a71831b87870ea3c1612ea7fe27cbfac3b65 --- /dev/null +++ b/data/part_3/3673225816.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"bf9e134751b2db6f78e14f301ec10d50","source":"gardian_index","url":"https://data.cimmyt.org/api/access/datafile/:persistentId/?persistentId=hdl:11529/10548656/5","id":"298818757"},"keywords":[],"sieverID":"d93a9d92-7438-4601-bc98-f3e183d31412","pagecount":"53","content":"Variable Name Question Text Saved Value collectionDate Hidden from user Today's date wc Hi ! Welcome to CROP YIELD & PRODUCTION PRACTICES SURVEY form. Kindly read the instructions carefully for each question before you fill in. Unless otherwise indicated, all responses correspond to information from __ the largest plot __ for selected crop on each farm ! Thank you for filling out ! User entered text consentDisclaimer Thank you for the opportunity to speak with you. I would like to interview you and your household for a survey. Our investigation aims at getting insight into different crop production practices & grain yield. We are inviting you to be a participant in this study. We value your opinion and there are no right or wrong answers to the questions we will be asking in the interview. All we ask is for your honest answer and opinion. The interview takes approximately around forty minutes to complete. Ifyou agree to participate, you can choose to stop at any time or to skip any questions you do not want to answer. Your answers will be completely confidential; we will not share information that identifies you with anyone and your name and location will be kept safe using a coding system.After entering the questionnaire into a database, we will also restrict access to all information such as your name which will link these responses to you so that you can not be identified and will remain completely anonymous. Your participation will be highly appreciated. The answers you give will help provide better information to policy-makers, development practitioners, agricultural extension agents, and program managers so that they can plan for better services that will respond to your needs. If in the future you have any questions regarding study and the interview, or concerns or complaints we welcome you to ask our (the data collector) contact details. ","tokenCount":"310"} \ No newline at end of file diff --git a/data/part_3/3677917922.json b/data/part_3/3677917922.json new file mode 100644 index 0000000000000000000000000000000000000000..43f78c495e38aab963bc20e7a791536acbe402ea --- /dev/null +++ b/data/part_3/3677917922.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"4eb628f434bf6b2cf17c7a92e080adbb","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/895e0b2e-bb92-4f92-bfb0-6c5d35c293eb/retrieve","id":"-860290843"},"keywords":[],"sieverID":"fdf23e54-f448-4650-bcba-dc18d5825e3f","pagecount":"2","content":"The multiple benefits of livestock are in focus this week as experts meet in Ethiopia Vietnam PigRISK project team shares findings on improving food safety in pig value chains Two workshops that disseminated key results of the 'Reducing disease risk and improving food safety in smallholder pig value chains in Vietnam', or PigRISK, project were held on 28 April and 5 May 2017 in Nghe An and Hung Yen provinces, Vietnam.New factories that will transform cassava peels into highquality feed for livestock have been launched in Nigeria.The transformation of small ruminant value chain in Ethiopia is a major goal of the CGIAR Research Program (CRP) on Livestock. These efforts are supported by the International Fund for Agricultural Development (IFAD)funded Small Ruminant value chain Transformation in Ethiopia (SmaRT) project.The African Chicken Genetic Gains (ACGG) program 2016 annual report is now available.The report highlights progress made by the project in the past year including changes to the ACGG model, which as evolved slightly over time as 1) a greater focus on gender has developed (with an understanding of 'critical moments', 2) the innovation platform model has shifted focus from the sub-national meetings to community meetings, and 3) the program has partnered with the Improving Nutrition Outcomes Through Optimized Agricultural Investments ('Agriculture to Nutrition' ATONU) initiative to develop a nutrition component in Tanzania and Ethiopia.New project to accelerate use of innovations for increased agricultural productivity in Africa 14 June 2017: An ambitious project to increase the adoption rate of agricultural technologies and reduce the food insecurity burden in Africa was launched at the International Livestock Research Institute (ILRI) Nairobi Campus last week.Following the vaccine that wiped out rinderpest, a new vaccine against sheep and goat plague proves promising A new paper, A thermostable presentation of the live, attenuated peste des petits ruminants vaccine in use in Africa and Asia, by researchers at the International Livestock Research Institute (ILRI) describes development of a thermostable version of the current, effective vaccine against 'peste des petits ruminants', or PPR for short, a disease more commonly known as sheep and goat plague.On 29 May to 1 June 2017, a team of scientists (from Cape Verde, Ethiopia, Finland, Germany, Italy, Kenya, Namibia, South Africa, Sweden, Norway and the Czech Republic) and other stakeholders in environmental research convened at the International Livestock Research Institute (ILRI) in Nairobi to discuss environmental research infrastructures (RIs) in Africa.A little-known wild grass could be a double blessing to farmers in arid areas, not just for their crops, but also for their livestock.Research by the International Livestock Research Institute (ILRI) and the Kenya Agricultural Livestock Research Organisation (Kalro), shows that the grass called brachiaria, fixes minerals in the soil that are crucial for plant health. These minerals including nitrogen, phosphorous and carbon, are often lacking in arid areas.The Federal Institute for Risk Assessment (BfR) in Germany has expanded its cooperation with the International Livestock Research Institute (ILRI).Project Launching Workshop on Feed and Fodder Production in different Agro-climatic Zones and its Utilization for Livestock of Odisha Bhubaneswar: Keeping in view the importance of nutritional management in livestock farming, HARD Department, Government of Odisha in collaboration with International Livestock Research Institute (ILRI), Nairobi hands together to improve the livestock productivity through balanced feeding. A one day workshop was organized on 20th June, 2017 at Hotel Presidency to launch the State Plan scheme \"Feed and fodder production in different Agro-climatic zones and its Utilisation for Livestock of Odisha\".In May and June we welcomed the following staff: Dawit Solomon ","tokenCount":"581"} \ No newline at end of file diff --git a/data/part_3/3680160263.json b/data/part_3/3680160263.json new file mode 100644 index 0000000000000000000000000000000000000000..7c5c26ef9e424f2170c8d202c8df0c1eedea7878 --- /dev/null +++ b/data/part_3/3680160263.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"0f3fe7e3a678e9d7a776d6d9f0ea659d","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/8a75ce46-11a9-41f6-ba4e-5f0670565829/retrieve","id":"165749780"},"keywords":[],"sieverID":"bd99d388-e8cd-4ccc-875f-3cb712d1e0d4","pagecount":"2","content":"Project Title: P1678 -JIRCAS contribution to flagship project 5 Description of the innovation: 2 potential upland rice varieties with 15 -20% reduction in yield loss caused by low soil fertility in smallholder farms developed and tested in farmer's fields (so the varieties are 15% and 20% better compared to a local variety under low-input management. Variety release proceedings are ongoing together with Malagasy counterpart organization FOFIFA but are delayed due to COVID-lockdown during the crucial reproductive stage inspection period. • 5-10 elite breeding lines and/or varieties combining tolerance of two to three of the relevant stresses in the three ecosystems developed, having 25-50% reduction in yield losses• Genetic gains at the end of the breeding cycle of 1% compared to 2016; 10 varieties released with 10% higher yield, and meeting national quality requirements, in intensive systems.• 11 -Adoption of CGIAR materials with enhanced genetic gains Contributing Centers/PPA partners:• JIRCAS -Japan International Research Center for Agricultural Sciences 1 This report was generated on 2022-08-19 at 08:39 (GMT+0)","tokenCount":"166"} \ No newline at end of file diff --git a/data/part_3/3711985524.json b/data/part_3/3711985524.json new file mode 100644 index 0000000000000000000000000000000000000000..51f7908bf409b7e4ae97c6146df3d802ddb05592 --- /dev/null +++ b/data/part_3/3711985524.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"f63028bbd581f4604b9049deff1f1f2d","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/4ed3430a-a86d-456c-ad03-d67c91671d79/retrieve","id":"-953927840"},"keywords":[],"sieverID":"26cfe7fd-863e-4a1a-82ad-fe2ed14b93bc","pagecount":"4","content":"A complex mix of local and global trends drive demand for beans; ultimately, these trends are influenced by how individual preferences deriving from gender, culture, income, and social status intersect with macro drivers such as urbanization, population growth, and the changes that accompany global increases in income.Bean Demand:August 2021Food systems are inherently complex (Figure 1) where a range of pressures are challenging their ability to provide nutritious food and enhanced livelihood opportunities in an environmentally sustainable way. On the demand side for food, increase of urbanization and rising incomes are leading to a more diverse national diets, characterized by reduced per capita demand for staples and an increased per capita demand for other products like livestock, horticultural products, and processed and precooked food [1].Common beans appeal to consumers in different ways reflecting the diversity of preferences for traits that are influenced by their food habits and other drivers like demographic, economic, and cultural orientation [2]. For instance, depending on the region consumers, prefer different colors of beans. At the same time, consumers from bean production regions are more likely to choose many varieties than those who come from non-bean production regions [3].For low-income households, a shorter cooking time represents savings in fuel and water needed to cook the beans while for high-income households lower cooking time represents savings in time to do other activities. The complex interactions of food system drivers are illustrated in Figure 1. Investment in the industry to produce precooked and canned beans could promote an increase in bean consumption. Breeding for traits like drought tolerance or pest and disease resistance, will help farmers to increase their yields. Higher yields will increase the availability of beans in the market, reducing food insecurity of farmers and the rural and urban population. Increasing bean consumption will help to achieve positive nutritional outcomes such as the reduction of populations with anemia.in northern Tanzania for of the households,cooking time was a major impediment to bean consumption.cooking fuel is more limited in urban than rural areas [4].Urbanization is another driver of demand for this trait since the access to (66%) (41%)An organized and reliable market, together with effective extension and government support in developing marketing infrastructure, have created a multi-milliondollar bean export market for small farmers in Ethiopia. While export markets comparable to the Ethiopian case may be few, current efforts seek to replicate this experience of market pull on a local and regional basis through business platforms, establishing relationships between traders and farmers.Breeding programs and seed diffusion efforts should focus on delivering varieties that suit the farmers (e.g. yield, drought tolerance, pest and disease resistance) and the consumer preferences (e.g. ability to be processed, low cooking time, and biofortification). A gender integration at the design stage of any breeding system is needed to ensure men and women farmers' have access to varieties they prefer for food and income generation. If these preferences are considered by breeders, we would see enhanced breeding programs that meet food and nutritional security, poverty reduction, and gender equality.As macro drivers such as urbanization and income growth are projected to increase, it would be expected that the demand for specific traits also increase. Analyzing the relationship between these drivers and demand is a useful tool to guide breeding programs for the formulation of more discriminating product profiles since the understanding of how drivers influence trait preferences will help to project how trait demand might evolve as the macro drives evolve.Demand for precooked and processed bean could increase in urban areas and for households with women engaged in rural off-farm employment. As urbanization and income increase, awareness for health would rise as well as demand for biofortified beans.Constraints to bean consumption were limited access to cooking fuel, high level of flatulence, price, limited availability in the market, and taste [4]. Studies conducted in Ethiopia, Kenya, and Uganda, had showed similar results [2,5:7].Changing demand has transformed markets and the perspectives of farmers on production. Markets have an increasing influence on what farmers grow, and how they grow it. For example, a generation ago farmers cultivated a wide range of landraces with varied grain types, but today most farmers almost uniformly prefer to grow varieties with clear marketability. Currently bean varieties are primarily valued for yield, maturity period, and market demand. The most important attributes are grain price, color of the beans, ease of shelling and nutrition values, and taste of the beans [7:9]. In addition, due to men's and women's different roles and responsibilities, their needs and interests are sometimes different. Women prioritized early maturing traits over marketability, as they tend to be more concerned about household food security [7,10]. Besides high yields, women preferred varieties with seed availability, fast-cooking, while men cited the marketability and affordability as the main reasons for their preferences [7,11]. ","tokenCount":"796"} \ No newline at end of file diff --git a/data/part_3/3722166229.json b/data/part_3/3722166229.json new file mode 100644 index 0000000000000000000000000000000000000000..536b09c771b5fadd7b78abe68a46fa6096e6ebc6 --- /dev/null +++ b/data/part_3/3722166229.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"9411329e76be4bada6cf1e207bcb3f1c","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/736b1455-2a8a-4a9d-8577-538144c9a32a/retrieve","id":"1083753027"},"keywords":[],"sieverID":"7162968f-e06b-4cf2-a2f9-7889cd60e36c","pagecount":"14","content":"C r e a c i ó n d e u n A c e r v o G e n é t i c o p a r a M e j o r a r l a R e s i s t e n c i a P a r c i a l a P i r i c u l a r i a e n e l A r r o z d e S e c a n o , m e d i a n t e S e l e c c i ó n R e c u r r e n t e B r i g i t t e C o u r t o i s ' , R e b b e c a N e l s o n 2 y E d o u a r d R o u m e n 3 U n a s e r i e d e f a c t o r e s b i ó t i c o s y a b i ó t i c o s l i m i t a n l a e s t a b i l i d a d d e l r e n d i m i e n t o d e l a r r o z d e s e c a n o e n e l c o n t i n e n t e a s i á t i c o . L o s m á s m e n c i o n a d o s s o n l a s m a l e z a s , l a s e q u í a , l o s s u e l o s p o b r e s y l a p i r i c u l a r i a . L a h e r e n c i a d e l a r e s i s t e n c i a o d e l a a d a p t a c i ó n a e s o s p r o b l e m a s e s p r i n c i p a l m e n t e d e n a t u r a l e z a c u a n t i t a t i v a . S u p o n i e n d o q u e l a s c a r a c t e r í s t i c a s b a j o s e l e c c i ó n p r e s e n t e n u n r a n g o r a z o n a b l e d e h e r e d a b i l i d a d e n e l s e n t i d o e s t r i c t o , l a s e l e c c i ó n r e c u r r e n t e e s l a m e j o r t é c n i c a p a r a i n c r e m e n t a r l a f r e c u e n c i a d e l o s a l e l o s f a v o r a b l e s q u e c o n t r o l a n g e n e s m e n o r e s ; p o r l o t a n t o , s e i n c r e m e n t a l a p r o b a b i l i d a d d e e x t r a e r d e l a p o b l a c i ó n l í n e a s c o n g e n o t i p o s d e s e a d o s . A l m i s m o t i e m p o , d e b i d o a l s i s t e m á t i c o p r o c e s o d e r e c o m b i n a c i ó n d e l o s p r o g e n i t o r e s y a q u e l a s e l e c c i ó n s e h a c e e n g e n e r a c i o n e s t e m p r a n a s y a m o d e r a d a i n t e n s i d a d , e l m é t o d o d e s e l e c c i ó n r e c u r r e n t e r e d u c e l a s d e s v e n t a j a s p o t e n c i a l e s a s o c i a d a s c o n l o s m é t o d o s c l á s i c o s d e p i r a m i d i z a c i ó n d e l í n e a s é l i t e , l o s c u a l e s e s t r e c h a n l a b a s e g e n é t i c a y b a j a n l a f r e c u e n c i a d e l a r e c o m b i n a c i ó n , c u a n d o e l p e r í o d o e n t r e d o s r o n d a s d e c r u z a m i e n t o s e s l a r g o . E l m é t o d o d e s e l e c c i ó n r e c u r r e n t e e s t á p e r f e c t a m e n t e u b i c a d o e n l a e s t r a t e g i a d e l I n t e r n a t i o n a l R i c e R e s e a r c h I n s t i t u t e ( I R R I ) , o r i e n t a d a h a c i a l a i n v e s t i g a c i ó n e s t r a t é g i c a , p a r a d e j a r e l d e s a r r o l l o d e l í n e a s m e j o r a d a s a l o s P r o g r a m a s N a c i o n a l e s . C o n e s t e p r o p ó s i t o , e s t e i n s t i t u t o p r o v e e r á a t a l e s p r o g r a m a s p o b l a c i o n e s h e t e r o c i g ó t i c a s c o n u n v a l o r s u p e r i o r e n t é r m i n o s d e a l t e r n a t i v a s d e e x t r a c c i ó n d e l í n e a s . D e b i d o a s u h e t e r o c i g o s i d a d , e s t a s p o b l a c i o n e s o f r e c e r á n p o s i b i l i d a d e s p a r a l a a d a p t a c i ó n l o c a l , l a s c u a l e s s e e x p r e s a r á n d u r a n t e e l p r o c e s o d e s c e n t r a l i z a d o d e o b t e n c i ó n d e l í n e a s . E s t e p u n t o e s d e i m p o r t a n c i a s i n g u l a r p a r a e l a r r o z d e s e c a n o , y a q u e l a i n t e r a c c i ó n g e n o t i p o x a m b i e n t e e s b a s t a n t e m a r c a d a e n e l e c o s i s t e m a d e s e c a n o .r l r 2 r l r 2 r l r 2 r l r 2 r 3 r l r 2 r 3 r l r 2 r 3 r l r 2 r 3 ","tokenCount":"1787"} \ No newline at end of file diff --git a/data/part_3/3729720648.json b/data/part_3/3729720648.json new file mode 100644 index 0000000000000000000000000000000000000000..0492c39082c1c86ad583e7098053a3eded4ed5ec --- /dev/null +++ b/data/part_3/3729720648.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"d60b4939f7c1ede4e2f5629731b6274a","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/06c95cbd-0da1-4a50-91d4-fac28f40965e/retrieve","id":"-1184308234"},"keywords":["Climate Change","Adaptation","Food Security","Comparative Politics","Governance","Institutions","Interests","Ideas","Methods"],"sieverID":"75a71e28-2d3e-40d9-b5a9-45cb2ed29df5","pagecount":"56","content":"Central to this working paper is the notion that the concepts and methods of comparative politics can shine light on political factors important for catalysing positive change on the governance climate change adaptation and food security in the developing world. I first introduce comparative politics, including discussion of epistemological and methodological issues, before reviewing three salient groups of political and economic factors identified by the comparative politics literature-institutions, ideas and interests-as well as highlighting the important relationship between international and domestic politics. Such organization is important because it draws attention to important gaps in the existing climate change adaptation and food security literature, which tends towards a form of normative analysis that privileges institutions. The paper closes by making five recommendations for CCAFS future research: the need (i) to identify new dimensions for institutional research, (ii) to conduct governance research beyond institutions, (iii) to embrace more rigorous comparative methods, (iv) to address the \"dependent variable\" problem in climate change adaptation research and (v) to come to grips with \"good enough\" climate governance.CCAFS vision is to be, with its key partners, the foremost global source of collaborative research that leads to effective strategies for tackling food insecurity in the face of climate change. One pathway for achieving this vision is to address policies and institutions for climate-resilient food systems, at the national level but also up through to the global level.Studies like the classic \"Poverty and Famines: An Essay on Entitlement and Deprivation\" of Amartya Sen (1981) have clearly indicated the importance of governance, institutions and politics for food security. In this working paper, I describe political factors that are likely to be important in shaping the governance of climate change adaptation and food systems, drawing on concepts and methods of comparative politics, as well as identifying research areas where CCAFS could make a meaningful contribution.Comparative politics is emerging as an exciting new approach for the study of global environmental issues. As leading experts have recently stated, \"Comparative environmental politics will likely constitute one of the leading edges of the next generation of research on global environmental politics and environmental studies\" (Steinberg and VanDeveer, 2012).Drawing on Hall (1997), I organize this working paper around three groups of politically salient factors identified in the comparative politics literature: institutions, interests and ideas. Such organization is important because it highlights important gaps in the existing climate change adaptation and food security literature which, similar to the conclusion of at least two other independent review of this topic (Biesbroek et al., 2013;Candel, 2014), tends towards a form of normative analysis that privileges institutions. For example, in comprehensive review of food security governance, Candel distinguishes an \"optimist governance philosophy\" from underrepresented \"realist\" and \"pessimist\" ones. The underlying assumption of the \"optimist\" approach is that governance is a problem that can be resolved through institutional reform:if governance regimes were further integrated on multiple scales, more knowledge and information would be acquired and shared; and if all relevant stakeholders were able to engage in collective rational deliberations, [the optimist governance philosophy believes] it would ultimately be possible to overcome the complexity of food security and to 2 develop a holistic approach that would enable food insecurity to be addressed in the most effective way (Candel, 2014:12).As Candel continues, \"…the dominance of [the optimist] perspective has led to a rather narrow, normative, and simplistic view of governance within a large proportion of the food security community\" (Candel, 2014:12).While institutions clearly remain important, this working paper will argue that greater incorporation of interests and ideas into the analysis of climate change adaptation and food security governance promises to render CCAFS research more effective. While the Working Paper's emphasis is on domestic governance factors, because climate change adaptation and food security are matters of multilevel governance, I also consider how to better integrate international and domestic politics. Finally, the working paper offers a review of epistemological and methodological issues of comparative politics, recognizing that this method of inquiry may be novel in the area of climate change adaptation and food security governance research.The paper closes by making five recommendations, all which harness its main insight-the importance of considering institutions, interests and ideas together-towards research into the governance of climate change adaptation and food security: the need (i) to identify new dimensions of institutional research, (ii) to conduct governance research beyond institutions, (iii) to embrace more rigorous comparative methods, (iv) to address the \"dependent variable\" problem in climate change adaptation research and (v) to come to grips with \"good enough\" climate governance.Comparative politics is a major sub-discipline of political science. Important themes of comparative politics that still have underexplored links to climate change adaptation and food security include literature on the relationship between economic development and democratization in processes of modernization (Acemoglu and Robinson, 2012;Boix and Stokes, 2003;Epstein et al., 2006;Huntington, 1968;Hydén, 2007;Moore, 1993Moore, [1966]]; North, 1990;Przeworski and Limongi, 1997;Skocpol, 1979) as well as variation in the relationship between the state, markets and society (Bates, 2005(Bates, [1981]]; Boone, 2003;Kohli, 2004;Migdal, 1988;Polanyi, 2001Polanyi, [1944]]; Popkin, 1979;Rodrik, 2007;Scott, 1976;Woo-Cumings, 1999). As indicated earlier, insights of comparative politics are only beginning to enter the field of climate change adaptation and food security, largely under the banner of comparative environmental politics.Comparative politics should be seen as a compliment to recent research into climate change politics that has focused on transnational, non-state actors and multilevel climate governance (Andonova et al., 2009;Bulkeley and Moser, 2007;Green, 2013;Keohane and Victor, 2011;Newell, 2006). Indeed, the sheer number of actors identified in multilevel research necessitates some separation of the wheat from the chaff, casual and non-causal factors, if we are to generate theory that will allow us to predict political behaviour and produce tractable policy recommendations. Are transnational actors politically salient in similar ways across emerging economies, transition economies and least developed countries (LDCs)? Are non-state actors more effective in driving climate change adaptation under democratic than authoritarian regimes? Do key political units involved in multilevel climate governance differ between East Asia and Latin America? Comparative politics helps us address such questions.While comparative politics does not inherently privilege any particular unit of analysis, comparativists appreciate \"the enduring importance of domestic politics and the nation-state in particular\" (VanDeveer and Steinberg, 2013:154). Despite the importance of local and global/international political processes, the state remains an important contextual factor through which much salient political behaviour continues to be refracted. For example, while local-level politics in rural Africa are often considered to be beyond the reach of the state (Herbst, 2000), empirical comparative research demonstrates that the state has a definite institutional presence that shapes subnational politics and local policy implementation in broadly predictable ways (Boone, 2003;2013a;b;2014). Similarly, despite processes of neoliberal globalization, the state is still important in shaping economic conditions within its boundaries (Khan and Christiansen, 2011;Schmidt, 2009). This is not to say that the state is not a concept without difficulties. Migdal (2009), for example, argues that since the rush of state creation since decolonization post-World War II, the standard European template of what constitutes a state has needed to become more pliable and elastic to capture the variety of state forms now found around the world. Thus while local and global factors are salient, the attention that comparativists pay to the state indicates that this political unit is still very important for understanding politics on the ground-such as the governance of climate change adaptation and food security.Comparative politics represents not only a domain of research but also an epistemological posture and methodological approach. Indeed, one reason for rising interest in the application of comparative politics towards climate change politics has been recent innovations in comparative political methodology and philosophy of science that have expanded its scope application (Engeli and Allison, 2014a;Flyvbjerg, 2006;George and Bennett, 2005;Lichbach, 2009;Mahoney, 2007;2008;2010;Marx et al., 2014;Ragin, 1987). Most important has been new thinking about theory testing in small-N and medium-N studies, in a departure from King, Keohane and Verba (1994) who privileged quantitative methodsparticularly regression analysis-as the most appropriate model for qualitative research (Mahoney, 2010). Many of the governance issues of interest to those researching climate change adaptation and food security are not easily quantifiable, which makes innovations in small-N and medium-N research methods especially important. Such approaches are helpful in new policy areas where there is often limited data available for regression analysis: \"Policymakers and others working in the public interest want to learn about the art of the possible, and the risk of the unthinkable, not just the trend line of the probable\" (Steinberg, 2007: 185).Epistemologically, comparativists typically-but not always-consider themselves part of the positivist tradition in the social sciences in that they explicitly seek to tie observations \"to more general ideas about politics\" (Lichbach and Zuckerman, 1997:4). 1 The complexity of political processes under examination, however, leads comparativists to be modest about such causal claims. As Evans puts it, \"The desire to predict is part of social science, not because we are positivists but because social scientists share with everyone else the desire to know what is likely to happen to them and how they might be able to improve prospective outcomes\" (Kohli et al., 1995: 3). Better theory allows researchers to anticipate political behaviour and make more effective and politically feasible policy recommendations.1 See Benton and Craib (2010) at pages 13-49 for discussion about positivism in the social sciences.However, it should not be construed that this positivist posture means comparativists view the political world as a complex set of billiard balls. Humans are thinking beings and many of the factors in which comparativists are interested are socially constructed.Consequently, political scientists have tended to take the epistemological and methodological challenges of positivism quite seriously (Bernstein et al., 2000;Daniel and Smith, 2010;Grynaviski, 2013;Jackson, 2011;Pouliot, 2007;Wendt, 1998). It is beyond the scope of this working paper to delve into these fundamental epistemological debates-such as that between positivist and non-positivist social science-which has been discussed elsewhere (Cohen and Wartofsky, 2010;Lichbach, 2009;Yanow, 2014). However, a significant part of this debate appears to be with regard to the possibility of ideational factors (such as ideas, concepts and culture) producing causal effects-an issue to which I return to below in discussion of \"ideas\".For the moment, it is important to justify this foray into these epistemological debates. Arguably, one reason that comparative politics may appear novel for governance research into issues of climate change adaptation and food security is because non-positivist social science has historically played a larger role in the field of environmental studies. With its emphasis on interdisciplinarity, environmental studies, has been more open to nonpositivist approaches than in other issue areas such as economic development and international security. My concern is that the non-positivist social science, in its rejection of the possibility of causal inference, risks relegating research into climate change adaptation and food security to that of description and interpretation. While clearly important, description and interpretation are not in themselves sufficient for answering the broader governance questions related to climate change adaptation and food security. Given recent advances in philosophy of science and comparative methods, the time is now ripe to become reacquainted with broader approaches to comparative politics.How can comparative politics allow researchers to better anticipate political behaviour and make more effective policy recommendations? The key here is comparative analysis, as Engeli and Allison have recently stated:Comparative analysis encourages moving beyond the particularities of each case and identifying patterns and regularity across cases, settings and time periods. Comparative designs force the researcher not to stop the analysis at particularistic explanations drawn from a single context, but to test whether the answers to research questions hold true for a larger number of cases and contexts (Engeli and Allison, 2014b: 2) Comparison is one of the basic scientific methods of discovering empirical relationships among variables in an effort to establish general propositions about causal processes linking an independent variable (or independent variables) to an outcome. During his investigations of gravity, for example, Galileo is remembered for comparing the speed of two balls dropped from the top of the Leaning Tower of Pisa -not just one. Systematic comparison allows scholars to respond to questions like: Which variables are really important? When? And under what conditions? In other words, comparison allows us to better test theory.In an earlier generation of political science, embodied in King, Keohane and Verba (1994), testing of theories was believed the exclusive domain of large-N quantitative research.Only such research, it was presumed, allowed causal claims to be tested and thus move research from the realm of description to explanation. The best that small-N (and, at the time, relatively underdeveloped medium-N) approaches could hope for, was descriptive interpretation and hypothesis generation.One of the recent, and controversial, innovations in comparative methods has been the identification of methods for using small-N and medium-N analyses for purposes of causal inference. The main difference between large-N statistical analyses and small-to-medium-N comparative studies lies in sensitivity to negative cases and falsifiability (Mahoney 2008).While these methodological issues are still debated, a single negative case in large-N research has a much smaller impact on the falsifiability of a theory than it does in small-to-medium-N research, where even one negative case is considered meaningful. This is because causality in large-N research is conceived in terms of likelihoods and probabilities while in small-tomedium-N research causality is conceived in logical terms of necessary and/or sufficient conditions. However, in order to test theories using small-to-medium-N studies, the selection of cases is arguably more important than for large-N studies. To avoid bias, comparativists need to pay close attention to research design in order to ensure that the cases they compare capture variation in terms of independent and dependent variables of interest (Geddes, 1990;Meckstroth, 1975;van de Heijden, 2014).An example of the application of small-to-medium-N approaches to theory testing is Skocpol's (1979) States and Social Revolutions (George and Bennett, 2005:127-150;Mahoney, 2010:129): Here Skocpol provides evidence to question the standard Marxist theory that vanguard movements have been important causes of social revolutions. She does so by demonstrating through process tracing analyses across France, Russia, and China that vanguard movements emerged on the political scene only after major revolts have occurred.Given this, Skocpol concludes vanguard movements are not critical causes of the social revolutions in these three countries.It is beyond the scope of this working paper to go further into the details about these epistemological and methodological debates. The upshot is that, while still controversial, comparativists can now legitimately conduct causal research using small-N approaches such as process tracing (Blatter and Haverland, 2014;Flyvbjerg, 2006;Mahoney, 2007) and medium-N approaches including qualitative comparative analysis (QCA) for (Engeli et al., 2014;Marx et al., 2014). This is however not a critique of quantitative methods and large-N studies. Such approaches have long demonstrated themselves to offer important predictive power (Breunig and Ahlquist, 2014). But it's handy to have an expanded toolkit, especially for research into the governance of climate change adaptation and food security where data that would lend themselves to quantitative research are largely lacking.The brief review above of epistemological and methodological issues of comparative politics sheds new light on existing research into the governance of climate change adaptation and food security. While there are important recent exceptions, too much of the existing research into climate change adaptation and food security has been comprised of unstructured, single case-studies (Adger, 2003;Baiphethi and Jacobs, 2009;Brouwer et al., 2007;Conway and Schipper, 2011;De Silva et al., 2007;Deressa et al., 2009;Di Falco et al., 2011;Engle and Lemos, 2010;Ford et al., 2010;Habib-Mintz, 2010;Kosamu, 2013;Nelson and Stathers, 2009;Nielsen and Reenberg, 2010;Paavola, 2008;Vogel, 2009). While mindful of the benefits of single case-studies for producing important descriptive knowledge and generating hypotheses (Ford et al., 2010;McKeown, 1999) as well as the testing of universal theories (Flyvbjerg, 2006), 2 they lack comparisons necessary for addressing larger issues of causality 2 As Flyvbjerg (2006) observes, Galileo's rejection of Aristotle's law of gravity \"did not involve a large random sample of trials of objects falling from a wide range of randomly selected heights under varying wind conditions and so on. Rather, it was a matter of a single experiment, that is, a case study, if any experiment was conducted at all\" (p. 255). A single case-study is appropriate for confirming or refuting universal theories such as the law of gravity: if such a theory does not work in a single case, it requires reformulation. Political theories however do not often have such universal claims. and theory generation discussed above. In my review of the literature, I have found only a very limited number of studies of climate change adaptation and food security in the developing world, which have used comparative methods (Bryan et al., 2009;Dupuis and Knoepfel, 2013;Moseley et al., 2010;Purdon, 2013;Purdon, 2014a;Stringer et al., 2009;Zezza and Tasciotti, 2010). The next generation of research into climate change adaptation and food security should strive to more explicitly deploy comparative methods in order to demonstrate relationships between causal factors-including institutions, interests and ideas-and results such as policy change and outcomes.Another important and related methodological challenge for research into climate change adaptation and food security is clarity about the phenomenon that is being measured, its scope and boundaries-referred to as the \"dependent variable\" in political science circles. For climate change adaptation, there is hardly consensus about what the outcome of adaptation policy should be let alone how to measure it (Dupuis and Biesbroek, 2013;Ford et al., 2010;Howlett and Cashore, 2009). Consequently, as Dupuis and Biesbroeck (2013) demonstrate, existing comparative research into climate change adaptation has been largely unsuccessful in demonstrating the necessary policy changes that will produce outcomes likely to reduce climate impacts and promote adaptation. More specifically, they raise concerns about (i) the indistinctiveness of \"adaptation\" as a theoretical concept, (ii) different interpretations of adaptation in the context of policymaking and (iii) difficulties in operationalizing the concept of adaptation for policymaking (p. 1479-1481).What constitutes climate change adaptation has important real-world implications.One concern is that what is currently being promoted as climate change adaptation in the developing world is simply responding to existing climate variability without detailed, location-specific projections of expected future changes (Ayers and Dodman, 2010;Ayers and Forsyth, 2009). By promoting adaptation to a predicted future climate that turns out to be incorrect, such interventions may actually constitute maladaptation. More thinking about what constitutes adaptation is a clear priority for research moving forward. For example, at one point can it be construed that adaptation in a specific location is not an option and that migration to a safer place is necessary (McLeman and Smit, 2006). These are tough questions that require thoughtful answers.A controversial issue related to climate change adaptation is environmental security, particularly the relationship between environmental scarcity and violent conflict. If genuinely the result of environmental scarcity precipitated by climate change, such conflict might be seen as constituting adaptation failure. Environmental scarcity and conflict was first explored explicitly by Homer- Dixon (1999), though has also been the subject of various critiques urging the need to focus on other socio-economic and political factors (Forsyth and Schomerus, 2013;Raleigh, 2010;Raleigh and Urdal, 2007) as well as problematizing the securitization of environmental issues itself (Deudney, 1990;Graeger, 1996;Levy, 1995;Waever, 1995). Arguably, research into climate change adaptation would be improved by examining how conflict is treated in the existing political science literature (for example, Dixon, 2009;Fearon and Laitin, 2000;Lacina, 2006;Mello, 2010).Finally, I would note that the dependent variable problem is also a challenge for climate policy broadly and not necessarily one alone of adaptation and food security governance research. Much of the current literature on international climate change politics has gauged effectiveness in terms of policy output rather than climate policy outcomes such as emission reduction trends (Bättig and Bernauer, 2009: 284). This is not simply a matter of the challenges of data acquisition in the developing world but indicative of broader research trends. Even recent reviews of climate policy in the developed world have found few studies of policy effectiveness as well as a general lack of cross-country comparative research (Haug et al., 2010;Rykkja et al., 2014).To summarize, greater clarity about the dependent variable in climate change adaptation and food security governance will allow researchers to better understand the causal factors at play. It is to these causal factors-organized as institutions, interests and ideas-to which we now turn. The initial focus is at the domestic level, though in a separate section I discuss how thinking about domestic and international factors might be better integrated.Adaptation and Food Security Institutions I begin this review with institutions because they have received the most attention in the climate change adaptation and food security literature. Institution-oriented approaches to comparative politics \"generally locate the primary causal factors behind economic policy or performance in the organizational structures of the political economy\" (Hall, 1997: 180).Institutions produce a distinctive combination of sanctions and incentives that shape patterns of political influence and organization and lead political and economic actors toward some kinds of behaviour and away from others. North (1990) has famously defined institutions as humanly devised constraints that shape human action while March and Olsen (1989) have highlighted the important role that institutions play in actually constituting what political actors believe is appropriate behaviour.Yet institutions are not uniform around the world. In industrialized countries, where bureaucracy often bears a resemblance to the Weberian ideal type, the role played by formal institutions largely conforms to the description above. In the developing world, where CCAFS seeks to incite change, the role of formal institutions may diverge quite significantly and systematically from these expectations (Sangmpam, 2007). This does not mean that the state is absent, or that informality or anarchy rules, as I discussed earlier (see Boone, 2003;2013a;b;2014). As they are relatively weak when considered relative to their counterparts in developed countries, formal institutions may work differently in developing countries than Western analysts might expect.At the same time, informal institutions are often considered to play a larger role in the developing world. Helmke and Levitsky (2004) define informal institutions as \"socially shared rules, usually unwritten, that are created, communicated, and enforced outside of officially sanctioned channels\" (p.727). Such informal institutions may remain opaque to outside observers, yet understanding their dynamics will be crucial for the design of successful governance interventions for climate change adaptation and food security.In discussion of informal institutions in the developing world, there is often an association with personalistic patron-client relationships (Bratton and van de Walle, 1994;Eisenstadt and Roniger, 1984;Günes-Ayata, 1994). Neopatrimonialism is ostensibly an asymmetrical relation between someone with power and another in need of the protection or favour that such power affords. In an early article, Gellner (1977) defined it thus:Patronage is unsymmetrical, involving inequality of power; it tends to form an extended system; to be long-term, or at least not restricted to a single isolated transaction; to possess a distinctive ethos; and, whilst not always illegal or immoral, to stand outside the officially proclaimed formal morality of the society in question (p. 4).Patron-client relations can be problematic when political support from clients is granted to patrons regardless of their broader political performance. This increases the ability of politicians to gain support in exchange for rewarding targeted groups with jobs and other private goods (Srivastava and Larizza, 2012: 11; also see Acemoglu & Robinson, 2008). Yet there is increasing recognition that neopatrimonliasm has been used too broadly and unreflectively in diagnoses of governance challenges in the developing world, and critical reflection is warranted (see Mkandawire, 2013).Another related issue is whether informal institutions should be themselves formalized. One school of thought cautions against legal formalization. For example, many have argued that nascent land markets in sub-Saharan Africa should be left in the informal sector because their formal privatization would only favour elites and facilitate land grabs (Lastarria-Cornhiel, 1997;Platteau, 1996;Toulmin et al., 2002). With regard to carbon finance afforestation initiatives, Unruh (2008) has urged that \"the poor often need to be protected from governments, and yet governments will be responsible for law-making, guaranteeing rights, and titling programs\" (p.72). However, another school highlights the benefits that such formalization can bring. There is evidence that formal land markets lead to higher levels of investment and productivity and reduce the need to defend land rights, though claims about improved access to credit appear highly questionable (Deininger and Feder, 2009). Deininger and Feder conclude that \"formalization of land rights should not be viewed as a panacea and that interventions should be decided only after a careful diagnosis of the policy, social, and governance environment\" (p.257)-in other words through analysis that, amongst other approaches, draws on methods and conceptual tools of comparative politics.One promising compromise in this debate is formal recognition of customary property rights. Such is the case in Uganda where land tenure reform has moved along an arc towards greater recognition of customary land tenure, including customary land ownership and the curtailment of the discretionary powers of land-owners that grew out of Uganda's unique mailo land tenure system (Coldham, 2000;Green, 2006). In contrast to much of the land tenure systems of sub-Saharan Africa, the Constitution of Uganda states that \"Land in Uganda belongs to the citizens of Uganda and shall vest in them in accordance with the land tenure systems provided for in this Constitution\" (Article 237(1)). As legal experts have commented, \"Ugandans have some of the most extensive legal protections for their land claims in Africa\" (Knight et al., 2011: 18).But the real question for climate change adaptation and food security is what kind of institutions, formal and informal, offer the most effective governance arrangements. In this regard, community-based adaptation is increasingly being seen as an appropriate response to anticipated climate change (Ayers and Forsyth, 2009;Forsyth, 2013). Much of this is due to the work of Elinor Ostrom, who convincingly demonstrated that effective institutional solutions for the management of common property resources are prevalent (Ostrom, 1990;Ostrom et al., 2002;Poteete et al., 2010). In a segue with our earlier discussion about formal/informal, it was arguably the unwritten, \"informal\" nature of such common property institutions is why Hardin (1968) and others overlooked them in the past. Drawing upon empirical case material, Ostrom identified eight \"design principles\" that would improve the effectiveness and sustainability of common property systems (Ostrom, 1990: 90). 3 One research avenue might be to consider the degree to which existing institutions for communitybased adaptation share these design principles. It should be noted that Ostrom's research has also generated considerable debate, notably the extent to which its foundations in rational choice theory can be generalized (Forsyth and Johnson, In Press).But collective property institutions are not only type of institution with bearing on climate change adaptation and food security. Activities such as agriculture and tree-crop farming are often better governed as individual private goods because the costs of property rights enforcement is low relative to the benefits of private ownership (Otsuka and Place, 2001: 18). There are also convincing arguments that increasing population triggers innovations such as more individualized-yet informal-land tenure in order to provide security for land improvements (Boserup, 1965;Kabubo-Mariara, 2007). Evidence of such informal individual land rights and land markets is ubiquitous in, for example, sub-Saharan Africa (Besley, 1995;Chimhowu and Woodhouse, 2006;Daley, 2005;Platteau, 1996). There is also the thorny issue of what constitutes a \"community\" in the first place (see Agrawal and Gibson, 1999).Clearly, a challenge is to identify where community-based adaptation is appropriate and where more individualized approaches are better suited. While there are many cases of privatization leading to the divestiture of the common property resources of the rural poor (Polanyi, 2001(Polanyi, [1944]]), the enthusiasm for common property resources too often lends itself to romantic notions of communal life in peasant societies (Chimhowu and Woodhouse, 2006;Popkin, 1979: 1-31). One pertinent example comes from the experience of ujamaa villagization in 1970s Tanzania (Hydén, 1980;McHenry, 1979;Schneider, 2007). As Hydén observes:Ujamaa was a principle traditionally practiced only within each household...It did not address itself to the mutual responsibilities and rights of individual households in a given local community. For these, the rural Tanzanians use the concept of ujima. As Mushi notes in his article, 'ujima refers to the habitual practice of co-operation among villagers in certain peak seasons (cultivating, planting, harvesting, etc.) or in cases of emergency where someone needs to finish a certain job in a day or two with the help of his neighbours and relatives, instead of weeks or months of doing it alone' (Mushi, 1971). This function was communal in the sense of implying mutual aid and reciprocity, but not in the sense of communal ownership. Those who assisted their neighbours did not expect a share in their harvest, only some entertainment at the completion of the task...What [President] Nyerere was asking of the peasants, however, was to go beyond ujima and adopt ujamaa as the guiding principle of life and work, 14 not only within the household but also in the relations between households in their community (Hydén, 1980: 99).Recent research has demonstrated the long-term effects of ujamaa villagization in Tanzania.Osafo-Kwaako (2013) demonstrate that districts with a high fraction of the population living in former Ujamaa villages currently possess higher levels of educational attainment as well as greater political participation and support for democracy-surly positive results-but significant lower-levels of household consumption.While the discussion up to this point has focused on climate change adaptation, better understanding of domestic institutions can also help design carbon finance instruments in the agricultural sector that are able to better engage with smallholder famers and generate synergies between mitigation and adaptation initiatives (see Klein et al., 2005). In the rural land-use sector, the predominant mitigation opportunities are restoration of degraded soils, manure management and agroforestry (Seeberg--Elverfeldt and Gordes, 2013). Yet the modest amount of carbon accumulated per hectare through such projects, in conjunction with the small size of typical landholdings in rural parts of the developing world, call for innovative thinking in order to secure successful implementation. Antle and Diagana (2003) show that even where potential investments increase both carbon sequestration and individual farmer yields over time, farmers may not adopt them because of credit and investment constraints.To summarize, institutions are clearly important for the governance of climate change adaptation and food security. While formal institutions are often easier to study, greater attention needs to be given to informal institutions. Similarly, while institutions for community-based adaptation are promising, it is important to consider other institutional forms as well. However, it also necessary to look beyond institutions to other political and economic factors that shape governance. It is to these that we now turn.As used in the comparative politics literature, interests refer to what Hall defines as the \"real, material interests of the principal actors, whether conceived as individuals or groups\" (Hall, 1997: 176). For climate change adaptation and food security policy, the material interests at play will typically have to do with variation in costs and benefits of various policy actions across groups of actors, tensions between political and economic objectives, and trade-offs between short and long-term effects.The relationship between groups of actors is complex, often involving competing political factions rooted in societal interests that may remain opaque to outside observers. For one thing, there are many different types of political groups and associations in the developing world-as indicated in our earlier discussion of informal institutions and patronclient relations. As the state is often unevenly institutionalized, it is useful to discuss interests amongst the state and its subagencies, market, and society (Migdal, 1988;2009). Society itself can be organized in between political groups comprised of fixed characteristics such as when such as class, religion or ethnicity or variable ones such as political ideology. With such complexity, a first step to understanding interests is to be able to describe how power relations between groups are structured.Fortunately, in this regard there has been significant new thinking in the comparative politics literature. Khan (2010) describes interest relations between groups through the concept of political settlements-\"a combination of power and institutions that is mutually compatible and also sustainable in terms of economic and political viability\" (p.4). Kohli (2004) uses the term state power for development to describe variation in the technical characteristics of state institutions and the manner in which states craft their relations with social classes (p.21). As both these authors show in their work, there is enormous variation in these political economy relationships across countries: consider the dense, multiple networks of patron-client relations in India in comparison to the privileged position of the state in South Korea. Where institutions are weak and political order is fragile, such as in LDCs, the analytic task is further complicated (Boone, 2003;2007;2013b;2014;Ribot, 2004).In all settings, the interests at play in climate change politics can be more complex than much of the climate change adaptation and food security literature tends to assume. This is because climate change is but one of many factors that affect the aggregate interests of any state, societal or market actor. While developing countries arguably have the most at stake in global climate change politics given their relative vulnerability and lower resilience, it should not be assumed that political actors in developing countries would automatically prioritize climate action or see participation in international climate change regimes as in their best interests. For example, Resnick et al. (2012) criticize recent \"Green Growth\" initiatives in the developing world, observing that \"when trying to scale up to a national development strategy, Green Growth poses more trade-offs than is readily acknowledged\" (p.216). Others have focused on the in-country distribution of costs and gains of implementing climate change mitigation, arguing for more systematic accounting of the rights, needs, and political weight of potential losers (Chhatre and Agrawal, 2009;Ribot et al., 1996).As a relatively new issue, studies focused on the interests at play in climate change adaptation are rare. In an important recent study, Barrett (2014) demonstrates that the subnational distribution of adaptation funds in Malawi is driven by physical vulnerability but inversely related to socioeconomic vulnerability. At the same time, patron-client relations were not a salient factor as the government leadership had recently shifted towards a more populist strategy. However, the most important factor explaining subnational distribution of adaptation funds in Malawi was donor utility and district absorptive capacity. As Barrett concludes, \"[a]daptation finance distribution arrives in districts with sufficient capacity to use assistance productively and where aid networks are established. The poorest, most marginalized, and climate vulnerable districts receive the least adaptation finance within Malawi\" (p.131). In an another important recent study, Barrett (Under Review) demonstrates that devolved rather than decentralized local-level political institutions better ensure that local needs remain the priority of adaptation finance in Kenya. Barrett's contribution is particularly important in demonstrating that the interests of powerful local actors and related patron-client relations, too readily associated with sub-Saharan Africa (Mkandawire, 2013), can be tempered by institutional changes.Given the lack of studies explicitly focused on interests involved in climate change policy and governance, one strategy to rapidly gain understanding is to review research that has already tackled interests for related issues. For example, the opening of this working paper drew attention to Sen's (1981) path breaking work on the political economy of famine.There exist a number of other studies situated in the developing world that have demonstrated that government interest and ethno-regional patronage drive resource allocations in food aid (Clay et al., 1999;Jayne et al., 2001;Jayne et al., 2003), natural disaster response (Besley and Burgess, 2002;Francken et al., 2012;Morris and Wodon, 2003;Takasaki, 2011) and public school funding (Reinikka and Svensson, 2004). This appears to be relevant but largely untapped source of information that could form the basis of more generalizable explanations of the interests at play in climate change adaptation and food security.Arguably, one reason that interests have not received sufficient attention in the climate politics literature is that many have assumed that addressing climate change would be a priority interest for developing countries. In particular, most academic research into climate change politics has been underpinned by neoliberal institutionalism-one the dominant strands of international relations theory. In a nutshell, neoliberal institutionalism has emphasized the importance of international institutions to promote cooperation between states on issues of global importance, such as climate change (see Keohane, 1984 for a classic statement on the neoliberal institutionalism). Early proponents of neoliberal institutionalism recognized that internationalization affects policies and institutions differently from country to country because domestic political institutions can block and refract its effects (Milner and Keohane, 1996:5). In the climate change arena, until of late the focus has been research into the design of international institutions such as the UNFCCC, Kyoto Protocol and associated components. The most recent neoliberal institutional thinking has been to urge researchers to look beyond the formal UN climate change regime to the greater \"regime complex\" that includes ancillary international institutions that have bearing on climate change (Keohane and Victor, 2011). However, research into comparative climate change politics is relatively new. Important for our current purposes, one weakness of neoliberal institutional theory is that it leads researchers to assume that states will eventually find it in their interest to cooperate to reduce emissions. All we need to do is create appropriate institutions to permit them to realize their common interest. Yet in so assuming, neoliberal institutionalism is vulnerable to the critique that it grants international political processes greater causal weight than domestic politics in a state's determination of what its interests are (Sterling-Folker, 1997). One example is the theory that as countries become more economically developed and capable of taking action to mitigate (and adapt) to climate change, their interest in doing so will also emerge (Victor 2011: 11-12). But are capabilities and interests really correlated?Researchers are only beginning to really sink their teeth into this issue. Contra the expectations of neoliberal institutionalism, a recent investigation by Ward et al. (2014) suggests that rising capacity amongst authoritarian regimes will actually result in worsening environmental outcomes.In concluding this section on interests, it would be prudent for those concerned about climate change adaptation and food security governance not to expect a radical transformation of existing power structures for climate justice. Rather, those interested in these issues should consider the need to calibrate their expectations in light of entrenched political interests, such as the notion of \"good enough governance\" (Grindle, 2004;Grindle, 2007;Srivastava and Larizza, 2012)-an issue to which I return below amongst the recommendations emanating from this working paper.The final political factor to which we turn is ideas. As emphasized by Hall (1997), \"[i]deas-oriented approaches to political economy have real value in that they capture dimensions of human interaction normally lost in other perspectives\" (p.185). Arguably, ideational approaches to political science currently represent the cutting edge of the discipline.The logic here is that, because politics is a social process, ideas are necessarily prior to institutions and interests (see Adler, 1997;Wendt, 1992;Yee, 1996). The political saliency of institutions and interests depends on ideas held by political actors about them in the first place.As I touched on earlier in the discussion of the epistemology of comparative politics, recognition of the causal effect of ideas is, arguably, one of the issues that distinguishes positivist from non-positivist social science. For example, a recent survey of non-positivist methods asserts that positivists \"[stipulate] the definition of concepts as a starting point\" whereas non-positivists adopt methods \"'allowing concepts to emerge from the field'\" (Yanow, 2014: 143-144). Certainly, some positivists are guilty of borrowing concepts unreflectively. But there has also be considerable research effort to describe emerging ideas and operationalize them towards the explanation of political phenomenon-including climate change (Leiserowitz et al., 2013). Second, though related, is the non-positivist claim that political concepts and social processes are so location specific-that \"what is being learned are the specific, local meanings\" (Yanow, 2014: 145)-that they cannot be generalized beyond the immediate case at hand. In other words, inference is not possible; instead, we should be satisfied with deep, cultural understanding of the politics of a certain place. But this localized notion of ideas tends to assume that ideas are subjectively bound.One of the more important recent insights of political science is that, in addition to being subjective, ideas can come to have existence independent of the human beings who conceived them-\"that 'ideas' have structural characteristics\" (Adler, 1997: 325). Ideas can and do become embodied in physical structures, media, actions as well as, importantly, in other human beings. The latest thinking on this matter goes one step further by focusing not on mere ideas but on practices, behavioural patterns that political actors often adopt unconsciously as a part of tradition or routine (Pouliot, 2008). Consequently, political scientists maintain that, as objective factors in the real world, it is possible for ideas to produce causal effects.Greater attention to the role of ideas in the governance of climate change adaptation and food security is necessary. Even more so than in other areas of international politics, ideas would be expected to play an important role in climate change politics. As it has for other environmental issues (Haas, 1992), science would be expected to be crucial in climate change politics by informing decision-makers and the public about the issues at stake. Particularly in the industrialized world, public opinion polling has shed considerable light onto how climate change is perceived by broad segments of the electorate (Brulle et al., 2012;Lachapelle et al., 2012;Leiserowitz, 2007). Yet the conclusion emerging out of the political science literature is that climate science is insufficient on its own for driving change because of the different ways that scientific ideas become politicized as well as the material interests at play (Grundmann, 2007;Miller, 2004;Purdon, 2014b;Victor, 2011).One promising strategy moving forward is to improve understanding of the interaction between ideas about climate science and other, competing ideas that have impact on the domestic side of international climate politics. The most obvious set of ideas competing with climate science are prevailing economic ideas about how the economy works and how it should be manipulated to achieve traditional economic goals such as growth and reduced inequality (Darden, 2009;Hall, 1989). As explained by Darden, political actors draw in part on their stock of ideas about the causal relationship between economic phenomenawhether these ideas are objectively true or not-when determining economic policy (Darden, 2009: 10). Differences in economic ideas, tensions between economic and political beliefs, or tensions between short and long run visions of the future might shape the motivations of state agents and the bureaucracy. These differences might mean that the same type of climate policy that works in a country with a strong affinity for market-based policy may not work in a country with more socialist or dirigiste traditions.Legitimacy can also be important factors in the making and implementation of climate policy, as it is in economic policy (Lipset, 1959;Taylor, 2002;Weede, 1996). While legitimacy has been a considerable topic of research into global environmental politics (Bernstein, 2005), it has only recently being considered at the domestic and subnational level (Brown and Lassoie, 2010). International ideas of climate justice politics (Harris and Symons, 20 2010;Ikeme, 2003;Maltais, 2008) as well as moral politics (Lumsdaine, 1993), can also be assumed to have an effect on domestic climate change, whether in terms of policy implementation or in terms of contribution of financial resources for international climate efforts. But moral politics are generally considered to be largely insufficient for mobilizing the large resource transfers implied in climate change adaptation and food security (Morgenthau, 1962;Purdon, 2014b).A second research strategy is to examine the relationship between power and ideas.As Bradford explains, \"[n]ew ideas are a 'necessary' condition for launching policy innovation, but they are not 'sufficient' in consolidating change…Rather, in order for new ideas to progress they must 'work on' interests to realign the policy goals of collective actors, and they must 'work through' organizations to transform policy-making routines and state capacities\" (Bradford, 1999: 18). We should thus expect some interaction between ideas and the power and interests held by particular groups in a given political context. An important research question might be, at what point does the power of various actors rather than their ideas determine governance outcomes for climate change adaptation and food security.Overall, there is a feeling that ideational issues have not be given the attention they deserve in the governance of climate change adaptation and food security, nor in the comparative environmental politics more generally. Apart from a handful of studies (Purdon, 2012;Stringer et al., 2009), little research into climate policy effectiveness has operationalized ideational factors at the domestic level. While carrying out research into ideas is difficult and often does not lend itself to quantitative analysis, it promises to shed light on important governance issues.Comparative politics should not be considered to focus exclusively at the domestic political level, for which reason it is also important to explore the relationship between domestic and international politics and implications for multilevel governance. Indeed, comparative politics is increasingly being considered in an integrated manner with that other important sub-discipline of political science, international relations, and embraced discussion of the relationship between international and political factors (Cerny, 1995;Gourevitch, 1978;Putnam, 1988);Here it is important to recognize that the community of scholars concerned with international political processes surrounding climate change has expanded from a rather narrow focus on the UN climate regime to consider other international and transnational actors and political factors (Bulkeley and Moser, 2007;Clapp and Helleiner, 2012;Keohane and Victor, 2011;Newell, 2006). Vulnerability to climate change and food insecurity will undoubtedly be linked to domestic political and economic factors, but also issues of international political economy. Three examples of the important role of international politics for climate change adaptation and food security are provided below.First is the debate about the best strategy to leverage the funds necessary for international adaptation (Michaelowa, 2012). Before delving into the politics, I would emphasize that I agree that, in the final analysis, both the \"moral positions adopted by the North and South reach the same conclusion: greater burden for climate protection should be borne by the North, and North-South transfer of resources should be used to facilitate climate protection and adaptation in the South\" (Ikeme, 2003: 203; also see Barrett, 2012;Gardiner, 2004). Yet despite the moral appropriateness of such arguments, there are political constraints which make the large international resource transfers difficult (Purdon, 2014b). My own research suggests that these constraints impose themselves regardless of the international institutional form adopted-climate funds or carbon markets. Despite appeals for climate justice, international resource made available for adaptation have lagged significantly behind those for mitigation under both institutional forms-at under 20% of total climate finance leveraged (Ibid.: 320). Arguably, criticisms of the carbon market approach are misplaced: they have erroneously attributed low levels of adaptation financing to the type of institutional form adopted (the carbon market) rather than more fundamental political interests. The most appropriate strategy going forward is to advocate both strategies to leverage international resources for climate change adaptation as both carbon markets and climate funds each have their own specific advantages and disadvantages, A second example involves the international politics of food security. Historical and on-going food insecurity in LDCs is arguably linked to unequal power relations in international political economy, which will very likely be exacerbated under climate change. Clapp (2009), for example discusses a number of issues of international political economy that, in addition to global trends in food supply and demand, contributed to the 2008 world food crisis. First, was the depreciation of the US dollar during the early 2000s-the US dollar generally lost value in the years following the terrorist attacks of 2001. Through a complex and poorly understood process, US dollar depreciation is related to a rise in nominal prices for global agriculture commodities. This relationship is most likely due to (i) the fact that global agriculture commodities were themselves priced in a currency whose value had suddenly fallen as well as (ii) a tendency amongst global investors to pull their resources out of US currency markets when the US dollar is found depreciating and put them into speculative commodity markets, including agricultural commodities. A second issue at play in the 2008 world food crisis was trade restrictions on agricultural exports by a number of developing countries as well as rising global oil prices. Finally, Clapp argues that the 2008 world food crisis was especially harsh because the international trade regime had already undermined food security in the developing world, particularly LDCs, by maintaining a system of agricultural subsidies and trade restrictions skewed to benefit the global North.A final example that highlights the role of international politics for the governance of climate change adaptation and food security concerns the rise of emerging economies, particularly China, and their entrance into the international development arena (Goldstein et al., 2009;Taylor, 2009;Terhalle and Depledge, 2013). While debatable, international aid to LDCs provided by emerging economies has not been strongly associated with good governance principles and, in many ways, resembles trade more than aid. For example, China has asserted that the promotion of good governance would infringe on the political sovereignty of recipient countries (Bräutigam, 2011;Wang et al., 2014). How important will Western efforts towards good governance be if these principles are not embraced by all salient development partners? In other words, when is governance for climate change adaptation and food security \"good enough\" (Grindle, 2004;Grindle, 2007;Srivastava and Larizza, 2012)?In concluding this section, I would recall our brief discussion of neoliberal institutionalism. While renewed efforts to integrate domestic politics into neoliberal institutionalism as they regard climate change politics are worthwhile, it would be noted that there are alternative theories of international climate change politics that leave more space for domestic politics, including classic liberalism and neoclassical realism (Andonova, 2008;Hochstetler and Viola, 2012;Purdon, 2014b). A promising next step would be to rigorously compare the domestic politics surrounding climate change adaptation and food security across a number of countries in light of competing theories of international climate change politics.The review above suggests a number of areas where CCAFS should focus its energies to move forward on issues of climate change adaptation and food security governance. The main message is that the analytical concepts as well as methodological approaches of comparative politics offer a promising research strategy moving forward. In this section, I distil from the above analysis, five recommendations for the CGIAR community to consider.As we have seen, institutions are key governance factors yet their treatment in the literature on climate change adaptation and food security has been limited. Our above review has identified two immediate research topics. First, CCAFS should seek to determine conditions where formal or informal institutions are better for driving positive change. This debate really hinges on whether the formalization of informal institutions, such as land tenure, creates more benefits than it generates problems for the poor and vulnerable. Second would be to identify conditions under which community-based adaptation is appropriate and where other institutional approaches, including individualized ones, are better suited. As discussed earlier, community-based approaches have achieved a prominent place in discussion and practice of climate change adaptation and food security, yet there is need for critical reflection.But a third research question also emerges upon consideration of research to date.With interest in common property institutions, there has been a tendency to restrict analysis to the local-level. Yet as this working paper has sought to emphasize, other institutions are quite important for questions of governance, particularly the state. The political science literature has made important insights into how the state operates in the developing world, particularly LDCs (Boone, 2003;2013a;b;2014;Migdal, 2009). This is not to say that the state is the sole determining political actor and local-level research is unimportant. But more creative thinking capable of linking the state to the local-level-where climate change adaptation and food security programmes are expected to produce results-is necessary.While institutions clearly remain important for the governance of climate change adaptation and food security, the lack of attention given to interests and ideas demonstrated in the above review reveals a disconcerting tendency to privilege a form of normative analysis focusing on institutions-a conclusion supported by other independent reviews of the topic (Biesbroek et al., 2013;Candel, 2014). The risk is to treat governance issues superficially, as ones requiring only cosmetic changes to formal rules and organizations, and for researchers to remain unaware of deeper political factors such as the structure of a country's political settlement and the nature of prominent economic ideas-factors difficult for an outside observer to appreciate.Stronger engagement with the political science literature would provide greater conceptual clarity on alternative theoretical perspectives on issues of adaptation and food security governance. First, the idea political settlements suggests a way of distinguishing states in terms of the particular distribution of interests and institutions found within them. As explained by Di John and Putzel (2009: 4), looking at the political settlement focuses attention on contention and bargaining between elites, between elites and non-elites, between different politically salient groups and between those who occupy the state and society more widely. As these authors continue, political settlements manifest themselves in the structure of property rights and entitlements, which give some social actors more distributional advantages than others do, and in the regulatory structure of the state. One research strategy would be to first map variation in political settlements in various CCAFS countries and, second, seek to determine if there is a relationship between political settlement and the effectiveness of adaptation and food security governance outcomes. Such information could then be used to inform how to best tailor governance interventions to the political realities present within a particular state or jurisdiction.Second, CCAFS should engage with the political science literature on the role of ideas in the governance of climate change adaptation and food security, such as Darden (2009) and Hall (1989). Clearly economic ideas, legitimacy and moral politics, as they are held by political actors, will have an effect on the implementation and effectiveness of climate change adaptation and food security governance. In combination with the research strategy for political settlements described above, research here might first seek to map variation in key political ideas in various CCAFS countries and, second, seek to determine if there is a relationship between them and the effectiveness of adaptation and food security governance outcomes. Whether and how ideas are more important that institutions and interests in the governance of adaptation and food security at the domestic level remains an open question.Finally, I submit that the so-called \"realist\" literature offers a promising alternative theoretical perspective from which to explore governance issues, particularly because of its emphasis on political interests. Unfortunately, this rich body of literature has historically been deemed ill suited for environment politics. Yet realist perspectives are very much alive in other issue areas such as international security and, particularly neoclassical realism, are slowly making a return to the climate politics arena (Grasso and Roberts, 2014;Purdon, 2014b;Terhalle and Depledge, 2013).In bringing this section to a close, it would be wrong to draw the conclusion that I recommend research into institutions be abandoned. Rather, what is necessary is greater incorporation of ideas and interests into the analysis of climate change adaptation and food security in order to render governance research more attentive to power, material factors and ideational factors.A third recommendation to inform CCAFS's research agenda moving forward is to more explicitly deploy comparative methods in the analysis of the governance of climate change adaptation and food security. As demonstrated in the review above, the majority of studies into issues of climate change adaptation and food security have been comprised of single unstructured case-studies. While single cases-studies offer considerable insight into understanding a particular case in question and offer the opportunity for limited theory testing (such as for universal theories), they lack comparisons necessary for addressing larger issues of causality and theory generation that are more politically salient. Yet neither do large-N databases exist for most governance issues of interest for climate change adaptation and food security.A few methodological innovations present themselves. A first possible solution is to undertake meta-analyses of existing single case-studies in order to identify generalizable trends that can be applied to improve policy. This strategy has been a proposed for the study of governance in the field of natural resource management, where data is also not easily available and must be first acquired through meticulous case-study fieldwork (Poteete and Ostrom, 2008). Poteete end Ostrom actually describe a variety of methods: fieldwork by individual researchers, a hybrid of meta-analysis and field data, and research partnerships and networks. As a global research network, CCAFS is clearly well positioned for coordinating such a networked research effort.A second strategy is to undertake qualitative comparative analysis (QCA), a relatively new method that straddles the line between single case-study and large-N methods (Engeli et al., 2014;Marx et al., 2014;Ragin, 1987;2007;Thiem and Dusa, 2013). Essentially QCA allows researchers to code causal factors and outcomes in a logical matrix and, through the application of Boolean algebra made possible through new software programs, identify necessary and sufficient conditions for outcomes of interest. QCA is new to the political science toolbox and its utility relative to traditional statistical methods of comparison still a matter of debate (see Krook, 2010;Stockemer, 2013). I would stress again that the emphasis placed upon QCA and other qualitative methods is not to dismiss quantitative methods, which clearly have a role in social science research. Yet for issues where large-N data is lacking, as is the case for the governance of climate change adaptation and food security, QCA may provide an opportunity to test causal claims. To conclude this section, I would note that a trend in social science literature is increasingly of a movement towards \"mixed methods\" where a variety of methods is used in a mutually supportive manner (Biesenbender and Héritier, 2014;O'Neill et al., 2013: 462-463).The so-called dependent variable problem confronting climate change adaptation governance is another research topic that requires attention. Without agreement on what the outcomes of adaptation interventions should be nor how to measure them, there is considerable risk that research will waste resources or even lead to conditions maladaptation if research leads to policy changes that prove ineffective. It is of fundamental importance that researchers interested in climate adaptation take a step back and directly address the dependent variable problem.The adaptation literature has already developed important analytical tools for understanding adaptation, particularly through concepts of sensitivity, adaptive capacity/resilience and vulnerability (Burton et al., 2002;Holling, 1973;Keim, 2008). 4 The challenge now is to operationalize these concepts and test them in a politically salient manner in order to better inform governance research. For example, drawing on the comparative policy studies literature (i.e., James and Jorgensen, 2009), Dupuis and Biesbroeck (2013) suggest a distinction between evaluation of policy change and policy outcomes as one potential way of getting out of the current dependent variable impasse facing adaptation research.Yet temporal issues inherent in climate change adaptation appear daunting. How do we adapt to future climate conditions, given all the uncertainties involved? Certainly, climate modelling should be an important part of climate change adaptation research, though it remains a challenge to create models in which decision-makers have sufficient confidence and that operate at a scale sufficient to be actionable. In particular, predicting rainfall patterns is more complicated than predicting temperate trends because of the importance of local physical geography in shaping precipitation, mechanism that are difficult to capture (Rowell, 2012). Consequently, a regional scale is common for climate modelling of, for example, sub-Saharan Africa (Cook and Vizy, 2013;Druyan, 2011;Fontaine et al., 2011;James and Washington, 2013;Laprise et al., 2013;Lyon and DeWitt, 2012;Roehrig et al., 2013;Saeed et al., 2013;Sylla et al., 2012;Williams and Funk, 2011). Only a limited number of climate models have been applied at the national and subnational level in sub-Saharan Africa (Conway and Schipper, 2011;Crétat et al., 2012;Nakaegawa and Wachana, 2012), Given the greater availability of regional-level climate models, it would be a natural next-step to integrate governance research with regional organizations for international cooperation, such as in the case of sub-Saharan Africa, SADC, COMESA, EAC, ECCASA and ECOWAS. However, Compagnon et al. (2011) raise serious concerns about the effectiveness of such regional organizations in sub-Saharan Africa for coordinating and 4 As described in Burton et al. (2002: 149-150), sensitivity is the degree to which a system is affected, either adversely or beneficially, by climate-related stimuli. Adaptive capacity is the ability of a system to adjust to climate change, including climate variability and extremes, to moderate potential damages, to take advantage of opportunities, or to cope with the consequences. Vulnerability is the degree to which a system is susceptible to, or unable to cope with, adverse effects of climate change, including variability and extremes; vulnerability is a function of the character, magnitude and rate of climate change and variation to which a system is exposed, its sensitivity, and its adaptive capacity.implementing policy. Do regional organizations in other areas where CCAFS seeks to instil positive change behave similarly? In light of such questions, it might be appropriate to cultivate national-level climate models in order to produce information that is more precise and actionable, though likely also more costly.In closing this section, it would be noted that one common theme of the policy literature is that, all else being equal, richer societies are more resilient (Wildavsky, 1980). In this light, Schelling (1997) once argued that a focus on economic development was a more appropriate strategy for developing countries rather than an explicit adaptation programme. A recent test of Schelling's argument suggests that it may only be true for LDCs because, upon reaching a certain level of economic development, the marginal benefits of development no longer outweigh climate impact (Anthoff and Tol, 2012). Arguably, an emerging consensus is that adaptation should be fully integrated with economic development. In this vein, Fankhouser and Schmidt-Traub (2011) have estimated that mainstreaming climate change adaptation into international development efforts would increase the total amount of external development financing from $72 to $100 billion per year. It seems reasonable to conclude that economic development, while important, is unlikely to constitute the sole outcome (i.e., \"the dependent variable) necessary in climate change adaptation.A research program on the governance of climate change adaptation and food security implies a standard against which governance is to be evaluated. But what should this standard be and how tolerant development practitioner community should the international community be of governance deficits that undoubtedly will be encountered once climate change adaptation and food security measures are examined closely?Grindle has explicitly addressed these questions through the concept of good enough governance: \"Good enough governance means that interventions thought to contribute to the ends of economic and political development need to be questioned, prioritised, and made relevant to the conditions of individual countries\" (Grindle, 2007: 554). Too high governance standards are not only unfeasible, but might drive key actors to embrace international partnerships requiring even lower standards-a prospect considerably more possible now than even just a decade ago with the rise of emerging economies in the international development arena.Grindle identifies two analytical approaches by which international development practitioners might tailor governance interventions in the developing world to be \"good enough\" relative to the existing political realities. The two analytical approaches distinguish between context and content:On one hand, one can try to understand the context within which institutional and capacity changes are needed, devise changes that are appropriate to that context, or seek to change that context by mobilising support or dealing with opposition to change. On the other hand, they can try and understand the content of the changes they propose, assess the requirements of those reforms, and then, if possible, alter their content to be more feasible or appropriate to the context.The first analytical approach, understanding development context, relies on using concepts of comparative politics like those mapped in this working paper-institutions, interests and ideas-to create a typology of a particular state's development context. As has suggested throughout this review, state is remains one of the most important factors shaping development context. Here there are two modes of describing this development context. As shown in Table 1 below, Grindle suggests that one way of differentiating states is in terms of their institutional stability, organizational capacity, legitimacy and types of policies in place.The framework in Table 1 is only an example; ideally, contextual factors would be fine-tuned for issues of climate change adaptation and food security through further comparative research. For example, results from a comparative investigation of political settlements and variation in economic ideas across states, discussed above, might be used to improve on the contextual factors in Table 1 below. A second mode for exploring the development context of governance interventions is to assess the possibility for change with in a state. For example, as Grindle continues, \"[i]f states vary considerably in terms of their strengths and capacities, it is reasonable to ask if some governance reforms logically precede others… without contextual knowledge to inform decision-making, choices about what to do in particular situations are likely to be irrelevant, infeasible or poorly targeted on the roots of specific problems\" (p. 563). Rules of the game widely recognised as legitimate and not subject to significant change; conflicts resolved through appeal to the rules.High. Organisations challenged to improve performance on a sustained basis.High. Legitimacy to make decisions and wield power persists even in context in which there is disagreement on decisions on the use of power.A wide range of basic and welfare services. The range and type of provision are major themes in politics. This working paper has sought to review basic epistemological and methodological issues of comparative politics, map out different political factors that have bearing on the governance of climate change adaptation and food security while also highlighting the important relationship between international and domestic politics. It closed by making five recommendations that harness its main insight-the need to consider institutions, interests and ideas together-towards research into the governance of climate change adaptation and food security: the need (i) to identify new dimensions for institutional research, (ii) to conduct governance research beyond institutions, (iii) to embrace more rigorous methods, (iv) to address the \"dependent variable\" problem in climate change adaptation research and (v) to come to grips with \"good enough\" climate governance.The emphasis on methods and conceptual tools of comparative politics found in this working paper may appear new to some of CCAFS research community, but certainly not all.One reason is that comparative political scientists are only beginning to engage with environmental issues. Yet, as this working paper has sought to show, many existing concepts identified in the comparative politics literature are highly transferable to issues of climate change adaptation and food security. Another reason is that certain fundamental epistemological debates-such as between positivism and non-positivism-have historically been more prevalent in the environmental field than in other issue areas. There are certainly grounds to be sceptical of the predictive power of political science. Yet as I hope has been demonstrated in this working paper, comparative politics does bring greater analytical clarity to issues of governance and, with future research leveraged through the CCAFS network, promises to yield greater understanding of the political, economic and social issues at play in climate change adaptation and food security. (Benton and Craib, 2010) ","tokenCount":"11126"} \ No newline at end of file diff --git a/data/part_3/3752911004.json b/data/part_3/3752911004.json new file mode 100644 index 0000000000000000000000000000000000000000..484443b7794f52a63a6cd6055aed73e952ae33e2 --- /dev/null +++ b/data/part_3/3752911004.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"a90acaf5ea44573e0f0940c6704da61e","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/85e68af3-2233-482a-a00e-34f9b5701e36/retrieve","id":"-1274760331"},"keywords":[],"sieverID":"ead7a89e-45be-4abf-94fe-2cd04e45afd2","pagecount":"44","content":"As a pioneer in digitalisation in agriculture, CTA was well positioned to play a leading role in this initiative to link farmers to satellite-based services. Unlike some previous initiatives, this one has had an intensely practical component, involving nearly 200 agents who have been trained by the scheme to pass on their knowledge to farmers and help them to access the ICT-enabled solutions. Central to the initiative are of course the small-scale farmers themselves, many of whom are starting to see the concrete benefits of investing in ICTs to receive precise and targeted information that can lead to better harvests, greater climate resilience and stronger market linkages.INTRODUCTION 2There is massive scope for linking farmers to valuable knowledge and agricultural services through Information and Communication Technologies (ICTs) as a pathway to driving improved productivity and market access, creating opportunities for higher incomes and better food security as a result. In Uganda, as in many sub-Saharan countries, lack of timely and accurate access to information about weather, financial services, crop management, markets and climate coping mechanisms is a serious obstacle for smallholder farmers, preventing them from achieving higher yields and selling their produce for better prices.To address these challenges, an innovative initiative is showcasing how ICTs can be used to capture satellite-based information on a wide range of agricultural indicators, packaging it into tailor-made messages for farmers in local languages. Led and implemented by the Technical Centre for Agricultural and Rural Cooperation (CTA), which has extensive experience in shaping ICT solutions for smallholder farmers, with seed funding from the Dutch Ministry of Foreign Affairs (MFA) through the Geodata for Agriculture and Water (G4AW) Facility of the Netherlands Space Office (NSO), the Market-led, User-owned ICT4Ag-enabled Information Service (MUIIS) is a satellite data-enabled extension and advisory service that uses ICTs to address the current agricultural information gap in Uganda.The initiative has been designed to deliver a bundled service offering accurate weather alerts, agronomic tips and index-based drought insurance to help farmers make informed decisions. An unusual feature is the strong business focus, with a number of private sector partners on board andIn Uganda, which in common with many African countries relies on agriculture for its From the outset, CTA was clear that the success of the initiative, from conceptualisation to implementation, would depend on a mix of CHAPTER 1BUILDING A VIABLE MULTI-PARTNERSHIP MODEL FOR ICT4AGIncreasingly, public-private partnerships are being seen as a prerequisite for successful delivery of ICT for agriculture (ICT4Ag) services to farmers.The mix of partners chosen for the MUIIS initiative reflects this trend, with all six members identified through a competitive process for their expertise and experience in the key areas of data, knowledge and information. Between them, the MUIIS partners offer a valuable range of skills and experience, Simple partnership is critical to success. The MUIIS partnership is a complex consortium with seven primary partners and five key secondary partners. It includes the users, satellite data partners, IT partners, capacity-building institutions and research institutes. However, this extensive system has had many negative implications for the delivery of the activities. The MUIIS experience highlights the importance of identifying a limited number of partners with strong synergies, and focusing on specific issues that bring quick gains.It makes good sense to capitalise on the rich array of human resources within communities, where there are generally large numbers of well-skilled and experienced fieldworkers. In this case, a critical feature of the project design was the decision to tap the human resource base of the farmer organisations. The 200 MUIIS Service Agents (MSAs) who have been mobilised and trained are from the communities and they know their farmers. These agents are the foot soldiers and business wing of the project, and their empowerment is leading to a cascade effect on the ground.Whilst partnership and collaboration are critical, focus should be the goal. The challenges of farmers are numerous, and most service providers mistakenly believe that one initiative can address all problems, regardless of their specific nature. MUIIS has decided to focus on and ensure results.Other services can be added in the future, or embedded at a later stage for the benefit of farmers.The primary product is one that offers customised extension and advisory service for increased productivity and resilience against climate variabilities. All others are secondary.The experience has demonstrated the need to understand the most effective way of reaching end beneficiaries, such as working with national partners instead of regional ones in the case of farmer organisations. MUIIS started with regional partners, moving slowly to the ownership model with the national farmer organisations. While the regional partners may be in a better position to supply advocacy and engagement with the international partners, it is important that national partners are in direct communication with other implementing partners, to ensure better user engagement and fewer administrative processes and delays. Inclusiveness is a special feature of MUIIS, as recognised by the World Economic Forum, which praised the gender focus used in the design when it highlighted the initiative as part of its New Vision for Development in 2017. In Uganda, as in many developing countries, women make up the majority of people working in agriculture, and the MUIIS initiative has made special efforts to include women, both as MSAs, where they account for 42%, and as farmers who adopt the service.\"We found that reaching out to women farmers is not only a key success factor, but also an important contribution to the sustainability for our initiative,\" said Carol Kakooza, CTA's Initiative Coordinator based in Uganda. \"All women smallholder farmers we speak with are eager to try anything that takes them out of poverty, while only three out of 10 male farmers we speak with join the MUIIS programme.\"The choice of working through farmer Workshops We found that reaching out to women farmers is not only a key success factor, but also an important contribution to the sustainability for our initiative. Mobile Network Operators are also key stakeholders. MUIIS is currently working with Airtel and MTN, but the goal is to engage with these operators more effectively, so that they see the value of the service and consider subsidising subscription costs for smallholder farmers. We at the UCA are proud to be associated with the MUIIS initiative. This is one initiative I personally feel connects to the farmer directly, bearing in mind that information is a powerful tool at all levels of development. When a farmer is able to connect to the digitalised system and receive weather and agronomic tips, market information and above all insurance, this is a great innovation that eases UCA's work in its efforts to revitalise the cooperative movement.Ronah Nyiraneza, initiative coordinator MUIIS, Uganda Cooperative Alliance \" \"Involve stakeholders from the planning stageStakeholder involvement is critical. A broad range of stakeholders, including policy-makers, third party service providers, users, as well as potential competitors have been engaged from the outset.Enabling users to become owners of the service appears to be an incentive for buy-in from farmers and farmer organisations.The CTA proof of concept for this initiative and some other earlier ones confirms that the notion of delivering satellite-based information to farmers is a sound one. Quality content is guaranteed.The question is how to present the model in the most compelling way to farmers, and encourage them to pay for a product that is intangible -and for which they can see no immediate benefit.MUIIS aims at focusing on improving the value of its product, and making it attractive to other value chain actors who might be willing to subsidise the cost for farmers.A percentage of the budget should be allocated to seasonal marketing, sales and product promotion during project design, which is critical for successful uptake by farmers. In the case of MUIIS, this expense was not fully factored into the original proposal and is therefore not covered by the budget.This undoubtedly had an impact on adoption rates of the bundled service. Efforts have since been made to mobilise resources internally, and where possible to attract potential partners to help achieve the ambitious plan that has been developed for promotion and marketing.The MSAs were mobilised mainly through farmer organisations and other institutions. To receive the bundled MUIIS services, farmers pay a service fee of 14,000 UGX (€3-4) per season per acre per crop, to cover the cost of SMS alerts and insure their plot.Additional coverage is available for 10,000 UGX (€2.25) per acre, up to a maximum of 5 acres.In Be flexible and ready to adapt to changing technical issues from the fieldThe GPS functionality of the smartphones acquired for the project had problems in capturing the points on the field when the phone was offline, especially in very remote areas. The issue was not easily identified until late 2017. Technology partners are now optimising ways to improve the GPS capture time. Also, most MSAs are now acquiring their own smartphones, since they have made revenue from the commissions received during the past two years, and are now viewing MUIIS as a business.Message delivery has been streamlined and the thresholds developed by the agronomists have been tested against weather data from aWhere. Additional satellite data is being introduced to complement and improve the current messages.It is important to take account of the integration challenges faced when dealing with logistical issues posed by system data providers and service administrators that are located across multiple continents and time zones.I was working as an Agricultural Extension Officer with the District Farmer Organisation in Tororo when I was recruited onto the MUIIS initiative some time last year. I took up this job to complement my income so I can fulfil my dreams. I have used the money earned from MUIIS to pay school fees for my siblings, and buy agro-inputs for my two acres of land where I grow maize and beans. I am also proud to say that I have started constructing my residential house in Iganga! Derrick Naweya, 27, MSA Tororo District After being profiled, farmers wanting to sign up for the MUIIS bundle are asked to dial a short code from their mobile phones, which then takes them through a simple step-by-step process. This user-friendly system is linked to each farmer's profile, helping to ensure that the messages sent out will be tailored to suit his or her needs, and delivered in the appropriate language. The subscription is paid through a mobile money service, as is the payout for any Making all this data easily accessible and useable will become even more critical as the initiative progresses. technology to allow farmers to subscribe and receive messages using feature phones.Local project partners are not new to development projects. Such projects come and go and partners are used to the operating procedures. In the case of MUIIS, several promises were made to local partners at the beginning, and these took time to fulfil. Although most of the delays were rectified at a later stage, these affected the take-up and morale of most local partners, especially the MSAs and their institutions. A revived network of MSAs is now being built, who will view MUIIS as an initiative that transcends a conventional development project, and are willing to become MUIIS business units for sustainability.Technically, most of the MSAs have basic knowledge of smartphones, but need substantial technical support in order use them professionally. Secondly, fieldwork is completely different from office work. The MSAs do not work from 9 am to 5 pm only on weekdays, but have to make themselves available around the clock, 7 days a week. This calls for a dedicated team that is online on a 24-hour basis to respond to urgent issues. Recognising this need, Mercy Corps and Ensibuuko have developed a dedicated team that responds to technical issues from the field, day and night.There is also peer support from more experienced MSAs to the less experienced ones, communicating through WhatsApp groups.For the agritips models, the evapotranspiration rate data for some crops in Uganda is not available, which has had an impact on the quality of advice transmitted. More research is being carried out by AGRA and NARO to address this issue in order to improve future messages.I am a single mother of one child and joined this initiative last year in September. I had so many debts that I cleared as soon as I was paid after registering 230 farmers. I was so excited and motivated to work hard and earn enough to look after my child and grandmother who is diabetic. She is now much better since I can afford her medication. I have also gone ahead and trained and mentored senior six leavers in my community to learn how to profile and give agricultural advisory to farmers in Budaka. They are now earning some money and will be able to afford their university or tertiary education. I have also started building my house and I now see a bright future for my daughter and me.Annet Mugala, 26, MSA Budaka, Eastern RegionThorough research needed before deciding on ICT4Ag toolsThe design and conceptualisation of ICT4Ag initiatives should begin with detailed consultations with the intended users, including needs identification and a goal to hand over ownership to users.MUIIS engaged farmers and farmer organisations from the start, and aimed to position them so they were ready to own the service after donor support ended. The suite of ICT solutions being deployed is therefore simple and targeted. Subject to demand, more features will be added to make the bundle accessible and useful.Though simple, ICTs are foreign to smallholder farmers. They need basic training and regular seasonal follow-up on how to subscribe. Many individual subscriptions during the test season encountered problems due to farmers not completing the mobile money payment process. On investigation, this was mainly the result of insufficient funds on their mobile money accounts. Going forward, MUIIS is encouraging group subscriptions through farmers' institutions and cooperatives to reduce this technical issue.Feedback is critical for an innovative initiative such as MUIIS, given its ground-breaking nature and the breadth and range of its activities and partners. Partners are constantly striving to improve its advisories, seeking input and feedback to ensure that content addresses farmers' most pressing needs, that delivery is achieved in the most effective manner possible, and that the end product meets user requirements to the greatest possible extent.The result is a system that is constantly being fine-tuned, in an effort to ensure that it will become a viable business undertaking, long after the project phase has ended.A combination of surveys and interviews conducted through the agents and the initiative's online database is being used to collect feedback on the information services. For weather data quality, aWhere works with AGRA and NARO to ensure that the MUIIS data complements the national weather data, so as to provide extra value to MUIIS farmers.The agronomic data driven by eLEAF is complemented by ground data from AGRA and NARO and by weather data from aWhere, to provide actionable information to farmers based on the weather situation of their fields.For the purposes of quality assurance, the agronomic data from eLEAF is overlaid with both farmer profiles and crop calendars produced by AGRA and NARO.VALUING FEEDBACK FOR QUALITY CONTENT An intricate system of monitoring and cross-checking has been set in place to ensure the quality of the content being issued to farmers, as well as the system designed to retrieve and process the data, before sharing it with users. A total of 910,554 UGX (€205) has been paid out so far to the qualified farmers.One farmer who signed up for the service described how it had helped to ward off an impending pest attack on his crops. \"I have been receiving weather updates and advisory on when to plant. In addition I got an alert on the Armyworm pest and we were advised on what pesticides to use,\" said Nalubega Robinah, from Nalweweta Village in Luwero District. \"I have so far harvested about 10 bags and yet still have more maize on the farm.\"The Fall Armyworm has devastated crops in Uganda, and governments across Africa have struggled to respond to the pest, which, like many of its kind, can be tackled if farmers have sufficient advance warning and are equipped with the right information and resources for action.Various assessments have been conducted to obtain feedback from end users, based on farmers' experiences with subscriptions and the SMS messages they have received. A third party service has been engaged to assess the relevance of the messages sent, to enable content to be adjusted for the upcoming seasons. Assessments are also conducted on the impacts of advice at various stages throughout the production cycle, as well as on the mobile money payments, including the ease of payment for services supplied, and for payments made as part of the weather insurance component.I thank MUIIS for the weather updates that have enabled me to know when to plant. It was a problem predicting what crop would survive, given the uncertainty of weather conditions. Last season, I successfully harvested maize from my farm due to the weather updates and advisory tips I received on my phone. I would like to request MUIIS to provide us with market information so that we are able to know where we can sell our produce. One of the MUIIS strategies has been to document and report on progress regularly to keep the investors updated. As part of the M&E framework developed within the inception phase of the project, partners have been consistent in capturing data on activities from the field, and in analysing and reporting.A common challenge in the implementation of ICTs in agricultural projects is failure to sustain the project beyond donor support. This may be due to a of reasons, including poor assessment of demands prior to implementation, inaccurate cost estimates, poorly designed business models, the technologies themselves, the complexity of the project with respect to the users, illiteracy, and lack of buy-in from stakeholders.Bearing all these potential hazards in mind, MUIIS planners took pains from the earliest design stage to place a strong focus on ensuring that the initiative had all the prerequisites for the ICT4Ag information service to be sustainable, continuing well after the initiative itself had ended its funding phase. These included building a strong foundation for a product that can attract business partners through its high standard farmer profiles. Also critical was the setting up Building a strong foundation for a product that can attract business partners through its high standard farmer profiles.It is important to involve business minds that can turn the ideas into profit. While the design and implementation of MUIIS is based on sustainability, the strategy to turn the initiative into business has met with several challenges. Future initiatives of this kind should undertake business sustainability studies of the users and the broader national/regional environment, so as to understand the culture of willingness to pay by stakeholders.The project design involved engaging groups such as farmer organisations and cooperatives as units of service, rather than individual farmers. Subscription was expected to be channeled through these groups. However, it soon emerged that the structure of many of these groups was not sufficiently business oriented to enable them to take on this role in an efficient manner. As a result, the system has partially shifted to the collection of individual subscriptions, which currently accounts for about 90% of the total. Savings and credit cooperatives (SACCOs) are now being explored as a new channel for this purpose.Although the number of farmers who have taken out subscriptions is gradually increasing, it remains way below the number of farmers who are currently profiled. The main challenge now is to encourage more farmers to use the service, since most are unwilling to pay for it. Other studies and experiences across Africa show that farmers may not be the right group to pay for these kinds of information service. The way forward is to solidify the value of the MUIIS products and services, explore and identify business partners who see value in products and services, such as farmer profiles, agent networks and other assets, and build on these so that they pay some or all the subscription on behalf of farmers.Originally designed as a 'farmer-owned' information service, MUIIS engaged farmer organisations from the start, with the goal of building their capacity to take over ownership of the business in the future. However, due to the challenges of developing a viable business model in combination with its products, it now appears unlikely that farmer organisations will be in a position to take up MUIIS and drive the business. The future potential is huge, but the projected cost of transitioning it into business is high. An ideal profile of an entity that can take MUIIS forward from 2019 has been defined. This should have been identified earlier in the second year, but being an ambitious initiative, partners were still hopeful that the farmer organisations would take the lead. The profile now being targeted is a social enterprise that does not only focus on profit, but has farmer interests at heart, with local experience working with farmers and ICTs in Uganda. An alternative option to take MUIIS into the business stage is that of a large aggregator with strong links to farmers in terms of input supply and offtake of outputs.As it moves into its third year, MUIIS has ","tokenCount":"3552"} \ No newline at end of file diff --git a/data/part_3/3762063747.json b/data/part_3/3762063747.json new file mode 100644 index 0000000000000000000000000000000000000000..5a922066eaf25c08d6ae2d7f79e7b2a364ee4a77 --- /dev/null +++ b/data/part_3/3762063747.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"f6ac1f0f832e69e6643535557f0c827b","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/7eeb0878-b191-4e0f-9e8c-7c78a526c27e/retrieve","id":"-283751104"},"keywords":["New Innovation","Yes Innovation type","Production systems and Management practices"],"sieverID":"e8e0096d-f5d0-49b6-8980-59ec4d35fa72","pagecount":"2","content":"The app displays on a cellphone images taken with low-cost Rasberry pi cameras that measure the spectral reflectance of crops, calculate vegetation-indices and water-requirements in different phenological stages of the crop. This technology is useful to determine the water-demand of different crops and varieties, as well as to make management decisions about when and how much to irrigate. It also generates information on the best materials to sow depending on the LTACs seasonal-forecasts.Number of individual improved lines/varieties: We did field evaluations to determine the sensitivity of the cameras to phenological changes. However, the camera has not yet been calibrated with commercial sensors.There is also an app that is programing to automate the capture of images, processing them and transforming them to Kc and visualize the data.Name of lead organization/entity to take innovation to this stage: CIAT (Alliance) -Alliance of Bioversity and CIAT -Regional Hub (Centro Internacional de Agricultura Tropical)• CASM -COMISIÓN DE ACCIÓN SOCIAL MENONITA • ASORECH -Asociación Regional Campesina Chorti• CSA technologies and practices potentials for scaling out assessed and communicated with partners from key development initiatives• 2 -Reduced smallholders production risk • 8 -More efficient use of inputsContributing Centers/PPA partners:• CIAT (Alliance) -Alliance of Bioversity and CIAT -Regional Hub (Centro Internacional de Agricultura Tropical) 1 This report was generated on 2022-08-19 at 08:37 (GMT+0)","tokenCount":"217"} \ No newline at end of file diff --git a/data/part_3/3774781029.json b/data/part_3/3774781029.json new file mode 100644 index 0000000000000000000000000000000000000000..11e34b3aa2c34568a6dc0fd1ce01c36360232dbf --- /dev/null +++ b/data/part_3/3774781029.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"1ecda75b1b2353ad550328cae65f6833","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/55558da2-70d7-4795-a22c-609463d9878e/retrieve","id":"1831486462"},"keywords":[],"sieverID":"7cc4ecf8-a347-49c9-adf2-998255b7a7aa","pagecount":"25","content":"The Health of Ethiopian Animals for Rural Development (HEARD) is an EU-supported program to strengthen animal health services involving public and private sectors. The HEARD program aims to increase sustainable livestock productivity and improve the marketing of livestock products through enhancing quality and reliability of integrated public and private veterinary service delivery. Performance of the veterinary service will be strengthened to improve data gathering, analysis and strategic animal health interventions by both public and private sectors. Developing capacity for different stakeholders involved in animal health service delivery is at the heart of the program.The HEARD program is organized into three result components. Under result 2, the activity 2.1 ('Piloting the veterinary service rationalization road map in Somali, Oromia and Amhara regions') is planned to be implemented through organizing five consultative meetings to establish guidelines for working relationships between public and private animal health service providers (subactivities 2.1.1), identifying traditional livestock movement corridors for inclusion in pilot PPPs (subactivities 2.1.2) and pilot novel models for veterinary service delivery involving public and private sector (subactivities 2.1.3).Eight PPP models were identified, detailed plans prepared and some of the models are being tested. Based on consultations under activity 2.1.1 (completed activity) and findings of activity 2.1.2 (ongoing activity), eight potential PPP models for the delivery of animal health services were defined and are being piloted. In October 2022, a midterm evaluation of the performance of the eight PPP models was conducted. This report presents the findings of evaluation.• Evaluating performance of the eight PPP models • Documenting experiences/lessons gained during the implementation period for improving/revising the PPP models• Identifying success and driving factors for the sustainability of the PPP models• Validating the evaluation findings through stakeholders' workshops for scaling upThe evaluation aimed to answer the following research questions:• Which are the most successful PPP models?• What are the success and the driving factors?• How do the different PPP models improve livestock keepers' satisfaction with veterinary services and the productivity of their herds/flocks?• What enabling environment is needed for the operationalization and sustainability of the PPP models?• What lessons can be learned from implementing the PPP models?2 Evaluation methodsThe models were evaluated using three criteria: 1) the performance of the models, which was evaluated based on effectiveness of the partnerships established between the public and the private sectors, the efficiency of the models measured in terms of the service coverage and the effectiveness of the services measured as the quality of the services, 2) satisfaction of the targeted livestock keepers with the veterinary service and 3) the sustainability of the models.Focus group discussions (FGDs) and key informant interviews (KIIs) were held with the different partners (livestock keepers, private service providers and public offices at kebele, woreda and region level). Field observations were made to all implementation sites. Service records of the private service providers were also consulted.Eight PPP models were designed by the regional PPP taskforces in the three project regions of Amhara, Oromia and Somali (see Table 1 and Annexe I for description of the PPP models). The PPP taskforces are the platforms for publicprivate sector dialogue and lead the design and implementation of the project PPP activity. They are led by the regional health service director and a private partner and are composed of private service providers (clinics, drug shops and veterinary input suppliers), livestock producers and public health service providers (veterinarians from regional and woreda offices including regional health service directors), laboratory and university representatives.Six of the PPP models are implemented at least in one implementing site since March/April 2021 (Table 1). Implementing the others was delayed either due to drought or security issues. This evaluation is focused on the six models under implementation. Effective functioning of the partnerships among the PPP stakeholders/partners is a key indicator to performing the PPP models. Findings to the effectiveness and weak links of the partnerships, extracted from the KII and FGD, are highlighted below. In the discussion on the operation of the partnership arrangement for a specific PPP model, the PPP partners interviewed tend to relate the arrangements to the types of services provided (vaccination, community based deworming, mobile clinical services) and it was challenging in some cases to disaggregate the FGD and KII discussions by the PPP models. Yet, since the type of service was the main distinguishing feature of the PPP models, it was possible to disaggregate the discussion results by models.Finding 3.1.1.1: In general, the partnership modality established for all the PPP models tested was found to be effective. Discussions (KIIs and FGDs) with the public offices at different levels, private service providers and the livestock keepers revealed that a strong partnership has been established among the parties.Finding 3.1.1.2: The public offices have met their roles/responsibilities they pledged in the implementation plans and the Memorandum of Understandings (MoU). And this was consistent across the different administration levels, giving the impression that the public offices have a set policy towards involving the private sector in service delivery. The enabling environments created for and attitudes expressed towards the private sector by the public offices are highlighted below.• The regional livestock public offices authorized participating the private sector in vaccination services, waiving the policy of the Government of Ethiopia (GoE), which reserves vaccination to the woreda and kebele animal health posts (AHPs).• Offered waiver for private drug stores to practice clinic based and mobile clinical services for the PPP testing period.According to veterinary clinic licensing regulation, a clinic is expected to provide services only to the kebele it is licensed for.• The woreda livestock/pastoral development offices and the kebele AHPs in all regions and woredas have willingly and effectively executed their stated roles and responsibilities-actively mobilized communities for vaccination and community based deworming services, monitored/supervised the private partners' services. In all the regions, woreda public services gave adequate orientation (information) for the kebele administration on the modality of the PPP implementation and not to interfere with the services of the private sector.• The woreda offices delineated a kebele as a domain of the private sector ('private kebeles'). Vaccination services by the AHPs were suspended in the private kebele.• The woreda livestock offices/pastoral development office and kebele AHPs indicated no conflict of interest in business or professional carrier with the private clinics.• Positive attitudes towards partnering with the private sector (demonstrated by their active participation in the regional PPP taskforces).• The public offices acknowledged the role of the private sector in service delivery, contributing to increased service coverage, better quality service, commencement of cost recovery.Finding 3.1.1.3: Substantial public technical and mobilization support for the private sector is a positive move showing the supportive and cooperative relationship established. Yet, some public partners are concerned with the sustainability of the level of support provided, which they complain exhausts their resources.Finding 3.1.1.4: Two variations of partnerships in implementing the sanitary mandate for vaccination services-regionworeda-kebele (Model III) and woreda-kebele (Model II) private sector linkages-were piloted in Somali region. The public partners identified relative advantages and disadvantages of the two models. While the woreda-kebele private sector linkage is accessible and provides timely services, it however lacks capacity. Partnering with regional private service provider was important for the woreda service provider.Finding 3.1.1.5: The private service providers have effectively executed their roles and responsibilities.• Most are happy with the operation of the partnership and the public sector support.• Provided vaccination and deworming services at the service charges negotiated by the PPP taskforces.• Some private sectors went beyond their responsibilities in the PPP arrangement. Some offered free services for List A vaccination (which is provided free by the public sector) to maintain smooth partnership with the public sector.Finding 3.1.1.6: Very good communication among partners. However, the public offices stress the importance of regular communication, regulation and accountable follow up on implementing the PPP models.Finding 3.1.1.7: Although most of the public offices have welcomed the PPP, there are some concerns and reservations towards the private sector. The widely and long held attitude towards the private sector-untrustworthiness, exploitative, motivated mainly by profit making, costly service-remains, albeit among very few experts and expressed subtly. Attitudes of the public offices towards the private sector have started to change. However, more needs to be done to maintain and build the trust for the PPP to be accepted fully.Finding 3.1.1.8: The partnership modality for vaccine supply chain was that the public offices procure and deliver vaccines to the private service providers. Although this arrangement worked perfectly well for most of the PPP models, there are some concerns and misunderstandings:• While some public offices confirmed their willingness to supply vaccines for the private service providers at subsidized rates, which the private partners prefer, some offices would like the private sector to procure their own vaccines.• The concern by the public offices relates to the sustainability of the above vaccine supply arrangement. They are concerned that the partnership for the vaccine supply has created too much dependence of the private sector on the public offices. They would like the private service providers to take a more proactive role in the partnership.The prevailing concern by some public sector partners that the private clinics may not deliver services delegated by the public sector efficiently and trustworthily is busted. The service coverage in the kebeles delineated for the private sector could be one means of evaluating their efficiency. The following are the salient findings:Finding 3.1.2.1: Very high service coverage was achieved for all the services provided by the various PPP models (Table 2). Most of the livestock (70-100%) in the kebeles delineated for the private sector got vaccinated and dewormed and most of the community (85%) got access to mobile clinical services. The livestock keepers mentioned the following for the high service coverage:• The service charges for most of the vaccination services were highly affordable. The services were provided at charges negotiated and determined by the PPP taskforce. Vaccinations that were provided for free such as NCD and at highly subsidized rates (e.g. Anthrax, black leg) by the public sector were provided at the same price or at very low cost, e.g. NCD at 1.00 Ethiopian birr (ETB) per chicken (USD 1.00 = ETB 53.6246 at 25 December 2022).• The availability of clinical services during weekends and after office hours.• Mobile clinic services are available on call basis. Mobile phone technology plays a great role.• The availability of vaccination services (rabies and NCD) which have not or rarely been available previously in rural kebeles.Finding 3.1.2.2: The role of the public sector is high in the high vaccination coverage (mobilize, transport in some cases, directly supporting in vaccination). One of the reasons cited by livestock keepers for the high vaccination coverage was the collaboration between the public and private sectors in which improved delivery of services occurred. The issue here is: Can the private do it alone at this level? Would this be sustainable? The quality of services provided by the PPP arrangement was evaluated by the livestock keepers' assessment of the herd/ flock health status before and after the PPP intervention.Finding 3.1.3.1: Diseases were rampant before the PPP intervention in all the kebeles surveyed.Finding 3.1.3.2: All communities are convinced of the high quality of the private veterinarian services. They reported that disease incidence is declining. For instance, Akena and Wingeta kebeles communities reported that all vaccinated dogs are so far free of rabies which is ranked as the most important disease as it affects dogs, livestock and humans. Bulale kebele community reported that they have not yet notice clinical signs of diseases for which vaccination was provided or new disease outbreaks.Finding 3.1.3.3: The top ranking diseases identified by the livestock keepers to affect livestock before the PPP intervention were not ranked as priority diseases after the intervention. For example, in Gambelto kebele pasteurellosis and endoparasite infection were among the top ranked health problems of small and large ruminants before the PPP intervention, whereas the priority diseases identified during this evaluation period were tick infestation and diarrhoea for small ruminants and bloat and tick infestation for large ruminants.Satisfaction of the PPP partners was evaluated based on their assessment of the availability/accessibility, timeliness and affordability of the services provided by the new PPP arrangement. Their satisfaction/dissatisfaction with the services delivered before the PPP intervention and the reasons were also used to compare the effectiveness of the PPP models.Finding 3.2.1.1: Livestock keepers were not satisfied with the services they used to get.• Services were not available-There was one public AHP serving three kebeles in some cases. Farmers had to travel long distances (up to 8 km) to get service, incurring extra cost of transportation.• Mobile services were not available and thus not timely.• Services were in some cases not affordable because of extra costs incurred to access the nearest service provider and, in some cases, the AHP charging higher than set by the woreda office.Finding 3.2.1.2: Livestock keepers are highly satisfied with the services provided by the PPP arrangement. Reasons mentioned include:• New services were introduced (rabies vaccination in rural kebeles).• The service charges for vaccination are affordable, being like the public services.• Better drug supply in quantity and quality in the private than in the public clinic.• More convenient door-to-door services of rabies and NCD vaccination, mobile clinic.Finding 3.2.1.3: Livestock keepers' rating of satisfaction differs by gender (Table 3). For instance, for male Gambelto kebele farmers, the 1st best service was mobile clinic (Model IV) because of its timeliness, followed by vaccination (Model I) and community based deworming (Model VII). For females, the ranking was vaccination (because it is preventive), mobile clinic and deworming.Finding 3.2.1.4: Concerns were expressed by public experts and farmers in some kebeles with the high service charges for some services (like deworming and clinical treatments) of the private service providers. Yet, the current high inflation rate may have contributed to the cost of the services. • Accessing new market opportunities (vaccination and community based deworming) which translates to more returns.In conventional clinic service farmers get deworming service only for animals destined for fattening and those showing clinical signs of worm infestation such as rough coat and thin body condition.• Supporting from the public sector and the enabling environment created (see section 3.1.1).• Accepting/trusting by the community and recognition by the public as partners in improving delivery of services to livestock keepers.• Empowering platform (PPP taskforces) created, facilitating better interaction with the public sector and networking to expand business.Finding 3.2.2.2: Free or highly subsidized services by the public sector is a threat for the private veterinary businesses• The low service charge (especially for vaccination) and low market volume (being limited to one kebele, delineated for the private service providers, service being provided for free such as for NCD vaccination) resulting in too low income to sustain their business and livelihood.• Farmers resistance to paid services for services provided by the public sector free of charge (especially for NCD vaccination).• Vaccination service-quite a few types of services to provide, including providing vaccination for List A vaccines which are not included in the PPP plan and provided free of charge.• Mobile clinical service-Highly subsidized public service: in the long run and if the enabling environment facilitated by the public offices (like deferring public service in the kebele delineated for the private service provider), both the public and private providers would be expected to operate in a competitive free market. This is a challenge for the private veterinarians because of the high subsidy for the public services.Finding 3.2.2.3: High inflation rate, resulting in escalating drug costs and hence higher service cost, could result in farmers affording to get all sick animals treated and less income/business, especially for (mobile) clinical service.Finding 3.2.3.1: The public offices at different administration level expressed moderate to high satisfaction with the PPP.• The offices are satisfied with the private service providers in effectively executing the services they have delegated.• They admit the private sector provides a timely, better quality, service and contribute to improving services to the livestock keeper.• The PPP also introduced community ownership and cost sharing services, paving the way for a full cost recovery of public services.Finding 3.2.3.2: The success of PPP and the trust for the private sector depends largely on the quality of the services they provide. Some of the public offices expressed dissatisfaction with the performance of the private service providers with low or less relevant qualification-e.g. community based animal health workers (CAHWs), non veterinarians and skills.Finding 3.2.3.3: The public AHP's free/highly subsidized services may trigger the concern of some public servants regarding the higher service charges by the private vaccinators (a case in point could be rabies vaccination service charge of ETB 50/dog, compared to public rate of ETB 15-20). Yet, the service charge of ETB 50/dog was negotiated by the PPP taskforce as fairer than ETB 120 charged by private clinics previously.The objective of the alternative PPP model testing is to identify models feasible under different livestock production systems and geographic regions. And the goal is adopting the selected models by the public sector for a wider implantation. Thus, ensuring the sustainability of the PPP arrangements after the testing phase is the core aim of the HEARD project. From the discussions with the different partners participating in the testing of the PPP models, the following reassuring/positive indicators and weak links in the PPP arrangements were identified.3.1.1.1 Effective performance of PPP models• The partnership modalities designed for private vaccination service (Model I), community based deworming services (Model IV) and mobile clinic service (Model III) are operating effectively in all locations surveyed.• Among the models tested, the ones rated as the most satisfactory by both the livestock keepers and public officesmobile clinical service (Model IV) and rabies vaccination (Model I)-have a greater chance of being sustainable.• High satisfaction with the private veterinarians service-Rabies vaccination (Model I), mobile clinic (Model IV), community based deworming (Model VII) and vaccination service (Model II) in pastoral area. Livestock keepers in all surveyed kebeles are highly satisfied with the new service delivery approach, which helped introduce new services (rabies dog vaccination in rural areas, community based deworming, mobile clinical services) that were not available in most rural kebeles. The public offices are also convinced that most of the services of the PPP models are much better than the previous services.• The livestock keepers expressed strong willingness to pay for full cost of service after the project subsidy is lifted.• Recognizing the private sector as trustworthy partner and its contribution to improving the service delivery is a strong indicator for sustainability of the PPP arrangements being tested. The highly positive attitude of the public sector offices towards the private sector is beyond expectation.• Enabling environment created at all levels for the private service providers. The offices created very favourable enabling environment for a meaningful participation of the private sector in service delivery, including services exclusively reserved for the public sector (e.g. vaccination).• Satisfactory performance in executing the services delegated by the public sector. Almost all the private service providers have effectively executed their roles and responsibilities stated in the PPP arrangements and earned the trust of the offices and livestock keepers. Satisfied with trust earned from both the public sector and the livestock keepers.• High to medium level of satisfaction by most with the new PPP business model. Most of the private clinics are happy with operating the partnership and the growth of their businesses.According to the PPP arrangement and the MoU, procuring vaccines from the National Veterinary Institute and supplying to the private clinics is the responsibility of the public sector. This arrangement is working well in most cases. Yet, there are some concerns (listed below) that may threaten the sustainability of the PPP:• First, unclear chain, especially for supplying rabies vaccines caused partly by the initial free supply of rabies vaccines by the project to the private vaccinators, has caused some misunderstanding among partners and resulted in discontinuation of the service, which is highly demanded by livestock keepers.• Secondly, some of the public offices expressed their concerns regarding the continued supply of vaccines by their offices, their stand being that the private sector should procure their vaccines, especially rabies and NCD vaccines.• The private service providers lack experience and capacity to procure their vaccines.• Service charges for vaccination were determined by the PPP taskforce without consideration to the costs of vaccine procurement by the service providers and other costs like syringes (according to the service provider). This may significantly affect the private businesses' viability and continuation of the PPP.• The sustainability of continued supply of vaccines by the public offices who currently promised to continue supplying vaccines at subsidized rates and in some cases for free (Model VII, women NCD vaccinators) remains to be seen.The vaccination policy of the GoE reserves delivery of vaccination services, particularly against so called List A diseases or Tick-borne Diseases (TBD) to the public sector. Through a waiver arrangement with the HEARD project, the regional governments allowed the private sector to participate in vaccination services. Yet, the evaluation findings of the PPP indicate that there are some reservations or backtracking by some offices:• Some offices expressed their concerns regarding provision of List A vaccination by the private vaccinators. They would like to limit the private sector to rabies and NCD vaccination, mobile clinical and deworming services.• The public offices delineated 'private kebeles' where the public sector defer its services, so the private vaccinators deliver the services at cost. The question remains if the public sector continues to defer its service in more kebeles, so the private businesses expand.• Another concern-what would be the reaction to paid services of villagers in new kebeles where the public services, used to be provided for free (e.g. NCD vaccination) or at lower rates (e.g. rabies vaccination).• The policy of the GoE on free/highly subsidized vaccination for List A (transboundary diseases), opinion still held by some public offices is a challenge for the private sector. Perceived concerns were expressed by some woreda public offices that the kebele public AHP may be concerned by the higher private service charge of ETB 50 for rabies vaccination compared to AHP charges of ETB 15/dog. However, the woreda is not sure of the readiness and motivation of the AHP staff to provide good service as the private veterinarians given the difficulty of handling and vaccinating dogs as well as door-to-door service. The region office is also convinced that rabies vaccination be left to the private sector.• Model VI: Low income/business scale for women NCD vaccinators could affect their business viability.• Model VII, IV: Farmers' and experts' concern regarding the service charge deemed too high for private clinics' treatment and deworming (high inflation rate is to blame or exacerbate the situation, may not be the service providers' inflated charges). These concerns of farmers and some kebele experts is a major challenge for the private veterinarians to compete with the highly subsidized services by the public AHPs.• Model I: Low service charge: Blackleg and anthrax vaccination service charge is provided at the subsidized rate of the public service (ETB 1.00), which may not be profitable for the private businesses.• The private partners are criticized for not being proactive in planning/organizing/mobilizing communities for community level services (vaccination, community based deworming services). Claims by some public offices that they bear much of the burden of the service is understandable and is a concern for effective and sustainable partnership.• Dependency syndrome-the private partners are also evaluated as highly dependent on the public offices and the project support. This is a challenge in achieving self-reliance by the private service providers.Based on the opinions/assessment of the operation of partnership and performance the PPP models expressed by most of the FGD and KII participants, field observations and records kept by the service providers, the following conclusions can be drawn. The key findings could be used to identify key strengths and weaknesses and define action points for improving performance of the PPP models.• All the PPP models under testing are performing very well. Mobile clinic service (Model IV) and rabies vaccination (Model I) are evaluated as the most satisfactory arrangements.• Sustainability of Model IV, Model I (rabies vaccination) and Model VI seems assured, especially from livestock keepers' end, considering their highly expressed satisfaction.• New services that have not been provided by the public sector or the private sector alone were introduced because of the partnership between by the two sectors.°Rabies dog vaccination by both sectors was limited to urban areas. It has now been introduced to rural kebeles and highly received by farmers. AHPs used to provide services at fixed locations.°Following the waiver given by the public offices for the private veterinarians to practice mobile clinical services, more accessible and timely services were availed.°Similarly, farmers who used to get only fattening and sick animals dewormed, are now introduced to community based deworming services, which is more convenient and has implications in controlling worm loads.• Some weak links were observed:°Model I (rabies vaccination)-There is vaccine supply chain failure and differing public vs. private service charge in rural kebeles for rabies vaccination.°Model VII (NCD vaccination)-Viability of some of the private veterinarian businesses is not ensured.°In general, the vaccine supply chain currently in place does not seem sustainable.°High inflation rate in the country and globally has resulted in higher cost of providing services, which in turn in higher service charge by the private veterinarians. This could lead to less trust in private sector and less effective PPP.• Important lessons have been learned from the evaluation process:°Community mobilization by the public offices is a crucial element in a PPP arrangement without which private service providers cannot perform mass deworming and vaccination.°Effective participation of the private sector depends largely on the public sector's determination to create enabling environment. Example, 'private domain' kebele, free of free/highly subsidized public services. In this regard, the highly positive attitude of the public sector offices towards the private sector is beyond expectation. It is also important to explore options for alternative models for effective participation of the private alongside the public sector under a competitive free market but fair playground.°Personality (mindset, business orientation, social capital) of the private sector actors and public support (awareness creation, enabling environment, technical support/mentoring, monitoring/supervision, logistical support for the shorter term) were critical factors for the success of the PPP models in the pilot woredas/regions. Selection of private service providers for PPP should consider ethical service and commitment, besides other criteria, as learned from the success of the test period.Recommendations are suggested to correct inappropriate or unsustainable practices and ensure successful completion of the model testing phase and deliver sustainable PPP arrangements by the end of the HEARD project.• PPP taskforces need to be strengthened and take their leadership role:°Take the lead in guiding implementation of the activities.°They should remain as a platform for the public-private dialogue after the project phases out.°They should introduce improvements suggested/recommended by the partners' evaluation of the PPP activities.• Mitigation measures (or revision of models if need be) to improve upon the weak links identified by the evaluation process and action plan for identified weak links are required. The mitigation measure may include:°Designing sustainable vaccine supply system (procuring, transporting, storing) involving the private and public partners.°Revisiting vaccination mandates for public and private sector for sustainable adoption of the PPP models (e.g. TBD vaccination for free by Negelle veterinary, not sustainable).°Revising service charges in view of escalating input costs due to high inflation rates.°Should the private service charges be negotiated (as in PPP test phase) or left to the invisible hand of the market to decide? Should the best option be adopted now during the test phase?°Speed up testing of PPP models not yet started (Model V and VII in Somali region).• Strengthening the private service providers to be proactive in the PPP, developing skills to manage larger scale business (mass vaccination, community based deworming), logistics (e.g. procuring vaccines).• The public sector to extend 'Private domain' kebeles beyond the current PPP kebeles for the effective and profitable participation of the private sector.• Studies on 'livestock keepers' willingness to pay for service' in non-PPP kebeles to expand and sustain private businesses (e.g. community based women vaccinators).• Government to lift free/highly subsidized services, except for vaccination considered of public good (public health).• Piloting PPP in kebele AHPs (PPP model VIII). Feasibility and baseline are completed and validated by stakeholders. Piloting the PPP in three kebeles has been recommended.• More data on services provided, costs and benefits of private service providers etc. need to be collected and analysed to better evaluate and recommend PPP models that are suitable for the different geographic regions and livestock systems and profitable for the private businesses.• Experience sharing, linkages and capacity building/support system:°Organizing experience sharing and learning events among the PPP actors to share good practices and innovative arrangements for adapting and improving.°Facilitating public-non-governmental organization (NGO)-private sector linkages.°Strengthening capacity for public regulatory services.°Legal framework for the private sector participation (including endorsing the veterinary rationalization road map).°Linking facilitation for sustainable supply of drugs and vaccines (strengthening the supply chain). Designing linkage mechanisms for private clinics with drug wholesalers for affordable quality services.6 Annexes Annex I. Describing the PPP modelsThis PPP model is a collaborative partnership between the public and the private sector. The planned and implemented procedure for operating partnership included authorization of vaccination service and roles of the different partners and stakeholder.• The public sector (Regional livestock bureaus) would set enabling environment for the private sector including authorizing/certifying the service. Authorizing the service was required since vaccination has been exclusively the public domain.• The public sector (woreda and kebele livestock offices) designated the private service providers to provide vaccination service for specific diseases and in specific geographic locations (kebeles).• The public sector (woreda livestock offices) delivers vaccines to the private service providers and facilitate access to cold chain facilities by the private veterinarians.• The public sector (kebele livestock offices) mobilizes communities for vaccination campaigns.• The private sector provides the service to livestock producers at cost. Farmers/pastoralists share 30-50% of the cost of the service and the rest by the project (since full cost recovery is not feasible as some of the vaccines were provided for free by the public sector).• The public sector monitors the operation and quality of the services.Model II: Sanitary mandate with district private sector partners for vaccination service Operating this model assumes transactional modality. Sanitary mandate model has been tested in a previous similar project.• The public sector (regional livestock office) contracts the private sector at woreda level to provide vaccination service for specific diseases and in specific geographic locations (kebeles).• The public sector pays for the services provided by the private sector. This is the arrangement in principle (as practiced in previous projects). However, in the current model the service cost is covered by HEARD project.• Vaccines will be provided by the public sector (procured by the regional livestock office) delivered to woreda livestock office.• The woreda office delivers vaccines to private clinics at the woreda, cold chain services provided to private clinics at both woreda and kebele levels.• The woreda private clinic contracts/links with CAHWs at kebele level to provide the vaccination services.• The pastoralists obtain the service at 30% of the cost, the rest being covered by the project. In previous projects, the services are provided free of charge.• The public sector creates enabling environment for the private sector including authorizing/certifying the private partners vaccination service, facilitating access to facilities and input delivery as appropriate and monitoring and evaluating the services.Model III: Sanitary mandate with linked regional-woreda-kebele private sector partners for vaccination service Operating this model assumes transactional modality. Sanitary mandate model has been tested in a previous similar project:• The public sector (regional livestock office) contracts a veterinary service and drug firm at regional level to coordinate vaccination service for specific diseases and in specific geographic locations (kebeles).• Vaccines will be provided by the public sector (procured by the regional livestock office) to the regional private company.• The regional veterinary service provider firm delivers vaccines to private clinics at the woreda level, cold chain services provided to private clinics at both woreda and kebele levels.• The woreda private clinic contracts/links with CAHWs at kebele level to provide the vaccination services.• The public sector pays for the services provided by the private sector. This is the arrangement in principle (as practiced in previous projects). However, in the current model the service cost is covered by HEARD project.• The pastoralists obtain the service at 30% of the cost, the rest being covered by the project. In previous projects, the services are provided free of charge.• The public sector creates enabling environment for the private sector including authorizing/certifying the private partners vaccination service, facilitating access to facilities and input delivery as appropriate and monitoring and evaluating the services.The proposed mobile clinic service PPP model can be categorized as a transformative modality following World Organisation for Animal Health (OIE) PPP classification. This involves partnership between the public sector providing enabling environment and regulatory service, the private sector providing mobile clinical service to villages on request and the livestock producers paying for the full cost of the service. The model is planned to be piloted in Oromia region, Dire Inchini woreda.• The public livestock office defers clinical service in the kebele designated for the private service provider.• The regional and woreda livestock offices will set an enabling environment. Facilitating and supporting the private service provider to obtain license for mobile clinical service (and drug sales) since the service providers in the pilot woredas are all licensed as drug shops. The other option would be to get a waiver from the woreda office for the drug shop to practice mobile clinical services.• The woreda animal health unit will enforce implementation of regulation and quality control of services.Model V: Clinical service by linked regional-woreda-kebele private clinics• The operational arrangement for this model is purely a business partnership between regional veterinary service provider firm, private clinics at woreda level, CAHWs at kebele level and the public sector.• The public sector facilitates operation of private service providers in designated kebeles, including recognition of their services in the kebeles designated to be covered by the private sector, deferring operation of public health service in designated kebeles.","tokenCount":"5682"} \ No newline at end of file diff --git a/data/part_3/3787516366.json b/data/part_3/3787516366.json new file mode 100644 index 0000000000000000000000000000000000000000..5ff855240a156b31f57d4365e950fb3dc6db8392 --- /dev/null +++ b/data/part_3/3787516366.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c3e074c009055570c7825366231b020a","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/4f562bba-ccb8-44eb-bdf6-8f7f8c5d1476/retrieve","id":"-932154033"},"keywords":["Morgan","M & Zaremba","H. (2023). The Contribution of Voluntary Sustainability Systems to Women's Participation and Leadership in Decision-Making: A Strategic Evidence Review. Working Paper. Bioversity International: Rome","Italy"],"sieverID":"125a2c04-5542-4b83-8bf1-cfcc9b3255e6","pagecount":"50","content":"Thank you to Marlène Elias for her substantive inputs in shaping the ideas and content of this paper and to our ISEAL colleagues Vidya Rangan and Eleanor Radford for their comments on the first draft. Thanks also to Leisa Perch for her wonderful graphic.The evidence shows that VSS can play a role in changing some of the attitudes, behaviours, skills and practices that undermine women's effective participation and opportunities for leadership in decision-making -but their impact ultimately depends on several factors, including the bundle of strategies used to achieve those changes and the context. The documented increases in women's leadership are small and women almost always remain in the minority. Even the best cases do not come close to achieving the lofty goal of SDG5.5 to ensure equal opportunities for leadership at all levels of decision-making. This seems to be a particularly challenging and difficult aspect of women's empowerment to achieve, as compared to other aspects of women's empowerment that VSS tend to support (such as economic inclusion and higher incomes).Based on the evidence, the review identified several suggestions for VSS and related stakeholders seeking to contribute to SDG5.5 and gender equality in general. This includes:There is a need to acknowledge heterogeneity among women which results in certain groups of women being over-or under-represented in VSS-related interventions. It is critical that VSS develop strategies that recognize differences among women, identify the needs and realities of different groups of women and tailor interventions that support the participation and leadership of a diversity of women. Women-targeted interventions like trainings or women-only spaces are recommended to encourage women's participation, but also risk elite capture.VSS interventions targeting one aspect of women's empowerment (especially economic empowerment) should not be assumed to automatically 'spill over' to other dimensions of empowerment or to different levels of decision-making. Complementary approaches are required that encompass different and reinforcing aspects of women's empowerment in a holistic way. If the goal is to increase women's effective participation in decision-making then discriminatory perceptions and dominant gender relations have to be targeted directly.If VSS want to extend their reach beyond more than a few exceptional individual women and support changes that go wider, deeper and are sustained, they will need to work more on addressing the structural barriers limiting women's participation in decision-making at different levels through the use of 'Gender Transformative Approaches'. This means interventions that look beyond individual-level change to target the discriminatory informal and formal institutions, systems and structures that limit all women. This could involve advocating for formal laws that secure women's land rights or for policies that support the redistribution of unpaid care responsibilities; it could also involve working with partners to facilitate group reflections on the impact of discriminatory sociocultural norms for both men and women and engaging male allies to advocate against gender-based violence in their communities.A holistic approach is essential to achieving gender equality but no one VSS can directly implement interventions at all levels and regarding all aspects of gender equality. Instead, VSS will need to reflect on their unique strengths and potential contributions to gender equality visà-vis potential partners and the larger system that they are embedded in. VSS can not expect to address all the structural causes of gender inequality but are well-placed to influence the debate and draw public attention to social injustices along agrifood supply chains.The assumption that women want to be leaders needs to be challenged and examined. Women leaders may have to (or perceive they will have to) make significant sacrifices to take on such roles, including increased tension in their households or communities, less time on food crops, fear of harassment, increased labour burdens and associated time poverty. Any women's leadership initiative needs to understand and strive to reduce the costs and trade-offs of leadership and an enabling environment created that allows leadership to be perceived as a safe, beneficial and empowering option. It is critical to speak to women being targeted by leadership initiatives to understand whether -and more importantly, under what conditionsthey want to assume leadership roles. Centring local women's voices (individual and collective) and responding to their needs, wishes and priorities is not just important for shaping VSS strategies related to women's leadership, but for the design of VSS in general. Rural women's representation and leadership in decision-making should be embodied in VSS themselves.Existing evidence on VSS contributions to women's decision-making is sparse, lacking depth and makes it difficult to generalize across value chains and contexts. There are multiple suggestions for how to improve the evidence base. First, more evidence is needed, especially dedicated studies that explore the impact of VSS on women's full and effective participation and leadership and how change occurs. Secondly, different types of measurement approaches will be required to adequately capture women's full, equal and effective participation and leadership in decisionmaking in different spheres, as well as aspects of individual and collective women's leadership. Whatever the chosen approach, research methods and monitoring tools will need to detect small, slow and potentially negative changes, changes at different levels and for different groups of women. They should also centre women's voices and perspectives so that VSS strategies are led by targeted women's needs and priorities. Responding to the research gaps will be critical to supporting VSS to develop and refine evidence-based strategies in future.An array of global environmental and social issues including the climate crisis, conflicts, poverty and inequality present key challenges to global food security and call for concerted effort to support more sustainable and resilient agri-food systems (CGIAR System Organization 2021). Resilience is not achieved, however, unless it is resilience for all; development pathways towards resilient agri-food systems must therefore be inclusive, equitable and just (Schipper et al. 2022, Allan 2022, Karlsson 2018). When climate adaptation projects are not explicitly linked to gender equality goals, for example, this oversight has been shown to exacerbate inequalities and vulnerability, leading to maladaptive practices. Resilient agri-food system initiatives, then, must strive to address multidimensional distributional issues and to do so in ways that challenge broader structural inequalities and uneven power dynamics. This requires targeting socially unjust systems that result in unequal distribution of impacts and opportunities for resilience rather than merely targeting marginalized groups or individuals for inclusion in unjust systems (Schipper et al. 2022).Gender equality, in particular, has been identified as a key lever for achieving greater food security and more just, resilient and sustainable agri-food systems for all (Njuki et al. 2021, Bryan et al. 2022). Toward this end, gender-transformative and nutrition-sensitive agroecological approaches have been found to enable more resilient food systems by increasing women's leadership and participation in decision-making (Schipper et al. 2022). Overall, however, Njuki et al. (2021) find that women's leadership and decision-making at all levels constitute a particularly under-researched pathway to gender equality and justice in agri-food systems, as well as to other desired outcomes of food systems (including resilience). Their review highlights evidence that women's higher participation and bargaining power in household and community decision-making can lead to more resilient agricultural livelihoods. The authors call for more targeted research on, and investment in, interventions that facilitate improvements in women's participation in decision-making and leadership at all levels.To respond to this knowledge gap, this paper investigates how one mode of agri-food system development (and its associated assemblage of actors) can support 'women's full and effective participation and equal opportunities for leadership at all levels of decision-making', to achieve more just and resilient agri-food systems. Specifically, the paper draws on secondary sources to consider if and how voluntary sustainability systems (VSS) contribute to women's meaningful participation, representation and leadership in decision-making in agri-food systems.Given the various interpretations and indicators of 'women's participation', this paper starts from the definition provided in the Sustainable Development Goals (SDGs). In particular, the wording of SDG5.5 is to: \"Ensure women's full and effective participation and equal opportunities for leadership at all levels of decision-making in political, economic and public life\".Voluntary Sustainability Standards/Systems (VSS) 1 are market-based mechanisms developed by private parties (such as NGOs) designed to address social and environmental challenges by defining responsible practices and measuring performance of actors in value chains. They often incorporate internationally agreed rights and principles and require compliance with national laws and regulations, but often go beyond these to raise the bar on sustainable practices in many fields. Labels and certifications, monitored and endowed by a third-party organization, often signal adherence to a voluntary standard. The requirements of a VSS can refer to product quality or attributes, as well as production and processing methods and transportation. In the agricultural sector, most VSS focus at the producer level; as such, most literature on VSS impacts focus on this level as well (Rubio-Jovel 2022).VSS have proliferated since the 1990s, with more than 400 certification schemes now in place (ibid). Over 300 of these are included in a Standards Map hosted by International Trade Centre, which shows that VSS cover a number of sectors, including agriculture, textile and garments, consumer products, forestry, mining and services. The Standards Map includes VSS developed by business groups (e.g., the Responsible Business Alliance), civil society organizations, multi-stakeholder bodies, government entities or international organizations (e.g., US Organic, FAO Codex Alimentarius) and some firm-level standards (e.g., Unilever Sustainable Agriculture Code) (Schleifer et al. 2022).In global agri-food supply chains, sustainability standards have gained importance over time and have been particularly influential for certain commodities -especially coffee and cocoa (Meemken et al. 2021). For most other agri-food sectors, they are of marginal importance, currently affecting a small number of farmers and relatively little agricultural land globally. In certain contexts, however, they provide a stable presence and have a unique standing among farmers, private actors, government agencies and other stakeholders along high-value supply chains (Foundjem-Tita et al. 2016). Across the board, the effects of sustainability standards still have high policy relevance given their prevalence and spread which affects increasing numbers of farmers and other supply chain actors. Moreover, according to Meemken et al. (2021) the most important contribution of sustainability standards is their \"potential to influence the debate and draw public attention to social and environmental injustices along global agri-food supply chains\" (7).Voluntary Sustainability Standards have been gaining attention from governments, which are increasingly recognizing them as tools to achieve economic objectives, such as increasing farmers' revenues, and to advance more sustainable production and consumption practices in line with the SDGs (Bermúdez 2021). Indeed, Schleifer et al. (2022) argue that where the policy priorities of VSS align with the SDGs there may be \"windows of opportunity to generate productive private-public interactions for sustainable development\" (8). The SDGs most widely covered by VSS activities are SDG 2 (Zero Hunger), SDG 8 (Economic Growth) and SDG 12 (Responsible Consumption and Production) (Bissinger et al. 2020). An overrepresentation of outcome or intermediate impact variables related to SDG2 (relative to the other SDGs) was also found in a recent systematic review of VSS impacts on SDGs in the coffee sector, especially related to income, productivity and sustainable agricultural practices (Rubio-Jovel 2022).But there are also growing linkages between VSS requirements and SDG5 (Gender Equality), as VSS are now making an effort to address gender inequalities -though this has not always been the case (Smith et al. 2019, ISEAL-BSR 2020, UNCTAD 2022). Schleifer et al. (2022) find that of the peoplecentred SDGs, both SDG1 and SDG5 are very well-covered. The ITC Standards Map includes 1650 criteria, of which at least 20 criteria are mapped to the 'Gender' theme (see theme criteria in Annex 2). Bissinger et al.'s (2020) analysis of the ITC Standards Map showed that 136 of the 270 standards included in their review linked to at least one target of SDG5. The most popular target within SDG5 was SDG5.2 (eliminating violence against women and girls), with 122 VSS aiming to address this. The second most popular was SDG5.5, the subject of this paper, with 105 VSS including some facet in their standard criteria. Not all SDG5 targets are covered, however, as they are seen to be largely beyond the scope of VSS 2 .Drilling down further into the ITC Standards Map 3 , there are at least 58 private verification / certification standards related to agricultural production that map to SDG5 (Gender Equality). Of these, 51 report having criteria related to the gender themes of 'Violence and Harassment' (which includes criteria on non-discrimination based on gender) and 47 have gender-related 'policies' (defined as a general principle respecting equal rights for men and women and/or policies and initiatives that respect equal opportunities on the basis of gender in the workplace and in interacting with local communities). Related to SDG5.5 specifically, just over one-half (32) report under the theme \"Gender -Leadership\" which means reporting criteria related to any or all of the following:• Female workers' access to training programs,• Incentives for women to develop their careers (e.g., specific training),• Ensuring participation of women/minorities in management,• Increased access to finance and support services for women entrepreneurs, and • Development assistance policies which promote the economic role of women.In summary, VSS provide a mode of agri-food supply chain development with global coverage and increasing spread, as well as public policy relevance. Most VSS in the agri-food sector aim to support the achievement of several SDGs though not equally, with a historically greater focus on economic growth or environmental sustainability, for example, than gender equality. However, that seems to be changing with more VSS developing criteria and strategies to address gender inequality generally and women's participation and opportunities for leadership in decision-making more specifically. This means the timing is ripe to inform those strategies by reflecting on what VSS have or can contribute to achieving gender equality in agri-food systems, and specifically, on what we know about how VSS support women's meaningful participation and leadership in all levels of decision-making in agri-food value chains and rural communities. 4Assessing the impact of VSS on gender equalityOver the last few decades, researchers have investigated the contributions of VSS to gender equality, women's empowerment and/or women's rights and there have been several efforts to comprehensively review, assess and summarize the existing research evidence on VSS and gender equality as well (including Darko et al. 2017, Gallagher et al. 2020, Günther et al 2022, Jodrell and Kaoukii 2020, Oya et al. 2017, Rubio-Jovel 2022, Sexsmith 2017, Sexsmith 2019, Smith et al 2019, Smith 2013, Smith 2020, Terstappen et al. 2013, UNCTAD 2022). There have also been related research contributions on the gender equality aspects of agricultural cooperatives and producer organizations more broadly (such as Kaaria et al. 2016, Lecoutere 2017, Gerli 2015) that are relevant to the review given the role that VSS have in shaping the policies of cooperatives and producer organizations.There seems to be a consensus that in general VSS have had a minimal impact on gender inequality (Smith 2020). This is largely because most standards do not specifically mention gender equality (apart from a general clause on non-discrimination) or make efforts to address gender inequality through their standards or programmes. As such, they end up replicating existing gender inequalities in the value chains and communities that they reach and sometimes even exacerbate inequalities (Smith 2013, Smith et al. 2019). For those few VSS that have taken a more strategic and proactive approach to addressing gender and other social inequalities in value chains, progress has been slow or non-existent given the structural and deeply entrenched root causes of gender inequalities. Perch (2019) provides a good visual synthesis of the root causes underlying gender inequality in agriculture (Figure 1).However, a scan of the empirical evidence identifies a more mixed and nuanced picture. First, VSS are varied in their commitment, actions and performance on gender equality (Smith et al. 2019, ISEAL-BSR 2020, UNCTAD 2022). Despite the general conclusions concerning gender equality across all VSS, there are a small number of VSS that have taken more strategic approaches to gender equality, including specifically targeting gender equality, piloting ways to address key gender issues in value chains and adapting their approaches. Fairtrade -one of the best known VSS -has been studied far more than any other VSS related to gender equality, in part because the network itself has committed to assessing its progress towards gender equality outcomes (e.g., Gallagher et al. 2020). There is important learning for other VSS on what works or not from the more targeted and intentional approaches deployed by specific VSS in addressing gender equality, even if the scale is small or progress has been minimal.Second, it is well-documented that VSS lead to differential impacts on women (and therefore on gender relations) because women themselves are diverse (Smith et al. 2019). Women are not a homogenous group and may be more or less interested or capable of participating in or benefitting from VSS, depending on their social locations or positionalities in their households, communities and societies. These differences, for example, may be linked to age, marital status, education, class, ethnicity, and so on (Smith 2013). Assessing the impact of VSS on gender equality, then, requires a textured understanding of the 'who', or rather which individuals or groups are positioned to benefit from VSS initiatives, how exclusionary practices are addressed and how this affects the prospect of achieving gender equality outcomes.Figure 1 Problem Tree on gender and agriculture based on select literature (Perch 2019, p.4) Third, VSS can lead to differentiated impacts on different constitutive elements of gender equality, leading to seemingly positive increases in gender equality alongside negative changes to existing rights for women (Lyon et al. 2010). It is critical, then, to better understand how different elements of gender equality interrelate. The question then may be less of a dichotomous 'Do VSS lead to increases in gender equality? (yes/no)', and more of 'What areas of gender equality have VSS contributed to or not?', 'How and in what order did changes towards gender equality occur?', 'Does one indicator of gender equality reinforce or conflict with another, and how?', etc. Approaching the evidence with these more nuanced questions in mind can support the elaboration of more sophisticated impact pathways for VSS interested in adopting a gender strategy.The goal of this paper is to revisit the body of evidence on VSS and gender equality through the lens of SDG5.5, to identify if and especially how VSS may support women's full and effective participation and equal opportunities for leadership in decision-making in rural communities.Cognizant of the nuances highlighted above, it will not be striving to make simple generalizations about the impact of VSS on women's participation and leadership but rather to understand the breadth of the evidence available and to identify knowledge gaps that could inform future primary research. This will necessarily include understanding: the variety of approaches that have been studied; how these may be more or less effective for different groups of women; and in what ways these approaches have influenced different constitutive elements of gender equality, as well as the interrelationships between these (e.g., the role of VSS in women's participation and leadership in decision-making vis-à-vis other indicators of gender equality), and gender equality outcomes as a whole.A 'rapid realist review' (Sutton et al. 2019) of literature was chosen to deliver a useful and actionable analysis in the time available. A purposive and iterative search method was employed to identify relevant studies, first using key search terms in Google Scholar then snowballing by checking reference lists to identify commonly cited and relevant articles. The search prioritized:• Peer-reviewed journal articles as well as robust grey literature (in particular, reports and evaluations with transparent and appropriate research designs); • Relatively recent articles (limited to the last 15 years: 2007-2022);• Distinct empirical studies focused on VSS in agri-food systems (thus eliminating articles on VSS impacts on gender in crafts, for example), and specifically on smallholder production systems (as opposed to hired labour or large plantation settings).As several comprehensive reviews have already been completed on the wider topic of VSS and gender equality, it was possible to corroborate the final list of included studies with several key review papers (especially Jodrell and Kaoukii 2020, Oya et al. 2017, Sexsmith 2019, Smith et al. 2019, UNCTAD 2022). The final 25 empirical studies selected (with summaries) can be found in Annex 1. It is important to note that this compiled list of empirical studies does not include the several overarching reviews and syntheses of the larger body of evidence on VSS and gender (cited above). Regardless, the analytical contributions of the reviews also inform this paper and are highlighted throughout.In addition to the above criteria, the 25 empirical studies were selected due to having findings (however minor) relevant to the research question on VSS impact on women's full and effective participation and equal opportunities for leadership. They were not selected to include or be representative of all Voluntary Sustainability Standards in the agri-food sector or the value chains that VSS shape. Nearly all the studies feature findings related to one specific VSS (Fairtrade), including several where other VSS were overlapping or contrasted (Organic, UTZ 5 and Rainforest Alliance). Only 2 of the 25 case studies did not involve Fairtrade and looked at Organic and UTZ, respectively. In terms of commodity focus, the vast majority study the coffee value chain and specifically smallholder coffee production and coffee cooperatives, though a handful of studies focus on smallholder cocoa, tea and, to a lesser extent, banana production. 6 The overrepresentation of studies related to Fairtrade and coffee production is commonly found in reviews of VSS impact. Traldi (2021) similarly found a mismatch between what is certified and what is studied, with some standards and crops overrepresented (also Fairtrade and coffee) in the literature and others underrepresented or not studied at all.Overall, the body of evidence shows that women producers are rarely able to achieve full and effective participation in decision-making or have equal opportunities for leadership, either within producer organizations and cooperatives or in the rural communities where VSS operate. Though VSS have led to some measurable benefits on certain aspects of women's empowerment (especially on economic inclusion and higher incomes) for some women, it has rarely translated to meaningful participation, representation or leadership for women in rural organizations engaged with VSS.Case studies of certified small-scale producer organizations across different countries and value chains show that women are less likely than men to be registered members and, if they are members, less likely to participate actively (Blowfield and Dolan 2010, Bullock et al. 2018, Meemken and Qaim 2018, Stathers and Gathuthi 2013, Sutton 2019). This means that women members are less likely to attend meetings, participate in activities, participate in decision-making in the organization (e.g., around the spending of the Fairtrade Premium) or take up leadership roles such as committee or board positions (Bacon 2010, Fairtrade Foundation 2015, Gallagher et al. 2020, Lyon et al. 2010, Mauthofer and Santos 2022, Sen 2014). Male dominance in the governance of Fairtrade cooperatives and the larger value chain can even unintentionally strengthen existing patriarchal relations (Sen 2014). Foundjem-Tita et al. ( 2016) provide a few insights into women's participation and leadership as part of a larger baseline study. They find that though women represented a decent proportion of the members (37%, on average) of the 4 certified cooperatives sampled, this did not translate into proportional participation in general assemblies (women comprised 17% of the assemblies on average) or representation on boards (20% of board positions).The women that did hold positions were mostly activity organizers for women or ordinary committee members, not in meaningful leadership positions like chairpersons.This is not a surprising finding. Achieving women's full and effective participation and equal opportunities for leadership at all levels of decision-making in rural communities requires transforming deeply rooted, reinforcing and enduring causes of gender inequality -a tall order for VSS seeking to make an impact in this area.The breadth and depth of barriers to achieving changes in women's participation and leadership in decision-making, let alone meaningful changes that pave the way for and reflect true equality, are thoroughly covered in the VSS literature. These barriers are the result of gender inequalities that manifest in numerous, overlapping ways at individual, relational and structural levels and are endemic in rural communities around the world. 7 They present challenges to women's economic and political participation in general and specifically to women (in all their diversity) joining, actively participating in and benefitting from agricultural producer groups and cooperatives, engaged with VSS or otherwise (Kaaria et al. 2016, Dohmwirth and Liu 2020, Smith et al. 2019). They include:• Discriminatory sociocultural norms and practices that limit women's roles, responsibilities, skills, mobility, and more. As a result, women are less educated or skilled, more often illiterate, less mobile, less confident in their skills, less trusted for their technical or leadership skills and have less experience. Men are more often seen as responsible for generating income, selling crops and taking on leadership and decision-making positions.Women have greater or sole responsibility for unpaid care and domestic work, resulting in less or no time to take up paid economic opportunities or participate actively in meetings or in leadership or decision-making positions (Blowfield and Dolan 2010, Bullock et al. 2018, Fairtrade Foundation 2015, Gallagher et al. 2020, Hanson et al. 2012, Lyon 2010, Nelson et al. 2013, Smith et al. 2019, Sutton 2019, and others). • Unequal access to productive assets and resources, which excludes many women from the services and organizations through which VSS are implemented and/or make it more difficult to invest in certain commodities (Blowfield and Dolan 2010, Bullock et al 2018, Gallagher et al. 2020, Hanson et al. 2012, Sexsmith 2017, 2019, Terstappen et al. 2013). • Fear of harassment and violence, which limits women -particularly when lacking the endorsement of their spouses, families or other community members and prevents them from attending meetings away from home or at night (Lyon et al. 2010). • Personal or relational constraints, such as women's individual circumstances and choices (shaped by their positionality relative to the barriers above), lack of interest or awareness in potential benefits, increased tension in households and direct opposition from husbands or cooperative leaders in their participation (Fairtrade Foundation 2015, Hanson et al. 2012, Sen 2014).These barriers are clearly not unique to achieving the desired outcomes of VSS, but to all initiatives that target gender equality. Certain facets of VSS engagement have been shown to present particular obstacles given existing inequalities. For example, gender-blind rules or practices of producer organizations associated with VSS, such as narrow membership criteria, high registration fees, inconvenient meeting times or lack of quotas or women-only spaces, can make it more difficult for women to join or benefit from VSS efforts and support a 'vicious circle' of male dominance in VSS that reproduces or exacerbates inequalities, despite striving for the opposite (Smith 2013, Sen 2014).VSS can and have taken more proactive approaches to addressing some of these barriers, with some successes reported. Smith (2013) found that when producer organizations introduce genderaffirmative policies they have been effective at increasing women's membership. Similarly, Sexsmith (2017) believes that certifiers as well as other external actors can have a 'significant positive influence' on encouraging women and men to promote women's membership and decision-making roles. Several studies highlighted in this paper show a variety of approaches supported by VSS that have been found to contribute to women's active participation, representation and leadership (see Table 1). These are meant to be illustrative of the different types of approaches that have been used, rather than an exhaustive list. Women members have an avenue to express opinions (including to the executive board) and organize/contest outside of maledominated spaces; can build women's confidence and lead to more women on the board and/or more women into management; can help channel women's voices to higher-level decision-making when incorporated into larger governance structure. However, evidence shows there can be a risk of elite capture. Higher representation of women's issues and priorities; motivates the participation of other women; more positive attitudes about women in leadership. However, evidence shows that when female leaders make unpopular decisions it can negatively impact attitudes towards women's leadership. Certified farmers feel more positively about women's participation and representation; leads to higher representation in other committees and/or executive positions. However, women remain a small minority on committees and on boards. Quotas do not work if other requirements (i.e., education) are unrealistic.Payment only made when both spouses are present Chiputwa and Qaim (2016) Improved transparency contributes to higher proportion of female or joint decision-making (rather than male control) over coffee revenues. Dedicated women's enterprises Lyon et al. (2019), Lyon (2008) Increased number of female farmers and cooperative participation, where women were full-fledged members on their own; correlated with increased women's voice and leadership (in producer organization and in local community assemblies); women significantly more likely to have served on board of directors than women not involved (but still less than male members). However, this tends to be limited to specific types of women producers (I.e., those with sufficient capital Couples demonstrate changes in attitude towards joint decisionmaking; changes to intra-household gender relations; contributes to higher proportion of female or joint decisionmaking (than male control) over revenues.Transfer of household assets or land shares to women Gallagher et al. (2020); Osorio et al. (2019) Enables women to join producer organizations on their own, even when they do not have land titles; leads to increases in women's decision-making (household and community); encouraged men to transfer more assets due to its success. Investment in women's businesses Gallagher et al. (2020) Women's participation increased, especially when paired with training.It appears that targeted approaches can lead to increases in women's representation and leadership in decision-making over time, even if it the changes are small, partial or not yet close to achieving equality.For example, Lyon et al. (2019) identify a significant shift in the number of certified female coffee producers in Oaxaca, Mexico (from 9% of total farm operators in the mid-1990s to 42% in 2013) due to the introduction of a women's coffee microbatching program. The fair-trade and organic-certified cooperative they studied had 711 members, 44% of whom were women. The number of female members increased by 59% in the ten years prior to their study, whereas male members increased by only 14% in the same period). They note that the female members are full-fledged, voting members of their producer organizations rather than default members included as part of a coffeeproducing household. They also find that certain certification strategies may have contributed to women's increased uptake of leadership positions in their cooperative (with 36% serving on their boards of directors in the past 3 years), as compared to women producers not involved in that intervention (16%). But even in this scenario, it is important to note that rates of women's leadership are not equal to men's in the same organization, with 57% of men reporting serving on a board of directors in the past three years.In 2022, Mauthofer and Santos published their third study over a decade of the same Fairtradecertified producer organization (previously in 2012 and 2018), providing a rare investigation of longitudinal change on several sustainability dimensions, including gender equality. Their latest report finds that in general men continue to dominate decision-making within households and communities, while women are still the minority in small-scale producer organizations and women's participation in leadership is still limited. However, women belonging to Fairtrade cooperatives show more confidence in speaking up and voicing their thoughts (Ghana) and participate more in meetings and decision-making and occupy leadership positions in cooperatives (Peru), than in non-Fairtradecertified producer organizations. In Peru specifically, female farmers report feeling represented in their small producer organizations and women's leadership tends to motivate the participation of other women.A few other studies also support this: while women's participation and leadership are limited overall, certified producer organizations do perceive an increase in women's active participation (that is, an increase in women attending and speaking freely at meetings, contributing to decision-making and greater representation of women on committees and councils) as a result of engaging with VSS (Elder et al. 2012, Nelson et al. 2013, Riisgaard et al. 2009). Female farmers in one certified farmer group in Ethiopia said that certification had not led to an increase in the number of women on committees and councils, but had rendered women 'better off' due to their active participation and sharing with other women farmers in meetings, which was new for them (Riisgaard et al. 2009). While efforts related to VSS have not resulted in equal opportunities for women's participation and leadership, the changes were considered meaningful to women producers themselves and are therefore worth recognizing.In addition to studies that find some changes in women's participation and leadership over time, several other studies attempt to compare levels of women's participation and leadership between certified and non-certified producer organizations and ascertain the contribution of VSS to those changes. These studies show mixed evidence of changes related to women's participation and leadership at all levels of decision-making. Meemken and Qaim (2018) and Chiputwa and Qaim (2016) observed impacts of certification on various dimensions of women's empowerment in their comparison of certified and non-certified coffee-producing households in Uganda. In terms of participation in decision-making, they found that women in certified households had more decision-making over cash revenues over time than women in non-certified households. Members of certified households (both male and female) were also more involved in group leadership in their community than non-certified households, though this difference was not statistically significant so the authors could not conclude if it was related to certification.Dijkdrenth (2015) also found differences between a certified (UTZ) and non-certified cooperative in Kenya, with a higher percentage of women described as 'active shareholders' in the certified cooperative. She found that the certified cooperative had several women elected to the management committee (as opposed to the non-certified cooperative, which had none) and that women members in the certified cooperative felt they could express their concerns and have them represented by women in the committee, whereas women in the non-certified cooperative felt too uncomfortable to voice concerns to the all-male management committee. Women in the certified cooperative also felt more positive about women in leadership positions than women in the noncertified cooperative.Despite these gains, a number of other studies did not find significant differences in women's participation in decision-making for VSS-certified households relative to non-certified households. Van Rijsbergen et al. (2016) studied a range of household welfare and livelihood aspects of certification (Fairtrade, UTZ), which included a short series of questions on gender roles (at household and cooperative levels) and risk attitudes. They found that certification improved coffee returns (in different ways), but certified households did not experience behaviour-related effects in terms of intrahousehold decision-making and gender roles relative to non-certified respondents. In Nicaragua, Ruben and Zúñiga (2011) and Bacon (2010) also found little evidence that VSS lead to women increasing their active participation in their cooperatives or their bargaining power at either the household or community levels.Overall, this review finds evidence that VSS can play a role in changing some of the attitudes, behaviours, skills and practices that undermine women's effective participation and opportunities for leadership in decision-making -but their impact ultimately depends on several factors, including the bundle of strategies used to achieve those changes and the context. The documented increases in women's leadership are small and women almost always remain in the minority. Even the best cases do not come close to achieving the lofty goal of SDG5.5 to ensure equal opportunities for leadership at all levels of decision-making. This seems to be a particularly challenging and difficult aspect of women's empowerment to achieve, as compared to other aspects of women's empowerment that VSS tend to support (such as economic inclusion and higher incomes).Finally, it is possible that VSS have contributed more to women's participation and leadership in decision-making than what was surfaced in this evidence review. But because VSS have generally not targeted SDG5.5-related outcomes until recently the research studies and evaluations may not yet adequately capture or measure these to provide a more accurate picture.As more VSS develop criteria and strategies to address gender inequality, it is important to stop and reflect on the existing evidence and how it can inform future strategies and research. The review of evidence identifies the following suggestions for VSS and related stakeholders if they would like to support women's full and effective participation and leadership in decision-making in agri-food value chains and rural communities.While the review found several cases of individual women being able to increase their roles in decision-making, they are often exceptional cases who thrive despite the odds. These individual women may also have access to resources and less restrictions than other groups of women in their community, meaning that their journeys towards leadership cannot be replicated by most other women who face a range of different barriers. It is critical, then, that VSS develop strategies that recognize heterogeneity among women, identify the needs and realities of different groups of women and tailor interventions that support the participation and leadership of a diversity of women.It may require collecting new types of monitoring data (disaggregated according to age, education, ethnicity or other key identify factors in a specific context, in addition to sex/gender) to be able to identify whether certain groups of women are over-or under-represented in VSS-related interventions. Women-targeted interventions like trainings or women-only spaces are recommended to encourage women's participation but do not guarantee equal or representative participation among women in all their diversity. Instead, the evidence shows that within dedicated women's groups intersectional hierarchies can separate women and result in elite capture (Gallagher et al 2020).Almost all studies and reviews that focus on the role of VSS in supporting gender equality centre the role of VSS in targeting women's economic empowerment, often with the implicit assumption that this will then lead to improvements in other facets of gender equality including increasing women's decision-making power (UNCTAD 2022). But the quick (and often more easily measurable) 'wins' commonly associated with primarily focusing on increasing women's economic assets and resources tend to result in narrow outcomes with limited reach and/or negative unintended consequences (ICRW 2019). Furthermore, they tend to overshadow other strategies towards gender equality that could complement and reinforce the changes sought (Baltiwala 2007).The hopes and assumptions that economic empowerment will lead to positive 'spill overs' to other areas of empowerment such as decision-making power at multiple scales are largely unfounded. For example, Dijkdrenth (2015) observed how the strategies of one cooperative led to changes in gender relations at the cooperative level (the 'public domain'), but not in the household level (the 'private domain'). Her research found that women in a certified cooperative were more active shareholders, had more representation in the management committee and more felt comfortable speaking in meetings than women in a non-certified cooperative. Yet for women in both cooperatives the dominant discourse in the household was the same: men were the household heads who controlled most assets and decided on important issues; if women did have some power it was granted by her husband. Increasing women's participation in decision-making at different levels cannot be achieved by focusing only at one level:The gender policy of Rianjagi was in most part focussed on including women within the cooperative, e.g. the public domain of the economy … Inclusion into the economy does only change the position of women in the public domain but not in the private domain, because the dominant gender discourse is not challenged. Most of the lives of farmers take place within their households and families, and gender relations within the household were not challenged. Even though Rianjagi accepted three women in the management committee who held influential positions, this did not change the perception regarding men or women within the households, because these perceptions were never questioned ... Without questioning the gender discourse women can gain some power in one field through economic inclusion, but in society in general the gender discourse does not change (231).Dijkdrenth's work is a reminder that VSS interventions targeting only some aspects of empowerment are unlikely to automatically 'spill over' to other areas or different levels of decision-making. Discriminatory perceptions and dominant gender relations related to women's participation in decision-making have to be targeted directly.Relatedly, previous research has demonstrated that increasing women's economic empowerment is itself unlikely to be successful unless other non-economic outcomes are simultaneously targeted across multiple scales (Cheema 2017, Cornwall 2016). Drawing from the large multi-country Pathways of Women's Empowerment programme, Cornwall (2016) summarizes the issue with focusing primarily on increasing women's economic resources to achieve empowerment: Indeed, it is commonplace for contemporary 'empowerment' initiatives to begin and end with increasing women's access to resources rather than […] with changing how they may have been taught to see themselves as women, as citizens and as human beings. The assumption often underpins these initiatives that once women have access to economic resources, they will be able to make changes in other areas of their lives. This may of course happen […]. Yet it remains a contingent rather than necessary outcome. For all that they acquire spending power by becoming the entrepreneurs that development intervention would turn them into, women may find themselves unable to envisage the kinds of changes that could bring them greater empowerment, precisely because prevailing social norms and limiting self-beliefs conspire to restrict their ability to re-imagine the horizons of the possible (356).In a more recent study on the effects of a market access intervention on women's empowerment in India, Pandey et al. ( 2020) found that when program participation was coupled with opportunities for political agency (in this case, more gender-inclusive formal political institutions) women were far more likely to publicly speak out and participate in community issues as compared to participating in the market initiative alone. The authors suggest that market development efforts provide only 'passive' forms of agency to women, but when combined with political initiatives they can support more 'active' forms of agency, leading to larger and long-term empowerment. If anything, this case shows positive spill-over can come from political initiatives that reinforce program outcomes.In summary, if VSS intend to contribute specifically to increasing women's full and effective participation and leadership in decision-making they should not take for granted that market-based or economic interventions will lead to a positive spill over to other gender equality outcomes.Complementary approaches are required that target different and reinforcing aspects of women's empowerment in a holistic way. Further, the benefits of economic empowerment are more likely to be realized this way as well. Fairtrade's women leadership schools are a good example of such an approach, combining targeted training on leadership with gender awareness or critical consciousness-raising, technical farming skills and economic investment in women's businesses and market access (Gallagher et al. 2020).There is a clear consensus in the literature that the barriers to rural women being able to participate in and benefit from any kind of value chain development are deep-seated and pervasive. Women may be able to slightly increase their participation or leadership in decision-making but typically do so despite the many barriers -rather than because the barriers have been eliminated. Ongoing barriers and discrimination limit how many women can participate in decision-making (especially visà-vis men) and how long women can or want to continue in these roles, given how difficult the lived experience often is.If VSS want to extend their reach beyond more than a few exceptional individual women and support changes that go wider, deeper and are sustained, they will need to work more on addressing the structural barriers limiting women's participation in decision-making at different levels. This way of integrating gender equality is increasingly referred to as a 'Gender Transformative Approach' as it seeks to go beyond the surface symptoms and solutions to gender inequality to identify and address the root causes that prevent women's full and effective participation and leadership.The Gender at Work framework provides one useful way for VSS to understand how to develop a holistic strategy that addresses structural barriers 8 (see figure 1). It identifies four quadrants of change required to achieve gender equality: individual and systemic (or structural), formal and informal. Currently, interventions tend to target only individual-level changes (for example, including women producers in existing training or seeking to increase women's incomes) -the top half of the framework. These should be complemented with approaches that target changing discriminatory informal and formal institutions, systems and structures that limit all women. For example, it could include advocating for formal laws that secure women's land rights (Sexsmith 2019) and for policies that support the redistribution of unpaid care responsibilities. It may involve working with partners who facilitate group reflections on the impact of discriminatory sociocultural norms for both men and women and engaging male allies to advocate against gender-based violence in their communities 9 . Figure 1 provides other examples of actions targeting informal and formal changes at the 'systemic' or institutional level (beyond the individual). To contribute to women's participation and leadership in decision-making VSS should develop strategies that are holistic and address structural barriers. But this is not to suggest that any one VSS can nor should directly implement interventions and activities at all levels and regarding all aspects of gender equality. VSS need to identify which parts of the strategy they are best placed to deliver given their strengths and expertise and which areas would benefit from working in partnerships with external actors at multiple scales. If the target is on shifting policies and legal frameworks, for example, then it may involve engaging with local and national governments. If the strategy concerns addressing gender-based violence or discriminatory social norms in communities, then local women's rights organizations are likely better positioned than VSS. Hanson et al. (2012) emphasize the importance of carrying out work on gender equity with local partners, with actions defined and implemented by partners.VSS will need to reflect on their unique strengths and potential contributions to gender equality visà-vis potential partners and the larger system that they are embedded in. Their impact is unlikely to be directly through consumers and farmers given that VSS only affect a small number of consumers and farmers and relatively little agricultural land (Meemken et al. 2021). Ultimately, transforming global food systems requires government action and social and environmental regulations at every level, though VSS can seek to influence the debate and draw public attention to social injustices along agrifood supply chains (ibid). According to Smith (2020):It is also important to recognize that VSS alone cannot be expected to address all the structural causes of gender inequality. In this context, a key contribution of VSS may be establishing criteria and norms for a gender-equitable and inclusive environment for workers and producers in global value chains, and providing hard evidence (data) of the systemic issues that need to be addressed by states, businesses and civil society in order for women to participate in the global economy on equal terms with men (vi).Women's leadership is often uncritically represented as patently beneficial for women and for gender equality, and for achieving other sustainability outcomes. However, the assumption that individual women want to be leaders and that they will be uniformly benefitted by leadership needs to be challenged. Publicly pushing against societal expectations is often a thankless, tiring -and sometimes dangerous -job (Galiè and Farnworth 2019, Kabeer 1999, Berry et al. 2021, Restrepo Sanin 2022). Women leaders may have to (or perceive they will have to) make significant sacrifices to take on such roles, including increased tension in their households or communities, less time on food crops, fear of harassment, increased labour burdens and associated time poverty (Fairtrade Foundation 2015, Lyon 2010). Until the structural barriers are diminished becoming a leader may present more trade-offs than benefits for most rural women.If women's leadership is to be targeted, it needs to be appropriately supported. Costs and trade-offs for women's leadership must be reduced and an enabling environment created that allows leadership to be perceived as a safe, beneficial and empowering option. To do this it is crucial to speak to women being targeted by leadership initiatives to understand whether -and more importantly, under what conditions -they want to assume leadership roles. What kind of support would they need to take up opportunities for leadership in decision-making? Are there alternative leadership models or configurations (e.g. collective forms of leadership) that are more desirable? For existing leaders, what support would enable them to participate more fully and effectively, without compromising their own well-being?Centring local women's voices (individual and collective) and responding to their needs, wishes and priorities is not just important for shaping VSS strategies related to women's leadership, but for the design of VSS in general (Loconto 2015). According to Smith et al. (2019), \"women's needs and interests have not been adequately reflected in the content of VSS\" ( 14). They recommend that the interests of women business owners, producers and workers be represented in key forums and processes, including through representation in VSS governance structures, in standard setting processes and in the design, implementation and monitoring of initiatives. Furthermore, they suggest engaging with women's rights organisations, informal workers associations and other organizations that represent women and involving them in governance and advisory roles. In short, rural women's representation and leadership in decision-making should be embodied in VSS themselves.Overall, the existing evidence on VSS contributions to women's decision-making is sparse, lacking depth and makes it difficult to generalize across value chains and contexts. Given that most VSS have not explicitly targeted women's representation and leadership in value chains until now and thus have not sought to measure their contributions towards it, there are limited studies that mention this facet and even fewer dedicated studies or evaluations. This results in a series of unanswered questions when exploring the contributions of VSS to SDG5.5 and to gender equality in general: not just whether there is convincing evidence of these types of changes (yes/no), but also the direction and sequencing of changes, the depth and breadth of changes, what changes for whom (which types of women), whether changes observed are sustained over time, what types of changes spread or spill over and how, and why and whether certain approaches (or combination of approaches) are more or less effective than others under certain conditions. Generating evidence related to these questions in future will be critical to supporting VSS to develop and refine evidence-based strategies.There is a need for more evidence. It would help to have more dedicated studies that explore the impact of VSS on women's full and effective participation and leadership and how change occurs, with a view to contributing more complex understandings on the pathways to change. Ideally this could include studies that look at the interactions and interrelationships between different dimensions of changes sought by VSS (whether between different aspects of women's empowerment and/or between these and other sustainability outcomes). Given there is already a lot of research on the range and types of barriers to gender equality, it would help to focus efforts instead on what is proving to be effective in addressing barriers across different contexts. Studies that address other types of commodities and engage with other VSS on the topic would also be helpful given the lack or non-existence of studies beyond Fairtrade and coffee.There is also a need for new or different types of measurement approaches to generate this kind of evidence. Ongoing efforts to measure progress towards SDG5.5 produce globally comparable data, but these so far are narrow and limited only to the target's indicators: 'Proportion of seats held by women in (a) national parliaments and (b) local governments' (5.5.1); and 'Proportion of women in managerial positions' (5.5.2). There is a recognition that broader and more comprehensive data, supported by new data collection tools, are needed to capture women's full, equal and effective participation and leadership in decision-making at all levels and spheres (Berevoescu andBallington 2021, Mama Cash 2020).For VSS in particular the globally agreed indicators for SDG5.5 do not provide useful or insightful measures of change. Nor do the various (and largely non-comparable) approaches that have been used to measure women's participation in decision-making in VSS in the past. These tend to provide a weak understanding of women's participation in decision-making at different levels and if/how efforts are affecting changes for rural women in all their diversity. For example, using existing monitoring data on the number of women who hold formal membership in associations, who attend training/meeting or occupy executive positions gives limited information, especially if the goal is meaningful or 'full and effective' participation in decision-making. Furthermore, the data collected on 'women' is often not disaggregated further, so it is not clear whether certain groups of women (younger women, older women, women from certain caste or ethnic groups, etc) are more represented or benefitting more than others in VSS-related initiatives. This makes it difficult to identify the needs of different subgroups of women and to tailor interventions so that all women have opportunities to participate and benefit.Finally, almost all existing measures of women's leadership in decision-making are limited to counting the number of individual women in formal leadership roles (in national and local governments or in managerial positions) or understanding perceptions of and about individual women leaders. Conceiving of women's leadership as a largely individual phenomenon with outcomes measured only at the individual level ignores the role of collective women's agency and leadership -critical not only as a possible outcome but as a means of achieving more effective participation in decision-making for women generally (Bolin 2020).Going forward it will be important to use a variety of research approaches and methods to respond to the research gaps identified. High-quality impact evaluations would help to observe if change is happening and possibly for whom but would need to be combined with in-depth qualitative methods to understand the complexity of change processes and what can be done to improve outcomes. Longitudinal or panel studies would be particularly useful for improving evidence on how change happens over time including what changes are relatively easy versus those that are 'sticky', and the key factors to sustaining change. Whatever the chosen approach, research methods and monitoring tools will need to be able to detect potentially small and slow changes as well as respond to potentially negative changes that may accompany change processes, such as adverse inclusion, signs of backlash and increases in violence and workload that decrease well-being (Batliwala and Pittman 2010, ICRW 2019, van der Harst et al. 2023). They will also need to capture changes at different levels (individual, relational and structural) and for different groups of women. Finally, research approaches should meaningfully elicit and centre women's voices and perspectives so that VSS strategies be led by, aligned with and adapted to the (evolving) needs and priorities of women being targeted by interventions.The objectives of this paper were two-fold: first, to review what the existing research on VSS and gender equality reveals on the contributions specifically to women's participation and leadership in decision-making; and secondly, to identify knowledge gaps to inform the direction of future research on this topic. The evidence shows the significant challenges that VSS face in supporting women's decision-making at all levels. It also highlights the lack of evidence on impact pathways and the need for research approaches that can shed light on these pathways and that centre women's perspectives to inform future strategies and efforts.The challenge of achieving rural women's full and effective participation and equal opportunities for leadership in decision-making may seem insurmountable but it is also non-negotiable: both as a standalone imperative for realizing gender equality, social justice and human rights and as a way of achieving more sustainable and resilient agri-food systems (Njuki et al. 2021, Deninger et al. 2023).Though the review focused on how Voluntary Sustainability Systems contribute to key gender equality outcomes, VSS are not expected to address inequalities in agrifood systems alone. As Smith (2020) points out, addressing structural barriers and upholding women's rights is fundamentally an issue to be addressed by states, businesses and civil society, with VSS playing a role in drawing these actors' attention to systemic issues and in establishing criteria and norms for gender-equitable value chains. The scale of the task to deliver on SDG5.5 will ultimately require all these actors to work together, combining efforts to create an enabling environment for rural women's decision-making and leadership at all levels. Guatemala, Indonesia, Kenya Fairtrade Household surveys.• Field study of 6 coffee producer organizations with different levels of involvement in gender programmes across three countries. • In each of the 6 cooperatives studied, women are in elected leadership roles, including as board members. But women are not taking up board positions in proportion to their membership despite some POs proactively encouraging this. Women respondents felt that the presence of more women in decision-making roles would bring about \"transformative change\" in perspective and PO priorities. • Women members across all three case studies tend to have less detailed knowledge about the POs and Fairtrade, are less likely to attend meetings, less likely to take up leadership roles or participate in activities, and less likely to participate in Premium decisions. • It is difficult to assess frequency and quality of participation beyond membership and training records. • Ongoing barriers to women's full and equitable and participation include: PO rules and practices, including around membership; socio-cultural norms and roles; and women's life circumstances; and insufficient incentives to participate. • Producer Organizations (POs) have established women's committees or other entities that enable women to raise specific issues. But it is important not to overemphasize these. Intersectional hierarches and cultural norms can separate women and there is a risk of elite capture within women's collective organizations. • Fairtrade's women leadership schools in different countries have increased women's capacities, including their technical farming skills, their self-confidence and knowledge of gender equality (as well as men's). Successful programs go beyond training but also involve investment to support women to expand their businesses or access markets for their crops. • In Kenya there was a more systemic attempt to address barriers to women's entry in small producer organisations (SPO) and the coffee value chain. This included engaging men as allies in genderawareness trainings and as benefactors who transferred a portion of their coffee bushes to their spouses so women could join and participate in the SPO on their own despite not having land titles.Women have 'exceeded men's expectations': men report that women are good farm managers and more responsible with the income. Women participate more in decision-making about farm management.\"what is the role of Fairtrade in transforming culturally and institutionally embedded gender norms at different nodes in the value chain?\" • Compared one organization that participated in part in a corporate-initiated microbatching women's coffee program (Café de Oro) with communities that did not participate. Focus was on small coffee farm owners, rather than wage labourers. Way to pair new marketable qualities, such as 'women produced' with 'organic', 'fairtrade' and other premium qualities. The strategy was pioneered in the early 2000s (Las Hermanas coffee, Café Feminino). • From mid-1990s to 2013, the number of female farmers had increased from 9% of 'farm operators' to 42%. Relatively high rate of female coffee production and cooperative participation is reflected in membership in the women's coffee program organization, which is 44% female (spread across 25 different communities). Women were full-fledged, voting members of the producer organizations, not simply belonging by default as part of a coffee-producing household. • Women producers of high-quality coffee benefit from price premiums and a dedicated market niche.But the price premium is not substantial and not returned directly to the farmers (it is used to hire an employee who runs women's programming). • Membership in Café de Oro did not appear to substantively reduce gendered agricultural asset gaps, enhance women's economic accumulation or promote gender equity, relative to women of other coffee organizations. Though women receive significantly higher rates of agricultural training, than men in the program or than women in other organizations. • But the women's coffee program is correlated with increased women's leadership (within producer organizations as well as in local community assemblies) and women believe that engagement with the program has enhanced their voice and leadership in local organizations. Café de Oro women members are significantly more likely to have served on the board of directors than women of other organizations (36% vs 16% of women of their respective organizations). These communities practice communal governance and electoral voting. A female president was recently the head of the whole organization, which may have encouraged more women to become involved or lead daily operations of their local committees. That said, still more male members served on local committees' board of directors in the past three years (57% of male vs 36% of female members). • Both men and women members of Café de Oro reported feeling uncomfortable voicing their opinion during meetings (with no significant difference between men and women); this was also common for the members of the other coffee producer organizations, but women were significantly more likely to report feeling uncomfortable than men. • Mobility restrictions for women across the board make it difficult for women to serve in leadership positions, attend meetings or maintain their coffee plots.• Microbatching programs are necessarily limited to coffee producers who are relatively wellcapitalized and engage in traceability (like certified organic). Not realistic for these types of programs to be scaled up to meet the needs of women coffee producers as a whole. Need to be suspicious of policies that promote development alternatives that serve only a select group of rural farmers. • Women are highly visible in coffee cultivation but are not necessarily participating as members. This is due to patrilineal customs around land ownership (making men the typical landowners) and cultural norms that dictate that women are predominantly responsible for the work (both household responsibilities and coffee-related work) but men are the ones with the membership and who get to vote. • There are few female leaders and managers at Tanzanian co-operatives. Most women are not cooperative members and those interviewed said that their husbands would not encourage them to be leaders. Board members require a minimum level of education and literacy, which many rural women have less of relative to men. • Empirical results find that sustainability standards have positive impacts on food security and dietary quality for smallholder farmers in the coffee market. In terms of impact pathways, the results indicate that sustainability certification increases household incomes and improves gender equity. Both these factors contribute to improved nutrition. • When a household is certified the probability that a male alone controls coffee revenues is reduced by 0.66. There is a higher proportion of female or joint control in certified households, which increases relative to male control over time. This may be explained by two factors: o Sustainability standards promote gender equity through special training, awareness building, and other gender mainstreaming activities, as well as zero tolerance of discrimination and unfair treatment of workers/family members on farms. There are cases where payment is only made if both spouses are present, improving transparency.o Stricter standards increases demand for labour, so female household members are more involved in the coffee crop. More labour on the coffee crop seems to improve women's bargaining power and influence on decision-making. • Spouses of male farmers often stated that intra-household gender relations have changed through certification. Women have received training courses on coffee production and marketing. They reported that both partners were required to attend workshops on gender equity (where couples discussed gender roles in agriculture and possibilities to make division of labour and resources within the household more equitable). • Also, certified cooperatives hire more women as extension workers and foster equal representation of women in the leadership structure. Ghana Fairtrade Household surveys.• Women represented 32-42% of membership in the 4 sampled cooperative unions; on average 37% of the total membership. But women averaged only 17% of the cooperative unions' general assemblies and occupied 6 of 29 board positions (20%). Most of the women held the position of organizer of activities for women or ordinary committee members, not as chairpersons. • Women said they lacked confidence in speaking in group settings and had limited experience in business dealings. There was a perception that women who did participate in leadership were figureheads to respect the principle of gender balance advocated by Fairtrade. Household surveys• Compared certified and non-certified households.• Constructed gender indices (separately for male and female) using the sum score of the replies to the following 5 statements:1. The biological nature of women makes them restrict their tasks to the house keeping. 2. Family planning is a responsibility of both men and women. 3. Men tend to get most positions in the cooperative. 4. Women are better administrators of goods and services. 5. There is normally equal treatment between men and women. • Behavioural effects related to changes in gender roles or attitudes were not found. • Compared a UTZ-certified cooperative with a 'control' cooperative. Both cooperatives had comparable number of women members in absolute terms, but higher percentage of women were 'active shareholders' in the certified cooperative (they required significantly less product to be members, have voting power and be elected to the management committee). • The certified cooperative had several women on the management committee, elected by shareholders. Women members felt they could bring up issues with women in the committee and that their concerns were represented. They felt more positive about women in leadership positions, as compared to women in the non-certified cooperative. • In the non-certified cooperative, there were no women in the management committee and women were discouraged from participating in elections. General meetings were considered hostile. Women members felt too uncomfortable to talk to the all-male management committee. • However, increases in women's active participation, representation and leadership in the cooperative/public domain had not led to any changes to gender relations within the household/private domain (men were acknowledged to be the head of the household and controlled assets and decision-making). Husbands still largely dominated cooperative affairs and women still needed permission to be representatives at meetings. • 6 case studies of small producer organizations, focused on banana production (Dominican Republic), cotton production (India) and tea production (Kenya Interviews.• Women can attend meetings and are said to speak freely, especially in the certified groups. Though female farmers reported not attending meetings due to time constraints or because it was men's task. • Kuapa Kokoo is more committed to action on gender issues than non-certified buying companies.They have a clear gender policy and quotas on women's representation in the primary society (2 out of 6 executive positions reserved for women). • Certified farmers were more positive about women's representation and participation compared to non-certified focus groups. • In the smallholder tea farming sector, women have an active and often dominant role in delivering Green Leaf. But most Fairtrade registered members are male and this hinders women's representation in the organization (registration is required to vote and hold a position). Further, men reportedly would prevent their wives from attending meetings. • No women's representation at Board level due to political and cultural barriers. One Fairtrade outgrower organization was planning reserve Board positions for women and also reach out to youth. • Women are represented on Fairtrade Premium committees (quota for representation) and this has also possibly influenced women's participation in collection centre committees as well. • Most of the certified organizations researched did not have a gender policy or track membership by sex/gender, though some do track women's attendance at trainings. • Re household decision-making: Certification was identified as having raised awareness about the importance of joint household planning and decision-making, along with wider societal drivers. • Women's ownership of tea is limited. Women associated with a fairtrade-certified cooperative said if women were formally given a share of the household's tea bushes, they could control the use of the income and this would benefit the household more. • This study involved 14 producer organizations to understand the role of women in coffee, cocoa and nut (groundnuts and cashew nuts) value chains. • Women have formed committees in some organizations. Incorporating the committee into the governance structure of the organization provided a higher-level of decision-making for women. This enabled their voices to be officially represented at board level and they were usually allocated some budget. • Majority of producer organisations have quotas for female representation of boards and actively encourage more women to join. interviews. Life histories.participation in the organization and women not actively seeking leadership roles due to their household responsibilities. Very few members were female (7 of 116). • Women cooperative members and wives expressed interest in being more active in the cooperative but did not feel welcome. • Differences among certified cooperatives with some seemingly more willing to provide opportunities for women as leaders and managers, not only as producers. This may be because: they are often initiated by development agencies and there is a requirement for female participation for ongoing funding; new cooperatives have less entrenched power hierarches and include younger generations with more flexible conceptions of gender appropriate behaviour; newer cooperatives encourage female participation from the outset to satisfy certification requirements that they are seeking; or newer cooperatives engage in internal social auditing that help to identify and correct gender inequities. • There are examples of coffee cooperatives that actively promote female participation through gender training, forming female-only associations or actively requiring female participation.marital status should not part of the recruitment forms, no employee should be asked to sign a blank letter of resignation on hiring etc.).Criteria relating to women's rights at workDoes the scheme include explicit criteria to protect women rights at work?Refers to rights such as regular pay and regular working hours; permanent contracts; safe and non-hazardous work environments; freedom from sexual violence, harassment and forced pregnancy tests, etc.). This criterion goes beyond a non-discrimination clause, or legal compliance. It refers to any process or policy that not only protects women's rights at work but is further aimed at promoting women's (economic) rights (e.g. special quotas for women workers).Does the scheme require a grievance mechanisms committee to be in place and being gender balanced in its composition?Refers to an independent and representative decision-making body in charge of managing grievances and complaints, which is genderbalanced in its composition, in order to be fully representative, to be inclusive of women who are at heightened risk of vulnerability in terms of human rights violations, and of marginalization from grievance mechanisms. A confidential, unbiased, nonretaliatory grievance procedure should be established allowing women and men workers to make comments, recommendations, reports, or complaints concerning their treatment in the workplace including regarding gender equity. References: United Nations Guiding Principles on Business and Human Rights (UNGP); OECD Guidelines on Multinational Enterprises.Does the scheme require equal inclusion on the basis of gender in the stakeholder engagement process?Refers to stakeholder engagement processes, which are contextspecific, meaning that techniques, methods, approaches and timetables need to be tailored to the local situation and the various types of stakeholders being consulted. This criteria refers to a gender-inclusive consultation process based on an awareness that men and women can have differing views and needs.Criteria on management systems practices to monitor, evaluate and remediate gender specific issues Does the scheme require to set up management practices to monitor gender specific issues?Refers to specific criteria covering management systems practices including sex disaggregated data to be able to monitor, evaluate and remediate gender specific issues.Criteria on access to financial services for women (payment, credit, savings, subsidies)Does the scheme explicitly include criteria on access to financial services for women Refers to requiring specific access to payment, credit, savings, subsidies for women. The scheme organization may play a role in facilitating access to financial products that traditionally have (payment, credit, savings, subsidies).barriers to entry for the most precarious and isolated populations such as women.Does the scheme promote active female participation through the implementation of family friendly policies?Refers to promoting increase in the participation of female workers. Family friendly programmes or policies provide women more equal opportunities to enter the work force and to develop their work (e.g. paid leave and flexible work arrangements).Does the scheme include criteria on the provision of professional training for women, making suitable arrangements related to time and location?Refers training that are made accessible to women and that imparts skills and knowledge for personal development and career advancement.Criteria on incentives to women to develop their careers (e.g. specific training)Does the scheme promote incentives for women to develop their careers?Refers to incentives such as equitable access to specific and specialised training and coaching; employment guidance and counselling services; leadership and management training; increased access to traditionally male dominated training; pay equity plans)Does the scheme promote the advancement of women and minorities in leadership/management positions?Refers to the promotion of women/minorities in management and decisionary positions, ensuring that women/minorities get senior management employment opportunities.Does the scheme promote the implementation of gender policies to increase access to finance and support services for women entrepreneurs?Refers to specific gender policies in place that encourage and promote increased finance and support services for women entrepreneurs (e.g. capacity building, Internet access where women can access information, networking programmes), including access to financial products and services that traditionally have barriers to entry for the most precarious and isolated populations such as women in rural areas. Innovative approaches and partnerships are needed to scale up better access to finance and support services for women entrepreneurs.","tokenCount":"12232"} \ No newline at end of file diff --git a/data/part_3/3803124324.json b/data/part_3/3803124324.json new file mode 100644 index 0000000000000000000000000000000000000000..98f10d353f90d596b9976bf75218addcb18e5d81 --- /dev/null +++ b/data/part_3/3803124324.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"420035f0c0b8a14e482fa2be84de3f02","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/4f4e4b9c-b98b-4d4a-9f1c-b45f6098b4a4/retrieve","id":"2117611942"},"keywords":[],"sieverID":"868bf3c3-7f7f-497c-a9af-e681709ac35c","pagecount":"3","content":"In February 2018, Bioversity International and partners officially launched the Agrobiodiversity Diet Diagnosis Interventions Toolkit (ADD-IT) during the Initiative for Food and Nutrition Security in Africa Country Strategy for Actions meeting. ADD-IT is a mobile phone application that will speed up and improve collection, processing, use and integration of food consumption data including the lesser known foods. The participants install the ADD-IT application and input all of their food intakes, including fruits and snacks, acquired from both the farm and the wild. The app then sends the data to a database where it is analyzed in relation to the recommended daily nutrient intakes. This analysis will clearly reveal any dietary deficiencies, and subsequently identify the locally available foods that can make up for the deficiencies; thereby offering immediate feedback for action by the user.Often research activities focus on quality data collection and overlook the important aspect of feedback. Bioversity International and partners are thus not only working to incorporate quality data to the tool and make it easy to use, but to provide feedback that users can easily interpret and apply to diversify their diets, and improve their nutrition and livelihoods.The ADD -IT tool includes information on local food systems like market data of available foods, a food calendar indicating foods available in the various seasons and the nutritional value of the different food groups. It shows food options that are wild, cultivated and available in local markets.Kenta Hara, from the Tokyo University of Agriculture (TUA), is tasked with developing the ADD-IT application. He visited the two sites from where Bioversity International collected the data for the app's database in order to meet the communities and verify what he has learned through data. He observed that the local diets are inadequate and marked by a high consumption of staples. The two sites -Kitui and Vihiga counties -would thus benefit from greater use and diversification of available traditional foods, and from a After having met with the community members, the Bioversity International Kenya staff and Professor Carl Lachat of Ghent University, who is working on a similar tool, Hara intends to structure the tool so that the information provided is easily understandable to the Community Health Volunteers (CHVs), who will administer it.Numerous factors -such as cultural beliefs and practices, income, agrobiodiversity, accessibility, availability and preference, among many others -can influence dietary patterns. The tool seeks to bring together all these factors by collecting data in four key areas: (1) food consumption data using diet records, and food frequency data to assess feeding habits;(2) socio-demographic data to determine socioeconomic factors that may influence food choices;(3) agrobiodiversity data to determine available flora and fauna, both cultivated and wild; and (4) environmental data to assess its influence on food availability and consumption. These will form the integrated database that will generate feedback to the users.A prototype will be ready within the first quarter of 2019 and the CHVs will pilot it in both Kitui and Vihiga counties with technical assistance from Japan International Cooperation Agency Volunteers (JICAV).Data will be collected from the individuals within the communities, who will also be the immediate beneficiaries, while the cumulative feedback will be useful at the community, county and national level for policy and other related development activities.The development of the tool is undergoing a rigorous process made up of four steps to ensure all factors relevant to the beneficiaries are taken into account. The process entails data collection, data analysis, feedback and action plan; all geared towards behaviour change.As International's focus is on data collection, data analysis and feedback. The research team is currently cleaning up the data while identifying any gaps that may hinder accuracy. At the analysis stage, the team will come up with indicators that will help provide feedback and promote behaviour change among users. The government and other development agencies will facilitate the process of behaviour change through community sensitization seminars and trainings.Expected outcomes:• Improved nutritional status achieved through dietary diversification• Improved eating habits facilitated by the local recipes• Nutrition education using locally applicable audio and visual materials• Knowledge on locally relevant agricultural practices.In order to be more relevant and applicable, the tool will be region specific. It will also comprise data on food seasonality, market diversity and accessibility, income, and education levels -factors which directly determine food choice and consumption.Milestones achieved in the first year of the project include the establishment of key partnerships with the National Museums of Kenya, JICAV and TUA.The National Museums of Kenya is providing scientific and genetic expert knowledge of plants and animal species, and TUA is providing technical expertise through Hara. A group of consultant experts in data collection and analysis to take care of the database, and a communications officer to share the project's activities and progress, complete the team for this year.In the second year, the aim is to undertake a nutrition assessment of various foods. The research team will collect food samples that will be distributed to selected labs for assessment of their nutrient content.In the future, the intent will be to expand the network to other countries in which to test the ADD-IT. ","tokenCount":"851"} \ No newline at end of file diff --git a/data/part_3/3810552438.json b/data/part_3/3810552438.json new file mode 100644 index 0000000000000000000000000000000000000000..0d2ee5bcf86576fe2dee235c1e3646f78060c49d --- /dev/null +++ b/data/part_3/3810552438.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"5887b434c66d55f61cb275f109e3cb5f","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/2fd0667a-4855-4f5e-9e28-afc32485a2b1/retrieve","id":"1384288565"},"keywords":[],"sieverID":"8a5ed6ef-be0b-40a9-a863-f222aee496e9","pagecount":"1","content":"I haven't been able to attend many side events this year in Bonn, but today I attended two interesting side sessions-one that looked at alignment and coordination around the three Rio Conventions and the two other upcoming COPs on biodiversity and desertification, and a second one hosted by ICARDA on the humanitarian-peace-development-climate nexus, which provided helpful insights on more holistic and systemic approaches.Mid-morning, I joined the celebrations (and a very joyful photo session), marking the highlight of the day-the adoption of draft conclusions on the Agriculture and Food security negotiations. A few opportunities present themselves for CGIAR and partner science-the call for submissions, which will inform an annual synthesis report, which can include views on the content and design of the two agreed workshops, as well as sharing relevant evidence at the workshops.Less progress was seen in the Global Goal on Adaptation, New Collective Quantified Goal, gender, Nairobi work programme, and Just Transition Negotiations, with some of these having their last or penultimate informal consultation sessions in the Subsidiary Bodies. Where there will not be an agreed text in Bonn, talks will continue informally in the run-up to and during COP29.There was a bit more progress under Loss and Damage, although parties still need to agree on the modality section, which was discussed in a closed session. Some of the points of contention across all these tracks include means of implementation, whether the issues will be discussed under the CMA or the COP, whether to have a stronger focus on operative text/ implementation or on high-level policy guidance, the role of the UNFCCC in evidence monitoring and report synthesis to reduce the cost of synthesis and other reports, as well as input papers.For some of the tracks, such as the New Collective Quantified Goal the talks have come to and end today and will continue in Baku, but parties have been encouraged to reach out to each other to understand each other's positions better and explore middle grounds to help move the talks forward.-Emma Bowa, Manager CGIAR Climate Impact Platform Stay tuned to our daily briefs as we continue to track and inform you about these negotiations and CGIAR's participation at the Climate Conference.Second meeting under the ad hoc work programme on the new collective quantified goal on climate finance-Mandated event (4/4)The session continued the 10 June discussions on updates to the Input Paper of the ad hoc work programme on the NCQG. The discussions focused on imbalances and challenges faced by various communities and countries. The session adhered to a tight schedule with a hard deadline of 5 PM and included 26 speakers who shared their views.Concerns were expressed about the imbalance between proposals from developing and developed countries. Emphasis was placed on equity, historical responsibility, and fairness in financial obligations and contributions.Speakers stressed the need for increased financial resources for developing countries, particularly LDCs and SIDS. The importance of grants and highly concessional financing over market-rate loans was highlighted. Improved access to finance and harmonization of bilateral finance were key issues.The need for robust transparency frameworks, aligned with Articles 9.5 and 9.7, was underlined. Calls were made for the incorporation of these frameworks into the document, with detailed information on financial instruments and support mechanisms.Unique vulnerabilities and needs of LDCs and SIDS were highlighted. Specific provisions and scaled-up support for these countries were emphasized, along with standardized, direct access to financial resources.There was consensus on the need for principles ensuring predictability, transparency, and accessibility in climate finance. Finance should support sustainable development and address systemic inequities in access.Issues related to the impact on food and energy security were raised. Some speakers cautioned against policies that could negatively affect these sectors.The need for clear, ambitious financial support targets was stressed. Specific figures, such as $1.1 trillion USD annually from developed to developing countries, were proposed.Strengthening capacity-building efforts and improving absorptive capacities were highlighted. Promoting country ownership and simplifying access to finance were also mentioned.High-level political engagement and collaboration, especially from finance ministries, were called for to ensure the successful implementation of climate finance goals.The collective call was for a balanced, transparent, and equitable approach to climate finance. The unique challenges faced by developing countries, especially LDCs and SIDS, were emphasized. There was a strong focus on aligning efforts with the principles of historical responsibility and sustainable development.Negociators are encouraged to update and consolidate their views and identify bridging ideas. Informal bilateral consultations should be engaged in to foster collaboration. Preparation of an input paper for the third meeting is planned, aiming to address the concerns and suggestions raised during this session.The session underscored the urgent need for concrete, detailed proposals and substantive engagement. There was a plea for the co-chairs to guide the process forward effectively, ensuring transparency, accessibility, and balanced allocation of funds to meet the evolving needs of all parties involved.At the mid-year UNFCCC climate conference (SB60 in Bonn), there has finally been some significant progress on food systems to report. Here's what you need to know:The Sharm el-Sheikh Joint Work is the track of the negotiations under the UNFCCC, which discusses the nexus of climate change, agriculture, and food security. All parties to the UNFCCC participate (often represented as part of a group like G77+China, or EU).There are five key subjects on the table : Parties have agreed on the topics and modalities for a series of workshops on key issues. They will be in hybrid format, open to the Constituted Bodies of the Convention and Observer organizations, and each one will be reported on. Observers can submit subjects, formats, and speaker suggestions. The first (June 2025) will be on Systemic and Holistic Approaches to the Implementation of Climate Action on Agriculture, Food Systems, and Food Security, Understanding, Cooperation, and Integration into Plans. The second, in June 2026, will be on Accessing Means of Implementation for Climate Action in Agriculture and Food Security, including Sharing of Best Practices. Parties have agreed to the operationalization of an online portal, which would be used to share information on best practices and means of implementation. The portal would be open to contributions from relevant international organizations. Parties agreed on a roadmap for these activities, summarized on P3 of the text. Note that this also includes timings for Observer contributions.All this would be captured in an annual synthesis report -the first of which will cover everything from 2013 to 2025 (including Koronivia, which was the precursor to the SSJWA). One outstanding point is about the coordination of the joint work, but this will be further discussed and reported on at COP31 in 2026 They will pick up the conversation again at SB61 (COP29).So, it has taken a while to get here, but finally we have some opportunities to address substantive issues, share, learn, and move forward under the UNFCCC. During the high-level address, Julio Cordano, Co-lead of the UNFCCC Ocean & Climate Change Dialogue, emphasized integrating the ocean into UNFCCC processes. \"We need to make a connection between the ocean as a source of food and the ocean as a social experiment linked to the economy,\" he stated. Cordano highlighted the importance of focused discussions within the COP framework, noting, \"This year is about ecosystem restoration and technological needs for the ocean.\" Despite many topics remaining, he stressed the urgency of addressing ocean issues cautiously and steadily.Joanna Post, Head of the Ocean Observations and Services Section at UNESCO, discussed the challenges of aligning ocean ambitions with climate goals. \"We are facing interesting paradoxes. We want to bring oceans to the forefront of conversations but are challenged by the enormity of the task,\" she noted, pointing out the large mandate and limited resources.Kilaparti Ramakrishna, Director of the Marine Policy Center, remarked, \"Oceans are important, and yet the language we see in the climate convention is rather sparse.\" He emphasized that without solutions to address the climate system, impacts will persist. \"What we have now are national legislations coming from different places that do not speak to each other. While we see lots of positive trends, we can't sit on it and hope it sorts itself.\"Tarub Bahri from the FAO spoke on the need for regional approaches to climateresilient aquatic food systems and filling the financing gap in the blue economy. \"There is a huge financing gap that needs to be filled,\" he said. Bahri also stressed the importance of listening to indigenous voices, noting, \"We hear a lot of indigenous voices, but we are not listening. We need to find ways to connect people to ensure the views of Indigenous people are heard, and they are also consulted.\"","tokenCount":"1427"} \ No newline at end of file diff --git a/data/part_3/3812153941.json b/data/part_3/3812153941.json new file mode 100644 index 0000000000000000000000000000000000000000..52586c9413336dfa62387f39cf13a7df83bea727 --- /dev/null +++ b/data/part_3/3812153941.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"ddf84c0bd7952f6a63543621833acf32","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/fe6bd51a-68fc-448b-a3c3-f204d77e0253/retrieve","id":"-360809127"},"keywords":[],"sieverID":"19268338-3b4f-429f-bec3-a90a24f9c6e4","pagecount":"95","content":"Cet Agrodok a pour objectif de fournir des informations de base concernant l'établissement d'une petite exploitation de pisciculture pour l'autoconsommation.Comme il existe une grande diversité de pratiques de pisciculture, nous avons choisi de nous limiter à celles qui concernent la pisciculture continentale en eau douce dans les zones tropicales. La pisciculture en étang étant la méthode de pisciculture la plus répandue dans ces zones, les informations que nous présentons se concentrent sur la construction et la gestion des étangs.La première partie de cet Agrodok (les chapitres 1 à 4) décrit les principes de pisciculture, les types d'entreprises de pisciculture, les méthodes de pisciculture ainsi que l'entretien et le suivi des étangs. Nous avons également inclus une section sur la pisciculture à base de périphyton, qui est une nouvelle technologie prometteuse. La deuxième partie de ce livret présente des principes directeurs fondamentaux pour établir une exploitation piscicole et aborde les thèmes suivants : la sélection d'un site adéquat, les types d'exploitation et les espèces de poissons à élever. L'alimentation, les aspects sanitaires et la reproduction des poissons, tout comme les aspects de récolte et de post-récolte sont traités brièvement.Agromisa reçoit volontiers vos commentaires par rapport au contenu de ce livret, ou des informations supplémentaires pour lui permettre d'améliorer les éditions futures. Le siècle dernier, les pêches ont augmenté rapidement grâce à l'amélioration de la technologie, qui a également fourni des moteurs plus puissants et des équipements de sonar, conduisant à une surexploitation des fonds de pêche. Par conséquent, les populations halieutiques ont diminué au niveau mondial, ce qui a provoqué un arrêt dans la croissance des pêches il y a environ 20 ans. Augmenter la production du poisson par le biais de l'élevage aquacole est alors devenu urgent.Le terme « aquaculture » est un terme générique qui couvre la culture d'animaux et de plantes aquatiques dans de l'eau douce, de l'eau saumâtre ou de l'eau salée. L'aquaculture a le même objectif que l'agriculture, à savoir l'augmentation de la production alimentaire pour atteindre un niveau supérieur à celui de la production naturelle. Actuellement, la pisciculture assure une partie toujours grandissante de la production mondiale de poissons, qui a augmenté de 3,9 pour cent en 1970 à 31,9 pour cent en 2003 (FAO, 2005).Ce livret se concentre sur l'exploitation à petite échelle des espèces de poissons d'eau douce. Comme dans l'agriculture, les techniques de pisciculture comprennent : ? L'élimination des plantes et des animaux indésirables ? Leur remplacement par des espèces de plantes et d'animaux désirables ? L'amélioration de ces espèces par le biais de la sélection et des croisements de lignées ? L'augmentation de la disponibilité des éléments nutritifs en utilisant des fertilisants et des aliments supplémentairesOn peut combiner la pisciculture avec l'agriculture, l'élevage et les pratiques d'irrigation, ce qui peut conduire à une meilleure utilisation des ressources locales, et ultérieurement à une production et à des bénéfices accrus. Cette pratique est désignée par le terme de « pisciculture intégrée », un thème qui est traité de manière approfondie dans l'Agrodok nº 21.Les principaux avantages liés à la pisciculture sont résumés à la figure 1.? Le poisson fournit des protéines animales de bonne qualité pour la consommation humaine. ? Un producteur agricole peut souvent intégrer la pisciculture à son exploitation pour créer une source de revenus supplémentaires et pour améliorer la gestion de l'eau sur son exploitation. ? On peut contrôler la croissance des poissons dans un étang : le producteur choisit lui-même quelles sont les espèces qu'il souhaite élever. ? Les poissons produits en étang appartiennent au propriétaire de ce dernier ; leur disponibilité est garantie et on peut les récolter à volonté. Tout le monde a le droit de pêcher le poisson dans les eaux libres, ce qui rend incertaine la part de la pêche attribuée à chaque individu. ? Les poissons élevés dans un étang sont généralement à portée de la main. ? L'utilisation du sol est efficace : les terres marginales, c'est-à-dire les terres qui sont trop pauvres ou trop coûteuses à drainer pour l'agriculture peuvent être consacrées lucrativement à la pisciculture, à condition de bien les préparer.En pisciculture intensive, les apports d'intrants sont importants, et les étangs contiennent un maximum de poissons. On utilise des aliments supplémentaires, et la production naturelle d'aliments joue un rôle secondaire. Dans ce système, des problèmes complexes de gestion peuvent se présenter, liés à la forte densité du stock de poissons dans les étangs (accroissement de la vulnérabilité aux maladies et carence d'oxygène dissous). Comme les frais de production sont élevés, il est nécessaire de vendre les poissons à haut prix pour que l'exploitation soit rentable.Cet Agrodok se concentre sur les pratiques de pisciculture extensive et semi-intensive. La majorité des poissons d'eau douce est cultivée en étang. L'alimentation en eau est alors assurée par la canalisation de l'eau provenant d'un lac, d'une baie, d'un puits ou d'une autre source naturelle. L'eau peut soit passer une fois dans l'étang pour être évacuée ensuite, soit rester partiellement dans l'étang pour qu'un certain pourcentage de la quantité totale d'eau dans le système soit retenu et remis en circulation. Les systèmes d'étangs à haute production de poissons ne renouvellent que l'eau perdue par le biais de l'évaporation et de l'infiltration. Dans les zones tropicales, la circulation de l'eau réduit généralement le rendement des systèmes d'étangs.La taille des étangs de pisciculture peut varier de quelques centaines de mètres carrés à quelques hectares (ha). Normalement, on utilise les petits étangs pour le frai et l'alevinage, et les étangs de plus grandes dimensions pour le grossissement des poissons. Les étangs de production avec une superficie supérieure à 10 ha sont difficiles à gérer et généralement ils ne sont pas très populaires chez les producteurs. Les étangs illustrés ici ne sont que des exemples. Le type d'étang pour lequel un pisciculteur optera dépend grandement des ressources et des équipements disponibles localement ainsi que des conditions locales.En général, les étangs sont situés sur des terrains en pente douce. Leur forme est rectangulaire ou carrée, ils ont des digues bien finies, et ils ne recueillent pas l'eau de ruissellement provenant du bassin versant dans lequel ils se trouvent (voir la figure 17). Il est important d'avoir suffisamment d'eau à disposition pour pouvoir remplir tous les étangs dans un délai raisonnable et maintenir un niveau d'eau constant. Il faut également être capable de vider totalement un étang au moment de la récolte. Les talus latéraux doivent avoir une pente de 2:1 ou de 3:1 (pour chaque mètre de hauteur il faut 2 ou 3 mètres de distance horizontale), afin d'accéder facilement à l'étang, et de réduire les risques d'érosion.Pour éviter le braconnage, il faut essayer de situer l'étang aussi près du lieu d'habitation que possible. Une autre méthode qui permet d'éloigner les voleurs d'un étang piscicole consiste à placer des tiges de bambou ou des branches dans l'eau, rendant impossible la pêche au filet ou à la ligne. En plus de prévenir le braconnage, les perches et les branches fournissent des aliments naturels supplémentaires pour les poissons. Cette pratique s'appelle « pisciculture à base de périphyton », elle est décrite en détail dans le chapitre 3.Les principales caractéristiques d'un étang piscicole sont présentées dans le tableau 1.Tableau 1 : Caractéristiques d'un étang adapté à la pisciculture Situation Choisissez un terrain en pente douce et aménagez les étangs de manière à tirer avantage du relief.On peut creuser les étangs dans le sol ou les construire en partie dans le sol et en partie au-dessus du niveau du sol. Pendant la construction, il faudra bien tasser la terre des talus et du fond, pour éviter l'érosion et l'infiltration. La terre devra contenir au minimum 25% d'argile. Il faudra éliminer toutes les pierres, l'herbe, les branches et les autres objets indésirables pour former les digues. Profondeur d'un étang La profondeur doit être de 0,5 à 1,0 m sur le côté peu profond et aller jusqu'à 1,5 ou 2,0 m sur le côté du point de vidange.Pour les étangs, la forme idéale est rectangulaire ou carrée.Construisez des étangs avec des talus ayant une pente de 2:1 ou de 3:1 sur tous les côtés.La vidange ne devra pas durer plus de 3 jours.Les prises d'eau doivent avoir une capacité suffisante pour remplir chaque étang dans un délai de 3 jours. Si on utilise de l'eau de surface, l'eau devra être filtrée au préalable pour enlever les plantes et animaux indésirables.La quantité d'eau disponible doit être suffisante pour remplir tous les étangs en quelques semaines et pour maintenir le niveau de l'eau tout au long de la saison de croissance.Les digues devront avoir une largeur suffisante pour permettre de couper la végétation. Les chemins sur les digues doivent être faits de gravillons. Il faut planter de l'herbe sur toutes les digues. Orientation Situez les étangs avec soin afin de tirer profit du vent pour faire circuler l'eau en profondeur. Dans les zones où le vent provoque une érosion intensive des digues par les vagues, aménagez les longs côtés de l'étang perpendiculaires au vent dominant. Si nécessaire, aménagez des brise-vent de haies ou d'arbres.3 Les étangs piscicolesEn fonction du site, on peut choisir entre deux types d'étangs différents : en diversion ou de barrage.Les étangs en diversion (voir la figure 3) sont alimentés en eau à partir d'une autre source. En général, l'eau a une hauteur de 30 cm sur le côté peu profond et de 1 mètre sur le côté profond (voir la figure 6). Si on utilise l'étang en tant que réservoir d'eau pendant la saison sèche, il peut avoir plus de profondeur. Pour la récolte, il est important de pouvoir évacuer la totalité de l'eau.Figure 6 : Section transversale d'un étang (Murnyak, 1990) Types Le type d'étang à construire dépend de la topographie. Il sera différent selon que le terrain est plat ou accidenté.On construit les étangs creusés sur des terrains plats en excavant la terre sur une superficie qui correspond à la taille requise pour l'étang. Le niveau de l'eau sera en-dessous du niveau du sol initial (voir la figure 7).Figure 7 : Etang creusé (Murnyak, 1990) Les étangs partiellement creusés et endigués sont construits sur des pentes en terrain accidenté. La terre est excavée en haut de la pente pour creuser une partie de l'étang, puis servira à construire une digue plus bas sur la pente. La digue devra être solide, car le niveau de l'eau se trouvera au-dessus du niveau du sol initial (voir la figure 8). Figure 9 : Délimiter le contour de l'étang (Murnyak,1990) Enlevez la couche superficielle du sol qui contient les racines, les feuilles etc. et déposez le tout hors de la superficie de l'étang (voir la figure 10). La terre arable retirée servira plus tard à recouvrir les digues et y faire pousser de l'herbe. Figure 12 : La fonction du noyau (Murnyak and Murnyak, 1990).A gauche sur la figure, il n'y a pas de noyau en argile et l'eau s'infiltre pour disparaître en-dessous de la nouvelle digue. Avec le temps, cette fuite peut conduire à une rupture totale de la digue. A droite sur la figure, le noyau en argile prévient l'infiltration de l'eau en-dessous de la digue nouvellement construite.3 Creuser l'étang et construire les digues La terre excavée au moment de construire le fossé destiné au noyau en argile servira à construire la digue. Essayez de ne pas utiliser de la terre sableuse ni de la terre qui contient beaucoup de pierres, de racines, de l'herbe, des bâtons ou des feuilles. Le matériau organique se décomposera, laissant des points faibles dans la digue, par lesquels l'eau pourra passer facilement.Figure 13 : Compacter une digue (Viveen et al., 1985) Pendant la construction des digues, continuez à compacter la terre à intervalles réguliers. Ajoutez une couche de terre meuble de 30 cm à chaque fois, et tassez bien tout en arrosant la digue. Ensuite, battez la couche de terre avec une houe, un gros bout de bois ou une pièce de bois attachée à l'extrémité d'une perche (voir la figure 13). Ceci renforcera la digue.Le niveau de l'eau de l'étang doit se trouver 30 cm plus bas que la crête des digues. Si on veut élever des poissons-chats, les digues devront dépasser le niveau de l'eau de 50 cm pour éviter que les poissons ne sautent par-dessus. Une fois la hauteur souhaitée atteinte, ajoutez encore un peu de terre pour tenir compte du tassement, après quoi il ne faudra plus ajouter de terre sur la crête des digues.Si l'étang n'a pas encore la profondeur souhaitée, continuez les excavations, mais enlevez la terre de la superficie de l'étang. Si vous déposez la terre sur la crête des digues, ces dernières deviendront trop hautes et instables. En outre, cela entravera le travail autour de l'étang.Les talus des digues devront avoir une pente douce, ce qui les rendra solides et évitera les affaissements dans l'étang. Il est plus facile de façonner la pente des talus APRES avoir creusé la plus grande partie de l'étang.La meilleure pente pour un talus de digue d'étang est celle qui monte d'1 mètre pour tous les 2 mètres de distance horizontale. Il est simple de fabriquer un triangle comme celui qui est illustré dans la figure 14 pour faciliter le façonnement de la pente. Une bonne manière de déterminer si une digue a des pentes trop raides consiste à essayer de marcher lentement depuis la crête de la digue jusqu'au fond de l'étang. Si vous n'y arrivez pas, le talus est trop raide ! Figure 14 : Mesurer la pente d'une digue (Murnyak, 1990) Le fond de l'étang devra également être incliné, pour que la profondeur de l'eau varie selon la longueur de l'étang. Aplanissez le fond de l'étang une fois que la bonne profondeur est atteinte, cela facilitera le glissement des filets sur le fond de l'étang au moment de récolter les poissons. (Murnyak and Murnyak, 1990) (Murnyak and Murnyak, 1990) Il faut nettoyer les filtres une fois par jour.Une fois les digues construites, recouvrez-les avec la terre arable qui avait été mise de côté au moment de creuser l'étang. Sur les digues, plantez de l'herbe, comme par exemple l'herbe de Rhodes (Chloris gavana) ou le chiendent (Cynodon dactylon). N'utilisez pas de plantes aux racines longues, ni des arbres, car ils affaibliront les digues et pourront provoquer des fuites d'eau. La terre fertile provenant de la couche superficielle du sol aidera la nouvelle herbe à se développer et l'herbe permettra de protéger les digues contre l'érosion.En cas de pluies torrentielles, l'étang peut déborder si des eaux de pluie et de ruissellement s'y déversent directement, pouvant détruire les digues. Ce problème survient surtout au niveau des étangs partiellement creusés et endigués construits sur des collines, mais on peut l'éviter en créant en amont de l'étang un canal de diversion pour l'eau de ruissellement. La terre libérée en creusant le canal servira alors à construire une petite digue en aval du canal. L'eau de ruissellement pourra s'écouler hors de l'étang, évitant les débordements et les digues de l'étang sont ainsi protégées (voir la figure 17).Figure 17 : Protection de digue par le biais d'un ouvrage de diversion pour l'eau de ruissellement (Murnyak and Murnyak, 1990) Le périphyton est un ensemble d'algues, de bactéries, de champignons et d'autres organismes aquatiques qui adhèrent à des substrats (du matériau dur) présents dans l'eau. Ces organismes forment des agglomérats, une sorte de couche visqueuse appelée « amas de périphyton ».Des observations ont révélé que la production de poissons est plus élevée dans des étangs pourvus de substrats, comme des branches ou des tiges de bambou placées verticalement dans l'étang, que dans les étangs sans substrats (voir la figure 19). Cette pratique est connue sous le nom de « pisciculture à base de périphyton », elle est inspirée d'une Les avantages de la pisciculture à base de périphyton sont les suivants (voir aussi la figure 21) :Un des principaux avantages liés à la présence des substrats dans un étang est que les branches ou les tiges immergées sont rapidement colonisées par divers organismes microscopiques qui peuvent servir de nourriture aux poissons (voir la figure 20). Dans la pisciculture à base de périphyton, les aliments naturels abondent dans l'étang, réduisant la nécessité d'apports de fertilisants ou d' aliments supplémentaires.C'est un élément très important, aussi bien du point économique que du point de vue environnemental : l'alimentation supplémentaire et les fertilisants peuvent être coûteux, par ailleurs il s'agit d'un processus inefficace puisque la majeure partie des éléments nutritifs sont perdus dans l'environnement en tant que déchets.Le périphyton a l'avantage que la proportion des nutriments retenus par les poissons récoltés est bien plus élevée que chez les poissons venant d'étangs où l'on ajoute des aliments artificiels et des fertilisants (fertilisants inorganiques, compost, fumier, etc.).Dans les étangs à base de périphyton, les poissons utilisent les ressources de manière bien plus efficace. Certaines espèces ont plus de facilité à brouter sur une structure tridimensionnelle, comme une tige de bambou (périphyton), qu'à filtrer les aliments de la colonne d'eau (phytoplancton = algues microscopiques).Un autre avantage important des substrats dans l'étang est qu'ils protègent les poissons contre les prédateurs, tels que les oiseaux, les grenouilles ou les serpents. Bien que les piquets puissent servir de perchoir aux oiseaux qui mangent des poissons, on peut prendre certaines précautions qui empêchent les oiseaux d'attraper des poissons. Voici un exemple : les oiseaux qui doivent se jucher sur un bâton pour pouvoir attraper des poissons dépendent de la hauteur avec laquelle ce dernier surplombe le niveau de l'eau. Si on allonge les bâtons, les oiseaux auront beaucoup de mal à s'en servir. Pour les oiseaux plongeurs, la densité des bâtons dans l'étang forme un obstacle et par conséquent réduit le risque de prédation. En dehors des prédateurs naturels, les vols commis par les humains peuvent être diminués si on place des bâtons ou des branches dans l'étang.On admet en général que la survie des poissons est meilleure dans les étangs avec substrats. Les preuves s'accumulent pour démontrer que le périphyton peut avoir un effet positif sur l'état de santé des poissons. Il exerce une action antibiotique contre une diversité de bactéries présentes dans les étangs qui provoquent des maladies, et il a un effet de vaccin sur les poissons qui s'en nourrissent.En outre, on a constaté que les poissons se frottent contre les branches ou les bâtons pour déloger des parasites. En fin de compte, il a été constaté que le fait d'enlever les substrats de l'étang (pour permettre la récolte) abime les amas de périphyton qui s'assèchent, il fallait 1 à 2 semaines au périphyton pour se rétablir, retardant ainsi le cycle de production suivant. Il s'agit d'une des préoccupations majeures des producteurs.La pression du broutage des poissons qui sont élevés dans l'étang affectera la capacité de régénération du périphyton. Il en découle que la densité d'empoissonnement ne devra pas entraver cette vitesse de régénération. On a peu de connaissances portant sur l'efficacité de broutage des différentes espèces de poissons, il est donc nécessaire d'effectuer davantage d'essais à ce sujet.Il est possible d'améliorer la qualité nutritive des amas de périphyton en assurant la disponibilité des éléments nutritifs en quantité suffisante dans l'eau (il s'agit principalement du phosphore et de l'azote, mais également du silicium). Les apports de compost peuvent être utiles.Des expériences ont été menées en Inde et au Bangladesh pour déterminer quelles sont les espèces de poissons convenant à la polyculture piscicole à base de périphyton (la pratique qui consiste à élever plusieurs espèces de poissons dans un même étang, voir le chapitre 5).Pour ces expériences, on a utilisé le bambou comme substrat.On a constaté que les espèces de tilapia rouge et des carpes indiennes appelées « rohu » (Labeo rohita), et « kalbaush » (L. calbasu) se nourrissent de périphyton. En outre, la combinaison du « rohu » avec un poisson qui a des habitudes alimentaires complémentaires, la carpe « catla » (Catla catla), a donné une production de poissons très élevée, supérieure à la monoculture de chacune des espèces respectives si leur rapport varie entre 60% et 40%. En ajoutant au système « rohu-catla » l'espèce « kalbaush », qui se nourrit dans le fond de l'étang, la production totale était encore plus élevée.L'expérience a montré que la plupart des espèces de poissons bénéficient du périphyton, les carnivores purs faisant exception. C'est pourquoi on recommande aux producteurs de faire des essais, afin de trouver quels sont les substrats appropriés pour stimuler le développement du périphyton dans leurs étangs, et de comparer l'augmentation de la production aux rendements obtenus précédemment.Différents types de substrats ont des effets différents sur la qualité de l'eau dans l'étang. Pour donner un exemple, le bambou est plus résistant et demande moins d'oxygène dissous que les substrats organiques qui se décomposent facilement, tels que la bagasse de canne à sucre ou la paille de riz paddy. Par ailleurs, selon la position du substrat dans la colonne d'eau, les amas de périphyton sont soit des producteurs d'oxygène (couche d'eau supérieure), soit des consommateurs d'oxygène (couche d'eau inférieure). Si on contrôle la distribution des substrats dans la colonne d'eau, on peut éviter les carences d'oxygène dans un étang (voir le chapitre 4).Les solides en suspension sont captés par l'amas de périphyton, ce qui améliore la transparence de l'eau et par conséquent la pénétration de la lumière solaire dans l'étang. L'amas de périphyton absorbe également des composés qui sont toxiques pour les poissons, comme l'ammoniac et le nitrate.La toxicité de l'ammoniac est une entrave importante pour l'intensification de la pisciculture dans les systèmes d'étangs. Dans les étangs à base de périphyton, les bactéries qui décomposent l'ammoniac peuvent coloniser la surface des substrats qui se trouvent dans la colonne d'eau bien oxygénée. Ces amas forment un « biofiltre » qui maintient le taux d'ammoniac à un niveau faible.Les coûts et les bénéfices d'un essai de polyculture avec des carpes ont été calculés en Inde dans une tentative de décrire le côté économique de la pisciculture à base de périphyton. Il s'agissait des carpes ca-tla, rohu et de la carpe commune. Le substrat utilisé était la bagasse de canne à sucre, à différentes densités : 0, 7, 14 et 28 kg/100 m 2 . Les rendements de poisson ont augmenté dans tous les essais avec substrat. Même si les essais avec 14 et 28 kg/100 m 2 ont donné à peu près les mêmes résultats. On a donc pris les coûts associés à l'essai avec 14 kg/100 m 2 pour les comparer à l'essai sans substrat. Le total des frais supplémentaires liés au transport, à la main d'oeuvre et aux matériaux requis pour l'installation des substrats ont atteint Rs 5.960 (roupies indiennes), alors que l'augmentation des recettes provenant de la vente des poissons était de Rs 24.500.La pisciculture à base de périphyton présente les inconvénients suivants :? De la main-d'oeuvre additionnelle est requise pour placer les substrats puis pour enlever ces derniers avant la récolte ? Eventualité de conflits d'utilisation des substrats qui peuvent servir le ménage autrement (en tant que combustible ou dans d'autres activités plus productives) ? Coûts liés aux substrats s'ils ne sont pas disponibles sur l'exploitation ? Risque de déforestation au niveau local si la demande en substrats augmente ? Problèmes de la qualité de l'eau si le système n'est pas géré convenablement ? Connaissances insuffisantes de la biologie du système : les espèces ou la combinaison d'espèces de poissons à cultiver, la densité de poissons, le type de substrat, la densité de ce dernier, etc.Malgré les inconvénients mentionnés ci-dessus, l'aquaculture à base de périphyton offre de nombreux avantages aux pisciculteurs du monde entier. Premièrement, les rendements augmentent et la prédation et le braconnage diminuent. Deuxièmement, il s'agit d'une technologie relativement simple qui se sert des ressources locales (matériaux et main-d'oeuvre) et qui peut être appliquée à différents degrés d'intensité pour la plupart des systèmes, en fonction des ressources disponibles. Finalement, elle améliore la durabilité en augmentant le pourcentage des apports de nutriments retenus par les produits récoltés et en diminuant le déversement dans l'environnement de déchets et de substances potentiellement polluantes.Afin d'obtenir une production élevée de poissons dans l'étang, il est essentiel d'assurer un entretien et un suivi réguliers. La gestion quotidienne inclut : ? Le contrôle de la qualité de l'eau (oxygène, couleur, transparence, pH, température, etc.) ? Le contrôle de l'étang pour dépister les fuites d'eau éventuelles ? Le nettoyage des filtres de la prise d'eau et de la sortie d'eau ? L'observation des poissons pendant que ces derniers se nourrissent : mangent-ils normalement ? Sont-ils actifs ? Dans le cas contraire, surtout s'ils viennent prendre de l'air à la surface, le taux d'oxygène dissous est trop faible. Arrêtez les apports d'aliments et de fertilisants et faites circuler l'eau dans l'étang jusqu'au moment où les poissons reprennent leur comportement normal. Observez s'il y a des symptômes qui pourraient indiquer la présence d'une maladie ? La surveillance contre les prédateurs, guetter les empreintes et prendre des précautions si nécessaire ? L'élimination des algues indésirables qui poussent dans l'étang La qualité de l'eau est un facteur crucial pour le grossissement des poissons et pour leur santé. Les principales caractéristiques de l'eau sont décrites ci-dessous.L'oxygène est un gaz que toutes les plantes dans l'étang produisent (y compris le phytoplancton) avec l'aide de la lumière solaire. Plus la lumière solaire accédant à l'étang est abondante, plus la quantité de phytoplancton est importante et plus la production d'oxygène dans l'étang sera élevée. Une partie de l'oxygène produit se dissout dans l'eau, le reste s'échappe dans l'air. Le taux d'oxygène dans l'eau varie au cours de la journée, car la production et l'absorption de l'oxygène par les plantes changent avec la lumière et l'obscurité. Le phytoplancton de l'étang ne produit de l'oxygène que lorsqu'il y a de la lumière. Pendant la nuit, il a besoin d'oxygène comme toute autre plante ou animal dans l'étang, mais étant donné le manque de lumière de soleil, il est incapable d'en produire. Par conséquent, la quantité d'oxygène dissoute dans l'eau diminue après le coucher du soleil (voir la figure 22). Normalement, le taux d'oxygène atteint le niveau le plus élevé à la fin de l'après-midi (de l'oxygène a été produit tout au long de la journée) et le niveau le plus bas en début de la matinée (l'oxygène a été consommé au cours de la nuit). La carence en oxygène est la principale cause du décès des poissons lorsque les apports de fumier ou d'aliments ont été trop importants. Un taux d'oxygène suffisamment élevé est important pour une bonne production de poissons.Si les poissons viennent à la surface de l'eau pour prendre de l'oxygène, vous pourrez résoudre le problème en faisant couler de l'eau fraîche dans l'étang. Le fait de remuer l'eau de l'étang permet également d'augmenter la quantité d'oxygène dissous. Evitez les apports d'aliments et de fertilisants au même moment, puisqu'ils sont souvent une des causes de la carence en oxygène. Une surcharge de poissons dans l'étang est une autre cause possible de carence en oxygène. Ces problèmes peuvent provoquer un stress d'oxygène chez les poissons, ce qui peut les rendre susceptibles aux maladies et provoquer leur décès. (Viveen et al. 1985) Parfois le pH de l'eau de l'étang peut changer rapidement. Une averse peut par exemple faire dissoudre des substances acides du sol que les eaux de ruissellement peuvent conduire à l'étang en s'y déversant. De cette manière, l'eau devient plus acide, donc sa valeur de pH diminue. La meilleure manière d'augmenter alors la valeur de pH de l'eau pour la rendre neutre (atour de 7) est d'ajouter de la chaux à l'étang (voir l'annexe 2).L'alcalinité de l'eau est un indicateur de la capacité de l'eau à fixer l'acide (la capacité de tampon), c'est l'opposé de l'acidité de l'eau. Ceci veut dire que lorsque l'eau de l'étang a une alcalinité élevée, il faudra ajouter davantage de substances acides pour faire baisser la valeur de pH de l'eau.La dureté de l'eau est un indicateur de la totalité des sels solubles présents dans l'eau. Une eau qui contient beaucoup de sels est appelée « dure », et une eau qui contient peu de sels est appelée « douce ». Une méthode pour mesurer la dureté de l'eau consiste à observer attentivement les digues de l'étang. Si on aperçoit une ligne blanche sur les digues à la hauteur du niveau de l'eau, l'eau contient des sels, dont une partie s'est séchée sur les digues. L'étang contient alors de l'eau dure. Une eau dure est importante pour la croissance des poissons. Si l'eau est trop douce (c'est-à-dire si la quantité de sels solubles est faible), le pisciculteur peut la rendre plus dure en y ajoutant de la chaux. De cette manière, la fertilité de l'étang augmentera, si bien que la production naturelle d'aliments suivra et finalement la production de poissons augmentera également dans l'étang.On peut changer l'acidité, l'alcalinité et la dureté de l'eau par le biais du chaulage, comme décrit ci-dessus. Ces trois facteurs de qualité de l'eau ne sont PAS les mêmes, mais ils sont généralement représentés par la relation suivante :Ainsi, le but des apports de chaux est d'augmenter soit le pH de l'eau (pour atteindre une valeur proche de 7), soit son alcalinité, soit sa dureté. Les étangs récemment construits nécessitent un traitement différent de celui que l'on applique aux étangs qui ont déjà fait l'objet d'un chaulage.Il faut les traiter avec 20 à 150 kg de chaux agricole pour 100 m 2 d'étang (voir l'annexe 2). On mélange ceci à la couche superficielle du fond de l'étang (les premiers 5 cm). Ensuite, on remplit l'étang avec de l'eau jusqu'à une profondeur de 30 cm. Après une semaine, le pH de l'eau de l'étang devra atteindre une valeur de 7 et vous pourrez alors commencer les apports d'engrais.? Etangs chaulés auparavant Il faut les traiter avec 10 à 15 kg de chaux vive pour 100 m 2 d'étang, à appliquer sur le fond humide de l'étang afin de se débarrasser des pathogènes, parasites et prédateurs de poissons. Après une période de 7 à 14 jours, il faudra remplir à nouveau l'étang. Lorsque l'eau atteint une profondeur de 30 cm, on pourra ajuster le pH de l'eau en ajoutant de la chaux agricole (voir l'annexe 2). Cependant, la seule solution qui a vraiment des effets à long terme sur la turbidité consiste à éloigner les eaux boueuses de l'étang et à protéger les digues contre l'érosion, c'est-à-dire éliminer les causes de turbidité.La présence de substances toxiques dans l'eau qui alimente l'étang peut considérablement réduire la production de poissons, il est donc avisé d'étudier quelles sont les éventuelles sources de pollution présentes dans les environs de l'étang. De nombreux produits chimiques utilisés dans l'élevage et l'agriculture sont toxiques pour les poissons. Il ne faut donc jamais utiliser de produits chimiques à proximité de l'étang, ni pulvériser ce genre de produit lorsqu'il fait du vent. 25) : a Arrosez une poignée de sol avec une quantité d'eau qui permet de l'humidifier juste un peu. b Fermez la main en exerçant de la pression sur la terre. c Si la terre garde sa forme lorsque vous ouvrez la main, elle sera bonne pour la construction des étangs. La topographie et particulièrement la pente du terrain sont déterminantes pour la construction de l'étang. On peut profiter de l'inclinaison du terrain pour vider l'étang au moment de la récolte.Les terrains tout à fait plats et les terrains accidentés, où les pentes sont supérieures à 4%, ne sont pas appropriés à la construction des étangs. Toutes les inclinaisons qui vont de 2% à 4% sont adéquates pour la construction des étangs. Une pente de 2% indique qu'il y a 2 cm de perte d'altitude pour chaque mètre de distance horizontale.Lorsque la pente du terrain est adéquate, on peut remplir et vider l'étang de manière simple en bénéficiant de la gravité. Cependant, il faudra veiller à éviter l'érosion des digues de l'étang.Figure 27 : Test de perméabilité à l'eau (Viveen et al., 1985) L'eau La disponibilité d'eau de bonne qualité est significative pour tous les systèmes piscicoles, mais la quantité disponible joue un rôle encore plus important pour les systèmes de pisciculture continentale. Une alimentation en eau continue est requise, non seulement pour remplir l'étang, mais aussi pour compenser les pertes causées par l'infiltration et l'évaporation (voir la figure 28).Il est très important d'examiner les sources d'eau disponibles : ? Quelle est la quantité d'eau disponible ? ? L'eau est-elle disponible pendant toutes les saisons, ou existe-t-il des variations de disponibilité d'eau selon les différentes saisons ? ? Quelles sont les sources d'eau ? Est-il probable qu'elles soient polluées ? La température de l'eau La température de l'eau est un facteur important pour déterminer si on peut réellement élever les espèces de poissons sélectionnées. Une température d'eau de 20 °C à 30 °C convient généralement à la pisciculture.Les variations au niveau de la salinité (la quantité de sels dissous dans l'eau) de l'eau constituent également un facteur important à considérer. Certaines espèces de poissons supportent différents taux de salini-té, mais cela ne s'applique pas à toutes : les tilapias et les poissonschats, par exemple, supportent toute la gamme qui va de l'eau douce à l'eau de mer, alors que les carpes ne supportent que l'eau douce.Il s'agit-là des principaux critères de qualité d'eau qu'il faut considérer pour sélectionner un site. D'autres caractéristiques déterminant la qualité de l'eau jouent également un rôle mais on peut les gérer par le biais des pratiques de pisciculture. (Par exemple l'oxygène dissous, le pH, etc. Voir le chapitre 4). Certaines espèces à croissance lente sont prises en considération pour la pisciculture étant donné leur prix de marché, mais il est souvent difficile de rendre leur exploitation rentable. C'est un atout lorsqu'un poisson atteint la taille commercialisable avant d'arriver à maturité puisqu'ainsi la majeure partie des aliments est utilisée pour entretenir le développement des muscles plutôt que la reproduction. Toutefois, une maturité précoce assure un accès plus facile aux jeunes poissons.Les poissons connaissent les phases de développement suivantes : 1 oeuf 2 larve : dispose de réserves, n'a pas encore besoin d'aliments 3 fretin : les réserves de la vésicule vitelline sont épuisées, des aliments externes sont maintenant requis 4 alevin : jeune poisson, plus âgé que le fretin mais n'ayant pas encore atteint une année, ayant environ la longueur d'un doigt 5 poisson juvénile : poisson qui n'est pas encore mature 6 adulte : le poisson peut se reproduire L'expression « jeunes poissons » désigne normalement des poissons dans les phases de croissance suivantes : fretin ou alevin Si vous n'avez pas l'intention d'assurer vous-même la reproduction de vos poissons, vous dépendrez peut-être des apports d'alevins provenant des eaux libres. En général, il s'agit-là d'une source incertaine, car les quantités d'alevins recueillis dans les eaux libres varient grandement d'un moment à l'autre ; ceci tient au fait que la reproduction naturelle des poissons dépend de facteurs biologiques que l'on ne peut pas prévoir (température de l'eau, disponibilité d'aliments, etc.). Par ailleurs, la collecte des alevins dans les eaux libres peut donner lieu à des conflits avec les pêcheurs commerciaux. Il est préférable de sélectionner des espèces de poissons dont vous pourrez facilement assurer la reproduction, ou bien des espèces que l'on peut acheter au marché de poissons ou auprès d'un fournisseur fiable de poissons, d'une station de pisciculture ou encore d'un service de vulgarisation piscicole.Dans la pisciculture, les frais d'alimentation représentent généralement la part la plus importante du total des coûts de production. Il est donc préférable d'opter pour des espèces de poissons qui mangent des plantes (des herbivores) ou des espèces qui mangent des plantes et des animaux (des omnivores) car celles-ci se nourrissent des ressources alimentaires naturelles présentes dans l'étang. Pour ces espèces, les frais d'alimentation seront relativement bas. Par contre, les espèces de poissons carnivores (les prédateurs) requièrent un régime alimentaire contenant beaucoup de protéines et leur production sera donc plus coûteuse. Néanmoins, pour compenser les frais d'alimentation, la plupart des espèces carnivores obtiennent des prix de marché plus élevés.Les espèces robustes qui ont une certaine tolérance pour les conditions défavorables pourront mieux survivre dans des conditions environne-mentales relativement pauvres (par ex. le tilapia). Il ne faut pas seulement considérer les effets de l'environnement sur les espèces de poissons, lorsqu'on introduit une nouvelle espèce, il faut également tenir compte de l'influence des poissons sur l'environnement.Une espèce de poissons nouvellement introduite doit : ? satisfaire à un besoin que les espèces locales ne peuvent pas assouvir ? ne pas concurrencer les espèces locales ? ne pas se croiser avec les espèces locales pour produire des hybrides indésirables ? ne pas introduire de maladies ni de parasites ? vivre et se reproduire en équilibre avec son environnement Si vous introduisez des espèces exotiques, vous devez savoir que cette activité est régie par de strictes réglementations nationales et internationales.Si on cultive différentes espèces de poissons dans un même étang (polyculture), la production de poissons sera plus élevée que dans la situation où l'on cultive les espèces séparément (monoculture).Une seule espèce de poisson est cultivée dans l'étang. L'avantage d'une monoculture est qu'il est plus facile de donner certains suppléments à manger aux poissons puisqu'il ne faut tenir compte que d'une espèce en ce qui concerne les préférences alimentaires. L'inconvénient est qu'une seule maladie risque de tuer tous les poissons de l'étang. Différentes espèces de poissons ont normalement des vulnérabilités différentes par rapport aux maladies.On cultive plus qu'une espèce de poisson dans l'étang. De cette manière, on tire mieux parti des différentes ressources d'aliments naturels présentes dans l'étang. Chaque espèce de poisson a ses préférences alimentaires spécifiques, qui sont liées à la position que le poisson occupe dans l'étang (certains poissons vivent dans le fond, d'autres vivent au milieu de la colonne d'eau). Pour donner un exemple, la carpe de vase vit principalement dans le fond de l'étang et se nourrit de la boue et de détritus qu'elle y trouve. Le tilapia, par contre, préfère le milieu de la colonne d'eau dans l'étang. Si on combine différentes espèces dans un même étang, la production totale de poissons peut atteindre un niveau plus élevé qu'il ne serait possible avec une seule espèce ou même avec les différentes espèces dans des étangs séparés. Un exemple de système de polyculture piscicole chinois est la culture combinée de la carpe argentée, de la carpe à grosse tête et de la carpe herbivore dans un même étang (voir la figure 29). La carpe argentée se nourrit principalement de phytoplancton, la carpe à grosse tête principalement de zooplancton et la carpe herbivore principalement de plantes aquatiques, il ne sera donc pas vraiment question de concurrence alimentaire. Un autre exemple très commun est la polyculture du tilapia avec la carpe commune car le tilapia se nourrit principalement de phytoplancton et la carpe commune de zooplancton et de matériaux qui se trouvent au fond de l'étang. Une forme spéciale de culture est la combinaison du tilapia avec soit le poisson-chat, soit le poisson à tête de serpent (en général, avec un poisson prédateur), afin de contrôler la multiplication excessive du tilapia. Il faudrait mettre l'accent sur les espèces de poissons qui mangent différents types d'aliments.Les tilapias, les poissons-chats et les carpes sont les espèces les plus cultivées dans les zones tropicales.Le groupe des tilapias est formé par des espèces tropicales de poissons d'eau douce qui sont originaires d'Afrique et du Moyen Orient. On connaît au moins 77 espèces de tilapia, parmi lesquelles le tilapia du Nil est celle qui se développe le plus rapidement.Les tilapias sont des poissons idéaux pour la polyculture dans des conditions environnementales pauvres et/ ou lorsque la gestion de l'étang ne vient pas au premier rang des priorités. Ce sont des poissons robustes, capables de supporter des températures d'eau extrêmes ainsi que de faibles taux d'oxygène dissous. Le frai naturel se produit dans pratiquement tous les types d'eau. L'intervalle de température de l'eau assurant une croissance et une reproduction optimales va de 20 à 30 °C. Les tilapias peuvent supporter des températures d'eau aussi basses que 12 °C et ils survivent dans des eaux dont la température a une valeur inférieure à 10 °C pendant des périodes de temps prolongées. On connaît également certaines espèces qui survivent et se développent dans de l'eau salée. Comme ce sont de vrais omnivores, les tilapias mangeront presque de tout. En raison des caractéristiques favorables à la culture mentionnées dans ce qui précède, on considère les tilapias comme étant les espèces les plus appropriées à la pisciculture à petite échelle.Cependant, la reproduction continuelle des tilapias entrave la pisciculture lucrative. Un tilapia devient sexuellement mature lorsqu'il atteint une taille d'environ 10 cm (environ 30 grammes de poids corporel). Cette maturation précoce et la reproduction fréquente entraînent une surpopulation des étangs par de jeunes poissons et conduira à une compétition violente entre le stock de tilapia et les nouveau-nés. Ceci fera décroître le taux de croissance du stock de tilapia, donnant comme résultat de nombreux exemplaires de tilapias de petite taille au moment de la récolte.Le système de culture de tilapia le plus commun et le plus répandu est celui qui utilise des étangs en terre, de toutes tailles. Dans la culture en étang, on essaye de surmonter le problème de la reproduction précoce et donc de la surpopulation de l'étang. Parmi les différentes méthodes appliquées, la plus simple consiste à effectuer une récolte continue. Pour ce faire, on enlève les plus gros poissons en utilisant un filet sélectif fait de matériaux naturels ou de nylon. Ainsi, le fait d'enlever les poissons qui ont atteint une taille commercialisable permet aux jeunes poissons de continuer à se développer. Bien que cette méthode prolonge la période avant l'arrivée à maturité, elle est intensive en maind'oeuvre. Elle comporte également le risque de détérioration génétique du stock : les gros poissons qui ont une croissance rapide sont vendus, par conséquent, ce sont les exemplaires à croissance lente qui assureront la reproduction.Une méthode un peu plus complexe consiste à enlever le fretin de l'étang au moment où ils sortent des oeufs, à les élever dans des étangs d'alevinage puis les mettre en stock dans des étangs de grossissement. Cependant, comme indiqué dans ce qui précède, les poissons auront tendance à se reproduire avant d'avoir atteint une taille commercialisable, et la surpopulation pourra toujours poser un problème.Pour le pisciculteur qui a une petite exploitation pour l'autoconsommation, la manière la plus rentable de contrôler la surpopulation est d'élever également un stock de poissons prédateurs dans le même étang que les tilapias. Les prédateurs en question mangeront la majeure partie du fretin de tilapia (poissons juvéniles) et par conséquent préviendront la surpopulation de l'étang. On utilise différents prédateurs sur le plan mondial : le Cichlasoma managuense (El Salvador), le Hemichromis fasciatus (Zaïre), la perche du Nil ou Lates niloticus (Egypte), le Micropterus salmoides (Madagascar) ou le Bagrus docmac (Ouganda). Quand on vend les prédateurs, ils obtiennent souvent des prix de marché élevés.Lorsque vous appliquez cette méthode pour contenir la multiplication des tilapias, il faut considérer les facteurs suivants : la taille et la densité de stock, aussi bien des tilapias que des prédateurs ; ainsi que le moment dans le temps où les prédateurs sont introduits dans l'étang. En général, les tilapias commencent à se reproduire dès qu'ils sont mis dans l'étang, on peut donc introduire les poissons prédateurs au même moment.La densité de stockage des tilapias est de 2/m 2 et celle des poissons prédateurs varie selon la voracité de ces derniers : 83 poissons-chats d'au moins 30 cm de longueur pour 100 m 2 d'étang ou 7 poissons à tête de serpent d'au moins 25 cm de longueur pour 100 m 2 .Si on choisit d'autres espèces de poissons prédateurs, il faut considérer consciencieusement le nombre et la taille des poissons à stocker. Comme règle générale, on peut partir du fait qu'un poisson prédateur consomme au maximum des poissons proie dont la taille représente 40% de sa propre longueur. Cela implique que lorsque vous mettez en stock des tilapias de 10 cm, les poissons prédateurs à introduire devront avoir une longueur inférieure à 25 cm (10/0,40), sinon le prédateur mangera le stock de tilapia ! La densité de stockage du prédateur dépend de sa voracité. Pour estimer le degré de voracité du prédateur à stocker, vous pourrez faire des comparaisons entre celui du poisson-chat à voracité modérée et celui du poisson à tête de serpent qui est très vorace. (FAO, 1995) Les tilapias mâles se développent plus rapidement que les femelles, donc ils sont souvent plus grands au même âge. On peut distinguer les tilapias mâles des femelles par le biais de l'absence de fente transversale au niveau des papilles génitales (voir la figure 30).La production des oeufs ne présente pas de problèmes étant donné que les poissons fraient spontanément dans les étangs. Pour le frai, la température d'eau préférée est de 20 à 30 °C.Les tilapias ne se reproduisent pas tous de la même façon. Normalement, on met dans un étang un stock de densité moyenne d'un poisson pour 2 m 2 dans une proportion d'un mâle pour quatre ou cinq femelles, les tilapias femelles ayant un poids d'environ 700 g et les mâles pesant environ 200 g. Les tilapias mâles commenceront immédiatement à creuser des trous dans le fond de l'étang, pour ensuite attirer une femelle vers leur trou et cette dernière libèrera tout simplement ses oeufs. Si le fond de l'étang n'est pas meuble, des pots en terre cuite ou des cages en bois pourront servir de matériel pour construire un nid. Les tilapias pourront alors se reproduire toutes les 3 ou 6 semaines.La quantité d'oeufs libérés par ponte dépend de la taille de la femelle. Une femelle de tilapia du Nil de 100g émet une centaine d'oeufs, alors qu'un poisson de 600 à 1000g libèrera 1.000 à 1.500 oeufs. On recueille le fretin une fois par mois et les alevins sont élevés dans des étangs d'alevinage. En moyenne, la production mensuelle correspond à 1.500 poissons juvéniles par mètre carré.Dans un premier temps, le fretin se nourrira des aliments naturels produits par l'étang. On enlève le fretin des étangs frayères pour les transférer à des étangs d'alevinage ou directement à des étangs de grossissement. A partir du moment où ils sont transférés, on leur donne des aliments supplémentaires à un taux d'environ 6 ou 8% du poids corporel, en fonction du type d'aliment. Si on utilise du son de blé, l'administration des aliments peut varier de 4% à 11% du poids des poissons par jour.La culture des tilapias se concentre généralement sur la production de poissons de taille commercialisable qui pèsent au moins 200 à 300 g. Les étangs de culture extensive ou semi-intensive ont une superficie qui peut varier de quelques mètres carrés à quelques milliers de mètres carrés. Les unités typiques de culture intensive ont une superficie de 800 à 1000 m², qui est facile à gérer pour un pisciculteur.On recommande une densité d'empoissonnement de 2 alevins/m² ainsi que des apports de fertilisants et/ou d'aliments additionnels. L'abondance de nourriture disponible conduira à une plus grande taille avant l'arrivée à maturité et diminue la fréquence de frai des femelles, ce qui permet de reporter artificiellement l'effet de la surpopulation dans l'étang. On peut réaliser deux récoltes par an si la taille marchande d'un poisson est autour de 200 g. On peut fertiliser les étangs avec de la fiente de poule et du phosphate d'ammonium. Des aliments additionnels souvent utilisés sont le son de riz, le son de blé et le fumier de poule séché.Bien que parmi les espèces de tilapia on puisse distinguer un groupe qui se nourrit principalement de plantes aquatiques et un groupe qui se nourrit principalement de phytoplancton, dans des conditions de culture en étang les poissons ont des habitudes alimentaires très flexibles. Ils mangeront pratiquement toute sorte de nourriture qu'on leur donnera. Le détritus qu'ils trouvent au fond de l'étang constitue également une partie importante de leur alimentation. Des apports de fumier ou d'engrais chimiques à l'étang permettront d'augmenter la production totale de poissons.On peut utiliser une diversité d'aliments lorsqu'on cultive des tilapias en étang. Les jeunes tilapias dépendent surtout de la production naturelle d'aliments dans l'étang. Pour les tilapias adultes, ils peuvent se contenter de la production naturelle d'aliments dans l'étang si on ajoute du fumier et/ou des engrais chimiques. En supplément, on peut y ajouter d'autres aliments. On peut donner aux tilapias des matériaux issus de plantes, comme des feuilles, du manioc, de la patate douce, de la canne à sucre, du maïs, de la papaye et différents produits provenant de l'agriculture, comme le son de riz, les fruits, les restes de brasserie, les tourteaux de coton, les tourteaux d'arachide et la pulpe de café.Le type d'aliment utilisé dépend de sa disponibilité et des frais liés au niveau local. Dans la plupart des cas, les aliments sont préparés sur l'exploitation même, à partir de toutes sortes de (sous-) produits agri-coles. Quelques exemples de formulations simples pour les aliments sont présentés dans le tableau 3. La quantité d'aliments à donner aux poissons dépend de la taille des poissons et du type d'aliment en question. La meilleure façon de déterminer la quantité d'aliments à administrer consiste à observer de près les poissons dans l'étang au moment où ils se nourrissent. Ne donnez pas à manger aux poissons plus d'aliments qu'ils ne pourront manger à ce moment-là.Tableau 3 : Quelques formulations d'aliments pour les tilapias utilisés dans différents pays (Pillay, 1990). Les systèmes de polyculture du tilapia avec la carpe commune, et soit le mulet, soit la carpe argentée, permettent une utilisation maximale des aliments naturels de l'étang. Le rendement de poissons peut atteindre 750 à 1.070 g/m²/an dans un système de polyculture. Chez les poissons-chats, l'orifice urogénital se situe juste derrière l'anus pour les deux sexes. On peut distinguer l'adulte mâle de la femelle par la forme de sa papille : elle est allongée et protubérante, dirigée vers l'arrière. Chez la femelle, la papille a une forme ovale. (Viveen et al., 1985) Les écloseries Lorsque les oeufs de la barbue de rivière éclosent dans les étangs frayères, le fretin est recueilli pour le transférer à des étangs d'alevinage où les poissons se développent. Dans les écloseries, les oeufs sont placés dans de simples auges d'incubation en aluminium qui baignent dans de l'eau douce en circulation. Ainsi, les oeufs sont maintenus en mouvement, de manière à imiter artificiellement le comportement parental des mâles. Les oeufs des espèces appartenant à la famille des Ictaluridae éclosent généralement après une période de 5 à 10 jours à une température d'eau de 21 à 24 °C, alors que les oeufs des espèces appartenant à la famille des Pangasiidae éclosent après 1 ou 3 jour à 25-28 °C.Les oeufs des poissons-chats asiatiques éclosent dans des nids de frai qui sont gardés par les mâles. L'éclosion se produit entre 18 et 20 heures après le frai si l'eau a une température de 25 à 32 °C.Dans un premier temps, le fretin reste dans le nid, puis on les recueille avec une épuisette après 6 à 9 jours pour les transférer à un étang d'alevinage. Chaque femelle pond entre 2.000 et 5.000 oeufs, selon son poids corporel. Le poisson-chat africain connaît un frai naturel dans les conditions de culture en étang, mais les géniteurs ne montrent aucun soin parental envers leur progéniture, conduisant à un taux de survie très faible et donc à une production de fretin limitée. C'est la raison pour laquelle le frai provoqué et la production contrôlée de fretin sont des pratiques de plus en plus courantes. Les poissons-chats de petite taille utilisés en pisciculture sont généralement attrapés dans la nature ou achetés au marché, auprès de marchands de poissons ou du service de vulgarisation local.Les oeufs des poissons-chats sont de petite taille et éclosent pour donner de très petites larves de poisson. Les larves de la barbue des rivières éclosent avec une très petite vésicule vitelline, qui contient des éléments nutritifs pour nourrir les poissons jusqu'au moment où ils pourront aller en quête d'aliments. Le fretin est maintenu dans les au-ges de frai jusqu'au moment où la vésicule vitelline est entièrement consommée et le fretin commence à se nourrir des aliments naturels présents dans l'étang. Ce moment arrive environ 4 jours après l'éclosion des oeufs et on les transfèrera alors dans des étangs d'alevinage.Les dimensions des étangs d'alevinage varient ; on y met un stock de fretin d'une densité de 50 exemplaires par m² de superficie de l'étang. L'application des engrais commence lorsque le disque de Secchi indique une profondeur de 25 à 50 cm. La fertilisation peut consister en apports de fumier (5 kg de fumier de vache ou 3 kg de fumier de poule ou de porc pour 100 m 2 ) et/ou d'engrais chimiques (50 g de superphosphate et 100 g d'urée pour 100 m 2 ). Deux semaines après l'empoissonnement, la production de phytoplancton et de zooplancton sera insuffisante pour répondre aux besoins alimentaires des alevins en pleine croissance. Ces derniers commenceront alors à se nourrir des organismes qu'ils trouveront dans le fond de l'étang (tels que les larves de moustiques) et le cannibalisme est fréquent. Sans alimentation additionnelle, on peut réaliser un taux de survie maximum d'environ 30% du nombre total stocké après une période d'alevinage de 30 jours. Les alevins auront alors un poids moyen de 1 à 3 grammes (et 3 à 6 cm de longueur).Le fretin des espèces appartenant à la famille des Pangasiidae est généralement transféré dans des étangs d'alevinage directement après l'éclosion. Le fretin se nourrit des aliments naturels qui se trouvent dans l'étang. On recommande l'administration d'aliments supplémentaires, puisque la production des aliments naturels n'est pas toujours suffisante.La taille de ces étangs varie entre 5.000 et 20.000 m². Etant donné que les faibles températures de l'hiver ralentissent la croissance, on garde parfois les barbues de rivière dans l'étang pendant 2 ans pour qu'ils atteignent une taille marchande.Lorsqu'on empoissonne un étang de grossissement, il faut veiller à ce que tous les alevins aient la même taille, autrement il sera question de cannibalisme, car les plus grands commenceront à manger les plus petits si la quantité de nourriture disponible n'est pas suffisante. Pendant la première année, la densité du stock est autour de 20 alevins pour 10 m², pour être réduite à 4 pendant la deuxième année.Les étangs destinés au grossissement des espèces appartenant aux familles Clariidae et Pangasiidae ont une taille qui peut varier entre 1.000 et 20.000 m², et leur profondeur est généralement de 1 à 3 mètres. Normalement, le taux de stockage est de 25 alevins par m². On cultive également les poissons-chats dans des cages flottantes, dont la superficie peut varier entre 6 et 100 m².Tout comme les tilapias, les poissons-chats ont un régime alimentaire varié, ils mangeront pratiquement toute la nourriture qu'ils trouveront dans l'étang. Ils montrent une légère préférence pour les petits poissons (dont la taille peut aller jusqu'à 30% de la longueur de leur propre corps) et pour le matériau qu'ils trouvent dans le fond de l'étang, comme des matériaux végétaux.De nombreuses espèces de poissons-chats ont, en plus des branchies qui extraient l'oxygène de l'eau, une paire d'organes respiratoires supplémentaires qui leur permettent d'extraire de l'oxygène de l'air. Elles sont capables de rester hors de l'eau pendant assez longtemps, et parfois elles sortent des étangs pour aller à la recherche de nourriture (c'est pour cette raison que les barbues de rivière sont parfois appelées poissons-chats ambulants). Comme elles peuvent survivre dans des conditions environnementales assez pauvres (comme par exemple dans des étangs peu profonds avec des carences en oxygène), on les met parfois en stock dans des champs de riz avec des carpes et des tilapias, afin d'utiliser toute la nourriture naturelle disponible. Les poissons-chats cultivés en rizière mangeront pratiquement de tout, mais ils ont une prédilection pour les vers, les escargots et les poissons.Les poissons-chats africains se nourrissent des aliments naturels disponibles dans l'étang. On y ajoute des fertilisants pour augmenter la totalité de la production alimentaire. L'expérience a montré que les apports de fumier (animal) conduisent à une production de poisson plus importante que les apports d'engrais chimiques (qui sont souvent coûteux).Les espèces de carpes appartiennent à la famille de poissons d'eau douce des Cyprinidae. Cette famille comprend 1.600 espèces différentes parmi lesquelles très peu sont intéressantes pour la pisciculture.Les carpes cultivées sont réparties en trois groupes : la carpe commune, cultivée en Europe, en Asie et en Extrême Orient ; les carpes indiennes ; et les carpes chinoises.Le tableau 5 présente ces différentes espèces de carpes et leurs différentes préférences alimentaires. Comme nous l'avons mentionné dans ce qui précède, vous pourrez en tirer parti en cultivant différentes espèces conjointement dans un même étang (polyculture).Tableau 5 : Différentes espèces de carpes et leurs préférences alimentaires. La culture de la carpe commune est très répandue. C'est un poisson qui ne vit qu'en eau douce, (voir la figure 33), et qui peut atteindre une longueur de 80 cm et un poids de 10 à 15 kg. La carpe commune peut vivre dans un intervalle de températures allant de 1 à 40 °C. Le poisson commence à se développer lorsque la température de l'eau est supérieure à 13 °C, il se reproduit lorsque la température s'élève audessus de 18 °C, lorsque la circulation de l'eau est soudainement amplifiée. Normalement, la carpe arrive à maturité après environ 2 ans (lorsqu'elle pèse entre 2 et 3 kg).Dans les zones tempérées, la carpe fraie une fois par an, au printemps, alors que dans les zones tropicales, elle fraie tous les 3 mois. Une carpe femelle peut produire entre 100.000 et 150.000 oeufs par kg de poids de son corps. Dans les zones tropicales, le taux de croissance est élevé et le poisson peut y atteindre un poids de 400 à 500 g en 6 mois et un poids de 1,0 à 1,5 kg en une année.La carpe commune (voir la figure 33) est une espèce de poisson robuste, elle est résistante à la plupart des maladies lorsque les conditions environnementales sont gérées correctement. (Hanks, 1985) Le frai Les carpes fraient naturellement dans des étangs en plein air, mais on peut également provoquer le frai dans des écloseries. Le frai provoqué est une technique qui consiste à administrer des hormones aux poissons (des substances que les poissons produisent eux-mêmes pour déclencher le frai) par le biais des aliments ou d'injections intramusculaires.Dans les climats tropicaux, la carpe commune se reproduit tout au long de l'année, avec deux périodes d'intensité accrue : au printemps (de janvier à avril) et en automne (de juillet à octobre). Pour la reproduction naturelle, on obtient les meilleurs résultats lorsqu'on sélectionne les géniteurs avec soin. On peut alimenter les poissons géniteurs avec du son de riz, des déchets de cuisine, du maïs, etc. produisent leur laitance lorsqu'on appuie doucement sur leur ventre.Dans des conditions de reproduction naturelle, on laisse les poissons frayer dans des étangs frayères pour ensuite enlever les géniteurs. Les étangs frayères ont généralement une superficie de 20 à 25 m²; on les met à sec pendant quelques jours avant de les remplir d'eau propre, avec une profondeur maximale de 50 cm. On fait couler l'eau dans l'étang frayère le matin du jour de reproduction prévu, et on y place les poissons géniteurs ainsi que les collecteurs d'oeufs le même aprèsmidi. On place un, deux ou trois groupes de poissons dans un étang, chaque groupe comprenant 1 femelle (poids corporel 1 kg) et 2 à 4 mâles (poids total 1 kg).Il existe de nombreuses techniques différentes pour recueillir les oeufs d'un étang frayère. Dans certains systèmes, on place des branches de pins dans l'étang. Les oeufs se collent aux branches, qui sont alors enlevées et transférées à un étang de premier alevinage.Une autre méthode consiste à placer des plantes flottantes dans l'étang pour agir en tant que collecteurs d'oeufs. En Indonésie, on utilise des nattes d'herbes ou de fibres de palmiers en tant que collecteurs d'oeufs. La surface de natte requise est de 10 m 2 pour chaque femelle de 2 à 3 kg. Après le frai, on place les nattes dans des étangs d'alevinage. Un autre type de collecteur d'oeufs utilisé en Indonésie, appelé « kakaban », se fabrique avec des fibres sombres qui ressemblent à des poils de cheval, mais qui proviennent de la plante Indjuk (Arenga pinnata et Arenga saccharifera). Pour fabriquer les kakabans, on lave les fibres d'Indjuk pour les disposer en bandes de 1,2 à 1,5 mètre de long. Les bandes sont placées entre deux bouts de bambou de 4 à 5 cm de large et 1,5 à 2 m de long, que l'on fixe l'un à l'autre avec des clous aux extrémités (voir la figure 35). Les oeufs éclosent après 2 ou 8 jours, selon la température de l'eau. Si l'eau a une température idéale (20 à 22 °C), l'éclosion aura lieu dans un délai de 4 jours.Les étangs d'alevinage ont généralement une superficie de 2.500 à 20.000 m² en fonction de la taille de l'exploitation. Ces étangs ont une profondeur de 0,5 à 1,5 m et la densité du stock de poissons y est déterminée par le courant de l'eau dans l'étang. Dans les étangs à eau stagnante, la densité du stock de poissons est de 5 larves/m², alors que dans les étangs où l'eau circule la densité du stock peut s'élever jusqu'à 30 ou 80 larves/m². Les larves de poisson peuvent se développer pour devenir des alevins dans une période d'environ un mois. La pratique la plus répandue consiste à élever le fretin dans un étang d'alevinage pendant un mois, puis on transfère les alevins dans des étangs de grossissement où ils atteindront une taille marchande.Des applications régulières de vermicompost et de tourteaux de son de riz avec de l'huile de coco permettent d'accroître la disponibilité des aliments dans l'étang, et par conséquent favorisent la survie du fretin. La quantité de vermicompost à appliquer est de 925 g/m 2 par semaine, et celle des tourteaux de son de riz avec huile de coco est de 0,5 g/m 2 /jour au moment de l'éclosion, pour augmenter progressivement à 20 g/m 2 /jour 20 jours après éclosion. Pour la dernière application, on mélange à sec du son de riz avec de l'huile de coco dans des proportions 1:1, puis on humidifie afin de pouvoir faire des boulettes de 1 à 2 mm pour nourrir les poissons. On peut obtenir du vermicompost en laissant composter pendant deux semaines de la jacinthe d'eau coupée avec du fumier de lapin, après quoi on ajoute des vers de terre. On pourra utiliser le vermicompost 2 mois plus tard.Le type d'étang de grossissement approprié pour les carpes dépend des conditions climatiques et des conditions imposées par le marché, mais en général, la carpe commune est produite en monoculture. Dans les pays tropicaux, on peut produire un poisson de 500 g en six mois et un poisson de 1,0 à 1,5 kg en une année.Dans la pratique, des alevins de 4 à 8 semaines sont mis en stock dans des étangs de 70 cm de profondeur. L'utilisation de fertilisants peut améliorer la production des aliments naturels. La carpe commune se développe le mieux lorsque la densité du stock est autour de 1 à 2 poissons par m² de superficie de l'étang.Le niveau de production que l'on peut obtenir varie en fonction du type d'exploitation, de la durée de culture, des espèces de poissons, de la taille des poissons à la récolte, du niveau de fertilisation et de la température de l'eau. Dans les zones tropicales, le taux de production journalier de poisson frais peut varier de 30 g/m² pour des étangs non fertilisés sans apport d'aliments à 800 g/m² pour des étangs avec application régulière d'aliments et de fertilisants et avec remplacement régulier de l'eau .8 Alimentation, aspects sanitaires et reproduction des poissonsNormalement, deux types d'aliments sont à la disposition des poissons : les aliments naturels et les aliments supplémentaires. Les aliments naturels de poissons sont le phytoplancton, le zooplancton, le périphyton, les plantes aquatiques etc. produits dans l'étang même.Les aliments supplémentaires sont produits en dehors de l'étang et on les fournit régulièrement aux poissons pour augmenter la quantité d'éléments nutritifs dans l'étang.Les aliments naturels dans l'étang consistent principalement en phytoplancton. On peut augmenter la quantité de phytoplancton avec des apports de fertilisants dans l'étang.La transparence de l'eau en tant qu'indicateur de fertilité de l'étang La transparence de l'étang peut varier de presque nulle (en cas d'eau très turbide) à totale (eau très claire). Elle dépend de la turbidité de l'eau, c'est-à-dire de la quantité de matériau en suspension comme le phytoplancton, les particules de sol, etc. Souvent, les floraisons d'algues rendent l'eau verdâtre. Si on mesure la transparence de l'eau d'un étang verdâtre, on peut se faire une idée de la quantité de phytoplancton qui s'y trouve, et donc de la fertilité de l'étang.On peut mesurer la transparence de l'eau à l'aide d'un disque de Secchi, comme nous l'avons vu dans le chapitre 4. Un disque de Secchi est un disque en métal tout à fait blanc ou blanc et noir, mesurant entre 25 et 30 cm de diamètre, que l'on peut facilement fabriquer à la main (voir la figure 36). Le disque est attaché à une corde qui est marquée tous les 5 cm.Figure 36 : Le disque de Secchi (Viveen et al., 1985) Afin de mesurer la transparence de l'eau, on y plonge le disque en le faisant descendre jusqu'à la profondeur exacte où il disparaît de vue.Les marques sur la corde permettent de déterminer la profondeur. Dans le tableau 6 sont présentées les actions à entreprendre pour les différentes valeurs que l'on peut obtenir. Les préférences alimentaires des espèces de poissons qui font souvent l'objet de pisciculture sont résumées dans l'annexe 1.Les poissons sont sensibles aux maladies lorsque les conditions environnementales, comme la qualité de l'eau et la disponibilité des aliments, sont de pauvre qualité. Vous devez contrôler fréquemment vos poissons, en particulier par temps très chauds, car les carences en oxygène dissous se produisent souvent (l'oxygène se dissout moins dans de l'eau chaude que dans de l'eau froide).Ne vous découragez pas si vous trouvez de temps en temps un poisson mort dans votre étang. Cependant, soyez alertés en cas de décès nombreux. Si les poissons meurent en grand nombre, essayez d'en trouver la cause.On peut répartir les maladies en deux classes : les maladies contagieuses et les maladies nutritionnelles. Une maladie contagieuse peut être transmise d'un étang à l'autre avec l'introduction de nouveaux poissons ou par le pisciculteur et son équipement, alors que les maladies nutritionnelles sont causées par des carences dans le régime alimentaire.Il y a également des maladies qui sont provoquées par des polluants ou par une eau de mauvaise qualité.Un pisciculteur doit se concentrer sur la prévention des maladies, puisque les traitements des maladies de poissons sont souvent difficiles, exigent beaucoup de temps et sont coûteux. 9 Récolte et post-récolteComme dans tous les systèmes de culture, la dernière phase du cycle de pisciculture est la récolte, éventuellement suivie de la vente des poissons. Lorsque la plupart des poissons ont atteint une taille suffisante pour être mangés ou vendus, on peut commencer la récolte (généralement après 5 ou 6 mois).Veillez à ne récolter qu'une quantité que l'on peut manger ou vendre en une journée. Pour commencer, il faut vider l'étang quelques heures après l'aube, quand il fait encore frais. On peut procéder à la récolte de deux façons différentes : soit on enlève tous les poissons d'un étang au même moment, soit on attrape de manière sélective les poissons d'un étang tout au long de l'année. Selon la deuxième méthode, on enlève généralement les plus gros poissons pour que les plus petits continuent leur développement dans l'étang. Bien entendu, il est possible de combiner ces deux méthodes en enlevant les gros poissons en fonction de la demande pour finalement récolter le reste des poissons en une fois.Il existe différents types de filets pour récolter les poissons d'un étang, illustrés dans la figure 37.Lorsqu'on attrape les poissons de manière sélective, on installe un filet dans l'étang. Pour cette méthode de récolte, on utilise souvent un filet maillant (voir la figure 37B). Les poissons ayant la taille marchande qui essayent de traverser le filet restent coincés au niveau des ouïes. Les poissons de taille inférieure ou supérieure ne seront pas attrapés : les petits poissons nageront au travers du filet, alors que les poissons dont la tête est trop grande pour franchir les mailles ne resteront pas coincés. Ainsi, il sera possible de récolter des poissons tout au long de l'année, sans avoir à vider l'étang ou à perturber les autres poissons. Matériaux : corde, flotteurs en liège, lests (en plomb ou autre matériel lourd qui permettent de faire couler le filet), nappe de filet, fil et navette à filet. Méthode : ? Attachez deux cordes entre deux arbres ; elles formeront la ralingue supérieure et la ralingue inférieure,. ? Marquez les deux cordes à intervalles de 15 cm. Veillez à ce que les cordes aient une longueur qui dépasse de quelques mètres la longueur prévue pour le filet. ? Etirez au maximum la nappe de filet, puis comptez les mailles dans une section de 23 cm. Pour une senne globale, la nappe de filet devra avoir entre 6 et 9 mailles dans une section étirée de filet de 23 cm. ? Utilisez du fil en nylon très résistant. Embobinez un long fil sur la navette à filet. Attachez l'extrémité du fil à la ralingue supérieure (la corde du haut) au premier marquage. Faites passer la navette au travers du nombre de mailles compté dans la section de filet étiré de 23 cm, puis attachez le fil à la ralingue au deuxième marquage. ? Répétez le processus jusqu'au dernier marquage de la ralingue supérieure. ? Attachez les lests à la corde du bas à intervalles de 15 cm. Attachez les flotteurs de liège à la corde du haut, également à intervalles de 15 cm. ? Montez maintenant la nappe de filet sur la corde du bas (ralingue inférieure) en procédant de la même façon que pour la ralingue supérieure.Apres chaque utilisation, il faudra laver le filet, le réparer, le faire sécher à l'ombre, le plier puis le garder dans un lieu frais et sec. Une senne ainsi entretenue servira bien plus longtemps. A titre d'exemple, une application de 550 g de chaux vive donnera le même effet que 1.000 g de chaux agricole. L'effet de chaulage est meilleur lorsqu'on diminue la taille des particules. Par conséquent, si on broie le matériau de chaulage avant l'application on obtient de meilleurs résultats. On obtient les meilleurs résultats si la chaux est distribuée uniformément sur le fond d'un étang mis à sec. Toutefois, en tant que désinfectant, la chaux vive a besoin d'humidité.Les étangs avec des sols acides ou de l'eau acide et /ou des étangs avec de l'eau douce de faible alcalinité requièrent une application de chaux. Le tableau 7 donne les principes directeurs permettant d'estimer la quantité de chaux requise, exprimée en kg/ha de chaux agricole. Si le taux d'application de chaux est correct, le pH aura une valeur supérieure à 6,5 et l'alcalinité totale sera supérieure à 20 mg/l après 2 à 4 semaines.Tableau 7 : La quantité requise de chaux agricole (kg/ha).pH du fond de l'étang Argiles lourdes Terreau sableux Sable 5-5,5 5.400 3.600 1.800 5,5-6 3.600 1.800 900 6-6,51.800 1.800 0 ","tokenCount":"11884"} \ No newline at end of file diff --git a/data/part_3/3829998901.json b/data/part_3/3829998901.json new file mode 100644 index 0000000000000000000000000000000000000000..8753c88337184148deb0f3aedcc3c05bff807296 --- /dev/null +++ b/data/part_3/3829998901.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"cc237df91bc3ff95fc196519ae406d06","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/d8da0b01-0012-4397-83e4-c4c28e28165c/retrieve","id":"2066246435"},"keywords":[],"sieverID":"60f17022-a681-4a50-bd59-f2a018ed1b73","pagecount":"4","content":"Welcome to \"The Milk Run\". This issue carries a special feature on East Africa's first camel milk dairy which has started commercial production of pasteurized camel milk.For information on or contributions to the smallholder dairy network contact Steve Staal (s.staal@cgiar.org).Your comments and feedback are always appreciated.holder dairy systems.\" The other institutions involved in the collaborative project were Sokoine University of Agriculture in Tanzania and ILRI in Kenya.The study, which was carried out in peri-urban Kumasi, found that lining the calabashes with cheesecloth before draining the whey significantly improved cheese yields by up to 4 per cent. Soaking wagashi overnight in a 15 per cent brine solution extended the product's shelf life from 3 to 14 days, under normal sale conditions. Panelists involved in consumer acceptance tests stated that brining of wagashi did not affect (Continued on page 4) O ne of the distinguishing characteristics of Ghana's dairy industry is the high demand for traditional soft cheese (wagashi) and other processed milk products as opposed to fresh milk. However, traditional methods used in dairy processing are often marred by inefficiency. Wagashi is traditionally prepared by heating fresh milk then coagulating it with an extract of stems from the Sodom Apple plant (Calotropis procera). The resultant cheese curd is then scooped into perforated calabashes to allow the whey to drain off.During the process of whey separation, small cheese fragments pass through the calabash perforations giving rise to loss of product. Also, for lack of appropriate preservation technologies, wagashi sellers are forced to boil the cheese daily in order to preserve it. This practice negatively affects the appearance of the cheese, which can then only be stored for a maximum of one week before it spoils.In an effort to improve the efficiency of traditional wagashi processing, a team of scientists from Ghana's Animal Research Institute and the Kwame Nkrumah University of Science and Technology (KNUST) carried out a series of laboratorybased experiments to investigate the use of appropriate technologies to increase yields of wagashi and prolong the product's shelf life.The study was part of the DFID-funded project \"Improving the market mechanisms, processing and marketing efficiency and reducing the public health risks in developing peri-urban small-A wagashi processor uses perforated calabashes to drain whey from the cheese. This step in the traditional processing of wagashi often leads to high cheese losses.\"The Milk Run\" Special feature: Marketing camel milk in a different way Until very recently, raw camel milk only reached urban consumers in Kenya via informal marketing chains as a commodity of very poor if not risky hygienic quality, often adulterated, frequently sour and which had to be consumed immediately. With the registration of a new Kenyan company-Vital Camel Milk Limited-that is processing camel milk to modern hygiene and quality standards, this situation has changed for the better.In this feature article by M. YOUNAN, H. MARBACH and M. EVANS of Vital Camel Milk Limited, we gain more insights into this new company that promises to improve the way camel milk is sold in Kenya. Camel milk also provides a safe and very nutritious alternative for persons suffering from allergy against cow milk protein. Unlike soybean-milk, camel milk can be safely used as a cow milk substitute in baby and infant foods.The growing demand for health foods has the potential to provide a long-term niche market for VCM's camel milk products in Kenya and beyond. However, VCM must first overcome some almost insurmountable obstacles in order to establish itself in the market place. To mention only one: camel milk is not recognised as human food by the Kenya Bureau of Standards and EU food legislation. How does one market a product that legally does not exist? -M. Younan, H. Marbach and M. Evans V ital Camel Milk Limited, East Africa's first private camel milk dairy, started operations at its new milk plant in Nanyuki, Kenya in June 2005. The company receives raw camel milk from smallholder pastoralist producers in the surrounding Isiolo, Laikipia and Samburu districts. All pastoralist producers supplying milk to the dairy are trained and supervised on clean milking and milk handling practice by milk collectors from within their own communities.Upon delivery at the dairy, the quality of the raw camel milk is tested at the laboratory. Milk that passes the quality tests is then pasteurized, hygienically packaged and refrigerated until it reaches outlets in Nairobi, some 200 kilometres away from Nanyuki. Retail outlets that sell pasteurized camel milk are found mostly in Nairobi's Somali quarter, Eastleigh, but also in some of the city's upmarket shopping centres.The emerging market for top quality camel milk comprises traditional camel milk consumers-mostly urbanized Somalis-who appreciate the purity and superior hygienic quality of our unadulterated product that has a guaranteed refrigerated shelf life of 10 days. There are also increasing numbers of non-traditional consumers of camel milk who appreciate its medicinal properties or are just curious to try out a new kind of milk.Vital Camel Milk Ltd. (VCM) is committed to fair producer prices, social standards and honest business. In the informal sector, raw camel milk fetches three to four times the price of raw cow milk, making it a rather expensive commodity. Unlike milk hawkers, VCM offers weekly payments and guarantees a constant high price for raw camel milk of acceptable quality. This has attracted many camel milk producers to supply their milk to the dairy. VCM soon plans to expand its camel milk processing portfolio to include ice cream and sour milk (susa). At present, the market for processed camel milk is still very limited but growing slowly. It will be some time until all interested camel milk producers can participate in this new evolving marketing system.Photo/Vital Camel Milk Ltd.Vital Camel Milk Ltd. is supported by DFID-UK and GTZ-Germany. Raw milk. Opinion is divided over whether or not it is safe to drink. Opponents cite the dangers of pathogens in raw milk and the reduced shelf life caused by spoilage microorganisms, advocating instead for heat treatment by pasteurization to make milk safe. Conversely, supporters of raw milk believe that it contains certain bioactive systems that can significantly reduce the numbers of pathogenic bacteria.T h e R e a l M i l k w e b s i t e (www.realmilk.com) is one such proponent of raw milk and its consumption, and calls for 'a return to humane, non-toxic, pasturebased dairying and small-scale traditional processing'. According to the real milk campaigners, pasteurization laws favour large, industrialized dairy operations and squeeze out small farmers. The website adds that farmers can make a decent living, even with small herds, when they have the right to sell unprocessed milk to consumers.According to the Real Milk website, sales of raw milk are legal in 28 of 50 states in the USA while in some of the remaining states raw milk is available through cowshare programs where farmers milk cows owned by individuals. The number of states that now allow raw milk sales has increased significantly in recent years, and it is the real milk campaigners' goal to have raw milk available to consumers in all 50 states. Similar trends are occurring in some European countries, such as Germany. Here, instead of scaling up production to maintain economic viability, farmers can instead maintain small-scale production by offering a higher value product. Costs are likely to increase as the farm shifts the organic production associated with raw milk sales, but some consumers who value the attributes of high quality, organic raw milk are apparently willing to pay the higher price required.Growing consumer interest in raw milk and products made from it, particularly in developed countries, is largely due to perceived health benefits associated with 'natural' as opposed to 'processed' foods. Supporters of raw milk believe that it preserves the natural flavours of milk and that several enzymes and micronutrients are destroyed during pasteurization of milk.Similarities exist in traditional milk markets in developing countries where raw milk is an important commodity. However, whereas consumers in the developed world opt for raw milk because of perceived superior nutritional benefits, consumers in poorer countries-where up to 80 percent of milk is sold informally-buy raw milk primarily because of tradition and lower cost. its acceptability in terms of colour, odour or appearance. However, the panelists indicated that cheese preserved in 15 per cent brine tasted too salty, pointing to the need for further investigations on suitable methods of de-brining wagashi to make its taste more acceptable since lower brine levels were found to be ineffective in preserving the cheese. This and other project findings have recently been taken up in a new study led by scientists at KNUST. The study plans to disseminate improved cheese processing technologies and general dairy hygiene techniques to smallholder herdsmen, milk producers, processors and market agents in northern Ghana. This will go a long way towards enhancing food safety while improving livelihoods of Ghana's smallholder dairy households.-Tezira Lore (Continued from page 1)Sap from the plant Calotropis procera, also known as Sodom Apple (above), is used as a coagulant in the wagashi-making process. The sap can be extracted from every part of the plant except the roots. To obtain the sap, Calotropis leaves and stems are crushed and mixed with milk in a gourd. The mixture is then strained and added to the heated milk.","tokenCount":"1544"} \ No newline at end of file diff --git a/data/part_3/3834182790.json b/data/part_3/3834182790.json new file mode 100644 index 0000000000000000000000000000000000000000..2a1729cec956b41a72e6d3dd6a8e9db1b47a2b9a --- /dev/null +++ b/data/part_3/3834182790.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"e4fac0d3c0e3c39b76f629c1fe4bc0d9","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/bc777132-90bc-4c51-b6b9-fe9033e22a7f/retrieve","id":"-438488484"},"keywords":["agricultural biodiversity","food security","sustainability","nutrition","hunger"],"sieverID":"c4ba6208-356b-4477-b48c-6439c325c4c3","pagecount":"16","content":"Agricultural biodiversity has hitherto been valued almost exclusively as a source of traits that can be used in scientific breeding programs to improve the productivity of crop varieties and livestock breeds. We argue that it can make a far greater contribution to increased productivity. In particular, a wider deployment of agricultural biodiversity is an essential component in the sustainable delivery of a more secure food supply. Diversity of kingdoms, species and genepools can increase the productivity of farming systems in a range of growing conditions, and more diverse farming systems are also generally more resilient in the face of perturbations, thus enhancing food security. Diversity can maintain and increase soil fertility and mitigate the impact of pests and diseases. Diversity of diet, founded on diverse farming systems, delivers better nutrition and greater health, with additional benefits for human productivity and livelihoods. Agricultural biodiversity will also be absolutely essential to cope with the predicted impacts of climate change, not simply as a source of traits but as the underpinnings of more resilient farm ecosystems. Many of the benefits of agricultural biodiversity are manifested at different ecological and human scales, and cut across political divisions, requiring a cross-sectoral approach to reassess the role of agricultural biodiversity in sustainable and secure food production.Agricultural biodiversity includes those components of biological diversity relevant to food and agriculture as well as the components of biological diversity that constitute the agro-ecosystem. It exists at several levels, from the different ecosystems in which people raise crops and livestock, through the different varieties and breeds of the species, to the genetic variability within each variety or breed. While part of this biodiversity is directly managed to supply the goods and services that people need, much is not directly intended for production but remains important as a source of materials and for its contributions to ecosystem services such as pollination, control of greenhouse gas emissions and soil dynamics.Modern, intensive agriculture reduces agricultural biodiversity. In fact, it is predicated on such a reduction. Farms specialize in livestock or crops, reducing the number of species; fields are enlarged, reducing the extent of field margins and hedgerows; soil amendments enhance the uniformity of soils; and monocultures of genetically uniform individuals tend to dominate. Within this framework, agricultural biodiversity is often seen simply as something to conserve as a source of traits that can be used to improve breeds and varieties (see, for example, [1][2][3][4][5][6] for this approach in several different realms). While this is certainly true, we argue that agricultural biodiversity as such is an important asset that delivers substantial benefits in many different realms and that there is increasing evidence that diversity per se needs to be a central element of sustainable agricultural development.Recognition of the value of maintaining and using agricultural biodiversity is not new [7][8][9][10][11], although recent concerns over food availability suggest that it is timely to highlight evidence of the importance of agricultural biodiversity to agricultural production and productivity. It has been argued that the -food price crisis‖ of 2007-2008 was in many respects a harbinger of things to come and a new regime that will be characterized by higher and more volatile prices [12,13]. The year 2010 saw drought in the Russian Federation and floods in Pakistan, both with far-reaching impacts on food prices and availability, bringing home the need to improve global food security.Two difficulties must be noted in making this case. First, because of the past focus on traits as the main value of agricultural biodiversity, evidence for benefits derived from diversity itself is comparatively sparse. Jackson et al. [9] have argued further that certain benefits, such as the insurance value of biodiversity and of the heterogeneous composition of agro-ecosystems, are not easily detected by the local-scale experiments that are typical of most agricultural research. Secondly, by its very nature, the deployment of agricultural biodiversity affects many different aspects of human livelihoods and it can be difficult to separate out the benefits and rigorously demonstrate causal relationships among these. For reasons of space we focus here on selected aspects of production and consumption, particularly those that impinge on sustainability, and do not discuss in detail the many social, cultural and conservation benefits that can also be attributed to agricultural biodiversity (see e.g., [8,14,15]). Johns and Sthapit [16] discuss in detail what they call -population-level synergies linking biodiversity conservation and human nutrition in developing countries‖.More diverse ecosystems, with more species or more genetic diversity within species, often have higher overall productivity than simpler systems; this is not a new idea [17,18]. Tilman and his colleagues have documented this most extensively for (non-agricultural) prairie ecosystems, where, for example, plots with 16 species produced 2.7 times more biomass than monocultures [19]. In agricultural systems, Bullock et al. [20] created species-rich and species-poor hay meadows; after eight years the richer meadows yielded 43% more hay than species-poor fields, an effect that was not due simply to the fertilizing effects of the greater number of legumes in the more diverse fields. This is generally true for grasslands across Europe [21]. More recent research has indicated that experimentally-manipulated diversity in grasslands promotes temporal stability at many levels of ecosystem organization simultaneously [22]. Mixtures of barley varieties in Poland generally out-yielded the mean of the varieties as pure stands [23]. Increased productivity is also associated with greater stability of yield; Tilman et al. [24] indicate that high-diversity plots were 70% more stable than monocultures.Tilman's measure of stability-the ratio of mean plot total biomass to standard deviation over time-is just one version of stability, and ecologists have long debated the relationship between complexity and various measures of stability in ecosystems and food webs [25][26][27]. In simplified farm systems, farmers have to decide in advance which varieties of which crops they will grow in any given season. Depending on factors such as growing conditions and markets, this creates the potential for bumper harvests and for failures, which is reflected in high year-on-year variance in yields. Experimental studies and large-scale field trials have shown that agricultural biodiversity can reduce variance, thus contributing to this particular type of stability in yield.Significant trade-offs are often involved in balancing the maintenance of diversity within a production system with appropriate (or available) management practices, and the correct balance will differ depending on production system and production objective (see, for example, Snapp, Gentry and Harwood's demonstration that management can be a more important driver than biodiversity [28]). Home gardens are some of the most diverse production systems in the world and also some of the most productive, per unit area [29,30]. Although they are usually highly labor intensive and small, they nonetheless provide direct benefits in terms of production, income and nutrition for millions of small scale farmers throughout the world. For example, Nair [31] reports that in Brazil a 10-20 ha agroforestry-based home garden generated net income comparable to 1000 ha of pasture cattle ranch, in addition to rural employment for women, and all without requiring deforestation. Home gardens in Indonesia can have higher standing biomass, produce a higher net income and improved stability, sustainability and equity than equivalent areas of rice monoculture [32]. Not all home gardens, however, are managed for domestic consumption. A project to encourage women in Senegal to grow vegetables resulted in higher incomes and social standing for the women involved and almost no change in nutritional status because the vegetables were not eaten at home and the women did not use the money earned to buy food [33].Intensive home gardens depend to a large extent for their productivity on using many species that occupy different ecological micro-niches and make differential use of resources, for example by layering. This kind of multiple cropping can take many different forms and undoubtedly provides benefits in terms of nutrient availability and pest control which translate into higher production in many situations. Altieri [34] cites figures showing that in Latin America yield advantages of multispecies cropping range from 20% to 60%. In Mexico, one hectare planted with the very traditional mixture of maize, beans and squash produces as much food as 1.73 ha planted with maize alone. Furthermore, the maize-squash-bean polyculture can produce up to 4 t ha −1 of dry matter that can be returned to the soil, compared with 2 t ha −1 from a monoculture of maize. To some extent this reflects the presence of a leguminous crop, although niche separation, reduced depredations due to pests and diseases and weed competition and more efficient use of natural resources all play a part [35].A detailed study of the so-called Jena Experiment, a long-term investigation of grassland of differing diversity, revealed a clear effect of species richness on productivity [36], including effects of plant diversity on invertebrate herbivores [37] and of invertebrates on plant productivity [38]. Perhaps the strongest conclusion yet to emerge from the Jena Experiment is encapsulated in the title of a review paper: Biodiversity for multifunctional grasslands: equal productivity in high-diversity low-input and low-diversity high-input systems [39]. In fact, -higher diversity is actually more effective in increasing productivity than higher management intensity‖.Similar results have been found in food-production systems, particularly in China. Zhang and Li cite a report that -one-third of all the cultivated land area is used for multiple cropping and half of the total grain yield is produced with multiple cropping‖ (Tong 1993, cited in the review by Zhang and Li [40]). Figures are certainly higher today. Zhang and Li's group has made a detailed study of the effects of agricultural biodiversity and have investigated some of the underlying mechanisms. Wheat shows a 74% yield increase intercropped with maize and a 53% increase intercropped with soybean. Like the increased tillering seen in disease-resistant individuals in a field of mixed varieties of the same species (see below and [41]), Zhang and Li attribute some of the over-yielding of species mixtures to what they call competitive recovery, with above-ground and below-ground effects. Abiotic stresses can be ameliorated by intercropping. Iron-deficiency chlorosis is common in peanut (a major oilseed crop in China), especially when grown as the sole crop. Intercropped with maize, chlorosis is less severe and depends on the close intermingling of maize and peanut root systems. Peanut and maize have different iron-uptake systems, and it is hypothesized that the efficient iron-uptake system of maize mobilizes iron in a form that peanut can make better use of. Similar results have been seen in connection with phosphorus (P) uptake in maize grown with faba bean, where the faba bean is believed to make P more available to maize. Again, roots must mingle closely for overyielding to be observed. Chickpea improves P uptake by wheat and maize via a complex pathway that pits the cereals' greater ability to absorb soluble P against the legume's greater ability to mobilize organic P [42]. Intercropping reduces the accumulation of nitrate in the soil, permitting lower application rates of N and reducing downstream effects.Diversity also acts within a crop species to boost productivity. Genetic diversity can reduce risk of crop failure in high stress environments, as shown by Ceccarelli [43] for barley, although yield levels may be below those achieved by some varieties under non-stress conditions. Many studies have suggested that risk avoidance, multiple use needs and stability are among the reasons why many small-scale farmers continue to grow traditional crop varieties and maintain high levels of genetic and crop diversity throughout the world [8,44,45].At larger scales, there is a widespread recognition of the importance of maintaining crop variety diversity in production systems in order to avoid vulnerability and widespread crop loss as a result of the effect of a particular biotic or abiotic stress on a genetically uniform monoculture [46]. The substantial and, it has been argued predictable [47], crop losses of the food staple taro in Samoa in 1993-1994 can be attributed to such vulnerability, as can the impact of southern corn blight on the U.S. maize crop in 1970-1971 [48].Some of the yield increase associated with greater diversity is the result of the different functions performed by different plant groups and the use of different niches. Even in simpler agricultural systems, however, enhanced resistance to outbreaks of pests and diseases from effective use of both inter-and intra-specific diversity provides the main mechanism for increased yield and yield stability. Finckh et al. [23] identify several mechanisms underlying this effect, from simple distance between susceptible host plants and physical barriers to transmission to competition among pathogen races that reduces disease severity. Experimental mixtures of potato varieties susceptible and resistant to late blight (Phytophthora infestans) show less severe disease than monocultures in temperate [49] and tropical [50] trials. Large-scale deployment of barley mixtures in eastern Germany [51] and rice mixtures in southwest China [52,53] indicates clearly that mixtures with relatively few components can minimize the severity of disease with an impact on yields and yield stability. An extension of this approach to more crops and across a considerably greater area demonstrated increases in yields of between 33% and 85%, with reduced severity of diseases and increased profits [54]. It was anticipated that by summer of 2010, severe drought notwithstanding, 80% of the farmland in Yunnan province (2.9 million ha) would adopt this approach [55].Wolfe's work on barley mixtures and powdery mildew (Erysiphe graminis hordei) was undertaken in the former German Democratic Republic, where an inability to manufacture or purchase fungicides prompted an assessment of alternative approaches. The benefits of mixtures in such cases arise primarily because farmers cannot predict in advance which mildew race will predominate in any given season and thus cannot choose a variety resistant to that race. In the absence of fungicides, a mixture in which each component is resistant to different races protects the entire field. In rice, resistant modern varieties offer a physical barrier to the movement of rice blast (Magnaporthe grisea) spores and also physically support susceptible traditional varieties, which are prone to lodging, thereby increasing the yield of the more valuable traditional varieties. Genetic diversity within fields of a single species will slow the evolution of pathogens, offering longer term protection against the breakdown of resistance, while changing the make-up of the mixture each year could promote even greater diversity in the pathogen population and thus slow down adaptation further by reducing the selection pressure on individual pathogen races. Given the nature of the protection, appropriate mixtures can control several diseases at the same time, further enhancing their usefulness.Pests reduce global crop yields by about 40% each year [56] and Oerke [57] notes that -despite a clear increase in pesticide use, crop losses have not significantly decreased during the last 40 years‖. The use of biodiversity to mitigate damage by pests and macro-parasites is not as well documented as its use against diseases, although Gurr et al. [58] listed several examples that range in scale from the very local-harvesting lucerne fields in alternating strips preserves structural diversity and habitat for natural enemies of Helicoverpa spp-to the landscape-parasitism rates on armyworm Pseudaletia unipuncta are higher in more complex landscapes (see [59,60] for additional examples). Nevertheless, there is a long tradition of integrated pest management (IPM) in which biodiversity plays a central role, although more often in the context of promoting a diverse population of predators than in the use of host biodiversity specifically to mitigate the impact of pests (see, for example, [61]). As a clear example of the multiple benefits of the use of agricultural biodiversity, Pretty et al. [62] analyzed 62 IPM projects in 21 developing countries. In 47, yields increased by an average of 42% while pesticide use declined by 71%. The saving in environmental costs was not calculated, but was probably considerable. Pretty et al. also estimate the many other gains that accrue to -resource-conserving agriculture‖ while drawing attention to the difficulty of isolating and measuring different -services‖.The mechanisms that underlie the effects of changed biodiversity on pests and diseases have begun to be explored in more detail. Keesing et al. [63] point out that for many diseases both positive and negative effects might be expected. Nevertheless, the agricultural examples that they cite all point to greater biodiversity protecting against diseases. In the case of rice blast, in addition to the greater distance between susceptible plants in a plot of mixed varieties, effectively a decrease in host abundance, the different plant architecture of the varieties results in the canopy being drier, which further slows the spread of the fungus [64]. Mundt [41] points out that induced resistance, caused by hosts being exposed to strains of pathogens better adapted to other varieties, can account for up to 30% of the protection against yellow rust (Puccinia striiformis) in wheat fields. Resistant varieties increase tillering and thus compensate for the absence of susceptible neighbors, another buffering mechanism. -Mixtures will not be the disease control tactic of choice in all cases,‖ Mundt concludes. -Given the need for a more sustainable agriculture based on models of natural ecosystems, however, host mixtures will likely play a much larger role in the next 50 years than they have in the past half century.‖Agricultural production depends on the operation of a range of regulating and supporting ecosystem services that include nutrient cycling, regulation of water flow and storage, regulation of soil movement and properties and regulation of biological populations (including pest and disease control as discussed above). To a large extent these services have been replaced in simplified agricultural systems by human-supplied inputs. The importance of agricultural biodiversity in respect of these ecosystem services has been reviewed by Swift et al. [65] and, with respect to crop diversity, more recently by Hajjar et al. [66]. Considerable debate remains on the amount of diversity that is needed within agro-ecosystems for different functions. Some evidence suggests that while diversity is necessary, saturation is reached at relatively low levels of species diversity; other evidence has suggested that reducing diversity often has a negative effect on specific functions (see references in [65]).In fact, there are multiple ecosystem functions, each of which may perform optimally with a different species or genetic assembly. In this respect, Swift et al. [65] note the importance of maintenance of total system diversity and the use of management practices such as conservation agriculture and mulching that are themselves likely to ensure higher levels of diversity in the production system. In seeking to understand the increased productivity of more species-rich grasslands, for example, Milcu et al. manipulated the density of earthworms against a gradient of plant diversity [38]. Neither earthworm density nor plant diversity alone affected rates of decomposition of plant litter; however, decomposition was higher in plant assemblages with more legumes, and the effect was greater at higher plant diversity, which could contribute to the increased primary productivity associated with greater plant diversity.Landscape heterogeneity, which involves a diverse assemblage of crop, livestock and agroforestry elements at different scales, is an important feature of many production systems [9]. As noted above, much of the diversity in agricultural landscapes exists at scales beyond the farm and its role and contribution is poorly captured in most agricultural experimentation.Pollination is a classic and essential ecosystem service where loss of species has recently attracted substantial comment [67,68]. Memmot et al. [69] found that, in simulation studies, pollination networks were relatively tolerant to loss of pollinator species diversity, although certain species, such as bumble bees and some solitary bees, played a particularly important role. However, in their recent review, Hajjar et al. [66] argue that both within-and between-species diversity of crops enhance pollinator availability and improve production. Steffan-Dewenter and Tscharntke [70] found that increasing isolation of habitat islands among agricultural fields resulted in decreasing abundance and species richness of flower-visiting bees, and that seed production decreased with increasing distance from nearest grassland for two brassica crops. The relation between crop diversity and pollinator diversity is a good example of the importance of the interactions among different components of agricultural biodiversity-pollinators and pollinator abundance and activity benefiting from increased diversity, and improving the productivity of some of the different crops present in a production system. Genetic diversity within a bee colony also promotes the survival of the colony [71].All of the mechanisms cited above contribute to resilience-the way in which an ecosystem responds to and recovers from disturbance-which has been attributed to the degree of connectivity within an ecosystem [72]. This resilience to perturbation may be manifested by a smaller drop in productivity, a more rapid recovery and lower variability over time; all are underpinned by biodiversity, and the risk of simplifying ecosystems is that those systems then become more vulnerable to perturbations.Improving yields, especially of the major nutrients such as proteins and calories, is not currently the most pressing challenge to food security. Despite the fact that great strides continue to be made in addressing protein-calorie shortages, around one billion people in the world still face starvation and one third of the global population suffers one or more of the micronutrient deficiencies often lumped together as hidden hunger [73]. The most important of the micronutrients are probably vitamin A, iodine and iron, although Welch and Graham [6] list 49 -essential nutrients for sustaining human life‖ (later expanded to 51 [74]). Nutrition security requires adequate supplies of all.Accurate estimates of the burdens of hunger and malnutrition are probably unrealistic, and short-term numbers fluctuate unreasonably. A joint report on the State of Food Insecurity in the World 2010 from the United Nations' Food and Agriculture Organization and World Food Programme says that 925 million people suffer chronic hunger in 2010. There are, in addition, currently more overweight and obese than chronically hungry people [75] even in developing countries [76]. (Results from a large survey by the World Health Organization, which will give more detailed insights, are currently still being analyzed, see http://www.who.int/bmi/index.jsp?introPage=intro_4.html, accessed on 13 January 2011). The effects on health, cognition and productivity are vast.Past efforts to address micronutrient deficiencies have been based largely on a medical model, focused on fortification (for example iodine in salt), on supplements (for example high doses of vitamin A), or on increasing the micronutrient content of staple crops, so-called biofortification. While all of these approaches have their merits, agricultural biodiversity could provide a valuable complement [77]. This approach goes beyond the use of specific food components to address specific deficiencies [78]; rather, it seeks to broaden the composition of the diet to include greater diversity in the firm belief that this delivers improved nutrition, with not only micronutrients but also other important components such as fiber, and hence better health.There is some evidence of the beneficial effects of dietary diversity (as opposed to specific dietary components) on disease, morbidity and mortality (see references in [79]). Most notably, results from 11 developing countries indicate that, after controlling for confounding factors such as household wealth, there remains a strong relationship between dietary diversity and child development measured as height-for-age Z scores [80]. Dietary diversity thus reduces stunting. In addition, reducing malnutrition of children greatly improves childhood survival in developing countries [81] and has a direct positive impact on economic productivity as adults [82]. There is also good evidence that the addition of even small amounts of animal-derived foods to the diet results in a marked improvement in nutritional status [83].Calls have been made to promote a more food-based approach to nutrition and health [84,85], and not just in the context of developing countries and poverty, [86,87] but to date these have largely been ignored by policy-makers and government.Our own work on neglected and underutilized plant species, undertaken in several locations and with multiple partners, indicates that there is considerable scope for increasing the availability and consumption of these generally more nutritious alternatives, with additional positive benefits for income generation and environmental protection [88]. In India, for example, a long series of studies to improve the use of so-called minor millets among very poor farmers has shown multiple beneficial impacts on yields, incomes, profits, the nutritional value of popular snack and breakfast foods, and female empowerment, all promoting the likely conservation of these crops and their biological diversity in farmers' fields [89][90][91][92]. While it has not so far been possible to demonstrate a direct impact on the nutritional status of participating villagers, there is every expectation that the various synergistic impacts will boost food and nutrition security and ultimately increase health and well being.It is becoming increasingly clear that climate change will result in entirely new weather patterns [93] and that these will have a profound influence on agriculture at all scales [94,95]. There is already substantial evidence of changes in the abundance and distribution of many insects [96], which can be expected to affect the distribution of pests and diseases and of control mechanisms against them.Adaptability and resilience in the production systems will both become increasingly important to enable farmers to cope with climate change and increased climate variability, and there is evidence that this is already important. The maintenance of high levels of sorghum diversity as traditional varieties enabled farmers in Mali to maintain levels of sorghum production and productivity in stressed environments over a period of increasing drought from 1978-1998 [97].To come full circle, plant and animal breeders will need to take advantage of existing biodiversity in order to develop new breeds and varieties that will be able to cope with changed conditions. Even in this realm, however, an advantageous complementary strategy may be to furnish farmers and others with an expanded genepool that they can use to select their own adapted and adaptable populations. These genepools could take the form of segregating populations from wide crosses, multilines, mixtures or simply accessions from the edges of the normal growing range. Indications are that this approach could speed the adaptation of farming systems to changed conditions more effectively than breeding that relies on additional external inputs [23,98].Diversity at ecosystem, species and genetic levels, brings many direct benefits for specific aspects of agricultural production. However, our knowledge of the nature and extent of these benefits remains imperfect and further studies are needed to explore not only the intrinsic benefits but also effects manifested at different scales. The detailed experimental investigations that we have cited in many of the sections above indicate that deploying agricultural biodiversity more effectively is not simply a return to traditional practices. It requires a scientific approach to understand how different forms of agricultural biodiversity contribute to the goals of improved food and nutrition security and sustainability, and a recognition that while some principles and practices will be globally applicable, others may be constrained by locality and culture [22,36,[39][40][41]46,51,54,63,66]. Much remains to be done. It is also important to recognize that the extent and distribution of diversity in production systems may vary substantially depending on the properties of the production systems, their resilience and the ways in which production is managed (see e.g., Wood and Lenne [99] for an alternative perspective).Teasing apart the different ways in which agricultural biodiversity works may prove to be extremely difficult. Zhang and Li, for example, point out that both interspecific facilitation and interspecific competition contribute to intercropping advantages [40]. The same is true of impacts. We expect that increasing the deployment of biodiversity in agricultural systems will have multiple effects that go beyond the production perspective of this paper. Programs that aim to improve food security or social resilience through biodiversity may well have unmeasured effects on factors such as cultural preservation, health and incomes, and vice versa. Multiple case studies from one such project indicate that relatively simple interventions, such as adding poultry-keeping to a family's activities, can improve income, housing, education, food security and many other factors [100]. However, we need a greatly expanded knowledge base to respond effectively to these opportunities.Recent concerns about high food prices and low food availability indicate that agriculture and agricultural production are clearly back on the international agenda. There is a new recognition of the profound challenges faced in increasing production to meet the needs of a growing population under changing climates and the need to do so in a sustainable manner. From this perspective, agricultural biodiversity clearly has an increasingly important role to play, not simply in the classical paradigm as a provider of traits for the incremental, never-ending improvement of staples, but more effectively as an essential component of improved production systems. Of course there are other elements of food-systems and production that require additional research and development, such as harvesting and post-harvest storage, small-scale processing (and domestic cooking methods) and marketing to ensure sustainable improvements in food and nutrition security; more effective use of agricultural biodiversity needs to take its place alongside these sectors.While the temptation will always be to look for quick fixes, these are unlikely to be sustainable or to meet current concerns for an environmentally acceptable agriculture that responds to the needs of small-scale farmers throughout the world. Almost all of the approaches used to date in agricultural intensification strategies, for example the substitution and supplementation of ecosystem function by human labor and petrochemical products, contain the seeds of their own destruction in the form of increased release of greenhouse gases, water supplies depleted by mining, and degraded soils. We need to build production systems that deliver intensification without simplification. This will entail different dimensions, from varietal mixtures [41,52,53], to species intercropping [39,40], to broader diversification strategies [100]. This approach is particularly pertinent in areas where diverse production systems still prevail, most notably marginal areas, but better deployment of agricultural biodiversity in areas that have lost it must also receive greater attention in the future. Diversity will be essential to improve productivity, to enhance ecosystem functions, and to provide adaptability.","tokenCount":"4920"} \ No newline at end of file diff --git a/data/part_3/3835933331.json b/data/part_3/3835933331.json new file mode 100644 index 0000000000000000000000000000000000000000..61a8e866a5e9e554a3c1d5698c344a6443deb6b8 --- /dev/null +++ b/data/part_3/3835933331.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"87e341e7af7df2388fa405a25a11a298","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/39b45c0d-a1fd-4656-a3e4-b92992fae881/retrieve","id":"1981534739"},"keywords":[],"sieverID":"49089bc2-f188-4fe9-a2d2-ad01ae48947e","pagecount":"1","content":"This research examines the suitability of community-based participatory workshops for developing agricultural activities in order to diversify diets. It represents the second part of a project that consists of a diagnostic phase documenting agricultural biodiversity and nutrition (phase I), participatory development of activities to improve nutrition (phase II) and participatory implementation of the activities (phase III). The study is part of theSome quotes by Beveling Malesi, one of the 180 participants in the community nutrition workshops: \"Through the workshops I have learnt many new things. Before, I did not know that a diverse diet is important for health.\" \"We have improved eating at home, thanks to the workshops. We never used to eat fruits. As we did not know the importance of fruits we did not buy them in the market. Now we eat at least two types of fruits a day, for example banana and watermelon. I have created a timetable to diversify food consumption at home. The food I eat today, I try not to eat tomorrow.\" \"I did not know that some plants are actually foods, for example cassava leaves and passion fruit leaves. I also started to plant a vegetable, dania, as I have learned it is important and can also be mixed with other vegetables such as sukuma wiki (kale) or spinach.\" In order to diversify diets in their communities, all sub-locations decided to plant vegetables and legumes and to raise poultry. The participants developed community action plans specifying how these activities are going to be realised. In addition, they chose local funding mechanisms to finance the actions and developed a budget. The groups also succeeded in organising an event to officially kick-off their activities and thereby reaching out to other community members.Except for one less successful sub-location, the workshop groups well developed agricultural activities for improved nutrition. Harmony within the group was a crucial factor for good performance. Sensitivity to group dynamics is thus very important for participatory development of community activities. It was observed that the continuous workshops built trust between researchers and participants and that ownership was developed among the groups. These findings are in line with similar studies on participatory intervention development in Africa. Other related projects in low-income countries stress the importance of community-based approaches in improving nutrition and livelihood outcomes.A series of six participatory workshops was carried out in five sub-locations of Vihiga County in Western Kenya. The workshops aimed to raise awareness on nutrition, to discuss the results of the diagnostic phase (phase I) and to identify and plan community activities to improve nutrition. Per sub-location, 36 men and women were selected to participate in the workshops (180 participants in total).Fig. 1: Vihiga county is located in the western region of Kenya. About 98.7 % of the land in this county is under subsistence farming which includes livestock and crop production, tree growing and fish farming. A community-based approach in form of participatory workshops is well suited for developing agricultural activities in order to diversify diets in Western Kenya.","tokenCount":"501"} \ No newline at end of file diff --git a/data/part_3/3847930893.json b/data/part_3/3847930893.json new file mode 100644 index 0000000000000000000000000000000000000000..b31bd8abf68c6b8643af89fecc6b3693d7b6ebbf --- /dev/null +++ b/data/part_3/3847930893.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"487211962bd7f81baf2a07bf62c974fb","source":"gardian_index","url":"https://link.springer.com/content/pdf/10.1007/s10668-022-02182-0.pdf","id":"1855000822"},"keywords":["Water insecurity","COVID-19","Vulnerable groups","Mekong region","SDG 6"],"sieverID":"8290e7d6-0292-4bbf-8a2c-8dbd132bafd9","pagecount":"20","content":"Access to sufficient clean water is important for reducing the risks from COVID-19. It is unclear, however, what influence COVID-19 has had on water insecurities. The objective of this study was to assess the associations between COVID-19 control measures and household water insecurities. A survey of 1559 individuals living in vulnerable communities in five countries (Cambodia, Laos, Myanmar, Thailand, Vietnam) showed that increased needs for clean water to wash hands or facemasks made it more likely a person was water insecure along those dimensions. Water insecurities with respect to handwashing and drinking, in turn, made adoption of the corresponding good practices less likely, whereas in the case of washing facemasks there was no association. Water system infrastructure, environmental conditions such as floods and droughts, as well as gender norms and knowledge, were also important for water insecurities and the adoption of good practices. As domestic water insecurities and COVID-19 control measures are associated with each other, efforts should therefore be directed at identifying and assisting the water insecure at high risk when COVID-19 reaches their communities.Access to sufficient clean water for drinking, preparing food, hygiene, and sanitation is important for reducing risks of COVID-19 transmission in vulnerable populations and for health outcomes if a person is infected (Amankwaa & Fischer, 2020;Desye, 2021;Lau et al., 2020;Stoler et al., 2020). Household water insecurities arise when the ability to obtain and benefit from water for household uses is reduced or threatened, for example, by problems of availability, access, or allocation (Gupta & Lebel, 2020;Jepson et al., 2017;Young et al., 2021). Poor water quality is another source of insecurity, for example, as a major cause of diarrhoea (Hannah et al., 2020). Common measures to prevent the spread of COVID-19 may influence household water insecurities in several ways. First, frequent handwashing (Lao et al., 2021;Maude et al., 2021), and wearing reusable cloth facemasks (Bauza et al., 2021;Duong et al., 2021;MacIntyre et al., 2021), may lead to growing demand for water in homes where clean water access is already restricted at certain times (Sayeed et al., 2021;Sempewo et al., 2021;Zvobgo & Do, 2020). Second, lockdowns and road closures may disrupt the delivery of drinking water or disrupt the servicing of water systems (Desye, 2021;Howard, 2021;Neal, 2020). Third, the closure of businesses and markets reduces incomes, pushing people towards cheaper but less safe water sources (Shao et al., 2021). Finally, an increased need for water in situations where pump outlets or delivery points are shared make conventional social distancing guidelines impractical, increasing the risks of COVID-19 transmission (Hasan et al., 2021;Stoler et al., 2021).The combined impacts of water insecurities and COVID-19 measures may be particularly severe for residents of urban informal settlements without their own water supplies (Corburn et al., 2020;Wilkinson, 2020), communities in remote locations with limited infrastructure (Eichelberger et al., 2021), refugee camps with inadequate facilities (Rafa et al., 2020), or migrant worker dormitories and camps with shared facilities and no spatial independence (Djalante et al., 2020;Kim et al., 2021). Such communities are often already vulnerable because of power relations and discrimination (Stoler et al., 2020;Wilkinson, 2020). In addition, within communities, women and girls may be more vulnerable to the impacts, as they often carry the greater burden for water collection, cleaning, and caregiving (Adams et al., 2021). The elderly, bed-ridden, or disabled may also be especially vulnerable, as they are dependent on others for access (Scherer et al., 2021).Recognizing that pre-existing water insecurities may make the impacts of COVID-19 outbreaks more severe, and vice versa, COVID-19 impacts may make water insecurities more serious. In this study, we assess the drivers and consequences of household water insecurities in vulnerable communities in five countries in the Mekong Region (Cambodia, Laos, Myanmar, Thailand, Vietnam), in the context of an unfolding COVID-19 pandemic and on-going efforts to meet Sustainable Development Goal 6 (SDG 6)-'ensure availability and sustainable management of water and sanitation for all' (UNESCAP, 2021). In mid-2020, a ranking of 47 countries in the Asia-Pacific Region according to a COVID-19 water security risk rating (Guthrie & Roiko, 2020), ranked three of the Mekong countries in the top 10 at highest risk: Laos (3rd), Cambodia (6th), and Myanmar (7th). Vietnam ranked 26th and Thailand 36th. The countries cover a range of water, sanitation, and hygiene (WASH) development contexts. Laos, for instance, had the fewest COVID-19 infections and deaths (Phonvisay et al., 2021), but also the lowest coverage of handwashing facilities in rural areas (Table SM1). Thailand, in contrast, had the highest rate of COVID-19 infections, but the highest coverage of handwashing facilities. Clearly, the relationship between COVID-19 and water insecurities are more nuanced than what aggregate national rankings or statistics can reveal.Studies in Vietnam in more privileged communities suggest that COVID-19 led to more frequent handwashing and switch to hand sanitizers when water and soap were not available (Huong et al., 2020), and daily washing of cloth facemasks when subjects did not opt for single-use disposable surgical masks (Duong et al., 2021). Water insecurity has not, however, been examined closely in otherwise relevant studies of COVID-19 impacts in more vulnerable and potentially water insecure communities in the Mekong Region. Thus, a study in ethnic minority upland communities in Chiang Rai, Thailand, documented positive changes in hygiene practices such as wearing facemasks in public spaces and frequent handwashing, but also problems from reduced income and limited access to the health care system (Kitchanapaibul et al., 2021). In a companion paper, coping responses were also documented (Suratana et al., 2021). Neither analysis mentioned water.From previous studies in the Mekong Region, it is therefore unclear what influence common control measures have had on household water insecurities, and whether water insecurities influence the adoption of good practices (Fig. 1). In this study, we chose to focus on water used for washing hands, drinking, and washing facemasks, as these three uses span different water sources and practice routines, and thus likely different patterns of association with COVID-19. We address two questions.1. How did the COVID-19 outbreak effect household water insecurities in vulnerable communities? 2. How did household water insecurities impact the adoption of practices important to reducing the risks of COVID-19 infection?In each country, communities in which all or most homes were not connected to a central public water supply system (local community schemes were included) were selected from administrative areas in three geographic zones: upland rural, lowland rural or peri-urban, and urban informal settlements (Table SM2). Several representative communities likely to be water insecure were chosen within each area after consultation with public health offices or local governments. Households and informants within communities were selected by The survey instrument covered basic information about the respondent, their sources of drinking water and handwashing water, access problems, household washing facilities, handwashing and facemask washing practices, impacts of COVID-19 outbreak, gender division of labour and decisions, social well-being, as well as needs for further assistance (See Supplementary Materials). As the survey was carried out among marginalized groups, we kept the format of most questions as simple as possible-most commonly requiring either a Yes or No answer. The survey instrument was translated into five national languages, with an occasional further step of translation in the field to a minority language where necessary. Pre-tests were done in all countries, and the project team met online several times to ensure the intended meaning of each question was understood and captured in the survey instrument in all languages. Respondents gave their verbal consent to participate and were provided with compensation or gift to cover their time.The survey instrument was developed using the online software Alchemer (formerly SurveyGizmo). Answers from respondents were normally entered directly onto handheld tablets or smartphones by a trained interviewer, except where there was no reliable access to internet at a field site, in which case results were recorded first on paper and later uploaded.Unlike work aimed at developing a coherent, standardized set of questions for comparing and tracking changes in household water insecurities (Tsai et al., 2015;Young et al., 2019), this study focused on designing measures for a one-off survey around three specific, contrasting household water uses of importance to COVID-19 transmission in vulnerable communities using multiple water sources of varying quality. The key measures used in this study to characterize a respondent in relation to handwashing, drinking, or facemask washing are defined in Table SM3. Being handwashing water insecure (HWWI), for example, was measured by combining responses to 8 questions covering four aspects: whether water quality was perceived as adequate (2), water volumes sufficient to needs (1), water supply improving (4), and water-related intra-household conflicts (1) (Table SM3). For aspects with multiple question, items responses were weighted so total was 1 for each aspect (or -1 in case of reliability as a reversed scale). We opted for simple questions (Yes or No), based on respondent's experience (rather than summarizing across all members of a household) whenever possible, and a long recall period of over a year, so we could cover with a single survey both the wet and dry seasons known to be very important for water quality and volumes in our target study areas. The long recall period also allowed for some differences in the timing of COVID-19 impacts in different countries. One limitation of the HWWI measure is that it does not include information on severity, for instance, duration or frequency of periods where did not have enough clean water or water system performed poorly. The HWISE scale using a recall period of four weeks (Young et al., 2019) allows for a more detailed questions and nuanced measure of insecurities, but in this setting would have required multiple surveys in different seasons and national pandemic 'waves' that were beyond resources available for this study. The items used in this study included items referring to water quality, an aspect not explicitly addressed in the 12-item HWISE scale (Young et al., 2019).Three measures of good water practices, one corresponding to each insecurity item, were also defined (Table SM3). Good handwashing practices (GHWP), for example, combined identifying situations where washing was important with responses to questions about number of times per day, with time spent each time, and changes in practices in response to COVID-19 (Table SM3). The main limitation of this measure is that it did not include information about the washing process or steps.Derivations of other composite measures used in the analysis, such as financial insecurity, health insecurity, and social insecurity, are given in Table SM3.Analyses of the associations between binary outcome variables and predictors of special interest adjusted for potential confounding variables were done using logistic regression models (Hosmer & Lemeshow, 2000). The strengths of association were measured and interpreted using odds ratios-abbreviated to OR in this paper if adjusted, and to OR raw if not adjusted. Odds ratios greater than one indicate an increased likelihood, whereas ratios smaller than one indicate a decreased likelihood of the outcome. Where appropriate a 95% confidence interval (CI 95 ) for the odds ratio estimate is provided. A CI 95 that does not include 1 can be interpreted as being statistically significant from the baseline group.Two types of statistical models were built following the logic of our conceptual framework (Fig. 1) and sequence of research questions. The first, assessed the impacts of COVID-19 on the likelihood of being water insecure, while considering the social context and water system. The second, assessed the association of water insecurities with the adoption of good practices that could help reduce risks of COVID-19 transmission.The modelling approach was to initially force the inclusion of predictors of special interest, and to identify other candidate predictors using automated backward elimination option in SPSS25 software, and in a second step to manually simplify the model further, retaining only significant (P < 0.05) predictors. All candidate predictor variables used were categorical with transformation of scores and indices with many values to ordinal variables with 3-5 levels to reduce influence of outliers, and so that nonlinear associations could be easily detected without needing to conduct a series of tests, and to keep interpretation of odds ratios simple and consistent in form across predictors. In interpreting significant associations, further analysis was done to better understand associations among closely related variables and individual indicators in composite measures.The findings are organized according to the framework (Fig. 1), starting with information about the vulnerable communities studied and how their lives were impacted by COVID-19. The water sources for drinking and washing are then briefly summarized before the analysis moves onto the two main sections of the results, focussed on the sources of water insecurities and the adoption of practices that reduce the risks of COVID-19 transmission.Basic characteristics of respondents and their households are given in Table 1. A few noteworthy points include that only 13% of respondents had a regular salary, while 42% worked as daily labourer, and 40% had difficulties in making loan repayments, underlining the financial precariousness of many in these communities. Although respondents were living in remote locations, peri-urban transition zones, or in urban informal settlements, 85% had been in residence at their current location for more than 10 years (Table 1), underlining that these vulnerable communities are not transitory.A total of 53 respondents (3.4%) surveyed claimed to have 'never heard of COVID-19' and thus were not asked questions that assume at least some minimal awareness. A comparison with those who had heard of COVID-19 indicates the former are much more likely to have had no formal education (OR raw = 9.12; CI 95 :5.21-16.2), belonged to an ethnic minority group (OR raw = 14.9; CI 95 :6.68-33.2), and lived in upland as opposed to urban sites (OR raw = 16.3 CI 95 :4.88-68.4). Unaware respondents were found at sites in Laos (7.7%), Thailand (7.9%), and Myanmar (1.0%). This group of COVID-19 unaware individuals is a vulnerable group that unfortunately could not be included in the main statistical models reported.At the time of interviews (February-May 2021), only 8% of households had a member who had been tested or undergone quarantine for COVID-19. Nevertheless, COVID-19 measures such as mobility restrictions and closing of certain businesses had significant impacts on livelihoods, mobility, and access to goods and services over most of 2020 (Fig. 2). The patterns across countries were similar in the first six months of 2020, corresponding to the first wave, but diverged more in the following six months or start of the second wave (Fig. 2). The specific activities impacted followed similar patterns in the five countries with a few exceptions. Respondents in Laos, for instance, were less likely to have experienced reduced income, whereas those in Vietnam suffered more from restrictions on mobility, and those in Myanmar most from loss of access to goods and services (Figure SM1).Across the five countries, the most common source of water for hand and facemask washing was groundwater wells (58%). For drinking water, bottled sources ranked highest overall (56%). In the Mekong Region, 'bottled' includes not just small (< 1 L) bottles but also larger reusable plastic containers of 10-20 L. There were some important differences by ecological zone, with groundwater wells being more important in upland sites for drinking, and bottled water relatively less important (Fig. 3a). For sources of drinking water other than bottled or from a dispenser, most respondents boiled and/or filtered water prior to consumption. Thus, of the 8% who drank from running surface waters, 84% boiled or treated water beforehand, while of the 33% who drank well water, a similar proportion (82%) boiled or treated. In lowland and upland sites, water for hand and facemask washing sometimes came from local or central waterworks systems (Fig. 3b), but in many of these cases (77%) washing water was still carried back to the home, implying water was not piped directly to individual homes. Households in the urban informal settlement zones were rarely connected to the public waterworks system (2%). Many households had multiple sources of water for handwashing (32%) and drinking (46%).Being handwashing water insecure (HWWI, 54%), drinking water insecure (DWI, 49%), or facemask washing water insecure (FWWI, 33%) was defined by combining responses to questions about problems experienced in the past year with the quantity and quality of water for each use, as well as trends in reliability of supply (Table SM3). Just under half (48%) of respondents, for example, had experienced not having enough clean water to drink in the past year. Differences among zones in the problems faced were modest, with residents in lowland sites, for example, encountering dirty or unsafe water more often than in other zones (Figure SM3). In the rest of this section, logistic regression models (Table 2) are used to mutually adjust association of various predictors with the three forms of household water insecurity.There were a few associations between changes in practices, which respondents attributed to the impacts of the COVID-19 outbreak and being water insecure (Table 2). Respondents who had increased the thoroughness of handwashing (94%) because of the COVID-19 outbreak were twice as likely to be HWWI (OR = 1.79), and those who washed facemasks more frequently (OR = 2.33) or more thoroughly (OR = 2.15) were likewise more likely to be FWWI (Table 2). In all cases, the increased attention to hygiene implies an increased need for clean water; finding significant associations with insecurity measures implies that the availability of sufficient clean water is not guaranteed.Changes among water sources of different quality were also important to water insecurity. Thus, switches to cleaner sources for handwashing (36%) in response to COVID-19 outbreak made it less likely (OR = 0.56) of being HWWI, while drinking water more frequently from unsafe sources (12%) made it more than three times (OR = 3.71) more likely of being DWI (Table 2). These associations are consistent with the importance of water quality indicators in the definition of all three water insecurities (Table SM3). Increased wearing of facemasks outside the home (90%) was also associated with FWWI, consistent with the increased frequency and intensity of facemask washing. Respondents with less money to spend on drinking water (39%) were more likely to be DWI (OR = 1.46).In terms of water micro-infrastructure, if water must be carried to the home, then a respondent was more likely to be handwashing (OR = 1.63) or drinking (OR = 1.46) water insecure (Table 2). Having access to more handwashing stations reduced the likelihood of being drinking water insecure (OR = 0.65). Convenient access to clean water is important to reducing water insecurities.Respondents were more than twice as likely (OR = 2.28) to be HWWI if household sources included surface waters (rivers or ponds). Almost a third (31%) had at some time used surface sources to wash their hands (Fig. 3b). If supplies were affected by droughts (49%) or salinization (6%), respondents were more likely to be HWWI (Table 2). Dry season droughts and salinization reduce the volume and quality, respectively, of water for washing hands and contribute to HWWI. Respondents were more likely to be DWI if household drinking water sources included surface waters (OR = 2.89) or rainwater tanks (OR = 2.81). Using groundwater wells for washing also made it more likely for a respondent to be FWWI (OR = 2.26). Unimproved or 'natural' sources are of unreliable quality and their use thus a potential source of water insecurity.Households in which women had a similar (shared) or a relatively greater role than men in managing water supplies (Fig. 4) were more likely to be handwashing and facemask washing water insecure (Table 2). One possible explanation is that members of such households are more aware of needs for clean water because women are primary users in the home (Fig. 4), and therefore more likely to detect water insecurities. Looking more closely at Fig. 4 Gender division of labour in the household. Scores vary from women dominate role (+ 1) through both or neither (0) to men dominate role (− 1) specific responsibilities, one of the strongest individual associations was between households in which women (as opposed to men) were responsible for maintaining handwashing facilities and being HWWI (OR raw = 3.11; CI 95 :2.28-4.24). Overall, women are burdened much more than men by roles in food preparation, dish washing, cleaning inside the house, and care-giving tasks (Fig. 4). Many of these activities involve washing hands. Thus, households in which women dominate food and care roles were also more likely to be HWWI (Table 2).An alternative explanation to awareness or perception of insecurities is that households in which women dominate water supply management are less able to address water insecurities, as this requires influence or power within and beyond the household, and this is often held by men. Survey evidence does not support the within household argument. Households in which women (as opposed to men) make water supply decisions were more likely to be HWWI (OR raw = 1.77; CI 95 :1.26-2.51) and FWWI (OR raw = 2.56; CI 95 :1.77-3.71). We did not collect information that could be used to test the beyond the household argument.There were a few other significant associations with socio-economic factors. Respondents with many information sources were less likely than those with few sources to be HWWI (Table 2). This suggests experience or knowledge is important to reducing insecurities. Without adjustment for other predictors, those with a high education were less likely to be HWWI (OR raw = 0.77; CI 95 :0.61-0.97), whereas those with more than 20 years at current location were more likely to be water insecure (OR raw = 1.31; CI 95 :1.12-1.53) than those with fewer than 5 years residence, implying it is an issue of knowledge or information rather than experience. Obtaining information about COVID-19 from social media channels was common (Figure SM2) and was associated with being less likely to be HWWI (OR raw = 0.69; CI 95 :0.56-0.85), whereas those who obtained information from health workers were more likely to be HWWI (OR raw = 1.61; CI 95 :1.31-1.98), perhaps because they set stricter standards.Respondents that were more socially insecure were more likely to be FWWI and HWWI (Table 2), implying that social relations are important for access to water for washing. Increased tension within the household due to COVID-19, for example, made it more likely to have experienced not having enough clean water to wash facemasks (OR raw = 2.59; CI 95 :2.01-3.33). Respondents that were more financially insecure were less likely to be DWI (Table 2), counter to expectations that drinking water access would be more of a problem for those with reduced income or less wealth. Respondents with intermediate health insecurity scores were significantly more likely to be HWWI than those with low scores.Respondents in urban areas were less, and those in lowlands more, likely than those in uplands to be FWWI. Seasonal drought impact household water uses in the uplands (46%) more often than in urban areas (28%). Patterns of water insecurities among countries were diverse (Table 2).In this section, logistic regression models (Table 3) are used to mutually adjust association of various predictors with the adoption of good handwashing practices (GHWP, 1 3 26%), good drinking water practices (GDWP, 23%), and good facemask washing and using practices (GFWUP, 31%) as defined in Table SM3.Respondents experiencing mid or high levels of handwashing water insecure (HWWI) were less likely to adopt GHWP than those with low insecurity scores (Table 3). Experiencing high levels of drinking water insecure (DWI) made it less likely (OR = 0.56) to adopt GDWP. Water insecurity in the case of handwashing and drinking was an obstacle to the adoption of good practices. In contrast, respondents experiencing intermediate or high levels of facemask washing water insecure (FWWI) were neither more nor less likely to have adopted GFWUP than those at a low level (Table 3).In terms of water systems, respondents were more likely (OR = 1.67) to follow GHWP if they had access to more handwashing stations (Table 3). Multiple facilities are an indicator that a house has water hygiene micro-infrastructure, making it easier to follow good practices. Having to carry washing water home, implying a household does not have a direct piped connection, made it less likely (OR = 0.70) to adopt GFWUP. These associations are consistent with the convenient access explanation noted earlier with respect to water insecurities.Having had drinking water supplies impacted by floods was associated with a greater likelihood (OR = 2.94) of adopting GDWP (Table 3). Floods through contaminated run-off may reduce water quality. Residents with experience of being impacted by floods thus were much more likely to boil water prior to drinking (OR raw = 6.42; CI 95 :4.98-8.29), and in doing so meet one of the conditions of being GDWP (Table SM3). Respondents having multiple water sources (OR = 2.94) for drinking were also more likely to adopt GDWP (Table 3).Respondents impacted by floods were more likely to adopt GHWP (Table 3). Floods might help renew groundwater and surface water sources, reducing water shortages for washing hands. However, the evidence from our survey does not support this interpretation, whereby households impacted by floods were more likely to not have enough clean water to wash hands (OR raw = 1.74; CI 95 :1.40-2.17). Those who had used rainwater from tanks for handwashing (16%) were less likely to adopt GHWP. One explanation for the latter association might be the amount that could be stored was quite limited and prioritized for drinking. Consistent with this interpretation is that of the 21% whom had used collected rainwater, 88% had done so for drinking. Moreover, those who used rainwater for washing hands were twice as likely to not have enough clean water to wash hands (OR raw = 2.12; CI 95 :1.61-2.78).Entries in body of table are odds ratios (and 95% confidence intervals) from logistic regression models. Baseline for comparison, if not shown explicitly with '1', is the absence or opposite of the stated conditionWomen were more likely (OR = 1.58) to adopt GHWP than men, while for GDWP and GFWUP there were no differences (Table 3). Households in which women had a greater role in securing water supplies were more likely to adopt GHWP, but less likely to follow GDWP than households in which men had the greater role (Table 3). One reason for the association with GHWP might be the better understanding of good practices regarding washing, cleaning, and food preparation that women have because social norms reinforce these work burdens on them (Fig. 4). That the association with GDWP is different may reflect that buying drinking water is often a shared (37%) or male (26%) responsibility.People who were health insecure, after adjustment for other predictors, were more likely to follow GHWP (Table 3). The health insecure by definition (Table SM3) has recent experiences of being hospitalized (OR raw = 5.00 CI 95 :3.91-6.36) or feeling unwell, which may inform or motivate good practices. Having multiple information sources or a higher education was associated with the adoption of GFWUP (Table 3). Television was the most important channel of information about COVID-19, but social media was also important, as were neighbours (Figure SM2). Households that provided help to other households to cope with the impacts of COVID-19 were more likely to have also adopted GHWP and GFWUP (Table 3). Patterns of association with zones were complex. Residents in urban and lowland sites were more likely to adopt GHWP than those in upland sites, perhaps reflecting less exposure to public health campaigns in remote locations. People in urban sites were more likely to obtain information from government officials than those in upland sites (OR raw = 1.42; CI 95 :1.08-1.88), providing partial support for this explanation. Those in lowland sites, however, were less likely, and in urban sites more likely, to adopt GDWP than those in upland sites.Government measures to control the spread of COVID-19 involved restricting movement or limiting business activities, disrupted livelihoods and reduced incomes in vulnerable groups, but had few traceable impacts on household water insecurities. Behavioural campaigns aimed at hygiene practices, like washing hands and wearing and washing facemasks, had stronger associations with water insecurities, as they increased needs for clean water in a context in which it may be seasonally in short supply, low in quality, or difficult to access in vulnerable communities. Studies in other low-and middle-income countries in other parts of the world have also found that risk-reducing practices require access to more clean water, and this may not be easily available (Sempewo et al., 2021;Stoler et al., 2021;Zvobgo & Do, 2020).Household water insecurities had mixed associations with the adoption of good practices for reducing risks of COVID-19. Being water insecure with respect to handwashing, made the adoption of good handwashing practices less likely-as noted above, perhaps reflecting difficulties in meeting increased demand for clean water. Being water insecure with respect to drinking water also made the adoption of good treatment practices less likely. Being drinking water insecure was strongly associated with the relatively rare use of unsafe surface water sources. The COVID-19 outbreak resulted in increased consumption from these unsafe sources, as well as more boiling prior to drinking. In contrast to the first two insecurities, being facemask washing water insecure was not significantly associated with good facemask washing and using practices. This may reflect strong cultural, as well as mandatory requirements to wear facemasks in public, regardless of whether daily washing or replacement of facemasks is feasible.More broadly, differences between washing hands and masks are reflected in routines. Washing hands happens several times a day, including instances that are not scheduled, whereas washing masks happens less frequently and is scheduled, and may be combined with washing clothes. This suggests convenient access may be more important for handwashing than facemask washing-something that depends on micro-infrastructure or facilities such as buckets, taps, hoses, and soap holders. Drinking water happens many times a day, but preparation (boiling and other treatments) may be done just once a day, while buying bottled water might be done weekly. Moreover, handwashing is an individual activity, whereas washing facemasks or securing clean drinking water might be done by one person for other household members. This study was one of the first studies to report on the significance of water access issues for washing facemasks-with COVID-19 having impacts on water insecurity.Water systems are important to insecurities and practices. A lack of household water infrastructure, as indicated by need to carry handwashing water home, was associated with being water insecure, while having multiple places to wash hands was strongly associated with good hand and facemask washing practices. We suggest that convenience is a key factor in compliance with public health guidance. Our findings are consistent with other studies and reviews which find that adequate facilities and infrastructure to support water, sanitation, and hygiene practices are important to reducing risks from major health crises such as the COVID-19 pandemic (Bauza et al., 2021;Desye, 2021).Environmental conditions, in particular floods and droughts, had implications for the performance of water systems, sometimes contributing to water insecurities and the adoption of good practices. Water quality issues were often key, underlining the importance of continuing to actively pursue SDG 6 targets in the Mekong Region countries by focussing efforts on vulnerable, water insecure communities. In the context of the COVID-19 pandemic, greater attention is needed on disposal of solid wastes and wastewater (Islam et al., 2021;Tortajada, 2021).Social context was important for water insecurities and hygiene practices, not just infrastructure and technologies. Women were more likely than men to adopt good handwashing practices. A study in Vietnam also found women had better handwashing practices than men (Huong et al., 2020). A study in Indonesia also documented that women were more likely to comply with voluntary COVID-19 measures, in part because it fit with norms on gender roles (Paramita et al., 2021). Two norms were examined in this study. The first was in responsibility for securing water supplies for the household-overall this was evenly balanced between men and women and often shared. The second was in responsibilities for food preparation, dishwashing, and care-giving-this was strongly skewed towards women and often their sole responsibility. Households in which women had a greater role (burden) with respect to the managing of water supplies were more likely to be water insecure with respect to washing hands, drinking water, and washing facemasks. There is some evidence consistent with the idea that women are more aware of water insecurities because they are primary users of water within the household. Other possible explanations include women in such households may be too busy to fetch more water for washing, or that men are less likely to assist when water use is for an activity they don't normally do (or feel any responsibility for), and thus not seen as a priority.In the vulnerable communities surveyed in this study, beliefs in the protective merits of frequent handwashing and wearing facemasks were high and comparable to other studies of the general population (Huong et al., 2020), healthcare workers (Maude et al., 2021), or students (Duong et al., 2021) in the Mekong Region. While most people in the Mekong Region had access to multiple sources of information, there were some significant knowledge gaps in some remote ethnic minority and migrant communities studied, with some individuals effectively unaware of the COVID-19 outbreak at the time of interviews. This points to communication failures. Information about COVID-19 prevention in this study mostly came from television, while government officials were only a common source in Cambodia. Social media was also a significant source in all countries. More work is needed to understand the role of different stakeholders-governmental and non-state-have played in providing information and responding with actions to address problems of water insecurity and COVID-19 transmission risks in vulnerable communities.Differences among countries, after adjustment for other variables, were often substantial. Respondents from the Vietnamese sites in the Central Highlands, for example, were more likely to be water insecure with respect to handwashing water than respondents from most other countries, and were less likely to adopt good handwashing practices. In this case, the challenges from seasonal drought that impacts even groundwater wells are an important shared factor across sites. Good drinking water practices were least likely in Myanmar, reflecting a still high reliance on unimproved water sources. Across countries, dependence on wells for drinking water, for instance, was greater in the uplands than in urban or lowland areas where bottled water predominated.This study had some important limitations. First, as a cross-sectional survey we had to rely on respondents recall and attributions to assess impacts. In addition, the recall period was long, which meant we could only ask simple questions about experiences and perceptions. Second, the key measures of water insecurity and good practices were not comprehensive. We did not look closely at handwashing techniques or facemask handling and disposal practices, nor did we cover all dimensions of household water uses. Third, this study did not examine sanitation issues. Given the importance of water quality problems in these vulnerable communities, this was a significant gap. Future work should also look more closely at the associations between drinking water sources and sanitation.In conclusion, the findings of this study show that household water insecurities and COVID-19 measures may influence each other. Changes in practices made in response to the COVID-19 outbreak exacerbated water insecurities, while water insecurities were an obstacle to adoption of some good practices. In the Mekong Region, water quality issues were often a prominent aspect of insecurities. Water systems, from sources through to household micro-infrastructure, are diverse and important to insecurities and the adoption of good practices. Gender norms assign different roles to women and men in relation to procuring versus using water in the household.Based on our findings, we offer a couple of suggestions for policy development and program design. First, greater attention should be given by governments and non-governmental organizations to identify water insecure households in vulnerable communities, as they are likely to be at high risk when COVID-19 reaches their communities. Communities which, for various reasons, are often not adequately served by programs aimed at the general population.Second, programs promoting good hygiene practices for reducing COVID-19 risks should not assume that abundant clean water is always available, that all water used by a household comes from a single source, and that a source has a fixed quality. Programs need to be designed with attention to seasonality.Third, in looking for ways to help vulnerable communities, consideration should be given to supporting micro-infrastructure that makes access to clean water more convenient. Convenient access reduces water insecurities and makes good hygiene practices important to COVID-19 responses more likely.Fourth, while women often share with men responsibilities for securing household water supplies, women are the main users of water within the home for preparing food, washing dishes, cleaning, and care-giving. Aligned with these differences in roles, women are more likely than men to adopt good handwashing practices. COVID-19 risk reduction interventions targeting men may be needed to address these differences in perception and practice.Taken together, these suggestions imply a combination of hardware and software is needed in vulnerable communities to effectively and simultaneously address household water insecurities and behaviours that reduce the risks of COVID-19 infection. Future research should examine interventions by state and non-state actors to reduce water insecurities, and how they have been impacted by COVID-19.","tokenCount":"6191"} \ No newline at end of file diff --git a/data/part_3/3852869089.json b/data/part_3/3852869089.json new file mode 100644 index 0000000000000000000000000000000000000000..b4adc73b7491f9b0a73bebb2f9755dbfb5855386 --- /dev/null +++ b/data/part_3/3852869089.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"2600d9883fcf3b587eb6977befa8d6b7","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/aff07761-7e19-4184-be9b-374b7ea02406/retrieve","id":"-1491230329"},"keywords":[],"sieverID":"01ce9291-5751-4b25-8f6f-0df935ea1d49","pagecount":"1","content":"The drylands of Ethiopia are particularly prone to drought, which causes 75% of livestock losses, pushing millions into poverty. Jointly with, ILRI provides Ethiopia's pastoral communities with an Index-Based Livestock Insurance product that uses satellite data to monitor forage conditions. When these fall below a given threshold, payouts are made to insurance holders. This insurance product has reduced livestock distress sales by 36%, it cut the need for pastoralists to eat fewer meals by 25%, and decreased reliance on food aid by 33%. It was adopted by the World Food Programme, which signed up 20,000 beneficiaries, and by the World Bank's De-risking, Inclusion and Value Enhancement program, which benefits 150,000 pastoralists. The insurance has also been provided by the Oromia Insurance company to 50,000 people and by Islamic Relief to another 1,000 people in Ethiopia's post-conflict Somali region. Since 2021 in Ethiopia, close to USD 1 million worth of resources have been mobilized and payouts close to USD 1 million administered.","tokenCount":"161"} \ No newline at end of file diff --git a/data/part_3/3875156483.json b/data/part_3/3875156483.json new file mode 100644 index 0000000000000000000000000000000000000000..aa67edd82960f1885485dcebc525a3e3999a7fb3 --- /dev/null +++ b/data/part_3/3875156483.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"59b87be288851299e159c85c62f42d5e","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/4bacd53f-4bfc-4c04-a5b0-b473b162c822/retrieve","id":"1481580503"},"keywords":[],"sieverID":"76d16a74-ce79-4808-b119-dd5de5e4731d","pagecount":"99","content":"The common bean (Phaseolus vulgaris L.) is a primary protein source in the diet of many lowincome populations worldwide. Bean root rots have been reported to occur in most bean fields throughout the world. In Uganda, bean root rot is one of the major constraints to bean production, with that caused by Fusarium solani (Mart.) f.sp. phaseoli (Burkholder) (N.C.Snyder & H.N. Hans) resulting in substantial yield losses. The use of resistant varieties is probably the most effective control measure against Fusarium root rot, especially for small-scale farmers with limited access to fungicides. Sources of resistance to Fusarium root rot exist in common beans and have been reported to occur in Africa. Most of the developed and identified resistant genotypes are either late-maturing and small or black-seeded, with a climbing growth habit. None of the commercial Andean bean varieties currently grown in Uganda are resistant to this pathogen. Genetic resistance to Fusarium root rot is polygenic and is strongly influenced by environmental factors. Response to selection for quantitative traits, such as root rot resistance, is slow due to the genetic complexity of the trait and the difficulty in evaluating resistance. Indirect selection for Fusarium root rot resistance based on genetic markers linked to the quantitative trait loci (QTL) for resistance would facilitate improvement, given the limitations of field selection, which are expensive, not consistent across environments and require destructive sampling. The overall objective of this study was to develop approaches based on quantitative trait loci for improving resistance in common beans to Fusarium root rot. The specific objectives were: (i) to confirm the usefulness of a Meso-american source (MLB 49-89A) in transferring resistance to Fusarium solani f.sp. phaseoli into locally adapted Andean types (K20 and K132);(ii) to identify quantitative trait loci that condition resistance to Fusarium root rot in common beans.iv Two populations of 90 and 78 F 4:5 recombinant lines from K20 x MLB-49-89A and K132 x MLB-49-89A respectively, were used to confirm the usefulness of a Meso-american source (MLB 49-89A) in transferring resistance to Fusarium solani f.sp. phaseoli into locally adapted Andean types (K20 and K132). Both K20 and K132 are susceptible to Fusarium root rot, while MLB-49-89A is resistant. The two populations and their parents were evaluated for Fusarium root rot in a screenhouse using a randomised complete block design with two replications in wooden trays measuring 0.74 x 0.42 x 0.115 m. The K20 x MLB-49-89A population was skewed toward resistance while K132 x MLB-49-89A was skewed toward susceptibility. These results therefore clearly show differences in parental effects of K20 and K132 on the resistance to Fusarium root rot. Such differences in means and distributions between the two populations suggest that K20 possesses one or more genes that interact in an epistatic manner with two or more resistance loci in MLB-49-89A. In contrast, K132 apparently lacks the beneficial allele that is present in K20, or has an alternate allele that enhances susceptibility. The frequency distributions for both populations were bimodal, suggesting that a major gene was involved in resistance. A number of lines that had very good resistance levels to Fusarium root rot were identified from both populations. Both the narrow and broad sense heritabilities obtained for K132 x MLB-48-89A in this study were very high (h 2 B =0.99; h 2 N =0.98, referenced to additive variance in the F 2 , reported on a line-mean basis from 2 replications). On the same basis, heritability estimates in K20 x MLB-48-89A were also high (h 2 B =0.86; h 2 N =0.81). The heritability estimates obtained in this study and in previous studies by Mukankusi (2007) indicate that improvement of the Andean varieties for resistance to Fusarium root rot using the Mesoamerican line MLB-49-89A should be possible. The results of this study have shown that when when using MLB-49-89A, it would be easier to improve K20 than K132 for Fusarium root rot resistance.The cross of K132 x MLB 49-89A was emphasized for the mapping study. A total of 35 SSR markers were screened for polymorphism in the parents. Fifteen of the 35 SSR markers were polymorphic, representing 42% of the tested SSR markers. Twelve of the SSR markers gave clearly distinguishable bands and were therefore used for analysis. A mapping population of 62 F 4:5 recombinant inbred lines of K132 x MLB 49-89A was used for identifying quantitative trait loci conditioning resistance to Fusarium root. A linkage map was constructed by placing nine of the polymorphic SSR markers into three partial-linkage groups, each with three SSR markers.The other three markers did not connect to these three linkage groups. Using single marker analysis, two SSR markers that were closely linked to each other (PVBR87 and PVBR109) were significantly associated with Fusarium root scores (p<0.0001) in K132 x MLB-49-89A population. Another SSR marker, PVBR255, showed significant effects on Fusarium root rot scores, but at a reduced significance level (p≤0.05). The other nine SSR markers showed no significant effects. Composite interval mapping detected a major QTL in K132 x MLB-49-89A population between PVBR87 and PVBR109 with a LOD score of 6.1 and coefficient of determination (R 2 ) of 34% and did not assign independent significance to the distantly-liked marker, PVBR255. Therefore, only one QTL was detected in the present study, but it is a major QTL, as indicated by the large R 2 . The two markers associated with the QTL (PVBR87 and PVBR109) are found on linkage group B3 of the common bean core map, close to the region where resistance to root rots, anthracnose, common bacterial blight and bacterial brown spot have been previously mapped. Only four SSR markers (PVBR87, PVBR109, BM156 and BM172) were used in the K20 x MLB 49-89A population because of resource constraints. The two SSR markers (PVBR87 and PVBR109) that were significantly associated with Fusarium root rot resistance in K132 x MLB-49-89A population, also showed significant associations (R 2 = 14%, P < 0.001) in the K20 x MLB-49-89A population. This is a confirmation of the presence of a QTL identified on linkage group B3 close to these two markers in the K132 x MLB-49-89A population. The association of this major QTL with resistance in both populations suggests that vi this QTL may be useful more broadly. There is need to determine whether this QTL is also present in different sources of resistance and whether the two associated SSR markers are useable for marker-assisted selection in a wider range of materials. Fine-resolution mapping could be achieved by using additional markers near the identified markers, enhancing the efficiency of marker-assisted selection and revealing whether this is indeed a single QTL or whether it is made up of several linked QTL, each with a small effect. The detection of this major QTL for resistance to Fusarium provides good prospects for using QTL--based approaches to introgress resistance to Fusarium root rot from Meso-american genotypes into locally adapted Andean bean genotypes.To my beloved family1. Frequency of Fusarium root rot ratings for a K20 x MLB-49-89A recombinant inbred line (F 4:5 ) population. MLB-49-89A is the resistant parent and K20 is the susceptible parent. Disease score was visually rated on a scale of 1-9: where 1=very resistant and 9=very susceptible (Abawi and Pastor-Corales, 1990) Comprehensive genomic map of disease resistance genes and QTL in common bean (Miklas et al., 2006). Fusarium root rot QTL are mapped to B2, B3 and B5...................49 6. Three linkage groups of nine polymorphic SSR marker loci. Drawn using QTL Cartographer version 2.0 for Windows (Basten et al., 2003). Linkage groups 1-3 correspond to the consensus map linkage groups B3, B5 and B2, respectively................56 7. Composite interval mapping analysis: A QTL detected between PVBR87 and PVBR109 where there is the peak of the LOD score profile. The LOD score profile was drawn using QTL Cartographer version 2.0 (Basten et al., 2003) The common bean (Phaseolus vulgaris L.) is the most important cultivated food legume crop worldwide, accounting for 75% of the food legumes traded in the world (Broughton et al., 2003).It is a primary source of protein in the diets of many low-income populations of the world.Beside its high protein content, this bean contains large quantities of complex carbohydrates, fibre, oligosaccharides and phytochemicals, such as polyphenols and isoflavones (Anderson et al., 1999). Common bean is also an important source of iron, phosphorus, magnesium and manganese and also provides lower levels of zinc, iron, copper and calcium (Broughton et al., 2003). The crop is currently the second most important source of human dietary protein and the third most important source of calories for over 100 million people in rural and poor urban communities of Africa (Buruchara, 2006). Beans are grown in a majority of African countries, with about 2.3 million metric tonnes of dry beans produced annually in East Africa alone (FAO, 2009). In some regions of Uganda, beans provide up to 25% of total calories consumed and 45% of total dietary protein. These figures, the highest in the world, are shared by its neighbours Rwanda, Burundi and the Kivu province of the Democratic Republic of Congo (Pachico, 1993).In addition to their nutritional importance, beans have some non-food value too. As a legume, they contribute greatly to soil fertility through symbiotic nitrogen fixation through rhizobia bacteria.Although common bean is well adapted to various cropping systems and has the advantage of a short growing cycle, it is susceptible to many biotic and abiotic constraints (Wortmann et al., 1998). Important abiotic constraints include low soil fertility, particularly involving deficiency of nitrogen, phosphorus and zinc and toxicities from aluminium and manganese (Singh, 2001).Drought affects bean production most strongly in regions with high temperatures (>30°C in the day time and/or >20°C at night) and at low elevations (below 650 m) in the tropical low lands (Singh, 2001).Major biotic constraints include pests and diseases. The most important insect pests include leafhoppers [Empoasca kraemeri (Ross & Moore)] in the tropics and subtropics and Empoasca fabae (Harris) in the temperate and cooler environments (Singh, 2001). Bean fly [Ophiomyia phaseoli (Tryon)] is by far the most damaging insect pest of common bean in Africa (Wortmann et al., 1998). The bean weevils [Zabrotes subfasciatus (Boheman)] in warm tropical and subtropical environments and Acanthoscelides obetectus (Say) in cool and temperate environments cause severe losses when dry beans are not stored properly (Singh, 2001). The levels of significance of the relevant pests depend on climatic conditions and adaptability of the pest. Singh (2001) var. diversispora (Bub.) Boerma] in cool wet regions, occasionally become severe on common bean. Viruses that can cause severe yield losses include bean common mosaic virus (a Potyviridae) in most bean producing regions of the world and bean golden mosaic virus (a geminivirus), which occurs in tropical and subtropical areas (Singh, 2001).Root rots caused by Fusarium solani (Mart.) f.sp. phaseoli (Burkholder) N.C. Snyder & H.N.Hans and other soil-borne pathogens that occur in most bean growing environments are a serious problem in common bean production. In Uganda, bean root rot is one of the most serious constraints to production with significant losses occurring among susceptible varieties, especially in the South-Western highlands (Spence, 2002).Resistance to disease remains an important objective for most bean-breeding programmes.Selecting for greater tolerance to abiotic stresses, such as drought, heat and low soil fertility, is expected to gain importance in response to climate change and increased use of marginal land for bean production. Breeding for these traits is constrained by difficulty to select for novelty. The use of biotechnologies may address this problem. Genome mapping and molecular breeding are tools that bean breeders are increasingly using, especially for improving resistance to diseases and to abiotic stresses (Beaver and Osorno, 2009).Over the past 12 years there has been a steady increase in the area planted to beans in Uganda, increasing from 615,000 ha in 1996 to 849,000 ha in 2006 (FAO STAT, 2007). However, there has been a general decline in production per unit area. For example, bean production in the country was estimated at 600 Kg/ha in 1999 and 500 Kg/ha in 2006(FAO STAT, 2007). Decline in production has been attributed to several biotic and abiotic factors, with root rots being a major biotic constraint to bean production in Uganda (Mukankusi, 2007).Root rots have been reported in most bean fields throughout the world (Park and Tu, 1994). InEast Africa and many other parts of Africa, they are responsible for most of the losses in yield (Spence, 2003). In Uganda root rot is one of the major constraints to bean production, especially in the South-Western highlands, with significant losses occurring in susceptible varieties (Tusiime, 2003;Opio et al., 2007). Root rots are caused by a complex of soil-borne pathogens such as Fusarium solani f.sp. phaseoli, Pythium spp., Rhizoctonia solani, Macrophomina phaseoli and Sclerotium rolfsii (Rusuka et al., 1997). Bean root rot caused by Fusarium solani f.sp. phaseoli is considered the most serious and wide spread soil-borne disease of common beans, with yield losses of up to 85% attributed to the pathogen (Abawi and Pastor Corrales, 1990;Park and Tu, 1994). Fusarium root rot is characterised by reddish-brown lesions along the tap root and hypocotyls. It is particularly severe on large-seeded Andean bean genotypes because of a lack of genetic resistance in these market classes (Abawi and Pastor-Corrales, 1990). The limited genetic variability present in the Andean germplasm, coupled with an emphasis on selection of seed and pod quality traits, appears to have significantly reduced the genetic variability in large-seeded beans (Schneider et al., 2001). Small-seeded genotypes of Mesoamerican origin, although not completely resistant to root rot, are not as susceptible as the largeseeded types (Abawi and Pastor-Corrales, 1990). They have been used previously as sources of resistance to Fusarium root rot (Silbergel, 1987).The use of resistant varieties is probably the most effective control measure for Fusarium root rot, especially for small-scale farmers with limited access to fungicides (Abawi et al., 2006).Sources of resistance exist in common beans and have been reported in Africa (Mukankusi, 2007). Most of the resistant genotypes that have been developed and identified are either late maturing, small or black seeded with a climbing growth habit (Beebe et al., 1981). These attributes reduce their acceptability by farmers and they may not be satisfactory parents in breeding programmes for improving resistance to Fusarium root rot in the large-seeded Andean bean varieties (Mukankusi, 2007). None of the commercial bean varieties currently grown in Uganda are resistant to Fusarium root rot. The two most popular Andean varieties in Uganda K132 and K20 are susceptible. Large-seeded varieties are the major market class or preferred bean seed types in most parts of Uganda (Mukankusi, 2007). There is therefore a need to improve the resistance of these seed types to Fusarium root rot.Genetic resistance to Fusarium solani f.sp. phaseoli is polygenically controlled and is strongly influenced by environmental factors (Schneider et. al., 2001). Since traits such as root rot resistance are genetically complex and difficult to evaluate, the efficiency of phenotypic selection is low, resulting in limited progress in breeding (Roman-Aviles and Kelly, 2005). In addition, scoring individual plants can be problematic for genetically complex traits, since an average of several plants or plots for a particular genotype is preferred for traits strongly influenced by environmental factors (Schneider et. al., 2001). Complex inheritance, combined with genetic incompatibility among some genotypes from widely divergent gene pools, have limited the attempts to introgress Fusarium root rot resistance into Andean bean cultivars from the Meso-american gene pool (Beebe et al., 1981;Román-Avilés and Kelly, 2005).Increasingly, breeders have been identifying Quantitative Trait Loci (QTL) to enhance efficiency and progress in breeding programmes. This approach overcomes some of the common limitations encountered by conventional selection for quantitative traits (Asins, 2002). Indirect selection for resistance to Fusarium solani f.sp. phaseoli based on DNA markers linked to the resistance QTL can facilitate improvement of Fusarium root rot, as field selection is laborious.Using genetic markers linked to major QTL for Fusarium solani f.sp. phaseoli resistance may prove valuable. The bean genome has been mapped using various molecular markers. To-date the simple sequence repeat (SSR) genetic markers have been used to saturate genetic maps (Grisi et al., 2007). Thus identification of quantitative trait loci could facilitate marker-assisted selection for Fusarium root rot resistance in common bean. The focus of this thesis is to confirm the usefulness of a Meso-american source for transferring Fusarium root rot resistance to locally adapted Andean types and to use SSR markers to identify QTL that could assist in transferring that resistance.To develop approaches for introgressing resistance to Fusarium root rot from Meso-american to locally adapted Andean bean genotypes, based on identifying useable quantitative trait loci (QTL).a) To confirm the usefulness of a Meso-american source (MLB 49-89A) in transferring resistance to Fusarium solani f.sp. phaseoli into locally adapted Andean types (K20 and K132).b) To map quantitative trait loci for resistance to Fusarium root rot in common beans.1) Meso-american lines are effective sources of resistance to Fusarium solani f.sp. phaseoli and can be used to improve the Andean varieties.2) Some Simple sequence repeat markers co-segregate with QTL for resistance to Fusarium root rot and can therefore be mapped and used in marker-assisted selection to improve resistance.The genus Phaseolus is of American origin and comprises over 30 species (Debouck, 1999).Only five of these species were domesticated, namely Phaseolus acutifolius (A. Gray) (tepary bean), Phaseolus coccineus L. (scarlet runner bean), Phaseolus lunatus L. (lima bean), Phaseolus polyanthus Greenman (year-long bean) and Phaseolus vulgaris L. (common bean) (Debouck, 1999). Among these species, common bean is the most widely grown, occupying more than 85% of production area sown to all Phaseolus species in the world (Singh, 2001). Large variation in growth habit, phenological traits, seed size, shape, colour and canning and cooking qualities are found among dry bean cultivars (Singh, 2001). Genetic diversity in common bean is organised into large-seeded Andean (>40 g 100-seed weight -1 ) and small-seeded (<25 g 100-seed weight -1 ) and medium-seeded (25-40 g 100-seed weight -1 ) Meso-american gene pools (Singh, 2001).Further evidence for the existence of the two gene pools has been demonstrated by the relationship of seed size (small versus large) with: (i) the Dl genes (Dl-1 versus Dl-2) and F 1 hybrid incompatibility; (ii) phaseolin seed proteins; (iii) allozymes; (iv) morphological traits; and(v) DNA markers (Singh, 2001). The Andean and Meso-american cultivated gene pools are further divided into six races, each with its own distinguishing characteristics, ecological adaptation and agronomic traits. These include: Andean (all large-seeded) = Chile, Nueva Granada and Peru; Meso-american = Durango (medium-seeded semi-climber); Jalisco (mediumseeded climber); and Meso-american (all small-seeded). The existence of additional diversity within Meso-american races has been reported, especially in a group of Guatemalan climbing bean accessions that do not group with any of the previously defined races, (Beebe et al., 2000).Growth habit in beans varies from determinate dwarf beans to very vigorous indeterminate climbing beans. Morphologically, beans are classified as determinate or indeterminate, based on whether a terminal reproductive or vegetative meristem is formed at flowering (Voysest and Dessert, 1991). Common bean varieties have evolved during domestication from extremely indeterminate climbing types to determinate bush types, from sensitivity to a long photoperiod to insensitivity, from small-to large-seeded forms, from seed dormancy and water impermeability of the seed coat to lack of dormancy and a water-permeable seed coat and from highly fibrous pod wall and shattering forms to lack of fibers and non-shattering types (Gepts and Debouck, 1991). These varieties are today widely distributed around the world and are cultivated from subsistence to commercial levels.Root rot diseases are widespread and are often considered a major constraint to bean production, reducing both yield and profitability worldwide. Root rots are caused by a complex of fungal pathogens resident in the soil and include Pythium spp., Fusarium solani f.sp. phaseoli, Rhizoctonia solani and Sclerotium rolfsii (CIAT, 2003). Fusarium oxysporum (Schlecht.) f.sp.phaseoli is another important pathogen that takes advantage of damage caused by other root rot pathogens to enter the vascular system of the plant, causing Fusarium wilt (Rusuku et al., 1997).When evaluated by spatial distribution, plant damage and effect on yield, Pythium and Fusarium species are especially important,particularly under conditions of high soil moisture/rainfall and low temperatures that favour disease development (CIAT, 2003). Over the last decade, the incidence and severity of bean root rots have increased markedly in the Great Lakes Region of Central Africa and East Africa, resulting in a general decline in bean production (CIAT, 2003).Moreover, bean root rots are among diseases and pests associated with intensification of agriculture (CIAT, 2003).Symptoms of root rots induced by Fusarium solani f.sp. phaseoli appear soon after the seedling emerges. The tap root is slightly discoloured at first, gradually becoming brick red turning to brown, with longitudinal cracks. The fibrous roots at the bottom are usually killed and new fibrous roots may form just above the discoloured area and just below the soil surface.Continuous bean cropping allows a build-up of the fungus in the soil. The fungus can survive for 5 years or longer in the absence of the crop (McNab, 2007).The Pythium spp. (Oomycete) that cause Pythium root rot are known to survive in the soil for several years as oospores that infect the root and lower stem (Rusuku et al., 1997). Depending on the time of infection and environmental conditions, disease symptoms caused by Pythium spp.may appear as seed rot (before germination), damping-off, root rot, foliar blight or pod rot (Abawi and Pastor-Corrales, 1990). Initial infection symptoms appear as elongated, dark-brown, water-soaked areas on root and lower stem tissues. Infected tissues become brownish, soft, sunken and eventually collapse, causing plant wilt and death (Otsyula et al., 2003).McNab (2007) points out that Rhizonctonia root rot, caused by Rhizoctonia solani, is characterised by seed rot and a water-soaked stem rot near the soil line, which in new seedlings often results in wilt and death. More commonly, slightly sunken reddish-brown longitudinal stem cankers appear near the soil line on older plants. As inner stem tissue is invaded, it becomes brick red.The involvement of multiple soil-borne pathogens that have different mechanisms of pathogenicity has made it difficult to develop a simple and effective disease management program. Currently, an integrated approach to disease management, using a combination of compatible, appropriate and complementary methods, is considered an effective strategy (CIAT, 2003). The use of resistant, adapted and acceptable cultivars is an effective management option for disease control, particularly for small-scale farmers (CIAT, 2003). In the identification of genetic options, evaluation of over 4000 diverse germplasm accessions has resulted in only a few resistant entries (less than 2.5 %), which emphasizes the limitation of relying on resistant varieties in managing such a complex problem (CIAT, 2003). The focus of this thesis is on Fusarium solani f.sp. phaseoli, one of the major pathogens that so far has received limited efforts toward genetic improvement of resistance.Fusarium root rot is caused by the fungus Fusarium solani f.sp. phaseoli and belongs to the Nectria haematococca-Fusarium solani species complex, section Martiella, of Fusarium (O'Donnel, 2000). The fungus is homothallic, although some strains are heterothallic. It is one of the ten formae specialles of Fusarium solani [Teleomorph Haematonectria haematococca Syn.Nectria haematococca] (Rossman et al., 1999).The pathogen kills the tissue around the basal part of the stem and root system and the characteristic symptom of damage on beans is the reddish discoloration of the tap root and the desiccated lower stem (Erwin et al., 1991). The first symptoms are narrow, long, red to brown streaks on the hypocotyls and tap root. The tap root later turns dark brown and cracks often develop lengthwise. It may then shrivel and die, with clusters of fibrous roots developing above the shrivelled tap root. These fibrous roots may keep the plant alive and under ideal conditions, a few above-ground symptoms appear. Plants may be stunted, have abnormal colour and grow more slowly than healthy plants, resulting in an uneven plant stand (Abawi et al., 2006).Fusarium root rot is favoured by temperatures of 14-24 o C, although the optimum temperature is around 21 o C (Sippel and Hall, 1982).The pathogen usually survives as thick-walled chlamydospores in the soil (Sikora, 2004). These spores germinate when stimulated by nutrients exuded by germinating seeds and root tips. Then the fungus penetrates the plant tissue. Chlamydospores of Fusarium can germinate and reproduce near the seed and roots of many non-host plants as well as organic matter (Sikora, 2004). This means that the pathogen can survive in the field indefinitely. The pathogen is then dispersed by wind, rain, irrigation water, farm implements and any other agent or process capable of moving soil. With each successive crop of beans, pathogen populations increase and the disease becomes more severe. Plant damage is usually increased under environmental conditions that stress plants. These conditions include deep planting, soil compaction, hardpan layers, cool temperatures, high or low pH, low fertility, pesticide or fertilizer injury and flooding or extended drought (Sikora, 2004).In soil, the pathogen spores are often under the influence of soil fungistasis (Hall, 1991).However, when fungistasis is reversed, they germinate and penetrate bean tissue directly or through wounds and natural openings (Hall, 1991). Soil fungistasis is reversed when spores are stimulated by nutrients exuded by germinating been seeds and root tips. The fungus then grows intercellularly throughout the cortical tissues (Kraft et al., 1981).The underlying basis of resistance is varied. Mechanisms associated with host defence response are involved in resistance. For example, a hypersensitive reaction to infection by Fusarium solani f.sp. phaseoli has been reported (Pierre and Wilkinson, 1970). Another mechanism of resistance to Fusarium root rot is possession of vigorous root system (Snapp et al., 2003). Of particular interest is the partitioning of carbohydrate between shoots and roots. Strong root systems are associated with better partitioning and therefore better resistance to root rot (Snapp et al., 2003).The colour of seed and hypocotyls has also been related to the level of resistance to Fusarium solani f.sp. phaseoli. Small and black-seeded varieties are reported to be more resistant compared to large red mottled ones (Beebe et al., 1981). Statler (1970) observed higher resistance to Fusarium solani f.sp. phaseoli in black-seeded varieties and varieties with purplecoloured hypocotyls and related it to the higher production of phenolic compounds inhibitory to fungal growth in the early stages of seedling growth. Phytoalexins such as phaseollin produced in response to infection by Rhizoctonia solani and Fusarium solani f.sp. phaseoli may also enhance resistance to pathogen attack (Kendra and Hadwiger, 1984). Production of these phytoallexins has been shown to be higher and more rapid in resistant bean varieties than in susceptible ones.Various studies have demonstrated that resistance in common bean to Fusarium root rot is heritable (Schneider et al., 2001;Roman-Aviles and Kelly, 2005). Moderate to high heritability estimates have been reported. The heritability estimates vary depending on whether the data is based on the field estimates or green house. Generally, estimates from green house data tend to higher because of the reduction of the variability attributed to the environment. Hassan et al., (1971) reported broad sense heritability of resistance to Fusarium root rot ranging from 0.61 to 0.64 under greenhouse conditions and 0.77 to 0.79 under field conditions. The narrow sense heritability varied from 25.9% to 44.3% for the inter-genepool crosses (Hassan et al., 1971). In previous studies within a single gene pool, higher narrow sense heritabilities have been found, ranging from 0.48 to 0.71 in F 4 -derived recombinant inbred lines (Schneider et al., 2001).Narrow sense heritability for estimates for Fusarium root rot resistance ranged from 0.1 to 0.51 for the kidney and from 0.2 to 0.82 for the cranberry inbred backcross populations (Román-Avilés and Kelly, 2005). Broad sense heritability estimates ranged from 0.22 to 0.69, with a narrow sense heritability of 0.34 in populations involving crosses between Meso-american and Andean lines (including K20, K132, MLB-49-89) (Mukankusi, 2007). The high to moderate heritability previously reported indicate that once suitable sources of resistance have been identified, introgression of resistance from resistant to susceptible genotypes should be possible.Common bean varieties with resistance to single or multiple root rot pathogens have been reported in Africa (Mukankusi, 2007). However, none of the commercial bean varieties currently grown in Uganda exhibit a high level of tolerance to pathogens that cause Fusarium root rot.Small and black-seeded Meso-american varieties are generally more resistant to Fusarium solani f.sp. phaseoli than are the large and red seeded varieties (Beebe et al., 1981). Most of the resistant genotypes already available are late maturing, small or black seeded with a climbing growth habit (Beebe et al., 1981). A resistant large-seeded cultivar, FR266 that belongs to the Andean genepool has been developed using a small and black seeded variety (N203, a Mesoamerican genotype) as source of resistance (Silbernagel, 1987). Schneider et al. (2001) successfully used FR266 as a source of resistance to Fusarium root rot in crosses with beans from the Andean gene pool. The major challenge is that some of these varieties that are resistant to Fusarium root rot are adapted to the USA and Latin America but not to African environments that probably have different pathogens and pathogen strains (Mukankusi, 2007). The smallseeded genotypes of Meso-american origin, although not completely resistant to root rot, are valuable sources of resistance (Abawi and Pastor-Corrales, 1990). Bean varieties that are moderately resistant to Fusarium root rot and grown by farmers in Kenya, Rwanda and Uganda include MLB-49-89A, RWR 719, SCAM-80-CM/15, MLB-49-89A and RWR 1092 (CIAT, 2003). Meso-american varieties MLB-49-89A and RWR 719 have been widely adopted and have had a major impact by reducing root rot epidemics in Western Kenya where bean production had virtually stopped due to root rots (CIAT, 2003). It is therefore important to study the effectiveness of using Meso-american genotypes that are adapted to African climate with adequate levels of resistance to Fusarium root rot as sources of resistance to improve the susceptible Andean varieties. Over emphasis on improvement of quality traits has led to neglect in improvement of disease resistance in kidney and snap beans (Schneider et al., 2001). This may be responsible for the high susceptibility to Fusarium solani f.sp. phaseoli in these seed types as compared to the small-seeded beans (Roman-Aviles and Kelly, 2005).Breeding for resistance to Fusarium root rot is difficult because environmental conditions and soil types contribute to increased disease severity in regions where large-seeded beans are produced (O'Brien et al., 1991;Estevez de Jensen et al., 1998). Lack of field uniformity for inoculum and disease pressure can also compound the breeding progress (Boomstra and Bliss, 1975). Large experimental errors due to field heterogeneity and large genotype x environment interactions have also contributed to the lack of progress in breeding for field resistance to the root-rot complex (Boomstra and Bliss, 1975). Breeding for root rot resistance in beans requires a homogeneous experimental site with high disease potential and an appropriate experimental design to permit discrimination among genotypes (Navarro et al., 2008).Improvement of resistance to Fusarium solani f.sp. phaseoli, especially in large-seeded dry and snap bean types, has been limited, in spite of considerable research efforts to elucidate its genetic control.Fusarium root rot is particularly severe on large-seeded Andean bean genotypes due to lack of genetic resistance (Abawi and Pastor-Corrales, 1990;Schneider et al., 2001). In addition, genetic diversity in the cultivated Andean genotypes is generally very limited (Islam et al., 2004).Development of tools and of approaches for breeding of resistance requires a clear understanding of the nature of resistance as well as the tools to support breeding. The use of genome mapping and molecular breeding are additional tools that bean breeders are increasingly using to more effectively breed for resistance to diseases and abiotic stresses (Beaver and Osorno, 2009).The Phaseolus vulgaris L. genome has an estimated size of 650 million base pairs (Mbp) distributed among 11 chromosomes (Arumuganatham and Earle, 1991). Genetic maps for common bean have been available since the 1990s and are based on various types of molecular markers. The major genetic markers include the co-dominant Restriction Fragment Length Polymorphism (RFLP) markers and dominant Random Amplified Polymorphic DNA (RAPD) markers (Vallejos et al., 1992;Nodari et al., 1993;Adam-Blondon et al., 1994;Vallejos, 1994).A consensus genetic map for common bean that covers a genetic distance of 1226 cM has been developed by integrating marker information from different populations into a reference map derived from the segregation of 563 markers in a common population (BAT93 X Jalo EEP558) (Freyre et al., 1998). An increasing number of genetic maps are being developed in common bean for the identification of quantitative trait loci and of identified genes that control important traits of economic interest. Nevertheless, the information tends to be restricted to those populations already mapped, since the transferability of the molecular markers is very low. Poor transferability is a constraint for comparative genome studies and consequently, for information exchange across different maps (Grisi et al., 2007), indicating the need more mapping efforts especially in local or target populations. Use genetic markers such as SSR markers may help to solve the challenge of transferability of marker information between genotypes and genetic maps.SSR markers are useful for genetic studies because they are co-dominant, multi-allelic, widely distributed across the genome, polymerase chain reaction (PCR)-based and transferable between different genotypes (Grisi et al., 2007). Information generated by these markers allows for comparison and exchange of information between different studies, especially in comparative genetic mapping (Grattapaglia, 2000). Recently, several research groups have made advances in the development of SSR markers for various species of the Leguminosae (Song et al., 2004;Wang et al., 2004). For common bean, SSR markers have been developed from gene bank sequences and enriched genomic libraries (Grisi et al., 2007). The first GenBank derived microsatellites were a set of 38 (Yu et al., 1999(Yu et al., , 2000)). Subsequently, Blair et al. (2003) andGuerra-Sanz ( 2004) developed 57 and 20 additional SSR markers, respectively. Yaish and PerezDe La Vega ( 2003) isolated an additional series of 21 SSR markers. Caixeta et al. (2005) used bacterial artificial chromosome libraries to develop SSR markers linked to a resistance gene. To date, a genetic map has been constructed exclusively with SSR makers, with 106 SSR markers placed in 12 groups with a total length of 606.8 cM and average distance of 6.8 cM (Grisi et al., 2007). Thus, adequate numbers of SSR markers have been mapped in the common bean genome that can facilitate identification and mapping of QTL for several traits of economic importance.Analyses of recombinant inbred lines and other mapping populations have led to the identification of QTL contributing to Fusarium root rot resistance in common bean (Schneider at el., 2001;Chowdhury et al., 2002;Román-Avilés and Kelly, 2005). However, no SSR markers were used in these studies. Because of the many advantages of using SSR markers, the focus of this study is to use SSRs to identify and localise the QTL to Fusarium root rot, building on several previous mapping studies of Fusarium root rot in common bean.Sixteen QTL for Fusarium resistance were identified using F 4:5 recombinant inbred lines derived from a cross between the susceptible large-seeded red kidney 'Montcalm' and the root-rotresistant snap bean breeding line FR 266 (Schneider et al., 2001). Individual RAPD markers in that study each explained more than 15% of the observed phenotypic variation for Fusarium root rot resistance (Schneider et al., 2001). Two of the markers that showed a significant association with resistance are located on linkage group B2 of the bean consensus genetic map and span a region that encompasses the PvPR2 locus. This suggests a role of this pathogenesis-related protein in root rot resistance (Schneider et al., 2001). PvPR 2 and its counterpart PvPR1 are acidic proteins of low molecular weight that are induced during fungal infection (Walter et al., 1990).Interval mapping has revealed two QTL for resistance to Fusarium root rot using an F 2:6recombinant inbred line population (Chowdhury et al., 2002). In that study, one QTL was located between UBC218 1200 and UBC 503640 and the other was located between UBC 503 640 and UBC 211 100. The first QTL had a Likelihood of Odds (LOD) score of 8.0 and explained 30% of the phenotypic variation. The other QTL had an LOD score of 5.0 and explained about 20% of phenotypic variation (Chowdhury et al., 2002).Six QTL for resistance to Fusarium root rot have been identified using a recombinant inbred lines derived from a cross between the root-rot-susceptible snap bean 'Eagle' and 'Puebla 152', a small black-seeded root-rot-resistant dry bean (Navarro et al., 2004). Most of these QTL are located on linkage groups B2 and B3 of the integrated bean map, close to the location of response genes polygalacturonase-inhibiting protein (PGIP) and chalcone synthase locus (ChS)and the defence and pathogenesis-related proteins, PvPR-1 and PvPR-2 (Freyre et al., 1998;Schneider et al., 2001). The co-localisation with genes of known function suggest a possible mechanisms of QTL in Fusarium root rot, while the genetic diversity among resistance sources emphasises the need for cyclic breeding systems to combine QTL located in diverse genomic regions (Román-Avilés and Kelly, 2005).Nine QTL that showed significant associated with Fusarium root rot resistance in the field and green house have been identified using Random Amplified Polymorphic DNA markers in two inbred backcross-derived populations (Román-Avilés and Kelly, 2005). In that study, QTL associated with Fusarium root rot resistance were identified on linkage groups 1, 5, 7, 8 and 9.Three linkage groups (1, 7 and 9) possessing QTL associated with root rot resistance cosegregated with linkage groups B2 and B5 of the integrated map (Román-Avilés and Kelly, 2005).Other resistance factors previously mapped to B5 include QTL for resistance to common et al., 1999). The QTL of major effect that was detected on B2 is in the vicinity of the ChS, PGIP and the pathogenesis-related protein, PvPR-2 (Román-Avilés and Kelly, 2005). Plant defence response is a complex mechanism that is triggered by pathogen attack. In beans, several defenceresponse genes co-localize with resistance QTL suggesting a functional relationship (Geffroy et al., 2000). Other QTL for resistance to root rot and white mold have been previously mapped to regions close to ChS, PGIP and the PVPR-2 on B2, suggesting that physiological resistance to Fusarium root rot and white mold [Sclerotinia sclerotiorum (Lib.) de Bary] is associated with a generalised host defence response (Schneider et al., 2001;Kelly and Vallejo, 2005).Recombinant inbred lines from 'Eagle' x 'Puebla' and two inbred backcross populations were evaluated for root rot resistance by plant stand, plant vigour and plant biomass (Navarro et al 2008). Using composite interval mapping with a LOD score threshold of 2.0, five regions from linkage groups B6, B3 and B7 of the Phaseolus vulgaris core map were associated with root rot resistance (Navarro et al., 2008).Over 10 major genes conditioning resistance to anthracnose have been identified, with markers showing linkage to six independent dominant genes (Co-1, Co-2, Co-4 2 , Co-5, Co-6, Co-9) (Geffroy et al., 1999;Kelly et al., 2003). In addition to genetic studies that show resistance to anthracnose resides at multi-allelic loci, mapping studies have confirmed that these loci reside on various linkage groups of the core bean map (Freyre et al., 1998;Meloto and Kelly, 2000). TheCo-1 locus is located on linkage group B1; Co-2 on B11; Co-4 on B8; Co-6 on B7 and Co-9 on B4 (Gefffroy et al., 1999;Miklas et al., 2000).Resistance to bean common mosaic virus in common bean is conditioned by a series of multiallelic loci (Drijfhout, 1978). The dominant I gene, located on linkage group B2 core bean map, is independent of three recessive bc loci (Gepts, 1999). The bc-3 gene is located on linkage group B6 whereas the bc-1 2 allele resides on linkage group B3 (Miklas et al., 2000). The pathotype non-specific allele, bc-u, also resides on linkage group B3 based on loose linkage with the bc-1 locus (Strausbaugh et al., 1999).Resistance to bean golden mosaic virus is conditioned by the recessive gene bgm-1 and bgm-1 (Urrea et al., 1996). A co-dominant RAPD marker tightly linked with bgm-1 has been identifiedand is being used by breeders to hasten the development of bean germplasm with moderate resistance levels (Urrea et al., 1996). In addition to the resistance conditioned by major genes, two independent QTL were found that have a major effect on reduced mosaic resistance in the cultivar Dorado (Miklas et al., 1996). Together these QTL explained 60% of phenotypic variation in disease reaction in one environment and were consistently expressed across three separate field environments. One of the QTL is located on linkage group B4 based on a Sequence Characterised Amplified Region developed from the RAPD OWR700 (Miklas et al., 2000). The QTL on linkage group B4 is also negatively associated with resistance toMacrophomina phaseoline present in the second parent (XAN176) of the mapping population (Miklas et al., 2000). The second resistance QTL resides on linkage group B7, near the Asp andPhs loci, where the study also found QTL conditioning resistance to common bacterial blight, white mold (causal organism Sclerotinia Sclerotiorum), anthracnose and Macrophomina (Geffroy, 1997).Five QTL that confer resistance to Xanthomonas axonopodis pv. phaseoli have been identified, with one QTL located on each of linkage groups B2, B5, B7 and B9 (Nodari et al., 1993b). In other studies, seven QTL conditioning resistance to bacterial blight (Xanthomonas campestris) have been reported in common beans (Young, 1996). These seven QTL jointly explain 75% of the variation in resistance to bacterial blight, with each locus explaining 11-35% of the variation (Young, 1996).Many resistance genes occur in clusters that protect the plant against several pathogens (Michelmore and Meyers, 1998). In common beans, genes for disease resistance are also concentrated in different regions of the common bean genome (Kelly et al., 2003;Miklas et al., 2006). Therefore, there is need for bean breeders to understand the genetic variation of these genes. QTL analysis is a suitable tool for identifying gene clusters and tagging QTL presents an opportunity for effective introgression of disease resistance. In common beans, genes for resistance to anthracnose (Co-3/Co-9), rust (Ur-5) are linked with the SW-12 QTL for resistance to Bean Golden-yellow mosaic virus (BGYM) (Mendez-Vigo et al., 2005). The anthracnose resistance genes Co-3/Co-9 and Co-2 are organised in two clusters, suggesting that genes for anthracnose resistance could be organised into clusters that confer race-specific resistance (Rodriguez-Suarez et al., 2007).A Quantitative Trait Locus (QTL) is a chromosomal region that is likely to contain causal genetic factors for the phenotypic variation under study (Zou and Zeng, 2008). QTL mapping is based on the basic principle that if there is linkage disequilibrium between the causal factor and a marker locus, mean values of the trait under study will differ among genotype groups with different genotypes at the marker locus (Zou and Zeng, 2008). QTL mapping therefore involves the following steps: (i) Constructing a mapping population from two parents; (ii) identifying candidate markers and screening them for polymorphism; (iii) constructing a linkage map; (iv) analyzing for QTL-trait association using single-marker analysis, interval mapping, composite interval mapping or any other method.A mapping population is one that segregates for the trait of interest. Subsequently, the population is genotyped for segregating markers targeted to specific chromosome regions and/or markers evenly distributed over a genome-wide genetic map. The segregating genotypes characterised phenotypically for quantitative and/or qualitative traits of (Alonso- Blanco et al., 2006). Mapping populations are based on segregating progeny, often derived from F 1 hybrids between parents that strongly contrast for the trait of interest (Alonso-Blanco et al., 2006). Such populations have pronounced strong linkage disequilibrium between loci, allowing the detection of linkage between markers and the trait of interest. Specific genotypes from the mapping population may be intercrossed with each other or outcrossed to other specific genotypes in order to detect only markers closely linked to the QTL.Different populations may be used for mapping within a given plant species, each conferring its own advantages and disadvantages. F 2 populations, derived from F 1 and backcross populations (derived from F 1 or F 2 plants crossed to one or both parents) are the simplest types of mapping populations developed for self pollinating species (Collard et al., 2005). Their main advantages are that they are easy to construct and require only a short time to produce. Inbreeding from individual F 2 plants forms recombinant inbred lines, which consist of a series of nearly homozygous lines each containing a unique combination of chromosomal segments from the original parent. Balanced populations such as recombinant inbred lines, F 2 and doubled haploid populations in which both parental alleles are present in almost equally high frequencies have been used most frequently in QTL studies (Butruille et al., 1999). The estimation of the number of QTL and of the relative position and contribution of each QTL to the expression of a trait of interest is determined most efficiently in balanced populations.Evaluation of highly homozygous families, such as recombinant inbred lines, offers several advantages when compared to the evaluation of F 2 plants or F 3 families. The advantages include:(1) Very limited heterozygosity, which in turn allows for the more effective use of dominant markers;(2) Greater genetic variability among families due to stronger expression of additive effects;(3) Higher mapping resolution due to the higher number of crossover events and ( 4) the opportunity to more consistently reproduce the phenotypic evaluations across space and time (Tuberosa et al., 2003). Recombinant inbred lines have been widely used in beans to map the QTL's associated with resistance to a wide range of diseases (Román-Avilés and Kelly, 2005).The population size required for QTL mapping depends on the population type and the degree of precision of phenotypic evaluation. Evaluation of multi-plant families (F 3 or beyond) provides better phenotypic data than evaluation of single F 2 plants and genetic differentiation is greater among recombinant inbred lines than among F 2 plants. Therefore, recombinant inbred populations have a greater power to detect associations between markers and QTL than F 2 populations representing the same number of genotypes.An alternative to using a balanced population for QTL mapping is using advanced generations of a backcross population. In such a population, the alleles of one parent are present at a much lower frequency (Tanksley and Nelson, 1996). Unbalanced populations have been used in QTL mapping to determine the number of genes controlling a quantitative trait and to introgress desirable QTL from unadapted to better adapted germplasm, (Tanksley and Nelson, 1996;Doganlar et al., 2002). When using unbalanced populations for mapping and identifying QTL, there is a loss of resolution and efficiency due to the unequal allele frequency inherited in inbred lines from backcross populations (Tanksley and Nelson, 1996;Butruille et al., 1999). However, inbred backcross lines still contribute linkage information to genetic maps (Doganlar et al., 2002) and unbalanced populations have the advantage of being more genetically and phenotypically similar to the recurrent parent. The advantage of using such populations is the recovery of genetic materials that possess the advantages of the recurrent parent but with the addition of desirable alleles from the donor parent.Another step in QTL mapping is to identify DNA markers that reveal differences between parents (i.e. polymorphic markers). It is critical that sufficient polymorphism exist between parents in order to construct a linkage map (Young, 1994). In most cases parents that provide adequate polymorphism are selected on the basis of their level of genetic diversity (Collard et al., 2005). In common beans, crosses involving parents with diverse genetic backgrounds are desirable for genetic mapping. Such crosses have a higher number of segregating loci, since suchparents have an increased level of polymorphism, as a result of being from separate gene pools, derived from wild beans that diverged before domestication (Grisi et al., 2007).After identifying polymorphic markers, a linkage map is constructed by recording genotype data for each DNA marker on each individual of a mapping population and then using computer programmes to analyze for linkage between markers and phenotypic traits. The likelihood that particular markers are linked is usually expressed using the odds ratio, i.e., the ratio of the probability of linkage versus the probability of no linkage (Collard et al., 2005), expressed as the logarithm of the ratio and called a Logarithm Of Odds (LOD) (Collard et al., 2005). A LOD score value of 3 between two markers indicates that linkage is 1000 times more likely (1000:1) than no linkage. Lower LOD values may be used in order to detect more distant linkage and to place additional markers within maps that have been constructed using higher LOD values (Collard et al., 2005)..Single-marker analysis is used for detecting QTL associated with single markers and does not require a linkage map. It is based on the principle of detecting an association between phenotypic expression and the genotype of the DNA markers. DNA markers are used to partition the mapping population into different genotypic groups in order to determine whether significant differences exist between groups with respect to the trait being measured (Collard, et al., 2005).A significant difference between phenotypic means of the groups indicates that the marker locus is linked to a QTL controlling the trait. Three essentially equivalent statistical methods are used for single marker-analysis: t-test, analysis of variance and linear regression (Collard, et al., 2005). Single-marker analysis simply detects a linkage association of the trait with an individual marker, but does not indicate how close the QTL is to the marker (Collard, et al., 2005). When investigations focus on questions of genomic location, then more robust methods of QTL analysis such as interval mapping and composite interval mapping are used and these rely on the estimated order of the markers (linkage map). The contribution to the total phenotypic variance of the genetic effect attributed to a single locus (indicated as R 2 ) is estimated through standard regression approach (Tuberosa et al., 2003). The main limitation of single marker analysis is that the effect of any detected QTL will normally be underestimated due to recombinations between the marker locus and the QTL (Tanksley, 1993).Interval mapping uses an estimated genetic map as the framework to discover the location of the QTL (Collard, et al., 2005). The intervals, defined by ordered pairs of markers, are searched in increments (for example, 2cM) and statistical methods are used to test whether a QTL is likely to be present within that interval. This likelihood is expressed as aLOD score, computed as the base-10 logarithm of the ratio between the chances of a real QTL being present given the phenotypic effect associated with that position compared to the chance of having a similar effect with no QTL being present (Tuberosa et al., 2003). The peak of the LOD profile indicates the most likely position of the QTL.More recently, Composite interval mapping has become popular for mapping QTL. Composite interval mapping is based on a joint regression involving a possible QTL within an interval and marker loci outside that interval (Doerge et al., 1997). It combines interval mapping with linear regression by evaluating a statistical model that includes both the adjacent pair of linked markers being evaluated for interval mapping and one or more additional genetic markers at other chromosomal positions (Jansen and Stam, 1994). The main advantage of composite interval mapping is that it is more precise and effective at mapping QTL than is single-marker analysis or interval mapping, especially when linked QTL are involved (Collard et al., 2005). Most of the current methods of QTL analysis, in terms of experimental design, population dimension and statistical approach are inadequate for detecting epistatic QTL's, which may represent a strong source of variation for complex traits (Tuberosa et al., 2003). In this thesis I use the methods described above in an attempt to detect QTL associated with resistance to Fusarium root rot.Genetic resistance to Fusarium solani f.sp. phaseoli is polygenic and is strongly influenced by environmental factors that confound the expression and detection of resistance mechanisms.Common bean varieties with resistance to root rot pathogens have been reported in Africa.However, none of the commercial bean varieties currently grown in Uganda exhibit resistance to pathogens that cause Fusarium root rot. Small and black-seeded Meso-american varieties are in general more resistant to Fusarium root rot than are the large and red seeded varieties. Most of the resistant genotypes that have been developed or identified are either late maturing, small or black seeded, with a climbing growth habit. The challenge is that some of these varieties that are resistant to Fusarium root rot are adapted to the USA and Latin America climates and so may not be effective sources of resistance in tropical African environments that likely involve different pathogens and pathogenic strains. It is therefore important that we investigate the effectiveness of improving Andean varieties that are susceptible to Fusarium root rot by using Meso-american lines that are already adapted to African climates and possess adequate levels of resistance to this disease.Genetic maps for common bean have been available since the 1990s and are based mainly on RFLP and RAPD markers. Recently a genetic map has been constructed exclusively with SSR makers. Quantitative trait loci for Fusarium root rot resistance have been previously mapped using RAPD markers. There is no published work yet to map quantitative trait loci for Fusarium root rot resistance using SSR markers. Such work would be useful in identifying significant QTL-SSR marker association that can be used in marker-assisted breeding. The focus of this thesis is to confirm the usefulness of a Meso-american source for transferring Fusarium root rot resistance to locally adapted Andean types and to use SSR markers to identify QTL that could assist in transferring that resistance.ADAPTED ANDEAN GENOTYPES (K20 AND K132)The use of resistant varieties is probably the most effective control measure for Fusarium root rot, especially for small-scale farmers with limited access to fungicides (Abawi et al., 2006).Sources of resistance to Fusarium solani f.sp. phaseoli exist in common beans and have been reported in Africa (Mukankusi, 2007). However, none of the commercial bean varieties currently grown in Uganda are resistant to this pathogen. Most of the developed and identified genotypes are either late maturing, small or black-seeded with a climbing growth habit (Beebe et al., 1981).These attributes reduce their acceptability to farmers and thus they may not be satisfactory parents in breeding programmes for improving resistance to Fusarium root rot in large-seeded Andean bean varieties that are popular in Uganda (Mukankusi, 2007).Fusarium root rot is particularly severe on large-seeded Andean bean genotypes due to lack of genetic resistance in them (Schneider et al., 2001). Although small-and black-seeded genotypes of Meso-american origin are not completely resistant to Fusarium solani f.sp. phaseoli, they are more valuable sources of resistance than the large-and red-seeded varieties (Beebe et al. 1981;Abawi and Pastor-Corrales, 1990). The large-seeded Andean genotypes such as K20 and K132are the preferred market class of common beans widely grown in Uganda despite being highly susceptible to Fusarium root rot. Resistance to Fusarium root rot has been identified in some Meso-american lines, such as MLB-49-89A. This study was undertaken to confirm the usefulness of a Meso-american source (MLB 49-89A) in transferring resistance to Fusarium solani f.sp. phaseoli into locally adapted Andean genotypes (K20 and K132).This study was carried out in Uganda at the National Agricultural Research Laboratories Crosses of K20 and K132 with MLB-49-89A were used in this study, along with the three parents. Both K20 and K132 are susceptible to Fusarium root rot caused by Fusarium solani f.sp. phaseoli (Mukankusi, 2007). Variety K20 was developed and in Uganda and is widely grown in the country. It belongs to the Andean gene pool, is large-seeded (37.3 g per 100 seeds) and exhibits type I upright determinate bush growth habit (Nabukalu, 2008). It has a red mottled seed colour and takes approximately 33 days to flower. Variety K132 was developed in Uganda and is currently the most widely grown genotype in the country. It also belongs to the Andean gene pool, is large-seeded (44.6 g per 100 seeds) and exhibits the Type I upright determinate bush growth habit. It has a red mottled seed colour and takes approximately 35 days to flower (Nabukalu, 2008). Variety MLB-49-89A is a Meso-american genotype that is moderately resistant to Fusarium root rot with black, small to medium seed size (Mukankusi, 2007).Two populations of recombinant inbred lines were used for this study. A total of 90 and 78 Recombinant inbred lines and their parents were evaluated for their reaction to Fusarium root rot at 28 days after planting (Mukankusi, 2007). The two populations (F 4:5 of K132 x MLB-49-89Aand of K20 x MLB-49-89A) and their parents were evaluated for Fusarium root rot using a randomised complete block design with two replications in wooden trays measuring 0.74 x 0.42x 0.115 m (Plate 2). Each experimental unit consisted of 14 plants per row, in 0.42 m long rows for each population, each tray having nine recombinant inbred lines, plus susceptible and resistant parents.Plate 2. Wooden trays used as blocks within a replication, during the study.Isolate FSP-3 of Fusarium solani f.sp. phaseoli, was used to prepare the inoculum. This had been previously identified as the most virulent Fusarium root-rot isolate in a study on common bean germplasm (Mukankusi, 2007). The isolate was obtained from infected bean fields in southwestern Uganda and is maintained by CIAT (in Uganda). Pure colonies of the isolate, cultured on slants of Potato Dextrose Agar (PDA) (HiMedia Laboratories, Mumbai, India) at 5 o C, were sub-cultured to PDA plates for a period of up to 21 days and then used to prepare inoculum. As described below, infested sorghum seed was used as a medium for Fusarium solani f.sp.phaseoli inoculation in the soil (Mukankusi, 2007).To sterilise sorghum seeds, 500 g of moistened kernels were autoclaved twice for one hour at 120 o C, using autoclave plastic bags. Thereafter, the sorghum seeds were allowed to cool before adding the isolate. One PDA plate of the FSP-3 isolate was mashed into 4-10 ml of sterile and deionised water to make slurry, which was then spread evenly onto the surface of the autoclaved sorghum kernels still in the autoclave bags. The plastics bags were resealed and agitated to mix the slurry with the sterilised sorghum and the culture left at room temperature for 14 days in order to colonise the sorghum kernels. Wooden trays in the screenhouse were partially filled to 2/3 capacity with sterilised loamy sand, containing 80% sand and 20 % loam soil (Mukankusi, 2007). The soil was amended with inorganic fertilizers NPK (1:1:1) at a rate of 3 x 10 -3 kg . ml -1 , both before planting and 7 day later. The prepared inoculum was added to the soil at a rate of 500 g of infested sorghum kernels per tray. The infested kernel was thoroughly mixed with the soil in a tray to ensure an even distribution of inoculum. In order to increase disease pressure immediately after inoculation, the susceptible variety K132 was grown in the trays for 28 days and then uprooted. Subsequently, the two mapping populations of test plants were planted. The plants were watered once a day until the day they were evaluated, to eliminate moisture stress and ensure adequate moisture for good disease development.Disease reaction was visually estimated at 28 days after planting. Six randomly selected plants from each recombinant inbred line in a row were uprooted, taking care not to disturb the main portion of the root system. Roots were cleaned of debris by washing the hypocotyls and roots in water. The levels of infection on the roots and hypocotyls were observed and disease severity estimated on each of the six plants per recombinant inbred line. The average disease severity score was obtained for each line, using the CIAT 1-9 scale (Abawi and Pastor-Corrales, 1990).In this system, 1= No visible symptoms;3= Light discoloration, either without necrotic lesions or with less than 10% of the hypocotyls and root tissues covered with lesions; 5=Approximately 25% of the hypocotyls and root tissues covered with lesions, but tissues remaining firm, with some deterioration of the root system; 7=Approximately 50% of the hypocotyls and root tissues covered with lesions combined with considerable softening, rotting and reduction of the root system; 9= Approximately 75% or more of the hypocotyls and root tissues affected with advanced stages of rotting, combined with severe reduction in the root system.Seed size and colour data were collected from the 73 F 4 lines of K20 x MLB-49-89A. The other 17 lines did not have enough seeds to record seed weights. Seed weight data was collected by taking 100 seed weight. The average moisture content of the seeds at the time of weighing was 10%, measured using GAC ® 500XT moisture meter (DICKY-john, Illinois, USA). Seed colour of the 90 lines was also visually assessed and recorded. There was no data collected on seed size and colour from K132 x MLB-49-89A population because of an inadequate amount of remnant seeds.The mean disease score for each recombinant inbred line of the two populations was calculated for each replicate and replicate means were used to compute the overall mean disease score for the line. The data were subjected to Analysis of Variance (ANOVA) using GenStat Discovery Edition 3 (Lawes Agricultural Trust, Rothamsted, U.K). Where significant differences were found, the means were compared using Fisher's Protected Least Significant Difference (LSD) test at P≤0.05 (Steel et al., 1980). Correlation analysis was done using GenStat Discovery Edition 3 to establish any association between seed weight and Fusarium root rot disease severity index.Broad sense (h 2 B ) and narrow sense (h 2 N ) heritabilities for Fusarium root rot resistance were estimated on a line-mean basis from two replications, using the expected mean squares generated from the analysis of variance table (Bernardo, 2002). Broad sense heritability was calculated based on the mean of the line as: Significant genetic variation (p≤0.01) among the 90 F 4:5 recombinant inbred lines of K20 x MLB-49-89A population was observed for Fusarium root rot scores (Table 1). The mean root rot score for the population of recombinant inbred lines was 4.1, which was less than the mid-parent value of the two parents (5.4). Root rot scores for the recombinant inbred lines ranged from 1.8 to 8.8 (Table 2). Susceptible parent K20 had scores between 7 and 9 with a mean of 8.8, while scores for the resistant parent MLB-49-89A ranged from 1 to 3 with a mean of 2.3. Disease score was visually rated on a scale of 1-9. The scores are based on the CIAT 1-9 (Abawi and Pastor-Corales, 1990), where 1=very resistant and 9=very susceptible. a Mid-Parent Value= Average value of the two parents. b Mean of the 90 recombinant inbred lines. c h 2 B = Broad sense heritability based on expected mean squares, line-mean basis from two replications, (see text, Equation 1) (Bernardo, 2002). d h 2N =Narrow sense heritability (based on an inbreeding coefficient of 0.5 between F 4 lines and assuming dominance and epistasis to be negligible) (see text, Equation 2) (Bernardo, 2002). e LSD=Fishers Protected Least Significant Difference test, computed according to Steel et al. (1980). f CV=Coefficient of Variation (Steel et al., 1980).The population was generally skewed towards resistance (Figure 1). Sixty seven (67) out of 90 lines scored less than 5, which is considered the threshold for resistance reaction. There was a continuous normal distribution observed among susceptible genotypes, while resistant lines were strongly concentrated at a score of 2. Transgressive segregation towards both resistance and susceptibility was observed, but it was more pronounced toward resistance. Both broad and narrow sense heritability estimates were high. Broad sense heritability was estimated as 0.86, with narrow sense heritability h 2 N estimated as 0.81. Susceptible lines showed reduced root biomass compared to the resistant lines, which is one of the symptoms of Fusarium root rot infection (Plate 3).Figure 1. Frequency of Fusarium root rot ratings for a K20 x MLB-49-89A recombinant inbred line (F 4:5 ) population. MLB-49-89A is the resistant parent and K20 is the susceptible parent.Disease score was visually rated on a scale of 1-9 from CIAT, where 1=very resistant and 9=very susceptible (Abawi and Pastor-Corales, 1990).Plate 3. Variation in levels of infection and extent of root growth on a susceptible recombinant inbred line compared to the two parents, K20 (susceptible) and MLB-49-89A (resistant).The distribution curve for seed weight was consistent with a quantitatively inherited trait, skewed moderately toward small seed size, a characteristic of the Meso-american parent (MLB49-89A). with an average of 29.8 g (Figure 2).. The average seed weight was 29.8 g, with lines ranging from 21.4-45.2 g (Table 3). Parental seed was not available from plants grown in the same environment as the RILs, so no comparison could be made with parent seed weights.However, based on typical seed size for these two parents, it is likely that there was transgressive segregation for seed weight in both directions. Correlation analysis between Fusarium root rot and seed weight did not reveal any association between seed weight and Fusarium root rot scores ( r = -0.009).Figure 2. Frequency of seed weights for a population of F 4 lines of K20 x MLB-49-89A. MLB-49-89A is Meso-american and small-seeded, while K20 is Andean and large-seeded. There were generally fewer lines that had seeds with the black colour of MLB-49-89A (18 out of 73) than those that had the red mottled seed colour of K20 (23 out of 73) (Figure 3). There were 26 lines with a purple mottled seed colour. The purple colour is associated with grains that tend towards a red mottled colour. This segregation ratio suggests some form of epistasis for seed color. There was highly significant (p≤0.001) genetic variation for Fusarium root rot scores among the recombinant inbred lines in this population (Table 4). Scores for the recombinant inbred lines ranged from 1.1 to 9 with a mean of 5.3 (Table 5). The susceptible parent K132 had a mean score of 9 and the resistant parent, MLB-49-89A, had scores ranging from1 to 3 with the mean being 1.7 across trays. Both broad and narrow sense heritability estimates in the K132 x MLB-49-89A were very high. Broad sense heritability (h 2 B ) was estimated as 0.98 while the narrow sense heritability (h 2 N ) was estimated as 0.98.For the K132 x MLB-49-89A population a total of 78 F 4 derived recombinant inbred lines were planted in 9 trays with two replications, but only 62 lines survived up to 4 weeks after planting.The other 16 lines died from Fusarium root rot; consequently no leaf tissue was collected for DNA extraction. These 16 lines were assigned a score of 9 to reflect their uniform susceptibility.The distribution exhibited a bimodal pattern with two peaks, one for resistance and one for susceptible (Figure 4). There was, however, a normal distribution observed for genotypes within the resistant category (lines with a score less than 5). Disease score was visually rated on a scale of 1-9. The scores are based on the CIAT 1-9 (Abawi and Pastor-Corales, 1990), where 1=very resistant and 9=very susceptible. a Mid-Parent Value= Average value of the two parents. b Mean of the 90 recombinant inbred lines. c h 2 B = Broad sense heritability based on expected mean squares, line-mean basis from two replications, (see text, Equation 1) (Bernardo, 2002). d h 2N =Narrow sense heritability (based on an inbreeding coefficient of 0.5 between F 4 lines and assuming dominance and epistasis to be negligible) (see text, Equation 2) (Bernardo, 2002). e LSD=Fishers Protected Least Significant Difference test, computed according to Steel et al. (1980). f CV=Coefficient of Variation (Steel et al., 1980). Disease score was visually rated on a scale of 1-9 from CIAT, where 1=very resistant and 9=very susceptible (Abawi and Pastor-Corales, 1990).The objective of this study was to confirm the usefulness of a Meso-american source (MLB 49-89A) to transfer resistance against Fusarium solani f.sp. phaseoli into locally adapted Andean types (K20 and K132). The results show that the Meso-american genotype MLB-49-89A is an effective source of resistance to Fusarium root rot, as indicated by the low to intermediate average scores for both populations (K20 X MLB-49-89A and K132 x MLB-49-89A). The average score of the K20 X MLB-49-89A population (4.1) was significantly lower than its midparent value (5.3), while that of K132 x MLB-49-89A was equal to its mid-parent value (5.3) and higher than the mean of the K20 x MLB-49-89A population. Some recombinant inbred lines of each population showed lower Fusarium severity scores than the resistant parent, indicating transgressive segregation for root rot resistance in both populations. Transgressive segregation has been reported in previous studies involving populations of inbred backcross lines developed from crosses between resistant Meso-american and susceptible Andean genotypes (Román-Avilés and Kelly, 2005). The transgressive segregants observed in this study for Fusarium root rot offer hope for significantly improving this trait in the locally adapted Andean genotypes. Some of the resistant recombinant inbred lines in the current study are also large seeded. There was no correlation between seed weight and Fusarium root rot score in K20 x MLB-49-89A.Most of the recombinant inbred lines had a red mottled or purple seed colour. Selections from both K20 x MLB-49-89A and K132 x MLB-49-89A can produce lines that are not only resistant to Fusarium root rot but also possess good market attributes, such as large seeds and red mottled seed colour. Although the line used in the present study (MLB-49-89A) is not completely resistant to Fusarium root rot, it is an effective source that can be used to improve resistance in the Andean genotypes. Nevertheless environment tends to play a key role in disease development and severity of Fusarium root rot (Schneider et al., 2001). Overall, the scores obtained in this study for the resistant parent support the conclusion that resistant genotypes exhibit a consistent and substantial reduction in the disease incidence.The average Fusarium severity scores on parents K20 and K132 were 8.8 and 9 respectively, indicating that both were highly susceptible. Inheritance of resistance to Fusarium root rot has been reported (Román-Avilés and Kelly (2005). In this study, the bimodal pattern observed in both populations suggests that at least one major gene may be contributing to resistance. Interestingly, progeny from K20 x MLB49-89A population was skewed towards resistance, with a majority of recombinant inbred lines having a disease severity score of less than 5, while the K132 x MLB49-89A was skewed to susceptibility, with many lines having a score of 9.Accordingly, these results suggest a complex pattern of inheritance with some quantitative and/or multi-gene inheritance in addition to at least one major gene. The results also clearly show differences between the parental effects of K20 and K132 on Fusarium root rot resistance.Such differences in means and distributions between the two populations suggest that K20 possesses one or more genes that interact in an epistatic manner with two or more resistance loci in MLB-49-89A. In contrast, K132 apparently lacks the beneficial allele, or has an alternate allele that interacts towards susceptibility.Previous studies (Mukankusi, 2007) have also shown MLB-49-89A to be an effective source of resistance to Fusarium root rot. In crosses involving resistant parents (MLB-49-89A, RWR719, Vunikingi, Umubano and MLB-48-89), with susceptible genotypes, crosses involving MLB-49-89A resulted in the lowest Fusarium severity scores. Consistent with the results of the present study, the cross of K20 x MLB49-89A had a lower average Fusarium severity score than did K132 x MLB49-89A in an earlier test involving the F 1 and F 2 generations (Mukankusi, 2007).The implication of these results is that although MLB49-89A is generally an effective source of resistance to Fusarium root rot, the degree of its effectiveness depends on the Andean parent genotype used. The results of this study have shown that it would be easier to improve K20 than K132 for Fusarium root rot resistance when using MLB-49-89A as a parent. In the USA, Silbergel (1987) developed a resistant large-seeded cultivar FR266 that belongs to the Andean gene pool, using a small and black-seeded variety, N203, as a source of resistance from the Meso-american gene pool. Cultivar FR266 has since been used successfully in crosses with beans from the Andean gene pool for improving resistance to Fusarium root rot (Schneider et al., 2001). Other studies have shown that small and black-seeded Meso-american lines are in general more resistant to Fusarium root rot than the large, seeded varieties and are valuable sources of resistance (Beebe et al. 1981;Abawi and Pastor-Corrales, 1990).In the current study, both the narrow and broad sense heritability estimates obtained for the K20x MLB-48-89A (h 2 B =0.86; h 2 N =0.81) and K132 x MLB-49-89A (h 2 B =0.99, h 2 N =0.98) are very high (line mean basis, two replications). It is expected, that such heritability estimates derived from screenhouse experiments are substantially higher than field heritability estimates for a given population, since the objective for developing screenhouse evaluations is to reduce environmental variation (Schneider et al., 2001). In addition to reducing environmental variation, screenhouse screening also reduces the interaction of genotypes with unintended effects of other biotic and abiotic factors that can occur under field conditions. In this study, screenhouse evaluations used a single isolate of Fusarium solani f.sp. phaseoli, precluding confounding effects from other soil-borne pathogens common under field conditions further reducing environmental variation. Hassan et al. (1971) reported broad sense heritability of resistance to Fusarium root rot varying from 61.5% to 64.3% under greenhouse conditions and 77.9% to 79.7% under field conditions while narrow sense heritability varied from 25.9% to 44.3% for inter-genepool crosses. Relatively high narrow sense heritability estimates for resistance to Fusarium root rot, ranging from 0.48 to 0.71 in the F 4 -derived recombinant inbred lines developed within the same gene pool, have been noted in previous studies (Schneider et al., 2001). Narrow sense heritability estimates for Fusarium root rot resistance ranged from 0.10 to 0.51 for kidney beans and from 0.2 to 0.82 for the cranberry-inbred backcrossed populations (Román-Avilés and Kelly, 2005). In a previous study involving the same three parents as the present study, broad sense heritability on an F 2 single-plant basis ranged from 0.22 to 0.69 and narrow sense heritability was estimated at 0.34 (Mukankusi, 2007).The occurrence of transgressive segregation for resistance in lines with desirable market traits, coupled with the high heritabilities obtained in this study and in previous studies, indicate that introgressing resistance into locally adapted Andean genotypes from Meso-american genotype MLB-49-89A should be possible. Since resistance to Fusarium root rot involves complex inheritance that interacts with the environment, approaches that reduce environmental variation, such as screenhouse screening, should be adopted to make selection more effective.Mapping the QTL for Fusarium root rot resistance involved the following steps:i. Developing a mapping population;ii. Identifying candidate markers and screening them for polymorphism;iii. Constructing a linkage map; iv. Analyzing phenotype-marker associations, using single marker analysis and composite interval mapping.The main mapping population was derived from the K132 x MLB 49-89A. Additionally, analysis was based on the K132 x MLB 49-89A progeny. However, only 4 SSR markers were used for single marker analysis in K20 x MLB 49-89A progeny because of resource constraints.The choice of K132 x MLB 49-89A population is based on the fact that K132 is more susceptible to Fusarium root rot than K20. Also, K132 has a larger seed size than K20 and is currently more popular among farmers and consumers of beans in East Africa (Mukankusi, 2007). The two parents, K132 and MLB-49-89A, are also more highly genetically and phenotypically contrasting compared to K20 and MLB-49-89A.The laboratory experiments in this study were conducted in the biotechnology laboratory in the Department of Crop Science of Makerere University, Kampala, Uganda. Although 100 F 2 of K132 x MLB-49-89A were planted to derive recombinant inbred lines, the final population was reduced to 78 F 4:5 lines because some F 2 and F 3 seeds failed to germinate and others died at the seedling stage. During evaluation, 16 of these lines died from Fusarium root rot before DNA could be extracted from them, leaving only 62 lines for QTL analysis. In K20 x MLB 49-89A, 90 F 4:5 lines were derived from an initial 100 F 2 plants. Both populations were developed as described in section 3.2.2. The phenotypic data in section 3.3.4 was used to identify the QTL for Fusarium root rot in K132 x MLB-49-89A population while the data in section 3.3.1 was used to identify significant phenotype-marker associations in K132 x MLB-49-89A population.In-silico analysis was done to identify SSR markers that are likely to be linked to QTL that condition resistance to Fusarium root rot. Using RAPD markers, previous studies mapped QTL that condition resistance to Fusarium root rot to the linkage groups B2, B3 and B5 of the integrated bean map (Figure 1) (Freyre et al., 1998;Schnider et al., 2001;Navarro et al., 2004;Roman-Aviles and Kelly, 2005;Micklas et al., 2006). To date there are many SSR markers that have been identified and mapped in common bean and assigned to 11 linkage groups of the integrated genetic map. The starting point for this in-silico analysis was to identify SSR markers that have been mapped to linkage groups B2, B3 and B5 of the integrated linkage map of common bean.Genomic DNA was isolated from all materials following the modified protocols of Dellaporta et al. (1983) and Vallejos et al. (1992). Fresh leaf tissue from each parent were harvested at the first trifoliate leaf stage. Frozen leaves from each parent were ground to a very fine powder in liquid nitrogen using a mortar and pestle. About 5 g of the powder was transferred to a 50 ml centrifuge A total of 35 SSR markers were selected (Appendix 1) and tested for polymorphism with K132 TBE buffer (0.83M Boric acid, 1M Tris-HCL and 10 mM EDTA) and run for 3 hours at 130 V using a BIO-RAD electrophoresis system (BIO-RAD Laboratories, California, USA). The DNA was visualised by ethidium-bromide staining (Promega, Madison, USA), using Gel Doc 1000 documentation system (BIO-RAD Laboratories, California, USA).The SSR markers that were found to be polymorphic between the susceptible parent (K132) and resistant parent (MLB49-89A) were used to genotype this mapping population of F 4:5 recombinant inbred lines. Total genomic DNA for each of the recombinant inbred lines was isolated from bulked leaf tissue of five screenhouse-grown plants per recombinant inbred line.An equal quantity of fresh leaf tissue from the five plants of each line was harvested at the first trifoliate leaf stage. Recombinant inbred lines carrying the allele from the susceptible parent at the polymorphic SSR loci were scored as 0, while those carrying the allele from the resistant parent were given a genotypic score of 2. Recombinant inbred lines carrying alleles from both parents (heterozygotes) were given a genotypic score of 1. The K20 x MLB-49-89A population was scored at the two SSR marker loci that had significant association with Fusarium root rot resistance in K132 x MLB-49-89A. Two of the SSR markers that did not show significant associations in K132 x MLB-49-89A population were also included.To identify SSR markers that segregated normally in the mapping population, the Chi-square goodness-of-fit test of the observed segregation ratio for each marker was tested against the expected genotypic ratio of 1:1 for the population at p≤0.05 (Gomez and Gomez, 1984). Only the K132 x MLB-49-89A population was analysed to identify linkage groups of the SSR markers. The linkage groups were developed using MAPMAKER/EXP programme version 3.0 (Lander et al., 1987). Linkage groups of the markers were determined by the group command of MAPMAKER/EXP at a LOD score of 2.0 and a maximum distance of 50 cM, using the Haldane units (Lander et al., 1987).The relationship between molecular markers and phenotypic scores were first analysed by single marker analysis to identify SSR markers that had significant association (p≤0.05) with Fusarium root rot scores. In this population, QTL Cartographer version 2.0 was used for single marker analysis (Basten et al., 2003), which uses the phenotypic and genotypic data in a simple linear This model regresses the trait value on marker genotype. The null hypothesis of no linkage between the marker and the trait score was rejected if the regression indicated a significant slope of trait value related to marker class. The F statistic compared the hypothesis H 0 : Β YX = 0 to an alternative H 1 : Β YX ≠ 0 (Basten et al., 2003). A t-test was used for single marker analysis in the K20 x MLB-49-89A population (Zar, 1998).After creating the linkage groups with MAPMAKER/EXP, QTL Cartographer version 2.0 forWindows was used to map composite intervals (Basten et al., 2003), including only markers assigned to partial linkage groups. Permutation analysis was performed (1000 permutations) to identify the significance threshold of the test statistic (Logarithm of Odds) for individual QTL at p≤0.05 (Doerge et al., 1997). The window size was set to 10 cM and the number of markers for background control was five. For composite interval mapping, the presence of a QTL was declared significant whenever the LOD score exceeded the threshold levels. The estimated position of the QTL was the point at which the maximum LOD score was found in the region under consideration.A total of 35 candidate SSR markers were identified from the bean linkage map (Appendices 2, 3 and 4) and tested for length polymorphism on K132 and MLB-49-89A, the parental lines susceptible and resistant to Fusarium root rot, respectively. Fifteen of the tested SSR markers, representing about 43% of the tested SSR markers exhibited fragment size polymorphism between the two parents (Plate 4 and 5). Only twelve of the fifteen polymorphic markers were used to genotype the mapping population because the polymorphic bands of the other three were not well distinguishable on agarose. Details of these markers are shown in Table 6. Five of the b Calculated Chi-square value (Gomez and Gomez, 1984) . The expected Mendelian segregation ratio is 1:1. *Significant at 5% level of significance.Plate 6. Segregation pattern of SSR loci BM172 in K132 x MLB-49-89A (F 4:5 ) population on agarose. Lanes 1 to 11 are recombinant inbred lines while M is MLB-49-89A, K is K132 and L is the 100bp Ladder.A linkage map was constructed using MAPMAKER/EXP version 3.0 by placing 9 of the 12 polymorphic SSR markers into three partial linkage groups (Linkage group 1, 2 and 3) (Figure 5). Each of the three partial linkage groups had three markers. The total length of these three partial linkage groups was 90.1 cM, with intervals between markers ranging from 0.9 cM to 28.9 cM. The other three SSR markers were not linked to any linkage group (Table 8). The three linkage groups represented only 7.5% coverage of the common bean genome, which has an estimated total size of 1200 cM.Figure 5. Three linkage groups of nine polymorphic SSR marker loci. Drawn using QTL Cartographer version 2.0 for Windows (Basten et al., 2003). Linkage groups 1-3 correspond to the consensus map chromosomes B5, B3 and B2, respectively. The null hypothesis tested in the single-marker analysis is that the mean of the trait value is independent of the genotype at particular marker loci. A linear regression model was used to test this hypothesis and to detect any association between Fusarium root rot scores and the SSR markers. Among the twelve polymorphic SSR markers, single-marker analysis identified two markers closely linked to each other (PVBR87 and PVBR109) as significantly associated with Fusarium root rot scores (p≤0.001) (Table 9). Another marker, PVBR 255, had significant effects at p≤0.05 (Table 9). The other nine markers did not show any significant association with resistance to Fusarium root rot. Table 9 shows only nine markers analysed using linear regression of QTL Cartographer. The other three markers (BM139, BM167 and BM172) were analysed using t-test because they could not assigned to any linkage group; hence QTL Cartographer was not be used. The t-test result for these three markers showed no significant association (p≤0.05) of these markers with the Fusarium root rot resistance (Appendix 6). All three marker alleles associated with resistance to Fusarium root rot resistance in the current study came from the resistant parent MLB-49-89A. Single-marker analysis attributed a substantial proportion (34%) of the phenotypic variance to each of the two closely-linked markers that had the strongest association with Fusarium root rot scores. Due to the tight linkage between these two markers (0.9 cM), multiple regression analysis also attributed the same R 2 value (0.34) to the two markers jointly as was indicated for each marker individually.This high R 2 value indicates that either of these two markers might be useful for marker-assisted selection.Composite interval mapping eliminated marker PVBR255 as having an independent effect on Fusarium root rot, indicating that its association with root rot scores in single-marker analysis resulted from its linkage with two other markers on linkage group 1. A QTL was detected in the vicinity of markers PVBR109 and PVBR87, with a LOD score of 6.1 (Figure 6). The rapid decrease in LOD scores to the proximal side is an artefact of the large distance between PVBR87 and PVBR255. Without additional markers, the most that can be said about the location of the QTL is that it is much closer to PVBR109 and PVBR87 than it is to PVBR255. There were no QTL identified on the other linkage groups. Four SSR markers were tested by single marker analysis, using a t-test to determine significance of the marker-phenotype association. The two SSR markers (PVBR87 and PVBR 109) that showed significant association with Fusarium root rot in K132 x MLB-49-89A population, also showed strong significant association (p≤0.001) in K20 x MLB-49-89A population (Table 10).The other two markers, BM156 and BM172, did not show significant association at p≤0.05. The coefficient of determination (R 2 ) values for the two closely linked SSR markers (PVBR109 and PVBR87) with significant effects was moderate, with single-marker analysis of each accounting for 14% of the phenotypic variance for Fusarium root rot score. Joint regression jointly attributed the same value to this pair of markers (R 2 = 0.14), because the two markers are tightly linked. b Chi-square value (Gomez and Gomez, 1984). The expected Mendelian segregation ratio is 1:1. c Difference between the phenotypic means of the two groups of lines: the group carrying the susceptible parent allele minus the group carrying the resistant parent allele. d t-value statistic (Zar, 1998). The statistic tests association between markers and Fusarium root rot scores e Coefficient of determination. *, ***Significant at the 5% and the 0.1% level of significance, respectively.The objective of this study was to map the quantitative trait loci for Fusarium root rot in a population derived between an Andean genotype, K132 and Meso-american genotype, MLB-49-89A. This study involved two main activities: (i) Screening SSR markers for polymorphism (ii)Mapping quantitative trait loci for Fusarium root rot resistance. Results of these activities are discussed below.Overall the SSR polymorphism between K132 and MLB49-89A identified in this study was relatively high (12/38=42.9%), but lower than that observed for some inter-gene pool parental combinations in which the polymorphism was as high as 60% (Bair et al., 2006). A report on 264 microsatellites showed 43% polymorphism between Andean and Meso-american genotypes (Grisi et al., 2007), a level similar to the current study. This relatively high level of polymorphism was expected in this study, considering that the two parents (K132 and MLB-49-89A) are from two different gene pools and highly contrasting for a number or traits (Grisi et al., 2007). Conversely, the polymorphism levels tend to be lower in crosses among genotypes from within the same gene pool (Frei et al., 2005;Blair et al. 2006).Although linkage group B2 had a relatively high number of polymorphic SSR markers, their distribution on the genetic map is not very good because markers BM139 and BM167 map very close to each other. BM156 and BM152 are the other two SSR markers that map very closely to each other on linkage group B2 of the bean genetic map. The implication of this uneven distribution of markers is that large gaps without a marker remained on each of the three linkage groups of the bean consensus map were targeted by this study. This scenario would diminish the chances of identifying QTL from these linkage groups. Adequate marker coverage of the common bean genome is critical to the detection and accurate mapping of QTL (Collard et al., 2005). where a large number of markers have been analysed. For example, 105 of 599 marker loci (18%) used for the core bean genetic map showed a deviation from the expected segregation ration of 1:1 (Fryre et al., 1998). Also, distorted segregation in 22% of SSR markers was reported in another study of common bean (Grisi et al., 2007). In contrast, Yu et al (2000) found that all 16 SSR markers used in a study of F 7 recombinant inbred lines segregated according to the expected 1:1 ratio. Whenever many markers are screened, there is a higher likelihood of finding preferential transmission of either paternal or maternal alleles to the progeny, distorting the segregation ratio (Grisi et al., 2007).genetic background also shows that the QTL detected in K132 x MLB-49-89A population is stable in different genetic backgrounds. Stability of QTL in different genetic backgrounds is important in marker-assisted selection because it improves the usability of the markers in different genetic background (Collard, 2005).It is interesting to note that the one major QTL identified in this study maps close to the region on linkage group B3 where QTL and major genes for resistance to anthracnose, common bacterial blight and bacterial brown spot have been mapped on the core map i.e., on linkage group B3 between RFLP markers D1020 and D1132 (Micklas et al., 2006). D1020 and D1132are RFLP markers and were not included in the current study. Their position relative to the SSR markers used in this study is based on the available genetic maps of common bean. However, it should be noted that the QTL identified in this study is in a different location from the QTL for Fusarium root rot identified in previous studies (Micklas et al., 2006). That QTL was close to the PVPR-1 gene location on the core map (Micklas et al., 2006).The results of this study corroborate the importance of a segment of B3, where a QTL for resistance to Pythium ultimum and Aphanomyces euteiches was identified previously by Navarro et al. (2008), close to the QTL for Fusarium root rot identified in this study. In the study by Navarro et al., (2008), the markers 13.800 and AP7.1000 that flanked the QTL for resistance to Pythium and Aphanomyces root rots were found between D1020 and D1132 of the integrated linkage map by Yu et al., (2000). This is the same region in which the SSR markers identified in the current study are located, as are the markers mentioned above for resistance to anthracnose, to common bacterial blight and to bacterial brown spot. The proximity of QTL for resistance to these several diseases suggests similar defence response genes or resistance mechanisms.Previous findings also suggest clustering of resistance genes within the common bean genome (Kelly et al., 2003).on linkage group B3 of the consensus map, near PVBR87 and PVBR109. This QTL had an LOD score of 6.1 and coefficient of determination (R 2 ) of 34%, indicating it as a major QTL for Fusarium root rot resistance, even considering that R 2 may be overestimated due to the small population size (n=62). Single marker analysis in K20 x MLB-49-89A population also identified SSR markers PVBR87 and PVBR109 as having significant associations with Fusarium root rot resistance, with an R 2 of 0.14. While further studies are needed to establish the chromosomal location of this major genetic factor more precisely, it is probable that the QTL identified here is responsible for the bimodal distribution obtained for Fusarium root rot scores. The significant associations of the two markers with Fusarium root rot resistance in two different genetic backgrounds is a confirmation of the importance of the identified QTL. The result also shows that the identified QTL is stable in at least two different genetic backgrounds. QTL's that are stable in different genetic background with large effects such as the one identified in this study are useful starting points for marker-assisted selection for Fusarium root rot. SSR markers PVBR109 and PVBR87 are good candidates for further investigation on the prospects of using marker-assisted selection to introgress resistance to Fusarium root rot into the locally adapted Andean genotypes.This study has demonstrated the potential of using Mesoamerican genotypes as sources of resistance to Fusarium root rot to improve locally adapted susceptible Andean genotypes and has also improved knowledge of the genetic basis of resistance to Fusarium root rot. A major quantitative trait loci for resistance to Fusarium root rot has been detected. The two SSR markers linked to this QTL are stable in two different genetic backgrounds. The results of this study has demonstrated good prospects for using QTL-based approaches to introgress resistance to Fusarium root rot from Mesoamerican genotypes into locally adapted Andean bean genotypes.There is need to investigate the possible linkage or pleiotropy of this QTL on other agronomic traits. The parents used here would be appropriate for such a study, since K132 and K20 contrast strongly with MLB-49-89A for seed size, growth habit, days-to-flowering and maturity. There is also a need to determine whether the major QTL that has been identified in this study is also present in different genetic backgrounds and whether the two associated SSR markers are useable for marker-assisted selection in a wider range of materials. Fine-resolution mapping could be achieved using additional markers near the identified markers. More accurate determination of the QTL position could be useful for marker-assisted selection and might reveal whether the major effect QTL detected in this study is indeed a single QTL or is made up of several linked QTL, each with a small effect. The small numbers of SSR markers in this study were purposely targeted to chromosomal regions of anticipated effect. The population size was also small, so it is likely that other undetected QTL also exist. In view of the potential benefits, it is recommended that further studies be conducted involving a larger population size, additional markers near the identified QTL and a much larger number of SSR markers well distributed throughout the genome.The ultimate goal of any plant breeding programme is to efficiently introgress targeted genomic regions with minimal linkage drag. To achieve this there is need to characterise genic regions beyond statistics such as QTL. In the case of this study and as a transition from QTL analysis to gene discovery, there is need for focusing on identifying the candidate gene(s) underlying the mapped QTL. Advances in genomics, bioinformatics and proteomics offer opportunity to achieve this. For example, by undertaking gene expression profiling gene(s) associated with resistance to Fusarium root rot could be identified and their relationship to the mapped revealed.Microarray analysis or other global transcript profiling tools could also be used. These could be based on available data from whole legume genomes and other dicotyledonous species that have been studied. The availability of whole genome sequences of related species such as Medicago sativa, which is a model plant for legumes, offers an opportunity to identify genetic factors within a QTL. Candidate genes underlying QTL effects could be obtained by studying colinearity relationships between model plant like Medicago sativa and common beans, making the former the reference species for the identification of candidate genes. Through the identification of the Medicago sativa genomic regions that are collinear to the bean QTL region, inferences could be drawn on the genetic factors within the QTL. Eventually the common bean genome will also be sequenced a move that will provide ultimate resource of candidate genes for QTL mapping and cloning. ","tokenCount":"15888"} \ No newline at end of file diff --git a/data/part_3/3883574546.json b/data/part_3/3883574546.json new file mode 100644 index 0000000000000000000000000000000000000000..8ac0d32352d5dcb273e0e6fc18f0b5ea75faa5aa --- /dev/null +++ b/data/part_3/3883574546.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"49dc112b0c632c7318ca54d09c1ccf82","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/f56d7a24-e781-4f5a-926e-9eb8284d0c94/retrieve","id":"-229576187"},"keywords":[],"sieverID":"9b59cc26-295c-4f36-ad1b-a5fe832e2197","pagecount":"87","content":"A Deus pela sua presença, dando me saúde e força para chegar até aqui.Agradeço ao meu supervisor Engº Sebastião Famba, pela sua orientação cuidadosa ao longo dos dias de trabalho e pelos tantos e valiosos ensinamentos e discussões que sem dúvida ajudarão para além de minha vida académica. Agradeço aos engenheiros Paiva Munguambe, Ravy Serra, Tomo, Chilundo, Lizarda Cossa pela orientação, amizade e ensinamentos passados durante a realização do trabalho. Agradeço ao Sr. Abel Mesquita, proprietário do campo onde foi realizado o trabalho, pela sua boa vontade em contribuir para o ensino no nosso país. Agradeço aos Técnicos Orlando Cossa e Romano, pela sua paciência e explicação das lições de topografia e levantamentos de campo, que asseguraram que esta informação fosse fiável. Agradeço aos estudantes Dolito, Célio, Retxua, Machemba, Ofiço e Ticha, suas vontades de querer saber e aprender mais e seu apoio no levantamento dos dados no campo. Agradeço aos meus amigos Edson Gimo e Campos Dinheiro que, quase diariamente, estiveram ao meu lado nos melhores e piores momentos desta importante vida estudantil, tendo permitido directa ou indirectamente à minha chegada até aqui. Agradeço aos meus amigos e colegas Milton, Massolonga, Celma, ... e restantes não mencionados, suas capacidades em trabalhar em equipe contribuíram bastante na minha formação. Avaliação da eficiência da rega por sulcos numa area de 16 ha no Distribuidor-9 no regadio de Chókwè Leocádio Mucipo Gonçalves Projecto Final iii Agradeço aos colegas e amigos Odete Camba, Cesário Cambaza, Jaime Gado, José Filipe que durante este tempo todo caminhamos juntos em tudo que fosse estudo e diversão.Agradeço à todos mais, que directa ou indirectamente contribuíram para este estudo a saber:6. RECOMENDAÇÕES- ------------------------------------------------------------------------------------------------------------41 i) Ao agricultor ....................................................................................................................................................41 ii) Aos investigadores..........................................................................................................................................41 iii) As instituições................................................................................................................................................41 7. BIBLIOGRAFIA- -----------------------------------------------------------------------------------------------------------------42 ANEXOS----------------------------------------------------------------------------------------------------------------------------- Os agricultores sabem desde há muito tempo que a rega durante a época seca, permite o cultivo ao longo de todo o ano e não só na época das chuvas (Owen, 1991). A finalidade expressa na rega é obviamente fornecer água às plantas, na medida de suas necessidades e de forma económica e eficiente, tomados em conta os factores que directa ou indirectamente contribuam para a perfeição da operação.A rega por sulcos consiste em fazer fluir a água em pequenos canais dentro da parcela a ser regada. A água infiltra-se pelo fundo e pelos lados do sulco, sendo que uma parte do solo recebe a água directamente e o resto humedece-se por infiltração lateral ou ascensão capilar (Owen, 1991). Assi, o terreno é dividido numa série de sulcos paralelos superficiais, separados por camalhões.A rega por sulcos é um tipo de rega que tem vindo a ser usada desde muito tempo e encontra-se bem divulgada (Raposo, 1996). Bernardo (2002), acrescenta ainda que, quando adequadamente dimensionados e manejados, pode apresentar desempenho satisfatório e comparável a qualquer outro sistema de rega. É da eficiência do sistema de rega por sulcos área no regadio de Chókwè que o presente trabalho vai tratar ao longo do seu desenvolvimento nas páginas subsequentes de modo que a gestão da água seja com menores perdas.Em Moçambique, existe ainda um conhecimento muito limitado acerca da dinâmica da rega e a sua influência na produção agrícola quando bem feita. A rega é um dos factores importantes na agricultura de regadio para suprir períodos de falta de água na planta. Na ausência desta, pode-se ter certeza de maiores perdas de rendimento até ao nível mais baixo possível, na agricultura de regadio. Por outro lado, está o excesso de água que pode provocar alagamento, consequentemente prejuízos na produção quando não drenada.Poucos estudos têm vindo a ser feitos em algumas áreas de Moçambique, e que este será um deles. Todavia, não têm sido suficientes devido ao elevado crescimento demográfico que se tem registado nos últimos anos acompanhados do fraco conhecimento do uso da rega, sendo que a maior parte da população Moçambicana vive da agricultura.No entanto, a água usada na rega exige que se faça a sua gestão de modo que o seu uso seja eficiente e económico, principalmente quando este recurso é limitado, tendo em conta que a finalidade da rega é a cultura e não somente a condução da água.Muitas vezes, os agricultores fazem a rega sem ter em conta as possíveis perdas de água ao longo de todo o processo, devido ao seu fraco conhecimento da mesma. A rega por sulcos (predominante no regadio) não fica de fora, daí a necessidade de se avaliar a eficiência do sistema numa determinada área no regadio de Chókwè para depois serem traçadas estratégias de modo a inverter esta situação sendo que a maior parte da população daquela região trabalha a terra.Avaliar a eficiência da rega por sulcos numa determinada área no regadio de ChókwèDeterminar:-a quantidade de água aplicada e armazenada na zona radicular -as perdas por escoamento superficial e por percolação profunda -as eficiências de aplicação e de armazenamento -as características dos sulcos Avaliar as características dos sulcos e aplicação da água 1.3 Localização da área de estudo e suas características O distrito de Chókwè localiza-se no sudoeste da margem direita do rio Limpopo entre as coordenadas: Longitude 32 o e 30' Este e Latitude 24 o e 10' Sul, possuindo uma superfície terrestre de 3233 km 2 , sendo a extensão Norte-Sul de aproximadamente 100 km e Leste-Oeste de 15 a 40 km. Tem como limites os rios Limpopo e Mazimuchopes e os distritos de Macia, Chibuto, Guijá, Massingir e Magude. A cidade de Chókwè dista a 120 Km de Xai-Xai e cerca de 210 Km de Maputo ( Mosca, 1988).A área de estudo ( víde anexo A, figuras 19 e 20), localiza-se no regadio de Chókwè, distrito do mesmo nome, na província de Gaza, na região de Lionde, Distribuidor-9 (D9) à 17 quilómetros da cidade de Chókwè e a 2 quilómetros, para a esquerda, da estrada nacional nº 205 em direcção ao açude de Macarretane.O regadio de Chókwè é o maior de Moçambique, localiza-se a 220 km a norte da cidade de Maputo (capital do país), na margem direita e ao longo do vale do rio Limpopo na província de Gaza. Este regadio abrange cerca de 13 vilas destacando-se Macarretane, Matuba, Lionde, Chókwè, Conhane, Nwachicoloane, Massavesse, Muianga, Hókwè, Malhazene, Xilembene, Chiguedela e Mapapa (HICEP, 2003).Segundo a HICEP (2003), o regadio de Chókwè serve uma área equipada total de cerca de 28 000 ha, incluindo 2 200 ha por bombagem, a partir de um açude de derivação das águas do rio Limpopo (Macarretane). Estende-se desde a barragem de Macarretane até a região de Chalacuane, Mapapa e Nwachicoluane, num comprimento cerca de 95 km. O abastecimento de água é assegurado pelo caudal natural do curso de água na época quente e pelo caudal do rio dos Elefantes, afluente do rio Limpopo, reforçado pelas descargas da barragem de Massingir, na época fria. O perímetro irrigado de Chókwè, o maior de Moçambique, é essencialmente destinado à produção orizícola, agrupa mais de 12 000 beneficiários nos 22 000 ha cadastrados, dos quais cerca de 5 000 ha activos em 2002.O clima da área conforme a metodologia de Koppen, classifica-se como BSw (semi-árido, megatérmico), isto é, um clima de estepe com um período seco no inverno. Na zona, a precipitação média anual é de 623 mm, atingindo seu valor máximo no mês de Fevereiro (cerca de 140 mm) e o mínimo de 10 mm em Julho. Este elemento de clima (precipitação), faz com que a agricultura de sequeiro seja de elevado risco. A temperatura média anual é de 23,6 o C, a velocidade do vento é da ordem de 153 km por dia e a insolação é de 7,9 hr/dia. A evapotranspiração de referência segundo Penman-Monteith, ultrapassa em todos os meses a precipitação média e o seu valor anual é de cerca de 1400 mm (Touber, 1985).Os solos desta região, são constituídos na sua maioria por formação marinha, com subsolo frequentemente salino-sódico, o que implica a necessidade duma drenagem eficiente e por outro lado de terraços fluviais de boa fertilidade. Possui terras de grande fertilidade devido ao depósito de materiais transportados pelo rio, facto que leva a boas produções sem a adubação. Em geral, os solos são de textura predominantemente argilosa a franco argiloso, pesados, compactos, impenetráveis e bastante abrasivos, tendendo a alcalinidade (Maduma, 2001citando Sogreah, 1996). Os solos são profundos (com uma espessura efectiva superior a 1 m) e conteúdo de argila ronda os 35 %. A sua permeabilidade interna é moderada a rápida (7-10 mm/hr), tendo uma fracção de água utilizável que varia entre os 10 e 13%, variando com o teor de matéria orgânica e argila. O pH varia de 7,0-7,3. São solos que permitem alcançar elevadas produtividades mas requerem uma cuidada monitorização (FAEF, 2001).A agricultura na zona é praticada em condições de regadio, na sua grande maioria em regime de rega por gravidade, através duma derivação de água do rio Limpopo, utilizando a rede hidráulica do Chókwè. O maneio de água é um problema sério devido aos diferentes tipos de agricultores.Segundo Brito et all (2001), existem quatro diferentes tipos de agricultores que no regadio actuam, sendo:i. Pequeno agricultor, com áreas entre 1 à 3 ha, usa mão-de-obra familiar e sazonal, não dispõe de capital para obter insumos de produção melhorados, trabalham manualmente, alguns usam a tracção animal ás vezes, não usam adubos, não tem acesso ao crédito e em situação de crise não tem acesso a água.ii. Agricultor patronal, com áreas entre 4 a 10 ha, usa mão de obra familiar, sazonal e permanente, alguns usam a tracção animal e utilizam adubos, não tem acesso ao crédito e em situação de crise têm um acesso limitado a água.iii. Médio agricultor, com áreas entre 11 a 20 ha, mão-de-obra sazonal e permanente, com alguns a apresentarem meios de produção como tractores, camião, moto-bomba e bois, com alta utilização de adubos, alguns tem acesso ao crédito e em situação de crise não tem problemas de acesso a água.iv. Grande agricultor, com áreas superiores a 20 ha, mão de obra sazonal e permanente, não usam bois como meio de produção, mas sim tractores, moto-bombas, com alta utilização de adubos e créditos, e um excelente acesso a água em situação de crise.Segundo HICEP (2003), o regadio foi criado nos anos 50, começou a ser reabilitado nos anos 90 e ainda está em reabilitação 3 visando limitar ou eliminar os seguintes constrangimentos hidráulicos:Uma rede de adução com capacidade para 43 m 3 /s;Uma rede de distribuição secundária e terciária em muito mau estado de conservação;Uma rede de drenagem deficiente que se encontra na origem do processo de salinização dos solos e responsável por perdas importantes de produção.A situação hidráulica do perímetro irrigado de Chókwè compõe-se de unidades relacionadas com três níveis de distribuição:i) Unidade Hidráulica Principal (UHP);ii) Unidades Hidráulicas Secundárias (UHS' s );iii) Unidades Hidráulicas Terciárias (UHT' s ).A água usada para a rega é proveniente do rio Limpopo, através da barragem de Macarretane. Ela entra num sistema hidráulico principal de canais em terra, equipados com obras de regulação de água (hidroreguladores, válvulas, caídas livres, saídas de emergência, etc), (Consultec, 1996).Segundo Raposo (1996), na rega por sulcos, as plantas são cultivadas em camalhões, limitadas por sulcos, geralmente com pequeno declive e paralelos entre si, através dos quais se faz correr a água que por infiltração lateral e vertical, se distribui pela zona onde se localizam as raízes das plantas cultivadas (Figura 1). São construídos com uma determinada declividade e na direcção das curvas de nível em terrenos com declividade acentuada ou superfície não uniforme, e que geralmente não é possível construir sulcos com alinhamento rectilíneo. As suas características podem ser assim resumidas:Declividade ideal: 1%, aconselhável: de 0.5 a 2%. Alinhamento na direcção das curvas de nível, comprimento de 70 a 150m.São usados em terrenos com baixa capacidade de infiltração de água, ou seja, em terrenos pesados e com declividade moderada, pois, aumentando o comprimento do sulco, podem-se reduzir a sua declividade média e a velocidade de avanço da água no sulco. Aumenta-se, deste modo, o tempo de oportunidade para infiltração da água no solo, bem como o comprimento efectivo de sulco por planta.No entanto, a rega por sulcos como qualquer outro tipo, tem as suas vantagens e desvantagens, as quais encontram-se destacadas a seguir (Brito, 1982& Owen, 1991):-Reduzidos gastos em nivelamento de terra;-A quantidade de água pode ser controlada;Avaliação da eficiência da rega por sulcos numa area de 16 ha no Distribuidor-9 no regadio de Chókwè Leocádio Mucipo Gonçalves Projecto Final-A água vai precisamente onde está dirigida;-Podem ser empregues em terrenos declivosos;-As plantas não se molham o que evita algumas doenças de fungos;-Não interrompe todos outros trabalhos, enquanto se rega, a terra permanece seca entre os sulcos.-Os camalhões dificultam o trabalho de gradagem;-As perdas de água podem ser excessivas em solos arenosos;-Muita exigência em mão-de-obra;-As plantas na ponta podem receber menos água por causa de infiltração;-Pode provocar a erosão do solo especialmente quando o declive do solo é muito íngreme.É o movimento da água para dentro do solo, marcado pela acção da gravidade e pelo potencial capilar (Da Mota, 1989). Bernardo (2002), acrescenta que a infiltração é um factor muito importante na irrigação, visto que ela determina o tempo em que se deve manter a água na superfície do solo, de modo que se aplique a quantidade desejada de água.Segundo Rocher (1985), a infiltração envolve três processos interdependentes: a entrada da água através da superfície do solo; o armazenamento no solo; e o movimento através do solo (percolação profunda e escoamento superficial \"runoff\").A infiltração pode ser determinada por três métodos (Bernardo, 2002), à saber:i. Método da entrada e saída da água no sulco -mede-se o caudal de entrada e de saída num sulco de largura e comprimento conhecidos. Este método tem a vantagem de medir a infiltração bidimensional nas condições de rega por sulcos, mas à desvantagem é de ser mais complicado e necessitar de outras determinações visto que envolve muitos parâmetros.ii. Método de obstrução de sulcos: constrói-se uma bacia circular limitada por diques ou obstrução de um sulco em dois pontos. As operações neste método se comparam com a dos infiltrómetros. Tem a vantagem de providenciar a infiltração que ocorre numa área relativamente maior que a do anel duplo e a desvantagem é a sua baixa praticabilidade.iii. Método de infiltrômetro de anel duplo -consiste em dois anéis, sendo um maior (para reduzir o efeito de bordadura) que o outro. Introduz-se água nos anéis (interior e exterior) simultaneamente e lê-se a profundidade de água que infiltra ao longo do tempo. Tem a vantagem de ser de fácil determinação e de quantificar a infiltração ao longo do tempo e permite análises indirectas através de equações do processo.Matematicamente, segundo Walker (1989), a equação aproximada da infiltração cumulativa descreve-se da seguinte forma:Onde : Solos com características similares de infiltração podem ser agrupados em famílias de infiltração.A família de infiltração é um dos critérios usados na determinação do comprimento para campos planos ou com declive na rega superficial. As famílias de infiltração são dadas por um nome e um número de código. O número indica a constante da taxa de infiltração em mm/hr, uma ou duas horas após o início da aplicação da água ao solo, (Roscher, 1985).Segundo Eliard (1995) Ainda Walker (1989), acrescenta que o r depende da capacidade de infiltração e está entre 0.5 e 1.0, isto é : 0,5 ≤ r ≤ 1, quanto mais próximo estiver de 0.5. está-se perante uma capacidade de infiltração alta e, quanto mais próximo estiver de 1.0, está-se perante uma capacidade de infiltação baixa.Tempo de recessão É aquele que é necessário para que a água se infiltre completamente no sulco. É dada pela equação:Em que: X -distância ao longo do sulco [m] t -tempo de recessão [min] S -coeficiente de recessão que depende da profundidade da água na superfície do solo, características de infiltração do solo, do declive e da aspereza da superfície.Observe a seguinte figura: Figura 4. Modelo empírico das curvas de avanço e de recessão e os respectivos tempos ( Adaptado de Rocher, 1985)A parte sólida de um solo é constituída por material inorgânico e orgânico intimamente ligados.Textura é a proporção relativa dos diferentes grupos de partículas primárias nele existentes (Kiehl, 1979).Ainda o mesmo autor, refere que a determinação da textura de uma amostra se faz pela análise granulométrica. Os métodos de análise granulométrica podem ser: por peneiragem, por sedimentação contínua, por sedimentação descontínua, por levigação.A curva característica de humidade (curva de pF) indica a relação entre a sucção que as plantas devem fazer para retirar a água do solo e o potencial da água. Assim, quanto menor for o teor de água no solo (elevado valor de pF), maior será o dispêndio de energia pela planta para a absorção de água, resultando numa redução da energia investida noutros processos fisiológicos indispensáveis para a planta. Esta situação reflectir-se-á na redução da taxa de crescimento da planta e consequentemente a redução do rendimento. Assim, conhecendo a curva de pF de um determinado solo, é possível determinar a quantidade de água disponível (AD) para a planta. De referir que nem toda AD é utilizada pela planta porque, uma parte fica no solo. É neste âmbito que surge o conceito de factor de cultura p (onde p<1) e que o seu produto com AD resulta em água facilmente utilizável (AFU) para a planta que é o conceito que se aplica nos cálculos.Para que a irrigação seja eficiente, é necessário que a quantidade de água a fornecer seja suficiente para suprir as necessidades da planta e de lavagem de sais e não ultrapasse a capacidade de campo afim de não se perder por percolação para que facilmente a planta possa utilizá-la.As necessidades de água de rega é dada pela seguinte equação: Alguma água da irrigação, deve ser aplicada em excesso no armazenamento do solo, para a lavagem de sais na zona radicular, isto é, para manter a concentração de sais na solução do solo em condições desejáveis de modo a não prejudicar a planta. Esta não tem que ser conseguida durante cada evento da irrigação, mas sim ao longo de todo o processo.Na Tabela 10, em anexo são dados valores de tolerância de salinidade do solo e de água de rega para algumas culturas.O excesso de irrigação resultará em perdas de água e, ou, por escoamento superficial do sulco (runoff), e perdas de nutrientes por lixiviação para as camadas abaixo da zona radicular das culturas, bem como problemas de afloração de lençol freático nas áreas ajusante da que está sendo irrigada ou na própria área de irrigação, criando problemas potenciais de salinização e causando com isso baixo rendimento da cultura e baixa eficiência da irrigação (Bernardo, 2002).O uso de caudais muito pequenos, por sulco, aumentará o tempo para a água chegar ao final do sulco, podendo acarretar excesso de infiltração no início e deficiência de infiltração no final do sulco, causando baixa uniformidade e grande desuniformidade de produção, ao longo dos sulcos, resultando em baixa produção em algumas áreas irrigadas. Assim, nenhum aspecto de eficiência deve ser desprezado.A eficiência da rega por sulcos pode ser determinada pelos métodos convencionais ou pelos métodos de balanço de água no sulco. Os métodos de balanço de água têm sido muito usados ultimamente (Bernardo, 2002).Num sistema de rega, temos dois tipos de perdas, que são respectivamente perdas de campo ao nível das culturas e perdas de operação. As perdas de campo, ocorrem no sulco, onde estiverem as culturas e refere-se às perdas por percolação profunda e escoamento superficial \"runoff\". As perdas de operação, ocorrem no sistema em geral, isto é, refere-se à todas as perdas que ocorrem a partir da fonte de captação, no transporte e distribuição nos canais e nos próprios canais no campo.Observe a seguinte figura: Onde: Determinadas as diferentes aproximações para a obtenção dos volumes, pode-se apresentar as razões entre os volumes para se determinar a eficiência.Existem vários parâmetros que devem ser determinados para poder analisar a eficiência de irrigação de um projecto tendo como base os volumes anteriormente vistos, e os principais são: Avaliação da uniformidade de aplicação da água. (2.22).Eficiência das perdas por operação -são perdas do sistema em geral ao nível da superfície.Estão incluídas as perdas por \"runoff\". Ocorrem principalmente durante o manuseio do caudal aplicado e manifesta-se por alagamento e/ou \"runoff\".Para se avaliar a rega por gravidade, usam-se as seguintes normas : A humidade do solo é que determina a quantidade de água a aplicar, e esta varia de solo para solo dependendo da sua composição. A humidade do solo pode ser determinada através do método do tensiómetro ou método gravitacional como se referiu anteriormente.O guia mais indicado para a quantidade de água a aplicar é a condição do solo. É necessário que a rega forneça ao solo água suficiente para prevenir a situação chamada ponto de emurchecimento (Tibau, 1975). Esta acontece quando a água presente no solo é insuficiente para as raízes da planta, porque a água sai pelas folhas por transpiração, mais rapidamente do que está a entrar pelas raízes.Por outro lado, a adição da água não deve ser tanta que o solo exceda a capacidade de campo.Este é o ponto em que a água é retirada do solo contra a força de drenagem. A adição de mais água enche os espaços de ar e provoca o alagamento do solo.Portanto, a quantidade de água no solo deve permitir ficar entre o ponto de emurchecimento e a capacidade de campo. Esta água é conhecida como água disponível, porque está disponível para ser aproveitada pela planta (Owen, 1991). A integração do tempo no caudal no flume dá-nos o volume total de água que passa pela estrutura.Os flumes apresentam as seguintes vantagens:-O nível piezométrico mede -se dentro do flume, não estando desse modo afectado pelo canal;-O material que flutua, passa através dele sem dificuldades não influenciando a relação Q = f (h);-Não há influência das condições donde provém o escoamento.-Quando a estrutura estiver submersa, o caudal é dado em função da leitura de alturas de água a montante e a jusante da estrutura de controle.O sistema de irrigação por sulcos, devido as suas características e a forma de maneio no campo, deve ser optimizado de modo a permitir menos perdas de água e a evitar o risco da erosão e de salinidade. Os problemas mais frequentes na rega por sulcos são a aplicação de muita ou pouca água no terreno; baixa uniformidade na distribuição da água no campo e elevadas perdas por runoff e percolação profunda. Várias são as medidas de maneio que podem ser tomadas para melhorar o desempenho de um sistema de rega por sulcos. Mas antes, temos que reconhecer que todos os parâmetros estão intimamente relacionados. Portanto, quando considerarmos a mudança do caudal, do tempo de aplicação ou do comprimento dos sulcos, deve-se perceber que o tempo de avanço, a infiltração, as perdas por runoff e por percolação profunda serão afectadas simultaneamente (Walker, 1989 ;Withers & Vipond, 1974).O comprimento óptimo do sulco, é aquele em que para uma quantidade de rega de d (mm) de água, é capaz de humedecer o solo em toda a zona do sistema radicular da cultura. Entretanto, esta quantidade de água é variável, dependendo da fase da cultura, tipo de cultura, sendo inicialmente um valor baixo que se torna máximo geralmente na fase de cobertura vegetal máxima da cultura.Assim, o comprimento só é óptimo para uma certa fase da cultura, sendo a solução ideal a de poder variar o comprimento do sulco em função da variação das necessidades de água de rega da cultura. No entanto, esta solução só é possível na irrigação por sulco, onde a distribuição da água no sulco é feita por um tubo perfurado e móvel, que mudando-se de posição, pode-se variar o comprimento do sulco (Brito, 1982).O comprimento do sulco está directamente relacionado com a textura do solo e o declive. Para um mesmo caudal e mesma profundidade de aplicação, os sulcos podem ser mais longos em solos argilosos do que em solos francos ou arenosos. Para solos com a mesma textura, os sulcos são geralmente mais curtos em solos de inclinação elevada.Figura 7. Optimização do comprimento do sulco (Roscher, 1985).Mudanças no caudal afectam significativamente no tempo de avanço. Esta alteração deve ser feita de modo a não provocar erosão do solo. Usando caudais maiores, temos tempos de avanço menores, possibilidade de aumento das perdas por runoff e uma profundidade de rega mais uniforme pela diminuição da variação do tempo de oportunidade ao longo do comprimento (Walker, 1989).Geralmente, a optimização destes dois parâmetros anteriormente descritos, é que ditam a eficiência dum sistema de rega por sulcos. A alteração dum deles, afecta significativamente todo o sistema. das seguintes características largura da garganta com 100 mm, comprimento da garganta com 150 mm, caudal mínimo 0,16 l/s e caudal máximo 8,7 l/s e uma inclinação dos taludes de 1 : 0,50.Durante a rega, a medida em que a água ia passando pelo flume, registava-se a altura da água na ficha de campo em intervalos de tempo iguais e pré estabelecidos, com ajuda dum cronómetro (Figura 10). Posteriormente, o caudal foi obtido através da fórmula característica do flume. Tendo o caudal, foi obtido o volume aplicado pela equação 2.12. A água armazenada na zona radicular foi obtida pela equação 2.15.De referir que a determinação do volume de água era acompanhada com a colheita de amostras de água para posterior determinação da condutividade eléctrica da água de rega ao nível do campo (Tabela 13 ) Figura 10. Determinação de volume de água nos canais de cabeceira e nos sulcos usando flume.Nos mesmos canais de cabeceira e sulcos onde se determinava o volume de água, era feita a medição topográfica para a determinação do declive. Esta operação foi feita com recurso a mira e um nível suportado pelo tripé, onde se colocavam estacas à distâncias iguais e fazia-se a leitura da altura do ponto em relação ao nível que estava num determinado ponto fixo. A mira era movimentada em locais onde estavam instaladas as estacas ao longo dos canais e dos sulcos.Assim, eram feitas leituras as quais eram registadas na ficha de campo apropriada. A topografia do campo foi feita colocando o nível no meio de cada bloco, movimentando apenas a mira em cada extremidade dos canais de cabeceira (Figura 11). Do mesmo modo foram feitas as leitura ao longo da caleira. Esta actividade era efectuada antes da rega. O cálculo do declive foi feito com base na Equação 2.4.Figura 11. Levantamento topográfico dos canais de cabeceira, dos sulcos e do campoMediu-se os comprimentos dos canais de cabeceira e dos sulcos, com ajuda duma fita métrica e a cada 6.5m para as cabeceiras e punha-se uma estaca (as mesmas usadas no levantamento topográfico), para os sulcos era a uma distância de 2.5 m. A medida em que a água alcançasse cada uma das estacas, com ajuda dum cronómetro, registava-se o tempo que posteriormente dava o tempo necessário para irrigar uma parcela (Figura 12). Depois foram processados na folha de cálculo (excel) para tirar as diferentes equações de avanço Figura 12. Determinação das frentes de avanço nos canais de cabeceira e nos sulcosA geometria da secção transversal dos canais de cabeceira e dos sulcos, foi determinada com ajuda de um perfilómetro, que era instalado em alguns pontos ao longo do sulco/cabeceira, depois eram lidas as alturas (profundidades) nas varetas partindo da base do sulco/cabeceira. Sendo o perfilómetro um instrumento dotado de vareta graduadas, registava-se as profundidades das varetas em relação ao nível do topo dos camalhões (Figura 13).Figura 13. Determinação da secção transversal dos canais de cabeceira e dos sulcosA infiltração da água no solo foi determinada usando o infiltrómetro de anel duplo e cronómetro.Montou-se o anel duplo em diversos locais dentro do campo. Montado o anel, punha-se água em simultâneo nos dois anéis e com ajuda do cronómetro, registava-se a altura da água em intervalos de tempo iguais até que ela estabilizasse. Este processo, fez-se antes da rega para aproveitar a humidade mínima do solo no intervalo de rega considerado (Figura 14). Assim o local era previamente inspeccionado e seleccionado, desprovido de sinais de uso.Os dados obtidos foram introduzidos num papel log-log para obter os parâmetros k e n.Figura 14. Medição da capacidade de infiltração do soloOs sulcos tinham o princípio de funcionamento hidráulico semelhante ao de uma bacia em que, a água entrava no sulco até uma certa medida que se achava suficiente e de seguida o sulco era fechado ficando a ocorrer a infiltração. Não havia escoamento superficial. Pela equação 2.16 obteve-se as perdas por percolação profunda.As análises laboratoriais de parâmetros como conductividade eléctrica (1:2,5), do pH H2O e KCl , da matéria orgânica, da capacidade de troca catiónica, das bases trocáveis, da textura e do pF Inicialmente, a velocidade de infiltração apresenta um valor máximo devido a baixa humidade do solo e, vai decrescendo com o tempo à medida que a humidade do solo aumenta, até atingir um valor que se mantém constante e conscide com a permeabilidade do solo no sentido vertical, denominando-se taxa de infiltração básica. A velocidade de infiltração é denominada instantânea.Na irrigação interessa mais a infiltração cumulativa que exprime a quantidade total de água infiltrada ao fim dum certo tempo.A Tabela 6 mostra os diferentes parâmetros das diferentes medições de infiltração e a respectiva infiltração média. A Figura 16, mostra a representação gráfica da curva de infiltração cumulativa média do solo.Curva da infiltração média do solo Figura 16. Representação gráfica da infiltração cumulativa média do solo.A família de infiltração do solo, da área estudada pode ser classificada, (de acordo com a Tabela 1), como muito baixa, e apresenta a seguinte função de infiltração cumulativa média (I cum =1.684 T 0.5730 ). Pode-se também usar a Tabela 2, para confirmar a família, isto é, por exemplo, aplicando uma dotação de 50 mm na equação de infiltração cumulativa, verifica-se que precisa-se de 6 horas e 12 minutos para poder infiltrar esta dotação, no entanto, tempo superior a 2 horas, estando assim na família baixa.Devido as características da rega por sulcos, a forma da secção dos sulcos ou canais de cabeceira é um aspecto à considerar para uma rega efectiva e eficiente, visto que a água infiltra-se tanto vertical, horizontal assim como radialmente. Os sulcos apresentam uma largura recomendada pelo Lancastre (1992), para dizer que está dentro dos parâmetros estabelecidos. Entretanto, a profundidade média dos sulcos encontrada (13-18cm) está abaixo do recomendado porque com as características de infiltração do solo ali encontradas seria aconselhável sulcos com uma profundidade aproximada de 20 cm e uma largura do topo de 45-50 cm e o espaçamento entre os sulcos nos 0.7-1.0 m como o recomendado para a cultura do tomate e não os 1,5 metros como o observado.Secção média dos sulcos Leaching Requirement (LR), de modo a manter no solo níveis concentração de sais aceitáveis de modo a não prejudicarem a cultura, deve-se calcular a d req incluindo o LR.A condutividade eléctrica da água de rega é igual à 0,596 dS/m.A condutividade eléctrica do estrato saturado de solo é de 1,1 dS/m (Tabela 13).Assim, o LR será dado pela equação 2.9 e o seu valor é de LR = 0,122. Usando a equação 2.8, pode-se determinar a d req para a cultura de tomate incluindo o LR, e o seu valor é d req = 25.04 mm.A Tabela 8, mostra os volumes médios de água dos sulcos de cada área e as respectivas eficiência de aplicação, de armazenamento, a percentagem de volume perdido por percolação profunda e runoff.Tabela 7. Volumes médios de água nos sulcos e as respectivas eficiências Tendo em conta os resultados apresentados na Tabela 8, pode-se identificar uma escala de avaliações e soluções. Contudo, é de salientar que apesar dos parâmetros de avaliação apresentados, a eficiência de aplicação e de armazenamento serem as mais importante em termos de maneio do sistema, visto que reflectem o uso benéfico da água total para a irrigação, é necessário que essas alternativas de soluções considerem a eficiência de armazenamento, pois esta é a mais baixa verificada no sistema. Assim, conhecendo a água disponível (AD=100mm/m), a profundidade radicular (Dr=1,0m), o factor p para a cultura de tomate (p=0,4) e a evapotranspiração da cultura (Etc=2.75mm), pode-se determinar o intervalo de rega óptimo tendo em conta que este, deve ser menor ou igual ao quociente da água facilmente utilizável (AFU) e a evapotranspiração da cultura (Etc). Com vista a minimizar perdas que ocorrem no canal de cabeceira podia-se dotar medidas tendentes a reduzir a infiltração ao longo do canal tais como, revestir o canal com material menos permeável como o plástico de polietileno ou compactar o próprio canal. Assim reduziam-se as perdas por infiltração nos canais de cabeceira.A quantidade de água aplicada é suficiente, mas a sua condução e o seu uso é que são ineficientes, fazendo com que o armazenamento na zona radicular não seja eficiente.Não existem perdas por runoff nem por percolação profunda ao longo dos sulcos, mas sim ao longo das cabeceiras durante a condução da água.A eficiência de aplicação é de 100%A eficiência de armazenamento é de 52 % Os sulcos são curtos (10 m), com princípio de funcionamento hidráulico semelhante ao de uma bacia, com um espaçamento de 1.5 m, considerado acima do recomendado para a cultura do tomate.Na área de estudo recomenda-se a construção de sulcos mais longos (47 m), tendo em conta o declive.O aumento do tempo de aplicação por sulco mantendo o caudal ou aumento do caudal mantendo o tempo de aplicação.Deve-se ter em conta as dimensões dos sulcos em termos de forma, tamanho e profundidade.Nivelar o declive dos canais de cabeceira ou revestir com plásticos para evitar as perdas por percolação profunda durante a condução da água.Execução de estudos do mesmo género em outras épocas do ano, outros locais ao longo do regadio, com outras culturas de modo que se encontrem alternativas para se obter boas eficiências.Criação de pequenos cursos de treinamento e capacitação dos agricultores através dos serviços de extensão, uma vez que se reconhece que o conhecimento de como e quando regar é condição fundamental para o uso adequado da água com vista a boa gestão da mesma rega.• Bernardo, S. ( 2002). Manual de Irrigação. 6ª edição. Viçosa. Brasil.• Cruciani, D. (1980). A drenagem na agricultura. Livraria Nobel. São Paulo.• • Owen, G. (1991). Manual básico de Agricultura. Lisboa. Portugal.• Raposo, J. (1996). A REGA: Dos primeiros regadios às técnicas modernas de rega. ","tokenCount":"5705"} \ No newline at end of file diff --git a/data/part_3/3895978558.json b/data/part_3/3895978558.json new file mode 100644 index 0000000000000000000000000000000000000000..bf7b6270e4449cb425c94bcd1f138f3c1be9fef5 --- /dev/null +++ b/data/part_3/3895978558.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c700a8e739be6ba5737ca096ad2039bc","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/ca3b6fa1-ba87-4157-bed9-3639439d02cf/retrieve","id":"-1655722607"},"keywords":[],"sieverID":"6c4f8d36-937c-4a32-9ef5-12db076213af","pagecount":"8","content":"The brief identifies critical gaps in water-related data and skills necessary for the effective implementation of anticipatory water management actions in response to climate change in the Dolo Ado and Bokolmayo districts, Ethiopia. It evaluates current community and local government practices and recommends improvements in data collection, capacity building, and integrated water management to enhance resilience against droughts and floods. Key findings highlight the need for better data monitoring, early warning systems, and infrastructure investment to mitigate water-related hazards and improve local adaptive capacities.The impacts of extreme weather and climate change in fragile environments heighten community vulnerabilities by increasing the risk of droughts and floods (Buhaug and von Uexkull 2021). This phenomenon is particularly prevalent in the Dolo Ado and Bokolmayo districts of the Somali Regional State, Ethiopia. These districts host over 200,000 refugees 1 in five camps (Bokolmayo, Kobe, Melkadida, Buramino, and Hilaweyn), exceeding the local population (Figure 1). Frequent droughts and floods undermine the communities' resilience and their adaptive capacity, posing significant challenges to sustainable living conditions.Successfully adapting to and mitigating the impacts of extreme climate events and fostering community resilience require anticipating hazards and strategically planning and implementing proactive water management strategies in the context of anticipatory action. Anticipatory action refers to actions initiated before a disaster to mitigate damage and increase the chances of a speedy recovery (Schindler et al. 2023). However, current practices in the study area often prioritize reactive emergency responses rather than proactive, sustainable, forward-looking, response-oriented approaches aimed at mitigating the impacts of droughts and floods.Globally, anticipatory actions in the humanitarian sector, which are integrated into disaster risk reduction strategies, are increasingly prioritizing effective water management in fragile environments (Wilkinson et al. 2020;Thalheimer et al. 2022). Some of the global efforts include (i) leveraging early warning, early action, and early financial decision-making tools/data through the United Nations' Early Warnings for All Initiative 2 and (ii) investing in water infrastructure to enhance water availability and resilience against extreme weather impacts such as droughts and floods. However, global initiatives on anticipatory actions must be cascaded down to the local level, taking into account the frequency of extreme events, their impact on water resources, livelihoods, and infrastructure, as well as local coping mechanisms. Equally important is the information on critical data requirements and the skill or 2 https://www.un.org/en/climatechange/early-warnings-for-all expertise of the local communities in using local contextual information to effectively prepare and respond to water-related disasters. This underscores the importance of context-specific evidence in planning, designing and implementing sustainable actions focused on water management.Given the above considerations, this brief provides an overview of the existing practices aimed at addressing the impacts of weather extremes such as drought and flood in the area from a preventive measures' perspective. The analysis covers the critical data requirements and skill development needs to strengthen the design and planning of anticipatory water management actions. The study collected data using an inception workshop, key informant interviews, and literature reviews.This study was conducted in the Dolo Ado and Bokolmayo districts, located in the Somali Regional State of Ethiopia (Figure 1). Geographically, these districts lie between 3 O 30' and 7 O 20' N and 37 O 05' and 43 O 20' E, covering an area of 8,135 km 2 . The annual rainfall of the districts ranges from 106 mm to 609 mm. The elevation varies from 167 m to 974 m above sea level. Shrublands dominate the land cover with 78 percent coverage, followed by grassland covering 20 percent. The districts have a gentle slope with 55 percent of the area below 8 percent of slope.Pastoralism is the main livelihood in these districts, supporting nearly 80 percent of the population. Other livelihood activities in the district include mixed croplivestock farming. There are two irrigation seasons in the districts; the first is from August to December and the second from January to July. The major crops cultivated in the first season are maize, sesame, and beans, while onion, sesame and watermelon are primarily grown in the second irrigation season. The predominant response to water-related hazards has been reactive, focusing on lifesaving activities such as emergency response. The significant damage sustained and extensive resources expended by communities due to this reactive approach highlight the urgent necessity for adopting anticipatory actions to mitigate the impacts of droughts and floods rather than solely responding during emergencies.Early warning information provided by the Ethiopian Meteorological Institute (EMI) is partially adopted to adjust agricultural practices during drought conditions. There is an effort to implement land management practices such as exclosures, trenches, and hydrophobic technologies as strategies to mitigate drought and flooding in the studied districts by government sector offices and communities.Current water management practices in the districts will need to better align with anticipatory action. For instance, at present, to mitigate drought, communities in the districts engage in irrigated crop production and prioritize crops resilient to water scarcity. However, current irrigated agriculture faces several challenges, including canal damage from flooding and other factors such as shortages of spare parts for pumps, high fuel costs for motorized pumps, water loss through evaporation from basin irrigation, and inadequate extension and farm inputs (Moges 2016;Olana 2023). Improving these conditions will assist in effective water management, which will be beneficial for drought conditions.Planning and design of anticipatory actions informed by data is crucial for addressing the impacts of water-related hazards. However, the study area currently lacks critical biophysical information on hydrological data, such as reliable and updated streamflow measurements. This gap has implications for our understanding of the districts' hydrology, water availability in space and time, and the frequency of hydrological extremes.Additionally, observed weather data such as precipitation and temperature were not available due to limited stations in the area and lack of continuous data measurement in the nearby locations. Similarly, groundwater information, water quality, and soil data are not available as these are not measured for these districts. The lack of comprehensive historical data on hydrological and meteorological variables makes it challenging to assess the effectiveness of past mitigation measures and apply those lessons to current and future challenges related to water availability. This limitation could hinder the planning and design of anticipatory actions aimed at addressing communities' vulnerabilities to hazards. In addition, it could undermine the efforts to build resilience against the increasing frequency and intensity of hazards driven by climate variability and change.This study found that the local community in the region lacks the awareness and relevant skills needed to effectively mitigate drought and flooding. For example, insufficient knowledge of early warning signals and evacuation procedures significantly increases the risk of causalities and property damage during flood events, which indicates challenges in performing early action and planning.According to the local communities, the main knowledge gaps pertain to the type of interventions that are effective in addressing the impacts of drought and flooding. Specifically, there is a significant lack of knowledge and skills in precision agriculture, water and landscape management, and ecosystem restoration practices, which are preventive measures to be implemented before hazards hit.Local stakeholders have a limited understanding of the type, timing, and amount of assistance provided by government and other humanitarian agencies (Easton-Calabria et al. 2023), which indicates the need for early action protocols. Moreover, local communities have inadequate knowledge of the structure of multiscale institutional coordination in response to hazards.Historically, the community has received insufficient technical support and inadequate access to tools and technology for obtaining water from rivers, hand-dug wells, and boreholes, in addition to a lack of efficient irrigation water application systems (Ugas and Eggenberger 1999). The effectiveness of community participation in preparedness and response efforts to hazards is also hindered by the lack of skills of the government and others operating in the area on how to engage communities in these activities.Generally, the lack of skills undermines the effectiveness of anticipatory actions that could be implemented in the districts. This includes both long-term mitigation measures and short-term disaster risk reduction strategies.Collaborative efforts focused on sharing experiences, lessons, data, and information while building local communities' capacities are essential for the planning and implementation of anticipatory water management actions to better adapt to extreme weather conditions caused by climate change. With this consideration, the following policy and development actions are suggested.Investing in data monitoring systems and integrating remote sensing technologies is recommended to understand the water availability in the districts and facilitate the implementation of developmental interventions. Specifically, improving data monitoring systems is needed to conduct water availability estimation within the districts. The current flow gauging station at Halwen lacks recent data, highlighting the need to improve continuous measurement of river water levels and velocity for accurate estimation of river discharge across various timescales. Furthermore, establishing additional gauging stations is recommended to effectively capture spatial variations in river water levels.Promoting the use of tools that translate weather and climate forecasts into actionable water-related metrics for droughts, river water levels, and flood extents and durations is crucial. For example, impact-based forecasting can be utilized to assess potential outcomes of weather events on communities and infrastructure. This will require properly documenting past hazards and their impacts. Also, existing practices, such as early warning information being transmitted by EMI, should be improved to take timely and effective action.Furthermore, leveraging digital innovation to develop decision support tools, such as early warning and scenario planning systems capable of simulating real-world scenarios and forecasting potential outcomes of different decisions, is important for planning and implementing anticipatory water management actions. EMI generates forecast information and disseminates it through television and radio. However, the early warning communication platform needs to be improved to ensure timely and understandable forecasts are transmitted to communities in the districts. Potential improvement could be the development of user-friendly mobile applications that present weather and climate forecast information and advisories in local languages and formats accessible and relevant to local communities and their needs.To address skill and knowledge gaps in the Dolo Ado and Bokolmayo districts, a comprehensive capacity building program should be developed. This program should focus on enhancing both technical expertise and institutional capacity to work on preventive measures for droughts and floods. These training programs must equip the local community with the skills needed to plan and design anticipatory actions. Key areas of the training could include: { Hydrometeorological data collection, analysis, and interpretation: This will help understand the characteristics of the district's hydrology and the frequency of droughts and floods.{ Operation and maintenance of data monitoring systems: This will support anticipatory action by ensuring continuous data availability, which can help validate forecasts.{ Processing and integration of remotely sensed data with ground observations for water availability assessment.{ Utilization of mobile applications for accessing early warning information: This helps the communication aspect of anticipatory action.{ Implementation of preventive measures, such as naturebased solutions, which include watershed management and restoration, reforestation, and green infrastructure.{ Strengthening the institutional capacity of the local government and other organizations supporting the host community and refugees.Promoting investment in water infrastructure is important for minimizing the impacts of water scarcity and floods in the districts while building long-term resilience.For example, distributed water harvesting structures increase the availability of water during dry periods by maximizing water capture during the wet season. Also, reservoirs and canals can be employed for storing and transporting water, respectively. Sand dams are another effective water storage option, particularly along tributaries where accumulated sand allows stored water with minimal evaporation losses. Shallow wells offer an affordable, potentially sustainable solution in floodplains, requiring less energy for water extraction compared to deep groundwater wells. However, careful planning and water quality testing are important for their safe and effective use.Enhance irrigation practices and adopt water-saving farm management techniques to reduce water usage and improve crop yields. For example, direct water application to plant roots minimizes evaporation, which is critical for the districts' hot climate. This can be achieved through methods such as drip irrigation or sensor-based irrigation systems.There is a need to maintain the existing irrigation infrastructure. This includes activities such as dredging sedimentation from canals and repairing broken diversion gates. Moreover, expanding existing concrete canals from primary to secondary and tertiary levels in areas where they are lacking is necessary to optimize water distribution.Improving drainage systems is also important to remove excess irrigation water, prevent waterlogging, promote optimal soil conditions, and enhance water quality, thereby boosting crop yield.To assist community members and experts in the districts in optimizing irrigated agriculture, capacity building is essential. This includes training in irrigation scheduling, adopting efficient water application technologies, and establishing and strengthening irrigation water users' associations.Promoting the involvement of the local community perspective in understanding the characteristics of the districts and their historical coping mechanisms for droughts and floods will enrich proposed anticipatory actions to better align with their lived experience, ground realities, and current needs that they have not been able to tackle. The involvement of local communities in the implementation of preventive measures, such as watershed management and restoration, reforestation, and green infrastructure, is important for the sustainability of measures taken to address impacts of climate change.","tokenCount":"2161"} \ No newline at end of file diff --git a/data/part_3/3903510968.json b/data/part_3/3903510968.json new file mode 100644 index 0000000000000000000000000000000000000000..af4ab4a4345aed4188a92273d663a44040d4feaf --- /dev/null +++ b/data/part_3/3903510968.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"590759815c40ead31d3ee3b95b837ef1","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/8a2ee3fb-3a7e-47c4-b722-dd9c164fe46f/retrieve","id":"-1830010282"},"keywords":[],"sieverID":"ce0ccfee-d958-4e5f-9ba3-df42225ec5c5","pagecount":"11","content":"This policy brief emphasizes the need to integrate peacebuilding into climate-smart programs, showcasing models where climate interventions also foster peace. It identifies weaknesses in separating climate and security efforts and offers recommendations to enhance funding for integrated climate, peace, and security initiatives.The northern and northeastern counties of Kenya are particularly vulnerable to the impacts of climate variability and extremes, such as prolonged droughts and erratic rainfall patterns. These environmental stresses exacerbate resource scarcity, displacement dynamics, and economic instability. With livelihoods largely dependent on agriculture and pastoralism, the depletion of key resources like water and grazing land intensifies competition further weakening local institutions that often struggle to manage the overlapping pressures of climate stressors, resource availability, and social cohesion.Addressing these risks requires a comprehensive understanding of the intersection of climate, peace, and security-referred to as the climate, peace, and security nexus. This nexus highlights how climate-related stressors can contribute to violence, displacement, and insecurity, further undermining local governance structures. Sustainable development in these regions, therefore, hinges on addressing climate change while simultaneously promoting peace and stability. This policy brief underscores the importance of integrating a peace lens into climatesmart programming and highlights examples of programs that, if influenced correctly, can be an exemplary model to help understand how climate-related interventions can also contribute to promoting peace. Moreover, this brief highlights significant weaknesses in the current framework that separates climate change from security programming and provides comprehensive recommendations for strengthening climate, peace, and security financing.The Arid and Semi-Arid Lands (ASALs) of northern and northeastern Kenya face significant challenges due to climate variability and extremes. Frequent and severe droughts have reduced water and pasture availability, intensifying competition and triggering conflicts among pastoral communities. Migration in search of resources further strains relationships between migrants and host communities, while agricultural productivity continues to be disrupted by irregular weather patterns. These dynamics, when compounded, drive poverty and social unrest. Weak governance structures at both national and subnational levels further undermine effective climate risk management and conflict resolution, emphasizing the urgent need for integrated policies that address the interrelated challenges of climate, peace, and security.In this fragile context, the climate, peace, and security nexus refers to the complex interplay between climate change and human national and ecological security. Climate variability, particularly prolonged droughts, has exacerbated water and pasture scarcity, weakening the social cohesion of agro-pastoral communities. Combined with the lack of responsive, effective, and equitable governance at both county and community levels, these factors have intensified tensions and conflicts over natural resources. This nexus underscores the need to focus on the security of individuals and communities, ensuring their capacity to adapt and manage the heightened risks associated with climatic disruptions and resulting environmental changes. A comprehensive approach, integrating climate adaptation with peacebuilding and improved governance, is essential for fostering resilience and sustainable development in regions vulnerable to both environmental and security threats. This policy brief highlights the critical importance of responding to the complexities of climate, peace, and security nexus in interventions for climate-smart programming 1 and climate programming 2 itself. As climate change continues to pose significant challenges globally, addressing the intersections between climate change, security, and peace is crucial, particularly in regions already vulnerable to climatic and socio-economic stressors. This brief outlines the importance of unpacking the climate, peace, and security nexus, identifies existing gaps, and provides comprehensive recommendations to enhance climate security financing and programming.The current policy and programming approach to climate change, peace, and security in the ASALs often operates in silos, with fragmented programs failing to leverage synergies between climate adaptation and conflict prevention. Significant gaps exist in the current framework 1Climate-smart programming focuses primarily on agriculture, food security, and rural livelihoods. It combines both adaptation and mitigation strategies within farming practices. 2Climate programming refers to a wide range of policies, projects, and initiatives that address the impacts of climate change, focusing on mitigation like reducing emissions, and adaptation, focusing on adjusting to climate impacts.due to insufficient data and research on climate-conflict dynamics, limited local capacity for implementing climate, peace, and security initiatives, and inadequate funding for integrated projects.In response, FCDC conducted a study on climate, peace, and security interventions in the ASALs. The study aimed to identify key areas for effective climate action, with an emphasis on whether these interventions also incorporated peacebuilding components. This dual focus was crucial to ensuring that climate efforts also contributed to stability in the region.However, the study faced challenges due to the decentralized and fragmented nature of data collection. Once priority areas were identified, the team focused on feasible, high-impact climate strategies tailored to the needs of the target regions.Financial mapping efforts encountered data acquisition challenges, which made it difficult to clearly assess the correlation between climate resilience initiatives and peacebuilding outcomes. This lack of data made it harder to align funding with interventions that address both climate and security, complicating efforts to evaluate how well these initiatives contribute to peacebuilding and resilience.Despite these challenges, the study revealed a significant volume of funding directed towards climate change adaptation projects, with at least 45 initiatives recorded between 2020 and 2025 onwards, across the 10 FCDC counties namely: Lamu, Tana River, Garissa, Wajir, Mandera, Marsabit, Isiolo, Turkana, Samburu, and West Pokot. In contrast, only two exclusively peace financing projects focused on the borderlands of Garissa, Wajir, Mandera and Lamu, were initiated towards the end of the mapping period. While several programs and projects focusing on climate change or livelihoods incorporated aspects of peace, none demonstrated the close linkage and integration of peace components into their frameworks. In practice, many initiatives may touch on peace-related themes, but they often lack a cohesive strategy that fully integrates conflict resolution and peacebuilding principles into their core activities.For example, programs that address climate change might implement water management strategies to reduce resource scarcity but fail to involve local communities in decisionmaking processes, which could help mitigate tensions among competing groups. Without this integration, these initiatives risk overlooking the social dynamics and conflicts that can stem from climate impacts, leading to less effective outcomes. For effective integration, it is essential for programs to adopt a holistic approach that simultaneously tackles climate adaptation, livelihood improvement, and peacebuilding. This could involve training local stakeholders in conflict resolution and incorporating community-based participatory approaches into project designs.Some of the existing challenges in the current programming approach are:• Fragmentation: Existing policies and program designs often operate in silos, with limited integration between climate adaptation and conflict prevention initiatives. This disjointed approach misses opportunities for comprehensive solutions that could address the complex relationship between environmental stressors and conflict. For example, while climate change adaptation programs may focus on infrastructure or agriculture, they often fail to incorporate conflict-sensitive approaches that could mitigate resource-related tensions in vulnerable regions.There is limited data on the direct and indirect linkages between climate change and conflict, making it difficult to develop evidence-based interventions. Specifically, there is a lack of granular data on how climate stressors exacerbate social tensions, displacement patterns, or competition over scarce resources like water and arable land. For instance, understanding how drought-induced migration affects inter-communal relations in specific regions could help inform policies aimed at reducing conflict. However, this data is often not collected systematically.• Inadequate funding: There is a lack of substantial funding allocated to projects that address both climate adaptation and security risks, which leads to short-term, siloed interventions rather than long-term, integrated strategies. Most funding streams are earmarked separately for environmental or security initiatives, and as a result, projects tend to focus narrowly on one issue without considering how they overlap with others. For example, development projects in fragile regions may prioritize infrastructure development or agro-pastoral livelihoods without funding components that address the underlying social and political vulnerabilities exacerbated by climate change. Case study: FLLoCA Program Additionally, the program wants to establish robust monitoring and evaluation frameworks to track the progress and impact of its climate actions.Several important lessons have emerged from FLLoCA's implementation thus far, namely:• Community Ownership: Ensuring community ownership and involvement is crucial for the success of climate resilience projects.• Capacity Building: Continuous capacity building and knowledge sharing among stakeholders are essential for effective implementation.• Collaboration: Collaboration between national and county governments, communities, and development partners enhances the effectiveness of climate resilience initiatives.Although the FLLoCA Program currently does not incorporate a climate, peace, and security lens in its priority-setting or training frameworks, this program presents a significant opportunity to streamline climate, peace, and security integration across the 10 FCDC counties and the larger ASALs region. By incorporating capacity building trainings on climate, peace, and security, especially for the Ward Climate Change Planning Committees (WCCPCs) in ASALs counties and targeting agro-pastoral livelihoods, FLLoCA can ensure that local governance structures are well-equipped to address both climate and security challenges. Special emphasis on proposal development from the county to the ward level will ensure that initiatives are designed with an integrated approach.Lobbying for a broader understanding and incorporation of the climate-security nexus at the national level, as well as among banks and donors, could further enhance FLLoCA's impact. Additionally, the program has the potential to incorporate community-led conflict management and peace-building mechanisms, utilizing alternative dispute resolution strategies and justice systems that are widely accepted in northern Kenya. These include traditional elders' councils, which play a critical role in mediating conflicts over resources like water and pasture, as well as clanbased negotiations, which are often used to restore peace and prevent escalations between communities. Mechanisms like Maslaha, a Somali custom-based system of resolving disputes through negotiation and reconciliation, and Borana Gadaa systems, which involve democratic dispute resolution and community participation, could be particularly effective in reducing conflicts in the region. These informal approaches, including the use of peace committees already in place in many counties, are deeply rooted in local culture and may offer more sustainable solutions than formal processes alone.By advocating for the inclusion of the climate, peace, and security nexus into policy and programming, FLLoCA can significantly enhance the resilience of counties in the ASALs, promote sustainable development, and foster peace in the face of climate change. This policy brief provides a roadmap for achieving these goals through coordinated efforts and strategic investments, offering FLLoCA as a model for effective climate, peace, and security financing and programming.The Frontier Counties Development Council (FCDC), in collaboration with the Alliance of Bioversity and CIAT, has a unique opportunity to enhance its role in the climate, peace, and security domain. By leveraging existing forums focused on peace, climate change, gender, land, physical planning, and finance, FCDC can improve current localized programming frameworks in a climate-smart and conflict-sensitive manner.By leading initiatives and program design processes that effectively integrate approaches to address the interlinked challenges of climate change and conflict, FCDC can champion climate, peace, and security considerations across various levels of government and sectors. Regularly collaborating with county governments and various civil society organizations, FDCD will strengthen this agenda, promote community resilience, and position the climate, peace, and security nexus in programming efforts and initiatives in the region. This proactive approach not only underscores the importance of climate, peace, and security but also encourages other regional actors to adopt similar strategies in addressing pressing issues in the Greater Horn of Africa. Some of the proposed recommendations are:1. INTEGRATED POLICY AND PROGRAMMING FRAMEWORKS:• Create of cohesive frameworks combining climate adaptation and security strategies at national and county levels.• Encourage collaboration between climate, peace, and security stakeholders to leverage synergies and address common challenges.• Invest in research initiatives to gather comprehensive data on climate-conflict linkages, informing evidence-based interventions through policy and programming.• Promotion of partnerships with academic institutions, research organizations, and local communities to conduct studies on the climate, peace, and security nexus.• Provide training and capacity-building support to local institutions and communities for effective climate, peace, and security project management and implementation.• Facilitation of peer learning and knowledge exchange among counties to share best practices in integrating climate, peace, and security into development planning.","tokenCount":"1981"} \ No newline at end of file diff --git a/data/part_3/3909435676.json b/data/part_3/3909435676.json new file mode 100644 index 0000000000000000000000000000000000000000..45e5228984155d6ac505ebfca35b603e0d5c9e3a --- /dev/null +++ b/data/part_3/3909435676.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"3de85088b0dbbf150b28f899c1c7022d","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/78246ac4-a9f6-41ff-abe5-cd69220bf9d5/retrieve","id":"1136625794"},"keywords":[],"sieverID":"e5eea7a2-0662-4773-b9c2-8b7249c50bda","pagecount":"1","content":"Developed internally to collect various data sets important in tracking the progress of various project key performance indicators Technologies • Bootstrap-scalable to devices • Laravel for Frontend (CSS, HTML) • MySQL Database • Cloud hosted: https://build.ilri.org/bu/• Open Specimen vendor contracted • System installed and selected end users trained • 1 computer for NADDEC • NADDEC and CPHL given -20/-80 °C freezers ILRI thanks all donors and organizations which globally support its work through their contributions to the CGIAR Trust Fund.Scan to find out more ▪ 18 tablets for data collection (ODK) ▪ 6 audio-recorders ▪ Assorted licenses for qualitative and quantitative data analysis ▪ Computer for biorepository at NADDEC ▪ BUILD Fellows and staff provided with monthly data bundles to help manage communication requirements• Racks for the freezers to be installed and system reconfigured • Bio-repository computer to be installed • System to be moved from test server to production server • Selected users to be taken through refresher training to kick start actual use","tokenCount":"165"} \ No newline at end of file diff --git a/data/part_3/3926927830.json b/data/part_3/3926927830.json new file mode 100644 index 0000000000000000000000000000000000000000..2586018ed0297adb1dc7468e6477e0634b2d6869 --- /dev/null +++ b/data/part_3/3926927830.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"fa947b74507e6aa3f8e1f05188140030","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/e5fb4adb-e2e6-4c25-a943-ca3f43162662/retrieve","id":"-1817411562"},"keywords":["Beef","maize","leafy vegetables","sorghum","indigenous fruits"],"sieverID":"8606e357-dece-4278-af0d-805c9da7d9e0","pagecount":"2","content":"Sugar (Pan 148, Gloria, sweet violet); White (Michigan pea bean); Calima (Nua 45, Cardinal) Bean Farming Systems District % bean plots sole crop Chimanimani 100 Guruve 98 Nyanga 80 Mwenezi 100 Overall 94.5Seed Type Usage (%) Mechanization (% farmers using)Mechanization (% farmers using)Beef, maize, leafy vegetables, sorghum, indigenous fruits Zimbabwe was identified as one of the flagship countries for the intensification of bean production and marketing activities under PABRA's projects. In the country desktop review and key informant interviews were conducted in 4 districts which are considered the major bean producing areas. These include Chimanimani, Guruve, Mwenezi and Nyanga. These Districts account for a population of about 586,000 out of an estimated total population of 16.15 million persons living in Zimbabwe. The average household size in the districts is 5 persons per household ranging from 4 in Nyanga to 5.5 in Mwenezi.Under PABRA bean corridor mapping Zimbabwe is considered a corridor on its own having the sugar bean type as the driving product. The main sugar bean varieties grown by farmers in the corridor include Pan 148, Gloria, and sweet violet. These are complimented by White (Michigan pea bean) and Calima (Nua 45, Cardinal) bean types. With about 7,500 hactares under beans per season, there is a huge unexploited potential to put more farmland into bean production.The vast majority (94.5%) of bean farmers in Zimbabwe plant their beans as a sole crop in a plot. This is unlike many other countries in Africa where beans are usually intercropped in the same plot with other crops. This is partly attributed to the fact that in some areas beans are produced during the cold season under winter irrigation and in such conditions most crops that can be intercropped with beans, especially maize, are not grown. The data shows that half of the bean farmers use improved seeds while the rest plant grain from local markets and other sources.To support farmers in their production activities extension services are mainly offered by the government through the department of AGRITEX. Other extension service providers in the districts include NGOs such as goal and CARE International; and private companies in agro-input supply (e.g Zimbabwe Super Seeds).There is a vast network of banks and microfinance institutions on site for the provision of financial services including credit.A baseline study of bean production and marketing conducted by PABRA in collaboration with the Department of Research and Specialist Services (DRSS) and AGRITEX in 2016 showed that the average bean yield achieved varies significantly across agroecological zones (AEZ). About 35% of the households attain over 1 ton of beans per hectare, while 17% and 47% of households harvest between 0.5 -1 ton/ha and less than 0.5 tons/ha respectively.According to the baseline study, which is covered 8 provinces and all five AEZ, about 80% of households that produce beans under irrigation sell part of their produce while 54% of those who produce under rain-fed conditions sell. The districts of Chimanimani, Guruve, Mwenezi and Nyanga, however, report a very high proportion of access to output markets with 92.5% of farmers having sold part of their bean produce. The price (USD 1103 per ton) is equally high in comparison to the prices fetched for bean grain in most African countries.","tokenCount":"536"} \ No newline at end of file diff --git a/data/part_3/3938682543.json b/data/part_3/3938682543.json new file mode 100644 index 0000000000000000000000000000000000000000..6ed36d27a2036b4d6f7cbf0e33d8147a38ab9f4f --- /dev/null +++ b/data/part_3/3938682543.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"2933353b28f9a8729f46b1dcbee7adfd","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/8de43d8f-fd9d-4d23-b572-41f155f4fc3e/content","id":"-324534790"},"keywords":[],"sieverID":"81b105a3-1365-46e4-9573-4539988402fc","pagecount":"26","content":"Wheat is commonly grown in Bangladesh in rice-wheat systems during the dry winter 'rabi' season from November through April following monsoon rice crop.  It is the second most significant food security crop after rice  Currently, per capita wheat demand is 17.3 kg/year about 20% of rice consumption.  Domestic consumption of wheat has been increased from 0.1 million tons in 1970s to 4.7 million tons in 2013-2014.  Due to high domestic demand, wheat import has increased from 1.6 million tons in 1999-2000 to 3.3 million tons in 2013-2014 costing about $0.67 billion in foreign currency reserves.  Although, in the first half of the 1980s, domestic wheat production rose to more than 1 million tons, production has been declining from 1.7 million tons in 1999-2000 to 0.74 million tons in 2006-2007 with a 50 % decline of wheat area.  In recent year, farmers are slowly returning to wheat cultivation, encouraged by higher yields with newly released wheat varieties and good market prices. Increased wheat production has mostly observed in north and central zones, where wheat has historically been grown and environmental stresses are limited.  This higher wheat production is more associated with increase yield per unit area than increases area under wheat cultivation. In order to reduce wheat import, wheat production need to be increased by bridging yield gaps on currently wheat area or by expanding cultivation to new land, mostly in the fallow land in the southern Bangladesh which are estimated between 0.24 and 0.8 million ha.  However, farmers in the south have numerous production challenges.  The most common problem is terminal heat stress at reproductive stage  It is usually happened when farmers grow long-duration local rice varieties monsoon season and late vacating flood waters.  The both of which delay wheat sowing in this region  It has been well documented that soil salinity at different growth stages contributed wheat yield reduction in the southern coastal area  Farmers' lack of knowledge with wheat cultivation also affects yield. Bridging yield gaps is challenging in tropical environments, where yield is highly spatially and temporally variable, a result of environmental influences and farmers' management practices which remains poorly understood.  A greater understanding of the factors influencing yield is important for advising farmers on how to close yield gaps in particular environments.  Using crop cut and survey data from 160 farmers evenly distributed across three districts of Southern Bangladesh, we used Random Forest Regression Tree Model to identify the factors that controlling wheat yield in these regions, across which spatial variation in soil properties and farmers' management practices were considerable. We selected Fraidpur, a highly emerged wheat growing area, and Bhola and Satkira, two non-traditional wheat growing districts.  At the beginning of the wheat growing season in 2014-2015, a total 180 rice-wheat farmers, sixty from each district were selected.  At physiological maturity, we did crop cut from ~5 m 2 area in the center of each farmer's plot for monitoring grain yield.  Information on wheat crop management, such as wheat varieties, plot size, seed rates, sowing and harvest dates, tillage, fertilizer, irrigation and weeding was recorded. In addition to, information on various management related variables for previous monsoon rice crops was collected. This included, the reported grain yield, variety name, sowing and harvest date, fertilizer and organic matter management prior to wheat establishment.  At the time of land preparation wheat, a composite soil samples were collected from 20 cm soil depth.  Soil samples were analyzed for pH, soil OC, N, P, K, S, Zn, B and soil texture  Wheat seeds were broadcast by all farmers after ploughing with two wheel power tiller and then applied flood irrigation. We used Random Forest regression (RF) models to identify important variables (variable importance) controlling wheat yield in our study  We applied RF model selection approach for selecting the model with lower error component with optimum numbers of predictors.  All analyses were done for all data as well as the date set for each district. In this field survey, we found that the earliest any farmers was able to rice harvest on October 25 th in Satkhira District and the latest was on December 27 th in Bhola district.  The sowing day before or after November 30, the optimum sowing date linearly related to days after the earliest rice harvest date  Wheat yields negatively related with rice harvest date but explained only 13 variability of wheat yield, respectively  When we regressed sowing date and yield for each district, we found that, yield reduction due to late sowing was the highest in Faridpur district with 57 kg lost per day delay from November 11 th and the lowest in Satkira districts 15 kg lost per day delay from November 6 th . The box -jitter plot shows the variability of wheat yield in relation to days before/after November 15, 2015, the optimum sowing date which shown as color palette in the figure where zero means sowing took place on November 30 th and values toward the negative or positive values mean sowing of wheat was increasingly early or late, respectively  The wheat yield in 180 surveyed farmers varied widely, ranging from 2.6 to 5.6 t/ha with a mean yield of 3.9 t/ha.  Variability of yield was very high in Faridpur district despite early sowing  In this field survey, we found six wheat varieties were grown.  About 21% of surveyed farmers cultivated BARI GOM 21, cultivated largely in Faridpur Districts  The yield of this variety varied widely, ranging from 2.6 to 5.6 t/ha.  BARI GOM 24 mostly cultivated in Bhola district -yield varied from 3.1 to 4.8 t/ha.  The BARI GOM 25 and 26, two heat and salinity tolerant varieties, yielded highest in Satkhira districts. Among the all varieties BG 21 was more sensitive to late sowing.  The yield loss of this variety was 61 kg per day delay from November 10 h  The BG 25 and 26, mostly grown in Satkira district yield loss varied only from 10 to 15 kg per day delay. Late sowing pushed wheat experienced higher minimum temperatures, resulting in terminal heat stress and lower yields.  However, 2014-15, wheat experienced lower minimum temperature during the first two weeks in March in all three districts.  So wheat yield was relative higher in this year. Initial soil properties varied widely both within and across districts  Soil pH was generally lower in Bhola district compared to Fraidpur and Satkhira districts.  High SOC variability was observed in Satkhira district where high available P and Zn was observed.  Wheat yield was related to none of the soil properties. All framers applied N, P and K for wheat cultivation, but dose varied widely both within and across districts.  The effect of these fertilizers on yield was not noticeable.  In Faridpur district, some farmers harvested wheat with a very high yield with Zn and B fertilization. Most of the early sowing farmers, mostly in Fraidpur and Satkhira districts applied 3 irrigation, yield varied among these farmers from 3.2 to 5.6 t/ha with mean yield of 4. 2 t/ha which was significantly higher than the mean yield with 1 or 2 irrigation.  A Few farmers weeded one time.  The mean yield with two weeding was higher than with one or no weeding.  Neither OM application nor the number of ploughing showed effects on yield. The random forest regression with all 37 variables, identified days to maturity, weeding, variety, sowing date, rice harvest date, soil pH, K, B and S fertilizer application were the top most important variables for explaining wheat yield. When we applied a RF model variable selection approach, we found that the best RF model with 10 variables had the lowest MSE  This model explained 41% of the variability of wheat yield.  Days to maturity, weeding, variety, sowing date, number of irrigation, rice harvest date, wheat variety, soil pH, B, S and K fertilizer application were the most important variable explaining wheat yield. Random Forest identified same kind of variables and ranked similar way for the farmers those harvested wheat more than the average yield  When applied RF model for each district, we found that the RF regression model explained the highest (61%) variability of wheat yield in Faridpur district and days to maturity, no of irrigation, boron fertilization was identified three most important variables.  In Bhola district, the sowing date, rice harvest date, and days to maturity were the most important variables, but the model explained only 27% variability of wheat yield in this district.  In Stakhira district, wheat variety identified as the most important variable.Others important variables for this district were weeding, soil and pH. Finally, we grouped the data as early (sowing done before November 30) and late sowing groups (sowing done after November 30).  For the both sowing groups, RF identified days to maturity was the most important variable controlling wheat yield.  For early sowing group, no of weeding and number of irrigation were 2 nd and 3 rd most important variables, though weeding and irrigation was not crucial for latesowing farmers because the yield was already depressed due late planting.  Others important variable for late sowing farmers were pre-aman rice yield, soil available P and wheat varieties. The farmers who sown wheat early (before November 15) and managed their crops -such applied irrigations 2-3 times, 1-2 times weeding and applied Boron and Zinc fertilizers -were able to wheat harvest close to attainable yield (5 t/ha) and some cases, more than that.  In south, farmers' fields may not be available for wheat due to the late harvest of monsoon rice that prologs soil saturation and delays land preparation.  Improving drainage facilities, growing short duration monsoon rice or growing heat tolerant wheat genotypes (BG 25 & BG 26) could help overcome this problem.  Finally, scale-appropriate seeding machinery may be considered to accelerate sowing by reducing land preparation time.","tokenCount":"1684"} \ No newline at end of file diff --git a/data/part_3/3948479305.json b/data/part_3/3948479305.json new file mode 100644 index 0000000000000000000000000000000000000000..004ebd412ebc87953e6491091f27b7b46af77fcb --- /dev/null +++ b/data/part_3/3948479305.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"45994cdd1fb06fe824d76652cebe3167","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/4bcbd037-c111-4319-aee6-c7567106b8c5/retrieve","id":"-249597055"},"keywords":[],"sieverID":"65c079e4-a32d-4d3b-9047-6db15b87d45f","pagecount":"41","content":"Water Policies, Legislation and Water Rights Strategies and Tools? 1. Presentation and Location Name of the case study: Water policies, legislation and water rights in Africa. All African eco-regions Countries: Africa, Arab and Muslim countries Catchment area: various Method: bibliographic approach and meetings with those involved 2. Background: After a period of major hydraulic investments from 1955 to 1985, the development of water and irrigation control in Africa is now confronted by a number of obstacles which need to be examined based on the following three main strategic approaches, chosen by the Water and Sustainable Development Conference, at UNESCO, Paris, in March 1998. Many different institutional and legal reforms and innovations are being implemented in several ACP countries. Research has been undertaken in various fields based around aWater management is still a tributary of economic and agricultural policies. There have, however, been some successes, in particular, in the awareness of the farming organisations of the need to find alternatives.There are at present serious crises in Sub-Saharan Africa which is undergoing profound changes with regard to its irrigation systems. it must come to terms with issues relating to knowledge of the resource, development and rehabilitation, improvement in performance and adaptation to the opening up of borders, disengagement of the State and the transfer of management, decentralisation and participation, equity and resolution of conflicts which are often sparked off by the issue of access to water. The issues and the responsibilities facing those managing water on the continent are enormous.The case study reports contents) have been drawn up from many different sources of information, but are not exhaustive. We would ask the reader to forgive any mistakes which he may find.A regional selection was made based on the information available, the relevance of the experiences and questions, and geographical diversity.An appendix is available for each country showing details of institutional environmental issues..... variety of more or less incompatible paradigms, which need to be described as they implement proposals which are at times contradictory.The priorities relate to the three approaches emphasized during the international \"Water and SustainableConference\".3.1. Knowledge of water resources and practices for sustainable manaqement.Improving our knowledge of the current state and dynamics of water resources in order to save water and ensure sustainable demand-led management is a high priority, particularly given the lack of data and the reduction in the field hydrological monitoring resources in Africa (closure of the Mobilising and creating other tools (Remote sensing 2 , modelling, information networks, real-time monitoring,. .. programme, in addition to those already existing must not, however, cause us to forget to provide the information to those involved in the field (e.g. the OMVS). Nor must irrigation compromise the future of the wetlands which require practical arrangements for their inventory, rehabilitation and protection for the benefit of other water Planning water resources is an absolute necessity in order to ensure equitable and sustainable managementsome African countries are taking the lead in this area (Sigma programme in Mali).Representing irrigated systems is indispensable for both those involved and the final decision-makers. Tools are being created and tested in Africa for both the system irrigated and the region under irrigation, (land-use plans, concerted land development plan, water management models ...in Senegal and in but the tool (SIG, models, must not be made to appear all important, to the detriment of negotiations between players. In order to better manage water resources, those responsible have available to them various types of regulatory, institutional and economic tools as can be seen in the following two approaches:Taking stock and revitalising water policies 5 are practised in Africa to varying degrees. Agrarian reforms (Haiti, South Africa, Zimbabwe land reforms (law on the National Domain in Senegal? land law in Mauritania 8 ...), institutional reforms (reform of the Niger Office, disengagement of the State,.. and administrative reforms (decentralisation, regionalisation in Senegal, Benin, Ivory Coast and Mali) give rise to complex situations, which revised water codes are insufficient to clarify on their own.Identifying, mobilising and enumerating the various legal systems (farming community: customary or Moslem, or \"positive\": colonial and modern) dealing with water management (the experience of the water rights section and the treatment of the problem of Natural Resources Management\") should not cause us to forget that water management institutions and rules are drawn up \"by hand\" (\"crafting institutions\") including in State and formal irrigatedThe question of equity in regard to access to resources and water management arises both in irrigated systems and in respect of basins. is related to national and local land policies and practices, which remain highly unegalitarian, which are made worse by the fact that development initiatives have often weakened the position of the beneficiaries and increasedThe Gender may attenuate the negative effects on women, and support for farming community organisations (empowerment) may make it possible to create conditions which are favourable to multi-party negotiations about water (State, office, farming communities, businesses). Tools for managing and preventing conflicts are tested and used, as are tools to help and to help negotiations by modelling for sustainable manaaement and appropriate financial resources.The integrated management strategy on water resources (GIRE), both underground and surface, with regard to catchment areas which take into account the many u s e s and users, is a principle which is already being put into practice. It implies arbitration but also agreement in respect of both small and large catchment What types of concerted (or planning are possible? What tools and methods are available? What experiences are useful?The experience of the programme in as applied to a region can provide useful information, but so can that of the Zambezi Action Plan or the Zambezi River Three types of economic tools used to ensure sustainable water management may be used: charging, the quota system and water each of which has its own limitations z 4 . Their application in Africa is very partial and incomplete due to development traditions based on a policy of supply z 5 , of not taking full account of costs and external factors z 6 , of the absence of the lack of water in some . \"Good theory but poor practice.. said one well-informed commentator.Financial viability by calculating c osts and must have as its priority the creation of new developments: this is what is suggested by joint experiences. Institutional reforms and transfer of management will perhaps allow this to take place, but the low rates of collection of water fees, even in Asia, must not be forgotten, set up as a model of a Green Revolution by irrigation. Be that as it may, the State cannot totally disengage itself from the irrigated s y s t e m s which it helped to set up, nor even abandon the genuine farmer irrigated systems in the present context. This further reinforces the usefulness of the rules Barretwater O., 1998. SHADOC, un Senegal River Valley: the OMVS project.The Senegal River valley has been the subject of a vast hydro-agricultural development project since the 1970s with the Organisation pour la Mise en valeur de la Vallee du Senegal (the Senegal Valley Development Organisation). It is situated in the middle of the Sahel end affects at least three countries (Mali, Senegal, Mauritania), with Guinea, too far upstream, having refused to take part.The hydro-agricultural development of the Senegal River valley is the oldest (colonial) land and water development project in Black Africa. This historic project was marked by a number of different stages and there was a significant acceleration after the end of the 60s with the drought in the Sahel and the creation of the OMVS. The vast project undertaken by this inter-state organisation, with significant input and support from those providing the capital, consists in a desire to fully control the water in the catchment area (reservoir dam upstream from Manantali and anti-salt dam downstream from Diama) and a separate development of gravity irrigation by motorised pump from the river over 375,000 ha. Further developments are envisaged, such as the production of electricity from a power station in Manantali which is already under construction, the future development of navigation and even mineral mining in East Senegal.Political and financial decision makers and planners are relatively ignorant of the traditional methods used to manage the environment, which has led to some serious ecological and social consequences, by putting an end to the flood waters.The geographic scale of the OMVS project and the various stages of its implementation raise the question of water rights at several levels:-in the catchment area, inter-state management of water with three, or four, countries involved: Guinea, Mali, Mauritania and Senegal with the recent Senegal-Mauritania conflicts from 1989-1991 (more than 100,000 black Mauritanians moved to Senegal and Mali, the issue of access to floodlands and irrigated land) and in 1998 (issue of overpumping to supply the Ferlo fossil valleys). * in the upper and Kaves vallevs: The limits of the development of pumped irrigation due to the topography, the nature of the production systems, the unsuitability of the dominant rice crop model as opposed to current horticultural development, are well documented. The irregular Manantali water releases which also cause erosion of the banks have a negative impact on the highly intensive river bank crops and small-scale irrigation.in small socio-historical regions: country and soils) Land conflicts have increased due to the often inequitable land management of the rural communities (place of village chiefs), and the development of irrigation may be blocked by land freezes based on pre-established rights. Rights to water for irrigation are also based on pre-existing land rights, in particular in the floodable land areas such as the wallo whose lands have been to a significant extent appropriated by families. perimeters: These are private agro-industrial areas such as the Compagnie Sucriere Senegal or public areas such as those of the SAED, the management of which is being partially transferred to producer organisations, and have, as a result of their status, a very different water management system. The whole of the OMVS project is aimed at satisfying the water requirements of these large areas downstream, illustrating the logic of supply-led management adopted. A system of fees is being initiated in order to recover costs and to limit waste. Improvement rehabilitations have been implemented. The transfer of responsibility from the State and the SAED to farmers' organisations is starting to take shape with more or less successful \"self-managing\" projects, but the methods of disengagement (rapid, non concerted,...) are severely handicapping it. PIV Developments with a community vocation, which tackle droughts, implemented by state-run companies with a distribution of plots which is designed to be egalitarian, they were relatively successful during the '70s and also underwent several stages or generations of developments: the summary PlVs on strips of sandy banks from 74 to 82, the second generation \"in from 83 to 90, the \"3rd generation\" PIV and rehabilitations from 90 to 94, although they had to deal with a number of notable difficulties, in particular in the Matam area. There a r e a very wide variety of arrangements. e) lntermediarv and UAI: Faced with the relative s uccess of the PlVs and the blocking of large-scale developments, a n intermediary formula \"in PIV groups\" w a s designed by the SAED and the AFD, in particular in Matam, but without much success, given t h e uncertainty of the water supply in the developed distributaries of the river (Diamel o r Dioulol) and t h e cost of the double pumping required.An interesting initiative is underway with the in t h e wallo in Mauritania designed to protect the flood plain crops on the o n e hand, and develop irrigation on the other hand, with a consistent land approach which is rare, but it s e e m s to be faced by serious problems.This diversity of developments combined with the variety of regional situations and those of the social groups (breeders, fishermen, women, has turned t h e Senegal valley into a mosaic of local situations and a n area rich in paradoxes:-s u c c e s s of t h e groups of irrigators with a n external commercial or salaried basis of accumulation, rice crop experience acquired in t h e SAED a r e a s and access to rural credit.development of a new agropastoralism in the delta based on the sub-products of irrigated agriculture whilst in the middle valley, traditional breeding is being dismantled.permanent hostility and distancing of the Peuls vis a vis irrigated agriculture and recurrence of traditional aristocratic and lineage structures in the, recent but confirmed, adoption of irrigation by the Wolofs and the Toucouleurs.The OMVS project is far from having achieved its aims: approximately 40,000 ha a r e under irrigation out of a n objective which is ten times higher, despite the considerable resources employed but changes have been carried out, in particular, with regard to the distribution of functions previously centralised by t h e State, and in terms of economic results (cultural intensity and yields in particular which have globally improved albeit without achieving their objectives). \"Significant\" margins of progress are stressed by the SAED but do they exist? To think in terms of potential and supply h a s its limits: the OMVS remains a determined operation in a context of a n abundant supply of funds for Public Development Aid. But what funding c a n still be provided for a costly productivist model which produces the most expensive rice in the world, in a situation of non protection of internal markets, both in Senegal, in Mauritania and in Mali? The prospects seem bleak given the recent experiences of the three countries, irrespective of any conflictual aspects: w e should in this respect point out the crisis in agricultural credit in Senegal, the quasi-generalised organisational difficulties of the producer groups, the land blockages particularly in the middle valley, the impact of the devaluation of the Fcfa and the Mauritanian Ouguyia on the cost of inputs.a) The role of design and the dominant technical models in designing developments at very varied, but nevertheless interdependent levels: what degree of adaptation to the social and natural conditions of the environment? What degree of viability? What are the alternatives with regard to participative \"design\", which significantly conditions the choice of method of water management? How to carry out interdisciplinary research where sociologists have to concentrate their studies on the aspects relating to the project such that they are integrated with those of the engineers and the agronomists. between upstream and downstream in an inequitable water management system at the regional level, based on supply-based management, in a context of highly unpredictable and increasingly rare resources? e) What new between and irrigated agriculture?Mali (Niger Office Zone: Niger valley; CMDT zone: South Mali)Irrigation in Mali, a Sudano-sahelian country of Africa, is particularly well-developed in the Niger with 190,000 ha under total or partial control 80 at the Niger Office and Rice and in the lowlands of South Mali (Sikasso). Its case is similar to that of the neighbouring countries such as Burkina-Faso or the north of Ivory Coast in so far as concerns the lowlands and small dams.The situation in Mali with regard to water control is varied (dead Delta and live delta of the Niger, lowlands in the South and West, Senegal valley), interesting and geographically concentrated. It combines both the basin problems (watershed management), flooded crops and flood plain crops, and irrigated systems with different types of water control (gravity with or without dam, various pumps). Traditional continue to apply on the Internal Delta of the Niger, on the pasture land, flood plain and fishing land.The Large Irrigated Perimeters were created first by the colonial State, then by the independent State. The Niner Office, created in 1932 on the model of the Gezira, with today more than 60,000 ha in the dead delta of the Niger and almost 5000 families of farmers, currently an immigration zone, there has been a dominant cotton orientation followed by rice. Flood plain sorghum dominates in the flood plain systems, as well as flooded rice in controlled submersion developments. Irrigation represents 40-50% of the agricultural investment budget. A charge by volume with penalties envisaged in 1991 is being applied.Intensive advisory campaign with double crops and transplanting of the rice, and accountability of farmers upstream and downstream, are well underway.This has been undertaken by means of a review of the water management operating procedures, the establishment of local fees and the financial autonomy of the regional management, the distribution of financial information, budgetary con , carefully controlled servicing requirements and costs, the sharing of responsibilities at plot, office and State levels; financing maintenance by the work of the operators or, after warning, by Office employees with repercussion of the cost, a special maintenance fund with fees in kind, managed by the local bank and with information provided to the irrigators.Improving water transfers was the aim of the rehabilitation, along with obtaining a better economic calculation, but how can water be sold \"in to groups?The land status of the operators is not very clear, with numerous restrictions (prohibition of transfers between farmers), on (promised but never given to the settlers), and a basic insecurity linked to arbitrary factors in the Niger Office. There has been a recent stabilisation but the use their new land responsibilities to evict smallholders and concentrate in favour of those in charge. The issue of the irrigators \"outside the register\" remains: what regularisation would be possible?The irrigated perimeters and Selingue dam (ODRS with support) resemble the Niger Office situation. The Small perimeters irrigated pumping from resemble the diversity of the PlVs of the Senegal river. The Horo lakes (GTZ very traditional GR model, numerous technical problems) and the Tanda-Kabara lakes, with the NGO which is developing support for social water management in this 6th region of Timbuktu, are illustrative of the semi-controlled submersion developments: it may be useful to compare them with the Office, and to note the land conflicts.There are no water rights as such, access to water is linked to the land. The lack of legal clarity is linked to the refusal of the State to provide protection, officially to guarantee good development and encourage intensification by leaving a sword of Damocles over the head of the farmers, but also so that the elite can gain control of the land and the income with the consequences thereof.Rehabilitation accompanied by institutional reform has had its effects on yields, productivity and production costs. Mali now exports rice, particularly since the devaluation of the Fcfa in 1994. But there are still uncertainties concerning the land and external aspects linked to water (problem of drainage and soil prospects are to extend the experience to the other registers and to the whole of the Office, but the current tenure regime needs to be changed in order to protect and transmit the land and thus facilitate subsidies, improve the correspondence between the services rendered, the work carried out and the fees received. The absence of water rights in State systems: why? (comparison with farmer irrigated systems, in particular in Latin America) c. In irrigated systems with recurrent costs, what guarantee for credit? Is the land the only one? How to m a n a g e with equity? In the event of non-payment for water, is the only recourse eviction from t h e land?Other water management confiqurations: the example of t h e CMDT cotton zone. Development and management of the lowlands in South Mali and neighbouring countries (RCI, Ghana, Burkina-Faso). See the important sub-regional seminar of Sikasso in October 1996.Diversity and changes in irrigation in Niger: what is at stake? 1. Presentation and location. Irrigation and water control in Niger, in the Sahel, are particularly well-developed in the Niger river valley with 78,000 ha, of which 12,000 ha under total control with above all rice, cotton and wheat as crops. 55,000 hectares are under partial control and 12,000 under uncontrolled submersion. Deciphering the informal operating logic of the irrigated system is possible using sociological methods which go beyond the blockages of the formal system and solve problems which have not been raised at the most appropriate levels. (Le Vu S., 1997) Nevertheless, the option taken in Niger of water management by hydraulic mesh (maille hydraulique) will improve the situation. Thus the Say I area is undergoing a decentralisation of the fee collection and water management in the with a strong commitment by the farmers, including for services. (Nouhou Daouda).Office National des Amenagements Hydro-Agricoles Groupements de producteurs.2.4....to achieve national obiectives Namely, improved economic profitability, a reduction in operating and maintenance costs, and a diversification of crop systems to deal with increased demand and limit imports. Burkina Faso: diversity of actions to control the water and agrarian reform in trouble.The issue of water in Burkina Faso, in the Sudanese Sahel, has always been acute by virtue of its dominant relief of an ironstone lateritic plateau drained to the South by the Volta rivers.Water control has been developed over 45,000 ha, of which 15430 are under total or partial control (Sourou, Kou, Douna, 9000 ha are in developed lowlands and 21400 ha of which are in the other lowlands, with a pronounced dominant rice crop (78% of the areas).The fight against run-off by means of small developments concerns more than 75000 ha.The case of Burkina-Faso is interesting and diversified even if it seems to be not very innovative in the area of water rights (the \"share tenancy\" system continues in certain major developments). A determined agrarian reform was undertaken as a result of certain political events (Sankara regime) and was repeated in 1986. It is nevertheless very much \"top-down'' and authoritarian and is liable to be blocked by traditional authorities, which are still influential on the question of land. Currently, the State is disengaging itself from the management of irrigated systems, with a growing involvement of peasant organisations.A water policy is now being drawn up which confirms the previous empirical choices. The development of small-scale private irrigation and horticulture, although important, is however not concerned. Land protection remains a major issue.This country is held up as a model for other Sudanese Sahel countries, with more than 700 micro-dams built (often in earth and gabions) and equipped with Small Irrigated Perimeters downstream, in connection with a national policy of self-sufficiency in the field of food and agricultural produce.The lowlands have undergone numerous small developments (filtration flood banks, rice weirs) following the example of neighbouring countries, but they often lead to exclusion, in particular for given dominated social groups which do not have any land guarantees (women, new arrivals, breeders, minors). The improvement of socio-land identification and diagnostic approaches can make up for it by improved understanding of the issues and conflicts which surround the resources and their uses in the lowlands, socialised spaces, already appropriated and developed, which explains why those involved in the development are poorly armed today, although they cause a number of perverse effects (Lavigne-Delville P., 1998).The Comoe basins are the subject of several developments, small-scale or large-scale, rice crops, sugar cane plantations, market gardens and fruit plantations whose water requirements are different or even irreconcilable. The town is also a consumer. An attempt to help in decisions has been implemented with a management tool based on the Hydram simulation software, also tested in Guadeloupe-Caribbean. How to realise the arbitrations necessary based on simulations? (Dezetter Alain, 1998) The case study may lead to discussions.The irrigated perimeter of Kou in connection with the Comoe Rice Operation is one of the traditional developments implemented in connection with the public hydro-agricultural development policy. Women depend exclusively on rice crops and access to rice growing lands for their income and a certain economic autonomy, above all old women who are \"freer\". They accept the land changes imposed by the Rice Operation if they benefit therefrom, but this raises problems of anteriority and management of the symbolic aspects (sacrifices). But the land pressure from men i s sometimes too strong a fact about which they complain. A development is always a chance to relaunch a ground rent which benefits the men by in partnership, whether conscious or not, with technicians or sociologists, who play upon the remodelling of land allocation criteria (definition of family production units,.Ignorance of traditional land rights with regard to resources and products injure and exclude women in favour of development. Many interactions between the parties deform the initial project and encourage land expectations at later stages. The previous land order is regretted by the previous owners. Plots are certainly closer but the risks are no longer spread out. The new land distribution is more rigid than the old one. Access for women is, however, made more uncertain and there is even land exclusion as in the Gambia, where rice is a more important issue for men. The participation of farmers i s not a sufficient condition for the non-exclusion of poor people. However, these negative effects can be prevented by a better design and identification of access rights, for poor people and women, by a change in scale in surveys and implementing a series of methodological, organisational, and social recommendations during land negotiations, as a development is not socially neutral, nor a simple technical operation. (Koppen Barbara van, 1998.\")Water Resources enhancement programme in the South-West of Burkina Faso tries to envisage sustainable management via a master plan and concerted planning which forms the framework for those involved in the development and by trying to support local initiatives via sub-programmes (evaluation of resources, enhancement, semi-rural hydraulics, rural hydraulics). Attentive monitoring of innovations is carried out in order to achieve concertation between the players and to make them responsible via basin committees. However, the vagueness of the regulations constitutes a handicap, as does the lack of any references in an equivalent context, not to mention the low level of the skills of the operators. The integrated management approach does not appear as yet to be understood by the operators. But changes in behaviour, both by technicians or by users, are starting to be visible: bearing in mind the maintenance, environmental monitoring, creation of dialogue spaces, planning processes. This unique West Africa experience is worth following up, because it is innovative and committed over the long term. Nigeria has undergone a period of major irrigation developments, boosted by the oil boom, following the example of Cameroon, but the fall i n oil income and the reduction in subsidies to the irrigation agencies responsible for developing the Large Irrigated Perimeters in the North, accompanied by official disengagement of the State and the necessary \"farmer accountability\" via the transfer of functions are casting doubt on this development model. The Research Institute and the Ahmadu Bello University in Zaria are trying to come up with alternatives in this context. (Flood bank E., 1990) Large-scale dams with irrigated perimeters (Bakolori, Dadinkowa, Mokwa) were built in 1974 and considerably damaged farming communities whose revolts were put down by the army. The planned framework seriously limits the efficiency of the developments. (Conac G. et al., 1985).The Lagdo dam on the Benoue in Cameroon is leading to tensions with Nigeria, whose populations complain about the excessive amounts retained which have a negative impact upon their traditional activities. (Boutrais J., 1997)The increase in small-scale irriaation is also to tensions with reaard to resources. The number of small irrigated perimeters has increased, particularly, in Bornou, the Jos Plateau, Benoue thus fulfilling strong and increasing urban demand, in particular in vegetables. Small-scale irrigation, which is work intensive and turned towards acquisition of monetary income, is extending significantly but is causing land tensions.Traditional water control is encountered in the fadamas, or lowlands and depressions, isolated or on the edge of rivers, where the chadouf is valued for market gardening. Wells, manual pumps, and motorised pumps are increasing, causing conflicts with the Large Irrigated Perimeters.Traditional management of the flood zones remains very instructive with regard to the combination of fishing, breeding, flooded crop and flood plain crop activities and the water access rights of those involved, but it is being threatened by tensions in respect of resources due to the multiple hydraulic developments and the development of motorised pumps. (Thomas David, 1997).It is, however, possible to better manage the water resources of a rich country such as Nigeria, argues. W.M. Adams from Cambridge University, England. The problem is urgent given the demographic pressure which exceeds the capacity of the resources, the technological level of which is very inefficient. The lower valley of the Niger remains the main usable surface water resource.The creation of t h e River Basin Development Authorities in 1973 w a s supposed to enable better planning of the water resources management and greater farmer involvement. W h a t has really happened given the rapid demographic changes and a complex land situation? Is the involvement of the farming communities a mere slogan?The cost reductions in large-scale irrigation and the appropriateness of the planning and design of the developed zones is a central issue. Training and advisory services would be useful for small-scale irrigation.----comparison with French-speaking Africa: is there a n English speaking specificity with regard to water management? Or is there a dominant model? what recognition of water rights by a n authoritarian political regime? what alternatives in the area of small-scale irrigation and management of the wetlands? is participation by farming communities possible in t h e framework of catchment area agencies? Lake Chad Basin (Chad, North Cameroon, Eastern Niger, North-East Nigeria)The Lake Chad Basin is situated between the Sahara, the Sahel and the northern slope of the Adamaoua and covers Chad, North Cameroon, Eastern Niger, North and North-East Nigeria. its catchment area is the convergence of the Chari, Logone, and Komadougou rivers towards Lake Chad, but also includes fossil basins and water tables . The difficulty of moving the rice is compounded by hydraulic difficulties. There are also problems of the \"viability\" of the developments and the groups of irrigators, still subject to \"top-down? support\". What is the sense of the agreement on water sharing today when part of the waters has been rerouted towards the Maga depression by Cameroon? What is the alternative to large-scale reproducible developments? Is small-scale horticultural irrigation the answer? What of water access for local populations, evacuated from or integrated into the perimeters, faced with an all-powerful executive? A large number of questions raised by the resistance of the farming communities and disputes over the irrigation, including on the sanitary level.The total or partial control of the waters is practised over 14000 whereas flood recession (78000 ha) and the lowlands (21000 ha) are the most significant element of the water enhancement with the irrigated palm groves in the Sahara (2,000 ha). The objective of food safety dominates the hydro-agricultural policy but the developments required rehabilitation work at the start of the Small-scale areas are the priority today.The development of the waters of Lake Chad for gravity fed irrigation is necessarily limited, for environmental and social reasons.Access to water and its use is regulated by law. Free access or purchase result from situations of scarcity or abundance, the developments carried out, or tensions between users. Present-day law finds it difficult on its own to deal with all the various situations, thus a reform is being studied centred on the protection of resources. But will it not be too repressive? Will it take care to base itself upon the technical fundamentals of customary practices and Islamic law? Will it be more widely applied than previously in the context of administrative destitution, large distances, armed violence.. .? Isn't the local level more legitimate?2.2.2. Land law and aqricultural development: the case of the of westernIn the Borkou depression, where two-thirds of the dates of Chad are grown, numerous but often poorly maintained springs allow easy irrigation of the watered gardens. The rights to the springs reflect the social relationships in the palm grove between the various groups and explain the poor level of maintenance and the refusal to develop these springs to obtain better crops: the previous owners, the holding the monopoly on water rights on the springs, the founders but weakened in their rights by colonisation, the Kamaya, dominated sedentary farmers, vassals of the first and \"emancipated\" but still tenant farmers, and the new arrivals but aggressive and dominating. There is often an e x c e s s of water at the primary end and frequent penury at the end called achrin\" which creates a depressive effect in the state of the secondary canal on the cotton revenue as the sowing is then too late, with, at times, negative revenue.The indebtedness of the State and the reduction in the resources of the Ministry of Irrigation, despite the collection of water and land fees by the SGB, imply a serious maintenance problem, leading to a vicious circle which needs to be broken: lack of water, no fees, lack of SGB resources and lack of maintenance. The application of an Emergency Plan in periods of penury causes anticipation which is favourable to revenue, which shows the interest demand-led management in conditions where supply is not flexible.The lack of water and storage possibilities is an essential limiting factor to the development of irrigation. The raising of the Roseires dam and the overdigging of two main canals are part of the large-scale projects.Convincing those who provide the capital to also invest in physical rehabilitation (desilting) whilst starting institutional reforms, but also involve farmers in the choices of the crops and the priorities were the priorities announced in 1992. What is the current Estate is suffering from a worse example of the s a m e problem. These are two systems which divert floodwater and store it, supplemented by boreholes in the event of a drought.Small-scale irrigation by chadouf is practised over 1300 ha in the Gash and Barka valleys. In mountainous areas, 2600 ha are irrigated by underground waters and small d a m s with double or even triple crops.Development of the irrigation concessions has been noticed since independence in the South-West. of the flood systems is envisaged. Silting-up is an important constraint. The development of small dams is a priority.A water development and management scheme is being designed with the FAO. A law on water h a s been undergoing preparation since 1994.Rehabilitation a n d viability of the large-scale colonial irrigated systems: can the farmers take it over? Geopolitics a n d the management of the waters of the large basins: what integrated sustainable practice?The environment of the irrigated perimeters as a source of conflict: issues of pesticide pollution a n d salination of the soil. Problem of the displaced populations and the precarious status of migrants and seasonal workers in the Irrigated Perimeters Relevance of the American method of \"conflict resolution\" for settling disputes in the developed zones.Irrigation in East Africa: Kenya, Tanzania, Uganda Presentation and location. The three countries of East Africa, Kenya, Tanzania, Uganda (excluding Sudan, Ethiopia, Eritrea, Somalia) are irrigated by the mountains of East Africa where the Upper Nile and various coastal rivers rise. All the available water and its exploitation is dependent upon this area. (map) 2.a rich country faced with a deep management crisis. Despite its relatively underdeveloped irrigation (50000 ha of which 28000 in small-scale operations, 26600 in commercial operations and 12000 under State management) compared with its potential, Kenya has adopted a master plan for the development management of water resources Self-sufficiency in food is a priority, with a premium on rain-fed crops, but crops with high added value are important in irrigated areas.2.1. The need for water leqislation reform. The situation in Kenya with regard to water control is very diverse and interesting. The current context of liberalisation and its consequences contrasts with the previous policy where the State intervened strongly providing the country with authoritarian and down development schemes and complex legislation inspired by English Law (Water Act, Irrigation Act, Lakes and Rivers Act, Lake Basin Development Authority, Tana and Rivers Development Authority Act), legislation which needs to be reformed to ensure sustainable water management and an equitable approach (gender). The issues of the centrality of the State, domaniality, and its monopoly must be re-assessed.There is a system of water sales permits. Land associations of riverside residents manage the water but this does not stop supply crises like with the town of Navaisha. Legal innovations have been 2.2. An interestinq trend: More people, less erosion Water conservation and small irriqation in Machakos District. The development of horticulture (market gardening and fruit growing) has been very important since the 1960s. It is based on the conservation of water and land and on small-scale irrigated agriculture, enhancing high added value crops, in particular for export (out of season Kenyan runner beans). Several developments have been carried out such as the Yatta canal which irrigates 780 ha, originally for breeding, as well as several small areas in Kibwezi and Kiboko. The role of the religious missions and NGOs has been important.The population density is very high and there is a strong specialisation and diversification of revenues, with intensive work and few inputs used which have revitalised this district. Underground dams, small and medium-scale land dams, and by-pass canals in the mountains, have been built. And there is a growing demand for irrigation water as well as illegal water intakes. Although the economic assessment of irrigation is not very well known, the debate on the conflicts and questions of water appropriation is But there is no major development of irrigation despite a growing mobilisation of water.The interest of the case resides in the economic agricultural dynamism which is not centred on irrigation developments but on water management at the plot and hillside level. horticultural development. The water intakes and main canals are being developed by lineages whereas the secondary networks \"are individualised\" and \"privatised\" and even cast doubt upon water rights by \"trading\" them. Administrative attempts to limit the practice of mountain irrigation based on downstream requirements (towns, plantations) resulted in sharp reactions from mountain dwellers inThe study of water rights, irrigation dynamics and developments and water management, is an excellent way of understanding sustainable irrigation by farming communities.Water reforms and relations. Integrated management and fulfilling the drinking water requirements of towns Traditional irrigation and sustainability Development prospects for irrigation and conservation (conservatory management of wetlands)Small irrigated perimeters in Zimbabwe. From bottlenecks to relaunch? I.Background: Zimbabwe currently has, as a result of its colonial past where investments dominated, elements of all the irrigation developments. It has significantly extended its irrigated perimeters, which tripled from 1968 to to reach 191,000 ha whilst diversifying between \"formal irriqation\" (large-scale commercial: 93656 ha, schemes: 13500 ha) and \"informal irriqation\" (settler farming: 3421 ha, smallholder farming: 6000 ha), with the progress, albeit modest, of the agrarian and land reform. 40 of the production of the nine main crops is achieved by irrigation. The country had to also deal with the constraints of the long drought which reduced the irrigated perimeter over the 80s.Regulated pumping from rivers and small lakes is dominant, although ponds and wells predominate with smallholders. Overhead irrigation is o n the increase although it predominates in \"commercial\". Interesting research is being carried out with the University of Mount Pleasant. The national irrigation objectives are to ensure jobs and revenue which thus will reduce the rural exodus.An old inventory counted 74 small irrigated perimeters of 2 to 400 ha created from 1912 to 1980 (Independence), corresponding to 5500 ha in 1988 4% in surface of the national total, 54 were operational and 22 were abandoned, due to smallholders not being \"held responsible\" by the State amongst other then 9400 ha in 1992. Individual irrigation, with frequent use of paying services, is considered a success, although the costs of State management of the are high. The government has reduced its subsidies. The irrigation office must now be self-financing. Free access to water was the rule. Aware of the tensions with regard to this resource, the government fixed a \"national blend for industrial pumping.Avoiding non-equitable water distribution is a priority given the social consequences and production, so as to retain the possibility of maintaining the developments. The farming community has genuine know-how of irrigation issues. The environmental problems linked to irrigation are erosion, silting-up and pollution. Similarly, as women are authorised by their husbands to grow crops to optimise social relations, time and methods, the engineers' schedules have been upset. It should be added that in Zimbabwe, river pumping for smallholders is illegal given the existing domaniality. Support for small-scale black farming communities would require a \"second decolonisation (Diemer G., 1997) both in the minds of the technicians and in the totally inadequate legal provisions Kenya). The other authors are interested in the conflicts, spontaneous technological initiatives, their legal compatibility, micro-economic strategies. (Manzungu E., et al. 1996.). based on the authoritarian model of the Gezira. The absence of information from the producers, fees paid directly to the treasury, maintenance ensured by government officials, for a long time compromised the profitability maize, especially with the October shortfalls, a decisive month for maize sowing, which the extra pumping on the river Odzi, cannot compensate due to pump and infiltration problems in the primary canal. The water supply is still insecure. The problems of maintenance and design are responsible but it is above all the water management method which is at fault, as there is no other system of water turn than that which consists in \"satisfying all your requirements when it is your turn\" whatever the efficiency of the water supply. The impacts of the drought can be felt on revenues and equipment. There is a large variability of revenues and the role of breeding is important in working the farm. The knowledge of the farmers in the area of water management is good, but there is often a \"refusal of self-management of the PPI. Individual management is preferred there\" which results in special technical and organisational choices.The dambo irriqation systems: an indigenous way of water manaqement.Irrigation in the dambos (lowlands) does not have the negative effect on the environment generally imputed to it, by a lack of understanding of the hydrology of the latter and because in addition, it is economically a lot more profitable. Irrigation in the dambos represents an important alternative for small farming communities whereas little research and extension work is carried out into it, not to mention the impossibility of obtaining credit from the NFIF. The lack of infrastructure to transport produce is their main problem. Farming communities control access to the dambos such that it prevents any overexploitation and enables multiple usages of these wetlands (breeding, domestic water.. .). The development of irrigation in South Africa, which is as important and diversified as Zimbabwe, makes use of the resources of the river Orange and Vaal basins.South Africa has a long history of irrigation due to its past as a colony for migrant populations, its implication in certain export channels and its policy of self-sufficiency in foodstuffs linked to its prolonged political isolation during the apartheid period. The revenue obtained from its mining resources has served to finance the development of irrigation, but that has been carried out exclusively, whereas there is now the problem of implementing land redistribution and the question of access to water.This country has great potential which has already been largely enhanced by means of several highly technical systems.: surface irrigation (400,000 ha), sprinklers and pivots (660,000 ha) and micro-irrigation (144,000 ha).There are four main types of irrigation institutions: the \"Government Water Schemes\" (329,000 ha) managed by the department of Water Affairs where the State contributes to the infrastructures, the Irrigation Boards 55,000 ha) which support private groups, purely private developments (660,000 ha) and the developments of the Rural Development Programmes in former bantustans (70 000 ha). The scarcity of water is leading to growing conflicts for its allocation to the Natal (reforestation versus sugar cane), to the Transvaal (electricity versus irrigation) or between the commercial sector and smallholder agriculture.Institutional water reform is in progress (New National Water Act, Act 36 of 1998).The immediate neighbouring countries, such as Namibia, Lesotho, Swaziland,.. . are still blocked with regard to their irrigation development, for a variety of reasons.-Optimum allocation of water between players and arbitration in the presence of a strong commercial and urban demand.The theme of water rights in Africa has been largely ignored up until now due to the dominant strategy of supply-led management and not taking into account traditional irrigated systems.Efforts have been concentrated since independence on infrastructures which have then undergone various rehabilitation efforts. The institutional aspects only started to be tackled in 1985. The profound but also fragile administrative, political, legal, institutional transformations underway nevertheless open up the prospect of improved reform of irrigation and water management support systems both in irrigated systems and for catchment area management.The above reports aim to target experiences, players, trends, questions which highlight this overall problem of the development of irrigation in Africa which must cross over an important qualitative threshold to ensure its sustainability. A necessary review of the history of African, traditional, colonial, \"modern\" irrigated systems is also necessary. This may allow us to understand the dynamics involved and any possible courses of action.Respect for traditional organisation and u s e so as to juxtapose a system of irrigation with pumped water (the head of the lineage is often head of a canal and m a n a g e s t h e river flood water intakes) .Comparison with the Dominican Republic where t h e only recovers 10% of the fees o n these a r e a s compared with 50%for the a r e a s transferred. Improvement in hydrological knowledge in a highly diversified and variable environment in order to protect the water supply and to make organisation and management systems more viable. e.f.Other areas: Jacmel, Three rivers, Blue River, Small river in Nippes, S t Raphael,... In order to better take account of the integrated dimension of water management, it is worth noting the successful experience of for rehabilitation of the public water supply service (CAMEP, network of paying public fountains and management committees) via a determined policy and the collaboration of numerous base organisations in shanty towns, (GRET partners, Hydro-Council).","tokenCount":"7710"} \ No newline at end of file diff --git a/data/part_3/3953407506.json b/data/part_3/3953407506.json new file mode 100644 index 0000000000000000000000000000000000000000..545ff7be36023cc77c7b681ae2538373261b8acb --- /dev/null +++ b/data/part_3/3953407506.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"d49583475572412e809d64efacf3538c","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/21c9b185-e6f9-4a38-a5ab-46e48ed12b09/retrieve","id":"700559777"},"keywords":[],"sieverID":"544a93e1-c527-4e2f-9de3-c218aa9da355","pagecount":"6","content":"Weed control in cassava has been studied relatively little. Given its hardiness, this crop was believed to tolerate competition from weeds without undue harm. However, in Colombia, the presence of weeds during the first 60 days of the crop's cycle was observed to reduce yields by about 50%, compared with cassava that was free of weeds throughout the cropping cycle.Weeds pose a significant problem to most cash crops and, particularly to cassava. Weeds tend to determine a plant's development and its later yields. The importance of weeds to food production and their control is clearly documented and supported by the literature. To achieve economically viable production, losses caused by weeds must be adequately controlled. This is very important for both the productivity of high-yielding genetic materials and the development of technology packages. For cassava, this problem is of such a magnitude that it sometimes represents 30% or more of production costs.This method groups specific practices that enable the crop to be more competitive with weeds. Among the most significant agronomic practices of this control system are correct selection of cultivars, use of good quality \"seed\" or stakes, optimal planting density, and crop protection.As a consequence of the cassava plant's slow initial growth, several passes of weeding must be carried out, using manual implements, until the crop's canopy closes completely and limits weed development by reducing the availability of light. This method is used in small plantings where labor is available and inexpensive.This method is usually employed in combination with manual or chemical control. It consists of using tools, such as cultivators, rotaries, or agricultural hooks, pulled by tractors or animals that pass between the rows and furrows. It starts 15 to 30 days after the crop is planted and continues for as long as crop cover allows it.This control involves the use of preemergent herbicides, which prevent weeds growing for 45 to 50 days, while the cassava canopy is still open. Because chemical control is usually insufficient for the period of cassava development, the farmer must conduct later weeding activities. Critical shortages of labor and its high cost mean that, currently, chemical control, because of its advantages, becomes a practical and economical option, particularly for large cassava plantations.Available herbicides. For the chemical control of weeds in cassava crops, several products, with preemergent or postemergent action, can be easily obtained on the local market. Their selectivity, with respect to the crop, ranges from medium to high ( Table 7-1).Selecting the herbicide. The diversity of weed populations that become established in the fields is the result of agricultural history. To correctly select the preemergent herbicides, the predominant weeds must be identified before the soil is prepared. Knowing which herbicides control what weeds is also necessary. Weeds that escape the action of preemergent herbicides can be controlled by applying postemergent herbicides. Farmers who do not apply control treatments to their crops frequently confront dense weed infestations.Cassava is one crop for which the integration of weed control methods is highly necessary, given that its slow initial growth allows weeds to develop vigorously. Preemergent herbicides usually control weeds for only 45 to 50 days, at the end of which the cassava canopy is still not closed. Hence, additional weed control becomes necessary, whether by applying postemergent herbicides or weeding manually.Direct planting of crops into mulches without inversion plowing provides many advantages that are particularly relevant for cassava and the consequences of climate change. Perhaps the most immediate advantage is reduced production costs. Moreover, direct planting can also reduce the detrimental effects of cassava cultivation can have on the environment. For example, the soil surface is not exposed to the environment while a sufficient mulch of dead and/or live vegetation protects it. This key approach to reducing soil erosion may increase as rainfall becomes more intense in the world's cassavagrowing regions.Mulches may also increase water-use efficiency, as run-offs are fewer and more water infiltrates into the soil, where it remains for longer periods because of reduced evaporation from the soil surface. Nutrients may also be more efficiently used and retained. Soil structure can progressively improve under such minimal tillage systems.However, a major drawback of direct planting is the frequently unmanageable weed problem. As desirable as direct planting is, in practice, it has developed quickly only where herbicide-tolerant crops are available. In 2008, herbicide-tolerant crops of soybean, maize, canola, cotton, and alfalfa occupied 79 million hectares or about two-thirds of the global biotech crop area of 125 million hectares, the total area on which biotech crops are grown (ISAAA 2008). These data refer to plants that are genetically transformed to tolerate herbicides, particularly glyphosate. Genetic transformation is also feasible for cassava (see Chapter 21, Biotechnology for Cassava, this volume). The first evidence of somatic embryos and transgenic cassava was reported between 1993 and 1995 (Sarria et al. 1995(Sarria et al. , 2000) ) for tolerance of the herbicide glufosinate-ammonium (Figure 7-1). Since then, several projects on transgenic cassava have been developed (Taylor et al. 2004), including reduced cyanogenic potential (Siritunga et al. 2004;Jørgensen et al. 2005); starch quantity and quality (Raemakers et al. 2005;Ihemere et al. 2006); increased carotenoid content in roots (Chavarriaga et al. 2009); and leaf retention (Zhang and Gruissem 2004). The silencing of specific genes through RNA interference has also been demonstrated (Jørgensen et al. 2005).Other alternatives exploit natural or induced variation for herbicide tolerance in different crops (Sherman et al. 1996;Tan et al. 2005Tan et al. , 2006;;Tan and Bowe 2008). In most cases, tolerance of imidazolinones arises from changes in the gene codifying for acetohydroxy acid synthase (AHAS). Resistance against cyclohexanedione, found in maize, is regulated by acetyl-CoA carboxylase, and that against triazine originates in the psbA gene, which is related to photosynthesis (Tan et al. 2005(Tan et al. , 2006)). These discoveries have led to the development of herbicide tolerance in different crops such as maize, rice, wheat, canola, sunflower, lentils, sugar beet, cotton, soybean, lettuce, tomato, and tobacco. Tolerance of herbicides can be achieved mostly through one of three mechanisms: (a) resistance at the herbicide's site of action; (b) metabolic detoxification of the herbicide; and (c) preventing the herbicide access from having to its site of action (Sherman et al. 1996). These considerations are relevant because, in some cases, tolerance of herbicides can assume a dominant or semi-dominant gene action, in addition to the more common recessive behavior. Maternal effects have also been reported (Tan and Bowe 2008). The most relevant examples of herbicide-tolerant crops are for imidazolinone (i.e., CLEARFIELD ® ), glyphosate (i.e., Roundup Ready ® ), and glufosinate (i.e., LibertyLink ® ) products. Tolerance of Roundup Ready ® is based, so far, solely on genetic transformation.CIAT has initiated two aggressive approaches to identifying herbicide tolerance in cassava. The first approach, which induces self-pollinating cassava germplasm to produce S 1 genotypes, can expose recessive sources of tolerance to herbicides. The genotypes thus produced can then be subjected to different herbicides to detect phenotypes expressing tolerance. The second approach is through the use of molecular markers for the application of TILLING or EcoTILLING (Till et al. 2003;Guang-Xi et al. 2007). This approach is greatly facilitated by clearly understanding the genes that must be mutated, and the recent availability of the sequenced cassava genome.The evaluation of partially inbred cassava materials started in 2009. A total of 700 cloned S 1 genotypes were evaluated in the field. Each genotype was represented by 12 plants, which had been planted in six different blocks in the field (two plants per genotype in each block). Each block was treated with commercial doses of the following herbicides: 2,4-D (Anikilamina ® ); glyphosate (Roundup ® ); imidazolinone (Plateau ® ); sulfonylurea (Ally ® ); glufosinate-ammonium (Basta ® ; Finale ® ); and atrazine. Although results are still preliminary, at least one genotype appears to have obvious tolerance of glufosinate-ammonium. Figure 7-2 illustrates clear differences in vigor of these two plants, compared with related S 1 genotypes.","tokenCount":"1319"} \ No newline at end of file diff --git a/data/part_3/3957314502.json b/data/part_3/3957314502.json new file mode 100644 index 0000000000000000000000000000000000000000..a7a14cdd791118b674ed350d4617085cefa1770a --- /dev/null +++ b/data/part_3/3957314502.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"034012a87597e1b4aadb48d494de2560","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/fe31c6a6-1e27-4c38-ae6f-6116b54109b6/retrieve","id":"-810386778"},"keywords":[],"sieverID":"3c673359-d003-48d7-86e1-cd9d4b5e6098","pagecount":"116","content":"Institutions involved in agricultural marketing issues Grain prices Agricultural exports Agricultural imports Main opportunities, risks and constraints for markets Natural resource management and the environment Soil and forest degradation Programs for NRM Biodiversity Opportunities, risks and constraints for NRM References Annexes Annex 1a: Average consumption expenditure in 2011 (ETB/HH) Annex 1b: Percentage of households owning less common assets in Ethiopia and Oromia in 2011 Annex 2: Food balance sheet of Ethiopia in 2011 Annex 3: Nutritional status of women aged 15-49 years (% based on body mass index) Annex 4: Breastfeeding practices of children aged 0-23 months (%) nationally Annex 5: Malnourished under five children based on anthropometric indices (%) Annex 6: Feeding practices and their breastfeeding status of children aged 6-23 months who are living with their mother (%) nationally Annex 7: Micronutrients intake of children under five years (aged 6-59 months) Annex 8: Number and % of smallholder farmers (holders) producing crops in Ethiopia, Oromia and project sites in 2013/2014 Annex 9: Average area and production per holder Annex 10: Yield of crops in Ethiopia, Oromia and Humidtropic sites of western Oromia in 2013/14 (tonne/ha) Annex 10a: No. of farmers using fertilize in Ethiopia, Oromia and project area in 2013/2014 Annex 11: Trend of fertilizer utilization for maize in Ethiopia, Oromia and project area Annex 12: Trend of improved seed use for maize in Ethiopia, Oromia and project area Annex 13: Trend of pesticide use for maize in Ethiopia, Oromia and project area Annex 14: Trend of irrigation use for maize in Ethiopia, Oromia and project area 97Tables Table 1: Population and household size The CGIAR Research Program on Integrated Systems for the Humid Tropics or 'Humidtropics' is a global researchfor-development initiative which seeks to transform the lives of the rural poor in the humid lowlands, moist savannas, and tropical highlands in tropical Americas, Asia and Africa. Humidtropics provides a new integrated agricultural systems approach, a single research-for-development plan, and a unique partnerships platform for better impact on poverty and ecosystems integrity.The humid and sub-humid tropics with 2.9 billion people on about 3 billion hectares of land are critical to global food supplies, central to the maintenance of global biodiversity, and vital to the mitigation of greenhouse gasses. Humidtropics focuses on four action areas in the first tier across the globe, one being the East and Central African (ECA) action area, which includes eastern Democratic Republic of Congo, Rwanda, Burundi, Kenya, Ethiopia and Uganda. Each action area has a number of action sites and within each action site there will be a number of field sites where integrated systems research on productivity, natural resource management, nutrition, market and institutions, and gender will be conducted. Humidtropics functions through research for development (R4D) platforms at action site level and innovation platforms (IPs) at field site level that allow for multi-stakeholder interactions and partnerships to engage in priority setting, identification of entry points and opportunities, research implementation, and for building synergies to achieve impact at scale. The action area in Ethiopia lies in western Oromia National Regional State comprising eight zones, namely western Shewa, southwestern Shewa, Jimma, Illu-Aba Bora, East and West Wollega, Kelem Wollega and Horo Guduru Wollega. It works in two primary Field Sites, Jeldu and Diga, and two secondary field sites, Dedo and Lemo.It is expected that over the next 15 years, Humidtropics will advance the CGIAR system level outcomes within the action areas by increasing staple food yields by 60%, increasing average farm income by 50%, lifting 25% of poor households above the poverty line, reducing the number of malnourished children by 30% and restoring 40% of these farms to sustainable resource management. These outcomes will be achieved in a phased manner through attainment of intermediate development outcomes (IDOs) covering income, nutrition, productivity/yield, environment, gender and innovation targets. In this way, Humidtropics will serve as a model to other agencies seeking to link agricultural systems research to developmental impact.The program is being implemented by a partnership comprising the International Institute of Tropical Agriculture (IITA) as the lead organization, International Centre for Tropical Agriculture (CIAT), the International Livestock Research Institute (ILRI), the World Agroforestry Centre (ICRAF), the International Potato Centre (CIP), Bioversity International, the International Water Management Institute (IWMI), the International Centre of Insect Physiology and Ecology (icipe), the Forum for Agricultural Research in Africa (FARA), The World Vegetable Center (AVRDC) and Wageningen University (Wageningen UR).The program is designed to focus on:• Reducing rural poverty. Agricultural growth through improved productivity, market development, and income generation has been shown to be a particularly effective contributor to reducing poverty, especially in the initial stages of economic development.• Increasing food security. Access to affordable food is a problem for millions of poor in urban and rural communities and requires increasing global supply of key staples and reducing potential price increases and price volatility.• Improving nutrition and health. Poor populations spend most of their income on food and suffer from diets that are insufficient in proteins, vitamins and minerals affecting health and development, particularly among women and children.• Sustainable management of natural resources. Agriculture has a substantial impact on natural resources that must be better managed to supply sustainable ecosystem services, particularly in light of climate change.The situation analysis (SA) is conducted by the Oromia Agricultural Research Institute (OARI) and HEDBEZ Business and Consultancy PLC in order to describe a broad picture of the agricultural, livelihood, and environmental systems in Ethiopia in general and the Action Area, in particular. It aims to assist determination of the main opportunities and constraints faced by these systems and generate a list of priority interventions.The two primary objectives of the SA are:• Broadly characterize key elements of the rural system (development status, production systems, markets and other institutions, and Natural Resource Management (NRM) issues) of relevance to Humidtropics within the target Action Site, and through that, generate information to inform all other program activities in the context of attaining the IDOs, as well as to inform ongoing field site selection.• Initiate and facilitate engagement with stakeholders and partners as part of the R4D platform development that is needed for the long-term success and scalability of the Humidtropics program.The SA is mainly based on review of the available secondary sources. Accordingly, the major source of data included the Central Statistical Agency which provided the bulk of the time series data on land use, crop and livestock production, agricultural input use, agricultural products utilization, health and nutrition (Ethiopian Demographic and Health Survey), employment, population, livelihood and access to services. The Ministry of Finance and Economic Development is also a major source of data on economic growth and national income. The Ethiopian Customs and Revenue Authority is a major source of import and export quantity and revenue.Different Bureaus of Oromia provided regional and zonal data relevant for the assessment. West Shewa and East Wollega zones provided zone specific data. Moreover, community level data were collected using key informant interview with experts working with farmers in Jeldu and Diga districts, located in West Shewa and East Wollega, respectively. Furthermore, research reports relevant for the study were reviewed and used to describe the production system, biodiversity, natural resources management, market, investment, programs implemented in the region and stakeholders. Challenges and opportunities were drawn from review as well as the analysis of the secondary data.This section presents a general overview of the socio-economic characteristics, rural development, livelihood, natural environment of the area, infrastructure, ethnic/cultural diversity, policy environment, the institutional contexts and the general stakeholder and partner landscape in the project area.The section aims to contribute to the development of the intermediate development outcome one (IDO 1): 'Increased and more equitable income from agriculture for rural poor farm families, with special focus on rural women' and also IDO 5: 'Empowered women and youth with better control over and benefit from integrated production systems'.General Ethiopia, located in the northeastern part of Africa, also known as the Horn of Africa, lies between 3 and 15 degrees north latitude and 33 and 48 degrees east longitude. The total area of the country is around 1.1 million square kilometers. As of 2007, Ethiopia's population has been growing at a rate of 2.6 percent per annum (CSA 2007) which makes the estimated total population of the country 88.4 million by 2015. This rapid population growth can be an opportunity for the country's growth or threat to its development by contributing to natural resources degradation by expanding farmland to marginal areas. It may also exacerbate critical gaps in basic health services, and food and nutrition insecurity (MOH 2008).Agriculture is the major sector of the Ethiopian economy. It is also the major source of livelihood of more than 85% of the population and major source of export earnings. Hence, development policies and strategies of the country put agriculture as a source of transformation of the economy.Western Oromia, the project area, lies in humid tropical rainforest area with high rainfall and conducive environment for crop and livestock production. This section describes the overview of the country context, regional (Oromia) and project area (western Oromia) contexts.Ethiopia is a populous nation with more than 81 million in 2011 of which 37.4% live in Oromia national regional state (Table 1). The sex ratio of the population is almost balanced (49.56% female). There are more than 16 million households in Ethiopia with an average household size of five persons. Approximately 25.26% in Ethiopia and 22.69% of the households in Oromia region are female headed.According to the population projection by CSA, the population of the project area reached 13 million in 2013 which is an increase by 19% from the population in 2007. The sex ratio of the population is nearly proportional (Table 1 and Figure 1). Approximately 48% of the population of the project site is below 15 years while about 3% is elderly of more than 64 years. This implies that about 51% of the population in the project area is dependent on the labour force for substance and other means of living. In the area, children aged 15-18 also participate in farm activities including herding and hence considered as part of the active labour force which falls in the age range of 15-64 years (Figure 2). According to the CSA data, the land holding in Ethiopia averages around 1.2 ha per household in 2013. This average is about 1.6 ha in Oromia and 1.9 ha in the project area. The data from Oromia Agriculture Bureau also estimates the average land holding in western Oromia at 1.7 ha indicating that the farmers in the project area are endowed with relatively larger land holding as compared to the farmers in other parts of Oromia. The trend analysis also shows that farm land holding expanded to unused areas resulting in increased land holding in the project area (Figure 3). This has implication on natural resources degradation unless appropriate land management system is practiced.Figure 3: Average area per household (in ha).Source: CSA (2013).Literacy: The literacy and numeracy rate for population aged 10 years and above is shown in Table 2. Study conducted in 2011 shows that, 46.8% of the population of Ethiopia was literate with a large discrepancy between rural and urban residents. Literacy rate in urban areas is about twice that of rural areas (78.0% in urban against 39.5% in rural). This variation might be considered as a clue to difference in accessibility of schools between urban and rural areas and affordability.There was a clear difference in the literacy rate between male and female population in both urban and rural areas. Literacy rate among male population (56.3%) is found to be higher than that of female population (37.8%). This discrepancy exists in both rural and urban areas. Literacy rate among male population (49.4%) was two times higher than for the female populations in the rural areas (29.8%) while it was about 87.8% and 69.6% for male and female population respectively, in urban areas (Table 2). Education level: From among the literate, the majority (47%) in Ethiopia and 51% in Oromia attended only primary school grades one-four, while the remaining second largest proportion (33%) in Ethiopia and Oromia completed grades five-eight (Table 3). The livelihood of the Ethiopian population is highly diversified. Agriculture (crop and livestock production) provides a major source of livelihood where 33.3% of the households in Ethiopia and 37.5% in Oromia (urban and rural) cover their consumption needs from agriculture. Income generated from activities which might have negative impact on climate and natural resources (such as sales of firewood and forest products) was source of livelihood for about 20% or households in Ethiopia and 18% of HHs in Oromia. For those involved, paid employment generates relatively good amount of income for the household. Table 1 summarizes the average income generated from different sources of livelihood and the proportion of households involved. Household consumption expenditure survey conducted by CSA (2011) shows that the household expenditure has increased significantly since 2006 and reached more than ETB 564,000 in 2011 (Figure 4a). Details of source of livelihood of the households are given in Annex 1a.Figure 4a: Trend in consumption expenditure (national).The major assets owned in rural and urban Ethiopia in general and in the project area in particular are productive assets like livestock; perennial crops like trees; coffee, khat, enset, etc.; equipment, furniture, transport facilities and jewels. The proportion of people owning the most commonly owned assets in Ethiopia and Oromia is shown in Table 5 while the list of assets which are owned by smaller proportion of people is given in Annex 1b. Asset ownership is inversely related to level of poverty. Such an association could not be assessed due to lack of data on the value of assets owned. Income levels and trendsThe Ethiopian economy generated about ETB 510 billion GDP in 2011 (Figure 4). It showed an average annual growth of 8.8% between 1999 and 2011. Agriculture remained to be the dominant sector contributing more than 50% of the GDP until 2006. Since 2006, the gap between agriculture and services' contribution to GDP continued to narrow until it was balanced in 2010. In 2011, the service sector started to become dominant contributor to GDP (Figure 5). 1999200020012002200320042005200620072008200920102011 Agriculure 102.1 111.9 109.8 98.3 115.0 130.5 144.8 158.5 170.3 181.2 195.0 212.6 Agriculure 102.1 111.9 109.8 98.3 115.0 130.5 144.8 158.5 170.3 181.2 195.0 212.6 6). The increment was exponential in terms of local currency partly due to devaluation of ETB. Even at a constant exchange rate (considering the 1999 exchange rate as constant), the per capita income has shown significant increase since 2004. There is significant income difference between the per capita income at national level and per capita income of Oromia regional state. The difference in per capita income (at 1999 exchange rate) ranges from 4% in 2001 to 71% in 2009 and averaged at about 36% per annum, showing that the level of income in Oromia is generally low and this amount falls below the money required for minimum subsistence of USD 1.25/ person per day.The Ministry of Finance and Economic Development (MoFED 2012) measured poverty using two parameters: income poverty and food poverty. Total poverty compares the per capita income to total poverty line which was ETB 1075 in 1995/96 and ETB 3781/person per year in 2010/11. The food poverty is part of total poverty line which compares real consumption expenditure value to the food poverty line which is measured as income needed to purchase basket of food enough to consume 2,200 kcal/ person per day for a year. The food poverty line was ETB 648 in 1995/96 and ETB 1985in 2010/11. According to MoFED (2012) approximately 29.6% of the population was poor in the sense that they were not able to generate ETB 3781 per capita which was a poverty line during 2010/11. The proportion of the population falling below the poverty line was higher (30.4%) in the rural area as compared to 25.7% in the urban area. Income inequality as measured by the Gini coefficient was 0.37 in urban and 0.27 in rural showing higher income inequality in urban area than in rural in 2010/11. The study also shows that the level of total poverty and food poverty is slightly lower in Oromia (Table 6). Analysis of poverty in Ethiopia shows that total poverty and food poverty declined overtime. The proportion of people living below the total poverty line in Ethiopia declined from 45.5% in 1995/96 to 27.8% in 2011/12, while poverty in the rural areas was higher than that of the urban areas (Table 7). The number of people living below the total poverty line (measured by poverty incidence), the distance from the poverty line (measured by poverty gap) and the level of inequality among the poor (measured by poverty severity) declined by 34.9%, 39.5%, and 39.2%, respectively. There is a general decline in total poverty in urban and rural Ethiopia. Although the proportion of people below absolute poverty line in rural Ethiopia is higher than that of the urban, the gap in the difference is being narrowed during the last five years (Figure 7). There is also a general decline in food poverty in both urban and rural Ethiopia and Oromia. The proportion of people below food poverty line in Ethiopia decreased from 49.5% in 1995/96 to 33.6% in 2010/11. In Oromia, the figure decreased from 41.9% in 1995/96 to 33.1% in 2010/11 (Table 8). In general, Oromia showed less intensity in food poverty as compared to national figure due to its potential responsiveness to development efforts. The government of Ethiopia implements different rural and urban development policies. These policies affect income and poverty as well as food access. Increase in price of food especially in 1999/2000 negatively affected urban food poverty resulting in increase in the proportion of urban population falling below food poverty line. Unemployment also plays similar role. The recent urban development efforts such as organizing the youth into small and micro-enterprises and food price stability contributed to decline in food poverty. Although food poverty has declined, the urban poverty has shown faster decline as compared to rural poverty (Figure 8). Food security is assessed in two ways: number of months of food security as perceived by the respondents and food balance sheet. Table 9 shows that about 52% of the food insecure households in Ethiopia faced food gaps for less than 4 months in 2014 while this proportion was about 50% in the project area. In 2004, the proportion of food insecure households was 31.1% in Ethiopia, 36.3% in Oromia and 27.4% in the project area. In 2011, the proportion of food insecure households declined to 21.2% in Ethiopia and 16.4% in Oromia. The proportion of households facing food gap was higher in the rural areas than in the urban areas. Food balance sheet was computed by comparing national food supply and food utilization using statistical data of the Food and Agriculture Organization of the United Nations (FAO) in 2011. The domestic food supply was computed by aggregating food production, import, stock available and deducting export. Food utilization aggregates food consumption, food used for processing, livestock feed, seed, waste and other uses. If the balance is negative, then there was food deficit. Table 10 summarizes the supply and utilization of major food categories while the details of the food balance sheet and nutrition intake of the country in 2011 is given in Annex 2. The data shows that there was 11,000 metric tonnes of food deficiency in 2011. The nutritional status of calorie intake per person per day was computed by FAO using the national food balance and the population. Table 11 shows the average per capita calorie, protein and fat intake per day. The calorie intake shows an average deficiency of 95 kcal/ day per person. The constituents of nutrition intake based on national food balance sheet are given in Annex 2. According to the welfare monitoring survey (MoFED 2011), 67% of Ethiopian women of reproductive age (15 to 49 years of age) have a normal nutritional status with body mass index (BMI) ranging between 18.5 and 24.9 kg/m 2 , while 27% of women (9% moderately/severely and 18% mildly) are thin or undernourished with a BMI less than 18.5 kg/m 2 and 6% are overweight or obese with a BMI 25 kg/m 2 or above. Similarly, 60% of men have normal nutrition status, 37% are thin and 3% are overweight (Figure 9). The situation of women of reproductive age group in Oromia is similar to the national context (Figure 10). There exist some differences between the urban and rural women in their nutritional status where about 30% of rural women and 20% of urban women are thin while about 15% of urban women and 2.6% of rural women are overweight (Annex 3). Early initiation of breastfeeding is important for both the mother and the child. Early suckling stimulates the release of prolactin, which helps in the production of milk, and oxytocin, which is responsible for the ejection of milk and stimulates the contraction of the uterus after childbirth. The first liquid to come from the breast, known as colostrum, is produced in the first few days after delivery and provides natural immunity to the infant. It is recommended by WHO and UNICEF that children should be fed colostrum immediately after birth and continue to be exclusively breastfed up to six months even if the regular breast milk has not yet let down.The Ethiopian Demographic and Health Survey (EDHS) in 2011 shows that 97.5% (95.2% urban and 97.8% rural) of children are breastfed for some period of time, of which 51.5% children started breast feeding immediately after birth within an hour as it is recommended (Table 12). UNICEF and WHO recommend that children be exclusively breastfed during the first 6 months of life and that children be given solid or semi-solid complementary food in addition to continued breastfeeding from age 6 months until 24 months or more, when the child is fully weaned. Exclusive breastfeeding is recommended because breast milk is uncontaminated and contains all the nutrients necessary in the first few months of life. In addition, the mother's antibodies in breast milk provide the infant with immunity to disease. As it is shown in Figure 11, only 52% of the children were exclusively breastfed up to 6 months of their age. Early supplementation is discouraged for several reasons. First, it exposes infants to pathogens and thus increases their risk of infection, especially by diarrheal disease. Second, it decreases infants' intake of breast milk and therefore suckling, which in turn reduces breast milk production. Third, in low resource settings, supplementary food is often nutritionally inferior. Appropriate infant and young child feeding (IYCF) practices include timely initiation of feeding of solid and semi-solid foods from age of 6 months and improving the quality of foods consumed as the child gets older, while maintaining breastfeeding (WHO 2008).WHO has established guidelines with respect to IYCF practices for children of age 6-23 months. Breastfeed children of 6-23 months should receive animal-source foods and vitamin A-rich fruits and vegetables daily (PAHO/WHO 2003). Since first foods almost universally include a grain-or tuber-based staple, it is unlikely that young children who eat two or fewer food groups will receive both an animal-source food and a vitamin A-rich fruit or vegetable. Therefore, four food groups are considered the minimum acceptable number of food groups for breastfed infants (Arimond and Ruel 2003). Breastfed infants of 6-8 months should be fed meals of complementary foods two-three times per day, with one-two snacks as desired; breastfed children 9-23 months should be fed meals three-four times per day, with one-two snacks (WHO 2008).Definition of food groups:• infant formula, milk other than breast milk, cheese or yogurt;• foods made from grains, roots, and tubers, including porridge and fortified baby food from grains;• vitamin A-rich fruits and vegetables;• other fruits and vegetables;• eggs;• meat, poultry, fish, shellfish, and organ meats;• legumes and nuts.Non-breastfed children of 6-23 months should receive milk products at least twice a day to ensure that their calcium needs are met. In addition, they need animal-source foods and vitamin A-rich fruits and vegetables. Therefore, for non-breastfed young children, four food groups are considered the minimum acceptable number. Non-breastfed children should be fed meals four-five times per day, with one-two snacks as desired (WHO 2005). Meal frequency is considered a proxy for energy intake from foods other than breast milk. Therefore, for non-breastfed children feeding frequency indicators include both milk and solid or semi-solid foods (WHO 2008).EDHS (2011) survey shows that only 4.8% of youngest children of 6-23 months living were fed in accordance with IYCF practices (Table 13). More than 96% received breast milk or milk products during the 24-hour period before the survey, and almost half of the children (49%) were fed at least the minimum number of times. Five per cent of children were fed according to minimum standards with respect to food diversity (four or more food groups). Older children and children in urban areas were more likely to be fed according to the IYCF practices than younger children or rural children (Annex 4 for detailed results). Nutrition status of children-under-five (stunting, wasting and underweight)The three commonly used anthropometric indices (stunting, wasting and underweight) are expressed as standard deviation (SD) units from the median for the reference group. Children who fall below minus two standard deviations (-2 SD) from the median of the reference population are regarded as moderately malnourished, while those who fall below minus three standard deviations (-3 SD) from the median of the reference population are considered severely malnourished.• The height-for-age index provides an indicator of linear growth retardation and cumulative growth deficits in children. Children whose height-for-age Z-score is below -2 SD from the median of the WHO reference population are considered short for their age (stunted), or chronically malnourished. Children who are below -3 SD are considered severely stunted. Stunting reflects failure to receive adequate nutrition over a long period of time and is affected by recurrent and chronic illness. Height-for-age, therefore, represents the long-term effects of malnutrition in a population and is not sensitive to recent, and/or short-term changes in dietary intake.• The weight-for-height index measures body mass in relation to body height or length; it describes current nutritional status. Children with Z-scores below -2 SD are considered thin (wasted) or acutely malnourished.Wasting represents the failure to receive adequate nutrition in the period immediately preceding the survey and may be the result of inadequate food intake or a recent episode of illness causing loss of weight and the onset of malnutrition. Children with a weight-for-height index below -3 SD are considered severely wasted. The weightfor-height index also provides data on overweight and obesity. Children with more than +2 SD from the median weight-for-height are considered overweight, or obese. Similar findings were reported for Oromia region where there was a significant improvement in underweight children and some improvement in stunting children in the past eleven years. But almost similar results were observed on the proportion of wasting children (Figure 13). Micronutrient deficiency is a major contributor to childhood morbidity and mortality. Children can receive micronutrients from foods, food fortification, and direct supplementation. Vitamin A is an essential micronutrient for the immune system that plays an important role in maintaining the epithelial tissue in the body. Severe vitamin A deficiency (VAD) can cause eye damage. VAD can also increase the severity of infections such as measles and diarrheal diseases in children and slow recovery from illness. Vitamin A is found in breast milk, other milks, liver, eggs, fish, butter, red palm oil, mango, papaya, carrot, pumpkin, and dark green leafy vegetables. The liver can store an adequate amount of the vitamin for four to six months. Periodic dosing (usually every six months) of vitamin A supplements is one method of ensuring that children at risk do not develop VAD.According to the findings of EDHS (2011), more than half of the children of age 6-59 months (53%) received vitamin A supplements. Children in urban areas are slightly more likely to have received vitamin A supplements (57%) than those in rural areas (53%). Similarly, at the regional level (Oromia) the proportion of children (6-59 months) that received vitamin A supplements were about 49%.Iron supplementation coverage is generally low in Ethiopia. Only 6% of the children aged 6-59 months were given iron supplements in the seven days preceding the survey. Rural children were twice as likely as urban children to have received iron supplements during the same period (6% compared with 3%).Ninety-four per cent of households reported that they consumed salt at the time of the interview and only 15% of these households used iodized salt. Urban households are more likely to consume iodized salt (23%) than rural households (13%). In Oromia region about 18% of the households consumed iodized salts. under-five mortality, neonatal mortality and postnatal mortality rates during 2000 and 2011 were higher than the national rates. Likewise, child mortality and infant mortality rates were higher than the national at all survey times (2000 005 and 2011). However, the trends show that there are remarkable improvements (i.e. decline in mortality) over time (Figure 16). According to the Federal Ministry of Health (FMOH) report, in 2005 EFY (2012/13) pneumonia (accounts for 18 % of the total deaths), AIDS (14%), and tuberculosis (all forms 10.4%) were the leading causes of mortality (Figure 17). All women should have access to most important maternal health services like delivery assisted by skilled health personnel, antenatal and postnatal cares during pregnancy and childbirth to ensure prevention, early detection and management of complications.Delivery assistance by properly trained health personnel with adequate equipment is key to reducing maternal deaths.It is the single most important proved intervention that plays a great role in reducing the maternal mortality rate and is one of the Millennium Development Goals (MDG) indicators to track national effort towards safe motherhood. In addition, the proportion of births attended by skilled personnel at the given facility is a measure of the health system's function, accessibility, and quality of care. 'Skilled attendant at birth' has been proposed as an intermediary, process or proxy indicator for monitoring progress towards the reduction of maternal mortality, which is highly correlated with maternal mortality levels. However, only 11.6% (for national) and 8.5% (for Oromia region) of women gave birth with the assistance of skilled personnel.Antenatal care coverage is also an indicator of access and use of health care during pregnancy. The antenatal period presents opportunities for reaching pregnant women with interventions that may be vital to their health and wellbeing and to their infants. Receiving antenatal care at least four times increases the likelihood of receiving effective maternal health interventions during antenatal visits. This is also one of the MDG indicators. In recent years, access to antenatal care services has been improved and thus most of pregnant women getting the services. For instance, in the year 2012/13 about 97% (both national and Oromia region) of pregnant women has got antenatal services at least one time during their pregnancy.Postnatal care service is also one of the important maternal health services targeted to give care for the mothers and the newborns during the post-partum period (within the first 42 days after delivery). In the year 2012/13, only 23% (national) and 21% (Oromia) of mothers who gave births were visited at least once within 42 days after their birth. This shows the utilization (accessibility and acceptability) of postnatal care service and the health seeking behaviour of Ethiopian mothers is very poor (Figure 18). The Ethiopian active labour force engages in different means of livelihood. Agriculture provides major employment opportunity both in urban and rural areas. The labour force survey conducted by CSA shows that 76.2% of the population (aged above 10 years) were employed during 2013 (55.5% in urban and 81.6% in rural). If the age category increases, the employment rate will rise. The rate of employment is relatively high in Oromia (Table 14). In Ethiopia in general as well as in Oromia, more men are employed than the women. According to CSA (2013), urban unemployment in Ethiopia in 2013 was 10.5% for male and 23% for female active labour force (Table 15). Urban unemployment is higher than rural unemployment due to the fact that agriculture absorbs the labour force more in rural area than in urban environment. Assessment of paid employment shows that the agricultural sector is the major source of employment where about 4% of the urban and 42% of the rural paid labour during 2013 was in agriculture (Table 16). Compared to national statistics, agriculture in Oromia provides employment to a higher proportion of paid workers. Education and construction sectors are the second and third major sources of paid work, respectively, both in Ethiopia and Oromia. Table 18 displays the proportion of paid employment in 2013. As shown in Table 17, about 28% of the employees in Ethiopia and 31% of employees in Oromia earn less than ETB 500 per month. The proportion reaches 42% in the rural area. The next largest proportion of employees also earn between ETB 500 and 1000 per month. This means, 68% of employees in the rural area and 44% in the urban area earn less than ETB 1001 per month. This low pay rate is one of the causes of poverty and food insecurity. Smallholder farmers use labour from different sources in agriculture, while commercial farms employ the whole labour force needed for farming. The major source of labour for smallholder farmer is the family labour. Wage workers and exchange labour also provide labour. Exchange labour helps to overcome peak labour requirement of the households by distributing the family labour over time since the household works for the work done by friends or other fellow farmers.The government of Ethiopia encourages investment in agriculture. In the project area, investors received certificate to invest in coffee production, crop production (cereals, oil crops, fruits and vegetables production, floriculture, dairy farms, cattle fattening). During the last five years, 122 private investors received license of investment in the project area. The distribution of the investment during the respective years is shown in Figure 19. Agro-ecology/climate Oromia National Regional State occupies central part of Ethiopia. It extends from 34 0 07' 37''E to 42 0 58' 51''E longitude and 03 0 24' 20\" to 10 0 23' 26\"N latitude. It shares international borderlines with Sudan and Kenya, and regional borderlines with Afar, Amhara, Benishangul Gumuz, Somali, SNNPR and Gambella National Regional States.The project area that occupies the western and some part of central portion of Oromia extends from 07 0 13' 17\" to 10 0 23' 26\"N latitude and 34 0 07' 37\" to 41 0 34' 55\" E longitudes. This area is located in the wettest tropical, sub tropical and temperate climatic zone.West Oromia is served by major rivers like Abay in the north and Ghibe River in the east, Gojeb and Baro Rivers in the south. It covers an area of about 101,355 km 2 accounting for about 27.9% of the Oromia's land surface. It comprises Kelem Wellaga, East Wellaga, West Wellaga, Horo Guduru, Jimma, Ilubabor, West Shewa and South West Shewa zones. West Oromia is characterized by highlands, mid-highland and lowlands. The area ranges in elevation from less than 500m at the Sudan border to over 3500m. The highland plateaus mainly embrace the Jimma-Ilubabor highlands, the Guduru highland of East Wellaga, the Welel highlands of West Wellaga, and Shewa highlands of central Oromia while the lowlands include the Abay gorge, the Baro, Ghibe, Didessa lowlands and the lowlands bordering the South Sudan.As it is indicated in the Figure 20, the high plateau, which is found over 2500m of elevation, covers about 6% of the total area of the project area. Areas that are found between 1500 and 2500 masl (metre above sea level) (are called mid highland), including low plateaus account for about 70% of the total project area whereas, the lowlands cover about 23.6% of the total area and ranges in elevation from less than 500 to 1500 masl. There is also a very small desert area which is found in Kellem Wellaga zone nearby Sudan border accounting for about 0.3% of the project area. Generally, these varied topographic features are the cause of climatic variation in the area and they are the base for rich plant genetic resources and diverse agricultural products of the project site. Traditionally, climatic conditions are also classified as Dega (elevation higher than 2500m), Woina Dega (1500-2500m) and Kola (from less than 500 to 1500 masl). As it is shown in Figure 21, the major part of western Oromia is found in the Woina Dega and Kola agro climatic zones. The temperature of the area varies from 15 0 C in the highlands of Guduru, Gecha and Shewa highlands to more than 25 0 C lowland areas. As about 94% of the project area is found in the tropics, the daily range of temperature is high, while annual range is small. The solar radiation is intense. In both highlands and lowlands, day temperature is high, while night temperature is low. Most of project areas (70%) fall under temperate thermal zone (15-20 o C) which has an altitude of 1500-2500 masl. The areas falling in the altitude of 500-1500 masl fall under warm temperate thermal zone, with mean annual temperature of 20-25 o C. The extreme portions of Kelem Wellaga, which are below 500 masl have a mean annual temperature of above 25 0 C being characterized as hot areas while the high mountain ranges of Guduru, Welel, Ilubabor, Jimma and Shewa fall in cool temperate temperature zone (10-16 0 C). In general, over 76% of the project area falls under a temperate thermal zone that has a moderate temperature (10-12 0 C).However, even though the sun rays are high in the tropics, there is a slight temperature difference in different seasons. In summer (June-September) there is high humidity and high cloud cover, which reduces the mean seasonal temperature (10-15 0 C). This is a period of high rainy season. In western Oromia, except the valley of Dabus, Baro, Abay, Didessa and some associated lowlands of the project area (which experience a mean temperature of above 25 o C), the rest areas of the sub region(western Oromia) have a mean seasonal temperature range of 15-20 0 C while West Shewa and Southwest Shewa have low mean seasonal temperature of 10-15 0 C during this period.In winter (October-January) the angle of the sun rays is low due to apparent shift of the sun to the south hemisphere and most part of the project area experiences a mean seasonal temperature of less than 20 0 C. The map of western Oromia (Figure 22) shows the temperature range during the different seasons.The mean annual rainfall gradually decreases towards northeast and west. The project area in general and West Oromia in particular is a region of heaviest rainfall in Ethiopia. It is the wettest part of Oromia, where the mean annual rainfall ranges between 800 and 2000mm. The spatial variation in the mean annual rainfall distribution in area is determined by the direction of moisture bearing winds and elevation. The amount of rainfall decreases in all directions from the highlands of Ilubabor towards the highlands of other zones of the project area. However, the highlands of Ilubabor, Jimma, East Wellaga and West Wellaga experience mean annual rainfall of over 2000mm. The amount of rainfall also varies from season to season with long and heavy rain in summer and short and moderate rains in winter. In summer (June -September) most of the project area experiences the maximum rainfall of more than 1600mm.In this period, Didessaa and Fincha'a plains receive a seasonal rainfall of 400-800mm and high plateaus of West and East Wellaga and West and Southwest Shewa zones experience a mean seasonal rainfall of over 1200mm. In winter (October -January) most of the project area receive mean seasonal rainfall of less than 400mm. The mean annual rainfall also falls below 150mm in some areas like Abay gorge, lower Dabus and Didessa rivers. Moreover, in spring (March, April and May) the project area receives moderate rain that ranges from 200mm to 600mm. In this period, highlands of Gera, Sigmo, Satema, Gomma, southwestern Jimma and Seka Chokorsa receive over 600mm of mean seasonal rainfall and the highland of Ilubabor, Kelem Wellaga, West Shewa, Southwest Shewa and larger portion of Jimma get rainfall of 400-600mm. The rainfall in the lowlands of the project range between 200-400mm. Figure 23 shows the rainfall patterns in western Oromia.West Oromia can be sub-divided into three main catchment areas. These are, the Abay catchment (36,651 km 2 ) covers about 46% of the total area of the project site, the Baro catchment area (25,414 km 2 ) covers about 2.1% of the total area and the Baro catchment area (25,414 km 2 ) covers about 22.1% of the total area. The flow of the rivers in west Oromia is affcted by its geographic settings: Abay drains northwesterly direction, Ghibe drains in south, while Baro drains in southwestern direction. Again, west Oromia can be sub-divided into a number of small river basins, from which the Didessa basin is the biggest (15.4%), followed by Baro basin (14.0%) and while Guder basin (1.5%).Figure 24 shows the maps of major rivers in the area.Figure 24: Rivers and basins western Oromia (excluding west and southwest Shewa zones).Source: BoFED (2013), West Oromia Atlas.The term 'land use' implies the way the people allocate the land for their satisfaction of needs. Farming, grazing, national parks and sanctuaries, construction spaces, etc. are some of the major examples of land uses. According to the report of BoFED (2013) the project site has an area of 101,355 km 2 . This land is identified as cultivated land (29.6%) and 55.4% of the area is covered by forest, shrubs, grasses, swamp, water and rocks. The remaining proportion is being used for different purposes (residential areas, roads, etc.).Soils vary from locality to locality as different soil types are formed basically based on parent materials, climate, vegetation, altitude, latitude and interaction among these factors. There are about 10 major soil types in West Oromia as shown in Figure 25. The major type of the soil in the area is Dystric Nitosols, which accounts for 60% of the soils. This soil type has uniform profile and stable structure as well as deep rooting volume. Moisture storage capacity of these soils is high since it is porous, have low base saturation and available P contents. The second common soil type is Orthic Acrisols which accounts for 13.5% of the soils. They have limited agricultural potential, because these soils found mainly on sloppy terrain, their chemical content is poor, pH is less than 5.5 and P contents are very low. Dystric Cambisols accounts for 6.5% of the soil, which the third common soil type in the area. These soils have low agricultural value and found on sloppy area that has shallow and stones or rock outcrops.Figure 25: Percentage of soils in western Oromia-the project area. Potential health coverage can be estimated through the expected catchment populations to be served by type of health facilities. For example, one specialized referral hospital is expected to serve five million people, one regional hospital for one million people, one zonal/district hospital is expected to serve up to 250,000 people, one health centre for 25,000 persons and one health post for 5000 people. This is a bit theoretical and does not take account of geographic barriers. Taking geographical factors in to consideration to estimate the proximity of villages to health facility is complex. Hence, it has been taken as a standard to estimate the potential health coverage of a certain locality by using functional health facility to population ratio along with geographical proximity through either 10 km radius or two hours walking distance needed to reach the health facility. Proximity is an important proxy indicator of equity in service access.According to the MoH (2012), facility to population ratio was established (nationally) as follows: one hospital for 675,031 people, one health centre for 26,416 people and one health post for 5342 which are served beyond the expected numbers. Moreover, in Oromia region and in the project areas, all types of the health facilities are serving more than the standard number of people except the health posts in the project area (Table 18). This implies the need for additional health facilities expansion/construction to reach at least the minimum standard. Ethiopia developed a Primary Health Care (PHC) program to access health services near to the community through Health Extension Program (HEP) at the Primary Health Care Units (PHCU); health centres and health posts as the principal means to achieve the target of health service coverage. The program aims to reduce disparities and improve equity in access to health facilities. This will be complemented by strengthening hospitals at various levels and other complementary services through referral lineages. As the standard, there should be two Health Extension Workers (HEWs) in every health posts and one HEW is expected to serve 500 households or 2500 people. To fulfill this standard; about 34,850 HEWs are assigned to the health posts throughout the country. As it is shown in Table 19, at all levels (national, Oromia region and project area), the standard HEW to people served is achieved. As shown in Table 20, only about 9.3% (national) and 7.6% (Oromia) of households have access to private electricity and 13.5% (national) and 11.6% (Oromia) of households have shared electricity. This makes the total households having access to electricity about 23% (national) and 19.2% (Oromia). Figure 29 shows that the project area falls in areas where about 20-40 households are served per available electric meter. Safe water is a precondition for health and development and it is also one of the basic human rights that everybody should access. Despite continuing efforts by governments, development partners and civil societies, tenths of millions of people do not have access to safe water from improved water sources in Ethiopia. According to WHO's standard, access to water supply is estimated with either the distance to the water source within 1km radius or 20 minutes for waking to water source (single trip). As shown in Figure 30, only about 48% of the households in Ethiopia and 43% of the households in Oromia have access to drinking water supply sources within 1 km distance during dry seasons. The percentage slightly increased in the rainy season (Figure 30). In the project area, clean water stands at 54% (65% in urban and 40% in rural).Figure 30: Proportion of population accessing drinking water (%).Access to transportation in terms of the availability of road infrastructure and distance from residences to the roads is an important factor determining access to services like health, market, education, etc. In 2011, about 29.5% (national) and 23% (Oromia) of the people had access to all weather roads within 1km distance (Figure 31). While 36.5% (national) and about 30% (Oromia) of the people had access to dry weather roads within 1km distance.Regarding transportation facilities, about 43.4% (national) and 45.4% (Oromia) had access to public transport across residences within 5 km distance, while only 24.4% (national) and 21.3% (Oromia) had access to public transport cross country within 5 km distance (Figure 32). According to the Wealth Monitoring Survey of 2011, only 15.4% of the households in Ethiopia and 15.5% in Oromia have access to food market within less than 1 km distance. About 4% of the households travel more than 20 km to reach food market while the majority travel between 1-4 km in Ethiopia as well as in Oromia (Table 21). Access to livestock market is a more serious problem in Ethiopia where fewer people have access to livestock market in less than 1 km and more people travel longer distance to reach livestock market compared to the time needed to reach food market. Figures 33 and 34 also show the map of time taken to travel to smaller towns and bigger towns. The people in the project area travel mainly 3-10 hours to reach towns. Access to source of information is also vital to get market information in the nearby market or distant markets. It appears that telephone as source of information is accessed by the majority of the households where about 46% of them (in Ethiopia) and 40% of them (in Oromia) travel only less than 1 km to reach telephone station in Ethiopia (Table 22). With expanding cell phone coverage in the country, the proportion of households accessing information could be higher than what is reported here. Different ethnic groups live in Oromia in general and in the project areas. The dominant ethnic group (90%) is Oromo (Table 23). The other ethnic groups like Maho lived for long time with Oromo. The proportion of Amhara, Tigre and Gurage increased in the area due to resettlement program in western Oromia. The different ethnic groups have different cultural practices but co-exist without any significant conflict. In terms of agricultural development, settlers have better access to infrastructure and facilities like water supply, education and health since the settlement program was implemented as a package including budgets for such services.The indigenous people got access to these facilities gradually and slowly. Settlers also had good opportunity to access agricultural inputs and technologies which enabled them to increase crop and livestock production and expand their livelihood to other enterprises like fattening of livestock and commercial crop production (such as sesame).Since May 1991, starting from the Transitional Government, Ethiopia entered into a new economic system in which the new economic policy aimed at reorienting the centrally controlled economy into a free market economy. The Rural Development Policy and Strategy issued in 2002 remains a key instrument for developing a free market economy, in a way which would ensure rapid and sustainable development, extricate the nation from dependence on food aid, and make the poor the main clients of the fruits of economic growth by ensuring agriculture-led and rural-centred development. Trade and industry is expected to grow faster in alliance with agriculture and agriculture accelerates trade and industry development by supplying raw materials, creating opportunities for capital accumulation and enhancing domestic markets. The directions for agriculture and rural centred development were outlined as follows:• Extensive utilization of human labour;• Proper use and management of land, water and other natural resources;• Agro-ecology based development approach;• Integrated approach to development;• Targeted interventions for drought-prone and food insecure areas;• Encouraging the private sector;• Agricultural technical vocational education and training andThe policy was set as an outward orientated strategy that was developed and directed to diversify the country's export commodities and ensure the socio-economic development. Agricultural Development Led Industrialization (ADLI) strongly relies on the assumption that agriculture develops only with improvement in the productivity of peasant farmers and pastoralists, and large-scale farms, if established, particularly in the lowlands. Moreover, ADLI in agriculture is designed to contribute to the economic growth in two ways: supply side and demand side. On the supply side, it provides export products, food and industrial raw materials. While on the demand side, it aids industrial expansion by providing markets for domestically produced goods. Thus ADLI's development priorities in agriculture are to attain satisfactory growth and effectiveness.According to MoFED (1993) ADLI's agricultural development strategy is viewed in three sequential phases which are focusing on improving traditional agriculture, introducing small scale irrigation and employment of rural labour force. These phases are:• Phase I: major improvements are needed in traditional agricultural practices in which the use of improved seeds would be crucial;• Phase II: introduction of small-scale irrigation schemes, expansion of agricultural infrastructure and modern technological inputs, such as fertilizer, pesticides, etc. are emphasized; and• Phase III: employment of the expanding rural labour force in non-agricultural activities, thereby increasing holding sizes for the remaining rural families.The first and the second phases of the strategy for agricultural development are expected to bring about increases in output and productivity, and it is only the third phase that is expected to ensure sustained agricultural development by addressing the problem of rural unemployment. After the first two phases of the strategies are successfully implemented, the third level will be attained i.e. when accelerated industrial growth is successfully implemented (MoFED 1993). ; and, to a lesser extent, to facilitate linkages between private investors in agriculture and smallholders. In this regard, the basic sectoral directions of the plan were:• Enhance the capacity and extensive use of labour,• Proper utilization of agricultural land,• Taking different agro-ecological zones into account,• Linking specialization with diversification,• Integrating crop, livestock, marketing and natural resources development,• Agricultural research, extension etc. undertakings, and• Efficient agricultural marketing system.Currently, the government of Ethiopia is preparing the country's next five-year development plan (2015/16-2019/20), which is Growth and Transformation Plan-II (GTP-II). The areas of focus in GTP-II is expected to be similar to the former GTP (2008/10-2014/15). Hence, agriculture development partners need to align their development objectives and activities with the coming GTP-II.Natural resource conservation and sustainable utilization is among the top priority development agendas of the Government of Ethiopia. It is expected that, sustainable natural resource management reinforces increase in production and productivity of the agriculture sector by ensuring the opportunities to adopt sustainable land and water management systems. In this regard, conservation and utilisation of water resources got a high priority through watershed management initiatives, water harvesting, irrigation development and increased water use efficiency. In this strategy, the prevention and reversal of arable and rangeland degradation as well as rehabilitation of damaged agricultural areas and prevention of further deterioration of those areas through better soil fertility management, introduction of soil conservation measures, reforestation and appropriate conservation agriculture methods got due attention. As Land degradation impedes agricultural growth, increases poverty and vulnerability, and contributes to social tensions as well as threatening biodiversity of the country. Thus, to solve the problems the government took various actions that have been undertaken through different initiatives such as Managing Environmental Resources to Enable Transition (MERET) to more sustainable livelihoods, Productive Safety Net Programs (PSNP) and the national Sustainable Land Management Project (SLMP).The environmental policy of Ethiopia, approved in 1997, aims at guiding sustainable social and economic development of the country through the conservation and sustainable utilization of the natural, man-made and cultural resources and the environment at large. The policy lists specific objectives encompassing wide range of environmental issues to be addressed through the adoption of the policy. It also provides overarching environmental guiding principles that should be adopted to harmonize the environmental elements in sectroral, cross-sectoral and other policies. The Government of Ethiopia has put in place policies and strategies that address both chronic and transitory food insecurity. These are the Rural Development Policy and Strategy (RDPS); the Food Security Strategy (FSS); the Plan for Accelerated and Sustained Development to End Poverty (PASDEP) and the Pastoral Development Policy (PDP) as well as women and youth-related policies.The FSS, adopted in March 2002, is basically derived from the country's rural development policy with the aim of increasing domestic food production; ensuring access to food for food deficit households; and strengthening emergency response capabilities. The strategic document also reveals that soil, water, and vegetation are the main asset base of both the farming community and economy of the country, without which the achievement of food security is unlikely. Water and natural resource conservation based agricultural development is considered as a centrepiece of the strategy. It has also given due attention to the problems of environmental degradation, population pressure, and land shortage particularly in moisture deficit highland areas of the country. Accordingly, water harvesting, proper land utilization and environmental rehabilitation are identified as the top priority areas of intervention. These help to combat drought and famine, which are induced by negative environmental manifestations such as desertification and land degradation. The strategy apparently considers the importance of conservation, rehabilitation and restoration of natural resources as an entry point to change the existing embarrassing livelihood situation of rural household economy.Generally, the Federal Food Security Strategy revolves around three pillars: Increase supply or availability of food; Improve access/entitlement to food; and strengthening emergency response capabilities. The detailed aspects of the strategy are highlighted as follows:• The agricultural production in mixed farming systems that aims to enhance supply or availability of food through increasing domestic food production where soil moisture availability is relatively better. It is expected that subsistence farming will be transformed into small-scale commercial agriculture through provision of household based integrated and market oriented extension packages.• In chronically food insecure areas, however, where there is severe moisture stress, soil degradation and farmland scarcity, it will be a difficult task to ensure household access to food only through own production. Thus, a set of comprehensive asset building mechanisms should be in place to augment production-based entitlement.• Pastoral communities depend on livestock for their livelihood. Increases in livestock and human population, however, put pressure on rangeland, resulting in soil erosion and deforestation. Vulnerability of pastoral communities to livelihoods shocks is increasing. In this areas, the Food Security Strategy places emphasis on livestock development, strengthening livestock marketing, agro-pastoralism and voluntary sedentarization.• As stipulated in the FSS the government planned to do everything in its capacity to promote micro and smallscale enterprises through initiating industrial extension services, development of the necessary infrastructure, encouraging competitive marketing of inputs and outputs and utilizing tax incentives for selected commodities to shift the consumption patterns.• The other focuses of the FSS is to enhance food entitlements of the most vulnerable sections of society through supplementary employment income support schemes, targeted programs for the disadvantaged groups and nutrition interventions.• Improving the emergency response capabilities in the country is also another component of the FSS. So far a range of interventions were envisaged including: strengthening the early warning system; increasing the capacity of the Ethiopian Strategic Food Reserve (ESFRA), and improving the quality of relief distributions. Continuous effort is also made to strengthen the early warning and response capacity of the Government, including through a new livelihood-based needs assessment methodology for which baselines have been prepared for the country as a whole.According to the Ethiopian Investment guide (2012), the Government of Ethiopia has recognized the role of the private sector in the economy and revised the investment law three times for the last twenty years • Custom duty: To encourage private investment and promote the inflow of foreign capital and technology into Ethiopia, the following customs duty exemptions are provided for investors (both domestic and foreign) engaged in eligible new enterprises or expansion projects such as agriculture, manufacturing, agro-industries, construction contracting, etc.• 100% exemption from the payment of customs duties and other taxes levied on imports is granted to all capital goods, such as plant, machinery and equipment and construction materials;• Spare parts worth up to 15% of the total value of the imported investment capital goods, provided that the goods are also exempt from the payment of customs duties;• An investor granted with a customs duty exemption will be allowed to import capital goods duty free any time during the operational phase of his enterprise; and• Investment capital goods imported without the payment of custom duties and other taxes levied on imports may be transferred to another investor enjoying similar privileges.• Income tax exemption: If an investor is engaged in new manufacturing, agro-processing, the production of agricultural products and investment areas of information and Information and Communication Technology (ICT) development:• Exports 50% of his/her products or services, or supplies 75% of his/her products or services as production or service input and the exporter will be exempted from income tax for 5 years. Under special circumstances, the Board may grant income tax exemption up to 7 years and the Council of Ministers may pass a decision to grant income tax exemption for more than 7 years;• Exports less than 50% of his/her products or services, or supplies his/her products or services only to the domestic market will be exempted from payment of income tax for 2 years; and• Exports, through the expansion or upgrading of his/her existing enterprise, at least 50% of his/her products or services and increases, in value, his/her products or services by over 25% will be exempted from income tax for 2 years. For each case mentioned above, the length of the tax exemption period may be extended for one additional year when the investment is made in relatively under-developed regions of the country. However, investors who export hides and skins after processing below crust level are not eligible for income tax exemption. Investors who invest in priority areas (textile and garments, leather products, agro-processing, etc.) to produce mainly export products will be provided land necessary for their investment at reduced lease rates.There are also other non-fiscal incentives given to all investors/exporters to encourage them to participate and contribute for the economic development of the country. These are:• Investors which invest to produce export products will be allowed to import machinery and equipment necessary for their investment projects through suppliers credit;• Investors which invest in areas of agriculture, manufacturing and agro-industry will be eligible to obtain loan up to 70% of their investment capital from the Development Bank of Ethiopia (DBE) if their investment is sound to be feasible; and• The government of Ethiopia will cover up to 30% of the cost of infrastructure (access road, water supply, electric and telephone lines) for investors investing in industrial zone development.• When the business enterprises suffer losses during the income tax exemption period it can carry forward such losses, following the expiry of the exemption period, for half of the tax exemption period.Ethiopia follows a free market economic policy where demand and supply determines prices. Quota system in commodity marketing was abolished and government intervention in crop product sales abandoned. However, government controls marketing of exportable commodities like coffee and sesame through the Ethiopian Commodity Exchange system. In this case, farmers are required to sell the products in primary commodity markets and hording of, for example, coffee is illegal.The rural development policy and strategy also encourages market development, rural infrastructure development to enhance market linkage, expansion of telecommunication system to enhance market information flow, value addition to production and transformation of smallholder agriculture through commercialization.Wider look of institutional landscape ATA is an initiative of the government of Ethiopia established in 2011 with a primary aim of promoting agricultural sector transformation by supporting the existing structures of the government, private-sector and other nongovernmental partners to address systemic bottlenecks and achieve growth and food security and contribute to the achievement of the GTP targets.Non-governmental organizations (NGO) like Netherlands Development Organization (SNV), Menschen fur Menschen, Plan International, World Vision Ethiopia, SG2000, Techno-Serve, etc. also implement rural development and livelihood improvement projects in the area. These organizations work on different programs and projects including food security, water and irrigation, NRM, marketing and value chain, capacity building, innovation and extension capacity building, creating access to finance, etc. by aliening their program interventions with government agenda and community problems. Research based projects are also implemented by CGIAR in the area.Community is also major stakeholder in planning and implementing development projects. Grassroots problem analysis, identification of development interventions is done with the community members and kebele level administration. Currently, the kebele administration is closely working with the district administration and line departments to plan and implement projects in their area. They also serve as the government wing for the realization of all government policies.In most kebeles, there are kebele development committees which involve representatives from school, health post, agricultural extension, kebele leaders and the kebele cabinets and representatives of the farmers, youth and women's association.Cooperatives and microfinance institutions are the major stakeholders providing access to credit and inputs. Oromia Credit and Saving Share Company is the major microfinance institute operating in the project area, providing credit and saving services to farmers in the rural area. Investors which are licensed to invest in agricultural development have access to bank credit. However, microfinance institutions operate in limited area and lack of access to credit is reported as a major constraint.One of the main purposes of this diagnosis was to identify stakeholders in the Woreda who are working in the areas of natural resource management, livestock and crop production. Characterizing the existing stakeholder interaction, challenges and opportunities are essential to establish IPs around important issues. The following actors and their roles were identified in Jeldu Woreda.The government departments include the administration offices at different levels that are responsible for administrative issues and facilitation of development initiatives to align with the government development agenda and strategies. These offices are key strategic stakeholder of projects. At Woreda level, the administration office coordinates development projects in the Woreda. Important sector offices for partnering include:• Office of Agriculture and Rural Development: With its several departments, it provides extension services to farmers on improved crop and livestock production, as well as natural resource management. By default, it could play a crucial role in terms of facilitating a learning and practice alliance.• Cooperative Promotion Office: Working in parallel with the office of agriculture, this office identifies potential commodities/sectors for which a cooperative is feasible (in terms of income generation and market) and based on the feasibility it promotes and helps farmers to establish cooperatives.• Agricultural input and output marketing agency.• Agricultural Research Institutes: Adaptation and scaling up of improved crop varieties and livestock technologies, training and dissemination of knowledge and information for farmers and agricultural experts, and introduction of beehives. OARI (Bako and Holeta Agricultural Research Centres) and EIAR (through Holeta and Jimma Agricultural Research Centres) become important partners.• Small and micro-enterprise development agency.• Oromia Seed Enterprise-responsible for seed multiplication and seed quality testing.• Oromia Water Works Construction-for small-scale irrigation development.• Licensed veterinary practitioners: Although they are few in number, they supply the drugs and give treatment to livestock. Despite their importance there is a tendency to avoid travelling to lowland areas to give treatment. These businesses operate on individual interest basis, hence work needs to be done to incorporate them in the bigger circle and magnify their role.• Saving and credit institutions: Oromia Saving and Credit Share Company, Walko Saving and Credit Microfinance Institute, and Busagonofa Saving and Credit Microfinance Institute provide credit services.• Cooperatives: Marketing cooperatives provide potential for enhancing market participation for smallholder farmers.• Traders: Wholesalers and retailers are the major players for input and output marketing.• Brokers: Although not that strong in the livestock market, they sometimes play a crucial role in the market value of some livestock, according to experts from the Woreda office of agriculture.• Farmers: Play crucial role in testing improved technologies, sharing indigenous knowledge and experiences, providing feedback and facilitating farmer to farmer learning platform.NGOs operating in the project area include the Hunger project, Hundee, Hope 2020 and could be potential partners to engage in development activities.Opportunities, risk and constraints to enhance services The Intermediate Development Indicator that this section will help to address is IDO 3: 'Sustainably intensified pro-poor food systems in the humid and sub-humid tropics deliver improved farm level productivity to all farming families in equitable ways' and also IDO 5: 'Empowered women and youth with better control over and benefit from integrated production systems'.The main production system in the project area is mixed production of crop and livestock. The two enterprises are mutually complementary where livestock provides traction power for land preparation, manure for soil fertilization, transport service for input and output and power for threshing of crops. Crop also provides feed for livestock. As shown in Figure 35 the climate of the study area is dominated by temperate/tropical highland and to a certain extent humid/sub-humid climate. Mixed crop and livestock production is a common feature of agricultural production in these areas.Figure 35: Map showing distribution of production system by altitude range.There is association between farming systems and altitude. Length of growing period determines the cropping system (Figure 36).Table 25 displays the altitude range where major crops are associated with livestock production. Sesame is commonly grown in the low land area while barely is commonly grown in highland areas. Other crops like sorghum and maize are lowland to mid-altitude crops while wheat and teff are mid-altitude and highland crops. Livestock of different breeds are reared in all altitudes, though goat population density is high in the low land (Figure 37) while sheep population density is high in the highland areas (Figure 38) and cattle and chicken population density is high in the mid-altitude of the project area (Figures 39 and 40). Western Oromia, the project area is also characterized by mixed production system where perennial crops like coffee, fruit trees and forest co-exist. The trees are used as shade for crops and also for honey production. Some crops like spices are well associated with crops. Tree leaves are also used as livestock feed especially during dry seasons. Hence, there exists an integration of crops, livestock and trees which is essential for maintaining the agroecology and reduces the impact of climate change.A variety of crops are grown in the project area. Cereal crops like maize, wheat, barely, teff, sorghum, millet, pulses, vegetables, oil crops like sesame, root crops, and fruits are commonly grown. This section describes the area allocated to the major groups of crop, production and yield. Production and yield are appropriately computed for individual crops as presented in Annex 9 and 10. Here, the data gives an overview of the relative importance of classes of crops as discussed below. Some specific data will also be presented for the most common crops in the area, namely maize, wheat, teff and sorghum.Cereal crops are allocated larger cultivated area occupying more than 70% of the area cultivated per household (Table 26). The majority of farmers (95% in Ethiopia, 98% in Oromia and 99% of the farmers in the project area) involve in the production of cereals. Pulse crops are the second important group in terms of share of land allocated (7.6% in the project area, 11% in Oromia and 13% in Ethiopia) and number of farmers producing them (56% in the project area and 59% in Ethiopia (Annex 8). Cereal crops are also major sources of food in Ethiopia in general and in the project area in particular. Table 27 shows the average quantity produced per household while Annex 9 displays the quantity of individual crops produced per household. The production of these crops only slightly increased (on average) between 2007 and 2013 (Table 28). Maize, wheat, teff and sorghum are dominant cereal crops in the project area in terms of the proportion of crop land allocation and number of farmers growing them. Thus, a closer assessment of area allocated to these crops and yield may be necessary. Table 29 summarizes the area allocated to these four major crops grown in the project area and the proportion of growers. Teff and maize lead in terms of proportion of crop land allocation while maize is the most commonly grown by the largest proportion of farmers in the region. The average yield of cereals was about 2.4 tonnes/ha in 2013 while pulses averaged at 1.7 tonnes/ha in the same period. Table 30 shows the trend of yield of groups of crops while Annex 10 shows the details of yield per ha of individual crop. Maize yield averaged at 3.53 tonne/ha in the project area which is slightly higher than the other areas in Ethiopia and Oromia and is higher yielder than the other cereals (Figures 41 and 42). Since 2008, the yield of these four crops has increased. Grain is produced by smallholder farmers to meet different purposes. The major objective is meeting the consumption requirement of the household. Overall, about 61% of grain produced is consumed. Of the grain, about 65% of cereals and 66% of pulse is consumed. Figure 43 also shows that about 77% of vegetables (especially grown as garden plants) are consumed. Proportionally, oil crops are the least in terms of the proportion of production allocated for consumption.The second most important objective of crop production is sales. Food crops and cash crops are sold to generate cash needed by the household. About 48% of oil crops and 36% of perennials (especially coffee) are sold. About 16% of cereals (especially teff and wheat) and 20% of vegetables are also sold. Other purposes of crop production include production of seed for future production; livestock feed and use it to barter with labour (pay wage in kind).The trend of agricultural inputs utilized for specific crops such as maize, wheat, teff, sorghum and vegetables also indicated in Annex from Annex 29-49. The trend of consumption and sales of crops show that the proportion of grain consumed and sold is not changed during 2007-13 indicating not much shift from subsistence to commercial farming. On average, 66% of cereals, 66% of pulses, 34% of oil crops, 79% of vegetables, 76% of root crops and 62% of perennial crops have been consumed per year (Table 31). The average proportion of crops sold ranged from 13% (root crops) to 51% (oil crops) per year (Table 32). From among the major cereals produced in the project area, maize and sorghum are the most commonly consumed (71% of the production) indicating that they are used more for consumption than the other purposes (Figure 44). On the other hand, teff is mainly produced for consumption (56% of the production). Utilization of these four major cereals in the project area has not changed since 2007 (Figure 45 and 46). The major pests and diseases affecting crop production in the project area include stalk borer, rust, termite, and Coffee Berry Disease (CBD). The other biotic and abiotic factors damaging crops and the proportion of crop damaged are listed in Table 33. It appears that 79% of the crop area was damaged by pests in 2011 where the major damage was made in vegetables field. Too much rain, frost and flood, weed and predators are major causes for the damage.There was no data on crop diseases as well as the magnitude of the crop damage, which should be further established through specialized research. Crop production technologies and servicesThe major agricultural services in the country and the project area include agricultural extension, veterinary service and input supply service (fertilizer, improved seed and pesticides). Farmers access these agricultural technologies from different sources. According to farm management survey of CSA ( 2011), the majority of the farmers (57%) access the agricultural extension service within 4 km while 78% of them access it within 10 km (Table 34). Agricultural extension service is provided by development agents (DAs) who are stationed at farmers training centres (FTCs). The government pursued a strategy of establishing one FTC per rural kebele to provide extension services, farmers training and demonstration at the FTCs. In the project area, among the 3004 farmers associations (kebeles), only 2194 (73%) have FTC. Among the FTCs, only 63% are functional. However, 73% are reported to be ready to offer training. In 2013, 8026 DAs (12% female) were working at the FTCs in the project area. There were 740 supervisors indicating a ratio of about 1 supervisor per 10 DAs to supervise. The number of farmers covered by extension service has increased since 2007 both in Ethiopia, Oromia and the project area (Figure 47). However, the trend of extension package per farmer declined since 2007 (Figure 48). The major services provided to the farmers as extension package is supply of fertilizer, improved seeds and pesticides (chemicals). As shown in Figure 49, the area covered by fertilizer increased since 2006. Moreover, the quantity of fertilizer used increased during the same period (Figure 50). Some farmers applied only DAP while some farmers applied only urea (Annex 10a). Other farmers applied combination of DAP and Urea. As shown in Table 35, the average crop area where both urea and DAP are applied during 2013 was larger in the country, in Oromia and the project area alike. Fertilizer application rate is lower than the recommended rate of 100 kg urea and 100 kg DAP (Table 36). The rate of fertilizer application fluctuated and there is neither increasing nor decreasing trend (Table 37). Improved seeds of cereals and pulse are supplied to farmers through cooperatives, research stations, and private seed suppliers. The area covered by improved seeds has been increasing overtime especially since 2009 (Figure 51). However, the quantity of improved seeds used by the farmers has not shown as much increase as the area covered (Figure 52). Crop pests are among the major causes of crop pre-harvest losses in Ethiopia in general and in the project area in particular. Cereal crops like maize and sorghum are affected by stalk borer while teff is affected by rust and coffee by CBD. Termite is a major pest in western Oromia affecting crop productivity. Some of these pests are controlled through improved cultural practices and crop rotation while nearly all of them are controlled by chemicals using pesticides.Figure 53: Trend of area covered by pesticide (all crops) in '000 ha. Livestock numberDifferent livestock breeds are reared in the project area. Cattle are the most dominant livestock type in Ethiopia, Oromia and the project area (Figure 56). The livestock population is increasing overtime (Table 39). 2006 43,007,315 42,040,891 7,082,311 19,663,215 15,051,836 3,391,905 8,128,755 5,034,781 1,005,553 2007 47,570,675 47,826,700 8,734,447 21,410,978 17,087,373 3,937,823 8,049,310 4,970,772 1,012,428 2008 49,297,898 46,901,440 8,342,321 22,453,335 16,537,980 3,993,968 8,295,794 4,896,464 990,066 2009 50,884,005 47,940,625 8,883,600 22,475,349 16,798,886 4,225,829 na na na 2010 53,382,194 48,295,950 9,725,391 22,958,489 16,346,735 4,300,858 9,696,015 4,989,048 1,204,834 2011 52,129,017 46,834,489 9,748,483 22,481,530 15,845,914 4,381,272 9,587,001 5,127,156 1,258,771 2012 53,990,061 49,549,996 9,920,948 22,354,053 16,303,406 4,335,982 9,499,441 5,317,634 1,273,262 2013 55,027,280 55,511,265 10,370,486 22,505,219 17,644,636 4,503,918 9,540,063 5,744,830 1,315,556 Source: CSA (different issues).In 2013, the country produced about 2.9 billion litres of milk; Oromia produced 1.25 billion litres and the project area produced 386 million litres of milk. The trend of milk production shows a decline in Ethiopia and Oromia relatively faster than it declined in the project area (Figure 57). The major difference in the trend of milk production seems to be related to differences in milk yield which shows a relative increase in the project area while it declined for Oromia and the country (Figure 58). Egg is an important source of animal protein for rural people. There is also increasing egg production since 2006 (with an exception of 2010) in Ethiopia in general and in Oromia and the project area, reaching 89.5 million for the country, about 38 million for Oromia and 13.5 million in the project area (Figure 59).Figure 59: Trend of number of egg production (in '000'). Major livestock products like milk products, butter, cheese and arera, mutton and goats' meat and egg are consumed.Skin is used at home as sleeping mat or grain or honey container. Milk is further processed into butter, cheese and arera and also consumed. Beef, sheep hair, butter, and hides and skins are also largely sold (Figure 60). There is no change in the trend of the proportion of livestock products consumed (Figure 61) and sold (Figure 62). The major livestock inputs considered are veterinary services (drugs and vaccination), and feed as discussed below.As shown in Table 40, millions of livestock in Ethiopia and thousands in the project area are infected by disease. The number of sick animals shows variation in different years without a clear trend of increase or decrease. Government and development partners, like NGOs and donors, allocate funds for vaccination against preventive diseases. The number of animals vaccinated increased overtime since 2006 (Figure 63). Green fodder is the major source of livestock feed in Ethiopia. Crop residue is also used by large proportion of livestock holders (Table 41). Hay and crop by-products are also fed to the animals, especially for dairy cows, poultry and animals fed for fattening. Improved livestock feed is not commonly fed to the animals. Moreover, the time series data does not show a significant shift in the proportion of farmers changing type of feed they use for livestock (Table 42). Gender roles in access and control of income and assetsDue to socio-cultural barriers, there exist huge gender imbalance between men and women. Women and child girls are the most disadvantaged in rural areas regarding access to resources, income, education and other services. For instance, the Ethiopian MDGs report (2012) indicates that gender disparity broadens as it goes to the higher education level and improved from 0.85 in 2006/07 to 0.93 in 2011/12 in primary education and from 0.59 in 2006/07 to 0.83 in 2011/12 in secondary education. Moreover, in 2011/12, gender parity at tertiary education was 0.39 and even much lower at 0.25 at graduate school level. With regard to unemployment in urban area, the report also shows about 16.1% of male and 29.6 of female young people (aged between 15-29 years) were unemployed in 2011/12.Even though the gender division of labour in rural Ethiopia varies in terms of farming systems, cultural settings, location and the different wealth categories, female farmers generally perform up to 75% of farm labour, representing 70% of household food production in Ethiopia (USAID 2013). However, though these women are capable of undertaking successful productive activities, they often fail to have access to and control over means of production and income obtained from the activities/benefits. In Oromia regional state, though 75% and 62% of the MHHs indicate that their land is registered and they are certified for their registered land respectively, they witnessed that only 31.8% of the female spouses are registered for their land with their names written on the certificates (Rorisa and Debbebe 2013). This implies that from the certified lands in the region, more than 68% of the MHH considered women as shareholders for the land the household has.Although the situation is improving especially among the young people in terms of opportunities for equitable access and control over household assets and income, men still play major roles in decision-making on issues affecting the household. Women and girls participate in productive and reproductive activities, leading to them being overburdened with farm and household chores. Assets like land, livestock and household properties are often named as under the man's ownership. In order to enhance gender equity, government and civic organizations are making efforts.According to Accelerating Ethiopian Agriculture Development for Growth, Food Security, and Equity (2010) document, gender mainstreaming is a comprehensive approach to change the way of thinking and action to address the underlying causes of gender inequalities in the society, in all sectors and at all levels. Women's empowerment through gender mainstreaming into agricultural and rural development is central to undertaking initiatives aimed at improving production and the distribution of food and agricultural products, raising levels of nutrition, and enhancing the living conditions of rural populations. In order to address the root causes of persistent poverty and food insecurity among rural women and the families they support, there is a need to achieve three main strategic objectives: Promote gender-based equity in the access to, and control over, productive resources; Enhance women's participation in decision-and policy-making processes at all levels; and Promote actions to reduce rural women's workload and enhance their opportunities for remunerated employment and income.Regional programs like Eastern Africa Agricultural Productivity Program (EAAPP) are regional initiatives intended to serve as a vehicle for implementing the agricultural productivity agenda in eastern Africa countries. The overall goal of the program is derived from the MDGs, Comprehensive Africa Agriculture Development Program (CAADP), and Framework for African Agricultural Productivity (FAAP). The overall goal of EAAPP is to contribute to enhanced sustainable productivity, value added, and competitiveness of the sub-regional agricultural system (see also Annex 1, section 1.2). EAAPP is being implemented in all regional states of Ethiopia and Dire Dawa and Addis Ababa city administrations.As it is stated before, agricultural development is central to the Ethiopian government's poverty reduction strategy and the main source of economic growth. Thus, the government of Ethiopia with development partners and allies developed initiatives and programs that help to improve the livelihood of people. The major agricultural development initiatives are Agricultural Growth Program (AGP), EAAPP, Pastoral Livelihoods Resilience Program (PLRP), Productive Safety Net Program (PSNP), Household Asset Building Program (HABP) and SLM. PSNP and HABP operate in chronically food insecure woredas of Ethiopia, while SLM and AGP are being implemented in high potential areas. The project area does not benefit from PSNP and HABP programs. Moreover, the government along with its partners, has developed a number of other programs/projects intended to address poverty reduction, productivity improvement and livelihood improvement, strengthen agricultural extension service provisions, capacity building and small-scale irrigation, tackle climate change threats and reduce exposure to chronic food insecurity and shocks.Currently, there are different development programs/projects being implementing in Oromia by government and other partners. These are AGP, EAAPP, Small-Scale Irrigation (SSI) project, SLM II, PSNP (APLII and APLIII), HABP, Termite control project, Cattle genetic improvement project, etc.NGOs, like SNV, Menschen für Menschen, Plan International, World Vision Ethiopia, SG2000, Techno-Serve, etc. also implement rural development and livelihood improvement projects in the area. These organizations work in different programs and projects including food security, water and irrigation, NRM, marketing and value chain, capacity building, innovation and extension capacity building, creating access to finance, etc. by aligning their program interventions with the government agenda and community problems. Research-based projects are also being implemented by the CGIAR in the area.Table 43 summarizes the opportunities, constraints and risks in the production and marketing of crops and livestock in the project area.The major opportunities revolve around conducive climate and soil for production, favourable policy climate, expanding rural infrastructure, existences of development programs, existing demand for agricultural products and increasing price of products which stimulate farmers to increase production, continued capacity building for farmers and government staff involved in extension services.The major constraints are pests and diseases, shortage of improved agricultural technologies and associated high price of fertilizer and improved seeds, lack of research-based input use rate such as fertilizer and seed rate, limited or lack of irrigation technology to increase productivity and reduce reliance on only rain for production, lack of appropriate livestock improvement technologies, gender inequality, limited skill in increasing production efficiency, lack of credit for production and marketing and gender inequality.The major risk associated with crop production includes heavy rainfall which also involve hail and storm damaging crops, increased land degradation caused by interrelated factors, such as population pressure, expansion of farm land, over grazing, deforestation, firewood collection, cultivation of steep slopes and poor agronomic practices.Increasing soil acidity and salinity, pests and disease of crops and livestock, perishable nature of crops (especially fruits and vegetables), livestock products like milk and butter also pose challenge to production and marketing of agricultural products. Traditional barriers are major risks to bringing about change and improving gender equality. Numeracy also aggravates the situation. Malaria is also a major disease affecting labour use. The intermediate development indicator that this section will help to address is IDO 6: 'Increased capacity for integrated systems to innovate and bring social and technical solutions to scale, as well as IDO 2: 'Increased consumption of diverse and quality foods from sustainable food systems by the poor, especially among nutritionally vulnerable women and children'.The structure of the national agricultural market system in general and Oromia region in particular can be viewed in terms of the marketing channel, type and role of market participants, market infrastructure, and finance. The agricultural marketing channel involves producers, product collectors/assemblers at farm level, local traders, brokers/ agents, and wholesalers in the transitory or terminal markets such as Addis Ababa, Ethiopian Grain Trade Enterprise, processors, retailers, consumers and exporters.Producers: Crop producers are largely smallholder private farmers and commercial farmers, as well as state farms.Agricultural products are supplied to local markets from local supply and imports through commercial imports or food aid. Producers sell to local traders, village collectors, wholesalers, cooperatives/unions, and consumers.Middlemen/Agents: Brokers specialize in bringing the buyers and sellers together. They sell the products of producers to wholesalers or that of wholesalers to other wholesalers, processors or retailers. They also disseminate price and other market information and play a leading role in influencing agricultural products trade and price formation in towns mainly in Addis Ababa. A study by Gebre-Madhin et al. (2003) 1 revealed that the brokerage institution is critical to market performance in the Ethiopian grain market and that it enables traders to circumvent the commitment problem of long-distance trade with unknown partners. In the absence of standardization, public information and legal contract enforcement, brokers act as inspectors and guarantors of each transaction especially in grain and vegetable marketing. Brokers are permanently located in the central market of Addis Ababa and are easily identifiable to all traders who come in and out of the market. Thus, they are natural repositories of information, regarding market flows, the behaviour of market participants, and the outcomes of past transactions. Their permanent presence in the central market ensures the continuity of a reputation transmission mechanism. In addition, their continuous presence implies that, in the event that a falling out between partners occurs during a long-distance trade, the broker can be contacted to mediate and resolve the dispute.Traders are wholesalers or retailers: Wholesalers are the major actors in the grain and vegetable marketing channels. Wholesalers could be regional wholesalers who supply the product from surplus areas or farmers, assemblers or other traders who sell the product to central markets. Wholesalers located in deficient areas purchase the product in bulk from wholesalers in the surplus areas or central markets and sell in their respective areas. In the case of grain trade government parastatal such as the Ethiopian Grain Trade Enterprise is also considered as wholesaler. Nowadays, cooperatives and cooperative unions serve also play the role of wholesalers when they collect and sell in bulk and act as retailers when they distribute traders in smaller quantities to consumers.Retailers: The retailers in markets are traders who buy products from wholesalers and producers and sell to consumers at convenient locations and times in various forms and quantities.In the project area, cereals, pulses, oil seeds and vegetables are supplied to the markets in local and nearby towns mainly from the surrounding rural areas of Oromia region. Farmers are the major suppliers. The wholesalers in these towns collect grains such as teff, wheat, barley and pulses, fruits and vegetables from the producers and sell to the consumers or to other traders in different parts of the country including Addis Ababa. For instance the Nekemte town market gets grain (teff, wheat, barley, maize and sorghum) from East and West Wollega zones and West Showa zone. Teff, wheat and barley are mainly supplied from Horro Guduru and Gedo areas, while maize and sorghum are mainly supplied from low land areas (Abay and Hangar valleys) in East Wollega zone by traders. Similarly in Jimma town grain is supplied to market from rural collection centres. However, white teff is supplied to the market in Jimma by wholesalers from different parts of the country, mainly from West and East Shewa and Addis Ababa. Role of traders is of paramount in grain marketing. Figure 64 presents some of the common grain marketing channels in Ethiopia.Figure 64: Typical market channels of grain in selected towns of Oromia region.Processors: Processors include grain mills, food processors, brewery, malt industry, bakers, meat processors, leather factories, juice processors, cooking oil, etc. owned by private and government to process agricultural products and sell their products to traders or consumers. Cooperatives: Agricultural marketing cooperatives and consumer cooperatives involve in buying and selling of agricultural products. They stabilize product price by competing with traders as a result of which traders push the producers' price up. They also protect consumers by stabilizing retail prices of products. Some cooperative unions also started to participate in the processing of agricultural products like grain, milk, oilseeds, etc.There are several institutions which have stake in agricultural marketing. Semi-autonomous government agencies such as the Ethiopian Commodity Exchange (ECX) and Oromia Market Development Agencies, private institutions such as agroprocessors, traders and exporters, and cooperatives are the key players of agricultural marketing of agricultural products.ECX has the vision to revolutionize Ethiopia's tradition bound agriculture through creating a new marketplace that serves all market actors including farmers, traders, processors, exporters and consumers. The ECX is a unique partnership of market actors, the members of the exchange, and its main promoter, the government of Ethiopia. ECX aims to bring integrity, security, and efficiency to the market. ECX creates opportunities for unparalleled growth in the commodity sector in Ethiopia and linked industries, such as transport and logistics, banking and financial services, and others. ECX started its operation in April 2008. As of July 2011, the physical presence of the ECX consists of 55 warehouses in 17 regional locations. It has grown from trading 138,000 tonnes in its first year to 508,000 tonnes in its third year, with nearly equal shares of coffee and oilseeds and pulses. The value of the ECX rose 368% between 2010 and 2011 to reach USD 1.1 billion. As of November 2010, the trading floor in Addis Ababa, handled 200 spot contracts in such commodities as coffee, sesame, navy beans, maize and wheat. It was assessed in July 2011 that total membership equaled 243 with total clients, who trade through members, numbered about 7800. Farmer Cooperatives represented 2.4 million smallholder farmers, which make up 12% of the membership.ECX provides market information through media and audiovisual price displayers provide product quality assessment and warehousing services. It is envisaged that ECX reduces the risk high transaction costs and improve market efficiency.The agency was established by the Oromia regional state with the aim to stabilize grain prices and reduce volatility in the sector. It facilitates wholesale and retail marketing of grain in Oromia, located on the western suburb of Addis Ababa. The agency broadcasts also grain price information on radio to create awareness by the market actors including the producers.Cooperatives act like wholesalers and sometimes as retailers. They buy from farmers (often members), sort or process, pack and sell to consumer cooperatives, institutional consumers or traders, and sometimes also export. Export of agricultural commodities such as honey, coffee, oilseeds and vegetables is done by some cooperative unions. Consumer cooperatives purchase products from unions and sell to the consumers. The government motivates cooperatives and their union due to their role in price stabilization which is necessary for the producers as well as for the consumers. According to the Federal Cooperative Agency (FCA 2013), a total of 16,447 primary cooperatives involve in marketing of agricultural products like grain, coffee and livestock. The cooperatives principally serve about 6.2 million members (19% female) by purchasing produces from members, selling agricultural inputs to members and also providing dividend on profit to members. The cooperatives operate with a capital of ETB 2.7 billion. About 34% of the cooperatives are found in Oromia (Table 44). Some 7129 consumer cooperatives also serve the urban poor by marketing agricultural products and industrial goods are reasonable prices. Primary cooperatives encounter several constraints including managerial and financial problems. In order to overcome some of these problems and strengthen their opportunity for market participation, primary cooperatives are organized into unions. According to the FCA (2013), about 2412 cooperative unions were organized to involve in agricultural marketing in Ethiopia. The unions have about 1.9 million members and ETB 555 million (Table 45). The unions also involve in processing of agricultural products like milling, bakery, and coffee roasting. Some of the unions also export agricultural products and market agricultural inputs. According to the Ministry of Trade and Industry (2014), there are 455 large and medium scale agro-processing factories with about ETB 4 billion capital and ETB 7.4 billion production capacity. However, the industries operate below capacity at a rate of 67.4%. The industries produce largely for local markets (97.4% market outlet) and use more of domestic inputs (only 11.2% of imported inputs used). About 22% of the large and medium scale agro-processing industries in Ethiopia are located in Oromia having 44% of the registered capacity and having 56% of the production capacity. However, the industries in Oromia are performing less efficiently at 55.5% (Table 46). A large number of private traders involve in local marketing and export of agricultural products. Although data on the number of traders and scope of their operation was not available to the research team, it is understood that traders (wholesalers and retailers) handle the largest share of agricultural commodities in Ethiopia.Figure 67: Average unit price of major crops in Oromia (ETB/kg).In 2013, Ethiopia generated about USD 2.5 billion from export of commodities. Crop products export accounted for 74% of the export earning of the country (Table 47). Coffee leads the export revenue taking 23% of the share, followed by oilseeds (19.2%), vegetables and fruits (13.1%), pulse (8.6%) and flower (6.4%). Export of cereals is insignificant since Ethiopia is a net importer of cereals to fill the food gap in the country (further discussed under imports). The proportion of export earnings from crops declined from 76.4% in 2010 to 74.7% in 2013 (Figure 68). Export earnings from stimulants (coffee and khat) declined from 42.5% in 2010 to 23.4% in 2013 while the export earnings from other crops (except cereals) increased over the same period. Ethiopia exported about 135,486 tonnes of livestock and livestock products during 2013. About 77.15% of these exports were live animals, while the remaining percentage was the export of livestock products. Goat meat, honey, and hides and skins lead the quantity of livestock products exported (Table 48). The trend of quantity of livestock exported has not shown clear tendency to increase. Export of livestock and livestock products generated about USD 363.2 million in 2013, of which 49.9% was from export of live animals, while the remaining 51.1% was generated from livestock products (Table 49). This indicates that exporting livestock products generates more value per unit of quantity exported. Export value of hides and skins, and goats meat have the lead at 27.9% and 17.3% of the value of livestock and livestock products exported. Agricultural importsDespite its potential for crop production, Ethiopia has not been able to produce sufficient food for its growing population. Hence, it has been importing grain; cooking oil and other processed food to feed its population. As shown in Figure 69, the country imported about two million tonnes of crop products in 2013 at cost of USD 1.34 billion. The money spent per year increased since 2010.Import of cereal crops account 77% of crop product imports, while import of wheat alone account for 62% of the quantity of grain imports. Table 50 shows the quantity of crop products imported and the share of each product. In terms of value, cereal crop import accounted for 50.7%, while wheat alone accounted for 34% of the import value of grain (Table 51). Import of edible oil accounted for 29% of the crop product imports, while fruits and fruit-product imports accounted for 16.8%. Ethiopia also spent about USD 21 million for the import of livestock and livestock products. The value of imported live animals accounts for 36.2% of the total livestock. The major inputs for crop production are land, labour, seed, fertilizer, pesticides, farm implements and irrigation facilities. Most of these inputs are provided by the farm household (land, labour, traction power, local seeds and farm implements). These inputs are also purchased from the local market when the farmer does not have them in stock and have the capacity to purchase. Local inputs are supplied from different sources: fellow farmers who either sell or lend these inputs, traders, cooperatives, seed enterprises, research centres and development programs funded by the government, NGOs or international organizations. Private sectors supply these inputs through market, NGOs, government extension system, or development programs.Improved agricultural inputs such as seed and farm implements used for farming, NRM and irrigation are also provided locally by the research system, private sector and the market. Inputs like improved seeds, fertilizers and pesticides are imported. Moreover, livestock inputs like feed pre-mix, forage seeds, breeds of animals, vaccines and drugs are also imported.Ethiopia imported about 7292 tonnes of maize seed in 2013 which was much less than the imported quantity in 2012 (Table 53). Fertilizer is the major crop input imported every year since 2010, which accounts for 98% in 2013 and 2010, while it was 99% of the quantity imported in 2011 and 2012. Main opportunities, risks and constraints for markets Natural resource management and the environmentThe Intermediate Development Indicator that this section will help to address is IDO 4: 'Improved management of natural resources is essential for sustaining increases in farm-level productivity and the provision of other ecosystem services'.Natural resources, agriculture and human activities are highly interrelated in Ethiopia in general and at the project site in particular. Due to continued use of land resources and increasing population, more land is put into cultivation, trees are cut for construction and the supply of energy for cooking and heating, and wet areas and pasture areas are converted to farming. Natural resource degradation is the result of both natural processes and human factors in the development process. For instance, soil degradation is the result of water and wind erosion, salinization, alkalization, and chemical, physical (such as traditional cultivation practices) and biological degradations (humus mineralization rates that are primarily governed by temperature and soil moisture conditions). Moreover, land clearing for agriculture, increasing demand for fuel wood and construction material, settlement within forests, logging and the expansion of wood trade contribute to deterioration of forest resources, reduction of biodiversity, incidences of soil erosion and land degradation. The topography of the project site-steep slopes, high erodibility of the soil, sparse vegetation cover and high rainfall-are the major causes of soil erosion in the area. Due to these factors, the intensity or the severity of soil erosion differs from area to area and the rate of degradation is classified in to four levels (none to slight, moderate, high and very high) as elaborated below (BoFED 2013).• None to slight soil loss rate (0-15 tonnes/ha per year): Almost all lower highlands or plain areas of the project area experience slight soil loss due to dense vegetation cover and relatively low slope angle or plain area. From such areas, about 0-15 tonnes of soil particles/ha will be removed away by water annually. This area accounts for 48% of area of western Oromia (Figure 71).• Moderate soil loss rate (15-50 tonnes/ha per year): Larger portions of the project area in western Oromia encounter moderate soil loss at a rate of 15-50 tonnes of soils per hectare annually, mainly due to steep slope nature, sparse vegetation cover, high erodibility of the soil and high rainfall erosivity. About 13% of area of western Oromia is moderately eroded.• High soil loss rate (51-200 tonnes/ha per year): In most of the highlands of the project area including western and central West Shewa, northern, western and southwest Shewa soil loss rate is high, mainly due to steep slope, sparse vegetation cover, and high rainfall erosivity. Soil loss rate ranges from 51-200 tonnes/hectare per annum. From the highland areas of the area, about 4-16.5mm depth of topsoil is removed annually resulting shallow soil for larger portions of the area and the soil degradation risk is considered to be high especially in areas under cultivation. About 30% of the project area is severely eroded (Figure 71).• Very high soil loss rate (201-over 300 tonnes/ha per year): In most of the escarpments and highlands of West Oromia, where deforestation or vegetation removal is severe, slope angle and rainfall erosive are high; soil loss rate is considered to be very high. Soil loss rate is about 201-over 300 tonnes/ hectare per year. In other words, about 16.5-over 25mm depth of soil are removed from the mentioned areas by water erosion annually. About 9% of the project area is very severely eroded.Figure 71: Severity of soil erosion.In general, large portion of the highland areas of the project area (52%) experience moderate to very high soil loss rate, i.e. 16-over 300 tonnes/ hectare per year. This is due to steep slope nature, sparse vegetation cover and high rainfall erosivity of the area. On the other hand, the ever increasing agricultural population and the growth rate of overstocking, which leads to overgrazing, are the aggravating factors for the loss of soil and vegetation cover in the area. Traditional agricultural practices have also induced rapid rates of soil erosion that again has impacts on agricultural productivity in the area. Figure 72 shows erosion status of western Oromia.Figure 72: Severity of erosion in western Oromia.Though some effort has been made by the government and different organizations, a large portion of the project areas still run the risk of severe and very severe soil erosion, as whole parts of Horogudru Wellega, East Wellega, Shewa, Jimma and other zones of the project area have high water erosion.Ethiopia due to its agriculture-based economy and rapid population growth has been experiencing high level of deforestation about 163,000 ha (Reusing 1998) 2014), the majority of forestry and agriculture based emissions in Ethiopia originate from deforestation within Oromia regional state which is the largest regional state in Ethiopia and home to 70% of the remaining high forest cover in the country. However, like most part of the country this eco-region has been experiencing high level of deforestation and forest degradation due to expansion of agricultural activities into forest lands, unmanaged fuel wood and construction wood collection from the forests and growing incidence of forest fires.To reduce the impact of natural degradation in the country in general and Oromia region in particular, both the federal and regional levels designed different policies, strategies, programs and projects. Based on these, the federal and regional governments (supported by various donors, international agencies and NGOs), have made large scale investment in natural resource management-related activities, such as soil conservation and land rehabilitation measures. The rehabilitation of degraded lands, which started through food-for-work relief assistance has become a major component of the both federal and regional governments' approach to mitigate the impact of soil degradation by focusing on soil and water conservation; construction of terraces, check dams, cut-off drains and micro-basins, and afforestation and re-vegetation of fragile and hillside areas. The focus was on building physical structures to control soil erosion and rehabilitate degraded lands and massive efforts were undertaken in this regard.Among these efforts, the government of Ethiopia developed policies and strategies, as well as programs/projects, that give attention to natural resources conservation, including ADLI, Natural Resource Conservation Strategy of Ethiopia, Ethiopian Strategic Investment Framework for Sustainable Land Management, and Sustainable Land Management (SLM).Cooperatives are also formed to manage natural resources including forest, wetlands and water resources with the aim of ensuring the sustainable use of these resources and generating income for the cooperative members. There were 635 cooperative unions with 89,459 members organized to manage natural resources and also develop irrigation for efficient water use (Table 56). Moreover, 2850 primary cooperatives were organized with 244,026 members for the same purpose. Table 56 shows the number of primary cooperatives in Ethiopia and Oromia organized to manage and protect natural resources and irrigation water. Ethiopia is one of the world's most biodiverse countries. It has a very diverse set of ecosystems ranging from humid forest and extensive wetlands to the desert of the Afar depression due to the variation in climate, topography and vegetation. This situation creates an opportunity to produce different types of crops in the country in general and in Oromia in particular. Generally, the agricultural production system is characterized by complex mixed crop and livestock systems.Different crops (Annex 9) and livestock species grow in the project area. Besides, the forests of the area are homes for trees of different economic, medicinal and environmental values. Western Oromia includes an area of dense virgin tropical forests, hosting abundant wildlife and birds in the region. Forests like Belete-Gera, Babiya Folla, Sigmo-Gaba, Saylem Wangus, Abelti-Gibe, Tiro-Boter-Becho, Godere, Jorgo-Wato, Selemeseng Mocha, Sibo-Tole-Kobo, Yayu, Abobo, Gerjeda, Gidame, Liche-Dale-Gewe, Chato Sengi Dengeb, Komto-Waja-Tsige and Konchi cover 12,841 km 2 and are considered as sources of trees and wildlife biodiversity. Permanent rivers like Gojeb, Nuso, Geba, Sor, Birbir, Wangus, Abay, Dedessa, Anger, Gibe, Fincha'a, Birbirsa and Dabus flow in the project area.Opportunities, risks and constraints for NRM 1 Food groups: i. infant formula, milk other than breast milk, cheese or yogurt; ii. foods made from grains, roots, and tubers, including porridge and fortified baby food from grains; iii. vitamin A-rich fruits and vegetables; iv. other fruits and vegetables; e. eggs; v. meat, poultry, fish, shellfish, and organ meats; 6. legumes and nuts. 2 For breastfed children, minimum meal frequency is receiving solid or semi-solid food at least twice a day for infants 6-8 months and at least three times a day for children 9-23 months 3 Includes two or more feedings of commercial infant formula fresh, tinned and powdered animal milk; and yogurt. 4 For non-breastfed children age 6-23 months, minimum meal frequency is receiving solid or semi-solid food or milk feeds at least four times a day. 5 Breastfeeding, or not breastfeeding and receiving two or more feedings of commercial infant formula, fresh, tinned, and powdered animal milk, and yogurt. 6 Children are fed the minimum recommended number of times per day according to their age and breastfeeding status as described in footnotes 2 and 4. ","tokenCount":"18183"} \ No newline at end of file diff --git a/data/part_3/3960432105.json b/data/part_3/3960432105.json new file mode 100644 index 0000000000000000000000000000000000000000..25d0d4f0f4b30891e5562ef66188854ca6869c97 --- /dev/null +++ b/data/part_3/3960432105.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"d57fd795ef6dcadc6392dfcdf07f4511","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/15cbbfa0-1f56-4cff-9dea-b817197a1223/retrieve","id":"-34835929"},"keywords":[],"sieverID":"645365c7-5007-458e-8bb6-4b68e92de8ed","pagecount":"25","content":"Sub-Saharan Africa (SSA) has abundant natural resources, which support economies, provide livelihoods for rural people, maintain vital ecological services and processes, and contribute a unique natural heritage to the global community. 2 Yet, over the years the natural resources and ecosystems have been modifi ed through a broad array of land uses. While these vary from settlements, urban sprawls, grazing lands, and infrastructure developments (e.g., roads) none of these is as dominant as agriculture. 3 Agriculture as a land use in SSA varies by agroecological potential from the humid areas dominated by crop production to arid areas used for grazing. Land-use change in SSA is defi ned by the rate and amount of land converted into cultivation, grazing, and/or urban dwellings. 4 Causes of land-use change are many and vary from place to place but are largely driven by the demand for more land to meet and improve food security, alleviate poverty, and also enhance the human and social welfare at household and community levels. This is not surprising as close to 61% of SSA's population is largely rural, poor and dependent on traditional agricultural 1 The contributors would like to thank posthumously the late Dr. Patrick Mushove for the efforts he made in putting together ideas for this chapter just before he passed on. Many thanks go to the donors and investigators in the projects, whose fi ndings are published in journals, technical reports and working papers, which are used as the basis for writing this chapter. We also would like to thank the anonymous reviewers whose comments have been very useful. Finally we would like to thank Luanne Otter for organising this publication and the relentless efforts to get us on track. A substantial part of this chapter relies on information gathered through LUCID team's work sponsored by UNEP/GEF and supported by the International Livestock Research Institute and Michigan State University Board of Trustees.systems for survival. 5 As a consequence, many countries in the region have developed programmes to modernise agriculture in an effort to reduce poverty, improve food security and increase the capacity to generate foreign exchange earnings through the sale of agricultural products. As these development agendas are implemented, and people gain awareness on the need and the means of how to improve the economic status of their well being, through increased and better utilisation of the limited land resources, pressure on land is increasing more and more. 6 The potential of the land to meet individual household needs and generate income at national level to keep the national economies growing faces many challenges, such as population growth, declining availability of land, the degradation of land resources and the changes in international trade markets. 7 In SSA, 61% of the population is classifi ed as agriculturalist or people whose major occupation is cultivation of crops and or livestock rearing. 8 The distribution of people varies in habitats ranging from mountains, tropical forests, semi-arid areas, riparian forests, and swamps. The SSA total land area is 2455 million ha, of which 173 million ha are under annual cultivation or permanent crops -about one quarter of the potentially arable area. In the region as a whole, the arid and semi-arid agroecological zones encompass about 43% of the land area; the dry sub-humid zone is equivalent to 13% and the moist sub-humid and humid zones jointly account for 38%. In West Africa, 70% of the total population lives in the moist sub-humid and humid zones, whereas in East and Southern Africa only about half of the population lives in these areas. 9 The nexus between global change and the land-use dynamics in Africa is characterised by the unprecedented population growth in most of African countries. Even with the backdrop of the HIV/AIDS pandemic population growth in Africa still remains high (Tables 6.1 and 6.2). The growth rates are some of the highest in the world and to feed and shelter the increasing population more land is being converted from indigenous vegetation to croplands and settlements. This increase in cultivation has reduced biodiversity and vegetation cover, and has fragmented habitats to such an extent that some of SSA's unique resources have been lost. 10 The impacts have been greatest in the more arable humid regions where rainfall is more reliable and supports crop production. Reduction in vegetation cover on one hand reduces the potential to absorb carbon dioxide from the atmosphere resulting in higher concentrations of CO 2 in the atmosphere. 11 At a global scale, land-use change has been recognised as a major cause of the greenhouse effect. 12 On the other hand, vegetation loss is closely correlated with the high soil erosion rates that are now common descriptors of environment change in SSA. Other impacts of global change that have implications on land use, particularly in Africa include increases in urbanisation, focus on market and export oriented agricultural production, globalisation of trade, and improvements in communication and levels of literacy among others.This chapter summarises the status of land use in sub-Saharan Africa by giving highlights on the trends of change in each of the four major parts of the region (eastern, central, southern and western Africa). The chapter also discusses briefl y how the changes are affecting livelihoods and national economies.The patterns of land use in SSA vary by agro-ecological potential (Fig 6 .1). Generally, there is intensive cultivation in the humid and sub-humid regions, where there is higher rainfall and fertile soils. In the semi-arid areas land use is characterised by livestock gazing systems and wildlife conservation. While cultivation is the dominant land use in humid and sub-humid areas, agropastoral land-use systems are on the increase in most of the semi-arid ecological zones due to the integration of cultivation and grazing. 13 These general patterns of production vary from region to region due to factors such as disease prevalence (e.g., trypanosomiasis and malaria) land tenure, infrastructure (e.g., roads), and markets. 14 Semi arid regions closer to major towns tend to be more integrated in livestock and cropping systems probably due to the infl uence of immigrants on land-use practices and food demands.The eastern African sub-region is characterised by two fragile ecosystems, namely: mountainous and hilly areas (predominantly in Burundi, Rwanda, Uganda, Kenya and Ethiopia); and semiarid or arid (dryland) areas (predominantly in Ethiopia, Kenya and Somalia). The fi rst ecosystem supports most of the subregion's population (with densities of more than 200 people per km 2 ), and are the centres of crop cultivation, for example, the highlands of Ethiopia (above 1,500 m asl) constitute about 45% of the total land area, and are inhabited by 80% of the population and by 75% of the country's livestock. 15 In Burundi, Rwanda, and Uganda, higher and more predictable rainfall facilitates relatively extensive cultivation (42%, 35% and 45% respectively). 16 The 15 EPA/MEDC (1997). 16 FAOSTAT (2001); FAO (2000). dryland ecosystems, however, have low rainfall and are extremely vulnerable to drought and desertifi cation. In these drier regions, the most prominent land use is livestock production that is more preferable and less risky, compared to cultivation.Southern Africa has a total land area of 6.9 million km 2 , of which almost 33% is covered by forest, 21% is desert, and the remaining natural habitat is largely savannahs and grasslands. Rainfall in the sub-region ranges from 50mm yr -1 in the arid deserts of Botswana, Namibia and South Africa, to more than 1,000mm yr -1 in the equatorial forests of Angola, Malawi, Mozambique and northern Zambia. 17 In most areas, rainfall is largely seasonal, falling over a period of just a few months, often in the form of intense thunderstorms or showers. Where vegetation cover is reduced, this can lead to higher rates of soil erosion of up to 50 t ha -1 yr -1 in some countries like Malawi. 18 Most of the sub-region experiences high variability in rainfall, and frequent or prolonged periods of fl ooding and drought. Grazing lands currently cover 49% of the area, predominantly in savannahs and grasslands and, especially, in the drier countries where forest cover is lower. 19 Permanent crops and arable lands cover slightly less than 6% of the land area, and are predominantly rain-fed, except in South Africa, where irrigation potential is relatively well developed.Central Africa is predominantly covered by forest and savannah. 20 The coastal humid belt, with high and relatively constant rainfall, supports dense tropical forests, whereas the northern parts of Cameroon, Central African Republic, and Chad are drier and experience variable rainfall, and the dominant vegetation is savannah. Land use in some parts of the subregion is sensitive to climatic and vegetation characteristics, with forestry and commercial plantation agriculture largely found in the humid zones (where rainfall reaches up to 4,000mm yr -1 ), and livestock rearing, with some subsistence cultivation, in the semi-arid zones (where rainfall averages 500mm yr -1 ). The semi-arid zone is highly vulnerable to climatic variations and drought, which limit agricultural expansion. Soils are vulnerable to erosion, because most of the rainfall occurs in intense heavy storms, and because the clay and silt content makes the soils prone to crusting when exposed. 21 Approximately 8% of the total area is under cultivation of permanent crops (with Cameroon having the largest share, at 15% of its land area), and 16.5% is used as permanent pasture. 22 West Africa is a heterogeneous region with a dominantly rural economy centred on agriculture that traditionally is adapted closely to the dynamic biophysical environment. The status of the biophysical environment is, therefore, crucial to the agriculture, the economies and the general development process in West Africa. 23 Soils vary from nutrient-defi cient coastal sands, plateau laterites and saline desert soils, through waterlogged coastal swampy soils, dry savannah and desert soils, including potentially rich loess, to fertile alluvium and humic forest soils. More of West Africa's population is concentrated in the rain forest zone, and in the adjoining swampy mangroves and sandy coconut-growing coastal areas, than in any other. This population feature relates to the forest resources, and to the fi shing and export-import opportunities offered by the sea, thus making this zone crucially important for protection. 24 The most extensive ecosystem in the region is the Sahel, which extends northwards of the savannah zone on an elevated plain with isolated hills, to the southern fringes of the Sahara Desert. It receives 200-500 mm of highly unimodal rainfall, has hardy stunted trees, notably Acacia sp., and short grasses, which form the basis of the essentially livestock economy. Beyond this zone, in the extreme north, lies the true desert.Land cover and land use in western Africa are largely determined by climate, and a dramatic variation is seen from north to south in rainfall and vegetation cover. In the north, average annual rainfall is 350-850mm yr -1 and savannahs are the dominant ecosystems along the southern border of the Sahel (Mali, Mauritania, Niger, and northern Senegal). Here, climate variability is greatest, and droughts are common, and often severe. Cultivation is limited, and the dominant agricultural activity is pastoral livestock rearing. For example, in Mali and Niger, cultivation represents just 4% of the land area. 25 By contrast, 123 permanent pasture accounts for 25% of the land area in Mali. In the equatorial and coastal zone, rainfall is higher ranging from 1,000 to 4,000 mm yr -1 , and with greater inter-annual and intraannual reliability and periodic fl ooding. 26 In 2000, forest covered almost 12% of the land area, was highly fragmented, and under increasing threat from charcoal production and collection of wood for fuel, commercial logging, plantation and slash-andburn agriculture. 27 Nearly 11% of the total area of western Africa is currently cultivated under rain-fed agriculture mostly occurring in the equatorial belt. Togo and Nigeria have the largest percentage of land under cultivation (42% and 33% respectively), followed by Côte d'Ivoire and Ghana (23% each). 28Land-use change in SSA is characterised by two major processes: 1) land-use intensifi cation within the highlands or humid areas and 2) expansion of cultivation into the rangelands and forests and woodlands. 29 Within the highlands minimal expansion of cultivation is observed around the mountain forest edges where there is still natural vegetation and conservation measures are not enforced. Land is scarce within the highlands due to high population.In eastern Africa most of the occupants of the high potential areas are cultivators. One of the biggest problems with the high potential areas is the declining land-parcel size due to subdivision of land to the younger generations. 30 In this situation the only way people have been able to cope with increasing demand for more output from the land is by intensifying agricultural activities. This has resulted in the impoverishment of soils in the highlands, which have become more prone to degradation. 31 In southern Africa there is a range of forest and woodland types that follow the rainfall distribution pattern of the subregion. The wetter, more northern parts of the sub-region support more closed canopy forest, whilst drier countries in the south and west have predominantly woodlands and savannahs. The total forest and woodland area of southern Africa amounts to 32.7% of the sub-region's total area, and constitutes 34% of all of Africa's forests. 32 Angola has the highest forest cover with 56% of the land area under forests; Lesotho has the lowest with less than 1%. 33 There are four forest and woodland types, namely deciduous broadleaf forests (temperate forest types), lower montane forest, mangroves, deciduous/semi-deciduous broadleaf forest, and savannahs (tropical forest types).Southern Africa also has six regions of exceptional plant species diversity, and forest species are abundant in many of these. 34 Among these is the Cape Floral kingdom and the Miombo Ecoregion where 26 areas of biological signifi cance were delineated by WWF. 35 Close to 70% of the population of this sub-region is employed in agriculture. This sector can be divided into two. Firstly, the small-scale farming with land holdings of less than 2 ha/household who may also be engaged in shifting cultivation, but generally practise low input agriculture. Increasing populations and demand for food have led to encroachment on woodlands and losses of up to 1.9% per annum have been experienced in some areas of Zambia. 36 The crops produced are mainly maize, pulses and millets. Lately, this group of farmers has started to move into cash cropping.The second group of farmers are the commercial farmers that typically cultivate up 2,000 ha per farm under both rain-fed and irrigation. Located in parts of Zambia, Mozambique, South Africa, and to a lesser extent Zimbabwe these farmers grow crops such as maize, wheat, tobacco, tea, cashew nuts, sugar cane, coffee and cotton. In addition, the large-scale commercial farmers may also be involved in livestock rearing in the drier areas and of signifi cance has been the extent to which these farmers have also added wildlife to their commercial ventures as well. Rural communities have also been actively engaged in sustainable wildlife utilisation in the sub-region and such initiatives have addressed some of the food security issues. Central Africa is home to one of the world's largest rain forests, and serves as one of the world's most important carbon sinks. 37 Deforestation is one of the most pressing environmental problems facing almost all sub-Saharan African nations but in central Africa it is the most common land-use change. The primary cause of deforestation is wood utilisation for domestic and commercial purposes. Many sub-Saharan countries have had over three quarters of their forest cover depleted, and it is estimated that if current trends continue, many areas, especially those in the Sudano-Sahelian belt, will experience a severe shortage of fuel wood by 2025. 38 Deforestation also has negative implications for the local environment (increased erosion and loss of biodiversity). The highest deforestation rates occur in areas with large growing populations such as the Eastern parts of the Democratic Republic of Congo (DRC) and the Sahel. Since 1957, two-thirds of Gabon's forests have been logged. 39 Large blocks of intact natural forest do remain, particularly in DRC, Gabon, and Congo. In DRC, which contains more than half this region's forest cover, many forests remain intact, partly because the nation's poor transportation system cannot easily handle timber and mineral exploitation.In East Africa, expansion of cultivation has primarily targeted fertile lands where agricultural production can be sustained. These areas are mainly in the highland areas where human settlements have existed for many generations and the only areas remaining uncultivated are the protected areas. It is due to the scarcity of land in the highland areas that cultivations are now extending to the lowland areas that were previously used only by pastoralists and wildlife. 40 Unlike in the highlands, areas suitable for cultivation in the lowlands are scarce. The low rainfall and nutrient poor soils within the lowlands tend to limit cultivators mainly to areas where there is surface water like along rivers, and around swamps and lakes.The intensifi cation of agriculture and overuse of water for irrigation has increased pressure on already scarce resources resulting in the drying up of many swamps and wetlands. 41 37 Gyasi et al (1995). 38 UNEP (2002). 39 Allen and Barnes (1985); Achard et al (2002); Kevin and Schreiber (1994). 40 Olson et al (2004). 41 Campbell et al. (2003).Pollution has also increased due to deposition of agro-chemicals into the water reservoirs accompanied by high biodiversity loss of indigenous plant and animal species. 42 Land-use change in these areas is a centre of controversy and source of confl ict between cultivators and herders over the access to water and pastures.In many parts of Africa, population increase is the major driving force for land-use change. 43 The increase in population apparently translates into expansion of cultivation and settlement areas. Increased focus on commercial agricultural production is another driver of agricultural expansion. As people change from subsistence farming to the production of commodities for local and external markets, the need for larger farms increases in order to produce enough to sell for higher income. 44 Production of some commercial crops, for example cotton, requires cultivation of vast tracts of land in order to cover the costs of production and generate profi ts. Availability of new food crops that have better markets makes farmers cultivate more land to capture the new opportunities. Human local migrations from one agro-ecological zone to another contribute to the introduction of new crops and new farming techniques that in many cases cause expansion of cultivations. 45 In many areas, land degradation has reduced productivity of the land leading to poor yields. In turn people cultivate more land in order to produce enough. Similarly, declining quality of pastures as a result of land degradation makes livestock and wildlife to graze on wider orbits thus demanding more land for grazing. This situation is experienced more within the rangelands where both cultivators and herders compete for land. 46 Income diversifi cation at household level contributes to expansion of cultivation. Farmers have developed this strategy as a means of coping with climate variability and changes in market opportunities. In a number of studies, it has been observed that farmers who have diversifi ed their crop types and 42 Githaiga (2004); Maitima et al (2004); Maitima et al (2004). 43 Allen and Barnes (1985); Lambin et al (2003). 44 Oyejide (1993). 45 Olson et al (2004); Maitima et al (2004). 46 Maitima et al (2004).have integrated livestock with cropping are richer and more food secure than those who have not. 47 Charcoal making has become a major issue of concern and is certainly a driver of land-use change. It changes the vegetation structure of a given woodland area and in some cases will lead to woodland and biodiversity loss. Such an activity, if coupled with high population densities, will transform woodlands into a wasteland. It has been estimated that a minimum of 80% of the population of Africa uses fuel derived from biomass. 48 Urbanisation is another cause for land-use change. Expanding urban and municipal centres have created markets for food commodities produced in the rural areas and thus the increase in demand in towns result into an increase in demand for supplies of food produced in the rural areas. It is estimated that by 2015 about 51% of human population will be urban (Table 6.3). There is, therefore, an urgent need for countries in SSA to develop measures to reduce dependence on charcoal as a source of energy especially with the urban centres. there after normalise. The rates of expansion, however, have not been uniform in all areas; areas affected by tsetse fl ies for example have either been left uncultivated due to constraints of trypanosomiasis on humans and livestock. These areas are, however, rapidly occupied and converted into agricultural lands as soon as the trypanosomiasis challenge is reduced. Figure 6.3 illustrates the rate of land-use change following tsetse fl ies control in Ethiopia. 49 Land-use change analysis across East Africa has been done in great detail by the Land-use Change Impacts and Dynamics (LUCID) project team. 51 Results of this analysis indicate similar land-use patterns in many sites, characterised by increasing intensifi cation. However, this pattern has occurred at different rates across the region. Conversion of areas with natural vegetation to farmlands is by far the most prominent as summarised below:1. Expansion of cultivation into grazing areas, particularly in the semi-arid to sub-humid areas; 2. Increase in rain-fed and irrigated agriculture in wetlands or along streams especially in semi-arid areas; 3. Reduction in vegetation cover on land that is not protected; and, 4. Intensifi cation of land use in areas already under crops in the more humid areas. Based on research conducted in Kajiado District in Kenya, the largest change of land use was the conversion of grazing lands to rain-fed agriculture especially in sub-humid and semiarid areas. Between 1887 and 1950, semi-arid and sub-humid areas were predominantly pastoral with substantial amounts of vegetation cover, scattered settlements and cultivation. From the 1950s to the present there has been much conversion of grazing land to croplands. This trend is seen in many areas with similar ecological settings across East Africa. 52 However, the rate of expansion appears to be slowing in many areas due to scarcity of land.The establishment of group ranches in Kenya in the 1970s/1980s led to the emergence of private commercial ranch systems. Today however, the group ranches are being subdivided into individual units, with wider implications for land-use change, land tenure and household resource allocations. 53 These subdivisions are likely to affect many social institutions including the traditional Maasai pastoral system and the wildlife, that depend on availability of large grazing areas that allow both livestock and wildlife to access resources that are widely distributed in both time and space. 54 In Uganda, studies around Lake Mburo, show that an elaborate pattern of development is associated with expansion of cultivated areas, settlements, woodlots, and declining land for fallow, grazing, forestry and wetland following a land restructuring policy and the government resettlement scheme. 55 In the recent years the amount of land under irrigation has grown rapidly within the sub-humid and semi-arid areas. In the Kilimanjaro region of Kenya, for example, irrigated land expanded from 245 to 4768 hectares between 1973 and 2000, and in the Kilimanjaro region of Tanzania from 336 to 4078 hectares during the same period. 56 The source of the water is usually rivers or swamps rather than being pumped from aquifers. Rice, fl owers and vegetables are the main crops and there are destined for both national and export markets. 57 Many woodlands and forests without enforced protected area status have been reduced in size and/or their vegetative cover has diminished. They have either been converted to pasture for grazing, to fi elds for rain-fed agriculture, or their woody plants have been extensively cut for charcoal production. 58 In areas that were already cultivated in the 1950s, land-use changes have been less dramatic. They have been primarily an infi ltration of cultivation into valleys, hills and other pieces of land that had not yet been cropped, changes in types of crops, fragmentation and shrinkage of farm sizes, and an increase in planted trees in densely populated areas. These changes are mainly associated with intensifi cation of the existing farming system, refl ecting an increase in the application of labour and, in most places, capital inputs on the land.In Southern Africa, up to 70% of the population resides in the rural areas sustaining their food requirements through lowinput subsistence agriculture. The extensive Miombo woodlands found in this sub-region is home to the region's biodiversity. These woodlands are a basis for livelihoods and provide everything from food resources to materials for use in the rural 55 Tukarhirwa (2004). 56 Campbell, Misana and Olson (2004). 57 home. The woodlands are also habitats to a wide variety of large herbivores, e.g., the elephant, which in some cases have been placed in protected areas and to date most of the countries in the sub-region have close to 10% of national land under protection. These dominant woodlands are under pressure from land uses that extract resources, agricultural encroachment, fi re, grazing, and other natural resources mismanagement approaches. 59 Changes in land use and land cover in Miombo potentially affect a wide range of socio-economic and environmental processes. Land use in the Miombo woodlands include cultivation, extraction of fuel wood, harvesting of construction material, and non-timber forest products, which are diminishing the area available for communal grazing. Communal grazing has led to degradation in close to 50% of the sub-region's grazing areas. 60 Traditionally the moist savannahs of Southern Africa have been used for agriculture. The soils under Miombo woodlands are inherently infertile with limited productivity and as such, the slash and burn (chitemene) still dominates the central African Miombo. Where extensively practised, slash and burn can result in fi res, rapid vegetation loss, and excessive siltation of the river systems and lakes. In addition, the practice of burning hardwoods for charcoal has reduced much of the productive and densely settled central Africa plateau of southern Africa to open secondary grassland. For example, charcoal burning is contributing to the sub-region's 0.5% yr -1 of woodland and biodiversity loss. 61 Conversion to permanently cropped land, in the absence of intensive soil management leads to reductions in soil organic matter, nutrient depletion, and soil erosion. As land is still available in many areas especially within the Miombo, shifting cultivation is often practiced especially in the early stages of agricultural development. Human activities are central to the current dynamics of Miombo ecosystems. The extensive and intensive use of the soils and vegetation by agrarian communities has undoubtedly shaped, and continues to shape, much of the present Miombo landscape. 62 59 Gumbo (2002). 60 UNEP (1999). 61 World Bank (2002). 62 Much of the information on Miombo woodlands of Southern Africa can be obtained from the Miombo project report on http://miombo.gecp.virginia. edu.The arid savannahs of southern Africa have supported pastoral communities for many years without excessive overgrazing until recently. High densities of grazers, mainly cattle, have largely replaced the mixed herbivore populations comprising browsers. The effect of overgrazing and under browsing, has led directly or indirectly to the transformation of several millions of hectares of formerly productive natural pastures to closed thickets. The process of bush encroachment has led to the pastoral industry changing from a major exporter to an importer of dairy products. The cost of bush clearing using selective herbicides in Namibia is currently higher than the land's market value.In West Africa the trends in land-use change are dominated by intensifi cation of agriculture in the areas already settled. Population pressures are among the factors that have and will continue to contribute to substantial resource degradation in the coastal zones of Western Africa. Traditionally, opportunities for agriculture and employment in the more humid coastal areas have encouraged steady migrations from the Sudano-Sahelian area towards the coast. Much of the coastal rain forest has been cleared to make way for agricultural plantations and urban development and what remains is decreasing at an annual rate of between 2 and 5 %. 63 Fragile coastal ecosystems, such as the stretch of coast between Accra (Ghana) and the Niger Delta (Nigeria), are under further stress because of increasing demand for resources compounded by industrial and urban development and their associated pollution loads.A major part of the problem of biodiversity conservation is located outside of the protected areas, in managed agroecosystems where population growth, commercialisation, land degradation and deforestation put severe pressures on sustainability. Farmers have managed these lands for long periods of time and traditional farming systems have frequently been able to respond successfully to the changing conditions, applying indigenously developed techniques and knowledge. This knowledge is, however, ignored more often than not by modern science and agricultural research. 64 63 World Bank (1996). 64 Uitto (1995).In many settlement areas farmers express repercussions of increased land degradation, which has led to reduced productivity of their farms. This has resulted into increased weeding, resulting from the invasion of savannah grasses (Panicum maximum and Digitaria ciliaris) and pan-tropical weeds (particularly Chromolaena odorata); declining yields; failure of particular crops, such as yams and plantain as a result of changing environmental conditions and unreliable rainfall. As a result of declining productivity, farmers also tend to match crop production with soil. When yields become marginal, long fallows are introduced, leaving the land to rest for some time. Soil analysis has revealed that most soils were in the range of 50% of their optimum pre-cultivation level. 65 Highly detailed analysis of land cover changes on Land Sat and SPOT 5 images from some parts of the Sahel (Senegal, Mali and Burkina Faso) show an encouraging positive trend possibly indicating an increase in overall productivity in recent years (Fig 6 .4). This observation is based on studies by USGS international programme at the national centre for EROS. 66 One of the more striking general observations was an area in northeast Burkina Faso where deposition of sand has formed 'fi ngers' of productive soils running parallel along an east-west tract. However, between these sandy depositions, lie bands of unproductive clay soils that allow very little vegetation growth. It is likely that changes in seasonality enabled the soils to retain more moisture, triggering a process of greening up depending on the type of soils. Patterns in vegetation green-up at small scales are largely associated with soil properties and vegetation types. 67 65 Amanor (1994); Tuffuor (1992). 66 Despite the favourable climatic conditions in central Africa, large-scale agricultural development is limited due to failures in markets and political instability in most of the region. Shifting cultivation (or slash-and-burn agriculture) has been traditional means of coping with rainfall variability, but this practice is no longer sustainable, because of much larger populations. 68 The priority issues in central Africa are, therefore: improving food security through enhanced production and distribution of resources; and, reducing the pressures that shifting cultivation has on forests and woodlands. 69 Central Africa's biological resources are the backbone of the sub-region's economy and support millions of livelihoods. Timber extraction is growing rapidly and deforestation is a major concern for Central Africa. 15,000 hectares in Gabon to 290,000 ha in Cote d'Ivoire. 70 The damage caused to remaining forest areas by timber extraction is an additional concern for the sub-region. 71 Irrigated agriculture is limited, partly because the fertile soils and the high reliable rainfall in the humid zone are conducive to rain-fed agriculture, and partly because the infrastructure development required for establishing irrigated cultivation in the semi-arid zone has so far been prohibitively expensive. One of the most important environmental impacts of uncontrolled urbanisation in Central Africa is its spread into fragile ecosystems, including delicate or highly erodible slopes, natural drainage waterways or valleys, and areas that are subject to fl ooding. 72 Due to the intense competition for space in urban areas, green spaces are rapidly disappearing and areas usually deemed unsuitable for housing are the only refuges available for the urban poor, who are then vulnerable to fl ooding, landslides, and outbreaks of pests and diseases. Although planning regulations are in place, they are poorly monitored and enforced.All across SSA increasing population pressures have led to increases in cultivation and grazing intensity. This has led to massive deforestation and conversion of natural habitats to farmlands and settlements with implications on biodiversity and land degradation. 73 Deforestation is a pressing environmental problem faced by many sub-Saharan African nations, with many of these countries having over three quarters of their forest cover depleted.. The highest deforestation rates occur around large growing populations such as the East African Highlands and the Sahel. 74 Deforestation also leads to increased soil erosion and loss of biodiversity. Land productivity is reduced in intensively cultivated areas due to declining soil fertility. 75 Extension of cultivation into the areas where land is still available is a response by farmers to replace the loss in production brought about by impoverished soils under continuous cultivation. The outcome of this adaptive response especially among the small-scale farmers is the increasing land subdivision trend, slowly reducing available land from extensive to intensively managed land-use systems.The LUCID project in east Africa made important fi ndings based on a regional study to identify the linkages between land-use change and land degradation. 76 One of the important fi ndings was the effect which expanding farming, grazing and settlements had on biodiversity. The expansion of these areas has been to the expense of native vegetation and thus indigenous plant and animal biodiversity. Generally large mammals are lost as cultivation expands, but it was found that in some cases there are more species of birds, small mammals and plants in places where people used land in a moderate fashion. Moderate farming in less forested areas is found to increase tree cover thus increasing the diversity of bird species Land under pastoral production system maintains native plant and animal species more effectively than land under crop cultivation. Furthermore, the study indicates that farmers growing many crops conserve native plant species better than those who grow only one crop. Increasing crop diversity is also one way farmers are coping with land degradation. Expanding croplands leads to decreased soil fertility, decreased soil moisture and increased soil erosion.Farmers are responding to declining land productivity by the use of livestock manures and the application of crop vegetative residues. Other effects of expanding cultivation in East Africa are water availability and land fragmentation. As farming and settlement expands into water catchment areas, less water is available for people, livestock and wildlife as more water is diverted to irrigation for crops. Land in East Africa is heavily fragmented into small parcels in the highlands, while dry extensive rangelands are now in the process of being fragmented.75 Southgate (1990). 76 Maitma et al. (2004).Agricultural production has been practiced in sub Saharan Africa for many generations. 77 The most common mode of agricultural production is subsistence farming, but due to several advances in strategic focus among many countries there are rapid changes towards a market-based agricultural economy among the small and large-scale farming production systems. However, availability of land is critical for the successful commercialisation of agriculture in SSA. Changes in land use have resulted in land fragmentation, over-cultivation, and reduced fallow periods leading to decline in land productivity and ultimately in intensifi cation of agriculture requiring more farm inputs. The extent and quality of grazing lands have also been reduced, thus intensifying confl ict between the cultivators and the herders and even overgrazing by herders and agro-pastoralists due to continuous grazing without rest from grazing or rotation grazing plan. In Kenya, for example, over 50% of grazing lands are badly eroded due to overgrazing in rangelands. In Somalia extensive additional areas have become desert or semi-desert within the past century. 78 Somalia, except for some river valleys and the moist southern-most region, is likely to be transformed into desert-like condition within a few decades unless there are radical changes in land-use practices within a few decades.In southern Africa, the carrying capacity in grazing lands is diminishing due to deterioration of grazing lands. 79 A study of grassland conditions in 9 countries of southern Africa reports that cattle numbers exceed carrying capacity in each country by 50-100%. Invasion by woody plants from over-grazing has rendered 30,000 km 2 useless for cattle. An additional 140,000 km 2 of savannah is rapidly losing its ability to support livestock as scrubby brush spreads across the land. 80 In Central Africa, Rwanda's 3 million cattle have badly eroded hillsides and have accelerated the damage to soil productivity threatening the national economy, which is almost entirely based on agriculture and livestock. Despite the land-use changes reported in this chapter, and which refl ect coping strategies by people in SSA, improvements on livelihoods have been minimal. Poverty has been on the increase in many sub-Saharan countries, and availability of food has been declining. During the past 30 years the number of undernourished people in the region has increased substantially, to an estimated 180 million people. The region has a higher proportion of people living in poverty today than any other region of the world. Across the whole region, rural poverty still accounts for 90% of total poverty and approximately 80% of the poor still depend on agriculture or farm labour for their livelihood. 81Environmental conservation is both an international and national concern. Every effort must be made at both levels to safeguard the natural resources upon which life depends. Human activities must operate within a framework of sustainable development. National and regional policies to foster sustainable land management must be put in place and be enforced to guide agricultural and urban developments. Adequate and informative tools and frameworks must be developed to monitor changes in land cover, biodiversity and land use in order to assess and inform decisions at policy and management levels. There is a need to create awareness among the local populations on the individual and collective benefi ts associated with environmental conservation as well as build capacity within the countries in the region on how to embrace sustainable land management practices that lead to the conservation of natural resources for economic development.In SSA, abundance of natural resources provides the basis for pro-poor agricultural development approaches provided the appropriate incentives are created by adjusting the national development frameworks, national policies, and reorientation of public and private institutions for effective and effi cient service delivery mechanism. Household strategies for escape poverty, in order of importance, include diversifi cation; intensifi cation; increase in farm size; exit from agriculture; and, increase in offfarm income. 81 Ibid.","tokenCount":"6435"} \ No newline at end of file diff --git a/data/part_3/3968680996.json b/data/part_3/3968680996.json new file mode 100644 index 0000000000000000000000000000000000000000..5d5f16fcf8ab2116a44168ae3d41239a5eddd099 --- /dev/null +++ b/data/part_3/3968680996.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"73979dc3569a9cf4aae6f5fd38d3af7c","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/be9f73bc-4079-4519-9bfd-267b271edbe7/retrieve","id":"1521310102"},"keywords":[],"sieverID":"88c9b9a8-41ba-4978-bf5c-d9326309101f","pagecount":"80","content":"Papa en la mano de un campesino durante la cosecha (Ayacucho, Perú). [potato in the hand of a peasant during harvest time (ayacucho, peru)] [To the small Andean farmers guardians of an ancestral wisdom, in whose hands is assured the future of our native potatoes]A los pequeños agricultores andinos poseedores de una sabiduría ancestral, en cuyas manos está asegurado el futuro de nuestras papas nativas a papa tiene un rol clave en la cadena alimenticia global. ella es, fuera de los cereales, el alimento más importante en el mundo. Su producción alcanzó un record de 320 millones de toneladas en 2007. La papa se cultiva en casi todos los países, y su producción -así como su consumoestán incrementándose en los países en vías de desarrollo. La papa es una valiosa herramienta en la lucha contra el hambre y la pobreza, que es una de las razones por la que la oNu declaró el 2008 como el Año Internacional de la Papa (AIP). este evento atrajo la atención hacia el papel crucial que la \"humilde papa\" tiene en la agricultura, la economía y la seguridad alimentaria del mundo.La Agencia Suiza de Cooperación para el desarrollo (CoSude) es un socio importante de muchos años del Centro Internacional de la Papa (CIP). CoSude y el CIP comparten prioridades en cuanto a la agricultura y el desarrollo rural; el manejo de los recursos naturales para abordar el cambio climatológico; y los métodos para el desarrollo económico para promover el crecimiento económico sostenible ecológica y socialmente, en particular entre los pobres y los desfavorecidos. en los Andes, esta colaboración se enfoca en el fortalecimiento de los programas nacionales de investigaciones agrícolas y en trabajos sobre la papa en Bolivia, Ecuador y Perú a través de proyectos bilaterales y de soporte regionales, como la Iniciativa Papa Andina, emprendida en 1998.La celebración del AIP fue una excelente oportunidad para CoSude, el CIP y sus socios nacionales en la región para conjuntamente promover la papa, especialmente las papas nativas, como el cultivo clave en sistemas andinos de sustento. Las actividades fueron lanzadas por Papa Andina para promover la percepción sobre las papas nativas, resaltando la significación cultural, social y económica de su cultivo entre los agricultores andinos. una serie de imágenes fueron tomadas en Bolivia, ecuador y Perú por el fotógrafo francés jean-Louis Gonterre, quien es un apasionado de las papas y es llamado el \"papágrafo\" o \"potatographer\" (en inglés). Estos retratos pagan un tributo a la gente que cultiva, preserva y promueve a la papa y su biodiversidad. dichas imágenes fueron presentadas en más de 20 exhibiciones fotográficas a través de la región andina, con la colaboración de público nacional y asociados privados. estamos muy complacidos en presentar este libro, en el que se ilustra esta iniciativa conjunta y que dará continuidad a los esfuerzos realizados durante el AIP para realzar la presencia de las papas nativas y su importancia crucial en el desarrollo económico de los agricultores andinos.Potatoes play a key role in the global food system. It is the main non-cereal food of the world and production reached a record 320 million tonnes in 2007. Potato is cultivated almost everywhere, and its production as well as its consumption is increasing in developing countries. Potato is a major weapon in combating hunger and poverty, which is one of the reasons that the UN declared 2008 as the International Year of the Potato (IYP). This event drew attention to the crucial role that the \"humble potato\" plays in agriculture, the economy and world food security.Center (CIP). SDC and CIP share priorities on agriculture and rural development; natural resources management to address climate change; and methods for economic development that promote socially and ecologically sustainable economic growth, particularly among the poor and disadvantaged. In the Andes, this collaboration focuses on strengthening the national agricultural research programs and work on potato in Bolivia, Ecuador and Peru, through bilateral projects and regional support such as the Papa Andina Initiative, launched in 1998.The celebration of IYP was an excellent opportunity for SDC, CIP and national partners in the region to jointly promote the potato, and especially native potato, as a key crop in Andean livelihood systems. Activities were launched by Papa Andina to promote awareness of native potatoes, highlighting the cultural, social and economic significance of the crop for the Andean farmers. A series of photographs were taken in Bolivia, Ecuador and Peru by the French photographer Jean-Louis Gonterre, who is passionate about potatoes and is called the \"papágrafo\" or \"potatographer\". These pictures pay tribute to the people who cultivate, preserve and promote the potato and its biodiversity. The images were presented in more than 20 photographic exhibitions throughout the Andean region, in collaboration with national public and private partners. We are very pleased to present this book, which illustrates this joint initiative and will give continuity to the efforts made during IYP to raise the visibility of native potatoes and their crucial importance for the economic development of Andean farmers. L a papa, y en particular sus variedades nativas altoandinas, son elementos centrales de la economía familiar y nacional en Bolivia, Ecuador y Perú. La Agencia Suiza para el desarrollo y la Cooperación (CoSude) y el Centro Internacional de la Papa (CIP), con la participación de las entidades nacionales del sector Papa de los tres países, han apoyado a los productores de papa en los Andes desde hace varios años, con resultados alentadores logrados en términos del aumento de los ingresos de las familias productoras y de su participación más equitativa en la cadena productiva, así como en el reconocimiento de su papel de \"guardianes\" de este patrimonio. en términos de comercio, los primeros productos elaborados con papas nativas altoandinas han comenzado a llegar a los mercados nacionales e internacionales.La celebración del Año Internacional de la Papa 2008 (AIP 2008) se convirtió en una excelente oportunidad para CoSude para promover, junto con el CIP, las papas nativas en diferentes ámbitos, tanto a nivel nacional como internacional. La Iniciativa Papa Andina y sus socios 2 aprovecharon esta ocasión para implementar el Proyecto \"Celebración del Año Internacional de la Papa (AIP) en la región Andina\" con el propósito de (1) realizar un diagnóstico del sector papero en Bolivia, ecuador y Perú y apoyar el desarrollo participativo de una visión estratégica de este sector y definir prioridades de acción para fortalecerlo, y (2) crear y promover, a nivel nacional, regional e internacional, conciencia sobre las papas nativas en cuanto a en el presente libro se desea exponer parte del resultado de este trabajo mediante una selección de las fotos más representativas. Éstas muestran las diversas facetas de la papa nativa, la que viene luchando por emerger al mundo y conseguir un espacio permanente en la sociedad. esto contribuye a dar mayores posibilidades de bienestar a los pequeños productores alto andinos que conservan esta riqueza, que representa la biodiversidad de las papas desde tiempos ancestrales.el producto de tan rica experiencia de aproximación a la región andina fue presentado en diversas exhibiciones fotográficas por varios países, y que permitió a miles de personas acercarse al sector papa desde una perspectiva artística y social.Con lo dicho hasta el momento, el Año Internacional de la Papa más que un punto de llegada debería ser el punto de partida que genere un proceso de desarrollo permanente de este producto en la región andina, con la amplia participación de los diversos actores económicos e instituciones que trabajan en el desarrollo de este producto para de esta manera aprovechar su gran versatilidad y potencial.Potatoes, and in particular the native high Andean varieties, are central elements for the domestic and national economies of Bolivia, Ecuador and Peru. The Swiss Agency for Development Cooperation (SDC) and the International Potato Center (CIP), with the participation of national organizations of the potato's sector from the three countries, have assisted Andean potato's farmers since several years ago, with promising results achieved in terms of income increase for producers' families and their more equitable participation in the production chain, as well as the recognition of their role as \"guardians\" of this patrimony. In commercial terms, the first products based on highlands native potatoes have started to reach national and international markets. The celebration of the International Year of the Potato 2008 (IYP 2008) turned to be an excellent opportunity for SDC to promote, along with CIP, native potatoes in different environments, locally and internationally. The Papa Andina Initiative and its partners 2 took advantage to implement the Project \"International Year for the Potato (IYP) Celebration in the Andean region\" with the objective of (1) formulating a diagnosis of the potato sector in Bolivia, Ecuador and Peru and support the participative development with a strategic view of this segment and defining priority actions to strengthen it, and (2) creating and promoting, nationwide, in the region and internationally, awareness over the culinary, cultural and economical potential of native potatoes to advance growth and relieve poverty in the Andean zone.One of the regional activities that were conducted was the photographic exhibition about potatoes. Jean-Louis Gonterre was contacted, well-known French photographer (www.pommedeterre.org) who works with the potato as its artistic subject since the 1990s, and who has been named as the first \"papágrafo\" of the world. It was deemed that his artistic sensibility could help communicate to the great public about the effort that scientists, sector's actors and, above all, the farmers make for the development of this humble tuber, little acknowledged but very important for sustenance security and the fight against poverty in the Andean region. Jean-Louis has accumulated an important photographic testimony with the actors from the potato's sector of the Andean region to depict the rich biodiversity of native potatoes and its participants in Bolivia (La Paz, Sucre, Potosi, Tarabuco, Cariquina), Ecuador (Quito, Chimborazo, Bolivar, Tungurahua, Cotopaxi) and Peru (Lima, Cusco, Sicuani, Andahuaylas, Puno, Ilave). This book wants to illustrate part of the result of this work through a selection of the most representative images. These show different aspects of native potatoes, which are trying to emerge in the world and obtain a permanent space in society. This contributes to give more possibilities to the welfare of small Andean farmers who keep this wealth that represents the biodiversity of the potato since ancestral times. The end product of this rich approximation experience to the Andean region was presented in different photographic exhibitions in several countries, which allowed thousands of persons to come closer to the potato's sector from an artistic and social perspective. Up to now, the International Year of the Potato more than the arriving place should be the point of departure from which a permanent development process of this Andean product would generate, with the ample participation of the different economical actors and the institutions that work in the advancement of this product and, thus, take advantage of its great versatility and potential. papa, madre and the celebrations for the international year of the potato Sala de exposiciones del Museo Inka (Cusco, Perú). Comentarios y vistas de la exposición Papa, madre en el Cusco. l objetivo de estas líneas es mostrar la primera aparición de la papa ante los naturalistas y etnógrafos europeos que conocieron el Nuevo Mundo al inicio de la colonización europea. durante esos años llegaron a América un sinnúmero de conquistadores y comerciantes en búsqueda de ingentes riquezas. La población indígena conocería de su codicia y sufriría las consecuencias de su afán de lucro. Pero, junto a ellos dejaron españa también algunos intelectuales con sensibilidad a los asuntos de los indígenas. descubrieron al otro, sus costumbres y los elementos de una civilización distinta a la suya. fundamentalmente fueron sacerdotes, hombres de letras y algunos académicos.En primer lugar debemos mencionar a Gonzalo Fernández de Oviedo, un hidalgo de la corte española, que de niño había jugado con el futuro rey felipe II. oviedo fue uno de los pocos aristócratas de alto nivel que cruzó a América en el temprano siglo XvI. Su carrera estuvo consagrada a las ciencias naturales; llamado el Plinio del Nuevo Mundo por su esfuerzo enciclopédico para clasificar las plantas y animales de América. Publicó una historia General del Nuevo Mundo a finales de la década de 1530, pero siguió realizando anotaciones a lo largo de su vida. ellas fueron incorporadas en la edición de sus obras de 1850, que ha pasado a ser considerada la edición príncipe de oviedo. Nunca llegó al Perú; su experiencia personal en el Nuevo Mundo se limitó al Caribe. Sin embargo, al retornar a españa, fundó un jardín botánico y queda evidencia de que allí hubo unas cuantas papas. ellas habrían sido las primeras papas en europa.Con respecto a la papa, la gran inquietud de Oviedo fue el chuño. La conservación de los alimentos era uno de los temas cruciales para las sociedades del pasado.The goal of these lines is to show the first encounter of the potato with the European naturalists and ethnographers that met the New World at the beginning of the European colonization. During those years, countless conquistadors and merchants came to America in search of untold riches. The native population would know their greed and would suffer the consequences of their eagerness for profit. But, along with these characters some intellectuals left Spain with a sensibility for the indigenous affairs. They discovered the \"others\", their customs and the elements of a civilization different form theirs. They were mainly priests, men of letters and some intellectuals. In the first place, we must mention Gonzalo Fernández de Oviedo, a nobleman from the Spanish court who, as a young boy, played with the future king Phillip II. Oviedo was one of the few high ranking aristocrats that crossed to America in the early XVI century. His career was consecrated to the natural sciences; he was called the Pliny of the New World for his encyclopaedic endeavour to classify the plants and animals of America. He published a Historia General del Nuevo Mundo by the end of 1530s, but he continued to make notations during his whole life. They were incorporated in the editions of his works published in 1850, which it is now considered Oviedo's first edition. He never came to Peru; his personal experience in the New World was confined to the Caribbean. However, when returning to Spain, Oviedo established a botanical garden and there was evidence that some potatoes were in it. They may have been the first samples in Europe. As from potatoes, Oviedo's great inquiry was the chuño. The storage of foodstuff was one of the crucial issues for earlier societies. Europeans only knew a few techniques such as drying and salting processes, which served for meat. These same techniques were known in America. However, in the Andes, pre-Columbian societies additionally discovered chuño, a way to preserve potato. Up in the mountains, it was subjected to temperature variations due to the great degrees' fluctuations the potato in the first chronicles of the indies Cultivo de 42 variedades de papas nativas en los andenes de Moray después del segundo aporque (Cusco, Perú). [sowing of 42 varieties of native potatoes at the andenes of moray alter the second hilling (cusco, peru)] esparcido, requiere tierra cálida y húmeda. también se consume tostado. Se hace harina, masa y tortillas, arepas, asimismo especie de pasteles que llaman tamales\". Por otro lado, destaca que se puede consumir como bebida, \"existe un vino de maíz, conocido como «asua» en el Perú y «chicha» en el resto del continente\". esta propiedad llama poderosamente su atención. ello, porque en europa el circuito de la comida seca era uno y el de la bebida era otro. Así, los europeos comían carne, pan y aceitunas, pero bebían vino, conectado a la fruta pero no a la comida seca. Mientras que en América, la gente comía y bebía de la misma planta. en algunos casos era el maíz, y en otros la yuca, cuya forma líquida era el masato.Sin abundar en razones, Acosta cataloga la propiedad nutritiva del maíz como inferior al trigo, \"tras el trigo, el maíz tiene el segundo lugar para sustento material de hombres y animales\". No hay explicación, ni abundan razonamientos, como en otros pasajes de la obra, salvo el orden general de la composición que se revelará más adelante.En otras secciones del libro, Acosta distingue otros dos productos que en algunas zonas de las Indias también cumplen funciones de pan. es el caso de la yuca en el Caribe y de la papa en el Perú y específicamente en la meseta del Collao. en el altiplano, según Acosta, el clima frío y seco impedía el crecimiento tanto del trigo europeo como del maíz nativo. Por esa razón, era el reino de la papa que sustituía a los granos como alimento clave de la población. \"La papa es la base de la alimentación en las tierras altas de las montañas. Sustancia y mantenimiento de los seres humanos\". Sobre su consumo, Acosta relata cómo la papa \"se comía en guisos, cocida y asada. el guiso de papas se llamaba locro\". el sacerdote jesuita observa que casi no había lugares del mundo donde la alimentación masiva estuviera fundamentada en una planta distinta a los granos. en el caso peruano, se presentaba una situación singular, porque convivían dos plantas que cumplían función de pan. eran por igual el maíz y la papa. ello lo lleva a ponderar la situación alimenticia peruana, que disponía de alternativa en un terreno donde los demás pueblos del mundo eran dependientes de un solo cultivo.Acosta sostenía que la papa era una raíz, \"que cogen y dejan secar al sol, luego lo hielan y fabrican chuño, conservándose muchos días\". el sacerdote jesuita no conocía el concepto moderno de tubérculo y a lo largo de su obra trata a la papa como raíz, en tanto su fruto crece bajo tierra. A continuación, compara a la papa con otras raíces comestibles. de acuerdo a su parecer, en América, las raíces eran más nutritivas que las europeas. Por el contrario, en plantas alimenticias que Los europeos no conocían más que unos pocos procedimientos como el soleado y el salado, que servían para las carnes. esos mismos métodos eran conocidos en América. Pero, en los Andes, las sociedades precolombinas, adicionalmente, descubrieron el chuño, un procedimiento para conservar la papa. ella, en las punas, es sometida a variaciones de temperatura gracias a los cambios enormes entre el día y la noche. Luego, la papa es pisada de manera muy suave, por niños y personas de poco peso que realizan su trabajo con arte y precisión. el resultado final es la eliminación de todo el líquido que contiene la papa y, de este modo, convertida en un producto seco, puede durar muchos meses y hasta años. Así, la entrada de la papa a la historia universal fue a través de la conservación, revelando los avances de las sociedades andinas prehispánicas en esta materia. Mientras en el resto del mundo, toda la cosecha vegetal tenía que consumirse a la vez, en los Andes, la gente había descubierto un método único que permitía sobrevivir a los tubérculos.en segundo lugar presentaremos a josé de Acosta. Él fue un sacerdote jesuita que estuvo catorce años en el Perú, donde sirvió en numerosos puestos, incluyendo principal de su orden en el virreinato. Anteriormente había estado a cargo de los colegios jesuitas, lo que revela que era un sacerdote plenamente consagrado a los estudios y la formación académica. Posteriormente viajó por hispanoamérica y pasó un año en México, donde investigó en bibliotecas que contenían antiguos códices. Acosta retornó a españa en la década de 1580 y publicó una obra célebre, Historia Natural y Moral de las Indias en 1590. Su tema es una reflexión comparada sobre la historia natural y también sobre la política y economía de América antigua. Ambos acercamientos se enlazan en numerosos puntos. Por otro lado, se trata también de una comparación muy sofisticada de los incas con los aztecas. Así, estamos ante un texto doblemente articulado que cruza dos planos: primero, la historia natural con la política; y luego, la historia inca con la azteca. de este modo articula una visión de conjunto del Nuevo Mundo que le sirve para establecer una comparación final con europa. Gracias a esta compleja arquitectura, la obra de Acosta ha adquirido una justa fama entre las crónicas de América.Acosta compara la naturaleza americana con la europea, preguntándose qué alimento cumple la función de pan. en su argumentación, la palabra \"pan\" identifica al alimento base del cual vive el pueblo. halla que esta propiedad reside en un grano: el maíz, al cual llama el fundamento de la alimentación en el Nuevo Mundo. Al maíz lo pondera hasta el cansancio, llamándolo \"trigo de las Indias\". Lo califica como origen de la fuerza y del sustento de las gentes en América. en los Andes, la forma favorita de consumirlo era cocido y caliente, llamándolo \"mote\". Acosta anota los cuidados requeridos para su crecimiento: \"siémbrese a mano y no between day and night. Later, the potatoes were stepped on very gently by children or light-weighted persons who performed this task with art and precision. The final result was the elimination of all the moisture from the potatoes and, afterwards, turned into a dried product, fit to last for many months, even years. Thus, the entrance of the potato to the universal history is through its conservation, revealing the advances of the pre-Hispanic Andean societies in this subject. While in the rest of the world crops had to be consumed all at once, in the Andes, its people had discovered a unique process that enabled tubers to outlast. Secondly, we will introduce José de Acosta. He was a Jesuit priest who lived fourteen years in Peru, where he served in numerous positions, including as principal of his order in the Peruvian viceroyalty. Previously, he had been in charge of the Jesuits' schools, which meant that he was a priest totally devoted to studies and academic formation. Later, he travelled through Spanish America and stayed one year in Mexico, where he researched in libraries that held ancient codices. Acosta returned to Spain in the 1580s and published his celebrated work Historia Natural y Moral de las Indias in 1590. His subject is a comparative reflection about natural history, and about politics and economy of ancient America, as well. Both approaches intertwined in numerous points. On the other hand, it is also about a very sophisticated comparison between Incas and Aztecs. Thus, we encounter a doubly articulated text that crosses two planes: first, natural history with politics; then, the Inca's and Aztec's histories. In this way, Acosta articulates a holistic view of the New World that, in the end, enables him to establish a comparison with Europe. Thanks to this complex architecture, Acosta's work has obtained a worthy reputation among the chronicles from America. Acosta compares American nature with European's, asking what function \"bread\" performs. In his argumentation, the word \"bread\" identifies the basic staple people live on. He encounters that this property resides on one grain: corn, which he calls the foundation of America's nutrition. He ponders excessively on corn calling it the \"wheat of the Indies\". He names it as the origin of the force and the sustenance of the Americans. In the Andes, a favourite form of consumption was boiled and hot, called \"mote\". Acosta notes the care required for its growth: \"plant it by hand and not forecasted; it requires humid, warm soil. It is also consumed toasted.It is made into flour, dough and tortillas, arepas; at the same time a type of cake they call tamales\". On the other hand, he points out that it could be drunk as a beverage, \"there is a corn wine, known as «asua» in Peru and «chicha» in the rest of the continent\". This property powerfully drew his attention. It was because in Europe the dry food circuit was one and the beverage circuit was another. That is, Europeans ate meat, bread and olives, but drank wine, connected to fruit but not to dry food. However, in America, people ate and drank from the same plant. In some cases, it was from corn; in others from yuca (yucca or cassava), whose beverage was called masato. Without any more reasons, Acosta classified the nutritious property of the corn inferior to wheat, \"behind wheat, corn has the second place in material sustenance of men and animals\". There is neither explanation nor many reasons for it, as in other passages of the document, besides the general order of the composition which will be given later on. In other sections of this book, Acosta distinguishes two other products that in some regions of the Indies functioned as bread. That is the case of the yucca in the Caribbean, and the potato in Peru, specifically in the Collao plateau. In the highland, according to Acosta, the cold and dry weather hindered the growth of wheat and the native corn. For this reason, this was the kingdom of the potato that replaced the grains as the population's key staple. \"The potato is the base of the sustenance in these high lands of the mountains. Sustenance and preservation of human beings\". About its consumption, venta de tunta en mercado (Puno, Perú). [sale of tunta at the market (puno, peru)]crecen sobre la superficie, europa era concebida como superior a América. ello, porque el trigo era supuestamente superior al maíz. Así, la comparación entre los dos continentes era equilibrada, uno se imponía en un género de plantas y el otro salía adelante en otro tipo. de este modo, la papa, la yuca y el camote eran ventajosamente comparadas con la zanahoria, presentada como la raíz europea por excelencia.Al realizar esta comparación, Acosta concluía afirmando el poder de nutrición inmensamente superior de las llamadas raíces americanas. de este modo, queda claro porqué afirmaba que el maíz era inferior al trigo. ese concepto era necesario para equilibrar el argumento. era obvio que el poder nutritivo de la papa era superior al de la zanahoria. Si hubiera sostenido que también el maíz era superior al trigo o incluso igual, entonces América hubiera acabado siendo superior en todo. A tanto no podía llegar. el sacerdote jesuita estaba buscando un equilibrio renacentista. Cada continente tenía su superioridad y ambas partes del mundo resultaban equivalentes.En tercer lugar presentamos los comentarios sobre la agricultura andina que se hallan en dos cronistas muy agudos en observaciones antropológicas. el primero es el conocido Garcilaso Inca de la Vega, que publica su obra al comenzar el siglo XVII, después de una larga vida en Andalucía, donde había llegado a los veinte años de edad. Garcilaso era hijo de una princesa de sangre real cusqueña y de un conquistador español que acompañó a los Pizarro en la empresa de someter a los incas.en tanto mestizo, Garcilaso aprovechó las fuentes directas de parientes indígenas que le escribieron a lo largo de su vida y, asimismo, dispuso de la protección de la orden jesuita, que lo proveyó de materiales de primera mano. A pesar de haber salido del Perú hacía más de cuarenta años, su obra está llena de datos precisos e informaciones sólidas. el autor tuvo una gran sensibilidad etnográfica y su manejo del quechua le permitió componer una crónica que presta gran atención a la vida agrícola y a los ritos del campesinado. Garcilaso relata un hecho fundamental. en los Andes sólo se siembra maíz en tierras bajo riego, lo cual obligaba a la cooperación en escala ampliada \"No sembraban grano de maíz sin agua de riego\". en la costa todas las tierras habrían sido regadas; pero, en la sierra, las tierras de secano eran numerosas y poco a poco se fue ampliando la superficie bajo riego.En ese mismo sentido, los famosos andenes estaban destinados fundamentalmente a ampliar la producción maicera. dice Garcilaso, \"tan aplicados que fueron en esto los incas, (andenes) en lo que era aumentar tierras para sembrar maíz\". Así, el estado andino habría sido maicero y tomaba su energía de esta planta. La identificación entre ambos era muy profunda y le servía para adquirir prestigio social. el maíz fue una planta bien vista por los informantes estatales de los cronistas europeos. Como los escritores y etnógrafos de la primera hora entrevistaron principalmente a funcionarios o nobles de las civilizaciones caídas, ellos les transmitieron a los europeos el prestigio social que el maíz gozaba ante sus ojos.Mientras que, por el contrario, los tubérculos se cultivaban bajo cuidado de las familias campesinas. La papa crece en tierras de barbecho y no requiere riego. Por ello, su cultivo era masivo y libre de la presión inmensa de los incas sobre el maíz. La papa estaba vinculada a la sobrevivencia del común y el maíz era el sustento del estado. Así, la papa era un producto de las familias campesinas en libertad, representaba a la sociedad en el terreno alimenticio.Los ritos y costumbres agrícolas derivaban de este hecho fundamental: mientras la papa era un cultivo popular, el maíz era gubernamental. el recientemente fallecido antropólogo norteamericano john Murra escribió un artículo célebre distinguiendo al maíz de la papa. Murra relata que los calendarios agrícolas prehispánicos que recordamos están basados en el maíz. A la papa casi no se la menciona. La vida agrícola andina mostrada por los cronistas está regida por el maíz; su siembra y recolección marcan los grandes días. Mientras tanto, la papa permanece fuera de la historia, relegada y olvidada en un rincón. Sólo cronistas muy agudos, como Pedro Cieza de León por ejemplo, se dieron tiempo para presentar los ritos campesinos relacionados con la papa.Cieza de León estuvo en los Andes durante la década de 1550, habiendo recorrido extensamente el territorio y conversado con multitud de personas. estaba al servicio del Pacificador La Gasca y su crónica fue muy bien compuesta, proporcionándole al autor un prestigio como primer etnógrafo europeo en el mundo andino. Como escriba del poderoso, Cieza tuvo a su disposición todo tipo de fuentes; las puertas se le abrieron cada vez que su tremenda curiosidad quería saber alguna novedad. A diferencia de oviedo y Acosta, carecía de formación como naturalista, pero disponía de una fina sensibilidad para los asuntos humanos, que le ha ganado el título de \"Príncipe de los Cronistas\".Cieza relata un rito de la papa en el que los campesinos sacrifican una llama y empapan semillas seleccionados en su sangre, antes de sembrarlas con gran regocijo. en estas ceremonias de la papa interviene la comunidad campesina, mientras que los Acosta relates how potato was consumed: \"it was eaten in stews, cooked and broiled. The potato stew was called locro\". The Jesuit priest observed that there were almost no other places in the world where the population's nutrition was fundamentally based upon one plant different from grains. In the Peruvian case, the situation was singular, because there were two plants that functioned as bread. Both corn and potato performed equally. This situation leads to ponder that Peruvians had an alternative in an issue where the rest of the populations around the world were dependent on one crop only. Acosta claimed that the potato was a root, \"that they harvest and let it dry in the sun, then freeze it and produce chuño, preserving it for many days\". The Jesuit priest did not know the modern concept of tuber, and in his work he considered the potato as a root, as its fruit grows underneath the soil. Later on, he compares potato with other edible roots. In his notion, roots were more nutritious in America than in Europe. On the contrary, for plants that grew above the ground, Europe was considered superior to America. This claim was because wheat was allegedly superior to corn. Thus, the comparison between both continents was equal; one surpassed the other in one type of plant, while the other exceeded in the other. In this way, potato, yucca and sweet potato were advantageously compared to carrots, portrayed as the most excellent European root. When comparing, Acosta concluded establishing the immensely superior nutritious power of the so called American roots. Accordingly, it was clear why he claimed that corn was inferior to wheat. This concept was necessary to balance the argument. It was obvious that the nourishing capacity of the potato was superior to carrots. If he had argued that corn was superior to wheat, or even the same, then America had ended to be better in everything. He could not go so far as that. The Jesuit cleric was searching for a renaissance equilibrium. Each continent had its excellences, and both parts of the world were as good as each other. Thirdly, we convey commentaries about Andean agriculture from two chroniclers very keen in their anthropological observations. The first of them is the famous Garcilaso Inca de la Vega, who published his work at the beginning of the XVII century, after a long residence in Andalucía, where he arrived when he was twenty years old. Garcilaso was the son of an Inca's princess of royal blood and of a Spaniard conquistador who accompanied Pizarro in his quest to subdue the Incas. As a mestizo, Garcilaso took advantage of the personal testimonies from his maternal relations who wrote to him throughout his life, and, at the same time, of the protection of the Jesuit order, which provided him with first hand materials. In spite of leaving Peru forty years earlier, his work was full of precise details and solid information. The author possessed a great ethnographic sensibility, and his proficiency in the Quechua language allowed him to produce a chronicle that paid great attention to the agrarian life and the rituals of the peasantry. Garcilaso related a crucial fact. In the Andes, corn was only planted in irrigated lands, which required ample cooperation \"They would not plant corn seeds without irrigation water\". On the coast all the agricultural areas must had been irrigated; but, in the Andes, dry lands were more frequent; however, little by little irrigated areas were implemented. In that sense, the famous andenes were fundamentally destined to increase the production of corn. Garcilaso stated \"so apt were the Incas in this (andenes) in what it was to increase the lands to plant corn\". Thus, the Andean state would have been corn producer and it took its energy source from it. The identification between them was very profound, and it served to acquire social prestige. Corn was a well-respected plant among the official informants of the European chroniclers. As scribes and ethnographers from the first wave, the chroniclers mainly interviewed officials or noblemen from the conquered civilizations; they conveyed the social prestige corn enjoyed in their eyes. Meanwhile, conversely, tubers were planted under the care of the peasant families. The potato grew in fallow land and required little or no watering. In that way, its farming was massive and free of the great pressure the Incas exerted over corn. Potatoes were linked to the survival of the commoners and corn was the State sustenance. Hence, the potato was the product of the free peasant families; both represented society in the chain food. The rituals and agricultural ceremonies came from this fundamental fact: while potatoes were the popular crop, corn was the state harvest. The recently late North Agricultor de Quisini durante ofrenda a la Pachamama (Cusco, Perú).[farmer from quisini during the offering to the pachamama (cusco, peru)] representantes de los poderes públicos andinos cumplen un papel secundario. En efecto, en la ceremonia descrita, el curaca observa a los protagonistas que son campesinos comunes y corrientes. El rito está interrumpido y el relato de Cieza se detiene. ¿Qué ocurrió? en realidad el proceso fue observado por un sacerdote católico, a quien los campesinos le pidieron permiso y lo concedió. estaba presente, pero en cierto momento sintió que los indígenas habían ido demasiado lejos e interrumpió el ceremonial. No sabemos cómo terminaba. Pero, muestra el puesto de las ceremonias de la papa. un asunto de los campesinos que podía impresionar favorablemente a un cura. No era un rito el Estado derrocado; no era peligroso políticamente hablando. No representaba al poder caído, sino a los comunes. esa distinción hizo que la papa estuviera vinculada al pobre. era consumida en forma masiva, pero carecía de la sofisticación del maíz. Éste era ceremonial y fundamental en la etiqueta inca. todo encuentro entre seres civilizados comenzaba brindando con chicha de maíz. Pero, la papa era menos considerada. había tanta y la producían las familias por su cuenta que se la juzgaba parte del paisaje natural, no provocaba ansiedad. Por ello, no había tantos ritos ni tampoco eran tan elaborados como en el caso del maíz. era natural y no estatal. otro punto de interés de Cieza son los tambos. Quedó impresionado ante la cantidad de depósitos. todo tipo de bienes, desde vestimenta hasta alimentos eran guardados por el estado para los casos de necesidad. La planificación era un atributo de los muy bien organizados incas. Gracias a la fuerza de la agricultura y el empuje de las relaciones sociales de reciprocidad, en el tawantinsuyu no había hambre. ese flagelo que había asolado a europa a lo largo de los siglos medioevales había sido eliminado de los Andes. en ese sentido, los tambos estatales eran un refuerzo de la seguridad alimentaria, pero no eran su fundamento. La gente no tenía hambre porque explotaba al máximo su territorio y el estado ofrecía un surplus de energía consistente sobretodo en una provisión de maíz. La gente no tenía hambre por la abundancia de tubérculos, que como vimos eran cultivados por las familias por su cuenta. Así, en el mundo prehispánico, la papa era fundamental para la superación del hambre.En el manuscrito quechua de los Dioses y Hombres de Huarochiri, traducido y publicado por José María Arguedas, se relata las aventuras de un héroe mítico llamado huatiacuri, quien es un curandero especializado en yerbas medicinales. Pero es un hombre pobre, cuya característica principal es que sólo come papas, no accede a otros alimentos más prestigiosos. un día es convocado por un poderoso curaca para que lo sane de una enfermedad que lo tiene postrado y con riesgo de muerte. Al hacerlo con éxito, huatiacuri a continuación le pide en reciprocidad a su hija ten matrimonio. Pero, la familia del curaca no acepta la propuesta y el esposo de la otra hija se opone con decisión. este mito está informando sobre la familia prehispánica y también sobre el prestigio social de la papa. en efecto, el relato identifica como pobre a quien sólo dispone de papas para alimentarse. Éste y otros mitos semejantes permiten concluir que la papa carecía de reputación; por el contrario, estaba asociada a la pobreza. era el alimento del menesteroso. de este modo, en el mundo prehispánico, la papa era un producto barato al alcance de todo el mundo, incluyendo al más pobre de esa sociedad. Además, era un momento excepcional de los seres humanos en los Andes, no había hambre, que reapareció poco después de la conquista. La papa era el alimento básico cuando los seres humanos vivían satisfechos. véase por ejemplo el escrito del cronista indio felipe Waman Poma de Ayala para observar una queja constante contra el desorden posterior a la conquista, que tiene una de sus características principales en la pobreza miserable, sin comida ni abrigo. Waman Poma también informa cómo la papa gozaba de la simpleza de su masividad y carecía de la sofisticación del maíz.Así, la papa era el producto básico de la cocina del mundo precolombino; y volverá a serlo, el día que nuevamente terminemos con el hambre en los Andes. ese día llegará. Nuestro país se merece una alimentación sana y general, que llegue a todos y no discrimine en un asunto tan básico como son los nutrientes. Por ello, estamos seguros que alguna generación del futuro logrará retornar a una condición de la que disfrutaban nuestros antepasados precolombinos. Pues bien, esa será la hora de la papa. Si ella es nuestra, si nació en las alturas del antiguo Perú, ella sabrá rescatarnos del hambre y la necesidad; será la base de nuestra felicidad futura.American anthropology John Murra wrote a seminal article distinguishing the corn from the potato. Murra reports that the pre-Hispanic agricultural calendars that we remember were based upon the corn. Potatoes were barely mentioned. The Andean farming life shown by the chroniclers was ruled by the corn, the planting and harvest of it marked the great festivities. Meanwhile, the potato remained outside history, relegated and forgotten in a corner. Only very clever and sharp chroniclers, such as Pedro Cieza de León for example, gave the space to show the peasant rituals related to potato. Cieza de León was in the Andes during the 1550s, travelling the territory extensively and talking to numerous individuals. He was at the service of the Peacemaker Pedro de la Gasca, and his chronicle was very well documented, giving to its author the prestige of being the first European ethnographer of the Andean world. As scribe of the powerful, Cieza had at his command all kinds of sources; doors were opened every time his great curiosity wanted to know about a novelty. Contrary to Oviedo and Acosta, Cieza de León lacked formation as a naturalist, but he possessed an acute sensibility for human issues, which earned him the title of \"Prince of the Chroniclers\". Cieza related a potato ritual in which the peasants sacrificed a llama and drenched the selected seeds in its blood, before planting them with general rejoice. In these potatoes' ceremonies the whole peasant community participated, while the representants of the Andean state performed secondary roles. In fact, during the described ceremony, the curaca, or chieftain, observed the protagonists who were lowly commoners. The ritual was interrupted and Cieza stopped. ¿What happened? Actually, the process was observed by a catholic priest, to whom the farmers had asked for permission, which he had granted. He was present at the site, but at a certain point he felt the people had gone too far and he interrupted the ceremony. We do not know how it ended. But, it shows us the place potatoes' ceremonies had in society. It was a peasants' matter that could impress favourably to a priest. It was not the ritual of a defeated state; it was not dangerous politically speaking. It did not represent the fallen power, but belonged to the common people. This peculiarity determined that potatoes were linked to the poor. Potato was consumed by the masses; it lacked the sophistication of the corn. Corn was ceremonial and fundamental to Inca's etiquette. Every social gathering between upper class civilized members started with a toast with corn's chicha. But, potato was less refined. There was so much of it and it was produced by all the families by themselves, that it was considered as part of the natural landscape; it did not raise any concern. For that reason, there were not so many rituals and they were less elaborate as in the case of the corn. It was natural and not from the state. Another interesting issue for Cieza was the tambos. He was impressed by the quantity of these storehouses. Every kind of goods, from clothing to foodstuff, was stored by the state in case of emergency. Planification was an attribute of the very well-organized Incas. Thanks to the strength of the agriculture and the drive of reciprocal social relations, famine was unknown in the Tawantinsuyo. This scourge that had devastated Europe during the Middle Ages was eliminated from the Andes. In this sense, the state storehouses, or tambos, were a reinforcement to secure feeding, but it was not their main purpose. People were not hungry because they exploited their territory to the maximum, and the State offered a surplus of energy especially through a provision of corn. People were not hungry because of the abundance of tubers that, as we have learned, were cultivated by every family on their own. So, in the pre-Hispanic world, the potato was fundamental to overcome famine. In the Quechua manuscript Dioses y Hombres de Huarochirí, translated and published by José María Arguedas, there is a tale about the adventures of a mythical hero called Huatiacuri, who was a witch doctor specialized in medicinal herbs. But he was a poor man, whose main characteristic was that he only ate potatoes; he would not agree to more prestigious food. One day he was summoned by a powerful curaca to heal him from a disease that had him bedridden and on the point of death. Huatiacuri succeeded and, in reciprocity, he asked for his daughter in matrimony. But the family of the chieftain did not accept the proposal, and the husband of the other daughter strongly opposed it. This myth tells about pre-Hispanic family and about the social prestige of the potato. In fact, the tale identifies as poor the individuals that only have potatoes as their staple. This and similar other myths allow us to surmise that potatoes lacked of high social reputation; on the contrary, it was associated with poverty. It was the food of the poor. Hence, in the pre-Hispanic world, the potato was an economical product available to everybody, including the poorest of the poor. Moreover, this was an exceptional moment for human beings in the Andes where there was no famine, which reappeared soon after the Conquest. The potato was the main foodstuff in a time when human beings lived contented. It can be seen, for example, in the document of the Andean chronicler Felipe Waman Poma de Ayala to corroborate an unremitting claim against the ulterior disorder after the conquest, which one of its main characteristics was the mendicant poverty of the population, without food or clothes. Waman Poma also informed how potatoes enjoyed the simplicity of its massiveness and lacked the sophistication of the corn. Thus, the potato was the basic staple in the gastronomy of the pre-Hispanic world; and it will be again, the day when we will again eradicate hunger from the Andes. That day will come. Our country deserves healthy and general nourishment that will reach everybody without discrimination on a matter as fundamental as nutrients. That is why, we are certain, a generation in the future will return to the condition our pre-Columbian ancestors enjoyed. In fact, it will be the time for potatoes. If they are ours, if they were born in the heights of Ancient Peru, they will be able to rescue us from hunger and need; they will be the basis of our future happiness.ISABEL ÁLVAREZ 1 LAS PAPAS NATIVAS: SU GASTRONOMÍA, SU GENTE, SUS IMÁGENES C onocí a Jean-Louis Gonterre alrededor de una mesa de variadas y coloridas papas nativas, en el Señorío de Sulco. días antes, Miguel Ordinola, amigo, y coordinador del proyecto INCOPA del CIP, me había anunciado su visita, como \"el francés, fotógrafo de las papas andinas\". Me preparé; sabía que tenía que degustarlas al calor de mis vivencias, amor y conocimiento, que como cocinera tengo de ellas. frente a su respetuosa espera, una a una fueron llegando: tuqra papa, yuraq oca, guindo camotillo, peruanita wayru, y yana corneta. de formas alargadas, redondeadas, planas e irregulares, todas únicas, y singulares. unas más harinosas y compactas que otras, de pulpas blancas, amarillas, amarillas claras, crema, crema intensa y gris, al igual que el color de sus cáscaras. unas de corta duración en su cocción y otras de tiempos más prolongados. esas son sus características y extraordinarias cualidades, que todo cocinero de estas tierras, se debe plantear como reto a su imaginación y conocimiento, es decir, conocerlas en toda la gama de sus posibilidades culinarias y, desde luego, amarlas. todas ellas fueron saboreadas y festejadas por jean-Louis en diferentes preparaciones: papas sancochadas, con el complemento del sencillo y convincente rocoto molido, con queso y huacatay, y por supuesto con la clásica salsa huancaína, a base de queso fresco y ají mirasol, con su esplendor de color, alegría, y sabor; y con la salsa más compleja de la cocina peruana: la respetabilísima e inconfundible ocopa arequipeña. e irrenunciable: un chupe sin carne, sencillito y delicioso, donde la papa, ella solita, se muestra y se deja saborear en toda su generosidad y milenaria sabiduría; también llegó la emblemática tortilla española, cocida lentamente en aceite, con tres variedades de papas. Si nuestras papas nativas, con sus extraordinarias variedades y sabores, pudieran ser degustadas por los hijos de españa, creo -sin ninguna duda-que se refundiría la tortilla española, para goce y 1 Investigadora de cocina peruana. Propietaria de El Señorio de Sulco (Lima, Perú).I met Jean-Louis Gonterre besides a table of varied and colourful native potatoes, at El Señorío de Sulco. Days before, Miguel Ordinola, a friend and the coordinator of the project INCOPA from the CIP, announced his visit to me as \"the French, the Andean potatoes' photographer\". I prepared myself; I knew he should taste them with the warmth of my personal experiences, my love and my knowledge as a cook I have of them. Upon his respectful expectancy, they appeared one by one: tuqra papa, yuraq oca, guindo camotillo, peruanita wayru, and yana corneta. Elongated, rounded, even and irregular, all of them are unique, and singular. Some were more starchy and compacted than others; with white, deep yellow, light yellow, light cream, deep cream and greyer pulps, same as the colours of their skins. Some had short cooking time, and others needed more. These are the characteristics and the extraordinary qualities cooks from this region should assume as a challenge for their imagination and knowledge; in other words, they should know all the range of their culinary possibilities and, of course, love them. All of them were tasted and celebrated by Jean-Louis in their different preparations: boiled, with a very simple and convincing complement of smashed rocoto, cheese and huacatay; and, of course, the typical huancaina sauce, made of fresh cheese and mirasol chili, with its splendour of colour, joy and flavour; and, then, with the most complicated sauce of the Peruvian cuisine: the very respectable and unmistakable ocopa arequipeña. And delectably unavoidable: a meatless chupe, very simple and delicious, where the potato, all by itself, was shown and let itself to be eaten in all its generosity and ancient knowledge; it also came the emblematic Spanish omelette, slowly cooked in oil, with three different kinds of potatoes. If our native potatoes, with their extraordinary varieties and flavours could be tasted by the people of Spain, I believe -without a doubt-that the 1 owner of El Señorío de Sulco (Lima, Peru) and investigator of the Peruvian cuisine.native potatoes: their gastronomy, their people, their imagesPlato con papa amarilla, putis y ccompi.[dish with yellow potato, putis and ccompi] felicidad de quienes la descubrieron hace más de 500 años. Pero en el banquete ofrecido a Jean Louis, de fondo, como corresponde, se hicieron esperar las papas fundacionales del gusto del hombre andino: las papas wateadas, pero en olla de barro; es decir, sin agua de por medio, y asadas sobre cama de hierbas. Las ofrecí conforme lo aprendí de mi madre: con el huacatay, la muña, y el paico; poco a poco, se impregnaron de ese sabor y aroma tan único y característico, que da generosamente a todo alimento el barro, con toda su fuerte y atávica carga. y por supuesto, llegó en su forma más perfecta y suprema, para el goce del paladar de cualquier mortal: en causa de papa amarrilla. La causa, al igual que la Watia, son sabias técnicas de preparación de nuestras papas, en modalidad fría y caliente. herencia de nuestras culturas de cocina, en diferentes momentos de nuestra historia.Cuando por vez primera, en la universidad Agraria de la Molina, en una otoñal y soleada mañana, vi las imágenes fotográficas de nuestras papas nativas, tomadas por jean Louis Gonterre, sentí una profunda conmoción: fue una mezcla de admiración, emoción, y alegría; evidentemente, mis sentimientos eran mucho más que solo sentirlas, y verlas bellísimas. debo confesar que las papas siempre me producen una gran e inmensa ternura al verlas, tocarlas -ya sea en el campo-y saborearlas y festejarlas con sus hacedores y criadores, los que viven con ellas, allá arriba, en las alturas de nuestros andes; o cuando las tengo en mi cocina, y el encuentro se constituye en un ritual de agradecimiento. están ligadas al amor que aprendí a sentir por ellas de mi madre, y al que ella aprendió de mi abuela, en la bella y dulce Andahuaylas. Allí estaban, en sus formas, colores, tamaños. Penetrantes y reveladoras, como es su historia y la de sus hacedores. Allí estaba también jean-Louis, en cada una de ellas, en búsqueda, en su propia búsqueda: reflexión, manipulación, y elección.Su extraordinaria sensibilidad ha permitido que la papa nuestra, se muestre desde dentro de ella. No son cuerpos objetivos, aislados, encerrados en sí mismos. Son los cuerpos de los hijos de la Pachamama, que es la matriz de toda vida, incluida la de los hombres. Cada una de las imágenes que nos muestra es una vivencia, cada una es una actitud, un gesto, es decir, son gestos, cuerpos ritualizados, cargados de humanidad y sentimientos.La papa es signo y símbolo, produce representaciones que se identifican con la realidad percibida. representa para el campesino, cosas, animales, características y cualidades de sus mujeres, de sus seres queridos. el mundo todo se expresa en la papa, en sus vivencias cotidianas e importantes.La fotografía expresa una mirada del mundo, y nos propone también un cambio del mundo. jean-Louis, como artista y fotógrafo, no está fuera de la situación fotográfica. ve lo latente, lo siente, y lo hace manifiesto. elige, y nos propone una imagen de futuro. entre él y la papa se establece una relación vital y un diálogo. en la búsqueda de sí mismo, se involucra, y él también se modifica. Igualmente como las perciben, y las viven los campesinos en su cotidianeidad, es decir, los que viven con ellas, los que las crían, con gran entrega de cariño; Munakuy es el cariño, el abono, el riego, es también la palabra, y el trato de amor que la papa necesita para crecer, criada con cariño. La naturaleza, el hombre y las deidades, se hablan, conversan dialogan, se respetan, se quieren, se saben esperar. respetan la latencia de la Madre tierra.Las papas están en el mundo, y sus criadores están en el mundo de las papas, en el universo de ellas. en este mundo no hay oposición entre razón, conocimiento, técnicas, y sus mitos o creencias; hay interacción, cohabitan armoniosamente. Las papas alimentan los mitos, y estos mitos a su vez alimentan la existencia de las papas.Los occidentales hemos cambiado los mitos sustentados en los vínculos con la naturaleza, por el mito deshumanizante de la tecnología. fomentamos el pensamiento abstracto o técnico, donde manda el poder indicativo Spanish omelette would be reinvented, for the delight and joy of those who discovered them more than 500 years ago. But in the banquet offered to Jean-Louis, in the main course, as it corresponds, the foundational potatoes of the Andean inhabitant's taste were expected: the papas wateadas, but cooked on earthen crockery; that is, without water, and roasted on a bed of herbs. I offered them as I learned it from my mother: with the huacatay, the muña, and the paico; slowly, the potatoes were impregnated with those characteristic and unique flavours and aromas, which the clay generously provides, with its strong and atavistic stroke. And, of course, there it came in its most perfect and supreme form, to the palate delectation of any mortal: in causa de papa amarilla. The causa as the Watia are wise techniques to prepare our potatoes, in hot and cold styles. They are the cooking heritage of our cultural diversity, and from different moments from our history.When for the first time, at the Universidad Agraria de la Molina, in an autumnal and sunny morning I saw the photographic images of our native potatoes, taken by Jean-Louis Gonterre, I felt a profound inner commotion: it was a mixture between admiration, emotion and joy; evidently, my sentiments were much more than only sensing them and seeing them beautiful. I must confess that potatoes always bring in me a great and profound tenderness just looking at them, touching them -in the field -and tasting and celebrating them with their makers and breeders, those who live with them, way up there, in the heights of our Andes; or when I have them in my kitchen, and when the encounter becomes a ritual of gratitude. They are linked to the love I learned to feel for them through my mother, and she, in turn, learned it from my grandmother, in the beautiful and sweet Andahuaylas. There they were, in their shapes, colours, sizes. Penetrating and revealing as their history and their makers. There it was Jean-Louis, in each one of them, in search, in his own search: reflection, manipulation, and choice.To his extraordinary sensibility, our potatoes have allowed to show themselves from the inside. They are not objective shapes, isolated, enclosed in themselves. They are the bodies of the sons of Pachamama, which is the matrix of all life, including the life of men. Each image that is exhibited shows a life experience, each one is an attitude, a gesture; that is, they are signs, ritualized bodies, charged with humanities and feelings.The potato is a sign and a symbol; it produces representations that are identified with the perceived reality. To the peasant, it represents things, animals, qualities and characteristics of their women, their loved ones. The whole world is expressed in the potatoes, in their every day occurrences and in the important ones.The photograph expresses a view of the world, and it also proposes us a change in the world. Jean-Louis, as an artist and a photographer, is not outside the photographic position. He sees the underlying; he feels it and uncovers it. He chooses and proposes an image of the future. Between the potatoes and him there is a vital relationship and a dialogue. In the search within himself, he involves himself, and he also transforms his self. The same as the peasants perceive them, and live with them in their daily existences, that is, those who raise them with a great share of love. Munakuy is the love, the fertilizer, the watering; it is also the word and the care with love that the potato needs to grow, to be nurtured with tenderness. Nature, humans and deities talk to each other, they talk, they communicate, they respect each other, they care for each other, and they wait for each other. They respect the beating of Mother Nature.Potatoes are in the world, and their breeders are in the potatoes' world, in their universe. In this world, there is no opposition between reason, knowledge, techniques and their myths or believes; there is an interaction living harmoniously. Potatoes feed the myths, and these myths, in turn, feed the existence of potatoes.We Westerners have changed the myths, supported by the bonds with nature, through the dehumanizing myth of technology. We foment our abstract or technical thinking, where the indicative power of our language has a hold, wasting away our symbolic potentials in the language as an existential experience and evocative power.Let us remember that in our search, perception, confrontation and confirmation of what is true in reality, it does not affect us nor do we feel involved in it; that is we are not involved, it does not involve us. We see that the Andean habitant builds and establishes a feeling of truth. They \"LIVE\" the existence of their potatoes, not only as a confirmation of their tangibility, their virtues and goodness, but as they also are involved affectively and existentially with them. We find this feeling when we bring up the problems of the nature of reality or of the universe as one of humanity's cognitive obsessions. The experience of their feeling of true, their certitude of truth allows them to establish a communication and a communion with the world where potatoes exist.Nowadays, when our consumerist society, ruled by economical interests, assaults us with electronic, fleeting, obsessive images, artificial needs are created, and all material, intellectual and artistic deeds we devour compulsively, almost without awareness and leaving barely an imprint in us, because we make them an spectacle. Let us have the images of our nativede nuestro lenguaje, atrofiando nuestras potencialidades simbólicas en el lenguaje como vivencia y poder evocador.recordemos que en nuestra búsqueda, percepción, confrontación, y constatación de lo verdadero en la realidad, esta no nos afecta ni nos sentimos implicados en ella, es decir no nos involucra, no nos involucramos. vemos que el hombre andino, construye y establece un sentimiento de verdad. \"viven\" la existencia de sus papas no solo como una constatación de su tangibilidad, de sus virtudes y bondades, sino que se involucran afectivamente y existencialmente con ellas. este sentimiento lo encontramos cuando nos planteamos, los grandes problemas de la naturaleza de lo real y del universo, como una de las obsesiones cognitivas del hombre. La vivencia de su sentimiento de verdad, de su certidumbre de verdad, le hace establecer una comunicación y una comunión con el mundo en el cual están sus papas.hoy, cuando nuestra sociedad de consumo, regida por intereses económicos, nos bombardea de imágenes electrónicas, fugaces, obsesionantes, se crean necesidades artificiales, y todas las realizaciones materiales, intelectuales y artísticas, las devoramos compulsivamente, sin casi conciencia, y sin dejar huella en nosotros, ya que hacemos de ella un espectáculo, permitámonos que las imágenes de nuestras papas nativas -que con tan extraordinario arte, sensibilidad, y generosidad nos muestra jean-Louis Gonterre-llenas de humanidad, filosofía e interrogantes, y que nos llevan de la concreción a la abstracción, nos enriquezcan humanamente, nos hagan más autocráticos y juzguemos nuestra ausencia e ingratitud en el compromiso ético e histórico, que nos demanda este tesoro nuestro, que es la papa, en su defensa, en su preservación, en su asimilación, como un mundo dentro del mundo, solidario, habitado de respeto y amor a la vida, y lleno de sabiduría. es esta la riqueza del mundo andino y el universo de las papas nativas. es este el patrimonio tangible e intangible, que debemos preservar para el Perú y para la humanidad.Los peruanos, agradecidos, le pedimos a Jean-Louis, que vuelva siempre a las alturas de nuestros andes, tomando su fuerza y magia, para que siga descubriendo y mirando con ojos del alma, a estos seres milenarios y sabios, guerreros de la alimentación. En la oscuridad mira En el silencio habla Papamama de los andes Corazón de la tierra potatoes -with the extraordinary art, sensitivity and generosity in which Jean-Louis Gonterre shows them to us -full of humanity, philosophy and questioning, and that lead us to the realization of the abstraction, enrich us in our humanity, make us more self-conscious and judge our absence and ingratitude in the ethical and historical commitment that potatoes, our treasure, demands in their defence, preservation, assimilation of a world within the world, supportive, inhabited with respect and love for life, and full of wisdom. This is the treasure of the Andean world and the universe of native potatoes. This is the tangible and intangible patrimony we must preserve for Peru and for Humanity.We Peruvians, thankfully, should ask Jean-Louis to always come back to our Andean heights, taking his power and magic, to keep discovering and looking through the eyes of the soul, those ancient and wise beings, the warriors of sustenance.He should come back, so that he may go with more wisdom, like the waters from the mountains; and that his moving images bring us back their memories and our gratitude for them. I believe our native potatoes are already part of his biography and they will stay there, inhabiting his existence.Jean-Louis, dear friend, thank you from the bottom of my soul, for letting me through the light of your images, remember, and let me write this poem as a payback token:In silence, it talks Papamama of the Andes Heart of the earth Campesina de Quisini ante montículo de papas nativas (Cusco, Perú).[peasant woman of quisini befote a mound of native potatoes]Jean-Louis, querido amigo, gracias del alma, por permitirme a la luz de tus imágenes, hacer memoria, y escribir a manera de pago, este poema:Mi nombre es josé Leonidas Palomino flores. Nací en San jerónimo, Andahuaylas, hace 57 años. Mis padres y mis abuelos nacieron también aquí y fueron amantes de la agricultura andina y yo siempre tuve esa vocación.Para mí es un privilegio vivir en Andahuaylas y eso me lo han demostrado los años de trabajo con la papa que es un cultivo que venga de donde venga aquí siempre se ha manifestado en su plenitud, especialmente las papas nativas y sobre todo la huayro, la peruanita, que es un trabajo que hicimos con mi primo Antonio. Él trajo el material y luego hicimos trabajos de selección positiva y hemos registrado los mejores rendimientos. Acá hemos tenido rendimientos con la variedad peruanita de 30, 35, hasta 40 toneladas por hectárea. La peruanita no es de la zona, pero sí se adapta muy bien. Igual que la huayro. No ha habido un año\"My name is José Leonidas Palomino Flores. I was born in San Jerónimo, Andahuaylas, 57 years ago. My parents and my grandparents were also born there and they loved the Andean agriculture and I have always had that vocation.For me, it is a privilege to live in Andahuaylas, and that has been demonstrated by the years of work with potato, which is a crop that wherever it comes from it has always showed itself in its fullness, especially native potatoes and above all the huayro, the peruanita, which was a work we did with my cousin Antonio. He brought the material and, then, we performed works of positive selection and we have registered the best yields. Here, we have had results with the peruanita variety of 30, 35, even 40 tons per hectare. The peruanita is not indigenous, but it adapts itself very well, the same as 1 Farmer and conservacionist of native potatoes (Andahuaylas). testimony of a conservacionist farmer en el cerro detrás de su casa y allí conservaba, en muy buenas condiciones, papa que había sido cosechada casi un año atrás. \"esto es lo que me gustaría compartir contigo\", me dijo. yo también le llevé variedades de papa, especialmente las que tienen pigmentos y le propuse que las cocinara. Él también las conocía y me dijo: \"Las que tienen pigmentos son las más ricas para mí\". y se veía muy saludable el señor con su alimentación basada en papas nativas. y llegué a la conclusión a la que ahora llegan los científicos: que los pigmentos de las papas nativas son ideales para proteger la salud, nutracéuticos son. Particularmente mi dieta es papa y la conservamos para consumirla todo el año.Ahora estamos viendo la diversidad de formas, de colores, de sabores, de pigmentos, de flores. es una infinidad increíble el jardín botánico que maneja un conservacionista y sentimos orgullo por tanta diversidad. (…) yo hasta ahora en el campo que vengo trabajando tengo 64 pigmentos diferentes de papa, es una combinación de colores muy interesante. y yo mismo no veo una papa que se parezca a otra ni en la flor, ni en las hojas, ni en la forma, ni en el color de la pulpa. Pero hay que convivir con ellas para decir esta papa es tal y esta otra es tal y reconocerlas por el follaje. Cada cual tiene su especialidad y su \"personalidad\". es como tener la familia: yo tuve catorce hermanos y todos sabíamos los nombres de todos.Siempre digo que la papa nunca ha sido sola, no es huérfana, la papa es una madre, es una de las cuatro madres del mundo, una de las cuatro madres de la naturaleza, y para el mundo andino es la madre número uno, ha estado siempre muy cerca con la quinua, con la achita kiwicha, con el tarwi, con la oca, la mashua, el olluco y estos hacían una combinación increíble, el poblador andino nunca ha necesitado carne, o muy poca, y leche, mucho menos. tenemos soberanía alimentaria pero no la tomamos en serio, no hay una propuesta y a mí me preocupa que en el Ministerio de Agricultura no haya un programa agrario a largo y mediano plazo. Al contrario, en esto hemos retrocedido: a la papa la conocen muy poco y en cambio la población migrante en las ciudades consume galletas, fideos, gaseosas, ¿dónde estamos?Cuando era joven yo estimaba mucho las papas nativas y en mi casa las comíamos de preferencia. Nos preocupamos cuando aparecieron las papas híbridas como la renacimiento, la huancayo, la revolución, hechas por la necesidad de proveer a los mercados, pues empezaron a competir con las papas nativas que ya eran comerciales como la yuraccsisa, la yanaimilla, la huayro, la putis. Las híbridas tenían tamaño, peso y buena apariencia y fueron relegando a las nativas por ese rendimiento. esto llegó al extremo de que en Andahuaylas hace quince años sólo se conocían las papas comerciales, pero variedades como jachunhuaccachi, javilla, en que diga que no hubo producción y se pase hambre, jamás. y papa nunca va a faltar. estamos en una zona de transición, muy cerca de la ceja de selva, cerca de una cordillera en la cual siempre hay presencia de lluvias, suelos húmedos y muy buenas condiciones.En todas las comunidades que tuve oportunidad de visitar hay un profundo respeto a la tierra, una religión del respeto a la Pachamama, a la tierra, como a un ser viviente, sobrenatural, que protege. Al cultivo siempre hay que ofrendarle cariño, pero eso hay que hacerlo con mucho respeto y con mucha convicción. Si uno le pone esa devoción a la ofrenda, la Pachamama la acepta, sino también puede suceder que hay poca producción, viene la granizada, en fin. Puede ser un hecho coincidente, pero en varias oportunidades lo he visto, no en una sola. A veces he visto que alguien dice \"me olvidé, vamos a improvisar un pago a la tierra\" y eso no se hace, no es un respeto. hay que dedicarle un tiempo.La ofrenda contiene muchos elementos, desde alimentos hasta otros, especialmente los dulces, un buen vino, un buen pisco o una buena caña, frutas y otros como algunos minerales. Normalmente, la ofrenda debe comprender más o menos unos 25 o 30 elementos, entre elementos naturales, químicos, plantas especiales que vienen de la selva y que las venden en el mercado personas conocedoras. Como es el caso de la grasa de la vicuña o de la llama, las plumas del cóndor. Con el cigarro, con el tabaco tiene que hacerse una saimada, que es un ritual para pedir permiso a la Pachamama e iniciar cualquier actividad. en el momento de la ofrenda hay que también masticar las hojas de coca porque la coca es un elemento importante, y junto con el tabaco y el cigarro abren el camino hacia la Pachamama.he conocido a través de la papa a personas increíbles. Por ejemplo, a un agricultor de unos 78 años, allá por la zona de huajana, quien trabaja dos hectáreas y media pero en \"labranza cero\", no hace roturación, tiene su propia técnica para trabajar en hoyos y no utiliza agrotóxicos. Cuando lo conocí sentí que estaba ante una persona a la que siempre había tratado, una empatía automática. Me permitió entrar a su chacra porque él así no más no permite que ingresen personas extrañas. y tiene una sabiduría interesante que yo capté de inmediato. ¿Por qué estaban bien lozanas sus plantas? ¿Por qué sus papas nativas estaban limpias de enfermedades y virus? justamente por el hecho de que trajinar de una chacra a otra es una forma de transmitir muchas enfermedades y evitándolo este agricultor lo controlaba perfectamente. en una ocasión este señor me dice \"¿Quieres probar papa del año anterior?\" \"¿tienes?\", le pregunté. Él vivía a 3900 metros sobre el nivel del mar y había ideado un sistema muy interesante: había hecho un hueco the huayro. There has not been a year in which it can be said that there was no production and that there was famine; never. And potato will never fail. We are in a zone of transition, very close to the rainforest, near to a chain of mountains where there is rain, humid soil and very good conditions.In all the communities that I have had the opportunity to visit there has always been a great respect for the earth, a religious respect for the Pachamama, to the earth as a living being, supernatural, that protects. The crop always needs love to be offered, but it needs to be given with great respect and great conviction. If any one gives that devotion to the offering, the Pachamama accepts it, otherwise it could also happen that there is low production, hale storm comes, that is. It could be a coincidence, but I have seen in several opportunities, not only one. Sometimes, I have witnessed somebody saying «I forgot, let us improvise an offering to the earth» and that should not be done, there is no respect. Time should be dedicated.The offering contains many elements, from foodstuff to others, particularly sweets, good wine, good pisco or good sweet cane, fruits and others such as some minerals. Customarily, the offering must include from 25 to 30 elements, more or less, between natural elements, chemicals, plants especially from the jungle and those sold in the market by expert people. Such is the case of grease from vicuñas or llamas, feathers from condors. With the cigarette, with tobacco, a saimada should be performed, which is a ritual to ask the Pachamama for its permission and then begin any activity. At the moment of the offering, coca leaves should be chewed because the coca is an important element, and along with the tobacco and the cigarette, they open the way to the Pachamama.Through the potato, I have met incredible persons. For example, a 78 years old farmer, there by the zone of Huajana, who works two and a half hectares on «zero farming», there is no plowing; he has his own technique to work in holes and uses no agro toxics. When I met him, I felt as if I was in front of a person that I have known for ever, an instant empathy. He allowed me to enter his farm for he does not easily allow strangers to come in. And he has an interesting knowledge that I grasped immediately. Why were his plants so lush? Why were his native potatoes free of diseases and virus? Precisely the fact of walking from one farm to the other was one way of transmitting diseases, and by avoiding the traffic he controlled them perfectly. moromelcco, yuraccimilla, ya no, se habían confinado para el autoconsumo los agricultores pequeños, lo que los convirtió en consumidores de lo más exquisito.Felizmente ahora tenemos en la zona muy buenas variedades que se han adaptado porque no todas son de Andahuaylas, pero como te decía aquí en Andahuaylas la Pachamama es prodigiosa y tan benevolente que uno abre el surco, entierra la semilla y se cosechan cosas increíbles.Cuando yo reclamaba por qué no se trabajaba con las papas nativas, me respondían: «No se puede, tiene formas muy caprichosas, que no se pueden estandarizar» o «tienen problemas». y sí, eso es cierto, pues la papa pues es muy susceptible a enfermedades. Pero también hay tecnologías muy simples que los agricultores alto andinos han manejado siempre, como la rotación de semilla. y ahora los científicos están retomando esto. Por otro lado, estas papas nativas han superado infinidad de problemas, ha habido una selección natural. Ahora están en su hábitat, por supuesto, y tienen un nicho ecológico en el cual es difícil que tengan una competencia, que le superen en su exquisitez, en su calidad culinaria.yo, hace diez años tuve una hectárea y media de papas nativas de diferentes variedades, más o menos entre seiscientas y setecientas variedades. Pero en ese año traje a la feria agropecuaria como mil kilos y vendí 25. el resto, tuve que regalarlo y lo que no, se malogró. Allí desaparecieron por lo menos un 30% de las papas nativas que yo tenía pues no había forma de venderlas; nadie quería comer las papas nativas y eso es algo anecdótico para mí, sin dejar de ser triste por supuesto. Pero igual, la seguimos trabajando. (…) Ahora tenemos nuevamente cerca de seiscientas variedades, han aparecido algunas pero ya no son las mismas.Por ejemplo, yo he perdido unas siete variedades chauchas, que son bien rápidas. ya no las encuentro.en el Año Internacional de la Papa tuve la oportunidad de reunirme con conservacionistas a nivel nacional, donde hemos sido distinguidos por el Ministro de Agricultura, pero vi mucha frialdad, no se le dio el entusiasmo que se debía. Los paperos formamos la Asociación Nacional de Conservacionistas, de la que soy presidente, y conversamos mucho. Al menos pienso que en el 2008 se afianzó un mercado para las papas nativas con pigmento al ser comercializadas bajo la marca Frito Lay, una empresa muy interesante que ha apostado y eso, creo que merece un reconocimiento de parte de las instituciones públicas, y seguir apoyándolo para que este mercado no se pierda y se amplíe. falta mucho por hacer por las papas nativas. y allí están puestitas, sonrientes, en la vitrina.La papa está adaptada, está hecha para nuestra tierra, lo único que hay que darle es calor, hay que darle abrigo, hay que andar junto con la papa. A la papa hay que cultivarla, hay que quererla, hay que comerla, hay que vivirla siempre y junto con todos los cultivos andinos. (…) y hay que cuidar la semilla que es el elemento importante. Si no hay semilla no hay de qué hablar\".potato resembles another neither in its flower, nor leaves, forms, or colour of the pulp. But, we must live with them to tell this potato is this, or that potato is that and recognize them by their foliage. Each one has its specialty and its «personality». It is like having a family: I had fourteen siblings and all of us knew the name of each other.I always declare that the potato has never been alone, it is not an orphan; the potato is a mother, it is one of the four mothers of the world, one of the four mothers of nature, and for the Andean world, it is the number one mother, very near to the quinua, with the achita kiwicha, with the tarwi, the oca, the mashua, the olluco, and all of them made an incredible combination, so much that the Andean habitant has never needed meat, or very little, much less milk. We have food sovereignty, but we do not take it seriously, there is no proposal and it worries me that in the Agricultural Ministry there is no medium and long term agrarian programs. To the contrary, we have moved backwards: the potato is little known and the migrants to the cities consume crackers, noodles, soft drinks, where are we?When I was young, I appreciated native potatoes, and in my home we preferred to eat them. We were worried when new hybrids appeared such as the renacimiento, Huancayo, revolución, grown because of the need to provide the markets, because they started to compete with the native potatoes, which already were commercialized such as the yuraccsisa, the yanaimilla, the huayro, the putis. The hybrids had good size, weight and look, and they began to relegate the native potatoes for this performance. This was so radical that in Andahuaylas, about fifteen years ago, the commercial potatoes were known, but the varieties such as jachunhuaccachi, javilla, moromelcco, yuraccmilla were not; they had been confined to the consumption of small farmers, who became the consumers of the most exquisite varieties. Fortunately, in the zone, we now have very good varieties that have been adopted, because not all of them are from Andahuaylas, but, as I was telling you, here in Andahuaylas the Pachamama is prodigal and so benevolent that if anyone opens a furrow and plants the seed, then incredible things are harvested.When I complained why native potatoes were not planted, I was answered: «Because it is not possible, they have capricious forms that cannot be standardized» or «they have problems». And yes, that is true, the potato is susceptible to diseases. But, there are also very simple technologies that the Andean farmers have used for ever, such as seed rotation. And now, the scientists are using them again. On the other hand, these native potatoes have endured many problems; there has been a natural selection. Now, they are in their habitat, of course, and they have their ecological niche where it will be difficult for them to have competitors in their exquisiteness, in their culinary quality. Potatoes have been adapted, they are made for our land, the only thing needed to be done is give them warmth, they need to be sheltered, and we need to walk along with them. The potato needs to be planted, to be loved, needs to be eaten, and needs to be lived along with all the Andean crops (...). And the seeds should be cared because they are an important element. If there is no seed, there is nothing to talk about.Papa puca soncco en parcela de agricultor. Campos de cultivo a 4200 metros sobre el nivel del mar en huayllaccasa, Andahuaylas (Apurímac, Perú).[farm lands at 4200 meters above sea level in huayllaccasa, andahuaylas (apurimac, peru)]PAISAJES / Geografía fértil [Toiling the earth to obtain food from it is, perhaps, one of the most beautiful human activities. From the preparation of the furrows, the sowing, the fertilization, to the care needed through the process of germination of the crop, some months go by in which many factors -the weather, the control of diseases and plague, as well as complementary activities such as the after-hilling-keeps the farmer alert]working with the soil Campesinos de Quisini, Sicuani, preparando el terreno para la siembra: las mujeres sacan la maleza mientras el varón desterrona (Cusco, Perú)[peasants from quisini, sicuani, preparing the soil for sowing: women pull out weed while the man plows (cusco, peru)] 62 63 62[Así como hay una gran diversidad de suelos y paisajes en los que se siembra la papa, existen también diversas herramientas como la azada, la lampa, la comba, entre otros, en los que se destaca la chakitajlla, arado de pie de confección artesanal y de ascendencia incaica: prácticamente es imposible encontrar dos idénticas; cada una tiene su propia \"personalidad\" y se confecciona a la medida de su usuario].[As there is a great diversity of soils and landscapes where potatoes are sow, there are diverse tools such the hoe, the lamp, the mallet, among others, where it outstands the chakitajlla, a handmade plow used with the feet and of Inca's origins: it is practically impossible to find two identical; each one has its own \"personality\" and it is made to suit the owner]Azadón o allachu (Perú). COSECHANDO VIDA[Las cosechas tienen una recompensa inmediata que se llama huatia, que es compartir papas asadas en un horno de tierra, en la misma chacra. En la huatia, algunas de las variedades de papas recién cosechadas se asan y que se degustan durante la merecida pausa del almuerzo. En la mayoría de los casos, el grueso de la producción cosechada será comercializada en los mercados urbanos; un porcentaje será reservado para la alimentación de la familia del agricultor y a la vez se seleccionará la semilla para la siguiente siembra].[The harvest has its immediate reward called huatia, which sharing potatoes baked in an earthen oven, located in the same parcel. In the huatia, some of the varieties just harvested are baked and tasted during the well-deserved lunch break. In most cases, most of the harvest production will be commercialized in the urban markets; a percentage will be reserved for the farmer's family consumption and, the same time, seedlings will be selected for the next crop].Niño agricultor durante la cosecha en Marcavalle, huancayo (junín, Perú Agricultora de yatzatputzan cosechando papa en Guaranda (Bolívar, ecuador).[farmer from yatzatputzan harvesting potatoes in guaranda (bolivar, ecuador)]Little potato, remember when I was a boy yet?We [The storage of foodstuff was one of the crucial issues for earlier societies. Europeans only knew a few techniques such as drying and salting processes, which served for meat. These same techniques were known in America. However, in the Andes, pre-Columbian societies additionally discovered chuño, a way to preserve potato] tunta and black chuñoCampesinas puneñas, a primeras horas de la mañana, durante proceso de pisar papas expuestas a las \"heladas\", para elaboración del chuño negro en Ilave (Puno, Perú). [peasant women from puno at dawn, during the process of stepping potatoes exposed to the frost to make black chuño in ilave (puno, peru)]... La papa en las punas, es sometida a variaciones de temperatura gracias a los cambios enormes entre el día y la noche. Luego, es pisada de manera muy suave, por niños y personas de poco peso que realizan su trabajo con arte y precisión. El resultado final es la eliminación de todo el líquido que contiene la papa y, de este modo, convertida en un producto seco, puede durar muchos meses y hasta años. Así, la entrada de la papa a la historia universal fue a través de la conservación, revelando los avances de las sociedades andinas prehispánicas en esta materia.Antonio Zapata[Up in the mountains, potato was subjected to temperature variations due to the great degrees' fluctuations between day and night. Later, the potatoes were stepped on very gently by children or light-weighted persons who performed this task with art and precision. The final result was the elimination of all the moisture from the potatoes and, afterwards, turned into a dried product, fit to last for many months, even years. Thus, the entrance of the potato to the universal history is through its conservation, revealing the advances of the pre-Hispanic Andean societies in this subject]Pies de mujer ilaveña en el proceso de elaboración del chuño (Puno, Perú). [feet of a woman from ilave in the elaborating process of chuño (puno, peru)]Mujeres pisando papas expuestas a las \"heladas\" para la elaboración del chuño negro en Cariquina Grande al borde del lago titicaca (Camacho, Bolivia). [women stepping on potatoes exposed to frost to manufacture black chuño in cariquina grande at the shores of lake titicaca (camacho, bolivia)][Pocas veces pensamos en todo el esfuerzo requerido para que la papa llegue a nuestra mesa. El traslado de los sacos de papa, desde el mismo campo de cultivo a los camiones, es la primera de las etapas. Le sigue la descarga en los grandes mercados urbanos, donde se requiere de otro eslabón para que esta mercadería circule…][We seldom think of all the effort required to bring potatoes to our table. The transportation of the bags of potatoes, from the growing fields to the trucks, is the first stage. Following is the unloading into the great urban markets, where another link of the chain is needed for this produce to circulate…] the trip to the city / the markets Costales de papa en el valle de Palca, a punto de ser cargados al camión que los transportará al mercado urbano (Cochabamba, Bolivia). [Once in the commercialization centers, the image of the stevedore or porter comes as the most forgotten link and, paradoxically, the most notorious within the potato's cycle. Gonterre's photographic sequence of these untiring men do not pretend to be an apology of their extremely hard working conditions; what it tries is to draw attention to this exhausting work, at the same time that it is hoped these images will be the documentation of circumstances that have already ceased to exist] the stevedores[Desde que quedó demostrado que la papa es una aliada insuperable para la lucha contra el hambre, se profundizó en su conocimiento. La investigación científica ha permitido aprovechar sus potencialidades y contribuye con el agricultor en las diversas etapas del cultivo]. [As well as a staple with many nutritious qualities, the potato is a versatile fruit for cooking food and meals. Many dishes prepared with potato, which are part of the rich popular Peruvian fare, have been taken to the national and international high cuisine] cooking and gastronomy Sopa de papa y tunta en Ilave (Puno, Perú).[soup made of potato and tunta in ilave (puno, peru)] Huatia de papa con queso y salsa en campo de Bolivia.[huatia of potato with cheese and sauce in a field of bolivia]Plato de papa blanca sancochada y carne de cuy frita en ecuador. Corte de la papa llamada \"labios de señorita\" en manos de campesino de Andahuaylas (Apurímac, Perú). [slice of a potato called \"labios de señorita\" (maiden's lips) in the hands of a peasant from andahuaylas (apurimac, peru)]","tokenCount":"14788"} \ No newline at end of file diff --git a/data/part_3/4005992546.json b/data/part_3/4005992546.json new file mode 100644 index 0000000000000000000000000000000000000000..5e00a922de42cc53f2641489d155fa4d8ee141c4 --- /dev/null +++ b/data/part_3/4005992546.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"01e74abd6797bfd9dce74700da2ad716","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/51193394-6542-4b35-9970-38cc1719f43b/retrieve","id":"260246390"},"keywords":["Finance institutions","savings and credit","community banks"],"sieverID":"3e3f5ea1-bdd2-4b9e-8238-d5981ff5a8c7","pagecount":"6","content":"Working to eradicate rural poverty and promote economic growth, the Government of Sierra Leone, with financial support from the International Fund for Agricultural Development, has established 17 rural finance institutions across the country. With the widest financial network in the country, community banks are providing access to saving and loan facilities for increasing numbers of rural people.regulating the country's financial sector. Eight rural banks were established in 1985, but these were eroded due to the civil war, poor monitoring and supervision from the BoSL, and weak management systems. As the war ended in 2002, the concept was revamped and six CBs were created. To operationalise CBs, an Act of Parliament (Other Financial Services Act 2001) was enacted, and with the assistance of RFCIP, there are now 17 CBs.Crucial to the establishment of CBs was the creation in 2008 of the National Steering Committee to coordinate, oversee and monitor the project: Members include the Ministry of Finance and Economic Development (MoFED), the Ministry of Agriculture Forestry and Food Security (MAFFS), IFAD, BoSL, the Parliamentary Committees on finance, agriculture, housing and infrastructure, and the National Federation of Farmers in Sierra Leone as representatives of the farming community.A feasibility study, conducted in June 2010, was used to select the strategic location of CBs. Key things taken into consideration included market size, population and the general economic activities in each area. Out of 149 chiefdoms, 17 were identified to establish CBs. Various government, donors and beneficiary level stakeholders were informed and sensitised.Since the concept of CBs is geared towards community ownership, the sale shares (a unit of T o realise the immense potential of rural finance institutions as a platform for accelerated economic, agricultural, social and rural transformation, the Government of Sierra Leone, with financial support from the International Fund for Agricultural Development (IFAD), began implementing the Rural Finance and Community Improvement Programme in 2008 (RFCIP). Its principal goal is to reduce rural poverty and household food insecurity on a sustainable basis, by improving access to rural financial services and enabling the development of the agricultural sector.The programme, which is being implemented in the 12 districts where over 70% of the population lives, has established 17 community banks (CBs), 59 financial service associations and an Apex Bank to provide rural communities with access to financial services. The primary target groups for CBs are smallholder farming groups, and micro and small-scale entrepreneurs, including women and youths. The aim of CBs are to tackle the high interest rates charged by unscrupulous middlemen, and a lack of secure saving facilities, affordable loan schemes and remittances.CBs were first established by the Bank of Sierra Leone (BoSL), which is the regulatory body responsible forAfter a procurement process, construction of CBs was supervised by engineers employed by the project. So far, 11 CBs, 11 managers' quarters and 34 staff quarters have been constructed, and six existing CBs have been renovated. However, land disputes, construction delays, inadequate supervision from some engineers, and inadequate local skilled labour caused delays. Poor supervision by project staff and contractors also resulted in some CBs being substandard.After construction, each CB submits an application to the BoSL which carries out an inspection to ensure that certain requirements (such as having enough capital and skilled staff) are met before issuing a license enabling the bank to commence banking activities. At the moment, 17 CBs across the country have been issued with a license. Each bank is then ownership in the CB expressed in monetary terms, where one share is worth 10,000 leone, or €1.10) is then launched. This plays an integral role in mobilising funds, ascertaining the willingness of communities to use the CB and also raising awareness of banking among the intended beneficiaries and would-be shareholders. During this process, members of the selected communities are identified and trained to sell shares, kick-starting the banking process. In some cases, however, whilst the number of shareholders was relatively high, resources mobilised through the sale of shares did not meet the required amount set out by the BoSL (one billion leone, or €112,730, paid up capital).Monitoring of the sales of shares is carried out by the Apex Bank, ensuring accountability and transparency. Nonetheless, negative attitudes of some share promoters (like dishonesty, ineffectiveness and inefficiency) led to a poor accounting of the capital mobilised. Going forward, the Apex Bank has adopted a strategy of early staff recruitment for CBs to prevent this happening again.Convening of a general assembly is another crucial step in establishing CBs. This is characterised by identifying, electing/selecting board members and then the chairman. Poor commitment from some board members, as well as an increasing demand for high sitting fees, were the main challenges. CB staff also began to be recruited, providing job opportunities for young people with the right skills and knowledge. Inadequate staff numbers and loss of staff due to the remote locations of CBs did cause some problems. However, the Apex Bank now has a pool of standby personnel to be deployed in case of a staff leaving without prior notice, and modern staff quarters have been constructed.Convening of a general assembly is a crucial step in establishing community banks. Despite these successes, some Apex Bank weaknesses that have been identified include a lack of resident internal auditors, weak board governance and inadequate resources leading to defaults in loan repayments of the RFF. In response, the Apex Bank has increased its field presence by bringing in inspection assistants that constantly monitor CBs on a weekly basis to resolve problems promptly.CBs have been established in 12 out of 14 districts in Sierra Leone, providing the widest financial network in the country. This is showing results at different levels: The factors responsible for achieving this are the willingness shown by many communities to provide land for construction; the timely award of contracts to contractors; adherence to the feasibility study; constant monitoring and supervision by the Apex Bank; the desire by all stakeholders to provide rural financial services at national level; the availability of the Apex Bank HR department for recruitment; and the execution of an annual training plan. Lessons learned are that there is need for continuous capacity building of CB staff and board members. Overdependence on one service provider to provide banking software service was a challenge, however software has not been procured to link the CBs to the Apex Bank to ensure real time monitoring.(b) Access to finance: By December 2016, 17 CBs had a total of 24,016 shareholders with a share capital of 2,770,726,000 leone (€306,722). Depositors/savers totalled 68,590, with a deposit value of 26,952,605,000 leone (€2,985,500). The number of loan clients surged to 20,170 and the loan portfolio was 31,741,739,000 leone (€5,515,800). The total number of clients accessing remittance services was 19,303 with a remittance value of 18,279,162,000 leone (or more than 2 million euro).The reasons behind these high numbers include the community sensitisation efforts (via radio programmes, jingles, road side shows), stakeholder participation at every stage, and a positive enabling environment (government providing the necessary business rules and regulations to conduct successful business). It has also been mentioned that affordable products and services, and the introduction of a Gender Action Learning System (GALS), helped encourage women to join the bank, just as having products tailored towards the needs of women.On the other hand, the difficult geographical terrain, staff turnover, limited financial literacy, poor telecommunications, disperse location of customers and lack of crop insurance did deter some people from making the most of CB facilities. One lesson learnt was the importance of financial literacy education to prevent fraud. The need for a credit reference bureau to prevent concurrent borrowing from different CBs, and crop insurance and agricultural production loans, was also identified.Empowering the disempowered has been the hallmark of the establishment of the CBs. The percentage of youth participation in the area of savings is 37%, and women participation is 42%. In terms of access to loans, 40% are women whilst 42% are youths. An Okada (motor bike) loan scheme was developed exclusively to benefit youths, and of those employed by the CB network 25% were women. To improve these statistics further, GALS is being initiated when a new CB is created to ensure that women are catered to from the start.There has been a growth in share capital mobilisation at community level, and the level of participation from different stakeholders is improving. All 17 CBs have functioning boards made up of community members, and there is a National Steering Committee that meets to strategically discuss implementation and the challenges faced by CBs. There is also an Annual General Meetings for shareholders. A key lesson learnt is that the demand for loans exceeds the savings culture of the rural poor. The project is therefore operating a RFF to provide credit lines to CBs to at least reduce the gap between the demand for loans and what is actually available in CBs. Establishing CBs in rural communities is pivotal in the socio-economic development of a country.(e) Sustainability: The network's average operational self-sufficiency (OSS), which is a measure of how well the network is able to generate resources (income) in excess of expenses, stood at 129%, which is well above the Microfinance Information Exchange market benchmark of 112% for microfinance institutions. Financial self-sufficiency (FSS), upon adjusting for operational cost subsidy, averaged 102% (2% above benchmark).Martha George, a single mother of five children, was a small trader in Taiama, but since receiving a loan from Taimama CB she is among the top businesses in Taiama and owns two shops. With the profit she has made George has been able to construct a house and pay school fees for her children.George has plans to increase her loan amount so that she can travel to China in order to expand her shop. \"By God's grace I want to have the biggest shop in Taiama in the next 2 years,\" she explains.Local (domestic money transfers, electronic cash transfers) and international (Western Union through sub-agency arrangements with established commercial banks) remittances have improved significantly. Access to finance has been on the increase as both savings and loans are growing, as well as the number of people accessing those services. However, despite the steady growth rate, the consolidated share capital of 2.77 billion leone (€306,722) falls below the regulatory paid up capital requirement of 17 billion leone. The network and its supervising body, Apex Bank, are therefore scaling share mobilisation strategies being employed and trying to better capitalise CBs from the outset rather than provide them with operational costs to ensure they are able to meet the growing demand for loans.Establishing CBs in rural communities is pivotal in the socio-economic development of a country. Our experience so far has shown that this can be a profitable business. Similar initiatives need to consider: E-mail: emmanuelsgbakie@ymail.com ","tokenCount":"1793"} \ No newline at end of file diff --git a/data/part_3/4037435464.json b/data/part_3/4037435464.json new file mode 100644 index 0000000000000000000000000000000000000000..eb7c29501c14d8c8971be007cea179c4cfb888ef --- /dev/null +++ b/data/part_3/4037435464.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"410da5b98a44fa1f7d36165efc0e8cdf","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/95e5275b-fb4a-4ed7-9ec5-38746d9ae3aa/retrieve","id":"505840030"},"keywords":["Dioscorea spp","soil fertility","interdisciplinarity","transdisciplinarity","Innovation Platforms Dioscorea spp","soil fertility","interdisciplinarity","transdisciplinarity","innovation"],"sieverID":"a905943a-2503-48c0-b2ba-53c73427a17e","pagecount":"17","content":"Yam (Dioscorea spp) is a tuber crop grown throughout the tropics for food security, income generation, and traditional medicine. This crop has also a high cultural value for some of the groups growing it. Most of the production comes from West Africa where the increased demand of the past has been covered by enlarging cultivated surfaces while the mean yield remained around 10 t tuber ha-1, which is only 20% of the yield potential. In West Africa, yam is traditionally cultivated without input as the first crop after a long-term fallow as it is considered to require a high soil fertility. African soils, however, are more and more degraded. The aims of this review were to introduce yam as an orphan crop, show the importance of soil fertility for yam production, discuss the potential of integrated soil fertility management, highlight the challenge for adoption of innovations in yam systems, present the concept of innovation platforms to foster collaborative innovation design and provide recommendations for future research. This review shows that the development of acceptable soil management innovations for yam requires research to be conducted in interdisciplinary teams including natural and social sciences and in a transdisciplinary manner involving relevant actors from problem identification, to the co-design of innovations and their evaluation. Finally, this research should be conducted in diverse biophysical and socio-economic settings to develop generic rules on soil/plant relationships in yam as affected by soil management and on how to adjust the innovation supply to specific contexts.platforms Abstract Yam (Dioscorea spp) is a tuber crop grown throughout the tropics for food security, income generation, and traditional medicine. This crop has also a high cultural value for some of the groups growing it. Most of the production comes from West Africa where the increased demand of the past has been covered by enlarging cultivated surfaces while the mean yield remained around 10 t tuber ha -1 , which is only 20% of the yield potential. In West Africa, yam is traditionally cultivated without input as the first crop after a long-term fallow as it is considered to require a high soil fertility. African soils, however, are more and more degraded. The aims of this review were to introduce yam as an orphan crop, show the importance of soil fertility for yam production, discuss the potential of integrated soil fertility management, highlight the challenge for adoption of innovations in yam systems, present the concept of innovation platforms to foster collaborative innovation design and provide recommendations for future research. This review shows that the development of acceptable soil management innovations for yam requires research to be conducted in interdisciplinary teams including natural and social sciences and in a transdisciplinary manner involving relevant actors from problem identification, to the co-design of innovations and their evaluation. Finally, this research I n r e v i e w should be conducted in diverse biophysical and socio-economic settings to develop generic rules on soil/plant relationships in yam as affected by soil management and on how to adjust the innovation supply to specific contexts.Yam (Dioscorea spp) is a tuber crop grown by smallholders throughout the tropics (Andres et al., 2017). The most important species are D. alata (greater or water yam), D. rotundata (white guinea yam), and D. cayenensis (yellow guinea yam) (Arnau et al., 2010). Besides being a staple consumed by 155 million people, yam is grown as a cash crop and a medicinal plant (Lebot, 2009;Sangakkara and Frossard, 2014) and has a high cultural value for some of the groups growing it (Coursey, 1981). Despite its importance, yam remains an orphan crop (Kennedy, 2003;Naylor et al., 2004). As an illustration, the number of publications on yam (Dioscorea spp) listed in the Web of Science since 1970 amounted to 12'700 in June 2017 which can be compared to the 280'000 publications listed for the same period on maize (Zea mays).West Africa produced 62 million tons of tuber (91% of world production) in 2014 (FAOSTAT, 2016). There yam is a staple for at least 60 million of people (Asiedu and Sartie, 2010). In the past, the increased tuber demand was achieved by enlarging cultivated surfaces from 0.9 million ha in 1961 to 7.0 million ha in 2014. In the meantime mean tuber yield increased only from 7.8 t ha -1 in 1961 to 8.8 t ha -1 (FAOSTAT, 2016), whereas the yield potential is probably higher than 50 t tuber ha -1 (Lebot, 2009). The yam belt of West Africa spans from the humid forest to the northern Guinean savanna (Asiedu and Sartie, 2010). In the humid forest yam is cultivated for food security intercropped with other staple crops, whereas in the savanna, yam is also a cash crop, making it important for income generation. In the savanna, yam may also be cultivated in pure culture (Ndabalishye, 1995). Yam is traditionally planted as the first crop, after a long fallow as it is considered to be demanding in terms of soil fertility (Diby et al., 2011;O'Sullivan et al., 2008). In the following years, the field is cultivated with other staple crops (maize, cassava, groundnuts, cowpea or rice) and/or perennial crops such as cocoa (Theobroma cacao) in the humid forest, cashew (Anacardium occidentale) in the derived savanna zone and shea tree (Vitellaria paradoxa) in the northern Guinean savanna. Yam is usually grown without any external input using own tubers as planting material (so called yam seed). In areas where land is scarce, farmers grow yam after only a year of fallow or without fallow (Maliki et al., 2012a and2012b). The main constraints of yam production are: bad quality yam seed, the large proportion of harvest used as yam seed, lack of improved cultivars, need for staking, weeds, pests and disease, low tuber storability, limited water availability, low soil fertility and inadequate plant nutrition (Abdoulaye et al., 2014). Other factors that limit production are the limited land available, complex and un-transparent markets and lack of processed products (Abdoulaye et al., 2014). Given the rapid population growth, the high proportion of population living with a very low income, the large surfaces of degraded land and the rapid ongoing climate change in Sub Saharan Africa (Montanarella et al., 2016;FAO, 2017); it becomes urgent for research to deliver feasible and efficient options to sustainably increase yam productivity.The aims of this review were to show the importance of soil fertility for yam, discuss the potential of integrated soil fertility management for this crop, highlight the challenge for adoption of innovations in yam, present the concept of innovation platforms as a tool to develop collaboration between actors for designing innovations in yam and provide recommendations for future research.Importance of soil fertility for yam productionThe importance of soil fertility for yam has been exemplified by Diby et al. (2011) who showed that tuber yields of improved cultivars of D. alata and D. rotundata grown after a fallow, under the same conditions and the same climate were 1.5 higher in a \"forest\" soil containing more clay and organic matter and having a higher pH than in a close by \"savanna\" soil. However, assessing the effect of soil properties on yam production by comparing results of different field experiments is often difficult as many factors, often not reported, affect tuber yield. These are weather conditions, cultivar, yam seed quality, seed weight, planting density, planting date, weeds, diseases and pests (Cornet et al., 2014 and2016;Rodriguez-Montero et al., 2001). Some fertilization trials conducted with yam showed positive impacts of N, P and K inputs on tuber yields (responsive soils), while other trials did not show any impact of nutrient additions (non-responsive soils) (O'Sullivan et al., 2008). This suggests that responsive soils were not able to release sufficient nutrients to cover plant needs, while other factors limited yam response in non-responsive soils. These other soil-related problems can be the low organic matter content linked to the slash and burn practice (Nwaga et al., 2010) and the intensive soil preparation for preparing mounds in which seeds are planted, the change in arbuscular mycorrhizal population and the accumulation of pest and diseases during cultivation (Coyne et al., 2005;Tchabi et al., 2008 and2009). Low soil organic matter content can lead to low water infiltration and to soil structural degradation impairing root and tuber growth. Finally, water erosion can damage soil surface before it becomes fully covered with vegetation. Dansi et al. (2013) and Lebot (2009) report that producers perceive soil fertility decline as a key constraint for yam production. A recent global survey conducted by Abdoulaye et al. (2014) among yam experts classified the topic \"Improving soil fertility (micronutrients, fertilizer, organic matter)\" as the second most important topic to be addressed in research preceded by \"Improving shelf life of yam tubers\". Although soil fertility degradation and inadequate plant nutrition are recognized problems (Asadu et al., 2013), little has been done to address them. In the first conference on yam held in 2013, only 7 presentations dealt with these issues (Abdoulaye et al., 2013;Asadu et al., 2013;Dansi et al., 2013;Ennin et al., 2013;Lawal et al., 2013;Maniyam et al., 2013;Tournebize et al., 2013) over a total of 115 presentations dealing mainly with plant genetics, food processing, and markets (IITA, 2013). Altogether, this demonstrates the need to work on soil fertility and nutrient management in yam.The Integrated Soil Fertility Management (ISFM) framework is based on the combined use of organic and mineral nutrient sources in conjunction with appropriate crop varieties and adaptations to the local context (Chivenge et al., 2011;Kearney et al., 2012;Vanlauwe et al., 2010 and2015) to improve soil fertility and crop production. Recent results suggest that the combined addition of mineral and organic fertilizers increases yam yields compared to non-fertilized controls (Ennin et al., 2013;Lawal et al., 2013;Tournebize et al., 2013;Susan John et al., 2016).Mineral fertilizers might however have unexpected effects. Hgaza et al. (2012) observed in D. alata a strong increase in tuber yield following the addition of mineral NPK fertilizers to a low fertility savanna soil, but they also showed that this input had triggered an increased uptake of N derived from the soil by the crop. Since this input had not caused any change in root morphology and growth (Hgaza et al., 2011), the authors concluded that the NPK addition had increased the rate of soil organic matter mineralization. This phenomenon needs further investigation as it can have negative consequences on these soils, which have very low organic matter contents. Whether such an effect would also occur following organic fertilizer inputs should also be assessed. In the same study, Hgaza et al. (2012) showed that the maximum recovery of fertilizer N in the tuber was below 30%.This limited recovery can be explained by the low planting density, which is typical for West Africa and by the coarse and superficial root system of D. alata (Hgaza et al., 2011). This low recovery rate suggests high rates of N losses to the environment. Mineral fertilizer inputs have also been reported to increase tuber rotting during storage and to negatively affect the organoleptic properties of tubers (Vernier et al., 2000). Such effects are known in potatoes (McGarry et al., 1996) and the underlying mechanisms are probably similar in yams. Since fertilizers (organic and/or mineral) use will become unavoidable to increase yam productivity, the effects of fertilizer on tuber quality will need to be studied.Intercropping or rotating yams with legumes are alternative ways to supply the crop with N.Intercropping yam with herbaceous legumes increases tuber yields and nutrient recycling rates (Maliki et al., 2012a). Intercropping yam with the woody legume Gliricidia sepium is promising as it can be used as a stake for yam vines while providing N derived from the atmosphere (Budelmann, 1989 and1990;O'Sullivan et al., 2008). However, the additional labor required for pruning G. sepium can offset its positive impact on crops.In Benin, farmers have developed strategies to cope with soil fertility depletion. These include the selection and cultivation of less demanding yam cultivars, the introduction of yam in rotations to benefit from the residual effect of fertilizers added to previous crops and decrease pests and diseases pressure, and the cultivation of yams in sites where water, organic matter and nutrients tend to accumulate such as lowlands and old cattle corrals (Floquet et al., 2012). Another example of such adaptation is found in the province of Passoré (Burkina Faso) where yam is grown under semi-arid conditions (700 mm year -1 ) on hydromorphic soils, in rotation with other staple crops and with the use of organic and mineral fertilizers (Dumont et al., 2005;Tiama et al., 2016). The impact on yam yield formation, nutrient dynamics and use efficiency of these adaptations have not yet been studied.Altogether, there is a potential for ISFM in yam systems but this needs to be linked to farmers' options and preferences and to the demand expressed by the different actors along the value chain. The implementation of ISFM will however be challenging. For instance, for producers having still access to older woody fallow, even though such fallows are becoming scant and remote from villages, is ISFM be more efficient in terms of returns to labor? Moreover, in situations where land is scarce and continuously cropped, is it be still possible to mobilize organic resources for ISFM at reasonable opportunity costs?There is little information on the economic and social acceptance of soil management practices for yam (Maliki et al., 2012b) and more generally on the adoption of new technologies in yam systems (Dao et al., 2003;Soro et al., 2010). In communities where yam is grown as a cash crop, farmers might be interested to take up innovations contributing to increase income. But in communities where yam is grown for self-consumption, there might be less interest in adopting such innovations.To our knowledge, these hypotheses have not been tested yet. Overall, the adoption of new technologies in yam seems limited. For instance, the minisett technology that uses small and healthy tuber parts, which was developed decades ago (Aighewi et al., 2014), has not been widely adopted (Okoro and Ajieh, 2015). Similarly, high yielding yam varieties tolerant to disease and growing without staking have not been widely adopted (Alene et al., 2015). Notable exceptions have been the large adoption in Ivory Coast of the D. alata varieties Florido and C18, which are easy to grow while showing good resistance to diseases (Doumbia et al., 2004 and2014). Moreover, C18 is well appreciated for cooking \"foutou\", a yam-based dish (Doumbia et al., 2014), which is a driver fortechnology adoption in West Africa, as food quality is very important to producers and consumers (Adesina and Baidu-Forson, 1995).The adoption of ISFM practices is influenced by the socio-economic status of farmers. Maryena and Barrett (2007) studying Kenyan smallholders suggest that farmers with the least financial resources are less adopting ISFM techniques. Indeed, those farmers are generally quartered on \"nonresponsive\" soils (Vanlauwe et al., 2015) where the addition of fertilizer does not pay off (Maryena and Barrett, 2009), thus limiting their adoption.Most of the internal (labour, organic matter from planted fallow or mixed agroforestry component) and external (mineral fertilizers, herbicides, improved planting materials) resources needed to implement ISFM may require high investments from the individual farmer or the community which could limit the return on investment and thus the adoption of ISFM practices. Indeed, technology adoption is hypothesized to be influenced by expectations to gain additional income, mainly through increased productivity or improved access to remunerative markets. In contrast, land use insecurity is an important disincentive to invest in any land improving measures (Saidou et al., 2007), as producers may not reap the benefits of their investments. Overall, finding out the right mix of ISFM measures requires a high level of collaboration between actors to define a joint intervention strategy and activities to generate scalable outputs built on farmers' experiences and perceptions and suited to the diversity of local contexts.Low adoption rates of soil improving options are often linked to the fact that researchers neither pay sufficient attention to the multitude of problems farmers really face (Ramisch, 2014;Nederlof and Dangbégnon, 2007), nor build on the diversity of problem-solving practices developed by farmers in their diverse biophysical and socio-economic contexts (Fujisaka, 1994). Furthermore, many constraints are out of the range of the relationship between farmers and researchers and concern input supply, land tenure, market access, ability to negotiate fairer prices or better adjust to new consumers' or processing units' demand (Cheesman et al., 2017). Since the eighties, farming system research made the point that producers are operating in diverse and risk-prone environments under numerous constraints, so that a one-fit-for-all technology cannot be relevant. New approaches have to be implemented within farmers' contexts so that they can make the best possible use of existing human and natural resources, cope with specific constraints, and take into account a range of tradeoffs (Giller et al., 2011).Innovation platforms (IPs) are organizational set up which foster innovation. «Innovation platforms are a way of organizing multi-stakeholder interactions, marshalling ideas, people and resources to address challenges and opportunities embedded in complex settings» (Davies et al., 2017). Innovation platforms are often organized around a farm product and include relevant stakeholders connecting households and community operational settings with state policies and institutions. Experiences with such a sociotechnical design in Africa reveal that local IPs both affect market connections and technological knowledge within the product value chain (Adekunle et al., 2012). Jiggins et al. (2016) summarizing the results from a range of well documented IPs in West Africa pinpoint the importance of building trust for shared action and of shared learning in experimental processes of change. Hounkonnou et al. (2016) conclude from their experiences with nine IPs that the design can help leverage institutional constraints and create favorable niches of change. Whether such niches can trigger changes in the technological and institutional regimes still needs to be proven.There are few published reports on how the work of IPs can be used to foster sustainable soil fertility I n r e v i e w management. For instance, Tittonell et al. (2012) showed how IPs could be used to discuss and understand the implementation of conservation agriculture principles by African smallholders. But, no publication was found on how IPs could foster sustainable soil fertility management in tropical root and tuber crops.This review demonstrated the necessity to develop feasible and acceptable soil management practices in yam. The following recommendations for future research can be derived from this review.Research must be conducted in a transdisciplinary manner involving the relevant actors from the practice, from the problem definition, to the co-design of soil management innovations, the evaluation of research results and their communication (Baveye et al., 2014). In order to reach this goal, the research should foster IPs including beside producers also actors involved in the yam value chain (agricultural inputs traders, transporters, yam traders and processors) as well as authorities, the media, microcredit organisations and agricultural extension agencies as all these systems and actors will influence the decision of farmers to implement innovative soil management (Figure 1). The research should be conducted by interdisciplinary teams including experts in natural sciences (soil and plant sciences) and in social sciences (anthropology, sociology, and agricultural economics). The co-designed soil management innovations should be tested following the mother/baby trials scheme (Snapp et al., 2002). The scientist-managed mother trials would allow testing soil options and obtaining robust data on their impacts on soil properties and plant production, which is essential for an orphan crop like yam. Farmers would then be able to select options they are interested in and test them in baby trials showing how they would adapt these options to fit their constraints and opportunities. This work should be done in sites showing a large diversity in terms of their biophysical and socio-economic characteristics to derive generic rules on soil/plant relationships in yam as affected by soil management and on how to develop and adjust the innovation supply to specific contexts. Working on such a large scale will require the use of techniques allowing high throughput soil and plant analyses as infrared spectroscopy (Shepherd and Walsh, 2007), and nondestructive image analyses techniques to analyse yam foliar surface or the leaf nitrogen content in the field (Walter et al., 2015). Modelling approaches will be needed to predict yam growth and development under different conditions (Marcos et al., 2009) and to predict farm income (Bernet et al., 2001) as affected by the implementation of innovations. Finally, research will have to trigger collaboration with so-called organizations of change such as national institutions of agricultural extension to out and upscale the approach and options developed by research and anchor the acquired knowledge in the agricultural knowledge system.This work has been done during the YAMSYS project (www.yamsys.org) funded by the food security module of the Swiss Programme for Research on Global Issues for Development (www.r4d.ch) (SNF project number: 400540_152017 / 1).Figure 1. Systems to be captured and actors to be addressed to develop feasible and acceptable integrated soil fertility management options for yam systems that can be communicated to stakeholders. (A) Represents the biophysical, economic and institutional drivers (macro level), (B) the yam value chain (meso socio-economic level), (C) the household level (micro socio-economic level), and (D) the yam system (micro level in the field).I n r e v i e w ","tokenCount":"3531"} \ No newline at end of file diff --git a/data/part_3/4037832307.json b/data/part_3/4037832307.json new file mode 100644 index 0000000000000000000000000000000000000000..fadcb9fb64fcff0758443fd8d39336ce67281804 --- /dev/null +++ b/data/part_3/4037832307.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"501e4c4d0ca2ce26c4c7891a22a019d2","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/0cea9870-c688-416c-bc7e-ddb2be3a8851/retrieve","id":"-516624269"},"keywords":[],"sieverID":"8330653d-7425-40d5-918a-8ab0c8e8b5c1","pagecount":"75","content":"El inventario vacuno centroamericano se estima en 12 millones de cabezas de las cuales aproximadamente una cuarta parte (23%) corresponde a vacas en lactancia (Cuadro 1).No obstante el importante volumen de recursos disponibles en pasturas y animales, el desempeño productivo de la ganadería regional no es suficiente para atender adecuadamente las necesidades de alimentación de una población humana, estimada en 2004 en 39 millones de personas. Costa Rica y Nicaragua son exportadores netos de carne, pero Honduras y Guatemala son deficitarios en la producción de este alimento. La producción de leche es crítica, ya que la región depende en gran medida para su abastecimiento de las importaciones de productos lácteos (Cuadro 1).Este estudio forma parte integral de las actividades del proyecto \"Fomentado la productividad, calidad, inocuidad y comercio de la carne bovina en Centroamérica\" coordinado por ILRI (Instituto Internacional de Investigación en Ganadería, por sus siglas en inglés) y financiado por el Fondo Común de Productos (CFC, por sus siglas en inglés). Los autores agradecen a CFC y las agencias alemanas para el desarrollo y la investigación [Bundesministerium fürWirtschaftliche Zusammenarbeit und Entwicklung (BMZ) y Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ)] por el financiamiento y publicación de este estudio.En este estudio se evalúa la viabilidad económica de nuevas opciones forrajeras en diferentes escalas de finca y sistemas de producción en Centroamérica, dentro del marco del mejoramiento de la competitividad ganadera y la conservación de la base de recursos naturales. Se genera información económica relevante que ayuda en el mejoramiento y el diseño de políticas económicas y tecnológicas tendientes a la aceleración de los procesos de innovación y cambio en la región.Para el logro de los objetivos se analizaron el retorno y la viabilidad económica de las inversiones en pasturas mejoradas basadas en el híbrido cv. Mulato de Brachiaria y en la leguminosa arbustiva Cratylia argentea cv. Veraniega, considerando como escenarios posibles fincas de subsistencia, pequeñas y medianas con sus sistemas de producción y limitantes internos y externos.La información utilizada fue tomada en un muestreo en 123 fincas ubicadas en Costa Rica (30), Nicaragua (32), Honduras (35) y Guatemala (26) teniendo en cuenta la estructura del hato, el uso de la tierra, la producción de leche y carne y el uso de insumos para alimentación animal.Esta información sirvió de base para estimar los parámetros productivos y reproductivos y la utilización de mano de obra familiar y contratada en cada tipo de explotación los cuales, a su vez, permitieron establecer los tamaños de finca siguientes: (1) de subsistencia donde la función objetivo del productor es el autoconsumo y su principal actividad es la agricultura, (2) pequeño, con ganadería de tipo comercial, y (3) mediano.Para analizar y evaluar los diversos escenarios planteados y calcular los indicadores de rentabilidad de las explotaciones se utilizó un modelo de programación lineal multiperiódica, que permite evaluar cada uno de los tamaños de finca incluyendo los escenarios siguientes:(1) el productor adopta el cultivar (cv.) Mulato para reemplazar las áreas de la finca que se encuentran en pasturas nativas y, adicionalmente, suplementa el hato durante la época seca con la leguminosa arbustiva C. argentea. Los incrementos en productividad e ingresos se estimaron teniendo en cuenta dos situaciones, primero, las ganancias en respuesta animal en relación con una línea base y, segundo, en un escenario igual al anterior pero asumiendo alternativamente que la finca posee el sistema de producción doble propósito y luego cambia a un sistema de producción especializado en carne.Los resultados obtenidos indican que la inversión en pasturas mejoradas es económicamente rentable y representa una buena opción para incrementar el bienestar de los productores y sus familias. No obstante, debido a falta de flujo de caja, para que esta inversión sea viable, los productores necesitan de una línea crediticia durante un período que varía entre 2 y 7 años, dependiendo del sistema de producción y del país. La adopción de los cultivares Mulato y Veraniega resulta en incrementos significativos de la carga animal, lo que genera la posibilidad de ampliar el tamaño del hato. El número de vacas por hato se puede incrementar entre 2.1 y 3.5 veces en el sistema de doble propósito y entre 2.6 y 6 veces en el sistema especializado de carne. La producción de leche se puede incrementar entre 2.3 y 3.5 veces en el sistema doble propósito y la de carne entre 3.7 y 4.5 veces en el sistema especializado en carne. La inversión en pasturas mejoradas no solo trae beneficios económicos para los productores sino también ganancias sociales, así, en el sistema doble propósito es posible aumentar el empleo entre 1.5 y 4 veces y en el especializado en carne entre 1.8 y 3 veces.El parámetro de mayor impacto como ingreso neto es la fertilidad de los animales en el hato. Un aumento del 10% en la natalidad anual del hato mejora los ingresos entre 12% y 19% en fincas de subsistencia y pequeñas y entre 14% y 21% en fincas medianas, dependiendo del país y del sistema de producción. El segundo parámetro en importancia en relación con el ingreso es la productividad de leche en fincas en sistema doble propósito o de carne en fincas con sistemas de producción especializados. Un incremento del 10% en la producción actual por vaca resulta entre 10% y 13% de aumento en el ingreso en fincas de subsistencia, entre 12% y 15% en fincas pequeñas y entre 12% y 19% en fincas medianas. El mejoramiento en otros parámetros productivos, como la mortalidad de terneros, inducen una muy baja respuesta en el ingreso neto de la finca (< 3%).El sistema doble propósito resultó ser mejor opción económica que el sistema especializado en carne. Se observó que el potencial de generar ingresos está fuertemente asociado con la orientación económica de la actividad ganadera, en efecto, las fincas de subsistencia que tienen sistema doble propósito tienen la capacidad de generar entre 28% y 35% más ingresos que aquellas similares especializadas en carne. En las fincas pequeñas esa proporción varía entre 68% y el 84%, y en las medianas el rango de aumento de ingreso se ubica entre el 107% y 145%.El costo reducido, que muestra el ingreso que se pierde por la entrada en el sistema del modelo de una tecnología forrajera que no aparece en la solución óptima inicial, indica que eliminar 1 ha de Brachiaria híbrido cv. Mulato para reemplazarla por 1 ha de la gramínea tradicional B. decumbens generaría una pérdida anual entre US$57 y US$115 en fincas de subsistencia. De igual manera, reemplazar 1 ha Cratylia por 1 ha King grass (Pennisetum spp.) generaría una pérdida anual entre US$136 y US$195, dependiendo del país.El precio sombra de la tierra, que representa la cantidad de dinero que el productor estaría dispuesto a pagar por una unidad adicional de un determinado factor limitante agotado, en fincas con tamaño de subsistencia varía desde US$47/año en Costa Rica hasta US$131/año en Guatemala. El precio sombra de la energía es cero, lo que significa que hay un excedente de este nutriente en la ración y, por tanto, este recurso no es limitativo. El precio sombra/kg de proteína varía entre US$1 y US$1.7, lo que indica que este recurso en deficitario en la época seca para optimizar el exceso de energía existente en la dieta. Esta optimización se alcanza mediante la fertilización de los bancos de Cratylia con el fin de aumentar la cantidad de biomasa disponible o suplementando durante la época seca con proteína de bajo costo, como pollinaza. El precio sombra del capital en el sistema doble propósito varía desde US$1.38 en fincas de subsistencia hasta US$2.14 en fincas medianas, y en el sistema de producción especializado de carne, respectivamente, desde US$1.11 hasta US$1.37, lo que significa que la inversión en pasturas mejoradas permite pagar altas tasas de interés.Los resultados de este trabajo demuestran que la inversión en investigación para el desarrollo de germoplasma forrajero mejorado, contribuye significativamente al mejoramiento de los ingresos de los pequeños productores, mientras hacen un uso más racional de los recursos disponibles, particularmente de la tierra, lo cual tiene importantes implicaciones en términos de la competitividad y sostenibilidad de la producción y del crecimiento económico general.El pastoreo extensivo en zonas tropicales degradadas y de baja productividad es el sistema más común de producción ganadera en América Latina, esta condición unida a los periodos de sequías prolongadas que son frecuentes en la región se traducen en bajos coeficientes técnicos y pobre desempeño económico de las explotaciones ganaderas (Rivas, 2002).En el pasado reciente, la tendencia hacia un crecimiento extensivo de los sistemas ganaderos implicó la utilización en una proporción cada vez mayor de áreas nuevas, frágiles ecológicamente y de menor capacidad productiva, las cuales bajo esquemas de manejo no adecuados favorecieron daños severos en el ecosistema, entre ellos, deforestación, erosión, compactación y pérdida de nutrientes del suelo. En varias zonas esta tendencia se manifestó por un sistema agrícola-ganadero de trashumancia, caracterizado por el uso temporal de áreas nuevas y la tala indiscriminada de bosques (Rivas, 2002). Ante esta situación, las instituciones nacionales e internacionales han orientado sus esfuerzos de investigación en el desarrollo de nuevo germoplasma forrajero de alta calidad y productividad, adaptado a las condiciones de baja fertilidad de los suelos en zonas tropicales con épocas secas prolongadas (Rivas, 2002). Como resultado de estas investigaciones se han identificado gramíneas y leguminosas forrajeras mejoradas con potencial para aumentar la productividad animal por unidad de área, permitiendo un uso alternativo de la tierra con ganadería en aquellas zonas más frágiles (Holmann y Lascano, 2001).La falta de información sobre la utilización de estos nuevos materiales forrajeros y su integración en los sistemas de producción existentes, así como su viabilidad económica, han sido las principales barreras para su adopción generalizada. Esta situación es agravada, muchas veces, por los pequeños productores quienes frecuentemente adoptan sistemas mixtos de ganadería y cultivos, lo que dificulta la toma de decisiones acerca del uso de recursos.En Centroamérica la ganadería vacuna en pastoreo es una de las principales alternativas que demanda el uso de los suelos. Casi dos terceras partes de las tierras con aptitud agrícola se destinan a pasturas, una proporción que varía entre países, desde 51% en Honduras hasta 82% en Costa Rica (Cuadro 1). La magnitud de estas cifras explica la alta incidencia que el uso y manejo de las pasturas tienen sobre la conservación y el uso productivo de los recursos de tierra en la región. Este hecho es más relevante si se considera que actualmente una alta proporción, aproximadamente 60%, de estas pasturas presentan problemas de baja productividad. reducción de la pobreza y conservación de la base de recursos naturales;(3) se analiza el retorno y la viabilidad económica de la inversión en pasturas mejoradas y su potencial en diversas escalas de producción, en particular en los grupos de pequeños productores que representan una fracción significativa en el total en la región, así, en Honduras el 95% de las fincas que poseen ganado tienen menos que 50 ha, en Nicaragua el 67% menos que 35 ha y en Costa Rica el 75% son menores que 40 ha (ILRI, 2004).La información utilizada en el estudio proviene de un muestreo en fincas de la región y de 123 entrevistas a productores ganaderos -30 en Costa Rica, 32 en Nicaragua, 35 en Honduras y 26 en Guatemala. Estas encuestas fueron realizadas al azar en las principales cuencas ganaderas de estos países por técnicos de instituciones nacionales responsables de la investigación y transferencia de tecnologías en ganadería. En ellas, se recopiló información sobre la composición del hato, los patrones de uso de la tierra, la producción de leche y carne y el uso de insumos para la alimentación animal, con el fin de estimar los parámetros productivos y reproductivos, el empleo de mano de obra familiar y contratada y los indicadores de rentabilidad de las alternativas evaluadas.Con base en los resultados de las encuestas se definieron los tamaños de fincas ganaderas más representativos (Cuadro 2) siguientes: (1) de subsistencia, en la cual la función objetivo es producir para autoconsumo y su principal actividad es la agricultura; (2) pequeño, el propietario destina una parte de la producción de la finca para autoconsumo y vende el resto en el mercado; y (3) mediano, el productor está totalmente orientado hacia el mercado de productos ganaderos. Esta información constituye la línea de base, a partir de la cual evolucionan los diversos escenarios planteados en el estudio y los cuales son evaluados desde el punto de vista económico, empleando para el efecto un modelo de simulación.La información económica sobre los precios de la leche y la carne recibidos por los productores en los países seleccionados, el valor comercial del ganado y los costos de establecimiento pasturas mejoradas aparecen en el Cuadro 3.Cuadro 2. Uso de la tierra, estructura del hato, parámetros productivos y reproductivos y utilización de mano de obra familiar y contratada en tres tamaños de fincas en Centroamérica Este enfoque ha sido empleado durante varios años a diferentes escalas de análisis como una herramienta muy útil para el trabajo en economía normativa en el ámbito de la finca, la cuenca hidrográfica, la región y el país. Los análisis con enfoque de PL generan información útil para la toma de decisiones a escala de finca y para la formulación de políticas estatales adecuadas que permiten un mejor empleo de los recursos a escalas micro y macro. Este modelo enfrenta el problema básico de la economía: la asignación eficiente de recursos escasos, considerando varios usos alternativos. De aquí se deriva su amplia utilización en actividades de planificación, formulación y diseño de políticas económicas. Las metodologías de PL conducen a la determinación de la mejor asignación posible (óptima) de los recursos económicos disponibles, teniendo en cuenta restricciones del sistema en análisis tales como escasez y calidad y capacidad productivas, que pueden ser de orden biológico, económico y social. La mejor asignación posible de los recursos conduce a la optimización de una función objetivo, que alternativamente puede ser la maximización de los beneficios económicos o la minimización de los costos involucrados en los procesos productivos. El modelo teórico de PL se plantea como:≥ donde, Z = es la función objetivo, que en el presente estudio se define como el beneficio neto resultante de la implementación de las nuevas opciones productivas en el ámbito de la finca.A = es una matriz de m x n , que representa los coeficientes técnicos de las actividades productivas y alternativas de decisión consideradas, y X = es un vector columna en el cual se incluyen estas últimas. b = es el vector columna que representa el nivel de las restricciones bajo las cuales se optimizará Z .Las condiciones de no-negatividad del modelo garantizan que las actividades y alternativas de decisión que entren en la solución óptima tomen valores numéricos positivos.En el presente estudio se considera que este enfoque analítico resulta muy apropiado, debido a que las restricciones de mano de obra, capital y tierra pueden constituir un grave obstáculo para la modernización de la ganadería regional.Para calcular el retorno económico a la inversión en pasturas mejoradas se utilizó un modelo de simulación desarrollado inicialmente por el Centro Agronómico Tropical de Investigación y Enseñanza (CATIE) y la Red Internacional de Sistemas de Producción Animal en América Latina (RISPAL), el cual fue luego expandido por el Centro Internacional de Agricultura Tropical (CIAT). Este modelo, que utiliza técnicas de optimización mediante programación lineal, fue implementado en una hoja electrónica con el objetivo de evaluar ex ante los costos y beneficios de diferentes alternativas de uso de la tierra y las interacciones entre componentes tecnológicos y la productividad biológica (Holmann y Estrada, 1997).El modelo asume que la función objetivo de los productores es maximizar el ingreso neto anual y genera la información necesaria para estimar el retorno económico a la inversión en nuevas tecnologías ganaderas basadas en germoplasma forrajero mejorado. Su estructura flexible permite al usuario construir diversos escenarios alternativos en función de sus intereses particulares y capacidad analítica.Las gramíneas del género Brachiaria son una alternativa posible para enfrentar las deficiencias en cantidad y calidad de forraje que son comunes en zonas bajas de América Latina tropical.Las especies de este género tienen un amplio rango de adaptación a condiciones adversas de clima y suelos y una alta productividad (Rivas y Holmann, 2005) , 2003;c. Plazas, 2002;d. CIAT, 2001;e. Enriquez, 2002;f. CIAT, 2004. Para el efecto se recopiló la información disponible sobre producción de carne y leche con grupos de animales en pasturas de B. decumbens y del híbrido cv. Mulato (Cuadro 4).La respuesta en productividasd se simuló empleando los promedios del Cuadro 3 (24% más leche, 32% más carne y 86% más carga animal) que representan las ganancias en productividad fisica, resultantes de la inversión en pasturas mejoradas.Los resultados de las encuestas mostraron que la mayor parte de los productores depende del uso de pastos de corte y se ven forzados a invertir en alimentos concentrados para complementar la dieta basal de sus animales. Para hacer frente a esta situación, el CIAT y el ILRI estan promoviendo la utilización de alternativas forrajeras basadas en el uso de leguminosas arbustivas. Ahora, existen suficientes evidencias que demuestran que esta alternativa permite mantener la productividad del hato durante la época seca a un menor costo que la suplementación con alimentos concentrados (Cuadro 5). Los resultados de la investigación (Cuadros 4 y 5) y los datos de línea base que se presentan en el Cuadro 2, permitieron definir los parámetros forrajeros y de producción animal de las alternativas evaluadas con el modelo de simulación (Cuadros 6 y 7).El modelo evalúa cada uno de los tamaños de finca bajo los escenarios siguientes:1. El productor reemplaza las pasturas nativas por el híbrido cv. Mulato y establece la leguminosa arbustiva Cratylia argentea (cv. Veraniega, Argel et al., 2001) para suplementar el hato en las épocas secas. En este caso, se estima el incremento en productividad e ingresos en función del aumento esperado de la respuesta animal en relación con la línea de base fijada previamente;2. El escenario anterior se desarrolla bajo los sistemas doble propósito y especializado en producción de carne. En estudios anteriores se encontró que los productores pequeños generalmente no tienen un flujo de caja adecuado para hacer inversiones en pasturas mejoradas (Holmann et al., 2004), por tanto, se asume que la finca adquiere un crédito para realizar estas inversiones a una tasa de interés anual del 10%. La diferencia entre el ingreso neto de la línea base (año cero) y el ingreso neto en un año determinado se destina al pago de la deuda del crédito hasta que la finca genere un flujo de caja positivo.Debido a la ausencia de resultados de investigación confiables en la zona del estudio sobre la respuesta en reproducción y mortalidad de terneros como consecuencia de la mejor nutrición por el uso de nuevos híbridos de Brachiaria, se asumió que estos parámetros permanecen constantes al nivel de los observados en la línea base del Cuadro 2. En consecuencia, los beneficios económicos encontrados en este estudio son conservadores y posiblemente subestimados. a. Equivalente a 20% de la producción de biomasa de la época de lluvias.b. Equivalente a 30% de la producción de biomasa de la época de lluvias para las gramíneas y del 100% para Cratylia argentea.En los Cuadros 8 a 10 se observan la situación actual (línea base) para cada tamaño de finca (subsistencia, pequeño y mediano) y el escenario al cual es posible llegar (meta u objetivo) en términos de crecimiento del hato, producción de leche y carne, ingreso neto y generación de empleo, como resultado de la inversión en pasturas mejoradas para reemplazar las áreas de la finca que se encuentran en pasturas nativas de baja productividad. En estos Cuadros también aparecen el número de años de financiación con crédito, requeridos para que la propia finca genere el flujo de caja positivo adecuado que le permita continuar su expansión y el horizonte de tiempo necesario para lograr el objetivo posible en cada tamaño de finca.Finca de subsistencia. Este es un grupo de productores de especial relevancia desde el punto de vista del diseño de las políticas enfocadas a aliviar la pobreza y mejorar la equidad social, por tanto, debe ser el objetivo de tales políticas.La inversión en el híbrido cv. Mulato y en Cratylia para reemplazar las áreas de la finca en pasturas nativas (en este caso, 4 ha) permite incrementar el tamaño del hato en la base pasando de 2 a 5 vacas en Costa Rica y a 7 vacas en el resto de los países (Cuadro 8). El caso de Costa Rica es diferente a los demás países debido a que la proporción gramínea:leguminosa que se establece en la finca es mayor (3.7 ha de cv. Mulato y 0.3 ha Cratylia, es decir, 92% de la gramínea), mientras que en el resto de los países la proporción de gramínea es menor (2.5 ha de cv. Mulato (62%) y 1.5 ha de Cratylia). Esta diferencia es debida, entre otros factores, al mayor costo de la mano de obra (US$6.40/día), por tanto, en este país es más rentable producir leche y carne dando mayor énfasis al pastoreo directo con gramíneas. En el resto de países, con costos inferiores de mano de obra, se justifica económicamente establecer una mayor área de leguminosa para corte y acarreo, que demanda más mano de obra (50 jornales/año con Cratylia vs. 8 jornales/año con una gramínea mejorada) pero que permite aumentar significativamente la carga animal. El proceso de inversión a través del tiempo para lograr las metas propuestas en términos de siembras anuales de pasturas mejoradas, crecimiento del hato, necesidades de crédito, aumento del ingreso neto y generación de empleo o utilización de mano de obra familiar y contratada se incluyen en los Cuadros 1.1 a 1.4 del Anexo 1.significativamente la dieta familiar y le da la posibilidad de vender pequeñas cantidades en el mercado, si lo desea.Finca de tamaño pequeño. Según el modelo, este tamaño de explotación presenta un comportamiento similar al de la finca de subsistencia (Cuadro 9). En Costa Rica la tendencia es alcanzar la meta u objetivo de crecimiento con menor cantidad de vacas en el hato debido a que el alto costo de la mano de obra obliga a su uso más intensivo, dando como resultado el predominio de pasturas con una mayor proporción de la gramínea. En Guatemala, Honduras y Nicaragua, donde el costo de la mano de obra es menor, se favorece el uso de Cratylia que demanda más labores de cultivo que la gramínea. Esta circunstancia genera un potencial más alto de intensificación en términos animales/unidad de área, debido a la producción de biomasa y la buena calidad forrajera de la leguminosa.Cuadro 9. Número de vacas, producción ganadera, generación de empleo, necesidades de crédito y tiempo necesario para alcanzar el pleno potencial productivo (objetivo) en fincas pequeñas de doble propósito en países de Centroamérica. Brachiaria híbrido cv. Mulato 0 6.9 0 6.9 0 6.9 0 10.2Cratylia argentea 0 6.1 0 6.1 0 6.1 0 2.8 Generación de empleo (jornales/año) 0.9 1.9 0.9 1.9 0.9 1.9 0.9 El flujo de la inversión a través del tiempo para lograr las metas propuestas en términos de siembras anuales de pasturas mejoradas, crecimiento del hato, necesidades de crédito, aumento del ingreso neto y generación de empleo o utilización de mano de obra familiar y contratada se incluyen en los Cuadros 2.1 a 2.4 del Anexo 2.Con una tendencia similar a las fincas de tamaño de subsistencia, las fincas pequeñas tienen la capacidad de mejorar significativamente la producción de leche y carne, el ingreso y la generación de empleo.Finca de tamaño medio. En este tamaño de finca, nuevamente los resultados siguen el comportamiento observado para las fincas de subsistencia, tanto en el caso de Costa Rica como en los demás países (Cuadro 10). La información sobre las estrategias de inversión en cada país se incluyen en los Cuadros 3.1 a 3.4 del Anexo 3.Cuadro 10. Número de vacas, producción ganadera, generación de empleo, necesidades de crédito y tiempo necesario para alcanzar el pleno potencial productivo en fincas (objetivo) medianas de doble propósito en países de Centroamérica. El análisis de sensibilidad permite estudiar la magnitud y el sentido de las variaciones de la solución inicial, frente a cambios de variables críticas tales como parámetros técnicos, de productividad y de precios y costos. Este análisis tiene carácter parcial, ya que cuando cambia el nivel de la variable que se analiza el de las demás permanece constante, por ejemplo, permite conocer, independiente del tamaño de finca, cuándo dos parámetros técnicos (por ej., fertilidad y producción de leche por vaca) y uno económico (por ej., precio de la leche al productor) son los de mayor impacto sobre el ingreso neto del ganadero. En el Cuadro 11 se observa, para el caso de varios tamaños de finca en sistemas doble propósito de Centroamérica, la sensibilidad del ingreso neto frente a un mejoramiento del 10% en la fertilidad y la productividad del hato ganadero y una reducción de la misma magnitud porcentual en la tasa de mortalidad de terneros y en los precios al ganadero.Cuadro 11. Sensibilidad del ingreso neto debido al mejoramiento del 10% en la fertilidad y la productividad animal y a la reducción de un porcentaje igual en la mortalidad y los precios de los productos ganaderos, en varios tamaños de finca en sistemas doble propósito en países de Centroamérica a . Un aumento del 10% en la fertilidad del hato con respecto a la tasa de parición actual mejora los ingresos entre 17% y 19% en fincas de subsistencia, entre 16% y 19% en fincas pequeñas y entre 14% y 20% en las medianas, dependiendo del país donde ocurra el cambio.El segundo parámetro en importancia por su impacto sobre el ingreso es la productividad de leche. Un incremento del 10% en la producción actual de leche por vaca resulta en un ingreso entre 12% y 13% mayor en fincas de subsistencia, entre 12% y 15% en fincas pequeñas y entre 12% y 18% en fincas medianas.Los precios de la carne y la leche son críticos ante la posibilidad de que los productores de la región deban ajustarse a un nuevo marco económico derivado del CAFTA (Central American Free Trade Agreement). Una reducción del 10% en el precio de leche recibido por los productores implicaría una baja entre 14% y 19% de los ingresos totales en las fincas de subsistencia, entre 13% y 16% en las pequeñas y entre 13% y 20% en las medianas. Una reducción de igual magnitud en el precio de la carne igualmente provocaría una caída de los ingresos, pero menor a la que ocurre cuando bajan los precios de la leche. Lo anterior es debido a que en los sistemas de producción doble propósito los ingresos y el flujo de caja dependen en gran parte de la venta de leche.Un incremento de 10% en el peso vivo animal actual al destete de los terneros provocaría un moderado crecimiento de los ingresos, entre 4% y 5% en fincas de subsistencia y entre 3% y 4% en fincas pequeñas y medianas. La mortalidad de teneros tiene una baja incidencia sobre los ingresos ganaderos. Una reducción del 10% en este parámetro, en relación con su nivel actual en todos los tamaños de finca, genera un incremento en el ingreso de 1% o menor.En este segundo ejercicio se simulan las situaciones en las mismas fincas analizadas anteriormente, pero asumiendo que éstas sólo producen carne en forma de terneros destetados con un peso vivo animal significativamente mayor (Cuadro 6).Finca de subsistencia. El tamaño de finca en el sistema especializado de producción de carne es de 1 vaca, mientras que en el sistema doble propósito es de 2 vacas en áreas iguales con pasturas nativas. Esta diferencia es debida a la suplementación de los animales durante la época seca en el segundo sistema, ya que el mayor precio de la leche hace rentable esta práctica. En el sistema especializado de carne, independiente del tamaño de finca, no es rentable suministrar concentrado durante la época seca.Al igual que en los casos anteriores, el modelo considera que en Costa Rica el crecimiento del hato objetivo es siempre menor que en los demás países, debido a que el costo de la mano de obra hace que el sistema de producción esté más orientado al uso de gramíneas para pastoreo y no de leguminosas de corte y acarreo (por ej., 3.4 ha de cv. Mulato y 0.6 ha de Cratylia) (Cuadro 12). En Costa Rica el tamaño optimo del hato es de 4 vacas; en Guatemala, un país con un costo de mano de obra relativamente alto, es de 5 vacas: mientras que en Honduras y Nicaragua, con los costos de mano de obra más bajos de la región, el tamaño optimo es de 6 vacas. Este mayor número de animales en este caso resulta de la mayor rentabilidad del establecimiento de áreas más extensas de leguminosas de corte y acarreo (por ej., 2.5 de cv. Mulato y 1.5 ha Cratylia).Al igual que en las situaciones analizadas anteriormente, en estas fincas los productores no cuentan con el flujo de caja necesario para el establecimiento de las nuevas tecnologías forrajeras y es necesario contar con un flujo de crédito por períodos entre de 4 y 5 años, tiempo necesario para que la explotación alcance la autosuficiencia financiera y continúe haciendo las inversiones necesarias para llegar a la meta de crecimiento propuesta (ver Anexo 4).Cuadro 12. Número de vacas, producción ganadera, generación de empleo, necesidades de crédito y tiempo necesario para alcanzar el pleno potencial productivo (objetivo) en fincas de subsistencia especializadas en producción de carne en países de Centroamérica. Finca pequeña. En este tamaño de finca, al igual que en el tamaño de subsistencia, el hato inicial es de 7 vacas, siendo más pequeño que en sistemas de producción doble propósito. La inversión en pasturas mejoradas tiene grandes beneficios económicos, en producción y en el campo social, entre ellos: en relación con la línea base de cada país, el ingreso neto incrementa 6.6 veces en Guatemala, 8 veces en Honduras, 10 veces en Nicaragua y 12 veces en Costa Rica; la producción de carne crece más de tres veces (3.5) en Honduras y Nicaragua, se triplica en Guatemala y crece más que el doble en Costa Rica (2.5); la inversión en pasturas mejoradas permite incrementar la generación de empleo en un rango que varía entre 2.5 y 4.5 veces.En el Cuadro 13 y en el Anexo 5 (Cuadros 5.1 a 5.4) se incluye la información detallada para cada país sobre los aumentos en las áreas sembradas con pasturas mejoradas, inversión adicional requerida, crecimiento del hato, flujo de caja y crédito necesario para alcanzar la meta u objetivo propuesto. Finca mediana. Los resultados encontrados en este tamaño de finca indican que la inversión y los beneficios obtenidos de las pasturas mejoradas dependen, al igual que en los casos de fincas de subsistencia y pequeñas, de la facilidad de crédito por un plazo entre 2 y 5 años hasta que la finca genere su propio flujo de caja que le permita continuar con las inversiones requeridas hasta alcanzar el objetivo (Cuadro 14 y Anexo 6).El comportamiento del ingreso neto en este sistema frente a los cambios de los parámetros considerados en el estudio es similar al observado en el sistema doble propósito, o sea, que independiente del tamaño de la finca, las variaciones de los parámetros de fertilidad y productividad de carne son las que tienen un mayor impacto sobre el ingreso. Así, un incremento de 10% en estos parámetros aumenta el ingreso en forma proporcional entre 11% y 21% (Cuadro 15). La reducción del precio de la carne tiene un impacto altamente significativo sobre los ingresos del productor. Una reducción del 10% en el precio de la carne reduciría los ingresos netos entre 21% y 39%, lo que significa una reducción más fuerte que en el caso de producción con sistema de doble propósito. Esto se debe a que en el sistema especializado de producción de carne los productores dependen de un solo producto para obtener la totalidad de sus ingresos, lo que no ocurre en los sistemas doble propósito. Lo anterior explica, en gran parte, la amplia difusión del sistema doble propósito en zonas tropicales bajas de América Latina, un sistema flexible que les permite a los productores ajustarse de mejor forma a las fluctuaciones del precio relativo carne/leche y minimizar los riesgos propios de la ganadería.Relaciones entre ingreso, sistema de producción y tamaño de la fincaEl análisis de los resultados en las fincas de subsistencia con los sistemas de producción doble propósito y especializado en carne, muestran que en el primero se genera un mayor ingreso (entre 28% y 35% más) que en el segundo sistema (Cuadros 8 y 12).La gran capacidad de generación de ingresos del sistema doble propósito también ocurre en las fincas ganaderas pequeñas. En comparación con las fincas especializadas en producción de carne, este sistema genera incrementos en los ingresos en una proporción que varía desde 67% en Nicaragua hasta 84% en Guatemala (Cuadros 8 y 12). Al igual que en las fincas con tamaño de subsistencia, el sistema de doble propósito ofrece al pequeño productor la oportunidad de obtener mejores ingresos que el sistema especializado en producción de carne.En fincas de tamaño mediano el desempeño económico de los dos sistemas de producción antes mencionados tiene un comportamiento igual al que presentan en las fincas de tamaño pequeño. No obstante, es importante señalar que la magnitud del impacto del sistema doble propósito, en términos de generación de ingresos, en la finca mediana es mayor que en los otros tamaños de finca estudiados. Los incrementos en el ingreso se sitúan desde 107% en Nicaragua) hasta 185% en Costa Rica (Cuadros 8 y 12).El ingreso neto/vaca por año según el tamaño de la finca y el sistema de producción se incluye en el Cuadro 16, siendo mayor en el sistema doble propósito. Se puede observar que existe un gradiente ascendente de rentabilidad por unidad animal en la medida que aumenta el tamaño de la finca. Las fincas medianas tienden a ser más rentables que las pequeñas y éstas, a su vez, más rentables que las de subsistencia. Esto se debe a que las explotaciones más grandes tienden a mejores parámetros productivos lo cual se refleja directamente en el comportamiento económico, así lo muestran los resultados en las encuestas en este estudio (Cuadro 6). En la medida en que el tamaño de la finca aumenta, mejora la tasa de fertilidad, decrece la mortalidad de terneros y aumenta la productividad de leche por vaca y por lactancia, lo que concuerda con los resultados de estudios en Colombia (Holmann et al., 2003).Cuadro 16. Ingreso neto según tamaño de finca y sistema de producción ganadero en fincas de Centroamérica (US$ de 1994 ).Sistema de producción y tamaño de finca Estos conceptos económicos comúnmente se utilizan en los análisis bajo el enfoque de programación lineal. En el presente estudio, el costo reducido muestra el ingreso que se pierde por incluir en el modelo una tecnología forrajera que no ha sido considerada en la solución óptima. El precio sombra, también conocido como precio de escasez, representa la máxima cantidad de dinero que el productor estaría dispuesto a pagar por una unidad adicional de un determinado factor limitante que se agotó en el proceso productivo.El costo reducido para las alternativas forrajeras tradicionales así como el 'precio sombra' de la tierra y de la proteína como nutriente limitante durante la época seca en el sistema de producción de doble propósito se incluyen en el Cuadro 17. Como se observa, eliminar 1 ha de cv. Mulato para reemplazarla por B. decumbens generaría una pérdida anual entre US$57 y US$115 en fincas de tamaño de subsistencia. De igual manera, reemplazar 1 ha Cratylia por King grass generaría una pérdida anual entre US$136 y US$195, dependiendo del país.El precio sombra de la tierra en fincas con tamaño de subsistencia varía desde US$47 en Costa Rica hasta US$131 en Guatemala. Esto significa que un productor en Guatemala estaría dispuesto a pagar hasta US$131 anuales por el alquilar de 1 ha adicional de tierra con el fin de dedicarla a la ganadería en sistema doble propósito, empleando la alternativa de pasturas mejoradas. Para el caso del sistema especializado de producción de carne, la situación es similar a la anterior (Cuadro 18). Precio sombra para la proteína y la energía. El precio sombra de estos componentes de la producción animal se incluyen igualmente en los Cuadros 17 y 18. Como se observa, el precio sombra de la energía es cero, lo que significa que hay un excedente en la ración y, por tanto, no es limitante. El precio sombra de la proteína varía entre US$1 y US$1.7 por kilogramo de proteína digestible, lo que indica que durante la época seca este nutriente es deficiente y no permite optimizar el exceso de energía existente en la dieta. En consecuencia, para mejorar aún más el sistema de producción se debería: (1) hacer una fertilización adecuada en el banco de proteína de Cratylia para aumentar la biomasa y la proteína total producida por hectárea, o(2) suministrar un suplemento con mediano a alto contenido de proteína de bajo precio, por ejemplo, pollinaza procesada. Para evaluar la primera opción se asumió un incremento en la producción de biomasa del 30% debido a la fertilización con 150 kg/ha de un fertilizante 10-30-10, aplicado al final de la época de lluvias; para la segunda opción se asumió un consumo de 3 kg/vaca por día de pollinaza durante la época seca a un precio comercial de US$0.04/kg, aunque esta es una práctica utilizada en muchos países de Centroamérica actualmente su uso como suplemento para animales está siendo restringido.Tanto en el sistema de doble propósito como en el especializado de producción de carne, la fertilización del banco de Cratylia permite aumentar la biomasa y la cantidad total de proteína disponibles para los animales y consecuentemente, incrementar el hato entre 7% y 9% y el ingreso neto entre 11% y 15%, dependiendo del país (Cuadros 19 y 20).Cuadro 19. Incrementos en el hato y el ingreso neto resultantes del empleo de nuevas fuentes de proteína (Cratylia fertilizada y pollinaza) que permiten optimizar el uso de la energía disponible en fincas de Centroamérica con sistema doble propósito. Cuando se analiza el efecto de la suplementación con pollinaza sobre los sistemas de producción doble propósito y especializado en carne, se observa que el beneficio es aún mayor que el obtenido con la fertilización del banco de Cratylia. En los países en estudio, la suplementación con pollinaza durante la época seca permite mantener más animales y mejorar el ingreso en comparación con el uso del banco de la leguminosa. Costa Rica es el más beneficiado con esta alternativa, ya que el uso de la pollinaza permite incrementar el hato y el ingreso neto en mayor proporción que en los demás países, debido al mayor uso de pasturas mejoradas en forma directa por los animales y al bajo costo de este subproducto en este país.Cuadro 20. Incrementos en el hato y en el ingreso neto resultantes del empleo de nuevas fuentes de proteína (Cratylia fertilizada y pollinaza) para optimizar el uso de la energía disponible en sistemas ganaderos especializados en producción de carne en países de Centroamérica. Precio sombra del capital. El precio sombra del capital en el sistema de doble propósito varía desde US$1.38 en fincas de subsistencia hasta US$2.14 en fincas medianas (Cuadro 21). En el sistema especializado de producción de carne éste varia desde US$0.76 en fincas de subsistencia hasta US$1.37 en fincas medianas. Esto significa que la inversión en pasturas mejoradas permite pagar tasas de interés anual muy altas (entre de 38% y 114% en sistemas doble propósito y entre 11% y 37% en sistemas especializados de carne).De la misma manera, el precio sombra es mayor en sistemas doble propósito debido a que éste genera mejores ingresos que el sistema especializado en carne y, por tanto, estaría dispuesto a pagar un mejor interés por el capital prestado. Por otro lado, en la medida que el tamaño de la finca es más grande, el precio sombra también incrementa. Esto se debe a que las fincas con mayor tamaño tienen parámetros técnicos más eficientes y generan mejores ingresos que les permite tener precios sombra más altos. • La inversión en pasturas mejoradas como una estrategia para acelerar el crecimiento es una alternativa socialmente rentable por su impacto en la reducción de la pobreza, el mejoramiento de la competitividad de la producción doméstica y el aumento de la oferta de alimentos y de materias primas. Este impacto se traduce en una mayor generación de empleo, incremento de los ingresos de los productores de pequeña y mediana escala, aumento de la oferta de carne y leche y en una mayor eficiencia en el uso de la tierra.• No obstante que las explotaciones ganaderas evaluadas en este estudio son de subsistencia o entre pequeñas y medianas, la mano de obra y el capital financiero son las principales limitantes para su intensificación a través del uso de pasturas mejoradas. En países como Costa Rica, donde la mano de obra es escasa y tiene un alto costo, los sistemas de alimentación basados en gramíneas como B. brizantha cv. Toledo son los más utilizados. En la medida que el costo de la mano de obra es menor, incrementa la participación de leguminosas como Cratylia.• La proteína fue identificada como el nutriente más limitante en la época seca, y así lo indica su precio sombra. Por esta razón el uso de nuevas leguminosas forrajeras tienen un papel muy importante en los procesos de intensificación de la ganadería en la región. Bajo las condiciones actuales de los sistemas de producción evaluados, la oferta de energía metabolizable no constituye un obstáculo, ya que su precio sombra es cero.Lo anterior sugiere la necesidad de continuar las investigaciones con nuevas leguminosas forrajeras de alto contenido de proteína.• Los ingresos de los productores están determinados por factores técnicos y económicos.Entre los primeros se destacan la fertilidad del hato y los índices de productividad en términos de carne y de leche por unidad animal. Independiente del tamaño de la finca, un cambio porcentual en estos parámetros, induce variaciones más que proporcionales en el ingreso del productor. En los sistemas doble propósito, como es de esperar, los cambios en el precio de la leche tienen un impacto muy significativo en la economía de los productores. Esta es una variable exógena al sistema y en consecuencia no controlable por el productor, representando, por tanto, un importante factor de riesgo.• Otros parámetros técnicos, como el peso al destete o la tasa de mortalidad de terneros, tienen una moderada influencia sobre el ingreso al productor. No obstante, se debe anotar que estos son variables endógenas, como también lo son la fertilidad y los índices de productividad del hato resultantes del funcionamiento interno del sistema y que pueden ser mejoradas a través de la alimentación y el manejo, lo cual permite disminuir riesgos dentro del negocio ganadero.• La inversión en pasturas mejoradas para incrementar el bienestar de los productores es económicamente rentable. Debido a falta de flujo de caja, para que esta inversión sea viable, los productores necesitan de una línea crediticia en que varía entre 2 y 7 años, dependiendo del sistema de producción y del país.• Los resultados de este trabajo demuestran que la inversión en investigación para el desarrollo de germoplasma forrajero mejorado, contribuye significativamente al mejoramiento de los ingresos de los pequeños productores, mientras hacen un uso más racional de los recursos disponibles, particularmente de la tierra, lo cual tiene importantes implicaciones en términos de la competitividad y sostenibilidad de la producción y del crecimiento económico general.Incremento del área en pasturas mejoradas, inversión requerida, crecimiento del hato, flujo de caja y crédito necesario para alcanzar la meta de desarrollo propuesta (objetivo) en fincas de subsistencia con sistema de producción doble propósito en Centroamérica Cuadro 1.1. Incremento del área en pasturas mejoradas, inversión requerida, crecimiento del hato, flujo de caja y crédito necesario para alcanzar el objetivo de desarrollo propuesto en fincas de subsistencia con sistema de producción doble propósito en fincas de Guatemala. Novillas producidas en la finca (#)3.9 3.9 3.9 3.9 3.9 4.4 4.9 5.4 5.9 6.6Vacas Novillas producidas en la finca (no.)3.9 3.9 3.9 3.9 3.9 4.4 4.9 5.4 5.9 6.6Vacas a. Se asume que la diferencia entre el ingreso neto de la línea base (US$1123/año) y el ingreso neto en un año determinado se destina al pago de la deuda (por ej., US$2269 en el año 2 menos US$1123 en el año base dejan $1146 para pagar deuda al final del año 2).Cuadro 2.3. Incremento del área en pasturas mejoradas, inversión requerida, crecimiento del hato, flujo de caja y crédito necesario para alcanzar la meta de desarrollo propuesta (objetivo) en fincas pequeñas con sistema doble propósito en Nicaragua.Línea base 1 2 3 4 5 6 7 8 9 (objetivo) Novillas producidas en la finca (no.)3.9 3.9 3.9 3.9 3.9 4.4 4.9 5.4 5.9 6.6Vacas a. Se asume que la diferencia entre el ingreso neto de la línea base (US$838/año) y el ingreso neto en un año determinado se destina al pago de la deuda (por ej., US$1760 en el año 2 menos US$838 en el año base dejan US$922 para pagar deuda al final del año 2).Cuadro 2.4. Incremento del área en pasturas mejoradas, inversión requerida, crecimiento del hato, flujo de caja y crédito necesario para alcanzar la meta de desarrollo propuesta (objetivo) en fincas pequeñas con sistemas de producción doble propósito en Costa Rica.Línea base 1 2 3 4 5 6 7 (objetivo) Novillas producidas en la finca (no.)3.9 3.9 3.9 3.9 3.9 4.4 4.9 5.4Vacas a. Se asume que la diferencia entre el ingreso neto de la línea base (US$1079/año) y el ingreso neto en un año determinado se destina al pago de la deuda (por ej., US$2263 en el año 2 menos US$1079 en el año base dejan US$1184 para pagar deuda al final del año 2).Incremento del área en pasturas mejoradas, inversión requerida, crecimiento del hato, flujo de caja, y crédito necesario para alcanzar la meta de desarrollo propuesta (objetivo) en fincas medianas con sistema doble propósito en países de Centroamérica Cuadro 3.1. Incremento del área en pasturas mejoradas, inversión requerida, crecimiento del hato, flujo de caja y crédito necesario para alcanzar la meta de desarrollo propuesta (objetivo) en fincas con sistema de producción doble propósito en Guatemala. Novillas disponibles para crecimiento de hato (no.) 28 3.9 3.9 3.9 3.9 3.9 4.5 5.0 5.6 6.2 6.9Tamaño Novillas disponibles para crecimiento del hato (no.) 3.9 3.9 3.9 3.9 3.9 4.5 5.0 5.6 6.2 6.9Tamaño Novillas disponibles para crecimiento del hato (no.) 3.9 3.9 3.9 3.9 3.9 4.5 5.0 5.6 6.2 6.9 a. Se asume que la diferencia entre el ingreso neto de la línea base ($14/año) y el ingreso neto en un año determinado se destina al pago de la deuda (por ej., US$66 en el año 2 menos US$14 en el año base dejan US$52 para pagar deuda al final del año 2).Cuadro 5.1. Incremento del área en pasturas mejoradas, inversión requerida, crecimiento del hato, flujo de caja y crédito necesario para alcanzar la meta de desarrollo propuesta (objetivo) en fincas pequeñas con sistema especializado en producción de carne en Guatemala. a. Se asume que la diferencia entre el ingreso neto de la línea base (US$554/año) y el ingreso neto en un año determinado se destina al pago de la deuda (por ej., US$866 en el año 2 menos US$554 en el año base dejan US$312 para pagar deuda al final del año 2).Cuadro 6.3. Incremento del área en pasturas mejoradas, inversión requerida, crecimiento del hato, flujo de caja y crédito necesario para alcanzar la meta de desarrollo propuesta (objetivo) en fincas medianas con sistema especializado en producción de carne en Nicaragua. Se asume que la diferencia entre el ingreso neto de la línea base (US$380/año) y el ingreso neto en un año determinado se destina al pago de la deuda (por ej., US$695 en el año 2 menos US$380 en el año base dejan US$315 para pagar deuda al final del año 2).","tokenCount":"8027"} \ No newline at end of file diff --git a/data/part_3/4042961117.json b/data/part_3/4042961117.json new file mode 100644 index 0000000000000000000000000000000000000000..9c5a03d47c289c196782a415cf82e5819e9e4127 --- /dev/null +++ b/data/part_3/4042961117.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"a0d3e461ff8cf084a7ec5cc7544fb8db","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/3edc6f9a-4da6-488a-98f4-1b22e19bb5d2/retrieve","id":"494935604"},"keywords":[],"sieverID":"cf03dd1a-4325-4538-aef0-741ef1298259","pagecount":"122","content":"AU/NEPAD African Union/ New Partnership for Africa's Development CAADP Comprehensive Africa Agriculture Development Programme CEC Commission of the European Communities CRS Creditor Reporting System (of the Organization for Economic Co-operation and Development) CGIAR Consultative Group on International Agricultural Research COMESA Common Market for Eastern and Southern Africa 1 Note that in this report reference to 'region' refers to SADC unless explicitly stated otherwise. 2 Details on the weights used for each indicator, where applicable, are presented in the annex. 3 The classification we use here is based specifically on the 2009 GNI per capita. The groups are: low income, USD995 or less; lower middle income, USD996 -USD3,945; upper middle income, USD3,946 -USD12,195; and high income, USD12,196 or more (World Bank 2010a). Note that countries classified here as middle-income include those classified by the World Bank as lower-middle income and upper-middle income.Share of agricultural exports and imports in total exports and imports, middle income countries Figure 6. 3 Share of agricultural exports and imports in total exports and imports, low income countries Figure 6. 4 Trends in net agricultural trade in the SADC region Figure 6.5Cereal trade in the SADC region (in 1,000 tonnes) Figure 6. 6 Maize trade in the SADC region (in 1,000 tonnes) Figure 6. 7 Food aid shipments to SADC Figure 6.8 SADC trade in cotton seed Figure 6.9 SADC trade (shelled) groundnuts Figure 6.10 SADC trade in soybeans Figure 6.11 SADC trade in sunflower seed Figure 6.12 SADC trade in cattle meat Figure 6.13 SADC trade in chicken meat 4. 4 Inward FDI in agriculture, forestry and fishing in selected countries (percentage share in total) Table 5.1Correlation between AgGDP and investment spending by core function in Mozambique (2001-09) Table 6.1Intra-SADC maize trade exports, 2008 (tonnes) Table 6. 2 Intra-SADC maize trade imports, 2008 (tonnes) Table 7.1National poverty headcount ratio (%) Table 7. 2 International poverty (USD1.25/day) headcount ratio (%) Table 7. 3 Prevalence of child malnutrition Table 7. 4 Under-five mortality rates (per 1,000 births) Table 7.5Prevalence of adult undernourishment This report provides an overview of national and regional performance against international, continental and regional targets. It presents recent trends in public spending in the agriculture sector, agricultural sector performance in terms of growth and trade, poverty and hunger. In addition, the report characterizes the macro-economic and social environment that prevailed in the region to assess how the environment was conducive to improved agricultural investments and performance. Furthermore, the report explores the possible future outlook of agriculture growth, poverty and hunger in the region.It is noted that the region is home to several dynamic economies, with countries such as Angola, Democratic Republic of Congo (DRC), Madagascar, Malawi, Mozambique, Namibia, Tanzania and Zambia registering average gross domestic product (GDP) growth rates of above 5% between 2003 and 2009. This dynamism creates a favorable environment for investments, both agricultural and nonagricultural, in the region. In addition, the region has, on average, been experiencing a decline in debt to GDP ratios and an increase in revenue to GDP ratios. This suggests increased resources at the disposal of governments in the region, which have positive implications on agricultural sector investments.However, huge fluctuations are reported for inflation and GDP growth rates between 1995 and 2009 indicating relatively unstable macroeconomic environments in both middle income countries (Angola, Botswana, Lesotho, Mauritius, Namibia, Seychelles, South Africa and Swaziland) and low income countries (the DRC, Madagascar, Malawi, Mozambique, Tanzania, Zambia and Zimbabwe). These trends imply that agricultural growth in the region would greatly benefit from a more stable macroeconomic environment given the inter-linkages between agricultural and nonagricultural sectors. A declining trend was found for total official development assistance (ODA) per capita both at country and regional level between 2003 and 2009. In general, ODA trends are shown to respond to the economic (mis)fortunes of donor countries or organizations. A special focus on Mozambique indicates that while the budgeted amount for the agriculture sector was at least 10% of the total government budget in 2003, 2004 and 2007, the actual amounts spent remained below 10% throughout the 2001-2009 period, ranging between 1.9% in 2001 to 8.9% in 2005 which illustrates the tendency for actual agriculture expenditure to deviate from budget allocated to the sector. In fact, an average of close to 78% of funds allocated to the agriculture sector was actually spent between 2001 and 2009. This implies that the approved budget to agriculture was not being fully executed.These shortfalls could be due to imperfect projections of government tax collections and underreporting of actual spending channeled through externally supported funds. Inability of donors to honor their pledges is also likely.The SADC region as a whole consistently failed to meet the Maputo Declaration target between 2004 and 2007, averaging 3.6, 3.6, 3.7 and 3.3% in 2004, 2005, 2006 and 2007, respectively. Low income countries have higher shares of agriculture expenditures in total xiii 2010 ReSAKSS-SA Annual Trends Report than middle income countries which could also be driven by the fact that agriculture is, on average, more important in terms of its contribution to GDP in low income than in middle income countries.The contribution of agriculture to total GDP has been declining across all periods (that is, 1990-95, 1995-2003, 2003 and 2003-09) for the majority of SADC countries, both in the middle and low income groups and in the region as a whole. Overall, the gap between agriculture GDP (AgGDP) and GDP in the region has been widening in the last decades implying that other sectors such as industry and services are gaining increasing importance as sources of growth in the region while the potential for the agricultural sector to contribute to overall economic growth and subsequently to poverty and hunger reduction goes untapped. Also of policy relevance is the finding that the contribution of agriculture to total GDP declines with income: it is higher in low income countries compared to the middle income group. This suggests that the agriculture sector is at the center of overall economic growth and poverty reduction in low income countries and that policies to foster agricultural growth should take into consideration the financial resource constraints which these countries might face.Labor productivity is revealed to be higher than land productivity in all SADC countries with the exception of Malawi for which land and labor productivity seems to be tracking fairly close to each other. Middle income countries have a wide gap between labor and land productivity. In general, the differences in land productivity across SADC countries could be capturing the diversity of the biophysical environment with respect to agro-ecology and climate in the region. The differences in labor productivity, on the other hand, reflect differences in human capital endowment and quality.An analysis of cereal yields in the region indicates that majority of SADC countries have, on average been falling short on the SADC RISDP target of 2,000 kg/ha cereal yield. Madagascar, Mauritius and South Africa reached this target for some periods between 1995 and 2009. In fact, Mauritius persistently met this target across all periods. It is noted that the region lags behind other developing regions in terms of cereal yields. In fact, the gap between the SADC average cereal yields and that of the other the regions such as Central America, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia and the rest of Africa has been widening over time and that this gap widens even further when South Africa is excluded from the regional calculations. Of concern, is the fact that cereal production appears to fail to match population growth in the region over the last two decades. This indicates a widening gap between production and demand for cereals. Low cereal yields, particularly in the low income countries, could be partly attributed to relatively low inorganic fertilizer use. Comparing the observed annual agriculture GDP (AgGDP) percent growth to the 6% agricultural growth set as a target by CAADP shows that the region has been performing moderately. Although slightly increasing over time, the SADC annual percentage growth in AgGDP remained below 6% across all periods: averaging 2% between 1990 and 1995, 3% between 1995 and 2003, and 4% between 2003 and 2009.Focusing on the post-2003 year-to-year AgGDP growth rates suggest that Angola has been experiencing AgGDP growth rates of more than 6% in the post-2003 period except in 2008 where it had a growth rate of 1.8%. Considering the latest period, 2009, reveals that seven countries-Angola, Botswana, Lesotho, Malawi, Mauritius, Mozambique and Namibia-surpassed the CAADP target of 6% AgGDP growth. In fact, Mozambique has been consistently registering AgGDP growth rates of more than 6% since 2005. A regional perspective shows that SADC as a region experienced a 5.5% AgGDP growth rate in 2009 and that excluding South Africa raises the growth rate to 9.5%. The middle income group had a 6.6% growth in AgGDP while this was 4.3% for the low income group.The annual average share of both agricultural exports and imports in total merchandise exports and imports, respectively, is consistently higher in the low income than in the middle income group. This reiterates the importance of agriculture in low income countries.xiv resakss.org Trends in net agricultural trade show that the majority of SADC countries are, on average, net importers of agricultural products. In fact, the agricultural trade gap for the region has been widening over time. Cereal trade indicates that SADC as a region has been a persistent net importer of cereals in the last decade. Trends in cereal trade are illustrative of how dependent exports and imports in the SADC region are on climatic conditions principally because the bulk of agricultural production is rain-fed. The sharp decline in total cereals exports and the increase in imports correspond to incidence of droughts in the region: for example the southern African region experienced droughts in 1983-84 and 1991-92, among other years. The corresponding net cereal imports were such that they rose from 1,644,625 tonnes in 1983 to 5,732,319 tonnes in 1984 and from 2,804,492 tonnes in 1991 to 9,688,498 tonnes in 1992. The variability in the net trade balance of total cereals is reflected in the trends in food aid (mainly cereals) to the SADC region. Food aid shipments to SADC rise with a fall in exports. This means food aid does bridge the gap between food supply and demand.Trade in key livestock products (meat in this case), varies across years possibly reflecting inter-temporal variations in economic and climatic conditions. The recent trends reveal that the region on average is a net importer of livestock products. Of particular concern, is the fact that this is likely to remain a problem in the foreseeable future if current conditions continue. This calls for policy attention -in terms of prioritization and resource allocationspecifically to the livestock subsector in order to increase the exploitation of the potential of this subsector in the region.Trends in national poverty rates indicate that the region has been experiencing marginal decline in poverty since 1990. Trends in poverty rates using the international poverty line, on the other hand, present a slightly different country and regional level picture. They indicate that no country, among those for which poverty data were available, had managed to reach the MDG1 target except Swaziland with a rate of 42% in 2009 against a target of 46%. Lesotho is revealed to be close to reaching the target with an international poverty rate of 36% in 2009 while the MDG1 target is 30%. Overall, it is promising to note that the low income countries have, on average, been experiencing a downward trend in international poverty rates.A declining trend in the prevalence of child malnutrition is observed between 1990 and 2009 in all countries with the exception of Lesotho, Madagascar, South Africa and Zimbabwe.The SADC region has been experiencing slightly declining average child malnutrition rates, from 26% in 1990 to 22% in 2009. In general, the decline of child malnourishment is less among middle than low income countries. In terms of achieving the MDG1 target of halving 1990 hunger rates; this remains a challenge for nearly all countries. Only Angola managed to reduce child malnutrition rates to half of those observed in 1990, from 45% in 1990 to 20% in 2009.Adult undernourishment has been on the rise in the SADC region, increasing from 30% in 1990 to 38% in 2009. This is consistent with the dire hunger situation in the region which is revealed by the 2010 Global Hunger Index (GHI) which covers the period from 2003 to 2008. Half of the 14 countries for which data were available can be said to have 'alarming' hunger problems based on the 2010 GHI. This is of particular concern for low income countries in the region that have, as a group, experienced an increase in GHI between 1990 and 2010. Actual or observed trend lines for both the international poverty rate and the prevalence of child malnutrition are clearly declining for Malawi and Mozambique. Although not a guarantee for being able to meet the MD1 target of halving both the 1990 poverty and hunger levels, this suggests that, based on past data, Malawi and Mozambique have higher chances of reaching the MDG1 target -in terms of both international poverty rates and hunger prevalence-than the rest of the SADC countries. Whether this actually happens will depend on how fast the future decline will be in poverty and child malnutrition in these countries.The Existence of significant multiplier effects from agriculture to non-agriculture sectors implies that investments in agriculture could accelerate overall economic growth even in cases where agriculture itself grows at a slower pace than nonagriculture sectors (Haggblade et al. 2007).Furthermore, evidence indicates that agricultural growth is more pro-poor than growth led by the nonagricultural sector and that focusing on accelerating only nonagricultural growth widens the rural-urban income disparities. Agricultural growth can be seen therefore, to be important in reducing poverty and income disparities (World Bank 2007).Thus improving levels and quality of investment in agriculture is critical for development.Yet, the agriculture sector in SSA faces numerous challenges in attracting investment, increasing agricultural productivity, as well as strengthening the link between agriculture and other sectors to ensure that agricultural growth has the desired economy-wide impacts.To start with, while smallholder farmers produce much of SSA's agricultural output, they are generally much poorer than the rest of the population in the sub-continent.In the Southern African Development Community (SADC) region, agriculture remains the region's driver of economic development although the importance of agriculture varies across the region (in terms of its contribution to total gross domestic product (GDP)). Seven out of the fifteen countries in the region are classified as low income countries (see Table 1.1 below for categorization of countries by income levels) (World Bank 2010a). A majority of the low income countries have small economies that are predominantly rural, and a large share of their populations is dependent on agriculture.Approximately, 189 million out of a total of around 270 million people in the SADC region depend on agriculture for their livelihoods, that is, food, employment and income.On average, the agriculture sector directly employs more than 50% of the labor force and accounts for 13% of total regional export earnings, contributing about 66% to the value of intra-SADC trade (SADC 2008a). The agro-processing sector in the region relies heavily on agriculture for raw materials while the agricultural growth linkages in most SADC countries remain higher than those in other sectors in both rural and urban areas.Despite the demonstrable and well-documented importance of agriculture in the region, agriculture growth rates have been low and highly variable across the region (Chilonda et al. 2007). In addition, persistence of dual agricultural systems with huge disparities between small-and large-scale farmers in southern Africa puts agriculture at the core of reducing income inequalities in the region. In addition to participating in continental initiatives such as CAADP, SADC countries have also responded to these challenges and placed poverty reduction at the core of national and regional development policies. SADC has put together a region-wide framework for development -the Regional Indicative Strategic Development Plan (RISDP) -which identifies poverty and food security as the main development challenge facing the region. The SADC RISDP proposes a number of key targets the achievement of which is expected to result in sustainable and equitable economic growth which in turn will facilitate eradication of poverty. These targets include, among others, achieving a GDP growth of at least 7% per annum (SADC 2006) and halving the proportion of people who live on less than USD 1 a day by 2015 in line with the United Nations (UN)Millennium Development Goals (MDGs). The goals of CAADP and SADC RISDP are consistent with other regional and international goals that have been formulated to guide policies that are meant to promote socio-economic development in Africa and beyond. For example, MDG1 has the aim of eradicating poverty and hunger by 2015. Thus raising agricultural productivity and reducing hunger in the context of CAADP and SADC RISDP is seen as vital to achieving MDG1.In light of these regionally shared goals, it is important to regularly assess or monitor the progress that individual countries as well as the SADC region as a whole have made towards achieving these targets. Specifically and particular to the CAADP targets, there is a need to monitor the type and amount of investments made in the agriculture sector. In addition, it is important to also investigate whether these investments (and related policies/practices/targets) are associated with desired impacts on key selected outcomes such as agricultural growth, poverty and hunger. This report is an annual monitoring and evaluation (M&E) report whose primarily aim is to provide an overview of national and regional performance against each of the aforementioned continental and regional targets. The report gives an overview of the agricultural growth trends and outlook in the SADC region. It attempts to provide up-to-date data and information on key policy variables and questions facing SADC member states and the SADC region as a whole. It gives a broader picture of the developments in agriculture in the region, and in the process explores the possible factors that constrain agricultural growth in the region.The rest of the report is structured as follows: the following section extends the introduction by providing a brief discussion of the data and methodology used in the report. This is followed by a discussion of the prevailing policy and/or institutional environment within the countries in the region in chapter two. The underlying assumption is that these condition the types and levels of investments going into the agriculture sector as well as the ability to implement certain policies. Chapter three discusses the CAADP implementation processes in individual countries. This is followed by a discussion that tracks countries' commitments towards increasing agricultural investments to at least 10% of the national budget in chapter four. In chapters five and six the performances of the agriculture sector in the terms of growth and trade, respectively, in the region are evaluated. Chapter seven explores poverty and hunger trends in the region while chapter eight concludes the report.In order to track the progress that countries have made towards achieving CAADP and SADC RISDP goals, the report makes use of data from commonly available international databases. These include, among others, the Food and Agriculture Organization of the The report gives an overview of the agricultural growth trends and outlook for individual SADC member states as well as for the region. 1 The primary unit of analyses is the country, with the regional level analyses used to give a broader view of the situation in the region.The regional level data are from some form of aggregation of country level data. The type of aggregation varies by indicator but basically involves summation in the case of variables/ indicators such as population and GDP, while for indicators whose original data were in percentages or ratios (for example, debt-GDP ratio and growth rates), a weighted sum approach was used in which the weight for each country is calculated as the share of the country's value (for example, GDP) in total regional value. 2 To compare how the SADC countries and the region as a whole are performing relative to other aggregated groups or regions such as the sub-Saharan Africa (SSA), statistics or values for these are presented.In addition, country-level data are also categorized by income level into low and middle income groups using the World Bank classification of economies based on Gross National Income (GNI). 3 Eight of the fifteen SADC countries are classified as middle income countries (see Table 1.1). In addition to the low and middle income classifications, we also consider, where instructive, a group which consists of all SADC countries except for South Africa. This follows from the realization that South Africa accounts for close to 65% of the total SADC output and hence may be seen as an outliner in the region and so this group could help give a clear picture of the average performance of the other 14 countries.In summary, in addition to the country-level figures, figures for five other groupings which include SADC, SADC excluding South Africa, SADC middle income countries, SADC low income countries, and sub-Saharan Africa are presented. These different aggregation levels give an overview of how each individual country is performing relative to other countries, to the region, and the sub-continent.In presenting the statistics, due importance was paid to the year 2003 as the year in which CAADP was initiated. The figures are presented so as to give a picture of the situation before and after 2003, subject to data availability. In keeping with the fact that this is an M&E report, we present, as far as possible, both annual average levels and changes in the values of the indicators in order to assess performance over time as well as progress towards achieving any stated CAADP targets. The ambition is to cover the period from 1990 to 2009. To overcome the problems of large variations associated with analysing trends based on actual year-to-year changes we focus on 5 to 8 year averages across four periods namely 1990-1995, 1995-2003, 2003, and 2003-2009. The ability to cover all four periods is subject to data availability.The creation of an enabling environment is one of the key building blocks in the implementation, monitoring and subsequent achievements of regionally shared goals, in particular those of CAADP, SADC RISDP and MDGs. The prevailing environment, to a large extent, is crucial not only for increasing investment and stakeholder engagement, but also in conditioning the impact of those investments on selected outcomes such as agricultural productivity, poverty, and hunger.While a multiplicity of factors determine/define the enabling environment for agriculture sector investments, this report focuses on the following: the socioeconomic context which includes a brief discussion of SADC membership, the human demographic profile of the region as well as a discussion of key macroeconomic indicators such as GDP per capita, GDP growth rate, inflation, government debt-GDP ratio, and government revenue-GDP ratio; and the policy and institutional environment at international, regional and national level. The report also discusses the trends in official development assistance (ODA) as an indicator of the external or international environment affecting agriculture.SADC membership comprises 15 countries (Figure 2.1): Angola, Botswana, the Democratic Republic of Congo (DRC), Lesotho, Madagascar, Malawi, Mauritius, Mozambique, Namibia, Seychelles, South Africa, Swaziland, Tanzania, Zambia, and Zimbabwe. 4The combined population of SADC stood at around 270 million in 2009. The Democratic Republic of Congo (DRC) has the largest population (66 million) followed by South Africa (49 million) and Tanzania (44 million). With a population of 88,000, Seychelles is the region's least populated country (World Bank 2010b). The combined regional population as well as population disparities among member states underscore the need for increased regional integration as this will lead to larger markets.While the region, like the rest of the developing world, is undergoing rapid urbanization, the majority of the population lives in rural areas and are dependent on (subsistence) agriculture for their livelihoods (Chilonda et al. 2007). The region is home to one of the poorest people in the world, with close to 45% of the total SADC population living on 1 USD per day. Malnutrition remains rife, ranging from 44 to 72% across the region (SADC 2008b). Although the causes and consequences of poverty vary from country to country, in general, rural poverty is prevalent in the region and has been attributed mainly to low agricultural productivity, extreme vulnerability to natural disasters such as droughts and floods (for example, in Mozambique) and poor infrastructure. (IFAD 2007). Moreover, the high incidence of HIV/AIDS in southern African countries intensifies poverty. In terms of male life expectancy, Mauritius had the highest (69 years) while Lesotho and Zimbabwe had the lowest (44 years) (World Bank 2010b). The decline in life expectancy is partly due to high prevalence of HIV/AIDS and malaria, and the low intake of calories in the region (Chilonda et al. 2007).Infant mortality rates remain above 50 per 1,000 births for most countries in the region (SADC 2008b). The under-five mortality rate, which is the probability per 1,000 that a newborn baby will die before reaching the age of five, if subject to current age-specific mortality rates, shows that Angola had the highest infant mortality rates (161) in 2009, followed by Mozambique (142) and Zambia (141), while Seychelles has the lowest mortality rates (12) (World Bank 2010b). The Gini index is the Gini coefficient multiplied by 100. It measures the degree of inequality in the distribution of income in a given country by capturing the extent to which the distribution of income among individuals within the country deviates from a perfectly equal distribution indicated by zero.combined GDP of around USD273 billion (measured in constant 2000 USD). South Africa is the biggest economy in the bloc, with a GDP of nearly USD182 billion in 2009. This constitutes about 65% of the total SADC economy. The second largest is Angola, followed by Tanzania. The country with the smallest economy is Seychelles.As Figure 2.1 shows, the SADC region is unique in the sense that it has a number of middle and low income countries adjacent or in close proximity to each other. Specifically all low income countries, except Tanzania and Malawi, share a border with at least one middle income country. This presents the region with a unique opportunity for middle income countries to influence growth in low income countries through for example regional trade, foreign direct investment (FDI), and spillover effects.In terms of GDP per capita, Table 2.1 shows a wide variation across the four periods being considered. Seychelles had the highest annual average per capita GDP across all four periods (note that Seychelles is the least populated country in the region). The DRC had the lowest GDP per capita in the latest period, 2003-09. The regional annual average GDP per capita remained consistently above that of SSA. Table 2.1 shows that the period 1990-95 was, on average, disappointing for most countries. These economic misfortunes could be partly due to the 1991-92 droughts that were experienced by most southern African countries. This highlights the importance of the agriculture sector in driving GDP trends in the region.These economic misfortunes were, for most countries, reversed in 1995-03.Trends in GDP growth rates are presented in Figure 2.4 and Figure 2.5 for middle and low income countries, respectively. Figure 2.4 shows that, among middle income countries, Angola experienced consistent growth across the four periods, although it started off with a negative annual average growth of -3.20% in 1990-95. South Africa also showed fairly consistent positive growth was South Africa, although at a much slower rate than that of Angola. However, both Angola and South Africa experienced negative annual average percentage point change in the periods 1995-03 and 2003-09 (see Table A.1 in the Annex).Angola's high growth rates can be attributed largely to its oil sector, owing to high oil prices and rising petroleum production. The sector contributes close to half of the country's GDP Other key determinants of a stable macroeconomic environment are the government gross debt to GDP ratio and revenue to GDP ratio. The regional trends in these indicators are illustrated in Figure 2.8 for the middle income countries and Figure 2.9 for the low income countries.Countries for which the government gross debt to GDP ratio consistently declined across the three periods include Angola, Lesotho, South Africa, and Swaziland. Botswana, Mauritius, Namibia, and Seychelles experienced growth in the debt-GDP ratio in 2003.Seychelles, in particular, had relatively high debt-GDP ratios: 150% in 2000-03, 160% in 2003 and 143% in 2003-09. The revenue to GDP ratios fluctuated less than the debt to GDP ratios across all countries and all time periods. However, they had fairly similar patterns in the case of Namibia.Considering the low income countries, on the other hand, all of them had a persistent decline in debt-GDP ratios across the three periods. Zambia stands out with a decline of 206% in 2000-03 to 75% in 2003-2009. For all low income countries and across all three time periods, the debt-GDP ratios are consistently higher than the revenue-GDP ratios. Taken together, the declining debt to GDP ratio and the increasing revenue to GDP ratio signal increased the amount of resources available for disposal by governments. This presents an opportunity for governments to increase agricultural sector investments.The importance of agriculture in Africa as well as the challenges constraining the sector's role in overall economic growth, poverty reduction and food security continues to gain international, regional and national policy attention. This is reflected in several initiatives that have led to an increased commitment by countries to allocate more resources to the sector as well as in countries' policy reforms that are aimed at creating an environment that is conducive to increased agriculture investments. In this section we provide a brief overview of these initiatives.Several international and continental initiatives, policies or agreements have been put in place in support of agriculture-led development. for national and regional programs. These include 'sustainable land and water management'; 'market access'; 'food supply and reduction of hunger'; and 'agricultural research'. CAADP targets a 6% average annual growth in the agriculture sector. 6 The CAADP framework is supported by the 2003 Maputo Declaration in which African governments committed to allocation of at least 10% of their respective national budgetary resources to the agriculture sector. In addition, the Heads of State and Government resolved, inter alia, to revitalize the agriculture sector special policies and strategies that target smallholder and subsistence farmers in rural areas.In addition to supporting member countries with the implementation of CAADP (through for example assisting member countries with drafting of their respective CAADP compacts),the SADC region has also placed poverty reduction at the core of its development policies through several strategic policies/plans. Particular examples include the Regional Indicative Strategic Development Plan (RISDP) and the Dar es Salaam Declaration on agriculture and food security. Another significant regional initiative is the launching of a Free Trade Area (FTA) in 2008.RISDP is SADC's 15-year strategic framework for deepening regional integration and in the process eradicating poverty and achieving sustainable development. It was approved by the SADC Council and endorsed by a Summit in 2003 following extensive stakeholder consultations in all member states and taking into consideration regional and international Furthermore, SADC RISDP reiterates the region's commitment to good political, economic and corporate governance as prerequisites for sustainable socioeconomic development, and essential to the success of the region's poverty eradication efforts and deeper levels of integration. This regional emphasis on internationally upheld principles of good governance are crucial in creating an enabling environment for increased regional and international investment, while by according priority to agriculture in the region, RISDP draws policy and investor's interest to the sector. removing gender discrimination; mitigation of the impact of HIV/AIDS. At the regional level, the declaration included measures on market access and disaster preparedness.A recent major milestone in the SADC regional integration agenda was the launching of a free trade area (FTA) in August 2008 in South Africa, which opens the gates to tariff and barrier free trade among the community's 15 countries. The FTA came into effect through the signing and launching of the SADC Protocol on Trade in 2000. It is a significant step towards deeper regional economic integration, which is to be achieved on an incremental basis leading to a Customs Union by 2010, a Common Market by 2015, a SADC Monetary Union and SADC Central Bank by 2016, and launching of a regional currency by 2018 (SADC, 2008c).At the moment there are 11 countries participating in the FTA, which includes all countries except Madagascar (due to its suspension from the regional bloc in 2009), Angola, DRC and Seychelles (which have not acceded to the Protocol on Trade).The main element of the FTA is that it mandates FTA member states to liberalize trade via removal of tariffs and other non-tariff barriers (NTBs), with tariffs reduced to zero for substantially all products. Around 85% of goods traded in the FTA are duty-free, while 15% of mainly sensitive products (good of economic importance to member states) will be subjected to a 'tariff phase down' until they have zero tariffs by 2012 (SADC 2008c). For goods to qualify for the FTA treatment, they need to meet the 'rules of origin' which are essentially a set of agreed criteria used to distinguish between goods produced within SADC member states and those that aren't. 7 In terms of NTBs, member states have agreed to eliminate all of them and not impose any new ones, except when necessitated by health or safety concerns. In addition to the removal of standard tariff and non-tariff barriers, the FTA aims to facilitate trade by reducing red tape and paperwork at the borders and easing the constraints facing the movement of goods throughout the region. 8 This is, especially important given that some SADC member states -Botswana, Lesotho, Malawi, Swaziland, Zambia and Zimbabweare landlocked and as a result have to rely on their neighbors for movement of exports and imports. The improved movement of goods resulting from the FTA is expected to reduce transaction costs and result in lower prices for consumers and bigger markets for producers. 9Other envisaged benefits include: increased trade, increased domestic production, access to cheaper inputs, increased employment and increased foreign direct investment which is expected to also involve investment in the agriculture sector.The launching of the FTA is a significant development in terms of creating an enabling environment for agriculture in the region, especially given that most SADC economies are largely agrarian. The countries are diverse in terms of their agricultural potential, for example, some are more prone to droughts (Botswana, Namibia, Zambia and Zimbabwe)than others, some have climatic conditions that are favorable for food production (Malawi, Zambia and Zimbabwe), while others have limited arable land (Botswana and Namibia) with a comparative advantage in livestock instead of crop production. This diversity creates an opportunity for increased trade in agriculture and food products within the region, which makes the launching of a FTA particularly commendable. Furthermore, the fact that SADC countries are at different levels of economic development suggests that improved integration presents trade and development opportunities for both low and middle income countries.While the establishment of the FTA is significant, there is a need to consider additional interventions beyond trade arrangements such as enacting and strengthening policies that seek to promote agricultural investments, productivity as well as diversification (Nin-Pratt et al. 2008). Initiatives such as CAADP and SADC RISDP are examples of such policies.At the national level, SADC member states, in addition to embracing regional, continental and international initiatives, have put in place national policies that seek to create an environment that support the implementation of these initiatives. These include, among others, signing of the CAADP Compacts, development and adoption of national strategies or policy documents to guide agriculture and efforts to enhance food security. In addition, SADC member states have also undertaken policy reforms that seek to improve governance conditions and subsequently improve the environment for investments and doing business in the country.In order to ensure that the prescribed strategies and policies are properly implemented and are able to have an impact, SADC member states have been undertaking governance reforms that are primarily aimed at creating an environment in which investments (including agricultural investments) can thrive. Accordingly, to assess whether or not an environment is conducive to investments and the ability to reap the benefits accruing from those investments exists in SADC countries, the countries' rankings in terms of the ease of doing business are presented. An environment in which it is easy to conduct business is expected to be vital in mobilizing private and foreign direct investment in agriculture.The 'Doing Business' indicator ranks, from 1 to 183, economies on their ease of doing business.This index averages the country's percentile rankings on nine topics which include: starting a business, dealing with construction permits, registering property, getting credit, protecting investors, paying taxes, trading across borders, enforcing contracts and closing a business, made up of a variety of indicators, giving equal weight to each topic. The ranking on each topic is the simple average of the percentile rankings on its component indicators. A low overall ranking means the regulatory environment is more conducive to the starting and operation of 8For example a single customs administrative document (SADC-CD) has been introduced to ensure speedy customs clearance of goods at entry points. 9The SADC Cooperation in Standardisation, Quality Assurance, Accreditation and Metrology (SQAM) has been tasked with ensuring that the traded goods meet internationally agreed standards for the safety of consumers a business. 10 The overall 'Doing Business' rankings for all SADC countries for 2009/2010 and 2010/2011, along with the change in ranking between these periods, are presented in Table 2.2.Table 2.2 suggests that five countries made gains between 2009/2010 and 2010/2011 in improving the environment for doing business. This includes Angola, DRC, Mozambique, Swaziland and Zambia. Among these countries are the top two fastest growing economies in the region (Angola and Mozambique) suggesting that improved business environments is important to facilitate overall economic growth. In particular, the improvement in the ease of doing business, especially in low income countries (DRC, Mozambique and Zambia) is vital to creating an enabling environment for much needed investments in these countries.It should be emphasized that improving the ease of doing business should be complemented by a regulatory framework that allows the development of national policies and ensures that the projects or businesses that are promoted have gone through a set criteria that considers the overall trajectory of the country's development agenda. This is particularly relevant given the increasing incidence of large scale land acquisitions in the region and other parts of SSA. Land grabs are defined as a situation where land traditionally used by local communities is leased or sold to mainly foreign investors. Whilst in many cases the land is used for food cultivation, there has been a growing interest in using it for biofuel production, particularly to supply the growing EU market. Examples of affected countries in the SADC bloc include Angola, Madagascar, Mozambique, and Tanzania (for the scale of land grabbing in these and other countries see for example, Burgis (2009) cited in Cotula et al. (2009), Kachika (2009), Reuters (2008) cited in Cotula et al. (2009).The growing number of investment contracts is largely facilitated by developing countries' more favorable attitude to foreign direct investment (FDI) as reflected in national-level policy reforms to improve conditions for foreign investors such as for example easing or removal of restrictions on foreigners' acquisition of strategic assets, including land.While investments are important to the region, the concern with these 'land grabs' is that they have displaced smallholder farmers in some areas, an example being the case of a Source: World bank (2010c). Notes: a low ranking means the regulatory environment is more conducive to the starting and operation of a business.sugarcane plantation in Tanzania which displaced around a thousand farmers (Cotula et al. 2009). In such a situation, compensation is often poor. Yet, contracts involved between the governments and investors are often short and lacking in details, leaving the host governments with limited or no control over the contracts.The 'land grab' phenomenon underscores the need for accompanying policies aimed at easing the process of doing business with regulatory policies that are hinged on an inclusive and transparent investment decisions making process. In particular, the fact that the host countries are usually poor and food insecure means that if not carefully monitored, 'land grab' deals can negate not only the countries' ability to meet CAADP, SADC RISDP, and MDG1 goals of poverty and hunger reduction, but will also derail their overall economic development process.Trends in official development assistance (ODA) indicate the state of the external or international environment affecting agriculture. Table 2.3 illustrates the variations in total ODA per capita across SADC countries as well as over time. In general annual average percent changes in ODA remained negative across the four periods under consideration.The post-2003 period, i.e. 2003 to 2009 indicate negative annual average percent changes for all countries as well as the region as a whole. Seychelles recorded the biggest drop in this period, with an annual average percent change of -39.47% in the 2003-09 period. Yet, even with this drop, Seychelles recorded the second highest total ODA per capita (USD 158 million) in this period (note that Seychelles is the least populated country in the region), second to Zambia which had an annual average of around USD161 million of total ODA per capita.Excluding South Africa from the regional aggregations does not significantly change the picture; although the realized annual average percentage change is slightly higher for 1995-03(it is 4.43%). Comparing low and middle income countries suggests that for all periods under Annual % change average % change (1995-(1995-average (2003-Region/Country (1990-95) (1990-95) 2003) 2003) 2003 (2003-09) 09 study, low income countries have higher annual average total ODA per capita, although they had a negative annual average percentage change (-7%) in 1990-95. In fact, it can be argued that the trend in total ODA per capita experienced by the low income countries is the one driving the overall SADC trends. These regional trends are mirrored by the trends in SSA. Angola is driving the average shares observed in the entire middle income group.Among low income countries, Zimbabwe is notable for its high and increasing annual average emergency food aid shares in total ODA (see Thus, while total ODA per capita declined both at country and regional level in the period 2003-09, a mixed picture existed with respect to the share of agriculture ODA in total ODA as well as the share of emergency food aid in total ODA. This chapter tracks the progress individual countries and the SADC region have made towards the implementation of CAADP. 11Comprehensive Africa Agriculture Development Program (CAADP) is meant to be principally implemented at the country and regional level. By focusing on country level implementation, CAADP recognizes that there is no single road map that fits all countries.Implementation is, however, supposed to use a common set of tools and be based on mutual, peer and progress reviews at the continental, regional and national levels that are meant to guide country strategies and investment plans and ensure harmonized agricultural development efforts across the continent. The goal set for each country is a 6% average annual growth in the agriculture sector and an allocation of at least 10% of the national budgets to the sector. CAADP guides investments in agriculture across four thematic 'pillars' that serve as policy frameworks for national and regional programs.11 This is done for the period up to the 30th of June 2011.Country implementation of CAADP follows a specific consultation process in a 'round table' format that leads to country and regional 'CAADP Compacts'. These Compacts outline country-specific policy reforms and guidelines for public and private investments and interventions required to achieve set targets. The Compact should reflect the individual countries' institutional and technical capacities and constraints. Prior to signing the Compacts, the country has to go through a set rigorous consultation process involving both governments and RECs. After signing the country Compact, the country then engages in elaboration of detailed investment plans which is followed by a series of review meetings that validate these plans, and comes up with a financing plan. An assessment of program execution is done which is then followed by actual execution.The period between 2009 and early 2011 saw an accelerated country implementation of CAADP with a total of 26 countries having successfully signed their Compacts to date. Of the five countries that have signed their Compacts, four are low income countries (DRC, Malawi, Tanzania and Zambia) which suggests that the process of implementing has been particularly faster among low income countries where agriculture constitutes a big share of the economy and is vital for poverty and hunger reduction. Non-agriculture sectors remain more strategic than agriculture sectors to middle income governments (for example, oil in Angola and diamonds in Botswana).Regarding the five countries that are not in Figure 3.1 (Angola, Botswana, Lesotho, Namibia and South Africa), the CAADP process had not officially started at the time of writing this report (as of June 30, 2011) and it was not clear when it will begin. This section starts by giving a region-wide overview of trends in agriculture expenditures as a share of total expenditures over the period 2004-2007 for 12 countries for which data were available. It then proceeds to focus on Mozambique that had relatively comprehensive agriculture budget allocation and expenditure data. An overview of the trends in domestic private and foreign direct investment in the region is also provided.The annual average share of agriculture expenditures in total expenditures are presented in and 2007, with the share of agriculture expenditures in total increasing, on average, for some countries (for example, Malawi) and clearly decreasing for others (for example, Zimbabwe).The SADC region as a whole consistently failed to meet the Maputo Declaration target, averaging 3.6, 3.6, 3.7 and 3.3% in the years 2004, 2005, 2006 and 2007, respectively. These shares were consistently below the average recorded for SSA as a whole. Low income countries have higher shares of agriculture expenditures in total than middle income countries which could also be driven by the fact that agriculture is, on average, more important in terms of its contribution to GDP in low income than in middle income countries.On average, only Zimbabwe, with 11.3% of total expenditures spent on the agriculture sector, had agriculture expenditures constituting more than 10% of total public expenditures. 4.3, on the other hand, shows the average levels of investment in each function for the 2001-09 period as well as the average annual growth rate in the level of investments. In addition, Table 4.3 presents the coefficient of variation associated with investment levels for each core function for the 2001-09 period. The coefficient of variation is a normalized measure of variability or dispersion of investment levels and is computed as the ratio of standard deviation (the square root of variance of investment levels) and average investment level. The coefficient of variation is a dimensionless number, which increases with the extent to which investment levels are further from the average level observed between 2001 and 2009.On average, besides common expenses, the highest investment spending between 2001 and 2009 was in production support (MZN 168 million per year) followed by institutional support at (MZN 160 million per year). The least investment spending, on average, was in irrigation. The measure of variability demonstrates high variability in investment spending by MINAG between 2001 and 2009. The function for which investment spending was the most variable is livestock services (142%) followed by production support (120%), irrigation (108%) and forestry (102%). Spending on institutional support was the least variable with a coefficient of variation of 44%. Such variability in investment expenditure is of concern since it implies the country is not consistently accumulating capital to be able to raise and sustain growth in agricultural output. This revealed variability could be a source of variability in agricultural productivity and production. For example, Alene and Coulibaly ( 2009) find an aggregate rate of return of agricultural research in sub-Saharan Africa to be 55% while it was found to be 54% for Mozambique. Alston et al. (2000) conducted a meta-analysis of rate of return studies on agricultural research and extension studies and found an average rate of 35% for SSA. They argue that returns from investing in agricultural returns, like any type of investment, depend on the country's farming systems and dependence on rain-fed production. This evidence, thus, suggest that positive annual growth in extension and research in Mozambique between 2001 and 2009 should be upheld.Of concern is the negative annual growth in irrigation investment expenditure given that some parts of Mozambique are prone to droughts and thus irrigation would significantly contribute to improve agricultural productivity. Heavy reliance on rain-fed agriculture under such conditions results in erratic agricultural output and threatens efforts to improve food security.Historical data on domestic private and foreign direct investments in SSA countries are very limited, particularly data that are disaggregated by sector. Lack of data on domestic private investments is partly due to underdeveloped information and data management systems, the scale of operations of agribusiness operations with a significant proportion of businesses being small-to medium-scale producers and enterprises. In addition, a big proportion of businesses tends to be informal and as a result is often not captured in national statistics.Data on commercial bank lending to the agricultural sector in four SADC countries -Botswana, Malawi, Mozambique and Tanzania-are used to give an overview of the extent of domestic private sector investments in the agriculture sector. Though an imperfect measure given that it does not capture the informal agribusiness sector, commercial bank lending to agriculture is generally used to proxy domestic private agribusiness investment.Data are taken from Mhlanga (2010) and are based on annual statistical bulletins data from central banks in these countries. Figure 4.4 demonstrates how the share of lending It indicates that commercial banks in Botswana spent the least share of their total portfolio on the agriculture sector while in Malawi, the least share went to 'mining and quarrying' (0.11%), in Mozambique it went to 'building and construction' (4.25%) and in Tanzania it went to 'mining and quarrying' (0.86%).In illustrating trends in private sector agribusiness investment in SSA, Mhlanga (2010) finds that private investments in the agriculture sector are mainly concentrated in highvalue crops and non-traditional products such as cut flowers destined for markets in industrialized countries.The (Cotula et al. 2009).The growing number of agricultural land purchases can be attributed to the policy reforms in host countries which have made it attractive for FDI in agricultural land.Availability of under-utilized land (and low-cost labor to work on this land) in landrich SSA countries makes it attractive for FDI in agricultural land. Moreover, by drawing attention to the vulnerability of the global food supply, the recent food crisis enhanced the growing interest in agricultural land investments (Cotula et al. 2009).In addition, high oil prices in 2007 and 2008 strengthened the case for diversification of the energy sector for energy security reasons, making the cultivation of biofuels a direct competitor to food production on existing cropland and consequently another driver of the international land deals. Thus the increasing food demand and scarcity of arable land and water in most parts of the world creates the expectation that arable land values will rise and this contributed to speculative agricultural land deals (von Braun and Meinzen-Dick 2009). 12 Arguments in favor of land deals often hinge on the increased infrastructural developments that these deals are supposed to accompany in the host countries. Given that host countries are often poor, these developments are seen as vital for overall socioeconomic development and thus an incentive for host countries to sign these land deals. In addition, land investments with proper design could contribute to the host country's revenue generation, job creation, development of rural infrastructure, increased food security and spillover effects in terms of transfer of agricultural technologies and practices.Agricultural land investments have, however, been surrounded with controversy. The main criticism is that many of them focus on cultivation of biofuels, and give investors the full export rights to the production. This raises the question of whether it is appropriate to allow foreign nations to buy large hectares of land to secure their own food security while the host countries themselves remain food insecure. As a result, land deals are perceived as a threat to local food security.Also of concern are the possible environmental impacts of the investments. The clearing of land to make way for (biofuel) farming can cause deforestation and lead to reduction of biodiversity. The social cost could also be great, especially if local communities are evicted to make way for foreign investors, or if agricultural land is used for biofuel production at the expense of food production.12 For discussions on the motivation for and the scale of land grabbing in the SADC region see for example, Burgis ((2009) cited in Cotula, et al., 2009), Kachika (2009), Reuters ((2008) cited in Cotula, et al., 2009).This chapter seeks to track the region's progress in terms of agricultural productivity growth.It also considers possible sources of growth, with particular attention to the productivity of land and labor and the use of chemical fertilizers.In order to highlight the significance of the agricultural sector in the region, the section begins by presenting each country's contribution to regional agriculture value added (which is agriculture GDP, AgGDP) based on its annual average AgGDP between 1990AgGDP between and 1995AgGDP between and between 2003AgGDP between and 2009 as seen in Figure 5.1 (the actual AgGDP figures are presented in Table C.1 in the Annex). This is followed by a presentation of the country and regional statistics on the share of agriculture value added as a percentage of GDP which is indicative of the size of the sector.Comparing 2003 -09regional AgGDP. This indicates growth in the size of the agriculture economy in Tanzania given that it contributed 23% to the regional total in 1990-95. The DRC maintained its position as the third largest agricultural economy in the region, contributing 12% to the total SADC AgGDP in 2003-09. The country with the least growth in agricultural economy in the region is Seychelles, contributing less than one percent in both periods.In fact, as shown in Figure 5.2 the gap between AgGDP and GDP in the region has been widening in the last decades implying that other sectors such as industry and services are gaining increasing importance as sources of growth in the region while the potential for the agricultural sector to contribute to overall economic growth and subsequently to poverty and hunger reduction goes untapped.The contribution of agriculture to total GDP is presented in Figure 5.3. The importance of agriculture to the overall economy is seen to decline with income: it is higher in the economies of low income countries compared to the middle income group. Specifically, based on the AgGDP shares in 2003-09, Figure 5.3 shows that the top seven countries in terms of shares were all low income countries. Tanzania not only has the largest agricultural economy in the region (see Figure 5.1), but also the contribution made by the agriculture sector to the country's GDP is the largest in the region (around 45% in 2003-09). Similarly, for the rest of the low income countries, agriculture contributes at least 15% to their respective GDPs. Botswana had the lowest contribution of 2.1%, while Seychelles had the second lowest with agriculture contributing close to 2.4% of the GDP.These trends, which reveal a decline in the share of AgGDP in total GDP as the income status of the country improves, are in line with theoretical and empirical literature that has demonstrated that the importance of agriculture in total GDP is closely related to the country's stage of development, with economic development being inversely related to the share of agriculture in total GDP. These trends are also confirmed at regional level (see Figure 5.4) where the share of agriculture in total GDP has been consistently higher (at least six times higher) across all periods in the low income group than in the middle income group. 1990-1995 1995-2003 2003 2003-2009 income countries, the contribution to GDP was 28% for low income countries. Figure 5.4 also indicates that excluding South Africa from the SADC group raises the annual average share of AgGDP in total GDP. It also reveals that SADC has lower agriculture share in total GDP than SSA while, however, excluding South Africa reverses the picture: SADC (without South Africa) has higher shares of agriculture in total GDP than the average for the whole of SSA.Given that South Africa is the region's biggest economy, these trends also support the view that AgGDP shares in total GDP decline with income levels.The revealed importance of agricultural GDP in total GDP particularly among low income countries is of significant policy considerations. First, it suggests that the mere size of the agriculture sector in these countries places the sector at the center of overall economic growth and poverty reduction in these countries. Second, the fact that these are low income countries indicates that policies to foster agricultural growth should take into consideration the resource constraints that these countries might face.It is noted that there is a declining trend in the share of agriculture in total GDP across all periods for the majority of countries; both in the middle and low income groups and in the region as a whole (see Figure 5.4).This report uses trends in land and labor productivity measures as proxies for the level of agricultural productivity and modernity of agriculture in the region. These are partial productivity measures that indicate the amount of agricultural output per unit of input where land productivity will be an indicator of agricultural output per unit of land (per hectare to be precise) and labor productivity is the output per economically active persons in the country. Statistics on land and labor productivity are reported in Figure 5.5 for middle income countries and Figure 5.6 for low income countries.Among middle income countries and in the region as a whole, Mauritius and Seychelles Mauritius, each hectare harvested yielded I$1,756 worth of agricultural production while Seychelles had the second highest land productivity of I$900. 13 These two countries also happen to be the smallest countries in the region (Seychelles is the smallest while Mauritius is the second smallest), in terms of land area and population, and are two of only three islands in the region. A combination of these factors could be driving land productivity levels in these countries. Botswana, on the other hand, consistently registered the least land productivity in the middle income group (and in the whole region).With regards to labor productivity, South Africa had high annual average labor productivity relative to the rest of the countries, rising from I$3,741 between 1990 and 1995 to I$5,716 between 2003 and 2009. Labor productivity is seen in Figure 5.5 to have been increasing for the middle income group as a whole across all periods.For the low income group, Malawi consistently recorded the highest land productivity while Mozambique, on the other hand, consistently had the lowest across all periods. As a group, low income countries have, like the middle income group, been experiencing increasing land productivity across the four periods. In terms of labor productivity, Zimbabwe consistently recorded the highest productivity among the low income countries across all periods. Again Mozambique registered the lowest labor productivity across the four periods. As a group and compared to middle income countries, low income countries exhibit relatively variable labor productivity levels.In all countries -middle and low income-labor productivity is revealed to be higher than land productivity (the exception is Malawi for which land and labor productivity seems to be tracking fairly close to each other). This is the case for all time periods and also holds for the region as well as SSA. Middle income countries in particular, have a wide gap between labor and land productivity, even higher than that revealed for SSA. Taking a regional perspective indicates that SADC had consistently lower land and labor productivity than SSA. The differences in productivity in general and land productivity in particular across figurE 5.6 lanD anD labor ProDuctivity, loW incomE countriEs.Source: authors' calculations based on 2010 faostat (fao, 2010). Notes: in malawi land and labor productivity seems to be tracking fairly close to each other. I$ refers to International dollars. An international dollar has the same purchasing power as the US$ dollar has in the United States. Purchasing power parity (PPP) exchange rates are used to convert costs in local currency units to international dollars. A PPP exchange rate is the number of units of a country's currency required to buy the same amounts of commodities in the domestic market as U.S. dollar would buy in the United States.SADC countries could be capturing the diversity of the biophysical environment with respect to agro-ecology and climate in the region. These factors determine the agronomic potential of crop production and subsequently the prevailing farming systems in the region (see Figure 5.7). These differences in agro-ecological factors and subsequently in farming systems, coupled with differences in resources endowments which determine the ability to adopt productivity-enhancing technologies, could partly explain the differences in land productivity across the region.Different countries arguably have different potentials in the production of different crops or animals. To account for differences in agricultural potential Figure 5.8 presents countries' annual average shares in total production of key crops in the region between 2003 and 2009 (the actual production levels are presented in Table C.5 in the Annex). South Africa is revealed to dominate the regional production of total cereals, maize and wheat, accounting for 40, 45 and 81% of the regional total, respectively. Tanzania tops banana, millet and sweet potato production in the region, accounting for 60, 40 and 30% of total regional production, respectively. With respect to potato production, Malawi produces 40% of the regional total while South Africa produces 32%. Madagascar dominates rice production, contributing 64% to total rice production. The DRC tops cassava, groundnuts and roots and tubers production with shares of 36, 28 and 29%, respectively, in total regional production. Zimbabwe dominates sorghum production, contributing 50% to the regional total followed by Swaziland at 27%.Figure 5.9 presents each country's annual average contribution to the regional production of major livestock (taken to be cattle, goats, pigs and sheep) between 2003 and 2009. The actual production levels are presented in Table C.6 in the Annex. While South Africa is shown to dominate cattle meat production, accounting for 48% of the regional total, it is Tanzania that is shown to have the highest share of cattle head in the region with a share of 29% compared to South Africa's 22%. A similar pattern is observed for goat production:South Africa accounts for the largest share of goat meat production (21%) while Tanzania has the largest goat stocks in the region. With respect to pig and sheep production, however, South Africa dominates both meat production and stocks. It accounts for 41 and 75% of pig and sheep meat production, respectively, and accounts for 20 and 70% of pig and sheep stocks, respectively.Cereals are the most important food crops in SADC; dominating crop production with maize being the most important crop in terms of land utilization (Chilonda et al. 2007).Cereal production trends are, thus, indicative of the ability of the region to meet its food Comparing the observed annual average cereal yields to the SADC RISDP target of 2,000 kg/ha shows that only Mauritius has been persistently meeting this target across all periods.Madagascar achieved this target for only two periods, 2003 and 2003-209, while South Africa managed to reach the target for the 1990-1995, 2003 and 2003-09 periods. The rest of the countries have, on average been falling short on the SADC RISDP target of 2,000 kg/ ha cereal yield across all periods. The regional averages, like that of the low income group, are also below this target, even when South Africa is removed from the group. The middle income groups, however, had average yields higher than 2,000 kg/ha in 2003 and 2003-09 which is largely driven by Mauritius and South Africa.Comparing the regional statistics with other major developing countries, Figure 5.11shows that the SADC region lags behind other regions in terms of cereal yields. The figure also suggests the gap between the SADC average yields and that of the rest of the regions has been widening over time and that this gap widens even further when South Africa is excluded from the regional calculations.To be able to have an idea of how the region has been fairing in terms of meeting the food needs of its population, Figure 5.12 presents the cereal production per capita.Despite having been revealed as having the highest cereal yields across all periods, Mauritius has the lowest per capita cereal output across all periods. It is less than a kilogram per capita across all periods except between 1990 and 1995 where it was 1.5 kg/capita. Although the cereal per capita production has been declining over time, South Africa has the highest per capita cereal production across all periods: averaging 289 kg/capita between 1990 and 1995, 272 kg/capita between 1995 and 2003, and 260 kg/capita between 2003 and 2009.Overall, the region experienced declining cereal production per capita trends across all periods. In fact, as indicated in Figure 5.13 cereal production has been failing to match population growth in the region over the last 4 to 5 decades. Figure 5.13 shows that this 1990-1995 1995-2003 2003 2003-2009 became particularly a problem from around 1979 when per capita production started lagging behind actual total cereal production, with the gap between the two widening over time. This indicates a widening gap between production and demand for cereals.A look at the trends in fertilizer use, presented in Figure 5. could partly be due to the introduction of farm subsidies, particularly for fertilizers and improved seeds. Arguably, the sustainability of these subsidies is yet to be established and could be a source of vulnerability to food insecurity in the country should the government be no longer in a position to sustain them. Overall, the low income group not only had yield and fertilizer use levels that were consistently below the levels registered by the middle income group but these were also more variable than that of the middle income group.Comparing the fertilization rates in Figure 5.14 to the target of fertilizer consumption rate of 65 kg/ha set by SADC RISDP, however, means that only Mauritius has managed to reach this target. 15 At the regional level, SADC uses more fertilizer per hectare than SSA. This remains the case even when South Africa is excluded from the group.Overall, the low fertilizer use coupled with the low cereal yields in low income countries suggest that low fertilizer use could be constraining cereal yields in these countries. This is line with World Bank ( 2007) which shows that use of chemical fertilizer has been expanding in most developing regions except for SSA. This is attributed to, among other factors, relatively underdeveloped input markets, particularly fertilizer markets. In addition, unfavorable and unpredictable weather conditions threaten agriculture production. For example, excessive rainfall and flooding reported in 2009 in northern Namibia, southern Angola, northern Botswana, western Zambia, and some parts of Malawi and Madagascar resulted in crop losses in these areas. Lesotho, southern Madagascar, and Tanzania, on the other hand, had less than average rainfall, which also affected crop production. This underscores the importance of good early warning systems in the region to allow for mitigation of risk at an early stage. Source: authors' calculations based on aggDP data from the 2010 WDi (World bank, 2010b).SADC RISDP, within the priority intervention area of sustainable food security, acknowledged the importance of increasing fertilizer consumption in the region if lasting food security was to be achieved in the region. One of the specific targets within this priority intervention area was to achieve a fertilizer consumption rate of 65 kg/ha of arable land by 2015. In order to assess the extent to which countries and the region have been performingin terms of agricultural growth and the progress they have made towards achieving the CAADP targets, the country and regional agriculture value added (AgGDP) growth trends between 1990 and 2008 are presented in Figure 5.15.Figure 5.15 shows that, although it slightly increased over time, the SADC annual percent growth in AgGDP remained below 6% across all periods: averaging 2% between 1990 and 1995, 3% in the 1995-03 and 2003 periods, and 4% between 2003 and 2009. The picture remains the same even when South Africa is excluded from the group: the growth increases to 5% between 2003 and 2009 but it is still below the 6% target. Moreover, the agricultural growth registered by the region as a whole is consistently lower than that of SSA.Focusing on individual countries reveals success stories for Angola which rose from a negative AgGDP annual average growth between 1990 and 1995 to consistently having the fastest growing agriculture sector in the region, registering an annual average growth of more than 6% for the rest of the three periods, with 11.6% in 1995-03, 12.8% in 2003, and 12.5% between 2003 and 2009. Malawi on the other hand, started off with annual average growth rates of 8. 5% between 1990 and 1995 and 9.2% between 1990 and 2003 but this decreased to 4.2% between 2003 and 2009. Another success story is Mozambique which had AgGDP growth rates of more than 6% since 1995-03. For Namibia, although its AgGDP growth rates were below 6% in the first three periods, it had a relatively high annual% growth of 11.3% in 2003-09 (second to Angola in the region). However, a strict consideration of the 6% target and considering only the post-2003 period (i.e., 2003-09) indicates that, on average, only three countries in the region (Angola, Mozambique, and Namibia) reached the CAADP target at some point during this period. AgGDP in a particular year to the expenditure levels in the previous year to allow for the possibility that the impact of investments on AgGDP might take time to be realized. The results of this analysis are reported in Table 5.1. It is important to note that the results in Table 5.1 do not imply a cause-and-effect relationship between public investment spending and AgGDP particularly given that it may take several years before the impact of investments on AgGDP are realized. Moreover, there could be other factors besides investments (for example, rainfall patterns) that influence the prevailing AgGDP levels (see for example, Zepeda 2001 andRoy andPal 2002).Without implying any causal relationship, Table 5.1 suggests that between 2001 and 2009, investments in the following functions were correlated with high levels of AgGDP: extension, research, production support, livestock services, forestry and common or nonplanned expenses. These correlations were found to have statistical significance. Moreover, a consideration of total investment expenditure also indicates a positive and statistically significant association between AgGDP and total expenditure. In general, the correlation coefficients in Table 5.1 tell us how much of the variation in AgGDP is related to investment spending in different core functions. Correlation coefficients range from -1 (inverse or negative relationship) to 1 (direct or positive relationship) and thus indicate the direction and strength of the relationship between two variables under study. Particular to Table 5.1 and focusing on coefficients that were found to be statistically significant as seen in It is important to project a future outlook of SADC's agriculture growth rates and the estimated progress towards reaching the CAADP target of at least 6% annual growth in AgGDP. This is illustrated in This underscores the need to increase and sustain investments in agriculture sectors, particularly in low income countries. Data on Table 5.1 which uses Mozambique as a case study suggests that such investments could target extension, research and production support ((i.e., funds spent on agricultural production processes and includes, for example, subsidies, emergency distribution of inputs and farm implements, etc.). This is consistent with findings which show that investments in agricultural research and extension generate the highest returns of any form of agricultural spending. For example, returns to agricultural research average around 50% in Africa (Alston et al. 2000), although returns vary from country to country owing to the diversity of farming systems and dependence on rain-fed production.A consideration of the individual countries suggests that seven out of fifteen SADC Overall, the erratic AgGDP growth trends in most countries -both middle and low incomesuggest a relatively unstable agriculture environment in the region. This instability could be due to the relatively high dependence of agricultural production on rainfall and general weather patterns. The diversity of agro-ecology and subsequent farming systems in the region imply different countries have comparative advantages in different agricultural products, which necessitates trade in order to supplement and complement domestic production. Thus, intra-and interregional trade is vital for promoting food security in as far as it uses existing marketing channels from surplus to deficit regions, and help reduce price volatility in the region and beyond. Furthermore, agricultural trade helps not only to promote intra-regional trade but also to foster economic development through, for example, facilitating economies of scale, improving competitiveness and stimulating investments and pooling public resources.Moreover, trade is vital to facilitating the integration of countries into the global economy through, for example, increasing bargaining power in international negotiations and improving market access for agricultural products to international markets.To highlight the contribution of individual countries to total regional agricultural trade, each country's annual average contribution to total agricultural exports and imports in the regional total in 2003-07 is shown in Figure 6.1. 16 figurE 6.1 national sharEs in total saDc agricultural ExPorts anD imPorts (2003-07).Source: authors' calculations based on agricultural trade data from 2010 WDi (World bank, 2010b).Although informal or unrecorded cross border agricultural trade is prevalent in the region and of importance particularly at micro-level, data limitations as well as the scope of this report do not allow for such an analysis.Zimbabwe 11%Malawi 8% South Africa dominated both exports and imports in the region between 2003 and 2007, accounting for 51 and 37% of total regional agricultural exports and imports, respectively.With a share of 11%, Zimbabwe had the second highest share of agricultural exports in the region. Angola, Lesotho and Seychelles had shares less than one percent. Angola was second to South Africa in terms of contribution to regional imports, contributing 14% to the regional total. Again Lesotho and Seychelles contributed less than one percent to regional total imports.In order to have an overview of the importance of agricultural exports and imports in each country, Figure 6.2 and Figure 6.3 report each country's share of agricultural exports and imports in total merchandize exports and imports for the middle and low income group, respectively. Among middle income countries, Swaziland had the highest share of agricultural exports in total merchandize exports in 2003-08, with a share of 14%. Mauritius, with a share of 14%, had the highest proportion of agricultural imports in total merchandize imports in 2003-08. Across all periods, Angola, Botswana, Lesotho and Seychelles had higher agricultural imports shares in total merchandize imports than agricultural exports shares in total merchandize exports. South Africa on the other hand, consistently had higher agricultural export shares in total merchandize exports than agricultural import shares in total merchandize imports.Focusing on low income countries indicates that the share of exports in total exports is consistently higher than the share of imports in total imports for Malawi, Tanzania and Zimbabwe. In the case of DRC and Mozambique, on the other hand, Figure 6.3 shows that the share of exports in total exports is consistently lower than the share of imports in total imports across all periods.In general, both figures confirm the importance of agriculture in low income countries byshowing that the annual average share of both agricultural exports and imports in total merchandize exports and imports, respectively, is consistently higher in the low income than in the middle income group. Specifically, as a group, the low income countries had an annual average share of agricultural exports in total merchandize exports equal to 16% in 2003-08 while the middle income group had 6%. The annual average share of agricultural imports in total merchandize exports, on the other hand, was 15 and 7% for low and middle income countries in 2003-08, respectively.An interesting question is whether increased integration of agricultural international markets jeopardizes or enhances food security in SADC countries. A computation of the correlation between agricultural trade (exports plus imports) as a percentage of AgGDP and the prevalence of child malnutrition as an indicator of the depth of hunger in the region gave a correlation coefficient of -0.6. The coefficient was found to be statistically significant at 1% level of significance. The corresponding correlation coefficient between the total value of agricultural exports and child malnutrition was found to be -0.75 while it was -0.79 for agricultural imports and child malnutrition. Both were statistically significant at 1% level of significance. Without implying any causal relationship, the negative and statistically significant coefficient suggests that involvement in agricultural trade is associated with reduced levels of child malnutrition, consistent with findings by FAO (2005). FAO (2005) argues that the extent of correlation between agricultural trade and hunger is, however, influenced by other factors which include, among others, markets, infrastructure and institutions. In general, increased agricultural trade could be accompanied by improved food security and reduced poverty if trade reforms are designed and implemented in an explicitly pro-poor manner. This includes, for example, putting in place safety nets to protect poor and vulnerable groups during the transition to freer trade.Overall, for agricultural trade to enhance food security and help reduce poverty, it is important for low income countries in the region to ensure that their trade regimes are conducive to stimulating growth in the agriculture sector.An overview of SADC countries' agricultural net trade measured as the difference between the total value of agricultural exports and imports is presented in Figure 6.4. Net trade is found to be negative for the majority of countries in the majority of time periods, implying that the majority of SADC countries are net importers of agricultural products.Considering the latest period, 2003-07, nine of the fifteen countries were net importers of agricultural products. Of these Angola had the largest trade gap with exports falling short of imports by USD1,122 million followed by the DRC at USD389 million. In fact, the net trade was persistently deteriorating for both Angola and DRC across all periods. It is important to note that although Angola has been previously revealed to have had favorable Overall, Figure 6.4 indicates that the agricultural trade gap for the region has been widening over time and that the period 2003-07 was particularly disappointing. It should be noted that since the data used here goes only up to 2007, it is likely that the gap has been widening further given the fuel and food crises of 2008 and the global financial crisis which led to a contraction in economic activity around the globe. These crises affected most African (including SADC) economies primarily through a reduction in export earnings (especially for minerals/raw materials). These crises were accompanied by an increase in import commodity prices which is expected to have an impact on export-import ratios.A focus on total cereals and specifically maize trade indicates that the majority of countries and the region as a whole were net importers of both total cereals and maize across all periods (see Table D.5 in the Annex). In 2003-08, all countries and economic groups were net importers of total cereals while in the case of maize, only Malawi, South Africa and Zambia were net exporters with a trade surplus of 25,000, 264,000 and 46,000 tonnes respectively.As illustrated in Figure 6.5, SADC as a region has been a persistent net importer of cereals in the last decade. However, as indicated in Figure 6.6, in the last decade maize generated a trade surplus in 2005 owing to the increased harvest in several SADC countries.Both Figure 6.5 and Figure 6.6 are indicative of how dependent exports and imports in the SADC region are on climatic conditions principally because the majority of agricultural production is rain-fed. The sharp decline in total cereals and maize exports and the increase in imports correspond to incidences of drought in the region: for example, the southern African region experienced droughts in 1983-84, 1986-87, and 1991-92, among other years (UNECA 2007)). In these periods the region experienced a significant drop in both total cereals and maize exports while imports of these crops shot up.Figure 6.5 and Figure 6.6 reveal high variability of total cereal and maize exports and imports in the region. Computing the coefficient of variation for these indicators suggest that imports are actually more variable than exports. Maize imports have a high coefficient of variation of 103% while total cereal imports had 68%. In terms of exports, maize and total cereal exports have a coefficient of variation of 63 and 55%, respectively.The variability in the net trade balance of both total cereals and maize is reflected in the trends in food aid (mainly cereals) to the SADC region as shown in Figure 6.7. Food aid shipments to SADC rise with a fall in exports. This means food aid bridges the gap between food supply and demand. However, as argued by Barrett (2006), although food aid serves the purpose of increasing food availability, among other benefits, it might have other unintended adverse impacts such as, for example, decreasing government support to agriculture and distortion of local prices of agricultural products.To illustrate the trend in the region's trade in oil crops, Figure 6.8, Figure 6.9, Figure 6.10 and Figure 6.11 show SADC's trade gap with respect to trade in cottonseed, (shelled) groundnuts, soybeans and sunflower seed, respectively.The region is shown to have been a net importer of soybeans since 1992. However, with respect to cottonseed, groundnuts and sunflower seed, the net trade of the region fluctuated between being net importer and being net exporter. With the exception of sunflower seed, computation of the coefficient of variation indicates that imports of these crops were generally more variable than exports. This high import and export variability reiterates the dependence of regional agricultural trade on climatic conditions.Consideration of the level of the trade gap (that is the difference between the quantity of exports and the quantity of imports) indicates that between 1961 and 2008, the region was on average, a net exporter of all the four oil crops with the exception of soybeans. Specifically the level of net exports was 15,264 tonnes in the case of cotton seed, 39,692 tonnes for groundnuts, -28,057 tonnes for soybeans and 15,479 tonnes for sunflower seed. Focusing on the period between 2003 and 2008 indicates similar trends although the magnitude of the trade gap changes, in that the highest net exports were sunflower seed and the lowest were soybeans, which recorded net exports of around -61,255 tonnes. In summary, although trade in livestock products (meat in this case) varies across years possibly reflecting inter-temporal variations in economic and climatic conditions, the fact that the region is shown to be, on average, a net importer of these products raises concern. Based on recent trends, this is likely to remain a problem in the foreseeable future, if current conditions continue. This calls for policy attention -in terms of prioritization and resource allocation -to the livestock subsector in order to increase the exploitation of the potential in this subsector for the region.Intra-SADC trade has been historically low, and agricultural trade is no exception. Efforts to accurately document the extent of intra-regional trade, however, are constrained by paucity of data. This is particularly of concern for foodstuffs which are often underestimated or underreported due to unrecorded cross-border trade and smuggling. Table 6.1 and Table 6.2 indicate some level of intra-SADC trade in terms of intra-SADC maize exports and imports in 2008, respectively. Both tables confirm that most countries in the region traded with South Africa. Specifically, in 2008 South Africa exported maize to the majority of SADC countries, with the bulk of the exports destined for Zimbabwe. Zambia also exported the bulk of its maize exports to Zimbabwe in 2008.Of relevance in shaping intra-SADC trade patterns is the existence of several bilateral trade agreements that were negotiated between SADC member states themselves. The bilateral agreements that were in place as of 2009 included: Botswana-Malawi; Botswana-South Africa; Botswana-Zimbabwe; Malawi-South Africa; Malawi-Zimbabwe; Mozambique-Malawi; South Africa-Namibia; South Africa-Mozambique; Zimbabwe-Namibia; andZimbabwe-South Africa (Maringwa 2009). In addition, the existence of the Southern African Customs Union (SACU) determines trade relations among Botswana, Lesotho, Namibia, South Africa and Swaziland. All these trade agreements are meant primarily to foster deeper regional integration, which in turn is expected to result in overall economic development of member states and the region as a whole. Notes: the 'reporter' country is the same as the exporting country, while 'partner' refers to the importing country. note that some countries do not report trade data as such that there could be underreporting which might lead to discrepancies between recorded imports and exports.The launching of a Free Trade Area (FTA) in January 2008 is a major milestone in the integration process in the region, and is expected to increase intra-SADC trade through the removal of tariff and non-tariff barriers in the region. Its creation resulted in up to 85% of intra-SADC trade flows being duty-free, with the remaining 15% consisting of sensitive products, which were to be fully liberalized by 2012 (SADC 2008c). SADC sees the creation of a FTA as a step towards deeper regional integration, which is expected to culminate in a regional currency by 2018.For the FTA to lead to substantive benefits, however, the region has to overcome a number of constraints that challenge its success. Examples of factors that constrain intra-SADC trade include the low diversification among SADC economies with, for example, countries like Angola and Botswana relying on a single sector: oil in Angola and diamond mining in Botswana. Although signaling the region's comparative advantage in primary products, the fact that the region is dependent on the export of primary goods is indicative of deeprooted supply-side constraints. In particular, these trends suggest a persistent shortage of skills that are needed to add value to primary goods exports. Thus these supply-side constraints have to be dealt with in order to stimulate intra-regional trade The first Millennium Development Goal (MDG1) focuses on eradication of extreme hunger and poverty, with the specific aim of halving the 1990 poverty and hunger rates by 2015. In addition to endorsing the MDGs explicitly and within CAADP, all SADC countries have prioritized poverty reduction through SADC RISDP. Accordingly, this section assesses poverty and hunger trends in the region within the context of MDG1.Table 7.1 and Table 7.2 report country and regional level annual poverty rates based on the national and international poverty headcount ratio, respectively. This is done only for countries for which data were available. The national poverty rate is defined as the percentage of the population living below the national poverty line and is based on population-weighted subgroup estimates from household surveys. The international poverty headcount ratio defines poverty rates as the percentage of the population living on less than USD1.25 a day at 2005 international prices. The poverty rates shown in Table 7.1 and Table 7.2 suggests that the national poverty lines for Lesotho, Malawi, South Africa, and Zambia are set at levels above the USD1.25 a day value used as the international poverty rate.Based on nine countries that had data on national poverty rates, Table7.1 suggests that in general, the region has been experiencing declining national poverty rates since 1990.This decline has, however, been marginal. In 1990, Mozambique had the highest national poverty headcount ratio (close to 82%) while Mauritius (7%) had the least among the nine countries. Countries that have had a clear declining trend in national poverty rates between 1990 and 2009 are Madagascar (declining from 77 to 66 %), Malawi (from 54 to 38%), Mozambique (from 82 to 41%), South Africa (from 56 to 20), Tanzania (from 39 to 34%) and Zambia (from 70 to 63%). The rest of the countries seem to have experienced an upward trend in national poverty rates. Note that in spite of this slight increase in poverty in Mauritius, it still has the lowest national poverty rates across all periods. The rising trend in poverty in Zimbabwe could be partly attributed to the economic meltdown the country experienced following the launching and subsequent implementation of the country's Fast Track Land Reform Program in 2000. Thus the upward poverty trend in Zimbabwe underscores the importance of agriculture to the country's poverty reduction efforts, especially given that poverty is more concentrated in rural areas where small-scale farmers reside and, the fact, that there is a positive correlation between agro-ecological potential and poverty.In terms of meeting the MDG1 target of halving the 1990 poverty rates, Table 7.1 indicates that none of the countries had, on average, managed to meet this target as of 2009 except for Mozambique and South Africa.To ensure comparability of the poverty situation among countries, particularly in an effort to track countries' relative progress toward particularly the MDG1, the report also makes use of the 'USD1.25 a day at purchasing power parity at 2005 prices' international poverty line that adjusts for differences in the purchasing power of different currencies. Poverty rates based on this international poverty rate are presented in Table 7.2. As expected, using the international poverty rates presents a slightly different country and regional level picture. For instance, contrary to Table 7.1, Table 7.2 suggests that Lesotho has been having a clear downward trend in poverty rates, declining from 60 to 36% between 1990 and 2009.In the case of South Africa, Table 7.2 suggests a slight increase in poverty from 23% in 1990 to 29% in 2009. In addition, Malawi is revealed as the country that experienced the greatest decline in poverty, declining from an annual average of 95 to 66%.It is worthy to note that the low income countries have, on average, been experiencing a downward trend in international poverty rates. While international poverty rates range from 2 to 96% in 1990, the range was reduced to between 2 and 68% in 2009, with the lowest rate being recorded by Seychelles and the highest by Mozambique in both periods in 2009.Given that most countries initially (i.e., in 1990-95) had poverty rates higher than 50%, Figure 7.2 shows a positive outlook for poverty reduction in the region.Looking at the MDG1 target, based on the international poverty rates, Table 7.2 shows that no country, among those for which poverty data were available, had managed to reach this target with the exception of Swaziland with a rate of 42% in 2009 against a target of 46%.Lesotho is revealed to be close to reaching the target with an international poverty rate of 36% in 2009 while the MDG1 target is 30%. Taking a regional perspective, poverty trends seem to be declining in the region as a whole, although a slight increase is reported for the middle income group. The low income group experienced a notable reduction in poverty between 1990 and 2009.Extreme poverty and hunger are pervasive issues in the SADC region, mainly due to the region's vulnerability to food insecurity which stems largely from erratic climatic conditions. In addition, the high prevalence of HIV/AIDS, among other challenges, continues to exacerbate food insecurity and poverty levels in the region through reduced productive capacity of countries since it is often the productive individuals that are affected by the pandemic. This report uses the prevalence of child malnutrition and adult undernourishment as indicators of the depth of hunger in each country. Prevalence of child malnutrition is the percentage of children under the age of five whose weight for age is more than two standard deviations below the median for the international reference population ages 0-59 months. The prevalence of undernourishment, on the other hand, is the percentage of the undernourished in the adult population. The SADC region has experienced a slight decline in average child malnutrition rates, from 26% in 1990 to 22% in 2009. In general, the depth of child malnourishment is lower among middle than low income countries. In 2009, the prevalence of child malnourishment was 14 and 25% for the middle and low income group, respectively.In terms of achieving the MDG1 target of halving 1990 hunger rates; this remains a challenge for nearly all countries. Only Angola managed to reduce child malnutrition rates to half of those observed in 1990, from 45% in 1990 to 20% in 2009.The relatively high child malnutrition rates are reflected in under five mortality rates presented in Table 7.4. The mortality rates refer to the probability, per 1,000 live births, of a child born in a specific year or period dying before reaching the age of five, if subjected to age-specific mortality rates during that period. The DRC is shown to have the highest under-five mortality rates, estimated at 199% per 1,000 live births in 2009. Similar to the trends in child malnutrition, under-five mortality rates have been declining for the region as a whole and this holds even when South Africa is excluded from the group. The mortality rates observed among middle income countries are far below those for the low income group. For instance, in 2009 the annual average underfive mortality rate was 85% per 1,000 live births in the middle income group while it was 139% per 1,000 live births in the low income group.The prevalence of adult undernourishment presented in Table 7.5 shows that in 2009, DRC had the most severe depths of adult undernourishment at 74%, increasing from 24% in 1990. The high malnutrition and under-five mortality rates in DRC could be due to conflict and political instability in the country.In addition, Table 7.5 indicates that adult undernourishment has been on the rise in the SADC region, increasing from 30% in 1990 to 38% in 2009. Excluding South Africa further increases the prevalence of adult malnutrition to 36% in 1990 and 45% in 2009. Low income countries are driving the high prevalence of adult undernourishment observed at the regional level: while the prevalence was 14% among middle income countries in 2009, it was around 47% in the low income group. SADC low income countries have higher adult undernourishment rates than SSA.The high prevalence of hunger in DRC (GHI of 41) reflect the worsening undernourishment situation in the country since 1990 following the start of civil conflict that has led to an economic collapse, massive displacement of people and a chronic state of food insecurity.In fact, DRC has the highest proportion of undernourished people and one of the highest child mortality rates in the world (von Gebremer et al. 2010).Thus, although some countries experienced a reduction in GHI (e.g., Angola and Mozambique), overall, the hunger situation in the region remains dire. This is of particular concern for low income countries in the region that have, as a group, experienced an increase in GHI between 1990 and 2010. Economic performance and hunger have been shown to be inversely related whereby richer countries (i.e., countries with high levels of gross national income (GNI) per capita) are often found to have low 2010 GHI scores, and vice versa (von Grebmer et al. 2010). 17Sub-Saharan Africa (SSA) had a GHI of 21 which is considered a reflection of alarming hunger problems. In describing the global hunger situation, von Grebmer et al. (2010) show that the highest regional GHI scores are found in SSA (along with South Asia), and they argue that this is due to low government effectiveness, conflict, political instability, and high rates of HIV/AIDS. which are exacerbated by poverty and gender inequity. Particular to the SADC region is the need for poverty-reduction strategies focused on reducing income and gender inequalities as these will help improve early childhood nutrition.Several methods can be used to judge whether a country is on track to achieve targets set by MDG1. The underlying principle is to forecast, based on certain assumptions, poverty trends until 2015 to have an idea of whether a particular country will reach the target. This report performs simple linear poverty and child malnutrition trend analyses, based on observed actual rates, to predict future poverty and child malnutrition movements based on past data. poverty rate). In the case of Lesotho, Malawi and Mozambique, however, their ability to meet the MDG1 target hinges on how fast the decline in poverty will be in the future.Lesotho, starting with a poverty rate of around 60% in 1990 and having poverty rate of close to 36% in 2009, appears to have a higher probability of reaching the target of halving 1990 poverty rates by 2015 compared to Malawi and Mozambique. Countries for which the actual trend line is clearly declining are Angola, Malawi, Mozambique, Namibia, Tanzania and Zambia. In fact, Angola has reached and surpassed the target of halving its 1990 child malnutrition prevalence. Angola started off with a prevalence rate of 44.8% in 1990 and this decreased to 20.1% in 2009. Whether the rest of the countries with declining trends will be able to reach the 2015 target will depend on how fast the future decline is. The actual trend lines suggest that among the rest of the countries with declining trend, the country with the greatest probability of halving its 1990 child malnutrition target is Mozambique.Taken together, Figure 7.2 and Figure 7.3 suggests that, Malawi and Mozambique are the countries for which actual or observed trendlines for both the international poverty rate and the prevalence of child malnutrition are clearly declining. Although not a guarantee for being able to meet the MDG1 target of halving both the 1990 poverty and hunger levels, this suggests that, based on past data, Malawi and Mozambique have higher chances of reaching the MDG1 target -in terms of both international poverty rates and hunger prevalencethan the rest of the SADC countries. Whether this actually happens will depend on how fast the future decline in poverty and child malnutrition in these countries will be. MDG report suggests that the global economic crisis will cause poverty rates to be higher in 2015 and even beyond 2020 than they would have been had the world economy grown steadily at its pre-crisis pace (UN 2010). Frequent dry spells and flooding in some areas (for example increased flooding incidents in Mozambique), a sign of climate change, are having adverse effects particularly in rural areas where small-scale subsistence farming is prevalent and where poverty is concentrated in most SADC countries. Investment in agriculture is expected to stimulate economic growth and increase food security and reduce poverty. In terms of CAADP, the 6% annual agricultural GDP growth target is supposed to be achieved by allocating at least 10% of budgetary resources to the agriculture sector. The experience in SADC region revealed that the average share of agriculture in total public expenditure ranged between 3.3% and 3.7% and has been lower than the 10% target proposed by the Maputo Declaration. Overall, low income countries with an annual average allocation of 4.4 to 5% have higher shares of agriculture expenditures in total public expenditure than middle income countries, which have an annual average allocation of 1.3 to 1.8%. These results suggest that low income countries are showing greater commitment towards achieving the Maputo Declaration target than middle income countries. This is likely to happen given that agriculture is a large contributor to GDP and a greater proportion of the population depend on agriculture for income, food and employment in low income countries than in middle income countries.However, the concern remains that both low income and middle income countries have integration process in the region and, is expected to increase intra-SADC trade through the removal of tariff and non-tariff barriers in the region. average (% point) (1990-(1990-(1995-(1995-(2003-(2003 average (% point) (1990-(1990-(1995-(1995-(2003-(2003 average (% point) (1990-(1990-(1995-(1995-(2003-(2003 (1990-1995) (1990-1995) (1995-2003) (1995-2003) 2003 (2003-2009 (1990-1995) (1990-1995) (1995-2003) (1995-2003) 2003 (2003-2008) (2003-2008 (1990-1995) (1990-1995) (1995-2003) (1995-2003) 2003 (2003-2006) (2003-2006 (1990-1995) (1990-1995) (1995-2003) (1995-2003) 2003 (2003-2009 (1990-1995) (1990-1995) (1995-2003) (1995-2003) 2003 (2003-2007 (1990-1995) (1990-1995) (1995-2003) (1995-2003) 2003 (2003-2008 (1990-1995) (1990-1995) (1995-2003) (1995-2003) 2003 (2003-2008 ","tokenCount":"16688"} \ No newline at end of file diff --git a/data/part_3/4051966109.json b/data/part_3/4051966109.json new file mode 100644 index 0000000000000000000000000000000000000000..976306fa7486751bbbcd0ba006a1799fe5e98554 --- /dev/null +++ b/data/part_3/4051966109.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"7cb0ad04c4aa7cfe661309eea3ca7229","source":"gardian_index","url":"https://www.cifor.org/publications/pdf_files/OccPapers/OP-229.pdf","id":"-572491941"},"keywords":[],"sieverID":"6847e45c-01d8-43a1-80c6-b266c1bda3bb","pagecount":"31","content":"1 Landscape approach for resilient socioecological systems 2 Interaction of refugee and host communities in multifunctional landscapes 3 Map of Africa showing current focus countries Tables 1 Tools, networks and key resources regarding displaced people and the environment: landscape level integration Sub-Saharan Africa hosts more than 26% of the world's refugee population, with 6.3 million refugees -which represents a 186% increase in the last decade, from 2.2 million. There has been an increase in internally displaced persons (IDPs) following conflicts and violence in South Sudan, the Democratic Republic of Congo (DRC), the Central African Republic (CAR), and the Lake Chad basin. The population of refugee settlements disproportionately comprises women and children, and is characterized by highly diverse cultural backgrounds, with some settlements having people from approximately 10 nationalities. In many areas, refugees and IDPs add pressure to already vulnerable ecosystems and existing social tensions, leading to land use and resource conflicts among displaced people and host communities. Overharvesting of natural resources, competition over resources, and entering host communities' common or private lands without consent are the main drivers of conflict between host communities and refugees. These conflict situations are aggravated by the impact of climate change, deforestation, and environmental degradation, which are recognized by humanitarian organizations and are placed at the centre of their agendas.This document synthesises the challenges in environmental sustainability facing refugee-hosting landscapes, on-going initiatives, and gaps. It also presents transformative science plans by CIFOR-ICRAF to address exiting gaps towards resilient landscapes and livelihoods. CIFOR-ICRAF is a research institution in forestry and landscape management, which has evolved out of an effective merger between CIFOR and ICRAF.Resilience, sustainability, and environmental health in host landscapes are multi-faceted and complex, with cultural, ecological, economic, social, and political dimensions. Therefore, despite various organisations working in refugee-hosting landscapes, there are still challenges in achieving holistic, long-term and sustainable solutions. For instance, the priority goal of most United Nations (UN) agencies and major international nongovernmental organizations (INGOs) is to save lives in emergency situations. There is, however, growing awareness of the importance of natural resources to the well-being of refugees and host communities, and efforts are underway to address environmental issues to reverse deforestation and land degradation, which need to be supported with data. Secondly, ongoing interventions to support refugees and the environment tend to be based on the assumption that refugee stays are short-lived and local group needs are simply linked to food, water, sanitation, shelter and security, which can be provided by UNHCR and partners. Yet this often becomes a great challenge as most refugee stays last for several decades. Thirdly, governance and host community institutions that are central to the ownership, success and sustainability of initiatives addressing environmental degradation have not always been actively involved to date.To bridge these gaps, CIFOR-ICRAF applies a landscape approach that delivers evidence-based, actionable and context-based gender-responsive solutions. This approach promotes collaboration and synergies between actors; contributes to international dialogue; and informs planning, programming and policy development. The elements include: i) providing science and evidence-based landscape approaches and guidelines that balance the needs of the people and ecosystems; ii) structuring engagement and empowerment of host and displaced communities in dialogue and consultation to minimize natural resource and environmental-based conflicts; iii) undertaking research to fill gaps in understanding, and integrating knowledge from multiple disciplines and resources, using refugee and host communities as a basis for evidence-based decision-making and interventions; iv) providingvii evidence-based advice to local and national governments, organizations, environmental sustainability platforms and networks; v) ensuring communication methods and scientific advocacy at national and global levels to provide long-term investments in food and nutrition, water and energy security for host communities and displaced people (IDPs and refugees), and to improve policies that support sustainable forestry and agroforestry systems; and v) gender integration in all activities to ensure that the needs, aspirations and opportunities for men and women, including youth, the elderly, children and people with special needs, are addressed.These initiatives are carried out under CIFOR-ICRAF's Refugee-hosting Engagement Landscapes where over a dozen projects on concentrated transformative work with diverse and committed partners have been implemented in several countries in eastern and central Africa. This approach adapts the centre's experiences and lessons from a diverse range of innovations implemented in over 30 countries in the Global South to address major global challenges related to deforestation and diversity loss, the climate crisis, food system transformation, unsustainable supply and value chains and extreme inequality as they manifest in refugee-hosting landscapes.• Sub-Saharan Africa hosts more than 26% of the world's refugee population, with 6.3 million refugees -which represents a 186% increase in the last decade, from 2.2 million. There has been an increase in IDPs following conflicts and violence in South Sudan, the DRC, the CAR, and the Lake Chad basin. The population of refugee settlements disproportionately comprises women and children, and is characterized by highly diverse cultural backgrounds, with some settlements having people from approximately 10 nationalities.• Increasingly, the impact of climate change, deforestation, and environmental degradation are recognized by humanitarian organisations and placed at the centre of their agendas.• In many areas, refugees and IDPs add pressure to already vulnerable ecosystems and existing social tensions, leading to land use and resource conflicts among displaced people and host communities. Overharvesting of natural resources, competition over resources, and entering host communities' common or private lands without consent are the main drivers of conflict between host communities and refugees.• Challenges to resilience, sustainability, and environmental health in host landscapes are multi-faceted and complex, with cultural, ecological, economic, social, and political dimensions.• Interventions to support refugees and the environment tend to be based on assumptions about what local groups need, rather than science evidence, and as a result, rates of adoption of proposed innovations have often been low. The social status of many refugees and host community members, i.e., women, non-English or French speakers and less formally educated individuals, create substantial barriers between local groups and would-be innovators from outside the communities.• Governance, and host community institutions, are central to the success of initiatives addressing environmental degradation, but they have not always been actively involved to date. (Murphy, 2001;Kakonge, 2000;UNHCR, 2018). An estimated 26,183 hectares of forest are burned worldwide each year by forcibly displaced families living in camps (Lahn and Grafham, 2015). The refugee-hosting landscape of Garoua-Boulaï and Gado-Badzéré in Cameroon's forest-savanna transition zone is an area particularly sensitive to disturbances and landscape fragmentation from human activities, as the area is shared by different user groups who compete to use it for various purposes, including agricultural and pastoral activities. However, restoring the degraded landscapes using fast growing trees with economic, social, medicinal, cultural and environmental value and using labour from displaced people should be a win-win model that needs to be implemented.In many areas, refugees and IDPs add pressure to already vulnerable ecosystems and existing social tensions, leading to land use and resource conflicts among displaced and host communities.Overharvesting natural resources, competition over resources, entering host communities' common or private lands without consent and envy due to support that targets refugees are the main drivers of conflict between host communities and refugees (Menye, 2012;Gianvenuti et al., 2017).There are multiple drivers of deforestation in landscapes hosting displaced people, including shifting cultivation, clearing land for livestock, and wood harvesting for firewood and construction. These drivers may exist prior to the influx of new populations, and in some cases are exacerbated by host communities responding to the demand created by displaced people, with host communities expanding agricultural fields, increasing firewood harvests and charcoal production, and thereby putting pressure on surrounding ecosystems (Cross et al., 2019;Daietti et al., 2018;Gitau et al., 2019;Johnstone et al., 2019;Kalipeni and Feder, 1999;Menye, 2012;Miller and Ulfstjerne, 2020;Troconis, 2017;UNEP, 2008). At the same time, traditional resource management practices, and local and regional trade of non-timber and agricultural products are long-standing in host communities and may provide opportunities for migrants and displaced people to improve and create more resilient multi-dimensional livelihoods.The relationship between displaced and host communities, livelihoods, and the environment is often complex, and interwoven.A recurring challenge when it comes to creating sustainable livelihoods in these landscapes is that humanitarian aid must respond to immediate needs for food, water, sanitation, shelter and security. The long-term needs for sustainable energy supply and long-term environmental impacts are often not sufficiently considered, which leads to problems later on (Van Dorp, 2009;Kakonge, 2000;Lahn et al., 2015). Lack of consideration for environmental sustainability from the onset of a humanitarian response is due not only to the need to address an immediate crisis, but also to limited understanding of the interrelationship between development and environmental issues, and insufficient evidence on the human and social costs of environmental degradation.With refugees and IDPs often staying for long periods, many over 20 years (FAO and UNHCR, 2018), it is critical that environmental issues receive attention alongside livelihoods in humanitarian approaches. Landscape approaches can accommodate the complex interrelationships between cultural, social, governance, ecological, and economic factors (Figure 1; Walters et al., 2021).Several humanitarian initiatives already support environment approaches and networks, such as the Joint United Nations Environment Program/Office Walking longer distances is an extra domestic burden -it restricts their ability to pursue other activities, such as agriculture, income generating activities, social and leisure activities and education, and it increases their risk of harassment and assault as they travel further away from home. Competition over scarce natural resources can also increase tensions.A 2014 survey conducted in Chad, Ethiopia, Kenya, and Uganda found that 30% of refugees had come into conflict with a host community while collecting firewood. In the Imvepi refugee settlement and Rhino camp in Uganda, about 84% of refugee and host community survey participants agreed that environmental degradation is taking place, mainly due to the cutting of trees for firewood and baking bricks, and the extraction of timber and poles for construction (Duguma et al., 2019). In addition, about 60% of tree cover had been depleted in and around settlements over the last 2-4 years, as estimated using stump density as the degradation proxy. Participants in this study proposed planting and growing trees, conserving existing trees and promoting natural regeneration of trees with sprouting stumps to address deforestation.• Non-timber forest products (NTFPs): A wide range of NTFPs are harvested for subsistence and sale at local and regional (and sometimes international) trade in hosting landscapes, and many of these are multi-purpose species. For example, in Cameroon's eastern region, many of the favoured firewood and charcoal species are also valuable for NTFPs -for example, Moabi trees (Baillonella toxisperma) are known for their vegetal butter. These products are also mostly harvested and consumed by women and the most vulnerable people from displaced communities. This example demonstrates the need to develop non-monetary metrics that fully account for the value of non-wood products that are consumed locally, in addition to other uses that produce profits.• Agriculture: The interface of refugee/IDP agricultural practices and host communities can create conflict. In many areas with displaced people in central and eastern Africa, agriculture is mostly carried out by smallholder farmers, and builds upon long-standing traditions that have evolved in local environments and reflect the biological and cultural diversity of these areas. Practices developed by host communities over generations, often to reduce risk and maintain well-being and health, rather than maximise gain, may be valuable to extend to displaced people in host landscapes. Other proven and sustainable practices such as home gardening with vegetables and fruit trees are being adapted to local contexts in Ethiopia, Kenya and Uganda (Njenga et al., 2020;Duguma et al., 2019;Watson 2018).• Pastoralism/livestock: These livelihoods and production systems are also linked to culture, identity, and socio-political institutions, and could form part of refugee/IDP livelihoods. However, they involve very different relationships to land than agriculture, and access to pasture and water are the source of significant conflict between mobile pastoralists and sedentary farmers in Africa, particularly in areas with social and political unrest (Jobbins and McDonnell, 2021).• Challenges to resilience, sustainability, and environmental health in host landscapes is multi-faceted and complex, with cultural, ecological, economic, social and political dimensions. Displaced people can place additional pressure on natural resources, leading to persistent land use conflicts, soaring demand for natural resources, and limited livelihood opportunities (although they can also bring new practices, offer opportunities for growth, and environmental impacts are not always negative). These challenges are interwoven and complex, and are layered on top of complex cultural, ecological, economic, and political relations within host communities, and require multidimensional approaches (Figure 2).• Displaced people, including refugees and IDPs, are often indefinitely settled in host landscapes and communities. Most displaced people are not registered, 1 and there is limited understanding of their natural resource practices, energy and food needs, and where interventions might be most effective in promoting sustainability and equity. IDPs do not usually have rights to land, and so there is little incentive to manage for the long term.Assumptions about who they are, and their resource use practices, are often not based on evidence and mirror gender, educational, linguistic and other kinds of prejudices. While immediate humanitarian needs must take priority, groups with complementary expertise in long-term development, and sustainable natural resource management, can also become engaged soon after the arrival of displaced peoples.• Governance, and host community institutions, are central to the success of initiatives addressing environmental degradation, but they have not always been actively involved to date.• Sustainability is often linked to place and culture and is not only a technical issue -building sustainable practices require incentives, cultural norms, and ecological understanding; it develops over time, in connection with the environment. Speeding up a process of knowledge exchange between host communities that have lived in a region for generations, and refugees, is a challenge. However, in some areas -such as the eastern region of Cameroon -refugees are from the same ethnic group, with a history of using similar resources, with similar customary laws and institutions, and this supports the potential adoption of sustainable practices.• Providing technological fixes, such as more efficient stoves, may only work in the short term and while project incentives exist. Ensuring adoption of new technologies over time is challenging. Research can also reveal host community technologies (e.g., processing NTFPs and agricultural practices) that might be valuable to share with displaced people.• Historically, the rate of adoption of initiatives to address energy, food security, and sustainability in refugee communities has been low. There is a need to evaluate the effectiveness of different approaches, and base decision-making on evidence and independent scientific evaluation, rather than assumptions.It is also important to recognize that refugee communities are diverse. Strategies must be adapted to the specific groups that are being served rather than assuming that all refugees can have their needs met with one international strategy.3 Summary of challenges to improve natural resource management by displaced people (refugees and IDPs)• Researchers and practitioners working with refugees and IDPs in different regions and areas of focus -e.g., humanitarian, development, the environment -often work in parallel, and do not integrate or collaborate. However, the challenges and problems require multi-disciplinary and long-term approaches, and coordination at the grassroots level to ensure complementary and collaborative approaches between agencies and actors. In some cases, these processes have begun, and they offer important insights and lessons (see Table 1) There are also differences between central and eastern Africa in this regard. Sufficient time must be allocated to engage in research that can inform curated best practices in the form of interventions. The fundamental differences between research and non-research outcomes must be more clearly articulated.• The literature on traditional natural resource management systems and refugees is limited, and the potential for knowledge exchange between refugees, IDPs and host communities poorly understood. The RRR innovations include the recovery of household grey wastewater and plant nutrients from organic residues for home gardening that include tree growing, and the production and use of biochar for soil amendment and fuel briquettes. The interventions target 3,600 people who will be reached directly, and lessons will be disseminated to about 200,000 people through media outreach. Research will be carried out to understand how community trainings and adaptation of the RRR innovations work in these contexts and to determine their impacts, which will be communicated to inform decision-making and implementation of similar development work. • FAO and UNHCR currently work together to support refugee households to facilitate their establishment and to increase their livelihoods.Incomes are mainly derived from agriculture and the charcoal trade. Support is also provided to host families in Ituri and Haut-Uele provinces. The objective of these various forms of support is to advance agricultural practices with improved seeds and agroforestry, so as to reduce pressure on forests.• In South Kivu province, FAO works to support at least 30,000 refugee households from Rwanda and Burundi. The objective of the support is to guarantee food security and provide fuel wood. Seventy percent of the support goes to the refugees and IDPs, while 30% is allocated to the host communities.Refugees, and sometimes host community members, tend to be both young and female.The reasons for this are diverse but include the involvement of men in conflict, male migration for the purpose of income generation, and large family size, which means that childcare and household maintenance absorb significant percentages of time among women of childbearing age. Gender inclusion in this context requires dedicated outreach to adult women to understand their social and cultural needs, preferences, and requirements of all community members. A major gap in the literature is the cultural change experienced by refugee and host community members caused by the death of family members, physical displacement, and integration into camps and settlements organised and managed by national governments, various NGOs and UNHCR. CIFOR-ICRAF's approach to gender integration focuses on understanding local conditions and customising both landscapelevel planning and individual interventions to allow for the greatest possible inclusion of participants. In circumstances where communities may have experienced severe neglect and require international humanitarian intervention, the CIFOR-ICRAF approach prioritises understanding the lived experience of marginalised individuals and adjusting technical and policy support, rather than attempting to alter the behaviours and beliefs of displaced persons. This initiative addresses the persistent challenges in environmental degradation and food, water and energy insecurity and sustainable provisioning of other natural resource and ecosystem services in refugee settings. The engagement landscape is also developed with recognition that the priority goal of most UN agencies and major international INGOs is to save lives. In addition, the growing awareness of the importance of natural resources to the well-being of refugees means that urgent efforts are underway to address environmental issues by reversing deforestation and land degradation trends. Such efforts include networks such as the Environment and Human Action Network and the Global Plan of Action for Sustainable Energy Solutions in Situations of Displacement, to which CIFOR-ICRAF scientists contribute.While the humanitarian sector is highly skilled at delivering life-sustaining relief items as well as education, water and sanitation, shelter and other critical services to displaced people, additional contributions from other sectors are needed as the number of refugees grows in sub-Saharan Africa due to climate and conflict-related crises as indicated in the displacement global trends report by UNHCR (2019).To avoid spreading efforts too thinly across the region, the proposed programme will start by focusing on eight landscapes from six countries, including Cameroon (two in Gado Badzere and Minawao), Chad, and the DRC (South Kivu and potentially Ituri province) for central Africa; and Uganda, Kenya and Ethiopia for eastern Africa (Figure 3). Interventions in these countries will allow for collaboration and comparison across the central and eastern African regions and for research to be undertaken to produce evidence on the relative strengths and roles of local governance, forest restoration, sustainable agriculture, soil and water management, NTFPs, and livestock.The Refugee-hosting Engagement Landscapes initiative is evolving into a programme that seeks to create evidence-based strategies and inform 5 New and future developments Migrants -Movement of people related to poverty and economic causes.Forced displacement -The forced movement of people due to insecurity, violence, and conflict, who are seeking protection, security, and survival. This includes refugees (<25%) and IDPs (>75%).Internally displaced people -People displaced within a country's borders.Refugees -People displaced across national borders.Host communities -Communities living in a region prior to the arrival of refugees and IDPs.Woodfuel -All types of biofuels derived directly and indirectly from woody biomass. In sub-Saharan Africa, this is typically in the shape of fuelwood and charcoal, but other forms, such as briquettes, pellets and sawdust can be included.NTFPs -Non-timber forest products.Food security -\"Food security exists when all people, at all times, have physical, social and economic access to sufficient, safe and nutritious food that meets their dietary needs and food preferences for an active and healthy life. cifor.orgThis paper synthesises the challenges in environmental sustainability facing refugee-hosting landscapes, on-going initiatives, and gaps. It also presents transformative science plans by CIFOR-ICRAF to address exiting gaps towards resilient landscapes and livelihoods. CIFOR-ICRAF is a research institution in forestry and landscape management, which has evolved out of an effective merger between CIFOR and ICRAF.The assessment shows that resilience, sustainability, and environmental health in host landscapes are multi-faceted and complex, with cultural, ecological, economic, social, and political dimensions. Therefore, despite various organisations working in refugee hosting landscapes, there are still challenges in achieving holistic, long-term and sustainable solutions.On the other hand, governance and host community institutions that are central to the ownership, success and sustainability of initiatives addressing environmental degradation have not always been actively involved to date.To bridge these gaps, CIFOR-ICRAF applies a landscape approach that delivers evidencebased, actionable and context-based gender-responsive solutions. This approach promotes collaboration and synergies between actors; contributes to international dialogue; and informs planning, programming and policy development.These initiatives are carried out under CIFOR-ICRAF's Refugee-hosting Engagement Landscapes where over a dozen projects on concentrated transformative work with diverse and committed partners have been implemented in several countries in eastern and central Africa. This approach adapts the centre's experiences and lessons from a diverse range of innovations implemented in over 30 countries in the Global South to address major global challenges related to deforestation and diversity loss, the climate crisis, food system transformation, unsustainable supply and value chains and extreme inequality as they manifest in refugee-hosting landscapes.CIFOR Occasional Papers contain research results that are significant to tropical forest issues. This content has been peer reviewed internally and externally.CIFOR advances human well-being, equity and environmental integrity by conducting innovative research, developing partners' capacity, and actively engaging in dialogue with all stakeholders to inform policies and practices that affect forests and people. CIFOR is a CGIAR Research Center, and leads the CGIAR Research Program on Forests, Trees and Agroforestry (FTA).Our headquarters are in Bogor, Indonesia, with offices in Nairobi, Kenya; Yaounde, Cameroon; Lima, Peru and Bonn, Germany.","tokenCount":"3780"} \ No newline at end of file diff --git a/data/part_3/4072824743.json b/data/part_3/4072824743.json new file mode 100644 index 0000000000000000000000000000000000000000..51549db241be7a949634e7bb9c48e7c3788950bb --- /dev/null +++ b/data/part_3/4072824743.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"b82846c0921116c1070ecd5cea6dae1e","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/05e93865-10e5-4f67-8c58-4ff5cf32ca41/retrieve","id":"-2082567218"},"keywords":["Prashanth Suravajhala orcid.org/0000-0002-8535-278X heat stress","proline cycle","radical scavenging","reactive oxygen species","redox couple"],"sieverID":"e4537721-af2a-46a8-959b-a6ec9e9b4fcf","pagecount":"16","content":"Proline is a proteinogenic amino acid synthesized from glutamate and ornithine. Pyrroline-5-carboxylate synthetase and pyrroline-5-carboxylate reductase are the two key enzymes involved in proline synthesis from glutamate. On the other hand, ornithineδ-aminotransferase converts ornithine to pyrroline 5-carboxylate (P5C), an intermediate in the synthesis of proline as well as glutamate. Both proline dehydrogenase and P5C dehydrogenase convert proline back to glutamate. Proline accumulation is widespread in response to environmental challenges such as high temperatures, and it is known to defend plants against unpropitious situations promoting plant growth and flowering. While proline accumulation is positively correlated with heat stress tolerance in some crops, it has detrimental consequences in others. Although it has been established that proline is a key osmolyte, its exact physiological function during heat stress and plant ontogeny remains unknown. Emerging evidence pointed out its role as an overriding molecule in alleviating high temperature stress (HTS) by quenching singlet oxygen and superoxide radicals. Proline cycle acts as a shuttle and the redox couple (NAD + /NADH, NADP + /NADPH) appears to be highly crucial for energy transfer among different cellular compartments during plant development, exposure to HTS conditions and also during the recovery of stress. In this review, the progress made in recent years regarding its involvement in heat stress tolerance is highlighted.Climate change is on the horizon, and its implications will have a significant footprint on crop productivity and consequently food and nutritional security. Crop plants' physiological and metabolic activities are radically altered not just by rising day temperatures, but also due to elevated night temperatures. All of the important food crops, such as grains and legumes are prone to high temperature stress (HTS) resulting in an overall reduction in yields (Lobell and Field, 2007;Battisti and Naylor, 2009;Lobell et al., 2011;Xu et al., 2020). HTS negatively affects spikelet fertility, panicle and grain numbers, grain filling, seed size, and grain quality (Peng et al., 2004;Bahuguna et al., 2017;Cheabu et al., 2018;Impa et al., 2019;Dawood et al., 2020). In addition to the yield formation factors altered by HTS, various physiological changes such as decreased photosynthetic efficiency, and formation of reactive oxygen species (ROS) leading to oxidative stress particularly in the chloroplasts occurs with a consequence of membrane damage, and onset of leaf senescence (Fatma et al., 2021). To generate climate resilient crops, it is necessary to understand the underlying physiological and biochemical mechanisms associated with HTS.Touted as a multifunctional amino acid, proline plays vital functions in plant abiotic stress tolerance, including elevated temperature stress (Kishor et al., 1995(Kishor et al., , 2005(Kishor et al., , 2015;;de Ronde et al., 2000;Kishor and Sreenivasulu, 2014;Mattioli et al., 2020;Maria et al., 2021). De novo accumulation of proline was noticed in barley, radish (Chu et al., 1974), leaves of tomato (Rivero et al., 2004), tobacco (Cvikrova et al., 2012), and heat-tolerant varieties of lettuce and wheat in response to heat stress (Han et al., 2013;Djukic et al., 2021). Accumulation of proline has also been found under heat stress in wide array of taxa (Szabados and Savouré, 2010;Pospisilova et al., 2011;Kaur and Asthir, 2015;Harsh et al., 2016;Per et al., 2017). Pyrroline-5-carboxylate synthetase (P5CS) and pyrroline-5-carboxylate reductase (P5CR) are the first two enzymes involved in proline biosynthesis catalyzing glutamate to proline via pyrroline-5-carboxylate (P5C; Figure 1). P5CS overexpression in transgenic sugarcane resulted in proline buildup under water deficit conditions, which protected chlorophyll and photosystem II (PSII; Molinari et al., 2007). Ahammed et al. (2020) demonstrated that transcription factor SlWRKY81 represses SlP5CS1 transcription and drought stress tolerance in tomatoes. On the other hand, SlWRKY81silenced transgenics showed increased proline biosynthesis and drought stress tolerance.Proline in transgenics has been found to act as a component of antioxidative defense systems, and not for osmotic adjustment (Molinari et al., 2007). Congruently, P5CR in soybean increased the tolerance to heat in Arabidopsis thaliana (de Ronde et al., 2004). Existing evidence points out that proline might play a role during osmotic adjustment under heat stress as well as in scavenging the ROS (Kishor et al., 1995;Szabados and Savouré, 2010;Anjaneyulu et al., 2014;Reddy et al., 2015;Signorelli et al., 2015). Experiments carried out by Signorelli et al. (2016) unequivocally demonstrate that proline is not a direct scavenger of peroxynitrite, superoxide, nitric oxide (NO), and nitrogen dioxide (NO2). Contrarily, Hua et al. (2001) and Rizhsky et al. (2004) found no proline accumulation under HTS. Likewise, proline content has been reported to decrease in wheat seedlings during heat stress (Song et al., 2005), inferring that proline accumulation under heat stress is not ubiquitous. In support of this hypothesis, HTS does not trigger the accumulation of proline in A. thaliana, and its synthesis literally showed inimical effect (Lv et al., 2011). In contrast, exogenously applied 1 to 5 µM proline protected the Arabidopsis plants exposed to 50 • C for 10 min (Chua et al., 2020). Foliar application of 5 and 10 mM proline helped in heat stress tolerance in Capsicum frutescens exposed to 40 • C /32 • C day/night for 30-days and also recovery (Akram et al., 2021). Further, 30 mM foliar application of proline resulted in the alleviation of heat stress in rice seedlings exposed to 34 to 36 • C (Table 1). Improved antioxidant defense is the hallmark in all these species implying that proline alleviates heat stress through antioxidant defense (Hanif et al., 2021). A list of plants exposed to heat stress and their alleviation by proline and antioxidant defense is shown in Table 1. However, the amount of proline accumulated and the ability to combat heat stress is affected by the nitrogen availability (Rivero et al., 2004). With these contradictory reports, the feasibility of designing crop plants targeting proline biosynthetic pathway genes for heat stress tolerance is still being debated (Verslues and Sharma, 2010;Bhaskara et al., 2015). This difference in proline buildup could be attributed to (a) overexpression of genes involved in proline biosynthesis not only from glutamate but also from ornithine, and (b) proline homeostasis achieved through activation of the proline catabolic pathways. HTS suppressed the expression of proline dehydrogenase (OsProDH) in rice (Guo et al., 2020). It appears that proline accumulation quenches the ROS, thereby imparting thermal tolerance. Impaired insulin/IGF1 signaling extends lifespan in worms by boosting proline degradation to induce a transient ROS signal (Zarse et al., 2012), tumor suppression and cell survival (Liu et al., 2006;Phang, 2019), and hypersensitive response in plants (Miller et al., 2009). ProDH generates ROS for signaling, but the threshold levels of catabolic activities that switch survival pathways to cellular apoptosis remain unknown and appear to be an emerging issue. Besides ROS, other players associated with proline metabolic signaling look ambiguous, and a matter in question. To understand the role of biosynthetic and catabolic pathway genes/proteins during heat stress, it is imperative to have a comprehensive idea about their regulatory networks. In this review article, we discuss the role of proline biosynthetic and catabolic pathways to heat response and how the conversion of glutamate to proline and proline to glutamate shuttles the reducing power. Further, we emphasize the importance of proline in radical scavenging and redox potential thereby conferring heat stress tolerance.The regulatory roles of proline and proline cycle in heat stress have been emphasized by Iqbal et al. (2019), Zheng et al. (2021), and Lehr et al. (2022). Through diverse molecular methods, key genes involved in proline biosynthesis and degradation (proline cycle; Figure 1) have been identified in plants (Deuschle et al., 2001). The enzymes P5CS1 and P5CS2 (EC 2.7.2.11, two isoforms) utilize either NADH or NADPH (Chen et al., 2006;Forlani et al., 2017) and ATP to produce P5C and their activities are subjected to feedback inhibition by proline, other amino acids and cofactors (Sabbioni et al., 2021). Millimolar levels of proline have been found inhibitory to rice P5CS2 enzyme. Similarly, analogs of proline like azetidine-2-carboxylate, pipecolate, hydroxyproline, phosphonoproline displayed the ability to bind to the enzyme rice P5CS2 and inhibit the activity aside cofactors such as NAD + and ADP (Sabbioni et al., 2021). These results infer that structural analogs of proline inhibit the P5CS2 enzyme like that of proline feed-back inhibition. Such data on other enzymes But, it is predicted that arginine and ornithine, the two polyamines are transported into mitochondria from cytosol and back by basic amino acid carriers (BAC2). While arginine gets converted to ornithine, ornithine is catalyzed by ornithine δ-amino transferase (OAT) to pyrroline-5-carboxylate (P5C), an overriding intermediate in proline cycle. Note that the release of NAD(P)H is connected to pentose phosphate pathway (PPP pathway) in mitochondria. Conversion of P5C to proline and proline to P5C changes the NADP + /NADPH ratio in the cells. This leads to the modulation of phosphoribosyl pyrophosphate (PRPP) synthesis besides nucleotide biosynthesis via the PPP pathway. like P5CS1, P5CR, ProDH1, ProDH2, and P5C dehydrogenase (P5CDH) are lacking, but the data are critical for better understanding. The findings of Sabbioni et al. (2021) substantiate the influence of redox status of the cell and availability of nitrogen/cofactors like NAD + on proline production.Localization of P5CS1, P5CS2, Pyrroline-5-Carboxylate Reductase, Proline Dehydrogenase, and Pyrroline-5-Carboxylate Dehydrogenase Proteins and Redox Modulation While P5CS1 is required for the synthesis and accumulation of proline under stress treatments, P5CS2 is indispensable for embryo and seedling development (Funck et al., 2020). Evidence has also been presented that both P5CS1 and P5CS2 participate in the synthesis of proline (Funck et al., 2020). Initially, it was predicted that P5CS1 protein is localized in plastids and P5CS2 in cytoplasm (Szekely et al., 2008). Subsequent experiments with fluorescence imaging technique showed that both P5CS1 and P5CS2 are located in cytosol in Arabidopsis, and plastids do not contribute to the synthesis of proline (Funck et al., 2020). Thus, subcellular localization of P5CS1 is still enigmatic in plants. Possibly, its localization may depend upon the growth or stress conditions that the plants are undergoing. In line with this, p5cs1 mutants of A. thaliana accumulate ROS due to upregulation of genes implicated in ROS but not the overexpressed lines (Szekely et al., 2008;Shinde et al., 2016). It has been shown that alternative splicing of AtP5CS1 results in natural variation in the content of proline and climate adaptation (Kesari et al., 2012) implaying the importance of P5CS during stress. With regard to redox under abiotic stress conditions, Shinde et al. (2016) have noticed an interconnection between proline and lipid metabolism which may help in buffering cellular redox status. On the other hand, P5CR (EC 1.5.1.2, four isoforms in all including bacterial sources) uses either NADH or NADPH as the electron donor with contrasting affinities and maximum reaction rates (Forlani et al., 2017). P5CR is mostly localized in cytosol in A. thaliana (Funck et al., 2012). Activity of P5CS was inhibited by cations like Na + , Mg 2+ , and Ca 2+ , anions such as Cl − promoted it (Sabbioni et al., 2021). Interestingly, in A. thaliana, stimulation or inhibition by chloride ions and feedback regulation by proline depends on whether NADPH or NADH acts as co-substrate (Giberti et al., 2014). This infers that activities of P5CS and P5CR lower the concentrations of NADPH/NADP + ratio in the cytosol (Liang et al., 2013;Zheng et al., 2021, Lehr et al., 2022). While proline suppressed the activity of only NADH-dependent enzymes, salt stimulated the NADPH-dependent reaction (Giberti et al., 2014). Further, the catabolic pathway enzymes like ProDH (EC 1.5.5.2) and pyrroline-5-carboxylate dehydrogenase (P5CDH, EC 1.2.1.88) are also dependent on FAD and NAD(P) for their activities, respectively. While ProDH is localized on the matrix side of the mitochondrial inner membrane (Cabassa-Hourton et al., 2016), P5CDH (single copy in Arabidopsis) has been found in the mitochondrial inner membrane in maize.The enzymes ProDH and P5CDH were found to interact with drought and freezing responsive gene 1 (DFR1) protein physically. DFR1 protein mediates the inhibition of proline degradation and modulates drought and freezing tolerance (Ren et al., 2018). P5CDH is also crucial to degrade the toxic effects of proline in plants or its intermediate glutamic semialdehyde/P5C to glutamate releasing the reducing power in mitochondria.In plants, proline-P5C cycle generates ROS which can trigger cell apoptosis and prevent pathogenesis. Such proline/P5C toxicity could be because of an overflow of electrons in the mitochondrial electron transport chain (mETC). The increase in ROS was caused by inhibiting P5CDH or yeast mutants lacking this enzyme, demonstrating that P5C functions as a stress response regulator and that its levels must be strictly maintained (Deuschle et al., 2001;Zheng et al., 2021). Thus, the redox state, as well as chloride and proline concentrations in the cytosol, govern all enzymatic activities of the proline cycle in a complicated way. Since proline metabolism is linked to cellular compartments like mitochondria and energetics, it takes part in NAD(P) + /NAD(P)H homeostasis during the growth of plants and when exposed to the stress conditions or relieved from it. A look at the expression of the genes involved in proline cycle and the transporters (eight identified in Arabidopsis) infers that the genes are up-and down-regulated by HTS (Figure 2). Surprisingly, more than P5CS, P5CR gene was upregulated under HTS indicating its importance during short-and long-term exposure to temperature stress. Ornithineδaminotransferase (OAT) also was expressed but under long-term exposure, while its expression was not altered under shortterm treatments.Once the stress is relieved, proline is transported to mitochondria either through proline symporter or a proline/glutamate antiporter to produce energy [FADH 2 and NAD(P)H] by ProDH, and P5CDH, respectively, and release glutamate (Di Martino et al., 2006). But the genes that encode these transportershave not yet been identified in plants. It appears now that glutamate released into mitochondria is transported back to cytosol via a novel glutamate transporter \"a bout de souffle\" (BOU) and uncoupling proteins1 and 2 which also act as transporters of aspartate and dicarboxylates (Monne et al., 2018;Porcelli et al., 2018). Shuttling of proline and glutamate and also the reducing power between the cellular compartments like cytosol and mitochondria is vital for maintaining proper ratio of NAD(P): NAD(P)H in the cellular system. In contrast, ProDH was consistent in its expression especially at 3 + 3-h-long temperature stress exposure, but not P5CDH barring a moderate expression at 3 h/4 h treatments (Figure 2). Though transcript levels of OsProDH were high in root and leaf blade, heat stress reduced the transcript levels of OsProDH (Guo et al., 2020). Expression of the ProDH1 and ProDH2 genes has been found upregulated during plant senescence (Launay et al., 2019). This may help to reduce the toxic levels of proline/P5C on one hand and on the other, aid to generate energy (Launay et al., 2019). These results distinctly demonstrate that proline oxidation fuels mitochondrial respiration during senescence which is essential for maintaining NADP + and NADPH ratio in the cells. Proline cycle is therefore indispensable in the cells for maintaining proper cellular redox. Taking cognizance of these studies, breeding strategies must be developed to enhance HTS tolerance by manipulating proline metabolism.Though proline biosynthesis occurs in cytosol and chloroplasts (Szabados and Savouré, 2010), proline is detected both in xylem and phloem (Lehmann et al., 2010), inferring its transport in different tissues. While Girousse et al. (1996) noticed water stressstimulated transport of proline to long distances via phloem in alfalfa, Mattioli et al. (2020) demonstrated its accumulation in pollen under various abiotic stress conditions, so, its transport to pollen grains is essential for the pollen fertility, thereby limiting the seed loss. Proline porters also act as porters of betaine and γ-aminobutyric acid in A. thaliana (Breitkreuz et al., 1999). In Arabidopsis thaliana, the expression of proline transporter 3 (AtProT3) was steady under both short-term and long-term exposure to temperature stress compared to AtProT1 and AtProT2 (Figure 2). However, the functions of other ProTs under heat stress conditions are unclear. These studies clearly point out that along with the proline cycle genes, transporters are also vital for stress tolerance, under normal as well as environmental stimuli. There is also a debate about whether proline buildup is more important to confer short-term stress tolerance or attaining proline homeostasis through the activation of a catabolic pathway to meet the energy and redox potential in driving plant development under prolonged stress (Kishor and Sreenivasulu, 2014).Proline is synthesized not only from glutamate but also from ornithine (derived from arginine) by OAT (Chalecka et al., 2021). Shin et al. (2016) have presented evidence that ornithine, rather than glutamate pathway is the major route for the synthesis of proline both during growth resumption and HTS in Prunus persica. Production of proline from ornithine involves P5C, the intermediate in the cycle. But, Funck et al. (2008) and Winter et al. (2015) showed that P5C derived from ornithine is utilized for generation of glutamate via P5CDH rather than proline via P5CR. This may perhaps depend on cellular status of proline or glutamate levels and also stress conditions. If the levels of P5C are higher, which are toxic to the cells, it may get converted to glutamate. So, P5C is at a central point to deal with the situation depending on cellular conditions (Anwar et al., 2018;Chalecka et al., 2021). It has also been pointed out that proline regulates the function of mitochondria influencing the death of cells when biotrophic and necrotrophic pathogens invade and in cancer state (Rizzi et al., 2016;Phang, 2019). Given the adage that the OAT is an important stress associated protein involved in proline/glutamate biosynthesis, it has been sought to identify the interacting partners of the protein (Figures 3A,B), which are largely co-expressed with a few of the experimentally determined genes (indicated in yellow background in Supplementary Table 1). We explored important nodes/hubs from the interaction using stress as a topological algorithm from Cytohubba app (Chin et al., 2014) of cytoscape. Highly ranked proteins have been identified during mining (Figures 3A,B) from stress using the Edge Percolated Component, Maximum Neighborhood Component, Betweenness and Closeness Centralities, Density of Maximum Neighborhood Component, Maximal Clique Centrality, and centralities based on shortest paths, such as Bottleneck, and radiality. Network hub indicates that P5CS1 is also one of the key interaction partners of OAT under stress. An attempt was made to unravel the connections between OAT protein and lncRNA targets under stress, but apparently none of the bonafide genuine possibilities were uncovered. This systems biology prediction is in agreement with the supported hypothesis that with an increased OAT, there is an alteration in stress-regulated P5CS1 levels.High temperature stress causes many changes in plant growth, development, leaf senescence, discoloration of leaves (Vollenweider and Gunthardt-Goerg, 2005), degradation of chlorophyll a and b (Jahan et al., 2021), and decline in quantum efficiency. Functional aspects of chloroplasts during programmed cell death (PCD) are mostly obscure. Zavafer et al. (2020) noticed that chloroplasts integrity is collapsed which leads to PCD promoted by long chain bases or ceramides under HTS. In response to HTS, metabolic reprogramming such as breakdown of chlorophyll, production of ROS and alterations in carbon metabolism occur. Such an alteration in metabolic programming is perhaps essential during stress acclimation. Chloroplasts play a crucial role in inducing the expression of nuclear heat-response genes under HTS response (Hu et al., 2020). Light intensity inhibits chlorophyll synthesis especially if ABA levels are low or poor like in nced3nced5 mutants (Huang et al., 2019). High light and HTS produce ROS in the thylakoid which play vital roles as signal transducers. ROS generated during light and HTS provide cells with vital information on the current status of abiotic stress (Foyer and Noctor, 2016;Foyer et al., 2017). Heat stress causes reduced leaf nitrogen concentrations, protein damage, oxidative stress, and associated membrane damage, limiting plant growth and productivity (Wahid et al., 2007;Fahad et al., 2017). Temperature stress lowers chlorophyll biosynthesis due to decreased chlorophyll biosynthetic pathway enzymes such as 5-aminolevulinate dehydratase (Dutta et al., 2009), which could be linked to oxidative damage (Guo et al., 2006;Mohanty et al., 2006). Proline is associated with the protection of thylakoid membranes against free radical-induced photodamage (Alia et al., 1997). Interestingly, reduced ratio between chlorophyll to carotenoid was recorded in tomato and sugarcane plants that are heat tolerant (Camejo et al., 2005;Huang et al., 2019) inferring that pigment (chlorophyll to carotenoid) ratio is implicated in temperature stress tolerance. PSII is highly temperature sensitive and its activity is either partially or totally impaired depending upon the duration and intensity of heat stress (Camejo et al., 2005;Huang et al., 2019). High day and night temperatures perturb the photosynthetic activity in rice cultivars (Fahad et al., 2016). Glycine max transgenic lines containing P5CR gene (sense and antisense) were used to study the effect of heat stress. While sense plants reveal elevated proline alongside high NADP + levels with no symptoms of temperature stress, antisense plants showed lower levels of NADP + with severe symptoms (de Ronde et al., 2004). These results corroborate what has been noticed in the heat map (Figure 2). NADP + concentrations reached normal levels faster in sense plants during rewarming from stress in comparison with antisense plants. Furthermore, after photoinhibition or repeated heating in all plants, the oxygen evolving complex, D1 and D2 proteins dissociate, disrupting electron transfer to the acceptor molecule PSII and reducing RuBP regeneration (Sharkova, 2001;Wise et al., 2004;Toth et al., 2005). Thus electron transport is the functional limitation of photosynthesis at higher temperatures. Plants cope better with heat stress, where proline supplies electrons to PSII (Moustakas et al., 2011;Oukarroum et al., 2012). This type of electron transport in PSII keeps NADPH levels normal and protects the PSII from additional damage (Oukarroum et al., 2012). When plants are relieved from stress, proline is catabolized releasing high concentrations of NADP + which would be used for accepting the electrons in PSII which may ameliorate the effect of uncoupling of the oxygen evolving complex (de Ronde et al., 2004). Thus, proline plays a key role in protecting the PSII and other events related to photosynthetic machinery and its activity under HTS. Interestingly, heat-stressed A. thaliana plants that were pretreated with Nostoc muscorum displayed lower PCD in root hairs in comparison with untreated seedlings. By suppressing PCD but not necrosis, cyanobacteria (N. muscorum)-derived proline enhanced the heat stress tolerance in A. thaliana root hairs (Chua et al., 2020). Also, exogenous supply of proline mimicked comparable PCD suppression levels like that of N. muscorum (Chua et al., 2020). Further, proline transporter mutants like lht1, aap1, and atprot1-1:atprot2-3:atprot3-2 were used to find out if proline is playing any active role during heat stress. Suppression of PCD under heat stress in lht1 and aap1 mutants was reduced markedly when 5 µM levels of proline were supplied exogenously. When the three mutants were pre-treated with cyanobacteria, PCD levels were comparatively enhanced (Chua et al., 2020). Thus, these experiments clearly reveal that Nostocderived proline protects the plants by interfering with PCD activity. Nevertheless, such mechanisms need to be studied in depth to understand the implication of proline in preventing PCD of plants under HTS.Under normal conditions, equilibrium between the production of ROS and antioxidant defense system is maintained, which is perturbed under abiotic stress conditions including HTS. HTS leads to the high accumulation of ROS and oxidative stress in plants. But the production of ROS and their detoxification by both enzymatic and non-enzymatic machinery must be maintained in such adverse environmental conditions (Hasanuzzaman et al., 2020), though our understanding about ROS signaling is limited. Ectopic overexpression of Stipa P5CS gene (StP5CS) in A. thaliana resulted in higher survival rates of plants under drought stress with less membrane damage and superior antioxidant machinery (Yang et al., 2021). HTS elevated the expression of P5CS in addition to heat shock protein (HSP), and manganese superoxide dismutase 1 (MSD1) in rice (Nahar et al., 2022). Their data display that the responses of plants to salt, heat and a combination of salt + heat are unique, but complex with many molecular network modules. Clearly, mitigation of salt and heat stresses were observed with improved antioxidant enzyme activities and elevated expression of P5CS gene and subsequent proline accumulation. Foyer et al. (2017) has proposed that oxidative stress must be viewed as a signaling mechanism rather than damage to the cells.Reactive oxygen species such as hydroxyl radical, hydrogen peroxide, superoxide, and singlet oxygen are produced due to environmental conditions including heat stress as pointed out. ROS can denature proteins, lipids and many macromolecules and inactivate photosynthetic machinery. But, enzymatic and nonenzymatic (ascorbate, a-tocopherol, glutathione, etc.) machinery exists to remove the ROS from the system. Again, the putative role of proline as an antioxidative molecule has sparked debate. Proline is thought to be a ROS or hydroxyl radical quencher (Matysik et al., 2002;Signorelli et al., 2014Signorelli et al., , 2015)). It is known that proline reduces or eliminates the levels of hydroxyl radical and hydrogen peroxide in vivo in non-transgenic tobacco and improves the antioxidative enzymatic activities in transgenic Sorghum bicolor plants under stress (Banu et al., 2010;Reddy et al., 2015) and also increases glutathione under drought and heat stresses in G. max (Kocsy et al., 2005). The initial evidence points out that proline cannot totally quench or scavenge singlet oxygen, and does not interact with superoxide radical, nitric oxide, peroxynitrite, and nitrogen dioxide (Signorelli et al., 2013(Signorelli et al., , 2016;;Signorelli, 2016). Rehman et al. (2021) used a variety of techniques, including electron paramagnetic resonance spin trapping with 2,2,6,6-tetramethyl-4-piperidone (TEMPD), fluorescence probing with singlet oxygen sensor green (SOSG), and oxygen uptake in isolated thylakoids, to demonstrate that proline quenches both singlet oxygen and superoxide radical in vitro via an electron transfer reaction. Their experiments demonstrate that singlet oxygen-scavenging capacity of proline reaches up to two thirds that of α-tocopherol and significantly superior or the same that of ascorbate (Rehman et al., 2021). Further, Aswani et al. (2019) have shown that proline plays a physiological role in singlet oxygen detoxification in the leaves of Pisum sativum exposed to methyl viologen that generates large amounts of singlet oxygen under light conditions. Proline makes physiologically meaningful contributions to ROS (singlet oxygen) quenching, and may operate as a supplement to other non-enzymatic ROS quenchers in stressful settings, according to these investigations.It has been demonstrated that P5C-proline cycles operative in different cellular compartments are associated with signaling events and modulation of intracellular redox potential (Hare and Cress, 1997;Miller et al., 2009). Redox homeostasis is essential during photosynthesis especially under the conditions of climate change to promote plant development (Scheibe et al., 2005). Proline metabolism is compartmentalized mostly in chloroplasts, mitochondria and cytoplasm implying that reducing equivalents are concentrated in these compartments (Lunn, 2006). Regulation of energy in the form of ATP, and reducing power (NADH/NADPH), its homeostasis under heat stress requires proper channelization and utilization wherever necessary (Foyer and Noctor, 2020). Dark CO 2 fixation is affected under heat stress since stomata are closed and chlorophyll molecules are degraded leading to reduced generation of reducing power in chloroplasts. Since carbohydrate supply is limited under heat stress, concomitant decrease in ATP and NADPH generation is generally noticed in mitochondria. Therefore, very tight spatiotemporal regulation and supply of energy at different cellular compartments is necessary under heat stress. While NAD + is synthesized in the cytoplasm, it must be translocated into chloroplasts and mitochondria via NAD + carrier proteins NDT1 and NDT2 localized in plastid and mitochondrial membranes (Palmieri et al., 2009). NDT1, the mitochondrial transporter, appears to play a crucial role in cellular NAD + homeostasis in A. thaliana (de Souza Chaves et al., 2019). However, the redox couples (NAD + /NADH and NADP + /NADPH) produced by calmodulin-dependent NAD + kinase (Gakiere et al., 2018;Dell'Aglio et al., 2019) are not permeable to organellar membranes and must be transported across subcellular compartments by shuttle systems or metabolic valves. Under abiotic stress conditions, the glycerol-3-phosphate, malate-aspartate shuttle for NADH pools, and malate-oxaloacetate shuttle for NADPH pools transport reducing equivalents from subcellular compartments into the cytoplasm and back, maintaining redox and energy homeostasis. As part of proline cycle, P5CS and P5CR convert glutamate to proline using NAD(P)H, as an energy source; while ProDH and P5CDH in the mitochondria accelerate the conversion back to glutamate, lowering both FAD + and NAD + molecules (Liang et al., 2013). This cycle thus involves NAD(P) + /NAD(P)H between cytoplasm and mitochondria during plant development and also during abiotic stress including heat stress. Arabidopsis p5cs1 mutants exhibit sensitivity to salt stress, accumulate ROS with implications in redox metabolism at subcellular compartments like chloroplasts and mitochondria (Szekely et al., 2008;Shinde et al., 2016). Ruszkowski et al. (2015) and Shinde et al. (2016) noticed that proline metabolism helps in maintaining cellular redox under stress conditions. Proline and ascorbate pathways have been found to act synchronously to maintain cellular redox homeostasis in tomato (Lopez-Delacalle et al., 2021; Table 1). Interestingly, it has been found that NADP + suppresses the P5CR expression, but not NADPH-dependent reactions (Giberti et al., 2014). Further, NADH-dependent P5CR activity is reduced if proline is accumulated in excess. Thus, proline cycle helps in the production of FADH 2 and NADH which might impact the electron transport in mitochondria alongside the production of ROS. Huang et al. (2013) also reported the discovery of succinate dehydrogenase (SDH) assembly factor 2 (SDHAF2), a protein that co-expresses with SDH1-1 and is required for the insertion of FAD + into SDH component or mitochondrial complex II, as well as proper root elongation in A. thaliana. Further, it has been shown that proline biosynthesis might act as a redox vent even in mammals (Schworer et al., 2020).Under stress conditions, proline accumulation assists in plant growth. But application of proline under normal conditions inhibits plant growth (Han et al., 2021). If proline is supplied externally under normal conditions, degradation of excess proline induces mitochondrial ROS due to electron overflow in mETC which might contribute to the proline toxicity and inhibition of plant growth. A mitochondrial truncated matrix protein (SSR1) with a tetratricopeptide repeat domain has been shown by Han et al. (2021) to be involved in maintaining the function of mETC in proline hypersensitive phenotype of A. thaliana. When the ssr1-1 mutant was given proline, accumulation of ROS was dramatically increased due to the increased activity of ProDH, resulting in proline breakdown and triggering of apoptosis (White et al., 2007;Pandhare et al., 2009). Han et al. (2021) pointed out that treating plants with proline under normal conditions might lead to higher mitochondrial ROS, lower ATP content, decreased mETC complex I and II. These results imply that SSR1 is associated in maintaining mETC at optimum levels to mitigate proline toxicity under normal conditions. Because ProDH binds to the coenzyme Q, superoxide radicals may not be formed during proline oxidation by ProDH at complex II, as they are produced at complex III (Goncalves et al., 2014;Hancock et al., 2016). Furthermore, polymorphisms in mitochondrial DNA were linked to two genes that encode NADH dehydrogenase subunits. These findings show that proline accumulation and cellular redox are carefully regulated, with proline breakdown being the most important factor in stress tolerance (Atkin and Macherel, 2009;Sharma et al., 2011). Aside from providing energy in the form of FADH 2 and NADPH, proline degradation impacts oxidative stress resistance. Zhang et al. (2015) characterized oxidative stress resistance of putA (contains both ProDH and P5CDH domains) mutant strains of E. coli. These experiments revealed that putA mutants are sensitive to oxidative stress compared to the wildtype strain. Thus, proline serves as an important molecule in oxidative stress resistance.Proline degradation is equally essential for supplying energy under long term stress and when the plants are relieved from stress. Proline is synthesized in chloroplasts/cytoplasm, but transported through proline porters to the root and shoot tips where it supplies energy by oxidation in mitochondria. During senescence, degradation of Calvin cycle enzymes occurs, therefore, NADPH levels are reduced in the senescing leaves. The accumulated leaf proline activates ProDH leading to higher activity of ProDH1 and ProDH2 under senescing conditions (Launay et al., 2019;Dellero et al., 2020). Thus, oxidation of proline during heat stress and also during stress release is an important additional source of energy besides replenishment of NADP + /NADPH ratio in the cells. Besides ProDH, P5CDH also contributes to the alleviation of oxidative stress. Mutants of p5cdh accumulate ROS when proline was supplied exogenously (Deuschle et al., 2004;Miller et al., 2009). The results reveal that P5CDH and the dynamics proline cycle are important for maintaining ROS homeostasis.Thioredoxin (Trx) is a ubiquitous thiol-disulfide reductase and the master regulator protein of the tricarboxylic cycle in plant mitochondria, and located both in mitochondria and cytosol. Trx regulates SDH, fumerase and ATP-citrate lyase by modulating thiol redox status, and thus the carbon flux. The NADPH produced by dehydrogenases including P5CDH can be utilized in glutathione reductase for protection against oxidative stress and by thioredoxin reductase in the regulation of metabolic pathways (Moller and Rasmusson, 1998). In other words, proline catabolism plays a role since Trx makes use of NADPH through NADPH-thioredoxin reductase enzyme (NTR; Geigenberger et al., 2017). In comparison to wild-type plants, trxo1 mutant and ntra, ntrb double mutants amass less proline but more glutamate and malate (Daloso et al., 2015;Geigenberger et al., 2017). Malate serves as a source of NADH/NADPH in the TCA cycle under stress conditions. Accumulation of proline was curtailed in the mutant trx1 under drought stress conditions (Verslues et al., 2014). Trxs not only transmit the light signal from chloroplasts to mitochondria, but also moderate the enzymes of the proline cycle. Importantly, when chloroplasts are inactive during night time, proline degradation may release energy (FADH2 and NADPH) and redox power to the cells. Therefore, proline degradation and the energy released thereof is imperative unequivocally once the plants are relieved from stress. Plants accumulate 56-times more amounts of proline in flowers than the leaves (Schwacke et al., 1999;Kishor and Sreenivasulu, 2014). Proline also accumulates significantly in high concentrations in developing microspores from local synthesis and accounts for 70% of the total free amino acids. Proline has been found essential for pollen fertility and improved yield stability under salt stress in A. thaliana (Mattioli et al., 2018(Mattioli et al., , 2020)). Further, tomato proline transporter LeProT1 is expressed in the germinating pollen tube and supplies energy during the growth of the pollen tube (Mattioli et al., 2018).High temperature stress activates the accumulation of proline and polyamines (Chakraborty and Tongden, 2005;Cvikrova et al., 2012). Anabolism and catabolism of polyamines have been noticed in plant leaves exposed to heat stress (Walter, 2003). Proline and polyamines play a role in osmotic adjustment as well as in scavenging ROS (Bouchereau et al., 1999). The effect of heat stress on the accumulation of polyamines and proline in transgenic tobacco plants (overexpressing P5CSF129A gene with no feedback regulation of P5CS enzyme) that overproduce proline in lower, and upper leaves, and roots was recorded (Cvikrova et al., 2012). Genes that encode proline biosynthetic pathway enzymes confer salt stress tolerance in Panicum virgatum in cooperation with polyamines metabolism (Guan et al., 2020). Proline accumulated after 6-h of heat stress treatment in the lower leaves. After 2-h of exposure to 40 • C, wild-type tobacco plants accumulated more proline than transgenics, but after a 2-h lag period, transgenics accumulated putrescine, spermidine, norspermidine, and spermine, with matching increases in enzyme activity (Cvikrova et al., 2012). During the initial heat stress, polyamine oxidase was elevated in the roots of wild-type and transgenic plants, but it was unexpectedly reduced in the leaves of transgenics. Decrease in the activity of ornithine decarboxylase and increase in the diamine oxidase in the leaves and roots were recorded in transgenics (Cvikrova et al., 2012). In addition, the results obtained by Cheng et al. (2009) in tomato infer that both spermine and spermidine play indispensable roles in heat stress tolerance. High levels of proline in transgenics also appear to play a positive effect on heat stress tolerance, since degradation products of proline aid in the biosynthesis of polyamines in the early stage of exposure to heat (Cvikrova et al., 2012). Changes in the accumulation of proline and its metabolism have been found regulated depending on the age of the leaf in pea plants exposed to metal stress, independent of ABA signals (Zdunek-Zastocka et al., 2021). Such an accumulation of proline in the leaves may help in osmotic adjustment during stress.Stress responses in plants are highly dynamic and often involve a complex cross-talk between gene expressions, and a unique reprogramming at the metabolic, and phenotypic levels. It is known that nitrogen source increases proline quantity, however, the mechanistic explanation is mostly imprecise. Water and heat stresses trigger sucrose synthases (SUS1 and SUS4), glucan, water dikinase 2 (GWD2) as well as P5CS1. Gurrieri et al. (2020) have shown that wild-type plants and loss-of-function mutants show no differences in transitory starch and cell wall carbohydrates and in the total amino acid content under water deficit conditions. But water-soluble sugars and proline contents decline in mutants in comparison with wild-type plants.Their results indicate that GWD2 strengthens the involvement of SUS1 concerning osmotic stress and higher contribution of soluble sugars than proline in osmotic adjustment under drought stress (Gurrieri et al., 2020). Also, a putative interaction between proline and soluble sugars has been noticed (Gurrieri et al., 2020). However, the nature of the interaction between soluble sugars and proline is yet to be ascertained. Proline concentration in phloem exudates, uptake of nitrogen and absorbed nitrogen from the soil has been determined under water deficit conditions in Trifolium repens (Lee et al., 2009). Under drought stress, proline content in phloem exudates has been found enhanced, with a concomitant decrease in nitrate reductase activity in roots. The results prove that proline transport to roots via phloem was enhanced due to drought stress conditions which are governing the uptake and assimilation of newly absorbed nitrogen (Lee et al., 2009). However, if such a link exists or not between high day and high night temperature stresses, proline transport to phloem and nitrogen nutrition is largely elusive. Exogenous supply of proline reduces the levels of malonaldehyde and H 2 O 2 under HTS in tomato, it improves the water use efficiency, fruit quality attributes like acidity and total soluble solids, and final yields (Tonhati et al., 2020). It emerges therefore, that proline alleviates HTS by improving the oxidative stress damage. Lopez-Delacalle et al. (2021) noticed that proline and ascorbate pathways act highly in a synchronous fashion to maintain cellular redox homeostasis under salt and heat combination stresses in tomato. They identified the transcription factor families like the basic leucine zipper domain (bZIP), zinc finger cysteine-2/histidine-2 (C2H2) and trihelix as modulators of the up-regulated genes when salt and heat stresses were given in combination. Rivero et al. (2004) + as a source of nitrogen unveil higher temperature tolerance (35 • C) than the plants that were fed with NO 3 − (Rivero et al., 2004). Such a tolerance was correlated to the higher accumulation of proline when NH 4+ was fed to the plants than nitrate (Rivero et al., 2004). The experiments point out that the source of nitrogen is crucial for proline accumulation under high temperature and in imparting tolerance to HTS. In line with this, Dellero et al. (2020) noticed downregulation of three P5CS1 genes in source leaves with reduced commitment of nitrogen source toward proline biosynthesis in Brassica napus. Contrary to this, ProDH genes were upregulated by carbon starvation (darkinduced senescence) compared to early senescing leaves. It is evident that besides nitrogen status, dark to light transition and stress response jointly modulate the differential expression of P5CS and ProDH genes associated with proline synthesis and degradation.Besides genetic engineering technologies, editing of one or more genes through multiplex-multigene CRISPR/Cas9 system is an encouraging approach for generating crop plants tolerant to abiotic stresses including HTS. While P5CS and P5CR are important positive regulators in proline biosynthesis, ProDH is the rate limiting step in its degradation. Both P5CS and P5CR have not been subjected to editing, but are promising candidate genes. Transcript levels of OsProDH were higher in roots and leaf blade, and HTS repressed the expression of ProDH in rice (Guo et al., 2020). While overexpression of OsProDH (single copy gene in rice) decreased proline quantity, a knockout mutant (created using CRISPR/Cas9) increased the proline content (Guo et al., 2020). CRISPR-edited lines displayed better resistance in comparison with wild-type rice plants. These results imply that OsProDH negatively modulates heat stress tolerance in rice seedlings by regulating proline catabolism (Guo et al., 2020). Knockout mutants accumulate less H 2 O 2 than the overexpressed lines. It appears therefore, that proline accumulation quenches the ROS, thereby imparts thermal tolerance. Paralogous genes must be kept in mind which may get targeted if not protected carefully (Saikia et al., 2020). Care must therefore be exercised while selecting target genes through pre-CRISPR analysis for multiplex-multigene editing while making efforts to manipulate proline metabolism. The gene editing procedures including TALENS/ZFNs or CRISPR/Cas9-based multiplexed editing have shown great promise in deletion of candidate motifs associated with stress tolerant varieties in tomato (Tran et al., 2021). To develop climate resilient heat tolerance lines, undertaking precision genome editing of proline biosynthesis and degradation targets is necessary to attain redox, energy homeostasis and to scavenge ROS. Although Tran et al. (2021) have attempted to understand this in the manipulation of hybrid proline-rich protein 1 (HyPRP1) domains, engineering such domains for coping up with climate changes needs to be further heralded.Despite being a proteinogenic amino acid, proline has a wide range of activities in plants, as an osmoprotectant for osmotic adjustment under conditions of salt, drought and temperature stresses. Recent evidence surmises that proline reduces the production of ROS, through quenching singlet oxygen and superoxide radicals in thylakoids. It is widely acknowledged that proving this evidence in whole plants is challenging. As a result, much more research is needed to show that proline is a good quencher matching to the properties of non-enzymatic antioxidant compounds. Proline cycle acts as a shuttle to transport redox couples from mitochondria to cytoplasm and back. Both synthesis and degradation of proline appear to be highly critical during plant growth and stress conditions. The enzymes of the biosynthetic pathway have not been completely characterized under diverse abiotic stress conditions and more studies on protein-protein interactions, membrane transporters are necessary. Enzymes involved in proline catabolism interact with Trx, but other interacting partners need to be uncovered to understand stress response. Recent findings filled the gaps in our understanding of proline cycle and production of ROS and their homeostasis in attaining heat tolerance. Proline catabolism has been implicated in cancer biology in humans and abiotic stress tolerance in plants. Therefore, understanding the biochemical mechanisms of how proline improves the stress tolerance in plants and also human health is vital for us. We need to target to increase proline under short-term stress to quench ROS and to attain proline homeostasis under prolonged stress and then yield stability through a balanced redox potential. But it appears that proline metabolism can only be an adjunctive target for generating heat stress tolerant plants.","tokenCount":"7118"} \ No newline at end of file diff --git a/data/part_3/4075016084.json b/data/part_3/4075016084.json new file mode 100644 index 0000000000000000000000000000000000000000..242ecd6936cdb3e4d0dff16511decc191ce2619b --- /dev/null +++ b/data/part_3/4075016084.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"359a0a5df240732cbdfd599ec974be8e","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/04b383ac-424f-4166-aa4f-faa7fb9f46a4/retrieve","id":"375332035"},"keywords":[],"sieverID":"bbaef330-6ab7-4efa-af73-c4ece7b1a539","pagecount":"63","content":"The Water-Energy-Food-Ecosystem (WEFE) nexus approach has gained popularity recently because the security of natural resources is fundamental to human welfare. The WEFE nexus approach helps maximize synergy across water, energy, food, tenure, and livelihood security while minimizing trade-offs, particularly in terms of environmental damage, social costs, and economic losses. This approach centers on ensuring gender equality and social inclusion (GESI) in managing natural resources.The WEFE nexus refers to the connections between four resource sectors: water, energy, food, and ecosystems. It involves the synergies, conflicts, and trade-offs that arise from how these resources are managed. The approach rejects isolated management practices and single-sector policies that lead to sectoral silos and non-sustainable practices. It aims to foster stakeholder integration and considers multiple solutions to create synergies among various sectors. By addressing both benefits and trade-offs comprehensively, the WEFE nexus approach seeks to avoid short-term solutions and instead promote long-term sustainability. It emphasizes the importance of managing resources in a coordinated and integrated manner to ensure the overall well-being of ecosystems and human societies.Despite its strong theoretical foundation, the WEFE nexus has been criticized for lacking adequate practical examples and case studies. Specifically, in Nepal, the approach is relatively new, with no documented cases or dedicated projects designed with the WEFE nexus approach in mind. Therefore, despite its theoretical popularity, it remains in its infancy regarding its conceptualization and application at policy, institutional, and local levels.To fill this gap, GREAT International, together with Governance Lab, has made a small attempt by inviting a group of researchers-namelyExamining the Water-Energy-Food Security-Ecosystem Nexus Approach in Nepal: Learning from Some Case Studies 2 Proponents of the nexus approach in the WEFE sectors advocate for a comprehensive multi-level assessment of existing institutional arrangements. This assessment helps to identify existing convergences and institutional innovations that enable integrated resource management and reduce the trade-offs across the sectors (Ringler et al., 2013. The role of a nexus approach in fostering an inclusive approach conducive to the well-being of the poor and marginalized has been well documented (ibid). Against this theoretical backdrop, Nepal's recent efforts towards integrated resource management have focused on collaboration and synergy, although the term 'nexus' has not been explicitly mentioned in any of the policies and program documents. Nevertheless, the nexus approach can be an important entry point toward translating the policies aiming for integrated and inclusive resource management.In the context of the water sector, the 2015 Constitution of Nepal has embraced an integrated approach to water resource utilization, management and conservation, prioritizing national investment in water resources based on people's participation and a multi-utility development of water. Although the calculation of trade-offs hasn't been duly considered, the Constitution has incorporated elements of creating synergies related to managing WEFE resources. Schedules 5-9 of the constitution have distributed the role of water resource management among the three levels of government. The federal government is mandated to define the overall national water resources policy directions and undertake the development of central-level large water projects, including negotiations for transboundary issues and inter-provincial research and development. Meanwhile, the roles of provincial and local governments include water supply and sanitation, irrigation, electricity services and watershed protection activities within their respective jurisdictions. Furthermore, constitutional policy provisions also envision a sustainable and reliable irrigation system mitigating water-related natural disasters and managing the river systems.The National Water Resource Policy (NWRP) 2020 has reverted to an integrated approach, aligning with the earlier Water Resources Strategy Nepal, 2002(see WECS, 2002). Prioritizing integrated water resources management, the NWRP (2020) adopts a basin approach to facilitate the multi-purpose use of water through multisectoral coordination and collaboration (MoEWRI, 2020). The establishment of multi-sectoral ministries and institutions at the federal and provincial levels, along with the devolution of roles and resources for local natural resource management to local governments, provides opportunities for cross-sectoral and cross-scalar interactions and actions. Within the Ministry of Forest and Environment (MoFE), the forest and watershed division has embraced a multisectoral approach in the forest, soil and water nexus, focusing on soil conservation and watershed management through dedicated sections such as watershed and soil conservation.Additionally, the government has recently proposed a sub-basin approach through 23 offices in all provinces under the \"Science, Environment and Watershed Division\" for integrated watershed management (Paudel et al., 2019, p. 74). Moreover, international and national research institutions have advocated for a multi-sectoral integrated approach to water management. There is a growing interest among federations of drinking water and irrigation, forests and food, to collaborate on issues of public welfare (for more details, see section 2).Similarly, sectoral policies such as those concerning water, demonstrate progress in terms of including women and other disadvantaged groups in formal water user committees, associations and decision-making processes (HMGN, 2002;HMGN, 2005;HMGN/MoPPW, 2004;GoN/MoPPW, 2009GoN, 2013). Numerous federal-level ministries, including those relating to agriculture (MoALD), forestry (MoFE), federal affairs and general administration (MoFAGA), have devised sectoral Gender Equality and Social Inclusion (GESI) strategies (for example, see GoN /MoALD, 2021) and established GESI units to promote an inclusive approach to resource management. Provincial ministries and local governments are also formulating GESI strategies to mainstream GESI and facilitate targeted interventions.Nevertheless, institutionalizing GESI practices remains challenging (ADB et al., 2012). Opportunities for women to hold leadership and decision-making positions are still limited (DWRI, 2019;Shrestha and Clement, 2019). As noted by Khadka et al. (2021), the evolving water policies in the federal context tend to favor large infrastructures, lacking the policy impetus needed to ensure equitable, inclusive and sustainable water management for multiple water uses and improved water governance.In summary, the prevalence of political interests and ongoing disputes over resource allocation and budget distribution have constrained the capacity of WEFE institutions to facilitate meaningful dialogues geared towards policy-level cooperation and coordination among the three levels of government (Suhardiman et al. 2015;Khatri et al. 2022).Despite the reallocation of resources and authorities, persistent overlapping roles and responsibilities among the federal, provincial and local governments, and limited capacity and resources to function effectively with the federal setup (The Asia Foundation, 2017) remain obstacles to WEFE nexus initiatives. For example, while the constitution assigns the provision of drinking water services to the exclusive jurisdiction of local governments and concurrently to the federal, provincial and local governments, efforts to prevent project duplication have been ineffective, leading to simultaneous implementation of similar projects across all three levels of government (DRCN, 2020).At the institutional level, the existence of numerous ministries, departments and divisions at the federal level with limited nexus platforms for fostering deliberations on integrated natural resource management impedes the realization of nexus gains. While some intersectoral ministries and line institutions, such as the Ministry of Water Supply, Irrigation and Energy, Ministry of Agriculture, Energy and Water Resources, have been established at the provincial level, there remains a larger disconnect with local governments. More importantly, sectoral priorities in formulating development programs and budget allocations pose obstacles to enhancing coordination and integration efforts among ministries and departments relating to WEFE.Another dimension of the policy-practice gap also relates to the attitudes and beliefs held by WEFE actors and institutions. Some operating actors and institutions find it actually demotivating to pursue a nexus approach in WEFE governance, perceiving it as a threat to their existing authority and power. In a roundtable discussion, a representative from a hydropower company expressed reservations about the formation of the multi-sectoral Ministry of Energy, Water Resources and Irrigation (MoEWRI): \"Adding irrigation to the Energy Ministry has increased burden and disincentivized the private sector interested in the development of the energy sector. The government needs to clarify its priority between the development opportunities from the energy and irrigation sector\" (Interview note, Nov 27, 2022).Likewise, in a panel discussion focused on the challenges and prospects of solar-pumped irrigation, the delegate from the Alternative Energy Promotion Centre (AEPC) remarked that Nepal Electricity Authority (NEA)'s reluctance has discouraged APEC from promoting solarpumped irrigation. Declining interest and the lack of strong implementation mechanisms for promoting synergy and coordination across energy and irrigation sectors are among the major challenges in realizing nexus gains (Panel discussion, March 17, 2023).Another dimension of the gap relates to the lack of appropriate institutional arrangements to translate policy into practice. An expert involved in formulating the NWRP, 2020 shared that in the absence of an umbrella act and other legal provisions to operationalize policy, the goal of integrated water resource management hasn't been realized (Interview Notes, 2022). Overlapping institutional responsibilities and lack of coordination and clarity in roles within and between water-related ministries, departments and offices hinder intersectoral approaches in the water sector. A representative from a civil society organization (CSO) shared: \"MoEWRI has more interactions with forest, agriculture and other ministries compared to the Ministry of Water Supply (MoWS) which works in the water sector (Interview note, CSO representative, Oct 2022).The policy-practice gap is also evident in GESI efforts within the WEFE sector. Grassroots organizations and their federations pointed to the representation of women in formal water user committees and women-focused events as indicators of progress in GESI within the water sector. For instance, the National Federation of Irrigation Water Users Association, Nepal (NFIWUAN) has ensured 33% representation of women, Dalits, Janajatis, and socio-economically marginalized and disadvantaged groups in its decisionmaking structure (Interview Note, October 11, 2022). A more progressive approach is observed in the Federation of Drinking Water Users ' Nepal (FEDWASUN), which mandates 50% representation and currently includes two Dalit women, Madhesi and Janajatis in its central committees (Interview note, September 2022).Studies, however, suggest that the integration of marginalized communities, including women and Dalits, among others, has been largely symbolic, failing to facilitate meaningful participation of these groups in natural resource management planning and decisionmaking at both national and sub-national levels (Wali et al., 2020;Udas and Zwarteveen, 2010). Women representation in leadership positions within farmers' organizations, cooperatives or extension services, continues to be limited due to entrenched patriarchal values and norms, limited institutional and family support, and inadequate formal education and security (Bhattarai, 2020;Singh et al., 2020;Upadhya and Shrestha, 2021).A female representative of the NFIUWAN shared, \"Until five years back, I was the only female chairperson of the irrigation water users' association. We now have about seven female representatives in the central federation, and I hope this will increase in the upcoming district and national level congress\". However, she pointed out, \"Women still lack the capacity and the confidence to voice their concerns and influence the decisions. I share my experiences and encourage them to take up leadership roles. Ultimately, it is us, the women, who perform the bulk of the farm work\" (Interview Note, Nov 18, 2022).Adopting a WEFE Nexus for Advancing an Inclusive and Integrated Approach: Experiences, Insights, and Scope in Federal Nepal Expanding nexus gains is feasible at both policy and institutional levels. The National Water Resources Development Council (NWRDC), chaired by the Prime Minister, serves as the apex decision-making authority on national water resource management. It possesses the authority to issue directives and oversee the sustainable development of water resources, ensuring coordination among various sectors at the federal, provincial, district, and municipal levels (Winrock, 2021). Some initiatives, such as the Multi-stakeholder Forestry Program (MSFP) and REDD+, have aimed to adopt an inclusive and integrated approach to managing water, energy, food and forest resources in Nepal. While efforts have been made to advance WEFE sector agendas through networks like the Confederation of Natural Resources, progress has been hindered by parochial sectoral interests. Nonetheless, there is increasing recognition of the importance of cross-sectoral coordination and collaboration. Given the interconnectedness and interdependencies of WEFE resources, there is value in drawing lessons from past and ongoing multi-sectoral initiatives. Interestingly, some projects, like the Rural Village Water Resources Management Project (see Box 1 below), have embraced a multi-sectoral approach to local water resource management.The establishment of multisectoral ministries and institutions at both federal and provincial levels, along with the expanded roles of local governments in holistic development, has created opportunities for synergy and collaboration. Ministries such as the Ministry of Energy, Water Resources and Irrigation at the federal level, and similar bodies like the Ministry of Water Resource and Energy Development (Karnali), and Ministry of Energy, Water Resources and Water Supply (Gandaki) at the provincial level, exemplify this trend. Additionally, the creation of institutions like the Agriculture Knowledge Center, Irrigation Divisions, Soil and Watershed Management Offices at the provincial government, along with the Division Forest Offices, have paved the way for coordinating and implementing various programs at the sub-national level.However, overcoming entrenched sectoral silos and technocratic dominance within and beyond the water management domain remains crucial for effective institutional integration. The newly created Water Resource Research and Development Centre (WRRDC) under the MoEWRI is an example. Although created as a unit for research and development in the water sector, its objectives display bias towards the irrigation sector and technocratic research. Capacitating such institutions to operate as multi-sectoral and transdisciplinary research and capacity-building units, can enhance their roles and contributions in the multi-purpose development of water resources and help bridge existing gaps between the social and technical components of water management.Another crucial opportunity exists in sensitizing and strengthening local governments which are at the frontline of delivering equitable, sustainable and resilient water (and other) services. Revitalizing the District Coordination Committee, positioned at the center of vertical coordination among local, provincial and federal governments, as well as horizontal coordination across local governments, can be instrumental in promoting nexus dialogues and exchanges. This can foster much-needed cross-sectoral and crossscalar coordination between government and non-government actors. Piloting the WEFE nexus approach in local governance decision-making and development practices can provide useful lessons for upscaling and outscaling the WEFE nexus approach. Without implementation, there is a risk that the nexus approach may remain a normative concept that is fashionable but weak in execution.The RVWRMP III is a multilateral project funded by the Government of Nepal, the European Union, and the Government of Finland in collaboration with the local government and communities. Its primary objective is to facilitate the development of Water Use Master Plans for rural municipalities and implement drinking water supply schemes. Moreover, it aims to strengthen the capacity of local cooperatives, offer technical assistance, and support irrigation to enhance the agribusiness-based economy. Other initiatives under RVWRMP include the construction of schools, health centers and public toilets, alongside efforts to raise awareness of disaster and climate change issues. The project also promotes the installation of solar mini-grids, improved cooking stoves and water mills, while strengthening the institutional capacity of local governments and non-governmental organizations.Drawing lessons from previous integrated development projects, both within and beyond the water sector, can provide invaluable insights into identifying key areas for scaling up locally driven, practical and progressive measures. These insights are essential for institutionalizing and maintaining cross-sectoral coordination and collaborative efforts essential for achieving integrated and inclusive development. The risk of forest fire further increases by the accumulation of combustible materials in poorly managed forests (Pandey, 2022). Despite their national significance, forest fire management in Nepal suffers from a lack of cohesion between national policies, district level institutions and local practices, hindering mitigation efforts.In Manthali Municipality of Ramechhap district, forest fires often receive limited attention, especially as they mainly occur outside private properties. The capacity within relevant agencies to effectively address forest fires is constrained. Despite the guidance provided by the Forest Fire Management Strategy 2010 for plan preparation and wildfire prevention, continuous investment from the national budget, and efforts from community forest user groups in Manthali-2, the incidence of forest fire is increasing (Nepal, 2021). Climateinduced droughts are worsening in severity in Manthali of Ramechhap district (Joshi, 2018), which likely is contributing to the rise in forest fire incidents. During the forest fire of 2010 AD, the army attempted to control the blaze in Ramechhap Municipality-2, albeit unsuccessfully, resulting in the tragic loss of 13 Nepal Army personnel.The water-energy-food-ecosystem (WEFE) nexus presents various benefits to Manthali Municipality in effectively managing forest fires which directly impact communities and contribute to improving their livelihoods.For this case study, we conducted field surveys and key informant interviews to investigate forest fire management practices in Manthali Municipality. Our hypothesis suggests that adopting the WEFE nexus approach is crucial for effectively managing forest fires in Manthali Municipality in Ramechhap district.The WEFE framework emphasizes the interdependencies and interconnections between water, energy, food and ecosystems (Figure 1). It acknowledges that actions within one domain can significantly impact others, emphasizing the need for a holistic approach to addressing challenges related to these resources.The study was conducted in Manthali Municipality in Ramechhap district, known as one of the most drought-affected regions in Nepal.The case study employed a combination of methods, including a preparatory literature review, field observations and stakeholder interviews. Stakeholders interviewed comprised members of community forest user groups (n=3), officials from various governmental offices including the Division Forest Office (n=1) and Manthali Municipality (n=2), as well as local residents (n=2). A Divisional Forest Officer from Ramechhap shared insights on the importance of adopting a WEFE nexus approach to effectively manage forest fires. The Officer underscored the need for a holistic framework that acknowledges the interconnections among various governmental institutions. He stressed the importance of coordinated efforts involving relevant government institutions, community groups, volunteer groups, and non-governmental organizations to effectively combat forest fires. However, the Officer commented that a lack of cohesive nexus between these entities at the policy level, coupled with communication and action gaps, has resulted in disjointed operations and diminished effectiveness due to inadequate coordination. He emphasized that the WEFE nexus approach is not only applicable to forest fire management but also extends to areas such as water conservation, food security, energy conservation, and ecosystem preservation. Thus, he asserted that the WEFE nexus is pivotal for both local development initiatives and the conservation of forest ecosystems. The Officer concluded by recommending the incorporation of the WEFE nexus approach into forest fire management discussions at local, institutional, and policy levels. He suggested that at the local level, conducting workshops and engaging stakeholders are important to understand the impact on water, energy, food, and ecosystems. At the institutional level, forming cross-sectoral teams, promoting interdisciplinary research, and allocating funding for WEFE-integrated projects are useful. Similarly, at the policy level, developing holistic policies, advocating for WEFE approaches, and establishing monitoring and reporting mechanisms are important to ensure comprehensive forest fire management.The fire line in the forest serves as a crucial barrier in containing the spread of forest fires. Lawa Shrestha, the Chairperson of Manthali Municipality, recounted an incident involving a large-scale fire outbreak at the Badipakha Community Forest in Ramechhap (figure 2). This fire posed a grave threat to the District Hospital. In response, all stakeholders in the district including the Division Forest Office, Nepal Army, District Disaster Management Team, forest user groups and locals were mobilized. Furthermore, a fire engine from Manthali Municipality was strategically stationed at the hospital premises to protect the healthcare facility from potential fire damage.The coordinated response of all district institutions, Manthali Municipality, community forest user groups and residents, alongside the efforts of the fire department, played a crucial role in containing the forest fire and minimizing further damage. Table 1 illustrates the WEFE Nexus approach at various levels in forest fire incidents in the study area. There are knowledge gaps due to the lack of a conceptual framework and practices to interlink forest fire drivers with the water-energy-food nexus and related ecosystem processes (Martin, 2016). Forest fires act as drivers of changing flora and fauna; landscape changes are interlinked with life cycles in water, energy, food, and other key elements in ecosystem processes. Furthermore, forest fires present critical challenges by causing increased loss of vegetation, reduction in food sources, and degradation of water recharge areas, thereby resulting in changes in water, energy and food dynamics, as well as ecosystem processes at regional scales (Zhang, 2022). Thus, forest fire changes the ecosystem services provided by forests for life support, goods and natural resources from water, energy, and food, as well as the environment. The heightened incidence of forest fires, changes in forest composition and landscape, and increased water stresses from drought can diminish ecosystem services, impacting the water and energy nexus and agricultural food production, and wildlife habitats on a regional scale. Integrated management of water, energy, food and related ecosystem processes at policy, institutional and practice levels is essential for adapting to and mitigating the impacts of forest fires in the study areas. Scientific research and policy support are crucial for addressing knowledge gaps in the WEFE nexus and forest fires and understanding the complexity of ecosystem services in the study area.Elements of Synergy among Forest Fire (as part of Ecosystem) and its Impact to Water (Soil Moisture) and CO 2 EmissionForest fires, integral to many ecosystems, intricately interact with energy, water and carbon dioxide (CO2) dynamics. The energy component of forest fires involves the release of stored chemical energy within vegetation, primarily in the form of plant biomass. When ignited, this energy is released through combustion, producing heat and light. This heat accelerates the evaporation of water from the soil and vegetation, leading to a decrease in soil moisture and vegetation cover. Consequently, this poses challenges for water retention and availability in the affected areas. Additionally, the reduction in vegetation cover diminishes shade, resulting in heightened surface temperatures and increased rates of evaporation. These alterations in soil moisture can trigger cascading impacts on local hydrological cycles, potentially modifying runoff patterns and increasing susceptibility to erosion.Forest fires are significant sources of carbon dioxide emissions, releasing substantial amounts of CO2 into the atmosphere through the combustion of organic matter. This process temporarily elevates atmospheric CO2 levels. While forest fires are a natural component of the carbon cycle, recurrent or severe fires can disrupt this balance, potentially causing a net rise in atmospheric CO2 concentrations. Moreover, the depletion of vegetation diminishes the ecosystem's capacity to sequester carbon, exacerbating the overall carbon balance.Hence, recognizing the interconnections among forest fires, carbon emissions and soil moisture content is pivotal for devising fire prevention strategies aimed at preserving the intricate balance of energy, water and carbon within forested ecosystems. This understanding is essential for fostering ecological resilience and long-term sustainability.Based on this insight, it is crucial to implement comprehensive forest management practices that include controlled burns, firebreak creation, water retention strategies like building ponds, reforestation efforts, and soil moisture monitoring. Policymakers should also develop regulations that limit activities contributing to deforestation and promote the use of technology for early detection of fire risks. By taking these actions, we can mitigate the adverse effects of forest fires, reduce carbon emissions, and enhance the overall health of forest ecosystems.When considering the impact of forest fires on the livelihoods of marginalized groups such as women, Dalits, and poor farmers without forested land, a number of gender, equality, and social inclusion (GESI) elements become relevant.a. Gender Considerations:Forest fires frequently disrupt the daily activities of women, who often play important roles in managing their household resources and are particularly vulnerable due to their responsibilities. This disruption affects essential tasks like collecting water, fuelwood, and fodder, which are essential for sustaining their households.Dalits, who are often marginalized and vulnerable, face limited access to resources and encounter difficulties in coping with the aftermath of forest fires.Poor farmers, heavily reliant on agriculture, endure substantial economic losses due to damage caused by forest fires. Drought, coupled with the loss of fuelwood, timber, nontimber forest products, and fodder for livestock, exacerbates their impoverishment.The discussion with the forest officer emphasized the Forest Service's crucial role in advocating to the public and policymakers about the value of forests and their contributions to the nation's economy, environment and society, as well as the importance of the WEFE approach in forest fire management. Beyond the forestry community, effective communication of this message is essential to garner support for sustainable management of forest fires.In conclusion, this case study identified coordination gaps among policies, government institutions and practices for managing forest fires in the Manthali Municipality. The existing communication and action gap lead stakeholders, including various government institutions, community groups, volunteer groups and non-governmental organizations, to operate independently during forest fire incidents. To improve the efficiency of theExamining the Water-Energy-Food Security-Ecosystem Nexus Approach in Nepal: Learning from Some Case Studies 18 forest fire management practices in Manthali, implementing the WEFE approach is crucial. This approach can help overcome communication barriers and promote cross-sectoral collaboration, leading to more effective forest fire management.To initiate a more integrated approach to managing the water-energy-food-ecosystem in Manthali Municipality areas, the following could be considered:The WEFE approach is for advancing sustainable development goals in Manthali Municipality. To strengthen this approach, it is crucial to leverage the recognition of forest management as a strategic measure within the Local Adaptation Plan for Actions (LAPA). Advocating for the explicit inclusion of the WEFE nexus in relevant policy documents will further support this effort. Additionally, involving local communities and community forest user groups in policy and development activities aligned with the WEFE approach for forest fire management can yield significant benefits.Establishing clear policy guidelines is essential to facilitate the implementation of the WEFE approach by relevant district offices. Developing and implementing a WEFE approach guideline can significantly enhance sustainable natural resource management practices, particularly in forest fire management within Ramechhap district.Allocating resources for research and innovation is essential to explore and document the nexus dynamics in forest fire control practices. This investment can empower communities to enhance their resilience to environmental change, improve institutional procedures and influence policy decisions effectively.The nexus practices observed within local communities, such as those in the Dumri Kharka Community Forest User Group should be acknowledged and reinforced. It is essential to formalize and strengthen these practices, fostering a mutually beneficial relationship between the community and relevant institutions. Facilitating dialogues between community members and relevant stakeholders, including NGOs, INGOs and local governments, regarding the concept of the WEFE nexus approach could be a valuable strategy.Awareness and training programs on the WEFE approach should be conducted for institutional authorities such as the Division Forest Office, Water Supply and Sanitation Division Office, Nepal Electricity Authority and Nepal Food Corporation. These programs will help establish linkage between the relevant implementation offices. Similarly, local beneficiaries and stakeholders, including community forest user groups and residents, can raise awareness through meetings, training sessions and awareness campaigns about the benefits of the nexus approach in controlling forest fires and enhancing ecosystem services.As a structural and functional unit of nature, the ecosystem sustains all human and nonhuman needs. Some scientific deliberations highlight the interconnected nature of our ecosystems, which sustain us, and propose a holistic approach to resource utilisation. However, the modernist approach to economic prosperity has treated this natural system in disintegrated forms under the so-called 'specialisation' (see Illich 1971;1978;1981 for criticisms of expertise). This became the hallmark of modernity, shaped by classical governance and policies, characterised by fragmentation and operating in silos, despite working for socio-economic development. Instead of more holistic socio-ecological wellbeing, the fragmented approaches for maximising profit, growth and development were prioritised globally, leading to various ongoing socio-ecological crises.In contrast to siloed sectoral thinking, the Water, Energy, and Food Ecosystem (WEFE) nexus represents an attempt at a more holistic approach. This approach recognises the interrelated relationships between water, energy and food. It advocates for creating systems that maximise synergies and minimise trade-offs among fragmented sectors, aiming to optimise the sustainable management of natural resources and improve resource use efficiency (Bazilian et al., 2011). Nexus thinking has the potential to generate integrated solutions for achieving some of the Sustainable Development Goals (EU, 2021).In simple terms, the WEFE nexus acknowledges the interconnectedness of water, food, energy and ecosystem and its crucial role in promoting integrated and sustainable resource management (Simpson & Jewitt, 2019). This approach has the potential to help humans to manage resources sustainably within nature's intricately woven ecosystem. However, despite its potential, some scholars criticise the WEFE nexus for its perceived lack of consideration for the social dimension, particularly livelihoods (Simpson & Jewitt, 2019), a point we will explore further in our findings.Examining the Water-Energy-Food Security-Ecosystem Nexus Approach in Nepal: Learning from Some Case Studies 22Nepal, nestled in the central Himalayas, has a rich history and tradition of its people living in harmony with nature. Life in diverse landscapes, from steep mountains to plain flood lands, has presented challenges that spurred people to adapt and innovate. This has led to the development of various indigenous systems that have enriched livelihoods while maintaining intricate harmony with nature, often characterised by holistic approaches. Nepal's indigenous systems and technologies are built upon traditional ecological knowledge, emphasising the prudent use of natural resources and resource governance rooted in community-based decision-making (Thapa, 1994;Sharma et al., 2009).In the early 20th century, Nepal introduced modern services such as hydroelectric power (water, energy), new agricultural crops and livestock breeds (food). However, such services were not integrated into local knowledge at the community level. By the mid-century, with the advent of democracy, the country witnessed the establishment of numerous sectoral departments covering agriculture, food quality, forest, health, irrigation, livestock, plants, roads and more. Presently, there are at least 28 such departments under 22 ministries at the federal level. The new 2015 constitution significantly empowered local governments like municipalities more than pre-2015. However, existing systemic policy, institution, and practice fragmentations have, in turn, shaped the formation of local governance. Unfortunately, in the pursuit of 'modern' governance structures, traditional ecological knowledge with a long history of socio-ecological well-being shaped by holistic approaches seems to be mostly neglected. Despite the power restructuring, various spheres of government, particularly local governments, have not taken into account the holistic approach to natural resource management. Additionally, the roles of federal, provincial and local governments remain vague, causing further uncertainties.Ideas and policies originating in one context often diffuse to others, even globally (Marsh & Sharman, 2009). While the nexus framework appears clear in theory, translating nexus thinking into practice, especially considering Nepal's diverse socio-economic, political, and cultural contexts, presents challenges. For instance, water, a basic necessity for all, a shared resource and an integral component of the WEFE nexus, is governed by the federal, provincial and local governments under different and often fragmented policies and institutional arrangements. Based on a literature review, field observation and stakeholder interviews, this case study (Ying, 2003) aims to shed light on the challenges of the WEFE nexus approach by examining the governance of agriculture, forestry and resource management. Manthali Municipality, situated in central Nepal, spans an area of 211.8 km². Despite the Tama Koshi river (see Figure 1) flowing through the municipality area, water scarcity remains a pressing issue for its 45,416 inhabitants, affecting both drinking water and agriculture. Higher levels of electrification enable water pumping from the Tama Koshi river to address scarcity for some people. Additionally, severe droughts, forest fires, landslides, and soil erosion exacerbate the socio-ecological problems, which are all expected to worsen with climate change. Despite not being connected to motorable roads until recently, Manthali is not immune to the global challenge of urbanisation. With limited resources and significant livelihood challenges, there is a growing migration trend to urban centres in pursuit of improved socio-economic opportunities. Located just 130 km from Kathmandu, Manthali presents a unique set of interconnected challenges, making it an ideal subject for a Water-Food-Energy-Forest (WFEF) nexus case study. The municipality's current socio-ecological and resource management strategies provide valuable insights into governance issues through the lens of an integrated approach like the WFEF nexus framework.Most governance actors in Nepal express genuine appreciation for adopting a WEFE nexus approach, with some demonstrating explicit and implicit knowledge of interconnectedness. However, incorporating this integrated nexus thinking into policies, institutions, and practices proves challenging. Governance in Nepal is divided into federal, provincial and local levels -each with different authority and responsibility for managing common resources, including water, food and energy. Despite the constitutional mandate for a District Coordination Committee (DCC) in all districts, over 40 fragmented government agencies operate with minimal coordination. Instead of coordination and cooperation over shared responsibilities in annual programs, there exists a space of mistrust, responsibility shifting, and problem shifting. Institutions within these tiers responsible for water, food, energy and the ecosystem show only need-based coordination but lack a careful, View of Tama Koshi river in Manthali, Nepal. Photo: AuthorExamining the Water-Energy-Food Security-Ecosystem Nexus Approach in Nepal: Learning from Some Case Studies 24 long-term, sustainable agenda for synergy. Despite shared goals, a tendency persists to function in 'silos' rather than embracing the integrated approach proposed by the WEFE nexus framework. Some knowledge about the nexus approach also prevails among practitioners, particularly among the older generation whose livelihoods depend on forestry and agriculture. Social, cultural, traditional, spiritual and power dynamics are interwoven into their understanding and practices of the WEFE nexus. For a resident next to the community forest, the forest has been integral to his lifestyle and livelihood for over eighty years, allowing him to find mutual symbiosis with the forest ecosystem. He observes this once omnipresent integrated approach of knowing and doing to be fleeting, highly exacerbated by outmigration. In addition to the lack of integration of water, energy and food, another farmer in Manthali expressed collective grief about the increasing commodification of food and societal neglect of small-scale farmers despite their indispensable role in feeding the local community. The challenges faced by these individuals highlight the growing disconnect between the water-energy-food-ecosystem, leading to unsustainable resource management, increased hardship, lowered income, and marginalisation.How can we bridge the awareness-action gap within the nexus? While the idea of rewriting the national constitution and restructuring policies and institutions may seem impractical, fostering acknowledgement among stakeholders of the benefits inherent in the nexus approach could serve as a starting point towards realising nexus thinking and actions. Practitioners and policymakers hold considerable control over policy and institutional dynamics, thus influencing overall governance. Our findings reveal a pervasive mistrust among governance actors and practitioners, highlighting a recurring need for more proactive collaboration. While initiatives centred around WEFE nexusoriented capacity building, knowledge co-creation and sharing show promise, entrenched patterns of neglect, lack of care, self-serving narratives and questionable work ethics perpetuate silos rather than fostering integrated efforts. Addressing this issue transcends mere awareness of the WEFE nexus; it necessitates embodying, implementing, measuring and monitoring the nexus approach. Moreover, it demands heightened accountability among critical stakeholders, particularly those in positions of power, to the broader general population.In examining policies, institutions and practices aligned with the WEFE nexus, we observed an absence of links to gender equality and social inclusion (GESI). This gap may arise from either the entrenched patriarchal structure in Nepal or the oversight of the social dimension within the WEFE nexus framework, as often highlighted by other researchers (Simpson & Jewitt, 2019). Employing a dedicated research framework focused on GESI (see IDPG, 2017) could offer a more accurate representation of inclusion in Manthali and elucidate how it could enhance the WEFE nexus thinking and action.For contextually relevant and socially legitimate change-making, developing a comprehensive understanding of the local context and collaboratively generating transdisciplinary knowledge regarding the relevance and significance of the WEFE nexus is crucial. This involves facilitating workshops to empower nexus thinking, bridging fragmented policies and institutions, nurturing relationships and empowering nexus thinking and action. A starting point would involve co-creating a nexus roadmap to identify pertinent stakeholders, including marginalised communities and explore synergies for a more integrated approach to local policies, development projects and annual programs.Building trust among stakeholders is critical for fostering integrated approaches and identifying synergies. This necessitates time, resources, capabilities, openness and the collaboration of stakeholders with diverse powers, interests, conflicts and influences. The process of bringing pluralistic values together involves inclusion, co-creation and legitimacy. Establishing trust could serve as the foundation for integrating the WEFE nexus or a similar framework to promote sustainable resource governance.Incorporating additional dimensions such as culture, spirituality and power dynamics into the nexus framework in Manthali is essential. Our findings resonate with scholars who have highlighted the omission of the social dimension in the existing WEFE discourse. Homegrown nexus-influenced solutions incorporating existing integrated approaches are crucial to translating nexus ideas into action.WEFE nexus represents just one of several resource governance approaches. The challenge lies in developing a locally tailored approach that fits the context of Manthali. Adopting more comprehensive, non-western, and locally rooted methodologies that incorporate diverse values and draw insights from indigenous governance approaches like Swaraj, Buenvivir and Ubuntu (see Kothari et al., 2019) could play a crucial role in collaboratively developing a WEFE nexus-oriented resource governance approach tailored to the specific context of Manthali. This approach must incorporate the social dimension and might involve a contextual and comprehensive assessment combining top-down and bottom-up strategies. Figure 2 contextualises and re-visualizes the nexus linkages, aiming for nuanced solutions that effectively address the unique challenges in Manthali. By utilising existing platforms like the DCC, integrative processes should concentrate on identifying Examining the Water-Energy-Food Security-Ecosystem Nexus Approach in Nepal: Learning from Some Case Studies 26 synergies among diverse actors with shared responsibilities but diverse and varying knowledge and powers. For instance, local governments, with the authority to create local policies, budgets and programs, can collaborate with federal agencies that are primarily responsible for implementing federal policies and programs. The latter might also have access to more knowledge, technology, funds and other resources.The WEFE nexus, whether explicit or implicit, is present in policies, institutions, and practices in Manthali. While stakeholders increasingly recognise the advantages of an integrated approach to resource management and good governance, they continue to operate in silos, maintaining the status quo. Insights from Manthali underscore the need for a reinforcing loop for homegrown solutions, incorporating the WEFE nexus approach to meet the specific needs of the region. This involves cocreation processes, encompassing both grassroots and top-down approaches and acknowledging the sociocultural dimensions often overlooked by the current WEFE nexus framework.Climate change disrupts water availability and agricultural productivity, jeopardizing food security. In response, agroforestry -a land-use practice integrating trees, crops, and livestock -is gaining traction due to its potential to enhance resilience and sustainability. Agroforestry, deeply rooted in ecological principles, serves as a dynamic approach to natural resource management, by integrating trees within agricultural landscapes, ranching operations and diverse environments (Kitalyi et al., 2013;Jose et al., 2021). This traditional practice intertwines the cultivation of trees and shrubs within and around agricultural fields and is widely recognized for its economic and environmental benefits (Ranjitkar et al., 2016). It epitomizes the intricate connections among water, energy, food and land resources, all facing critical challenges exacerbated by climate change impacts. These challenges are further compounded by socio-economic development and population growth, intensifying the demand for food, energy, water and land resources amidst projected shortages and environmental degradation.The practice of integrating tree species alongside agricultural crops, pastures and animals holds deep historical roots in Central and South Asia, including Nepal (Ranjitkar et al., 2021) and persists to this day. In Manthali Municipality, located in the Ramechhap district of Central Nepal, agroforestry has been a prevalent practice for over two decades. However, prolonged dry spells have triggered severe water scarcity, escalating climate-induced drought as a significant environmental concern (Bhuju et al., 2013). The resulting water scarcity, affecting both drinking needs and irrigation, has adversely impacted livelihoods, prompting migration and the abandonment of agricultural lands (Chapagain & Gentle, 2015). Despite a decade of discussions, effective solutions have remained elusive. Nevertheless, there is a growing recognition that agroforestry as a traditional mixed farming practice, holds promise as a practical and effective approach to enhancing productivity in climatesensitive, river-beds, wastelands and water-scarce areas (Ranjitkar et al., 2024).Examining the Water-Energy-Food Security-Ecosystem Nexus Approach in Nepal: Learning from Some Case Studies 29Agroforestry system involves trade-offs, such as balancing energy needs (fuelwood) with food production (crops), optimizing arable land for forests or extensive cropping, and managing water allocation while considering its impact on the water cycle. It also diversifies food sources by creating multi-layered systems that can provide fruits, nuts, and fodder alongside traditional crops. However, maximizing these advantages requires a holistic approach that considers the interconnectedness of vital resources -water, energy, food, and ecosystems (Al-Saidi & Ribbe, 2017). This is where the Water, Energy, Food, and Ecosystem (WEFE) nexus comes into play.Water, Energy, Food and Ecosystem (WEFE) Nexus in AgroforestryThe WEFE nexus in agroforestry refers to the interconnected relationships among water, energy, food and ecosystems within the context of integrating trees and shrubs into agricultural landscapes (Li et al., 2021) and, especially concerning water security and regional climate dynamics (Aris and Agung Wahyu, 2023). Importantly, the WEFE approach in agroforestry aligns with the Sustainable Development Goals (SDGs) by promoting cohesive policies for broader landscape management. This expanded agroforestry paradigm coexists with earlier concepts, highlighting the intricate interactions between trees, crops, livestock, and the management, knowledge, values, incentives and intentions of farmers across plot, farm and landscape levels (Van Noordwijk et al., 2018;Van Noordwijk, 2020). The impending impacts of global climate change, particularly alterations in the water cycle leading to unpredictable rainfall and increased extreme events, will significantly affect various Sustainable Development Goals (Van Noordwijk, 2020). This interplay between water (SDG 6) and its connections with food (SDG 2), health (SDG 3), energy (SDG 7), climate change (SDG 13), life on land (SDG 15), and life under water (SDG 14) underlines the intricate web of interdependence among these goals (Ranjitkar et al., 2024).Furthermore, the role of agroforestry in the WEFE nexus encompasses:1. Water Nexus: Agroforestry mitigates drought impacts by reducing erosion, improving water retention, and recharging groundwater, thereby supporting sustainable water use in agriculture.2. Energy Nexus: Agroforestry systems offer renewable fuelwood sources, reducing reliance on traditional energy and lessening pressure on natural forests, contributing to energy sustainability.3. Food Nexus: Agroforestry diversifies agricultural production, increasing farm productivity and resilience, ensuring a stable and varied food supply.4. Ecosystems Nexus: Agroforestry offers biodiversity habitats, carbon sequestration, soil fertility enhancement, and overall ecosystem resilience (Li et al., 2021;Paudel et al., 2019).Examining the Water-Energy-Food Security-Ecosystem Nexus Approach in Nepal: Learning from Some Case Studies 30 While Aris and Agung Wahyu (2023) and Correa-Porcel et al. (2021) effectively highlight the interconnectedness within the WEFE nexus of agroforestry, a deeper understanding of the specific strategies and techniques employed for practical implementation is needed. By delving deeper into these methods, this study aims to investigate the current application of the WEFE nexus in Manthali Municipality and identify opportunities for strengthening institutional coordination. This will ultimately provide a practical guide for stakeholders, policymakers, and communities seeking to implement the WEFE nexus approach in their agroforestry initiatives, promoting sustainable resource management and enhancing climate resilience.The study was conducted in Manthali Municipality in Ramechhap district, an area which is recognized as one of the most drought affected regions in Nepal.A comprehensive research approach was employed to understand the WEFE nexus in agroforestry within Manthali Municipality. Field observations were conducted to directly examine the interconnected systems, assessing the dynamics between water, energy, food and ecosystems. Stakeholder interviews involved engaging with farmers and government officials from irrigation, forest and agriculture sectors to understand their perspectives and experiences within the WEFE nexus. Additionally, policy related documents and relevant research articles were extensively reviewed to contextualize the findings and establish a theoretical framework for the study. The integration of field observation, stakeholder perspectives and literature reviews provide a holistic understanding of the WEFE nexus in agroforestry. This framework facilitates the prompt and effective delivery of adaptation services, thereby supporting the practical implementation of NAPA priorities (Peniston, 2013).The LAPA document, drafted by Resources Himalaya in 2013, identifies agroforestry as a highly effective adaptation strategy for communities residing in water-stressed regions such as Manthali. Within the LAPA document, agroforestry is acknowledged as a strategic measure to address challenges posed by water scarcity and provide a sustainable solution to bolster resilience and livelihoods in these vulnerable areas. However, despite various policy-related documents advocating for an integrated approach to resource management, there is a notable absence of exploration of the WEFE nexus approach, particularly concerning water, energy, food and ecosystems.Nepal has achieved a significant milestone in national agroforestry by becoming the second country globally to adopt a comprehensive National Agroforestry (AF) Policy (GoN, 2019). This policy emphasizes several key aspects, such as prioritizing commercial and collective farming, improving farmers' access to markets, supporting industry-based agroforestry initiatives, providing incentives to encourage agroforestry adoption, promoting agroforestry on fallow lands, and establishing specialized area-based agroforestry models (Khadka et al., 2021). While this policy reflects a commitment to an integrated approach to resource management, there is a need for more explicit considerations of nexus dynamics, particularly regarding the interaction of water, energy, food and ecosystems.Despite Nepal's commendable steps toward developing comprehensive policy frameworks, there is an evident opportunity for explicitly integrating nexus dynamics into these policies. Addressing the intricate interdependencies of the WEFE nexus within policy frameworks aimed at sustainable development, climate adaptation and natural resource management could significantly augment their effectiveness.Examining the Water-Energy-Food Security-Ecosystem Nexus Approach in Nepal: Learning from Some Case Studies 32 The examination of district and municipal offices responsible for irrigation, agriculture and electricity, aimed to assess the adoption of the nexus concept by institutions crucial for promoting agroforestry in drought-affected areas. However, the findings revealed that each institution operated independently without collaboration or coordination. For instance, both the irrigation office and the agricultural knowledge center in Manthali Municipality allocated funds for irrigation facilities, but only a few communities received partial support from both institutions for their field's as the support from a single institution was insufficient.Similarly, discussions with respondents revealed that budget constraints significantly hampered performance and satisfaction at both institutional and community levels. Interestingly, when the concept of the WEFE nexus was introduced, concerned authorities recognized its innovative potential and acknowledged that a nexus approach could amplify impact. Albeit unknowingly, the community had been reaching out to all institutions, leveraging limited resources and support, and actively practicing the nexus approach. Moreover, community institutions led by women and the underprivileged (such as farmer's groups and women's groups) have been prioritized by the local government in terms of incentives and grants for promoting agroforestry. They are effectively mobilizing resources from different sectors and fostering collaboration.Examining the Water-Energy-Food Security-Ecosystem Nexus Approach in Nepal: Learning from Some Case StudiesThe Majhi community, known as the fisherman community, resides along the riverbanks and depends primarily on fishing for their livelihood. Faced with challenges such as declining fish stocks and a reduction in alternative income-generating activities like construction work, many community members have sought new avenues beyond their traditional occupations.Upon returning to his local community after years of working abroad, Ek Bahadur Majhi was driven by a renewed sense of commitment to improve the wellbeing of his community. Realizing the potential of agroforestry, he rallied individuals who shared his vision, particularly young men and women, to form a committee and farmers' group. Collectively, they tapped the assistance programs provided by the Manthali Municipality, and received essential resources such as seeds, fertilizers, water-lifting assistance as well as financial aid from local NGOs. With this support, they revived their traditional occupation of fish farming. This collaborative endeavor resulted in the widespread adoption of large-scale agroforestry initiatives within the community, with all members equally benefiting from the outcomes. Going beyond mere material gains, the community wholeheartedly embraced a nexus approach in their initiatives. This comprehensive strategy illustrates the interconnectedness between water, energy, food and ecosystems, thereby enhancing the overall welfare of the community.Naboghat, situated along the Sunkoshi River, is home to more than 60 households of the Majhi community. Traditionally reliant on fishing for sustenance, the community has diversified its livelihood activities to include labor, agriculture and various other incomegenerating activities. Embracing change, they have implemented agroforestry practices across the expansive river floodplain, integrating fruit tree plantations with cash and food crops, and incorporating fish farming. This holistic approach, incorporating trees, shrubs, crops and livestock, yields synergistic benefits, establishing a nexus between water, energy, food and the ecosystem.In their pursuit of improved livelihoods and resilience against climate change impacts, the community collaborates with government and non-government entities and undertakes initiatives such as constructing irrigation canals and harnessing electricity. Noteworthy is the active involvement of women in agroforestry endeavors to secure their livelihoods, particularly as their male counterparts seek employment abroad.However, field observations have revealed certain challenges in the sustainability and maintenance of these initiatives, where locals inadvertently adopt a nexus approach driven by the imperative to improve livelihoods. Ek Bahadur Majhi, a local resident and president of a community-based agri-farm, recounted his experience securing funds andExamining the Water-Energy-Food Security-Ecosystem Nexus Approach in Nepal: Learning from Some Case Studies 34 grants from government and non-government entities to construct an irrigation canal for extensive land irrigation. Unfortunately, a breach in the canal's embarkment after a flood led to a 50% decline in productivity this year, leaving them uncertain about where or how to seek assistance. Furthermore, insufficient funds for fishpond repairs have compounded their challenges.In the context of the nexus approach, the transition from biomass energy to biogas is noteworthy. This shift offers several benefits: it reduces air pollution and deforestation by providing a cleaner and more efficient way to utilize biomass compared to traditional fuelwood burning. Additionally, by freeing women from time-consuming fuelwood collection, it allows them to dedicate more time to wage-based agricultural work, potentially increasing household income. However, a potential challenge arises -as communities adopt biogas and rely less on forest resources for energy, their traditional forest management practices might weaken. This decline in community involvement could negatively impact the ecological balance of local ecosystems. Integrating agroforestry practices within the WEFE nexus framework with integrated crop-livestock-multipurpose trees can contribute to a balanced approach. Additionally, these systems can enhance biodiversity and soil health, contributing to the overall ecological balance within the WEFE approach and achieving SDG goals (Ranjitkar et al., 2021(Ranjitkar et al., , 2024)).The case study conducted in Naboghat, along the Sunkoshi River, vividly demonstrates how the nexus approach seamlessly integrates into agroforestry, showcasing the Majhi community's adept adaptation to evolving livelihoods and the impacts of climate change. Their transition from traditional fishing to a diversified agroforestry system along the floodplain, incorporating fruit tree plantations, cash and food crops, and fish farming, serves as a tangible testament to the merits of adopting a holistic nexus approach that interconnects water, energy, food and ecosystems. This comprehensive strategy not only bolsters resilience but also nurtures sustainable practices, addressing a multitude of interconnected facets pivotal to the community's well-being.Within the domains of irrigation, agriculture and electricity management at the municipal offices, a noticeable lack of coordination is evident, underscoring the urgent need for a more unified institutional approach. While authorities recognize the innovative potential inherent in the nexus concept, a clear opportunity exists for these institutions to synergistically collaborate, thereby amplifying the impact of agroforestry initiatives in drought-affected regions.Remarkably, despite lacking explicit knowledge of the nexus approach, the community inadvertently epitomizes its principles through practical application and proactive engagement with relevant institutions. This underscores the immense potential for heightened collaboration and concerted efforts among institutional stakeholders.Examining the Water-Energy-Food Security-Ecosystem Nexus Approach in Nepal: Learning from Some Case Studies 35 practices and effectively addressing the multifaceted challenges present in droughtaffected areas.In essence, the case study highlights the need for cohesive institutional coordination, leveraging the community's implicit nexus-driven actions to harness the full potential of agroforestry initiatives. By fostering collaborative partnerships and knowledge sharing among stakeholders, a more integrated and impactful approach can be realized, contributing significantly to sustainable resource management and resilience-building in vulnerable regions.Enhancing the integrated management of food-energy-water-ecosystem resources in Manthali requires a multifaceted approach. The following initiatives serve as fundamental steps:1. Institutional Coordination: Promote synergy among municipal offices responsible for irrigation, agriculture and electricity by initiating collaborative strategies and operations within the municipality. To establish a coordinated approach among municipal offices, leadership from elected representatives and department heads overseeing, agriculture, forest, irrigation and electricity/energy is crucial. They should collaborate closely with provincial ministries or regional authorities, community stakeholders, technical experts and NGOs. This collective effort ensures alignment of policies, resources and community engagement towards maximizing the impact of agroforestry initiatives, particularly in drought-affected areas. By fostering open communication and collaboration, the platform can identify opportunities for synergy, streamline processes, and overcome potential obstacles.Organize targeted awareness programs and training sessions for institutional authorities to highlight the benefits and potential of the nexus approach in agroforestry. Emphasize the amplified impact and improved outcomes achievable through concerted efforts and coordination among departments.Acknowledge and capitalize on unintentional nexus practices observed within communities, exemplified by those in Naboghat. Foster synergy among municipal offices responsible for key sectors by promoting collaboration. Facilitate dialogues between community members and relevant institutions to formalize and strengthen these practices, cultivating a mutually beneficial relationship.Advocate for the explicit inclusion of the WEFE nexus in relevant policy documents to enhance the LAPA's recognition of agroforestry as a strategic measure. By integrating the nexus concept, policymakers can establish a comprehensive framework for sustainable development, climate adaptation, and effective natural resource management.Examining the Water-Energy-Food Security-Ecosystem Nexus Approach in Nepal: Learning from Some Case Studies 36 5. Research and Innovation: Invest in research and innovation endeavors aimed at comprehensively understanding and documenting the nexus dynamics in agroforestry practices. This acquired knowledge can substantially influence policy decisions, refine institutional practices, and empower communities to adapt proactively to evolving environmental conditions.Himalayan Grassroots Women's Natural Resource Management Association, Nepal (HIMAWANTI Nepal)The Dhorpatan Hunting Reserve (referred to as DHR or the Reserve), which is situated in the remote regions of Baglung, Myagdi and East Rukum districts, serves as the focal point for this analysis. This case study incorporates the Water, Energy, Food, and Ecosystems (WEFE) nexus as well as the Gender Equality and Social Inclusion (GESI) as a pivotal cross-cutting theme to highlight the nexus's potential contributions toward achieving Sustainable Development Goals (SDGs).The reserve is endowed with abundant natural springs that support diverse flora and fauna, along with vital forest resources crucial for local communities. It provides opportunities for community-led conservation, tourism, and the preservation of cultural traditions. However, it is under the threat of over-exploitation and unregulated infrastructure development, such as roads and hospitals, which jeopardize the unique landscape of this remote area.Despite its immense potential, the Reserve lacks interlinkages with other sectors (water, energy and food) and associated institutions. In addition, it falls short in implementing inclusive practices for women and socially marginalized communities. The management tends to adopt short-sighted solutions for forest ecosystem management and overlooks the negative implications or trade-offs in other thematic areas, including energy, water and agriculture. Thus, there is an urgent need for a comprehensive and sustainable approach to guarantee the longterm vitality of both the ecosystem and local communities in this ecologically and culturally significant region.Data for this case study was acquired from the Reserve's Management Plan, from secondary sources, face to face interviews with 30 local residents and authorities, and a comprehensive literature review of the selected WEFE nexus articles mentioned in the reference list.Examining the Water-Energy-Food Security-Ecosystem Nexus Approach in Nepal: Learning from Some Case Studies 40The DHR in western Nepal, was initially established in 1983 as a hunting reserve. It has since shifted its focus towards conservation and sustainable tourism. Nestled amidst the scenic Dhaulagiri and Annapurna ranges, spanning across Baglung, Myagdi, and East Rukum districts. This reserve encompasses diverse ecosystems ranging from lush evergreen forests to snow-clad meadows and towering mountains (DHR, 2022). With a rich biodiversity that 32 mammal and 137 bird species, including the elusive snow leopard, the DHR serves as a cultural hub for communities such as the Nauthars, Kham Magars, Chhantyals and Gurungs, whose traditional practices, notably the transhumancebased agro-pastoralism, contribute to the area's distinctiveness.This article examines the role of a Hunting Reserve in preserving a condensed terrestrial forest ecosystem, thus maintaining the crucial ecosystem services, while also providing water, energy and food security for local livelihoods. Moreover, it directly contributes to at least six SDGs. These include:End hunger, achieve food security and improved nutrition and promote sustainable agriculture.Achieve gender equality and empower women and girls.Ensure availability and sustainable management of water and sanitation.Ensure access to affordable, reliable, sustainable and modern energy.Take urgent action to combat climate change and its impacts.Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss.Examining the Water-Energy-Food Security-Ecosystem Nexus Approach in Nepal: Learning from Some Case Studies 41The Reserve relies heavily on high mountain sources, with key rivers such as Uttar Ganga, Ghustung, Dogadi Purbang, Pelma and Seng that play a crucial role. Converging in the southeastern valley, Gur Gad and its tributaries join the Uttar Ganga, flowing south to Gurjaghat, then west to Dhorpatan. Prominent rivers like Gustung and Dogadi, originating from glaciers, are vital components of the region. The valley, enriched with tributaries, serves as a habitat for Blue Sheep and Himalayan Tahr. Preserving high-mountain wetlands is crucial globally, as they act as essential water towers and provide habitats for migratory birds.Snow-fed rivers like Seng, Ghustung, and Dogadi Khola sustain aquatic habitats, although conservation faces challenges such as pollution, over-grazing, and impacts from climate change. DHR is likely to have abundant natural springs, serving as a consistent and reliable freshwater source for the ecosystem.Well-maintained water sources play a pivotal role in preserving the diverse flora and fauna within the hunting reserve. Additionally, these water sources supply drinking water to approximately 24,472 people, residing in 5,193 households within the proposed buffer zone inside and outside the DHR. Within the reserve itself, 53 settlements with a total of 2,945 households benefit from these water sources (DHR, 2019). The water sources in the DHR area carry significant cultural importance for local communities, contributing to the rich cultural heritage of the region. Notably, Dhor Barahi, a famous pilgrimage site in the area, plays a role in preventing water pollution in sources like the Uttarganga River The flowing water in the region presents opportunities for sustainable hydropower generation, contributing to local energy needs. The proposed Uttarganga Hydropower Project, a flagship project of the Gandaki province, holds significant potential for waterbased entertainment and adventure, including rafting, boating and canyoning around the constructed dams. This may encourage nature-based tourism in the DHR. Despite these positive aspects, the Reserve faces risks of water contamination due to agricultural runoff, human activities, direct sewage connection to rivers, and potential pollution from tourism-related activities. Changes in precipitation patterns and temperatures induced by climate change could affect the volume and reliability of water sources, potentially leading to shortages. Climate change has transformed the white capped mountains into black and brown rocky areas and there is a notable decrease in water discharge into the rivers. Wetlands, particularly in the Dhor area, are being disturbed. Inadequate infrastructure for water management and the conservation of water bodies like rivers, ponds, springs and glacier lakes may result in inefficiencies and a lack of resilience to climate-induced challenges. Road construction using bulldozers has disturbed the natural course of water sources, leading to increased runoff, landslides and floods in the area, further exacerbating the drying out of water sources. If not managed properly, the influx of tourists may lead to the over-extraction of water resources, impacting the local ecosystem. Increased tourism activities could result in the over exploitation of resources including water and forest resources, particularly for firewood. Alterations in land use patterns, particularly deforestation, can have adverse effects on water sources, negatively influencing water quality and availability. This, in turn, impacts water availability and the continuity of water discharge in the rivers.The region is also susceptible to natural disasters, such as landslides and floods, which pose a threat to the integrity of water sources. Natural disasters can have negative consequences for water availability, cleanness and water quality. Insufficient regulations for water management may lead to uncontrolled use and potential degradation of water quality. The proposed Uttarganga Hydropower Project, a dam hydropower initiative, may impact the continuity of water flow in the Bheri River, as the project aims to divert water to Baglung district. Furthermore, it could have a negative impact on the aquatic life of the Bheri River. Despite these challenges, the Reserve presents enormous opportunities for engaging local communities in water conservation initiatives to enhance the protection of water sources and promote sustainable practices. Initiatives for sustainable tourism can be developed around water sources, providing economic incentives for conservation efforts. The Homestay Association is actively involved in the DHR, promoting sustainable tourism in the area. Additionally, conducting research on local water sources can provide insights into the impacts of climate change, aiding in the development of adaptive strategies. The Department of National Parks and Wildlife Conservation, the DHR Authority and students of universities and research institutions are actively involved in conducting research in the region as well.Currently, firewood serves as a primary source of energy for local communities, but its availability is gradually diminishing due to increasing demand within and around the DRH. The Uttarganga Hydropower Project in Dhorpatan, envisioned as one of Gandaki Province's flagship projects, holds the potential to generate 828 megawatts of electricity. Moreover, the region could harbor untapped hydropower potential owing to its abundant rivers and water bodies, presenting an opportunity for sustainable and clean energy.Dhorpatan's high-altitude location also offers possibilities for solar and wind energy projects, contributing to a diversified and resilient energy mix. Involving local communities in these energy projects not only enhances social acceptance but also creates job opportunities, ensuring the benefits reach the community. Implementing sustainable energy solutions can contribute to biodiversity conservation by reducing dependence on traditional, environmentally harmful energy sources.Integration of hydropower, solar and wind energy coupled with a reduction in firewood usage, can synergize efforts and ensure energy security in the area. While the rich biodiversity has traditionally provided firewood to local communities, excessive extraction from the forest and DHR may lead to trade-offs, impacting the environment and social aspects, such as increased time for firewood collection.Currently, 96.8% of households in Nisikhola Rural Municipality, both within and outside the DHR, rely on firewood as their primary cooking fuel (Nisikhola RM Profile, 2019). A similar situation in neighboring municipalities has contributed to the widespread use of firewood for cooking energy. This common practice amplifies the trade-off within the WEFE nexus, resulting in an overall negative impact on the net WEFE nexus up to the present.Establishing community-based microgrids powered by renewable energy sources (solar, wind, hydro) can also provide a reliable energy supply to remote areas. Integrating renewable energy solutions into tourism infrastructure enhances the sustainability of the tourism sector and reduces its environmental impact. Moreover, the proposed Hydropower Project opens opportunities for nature based eco-tourism, such as boating, canyoning, rafting and fishing, potentially increasing revenue generation for the local government and creating employment opportunities for the local people.Building local capacity for installing and maintaining renewable energy systems has the potential to create job opportunities and empower the local workforce. However, the absence of well-established energy infrastructure might impede the utilization of available renewable energy sources, leading to dependence on traditional energy forms. Challenges include the absence of an electric transmission line, connection to the national electricity grid and other infrastructures such as roads, drinking water facilities, marketing and communication. Limited financial resources may also present challenges for implementing large-scale renewable energy projects, necessitating strategic partnerships or funding initiatives.Changing weather patterns and extreme events can also affect the reliability and efficiency of renewable energy sources, potentially impacting the energy supply. The remote location of Dhorpatan makes energy infrastructure vulnerable to natural disasters such as landslides, affecting the continuity of energy supply. The lack of clear regulations and planning for energy projects may lead to uncontrolled development, impacting the environment and local ecosystems. The lack of awareness and education about the benefits of renewable energy may hinder community support and engagement in sustainable energy initiatives.Most of the water sources in the DHR area drain into the Bheri River, a major component of the Karnali River system. People living in proximity to the river depend on it for drinking water, irrigation and fishing. The proposed Uttarganga Hydropower Project may potentially impact the livelihoods of the East Rukum's people and disturb the Bheri diversion.Dhorpatan boasts rich agricultural diversity, cultivating a variety of crops such as potatoes, barley, maize, wheat and buckwheat, that forms the foundation for local food production. The region's forest-based edible fruits include walnuts, chestnuts, bayberries, various edible mushrooms and high value medicinal plants, that supplement the nutritional needs of locals. The surplus is sold in local markets and nearby cities such as Burtibang, Galkot,Examining the Water-Energy-Food Security-Ecosystem Nexus Approach in Nepal: Learning from Some Case Studies 44 Baglung, Kusma and Pokhara, contributing partially to the economy. However, farmers face challenges in storing surplus agricultural products, forcing them to sell their products at lower prices than the market rates.For instance, organic potatoes command a market rate of NRP 120/kg at Burtibang, while farmers in Dhorpatan have to settle for NPR 80/kg, primarily due to seasonal migration to lowlands, which allows middleman to reap higher profits. This scenario poses a threat to food security in the Dhorpatan region. Currently, the cultivation of apples, peaches and walnuts is gaining momentum, and provides good market value. The region embraces traditional and organic farming practices and fosters the production of unique and culturally significant local food varieties. However, inadequate transportation and storage facilities, coupled with seasonal migration from high altitudes to low altitudes during the winter season, result in locals struggling to secure reasonable prices for their agricultural and livestock products.The prevalence of the transhumance system in the DHR presents an opportunity for unique pastoralism in the mid-hills of Nepal and for promotion of tourism. The region's authentic local food offerings can promote culinary tourism and attract visitors interested in experiencing traditional and indigenous cuisine.The DHR is globally renowned as a hunting reserve, where domestic and international tourists with hunting licenses from the authorities, are allowed to hunt the Himalayan tahr and wild boars. Moreover, the area showcases natural purity and cultural distinctness, encompassing the Nauthar, Kham Magar, Gurung and Chhantyal cultures, amidst a backdrop of beautiful landscapes and a rich biodiversity. Therefore, the region holds immense potential for nature-based tourism and research sites. The practice of transhumancebased agro-pastoralism supports the sustainable use of grazing lands and traditional livestock farming, contributing to the availability of local meat and dairy products.Implementing market promotion strategies can open avenues for local farmers, linking them to wider markets and enhancing the economic value of their produce. Leveraging the uniqueness of local food varieties and traditional farming practices can attract tourists interested in culinary and agro-tourism experiences. Adding value to local products through processing and packaging can enhance their market appeal and create opportunities for income generation.Numerous challenges and threats present obstacles to ensuring food security in the region. The absence of effective marketing channels and essential infrastructure, for example, may restrict local farmers' access to broader markets, thereby limiting economic opportunities. Agricultural productivity remains susceptible to weather variations and the impacts of climate change, potentially affecting the quantity and quality of food produced. Altered weather patterns and unpredictable climate conditions pose threats to agricultural productivity, influencing crop yields and overall food security. The increasing adoption of commercial farming practices may potentially compete with traditional farming methods, jeopardizing the authenticity and uniqueness of local food. Inadequate infrastructure, including transportation and storage facilities, heightens the risk of post-harvest losses and constrains the potential for market expansion.Shifting dietary preferences towards processed foods may further impact the demand for traditional and locally grown food products. Establishing a cold store and engaging in food processing in Dhorpatan valley can raise the potential to achieve food security. These initiatives will not only enhance synergy with food security but also mitigate trade-offs linked to environmental damages and societal costs associated with food supply.The DHR serves as a sanctuary for diverse flora and fauna, hosting more than 32 mammal and 137 bird species that contribute to a resilient and vibrant ecosystem. Its unique mid and high-mountain ecosystem offers a varied habitat, nurturing a diverse range of plant and animal species. Indigenous cultural practices, such as transhumance-based agropastoralism, positively contribute to maintaining the ecosystem by sustainable land use. Additionally, the area is culturally rich with traditions of the Nauthar, Kham Magar, Gurung and Chhantyal communities. The Reserve's outstanding beauty and biodiversity create opportunities for sustainable tourism, actively contributing to conservation efforts and supporting local livelihoods. The Puspalal Mid-Hill Highway connects the DHR with Pokhara, a prominent tourist destination and Surkhet, one of the commercial hubs of Nepal.Sustainable tourism initiatives provide an opportunity to raise awareness about ecosystem conservation, generate revenue for local communities and fund conservation projects. The declaration of a buffer zone can further enhance protection of the ecosystem by involving local communities in conservation efforts and promoting sustainable land use practices. Allocating 30-50% of the DHR revenue for the conservation of biodiversity, community development and livelihood improvement can significantly contribute to these initiatives. Engaging local communities in conservation projects and providing economic incentives for sustainable practices can further enhance ecosystem protection.While designated as a protected terrestrial ecosystem for hunting, various issues have been identified within the DHR. Threats such as over-exploitation of forest resources, poaching and an increasing livestock population have contributed to habitat degradation. The growing human and livestock population, coupled with heavy dependance on the Reserve for natural resources by local communities, negatively impacts the DHR's ecosystem. Haphazard infrastructure development, including roads and other facilities, poses a risk to the natural landscape and may contribute to habitat fragmentation. Despite its richness in biodiversity and reputation for trophy hunting of blue sheep and Himalayan tahr, there is inadequate knowledge and information on the impacts of trophy hunting on the population ecology of game animals. Unplanned infrastructure development is causing biodiversity loss and disturbances to the ecosystem in the DHR.The Reserve authority's lack of adequate human resources, collaboration and partnership efforts has led to irregular monitoring and documentation of the biodiversity and ecology of the DHR. The ecosystem is vulnerable to climate change, characterized by irregular rainfall, snowfall and prolonged droughts, which can have an impact on the health of plant and animal species. Poaching poses a significant threat to the diverse wildlife in the Reserve, resulting in population declines and disrupting the natural balance within the ecosystem. The absence of specific pro-people legislation for the Reserve may result in insufficient protection and management measures for the ecosystem. Additionally, there is a potential for ambiguity between laws related to protected areas and the prevailing laws of the local governments.On the one hand, there is a lack of participation from local communities in decision-making processes related to the Reserve. On the other hand, there is an increasing presence of wildlife in the Reserve, including wild boar, leopards and monkeys, causing damage to crop and posing a threat to domestic animals. This has resulted in conflicts between the local people and the DHR authority, creating a tradeoff with the security of domestic animals. Moreover, local communities oppose the declaration of a buffer zone due to escalating conflicts with the Reserve administration. However, if the DHR is declared a buffer zone, the local community will receive 30-50% of the revenue for infrastructure development, livelihood support and biodiversity conservation.Despite the prioritization of GESI strategies in the DHR management plan, with a focus on inclusive stakeholder engagement and income generation for marginalized communities through eco-tourism and community-based enterprises, women and marginalized individuals face challenges in accessing livelihood benefits. This is primarily attributed to the underrepresentation of women in leadership roles and a lack of sensitivity toward the need for an intersectionality perspective for social inclusion, creating barriers to resource accessibility. Additionally, seasonal migration poses challenges to children's education, health and livelihood security.The majority of people residing in and around the DHR belong to Janajati and the socalled Dalit communities, who are economically disadvantaged compared to other castes. Male migration to nearby cities and abroad, for employment and transhumance pastoralism agriculture practices, increases the demand for more human resources. This has significantly impacted children's education, especially for girls, leading to increased school and university dropouts, and contributing to child marriage.The DHR management plan, while outlining economic activities, has overlooked critical issues such as child marriage and capacity building initiatives for youth, particularly focusing on education and employment opportunities for girls and women. Addressing these social issues is crucial for the overall well-being and sustainable development of the communities in and around DHR.Feedback from respondents emphasizes the need for sustainable solutions that not only preserve the environment but also enrich water, energy, farm and forest-based livelihoods. Local voices particularly underscore the significance of recognizing the specific challenges faced by women, aligning with the GESI and WEFE integration. Unfortunately, locals exhibit limited awareness of the GESI approach and its implementation. The Reserve and local governments have included GESI provisions in their legislation and project design and implementation, but these have not materialized as expected.On the one hand, women, disabled individuals and marginalized communities are less aware of GESI provisions, and on the other hand, the Reserve and local governments are less responsive to GESI. This has increased trade-offs due to the reduced involvement of women, disabled individuals and marginalized people in the DHR.To strengthen the WEFE approach in the DHR, recommendations include implementing targeted interventions for women, conducting a thorough diagnosis of social issues from the perspective of intersectionality, addressing cultural barriers and aligning educational and training initiatives with sustainable and interconnected resource management within the broader framework of the WEFE nexus.The WEFE nexus approach can significantly contribute to the governance of the DHR by incorporating GESI considerations. Some solutions with the nexus framework include:» assessing water resources in the DHR area to ensure sustainable practices for agriculture, energy and human consumption;» analyzing the energy demands and sources in Dhorpatan, with a focus on renewable and clean energy for sustainable development;» examining agricultural practices and food security to promote sustainable and climate-resilient approaches;» evaluating the roles of men and women in Dhorpatan, to ensure that development interventions consider and address gender disparities;» assessing the inclusion of marginalized groups, such as ethnic minorities or indigenous communities, in the development processes;» examining access to education and healthcare with a special focus on the needs and challenges faced by different genders and social groups.» developing integrated plans that consider the interlinkages between water, energy, food, and environmental aspects to ensure holistic and sustainable development;» involving the local community, ensuring representation from all genders and social groups, in decision-making processes related to resource management and development initiatives;» implementing programs to enhance the capacity of the local community, particularly focusing on women and marginalized groups, in areas such as agriculture, eco-tourism, renewable energy, » advocating for policies that explicitly incorporate WEFE and GESI considerations, ensuring alignment with national and international frameworks for sustainable development; and» given the uniqueness of the ecosystem, establishing the Reserve as a live museum and research hub for national and international academia, researchers, nature lovers and climate change experts.The DHR Management Plan has primarily focused on enhancing the capacity and infrastructure of the Reserve and its staff, with a predominant emphasis on hunting management and biodiversity conservation. However, there is a notable gap in the involvement of local communities in the planning and implementation processes. While provisions have been made for water conservation, including the protection of wetland, rivers, springs, lakes and ponds, uncertainties surround projects such as the proposed Uttarganga Hydropower Project. The interconnected nature of eco-tourism and biodiversity conservation is recognized, yet challenges persist in ensuring food security and water conservation, especially regarding guaranteed safe drinking water for the local residents.Overall, the plan has made strides in applying the WEFE and GESI approaches to some extent. The timely declaration of a buffer zone for the DHR is crucial, fostering trust between the Reserve authority, local governments and the communities living in and around the area. This initiative is expected to increase local engagement, reduce wildlife killings and mitigate deliberative forest fires in the Dhorpatan region.The integration of the WEFE nexus and GESI into the DHR Management Plan (2019) has the potential to enhance synergy by ensuring biodiversity conservation, promoting ecotourism, improving institutional capabilities of the Reserve authority, and providing compensation for crop depredation and livestock loss caused by wild animals in the Reserve and its buffer zone. The true impacts of this synergy are expected to outweigh trade-offs after the full implementation of the Management Plan. , it spans an area of 128.46 hectares of National forests, with elevations ranging from 1,455m to 1,978m mean sea level and slope gradient of 5 to 45 degrees. Patale CF shares its' borders with Mathillo Patale CF and Kafle CF in the east, Padali CF and Raksi Parne Kholso (Rasilo Dol) in the west, Sisneri settlement in the north, and Patlechhap CF and Kot Danda, Bishankhu Narayan settlements in the south. Patale CF comprises of 162 households as its members and has a thirteen-member executive committee, including six women committee members. The ethnic composition of this CF is Brahmin-Chhetri, Adivasi-Janajati and Dalits. Located in the foothills of Kathmandu valley, Patale CF exhibits a mixed composition of rural and urban socio-economic and cultural practices. With its scenic landscape and proximity to Kathmandu, the capital of Nepal, Patale CF holds significant potential for eco-tourism 3 .The Patale CF is situated in a mid-hill area of Nepal, facing towards the northern aspect. It comprises a mixed composition of forests with both broadleaf and coniferous tree species (Photo 1). Dominant among the broadleaf species are Chilauni (Schima wallachi) and Katus (Castonapsis indica). The CF area underwent regeneration from natural forests whereas Salla (Pinus roxburghii), a coniferous tree species, was planted as part of the Nepal-Australian Forestry Project. Other associated tree species include Uttis (Alnus nepalensis), Gobre Salla (Pinus wallichiana), Lapsi (Choerospondias axillaris), Mauwa (Madhuca longifolia, among others. The forest quality is moderate, with good natural regeneration at 6,458 seedlings per hectare. The volume of trees and poles measures 62.05 cubic meters per hectares and 91.78 cubic meter per hectare, respectively, with a growing stock is 153.82 cubic meter 4 per hectare. The CF has been divided into 6 blocks, each with an area of approximately 21 hectares, based on forest types, condition, natural boundaries (such as rivers, streams and roads), topography and area, facilitating effective forest management practices 5 .The fifth revision of the operational plan of Patale CF is awaiting approval from the Division Forests Office (DFO), Lalitpur. The draft version of this operational plan has already been prepared by the Mahalaxmi sub-division forest office, Lalitpur. In the fiscal year 2022/23, Patale CF received advance payment from DFO, Lalitpur for the construction of an office building, but final settlement is still pending. In light of these developments, the approval process for the Operational Plan of Patale CF has been put on hold by the DFO, Lalitpur. However, the Chairperson of the CF has recently submitted supporting documents for the final settlement of the advance payment to DFO, Lalitpur.The objective of this case study was to assess the WEFE nexus in Patale CF. The study involved a half-day field visit to the CF and discussions with key stakeholders, including committee members and forest officials (photo 2). Audio recordings were conducted for digital note taking purposes with prior consent from the respondents. The WEFE Nexus highlights the interdependent nature of water, energy, food and ecosystems, emphasizing the need for holistic management. Community forests are instrumental in maintaining this equilibrium.In his MA thesis, Nepal (2007) observed that the Patale national forest area was previously barren and bushy, ravaged by landslides, soil erosion, dried-up spring sources and wildlife migration resulting from the poor quality of their natural habitat. However, after being handed over to the community and converted into the Patale CF, there was a gradual improvement in the forest area and its cover, leading to a decrease in landslide occurrences. The Patale CFUG (Community Forests User group) prioritized the planting of Salla (Pinus roxburghii) tree seedlings in the barren land and focused on protecting the forests. Consequently, there was an observed enrichment of greenery. Additionally, the restoration of dried spring source occurred, benefiting approximately 200 households with access to drinking water from the CF. However, one committee member Patale CF, has observed a gradual decrease in the quantity of water from spring sources despite the forest being maintained or improved. Having been involved with the CF since its establishment in various capacities, he suspects that Salla (Pine) trees could be one of the reasons for this decline. The sparse ground vegetation beneath the Salla trees, caused by the acidic nature of their needles, accelerates surface runoff during the rainy season and reduces the infiltration of rainwater into the ground. Unlike broad leaves, the needles of Salla lack the ability to retain rainwater, which increases surface runoff. This contrast in water retention capabilities between needles and broad leaves is akin to comparing a zinc roof and straw roof. The needles of Salla trees hinder the recharge of ground water.Another factor could be the earthquake that occurred in 2015, which altered the underground natural drainage systems and their respective aquifers. As a result, the sources of water for natural spring may have been displaced.According to the Operational Plan (OP), Patale CF provides firewood and leaf litter, both renewable energy sources, free of cost. Over 70 percent of member households in the CF rely on LPG (Liquefied Petroleum Gas), a non-renewable energy source for cooking and heating. As per the OP there is an annual demand for 7,776 Bhaari6 (a local measuring unit) of firewood, while their supply capacity stands at 14,783 Bhaari, nearly double the demand.About 350 families from the Taraai region migrated to the Lamataar area in search of betterExamining the Water-Energy-Food Security-Ecosystem Nexus Approach in Nepal: Learning from Some Case Studies 53 livelihood options and employment. Most of these migrant households, who either rent rooms or lease land for cultivating vegetables and crops, live in temporary zinc shelters and use firewood for cooking and heating. This reduces the demand for LPG in the local market. Additionally, these households receive leaf litter for producing bio-fertilizer by mixing it with cow dung and urine, which also reduces the demand for chemical fertilizer and its usage in agricultural land. In this context, one committee member claimed that reducing the demands for both LPG and chemical fertilizer, imported from India, would save foreign currency at the national level and reduces trade deficit in the local market. Moreover, the usage of bio-fertilizer in agricultural land helps to maintain and enrich organic matter in the soil. The excessive usage of chemical fertilizer leads to the deterioration of soil organic properties, which could be mitigated by the usage of bio-fertilizer.There is an opportunity to produce bio-fertilizer using leaf litter from Patale and other adjoining CFs as the main sources of raw material. There is a growing demand for biofertilizer in nearby urban areas for rooftop and kitchen gardens to produce organic food at household levels. Urban dwellers now prefer organic food for its health benefits. Establishing a bio-fertilizer plant in Lamataar area, connected with CFs, would give momentum to the local economy, and generate employment. To accomplish this, the local government should take the lead in collaboration with interested CFs, as local government entities are closest to federal structures in Nepal. The Local Government Operation Act of 2017 empowers local authorities to undertake initiatives in economic development, social welfare and environmental protection7.Converting leaf litter into bio-fertilizer would be akin to 'cooking two dishes in one pot.' Dry leaf litter in forests is one of the main reasons for forest fire during the dry season, which damages the health of forests ecosystems. Carbon dioxide released from forest fires contributes to air pollution and global warming. In contrast, bio-fertilizer from forest leaf litter contributes to the local economy while reducing the occurrences of forests fire and the release of carbon dioxide into the atmosphere. In essence, it helps enrich organic matters in the soil and maintain the health of forests ecosystem.As discussed in the 'Energy' section, Patale CF has the potential to produce bio-fertilizer from leaf litter. Utilizing bio-fertilizer in the production of organic foods promotes public health, and encourages individuals to minimize their carbon footprints. This also plays a role in reducing carbon emissions per capita at the local level.Wild and non-cultivated plants found in the forests can provide food and energy for poor and marginalized people living nearby. They can also be sold in the local markets to supplement income. In Patale CF, leafy vegetables such as Nigro (wild edible fern -Diplazium esculentum) and Sisnu (stinging nettle -Urtica dioica), along with root crops such as Ban Tarul (Dioscorea spp), are plentiful. These plants serve as seasonal supplementary sources of organic and nutritious foods. Ban Tarul, in particular, holds religious and cultural significance and experiences high demand during Maghe Sankranti, a Nepalese festival observed on the first day of the month of Magh in the Bikram Sambat calendar. It is The readily available firewood in the CF liberates women from member-households from the burdensome task of collecting wood, allowing them to redirect their time towards income-generating activities or personal development and education. With the newfound spare time resulting from improved firewood access via the CF, women have the opportunity to participate in eco-tourism initiatives (photo 3), fostering additional income generation and enhancing their overall well-being.The existence of Salla trees in the Patale CF presents a complex trade-off within the WEFE nexus:The presence of Salla trees in the Patale CF may contribute to groundwater depletion by impeding natural recharge, thereby posing a risk to the community's water security. This directly contradicts the WEFE nexus goal of ensuring sustainable water management.Removing Salla trees could create space for preferred broadleaf species, potentially benefiting the overall ecosystem and biodiversity. However, it could also disrupt specific niche ecological communities reliant on Salla trees for survival.The Patale CF exemplifies the power of community forestry in advancing the WEFE nexus. Through the integration of water, energy, food and ecosystem aspects, such initiatives hold promise for fostering a more sustainable and resilient future for both local communities and the planet as a whole.To fully harness the potential of the WEFE approach in realizing sustainable development goals (SDGs), this case study recommends implementing targeted awareness programs at the grassroots level. By fostering an understanding of the interconnections between water, energy, food, and ecosystems, these initiatives empower local communities toExamining the Water-Energy-Food Security-Ecosystem Nexus Approach Nepal: Learning from Some Case Studies 57 actively engage in SDG attainment. This approach fosters change, paving the way for communities to thrive in harmony with their local environment.The WEFE approach, with its focus on community-driven awareness and action, has the potential to serve as a powerful catalyst for policy advocacy in Nepal, spanning all three tiers of government: federal, provincial and local.This study recommends a comprehensive assessment to evaluate the harmonization between CFs and the WEFE nexus in 13 CFs (adjoining and neighboring to Patale CF) under the Mahalaxmi Sub-Division Office, Lamataar, Lalitpur at the landscape level. This landscape-level study will move beyond the \"by default\" integration of CFs and the WEFE nexus, adopting a \"by design\" approach to quantitatively measure synergies and tradeoffs. By conducting this landscape-level analysis, policymakers can gain insights to craft well-informed policies and strategic interventions that optimize the role of community forests in achieving WEFE nexus goals.Examining the Water-Energy-Food Security-Ecosystem Nexus Approach in Nepal: Learning from Some Case Studies 58Although all the case studies aim to show the connections between sectors and WEFE resources in various configurations, they were not originally designed with a WEFE approach in mind. When viewed through a nexus lens, several gaps can be identified that hamper the operationalization of the WEFE nexus approach on the ground. These gaps can be addressed through the application of WEFE nexus approaches and tools, which have proven effective. Some of these tools can be summarized below.Identifying opportunities and bottlenecks for collaborative solutions involves integrating the WEFE nexus into existing planning processes to ensure coherence and synergy. Engaging stakeholders in a participatory planning and implementation process is vital for inclusive and comprehensive decision-making. Coordination and collaboration across various sectors and government scales are essential, including clarifying the roles of different agencies and actors involved. Establishing coordination mechanisms at various levels, such as a multi-stakeholder platform, can facilitate effective communication and cooperation among all stakeholders, ensuring that the WEFE nexus approach is effectively implemented and sustained.Mapping inter-sectoral committees and programs/projects is crucial for understanding existing structures and identifying areas for collaboration. Similarly, assessing capacity gaps and developing capacity strengthening plans are vital for ensuring that stakeholders have the necessary skills and resources. Implementing a robust monitoring, evaluation, and learning plan fosters knowledge sharing, including best practices, through platforms and networks. Enhancing both vertical and horizontal coordination strengthens institutional capacity for coordinated decision-making. Promoting policy learning supports knowledge exchange and continuous learning, leading to improved governance and resource management.Conflict resolution is essential for addressing competing interests through open dialogue and understanding. Utilizing digital sharing platforms can effectively communicate the complexity of the nexus to diverse stakeholders, enhancing engagement and collaboration. Implementing robust risk management strategies addresses uncertainties and attracts long-term investments. Coordinating with relevant stakeholders and ensuring clarity of roles and responsibilities, as well as equitable resource allocation, are crucial for optimizing resource use and achieving sustainable WEFE nexus outcomes. Finally, developing investment plans and financing mechanisms, such as the Public-Private-People Partnership model, ensures that projects are designed and funded using the nexus framework, promoting long-term sustainability and resilience.Examining the Water-Energy-Food Security-Ecosystem Nexus Approach in Nepal: Learning from Some Case Studies 59 By adopting a nexus lens and avoiding isolated sectoral solutions, unified and combined solutions can be crafted to address the challenges faced by WEFE sectors and actors. These include technical and engineering solutions to enhance infrastructure and operational efficiency, along with nature-based solutions that leverage ecosystem services and ensure environmental sustainability. Governance solutions are necessary to improve policy frameworks and institutional capacities. Gender equality and social inclusion responsive solutions ensure that all community members benefit equitably, focusing on the intersections between different conditions of marginalized communities in particular (for example gender, class, caste/ethnicity, geographic locations, etc.) who are heavily engaged in natural resources use and management. Additionally, marketbased solutions can drive innovation and investment through economic incentives. Lastly, demand-based solutions tailor interventions to meet the specific needs and priorities of local communities, ensuring equity, effectiveness, sustainability, relevance, and resilience. Together, these diverse strategies create a comprehensive framework for overcoming challenges and achieving sustainable WEFE nexus outcomes.","tokenCount":"15038"} \ No newline at end of file diff --git a/data/part_3/4077132762.json b/data/part_3/4077132762.json new file mode 100644 index 0000000000000000000000000000000000000000..a73624edb5171bc3f3c89dc16725c731e843d085 --- /dev/null +++ b/data/part_3/4077132762.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"547e6ca00c874604c82cc9c76bcb8495","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/18b714e6-5081-4543-9462-3873c47148d2/retrieve","id":"-1257555108"},"keywords":[],"sieverID":"f6eccd25-ea4b-4d18-8d90-93906b81f113","pagecount":"27","content":"BACKGROUND PROGRESS DURING THE REPORTING PERIOD Program management, monitoring and evaluation Objective 1. Promote innovative animal health delivery systems and best health interventions to reduce disease burden in ruminant livestock Produce and deliver a thermostable vaccine against peste des petits ruminants (PPR) Support the prevention of ruminant livestock major epidemic diseases Improving producers and community animal health workers (CAHWs) technical knowledge and skills to facilitate the uptake of animal health measures Strengthening the capacity of producers and community animal health workers Dissemination of proven livestock technologies and information through Information and Communicaiton Technologies (ICT) / social networks. Objective 2. Increase the availability of quality feed biomass, improve feed utilization and husbandry practices and promote development feed and fodder value chains Upscaling of improved dual-purpose crops varieties and forage species Upscaling of integrated packages for improved cattle, sheep and goat productivity Promote the establishment or consolidation of private small-scale feed manufacturers Objective 3. To leverage USAID-led livestock market development and policy initiatives in support to the upscaling of ruminant livestock productivity enhancing technologies Revitalize the livestock market information system (LMIS) to capture market incentives Linking fatteners with financial institutions Access to markets: local and transborder livestock fairsThe Feed the Future Mali Livestock Technology Scaling Program (FTF-MLTSP) is aligned to the USAID/Mali FTF program and more specifically to the Mali FTF livestock value chain component initiated to boost growth of the Mali livestock sector. The primary goal of FTF-MLTS is to contribute to inclusive growth in ruminant livestock value chains for increased income, food and nutrition security for 61,000 smallholder farmers in the regions of Mopti, Tombouctou and Sikasso. In addition, the FTF-MLTSP aims to (1) bridge ruminant livestock productivity gaps through a widescale dissemination of proven livestock technologies and the best practices and (2) facilitate access by farmers to more prosperous livestock markets. This report underlines interventions, achievements, challenges and lessons learned over fiscal year 2019 (FY19).His Excellency Dennis B. Hankins, the Ambassador of the United States to the Republic of Mali visited Ifola, a FTF-MLTS project site. The new US Ambassador to Mali, His Excellency Dennis B. Hankins, along with the USAID-Mali Interim Director and a strong delegation, witnessed several achievements of the project during a visit to the village of Ifola on July 25, 2019. Ifola is a village in the commune of Farakala, Sikasso region. During the visit, the beneficiaries discussed with the ambassador and his delegation on the project activities and their impacts on their food and nutrition security and livelihoods.▪ 129,886 beneficiaries ▪ 37,099 individuals trained ▪ 75,000 individuals applied improved management practices or technologies ▪ 8,885 ha under improved technologies ▪ 6,883 full time equivalent jobs created ▪ USD4.0 M: value of smallholder annual sales ▪ USD1.5 M: value of smallholder incremental salesProgram management, monitoring and evaluation. ILRI pursued its contractual arrangements with the consortium partners to ensure successful implementation of FTF-MLTSP. In FY19, eight collaborative agreements were renewed with the main implementing partners through amendments of their subawards.Community engagement. General meetings were held in 92 villages in the Zones of Influence (ZOI) of the project. They brought together about 4,692 people, including 1,477 women (31.69%). Twelve communal consultations gathered 1,288 people, including 553 women. These communal consultations reached 3,404 farmers, including 934 women at village level.Animal health through prevention and innovative animal health delivery systems. Significant progress was made in the production and deployment of the peste des petits ruminants (PPR) thermotolerant vaccines. ILRI, Laboratoire Central Vétérinaire (LCV), and Hester Bioscience Ltd (HBL), produced batches of PPR vaccines based on three protocols (LCV-Xerovac, ILRI and conventional).Thermostability tests proved that the two vaccines (ILRI and Xerovac protocols) were thermostable. The ILRI vaccine is planned to be deployed on the field in early 2020.During the first quarter of FY19, innovation platforms (Ips) in collaboration with private veterinarians' organizations launched vaccination campaigns in the different target communes. It has been noted that due to participatory approaches used for vaccination in planning and implementing, the rate of vaccination has increased significantly, and vaccines are more accepted by livestock producers. Consequently, considerable numbers of animals were vaccinated in the ZOI of the project in FY19 against major killer diseases including contagious bovine pleuropneumonia (CBPP) (60.63 %), PPR (78.13 %) and pasteurellosis (54.89%). To strengthen the technical knowledge and skills of community agents and producers on animal health, 724 producers and vaccinators were trained on the concepts of improving animal health and hygiene in the region of Mopti.Promotion of forage crops and feed manufacturing units in target communes. In 2019, approximately 3,646 new producers were identified for forage crops. About 75,000 producers (32% women) applied postharvest crop production and management technologies for dual-purpose crop forages during the year. More than 8,885 ha were planted under improved forage production technologies.Producers in the regions Sikasso planted 304.8 ha of Brachiaria. It has been noted in 2019 that Brachiaria became a new source of revenue for many farmers in the ZOI of the project. Over FY19, Brachiaria seed producers sold 410 kg of seed for a total amount of XOF3,280,000. In the regions of Mopti and Tombouctou 610 hectares of Bourgou were cultivated, the producers harvested 2,886 tons of Bourgou. In addition, in the ZOI of the project, producers planted dual-purpose crops (sorghum, peanut and cowpea) and were able to harvest 2,607.37 tons of fodder.Support to feed processing units. In FY19, small livestock feed manufacturing units run by women produced and sold more 8,270 blocks of feed. In the region of Mopti a new production unit was established whereas in the region of Tombouctou, 60 women were trained on production and marketing of multinutrient blocks. Overall, in FY19, more than 37,000 producers were trained on improved management practices on technologies in the ZOI of the project.Facilitating access to credit and promotion of fattening operations. The project in partnership with International Executive Service Corps-Finance for Food Security and Women Entrepreneurs (IESC-FFSWE) organized training sessions for microfinance institutions and banks to facilitate access to credit for small livestock enterprises more particularly fatteners. As a result, many of them have developed portfolios adapted to the credit needs of livestock entrepreneurs. During the year, 119 producers, including 27 women obtained a total amount of XOF94,747,727 worth USD158,973 credit from financial institutions.The Feed the Future Mali Livestock Technology Scaling Program (FTF-MLTSP) seeks to contribute to the inclusive growth of the ruminant livestock value chain for increased income, food and nutrition security for 266,000 cattle, sheep, and goat keepers and other value chains actors in three regions in the country (Mopti, Tombouctou and Sikasso), hence lifting them out of poverty. Visit of the Ambassador of the United States to Ifola, a FTF-MLTYSP project site. The new US Ambassador to Mali, His Excellency Dennis B. Hankins, along with the USAID-Mali Interim Director and a strong delegation, visited several achievements of the project in the village of Ifola on July 25, 2019. Ifola is a village in the commune of Farakala, Sikasso region. During the visit, the beneficiaries discussed with the ambassador and his delegation the project activities and their impacts on their food and nutrition security and livelihoods. In his address, the mayor of the commune of Farakala emphasized the importance of the project as a key economic vector and its role in the social development of his commune. This visit allowed the ambassador to meet and listen to stakeholders on the mechanisms for carrying out activities (animal health, fodder production, and access to the market).Visits of partners and distinguished guests in the project's ZOI Visit of the Technical and Financial Partners, Livestock and Fishery Sub-Group Thematic Group of Agricultural and Rural Economy to FTF-MLTSP project site (Ifola). On 27 February 2019, the Livestock and Fisheries Subgroup of the Thematic Group of Agricultural and Rural Economy (TG-ARE) of Mali's Technical and Financial Partners (FTP) visited the FTF-MLTSP activities in the village of Ifola in the target commune of Farakala. The visit gathered more than 60 people from different institutions. On this occasion, the participants visited a fattening workshop and an improved forage storage (Brachiaria, Niebe, Sorghum, Mucuna, Peanut).METOCOUR block manufacturing unit of women's cooperative of the commune of Farakala. Through this event, the women's group conducted a demonstration on the techniques of using the livestock feed grinder. Also, during the visit, the visitors listened to the presentations of beneficiaries of the project about forage production including Brachiaria farming. At the end of their visit, the participants appreciated the achievements of the project. They invited the people to continue the activities initiated by the project. They also appreciated the integrated system put in place by the project to raise the value of biomass, including conservation of fodder on grating, fattening unit, seed system, and compost pit and feed grinder, and the all-in-one integrated framework allowing the increase of incomes of breeders and consequently improvement of their living conditions.Objective 1. Promote innovative animal health delivery systems and best health interventions to reduce disease burden in ruminant livestockProduce and deliver a thermostable vaccine against peste des petits ruminants (PPR)Significant steps have been taken towards developing in-country capacity to produce, deliver and use thermostable PPR vaccines for the progressive eradication of PPR in Mali. In FY17 and FY18, the consortium of partners including LCV, ILRI and Hester Bioscience Ltd (HBL) produced batches of PPR vaccines based on three protocols notably LCV-Xerovac, ILRI and the conventional protocol.The two vaccines (ILRI and Xerovac protocols) proved thermostable following thermostability tests. However, additional work was needed to reduce the residual moisture content in the ILRI vaccine to improve its stability under high temperatures. The ILRI vaccine batch no 2 was produced during FY19 with the following subsequent activities: (1) incubation of ILRI batch 2 vaccine at 37°C and 40°C and 45°C to day 14 and (2) the titration of ILRI batch 2 at 37°C and 40 °Cup to Day 16. The residual moisture analysis in ILRI batch 2 was conducted and values obtained are in the standards at 37°C and 40°C. Cup to Day 14. However, the titers were below standards. The required titer of 10 5.5 DITC50 before lyophilization was reached with the 3 rd batch of the ILRI thermostable PPR vaccine that was produced during FY19. The 3 rd batch passed also the internal quality tests and exhibited a titer of 10 5.3 after lyophilization. This batch will be sent to the African Union-Pan African Vaccine Centre (AU-PANVAC) in January 2020 for the external independent testing of the stability using the AU-PANVAC protocol.The original protocol for the field deployment of new PPR thermostable vaccines (ILRI and Xerovac) was designed to carry out simultaneous field activities for the two new vaccines with the conventional PPR vaccine as a control. With the delays in reaching required titers of the ILRI vaccine and having the external independent testing done by AU-PANVAC (now scheduled for January 2020), ILRI and LCV agreed to deploy the two thermostable vaccines (ILRI, Xerovac) in the field one at a time. Since the thermostable Xerovac PPR vaccine proved thermotolerant under 40°C for 14 days and did not need any additional testing, it was decided to start its deployment in the field and postpone that of the ILRI vaccine for early 2020. The protocol to deploy the vaccines was drafted to meet the requirements of the Mali Scientific Research Ethics Committee. Meetings were held with communal authorities in Sikasso and Koutiala to plan the field deployment of the different PPR vaccines. During the preparation of this report, the baseline serological surveys to detect naïve animals to be used was underway in Sikasso and the thermostable Xerovac PPR will be used for the first time in the field in February 2020.Perception by veterinarians on the new thermo-tolerant vaccines against PPRA study was conducted among private veterinarians to assess their perception on the use of the new PPR thermostable vaccines produced by LCV. The purpose of the study was to make recommendations for optimal conditions for the large-scale use of new vaccines. The survey was conducted in the Sikasso region and involved 35 veterinarians (32 males and 3 females). A large majority (97.1%) of participants knew about of the types of PPR vaccines available on the Malian market, including Ovipeste locally produced by LCV and imported Lyopox-PPR. The Collectif des Veterinaires Mandataires du Mali (COVEM) and Association Nationale des Veterinaires Mandataires (ANAVEM) supply 91% and 9% of the private veterinarians, respectively. Two-thirds (66%) of the participants appreciated positively the advent of new thermostable vaccines. They believe, however, that self-medication practices often performed by farmers would be more likely lead them to misuse the new vaccine, including keeping it longer without a cold chain because of its thermotolerance. Most participants (86%) think that this vaccine will have socio-economic benefits when it is widely used. 80% of participants believe that the thermostable vaccine could contribute to an increase of livestock vaccination rate. However, 14.3% of participants think it will be an advantage for wholesalers and 20% believe that the vaccination rate will remain low if wholesalers keep the monopoly of the vaccine supply chain. About 86% of the veterinarians believe that farmers will accept this vaccine whereas 14.3% believe that the success of the vaccine will depend on the results obtained after the first experience of using it. The private veterinarians made recommendations to address constraints related to the field deployment of the PPR thermostable vaccine. These are: (1) to develop a national communication plan for PPR vaccination campaigns, with a particular emphasis on information sharing, awareness raising and education of producers on the impacts of the PPR disease, (2) to strengthen planning of field operations and make vaccines available in sufficient quantities and on time, (3) to reduce the cost of vaccination for farmers, and (4) to plan massive vaccination campaigns against PPR across the country.Support the prevention of ruminant livestock major epidemic diseases MLTSP adopted the innovation platforms (IPs) approach to roll out selected livestock technologies and best practices. This mechanism supports grassroots initiatives and empowers actors in the ruminant livestock value chain in planning, implementing and monitoring interventions. IPs are the backbone of the project's intervention approach. They bring together local actors in the livestock value chain and provide a space for information gathering and sharing, mobilizing resources and promoting changes in practices. IPs provide leadership in the implementation of the various components of the project and help to resolve recurring problems related to animal health, forage production and livestock marketing. IP members have been trained to develop their annual action plans, and on mechanism for implementation, monitoring and evaluation of their activities. During the year 2019, the IPs established in the project ZOI, made significant progress in the implementation of their activities. Several monitoring, evaluation, technical support, training and networking activities were organized by IPs.IPs promote effective animal health delivery systems in the project ZOI with specific focus on immunization campaigns against major epidemic diseases. A key IP activity is the planning, implementation, monitoring and evaluation of immunization campaigns. This approach helped improve the vaccination coverage rates of livestock in the project's ZOI (Figure 1). To reach this objective, IP members held FY19 vaccination planning meetings prior to field operations and awareness raising missions involving representatives of the various IP stakeholders to inform and raise awareness among farmers about the importance of vaccination and its impact on livestock productivity. All IPs set up their immunization targets in a participatory way. This was a powerful way to mobilize stakeholders about livestock health issues. The joint launching of vaccination campaign by IPs and veterinarians in the target communes increased farmers' acceptance of vaccinations. During these events, more than 4,000 heads of cattle were gathered for these launching days. A number of cattle were also vaccinated during the campaign against CBPP, PPR and pasteurellosis as shown in Figure 1. Table 1 shows a significant increase in vaccination coverage rates in 2019 compared to 2018 due to the commitment of IPs and private veterinarians to prepare and implement vaccination campaigns. It is noted that vaccinations against PPR and bovine, ovine and caprine pasteurellosis were higher in 2019 than in the previous year. Vaccination against CBPP was, however, slightly lower and this is mainly due to the volatile security in the north and centre of the country. Notwithstanding this situation, according to DNSV, this year's vaccination coverage rate for all target diseases is above the targets set for immunization (Table 1). The reference values set by DNSV are 50% for CBPP and 7% for PPR.Figure1. Number of targeted and vaccinated livestock in 31 communes during FY19 IPs carried out mid-term evaluation of the vaccination campaigns to fill gaps as they occurred. The final evaluation of the vaccination campaign was conducted during workshops chaired by representatives of local governments. The evaluation showed that COVEM reached satisfactory completion rates for CBPP and PPR vaccination campaigns (Table 3). Although the results obtained are encouraging, emphasis should be placed on vaccination of small ruminants whose coverage remains still low, despite the increase in the rate of vaccination. Vaccination of small ruminants against PPR should be considered as a key challenge to address. Considering the short lifespan of small ruminants, many farmers do not perceive the link between the impacts of vaccination and productivity, and therefore, do not understand the need to invest in the immunization of small ruminants. Improving producers and community animal health workers (CAHWs) technical knowledge and skills to facilitate the uptake of animal health measuresTo strengthen the technical knowledge and skills of community animal health agents and producers on animal health, 724 producers and vaccinators were trained on the concepts of improving animal health and hygiene in the region of Mopti. Topics covered included knowledge of major diseases in the project area; preventive measures against recurrent diseases and recognition of clinical signs of diseases. In addition, participants were informed about issues associated with self-medication practices; the problems associated with the use of prohibited or counterfeit veterinary drugs; the importance of declaration of household stock size and keeping of a livestock health book. Still in Mopti, IPs of the communes of Fakala, Sio and Socoura have organized awareness raising campaigns among farmers, agro-pastoralists in livestock markets and in the villages. These sessions focused on the benefits of animal vaccination. The session reached 4,645 individuals. In the region of Tombouctou, despite the prevailing insecurity, 50 relay vaccinators were trained. They conducted 66 awareness raising sessions on the importance of vaccination and deworming of animals. These sessions brought together 924 breeders in the communes of Tombouctou, Alafia, Douékiré, Soboundou and Soumpi.Building leadership capacity of IP members. Several training sessions were organized for IPs in the project's ZOI to ensure sustainability of post-project activities. The participants were members of IPs management committees, technical services officers from regional directorates of production and animal industries, regional veterinary services directorates, and regional directorates of agriculture, and veterinarians. All training sessions were facilitated by the project team and implementing partners in collaboration with technical services teams. The topics included: roles and responsibilities of committee members, mobilization of internal and external resources, leadership, communication, self-assessment, partnership development, action plans development that consider the types of inputs needed to implement activities, addressing challenges of access to inputs and services. These sessions also served as a forum to discuss constraints and challenges in the operation of IPs and to make recommendations for addressing them. In Mopti, during the period, several training sessions were organized in Socoura, Sofara and Somadougou with the participation of 221 people, including 31 women (29%).To reinforce networking among IPs, the project organized exchange visits and 26 consultations in the target communes. Members of the IP of Djenné (10 IP leaders and producer-members, including three women) visited their counterparts in Farakala, Sikasso to learn about their experience. The IP of N'Gountjina, District of Koutiala received a visit from Socoura, Sio and Fakala IPs. The visit involved 41 producers including 10 women, and 8 state technical services and private veterinarians including 2 women. IPs from the Tombouctou region (Tombouctou, Alafia and Douékiré) also made two exchange visits focusing mainly on the management of the feed grinder, a technology introduced in the region during the year. The visits took place in Tombouctou and Niafunké. The participants were 60 leading producers of the platforms (members of management committees and leaders of the Bourgou producers' organization).Regarding local communal consultations, 92 villages general meetings were held in the ZOIs of the project. These meetings aimed at reviewing activities carried out and their outcomes, identifying gaps and making plans to ensure sustainability of project activities. These meetings also helped to reinforce networking between different actors. They brought together about 4,692 people, including 1,477 women (31.69%). Overall, exchange visits and village consultations of livestock value chain actors (village and commune), created opportunities for members of IP committees to share experience and consolidate their working relationships, and to strengthen their understanding of the roles and responsibilities within the organization.Implementation, monitoring and evaluation of IP action plans. To start the planning of their activities, IPs rely on the 'animal health component' as a gateway to the various areas of livestock development. Thus, to ensure their leadership in conducting field operations, the IPs with the support of veterinary services (state and private) developed their action plans that include the following: ▪ Planning of workshops for information sharing regarding vaccination campaign plans with all the stakeholders. ▪ Ensuring the start of activities by conducting information sharing and awareness raising missions on the content of the vaccination campaign plan in the villages to: a) clarify and amend the campaign objectives, b) better organize the plan of activities, and c) mobilize stakeholders. ▪ Planning meetings to validate the objectives of the campaign to finalize the timeline of activities by involving of all stakeholders (state/private veterinary services, farmers, local administration, local elected officials, etc.).Official launching ceremonies of vaccination campaigns involving all stakeholders (media support) were organized in the various communes. Throughout the process, participatory monitoring and evaluation activities were conducted. The outcomes of these activities are also shared with stakeholders during mid-term evaluation sessions of the campaigns to identify gaps and make necessary amendments. The mid-term evaluations were followed by final evaluation workshops of vaccination campaigns, which also involved local stakeholders (community leaders and IPs, administrative and political authorities, NGO partners, etc.). Media support activities (radio announcements) are conducted to create more community engagement.Over the year, IPs have conducted auto-evaluations of their action plans during various meetings. In Sikasso, in March and September 2019, the IPs in four communes carried out their auto-evaluation sessions. These evaluations revealed that during the year, the four IPs held a total of 72 meetings and 13 general meetings, and that their various management tools (registers, meeting books, membership books, etc.) are well kept by the secretaries. In addition, IPs also updated their management committees. This shows that IPs are well prepared and reaching a certain level of maturity. The replacement process involved a total of 6 board members in 4 communes: an agent of an NGO whose contract ended, 2 technical service agents (one is transferred and the other retired), and 3 NGO workers redeployed outside the project area. In addition, IPs in Sikasso and Koutiala held specific meetings to: develop a more efficient production and distribution system for forage seeds, promote marketing mechanisms (sale of seeds, livestock, etc.) to strengthen internal resource mobilization processes by requesting some payments on sales (5% for seeds) from members or on vaccination (XOF5/vaccinated head) from private veterinarians. IPs from Sikasso and Koutiala held management committee meetings and general meetings to prepare the 2019 Tabaski Operation. During these meetings, the number of sheep owned by was estimated and arrangements made for their transport to the cross-border livestock market of Kourémalé.Despite the volatile security situation in the northern zone of the country, the IPs of Tombouctou, Alafia, Douékiré and Soboundou held 11 planning meetings of vaccination campaigns. These meetings gathered 187 members. They aimed at strengthening the synergy of actions among stakeholders. However, the growing insecurity in the region of Mopti led to the cessation of activities in the commune of Femaye and undermined activities in Djenne (difficult to travel freely between the different villages of the commune).Dissemination of proven livestock technologies and information through Information and Communications Technology (ICT) / social networks.In addition to traditional ways of disseminating innovations through extension and advisory services (demonstration plots\\fields-schools, pastoral field schools, meetings\\training sessions, village meeting), FTF-MLTSP integrated into its communication strategy the use of mobile applications to reach out to more beneficiaries. Mobile telephony and social networks are key assets for large-scale dissemination of new technologies in rural areas in Mali. More than 65% of livestock value chain actors have access to at least one mobile telephone and over three million of the subscribers of the three different mobile operators in Mali have internet access on their phones. Based on the positive outcomes of using WhatsApp during the Operation Tabaski, FTF-MLTSP launched a second WhatsApp group called 'Banganmara Kunkan' on the WhatsApp for Business application. The purpose of this group is to strengthen extension and advisory support capacity for producers of the project's ZOI. The topics discussed on the group centre mainly on project activities (animal health, forage crops and market access) and marketing of livestock products. FTF-MLTSP and its partners regularly share educational videos about the group to disseminate technologies and best livestock management practices. The group is also a forum for exchange not only among producers but also between producers and experts. For example, a producer member of the IP of Molobala named Oumar Barry had posted on the group a picture of a bulls suffering from dermatitis which allowed him to be contacted by the private veterinarian of his area named Abdoulaye Diony, who thus provided the necessary care to the animal. Also, producers very frequently use the group to share information on the cultivation and sale of Brachiaria seeds. Like exchange visits, the WhatsApp groups helped to connect members of different IPs. In addition, the FTF-MLTSP has a Facebook page (https://www.facebook.com/Feed-the-Future-Mali-Livestock-Technology-Scaling-Program-292775261215433/?modal=admin_todo_tour) whose objective is to share information about the project and to disseminate the new technologies promoted by the project including forage crops, animal health services and access to markets/credit. The information is regularly published on the page.To further expand the channels of communication and dissemination of proven livestock technologies, the project, in collaboration with Care Harande, has set up an Interactive Voice Response (IVR) system (an automated telephone system that interacts with callers), which is accessible by dialing 44979830. The IVR works 24 hours in two languages (Bamanakan and Dogosso).Several topics are discussed on this platform: feeding of cattle, conduct of a fattening operation, importance of vaccination of livestock, diseases with compulsory vaccination in Mali, preparation of sheepfolds, promotion of crops fodder, animal health monitoring and fattening management tools, veterinary drugs in Mali and the problem of self-medication in disease management, and zoonosis. To ensure sustainability of the system and facilitate access to it by producers and it is regularly updated with new information and technical features. In addition, to support dissemination of proven technologies, six training videos were produced and used during the farmers training sessions on various topics. The project also used the services of six local radio stations (five in Koutiala and Kene radio in Sikasso) to air microprograms on livestock management issues. IPs were involved in the development of the microprograms and their programming.Objective 2. Increase the availability of quality feed biomass, improve feed utilization and husbandry practices and promote development feed and fodder value chainsUpscaling of improved dual-purpose crops varieties and forage speciesIn 2019, FTF-MLTSP focused on consolidating the results obtained over the previous years by increasing and improving the quality of available fodder and establishing a sustainable fodder seed production system. Also, the project and its partners promoted dual-purpose forage crops throughout its ZOI in general, and specifically production of Brachiaria in Sikasso and Bourgou in Mopti and Tombouctou. As a result, many producers have been identified in the 2018-2019 campaign to promote forage crops. In 2019, 3,646 new producers were identified for forage crops. In Sikasso 821 new producers were identified and 45 in Djenné by SNV Netherlands. In Koutiala, 2,795 new producers have been identified to produce forage crops and 30 people have been selected (including 6 women) to produce dual-purpose seed crops to sustain seed production. The objective of the field schools was to conduct field demonstrations to promote forage crops. During FY19, 2,116 forage demonstration plots were established by producers including 572 women in the AMEDD intervention zone. In addition, 92 volunteer-producers (1 per village) were selected and trained to provide training on production of forage crops. In the 43 villages of the target communes in Mopti (Socoura, Sio, Fakala and Madiama), 86 demonstration plots covering a total area of 21.5 ha were established in villages (two\\village) to disseminate technologies. The total seed production from field schools was estimated at 150.35 tons of grain (sorghum, cowpeas and groundnuts) and 1,524.6 tons of sorghum, cowpea and groundnut fodder.During FY19, a total of 804 farmer-trainers were trained on forage production techniques and seed marketing. This activity involved 602 farmer-trainers in the Sikasso region, including 196 farmerleaders in Koutiala, and 412 others in the district of Sikasso. In Mopti, 174 farmer-trainers including 43 women were trained on harvesting techniques, storage and conservation techniques, dualpurpose crops production. In terms of capacity building, 4,278 people, including 1,070 women, participated in the various training and feedback sessions in the ZOI of the project.Seed production and supply.Access to quality seeds is one of the major constraints to the adoption of forage crops by farmers. Therefore, adequate seed supply is essential in the promotion of forage crops. Right at the onset, the project highlighted the need to establish a sustainable forage crops seed supply system. As a result, a 'seed revolving system' (sale and distribution) within IPs was promoted to support building of a sustainable quality seeds production system. The project has also gradually decreased its supply of seeds to farmers. If farmers get used to purchasing forage crop seeds through the revolving system (borrow 1 kg and reimburse 1.5 kg) established by the IPs, this will ensure a wide dissemination of seeds inside and outside the ZOI of the project. Thus, seed producers were identified to ensure sustainability of the certified seed production and distribution system. These producers were grouped into 18 cooperatives. They produced 93 tons of groundnut seeds, and 45 tons of sorghum and cowpea seeds. In Sikasso, 37 seed producers were able to produce enough seeds to meet the growing demand resulting from the adoption of the new forage crops introduced by the project. Seed producers trained and supported by the project produced 810 kg of certified Brachiaria seeds this year. An increasing number of beneficiaries have bought seeds from these farmers. Thus, the seed producers were able to market 410 kg of Brachiaria for a total amount of XOF3,280,000 (XOF8,000/kg).Through this strategy of dissemination, the production and marketing of fodder including Brachiaria seed not only helped to solve the recurrent problems of livestock feed deficit, but also created business opportunities for farmers and diversified their sources of income. Given the saturation of pasture lands in the southern zone of the country (Sikasso and Koutiala), Brachiaria proved to be a sound alternative solution in that regard. Brachiaria also contributes to soil fertility conservation, communities' resilience to climate change, and mitigation of conflicts related to the competitive use of natural resources.The project worked also with partners towards the legal statute of the cooperatives of Brachiaria seed producers. Currently, Brachiaria production is being scaled up beyond the limits of the project intervention zone by other NGOs, project\\programs and pilot producers. Consequently, 150 kg of Brachiaria seeds were purchased by the Fédération Régionale des Unions de sociétés Coopératives des Producteurs de Lait de Sikasso (FERLAIT) with the support of the Swiss-funded Agricultural Value Chains Support Project (PAFA) project for the benefit of producers in other districts and communes of Sikasso: 80 kg of the seeds were bought by the World Food Program (WFP, Mopti), 4 kg by the Cinzana agronomic station, and 2 kg by producers from Guinea. The same level of commitment was observed among farmers in the continued cultivation of dual-purpose crops. In Sikasso, 125 kg of cowpea seeds were redistributed in two of the SNV intervention communes.To strengthen the seed supply system, producers were also encouraged to select seeds from their own production to allow redistribution of possible surpluses to other IP members either by revolving or sale. In addition, to meet the dual-purpose forage seeds needs of their members, IPs purchased seeds from research institutions (IER) or from other IPs or producers. The IPs of Farakala and Kouoro-barrage bought 400 kg and 100 kg of Brachiaria seeds, respectively, from the Agricultural Research Station of Cinzana for XOF450,000. They also purchased 80 kg of foundation seeds (50 kg by Farakala and 30 by Kouoro barrage) for XOF120,000. The seed producers of Natien and Gongasso bought 10 kg of Sangaraka cowpea seeds. For sorghum seeds, 2,400 kg were distributed in the zone under AMEDD. A total of 1,986 kg was distributed in the communes under SNV (666 kg) and CRS (1,320 kg). Regarding groundnut seeds, CRS distributed 1,242 kg in the region of Mopti. The investments made by the project have led to the integration of forage technologies into existing production systems. Field observations corroborated by the results of a survey conducted on forage crops (sorghum, Brachiaria, cowpea, groundnuts and Mucuna) in the Sikasso region estimated the economic values of disseminating different crops. Based on the data collected during the study, the economic benefits from one hectare of fodder crop can be estimated on average at: XOF338,253 for Brachiaria, XOF208,425 for sweet sorghum, XOF287,425 for cowpea and XOF287,953 for Mucuna.There are many other reasons for disseminating various crops, including environmental benefits and the comfort which they provide to the producers as a complement to cattle feeding in the dry season. Because of the depth of its root system, Brachiaria contributes to the restructuring and regeneration of poor soils. It helps control weeds and protects against water and wind erosion. The density of its root system allows it to inject carbon in depth and contribute to the reduction of greenhouse gas emissions by acting as a true 'biological pump.' In the regions of Mopti and Tombouctou, Bourgou farming sites provide producers with the opportunity of dry season alternative feed resources, which are also sources of income for the population. By managing the production process well, a farmer can produce about 2 to 30 tons of fodder per hectare. The Bourgou is sold in bales of 1 to 3 kg between XOF25-200 depending on the season, the producer can earn from XOF750,000-2,000,000 on a plot of one hectare. Through fodder and seed commodities, fodder crops have become of new options to diversify sources of income and provide young and women farmers with numerous business opportunities.Upscaling of integrated packages for improved cattle, sheep and goat productivity Integrated technology packages are bundles of animal health and feed technologies combined with best husbandry practices designed to support cattle and sheep intensified production models that improve productivity and profitability of livestock enterprises. They are tailored to specific production objectives including cattle and sheep fattening, dry season strategic supplementation of lactating cows and better management of cattle used for draught animals. Integrated packages build on FTF-MLTSP interventions that promoted better animal health and increase in the availability of quality biomass.Identify fatteners, monitor their operations and provide them with advice.During FY19, FTF-MLTSP strengthened farm integration of various technologies and best practices disseminated to promote livestock value chains through integrated technology packages. An emphasis has been put on identifying new producers to scale up the new livestock-related technological innovations. Animal fattening has been one of the cornerstones of disseminated proven technologies.In the Sikasso region, in 92 villages, 1,740 producers, including 574 women, were trained in 92 training workshops on integrated technical packages. Three months after their training, 644 producers including 138 women were evaluated to determine their performance in conducting fattening operations. At the end of this evaluation, 112 business plans were produced with the support of FFWS and 54 loan applications were completed and submitted to financial institutions.In the region of Mopti, training sessions were conducted on urea-treatment of cereal straws in 26 villages of the communes of Socoura and Sio. The sessions involved 2,454 farmers including 964 women (39%). Feedback workshops were conducted and they gathered 2,210 farmers (including 876 women). About 555 new livestock fattening farmers including 146 women (26%) were identified in Mopti. These new farmers were trained on integrated technological packages (hygiene, housing, food and nutrition, animal health monitoring). In addition, 724 farmers, including 224 women (32%), were trained on integrated technology packages particularly on animal fattening. Feedback workshops were organized to further disseminate these technologies among 3,890 farmers, including 1,389 women (36%), in 37 villages in the communes Socoura, Sio, Madiama and Fakala. Knowledge gained on integrated packages was applied by 1,341 farmers including 413 women (31%) in 26 villages of the communes of Socoura and Sio. Despite the lack of financial institutions in the region of Tombouctou, producers in the area are still conducting successful fattening operations with their own funds.During the year, in the communes of Tombouctou, Soboundou and Soumpi, 147 producers fattened 155 cattle and 585 sheep.Promote the establishment or consolidation of private small-scale feed manufacturers During FY19, the project supported activities of small livestock feed production units. In addition to the manufacturing of multinutrient feed blocks (MNFB), livestock feed production units expanded their activities to grinding crop residues with the introduction of feed grinders. In Sikasso, the Kouoro-Barrage and Farakala units organized 54 MNFB preparation sessions. In the communes of Kapala, N'gountjina, Zangasso, Koloningué and Fama, 3,741 women were trained at the MNFB production unit. This allowed them to produce and sell 6,170 blocks of 3 kg at XOF6,170,000. In addition, 42 other producers in the target communes of N'Goutjina, Sincina, Kapala, Zangasso and Kolonigué produced 2,104 kg of feed.In the target communes of Socoura, Sio, Fakala and Madiama in the Mopti region, 40 women members of 8 groups received training on MNFB preparation. This training led to the creation of new small livestock feed production units and improved women's incomes. The participants in turn raised awareness of 474 farmers, including 177 women (37%) in 8 villages in their respective communes on the importance of MNFBs in livestock feeding. In addition, in the region of Tombouctou, 60 women members of two women's groups (the Agro-pastoral Cooperative Nafagoumo of Kabara and the Sankoré Women's Association) were trained on the production and marketing of MNFB. At the same time, the women's association Souba Nafa of Niafunké organized six sessions of MNFB preparation.A widely shared technology: The livestock feed grinder.To bridge the forage shortage in the dry season, the project introduced feed grinders, a technology imported from Niger. The Societe Cooperative Artisanale Des Forgerons De L'office Du Niger (SOCAFON), a private machinery company, has worked with the project to produce a more adaptable model of the machine for the target communes. SOCAFON upgraded the power of the machine and the range of chopping and grinding capacities. To scale up the distribution of the machine, the project conducted a demonstration session at Kouoro-Barrage on 5 December 2018 with its partners (SNV and AMEDD) and SOCAFON. More than 55 participants from surrounding villages and neighbouring communes attended the demonstration event. Participants were able to appreciate the performance of the improved grinding machine through the grinding of sorghum, maize stalks, peanut and cowpea hay and an important quantity of cotton cake. The feed grinder can process 300 to 400 kg of stems per hour, 500 kg of leaves or 1,000 kg of cake per hour, at the rate of 5-6 litres of gasoline per hour. During the event, a list of orders was received and as of mid-December, four orders were made. During the year, large-scale dissemination and use of feed grinders enabled several IPs to mobilize significant financial resources. In addition, feed grinders play an important role in the manufacturing of MNFB and help to reduce labour time and burden for women who generally run feed manufacturing units.Objective 3. To leverage USAID-led livestock market development and policy initiatives to support the upscaling of ruminant livestock productivity enhancing technologiesRevitalize the livestock market information system (LMIS) to capture market incentivesActivities during FY19 focused on management of the server, control and verification of data collected, improving LMIS operations and the upgrading of the LMIS.At the server level, 39,000 SMS text messages related to the information collected from 62 livestock markets (MLTSP and PRAPS) were received. Overall, FY19 achievements include: (1) 62 regularly monitored markets;(2) 124 investigators including 7 women trained; (3) 9 regional supervisors trained; (4) market information messages aired on 30 community radio stations; (5) more than 8,000 people used the LMIS.To sustain and revitalize the LMIS and to better coordinate market monitoring activities stakeholders' meetings were organized. From these different meetings, the following key recommendations emerged:• Determine a legal and institutional framework for the national LMIS.• Integrate the SUGU application developed by Via Consulting into the LMIS.• Continue to improve the LMIS platform with the support of technical and financial partners (USAID Mali, ILRI, Texas A&M, Via Consulting, DT Global).• Identify other sustainable financing mechanisms to optimize the conditions for the sustainability of SIM-B. Due to the growing insecurity in the Mopti region, the important market of Mougna is no longer monitored. However, monitoring of some markets was impossible.Task 1. Complete installation and field testing of new version of LMIS at Agricultural Market Watch (OMA). In February 2018, Texas A&M AgriLife Research installed the latest version of the LMIS software onto the LMIS server at OMA's offices in Bamako. The LMIS server was updated with the latest operating system patches and updated to accommodate the new software. Since then, about four LMIS software updates have been installed onto the server at OMA. These installations included new updates to the software that were requested by OMA and other stakeholders. Some of the major updates included: 1. Improved support for controlling data download capabilities, which included providing user registration and password access for users seeking to download data from the system;. 2. Capabilities for allowing system administrators to change text and logos on the LMIS home Page. 3. Provisions added to allow both summing and averaging of livestock volume data. 4. Improved capabilities for volume mapping. 5. Capabilities to create market reports for administrative boundaries.6. Ability to allow market monitors to collect volume sold and volume exported data. 7. Addition of a buy/sell module to allow users to display information on animals that are available for purchase or on animals that users are willing to sell. 8. Improvements in the batch submittal of messages through the administration portal. 9. Email and SMS capabilities subscription capabilities. 10. Additional controls for administrators in the LMIS site settings module. 11. Bulk SMS capabilities.In October 2019, Texas A&M AgriLife assisted OMA in the transition of the LMIS software to a new server having an updated version of Window Server software. The old server's Windows software had passed end of life support; therefore, the system could not receive critical security updates. The new server was provided by the Direction Nationale des Productions et Industries Animales (DNPIA) as part of the cooperation between OMA and DNPIA on market information data collection. The new server and Windows software should provide OMA and DNPIA with Windows Update support until 2023. Also, during this transition to the new LMIS server, Texas A&M AgriLife updated the database and web server software to the latest versions and the LMIS software was reinstalled. The LMIS website supported by the server can be accessed at http://www.malibetail.net The files and software needed for LMIS System Installation can be accessed at the link below: https://drive.google.com/drive/folders/1FjUwnPx_xLSRwkMIHS7Po8V0yCWUqnRZ?usp=sharing.Task 2. Delivery of system installation manuals, system user's guides, training materials for enumerators and an updated quality control manual. Texas A&M AgriLife prepared a system installation manual that will allow system administrators to install the LMIS and associated software onto the server in the future, if needed.The manual contains step by step information on installation of the web server software (Apace Tomcat server), the database software (PostgreSQL), transfer of data to a back-up database, deployment of the software, and how to view logs to check for system errors. A copy of the LMIS System Installation Manual can be downloaded at this link: https://drive.google.com/open?id=12-d7oAvaJXlZO-ZH6VfecabQgZmoXeXVA LMIS system administrator's manual was prepared to provide information on administration of the LMIS software. Specific items covered in the manual are instructions for registering users/market monitors and adding new markets, kinds of animals, and animal breeds. Information is also provided for updating the sex, age, and conformation categories. The manual provides an overview of the LMIS site settings that allow administrators to customize the software to the location and to control data downloads, data access, and link users to markets. Lastly, the manual provides information on changing website text, translations to another language, and uploading photos and logos. The LMIS system administration manual can be downloaded at the following link: https://drive.google.com/open?id=1CkTCq7Bbwvz1yv9M4c_951xQqNqPBb1AThe LMIS system user guide and quality control manual was prepared to guide OMA and other users on the use of the software for querying data and development of livestock and product market prices and volume reports. The manual also provides an update to the quality control manual developed during the initial phase of LMIS development in Mali. For the user guide portion of the manual, information is given on how data should be collected for prices and volumes, the SMS coding system for data entry into the system via SMS, livestock grading, and use of the LMIS website (www.malibetail.net). The quality control portion of the manual discusses roles and responsibilities of each actor in the process of LMIS data collection and describes the way data should be checked for errors and how it should be corrected. A copy of the LMIS system user guide and quality control manual can be downloaded at this link: https://drive.google.com/open?id=1bPJ_7E3ONjUAkGaKBhpYifJIeO7k5U-X Word and PDF versions of the manuals can be accessed in the following Google Drive folder: https://drive.google.com/drive/folders/1H0YRp32aUN_RI_rGizN4Zdt_qqyGDa1M?usp=sharing Task 3. Conduct training for OMA and project staff on LMIS system administration, data quality control procedures, and livestock product data collection protocols. Jay Angerer conducted LMIS system administrator training in February 2018 and gave a refresher training to OMA and DNPIA personnel in October 2019. The objectives of the training were to:• learn about the procedures for installing the LMIS software onto Windows servers;• provide hands-on training on installing the software, connecting the modem and testing the communication with SMS; • provide an overview of the LMIS coding and LMIS database structure, relationships, tools for backup and restore of database; • demonstrate the LMIS administration web pages for data entry to populate the LMIS database for use and for updating; • discuss best practices for data quality control, data corrections, and • develop framework to establish quality control procedures and documentation.The intended outcomes of the training were: 1) administrators should understand how to install the different components of the LMIS software onto a Windows Server; 2) have an understanding of the LMIS database structure, relationships and coding; 3) be able to backup and restore the LMIS database, and 4) have a basic protocol for quality control of LMIS data sent to the server from the market.The trainees were given an overview the LMIS methodology and history. A graphic of the general framework of the system's information and dataflow was described. Points in the data flow where quality control issues could be evaluated and corrected were discussed. The SMS modules for parsing data and how the various parts of the SMS string were decoded and stored in the database were conferred. The trainees were then provided with a schematic of the LMIS database structure that included a listing of database tables, primary keys, foreign keys and table relationships. Linkages between the tables were discussed and look-up functions for tuning codes into text for markets, animal kinds, breeds, ages and grades were shown. Database tables, relationships among tables, and data entry into the database tables were discussed. The LMIS administration tool was introduced and each of the modules of the tool were demonstrated. Development of unique codes for markets and users were discussed and the linkages that need be made between markets and users so that only market monitors registered for a market can send data to the system. An overview of the LMIS website was then given. A demonstration was made on how the main page of the LMIS could be used to get quick summaries of the market data and how the market data on Google Maps could be used to view market data changes. A demonstration on how the market summary table could be used to get quick reports on market conditions was shown. The LMIS menu items were then demonstrated, as well as the usage of the Livestock Market Trend, Volume Trend, Market Chain, and Livestock Volume Composition tools. The group then discussed the development of market reports and the interfaces for producing market reports for livestock and livestock products were demonstrated. Lastly, the email and SMS subscription options for push messages was demonstrated.To close out the training for the system administrators, quality control measures for data collection and reporting were discussed. The group was shown procedures for how to set the anomaly detection functions within the LMIS administration software so that daily reports could be produced highlighting data that was sent to the server that exceed specified thresholds for change in price or volume. Corrective measures for data were discussed and trainees were provided with a copy of the quality control manual. Demonstrations were given for various components of system administration. These included:• How to update components in the site settings to allow administrators to direct who can download information from the website (registered users or public), how volume is presented (averaged or summed), and placement of Google Analytics and Google Maps keys. • How to set up and administer daily, weekly and monthly scheduled tasks to send emails or SMS messages for registered users, and error reports for administrators. • How to view and download the website and modem statistics logging that allows administrators to gather information on how many users are requesting data and how many people are accessing the website. • Demonstrations on how to request the Google Maps API key and where to include it in the LMIS administration site settings page. • Discussions on how Google Drive could be used to provide daily database backups and how to access the Google Drive that has been established for the Mali LMIS. • Demonstrations on how administrators could update the text and logos on the LMIS home page. • An overview of how site settings could be changed to allow registered users to login to • download data.• Viewing the error reports, common errors, and how to correct them.At the October 2019 training sessions, Angerer presented information and demonstrations on enhancements and updates to the LMIS home page and tools. Capabilities for reporting data by administrative boundaries so that price data can be downloaded by county or district were demonstrated and discussed. The team was shown how the administrative hierarchy needed to be set up in the LMIS administration portal so that the relevant administrative units are linked to the individual markets. Once the hierarchy is established, market reports can be developed using the 'Advanced country, state, county report' button in the Market Reports tool to view information at the different administrative levels. Capabilities for capturing export volumes for animals sold and exported were also demonstrated.The new code structure for adding in animals sold and exported was presented and how the code string should be written to capture this information. The new buy/sell module was also discussed and demonstrated.The group discussed quality control protocols and worked to develop an updated version of the LMIS Quality Control Manual. The individual responsibilities of each actor were defined, and a flow chart was developed for users to quickly ascertain these responsibilities and the flow of digital data (SMS messages) and paper datasheets to the DNPIA and OMA. The draft manual was provided to the Mali team for review. A review of literature and websites did not reveal many opportunities for an open-source IVR application that could be easily implemented within OMA's framework and capacity. Therefore, the ability to deploy a system at OMA specifically would require purchase of additional computing and telecommunications equipment. Therefore, options for partnering with other groups specializing in telecommunications would be a better route to pursue. During this review, the Mali 321 service that was being implemented by Viamo in Mali seemed a good possibility for partnership. Mali 321 is an IVR system being developed in Mali to aid in delivering climate and agriculture information to stakeholders (http://321service.org/countries/mali/). Viamo, in developing 321, had partnered with Orange Telecommunications to house the IVR platform and Viamo was building the content. Viamo has had success developing IVR technology throughout Africa and parts of Asia.Task 5. Develop and add features to the LMIS to allow users to provide information on the supply of their slaughter animals available for sale and for buyers to receive information on supply of animals. A buy/sell module was added to the LMIS website (www.malibetail.net ). This was developed to provide livestock producers and traders with the ability to access the LMIS to gather information on availability of livestock for sale or slaughter and options for traders and producers to indicate that they are willing to purchase a given number of animals. To access the buy/sell module, users can click on the 'Buy sell' link under the Information Menu on the Mali LMIS website. Registration is required in order to verify phone numbers of the user and to allow users to add information in securely. Clicking on the 'Buy sell' link will open a screen that will allow registered users to enter their username and password for access to the module (note: this username and password is different from the username and password for LMIS administrators and users). If the person accessing the site is not a registered buy/sell user, they can click the link 'Create an account' to register. Registration will open a screen where the user can enter their phone number and submit it to verify that the phone number was entered correctly. To verify their phone, the user needs to select the correct country code for their phone number from the pulldown list. Once the country code is selected, the user can enter their phone number and then click 'Send verification code.' A SMS containing a verification code is then sent to the user's phone. Once the verification code is sent, a new screen will appear for the user to enter the verification code. The new user should enter the verification code into the 'Enter the code' box and then click the 'Verify phone number' button. If the correct code was entered, the LMIS will create a popup indicating that the phone was successfully verified. It will then send the user back to the user registration screen. If for some reason the verification SMS is not received, the user should check the country code and phone number and then click 'Resend code.'The project in partnership with IESC-FFSWE organized training sessions on the analysis and financing of the agricultural value chain small enterprises. Thirty-seven (37) agents from financial institutions (FI) in Sikasso and Koutiala, and 11 project staff members (ILRI, SNV and AMEDD) participated these training sessions. The key results of these training sessions included:• Seventeen (17) microfinance agents (13 from Sikasso and 4 from Koutiala) and two managers of microfinance institutions in Koutiala were trained on agricultural credit management. • Fifteen (15) bank agents (9 from Sikasso and 6 from Koutiala) and three bank branch managers in Koutiala were trained on agricultural credit management.Microfinance institutions were prepared and guided for their participation in a financial café event and 11 project staff members (FTF-MLTSP, FFSWESNV, NGO AMEED, IPS / IESC Sikasso) were trained in agricultural credit management. These workshops improved relationships and built trust between financial institutions and agricultural enterprises, particularly animal fattening operators. The training workshops were followed by a day of networking between small and medium-sized agricultural enterprises, decentralized financial institutions and local banks in both Sikasso and Koutiala. These 'cafe financier' events brought together 304 participants (including 157 women). This was an opportunity for the FIs to present their products and services to agricultural entrepreneurs and for IPs to encourage their members to apply for loans. More than 250 small-scale agricultural entrepreneurs were informed about ways to access credit. Women entrepreneurs were particularly able to express their specific needs and got satisfactory feedback from FIs. Workers of FIs were informed and became aware of the need to adapt their financial products and services to the real needs of small agricultural enterprises, particularly to animal fattening operators. Following this activity, nine entrepreneurs applied for loans and more did so later. In addition, the agricultural bank BNDA has established relationships with 144 cooperatives having more than 500 members. Overall, the cafe financiers built trust between IFs and producers in the ZOI of the project. They also allowed fruitful discussions between actors of the livestock value chain and FIs.Increase in the number of loans granted by microfinance institutions to fatteners Since the cafe financiers and awareness raising sessions the number of loans to producers by FIs significantly increased. A total of 119 producers, including 27 women were granted loans totalling amount of XOF94,747,727 (USD158,973). In the regions of Mopti and Tombouctou, due to insecurity IFs are almost absent and producers cannot access loans.The promotion of ruminant livestock fattening, and marketing has been an essential project activity over the years. To facilitate access to markets, the project and its partners (SNV, AMEDD, Fédération Nationale des Groupements interprofessionnels de la Filière Bétail Viande au Mali [FEBEVIM], commune of Kourémalé and DRPIA of Koulikoro) in the context of 'Operation Tabaski' organized a cross-border livestock fair in Kourémalé from 21 July to 11 August 2019. The market was organized in Kourémalé because of its strategic location to meet the high demand of Tabaski rams of Guinea. To attract producers and clients, outreach missions were organized to several places in Sikasso and Koutiala and also in Kankan and Siguiri in the Republic of Guinea. General meetings were organized at the level of each IP to inventory the number of available head of sheep and to plan to transport the animals to the fair. This market was also a business opportunity for livestock traders outside the project's ZOI. More than 300 livestock traders took part in the event and 2,431 sheep, 411 goats and 3,013 cattle were presented. In addition, two local fairs were organized in the communes of Zangasso and Koloningué (district of Koutiala) to meet the local demand of Tabaski rams. Overall, the producers during these two fairs sold 1,231 sheep and 166 goats. During the year, animal fatteners who are members of the IP of Zangaradougou, district of Sikasso sold 35 oxen to abattoirs LAHAM (region of Kayes), further to the linkages created by the project between producers and businesses. Through this activity, the project has enabled stakeholders to initiate a new approach to marketing livestock based on live weight sales.USAID-MALI PARTNERSHIP DECLARATION.FTF-MLTSP participated in the ceremony of partnership declaration organized by USAID on 27 June 2019 and chaired by the US Ambassador to Mali and the Malian Minister of Agriculture at the US Embassy in Bamako. During the event, the project presented some of its key achievements and displayed a prototype of the animal feed grinder introduced by the project in Mali. In addition, Aoussata Coulibaly and Adama Dembele, two producers from the ZOI of the project, displayed new technologies scaled up by the project including improved fodder crops: dual-purpose sweet sorghum and cowpea, and forage crops such as Brachiaria. They also discussed the impacts of the project in their different zones. During the exhibit, the project and its strategic partner LCV presented to the ambassador and the minister the newly developed 'thermotolerant' vaccine against PPR.In 2019, a special attention has been devoted to women and young people in the project activities. They largely participated in the preparation and execution of the vaccination campaign, the production of forage crops, fattening operations and promotion of livestock feed manufacturing units. Specifically, women have been involved in small ruminant fattening activities, grinding of crop residues and forage crops and seeds production. In the district of Sikasso, 3,266 tons of crop residues were ground by the women's group of Farakala. To conduct fattening operations, three women (Aoussata Coulibaly, Mariam Sanogo and Naza Sanogo) and two young people (Issa Sanogo and Lassina Bamba) received loans from Kafo Jiguiney amounting to XOF4,650,000. In the district of Koutiala, six women per village (35% of producers) were trained on integrated technology packages. About 2,794 members of new women cooperatives (N'gountjina and Sinsina) were trained on production and marketing of MNFBs. They produced 6,410 blocks of 3 kg and generated the amount of XOF6,410,000. In the Mopti region, women and young people participated in various activities including: production of MNFB, training courses on production and conservation of forage, training on good practices and management of IPs' activities, sensitization sessions, etc. On average there was 34% female participation in all project activities in Mopti. It should be noted that the current insecurity situation is not favourable for women to travel around in the region of Mopti and Tombouctou for training or business purposes.Finance for Food Security and Women Entrepreneurship (FFSWE) program and Food for Peace (Harande).To facilitate access to credit to producers in its ZOI, the project has built partnership with FFSWE since 2017. The two organizations built the capacities of financial institutions and organized events to create linkages between FIs and producers in the ZOI of the project. In addition, ILRI and Food for Peace (Harande) renewed their collaboration in 2019. The collaboration was initially planned in two communes covered by CARE, but activities have been expanded to five communes instead. Four IPs have been established and their members were trained on different relevant areas related to small ruminant and poultry value chains. Also, the One Health approach has been widely promoted in the scope of this collaboration.• Innovation platforms are key mechanisms to facilitate access to inputs and services.• Capacity strengthening and education, and awareness raising are needed to change attitudes of financial institutions and farmers towards loans tailored to the livestock sector. • Participatory approaches (using IPs) in vaccination campaigns is key to increase vaccination coverage. • Emergence of feed and fodder value chains building on Brachiaria and food feed crops.• Cattle and sheep fattening has great potential to increase income of farmers.During FY19, the following environmental risk mitigation measures were undertaken:i.The varieties of dual-purpose crops promoted in the area were chosen based on their adaptability to the agro-climate conditions of the target regions, which record relatively variable rainfall. As a result, they are well appreciated by producers because they adapt to the conditions of the areas. Two local forage varieties appreciated by the communities are also used by the project (emba dendi and emba greoue). ii.In order to minimize the risks to themselves and to the environment, producers have been made aware of the harmful consequences of poor drying and storage of grain and fodder for both animals and humans. Poor conditions can cause mold infestations that can cause disease. In addition, the use of hermetic PIC bags or cans and ash powder has also been recommended when storing cowpea grains to reduce the use of chemicals. iii.On bourgouculture sites, people have reported that since 2017 the has been a return of certain species of fish and birds that had almost disappeared from the area. These include 'fana' (Heterotis niloticus), which is a variety of fish with scales and 'dougoudougou' or Sarcel d'été in French (Anas querquedilas), which can refer to a variety of birds. This development provides a glimmer of hope for strengthening the ecosystem.Oumar Diamouténé, a producer from the village of Noyaradougou, Commune of Gongasso.Omar Diamoutene, a beneficiary of the project, started to produce Brachiaria in 2016. In 2018, he produced 55 kg of seeds and 21 tons of Brachiaria fodder on one hectare. Diamoutene was able to sell 27 kg of seed at XOF8,500/kg. After Brachiaria fodder sales, he gained XOF229,500. With this amount, he bought two bulls at XOF175,000 to fatten them. He also used part of the money (XOF54,500) to finance other farming activities. Diamoutene spent XOF237,500 in fatten the two bulls. He sold them for at XOF412,500 making a profit of XOF175,000, an average of XOF87,500 per head. According to Diamoutene, the Brachiaria forage crop enabled him to reduce the burden of animal feeding. He believes Brachiaria contributes in reducing of the fattening feed costs as the quantity of concentrates required for fattening is reduced. In addition, he states that Brachiaria production is now his new source of income, which has allowed him to successfully self-finance his fattening operation. Now he can buy, feed and sell animals during the entire year without any external funding source. He declared: 'Thanks to Brachiaria, I see myself as a big businessman in the coming years. I will be able to employ many young people and provide for my family.'","tokenCount":"10900"} \ No newline at end of file diff --git a/data/part_3/4097652783.json b/data/part_3/4097652783.json new file mode 100644 index 0000000000000000000000000000000000000000..d46f0be0c1dd23cdc2d7fcc75cbae940da993494 --- /dev/null +++ b/data/part_3/4097652783.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"50ab10eefa8db42a1124e6ff5468ffd4","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/cffe567c-ab8b-4e2c-b650-c9f3b1e61c3f/retrieve","id":"-723649120"},"keywords":["agriculture transition","decision-making","gender equality","Lao PDR","New Economic Mechanism","women's empowerment"],"sieverID":"b18006bb-5c4f-4341-9420-9f5bdd78d097","pagecount":"23","content":"The Lao government introduced a new period of economic liberalisation with the New Economic Mechanism (NEM) in 1986. The present study examines whether market liberalisation and women's participation translated into changes in women's decision-making power in the coffee growing region of the Bolaven Plateau in southern Lao PDR. While women have always been involved in coffee farming, their participation increased when the more labour-intensive arabica coffee plants were introduced to replace the less popular robusta variety in the region. Drawing on quantitative and qualitative data, the study examines gender decision-making within coffee-farming households. The findings show an increase in women's participation in decision-making with the introduction of the arabica coffee plants; however, men still hold higher decision-making power in farming households. While the NEM has brought about economic growth and provided better livelihoods for coffee farmers, this has not necessarily translated into women's empowerment. Economic growth is not enough to bring about gender equality, and there is still a need for specific policy interventions.The government of Lao People's Democratic Republic (Lao PDR) introduced a new period of economic liberalisation with the New Economic Mechanism (NEM) in 1986 (Rigg, 2012). The agricultural sector has been transformed from subsistence to commercial production, substantially increasing agricultural exports (Ministry of Agriculture and Forestry, 2014). These agrarian reforms have brought about landscape and economic changes in the uplands, lowlands, and plateau regions of Lao PDR (Manivong, 2014;Rigg, 2009Rigg, , 2012;;Sisouphanthong et al., 2002).Arabica coffee, which is much more popular in the international market than robusta, was introduced to the Bolaven Plateau in southern Lao PDR in the 1990s. Farmers transitioned from a subsistence economy of growing rice via shifting cultivation, to more labour-intensive arabica coffee agriculture that served the global market. The new crop has brought economic growth to the region and provided better livelihoods for farmers.Both men and women are involved in farming work in Lao PDR. The work involved in arabica coffee planting and processing is divided up along gender lines (Douangphachanh, 2020). Men tend to focus on planting and pruning and other work involving machines, while women are involved in the picking and sorting process, which does not require heavy lifting but is tedious and timeconsuming. While women have always been involved in farming, the more labour-intensive arabica crop has expanded their participation in production.This paper examines whether the region's economic growth and increased women's participation in agriculture labour translate to women's empowerment and greater gender equity in decision-making. Has the New Economic Mechanism brought about empowerment for women in Lao PDR? This study focuses on decision-making as an indicator of empowerment (Kabeer, 1999). To explore this question, the researchers conducted qualitative and quantitative surveys of decision-making at the household level in a coffee-producing village in the Bolaven Plateau. This research was conducted as part of a larger project examining the feminisation of agriculture and the impact of agricultural transition on women. It concludes with some recommendations towards achieving gender parity in Lao PDR.Lao PDR is a developing country with an agrarian economy that employs approximately 75 percent of the total workforce (Food and Agriculture Organisation, 2017). A study by Southichack (2009) on the Lao coffee industry's development patterns in previous decades shows that the coffee sector has been growing due to the expansion of the arabica variety. Thus, the number of rural households dependent on coffee production for their livelihood has climbed significantly since the 1990s (Southichack, 2009). Minoo (2014) found that the increased wealth of farmers was a result of the introduction of arabica coffee, and that the government-supported shift from robusta to arabica has induced dramatic growth in the coffee sector. Lokin and Nutters (2014) reported that the Bolaven Plateau Coffee Producers Cooperative (CPC) members in Champasak have benefitted from fair trade certification that has also facilitated the shift from robusta to arabica coffee crops. Advantages farmers enjoy include higher income, independence from middlemen, better market access through the CPC, and support for their children's education. In short, the introduction of arabica coffee has played a significant role in improving the livelihoods of the rural population in Lao PDR.Women play an important role in the agriculture sector and account for 54 percent of its workforce (Ministry of Agriculture and Forestry, 2010). However, their contributions are often seen as secondary to men's (Ministry of Agriculture and Forestry, 2015). Traditionally, Lao women spend a significant amount of time working on their farms, but they must also devote themselves to raising children and caring for their family's needs. Hence, women carry a double burden as farmers and the main caretakers within their households (Asian Development Bank, 2001;Asian Development Bank and the World Bank, 2012;Gender Resource Information & Development Center, 2005). According to Evans (1990Evans ( , 1999)), the most important way to influence gender equality is to restructure the gender division of labour and caring contributions. Evans shows how during the collectivisation period (after Lao PDR's independence in 1975), Lao ethnic minority women equally contributed to farming cooperatives despite also being solely responsible for their households (Evans 1990, 1999, cited in Faming, 2018). However, men's contributions to the collectives were more highly valued, thus giving men more power within their households. Ireson-Doolittle (2004) made a similar conclusion in studying of Lao women's role over time, highlighting that socio-political changes since the early twentieth century, including colonialism and socialism, have influenced gender relations in Lao society (Ireson-Doolittle, 2004). While their role and representation in different spheres have increased, women still play a secondary role in society; as in many societies, women are still considered subordinate to men. Post-economic liberalisation, gender inequality has persisted in Lao PDR, and women's participation in decision-making processes in their households remains low (Ministry of Agriculture and Forestry, 2015; Ministry of Planning and Investment, 2016).A Lao Women Union report published in 1989 provides insight into Lao women's status in the 1970s and 1980s. Their status was affected by the patrilineal tradition in which property was passed through the male line and upon marrying, women moved into their husband's family home or village to work on their farms. This made women economically dependent on men. Traditionally, women were not allowed to leave their homes and attend school, leaving very few literate. They faced many obstacles in attaining economic independence and educational progress as they were burdened with cooking, cleaning and child-rearing in a deeply patriarchal structure (Lao Women Union, 1989). Socialism may have increased women's participation in collectives, but this did not necessarily translate to elevating their position in the household (Ireson-Doolittle, 2004).Studies over the last decade have focused on economic development and women's status in Lao society. Khouangvichit (2010) looked at gender relations after the NEM and investigated socio-economic transformations and changes in two local contexts of tourism and mining. This research found that economic development changed women's economic status as they started earning an income. However, it was inferred that gender inequality still existed because of the double burden of paid and child-rearing work in traditional cultures (Khouangvichit, 2010). In a study of the impact of the mining industry on gender relations, Pimpa, Moore, Phouxay, Douangphachanh and Sanesathid (2016) suggested that this industry improved Lao women's economic status since mining projects encourage skills development and training. Similarly, a study on a hydropower development project that resulted in a community resettlement found that women and men made more joint decisions regarding livelihood strategies after resettlement, as compared to earlier (Weeratunge, Joffre, Senaratna Sellamuttu, Bouahom, & Keophoxay, 2016). In contrast, Phochanthilath (2019) examined gender relation transformations under Lao socialism and the introduction of the market economy, and concluded that gender inequality and power relations remained the same due to the Lao patriarchal culture (Phochanthilath, 2019). In this case, because of embedded patriarchal social norms, economic development did not improve gender equality (Nguyen, Mortensen, & Pravalprukskul, 2019).In Southeast Asia, women make up, on average, 50 percent of the agriculture labour force (Quaye, Dowuona, Okai, & Dziedzoave, 2016). They contribute actively to household agriculture work and towards household income earnings (Ireson, 2018). In fact, Southeast Asian women are more active in earning income outside the house than women in other parts of Asia (Booth, 2016). Studies have indicated that income-earning is an important factor that influences the increase of women's decision-making power in a household (Kabeer, 2016;Rao & Kushwaha, 2016). However, this is not consistent everywhere. In a comparative study on gender equity among rice farmers in Thailand, the Philippines, Indonesia and Myanmar, Akter et al. (2017) found that women in these four countries had access to resources and control over their household income. However, when it came to agriculture, women in Thailand and the Philippines had more decisionmaking power than women in Myanmar and Indonesia. This was due to differences in socio-political history, culture, and religion.A study by Roberts (2004) in upland Lao PDR found that women performed work equal to that of men in agriculture, but when it came to decisionmaking, women were not as well represented (Roberts, 2004, cited in Colfer et al., 2015). In a later study by Roberts (2011) in upland Lao PDR, changes in labour migration patterns impacted women's decision-making power in this region. Women from the Lao and Khmu ethnic minority group became important decision makers on issues related to land when their partners were away due to labour migration. With their husbands away, women took up most of the decisionmaking as well as labour work in their farms (Roberts, 2011).Elsewhere in Southeast Asia, Lai (2011) found that in Malaysia, the introduction of large-scale oil palm plantations increased employment opportunities for both men and women in an Orang Asli community. This influenced the villagers' livelihood strategies in a way that involved both men and women as labourers tied to the market economy. Women's economic independence leads them to have greater power in decision-making (Lai, 2011). Similarly in Cambodia, women's cash earnings increased their decision-making power (Nahrgang, 2016). Case studies from South Asia also found that women's access to independent income increased their decision-making power in their households (Hazarika & Goswami, 2016;Khurana, 2015). In such cases, women gained more decision-making power within their household because of their \"sweat equity\" in agriculture production (Roberts, 2011). We explore here whether this is the same in the Bolaven Plateau in Southern Lao PDR.Development studies largely suggest a positive correlation between economic growth and gender equality. Researchers have observed that gender equality is linked to the scarcity of resources, and that women are often left behind in the competition for these resources. However, economic growth allows for a more equal distribution of resources among men and women in a household (Dollar & Gatti, 1999;Duflo, 2012;Kabeer & Natali, 2013;Rao & Kushwaha, 2016). Another perspective suggests that women's participation in the global labour market positions them as important contributors and thus `makes it worthwhile for households to invest more resources in female members' (Kabeer & Natali, 2013, p.21). Additionally, women's access to paid labour and their position as economic contributors increase their bargaining power in households (Duflo, 2012). Economic development can also provide women access to technology that can free up their time, which in turn, can be used for other things such as a paid job or the pursuit of education (Duflo, 2012). Duflo concludes that 'genderblind policies that improve the economic welfare of households can improve gender equality, and diversifying the economy and increasing women's options in the labour market can cause households to adjust their behaviour, moving them toward gender equality ' (2012, p. 1058).On the other hand, in their multi-country study, Kabeer and Natali suggest that while there is an observed positive correlation between economic growth and gender equality, this correlation is not always consistent. Economic growth does not necessarily increase gender equality; however, gender equality positively contributes to economic growth (Kabeer & Natali, 2013). According to Kabeer (2016, p. 295), \"evidence that gender equality contributes positively to economic growth was fairly robust, holding across a range of different countries, time periods, and model specifications. The evidence for the reverse relationship was less consistent and generally confined to high-income countries\".This research focuses on gender power relations through the decisionmaking dimension before and after the NEM, especially in the crop transition phase, and explores whether the NEM has contributed to women's empowerment. The data is analysed within the frameworks as explained by Kabeer (2016) and Duflo (2012) in examining the correlation between economic growth and women's empowerment. This study also draws on the concept of power by Kabeer (1999Kabeer ( , 2001) ) which includes three dimensions: resources, agency, and achievements. Kabeer defines agency as 'the ability to define one's goals and act upon them' (Kabeer 1999, p. 438). Individuals gain power when they can exert agency through participation and negotiation in decision-making. This study examines the decision-making power of women in the household as a marker of empowerment.This study also contributes to the literature on the impact of economic growth on women's empowerment by expanding the understanding of the impact of agriculture transition on gender relations. In addition, while much attention has been paid to economies coffee, given its global demand, less attention has been given to the impact of coffee production on gender dynamics in agrarian communities (Howland, Brockington, & Noe, 2020).This study drew on both qualitative and quantitative data collected between 2014 and 2018. The interviews, focus group discussions, and surveys were conducted in the Bolaven Plateau region in southern Lao PDR and were complemented by participant observations gathered during field visits. The interviews and surveys were conducted by local Lao speakers familiar with the region. The data for this research were gathered as part of a larger study referred to as the Feminization Agriculture Transition and Rural Employment (FATE)-Lao in which the authors are involved. The study is part of a multi-country FATE project. The survey tool used in the project was adapted from the Women's Empowerment in Agriculture Index (WEAI) developed by the International Food Policy Research Institute (IFPRI) and the Oxford Poverty and Human Development Initiative (Alkire et al., 2013). The research was conducted following the ethical principles of the Swiss National Science Foundation and guided by the principal of the Swiss Programme for Research on Global Issues for Development (r4d programme). Informed consent was obtained from all participants.The study was conducted in Itou village (also known as Lak 35), Pakxong district, Champasak Province, on the Bolaven Plateau in Southern Lao PDR (Figure 1). The study focused on Itou village, established in 1930, and in which farmers grew local varieties of coffee until arabica was introduced in 1992. The village has 205 families who are members of the Lao ethnic group and practice Buddhism.Coffee has been grown on the Bolaven Plateau since the French colonial era beginning in the 1920s. After Lao PDR gained independence in 1975, the government established a collective economic development scheme for the agriculture sector (Evans, 1990). Various agricultural cooperatives were then established for coffee production and trading. The cooperatives were controlled by the central government which planned coffee production, collection, trade and export, and set pricing policies.Coffee was not a commercial crop in Laos until 1986. Lao coffee exports were mostly used to pay debts to socialist countries, especially the former Soviet Union, and to Vietnam during the revolutionary war (Matsushima & Vilaylack, 2005). Meanwhile, farmers primarily grew excelsa and robusta coffees and tea, in addition to cultivating rice for household consumption. During this period, they focused on the quantity, not quality, of coffee produced using traditional coffeefarming methods. This production did not improve local farmers' living conditions pre-NEM; they earned less from coffee production before the NEM than they do now. Around 1995, a few families in Itou began planting arabica coffee; however, the majority held onto robusta coffee, tea farms, and rice cultivation. Farmers who shifted to arabica coffee had to stop cultivating rice because the arabica plants were very labour-intensive. They could only cultivate rice during the early stages of the arabica plant's life cycle, i.e. before it began producing berries, as the farmers could not employ enough labourers to harvest the coffee and the rice at the same time. The government also set regulations to discourage shifting rice cultivation, which was the traditional way of planting rice in this region (Ministry of Planning and Investment, 2006, 2011, 2016). Farmers discovered that they made more income through arabica coffee and therefore could simply purchase rice. By 2010, most of the Itou farming households were growing arabica coffee beans and no longer growing robusta beans or tea, and by 2020, almost all households were growing arabica. Based on data gathered in the Itou village, the arabica growing area increased from 236.15 ha in 2005 to 496 ha in 2015. Meanwhile, the robusta coffee growing area dropped from 85.54 ha in 2005 to 40 ha in 2015. Currently, the coffee sector is considered the primary source of income for households in the village.The qualitative data were collected through in-depth interviews, focus group discussions (FGDs), and participant observations. All the participants in the interviews and FGDs were arabica coffee farmers from the village of Itou. The participants for qualitative data collection were nine individuals and five couples. Five FGDs were conducted (Table 1), with each including between six and eight participants. The principal researcher conducted semi-structured interviews with nine individuals (five women and four men), five in-depth interviews, and five FGDs, all of which covered the transition to arabica coffee and how it impacted farmers' livelihoods and women's power before and after the NEM. A total of 56 individuals were involved in the interviews (32 women and 24 men). The qualitative interviews were transcribed, and the transcribed data were grouped into themes, coded, and manually analysed. Quantitative data were used to compare the decision-making levels of female and male farmers before and after the NEM. The decision-making items in the productive domain consisted of the following: land acquisition; plots to plant in;technology use; fertiliser application; labour hiring; harvesting; selling farm products; children's education; and borrowing money from a bank or money lender. A 5-point Likert scale (1 -No input; 2 -Very limited input; 3 -Input to some decisions; 4 -Input to most decisions; 5 -Input to all decisions) was used to measure the level of decision-making. The total sample of the quantitative method contained 154 respondents from coffee farming households in Itou Village, comprising 73 men (47.4 per cent) and 81 women (52.6 per cent). The sample included only married women and men because the research focused on gender power relations in a household. The quantitative data were analysed using the SPSS software. A t-test was used for mean comparisons, and results were used to compare the levels of decision-making for women and men. The significance level was set at p ≤ .05 (Rice, 1989).Better Livelihoods after the NEM In addition to investigating the gender relations before and after the NEM, the team also conducted interviews to understand how the NEM impacted the livelihood conditions of the villagers. Researchers asked the villagers how the NEM improved and changed their lives and livelihoods. Findings from the interviews and focus group discussions indicated that farmers switched to growing arabica coffee which produce more and better-quality coffee beans that can be sold at a higher price than robusta coffee beans. The participants confirmed that this shift led to better livelihoods for them with an increase in income for their families. This allowed them to acquire household assets, owing to easier access to electricity and water, and purchase new vehicles or new homes. Some also reported being able to support their children's education, including tertiary education. Furthermore, the income was used to reinvest into agricultural needs such as milling and other farm equipment. The following are some excerpts from interviews with villagers which illustrate this observed improvement in livelihood and economic growth:Since we planted arabica coffee, we earn more income and make a better living. For example, we can build a new house and buy a car, household equipment, and a milling machine. We can support our children's education. Our son completed his bachelor's degree at Champasak University and he now works there. (Husband and wife, both 56 years old, 14 July 2015) Decision-making Before the NEM Many earlier studies of the Lao agrarian economy show that women play a crucial role; the village of Itou is no exception. Villagers reported that women and men worked together on their farms to grow rice, robusta coffee beans, and vegetables for home consumption. Typically, men performed tasks that required physical strength such as cutting down trees, digging holes for planting, transporting, and lifting heavy objects, while women performed time-consuming tasks such as harvesting, weeding, planting, and sun drying beans. Women also performed all the household chores and childcare. While they put in similar number of hours farming, they also had to spend hours cooking, cleaning and taking care of their children (Douangphachanh, 2020).With regard to farming-related decision-making, participants reported that overall, men generally made decisions about land acquisition, plots to plant in, labour input, harvesting, selling farm products, and children's education. Men were considered the heads of their households and, thus, made the most important decisions for their families. They also assigned farm work to family members. All family members, including the women, were guided by the men's decisions. Conversely, women had limited decision-making power and often were not consulted in decision-making. As one elderly participant pointed out, \"Women simply followed men's instructions\".The following statements describe the sole decision-making powers of men before the NEM:In 1975, a husband had more rights than his wife. Mostly, the wife listened to her husband and followed whatever he said. Men were mostly the decision-makers within the household. This situation was dire because men made all the decisions as head of the household and formulated the family plan, dividing tasks among family members. All family members waited on the man, who informed them what tasks they were required to perform. The husband decided what his wife could or could not buy. He decided if she could go out, and she needed his permission. (Participant in men's focus group discussion, over 55 years old, 11 May 2016) Men had authority within the household. A wife was guided by her husband's decisions. Men were the final decision-makers. (Husband and wife, husband 63 years old and wife 62 years old, 13 May 2016) Women had limited decision-making power and men had power within the household. Women simply followed men's instructions. Everything relied on the husband's decisions. (Women's union leader, 12 May 2016) According to the participants, men made the decisions about selling farm products because they transported the products to the state market. In addition, men decided on their children's education. Most wanted their sons to pursue an education and their daughters to stay at home to help their mothers with household chores and caregiving work. It was believed that girls were not to pursue any education beyond primary school because they needed to take care of their families. If a girl moved away from the village to study, she was deemed to be a \"bad woman\" (interview notes, 2016). This gender ideology, in which men were positioned superiorly to women, was the main factor determining women's status and power in Lao society at the time.In the past, parents did not support their daughters' education. If they finished secondary school and wanted to further their education, it was difficult for them because they had to find a place to live away from home. Hence, they were expected to drop out of school (participant in men's focus group discussion, over 55 years old, 13 May 2016).From the interviews and focus group discussions, participants confirmed that traditionally, women had little to no power in household decision-making before the NEM, while men made most of the decisions on matters related to farming and children's education. Participants attributed this to the belief that men held a superior position to women as head of the household, and thus should wield the power to make all decisions for the family. Women's lower education attainment and literacy reinforced their lower position.The NEM and economic liberalisation, through the introduction of high value arabica coffee, has brought changes to the villages of the Bolaven Plateau. The farmers now earn higher incomes as arabica beans command a higher price than robusta in the world market. The transition from robusta to arabica coffee increased farmers labour time in the field, as arabica requires more intensive care. Galindo et al. (2007) conducted a participative analysis of coffee supply chains in Lao PDR and reported that arabica coffee plants require 110 worker-days per ha for harvesting due to the requirements of intensive coffee picking, sanitary picking after harvest, pruning, and wet-processing (e.g., pulping, fermentation, washing, and sun-drying). In contrast, robusta coffee requires only 50 worker-days per ha for harvesting, requiring very little labour input, investment, or fertiliser. Farm work is undertaken by both men and women; however, farm tasks are still divided up along gender lines. Men engage in work that requires physical strength, while women take on the time-consuming work, such as harvesting. In addition, women are responsible for domestic and caregiving jobs within the household. Both men and women are involved in the farmers' cooperatives that were set up for processing coffee beans.Villagers report that after the NEM was instituted, women became more involved in the decision-making processes of the farmers' cooperative. Women attended cooperative meetings and participated as committee members. They have, therefore, gained a voice and become more involved (Douangphachanh, 2020). The household survey showed that women have also gained more decisionmaking power in their households as compared to before the NEM, when only men made household decisions. Men now discuss household issues with their wives. However, in general, women are not allowed to make decisions on as high a level as the men in their households, and in most cases, men still make the final household decisions. In some households, women must ask their husbands' permission to make decisions.The present study's qualitative data complements the quantitative survey and analysis. A t-test was used to analyse the levels of decision-making between women and men in coffee-farming households. The survey showed that men and women are both engaged in decision-making on a variety of surveyed items such farming, money, and children's education. However, there are significant differences in their degree of input, as seen in Table 2 (p = .012). Men generally have more say in household decisions; specifically, the data indicate that men make higher level decisions such as land acquisition, technology use, applying fertiliser, hiring labour, harvesting, and borrowing money from a bank or money lender. However, men and women share similar levels of decision-making power when it comes to selling farm products (e.g., when and where to sell for the best price) and children's education, a situation that has changed since the introduction of the NEM. The findings indicate that economic liberalisation has encouraged some changes in gender power relations. Table 3 shows the areas in which women have gained more decision-making power post-NEM. Women are now involved in decision-making on matters related to land acquisition, plots to plant in, technology use, fertiliser application, labour hiring, harvesting, and borrowing of money. However, men still have more decision-making power on these matters. Nonetheless, women and men have equal decision-making power when it comes to matters related to when and where to sell farm products, as well as their children's education. The research findings resonate with previous studies conducted in South and Southeast Asian countries. Women have a significant role in agriculture and are involved in decision-making; however, they have lower decision-making powers within the household than men (Fartyal & Rathore, 2016;Hamid, Khan, & Jahangir, 2021;Joshi, Dash, & Gangwar, 2016;Sharma, Chander, Meena, & Verma, 2016;Shaw, Das, & Dey, 2016;Tiwari & Tripathi, 2016;Yusof, 2015). In this Lao case study, women's rising participation in agriculture and economic growth has contributed to some changes, allowing a subsequent rise in women's participation in decision-making. Yet, there is still a large disparity in gender equity when it comes to decision-making power in the household.The study is limited in scope because it examines only a specific set of items for household decision-making. Women may have more bargaining power in other aspects not investigated in the survey. It also does not examine the degree of bargaining and levels of cooperation in joint decision-making in the households (Doss & Quisumbing, 2020).This study examined how the NEM and economic liberalisation led to a major crop growing transition and influenced women's participation in household decisionmaking. Both before and after the introduction of the NEM, women and men work together on their farms, but women perform work that is time-consuming, while men perform roles that require physical strength. The findings reveal that women were less involved in the decision-making processes within the household before the NEM, but since the NEM, have become more engaged in decision-making. However, men still hold higher decision-making power when it comes to land acquisition, technology use, fertiliser application, labour hiring, harvesting, and borrowing of money from a bank or money lender. An important difference post-NEM is that women's decision-making power is equal to men's on matters related to selling farm products and children's education. The research concludes that the NEM and economic liberalisation brought about some changes in gender power relations, yet men still retain more decision-making power than women in the household. This analysis illustrates that economic growth does not necessarily translate to women's empowerment and gender equality (Kabeer, 2016;Kabeer & Natali, 2013).Conversely, evidence shows that increased women's empowerment leads to increased economic and community growth (Anik & Rahman, 2020). There is also evidence supporting the belief that an increase in women's empowerment results in increased agriculture production and food security (Anik & Rahman, 2020;Asadullah & Kambhampati, 2021). An investment in women's empowerment can therefore bring about a multiplier effect community development. However, gender parity itself is an important goal as it stands, and countries, including Lao PDR, are striving towards the United Nation's Sustainable Development Goal #5 on Gender Equality.The Lao government has made significant commitments to gender issues through policies, laws, regulations, and institutions (CEDAW, 2013(CEDAW, , 2018;;Gender Resource Information & Development Center, 2005) and considers gender mainstreaming as a critical component of promoting gender equality. It has implemented agriculture and forestry development programmes to enhance and provide opportunities for female farmers, and in some cases, has created a 30 percent quota for women in decision-making roles (Ministry of Agriculture and Forestry, 2015). Even though the government has increased women's access to political representation and social status, the gender gap still remains (Evans, 1990(Evans, , 1999)).In Lao PDR, the patriarchal norm that positions men as superior to women persists, and women continue to take on the dual burden of productive and reproductive work. As pointed out by Kabeer and Natali (2013, p. 32), 'Gender inequalities continue, in most regions of the world, to reflect long-standing norms and values that govern relations between men and women in different socioeconomic groups.' Based on this observation, and given the Lao government's commitment to gender equality, this study recommends implementing policy interventions and programmes that consider cultural variables specific to Lao PDR. Some recommendations include the following: first, women's labour participation in farm work should be acknowledged and valued. Women are not just 'helpers' in the field, but provide labour equally valuable to that of men. Women's access to land and business ownership should be encouraged and facilitated, and more opportunities of agricultural training should be given to female farmers, so that new knowledge and technology are not just limited to male farmers. Second, programs must be implemented to educate and socialise men to take up more care work so that women do not continue having the double burden of reproductive and productive work. Third, quotas for women in policy and decision-making roles should be created. This would need to go hand in hand with capacity-building programmes for women to take up leadership roles. Fourth, the government should increase educational opportunities for girls and women, which include encouraging families to send their daughters to school, and ensuring schools are accessible and safe. Scholarship programmes will also encourage girls to continue to the tertiary level. Such programmes and policy interventions should be implemented to take into account local contexts and aim to empower both women and men in society.","tokenCount":"5381"} \ No newline at end of file diff --git a/data/part_3/4119020530.json b/data/part_3/4119020530.json new file mode 100644 index 0000000000000000000000000000000000000000..03ae9f48f8c2550b86750310c246dd6af06ac6eb --- /dev/null +++ b/data/part_3/4119020530.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"aad6701b83e9e7a4eab0fba4eaf89ed5","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/7f4d3fd2-3ad6-46a6-bb3e-2bb0ea18cc41/retrieve","id":"-1161137156"},"keywords":[],"sieverID":"9769f81f-f6ac-41b9-bd14-33260c9dec26","pagecount":"60","content":"Resource Recovery and Reuse (RRR) is a subprogram of the CGIAR Research Program on Water, Land and Ecosystems (WLE) dedicated to applied research on the safe recovery of water, nutrients and energy from domestic and agro-industrial waste streams. This subprogram aims to create impact through different lines of action research, including (i) developing and testing scalable RRR business models, (ii) assessing and mitigating risks from RRR for public health and the environment, (iii) supporting public and private entities with innovative approaches for the safe reuse of wastewater and organic waste, and (iv) improving rural-urban linkages and resource allocations while minimizing the negative urban footprint on the peri-urban environment. This sub-program works closely with the World Health Organization (WHO), Food and Agriculture Organization of the United Nations (FAO), United Nations Environment Programme (UNEP), United Nations University (UNU), and many national and international partners across the globe. The RRR series of documents present summaries and reviews of the sub-program's research and resulting application guidelines, targeting development experts and others in the research for development continuum.A Proposed Advisory and Guidance DocumentThe authorsThe Water and Sanitation Program (WSP) is a multi-donor partnership, part of the World Bank Group's Water Global Practice, supporting poor people in obtaining affordable, safe and sustainable access to water and sanitation services. WSP works directly with client governments at the local and national level in 25 countries through regional offices in Africa, East and South Asia, Latin America and the Caribbean, and Washington DC. The program places a strong focus on capacity building by forming partnerships with academia, civil society organizations, donors, governments, media, private sector and others.The International Water Management Institute (IWMI) is a non-profit, scientific research organization focusing on the sustainable use of water and land resources in developing countries. It is headquartered in Colombo, Sri Lanka, with regional offices across Asia and Africa. IWMI works in partnership with governments, civil society and the private sector to develop scalable agricultural water management solutions that have a real impact on poverty reduction, food security and ecosystem health. IWMI is a member of CGIAR, a global research partnership for a food-secure future. The drafting team appreciates the support provided by the Central Public Health and Environmental Engineering Organization, Ministry of Urban Development, Delhi, and is grateful for the data and support provided by the cities of Hyderabad (HMWSSB), Chennai (CMWSSB) and Bangalore (BWSSB).The team appreciates inputs and advice received from the International Water Management Institute (IWMI), especially Dr. Priyanie Amerasinghe, Dr. Pay Drechsel and Krishna Rao. Researchers from IWMI provided valuable inputs on the health implications of wastewater recycling and approaches to ensure safe water reuse and designed several components of the suggested advisory. IWMI also contributed to the discussion on nutrient recovery from wastewater along with other inputs throughout the document.The team further appreciates the insights and critique provided by our reviewers. Reviewers included Rajesh Balasubramanian -World Bank, Manzoor Qadir -United Nations University Institute for Water, Environment and Health (UNU-INWEH), Isabel Blackett -Water and Sanitation Program (WSP), Payden and David Sutherland -World Health Organization (WHO), Somnath Sen -Indian Institute for Human Settlements (iihs), as well as officials from the Ministry of Urban Development.Responsibility for any errors or omissions rests with the drafting team.viii AbbREvIAtIons And ACRonyms This note on wastewater recycling and reuse in urban India focuses on identifying the economic benefits (and in some cases the financial benefits too) of wastewater recycling from the perspective of public spending. The note also provides supporting information on the evolution and current practices of wastewater recycling internationally and the international and national regulatory and policy frameworks that guide wastewater recycling. In the latter context, the document presents possible strategies for city and state planners and policy makers to initiate the discourse on wastewater recycling and reuse in the local milieu for planned forward movement.This document also targets the sanitation situation and the role of wastewater recycling in the larger cities in India (Class I and II cities and towns with populations above 50,000) and focuses on recycling at the end of sewerage systems after treatment at sewage treatment plants. Smaller towns would need to assess the suitability of other wastewater management options which may be more feasible and economically viable.Water supply and sanitation infrastructure in urban India: Urban India is growing rapidly and this poses significant challenges for urban infrastructure and services like water supply, sanitation, solid waste management, wastewater collection and treatment, and drainage. Inadequate sanitation resulting in poor hygienic practices leads to huge economic and social losses for the country. WSP (2011) estimated that the total annual economic impact of inadequate sanitation in India amounted to a loss of INR 2.4 trillion (USD 53.8 billion) in 2006, which was equivalent to about 6.4% of India's gross domestic product (GDP) in 2006. These losses and economic impacts are disproportionately borne by the poorer sections of the society due to the lower levels of access to improved sanitation and water supply and relatively more densely populated living conditions.Collection, treatment and reuse of municipal wastewater provides an opportunity for not only environmental rehabilitation, but also meeting the increasing water needs of different economic sectors. In addition to recycled wastewater becoming an additional and valuable water source, there are opportunities to recover nutrients and energy from wastewater. It is estimated that if 80% of urban wastewater could be collected and treated by 2030, there would be a total volume of around 17 billion m 3 (BCM) per year; an increase of around 400% in the volume of available treated wastewater. This 17 BCM of treated wastewater resource, if captured, treated safely and recycled, is equivalent to almost 75% of the projected industrial demand in 2025 (MoWR 2006) and almost a quarter of the total projected drinking water requirements in the country.Policy and guidance on wastewater recycling: The concept of wastewater recycling and reuse and the need to include the same in all water supply and wastewater management programs is recognized by most policy frameworks and institutions in India. While policy and guiding frameworks in India recognize the need for wastewater recycling, little has been done in terms of detailed guidance on treatment standards, types of reuse applications, design and O&M considerations for the management of wastewater recycling projects and tariff structures for the sale of recycled water for various applications. However there are national and international guiding frameworks for wastewater recycling and reuse for various applications including the guidance provided in the recently revised and updated Manual on Sewerage and Sewage Treatment Systems (CPHEEO 2013), the WHO's guidelines, first published in 1989 and revised in 2006 and the USEPA (2012) water reuse guidelines.Selection of technology: The choice of technology to treat and recycle domestic wastewater has to be guided by the physical constraints as well as the intended use of the treated wastewater. Treating wastewater to a quality beyond that required for its safe use for a particular application will burden the service provider with higher capital costs and higher O&M costs, with not enough revenue realization in the absence of demand for this high quality water. Various studies have demonstrated that the cost of treating wastewater increases rapidly when advanced treatment systems, such as membrane ultra-filtration (UF) and reverse osmosis are included. Such systems should be incorporated into the sewage treatment plant (STP) design only after careful and detailed assessment of the local recycled water demand and cost recovery mechanisms. Given the significant impact of the chosen treatment technology on the overall cost of the project, at both the construction stage and throughout the operational life of an STP, it is important to consider all funding and revenue options when planning and designing the wastewater treatment facility.Benefits of wastewater recycling: Many cities in India encourage wastewater recycling but, with few exceptions, there are no clear incentives or mandate from the respective metropolitan administrations for wastewater recycling.There is a natural advantage to wastewater recycling, and this note discusses this in detail. Some of the key benefits of wastewater recycling are summarized below.A. Recycled wastewater: an additional source of water 1. Recycled wastewater and its allocation to industrial customers frees up freshwater hitherto used, which could be reallocated to other users with greater net benefits. This option is less expensive compared to other options to augment existing water supplies from distant water sources or expensive treatment such as desalination. 2. Use of treated wastewater can provide industries with a reliable source of water supply, and in most cases, a supply that is cheaper than freshwater. This can result in significant cost savings for industrial enterprises given that the water tariffs for industrial use are steep and rising consistently. 3. Recycled wastewater also plays an important role in providing a reliable source of water for agriculture. Several countries use treated wastewater to varying degrees to meet agricultural water demand. The practice of using treated or untreated wastewater for agriculture has also been historically prevalent in India; however, there is a need to understand the economic, environmental, social and health implications of using untreated wastewater and mitigating any deleterious effects from its use. In coastal areas, reclaimed wastewater (discharged to the sea) is an additional resource to meet irrigation demand, and in upstream locations, use of reclaimed water in agriculture frees up freshwater for domestic and industrial consumption. In India, the urban wastewater generated (estimated currently at about 38,000 million liters a day [MLD]) would provide 14 BCM 1 of irrigation water, which could safely irrigate (if treated) an area ranging between 1 and 3 million hectares (ha), depending on the type of crop cultivated and its irrigation requirement. This wastewater irrigation (WWI) potential (taken at 2 million ha) is 44% of the major and medium potential created and nearly three times the surface water-based minor irrigation potential created in the 10th five year plan (FYP). This is also significant when considering our national circumstances as 70% of India's population relies on agriculture for sustenance and agriculture, and is heavily reliant on rain-fed irrigation in large parts of the country.Utilities, with well-functioning STPs, are in a position to sell the treated effluent to industrial customers depending on the need and availability of other water sources. Utilities may charge these industrial customers for this recycled wastewater based on the required level of treatment provided and quality of wastewater. Being industrial customers, it is possible to charge these customers the actual cost incurred for the treatment and provision of water, allowing the utility to recover a significant share of O&M costs. Revenue from sale of secondary treated wastewater can cover the O&M costs of STPs. It is desirable therefore, that cities, whenever possible, should promote the use and sale of recycled wastewater to industrial customers, even making this practice mandatory through changes in state/local regulations. By 2030, treated wastewater from Class I and II cities 2 has the potential to meet about a quarter of the current industrial water demand (17 BCM including the water demand for energy production in the country).In addition to being a water resource, wastewater also contains valuable nutrients (nitrogen, phosphorus and potassium [NPK], among others), which aid in crop growth and could reduce the need for synthetic fertilizers in India by up to 40% (Minhas 2002;Silva and Scott 2002;Kaur et al. 2012). Wastewater, a valuable source of plant nutrients, needs to be viewed as an economic resource by the planning authorities at national, state and local levels.1. Several studies have estimated the daily nutrient potential in wastewater in the range of 0.054-0.073 tonnes MLD -1 (adapted from Minhas 2002;Silva and Scott 2002;CPCB 2009a;WII 2006) Londhe et al. 2004;Amerasinghe et al. 2013) also suggests a 30% increase in annual farm income to farmers utilizing treated and untreated wastewater for irrigation compared to freshwater. The increase in farm income is a result of an increase in yield, multiple cropping seasons and lower fertilizer requirement.1. The use of treated wastewater for irrigation also has potential to reduce ground water irrigation, and hence pumping and the associated energy requirement and associated costs. 2. Conservation of energy as a result of using wastewater for irrigation has a concomitant benefit of reducing harmful greenhouse gas (GHG) emissions that would have been generated during the production of an equivalent amount of electricity. These GHG emissions can be avoided through adoption of wastewater irrigation which reduces ground water pumping requirements. 3. Estimates in this advisory suggest that the avoided ground water pumping due to wastewater irrigation has the potential to reduce about 1.75 million MWh of electricity, which is equivalent to reducing about 1.5 million tonnes of CO 2 e (tCO 2 ) GHG emissions.While treated wastewater presents potential economic and environmental benefits to consumers (industrial, agricultural), city governments and states-an assured and reliable water supply, the nutrients present in the wastewater, and avoided costs of ground water pumping -utilities and state/ city governments will need to develop more sustainable business models. These models should aim at different user categories -industry, agriculture, institutions/commercial establishments-which in collaboration with partner agencies ensure financial viability, follow water allocation rules and support peri-urban agriculture. The predominant options for recycling of treated wastewater include reuse by industries or reuse in agriculture. While the benefits of both these options are substantial, the cost recovery of the O&M costs of the STP through these two recycling options is very different. While revenue generated from industrial reuse is adequate to meet the O&M expenses, agricultural reuse generates negligible revenue for utilities. It may be desirable to promote industrial reuse in all cities in a state, however this reuse may be limited by the availability of industrial customers in the vicinity.In the Indian context, the practice of recycling wastewater is just emerging for the industrial sector, however the use of untreated or partially treated wastewater for agriculture is quite common (Amerasinghe et al. 2013). Given this common practice, regulatory authorities need assistance on how to move from informal to formal reuse as the alternative would be to ban informal reuse which would be a challenge given the large number of dependent livelihoods. If the source water for treatment is municipal wastewater, and the treatment is inadequate, it would have serious health impacts especially diarrhea and helminth infections.This advisory highlights the growing demand for water from the domestic (household), industrial and agriculture sectors, the limits of available freshwater resources and the potentially increasing costs of supplying freshwater in urban areas, over the period up to 2030. The potential for wastewater recycling and reuse exists for various end uses in the domestic, industrial and agriculture sectors. There are various national and international guidelines on water quality for the safe use of treated wastewater depending on its intended use. While the benefits of wastewater recycling and reuse may be known to the different stakeholders, city governments and water utilities face operational obstacles owing to the overlapping remits of institutions such as public health and engineering departments, departments of agriculture, departments of industries, state pollution control boards and so forth that are mandated to manage water in its different uses. This needs to be addressed through coordinated efforts at the national, state and city levels of administration. Reforms will be required to a) promote the collection and treatment of domestic wastewater and b) promote the recycling and use of treated wastewater in a safe manner. This will require a diverse set of reforms to be implemented at national, state and city levels to address the policy and regulatory gaps for the safe use of treated wastewater, provide a framework to ensure rapid scaling up in use of treated wastewater for different economic activities and finally allow the urban local bodies (ULBs) to operate in a manner that will be financially sustainable in the long term.Water supply and sanitation is a state subject 6 constitutionally, and the states are vested with the responsibility for planning, implementation and operation of water supply and sanitation projects. Wastewater treatment and management, whether on site, decentralized or offsite, are part of the full sanitation cycle and influence public health and environment; it is very important to recognize that both national government and state governments must work together to tackle this problem. Recycling and reuse of treated wastewater is an important part of the sanitation cycle and critical in an environment of decreasing availability of freshwater and increasing costs of delivering acceptable quality water supply to cities for multiple uses.Recycling and reuse of treated wastewater reinforces the economic benefits arising from the public good of achieving the total cycle of sanitation. This document focuses on identifying these economic benefits (and in some cases the financial benefits too) of wastewater recycling from the perspective of public spending. It also provides supporting information on the evolution and current practices of wastewater recycling internationally and the international and national regulatory and policy frameworks guiding the practice of wastewater recycling. In the latter context, the document presents possible strategies for city and state planners and policy makers to initiate the discourse on wastewater recycling and reuse in the local milieu for planned forward movement.It is important to note that this note targets the sanitation situation and the role of wastewater recycling in the larger cities in India (Class I and II cities and towns with populations above 50,000). The discussion therefore is focused on recycling at the end of sewerage systems after treatment at sewage treatment plants, which are economically viable options for the larger cities targeted in this note. A variety of other wastewater management options may be more feasible and economically viable in smaller towns.The increased demand for drinking water from urban centers, increase in demand for water by other economic sectors, climate variability and its implications on the availability of water resources combined with continued pollution of freshwater sources due to inadequate collection and treatment of the return flows, is a statement of challenge and also a window of opportunity, i.e., to use the municipal wastewater 7 generated in urban centers for productive use. Technological advances over the last two decades have demonstrated the feasibility of treating wastewater to desired quality levels at competitive costs. The increasing costs of augmenting water supply from distant sources or via desalinization seem to suggest that the time has come to examine reuse and recycling of treated wastewater as a potential option and view wastewater as a key asset of any 'circular economy', not just in view of water availability but also nutrient and energy recovery.Water Demands by Sectors and the Demand-Supply Gap Bangalore: Sources water from the Cauvery River 95 km from the city, requiring pumping at 1,000 m elevation.Hyderabad: Sources water from the Krishna River, 130 km from the city, requiring expensive multi-stage pumping.Bhopal/Indore: Source water from the Narmada River, pumping water over more than 30 km.Agra: Sources water from the Yamuna River which requires extensive treatment.Details of other cities sourcing water from distance sources or through expensive treatment are provided in Appendix 2.in the country are almost entirely located in rain-fed areas (PC 2011).The availability of water and concerns over estimated demand supply gaps may be exacerbated by climate variability and its impact on the availability of water resources both spatially and temporally. Competing water demands and limited availability of freshwater are already a cause for concern for many cities in India, with many such cities being forced to source water from distant or expensive water sources (see Box 1).These challenges translate into a higher cost for providing water for various uses in these cities. Figure 1 illustrates the increasing cost of supplying water to industries in selected cities in India. The Growing Urban Sanitation ChallengeUrban India is also growing rapidly and this poses significant challenges for the provision of urban infrastructure and services like water, sanitation, solid waste management and drainage. While 87% of the country's urban population has access to household or community sanitation, the collection, treatment and disposal of wastewater is a cause for concern. Only one-third of all households are covered by sewer networks, with 47% of households relying on on-site sanitation systems. The low coverage is also compounded by the grossly insufficient treatment capacities in urban centers. 2009a). Consequently more than 75% of the wastewater generated in Class I and II urban towns and cities is discharged on land or in various water bodies without any treatment, resulting in large-scale environmental pollution and creating a health hazard for the general public. The discharge of untreated or partially treated wastewater on land or surface water bodies is a major source of pollution, contaminating 80% of the country's surface water (CPCB 2007b).Inadequate sanitation resulting in poor hygienic practices leads to huge economic and social losses for the country. WSP (2011) estimated that the total annual economic impact of inadequate sanitation in India amounted to a loss of INR 2.4 trillion (USD 53.8 billion) in 2006, which was equivalent to about 6.4 percent of India's GDP in 2006, and is discussed further Appendix 3. These losses and economic impacts are disproportionately borne by the poorer sections of society due to the lower levels of access to improved sanitation and water supply and relatively more densely populated living conditions.Treatment and reuse of municipal wastewater provides an opportunity for not only environmental rehabilitation, but also meeting the increasing water needs of different economic sectors. The Planning Commission, GoI, also recognizes the need to recycle wastewater, and deems it a critical component of any sustainable solution for water and wastewater management in India. It observes that \"we must begin to learn that we will have to reuse every drop of our sewage (see Box 2). It is even technically possible to turn it into drinking water but at the very least we should plan to recycle and reuse it in our gardens, in our industries or use it (after treatment) to rejuvenate natural water bodies\".Considering that the most of the water consumed is used for non-potable needs, whether in industry, for agriculture, or for non-potable uses such as toilet flushing, bathing, washing etc. by domestic users, there is tremendous potential to reuse water by providing varying levels of treatment.An indication of the scale of the opportunity in urban wastewater recycling in India is discussed below:A total of 723 of India's cities and towns, with populations of 50,000 and above, generate about 38,000 MLD of wastewater (CPCB 2009a The concept of wastewater recycling and reuse and the need to include the same in all water supply and wastewater management programs is recognized by most policy frameworks and institutions in India, as summarized below:1. The Planning Commission (as part of the water and waste management strategy in the 12 th five year plan). While policy and guiding frameworks in India recognize the need for wastewater recycling, there has been little in terms of detailed guidance on the treatment standards, types of reuse applications, design and O&M considerations for management of wastewater recycling projects and tariff structures for sale of recycled wastewater for various applications. Such projects, while being undertaken by various states and cities in India, are largely structured individually and developed in isolation at the local level.The Ministry of Urban Development has been addressing this issue and recently developed specific guidelines for the recycling and reuse of wastewater. While this ministry has issued various advisories in recent years covering various aspects of urban sanitation including wastewater recycling, detailed guidance has formally been included for the first time in the recently revised and updated Manual on Sewerage and Sewage Treatment Systems (2013) (CPHEEO 2013). These guidelines take a lead in specifying for the first time the water quality guidelines for treated water based on its intended use, along with identifying best practices and examples of other recycling and reuse programs both in India and internationally.Other international guiding frameworks for wastewater recycling and reuse include the WHO international guidelines on wastewater recycling in agriculture and aquaculture and recommendations for wastewater treatment and crop restrictions. These guidelines, first published in 1989 and revised in 2006, are also a commonly cited guiding framework for reuse. Others include the USEPA (2012) water reuse guidelines and the reuse standards developed by selected states in the USA, such as California, which were among some of the first authorities to develop reuse standards and regulations to guide the application of treated wastewater for different purposes. Appendix 4 presents a summary of some of these guidelines/standards.Treatment technologies for wastewater can be categorized based on the location where treatment is provided and the type of treatment provided. The location of the treatment system will make the management system either an onsite system, decentralized system or an off-site system requiring extensive underground sewerage to carry wastewater to the off-site treatment facility. Each of these systems has different geographical, demographical and financial conditions.box 2. thE bAsICs of WAstEWAtER RECyCLInG.Water recycling is reusing treated wastewater for beneficial purposes such as agricultural and landscape irrigation, industrial processes, domestic potable and non-potable reuse, and replenishing a ground water basin (ground water recharge). Wastewater treatment can be tailored to meet the water quality requirements of planned reuse and can meet the water need in a very competitive cost structure.Water reuse accomplishes three fundamental functions:More water is made available for beneficial purposes; Untreated effluent is kept out of streams, lakes, etc., reducing the pollution of surface and ground water; and Protection of public health if compliance with safety measures is addressed.Recycled water has many applications and can be used to fulfil most water needs, subject to the level of treatment given to the wastewater.The Manual on Sewerage and Sewage Treatment Systems (2013) discusses in detail the different types of treatment technologies suitable under different conditions, including decentralized wastewater treatment technologies.The manual provides details on the design considerations and operating requirements for a variety of technologies which will be suitable for different urban agglomerations.The WSP had also published a compendium of wastewater treatment technologies specifically suited to the urban context (WSP 2008), which provides guidance on the suitability of different options under different geographical, demographical and physical contexts.The other significant classification criterion is the type of treatment provided -primary treatment, secondary treatment or tertiary treatment. Primary treatment essentially consists of removing the suspended solids present in the wastewater through physical sedimentation or coarse screening methods. Secondary treatment involves some form of biological treatment which removes the organic matter lowering the bio-chemical oxygen demand (BOD) of the wastewater. Tertiary treatment provides the most advanced level of treatment, reducing BOD and the total dissolved solids (TDS) levels to very low levels and can also effective in removing dissolved impurities and nutrients such as nitrogen and phosphorus that may be present in the water. The type of advanced treatment (nutrient removal/ reverse osmosis/advanced disinfection) will depend on the type of reuse application, and is usually significantly capital-intensive along with high O&M costs compared to conventional secondary treatment alone. Of particular interest are anaerobic treatment systems with still lower energy demands (Libhaber and Orozco-Jaramillo 2013).The choice of treatment technology has to be guided by the physical constraints (as discussed in Box 3) combined with the intended use of the treated water (see Box 4). Figure 2 illustrates this concept, demonstrating the link between the levels of treatment, intended use of treated water, cost of treatment and extent of cost recovery. 8 Choosing to provide a box 3. on-sItE, dECEntRALIzEd And off-sItE WAstEWAtER tREAtmEnt systEms.Sanitation systems may be:On site, retaining wastes in the vicinity of the toilet in a pit, septic tank or vault. Off site, removing wastes from the vicinity of the toilet for disposal elsewhere. Hybrid, retaining solids close to the latrine but removing liquids for off-site disposal elsewhere.Wastewater and fecal sludge require treatment before they are used either as an input to agriculture or returned to the environment. Waste collection and treatment systems may serve anything from a residential area of a few hundred houses to large urban areas. Hybrid and off-site systems require provision for transporting wastewater from the toilet via a system of sewers to the treatment facility.Recycling and reuse of wastewater in hybrid or off-site systems should ideally occur after stabilization of pathogenic organisms and removal of toxic chemicals/metals present in the wastewater to avoid negative health impacts on farmers, handlers and consumers of the produce irrigated with such water. The Sangamam Housing Project (CPCB 2008), implemented on the outskirts of Auroville (12 km north of Pondicherry and 150 km south of Chennai) has been very effective in implementing decentralized wastewater treatment and recycling the treated wastewater, along with implementing rain water harvesting, to reduce the demand for potable freshwater. The sewage treatment system consists of an anaerobic up flow reactor as a primary treatment and a Root Zone Treatment system as a secondary treatment system followed by maturation ponds.As assessment conducted by CPCB in 2008 concluded that demand for freshwater declined from 221 liters per capita per day (lpcd) before commissioning the recycling system to about 101 lpcd after commissioning of the recycling system, a 45% reduction in freshwater consumption. The savings resulted from using treated wastewater for activities such as toilet flushing, gardening etc. level of treatment which treats water to a quality beyond that required for its safe use for a particular application will burden the service provider with higher capital costs and higher O&M costs, with not enough revenue realization in the absence of demand for this high quality water (Murray and Buckley 2010). ) when the water is also treated using a reverse osmosis module.Analysis by WSP (2014) (Figure 3 12 )on capital costs of different treatment technologies also indicates more than two-fold escalation in the unit cost or treatment when switching from conventional secondary treatment (activated sludge process treatment) to advanced treatment (membrane systems, nutrient removal etc.).Given the significant implications of the chosen treatment technology on the overall cost of the project, at both the construction stage and throughout the operational life of an STP, it is important to consider all funding and revenue options when planning and designing the wastewater treatment facility. Utilities may choose to treat water to the regulatory standards and provide it to industrial and other customers who may further treat it through advanced levels of treatment based on their needs. Alternatively, if high grade treated water is a popular requirement in the region and the utility is able to charge appropriately for its provision, the cost of advanced treatment can be passed on to customers.The choice should be based on sound financial assessment of the investment required, the appetite for treated wastewater in the region, and customer profiles and their willingness to pay for the treated water. Some implementation options adopted by different cities, including accessing central or state government program funds and public-private partnership, are presented in Appendix 5. Recycled water can provide an additional and valuable source of water. This resource also presents opportunities to recover nutrients and energy from wastewater. The recovery of phosphorus and potassium is particularly attractive because India imports most of its phosphorus and all of its potassium needs to meet demand. Use of recycled wastewater for irrigation can help to circumvent ground water pumping and hence reduce energy requirements for irrigation. Reduction in the use of energy also reduces GHGs, which are typically produced during the production and combustion of fuel and energy. There are also opportunities to tap into carbon credits as an additional revenue stream as and when the carbon market becomes viable and subject to demand and supply constraints. Figure 4 illustrates the financial and economic cost benefit concepts related to recycling and reuse of wastewater. It is apparent that while the financial costs of wastewater recycling and reuse may outweigh the pure financial returns, it makes immense economic sense to mainstream this practice owing to the considerable environmental, social and health benefits generated. The various financial and economic benefits of wastewater recycling are discussed in more detail in the following sections. Recycled Wastewater -an Additional, Reliable and Cost Effective Source of Water Treated wastewater has an important role to play in providing a reliable source of water to meet industrial and agricultural water requirements. Several countries have adopted recycling and reuse of wastewater to varying degrees and for a range of activities. Appendix 6 discusses the extent of wastewater recycling in various countries and the evolution of such programs. Most countries with successful wastewater recycling programs follow a systematic approach, leading to the development of their recycling and reuse programs. Water scarcity that threatens human society or the survival of natural systems is the inherent driver in all countries that necessitates the development of such a program.Wastewater recycling can meet different water requirements, i.e., in industries, for irrigation in agriculture and also within urban areas for horticultural/municipal needs. Two significant users of recycled wastewater are industries and agriculture, as discussed below.Wastewater Recycling -offsetting the need for Additional sources of WaterUse of treated wastewater for industrial applications frees up freshwater which can be used by water utilities to increase coverage and meet domestic water requirements. Appendixes 7 and 8 present findings from a study undertaken for the cities of Hyderabad, Bangalore and Chennai to assess the impact of recycling wastewater to meet the water demand-supply gap in these cities. Appendix 8 presents the findings from a study undertaken to assess the impact of various water supply augmentation options (including wastewater recycling to offset demand) on municipal finances and operational revenues. The study found that wastewater recycling to offset freshwater demand from industries can be a viable alternative to augmenting freshwater sources to meet the steadily increasing demand in these cities.The study also highlights that wastewater recycling targeted for non-potable uses could start making economic sense to cities and ULBs when they are able to estimate non-potable demand and meet it through investments in dual-piping (with or without consumer participation). Current consumer databases with water supply and sewerage boards (WSSBs) do not seem to have this information, and this poses a significant challenge when planning for such schemes. Appendix 9 presents a broad estimation of state-wise wastewater recycling potential industrial consumers.Recycled Wastewater -an Affordable and Assured source of Water for Industries The CPCL plant in Chennai encountered acute water shortage and scarcity of supply in the wake of severe water shortages in the city. The plant had to rely on expensive tanker-supplied water. During a 20-year period, the cost of water also increased seven-fold as demand increased. The plant was also forced to occasionally halt operations due to lack of water resulting in business and revenue losses for the company. Recognizing that water supply from the water utility was not only unreliable but also uneconomical, the industry set up a wastewater recycling plant to treat partially treated wastewater from the water utility. The cost of recycled wastewater to the industry worked out at INR 45/KL (USD 0.70 14 ) compared to INR 60/KL (USD 0.70 15 ) for the water purchased from the water utility.Besides being economically attractive, this amount (of partially treated wastewater supplied) was also able to meet the industry's current and future water needs.The case of Mahagenco in Maharashtra is similar. In 2008 the company needed an additional 130 MLD water supply for expansion of its 1,980 MW Koradi Thermal Power Station (TPS). No municipal or command area projects could accommodate this need. Mahagenco decided to reuse the treated wastewater from the city of Nagpur to supply Koradi TPS and to secure this source took responsibility for construction, operation and maintenance of the sewage treatment plant. The treatment and provision of water through this arrangement will cost Mahagenco about INR 3.4 m -3 (USD 0.05 16 ), which would have been significantly higher if the company had decided to source freshwater from another municipal or irrigation command project (about INR 9.6 m -3 (USD 0.15 17 ) for recent projects). The project is currently under construction and details of the cost sharing and revenue arrangements are discussed in Appendix 5.In India, the urban wastewater generated (estimated currently at about 38,000 MLD in Class I and II cities), if treated and channeled to meet agricultural irrigation requirements, would provide 14 BCM 18 of irrigation water, which could potentially irrigate an area ranging between 1 to 3 million hectares (ha). 19 Amerasinghe et al. (2013) also arrived at similar estimates (1.1 million ha) on the additional area that can be brought under direct and indirect irrigation using wastewater generated in Class -I and Class-II cities and towns. While this quantum (14 BCM based on 2009 wastewater generation estimates) might not seem significant compared to the total irrigation water demand in 2025 (910 BCM according to MoWR estimates), its significance should be viewed in relation 13 2015 exchange rate INR 64.03 = USD1. 14 Ibid. 15 Ibid. 16 Ibid. 17 Ibid.18 Billion cubic meters (1,000 million cubic meters). 19 Depending on the type of crop cultivated and its irrigation requirement.to the national efforts to increase area under irrigation during recent five-year plan (FYP) periods. During the 10 th FYP period, the major and medium irrigation potential created was 4.59 million ha, while the surface water-fed minor irrigation potential developed was 0.71 million ha (MoWR 2011). The wastewater irrigation (WWI) potential (~2 million ha) is 44% of the major and medium potential created and nearly three times the surface water-based minor irrigation potential created in the 10 th plan (see Box 6). This is significant when considering our national circumstances as 70% of India's population relies on agriculture for sustenance and agriculture, and in turn, is heavily reliant on rain-fed irrigation in large parts of the country. This reliance on rainfall for irrigation presents risks to farmers (i.e., crop failure) and therefore to the country in the context of food shortages.Currently it is estimated that India has a cultivated area of more than 40,000 ha irrigated with untreated wastewater (World Bank 2010). Historically, the use of treated or untreated wastewater has been common in India; however there is a need to understand the economic, environmental, social and health implications of the use of untreated wastewater and mitigating any deleterious side-effects from its use.Using untreated or partially treated wastewater exposes farmers and crop consumers to potential health risks. Ideally wastewater should be treated before using it for irrigation; health and risk aspects, along with international guidelines for treatment are discussed in detail in Appendix 10. While 100% treatment is absolutely desirable, in reality, large parts of the country already use untreated or partially treated wastewater for irrigation. A practical solution in the short term under such circumstances is to follow the generally accepted multibarrier Hazard Analysis and Critical Control Points (HACCP) approach, discussed in more detail in Appendix 11.Wastewater Recycling in new urban Growth Areas -Planned Reuse for non-potable RequirementsRecycling and reuse of wastewater is also being planned as an integral component of the urban water and sanitation projects being developed in new urban areas in some cities such as Jaipur, Rajasthan. Ground water is the predominant box 6. ConstRAInts on fInAnCIAL sustAInAbILIty of WAstEWAtER RECyCLInG foR AGRICuLtuRAL REusE.The 13 th Finance Commission recommended charging INR 1,175 (USD 24.27 20 ) in major irrigation command areas and INR 588 (USD 12.14 21 ) in minor irrigation command areas for one hectare of irrigated land to cover the O&M expenditure of irrigation projects. While this is a significant increase from the irrigation fees charged in the past, this works out to only 10-25 paise KL -1 (USD 0.002-0.005 22 ), depending on crop and water use assumptions. The cost of treating wastewater is significantly higher in comparison.While revenue generated from industrial reuse is adequate to meet the O&M expenses, agricultural reuse generates negligible revenue for utilities. It may be desirable to promote industrial reuse in all cities in a state, however this is limited by the availability of industrial customers in the vicinity.Source: ThFC 2009 source of water in most areas in Rajasthan, with 90% of rural and 80% of urban water supply schemes based on its exploitation. The state is experiencing progressive deterioration in the yield and quality of ground water to meet increasing demands. Of the 243 blocks in the state, 172 belong to the 'overexploited' category (2011 assessment), which is a stark increase from the overexploited blocks in 1984, which stood at just 41. Jaipur has therefore embarked on a project to treat and reuse the wastewater generated in the city for use in industries, as well as for non-potable domestic applications such as flushing (through a dual piping system in all new urban growth areas under development). The projects are under development and detailed project reports for the scheme are in preparation.Utilities, when operating well-managed STPs, are in a position to sell the treated effluent to industrial customers depending on the need for and availability of other water sources. Utilities may charge industrial customers for supplying recycled wastewater based on the treatment provided and quality of wastewater. Experience from Chennai demonstrates that treated wastewater is being sold to industries at INR 8-11 KL -1 (USD 0.13 -0.18 23 ), and the resulting revenue generated through this sale is adequate to cover the O&M costs of the treatment plants (WSP 2014). Being industrial customers, it is possible to charge them the actual cost incurred for the treatment and provision of water, allowing the utility to recover a significant share of its O&M costs.While several utilities supply treated wastewater to different industrial users, the reuse and sale of treated wastewater is largely anecdotal throughout the country. Appendix 12 briefly discusses some initiatives taken by various ULBs towards wastewater recycling and sale of treated wastewater (IIR 2013; GWI 2010).Wastewater contains valuable nutrients (NPK), which may either be recovered as a resource or recycled when treated wastewater is reused for irrigation or other applications. When using treated wastewater for irrigation, these nutrients aid crop growth and could reduce the need for synthetic fertilizers in India by up to 40% (Minhas 2002;Silva and Scott 2002;Kaur et al. 2012). While farmers in India rarely pay any significant amount for the provision or use of this resource, it is important to understand its economic benefits. This section attempt to quantify the nutrient value in wastewater.In doing so, it is to be borne in mind that these benefits may often be implicit and beyond those physically realized in the field. Nevertheless, wastewater is a valuable source of plant nutrients and needs to be viewed as an economic resource by the planning authorities at national, state and local levels.In its review of wastewater generated in the coastal cities in India, the Central Pollution Control Board (CPCB 2009a) estimated a nutrient load of 347.56 tonnes day -1 in about 6,400 MLD of wastewater generated from these cities daily (the treatment capacity against this is about 3,050 MLD, which is about 47% of the total wastewater generation). Several other studies have also estimated the nutrient potential in wastewater which ranges from 0.054 to 0.073 tonnes MLD When valuing the nutrients present in wastewater, it is important to also consider other constituents which may impact suitability when reusing treated or untreated wastewater in agriculture. The high salinity of wastewater is of particular concern, as there may be short-to long-term effects on the salinity of soils and river water receiving treated wastewater. The impact on agricultural produce will depend on the exact nature of wastewater and the salinity thresholds of the crop being cultivated (McCartney et al. 2008).The availability of affordable fertilizer is critical to the performance of the agriculture sector in India, which is heavily dependent on government subsidies on agricultural fertilizers. Indian soils are generally deficient in both K and P. Therefore the country has to depend upon imports (100% potash and around 90% phosphate) for meeting these fertilizer needs. Urea (a source of N) is the only fertilizer which is produced in India and can meet a significant share (about 80%) of the indigenous requirement. The fertilizer subsidy burden for the central government in 2012-2013 was about INR 700 billion (USD 13.36 billion 27 ), which is expected to double by the end of the 12 th FYP in 2016-2017.Use of treated wastewater and sludge for agriculture has the potential to reduce reliance on fertilizer by about 40% in areas irrigated with treated wastewater due to its inherent nutrient content. Based on current wastewater generation, irrigation potential estimated for wastewater in India and the associated potential to reduce fertilizer consumption in wastewater irrigated areas, it can be estimated that the annual fertilizer subsidy could be reduced by about INR 1.3 billion. (USD 243 million 28 ). 29Analysis presented in various studies (WII 2006;Londhe et al. 2004;Amerasinghe et al. 2013) suggests increased economic benefits for farmers engaged in cultivation with treated and untreated wastewater compared to freshwater, due to increase in yields, lower fertilizer requirement and improved quality of yield resulting in higher prices for the produce. Appendix 13 presents more information on the incremental benefits accruing to farmers engaged in cultivation in various cities across India using wastewater compared to freshwater.box 7. PhosPhoRus RECovERy fRom WAstEWAtER.A wastewater treatment process offers several choices for P recovery which include the sludge-free wastewater, the sludge liquid, the sludge itself and the incinerated sludge ash, each with a different P concentration and recovery potential-but also costs. Technology plays a significant role for P recovery from wastewater as there are various options with very different costs and efficiencies. Crystallization processes based on the liquid phase from sludge dewatering, as also promoted by the Canadian company Ostara and the Japanese Phosnix process (Group 1 in Figure 5), are cost, and energy wise, the commonly preferred options to date, while processes building on P recovery from sludge ash (Group 2 in Figure 5) are slightly more expensive but have a significantly more favorable P recovery capability. Options to recover P from sludge (Group 3 in Figure 5) can extract similar amounts of P to those based on incineration, but the additional energy demand and costs make them less attractive at the moment (Morf and Koch 2009). On average, use of untreated/treated wastewater for agriculture enables an increase in the farmer's earnings by INR 17,000 ha -1 (USD 343 30 ) year -1 on account of water availability and reduced fertilizer use. This is an increase of about 30% in the farmer's income compared to when the farmer uses freshwater alone. Given the average landholding size in India of about 1 ha, channeling the entire amount of treated wastewater towards agriculture (irrespective of upor downstream) has the potential to support 2 million farmers and increase their annual farm earnings by INR 17,000 ha -1 year -1 (USD 343 31 ) or about 30% over the baseline levels (using freshwater alone).Comparisons of wastewater and freshwater farming however require caution as biophysical factors, crop varieties and farming practices might differ between the wastewater farmers and the control group. Even where both groups are found in the same village, using the same crops, wastewater farmers will use fertile loamy soils along the polluted river, while freshwater farmers access ground water but only have poor sandy soils (Drechsel et al. 2014).More than 60% of the country's irrigation requirements are met by ground water (IDFC 2011), which requires energyintensive ground water pumping. The energy required for ground water irrigation is usually sourced through grid electricity (subsidized significantly by state governments) or by using diesel pump sets, and either of these options requires a significant financial expenditure for the individual farmer or for the state. Also, the increasing use of ground water has led to the depletion of ground water tables and allied problems in many parts of the country.As evident from Table 2, the use of treated wastewater for irrigation has the potential to reduce ground water requirements in these areas and hence leads to a reduction in associated energy use. With the availability of a continuous supply of wastewater, reliance on ground water extraction could be reduced. There are currently about 18 million electricitypowered pump sets reported in use (BEE 2011). Considering the substitution potential of wastewater irrigation and assuming a reduction of pumping use by at least a third of the current use in these wastewater-irrigated areas, the savings in grid electricity supply requirements would be significant and are estimated to save (the state government and the electricity utility) about INR 6 billion (USD 128 million 33 ) annually. 34 Greenhouse Gas mitigation from use of treated Wastewater for IrrigationConservation of energy as a result of using wastewater for irrigation has the concomitant benefit of reducing harmful GHG emissions that would have been generated during the production of an equivalent amount of electricity using fossil fuels. These GHG emissions can be avoided through adoption of wastewater irrigation which reduces ground water pumping requirements, as discussed in the preceding section.`Our estimate suggests that avoided ground water pumping due to wastewater irrigation has the potential to reduce about 1.75 million MWh of electricity annually, which is equivalent to reducing about 1.5 million tonnes of CO 2 e (tCO 2 ) GHG emissions. There is significant scope to create additional income streams for treatment plant operators through the Clean Development Mechanism as recently proposed for China (GTZ 2009).This advisory highlights the growing demand for water from the domestic (household), industrial and agriculture sectors, the limits of available freshwater resources and the potentially increasing costs of supplying freshwater in urban areas, over the period up to 2030. There is potential for wastewater recycling and reuse in the domestic, industrial and agriculture sectors. There are various national and international guidelines on water quality for the safe use of treated wastewater depending on its intended purpose.While the benefits of wastewater recycling and reuse may be known to different stakeholders, city governments and water utilities face operational constraints owing to the overlapping remits of institutions mandated to manage water in its different uses. This needs to be addressed through coordinated efforts at national, state and city levels of administration. The following section identifies both the immediate and long-term actions that can be implemented by state governments, as well as the approach that may be adopted by the ULB to promote wastewater recycling.Some initiatives that may be taken up at the state level to promote recycling and reuse are discussed hereunder.A. Immediate to short-term reforms:1. Mandate that only treated wastewater will be made available to industries for their non-potable applications and actively promote this in partnership with industry departments. 2. Ensure that all wastewater treatment plants are set up at a minimum recycle and reuse rate of 20% of the wastewater treated at the plant. 3. Development of by-laws for ULBs on wastewater reuse. Fifty of the 63 mission cities under the Jawaharlal Nehru National Urban Renewal Mission (JNNURM) have instituted by-laws for Rain Water Harvest (RWH) and wastewater reuse. However, implementation/enforcement is reportedly tardy. While some of the ULBs have notified the by-laws making the separation of grey water and its reuse mandatory for larger premises (plot area greater than a prescribed threshold) and large consumers (water consumption per day greater than the prescribed threshold), some have brought all new properties under the ambit and specified that existing properties will be notified in due time.Monitoring and enforcement are required preliminary steps and remain weak to date. Also, cities need to make related improvements gradually through identification of water consumptive end uses within city environs, developing the by-law to bring about targeted reduction in freshwater use. The municipal administration/urban development department will need to assist the movement of cities to a better information base on water demands and use within 35 The MWRRA (cf Bulk Water Tariff Order 2013016) had to necessarily intervene and assist the cities in enabling reuse. \"WRD, in all their agreements with domestic water user entities, should take note of this circular and permit the ULB to recycle and reuse upto 20% of the total sewage for the purposes envisaged in the GR of UDD without insisting for its release after treatment into a natural water courses provided there are no prior irrigation or other commitments downstream.\" 36 the city environs, estimating potential consumers of wastewater use and preparing action plans for an outcome-based movement towards more efficient use of existing water flows within the city. i.Enact and enforce by-laws for reuse of recycled wastewater, making treated wastewater the only source for all non-potable applications in industries. ii. Mandate that ULBs, over a predefined timeframe, make treated water available at specific locations within the city/town for use by large non-potable water users. iii. Enact and enforce by-laws requiring all new developments to have provision for dual piping that allows reuse of treated water for toilet flushing and other non-potable uses. 4. Revoke or limit the water consent permits for withdrawal of ground water/alternate sources of water for non-potable applications among non-domestic customers.B. Long-term planning and reforms to promote recycling and reuse of treated wastewater:1. Identify state-level potential for recycling and reuse of treated wastewater and initiate appropriate swaps: a. Creation of an apex body for water resource planning and management in urban areas. Alignment of state departments -water resources/irrigation, municipal administration/ urban development, panchayat raj (local government)/rural development, agriculture -for regional planning, allocation and management of water resources. Some of the states have moved forward with part of the agenda through the creation of independent regulatory authorities (e.g. Maharashtra) or through the setting up of apex bodies like the Water Resources Department. Most of these have focused on sectoral allocation of water, creation of water resource projects and tariff fixation for irrigation and special supply provisions (e.g., for industrial clusters). b. Integrated planning and direction would provide clarity for the ULB/water boards on the extent of reclamation/reuse permissible. For instance, in cases where there are prior irrigation commitments downstream and accounting for minimum environmental flows required in basin management, the urban center would be required to return that predetermined (specific) amount of treated wastewater into the river. The volume of treated wastewater in excess of this commitment is what the ULB/water board can work on for reclamation/reuse for other uses. c. The introduction of treated wastewater flows in water resource planning and management deliberations at the regional level would also provide the opportunity to examine the possibility of other allocative methods/principles like 'swap', where the ULB/water board can be provided with additional allocation of water upstream equivalent to the excess volume (and quality) that the urban center delivers downstream after treatment and meeting other prior commitments. 2. Preparation of state-specific recycled wastewater standards based on intended use. This would require inputs from multiple departments and institutions and should be guided by the industry/manufacturing and agricultural policies and practices in the state, especially in urban and peri-urban environs. It would also be guided by any national standards prescribed by the appropriate authority and could improve, depending on the local conditions, the social and environmental objectives of the state administration.It is expected that they would be based on appropriate baseline information on industry water requirements and agricultural products prevalent in the state.A. Reforms to promote collection and treatment of wastewater:1. Create a database on consumers, water use and wastewater generation. a) ULBs and water boards report data on water supplied and these are underestimates of actual water use by designated consumers within the supply's jurisdiction. While a few ULBs and water boards have graduated to metering bulk supplies and auditing transmission infrastructure, metering at the consumption side is limited to only a few cities. Also, even in metropolitan centers, industrial consumption of water is rather low and seemingly does not reflect actual industrial water requirements. Ground water access and use in urban centers is a guesstimate and has tended to assumptions that half the municipal water requirements are met from ground water (take the allocation assumptions in any water tribunal directive). b) With these types of data, estimates on water and wastewater flows within urban environs do not lend themselves to meaningful planning of infrastructure. Such national efforts could also contribute to global-, regional-and country-level data needs on wastewater generation, treatment and use as they will be required for the SDGs (Sato et al. 2013).c) In urban centers, water supplied for parks and other recreation spaces is better accounted for as it is generally conveyed through tankers and managed by the ULB/water board.2. Planning for treatment and recycling/reuse of wastewater. From the perspective of wastewater treatment, reclamation/reuse, it is essential for the water management agency to have more usable data on water consumption by different end users, especially users that can be satisfied with nonpotable water.With the reforms adopted in the urban sphere over the last planning period, many of the larger urban centers have updated their property databases and even made them geographically explicit (i.e. GIS-based). For these cities, these data could be a useful starting point to locate large residential (apartment complexes or layouts), industrial and commercial users, cluster them spatially and build up estimates of water use based on property size. Other cities will need to start from scratch in building a database of industrial/commercial customers within their jurisdictions. Prioritization could be made for industrial estates or clusters that have arisen in the urban/periurban area. Data from the Department of Industries should be accessed and used to estimate water demands in key industrial sectors within the urban jurisdiction and possibly its periphery. These are potential consumers of treated wastewater.After identification of the potential type of consumers for treated wastewater -industry, institutional, commercial -within the urban area, conducting public consultations with representatives would help to identify the range of end users and quality requirements. This will need to be fine-tuned further with selected major water consumers. Water-use surveys on a sample basis will need to be carried out to assess:o Present and projected water use in identified industrial, commercial, institutional (educational campuses) and recreational facilities;o Current sources of supply and costs of water;o Potential opportunities for utilizing reclaimed water. Prepare an estimate of treated wastewater production -present and projected.Analyze historical O&M costs of wastewater treatment and prepare unit cost estimates for treated wastewater, accounting for energy charges and projecting possible increases. Examine the feasibility and costs of developing dedicated transmission infrastructure for treated wastewater and develop scenarios for different supply amount and investment recovery periods.wastewater:1 Supply of treated wastewater would require the construction and alignment of separate conveyance systems. Norms for them will need to be incorporated in ULB by-laws and urban road construction plans. Reuse of dual quality water would also require suitable access points and storage facilities at receiving properties. The standards will need to be incorporated in the building rules.The dominant demand driver in the future will continue to be the agriculture sector in India, the current share of which was about 85% of total water demand in 2010, expected to become about 74% by 2050. The demand from the industrial sector is expected to triple in the same period, with demand for water in the energy sector (currently at less than 1% of total water demand) anticipated to increase In India, cities get their water from significant distances. Table A2.1 provides the distances for different cities. Health accounted for a significant portion (72%) of the losses and poor sanitation was attributed to 768,000 deaths, or a tenth of all the deaths in the country; 710,000 children under 5 died from diarrhoea and malnutrition induced by inadequate sanitation. Among children under five, inadequate sanitation causes more than 30 percent of all deaths. A utility may choose to manage the wastewater through different arrangements. The obvious and most frequently chosen option (in cities where wastewater treatment is being provided) is to treat the wastewater collected from its service area to the standards required according to applicable regulations (the minimum requiring treatment levels to be consistent with conventional secondary treatment plants). However, utilities may also consider arrangements involving public-private partnership (PPPs) models whereby some or the entire burden of constructing and operating the treatment plant becomes the responsibility of the private operator, with different forms of revenue and cost sharing depending on the specific circumstances of the city/PPP partner. Some examples of PPP arrangements in the sanitation sector being implemented in Indian cities are as follows:Nagpur: The City of Nagpur (Nagpur Municipal Corporation (NMC)) has entered into an MoU with the Maharashtra Power Generation Company Limited (Mahagenco), a public sector company, for \"Construction and Operating Agreement of Treatment and Transmission Facilities for Reclaimed Water Usage\", whereby NMC will provide 110 MLD of untreated, raw sewage to Mahagenco at the rate of INR 15 crore/year (USD 2.8 million 46 ), will allocate land at no additional cost to the company and pass on to the central capital a grant of INR 90 crore (50% of project cost) (USD 16.8 million 47 ) received under JNNURM to Mahagenco for project construction. Mahagenco in turn will be responsible for the construction, operation and maintenance of the STP according to the requirements, including provision of the remaining 50% of the project capital requirement (Sharma 2013).Tuticorin: The City of Tuticorin or Thoothukudi is a rapidly expanding industrial town and a commercial hub for industrial import and export. The Thoothukudi Municipal Corporation (TMC) is responsible for providing water and sanitation services to a population of 3,76,439 (Census of India 2011). Before the corporation began its current project for the construction of a 24 MLD wastewater treatment plant, facilities for water treatment were almost nonexistent in the city. TMC approached the Commissionerate of Municipal Administration (CMA) to help undertake the project and the CMA, through a Transaction Advisor (CRISIL Risk and Infrastructure Solution Ltd), structured the wastewater treatment plant (WWTP) on a DBFOT basis. The project is being implemented on a PPP basis for a concession period of 30 years (including two years of construction), with the TMC responsible for providing land for construction and supply of sewage free of cost at the inlet. The concessionaire is free to sell the treated water to industrial units with a tariff structure of his choice during the concession period. The bidding parameter selected was a grant quoted for the project.The developer selected for the project offered a negative grant to TMC, which was feasible given the prevalence of saline water in the city limits, drinking water being procured from long distances and high demand for industrial water with industries purchasing water from private suppliers at INR 65-70/ KL (USD 1.07 -1.15 48 ).The project will benefit all stakeholders, ensuring that untreated sewage is not discharged into the sea, thereby controlling water pollution resulting from rampant dumping of untreated sewage and providing industries access to a reliable alternate source of water.The city was faced with sanitation challenges due to partial/untreated sewage being dumped into the Panchganga River. The Maharashtra Pollution Control Board (MPCB) issued notice and filed a criminal case against Kolhapur Municipal Corporation (KMC) for not controlling the quality of sewage discharged into the river. While KMC had envisaged and designed two STPs of 76 MLD and 17 MLD capacity each, the corporation's finances did not permit KMC to implement these projects through available revenue surplus. The city decided to use Viability Gap Funding (VGF) and explore a PPP model for implementation of these projects. The 76 MLD project availed NCRD grants (70%) and the 17 MLD project availed grants under the state MSJNMA scheme (50%) and secured the balance funds through private developers.The developers were obligated to construct, operate and maintain the STPs according to state water quality norms, while having the right to sell treated water and sludge over a 15-year concession period. KMC was responsible for providing land free of cost, providing right of way for laying pipelines, assisting in obtaining necessary approvals, providing a predefined contribution on the project cost and transporting wastewater generated in the city to the identified pumping stations. The payments to be made by KMC included fixed and variable charges (for electricity and consumable cost depending upon the amount of wastewater treated).depending on the type of reuse, and outline best practices and key considerations. While agricultural reuse is the most ubiquitous form of reuse practiced in Australia, heavy manufacturing with water-intensive industrial customers has also entered into agreements with water providers for the purchase of recycled water. Earlier reuse projects such as Rose Hills in Sydney are now entering into forward selling contracts with other customers.uSA: Various states in the USA are at the forefront of wastewater recycling, largely owing to the limited availability of freshwater supplies and the water demand-supply gap in the region. Almost 90% of all reuse in the USA occurs in just four states: Arizona, California, Florida and Texas. California and Florida continue to be the two largest users of recycled (reclaimed) water. While the largest use for recycled water in California is for agricultural use and for natural systems, Florida consumes more than 50% of all recycled water used just for urban reuse (landscape irrigation, golf courses). Both states also use reclaimed water for industrial reuse and ground water recharge.Different states started wastewater recycling for different purposes and have developed statespecific reuse standards to support the reuse of reclaimed wastewater for different purposes. The US Environmental Protection Agency (USEPA) has also prescribed Guidelines for Reuse, which were most recently revised in 2012.Singapore: The NEWater recycling and reuse program of the Government of Singapore is a manifestation of the country's limitations vis-à-vis availability of freshwater and its desire to become self-sufficient in terms of water supply in the next few decades. Officially declared a 'water poor' state by the Food and Agriculture Organization of the United Nations (FAO), Singapore relies on freshwater imports from Malaysia (about 30% of total demand), and the remainder through rainfall and more than a dozen reservoirs located throughout the state.To end reliance on international imports of freshwater, the government-owned Public Utilities Board began its NEWater program with the establishment of four recycling/ reuse plants which supply water primarily to meet industrial water need as well as for indirect potable reuse to augment supply reserves in the city's reservoirs. The government has also initiated public awareness and education campaigns to ensure the acceptability of its NEWater program.The design treatment capacities and the projected future sewage flow rates to these plants indicate wastewater flow figures as provided in Table A7.2.From Table A7.2, it is clear that more than 500 MLD of secondary-treated wastewater will be available from the 2011 which could be treated and/or reused in industries, freeing up freshwater hitherto supplied to augment the water supply and meet the water supply demand. b After deducting 2% for STP loss and 450 MLD towards 'right of access' (to meet the objective of the NRCD), all the treated wastewater cannot be reused. Therefore, a portion of the treated wastewater will be discharged into the Musi River to maintain river flow and the 'right of access' of downstream farmers (source:http://www.soulhyd.org/hussain_sagar/CHAP07.pdf).This appears to be a more sustainable approach compared to the present attempts by water utilities to draw freshwater from distance sources to meet the growing demands in the cities. Besides requiring considerable resources, the system may also require pumping (to lift the water) and the sources are either drying up due to overexploitation or are overallocated due to political and economic forces. Closing the gap between demand and supply for any city administration is a challenge and wastewater recycling and reuse is a promising solution. If we consider capital investments for both options as being financed by loans, the operating deficit of BWSSB under the Cauvery Stage IV scheme would have increased slightly more than 4 times the current deficit owing largely to the interest burden and the continuing deficit realization from unit water supplied. In comparison, the WWRR-to-industries option would have reduced the deficit by 15%. If the additional water obtained from the Cauvery had been somehow channeled to Industry, it would have reduced the deficit by 70%, owing to the high realization from industry for potable water. However, this would have been possible only with assured industrial offtake at such rates.In both Bangalore and Hyderabad (more so the former), the WSSB needs to increase the share of industrial or nondomestic consumption in its consumer portfolio. For Bangalore, of the total water supplied/billed (~600 MLD), industry accounts for less than 20 MLD, while nondomestic (partially and fully) absorbs about 125 MLD. WWRR targeted for non-potable uses would start making economic sense to WSSBs when they are able to estimate non-potable demand and meet it through investments in dual-piping (with or without consumer participation). Current consumer databases with the WSSBs do not seem to have this information.54 2012 exchange rate INR 53.46 = USD 1 55 Ibid.-5,000 -4,000 -3,000 -2,000 -1,000 0Total Revenue (new source) Treatment options for the deactivation and/or removal of pathogens from source water through treatment processes are summarized in Table A10.4, while Table A10.5 shows additional barriers presented by WHO (2010) which should be combined with conventional treatment where possible but can also independently minimize health risks especially for consumers at the end of the food chain, while farmers can best be protected through appropriate protective clothing and hygiene.If the source water for treatment is municipal wastewater, and the treatment is inadequate, the most common health consideration should be for diarrhoeal diseases and helminthic infections. In this case, studies suggest proxy indicators that can be easily used for testing the treated water for hazard agents (Table A10.3). The 2006 revision of the WHO guidelines adopted an approach which moves the control point from, in many countries unachievable, water quality standards to a health-based target expressed in Disability Adjusted Life Years (DALY). The guidelines translate the healthbased target into a performance target of 6-7 log units' pathogen reduction which should be achieved along the food chain or till the point of exposure. This new approach offers authorities more options for reducing risks especially where conventional water treatment is still limited. Table A10.5 shows the possible log reductions through different treatment and other risk reduction options which can be used in combination (multi-barrier approach).Appendix 13. Review of Incremental Benefits Delivered Due to Wastewater Irrigation Table A13.1 summarizes the incremental benefits reported as accruing to farmers engaged in cultivation using wastewater, compared to freshwater. Source: Adapted from Amerasinghe et al. 2013;WII 2006;Londhe et al. 2004.Notes: * This decrease in net benefit in Ahmedabad is believed to be due to higher levels of pollution in Ahmedabad as compared to other cities. The study also reported that continued application of partial/untreated wastewater affects soil fertility increasing fertilizer and pesticide consumption. Thus farmers engaged in wastewater irrigation were spending more on fertilizers and pesticides, compared to farmers practicing freshwater irrigation.** This incorporates the impact of increased yield, change in fertilizer and pesticide use, wherever reported.","tokenCount":"11743"} \ No newline at end of file diff --git a/data/part_3/4140228406.json b/data/part_3/4140228406.json new file mode 100644 index 0000000000000000000000000000000000000000..5e364d80c91c11931e130f8e291edad16ba8afe8 --- /dev/null +++ b/data/part_3/4140228406.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"a363824c34fb96eeb2111d72dbf65dee","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/b1d23c45-51fe-4978-b3b9-f8238440a2e2/retrieve","id":"1986337861"},"keywords":[],"sieverID":"647e1dc1-ad10-4cd4-8deb-516f425ded92","pagecount":"12","content":"Concerns about the institutionalization 01 PPB Participatory plant breeding í8 considered to be parallel to the formal breedíng system and i8 al80 viewed as competing for the same resources. Most formal-sector researcherslbreeders have yet to realize PPB 's importance and its potential for addressing food security. These may be sorne ofthe concems limitíng the ínstítutionalization of the approach. F or the institutionalízation ofPPB and ils wider use as a complementary approach, it ls necessary for PPB practitioners and advocates to make greater efforts to infIuence policymakers in the national research system and funding agencies. This may also Tequire more collaborative PPB projects for different environments and CTOpS. Exposing researchers to participatory approaches to crop improvement will also be necessary.regarding its terminology, concepts, approaches, and mcthodologies. These will have to be refined over time from Ihe experíences and Ihe work done so far, as well as through more PPB programs and projects in Ihe future in different production and breeding systems and in different socioeconomic and ínstitutional settings. This also warrants more collaboration and partnerships as well as institutionalization in national agricultural research systems. Training courses and oríentation programs must also be designed to develop human resources in thís area of research and development.Annex A. Roles and Responsibilities Agreed between LI-BIRD, Pragatisheel Yuba Club, and Srijansbeel Motbers' Group on Various Tasks in PPB Process (for High-Altitude Rice) -Source: Letter of agreement between U-BIRD and Maramche eBOs, December 1998. Note: Roles are given in order of priority (Le., 1 セ @ leading role, etc.). ... Conservation of genetic resources and species in farmers' fields (or in situ conservation) has received increased attention in recent years. National parks, zoos, and nature reserves are needed more than the current system of seed banks if sustainable agricultural systems are to be maintained (partap 1996). On-farm conservation in farmers' fields promotes an evolutionary process of recombination of useful genes from wild relatives and cultigenes with widely grown landraces under changing conditions (Sthapit and Josm 1996). On-farm conservation of genetic resources is of speciar significance for the Himalayan mountain areas, such as Garhwal in India, wheie there is a high degree of inaccessibility, fragility, and risks, and where farmers have Iittle political awareness.The traditional knowledge system of a farming community is built upon cultural practices interwoven around agroecological resources. Cultural practices include preservation, cultivation, and utilization ofbiodiversity. If in situ conservation practices are squeezed out of mountain agriculture and farmers are instead made dependent on germplasm developed tbrough modero breeding techniques by public institutions and seed companies, Ihe traditional knowledge and means of livelihood that have evolved over long periods of tríal and error would be severely threatened.Vir Síngh is with os Pant University of Agriculture & Technology, Pantnagar, India. Vijay Jardhan work. wlth!he Beej Bnchao Andolan (The Save Seed Movement) Jardhargaon, Nagani, India.In sítu conservation and farmers' access to and control over germplasm go hand-in-hand. If biodiversíty were the potentíal source of sustainability, on-farm conservation of crop species and genetic resources mus! be the inevitable process to realize sustainability in marginal areas Iike mountains. Farmers are at the center stage of agrobiodiversity management. If farmers' rights are lo be safeguarded and their independence is to be ensured, on-farm conservation of germplasm must remain in the hands of farmers. In situ conservatíon is also a way lo keep the negative effects of Green-Revolution-type agriculture al bay, including the possible extinction ofvaluable landraces.Kecping in mind these deeper issues and concerns, farmers in the Henwal Valley ofGarhwal Himalayas started a Beej Bachao Andolan (Save Seed Movement). By saving the traditional seeds and landraces, along with in situ conservation of biodiversity, this kínd of initiative brings positive changes to local agricultural systems, leading to ecologically sound, self-reliant, and sustainable agriculture. It also empowers farmers with seeds, wmch are the mos! potent symbols oftheir power and independence. Conserving landraces and biodiversity, along with empowering farmers, are the main targels ofthe Beej Bachao Andolan (BBA). Those active in the movement are trying Iheir best lo reintroduce seeds that were losl when the so-called high-yielding varieties (HYVs) produced by institution-led research were introduced. Farmers are reviving ecologically regenerative farming praetiees by improving the cornmon property resource base, mainly the forest ecosystems.This paper atrempts to present the experienees ofthe Beej Bachao Andolan, wmch is, in fact, a landrace renaissance in wmch mounlain farmers are the sole motive power. This story mighl help to stimulate farmers and pro-farmer organizations in other areas of the world to establish tms sort of conservatíon and development eff0:t, with farrners al the heart of it.Garhwal is a part of the Uttarakhand HimaIayan area in India, wmch was once a unique repository of biodiversity ín its forests, grasslands, and farmlands, including a variety of unique landraces. This has been reflected in !he foods and folk culture of the area. Motmtain people have been relatively prospemus; unique landraces llave contributed to their prosperity in a big way. Quoting Walton's findings ofthe 19th Century, Bahuguna (1989) writes, \"The Hill man [is] indeed specially blessed by the presenee in almost every jungle of fruits, vegetables, and roots to help him over a period ofmoderate scarcity.\"The prosperity of the region in the past is also evident from oral mstory and written documents: \"The people were well off and they used to export wheat, rice, coarse grains, oil seeds, ginger, saffron, herbs, walnut, handrnade paper, copper mds, musk, honey, ghee, woolen c1othes, cows, bulls, ponies, elc., in the markets of foothills and imported only gur (molasses) and colton c\\oth\" (Bahuguna 1989). Lt. Col. Pitcher, who was appointed to inquire into the conditions ofthe lower classes, reported in 1838, \"The peasants ofGarhwal and Kumaon are better offthan Ihe peasants in any parts of the world, who neither live in such well-built houses, nor are so well-dressed as !he peasants ofKumaon (Bahuguna 1989).This riehness ofGarhwal's agriculture was clearly evident right up to the end ofthe firsl half ofthe twentieth cenlury. The picture has now reversed entirely, largely due to externaI development and complete neglecI of local perspectives. The type of agricultural development associated with the Green Revolution began in relatively fertile irrígated valleys, leading lO the management of monoeultures of a few HYV s of just two cereal crops. These required liberal use of chemical inputs (fertilizers and pesticides), for which lot ofincentives and subsidies were províded to the farmers of the area. The HYV s of many crops also spread to rain-fed upland areas, which led to the reduction ofthe large number oflandraces the region was famous foroThe fertile valleys in Garhwal Himalayas witnessed a near genetic wipeout in agriculture. By the mid-1980s, large arcas of irrigated flatlands were occupied by only two crops-wheat and rice-and only a few varieties of these crops. A considerable proportinn nf arable land in the upper rain-fed areas had come under cultivation of introduced white-seeded soybeans. A majnrity of farmers had switched over to \"improved\" cultivation practices using recorrunended chemical fertilizers and synthetic pesticides, and were heavily reriant on extemal \"expertise.\" This almost completely transformed the mountain valleys, which were virtually converted into an experimental ground for government-sponsored agencies. These agencies conducted their experiments and demonstrations and distributed chemical inputs, \"tested\" seeds nf modern varieties, and \"improved\" tools and implements to the farmers.It was only a matter oftime until this genetic uniformíty was struck by disaster in the form of an unprecedented drought during 1987-88 and by pest epidemics in the two following years. The modem erops had a very narrow genetic base and were badly damaged; the farmers experienced the worst daysin their lives.To confront the crisis nf genetic vulnerability, the farmers in the Henwal Valley ofGarhwal began collecting indigenous seeds, whieh had almost dísappeared from the accessible fertile valleys. Initially, they eolleeted seeds of 1 O local rice varieties from remote rural areas not affected by changes in technology and reíntroduced them in theÍr fields. These local varieties exhibited remarkable performances. The pest epidemic recurred during this crop season, but it hit only the modern crop cultivars. The reíntroduced landraces remaíned undamaged.The next year, more farmers in the Henwal Valley opted for indigenous varieties. Seeds ofthe landraces produced during the first year were distributed to other farmers in the valley. After strenuous efforts, 35 indigenous varieties ofrice were collected during the seeond year and were all raised on farms. Nearly 60 pereent ofthe total area ofthe valley was covered by the reintroduced landraces thal year.During the third year, a total of 11 O landraces ofrice were reintroduced, and the genetic diversity in rice increased dramatically. Nearly 90 percent of the cultivated area in the valley carne under landraces. In the fourth year, the total number oflocal varieties went up to 126 and the year afier, 130.Experiencíng the wonderful performance of the landraces, the farmers of the valley launehed the Beej Bachao Andolan, (BBA) which has now spread its roots throughout the whole of GarhwaLThe BBA searches, collects, reintroduces, tests, distributes, and popularizes all available local varieties of mountain cropS. So far, it has reintroduced 300 genetically dístinct varieties ofrice, abou! 200 varieties ofkidney beans, 12 ofamaranth, and so on, in the Henwal Valley alone. The number of landraces reappearing in the once genetically transformed valleys is increasing year by year. Free exchange of seed within the cornmunity-the life-line of traditional mountain agriculture-has also been revived. BBA is witnessíng a landrace renaissance in the mountains. Superb landraces, once lost to the so-caBed HYV s, are becoming an increasingly potent symbol of farmers' self-respect, self-reliance, and independence.In transfonning agriculture, seed has been the most potent weapon in the hands ofthe external development agencies, including multinational corporations. Along with a variety of chemicals, alien cultivation practices also came with the new \"miracle\" seeds. This gradually undennined farmers' traditional wisdom and innovativeness. A vicious cycle of dependence on market and development agencies for new seed varieties, chemical inputs, and technological know-how started in the region.Because of the inevitable dwarf characleristic and narrow straw-grain ratio of the HYV s, they provide considerably less fodder compared to their 10ng-staIked traditional counterparts. The quality of fodder provided is also inferior. The dwarf varieties have thus led to asevere shortage of the fodder and manure that are always badly needed by the li vestock-dependent eommunities ofthe mountains. In addition, when there i8 a fodder shortage, the work1oad of wornen farmers ínereases (Singh 1992).Monocultures with a narrow genetic base are extremely vulnerable to epidemics and unfavorable weather conditions. The seeds ofHYVs cannot even be stored in houses wímout chemical treatment. They are mus a potential source of environmental pollutíon and healm hazards. Indiscrimínate use of chemical fertilizers and pesticides also reduce soíl fauna and flora and severely affect me healm of soil ecosystems.Seeds have always been regarded as a common property resource by farming communities in me mountains. Free exchange of seeds within mountain communities has been one of the most outstanding features of agriculture. Under transfonned agriculture involving new seeds and external inputs, seeds cease 10 be a common property resource, as does セ ィ ・ ゥ イ @ free flow among fanners. Seeds are now a private resource of big corporatíons or public organizations. Patents and intellectnal property rights, etc., are the means to treat vital seeds as weapons of a newly emerging biological imperialism.Rice in fue HimaIayan mountains was once a natural treasure of genetic diversity. In this region rice can be grown successfully up lo an altitude of 2000 melers. Himalayan valleys are especially well known for fue special varieties of rice lbat grow there. Tradítional rice varieties, like hansraj, ranyawan, kanguri, bagwai, gorakhpuri, basmati, thapachini, jhumkya, etc., thrive in lowland areas, whíle chawaria, mujil. jhailda, lekmal, kallao, almunji, chwatu, etc., grow well in upland rain-fed areas and at high altitudes. Some of varieties can even be grown cIose to glaciers. Sorne varieties demand more water, sorne less, and some need no írrigation at all. The productivity of ram-fed rice varieties is comparable with lbat ofirrigated ones. Such rare, hardy, and sturdy variet-¡es would hardly be found in me plain areas anywhere in me world.HYVs cannot match tradítional varieties in theír palatability, or, perhaps, nutritive value. Due to chemical applications, HYV s can pose a potential risk to human health and disturb me natural food chain. The taste and distinctive aroma of sorne traditíonal rice varieties, e.g., Indian basmati, are known throughout the world. Many rice varietíes in the mountains, e.g., kafalya, kallao, ghyasu, and ramjawan are comparable lo basma/i.AlIlandraces are known for their characleristic size; me shape and size of ears; color, shape and size of seeds; palatability; aroma; cooking quality, etc. In addítion, lathmar and jhailda are free from splítting problems. They are generally planted in areas prone to hailstorms. Even wild animals cannot harm them because the ears ofthe plants bear awns. Sorne landraces are al so ofhígh medicinal value; for example, kajalya is used to cure leukorrhea and many other gynecologícal problems.A croppíng pattem based on intermíxing finger míllet, locally known as baranaaja, ís a symbol of prosperity in the regíon. Baranaaja literally means \"12 food grains.\" The adage \"diversity is prosperity\" holds well from the perspective of mountain agriculture. Finger millet is intercropped with as many as 12, and sometimes even more, other food grains. Amaranth, buckwheat, kidney beans, horse gram' black soybean, black gram, green gram, cowpea, adjuki bean, sorghum, and cleome are the main crops intermixed with the base crop offinger míllet. Baranaaja provides a unique eXam-pIe ofhow a mountain farmercultivates diversity. Marginal and small farmers inhabiting the mountains manage agrobiodíversity in such a way that they can harvest the maximum number offood items from the mínimum amount ofland. The degree of agrobiodiversity is directly proportional to the level oftheir (food) security, and baranaaja is the core oftheir (agri)culture.The main result of conventional ínterventions in agriculture is to replace the unique baranaaja culture with monocultures of white-seeded soybeans. Soybeans as a cash crop is projected as a panacea for the land-based economy ofthe mountaíns. This crop was introduced recently as one ofthe packages of the OTeen Revolution and is said to be a source of protein, milk, and oiJ. Soybean, in faet, has never been an ingredient of local diets, nor has it fetched more money for the farmers. Farmers who switched to soybean cuitivation from baranaaja generally bartertheirproduce for salt or rice. Unlike all major mountain crops, soybeans do not provide fodder for livestock, which has contributed to fodder problems in the area.Realizing the potential dangers to local agrobiodiversity, the majority oflocal farmers have given up raising soybeans at the expense ofthe unique baranaaja. BBA, with the help offarmers has been successful in reviving the baranaaja culture, to the joy of mountain cornmunities.The mountain farming systems lypical of Garhwal comprise forests, cropland, Iivestock, and households as fOUT organically Iiuked components (or subsystems). No input from outside the system lS required. This tradítional system ís \"closed,\" and self-eontainment is one of its most essential features. Forest biomass flows into cropland (cultivated land) in the form of organic manure via the agency of livestock. Crop biornass is recycled into cropland through livestock and human beings.This farrning system is altogether different from the one operating in the plains under Green-Revolution agricultura! practices. In the ¡atter, organic liukages among components are virmally missing. Forests are almost absent. Almost aH the necessary inputs are supplied from outside. The forests and grasslands in the mountains, on the other hand, are managed as cornmon property resources, with cropland continuously receiving a subsidy from them. Such a unique farming system could be termed a \"nature-subsidized, solar-powered agroecosystem.\" Green-Revolution agriculture, on the other hand, is a \"fossil-fuel-subsidized, solar-powered agroecosystem\" in whích petroleum-based inputs (chemical fertilizers, pesticides, and machines powered by fossil fuels) are inevitably used.Cornmon property resources play the most vital role in providing ecological integrity 10 mountain agriculture. Biodiversity in these areas has enormous bearing on agrobiodiversity. Ecologícal regeneration and enriehment of diversity in these areas is also a focal poin! ofBBA. Plentíful biomass harvests, especially of fodder and fuel wood, trom cornmon property resources have strengthened organíc línkages among the components of farming system, infusing health into the whole farmíng system. Croppíng systems are more fragile than fores! ecosystems. Ifthere is erop failure due lO an erralíe weather cycle, for example, cornmon property resources can fill much of the requirement for foOO. They also case pressure on croplands. In their absence, more and more areas would have lo be cultívated, whích would exact a heavy cost trom the ecological balance in the regíon.Cornmon property resourees also playa significant role in enhancing food secnrity. Villagers in Garhwal have access to at least 127 different food-providíng plants. Many ofthese food plants oceur in areas tha! are eornmon property resources. People íncorporate 23 wild fruits, flowers, and buds and 14 wild vegetables in their díets. These uncultívated foods complement the cultívated ones. FoOOs obtainable trom uncultivated comrnon property resource areas ofien have very high nutritive value. Many ofthese have medicinal value as well. At least 100 more plant varieties that occur naturally in uncultivated areas are exploited as fodder for livestock and thus become par! of human nutritíon through milk and milk prOOuets.When looking at the food spectrum of prehistoric humans, we come to know tbat they embraced at least 1500 species ofplants, while over 500 vegetables were utílized by ancient civilizatíons. However, in contemporary times, human nutrition ís based on no more than 30 plants, with three crops-wheat, rice, and maize--acc.ountíng for 75 percent of our cereal consumption (SAM 1984).It can c1early be inferred trom this thal human societies have been moving steadíly towards a state of food poverty based on the decline of food díversity. The state of food díversity is grirnmer in agriculturally transformed areas deluged by high-yieldíng, fertilizer-dependent varieties of food grains. In these Green-Revolution areas onlya few species ofplants with a limited number ofvarieties remain the solesource ofhuman nutrition. There is no mentíon of and no debate about uncultívated foods. In urban mountain areas, where the public distribution system is the only way lo feed people, most ofnutritional requirements are mel by dal-bhat (pulses and rice). But the plates ofrnral mountain people are piled with delicíous and díverse foods thanks to the enormous biodiversity flourishing in their forests and agroecosystems.Because of the continued neglect of comrnon property resources in policíes and planning, however, considerable ecological damage has been witnessed in these areas over the last few decades. BBA took stock of this situation and designed concrete strategies for ecological regeneration. Van suraksha samiti (forest protection comrnittees) have been formed. Inspired by the Chipko Movement, the village youths involved in these committees have taken on !he task of regenerating the rapidly depleted fures!s. Overgrazing of the comrnon property resources by cattte and ovine species is no! allowed. Only hand-Iopping (no cuttíng with sickles) of oak leaves is permitted. Oak forests represen! !he natural clímax vegetation ofthe Middle Himalayas, playing a very specífic role in soil and water conservatíon and microclimate maintenance. These forests are especially protected from overexploitation. Only dry branches and twigs can be removed for firewoOO. The comrnittee's sanctions are to be followed by aH. BBA has enhanced the biodiversity ofthe cornmon property resources through massive plantings offoOO-yielding trees. These trees have begun bearing fruit and eontributing to food security.As a result of this cornmunity management, village residents in the Henwal Valley of Garhwal are now obtaining fuel, fodder, and several kinds ofwild foods (fruits, flowers, buds, vegetables, seeds, honey, etc.), along with cultivated fruits, from the cornmon property resource areas-free of cost on sustained basis. Water springs have been rescued and these supply clean drinking water to villagers. The reappearance of several wild animals-boars, bears, leopards, etc.-indicates that the ecological balance is being restored. Farmers are getting plentiful natural subsidies in the form of forest biomass, water for irrigation, etc., for agriculture, and the impact on agronomic yields in cropland is visible.BBA keeps records of the performance of all the landraces. BBA farmers also do their own informal experimentation on the landraces. The performance of all the landraces is compared with the so-called HYV s demonstrated by external development agencies. AIl the traits of vital socioeconomic importance, rather than just grain yields, are taken into consideration. The results of one such experiment conducted in Jardhargaon ofthe Henwal Valley are presented in table l. In their experimentation, farmers do not apply any statistical design, but they do take into consideration more traits and factors than an agricultural scientist would conventionally do. Sorne ofthe interesting observations are listed below.. .• The average yield of27 landraces (40.00 qper ha) was significantly higher than the yields of five HYVs (28.00 q per ha).• Thapachini, a widely adopted landrace, gave the highest grain yield (54.00 q per ha).• Jhumkya, khushboo, agariya, lathmar, kali mukhri, basmati nagni, lalmati, congressi, nailchamya, rekhalya, and rikhwa also gave impressive yields.• Most ofthe landraces attain maturity earlier than HYVs.• The average recovery percentage of landraces (72 percent) was significantly higher than that ofHYVs (60 percent).• The average grain-husk ratio oflandraces (2.6: 1.0) was wider than that ofHYVs (1.5: 1.0).• Straw-grain ratio s ofmost ofthe landraces (1.4:1.0 to 2.3: 1.0) are higher than those ofHYVs (1.1: to 1.6: 1.0), thus supplying more fodder, a critical produce, no less important for livestock production in the region.• Yields ofthe landraces are fairly sustainable. This has been observed for more than a decade in the Henwal Valley ofGarhwal.• More yields with low inputs (zero external input) indicate the high-energy efficiency in landraces.• Landraces show considerable tolerance to diseases and pest infestation, and sorne of them can thrive well under rain-fed conditions, thus exhibiting the unique trait of drought tolerance. HYV s, on the other hand, are vulnerable to several sorts of pests and cannot grow under rain-fed conditions.• In addition to organic manure, HYV s usually require external inputs (chemical fertilizers and dreaded pesticides); hence, their cultivation contributes to environmental pollution and","tokenCount":"3640"} \ No newline at end of file diff --git a/data/part_3/4167124005.json b/data/part_3/4167124005.json new file mode 100644 index 0000000000000000000000000000000000000000..9bfdfcc0f6dd7297bc8269812e7da0820b22b926 --- /dev/null +++ b/data/part_3/4167124005.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"6dbac0eddf8d84203205fa167571a132","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/28cecfb1-1772-485d-b589-97d3199b3c73/content","id":"1948216067"},"keywords":["Cereal production","Crop science","Malnutrition","Nutrients","Rickets"],"sieverID":"515ac378-6aa6-4a8c-a624-9bb944234b70","pagecount":"4","content":"During the 1970s, the Green Revolution basically used dwarfi ng genes in wheat and rice that allowed greater water and fertilizer effi ciency which dramatically increased the cereal productivity and thus, increased human caloric intake of the developing world. However, having met caloric intake, there is a need to address the issues of malnutrition through a holistic food production system. For example Ca-defi cient induced rickets was found in 9% of children in SE Bangladesh, illustrating the failure of that food production system to address this vital nutrient, calcium. A clinical trial has shown a minimum of increase in calcium intake of 250 mg Ca per child per day was enough to prevent rickets. In Bangladesh, a consortium of universities and other medical institutions and the International Center for Wheat and Maize Improvement (CIMMYT) has developed strategies to infuse calcium within the food delivery system. For treatment of ricketic children, a strategy was developed to use live and video drama to create community awareness of the production and/or consumption of highcalicum crops/food and calcium supplement added to the cooking rice (in this case, highly edible CaCO3 readily available throughout the country). Though this represents a very specifi c case study, this is a useful example of how collaboration based around crop science can address the hidden' hunger of malnutrition throughout the world.The Green Revolution brought cereal production to the currently sustainable levels of self-suffi ciency in much of South Asia. While most of the population's caloric intake is now adequate, as many as 50% of young children are malnourished in many places. Malnutrition takes on the form of vitamin or micronutrient defi ciencies, such as zinc or iron, or stunting of body growth by the imbalance of nutrients which the current crop production systems are not providing. Fig. 1 illustrates that with increased population, cereal production has met, and even exceeded, dietary standards for most of the population. However, compared to cereals, pulses-an integral and historically signifi cant dietary requirement-has fallen Plant Prod. Sci. 8(3) : 326 329 (2005) Fig. 1. Percent changes in cereal, pulse production, and population between 1965production, and population between and 1999production, and population between (FAO data, 1999)). far short of meeting the communities' needs. Pulses satisfy much of the nutritional balance for a diet that would satisfy micronutrient and other defi ciencies (Fig 2 .) that are causing malnutrition rates to remain so high throughout the developing world.In south-east (SE) Bangladesh, the debilitating disease, rickets, caused by calcium defi ciency was discovered 12 years ago in children under 15 years of age (Combes, 2001;Hassan and Combes, 2002). Rickets was prevalent in 9% of the children surveyed. There are other areas of the world where Ca-defi ciency induced rickets occurs (Thacher et al., 1999). Thus a study was conducted in Bangladeash to better understand the calcium supply of local diets and to determine the response of children to calcium supplements to the food supply. FAO data has indicated that between 1979/81 and 1994-96, the supplies of pulses, nuts and oil crops, starchy roots and sweeteners have decreased respectively by 23%, 18% and 16% (FAO, 1999) (Fig. 3).A nutritional survey was conducted in SE Bangladesh to determine the food intake and to measure the intakes of calcium in the diets of especially the mothers and children. The food intake over a twentyfour hour period was recorded for randomly selected communities. Simultaneously, a double blind feeding program was established among 200 children to determine the response of those children to calcium.Although these children had biochemical symptoms of the nutritional disorder rickets (elevated alkaline phosphatase), most did not exhibit the disabling weakening and bending of the bones. Three treatments were given: 1) a nutritious food supplement containing minerals and vitamins, but no additional calcium, 2) the same food supplement as (1) but with 50 mg calcium, and 3) the same food supplement above in (1) but with 250 mg calcium. The children were fed daily for 6 months. After the feeding period, their blood was sampled for alkaline phosphatase and X-rays taken of their joints.The survey determined that the communities lacked enough high-calcium foods in their diets to maintain adequate levels of calcium in their bodies (Institute of Child and Mother Health, 1998). This was true for all economic classes, all religious communities, and even with varying educational levels. In this area of Bangladesh there is little or no raising of cattle or livestock because the area is prone to cyclones and cattle are at risk of being swept into the ocean. Thus the population has no access to milk which is high in calcium. Further, the area is surrounded by mountains to the east, making communication with other Bangladesh communities diffi cult. As population numbers have grown, the land has been used for rice production, and there has not been a proportional increase in pulse production. Moreover, there is The double blind nutrition study showed that the lowest level of calcium used in this study was enough to prevent rickets in the majority of the children tested.Strategies were determined for supplementing calcium in the community's diets based on the survey and dietary supplement data.Firstly, the soils were limed (soils in that region are acid sulphate soils) to test whether the various indigenous or improved crops and vegetables would take up more calcium. However, as calcium is an element used in the plant's biochemistry for bioregulation, luxury consumption of calcium in plants is rare. More often calcium defi ciencies limit plant growth or yields. Thus, liming was not the solution to raise calcium levels in the community, though it did increase productivity of most crops and vegetables.Secondly, we identifi ed local foods high in calcium and that, if eaten in greater quantities, would be suffi cient in preventing rickets (Table 1). Thus foods such as cowpea, okra, pigeon pea, mungbean, small indigenous fi sh, and some indigenous leafy vegetables were able to contribute to the communities' calcium requirements. Use of milk products is an obvious but unaffordable solution.The third strategy aimed at making the community aware of the link between diet and rickets was through live drama and a made-for-TV video drama. Using modern multimedia projectors, portable DVD players, rented generators and speakers available in every village, whole villages (even without electricity) can now view the 1-hour drama linking cause and effect. Because rickets disables young children permanently across all economic and religious classes in their communities and because these communities now better understand the causes of the disability, they have become highly motivated to prevent rickets. Responses indicate a great deal of knowledge about rickets and its prevention are imparted by using these dramas. Informal surveys indicate an increase in production and consumption of these high-calcium crops.Lastly, an indigenous use of limestone usually added for chewing beetle nut was determined to be the best bioavailable and affordable source of calcium to supplement the calcium-delivery system of consuming more high-calcium crops. Thus, we determined that 1 g of CaCO 3 added to the cooking rice pot provided enough calcium per day for children to prevent rickets without affecting taste or color of the rice. Thus, embedded within the dramas and videos, we could mention not only food, but also the use of limestone in the rice pots to assist them in preventing rickets.Fig. 4 illustrates a holistic food system for delivering a balance of nutrients to communities at risk of malnutrition. Although people are not positioned in this model, they represent the major change innovators. The example from Bangladesh shows that changes can be made at the system level, through a food system that addresses nutrients rather than simply caloric suffi ciency. The key is crop science that fi nds local solutions and knowledge sharing, again at the local level.Informal surveys indicate that many households are now growing and consuming more high-calcium foods and including the addition of limestone in the rice pot based on the work conducted in the SE of Bangladesh. We believe that this rickets' model of empowering communities with a nutrient-delivery system' can be used elsewhere in communities throughout the world where malnutrition is a growing problem (Dagnelie, et al. 1990;Bhattacharyya, 1992;Bishop, 1999;Thacher, et al. 1999).","tokenCount":"1361"} \ No newline at end of file diff --git a/data/part_3/4185087269.json b/data/part_3/4185087269.json new file mode 100644 index 0000000000000000000000000000000000000000..521c0c5ab9e3f2052b667d8362ef4fd3f9735458 --- /dev/null +++ b/data/part_3/4185087269.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"7dfe9bccd30b708956d7f5fd5e5cbfe0","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/c4d36fbf-e896-46f4-9b2e-c18136e6f242/retrieve","id":"2082093762"},"keywords":[],"sieverID":"06fe7d8f-4602-4f86-8904-8d8509ee53e8","pagecount":"2","content":"Préférences du consommateur et influence sur le prix des différentes variétés de haricot L e haricot commun Phaseolus vulgaris est l'une des plus importantes légumineuses cultivées par les petits exploitants au Malawi, où il est traditionnellement consommé en accompagnement du maïs, principal aliment de base. Le plus souvent, les agriculteurs cultivent diverses variétés de haricot (nain et volubile) présentant d'énormes différences au niveau de la taille du grain, de la couleur ou de la forme. Au cours des années, la recherche sur le haricot pour le développement a bénéficié d'un investissement significatif. Les variétés locales utilisées par les agriculteurs ont été croisées avec de nouvelles variétés de haricot en provenance d'Amérique du Sud en vue de produire des variétés améliorées (plus performantes aux niveaux du rendement, de la résistance à la sécheresse, aux ravageurs et aux maladies) adaptées aux conditions locales. Ces efforts ont débouché sur l'introduction de plusieurs variétés améliorées de haricot au Malawi (neuf variétés mises au point par le Collège d'agriculture et huit par la station de recherche agricole de Chitedze) en faveur des petits exploitants. Les variétés de haricot présentent différentes caractéristiques (couleur, forme, taille) qui induisent les préférences des consommateurs. Les agriculteurs vendent une partie de le leur production sur les marchés locaux, mais les informations sur les préférences des consommateurs sont rares. Une étude a été entreprise en vue d'identifier les facteurs sociaux qui commandent le choix des consommateurs pour telle ou telle variété de haricot sur le marché et sur l'influence que cela exerce sur le prix des haricots.L'étude a été conduite en 2004 après la récolte de haricots. On a pratiqué la méthode de l'échantillonnage en grappes en deux étapes. Tous les marchés importants, principalement situés dans le sud et au centre du pays ont été pris en compte par l'étude. Sur ces marchés, un certain nombre de marchands de haricots (vendeurs en gros et détaillants) ont été choisis au hasard pour répondre à une série de questions ciblées et prendre part à un dialogue. 74 commerçants ont été interviewés sur la base d'un questionnaire structuré permettant de : o discerner les facteurs qui influencent le choix des consommateurs pour telle ou telle variété de haricot sur le marché, le prix des haricots et le volume des ventes. o stimuler le partage de l'information entre les commerçants et les producteurs.Selon le lieu, différents noms sont donnés à une même variété; par exemple, la variété Napilira (rouge tacheté) est également appelée Kachiyata (ou Chiata), et le haricot rouge commun peut porter le nom de Phalombe, Chimbamba ou Thyolo, en fonction des marchés où ils sont vendus. La plupart des commerçants mettent en vente des haricots qui ont été triés par variété. Trois variétés prédominent sur les marchés, plus de 50% des commerçants les offrant à la vente : les variétés Phalombe (77%), Nanyati (72%) et Napilira (65%). Le prix du haricot varie selon les marchés, selon les étales d'un même marché et selon les différents types de haricot, en fonction des préférences de consommateurs. En général, le prix de gros varie de 0,30 dollar/kg à 0,80 dollar/ kg selon les variétés. Le haricot Khaki présentait en 2004 le plus haut prix de vente moyen en gros à 0,50 dollar/kg, suivi de la variété Phalombe à 0,46 dollar/kg. La variété Napilira présentait le prix de vente moyen le plus bas, à 0,36 dollar/kg. L'étude a démontré que le prix des haricots dépendait essentiellement de leur disponibilité. Néanmoins, un certain nombre de traits propres à chaque espèce (tels que le temps de cuisson, la couleur du grain et le goût) exerçaient aussi une influence sur le prix des variétés de haricot.Le volume estimé des ventes mensuelles de haricots, calculé à partir des informations communiquées par les commerçants de gros, a confirmé les indications des revendeurs (à savoir que le volume des ventes de haricot était directement lié à la disponibilité des différents types de haricot plutôt qu'aux préférences des consommateurs pour telle ou telle variété). La variété Napilira, figurant au troisième rang des variétés les plus recherchées, présentait le plus haut volume de vente moyen, s'élevant à environ 8 800 kg par mois. Les commerçants attribuent principalement ce phénomène à la forte capacité de rendement de cette variété en faisant la variété la plus abondante sur les marchés au moment de la récolte. Plus de la moitié des vendeurs (68%) ont indiqué de pas avoir communiqué les informations relatives aux préférences des consommateurs aux agriculteurs. Certains pensaient que les producteurs étaient déjà au fait de ces préférences, tandis que d'autres ont exprimé leur crainte que la communication de telles informations aux producteurs entraîne une hausse des prix des variétés les plus populaires. ","tokenCount":"777"} \ No newline at end of file diff --git a/data/part_3/4196606976.json b/data/part_3/4196606976.json new file mode 100644 index 0000000000000000000000000000000000000000..3b9fb4d38878135527f35deea4e88e90a8d11f47 --- /dev/null +++ b/data/part_3/4196606976.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"e10d4863408e1f82d7fd42c02d0804cd","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/df42967c-a5c6-47d0-a8d0-5cfb77069c50/retrieve","id":"1101606556"},"keywords":[],"sieverID":"c0acf7fb-eda4-4a02-a712-1da2aa312308","pagecount":"48","content":"In serving this mission, IWMI concentrates on the integration of policies, technologies and management systems to achieve workable solutions to real problems-practical, relevant results in the field of irrigation and water and land resources.The publications in this series cover a wide range of subjects-from computer modeling to experience with water user associations-and vary in content from directly applicable research to more basic studies, on which applied work ultimately depends. Some research reports are narrowly focused, analytical and detailed empirical studies; others are wide-ranging and synthetic overviews of generic problems.Although most of the reports are published by IWMI staff and their collaborators, we welcome contributions from others. Each report is reviewed internally by IWMI's own staff and Fellows, and by external reviewers. The reports are published and distributed both in hard copy and electronically (www.iwmi.org) and where possible all data and analyses will be available as separate downloadable files. Reports may be copied freely and cited with due acknowledgment.Appendix This paper summarizes research on the Krishna River Basin in southern India, including physical and agricultural geography, remote sensing, hydrology, water management, and environmental issues. Discharge from the Krishna into the ocean decreased rapidly from 1960-2003 due to irrigation expansion. Annual runoff to the ocean fell from a pre-irrigation average of 56 cubic kilometers (km 3 ) to 13 km 3 (1994-2003), despite no significant change in rainfall. By the late 1990s, the cumulative reservoir capacity in the basin approximated the annual runoff volume. Distributed runoff data shows that this closure happened not only in downstream reaches, but also in upstream tributaries. The basin closure has resulted in interstate disputes over water and an increased need for basin-scale water resources assessment and modeling.A simple water balance model that uses only the ratio of precipitation to potential evaporation explains 74 percent of the variability in runoff coefficients over the basin, and suggests that the basin has two distinct hydrological regions; the Western Ghats, with high runoff coefficients, and the central and eastern basin, which have low runoff coefficients. The basin has eight hydronomic zones, including water source areas in the Western Ghats, rainfed ecosystems, and a variety of irrigated areas including primary, secondary, tertiary, groundwater, and future irrigated areas. The Western Ghats occupy only 9.5 percent of the basin area, but receive 21 percent of the basin's rainfall and produce 57 percent of the basin's surface runoff due to both high rainfall and high runoff coefficients. Runoff coefficients are low (<10%) for much of the basin due to naturally high evaporative demand and low precipitation. The Western Ghats have high runoff coefficients compared with other rivers in the world with similar climate, likely due to both thin soils and the intensity of precipitation during the monsoon.A water account of the basin based on agricultural census data, modeled evapotranspiration, and measured basin rainfall and discharge, suggests that evaporation from rainfed ecosystems consumes more water than all agricultural lands combined. Rainfed agriculture consumes more water than irrigated agriculture, but this is based on the assumption that soil moisture does not limit evapotranspiration in rainfed areas. More than 50 percent of the basin's irrigated area is supplied by small tanks and groundwater, which are not currently included in the allocations to the three states. Neglect of this important irrigation sector and its impact on the basin water balance could result in unanticipated shortages of inflow to irrigated projects downstream. Additional water use by other sectors, including urban water demands, are currently a small fraction of total basin water use (<1%), but are potentially important in drought years and during critical irrigation months.Basin closure, combined with the pending renegotiation of water allocation among the three states that share the basin, has resulted in disputes over the remaining water resources. One consequence of the political and legal dispute is a lack of data availability and transparency, particularly for streamflow, canal flow, and groundwater levels. The restrictions on data access remain a key constraint to further research and planning for water resources in the basin. vi 1 Food production increased markedly in many parts of the world during the twentieth century (Dyson 1999). In India, the rate of growth of food production surpassed the rate of population growth, resulting in increased food per capita, though significant problems of malnutrition and distribution remain (Hopper 1999). Increased food production has required rapid expansion of irrigated area and water diversion to agriculture, which has resulted in groundwater overdraft (Shah et al. 2003;Singh and Singh 2002) and streamflow depletion in some basins (Vörösmarty and Sahagian 2000). Water scarcity resulting from basin closure has numerous implications for water management, including increased competition and an imperative to improve water productivity in order to maintain growth in the agricultural economy (Keller et al. 1998;Molle 2003;Wallace 2000). Basin closure also occurs in the context of global climate change, which may impact water availability and introduce additional uncertainties (Mehrotra 1999).Water resources analysis in regions experiencing closure should be carried out in a basin context, because uses in one area affect water availability in downstream areas (Molden et al. 2003). The Krishna Basin in southern India is one example of a basin closing to future water resources development following the rapid expansion of irrigated agriculture. The International Water Management Institute (IWMI) has selected the Krishna Basin as a benchmark basin for intensive, continuing studies of basin-scale water management under increasingwater scarcity, based primarily on the criteria of basin closure coupled with imminent revisions to basin water allocations. The Krishna Basin is shared by three Indian states (Andhra Pradesh, Maharashtra, and Karnataka), and increasing water scarcity has resulted in water competition among them. A basin tribunal, which resolves interstate water disputes and makes legally enforceable water allocation decisions, was reconstituted in 2004 to revise the allocation decisions made by the first tribunal in 1976. The pending reallocation has resulted in competing claims by each state about the appropriate allocation award, and represents an opportunity for third-party review of allocation rules.This document summarizes the physical geography, agriculture, land use, hydrology, and environmental issues of the Krishna Basin. Emphasis is placed on the hydrology and irrigation. A map of hydronomic zones is presented using land use derived from satellite imagery (Moderate Resolution Imaging Spectroradiometer -MODIS) and ancillary maps of irrigated command areas. A macroscale hydrological model of the annual water balance that uses only the ratio of precipitation and potential evapotranspiration is parameterized for the basin. The macroscale model is then combined with the hydronomic zones map, which points to the importance of the Western Ghats mountains for runoff generation, and documents low runoff coefficients (<0.10) in a majority of the basin area. A water account The Krishna River Basin is the fifth largest river system in India in terms of annual discharge and drainage area (Table 1; Figure 1). The basin covers parts of three South Indian states: Karnataka, Andhra Pradesh, and Maharashtra. The river originates as the Upper Krishna River in the Western Ghats of Maharashtra and Karnataka, drains the Deccan Plateau, and discharges into the Bay of Bengal. The main stem of the Krishna River has two major tributaries, the Bhima River from the north and the Tungabhadra River from the south (Figure 1). Most of the basin is relatively flat (Figure 2a) and 90 percent lies below 750 meters (m) elevation, though elevations in the Western Ghats reach up to 1,900 m (Figure 2b). The basin has been divided into twelve sub-basins for water resources analysis by the National Water Development Agency of India (NWDA)(Figure 3).The basin has a topographic boundary defined by the area that receives runoff, and a command-area boundary, which includes areas outside of the topographic boundary that receive water from canals that cross the topographic boundary (Figure 1). The irrigated area outside the topographic boundary may be considered to be part of other basins, so water transported to it may be considered an inter-basin transfer; here One canal provides water to the city of Chennai, which is not considered a part of the basin boundary for this analysis. A large wetland in the northeastern Krishna Delta also has an uncertain hydrologic relationship with water from the Krishna River and canal system, so the boundary of the basin vis-à-vis the wetland is uncertain.Most of the Krishna Basin lies on crystalline and basaltic rocks that have low groundwater potential, particularly compared with the relatively high-yielding aquifers that occur on deep alluvium of the Indo-Gangetic Plain to the north (Figure 4). The Cretaceous igneous basalts and Precambrian granitic gneiss that underlie most of the basin create hard-rock aquifers that have low porosities and low hydraulic conductivities. The Krishna Delta occurs on deep alluvial sediments that have aquifers with higher potential. Soils in the basin are generally shallow (Figure 5a) and clayey, with some areas of gravelly clay and loam (Figure 5b). Soil types (based on the Soil Taxonomy classification system, NRCS 1999) include Entisols and Vertisols (black cotton soils) in the west and Alfisols (red soils) in the south and east. Soils tend to be deeper in valley bottoms, and are deeper on average in Andhra Pradesh.Four monthly rainfall datasets are available for the basin. First, gridded data from the IWMI Climate Atlas is available from 1961-1990 at 0.17 degree resolution (Figure 6a, http://www.iwmi.org, access date September 17, 2006). Second, the global dataset from the Climate Research Unit (CRU) of the University of East Anglia (New et al. 2000) has data available from 1900-2000 at 0.5 degree resolution (Figure 6b). Third, meteorological stations from the Indian Meteorological Department (IMD) have point data at 26 locations, with variable coverage from 1945-2000 (Figure 7). Fourth, the Indian Institute of Tropical Meteorology (IITM) provides precipitation estimates by subdivisions of India from 1871-2006, and makes annual and seasonal forecasts (Figure 7; http://www.tropmet.res.in/, access date September 17, 2006). The IITM data is derived from the IMD meteorological station data and should therefore be similar to the IMD data.Annual rainfall differs significantly between the two gridded datasets (IWMI Climate Atlas and CRU), particularly in the northwest corner of the basin (Figure 6). The CRU dataset matches the IMD meteorological station data better than the IWMI Climate Atlas from 1961-1990, which is the period included in the IWMI Climate Atlas (Figure 8). The CRU dataset has a lower mean bias (+25 millimeters (mm)) and lower root mean square error (RMSE, 82 mm) than the IWMI Climate Atlas (bias -145 mm and RMSE 224 mm). The reasons for the differences among the datasets are not known, but it is suggested that the CRU dataset be used for rainfall runoff modeling given its spatial resolution and agreement with the IMD data. The IITM data are more difficult to compare with the IMD point data; later in the report we compare rainfall-runoff relationships for the CRU and IITM datasets.The two arms of the monsoon embrace the Indian subcontinent on both sides, the southwest monsoon from the Arabian Sea and the northeast monsoon from the Bay of Bengal. Rain out of atmospheric water during transport inland causes precipitation in the Krishna Basin to decrease with distance inland from both coasts, most dramatically east of the Western Ghats, where precipitation decreases from over 3,000 mm to approximately 500 mm over a distance of 80 kilometers (km) (Gunnel 1997). Precipitation decreases more gradually from 850-1,000 mm in the Krishna Delta in the east to 500-600 mm in the northwestern part of the basin. The average rainfall in the basin is 840 mm, approximately 90 percent of which occurs during the monsoon from May to October (Figure 9).The climate of the basin, as quantified by the aridity index (potential evaporation divided by precipitation), is dominantly semi-arid with some dry, sub-humid areas in the Krishna Delta, Western Ghats, and Eastern Ghats, and a narrow humid band in the Western Ghats (Figure 10). The potential evaporation (E p ) data used to calculate the aridity index and the climate classification scheme are from the United Nations Environment Programme (Ahn and Tateishi 1994). The climate classification has three subdivisions of the semi-arid category (Deichmann and Eklundh 1991). E p exceeds precipitation in all but three months of the year during the peak of the monsoon (Figure 9), highlighting the need for irrigation during the non-monsoon seasons. Rainfall and potential evapotranspiration in the Krishna River Basin above Vijayawada station, with the dry and cropping seasons. All three states that overlap the basin have diverse cropping patterns (Neena 1998) including rice, jowar (sorghum), corn, sugarcane, millet, groundnut, grass fodder, and a variety of horticultural crops. Based on the Agricultural Census of 1998, the basin has five cropping regions (Figure 11): (1) Rice-grains and cash crops in the eastern basin, including the Krishna Delta, Nagarjuna Sagar command area and groundwater irrigated areas; (2) Grains-rice-sugar dominate in the northwest. Most rice-sugarcane irrigation occurs in command areas at the base of the Western Ghats; (3) Grains-rice-oilseeds in the center and central-south; the Tungabhadra Command Area contains most of the rice production in this part of the basin; (4) Oilseedsgrains in the southwest, with minimal irrigated area; (5) Rainfed rice and cash crops in the Western Ghats. The annual cropping cycle consists of three periods (Figure 9): the Kharif or monsoon season (June to October), the Rabi or post-monsoon (November to March), and the dry season (April to May). Aquaculture occurs in the delta, especially in the wetlands at the boundary of the Krishna and Godavari deltas. Three major cropping patterns occur in the canal irrigated systems, including double cropping (rice-grains, 4.6% of total basin area of 258,912 km 2 ), continuous irrigation of long-cycle crops (sugarcane and agroforest, 3.4%), and irrigated dry crops (3.0%) (Figure 12; Table 2). According to both remote sensing and census data, groundwater and minor irrigated areas, which are composed mostly of small irrigated patches (<0.1 km 2 ) in rice, groundnut, corn, cotton, and horticulture, represent a larger fraction of the basin irrigated area than all major canal irrigated areas combined (Table 2). Expansion of irrigated areas has changed the basin-average normalized difference vegetation index (NDVI) from 1982-1999 (Figure 13). NDVI increased the most in the Upper Bhima and Upper Krishna, which experienced rapid growth in both groundwater and surface water irrigated area. A detailed analysis of land cover change mapped at 8 km pixels may be found in Thenkabail et al. (2007).In 2001, the basin contained a total of 67 million people, with 45 million in rural areas (Government of India 2001). The rural population density is highest in the Krishna Delta and central-west Alamatti Basin, and lowest in the center and southwest (Figure 14). Of the twelve major sub-basins, the Musi has the highest total population density due to the large urban center, Hyderabad (~7 million).Water has been managed in the Krishna Basin for centuries. Water management originated with the construction of small earthen dams, or tanks (Shiva 1991). In the sixteenth century, the Vijayanagar Empire sponsored the construction of irrigation canals and small reservoirs (tanks) on the Tungabhadra River in Karnataka, and the urban reservoir Hussain Sagar was constructed in Hyderabad.Beginning with British engineers in the 1850s, the irrigation strategy in southern India has emphasized \"light irrigation\" of irrigated dry crops like cotton and sorghum, versus \"heavy irrigation\" of water-intensive crops like rice and sugarcane (Wallach 1984). With the exception of the Krishna Delta, most of the irrigation schemes in the Krishna Basin, including the Tungabhadra, Bhadra, and Nagarjuna Sagar were Area of major crops in the Krishna Basin by district, and generalized cropping regions. Land cover and irrigated area by source in 2002, corresponding to Figure 12, in km 2 . Groundwater and surface water irrigated areas were determined using combined census data and satellite imagery. See Biggs et al. 2006 for discussion of error rates and ranges using different methodology for determining irrigated areas. Land cover map of the Krishna Basin from MODIS, corresponding to the classes in Table 2. designed for light irrigation with some heavy irrigation at the head-ends of canals on heavy clay soils. However, planned limits to rice and sugarcane cultivation (\"localization\") have proven nearly impossible to enforce, resulting in heavy water use at the head-ends and water scarcity at the tail-ends of major command areas (Mollinga 2003). Additionally, an irrigation setback distance surrounding village settlements was planned for malaria control purposes, though in practice, farmers in head-end villages irrigate virtually all available land. As a result, water shortages occur at the tail ends of canals, and irrigated agriculture often covers only one-half or less of the planned command area (Wallach 1984).Economic simulation studies suggest that this inequitable distribution may result in a 37 percent reduction in the production potential of the Tungabhadra irrigated command area (Janmaat 2004).In the early 1990s, the Government of Andhra Pradesh initiated irrigation reforms designed to improve water management in the State and to devolve decision-making authority from the State to district and sub-district levels. The policies focus on decentralizing water resource control to local levels through the creation of Water User Associations (WUAs) and Distributary Committees (Mollinga et al. 2001). Management interventions in irrigation project command areas focus on maintenance and repair of existing irrigation infrastructure. In upland areas, interventions focus on rainwater harvesting, which includes the construction of Kolhapur type weirs and small tanks designed to intercept storm runoff and store it as either surface water or groundwater (Batchelor et al. 2003). Other local management projects include bunding of small drains, land shaping, afforestation and pasture development. In urban areas, building laws Rural population density in the Krishna Basin, 2000 census. mandate collection of water from rooftops for groundwater recharge. The net effect of these new management interventions on the basin-scale water balance, particularly their implications for downstream users, is not well understood (Batchelor et al. 2003).In India, irrigation projects are classified by the size of the command area into Major (>10,000 ha), Medium (2,000-10,000 ha) and Minor (<2,000 ha). Minor irrigation projects include tanks, dug wells, and tube wells. Major irrigation projects in the basin began with the Krishna Delta Project at Vijayawada in 1852, which was designed to irrigate 530,000 ha (Government of Andhra Pradesh 2005). In the 1920s, two reservoirs were established near Hyderabad, the regional capital, for flood control and urban water supply. Extensive irrigation and hydropower development began in the 1950s with the construction of several large reservoirs including the Tungabhadra (1953), Nagarjuna Sagar (1974) and the Srisailam projects (1987). Today, the basin has a large number of water management structures, ranging from runoff harvesting check dams and small tanks with earthen dams (<1 ha surface area) to the mega-projects like the Nagarjuna Sagar Dam on the Krishna main stem. Andhra Pradesh alone contains 66,000 tanks, of which 90 percent irrigate less than 40 ha, and 10 percent irrigate between 40 and 2,000 ha (Government of Andhra Pradesh 2003b). Small tanks are also common in Karnataka (Shiva 1991). Data on gross irrigated area by source for Karnataka and Andhra Pradesh in 1994 suggests that the area irrigated by tanks (11,100 km 2) is approximately equal to the area irrigated by groundwater (12,100 km 2 ). The relative importance of different sources varies spatially (Figure 15), and many tanks outside of irrigated command areas are used primarily as groundwater recharge structures. Major irrigation projects created a total of 32,000 km 2 of potentially irrigated command area by 1987, with another 43,000 km 2 under construction in 1987. The actual irrigated area is significantly less than the designed area due to heavy irrigation at the head-ends of projects and insufficient water for tailenders (Wallach 1984). Over 100 medium and major projects have been built in the basin, with a total reservoir capacity of 54 km 3 (Appendix 2, after Abbasi 2001;Government of Andhra Pradesh 2005; Government of Maharashtra 2005).Hydronomic zones describe the interaction of hydrology with human water use, and help define the range of management challenges likely to be experienced in a basin (Molden et al. 2001). The delineation of hydronomic zones is somewhat subjective and can change depending on the criteria used, especially in heterogeneous irrigated landscapes like the Krishna Basin. For example, groundwater irrigation zones could include areas 10 or 25 percent irrigated. Delineation of crisp zones is especially problematic in patchy groundwater and minor irrigated areas, and the zones will vary as a function of scale. Nonetheless, based on satellite imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS), precipitation maps, and knowledge of basin hydrology, eight hydronomic zones may be delineated for the Krishna Basin. The map provides a departure point for future discussions of hydronomic zoning of the basin (Figure 16; Table 3).1. The primary water source areas in the Western Ghats and Eastern Ghats have high annual precipitation (>900 mm), high runoff coefficients, and are dominated by forests and mixed agricultural-forest land uses.2. Primary irrigated areas receive water flowing from primary source areas, and do not depend on reservoir releases from upstream. In the Krishna Basin, these areas are dominated by sugarcane and rice, especially in the Upper Krishna and Upper Bhima sub-basins.3. Second-tier irrigated areas depend on reservoir releases and return flow from upstream. In the Krishna Basin, this includes the Nagarjuna Sagar (NJS) command area and some irrigated areas in the Bhima basin.The NJS command area has experienced fluctuating and generally declining canal releases, in part due to upstream irrigation development. Defining the division between primary and second-tier is somewhat flexible and scale-dependent, since even small tanks often have other tanks above them. Here we define second-tier areas as those that have regulated reservoirs upstream.4. Third-tier irrigated areas depend on reservoir releases and return flow from more than one upstream reservoir, and are typically delta areas with a range of environmental challenges. The Krishna Delta has some unique environmental challenges, including some areas of saline intrusion, which threaten both irrigation water quality and mangrove ecosystems.5. Groundwater and vigorous rainfed vegetation, delineated using the MODIS land cover classification, occurs mostly where precipitation is greater than 650 mm. The irrigated fraction in these areas is less than 25-40 percent, and irrigation occurs along valley bottoms (see Biggs et al. 2006 Summary of hydronomic zones in the Krishna Basin, with rainfall from the IWMI Climate Atlas, runoff modeled from the Budyko-Zhang relation (Figure 23), and the aridity index (Figure 10). Aridity index and runoff coefficients are dimensionless. The percentages are the percent of total rainfall or runoff occurring in each hydronomic zone. Note that irrigated zones may only be partially irrigated, so the basin irrigated area is less than the sum of the zones with irrigation. The Krishna Basin began closing rapidly with the inception of large irrigation projects in the 1960s (Figure 17). Mean annual runoff to the ocean was 57 km 3 (29% of rainfall) from 1901-1960 as measured by the stream gage at Vijayawada, which is downstream from the diversion to the Krishna Delta and 105 km from the river's outlet to the ocean (Figure 1). Dam construction and irrigation expansion continued rapidly, and by 2005 total reservoir storage (54.5 km 3) was nearly equal to annual discharge (Figure 17). This resulted in a decrease in annual average discharge to less than 13 km Modeling studies suggest that the depletion is due mostly to irrigation development (Bouwer et al. 2007). Dam construction and irrigation development have significantly changed the rainfall-runoff relationship at the basin-scale. Annual precipitation in the basin correlated closely with discharge from 1900 to 1960 (Figure 19). This rainfall-runoff relationship was significantly disrupted in the 1960s, resulting in significantly less runoff for a given rainfall depth. Measured runoff coefficients also decreased for some of the major sub-basins, indicating that basin closure also occurred at the tributary level (Table 4). The measured runoff coefficient from the Upper Krishna fell from 0.68 in the 1960s, to 0.52 from 1971-1975, and to 0.45 during 1996-2001. Similarly, the runoff coefficients for the Upper Bhima sub-basin decreased from 0.33 to 0.27 between 1971-1974 and 1996-2001. Basin closure, then, has happened at numerous scales and was not due to a few projects but resulted Runoff and reservoir storage at Vijayawada station on the Krishna River.from the cumulative impact of irrigation expansion in numerous locations in the basin.The parameters and fit of the rainfall-runoff relationship depend on which precipitation dataset is used, the Indian Institute of Tropical Meteorology (IITM) dataset, or the CRU dataset (Figure 19a). The IITM dataset extend further back in time than the CRU dataset , have a higher R 2 , and are available in near real-time and for seasonal forecasts. The reason for the better overall performance of the IITM rainfall data for predicting runoff may be due to the use of more rainfall stations by the Change in rainfall, runoff, and runoff coefficients for two time-periods, 1971-1974 and 1996-2001. The areas include the whole catchment area above the gauging station. Water accounting identifies activities that consume water in a river basin and provides the basis for water productivity assessment (Molden 1997). A surface water account was constructed for the Krishna Basin for the period 1994-2003 using data on precipitation, runoff, agricultural census statistics, and crop evapotranspiration estimates (Figure 20; Table 5). Ideally, changes in groundwater volume would be included in the basin water account, but limited data made direct determination of groundwater volume difficult. For the surface water accounting, total annual evapotranspiration (ET) in the basin was calculated as the difference between observed precipitation and observed runoff, which assumed no annual net change in soil or groundwater storage. ET from irrigated agriculture was calculated using two methods: first, as the difference between mean runoff from 1901-1960 and mean runoff from 1993-2004, and second, as the product of the districtwise cropped area from the agricultural census (http://www.indiaagristat.com), the area fraction of the crop that was irrigated, and potential evapotranspiration (E p ) from the Penman-Monteith equation and crop coefficients (Allen et al. 1996) (Table 6). The irrigated fraction was determined from census data, which separate crops into irrigated and non-irrigated at either the district or state level. ET from rainfed crops was calculated as the product of E p , the fraction of the cropped area under rainfed conditions (=1-irrigated fraction) and the district-wise gross cropped area. ET from rainfed ecosystems and other low-beneficial ET FIGURE 20.Water account of the Krishna Basin for 1994-2003, using agricultural census statistics, observed precipitation, and observed runoff at Vijayawada.(e.g., reservoirs, soil) was the difference between basin total ET and the sum of ET from rainfed and irrigated crops. The accounting suggests that rainfed ecosystems account for more than half of annual ET, and that rainfed agriculture consumes more water than irrigated systems (Figure 20). It is important to note that these estimates assume that rainfed crops do not experience water stress, and further simulation or field studies will be required to establish a crop water balance under soil moisture stress.Of the 67 million people living in the basin in 2000, 22 million lived in cities as defined by the Indian Census. Using the UN Agenda 21 target of 40 liters per capita per day, the domestic water requirement of these 67 million people would be 0.98 km 3 , and 0.32 km 3 for the urban population.Assuming a return flow of 80 percent, this gives 0.20 km 3 of depletion over the basin, which is much smaller than the agricultural sector. The city of Hyderabad is the largest in the basin, and has begun drawing water from nearby irrigation projects (Van Rooijen et al. 2005), though the net impact is less than 15 percent of the annual water supply for each irrigation project involved. Future growth could impact some irrigation projects during dry years. Water supply to Hyderabad from the largest irrigation project in the basin (Nagarjuna Sagar) is forecast at 5-10 percent of total releases from the project's reservoir by 2030. Most of the urban water supply (50-70%) returns to streams as wastewater, which is used in irrigated agriculture near cities. The continued expansion of cities may result in increased local conflict over irrigation water, though agriculture is by far the largest water consumer in the basin (Figure 20).Basin-wide water resources planning and comparison of water productivity across the basin will require establishing a project-based water account. For this report, sufficient data was available to establish a nodal water account for the Lower Krishna in Andhra Pradesh (Figure 21).The Upper Krishna at Huvinhedgi contributes more than 50 percent of the runoff to the lower basin, and 47 percent of the irrigation inflow to the Nagarjuna Sagar (NJS) returns to the Krishna River. Other studies on parts of the NJS also show high return flow percentages (Gosain et al. 2005), which contrasts with the value of 7.5-10 percent used by previous water tribunals to allocate water among the states. The return flow from the NJS is equivalent to more than 80 percent of the Krishna Delta's water requirement, which points to the necessity of accounting for high return flows for accurate water assessment and management. Future studies could establish return flow percentages for other projects in the basin, such as in the Bhima Tributary, pending data availability.Note: Question marks indicate uncertain quantities or processes.The water account established above included the contribution of groundwater irrigated areas to ET, since the ET calculations were based on cropped areas that include both groundwater and surface water irrigated crops. However, the account does not explicitly track groundwater abstraction or make a water balance on the basin's groundwater volume or depletion rates. On average, there is 26.4 km 3 replenishable groundwater in the basin (Kumar et al. 2005). Areas of the highest precipitation, including the Upper Bhima, Upper Krishna near the Western Ghats, and the Krishna Delta, have the largest groundwater potential due to high recharge rates (Figure 22). The Middle Krishna has very little replenishable groundwater due to low precipitation and hard rocks with poor aquifer properties.Groundwater use increased markedly in India from the 1970s, and particularly in the 1990s (Deb Roy and Shah 2002). In the Krishna Basin, groundwater irrigated area equals surface water irrigated area (Figure 12; Table 2; see also Biggs et al. 2006). The number of shallow tube wells in the basin increased from 35,000 in 1987 to 137,000 by 1994 (Ministry of Water Resources 2001). The real boom in groundwater expansion, as indicated by rural electrical connections, occurred in the late 1990s for which there is little data available. Recharge and abstraction rates are not well quantified. The role of groundwater irrigation in decreasing the Krishna River discharge to the ocean or to different projects in the basin is also not known.In a survey of groundwater irrigation in watersheds of Andhra Pradesh, the Andhra Pradesh Groundwater Department estimated Characteristics of the thirteen Krishna sub-basins and other watersheds with available runoff data. The catchment area for Group A sub-basins is the area between the gauging station and the nearest upstream gauging stations, and does not include the entire catchment area. The area for Group B sub-basins includes the entire subbasin area. b Ahn and Tateishi (1994).cPrecipitation from Government of India, Krishna Water Disputes Tribunal (1973). Runoff is naturalized, corrected for irrigation diversions. that 38 percent of the watersheds in the State had unsustainable rates of groundwater abstraction, and 15 percent were overexploited in 2004 (AP Groundwater Department, unpublished report). The most severe groundwater overdraft occurred inland where recharge rates and aquifer yields are low. No comparable analyses were available for Maharashtra or Karnataka. The relationship between groundwater abstraction and streamflow is highly uncertain and remains a major gap in understanding of the basin. The groundwater-surface water relationship is particularly crucial for the interstate allocation, as the current allocations assume no interaction between the two.Runoff volumes and the ratio of runoff to rainfall (the annual runoff coefficient) vary as a function of climate. Annual runoff coefficients in the Krishna Basin ranged from greater than 0.68 at the base of the Western Ghats to less than 0.05 in the semi-arid central plateau (Table 7; Figure 10). While complex models may be calibrated to fit observed runoff coefficients, an alternative \"downward\" approach to hydrologic modeling uses simple relationships and accepts some lack of fit in exchange for using simple measurements and better conceptual understanding of basin hydrology (Sivapalan et al. 2003). Such approaches are particularly suited to data-scarce regions like the Krishna Basin, since they do not require the application of highly parameterized models to ungauged locations. The Budyko model uses only climate as measured by the ratio of potential evaporation (Ep) and precipitation (P) to predict the annual water balance. It has been used to model global river discharge and to predict annual evaporation and runoff coefficients. Zhang et al. (2001) proposed a formulation of the Budyko relation that includes a single adjustable parameter (w), and is written as:where E is annual evaporation (mm), P is annual precipitation, Ep is annual potential evaporation, and w is a coefficient that relates to plant-available water (dimensionless). The runoff coefficient is 1-E/P. Ep was taken from Ahn and Tateishi (1994). Zhang et al. (2001) compiled values of w for global rivers, and found that catchments covered with grasses have lower evaporation and higher runoff than catchments covered with forests for a given climate (Figure 23).A single Budyko-Zhang (BZ) model gives a poor fit to the data (R 2 0.42-0.49). Splitting the data into streams draining the Western Ghats and streams draining exclusively the central and eastern basin gives a much better fit to the data (R 2 = 0.74) and a lower root mean square error (0.06). The best-fit value of w for the central and eastern Basin is 0.8, which is intermediate between grass (w=0.5) and forest (w=2) in the BZ model (Figure 23). Rivers draining the Western Ghats fit a straight linear regression better than a strict BZ curve, and have lower evaporation coefficients and higher runoff coefficients compared with other global rivers covered in grass and forest. The high runoff coefficients in the Western Ghats and the remaining scatter around the BZ curves could be due to thin soils, high seasonality and intensity of precipitation, land use, or water management (Farmer et al. 2003;Milly 1994). The BZ curve tests for the effect of climate alone on runoff coefficients, and other, more highly parameterized models that incorporate land use and soil type will certainly produce runoff estimates that more closely match the observed values. More detailed models will be required to produce seasonal or monthly runoff values, but the BZ model shows that climate alone explains more than 70 percent of the spatial variability in annual runoff coefficients (Figure 23b). Notes: Values of w are for equation (1), and represent the evaporation coefficients for grass (w=0.5), forest (w=2), and the best-fit for the central and eastern Krishna Basin (w=0.8).The legend is the same for both graphs.The Budyko-Zhang (BZ) model may be used to estimate annual runoff from each of the hydronomic zones (Table 3). The narrow Western Ghats zone occupies only 9.5 percent of basin area (Figure 16), but accounts for 21 percent of the basin's annual rainfall volume, and generates 57 percent of the basin runoff due to high runoff coefficients. The major intra-basin transfers occur from the Upper Krishna, where ~50 percent of the basin's discharge originates, to the Middle and Lower Krishna (Table 8; Figure 24). Allocation to the Lower Krishna exceeds the volume of water generated in the sub-catchment by ~13 km 3 , while the Upper Krishna is allocated 6 km 3 but generates ~18 km 3. Most other sub-basins have a balance between water availability and water allocation, and therefore would contribute only marginally to flow downstream if all allocation were used.Despite these State-wise allocations from the Tribunal, water development and irrigation projects have continued to the point where basin-wide water demand is roughly double the total volume of water allocated by the Tribunal (Table 9; Shiva 1991). While this may not generate conflicts in surplus years, it may generate significant deficits for downstream projects during years at or near the 75 percent dependable flow. The increasing demand for water creates significant and continuing conflicts between states, including controversy over newly planned projects. The Alamatti Dam on the Upper Krishna, in particular, generates conflict, since the Upper Krishna provides more than 50 percent of the annual discharge to the Lower Krishna Basin and the Nagarjuna Sagar and Krishna Delta projects located there (Figure 21).The initial Krishna Water Disputes Tribunal (KWDT) for interstate allocation expired in 2000. The new KWDT was constituted in April 2004 and is expected to provide a report with revised allocations between 2008 and 2010. It is to be noted that the first tribunal was formed in 1963 and the final decision on water allocation was made in 1976, so current reallocation negotiations could last longer than a decade. Negotiations for additional water release to downstream states are Water Allocation: The Krishna Tribunal Both intra-and inter-state water management could be significantly complicated by groundwater irrigation and small watershed development, which are not included in the current allocations. Though an estimate of replenishable groundwater has been made by the Tribunal, groundwater use is not considered to be linked to streamflow and is decoupled from the surface water allocation award. Neglect of the groundwater-streamflow interactions could lead to significant Water allocation and transfer for 12 NWDA sub-basins, according to the 1973 Krishna Tribunal Award. over-estimation of available surface water, particularly as groundwater irrigation continues to expand.The Tribunal award assumed that 7.5-10 percent of water diverted to an irrigation system returned to streams as return flow, which could be allocated to downstream users. Actual return flow in irrigated areas may be much higher than this; the return flow from part of the Nagarjuna Sagar system in Andhra Pradesh has been estimated at more than 50 percent (Gosain et al. 2005), which is consistent with the lower-basin water budget (Figure 21). High return flows probably occur because high water duty and flooded crops, mainly rice, are being grown instead of the intended irrigated dry crops. Though many farmers already take advantage of return flows by installing informal lift irrigation schemes downstream of major projects (Mollinga 2003), more accurate estimation of return flows could result in more efficient management of the total water available in the basin.The Krishna is linked to adjoining basins, particularly the Godavari in the delta region and Pennar to the south, which includes a pipeline for urban water supply to Chennai. The Government of Andhra Pradesh plans a Godavari-Krishna inter-basin transfer through a major aqueduct lift in the middle reaches to augment urban water supplies to Hyderabad City and the Nagarjuna Sagar reservoir by 2020, though this date could change to suit political imperatives. Additionally, the national River Linking mega-project identifies Mahanadi-Godavari-Krishna links which would be targeted to meet irrigation demand.Basin closure and the pending reallocation of water to the three states have resulted in intense competition over remaining water resources, among States, irrigation projects, and sectors. One consequence of the competition is restriction to data access, both among the three states and with third-parties. As a consequence, the actual water availability, use, and productivity of different irrigation projects remain difficult to determine rigorously and consistently. Such lack of data transparency represents a significant problem for water resource allocation and management in the basin and limits the ability to develop innovative solutions. Though the river basin tribunal assesses water availability and allocation rules every 20-30 years, there is a need to update water resources assessment more frequently while the hydrology of the basin is changing rapidly due to irrigation and urban development. Models of expected water yield linked to decision support systems could facilitate the water managers to operate the basin with updated hydrology. That can only happen if the data was made publicly available. The real-time operation would help the water mangers and would empower farmers and other water users to deal with changes due to climate or upstream withdrawals.In 1991, the International Law Commission established the Law of the Non-Navigational Uses of International Watercourses, which outlines principles for containing conflict generated by shared water resources (Gleick 1993). One central principle was the requirement for regular sharing of data and agreement to a common database among potential stakeholders. Interstate conflict over water in India is a recurring problem in other basins, including the Cauvery Basin, and negotiations in federal Tribunals can last decades. Principles outlined by the International Law Commission could be applied to water resources conflicts among Indian States, and may prevent the escalation of conflict and lead to more rapid resolution of interstate conflicts. Agreement over the amount and spatial and temporal distribution of water resources via established principles of regular data exchange would be an important first step in resolving water allocation in water-scarce basins like the Krishna.The magnitude of streamflow depletion, a large human population and rapid urbanization might be expected to have strong impacts on environmental and water quality conditions in the basin. Information on the environmental impacts of irrigation development in the Krishna is limited; here we provide a preliminary summary of available literature and past IWMI research.Sedimentation of reservoirs is a recurring challenge to the maintenance of tanks and reservoirs, though the relatively low relief and a geologic substrate resistant to erosion (granitic gneiss and basalt) result in total sediment loads that are low compared with basins draining the Himalaya. The Tungabhadra reservoir has some problems with siltation, possibly exacerbated by iron and manganese ore mining (Shiva 1991). Sedimentation problems may be more severe in the Bhima River system, which has the highest erosion rates of the major tributaries, and in small watersheds compared with large river systems (Ramesh and Subramanian 1988).Problems with soil salinity appear limited in the NJS command area and the wastewater irrigated area near Hyderabad. Most salinity in NJS appears to be due to primary, or natural, salinity (Dwivedi et al. 1999). Simple simulation studies of the Tungabhadra Command Area suggest that salts could be accumulating and causing yield reduction (Janmaat 2004), though no data was used to validate the model or verify the presence of high soil salinity. In the wastewater irrigated area near Hyderabad, salinity has been blamed for low rice yields and may have encouraged farmers to grow more salt-resistant crops such as paragrass; however, the links between wastewater irrigation, salinity, crop yields, and farmer cropping decisions have not been conclusively demonstrated.The Krishna River and its tributaries receive effluent and wastewater from a number of large cities, including Pune, Satara, Kolhapur, Hyderabad, Kurnool and Vijayawada, among others. More than 500 important industrial units operate from the Krishna Basin, 200 of which are large-scale industrial units (Centre for Science and Environment 2006). Water quality problems in the region are concentrated in the wastewater irrigated areas of Hyderabad and other large urban areas (Jayashree 2000), though water quality may limit groundwater irrigation in other parts of the basin, and chemical mass balance suggests that irrigated areas contribute significantly to pollutant loads in irrigated parts of the basin (Hiremath 2001;Madhurima 2000;Purandara et al. 2004). River pollution has resulted in fish kills in some major tributaries near urban areas (Kulkarni and Gupta 2001), and has altered solute concentration, microbal populations, and faunal biodiversity along the Musi Corridor outside Hyderabad (Ensink et al. 2006). In a regional survey by the Central Pollution Control Board, the majority of streams were critical in terms of biochemical oxygen demand (BOD) and Fecal Coliforms during 2002and 2003(Central Pollution Control Board 2002). The Musi River downstream of Hyderabad (18.9 mg/L) and the Bhima River downstream of Pune (33.3 mg/L) had high BOD compared with the other rivers against the acceptable value of 6 mg/L. The Fecal Coliform was higher (17,000 per 100 ml) at Wadenapalli after the confluence of the Musi River. The highest value of total dissolved solids (18,899 mg/L) was observed in the Krishna Delta due to backwater effect. Parts of Nalgonda District in Andhra Pradesh have high fluoride contents, which mainly affects drinking water use and not irrigation.The waters and soils of the Musi wastewater irrigated area have relatively high salinity and limited heavy metal contamination. Surveys of water and soil salinity (Jiang et al. 2004) suggest that high salinity contributes to compromised rice yields in the wastewater irrigated areas, and paragrass is grown in areas with high soil salinity instead. Surveys of heavy metals show relatively low risk of contamination, and the background soil stock of lead is high compared with the flux from the wastewater (Gerwe et al. 2004).Some saline groundwaters occur in the Krishna Delta, likely due to seawater intrusion, which may have been exacerbated by groundwater pumping (Saxena et al. 2004;Saxena et al. 2003). Whether the reduction in flow into the delta at Vijayawada (Figure 17) will increase saltwater intrusion is not known. Pollution of shallow hard-rock aquifers has been documented in areas with sugarcane processing (Pawar et al. 1998), though the extent and impact on water productivity is not known.Mangroves occur in the Krishna Delta (Selvam 2003). Decreased flow at Vijayawada caused by irrigation has likely changed the mix of freshwater and saltwater in the mangroves, potentially altering community structure. Very limited information is available on the mangrove systems and their response to the hydrologic changes in the delta.Extensive aquaculture occurs in the Krishna Delta and its wetlands. The shrimp industry depends on mangrove ecosystem services for hatcheries, and there are signs that current mangrove area is insufficient to maintain the shrimp industry in the neighboring Godavari Delta (Rönnbäck et al. 2003). Kolleru Lake, a RAMSAR wetland, has been significantly impacted by aquaculture and agriculture (Malneedy 2003). Andhra Pradesh also has important fisheries in many of its tanks (Sugunan 1995). The rapidly changing hydrologic regime in the basin will result in a changing mosaic of aquatic environments.The broad conclusions and water related issues in the Krishna Basin include:1) The basin is 80 percent closed due to irrigation development, and streamflow to the ocean from 1995-2005 was only 20 percent of pre-irrigation discharge . Total reservoir capacity is approximately equal to annual average runoff, and total demand exceeds sanctioned allocations by nearly double. Basin closure is happening in tributaries as well as at the outlet to the ocean, resulting in interstate conflicts over scarce water resources.2) Groundwater irrigated area exceeds surface water irrigated area in the basin. Rapid groundwater irrigation development will likely decrease surface water availability by drawing down regional aquifers and enhancing infiltration along streams. Current water allocation policy considers groundwater and surface water separately, which could lead to over-estimation of surface flow volumes and over-allocations of surface water.3) A majority of the basin area has very low runoff coefficients (<10%). The Western Ghats dominate runoff in the basin due to high precipitation and high runoff coefficients, so upstream development on tributaries draining the Ghats has particular significance for downstream areas.Future research in the hydrology of the basin could emphasize: 1) Monthly estimates of precipitation and evaporation, and how these affect runoff, soil moisture, and crop production in rainfed and irrigated areas. This would require a more elaborate model of evaporation, soil moisture, and runoff in the basin.2) Techniques to define hydronomic zones in basins more quantitatively with a complex mosaic of irrigated areas. The present map is useful for initiating dialogue about how hydronomic zones should be defined.3) For water allocation policy, a project-by-project water accounting of irrigation systems in the basin is required. Interstate competition for water has restricted access to data to both the other states and third-party research on streamflow and irrigation diversions in the basin. The potential outcome of this lack of transparency includes inappropriate timing and volume of allocation of water in the basin. The resulting errors will likely have severe impacts on the amount and reliability of water supply, and thereby on farmer livelihoods in this water scarce basin.Priorities of the current tribunal should include mandatory transparency of data collection and analysis methods. ","tokenCount":"7958"} \ No newline at end of file diff --git a/data/part_3/4200015886.json b/data/part_3/4200015886.json new file mode 100644 index 0000000000000000000000000000000000000000..922b181bdb7bafb9eb48bf088d1d225f037447f9 --- /dev/null +++ b/data/part_3/4200015886.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"369df727d8f19de3c998d4e0e98e37eb","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/037082ed-bf8a-4469-8499-7df748ca086b/retrieve","id":"-1837553732"},"keywords":["evolution","divergence","diversification","domestication","domestication syndrome","pulse crop"],"sieverID":"8e1af82a-a848-49b5-806c-914e86ceb9f6","pagecount":"21","content":"Domestication is a dynamic and ongoing process of transforming wild species into cultivated species by selecting desirable agricultural plant features to meet human needs such as taste, yield, storage, and cultivation practices. Human plant domestication began in the Fertile Crescent around 12,000 years ago and spread throughout the world, including China, Mesoamerica, the Andes and Near Oceania, Sub-Saharan Africa, and eastern North America. Indus valley civilizations have played a great role in the domestication of grain legumes. Crops, such as pigeon pea, black gram, green gram, lablab bean, moth bean, and horse gram, originated in the Indian subcontinent, and Neolithic archaeological records indicate that these crops were first domesticated by early civilizations in the region. The domestication and evolution of wild ancestors into today's elite cultivars are important contributors to global food supply and agricultural crop improvement. In addition, food legumes contribute to food security by protecting human health and minimize climate change impacts. During the domestication process, legume crop species have undergone a severe genetic diversity loss, and only a very narrow range of variability is retained in the cultivars. Further reduction in genetic diversity occurred during seed dispersal and movement across the continents. In general, only a few traits, such as shattering resistance, seed dormancy loss, stem growth behavior, flowering-maturity period, and yield traits, have prominence in the domestication process across the species. Thus, identification and knowledge of domestication responsive loci were often useful in accelerating new species' domestication. The genes and metabolic pathways responsible for the significant alterations that occurred as an outcome of domestication might aid in the quick domestication of novel crops. Further, recent advances in \"omics\" sciences, geneediting technologies, and functional analysis will accelerate the domestication and crop improvement of new crop species without losing much genetic diversity. In this review, we have discussed about the origin, center of diversity, and seed movement of major foodFood legumes are a key component of the agricultural ecosystem. These plants are a chief member of the most diverse and ecologically crucial botanical families (Lewis, 2005; Legume Phylogeny Working Group (LPWG, 2017;Zhao et al., 2021). Worldwide, food legumes are grown in 93.18 Mha with an annual production volume of 89.82 million tons and a productivity average of 963.9 kg/ha (FAOSTAT, 2020). Legumes play a vital role in crop rotations or intercropping schemes as these plants are capable of nitrogen assimilation through a symbiotic relationship with rhizobia. The use of food legumes in crop rotations has dropped since the Green Revolution, as has their consumption, resulting in nutritional imbalances, such as protein and vitamin deficiency, as well as an excessive reliance on nitrogenous fertilizers in agricultural systems, which causes environmental pollution (Foyer et al., 2016;Considine et al., 2017;Adams et al., 2018). Legume crops play a significant role in increasing indigenous nitrogen production in addition to meeting demands of human population for protein and energy. Leguminous crop farming in rotation with nonleguminous crops improves soil fertility by restoring natural soil matter and limiting pest-related diseases. Legumes are very rich in protein consequently have abundant nitrogen content. Most of the crop plants incorporate carbon in the environment in contrast to nitrogen; nevertheless, the important microorganisms necessary for healthy soil need both carbon and nitrogen. The natural soil development process needs nitrogen and carbon elements as its constituents, which provide conducive ambient for action of microorganisms for the decomposition of crop residues. The leguminous plants encourage earthworm growth in the soil which facilitate the organic matter decomposition, enhance nutrient availability to plants and improve soil structure loosening the soil, soil aeration and root growth and development. The improved soil structure enhances air flow and water movement in the soil. The deep root system provided by legumes aids in recycling the crop nutrients in a deep soil profile. These measures collectively promote ecologically effective utilization of fertilizers and avert nutrient loss, especially nitrate-nitrogen, due to leaching into the soil. An important protein of nitrogen fixing symbiosis, glomalin, assists in binding the soil to form stable composite matter. This stability of the soil strengthens the soil structure through pore space and tilth, thus preventing soil erosion and crusting. Legumes also aid in reducing soil pH and provide a favorable environment for a constructive plant-soil-microbe interaction for optimum crop growth and development.Food legumes help in providing food security by safeguarding the human health, reducing climate change, and boosting biodiversity. Legume crops are important sources of human nutrition, animal feed, and raw products. Legumes provide great nutritional value through the improvement of dietary fiber, vitamins, and minerals and are one of the most important plant-based protein sources in human diets (Mudryj et al., 2014). Leguminous plants are an exorbitant source of protein diet, which are rich in essential amino acid lysine (20-45% of total protein) (Philips, 1993). Cereals are high in sulfur-containing amino acids, and legumes are high in lysine amino acids. These two crops complement each other in nutrient value (Staniak et al., 2014). Thus, legumes and cereals together as a diet significantly improve the protein uptake of the population. The cultivation of legumes will positively result in the production of dietary food, which will certainly improve the affordability of food items to low-income groups to ease malnourishment. In developing countries, malnourishment in lactating women and children, due to lack of protein rich diet is a major issue (Staniak et al., 2014). Malnourishment is prevalent in lower income group in developing countries because of unaffordability of regular supply of animal protein sources such as egg, meat, and milk. As a result, the FAO emphasized and stated that adding legumes to the human diet can help in the fight against nutritional challenges, such as malnutrition, micronutrient deficiencies, obesity, and food-related diseases, all of which are common in many countries.Around 10,000 years ago, the first crops were domesticated in the Fertile Crescent, and agriculture began (Brown et al., 2009). Domestication is a dynamic and continuous process of converting wild species into cultivated species by selecting desirable characteristics in agricultural plants to meet human demands (Acquaah, 2009). Cultivators sought plants that have been domesticated for various desired attributes in diverse agroecological locations around the world. Domestication is the artificial selection of crop plants with desired qualities such as taste, yield, storage, and cultivation practices (Begna, 2020). Plant domestication by humans began around 12,000 years ago in the Fertile Crescent. It expanded throughout the world, including China, Mesoamerica, the Andes, and Near Oceania (all 10,000 years ago), Sub-Saharan Africa (8,000 years ago), and eastern North America (6,000 years ago) (Meyer et al., 2012). Crop plants have evolved as human behavioral ecology shifted from hunting and gathering to farming to meet our food requirements (Roth, 2006). During the transition phase of human behavior change and the inception of agriculture, women played a major role in seed selection and crop domestication (Roth, 2006). Domesticated plant species are found in over 160 taxonomic groupings (Meyer et al., 2012). The most important families are Poaceae, Fabaceae, and Brassicaceae. Approximately 2,500 species have been partially domesticated (Dirzo and Raven, 2003), but only 250 are fully trained (Duarte et al., 2007;Harlan et al., 2012). Many of these are only used in specific situations or locations.Life in the form of land plants evolved during the Paleozoic era (ca. 470 Mya). Several morphotypes evolved through the complex processes of genetic mechanisms and selection for evolved morphotypes, which led to the evolution of different plant species. However, their evolutionary history is not well established because of the very sparse information on fossil records for plant progenitors and morphotypes. This has led to alternative interpretations of species lineages based on the radiation of plant forms by comparing the living descendants (phylogenetic approaches). The evolution of flowering plants (angiosperms) is accepted to have occurred during the early Cretaceous epoch (145-100.5 Mya). However, a recent finding on angiosperm-like pollen from Northern Switzerland dates back to the Middle Triassic period (247.2-242.0 Mya) (Hochuli and Feist-Burkhardt, 2013). The divergence and evolution of Leguminosae based on the fossils and phylogenetic records of plants are also speculative (Pratap and Kumar, 2011). There are several reports of fossils similar to a legume-like structure, but they could not be assigned unequivocally as legumes' fossils. The first definitive fossil record of legumes dates back to the Late Paleocene (ca. 56 Mya) (Herendeen, 2001). Fossil records and phylogenetic studies indicate that the members of the legume family originally evolved during the early Tertiary period in arid and semiarid regions along the Tethys seaway (Herendeen, 1992). Although legumes' diversity is highly documented in tropical and subtropical regions, fossil records contradict this theory of Mesozoic origin and diversification. Another speculation is the \"moist equatorial megathermal\" origin of legumes during the mid to early Cretaceous period (Mesozoic era), which also supports the West Gondwanan hypothesis for the legume origin (Morley, 2000). The understanding of the origin of Leguminosae plants based on fossil records and phylogenetics has become further more complex because of the mass extinction that happened during the Cretaceous-Paleogene boundary (KPB; 65 Mya) (Koenen et al., 2021). KPB is not considered the major mass extinction event for plants; rather, it led to the sudden increase in plant origination and diversification (Silvestro et al., 2015). A similar rise in plant origination and diversification was observed during the global aridification in the Miocene (ca. 10-5 Mya). Fossil records suggest that legumes were ecologically (co-) dominant across the various types of vegetation and the probable reason for their prominence was KPB-driven favorable conditions and frequent whole genome duplication (WGD) (Koenen et al., 2021). On the basis of the molecular studies, molecular clock estimation also revealed an early radiation of subfamilies near the KPB mass extinction, followed by a major divergence event that happened within ca. 15 million years (Zhao et al., 2021). WGD events across legumes and allopolyploidy events among the earliest lineages in the early phase of legume evolution are considered the major factors for legume evolution and divergence into various clades and subclades. At present, over 19,000 extant species of the Leguminosae family are present in almost every kind of ecological settings (Lewis et al., 2005). The classification of the Leguminosae family is given in Figure 1.Leguminosae is the second largest family of angiosperms after the Poaceae in terms of their agricultural importance. Overall, Leguminosae is the fourth largest family on Earth after Asteraceae and Orchidaceae. The Leguminosae family consists of 765 genera and 19,500 species (LPWG, 2017;Zhao et al., 2021). Leguminosae as a monophyletic origin is strongly supported by all molecular studies. On the basis of the flower structure, the Leguminosae was divided into three subfamilies traditionally, namely, Caesalpinioideae, Mimosoideae, and Papilionoideae (Lewis et al., 2005). Recent studies based on extensive molecular data on chloroplast sequence, plastome, or nuclear genes all support the new classification that contains six subfamilies, viz., Papilionoideae, Caesalpinioideae, Detarioideae, Cercidoideae, Dialioideae, and Duparquetioideae (LPWG, 2017;Zhang R. et al., 2020;Koenen et al., 2020). Among these six subfamilies, Detarioideae, Caesalpinioideae, and Papilionoideae are further divided into tribes containing one or more genera. However, many of the tribes and genera are not monophyletic, and in several instances, the relationship among tribes and genera remains unclear (LPWG, 2017). Such classification ambiguities are more in the largest subfamily, Papilionoideae. However, recent advances in sciences and molecular tools are now making it is easier to understand evolutionary events, divergence, and interrelationships at various taxa levels. An extensive study was done to establish a robust phylogenetic relationship among the members of the Leguminosae family using 463 legumes belonging to 333 genera from six subfamilies, including other eudicot species (Zhao et al., 2021). In this study, phylogenomics and transcriptomics data on thousands of gene families revealed 28 putative whole genome duplication/triplication in Leguminosae, including the ancestors of Leguminosae. The divergence time of major Leguminosae (Fabaceae) clades is given in Figure 2. The subfamily Papilionoideae contains the highest number of legume crops that are in cultivation. The importance of this family to humankind is evidenced from their role in agriculture since its origin. Among the eight founder crops of agriculture, four are legumes, viz., lentil, pea, chickpea, and vetches. Legumes remain the second most important crop group after cereals.When agriculture originated in the Near East, food legumes were planted as companion crops to wheat and barley (Kislev and Bar-Yosef, 1988;Zohary and Hopf, 1973), whereas other key grain legumes had their domestication roots in Asia and the New World (Kislev and Bar-Yosef, 1988). Out of eight founder crops since the origin of agriculture, four were food legume crops, viz., lentil (Lens culinaris L.), pea (Pisum sativum L.), chickpea (Cicer arietinum L.), and bitter vetch (Vicia ervilia). According to Bahl et al. (1993), lentil was possibly the first grain legume to be domesticated in 11,000 BC. Along with other early domestications [such as Phaseolus vulgaris (L.) and Glycine max (L.) Merr.], pulses have continually been domesticated as agriculture has expanded and intensified, with more recent domestications, such as pigeon pea [Cajanus cajan (L.) Millsp.] and mung bean [Vigna radiata (L.) R. Wilczek], around 4,000 years ago in South Asia (Fuller and Harvey, 2006;Krieg et al., 2017), alfalfa (Medicago sativa L.) domesticated in Roman times (Prosperi et al., 2014), and narrow-leaved lupine (Lupinus angustifolius L.) domesticated as a sweet lupine over the past century (Gladstones, 1970). For a few food legumes, such as faba bean (Vicia faba L.), the nature of domestication has been obscured by the absence of a known compatible wild relative, although archaeological evidence is starting to clarify at the least the chronology of domestication (Caracuta et al., 2017). In India, food legumes, including green gram and black gram, were grown at various Harappan sites and at Balathal in Rajasthan. Horse gram was domesticated in South India, and it is a known form of Late Harappan Hulas. Chickpea (Cicer arietinum L.)Chickpea is one of the eight \"founder crops\" that gave rise to agriculture. Chickpea was domesticated in the Fertile Crescent 12,000-10,000 years ago (Kislev and Bar-Yosef, 1988). The earliest records of chickpea used as food was in the 8th millennium BC at Tell el-Kerkh and Tell Abu Hureyra, Syria. However, in Tell el-Kerkh, both Cicer arietinum and the progenitor Cicer reticulatum Ladiz. were clearly identified, this being the earliest date for the cultivation of chickpea. It is worth noting that, unlike cultivated species, the wild progenitor's origin is limited to a particular geographic area. Domesticated chickpeas have been discovered in archaeological sites dating back to the Pre-Pottery Neolithic period, which suggests that chickpea was confined to Fertile Crescent only until the early Neolithic era. However, in the late Neolithic era, chickpea had spread to modern Greece (Redden and Berger, 2007). The presence of chickpea seeds in the Nile valley are available at least as far back as the New Kingdom (1580-1100 BC). The seeds are still conserved at Cairo Museum (personal communication). However, the much older archaeological records of domesticated chickpea are available as far back as 3,300 BC onward in Egypt and the Middle East. During the Bronze Age (from 3,300 BC to 1,200 BC), chickpea also reached Crete in the West and eastward to the Indian subcontinent. By the Iron age (1200 BC to 600 BC), chickpea cultivation spread to South and West Asia, the Nile valley, and Ethiopia (Redden and Berger, 2007). The Spanish and Portuguese introduced chickpea to the New World in the 16th century. The linguistic naming of largeseeded chickpea as Kabuli chana (chickpea) indicates that Kabulitype chickpea reached India from the Mediterranean region through Afghanistan in the 18th century (van der Maesen, 1987). N.I. Vavilov designated two primary centers of chickpea diversity, i.e., Southwest Asia and the Mediterranean, and one secondary center of diversity, i.e., Ethiopia (van der Maesen, 1987).Later in the domestication process, the chickpea seeds spread to other parts of the world and niche-specific diversity evolved. As a result, the cultivated chickpea has two distinct seed forms, viz., desi and Kabuli type (Warkentin et al., 2005). Desi type is smallseeded, angular-shaped, and colored seeds with a higher percentage of fiber. Kabuli type is large-seeded, owl-shaped, beige-colored seeds with a low rate of fiber. Of late, a third category has been added to classify the chickpea seed, i.e., intermediate type. The medium type of chickpea is peashaped, smooth, and round. On the basis of the current needs, the cultivated chickpea is still evolving and reshaping its genome primarily for its plant type, nutrition, and resistance to environmental stresses.The genus Vigna consists of a large group of cultivated and wild relatives distributed across Asia and Africa. It comprises around seven subgenera and 19 sections with around a hundred species, out of which 7 (She et al., 2015) or 10 (Takahashi et al., 2016) species are most commonly cultivated worldwide. Cowpea (Vigna unguiculata) is the major food legume crop of this genus in its production and area under cultivation, and it is grown in ~12 million ha, making it the third most important legume crop in the world. The two species, viz., Vigna unguiculata L. and Vigna subterranean L., are of African origin. The other five species are from Asia, known to have originated in the Indian subcontinent (V. radiata L., V. mungo L., and V. aconitifolia Jacq.) and in far East Asia (V. angularis Willd. and V. umbellate) (Smartt, 1985). However, some studies indicate that Vigna might have first evolved in Africa (Vaillancourt et al., 1993;Thulin et al., 2004).Green gram [V. radiata (L.) R. Wilczek] and black gram [V. mungo (L.) Hepper] have been domesticated in Southeast Asia (Chandel et al., 1984;Smýkal et al., 2015). The progenitor species of both crops are found widely distributed in the Western Ghats and adjoining areas of India (Bisht et al., 2005). V. radiata var. sublobata (Roxb) and V. mungo var. silvestris (Lukoki, Marechal, and Otoul) are the progenitor species of green gram and black gram, respectively (Chandel et al., 1984). Neolithic archaeological evidences from Indus valley civilizations consistently indicated the Neolithic domestication of green gram and horse gram in different parts of India (Fuller, 2011). On the basis of the archaeological evidences and ecological settings, mung bean probably was first domesticated in the sides of Southern Peninsula, more precisely, north of the Krishna River (Fuller, 2011). Evidences from east Harappan zones indicated that the small-seeded mung bean (before the seed size increases) was probably introduced to the Ganges region from the south (Fuller, 2011). Early finds of the black gram come from Gujarat and the Northern Peninsula in India, where its progenitor species abundantly exist (Fuller and Harvey, 2006). Archaeological shreds of evidence dating back to 3,500-3,000 BC and genetic diversity studies indicate that the mung bean was domesticated in India (Fuller, 2007;Smýkal et al., 2015). On the basis of the genome sequence comparison for divergence between V. radiata var. radiata and V. radiata var. sublobata and also between V. radiata var. radiata (VC 1973A) and V. radiata var. radiata (V2984), mung bean domestication is predated to 4,000-6,000 years ago (Kang et al., 2014). The domesticated mung bean has spread to Southeast Asia and East Asia from India through different routes (Keatinge et al., 2011). First, it might have probably reached China via the Silk Road, and subsequently, the mung bean had spread to Southeast Asia (Kang et al., 2014).Moth bean (V. aconitifolia (Jacq.) Marechal) is an underutilized, minor grain legume. The progenitor species of moth bean is presumed as Phaseolus trilobata (L.) [syn. Phaseolus trilobus, Vigna trilobata (L.) Verdc.], which is an endemic species of India and is found in other adjoining areas. Some studies contradict V. trilobata as progenitor species of moth bean. Takahashi et al. (2016) have tried to differentiate between cultivated and wild forms of V. aconitifolia morphologically. However, the cultigens and wild conditions are not very distinguishable, unlike the other Vigna species such as green gram, black gram, and cowpea. Probably the species is still in the active domestication process and needs a lot of improvement in agronomical and yield traits. Moth bean is commonly cultivated in India's northern and western parts, particularly in dry regions of Rajasthan, Gujarat, and Madhya Pradesh (Bisht et al., 2005). However, it is also found sporadically in Pakistan, Myanmar, and Sri Lanka (Jain and Mehra, 1980). On the basis of the prevalence of cultivated and wild forms, India is presumed to be the center of origin of the moth bean (Vavilov, 1926;de Candolle, 1985). Marechal et al. (1978) proposed Sri Lanka and Pakistan as the centers of diversity of moth bean. It is the most drought hardy and heat-tolerant food legume among Asian Vignas.The cowpea (Vigna unguiculata L. Walp.) is the most important food legume crop in the genus Vigna in terms of production and area coverage, as well as the world's third most important legume crop. Cowpea is an important crop in the semiarid and subhumid zones of Africa and Asia, where it is an important part of the Sub-Saharan African diet. It is tolerant of marginal and changing environments, making it one of Sub-Saharan Africa's most important foods (Smýkal et al., 2015). Cowpea is thought to have originated in central-southern Africa, with West Africa and India as the first and second most likely domestication centers, respectively (Perrino et al., 1993;Singh, 1997). The first archaeological evidence of cowpea cultivation in Africa, dated from 1830 to 1595 BC, was identified by D' Andrea et al. (2007). V. unguiculata var. spontanea (previously var. dekindtiana) is the wild progenitor species of cowpea. It is widely dispersed across Africa (Padulosi and Ng, 1997). Cowpea domestication resulted in significant phenotypic modifications such as reduced pod shattering, increased grain size, and reduced flowering time. The genetic basis for these modifications is poorly understood. Cowpea domestication has resulted in a more consistent growth habit, larger pods and seeds, earlier flowering, and reduced pod cracking. Wild cowpeas feature purple flowers and dark mottled seed coats, whereas cultivated cowpeas have a wide range of flower and seed coat colors.Soybean (Glycine max L.) is primarily grown for its oil content in grains. It is one of the oldest crops of the world (Hymowitz, 1970). There are several archaeological, historical, and cultural evidences indicating the earliest known records of soybean cultivation in China, which proves China as the possible center of origin for soybean. The word \"Shu,\" which means soybean in Chinese language, is found written in many ancient books of China. An ancient inscription of a soybean word (ca. 3,700 years old, during the Yin and Shang dynasties) on bones and tortoise shell was found in China. In addition, the excavations in the 2,600 year old Dahaimeng site in Yongji County found carbonized soybean seeds. There are also other archaeological sites (3,000 years old), such as the Damudan Tun Village in Heilongjiang Province, where remains of soybean seed were found. The exact date of the commencement of soybean cultivation is unknown. However, early bronze inscriptions indicate that soybean cultivation may have begun during the Shang Dynasty (1500-1100 BC) (http:// www.soymeal.org/FactSheets/HistorySoybeanUse.pdf).The oldest known evidence of human use of Glycine spp. comes from a Neolithic site in Jiahu, Henan Province, where charred soybean remnants were discovered. 1 Glycine soja L. Merril., an endemic species of China, is considered the wild progenitor species of the cultivated soybean. Genome sequence information also indicates G. soja as the progenitor species of G. max, the cultivated species of soybean (Kim et al., 2010). The loss of pod dehiscence in G. soja was the major change, which leads to the domestication of the crop (Funatsuki et al., 2014).Pea (Pisum sativum L.) was domesticated about 10,000 years ago in the Mediterranean region, particularly in the Middle East (Ambrose, 1995;Daniel and Maria, 2000). Peas are currently classified into three types: Pisum sativum L. grows from Iran and Turkmenistan to Asia, northern Africa, and southern Europe; Pisum fulvum (Sibth. and Smith.) grows in Syria, Lebanon, Jordan, and Israel; and Pisum abyssinicum (A. Braun) grows from Yemen to Ethiopia. 2 Both Pisum sativum and Pisum fulvum were domesticated around 11,000 years ago in the Near East from an extinct parent of Pisum spp., and P. abyssinicum was developed independently of P. sativum circa 4,000-5,000 years ago in Old Kingdom or Middle Kingdom Egypt (Smýkal et al., 2011). Vavilovia formosa was added and classified in the tertiary gene pool (Smýkal et al., 2011). The phylogenetic status of the monotypic genus Vavilovia was studied using nrDNA ITS and cpDNAtrnL-F and trnS-G regions, and Vavilovia was found to be closely related to Pisum, forming a group that is close to Lathyrus. Molecular data and some morphological and biological characteristics strongly indicated that Vavilovia should be subsumed under Pisum as Pisum formosum (Oskoueiyan et al., 2010).The common bean (Phaseolus vulgaris L.) was domesticated in Mesoamerica and the Andes mountains some 5,000 years ago. Numerous studies have been conducted to identify and trace the crop's complicated evolutionary and domestication history (Bitocchi et al., 2012;Bellucci et al., 2014;Schmutz et al., 2014). Based on a genomic sequence variation at five loci on a large sample set representing the entire geographical distribution of wild-forms establishes the Mesoamerican origin of common bean (Bitocchi et al., 2012). The study also indicated a severe bottleneck preceded by the common bean domestication, and seed spread from Mesoamerica to the Andes mountains happened. A recent phylogenomics study based on sequencing of nuclear and chloroplast genomes of 29 accessions representing 12 Phaseolus species revealed a major speciation event in tropical Andes that gave rise to a sibling species, formerly considered the wild ancestor of P. vulgaris (Rendón-Anaya et al., 2017). This study revealed the divergence of the ancestor prior to the split of Mesoamerican and Andean common bean gene pools. Population structure study also revealed that the Andes and northern Peru-Ecuador gene pools from South America originated from two separate migration events from Mesoamerica (Bitocchi et al., 2012). P. vulgaris is perhaps the most economically important species in the genus Phaseolus. P. lunatus L. (lima bean), P. coccineus L. (runner bean), P. dumosus Macfad. (year-long bean), and P. acutifolius A. Gray are some of the other domesticated common bean species (tepary bean) under cultivation. P. vulgaris and P. lunatus are found wild in Mesoamerica and South America, respectively, but P. dumosus, P. coccineus, and P. acutifolius are only found in Mesoamerica (Bitocchi et al., 2017). The genus Phaseolus is thought to have undergone at least seven separate domestication processes. P. vulgaris and P. lunatus have had two independent and isolated domestication episodes, whereas P. coccineus, P. dumosus, and P. acutifolius have had single independent domestication occurrences (Bitocchi et al., 2017).Lentil, along with wheat and barley, is one of the world's earliest crops, with evidence of its cultivation found at Neolithic archaeological sites (Ljuština and Mikić, 2010). However, neither archaeological nor genomic investigations have been able to pinpoint the exact location of lentil domestication. It is believed that lentils were domesticated around 11,000 BC in the Near East, in Franchthi cave in Greece and in Tel Mureybet in Syria dated 8500-7500 BC, in a region known as \"the cradle of agriculture\" (Sonnante et al., 2009). Lens culinaris subsp. orientalis (Boiss.) Ponert is believed to be the progenitor species of lentil. L. culinaris subsp. orientalis is widely distributed in Southwest Asia (SWA) and sporadically found in Central Asia and Cyprus (Zohary et al., 2012). However, as it is not possible to differentiate wild from cultivated smallseeded lentil, the state of domestication of these carbonized remains is unknown. It is not until the 5th millennium BC that lentil seeds larger than the wild are found, which were unequivocally domesticated. Archaeological evidences indicate that the wild lentils were gathered in several sites in SWA (Liber et al., 2021) and outside of SWA. Lentils were the most extensively cultivated crops prior to the invention of pottery (Liber et al., 2021). Domesticated lentils were one of the first crops to be introduced to Europe and Egypt (Sonnante et al., 2009). Around 5000 BC, lentils had expanded throughout Europe's cold and damp regions, as well as to India's Harappan civilization (Fuller and Harvey, 2006;Zohary et al., 2012). The crop appears in the archaeological record in India around 2500 BC (Cubero, 1981); perhaps, it reached India about 3,000 years ago. From the Bronze Age (approximately 3300 BC to 1200 BC) onward, lentil was considered an important companion to wheat and barley. Lentil was also carried to the New World in the post-Columbus era.Pigeon pea is an important legume of the semiarid tropics, mainly grown in Asia, Africa, and the Caribbean region (Fuller et al., 2019). Cajanus cajanifolius (Haines) Maesen, the wild progenitor of the pigeon pea (Cajanus cajan L. Millsp), has been found in Eastern Peninsular India alongside a diversified collection of other Cajanus species. Archaeological evidence reveals that pigeon pea was first domesticated in Indus valley civilization, in Orissa about the middle of the 2nd millennium BC, more precisely nearby Gopalpur and Golbai towns, where Cajanus cajanifolius, the wild progenitor species of pigeon pea, is found in wild habitats (Fuller and Harvey, 2006). Wild pigeon pea species population is majorly found in the interface of the forest-edge areas and savanna plains of the Telangana, Chattisgarh, and Odisha states of India (Fuller et al., 2019). On the basis of the presence of the vast diversity of pigeon pea wild species populations in Western Ghats and the Malabar Coast of India, linguistic evidences, fossil records, and wide uses in daily cuisine, India is supported as the center of origin of pigeon pea by other researchers as well (Vavilov, 1951;van der Maesen, 1991).In the domestication process, for the adaptability of the crop plants, morphological and agronomical traits are genetically altered (Rauf et al., 2010). In the race of enhancing crop yield, similar sets of traits are selected for making an artificial selection in a wide range of cultivated species, which is the so-called domestication syndrome and results in convergent evolution of crop species (Bitocchi et al., 2017). The domestication syndrome, in other words, refers to the genetic and phenotypic changes that many food crops have undergone as a result of this process (Hammer, 1984;Harlan, 1992). Seed dormancy loss, enhanced pod and seed size, erect growth habit, reduced toxins, early and synchronized flowering, and reduced seed dispersal loss are some of the most prevalent domestication features, although their importance varies by crop (Meyer and Purugganan, 2013). Many of the domestication-related traits in food legumes are comparable to those in cereals (Fuller, 2007). Other characteristics of legumes, such as mineral content shifts and carotenoid losses, were also altered, maybe accidentally, as a result of adverse effects or selection for improved palatability (Fernández-Martin et al., 2014) and increases in tryptophan levels (Fernández-Martin et al., 2014). The importance of domesticated traits and the order in which they are chosen are expected to differ across food legumes and cereals. Domestication benefits include increased production, ease of harvest, and survivability in a range of environments.Despite their domestication, domesticated crops have been subjected to selection for crop improvement traits (e.g., greater palatability and productivity) as well as varietal-specific feature diversification (e.g., fruit pigmentation variation, grain starch composition diversification, and adaptation to various climates and latitudes) (Olsen and Wendel, 2013). While studying the genetic basis of phenotypic changes during domestication, it is important to distinguish between the domestication attributes and additional improvement traits. The domestication traits are changes that occurred during the initial domestication process and are usually fixed within the crop species. Crop improvement characteristics, on the other hand, are often different among populations or cultivars of a crop (Olsen and Wendel, 2013). Although the distinction between domesticated traits and later improvement or diversification traits is not always evident, the latter traits are often discernible because they vary between varieties or landraces. Domestication syndrome is obvious in several modifications from wild to domesticated plants, as it is in other legumes. In the dolichos bean, as in other grain legumes, fixed growth habit and photoperiod insensitivity are considered domestication syndrome features (Huyghe, 1998). Lablab, like other domesticated crops, exhibits a \"founder effect\" characterized by high phenotypic variability and low genetic variability, particularly in South Asian germplasm, whereas genetic diversity is higher in Africa (Maass et al., 2005;Maass et al., 2010;Venkatesha et al., 2013).Research workers have uncovered the genes that govern some of the most critical morphological changes linked with domestication over the past decade. The method of finding these genes began with the identification of quantitative trait loci (QTL) in the segregating populations, followed by positional cloning and candidate gene analyses. Despite a modest number of well-recorded domestication genes, some commonalities are emerging. In Table 1, we have summarized the genes that have been linked to phenotypic alterations in features under selection during domestication. The domestication-related phenotypes were earlier thought to be influenced by recessive, loss-of-function alleles (Ladizinsky, 1985;Lester, 1989). However, QTL mapping studies and the cloning of a few domestication genes revealed rather an inconsistent pattern. Nonshattering appears to be a recessive trait in some cereals and food legumes (Takahashi and Hayashi, 1964;Harlan et al., 1973;Watanabe, 2005;Li et al., 2006b), and several QTL studies have suggested it to be nonrecessive (Doebley et al., 1990(Doebley et al., , 1994;;Doebley and Stec, 1991;de Vicente and Tanksley, 1993;Burke et al., 2002;Li et al., 2006a;Wills and Burke, 2007).Domestication features provide benefits, such as a higher yield, ease of harvest, and survival in a variety of conditions. However, these characteristics may reduce the fitness of the crop in the natural environment (Doebley et al., 2006). In wild legumes, pod shattering, for example, is a crucial mechanism for distributing seeds and supporting survival and reproduction. Shattering seeds allows seeds to disperse over longer distances, allowing them to settle in locations far from the original maternal plant diseases and siblings. The natural predisposition for seed dispersal, on the other hand, is an unfavorable trait in crops because it results in severe losses and causes inefficient harvesting (Vaughan et al., 2007).In numerous cereal crops, particularly Arabidopsis, the transcriptional networks that promote shattering have been widely explored. However, we know very little about the molecular control of shattering behavior in legumes. Several legumes, including soybeans, have been studied for genetic control of pod shattering (Bailey et al., 1997;Liu et al., 2007;Funatsuki et al., 2008;Suzuki et al., 2009;Suzuki et al., 2010;Funatsuki et al., 2014;Hofhuis et al., 2016): common bean (Abd El-Moneim, 1993;Koinange et al., 1996), pea (Blixt, 1972;Weeden et al., 2002;Weeden, 2007), cowpea (Aliboh et al., 1996;Mohammed et al., 2009;Andargie et al., 2011;Kongjaimun et al., 2012;Suanum et al., 2016), lentil (Ladizinsky, 1979;Tahir and Muehlbauer, 1994;Fratini et al., 2007), narrow-leaf lupine (Tahir and Muehlbauer, 1994;Kongjaimun et al., 2012), adzuki bean (Isemura et al., 2007;Kaga et al., 2008), andcommon vetch (Abd El-Moneim, 1993;Dong et al., 2017).In most of the legumes, the shattering of the pods has been found to be a dominant character controlled by one to two genes or QTLs. Several studies have shown that shattering resistance can be achieved by mutations in a single locus in narrow-leaf lupine (Boersma et al., 2009), soybean (Funatsuki et al., 2008), cowpea (Kongjaimun et al., 2012), and pea (Weeden, 2007). There are two genes that are involved in determining the recessive nonshattering feature in lupine (Nelson et al., 2006). The first gene, lentus (le), influences pod endocarp orientation, lowering the mechanical pressure necessary for pod shattering, whereas the second gene, tardus (ta), unites the dorsal and ventral pods, preventing them from being separated (Boersma et al., 2009).Pod shattering in chickpea is reported to be controlled by one recessive gene (Kazan et al., 1993) or multiple loci (Ladizinsky, 1979). The genetic control of pod shattering in cowpea is rather not very clear. It is found to be controlled by a single gene, Dhp, or by a combination of dominant and recessive alleles of numerous genes (Aliboh et al., 1996). The loss of suture and pod wall fibers that is regulated by the St locus causes pod shattering in the common bean (Phaseolus vulgaris) (Koinange et al., 1996). In soybean, a significant QTL influencing pod shattering, qPHD1, was discovered (Bailey et al., 1997;Funatsuki et al., 2006;Liu et al., 2007;Funatsuki et al., 2008;Kang et al., 2009). Besides qPHD1, several other minor QTLs have been reported in soybean as pod-shattering regulators (Kang et al., 2009;Yamada et al., 2009;Hofhuis et al., 2016). qPHD1 promotes pod dehiscence by modulating the cell-wall components in the inner sclerenchyma either by influencing the main structure of lignin or by changing lignin deposition patterns. A loss-of-function of this gene was discovered to confer pod-shattering resistance (Dong et al., 2014). An NAC gene SHAT1-5, which is similar to A. thaliana's NST1, was discovered to give pod-breaking resistance in soybean. By stimulating the lignification of fiber cap cells in pod sutures, SHAT1-5 regulates secondary cell-wall development (Dong et al., 2014).The characteristic feature of wild peas is dehiscing pods, providing quick and distant seed dispersal (Zaytseva et al., 2017). It is hard for plants with nondehiscent pods to survive in the wild, and plants with dehiscing pods are hard to be harvested. In terms of pod dehiscence, this creates a condition of disruptive selection, compelling wild peas to stay wild, cultivated peas to stay cultivated, and products of uncommon crosses between them to join either of the two gene pools. Seed dormancy is another essential adaptation of wild peas to their insecure environments (Weeden, 2007).Seed dormancy is one of the common traits of domestication syndrome across crops. A reduction in seed dormancy is connected with domestication (Meyer and Purugganan, 2013;Smýkal et al., 2014;Purugganan, 2019). Seed germination timing is crucial in the natural world as germination at the wrong period can result in reduced survival and fitness (Smýkal et al., 2014;Finch-Savage and Footitt, 2017). Seed dormancy is concerned with seed dispersion and the reduction of resource conflicts between mother and offspring, as well as environmental synchronization (Penfield, 2017). Extended seed dormancy, while beneficial in natural ecosystems, is not a desirable characteristic for crops (Smýkal et al., 2014;Purugganan, 2019). In cultivated legumes, seed dormancy reduces the pace of germination, resulting in uneven germination and, as a result, poorer yields (Ladizinsky, 1987;Abbo et al., 2008). There are two major types of seed dormancy, namely, physical seed dormancy (hardseededness) and physiological (chemical changes over the period) seed dormancy. Seed dormancy is controlled by environmental factors such as light, temperature, moisture, and duration after fruit ripening. The balance between gibberellic acid (GA) and abscisic acid (ABA) affects seed dormancy/germination. ABA maintains dormancy, and GA causes halt of dormancy and promotes germination (Dwivedi et al., 2021). Physical seed dormancy also has a negative impact on the seed's ability to absorb water, which is critical in the processing of legume foods (Smýkal et al., 2014).The underlying mechanisms for seed dormancy in pulses are not well studied yet, except a very few. Physical dormancy seems the most common source of dormancy in legumes, whereas physiological dormancy is a feature in several legume and nonlegume species (Martin, 1946). However, in comparison with other legumes, a loss of seed dormancy and reduction of pod shattering are not considered the main key domestication trait in chickpea. A single major QTL pectin acetylesterase 8 (PAE-8-2) controls seed dormancy in common bean, and a 5-bp frameshift mutation in pectin acetylesterase-8-2 is a putative causative variable underlying seed imbibition (Soltani et al., 2021). In Vigna vexillate, a major QTL, i.e., qSdwa3.1, positively affects seed water absorption (Amkul et al., 2020). KNAT7-1, a class II KNOX gene, is identified to affect seed dormancy in green gram (Laosatit et al., 2022). In green gram seeds, a high level of α-amylase activity is found positively associated with seed dormancy (Lamichaney et al., 2018).Significant changes in plant architecture have happened during the domestication process. Determinacy is an important agronomic characteristic associated with food legume domestication. Determinate vegetation has an advantage over indeterminate vegetation because it devotes all assimilates to reproductive growth (Huyghe and Ney, 1997). Because of their suitability for mechanical harvesting, determinate cultivars are favored over indeterminates (Boote et al., 2003). Determinate growth habit can overcome the lodging problem in some legume crops (Duc et al., 2015). Indeterminate types are characterized by vegetative buds at terminal meristems and stem apices, which keep on growing in the length of the stem and flower and produce pods until temperature and humidity allows (Bradley et al., 1997;Tian et al., 2010). Semideterminate plants have similar development tendencies to indeterminate plants, but their terminal meristems are terminated by flower buds. In determinate kinds, the transition of terminal meristems from a vegetative to a reproductive state results in the production of a terminal flower, and as a result, vegetative growth stops blooming or only lasts for a brief time (Bernard, 1972;Bradley et al., 1997).Determinate types are available in chickpea, soybean, cowpea, broad bean, common bean, and pigeon pea. Genetic control of stem growth habit has been studied in various legumes, including chickpea (Van Rheenen et al., 1994;Hegde, 2011;Harshavardhana et al., 2019;Ambika et al., 2021), soybean (Woodworth, 1933;Bernard, 1972;Thompson et al., 1997), pigeon pea (Waldia and Singh, 1987;Gupta and Kapoor, 1991;Dhanasekar et al., 2007), pea (Swiecicki, 1987), faba bean (Sjodin, 1971;Filippetti, 1986), lupine (Mikolajczyk et al., 1984), common bean (Singh, 1981), and mung bean (Khattak et al., 2004).Determinacy was found to be a recessive trait in Cicer arietinum (Van Rheenen et al., 1994;Hegde, 2011;Harshavardhana et al., 2019;Ambika et al., 2021), Glycine max (Bernard, 1972), Vicia faba (Filippetti, 1986), and Cajanus cajan (Waldia and Singh, 1987;Gupta and Kapoor, 1991). The two nonallelic genes regulate stem growth habit, which is designated as Dt1/dt1, Dt2/dt2 with Dt1 epistatic to Dt2 as well as dt2 in chickpea (Hegde, 2011), soybean (Bernard, 1972), and pigeon pea (Waldia and Singh, 1987;Gupta and Kapoor, 1991). Additional studies on comparative genomics and CcTFL1 expression profiling have shown that the gene CcTFL1 is the candidate gene for determinacy in pigeon pea (Mir et al., 2014). In essence, GmTFL1 in soybean, PvTFL1 in common bean, and CcTFL1 in pigeon pea were found to contain the same genomic region (Mir et al., 2014). It has been discovered that mutations in a homolog of the Arabidopsis TFL1 gene create the determinate mutant (det) in pea (Foucher et al., 2003). A novel mutation in cowpea TFL1 homolog (VuTFL1) determines the determinate growth habit. A nonsynonymous point mutation in exon 4 at position 1,176 resulted in transversion of cytosine (C) to adenine (A) which translated to the substitution of proline by histone (Pro-136 to His), and which resulted in to a determinate mutant of cowpea (Dhanasekar and Reddy, 2015).The development of high yielding cultivars with a determined growth habit in a photoperiod insensitive background is one of the primary goals of breeding in grain legume crops. The genetics of photoperiod sensitivity and growth habit were studied in two crosses of dolichos bean, namely, HA 4 × GL 103 and HA 4 × GL 37, which were developed from parents contrasting for photoperiod sensitivity and growth habit. It was found that a monogenic biallelic locus controls photoperiodic response to flowering time, with photoperiod sensitivity dominating insensitivity (Keerthi et al., 2014).Days-to-flowering is an important domestication feature that distinguishes the cultivated grain legumes from its wild relatives. For high grain yield and widespread cultivation, cultivated plants were domesticated to flower earlier than wild plants. Flowering time is controlled by a complex network that includes photoperiod, vernalization, gibberellin, autonomy, and the aging pathway (Amasino, 2010;Srikanth and Schmid, 2011).In soybean, early flowering was preferred during domestication, as evidenced by the fact that cultivated soybeans flower earlier than wild relatives (Dong et al., 2001;Liu et al., 2007;Wen et al., 2009). Early flowering and maturity are conferred by the E series of maturity loci (E1 to E9), especially under noninductive circumstances (Cober and Morrison, 2010). The early blooming alleles at the E loci, except the E6 and E9 loci, are recessive (Watanabe et al., 2012;Kong et al., 2014). E2 is a putative floral repressor that encodes a GI homolog (Watanabe et al., 2011).The recessive alleles of early flowering 1 (Efl1) to Efl4 produce early flowered chickpea (Gaur et al., 2015). The Efl1 allele was identified in the early flowering genotype ICCV96029 (Kumar et al., 2000), which has been used as an important donor in the major chickpea breeding programs. A flowering time QTL containing a tandem array of FTa and FTc genes is found to control flowering time in a variety of temperate legumes, including lupine (Nelson et al., 2006), L. japonicus (Gondo et al., 2007), alfalfa (Robins et al., 2007), M. truncatula (Pierre et al., 2008), chickpea (Cobos et al., 2009;Aryamanesh et al., 2010), and faba bean (Cruz-Izquierdo et al., 2012).In pea, recessive alleles at the HIGH RESPONSE (HR) locus cause short duration (SD) to early flowering and diminish but do not eliminate photoperiod response. On the other hand, recessive alleles at the STERILE NODES (SN) loci give total day-length insensitivity (Murfet, 1985). Alleles at the HR locus are significantly associated with the number of days to flowering, with an average difference of 15.43 days between two detected haplotypes (Vanhala et al., 2016).The other locus, i.e., LATE Blossoming (LF), reduces the flowering period on both long and short days. It appeared to be a divergent homolog of TFL1 (Foucher et al., 2003). The LF gene is found to be deleted or inactivated by a nonsense mutation in extraordinarily early accessions (Foucher et al., 2003). Late flowering expression was found to have a significant effect on the number of days to flowering when analyzed on its own but not when a high response to a photoperiod haplotype was added to the model. A high response to a photoperiod haplotype and GSO together explained most of the detected variation in DTF (49.6%) (Vanhala et al., 2016). The fourth locus is EARLY (E). The dominant alleles of E confer early onset of blooming in different genetic backgrounds (Weller et al., 2012).In related Pisum species, multiflowering racemes have been observed. White (1917) described Pisum elatius as having 2-3 blooms per peduncle, whereas Pisum arvense had three or more flowers per peduncle (Gritton, 1980). The vast variation in the number of flowers per node in pea and other Fabaceae suggests that several processes may be involved in flower quantity regulation per peduncle (Gaur and Gour, 2002;Talukdar, 2013). The Indian genetic stock VRP-500 (INGR15009) has three flowers per peduncle at several flowering racemes (Sanwal et al., 2016). Likewise, the single plant selection \"VRPM-901-5\" from the cross \"VL-8 PC-531\" bears five blooms per peduncle at several flowering nodes (Devi et al., 2018). VRPM-501, VRPM-502, VRPM-503, VRPM-901-3, and VRPSeL-1 are examples of plants that produce three flowers per peduncle at multiple flowering nodes.Traditionally domesticated cultivars evolve through the interaction with multiple selection factors, artificial as well natural (Figure 3). Traits related to agronomic importance, nutrition, palatability, medicinal uses, agricultural tools and practices, and social and cultural values are majorly used for artificial selection. Plant morphological adaptive traits and resistance to biotic and abiotic stresses are the major natural selection pressures. Human preferences for crops and grain qualities keep changing because of social interactions, ongoing agronomic innovations, and environmental changes. Therefore, accelerated domestication of new food legume crops or further improvement of earlier domesticated or semidomesticated food legume crops is required to meet out the current needs amid fast changing demographic, edaphic, and climatic conditions. The Green Revolution is the recent example of accelerated domestication process particularly in rice and wheat and its impact on genetic diversity. As the Green Revolution only focused on a few genes (Rht genes of wheat and sd1 of rice, it resulted in drastic diversity loss in the cultivated genepools of target crops and other crops as a side effect (Hedden, 2003). Uniformity in farmer fields enhanced dramatically because of the replacement of traditional cultivars by modern high yielding varieties, but this also turned crops more susceptible for biotic and abiotic stresses. It is well understood that the process of domestication has also caused allelic loss particularly for quantitative traits, which results in poor yield potential, quality, and adaptation (Van Tassel et al., 2020). Therefore, along with accelerating the domestication process, genetic base broadening has now become more important. A strategy for accelerating the domestication process and for enhancing genetic diversity in the new domesticates to meet the current requirements is highlighted in Figure 4.Genome reshuffling, mutation, and the myriad of natural and artificial selection pressures keeps genome highly dynamic. However, selection and advancement of a fit genotype to the next generation and then establishing itself in a population are very slow processes. Recent understanding about crop population dynamism, recent technological advancements, and artificial intelligence has made the domestication process easier and faster. Recent developments in genomics, proteomics, transcriptomics, metabolomics, and phenomics have made much easier to identify domestication-related genes, to pinpoint in the genome, and to use them in markerassisted introgression. Marker-assisted selection for foreground and background selection makes gene introgression easier while retaining and maximizing the background genetic diversity. High-throughput precision phenotyping in association with genomic selection can help in rapid genetic improvement (Van Tassel et al., 2022). Domestication of crops and plant breeding led to the development of crops with a high yield, which is adjusted well to native growing circumstances. The idea of de novo domestication strategy includes the detection and introgression of genes or mutants essential for domestication success and acclimatization of newly developed cultivars (Khan et al., 2019). However, the domestication process resulted in some undesirable consequences such loss of genetic diversity, imbalance in nutritional status, and reduction in the taste of current food-producing crops. It is therefore essential to facilitate a sustainable agriculture system for accelerating crop genetic diversity and improving global food production. Some of the major factors involved in the de novo domestication process are discussed below.Crop genebanks harbor a good amount of ex situ conserved genetic diversity in the form of landraces and wild species, which is merely utilized. Over one million samples of ex situ collections of grain legumes are conserved in various seed genebanks across the globe. This could serve as the firsthand source of the novel traits and alleles to be used in the development and improvement of cultivars. The centers of the crop origin and primary or secondary centers of diversity are considered the hotspot for genetic diversity as agroclimatic conditions favor the rapid evolution of new alleles. Therefore, such areas should be the target to search the novel traits in wild species, crop wild relatives, or landraces. Wild relatives of modern cultivated crops are considered an important source of novel alleles. Those traits that are not present in the entire cultivated genepool, the progenitor species or wild relatives, can be introduced from an alien source (other genera or crops) using nonconventional approaches such as random or site-specific mutagenesis.For crop species with well-characterized reference genomes, genome-wide screening for selection signatures offers a potentially powerful complementary approach to the genetic mapping strategies. Advances in sequencing technologies and the reduction of their costs have supported the publication of numerous high-quality studies on crop domestication using genome resequencing. Varshney et al. (2019) documented fourfold reduction in diversity from wild genotypes to landraces, highlighting the loss of about 80% of genetic diversity by whole genome resequencing of 429 chickpea genotypes, identified allele(s) and genomic region(s) affected during domestication and postdomestication diversification, and identified 122 candidate domestication regions and 204 genes that underwent selection.Whole genome resequencing of 302 wild, landrace, and improved soybean accessions detected a total of 121 domestication-selective sweeps, 109 improvement-selective sweeps, and 162 selected copy number variants of domesticationrelated traits (Zhou et al., 2015). From whole genome resequencing of 292 Cajanus accessions comprising of breeding lines, landraces, and wild species, selective sweeps responsible for reduction in genetic diversity under domestication and breeding were identified. From the comparison of wild species accessions with landraces and landraces with breeding lines, a total of 2,945 and 1,323 genomic regions, respectively, were identified with higher ROD values. The resequencing information also helped in identification of 666 and 1,643 genomic regions with low genetic variation consistent with positive selection during domestication and breeding, respectively (Varshney et al., 2017).Marker-trait association has played a significant role in accelerating crop domestication through trait identification and introgression in target genotypes. Conventional linkage mapping based on biparental mapping population and now genome-wide association studies (GWAS) and linkage disequilibrium (LD) mapping are the two major strategies currently being used by researcher for identifying statistically significant associations between phenotypes and genotypes or between domesticated traits and sequence variants.Marker-trait association analysis provides the genetic basis for phenotypic variation, including gene locations, numbers, and magnitudes, and their mechanisms in a biparental segregating population. There has been substantial progress in mapping the QTLs/genes underlying crop domestication using these methodologies. This has enabled successful identification and cloning of genes underlying domestication traits. It was the first and perhaps the most widely used method for localizing the genetic basis of a trait. Lu et al. (2020) resequenced 424 soybean accessions, analyzed time of flowering and maturity through GWAS, and identified three significant association loci (p < 10 −8 ) on chromosomes 11 and 12, subsequently referred to as Time of Flowering 11 (Tof11) and Tof12. Compared to wild soybean, soybean with loss of Tof11 and Tof12 function significantly reduces photoperiod sensitivity and significantly shortens the time to flowering and maturity under LD conditions. Furthermore, it is evident that, a change in phenology related to loss of Tof12 function had a significant role in adaptation of wild soybean during a phase of initial cultivation and domestication. Lo et al. (2018) evaluated nine domestication-related traits (pod shattering, peduncle length, flower color, days-to-flowering, 100-seed weight, pod length, leaf length, leaf width, and seed number per pod). A highdensity genetic map containing 17,739 single nucleotide polymorphisms was constructed and used to identify 16 QTL for these nine traits. On the basis of the annotations of the cowpea reference genome, genes within these regions were reported. Four regions with clusters of QTLs were identified, including one on chromosome 8 related to increased organ size. Swarm et al. (2019) conducted QTL mapping on domestication-related traits (DRTs) using 661 RILs from two populations with 5,000 polymorphic SNP markers in soybean. A total of 132 QTLs were detected, of which 51 were associated with selective sweeps previously related to soybean domestication. They identified 41 novel QTLs not detected in previous studies using smaller populations while also confirming the quantitative nature for several of the important DRTs in soybeans.Mutations are the ultimate source of variation. Mutagens are used to create random mutations, and specific mutations in the desired domestication gene can subsequently be identified. Mutants serve as means for identifying genes that control developmental decisions in plants like flowering, and crops with improved traits are being developed by screening for mutations induced in candidate genes. Dhanasekar and Reddy (2015) isolated and characterized a novel mutation in cowpea TFL1 homolog (VuTFL1) affecting determinacy using gamma rays. Analyses of sequence variation exposed a novel SNP distinguishing the determinate mutants from the indeterminate types. The nonsynonymous point mutation in exon 4 at position 1,176 resulted from the transversion of cytosine (C) to adenine (A), leading to an amino acid change (Pro-136 to His) in determinate mutants. Using random mutagenesis, the Btr1 gene in a wild barley accession was mutated, and this resulted in plants that resembled domesticated barley, with a nonbrittle rachis (Pourkheirandish, 2015). Thus, a loss-of-function mutation in a single domestication gene can indeed result in a domestication phenotype.In spite of their importance in ensuring food security, legumes are cultivated less owing to their several undesirable traits such as pod shattering, late flowering, and indeterminate growth habit (Zhang Y. et al., 2020). Although conventional breeding for quality enhancement of food legumes is challenging, genetic modification through guided nucleases is an ideal platform. This robust domestication is proposed not only to cope with the changing climate scenario but also to ensure food security to fellow citizens. The novel CRISPR/Cas-based gene editing is a powerful, precise, economic, efficient, multiplexed method to accelerate the domestication of food legumes. Targeting genes for accelerated domestication by genome editing involves reducing or abolishing gene function based on existing knowledge of the molecular function of the target gene. This requires that the genome of the target plant is sequenced to identify genes that are orthologs of known genes controlling domestication traits in related plants. CRISPR/Cas9 and TALEN could help in the development of novel traits through loss/gain of function of genes already available in the genome (Bedell et al., 2012). Of late, more advanced genome-editing tools having high precision with minimal unwanted genome modification, such as Base editors and Primer editors, are now available for genome modification (Anzalone et al., 2020). For many of the food legume crops, gene-editing methods are established because of their recalcitrance behavior at various phases of genome editing such as in vitro gene transfer and regeneration. For crops such as soybean, cowpea, and chickpea, gene-editing protocols are well established (Bhowmik et al., 2021). However, the utilization of this powerful technology has just started in the crop improvement, and results are yet to come.CRISPR/Cas9 can precisely edit genes to improve genotypes and aid in accelerating the domestication process of new crops (Van Tassel et al., 2020). CRISPR-Cas can fine-tune and knock out master switches in undomesticated wild crops, enhance genomic diversity, and facilitate de novo domestication in one generation or a few generations. CRISPR/Cas9 is successfully utilized in soybean to develop a mutant of GmFT2a with delayed flowering time and with enhanced pod yield in the crop (Rasheed et al., 2022). The technology has been successfully utilized in trait improvement of few other nonlegume crops as well. This technology was used to domesticate the wild tomato (Solanum pimpinellifolium L.) by improving several critical agronomic and nutritional quality attributes. Five sets of genes, viz., SP, SP5G, CLV3, WUS, and GP1, were altered through the CRISPR-Cas9 modular cloning approach, resulting in a compact plant with early flowering, day-length neutral, enhanced fruit size, and high vitamin C levels (Li et al., 2018). The CRISPR/Cas9 system has been successfully used as an efficient tool for genome editing in Oryza sativa. It was used to mutate the Gn1a, DEP1, and GS3 genes of rice, which have been reported to function as regulators of grain number, panicle architecture, and grain size, respectively. The T 2 generation of the gn1a, dep1, and gs3 mutants featured enhanced grain number, dense erect panicles, and larger grain size, respectively. Furthermore, semidwarf and grain with long awn phenotypes were observed in dep1 and gs3 mutants, respectively (Li et al., 2016). This has offered the potential to improve domestication traits.Multiplex gene editing has shown promise in creating desired de novo domesticated tomato plant. Editing of six genes, viz., SP (Self Pruning), Fw2.2 (Fruit Weight 2.2), Ovate, Multiflora (MULT), Fas, and Lycopene Beta Cyclase (CycB), resulted in a smart crop with improved fruit size, yield, and nutritional quality (lycopene contents) (Zsögönet al., 2018). Likewise, Solanum pruinosa (ground cherry), an orphan crop, was improved through the CRISPR-based technique involving several targeted genes (SP, SP5G, and CLV1), resulting in improved domestication characteristics (Lemmon et al., 2018). CRISPR gene editing can be used to develop desirable features in any crop after discovering genes that regulate domestication. The genome-editing techniques promise to be a useful tool in the plant breeding toolbox for domesticating new crops or trait improvement. The technology can dramatically accelerate the process of domestication.There are several other methods and tools to generate novel traits and variability, such as TILLING (McCallum et al., 2000), somaclonal variation (Larkin and Scowcroft, 1981), hybridization (Seehausen, 2004), directed evolution (Currin et al., 2021), and alien gene transfer through transgenic approaches. RNA interference (RNAi) generally does not alter the gene, but it is used to silence or lowers the target gene expression, e.g., lowering the expression of the LABA1 gene made the awns shorter and smaller to resemble the domesticated phenotype in rice (Hua et al., 2015).To further utilize and find suitable traits and genotypes in the artificially generated diversity, advanced scientific tools can be explored. Molecular markers and genomics-assisted selection offers a great help in rapid identification superior genotypes. Though artificially generated genetic diversity or genotypes with novel traits are finally tested in natural target environments, transcriptomics, proteomics, and metabolomics can help in the selection and functional validation of selected genotypes. The artificial intelligence and statistical analysis tools further help in handling larger datasets and decision-making.Domestication and evolution of wild ancestors into today's elite cultivars are important contributors to global food supply and agricultural crop improvement. During domestication and evolution, many crop species underwent significant morphological and physiological modifications. According to genetic studies, a few genes control DRTs, and these genes frequently have a major impact on plant phenotype. The identification and knowledge of loci that are responsible for significant alterations that occur as a result of domestication might aid the quick domestication of novel crops. Shattering resistance, seed dormancy loss, stem growth behavior, and a shorter flowering period are the key domestication characteristics of food legume crops. Identification of genes involved in these functions, as well as the explanation of the molecular pathways involved in these processes, is required to gain deeper understanding of these fundamental characteristics. Apart from accelerating domestication, it is realized that enhancing the crop genetic diversity in farm landscapes is now more important to sustain the crop yield amid changing climatic conditions and diverse human needs. Recent advances in science and technology offer a great help in the identification and functional annotation of genes having a great impact on domestication. Technologies also help in the rapid enhancement of genetic diversity in crop genepools to keep crops more adaptive to the changing environmental conditions and human need.","tokenCount":"10215"} \ No newline at end of file diff --git a/data/part_3/4242664870.json b/data/part_3/4242664870.json new file mode 100644 index 0000000000000000000000000000000000000000..c5b1d7689abd8a8c2d4fa74f38e4e674611eb297 --- /dev/null +++ b/data/part_3/4242664870.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"2fbed37f5da1b3aa8748280e936e9073","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/7d155c91-befd-4ac7-a737-1ec5f844f6ab/content","id":"-1236619961"},"keywords":["Gender-responsive approaches","Training Manual","Seed companies","Agro-dealers","Outgrowers","Improved maize seed","Africa","Seed promotional approaches","Reaching out to women farmers","CIMMYT"],"sieverID":"d0001407-223c-492f-b97d-fb19770b5826","pagecount":"44","content":"Gender-responsive approaches for enhancing the adoption of improved maize seed in Africa-a training manual for seed companies. Mexico, CIMMYT.The Stress Tolerant Maize for Africa (STMA) Project was launched in 2016 with the aim of helping farmers in sub-Saharan Africa to mitigate the combined effects of multiple stresses such as drought, heat, poor soil fertility and diseases that affect maize production and farming, and to improve food security and livelihoods. STMA builds on strong partnerships formed under the Drought Tolerant Maize for Africa (DTMA) and Improved Maize for African Soils (IMAS) projects that achieved major successes in African maize seed systems. For more information, visit https://stma.cimmyt.org/.International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR system and leads the CGIAR research programs on maize and wheat and excellence in breeding platforms. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit www.cimmyt.org.Bill & Melinda Gates Foundation (BMGF)guided by the belief that every life has equal value, the Bill & Melinda Gates Foundation works to help all people lead healthy, productive lives. In developing countries, it focuses on improving people's health and giving them the chance to lift themselves out of hunger and extreme poverty. In the United States, it seeks to ensure that all peopleespecially those with the fewest resourceshave access to the opportunities they need to succeed in school and life. Based in Seattle, the foundation is led by CEO Dr. Susan Desmond-Hellmann and Co-chair William H. Gates Sr., under the direction of Bill and Melinda Gates and Warren Buffett. For more information, visit www.gatesfoundation.org.United States Agency for International Development (USAID) works to end extreme global poverty and enable resilient, democratic societies to realize their potential. USAID invests in ideas that work to improve the lives of millions of men, women and children in the following ways: investing in agricultural productivity so that countries can feed their people; combating maternal and child mortality and deadly diseases like HIV, malaria and tuberculosis; providing life-saving assistance in the wake of disasters; promoting democracy, human rights and good governance around the world; fostering private-sector development and sustainable economic growth; and helping communities adapt to a changing environment. USAID elevates the role of women and girls throughout all its work. For more information, visit www.usaid.gov.i Seed is one of the most important entry points for improving agricultural productivity, nutrition and resilience to climate change.Seed companies therefore play a vital role in the process of transforming African agriculture, by producing and distributing high quality seeds of high yielding, nutrient rich, stress-tolerant crop varieties. Women make important contributions to agriculture in sub-Saharan Africa, but have less access and control compared to men over critical agricultural resources, including improved seed. CIMMYT seeks to develop maize technologies that are responsive to the needs and preferences of both men and women and is committed to improving women's access to improved maize seed from the formal seed sector. Through research undertaken by the Stress Tolerant Maize in Africa (STMA) and other projects, CIMMYT is working to close the gender gap in agricultural productivity. Through its work with maize breeders, seed companies and agro-dealers in Africa, CIMMYT raises awareness of the specific constraints that women farmers face and provides these actors with the knowledge and skills to address these constraints.This publication provides a resource to help seed companies to be gender-responsive at all stages of the seed supply value chain as they seek to meet the needs of a diversity of farmers. It provides practical suggestions on how to develop a seed business that considers the needs of both women and men, and presents gender-responsive approaches to promoting and increasing awareness of improved maize seed. The manual also highlights the importance for seed companies of being gender-sensitive, not only in their operations but also in the area of human resource. The main message of the manual is that it makes economic sense for seed companies to recognize men and women farmers as customers that may have different needs. CIMMYT is proud to make a contribution to developing a new breed of gender-responsive seed companies in Africa.Introduction 1.Seed companies play an important role in agricultural development in Africa by producing and distributing quality seed of multiple crops. Seed is an entry point for improving agricultural productivity, nutrition and resilience to climate change through the introduction of higher-yielding, nutrient-rich, stress-tolerant crop varieties. To operate an effective business, seed companies need to have an in-depth knowledge and understanding of their clients -agricultural producers. In the African context, farmers are very diverse in terms of scale of production, the types of crops they grow, whether they are fully or partially commercially oriented, among other factors, and therefore they have different seed needs and requirements. Differences between male and female farmers is one important factor that seed companies often overlook.This manual is intended to help seed companies in Africa have a better understanding of the importance of gender for their business. It provides practical suggestions on how gender can be integrated into various aspects of seed business operations to improve their functions. Although the manual focuses on maize, the concepts, guidelines and suggestions apply to other crops. The first section explains what gender means and why it is important for agriculture and seed businesses in Africa. The second section discusses how gender can be integrated in the multiplication, promotion and distribution of improved maize seed. The third section looks beyond operations to explore why and how seed companies can be gendersensitive in the area of human resources.African agriculture and for seed companies2.1 What is gender?The term gender is widely used but is often misunderstood. The concept of gender distinguishes between how men and women are defined by biology (sex) and by society and culture (gender). Sex refers to the biological and physiological characteristics that define men and women, while gender refers to learnt social roles and identities associated with what it means to be a man or a woman in a particular society and context. Sex and gender are not the same, although some sex characteristics may influence gender roles.Gender roles are shaped by culture, religion, economic, political and social factors. They determine how responsibilities and resources such as land and livestock are distributed between men and women. Worldwide, women as a group face discrimination and inequalities in terms of not having the same access as men to resources such as land, and not being allowed to do things such as travel on their own, grow certain crops, do certain jobs, attend school etc. The concept of gender sees inequality between men and women as a problem rooted in power at both the personal level and at the level of society as a whole. It is important to understand that gender is not about women but about the relationship between men and women. Because gender is defined by society based on traditions and practices and shaped by economic and political factors that change over time, gender roles and responsibilities can and do change.The concept of gender also recognizes that all men and women are not the same and differ in terms of factors such as age, ethnicity, wealth, education, marital status, religion etc. For example, both wealthy women and men producers may have sufficient land, labour and cash, whereas poor women and men producers may have less of these resources. According to the culture in some societies, however, women, whether wealthy or poor, are not allowed to travel on their own or go to secondary school.Most gender-related development interventions target women. So why do we focus on women if gender means both men and women? Worldwide, women as a group face discrimination and inequalities in terms of access to productive resources such as land, and are restricted by cultural norms that limit their mobility, their ability to grow certain crops, engage in certain occupations, attend school etc. In order to ensure that women have equal opportunities and personal freedom, development programs and efforts tend to focus first on women to make sure that there is a \"level playing field\". At the same time, it is important to engage with and involve men even where activities primarily target women, to ensure their cooperation and involvement in transforming unequal gender relations.Box 1: Sex and gender are not the same thingDetermined by biology: women give birth, have breasts and menstruate; men have testicles, facial hair and higher muscle mass.Unchanging, although surgery and other treatments can change sex characteristics Constructed by society; in many societies, it is mainly women who are responsible for cooking and looking after the home Differs between and within cultures: in many societies, both men and women can only have one spouse; in other societies, men are allowed to marry more than one woman, while in a few societies, women can have more than one husbandChanges over time; in the past in many societies, only men were allowed to vote, run for political office or driveIn sub-Saharan Africa, women play an important role in agriculture but face more severe constraints than men in accessing land, labour, technologies, seed, services such as extension and credit and markets.Women make up nearly 50% of the agricultural labor force in Africa, with huge differences in this figure among countries and among crops (FAO, 2011). As Figure 1 shows, women's contribution to cereal production in Uganda, Tanzania, two regions of Nigeria, and Niger ranges between 21-55%. In some countries the proportion of females in the agricultural labor force is increasing due to increased male migration, wars and HIV/AIDS.But even though women play an important role in agriculture, they represent only 15% of land owners and often have access to smaller plots and land with poorer soil quality (FAO, 2011). Compared to men, women tend to have less access to labor (both household and hired) which leads to lower productivity. Generally, women have less access than men to extension and advisory services, technologies, inputs and credit.Women are also less likely to adopt modern crop varieties compared to men. In Malawi for example, adoption of modern maize varieties was 12% lower for wives in male-headed households, and 11% lower for female household heads than for male farmers (Fisher and Kandiwa, 2014).Development experts call these differences in men's and women's access to and use of productive resources \"the gender gap\". They estimate that improving women's access to these resources would enable women to increase yields on their farms by 20-30%, which would increase agricultural output in developing countries by 2.5-4% and reduce the number of hungry people in the world by 12-17% (FAO, 2011). Gender is important in African agriculture because it determines not only who has access to which resources, but also who grows which crops, who does which tasks and who makes what decisions. In many African societies, women are responsible for providing much of the food for their households and play a key role in food selection, preparation, child feeding and nutritional decision-making. They also sell crops and engage in other economic activities to get income. While men may also be responsible for providing food, in many societies they focus more on producing crops for the market.Men's and women's roles and responsibilities are also influenced by the type of households they live in and how they organize themselves to grow crops. The majority of African women live in households headed by a man, but a significant number of women are household heads either because they are divorced or widowed or because their husbands live somewhere else most of the time. African women farmers in maleheaded households are often overlooked by researchers and extension services because of the assumption that their husbands are the \"real\" farmers and will pass on technical information to them. But it is important to recognize that married women in maleheaded households are farmers, may have preferences about crop varieties and technologies that differ from those of their husbands, and do not necessarily receive technical information from their husbands.Maize is the most important food crop in sub-Saharan Africa, particularly in Eastern and Southern Africa, so it is helpful to explore in more detail what role gender plays in maize production. In most parts of Africa, maize is grown by both men and women, although the importance for each gender may be different by location. Both men and women are involved in carrying out maize production tasks, but what role each gender plays (called the gender division of labor) varies by location. For Women make up nearly of the agricultural labor force in Africa 50% 15%Women represent only of land owners and often have access to smaller plots and land with poorer soil quality example, women are more likely to carry out weeding in Tanzania, while men are more involved in land preparation and planting. In Mozambique, men are more involved in land preparation and planting while women participate more in harvesting and threshing. In both countries, it is mainly men who apply pesticides, and seed storage is mainly done by women.Farming households organize themselves in many different ways to grow maize. In some societies, households grow maize and other crops on a plot cultivated jointly by men and women. In other parts of Africa, women and men grow maize on plots which they manage and control individually, while in other communities, farmers grow maize on a combination of household-and individuallyowned plots. How households organize themselves may be related to who makes decisions about what grows on each plot, among other factors.They also sell crops and engage in other economic activities to get income. While men may also be responsible for providing food, in many societies they focus more on producing crops for the market.Men's and women's roles and responsibilities are also influenced by the type of households they live in and how they organize themselves to grow crops. Most African women live in households headed by a man, but women are also household heads, either because they are divorced or widowed, or because their husbands live somewhere else most of the time. It is important to recognize that married women in male-headed households are also farmers, may have preferences about crop varieties and technologies that differ from those of their husbands, and do not necessarily receive technical information from their husbands. Women who live in households without a male head often face problems of access to land and male labor. Improving women's access to land, information, improved seed and other resources would enable women to increase yields on their farms byThis would reduce the number of hungry people in the world by 12-17%Gender is important for seed companies, because addressing the needs of different types of farmers -women, men, young, old, large-and small-scale, has the potential to increase profits. As mentioned earlier, a significant proportion of African farmers are women. Moreover, because men and women have different roles and responsibilities in crop production, different access to resources, and often face different production challenges, they may not have the same needs and preferences for crop varieties and may face different challenges buying certified seed. It therefore makes economic sense for seed companies to target both men and women farmers, and to cater to the specific needs of women farmers. However, the needs and preferences of women farmers are often not known or considered important due to common assumptions. Research on gender in maize production provides information on some of these issues.Women, especially married women, are not real farmers.Most African women farmers are married, and depending on the context, they play an important role in farming, growing crops together with their husbands or on plots that they manage on their own. Women who are not married also play an important role in farming.Women are not involved in making decisions about farm operations.While men make many of the decisions about farming in most parts of Africa, they often consult their wives or make decisions together with them. Women farmers also make farming decisions on their own. Assumption:Women farmers are only interested in maize for household consumption.Both men's and women's varietal preferences change over time. In the past, hybrid maize was seen as a man's crop, while local maize was considered a women's crop. But increased involvement of women in growing maize for the market means that women are interested in varieties for both home consumption and sale.Farmers just want a good variety, whether they are men or women.Fact: Studies show that both men and women maize farmers may value the same varietal traits but often rate maize characteristics differently and prefer different combinations of traits. For example, both men and women value high yield potential and early maturity. A common trend across countries is a stronger interest by women farmers in consumption-related traits such as starch content, length of conservation postharvest, and men's tendency to focus more on productivity and marketability.It is enough to provide information to men since men share technical information with their wives.Husbands do not necessarily share information with their wives and as already mentioned, men and women maize producers may not grow the crop on the same plot or have the same production objectives.In analyzing gender in maize production, researchers find it useful to focus on three categories of small-scale producers based on gender:• Male heads of householdsWomen in male-headed households Seed companies often hire contract growers (also referred to as out-growers) to grow maize seed based on criteria such as access to land and labor. A key requirement for maize seed contract growers is access to land that is isolated from other maize fields to ensure that there is no contamination from other maize varieties, and many women farmers are unable to meet this requirement. Most seed companies do not seek to involve an equal number of men and women in contract seed production and as a result, because women tend to own or have access to smaller landholdings and have limited control over labor, maize seed contract growers are predominantly men. Yet in many cases, women provide a significant amount of labor on maize seed plots that are registered in their husbands' names. Supporting more women to be maize seed contract growers in their own right, or recognizing their \"invisible\" roles on male-controlled seed plots, can provide commercial benefits to seed companies in the following ways:Improved crop quality; because women farmers often provide better-quality products than men (Chan, 2010), increasing the number of women involved in contract seed production could potentially help to improve seed quality.Once a new maize variety is released, seed companies work closely with their partners such as research organizations, seed multipliers and agro-dealers to multiply, promote and disseminate it widely. This section discusses how to ensure that gender is addressed in seed multiplication and promotionIncreased productivity through improving incentives for women producers; providing training in seed production to both husbands and wives, where the latter provide labor on seed plots, can improve productivity.A growing supply base; studies show that involving more women in contract farming can increase the number of growers, as women are effective recruiters (Chan, 2010). Growing male migration and off-farm employment in many countries means that increasing the number of women contract growers is a way to ensure future seed supply.Are women excluded because of factors associated with being female (gender-based constraints) such as not having access to large pieces of land? What can be done to address these factors and overcome these constraints? At what cost?Would my business benefit from including these groups? How What factors do you consider when you select producers?Who are your current producers (in terms of gender, age, wealth etc.)?Who might be your future producers?Why are certain groups (e.g. women) not represented?Box 2: Self-reflection: Is gender important in contract seed production?To assess whether gender has been a consideration in contract seed production, ask the following questions:?Seed companies have traditionally not paid much attention to the different needs of men and women farmers. To maximize profits, seed companies should seek to deliberately target women and young farmers as clients.This section discusses how seed companies can be more gender-responsive in terms of their products, prices, promotional strategies and places of sale.To encourage greater involvement of women in contract seed production, consider establishing a quota for the number of women contract seed growers. For example, you may decide to recruit women as 20-30% of your seed growers. It is important to make sure that the criteria used to select contract growers do not discriminate against women. For example, rather than land ownership, consider using control over land as a requirement. One way to involve women more directly in contract seed production is to establish contracts with households, including both men and women, rather than with individuals (mainly men). Where married women provide labor on seed plots, provide technical training to both husbands and wives and encourage male seed growers to share some of their earnings with their wives, or allocate a portion of land to them. Consider establishing contracts with farmers' groups or women's groups, as it is often easier for women to operate and access land and labor in groups rather than working as individuals.Whether or not a company will seek to have more diversity among its contract growers and work with more women farmers will depend on several factors, including the additional costs involved and profitability in the short and long term. Companies should seek to take advantage of all opportunities and talents that exist in farming communities, challenge their assumptions about who should produce seed, and weigh the costs and benefits of being more genderresponsive.While small-scale men and women farmers have many things in common, they differ in other ways due to women's disadvantaged position in society generally. Women face greater challenges than men in obtaining information about new maize varieties and in buying seed from the formal sector. Box 3: Challenges women face in getting information about agriculture and buying certified seeds.To address the needs of women and men with low levels of education, companies should pay attention to how they provide information. Where possible, don't only rely on written information. Labels on seed packages should be in the local language, with a lot of pictures and symbols so that low literacy groups can easily identify products and understand instructions for using them.Maize seed is often packaged in large quantities of interest to medium-or largescale farmers, whereas women, especially if they grow maize on their own plots, typically plant a smaller area compared to men. Quantities in large packages also sell at a higher cost, which may not be affordable for women and poorer farmers in general. Women may also face difficulties in transporting large bags of seed.Providing several, smaller packaging sizes of seed helps to make seed affordable for women and men who do not have a lot of cash to spend, and who cultivate smaller plots. Smaller packages are also easier for women to transport.As rural women often have less money/ income than men, seed companies and other suppliers should consider ways to make certified seed more affordable. Some options include: Information and labels Packaging size and priceBeing gender-aware when designing a product distribution strategy means making efforts to ensure that your target customers --men, women, youth -have access to your products. Seed companies often distribute seed through different channels including their own retail shops, their own mobile marketing teams, agrodealers, supermarkets and other outlets.As mentioned earlier, women often find it difficult to travel to purchase certified seed, so consider involving local seed sellers such as agro-dealers, village stockists, traders and lead farmers in distributing your products. Working with these types of actors provides many opportunities, as they can provide information and advice together with seed, host demonstrations, and offer local credit arrangements. However, local seed merchants need to be trained and monitored to prevent the sale of poor quality or fake seeds.A packet of MERU HB513, an early maturing droughttolerant maize variety. Photo: CIMMYT/Kipenz Films Maize seed packed in small and medium size quantities to distribute to diverse demographic groups-e.g. resource-poor farmers who own small plots of land. Photo: CIMMYT/Kipenz Films Box 4: Self-reflection: Integrating gender into distribution networksHow is your current distribution network structured and why?Who are your current customers -men? women? youth?Do some distribution channels reach some demographic groups (men, women, youth) better than others? Why?Who are your potential customers?How can you effectively market to men? to women? to youth?Is there scope for expanding your distribution networks so that they reach potential customers, especially women and youth, better?What will different strategies mean for your costs and long-term benefits?Creating awareness about and advertising new varieties and other products is important for boosting sales. Common promotional approaches include:Box 5: Considerations for making promotional approaches more gender-responsiveVery often, seed companies, extension/advisory services and other organizations do not recognize that different approaches and strategies are needed to reach men and women producers and other end-users. The outcome of a \"one-size fits all\" approach is often that women are less aware of modern maize varieties than men, as mentioned earlier. Promotional efforts therefore need to be gender-sensitive by taking into account the constraints faced by women.Seed fairsMessaging through television, radio, videos Women have less time than men to listen to radio or watch television and may not even have access to these communication channels. Messaging through mass media should be in the local language and aired during times that are convenient to both male and female audiencesWomen tend to be less literate than men. Printed materials should be written in the local language where possible and use simple wording with plenty of illustrationsConsider the time and location of these events to ensure that both men and women can attend. If necessary, provide transportation to enable farmers to get to the event The first step in designing a gender-sensitive promotional approach is to carry out a general situation analysis of farmers' information and seed channels. For efficiency, this situation analysis should be carried out in conjunction with research, NGOs or other organizations involved in seed dissemination. The objectives of the study are to identify target areas for product promotion; to obtain information on the role of women and men in maize production, on the information and seed channels used by men and women, and on the constraints that they face in accessing information about agriculture and new varieties in general; to evaluate the best mix of promotional approaches for reaching men and women; and to identify potential partners for promotional activities and evaluate their experience of promotional activities, including their strengths and weaknesses. Methods that can be used for a general situation analysis include key informant interviews, group interviews and formal surveys.Promotional approaches fall into two broad categories: those that create awareness and provide information (radio, TV announcements, messaging, road shows, agricultural fairs, printed materials) and those that demonstrate the performance of maize varieties (demonstrations, field days, small seed packets). Ideally, it is best to use a combination of methods to both promote awareness and demonstrate performance. The following describes how to address gender issues in conducting demonstrations/field days and distributing small seed packets.These two approaches are highly effective in increasing awareness of new maize varieties for two main reasons. Firstly, demonstrations and field days demonstrate the actual performance of varieties from planting to harvesting, which can be understood by all farmers, regardless of educational level. Secondly, demos can also be used to promote good agronomic practices (e.g. timing of planting, weeding, harvesting, correct spacing etc.). Distributing small packets of maize seed during demonstrations and field days is an excellent practice for encouraging farmers to adopt new varieties. To ensure that demos and field days are gender-sensitive, it important to pay attention to who hosts these events, where they are located, how information is provided about the events and how they are organized.The selection of farmers to host demonstrations and field days is often biased toward men and people of high status.Ensure that other categories of farmers including individual women and young people from different socio-economic groups and women's groups have the opportunity to host demonstrations and field days. Rather than leaving the task of selecting farmers to extension or seed company representatives, a more participatory process led by communities should be considered.Typically, organizers prefer to locate demos in central places such as on roadsides. However, such demos are less likely to be seen by women in particular due to their limited physical mobility. Guided by information from the situation analysis, it is preferable to hold demos in a variety of areas frequented by different groups e.g. women, youth, etc. The design of signs used at demonstration plots also need to be gender-sensitive. As women tend to be less literate than men, especially in official languages, signs need to be in the local language and use simple language and illustrations. Demos and field days need to be planned well in advance, based on input from both men and women in the community, and widely publicized locally through multiple channels in order to reach both men and women. Setting the day and time for such events should take into consideration women's schedules. Organizers should also provide child care to encourage the participation of women with babies and small children. Efforts should be made to ensure that women feel comfortable expressing their views.Providing small packets of seed of new varieties to farmers free of charge or for minimal cost encourages farmers to try new varieties with little or no risk. Small packets provide between 100 g to 2 kg and may cost the same as a cup of tea. Anecdotal evidence suggests that women are just as likely as men to purchase small seed packets (Sperling and Boettiger, 2013) but attention needs to be paid to where packets are made available and how they are advertised, to ensure that women can easily access them. Small seed packets can be distributed during demos/field days, agricultural fairs, through health clinics, schools, churches, mosques, and women's groups, or sold through agrodealers, small shops or local markets. Information for the communications situation analysis can be used to identify the most appropriate channels for reaching women with small seed packets. Distributing small seed packets through various channels, particularly through women's groups, health clinics and local markets, and setting a quota for the number of women receiving packets are effective ways to target women.Demonstrations and field days provide an opportunity to obtain information on the varietal preferences of men and women producers. Managing data from these events is therefore important for effective feedback loops. Data bases on demonstrations should include gender-disaggregated data on farmers who host demonstrations/field days, participants and georeferenced locations. A sample form in Annex 1 provides an example of the type of information that is useful to collect from farmers attending a demonstration or field day.Many seed companies only hire women for certain tasks that usually involve manual labor. Women may not be represented in some positions, especially at management levels. Gender equality principles that apply to the recruitment stages include using gender-neutral language in job descriptions, advertising positions through channels used by both women and men, ensuring that both men and women are represented in the recruitment team and interview panels and that the interview and selection process are non-discriminatory. It may also be important to aim to hire a certain number of women for certain jobs.Recruitment:4. Building gender-equitable seed companiesIt is not enough for seed companies to be gender-responsive with customers; they need to be gender-responsive and socially inclusive in their overall philosophy, which includes staffing and other areas of human resource policy. In short, seed companies should seek to build organizations where diversity promotes growth.Action in four areas can help achieve this goal:Creating and fostering a gender-equitable workplace:Companies have the duty to ensure that both women and men have equal opportunities in the company, including equal pay for the same work. Barriers to the full and equal participation of women in the workforce should be removed, and discrimination on the basis of gender eliminated, particularly discrimination in relation to family and caring responsibilities. Parental leave for both female and male employees and child care facilities are some of the benefits that seed companies should provide. Companies are also responsible for ensuring that women and men do not experience sexual harassment in the workplace and should take strong action against such cases.Seed companies should develop a genderequality policy to ensure the enforcement of equal opportunities for women and men. The policy should cover all aspects of company operations including seed multiplication, distribution and promotion.CIMMYT has developed a tool to help seed companies assess their level of genderresponsiveness and identify areas that need improvement (see annex 2).Gender-equality policy in the workplace:Capacity-building in gender awareness:Seed companies should provide general training on gender awareness for all staff, and specific training on gender skills for relevant staff, especially those dealing with product promotion and distribution.A successful seed business depends not only on efficient technical operations but also on meeting the needs of its customers, staff and collaborators. As this manual shows, recognizing that men and women producers and all those involved in all the stages in seed production and distribution may have different needs and interests, and that addressing these different needs makes economic sense and will benefit your business.This tool was developed to help seed companies assess how gender-responsive they are in their operations along the seed supply value chain and in the workplace. It consists of a matrix table which covers good practices related to 3 areas: gender in the workplace; gender in seed-related operations; and gender in product positioning. With regard to practices in the three areas, the tool guides companies to assess and reflect on five questions:• How easy is to implement specific good gender practices?• What is the cost of implementing these practices?• Should the company decide to implement these practices?• What is the anticipated timeline for starting implementation?• What are the target goals (time for completion, percent of completion by certain time of the year)?The tool deliberately avoids prescribing comparative \"weights\" for each theme. Rather, it is designed to help units/departments in seed companies reflect and use their own value system to determine the following: what is important? why is an issue/aspect important? and when can the company begin to make changes? It is anticipated that the tool will be used by company managerial teams (CMTs) to score each of the indicators in the matrix and plan how they will proceed to implement good gender practices.While the starting point or initial conditions are important, companies are encouraged to use the tool to focus on their progress in becoming more gender-responsive over time. It is not where a company is that matters; rather it is the direction the company is taking and the pace at which it endeavors to achieve its self-determined goals.Annex 2: Gender-Responsiveness Self-assessment ","tokenCount":"5842"} \ No newline at end of file diff --git a/data/part_3/4247129614.json b/data/part_3/4247129614.json new file mode 100644 index 0000000000000000000000000000000000000000..55511132e73a0bb32f7a0f576aa70f9406d51b94 --- /dev/null +++ b/data/part_3/4247129614.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"1a1170a7d3358d9a30a481904a6a8f9b","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/eb89d99d-1353-42aa-92b0-d18f4e35892e/retrieve","id":"-189327448"},"keywords":[],"sieverID":"2b2c0ad6-b0d9-4715-a375-c23747508d4e","pagecount":"22","content":"These workshop modules comprise a practical, participatory tool for creating community watershed action plans aimed at increasing climate resilience through the sustainable management of water, land and ecosystems. The tool is intended to support the capacity of communities to learn, cope, adapt and transform in the face of social, economic and environmental pressures. It is also intended to allow communities and others to systematically assess past, present and future changes, challenges and opportunities in the management of local landscapes or watersheds.The modules are adaptable for use in different settings and across different communities of practice (e.g., research, implementation of development action, and policy interpretation) and can be completed within two days, although some data collection is recommended prior to the workshop.In the following pages, we describe how to apply the modules in a workshop setting together with a description of the format and participatory methodologies. In preparation for the workshop  Collect appropriate datasets (qualitative and quantitative) prior to convening the workshop. For example, information on historical and current water and land resources can be used to supplement the recollections and insights of workshop participants. Arrange for a facilitator who knows the local dialect, in order to encourage women's participation, and uses gender-sensitive language. The aim should be equitable participation by all, including women, youth and elders. Equal numbers of women and men should be invited at a time that does not interfere with their household and farm responsibilities. If possible, child care should be offered to facilitate participation of women with young children. Share a project brief with local government administrators and community leaders in a meeting held a few weeks prior to the workshop. This meeting can be used to answer queries and familiarize officials with anticipated workshop outputs.Introduction to workshop objectives (30-45 minutes) Facilitator, organizers, government officials and other participantsThe purpose of the workshop is to create watershed action plans for sustainably managing natural resources and the services they provide (ecosystem services), such as food, fuel, fodder and water quality. Sustainable management is key to community resilience in the face of disturbances or shocks (e.g., climate or market perturbations). For example, preventing soil erosion protects water quality and fish health -two ecosystem services.• Workshop opens with a brief welcome from the organizer and relevant local government officials.• The facilitator explains the purpose of the workshop and the general schedule for the next two days, as well as a more specific schedule and objectives for each day.• The facilitator walks the participants through the workshop consent form for their subsequent review and signature (copies to be collected and maintained by hosts).• Housekeeping issues: turning off mobile devices, food, per diem, etc.• Participant/facilitator/note-taker introductions.• Feedback -Participants relate what was understood and what they expect from the workshop. The facilitator should obtain feedback representing the range of participants.Participants should be encouraged to raise questions or concerns they may have about the workshop.• Module 1: Describing livelihoods and their dependencies on sustainably managing resources and the services they provide (90 minutes) 1Facilitator and note-takersParticipants are able to describe the diversity of livelihoods in the community, and how the ecosystem services support livelihoods.• The facilitator explains the purpose of the exercise and provides some examples of the information to be collected.• The facilitator describes the role of services in rainfed/irrigated farming; livestock rearing; collection of wood, wild fruits or plants; market activities; casual labor; and paid work outside the village. The facilitator should include spatial and temporal aspects of relationships among health, livelihoods, natural resource management and ecosystem services.• The facilitator mentions the importance of mitigating risks to service provision.• Within groups, the participants: Identify livelihoods, the dependence on/links to resources/ecosystem services (positive and negative) 2 .  Prioritize three to five top livelihood activities: noting those most important for income, food security and well-being.  Discuss and list the risks to service provision from different sources and ways to mitigate risks.  Highlight key livelihood activities and negative dependencies/linkages.A note-taker sits with each group to answer questions and help with writing.• Group representatives present and discuss their tables with others.One pre-designed flipchart per group; post-it notes (3 colors/sizes).A table of livelihoods and their relationships to ecosystem services.2 Ensure there is a common understanding of the positive/negative dependencies. For example, positive meaning the benefits communities receive (provisioning, regulating, habitat or supporting, and cultural services, etc.) from the natural environment; and negative meaning risks to the natural resource base and the services they provide (from human action, climate variability/change, etc.). The central focus is livelihoods and how they are positively or negatively affected by the natural resources and services in the watershed.Module 2: Mapping land use, water sources and landscape components critical to the supply of ecosystem services (90 minutes) 3Facilitator and note-takersParticipants are able to identify and map components of the landscape in their watershed that are important for community well-being and ecosystem services.• The facilitator explains the purpose of the exercise.• The facilitator demonstrates the mapping process using pre-designed maps with legends on the wall.• Participants divide into groups according to their geographical location in watershed.• Participants personalize a blank map with features in their landscape, depicting land use and landscape components that affect (positively or negatively) water quantity and quality, and other ecosystem services. The maps include significant features and resources. Facilitators observe and answer questions. Emphasis is on mapping components that illustrate land use, water sources and points of use, and activities that affect ecosystem services. Infrastructural elements such as churches, roads, schools, etc., should be included.• Participants identify key features in the landscape to provide some perspective/ weighting on the values placed on the various features.• Group representatives present and discuss their maps with others.• The facilitator leads discussion about resource flows and interrelationships among the communities in the watershed. Markers are used to draw arrows, demonstrating the resource flows across the landscape. This discussion should not be limited to communities attending the workshop, but include possible effects on neighboring communities.• The facilitator asks for feedback on what participants have learned during the activity.Pre-designed maps of the area divided into parts representing the different locations in the watershed, pre-designed legends on flipcharts, water-based and alcohol-based markers, push pins and pre-designed icons.Maps that illustrate land use, water sources, and components and processes in the landscape (upstream, midstream and downstream) that are important to the supply and delivery of ecosystem services.Module 3: Creating a timeline of major events and their effects on ecosystem services (90 minutes)Facilitator and note-takersParticipants understand how significant events (e.g., flooding, infrastructure development, famine, land-use change) have/may affect availability/quality of natural resources and ecosystem services.• The facilitator describes the purpose of the activity and demonstrates the process of creating a matrix of events, effects and timeline.Photo: Beverly McIntyre / IWMI• Participants are requested to focus on key events in the past 25-35 years.• Within groups, participants identify, through the creation of a table, significant lifechanging events (positive and negative) such as floods, droughts, crop diseases/pests/ harvests, births/deaths, natural disasters, etc. In the table, participants note the impacts of each of the events on livelihoods, water quality, landscapes and ecosystems services, and their responses, if any, to each event.• From these events, the groups select four to six major events (challenges) for further analysis in the subsequent modules.• Groups present their tables of events and effects on ecosystem services.• The facilitator will lead a discussion on the importance of the event on the community as a whole, as well as on youth and women. The facilitator underlines major events with a red marker. Participants will describe individual/community/official responses to events. Note-takers should record all details, whereas only brief comments will be written on the flipchart matrix.• The facilitator records events on a timeline drawn on a pre-prepared flipchart.Pre-designed flipcharts (for group and plenary work), markers. Organizers gain an understanding of how participants perceive the day's exercises and where improvements can be made.• The facilitator recaps the day's activities.• Using a flipchart, the facilitator records what participants think went well and what could be better.Flip chart with a line down the middle (positive/negative), markers.Monitoring and evaluation (M&E) input for final report.Photo: Likie NigussieIntroduction to the day's activities (30 minutes)• The facilitator recaps the previous day, introduces the schedule for day 2, and asks for feedback from participants.Module 4: Describing coping/adaptive strategies for sustaining water quality and ecosystem services (90 minutes)Facilitator and note-takersParticipants can identify adaptive strategies to the key challenges (shocks/major events) identified in Module 3.• The facilitator describes the purpose of the activity and explains what is meant by adaptive strategies, giving some examples.• The participants will also be asked to recall those challenges and these will be listed on the flipchart.• Within groups, participants discuss the adaptive strategies for responding to the challenges on a pre-designed flipchart matrix.Pre-designed flipcharts and markers (see Appendix A for a detailed description of this module).Matrix of challenges, adaptive strategies and roles different actors play.Adaptive strategies (identified in Module 3) (causes of challenges)Module 5: Understanding social/institutional organization in relation to natural resource management and mapping the influence networks (75 minutes)Participants create a mind map/organogram identifying the key actors involved in the coping strategies for each of the key challenges identified in Module 4. The network map should show the relationships that shape and affect natural resource management in formal and informal settings. This map should lead to an understanding of the different roles and responsibilities of various actors that influence/affect the adaptation strategies identified in the previous module.• Participants split into three groups for a three-step exercise: o Assemble all the actors relevant for each challenge and related adaptation strategy on the map.o Define the different links and draw networks that highlight the roles of the actors within the network (e.g., flow of information, funding).o Define 'influence/power' and put actors on influence stones.Note: Note-takers to encourage the community participants to consider the range of actors (official/non-official, public/private, nongovernmental organizations (NGOs) -traditional/ informal/community-based organizations) involved. However, the facilitator has to be careful not to probe and push the participant to add actors that he or she has not mentioned.• Each group presents their work.Flipcharts, post-it notes, small stones, markers of different colors.An organogram and a map of relationships (see Appendix B for more details on this session).Module 6: Developing a watershed action plan (2 hours)Participants identify actions, with a focus on community actions, necessary to sustain ecosystem services within the watershed and strengthen community resilience.• The facilitator explains the purpose of the exercise and describes how to create a watershed action plan.• The facilitator reminds participants of the matrix of challenges to sustaining ecosystem services that they created in order to help them focus on the issues relevant to creating an action plan.• Using the key challenges (identified in Module 3) as a guide, participants list key actions needed to address the challenges -dividing them into short term (1-3 months), mid term (6-12 months) and long term (more than a year). For each action, they list the requirements in terms of human and material resources, and indicate if these resources are available in the community.• Groups present their action plans. The facilitator groups similar plans.• The participants are guided towards a consensus on six important actions (three short term and three mid term).• Participants discuss the roles that can be played, and responsibilities, as individuals or their 'office' or the community in completing the work. Discuss activities that require large material inputs and identify potential sources for these inputs.• Plenary reaches an agreement on an action plan.• Workshop organizers agree to produce a report on the action plans in a language agreed by participants. This report will be shared within four weeks with local government administrators or other appropriate bodies. The administrators commit to sharing this report with all the stakeholders.Flipchart (possibly pre-designed, markers).A watershed action plan containing actors linked to specific actions (actions, roles and responsibilities).Facilitators, organizers, government officials• The facilitator recaps the activities completed during the workshop, and asks participants to reflect on what was achieved. Using a flipchart, record what participants thought went well on one side, and what could have been better on the other side.• Organizers and observers thank the community for their active participation and encourage them to continue with their resilience-building activities.• Award individual attendance certificates to participants.Flipchart with a line down the middle (positive/negative), markers, certificates.Outputs M&E that feeds into a final report.Photo: Likie NigussieUnderstanding social/institutional organization in relation to natural resource management and mapping the influence networks (Module 5)The purpose of this exercise is to explore relationships that shape and affect natural resource management in formal and informal hierarchies. This exercise helps participants to understand the different actors (formal and informal) that can/do influence the implementation of the adaptive strategies identified in Module 4.Large sheet of paper; small actor cards (post-it notes) to write down the names of the actors, grouping small stones to show the level of power (influence) each actor has, and markers of different colors to draw the links between actors.Steps 1. Assemble all stakeholders on the map  For each of the challenges identified (in Module 3), think of all the individuals, groups or organizations that affect the implementation of the related adaptation strategies (Module 4). The actors can be local as well as national, regional and international, and they do not necessarily have to be formally linked to the challenge or adaptation strategy identified. Every individual, group or organization capable of having an influence/impact should be included. Write the names on the post-it notes or small pieces of paper fixed with masking tape and distribute them on the sheet of paper. While the distance between the different actors on the map is not used in the analysis, it makes sense to place the actors so that those with many expected links are placed close to each other, which will help to ensure that the final influence network map is not too disorganized or messy. Adding actors and links whenever they come to mind is encouraged to allow people with different approaches to complex questions to express themselves at their own pace. However, while encouraging the participant to add more actors, the facilitator has to be careful not to probe and push the participant to add actors that he or she has not thought of. With participants who start out slowly, it helps to have the facilitator read out loud the actors already mentioned to give the participant time and space to think about further actors. Links can be defined in terms of flow of funds, formal line of command/reporting/ formal hierarchy, support, advice direction and flow of information. Collect data about how these actors are linked, and illustrate these links by drawing arrows of different colors between the actor cards. The colors represent different kinds of links. A network legend is written in a corner of the map, which spells out which color represents what kind of link. For example, black arrows represent the formal lines of command; red, the flow of funds; green, informal support, advice or guidance; blue, the flow of information; and yellow, links to be established or strengthened in the future. The facilitator explains that the next step is to connect the actors with arrows colored according to their links. The arrows indicate that something (such as information or funds) is flowing from one actor to the other. If there is a mutual exchange, the arrow has two heads. It is advisable to start with those kinds of links that are rather rare and only add the very common ones (such as flow of information) toward the end, so the picture does not become cluttered early on. If actors are linked by more than one flow, arrowheads of different colors can be added to existing arrows. In complex setups, in particular, the facilitator can guide the participant through the process by making sure that they go step-by-step, instead of jumping from one color to the next and back. If participants identify few or no links, the facilitator can ask whether that is an oversight or a purposeful statement. However, it is important that the participant does not feel pressured to add links. The links to be established in the future are not visualized at this point of the interview, but only at the end as an outlook toward strategic influence network planning. Therefore, the facilitator should clearly state that \"We are talking about the existing links now, not about those that should or will exist in the future.\" The definition used in the case study is based on Max Weber's definition of powerthe ability to reach one's goals in a social setting (Schiffer and Waale 2008 4 ). In communicating the definition to participants, the facilitators must stress that the sources of influence/power can be diverse, ranging from legitimate decision-making capacity through to giving advice or providing incentives to bending or breaking the rules. It is important that participants understand that they are not being asked about formal hierarchies but about the ability of the actor to influence a specific issue. The question is how much influence this actor has in this specific field/activity/organization-not in a more general sense. Once this understanding of influence is established, the participants are asked to assess who has how much influence on a given governance field. In the case study, the question was \"How strongly can these actors influence the sustainability of ecosystem services?\" The actors are represented by a number of small stones that are put on top of the actors. Rules for this exercise must be explained: The more influence an actor has the larger the number of stones. The number of stones can be as large as participants want. Two actors can have the same number of stones. If an actor has no influence at all, the figure is put on the ground level without an influence tower. After the participant sets up the influence stones, the facilitator verbalizes what he or she sees, starting with the largest number of stones, and encourages the participant to make adjustments if he or she has second thoughts. This is especially necessary where influence networks are complex. Once the participant is content with the whole setup, the facilitator writes down the number of stones next to the actors' names on the network map.Start with the most influential (the one with greater number of stones) and ask about the source and effects of influence. Some of the questions that can be asked include the following: I see you have put this one on the large number of stones. Why? Where does his/her influence come from? How would an outsider like me see that? You say that these two actors have the same level of influence. What happens if they disagree? Is their influence based on the same grounds? Does it have the same range? I have heard there is a conflict about …. among these three actors. Could you explain to me what it is about? You have linked this actor to many others, but you say he/she does not have much influence. Why is that so?","tokenCount":"3177"} \ No newline at end of file diff --git a/data/part_3/4261904558.json b/data/part_3/4261904558.json new file mode 100644 index 0000000000000000000000000000000000000000..6c5cfda7b5d8f5f5d448be6a8190fcd0dcd966cc --- /dev/null +++ b/data/part_3/4261904558.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"0fac053588faba6ac2496671fc86daab","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/9f6483ee-a5f5-44ac-945d-c5b1c739cee0/retrieve","id":"319483484"},"keywords":[],"sieverID":"e72a75f8-ff0e-4eb3-a9d1-97434afb8145","pagecount":"3","content":"excellenceinbreeding.org) including for designing single-nucleotide polymorphism assays, analyzing genome-wide association studies, population diversity, rice−bacterial pathogen diagnostics, and a suite of published genomic prediction methods.Through Rice Galaxy, the 3000 rice genomes data, SNP data from the antenna panel of the global rice array, high-quality reference genomes and other resources can be accessed by the public. The Rice Galaxy web server (http://galaxy.irri.org) includes tools for conducting genome-wide association studies, population diversity, and genomic prediction methods among others. Specific tools developed for rice galaxy are available the galaxy tool shed (http://galaxytoolshed.excellenceinbreeding.org). Rice Galaxy is compliant to Open Access, Open Data, and Findable, Accessible, Interoperable, and Reproducible principles. It is a freely available resource empowering the plant research community to perform state-of-the-art analyses and utilize publicly available big datasets for both fundamental and applied science.This effort involved collaboration among IRRI, IRD and Cirad (SouthGreen Platform) as well as external partners. Rice Galaxy was published in the open access journal, GigaScience (Juanillas et al 2019).","tokenCount":"160"} \ No newline at end of file diff --git a/data/part_3/4264111218.json b/data/part_3/4264111218.json new file mode 100644 index 0000000000000000000000000000000000000000..796f022a3657eee9da7cc0b1bf70a8604c919d02 --- /dev/null +++ b/data/part_3/4264111218.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"5d8708e7cbd17e57c6e236725f0c0414","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/93d705d9-cc25-49ed-bedd-3c9586e02217/retrieve","id":"-1910775841"},"keywords":[],"sieverID":"e45ed2a5-0c4b-45f5-92df-b882d906a0a1","pagecount":"1","content":"❖ Women drudgery in production and post-harvest operations is one of the reasons for neglecting millet cultivation and low consumption by small and marginal farmers (Oliver king, 2016). ❖ Mostly, post-harvest operations involve more drudgeries, which affect the physical, psychological, and quality of life of farmwomen and do not have access to appropriate technologies. ❖ Drudgery levels get influenced by physical profile characteristics of the respondents like age, height, body weight and body mass index (BMI) (Singh, 2007). ❖ An ergonomics aspect in designing, operating, and refining implements as per their needs will help to enhance their efficiency and safeguard their health. ❖ With improved practice, drudgery in flatbread making was reduced to moderate (58.51) while to minimum (less than 50) in remaining four operations (fig. 3). ❖ Increased work output, reduced drudgery (35-88%) and time (31-90%) (fig. 6) and minimised postural discomfort (moderate to very light pain) (fig. 5) were found while using improved technologies. ❖ Knowledge regarding safe work methods, work practices, improved tools and equipment etc. were enabled to decrease musculoskeletal disorders.❖ Based-on operation-wise drudgery profile, suitable power-operated machines should be introduced that could reduce drudgeries and also enhance consumption of millets.• ","tokenCount":"195"} \ No newline at end of file diff --git a/data/part_3/4280999107.json b/data/part_3/4280999107.json new file mode 100644 index 0000000000000000000000000000000000000000..524484c2ef0c1d8bbe546b96436f398219ebf6b5 --- /dev/null +++ b/data/part_3/4280999107.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c7e0d00a4d3c5ac71f1d6789f3a4cb9d","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/1dc72572-a550-4281-aa6f-7b449b3d78af/retrieve","id":"-1684522985"},"keywords":[],"sieverID":"6cc8f927-c8f1-4506-958f-bdef3ffdac7d","pagecount":"20","content":"Simple and conceptually robust decision support tool for developing climate-resilient watershed plans. Identifies the best mix of agriculture water supply and demand interventions considering current and future agriculture and climate scenarios in the watershed.Agriculture in India is highly sensitive to the weather, with most of the rain falling in just three to four months of the monsoon season, and half of the farming land being rainfed. Climate change is making things worse by raising temperatures and increasing rainfall vulnerability, which leads to more frequent and intense weather events. There's a clear need to make farming less vulnerable from these weather changes.With agriculture dependence on water and impacts of climate change primarily felt though changes in water cycle, water resource management is central to reducing vulnerability and building resilience. Watersheds, as the fundamental units of land for the hydrological cycle, provide the ideal scale for examining, understanding, and efficiently managing agricultural water use. Furthermore, increasing population growth, urbanization, and land-use changes have led to mounting pressure on watersheds, which are critical for the functioning of ecosystems and the provision of water resources.Developing agricultural watersheds that are both sustainable and resilient is now a key priority for policymakers and those managing water resources. (2019).• Based on the widely used and available Excel spreadsheet.• Low data requirements.• Incorporates widely used and published methods to estimate water balance.• Water balance based on simulation of runoff and soil moisture balance.• Incorporates 20+ most-used watershed interventions and can simulate their impact.• Provides the capability to simulate scenarios on land use, cropping pattern, and climate change.• Provides water balance results in an easy-to-access and user friendly dashboard for current and future climate and different droughts scenarios.• Water balance results for the runoff, evapotranspiration, recharge, crop water requirements, and yield for the overall watershed and each crop. WAT-NRM is a user-friendly, Excel-based tool (Figure 2) that requires minimal data input. It is founded on robust methods that have been widely used and documented in the field (see Table 1). This tool is designed to perform the following key functions:• Evaluates the water balance, considering both supply and demand within the watershed, under various hydrological conditions, including dry and normal rainfall years, as well as under projected future climate scenarios.• Provides recommendations for the most suitable supply and demand-focused agricultural water management interventions, tailored to support the development of sustainable and resilient watersheds in both current and anticipated future climate conditions. This feature is particularly useful for detailed project planning in watershed management.• Assesses the potential impact of proposed agricultural water management interventions, helping to determine their effectiveness in creating sustainable and resilient watersheds.Simple Tool with Low Data and Software RequirementsThe tool utilizes a monthly water budget approach to balance water availability and demand within the watershed. Using robust and widely applied scientific methods (Table 1). The use of robust methods implies that the water availability and demand estimates produced are likely to be reliable Soil moisture storage Daily soil moisture balance is simulated.Crop yield FAO yield response factor FAO crop yield function (Steduto et al., 2012) The WAT-NRM tool was created to assist natural resources management personnel and NGO staff who gather relevant watershed data and prepare project reports for watershed work. Therefore, the tool is designed to be simple yet robust, with minimal data requirements. It is an Excel spreadsheet with a user-friendly interface (see Figure 2) and is intended for use in small watersheds (1,000-10,000 ha) where agriculture is the primary land use. To minimize user input, the tool is inbuilt with a large set of data on crop parameters (yield response factors, crop coefficients, etc.), soil parameters (soil field capacity, infiltration rates, etc.), and the SCS curve number for various land types to keep the user input data requirements low. This can be updated with location-specific data if needed. The built-in database includes:• Details for forty-five crops (yield response factor, stage-wise crop duration and coefficients, cover type, root depth, depletion factor).• Five soil types (field capacity, wilting point, infiltration rates).• Curve number matrix (curve number for each crop type, crop cover, and soil).Detailed information about the user input data and built-in database can be found in the tool's user and technical manual. Figure 3 shows the conceptual workflow of the tool.Water availability is segregated into effective precipitation (Pe), surface runoff (SR) and surface storage (SST), soil moisture (SM), and groundwater (GW) recharge. Precipitation is separated into overland runoff using the USDA SCS-curve number method (USDA, 1986). Adequate precipitation infiltrates and replenishes soil moisture storage. Soil moisture storage is simulated using the daily single-layer soil moisture balance methodology (Rushton et al., 2006). It is depleted through actual crop evapotranspiration and soil evaporation estimated using the FAO four-stage crop 1 coefficient approach (Allen et al., 1998) 2.3 1• The FAO four-stage crop coefficient approach is a method for estimating crop water requirements, which is widely used for irrigation scheduling and water management in agriculture. It involves dividing the growth cycle of a crop into four stages (initial, development, mid and late season), each with a different crop coefficient, which represents the ratio of crop evapotranspiration (ETc) to reference evapotranspiration (ETo) during each stage.2• Guide developed by the Central Ground Water Board (CGWB) in India to estimate groundwater resources in different regions of the country. The method uses a combination of field observations and data analysis to estimate the recharge and discharge of groundwater in a particular area (MoWR, RD & GR 2017).3• The method involves calculating a yield response factor (Ky) for a particular crop, which represents the sensitivity of crop yield to water stress and reflects the ability of the crop to maintain its yield under varying water availability. The Ky value is a dimensionless number representing the effect of a reduction in evapotranspiration on yield losses. 5). These interventions are categorized as under supply, demand, and soil moisture.Supply side interventions involve building water storage to support irrigation, while demand management interventions focus on reducing demand by increasing irrigation water application efficiency. Soil and moisture interventions enhance soil moisture storage, increase recharge, and reduce non-beneficial soil evaporation. A detailed methodology of how these practices interact within the tool can be found in the technical manual. drought categories (Severe, Moderate, Mild, and Normal). Drought intensity is categorized using the Standard Precipitation Index (SPI) 4 (Sonmez et al., 2005). The tool provides results on the watershed water balance, crop and irrigation water requirements, crop water requirement met, yield and benefit-cost ratio for different drought years and intervention scenarios (see Figure 6). Once the best interventions and strategies have been identified, they can be used as input to the watershed GIS planning process to identify location of interventions under the participatory planning of sustainable agriculture systems.The tool has been applied across 6 diverse watersheds (Figure 9) in India (partnership with ITC and NABARD). The application show that tool can satisfactorily simulate watershed water balance and the impact of drought on agriculture. The use of tool by planners had led to the implementation of more holistic measures.Current ","tokenCount":"1167"} \ No newline at end of file diff --git a/data/part_3/4294624870.json b/data/part_3/4294624870.json new file mode 100644 index 0000000000000000000000000000000000000000..48222ef034bd4a68ca77c6d5c70505cb3518ca39 --- /dev/null +++ b/data/part_3/4294624870.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"bf7f824e8f12df588b8b219712283341","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/fb240454-1ade-4fac-a896-c67e28a69889/retrieve","id":"-2113248557"},"keywords":["Zero-deforestation","agricultural commodity","value chain","peacebuilding","land use change Zero-deforestation","agricultural commodity","value chain","peacebuilding","land use change"],"sieverID":"5cd7aaa5-57a7-4040-a95c-4b9b9f7ae0c8","pagecount":"22","content":"Sustainability commitments by private sector actors are emerging as promising interventions to help reduce global deforestation. Much attention is placed on the forest conservation impact of these interventions in areas where commodity production constitutes a main driver of deforestation. It is however less clearly understood what role they could play in areas where the production of commodities is not evidently leading to the loss of forest, and how they could contribute to other objectives including sustainable rural development and peacebuilding. In this paper, we examine the potential of the cocoa value chain in Colombia in achieving deforestation reduction and peacebuilding simultaneously, as aimed by the country's Cocoa, Forests and Peace Initiative. Results from correlations and spatially explicit analyses show that regardless of its widespread production across Colombia, cocoa is not an important driver of deforestation. This suggest that efforts to end deforestation in the Colombian cocoa sector emerged following global trends, and not because of an evident link between cocoa production and deforestation. Furthermore, results from spatial clustering analyses highlight areas where different types of value chain interventions may be appropriate to parallel forest conservation and peacebuilding, while interviews with key actors in the cacao sector provide clues as to how these interventions should be developed and implemented. Specifically, our results show that narratives around approaches to achieve zero-deforestation from agricultural commodities should (1) be adjusted to local contexts, (2) incorporate location-specific development needs, (3) complement existing rural development efforts, (4) enhance collaboration among actors that operate both within and beyond the value chain, and (5) apply high-resolution data to assess deforestation-commodity relations and verify zero-deforestation commitments. These considerations are particularly relevant in contexts where commodity production is not evidently leading to deforestation, as in the case of cocoa production in Colombia.Global clamor over the need to reduce deforestation linked to agricultural production in order to lower carbon emissions and curb the loss of biodiversity is increasing. Commitments on sustainability by private sector actors are emerging as promising interventions to help reduce global deforestation (Lambin et al., 2018). Hundreds of corporations have pledged to enhance transparency and accountability in their supply chains as a means to achieve zero-deforestation. However, the impact of such commitments on reducing deforestation has been limited (Garrett et al., 2019). Greater impacts may be accomplished through the implementation of value chain interventions (VCI), here defined as actions directed at segments of a value chain, or along its entire length, to achieve certain environmental, social or economic development goals (Sola et al., 2017;Zuberi, Mehmood & Gazdar, 2016). Zero-deforestation VCI provide an opportunity to put zero-deforestation commitments into action. However, such interventions are facing various challenges in reaching desired outcomes (Garrett et al., 2019). In fact, before gaining prominence as a tool to achieve zero-deforestation, VCI were promoted as a means to deliver sustainable development, including conflict resolution, poverty reduction, rural development, gender inclusion, improved nutrition, food security and forest conservation (Bolwig, Ponte, du Toit, Riisgaard & Halberg, 2008;Devaux, Torero, Donovan & Horton, 2018;Maestre, Poole & Henson, 2017;Seville, Buxton & Vorley, 2011;Tallontire & Vorley, 2005;Zuberi et al., 2016). Nevertheless, the impact of such interventions on sustainable development remains a topic of debate (Kidoido & Child, 2014). This is partly because value chains are complex, multi-layered in nature, highly diverse, dynamic, and time and context-specific (Devaux et al., 2018;Kidoido et al., 2014;Reardon et al., 2019;Ton, Vellema & de Ruyter de Wildt, 2011). Furthermore, some authors argue that to achieve sustainable outcomes, VCI alone are insufficient, and they need to be implemented concertedly with other sustainability approaches, engage stakeholders along the entire value chain, and address multiple factors and interactions (Devaux et al., 2018;Seville et al., 2011). Emerging literature on the topic mainly focuses on assessing corporate supply-chain commitments in contexts where there is a clear link between an agricultural commodity and deforestation (Gardner et al., 2019;Garrett et al., 2019;Lambin et al., 2018). However, contexts where this link is weak or unapparent are often disregarded. Zero-deforestation initiatives were initially developed to reduce forest loss in countries where globally traded commodities are the main drivers of deforestation, such as in Brazil, Indonesia and Malaysia (Boucher & Elias, 2013;Gibbs et al., 2015;Henders, Persson & Kastner, 2015). These initiatives were built upon \"name and shame\" campaigns that have led to recent trends of incorporating social and environmental concerns into corporations' supply chains (Vurro, Russo & Perrini, 2009) and implementing governance models that encompass extensive collaboration with all stakeholders involved in the value chain (Jiang, 2009). Arguments for such interventions are supported by evidence indicating that the production of globally traded agricultural commodities -such as palm oil, soy, beef, coffee and cocoa -is an overwhelming cause of tropical deforestation (McCarthy & Tacconi, 2011). On the other hand, there is no clear understanding of the role of such interventions in reducing or preventing deforestation where forest cover changes are tied to interlinkages that are more complex. For instance, the expansion of commodities on previously cleared land may have limited impacts on forest cover, and could even contribute to reforestation in the case of tree crops such as cocoa (Schroth, Garcia, Griscom, Teixeira & Barros, 2016). Similarly, it is not clear how these interventions should be developed and implemented in such contexts, particularly because on-the-ground implementation would naturally vary between countries where deforestation is driven by agricultural commodities and those where it is not (McCarthy et al., 2011). Implementation should also vary between cases that involve global brands that dominate the market and small producers located in isolated regions, such as regions emerging from armed conflict (Perez-Aleman & Sandilands, 2008;Reed & Reed, 2009;Rein & Stott, 2009). For instance, there is no doubt that in some parts of the globe, cocoa farming has led to deforestation; the sector, hence, has been the subject of sharp criticism. This is the case for countries where cocoa has been promoted as an economic alternative in post-conflict settings, such as Ghana (Deans, Ros-Tonen & Derkyi, 2018). It is not clear, however, as to what extent cocoa is causing deforestation in other countries, such as Colombia, where i) complex interlinkages between coca leaf production, cattle pastures and land grabbing drive deforestation (Castro-Nunez, Mertz, Buritica, Sosa & Lee, 2017), ii) the cultivation of cocoa has been promoted as an alternative to illegal crop production (Charry, Castro-Llanos & Castro-Nunez, 2019), and iii) most of the cocoa production is traded nationally (Abbott et al., 2018)). In this paper, we contribute to the understanding of the role of VCI in achieving zero-deforestation in areas where the link between deforestation and commodity production is not evident. It does so via quantitative analyses and interviews with key stakeholders in the cocoa sector in Colombia. We use Colombia, a country emerging from armed conflict, as a case study; because, despite a lack of evidence in the literature that cocoa is causing significant deforestation, Colombia's government has joined global efforts to achieve deforestation-free cocoa production, which is being carried out under the country's Cocoa, Forests and Peace Initiative (Minambiente, 2018). We first perform correlations and spatially explicit analyses to explore to what degree deforestation is associated with cocoa production in Colombia, and examine how locations with similar cocoa, forest and conflict characteristics are spatially distributed. We then use semi-structured interviews with key stakeholders to better understand their viewpoint about the potential role of the cocoa value chain as a tool for forest conservation and peacebuilding and identify opportunities and barriers in delivering both forest conservation and long-lasting peace, as aimed by the Cocoa, Forests and Peace Initiative. After this introductory section, the methods are described. Subsequently, results from Spearman correlation analysis, Local Indicators of Spatial Association (LISA) analysis, Hierarchical Cluster Analysis and interviews are presented. We then discuss the implications of our results for on-the-ground implementation of zero-deforestation VCI.Since the beginning of the peace negotiations between the Colombian government and the Revolutionary Armed Forces of Colombia (FARC), the country has been experiencing changes in multiple dimensions, which has brought about new environmental, social and political challenges (Eufemia et al., 2019). Approximately 52% of Colombia's 114.2 million hectares of land are covered with natural forests. Around 60% of its natural forests are found in the Amazon region, while 17% and 9% are found in the Colombian Andes and Pacific region, respectively. According to the Colombian Institute of Hydrology, Meteorology and Environmental Studies (IDEAM), more than 5.6 million hectares of forests were lost between 1990 and 2010, with an average annual deforestation rate of 0.42% between 1990 and 2000, a rate of 0.52% between 2000 and 2005, and a rate of 0.47% between 2005 and 2010. Lower deforestation was observed between 2010 and 2013, at an average rate of 0.28% per year (IDEAM, 2018). Deforestation has been particularly severe in areas affected by the armed conflict and illicit crop production (Charry et al., 2019). In these areas, cocoa cultivation has been promoted by the Government of Colombia (GoC) and international cooperation agencies as a productive alternative to illicit crops for several decades. In light of recent global trends to achieve zero-deforestation in agricultural value chains, several actors have highlighted existing opportunities to produce cocoa with zero-deforestation in areas prioritized for peacebuilding and rural development efforts. These areas include municipalities defined by the GoC as Areas Most Affected by Armed Conflict (ZOMAC) and prioritized for Development Programs with Territorial Approach (PDET). For example, in July 2018, the Cocoa, Forests and Peace Initiative was signed by the GoC, producer associations, the National Federation of Cocoa Producers (FEDECACAO), industry representatives and national and international civil society organizations. The signatories have agreed to work together to end deforestation and promote forest protection and restoration through the Framework Agreement for Joint Action, which is structured around the following three priority areas: (1) forest protection and restoration; (2) sustainable cocoa production and livelihood security of farmers; and (3) community participation and social inclusion. Unlike other producing countries, most of Colombia's cocoa production is used to meet domestic demand. Production occurs mostly within the departments of Santander and Nariño in the north and south respectively, where many conflict zones and areas emerging from conflict are located. Production occurs on a smaller scale in the departments of Antioquia, Arauca, Tolima and Norte de Santander. Cocoa is mainly produced by small producers (about 90%), who typically plant around 3 hectares of cocoa (Abbott et al., 2018). Figure 1 illustrates the average cocoa crop area per department between 2007 and 2017. We first examined to what degree deforestation is associated with cocoa production in Colombia and how areas with similar cocoa, forests and conflict characteristics are spatially distributed. Analyses were limited to cocoa-producing municipalities in Colombia (n = 529), taking the municipality as the unit of analysis. This study utilized official data on cocoa from the Ministry of Agriculture and Rural Development (MADR, 2018) and data on forest cover from IDEAM (IDEAM, 2018), (Table 1). Selection of data sources depended on data availability at the municipal level. Spearman's rank correlation coefficients (r s ) were calculated to identify correlations among the following 6 variables related to forest cover, cocoa production, and the armed conflict: (1) forest area; (2) change in forest cover; (3) cocoa area; (4) cocoa production; (5) cocoa yields; and (6) armed conflict index. In addition, we examined local spatial associations between \"change in forest cover\" and \"cocoa area\" by computing bivariate local Moran's I values, also known as Local Indicators of Spatial Association (LISA) (Anselin, 1995). The municipalities were then clustered using Hierarchical Cluster Analysis (Euclidean distances and Ward's method), which included five variables: (1) forest area; (2) change in forest cover; (3) cocoa area; (4) cocoa yields; and (5) land suitable for cocoa cultivation. The clusters are composed of municipalities that are similar with respect to the cocoa production and forest cover variables included in the analysis. The location of the clusters were mapped to examine how they are spatially distributed. Then, the number of municipalities defined by the GoC as Areas Most Affected by Armed Conflict (ZOMAC) and prioritized for Development Programs with Territorial Approach (PDET) within each cluster were identified. The Hierarchical Cluster Analysis was conducted using the Stats package in R v2.9.2 (R Core Team) and bivariate local Moran's I values were estimated using the software GeoDa v1.6.7.9 (Anselin, Syabri & Kho, 2006). The quantitative analyses described above were coupled with 30 semi-structured interviews conducted with key actors in the cocoa value chain. The interviews were conducted from December 2018 to January 2019 and focused on: (1) the role of cocoa in forest conservation, restoration and peace processes, and (2) opportunities and limitations for the development of the national cocoa value chain. Respondents were selected from all three levels of the value chain (i.e. micro, meso and macro; according to the classification proposed by Jäger, Jiménez & Amaya ( 2013)). Several of the respondents fulfilled more than one role within the value chain. The most represented role was related to the processing of cocoa into chocolate or other products, with eight interviewees assuming this role. Other roles represented by respondents included artisan chocolatiers, representatives of the Bean to Bar sector, large industrial companies, academia, producers, union representatives, policymakers and other government employees (from ministries and other public entities), representatives from international cooperation agencies, and suppliers of plant material and other business services.A Spearman correlation matrix was computed based on the 529 cocoa-producing municipalities in Colombia (Table SM1 in the supplementary material). The results show that mainly weak correlations (r s <0.30, p < 0.05) exist among the forest, cocoa and conflict variables included in the analysis. However, a positive, moderate correlation was found between \"forest area\" and \"armed conflict index\" (r s = 0.46, p < 0.05), and a strong positive correlation between \"cocoa production\" and \"cocoa area\" (r s = 0.76, p < 0.05).The distribution of bivariate Moran's I values sheds light on local patterns of spatial associations between \"change in forest cover\" and \"cocoa area\" at municipality level (Figure 2). More specifically, the results point to statistically significant spatial associations (p < 0.05) between deforestation in a given municipality and cocoa area in a neighboring municipality, for 118 out of the 529 municipalities included in the analysis.In 11 out of the 118 municipalities, high deforestation pressure is spatially associated with high cocoa production within neighboring municipalities (High-High associations; highlighted in red in Figure 2). This suggests that only in and around these 11 municipalities, the production of cocoa could potentially be a driver of forest loss. However, further analysis would be needed to attribute causal relationships. Nine out of eleven municipalities are located in the departments of Nariño and Santander, where currently most of Colombia's cocoa production is taking place. One municipality in Santander has been defined as ZOMAC. In addition, five municipalities in Nariño have been defined as ZOMAC, of which two also have been prioritized for PDET.In 49 municipalities, high deforestation pressure is spatially associated with low cocoa production within neighboring municipalities (High-Low associations; highlighted in orange in Figure 2). This implies that in these areas, activities other than cocoa cultivation seem to be driving deforestation. More than half of the municipalities characterized by High-Low associations are located in the departments of Casanare, Meta and Valle del Cauca. Five municipalities have been prioritized for PDET, while 25 have been defined as ZOMAC.In 24 municipalities, low deforestation pressure is spatially associated with high cocoa production in neighboring municipalities (Low-High associations; highlighted in light blue in Figure 2), which points to extensive cocoa production activities with, nonetheless, limited impacts on forest cover. These municipalities are mainly located in the departments of Boyacá and Santander. Two of them (both located in Santander) have been defined as ZOMAC, while none have been prioritized for PDET.In 34 municipalities, low deforestation pressure is spatially associated with low cocoa production within neighboring municipalities (Low-Low associations; highlighted in dark blue in Figure 2). This points to limited cocoa production activities that, in turn, generate a low impact on forest cover. Almost 60% of these municipalities have been prioritized for PDET and are mainly located in the Amazon region, within the departments of Caquetá (6 municipalities), Meta (5 municipalities), Putumayo (5 municipalities) and Guaviare (3 municipalities). More than 80% of the municipalities characterized by Low-Low associations have been defined as ZOMAC. The Hierarchical Clustering Analysis resulted in four clusters of municipalities that are similar with respect to the cocoa production and forest cover variables included in the analysis (Figure 3). The spatial distribution of municipalities defined as ZOMAC and prioritized for PDET show to what degree the municipalities within the four clusters have been affected by the armed conflict and have been prioritized for rural development efforts (Table 2). Figure SM1 in the supplementary material shows the descriptive statistics of the five variables used for the clustering.The results show that cluster 2 and cluster 3 stand out in terms of average forest coverage at the municipal level (45% and 73%, respectively). Furthermore, municipalities located within cluster 2 are associated with high levels of forest cover change (on average -0.27%), which is about twice as high as municipalities within the other clusters. Most extensive cocoa production areas are located in municipalities within cluster 3, although the corresponding cocoa yields are relatively low compared to municipalities in other clusters. Municipalities within cluster 4 contain considerably more land suitable for cocoa production. Meanwhile, clusters 2 and 3 contain the greatest share of municipalities defined as ZODAC (81; 100% and 54; 86%, respectively) and prioritized for PDET (29; 36% and 41; 65%, respectively). Most of the stakeholders interviewed believe that cocoa cultivation has the potential to become a mechanism for peacebuilding and forest conservation -provided that the conditions needed to make cocoa a viable livelihood for families in areas affected by conflict and deforestation are met.Regarding the impact of the cocoa value chain on forest areas, respondents from the public sector assured that forest clearing is inadmissible for cocoa-related development projects. On the other hand, they recognized that plantings have occurred in areas unsuitable for cocoa production.International cooperation actors indicated that they are not carrying out new planting campaigns. Instead, they are focusing on the agricultural intensification of existing plantations, which they claimed does not result in additional deforestation. Most stakeholders acknowledged the potential of cocoa in activities related to reforestation and forest restoration (20 mentions) -particularly in areas that were previously used for the cultivation of coca or converted to pastures for livestock.Three respondents mentioned that the potential for reforestation is evident in areas with illicit crop substitution programs. Meanwhile, 10 respondents mentioned that cocoa-agroforestry systems could positively contribute to biodiversity conservation. Five respondents referred to cases where cocoa production had caused deforestation in the past, but they were uncertain of how much and to what degree deforestation continues to occur. Additionally, one actor pointed out that large-scale industrial plantings pose a threat to forests. Lastly, four respondents mentioned that they could not give an opinion regarding the role of cocoa initiatives in stabilizing the agricultural frontier and halting deforestation because they did not know statistics related to the dynamics of land use changes among forests, degraded pastures and cocoa.Regarding the role of cocoa in peacebuilding and stabilization, 21 actors mentioned that cocoa is a suitable productive alternative for rural areas affected by illicit crops, mainly because it requires similar agro-climatic conditions, enhances community cohesion in the region, encourages associativity and trade networks, raises enthusiasm and commitment for cultivation among the population involved, facilitates learning, and has logistical advantages such as low perishability and greater storability compared to other products. Five actors highlighted the high commercial potential of cocoa (due to favorable prevailing market conditions) as a key advantage of engaging in the cocoa business. Eight stakeholders recognized that the effectiveness of the crop as an instrument for peacebuilding depends on its profitability, which is in turn directly related to the productivity of the system and bean quality. They also mentioned that cocoa cultivation alone is not a solution, but it should be part of a larger bundle of services and investments that are needed in some regions to achieve satisfactory peace outcomes. Four actors mentioned the importance of production diversification, especially in regions affected by the conflict. Three others emphasized the importance of supporting producers during the first 3 to 5 years. During this period, families must assume considerable costs without gaining significant income from cocoa and producers must become familiar with the physiology of the crop. Similarly, two producers stated that technical support alone is not sufficient to turn cocoa production into a viable livelihood in conflict-affected territories. They pointed out that starting cocoa producers are unable to generate income from temporary crops such as plantain during the initial cocoa-growing period, due to poor accessibility of plantain and other crop markets. This poses a considerable challenge for the use of cocoa in promoting peace, as lack of sufficient income to meet the basic needs of producers could reinforce the initial causes of the conflict. In this regard, two actors mentioned that there are more suitable alternatives to the widely promoted conventional crop arrangements, such as agroforestry systems of cocoa, bananas and timber. They mentioned that some communities have started implementing systems with lower cocoa densities and greater varieties of species, such as nitrogen-fixing timber, fruit trees, and short-cycle crops that align with the concept of \"edible forests,\" which could respond better to the needs of some territories. Additionally, actors identified various opportunities to strengthen the current value chain and increase its impact potential. The most commonly identified opportunity comes from the specialty, origin and \"fine flavor\" cocoa markets, which the actors agree have the competitive advantage. They also recognized other market opportunities, such as cosmetic markets, as easier outlets with capacity to absorb an important share of the national production given their size, lower quality and traceability requirements. On the supply side, the actors emphasized the need for increasing yields through sustainable intensification technologies, which would reduce the amount of land needed to achieve similar output levels. They also emphasized the need for innovation in products and services along the value chain, including sustainable certifications and zero-deforestation commitments (through third party and participative certification approaches), tailor-made financial services, promotion of business services and entrepreneurship along the value chain, and the harnessing of sub-products and byproducts. Lastly, actors mentioned several threats and bottlenecks that currently affect the value chain performance -stating that they must be addressed to ensure its sustainability. The main threat is a lack of sufficient volumes with consistent quality and regularity needed to successfully penetrate foreign markets. This is partly attributable to other threats such as low productivity, high transaction costs, insufficient and inefficient institutional support services and lack of capacities along the value chain. Other external factors such as climate change, the EU legislation on cadmium, price variability and improper traceability systems are also recognized as having the potential to negatively impact the value chain and its role in forest conservation and peacebuilding.In Colombia, government authorities, international organizations and other stakeholders are looking for opportunities to enhance the performance of agricultural value chains and tackle drivers of deforestation and conflict simultaneously (Castro-Nunez, 2018;Castro-Nunez, Mertz & Sosa, 2017). These interventions aim at increasing rural incomes, market access, productivity and welfare to help reconstruct the social fabric and reduce pressure on forests. Most of these programs incorporate environmental components and emphasize reaching international and high-value markets as part of their strategy (Castro-Nunez, 2018). This study explored the potential role of interventions in the cocoa value chain in delivering forest conservation and peacebuilding in Colombia. Findings are consistent with those of previous studies on deforestation in Colombia, in that cocoa is not one of its major drivers (Baptiste et al., 2017;Chadid, Dávalos, Molina & Armenteras, 2015;Dávalos, Holmes, Rodríguez & Armenteras, 2014). National level Spearman's rank correlation coefficients indicated weak correlations between cocoa production and deforestation, while bivariate Moran's I values showed limited spatial associations between cocoa production and deforestation at the local level. Together these results suggest that cocoa production is not strongly linked to municipalities that have high rates of forest cover loss. Yet in some places, for instance where bivariate Moran's I values point to High deforestation-High cacao associations, additional analyses at the local level could provide more conclusive evidence of the role cocoa production plays in the deforestation process.The outcomes of the Hierarchical Cluster Analysis show how the degree of cocoa production, forests and conflict varies across Colombian municipalities. This points to biophysical, social and institutional differences among cocoa-producing regions and highlights the importance of adjusting zero-deforestation VCI accordingly. For instance, clusters 2 and 3 contain municipalities with presently the most extensive forest coverage. Hence, focusing zero-deforestation VCI on these municipalities could potentially have a major impact on forest conservation. Even though we find limited evidence that cocoa production drives deforestation, strengthening the cocoa value chain may nevertheless be part of a strategy to reduce deforestation caused by other activities (Castro-Nunez, Bax, Ganzenmuller & Francesconi, 2020). This is particularly true for municipalities subjected to high deforestation rates (i.e. cluster 2), where reinforcing sustainable cocoa production could be a productive alternative to prevailing forest destructive agricultural practices and poor forest management. In a similar manner, in municipalities with high cocoa production levels or extensive areas suitable for production (e.g. cluster 4), incentivizing sustainable agricultural practices for instance through certification and price premiums may be a viable strategy to prevent the expansion of cocoa plantations into forest areas in the future (Castro-Nunez et al.). At the same time, a considerable proportion of municipalities in cluster 2 and cluster 3 have been defined as ZOMAC (100% and 86%, respectively) or prioritized for PDET (36% and 65%, respectively). In consequence, together with the extensive forest coverages within these municipalities, they constitute opportune places to pursue peace and forest conservation objectives simultaneously.Results also show that the majority of stakeholders interviewed report that cocoa is not an important driver of deforestation. Instead, cocoa has the potential to contribute to forest conservation by providing sustainable livelihoods to families involved in economic activities linked to deforestation and address degradation through agroforestry systems. Similarly, they believe that it has a role in peacebuilding as a means for cooperativism, increasing rural incomes and providing licit economic opportunities. Nevertheless, there is a broad agreement that this can only be achieved if the activity becomes a \"profitable business\". Results from interviews are consistent with other studies indicating that why and how stakeholders choose to become more sustainable varies along the value chain (Vurro et al., 2009). At the same time, the potential benefits of developing a zero-deforestation cocoa value chain in Colombia are widely recognized. Specifically, there is a strong interest in supporting value chain stakeholders to transition from nationally oriented businesses to engaging in and benefiting from more profitable foreign markets. Interviews suggest that underlying this interest is the assumption that the possibility of getting a better price will incentivize farmers and other stakeholders in the value chain to adopt practices that contribute to improving productivity and comply with social, environmental and quality standards at international levels. Such benefits along the value chain improve livelihood opportunities and could indirectly reinforce public services and institutions that are essential to sustaining peace and achieving the United Nations Sustainable Development Goals (SDG), including deforestation reduction. Findings suggest that efforts to end deforestation in the Colombian cocoa sector emerged following global trends, and not because of an evident link between cocoa production and deforestation. These trends are, nevertheless, consistent with Colombia's ambitions to strengthen the cocoa sector, mainly in areas affected by the armed conflict, and to do so without harming forests (Minambiente, 2018). In this light, the outcomes of this study bring forward a number of key considerations for design and on-the-ground implementation of VCI aimed at preserving tropical forests and cutting carbon emissions linked to the production of globally traded commodities. These considerations are particularly relevant for regions where there is no clear link between agricultural commodity production and deforestation. First, ending deforestation from agricultural commodities will require tailoring global level narratives and approaches to local contexts (Seymour & Harris, 2019). This is particularly true for contexts where the link between agricultural commodities and deforestation is weak, and where most produce is traded nationally and does not involve global brands that dominate the market (Seymour, 2012). For instance, global supply chain interventions as certification programs or moratoria may not be adequate to reach small-scale farmers who produce for domestic or informal markets (Lambin et al., 2018). In addition, global certification programs are less likely to factor in current local production practices, which could open the door to farmers who already comply with production criteria (Blackman & Rivera, 2011) and in turn, reduce the additional forest protection impact of the programs. On the other hand, zero-deforestation initiatives at the national or local level may be more suited to incorporate location-specific problems and development priorities such as peacebuilding, illicit crop eradication, economic growth, rural development, increased agricultural productivity, or increased agricultural exports (Castro-Nunez, Mertz & Quintero, 2016;Castro-Nunez et al., 2017;De Pinto et al., 2016). In the case of Colombia, the goal of achieving zero-deforestation in the cocoa sector as promoted by the Cocoa, Forests and Peace Initiative is compatible with the Colombian government's priorities for reducing coca leaf production and achieving stabilization by developing value chains in conflict-affected areas. In particular, because cocoa production takes place in conflict-affected areas and initiatives emphasize reaching international and high-value markets as a means to increase the profitability of the crop and reduce pressure on forests. Second, zero-deforestation commitments, such as those established under the Cocoa, Forests and Peace Initiative in Colombia are an important step toward addressing deforestation from agricultural commodities. Nonetheless, they need to be operationalized by internalizing deforestation concerns in the cocoa value chain. Deans et al. (2018) highlight the importance of strengthening relationships between and collaboration among actors that operate both within and beyond the value chain (e.g. donors, NGO's and entrepreneurs) to achieve objectives not directly related to production cycle and economic efficiency improvements, such as rural development and deforestation reduction. These advanced collaboration-based governance models focus in part on stimulating the flow of knowledge, finance and information (Bolwig, Ponte, du Toit, Riisgaard & Halberg, 2010) to consolidate the position of smallholders in the value chain and develop a landscape conducive to achieving zero-deforestation outcomes. Some of these concerns also apply to the Colombian context. For instance, our results indicate that farmers may not be able to move from informal business operations and networks to formal and sustainable cocoa production, mainly due to a lack of finance and information. Hence, particularly in the first few years of production, it is fundamental to provide financial support to compensate for low productivity and income losses, and enhance farmers' capacities related to production practices and entrepreneurship to turn cocoa production into a profitable business. The provisioning of these services in the initial growing-period provide an entry point to zero-deforestation agreements and certified production, wherein -beyond the private sector -a key role is to be played by nonchain actors as NGOs and financial institutions as facilitators of these services. Enhancing this kind of stakeholder collaboration within and beyond the value chain could provide the enabling conditions for cocoa production to become viable livelihood, an effective alternative to coca leaf farming, and a tool to prevent future conflict (Nepstad, Boyd, Stickler, Bezerra & Azevedo, 2013). Third, operationalizing zero-deforestation commitments requires big investments. The value chain approach builds on the assumption that companies will not only commit, but actually take ambitious actions to stop deforestation and lower carbon emissions in the tropics. Such actions should be accompanied by supportive public policies to enhance the scale and effectiveness of value chain initiatives and translate them into on-the-ground implementation (Lambin et al., 2018). The current reality is that most rural economies present both a challenging environment for attracting private investment and a difficult arena for public interventions, especially in conflictaffected areas. Thus, zero-deforestation VCI need to be combined with other approaches, engage stakeholders at multiple levels and address multiple factors and interactions to reach zerodeforestation targets (Devaux et al., 2018;Seville et al., 2011). In Colombia, for example, cocoa has been promoted as a productive alternative to illicit crops as part of sustainable rural development strategies. Therefore, it is usually cultivated in areas previously deforested for coca leaf production and where illegal economies predominated. In this context, it is imperative to first support and empower agricultural value chain stakeholders to transform their informal -and sometimes illicit -business activities into formal and professionalized operations that adhere to environmental, social, and quality standards at national and international levels. This will generate an environment conducive for the development of a strong private sector presence, therefore, contributing to long-lasting peace.Fourth, improving our capacity to understand how agricultural commodities are connected to deforestation will help design both zero-deforestation VCI and monitor forest conservation outcomes. For instance, to meet Colombia's goal of ending deforestation in the Colombian cocoa sector by 2020, the first order of business is to determine where and to what extent deforestation is directly caused by the commodity's production. Although the results of this study suggest that cocoa was planted in areas previously deforested for other purposes, it may still be the case that cocoa is causing deforestation in some areas of Colombia. Therefore, studies at a lower scale that identify when forest cover changes to a specific crop will help assign causality and attribution, which in turn, forms the basis of increasing traceability and verifying zero-deforestation commitments. This is particularly important if the emphasis on reaching international and highvalue markets that value zero-deforestation and peace contributions is part of an incentives strategy.As a final remark, reducing global deforestation may require a transformation of the entire food system. Promoting zero-deforestation in agricultural value chains is undoubtedly a good move. It is not only a way to meet ambitious commitments to preserve tropical forests and cut carbon emissions, but it is also a way to incentivize value chain stakeholders to source, produce, process, and transport agricultural outputs according to environmental, social and quality standards, thus contributing toward sustainable development. Reducing global deforestation, however, will require more than value chain development interventions. It will require changes in farm practices and the farm input supply chain, changes in the intermediating system (change in retail, wholesale, logistics, and processing), and changes on the demand side (diet changes).The narrative that agricultural commodities have caused and continue to cause deforestation is starting to dominate the literature and global policies on tropical forest loss. While this is the case for some countries, a different scenario may apply to others. As our study shows, cocoa production has not led to significant deforestation in Colombia. Rather, the government and its development partners are identifying market opportunities to produce cocoa with zero-deforestation in areas prioritized for the peace process. Our study suggests that we need to do further analysis on the links between agricultural commodities and tropical deforestation. This analysis should look into additional scenarios, such as where zero-deforestation VCI have the potential to be used as a tool to overcome barriers to the adoption of sustainable land use systems that contribute toward the restoration of degraded land and prevention of future deforestation (such as agroforestry systems) -particularly in contexts where the link between the commodity and deforestation is not yet evident.Zero-deforestation VCI provide an opportunity to put zero-deforestation commitments by private sector actors into action by creating a framework that facilitates an integrative approach to addressing priorities for economic development and conservation objectives. Promoting and implementing sustainable agricultural value chains in Colombia will require policy coordination across agriculture, forestry and natural resources sectors and the integration of policies that incorporate both conservation goals and the needs of stakeholders. Zero-deforestation VCI, therefore, can be used in Colombia to integrate priorities for agricultural development, environmental conservation and peacebuilding.","tokenCount":"5963"} \ No newline at end of file diff --git a/data/part_3/4298946720.json b/data/part_3/4298946720.json new file mode 100644 index 0000000000000000000000000000000000000000..828e2df97b731fca011a30bb6144c4a8b2e14662 --- /dev/null +++ b/data/part_3/4298946720.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"0a366b9016aed6fb6297b9e7994a1836","source":"gardian_index","url":"https://publications.iwmi.org/pdf/H026792.pdf","id":"-1314452396"},"keywords":[],"sieverID":"caea39ee-0a51-44b9-9da7-dae402e0d160","pagecount":"9","content":"In 1999, IWMI, in collaboration with the Wuhan University of Hydraulic and Electrical Engineering and the International Rice Research Institute, initiated a study on the impact of water-saving irrigation techniques in China. The initial focus was on alternate wet and dry irrigation (AWOl). As opposed to continuous flooding of paddy fields, AWOl allows for periods of field drying that reduce application requirements.productivity in agriculture crease rice yields due to sturdier plants and the reduction of black root.Our main research site is the lhanghe Irrigation System (liS). The lhanghe Irrigation District (liD) is situated in the middle part of China north of the Changjiang (Yangtze) river. The liD is an administrative unit consisting of all or parts of several county and city jurisdic tions. The liS's water comes principally from the main reservoir although there are smaller reservoirs and other sources such as groundwater. The lhanghe basin is 7,740 km 2 in cluding a catchment area of 2,200 krn\". The liS accounts for most of the irrigated area within liD. It is one of the typical large-size irrigation systems in China. Its designed irri gation area is about 160,000 ha. The lhanghe reservoir, built between 1958 and 1966 on a tributary of the Chiangjiang river, supplies most of the irrigation water in liS. The reservoir was designed for multipurpose uses of irrigation, flood control, domestic water supply, industrial use and power generation.International Water Management Institute It is hypothesized that AWDI is one of the water-saving practices that have enabled lhanghe to transfer water to other higher-valued uses without significant loss in crop production.We are conducting research at three levels to assess the extent of application and impact of AWDI. These include: (i) controlled experiments with and without AWDI and for differ ent timing of fertilizer application, (ii) farm surveys to identify the degree of adoption of AWDI, and (iii) flow monitoring at various scales within liS to assess the farm up to the basin impact of AWDI.Our ultimate goal in this research is to see whether water-saving technologies used suc cessfully in China can be used in other rice-growing areas of the world. We feel that wa ter-saving irrigation practices such as AWDI and recapture of return flows are suitable for monsoonal areas where there is considerable outflow that could be saved and put to pro ductive use. In the more arid regions, especially where the water resources are fully com mitted to various uses, the scope for water saving by AWDI and related techniques may be limited.Here we report on one of the initial steps in our research, an analysis of the historical records compiled by liS. This includes annual data compiled since 1966 on water in flows and allocation among different uses, area irrigated, and crop yields per hectare and per cubic meter of water. From the late 1970s to the late 1990s, water from the lhanghe reservoir allocated to.urigation dropped from 600 mcm (million cubic meters) to about 200 mcm (fig. 1). The water allocated for other uses (municipal, industry, and hydro power) has increased steadily. However, the area irrigated and total grain production in liD has declined only modestly. In analyzing the changes taking place, we identify those factors that seem to have contributed to sustained agricultural production despite a sig nificant reallocation of water from irrigation to other uses. The time series on which this report is based has been compiled by ZIS for the period 1966-1998. The values show the trends over time. In the tables, however, mean values are shown for three separate time periods-1966-78, 1979-88, and 1989-98. This divisiort was made to reflect the very sharp changes that occurred at the end of the first and second time periods.Following the end of the Cultural Revolution in the late 1970s, significant reforms took place that affected both irrigation and agricultural production. Volumetric pricing was in troduced. l\\Jew pumping stations were built. Medium and small-size reservoirs were re stored or expanded. Introduction of improved varieties and increased use of chemical fer tilizers led to a sharp increase in rice yields.The end of the 1980s saw further changes. The installation of two new hydropower plants greatly increased hydropower capacity but industrial and domestic demand also rose re sulting in a still further decline in water available for irrigation. The pressure to save waterled to an expansion of AWDI techniques at the farm level and to other water-saving prac tices such as canal lining. The introduction of hybrid rice gave a further boost to rice yields.In ZIS, most of the irrigation comes from the Zhanghe reservoir supported by medium and small-size reservoirs and supplemented by pumping stations. Thus, a large irrigation network including storing, diverting and withdrawing water has been established.The water available for irrigation includes rainfall, water from main and minor reservoirs, river water, and groundwater. The annual rainfall is 960 mm with a standard deviation of approximately 20 percent. Also in more recent years, there have been significant releases of water for flood control. The flood year 1996 provides a clear example. The rainfall (1,354 mm) and inflow (16.4 x 10 8 m 3 ) were abnormally high. Water released for flood control (8.2 x 10 8 m 3 ) was the highest on record. Adjusting for water released for flood control, the available supply of water from the Zhanghe reservoir does not appear to have changed significantly over time. However, there are large year-to-year fluctuations which affect the annual releases for irrigation (fig. 1). When rainfall is low and the irrigation system needs more water for irrigation, the water yield from the catchment is small and vice versa.Water is stored across years to deal with this problem.Zhanghe is a multipurpose reservoir. While the primary purpose is irrigation other uses include flood control, hydropower, municipal and industrial water supply, navigation, and aquatic culture. The tasks of regulation are based on planning, design, and experience.The objectives of water supply are subordinate to flood control and the prerequisite reser voir safety. As much water as possible is stored to meet water demand for all users, but irrigation has the priority. In years of extreme shortage, such as the current year, water for hydropower is reduced.In the 1966-78 period, the main water use was for irrigation, but water was not man aged well. The standard of flood control was low. There was excess water at the upper International Water Management Institute end of the canal but farmers at the lower end often did not receive water. In the period 1979-88, there were substantial improvements in regulation and management, and volu metric pricing of water was initiated. In the most recent period, 1989-98, new manage ment tools and information technologies were tested and implemented. Reservoir regula tion and flood control were successfully linked with weather forecasting. In summary, im provements in regulation and management have improved the capacity of the Zhanghe reservoir in flood control and in satisfying demands for water among alternative users and uses.An emerging impact of IWMI's research over the pastfive years is a setof Irrigation Performance Indicators {water productivity in irrigated agriculture) which help water managers quantify the performance of a system from nine different perspectives.Through However, the largest increase in water allocation has been for hydropower, followed by industrial and municipal uses (table l ). The lhanghe main reservoir was designed with one hydropower plant of 2 x 800 kw capacity utilizing, on average, a water supply of 3 0.84 x 10 8 m . In contrast to most irrigation systems, the water flowing through the gen erators cannot be diverted back to irrigation. In 1989 and 1995, two new hydropower sets of 1 x 800 kw and 2 x 1,600 kw were installed. The water allocated to hydropower in the 1989-98 period exceeded the water allocated to irrigation-2.5 versus 2.1 10 8 m 3 per annum (table l ). As a result of the growth in demand by hydropower and other sec tors, the amount of water from the lhanghe main reservoir allocated to irrigation in the past decade has declined to one-third of its 1966-78 level (6.0 to 2.1 x 10 8m 3 ) . voir in the 1979-88 period, the total water supply to liS declined only slightly. This is because in the 1980s, a number of medium-size reservoirs and ponds were restored or constructed to increase the water-storing capacity. This evened out farm-level water avail ability from year to year and provided greater water control during the cropping season, facilitating water saving through alternate wetting and drying management of water in paddy fields. In the mid-1980s onward, however, the liS water supply from small reservoirs and other source declined. The apparent reason for this is that many of the medium and small size reservoirs were required to support themselves and were technically no longer a part of liS. What impact has the reduced allocation of water for irrigation had on crop production, and on land and water productivity? The rice-irrigated area in liD has declined, particularly dur ing the 1990s (table 2). However, the area planted to upland or non-paddy crops has in creased from 19,000 ha in 1966-78 to 63,000 ha in 1989-98. Since our focus is on irrigation, in this section we analyze the changes in production and yields only for rice.The reported paddy rice grain production and yield per hectare are shown for liD in table 2. No data are available on II D water supply for irrigation. However, we assume that the main supply of water to areas in liD not served by liS is the liS drainage water. Based on this assumption, we have estimated the yield per cubic meter of water. There is stili a debate among us as to whether this is the most appropriate assumption.Rice production rose sharply during the period 1979-88 compared to the previous period despite a decline of 13 percent in planted area. This is because rice yields rose sharply yields rose by 16 percent. Thus, rice production declined slightly. Over the three periods the yield per hectare of rice doubled, but the yield per cubic meter of water appears to have tripled. The increase in water productivity was greatest between the second and third periods.The long-term trend in water allocation across sectors and the trends in yield per hectare and per cubic meter of irrigation water supplied show that there have been water savings and a considerable increase in water productivity over time. Despite the decline in water for irrigation from the reservoir (table 1) and in the area irrigated in ZID (table 2), crop prod uction has been susta ined.Several factors may have contributed to sustained rice crop production including: (i) eco nomic and institutional reforms initiated in 1978, (ii) higher crop yields due to adoption of modern varieties and increased use of chemical fertilizer, (iii) a shift in the cropping pattern from two to one crop of rice, (iv) on-farm and system water-saving irrigation prac tices (e.g., AWOl of paddy fields), (v) volumetric pricing of water, which may have encour aged AWOl, (vi) development of alternate sources of water such as small reservoirs and groundwater, and (vii) recapture and reuse of return flows through the network of reser voirs. Of course, the various changes that occurred are not independent of each other, but we are attempting to identify more precisely the contribution of each of these factors.","tokenCount":"1891"} \ No newline at end of file diff --git a/data/part_3/4302307442.json b/data/part_3/4302307442.json new file mode 100644 index 0000000000000000000000000000000000000000..1932acd0e168110896bed6cfe64b1f3011c3e207 --- /dev/null +++ b/data/part_3/4302307442.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"2dcddec3b04ef758eb32544ebc666a5a","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/e06c3507-4ddb-41e1-a694-2a27c62e8a39/retrieve","id":"538456810"},"keywords":[],"sieverID":"b92a7132-1b5f-45c3-b086-0eee6696b5b0","pagecount":"5","content":"T anzania has a total area of 945,000 km 2 (MARI, 2006). Its inland lakes cover 59,000 km 2 (6% of total area) and the remaining land covers 886,000 km 2 (94% of total area). Despite its complex climatic and topographic setting, the country has sufficient land to allow substantial growth in agricultural production. However, land degradation due to soil erosion and decline in soil fertility caused by continuous cropping with no attempt to replenish the soil with mineral and organic manure are the major setbacks to agricultural production in the country. Any attempt to improve and expand agriculture in the country should invest in the betterment of land and crop husbandry practices.On the other hand, there is shortage of water for agricultural production in the country due to inadequate rainfall in various parts of the country (Mutabazi et al. no date). In general, nearly twothirds of Tanzania, which covers a total area of 939,701 km 2 , can be described as semi-arid on the basis of having a less than 25% probability of receiving 750 mm of rainfall per year (Mascarenhas, 1995;Bourn and Blench, 1999). Such areas, including Same District, are known to be less productive in agriculture. As Mutabazi et al. (no date) indicate, this is the reason why semiarid areas of sub-Saharan Africa (SSA), including Tanzania, where water is the most critical constraint to development, manifestations of poverty such as food and income insecurity are apparent. The question is: 'How can agriculture continue under such situations of soil degradation and insufficient water for agricultural production?' Answering this question becomes even more difficult, given the fact that some attempts by smallholder farmers in various places are strictly constrained by lack of efficient technology and capital. This, therefore, calls for a new, inexpensive approach that smallholder farmers can easily use. Conservation agriculture (CA) is thus considered for improving land and water productivity in Tanzania.Conservation agriculture is any system or practice that aims to conserve soil and water by using minimum soil disturbance (conservation tillage) and crop rotation/association to minimize soil evaporation, which reduces runoff and erosion and improves conditions for plant establishment and growth. It involves planting crops and pastures directly into land, which is protected by mulch using minimum or no-tillage techniques. It is also used to increase organic matter content by improving soil structure and fertility, reduce reliance on cultivation, and achieve viable and sustainable productivity (Fig. 1a).Other components and practices of CA comprise agroforestry, trap cropping, cover and green manure cropping, alley cropping, contour farming and strip cropping, organic and biodynamic farming, stubble mulching, integrated pest management, and crop and pasture rotation.Conventional tillage, on the other hand, which is most commonly practiced in the country, involves the use of hand hoes, ox-drawn moldboard plow, tractordrawn disc plow and harrows, combined with straw collection and burning during land preparation (Fig. 1b). During the operation, the soils are cut, inverted, and pulverized while most of the residues are buried underneath. The practice frequently causes soil compaction, affects soil physical properties, provokes biological degradation, and results in lower crop yields. With fine dust on the surface and compaction below, a lot of soil is washed away by the first rains. Soil losses of up to 30 tons/ ha have been reported in Kilimanjaro region in conventional flat cultivated fields at a slope of 5% (Kaihura et al., 1998).Land degradation has been a growing problem in Tanzania because of increased human activity and the growing demand for land as the population grows. Deforestation, overgrazing, and inappropriate tillage practices are contributing heavily to land degradation. It has been observed that the rate of soil losses in some parts of the country have increased from 1.4 tons/ha/year in 1960 to 224 tons/ha/year in 1980 (MTNRE, 1994). With the increased population pressure, the fallow periods, which were commonly used, have become shorter for the soils to recover, perpetuating the \"soil mining\" of nutrients. The replenishment of nutrients is low because of inadequate application of manure and inorganic fertilizers. This has led to a further decline in soil fertility, which is manifested in lower crop yields.Therefore, CA can help improve, conserve, and use natural resources in a more efficient way through integrated management of available soil, water, and biological resources, in combination with external inputs (FAO, 2005). This, in turn, can help improve the productivity of agricultural land and water. The impacts of CA have been marked positive in agricultural, environmental, economic and social terms (Garcia-Torres et al., 2003;Bishop-Sambrook et al., 2004).While millions of hectares of farmland are already under zero tillage in Latin America, conservation tillage in Africa, which is one of the practices of CA, was restricted mainly to larger estates. There are, however, enough examples demonstrating that conservation tillage can be practiced successfully by smallholder farmers, too, as it has been done in northern and northeastern parts of Tanzania (Babati, Same, and Lushoto districts) and central and eastern parts (Chamwino, Morogoro, Kilosa, and Mvomero districts). This paper reviews the CA practices in various case study sites in the country, which have also shown positive impacts of land and water management as a strategy toward water-smart agriculture.The CA practices in Tanzania generally started with the sensitization of district authorities and farmers to create awareness on the CA initiative. Inception workshops were also conducted for all participating district authorities, technicians, manufacturers, researchers, and other stakeholders.A total of 30 participatory farmer groups each consisting of 25 individuals, 10 in each district, were organized on the basis of common interests and similar constraints and were encouraged to work together. Each participating farmer was asked to set aside an area equivalent to 0.4 ha as a management training plot. The area was divided into two equal parts. One part was to be used for CA practices, where the farmer use inputs provided by the project. These included high-yielding varieties of maize crop as recommended by the District Agriculture Office for that particular area, and basal and topdressing fertilizer as a soil fertility improvement measure prior to the establishment of cover crops and cover crop seeds.Farmers were trained on the use of better tools such as hand jab planters and direct seeders to reduce labor requirements for various agricultural operations. Training of farmers was conducted by trained village extension officers. Under their guidance, farmers also kept records of timing of activities, the costs involved, and outputs to facilitate the analysis of cost/benefit derived from the adoption or adaptation of CA practices. In this way, the farmers were able to see the differences between their practices and the proposed CA interventions. Conservation agriculture has created a huge positive impact in improving soil properties and structures, soil fertility, and soil and water conservation. It has also reduced soil erosion, increased infiltration of rain and surface water, enhanced retention of soil moisture, and shown resilience to the effects of drought. Regularly flowing streams have increased crop yields at lower production costs, mainly due to reduced labor inputs. This time-saving practice often allows diversification into other agricultural production or rural income-generating activities.The impact of CA on livelihood is significant as it has brought positive changes on all areas where it has been practiced. The improved production of agricultural produce in various parts of the country is evidence of positive impact on the communities concerned. This is also reflected in the amount of harvest from the CA plots for the main crop (maize) and cover crop seed production. In Mvomero District, for example, maize harvests for all groups from the CA plots were 4870 kg/ha, compared with 3216 kg/ ha realized from the farmer practice plots. In villages where the rains were better, the harvest from the CA plots was also higher.The CA practices in all the selected districts and villages in Tanzania have been remarkably successful in those areas. Success stories include reduced erosion and improved soil structure; improved infiltration and moisture efficiency; improved soil health and nutrient retention; lower soil temperatures and better establishment; increased planting opportunities and flexibility; lower machinery, labor, and maintenance costs; and more reliable yields. All these increased the interests of the local manufacturers to produce direct seeding equipment and sell them to the farmers. They also increased the willingness of district/local government authorities to introduce CA as an important approach to reverse land degradation. This requires a change in mindset on the part of the farmers, who have used conventional tillage as the correct approach in crop production for many years. Also, links have been strengthened with local research institutions on suitable cover crops and proper crop rotation recommendations for adoption by the farmers.No single farming system or technique is perfect for all applications, and conservation farming is no exception. Conservation farming involves more planning, management, and a commitment to sustainability. Trade-offs are necessary and extra costs may be incurred in the initial years. Conservation farming will not always result in higher yields, especially in seasons where rainfall is ample and well-distributed. The effectiveness of some herbicides is reduced by mulch on the surface as high rates of organic matter 'tie up' many chemicals. Fertilizers such as nitrates and herbicides may leach more readily through the soil due to higher infiltration rates under conservation tillage; however, runoff losses will be reduced. These aspects are being addressed through improvements in fertilizer and herbicide formulation, application technology, and better management practices.Conservation farming systems are dynamic and call for innovation and continual improvement. Grazing, weed, insect, and fertilizer management are required for successful conservation farming, and it takes time and experience to develop these skills. A good understanding of the interaction between plants, animals, the soil, and the environment is necessary. Conservation farming systems are intended to be flexible and responsive and to work within the constraints of the environment. Some of the challenges that have not been resolved yet include the lack of adequate funding to reach more farmers, shortage of locally available direct seeding implements, inadequate awareness-creation campaigns among all stakeholders, and poor integration of crop and livestock farming systems whereby several conflicts between pastoralists and farmers have been experienced.Conservation agriculture consists of easily and readily available practices that can be used in every part of the world. It is a scalable, effective, cheap, and manageable practice that can be transferred from one place to another.It has helped improve land and water productivity, thereby changing the livelihood of the smallholder farmers in various areas in Tanzania as it 6 increases farm production and/or stabilizes it, 6 has no adverse environmental effects, 6 prevents erosion and improves soil fertility, 6 is easy for farmers to adopt, and 6 makes it easy to provide institutional support and outreach and technology transfer from one area to another.More efforts are needed to ensure that the concept of CA and, hence, water-smart agriculture, is taken up by the government and adopted by the majority of smallholder farmers in Tanzania. This will help increase income at the household level and thereby improve livelihood.","tokenCount":"1821"} \ No newline at end of file diff --git a/data/part_3/4306795264.json b/data/part_3/4306795264.json new file mode 100644 index 0000000000000000000000000000000000000000..2d024d5cd01e057cd9e59a2052f8b79b1b86627b --- /dev/null +++ b/data/part_3/4306795264.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"f72a6ced50a170653e28961e85fe548a","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/4bf827e2-528c-41bc-af52-dda1ea6d1e9e/retrieve","id":"-855780577"},"keywords":[],"sieverID":"b3b564b2-a819-4b13-bdd0-147f0c5fd556","pagecount":"15","content":"This publication has been prepared as an output of the CGIAR Research Initiative on Breeding Resources. Any views and opinions expressed in this publication are those of the author(s) and are not necessarily representative of or endorsed by the CGIAR System Organization.and Science Group Project reports reportSection 1: Fact sheet and budget 2Section 2: Progress on science and towards End of Initiative outcomes 4Section 3: Work Package progress 9Section 4: Key results 16Section 5: Partnerships 18Section 6: CGIAR Portfolio linkages 19Section 7: Adaptive management 21Section 8: Key result story 22Off-trackCausal links: Illustrates the rela�on between a cause and an effect; explains why a change happens (i.e., the assump�ons underpinning the expected change) Feedback loops: Illustrates how a higher-level change reinforces an outcome that occurs earlier in the process (i.e., new learning/data feeds into an exis�ng output)Off-track Delayed EOI 1CGIAR and NARES breeding teams have up-to date knowledge and capaci�es to design and operate shared services, facili�es and opera�ons.Na�onal and private seed company breeding programs accelerate the development of varie�es that provide larger scale benefits across the five impact areas.Research ins�tu�ons and analy�cal units in the global south have improved capacity to develop tools and undertake research to support transforma�on of food, land and water systems.CGIAR and NARES breeding teams use state of the art data management systems.CGIAR and NARES breeding teams use shared services, facili�es and opera�ons that have been improved for greater throughput, accuracy and safety, at lower unit costs.End hunger for all and enable affordable healthy diets for the 3 billion people who do not currently have access to safe and nutri�ous food.Li� at least 500 million people living in rural areas above the extreme poverty line of US $1.90 per day (2011 PPP).Close the gender gap in rights to economic resources, access to ownership and control over land and natural resources for over 500 million women who work in food, land and water systems.Equip 500 million small-scale producers to be more resilient to climate shocks, with climate adapta�on solu�ons available through na�onal innova�on systems.Stay within planetary and regional environmental boundaries: consump�ve water use in food produc�on of less than 2500 km3 per year (with a focus on the most stressed basins), zero net deforesta�on, nitrogen applica�on of 90 Tg per year (with a redistribu�on towards low-input farming system) and increased use efficiency; and phosphorus applica�on of 10 Tg per year.Cost-effec�ve shared servicesSmarter use of more dataSection 2: Progress on science and towardsThis is a simple, linear, and static representation of a complex, nonlinear, and dynamic reality. Feedback loops and connections between this Initiative and other Initiatives' theories of change are excluded for clarity.End of Initiative outcome AA Action Area IA Impact Area SDG Sustainable Development Goal Note: A summary of Work Package progress ratings is provided in Section 3.In 2023, we rolled out all our services -genotyping, sequencing, elemental analysis, irrigation and engineering support (Work Packages 2 and 5). Establishment of shared services provides CGIAR with much greater bargaining power in purchasing or contracting equipment, services, and tools. This enables the generation of cost-efficient and high-quality data, consistent across the breeding network. Significant strides were made in improving genotyping lab services (Work Package 2), including new service offerings to support partners with low density single nucleotide polymorphism (SNP) genotyping (the Kompetitive Allele Specific PCR [KASP] platform, suitable for applications requiring less than 50 markers) and mid-density targeted sequencing (1-4K markers, suitable for genomic selection and fingerprinting). These services are now accessible via the Service Request Portal, described below.A reference genome service providing \"one-stop\" fully assembled platinum reference genomes with competitive pricing and turnaround time, and a whole genome resequencing service, will also be available in the portal soon. Partners are now able to access expanded biochemical testing for nutritional traits and quality, such as iron (Fe) and zinc (Zn) testing for breeding selection objectives. This is made possible through collaboration with organizations such as HarvestPlus and external vendors to establish a network of service labs with competitive pricing and standardized services to cater to CGIAR and NARES breeding needs.CGIAR Centers and national programs routinely encounter challenges in accessing specialized engineering capacity, so the establishment of Trialing & Nursery (T&N) Support Services in 2023 is a pivotal advancement for CGIAR breeding networks (Work Package 5). Through the Service Request Portal, breeding teams can access agronomic practice support, engineering capacity and process improvement. For some Center programs, including the cassava, rice, and beans programs at Alliance Bioversity International-CIAT, have already benefited from the expertise of an experienced agronomic practice consultant. The rice programs at AfricaRice have received engineering capacity support where consultancy is provided to assist breeding programs in designing new seed processing areas, irrigation infrastructure, and more.Breeding Resources support also extends beyond breeding programs. A Breeding Resources partner engineering company aided the CIMMYT genebank in enhancing existing infrastructure. International Institute for Tropical Agriculture (IITA) also utilized the service for designing a new lab for Kenya Plant Health Inspectorate Service (KEPHIS) in Kenya. Our team of consultants, engineering companies and staff also offer tailored solutions to enhance operational processes (Work Package 3 and 5). This support ranges from selecting appropriate equipment to analyzing process efficiencies through structured methodologies. For example, prior to engaging an engineering company, CIMMYT received support from a Breeding Resources consultant who is an expert in Lean management, who, in collaboration with the team, identified numerous process improvement opportunities, forming the foundation for the subsequent engineering design.Also in 2023, we launched the Service Request Portal (Work Package 2) making it possible for both CGIAR and external partners such as NARES to request and track a large range of CGIAR breeding support services including genotyping services, elemental laboratory analysis and trialing and nursery support. Through the portal, breeding programs can request engineering services, agronomic practice support for process improvement and so on. By accessing these customized services, breeding teams will be supported by consultants and companies specialized in multiple disciplines, such as seed processing, irrigation, soil management, pest and disease management, and others. In collaboration with Scriptoria Sustainable Development Solutions' Data Team, the portal provides users with access to a digital system that expedites submissions and minimizes errors. By digitizing service requests, this platform significantly reduces the daily administrative burden and makes it possible to monitor and improve the quality of services provided.Originally anticipated for release in 2024, the Breeding Resources team surpassed expectations by developing a breeding informatics strategy for CGIAR ahead of schedule, marking it a cornerstone achievement in 2023 (Work Package 4). The strategy delineates a CGIAR-wide approach for the effective management of breeding databases, pieces of software, and tools. It outlines the establishment of a centralized breeding data management system serving CGIAR-NARES networks. Key components of this system include creating a Digital Solution Unit tasked with managing, developing, and maintaining breeding data management tools, with the Enterprise Breeding System (EBS) as its foundational platform.Global User Support (GUS) was established to facilitate the adoption and utilization of software tools supported by CGIAR through the Digital Solution Unit. GUS comprises a 24/7 support desk that handles user inquiries, connects them with specialists, registers issues and sets up demos. Users also have access to a wealth of resources, including user guides, release notes, e-learning materials, and video tutorials available in multiple languages. A roadmap to 2027 was also established indicating a timeline for the strategy's successful implementation. It encompasses the transition of CGIAR Centers and NARES from their existing breeding information systems to EBS. It also provides a comprehensive overview of the landscape for both Digital Solutions and EBS. This includes a thorough examination of critical success factors, potential risks, and recommendations for guiding the next steps in the implementation process.Meeting the expectations of funders, EBS development team released the full version of the software at the end of 2023 (Work Package 4). The tool currently manages breeding data for wheat, maize, and rice, and 2023 witnessed the achievement of releases 6, 7, and 8, encompassing patches including functionality improvements. EBS team embraces an iterative, continuous improvement approach, seeking user feedback to shape the software. Structured as a \"Platformas-a-Service\" (PaaS) system, EBS offers enhanced manageability over time at a reduced cost. The system is designed to bolster core breeding activities, including germplasm inventory management, trial design, field operations, phenotyping, sample tracking, genotyping, data analysis, and decision support. EBS as a breeding data management system has been deployed as a fully operational application for rice, maize, and wheat breeding programs at International Rice Research Institute (IRRI), AfricaRice, CIMMYT, and IITA. International Center for Agricultural Research in the Dry Areas (ICARDA) Wheat, IITA Legumes, other CGIAR Centers, and their NARES partners will follow shortly.Breeding Resources embraces innovative technology by implementing an advanced analytical pipeline -a powerful tool that harnesses big data to enhance decision-making in breeding processes (Work Package 4). The Breeding Analytics Pipeline is a dynamic and modular project designed to extract data from various databases and perform analysis for better decision-making in breeding processes. The tool has successfully delivered a proof of concept, showcasing its technical capabilities. It is set to undergo testing within the Breeding Resources and Accelerated Breeding Initiatives in Q1 2024. The official release, anticipated for Q2 2024, will incorporate feedback from users on technical relevance and usability. The project is jointly funded by both Window 1 Breeding Resources and Crops to End Hunger funds.At the heart of Breeding Resources' operations is process management (Work Package 3). The objective of process management is to deliver high-quality germplasm and data through establishment of common and streamlined processes, ensuring compatibility in the ways-of-working across CGIAR-NARES networks. The three process teams that were set up in 2022 -Trialing & Nursery, Lab Services, and Breeding Analytics are made up of representatives from various crops and Centers. Together they identify, validate and set the course for establishment of a quality management system and continuous improvement practices. They discover, develop, and share best practices, document them, and identify capacity development needs. In 2023, they started the establishment of Standard Operating Procedures (SOPs) for breeding operation processes which involve describing and formalizing procedures and methods of operation to harmonize them across the organization, crops, and Centers.To establish a robust quality management system in key CGIAR-NARES breeding stations, Breeding Resources evaluates them to identify areas for improvement, adoption of state-of-the-art equipment for their breeding activity (through projects like Crops to End Hunger) and refines processes to align with those established by the process management team (Work Package 3 and 5). A dynamic dashboard disseminates the findings of this work and offers users visibility into the capacity of these stations, highlighting their strengths and weaknesses, while also providing funders and Center managers with visibility into areas requiring improvement. Ultimately, this guarantees the application of top industry standards within the breeding stations, delivering high-quality data and results.Breeding Resources is actively engaged in clearly defining its service offerings by adopting a business-model approach (Work Package 1). A business model is indispensable for informed decision-making and streamlined business operations. It identifies the sources of revenue, target customers, products and financing details. Formalizing the services offered by each Breeding Resources component will enhance clarity for staff and clearly communicate the expected services to clients. Breeding Resources business model aims to foster transparency and efficiency universally, ensuring a shared understanding of services among staff, leadership, and clients. Through consensus-building, the business model will enable Breeding Resources to distinguish between non-critical and critical services, allowing for a strategic focus on critical, albeit more laborintensive, services. This, in turn, will aid in prioritization, resource allocation, and managing client expectations. Ultimately, the business model is positioned to be a guiding framework for Breeding Resources, facilitating informed decision-making and strategic resource management. EOIO 1: CGIAR and NARES breeding teams use shared services, facilities and operations that have been improved for greater throughput, accuracy and safety, at lower unit costs.In 2023, we rolled out all our services -genotyping, sequencing, elemental analysis, irrigation and engineering support.Greater bargaining power in purchasing or contracting equipment, services and tools with establishment of a global shared services. This enables cost efficiency and generation of high-quality data consistently across the breeding network.New service offerings with low density SNP genotyping, the KASP platform, and mid-density targeted sequencing.Expanded biochemical testing for nutritional traits and quality, such as iron (Fe) and zinc (Zn) testing are now available to all partners and CGIAR breeding teams.A service request portal was launched to allow easy access to all services including genotyping, sequencing, elemental analysis and a range of breeding operation support.Process management team identifies, validates and sets the course for establishment of quality management system and continuous improvement practices within the Genetic Innovation Science Group.Cross Center and crop process management team discover, develop, and share best practices, document them, and identify capacity development needs.Establishment of SOPs for breeding operation processes have begun which involves describing and formalizing procedures and methods of operation to harmonize them across the organization, crops, and Centers.Evaluation of key CGIAR-NARES breeding stations to identify areas for improvement, adoption of state-of-the-art equipment for their breeding activity (through projects like Crops to End Hunger) and refines processes to align with those established by the process management team Establishment of a dynamic dashboard to disseminate the findings of this work and offer users visibility into the capacity of key CGIAR-NARES breeding stations, highlighting their strengths and weaknesses, while also providing funders and Center managers with visibility into areas requiring improvement.Adoption of a business model approach to clearly define the service offering.All services in Breeding Resources apply top industry standards within the breeding stations, delivering high-quality data and results.A breeding informatics strategy was developed for CGIAR ahead of schedule outlining the establishment of a centralized breeding data management system serving CGIAR-NARES networks.A Digital Solution Unit was created within Breeding Resources to manage, develop, and maintain breeding data management tools, with EBS as its foundational platform.GUS was established to facilitate the adoption and utilization of software tools supported by CGIAR through the Digital Solution Unit.A roadmap to 2027 was also established indicating a timeline for the strategy's successful implementation. It encompasses the transition of CGIAR Centers and NARES from their existing breeding information systems to EBS. EBS as a breeding data management system has been deployed as a fully operational application for rice, maize, and wheat breeding programs at IRRI, AfricaRice, CIMMYT, and IITA. ICARDA Wheat, IITA Legumes, other CGIAR Centers, and their NARES partners will follow shortly.An advanced analytical pipeline -a powerful tool that harnesses big data to enhance decision-making in breeding processes -has been rolled out. CGIAR and NARES breeding teams use shared services, facili�es and opera�ons that have been improved for greater throughput, accuracy and safety, at lower unit costs.Breeding Resources adopted a business model approach to clearly define its service offerings. This approach allows for informed decision-making and streamlines business operations. It identifies the sources of revenue, target customers, products and financing details. Formalizing the services offered by each of Breeding Resources' components will enhance clarity for staff and communicate the expected services to clients clearly. The Breeding Resources business model aims to foster transparency and efficiency universally, ensuring a shared understanding of services among staff, leadership, and clients. Through consensus-building, the business model will enable Breeding Resources to distinguish between non-critical and critical services, allowing for a strategic focus on critical, albeit more labor-intensive, services. This, in turn, will aid in prioritization, resource allocation, and managing client expectations. Ultimately, the business model is positioned to be a guiding framework for the Initiative, facilitating informed decision-making and strategic resource management. CGIAR and NARES breeding teams use shared services, facili�es and opera�ons that have been improved for greater throughput, accuracy and safety, at lower unit costs.In 2023, global shared services were established, providing CGIAR with much greater bargaining power in purchasing or contracting equipment, services, and tools. This helps generate cost-effective, high-quality data consistently across the breeding network. New services were offered to support partners with low density SNP genotyping (the KASP platform, suitable for applications requiring less than 50 markers) and mid-density targeted sequencing (1-4K markers, suitable for genomic selection and fingerprinting). A reference genome service is also offered to provide \"one-stop\" fully assembled platinum reference genomes with competitive pricing and turnaround time. Partners are also now able to access expanded biochemical testing for nutritional traits and quality, such as iron (Fe) and zinc (Zn) testing for breeding selection objectives. This is made possible through collaboration with organizations such as HarvestPlus and external vendors, to establish a network of service labs with competitive pricing and standardized services to cater to CGIAR and NARES breeding needs.A Service Request Portal was launched, making it possible for both CGIAR and external partners such as NARES to request and track the deliveries of all shared services and breeding support services. In collaboration with Scriptoria Sustainable Development Solutions' Data Team, the portal provides users with access to a digital system that expedites submissions and minimizes errors. By digitizing service requests, this platform significantly reduces the daily administrative burden and makes it possible to monitor and improve the quality of services provided.WP3: Performance management of consistent, connected OperationsProcess management team established and managed.Breeding Pipeline Improvement Monitoring System (BPIMS) including a dashboard report cards developed.Process model enabling understanding of interdependencies among department and ini�a�ves in Gl.Quality management system framework established.CGIAR and NARES breeding teams access technologies and tools for shared services.CGIAR and NARES breeding teams have up-to date knowledge and capaci�es to design and operate shared services, facili�es and opera�ons.Work Package 3 functions as the heart of Breeding Resources' service delivery which focuses on process management. The objective of process management is to deliver high-quality germplasm and data through the establishment of common and streamlined processes, ensuring compatibility in the ways-of-working across CGIAR-NARES networks. The three Process Teams that were set up in 2022 -Trialing & Nursery, Lab Services, and Breeding Analytics -are made up of representatives from various crops and Centers. Together they identify, validate and set the course for the establishment of a quality management system and continuous improvement practices within the Genetic Innovation Science Group. They discover, develop, and share best practices, document them, and identify capacity development needs. They have started the establishment of SOPs for breeding operation processes, which involves describing and formalizing procedures and methods of operation to harmonize them across the organization, crops, and Centers.As part of the Process Management work to establish a robust quality management system in key CGIAR-NARES breeding stations, Breeding Resources evaluates these stations to identify areas for improvement, adoption of state-of-the-art equipment for their breeding activity (through projects like Crops to End Hunger), and refines processes to align with those established by the Process Management Team. A dynamic dashboard disseminates the findings of this work and offers users visibility into the capacity of these stations, highlighting their strengths and weaknesses while also providing funders and Center managers with visibility into areas requiring improvement. Ultimately, this guarantees the application of top industry standards within the breeding stations, delivering highquality data and results.WP4: Smarter use of more dataStrategy for breeding Informa�on Management Technology developed, approved and shared.OneCGIAR enterprise business breeding system developed and adopted.A Global User Support network is established.CGIAR and NARES breeding teams have access to comprehensive and organized datasets to make rou�ne data-driven improved decisions.CGIAR and NARES breeding teams access and use data management system in breeding opera�ons.CGIAR and NARES breeding teams use state of the art data management systems.Over the past 15 years, efforts have been made to enhance breeding programs through the implementation of formal data management software. However, the results have been mixed. One of the primary challenges hindering widespread adoption of this software among CGIAR and NARES partners is the complexity of integrating new technology into existing processes. This task demands significant resources and occurs within the dynamic planting and harvest cycles, making it particularly challenging. To enable 'Smarter use of more data', Work Package 4 continues to focus on offering breeding programs more data management tools and capabilities through the deployment and expansion of EBS. Throughout 2023, three major versions of EBS were released. A new, more modern cloud infrastructure was deployed to host the EBS at CGIAR Centers which now allows the team behind EBS to deliver updates to the software more efficiently, while reducing the costs of its operation. New crops and Centers have started the adoption process of the system: ICARDA Wheat, and IITA Soybean and Cowpea. The first NARES partners have also kicked off the adoption of the EBS: PhilRice (Philippines) and BRRI (Bangladesh).A Breeding Information Management Technology (BIMT) Strategy was developed and fully endorsed by CGIAR's Genetic Innovation Leadership, which led EBS team to transition into a BIMT unit, of which the GUS team is part, fulfilling another goal ahead of time; the establishment of the Data Management System (DMS) Support Network.In 2023 the key performance indicator-driven approach for the adoption of the EBS continued to be used in decision-making by EBS Leadership Team, which allowed a complete turnaround for two of CIMMYT's major crops, wheat, and maize, who finished the year at an unprecedented level of usage of one single breeding system as their main resource for daily breeding operations and decisions.Capacity building to use of Technologies, Tools and Shared Services.Change Management to adopt Technologies and Tools for Shared Services.CGIAR and NARES breeding teams using new technologies and services in their way of working.CGIAR and NARES breeding teams have up-to date knowledge and capaci�es to design and operate shared services, facili�es and opera�ons.CGIAR and NARES breeding teams use shared services, facili�es and opera�ons that have been improved for greater throughput, accuracy and safety, at lower unit costs.At the end of 2022, Work Package 5's (WP5's) scope underwent a significant reduction. To mitigate the impact of this reduction, and to continue addressing institutional changes, in 2023 the focus of WP5 was to ensure smooth implementation of process management teams in the scope of WP3, and to support the development and deployment of services in the scope of WP2.Supporting the implementation of process management teams, WP5 focused its activities on organizing trainings and providing change management support to Process Stewards -approximately 60 CGIAR staff, from IRRI, CIAT, CIMMYT, IITA, AfricaRice and ICARDA, who are now equipped with proper tools and skills to implement the process management activities in their respective Centers and breeding programs. With the knowledge acquired, the process stewards will be able in 2024 to lead the implementation of Quality Management System (QMS) at their respective Centers.In the scope of shared services development, while WP2 focused its activities on strengthening the lab services package, by structuring the Service Request Portal, establishing partnerships for elemental analysis and improving the genotyping services, WP5 focused its activities on developing the Trialing & Nursery support services. In 2023, consulting support in engineering, agronomic practice, irrigation management and process improvement was developed and is now consolidated and available for breeding teams to access in the Service Request Portal (WP2).Progress rating A business-model has been taken to define the services offered by Breeding Resources. It identifies the sources of revenue, target customers, products and financing details.All shared services have been rolled out, namely: genotyping, sequencing, and elemental analysis. New service offerings were also made to support partners with low density SNP genotyping (the KASP platform, suitable for applications requiring less than 50 markers) and mid-density targeted sequencing (1-4K markers, suitable for genomic selection and fingerprinting). These services are now accessible via the Service Request Portal. Our reference genome service provides \"one-stop\" fully assembled platinum reference genomes with competitive pricing and turnaround time. Partners are now able to access expanded biochemical testing for nutritional traits and quality, such as Fe and Zn testing for breeding selection objectives.All process management components are in place. Harmonized SOPs are being developed across Centers and crops. This is the prerequisite for the establishment of a Management System, which will happen in 2024.With the EBS being selected as the breeding data management system of choice for CGIAR and their NARES partners, the path for long-term data management within the Genetic Innovation Science Group has been defined.The main activity under the scope of WP5 was to establish a change management team. In 2022, the Change Leaders team was established, in coordination with WP3. In 2023, we agreed to simplify and empower the Process Stewards.Process Stewards received all respective training, including change management support to implement the expected activities. Progress of innovations readiness level over two years Data here represents a trend overview of reported innova�ons progress (by type) from 2022 and 2023.• Technological innova�on: Innova�ons of technical/ material nature, including varie�es/ breeds; crop and livestock management prac�ces; machines; processing technologies; big data and informa�on systems.• Policy, organiza�onal or ins�tu�onal innova�on: Innova�ons that create enabling condi�ons, including policy, legal and regulatory frameworks; business models; finance mechanisms; partnership models; public/ private delivery strategies.• Other: Unknown or the type does not work for the innova�on.Section 5: PartnershipsTwo main partners for Breeding Resources are private companies, and research organizations and universities (including NARES partners). As our Initiative develops and provides services and support to breeding programs, we partner with private companies to access the best-in-class technology for use in the CGIAR-NARES breeding network. Through these partnerships, Breeding Resources gains greater bargaining power in purchasing or contracting equipment, services, and tools. This enables the generation of cost-efficient and high-quality data, consistent across the breeding network. Breeding Resources partners with private companies to learn and adopt a corporate approach to establish our ways of working, including establishing process management, continuous improvement and aa quality management system. These tools and the management system adopted by many private companies proved to be effective in ensuring sustainability in all our operations.The benefits of the services and support provided by Breeding Resources are realized through their adoption across the CGIAR-NARES breeding network. Breeding Resources partnerships with research organizations and universities, which include our NARES partners, connect their breeding programs with global shared services and support. Through change management, we facilitate the cultural shift and institutional reforms required for breeding programs to transform into dynamic multidisciplinary teams of experts. Adoption of modern breeding tools such as genotyping will increase the speed of breeding and enable breeding to meet demands, bringing forward benefits and increasing the impacts compared to traditional breeding. Furthermore, it is unlikely that the more complex requirements posed by climate change or natural resources-limited environments could be met by traditional breeding in a relevant timeframe. Medium-sized seed dryers are now accessible at the Kiboko station, facilitating the harvesting of breeding materials well before physiological maturity in the field. This allows for drying to the required moisture levels, enabling three-season nurseries and significantly shortening the breeding cycle time.Breeding data management is facilitated by the Enterprise Breeding System (EBS), a software developed by Breeding Resources and slated for gradual deployment across all CGIAR breeding programs.Breeding Resources is also providing genotyping services to maize breeders who need to study the genetic makeup of their newly developed lines and utilize the data in breeding programs. The Initiative leverages global requirements across crops and economy of scale for samples to be genotyped at lower cost.Breeding Resources support extends beyond breeding, as seed processing and storage is being significantly strengthened through CtEH funding, ensuring integrity and quality of seeds while reducing the need for frequent seed multiplication.Occupational health and safety protocols have been enhanced, ensuring compliance with industry standards and fostering a culture of well-being. At Kiboko station, women now hold key management roles and benefit from targeted training, challenging traditional gender norms and contributing to a more inclusive research environment.The breeding hub at Kiboko is now transitioning from a recipient of support to a requester of services, via Breeding Resources' Service Request Portal, a simplified platform where breeding teams can seamlessly request the Initiative's support.With expanding operations and the addition of new crops, Kiboko station has transformed into a multi-crop center of excellence. The upgrades underway benefit CGIAR Centers and national partners, extending to multiple Initiatives, notably Accelerated Breeding and Seed Equal.This comprehensive upgrade exemplifies a scalable model that is implemented by Breeding Resources in other CGIAR research stations and Centers globally, illustrating the Initiative's large mandate.Breeding Resources goes beyond simple facilitation, highlighting the power of collaboration, and providing world-class breeding services leading to new germplasm and impactful breeding innovations that transcend international borders.The maize breeding hub at Kiboko, Kenya, illustrates the beauty of CGIAR-NARES partnership. The facilities established at this key research station, harnessing the expertise of world-class experts to deliver top-tier breeding services to partners, has led to impactful products, serving millions of maize farmers in Sub-Saharan Africa.","tokenCount":"4748"} \ No newline at end of file diff --git a/data/part_3/4309791783.json b/data/part_3/4309791783.json new file mode 100644 index 0000000000000000000000000000000000000000..e92f8466fefde60f6519cc38f7f1f1481dc72413 --- /dev/null +++ b/data/part_3/4309791783.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"af14d45a67427dde698b197a461c7bd9","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/ab9a492d-3c35-4bc5-b348-c0fd38b22119/retrieve","id":"1218218431"},"keywords":[],"sieverID":"2dbaf906-d318-45af-b1be-b1d81371f8a9","pagecount":"47","content":"Table 23. Sources of information on the predicted timing of the start of the rains ..... Table 24. Change in farming aspects due to information about the start of the rains .Table 25 This midline study, carried out in Vaishali district of Bihar (northeastern part of the Indo-Gangetic Plains) of India, was accomplished under the CCAFS program of CGIAR and its partners. Bihar is one of the poorest states in India. It is surrounded by Jharkhand, Uttar Pradesh and West Bengal states in the south, west and east respectively, and it shares a border with Nepal in the northern part. Surrounded by river Ganga in the south and Gandak in the west, the Vaishali district is located at 25° to 30° north latitude and 84° to 85° east longitude.The CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) is a major research partnership that works in five regions: South Asia, South-East Asia, East Africa, West Africa, and Latin America. When CCAFS began in 2011, baseline surveys were carried out in 21 research sites across 17 countries within these five regions. The surveys were conducted using standardized tools in each site, including a quantitative household survey, a qualitative village study, and an organizational survey.In 2012, the baselines were conducted in South Asia, and now CCAFS has conducted the midterm evaluation surveys, which are compared with the baseline findings to track the performance of Climate Smart Village (CSV) sites and measure the impact on beneficiaries.With a few improvements, the same standardized tools were used again to carry out the midline evaluation and to ensure comparability with the data collected previously.CCAFS conducted baseline surveys in India that include a household survey, qualitative village study, and organizational survey at two sites, i.e., Karnal district in Haryana and Vaishali district in Bihar. To measure the impact of the program, BISA-CIMMYT conducted a midline survey with three components, i.e. household midline surveys (HMS), village midline surveys (VMS), and organizational midline surveys (OMS).The household questionnaire was translated into the local language Hindi, and the survey was carried out by a group of enumerators using the Open Data Kit (ODK) on Android devices using smartphones/tablets. The questionnaire was pre-tested to assess the appropriateness of the language and develop the necessary skill of the enumerators. The Team leader Sanjay Prasad supervised the data collection as per the sampling design mutually developed and agreed within CCAFS, thereby ensuring proper quality control of data in ODK, and conducted some initial processing/analysis of the data and report writing. The name of the study team members and the Field Enumerators are listed in the Appendix.The survey revisited the original 140 households in Vaishali from the CCAFS baseline survey. All the households covered in the baseline were covered in the midline survey. Both male and female respondents were interviewed for the midline survey. Among the respondents, 32% are female and 68% of the surveyed respondents were males. Out of the 140 respondents, 85 were the household head, 26 were represented by the spouse of the household head, and 17 were either son or daughter in law. About 87% of the households are male headed compared to the 99% reported during the baseline and the rest (12.9%) are headed by women. In the midline survey the same caste groups defined during the baseline were followed, and as the sample was the same, there was no change in caste composition.Most of the inhabitants in the surveyed villages belonged to the Other Backward Caste OBC (46.4%), followed by SC (31.4%) and GC (18.6%) (Figure 1). 1). The average household size in the surveyed area was 8.2, with a minimum of 1 member and a maximum of 21 members. According to the parameters set during the baseline, a family with up to 4 members is considered a small household; usually comprising of a husband, a wife, and their two children. During the midline survey, it was found that 17.9% of the respondents are from small households (1 to 4 family members). Following the parlance of the baseline survey, 57.9% of the households are medium-sized (5 to 8 family members). Also, there are 17.9% of the households that have 9 to 12 members in the household. Only nine households (6.4%) have more than 12 members (Table 2). Among the surveyed households, it was found that 137 households (97.9%) have someone who obtained some level of education, while 2.2% do not have any member in the household with formal education. Among the educated households, 15% have a member with primary education, 51.4% with a secondary degree, and 31.4% with post-secondary education ( In terms of the relationship between family size and education level of the household members, a large percentage of households with a member with a post-secondary degree (43.2%), come from households with 4 to 6 members (Error! Reference source not found.).There is not a single member in the smaller households who has no formal education.Among the 140 surveyed households, 135 households (96.4%) produce agricultural products on-farm while the remaining five (3.6%) do not. As shown in the households only rear livestock (small and large ruminants). All of the households which produce on-farm also sell the products in the market. The agricultural production in the area has been going down because of erratic rainfall and lack of irrigation. Another issue that is affecting agricultural production is stray cattle and wild animals (e.g. nilgai, a large Asian antelope). There is a lot of need for watch and ward.Therefore, most of these smallholders have been rearing livestock. Most of the people in the area sell milk in the local dairy centers. Fifteen households (10.7% of respondents) have been rearing livestock exclusively. One household is engaged in fisheries along with livestock. The milk collection center pays regularly and has been providing the farmers with regular income.Apart from livestock rearing, a new enterprise of quail farming and broiler farming is proving profitable for the respondents. Milk is sold commercially, and some part used for own consumption.To further understand production and selling behavior, households were asked which specific products they produced and sold in the market last year. In the surveyed villages, 129 households produced food crops, with some doing some further processing of these crops at home, mainly for home consumption (Table 5). Fifteen households produced cash crops, 23.6% produced fruits and 60% of households produced vegetables. Key fruits grown in the area are mango, litchi, guava, and banana. The most common vegetables grown here are cauliflower, cabbage, brinjal, and okra. A majority of the households raised small livestock and poultry (mainly goats and chicken). Some also have large livestock such as cows and buffaloes, mainly for milk production and to obtain by-products such as manure and compost.Most of the households who have livestock species also produce fodder to supply feed to the livestock. About a quarter of the households produce fuelwood, mainly for household needs. Figure 4, most of the households (59 households, 42.1%) produced several products on the farm (4 to 6 products). Out of the surveyed households, 3.6% did not produce any farm item.This is mainly because of resource-poor condition and lack of investment avenues. The figure of no production was same during the baseline. About 12.9% produced one product last year, and 30% produced 2 to 3 products. The product diversification observed in Vaishali is not related to commercialization or affluence. These avenues are various baskets of livelihoods used by the poor to avert risks and shocks. Approximately 17.1% collect fuelwood from the forest and community sources, while 14.3% of them collect fodder for their livestock from common property resources (35% during baseline). The fact that 53.6% of households are procuring food items from outside shows their food insecurity, and they do not get food throughout the year. The results of these diversification indices for the 135 surveyed households in Vaishali that produce items on farm are shown in Table 7. The data show that there is only one household which produces more than 8 items (high level of diversification); 34.3% of households produce 5-8 products (intermediate level of diversification) and 61.4% of households produce 1-4 products on-farm (low diversification). Five households (3.6%), however, did not produce any product in the last year.Among the 135 households, slightly less than half sell 3 to 5 products (intermediate commercialization), whereas 23.6% sell more than 5 products. Only 27.1% of households sell 1 to 2 products in the market. This implies that most of the farm production has commercial diversification and intent. Also, higher production diversification has higher commercialization diversification. There is a marked improvement in the socioeconomic status of the women with the advent of the National Rural Livelihood Mission (NRLM) through Self Help Groups and related institutions. The livelihood activities (both on-farm and off-farm) are shared among the family members, including grownup children. For the on-farm activities, in 91% of the surveyed households males are responsible for farm activity work while only 6% of women are responsible for the farm work. In about 3% of the houses, the workload is shared by several family members (Figure 5). The survey found that 64.3% of households earn cash from employment on someone else's farm, as contractual workers in nearby cities and in government and non-government jobs.Sixty-two percent of the households derive income from remittances or gifts. Small business and trade are also the source of income for 15% of households in the study villages. Renting out their own land accounts for 10% of the cash income. In terms of the number of off-farm income sources, 2% of the households reported having none, 16% reported one source, 31% reported two, 31% reported three, and 14% had four different off-farm income sources (Figure 7). The households are rearing cows, buffaloes, goats, and chickens for augmenting the farm income. The milk is sold commercially and some partially used for own consumption. The manure is put in the fields. Some fields which have bushes are used as fuel in domestic cooking as well as feed for the livestock. The production and commercialization diversification indices indicate that there is intermediate commercialization in the area, where households produce 3 to 5 crops (including income from selling milk) and have good access to markets. As on-farm production is diversified, results also show that there is substantialincome from remittances and employment outside the farm. There has been an increase in the number of households accessing both formal and informal credit sources since the baseline was carried out.The major crops are rice in Kharif followed by wheat in winter. Some farmers cultivate vegetables, however due to the high cost of manual labor they feel discouraged to bring more land under vegetables. In Vaishali, the majority of farm households have small landholdings.While most of the farmers are keen on adopting modern crop and livestock technologies, they do not easily access these technologiesIn the surveyed households, identification of the three most important crops based on an overall livelihood perspective are wheat, paddy, and maize apart from various vegetables cultivated in the area. As shown in Figure 8, the main crops identified as per the number of households growing them are wheat and rice, which is the same as seven years ago.Households were asked about the changes they made to their farming practices over the last seven years and for which crop, and whether they introduced new crops or not. The result from the analysis shows that 67.63% of the surveyed households showed no introduction of any new crop, whereas the maximum percentage of households (20%) introduced wheat as a new crop followed by rice as their new crop. All the new crops that were introduced within the surveyed households are mentioned in Table 9. In contrast to the baseline survey, 84.28% of the households have entirely stopped growing a few crops in the last seven years. Some of the crops that are not being cultivated any longer are pulses, sugarcane, and millets.A majority of the households have not stopped growing of any crops completely, although a few households have stopped growing maize (15.7%), and a tiny percentage of households have stopped growing mung beans, eggplant, and cauliflower, among others (Table 11). The surveyed households were queried regarding the changes they have made to crop varieties, livestock, water and land, and other climatic information. Figure 9 depicts the changes made by the surveyed households. The analysis shows that one quarter of the changes related to crop varieties, another quarter of the changes have been made to livestock practices, 18% of the changes were related to land and water and 31% of changes were other changes (Figure 9). The cropping-related changes over the last 7 years were analyzed. The results showed that most of the households had made cropping-related changes such as planting new varieties of crops and planting high yield variety crops (Figure 10). Cropping-related changes took place mainly in rice, wheat, and fodder crops. When probed further about market-related changes it was found that only three factors are considered by the farmers to change farming practices (Table 12). These factors are getting better yield, better price, and a new opportunity to sell. About three-quarters of households making changes for market-related reasons are motivated by better yield, while 17.14% made changes due to better prices. There are also new opportunities to sell as mentioned by 17.14% of households as their reason for making changes in farming practices.The study considered the climatic factors that could be the potential reason for the household to change farming practices. Six climate-related reasons for changing farming practices were highlighted: less overall rainfall, more frequent droughts, later start of rains, more cold spells or foggy days, rains stopped too early, and lastly the declining groundwater table. Many of the respondents mentioned climate-related reasons that influenced changes in farm-related practices over the past seven years (Table 13). The result from the climate-related reasons reveals that the majority of the households (71.4%) are impacted due to the lower groundwater table, followed by less overall rain with about 45% of households affected, and the least concerning climatic factors amongst the surveyed household was rain stopping too early. The water table declined by about 50 feet during the last 40 years, and the decline was particularly rapid during the previous seven years. The decrease in the groundwater table is caused by low rainfall along with the absence of water harvesting and aquifer recharging arrangements in the area under study.Livestock is an important component of the livelihood, economy generation and complementary resource for crop production. The households were surveyed to gather the information regarding changes with respect to livestock.Sixty-two percent of the respondents made changes in terms of introduction of new farm animals while 20.7% of the respondents stopped keeping one or more farm animals. A few respondents made changes in terms of change in fencing and cut and carry introduction (Table 14). Among 140 households, 56 of the households made changes in their livestock keeping practices. Twenty-nine percent of the households made changes in the practices of one animal, 7% in two animals and 4% in more than two animals (Figure 11).The maximum number of changes in dairy cow keeping is noted to be three. The results suggest that all households introduced new types of animal and/or new breeds and made associated changes in herd size and care and management of livestock.The analysis was done to understand the reasons for making particular changes to crop, livestock, land, and water. The results are shown in Table 14.One 29%Two 7%More than two 4% The majority of households reported climate as the main reason for the changes they made within past seven years, followed by market-related reasons. Land and water contributed to 10% of the reasons for the changes made, while the least important reason for making the changes was due to projects.An adaptability/innovation index was defined as the following: The result from the study shows that the adaptability index in Vaishali is low, as 66.43% of the surveyed households has made zero to one changes in both crops and livestock species. The area is witnessing a major shift in rainfall. In the last five years there has not been rainfall at the optimum level. The farmers are still sticking with the rice and wheat crops. The major diversification has been in terms of livestock rearing for diversification of livelihoods.We asked households about their ability to access enough food for their family and whether the food came from their own farm or elsewhere (off-farm) for each month of the year. The results from the survey show that out of 115 respondents, 55.5% of the surveyed households acquired food from their own farmland, while 44.5% of the surveyed households obtain food from off-farm land throughout the year from January to December. The variation in the graph in Figure 12 shows the primary source of food by month. The surveyed households were also queried about the duration of the year when they struggled to have an adequate amount of food from any source. A total of 108 households faced food shortages in at least one month of the year, and on average each household faces food shortage at least three times in a year. The highest number faces food shortage during September. The food security index was created based on the number of months that the household has difficulty in getting food from any source (i.e. from their own farm or stores, gifts, purchases or transfers). Households in Vaishali face a relatively high amount of food security: 60% of households have three months or more of food insecurity throughout the year. The result obtained from the midline survey noted a sharp increase in hunger amongst the surveyed households by as compared to the baseline survey conducted 7 years ago. During the baseline survey, 55% of households reported having sufficient food all year, but only 17.8% of households reported the same during this midline survey. The percentage of households experiencing more than 6 months of food deficit during the year more than doubled from the baseline to the midline, from 10% to 21.6%.In Vaishali, agriculture is mostly rainfed, which in the last 7 years has been changing into tube well/ bore well-based irrigation. The survey area is in the valley of the Ganges and Gandak. There are some canals, which mostly run dry. As reported below in the asset section, very few households have pump sets, signifying the resource-poor condition. CIMMYT has been active in teaching the farmers water saving techniques and better agronomic practices.The results are better now. The low rainfall in the last few years has forced farmers to take up livestock cultivation as a supplementary livelihood source. Most of the water requirement is for the cultivation of wheat and paddy.About 40% of households have access to an irrigation source, either owned or hired. The bore well (submersible) is the predominant source of water with 82.71% of surveyed households having access, and many of the respondents have fitted hand pumps. However, resource-poor farmers are constrained by not having their own pump, and therefore cannot invest in water for irrigation. The majority of the households are poor, both in terms of land ownership and income. Table 19 shows that 82.85% of them access less than one hectare of land (i.e. owned and/or rented).The highest landholding among the respondents is 2.21 ha, and 11 households (7.86%) are landless. None of the respondents have more than five hectares of land, and 9.29% of households have between 1-5 hectares. Most of the land owned is used for growing cereals.None of the respondents use communal land. All categories of households used almost all land for crop production. Less than a hectare land is unproductive and degraded. The surveyed households reported using a variety of agricultural inputs, including improved certified seeds, chemical fertilizers, pesticides and veterinary medicines, and a few also purchase crop and livestock insurance. The results from the survey as shown in Table 17 reveal that about 90% of farmers buy seeds and fertilizers from markets. Sometimes such inputs are sought from the local government as the government distributes high yielding varieties of the seeds to a few farmers for testing them in the farmers' fields. Similarly, about 90% buy and use pesticides because they are engaged in intensive cultivation of food crops and a few of them started commercial vegetable cultivation. Livestock is also an important enterprise in the area, hence 75.7% of farm households purchased and used veterinary medicines to maintain good health of their dairy animals. The self-help groups groups promoted by the NRLM and the microfinance institutions (MFIs) provide necessary credit for the farmers. Access to a formal credit system and Kisan credit cards is weak in this area.About 51% of the farmers make use of credit for agricultural activities. Only 5 households have taken insurance for crop or livestock. The extension and delivery mechanism for insurance still leaves a lot to be desired. However, two households have purchased weatherbased insurance. The survey data show that 75.71% of respondents get climate and weather-related information from various sources, including radio, television, government department (agricultural extension), private organizations and community members. Households receive information on extreme events, pest or disease outbreak, the start of the rains and extended periods of weather information.About three-quarters of surveyed households reported receiving information on weather/climate over the past 12 months. Almost 55% of the households access information about the start of rain. Among the households, 31.43% receive information about an extreme event such as floods. About 14% households have information about the weather for the following 2-3 months. About 6% of households have information about the weather for the coming 24 hours to 3 days. Very few households, i.e. 4%, have information about pest and disease outbreaks. Both male and female members of the surveyed households get information on weather.However, in most cases, males are the primary recipient of the information from the external sources. In Vaishali, 66% of households reported that the forecast information is received by both men and women. However, only 2% of the women receive the information alone. Onethird of households reported that the weather-related information is received only by men. Respondents reported receiving weather-related information from various sources, including radio, television, agricultural extension, friends, relatives, neighbors, newspaper, cell phone and internet.Out of the 140 households surveyed, 44 households (31.43%) receive information from some source or the other on extreme events. Television emerged as the most important source of information about extreme events amongst the surveyed households. About 63% of surveyed households that receive information related to extreme events receive it through television. This is followed by newspaper, where 47.73% of the 44 households get information on extreme events. About 45.5% of the surveyed households receiving information on extreme events get it through friends, relatives or neighbors. About 36.4% of the surveyed households Both 66%Men 32%Women 2%access the related information through cellphone. Those who have smartphones get information through the internet, which is 20.5% (Table 22). With the information, 15 households reported that they make adjustments in their agricultural practices, most commonly through changes in inputs (five households) and irrigation (three households).Only six households reported that they get information about pest and disease outbreaks. The information source for all the households is television. Apart from it, they get the information from radio, newspaper, Government extension Officers, Veterinarians, own observations, cell phones, internet, and through friends and neighbors. The information is received by men in three households and in the other three households the information is received by both men and women. The information is mostly helpful in aiding livestock in vaccination and treatment.The farmers and community people sometimes get predictions about the timing of rain, which is very important for planning agricultural activities. About 54.3% of the households get the information regarding the forecast about rains. In Vaishali, television is the main source for the rainfall information (71.05%) followed by cell phones (59.2%) and Internet (42.11%). TV channels generally get such forecasts through the government meteorological department and local met office. Newspapers and friends and relatives are important sources of information which were accessed by 52.63% and 22.37% households, respectively.Both male and female members of the surveyed households get an information forecast of rain. However, in most cases, both men and women (50 households out of 76) are the primary recipients of the information from the external sources. Yet only one woman responded that she receives the information alone. Change in the farming aspect as a result of the information about the start of the rains About 24% of surveyed households reported changing the timing of their farming activities and crop type as a result of the information about the start of the rains, followed by changes in irrigation (19%) and land management (19%). Weather forecasts for the next 2-3 months and 2-3 days Among the surveyed households in Vaishali, only 13.6% received weather forecasts for the next 2-3 months, and 6.4% of households obtained weather forecasts for the next 2-3 days.For the information about the 2-3 months' advance prediction, the most important source of information in providing weather forecasts of the given periods is internet at 57.9%.Television was the second most common source of information with 52.63%. This is followed by friends and relatives with 47.37%. About 42.11% of the information on 2-3 months advanced prediction was acquired with the help of newspapers (Table 25). For the information about the 2-3 days' advance prediction, the most important source of information in providing weather forecasts of the given periods is television, followed by radio and friends and relatives (Table 26). From the results of the survey, it may be inferred that the majority of the households get climate and weather-related information from various sources. Television, cell phones, newspapers, internet, and friends and relatives have emerged as the most important sources of information about extreme events amongst the surveyed households.Community groups are affinity groups, which are formed to perform functions and efforts related to production, marketing, savings and credit, and water use. The few functional and vibrant groups are an Agricultural Cooperative Credit Society, a Dairy Cooperative Society, and a Productivity Enhancement Group. The Dairy Cooperative is one of the few successful rural institutions found within Bihar State. In the villages, a lot of work has been done the civil societies and the Bihar State Rural Livelihood Mission (Jeevika), which has formed Self Help Groups among women. Further, there are various microfinance institutions that are operating in the area. These organizations have mobilized women under the financial inclusion program. Among the 140 respondents, 114 (81.43%) are members of savings and credit groups, up from the baseline of 24%. Most of these beneficiaries are women, while the baseline suggested that mostly males were members of community groups. Under the programs of CIMMYT and other international organizations, farmers have organized themselves into irrigation user's groups. We looked at whether households have faced a climate-related crisis in the last 5 years and whether or not they received help to deal with the impacts of such a crisis. For those who received help we inquired as to the source of this help. Of the surveyed households, 69.78% reported facing a climate-related crisis in the last 5 years. Only 31% of the households convey Affiliation to a group that they have not felt any climate related crisis in the last 5 years (Figure 16). About 14% of households sought help from one source or another. The source of help was from friends, relatives and neighbours (6.4%) and Government agencies (6.4%). One household sought assistance from a politician. The national flagship program of the National Rural Livelihood Mission and microfinance institutions have been working on financial inclusion in the area. It has brought prosperity and increased social security among the people of the area. There has been low rainfall over the past 4-5 years, and therefore the productivity of the agricultural crops has declined. The effect of climate change is evident, and the groundwater table is depleting at a faster rate. Some areas in Vaishali are flood prone, and therefore the people have to take shelter or assistance from somewhere.Households were asked about ownership of different types of assets such as: ","tokenCount":"4686"} \ No newline at end of file diff --git a/data/part_3/4333435644.json b/data/part_3/4333435644.json new file mode 100644 index 0000000000000000000000000000000000000000..5a69363ba0ac1a23967f29f85cf67d9c39713e28 --- /dev/null +++ b/data/part_3/4333435644.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"ffd722f7fde350d890da797c266e8c28","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/19022a0f-c6e2-4965-be53-9f01d6197d77/retrieve","id":"859153432"},"keywords":[],"sieverID":"d7333fdf-2527-4037-944d-9c10f80eb129","pagecount":"72","content":"This Agrodok is based on a previous shorter edition, Soya. The text has been extended to include more practical information on growing and processing soya and other legumes into nutritious food products. We have included other legumes so that the information in the book will be useful in more areas.Soya is a legume with many good qualities, and it can be used to improve farming systems. It can also be processed into products which contribute to the daily diet and to family income. In this new edition we devote extra attention to this crop. There are also many areas however where soya cannot be cultivated, but other legumes do grow well and have many of the same good qualities. This Agrodok is intended to help farmers and extension workers to make choices that will work well under local conditions.Many farmers face urgent problems of making sure there is enough food for their families for the whole year and earning sufficient income. Population growth and the increasing size of cities and towns mean that the amount of land available to grow food for each family is decreasing. Yields are not always high and the prices of agricultural products are generally declining. The amount of money available to buy food if it cannot be grown, to provide housing, travel and medical costs is also decreasing. The costs of agriculture are rising; artificial fertilizers and other chemicals are becoming more expensive, while farmers are not able to increase the prices of their products. There is a shortage of food both in terms of quantity, but also quality: the amount of nutrients in food that children need to grow and adults to stay strong and healthy is often too low.By growing legumes farmers can do something about these problems.Legumes take up nitrogen from the air and pass it on to the soil, thereby improving soil fertility. The yields of crops grown on the same land after the legume crop will increase. In addition legumes are nutritious, and may provide income opportunities. Products made from soya and other legumes can be eaten or sold. This Agrodok is intended for farmers who want to know more about legumes and for extension workers who want to assist the farmers. The answers to the following questions can be found in this book: ➤ What are legumes? ➤ How can I cultivate them? ➤ What products can be made from soya and other legumes?Plants that belong to the legume family (Leguminosae) have pods in which beans grow. Legumes possess an important characteristic, which is their ability to bsorb nitrogen from the air. Many crops that are unable to do this are dependent on the nitrogen that is present in the soil. Most soils in tropical areas do not contain sufficient nitrogen, an important nutrient. For this reason growing legumes (in addition to other staple crops such as potatoes, maize and rice) is a good way for farmers in tropical areas to enrich the soil. The legume crops also provide extra food for the daily diet of both humans and animals.The nitrogen that the legume crop absorbs from the air is used for its own growth and is stored in the root nodules. When the crop is harvested the roots are left in the ground, where they decompose, releasing the nitrogen into the soil. This nitrogen can then be used by the next crop that is planted in the same field. The pods contain beans that are easy to prepare. Legumes must never be eaten raw. Nevertheless they have so many advantages that it is worthwhile growing and processing them. Soya beans are a legume that is very rich in nutrients and there are a number of products that can only be made from soya. Soya beans and soya products can also be sold and can therefore be a source of extra income. This Agrodok about legumes focuses on soya for these reasons.Legume crops provide dried beans for human consumption and are grown all over the world (see table 1). Some beans are a good source of oil (groundnuts and soya beans), others are good for cooking, either as whole beans or pulses or as split beans or peas. Some beans are ground into flour which is used to prepare a number of foods. After the beans have been harvested the crop remains make a good source of animal feed. They can also be dug into the soil so that they improve theThe importance of legumes Chapter 2Agrodok 10 Soya and other leguminous crops fertility of the soil. Some legume crops can be grown in combination with a grain crop, which helps to increase yields and soil fertility.Cowpeas are often grown together with millet or maize (Agrodok 2: Soil Fertility Management).There are other legume crops that are especially suitable for green manure. The crop is sown and when it is fully grown it is ploughed under without being harvested. However, because these crops do not have direct economic returns it is more difficult to motivate farmers to use these. Finally there are legumes that make good ground cover. These are sown between the rows of a crop that does not cover the soil, such as maize (Agrodok 2: Soil Fertility Management).U ses of l egum e crops crop Table 2 below indicates that soya is grown in many areas of the world: in North and South America and in Europe agricultural production is mechanized, in Asia production is small scale and largely done by hand. Soya has only recently been introduced in Africa, while it has been grown and processed for many centuries throughout Asia.In Bolivia in South America, soya is grown for oil which is processed industrially. Bolivian soya oil was first sold on the world market in 1985, and since then production has increased considerably. The total area in Bolivia planted with soya increased from 60,000 hectares to 330,000 hectares in the summer of 1994 -1995.T Legumes and soya can be grown under a wide range of agroclimatic conditions. We list the main ones here to give the reader an idea of the variety of conditions under which legumes do well.Shifting cultivation is a system in which farmers cut down an area of trees, burn the remaining vegetation and use the land they have cleared for agriculture. The ash from the burned material contains a lot of nutrients, so the soil is fertile and in the first season crops with high nutrient requirements can be grown. In the following seasons other crops are grown.In traditional shifting cultivation systems a piece of land was usually used for three or four years, after which the soil was exhausted and weeds would start to take over. The land would then be left fallow for a period of 10 to 15 years, giving the soil time to recover after which the cycle would start again. This system is now under pressure however as the fallow period becomes shorter, and the soil and vegetation have less and less time to regain fertility. In many places land is cultivated after each rainy season; weeds become more and more difficult to control and soil fertility is decreasing.The lack of nitrogen in the soil is a big problem. Legumes can help to restore nitrogen deficiencies and stop weeds taking over. For example, Mucuna utilis can help to suppress Imperata, a stubborn grassy weed which prevents farmers from cultivating land.The soils in these areas are surrounded by rivers. Coastal areas where mangroves used to grow are often not suitable for legumes as they are too acid once they have dried out after the rice harvest. Other soils in these areas which are not subjected to salt water are less acid and more suitable for agriculture. If these areas are submerged under water during the rainy season, rice is the only crop that can be grown. If the water recedes after the rice harvest, legumes can be grown as a second crop, making use of the moisture that remains in the soil. If it is possible to irrigate, the land can also be used in the dry season.Many legume food crops are grown at altitudes above 1000 metres. Highland areas are characterized by low temperatures, dryness and a relatively short growing season. The fields are often small, which makes it difficult to use machines. Farmers work the land by hand or using animal traction. Legumes are grown on their own or in combination with other crops such as maize. The yields are often low, but the beans are an important source of protein for many families. Legumes such as chickpeas, peas, broad beans and lentils are grown in areas where the soils are poor because they are resistant to drought, and the crop remains can be used as animal feed.Erosion is a common problem in these marginal areas. In some areas farmers work the land in such a way as to ensure that the ridges run horizontally as far as possible, following the contour lines. Rainwater is caught by the ridges and so seeps down slowly into the soil. If the ridges are made that follow the slope, rainwater runs off quickly, taking soil with it and causing erosion. If the rainfall is very heavy the soil cannot always absorb the water quickly enough. The water will then flow over the ridges, breaking them and causing serious erosion. In areas where this is a problem it is better to build the ridges diagonally over the slopes, so that some of the water is caught and can seep into the soil, and the rest can run off.In the Bolivian highlands, where the amount of rainfall varies a lot, traditional methods are used to try and predict how much rain is likely to fall. If a lot of rain is expected the ridges are dug so that they run more in the direction of the slope; if less rain is expected the ridges are made so that they run more or less parallel with the contour lines.Using local climate data and the data in Appendix 1 you can start to decide which legumes may be suitable to grow in your area. Some legumes grow better in cooler climates, where there are cold periods, others do better in a humid and warm climate, such as lowland areas in the tropics. Others are adapted to extremely arid and hot conditions.Food legumes as a group have a very wide range of adaptability with respect to latitude, temperature, day length and humidity. While some of them grow optimally at relatively low temperatures in long days, others flourish at high temperatures associated with a day length of 12 hours or more. This is perhaps one of the reasons that in almost every conceivable climate one food legume or other exists. Nevertheless, the fact remains that the adaptability of each species or cultivar individually is rather restricted (Sinha, 1977).Cool climates with cold periods at high latitudes or in higher areas of the tropics Beans grown in moderate climates come from western Asia and the Mediterranean, where they have been grown for thousands of years. These include lentils (Lens culinaris), peas (Pisum sativa), kidney beans (Phaseolus sp.) and chickpeas (Cicer arietinum). The cultivation of these crops spread over time to the Indian subcontinent and China. Peas and broad beans (Vicia faba) also spread northwards to the cooler areas of northern Europe, and later were also taken to North and South America, Australia and South Africa. They are also found in highland areas of African countries such as Ethiopia and Kenya.Soya (Glycine max) and pigeon peas (Cajanus cajan) are suitable for warm, humid climates.Cowpea (Vigna inguiculata), green gram (Vigna aureus), black gram (Vigna mungo) and groundnut (Arachis hypogaea) can tolerate extreme dryness and high temperatures. Groundnuts, for example, are grown in semi-arid and low-humid tropical areas of Africa, Southeast Asia and Central America between 30° North and 30° South.In Bolivia soya is grown in the subtropical areas between 15° and 20°S outh, at low altitudes (< 700 metres above sea level) where temperatures are quite high (22 -32°C), relative humidity is high (> 65%), day length is short (12 -13 hours) and annual rainfall is between 800 and 1300mm.The minimum temperature at which soya develops is 10°C, the optimal temperature is 22°C and the maximum is about 40°C. The seeds germinate well at temperatures between 15°C and 40°C, the optimal temperature being about 30°C. Much soya is grown in areas with temperatures around 25°C -30°C. It seems that night-time temperature has a greater influence on the crop than daytime temperature. If the night-time temperature falls below the critical level of 10°C the crop will undergo more damage than if the night-time temperature stays above 10°C, regardless of the optimal daytime temperature range of 25°C -30°C.In Tokachi (Japan, between 42°20' and 43°30' N) soya yields per hectare are considerably lower in years when the temperature is cooler than average. When temperatures are lower the soya flowers later, ripens later, develops fewer pods and produces a lower weight of beans.Generally speaking, cultivars with big seeds, pubescent (hairy), wide leaves and vigorous early-stage growth have relatively good yields in cool years. Glabrous (smooth-leaved), less robust cultivars form fewer beans and have lower yields. There is a clear connection between early-stage growth vigour and yield. The better the plant develops in the early stages of growth the higher the bean yield will be, especially under cool temperatures. Cultivars with small seeds germinate quickly, but are not resistant to cold temperatures.Soya has two critical periods concerning water requirements: from sowing to germination, and the period during which the beans grow in the pods. Before a seed can germinate it needs to absorb 50% of its weight in water. Nevertheless during the germination phase too much water causes more damage than too little water. The soil needs to be between 50% and 85% saturated with water. The amount of water needed increases as the crop grows, reaching its maximum as the beans develop in the pods (7 -8 mm per day), and then decreases again. To be sure of a good yield, soya needs between 450 and 800 mm water each day during its whole growth cycle, depending on the climate. In high temperatures more water evaporates, so more rainfall is needed to provide the crop with enough water.Legumes Fig. 3: Seeds of different types of legumes. Note the differences in shape and size!Local varieties of most sorts of legumes have developed and many agricultural institutes all over the world have bred cultivars with desirable characteristics such as resistance to disease and pests, higher yields and shorter ripening time. Farmers often know a lot about local varieties and the conditions under which they grow well. They often grow different varieties of the same crop in order to spread their risks. If a field sown with one variety suffers damage in the form of disease, pests or bad weather, it is still possible that a field with a different variety will suffer less from the problems. The cultivars developed by agricultural test stations can often be a good addition. In cases where a new type of legume is introduced, farmers often have no choice but to use the cultivars offered by the local agricultural institute. The choice is usually too limited to be able to spread risks. The introduction of a single cultivar or variety carries high risks for farmers. If a new legume crop is to be introduced into a certain area it is important to ensure that farmers can choose between a number of cultivars and/or varieties. If this is not possible it is recommended that different types of legume crops are introduced (Appendix 1).Day-length sensitivity will determine the choice of legume made, not only the type but also the variety. (Labour requirements are also important when choosing a variety. See paragraph 4.4.)Soya is a short-day plant, and is sensitive to day length. It flowers when the day length is shorter than 16 hours. Short-cycle varieties flower 30 -35 days after sowing and ripen within 75 -105 days. These varieties have low yields. The middle-length varieties also flower 30 -35 days after sowing and mature within 110 -140 days. These have good yields. The long-cycle varieties produce a large amount of leaf material.Different vari eti es of a crop have different genetic characteristics. The differences have arisen as a result of the crop being cultivated under different conditions to which it has adapted.Cul ti vars also have different genetic characteristics, but these have arisen through cross breeding or genetic manipulation under controlled conditions, for example in an agricultural institute.Fig. 4: Day length: soya flowers when the day length is shorter than 12 -14 hours.In integrated farming systems where livestock are raised this soya leaf material is an attractive form of animal feed; it is easily digestible and contains a lot of protein. In Ivory Coast (West Africa) short-cycle varieties do better because the rainy season is short.If legumes are to grow well, the soil must fulfil certain requirements.You can find more information on these in the tables in Appendix 1. However, it is not a one-sided relationship. Legumes also contribute to soil fertility, which is good for the crops grown after the legume crop.Legumes grow in different soils, even very acid soils (up to pH 3.8).Groundnuts and Bambara groundnuts (Vigna subterranea) grow in poor sandy soils and loamy soils, but also in clay soils such as vertisols, although harvesting the pods from under the ground is difficult. While groundnuts grow well in chalky soils, Bambara groundnuts do not. Good drainage is important, especially for Vigna and Phaseolus types.The butterbean (Lablab purpureus) has deep roots, which enable it to grow better on badly draining soils than most legumes. The butterbean however does not do well in saline (salty) soils. Generally speaking, legumes do not do well on salty soils, although there are a few exceptions: pigeon pea (Cajanus cajan) and pea.Soya grows best in soils that are not too light and not too heavy in texture. Soya does not germinate easily in heavy clay soils, although it does grow well in them after germination. If a heavy soil has been well prepared it is preferable to a light sandy soil, as the yields are likely to be more certain. Soya grows well in soils with high organic-material content. Soya prefers a pH of between 5.8 and 7.8, and does not like alkaline or acid extremes. Soya will not tolerate saline soils. It appears that high-yielding strains do not contribute much nitrogen to the soil. The most important role of legumes in a farming system is their bean production. During the growth cycle the transfer of nitrogen to other crops is small. It is only when the crop remains have been dug into the soil and have decomposed that they start to release their nitrogen into the soil, making it available to the next crop. Figures from Bolivia show that maize and wheat grown after soya can have an increase in yield of up to 22%. Where legumes are used as green manure, maize yields are clearly higher than maize grown after a short fallow period where nothing is grown. If soya is grown for use as green manure, where the whole crop is dug under, it can increase soil fertility by up to 200 kg nitrogen per hectare. Soya dug in in this way also improves the texture of the soil because the crop residue contributes organic material.If soya is grown as part of a mixed cropping system it is important to ensure that nitrogen given to the other crop in the form of artificial fertilizer does not come into contact with the roots of the soya. Soya will not fix nitrogen (or only very little) if there is nitrogen present in the soil (in this case from the artificial fertilizer).When the remains of the soya and other crops are dug into the soil together, the nitrogen-rich soya remains will ensure that the organic material in the soil is broken down quickly. This will increase the amount of nutrients in the soil by more than if the remains are dug in separately.Farmers and extension workers who have no experience of legumes need to find the answers to a number of questions.➤ What is the best season for growing legumes? ➤ What crops grow best before or after the legumes? ➤ Or is it better to grow them at the same time?The existing farming system must be taken into account if you are to understand how you can integrate leguminous crops.Appendix 1 is a list of leguminous crops and their climate, water, temperature and soil requirements. The table can be used to make a preliminary selection from the many legumes available.This chapter is mainly devoted to soya. However many of the characteristics of most other leguminous crops are similar. With a few excep-Farm i ng and crop system s A farming system consists of all the farming activities that take place on a farm. These may include crop cultivation, raising livestock or planting trees.A crop system consists of all the crops that are grown. Sometimes this is one crop on a field (monocropping), sometimes several crops. If several crops are grown together on one field, they can be mixed up together (mixed cropping) or planted in alternating rows (intercropping). It is also possible to sow one crop later than the other one in the field (relay cropping).tions, most leguminous crops are sensitive to day length: they are either short-day or long-day plants. Soya is a short-day plant: it starts to flower when the number of hours of sunshine in a day decrease. The exact amount varies between 12 and 14 hours, depending on the variety of soya. For this reason the latitude where particular varieties can be grown is always included in the examples given in this Agrodok (paragraph 3.4: Varieties). The nearer the equator (lower latitudes) the more constant the day length is and the warmer the nights are throughout the year. Further away from the equator (higher latitudes) the days are shorter and colder during the winter. During the summer the days are longer and temperatures are higher both during the day and at night.In Africa, Asia and to a lesser extent Latin America, most crops are cultivated manually. This makes it easier to integrate legumes into the farming system. They can be grown as a monocrop (crop grown on its own), as an intercrop with dry rice or maize, or as a relay crop just before or after the main crop that requires the rain. All these crop systems are used successfully in Taiwan. The introduction of groundnuts, soya and mung beans in rain-dependent farming systems in northern Thailand has also had good results. We describe two ways of integrating legumes with livestock keeping.1. When the beans have been harvested the crop residue is used as animal feed for the livestock kept in the village, e.g. cattle or buffalo.The dung from the animals is used to fertilize the land together with the crop remains left in the soil, which increases the nitrogen content of the soil. 2. You can also let livestock graze in a mixed crop of a legume and grain. For example, you let the animals eat half of the legume crop. Animals will first eat legumes because they contain a lot of protein, which means they will leave the grain crop undisturbed. As they eat the legumes, nitrogen will be released which is good for the grain crop, such as maize. The animals convert the nitrogen in the soya into urine and dung. The nitrogen in the urine is immediately taken up by the grain crop.The second method appears to provide more nitrogen, but farmers are unlikely to let their animals eat much of the legumes that are meant for human consumption. It is difficult to calculate exactly how much this method improves soil fertility. If a farmer is accustomed to using artificial fertilizer it would be possible to carry out a cost-benefit analysis to determine which form of fertilizing is cheaper. Example of rotational cropping: in the first year fields 1 and 2 are cultivated (A). In the following year all crops move round one field, so fields 2 and 3 are cultivated (B).2The main leguminous crop in Asia is soya, so the examples below all refer to this crop. Soya is usually sown in the dry season, after rice, wheat or maize while the soil still contains sufficient moisture, or where irrigation is possible. Soya is also often intercropped with maize or sorghum.In Indonesia a similar system at 6°N yields 700 kg soya per hectare.The soya is sown at the end of the rains in February or March, or just after the rains have stopped in April. If the rains are to be used for the legume crop, then sowing is done in July/August just before the first rains start, so that the seed is ready to benefit from the rains that start in September. The harvest takes place at the end of the rainy season, between December and April or in the dry season at the end of June, depending on when the soya was sown. If the seed is sown in the dry season, the crop starts to grow during the rains and it takes one or two months longer before it can be harvested.In Thailand yields up to 1200 kg/ha are harvested at a latitude of 15°N.In this area most soya is sown during the rains between April and July.Where there is irrigation, soya is sown at the beginning of the dry season in December. In Taiwan a similar system of cultivation is used at 23°N and yields of 1500 kg/ha are achieved. Here the dry season is from November to May and the rains fall between May and October.In Uganda legumes are grown in various shifting cultivation systems. A number of crop systems in which different legumes are grown are listed in Table 3. The legumes in this example are not cultivated on ridges, and they are not irrigated. Reading the table it can be seen that groundnuts are grown as sole crop, but are also grown between other crops (intercropping), usually maize or cotton. Groundnuts are the first or second crop grown after a fallow period. Optimal spacing has also been calculated: if the groundnuts are the sole crop and the soil is worked using animal traction it is best to allow 40 to 60 cm between the rows and 15 cm between plants within the rows. If the work is done by hand it is better to have crop spacing of 30 x 30 cm. grows and the size of the pods. There are varieties of legumes that all ripen at once, so that suddenly a large amount of labour is needed at the same time if no beans are to be lost. Where cultivation is largely mechanized, a crop that ripens all at the same time is preferred as this is easy to do by machine. Where farming families harvest by hand it is usually better if the work can be spread out over a longer period with a variety that does not ripen all at once. It is important to be aware that these characteristics vary in some legumes depending on the variety.This chapter covers the practical details of growing soya. These are most important for those who have already decided to grow soya. If you have not yet made the decision, the information in Chapter 3 is very important.Soya beans are rich in protein which makes them very attractive to insects. They also decay quickly, especially when the climate is humid. Soya therefore has to be stored carefully, whether it is used for food, trade or seed material.A women's group in North Ghana has done experiments to determine how effective local storage methods are. They used different sorts of beans and they stored them using different methods. They assessed the colour and taste of the beans, as well as noting how much insect damage (holes) there was. The conclusion was that beans stored in ash kept best. Storing seeds in ash of the neem tree and treating seeds with a neem tree solution had good results.If a farmer has plastic bags which can be hermetically sealed (made airtight), these can be used to store soya beans (at least those to be used as seed material). The beans must be well dried (less than 11% water in the bean) and the plastic bags must be carefully sealed.➤ Experiments in Senegal and Cameroon show that seed stored under these conditions for nine months retains 90% of its germination capacity. ➤ In Guyana seeds can only be stored for six months before they lose their germination capacity. ➤ In all three countries seeds which are kept in cold storage places maintain 90% of their germination capacity for nine months.➤ In the highlands of Madagascar it is not necessary to store seed in cool houses because the temperatures are low enough anyway. Plastic bags are also not necessary for storing the seed.We conclude that if you want to ensure 90% germination capacity then it is a good idea to keep seed in cool storage places.Whether farmers use their own seeds for planting material or whether they regularly buy new seeds will depend on whether there is a local distribution network and the price of new seed.If farmers use their own seed they need to make sure that it comes from healthy plants and that the seeds look good. Plants with many healthy pods can be marked in the field using brightly coloured thread, so they are easy to see later on.In countries such as Bolivia where soya has been grown for a long time, certified seed is easily available. If you buy certified seed make sure it has a label with information about the germination percentage, seed purity and the variety, and that it is guaranteed disease free.Soya is a member of the legume plant family (Leguminosae). Legumes have a special characteristic, that they can absorb nitrogen from the air and use it for their own growth. They store the nitrogen in nodules on their roots, with the help of special bacteria (Rhizobia). As the root nodules grow they start to produce nitrogen. The root provides the rhizobium bacteria with food and shelter and in return the bacteria helps the plant to store nitrogen. Rhizobia are bacteria which induce the root hairs of the plant to form nodules in which nitrogen is stored. Rhizobia are found in most soils, but they do not always form nodules. Sometimes there are not enough bacteria in the soil to form nodules, or they might not be the right type of rhizobium for soya plants. Just as there are different sorts of legumes there are also different sorts of rhizobia.For nitrogen fixation to take place, the correct combination of rhizobium and legume is needed. The best 'partners' for soya are Rhizobium japonicum or Bradyrhizobium japonicum. The latter is used successfully in Bolivia, especially the strains USDA 136 and E109.The amount of nitrogen that a plant can fix depends on the variety, the productivity of the rhizobium bacteria, the soil and the climate. Soya is capable of fixing between 60 and 168 kg of nitrogen per hectare per year.It is possible to tell from the colour of the root nodules whether or not they are active, and therefore fixing nitrogen. Active root nodules are pink inside. By cutting through a root nodule it is possible to see whether it is active or not. The best time to do this is when the plant is flowering.Root nodules that remain white or light green on the inside throughout the growth cycle of the soya plant are not active. Even if the soya receives nitrogen in the form of artificial fertilizer the root nodules remain small and white. Only once the nitrogen from the fertilizer has been used up do the root nodules become active and grow bigger. For this reason it is worthwhile giving soya extra nitrogen if it is grown on poor soil. Agrodok 10 Soya and other leguminous cropsIf the soya plants do not develop active root nodules on their own, it is possible to add rhizobium to the seed or the soil. This is called inoculation. See Appendix 3 for a description of how to do this and how to provide information to farmers.It is possible to check whether a rhizobium treatment has been effective. Check the development of the root nodules four or five weeks after sowing. Check again when the soya plant is flowering. Check for a third time while the pods are forming to see how much the different types of rhizobium have contributed to pod formation. You will gain the most information by carrying out all three checks.A crop yield depends on the yield per plant and the number of plants in a field. Plants with more space between them look different from plants that stand close to each other. Plants spaced not too far apart will grow less tall, are less likely to be flattened by wind or rain and will have more branches. They also form more pods with heavier beans, which means a bigger yield per plant. Where the plant density is low and plants are far apart, the yield for the whole field will be relatively low. If there is a lot of space between plants, weeds will be a problem. It is important to find the optimal plant density. This can vary even for the same place, depending on the season. The sowing density has to be adjusted in areas where day length varies depending on the time of the year.We give an example from Bolivia, where soya cultivation is mechanized. The extension services there provide precise information on how to adjust the sowing machine. In the summer the sowing distances are 5 -7 cm within the rows and 40 -60 cm between the rows. In the winter the distance between the rows is 20 -30 cm, and the distance between plants remains the same. This gives a plant density in the summer of 250,000 -300,000 plants per hectare, and in the winter of 500,000 -600,000 plants per hectare. The high number of plants in the winter compensates for the lower yield per plant as a result of the shorter day length.In Asia plants are usually planted more densely than in Africa. An average figure is 55 -65 kg seed per hectare in Asia, and 22 -34 kg seed per hectare in Africa. These are figures for good quality seed. If you are not sure about the germination quality of your seed, it is better to use larger amounts. Where soya is sown by hand in Africa and Asia it is often sown at the foot of the stalks of the previous crop, such as rice (Asia).Where mechanized cultivation takes place, e.g. Bolivia, Nigeria and Cuba, the plants are sown in rows. The sowing machine should not be driven faster than 6 -7 km per hour. If the machine goes faster, the sowing density will be too low.The following climate requirements must be taken into account for deciding when to sow: ➤ temperature required for the seed to germinate ➤ period when water will be available ➤ correct day length during the flowering periodIn countries where soya is already grown it will be possible to obtain information and advice from the extension service. Generally speaking soya is sown at the start of the rains. In countries with more than one rainy season it is sometimes possible to raise two crops in a year.The table below shows how the time at which soya is sown determines the crop yield. There are also systems for growing legumes which involve no soil tillage: no-tillage cropping. Using a stick or a knife holes are made in the ground at the foot of the mounds upon which the previous crop grew.The soya seeds are planted in the holes. Soya is planted in this way after a rice crop.In Taiwan the same field is used for two rice crops and one soya crop.The soya yield varies between 1.5 and 2 tons per hectare. The soya takes 85 -100 days to ripen.Weed control is very important when growing soya. The most critical period is between the 15th and the 35th day after sowing. If you only start weeding after the 35th day, the yields will be lower. It is best to keep the crop weed-free from the moment it is sown until the harvest. Weeds take light, nutrients and water away from the crop, and they provide a place for insects that can also damage the crops either by eating them or passing on disease. The more weeds there are, the higher the relative humidity between the plants, which increases the risk of fungi that can also damage the crop. Weeds also get in the way of machine harvesters, which leads to more beans being lost because they are damaged.The best way to fight weeds is by encouraging the growth and development of the crop as much as possible so that it does better than the weeds. Below is a list of ways to do this. ➤ crop rotation; i.e. do not grow crops of the same family on the same piece of land after each other ➤ use groundcover plants ➤ prepare the soil well before planting ➤ sow at the right time ➤ make sure the sowing density is correct It is also possible to control weeds using machinery. Often it is enough to do this two or three times during a crop cycle: the first time should be from two weeks after the crop has germinated and the last time up to 45 days after germination or just before the crop flowers. A machine should not be used during or after flowering as it can pull the flowers off the plant, which will lead to lower yields.In countries where weeding is done by hand, such as in Senegal, it is best to weed five times during the first six weeks. The importance of weeding is easy to see in the table below, which is based on trials done in Senegal. Different insects can cause damage to the crop. Although insect damage leads to reduced yields we do not recommend using insecticides to prevent insect damage. Doing this makes growing soya very expensive and another disadvantage is that pesticides also kill the natural enemies of the insects that cause the damage.It is only worth using insecticides if you can reduce your crop losses by more than the costs of using insecticide. In order to be able to estimate accurately whether this is possible you have to inspect your crop regularly. You can do this by laying down a sheet measuring 100 cm x 70 cm between the rows and then shaking the plants on both sides so that the insects fall off.In Bolivia the following rules of thumb are used: ➤ If more than 30 -40 caterpillars fall onto the sheet or if more than 35% of the plants are seriously damaged it is worth fighting the caterpillars. ➤ Insects that attack leaves with their mouthparts should be controlled if there are more than two adults found per metre of a row. ➤ Caterpillars that bite through stems of the plants must be controlled if 20 -25% or more of the plants are damaged.Nematodes are small worms that damage the roots. The effects of nematode damage are yellow leaves, stunted growth even though soil fertility is good, and wilting even though there is enough water in the soil. The best way to control nematodes is to plant resistant varieties and to use crop rotation.Agrodok 10 Soya and other leguminous cropsMost diseases are transferred through the seed. It is therefore very important that you use seed that is free of disease pathogens, or treat seeds chemically so that they become free of disease. This way you can prevent losses or reduce them to a minimum.Harvesting must be done at the correct time. If harvesting is done by hand, when the leaves first start to turn yellow, it is best to cut down the plants and spread them to dry in a place where it is easy to collect the beans as they fall out of the pods. Once the plants have dried they can be threshed. Where not all plants ripen at the same time the beans should be harvested from the plants that ripen first, while the other plants are left standing to ripen further. This spreads the harvesting work out over a longer period, which also means there are no peaks in labour requirements which can be a difficult problem.If you harvest with a machine you have to be very careful that it does not cause damage. Damaged beans cannot be kept for long, sell for less money and are less suitable for seed material. The period during which mechanical harvesting can take place is not long. The crop is ready to be harvested when the leaves turn yellow and fall off, when the stems become brittle and if it is easy to open the pods by pressing them between the fingers. If the moisture percentage in the beans falls below 12% the pods open and the beans fall on the ground. This can lead to considerable harvest losses. (In Argentina 8 -12% harvest losses are common where the crop is harvested mechanically.) The losses will be lower if harvesting is done early in the morning or at the end of the afternoon, when the pods are wetter.The optimal moisture content during harvest for soya that is going for industrial processing is 13 -15%. For seed material the optimal moisture content during harvest is 13%.In South America it is expected that the export of soya pulp, soya oil and soya bean will soon start. When this happens the area under production will increase. It is worth noting the experiences in Bolivia.Most of the economic returns from soya production in Bolivia go abroad: to the manufacturers of the agricultural machinery, fuel and pesticides. Growing soya in Bolivia has high ecological costs: thousands of hectares of forest have been cut down, organic biomass is burned, soil nutrient losses are high and the soils are becoming physically degraded. If production is to become sustainable, appropriate technology forms have to be developed and used.Farmers are more likely to start growing soya if they know more about its advantages. We have already mentioned that it is a good source of nutrition and provides a welcome addition to diets that are not well balanced. This chapter contains a lot of practical advice on how to cook soya and include it in meals.We need food to stay healthy. Food gives us: ➤ energy to work or go to school ➤ nutrients we need to grow or recover from wounds ➤ substances that protect and heal us from disease A well-balanced diet is made up of foods that provide us with all these vital needs. A shortage (deficiency) can lead to malnutrition and health problems. Malnutrition can also occur even if sufficient quantity of food is available, but does not provide all the nutrients we need. Therefore it is important to know what nutrients we need: carbohydrates, fats, proteins, vitamins, minerals. We also need to know which foods contain these different nutrients. Carbohydrates give us energy, they function as fuel for the body. There are also carbohydrates that our bodies cannot digest. These stimulate the intestines (our insides) and help our bowel movements so we do not become constipated. Foods that are rich in carbohydrates include: grains (e.g. rice, millet, sorghum, wheat), potatoes and fruit.Fats are the most important source of energy. Fat also contains the fatsoluble vitamins, A, D, E and K. The most important fat-containing foods are: oil, nuts and animal products such as meat, fish and milk. Vitamins protect our bodies from disease. Nearly all foods contain vitamins, but not always the vitamins we need. Therefore it is important to know which foods contain which vitamins. Vitamin C is found in fresh vegetables and fruit. Vitamin B is found in animal products and grains. Vitamin A is found in oil and certain types of vegetables and fruit. Minerals are substances that protect, but they also have specific functions in building up the body and helping it to recover from sickness.The most important minerals the body requires are iron (needed to make blood) and calcium (needed for bones to grow and repair themselves). Iron is found in meat, green leafy vegetables and grains. Calcium is found in milk products and also in some vegetables.Malnutrition occurs when the food eaten does not contain enough of the nutrients we require. Malnutrition occurs in all countries, but is a worse problem in developing countries. Young children are especially at risk because malnutrition not only retards but also interferes with their growth and development. The effects of malnutrition are also felt later on in life. Malnourished children often have learning difficulties and are quickly tired. They are thin, and often smaller when fully grown than adults who were not malnourished as children. Generally speaking it is difficult to reverse the lags in growth and learning that arise as a result of malnutrition.There are a number of causes of malnutrition.➤ Too little food: not enough food eaten each day, or not often enough.➤ The body uses a large amount of energy fighting common infections. ➤ The meals are not well balanced. E.g. they consist mainly of bulky food that contains a lot of water and few nutrients, such as many roots and tubers.There are three different forms of malnutrition: energy malnutrition, protein malnutrition and malnutrition as a result of vitamin and mineral deficiencies. Each type of malnutrition has different symptoms. E.g. a shortage of vitamin A in the diet can lead to night blindness, and a shortage of iron can lead to tiredness and concentration problems. The different types of malnutrition are often found together in combination.Malnutrition can be prevented by making sure the diet is varied and that the combinations served provide sufficient energy, protein, vitamins and minerals. Soya is a product that is easy and useful to include in a varied diet.Protein malnutrition, also called kwashiorkor, is caused by too little protein in the diet. This often occurs where the diet consists mainly of starchy products such as potatoes or bananas.Children with protein malnutrition do not grow properly as their bones cannot develop sufficiently. It is also possible to see the difference in school performance between children with protein malnutrition and those with a good diet. Adults with protein malnutrition have reduced resistance to disease and infection, and wounds do not heal easily. People's protein requirements vary depending on body weight and whether or not the person is still growing. Protein requirements also vary depending on whether the proteins in the diet come mainly from animal or plant products. Animal proteins are processed more efficiently by the human body and therefore less is needed than proteins from plants. Table 7 shows the recommended daily protein intake for different ages.Protein-rich foods such as meat, fish, eggs and milk are often scarce and expensive. They are often therefore not available to poorer groups of the population. Other sources of protein must then be sought, especially among plant products. Soya is an excellent alternative. It is a good source of plant protein and is cheap. Energy malnutrition, also called marasmus, arises when the body does not get as much food to eat as it needs. Food provides the body with energy. The body gets the energy mainly from fats and carbohydrates, and when it does not get enough from these it also uses proteins as a source of energy. But there may be a shortage of food, or it may be too expensive to buy, so people do not have enough food to eat. If this is the case people suffer from energy malnutrition. Children and adults become very thin and they are hungry.Children can also become undernourished because they do not have a balanced diet and they eat food that contains too much water. They fill their stomachs but do not get enough nutrients.Children need to eat more often each day than adults.To prevent energy malnutrition it is important to choose as varied a diet as is possible within the household budget. Soya is a cheap and energyrich product that can help in putting together a balanced diet.Fig. 16: Child with energy malnutrition (marasmus).Soya belongs to the legume plant family (Leguminosae), a group of plants with high nutritional value. Soya makes a healthy addition to the daily diet. Soya contains a lot of high-quality protein and is an important source of carbohydrates, fats, vitamins and minerals. Other legumes, including various bean types and groundnuts, can also make a valuable contribution to the diet. Unlike other legumes, soya is not so well known. However, it deserves extra attention because it can contribute to decreasing malnutrition, especially protein malnutrition (kwashiorkor). Agrodok 10 Soya and other leguminous cropsOf all plant food products, the soya bean is the most balanced source of protein. Soya contains a high amount of protein: 100 g soya beans (dry weight) can contain as much as 40 g protein! Other legumes such as beans and groundnuts also provide extra protein in the daily diet (see Table 8 for amounts).Many people's diet consists mainly of starchy foods (e.g. grains, tubers) with a low amount of fat. Soya can be a valuable addition to these diets, providing a good source of energy. Soya beans contain about 20% fat (oil), a higher percentage than most other plant food products. Groundnuts are legumes that are also very rich in fat, containing 50% fat. In addition to protein and fat, soya beans contain about 28% carbohydrates. A large proportion of the carbohydrate content consists of indigestible fibres as in most legumes. The fibres ferment in the large intestine as a result of the action of bacteria. This stimulates bowel movement, but can also result in unpleasant windiness (flatulence). This is not a problem however, for people who regularly consume legumes.Windiness can be reduced by processing the soya beans or other legumes, for example by fermenting them. The digestible carbohydrates form a good source of energy, as does the fat in soya.Soya can be an important addition to your diet. But how can you use it in your daily cooking and meal preparation? This question is answered in this chapter. First we describe some of the things you need to know about storing and processing soya. Then we describe some of the ways in which soya and other legumes can be prepared for eating.Dried legumes should be kept in a cool, dry, dark place in airtight containers. The longer beans and peas are kept, the harder their seed coat becomes and the longer they need to be cooked. Beans start to germinate when they are exposed to light, moisture and heat. They discolour in light and when exposed to moisture they are attacked by fungi. Groundnuts in particular start to turn mouldy if they become moist and there is a big risk of poisonous mycotoxins, which if eaten can cause serious illness. These problems, as well as damage from insects and rodents, can be avoided by storing properly.Correctly stored legumes can be kept for about one year. Soya beans do not keep so long. Due to their high fat content they become rancid more quickly.Soya and some other legumes contain substances that need to be removed before they can be eaten. These are called the antinutritional elements. These reduce the nutritional value of the beans and are dangerous to health. The most important of these substances are lectins (especially trypsin inhibitors and haemagglutinins) and fasin. Lectins can cause red blood cells to agglutinate (clump together). Trypsin inhibitors also interfere with protein digestion and growth. Fasin is a poisonous protein found in raw legumes, or ones that have not been sufficiently 7 heated. These also cause agglutination of red blood cells. Raw soya beans can also contain substances that cause goitre, a swelling of the thyroid gland. Soya also contains an enzyme that gives it an unpleasant taste and smell if it is not inactivated by heating.Not all legumes contain the same amounts of these substances, but it should be clear that correct preparation is very important for all legumes. This is not a problem as all these substances can be removed simply by heating, leaving a valuable product that is not harmful to humans.Fig. 18: Heating legumes is important.Soya beans can be eaten as they are, once they have been cooked. Or they can be used to make other products such as soya oil, soya flour, soya milk and soya cheese (tofu) and tempeh.Peanuts are often roasted and eaten as a snack. They can also be added to a dish, or ground up and made into a sauce. Peanuts can also be ground to make peanut butter. This has become a successful product for selling because it is easy to produce on a small scale.It is worth repeating that legumes must always be cooked or roasted before eating in order to deactivate the antinutritional elements and to be able to derive maximum benefit from the nutritional value.Beans have to be soaked before they are cooked. Some sources say that soya beans must be soaked for at least 18 hours to get rid of the bitter 'beany' taste. Do not soak beans for longer than 24 hours, however, as this encourages the growth of micro-organisms. One cup of beans needs about 3 cups of soaking water. Always throw the soaking water away. It is not suitable for cooking the beans, as it tastes bitter.Other sources suggest not soaking the beans but blanching them instead for 20 minutes: add them to already boiling water, boil them for 20 minutes and then plunge them in cold water. The skins can be removed by rubbing the beans between both hands.It is also possible to roast soya beans in a dry pan. After roasting let the beans cool. The skins can be removed by placing the beans on a clean surface and rolling over them with an implement such as an empty bottle or a rolling-pin.Like many legumes, soya beans can be eaten whole when cooked. Use half-ripe but fully-grown soya beans ➤ remove dirt from shelled soya beans ➤ soak the beans for 18 to 24 hours ➤ rinse the beans in clean water ➤ bring a large pan of water to the boil and cook the beans in the water for 30 to 60 minutes, depending on local conditions. Add some salt towards the end of the cooking time.Cooked soya beans can be eaten as part of a meal or as a cheap but nutritious snack.Soya beans are very rich in oil. In many areas soya beans are grown mainly for oil production. There are various ways of obtaining the oil, from simple wooden oil presses to using organic solvents such as hexane. When soya beans are pressed it is impossible to separate the proteins from the oil. For this reason, commercial production of soya oil is done using the extraction process. In the United States 95% of the soya oil is produced using this method. The advantage of pressing soya beans to extract oil, is that it is easy to make the equipment yourself, and it can be done on a small scale. Soya oil is used to prepare foodsfor frying or in a salad dressing -and also in the production of margarine and soap. The residue left after pressing is usually made into animal feed.Soya flour is a by-product of oil pressing, but it can also be made in other ways. The following is one method.➤ Remove the dirt from the shelled soya beans.➤ Bring 4 cups of water to the boil for each cup of soya beans.➤ Add the beans and cook them for about 30 minutes.➤ After cooking rinse them in clean water. ➤ Dry the cooked soya beans in the sun on a clean mat or rug.➤ Grind or pound the dried soya beans or take them to a mill. ➤ Sieve the ground or pounded beans to make flour.➤ Store the flour in sealed containers in a dry place.Soya flour is nutritious and can be used to make porridge, biscuits (cookies), pasties or pies. Soya flour cannot be used on its own to make bread because it does not contain gluten and therefore does not rise. It also contains very little starch. It can be added to other types of flour to improve their nutritional value.Soya milk cannot totally replace cow's milk, and is certainly not as nutritious as mother's milk. However, it is a healthy drink and can improve the nutritional value of the daily diet. If there is no cow's milk available for children, soya milk is a good alternative as it contains nearly as much protein and fat as cow's milk. In addition, soya milk can be used for other drinks and products such as soya coffee, soya yoghurt and soya cheese.Preparation of soya milk: ➤ Wash the soya beans and remove dirt. ➤ Soak the beans for at least 18 hours. ➤ Drain and rinse the beans again in clean water. ➤ Pound the beans with twice their weight of water. ➤ Squeeze the pulp through thin material such as cheesecloth. ➤ Catch the liquid (the milk) in a separate container. ➤ Pound the remaining residue with twice its weight in water and squeeze through cheesecloth again, and repeat once more (total of 3 times pounding and squeezing). ➤ Boil the soya milk for 10 minutes to remove the antinutritional elements.Soya milk has a neutral taste, which means that flavours can be added, such as sugar, salt, palm sugar, vanilla, cacao, coffee or other flavours.Tofu or bean curd is made by curdling soya milk and it resembles fresh cheese. Tofu has been produced and eaten in China and Japan for many centuries. Tofu has a high nutritional value and a neutral taste, which makes it good for combining with other ingredients. Tofu can be eaten together with meat and fish, but is a very good substitute for these and much cheaper. Preparation of tofu or bean curd: ➤ Boil 1 litre of soya milk for 3 -5 minutes in a pan. Stir continuously to stop it sticking. ➤ Remove the pan from the heat and add 20 -40 ml vinegar (4% acetic acid solution) to the soya milk. Continue to stir until the milk has curdled. ➤ Pour the mixture through a cloth placed over a sieve to filter it ➤ Fold the cloth over the cake that remains and place a weight on top in order to press out the remaining water. For a light pressing use a weight of 2 kg/100cm². For a heavy pressing use a weight of 5 kg/ 100cm².The result is a compact cheeselike product. A heavy pressing will result in tofu with a water content of about 65%.Tofu must be stored in water to prevent it from drying out and discolouring. It can be kept in this way at room temperature for 1 to 2 days.If it is cooled it can be kept a little longer.Tofu can be used for many dishes. It can be cut into blocks and fried in hot oil and then added to various dishes: soup or stews. The fried blocks can also be covered with a vegetable, groundnut or tomato sauce to make a tasty meal.Note: Other chemicals can be used instead of vinegar to curdle the soya milk.➤ 20 -40 ml 10% calcium chloride solution ➤ 20 -40 ml 10% magnesium chloride solution ➤ 20 -40 ml 4 % lactic acid solution Do not use more than 20 -40 ml of any of these substances per litre soya milk. If you use too much you will end up with less of the final product.Tempeh is a soya product made by inoculating soya with mould. It is a good meat substitute in a warm meal. Tempeh is easy to recognize because of its structure: the soya beans are still visible in it. The fermentation process is started by using a piece of tempeh. Tempeh can be marinated, for example in soya sauce, and then cooked, fried or steamed.Preparation of tempeh ➤ Wrap a portion of already prepared tempeh in banana leaf that has holes in it. ➤ Lay this tempeh in a warm, damp place until mould starts to grow and can be seen through the holes in the banana leaf. Use this as inoculation material (starter). ➤ Rinse a quantity of dried (yellow) soya beans. ➤ Soak the beans overnight. ➤ Cook the beans in water for 2 hours. ➤ Then soak the beans for 24 hours in cold water. During this period fermentation starts, and the beans become acid (lower pH). ➤ Remove the seed coats from the soya beans, and spread them out so that the excess moisture dries from the beans and then pound them lightly. ➤ Spread the mould mixture over the bean pulp so that the mould is touching the beans. Good moulds for tempeh are Rhizopus oryzae, Rhizopus oliogsporus and other strains of Rhizopus. ➤ Spread the pulp over a number of banana leaves. Wrap the leaves around the mixture, and tie them up into little parcels.In tropical areas the fermentation process is completed within 24 hours. The mould has then grown through the pulp and a compact cake is formed. Fresh tempeh should be eaten with 1 to 2 days. Dried tempeh can be kept for a few months.In the previous chapter we saw how soya can be prepared in different ways and used in tasty and healthy dishes. In this chapter we give a number of recipes gathered from various countries. In Ghana for example, women's groups have done much work on experimenting with soya. You can also use your own imagination and ideas to think up ways to use soya in your daily diet. ➀ Wash the vegetables and chop them into small pieces.➁ Cook the vegetables in a saucepan for 10 minutes.➂ Add salt and a little water to the soya flour to make a smooth paste.➃ Add the soya paste to the vegetables. ➄ Cook for another 5 minutes. ➅ Serve with rice, sorghum, corn mush or potatoes.Soya pancakes You need:-1 cup soya flour -½ cup vegetable oil -3 ½ cups soya milk -4 teaspoons baking powder -½ cup sugar -2 cups wheat or maize flour -2 eggs salt Preparation:➀ Mix the eggs with the soya flour.➁ Dissolve the sugar in a small amount of soya milk and then add the rest of the soya milk. ➂ Add the wheat (or maize) flour and the salt to the soya flour. ➃ Add the sugared soya milk to the flours and beat until you have a smooth batter. ➄ Grease a frying pan or metal sheet and heat it. ➅ Pour a small amount of batter into the frying pan and let it spread out. ➆ Turn the pancake over when the top side is dry, and fry until it is golden on both sides.You need:-1 cup soya flour -1 cup wheat-or maize flour -4 tablespoons sugar pinch of salt oil for frying Preparation: ➀ Mix all the ingredients. ➁ Add water until you have a stiff dough.➂ Break and roll the dough into small balls.➃ Press them a little flat.➄ Fry the biscuits in the hot oil until they are golden brown on both sides.You need:-Soya beans -Water Preparation:➀ Remove the dirt from the beans and any broken beans. ➁ Soak the soya beans for 10 hours (one day) in a large amount of water. ➂ Drain the beans in a sieve and rinse them well in clean water. ➃ Spread the soya beans in a thin layer (not thicker than 1 cm) on a moist cloth spread out over a flat surface with holes, such as a sieve or strainer. ➄ Sprinkle the soya beans twice a day with a little clean water so that the beans stay moist. ➅ After 3 -5 days the beans will have sprouts about 3 -5 cm tall. ➆ To eat the beans, cook them for 3 -5 minutes in boiling water.Soya bean sprouts can be used in salads and cooked dishes.You need:soya milk yoghurt bacteria in powder form: Lactobacillus bulgaricus andRecipes Chapter 8Preparation: ➀ Boil 85 ml soya milk for 5 minutes. Let the milk cool to 30°C (room temperature in a tropical climate) and dissolve 1 g of powdered yoghurt bacteria well in the milk. ➁ Leave the mixture to stand at a temperature of 37°C or at room temperature in tropical areas for 15 -18 hours. This is the starter. ➂ Boil 1 litre of soya milk for 15 minutes and let it cool to room temperature. ➃ Mix the 85 ml of soya milk (starter) with the 1 litre of soya milk and keep the mixture for 24 -48 hours a room temperature, after which the yoghurt will have formed. ➄ The yoghurt tastes good with sugar, fruit syrup, fresh fruit or stewed fruit.You need:-3 tablespoons soya flour -1 cup maize flour -3 cups water salt and sugar to taste Preparation: ➀ Mix the maize flour and soya flour together and add a little water until you have a smooth mixture. ➁ Bring the rest of the water to the boil. ➂ Add the flour mixture and keep stirring to prevent the mixture from becoming lumpy. ➃ Cook the porridge for about 20 minutes. ➄ Add salt and sugar to taste. This is very nutritious for young children!Introducing new foods into an area is not always easy. People eat what they are accustomed to, which is often determined by local traditions and these are difficult to change. New foods are often first greeted with suspicion. For this reason it is important to emphasize the good qualities of soya and in particular its high nutritional value.A good way to introduce soya is to offer it along with the usual food of an area, for example in the form of a snack or drink. Then it is perhaps worth mixing some soya beans into a vegetable sauce for people to try. In many parts of the world people eat beans which have been mashed (e.g. refried beans in South America and Mexico). Soya beans could be added to these dishes. Refried bean dishes are often heavily spiced, which also makes the soya tasty.A good way to introduce soya into an area is through women's groups. Discovering a new crop and food together encourages people to exchange their findings and experiences with each other, and to exchange recipes. In this way women can learn to make new meals and soya products which can be sold. These products can provide a new way of earning income, which can help to increase food security. In Ghana there are women's groups that are actively working with the introduction of soya. They cultivate the soya together and jointly work out ways of preparing soya products and look for ways of selling them on the local markets.It is not always women who cultivate soya everywhere. In some places it is the men who grow the soya. They could start by cultivating small test plots to see which crop has the best yield. The information in the first chapters of this book is useful for these experiments.The introduction of a new food requires time and patience. But if you are creative and persist you will be able to convince many people that soya not only enriches their farming system, but also their daily diet. By setting a positive example locally you will win over people in the area. Your enthusiasm will spread and with it the news and information about the new crop. the mixture is added to the seed seed and inoculant mixture are mixed well so that all seeds are covered evenly with the mixture, but not soaked through.It is best to sow the seed immediately once this has been doneWith paths of 0.5 m between the plots the whole trial field will look like this: Calculating further for 450,000 plants per hectare:With a seed weight of 9000 seeds/ kg, 65 kg seed/ ha is required with 286 g inoculant.Only the middle two rows of each plot are compared with each other, because the treatment at the edges may be influenced by the treatment on the other plots.","tokenCount":"11445"} \ No newline at end of file diff --git a/data/part_3/4337878088.json b/data/part_3/4337878088.json new file mode 100644 index 0000000000000000000000000000000000000000..a6b9fcb7593d6bd7a7194a0b2b4a4628ac34f337 --- /dev/null +++ b/data/part_3/4337878088.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"7a730ca674559959e0b57cbc9df8ea92","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/a8df64ba-d655-4954-8650-0c99da07712c/retrieve","id":"866212398"},"keywords":[],"sieverID":"7b8679c4-7dcb-4f9f-9209-2785b5d7e11a","pagecount":"4","content":"n Develop agricultural and finance policies that are complementary and address finance from a whole-value-chain perspective n Revise legislation and regulations, such as land and ownership rights and bankruptcy rules, to reduce duplication and the cost of compliance for parties n Increase support to upscale successful or innovative interventions in agricultural lending, such as agricultural guarantee credit schemes and climate resilience finance n Enhance policy dialogue and partnerships between government, policy-makers, financial institutions and farmers' organisations Value chain finance series 15 CTA Policy Brief JANUARY 2018Farmers and other actors in agricultural value chains find it difficult to access or provide the financial services the sector needs -services that are critical for the development of agricultural products, and are integral to upstream and downstream processes. At the Brussels Development Briefing Revolutionising finance for agri-value chains 1 , experts considered innovative solutions that could improve the livelihoods of smallholder and rural producers, and promote economic transformation in the poorest countries.Throughout Africa, concerted efforts have been made to achieve structural economic transformation in agriculture, moving from basic, low-skilled production to diversified, higher value, more sophisticated and competitive production. This is to replicate the economic and social progress seen in Asia and Latin America.Yet commercial lending to agriculture is limited. Even though banking services are growing in Africa and other developing regions, farmers must still obtain loans from informal sources, with their associated challenges and risks. Existing finance mechanisms seldom provide the sector with the scale, sophistication and security needed to support the transformation of smallholder farming into higher value, sustainable agribusiness. Notwithstanding the benefits that value-chain finance presents for the sector, it is hindered by unfavourable legislation on land and property rights, gaps in the provision of agricultural support services, high costs of compliance with lending requirements, limited information and analysis about the agricultural sector which increases the real and perceived risks of lending, lack of interest from lenders, and so on.If we are to achieve agricultural transformation, an enabling, inclusive and progressive policy environment on finance for agriculture is needed, which aims to remove the barriers and reduce the risks associated with agricultural finance.How can agriculture be financed?Financial services for agriculture can take various forms, depending on the needs of the parties. Value-chain finance (VCF) is the flow of funds to and among the various links within a value chain. It encapsulates financial services across three dimensions: short-term finance from buyers and suppliers; one-to-one finance from financial institutions to a value-chain player; and finance based on the relationship between two or more players in the value chain, provided by an internal or external intermediary. VCF thus creates a triangular relationship between three players in the value chain -the buyer, the seller and the financial institution. The financial service is provided under a contract that details four essential aspects of the transaction: the product, the finance needed, the information to be exchanged and the risk to be managed between the parties.Where Since 2014 the Centenary Rural Development Bank Ltd, one of the leading microfinance commercial banks in Uganda, has been piloting a coffee credit scheme using the warehouse receipt system. Through contracts in the value chain that are tied to the farmer's use of warehousing, and subject to meeting quality and quantity stipulations for their coffee beans, coffee farmers can substantially cut down the delay in invoice payment for their cropspayment is made immediately rather than taking 90 days.The Centenary Bank and its partners are looking at ways of strengthening the warehouse receipt system model (both the Ugandan Commodity Exchange and Centenary Bank adaptations) to respond to the risks posed by climate variability and change.Value chain finance series 3Financing agriculture for a more profitable rural economy The gains that the agricultural sector could make through VCF can only be realised if governments and policy-makers work closely together with farmers' organisations and financial service providers to develop effective, comprehensive solutions.VCF depends on the existence of legal certainty to reduce the risks associated with transactions at various stages in the value chain. It also requires parties to be able to quickly access and share reliable information on various parameters relevant to their contractual obligationsinformation such as the price of a commodity at the exchange markets, weather projections or other data. Governments can directly support VCF by standardising property rights and titles and developing digital registration systems.Whereas some governments may prefer to adopt very interventionist tactics to compel commercial lenders to service farmers, it is critical for the broader private sector to be encouraged to finance and invest in agriculture. In this way, government resources may be better channelled towards providing seed finance for pilot projects or towards supporting the growth of existing financial instruments that have been proven to respond to the needs of the parties in the value chain.About the series CTA Policy Briefs provide a concise summary of a particular issue of relevance to the Centre's activities, the policy options to deal with it, and some recommendations on the best option. They are aimed at policy-makers and their technical advisors, academics and educators working in the policy field and others who are interested in formulating or influencing policy.Technical Centre for Agricultural and Rural Cooperation P.O. Box 380 -6700 AJ Wageningen -The Netherlands Tel: +31 (0) 317 467 100 | E-mail: cta@cta.int | www.cta.intThis work has been made with the financial assistance of the European Union. However, it remains under the sole responsibility of its author(s) and never reflects CTA's or its co-publisher's or European Union's opinions or statements whatsoever nor as well the opinion of any country or State member. The user should make his/ her own evaluation as to the appropriateness of any statements, argumentations, experimental technique or method as described in the work.This work is the sole intellectual property of CTA and its co-publishers, and cannot be commercially exploited.CTA encourages its dissemination for private study, research, teaching and non-commercial purposes, provided that appropriate acknowledgement is made:-of CTA's copyright and EU financing, by including the name of the author, the title of the work and the following notice \"© CTA 2018 EU financing\", -and that CTA's or its co-publishers', and European Union's endorsement of users' views, products or services is not implied in any way, by including the standard CTA disclaimer.All requests for commercial use rights should be addressed to publishing@cta.int.","tokenCount":"1049"} \ No newline at end of file diff --git a/data/part_3/4341986441.json b/data/part_3/4341986441.json new file mode 100644 index 0000000000000000000000000000000000000000..7ef0880fa0480fe300c0393df1846cf76ce594c5 --- /dev/null +++ b/data/part_3/4341986441.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"0aa9f9d5377cb248a75e7f31e0d9f51c","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/51157478-dfbf-4230-b60c-3a394c19b55a/retrieve","id":"-552373047"},"keywords":["pp","66-70 pp","71-74 pp","75-81 pp","82-85 pp","86-99 pp","l00-121 DD","l22-153 pp","l54-176 pp","l77-187 pp","l88-193 pp","l94-197 pp","l98-230"],"sieverID":"0f58087a-543d-472f-8bf6-2bdc5f721754","pagecount":"243","content":"El CIAT es una institución sin ánimo de lucro, dedicada al desarrollo agricola y econ ómico de las zonas tropicales bajas. Su sede principal se encuentra en un terreno de 522 hectáreas, cercano a Cali, Colombia. Dicho terreno es propiedad del gobierno colombiano, el cual, en su calidad de anfitrión, brinda apoyo a las actividades de l CIAT. Este dispone, igualmente, de dos subestaciones propiedad d e la Fundación para la Educación Superior (FES): Quilichao, con una extensión de 184 h ectáreas, y Popayán, con 73 hectáreas, y de una subestación d e 30 hectáreas-CIAT-Santa Rosa-ubicada en terrenos cedidos por la Federación de Arroceros de Colombia !FEDEARROZ), cerca a Villavicencio. Junto con el Ins tituto Colombiano Agropecuario ()CA), el CIAT administra el Centro Nacional de Investigaciones Agropecuarias Carimagua, de 22,000 h ectáreas, e n los Lla nos Orientales y colabora con el mismo ICA en varias de s us otras estaciones experimentales en Colombia. El CIAT también lleva a cabo investigaciones en varias sedes de instituciones agricolas nacionales en otros paises de América Latina. Los programas del CIAT son financiados por un grupo de donantes que en su m ayoria pertenecen al Grupo Consultivo p ara la Investigación Agricola Internacional (CGIAR). Durante 1984 tales donantes son los gobiernos de Australia,La descentralización de las actividades de mejoramiento genético continuó en 1983 con el envio de 17.000 muestras de semillas a programas nacionales.Estas consistían de líneas progenitoras, frecuentemente como bloques de cruzamientos (4.958 unidades), nuevas líneas en generación temprana(3.813 unidades) o materiales segregantes (8.939 unidades).En América Central, donde la descentralización de mejoramiento genético es más notable, la mayoría del germoplasma fué enviado como poblaciones segregantes o progenies de generación temprana.Al Africa, donde se está empezando un programa extenso de colaboración internacional, se mandaron principalmente líneas progenitoras para determinar la adaptación local y fuentes de resistencia a una enfermedad en particular, y a otros estreses. La selección local en material segregante derivado del banco mundial de germoplasma del CIAT y su potencial para cruces ha incrementado considerablemente los viajes del personal del CIAT.La decentralización también se refleja en el personal contratado, particularmente con respeto al personal de proyectos especiales.El Proyecto de América Central fué evaluado y una extensión del proyecto de la Corporación Suiza de Desarrollo (CSD) fué concedido por un período adicional de tres años.Al agrónomo responsable de la colaboración internacional en el Perú lo reemplazó un fitomejorador de fríjol quien adicionalmente funciona como co-lider del programa nacional. Se escogió un fitomejorador para esta posición debido al poco progreso en la producción de fríjol en el Perú principalmente debido a la falta de variedades resistentes a enfermedades.El agrónomo especialista en suelos, miembro del Programa de Fríjol del CIAT sigue desempeñando sus labores en el Centro Nacional de Investigaciones en Arroz y Fríjol(CNPAF) en Brasil.Un avance importante en las actividades de 1983 fué la radicación del primer científico en fríjol del CIAT en Africa.Después de la conferencia en Kigali, Rwanda, en febrero de 1983, para la reorganización de la investigación agrícola en Rwanda, una misión conjunta CIAT-CSD viajó a Rwanda y Burundi con el fin de desarrollar un proyecto para la conección de la investigación colaborativa entre los países del Gran Lago (Rwanda, Burundi, y la provincia Kivu de Zaír) y el CIAT. En octubre, el primer científico, un fitomejorador, se radicó en Rubona, Rwanda, en el Instituto Nacional de Investigación Agrícola, ISAR, para atender la región. Un agrónomo, un patólogo y un antropólogo (el último un científico posdoctoral con fondos de la Fundación Rockefeller) próximamente formarán parte del equipo en Rubona.Se espera que el proyecto servirá a otros países vecinos con zonas ecológicas similares considerando que la región tiene el más alto consumo per capita de fríjol en el mundo y que sus habitantes obtienen más proteína sólo del fríjol que de todos los productos animales combinados.En 1983, se lanzaron variedades nuevas adicionales. En Brasil, se lanzaron tres variedades: dos por EMCAPA, BAT 304 como Capixaba Precoce y BAT 179 como Vitoria, de las cuales aproximadamente cinco y tres toneladas de semilla estaban disponibles respectivamente a mitad del año. EMPASC lanzó ICA Línea 38 como EMPASC-201-Chapeco. En Nicaragua se lanzaron dos variedades: Revolución 83 (BAT 1215) y Revolución 79 A (BAT 789). Varios países se concentraron en la promoción de variedades ya lanzadas y nuevas variedades se lanzarán solamente si se obtiene un mejoramiento substancial sobre las variedades actualmente utilizadas.Se han comenzado estudios de adopción de nuevas variedades por los agricultores. En regiones que representan aproximadamente el 50% de la producción de fríjol en Costa Rica, la variedad Talamanca (ICA Línea 10103) ha sido cultivada por el 61% de los agricultores.La segunda variedad lanzada, Bronca (BAT 304), fué sembrada por el 6% de los agricultores. Muchos ya han aumentado la densidad de siembra de las nuevas variedades en comparación con la de las variedades tradicionales. En Guatemala, ICTA reporta que, dependiendo de la región, de 40 a 60% de los agricultores actualmente cultivan variedades mejoradas con incremento en la producción de fríjol; mientras que el Banco de Guatemala reporta que las importaciones están disminuyendo a tal punto que no ha habido importaciones en 1983.Sin embargo, los datos anteriores requerirán verificación a través de varios años antes de llegar a conclusiones definitivas.Significante es el apoyo que la red formada por el CIAT aporta a la investigación de fríjol en los programas nacionales: En las reuniones regionales es autoconfianza y competencia por los cual refuerza la red. notorio cierto grado de avances en investigación lo En adición a su labor de apoyo a la red decentralizada, se pueden reportar excelentes avances en la investigación hecha en el CIAT.El XAN 112 ha demostrado niveles de resistencia estable múltiples localidades a la bacteriosis común . Nuevas fuentes de resistencia identificadas a partir de un híbrido interespecífico desarrollado en la Universidad de California, se muestran casi inmunes a la bacteriosis común en germoplasma adaptado al trópico.Incrementos significativos en niveles de resistencia a la mustia hilachosa fueron obtenidos en MUS, PAI y otras líneas. Por lo tanto ahora se puede cultivar fríjol económicamente con una combinación de prácticas agronómicas y variedades resistentes en áreas con mustia hilachosa donde antes no se podía cultivar fríjol debido a la severidad de esta enfermedad.Se ha incorporado con éxito la resistencia al virus del mosaico dorado a otros tipos de fríjol de semilla no-negra, sin embargo, se requerirán uno o más ciclos de cruzamiento antes de que se recupere plenamente el tipo de grano comercial.También, se han identificado nuevas fuentes de resistencia.En evaluaciones preliminares, las líneas del programa de cruzamiento que resultaron con un tamaño de semilla muy aumentado fueron resistentes al gorgojo indicando que la resistencia de los tipos de semilla pequeña puede ser recuperada en semillas más grandes.Hasta ahora la resistencia al virus del mosaico común únicamente ha enfatizado el gene l. Ahora esta resistencia ha sido incorporado en líneas experimentales. a En un proyecto colaborativo IVT (Holanda)-INIA (Chile)-CIAT se desarrollaron nuevas líneas con una combinación de resistencia dominante y recesiva y los tres fitomejoradores del programa comenzaron proyectos para desarrollar combinaciones de resistencia dominante y recesiva en algunos de sus principales tipos de grano. Adicionalmente, por primera vez fueron recobrados tipos de grano rojo moteado con el gene I.La evaluación extensiva de resistencia a antracnosis y a mancha angular de la hoja a veces arrojó resultados desilusionantes; las fuentes algunas veces sucumbieron a razas locales del patógeno, en México o Brasil, pero otras mantuvieron su amplia resistencia. Actualmente, solamente se utilizan fuentes de resistencia relevantes.Las actividades de recombinación de caracteres progresaron en 1983. A través del esfuerzo por descentralizar el fitomejoramiento en América Central, todas las líneas se evalúan antes del VEF en América Central y el VEF de tipo de grano para América Central se compone después de una selección local.Paralelo al esquema de evaluación VEF-EP-IBYAN, se está operando un esquema local modificado según el país con el nombre de Vivero Nacional de Rendimiento (VINAR), que es el equivalente del EP y de Vivero Centro Americano de Rendimiento (VICAR), que es equivalente al IBYAN.a El apéndice I explica los acrónimos usados en este reporte anual para instituciones colaborativas.Durante 1983, el Programa de Fríjol tuvo mucha actividad en cuanto a capacitación y programación de conferencias.Se llevaron acabo dos seminarios para fitomejoradores.En el seminario para el Caribe y América Central, fueron identificadas líneas promisorias para Haití y Jamaica, por primera vez. Además se seleccionaron en la República Dominicana tipos de grano no-negro sobresalientes.También, se disponía de líneas de grano negro sobresalientes.En el segundo seminario para fitomejoradores de Sur América fué notable el trabajo agresivo y creativo sobre la promoción del consumo de fríjol en Bolivia; además se tomaron pasos adicionales para fortalecer la colaboración entre el CNPAF y el CIAT.Durante 1983 se llevaron a cabo ocho cursos con la participación del CIAT; uno en el CIAT con 20 participantes y un curso en cada uno de los siguientes países: Cuba (con 31 participantes), Brasil (26), Costa Rica (28), República Dominicana (29), Honduras (29) y dos en Colombia con 46 participantes.Se efectuaron tres seminarios adicionales, uno de ellos organizado con la colaboración de ICARDA, sobre el potencial de fríjol de grano seco en el Oeste de Asia y Africa del Norte.En esta conferencia los participantes solicitaron un programa de investigación en colaboración con el CIAT y fué formalizada una solicitud de proyecto para radicar a un científico (del CIAT) en fríjol en el programa de leguminosas de !CARDA.Una segunda conferencia fué llevada a cabo en el CIAT para organizar un proyecto conjunto de investigación entre el CIAT y Africa Oriental (particularmente Uganda y Kenya con la colaboración de CRSP). Este proyecto fué presentado a CDA para financiación.Se organizó un tercer seminario para orientación de los esfuerzos del CIAT en investigación a nivel de finca. Vinieron expertos de muchas partes del mundo, incluyendo los Centros IIA hermanos, que participaron e hicieron recomendaciones basadas en sus experiencias y las necesidades específicas del CIAT.La formación de la red del Programa de Fríjol para investigación a nivel de finca se beneficiará de estas recomendaciones.El objetivo del Programa de Fríjol es desarrollar en estrecha colaboración con los programas nacionales, tecnología que aumente la producción y productividad de fríjol.El principal productor es el pequeño agricultor con capital mínimo y acceso limitado tanto a crédito como a información de extensión agrícola.El rendimiento de fríjol es bajo y tiene una tendencia descendente en muchos países.Los factores principales que inciden en el bajo rendimiento son : gran presión sobre la planta por enfermedades e insectos; sequía; baja densidad de siembra (para evitar la presión de enfermedades), y el rechazo de los agricultores a usar fertilizantes (debido al riesgo) en suelos pobres.Por lo tanto el equipo de fríjol concluyó que el fitomejoramiento debe tener prioridad para lograr un fríjol de mayor rendimiento, mediante el desarrollo de variedades resistentes a plagas y enfermedades múltiples y con mayor tolerancia a la sequía.Los objetivos a largo plazo incluyen la tolerancia a suelos moderadamente ácidos y a mejorar la habilidad genética para la fijación simbiótica de nitrógeno. En resumen, la estrategia indica que la clave para incrementar la producción de fríjol es una variedad mejorada a la cual se le aplique una agronomía mejorada. El equipo de fríjol desarrolla una tecnología a escala neutral posiblemente con una tendencia a favor del pequeño agricultor.Las nuevas variedades de fríjol no sólo deben tener rendimientos más altos a nivel de finca sino también un tamaño de semilla y un color de semilla apropiado, y deben ajustarse a los sistemas de producción de los agricultores que frecuentemente incluyen maíz en asociación directa o como relevo. A menudo estos requisitos excluyen frecuentemente el uso de los genotipos más resistentes a enfermedades y de más alto rendimiento.Como el Programa de Fríjol debe hacer fitomejoramiento para muchos sistemas de cultivos y zonas ecológicas, es obvio que se necesita un programa decentralizado de fitomejoramiento el cuál sólo se logrará a través de un esfuerzo de capacitación concentrado, considerando que los programas nacionales deben jugar un papel importante en el mejoramiento de variedades.Por lo tanto, la capacitación profesional es la segunda actividad más importante después del mejoramiento varietal.El Programa de Fríjol cuenta con tres fitomejoradores cuyas responsabilidades están divididas por región de producción, lo que incluye automáticamente una división por color y tamaño de semilla, complejos de enfermedades prioritarias, y frecuentemente por sistema de cultivo.Por consiguiente, mientras que el programa busca un marco complejo de requisitos, sin embargo cada fitomejorador sólo se concentra en unos cuantos.Las tres regiones y los tres programas de fitomejoramiento son : Fitomejoramiento I -América Central, el Caribe, las costas de las Américas y el Sur de Brasil; Fitomejoramiento II-el altiplano de México, el norte y noreste de Brasil y Argentina y Fitomejoramiento III-la zona Andina y Africa.La variabilidad genética para características específicas no se expresa generalmente a niveles suficientemente elevados para resolver impedimentos a la producción. Por lo tanto, cada fitomejorador no solo desarrolla variedades sino que además colabora con las disciplinas especificas en el desarrollo de niveles máximos de expresión de caracteres mejorados ej., resistencia al virus del mosaico dorado, tolerancia a sequía, resistencia a la bacteriosis común, tolerancia al saltahojas, Empoasca kraemeri, resistencia a la mancha foliar por Ascochita, capacidad de fijar nitrógeno, alto potencial de rendimiento, características arquitectónicas de la planta, etc.Las líneas con expresiones de alto nivel para características específicas, las usan luego todos los fitomejoradores para obtener recombinaciones de factores múltiples en sus actividades de mejoramiento del cultivo.Una vez que una línea recién desarrollada en el programa de mejoramiento es evaluada como superior y uniforme en la expresión de su caracter tipo de planta, grano, madurez, y resistencia al vi rus del mosaico común, la linea entra al primer Vivero de Evaluación Uniformeel VEF. En este vivero, se evalúan aproximadamente l. 000 entradas en cuanto a resistencia a enfermedades e insectos y adaptación al medio ambiente de Palmira y Popayán. Las entradas sobresalientes pueden pasar nuevamente a los bloques de cruzamiento como progenitores, pasar a los viveros de programas nacionales, y/o pasar a la segunda etapa de evaluación del Ensayo Preliminar de Rendimiento, EP, el cual incluye normalmente unas 300 entradas.En este vivero se confirma la resistencia a enfermedades y se llevan a cabo otras evaluaciones incluyendo la de rendimiento (bajo altas y bajas condiciones de insumos en Palmira y Popayán), capacidad de fijación de N, y evaluación de calidad de semilla.Las evaluaciones específicas para ciertas características se hacen fuera de Colombia. Aquella parte del vivero EP con tipos de grano de interés específico para un programa nacional en particular, será suministrada cuando dicho programa lo solicite.Aproximadamente 60 de las mejores lineas del EP pasan al Vivero Internacional de Rendimiento y Adaptación de Fríjol (IBYAN) para ser evaluadas a nivel mundial. Para cada vivero sucesivo, se produce la semilla en lotes especiales bajo condiciones controladas para asegurar que la semilla esté libre de enfermedades. El 1 de enero de cada año se cambian las entradas en cada uno de los viveros.Se espera que los programas nacionales incluyan sus mejores líneas híbridas en este proceso de evaluación abierto fomentando así la transferencia horizontal de germoplasma.Sin embargo, los EP e IBYAN no son los únicos viveros enviados al exterior. Viveros con resistencia a enfermedades o a insectos se envían al exterior para identificar complejos de razas de patógenos en las áreas de interés además de donantes de resistencia amplia. Se mandan bloques de cruzamientos a zonas de producción en el área de interés para seleccionar la adaptación específica de material progenitor. Del mismo modo, existen viveros internacionales para fijación de nitrógeno (para selección de cepas de Rhizobium además de líneas de fríjol) y para determinadas enfermedades e insectos que no ocurren en Colombia. Frecuentemente el programa está desarrollando poblaciones segregantes y progenies de generación temprana para los fitomejoradores en programas interesados.De la filosofía y práctica anterior se saca en claro que el Programa de Fríjol enfatiza fuertemente el mejoramiento varietal y considera que las prácticas mejoradas de agronomía, se investigan mejor a nivel de los programas nacionales y deberían ser implementadas cuando una nueva variedad esté disponible. En el desarrollo de este concepto son fundamentales el agrónomo de sistemas de cultivos (investigación a nivel de finca) y el economista, quienes aseguran que los fitomejoradores estén familiarizados con los sistemas a los cuáles se tienen que ajustar las nuevas variedades. Además, enseñan metodologías de investigación a nivel de finca de tal manera que los programas nacionales desarrollen una agronomía alrededor de las nuevas variedades en regiones específicas.Después del mejoramiento genético, el programa le ha dado una alta prioridad a la capacitación. El objetivo final es llegar a la autosuficiencia en investigación a nivel nacional.Además, la diversidad de sistemas de cultivos, los impedimentos a la producción y los requisitos del consumidor hacen imposible que el CIAT atienda todos los intereses y problemas. Los resultados de la capacitación se están haciendo visibles y demuestran una evolución en la estrategia de capacitación del programa. Por ejemplo, anteriormente el EP fué un vivero exclusivamente del CIAT hoy en día es un vivero internacional.La selección descentralizada a partir de la generación F 2 en adelante, se está volviendo cada vez más importante.Los cursos de capacitación organizados por el CIAT se están reemplazando por cursos en el país. Se está desarrollando una red de investigación a nivel de finca a través de un esfuerzo de capacitación intensiva. El equipo espera que por medio de capacitación de posgrado, liderazgo y experiencia los programas nacionales se desarrollaran a tal nivel que la red llegará a ser un programa de investigación colaborativa mútuamente dependiente. Tradicionalmente, esta red se ha limitado a América Latina, sin embargo con el establecimiento del primer científico de fríjol en Africa en 1983, la expansión de la red a este contienente se ha convertido en un objetivo importante.Después de los trabajos iniciales de encuesta elaborados por el CIAT en 1979, 80 y 81, se han continuado los esfuerzos para producir una base de datos agro-ecológicos definitivos en fríjol.Miembros del equipo de fríjol han producido un borrador del formato de datos para la recolección de información sobre sistemas de cultivos por microregiones con el cual el equipo ya está en una posición de probar su potencial de adquisición de datos utilizando el mapa preliminar de microregiones en América Central.Una contribución importante a la delineación de la microregión se hizo en un estudio de Costa Rica (Scholz, 1983).Una técnica de correlación por superposición de datos fué usado para reunir datos de las zonas de producción del país.Los datos provenientes de áreas sembradas se anotaron a una escala de 1:500.000 y fueron superpuestos para una cantidad de cultivos diferentes con el fin de determinar áreas de mezclas uniformes de cultivos. Algunos de los resultados del estudio se presentan en el Cuadro l. El fríjol no es el cultivo principal en las zonas identificadas de producción pero su importancia en cada región puede ser determinada fácilmente de la columna pertinente en el Cuadro l.Esta técnica asume que la mezcla de cultivos de un área puede ser usada como una aproximación a los efectos integrados de consideraciones edafoclimáticas y socio-económicas que determinan el patrón de producción.La técnica es una alternativa a la de determinar zonas uniformes edafoclimáticas de cultivo directamente de los datos climáticos y de suelos. Es factible solamente donde existen datos de censo buenos y detallados y en ese caso el método puede servir como adición útil al método físico.Con el creciente interés por el programa de Fríjol en el Este de Africa, la unidad de estudios agro-ecológicos extenderá su trabajo para cubrir esta área. Actualmente la acumulación de datos está apenas en las etapas iniciales, pero la cobertura por mapa de la región, se está aumentando con el fin de servir a futuros estudios como lo es, la base de datos meteorológicos del CIAT. Se ha adicionado un disco grande a la base de datos y la contraparte africana de SAMMDATA será incluida en un futuro próximo. 8 a. Datos de las zonas de producción en la microregión y su localizaciOn referentes a áreas no productoras de frijol se han omitido. FUENTE : Modificado de \"Identificación y Análisis de Zonas de Agro-producción por medio del Método de Correlación por Superposición de datos: El Caso de Costa Rica\", Scholz, CIAT, en prensa. Se continuó la adquisición de nuevo germoplasma por medio de los esfuerzos de colaboración con instituciones nacionales y con las misiones de recolección del IBPGR. Durante 1983, se introdujeron 784 nuevas accesiones de 13 países; el 86% de estas accesiones corresponde a Phaseolus vulgaris (Cuadro 2).Hasta la fecha, la Unidad de Recursos Genéticos ha recibido un total de 33,290 accesiones que abarcan las cuatro especies cultivadas, sus ancestros silvestres y las especies silvestres no cultivadas (Cuadro 3).• Dado el hecho de que el proceso de introducción para incremento de semilla en el campo es bastante lento y laborioso (Informe Anual del Programa de Fríjol, 1982) no todo el germoplasma ha sido multiplicado.En la actualidad, el 50% del germoplasma de Phaseolus vulgaris se ha incrementado y está disponible para distribución. De las otras especies cultivadas también han aumentado en un 30%. Las especies silvestres no-cultivadas solamente se almacenan en cantidades pequeñas.Actualmente, está en proceso el agrupamiento del germoplasma por tipo de semilla esencialmente tamaño y color y una comparación de fuente geográfica más extensa para cuantiticar la variabilidad genetica del germoplasma disponible de !• vulgaris. Los resultados preliminares (Cuadro 4) demostraron que entre las 16.250 accesiones disponibles de fríjol común, los tipos de semilla pequeña (menos de 25g/l00 semillas) constituyen el más alto porcentaje del germoplasma (42%), mientras que las de tamaño grande (con más de 40 g/100 semillas) son la mitad de ese porcentaje (23%), y el tamaño medio representa el 35% del germoplasma. De los tipos de semilla grande, los predominantes son los de color crema (29%) y los blancos (19%). Los de color café-marrón y los negros comparten el mismo porcentaje (4%). Dentro de los de tamaño medio, los blancos, cremas, amarillos y los negros demuestran porcentajes muy similares en un margen de 17-20%; los rosados (4%) son los menos representativos de este grupo. En tipos de semilla pequeña, predominan los negros (42%), seguidos por los blancos (18%) y los rojos (16%); los• otros colores están representados por porcentajes bastante bajos. Cuando se compararon los tipos de semilla con las fuentes geográficas, se encontró que los tipos de semillas grandes fueron suministrados principalmente por Europa (28%), Sur América no-Andina (27%) y Norte América (22%). En cuanto a los tipos pequeños, América Central es la fuente principal con 38%, seguida por Norte América (30%). Las semillas de tamaño mediano tienen una distribución más amplia: América del Norte es la fuente principal (33%) y Centroamérica y Europa están ambas representadas con un 23%. Esta distribución por fuentes refleja la tendencia de preferencias de tipo de semilla, sin embargo se requiere un análisis más completo utilizando el origen verdadero de tal germoplasma.La colección de Phaseolus almacenado a corto plazo (5-8° C) y disponible para distribución se ha aumentado a 17.366 accesiones, de las cuáles el 94% corresponde a !• vulgaris. o Con respecto al almacenamiento a largo plazo (-6 a -2 C) se hizo un estudio especial con las accesiones que habían sido almacenadas por más de dos años con el fin de determinar si la viabilidad de la semilla (ej. la germinación), sufrió algún cambio signiticativo. Estos materiales hablan sido empacados en bolsas selladas de aluminio con un promedio de humedad en la semilla del 7%.Los resultados mostraron una disminución insignificante, inferior al de 1%, en la germinación. Los colores claros (blanco y crema) presentaron una reducción mayor. Igualmente los tipos de semilla grande fueron más afectados que los de tamaño medio y pequeño. Sin embargo la germinación total se mantuvo por encima de 90% en todas las accesiones, llegandose a la conclusión de que las condiciones de almacenamiento son adecuadas para mantener la germinación original por lo menos durante dos años.El contenido de humedad de la semilla estaba todavía entre el 5 y 8%. Nuevos procedimientos están en camino para aumentar el número de accesiones que serán colocadas en almacenamiento a largo plazo.Durante 1983, 2.696 accesiones fueron distribuidas a 28 países. El Programa de Frijol del CIAT solicitó igualmente 29.136 accesiones. El total de germoplasma entregado (Cuadro 5) suma 31.832 accesiones de las cuáles 96% corresponde a !• vulgaris y el resto a otras especies de Phaseolus y a unos pocos géneros de leguminosas (Vigna, Psophocarpus). Se está estableciendo un laboratorio de patología de semillas con el fin de evaluar la calidad de semilla de los materiales distribuidos por el CIAT. Este laboratorio estará funcionando en 1984.Cuadro 5. Total de la distribución por destino, de semilla de Las actividades de mejoramiento de germoplasma del Programa de Fríjol tienen como base la gran variabilidad que existe en la colección de germoplasma almacenada en el CIAT. En la evaluación del banco de germoplasma las características útiles se identifican de acuerdo a su potencial para resolver o reducir el efecto de los factores importantes que limitan la producción. Sin embargo, en muchas instancias el nivel de expresión de las caractísticas deseables en las accesiones del banco de germoplasma es insuficiente para resolver algunos impedimentos específicos de producción; ej. el nivel de resistencia al virus del mosaico dorado del fríjol (VMDF), la mancha foliar de Ascochyta, tolerancia a sequía, resistencia a insectos que atacan granos almacenados, capacidad de fijar nitrógeno atmosférico, etc.Para el mejoramiento de variedades comerciales se requi re la combinación de varios de estos factores. Por lo tanto, las actividades de mejoramiento genético del Programa Fríjol se dividen en dos aspectos: (a) mejoramiento de caracteres -el desarrollo de la máxima expresión de un carácter en una diversidad de genotipos por acumulación de genes diferentes, mecanismos de resistencia, etc.; y (b) el despliegue de caracteres -la recombinación o uso de estos caracteres en cultivos comerciales segun las necesidades de una región de producción en particular para la cual el material fue desarrollado.El Cuadro 6 enumera las responsabilidades específicas de los tres fitomejoradores en estas dos actividades, los números de cruces hechos en 1983 y el número de líneas desarrolladas y codificadas. El Programa de Fríjol sigue haciendo énfasis en la evaluación de germoplasma de frijol para resistencia a los patógenos de frijol más importantes. Este año, se llevaron a cabo numerosas evaluaciones de campo ~n varios paises en cooperación con los científicos de frijol de los programas nacionales, además de las evaluaciones rutinarias conducidas en Colombia.Estas evaluaciones incluyeron viveros de resistencia a enfermedades en lineas avanzadas además de poblaciones segregantes en Argentina, Brasil, Perú, México, y América Central. Esta actividad permitió la evaluación simultánea de resistencia a enfermedades, adaptación local y otras características agronómicas en el área de interés y facilitó la identificación de germoplasma superior con resistencia multiple a enfermedades y con color de grano comercial. De la misma manera las evaluaciones en múltiples sitios permitieron la identificación de fuentes de progenitoras con amplia resistencia a patógenos que demuestran amplia variación patogénica, tales como de la antracnos1s y de la roya.Las enfermedades fungosas más prevalentes que se estudiaron fueron: antracnosis, roya, mancha foliar por Ascochyta y mustia hilachosa. Algunas de las enfermedades fungosas más importantes localmente, aunque menos diseminadas fueron: mancha foliar por Ascochyta en la zona Andina, mancha redonda de la hoja por Chaetoseptoria welmanii que causa considerables darlos a cultivos susceptibles en las tierras altas de Jalisco, México y el mildeo velloso causado por Phytophthora phaseoli que causa darlos severos en algunos cultivos particularmente en Tepatitlán, México y en Zaragoza de Palmares, Costa Rica.Adicionalmente, se llevo a cabo una investigación sobre mecanismos de resistencia a enfermedades, particularmente con los patógenos de antracnosis y roya.Algunas líneas de frijol con resistencia a la antracnosis en el campo y en el invernadero (en Colombia) para un número de aislamientos provenientes de varias áreas de América Latina, fueron susceptibles en evaluaciones de campo en los estados mejicanos de Jalisco, Zacatecas y Vurango en 1982. Los resultados obtenidos en este año de evaluaciones adicionales de campo en cooperación con científicos mexicanos en fríjol demuestran que la v~riación patogénica del agente causal de antracnosis, Colletotrichum lindemuthianum es bastante extensa. El Cuadro 7 muestra la reacción de 15 líneas de fríjol (algunas de las cuales han sido utilizadas como diferenciales de razas de antracnosis) de 15 aislamientos de cuatro regiones de México. Dos líneas, PI 16~426 y Aiguille Vert son susceptibles a todos los aislamientos mientras que dos más, Calima y PI 173022 son resistentes a todos. Ambas líneas son susceptibles en el campo y en el invernadero muchos aislamientos de Colombia. BAT 841 el cual es resistente en el campo en Colombia y en Brasil, y en el invernadero a la mayoría de aislamientos de estas áreas, es susceptible a un número de aislamientos de México. Cuadro 7. Reacción de plántulas de líneas y variedades de fríjol a aislamientos de Colletrotrichum lindemuthianum de diferentes áreas de México en la cual \"S\" es susceptible y \"R\" es resistente.Número de aislamiento y origen ) pueden ser organizados en ocho grupos de patogenicidad demostrando la amplia variación en las poblaciones del patógeno de antracnosis que ataca el frijol en México. Los resultados obtenidos de trabajos similares elaborados por científicos mexicanos corrabora el alcance de la variación patogénica de C. lindemuthianum en este país.De observaciones de campo, en las cuales centenares de entradas fueron evaluadas en México, Brasil, Argentina, Perú y Colombia, es evidente que la variación patogénica del hongo de antracnosis es amplia y difiere de un área a otra en América Latina. Por ejemplo, las líneas AB 136 y México 22 son resistentes en el invernadero a los aislamientos de Argentina, Brasil, Perú y Colombia pero son susceptibles a varios aislamientos de México. Calima es resistente en el invernadero a todos los aislamientos evaluados de México, Perú y Argentina y a la mayoría de aislamientos de Brasil pero es susceptible a la mayoria de los aislamientos de Colombia. La situación es similar para Perry Marrow y Michigan Dark Red Kidney las cuáles son susceptibles en el campo y en el invernadero a la mayoría de los aislamientos de Colombia pero son resistentes a la mayoría de los aislamientos de México, Argentina, Brasil y Perú. BAT 841 es resistente en el campo en Brasil y en el invernadero a la mayoría de aislamientos de Brasil, Argentina y todos los de Colombia pero es moderadamente susceptible en el campo y en el invernadero a la mayoría de los aislamientos de México.anualmente, la antracnosis es la principal enfermedad en la región del Sur donde se cultiva el fríjol negro. Varias de estas líneas resistentes han sido evaluadas en el invernadero contra aislamientos de Brasil y se reportaron como resistentes.Adicionalmente, algunas también demostraron una reacción de resistencia a mancha angular en el campo de Popayan, Colombia y en Anápolis, Brasil (Informe Anual del Programa de Fríjol, 1982).Dada la extensa variación patogénica del hongo de antracnosis en muchas áreas donde se cultivan fríjoles, se ha dedicado gran esfuerzo a la identiticación de nuevas o diferentes fuentes de resistencia.La sección patología de fríjol continuamente evalúa accesiones del banco de germoplasma en cuanto a su reacción a la antracnosis y la mancha angular, primero en el campo y luego, secuencialmente a un número de diferentes aislamientos en el invernadero.Los materiales más resistentes a antracnosis bajo condiciones de campo y de invernadero han sido agrupados en el Vivero Internacional de Antracnosis en Fríjol (IBAT) la cual también contiene líneas diferenciales de antracnosis. Como se ve en el Cuadro 12, muchas de las líneas de fríjol en el IBAT muestran una reacción resistente o intermedia a todos los aislamientos del hongo de antracnosis evaluados y son resistentes en el campo en Colombia.Algunas entradas fueron resistentes en otros países bajo condiciones de campo (Cuadro 12). t;stas y otras fuentes de resistencia, a la antracnosis se usan en bloques de cruzamientos con el fin de combinar esta amplia resistencia a antracnosis con otras características deseables en cultivos comerciales.De los estudios en el invernadero es evidente notar que algunas accesiones muestran una resistencia específica a una raza o resistencia amplia a todos los aislamientos evaluados. Algunas, tales como la A 262 y la A 329 del IBAT muestran la misma reacción en el campo • Otras accesiones pueden tener un mecanismo diferente de resistencia; BAT 527 tiene una reacción intermedia a antracnosis en el invernadero y en el campo en áreas donde se ha evaluado pero tiene buen rendimiento. Otras accesiones muestran otro mecanismo de resistencia como sucede con Ecuador 1056 (ICA Llanogrande) la cual es resistente a antracnosis en el campo en todas las áreas evaluadas, incluyendo Perú, Ecuador, Colombia, México y algunas áreas del Africa. Sin embargo, es susceptible a casi todos los aislamientos en el invernadero.Ecuador 1056 y V 7919 son susceptibles a antracnosis en el invernadero en estado de plántula; sin embargo, a medida que las plantas crecen su reacción susceptible se disminuye y las plantas maduras son resistentes (Figura 1). Otras líneas inoculadas en diferentes etapas de crecimiento son resistentes en todas las etapas, mientras que otras son susceptibles en todas las etapas.La mayoría del trabajo sobre esta enfermedad fué efectuado por los programas nacionales en América Central, particularmente en Costa Rica donde la mustia hilachosa es endémica. Se han logrado avances Edad en semanas considerables en los últimos años con respecto al control de esta enfermedad.Aunque ninguna línea es conocida como inmune, algunas líneas de fríjol han sido identificadas como moderadamente resistentes bajo intensa presión de la enfermedad, y este nivel de resistencia a mustia hilachosa ha sido incorporado a varias lineas. Algunos de los recientes cruces para resistencia a mustia hilachosa mostraron más altos niveles de resistencia a esta enfermedad que sus padres cuando fueron evaluados en Esparza, Costa Rica en 1983.El Cuadro 13 muestra las variedades y las líneas con los niveles más altos de tolerancia a mustia hilachosa en Costa Rica. La línea negra HT 7716-CB(ll8)-l8-CM-M-M además de tener una excelente adaptación y características agronómicas deseables, demostró un nivel de resistencia a mustia hilachosa más alto que el padre resistente en una prueba replicada con tres di fe rentes niveles de severidad de la enfermedad en Esparza (Cuadro 14). Algunas de estas líneas en el cuadro 14 serán incluídas en el VINAR 84. Cuadro 8. La reacción de genotipos seleccionados de fríjol a mezclas de aislamientos del patógeno de ant racnosis, Collectotrichum lindemuthianum, en Colombia, México, Brasil, y la Argentina.Accesiones, líneas y variedades seleccionadas de frijol con una reacción resistente o intermedia a antracnosis bajo condiciones de campo y en el invernadero a .aislamientos de México.En el a En el invernadero Accesiones, líneas y variedades de Phaseolus vulgaris en IBAT con una reaccion resistente o intermedia en el invernadero y en el campo a todos los aislamientos de Colletotrichum lindemuthianum de diferentes areas de América Latina.a. Tamb1en resistentes bajo condiciones de campo en Mexico. La mayoría de los estudios de resistencia a mustia hilachosa se llevan a cabo en el campo utilizando una escala logarítmica de severidad de nueve grados en el cual 1 indica que es altamente resistente y el 9 es severamente afectado. Como la enfermedad no está frecuentemente distribuída de una manera pareja en el campo, el grado de reacción a la enfermedad asignado para una línea dada siempre se compara con el del testigo resistente más cercano, distribuído a través del campo. Al utilizar este procedimiento, líneas como HT 7716 mostraron tener niveles consistentemente más altos de resistencia que Porrillo 70, una variedad ampliamente conocida por ser la de mayor resistencia a la mustia hilachosa.El EP 83, VEF 83 y los Viveros de Adaptación de Fríjol Rojo y Negro tueron evaluados en Costa Rica para resistencia a mustia hilachosa. De igual manera, 15 conjuntos del Vivero Internacional de Mustia Hilachosa (VIM) con los mejores materiales resistentes, fueron evaluados en Costa Rica, México, Guatemala, El Salvador, Nicaragua, Panamá y Colombia. De la evaluación de VIM llevada a cabo en Esparza, Costa Rica, las siguientes líneas (Cuadro 15) obtuvieron igual o mejor nivel de resistencia que el control resistente Talamanca: Negro Huasteco 81, Porrillo 70, BAT 450, XAN 112, BAT 1279 y MUS 6.También fueron evaluadas varias poblaciones segregantes en Costa Rica y se hizo selección de plantas individuales. Durante 1984, estas selecciones serán sembradas y se evaluará la eficacia de este procedimiento.Varias líneas identificadas como resistentes en Restrepo, Colombia tdonde el tipo de inóculo de basidiospora es abundante y generalmente más importante que el inóculo de micelio y escleroso que predomina en Costa Rica) también fueron resistentes en Esparza, Costa Rica.Considerando que bajo severa presión de mustia hilachosa, las líneas sólo tienen niveles intermedios de resistencia, se han evaluado otras estrategias de manejo de la enfermedad. Estas incluyen el uso de una cobertura de malezas previamente eliminadas con paraquat la cual sirve de barrera al inóculo de esclerocios que salpica a las plantas. Esta práctica adecuada para agricultores tanto grandes como pequeños fué desarrollada en Costa Rica y Panamá y se está evaluando en América Central. En un estudio (Cuadro lb) las malezas fueron eliminadas utilizando paraquat antes de sembrar.Una mezcla de herbicidas pos-emergentes de Prowl y Fusilade se utilizó dos semanas después de la siembra además de tres aplicaciones del fungicida benlate a los 20,30 y 40 dias después de la emergencia a una tasa de 500 g/ha. Los resultados con la variedad, moderadamente resistente, Porrillo Sintético, son prometedores, abriendo la posibilidad de sembrar fríjol en el trópico húmedo y caliente donde la mustia hilachosa es un importante factor limitante. Este método de control integrado será evaluado en pruebas a nivel de fincas en varios países donde la enfermedad prevalece.Los resultados de estos estudios sobre el manejo de la enfermedad utilizando coberturas y fungicidas han mejorado significativamente el manejo de la mustia hilachosa en el vivero. La manipulación de la presión de la enfermedad en el campo ha resultado en evaluaciones más rápidas y mejores.Otra práctica agronómica que disminuye el nivel de inóculo de mustia hilachosa es la rotación con un cultivo de una no-leguminosa. Bajos niveles de presión de la enfermedad se han observado después de la rotación con maíz o en barbecho en áreas donde la enfermedad era prevalente en Costa Rica y Colombia.En estas areas, la alta densidad de siembra generalmente tiende a altos niveles de presión de esta enfermedad.Viveros de mustia hilachosa. Todas las líneas disponibles en el CNPAF que totalizaban 659 materiales fueron enviadas a UEPAE Porto Velho y otro juego de las mejores líneas en Capivara, Goiania fueron envíadas a la hacienda Itamaraty, ambas para evaluación de mustia.Las mejores lineas con menores síntomas fueron CNF 137, A 83, A 254, A 266, A 367, A 373 y XAN 117. Estas líneas serán probadas en la siguiente estación con nuevas líneas de mustia de América Central en el Vivero Internacional de Mustia Hilachosa.En la hacienda Itamaraty se sembraron 266 líneas; el experimento mostró un fuerte ataque de mustia y sól0 unas pocas líneas sobrevivieron ej. BAT 1553, BAT 431, A 36), XAN 137, Pv 99 N y CF 40. Ninguna línea dió buenos resultados en ambas localidades (Duro Preto D'Oeste e Itamaraty), indicando una falta de adaptación a este clima caliente y húmedo.Un bloque de cruzamientos de 23 fuentes de resistencia a Ascochyta rue distribuído y evaluado en regiones relevantes incluyendo las tierras altas de Guatemala, Colombia, Ecuador, Perú, Rwanda y Tanzanía. Solamente una de las entradas en este vivero, CUATE 1076-CM, de Guatemala (Phaseolus cor.cineus subespecie polyanthus) fué muy resistente.Los híbridos interespecíficos con esta accesión son relativamente fáciles de hacer y se han seleccionado progenies resistentes.Dentro de ~• vulgaris, la accesión más resistente encontrada es GUATE 1213-CM también de Guatemala. Tmobién se ha encontrado resistencia en la accesion G 6040.De las líneas avanzadas apropiadas para la región Andina, VRA 81022 es la más resi,;tente.Aunque todavía no están disponibles altos niveles de resistencia, el nivel actual es suficiente para muchas áreas de producción. Cuando se evaluaron aproximadamente l. 500 materiales del VEF 83 en Popayán donde Ascochyta es endémica, ninguno tuvo una reacción resistente, y la mayoría fueron susceptiles, pero algunos demostraron una reacción intermedia.Las entradas con una reacción intermedia serán evaluad~s más adelante.La mancha foliar por Ascochyta es una enfermedad importante bajo condiciones de alta humedad y baja temperatura y parece que la enfermedad ha llegado a ser muy importante en la región andina.En una prueba con cultivares seleccionados de fríjol intercalado con maíz en Popayán, las pérdidas en rendimiento de ICA Llanogrande (un testigo susceptible) llegaron al 74% comparado con ninguna pérdida en GUATE 1213-CM (Cuadro 17). El tipo trepador de GUATE 1213-CM favoreció el escape a la enfermedad ya que Ascochyta tiende a ser más severa cerca al suelo. La resistencia disponible, sin embargo, no es debido sólo a la arquitectura de la planta ya que las diferencias se mantuvieron en resistencia en una prueba comparando plantas sin apoyo con las cultivadas en espaldera. Las pérdidas en rendimiento fueron mayores en líneas susceptibles en los lotes sin espaldera. En una comparación del cultivo solo y el cultivo mezclado con malz no se observaron diferencias signiticativas en la severidad de la enfermedad excepto en las líneas altamente susceptibles las cuáles sufrieron más cuando fueron sembradas con el otro cultivo.Se hizo un total de 77 cruces para resistencia a Ascochita en 1983 de los cuáles 59 de ellos combinaron fuentes conocidas en busca de segregación transgresiva. La seleccion se llevó a cabo en el campo en Popayán y en ICA-La Selva. * Los números seguidos por la misma letra(s) en la columna no son significativamente diferentes a (P=0.05).Uno de los principales objetivos al trabajar con la roya del fríjol es la identificación de mecanismos de resistencia estables con respecto al tiempo y distribución geográfica. La mayoría de los cultivares de fríjol evaluados internacionalmente por medio del Vivero Internacional de la Roya de Frijol (IBRN) son resistentes en algunos sitios pero susceptibles en otros, lo cual fuertemente sugiere una resistencia específica a razas del patógeno.Similarmente, algunos cultivares evaluados como resistentes en una localización son severamente atacados por roya en una siembra posterior en el mismo sitio.De la evaluación del IBRN 81-82 en más de 10 sitios en siete paises, se identificaron accesiones y líneas mejoradas por el CIAT con una reacción resistente o intermedia a roya en varios sitios (Cuadro 18). La reacción del control susceptible Pinto 650 y Cuba 168 (una línea resistente en algunos sitios y susceptible en otros) se ha incluido a manera de comparación. No se incluyeron en el Cuadro 18 las otras entradas que tenían una reacción resistente o intermedia en todos los sitios pero que fueron susceptibles en uno. Se utilizó una metodología mejorada de inoculación de roya en el invernadero a nivel de plántula y se estudiaron mecanismos de resistencia a roya tales como: tamaño de pústulas, período de latencia y número de pústulas en líneas puras y especialmente en poblaciones de F2.asociado con el tipo pequeño de pústulas.Para la población de F? el tamaño promedio de pústula era de 315 micrones y el período de lateñcia de 9. 7ó días.La correlación entre tamaño de pústulas y el período de latencia fué de 0.59 en las. poblaciones de la F 2 .Estos datos preliminares sugieren que estas características pueden ser manifestaciones del mismo mecanismo de resistencia a la enfermedad y que al seleccionar para una característica como tamaño pequeño de lesión se selecciona automáticamente para un periodo más largo de latencia y un número reducido de lesiones.Se están adelantando estudios par2 elucidar en más detalle la naturaleza de estos ~ecanismos de resistencia a roya.Durante 1981, un gran número de accesiones de fríjol fueron evaluadas bajo condiciones de campo en viveros d0nde la presión de la mancha angular era apreciable y a veces muy severa en los testigos susceptibles. En Popayán, Colombia, se evaluó durante dos semestres el vivero VEF 83 que consistía de 1.425 entradas.Muchas de las lineas del VEF con una reacción resistente o intermedia a la enfermedad serán adicionalmente evaluadas en otras localizaciones con el fin de identificar e incrementar el número de posibles fuentes de resistencia a la manera angular.También se evaluaron en masa aproximadamente 400 F 4 y F 5 para su reacción a antracnosis y mancha angular en Popayán. Inicialmente, se evaluaron, selecciones individuales de plantas como progenies durante el primer semestre, luego se cosecharon en masa y se evaluaron otra vez para su reacción a la mancha angular de la hoja en el segundo semestre de 1983. Se están utilizando cruces triples para combinar fuentes únicas de resistencia en líneas bien-adaptadas con colores comerciales de grano. Ha sido particularmente difícil combinar lineas con grano pequeño de color rojo brillante, rojo moteado o de color negro opaco, con resistencia al añublo bacteriano común.Algunas de las líneas de fríjol del CIAT que tienen resistencia al añublo bacteriano común han sido evaluadas extensivamente en el campo en muchas localidades y en el invernadero usando varios aislamientos del CBB. Entre ellas, XAN 112 (de grano negro) ha demostrado buenos niveles de resistencia en varias localidades no sólo en Colombia sino en México, Costa Rica, Guatemala y en los Estados Unidos.Esta línea es de maduración precoz y se adapta bien en varias localidades en América Central.Además, tiene buenos niveles de resistencia a mustia hilachosa. Otras líneas resistentes incluyen: XAN 87, XAN 93, XAN 107, XAN 116, XAN 104, XAN 80, y XAN 131. Líneas tales como ICA L 24 de hábito I con hojas gruesas, generalmente demuestran buenos niveles de resistencia a añublo bacteriano común bajo condiciones de campo. Sin embargo, bajo alta presión de la enfermedad, las vainas a veces muestran sin tomas severos de la enfermedad.Aparentemente, el follaje tiene algún tipo de resistencia a la penetración ya que cuando las hojas de ésta y otras líneas similares se inoculan por medio de heridas, la reacc1on a la enfermedad se aumenta considerablemente.Se están adelantando trabajos para estudiar este tipo de reacción y estudiar una posible interaccion entre genotipo y raza entre el !• vulgaris y el Xanthomonas campestris pv. phaseoli J!. phaseoli), el patógeno del añublo bacteriano común. Se hicieron 86 cruces para desarrollar resistencia mejorada e incorporar resistencia en tipos de grano con características agronómicas deseables (Cuadro 6). Estos 48 cruces involucraron dos o más fuentes diferentes de resistencia con el fin de buscar combinaciones nuevas y mejoradas de genes resistentes, y 38 cruces involucraron cultivares o fuentes de resistencia a otras enfermedades, particularmente la antracnosis.En Colombia, el añublo de halo es importante sólo en las tierras altas de Na riño. Red Mexican UI-3 es susceptible, lo cual indica la presencia de la raza 2.Se han llevado a cabo evaluaciones en el campo en colaboración con el ICA, en Obonuco, Colombia.Los testigos susceptibles fueron E 1034 (voluble) y Diacol Andino (arbustivo) y los testigos para resistencia intermedia fueron: ICA Llanogrande (voluble) y L 33411 (arbustivo).BAT 590 y BAT 1220 tienen altos niveles de resistencia. Las lineas recientemente identificadas como resistentes incluyen: G 6070, G 1097/, G 12753, BAT 740, BAT 1288, EMP 70 y V 7945. E 605 es una linea prometedora para la región con una reacción intermedia en el campo al añublo de halo.En una prueba con 10 cultivares seleccionados para representar un rango de suceptibilidad a resistencia, la incidencia de enfermedades y su severidad en cultivares susceptibles fué mayor en monocultivo que en cuando fueron sembrados con maíz. La• alta densidad de siembra también aumentó el nivel de la entermedad. Al comparar evaluaciones de campo con las de invernadero, se encontraron algunas inconsistencias particularmente con respecto al cultivar ICA Llanogrande (E 105b) el cual muestra buena resistencia en el campo pero es susceptible en el invernadero.Este cultivar también es resistente en el campo a la antracnosis.Virus del mosaico común de frijol (BCMV) El virus del mosaico común de fríjol sigue siendo el patógeno viral más importante en el programa de investigación. La existencia de cepas del BCMV capaces de inducir una necrosis sistémica (raíz negra) en genotipos resistentes al mosaico, constituye una amenaza en potencia para el germoplasma mejorado de fríjol.Otro problema ha sido la incorporación de resistencia en ciertos t1pos de grano preferidos por el consumidor pero susceptibles al mosaico tales como el fríjol de color rojo y canario.Seleccion por resistencia monogénica dominante A pesar de la presencia de cepas del BCMV capaces de inducir necrosis en genotipos mejorados que poseen el gene 1 dominante hipersensible, este tipo de resistencia monogénica se ha mantenido durante décadas en sembríos comerciales de fríjol en la América Latina. Sin embargo que el Programa de Fríjol está tomando medidas para minimt.zar el peligro potencial de una epidemia de raíz negra ,en el germoplasma mejorado adaptado al trópico de tierras bajas.El Cuadro 22 muestra la fuente y número de materiales de fitomejoramiento seleccionados por las secciones del programa en cuanto a su reacción al BCMV, en 1983. Este año, la capacidad de selección fué del orden de 1.000 plantas o 100 líneas/día de trabajo, representando así un incremento de 38% sobre el ano pasado. El Cuadro 23 muestra los cruces y generaciones avanzadas logradas entre cultivares chilenos y líneas IVT. Además de los resultados obtenidos, éste es un ejemplo de un proyecto cooperativo de manejo efectivo y exitoso de progenies tempranas por parte de un programa nacional. También, se seleccionan las líneas por su reacción en el campo a los virus del mosaico amarillo y común del fríjol y, subsequentemente se envía al CIAT una muestra de las selecciones cosechadas, con el fin de seleccionar por resistencia múltiple al BCMV y efectuar retrocruzamientos e intracruzamientos.El Programa de Frijol también ha seleccionado otros genotipos donantes prometedores con características agronómicas superiores a las de las líneas IVT, tales como Red Mexican 35, Great Northern 31 y una introducción llamada Don Timoteo que será incluida en los proyectos actuales de cruzamiento.Sin embargo, la selección por resistencia de genes múltiples al BCMV requiere una metodología diferente.Cada cruce incluye por lo menos un progenitor resistente al mosaic2 con 21 gene 3 I dominante y un progenitor con los genes recesivos bcl , bc2 o be . La prueba de progenies se lleva a cabo mediante inoculación de una mezcla de las cepas NL3 y NL4 del BCMV, con el fin de eliminar las plantas afectadas por el mosaico o la necrosis sistémica.Las plantas que muestran lesiones locales en las hojas inoculadas o que se comportan como inmunes (libres del virus) se seleccionan para multiplicar la semilla y realizar evaluaciones adicionales hasta que se identifiquen lineas homocigotas,Evaluación de las especies de Phaseolus disponibles en el banco de germoplasma por su reacción al BCMV Un proyecto de evaluación para mosaico común se realizó este año con las accesiones de dos de las especies de Phaseolus que pasaron los requerimientos oficiales de cuarentena. Un total de Como consecuencia, se llev6 a cabo una evaluaci6n continua y un proceso de selecci6n de plantas que incluía varias lineas de grano rojo y rojo moteado, segregantes por su resistencia al BCMV. Por ejemplo, la Figura 2 muestra la secuencia seguida en la selección y evaluaci6n de una Hnea de semilla roja (tipo México 80), resistente homocigota al BCMV, la cual será lanzada en América Central como Huetar-2.Sin embargo, más importante fué la selecci6n de cuatro líneas rojo moteado resistentes al BCMV del tipo de grano Calima (uno de los tipos de semilla más difíciles de mejorar con respecto a esta característica). También se identific6 una Hnea de grano rojo moteado tipo Pompadour, como resistente homocigota al BCMV.El Cuadro 25 presenta las características de las líneas con resistencia dominante al BCMV, seleccionadas para entrar al VEF.Considerables avances se han logrado también con Cargamanto, un tipo de grano comercial crema moteado, susceptible a mosaico común. La primera evaluaci6n incluy6 29 selecciones individuales derivadas de tres cruces diferentes. De estos, solamente se escogieron cinco selecciones individuales obtenidas de un retrocruzamiento de Cargamanto con Cornell 49-242, una linea resistente a antracnosis y mosaico. Ya se ha repetido tres veces el proceso de selección individual y evaluación y, como resultado, se han escogido cuatro lineas con características de grano Cargamanto, resistentes al BCMV.Transmisión Selección de lfnea con el mejor t:lpo de grano con resistencia homocigota al B CM V La incidencia de transmisión por semilla del BCMV varía según el cultivar infectado y la etapa de desarrollo de la planta cuando es infectada. Las plantas infectadas después de su período de floración generalmente no transmiten el BCMV por medio de la semilla. Sin embargo la genética de la transmisión de BCMV por semilla no ha sido investigada.En 1983, se llevó a cabo un proyecto para identificar variedades susceptibles al BCMV que aparentemente no transmiten el virus por medio de la semilla.En el proyecto, diferentes cepas del BCMV fueron inoculadas, en tres etapas diferentes de desarrollo de la planta, a un total de 14 cultivares los cuáles tenían resistencias recesivas diferenciales al BCMV.Problemas genéticos asociados con la incorporación de resistencia dominante, recesiva y múltiple al BL~V en germoplasma de trijol La incorporacion de genes recesivos en cultivares del gene I dominante, buscando resistencia múltiple a cepas que inducen mosaico y necrosis, ha revelado una serie de reacciones genotípicas no comunes, posiblemente inducidas por la naturaleza diferente e interacción de los genes de resistencia involucrados.Para estudiar estos fenónemos se hicieron dos z:ruces 2 entre Red Mexican 35 (la cual posee los genes recesivos be! , bc2 ) y dos variedades con el gene I, Royal Red (tipo red kidney) y Widusa (tipo navy).Entre los resultados preliminares que se han obtenido hasta el momento, se destaca la frecuencia apreciable de plantas que exhibían lesiones locales características de ~ recombinación de genes recesivos y dominantes tales como el I y el bc2 .Detección serológica de cepas del BCMV en semilla infectada de trijol y tejidos de plantas La detección serológica del BCMV en semilla infectada de fríjol no se puede hacer por los métodos tradicionales de difusión debido a la ocurrencia de reacciones no-específicas.La prueba inmuno-enzimática conocida como ELISA, una técnica altamente sensitiva recomendada para este propósito, fué ensayada utilizando un antisuero preparado para la cepa Florida del BCMV.Esta técnica no sólo detecto el virus en extractos de.semillas sino que también reaccionó espec{ficamente con la cepa Florida.Estos resultados sugirieron un estudio similar para producir antisueros altamente especificos para las cepas mas prevalentes que inducen necrosis.Mientras tanto, un antisuero para la cepa necrótica más virulenta presente en América Latina, la NL3, ha sido utilizado en conjunto con la fécnica conocida como Microscopia electrónica con Antisueros Específicos (SSEM) (gracias a la adquisición reciente de un microscopio electrónico).La prueba SSEM permitió detectar con éxito el NL3 en menos de 10 minutos.Esta técnica serodiagnóstica permitirá el diagnóstico de esta cepa en América Latina y Africa y, como consecuencia, ayudará en la identificación de áreas de gran riesgo para la introducción de variedades con resistencia monogénica dominante.El virus del mosaico sureño del fríjol está ampliamente distribuído.Sin embargo, esta enfermedad viral generalmente pasa desapercibida en el campo. Unas de las dificultades encontradas en el CIAT, en cuanto al estudio de la epidemiología de este virus, ha sido la reacción asintomática o de síntomas débiles observadas en la mayoría de las variedades infectadas de fríjol, y la falta de un antisuero específico.Sin embargo, este arto se aisló el virus en suspensiones puras y se preparó un antisuero apropiado para adaptar la prueba ELISA a la deteccion del BSMV en plantas infectadas e insectos vectores los escarabajos virullferos. Para esta investigación se escogio un campo de fríjol en el CIAT con una población alta de crisomélidos. Fueron capturados un total de 66 crisomélidos de la especie Diabrotica balteata los cuales se procesaron individualmente para realizar la prueba ELISA. Simultáneamente, se recogieron 56 muestras de plantas al azar y fueron preparadas igualmente para ELISA. Los resultados de estas pruebas mostraron que 51.5% de los crisomélidos capturados eran vectores activos del BSMV y que 48.2% de las plantas estudiadas estaban infectadas por este virus.Estos resultados demuestran que el BSMV puede ser un patógeno inteccioso y subestimado en los sembrados de fríjol.El mosaico dorado del fríjol no ocurre en Colombia. Los trabajos de investigación reportados aquí fueron llevados a cabo por el proyecto centroamericano en Guatemala. Desde el lanzamiento de tres variedades de grano negro resistentes al BGMV en Guatemala se han buscado niveles más altos de resistencia al BGMV en granos negros, con énfasis en la recombinación de la resistencia existente de BGMV con otros factores tales como precocidad, resistencia a Apion, al CBB, a antracnosis, tolerancia a Empoasca, a bajo P y a sequía.Los cruces re combinando estos factores están en varias etapas de selección.Actualmente, se están evaluando líneas avanzadas las cuáles recombinan la resistencia al BGMV con la precocidad y resistencia a CBB. En el futuro, se colocará más énfasis en la tolerancia a sequia. Para El Salvador, lineas bien adaptadas de grano rojo con buena resistencia al BGMV están ahora disponibles. Sin embargo, estas líneas tienen problemas de madurez tardía, grano pequerto, grano rojo con tonos café u oscuros e inestabilidad de los colores del grano. Solamente en los últimos dos años se ha reconocido la importancia de estos problemas y se ha tomado medidas para redirigir el programa de cruces según estas necesidades.Además, los avances en el mejoramiento del color rojo pronto nos llevarán a mejores colores en lineas resistentes a BGMV.El progreso ha sido lento en cuanto a la incorporación de resistencia al BGMV en tipos de grano moteados para los países del Caribe, pero éste ha sido facilitado por la evaluación de progenitores y progenies en América Central. En mayo de 1981, un gran número de líneas con granos moteados fueron evaluadas y se seleccionaron padres para cruces.En mayo de 1983, se seleccionaron las poblaciones de la F 7 y la prueba de progenies en la F 3 indicó que se habla logrado a U os n1veles de resistencia. Estas familias representan ciertos avances pero todavia adolecen de las siguientes características:(l) el hábito de crecimiento de tlpo I preferido en la República Dominicana; y (2) el tamaño y color preferido de grano.Hasta ahora no se sabe si serán adaptadas al área del Caribe. Las mejores líneas se cruzarán con tipos comerciales adaptados a las condiciones del Caribe.;2.J6f;,(, 6.y.~-Resistencia a Insectos En 1983 se continuaron las evaluaciones por resistencia de la planta a Empoasca kraemeri, Apion godmani y bruchidos que infestan los granos.El único indice conocido que se puede usar con confianza en la evaluación de resistencia al saltahojas, E. kraemeri, es el rendimiento bajo presión del saltahojas.Como se notó previamente, la escala de daños visuales no es lo suficientemente precisa para separar niveles parecidos de resistencia y no hay correlación en el porcentaje de pérdida de rendimiento entre diferentes cultivos.Por lo tanto, el fitomejoramiento para resistencia a E. kraemeri es básicamente fitomejoramiento para rendimiento utilizando el saltahojas como un factor clave en el ambiente. La selección se basa en evaluaciones por rendimiento en tempranas generaciones y se lleva a cabo en áreas para las cuales se están desarrollando líneas resistentes.Las selecciones dentro de líneas EMP obtenidas en el CIAT han dado como resultado líneas con color mejorado, mejor tamaño de grano y rendimiento superior, por encima de las lineas EMP orginales (Cuadro 26). En Guatemala, Apion tiende a ser un problema mayor en las zonas mas altas pero también hay regiones bajas (400 a 1.000 msl) donde inflige bastante daño tales como en Jalpatagua, Guatemala y otros sitios Centroamericanos tales como Ahuachapan en El Salvador, y El Barro en Honduras. Las mejores fuentes de resistencia hasta ahora conocidas se adaptan muy poco a estas bajas elevaciones pero se está intentando recuperar o desarrollar resistencia por medio de mejoramiento genético de genotipos útiles.El enfoque pr1ncipal ha sido el Vivero Internacional de Ap1on (VIA) para el cual se hicieron selecciones para resistencia a Ap1on de materiales provenientes de tierras altas, en la estación experimental de ICTA en Chimaltengo, Guatemala.Varias lineas prometedoras fueron identiticadas pero las fuentes de resistencia mejor adaptadas para esta región fueron las líneas arbustivas tales como Amarillo 154 y Guate 209, las cuáles se utilizarán como progenitores.En Agosto de 1983, se sembraron 500 accesiones de origen Mexicano del banco de germoplasma del CIAT buscando nuevas fuentes de resistencia.Se seleccionó el EP 82 con tipos de grano Mexicano• o Centroamericano y se identificaron 32 líneas las cuáles merecen estudio adicional.Sin embargo, el enfoque principal sigue siendo sobre el VIA, (Cuadro 29).En 1981, los resultados del VIA confirmaron supuestas tuentes de resistencia, identificaron resistencia en líneas nuevas y sugirieron una correlación excelente entre los resultados en diferentes zonas de evaluación en tierras bajas.De estos resultados se selecionaron de cruzamientos en el cual algunos resistencia que tenían poca adaptación, fin de combinar fuentes de resistencia progenitores para un programa cruces combinaron fuentes de con genotipos adaptados con el intermedia buscando segregación transgresiva.En Mayo de 1983, se evaluaron estas poblaciones en 112 familias de las cuales se seleccionaron 23 en base a su resistencia, siendo recuperados algunos segregantes transgresivos con resistencia superior. Aparentemente, algunas de las selecciones tienen adaptación mejorada, representando un avance significativo.Además, varias líneas poseen granos casi comerciales en cuanto a sus colores, para Centroamérica (negro opaco, negro brillante, rojo br1llante). Fuera de a las evaluaciones para resistencia, se han llevado a cabo estudios para mejorar la eficiencia de la recolección de datos.El procedimiento de evaluacion utilizado por los científicos de ICTA ha sido simplificado, tacilitando la evaluacion de mayor número de lineas. Antes, la evaluación de una muestra de 30 vainas requería 15 a 20 minutos y ahora sólo requiere siete minutos.A cada evaluador se le entrega una hoja de papel dividida en cuadros marcados 0,1,2,3,4 y S, representando el número de granos dañados/vaina. El evaluador abre las vainas una por una observando el número de granos dañados y colocando cada vaina en su respectiva clase.Los únicos datos anotados son: número de vainas en cada clase, y el número de granos sin daños. Con estos datos, la persona responsable por el experimento puede calcular el resto de información de interés (porcentaje de granos dañados, porcentaje de vainas dañadas, etc.).La factibilidad de usar una muestra más pequeña también se estudió utilizando el porcentaje de vainas dañadas en vez de porcentaje de granos dañados. Se evaluó estadísticamente el uso de controles en el diseño de la siembra para mejorar la precisión en la estimación de la resistencia.Cuadro 2B. Las 20 líneas sobresalientes de las 700 evaluadas por resistencia a Empoasca kraemeri por científicos del CNPAF en Goiania, 19B3. Los resultados antes mencionados fueron presentados en un seminario de Apion en Jutiapa, Guatemala, noviembre 14 a 15 con la presencia de colaboradores de México, Guatemala, El Salvador, Hondurrts, Costa Rica, Panamá y el CIAT.T.as larvas del primer instar de Acanthoscelides obtectus que fueron obligadas a penetrar la testa de un !• vulgaris silvestre resistente (G 128YI) y que posteriormente se pasaron a una semilla del susceptible Diacol Calima no sufrj e ron ninguna extensión en su ciclo biolOgico comparadrts con larvas mantenidas únicamente en Diacol Calima.Sin embargo cuando las larvas habían penetrado la testa de Diacol Calima y fueroi transferidas a los cotiledones del G 12891, sufrieron una demora de 12. 5 di as en su desarrollo, indicando que por lo menos en esta accesión la resistencia se encuentra totalmente localizada en los cotiledones.La resistencia fué correlacionada positivamente con el tiempo de cocción y las accesiones silvestres más resistentes requirieron cuatro horaB de cocción comparadas con el susceptible Calima que requirió 30 mi P-utos.Se notaron avances en el incremento del tama~o de la semilla, la reducción de tientpn de cocción y en el mantenimiento de la resistencia en progenies de la F 3 de crur.es E:ntre accesiones de f. vulgaris silvestres resistentes y tipos de grano comerciales (Cuadro 30).Se elaboró un e~tudio en cuadro sobre edades específicas para A. obtectus en Diacol C~.Lima y en la resistente C 12953.La Hortandad ocurrió más rápidamente en G 12953.En la varieclnd susceptible, la ovipos1c1on empezó a los 35 días y en la línea resistente a los 56 días. La oviposicion fué cuatro vece~ mayor en Diacol Calima comparada con G 12953 (Figura 3).La mosca del frijol no ocurre en América Latina pero pof:'iblemente es el problema de producción m(s universal del frijol en Africa. Los trabajos colaborativo5 con Tanzanía y Burundi incluyeron la cvnlu.1ción de lineas avanzadas del CIAT por su resistencia a e~ta plaga.De las líneas seleccionadas, A 62 consistentemente tuvo resistencia mejorada en todas las localizaciones.También BAT 93, A 30, y BAT 1252 tienen algo de resistencia. C 5478 (Tara) demostró un alto nivel de resistencia y tué cru7.ada con la accesión resistente P. coccineus G 35023, como parte del proyecto de.•. Gembloux.Se enviarOn líneas segregantes a AVRDC, Taiwan y a Burundi para selección.En Kisozi, Burundi, cierto número de plantas fueron seleccionadas por su resistencia y fertilidad. ActuAlmente se seleccionan sus progenies ahí.La resistera:ia en estos materiales puede estar relacionada con el tallo grueso, leñoso, heredado del R_. coccineus.Oviposición en línea susceptible 61 ~------------------------------------•\\. Se hizo un total de 10 cuáles nueve involucraron la comerciales (ej. Kabanima, avanzadas en masa a la F 4 selección y evaluacion. cruzamientos en el CIAT en 1:983, de los G 5478 cruzada con cultivares Africanos Jaune du Hosso).Estas están siendo antes de ser enviadas al Africa para su Cuadro 30. Peso/lOO granos, tiempo de cocción y resistencia del grano a brúchidos de plantas en la F 3 productos de cruces entre accesiones silvestres resistentes de Phaseolus vulgaris y tipos de grano comerciales. Peso seco de los adultos brúchidos (mg)Cl.asificación b de resistenciaCuadro 31. Las l!neas más tolerantes a sequ1a en evaluaciones de la Etapa 1 (225 lfneas) en el verano de enero/febrero y su reacción a Macrophomina phaseoli en el que se utilizó la pérdida de plantas como un 1ndice de tolerancia en una escala de O (sin pérdidas de plantas) a 10 (perdida el 100%). La seleccion en el campo para resistencia a nemátodos no se ha etectuado hasta ahora en Colombia, pero con la colaboración de la Universidad del Estado de Carolina del Norte, se ha seleccionado germoplasma para resistenc1a a Meloidogyne incognita y a ~• javanica.Inicialmente, se seleccionaron 39 cultivares de fríjol de los cuales Alabama 1 (G 3736), P.I. 313709 (G 2587), P.I. 165426 (G 5740), Manoa Wonder (G 6278) y Carioca (G 4017) tuvieron niveles aceptables de resistencia a ~• incógnita. Todos los cultivares fueron susceptibles a M. arenaria.Panamito, Alabama 1, ICA Pijao y Talamanca fueron moderadamente resistentes a ~ javanica.Con base en estos resultados, un juego de 80 líneas avanzadas y cuatro poblaciones segregantes se seleccionaron, de cruces involucrando estos progenitores, las cuales están siendo sometidas a nuevas evaluaciones. Adicionalmente, se hicieron 11 cruces nuevos en 1983, para combinar estas fuentes de resistencia con tipos útiles agronómicamente • .;2~ {,61 ~~Tolerancia a Estrés por Sequia La selección por tolerancia a sequía.se continuó en Palmira en los veranos de enero/tebrero y julio/agosto de 1983 utilizando el sistema de dos etapas descrito en el informe Anual del Programa de Fríjol, 1982. Se tomaron datos de la temperatura del follaje del cultivo pero éstos no se presentan aquí ya que no dan información adicional a la del dato de producción.De las 225 entradas en la selección en la etapa 1 para el verano de enero/febrero, las mejores se presentan en el Cuadro 31. Entre las cinco mejores hubo dos líneas de grano rosado y un tipo I, sugiriendo que sí es posible alejarnos del patrón general del tipo II y III y del color crema y negro. El alto coeficiente de variación refleja el hecho de que 47 de las 225 líneas (21%) rindieron menos de 10 kg/ha. Estos rendimientos pobres se atribuyen primordialmente a infección por Macrophomina phaseoli (pudrición gris del tallo). Al anotar la pérdida de plantas como indice de tolerancia a ~• phaseoli se indicó la probable tolerancia o resistencia en muchas líneas, Los resultados de la selección en la etapa 2 para enero/febrero aparecen en el Cuadro 32. De las 72 lineas, accesiones y variedades las únicas entradas nuevas de interes fueron dos de tipo IV con un grano negro cultivado sin espaldera. Estas habían sido seleccionadas de la etapa 1 del EP 81. Los tipo IV se cultivan en áreas donde el estrés por sequia es problemático, y la existencia de tolerancia en un tipo IV debería ser útil en algunas áreas de México, América Central y la Zona Andina. Se notó la presencia de ~• phaseoli en el ensayo aunque las mejores lineas aparentemente fueron poco afectadas.En la selección de la etapa 1 del EP 82 durante julio/agosto, ~• phaseoli alcanzó a un nivel sin precedentes causando una severa reducción en el cultivo. Los datos de producción fueron demasiado variados para justificar un analisis pero la distribución y sobrevivencia de los cultivares bajo el estrés de la sequía y del Macrophomina están disponibles.Niveles similares de infestación por Macrophomina ocurrieron en la selección en la etapa 2, como lo indican los resultados de pérdida de plantas y los bajos rendimientos bajo el estrés (Cuadro 33). De las 72 entradas, el rendimiento comparativamente bueno de muchos de los de tipo 1 con diferentes colores de grano fué sobresaliente, y probablemente representa un caso de escape a la enfermedad debido a su madurez precoz. BAT 85 y en una escala menor A 54 y A 59, mantuvieron su comportamiento sobresaliente observado en pruebas anteriores, sugiriendo que ellos combinan la tolerancia a sequia como a Macrophomina.Aunque estos datos representan avances definitivos en los esfuerzos de seleccion por sequía, se podria avanzar a un paso más rapido si se pudieran superar varios problemas técnicos.La incidencia de Macrophomina definitivamente ha alcanzado niveles que dificultan evaluaciones de tolerancia a sequía. Se consideró la posibilidad de selección conjunta para sequia y Macrophomina pero'• aparentemente Macrophomina no parece estar lo suticiente y ampliamente distribuida como para justificar tal esfuerzo. Desde 197M, todos los ensayos para sequía han sido sembrados en el mismo campo, una práctica que favoreC'100% • Commercial seed producers very successful, driving youth employment.• Five of the 30+ varieties released have been adopted by farmers nationally.• Farmer-preferred crop traits added to varietal selection criteria, speeding up adoption. • Drought-tolerant and heat-resistant varieties currently being tested with farmers.• Further >40% increase in potato yield using newly selected late blight resistant clones. • ≈ 60,000 households adopting improved varieties.• ≈ 20,000 households improving food security during the 'hunger months'. • >1.3% increase in national potato production under improved seed and management.This document is licensed for use under the Creative Commons Attribution 4.0 International Licence. May 2019The International Potato Center works directly with small-scale farmers in the Amhara; Oromia; Southern Nations, Nationalities and Peoples (SNNP) and Tigray regions. Its teams strengthen capacity of national researchers to undertake:• Demand-driven varietal development, adaptation and dissemination through a quality seed production and distribution network.• 'Training of farmer trainers' on good agricultural practices.• Supplemental training for cooperatives to address seed-health related quality issues.• Monitoring to ensure equal access to seed and knowledge for women.• Coordination and knowledge sharing through multi-stakeholder innovation platforms, workshops, fairs, training, etc.• With national partners, increase provision of affordable, improved potato technologies equitably to men and women farmers.• Strengthen national capacity for varietal development supporting climate-resilience of farmers.• Many of the 4 million potato farmers in Ethiopia struggle to feed their families.• Rising temperatures, rainfall variability, pests and diseases further threaten yields.• Improved potatoes and better agricultural practices could help farmers adapt to more challenging growing conditions.• Potato is ideal in difficult conditions: water efficient, matures quickly and can be harvested during the hungry season. ","tokenCount":"280"} \ No newline at end of file diff --git a/data/part_3/4468612380.json b/data/part_3/4468612380.json new file mode 100644 index 0000000000000000000000000000000000000000..45fd4ecbdb1f9cdbe52be0170cb6b742fc3c8368 --- /dev/null +++ b/data/part_3/4468612380.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"ece421ca5365312b266c76c7de80081b","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/222f7be0-ac45-431e-b5e9-15e395d6a110/retrieve","id":"250063485"},"keywords":[],"sieverID":"4d44f41e-3c6c-485c-acf5-94a9fc90da1d","pagecount":"39","content":"In mid-2012, stakeholder discussions and planning for the Livestock and Fish small ruminant value chain development project were initiated by the International Center for Agricultural Research in the Dry Areas (ICARDA), the International Livestock Research Institute (ILRI) and national partners.After selecting eight research sites meeting various criteria, the first step was to conduct rapid value chain assessments in each site. In November 2012, national teams were formed and trained to carry out these assessments (including for the associated 'safe food fair food' project). Field implementation of the rapid value chain analysis took place in December 2012 and January 2013 with mixed teams comprising staff from CGIAR and national organizations.The teams used a toolkit developed through the Program and undertook focus group discussions with farmers using checklists and participatory methods as well as key informant interviews with local experts, traders, butchers, livestock researchers, transporters, veterinarians and NGOs.The preliminary reports from these assessments were reviewed at three multi-stakeholder workshops held in March and April 2013. In these workshops, participants from research and development partners validated the value chain analysis and formulated initial 'best bet' intervention plans for each of the sites.These activities are documented at http://livestockfish.cgiar.org/category/countries/ethiopia/The following people contributed to this process: Smallholder sheep-keepers are an integral part of the livestock sub-sector and livestock enterprises contribute to both household consumption and cash income generation (Shapiro 1991, EARO 2000, Ehui et al. 2000).Although farmers sell animals of varying sex, age and weight, yearlings are the dominant type, sold usually to cover immediate cash needs before they attain their mature body weight. In most instances, the farmers benefit little from the sale of these sheep. This is mainly because yearling sheep are seldom conditioned (or 'finished') using supplementary feed. In addition, a lack of market information and low market prices further lower the benefits accrued by farmers. Farmers usually sell their sheep at the 'farm gate' and on market days at nearby markets. Indigenous sheep breeds are adapted to survive and produce under adverse local environmental conditions (caused by climatic stress, poor quality feed, seasonal feed and water shortages, endemic disease and parasite challenge) and this makes them suitable for the traditional, lowexternal-input production systems dominant in Ethiopia (IBC 2004).At the same time, it is not uncommon to see piles of crop residues on farms and farmers are well aware of the monetary and feed value of crop residues. Alternative feed resources and improved marketing channels are the key to increasing farm income from the sale of sheep.The objective of the study was to characterize the sheep value chain in order to identify intervention points in Menz Gera district. This study contributes to the Ethiopian small ruminant value chain development project of the CGIAR Research Program (CRP) on Livestock and Fish. It is being implemented in eight target districts throughout the country. For each site a team was formed to conduct a rapid value chain analysis (VCA) using a toolkit developed by an ICARDA-ILRI team and researchers from the partner centers ( http://livestock-fish.wikispaces.com/VCD+Ethiopia). In addition to the site reports, the national team prepared a synthesis report incorporating the findings from all eight sites (http://livestockfish.cgiar.org/focus/ethiopia/). The synthesis report also includes the conceptual framework and describes the general methodology applied for the rapid value chain analysis.The study was conducted in Menz Gera Midr district (Figure 1), which is located 283 km northeast of Addis Ababa on the road to Dessie. The district covers 1,644 square km of land and has a population of 121,676. The topography consists of flat plain (39%), mountain (25%), gorge (12.8%), undulated land (23%) and water bodies (0.2%).Annual rainfall, which is distributed bi-modally, ranges from 900 to 1000 mm per year. The altitude ranges from 2800 to 3100 metres above sea level (masl). The major crops by coverage are barley (52%), wheat (23%), beans (15%) and others (10%). The district is known for its small ruminant population, having about 200,500 sheep and 63,500 goats.Both primary and secondary data were collected using a combination of techniques. Participatory rural appraisal (PRA), focus group discussions, key informant interviews and visual observations were used to collect primary data. Secondary data were collected from district offices, the Central Statistical Authority (CSA) and Debre Berhan Agricultural Research Center (DBARC). Relevant literature and documents were also reviewed to provide the theoretical background.Two kebeles were selected for a separate focus group discussions (FGD). Twelve men and three women were represented per each kebele (neighbourhoods). The groups were balanced regarding economic status, age and educational level. Each question was thoroughly discussed and the consensus reached by the group was taken as the best information.Key informant Interviews were conducted with livestock extension agents, livestock marketers, cooperative promotion experts, abattoir managers, traders, supermarket meat managers, butchers, livestock researchers, transporters and veterinarians. Sheep traders in the primary and secondary/intermediate markets of the district were also interviewed. The team also held discussions with managers from Luna Export Abattoir, to represent the terminal/export market.Data were analyzed using a thematic analysis approach. Quantitative data were analyzed using descriptive statistical analysis techniques to calculate the distribution of costs and margins along the sheep and feed value chains.The core functions in the sheep value chain are input supply, production, trade (marketing), processing and consumption (see Figure 2). Input supply for sheep production includes supply of breeding rams, veterinary drugs and services, feed and credit.The main breed available in the study area is the local Menz breed, which is characterized by its ability to withstand the dry season and to survive and produce under adverse local environmental conditions (climatic stress, poor quality feed, seasonal feed and water shortages, endemic disease and parasite challenge). These animals often show poor body condition and hence attract low market prices. Generally rams are sourced from the producer's own flock and breeding is through natural mating. All farmers use local rams for breeding and fattening for sale. There is no role for cooperatives or other agencies in the supply of improved or proven rams.Improving animal health services is one of the keys to more profitable sheep production. There is one clinic for the district and one health post for three kebeles. There is only one veterinary expert for three kebeles. This means that one veterinary expert will serve on average 1200 households, with about 10-15 sheep per household. Furthermore, farmers have to travel long distances (5-7 km) with their animals to seek veterinary services.Sources of animal feed in the area are natural grazing, hay, crop residues and oats. Some improved forage planting materials, such as phalaris grass and tree lucerne, have been supplied by the District Agricultural Office.Farmers feed crop residues to cattle and equines, whereas hay is provided only to cattle. The seasons for feed purchases and sales are indicated in Table 1. Crop residues are purchased at crop harvesting season (December-March) and sold when there is feed scarcity (April-August).Hay sales take place mainly from September to November. Concentrates are bought from December to June. Concentrates are not purchased during the rainy season (July-November) since at this time feed availability is improving and farmers are generally short of cash. Farmers produce sheep primarily for sale and occasional slaughter at home for household consumption. The average flock size usually maintained by households in the study area is about 20 and flock sizes are increasing due to growing demand for sheep meat. On average, around 15% of the flock is slaughtered for household consumption and around 50% for sale at market. The balance (35%) is kept as breeding stock (Figure 3). Farmers sell their sheep to anyone who pays an acceptable price and the buyers are mainly other farmers, traders and final consumers. Yearlings of both sexes are sold to market when farmers are in need of cash. Farmers have to travel (on foot) for 2-3 hours to reach the market.They collect market information one week before (for price, type of product required and quantity demanded) from neighbours, friends and traders and/or by inspecting the situation in the market on market day.Farmers sell their sheep at the 'farm gate' or the nearest local/primary markets. Farmers and other market actors use all the markets in their localities regardless of political boundaries and ethnic and cultural differences. We can recognize three types of markets, namely primary, secondary/ intermediary and tertiary/terminal markets. The number of market actors participating depends on the level/type of markets. Markets with good facilities and access (road, communications, etc.) will have more participants. The volume of flow of sheep from one market to another depends on seasonality, i.e. festivals, feed availability, level of markets, market actors involved. Figure 4 shows the major market places and routes for highland sheep marketing in North Shewa. These actors collect sheep from the producers and sometimes from brokers and supply them to other actors, including consumers. Collectors have good experience in the market and can easily identify animals that are required by different users. They estimate weight by lifting the animals. They fix prices in the market and participate in a cartel with other collectors and traders so that no one gives higher prices, thus maintaining a relatively low price paid to the producers.Brokers help to organize transactions and obtain commission from sellers and buyers. They are not regulated and sometimes their actions are controversial. Farmers complain about their high commission charges, underhand behaviour and misinformation. Brokers may try to hinder transactions if they are not involved. However, traders who come from distant locations require guarantees from local brokers that there will be no disagreement after purchase of the animals (which could arise if they are sold by thieves or if the family does not agree to the sale). Brokers often know the sellers and buyers personally and so can usually negotiate in any dispute.Traders buy sheep from producers, collectors and brokers at different markets. Small-scale traders operate mostly using their own capital and supply sheep to larger traders, butchers, hotels, restaurants and consumers.Big traders 10% Butchers 10%Collectors 10%Small traders 30%Brokers 10%Farmers 10%Large-scale traders are in a superior position in terms of their available capital, information and facilities, such as holding areas. They usually buy sheep from smaller traders at the terminal markets and supply them to export abattoirs and butchers. Feed for the animals while they are being held is usually provided by the small-scale traders (e.g. a bale of straw for 15-20 sheep), but the large-scale traders pay the rent of the facility and labour costs.Some hotels and restaurants buy sheep from producers, brokers and small-scale traders in the market, while others may have regular small-scale suppliers providing 10-15 animals a week. Hotels and restaurants usually buy mature female sheep since they believe females to have a better meat yield and because of the relatively low price. Hotels and restaurants also buy sheep meat from supermarkets in large towns and cities.Consumers are the last link in the sheep market chain. Households often purchase sheep during cultural and religious festivals. They buy sheep from producers, collectors, small-scale traders and brokers at their nearest markets, selecting animals based on their individual preferences (colour, tail size, horns, etc.).While there are no sheep butchers and meat supermarkets in the study area, they are found in large towns and cities, e.g. Addis Ababa. These butchers focus mainly on fattened, castrated sheep and goats of 40-45 kg live weight. The retail price offered by sheep butchers was around ETB 135/kg at the time of research. They buy animals from large-and small-scale traders.Supermarkets buy animals of different live weights depending on their customers' needs. The animals are slaughtered in municipal slaughterhouses and the supermarkets butcher them at their own premises. They mainly buy male sheep of 40-45 kg live weight. In addition to selling packed meat to individuals via their retail outlets, supermarkets supply carcasses to restaurants and hotels on a contractual basis.The export abattoirs buying animals from the study areas are located at Modjo, 155 km from the study area (e.g. Luna export abattoir). Large-and small-scale traders bring the animals to the factory gate (a minimum of 100 animals at a time) and the abattoirs slaughter up to 2000 sheep and goats a day, based on the availability of animals. Export abattoirs encourage larger traders so they can deal with fewer suppliers. Due to competition among abattoirs, the price per kg live weight has increased to ETB 32 for sheep in May 2012. Export abattoirs buy male (un-castrated) yearlings weighing 22 to 30 kg. They do not slaughter female animals.The distribution of marketing costs and margins can be illustrated by tracking some major marketing channels linking producers with end-users. These channels represent the full range of available outlets for sheep as they move from different collection points in production areas to terminal markets.There are four major market channels for sheep produced in the study districts (Figure 6). Channel 3: Sheep transported to Addis Ababa butchers, supermarkets and consumer markets Small-scale traders collect fattened mature males (mukit) and fattened sterile females (mesina) and transport them to the Addis Ababa market especially for the religious holidays. In addition to individual consumers, these animals are sold to sheep butchers and meat supermarkets. The butchers and supermarkets have permanent suppliers for live sheep. Traders transporting sheep to the final consumer markets have agents at Karra and Sholla (at the entry to Addis Ababa from the Dessie road) who sell the animals in the market. They feed them only for maintenance purposes until they are sold.This channel is the largest consumer of young, un-castrated male sheep and goats within a weight range of 22-30 kg. The export abattoirs buying sheep from the study area are located in Modjo town, 70 km south of Addis Ababa. They slaughter up to 2000 sheep and goats every day and export chilled carcasses to the Gulf States, mainly the Kingdom of Saudi Arabia and the United Arab Emirates. Sheep from the study districts are purchased by small-scale traders and delivered to the export abattoirs mainly through larger traders. Sheep from the highland market of North Shewa are also channelled to export abattoirs, it is difficult to ensure a sufficient supply from the study area for export markets, as the abattoirs purchase on a weight basis unlike individual consumers (live weight base) and individual consumers will pay a better price than the export markets.The majority of producers price their animals based on visual estimation. Animals are marketed on an individual basis and agreement on prices is reached after a long one-to-one bargaining process. Local and terminal traders and export agents are better informed of the demands and prices of animals and are decisive in the fixing of prices. Figure 7 shows how prices vary at different markets. The demand and supply of sheep varies with seasons, as shown in Table 2. The study identified the major marketing costs of sheep and feed, from the producers to the different end-users. At each stage in the chain, the value of the product increases as the product becomes more suitable for end-users. However, at the lower end of the value chain, especially with the brokers, the price of the product increases without adding value to the product, because it is on the spot and one day marketing.Marketing margin is most commonly used to refer to the difference between producer and consumer prices of an equivalent quantity and quality of a commodity. However, it may also describe price differences between other points in the marketing chain, for example between producer and wholesale, wholesale and retail, prices (Scarborough and kydd, 1992). The size of marketing margins is largely dependent upon a combination of; the quality and quantity of marketing services, and the efficiency with which they are undertaken and priced. The quality and quantity of marketing services depends on supply and demand of marketing services and/or the degree of competition in the market place. The costs of service provision depend on both exogenous and endogenous factors and the efficiency are determined by the extent of competition between marketing enterprises at each stage.Marketing costs and margin analysis is especially comparison of prices at different levels of marketing over the same period. Computing the total gross marketing margin (TGMM) is always related to the final price or the price paid by the end consumer and is expressed in percentage (Mendoza 1995).It is use full to introduce here the idea of \"producer participation\", gross marketing margin produces\" (GMMp) which is the proportion of the price paid by consumer that belongs to the producer. Producer that act as a middle men also receive an additional marketing margin.In marketing chain with only one trader between producer and consumer, the net marketing margin (NMM) is the percentage over the final price earned by the intermediaries as his/her net income once his marketing costs are deducted.The analysis of marketing costs was based on secondary data updated by additional data collected from the surveyed markets (see Table 3). The data for export abattoirs was presented as an aggregate value since their major cost is processing and packing. Transportation is the major cost for small-scale traders supplying sheep and goats to export abattoirs, butchers and supermarkets, followed by the cost of feed and tax (to the municipality). Personal travel costs, taxes and transportation are the major costs for collectors. The main costs for large-scale traders are housing and search costs. Search costs include buying through different agents and make financial arrangements. However, these costs relative to the overall costs of the animal are negligible.Large-scale traders simply collect commission on the number of animals submitted to the export abattoirs in their name. However, when small-scale traders hand over animals to larger traders at secondary markets, the major cost for the large traders is for transporting and feeding the animals. The significance of transportation costs in the sheep and goat value chain underlines its role in competitiveness among the different businesses. This calls for policymakers to facilitate the development of a more cost-effective livestock transportation system, although a more regulated system would probably be more costly. While the maximum Freight on Board (FOB) export price at Bole airport is 5.50 US Dollars per kg or ETB 98/kg, the domestic sheep meat price is ETB 135/kg. Export abattoirs are therefore selling at a lower price than the domestic market. However, they are also exporting offal, including kidneys, hearts, intestines, testicles, penises and brains. Thus, in order to be competitive in the export market, they try to beat their competitors in the supply market. One of their strategies is to reduce their rate of procurement in the highland areas during holidays when highland sheep are in high demand. The analysis of costs and margins along the different sheep marketing channels also shows that the proportion of the final sheep price obtained by producers was 59% from export abattoirs, 64% from butchers and 67% from supermarkets (Tables 4, 5 and 6, summarized in Table 7). Constraints in the sheep value chainFarmers in the study areas have no alternative other than to use local rams. While they are well adapted to the adverse conditions found in the area, they also maintain low rates of productivity in the local breeds.There is also a shortage of forage seeds in the area. Farmers are using oat seeds either from their own stock or by buying from the market. There is a general shortage of other forage crops.It is difficult to find forage seeds in the market.While such micro-finance institutions as Amhara Credit and Saving Institution and Wisdom Micro-finance are present in the study area, farmers have limited access to credit, mainly because of high interest rates and requirements for group collateral. Farmers are generally unwilling to be involved in group collateral schemes because they are worried about paying the debts of defaulters.Veterinary services are provided in the study area by veterinary clinics and animal health posts organized under the office of agricultural development/livestock agency. At the time of this assessment, one health post was serving three kebeles. However, only one health technician is available at each centre, where they are required to do all activities, including administration. The health posts are therefore short of human resources. In addition, they often have a shortage of drugs and clinical equipment. Above all, the technicians have no transport and are unable to reach farmers in the furthest locations and those who cannot bring their animals to the health posts. This shortage of funds and facilities means that animals may die unnecessarily.Sheep production in the study area is based on free grazing of natural pasture. Feed supplementation is uncommon, although a few farmers provide their sheep with crop residues. However, such crop residues as barley and wheat straw are very poor nutritionally and farmers are not treating them with urea to improve the quality. Concentrates are also seldom fed.As indicated above, the major breed available in the study area is the local Menz breed. These animals usually have a slim body condition and fetch low market prices. According to the focus group discussions, farmers would like to introduce better performing breeds or cross-breed to improve the Menz breed.In the study area, there is high incidence of foot rot, fasciola, pasteurellosis, sheep pox and mange mites. Given the critical shortage of veterinary technicians, drugs and equipment at the health posts and clinics, these diseases significantly affect the productivity of animals in the area.Farmers in the area use traditional methods of sheep feeding, health care and housing. Farmers have no access to training on how to improve their skills and knowledge in sheep husbandry practices.The extension system is expected to be the major source of agricultural information and knowledge for the farmers. However, there is poor access to knowledge on how to improve production and delivery and where and when to sell sheep and feed products.There is no formal source of market information about sheep and feed prices in the study areas.Traders get information from friends and other traders. Farmers rely on the last week's market price information obtained from neighbouring farmers or market supervisors.Based on information obtained from interviews and marketplace observations we deduce that most local markets have poor infrastructure, with no fenced yards, clinics, weighing scales, water supplies, feeding troughs, loading and unloading ramps and toilets. On market day, whether the animals are sold or not, the chance of them getting fed and watered is small. During the rainy season, mud is a problem and there is no drainage. There is no regular feed market in the study area. Local feed traders buy crop residues and oat millings from farmers and sell them to the local town.Lack of feed storage is a major problem, especially during the rainy season. Farmers lose significant amounts of crop residues due to exposure to rain. Traders buy crop residues from the farmers, load it into sacks and transport it immediately to the town. Crop residue traders consider this trading as part-time work and do not realize the importance of storage.Transport costs are high because of the rough road network in the area. This inflates the price of the animals in the terminal markets, making them uncompetitive when compared with sheep coming to terminal markets from other areas.Most of the traders in the livestock markets are informal operators who have no trade licence. Most of them are opportunistic and see sheep trading as a side-line business, looking for maximum benefit, often at the expense of the farmers. Thus, they do not have a proper sense of responsibility or accountability in their business operations. Formal business operators are discouraged since they have to compete with informal operators who do not pay tax.Sheep supply in the study areas is higher during the holidays and when the households need money to purchase seed, fertilizer and other crop inputs. This is mainly because households use sheep as sources of income to cover their immediate cash expenditure. Thus, farmers in the study area mostly sell their animals during holidays and following some seasonal patterns, depending on their financial problems.Processing in the study area is carried out by hotels, restaurants and butchers. However, in this rural area, there are only a few consumers who use butchers and not many hotels. Since meat is consumed mostly at holiday times, this limits the market for processing.One of the opportunities open to farmers in the study areas is selling their animals to the export market, with a new market opened recently in Bahrain, where consumers have developed a taste for Menz sheep meat. However, since farmers have little knowledge of this market, they are unable to supply animals of suitable quality. The abattoirs need young, un-castrated, yearling males with good body condition.This constraint is related to the seasonal availability of feed and lack of improved sheep fattening skills in the area. Sheep rearing in the area is mainly on free grazing of natural pasture and animals are fattened by feeding for over a year after castration. Thus, it is difficult to get animals of good body condition throughout the year and export abattoirs and butchers are facing difficulties obtaining animals to suit their requirements.Taxes are collected per head of animals in the market yard regardless of whether the animal is sold or not. There is double taxation of the same animal as it crosses checkpoints to reach terminal markets. For example, sheep traders buying sheep from Hamus Gebey pay tax at the market gate and another ETB 100 per truck when they cross Legetafo.We found no cooperatives or other form of association for sheep and feed marketing. Agricultural cooperatives in the area provide only fertilizers and crop seed to their member farmers. This means there is no horizontal linkage of farmers in the area that can help to boost their bargaining power. Farmers are selling their animals on an individual basis and face the marketing challenges on their own. Since they have no longstanding relationships with traders, they also lack vertical linkages with other actors in the value chain.In its five-year Growth and Transformation Plan, the Government of Ethiopia aims to increase meat exports to 110,000 tonnes in 2015 (MoFED 2010). The government envisages earning USD 1 billion from the export of meat and live animals by this time. Thus, it is committed to supporting the private sector involved in the export of these commodities. This could create better market opportunities for sheep producers.The growing human population and urbanization has had a considerable impact on patterns of food consumption in general and demand for livestock products in particular. There is high demand for sheep meat in local markets because of the expansion of restaurants, hotels and butchers. The attitude of the consumer is leading to a change towards a more meat-focused diet, especially in large towns and cities. Consumers have also realized that highland Menz sheep meat has certain unique taste characteristics. The projected increase in the demand for livestock products has important implications for the livestock feed industry, with growing demand for energy and protein raw materials.The demand for meat is growing in the Middle East, where sheep meat is preferred. The Government of Ethiopia is also encouraging meat export, creating good market opportunities for sheep producers.Amhara Regional State is focusing on developing the livestock sector due to its high resource potential. Amhara region has established a livestock agency under the Bureau of Agriculture in order to provide the necessary support. This could help in increasing the supply of such inputs as improved breeds and forage seeds.The area is known for livestock production and it is delineated as part of a livestock growth corridor by the regional government. The major livestock opportunities in the corridor include beef and sheep production and dairy operations. Although the area is characterized by mixed crop-livestock production, crop farming is becoming difficult due to soil infertility, waterlogging, frost and land degradation. This creates a good opportunity for sheep and feed production.Sheep fattening is becoming one of the most important livestock production activities in the highlands of North Shewa. There is therefore a need for higher volumes and better quality feeds. This may increase the demand for feed as well as stimulating the development and growth of feed markets.In the past, farmers had limited awareness about animal and animal feed production. Currently, emphasis is being given to livestock and feed production by the government and farmers are taking training on how to manage their animals.Transport access is one of the most important constraints for sheep and feed trading. Traders transport their sheep directly to the terminal markets (using Isuzu trucks). The improving road network therefore represents an opportunity. Improvement in transport infrastructure may also reduce operational costs for businesses and thus encourage the entry of potential traders who may help push up prices through price competition, thereby also increasing demand.In addition to the existing export abattoirs, the construction of new ones in the region and around Addis Ababa creates good opportunities for sheep traders and farmers.Farmers normally sell their sheep and goats when they need cash to meet household expenses, settle social obligations and purchase food during a drought. Coping strategies to alleviate food shortages during severe droughts need to be devised to ease pressure on these livestock enterprises. If they were not under pressure to sell at certain times, farmers would be able to keep their best quality animals for breeding and so improve the production performance of their flocks and herds.Farmers currently fatten some sheep for household consumption and for sale; traditionally this involves an extended period of time and a large supply of inputs. The strong seasonality of demand for sheep presents an opportunity for farmers to focus more on short-term fattening to produce animals in the appropriate condition to coincide with periods of peak prices. Smallholders also need new knowledge to enable them to improve the management and storage of crop residues and grow additional, good quality supplementary feed for their livestock, e.g. forage legumes.Challenges and suggested interventions at different stages of the value chain and 'best bet' research and development intervention strategies are summarized in the Annex tables.Based on the findings of this study, we would like to make the following recommendations to government policy-and decision-makers, donors and the wider development community:1. Support genetic improvement of the Menz sheep breed based on other experience of community-based breeding programs. 2. Support improvement in feed availability and feeding practices in the area through: Timely delivery of forage seed  Improving forage seed production practices  Providing training on improved sheep feeding practices to farmers and extension agents  Regenerating grazing land  Maintaining optimum size and productive sheep flocks  Sowing grasslands with improved varieties  Introducing and supporting crop residue pre-treatment to improve feed value  Developing improved forage varieties  Training farmers and District Agents (DA) in such improved feeding methods as best or least cost ration formulation, strategic feeding and supplementation with feed of higher nutritive value. 3. Support improved animal health delivery through: Encouraging the regional livestock agency to hire more veterinary technicians and providing in-service training to existing technicians  Providing technical support for the establishment and proper running of a veterinary drug revolving fund (already approved by the regional government)  Allocating budget for procurement of veterinary equipment for the health posts and clinics  Procurement of motor bikes and mules to facilitate mobile serves for veterinary technicians  Providing regular vaccination programs and treatment for major diseases in the area  Training more community animal health workers for remote villages 4. Strengthen credit and savings associations in terms of finance and management. This may need provision of seed money and training of their leaders in cooperative management. 5. Link with the National Livestock Market Information System to collect market information, conduct analysis and disseminate the information. Diversify mechanisms of information dissemination and delivery. 6. Support construction of well-designed livestock marketing yards with all the necessary facilities. Encourage and support enforcement of government rules and regulations on business registration and licensing. This may involve coaching the market operators and taking action on unlicensed actors. 7. Support the creation of multi-stakeholder platforms involving federal, regional and local administrators, customs authorities, traders and other stakeholders to discuss crosscutting issues and negotiate solutions. These platforms could serve as forums to strengthen market linkages.8. Support provision of training on sheep production and management for producers, DAs and District extension subject matter specialists. 9. Organize training on efficient and hygienic slaughtering and meat handling for workers at municipal abattoirs, hotels, restaurants and butchers.Annex ","tokenCount":"5389"} \ No newline at end of file diff --git a/data/part_3/4474890481.json b/data/part_3/4474890481.json new file mode 100644 index 0000000000000000000000000000000000000000..bbede304b216757e9ca4b4a12114c76320b32cfa --- /dev/null +++ b/data/part_3/4474890481.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"eef979f5660ce45cff3a039dc52df1e6","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/3f9f4678-4ba3-4a5f-acaf-4ec0131bd792/retrieve","id":"650269064"},"keywords":[],"sieverID":"6c40cbbd-bcf5-4813-8684-fcc806d2a215","pagecount":"63","content":"The present report contains a description of the activities and results obtained in the project \"Cassava Development: Integrated Production, Processing and Commercialization ot Dry Cassava for Animal Consumption in Ceara, Northeast Brazil.• The overall objective of the project was to improve the welfare of poor rural communities involved in cassava production, processing and commercialization activities throughout the main cassavaproducing areas of the State of Ceara, through the introduction and adoption of improved technologies as well as appropriate organizational forms tor institutions and farmer groups. The main project implementation strategy was to establish a pilot project aimed at providing the experience required to develop local institutional capacity to carry out cassava-based rural development projects on behalf of the target group. The project was executed jointly by the Centro Internacional de Agricultura Tropical, CIAT and the Ceara State Secretariat of Agriculture and Land Reform-SEARA, through is affiliate agencies EMATERCE (technical assistance and rural extension) and EPACE (agricultural research).The principal accomplishments were as follows:.. The selection of the State of Ceara as the site for implementing the pilot project was well justified. The fact that local counterpart agencies had been involved in previous activities related to small-scale cassava farmer processing served as a basis on which to build the organizational and institutional intervention catalyzed by the Kellogg Foundation-funded project. Moreover, the existence of a working group that included policymakers and technicians highly motivated toward cassava development and further stimulated by their exposure to similar projects and participation in overseas training activities, greatly facilitated project implementation... The building of local institutional capacity and support for project activities progressed steadily during the span of the pilot project. The existing state-Ievel cassava committee was strengthened, becoming a well-recognized statewide coordinating body tor al! activities related to the cassava crop. Moreover, the establishment of seven regional cassava committees (RCC) in the main areas of project influence made it possible to decentralize project activities quickly and efficiently. The RCCs have also been instrumental in facilitating and enhancing farmer groups' participation in project implementation, as well as the contacts and exchange of experiences among extension agents involved in project activíties... The building of local capacity among farmers was a very important achievement, with a total of 147 cassav J-based farmer organizations established during the pilot project.Another 11 producer groups existing before the project were reorganized and reactivated. The total number of project beneficiaries in the 158 groups now exceeds 3100 farmers.~ Identification of local financial resources for supporting project activities was successful. A total of US$1 ,002,000 was allocated directly by local agencies and programs during the period in order to finance project activities including the installation of dry cassava agroindustries, credit programs for cassava production and processing, cassava planting material distribution, and financial support for adaptive research on pest and disease. control. Another important contribution of the local agencies was the payment of salaries for the cadre of 95 researchers and extension agents at the central and regional levels who were engaged full time in project implementation.~ A total of 56 pre-production trials were established, whereby 43 farmer groups were exposed to improved technological packages for cassava production. Trial administration and management were entirely the farmers' responsibility. Results obtained for the 1990-91 cropping season indicated average yields for the trials of 22.4 t/ha, a 59% increase over farmers' plots. In the 1991-92 trials, average yields were 19.5 t/ha, representing a 116% increase over farmers' yields for that season.A component for producing planting material was included as part of project activities.Results were not very encouraging as farmers placed more emphasis on the plots as a source of roots for the dry cassava agroindustries than as a source of good-quality planting material, which could have been obtained easily through pruning practices in the plots. Most farmers preferred to leave the plots unpruned and rely on additional sources of planting material, usually of poor quality. Although the results were not as expected, the production from the plots became an additional source of income for the farmers.Important adaptive research activities were carried out with technical and financial support from the project, aimed at finding solutions for two major constraints affecting cassava production in the state: witches' broom disease and the cassava hornworm (Erinnyis e/lo). Initial results are already providing local agencies with low-cost, environmentally sound control practices.Production of dry cassava chips by the small-scale farmer groups was one of the main project activities. The number of agroindustries functioning during the project expanded rapidly from 12 the first year to 33 the second year, and to 43 the last year. Total output of dry chips was 2677 t (7094 t of fresh roots).Adaptation of the farmer groups to the new cassava processing technology was easy.A factor that is becoming crucial for the performance of the cassava agroindustries is the group's ability to assur ) an adequate and timely supply of fresh roots for their processing units. A sharp reduction in the average annual output (38%) of some drying plants was monitored during the third year, contrasting dramaticaJly with a 140% increase during the previous year... Commercialization channels for the chips produced within the project served to open and consolidate an alternative market tor cassava producers in the state. A total of 975 consumers purchased dry cassava during the three years, with 92.6% of them being low-volume consumers « 5 tfyr), accounting for 32.4% of the total project output. Conversely, only 4.6% of the consumers were classified as large-volume purchasers, representing 58.7% of the total volume produced... Production 01 farinha (toasted flour) is the principal commercializátion outlet tor cassava farmers in Ceara, and all too often they get paid very low prices for their producto With the introduction of dry cassava chips for animal feed as an alternative marketing outlet, the relationship between the farinha and the chips must be constantly monitored regarding prices, costs and protit margins in order to offer sound advice to farmers as to the more profitable outlet for their crop. During the pilot project, farmers producing dry cassava during the 1990 processing season were able to make a net profit of Cr$11. 7¡kg; whereas those who produced tarinha had a net loss of Cr$24.5¡kg. During the 1991 processing season, the dynamics of price variatlon for cassava products was evident, with the farinha being• a more profitable outlet than the chips although both activities gave positive margins for the farmers.The important fact is that project activities contributad to build enough capacity .among farmers so as to be able to choose the best option tor commarcializing their production... Training was an important strategy for developing human resources and enhancing capacity building among participating institutions and farmer groups. A total of 108 training activities covering different areas of work ware organizad during the pilot project for a total of 832 technicians and 2123 farmers... The monitoring and evaluation (M&E) model implemented during the project resulted in improving the infarmation flow and exchange among farmers, technicians and project coordinating taam at regional and centrallevels. Processed information is now being disseminated in a timely and frequent manner to beneficiaries and the larger target audience and is also currently usad by axtansion staff and farmar groups to plan and evaluate activities... Data coUactad on the parformance of farmer groups during the project provides the foUowing information:• At present there are 133 cassava producer groups with processing facilities ready tor dry cassava production; a further 25 farmer groups are not ¡ncluded as their membership is still being deflned. Total membership of these groups is 2962 farmers; their land tel ;ure systems include 58.6% owners, 28.9% renters and 12.5% sharecroppers. Of the owners, 21% belong to land reform settlements.• Of the 133 cassava producer groups, 36 have women among their members (3% of the total beneficiaries). v• . Almost half the project beneficiaries have no basic reading and writing skills.• Size of cassava plantings among project participants has maintained the same tendency: some 56% of the farmers plant less than 1.0 ha of cassava and fewer than 15% of the entire population plant more than 2.0 ha. Data available on the relationship of plot size with land tenure system indicate that smallholders planted larger areas to cassava than renters and sharecroppers. By the end of the pilot project, average plot size for the entire population presented a slight decline (8%) as compared to project outset, principally among landholders whose area planted to cassava was 13% less than three years ago.• Overall results of the three processing seasons show that 7094 t of fresh roots were processed, with 38.3% coming from members of the drying plants and 61.6% corresponding to nonmembers. Only 39.6% of the beneficiaries supplied cassava during the project.• Annual incomes received by project beneficiaries totaled US$163,689, of which 37% corresponded to root sales, 10% to wages paid by the agroindustries, and 52% to profits from commercializing the dry chips.• Distribution of annual incomes according to land tenure systems of the beneficiaries indicated that the smallholders gained 58.9%, renters 32.4%, and sharecroppers, 8.7%. The relationship between income and cassava plot size showed that 77% went to farmers planting areas no larger than 2.0 ha and 14% to those with more than 3.0 ha--a 115% in crease in relation to the initiation of the project.• Several important constraints were identified that were limiting to project implementation and its continuity after the initial external support terminates. These constraints are related to organizational, financial, political-economic and resource conservation factors. The identification and implementation of strategies appropriate for dealing with these limitations was initiated during the pilot project. Constant monitoring and adjustments will be crucial for the long-term impact and continuity of these activities.• Rapid diffusion and adoption of project activities was readily assessed by the end of the project, based on the analysis of data currently provided by the M&E system. Quantified data on project impact at the farm level and the aggregate are still lacking. Two surveys conducted during the project revealed that farmers are now increasing the size of their cassava plots in response to the project stimulus. Average areas planted to cassava are 30% larger among the farmers surveyed than 3 years ago.\"Cassava Development: Pilot Project in Ceara, Northeast Brazil\" is a special proJect supported by a three-year grant (March 1989-June 1992) from the W.K. Kellogg Foundation to the International Center for Tropical Agriculture (CIA T). The purpose of the grant was to enable CIAr-in partnership with Brazilian agricultural research and technical assistanca agencies and farmer organizations, at both national and state levels-to introduce improved cassava production and processing technologies and appropriate organizational schemes tar institutions and tarmer groups throughout the State of Ceara.The overall objective of the project was to improve the welfare ot poor rural communities involved in cassava production, processing and commercialization in the main cassavaproducing afeas of the State of Ceara, Northeast Brazil, through the adoption of improved cassava production, processing and' commercialization technologies and the establishment of appropriate organizational schemes.The specific objective was to establish a pilot project aimed at providing the experience required to develop and improve local institutional capacity to carry out cassava-based rural development programs that will benefit the rural population of the State of Ceara. In the longer term, it was expected that the experience gained in the pilot project would be used to improve national institutional capacity to promote development of the cassava crop within the context of rural development programs.The expected benefrts of the project were:.. Agroindustrlal development • In the short term, promotion of small-scale, cassava-based agroindustries in the State of Ceara, which will provide employment, raise incomes, stimulate local industry, provide new markets for cassava and encourage community development.• In the longer term the generation and testing of a small-scale cassava-based agro industrial development modal that can be used in other cassava-producing areas of Northeast Brazil.Strengtheníng of local ínstitutions and community-based organizations, daveloping and improving their capacity to continue and expand proJect activities after support from the Kellogg Foundation terminates... Improved wel1areIncreased income and additional employment opportunities for small farmers and landless laborers in the rural communities covered by the project area.The overall structure of the work plan used for project implementation included the following activities:.. Development of a macroeconomic planning frame lO Selection of an initial site for developing the pilot project. The macroeconomic planning phase (activity # 1) was conducted prior to project initiation through joint studies carried out by CIAT, EMBRAPA, EMBRATER, the EMATER's and other Brazilian agencies at national and state levels. Major findings indicated the production of dry cassava for animal feed in the Northeast as the most promising enterprise.The selection of the State of Ceara as the most suitable site tor establishing the pilot project (activity # 2) was strongly influenced by the prior existence of strong research and extension efforts in cassava, coupled with considerable small-scale cassava farming and processing activities.PROJECT RESUL TSAt the onset of the project in May 1989, there were already 11 cassava tarmer groups which had been organized around dry cassava processing agroindustries during the period 1980-81. These cassava agroindustries were established as a result of the statelevel Brazilian Technical Assistance and Rural Extension Agency's (EMBRATEA) strong commitment to cassava promotion activities, which included intensive training activíties for state-Ievel extension agents in Brazil and abroad, and financial support for building dry cassava agroindustries in collaboration with tarmer groups. The State of Ceara was one of the regions where EMBRATER was more active; and during the period 1980-87 8 farmer groups with dry cassava agroindustries were established in the state, only three ofwhich were active when CIAT Cassava Program personnel started to have a stronger presence in the area in 1988. The main reasons for the failure of the other five groups were the intensive drought that hit Ceara from 1979 to 1983 and the fact that these agroindustries were based on very large producer groups.In 1988 the coordination of work among technicians and policymakers led to the forrnation of the Ceara Cassava Committee (CCC) with the aim of coordinating the work with the cassava crop statewide. The incipient CCC played a fundamental role in identifying additional financial resources, which made it possible to ¡nstal! another 8 dry cassava agroindustries durihg the period 1988-89.CIAT's participation in this area was greatly enhanced by the formation of the CCC, and this partnership resulted in formulating a proposal submitted later to the Kellogg Foundation requesting financial support for implementing an Integrated Cassava Development Project in the State of Ceara.Upon approval of the proposal by the Kellogg Foundation, project activities were initiated in May 1989 in the main cassava-producing areas of Ceara, aimed at establishing the production of dry cassava chips for animal feeding as a viable agroindustrial activity among small-scale farmers.As part of project activities. the 11 groups existing at the onset of the project were reorganized and/or reactivated. and another 147 farmer groups were established tor a total of 158 producer groups organized around dry cassava agroindustries by June 30.1992. Table 1.1 presents the location ot the dry cassava agroindustries established during the span of the project. The majority of these groups (75%) were organized during the last year of the project and will only be initiating dry cassava processing activities during the period July-December 1992.Qf the 158 farmer groups established by the end of the pilot project. 12 are not considered ready as they are facing serious problems for lack of availabílíty of funds. raw material ando in some cases. consolidation of the groups themselves. Despite the fact that the project has been able to achieve significant growth in the number of producer groups participating in project activities. there are some issues that need to be raised in order to draw lessons that could be useful to similar projects in other regions (see Box 1).The CCC. created in 1988 and still incipient at the time project activities began in May 1989. has become a coordinating body for all activities related to the cassava crop in the State of Ceara. The CCC is formed principally by representatives of the two main counterpart agencies (EMATERCE and EPACE); and during the project, these two agencies accepted and considered the CCC as part of the institutional and organizational ,. Despite the importance of having these additional sources of financial support so that farmer groups can engage in dry cassava processing activities, their actMties nsed to be coordinated at state level, preferably through the CCC to avoid the type of problems a!ready occurring with the distribution of the grants such as (a) the poor selection of the farmer groups; (b) the lack of institutional presence in sorne areas, making it very difficult to offer technica! assistance suppart te the farmers; and (e) the delay in delivering the economic resources to the farmers. which caused delays in the installation of lhe dry cassava agroindustries. Moreover. these processes have, all too aften. been characterized by the need fer rapid action, with minimum time for careful deliberation with farmer groups.Coordination 01 project actívities--especially the integration with the research and extension agencies located in the areas of influence of the project--was pursued through the establishment of the Regional Cassava Committees (RCC), eompased of representatives from the ma!n executing agencies and the farmer organizations. To date, there are 5 RCCs fully functioning and 2 more are expected to be organized during 1992.The work of these committees allowed the rapid decentralization of all project activities, facilitating their implementation in critical areas sueh as training, selection and organization of new farmer groups and technica! assistance. Another important result of the establishment of the RCCs was the improvement in the quantity and quality of the exchanges of experi~nces among extension agents working in the different areas of influence of the project--a fact that was very difficult before the project given the extremely rigid organizational structure of the executing agencies. .Despite the adverse economíc situation facad by the country during the three years of project activities, the identification of sources of financial resourees and the channeling of them toward benefiting farmer groups participating in the project was very active allowing project activities to be carried out within the proposed goals. lhese resources were used mainly to finan ce the establishment of the dry cassava agroindustríes although some other programs were implemented in relation to working capital and cassava production credit for the farmer groups.Table 2.1 presents information on the estimated value of the financial contribution of the Brazilian programs and agencies to the setting up of small-scale cassava-based agroindustries as part of project activities. Rapid expansion of the social base of the project has been enhaneed as a result of the existenee of several sources of grant-type financial resources, which have been mainly used for setting up the dry eassava agroindustries. These financial sourees are likely to become searee and the activities initiated during the last year of the pilot proJect related to the implementation of loan-type eredit programs for establishing agroindustries, eassava production and eassava processing bear special significanee and must be earefully monitored and evaluated as they may beeome the most readily available souree of financial funds for expanding project activitíes. These eredit programs are based on priee variation of eassava products such as dry cassava; and given the very high inflation rates prevailing in Brazil (25-30% monthly), they are thought to represent a less risky eredit seherne for farmers as compared with the other eredit sourees available, whieh include monthly index-linked adjustments for inflation. ,.. Cassava production in Ceara is carried out mainly by sm\"all-scale, resoureepoor fármers. with very rñtle use of improved technology. Project activities ¡ncluded the methodology of the pre•production plOls with the purpose of demonstrating improved cassava production technology for the farmers' benéfit. Initial results obtained with this activity have been very clear in the sense that the adoption of improvad technology components makes it feesible to. increase currently low cassaVB productivity levels (8.3 tjha, statewide average).,.. The results obtained with the pre•production plots must be considerad cautiously as they were obtainad in a situation where all expenses were paid by the project. It remains to be assessed to what extent small•scale cassava farmers will be wiUing to invest scarce economic resaurces in inputs such as organic fertilizer (10 t/ha) or weed control practices. Cow manure. for example. has become very expensive in Ceara, and its high transportation costs usuaily make its use unfeasible. Moreover, increased wead control activities may nOl be attractive, given the farmers' scarce economic resources. Future proíect activities in this area must continue to evaluate this adoption process as well as assess the use of other alternatives such as green manure and cover crops as a means of maintaining soil productivity and sustaining reasonable cassava yields... Improvad cassava planting material production and distribution are perhaps the best short•term strategies for increasing cassava production and productivity levels in Ceara. Resuits obtained with this activity during the pilot project showad that the strategy of farmer•administered plots for producing cassava planting material mixed with pruning practices before the planting period is fikely to taíl. Besides. the planting material distribution program carried out by SEARA is costly and covers only limited areas. It will be necessary to refarmulate this strategy for the future, including activities such as the regional commercial•scale production af best local cultivars and integration with the interinstitutional cassava breeding efforts currently been implemented in Ceara. where high•yield•potential gene pools are being developed and characterized .. ..• Pre-produc1lon trials. These trials were oriented toward reducing the effect of minimal adoption of improved production technology by farmers, a fact identified as one of the main limiting factors on the generation and dissemination of improved agricultural technology among cassava producers. Planning, establishing and evaluating these trials involved the active participation of techniclans from the two main counterpart agencies--EPACE and EMATERCE-and farmer particlpation was also enhanced.Project activities were initiated in May 1989, well after the planting season for cassava was over; for this reason the first pre-production trials were planted only in March 1990. Moreover, cassava production is a biannual activity in Ceara, usually taking 15 to 18 months to harvest. Implementation of these pre-production trials ¡nduded the selection of several technology components developed by Ceara researchers and extension agents over the last 15 years. These production components had not been previously validated in large plots (> 0.25 ha), under complete farmer management, to ascertain their compatibility with current farmer productian practices. The selection af these technology camponents was done through discussions in which researchers and extension agents from local counterpart agencies, farmers and CIAT scientists participated. Table 3.1 presents the main technology components in the two cassava production systems. In 1990, 15 pre-production trials were established and harvested at 15 months. In 1991, 41 new trials were added, 28 of which were in new communities. Farmers were instructad on how to apply the new technology components, and the administration and management of the plots were their responsibility. Nearby plots plantad by the same or different farmers were previously selected as checks; and at harvest time, two samples of 100 m 2 each were taken from the pre-production and the check plots ta compare the yield with the improved and the traditional technology.In the 1990-91 cropping season, average yield for the pre-production trials was 22.4 tjha, a significant 59% more than the average yield abtained in farmers' plots. In the 1991-92 cropping season, average yield of the trials was 19.5 tfha, representing 116% more than the average yield obtained in farmers' plots (Table 3.2).• Planting material production plots. This activity was planned to increase the availability of good-quality planting material and meet the expected increased demand for improved planting material resulting from the impact of the project The best available cassava cultivars in each region, improved and local selections, were used to set up large plots (1 ha), which were under complete farmer management and w,re planted using improved production technology components. During the 1990-91 cropping season, a total of 15 plant material plots were ¡nstalled; tor the 1991-92 season the number was increased to 41. , PPP = Pre-productlon pIOIS; plol ares 012,500 m 2 and planllng density 01 10,000 plfha.• FF = Farmers' fields.Results obtained with this project activity were not as satisfactory as expected because the tarmer groups gave more importance to the plots as a source of roots for their agrolndustries than as a source of planting material. There Is a lag period of at least 6 months between harvesting and planting in Ceara, depending upon the start of the rainy season; for this reason storing of cassava stakes for use as planting material is not a feasible practice. To eliminate this constraint, the project strategy for this activity was to try to introduce the practice of pruning the plants to obtain goodquality planting material at the onset of the rainy season.With very few exceptions, most 01 the tarmer groups that participated in this activity preferred to leave the planting material plot unpruned at planting time, relying on additional sources 01 planting material, generally of poor quality.Despite the fact that this activity allowed the producer groups to attaln significant amounts of cassava roots as raw material for their agroindustries. the results sought by the project were not achieved.The Secretariat of Agriculture of Ceara has been implementing a program of cassava planting material distribution among farmers groups at planting time. Effectiveness of this program was seriously questioned by the CCC, mainly because of the poor quality and the lack of adaptation of the material distributed to the farmers.Nevertheless, not everything was a failure with the cassava planting material activity of the project. In the 1992 planting season, the CCC was able to intervene directly in the implementation of this programo introducing requisites such as selection of the planting material suppliers, supervising harvesting and packing of the planting material, and selecting the cultivars according to their destination. A total of 4,735 m' of planting material were distributed in 80 farmer communities, for a total cost of US$ 41,500.• Other activitles. Cassava cultivation in Ceara as in most of the seasonally dry lowlands of the Neotropics is associated with a large complex of pests and diseases that attack the crop over a long period 01 time (3-6 months), causing severe losses aggravated by the fact that cassava is produced primaríly by small-scale, resourcepoor farmers, with limited or negligible use of biological or chemical control practices. • Identification of a group of field-resistant clones, which were susceptible to graft .1g and mechanical transmission but showed a high rate of field resistance during three growing cycles; they are probably resistant to an unknown motile vector.• Definition of a production system for WB-endemic areas• Publication of a pamphlet including a description ot the production system and the symptoms ot the disease for distribution among farmers, extension agents and community leaders• . Establishment of several demonstration plots to be used for field days and technology transfer purposes• lnmation of a Secretariat of Agriculture-financed program aimed at producing planting material on a commercial scale in areas where ecological conditions restrict pathogenic multiplication and invasion; distribution to cassava producers will be during the 1993 planting seasonIn general, significant reduction in W8 incidence and increases in root yields in those locations of the affected area where tarmers had foUowed the recommendationsCassava processing in the form of \"casas de farinha de mandioca\" have historically been one of the main agricultural activmes in rural areas throughout the state. Despite the fact that tarmer groups participating in the project were already accustomed to cassava processing activities, their adaptation to the new processing technology-the production of dry cassava chips for animal feeding--has been and will continue to be, one of the most crucial factors in implementing this cassava-based rural development effort.The target markets for the dry cassava usually present specific characteristics of demand, quantity, quality and frequency, which the tarmer groups find difficult to meet--at least during the inmal stages of the project. Experiences in similar projects in other countries (Colombia, Ecuador) indicate that cassava producers usually require an adjustment period of 2 to 3 years before they are able to operate and administer their agroindustries efficiently. To evaluate the results obtained by the project in this activity, two types of parameters were usad: \"ylelds and converslon ratlos• and \"efficlency of processlng .•• Yields and conversion ratlos. Production of dried cassava is an indicator of the potential the agroindustries have of becoming important end-markets for cassava production in their areas of influence. Results obtained during the pilot project show that the total amount of cassava roots processed was 7,094 t, with a total output of 2,677 t ot dry cassava. This production was obtained with 12 farmer groups tunctioning during the tirst year, 33 in the second and 45 during the last year. Total and average annual output for the agroindustries varied considerably throughout the project, showing that an assurad supply of cassava roots for the drying plants depends on several factors including (a) strong competitíon from local and regional markets (e.g., farinha, animal teeds); (b) lack of working capital to purchase cassava roots, a constraínt that remained unsolved during the three proeessing seasons; and (e) insuffieient eassava production in several regions due to climatic factors (fable 4.1).Average conversíon rates obtained during the three years were normal eonsidering that in several cases, pest attacks (especially Erinnyis elfo) affected roOl quality. In general, it could be said that the farmers were able to control effieiently the final moisture content of the cassava dry chips, the most critical factor in the drying teehnology.• Efficiency of Processing. Under the elimatie eonditions prevailing in the state, where there is a 5-month period suitable for solar drying 01 cassava chips, it was assumed that a given agroindustry would be capable of processing a batch of dried cassava chips by the end 01 2 sunny days and that this operation could be performed at least 3 times weekly, 10r a total 0160 batches per year. This means that under normal conditions, a dry cassava agroindustry should be capable 01 processing 0.6 t 01 fresh cassava roots/m• of drying surface per year. Achieving this output depends on climatic and manat,ament factors, which combined, determine the efficiency and the level 01 profitability that farmar groups ara abla to obtain operating the agroindustries.Considering tha fact that tha climatic factors cannot be controlled by the farmars, the efficiency 01 proeessing depends primarily on managamant factors, among which the group's ability to secure a local supply of roots for the drying plant has shown to be of overwhelming importan ce. On the other hand, producers appear to be adjusting easily to the chipping and drying technology. To assess the results obtained during the pilot project in these aspects, a parameter called \"Efficiency of Processing\" was calculated for a sample of the agroindustries throughout the project perlod (Table 4.2). It can be seen trom these results that the farmer groups' ability to adjust to cassava production factors in their area directly affects the annual output and efficiency that they are able to obtain administering their cassava-based agroindustries.In general, the pilot project showed a 140% increase dry cassava output from the first to the second year. Conversely, during the third year there was a sharp reduction (38%) in the average annual output as compared with the previous year. These variations affected the project's area of influence as a whole although they were more pronounced in some regions. Additionally, the issue of drying plant size is becoming evident, with larger installed capacity not always resulting in larger annual outputs and better processing efficiency (Table 4.2).Box 4 summarizes important learnings from the experience in setting up the cassava drying plants.• Marketing channels. An underlying assumption in the market component of dry cassava-based integrated projects is the identiflcation and consolidation of markets for the product represented by few large-scale consumers such as the animal feed industries. In the case of the Ceara cassava project, this operational hypothesis has not been validated as fully as was the case in similar proJects in other countries, as most of the dried cassava produced durlng the pilot project was sold directly to a large number of low-to medium-volume consumers, mainly dairy farmers located in the vicinity of the agroindustries.Total dry cassava output durlng the project was 2,604 t purchased by a total of 975 consumers of whom 92.6% were low-volume consumers Oess than 5 t of dry cassavafyr) and only 4.6% were large-volume consumers (more than 10 tjyr). In relation to volumes purchased during these three years, the situation was reversed, with the large-volume consumers accounting tor 58.7% of the total production of dry cassava and the low-volume consumers purchasing 32.4% of the total output (Fig.Despite the fact that large-volume consumers are now purchasing almost two-thirds of the total output, their total number is still low, considering the potential market for the dry cassava in Ceara. This situation will probably remain unchanged in the near Cassava farmers in Ceara appear to be adapting easily to the new dry . cassava processing technology, given its simplicity and especíally the fact that cassava processing activities in the regíon have histoncally been carned out by farmer groups who produce farinha de mandioca, a traditional staple food in Northeastern Brazil.lo The relationship between farinha de mandioca and dry cassava chips as two commercialization optlons for cassava farmers will be the main factor determining the financial success of the dry cassava-based agroindustries that are being installed in the State. When market prices for tha farinha de mandioca are low, as was the casa in 1989 and 1990, the agroindustries become important commercialization outlets for cassava production statewide. Conversely, when the farinha markets offer prices attractive to the farmers, it becomes difflcult for producers to find sufficient cassava root supply to maintain the agroindustries operating efficiently. Farmer group performance is further affected by factors such as skewed land and farm siza distribution and semi-arld climate, which have a strong influence on the seasonal availability of cassava roots.lo Implementanon of the Kellogg Foundation-funded cassava project (1989-92) covered three processing seasons, throughout which the lack of working capital was a major constraint for the farmer groups engaged in dry cassava production. The absence of credit programs oriented toward supporting cassava production, processing and commercialization, has been a historical constraint in Ceara. In 1992, for the first time this situation appears to be changing with the implementation of a credit program for working capital in which 150 farmer groups will be allowed to use loans for dry cassava processing. The innovative factor in this credit program ls that the producers will pay back the loans basad on price variations of the dry cassava as the inflation index parameter. This type of credit scheme represents a pioneering effort in the history of cassava production in Ceara, and as such deserves careful monitoring to assess its effectiveness. # 01 consumers future as the principal animal feed producers and mixers in Ceara demand high volumes over extended periods and the scale of the dry cassava agroindustrial sectoris not yet fully developed to meel this demando• Dry cassava and farinha prlces. Cassava processing in Ceara is principally in Ihe form of farinha, accounting for almosl 65% of the total annual production of cassava rools. These intensive processing activities are carried out mainly in communallyowned. small-scale processing units (\"casas de farinha\") found in just about every single farming community throughout the rural areas of the state. Farinha demand statewide is quite high, and it is estimated that nearly 40% of total consumption is importad from nearby states. Despite Ihis high demand, farinha prices are very variable and cassava farmers all too often get paid low prices and have difficulties selling their product. Among the reasons for this vulnerability are the smallness of their operations, the low quality of the final product, their lack of transportation means. and their poor organizational levels.The establishment of dry cassava-based agroindustries. as an alternative commercialization outlet for cassava production, is being carried out with farmer groups that were generally formed as part of the larger communal-type organizations that own the farinha houses. As such, tarmers participating in the project are facad with two options: process their crop individually in the communal farinha house or sel! the roots lO the dry cassava agroindustry, where Ihere will be a collective processing activity in which they will also participate.Efforts were made during the pilot project to implemenl a monitoring system tor price variations of cassava products so that the technicians could offer advice to farmers and improve Ihe rationality of the economic decisions they have to make. Data collected during the pilot project indicated that during 1990. the production of dry cassava chips was a more profitable activity for farmers than the production of farinha. Farmers received a net profit of Cr$ 11.7/kg of dry cassava whereas the farinha gave them a net loss of Cr$ 24.5/kg producad. During the 1991 processing season, the dynamics and variability of Ihe commercialization system were very evident, with dry cassava Slill giving farmers a net profit of Cr$ 9.5/kg and with farinha prices responding vigorously. allowing the farmers a net profit of Cr$ 36.4/kg produced (Fig. 5.2).'Since September 1991--right at Ihe middle of the processing season--and until the onset of 1992 processing season--prices of farinha haye been increasíng continually at rates that exceed the official inflation rates; whereas dry cassava prices have :::r------'~ 1GB r,. 1-. .Processing Season 19919iEI Procefltlina COlltllCr#/kg (real prlces),\" \".' .. maintained steadyincreases (Fig. 5.3).~ Data are collected and analyzed based on reports sent to the CCC by the field-Ievel extension agents; however, these prices do not always reflect the prices received by farmers at farm-gate, which are generally lower. The important fact is that cassava farmers in Ceara now have two options for the commercialization of their crop, both of which are profitable. Choosing the final outlet is a decision that depends not only on eccnomic factors but also on aspects su eh as land tenancy, availability of processing units and labor, storage capacity and transportation, among others.Box 5 highlights the ccnclusions from the experience of identifying and consolidating a market for dry cassava chips.• Instltutlons. Pilot project implementation was greatly favored by the existence of prior considerable attentíon to creating the CCC, which rapidly became a fundamental working group for carrying out project activities. Despite the fact that the CCC is now fully established as the coordinating body for statewide activities related to the cassava crop, its work has been done mainly within the context of an intemationally . financed rural development project, in which the central coordination of activities has been closely shared with CIAT.From now on the CCC will have to be given the legal status necessary to act as a legitimate agency within the agricultural institutional setting of the state. A movement in this direction was initiated during the last year of the pilot project with the CCC now under the administrative responsibility of the Secretariat of Agriculture; and plans are under way to transform it into a technical assistance group under a local agency yet to be defíned. To facilitate decentralization of the planning and execution of project activities as well as to enhance beneficiary participation, seven RCC's were organized in the main areas of influence of the project, two only this year. One of the main achievements of the RCC's has been to facilitate the participatian of local agency field staff and farmers, whase active participatíon is rapidly transforming these committees into effectrve decentralized decisian-making units. By the end of the pilot proJect, a total of 95 technicians from the two local ccunterpart agencies were participating in project implementatíon, at the state and regional levels.• Farroer groups. A central strategy for implementíng the pilot project was the organizatíon offarmer groups around dry cassava-based agroindustries. Defining the organizational structure most appropríate for Ceara's cassava producer groups has not been an easy task. The majr~ity of the 146 groups that partícipated during pilot Constan! prices, August 1991 = 100; IGP-DI = General Price Index-Internal Avallability. Sept.NaY.Nov.--Roota -+- • Utílization of dry cassava chips as •an alternative source of energy in the animal feeding industry is no longer a technological problem given the extensive know-how available. The central issue in the substitution of classical cerealbased diets with diets based on cassava products is the economics of the whole production process. In the case of Ceara, the animal production sector presents an increasing growth rate and consequently a growing demand for raw materials. The poultry, swine and dairy sectors have developed strong union organizations and lobbying capacity, which have rendered them significant political and economical support by federal and local governments during the last decades. AvailabiJity of imported grains at subsidized prices has been one of the principal support mechanisms that the animal production sectors in Ce ara had been able to attain.• Despite the fact that current changes in government policies have diminished these subsidy structures considerably, the utilization of dry cassava as a component by the animal feed industry and the animal production sectors will depend to a larger extent on policy interventions oriented toward strengthening the organizational levels and the bargaining power of the dry cassava producers. One example of such interventions is the program currently being implemented by the Secretariat of Agriculture in which animal feedstuffs are being purchased out of Ceara and sold among animal producer groups at competitive prices. Thus far, the participation of the dry cassava agroindustries in this program has been very modest.• Project activities, although biased toward the establishment of dry cassavabased agroindustries, have also reinforced the importance of farinha processing as the main economic activity among small-scale cassava farmers throughout the state. Farinha production accounts for an estimated two-thirds of the total annual output of cassava roots; yet the total consumption of farinha in Ceara has not been met, making it necessary to import the deficit from nearby regions. Any institutional intervention aimed at improving net incomes among cassava farmers will have to address this issue of farinha production, especially the aspects related to its poor quality.project activities originated in larger communal-type organizations, the most prevalent producer group at communal level in rural Ce ara, although in some cases paraltel groups were organized, often with overlapping leadership. Efforts were made throughout the proje-:::t to maintain the degree of social cohesion that already existed in these rural eommunities. By the end of the pilot projeet, a total of 135 new groups were establíshed, and another 11 previously existíng groups were reorganized andjor reactivated. Seventy pereent of these groups were formed during the last year of the pilot project.Another strategy implemented to enhanee farmer organization was to stímulate the creation of seeond-order cassava producers' groups at the regional level, with the specific objeetive of increasing their bargaining power and their participation in planning aM implementation of all project and cassava-related activities, with initial emphasis on the commercialízation of cassava products. By the end of the pilot project, three cooperative, second-order type organizations were finíshing the administrative red tape required lO oblain their legal status; and il is expected that throughout the 1992 processing season, the fírst collective actions at regionallevel would be performed by these organizations, which were already accounting for nearly one-third of all cassava farmers participating in the project. Initial results with these organizational schemes are meant to stimulate the formation of similar groups in olher are as of project influence. Another long-term objective envisaged initially--the formation of a statewide third-order group, a Federation--was nol pursued, given the slow progress achieved during these three years in the setting up of the farmers' organizational component. Figure 6.1 presents the organizationál strategy that has guided project activities in this area.Box 6 summarizes the principal organizational aspects of the project and the constraints being taced in this area.The pilot project training strategy included fou'r types of events: courses, seminars, field trips and special days. A total of 108 training events were held with the participation of 832 technicians and 2123 farmers as follows:lOCourses. The training courses were conducted at state and regionallevels, with the RCCs assuming greater responsibility for the latter. A total of 27 courses covering different areas of work--9 at the state level and 18 at the regional level-were held during the pilot project for 290 technicians and 157 farmers. Table 7.1 presents a summary of the training activities held during the project... Semlnars. These events were organized with the aim of enhancing the active involvement of regional-Ievel stat! from counterpart agencies and farmers in implementing and evaluating project activities and gaining a well-grounded understanding of project objectives and constraints. During the lasl three years, a total of 30 seminars were organized--S at the state level and 25 at the regional level-attended by a total onS7 technicians and 561 farmers... Field trips. These events were held to allow members of new farmer groups to become familiar with the principal technical, organizational and administrative aspects needed to operate the dry cassava-based agroindustries efficiently. In general !he field trips consisted of a two-day, hands-on period spent at one of the more experienced agroindustries in each region, during which the aforementioned skills were discussed. This farmer-to-farmer training methodology made it possible to reduce costs significantly, stimulate interaction and exchange of experiences among technicians and farmers from different regior;s, and enhance farmer participation in project activities. A total of 35 field trips were carried out during the pilot project, involving 58 technicians and 271 farmers.BOX 6. ORGANIZATIONProgress in pilot project implemeritation was rapidly achieved during the. last three years, mainly as a result 01 the organizational scheme proposed by the project based on the functioning of the Cassava Committees at state and regional levels, which have becol1')e very important working units tor all cassava-related development and promotion work in Ceara. A serious problem has now arisen because these committees have not ye! become official components of the prevailing institutional landscape. They are composed mainly 01 technicians from the two main executing agencies--EMATERCE and EPACE--which are being directly affected by the ongoing stream 01 events in the larger statewide institutional environment. Consolidalion 01 the initial results obtained with the instítutional and organizational intervention brought about by the pilot project will not be fully achieved until these committees find their own legal niche within the state's agricultural institutional setting.Three aspects have been fundamental lO the process 01 rapid expansion of the social basis upon which the Kellogg Foundation-Iunded project has been built:• Formation of the farmer groups has been based on collective action, in which Ihe function of the group has been to gain access to a grant-type financial resource lor the specific purpose-decided upon by the group--ol installíng a dry cassava agroindustry.• Membership 01 the groups has been initially decided upon among potentially interested members, and any decision regarding new membership is totally under their control.• The role 01 the local agencies has been crucial in the task 01 approaching different sources 01 financial resources on behalf 01 the larmer groups to obtain grants. At the same time, these institutions have had continuous access to pilot project funds lar supporting farmar activities.Rapid growth of the number of farmer groups participating in the project was also enhanced by the fact that these groups are organized around specific income-generating activities--to improve their cassava production. 1I S!a!e !.svel From the onset of the dry cassava-based pilot project, M&E activ¡ties were considered an integral part of its implementation strategy. An M&E model was structured in which monitoring activities were carried out at three different levels, differentiated on the basis of specific project objectíves, target population and methodologies. By the end 01 the pilot project, the first level--baseline data--already ¡ncluded ínformation on 133 cassava processíng farmer groups with a total of 2962 members'. The second level--an annual survey--was conducted twice: in 1989 with 160 farmers and in 1991 with 932 cassava producers. The third level--an intensive monitoring 01 a selected, smaller subsample of farmers--was conducted throughout the pre-productíon tríals.Data generatíon and collectíon for the three levels of the M&E was done maínly by farmer managers 01 the cassava processing organizations and the extension agents, under the coordination of the RCCs. This information has been centralized and analyzed by the CCC and reported back to beneficiaries and project staff through monthly reports and to donors and decision-makers by means of annual reports. The output of the Monitoríng & Evaluation Model is presented below. The characteristics of the Model and the constraints to its continued use as a leedback mechanism lor reorienting project objectives and activities are summarized in Box 8.• Qutput 01 the M&E model Areas in which the M&E system was currently providing information by the end of the pilot project were as follows:.. Charácteristics 01 the farmers • Land Tenure: A total of 133 farmer groups were actively engaged in project activities with 2962 members. The land tenure system under which these farmers operate their holdings ineludes three forms distributed as follows (Fig. 8.1): owners (58.6%), renters (28.9%) and sharecroppers (12.5%). Ofthe owners, 21% belong to land reform settlements.Renters 29% 778 FIGURE 8.1 Land tenure.• Age 01 the participants. 70% of project beneficiaries are between the ages of 30 to 60, 17% are younger than 30, and only 13% are o'jer than 60.• Gender. 97% 01 project beneficiaries are men and only 3% are women. Only 36 groups induce women among their members (Fig. 8.2).GenOOf FIGURE 8.2 Age and gender 01 par1icipants •• uteracy. 55% of the current beneficiaries are iIIiterate, and 45% do not have any baslc reading and writing skills. 90% of the lliterate farmers have had from only 1 to 3 years of schooling.\" Slze 01 cassava farmers' organlzatlons. By 1992, the pilot project was already covering 11 regions with a total of 133 farmers' groups and 2,962 direct beneficiaries. lhe overall average size for these producers groups was 22 farmers per group although the social basis has been changing from year to year, mainly due to the fact that farmers' organizations are still facing a transition perlod from larger, farinha-based groups to generally smaller, dry cassava-based agroindustries (Table 8.2)... Cassava productlon. The underlylng philosophy behlnd the cassava-based rural deveíopment projects in reíation to cassava production is that as a resuit of the opening up of an alternative, more profitable marketing channel, cassava plantings among beneficiaries will be expanded. To te ... t the validity of this assumption and, consequently, the success 01 the project, two factors were monitored during the project: (1) size of cassava plots planted by farmers engaged in project activities, and (2) the relationship between the farmers' land tenure system and the size of their cassava plots. • Size 01 cassava plots. 1988-91. Information collected among project beneficiaries regardíng size of theír cassava plantings over a four-year períod indicates that they have remained faírly constant during thís period, with nearly 56\"A. of the farmers planting cassava areas smatler than 1 ha, and with nearly 85% of the entire populatíon ínvolved in the project planting cassava plots of no more than 2.0 ha in size. Conversely, fewer than 15% of the entire population were planting cassava plots larger than 2.0 ha (Fig. 8.3) .• Cassava plol size and land tenure svstems, 1988-91. Data available on the relationship between land tenure system and cassava plot size a ilong project beneficiaries indicates that far the last tour years the owners have generally been planting larger cassava areas than renters and sharecroppers. By the end of the pilot project, the average size of cassava plots far the entire population presents a slight decline (8%) in relation to average size of cassava plots at the beginning -lS8a(N-l09S) -1989(N-1525) 1990(N-2133) m 1991 (N-2358) No. of farmers 1600 1400 -L , .. of the project (1989). This decline appears to refer primarily to the smallholders, whose average cassava plantings are now 13% smaller than 2 years ago. Also the sharecroppers are now planting cassava plots 5% larger than in 1989; whereas the renters have practieally maintained constant the size of their eassava areas during the last three years (Fig. 8.4). Among the factors that may explain this slight decline in eassava production by projeet benefieiaries, ít ís worth mentioníng the faet that 75% of total project population belong to farmer organizations that joined the project only during the last year (1992), as well as the total lack of eredit available for cassava production that farmers faced during the projeet. members. Information gathered on the results 01 farmer groups during pilot project processing activities is described below:• Cassava sales, 1989-92, During the pilot project, a total of 7094 t of cassava roots were processed, of which an average 38.3% came from members and 61.6% from nonmembers near the cassava processing units. Member participation as raw material suppliers for the dry cassava agroindustries was especially low during the second year although by the end 01 the pilot project their contribution to total cassava purchases was already equal to tha! 01 nonmembers (Fig. 8.5).Additionally, data collected on the number 01 farmer members who sold í3ssava roots to the agroindustries and their relation to the total number of beneficiaries also indicate a greater participation 01 farmer members as raw material suppliers. During the last year of the pilot project, 51.2% of the total membership of the agroindustries sold cassava roots to the agroindustries, representing an increase of 51% and 70%, respectively, in relation to the first and the second processing seasons. Average participation 01 farmer members as cassava suppliers during the pilot pro]ect was 39.6% (Fig. 8.6) .• Total annuallncomes. 1989•92. The total annual incomes received by farmer members of the dry cassava agroindustries was monitored during the pilot project. Total income includes cassava sales \" processing wages and the sharing among members of the annual profits obtained from the sale of the dry cassava. During the three years covered by the project, the total incomes gained by the farmers reached US$163,689, of which 37.3% corresponded to cassava sales, 100A, to processíng wages and 52.7% to sharing of annual profits (Fig. 8.7). According to the land tenure system of the beneficiaries, the distribution 01 these total incomes indicates that 58.9% went to smallholders and 32.45% to renters, but sharecroppers received only 8.7%. The relationship between tha total annual incomas gained by projact beneficiaries and the size of their cassava plots was another parameter included in tha M&E system. Data collected on the results obtained during the projact indicate that the greatest part of the benefits went to the farmers with the fewest resources. 77% 01 total incomes generated during the pilot project went to those farmers planting cassava areas no largar than 2.0 ha, and only 23% 01 total project income went to larmers with plots areas largar than 2.0 ha. Farmers planting areas larger than 3.0 ha obtained only 14% of the total income generated during the thrae procassing seasons covered by the pilot project (Fig. 8.8).The pattern of distribution of total project in comes among farmers remained practically the same during the pilot project, except for the beneficiaries planting larger cassava plots (> 3,0 ha), whose share of the total incomes by the e'1d 01 the project presented a significant increase 01 115% in relation to the situation at the onset 01 the project (Fig, From the inception of the project, several constraints were identified as affecting negatively the continuity of actions and the development of a self-sustaining dynamic that would continue after project termination. These limíting factors can be separated into four categoríes: organizational, financial, economic-political and natural resource base constraints.• Organizational constraints ~ Institutions. Project strategy included the implementation of an organizational structure lor both institutions and farmer groups aimed at building enough capacity to assure that when external resources end, local institutions will be able to continue activities. This organizational structure included two specific organizational lorms--the Cassava State and Regional Committees--whichwere new to the prevailing institutionallandscape and whose institutionalization as valid components of the local agricultural sector setting will require a longer period than the three years of the pilol project. Moreover, the organization and operation 01 !he local agencies in charge of project implementation is undergoíng a radical reorganization that is affecting project implementation.~ M&E activities became an Integral part of pilot project implementatlon strategy, Ihe output of which is already providing useful and timely informatlon to pmject staff at central and field levels, and to the larger target audlence. By the end of the project, two aspects Included in the M&E system were especially well covered and started to yield essential information for short-run decision-maklng and undertaking of appropriate actions: (a) Baseline data kept at centra! level regarding area of influence, target areas, cassava productlon potential and farmers' characteristics are allowing the rapid identificatlon of potential sites suitOO tor project expansion; and (b) Ihe series of monthly processlng, financial and teehnieal reports on the performance of farmer groups produced jointly by field-Ievel staff and farmer-managers and centrallzed In the data bank, is provldlng useful informalion regarding project benefits and their distribution among beneflclaries. This information has become the basis for the annual reports, the main current instrument for feeding back the proeessed information to cOllaborators, donors and the declsion-making audience.\"' Longer term objectives of the M&E system--especially those related to generatíng data on project ímpact on cassava production systems in Ceara (area, yields, technology adoption)--have no! be en fully achieved yet, mainly due to the fact that cassava cultivation in the region is a biannual activity with a growing perlad of at least 15 months, and the assessment of any changes In cassava production due ta project activitles demands a longer horlzon than the three years covered by the pilot project.\"' Maln responslbilitles for designing and implementing the M&E system líe with Ihe CCC and Ihe RCCs. The fact that these working groups do not yet have a legal status within the local institutional landscape could affect their short-and long-term sustainability. Furthermore, second-order farmer organizations, which have Ihe potential of becaming appropriate eoordinators of monitoring activities, are jusI being organized. The extent to which ongoing changes in the larger institutional environment will affeet local agencies in eharge of project implementation, the rapid definition of a legal status far the CCC and the RCCs, and their integration with second-order farmer groups will be sorne of the more critical factors for strengthening and consolidating the M&E system.The strategy followed to deal with this limitation was to increase the efforts aimed at improving local policymakers' knowledge of the nature and importance of the project and the critical role of the cassava committees in the implementatíon of project activíties. It is expected that through raising policymakers' consciousness, the needed support will be obtained to strengthen and legalize the status of the aforementioned organizational forms.Organization building among farmers participating in the project was pursued through the establishment 01 small-scale farmers organizations responsible tor installing, operating and administering the cassava processing agroindustries.Participation ot farmers in this process has meant a reorientation 01 their activities toward tasks different Irom those they were traditionally used to, principally the processing of cassava roots into farinha for human consumption, on an individual non entrepeneurial basis.The extent to which these small-scale cassava producers wifl be willing to make these changes is difficult to predict. It will certainly require a transition period during which many farmer organizations may show poor member participation and low performance. This constraint is augmented by the high rates of illiteracy prevailing among project beneficiaries (40-50%).To overcome these constraints, the pilot project has emphasized training activities with farmer groups in which the new behaviors are demonstrated and discussed, with their active participation. This capacity-enhancing training strategy has been Teinforced with ,he U3e 01 farmer-to-farmer training methodologies, in which experieneed farmers act as trainers.The economic situation in Brazil has continued to be adverse during lhe project periodo Project growtr, in social terms has be en possible only because of the strong support received by local agencies and programs that have offered grant-type financial resourees to larmer groups for installing the cassava processing agroindustries. Unfortunately, the availability 01 thesa economíc resoureas ís limited.The expansion 01 project activities to other regions and farmer groups is already 1acing linanciallimitations. Loan-type credít programs, although available as a financial alternative, have hardly been used by farmers beeause they ínelude debt indexation in theír payment ser,eme. Combined with the very high inflatíon rates prevailing in Brazíl, this option beGomes very risky for larmers.These financia! constraínts have also affected the performance of the already establíshed produeer groups, whieh have not found eredít programs readily available to support production and processing activities. The strategy employed during the pilot project to deal with this constraint was to formulate credit programs that included loan-repayment systems based on price variations of cassava products, preferably dry cassava chips. These credit programs were finally accepted by the local agencies during the last year, and some of the farmer groups engaged in project activities are already using this financial support for cassava processing and, to a lesser extent, for cassava production. Installation of cassava processing infrastructure has not yet been included under these credit schemes and the appearance of new dry eassava-based producers' groups is likely to be affected, given their lack of economie resources. Specific eredit programs ineluding low interest rates, long amortization periods and payments schemes based on priee variations of eassava products will need to be designed if the expansion of project activities is going to be pursued.These eredit programs represent a pioneering effort in the eontext of small-scale farming systems in Northeast Brazil, and their development and initial results must be earefully monitored and evaluated to assess their effectiveness and to draw essential feedback information lor policymakers and projeet strategy researehers.As with every other rural development project, the Ceara cassava-based development effort has co-existecl within political and economic settings, at national and local levels, which affect the performance and potential of project participants. A polícy of particular importance to the project implementation and impact has to do with the relationship, or the lack thereof, between the current land tenancy systems and the land relorm programs. A large pereent of project beneficiaries are either landless or have very small areas of land. A basic assumption of the projeet strategy was that the introduction of a new proeessing technology and consequently the development 01 a new market was likely to produce, in the short term, an increase in the size 01 the total cassava market lar cassava and an incentive for larmers to increase their areas planted to cassava. In the intermediate term, it is expected that farmers will start to adopt improved cassava production technologies. In the case of the pilot project, its impact on farmer groups and their responses to project-induced stimuli have both been affeeted adversely by the weakness of the land reform programs currently being implemented in the ragion.The strategy followed duríng the pilot project to alleviate this constraint has been to increase the awarem¡ss of policymakers in charge of land reform programs 01 projeet goals, objectives and results, with the purpose 01 gaining support tor project beneficiaries.Another political-economic constraint that is affecting pilot project implementation and sustainability is related to the minimum-prices policy lar agricultural products existing at the national level, which in the case of cassava is influenced by the strong lobby 01 eassava industrial producers and processors 01 southern Brazil, who tend to maintain minimum priees lar the roots as low as possible in order to increase their prolits in the processing activities. Conversely, in Northeast Brazil cassava is produeed and processed mainly by small-scale, larmer-owned enterprises. which are interested in high prices lor their product. However. their poor lobbying capacity, due to organizational weakness, has limited their ability to in crease raw material prices.The strategy lollowed during the project regarding this constraint was twofold: (1) increase training activities lor farmer groups and (2) establish vertical linkages with policy-Ievel decision-making groups at the nationallevel. Currently, the CCC has besn included as a permanent member of the countrywide coordinating committee for the cassava sector (Camara Setorial da Mandioca), which in eludes producers, agroindustrialists, consumers and government institutions; and whose main task it is to recommend policies to the Ministry 01 Agriculture regarding the cassava crop.Project activities and impact are expected to produce greater pressure on land use (expressed in increases in area planted to cassava) and a decrease in the amount 01 nonharvested area. Traditional cassava-based farming systems in the region are characterized by the lack 01 inputs--espeeially chemical or organic lertilizer--and the only alternative for reducing soil lertility decline lies in extending the fallow periodo Furthermore, the lack of eredit lor cassava production prevents farmers from purchasing organic manure which is available in some areas. The strategy followed to address this issue was through the establishment of the pre-productíon tríals in which improved, low• input technologieal packages available in the region lar cassava production were test8d against traditional technologies.Despite the good initial results with this activity, it must be taken into aecount that these plots were installed under optimum eonditions with timely availability olorganic manure. which has now beeome a very expensive and searee commodity in Ce ara. Any future aetion in this direction will require a careful exploration of additional alternatives for soil fertility maintenance and enhancement such us mulching and green manure in order to improve the farmers' chanees to increase the productivity of their cassava-basod farming systems through better, sustainable, appropriate land management systerT1s.Adoption and impact studies are important and necessary when a majar technological and economie change is introduced into a quite stable small farm eeonomy in order to ensure that research and axtension activities are focused properly and in aecordance with the preset objectives. Moreover. research and extension aetivities can be performed efficiently and effectively only when there is sufficient feedback to research and extension institutions and donors on the returns to their investments and the distribution of these benefits.Two basic types of impact assessment studies exist: ex-ante and ex-post. Ex-ante impact assessment studies evaluate different strategies for technology development and diffusion. These studies are based on expected returns and equity issues and are conducted before implementing the project. Based on this ex-ante assessment, the appropriate project strategy is selected. Throughout the life of the project, continuous M&E 01 the impact 01 research and extension activities is also important to refine the selected strategy in accordance with the project objectives and needs. In addition this continuous project M&E serves to integrate technical and socioeconomic aspects 01 the project and to improve the efficiency and equity of the project in the short-and medium-term.On the other hand, ex-post assessment studies are made after the project has been implemented in order to respond to the governments and funding agencies on the use 01 the resources invested in the project. Ex-post analysis should also be viewed as a learning experience lor future projects. Ex-post analysis are also assessed in terms 01 efficiency and equity. Efficiency analysis determines the economic returns 01 the resources invested in technology development and transfer. Equity analysis, on the other hand, determines how the economic benefits are distributed among the different groups in society. Once the in,pact is assessed in terms 01 efficiency and equity, it is also important to determine tlle extent to which these benefits are reflected in the region's economic development and the improvement of the quality of life of its population.The Cassava Economics Section at CIAT is currently implementing a methodology to assess these type of impacts based on experiences drawn Irom a similar project in Colombia. This methodology is summarized in the IIow diagram of Figure 10.1, in which production and processing technologies and their relationships to adoption and impact are shown.At the adoptlon level there are two technologies: cassava dryíng and production technology. The new market lor cassava created by the adoption of the cassava drying technology would inlluence on-Iarm utilízation 01 cassava and stimulate cassava production in two ways: In the short run, the farmer is able to react by increasing cassava area using traditional tec:hnology, decreasing fallow period and reducing nonharvested cassava area. In the intermediate term, the farmer will attempt to increase productivity by adopting new prodllction technology, creating a demand for improved cassava production technology. In the intermediate lO long run, in creases in area and yields would increase cassava supply at the aggregate level, putting a downward pressure on fresh cassava prices and creating benefits for fresh cassava consumers. On the other hand, the increase in caSSé:!va production would creale a demand for labor and improve cassava farmers' incomes.Ei¡;._- As can be seen from the 'hypothesis raised, the methodology not only covers technology adoption but also the evaluation of impact at the farm level and the aggregate economy.As this project was implementad only three years ago, it is not possible to conduct a complete ex-post evaluation, but the project has been under a contínuous M&E. A prevíous sactíon of this report presented the M&E system and díscussed the importance of M&E actívities in project strategy as a crucial mechanism for ensuring the feedback of farmer groups' performance data in arder to fine-tune short-term objectives. Output of the M&E model utilized in the pilot project--especially the Data Bank-can be utilized to assess the rapid adoption of dry cassava processing technologies in the Kellogg Foundationfundad pilot project in Ceara.• From the start up of the project, the number of dryíng plants increasad from 11 to 138 and the number of regions of influence from 4 to 11, indicating the rapid spread of the dry cassava processing technology into new regions and rural communíties.• Despite the fact that buyers of the dry cassava chips have been mainly livestock producers near the processing plants, the actual number of clients for the product has been increasing continuously; and during the last year of the pilot project, a total of 443 different clients were purchasing the producto• The organízational structure implemented during the project far both institutíons and farmer groups, which by the end of the project included 5 Cassava Committees, 146 farmer organizations and 3 regional-Ievel farmer cooperatives in process of formation.In addition, a total of 43 farmer groups were exposed to improvad cassava production technologies in pre-production plots as part of project activities about which the M&E system is currently providing data that can be used to show shortterm rapid diffusion and adoption.Although the aforementioned data bank outputs can be analyzed to assess rapid diffusion and adoption in time and space, there is still a lack of quantified data on project ímpact at the farm level and the aggregate.During pilot project implementation, two surveys were developed and tested. The tirst one in 1989 included 160 farmers; the second in 1992 surveyed 932 cassava producers and was meant to become a benchmark type of study for Mure adoptíon and impact analysis. The 1989 survey ¡ncluded old farmer graups that were dissolved during the pilot project, and the membershíp of other groups decreased considerably. Thus the sample size of farmers who participated in both surveys was reduced to only 86 cassava producers. A brief analysis of some of the results of the surveys allows some preliminary conclusíons regarding impacts due to project actívitíes:• Qn-Farro Cassava Consuroptjon and Utilization Changes It has been argued tha! newly created demand for cassava dried chips will have an immediate effect on on-farro consumption and sales. Figure 10.2 demonstrates tha! farmers are currently selling 53% of their production to the cassava drying agroindustries in contras! with the situation during the first years of the project when the share of total cassava production used lar dry cassava processing was only 4.8%.Additionally. the production 01 larinha lar human consumption now accounts lor nearly 38% 01 total production; whereas in 1989 it represented a 64.5% share of the total production.The utilization 01 cassava lar on-farm feeding of animals has remained almost the same. Furthermore. the selling 01 cassava roots to other markets such as dairy and cattle producers--which in 1989 represented a 25% share 01 the total production--is now insignifican!. Indeed the cassava farmers participating in Ihe project are starting to adopt the new processing technology and the new market has stimulated farmers to transform their cassava utilization patterns, becoming more market oriented.An expected result of project activities is the increase in total area planted to cassava. Survey results indicate Ihal farmers have been increasing Ihe size of their cassava plots (Fig. 10.3). A quick response lO this kind of project-induced stimulus depends on several factors, among which the availability of produclion credít is a crucial one. The fact that this type of financial support has been absent throughout the pilot project has indeed affected farmer groups' possibililies of increasing their cassava areas. • Cassava Household ConsumptionIn relalíon lo cassava consumptíon al Ihe household level, results from the surveys indicate that total consumption of farinha increased from 5.5 to 6.8 kg per household per week in the coastal region. When considering the three regions, the same tendency is observed with an inerease from 4.6 to 6.2 kg per household per week. This inereased eonsumption of farinha eould be explained by the faet that farmers are now able to rationalize the destiny of their production getting better .prices for the cassava roots and are not forced to utiliza thair production exclusívely in the production of farinha. With the extra income generated from' selling roots for the dry cassava market, their cash availability is increasing and the supplies of farinha are probably being used for addítional household level consumption (Fig. 10.4). The aforementioned measures of dry eassava processíng technology impact and, to a lesser extent, of productíon technology have be en relatívely easy to quantify based on the informatíon avaílable from the M&E system and the two surveys. Additíonal indirect impact on eommuníty welfare, ínstitutional support and the general environment can only be descríbed qualitatively at this stage. Despite these significant advances, there are some constraints that need lO be addressed in order to consolidate and expand the cassava-based development activities to a commercial scale. These limitations are related to:• The need to define and validata the organizational Slructure adopted during the pilol projectlor local agencies and tarmer grbups as legal components of the prevailing instítutional framework• The income-generating potential 01 the project is located at the level of the producer, who is motivated to expand the area planted •to cassava and adopt improved technology; however, the principal gains in income come from the cost reductions derived from yield-increasing technology--an activity pursued only partially during Ihe project. Moreover, the very long growing period required by the crop (15-18 months) requires an approach with a longer time horizon.• Development of a market alternativa for the farmers in Ceara--Le., through the production of dry cassava chips tor animal feeding--was initiated, but its consolidation will depend upon whether the product can be offered at prices thal are competitive with alternative products and in sufficient quantities to meet increasing demando At the same time, research activities must be inítiated to identify additional cassava-based products and markets that could contribute to translorming cassava production ¡nto a more profitable, less risky activity.Given the foregoing, it is recommended that a second phase 01 this project be executed, with ¡he purpose of consolidating the activities and results obtained during !he pilot project. This second commercial-Ievel phase should emphasize actions aimed at:• Strengthening local agency and farmer groups' organizational and operational capacities• Consolidating marketing channels lar dry cassava and identifying additional markel opportunites tor the crop• Designing sustainable cassava production systems At the same time, operational strategies should be aimed al transfering fu\" control and administration 01 the project to local agencies within the short term (6 months) and total withdrawal 01 foreign donor-sponsored financial support lor project activities in an intermediate term (3 years).","tokenCount":"12604"} \ No newline at end of file diff --git a/data/part_3/4477478043.json b/data/part_3/4477478043.json new file mode 100644 index 0000000000000000000000000000000000000000..aa9265870669964b30755a9ef185220160be5175 --- /dev/null +++ b/data/part_3/4477478043.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"4a00cdf4b47a2270328788c973ae3214","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/073e529a-0792-4925-a389-50c0f913d2be/retrieve","id":"2005489182"},"keywords":[],"sieverID":"03e19af0-25c3-4a1f-85a2-83717a654814","pagecount":"2","content":"69.39% 100% 18.37% 40.82% 16.33%The campesino section is unique to the Galería el Porvenir, meaning not all markets have this space reserved.All vendors sell to household members, while many also sell to restaurants, corner stores, and schools. The following percentages demonstrate the number of vendors who sell to various types of consumers.Traditional Colombian food markets, the \"Galerías\", are major players in the city's food environment. The affordability, accessibility and desirability of ingredients in the Galerías play a significant role in determining peoples' food choices, diets, and consequently nutrition and health. This is the case of the Galería El Porvenir in Cali (Colombia), whose food flow map, as well as its average consumer and vendor profiles are shown in these research results. ","tokenCount":"121"} \ No newline at end of file diff --git a/data/part_3/4496017552.json b/data/part_3/4496017552.json new file mode 100644 index 0000000000000000000000000000000000000000..d2dac9431da111af1372be79d6e3a3574f2dc0a9 --- /dev/null +++ b/data/part_3/4496017552.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"cb42cccb441f89bc72afc59847a140bf","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/f862a9f3-939f-4704-bba7-2bfaac89d84c/retrieve","id":"488829169"},"keywords":[],"sieverID":"5c103e4c-37b7-458b-adca-cbab71dc6d04","pagecount":"35","content":"The African delegates expressed interest in learning the following from the other participating countries in Africa: Nature of Assistance / support requiredThe demand / assistance was expressed for more knowledge exchange workshops in the following areas: Exchange visits Potential areas for collaborationimprovement areas Following successful and pilot projects have been identified for collaboration : Tanzania: how to digitize the service provider for CA service providers  Ethiopia: integration within the sectors and between the sectors in data management  Improving contents of the message to be conveyed through Digital technologies: palatable and understandable to users  Improving awareness level of the farmers including the skill  Other countries (Kenya, Mozambique, Rwanda and India): mapping own limitations and developing learning models and platformsNature of Assistance / support required ","tokenCount":"127"} \ No newline at end of file diff --git a/data/part_3/4513517653.json b/data/part_3/4513517653.json new file mode 100644 index 0000000000000000000000000000000000000000..b8a1f96dfab6033978c31e5d8fbf55afc3a41560 --- /dev/null +++ b/data/part_3/4513517653.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"6db60172995a3bfced817873e9de7aec","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/6090d551-aa4c-4cbb-8b93-0fb5d0d319b0/retrieve","id":"-1776648821"},"keywords":[],"sieverID":"eca60067-88b5-4d34-835c-ce99b2fc4433","pagecount":"2","content":"Viazi Vitamu ni zao muhimu nchini Tanzania na linashika nafasi ya pili likitanguliwa na zao la mihogo katika mazao ya mizizi. Viazi vitamu vinalimwa maeneo mengi ya Tanzania na kati ya wazalishaji wakubwa ni kanda ya kati ikiwemo Mikoa ya Dodoma na Singida.Kwa asili wakulima wamezoea kulima viazi vitamu vyenye rangi nyeupe au ya maziwa kwa ndani.Hata hivyo kuna vyenye rangi ya karoti kwa ndani ambavyo vina vitamini A kwa wingi. Kutokana na kuwa na Vitamini A kwa wingi vinaitwa viazi lishe.Vina manufaa kwa watoto wadogo chini ya miaka mitano na akina mama walio katika umri wa kunyonyesha. Vitamin A-inasaidia kuepusha uoni hafifu hasa kwa watoto walio chini ya umri wa miaka 5 Wanga-unasaidia kuupa mwili nguvu.  Nyuzinyuzi-Inasaidia katika kurahisisha kumeng'enya chakula tumboni hivyo kupunguza uwezekano wa kansa ya utumbo mkubwaMpaka sasa tuna aina chache za viazi lishe ambazo zimethibitishwa na wataalamu. Kati ya aina hizo ni Mataya na Kiegeya  Aina nyingine ni Ejumula na Kakamega  Kuna aina Zaidi ambazo bado ziko katika majaribio ya mwisho mfano Kabode Mradi unalengo la kuweka utaratibu wa uzalishaji wa mbegu safi na pia kuhamasisha wazalishaji wa mbegu bora na safi za viazi lishe.Uzalishaji huo ni kwa ngazi ya kati kuzalisha mbegu safi kutoka katika vitalu vya msingi.Lengo hili litasaidia matatizo ya uzalishaji wa viazi vitamu na hasa matatizo yanayosababishwa na magonjwa. Pia kuongeza uzalishaji, upatikanaji na matumizi ya viazi lishe.Katika miaka mitatu ya mradi huu, tunataka kuhakikisha wakulima wanatumia mbegu safi ili kuongeza, mazao, kipato na afya.Ukulima wa viazi lishe unamatatizo mengi ikiwemo; Aina za kienyeji zina mazao machache  Aina zilizopitishwa na wataalamu zipo chache  Tatizo katika upatikanaji wa mbegu safi zisizo na magonjwa kama virusiUmuhimu wa Vitamin A  Vitamin A ni muhimu wa afya ya macho, ngozi, ukuaji bora na pia huimarisha kinga ya miili yetu dhidi ya maradhi  Baadhi ya chembe za vitamin A zenye karotini husaidia kusafisha mwilini, kutukinga dhidi ya maradhi na kuzeeka kabla ya wakati wetu.","tokenCount":"325"} \ No newline at end of file diff --git a/data/part_3/4515888549.json b/data/part_3/4515888549.json new file mode 100644 index 0000000000000000000000000000000000000000..5bf109c8e6e65a38bc95d6ae04a7cde4bd54a04f --- /dev/null +++ b/data/part_3/4515888549.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"b4f2816d78a027678b834e7c20a00ce0","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/a8ea3aec-7499-4e18-b277-d377486ecfb6/retrieve","id":"-532101732"},"keywords":[],"sieverID":"978a559d-58b7-405e-9f38-7d39ebc78fc3","pagecount":"61","content":"IITA's mission is to enhance food security and improve livelihoods in Africa through research for development (R4D).The institute uses the R4D model in setting a research course that addresses major development problems in Africa rather than simply contributing to scientific knowledge. It has proven to be an effective mechanism for agricultural research development. The institute and its partners have delivered about 70 percent of the international research impact in sub-Saharan Africa in the last three decades.This report presents the process, knowledge base, and logic for the development of standards for aflatoxin levels in animal and fish feeds in the East Africa region. The purpose of this discussion is to equip the East African Community (EAC) and its partner states to develop modernized and appropriate standards in regard to contamination of foods and feeds by aflatoxin. The analysis is based on an extensive review of the available literature, a situational analysis, interviews with standards officers and experts, and observations of the authors within the EAC.Feed standards have the primary objective of safeguarding public health, protecting animal health, and fostering trade. In developing countries, decision makers may have to take into account other considerations, such as food security and poverty alleviation.Emergencies such as droughts may also require special measures.Standards for aflatoxins exist at global, regional, and national levels.The Codex Alimentarius Commission (CAC), an inter-governmental organization, provides benchmarks on food and feed safety. It has three Codes of Practice relevant to aflatoxin standards.Risk analysis is the most appropriate method for assessing the standards for aflatoxins in human food and for setting standards for livestock feeds where the primary objective is to reduce risk to human health from aflatoxins in animal source foods such as milk, eggs, and meat. Where risks to human health are not present or are deemed negligible, risk concepts along with cost benefit analysis are appropriate for setting standards for aflatoxins in animal feeds.Different countries have set a wide variety of aflatoxin standards for livestock and fish feeds. In general, most standards are lower (that is, more strict) than the levels at which adverse effects from aflatoxins are seen in experimental trials, but may be less strict than the levels at which adverse effects to humans can result from on-farm feeding practices. A science-based way to approach setting standards is to start with the levels that studies have shown are generally tolerable and then to increase them by a margin of safety. The margin of safety depends on the weight given to the advantages and disadvantages of setting strict standards.Anti-mycotoxin additives (AMAs), also known as binders or adsorbents, are substances that bind to mycotoxins and prevent them from being absorbed through the gut and into the blood circulation. When other preventive measures against molds and mycotoxins have failed, the use of mycotoxin binders in animal feeds can be helpful. Current evidence shows that clays are the most effective AMAs. However, not all clays (even of the same type) are equally effective. In the absence of testing, a large proportion of products in a given market may be ineffective.Safe feeding of aflatoxin-contaminated cereals to suitable classes of livestock can be an appropriate alternative use. Blending of contaminated grains with uncontaminated grains can produce feeds with an average level below permitted limits. Ammoniation is a safe and effective way to decontaminate cereals intended for livestock use. In some countries, cereals above national limits can be exported. But this is not recommended.Aflatoxins are difficult to detect. Very low levels can do harm, and aflatoxins are not distributed evenly in foods or feeds. A variety of sampling protocols exists and should be followed where possible. Sampling protocols can be adjusted to avoid rejecting food or feed that is actually safe and to minimize the chance of accepting that which is not safe. Quality assurance and laboratory networks have an important role in ensuring accuracy of results. A number of tests are available with differing costs, advantages, and disadvantages.Compliance with existing standards is constrained by multiple factors. Among these are a lack of well-equipped laboratories, and a shortage of competent personnel to conduct the necessary analysis and surveillance for compliance. Few government and agency officials or private-sector businessmen understand the benefits of compliance for agribusiness and consumers. Currently, standards development in the EAC partner states follows the format of the International Standards Organization (ISO). Although many standards have been developed, the standards for animal and fish feeds are scant and in most countries do not clearly address allowable limits for aflatoxin.The feed sector in East Africa remains underdeveloped. Uganda, Tanzania, and Zanzibar lead in the production of poultry feed, while in Kenya, most manufactured feeds are for dairy cattle. With a growing emphasis on development of the dairy sector to lift families out of poverty, manufacturing and trade in animal feeds and raw materials for feeds is expected to rapidly increase. Standards to ensure a high-quality and safe food supply are required.At present, the feed sector is not keeping pace with developments in disease control, animal genetic improvement, or anti-contamination standards. More information-gathering and analysis are needed to provide science-based information to inform policy and the development of standards for feed.To date, few studies have addressed the problems of aflatoxin contamination of feeds for the region, and awareness remains low about the prevalence and consequences of aflatoxins as well as about standards across both the public and private sectors of the EAC partner states. It is imperative that awareness of the benefits of having, and the importance of complying with, standards is created among stakeholders along the feed value chain. Stakeholders should also understand that awareness will spur consumers to demand that the feed industry comply with standards in order to have safe food.EAC partner states should develop policies that enable them to comply with national, regional, and international standards. Stakeholders from the level of the ISO through national and local governments have a part to play in this development process.Developing countries have multiple issues to consider as they approach the process of setting standards for animal feeds:Feed and food security. Improvements in food and feed safety have direct and indirect benefits by improving health and productivity and reducing costs of illness (Caswell and Bach 2007). However, stringent regulation may cause food shortages and higher prices. To avoid harming the poor, policy-makers should always keep food security in mind when setting food safety regulations. Efforts to mitigate food safety risks should not be adopted at the cost of sacrificing food supply or diverting resources from agricultural production (Cheng 2009).Stringent regulations may also provide incentives for producers and processors to evade regulations and thus create secondary markets where quality is even lower and regulation more difficult (Grace et al. 2010). Studies by the International Livestock Research Institute (ILRI) have found that 40-80 percent of food sold in East Africa does not comply with existing regulations. In these situations, a \"ladder approach\"-whereby stakeholders work with the informal sector to gradually improve standards-may be more effective than an \"inspect and punish\" approach.Feed trade. Many feed ingredients grown in tropical countries have potential markets in developed countries with intensive agricultural systems. Some studies suggest that high standards in importing countries can impose large costs on exporters even though the benefits of high standards on animal and human health are very small. However, other studies on trade in animal products have found that meeting standards is a relatively less-important barrier to exporting. Finally, some studies have even shown benefits to exporters from meeting higher standards.Harmonization. Conflicting legislations, codes, and standards can be an unintended impediment to trade, and harmonized standards (such as the Codex Alimentarius), have been shown to increase trade. However, where countries have different priorities, or different capacity to enforce regulations, it may not be possible or useful to move too quickly to harmonize regulations.Legislation needs to fit the context. In the case of feeds, the different types of producers, and input providers, along with their different needs and how the legislation may impact them, need to be analyzed. In East Africa, most farmers are smallholders; some farmers mix their own feeds or buy from small mills. Organic farmers and fair trade value chains may also need special consideration.Coordination. In Africa, food safety is often the responsibility of multiple agencies and departments. It is important to align and coordinate food safety legislation across sectors.Emergencies. Parts of Africa are prone to simple or complex emergencies, which may include lack of feed and fodder for cattle. In these circumstances, one option is feeding programs for animals. Such efforts may be more cost-effective than restocking. However, in these circumstances sourcing feed and/or fodder may be difficult if regulations are too strict to allow flexibility. Such programs can strengthen reliance and livelihoods in farming communities.Standards pertaining to aflatoxins in feed exist at global, regional, and national levels.The CAC provides the global benchmark on food and feed safety. The Codex Alimentarius is a collection of international standards, codes of practice, guidelines, and other recommendations that have been adopted by the CAC. The Food and Agriculture Organization (FAO) and the World Health Organization (WHO) established the CAC jointly in 1962 to protect the health of consumers and facilitate trade through development of international standards for food and feed. The CAC is composed of delegations from FAO and WHO member states that participate in developing food standards. The CAC develops standards on the basis of sound scientific evidence provided by independent FAO/WHO scientific committees. World Trade Organization (WTO) members are required to base sanitary and phytosanitary measures on international standards and Codex standards that are specifically recognized in the Agreement on the Application of Sanitary and Phytosanitary Measures (the SPS Agreement) as the international benchmarks for feed and food safety. However, Codex standards are advisory, not mandatory, and member countries can trade at other (and lower) standards if they agree to do so.There is no Codex standard which deals with aflatoxins in animal feeds, but CODEX STAN 193-1995) gives the principles for setting limits for contaminants, including aflatoxins, in food and feeds.CAC has three codes of practice dealing with aflatoxin standards. Food and Feed (CODEX STAN 193-1995) This standard is concerned with hazards in feeds that could affect human health and sets out guidelines that apply to establishing maximum levels (MLs) in food and feeds. It is concerned only with contaminants in feed, which can be transferred to animal source food and affect public health. In the case of aflatoxins in Africa, aflatoxin is likely to be a major public health risk only in the case of milk.The principles for setting MLs for contaminants in food or feed are: MLs shall only be set for contaminants that present a significant risk to public health and trade. MLs shall be set as low as reasonably achievable to protect the consumer. MLs shall be set at a level slightly higher than the normal range of variation in levels in foods that are produced with current adequate technological methods, in order to avoid undue disruptions of food production and trade. Proposals for MLs in products shall be based on data from various countries and sources, including the main production and processing areas of those products. MLs shall apply to representative samples per lot and where necessary sampling methods should be set out. In 2004, the CAC adopted a Code of Practice for Good Animal Feeding (CAC/RCP developed by the ad hoc Intergovernmental Task Force on Animal Feeding.The code establishes a feed safety system for food-producing animals, which covers the whole food chain. It covers good ingredients, labelling, traceability, inspection, sampling, and recalls, and provides details on good practices for feed manufacture and on-farm feed mixing.In 2002, the FAO initiated an international enquiry on aflatoxin regulations. The animal feeds most seriously affected by aflatoxin contamination are maize, cottonseed, copra, and peanuts (FAO 2008). Concentrates and supplements may also be contaminated, especially if stored under inadequate conditions.Aflatoxins are difficult to detect because they are not evenly distributed in foods and feeds. This makes it difficult to detect low levels of contamination and take representative and reliable samples. A variety of sampling protocols exists and should be followed where possible. Sampling protocols can be adjusted to avoid rejecting products that are actually safe and minimize the chance of accepting those which are unsafe. . Quality assurance and laboratory networks have an important role in ensuring accuracy of results. A number of tests are available with differing costs, advantages, and disadvantages.A small family farm in East Africa. ILRI Since mycotoxins cannot be completely prevented in the crops, regulations to prevent highly contaminated crops from entering the food chain are necessary. However, regulations alone are not enough. There is also a need for reliable and affordable tests for aflatoxins, incentives for complying with regulations, and systems that effectively deal with the contaminated products. In Kenya for example, where the vast majority of crops are sold in informal markets, regulations regarding aflatoxins are enforced only in the formal market, leaving most of the population, especially the poor, unprotected.The same situation occurs for animal feeds, where only stakeholders in the formal market chain have tests imposed on them. Further, enforcement is irregular throughout the formal sector across the region.Unfortunately, testing for aflatoxins is not easy. One challenge is that tests seek to find very small amounts of aflatoxins. Most standards are expressed in parts per billion (ppb). Finding one part-in-one-billion aflatoxin is the equivalent of detecting one second in 32 years, or finding seven people in the population of the world. Another problem is that aflatoxins are often not distributed evenly throughout the material being sampled. As a result, repeated tests on the same crops or feed products can often give different results. Molds do not grow uniformly in crops, and therefore toxins are unevenly distributed (Turner et al. 2009). In the case of maize and groundnuts, individual nuts or kernels can contain very high levels of aflatoxins. Considering that one kernel can have 50,000 ppb, just 30 of these kernels would be enough to put a 50 kg bag of corn above the limit of 10 ppb. Because of the non-uniform distribution of aflatoxins in crops, it is possible that subsequent tests on the same batch of cereals or oilseeds will give very different results, and there have been several studies to identify robust sampling protocols. Unlike analytical methods, sampling schemes cannot be collaboratively tested; usually a particular sampling plan is proposed, based on statistical consideration of the measured toxin distribution, and thereafter adopted as an official procedure.The variability of aflatoxins in crops, and the dependence on a large sample size, was demonstrated early (Whitaker et al. 1976;Whitaker et al. 1979). When crops are ground for animal feeds, homogeneity increases, but variability will still depend on how sampling, mixing, and subsampling are done (Coker et al. 2000). For smallholders, it may not be feasible to attain the desired amount of animal feed for sampling; less may need to be taken (Pitt et al. 2012a, Pitt et al. 2012b). Since milk is more homogeneous, it is assumed that there is less variability in testing for AFM1, but this has not been proven.Sampling errors can have different types of consequences. False positives occur when samples are rejected that are actually safe for consumption. This leads to losses for producers, and it will decrease the amount of feed available for animals and food for people. The other type of problem is a false negative (that is, accepting a sample as safe, even though it exceeds standards). This error exposes people and animals to contaminated food or feed.A number of protocols for sampling of commodities for mycotoxins have been developed, with different risks for consumers (accepting food or feed that should have been rejected) and producers (rejecting food or feed that should have been accepted).Generally, the difficulty of obtaining a representative sample is recognized as the major cause of insecurity in aflatoxin testing. However, there is still variability among different laboratories and different laboratory methods. Most methods require a correct extraction and clean-up of samples, and the way this is done may affect the outcome (Turner et al. 2009). Which methods can be used in a lab are dependent on how reliable electric power is as well as the supply of reagents; in remote areas or poorly equipped labs, less advanced methods may need to be employed.Highly reliable methods are liquid chromatography mass spectroscopy (LC/MS) and high (or ultra-high) performance liquid chromatography (HPLC/UPLC), and these often serve as references for other methods. Total aflatoxins can also be measured by direct fluorescence (DF) of purified extracts. Different immunoassays have also been developed, such as enzyme-linked immunosorbent assays (ELISA), which are easy and cost effective (Turner et al. 2009;Pitt et al. 2012). There are a number of rapid tests providing a result over or under a certain limit (agristrips and dipsticks). These may be used directly at millers and producers, or in markets (Pitt et al. 2012). Table 1 summarizes the characteristics of widely used tests. While these current technologies can provide an accurate measurement of aflatoxin levels, they are generally expensive, have low throughput and are not portable for the African context. A promising technology is Near Infrared Spectroscopy (NIRS), a technique used to identify substances by measuring their absorption of infrared radiation (Harvey et al. 2013).Due to the difficulties in assessing mycotoxin levels, it is important to have a reference system, both within a country and in a region, by which local labs can be accredited and ring tests performed. This way, the reliability of laboratory results can be established.All animals are affected by aflatoxins, but some species more so than others.  Impacts can be large. For example, depending on the amount of aflatoxin and the length of the trial, chickens fed contaminated feed weighed from 38 percent to 97 percent as much as birds fed normal diets; layers given 10,000 ppb reduced egg production by 70 percent (Huff et al. 1975) A review of multiple studies showed that mycotoxins in diets reduced pig weight gain by 21 percent (Andretta et al. 2012). In general, the effects of aflatoxins are dose responsive: the higher the amount of aflatoxins, the greater the impacts. In pigs, every extra 1000 ppb in pig feed was associated with a 3.9 percent additional decrease in weight (Andretta et al. 2012). In several trials there seems to be a threshold below which impacts are not seen. Some trials in poultry showed no body weight reduction at levels between 50 and 800 ppb. Other trials in poultry showed body weight reduction between 75 ppb and 500 ppb. All trials showed body weight reduction at over 1000 ppb (Hussein and Brasel 2001). Some studies show impacts in commercial herds or flocks at levels below those shown to cause impacts in laboratory trials. This could be because animals are exposed to other stressors or they ingest a mixture of mycotoxins. Some studies show impacts at low levels of aflatoxins; others do not show impacts even at high levels. This could be due to other factors (food quality, exercise, breed, and age of animals) or to trials being too short or having too few animals to detect affects. Dietary levels of aflatoxin (in ppb) generally shown to be tolerated are: ≤50 in young poultry, ≤100 in adult poultry, ≤50 in weaner pigs, ≤200 in finishing pigs, <100 in calves, <300 in cattle and <100 in Nile tilapia (Pitt et al. 2012). Dietary levels as low as 10-20 ppb may result in measurable metabolites of aflatoxin (aflatoxin M1 and M2) being excreted in milk especially where milk is from high yielding dairy cattle (Elgerbi et al. 2004). However, ill effects may be observed at lower levels, especially if animals are exposed to other stressors. Decrease in body weight due to aflatoxin exposure can be partially offset by exercise, protein, methionine, and good environmental conditions (Andretta et al. 2012).There are three reasons for having standards for the maximum amount of mycotoxins in feeds: 1) to protect human health from possible harmful metabolites in animal products;2) to protect livestock from potential negative health and production impacts of aflatoxins; and 3) to protect the environment from contamination. The reasons for protecting livestock health are: 1) to safeguard livestock resources and the benefits people derive from livestock (nutrition, income, livelihoods, trade); 2) to protect value-chain actors from fraudulent or defective products; 3) to encourage fair trade, competition and economic growth; and 4) to protect the welfare of livestock. The primary reason for mycotoxin regulations in pet food is concern about the health of the animal motivated by animal welfare and public opinion considerations. Most countries however, do not regulate pet foods separately from other animal feeds (Leung, Díaz-Llano and Smith 2006).There is also a question as to whether there should be a choice of one standard for all feeds or different standards according to livestock and feed type. Standards are also designed to prevent carry-over of aflatoxins from livestock and fish feeds to human beings. Levels in animal feeds are primarily regulated to protect humans from exposure to Aflatoxin from animal products. Aflatoxins are carried over from the animal into animal products and therefore the regulation of aflatoxins in animal feeds is also protecting human consumers. Approximately 1-7 percent (around 2 percent on average) of the AFB 1 consumed by a dairy cow is transferred into the milk as the aflatoxin M 1 metabolite (Fink-Gremmels 2008). Although still toxic, this metabolite has been estimated to have only 3 percent of the mutagenicity of AFB 1 (Cullen, Ruebner, Hsieh, Hyde, and Hsieh 1987;Wong and Hsieh 1976). However, the difference in potential to inflict chronic disease has not been evaluated.Transfer of aflatoxins from feed to eggs, meat, and viscera has been studied, and found to be much less than the transfer into milk. The transfer of aflatoxins into eggs seems to be around 2,000-5,000 times less than what was fed in the feed (Hussain et al. 2010;Oliveira et al. 2000). Similarly, retention rates of aflatoxins in the meat and viscera of pigs and beef have been shown to be very low, with less than 1 percent being retained, and disappearing rapidly after animals are given aflatoxin-free feed (Furtado, Pearson, Hogberg, and Miller, 1979;Jacobson, Harmeyer, Jackson, Armbrecht, and Wiseman, 1978;Richard et al. 1983).The Codex Alimentarius provides some guidance on setting of maximum levels (MLs) for aflatoxin. Principles and their implications for standard setting in the East African context are summarized below.Principle 1. MLs shall only be set for contaminants that present a significant risk to public health and trade. Implications: Aflatoxins in milk may present a significant risk; aflatoxins in meat, eggs, and offal are unlikely to pose a risk (assuming feed containing aflatoxins is stopped for a period before slaughter). However, risk assessment is needed to evaluate if they may pose a risk to sub-groups.Principle 2. MLs shall be set as low as reasonably achievable to protect the consumer. Implications: More evidence is needed on what is the lowest level reasonably achievable for animal source foods and animal feeds in East Africa. It is probably higher than limits set in the EU and may be closer to limits set in India, South America, and the United States.Principle 3. MLs shall be set at a level that is slightly higher than the normal range of variation in levels in foods that are produced with current adequate technological methods, in order to avoid undue disruptions of food production and trade. Implications: Because current levels of aflatoxins are high in feeds, more stringent standards would result in disruptions of feed production and trade if applied.Principle 4. Proposals for MLs in products shall be based on data from various countries and sources, encompassing the main production and processing areas of those products. Implications: Data on this is presented in the situational analysis.Principle 5. MLs shall apply to representative samples per lot and where necessary sampling methods should be set out. Implications: Protocols for aflatoxin contamination sampling for animal and fish feeds in East Africa should be developed and regionally harmonized.However, there is no single internationally accepted regulation on MLs for aflatoxin in feeds. Likewise, there is no guaranteed safe level for aflatoxins in livestock and fish feed. The effects of aflatoxins vary with species, breed, age, diet, exercise, and environment. They also vary depending on other mycotoxins present in the feed.There are many unknowns about aflatoxins, and much of the research and experimental work does not adequately reflect the real life conditions on farms. Aflatoxins are carcinogenic in some animals. As with many other carcinogens, it has been assumed that a single molecule could potentially cause a mutation that could lead to cancer, hence there is no safe limit for carcinogens. For aflatoxins in animal source food, there is evidence regarding the potential impacts of aflatoxins on human health and well-established conventions on the margins of safety that are applied in fixing limits for aflatoxins in human foods. These should be the basis for standards on aflatoxins in animal source foods. Most transfer to meat and viscera can be prevented by ceasing to feed aflatoxin containing feed for a period before slaughter, and this should be observed. Preventing transfer to milk requires keeping aflatoxins in dairy animal diets below certain limits.However, aflatoxins are ubiquitous in tropical countries and cannot be completely eliminated from feeds. Aflatoxins are produced by fungi, which are found everywhere in soil and crops. It is not possible to completely eliminate aflatoxins from animal feed with current technologies. Hence, decisions have to be made as to what levels of aflatoxins in animal feeds are acceptable or tolerable and what is the best way of attaining those levels. Moreover, many of the effects of aflatoxins are dosedependent and so at certain doses ill effects are minimal.The advantages of policies that specify strict standards (only small amounts of aflatoxin allowed) in animal feeds are that they:  Give the widest margin of safety for livestock and animal source foods  Allow harmonization with others setting strict standards (for example, the EU) Give additional protection against presently unknown effects  Are often most acceptable to the public and decision makers  Discourage countries with strict standards from dumping products on other countries.The disadvantages of policies that specify strict standards (only small amounts of aflatoxin allowed) in animal feeds are that they:  Are costly and/or impossible to enforce  Add to the costs of farmers and the feed industry and hence the cost of livestock products  Create greater competition with human food and reduce food security  Make it more difficult to harmonize standards among neighboring countries  Remove an alternative use for contaminated human food, making it more likely contaminated food will be eaten by people  Create relatively higher compliance costs for poor farmers and those with less access to education and information (often women farmers) Can be protectionism in disguise, which hampers trade and increases costs for consumers.Table 2 lists the aflatoxin limits for animal and fish feed by animal type. Table 3 lists the range and average aflatoxin limits in animal and fish feed by feed type. For the 24 countries whose borders fall within the tropics (where aflatoxins are particularly a problem) the average maximum level was 54.5 ppb, within a range of 0-300 ppb. For the countries whose borders are outside this area, the average maximum was a much lower 26.3 ppb, within a range of 1-200 ppb (Van Egmond and Jonker, FAO 2004).Anti-mycotoxin additives (AMAs), also known as binders or adsorbents, are substances that bind to mycotoxins and prevent them from being absorbed through the gut and into the blood circulation. AMAs may have additional benefits that reduce the toxicity of mycotoxins. When other preventive measures against molds and mycotoxins have failed, the use of anti-mycotoxin binders can be helpful. Current evidence shows that clays are the most effective AMAs. However, not all clays (even of the same type) are equally effective. In the absence of testing, a large proportion of products on the market may be ineffective.While it is desirable to reduce aflatoxins in feed through good agricultural practices (GAP)and good manufacturing practices (GMP), these alone may not be sufficient to remove all contamination. In some situations, it may be preferable to salvage contaminated cereal by feeding to livestock, rather than destroy it or use it for non-feed-or-food purposes. In other situations, it is not practical to test feedstuffs on a regular basis or there may be concerns about the accuracy of testing. In these cases, addition of mycotoxin binders can act as a safety measure for feed manufacturers and farmers and an assurance to customers (Jacela et al. 2009).The CAC recognizes that research suggests that the addition of the anticaking/binding agent hydrated sodium calcium aluminosilicate (HSCAS) to aflatoxin contaminated feeds may reduce AFM 1 residues in milk, depending on the initial concentration of AFB 1 in the feed (CAC 1997).In Characteristics of different binders are discussed below.Description: Bentonite and zeolite are clays that originate from volcanic ash and are found throughout the world. HSCAS is derived from natural zeolite. HSCAS is one of the best-studied and most effective aflatoxin binders. HSCAS does not impair phytate, phosphorus, riboflavin, vitamin A, or manganese utilization.HCAS may vary with different origins. Brands 1 : Novasil Plus™  Bentonite has shown benefits in numerous trials but clays can vary widely in effectiveness. Brands: Volclay 90™, AB20™ Derived phylosilicates are more lipophilic and show some effectiveness against other mycotoxins. Brands: Myco-Ad™, TOXISORB™  Zeolite has less adsorptive capacity than HSCAS or bentonite, but has been useful under particular conditions. Kaolin and diatomaceous earth: insufficient information to evaluateEffectiveness: At inclusion rates of 0.5 per cent in the final diet, these feed additives have the potential to reduce the negative effects of aflatoxins (up to 3000ppb) by 60 to 90 percent. It can be included up to 2 percent of the diet and can prevent aflatoxicosis at up to 7500 ppb.Availability: Sold as anti-caking agents.Disadvantages: Not bio-degradable; natural clays vary greatly in effectiveness and may be contaminated; not very effective against other mycotoxins; some clays may reduce absorption of trace nutrients.Description: Formed by charring of organic material and long used as a general antidote against poisoning.Effectiveness: Early studies showed some effectiveness, but there were inconsistent results on mortality and performance.Disadvantages:Not as effective as clays; not recommended for routine inclusion;adsorbs essential nutrients as well as aflatoxins; turns feed black (Huwig et al. 2001; Jaynes and Zartman 2011; Grenier and Applegate 2013).Description: Derived from yeast cell walls and contain complex carbohydrates such as glucomannans and mannanoligosacharides.Effectiveness: Of high nutritional value and can increase growth in animals independent of aflatoxin levels, but can also reduce the pathogenic effects of toxins. Biodegradable and effective against multiple types of mycotoxins.1 Brand names are given as examples and do not endorse the effectiveness or other aspects of the cited brand.Availability: Sold as feed additives which do not make health related claims.Results inconsistent; product may be variable depending on composition; studies have shown inconsistent results on transfer of M 1 into milk. (Aravind et al. 2003;Taklimi 2012;Ghahri et al. 2009;Hady et al. 2012).There are two other types of binders that have been shown to be useful in reducing aflatoxin contamination of food and feed, humicacide and lactic acid bacteria.Humic acid is produced by biodegradation of dead organic matter. It has also beenshown to reduce the toxic effects of aflatoxins (Ghahri et al. 2009;Taklimi 2012).However, information is insufficient for recommendation.Lactic acid bacteria are generally considered harmless food additives and are used traditionally in fermented milk products, in sourdough, and silage. Some strains have the ability to bind aflatoxins, and may prevent the fungi from creating toxins.However, insufficient information is available to recommend for practical use (El-Nezami et al. 1998;Pierides and El-Nezami 2000).Ammoniation is a safe and effective way to decontaminate cereals intended for livestock use. In some countries, cereals above national limits can be exported. However, this is not recommended.Safe feeding of cereals contaminated with aflatoxins to suitable classes of livestock can be an appropriate alternative use. Blending of contaminated grains with uncontaminated grains can produce feeds with an average level below permitted limits.Feeding to appropriate livestock is probably the best use of most aflatoxincontaminated cereals, where it can be done without undue risk to animal health.Although there are no currently established levels at which aflatoxins can be guaranteed safe for livestock, many animals, especially mature animals, can tolerate aflatoxins well. Indeed, many experimental studies do not show statistically significant effects of low aflatoxin levels. There is a consistent pattern of fewer, less severe, or no signs at lower doses of aflatoxins and increasing effects at higher doses.Growth depression associated with aflatoxins is affected by factors other than species and age. Rats on high-protein diets with 500 ppb aflatoxins had better growth than rats on low protein diets without aflatoxins. Exercise and absence of other mycotoxins from the diet are also protective. Depending on species, age, and length of trial, experiments have found no effects from aflatoxins at levels from 200 to 5000 ppb and significant effects at levels from 20 to 10,000 ppb. Tolerable ranges appear to be: ≤50 ppb in young poultry, ≤100 in adult poultry, ≤50ppb in weaner pigs, ≤200ppb in finishing pigs, <100ppb in calves, <300 ppb in cattle, and<100 in Nile tilapia (Bashir et al. 2001).One method of reducing moderate levels of aflatoxin contamination is to blend contaminated grain with clean grain. Blending one kilogram of grain with aflatoxin contamination five times above the limits with nine kilograms of grain with no detectable aflatoxin would result in ten kilograms of grain with aflatoxins at 50 percent of the permissible amount (Grace 2013). Blending of contaminated crops has been practiced where highly contaminated crops are mixed with uncontaminated crops to produce a mix that has an average level below the legal limits.In the USA, blending is not normally allowed and blended feed is considered adulterated. But exceptions have been given during contaminated harvests (Price et al. 1993;Bagley 1979). Usually waivers will state the maximum concentration to be blended (e.g., 500 ppm) and also state that blended feeds cannot be used for lactating animals. Blended feed can be traded interstate when appropriately labeled. Blending is allowed on the farm and is considered by some the most practicable use of contaminated feed.In South Africa, the Code of Practice for the Control of Mycotoxins in the Production of Animal Feed for Livestock implies that blending is acceptable. If feasible \"the opportunity of blending with 'clean' material is generally limited due to storage facility constraints at feed mills.\"Treatment with gaseous ammonium can reduce aflatoxin levels dramatically, and can make feed safe and tolerated by animals (Bagley 1979). The ammoniation process, using either ammonium hydroxide or gaseous ammonia, can reduce aflatoxins (100-4000 micrograms/kg) in corn, peanut meal-cakes, whole cottonseed, and cottonseed products by up to 99 percent (European Mycotoxins Awareness Network n.d.).Ammoniation is a safe and effective way to decontaminate aflatoxins; it has been used with success in many countries but is not legal in others. The average costs are 5-20 percent of the value of the commodity (Grace and Unnevehr 2013).A quick summary of initiatives and acceptance of techniques for alternative uses follows. CAC: To date there has been no widespread government acceptance of any decontamination treatment intended to reduce aflatoxin B 1 levels in contaminated animal feeding stuffs. Ammoniation appears to have the most practical application for the decontamination of agricultural commodities, and has received limited regional (state, country) authorization for its use with animal feed under specified conditions (i.e., commodity type, quantity, animal) (CAC 1997). USA: Currently, there is no FDA-approved method for ammoniation of corn but the FDA has approved ammoniation for detoxifying cottonseed. At the state level, the ammoniation procedure is permitted for cottonseed products in Arizona, Texas, and California and for contaminated corn in Texas, North Carolina, Georgia, and Alabama. Senegal: Two local oilseed companies, SONACOS and NOVASEN, account for virtually all formal sector processing and export of groundnut cake, edible groundnut, and unrefined oil. Detoxification using ammonia was developed in the 1980s and ensures safer food for consumption by lowering aflatoxin levels in peanut oilcakes to 10 ppb, meeting European standards. Because ammoniation is costly and the technology is patented by SONACOS, it is not readily available for use in NOVASEN.NOVASEN sells its product as is to European feed companies that are able to detoxify the groundnuts themselves (Imes 2011). Mexico allows ammoniation for corn. France, South Africa, Senegal, and Brazil use this procedure to lower aflatoxin contamination levels in peanut meal used in animal feeds. EU: Decontamination is allowed for animal feed but not human food. \"Proper handling and drying practices can keep the aflatoxin levels in the different feed materials low, and efficient decontamination procedures exist to reduce levels of the aflatoxin B 1 \" (2002/32/EC). In Europe, ammoniated feed cannot be fed to lactating cattle and sheep since the levels of residual aflatoxin B 1 in ammoniated products can be higher than the maximum permitted level (that is, 5 mcg/kg).Nixtamalization, the traditional alkaline treatment of maize in Latin America, can reduce toxicity and has potential for wider applications. Other chemical and biological agents have been effective in experiments but are not yet commercially developed. Gaseous ozonisation has also been applied and shown to have an effect, especially on reducing AFB 1 (Proctor et al. 2004).In some countries, regulations permit the export of feed and feed ingredients which do not meet the national limits. This is problematic when grains are exported to countries where their ultimate use cannot be tightly controlled.Piglets suckling. Joseph Atehnkeng -IITA.In Africa, the majority of livestock is kept by pastoralists and smallholder farmers and sold through informal markets. Feed consists mainly of animal pasture, forage, or crop by-products. Additional feed is from natural pastures or feed mostly supplied by famers themselves or by feed manufactured in small, local mills. The majority of livestock products are sold through the informal sector. The majority of fish consumed is wild caught and feed is not required.The diet of livestock consists mostly of pasture or forage, and little additional feed is given. Additional feed comes predominately comes from the farmers' own farm or from small, local mills. Large scale commercial farmers supply only a small fraction of livestock products, with the minority of the livestock and fish feeds supplied by large-scale millers in the formal sector. Most feed mills in the region are operating under-capacity, and require \"infant industry\" government support to enable them to support the rapid intensification of livestock industries predicted to occur over the next decades.The FAO estimates that 95 percent of aquaculture is produced through microenterprises and mostly relies primarily on fertilization and enhanced natural food for fish crops rather than commercial fish feed. While the majority of fish consumed are wild caught at this time, aquaculture is an expanding agribusiness throughout the region. Similar to livestock products, urbanization and income growth will continue to accelerate the demand for these products across East Africa in the near future.Animal and fish feeds are the major aflatoxin exposure routes for livestock and fish.Few studies have been conducted in East Africa to show the presence of aflatoxins in the feeds. Table 4 highlights the findings of these few studies. More research is needed to determine the magnitude of the problem. The animal feeds and milk industry sectors in the EAC have not developed an industry standard for aflatoxin contamination. There are two principal reasons for this.First, private sector organizations are weak. Despite the existence of organizations such as the Tanzania Milk Producers Association (TAMPRODA), the Tanzania Milk Processors Association (TAMPA), and the Association of Kenya Feed Manufacturers (AKEFEMA), some producers do not participate. Nonmembers may and do ignore the standards.Second, some in the industry view standards for private producers as a detriment to small producers. Large producers have the capital to invest in meeting stringent standards that may even be above national body standards. When standards from GlobalGAP, the nongovernmental organization that sets standards for the horticulture and the fisheries industry, were applied in Kenya, studies showed a number of negative constraints to compliance (Murithi et al. 2011).During this study, export and import data on animal and fish products was not easily accessible from EAC government departments. Data was collected and used from the FAO and the Common Market for East and Southern Africa (COMESA) to illustrate trade patterns.FAO provides data, volumes, and values for the top 20 commodities of export and import products, organized in tables. Additional FAO data are available for single commodities.When data were not available from the FAO, we used data from COMESA to show trade patterns within and outside of the common market. The data in Tables 5 and 6 show that East African countries do re-export imported products. Trade in Fish and Aquaculture Products Fish production from fresh water, marine environments, and aquaculture varies across the EAC, with Uganda leading and Burundi producing the least (Figure 1). Zanzibar's production and trade of seaweed-which amounts to 150,876 tons annually-is not accounted for; it is used for cosmetics, and not as animal feed. Figure 2 shows the exports and imports of fish products from the EAC partner states. Uganda and Tanzania benefit more than other countries from the export of fishery products. There is currently a need for studies on aflatoxin contamination in fish feeds used in aquaculture. The EAC partner states trade in numerous animal products, but the data presented here is for a few selected products that are subject to contamination by aflatoxin. The major product of concern is milk. Liquid milk and dried powdered milk pose the highest danger to human health from aflatoxin contamination. Table 7 shows the trade figures for eggs and milk products.We have determined from interviews with EAC ministries responsible for trade, national standards bureaus, and food and drug oversight boards, that specified levels of aflatoxin and other mycotoxin contaminants are not mandatory quality requirements for imports into the EAC partner states. FAO data does not offer us the destination or source of exports and imports. While most of the listed trade items do not feature within the 20 top import/export commodities for EAC countries, trade within COMESA is vital. Figure 3 below quantifies the value of COMESA trade patterns. Kenya tops the EAC partner states with the highest share of COMESA total exports (20.2 percent), with an import share of 7.2 percent. Uganda, Rwanda, and Burundi follow in that order. Human exposure to aflatoxin through animal and milk products should be a major concern to Kenya. However, the other partner states should not relax on this front. Their livestock sectors are growing, and along with them, the demand for animal feed products.To meet domestic needs, other EAC countries will be forced to import the raw materials which they now export. Under this scenario, quality control of these raw materials will have to include monitoring for aflatoxin contamination. The Codex Alimentarius provides guidance on setting of MLs for aflatoxin. Principles and their implications for standard setting in the East African context were summarized under the section of this paper entitled \"\"Principles for Setting Aflatoxin Standards in the EAC\". As noted, these standards can be advantageous in that they provide a wide margin of safety for livestock and animal source foods, allow for harmonization with others setting strict standards, discourage protectionism, have been reached through process of consensus based in scientific evidence and analysis, and are useful in discouraging countries with stricter standards from dumping products on other countries. Conversely, when too stringent, such standards can be costly and/or impossible to enforce, transfer a cost burden to farmers and the feed industry, increase the price of fish and livestock products to consumers, impact negatively on food security, and make a wider geographical band of harmonized standards challenging to achieve. Finally, standards that are too harsh can disadvantage less educated and smaller producers. In the East Africa region, many of these will be women.The EAC partner states have developed a number of standards covering aspects of milk and feedstuffs for animals and fish. Figure 4 shows the number of standards developed for animal feeds, milk, and fish in three EAC partner states from which data were available. Zanzibar still uses standards from Tanzania Bureau of Standards as they develop their own. In Kenya, three standards specifically mention aflatoxin B1, B2, G1, and G2. In Uganda, two standards specifically mention aflatoxin B1, B2, G1, and G2. One standard in Kenya mentions aflatoxin M1 (AFM1). Uganda and Kenya indicated to our researchers that there are revised standards, which specifically indicate that aflatoxin will be regulated using standards approved by CAC. The numbers of those standards which have been revised with these new additions were not given. Aflatoxins, and other mycotoxins, can seriously reduce livestock productivity. In poor countries, livestock and fish are often fed highly contaminated grains considered unfit for human consumption and are at risk from acute aflatoxicosis. As livestock systems intensify, problems with aflatoxicosis in animals are likely to worsen. Chronic aflatoxicosis is potentially a major cause of economic loss, especially for pigs and poultry kept in intensive systems. Aflatoxins can transfer from feed to animal source products, but there is minimal information or testing of these products in developing countries. Risks are likely to be highest in the case of milk, processed fish, and indigenous fermented meat, fish, and dairy products.Aflatoxins in milk are especially problematic because of the relatively high transfer rates of aflatoxins from cow feeds to milk, the relatively high consumption of dairy products, and the widespread use of milk as a weaning food for infants. Transfer of aflatoxins to meat and viscera is much lower than transfer to milk and can be prevented by not feeding livestock and fish feeds containing aflatoxin for a period of time before slaughter.The feed sector in East African partner states remains underdeveloped. There is tremendous economic potential in this sector as dairy, poultry, and aquaculture continue to grow.In all partner states but Kenya, which is the largest EAC consumer of cattle feed, milk production is principally from indigenous animals on the range. Nevertheless, the main consumer of compounded feeds in the EAC states is the dairy industry. Improvement of breeds and disease management are two factors contributing to dairy sector growth.There is a need to nurture this sector to match the growth in demand for animal products like milk. At present, Uganda, mainland Tanzania, and Zanzibar use more manufactured poultry feed than manufactured cattle feed.Aflatoxin contamination of animal and fish feeds and milk has not been widely investigated and there is little data on the current levels of contamination. The few studies that have been done were not well designed and did not include comprehensive coverage of all countries, feed types, and raw materials.Despite their limitations, these studies have been sufficient to conclusively determine that the problem of aflatoxin contamination in animal and fish feeds is as widespread and serious as the problem of aflatoxin contamination in human foods. This is, of course, because animals are fed with foods that are left over from the same sources of production but not fit for human consumption. There is an urgent need for research to more precisely determine the magnitude of the problem in the feed types and raw materials used, to point the way forward to set comprehensive standards for animal and fish feeds and to develop strategies to control aflatoxin in the feed supply. Some progress is being made. The EAC has developed common standards for maximum aflatoxin presence in maize and milk traded among partner states. The maize standard came in response to an outbreak of aflatoxin in Kenya in 2005 and provides both grading for quality and allowable levels of aflatoxin. The new milk standard, however, lacks controls on levels of aflatoxin M1.Standards development for animal feeds is well advanced, but very few standards have been developed for fish feeds. This is partly because aquaculture has just been introduced in the EAC partner states. More widespread and better standards for fish feeds and fish management under aquaculture are needed to protect consumers as this sector expands.Intra-EAC trade in animal feed and milk products is not well captured in the databases of the partner states. With the approval of the Common Market Protocol, which allows free movement of goods and services across the EAC partner states, it is hoped that data will be captured to facilitate implementation of Aflatoxin control so as not to unduly expose consumers through milk, poultry, fish, and meat products. Aflatoxin control and compliance with standards are also essential for continued growth in the export sector for global markets.Stakeholder analysis has shown that government departments have interest, power, and influence. Unfortunately, consumer organizations with high interest lack power and influence. This is because the consumers are not sensitized to demand products that comply with the standards in regard to Aflatoxin. This can be addressed through a comprehensive and multisectoral approach to aflatoxin control for the EAC.The feed sector in EAC partner states consists of a small number of commercial farmers and professional feed producers and a much larger number of small-scale farmers and local feed-producers. Commercial and small-scale actors have different needs for support and regulation.Commercial farmers and agro-industry facing the challenge of aflatoxin contamination need policies that: Promote GAPs and GMPs in order to reduce risk of mycotoxin contamination along the food-feed chain by improving the processes; Create awareness in the industry of the impact of contaminants on animal health and in transfer to livestock products; Assign producers and manufacturers with responsibility for monitoring contaminants.Small-scale farmers and small-scale feed mills facing the challenge of aflatoxin contamination need policies that: Adapt GAPs to simple messages and practices that can easily be adopted; Create awareness among farmers and small-scale feed processors about the risks of mycotoxins and all other feed-related hazards; Develop simple methods for monitoring feed quality and group assurance of quality.General recommendations from the literature and policy review conducted for this paper are as follows:1. The primary considerations in formulating feed standards should be to safeguard human health, enhance productivity, and facilitate trade. Standards should also provide consumer protection and support animal welfare, but in the case of the EAC, the regulatory burden should be taken into account. Codification, recasting, and reviewing clauses are recommended as ways to reduce regulatory burdens.Self-regulation and co-regulation can be considered as simpler alternatives to detailed rules.Harmonized regional standards should be adopted. Where there are no harmonized standards, then the Codex Alimentarius standards, codes, guidelines, and recommendations should serve as the reference.Risk analysis should be used in setting standards whose primary objective is to reduce the risk to animal and human health in animal source foods. Where risk to human health is negligible, cost benefit analysis, distributional effects evaluation, and regulatory impact assessments should be used to provide information on the benefits and costs of regulation.Aflatoxin specification for animal and fish feeds and feed materials standards should be based on tolerable ranges plus a margin of safety. Generally tolerable ranges are: ≤50 ppb in young poultry, ≤100 ppb in adult poultry, ≤50 ppb in weaner pigs, ≤200 ppb in finishing pigs, <100 ppb in calves, <300 ppb in beef cattle and <100 ppb in Nile tilapia. The current high levels of aflatoxins, tropical context, desirability of having an alternative use for highly contaminated foods, and implications for food security and livelihoods would support feed standards that are less rather than more strict. Protocols for sampling feed and feed ingredients should be developed.Protocols for sampling feed and feed ingredients should be developed and harmonized.EAC partner states should explore the avenues to identify and approve safe and suitable anti-mycotoxin additives for livestock and fish feeds.Feeding contaminated cereals and feeds to livestock may be an acceptable use that reduces risk to public health. Where blending of contaminated materials can be done accurately and safely, it should be considered as an alternative use.Ammoniation is a safe and effective way to decontaminate cereals intended for livestock and fish feed. It should be considered as an alternative use where the resources for establishing and maintaining the necessary infrastructure are available.Standard protocols should be developed and followed for sampling and testing feeds and feed ingredients for aflatoxins. Within laboratories, quality assurance systems need to be developed and monitored. There should be a reference system whereby laboratories are accredited and ring tests performed in EAC partner states.Within the EAC in particular, the following recommendations are made for the standards setting process.Standards for countries with similar conditions should be harmonized.Standards for countries that wish to trade should be harmonizedStandards should specify the species, age, and purpose of the animals to which they apply.Standards should specify the type of feed to which the standard applies.Standards should be based on the levels generally tolerated plus a margin of safety.Standards should take into account the needs of stakeholders, especially small-holder farmers,Regulators should focus on improving processes through GAPs and GMPs.The following recommendations are made as the means to create an enabling environment across the EAC partner states in which standards can be created and enforced:1.Continue research and data collection and analysis. More information on the aflatoxin contamination levels in animal and fish feeds and milk and milk products across the EAC partner states, and strategies for aflatoxin abatement are required to inform policy and standards development.EAC partner states at the national and regional level, should work together to revise the existing animal feed standards to include aflatoxin analysis and permissible limits for animal and fish feeds and feed ingredients.National government should separate their standards-setting agencies from their enforcement and compliance entities.Regional, national, county, and community organizations should work together to create awareness of the benefits of aflatoxin contamination standards for farmers, industry, consumers, and other stakeholders.A national structure of testing laboratories and a cadre of technically qualified personnel to monitor and test for aflatoxin contamination of human and animal food stuffs should be created within each partner state.Other measures should be taken regionally and nationally to ensure that industry and the private sector share the burden of compliance with appropriate aflatoxin standards for animal and fish feed and products.Programs and interventions to adequately address aflatoxin in feed and animal products consumed on-farm and/or sold through informal trade should be designed and implemented. This compilation of standards for aflatoxins in poultry feed from different sources illustrates the wide variety of standards that are available for poultry (5 ppb to 900 ppb), and how some standards are general as regards species, strain, and feed, with others more specific. ","tokenCount":"9080"} \ No newline at end of file diff --git a/data/part_3/4530368098.json b/data/part_3/4530368098.json new file mode 100644 index 0000000000000000000000000000000000000000..398d80ac914d67cfafe1799d9631bebd893948a7 --- /dev/null +++ b/data/part_3/4530368098.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"3fed0cd8d8e11a685624219622409231","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/55411d55-b8d7-4373-bbe5-da369f3e15a9/retrieve","id":"1934507762"},"keywords":[],"sieverID":"7e874ed5-c807-402d-afdb-35d10c7c12ef","pagecount":"2","content":"Africa RISING program framework: Core elementsThe Africa RISING program framework outlines the underlying principles of and implementation plan for the research undertaken by the three Africa RISING projects in West Africa, Eastern and Southern Africa and the Ethiopian highlands. It identifies approaches that will deliver against its purpose of providing pathways out of hunger and poverty through sustainable intensification (SI). Scaling will be embedded in the program, at a pilot level (within the program's budget) and beyond through the development of investment plans with development agencies.The research in Africa RISING is designed to test 5 program-wide hypotheses. Individual projects will formulate their own research hypotheses at the next level of detail ensuring that they contribute to the testing of at least one program hypothesis. Integrating technological components into SI systems confers more benefits to smallholder farmers than single components. Innovations with components that mutually reinforce whole farm performance/productivity produce greater and more sustained benefits than the joint adoption of equally effective single purpose technologies and practices. Integrating technological components into SI systems stimulates more adoption compared to single components. Targeting better tailored interventions that suit the context specific environments and the diverse local conditions in smallholder farms/households will lower environmental damage.  Effective targeting of innovations reduces the negative impacts of trade-offs between farm productivity and environmental sustainability and helps to identify potential \"win-win\" options for SI. The adoption of innovations that lead to SI is affected by the sequence in which the component technologies, practices, and knowledge are integrated and applied, whereby any step resulting in reduced farm-level outcomes will reduce the ultimate uptake of these innovations. Agricultural SI interventions that are tailored to diverse local conditions on smallholder farms are more likely to be scalable to similar populations and environmental settings. A research approach based on targeting and evaluating SI-related innovations, increases the relevance of findings from research sites and enhances their scalability to similar strata elsewhere (i.e. to similar development domains and household typologies in other locations).To emphasize the research for development nature of Africa RISING, the program proposes four research-and development-oriented objectives and outcomes.1. To identify and evaluate demand-driven options for sustainable intensification that contribute to rural poverty alleviation, improved nutrition and equity and ecosystem stability [H1, H2, H3, H4]. 2. To evaluate, document and share experiences with approaches for delivering and integrating innovation for sustainable intensification in a way that will promote their uptake beyond the Africa RISING research sites [H5]. Development objectives 1.To create opportunities for smallholder farm households, within Africa RISING action research sites, to move out of poverty and improve their nutritional status -especially of young children and mothers -while maintaining or improving ecosystem stability [H5]. 2.To facilitate partner-led dissemination of integrated innovations for sustainable intensification beyond the Africa RISING action research sites [H5].","tokenCount":"462"} \ No newline at end of file diff --git a/data/part_3/4532213649.json b/data/part_3/4532213649.json new file mode 100644 index 0000000000000000000000000000000000000000..8fb9f71b34295b97ce3aa941dd0ae26cf674e448 --- /dev/null +++ b/data/part_3/4532213649.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"996727258a04f2244a6ca933bbe77fc4","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/5aad2584-b975-4913-a39e-881d90566119/retrieve","id":"105526511"},"keywords":[],"sieverID":"3f5d0b49-7f51-4122-b56d-a841a81094b7","pagecount":"8","content":"Twenty-one yellow-fleshed cassava genotypes were evaluated over two years in five major cassava growing agroecological zones in Nigeria. The trials were established in a randomized complete block design with four replications to assess genotype performance and Genotype × Environment interaction for cassava mosaic disease (CMD), fresh and dry root yield (FYLD; DYLD), root dry matter content (DMC), and total carotene concentration (TCC). Combined analysis of variance showed significant differences (P < 0.001) among genotypes (G), environment (E), and Genotype × Environment interaction (GE) for all the traits tested. For reaction to CMD, the best genotypes showing stable resistance were TMS 07/0539 and TMS 07/0628. For root yield, the best genotypes were TMS 01/1368 and TMS 07/0553. Genotype TMS 07/0593 was the best for DMC and TCC across the 10 environments. Variation among genotypes accounted for most of the Total Sum of Squares for CMD (72.1%) and TCC (34.4%). Environmental variation accounted for most of the Total Sum of Squares for FYLD (42.8%), DYLD (39.6%), and DMC (29.2%). This study revealed that TMS 07/0593 has the highest and most stable TCC, DMC with the lowest CMD severity score and appeared to be the best genotype.Vitamin A deficiency (VAD) is a global problem of public health significance in under-privileged communities of the world [1]. Xerophthalmia is the most readily recognized and the most widely employed criterion for discussing whether VAD poses a significant public health problem in any particular community [2]. Vitamin A deficiency in the early stage leads to night blindness and Xerophthalmia, which may ultimately progress to blindness [3]. A nationwide food consumption and nutrition survey conducted in Nigeria revealed that 29.5% of children under 5 years of age were vitamin A deficient (serum retinol <0.70 μmol/L) [4]. Cassava (Manihot esculenta Crantz) is an important food security crop and a major source of calories for about two of every five Africans [5]. Although the starchy root is the primary product, fresh leaves are also used for animal and/or human consumption [6]. In 2008, Nigeria was the leading cassava producing country in sub-Saharan Africa, producing 44.6 million tons on 3.8 million ha [7]. In Nigeria, more than 70% of cassava production is processed at the village level into gari, the principal source of calories for 70-80 million Nigerians. Cassava varieties often demonstrate specific adaptation due to their high sensitivity to the genotype-by-environment interaction (G × E) that occurs in both short-term and long-term crop performance trials [8] and is a major concern in plant breeding because it reduces progress from selection. This makes cultivar recommendation difficult because the choice of superior cultivars changes with locations [9].β-carotene is the most potent and widespread form of pro-vitamin A [10] and is the predominant carotenoid in cassava, occurring as a mixture of 13-cis-β-carotene; transβ-carotene and 9-cis-β-carotene forms [11]. Because the cis-isomers are known to have lower vitamin A activity and are present in insignificant levels compared with the transform, the quantitative method should determine the trans and the cis-isomers individually. However, this makes the analysis more expensive and complicated. An earlier study in cassava [12] revealed in (0.1-3 mg kg −1 Fresh Weight) of β-carotene and (0.05-0.6 mg kg −1 FW) of lutein. Other carotenoids present in cassava roots but in very small amount included α-γand ζ-carotene and β-cryptoxanthin [12]. In Brazil, one the cassava clone (UnB 500) which has been grown by indigenous farmers and available at the University of Brasilia gene bank showed a high lycopene content. Lycopene was shown to be the major carotenoid, although α-carotene and cis-lycopene were also found [13].In the same study, another clone (UnB 400) analyzed for carotenoids showed trans-β-carotene reached 27.40 μg/g. Trans-β-carotene acts as an antioxidant that helps to prevent heart attacks and cancer, lowers cataract risks and muscular disorders, and enhances the immune system [14]. β-carotene is also required for growth, reproduction, vision and the maintenance of the integrity of epithelial tissue. Structurally, vitamin A (retinol) is essentially one-half of the β-carotene molecule. The average daily requirement recommended by the World Health Organization is 2.4-3.5 mg for adults. The typical white-fleshed cassava genotypes largely used in Nigeria contain only small amounts of β-carotene [15]; however, yellow-fleshed cassava contains up to about 100 times as much [16]. Studies have been conducted on retention of β-carotene from cassava roots that had been boiled, ovendried, sun-dried, shadow-dried, or used for gari preparation. Oven-drying, shadow drying and boiling retained the highest levels of β-carotene (71.9%; 59.2% and 55.7% resp.) and gari the lowest (about 34.1%) [17]. Increasing the consumption of yellow-fleshed cassava roots and their processed food products can provide a significant proportion of the required dietary vitamin A intake. It is therefore important to breed and promote the cassava varieties enriched with high levels of β-carotene to combat the widespread vitamin A deficiency in Nigeria.This study was conducted at the advanced multilocation yield trial breeding stage (called uniform yield trial) with 21 yellow-fleshed cassava genotypes including two checks. The trial was run for two cropping seasons (2009-2010 and 2010-2011) Harvesting in all locations was at approximately 12 months after planting (MAP). A border of 1 m was left and only the inner plants (maximum of 16 per plot) were harvested. The severity of cassava mosaic disease (CMD) was scored using the scale 1 to 5 system described by IITA [18] (1 = no symptom and 5 = severe symptoms). An average CMD severity was calculated based on ratings taken at 1, 3, and 6 MAP. Root fresh yield/ha was calculated based on the weight of roots of inner plants harvested/plot. The root dry matter content (DMC) was determined for each genotype from a random sample of three roots/plot from only two replications. To determine the dry matter percentage, a 100 g sample (taken after the three roots had been washed and shredded) was oven-dried at 70 • C for 48 hr. The percentage of DMC was calculated as the ratio of the dry weight multiplied by 100 over the fresh weight as indicated below:The dry root yield (DYLD) is the product of the fresh root yield (FYLD) multiplied by the percentage of the DMC:For laboratory determinations of total carotene concentration (TCC), five medium sized roots were collected from the harvested roots in two replications. Three of the five roots were washed dried, peeled, and again washed and dried. Each peeled root was cut longitudinally in half and the halves were again cut longitudinally into quarters. Two opposite quarters of the three roots were pooled for total carotene quantification. The six quarters were cut in small pieces of about 1 cm 3 and mixed together. After many subdivisions, a sample of approximately 10-15 g of small pieces of root was taken as a uniform and representative sample and ground in refrigerated acetone solvent using a mortar and pestle. During sample preparation, special care was taken to avoid directly exposing the storage roots to sunlight and the lights in the laboratory were protected with UV filters. Samples were covered with aluminum foil when not under processing.International Journal of Agronomy 3 All the total carotene analyses were completed within 24 hr after each harvest, using the spectrophotometer method described in the HarvestPlus handbook for Carotenoid Analysis [19] as follows. Twenty ml of petroleum ether (PE) with low boiling point of 35-60 • C (used as solvent in extraction or partition) is put in a 500 mL separatory funnel with Teflon stop-cock and add the acetone extract. Distilled water was slowly added (∼300 mL), flowing along the walls of the funnel to avoid formation of an emulsion. After adding the distilled water, two separated phases were identified. The two phases were allowed to separate and the lower aqueous-acetone phase discarded. This washing with distilled water was done 3 to 4 times to remove residual acetone. In the last washing, the totality of the lower phase was completely discarded. The PE phase was then collected in a volumetric flask through a small funnel containing anhydrous sodium sulphate to remove the residual water. The separatory funnel was washed with PE and the washing in the volumetric flask by passing through the funnel and the sodium sulphate. For spectrophotometer reading and calculation, it is important to make up to volume with PE and take the absorbance at 450 nm. It may be necessary to concentrate or dilute the carotenoids solution so that the absorbance should be between 0.2 and 0.8. The total carotenoids concentration is calculated using the following formula:where A = absorbance, volume = total volume of extract, and A 1% 1 cm = absorption coefficient of β-carotene in PE (2592). Data collected were statistically analyzed using analysis of variance and GGE biplot. \"GGE biplot\" is a data visualization tool that is based on principal component analysis (PCA) of environment-centered or standardized G × E data because these biplots display both genotype main effects (G) and genotype by environment interactions (GE), which are the two sources of variation that are relevant to variety evaluation [20]. G × E data analysis includes three major aspects: (i) megaenvironment analysis (ii) test environment evaluation, and (iii) genotype evaluation [21,22]. A GGE biplot is constructed by plotting the first principal component (PC1) scores of the genotypes and the environments against their respective PC2 scores resulted from the singular value decomposition (SVD) of environment-centered or standardized G × E data. The \"which-won-where view\" of the GGE biplot [23] is an effective tool in megaenvironment analysis. It consists of a polygon and a set of perpendicular lines to the sides of the polygon. The polygon is drawn on genotypes located farthest away from the biplot origin in various directions such that all genotypes are contained in it. The perpendicular lines are drawn from the biplot origin to divide the biplot into sectors. If all environments fall into a single sector, it means that a single genotype had the highest yield (performance) in all environments. If the environments fall into different sectors, it means that different genotypes won in different sectors.Mean performance of the 21 yellow-fleshed cassava genotypes across the 10 environments are presented (Table 1). The lowest CMD score 1.0 was recorded for TMS 07/0539 (G 10 ) and TMS 07/0628 (G 14 ). The mean CMD was 2.0. The highest means for FYLD and DYLD were recorded by the check TMS 01/1368 and the overall averages across the environments were 10.6 tha −1 (FYLD) and 2.3 tha −1 (DYLD). The mean of DMC was 21.0% with the highest value recorded by the genotype TMS 07/0593 (G 13 ). The mean TCC was 7.8 μg g −1 and the genotype TMS 07/0593 had the highest average of 11.7 μg g −1 .The combined analysis of variance tables showed for all traits that G, E, and GE were significant (P < 0.001).The average severity score of CMD of the 21 genotypes across the 10 environments was higher than the scoring results reported in similar studies conducted from 2004 to 2006 in Nigeria [24]. The combined analysis of variance of CMD scores of the 21 yellow-fleshed genotypes evaluated during 2 years in five locations showed significant differences (P < 0.001) among G, E, and GE. Genotypes TMS 07/0539 (G 10 ) and TMS 07/0628 (G 14 ) did not show any visible symptoms of CMD (score = 1.0) in any of the 10 environments and were grouped together with G 3 , G 4 , G 7 , G 9 , G 13 , and G 16 which, on average, scored 1.1 (Table 1). On the contrary, genotypes G 1 , G 5 ; G 6 G 8 , G 11 , G 12 , G 15 , and G 17 showed severe CMD symptoms and had the highest severity scores across the 10 environments.The combined analysis of variance of CMD revealed that G contributed 72.1% of the total sum of squares; E contributed 7.4% and GE 8.7% as per Table 2.In the GGE biplot analysis, the PC1 (91.2%) and PC2 (2.7%) together explained 93.9% of the total variability attributed to G and GE. A polygon view of the GGE biplot (Figure 1) showed which genotypes performed better or worse for CMD in which environments. The vertex genotypes for CMD severity were G 2 , G 4 , G 13 , G 5 , G 6 , and G 17 . Two megaenvironments were defined. The first megaenvironment included E 2 , E 3 , E 5 , and E 6 with the winning niche occupied by genotypes G 5 and G 6 . The second megaenvironment fell in the sector of genotype G 17 and comprised environments E 1 , E 4 , E 7 , E 8 , E 9 , and E 10 .Hectare. Analysis of variance of the FYLD showed significant differences (P < 0.001) among G, E, and GE. The significant GE for FYLD indicated fluctuations in genotypic responses to different environments. FYLD is a trait that typically demonstrates high GE effects [25,26]. This was observed in the present study and emphasizes the importance of the multi-environment evaluations of newly developed varieties. The average yields of 7.0 to 17.9 tha −1 of this study were lower than 11.5 to 25.1 tha −1 observed in a similar study in Benin [27].The combined analysis of variance for FYLD (Table 3) indicated that G accounted for 12.1% of the total sum of squares for FYLD; E contributed for 42.8% and 17.1% in Nigeria [28]. The highest DMC of 24.3% was obtained for the genotype TMS 07/0593 (G 13 ) followed by G 9 (24.0%) and G 16 (23.4%). G accounted for 23.8% to the total sum of squares variation for DMC, 42.3% of the total sum of squares were attributed to E, and 19.1% to GE (Table 4).For the GGE biplot analysis, PC1 and PC2 together explained 68.3% of the total variation (Figure 3). The polygon view of the GGE biplot of DMC showed which genotypes performed best or worst in which environment. The vertex genotypes for DMC were G 3 , G 6 , G 13 , G 9 , and G 12 . According to the biplot, three megaenvironments were defined. The first was the winning niche of genotype G 9 made of E 2 , E 3 , E 6 , E 8 , and E 10 . The second fell in the sector with genotype G 13 made of environments E 1 , E 4 , E 7 , and E 9 , and the third was led by genotype G 12 and made of environment E 5 .Combined analysis of variance of DYLD revealed significant differences (P < 0.001) for G, E, and GE. The average DYLD of the 21 genotypes across the 10 environments ranged from 0.8 to 4.1 tha −1 . The highest average DYLD (4.1 tha −1 ) was recorded by the check TMS 01/1368 (G 1 ). The overall average DYLD was 2.3 tha −1 . These results were lower than those reported in [24] on 25 yellowfleshed genotypes in Nigeria.The combined analysis of variance (Table 5) for DYLD indicated that 13.6% of the variation of the total sum of squares was contributed by G, 39.6% by E and 23.0% was due to GE.In GGE biplot analysis PC1 and PC2 explained together 77.3% of the total variation. Figure 4 summarizes the relative performance of each genotype and shows which genotypes performed best or worst in which environments for DYLD. The vertex genotypes were G 1 , G 3 , and G 9 . One of the genotypes used as check, TMS 01/1368 (G 1 ), was the vertex genotype of a megaenvironment made up of 9 out of 10 environments (E 2 to E 10 ). The remaining environment (E 1 ) was the niche of genotype TMS 07/0534 (G 9 ).The combined statistical analysis of TCC recorded for the 21 yellow-fleshed cassava genotypes showed significant differences among G, E, and GE. The average TCC recorded ranged from 6.3 to 11.7 μg g −1 fresh weight. These TCC values were higher than the range of 1.4 to 7.7 μg g −1 obtained in a similar study conducted in Ghana [29]. The overall average of TCC of this study (7.8 μg g −1 ) was also higher than the 4.8 μg g −1 reported in 2007 for 25 yellowfleshed genotypes in Nigeria [30]. The best genotype for TCC was TMS 07/0593 (G 13 ) (Table 1). For TCC, G contributed 34.4% to the variation of the total sum of squares, E contributed 11.3%, and GE contributed 25.6% as per Table 6. In the GGE biplot analysis of TCC, the PC1 and PC2 together explained 75.2% of the total variation. The polygon view of the GGE biplot of TCC (Figure 5) showed which genotypes performed best or worst in which environments. The vertex genotypes for TCC were G 13 , G 10 , G 6 , and G 8 . The genotype TMS 07/0593 (G 13 ) that had the highest average TCC was the best in each of the 10 environments.The combined analyses of datasets of the five traits (CMD, FYLD, DMC, DYLD, and TCC) of the 21 genotypes in 10 environments showed significant differences (P < 0.001) among G, E, and GE. With respect to each trait studied, genotypes showed differences in performance in specific environment. Considering FYLD and DYLD, the two checks TMS 01/1368 and TMS 01/1371, together with TMS 07/0553 and TMS 07/0749 have the highest performance for FYLD and DYLD. For reaction to CMD, eight genotypes (TMS 07/0539, TMS 07/0628, TMS 06/0889, TMS 06/1635, TMS 07/0520, TMS 07/0534, TMS 07/0593, and TMS 07/0749) showed very few or no symptoms in the 10 environments. For percentage DMC, 17 genotypes were grouped in the first category led by TMS 07/0593 and TMS 07/0534 with the highest DMC. The highest TCC was recorded by the genotype TMS 07/0593. From the results of this study, TMS 07/0593 showed outstanding performance for TCC and good performance for most other traits. It appeared to be the best genotype for food technologists and nutritionists to use for feeding trials to combat vitamin A deficiency. It will be a very good source for breeders to improve carotene concentration and resistance to CMD in yellow-fleshed cassava varieties.","tokenCount":"3041"} \ No newline at end of file diff --git a/data/part_3/4541146667.json b/data/part_3/4541146667.json new file mode 100644 index 0000000000000000000000000000000000000000..c3354d3109cf05a3f584080844d46d339db69770 --- /dev/null +++ b/data/part_3/4541146667.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"692d554a3bc83f715bc55206ab8ada72","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/1f1bebdd-7bf1-403d-9bf8-4e6f41013e40/retrieve","id":"1989036339"},"keywords":[],"sieverID":"55cfdf79-8230-4044-b3b3-f883d5b0e634","pagecount":"84","content":"Todos os direitos reservados. Nenhuma parte desta publicação pode ser reproduzida qualquer que seja a forma, impressa, fotográfica ou em microfilme, ou por quaisquer outros meios, sem autorização prévia e escrita do editor.Nas regiões tropicais as comunidades de pequenos agricultores lutam contra o impacto desvastador do VIH/SIDA. O Agrodok \"Mitigação dos efeitos do VIH/SIDA na agricultura de pequena escala\" destina-se a agentes extensionistas agrícolas e a todos aqueles que os apoiam a nível governamental, de ONG ou organizações internacionais. Grande parte do conteúdo deste Agrodok já foi tratado bastante mais em pormenor, em muitas das publicações que tratam do VIH/SIDA, disponíveis quer na forma impressa quer digital. Ao contrário da maior parte da literatura especializada neste domínio, este Agrodok fornece uma explicação sucinta e directa de como o VIH/SIDA destrói gradualmente o bem-estar da comunidade e a capacidade produtiva dos camponeses. Nele se sugerem algumas maneiras de adaptação das práticas agrícolas de forma a mitigar estes efeitos.As ferramentas e abordagens descritas neste Agrodok são familiares a muitos dos leitores, visto que têm sido experimentadas e testadas em comunidades agrícolas de pequena escala por todo o mundo. Muitas das concepções e das experiências referidas nesta publicação provêm da África subsariana. Elas podem ser usadas e adaptadas de forma a estimular os membros da comunidade -irrespectivamente do grupo etário, sexo, estatuto material ou identidade étnica e religiosa -a trabalharem conjuntamente de forma a definirem os seus problemas e a encontrarem soluções fazendo uso dos seus próprios recursos locais.São muitas as pessoas que contribuiram neste Agrodok com as suas experiências e o seu conhecimento. Os autores gostariam de expressar os seus agradecimentos em particular a Alfred Hamadziripi da Southern African Poverty Network, a Gaynor Paradza e Carolyne Nombo, do programa African Women Leaders in Agriculture and the Environment da Universidade e Centro de Investigação de Wageningen, a Caroline Brants e Cees van Rij, da Agriterra, a Sammy Carsan do ICRAF, a Suzanne Nederlof, Ellen Geerling e Roy Keijzer.Marilyn Minderhoud Jones, 2008 1 Introdução O VIH/SIDA não é como outras doenças crónicas, ele carrega consigo um pesado estigma social. As pessoas que padecem desta doençamuitas delas encontram-se na primavera da vida -sentem-se excluídas da vida comunitária e, para as famílias que vivem com VIH/SIDA, torna-se é cada vez mais difícil manter produtivas as suas explorações agrícolas e hortas. Os agentes extensionistas, ao tentarem gerir os efeitos da doença nas pequenas comunidades agrícolas, são confrontados com dificuldades no desempenho do seu trabalho devido a atitudes negativas e a ignorância sobre a pandemia.As pessoas que vivem com VIH/SIDA ou que sustentam parentes contaminados com VIH/SIDA necessitam de ajuda urgente. Necessitam de saber como tirar o máximo proveito dos recursos humanos e físicos que ainda lhes restam. E têm que passar por isto no seio dum ambiente emocional extremamente adverso. Na luta para lidar com as dimensões pessoais da tragédia, deparam com a perda de recursos essenciais de subsistência. O seu corpo não lhes permite a mesma capacidade de trabalho, há um afrouxamento ou ruptura completa da reciprocidade entre vizinhos e parentes; e os funcionários ligados à agricultura e o pessoal de investigação, esmagados pelos pedidos colocados nos seus recursos limitados, não são capazes de lhes dar o apoio que eles necessitam.Os agentes extensionistas que trabalham com pessoas que vivem com VIH/SIDA também se encontram sob pressão profissional e emocional. Muitos dos investigadores agrícolas e agentes extensionistas assistem a anos do seu trabalho perdidos como resultado da pandemia. Há também funcionários da agricultura que ficam doentes, não podendo continuar a levar a cabo as actividades planeadas. Os programas e planos de projectos desmonoram-se quando os agentes extensionistas morrem e quando os camponeses que deles dependem são deixados desamparados. Tal transparece, muito claramente, num relatório recentemente publicado pelo Ministério da Alimentação e Agricultura do Gana e pela FAO sobre o impacto do VIH/SIDA no trabalho dos agentes extensionistas na região de Brong Ahafo, no Gana. O VIH/SIDA cria uma disrupção na investigação e experimentação e provoca a perda de valiosas fontes de conhecimento, quando os camponeses que funcionam como pessoas de contacto ou os camponeses que dirigem talhões experimentais, ficam doentes e não podem prosseguir com o trabalho. E a nível financeiro, o VIH/SIDA ameaça os planos de poupança e de crédito do grupo, pois quando os membros da comunidade ficam doentes, deixam de poder trabalhar para reembolsar os seus empréstimos.Não existe uma única solução estandardizada para os estragos provocados pelo VIH/SIDA. A reedificação da capacidade das famílias e das comunidades nas regiões tropicais para se dedicarem à agricultura, horticultura e para perservarem as suas cabeças de gado, é uma tarefa complexa e árdua. Tal implica prestar inteiramente atenção a uma mudança da base de recursos e identificar como se pode fazer a melhor utilização da terra, da água e dos insumos agrícolas, de forma a manter a saúde e assegurar a sobrevivência daqueles que padecem da doença.É necessária uma total participação comunitária de modo a adaptar as práticas agrícolas para ir ao encontro do desafio do VIH/SIDA. É no interesse de todos tentar mudar as atitudes, costumes e legislação que entravam a cooperação e dificultam que as mulheres, as pessoas velhos e os jovens estabeleçam novas relações de trabalho, empreendam novas tarefas e influenciem, de maneira eficaz, a tomada de decisões.Este é o aspecto em que este Agrodok dá a sua contribuição. Esta publicação destina-se a agentes extensionistas que possuem os contactos com as redes rurais, conhecimento das condições locais e ligações com organizações de camponeses que lhes possibilita obter a informação, a confiança e o apoio da comunidade, necessários para mitigar os efeitos do VIH/SIDA nas comunidades agrícolas de pequena escala.Este Agrodok começa por fornecer exemplos de ferramentas participativas que podem ser usadas para documentar as necessidades dos membros da comunidade e identificar os recursos e aptidões locais. Nele se discutem as dificuldades com que os agentes extensionistas podem deparar para conseguir que as comunidades cooperem e trabalhem em conjunto. Trata-se de centrar a atenção no facto que algumas das inovações, a investigação e a experimentação levadas a cabo pelos camponeses podem possibilitar as comunidades rurais a reagir determinada e eficazmente ao desafio apresentado pelo VIH/SIDA. Para informação mais detalhada sobre os tópicos aqui abordados, consultar a \"Leitura recomendada\".A agricultura pode ser adaptada às necessidades específicas das pessoas que vivem com VIH/SIDA. Podem-se efectuar mudanças quanto à forma que as explorações agrícolas são geridas e que os recursos naturais são utilizados. Um importante primeiro passo para o pessoal extensionista agrícola consiste em estabelecer ligações e trabalhar com colegas de outros sectores. O desenvolvimento de soluções polivalentes e duradouras depende de até que ponto as pessoas que trabalham nas áreas da saúde, silvicultura, educação, agricultura e gestão dos recursos naturais são capazes de trocar experiências e aprender uns dos outros. A cooperação também reduz o risco dos agricultores receberem mensagens que são incompatíveis, provenientes de diversas fontes e facilita o desenvolvimento de medidas integradas que podem satisfazer as necessidades da comunidade em questão.As parcerias com trabalhadores da saúde e da comunidade revestemse de particular importância, visto que os extensionistas agrícolas não são peritos em VIH/SIDA. Eles não se encontram habilitados a poder lidar com os impactos sociais e psíquicos da doença. Para mais, à medida que a pandemia se intensifica, eles deparam-se a trabalhar com as mulheres, pessoas idosas e crianças, um grupo-alvo novo e altamente desconhecido. Para realizar este trabalho de forma eficaz muitas das vezes eles necessitam da ajuda dos extensionistas que trabalham na comunidade, para lhes possibilitar avaliar as forças e vulnerabilidades (pontos fortes e fracos) destes grupos.A maioria dos agentes extensionistas agrícolas viram com os seus próprios olhos o grande alcance que os efeitos do VIH/SIDA pode ter nos agregados familiares rurais. Por exemplo, é frequente que muitos dos agregados familiares afectados pelo VIH/SIDA, deixem de poder dedicar-se à agricultura orientada para o mercado. Tal implica que os agentes extensionistas tenham que identificar outras formas de garantir a segurança alimentar e nutricional e de gerar rendimentos monetários. O Quadro 1 fornece uma visão de conjunto sucinta de como o VIH/SIDA afecta a produtividade agrícola e o bem-estar comunitário. Trataremos e discutiremos estas áreas problemáticas mais adiante, fazendo referência a soluções possíveis.Figura 1: A maioria dos extensionistas não está habilitada a responder à pandemiaOs agregados familiares que vivem com VIH/SIDA desenvolvem as suas próprias estratégias de sobrevivência. Em muitos dos casos de isolamento social de famílias que vivem com esta doença é óbvio que eles recebem pouca ajuda dos seus parentes ou de outros agricultores.Como resultado são obrigados a encontrar soluções a curto prazo. Cultivam-se áreas menores; produzem-se menos culturas e tarefas como sejam a reparação das alfaias agrícolas, a manutenção de terraços, a monda e a poda ou são omitidas ou ficam atrasadas. A longo prazo esta situação conduz a uma falta de segurança alimentar e nutricional e a um decréscimo dos rendimentos e da capacidade produtiva.Ao mesmo tempo, os custos físicos e materiais dos cuidados das pessoas afectadas pelo VIH/SIDA aumentam grandemente à medida que a doença progride. É necessário dinheiro adicional para tratamentos médicos e, como resultado, têm que se pôr à venda os bens imóveis da exploração agrícola -gado, ferramentas ou reservas de sementes.São as mulheres que se dedicam, normalmente, à produção das culturas alimentares. Nos casos em que a necessidade de cuidar dos doentes as impede de cultivar os seus campos e hortas, haverá menos comida disponível para as suas famílias.O direito à terra para a mulher deriva, frequentemente, do direito do seu marido. Quando o agregado familiar já não é encabeçado por um homem, as mulheres arriscam-se a que lhes seja recusado o acesso não só à terra mas também ao crédito e a outros recursos e serviços. Tal significa que as mulheres deixam de dispor dos bens imóveis que necessitam para lhes proporcionar a comida para si e para os seus filhos.A ausência de direitos de propriedade formais pode levar a que os parentes se apoderem indevidamente da propriedade, causando ainda um maior colapso da segurança económica daqueles que sobreviveram a pandemia. Os agentes extensionistas devem estar conscientes que as mulheres, muitas das vezes, são excluídas da tomada de decisões. Isto significa que os planos são elaborados sem que se tome em consideração as suas necessidades e cargas de trabalho.As pessoas idosas também são um grupo vulnerável. Muitas delas estão a criar os seus netos órfãos, numa idade em que já não têm mais a força física para desempenhar tarefas produtivas.A vida das crianças também muda drasticamente nos agregados familiares afectados por VIH/SIDA. Entre os problemas com os quais se deve lidar quando se delineam projectos para mitigar os efeitos da doença no grupo etário dos jovens, há que se considerar as pesadas car-gas de trabalho, a perda da educação e a responsabilidade pelo cargo de progenitores doentes ou irmãos órfãos.Figura 2: À medida que a infecção pelo VIH/SIDA progride, as pessoas afectadas pela doença necessitarão de mais cuidados e tornam-se mais incapacitados para trabalharA saúde determina a capacidade individual com respeito ao trabalho.A saúde das pessoas afectadas por VIH/SIDA não é constante. Nos estágios iniciais de infecção -que pode durar de seis a oito anos -as pessoas infectadas com o vírus podem ser saudáveis, fortes e produtivas, especialmente se dispõem de uma boa nutrição. Mais tarde, contudo, uma fatiga crónica e a ocorrência de doenças oportunistas, como sejam tuberculose, pneumonia e infecções virais e fúngicas, indicam que a doença progrediu para um estágio mais grave. A partir desse momento os recursos do agregado familiar serão cada vez mais devotados à compra de medicamentos e ao cuidado dos doentes. Uma morte relacionada com VIH/SIDA assinala muitas vezes o facto que o parceiro também pode estar infectado. Tal colocará uma pressão ainda maior sobre os recursos, já debilitados, do agregado familiar.O isolamento social e a pobreza dos agregados familiares que vivem com VIH/SIDA provoca um corte gradual da informação que eles necessitam para os ajudar a inovar e a melhorar a sua capacidade de tomada de decisões. Para mais, quando um membro da família morre prematuramente, normalmente o seu conhecimento e experiência perdem-se. Tal é particularmente corrente em sociedades onde existe uma divisão rigorosa de trabalho entre homens e mulheres. Em situações de crise, a falta de conhecimento e experiência entre os membros do agregado familiar sobreviventes, dificulta, extremamente, a sua adaptação a situações de rápida mutação.As pessoas que vivem com VIH/SIDA têm menos capacidade para desempenhar trabalhos pesados, para trabalhar durante períodos longos ou seguirem horários rígidos de trabalho. Quando se elaboram planos para integrar actividades que geram rendimentos nas estratégias para mitigar o impacto do VIH/SIDA, deve-se tomar em consideração os factores que em seguida passamos a referir. O trabalho envolvido deve requerer o mínimo de esforço físico e deve-se fazer um planeamento cuidadoso dos períodos de concentração de trabalho, tal como no início do ciclo produtivo. Deve-se reservar os esforços para criar oportunidades que possam conduzir a uma fonte estável de rendimentos. Pode-se tirar proveito das vantagens que se colocam ao se utilizarem recursos e aptidões que não requerem insumos externos ou estes são muito baixos. 3 Tornar possível a mitigação É necessário que haja cooperação e apoio entre os intervenientes (pessoas ou organizações envolvidas -stakeholders) para que as estratégias conducentes à mitigação do VIH/SIDA possam dar os seus frutos. A participação e a confiança são essenciais para deter a erosão das condições de vida/meios de subsistência dos agregados rurais. Um primeiro passo nesse sentido consiste em criar condições conducentes ao estabelecimento dum novo relacionamento e motivar os agregados familiares a trabalharem conjuntamente. As comunidades podem tornar-se mais eficazes no que concerne à identificação e implementação de estratégias para combater os efeitos do VIH/SIDA, no caso de trabalharem, conjuntamente, num ambiente favorável.A informação desempenha um papel crucial na criação dum ambiente favorável. Os workshops, reuniões e encontros informais podem ser usados pelos extensionistas para estimular a discussão sobre a relação estreita entre uma má saúde e uma insegurança alimentar e nutricional. Através dum intercâmbio liderado e aberto, os intervenientes tornam-se conscientes de que eles não são os únicos a encararem estes problemas.Há ferramentas participativas específicas que podem ser usadas para ajudar os membros da comunidade a identificar a forma segundo a qual uma má saúde, e ainda mais especificamente, o VIH/SIDA, têm um impacto na produtividade e bem-estar das comunidades rurais. Também possibilita as comunidades a avaliarem, de forma racional, os recursos e oportunidades disponíveis para deter este processo.Os agentes extensionistas devem ganhar a confiança das comunidades e dos agregados familiares. Os membros das organizações de camponeses e as associações de produtores agrícolas são parceiros importan-tes neste processo. Eles possuem um estatuto de respeito e de confiança dentro da sua comunidade e o seu apoio para facilitar o processo de adaptação e mudança das práticas agrícolas.Muitas das organizações de camponeses já têm programas de mitigação do VIH/SIDA. Os agentes extensionistas podem alicerçar o seu trabalho nessas iniciativas e experiências. Ao se usar a estrutura e as actividades das organizações camponesas -as quais incluem reuniões, sessões de formação/capacitação e visitas de campo com os dirigentes camponeses -, podem encontrar-se com os camponeses, escutar as suas dificuldades e partilhar experiências de como as comunidades estão a lidar com os problemas originados pelo VIH/SIDA.Os funcionários de extensão agrícola também podem fazer contactos com organizações que possuem informação sobre as pessoas que vivem com VIH/SIDA. Muitas das comunidades criaram pequenas associações sobre VIH/SIDA, que são dirigidas por mulheres e outros membros da comunidade.Os agentes extensionistas também podem utilizar as infra-estruturas de intervenção directa das organizações agrícolas para incrementar a compreensão/conhecimento dos camponeses sobre as causas do VIH/SIDA, a forma em que a doença se desenvolve e como um bom regime alimentar e uma boa nutrição podem fortalecer o sistema imunitário. Quando os camponeses regressam às suas aldeias devem ser ajudados para porem a nova informação e as novas ideias em prática.Para apoiar este processo é necessário dinheiro e ferramentas de análise. Os serviços de extensão locais e nacionais têm que incluir nos seus orçamentos actividades geradoras de informação. Reveste-se de crucial importância que os agentes extensionistas criem as condições sociais que lhes possibilite ter acesso à informação de que dispõem os membros da comunidade. Isto possibilitá-los-á formarem uma imagem clara da maneira como os agregados familiares individuais têm estado a ser afectados pela pandemia. Informação agrícola e os meios de comunicação Pode-se reforçar este processo se os agentes extensionistas e os serviços de informação agrícola colaborarem estreitamente com os meios de comunicação públicos. A rádio comunitária é uma fonte de informação em florescimento, particularmente importante para os agregados rurais. Os programas agrícolas para grupos-alvo, como sejam programas com sessões de perguntas e respostas, combinados com actividades de grupo para escutar os problemas podem ter um impacto significativo sobre como os camponeses pensam sobre as actividades da exploração agrícola e as organizam. Colunas regulares em revistas para agricultores, publicações de ONG e jornais locais/regionais e nacionais também podem ser usados para manter os agricultores e as pessoas que com eles trabalham actualizados e bem informados.Quando diferentes sectores dos média trabalham em conjunto para difundir mensagens chave, o impacto pode ser muito poderoso. Muitos dos serviços de informação agrária já dirigem campanhas relacionadas com VIH/SIDA envolvendo a imprensa, rádio e televisão e, em alguns casos, também vídeo e telefones celulares. Estes meios de comunicação podem, todos eles, ser usados para divulgar informação prática, muitas das vezes nas línguas locais, para as pessoas que padecem da doença. O pessoal de extensão deve planear formas de assegurar que os agregados familiares que não têm acesso aos jornais ou à rádio também sejam mantidos informados. Straight Talk também tem sete outros boletins informativos, dois dos quais -Farm Talk and Tree Talk -tratam temas ambientais e incluem informação de como iniciar hortas escolares e talhões florestais escolares para que, deste modo, a população jovem tenha uma fonte de alimentação nutritiva. A Straight Talk Foundations tem uma estratégia de distribuição inovadora. Os seus boletins informativos, impressos em várias línguas, estão inseridos no jornal diário de maior distribuição do Uganda e que é enviado para as escolas, postos de saúde, igrejas e mesquitas.É necessária informação para possibilitar que os agregados familiares que vivem com VIH/SIDA adaptem as suas actividades agrícolas ou fora da exploração agrícola, de modo a satisfazer as suas necessidades básicas. Tal inclui a manutenção de um regime regular, adequado e nutritivo de dietas alimentares e a garantia que se pode dispor de dinheiro suficiente para pagar as despesas médicas e outras do agregado familiar.Ao longo deste Agrodok enfatizamos a necessidade para se desenvolver as forças internas e reduzir a dependência dos recursos externos de modo a se alcançar estes objectivos. Tal implica recolher informação sobre como as actividades agrícolas e as tarefas comunitárias estão a ser geridas e usar esta informação para avaliar os recursos agrícolas, as capacidades e aptidões humanas e os activos financeiros disponíveis para uso agrícola, no futuro. Tomar parte em exercícios de documentação participativa, pode ter um efeito positivo para as pessoas que vivem com VIH/SIDA. Tal pode romper as barreiras que os isolam dentro da sua comunidade. Élhes dado a conhecer onde podem encontrar informação útil e beneficiam da partilha de experiências, ideias e inovações. À medida que a compreensão dos seus problemas por parte da comunidade aumenta e os esforços para adaptar as práticas agrícolas de forma a garantir uma segurança alimentar e nutricional progridem, as pessoas que vivem com VIH/SIDA recuperam, gradualmente, a auto-confiança. Elas necessitam desta auto-confiança para empreender actividades zelosamente alinhavadas que podem ajudá-las a melhorar as suas dietas alimentares e, caso possível, a ganharem algum dinheiro. A informação de base é essencial. Os agentes extensionistas devem preparar-se para exercícios de documentação participativa, recolhendo o máximo de informação possível sobre as comunidades em questão e a prevalecência do VIH/SIDA na área. As agências governamentais locais, as ONG e organizações comunitárias locais possuem, normalmente, um conhecimento considerável sobre as condições em que vivem os grupos vulneráveis. Esta orientação de base ajudará os agentes extensionistas a identificarem o seu grupo alvo e a decidirem sobre a abordagem participativa mais conveniente dentro da situação local. Também lhes possibilitará facilitar a discussão entre os membros da comunidade, alguns dos quais podem ser relutantes, hostis, temerosos ou demonstrar um auto-interesse inusitado para se envolverem nas actividades de recolha de informação.Vulnerabilidade: um critério básico O medo de estigmatização e a falta de infra-estruturas de testagem do VIH/SIDA implicam que muitas das vezes seja difícil identificar as pessoas que estão afectadas pelo vírus. Por isso, as actividades de documentação e projectos de adaptação agrícola devem centrar-se nos grupos vulneráveis em vez de visarem os agregados familiares direc-tamente afectados pelo vírus. Os agregados familiares que vivem com as consequências do VIH/SIDA -famílias encabeçadas por órfãos, pessoas idosas que criam, sozinhas, os seus netos ou agregados familiares encabeçados por viúvas -devem ser incluídos nas estratégias de mitigação. A vulnerabilidade deve ser o critério de intervenção para melhorar a segurança alimentar e reduzir a pobreza que ameaça o bem estar material, físico e emocional.Quando se criarem as condições que possibilitem aos diversos intervenientes, (incluindo agentes extensionistas, pessoal do governo, professores, líderes locais, agricultores e membros de outros grupos da comunidade) partilhar informação e experiências, será possível explorar-se modos alternativos de adaptação das práticas agrícolas, de modo a mitigar os efeitos do VIH/SIDA.Uma adaptação bem sucedida de práticas de subsistência, de modo a satisfazer as necessidades dos intervenientes rurais que vivem com VIH/SIDA, requer um planeamento cuidadoso. Devem-se compreender os recursos, actividades e costumes da comunidade antes de se fazerem intervenções. A realização dum workshop constitui uma maneira de se poder ter acesso a este tipo de informação. Os workshops também podem ajudar a estimular os membros da comunidade a trabalhar em conjunto.O workshop sobre Mapeamento das Condições de Vida, que mais adiante descrevemos, pode ser usado pelos agentes extensionistas para identificar os grupos vulneráveis, definir os factores que ameaçam o sustento das explorações agrícolas e estimular discussões sobre os tipos de actividades que fazem com que os agregados familiares e as comunidades estejam mais resilientes aos efeitos do VIH/SIDA. A acrescentar à recolha sistemática de informação, o Workshop sobre Mapeamento das Condições de Vida também visa o fortalecimento da capacidade de tomada de decisões dos membros da comunidade envolvidos.A composição do grupo alvo dependerá do local onde se realizará o workshop, dos sistemas de subsistência/condições de vida envolvidos e, talvez o que é mais importante de tudo, os costumes e tradições que determinam os papeis económicos e o estatuto social na comunidade em questão. Os funcionários da Agricultura por vezes acham que é difícil para as pessoas que padecem de VIH/SIDA participar nos workshops e nas reuniões. A sua saúde pode não os deixar participar inteiramente e podem necessitar de ajuda para viajar e para permanecer no local onde o workshop se realiza.Talvez também necessitem de ser compensadas pelo tempo que passam fora das suas explorações agrícolas. Estes são factores que têm que ser tomados em consideração aquando do planeamento e da orçamentação de workshops deste tipo.Tanto os homens como as mulheres devem participar nas actividades do workshop. Tal reveste-se de particular importância nas comunidades onde existe uma divisão de trabalho rígida porque possibilita salientar as diferentes aptidões e constrangimentos. Um workshop cuidadosamente estruturado pode ajudar a estabelecer a comunicação entre os membros da comunidade que, doutro modo, podem não interagir uns com os outros. Não obstante, nos casos em que para as mulheres (ou outros grupos sociais como sejam as crianças, pessoas idosas, pessoas com uma identidade étnica específica), seja difícil falar na presença de terceiros, é preciso criar as condições para se formar grupos separados, de modo a que assim se sintam à vontade para poderem falar livremente.É crucial que os objectivos sejam claros. A alocação do tempo para as actividades do workshop dependerá dos objectivos do mesmo e do estatuto, necessidades e força do grupo-alvo. Num workshop em que se usa a abordagem de Mapeamento das Condições de Vida, que mais adiante descrevemos, em combinação com a Análise dos 4 Quadrados pode gerar informação útil. Também se pode aprender muito a partir de discussões informais que tomam lugar antes, durante e depois dos acontecimentos do workshop.O agente extensionista pode propor os objectivos gerais. Mais tarde estes podem ser refinados pelo grupo-alvo de forma a reflectirem as condições prevalecentes na sua comunidade.Contudo, deve-se responder às seguintes questões: ? Qual tem sido o impacto do VIH/SIDA na agricultura local? ? O que é que necessitam os agricultores e os agregados familiares afectados pelo VIH/SIDA? ? Onde se pode encontrar informação sobre tecnologias agrícolas úteis? ? Como é que se podem partilhar e implementar as experiências sobre técnicas para ajudar a aliviar a queda da produção e os constrangimentos de mão de obra? ? Como é que se podem reforçar e revitalizar os sistemas de apoio à comunidade?Estes dois métodos podem ser usados para se avaliar o impacto do VIH/SIDA sobre as actividades agrícolas e para estabelecer a quantidade de mão-de-obra, recursos internos e de insumos externos -incluindo dinheiro -necessários para manter as actividades chave da exploração agrícola. A informação gerada durante as actividades de grupo é discutida por todos os participantes do workshop e as conclusões são usadas para identificar possíveis estratégias de mitigação.Os participantes fazem um desenho/esboço duma exploração agrícola e mapeiam as suas culturas e actividades. Para tal combinam as características das suas machambas numa única machamba. Tal evita que os camponeses se enredem em demasiado detalhe. Depois de isso ter sido feito, pede-se, então, aos participantes que classifiquem as actividades que eles identificaram segundo uma ordem de importância. Devem começar por pôr por ordem as actividades que foram importantes numa situação pré VIH/SIDA e, depois, utilizando uma outra cor, classificar as actividades que se tornaram mais importantes com o advento do VIH/SIDA. Quando se planificam as estratégias de mitigação tem que se tomar em consideração a composição do agregado familiar, a divisão de trabalho e as capacidades e constrangimentos dos membros da família. A maneira como as tarefas são distribuídas entre homens e mulheres em famílas dirigidas por um casal, será muito diferente da divisão de trabalho em agregados familiares onde as viúvas, mulheres sózinhas, os avós ou os filhos órfãos mais velhos são responsáveis pelos assuntos da família.Muitos dos agentes extensionistas são homens o que implica que eles devem fazer um esforço consciente para falar com as mulheres. Frequentemente as mulheres têm que ser visadas explicitamente para que possam ser ajudadas de maneira eficaz. Trata-se, particularmente, do caso das sociedades em que os costumes restringem o papel económico e social desempenhado pelas mulheres no seio da comunidade. Por exemplo, nas sociedades em que não se espera que as mulheres falem em público, os agentes extensionistas podem ter que pedir a mulheres dirigentes, a quem é permitido falar abertamente em frente de outras pessoas, para expressarem os problemas encarados pelas mulheres que padecem de VIH/SIDA. Caso isto não seja viável, talvez seja necessário organizar reuniões separadas com mulheres. A elaboração dum Perfil de Actividades envolve muito trabalho. Contudo, assim que se escrevem as actividades é relativamente fácil preencher o modelo. Um modelo preenchido fornece um quadro da carga de trabalho de todos os membros do agregado familiar e ajuda os participantes a chegarem a um acordo sobre os constrangimentos em tempo que eles encaram. O Perfil de Actividades também indica as cargas de trabalho adicionais suportadas por aqueles que cuidam dos seus parentes ou amigos que padecem de VIH/SIDA ou os substituem nas tarefas que eles já não podem realizar. Pode-se repetir o Perfil de Actividades depois da implementação das estratégias de mitigação do VIH/SIDA de forma a avaliar se se verificaram algumas mudanças nas actividades levadas a cabo ou na quantidade de tempo que os membros dos agregado familiares gastaram nelas.O Perfil de Acesso e de Controlo classifica por itens os recursos que as pessoas usam para levar a cabo as actividades listadas no Perfil de Actividades. Faz-se uma distinção entre \"acesso\" e \"controlo\". O acesso a um recurso significa que o indivíduo ou o agregado familiar tem o direito a usar o recurso. Contudo, tal não quer dizer que o controla. Por exemplo, uma mulher casada pode trabalhar num campo, o que quer dizer que ela tem acesso à terra mas que não significa que esteja numa posição para decidir o que aí deve ser cultivado ou se a terra pode ser usada para produzir crédito. O controlo sobre um recur-so significa ter poder para decidir quem tem acesso ao recurso e de que maneira o mesmo deve ser usado. O Quadro 4 fornece um exemplo dum Perfil de Acesso e de Controlo. A informação obtida a partir da Análise e Estudo do Género e as conclusões tiradas dos exercícios do Perfil de Actividades e do Perfil de Acesso e de Controlo podem ser usadas para determinar os constrangimentos deparados e as oportunidades disponíveis para os membros da comunidade. O efeito que as hierarquias sociais, os valores da comunidade, os factores demográficos e as estruturas institucionais têm sobre as escolhas de subsistências disponíveis para os membros da comunidade, também se encontram aqui incluídos.Estes factores interagem com as leis tradicionais/consuetudinárias e nacionais e o ambiente político e económico que determina o acesso a infraestruturas/serviços de educação, formação e de saúde. Alguns factores serão classificados como constrangimentos na medida em que dificultam a mobilização de recursos humanos. Outros, que incluem a presença de grupos de auto-ajuda, podem tornar-se a base para uma intervenção de ajuda para mitigar o impacto do VIH/SIDA. O Quadro 5 apresenta o modelo dos \"factores que exercem influência\" que ainda têm que ser classificados como oportunidades ou constrangimentos. Ao se classificar desta maneira os factores que exercem influência, faz com que seja possível para os agentes extensionistas demonstrar os constrangimentos e oportunidades que determinam as opções de subsistência disponíveis tanto para os homens, como para as mulheres.Também torna claro como o poder de controlo e de tomada de decisão dentro da família se reflecte nas políticas e decisões que são tomadas a nível nacional.A informação obtida através do uso destes processos participativos fornece uma base para as intervenções de planeamento que possibilitarão que as comunidades adaptem as suas práticas agrícolas e actividades fora da agricultura, de forma a mitigar o impacto do VIH/SIDA. Por exemplo, nas comunidades patriarcais, a mulher muitas das vezes perde o seu direito à terra quando o homem morre. Tal significa que as leis da comunidade impedem que a mulher se possa encarregar da sua família. Ao reconhecer-se este facto, tal pode levar a que a comunidade decida em favor de garantir que as mulheres tenham direito ao acesso e controlo da terra, irrespectivamente do seu estado civil. Como resultado pode ser que sejam introduzidas escrituras dos títulos de propriedade da terra para as mulheres ou talhões comunais só para mulheres.Contudo, intervenções isoladas tais como as que acabámos de referir, raramente são suficientes. Sem se dispor de tempo, aptidões e de dinheiro para comprar os insumos necessários, o acesso à terra não melhorará o bem estar do agregado familiar. Discutindo, por exemplo, com os membros da comunidade o impacto de mudar os costumes que imperam sobre o acesso à terra, tal pode revelar que são necessárias medidas adicionais de forma a garantir o êxito dos esforços para reforçar as oportunidades de subsistência.Os Perfis de Actividades também podem ser usados para elaborar calendários agrícolas. Estes ajudam a identificar a mão-de-obra, os recursos agrícolas e a quantidade de tempo envolvidos na produção duma cultura ou dum legume, na produção animal e de outras tarefas que geram rendimentos. Também podem ser usados para ajudar a determinar a melhor maneira de adaptar e planificar as actividades agrícolas de modo a ajustarem-se às capacidades e necessidades das pessoas que vivem com VIH/SIDA. e experiência aos jovens, as comunidades perdem a capacidade de fazer uso produtivo dos seus recursos. As Escolas de Campo e da Vida para Jovens Agricultores podem ajudar os agentes extensionistas a ultrapassar o problema do conhecimento agrícola que se perdeu, ao garantir que a juventude da comunidade esteja na posse da informação e da experiência prática para levar a cabo actividades agrícolas.Os cuidados de saúde são essenciais para as pessoas que vivem com VIH/SIDA. Tanto para as pessoas infectadas com o vírus como para aqueles que os cuidam, que têm que se manter fortes para poderem levar a cabo este trabalho, é muito importante que possam contar com uma provisão adequada de alimentação, de boa qualidade e nutritiva.Planear estratégias visando o impacto do VIH/SIDA sobre as pequenas comunidades agrícolas implica que é necessário assegurar o acesso a uma alimentação nutritiva, assim como aos cuidados médicos.Para alguém se manter saudável e poder resistir a doenças é necessário poder contar com alimentos de boa qualidade nutricional. Uma dieta alimentar regular e bem balanceada é particularmente importante para as pessoas que padecem de VIH/SIDA. Quando a dieta diária é bem balanceada e nutritiva, a vulnerabilidade geral decresce, a força física aumenta e haverá uma melhoria da qualidade de vida das pessoas que vivem com o vírus. A medicina só por si não é suficiente. É essencial que se sigam dietas balanceadas e boas práticas nutricionais.Os alimentos básicos como sejam milho, batata doce, mandioca, plátano, amendoim, sorgo/mapira e arroz constituem a maior parte das dietas alimentares rurais. Não obstante, estes alimentos básicos deveriam ser suplementados com alimentos ricos em vitaminas, minerais e proteínas. É necessário contar com alimentos suplementares, tais como com legumes, frutos secos, frutas, leguminosas e, caso possível, com produtos animais, de forma a se garantir uma dieta nutritiva. Os agentes extensionistas podem desempenhar um papel importante ao assegurar que os agregados familiares tenham acesso a comida de qualidade e quantidade suficientes, através do fornecimento de informação de como preparar, duma maneira eficaz, comida rica em nutrientes, disponível localmente. O acesso a uma alimentação nutritiva pode fortalecer o sistema imunitário, mas as doenças oportunistas que afligem as pessoas que padecem de VIH/SIDA requerem atenção médica e intervenções sob a forma de uma terapia medicamentosa apropriada. Os medicamentos anti-retrovirais podem fazer com que as pessoas possam de novo trabalhar e ganhar a sua vida. A curto prazo tal implica que o VIH/SIDA não seja letal e que as comunidades podem manter-se a si mesmas social e economicamente.Embora os medicamentos anti-retrovirais associados com uma dieta alimentar bem balanceada possam ajudar a prolongar a vida das pessoas infectadas com o vírus do VIH/SIDA, o custo de tais tratamentos é, normalmente, tão elevado que se encontra fora do alcance daqueles que mais os necessitam. É por isso que é importante garantir que se integrem intervenções médicas na estratégia global de mitigação do VIH/SIDA, baseadas em práticas agrícolas minuciosamente planificadas e bem adaptadas.A Organização Mundial da Saúde estima que 80% da população nos países em vias de desenvolvimento usa medicamentos derivados de plantas medicinais. Estes \"remédios locais\" são, frequentemente, os únicos medicamentos que se podem obter.Figura 13: Nos países em vias de desenvolvimento 80% da população depende dos medicamentos que provêm de plantas medicinais O conhecimento tradicional sobre as propriedades medicinais das plantas constitui um recurso importante para as comunidades empobrecidas, lutando para mitigar o impacto do VIH/SIDA. Os curandeiros tradicionais são importantes porque são aceites pela comunidade, são acessíveis, não cobram muito e, visto que vivem na comunidade, conhecem e compreendem as doenças que mais frequentemente aí se manifestam.As plantas medicinais podem ajudar a manter a saúde das pessoas que vivem com VIH/SIDA. Podem ser usadas para: ? Tratar infecções oportunistas; ? Fortalecer o sistema imunitário para que o progresso da infecção abrande; ? Reduzir a malnutrição através de tónicos, suplementos alimentares e suplementos para abrir o apetite; ? Servir como anti-depressivos e possibilitar que os doentes possam lidar melhor com a sua situação.Normalmente em cada agregado familiar cultivam-se algumas plantas medicinais, que podem ter sido deliberadamente plantadas para fins medicinais ou podem ser um produto secundário de outras espécies, como sejam árvores que têm muitos usos. Muitas vezes as plantas medicinais crescem de forma descontrolada nos arbustos ou até são classificadas como ervas daninhas.Encorajando os conhecedores locais a partilharem o conhecimento que possuem sobre plantas medicinais com os membros da comunidade, possibilitará aos agregados familiares que padecem de VIH/SIDA identificarem as plantas que os podem ajudar a aliviar os sintomas da doença e as infecções que os acompanham. As abordagens participativas, como a que foi usada num workshop comunitário em Meru, no Quénia, podem produzir resultados significativos. O Quadro 6 mostra a lista de plantas medicinais identificadas pelos participantes do workshop de Meru. O conhecimento que a comunidade tem sobre o valor das plantas medicinais aumentará quando houver o maior número possível de agregados familiares que se encontra envolvido no planeamento da localização e composição da horta medicinal. Para que as pessoas que vivem com VIH/SIDA possam ter um acesso fácil aos remédios, necessários para melhorar a sua saúde e a sua força, os agregados familiares agrícolas precisam de sementes de algumas espécies específicas e do conhecimento de como colher, preparar e usar as plantas quando estas já estão maduras.As hortas medicinais e os talhões individuais apenas podem ser mantidos caso se possa dispor de mão-de-obra suficiente para os cultivar e colher e para preparar as plantas que eles produzem. Nalguns casos, a melhor opção poderá ser criar uma horta medicinal comunal, gerida por toda a comunidade.Mais de metade das espécies de plantas conhecidas como possuindo propriedades medicinais são árvores. Caso se criem hortas medicinais devem-se plantar arbustos e árvores com propriedades medicinais. Embora algumas espécies tais como, por exemplo, a ameixeira africana (Prunus africana), que é utilizada para purificar o sangue, apenas sejam produtivas depois de muitos anos, há outras que crescem muito mais rapidamente, como a Warburgia ugandensis cujas folhas são usadas para baixar a febre e tratar o reumatismo.Os sistemas agrícolas de pequena escala dependem duma base de recursos diversos de culturas, plantas selvagens, árvores e de criação de gado. O conhecimento local sobre como usar e cuidar destes recursos está ligado, muitas vezes, ao local e ao género. As comunidades rurais dependem da agrobiodiversidade local e do conhecimento tradicional ou autóctone para se adaptarem a choques externos e a pressões internas.As plantas, quer de espécies selvagens, quer cultivadas, assim como os arbustos e árvores perenes são usadas para alimentação, forragem, medicina e combustível. Os agricultores dependem, para muitos serviços, dos seus recursos em plantas e animais. Eles proporcionam tracção animal, oferecem sombra, protegem o solo contra erosão e fornecem o habitat para os insectos polinizadores benéficos. Estes recursos, quando são vendidos como matérias primas ou processados em mercadorias comercializáveis, podem proporcionar um rendimento monetário para os agregados familiares rurais.Uma agrobiodiversidade rica, bem-mantida e produtiva fornece uma base sólida e estável para as actividades agrícolas. A diversidade é uma importante estratégia de gestão de riscos e permite que os agricultores possam responder mais eficazmente à ameaça de pragas vegetais e animais e de doenças. Por isso, se se usarem variedades culturais, raças melhoradas e insumos químicos na agricultura de pequena escala, estes devem estar integrados de forma a que a manutenção de altos níveis de agrobiodiversidade seja uma prioridade elevada.Manter a diversidade significa cuidar dos alimentos selvagens -dos quais fazem parte as ervas daninhas e as partes das plantas que, embora não sejam normalmente consumidas, podem ter qualidades nutritivas importantes. Os agricultores com um papel chave e os especialis-tas de alimentação/nutricionistas possuem o conhecimento e as aptidões técnicas para transformar estes \"alimentos de fome\" em importantes suplementos dietéticos nutritivos. Esta informação deve ser divulgada aos agregados familiares agrícolas, de modo que eles possam criar uma rede diversa de segurança biológica, a partir de insectos comestíveis, do mel e de outros produtos que normalmente não são considerados como produtos agrícolas. Estes produtos podem fornecer uma nutrição suplementar e podem constituir uma fonte valiosa de nutrição em épocas de crise.Figura 14: Recolhendo alimentosAs mulheres, as crianças e os povos pastoralistas possuem, geralmente, um conhecimento considerável sobre a localização, sazonalidade de usos de plantas selvagens e de árvores frutíferas locais. Eles podem dar informação aos agentes extensionistas de como estes recursos podem ser utilizados para incrementar a segurança e a qualidade nutritiva das dietas alimentares dos agregados familiares.Os agentes extensionistas podem combinar a informação local com conhecimento derivado de investigação nacional e internacional sobre alimentos selvagens com um aconselhamento apropriado de como usar, da melhor maneira, a agrobiodiversidade.O VIH/SIDA despoja violentamente os agregados familiares rurais do seu conhecimento agrícola, mão-de-obra e rendimentos. Os agregados encontram-se numa posição em que não podem comprar os insumos externos de que necessitam para produzir culturas de mercado. Os recursos locais, que são baratos e acessíveis, podem proporcionar uma base para outros tipos de produção agrícola. Por exemplo, os projectos de agrossilvicultura, utilizam, na íntegra, a diversidade genética das plantas locais. Podem ajudar a compensar a disrupção dos sistemas de apoio baseados no parentesco e na comunidade -um dos efeitos mais devastadores do VIH/SIDA -introduzindo práticas que acrescentam um valor de mercado aos recursos das plantas locais e reduzem a quantidade de trabalho necessário para as actividades agrícolas.Existem muitas culturas de árvores e de arbustos que podem ser usadas para incrementar a segurança e a qualidade da vida da comunidade. Ao se adaptar as práticas agrícolas de forma a mitigar os efeitos do VIH/SIDA, os agregados familiares rurais necessitam de intervenções que os ajudem a satisfazer as suas necessidades mais urgentes e lhes possibilitem estabelecer uma base com vista a uma futura segurança dos meios de vida/subsistência.As árvores fornecem forragem e combustível. No caso de serem plantadas perto da propriedade familiar, a tarefa de recolher estes materiais torna-se um fardo menor. As mulheres, especialmente, podem beneficiar das práticas de agrossilvicultura.Os sistemas de agrossilvicultura apresentam as seguintes vantagens: ? As plantas lenhosas perenes, como sejam as árvores, os arbustos e as lianas fornecem frutos, frutos secos e legumes, a ser utilizados como alimentos; ? As culturas árboreas podem ser colhidas ano após ano, enquanto as culturas anuais necessitam de ser plantadas cada ano; ? Mais de 50% das espécies medicinais conhecidas são espécies arbóreas; ? Algumas espécies têm a capacidade de criar microclimas favoráveis. As árvores que fixam o azoto, plantas que protegem o solo contra a erosão e árvores e arbustos que fornecem sombra, assim como bons materiais de compostagem, são espécies particularmente valiosas; ? Áreas muito ricas em árvores frondosas (com sombra) ajudam a diminuir a evaporação e a proteger a captação da água; ? Produtos como sejam fruta, bebidas feitas a partir de frutos secos e a madeira podem ser vendidos para gerar rendimentos; ? As árvores fornecem um habitat para a caça selvagem, para os insectos polinizadores e para as abelhas melíferas; ? Algumas espécies árboreas podem ser produtivas dentro de um espaço de tempo relativamente curto; ? As árvores são multifuncionais e podem proporcionar, com relativamente pouco trabalho, uma fonte fiável de rendimentos para os agregados familiares; ? As culturas perenes que incluem certas culturas arbóreas podem ser cultivadas paralelamente às culturas anuais, de modo a aumentar a segurança do agregado familiar.A plantação de árvores é um investimento a longo prazo. Antes que se possam fazer planos, os agentes extensionistas devem ter a certeza que os agricultores ou bem são os proprietários ou têm o direito à terra destinada a actividades agrossilvícolas. Por vezes pode-se reinvidicar a terra através da plantação de árvores, mas tal nem sempre é o caso. O International Centre for Research in Agroforestry (ICRAF) tem muita informação útil sobre este assunto e dá aconselhamento nas suas brochuras e no seu website www.icraf.orgA escolha das culturas e espécies de plantas selvagens adequadas constitui um primeiro passo importante para se garantir uma agrodiversidade sustentável. Os agentes extensionistas, em conjunto com os membros da comunidade local, devem proceder a um inventário das espécies e plantas que podem fornecer produtos e serviços de que eles necessitam. Isto lhes possibilitará decidir quais as espécies que devem ser cultivadas ou mantidas. Os agentes extensionistas devem garantir que haja uma boa representação de mulheres na concepção e planeamento destas actividades. O seu conhecimento, incluindo o conhecimento extensivo de plantas que produzem alimentos, constitui uma contribuição importante aquando do planeamento de estratégias de adaptação baseadas na agrodiversidade.A escolha do local O segundo passo nos projectos baseados na agrodiversidade é a identificação dos locais mais adequados para se cultivarem as plantas seleccionadas. As condições de crescimento numa exploração agrícola variam. O solo, a água e o microclima devem ser adequados e deve-se tomar em consideração a maneira como as plantas seleccionadas interagem com outras espécies e a sua capacidade para resistir a pragas e doenças. Também devem existir leis nacionais e consuetudinárias que restringem a plantação de certas espécies. Por exemplo, algumas espécies culturais são específicas ao género -algumas espécies agrícolas estão exclusivamente a cargo de homens, outras de mulheres; por vezes é proibida a plantação de árvores nas áreas ribeirinhas e pode ser que a colheita de espécies raras ou ameaçadas seja ilegal. Espécies medicinais sagradas muitas das vezes são protegidas pelas leis consuetudinárias.Espécies perenes e animais de pequeno porte Também é importante pensar para além das culturas anuais. Os animais, as árvores e as espécies perenes (semi) selvagens possuem um valor especial para as famílas que vivem com VIH/SIDA. Por exemplo, os animais de pequeno porte multiplicam-se e reproduzem-se rapidamente e fornecem segurança. Eles constituem um activo tangível e, ao contrário das culturas, podem ser vendidos e trocados quando surgem emergências.Devem-se evitar os híbridos de rendimento alto e as espécies que requerem que o agricultor compre fertilizantes, pesticidas e outros insumos externos. As espécies devem ser seleccionadas de forma a assegurarem que haja uma disponibilidade de produtos durante vários períodos do ano. Deve-se também tomar em consideração a quantidade de mão-de-obra disponível para as actividades agrossilvícolas. Os agregados familiares que vivem com VIH/SIDA não podem preencher exigências de trabalho pesadas ou súbitas. O cultivo de várias espécies ou variedades pode reduzir o risco do fracasso da cultura. Espécies e variedades com uma elevada segurança de colheita, que fornecem produtos para o mercado assim como para consumo familiar, são muito valiosas.A lavoura de conservação produz benefícios a longo prazo. A lavoura foi sempre importante na agricultura de sequeiro. A lavoura de conservação é uma adaptação recente a esta prática e visa utilizar a água que entra na exploração agrícola de modo mais eficiente, melhora a estabilidade da produção e aumenta a fertilidade do solo, especialmente nas zonas áridas e com declives. A lavoura de conservação, utilizando uma lavoura reduzida, culturas intercalares e rotação das culturas, minimiza o distúrbio do solo e permite uma permanente cobertura do solo.Figura 16: Uma redução da lavoura ajuda a prevenir a erosão do soloDe início, quando se passa para a lavoura de conservação, é necessário mão-de-obra adicional e isto pode constituir um problema. Esta técnica deve ser bem compreendida e as comunidades devem estar bem informadas sobre esta técnica e devem ter acesso às espécies adequadas. Contudo, quando a lavoura de conservação já está estabelecida, tal implica que é necessário menos trabalho para a preparação da terra e a monda e significa que, especialmente para as mulheres, se reduz consideravelmente o tempo que têm que dispender no campo.A adaptação das práticas agrícolas visando a mitigação do impacto do VIH/SIDA significa assegurar que os agricultores têm acesso às sementes, mão-de-obra e dinheiro. Neste capítulo discutem-se as actividades que possibilitam que os agricultores tenham acesso a estes insumos e coloca-se a ênfase no fortalecimento do capital social das comunidades que vivem com VIH/SIDA. Com capital social referimonos às relações e reciprocidades que existem entre os parentes e o agregado familiar e que formam a base da vida da comunidade.Em muitas das comunidades agrícolas de pequena escala verificou-se uma desintegração das formas de cooperação tradicionais sob o impacto do VIH/SIDA. O intercâmbio do conhecimento sobre estas formas de cooperação e a continuação do seu fortalecimento e desenvolvimento, podem ser especialmente úteis, em particular em situações nas quais os agricultores recorreram à agricultura de subsistência.As feiras de sementes, a partilha do trabalho, e as iniciativas de crédito e de poupança também são exemplos da cooperação da comunidade que podem ajudar os agregados familiares rurais a adaptarem-se ao impacto do VIH/SIDA. As feiras de sementes facilitam o intercâmbio de materiais de plantio; a inter-ajuda familiar em forma de partilha de trabalho, pode ajudar as famílias que perderam membros trabalhadores devido a VIH/SIDA, e os sistemas de poupança e de crédito podem possibilitar que as famílias de agricultores possam edificar as suas reservas monetárias. As hortas comunitárias e os acordos de utilização mutúa e partilhada dos animais, também constituem formas de cooperação eficazes que contribuem para a segurança alimentar e nutricional e para o bem estar familiar.As feiras de sementes são um exemplo de intercâmbio entre os agricultores. Permitem aos agricultores terem acesso às sementes assim como a outro material vegetal de propagação, como sejam estacas de enxertia ou plântulas de árvores. Quando estas são trocadas entre as comunidades, o seu conhecimento sobre propagação também se transmite de uns para os outros.Figura 17: As feiras de sementes facilitam o intercâmbio de sementes tradicionais e de conhecimento entre os agricultores Um dos primeiros passos que os agentes extensionistas tomam quando organizam uma feira de sementes é inventarizar quais as sementes que se encontram disponíveis e se são adequadas às condições locais. É importante a localização escolhida para a Feira de Sementes. Esta deve ser de fácil acesso para o grupo-alvo e também deve ser acessível ao maior número possível de mulheres vendedoras de sementes.A experiência tem mostrado que quando as feiras de sementes se baseiam num sistema de vales ou cupões, os agricultores tendem a pensar mais cuidadosamente sobre as trocas que eles efectuam. Eles conseguem calcular mais minuciosamente qual o tipo de sementes que eles querem e como as pretendem utilizar. Não é difícil organizar um sistema de vales ou cupões. Os agricultores recebem um número de vales/cupões que pode ser trocado por sementes. No final da feira de sementes os vendedores são pagos pelos organizadores da feira pelos vales ou cupões que eles receberam. Um sistema de vales ou cupões ajuda a evitar que os vendedores de sementes manipulem agricultores que possuem menos capacidade/poder de negociação.Se se tomar cuidado de modo a garantir que apenas se utilizem vales ou cupões durante a Feira das Sementes será possível monitorizar como é que se efectuou a troca das sementes. Os agentes extensionistas podem usar a informação derivada dos vales para avaliar a circulação de sementes e, mais tarde, para determinar se um melhor acesso às sementes talvez possa ter encorajado os agricultores a dedicarem-se a variedades que já não estavam ser utilizadas e/ou a novas variedades.Com base na informação obtida durante os exercícios participativos, os membros da comunidade e os agentes extensionistas podem começar a planificar as hortas comunitárias. Uma melhor gestão da agrobiodiversidade decorrente da utilização do conhecimento local, insumos provenientes dos agentes extensionistas, dos resultados da investigação e da experiência de outras comunidades, tudo isso contribui para o criação de hortas que podem fornecer aos membros da comunidade abastecimentos regulares de alimentação nutritiva.O milho, a batata doce, a mandioca, o plátano, o amendoim e o sorgo/mapira são os hidratos de carbono mais correntes que fazem parte da dieta alimentar dos agregados familiares rurais. Estes devem ser suplementados por culturas apropriadas para horticultura e que são ricas em vitaminas e minerais, como sejam frutas, legumes, frutos secos/nozes e leguminosas. Se as condições forem favoráveis, as hortas familiares de quintal e as hortas comunitárias podem ser desenhadas de modo a incluirem piscicultura e criação de pequenos animais, o que permitirá às famílias de agricultores poderem contar com um abastecimento de proteína de peixe e outra proteína animal.O Agrodok no. 9 -A horta de quintal nas regiões tropicais -fornece informação detalhada sobre como criar uma horta de quintal. Aquando da discussão e planeamento duma horta comunitária, devem-se tomar em consideração os seguintes pontos: ? Tipo de horta: proporção de plantas nutricionais e de plantas medicinais; ? Quanto tempo se necessita para dedicar a actividades hortícolas; ? Pode-se planificar as culturas de campo aberto de tal modo que haja mão de trabalho que sobre para o trabalho na horta; ? Quem se ocupará da horta -os membros do agregado familiar, os membros da comunidade ou gente de fora (assalariados); ? Onde será criada a horta: nos terrenos comunitários, perto de uma mesquita, igreja ou escola; ? Quem é que decidirá o que aí vai ser produzido; ? Desenho/concepção da horta: drenagem, água, solo (as inclinações do terreno devem ser tomadas em consideração quando se planifica o lugar das camas de sementes), talhões com legumes, árvores e arbustos; ? Deve-se poder lidar com as tarefas e problemas que envolvem o cultivo, fertilidade do solo e maneio de pragas e doenças; ? Assuntos relativos à água: quanta água será necessária e de onde será proveniente; quem é responsável pela salvaguarda de um abastecimento adequado; ? Escolha das culturas e da rotação cultural: pode-se utilizar os métodos do Calendário Sazonal e da Análise dos 4 Quadrados para se tomar estas decisões; ? Pode-se incluir a criação de peixe, de pequenos animais, assim como a produção de árvores, com vista a garantir um aprovisionamento de alimentos nutritivos durante todo o ano; ? Segurança: fazer vedações ou tomar outras medidas para que os animais não entrem na hortas e também para evitar roubos; ? Colheita: como se produzirá e haverá uma distribuição dos lucros entre os vários participantes?Deve-se tomar atenção para poder associar os planos da criação de hortas familiares de quintal e de hortas comunitárias com outros aspectos da vida rural. Estes também devem ser integrados em activida-des agrícolas dum âmbito mais vasto de modo a garantir que haja um intercâmbio de materiais vegetais, de que se conte com estrume e que existam arbustos e ramadas para proporcionar a sombra adequada. A comunidade pode decidir usar algum do dinheiro obtido com as culturas de campo aberto para investir nas actividades hortícolas.Figura 18: Horta comunitária Deve-se prestar atenção a como se pode acrescentar valor à produção de hortícolas. Pode-se ensinar aos membros da comunidade várias maneiras de preparar e de secar os legumes. Também se pode armazenar os produtos hortícolas de modo aos agregados familiares poderem beneficiar dos mesmos mais tarde, obtendo preços de fora de estação. Podem-se propagar sementes e materiais de enraizamento e vendê-los a par da fruta e dos legumes frescos. As hortas comunitárias proporcionam um serviço social e encorajam o intercâmbio de conhecimento e de experiência. Os agregados familiares podem decidir usar o que eles aprenderam nas hortas comunitárias para começarem a fazer as suas próprias hortas.A elaboração dum Calendário Sazonal pode ajudar os membros da comunidade a decidirem quando e o que plantar nas suas hortas familiares de quintal ou nas hortas comunitárias. Isto também pode ajudálos quanto à planificação de actividades pós-colheita, como sejam o armazenamento e a conservação e secagem dos alimentos.Quadro 7: Calendário Sazonal elaborado pelo projecto \"Escola de Campo e da Vida para Jovens Agricultores\", Manica, MoçambiqueO Calendário Sazonal mostra a disponibilidade de alimentos, o que implica que as pessoas que participam no projecto de hortas comunitárias devem fazer uma lista de quando se efectua o plantio e a colheita das culturas alimentares locais. Também se incluem neste exercício as plantas selvagens utilizadas na alimentação. Os agentes extensionistas devem anotar a carga de trabalho de cada membro da família. Pode-se discutir entre os vários agregados familiares os Calendários por eles elaborados, de forma a ver ser existem maneiras de partilhar as cargas de trabalho.Um Calendário Sazonal permite às comunidades identificar os períodos em que os agregados familiares são vulneráveis à escassez de comida e em que necessitam de ajuda do exterior. Pode-se, então, discutir maneiras de como aumentar a segurança alimentar e nutricional.Após se trabalhar com uma horta familiar de quintal ou uma horta comunitária durante algum tempo, é importante monitorizar o efeito que tal tem na dieta alimentar e no bem-estar dos membros da comunidade. Pode-se, então, fazer adaptações, caso necessário. Para avaliar se a horta comunitária foi bem sucedida, é necessário dispor da informação seguinte.? Verificou-se uma mudança na quantidade e qualidade da nutrição do agregado familiar? ? Verificou-se uma mudança no nível do estado de saúde dos membros do agregado familiar? ? Quantas espécies novas ou diferentes estão a ser cultivadas na horta? ? Houve uma mudança quanto ao rendimento do agregado familiar como resultado da horta? ? O agregado familiar sente que o seu abastecimento alimentar agora é mais seguro? ? Verificou-se um aumento no número dos contactos e das actividades partilhadas entre os agregados familiares?Nos agregados familiares com pessoas que vivem com VIH/SIDA, a cooperação no que diz respeito à partilha e intercâmbio de trabalho reveste-se de grande importância. A partilha de trabalho pode possibilitar as comunidades a adoptarem novas práticas sem que isto constitua uma sobrecarga para a força de trabalho disponível. A partilha de trabalho envolve dividir cargas de trabalho entre várias pessoas e também distribuir as cargas de trabalho por um período de tempo mais longo. Para além disso, permitindo uma maior estabilidade no desempenho das tarefas, a partilha do trabalho constitui uma boa maneira para a aquisição de auto-confiança, conhecimento e experiência. A partilha de trabalho pode ir desde ajudar um vizinho, até à tomada de decisão de partilhar o trabalho de maneira mais eficiente, dentro dum agregado familiar.As hortas comunitárias fornecem um bom exemplo de partilha de trabalho. Os membros ajudam-se uns aos outros com a monda de ervas daninhas e com a rega. Quando alguém fica doente, tem que ir a um funeral ou tem que cumprir outra obrigação social, há membros do grupo que estão disponíveis para os substituirem no trabalho. Este tipo de intercâmbio de trabalho pode ser alargado a uma ampla variedade de actividades agrícolas. Contudo, é necessário que haja uma organização para garantir que as obrigações são cumpridas e que os acordos estabelecidos são suficientemente flexíveis para se poder lidar com os problemas e emergências que podem fazer com que seja impossível para um participante reciprocar a ajuda imediata que lhe foi dada.O intercâmbio e partilha de trabalho constituem uma opção em muitos tipos diferentes de planos de adaptação. Os agentes extensionistas podem ajudar as comunidades a determinar e a programar as suas necessidades de trabalho e ajudar a facilitar a obtenção duma organização flexível de tais acordos. O exemplo seguinte, apresentado por Gaynor Paradza, do Africa Women Leaders Agriculture and Environment programme da Universidade e Centro de Investigação de Wageningen e que foi tirado duma pequena comunidade no Zimbabué, é elucidativo de como funciona a comparticipação/partilha de trabalho.A aldeia era composta por 19 propriedades familiares e a maioria dos habitantes tinha uma relação de parentesco. O resultado era uma forte coesão social. As famílias tinham acesso aos campos cultivados e às hortas individuais, situados cerca de 3-5 quilómetros das propriedades familiares/explorações agrícolas. A distância entre as casas e respectivos campos e uma disponibilidade reduzida de mão-de-obra devido ao VIH/SIDA, dificultou que as pessoas pudessem, de forma apropriada, guardar os seus talhões contra roubos, animais selvagens e gado que se desloca livremente. Os recursos florestais esgotaram-se, sendo, assim, difícil encontrar materiais para as vedações.Nos anos 80, a comunidade criou uma horta comunitária num terreno com um acre (4.047 m 2 ), situado próximo da aldeia. As mulheres da aldeia negociaram colectivamente a terra. As suas tentativas foram coroadas de êxito e o chefe da aldeia concedeu-lhes a terra de que elas necessitavam. Todas as mulheres da aldeia podiam, caso quisessem, juntar-se a esta iniciativa. Um voluntário escavou dois furos. Uma organização não-governamental concedeu um empréstimo em dinheiro às mulheres que elas utilizaram para comprar material para vedação.De início as mulheres trabalharam conjuntamente numa cooperativa e cultivaram legumes para o mercado. Com os resultados das vendas pagaram o empréstimo para a vedação e também realizaram um rendimento modesto. A cooperativa também beneficiou do aconselhamento de ONG que trabalham na área. Por sua vez, as ONG ficaram contentes por conseguirem uma maneira eficiente de divulgarem informação e técnicas inovadoras.Após algum tempo, os membros decidiram subdividir a horta comunitária em talhões individuais. Estes eram compostos por seis \"canteiros\" medindo cada um deles 1x4 metros. Todos os membros puderam recolher água dos furos para os seus canteiros individuais e continuaram a ser responsáveis, conjuntamente, pela manutenção da vedação da horta. A disposição sobre a posse da terra não era discriminatória contra as mulheres na base do seu estado civil. Isto aumentou a segurança da mulheres sobre a posse da terra, nas áreas em que a posse da terra era regulamentada pelo direito consuetudinário. A proximidade da horta comunitária em relação às casas e campos de cultivo, o acesso contínuo a insumos, informação e aconselhamento, a assistência fornecida por outras pessoas e a possibilidade de, temporariamente, deixarem a horta sem perderem os seus direitos de acesso futuros, vão ao encontro dalguns dos desafios que as mulheres (e também os homens) encaram quando são confrontados com o VIH/SIDA. E o que assume uma importância similar é o facto que a horta comunitária deu às mulheres a oportunidade de juntarem os seus recursos, de trocarem informação e obterem aconselhamento, aos quais teria sido difícil aceder numa base individual ou de agregado familiar.A maioria das estratégias agrícolas de adaptação requerem um investimento inicial na forma de tempo, dinheiro ou de mão-de-obra. A falta de dinheiro para comprar equipamento agrícola, sementes e para pagar trabalho assalariado constitui, frequentemente, um problema grave. O dinheiro esgota-se quando os membros masculinos chave do agregado familiar ficam doentes e, assim, incapacitados de trabalhar na exploração agrícola ou em trabalhos assalariados. Uma combinação de mecanismos financeiros tradicionais e modernos pode possibilitar os agregados familiares a terem acesso ao dinheiro de que necessitam para comprarem insumos agrícolas e para lidarem com emergências médicas e sociais.As estratégias que assentam em abordagens tradicionais de poupanças são conhecidas por muitas famílias rurais. Intervenções como sejam o Sistema Interno de Poupança e Empréstimo uma actividade que a se-guir passamos a descrever, pode ser adaptada para satisfazer as capacidades da comunidade e dos agregados familiares afectados por VIH/SIDA. São as seguintes as vantagens do sistema interno de SIP&E : ? Fornece às comunidades rurais os meios de angariar capital de forma rápida. As despesas gerais são mínimas e podem ser recuperadas com juros; ? Encoraja a cooperação ao nível comunitário, ao reforçar as redes (o trabalho em rede) de apoio à comunidade: é operado e gerido pela comunidade; ? Ajuda os membros da comunidade a satisfazerem as suas necessidades sociais e de consumo; ? Reduz a dependência dos agregados familiares no que se refere à ajuda externa; ? Oferece aos membros uma alternativa para um comportamento de risco.As comunidades ou grupos de agregados familiares afectados por VIH/SIDA são mobilizados e são capacitados por agentes extensionistas numa série de aptidões que incluem desenvolvimento de fundos do grupo e manutenção de registos. Depois de terem recebido uma formação, as comunidades organizam grupos de sistema interno de P&E, com um número mínimo de cinco membros. Nas suas reuniões mensais, os membros angariam uma quantidade de dinheiro que foi acordada. Isto pode ser emprestado a indíviduos seleccionados no grupo. Os membros devem pagar este empréstimo, acrescido duma determinada quantidade acordada de juros, durante a reunião seguinte. Se há um atraso nos reembolsos ou estas pessoas não comparecem às reuniões, são impostas multas específicas devido a não pagamento.Pratica-se este ciclo de poupanças e de empréstimos até que o grupo tenha alcançado uma quantia alvejada. Partilha-se, então, esta quantia entre os membros e o grupo encontra-se pronto para começar um novo ciclo.Alfred O gado constitui um importante recurso a longo-prazo para os produtores rurais. Adaptar as práticas de criação de gado de forma a mitigar os efeitos do VIH/SIDA é tão importante como melhorar e assegurar o acesso aos alimentos à base de plantas. O gado -que, no seu sentido mais lato, engloba a criação de carneiros, vacas, cabras, burros, camelos, porcos e também aves de capoeira, constitui um activo crucial e uma rede de segurança para os agregados familiares agrícolas. Os seus produtos têm um valor monetário e os próprios animais podem ser vendidos em épocas de infortúnios e de crises familiares.Os animais fornecem alimentação de qualidade, como seja carne, produtos lácteos e ovos e também são uma fonte de tracção animal e de transporte e o seu estrume é utilizado como combustível, fertilizante e para a construção e reparação das casas. Muitos dos costumes e relações sociais tradicionais assentam na troca de animais. Nos agregados familiares que vivem com VIH/SIDA os recursos em gado diminuem rapidamente. As famílias abatem ou vendem os seus animais para angariar fundos de forma a comprar medicamentos e sa-tisfazer outras despesas do agregado. Como resultado perdem um activo financeiro crucial, assim como uma fonte de alimentos e de serviços. Quando as pessoas responsáveis pelo maneio do gado ficam doentes ou morrem, perdem-se as aptidões de gestão e o conhecimento específico sobre os rebanhos e bandos de aves. Não se dispõe de tempo ou mão-de-obra suficientes para tratar deles de forma apropriada e os órfãos e as viúvas têm dificuldade de acesso aos serviços de extensão. As mulheres e as crianças também podem perder os seus direitos aos animais nas sociedades em que a herança favorece os homens.A maneira segundo a qual os animais podem ser usados para mitigar o impacto do VIH/SIDA dependerá das circunstâncias locais. Os agentes extensionistas que trabalham com comunidades para adaptar as práticas de criação de gado à aptidões e capacidades locais devem: ? Seleccionar espécies e raças que atinjam a maturidade rapidamente, estejam adaptadas a condições climáticas e ambientais locais, sejam resistentes a doenças e não requeiram muitos insumos; ? Seleccionar animais que podem ser mantidos perto de casa de modo a que as pessoas que vivem com VIH/SIDA possam tratar deles; ? Sempre que necessário, aconselhar os agregados familaires a criar espécies animais de pequeno porte, que requerem pouco trabalho, podem pastar sozinhos, necessitam de pouca comida e podem proporcionar segurança alimentar e um rendimento monetário; ? Encorajar os membros da comunidade a partilhar os animais de maior porte, de tracção animal, utilizados para a lavoura e para transporte; ? Quando os agregados familiares não podem produzir culturas agrícolas, fornecer-lhes a informação de que eles necessitam para criar o tipo de animais mais apropriado à sua situação; ? Conjuntamente com a comunidade, considerar intervenções que utilizam menos mão-de-obra de forma a minimizar o trabalho envolvido na criação dos animais. Por exemplo, a criação de pontos de água perto da casa e campos de cultivo e a plantação de árvores fo-rargeiras para reduzir o tempo e o esforço gastos na recolha da forragem; ? Fornecer informação de como conservar e armazenar os produtos animais; ? Ajudar a identificar nichos de mercado para produtos e serviços animais, como parte dum planeamneto de adaptação e de mitigação; ? Assegurar o apoio legal e/ou do direito consuetudinário para as viúvas e orfãos para evitar a perda súbita do gado.As aves domésticas -galinhas, patos, pintadas e perús -também desempenham um papel importante nas estratégias tendentes a aumentar a segurança alimentar e o rendimento monetário das famílias camponesas, desempenhando, igualmente, um importante papel sóciocultural. Porque são fáceis de manter e requerem poucos insumos, as famílias pobres podem criá-las. As aves de capoeira criadas num sistema de liberdade ou semi-liberdade são particularmente indicadas para sistemas de culturas agrícolas-criação de animais. As pessoas que vivem com VIH/SIDA são menos capazes de desempenhar trabalhos pesados, de trabalharem durante períodos de tempo longos ou cumprirem horários rígidos de trabalho. Quando se fazem planos para integrar actividades que gerem rendimentos no âmbito de estratégias para mitigar o impacto de VIH/SIDA, devem-se tomar em consideração os seguintes factores: ? Mão-de-obra: mínimo de exigência de mão-de-obra sem concentração de esforços como seja a que é necessária durante o início da ciclo produtivo; ? O rendimento deve assentar no uso de recursos locais e em aptidões que não necessitam de insumos externos, ou estes são muito baixos;? O rendimento deve ser estável durante todo o ano; ? Deve-se calcular cuidadosamente o mercado potencial das opções de geração de rendimentos; ? As actividades não devem ter que ser realizadas em momentos fixos.O tipo de exploração agrícola, os recursos disponíveis dentro da comunidade e a procura no mercado determinarão as oportunidades disponíveis de ganhar dinheiro. Até que ponto as comunidades podem aproveitar estas oportunidades dependerá das aptidões existentes e do tempo disponível. Para se manter um nível adequado de produção, talvez seja necessário efectuar uma mudança para variedades e espécies que exijam um menor insumo de trabalho e força física.A introdução de ferramentas que exigem uma menor força física, tal como seja charruas, semeadoras e bombas mais leves/menos pesadas, assim como utensílios mais eficientes, tal como fogões que gastam pouca lenha podem ajudar as famílias de agricultores a redistribuirem as tarefas e a reduzirem a quantidade de tempo gasta nas tarefas domésticas normais, como seja cozinhar ou ir buscar lenha. O tempo e o trabalho que estes tipos de intervenção fazem poupar, podem ser investidos em desenvolver oportunidades de gerar rendimentos.Nas comunidades em que se adaptou a produção agrícola de modo a incluir actividades agrossilvícolas, começam gradualmente a aparecer produtos para venda, como sejam madeira, frutas e forragem. A intervenção agrossilvícola reduz, frequentemente, a carga de trabalho das mulheres, possibilitando que se engajem em actividades de processamento alimentar, secagem e venda de hortícolas e à confecção de artesanato, tudo isto produtos que têm um valor de mercado mais elevado que as próprias matérias primas.A agrodiversidade local em alguns casos também pode ser comercializada. Muitas árvores selvagens e produtos animais podem ser transformados em produtos comerciavelmente viáveis. Produtos como madeira, estacas, especiarias, frutos, mel, gordura, carne, materiais de cobertura de telhado, taninos, colas e insecticidas, têm todos um valor de mercado. Os agregados familiares também podem usar os recursos locais para produzirem mobiliário, colmeias, pilões, ferramentas e cabos para as ferramentas, tutores para plantas, bebidas fermentadas, armadilhas para animais e peças de artesanato, assim como bebidas, molhos e outras comidas.Outras actividades que geram rendimentos e que não são muito exigentes em termos de tempo e de trabalho são o cultivo de raízes e de tubérculos, criação de galinhas à solta (sistema de criação em liberdade) ou a produção de mel e a propagação de árvores de fruta ou de frutos secos. A criação de coelhos também é relativamente simples e as crianças podem ajudar com as tarefas diárias de alimentar os animais e mantê-los limpos.As actividades da exploração agrícola que geram rendimentos devem ser talhadas à capacidade do agregado familiar e comunidade alvos, se se pretender que sejam sustentáveis e bem sucedidas. Nalguns casos isso pode implicar que essas actividades produzirão rendimentos relativamente baixos. Contudo, o objectivo é assegurar um rendimento estável.Figura 24: As crianças gostam de criar coelhos À medida que os membros da comunidade ficam engajados em actividades comerciais, pode ser que para eles seja útil criar um Grupo de Auto-Ajuda. No caso dum membro do grupo ficar doente ou deixar o grupo devido a uma emergência familiar, os outros membros do grupo serão capazes de manter o abastecimento dos produtos e mercados da comunidade e não se perderão os rendimentos monetários.Figura 25: A participação das mulheres em actividades que geram rendimentos pode levar a benefícios mais latosAs actividades não-agrícolas de subsistência, incluindo empregos fora da exploração agrícola, a provisão de serviços e de várias formas de comercialização podem ser de importância para os agregados familia-res camponeses. Se as circunstâncias o permitirem, deve-se incentivar as mulheres a engajarem-se em actividades fora da exploração agrícola. A experiência tem mostrado que o dinheiro que as mulheres ganham aumenta o bem-estar geral do agregado familiar, reforçando, também, o poder de tomada de decisão das mulheres dentro da família. As oportunidades de emprego fora da exploração agrícola variam enormemente. Os agentes extensionistas podem desempenhar um papel valioso no encorajamento dos membros da comunidade a avaliarem o impacto das actividades fora da agricultura sobre a segurança alimentar do agregado familiar e o bem-estar da comunidade. Tal pode ser feito utilizando-se os mesmos métodos que foram usados para avaliar o impacto da adaptação das práticas agrícolas, que já foram tratados anteriormente.Nos seus esforços para mitigar a forma em que o VIH/SIDA afecta as comunidades agrícolas de pequena escala, os agentes extensionistas, encontram-se, muitas vezes, a lidar com novos grupos alvo. Estes grupos são extremamente vulneráveis, não são necessariamente homogéneos e são, frequentemente, estigmatizados e difíceis de atingir. Estes grupos são os que vivem com VIH/SIDA e as mulheres, as pessoas idosas e as crianças que vivem nos agregados familiares afectados pela doença. A agricultura pode desempenhar um papel importante na mitigação do impacto do VIH/SIDA mas tal requer uma abordagem multi-sectorial. Todos aqueles que se encontram envolvidos no apoio dos meios de vida/subsistência rural e com o bem-estar das pessoas que vivem com VIH/SIDA necessitam de garantir que as actividades por eles iniciadas sejam, o máximo possível, complementares. Eles também têm que olhar mais além da agricultura, visando outras intervenções possíveis. Uma mitigação eficaz significa garantir que as actividades planificadas sejam compatíveis com as estratégias de subsistência locais do grupo-alvo.Este Agrodok visa mostrar a importância de avaliar a maneira como o VIH/SIDA tem um impacto na vida económica e social das economias rurais. A partir desta perspectiva, enfatiza a importância da colaboração. O intercâmbio de experiências e aprendizagem com colegas que trabalham noutros sectores, que incluem a saúde, silvicultura, educação e gestão dos recursos naturais, constitui uma parte essencial do desenvolvimento de soluções polivalentes e duradouras.Os sistemas de agricultura de pequena escala dependem de uma base de diversos recursos de culturas, plantas selvagens, árvores e gado. O conhecimento sobre a biodiversidade local e como usar e cuidar estes recursos está, frequentemente, ligado ao local e ao género. As comunidades rurais têm que adaptar as mudanças no seu ambiente e usar os seus conhecimentos tradicionais ou autóctones para lidar com os choques externos e pressões internas. As estratégias de mitigação do VIH/SIDA podem assentar nestas estratégias de sobrevivência.As estratégias de mitigação do VIH/SIDA que aqui tratamos colocam a prioridade que possibilitam os agentes extensionistas de apoiar as comunidades locais nos seus esforços para garantir um abastecimento adequado de alimentação nutritiva. Uma alimentação de boa qualidade, em quantidade suficiente, não só ajudará a prolongar e a melhorar a qualidade de vida daqueles que vivem com VIH/SIDA, mas também proporciona às pessoas que os cuidam a força mental e física para levarem a cabo a sua difícil tarefa. Perfil de Acesso e de Controlo Metodologia destinada a listar os recursos usados e identificar os membros da comunidade que têm acesso a esses recursos e o poder de decisão sobre os mesmos.Pode ser usado para se obter uma visão mais profunda sobre as actividades dos membros da comunidade.Medicamentos Anti-retrovirais Medicamentos usados no tratamento do VIH/SIDA que retardam o desenvolvimento do vírus no corpo humano.Horta que pertence e é gerida pela comunidade ou grupos dentro da comunidade, como sejam, as mulheres.As culturas são produzidas com um mínimo do cultivo do solo. Os restolhos ou os resíduos das plantas ficam à superfície do solo em vez de nele serem revolvidos pela charrua. Uma técnica agrícola que tem provado a sua eficácia ao mesmo tempo que se economiza trabalho.Análise dos 4 Quadrados Um método participativo de recolha e análise de dados.Método para documentar o estatuto, o papel e as actividades das mulheres numa comunidade.Sistema Interno de Poupança e Empréstimos Uma entre várias maneiras pelas quais as comunidades podem erigir o seus recursos financeiros.Escolas de Campo e da Vida para Jovens Agricultores Actividades práticas, de acção, destinadas a jovens, para transferir aptidões agrícolas e informação sobre assuntos como sejam VIH/SIDA.O VIH/SIDA enfraquece o sistema imunitário fazendo com que as pessoas que se encontram afectadas por esta doença sejam muito vulneráveis a outros tipos de infecção.Método com vista à documentação das actividades agrícolas e rurais do agregado familiar.Feiras rurais onde se troca , de forma controlada, sementes e outro material vegetal de propagação.","tokenCount":"12620"} \ No newline at end of file diff --git a/data/part_3/4547031358.json b/data/part_3/4547031358.json new file mode 100644 index 0000000000000000000000000000000000000000..331f3b1dd571023578749090e5f292b6cd38843b --- /dev/null +++ b/data/part_3/4547031358.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"fafc8c3e09b0c0e43304cf85035286cf","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/e68f2140-48b2-4b36-97f5-245f7af863c8/retrieve","id":"186908180"},"keywords":[],"sieverID":"8ace29c3-ffe9-44a5-803b-7da9f0f48d25","pagecount":"82","content":"The information in this manual is based on ILCA's experiences, and particularly the work of the late Frank O'Mahony, in Ethiopia between 1984 and 1986. The manual is intended as a teaching aid for extension-level technicians, and this is reflected in the practical nature of the material. The level of technology is largely aimed at individual smallholders, but with some reference to techniques that could be used by groups of farmers or producers' cooperatives.Despite being limited to experience gained in Ethiopia, we believe that the information and techniques given in this manual will be useful to dairy technologists and development workers in other parts of Africa.Fermented milks have been prepared for more than 2000 years. Allowing milk to ferment naturally produces an acidic product which does not putrefy. Fermented milks are wholesome and readily digestible. Examples of such products are yoghurt, kefir, koomiss and acidophilus milk.The development of the milk separator in the 1 9th cen tury made centralised milk processing possible. Initially, cream was separated and the fresh skim milk returned to the milk producers, the cream being retained for buttermaking. As the nutritional importance ofskim milk became recognised, processes were developed to conserve milk solids-not-fat (SNF). Casein and casein products were pre pared, as well as lactose and dried milk. Today, a large amount of the milk produced in the world is converted into dehydrated milk products and foods containing a large proportion of milk solids. In countries with commercial dairying these processes are carried out in large-capacity processing plants.In Africa, milk is produced in most agricultural pro duction systems. It is either sold fresh or consumed as fer mented milk and products such as butter, ghee and cheese. Sour milk is the most common product, and milk is usually soured before any further processing is done. While there are several milk processing plants in Africa, much of the milk produced by rural smallholders is processed on-farm using traditional technology. It is important, therefore, to consider these processes and look to possible technological interventions at this scale when considering dairy develop ment in the rural sector.Farmers in the Ethiopian highlands produce sour milk, butter and cottage cheese for sale, and similar pro ducts are made in the rangelands. The Maasai in Kenya make ghee from sour milk. Fermented milks are made throughout sub-Saharan Africa, and concentrated fer mented milks are made in some parts of the continent. While the processes used have not been subject to extensive scientific investigation, they appear to be effective methods of converting milk into stable marketable products and have long been used for processing surplus milk.Milk is processed primarily to convert it into a more stable product; for example, fermented milk can be stored for about 20 days. Milk products are more stable than fresh milk because they are more acidic and/or contain less mois ture. Preservatives may also be added. Thus, by increasing acidity and reducing moisture content, the storage stability of milk can be increased.This manual deals with rural milk processing. It con centrates on Ethiopian traditional products or on products that are easily made, need little specialised equipment and can be easily adapted to the rural processing plant. Some background information in the areas of milk suitable construction methods and the installation and care chemistry and microbiology is also given. Milk analysis is of processing equipment. covered at a simple level, as is dairy engineering, includingMilk is secreted by the mammary gland of mammals to feed their offspring. Cows milk is commonly used as human food, but milk from sheep, goats, buffalo, yak, horses and camels is also used. Milk contains large amounts of essen tial nutrients and has rightly been recognised as nature's single most complete food.As a food, milk serves the following broad purposes: (a) growth, (b) reproduction, (c) supply of energy, (d) maintenance and repair and (e) appetite satisfaction. The requirements of these categories vary with the individual, and in some instances not all the stated functions of the food need to be served, e.g. adults no longer require food for growth whereas infants do. The functions of a food are served specifically through the various nutritionally impor tant components, comprising proteins, carbohydrates, lipids, minerals, vitamins and water.Nutritionally, milk has been defined as \"the most nearly perfect food\". It provides more essential nutrients in significant amounts than any other single food. Milk is an outstanding source of calcium and phosphorus for bones and teeth, and contains riboflavin, vitamins B6, A and B, in significant amounts. It also contains Bi2, the antipernicious anaemia vitamin.Milk fat or butterfat is the second largest component of milk and is of major commercial value. It serves nutrition ally as an energy source and supplies essential fatty acids.Fat content is closely followed by milk proteins at about 3.4%. Milk proteins in turn are subdivided into casein, comprising approximately 76-80% of the total milk pro teins, and the whey proteins, comprising roughly 20-24%.The whey proteins are of higher nutritional value than ca sein. Milk proteins are outstanding sources of essential amino acids.The nutritive value of milk products is based on the high nutritive value of milk as modified by processing. Over-processing and, in particular, severe heat treatment reduce the nutritional value of milk. Butter-making con centrates the fat-soluble nutrients, while cheese-making concentrates the milk fat and the major protein fractions.In some instances milk is fortified with certain nut rients, e.g. vitamin D. It is also possible to replace butterfat with a cheaper fat, as is often done in the manufacture of calf milk replacers and in powdered milk for certain mar kets. Milk components are also used in other foods: sodium caseinate is used as a protein source in sausages and \"fil led\" meats, whey proteins are used in confectionery and milk proteins are used in sauces for instant foods.Figure 1 shows the major milk constituents and the products that can be made from each of them. Rural pro ducers make butter and ghee from the fat fraction of milk. Ghee has an excellent storage stability. Where ghee is not made, butter is occasionally spiced and heated to preserve it. Salt is rarely used as a butter preservative in the rural sector.Casein is recovered with fat in cheese-making and can be recovered from sour milk after churning to make a cot tage cheese. Because of their greater solubility, the whey proteins are more difficult to recover as a discrete product and in the smallholder setting are best utilised by direct consumption.Milk sugar -lactose -is soluble in milk. Some people are allergic to fresh milk because of lactose intolerance but can consume sour milk because the lactose level has been solids. Lactic acid contributes to the flavour of many milk reduced by fermentation to lactic and other acids. This re-products. Because it is present in solution, lactose is diffiduces milk pH and assists in the preservation of other milk cult to recover as a discrete product. Milk composition is affected by genetic and environmental factors.Milk composition varies considerably among breeds of dairy cattle: Jersey and Guernsey breeds give milk of higher fat and protein content than Shorthorns and Friesians. Zebu cows can give milk containing up to 7% fat.The potential fat content of milk from an individual cow is determined genetically, as are protein and lactose levels. Thus, selective breeding can be used to upgrade milk qual ity. Heredity also determines the potential milk production of the animal. However, environment and various physiological factors greatly influence the amount and composition ofmilk that is actually produced. Herd record ing of total milk yields and fat and SNF percentages will in dicate the most productive cows, and replacement stock should be bred from these.The fat content of milk varies considerably between the morning and evening milking because there is usually a much shorter interval between the morning and evening milking than between the evening and morning milking. If cows were milked at 12-hour intervals the variation in fat content between milkings would be negligible, but this is not practicable on most farms. Normally, SNF content var ies little even if the intervals between milkings vary.The fat, lactose and protein contents of milk vary according to stage of lactation. Solids-not-fat content is usually high est during the first 2 to 3 weeks, after which it decreases slightly. Fat content is high immediately after calving but soon begins to fall, and continues to do so for 10 to 12 weeks, after which it tends to rise again until the end of the lacta tion. The variation in milk constituents throughout lacta tion is shown in Figure 2.As cows grow older the fat content of their milk decreases by about 0.02 percentage units per lactation. The fall in SNF content is much greater.Underfeeding reduces both the fat and the SNF content of milk produced, although SNF content is more sensitive to feeding level than fat content. Fat content and fat composi tion are influenced more by roughage (fibre) intake.The SNF content can fall if the cow is fed a low-energy diet, but is not greatly influenced by protein deficiency, un less the deficiency is acute. Both fat and SNF contents can be reduced by disease, par ticularly mastitis.The first milk drawn from the udder is low in fat while the last milk (or strippings) is always quite high in fat. Thus it is essential to mix thoroughly all the milk removed, before taking a sample for analysis. The fat left in the udder at the end of a milking is usually picked up during subsequent milkings, so there is no net loss of fat. In milk we find examples of emulsions, colloids, molecular and ionic solutions.An ionic solution is obtained when the forces that hold the ions together in a solid salt are overcome. The dissolved salt breaks up into ions which float freely in the solvent. Thus when common salt -sodium chloride -is dissolved in water it becomes an ionic solution of free sodium and chloride ions. Ionic solutions are largely of inorganic com pounds.In a molecular solution the molecules are only partly, if at all, dissociated into ions. The degree of dissociation rep resents an equilibrium which is influenced by other sub stances in the solution and by the pH (or hydrogen ion con centration) of the solution. Molecular solutions are usually of organic compounds.In a colloid, one substance is dispersed in another in a finer state than an emulsion but the particle size is larger than that in a true solution. Colloidal systems are classified ac cording to the physical state of the two phases. In a colloid, solid particles consisting of groups of molecules float freely. The particles in a colloid are much smaller than those in a suspension and a colloid is much more stable.An emulsion consists of one immiscible liquid dispersed in another in the form of droplets -the disperse phase. The other phase is referred to as the continuous phase. The sys tems have minimal stability and require the presence of a surface-active or emulsifying agent for stability. In foods, emulsions usually contain oil and water. Ifwater is the con tinuous phase and oil the disperse phase, it is an oil-inwater (o/w) emulsion, e.g. milk or cream. In the reverse case the emulsion is a water-in-oil (w/o) type, e.g. butter. In summary, an emulsion consists of three elements, the continuous phase, the disperse phase and the emulsifying agent.A dispersion is obtained when particles of a substance are dispersed in a liquid. A suspension consists of solid particles dispersed in a liquid, and the force of gravity can cause them to sink to the bottom or float to the top. For example, fine sand, dispersed in water, soon settles out.An acid is a substance which dissociates to produce hydro gen ions in solution. A base (alkaline) is a substance which produces hydroxyl ions in solution. It can equally be stated that an acid is a substance which donates a proton and a base is a substance which accepts a proton.The symbol pH is used to denote acidity; it is inversely related to hydrogen ion concentration.Neutrality is pH 7 Acidity is less than pH 7 Alkalinity is more than pH 7 Fresh milk has a pH of 6.7 and is therefore slightly acidic.When an acid is mixed with a base, neutralisation takes place; similarly a base will be neutralised by an acid.Buffers are defined as materials that resist a change in pH on addition of acid or alkali. Characteristically they consist of a weak acid or a weak base and its salt. Milk contains a large number of these substances and consequently be haves as a buffer solution. Fresh cows milk has a pH of be tween 6.7 and 6.5. Values higher than 6.7 denote mastitic milk and values below pH 6.5 denote the presence of colos trum or bacterial deterioration. Because milk is a buffer solution, considerable acid development may occur before the pH changes. A pH lower than 6.5 therefore indicates that considerable acid development has taken place. This is normally due to bacterial activity.Litmus test papers, which indicate pH, are used to testmilk activity; pH measurements are often used as accep tance tests for milk.Measuring milk acidity is an important test used to de termine milk quality. Acidity measurements are also used to monitor processes such as cheese-making and yoghurtmaking. The titratable acidity of fresh milk is expressed in terms of percentage lactic acid, because lactic acid is the principal acid produced by fermentation after milk is drawn from the udder and fresh milk contains only traces of lactic acid. However, due to the buffering capacity of the proteins and milk salts, fresh milk normally exhibits an ini tial acidity of 0.14 to 0.16% when titrated using sodium hydroxide to a phenolphthalein end-point.The quantities of the main milk constituents can vary con siderably depending on the individual animal, its breed, stage oflactation, age and health status. Herd management practices and environmental conditions also influence milk composition. The average composition of cows milk is shown in Table 1 . Water is the main constituent of milk and much milk processing is designed to remove water from milk or reduce the moisture content of the product.If milk is left to stand, a layer of cream forms on the surface. The cream differs considerably in appearance from the lower layer of skim milk.Under the microscope cream can be seen to consist of a large number of spheres of varying sizes floating in the milk. Each sphere is surrounded by a thin skin -the fat globule membrane -which acts as the emulsifying agent for the fat suspended in milk (Figure 3). The membrane protects the fat from enzymes and prevents the globules coalescing into butter grains. The fat is present as an oil-inwater emulsion: this emulsion can be broken by mechani cal action such as shaking. Fats are partly solid at room temperature. The term oil is reserved for fats that are completely liquid at room temperature. Fats and oils are soluble in non-polar sol vents, e.g. ether.About 98% of milk fat is a mixture of triacyl glycerides. There are also neutral lipids, fat-soluble vita mins and pigments (e.g. carotene, which gives butter its yellow colour), sterols and waxes. Fats supply the body with a concentrated source of energy: oxidation offat in the body yields 9 calories/g. Milk fat acts as a solvent for the fat-soluble vitamins A, D, E and K and also supplies essen tial fatty acids (linoleic, linolenic and arachidonic).A fatty-acid molecule comprises a hydrocarbon chain and a carboxyl group (-COOH). In saturated fatty acids the carbon atoms are linked in a chain by single bonds. In unsaturated fatty acids there is one double bond and in poly-unsaturated fatty acids there is more than one doubleExamples of each type of fatty acid are shown in Figure 4. Fatty acids vary in chain length from 4 carbon atoms, as in butyric acid (found only in butterfat), to 20 carbon atoms, as in arachidonic acid. Nearly all the fatty acids in milk contain an even number of carbon atoms.Fatty acids can also vary in degree of unsaturation, e.g. CI 8:0 stearic (saturated), C 18: 1 oleic (one double bond), C18:2 linoleic (two double bonds), C18:3 linolenic (three double bonds).The most important fatty acids found in milk tri glycerides are shown in Table 2. Fatty acids are esterified with glycerol as follows:+ fatty acids -* triglyceride (fat) + waterThe melting point and hardness of the fatty acid is af fected by: • the length of the carbon chain, and • the degree of unsaturation.As chain length increases, melting point increases. As the degree of unsaturation increases, the melting point de creases.Fats composed of short-chain, unsaturated fatty acids have low melting points and are liquid at room tempera ture, i.e. oils. Fats high in long-chain saturated fatty acids have high melting points and are solid at room tempera ture. Butterfat is a mixture of fatty acids with different melting points, and therefore does not have a distinct melt ing point. Since butterfat melts gradually over the tempera ture range of 0-40°C, some of the fat is liquid and some solid at temperatures between 16 and 25°C. The ratio of solid to liquid fat at the time of churning influences the rate of churning and the yield and quality of butter.Fats readily absorb flavours. For example, butter made in a smoked gourd has a smokey flavour.Fats in foods are subject to two types of deterioration that affect the flavour of food products. 1 . Hydrolytic rancidity: In hydrolytic rancidity, fatty acids are broken off from the glycerol molecule by lipase enzymes produced by milk bacteria. The resulting free fatty acids are volatile and contribute significantly to the flavour of the product.Oxidative rancidity: Oxidative rancidity occurs when fatty acids are oxidised. In milk products it causes tallowy flavours. Oxidative rancidity of dry butterfat causes off-flavours in recombined milk.Proteins are an extremely important class of naturally oc curring compounds that are essential to all life processes. They perform a variety of functions in living organisms ranging from providing structure to reproduction. Milk proteins represent one of the greatest contributions of milk to human nutrition. Proteins are polymers of amino acids. Only 20 diffe rent amino acids occur regularly in proteins. They have the general structure: NH R-CH-COOH I R represents the organic radical. Each amino acid has a different radical and this affects the properties of the acid. The content and sequence ofamino acids in a protein there fore affect its properties. Some proteins contain substances other than amino acids, e.g. lipoproteins contain fat and protein. Such proteins are called conjugated proteins: Phosphoproteins: Phosphate is linked chemically to these proteins -examples include casein in milk and phospho proteins in egg yolk.Lipoproteins: These combinations of lipid and protein are excellent emulsifying agents. Lipoproteins are found in milk and egg yolk.Chromoproteins: These are proteins with a coloured prosthetic group and include haemoglobin and myoglobin.Casein was first separated from milk in 1 830, by adding acid to milk, thus establishing its existence as a distinct protein.In 1895 the whey proteins were separated into globulin and albumin fractions.It was subsequently shown that casein is made up of a number of fractions and is therefore heterogeneous. The whey proteins are also made up of a number ofdistinct pro teins as shown in the scheme in Figure 5. Casein is easily separated from milk, either by acid precipitation or by adding rennin. In cheese-making most of the casein is recovered with the milk fat. Casein can also be recovered from skim milk as a separate product.Casein is dispersed in milk in the form of micelles. The micelles are stabilised by the K-casein. Caseins are hydro phobic but K-casein contains a hydrophilic portion known as the glycomacropeptide and it is this that stabilises the micelles. The structure of the micelles is not fully understood.When the pH of milk is changed, the acidic or basic groups of the proteins will be neutralised. At the pH at which the positive charge on a protein equals exactly the negative charge, the net total charge of the protein is zero. This pH is called the isoelectric point of the protein (pH 4.6 for casein). If an acid is added to milk, or if acid-producing bacteria are allowed to grow in milk, the pH falls. As the pH falls the charge on casein falls and it precipitates. Hence milk curdles as it sours, or the casein precipitates more completely at low pH.After the fat and casein have been removed from milk, one is left with whey, which contains the soluble milk salts, milk sugar and the remainder of the milk proteins. Like the pro teins in eggs, whey proteins can be coagulated by heat. When coagulated, they can be recovered with caseins in the manufacture of acid-type cheeses. The whey proteins are made up of a number of distinct proteins, the most impor tant of which are /3-lactoglobulin and lactoglobulin. /8lactoglobulin accounts for about 50% of the whey proteins, and has a high content of essential amino acids. It forms a complex with K-casein when milk is heated to more than 75°C, and this complex affects the functional properties of milk. Denaturation of /3-lactoglobulin causes the cooked flavour of heated milk.In addition to the major protein fractions outlined, milk contains a number of enzymes. The main enzymes present are lipases, which cause rancidity, particularly in homo genised milk, and phosphatase enzymes, which catalyse the hydrolysis oforganic phosphates. Measuring the inactivation of alkaline phosphatase is a method of testing the ef fectiveness of pasteurisation of milk.Peroxidase enzymes, which catalyse the breakdown of hydrogen peroxide to water and oxygen, are also present. Lactoperoxidase can be activated and use is made of this for milk preservation.Milk also contains protease enzymes, which catalyse the hydrolysis of proteins, and lact albumin , bovine serum albumin, the immune globulins and lactoferrin, which pro tect the young calf against infection.Lactose is the major carbohydrate fraction in milk. It is made up of two sugars, glucose and galactose (Figure 6). The average lactose content of milk varies between 4.7 and 4.9%, though milk from individual cows may vary more. Mastitis reduces lactose secretion. Lactose is a source of energy for the young calf, and provides 4 calories/g of lactose metabolised. It is less soluble in water than sucrose and is also less sweet. It can be broken down to glucose and galactose by bacteria that have the enzyme /3-galactosidase. The glucose and galactose can then be fermented to lactic acid. This occurs when milk goes sour. Under controlled conditions they can also be fermented to other acids to give a desired flavour, such as propionic acid fermentation in Swiss-cheese manufacture.Lactose is present in milk in molecular solution. In cheese-making lactose remains in the whey fraction. It has been recovered from whey for use in the pharmaceutical in dustry, where its low solubility in water makes it suitable for coating tablets. It is used to fortify baby-food formula. Lactose can be sprayed on silage to increase the rate of acid development in silage fermentation. It can be converted into ethanol using certain strains of yeast, and the yeast biomass recovered and used as animal feed. However, these processes are expensive and a large throughput is necessary for them to be profitable. For smallholders, whey is best used as a food without any further processing.Heating milk to above 100°C causes lactose to com bine irreversibly with the milk proteins. This reduces the nutritional value of the milk and also turns it brown.Because lactose is not as soluble in water as sucrose, adding sucrose to milk forces lactose out of solution and it crystallises. This causes sandiness in such products as ice cream. Special processing is required to crystallise lactose when manufacturing products such as instant skim milk powders.Some people are unable to metabolise lactose and suf fer from an allergy as a result. Pre-treatment of milk with lactase enzyme breaks down the lactose and helps over come this difficulty.In addition to lactose, milk contains traces of glucose and galactose. Carbohydrates are also present in associa tion with protein. K-casein, which stabilises the casein sys tem, is a carbohydrate-containing protein.In addition to the major constituents discussed above, milk also contains a number of organic and inorganic com pounds in small or trace amounts, some of which affect both the processing and nutritional properties of milk.Milk salts are mainly chlorides, phosphates and citrates of sodium, calcium and magnesium. Although salts comprise less than 1% of the milk they influence its rate of coagula tion and other functional properties. Some salts are present in true solution. The physical state of other salts is not fully understood. Calcium, magnesium, phosphorous and citrate are distributed between the soluble and colloidal phases (Table 3). Their equilibria are altered by heating, cooling and by a change in pH. In addition to the major salts, milk also contains trace complex and C in association with the water phase. Vitaelements. Some elements come to the milk from feeds, but mins are unstable and processing can therefore reduce the milking utensils and equipment are important sources of effective vitamin content of milk. such elements as copper, iron, nickel and zinc.Milk contains the fat-soluble vitamins A, D, E and K in as sociation with the fat fraction and water-soluble vitamins BMicro-organism is the term applied to all microscopically small living organisms. We tend to associate micro-organisms with disease. Micro-organisms which cause disease are called pathogens. However, few micro-organisms are pathogens and micro-organisms play a crucial part in the life of our planet. For example, they provide food for fish, they occur in soil where they provide nutrients for plants and they play an important role in ruminant digestion.In dairying some micro-organisms arc harmful -e.g. spoilage organisms, pathogens -while others are benefi cial -cheese and yoghurt starters, yeasts and moulds used in controlled fermentations in milk processing.The micro-organisms principally encountered in the dairy industry are bacteria, yeasts, moulds and viruses.Bacteria are single-celled organisms. They are present in air, water and on most solid materials. Bacterial cells are very small and can only be seen with the aid of a microscope.When observed under a microscope the cells can be seen to differ in shape and in conformation of groups of cells. Cells are either spherical or rod-shaped (Figure 7). Spherical bacteria are called cocci; those that are rodshaped are called bacilli. This is the first basis for differen tiating between bacterial cells.Bacteria are also classified according to cell cluster for mation:Diplococci -two cocci cells paired Staphylococci -a number of cells clustered together Streptococci -a number of cells arranged in a chain Some bacteria are capable of locomotion by means of fiagellae -long, hair-like appendages growing out of the cell. Some rod-shaped bacteria contain spores. These are formed when the cells are faced with adverse conditions, such as high temperature: once suitable conditions are re established the spores germinate to form new cells.Close examination of the simple cell reveals that it is composed of the following components (Figure 8): • Cell wall -this gives the cell its shape and retains the constituents; • Cell membrane -used for filtering in food con stituents and discharging waste products; • Nucleus -where the genetic material of the cell is stored; • Cytoplasm -a semiliquid proteinaceous substance which contains starch, fat and enzymes. The cell membrane is semipermeable and allows the cell to feed by osmosis, i.e. the exchange of water between the cytoplasm of a living cell and the surrounding watery material. Oniy small molecules can pass in and out of the cell, e.g. with a sugar solution on one side of a semiperme able membrane and water on the other, water will diffuse in, diluting the sugar solution. The sugar molecules cannot pass out so a hydrostatic pressure, known as osmotic pres sure, develops.Bacteria can feed by selective intake of nutrients dis solved in water. They can also take in nutrients against the normal osmotic flow -active transport.Bacterial growth refers to an increase in cell numbers rather than an increase in cell size. The process by which With flagella Rod bacteria (bacilli) and spiral bacteria bacterial cells divide to reproduce themselves is known as binary transverse fission. The time taken from cell forma tion to cell division is called the generation time. The gener ation time can therefore be defined as the time taken for the cell count to double.The curve shown in Figure 9 shows the phases of bacterial growth following inoculation of bacteria into a new growth medium. The following phases can be iden tified: 1 . Lag phase: There is usually some delay in growth fol lowing inoculation of bacteria into a new medium, during which time the bacteria adapt to the medium and synthesise the enzymes needed to break down the substances in the growth medium. Bacterial growth is affected by (1) temperature, (2) nutrient availability, (3) water supply, (4) oxygen supply, and (5) acidity of the medium.Temperature: Theoretically, bacteria can grow at all tem peratures between the freezing point of water and the tem perature at which protein or protoplasm coagulates. Some where between these maximum and minimum points lies the optimum temperature at which the bacteria grow best.Temperatures below the minimum stop bacterial growth but do not kill the organism. However, if the tem perature is raised above the maximum, bacteria are soon killed. Most cells die after exposure to heat treatments in the order of 70°C for 15 seconds, although spore-forming Bacteria can be classified according to temperature preference: Psycrophilic bacteria grow at temperatures below 16 C, mesophilic bacteria grow best at temperatures between 16 and 40°C, and thermophilic bacteria grow best at temperatures above 40°C.Nutrients: Bacteria need nutrients for their growth and some need more nutrients than others. Lactobacilli live in milk and have lost their ability to synthesise many com pounds, while Pseudomonas can synthesise nutrients from very basic ingredients.Bacteria normally feed on organic matter; as well as material for cell formation organic matter also contains the necessary energy. Such matter must be soluble in water and of low molecular weight to be able to pass through the cell membrane. Bacteria therefore need water to transport nutrients into the cell.If the nutrient material is not sufficiently broken down, the micro-organism can produce exo-enzymes which split the nutrients into smaller, simpler components so they can enter the cell. Inside the cell the nutrients are broken down further by other enzymes, releasing energy which is used by the cell.Water: Bacteria cannot grow without water. Many bac teria are quickly killed by dry conditions whereas others can tolerate dry conditions for months; bacterial spores can survive dry conditions for years. Water activity (AW) is used as an indicator of the availability ofwater for bacterial growth. Distilled water has an AW of 1 . Addition of solute, e.g. salt, reduces the availability of water to the cell and the AW drops; at AW less than 0.8 cell growth is reduced. Cells that can grow at low AW are called osmophiles.Oxygen : Animals require oxygen to survive but bacteria differ in their requirements for, and in their ability to utilise, oxygen.Bacteria that need oxygen for growth are called aerobic. Oxygen is toxic to some bacteria and these are called anaerobic. Anaerobic organisms are responsible for both beneficial reactions, such as methane production in biogas plants, and spoilage in canned foods and cheeses.Some bacteria can live either with or without oxygen and are known as faculative anaerobic bacteria.Acidity: The acidity of a nutrient substrate is most simply expressed as its pH value. Sensitivity to pH varies from one species of bacteria to another. The terms pH optimum and pH maximum are used. Most bacteria prefer a growth environment with a pH of about 7, i.e. neutrality.Bacteria that can tolerate low pH are called aciduric. Lactic acid bacteria in milk produce acid and continue to do so until the pH of the milk falls to below 4.6, at which point they gradually die off. In canning citrus fruits, mild heat treatments are sufficient because the low pH of the fruit inhibits the growth of most bacteria.Milk fresh from a healthy cow contains few bacteria, but contamination during handling can rapidly increase bacte rial numbers. Milk is an ideal food and many bacteria grow readily in it.Some bacteria are useful in milk processing, causing milk to sour naturally, leading to products such as irgo. However, milk can also carry pathogenic bacteria, such as Salmonella, Tuberculosis bovis and Brucella, and can thus transmit disease. Other bacteria can cause spoilage of the milk, and spoilage and poor yields of products.Moulds are a heterogeneous group of multicelled organisms which reproduce asexually either by spore formation or by fragmentation. They can grow on a wide variety of sub strates and are generally regarded as spoilage organisms. However, moulds are used in the production of antibiotics and in certain cheese varieties. Moulds are aerobic or ganisms and their growth on foods can be retarded by ex cluding air through careful packaging. They can be killed by relatively mild heat treatments, but mould spores are more resistant to heat. The structure of moulds is shown in Figure 10. Viruses are extremely small organisms comprising a spheri cal head containing the genetic material and a cylindrical tail. They cannot reproduce themselves, and must invade other cells in order to reproduce. Viruses that attack bacte rial cells are known as bacteriophages: bacteriophages that attack acid-producing bacteria inhibit acid production in milk.ia Table 4. Bacterial types commonly associated with milk.Cell wall Cytoplasm Cytoplasmic membrane VacuoleIn addition to being a nutritious food for humans, milk pro vides a favourable environment for the growth of micro organisms. Yeasts, moulds and a broad spectrum of bac teria can grow in milk, particularly at temperatures above 16°C.Microbes can enter milk via the cow, air, feedstuffs, milk handling equipment and the milker. Once micro organisms get into the milk their numbers increase rapidly. It is more effective to exclude micro-organisms than to try to control microbial growth once they have entered the milk. Milking equipment should be washed thoroughly be fore and after use -rinsing is not enough.Bacterial types commonly associated with milk are given in Table 4. The temperature of freshly drawn milk is about 38°C. Bacteria multiply very rapidly in warm milk and milk sours rapidly if held at these temperatures. If the milk is not cooled and is stored in the shade at an average air tempera ture of 16°C, the temperature of the milk will only have fallen to 28°C after 3 hours. Cooling the milk with running water will reduce the temperature to 16 C after 1 hour. At this temperature bacterial growth will be reduced and en zyme activity retarded. Thus, milk will keep longer if cooled.Natural souring of milk may be advantageous: for ex ample, in smallholder butter-making, the acid developed assists in the extraction of fat during churning. The low pH retards growth of lipolytic and proteolytic bacteria and therefore protects the fat and protein in the milk. The acid ity of the milk also inhibits the growth of pathogens. It does not, however, retard the growth of moulds.Naturally soured milk is used to make many products, e.g. irgo, yoghurt, sour cream, ripened buttermilk and cheese. These products provide ways of preserving milk and are also pleasant to consume. They are produced by the action of fermentative bacteria on lactose and are more readily digested than fresh milk.The initial microflora of raw milk reflects directly microbial contamination during production. The micro flora in milk when it leaves the farm is determined by the temperature to which it has been cooled and the tempera ture at which it has been stored.The initial bacterial count of milk may range from less than 1000 cells/ml to 10 /ml. High counts (more than 10 /ml) are evidence of poor production hygiene. Rapid tests are available for estimating the bacterial quality of milk.Pasteurisation is the most common process used to destroy bacteria in milk. In pasteurisation, the milk is heated to a temperature sufficient to kill pathogenic bacteria, but well below its boiling point. This also kills many non-pathogenic organisms and thereby extends the storage stability of the milk.Numerous time/temperature combinations are recom mended but the most usual is 72°C for 1 5 seconds followed by rapid cooling to below 10°C. This is normally referred to as High Temperature Short Time (HTST) treatment. It is carried out as a continuous process using a plate heatexchanger to heat the milk and a holding section to ensure that the milk is completely pasteurised. Milk is normally pasteurised prior to sale as liquid milk. Pasteurisation is used to reduce the microbial counts in milk for cheesemaking, and cream is pasteurised prior to tempering for butter-making in some factories.Batch pasteurisation is used where milk quantities are too small to justify the use of a plate heat-exchanger. In batch pasteurisation, fixed quantities of milk are heated to 63°C and held at this temperature for 30 minutes. The milk is then cooled to 5°C and packed.The lower temperature used for batch pasteurisation means that a longer time is required to complete the pro-cess -30 minutes at 63°C, compared with 15 seconds at 72°C.Pasteurisation reduces the cream layer, since some of the fat globule membrane constituents are denatured. This inhibits clustering of the fat globules and consequently reduces the extent of creaming. However, pasteurisation does not reduce the fat content of milk.Pasteurisation has little effect on the nutritive value of milk. The major nutrients are not altered. There is some loss of vitamin C and B group vitamins, but this is insig nificant.The process kills many fermentative organisms as well as pathogens. Micro-organisms that survive pasteurisation are putrefactive. Although pasteurised milk has a storage stability of 2 to 3 days, subsequent deterioration is caused by putrefactive organisms. Thus, pasteurised milk will put refy rather than develop acidity.In rural milk processing, many processes depend on the development of acidity, and hence pasteurisation may not be appropriate.In pasteurisation, milk receives mild heat treatment to re duce the number of bacteria present. In sterilisation, milk is subjected to severe heat treatment that ensures almost complete destruction of the microbial population. The product is then said to be commercially sterile. Time/tem perature treatments ofabove 1 00°C for 1 5 to 40 minutes are used. The product has a longer shelf life than pasteurised milk.Another method of sterilisation is ultra-heat treat ment, or UHT. In this system, milk is heated under pres sure to about 140 C for 4 seconds. The product is virtually sterile. However, it retains more of the properties of fresh milk than conventionally sterilised milk.Butter is made as a means ofextracting and preserving milk fat. It can be made directly from milk or by separation of milk and subsequent churning of the cream.In addition to bacteria present in the milk other sources of bacteria in butter are (1) equipment, (2) wash water, (3) air contamination, (4) packing materials, and (5) personnel.In smallholder butter-making, bacterial contamination can come from unclean surfaces, the butter maker and wash water. Packaging materials, cups and leaves are also sources of contaminants. Washing and smoking the churn reduces bacterial numbers. But traditional equipment is often porous and is therefore a reservoir for many organisms.When butter is made on a larger processing scale, bacterial contamination can come from holding-tank sur faces, the churn and butter-handling equipment.A wooden churn can be a source of serious bacterial, yeast and mould contamination since these organisms can penetrate the wood, where they can be destroyed only by extreme heat. If a wooden churn has loose bands, cream can enter the crevices between the staves, where it provides a growth medium for bacteria which contaminate sub sequent batches of butter. However, if care is taken in cleaning a wooden churn this source of contamination can be controlled. Similar care is required with scotch hands and butter-working equipment.Wash water can be a source of contamination with both coliform bacteria and bacteria associated with defects in butter. Polluted water supplies can also be a source of pathogens.Contamination from the air can introduce spoilage or ganisms: mould spores, bacteria and yeasts can fall on the butter if it is left exposed to the air. Moulds grow rapidly on butter exposed to air.Care is required in the storage and preparation of packag ing material. Careless handling of packaging material can be a source of mould contamination.A high standard of personal hygiene is required from people engaged in butter-making. For example, in New Zealand the 1938 dairy produce regulations stated \"no per son shall permit his bare hands to be brought in contact with any butter at any time immediately following man ufacture or during the wrapping, packaging, storage and transport of such butter\".Personnel pass organisms to butter via the hands, mouth, nasal passage and clothing. Suitable arrangements for disinfecting hands should be provided, and clean work ing garments should not have contact with other clothes.Salting effectively controls bacterial growth in butter. The salt must be evenly dispersed and worked in well. Salt con centration of 2% adequately dispersed in butter of 16% moisture will result in a 1 2.5% salt solution throughout the water-in-oil emulsion.Washing butter does little to reduce microbiological counts. It may be desirable not to wash butter, since wash ing reduces yield. The acid pH of serum in butter made from ripened cream or sour milk may control the growth of acid-sensitive organisms.Microbiological analysis of butter usually includes some of the following tests: total bacterial count, yeasts and moulds, coliform estimation and estimation of lipolytic bacteria.Yeast, mould and coliform estimations are useful for evaluating sanitary practices. The presence of defectproducing types can be indicated by estimating the pre sence of lipolytic organisms.All butter contains some micro-organisms. However, proper control at every stage of the process can minimise the harmful effects of these organisms.In rural areas, milk may be processed fresh or sour. The choice depends on available equipment, product demand and on the quantities of milk available for processing. In Africa, smallholder milk-processing systems use mostly soar milk. Allowing milk to ferment prior to processing has a number of advantages and processing sour milk will con tinue to be important in this sector.Where greater volumes of milk can be assembled, pro cessing fresh milk gives more product options, allows greater throughput of milk and, in some instances, greater recovery of milk solids in product.Because of differences between processing systems, each will be dealt with separately. The section on freshmilk technology deals with techniques used for processing fresh milk in batches of up to 500 litres. Sour-milk technol ogy is used for processing batches of up to 15 litres of ac cumulated sour milk. This will be described in the section on sour-milk technology.This section describes the manufacture of skim milk, cream, butter, butter oil, ghee, boiled-curd and pickled cheese varieties and fermented milks from fresh milk. The processing scale envisaged is 100 to 200 litres of milk per day. However, the processes described are suitable for batches of up to 500 litres per day. Most of the equipment described can be fabricated locally. Equipment not available locally, such as a milk separator, has a cost advantage and quickly gives a good financial return in terms of increased efficiency. Hand-operated milk separators are durable and have a long life when properly maintained. Importation of such equipment is, therefore, advantageous.The procedures given here are very precise. In many rural dairy processing plants, however, monitoring equip ment may not be available and, although yields may be maximised by adhering to the prescribed procedures, all these products can be successfully made by approximating temperature, time, pH etc to the best of one's ability. It is particularly important in cheese-making to proceed when the curd is in a suitable condition. Therefore, times given are only approximate and the processor will, with experi ence, adopt methods suitable to his/her own environment.The fat fraction separates from the skim milk when milk is allowed to stand for 30 to 40 minutes. This is known as 'creaming'. The creaming process can be used to remove fat from milk in a more concentrated form. A number of methods are employed to separate cream from milk. An understanding of the creaming process is necessary to maximise the efficiency of the separation process.Fat globules in milk are lighter than the plasma phase, and hence rise to form a cream layer. The rate of rise (V) of the individual fat globule can be estimated using Stokes' Law, which defines the rate of settling of spherical particles in a liquid:where r = radius of fat globules di = density of the liquid phase d2 = density of the sphere g = acceleration due to gravity, and rj = specific viscosity of the liquid phase Particle r : As temperature increases, fat expands and therefore r increases. Since the sedimentation velocity of the particle increases in proportion to the square of the par ticle diameter, a particle of radius 2 (r =4) will settle four times as fast as a particle of radius 1 (r =1). Thus, heat ing increases sedimentation velocity. dj-d.2-Sedimentation rate increases as the difference be tween dt and d2 increases. Between 20 and 50°C, milk fat expands faster than the liquid phase on heating. Therefore, the difference between di and d2 increases with increasing temperature.g: Acceleration due to gravity is constant. This will be con sidered when discussing centrifugal separation.q: Serum viscosity decreases with increasing temperature. Calculation of the sedimentation velocity of a fat globule reveals that it rises very slowly. As shown in the equation, the velocity of rise is directly proportional to the square of the radius of the globule. Larger globules over take smaller ones quickly. When a large globule comes into contact with a smaller globule the twojoin and rise together even faster, primarily because of their greater effective radius. As they rise they come in contact with other globules, forming clusters of considerable size. These clus ters rise much faster than individual globules. However, they do not behave strictly in accordance with Stokes' Law because they have an irregular shape and contain some milk serum.Factors affecting creaming: Cream layer volume is greatest in milk that has high fat content and relatively large fat globules, because such milk contains more large clusters. However, temperature and agitation affect creaming, irres pective of the fat content of the milk. Heating to above 60 C reduces creaming; milk that is heated to above 100°C re tains very little creaming ability.Excessive agitation disrupts normal cluster formation, but creaming in cold milk may be increased by mild agitation since such treatment favours larger, loosely packed clusters.Batch separation by gravity: Cream can be separated from milk by allowing the milk to stand in a setting pan in cool place. There are two main methods. Shallow pan: Milk, preferably fresh from the cow, is poured into a shallow pan 40 to 60 cm in diameter and about 10 cm deep. The pan should be in a cool place. After 36 hours practically all of the fat capable ofrising by this method will have come to the surface, and the cream is skimmed offwith a spoon or ladle (Figure 12). The skim milk usually con tains about 0.5 to 0.6% butterfat. Deep-setting: Milk, preferably fresh from the cow, is poured into a deep can of small diameter. The can is placed in cold water and kept as cool as possible. After 24 hours the sep aration is usually as complete as it is possible to secure by this method. The skim milk is removed through a tap at the bottom of the can (Figure 12). Under optimum conditions, the fat content of the skim milk averages about 0.2 or 0.3% . The pans should be rinsed with water immediately after use, scrubbed with hot water and scalded with boiling water (see section on cleaning).Gravity separation is slow and inefficient. Centrifugal sep aration is quicker and more efficient, leaving less than 0.1% fat in the separated milk, compared with 0.5-0.6% after gravity separation.The centrifugal separator was invented in 1897. By the turn of the century it had altered the dairy industry by mak ing centralised dairy processing possible for the first time.It also allowed removal of cream and recovery of the skim milk in a fresh state.The separation of cream from milk in the centrifugal separator is based on the fact that when liquids of different specific gravities revolve around the same centre at the same distance with the same angular velocity, a greater centrifugal force is exerted on the heavier liquid than on the lighter one. Milk can be regarded as two liquids of different specific gravities, the serum and the fat.Milk enters the rapidly revolving bowl at the top, the middle or the bottom of the bowl (Figure 13). When the bowl is revolving rapidly the force ofgravity is overcome by the centrifugal force, which is 5000 to 10 000 times greater than gravitational force. Every particle in the rotating vessel is subjected to a force which is determined by the distance of the particle from the axis of rotation and its angular velocity.If we substitute centrifugal acceleration expressed as r!&) (where ri is the radial distance of the particle from the centre of rotation and co is a measurement of the angular velocity) for acceleration due to gravity (g), we obtain:Thus, sedimentation rate is affected by TiUy . In grav ity separation, the acceleration due to gravity is constant. In centrifugal separation, the centrifugal force acting on the particle can be altered by altering the speed of rotation of the separator bowl.In separation, milk is introduced into separation channels at the outer edge of the disc stack and flows in wards. On the way through the channels, solid impurities are separated from the milk and thrown back along the undersides of the discs to the periphery of the separator bowl, where they collect in the sediment space. As the milk passes along the full radial width of the discs, the time passage allows even small particles to be separated. The cream, i.e. fat globules, is less dense than the skim milk and therefore settles inwards in the channels towards the axis of rotation and passes to an axial outlet. The skim milk moves outwards to the space outside the disc stack and then through a channel between the top of the disc stack and the conical hood of the Separator bowl.Efficiency of separation is influenced by four factors: the speed of the bowl, residence time in the bowl, the den sity differential between the fat and liquid phase and the size of the fat globules. Speed ofthe separator. Reducing the speed of the separator to 1 2 rpm less than the recommended speed results in high fat losses, with up to 12% of the fat present remaining in the skim milk. Residence time in the separator. Overloading the separator re duces the time that the milk spends in the separator and con sequently reduces skimming efficiency. However, operating the separator below capacity gives no special advantage -it does not increase the skimming efficiency appreciably but in creases the time needed to separate a given quantity of milk. Effect of temperature: Freshly drawn, uncooled milk is ideal for exhaustive skimming. Such milk is relatively fluid and the fat is still in the form of liquid butterfat. If the temperature of the milk falls below 22°C skimming efficiency is seriously re duced. Milk must therefore be heated to liquify the fat. Heat ing milk to 50°C gives the optimum skimming efficiency. Effect ofthe position ofthe cream screw: The cream screw regu lates the ratio of skim milk to cream. Most separators per mit a rather wide range of fat content of cream (18-50%) without adversely affecting skimming efficiency. However, production ofcream containing less than 1 8% or more than 50% fat results in less efficient separation.Other factors that affect the skimming efficiency are: •The quality of the milk: Milk in poor physical condi tion or which is curdy will not separate completely. • Maintenance of the separator: A separator in poor mechanical condition will not separate milk efficiently. When separation is complete the separator must be dismantled and cleaned thoroughly. Hand separator In order to understand how centrifugal separation works, we shall follow the course of milk through a separator bowl. As milk flows into a rapidly revolving bowl it is acted upon by both gravity and the centrifugal force generated by rota tion. The centrifugal force is 5000 to 10 000 times that of gravity, and the effect of gravity thus becomes negligible. Therefore, milk entering the bowl is thrown to the outer wall of the bowl rather than falling to the bottom.Milk serum has a higher specific gravity than fat and is thrown to the outer part of the bowl while the cream is forced towards the centre of the bowl. The assembled bowl is lowered into the receptacle, making sure that the head of the spindle fits correctly into the hollow of the central feed shaft.1. When the bowl is set, fit the skim milk spout and the cream spout.2. Fit the regulating chamber on top of the bowl.3. Put the float in the regulating chamber. 4. Put the supply can in position, making sure that the tap is directly above and at the centre of the float. 5. Pour warm (body temperature) water into the supply can. 6. Turn the crank handle, increasing speed slowly until the operating speed is reached: This will be indicated on the handle or in the manufacturer's manual ofoper ation. The bell on the crank handle will stop ringing when the correct speed is reached. 7. Open the tap and allow the warm water to flow into the bowl. This rinses and heats the bowl and allows a smooth flow of milk and increases separation efficiency. 8. Next, put warm milk (37-40°C) into the supply can.Repeat steps 6 and 7 above and collect the skim milk and cream separately. 9. When all the milk is used up and the flow ofcream stops, pour about 3 litres of the separated milk into the supply dan to recover residual cream trapped between the discs. 10. Continue turning the crank handle and flush the separator with warm water. Cleaning the separator: Many of the impurities in the milk collect as slime on the wall of the separator bowl. This slime contains remnants of milk, skim milk and cream, all ofwhich will decompose and ferment unless removed promptly.If not washed and freed from all impurities the sep arator bowl becomes a source of microbial contamination. Skimming efficiency is also reduced when the separator bowl and discs are dirty. Milk deposits on the separator can cause corrosion. Washing the separator: After flushing the separator with warm skim milk, the bowl should be flushed with clean water until the discharge from the skim milk spout is clean. This removes any residual milk solids and makes sub sequent cleaning of the bowl easier. The bowl should then be dismantled. Wash all parts of the bowl, bowl cover, dis charge spouts, float supply tank and buckets with a brush, hot water and detergent. Rinse with scalding water. Allow the parts to drain in a clean place protected from dust and flies. This process should be followed after each separation.The cream screw should be adjusted so that the fat content of the cream is about 33%. Producing excessively thin cream reduces the amount of separated milk available for other uses and increases the volume ofcream to be handled. Lowfat cream is also more difficult to churn efficiendy.Cream containing more than 45% fat clogs the sep arator and causes excessive loss of fat in skim milk. Cream of abnormally high fat content also gives butter a greasy body due to lack of milk SNF. When adjusting the cream screw it is important to remember that it is very sensitive; a quarter turn ofthe screw is sufficient to change the percent age fat in the cream appreciably.The fat content ofwhole milk influences the fat content of cream and this must be considered when adjusting the cream screw. For example, if the cream screw is set to sepa rate milk at a ratio of 85 parts of separated milk to 15 parts of cream then, with all other conditions constant and as suming efficient separation, milk of 3% fat produces cream of 20% fat whereas milk of4.5% fat produces cream of 30% fat.The fat content of the cream can be calculated using the following equation: Therefore the setting of the cream screw depends on the fat content ofthe milk being separated. The milk should be mixed thoroughly prior to separation to ensure even distribution of cream in the milk.The gears must be well lubricated. Follow the direc tions of the manufacturer.The level of the lubricant must be kept constant; observe the oil level through the sight glass.The bowl must be perfectly balanced.The bowl should be cleaned thoroughly immediately after use to ensure proper functioning of the separator and for hygiene.Once milk passes through a separator it is recovered in two fractions, the high-fat cream fraction and the low-fat skim milk.Assuming negligible loss of fat in the separator, the amount of fat entering the separator with the whole milk will be collected at the other side of the separator in either the cream or the skim milk. If in practice we obtain only 28 kg of cream containing 30% butterfat, then (2 x 0.30) kg or 0.6 kg of butterfat has not been recovered in the cream. Since it is assumed that there are no significant losses of fat in the cream separator, the fat not recovered in the cream is lost in the skim milk.Since If fine adjustment of the fat content of cream is required, or if the fat content of whole milk must be reduced to a given level, skim milk must be added. This process is known as standardisation.The usual method of making standardisation calcula tions is the Pearson's Square technique. To make this cal culation, draw a square and write the desired fat percent age in the standardised product at its centre and write the fat percentage of the materials to be mixed on the upper and lower left-hand corners. Subtract diagonally across the square the smaller from the larger figure and place the re mainders on the diagonally opposite corners. The figures on the right-hand corners indicate the ratio in which the materials should be mixed to obtain the desired fat percent age.The value on the top right-hand corner relates to the material on the top left-hand corner and the figure on the bottom right relates to the material at the bottom left corner.Example 1 Whole milkIn this example, the fat content of whole milk is to be reduced to 3.0%, using skim milk produced from some of the whole milk. Using Pearson's Square, it can be seen that for every 2.9 litres of whole milk, 0.6 litres of skim milk must be added.Example 2 How much skim milk containing 0.1% fat is needed to reduce the percentage fat in 200 kg of cream from 34% to 30%? The fat content of 300 kg of whole milk must be reduced from 4.2% to 3% using skim milk containing 0.2% fat.Every 4.0 kg of the mixture will contain 2.8 kg of whole milk and 1 .2 kg of skim milk.If 2.8 kg of whole milk requires 1.2 kg skim milk, 300 kg of whole milk requires 1.2 X 300 = 128.6 kg of skim milk 2.8 5Thus, 128.6 kg of skim milk (0.2% fat) must be added to 300 kg of whole milk (4.2% fat) to give 428.6 kg of milk containing 3% fat.The fat content of milk must be reduced from 4.5 to 3% prior to sale as liquid milk but skim milk for standardisa tion is not available.In this case, we must calculate (a) what proportion of the milk must be separated to provide enough skim milk to standardise the remaining whole milk and (b) the expected yield of cream.Assume that the fat content of 100 kg of milk contain ing 4.5% milk fat must be reduced to 3%. The amount of cream to be removed can be calculated as follows:Let M = weight of milk to be standardised The calculation can also be made using Pearson's Square. This is essentially a reverse standardisation, i.e. \"how much cream containing 35% fat and milk containing 3% fat should be mixed to get milk containing 4.5% fat?\" is mathematically the same as \"how much cream containing 35% fat must be removed from milk containing 4.5% fat to standardise the milk to 3% fat content?\" 1 . Place the fat content of whole milk in the centre.Place the fat content of cream on the top left-hand corner.Place the desired fat content of the standardised milk on the bottom left-hand corner.For every 32 parts of whole milk, there are 1 .5 parts of cream to be removed and 30.5 parts of standardised milk. The Wsm and fat to be removed can be calculated in a number of ways. Whatever method is used to calculate the amount of cream to be removed, it is then necessary to cal culate the amount of milk to be separated to achieve the desired reduction in fat content.Wm X Fm = Wc X Fc Therefore Wm X 4.5 = 4.7 X 35 and 4.7 X 35 Wm = = 36.54.5 Therefore, 36.5 kg of milk are separated and the skim milk is then combined with the remaining whole milk.Standardisation such as this can be used to increase income from milk production as follows:Assume Butterfat can be recovered from milk and converted to a number of products, the most common of which is butter.Butter is an emulsion of water in oil and has the following approximate composition: Fat 80% Moisture 16% Salt 2% Milk SNF 2% In good butter the moisture is evenly dispersed throughout the butter in tiny droplets. In most dairying countries legislation defines the composition of butter, and butter makers conform to these standards insofar as is pos sible.•EB = Ethiopian birr (US$ 1 = EB 2.07)Butter can be made from either whole milk or cream. However, it is more efficient to make butter from cream than from whole milk.To make butter, milk or cream is agitated vigorously at a temperature at which the milk fat is partly solid and partly liquid. Churning efficiency is measured in terms of the time required to produce butter granules and by the loss offat in the buttermilk. Efficiency is influenced markedly by churn ing temperature and by the acidity of the milk or cream.In churning, cream is agitated in a partly filled chamber. This incorporates a large amount of air into the cream as bubbles. The resultant whipped cream occupies a larger volume than the original cream. As agitation con tinues the whipped cream becomes coarser. Eventually the fat forms semi-solid butter granules, which rapidly increase in size and separate sharply from the liquid buttermilk. The remainder of the butter-making process consists of re moving the buttermilk, kneading the butter granules into a coherent mass and adjusting the water and salt contents to the levels desired.In considering the mechanism of churning the following factors must be taken into account: • The function of air; •The release of stabilising material from the fat globule surface into the buttermilk; •The differences in structure between butter and cream; and •The temperature dependence of the process.Air is thought to be necessary for the process, but some workers have demonstrated that milk or cream can be churned in the absence of air, although it takes longer.About one half of the stabilising material is liberated into the buttermilk during churning. It is thought that dur ing churning the fat globule membrane substance spreads out over the surface of the air bubbles, partly denuding the globules of their protective layer, and that a liquid portion of the fat exudes from the globule and partly or entirely cov ers the globule, rendering it hydrophobic. In this condition the globules tend to stick to the air bubbles. Free fat de stabilises the foam, causing it to collapse. The partly de stabilised globules clinging to the air bubbles thus collect in clusters cemented together by free fat. These clusters ap pear as butter grains.Cream prepared by gravitational or mechanical separation can be used. Good butter can be made in any type of churn provided it is clean and in good repair.The churn is prepared by rinsing with cold water, scrub bing with salt and rinsing again with cold water. Alterna tively, it can be scalded with water at 80°C. After the butter has been removed, the churn should be washed well with warm water, scalded with boiling water and left to air. When not in use wooden churns should be soaked occasion ally with water. A new churn should first be washed with tepid water, scrubbed with salt and then washed with hot water until the water comes away clear. A hot solution of salt should then be allowed to stand in the churn for a short time. After rinsing again with hot water the churn should be left to air for at least one day before being used.The temperature of the cream during churning is of great importance. If too cool, butter formation is delayed and the grain is small and difficult to handle. If the temperature is too high, the yield of butter will be low, because a large proportion of the fat will remain in the buttermilk, and the butter will be spongy and of poor quality. Cream should be churned at 10-12°C in the hot season and at 14-1 7°C in the cold season. The temperature may be raised by stand ing the vessel containing the cream in hot water, or may be lowered by standing the vessel in cold spring water for a few hours before the cream is churned. The churning tempera ture may also be adjusted by the water used to dilute the cream. In the hot season, the coldest water available should be used, preferably water that has been stored in a re frigerator.The amount of cream to be churned should not exceed one half the volumetric capacity of the churn. An airtight churn should be ventilated frequently during the first 10 minutes of churning to release gases driven out of solution by the agitation. If butter is slow in forming, adding a little water which is warmer than the churning temperature, but never over 25°C, usually causes it to form more quickly. When the butter appears like wet maize meal, water ( 1 litre per 4 litres of cream) at 2°C below the churning tempera ture should be added. It may be necessary to add water a second time to maintain butter grains of the required size. Churning should cease when the butter grains are as large as small wheat grains.When the desired grain size is obtained, the buttermilk is drained off and the butter washed several times in the churn. Each washing is done by adding only as much water as is needed to float the butter and then turning the churn a few times. The water is then drained off. As a general rule two washings will suffice but in very hot weather three may be necessary before the water comes away clear. In the hot season the coldest water available should be used for wash ing, and in the cold season water about 2 to 3°C colder than the churning temperature should be used.Equipment for working may consist of a butter worker or a tub or keeler. Good-quality spatulas are important, and a sieve and scoop facilitate the removal of butter from the churn. This equipment must be clean (refer to method of cleansing and preparing a churn). The butter is spread on the worker, which has been soaked previously with water of the same temperature as the washing water. Ifsalted butter is required, the butter should be salted before working at a rate of 16 g salt/kg or according to taste. The salt used should be dry and evenly ground and of the best quality available.The butter is then either rolled out 8 to 10 times or ridged with the spatulas to remove excess moisture. If the butter is to be heavily salted, it must be worked more in proportion to the amount of salt used, as uneven distribu tion of the salt causes uneven colour. The butter should be worked until it seems dry and solid, but it must not be worked too much or it will become greasy and streaky.The butter is then weighed and packed for storage. It should be packed in polythene-lined wooden or cardboard cartons and stored in a-cool, dry place. The butter should be firm and of uniform colour.The churn and butter-making equipment should be washed as soon as possible, preferably while the wood is still damp.Chum: Wash the inside of the churn thoroughly with hot water. Invert the churn with the lid on in order to clean the ventilator; this should be pressed a few times with the back of a scrubbing brush to allow water to pass through. (N.B. The ventilator should be dismantled occasionally for com plete cleansing.)Remove the rubber band from the lid and scrub the groove. Scald the inside of the churn with boiling water. This step is very important. Invert and leave to air. Dry the outside and treat steel parts with vaseline to prevent rust ing. The rubber band should not be placed in boiling water; dipping in warm water is sufficient.Butter worfcer/keeler: Place the sieve, scoop and spades on the butter worker or keeler. Pour hot water over all of them and scrub well to remove all traces of grease. Scald with boiling water and leave to air. Treat the steel part of the butter worker with vaseline to prevent rusting.Surplus good-quality butter can be stored, but should con tain more salt than usual -at least 30 g/kg. Low moisture content is desirable. The butter must be packed in clean containers, such as seasoned boxes or glazed crocks, and stored in a cold room or in a cold, airy place. If a box is used, it should be lined with good-quality polythene. The container should be filled to capacity from one churning. The more firmly butter is packed, the better; it may be covered with a layer of salt, but this is not essential. The container should be securely covered with a lid or a sheet of strong paper.Overrun and produce in butter-making Overrun An enterprise engaged in butter-making must be able to measure the efficiency of the process, i.e. by measuring the yield of butter from the butterfat purchased.First, the theoretical yield of butter has to be esti mated. Butter contains an average of 80% butterfat. Thus, for every 80 kg of butterfat purchased 100 kg of butter should be produced, or for every 100 kg of butterfat purch ased 125 kg of butter should be produced.The difference between the number of kilograms of butterfat churned and the number of kilograms of butter made is known as the overrun. This difference is due to the fact that butter contains non-fatty constituents such as moisture, salt, curd and small amounts of lactic acid and ash in addition to butterfat.The overrun is financially important to the dairy in dustry and constitutes the margin between the purchase price of butterfat and the sale price of butter. The dairy unit depends largely on overrun to cover manufacturing costs and to defray expenses incurred in the purchase of milk.As stated above, the maximum legitimate overrun, is 25%. In commercial operation, however, it is not possible to establish the degree of accuracy that is assumed in the calculation of theoretical overrun, and the actual overrun shows the difference between the amount of butter churned out and the amount of butterfat bought.Overrun is affected by: • Accuracy of weighing milk received.Accuracy of sampling and testing milk for fat.Notes:The need for care when sampling milk is referred to in the section deal ing with butterfat testing. For example, if careless sampling and testing results in a reading of 3.6% butterfat against an actual content of 3.2% butterfat, what will be the effect on the overrun from 100 kg of milk?Fat paid for = 100 x 0.036 = 3.6 kg of butterfat.Maximum theoretical yield of butter = 3.6 x 1.25 kg = 4.5 kg Thus, carelessness at the testing stage can result in serious man ufacturing losses. Losses at any stage in the process should be avoided. If overrun is low, each step of the process should be checked carefully in order to trace the loss.A more comprehensive calculation ofoverrun is given in Appendix 1 .Losses during separation Efficiency of churning.The percentage of fat in the butter. The amount of salt and water in the butter. The amount of product loss throughout the process. Butter composition also affects overrun. If the mois ture content of butter is 14% instead of 16%, 2% more of the total weight must be provided by butterfat. This re duces the theoretical overrun from 25% to 21 .95%.Another method for estimating the efficiency of a process is to measure the number of litres of milk required per kilo gram of butter produced.For example, how many litres of milk containing 4% butterfat are required to make 1 kg of butter?In 1 kg of butter there is 0.80 kg of butterfat.In the milk we have 4 kg fat/ 1 00 kg or per . Therefore 19.38 litres of milk containing 4% fat will be required to make 1 kg of butter. Thus the efficiency of oper ation can also be checked by calculating output.The fat content of the whole milk, skim milk and but termilk should be checked daily. The moisture content of the butter should be checked for each batch. The accuracy of weighing scales and other measuring devices should be checked regularly.The non-fatty constituents ofbutter are moisture, salt and curd. In most of the principal butter-producing countries the percentage of moisture in butter is limited to 1 6% . Salt content varies largely according to mar ket requirements and can be as high as 3%. Curd content is fairly un iform at 0.5-0.75%.Any practice that increases the percentage of non-fatty constituents in butter automatically lowers the percentage of fat and increases the overrun. It is because of this that most countries legislated for a minimum of 80% butterfat in butter.Butter quality can be discussed under two main headings:The compositional quality of butter can be further di vided into two subsections:The chemical composition of butter is determined at the processing stage when the salt, moisture, curd and fat con tents of the product are regulated. Once these parameters have been set there is little one can do to change them. The microbiological quality of butter is also determined during the production and processing stages. Chemical composition affects butter yield, while but ter of poor microbiological quality will deteriorate rapidly and become unacceptable to consumers. The butter may also contain pathogens. Cleanliness at all stages of produc tion is, therefore, essential.The organoleptic quality of butter can be described as the customer's reaction to its colour, texture and flavour. It has been said that the consumer tastes with his or her eyes, and it is true that a person's initial impression of a food will often determine whether or not he or she will buy it. It is im portant, therefore, to produce butter that has an even col our, clean flavour and close texture. It is also important that it be free from defects such as loose moisture. It should be packed attractively, both to attract customer attention and to retain its quality.Butter produced carelessly and without the use ofpre servatives has a very short shelf life. Preservation of butter quality can assist the smallholder in two ways: •The less perishable the product the longer the smal lholder can retain it to obtain a good price.He or she can store the surplus made during the pro duction season for consumption during the season in which he or she cannot produce butter. The first step the producer can take to ensure a highquality product is to make it in a clean, hygienic manner.This results in fewer spoilage organisms being present in the butter. Another step is to take care in the handling and storage of the butter.The use of permitted preservatives is by far the most effective means of maintaining butter quality when used in conjunction with the above precautions. Salt -sodium chloride -is an excellent preservative, and salting butter to 3% extends its storage life: salted butter can be stored for up to 4 months without significant deterioration. A salt concentration in excess of 3% gives little advantage and can adversely affect the flavour of the butter.Aside from the influence of salt on the flavour and keeping quality of the butter, adding salt is of economic im portance as it increases overrun.Adding salt to butter disturbs the equilibrium of the emulsion (the butter). This, in turn, changes the character of the body and alters its colour. Unless the butter is sub jected to sufficient working to regain the original equilib rium of the emulsion, it will tend to have a coarse, leaky body and uneven colour.Salt is added to butter most commonly using the drysalting method, in which dry salt is sprinkled evenly over the butter and worked in.Butter must be adequately worked if it is to be stored for a long time. First, working distributes the salt uniformly in the moisture and this helps inhibit microbial growth. Secondly, it distributes the salt solution into many tiny droplets rather than fewer large ones. For a given level of microbial contamination, the microbes will be more iso lated in small droplets and will have less of the butter's nu trients available to them for growth.After salting, the butter should be stored in a clean container, and the container sealed. It should then be stored in a cool, dark place.These products are almost entirely butterfat and contain practically no water or milk SNF. Ghee is made in eastern tropical countries, usually from buffalo milk. An identical product called samn is made in Sudan. Much of the typical flavour comes from the burned milk SNF remaining in the product. Butter oil or anhydrous milk fat is a refined prod uct made by centrifuging melted butter or by separating milk fat from high-fat cream.Ghee is a more convenient product than butter in the tropics because it keeps better under warm conditions. It has low moisture and milk SNF contents, which inhibits bacterial growth.Milk or cream is churned as described in the sections dealing with churning of whole milk or cream. When enough butter has been accumulated it is placed in an iron pan and the water evaporated at a constant rate of boiling. Over heating must be avoided as it burns the curd and impairs the flavour. Eventually a scum forms on the surface: this can be removed using a perforated ladle. When all the moisture has evaporated the casein begins to char, indicating that the process is complete. The ghee can then be poured into an earthenware jar for storage.A considerable amount of moisture and milk SNF can be removed prior to boiling by melting the butter in hot water (80°C) and separating the fat layer. The fat can be separated either by gravity or using a hand separator. The fat phase yields a product containing 1.5% moisture and little fat is lost in the aqueous phase.Alternatively, the mixture can be allowed to settle in a vessel similar to that used in the deep-setting method for separating whole milk. Once the fat has solidified the aque ous phase is drained. The fat is then removed and heated to evaporate residual moisture. Products made using these methods exhibited excellent keeping qualities over a 5month test period.Cheese is a concentrate of the milk constituents, mainly fat, casein and insoluble salts, together with water in which small amounts of soluble salts, lactose and albumin are found. To retain these constituents in concentrated form, milk is coagulated by direct acidification, by lactic acid produced by bacteria, by adding rennet, or a combination of acidification and addition of rennet.Rennet, a proteolytic enzyme extracted from the abomasum of suckling calves, was traditionally used for coagulating milk. Originally, the abomasum was itself immersed in milk. The extraction of rennet that could be stored as a liquid was the first step towards refining this procedure.This was followed by purification and concentration of the enzyme. The purified enzyme was originally called rennin, and is now called chymosin.On weaning, the chymosin of the suckling calf is re placed by bovine pepsin. With the decrease in the practice of slaughtering calves, chymosin became scarce, resulting in a search for chymosin substitutes. Rennet is a general term currently used to describe a variety of enzymes of ani mal, plant or microbial origin used to coagulate milk in cheese-making.Rennet transforms liquid milk into a gel. While the process is not fully understood, rennet coagulation is thought to take place in two distinct phases, the first of which is regarded as being enzymatic, the second non-en zymatic. The first, or primary phase, can be illustrated as: Casein water para casein + glycomacropeptide rennet Since K-casein stabilises the other caseins and its hyd rolysis leads to the coagulation of the casein fraction, the primary phase can also be expressed as: water . K-casein * para K-casein + glycomacropeptide rennet (insoluble) (soluble) The effect of milk coagulants on the other caseins is thought to be negligible at this stage.The second, or secondary, phase is the non-enzymatic precipitation of para casein by calcium ions. Para casein, in association with the calcium ions, is thought to produce a lattice structure throughout the milk. This traps the fat and whey is gradually exuded. The coagulum then contracts, a process known as syneresis. This is accelerated by increas ing the temperature and reducing pH to as low as pH 4.6.Rennet also has a tertiary action on milk proteins. This occurs during cheese ripening, during which rennet hydrolyses milk proteins. If the desired hydrolysis is not ob tained, the cheese becomes bitter. While a wide variety of proteolytic enzymes coagulate milk, the tertiary action of many of these on milk proteins causes undesirable flavours in cheese, which limits the range ofcoagulants that can be used.Many cheese varieties are manufactured around the world but they are all broadly classified by hardness (i.e. very hard, hard, semi-soft and soft) according to their moisture content.Cheese is usually made from cows milk, although sev eral varieties are made from the milk of goats, sheep or horses. Flow diagrams for the manufacture of the varieties discussed are shown in Figures 14 to 17.Queso bianco is a Latin-American fresh, white cheese. It is usually made from milk containing 3% fat, using an or ganic acid, without starter or rennet. Procedure 1 . Take fresh whole milk and determine its fat content. If the fat content is higher than 3%, standardise using skim milk. 2. Transfer the standardised milk to a cheese vat, prefera bly a double-jacketed standard cheese vat, and heat to 82°C. 3. While the milk is being heated measure out lemon juice of pH about 2.5 in a measuring jar. About 3 ml of lemon juice should be added per 100 ml of milk. 4. Dilute the lemon juice with an equal amount of clean, fresh water. 5. When the milk temperature reaches 82°C, add the di luted lemon juice carefully and uniformly while stir ring. For even distribution of the juice, add in three separate amounts. 6. The curd precipitates almost immediately. Continue to stir for 3 minutes after adding the juice, then allow the curd to settle for 1 5 minutes. 7. Drain the whey through a metal sieve or cheese cloth. 8. While draining the whey, stir the curd to prevent ex cess matting. 9. Distribute a total of about 3.5 to 5 kg of salt to 100 kg curd, in three applications. 10. Prepare a cylindrical or square hoop by lining with cheese cloth and scoop the salted curds into it. 1 1 . Press the curd overnight at room temperature.12. Remove the pressed cheese and cut into blocks of 0.5 or 1 kg. Queso bianco is made without starter or rennet. A var iety of acidulants can be used for its manufacture. Heating the milk to 82°C pasteurises the milk and denatures the Cut into blocks of 0.5 or 1 kg.Cheese for consumption or storage whey proteins, so that they are recovered with the curd. This increases cheese yield. The cheese has good keeping quality and is thus suitable for manufacture in rural areas. Expected yield: 1 kg of cheese from 8 kg of milk (12.5%).Halloumi is the curd, formed by coagulating whole milk using rennet or similar enzymes, from which part of the moisture (whey) has been removed by cutting (bleeding), warming and pressing. Procedure 1. Heat the milk to 32 -35°C. 2. Add rennet or a similar enzyme according to the man ufacturer's directions, while stirring the milk. 3. Hold the milk at 32-35\"C until the curd sets. 4. Check for setting of the curd by applying pressure to the edge of the milk where it conies in contact with the vat, using a spatula or a knife with a round tip. If the curd is set it comes away clean from the wall of the vat. 5. After coagulation, the curd is cut into 3-5 mm cubes using vertical and horizontal knives. 6. Hold the curd in whey for about 20 minutes, stirring gently and continuously, and then allow it to settle. 7. Drain the whey and scoop out the curd into a hoop lined with cheese cloth. Press the curd. 8. While the curd is in the press, heat the whey to about 80-90°C. This precipitates the whey proteins, which can then be removed and pressed to make a whey cheese (anari) . 9. Take out the pressed curd, cut it into pieces of 10 x 10x 3 cm and heat at about 80\"C in hot whey. Continue heating until the pieces of curd float on the surface of the whey and become soft and elastic. 10. Remove the pieces of curd when still warm and either press in the hands, folded or unfolded, and rub in a little dry salt mixed with dried leaves of Mentha viridis (spearmint). 1 1 . When the pieces are cold, put them in containers filled with cool, boiled whey brine and store in a cool place to ripen for about 30 days. 12. After ripening put in an airtight container and store in a refrigerator at less than 1 2\"C. The cheese will keep for several months under these conditions. Halloumi cheese is best after 40 days but can also be consumed just after manufacture.Note: 15% salt concentration in whey brine is normally used.Expected yield: 1 kg of cheese from 9 kg of milk (11%).Known as Domiati in Egypt and Gybna beyda in Sudan, this is a hard, white cheese.Procedure 1 .Heat fresh milk to 35\"C and add enough salt to give a 7 to 10% salt solution in the milk. 2. Add enough rennet to coagulate the milk in 4 to 6 hours.Once set, transfer the coagulum to wooden moulds lined with muslin. 4.Allow the whey to drain overnight. 5. On the following day, pack the cheese in tins and fill the interspaces with whey. 6.Seal the tins by soldering.Notes:1 and 2. In some areas rennet is added before salting. In this procedure, salt is not added until a coagulum has formed. If salt is added before rennet it is not advisable to add more rennet to shorten the coagulation time, as this reduces the quality of the cheese. 6. Whey expulsion continues during storage and the cheese hardens. Expected yield: 1 kg of cheese from 7 kg of milk (15%).This is a brine-pickled cheese. It can be made from milk of cows, sheep or goats. Feta can be made without starter and can also be made from standardised milk. The procedure described here is for the manufacture of a feta-type cheese without starter or additives. Fresh milk, unstandardised Heat to 32°C, add rennet. . Continue heating until curd sets.Cut curd into 3 to 5 cm cubes.Heat to 40°C. Gently stir continuously. Stop heating and allow curd to settle. Drain whey.Heatto80°C. Filter.Press for 2 hours.Remove and cut into blocks of 1 0 x 1 0 x 3 cm. Heat in whey at 80°C.Remove and press in hands. Rub in salt and mint. Stir intermittently during this time. 4. Allow the curds to settle and decant the supernatant whey. 5. Transfer the curds and some whey to cheese moulds lined with muslin. Place the lid on the mould and in vert at half-hourly intervals in the first few hours to fa cilitate whey drainage. 6. Allow the curd to settle overnight. 7. On the following day, cut the curd mass into blocks of suitable size and sprinkle them with salt. 8.Place the salted blocks in a 15% brine solution to give 6-8% salt in the cheese at equilibrium. The high salt concentration retards bacterial activity. However, air should be excluded from the brining con tainer to prevent the growth of moulds.Feta cheese can be eaten after a few days or can be stored for long periods in the brine, provided that air is excluded. The cheese develops a soft, crumbly texture dur ing ripening.Expected yield: 1 kg of cheese from 9 kg of milk (11%).In cheese-making, the milk fat and casein are recovered with some moisture. The yield ofcheese can be expressed in kilograms of cheese obtained per 100 kilograms of milk pro cessed. Cheese yield is influenced by milk composition, the moisture content of the final cheese and the degree ofrecov ery of fat and protein in the curd during cheese-making.Milk low in total solids will give a low cheese yield, while milk high in total solids will give a high cheese yield. In order to predict the theoretical yield of cheese, the fat and casein content of the milk must be known. Because of difficulties encountered in estimating casein content, the following formula is often used to estimate cheese yield:(2.3 X fat %) + 1 .4 = cheese yield (kg/100 kg milk)Therefore, with milk containing 4% fat the expected yield would be:(2.3 X 4) + 1.4 = 10.6 kg/100 kg milk This formula gives an estimate of cheese yield and is applied most often to Cheddar cheese. It is useful as an im mediate check on efficiency, but a universal yield factor for cheese varieties is unrealistic.If the yield of cheese is less than expected, the follow ing checks should be made: • Weigh and record milk received. • Sample and analyse milk received.Weigh, store and record cheese made.Sample and analyse whey.The fat content of whey should be analysed for each batch of cheese made.In estimating the profitability of cheese-making enter prises, an average annual yield of 9.5%, i.e. 9.5 kg ofcheese per 100 kg of milk, is used.Milk standardisation may be used to increase cheese yield, particularly with high-fat milk. Standardisation also gives a good return for skim milk. However, over-standard ising results in coarse-textured cheese with poor flavour.High moisture content increases cheese yield, but re duces keeping quality. Cheese loses moisture during stor age if it is not properly wrapped, thus reducing cheese yield. Waxing reduces moisture loss, as does storing the cheese in brine.Raw milk produced under normal conditions develops acid ity. It has long been recognised that highly acid milk does not putrefy. Therefore, allowing milk to develop acidity naturally preserves the other milk constituents.Bacteria in milk are responsible for acid development. They produce acid by the anaerobic breakdown of milk carbohydrate -lactose -to lactic acid and other organic acids. Anaerobic breakdown of carbohydrate to organic acids or alcohols is called fermentation.Pyruvic acid formation is an intermediate step com mon to most carbohydrate fermentations: C6Hi206 * 2CH3.CO.COOH However, fermentations are usually described by an identifiable end product such as lactic acid or ethyl alcohol and carbon dioxide.A number ofsugar fermentations are recognised in milk. They can be either homofermentative, with one end product, or heterofermentative, with more than one end product. The fermentations discussed are outlined in Figure 18. The lactic acid fermentation is the most important one in milk and is central to many processes. Propionic fermentation is a mixed-acid fermentation and is used in the manufacture ofSwiss cheese varieties. Alcohol fermentation can be used to prepare certain fermented milks and also to make ethyl alcohol from whey.The coliform gassy fermentation is an example of a spoilage fermentation. Large numbers of coliform bac teria in milk indicates poor hygiene. The coliform gassy fermentation disrupts lactic acid fermentation, and also causes spoilage in cheese.The factors that affect microbial growth also affect milk fermentation. Fermentation rates will generally parallel the microbial growth curve up to the stationary phase. The type of fermentation obtained will depend on the numbers and types of bacteria in the milk, storage temperature and the presence or absence of inhibitory substances.The desired fermentations can be obtained by temper ature manipulation or by adding a selected culture of micro-organisms -starter -to pasteurised or sterilised milk. In smallholder milk processing, traces of milk from previous batches are often used to provide 'starter' for sub sequent batches. Other sources include the container and additives such as cereal grains.The fermentation will be established once the or ganisms dominate the medium and will continue until either the substrate is depleted or the end product accumu lates. In milk, accumulation of end product usually arrests the fermentation. For example, accumulation of lactic acid reduces milk pH to below 4.5, which inhibits the growth of most micro-organisms, including lactic-acid producers. The fermentation then slows and finally stops.Fermented milks are wholesome foods and many have medicinal properties attributed to them.The types of fermented milk discussed here are those made by controlled fermentation. This is achieved by establish ing the desired micro-organisms in the milk and by main taining the milk at a temperature favourable to the fermen tative organism.A variety of fermented milks are made, each differing markedly from the other. However, a number of steps are common to each manufacturing process, and these are out lined in Figure 1 9.Occasionally some fat is removed or milk SNF added. In some instances, the removal of moisture during heating in creases the proportion of solids in the final product.Milk is heated to kill pathogens and spoilage organisms and to provide a cleaner medium in which the desired micro-organisms can be established. Heating also removes air from the milk, resulting in a more favourable environ- After heating, the milk must be cooled before it is in oculated with starter, otherwise the starter organisms will also be killed.Starter is the term used to describe the microbial culture that is used to produce the desired fermentation and to flavour the product. When preparing the starter, care must be taken to avoid contamination with other micro-organisms. Companies that supply starter cultures detail the precau tions necessary. Care should also be taken to avoid con tamination when inoculating the milk with starter.After inoculation the milk is incubated at the optimum temperature for the growth of the starter organism. Incu bation is continued until the fermentation is complete, at which time the product is cooled. Additives may be added at this stage and the product packed.The manufacturing procedures for a number of fer mented milks are given in Table 5.The fermentation vessel is first washed to remove visible dirt. It is then dried and smoked by putting burning embers of Olea africana, wattle or acacia into the vessel and closing the lid. The vessel is then shaken vigorously and the lid opened to release the smoke. This procedure is repeated until the inside of the vessel is hot. Smoking flavours the product and is also thought to control the fermentation by retarding bacterial growth. While it is known that smoke contains compounds that retard bacterial growth, the pre cise effects of smoking on fermentation have not been inves tigated.Once smoking is complete the vessel may be cleaned with a cloth to remove charcoal particles. However, in some areas the charcoal particles are retained to add colour to the product.In some processes the milk is boiled prior to fermentation. It is then allowed to cool and the surface cream removed. In other processes the milk is not given any prefermentation treatment.The milk is placed in the smoked vessel and allowed to fer ment slowly in a cool place at a temperature of about 16-18°C. The fermentation is almost complete after 2 days, but may be continued for a further 2 days, by which time the flavour is fully developed. The milk must ferment at low temperature, otherwise fermentation is too vigorous, with much wheying off and gas production.The product has a storage stability of 15 to 20 days. Concentrated fermented milks are prepared by removing whey from fermented milk and adding fresh milk to the re sidual milk constituents. The fermentation vessel is prepared as for fermented milk. The milk is allowed to ferment in a cool place for up to 7 days, during which milk may be added daily. After 7 days a coagulum has formed and the clear whey is re moved. Fresh milk is then added and, following further fer mentation, whey is again removed. In this way the casein and fat are gradually concentrated in a product ofextended keeping quality. The actual degree of concentration de pends on the amount of whey removed and of fresh milk added.■* Coagulum Stored Casein J Whey proteins * Whey * Fed to calves 6.2 SOUR-MILK TECHNOLOGY Smallholder milk processing is based on sour milk. This is due to a number of reasons, including high ambient tem peratures, small daily quantities of milk, consumer prefer ence and increased keeping quality of sour milk. Products made from sour milk include fermented milks, concentrated fermented milks, butter, ghee, cottage cheese and whey. Other products made are cheese and products made by mixing fermented milk with boiled cereals.The equipment required for processing sour milk is simple and is all available locally. Milk vessels can be made from clay, gourds and wood, and can be woven from fibre, such as the gorfu container used by the Borana pastoralists in Ethiopia.Butter-making from sour whole milk This is a very important process in many parts of Africa. Smallholders produce 1 to 4 litres of milk per day for pro cessing. Under normal storage conditions the milk becomes sour in 4 to 5 hours. The souring of milk has a number of advantages. It retards the growth of undesirable micro organisms, such as pathogens and putrefactive bacteria, and makes the milk easier to churn.Milk for churning is accumulated over several days by adding fresh milk to the milk already accumulated. The churn holds about 20 litres and the amount ofmilk churned ranges from 4 to 10 litres. The milk is normally accumu lated over 2 or more days. Butter is made by agitating the milk until butter grains form. The churn is then rotated slowly until the fat coalesces into a continuous mass. The butter thus formed is taken from the churn and kneaded in cold water.The milk is usually agitated by placing the churn on a mat on the floor and rolling it to and from. It can also be agitated by shaking the churn on the lap or hung from a tripod.A number of factors influence churning time and re covery of butterfat as butter: Effect oftemperature* : Sour milk is normally churned at be tween 15 and 26°C, depending on environmental tempera ture. At low temperatures churning time is long; buttergrain formation can take 5 hours or longer. As churning temperature increases churning time decreases. This be-The products and byproducts of butter-making from sour whole milk are shown in Figure 20.Extent offilling the churn: Churns should be filled to between a third and half their volumetric capacity. Filling to more than half the volumetric capacity increases churning time considerably but does not reduce fat recovery. Thus, when churning whole milk, the following condi tions should be adhered to: • Milk acidity should be greater than 0.6%.The temperature should be regulated to about 18°C.Internal agitation should be used to reduce churning time and increase fat recovery.The churn should not be filled to more than half its volumetric capacity.Once the fat has been recovered, the soured skim milk contains casein, whey proteins, milk salts, lactic acid, lac tose, the unrecovered fat and some fat-globule-membrane constituents.Defatted milk is suitable, and is often used, for direct consumption. It is also used to inoculate fresh milk to en courage acid development.The casein and some of the unrecovered fat in skim milk can be heat-precipitated as cottage cheese, known in Ethiopia as ayib.The defatted milk is heated to about 50°C until a dis tinct curd mass forms. It is then allowed to cool gradually and the curd is ladled out. Alternatively, the curd can be re covered by filtering the cooled mixture through a muslin cloth. This facilitates more complete recovery of the curd and also allows more effective moisture removal. Tempera ture can be varied between 40 and 70°C without markedly affecting product composition and yield. Heat treatments between 70 and 90°C do not appear to affect yield but give the product a cooked flavour.The whey contains about 0.75% protein, indicating near-complete recovery of casein. Whey can be consumed by humans or fed to animals.The cottage cheese comprises 79.5% water, 14.7% protein, 1.8% fat, 0.9% ash and 3.1% soluble milk con stituents. It has a short shelf-life because of its high mois ture content. Shelf-life can be increased by adding salt or by reducing the moisture content of the cheese. Storing the product in an air-tight container also extends storage life.Equipment: Skim milk can be heated in any suitably sized vessel that is able to withstand heat. Heating can be direct or indirect. A ladle or muslin cloth can be used for product recovery.Expectedyield: The yield depends on milk composition and on the moisture content of the product, but should be at least 1 kg of cottage cheese from 8 litres of milk (12.5%).Milk is brought from the farm to the dairy for processing. When received at the dairy, the following information on the milk is required: Quality Weight Composition Presence of contaminants atives etc., and Presence of added water.neutralisers, preserv-Before weighing the milk, its quality should be checked. Taste and smell are good preliminary indicators of milk quality, and visual observation can also be useful. If the person receiving the milk suspects that it is of poor quality, he or she can carry out one of the following tests: acidity, pH, alcohol and clot-on-boiling. These will determine the quality of the milk. Once the person receiving the milk is satisfied with its quality, it can be weighed and the weight recorded.The quantity of milk received can be estimated either volumetrically or gravimetrically. Milk processors usually base payments for milk on its solids content, and hence it is more appropriate to use weight to estimate the quantity of milk being tendered.In a small-scale processing centre a spring balance and a stainless-steel bucket can be used to weigh milk. The milk weight must be recorded accurately as losses can be incurred or underpayments made to suppliers if care is not taken at this stage.A dairy engaged in butter-making will need to base its pay ments on the butterfat content of the milk. The milk re ceived will have to be sampled for butterfat analysis. The procedure for this is dealt with below. Spot checks can also be carried out to test for added water and the presence of neutralisers if malpractice is suspected. Therefore, the average value of 1 litre of milk is 66 cents.It is important to note that, since the butterfat is the most valuable commercial fraction, milk price will vary in proportion to butterfat content.It is assumed that butterfat content can be estimated. In large dairy plants, milk price is based on the content of the major milk constituents. For small-scale milk proces sors, this is not normally feasible and payment should be based on fat content.Production costs and depreciation are deducted pro portionally from milk price. Other deductions may also be made when calculating the price paid to the producer for milk. A representative sample is essential for accurate testing. Milk processors usually pay for milk or cream on the basis of butterfat analysis, and a single butterfat test may be used to determine the butterfat content of thousands of litres of milk or cream. Therefore, an accurate and representative sample must be obtained. Milk must be mixed thoroughly prior to sampling and analysis to ensure a representative sample. If the volume of milk is small, e.g. from an individual cow, the milk may be poured from one bucket to another and a small sample of milk taken immediately. But if large volumes of milk are handled, the milk or cream must be mixed by stirring. However, it is very difficult to obtain a representative sample of milk or cream when a large volume is dumped into a large container. In such a case the milk must be stir red thoroughly and small samples taken from three or more places in the container. For best results, milk or cream must be sampled when it is at a temperature between 15 and 32°C. If the cream is too cool it will be thick and viscous and will be difficult to sample.Sour milk or cream, in which casein has coagulated, must be sampled frequently. Sampling sour milk follows the same procedure as for fresh milk. If the milk or cream has been standing for a long time and a deposit has formed on the surface and sides of the container, it should be warmed while agitating before a sample is removed.For certain analyses, milk samples can be preserved and stored to await analysis. Samples of milk or cream for butterfat analysis can be preserved using formalin, corro sive sublimate or potassium dichromate. For general analy ses, formalin is preferred, because the other two increase the solids content of the milk, influencing total solids deter mination.A rough estimate of pH may be obtained using paper strips impregnated with an indicator. Paper strips treated with bromocresol purple and bromothymol blue are sometimes used on creamery platforms as rejection tests for milk. Bromocresol purple indicator strips change from yellow to purple between pH 5.2 and 6.0, while bromothymol blue indicator papers change from straw yellow to blue-green between pH 6.0 and 6.9.Electrometric determination of pH depends on the poten tial difference set up between two electrodes when they are in contact with a test sample. A reference electrode whose potential is independent of the pH of the solution and an electrode whose potential is proportional to the hydronium ion concentration of the test sample are used. Saturated calomel electrodes are usually used as reference electrodes, and glass electrodes are used to measure pH.Instruments which measure the current produced by the difference in potential between the glass and calomel electrodes are called pH meters.Preparation of the phi meter 1 . The pH meter should be kept in a dry atmosphere. 2. Before using a new glass electrode, or a glass electrode which has been stored for some time, soak the electrode in N/10 HC1 for about 5 hours. 3. Care should be taken not to scratch glass electrodes against the sides of beakers or other hard surfaces dur ing storage or testing. 4. The level of saturated potassium chloride in the calomel electrode should be checked before making pH measurements. 5. Crystals of potassium chloride should be present in the solution within the electrode. 6. The rubber stopper or cap on the filling arm of the calomel electrode should be removed before making a test.Standardising and using the pH meter The production of acid in milk is normally termed \"sour ing\" and the sour taste ofsuch milk is due to lactic acid. The percentage of acid present in dairy products at any time is a rough indication of the age of the milk and the manner in which it has been handled. As mentioned earlier, fresh milk has an initial acidity due to its buffering capacity. If milk, skim milk or buttermilk is to be tested, place 18 g in the cup using a 17.6 ml pipette. If cream is to be tested, use a 9 ml pipette (for cream weighing about 1 g/ml). 4. Add 3 to 5 drops of phenolphthalein to the sample in the cup. 5.Note the reading of the NaOH in the burette at the lowest point of the meniscus. Put 10 ml of milk in a porcelain dish. 2. Add 0.5 ml of 1 .6% solution of phenolphthalein.Titrate with N/9 sodium hydroxide and follow the same procedures as in I.Where W = volume of N/9 NaOH required (ml) and V = volume of milk taken for analysis (10 ml) III. Using N/9 sodium hydroxide: Cream Procedure 1 .Put 1 0 ml of cream in a porcelain dish. 2. Add 10 ml of water with the same pipette. 3. Add 0.5 ml of 1 .6% phenolphthalein. 4. Titrate with N/9 NaOH. 5. Calculate as in II.For determination of acidity of cream serum, the fat percentage of the cream should be known, and the calcula tion is as follows:Acidity of serum = acidity of cream X 100 100-% fat 8.1.5 Alcohol testThe alcohol test, together with the acidity test, is used on fresh milk to indicate whether it will coagulate on process ing. Milk that contains more than 0.21% acid, or calcium and magnesium compounds in greater than normal amounts, will coagulate when alcohol is added. Examine the tube to determine whether the milk has coagulated: if it has, fine particles of curd will be vis ible.Acidity decreases the heat stability of milk. The clot-onboiling test is used to determine whether milk is suitable for processing, as it indicates whether milk is likely to coagu late during processing (usually pasteurisation). It is per formed when milk is brought to the processing plant -if the milk fails the test it is rejected. The test measures the same characteristics as the al cohol test but is somewhat more lenient (0.22 to 0.24% acidity, as opposed to 0.21% for the alcohol test). It has the advantage that no chemicals are needed. However, its dis advantage is that at high altitude milk (and all liquids) boils at lower temperature and therefore the test is even more lenient. The main tests used to determine the fat content of milk and milk products are the Gerber and Babcock tests. Auto mated methods for testing milk are now used in central lab oratories and at large processing centres.The procedures outlined below are used to determine the butterfat content of milk, skim milk, buttermilk, cream and whey.The apparatus required for butterfat content analysis com prises:1 . Gerber butyrometer calibrated to read 0-8% or 0-5% and graduated at 0. 1 % intervals. 2. Butyrometer stoppers. 3. Milk pipette -volume to match the butyrometer in use. 4.10 ml double-bulb pipette* for pipetting sulphuric acid. 5.1 ml bulb pipette* for pipetting amyl alcohol. 6. Thermometer to read 1-100°C * Alternatively, automatic dispensers can be used for delivering 10 ml of suphuric acid and 1 ml of amyl alcohol. The same reagents are required as for whole milk.The procedure is the same as for whole milk up to and in cluding the first centrifuging. The butyrometers are then placed in the water bath at 65°C, stoppers down, for 1 to 2 minutes and again centrifuged for 4 to 5 minutes. Then they are placed in the water bath for 2 to 3 minutes and read. A check reading is made after they are placed in the water bath for 2 to 3 minutes. The apparatus required for whole milk, except for the butyrometers and the 1 1 ml pipette, is supplemented by certain additional items for testing cream. The test bottles are standard Gerber cream butyrometers. Other items in clude a balance for weighing to 0.001 or 0.005 g; a stand to support the butyrometers on the balance or a stopper weighing funnel, and a wash bottle containing warm (30-40°C) distilled water.The same as for whole milk.Procedure 1. Mix the sample thoroughly, though cautiously, to avoid frothing. If the sample is very thick, it should be warmed to between 37.8°and 50°C to facilitate mixing. 2. Weigh 5 g of cream into the butyrometer. 3. Add about 6 ml of warm distilled water from the wash bottle. 4. Add 10 ml of sulphuric acid and 1 ml of amyl alcohol.The remaining procedures are the same as for whole milk.Fat determination in cheese is carried out in a similar man ner to that for milk.Gerber cheese butyrometer stamped \"3 g cheese\". Other apparatus same as for Gerber milk fat analysis.Distilled water • Sulphuric acid • Amyl alcohol Procedure 1. Weigh out 3 ± 0.01 g of cheese on a counter-balanced piece of grease-proof paper. 2. Dispense 10 ml sulphuric acid into the butyrometer.Add 3 ml ofwater carefully so that it rests on the acid. 3. Wrap the 3 g of cheese in the grease-proof paper to form a cylinder that fits into the butyrometer. 4. Add a further 4 to 5 ml of water. 5. Add 1 ml of amyl alcohol. 6. Stopper the butyrometer securely and shake to dissolve the cheese. (It may be difficult to dissolve the cheese. If difficulty is experienced, place the butyrometer in the heated water bath and remove periodically for mixing until the cheese is fully dissolved.) Cheese butyrometers are centrifuged and read as for milk and cream.Specific gravity is the relation between the mass of a given volume of any substance and that of an equal volume of water at the same temperature.Since 1 ml of water at 4°C weighs 1 g, the mass of any material expressed in g/ml and its specific gravity (both at 4°C) will have the same numerical value. The specific grav ity of milk averages 1.032, i.e. at 4°C 1 ml of milk weighs 1.032 g.Since the mass of a given volume of water at a given temperature is known, the volume of a given mass, or the mass of a given volume of milk, cream, skim milk etc can be calculated from its specific gravity. For example, one litre of water at 4 C has a mass of 1 kg, and since the average specific gravity of milk is 1.032, one litre of average milk will have a mass of 1 .032 kg.Lactometer -this is a hydrometer (a device for mea suring specific gravity) adapted to the normal range of the specific gravity of milk. It is usually calibrated to read in lactometer degrees (L) rather than specific gravity per se. The relationship between the two is: Mix the milk sample thoroughly but gently. Do not shake vigorously or air bubbles will be incorporated and will affect the result. 3. Place the milk in the cylinder. Fill sufficiently that the milk will overflow when the lactometer is inserted. 8.1 .9 Determination of total solids (TS) and solids-not-fat (SNF) in milkThe total solids content of milk is the total amount of mate rial dispersed in the aqueous phase, i.e. SNF = TS -% fat.The only accurate way to determine TS is by evap orating the water from an accurately weighed sample. How ever, TS can be estimated from the corrected lactometer reading. The results are not likely to be very accurate be cause specific gravity is due to water, material less dense than water (fat) and material more dense than water (SNF). Therefore, milk with high fat and SNF contents could have the same specific gravity as milk with low fat and low SNF contents. It should be noted that the relationship between Lc and TS varies from country to country depending on milk composition. The above formulae are called the Richmond formulae and were calculated for Great Britain. Procedure 1 . Weigh 1 0 g of butter into the cup. Heat the butter over a low flame until it ceases foaming and a light-brown colour appears. When heating the sample, place the container on the asbestos-centre wire gauze on a tripod. This distributes the heat evenly across the bot tom of the cup. 2. After the moisture is driven from the butter, allow the sample to cool and reweigh.Percentage moisture content of the butter is calculated as: The cleaning of butter-making equipment was dealt with in the section on butter-making. This section discusses the principles of cleaning, sanitation and sterilisation of dairy equipment and the various treatments or chemicals used.Processing equipment should be clean and look neat. The processing room should also be well lit and ventilated, clean and neat. However, sanitation of processing equip ment means more than having the equipment looking clean and neat.The cleanliness of equipment can be classified at four levels:1 .Physical cleanliness, where all visible dirt has been re moved. 2. Chemical cleanliness, where, in addition to all visible dirt, microscopically small residues have been re moved. 3. Sanitation, where, in addition to being chemically clean, the equipment has been treated in such a man ner as to remove most of the micro-organisms present on its surface. 4. Sterilisation, where, in addition to being sanitised, the equipment has been treated in such a manner as to de stroy all micro-organisms present on the equipment. Sanitation and sterilisation are easier to achieve if the equipment is initially at least physically clean. Therefore, the equipment is normally cleaned before sanitation or sterilisation.Detergents are chemical agents that assist in the cleaning process by solubilising the deposited dirt, thereby making its removal easier. Sodium salts are the commonest and cheapest detergents. Sodium hydroxide, sodium carbonate and sodium tripolyphosphate are commonly used. Syn thetic detergents, such as alkyl benzyl sulphate, and biolog ical detergents are also used.Chemical sterilisers are agents which, when added to water at a specific concentration, reduce the number of micro organisms on previously cleaned surfaces to very low levels.The active sterilising ingredient is usually iodine, chlorine, nitric acid or quaternary ammonium compounds. Organic sterilisers such as chloramine-T, halane and isocyanuric acids are also used.Before using any detergent or steriliser, remove as much of the product as possible from the surface of the equipment. Product not removed before washing is wasted. 1.Prewash the equipment with clean, cold water. This removes much of the dirt and should be carried out im mediately after the product has been removed. After washing with cold water, wash the equipment with warm water (50 C) to remove fatty material. If the equipment is washed thoroughly with water, much less detergent is required in later stages. 2. Wash the equipment with a detergent solution, follow ing the manufacturer's instructions. The equipment should be cleaned thoroughly at this stage to ensure that it is chemically clean. If the equipment is cleaned by hand it should be scrubbed thoroughly using the detergent solution. Detergent cleaning also reduces bacterial numbers on the equipment.Drain the detergent solution. It may be retained for washing other items of equipment, provided its strength is maintained. After draining the solution,rinse the equipment at least three times with cold water to remove all traces of the detergent. If not removed, traces of detergent may be incorporated in subsequent batches of product. Rinsing three times with small vol umes of water removes detergent residues much more effectively than rinsing once with a large volume of water. 4.Sanitise the equipment using one of the compounds mentioned above. Chlorine compounds are particu larly corrosive and should only be used in accordance with the manufacturer's instructions. After sanitising, rinse the equipment again with clean water to remove all residues of the sanitising agent. In the absence of a suitable chemical steriliser, the equipment can be scalded with water at 80°C. 5. Once washed and rinsed the equipment should be stored in a clean, dry, dust-free area. Notes: • Detergents and sterilisers are normally chemically ac tive compounds and great care is required in their use and handling to avoid injury to personnel. • Detergent sterilisers are compounds formulated to clean and sterilise equipment at the same time. They are generally expensive, but reduce the overall time re quired for cleaning and sterilising equipment and also reduce the amount of water needed for rinsing as only one set of rinsings are required.into a river or stream. If the effluent is not piped away from the building it will become a source of contamination and of foul smells.A simple building of 25 m internal floor area is adequate for processing at the scale being discussed. An additional room of 10 m floor area is desirable for use as a product store and office.The foundation and floor should be constructed from nonrotting material. The material for the superstructure is best chosen according to availability and cost. The dairy can be made from basic materials and does not need extravagant construction.Where possible, all floors should be constructed of concrete with cement surfacing. The floor should slope (1 -1.5%) to one end to facilitate drainage and cleaning. The cement should continue up the internal walls for at least one metre if the superstructure of the building is not constructed from cement.The sloped floor drains to an outlet. Effluent should be piped from the outlet to the soak pit through concrete pipes 10 cm in diameter.One or two screened windows should be installed to permit the operation of the dairy without artificial light. The win dows can also be used for ventilation, but should be screened with mesh to reduce the number of insects enter ing the building.Where possible, a ceiling should be included. This will help to improve the hygiene of the building and also keep the in side cool.The main door should be wide enough to allow for equip ment installation and easy access of personnel with milk cans etc. If both cheese and butter are being made, the process lines should be located at either side of the dairy.Some items of equipment must be securely fixed. The cream separator should be mounted on a level stand fixed firmly to the floor and should be at a convenient height for working. Once the separator is mounted on the stand the level should be checked with a spirit level before final tight ening of the fixing screws. Similarly, the churn stand and butter-working table should be fixed.Cheese vats of the necessary capacity are portable and can be located as desired.The fixing block for a lever-action cheese press should be fixed firmly to the wall.If the water supply permits it, two hose points should be installed on opposite walls to facilitate cleaning.The final production figure (making no allowances for Therefore the total value of production losses during production) is 4.75 kg of butter from 4.0 kg of _ 4 75 X 10 = 47 5 birr fat-= 95.25 X 0.18 = 17.1 birr Therefore, percentage overrun = 18.75% However, the actual yield of skim milk is 88.83 kg and Total value 64.6 birr there is also 6.42 kg of buttermilk, both of which would be valued at 18 cents per kilogram.","tokenCount":"20601"} \ No newline at end of file diff --git a/data/part_3/4550245189.json b/data/part_3/4550245189.json new file mode 100644 index 0000000000000000000000000000000000000000..4e09fb0fef94fad8e1b7e46eb9ea418de8120317 --- /dev/null +++ b/data/part_3/4550245189.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c13bacd87009161c1f4498ec56aa902f","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/d992945e-7e4d-484d-8085-32b6bc1f435b/content","id":"1575330448"},"keywords":[],"sieverID":"8e545f20-cb82-4a70-9add-6271599fc052","pagecount":"6","content":"-Aspirations in uence short-and medium-term decisions and have a role in people's choices about agricultural inputs and investments-and therefore productivity and pro tability.-These present a high-potential and low-cost way to alter gender and social norms and family roles, putting them on the path to becoming leaders in agriculture, and contribute to the sustainable development of agriculture and rural communities.-If aspiration failure among rural communities is not addressed in a timely manner, this might be partly responsible for the failure to empower women.An increasing trend seen in global South is that of male members of farming households moving to metropolitan areas, particularly in regions heavily reliant on seasonal rains or susceptible to drought, in search of nonfarm jobs-called 'outmigration'-and leaving the women in their households to take care of the household and agricultural activities.Recent empirical evidence (https://link. springer. com/article/10. 1057/s41287-021-00362-8) demonstrates that, in the absence of men and when women are restricted to move out of rural areas, women are increasingly engaged in farm-management decisions and labor, and women's aspirations are centered on pro table farming through technology adoption.However, evidence (https://link. springer. com/article/10. 1057/s41287-021-00362-8) also shows that women's contribution to agricultural productivity could be much higher if they had equal access to essential resources, services and representation in decisionmaking.There is a need for consistent efforts to (1) understand the challenges experienced by women in farming, (2) understand their aspirations and (3) encourage their participation in decision-making.The aspirations of rural women are increasingly being recognized as an essential dimension (https://doi. org/10. 1016/j. worlddev. 2017. 03. 039) of their well-being. It is imperative to understand and nurture these aspirations if governments want to improve the well-being of rural women.Populations with high aspirations visualize and engage in forward-looking behavior; whereas low aspirations among the rural poor, particularly farm women, lead to their reduced efforts and fewer investments for bringing about a prosperous future.When poor people are not supported to see a better tomorrow (in which their wellbeing would be much higher than it is today), they do not take action to improve their future, and consequently become even more stuck in a poverty trap.The aspirations of farmers in uence the agricultural inputs and investments they select which, in turn, affect their productivity. Aspirations play a role in in uencing short-and medium-term decisions and have a potentially great in uence on technology adoption. In the context of increased male outmigration, it is crucial to understand aspirations of women to support their empowerment with appropriate development interventions and targeted policies.In our recent systematic literature review (https://doi. org/10. 1057/s41287-021-00413-0) , we found strong evidence that raising aspirations of the rural poor is one way of empowering women.Husbands with higher aspirations support more egalitarian gender relations within their households. However, wives who have higher aspirations was an even better predictor of women's empowerment. Women's higher aspirations predicted a more egalitarian gender attitude for both the husband and wife, and also women's greater involvement in household decision-making.Our analysis of 419 studies from 14 developing countries sheds light on the relationships between aspirations, agriculture and women's empowerment.Higher aspirations are a crucial indicator of women's empowerment. Therefore, raising aspirations is one way to empower women. When development programs or governments fail to support women to raise and realize their aspirations, they may be partly responsible for the failure to empower women.Development programs that aim to raise the aspirations of women-by implementing strategies such as encouraging women to take part in decisionmaking and leadership roles, providing equitable access to resources, and encouraging digital literacy-could be a high potential and low-cost way to alter gender and social norms and family roles, thereby widening opportunities for women.Our analysis of 419 studies shows that, in general, there are signi cant gender gaps in aspirations; unlike their male counterparts, women fail to aspire to aspects that are personally important to them: income, asset ownership, education of their children, and social status.Various discriminatory gender norms also discourage young women from aspiring to agriculture-related occupations. Norms that portray agriculture as a masculine job discourage women from learning about and trying innovative practices and restrict women's agricultural opportunities. These norms can turn women's aspirations away from agriculture. Opening avenues for young women in agriculture requires special attention to the inequalities that they face based on their age and gender. Women leaders positively in uence women's aspirations and educational attainment, especially in rural areas.Development programs or policy interventions that aim to raise the aspirations of women could be a promising and low-cost way of changing traditional norms and family roles and expanding opportunities for women. During our literature review, we collated the following strategies to encourage higher aspirations for rural women:Role models and mentoring: connecting women in agriculture with women leaders-who can inspire and mentor them with guidance, support and encouragement-helps farming women envision and pursue their aspirations.-Recognition and celebration of success: highlighting the achievements and success stories of farming women creates positive role models, motivates others to set ambitious goals, and fosters a culture of aspiration.-Access to resources: ensuring equitable access to resources such as land, credit, technology and markets can allow women to pursue their aspirations, expand their agricultural enterprises and increase productivity. -Entrepreneurship: promotion of entrepreneurship can be a powerful tool for raising women's aspirations and empowering them to achieve their goals.-Financial inclusion: providing women access to their own savings accounts, loans and insurance products that are tailored to their needs enables them to make investments, expand their agricultural activities and move toward realizing their aspirations.-Elimination of gender biases and stereotypes: encouraging a shift in societal norms and attitudes, and challenging and eliminating gender biases and stereotypes that limit farm women's aspirations helps them recognize their capabilities and potential.-By implementing these strategies, farming women can be supported to pursue their aspirations and become empowered-thereby putting them on the path to become leaders in agriculture and contribute to the sustainable development of agriculture and rural communities.Nandi, R. 2023. Raising aspirations is one way of empowering women in agriculture.Nairobi, Kenya: CGIAR GENDER Impact Platform.Supportive family and community environment: fostering a supportive environment within families and communities that encourages and values the aspirations of farming women is critical.-Policy support: encouraging governments and relevant organizations to create and implement policies that support women's aspirations, including access to education, land rights, participation in decision-making, and nancial services.-","tokenCount":"1045"} \ No newline at end of file diff --git a/data/part_3/4574792462.json b/data/part_3/4574792462.json new file mode 100644 index 0000000000000000000000000000000000000000..8d9eb48c54bb37a33e922d936cf6416e64960683 --- /dev/null +++ b/data/part_3/4574792462.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"8d31366ba842b941d85444727bad7fab","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/bf7e5d8b-91fc-4b06-9818-357f0d805a04/retrieve","id":"8423246"},"keywords":[],"sieverID":"41112560-1eaf-4f36-bb1e-8bb35c9ca08f","pagecount":"10","content":"Drought stress linked with climate change is one of the major constraints faced by common bean farmers in Africa and elsewhere. Mitigating this constraint requires the selection of resilient varieties that withstand drought threats to common bean production.This study assessed the drought response of 64 small red-seeded genotypes of common bean grown in a lattice design replicated twice under contrasting moisture regimes, terminal drought stress and non-stress, in Ethiopia during the dry season from November 2014 to March 2015. Multiple plant traits associated with drought were assessed for their contribution to drought adaptation of the genotypes. Drought stress determined by a drought intensity index was moderate (0.3). All the assessed traits showed significantly different genotypic responses under drought stress and non-stress conditions. Eleven genotypes significantly (P ≤ 0.05) outperformed the drought check cultivar under both drought stress and non-stress conditions in seed yielding potential. Seed yield showed positive and significant correlations with chlorophyll meter reading, vertical root pulling resistance force, number of pods per plant, and seeds per pod under both soil moisture regimes, indicating their potential use in selection of genotypes yielding well under drought stress and non-stress conditions. Clustering analysis using Mahalanobis distance grouped the genotypes into four groups showing high and significant inter-cluster distance, suggesting that hybridization between drought-adapted parents from the groups will provide the maximum genetic recombination for drought tolerance in subsequent generations.Common bean (Phaseolus vulgaris L.) is one of Africa's most essential pulses [1]. Among the grain legumes cultivated in Ethiopia, dry beans are regarded as the most important crop for food security and wealth creation [2]. An overview of four years' data from 2011 to 2014 indicates that more than 337,000 ha were dedicated to production of 455,000 tons of common beans annually [3]. Common bean contributes to the national economy as both a food and an export commodity, in both cases serving as a source of income and employment to a large supply chain [4]. The crop provides vital nutrients as a food including vitamins, proteins, and minerals and the stems are also used as fodder for livestock, especially in the dry spell following the main cropping season [5]. As a legume, common bean plants also contribute to soil fertility enhancement through atmospheric nitrogen fixation [1].Drought stress, both as a seasonal phenomenon and as part of climate change, is currently the leading threat to the world's food supply [6]. This stress is more severe than other abiotic stresses in common beans, making it the main challenge to the livelihood of bean farmers in marginal, unfavorable environments [2,7]. Most common bean production in the developing world occurs under conditions where the risk of drought is high [7,8]. Numerous regions where drought is already a challenge in Africa, such as Ethiopia, will suffer from warmer and successively drier weather as a result of climate change over the next few decades [9].Several studies have revealed the radical effect of drought stress on common bean performance. Exposure to drought affects total biomass and seed yield, photosynthate translocation and partitioning, number of pods and seeds per plant, root length and mass, and maturation time [2,[10][11][12]. In common bean, drought stress during flowering and post-flowering caused reductions of 60-99% in yield [13,14], 25.4% in number of pods per plant, 20.3% in numbers of seed per pod [15], and 11% in seed size [2].The average national yield of common bean in Ethiopia is estimated at 1300 kg ha −1 on smallholder farms and 1700 kg ha −1 on commercial farms [16] in contrast to a production potential of 3000 to 4000 kg ha − 1 in research fields [7,17,18]. It is generally assumed that drought problems in crop production can be resolved by applying irrigation, but most African farmers are resource-constrained and lack access to irrigation water [14]. In addition, many farmers grow beans in uneven terrain not suitable for irrigation [7,14]. The best option for reducing such yield gaps and realizing yield stability under unfavorable environments is thus the development and deployment of drought-tolerant varieties. Drought tolerance, once genetically encoded in the seed of a variety, can be used readily by many farmers for combating drought effects in common bean production [2]. Availability and use of highyielding drought-tolerant varieties of common bean would decrease dependence on irrigation water and thereby reduce cost of production, stabilize yield in drought-prone areas, and ultimately increase profit margins for farmers.Breeding for drought-tolerant crops is challenging and time-consuming, owing to the need for simultaneously considering multiple abiotic and biotic factors modulating the level of drought-tolerance. Previous attempts made to evaluate genotypes for drought tolerance indicated high levels of drought tolerance in Durango landraces and some Mesoamerican common bean cultivars [19][20][21]. Genotypic evaluation studies in Ethiopia identified drought tolerant genotypes and selection traits for improving drought adaptation in common bean [2,10,14]. The present study assessed multiple adaptive traits for their relative contribution to drought adaptation of the genotypes and combined this assessment with clustering analysis to identify divergent trait progenitors and candidate varieties for use in hybridization to gain maximum genetic recombination for droughttolerance in subsequent generations.This study used 64 genotypes, of which one was bred locally for drought adaptation and the rest were introduced from the International Center for Tropical Agriculture (CIAT by its Spanish acronym), Cali, Colombia (Table S1). These genotypes were generated from crosses between well-known sources of drought resistance. The SCR lines are small red beans carrying drought tolerance with recessive genes for resistance to bean common mosaic virus. Hawassa Dume, a small red-seeded Mesoamerican bean type bred locally for its disease tolerance, seed color, and yield advantage under water deficit conditions and released in Ethiopia in 2008, was used as a locally adapted variety check. A few advanced breeding lines (SER16, RCB745, and SXB412) were included as additional checks.The genotypes were evaluated in 8 × 8 simple lattice design experiments with two replications, each repeated under two moisture regimes for a total of four replicates evaluated. The first treatment was non-stress (NS), in which the genotypes were irrigated until maturity whenever soil moisture was depleted to 30% field capacity. The second treatment was drought stress (DS), in which the genotypes were irrigated up to the mid-pod stage when soil moisture was depleted to 30% field capacity and thereafter the irrigation was halted until maturity, thus exposing the genotypes to terminal drought stress. The plots consisted of two rows 3 m in length using 60 cm between-row and 10 cm within-row spacing. Across both treatments, a total of 100 kg ha −1 diammonium phosphate fertilizer was applied at planting and the plots were handweeded once before flowering.The experiment was performed during the dry season at the Hawassa Agricultural Research Center, South Nations, Nationalities and People's Regional State (SNNPR) from November 2014 to March 2015. Hawassa is located at 7°03′ N and 38°30′ E at an elevation of 1650 m.a.s.l. with average annual rainfall of 959 mm distributed mainly in the rainy season (May to August). The site had well-drained sandy loam soil of pH .7. The daily average maximum and minimum temperatures of the site during the growing season were 26.9 °C and 12.4 °C, respectively, and the genotypes were planted in the dry season when additional moisture from rainfall was unlikely. Daily precipitation and minimum and maximum temperatures were recorded with a digital mobile weather station located at the experimental field in Hawassa to confirm the low-rainfall regime. Soil moisture content was determined with Aquaterr digital soil moisture, temperature and salinity meter (Aquaterr instruments and automation, USA) at sample points of 10, 20, and 40 cm soil depth during flowering, mid-pod filling and maturity stages.Physiological traits of genotypes were assessed by measurement of multiple plant attributes using nondestructive sampling at different growth stages of the crop. The traits measured were 1) days from sowing to flower opening of at least one flower on 50% of plants in a plot (days to flowering, DF); 2) days to maturity (DM) based on number of days from sowing to physiological maturity of at least 90% of the plants in a plot; 3) leaf chlorophyll content measured by SPAD chlorophyll meter reading (SCMR) at mid-pod filling stage, about one month after flowering and before harvest maturity on 10 fully expanded young leaves of three plants in each plot using a non-destructive, portable SPAD-502 chlorophyll meter (Minolta Camera Co., Ltd., Japan); 4) plant height (PLHT) was also measured at mid pod filling stage on five plants per plot using meter stick, and the final measurements were recorded at harvest and included; 5) vertical root pulling force resistance (RPF); 6) number of pods per plant (PDPL); 7) number of seeds per pod (SDPD); 8) 100 seed weight (100 SW); and 9) seed yield per hectare (YLDH). RPF was measured on five plants per plot using IMADA-DS2 digital force gauge (Cole-Parmer instrument company LLC, U.S.A.) by tying a string to the stem of the plant just above the ground and pulling it upward. PDPL and SDPD were recorded by counting the pods and seeds of five randomly selected plants. Seed yield was recorded on a plot basis using FX3000i sensitive digital balance with a capacity of measuring up to 3200 g and 0.01 g scale (A&D Engineering LLC, U.S.A.), which was also used to determine 100 SW as a random sample of total yield. Finally, yield was corrected based on seed moisture content determined with a seed moisture meter (Dickey John corporation, U.S.A.). The plot yield was converted to yield per hectare after adjusting to 12% moisture content.A general linear model (GLM) was used for data analysis and LSD at P ≤ 0.05 was used for mean separation. Data from each growing environment were analyzed separately and the homogeneity of error variances was tested by Bartlett test [22] before combined analyses were performed. Simple correlation coefficients among traits were determined using the mean trait values for genotypes. All data were used in an analysis of variance (ANOVA) using the GLM procedure in SAS v. 9.4 software (SAS Institute, 2012).In addition to the direct measurements, some derived variables were calculated from primary data: drought intensity index, drought susceptibility index, drought tolerance index, mean productivity, geometric mean productivity, yield reduction rate, and yield stability index [23][24][25][26].where Y DS and Y NS are the mean yields of a given genotype evaluated under drought stress and non-stress conditions, respectively, and X DS and X NS are the mean seed yields over all genotypes evaluated under drought stress and non-stress conditions, respectively. Principal component analysis was employed to identify traits with more contribution in to the principal components. Clustering of genotypes was performed using the average linkage method, using the 14 phenotypic traits evaluated under drought-stress treatment and six drought indices. Traits with Eigenvectors greater than or equal to 1 were considered in the cluster formation and the ideal number of clusters was determined by looking at the agreement between cubic clustering criterion, pseudo F and pseudo-t 2 statistics between groups [28]. Genetic distances between the centroids of clusters were calculated as standardized D 2 , based on suggestions of Mahalanobis [29].The maximum and minimum daily temperatures and the daily rainfall received during the crop-growing period are presented in Fig. 1. The DS and NS treatments received a total of 51.8 mm rainfall during the growing season in only three rain events, creating moisture-stress conditions for the DS treatment. The amounts of water in the soil profile throughout the crop growth period are shown in Fig. 2 for DS and NS conditions, respectively. Drought stress resulted in 29.8% reduction in YLDH, 26.1% reduction in SCMR, and 19.1% reduction in PDPL (Table 1).Data from NS and DS treatments were compared to assess the effect of drought stress on yield-related traits and the datasets were combined after a test for homogeneity of error variance confirmed the appropriateness of a global ANOVA treating genotypes as fixed and environments as random. The mean square values for DM, PLHT, and SCMR were highly significant (P ≤ 0.01) between genotypes, between treatments, and for genotype-by-treatment interaction (Table 1). A significant difference (P ≤ 0.01) was also observed between genotypes for RPF. DM ranged from 94 to 107 days with mean of 102 days in the NS treatment and from 82 to 99 days with mean of 89 days in the DS treatment. Exposure to drought caused a mean reduction of 13 days (12.7%) in DM compared to the NS treatment. SCR16 and BSF10 were the earliest to mature (95 days) in the NS treatment, while Hawassa Dume (106 days) and BFS29 (107 days) were late to reach physiological maturity in the NS treatment. Under drought stress, BFS10 and BFS55 were earliest to reach physiological maturity (82 days) and were the highest-yielding varieties. The genotypes SCR27 (98 days) and SCR25 (99 days) were late to reach physiological maturity in the DS treatment.With respect to plant architecture, PLHT ranged from 24.0 to 47.5 cm with mean of 37.3 cm for the NS and from 24.8 to 43.8 cm with a mean of 31.8 cm for the DS treatments. A mean reduction of 5.5 cm in PLHT was observed when the NS compared with the DS treatment. The shortest plant in the NS was SCR1 and the tallest was BFS35. Genotypes SCR13 and BFS67 showed the minimum and maximum plant heights, respectively, in the DS treatment.With respect to photosynthesis in the DS treatment, the highest SCMR (39.7) was measured for SCR5 and the lowest (15.6) for SCR15. This trait was also highly affected by drought stress, with a 26.1% reduction from the non-stress treatment. BFS34 and SCR34 showed the highest and lowest RPR of 11. Please cite this article as: K. Darkwa, et al., Evaluation of common bean (Phaseolus vulgaris L.) genotypes for drought stress adaptation in Ethiopia, The Crop Journal (2016), http://dx.doi.org/10.1016/j.cj.2016.06.007 Drought stress caused a 1.4% increase in RPF in comparison with the NS treatment.Among yield components, highly significant differences (P ≤ 0.01) between the treatments, genotypes, and genotypeby-treatment interactions were also observed for the variables PDPL, SDPD, and 100 SW, all measured at or after harvest. PDPL ranged from 16.6 to 55.8 with mean of 39.6 for the NS treatment and from 14.4 to 50.1 with a mean of 32.1 for the DS treatment. The mean PDPL was 18.9% higher in the NS than in the DS treatment. Genotypes BFS35 and SCR1 showed the highest and lowest PDPL, respectively, in the NS treatment, whereas BFS55 and SCR35 showed the highest and lowest in the DS treatment. Exposure to drought caused 100 SW to decrease by 10.7% from the NS treatment. SCR18 showed the highest 100 SW and SCR6 the lowest in the NS. SCR2 and SEC24 showed the highest and lowest 100 SW, respectively, in the DS treatment.For YLDH, the mean squares of genotypes, treatments, and genotype-by-treatment interaction also showed highly significant differences (P ≤ 0.001). Exposure to drought stress caused a yield penalty of 29.8% in the DS relative to the NS treatment. On the basis of seed yield under DS and NS conditions, the 64 genotypes could be classified into four differential categories (Fig. 3 and Table S1). In the first In the second yield category were genotypes with the lowest degree of adaptation and yield in the DS and NS treatments, including SCR1, SCR3, SCR15, SCR21, SCR26, SCR27, SCR29, SCR34, SCR35, BFS10, BFS18, BFS20, BFS23, BFS24, BFS30, and BFS75. The third category contained genotypes that showed high yield (higher than the check) in the DS treatment but low yields (lower than the check) in the NS treatment, including SCR4, SCR7, SCR8, SCR10, SCR13, BFS27, SCR16, SCR18, SCR19, SCR20, BFS14, SCR23, SCR24, BFS32, BFS39, BFS55, BFS67, and SEC24. Category 4 included genotypes that yielded well in the NS treatment but showed correspondingly lower yield in the DS treatment. These were SCR2, SCR6, SCR11, SCR12, SCR14, SCR22, SCR25, SCR28, SCR30, SCR31, SCR32, RCB745, BFS35, BFS47, BFS60, and SXB412. In total, 10 genotypes from group 4 had significantly higher yields than Hawassa Dume in the NS treatment. These were genotypes BFS35, SCR32, SCR12, SER16, BFS60, SCR6, SCR11, SCR30, SCR37, and BFS29. The yield advantage of these genotypes ranged from 29.2% for BFS35 (3819 kg ha −1 ) to 14.4% for BFS29 (3381 kg ha −1 ). Finally, nine genotypes (BFS55, BFS39, SER16, BFS32, BFS14, SCR9, SCR33, SCR20, and BFS29), gave yields significantly (P ≤ 0.05) higher than that of the check in the DS. Yield advantages over Hawassa Dume ranged from 27% for BFS55 (2579 kg ha −1 ) to 19.2% for BFS29 (2423 kg ha −1 ).The severity of drought stress effects on seed yield over all of the experiments, expressed as a drought intensity index, was moderate at 0.3. The drought tolerance indices for individual genotypes were also estimated (Table 2). Based on mean productivity and geometric mean productivity, genotypes SER16, BFS29, SCR37, BFS54, SCR9, and SCR33 were higher-yielding under the two watering regimes.In contrast, the genotype rankings by the indices of drought susceptibility, drought tolerance, and yield stability and yield reduction rate were different from those by mean productivity and geometric mean productivity. Accordingly, genotypes SCR20, BFS14, SCR13, BFS32, BFS39, BFS55, and SCR8 were considered tolerant to drought stress because of their low values for drought susceptibility index and yield reduction rate and high values for drought tolerance index and yield stability index. However, these genotypes were not among the highest-yielding lines under the NS condition. In contrast, genotypes SCR14, BFS47, SCR29, RCB745, BFS18, SCR35, SCR26, SXB412, SCR15, SCR31, and SCR34 were considered susceptible to drought stress, although some yielded well under NS condition.As shown in Table 3, YLDH was positively correlated (P ≤ 0.01) with SCRM (r = 0.5), RPF (r = 0.6), PDPL (r = 0.7) and SDPD (r = 0.6) under DS conditions. However, the significant correlation between YLDH and DM was negative (r = − 0.6). DM was also significantly negatively correlated with RPF, PDPL and SDPD. SCMR showed a positive significant correlation with RPF, PDPL, and SDPD. Under the NS condition, correlations between YLDH and all the other traits measured except for 100 SW (SCMR, PLHT, DM, RPF, PDPL, and SDPD) were positive and highly significant.Positive, significant correlations were also observed between SCMR, DM, RPF, PDPL, and SDPD. 100 SW showed no significant correlation with YLDH under NS and DS conditions.The average linkage grouping method using the DS variables identified by PCA produced four clusters of the 64 genotypes (Fig. 4). Cluster III was the largest, containing 35 genotypes (54.69%) followed by cluster I, which contained 23 genotypes (35.94%). Clusters II and IV were small groups containing four (6.25%) and two genotypes (3.12%), respectively (Table S1). Genotypes with high degrees of yield adaptation under DS were grouped in cluster I (Fig. 3, Table S1) and those with low adaptation under DS were grouped in cluster III. Genotypes SCR 15 and SCR 34 were grouped in cluster IV. These genotypes showed the least yield adaptation under both NS and DS conditions. Genotypes BFS14, BFS32, SCR13 and SCR20 were grouped in cluster II as genotypes that were not adapted under NS and highly adapted under DS conditions.The Mahalanobis distance between clusters is presented in Table 4. The highest inter-cluster distance between clusters I and II (D 2 = 1837.8) followed by clusters I and IV (D 2 = 1482.5) and clusters II and III (D 2 = 941.1). The lowest inter-cluster distance was found between clusters II and IV (469.9) followed by that between clusters III and IV (654.2).Dry-season weather conditions imposed the main stress in the experiments in this trial, especially in the non-irrigated treatment. The daily average maximum and minimum temperatures during the season were 30.7 °C and 11.3 °C, respectively. These temperatures are within the favorable range for common bean growth [7,28]. However, the total amount of rainfall received through the growing period was much lower than the 350-500 mm rainfall required by the crop, indicating moderate to high drought stress. Terminal drought stress, as experienced in this study, is the most important problem for common bean production in much of the developing world [29].In this study, the genotypes were evaluated under moderately high drought stress (corresponding to a drought stress index of 0.3), which was adequate to reveal genotypic differences, as seen by the differential response of the genotypes for the various traits measured. Ambachew et al. [14] and Beebe et al. [21] reported that evaluation of genotypes under conditions of extreme drought stress reduces seed yields to very low levels that could nullify the genotypic differences among test materials. However, high to moderate stress is useful for genotypic selection. It is also worth noting that because insufficient stress could result in selection of non-resistant genotypes, evaluation of common bean under high to moderate stress is considered ideal [2,29].The significant effect of the genotypes, treatments and the genotype-by-treatment interaction for the various traits indicated that the expressions of the genotypes across the two growing moisture regimes was not static and nonresponsive but rather adaptable. This result is in accord with those of Asfaw and Blair [2], Porch et al. [30], and Rezene et al. [31], who reported differential response of common bean varieties to drought-stressed and non-stressed conditions.The influence of drought stress on trait expression of the genotypes varied. Some characters were more sensitive to drought stress effects than others. Seed yield, days to maturity, plant height, 100 seed weight, leaf chlorophyll content, and pods per plant were highly sensitive to drought stress, whereas seeds per pod and vertical root pulling force resistance were the least sensitive. This difference could be attributed to differences between genotypes or to the nature of the traits. Significant reduction in days to physiological maturity as a result of drought stress was observed in the present study and previously [20,21]. Phenotypic plasticity has been reported in common beans subjected to drought stress [32] as a mechanism for adaptation. For example, some common bean genotypes respond to drought stress by hastening their maturity [7,19]. Earliness to harvest can be linked to drought escape and, as such, is a mechanism of drought tolerance [33]. Rao et al. [20] reported drought tolerance of early-maturing genotypes, given their lower net water requirement throughout their plant life cycle compared with late-maturing genotypes. Rezene et al. [31] and Singh [33] found that late-maturing genotypes suffer greater reduction in performance under drought stress than do early ones.Drought is known to affect plant photosynthesis [32]. The higher leaf chlorophyll content observed in the non-stressed treatment in this study was a result of the availability of moisture in the soil throughout the entire life cycle of the crop, which favors the vegetative growth and induced the plants to grow taller and produce more chlorophyll. Chaves et al. [34] reported that drought stress reduces leaf chlorophyll content. However, a small chlorophyll increase (4%) has been observed under drought as well [35]. Drought stress during the mid-pod fill stage can decrease leaf chlorophyll content, resulting in a progressive decline in photosynthetic capacity, although in our previous study [14], genotypes with higher leaf chlorophyll content produced higher seed yield than those with lower content.The higher mean performance of genotypes for vertical root pulling force resistance under drought stress conditions suggests that common bean responds to drought stress by increasing root growth. The role of vertical root pulling force resistance in common beans was first reported by Ambachew et al. [14] as a proxy root trait for measuring the roots' ability to obtain water. The higher the resistance to the upward pulling force, the greater was expected to be the root system attachment to the soil in which it was growing, suggesting higher root density and deeper rooting system. The same study found a significant correlation between vertical root pulling force resistance and seed yield.Yield-component traits are generally good indicators of overall drought stress, and our study showed significant reductions in number of pods per plant, 100 seed weight, and seed yield under drought conditions. Similarly, Asfaw and Blair [2] reported significant reductions in pod number per plant, seed number per pod, 100 seed weight and seed yield of common beans under similar drought-stressed conditions. The higher reduction in number of pods per plant in drought-stress as compared to the non-stress condition, may have been due to a reduction in flower fertilization under drought-stress conditions [14].The reduction in seed yield and 100 seed weight associated with drought is thought to be caused by a decrease in photosynthate assimilation and poor carbohydrate partitioning to the developing grain because of drought stress [20,31,35]. The strong association between photosynthate assimilation and better remobilization of carbohydrates by drought-tolerant genotypes permits them to maintain high 100 seed weight irrespective of the moisture content of the soil [33].This study has implications for plant breeding. Understanding of the relationships among plant traits under drought-stress should prompt common bean breeders to make better yield measurements and record drought-response characteristics in more detail. Among the yield traits, we found, as also previously reported [2,14,21,31], a positive significant correlation between seed yield and pods per plant and seeds per pod under drought and non-stressed conditions. The success of hybridization in a breeding program depends on the choice of distant parental lines. Crosses that involve parents selected from the clusters characterized by maximum genetic distance in this study are expected to result in maximum genetic recombination and variation in subsequent generations once the lines are introduced into small red bean breeding for Ethiopia or other countries.The adaptation of genotypes to drought-stress conditions and their good performance in a well-watered environment were associated with leaf chlorophyll content, vertical root pulling force resistance, number of pod per plant, and number of seeds per pod. Most of the genotypes showed adaptation to drought stress by reducing their days to physiological maturity, thereby minimizing the effect of drought. Genotypes BFS55, BFS39, BFS32, BFS14, SCR9, SCR33, and SCR20, which yielded well under the drought-stressed condition, may be good sources of resistance to this stress. Hybridization between genotypes selected from clusters I and II will provide the maximum genetic recombination and variation for drought tolerance.","tokenCount":"4333"} \ No newline at end of file diff --git a/data/part_3/4576959104.json b/data/part_3/4576959104.json new file mode 100644 index 0000000000000000000000000000000000000000..92b530b5a8a1a2ee7816c821d04f56f138197c10 --- /dev/null +++ b/data/part_3/4576959104.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"6bfb95b8139e5f8a3c5114ca6c41bd04","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/a938b8ec-323d-46bc-8bfa-919f28a054da/retrieve","id":"382813738"},"keywords":[],"sieverID":"a91b1633-9865-4a02-a983-73116d6cf7cc","pagecount":"52","content":"Our mission is to work with partners to achieve food security, well-being, and gender equity for poor people in root and tuber farming systems in the developing world. CIP achieves this mission through research and innovation in science, technology, and capacity strengthening. www.cipotato.org CIP is a member of CGIAR. CGIAR is a global research partnership for a food-secure future. Its science is carried out by 15 Research Centers in close collaboration with hundreds of partners across the globe. www.cgiar.org facebook.com/cipotato @cipotato cip_potato www.cipotato.org Annual Report 2016 Nutrition in a Climate Changing World NUTRITION IN A CLIMATE CHANGING WORLDIt is a privilege to serve an organization that is working with partners to achieve food security, wellbeing, and gender equity for poor people in root and tuber farming and food systems worldwide.The International Potato Center's Board of Trustees remains firm in its commitment to provide programmatic governance and the financial oversight and leadership that ensures the Center's effective and efficient management. It is a privilege to serve an organization working with partners to achieve food security, wellbeing, and gender equity for poor people in root and tuber farming and food systems worldwide.In 2016, CIP continued to gain ground in accomplishing our 2014 strategic objectives to deliver impact at scale. CIP set a target of reaching 10 million households in Sub-Saharan Africa by 2020 with orange-fleshed sweetpotato. A full 30% of that ambitious target has been met.The Agile Potato for Asia Program is working to mitigate the impact of climate change, high population density, and land degradation on the world's poor. Significant progress has been made in developing fastmaturing disease resistant varieties that provide flexible planting and harvesting times, without putting undue pressure on dwindling land and water resources.The Seed Potato for Africa projects are on track to reach CIP's goal of providing 600,000 smallholder farmers in Africa's potato growing regions with high-quality seed. By the end of 2016 the program had reached 23% of its target.The appropriately named Game Changing Solutions strategic objective, which uses advanced science to accelerate research, has shown significant results in Ugandan field trials in combatting the greatest threat to potato-late blight. This advance, though in its infancy, could indeed be a game changer for smallholder farmers. These are but a few of the notable achievements on the scientific front that CIP reports for this past year.Still recovering from a reduction in Window 1 and Window 2 funding over the past two years, CIP saw a leveling in revenues for 2016. Total revenue reported in 2016 was $58.7M. The revenue from Windows 1 and 2 represents a decrease of $6.5M, while Window 3 and Bilateral increased by $8.1M when compared to 2015. CIP's operating expenses in 2016 are $59.7M and include a reduction of $0.8M from 2015.The short-term solvency indicator (liquidity), which measures the number of days of working capital to fund expenditure excluding depreciation, was 105 days as of December 31, 2016. The long-term financial stability indicator (adequacy of reserves), which measures the number of days of unrestricted net assets, was 90 days (both indicators are within the CGIAR recommended norms). The indirect cost ratio of the Center was 15.2% for 2016. The ratio has been calculated following CGIAR Financial Guidelines No. 5 and expresses the relation between direct and indirect costs.CIP's financial indicators reflect the Center's continued financial health, though no institution is immune to financial or operational risk. To mitigate risk, the Board's Audit Committee ensures oversight of CIP's risk management policies and plans. In a much broader sense, the Board oversees Center operations in the interest of donors and stakeholders.Outstanding Achievements in Biofortified Orange-Fleshed Sweetpotato, Eliminating Childhood Blindness and Contributing to Reduction in StuntingThe year 2016 was outstanding for CIP. Our groundbreaking Orange-fleshed Sweetpotato (OFSP) work received important accolades. Three of our scientists, Dr. Maria Andrade, Dr. Robert Mwanga, and Dr. Jan Low were honored with the 2016 World Food Prize for enriching sweetpotatoes, resulting so far in health benefits for 10 million people (about 3 million households) across 14 countries in Sub-Saharan Africa. This prize was in acknowledgement of the single most successful example of biofortification to date. It is positive recognition that agricultural interventions can have a positive effect on nutrition, in this case, vitamin A deficiency. In addition, the entire CIP Orangefleshed Sweetpotato team was awarded the Al-Sumait Prize for Food Security for this work. The prize honors individuals or institutions who help to advance economic and social development, human resources development and infrastructure on the African continent. CIP's 45th anniversary celebrated in 2016 marked a milestone in our existence and was a history making year itself. Together with our partners around the world, we had the opportunity to reflect on CIP's past achievements in food security and nutrition and project a vision for the coming decades.CIP's 45th anniversary, celebrated in 2016, marked a milestone in our existence in what was a history making year. Together with our partners around the world, we had the opportunity to reflect on CIP's past achievements in food security and nutrition, and project a vision for the coming decades. Clearly, we have laid a firm foundation of upstream and downstream research and have made significant achievements at every step along the value chain. CIP's founding Director General, Richard Sawyer, and his colleagues would be pleased with the role CIP plays in agricultural research for development 45 years after its founding.Agriculture's role in nutrition came to the fore in 2016 through the World Food Prize and the Al-Sumait Prize for African Development for Health and Food Security. The World Food Prize recognized the role of three CIP researchers, Dr. Jan Low, Dr. Maria Andrade and Dr. Robert Mwanga, and HarvestPlus' Dr. Howarth Bouis for their work on biofortified crops, including sweetpotato, to reduce hidden hunger and specifically vitamin A deficiency (VAD), one of the most pernicious forms of undernourishment in the developing world. The CIP team proved that Sub-Saharan Africa communities would accept biofortified orange-fleshed sweetpotato (OFSP) into their diets, that VAD could be prevented by eating it, and that countries would adopt it. The Al-Sumait Prize for African Development for Health and Food Security was awarded to the CIP Resilient Nutritious OFSP Team for its work linking agriculture and nutrition to introduce vitamin A biofortified OFSP into the diets of mothers and children in Africa. These two awards are positive recognition that crops farmers already grow, when improved, can have a real impact on the health and welfare of the communities where they live. They are proof that when we breed crops for micronutrient traits, resistance to biotic and abiotic stresses, and market preference we can make a difference in the lives of women, children and men who otherwise will face hardships due to hidden hunger and poverty. This is certainly the case for OFSP, where 10 million people across 14 countries have benefitted from the vitamin A richness of this crop. CIP, along with our partners and with the support from our donors, has led the development of the most compelling evidence for going to scale with OFSP as a model for biofortified crops. We have built robust evidence to demonstrate that just 125 g/day of OFSP meets the daily vitamin A needs of a young child. We now have conclusive evidence that there is less childhood blindness because of this work and there is a growing body of work that indicates that stunting may be reduced as well. From the outset, we learned that nutrition education was critical to ensure that OFSP was incorporated into the diets of pregnant and lactating mothers and young children. Today OFSP is now firmly on the table in 14 Sub-Saharan African countries.OFSP is not alone in this regard. It has certainly led the way but there are other crops. In the CIP pipeline, biofortified potatoes rich in iron, zinc or both will soon be a reality and will lead the charge in fighting anemia and wasting in places like Peru, the home of the potato, which paradoxically is also the country with the highest rate of anemia in South America.In celebration of our 45 years I think it is appropriate to acknowledge the legacy of the famous Peruvian potato scientist Carlos Ochoa that lives on through the CIP Biodiversity Center, also known as our genebank, where we hold the largest collection of potato and sweetpotato germplasm in the world. It is at the core of CIP's research, continuing to grow and remaining on the cutting edge of agricultural conservation and preservation. This work is even more important today as the reality of climate change threatens these vital food security crops. It is not just a collection of germplasm, but a resource held in trust to be used by researchers around the world to improve resiliency to climate change, nutrition and productivity.CIP has achieved much over the past 45 years. We have been a key player in research for development of potato and sweetpotato. Although the foundation of our work has been focused on breeding locally adapted and consumer preferred varieties that are tolerant to biotic and abiotic stresses, we work with our partners across the entire value chain -developing the best varieties, supporting the establishment of quality seed systems, ensuring that famers have access to clean planting material, and working with and linking to private sector entrepreneurs to process their products after harvest. We focus on gender inclusion, and the empowerment of women throughout the process of value chain development and capacity strengthening is at the core of all that we do.In many parts of the world 2016 was recognized as one of the hottest years on record and severe weather events like El Niño and weather shocks, like the drought in Ethiopia and Hurricane Matthew in Haiti and the Caribbean, have underscored the necessity to prepare for a climate changing world. This annual report speaks to CIP's efforts to improve nutrition in that climate changing world.CIP has always been proud to be the lead center for the CGIAR Research Program on Roots, Tubers and Bananas (RTB); this year is notable in that this program has been approved as one of the 11 CGIAR Research Programs that are starting to work in 2017. This represents a strong endorsement of RTB's success and sets it up well for Phase II as a refocused Agri-Food System CRP with a broader vision. CIP congratulates RTB and all the participating centers for this success.I am proud of CIP's work and the contributions that we, along with many partners, make toward ending poverty, eliminating hunger, ensuring gender equity, combating climate change, and improving our environment. It is through our partners and funders that we can have an impact and for this I am thankful.Director GeneralWhen boiled, a single mediumsized potato contains about half the daily adult requirement of vitamin C and significant amounts of vitamin B, iron, potassium, and zinc.More than a billion people worldwide eat potato.China is the world's largest producer, harvesting more than 73 million tons of potato a year.Potato produces more food per unit of water than any other major crop.Potato can grow in almost any climate, from sea level to 4,700 meters above sea level.There are about 5,000 different varieties of potato, most of which are found only in the Andes.Grown in about 130 countries, potato is the third most important food crop after rice and wheat (1 ha of potato can yield two to four times the food value of grain crops).Just 125 g of fresh orange-fleshed sweetpotato root contains enough beta carotene to provide the daily vitamin A needs of a preschool-aged child. The crop is also a valuable source of vitamins B, C, and E.Sweetpotato is also a healthy, cheap animal feed. Studies suggest that livestock fed on sweetpotato vines produce less methane, meaning its use could potentially mitigate global warming.More than 105 million tons are produced globally each year, with 95% in developing countries.Worldwide, sweetpotato is the sixth most important food crop after rice, wheat, potatoes, maize, and cassava, but it ranks fifth in developing countries.Sweetpotato is a storage root, not a tuber like the potato.Sweetpotato can grow at altitudes from sea level to 2,500 meters above sea level, and comes in varieties ranging in color from white to yellow to orange to purple. CIP scientists, Julius Okello and Souleimane Adekambi, in collaboration with researchers from the Swedish University of Agricultural Sciences and Cornell University, designed a two part experiment to test strategies for endearing OFSP to children, not just momentarily but for sustained periods (\"for life\"). The first experiment involved the use of behavioral \"nudges\". The nudges were: an OFSP-song, a world-renown soccer player (inspirational character) and an age-appropriate communication, all of which associated OFSP consumption with good health and high academic performance. The study was conducted as a field experiment. About 1,000 students recruited from grades three and four in 20 schools were randomly assigned to treatments comprising the three nudges and a control, and their consumption of OFSP observed twice a week over four weeks. Reduction in plate waste (leftovers) estimated children's acceptance of OFSP.Results of the first experiment were as interesting as they were exciting. The nudges caused an immediate spike in OFSP consumption, and did so over the duration of the experiment. Comparative statistical tests found differences in the effectiveness of the OFSP-song, motivational character and age-appropriate communication in promoting OFSP consumption. The OFSP-song had the strongest effect, reducing plate waste from 31% (control) to 18% (treated). The results were even stronger (plate waste averaging only 12%) when school and socioeconomic effects were controlled for. Similarly, the motivational character reduced plate waste to 17%, but weaker (plate waste averaging 13%) after controlling for school and socioeconomic effects.The second component of the experiment examined the effect of the type of promotional information on OFSP consumption among 556 third and fourth grade children randomly drawn from 10 schools. It also yielded very interesting results. Students exposed to promotional messages that focus on instrumental benefits (health, nutritional value) of OFSP ate more OFSP initially but less later. This shows that such messages are ineffective. The opposite effect was observed among children exposed to promotional messages that focused on experiential benefits (taste, appearance) of OFSP consumption. Such children consumed more of OFSP for a prolonged period of time, that is, they adhered to healthy food choices.To combat malnutrition and hunger, and boost student academic performance, the federal government of Nigeria introduced school feeding in elementary schools in 2004. Implemented with the financial support from the International Fund for Agricultural Development (IFAD) and The European Union (EU), FoodSTART+ develops, validates and implements effective partnership strategies with IFAD investment projects to promote roots and tuber crops for food security. \"It seeks to disseminate strategies that can assist smallholders and other constituencies with enhancing business skills and developing market opportunities, \" says Andre Devaux, CIP's regional director for Latin America.The PMCA -first developed in Peru via sponsorship from the Swiss Agency for Development and Cooperation -has helped to increase the competitiveness of native potato value chains and to improve the livelihoods of Andean small-scale farmers, their families and their communities. It has subsequently been piloted in both Sub-Saharan Africa and in Asia with adaptations made for different root, tuber and vegetable market chains. It is still used in the project implemented by CIP -in collaboration with IFAD -in the Andes, taking advantage of the lessons learned from its validation in other parts of the world.The PMCA approach has spurred the establishment of Farmers Business Schools (FBS) developed by CIP through an Australian Centre for International Agricultural Research (ACIAR)-funded project that aimed to link vegetable farmers with key markets in West and Central Java, Indonesia. FBS is a participatory action learning approach to support farmer groups' participation in -and benefit from -agricultural value chains. Guided by a value chain framework, the FBS comprises a series of group-based experiential learning activities over a production-marketing cycle while interacting with other chain actors and stakeholders. FoodSTART, in partnership with the IFAD investment project CHARMP2, brought and adapted the FBS in the Philippines. The FBS is now being rolled out in India and in Vietnam through FoodSTART+ with a broader model integrating climate change and gender perspectives.\"FBS builds farmer capacity to work with other market chain actors, to strengthen their business and marketing skills as a necessary compliment to PMCA for the development of new agribusiness, \" Devaux says. \"Participants are seeing new and additional profits through increased value addition and sales\" of potato and other crops.The cross-learning effort has powerful potential reach. Successfully applying information gleaned from work in the Andes to other parts of the world validates the approach in other regions, creates opportunities for it to be improved and demonstrates CIP's efficiency at using donor funds. These awards highlight \"how well CIP scientists have developed the ability to work closely with our partners not just to achieve agronomic impacts and nutritional gains, but something even more important: improving the quality of life for people, \" says Campos.The World Food Prize underscores how \"the proper combination of sound biological sciences and social sciences pays off. \" The implications for farmers are powerful, he adds. Among them are greater crop yields, larger incomes, better health and increased food security. A benefit that's less readily apparent: farmers who had previously spent as much as a quarter of their annual income on fungicide may now conserve that money for other uses. \"2Blades felt our project was a great example of developing a product from upstream research that will reach all the way down to the smallholders in Africa, \" he adds. Farmers participating in the field trials \"know Victoria well and were happy to see it\" in its late blight-resistant form.In the pipeline behind Victoria are other emerging late blight-resistant varieties farmers will need, including Shangi, and Tigoni, since \"you don't want to put all your eggs in one basket, \" Ghislain says. Substantial additional work is needed on them, Ghislain says, but he suspects the varieties under development \"will be very attractive across East Africa. \" Trials continue, including substantial equivalence tests to ensure that late blight resistance was the only trait added in the transgenic Victoria, but CIP has its eye on the future. \"Three years from now, if all goes well, planting materials of the new lateblight-resistant Victoria will be handed over to farmers, \" says Ghislain.Funding from two donors -USAID and, more recently, 2Blades Foundation -have advanced this vital work, Ghislain says. Staying out in front of the scourge of late blight is critically important for the global potato value chain.\"2Blades felt our project was a great example of developing a product from upstream research that will reach all the way down to the smallholders in Africa. \"government, a factor that has helped boost its acceptance, says Willy Pradel, an agricultural economist in the Social and Nutritional Sciences Division. Industry loves its processing quality; consumers, its flavor. Now, the search is on for a new variety that can replicate the success of C88.Today, roughly one-fourth of all potato planted in Chinarepresenting 1.25 million ha -consists of more than CIPrelated varieties, including C88 and five others, each representing more than 100,000 hectares. As a point of reference, CIP varieties account for two million ha of the total global farmland.Adoption-impact studies are invaluable in terms of quantifying the success of a given variety at every point along the value chain, notes Hareau.To date, more than 160,000 hectares of Cooperation 88 (C88) are planted each year in China, says Guy Hareau, leader of CIP's Social and Nutritional Sciences Division.\"It is one of the most planted single CIP varieties in the world, \" he says.Donor: The National Science Foundation, The Bill and Melinda Gates Foundation Country/Region: Sub-Saharan Africa Jointly funded by The National Science Foundation (NSF) and The Bill and Melinda Gates Foundation, with NSF also managing the project, the database was built at Cornell University's Boyce Thompson Institute which wrote software to analyze the data CIP had processed.\"The whole idea of the project was to better understand the virus pressure in different parts of Africa, \" says Kreuze. Breeders take the results into account as they seek new varieties because \"what you breed in one region might not work in another;\" regulators, seed producers and other groups can also use it to improve their own practices. In addition, countries and regions whose climates mirror those of African nations can also make use of the database.Both The Gates Foundation and the NSF are acutely aware of the critical need for this kind of baseline research and discovery, Kreuze adds. \"The work they made possible enables future impact\" at all points along the value chain.Country by country, CIP researchers combed the whole of Sub-Saharan Africa for nearly two years in a bid to find and name every virus that afflicts sweetpotato in the region.The team wrapped thousands of samples of leaves in coffee filters and plastic bags, tossing in silica gel to preserve them -to render them un-infective -before shipping them to CIP's Lima headquarters, where the fragmented bits of viruses were sequenced and identified using a specifically developed computer software. Before this work occurred, \"we knew very little about which viruses were causing which problems, \" says Jan Kreuze, sub program science leader, Crop Systems and Intensification and Climate Change Division and the project leader. A plant would display clear signs of disease, \"but you would not necessarily know which virus was causing them. \"The fruits of all this labor -gathered in a first-of-its-kind sweet potato virome database -are now available on Cornell's website: http://bioinfo.bti.cornell.edu/virome \"The whole idea of the project was to better understand the virus pressure in different parts of Africa. \"Donor: Irish Aid Country/Region: Mozambique, Sub-Saharan Africa In Mozambique's Niassa Province, approximately 44% of children under five in the region were found to be stunted due to malnutrition in a 2013 study. With support from Irish Aid, CIP has taken action to help these children by undertaking a four-year project promoting orange-fleshed sweetpotato (OFSP) as both a source of income and of vital nutrients for more than 25,000 families.\"From the outset\", says CIP's Benjamin Rakotoarisoa, project manager, \"CIP worked closely with provincial government leaders to implement the work in eight districts of Niassa. Involving the authorities was the key strategy to get OFSP beyond the intervention districts, \" he says. With government support, now all 16 districts of Niassa are multiplying and producing OFSP.That early commitment has yielded numerous positive results with hundreds of field technicians trained in vine multiplication and over 28,000 households with children or pregnant women consuming more of the vitamin A-rich storage roots. Niassa's provincial governor has not only chosen OFSP as the emblem of the province but recommended OFSP vine multiplication to the agricultural leaders of other districts in the province.With Phase One now concluded, the project's Phase Two launches its next four-year term in 2018. In 2017, the work will expand into another province, Inhambane. The drier climate there will require greater reliance on irrigation and on the Triple S method for careful root-based planting material conservation. Irish Aid has long embraced tenets underpinning this project, said Jan Low, principal scientist -in particular working closely with local government in order to continue to advance awareness of OFSP's economic and nutritional benefits. \"Irish Aid is a donor who strongly supports programs to resolve food insecurity and undernutrition, \" she said. Due to the dogged commitment of Rakotoarisoa's team and others in the field in cultivating those ties, \"the provincial government of Niassa is now investing in taking this integrated agriculture/ nutrition approach using OFSP to scale in all the districts not yet served by the CIP-led project. \" The project in the highlands of the Cajamarca and Lima regions, which is supported by the International Fund for Agricultural Development (IFAD), has also provided training in nutrition and market chains, as well as seed potato production, integrated pest management and sustainable agriculture, to strengthen farm resiliency in the face of climate change. Miguel Ordinola, who coordinates CIP Projects in Peru, noted that farmers in the Lima highlands have the advantage of living relatively close to the capital, which facilitates their ability to access new markets.The market for native potatoes has grown steadily over the past decade, largely thanks to CIP's regional Papa Andina project (2003)(2004)(2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012). Under Papa Andina, CIP created a coalition in Peru called 'Potato Innovation and Competitiveness' (INCOPA), which brought together representatives of government institutions and businesses -supermarkets, restaurants, packaged snack manufacturers and exporters -to build new markets and value chains for native potatoes.In the Puno region, where the project is funded by The European Union, and administered by the Andean Community, agronomists supported by CIP have helped farmers evaluate various zinc-and-iron-rich native potato varieties using participatory varietal selection, to determine which ones are best for local conditions. The project also produced materials on child nutrition and delivered nutrition training to rural women at 48 community health posts in 2016, while contributing to a regional nutritional and food security plan. At the same time, technicians provided training in appropriate farming practices while helping farmers find better markets for their native potatoes and produce a popular dried potato product called tunta for additional income.Ordinola observed that before Papa Andina, neither native potatoes nor chips were sold in Lima, nor were they exported. Now those colorful potatoes and chips can be found in grocery stores on several continents and on the menus of Peru's best restaurants.Papa Andina resulted in greater potato production and consumption in Peru, and a 30% increase in prices, and the market for native potatoes continues to grow. \"Papa Andina is a good example of how innovation can create value and facilitate the development of value chains by the private sector, \" Ordinola said.CIP's current efforts in the Peruvian highlands are strengthened by favorable market conditions and the knowledge that CIP researchers gained over the past 15 years about native potatoes, factors that contribute to malnutrition and the importance of combining farmer training with health education.\"Many of the lessons we've learned over the years are now helping us to achieve results in less time, \" Ordinola said.Seizing the Moment to Help End Hidden Hunger Donor: The Bill and Melinda Gates Foundation, CGIAR Country/Region: Nigeria, Tanzania/Sub-Saharan Africa Almost a quarter of Sub-Saharan Africans suffer micronutrient malnutrition, or \"hidden hunger\", a condition that disproportionately affects women of reproductive age, infants and young children. Deficiencies of essential micronutrients such as vitamin A, iron and zinc can cause an array of health problems and, in some cases, early death.Together with partners, CIP leads a CGIAR initiative funded by The Bill and Melinda Gates Foundation called Building Nutritious Food Baskets (BNFB) that uses a multi-crop (food basket) approach to promote four biofortified crops in Nigeria and Tanzania: orange-fleshed sweetpotato, vitamin A cassava, vitamin A maize and high iron beans. The three-year project has brought together CIP, the International Center for Tropical Agriculture, the International Maize and Wheat Improvement Center, the International Institute of Tropical Agriculture, HarvestPlus, the Forum for Agricultural Research in Africa, the Governments of Nigeria and Tanzania, and national partners to test a model for scaling up the production and utilization of biofortified crops based on the hypothesis that the success of scaling up is dependent on a supportive policy environment, strong institutional capacities and proven technologies.\"We want to start with biofortified crops that are available and begin to demonstrate how to scale up to reach the target population, \" said Dr. Adiel Mbabu, CIP regional director for SSA and BNFB project advisor.The research centers and their partners also strengthen the capacity of national institutions and communities by using a sustainable, step-down model that allows them to take ownership and drive their own agenda. By the end of 2016, 192 change agents, including 45 women, had been trained in the design and implementation of gender sensitive programs to get more farmers growing biofortified crops. At the same time, the project works with the public and private sectors to ensure that there is a sustainable supply of seed for the biofortified varieties promoted.The BNFB consortium advocates for increased investment in biofortified staples as a sustainable way to combat hidden hunger by catalyzing policy change and efforts to mobilize resource commitments by governments, developmental partners and the private sector. In 2016 -the project's first year of implementation -it mobilized US $235,000 for biofortified crops programs in Nigeria. Its ultimate goal is to mobilize US $10 million for biofortified crops in Nigeria and Tanzania by the end of 2018.By catalyzing demand and investment in biofortified crops while strengthening institutional and community capacities, BNFB aims to enable 2.175 million households in Nigeria and Tanzania to begin growing and consuming biofortified crops. In the process, it expects to create a model for accelerating and scaling up the dissemination of biofortified crops that can be replicated in other countries or regions.Dr. Hilda Munyua, BNFB Project Manager, noted that the awarding of the 2016 World Food Prize and Al-Sumait Prize for African Development and Health and Food Security to scientists at three of the organizations collaborating on BNFB is especially propitious, since those prizes raise the profile of their work with biofortified crops.\"Through BNFB, we are calling upon key actors in biofortification to 'seize the moment' and help combat hidden hunger. \"A collaboration between CIP, NASA and the SETI Institute is helping to determine whether potatoes can be grown under the harsh conditions of Mars.In 2016, CIP teamed up with Julio Valdivia-Silva, a research associate with the SETI Institute who has worked at NASA's Ames Research Center and now works at the University for Technology and Engineering (UTEC) in Lima. After research in several deserts, Valdivia determined that the soil in Pampas de la Joya -a hyper-arid section of Peru's coastal desert -is comparable to Martian soil in its lack of organic material and its high levels of salt and oxidants.Valdivia collected and sent 500 kilograms of that soil from Pampas de la Joya to CIP's shade houses in Lima, where Amoros and colleagues tried to germinate true potato seeds, maize, beans and other crops in it, without success.They then placed potato plantlets in germination cups with organic material and planted them in the soil from La Joya. They tested 41 of the most resilient clones in CIP's lowland tropical virus-resistant (LTVR) population and 24 drought-tolerant native potatoes from the Andigena group using thistechnique. While most of the native potatoes died shortly after their roots entered the 'Martian' soil, a few of them and most of the LTVR clones managed to grow and produce potatoes.\"It was a pleasant surprise to see that potatoes we have bred to tolerate abiotic stress were able to produce tubers in this soil, \" Amoros said. He added that one of the best performing LTVR clones was salt-tolerant CIP396311.1, which was recently released as a variety in Bangladesh for cultivation in coastal areas with high soil salinity.Together with students at UTEC, Valdivia built a simulator of Martian conditions for subsequent experiments in 2017 to see if the clones and varieties that produced potatoes in the first experiments can be grown under atmospheric conditions comparable to those of Mars.The Martian atmosphere is 95% carbon dioxide, which could be conducive to potato farming, since plants use CO2 for photosynthesis. However, other Martian conditions are extremely harsh: the average temperature is 10º to 20º C, with lows of -70º C; UV radiation is much more intense than on Earth, whereas gravity and atmospheric pressure are much lower. Valdivia said that growing potatoes on Mars would probably require a dome, and maybe biotechnological modification of the potato or soil.\"We want to know what the minimum conditions are that a potato needs to survive. \" Amoros noted that whatever their implications for Mars missions, the experiments have already provided good news about potato's potential for helping people to adapt to extreme weather conditions and environments on Earth that will become more common due to climate change.\"The results indicate that our efforts to breed varieties with high potential for strengthening food security in areas that are affected, or will be affected by climate change, are effective, \" he said.The CGIAR Research Program on Roots, Tubers and Bananas (RTB) successfully concluded Phase I in 2016 and has now commenced the second phase of the program following the approval of a compelling and highly-rated Phase II proposal, with an enhanced focus on scaling. As both the lead center for and part of the broader RTB alliance with diverse and complementary partners, CIP has played a central role in the program's success while also benefitting from the shared learning and perspective across RTB's crops and partners. Root, tuber and banana crops, including potato and sweetpotato, are some of the most important staple crops in the world's poorest regions. They provide around 15% or more of the daily per capita calorie intake for the 763 million people living in the least developed countries. Often rich in key nutrients, such as with orange-fleshed sweetpotato, RTB crops can significantly improve nutrition and food security. However, these crops also share several common challenges, including that as they are propagated clonally rather than with true seeds this allows yield-reducing pathogens to build up over time, while the crops' bulk and perishability put pressure on postharvest innovation. Considerable progress was made in Phase I in tackling these and other challenges.2016 also saw the conclusion of the three-year 'Expanding utilization of roots, tubers and bananas and reducing their postharvest losses' (RTB-ENDURE) project, which addressed postharvest management of potato, sweetpotato, cassava and banana. The Participatory Market Chain Approach (PMCA) developed by CIP was adapted including a gender lens and guided the design of the interventions. Through carefully facilitated processes, the project's multi-agency research teams tested and validated postharvest innovations with the greatest potential to satisfy food consumption and Led by Dr. Graham Thiele income generation needs, including increasing the shelf-life of the crops and improving storage and processing technologies. In order to manage the high perishability of these crops, the project used an innovative approach that encompassed the whole value chain, from the production to the consumption end. Instead of focusing on a single technology it worked through a combination of innovations in: crop varieties, harvesting, market chain organization, and postharvest and processing technologies.A cross-center initiative to improve the understanding and management of seed degeneration -reductions in yield and quality due to the accumulation of pathogens in planting material over successive planting cycles -has shed new light on degeneration's dynamics and its management.A common protocol was designed to estimate degeneration rates under different conditions, with the purpose of understanding quantitatively the effect of degeneration on yield and creating models that will help to predict the effectiveness of management practices. Data suggested strong and complex interactions among host, pathogen, weather conditions and seed management on degeneration rates. For example, research in Africa showed that farmers maintain sweetpotato viruses in local landraces at manageable levels using roguing (eliminating diseased plants) and positive selection (choosing healthy seed for the next planting cycle). However, some viruses are asymptomatic and may cause more yield loss in the long run than viruses with visible symptoms because farmers can't identify infected plants for removal. Potato scientists in Ecuador demonstrated that reversion (natural reduction of pathogen incidence within a seed lot) takes place at higher altitudes, confirming the validity of a traditional practice of moving seed to high altitudes to 'clean' it. Taken as a whole, the results strongly suggest that host resistance in combination with onfarm management techniques and strategic use of clean planting material can lead to a cost-efficient integrated seed health strategy, especially appropriate for low-income systems.As Phase II gets under way, RTB scientists will pay particular attention to scaling the most promising technologies giving consideration to gender based barriers. Some technologies such as OFSP are already off to a flying start. New alliances including with Wageningen University & Research bring new insights into the scaling process. This will add value for CIP and for the RTB alliance as a whole so that we can have more OFSPtype success stories. Prospects are looking brighter for ensuring that great research will make even more of a difference to the livelihoods of those who depend upon RTB crops. The long-term financial stability indicator (adequacy of reserves), which measures the number of days of unrestricted net assets that can be used to cover CIP's operations, is 90 days. ","tokenCount":"6066"} \ No newline at end of file diff --git a/data/part_3/4579597766.json b/data/part_3/4579597766.json new file mode 100644 index 0000000000000000000000000000000000000000..90f66b9963fd2aa3530d99b15a58fe4048f6a778 --- /dev/null +++ b/data/part_3/4579597766.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"2a0f2326d964b9f85cd19bacaf04e326","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/c6d1af0e-0317-424b-bff8-3f0236e02d2e/retrieve","id":"1447777232"},"keywords":["facilitation","M&E","partnerships"],"sieverID":"f9024004-be82-4a73-b402-099aed8981ad","pagecount":"5","content":"T he High Value Agriculture Project (HVAP) was designed to reduce poverty and vulnerability in the rural areas of Nepal. Starting in February 2011, this project came to an end in September 2018. During these years, it developed and applied a tablet-based M&E system for tracking results, helping show all outputs, outcomes and impact. However, although the project efficiently tracked results, it regularly found it difficult to demonstrate how these results were achieved, and to share information with the national and international donors.Recognising that managing knowledge is crucial to any project, the projects funded by the International Fund for Agriculture Development (IFAD) in Nepal were quick to see the potential benefits of an experience capitalization approach. To enhance the knowledge management (KM) skills at HVAP, two team members (the monitoring and evaluation expert (myself) and the gender and social inclusion expert) accepted the invitation made by CTA to attend two experience capitalization events in Goa and Pondicherry, India. Experience capitalization was presented as an approach that could help us gather and share our project's knowledge. We saw that we could use it to demonstrate how results have been managed; and how our project innovations are helping improve the livelihoods of rural people.The main lessons learnt were then shared with other HVAP team members, with the representatives of other IFAD-funded projects working in Nepal, and also with projects outside Nepal.After the initial experience capitalization events organised by CTA in India, our team put together an orientation programme to transfer and pass on the experience capitalization knowledge to all our colleagues. This took place in April 2017 in Surkhet, in the western part of the country. Altogether, 35 project staff from different thematic teams and districts participated in the event.IFAD has helped add the experience capitalization approach to the activities of its regional projects, supporting their efforts to improve their knowledge management strategies and to develop richer impact stories that can be shared with key audiences. The lessons learnt with this approach during the past 2 years are now being adopted, and the approach itself is also being used by other projects as part of their knowledge management strategy.But we also made use of another opportunity. For several years, the IFAD-funded projects in Nepal have been holding thematic team meetings for planning, M&E and KM, and project staff meet every 6 months to share and exchange project results and knowledge. This is part of an ongoing Community of Practice (COP) that also considers the use of e-mails and social media, involving team members working at different levels. With the purpose of sharing the knowledge gained during the training workshops in India, we organised an experience capitalization event in Pokhara, in January 2018.More than 30 participants attended this meeting, including project managers, planning officers, M&E specialists, information system experts and KM specialists from the four projects, as well as from the IFAD head office in Kathmandu. Interested in learning about the approach, five government officials also joined, including the joint secretary of agriculture and senior agriculture officers. The event was organised together with the IFAD-Nepal country programme officer and the four project managers, and was facilitated by Jorge Chavez-Tafur from CTA, in close coordination with local facilitators. Information about the entire process was successfully shared with project staff and participants looked in detail at, and shared information from, 14 experiences selected from across the different projects being implemented.Our involvement in CTA's experience capitalization project helped us complete and share one case study -Business Literacy Classes for enhancing Nepalese women's access to knowledge, skills and resources. This was published by CTA together with other cases prepared by projects and organisations in India, and was included in one of the booklets that have been printed and distributed throughout the world (with cases from East and West Africa, South East Asia and from the Pacific region). But this was not the only product:• The book entitled Journey of Prosperity was published a few months later, including the stories of 30 Nepalese farmers. This book was written in Nepali and uploaded to the project webpage (http://www. hvap.gov.np/ne/successstories.php), and shared with all project stakeholders, including agribusinesses and service providers, as well as farmers themselves.One of these stories, for example, shows how Goma Chaudhary went from earning 30,000 rupees to 3 lakh rupees in 3 years, largely as a result of the support provided. This has also been shared on the IFAD Asia site;• Five practice briefs were completed, describing the steps followed by the project and the results seen: • One policy brief was also completed, presenting the HVAP theory of change and the main lessons learned by all those involved in its implementation.Together with the practice briefs, this is also being printed and distributed.The completion of these documents has already had positive consequences. The main lessons and recommendations presented in the document presenting the Business Literacy Classes have been adopted by the Accelerating Inclusive Markets for Smallholders Project (AIMS) project in Cambodia and by the Rural Enterprise and Remittances Project (RERP) project in Nepal. The innovative business classes that we described is now helping other farmers identify the relevant value chain actors, explore market opportunities, and calculate the costs involved.In a similar way, the analysis of the tablet-based M&E system pioneered by the different HVAP teams was adopted by the AIMS project in Cambodia, as well as by two projects in Nepal. The systems efficiently track individual household outcomes regularly, which help in planning and showing the project's results. As a whole, this M&E system helps the project in many areas, enhancing the speed of data collection, reducing the human resource cost for data collection, reducing paper costs, and increasing the active participation of all team members.But an even better indicator of success may be the number of project staff members involved in the capitalization processes that helped produce all theseLeft \"Our work has shown that experience capitalization is a systematic process that leads to many knowledge products\"Interested in learning about the approach, five government officials also joined, including the joint secretary of agriculture and senior agriculture officers. A knowledge management strategy was drafted in December 2018 for a new project called Agriculture Sector Development Project (www.asdp.gov.np), and this will include the implementation of regular capitalization processes as part of its KM tools. In total, 20 case studies will be developed and shared around its different thematic areas: cluster intervention and economic growth; household methodologies; Krishna Thapa works as monitoring and evaluation and knowledge management consultant, High Value Agriculture Project. He has postgraduate studies in business administration and has worked in development projects within the planning, monitoring, evaluation and knowledge management sector for the International Fund for Agriculture Development (IFAD)-and World Bank-funded initiatives since 1998. E-mail: krishnathapa.borlang@gmail.com mainstreaming of the value chain approach in urban municipalities and rural municipalities; or local government partnerships. In addition, these regular processes are expected to support the cluster-level results tracking system and the staff performance processes. We expect the main lessons to be shared too in the COP meetings taking place every six months.And the advantages of this approach have not only been shared in Nepal, but also in Cambodia.Responding to the interest shown by the AIMS team, we have shared a concept note and are helping them prepare a training workshop similar to the one we had in Pokhara.During the past two years, our work has shown that experience capitalization is a systematic process used for generating many knowledge products. But we have also seen that it takes time to complete the process. In many cases, some steps are left out as a way to save time. However, if a step is left out during the case study development, it is difficult to achieve the quality required. The time needed for developing case studies is one of the challenges for institutionalization.During the development of the different knowledge products, the project has followed the experience capitalization process systematically, but this sometimes requires additional funds. This is another regular challenge faced by those interested in mainstreaming the process. In general, managing knowledge is a task for the KM officer/specialist and few other project staff are on board. But it is not possible for the KM team to effectively focus on all projects or activities on their own. It is therefore necessary to engage all colleagues, but this is not always easy: the active participation of all project staff is the third challenge regularly seen.Recognising the strong links between M&E and KM, the project proposed to merge the two areas in order to better manage the data and information collected. The following steps were taken:• Introduce the experience capitalization process to 35 staff, representing the different thematic units and district teams;• Encourage staff to develop specific case studies, and to present them in the quarterly and annual review meetings, as well as in all knowledge sharing events;• Include case studies in the templates used for all progress reports;• Provide mentoring support to all staff for the development of these case studies.In spite of these difficulties, HVAP was able to adopt an experience capitalization approach, and to benefit from it. This helped us highlight the project's main achievements, and manage the knowledge gathered during the past 2 years. Similar activities are going to continue as part of ASDP, ensuring even better results.","tokenCount":"1548"} \ No newline at end of file diff --git a/data/part_3/4582066357.json b/data/part_3/4582066357.json new file mode 100644 index 0000000000000000000000000000000000000000..fd3de6ef2c1eab9b86689e6b2f1cb6b1d8f8700b --- /dev/null +++ b/data/part_3/4582066357.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"2200379b608c6b990ad26db861943be4","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/2440544f-5ab6-40a5-99b5-280908eb5f1c/content","id":"1218428452"},"keywords":[],"sieverID":"77c4fed1-6018-4b86-940d-1a7ba7a7e379","pagecount":"72","content":"agricultural productivity in many developing countries increased dramatically, spurring economic growth and improving the well-bein~ of hundreds of million of the world's poor. As the next millennium approaches, one of humankind's greatest challenges is to maintain and improve upon those gains so as to meet growing needs while sustaining Nature's endowment.C IMMYT concentrates on increasing the productivity of the resources committed to agriculture, with the aim of opening new options for the poor, and on sustaining natural resources, especially those used in agriculture. Innovative research is required to meet both the needs of the poor and those of the environment. Our 1990 Annual Report reviews the progress being made in some of our work, emphasizing that part of our portfolio most related to su.;;taining natural resources.While CIMMYT has always been concerned with good husbandry, our emphasis on long-term environmental issues is more recent. Like others, we are conscious of humankind's burgeoning numbers and we are ever more aware of their impact on the environment. Population growth in poor countries is clearly the global community's most daunting challenge. With the number of people there likely to double in 35 years or less, with old and new residents competing for already inadequate resources, with would-be survivors driven to wrest ever more from their surroundings, any extrapolation to the future must raise anxiety, and if not about tomorrow then about tomorrow's tomorrow.Population growth is not the only source of increased demand for the products of agriculture. Rising incomes will also have their effect. We now estimate that developing country utilization of maize will double in less than 20 years while that of wheat will double in less than 25 years. The needed increases in production will require an ever more intensive use of agricultural resources, at a time when agriculture is seen by some as a major source of problems that affect the environment. Eroding genetic diversity, soil erosion, reduced fertility, increased salinization, depleted aquifers, and deforestation all relate to agriculture, and each demands attention. Our conviction that CIMMYT has a role in the search for solutions led us to put greater emphasis on the environment. Some say that current concern for the environment is excessive. We can now measure environmental factors with greater accuracy and sensitivity than ever, yet we know little about how current levels of many factors compare with earlier levels. Furthermore, the consequences of changing levels of some factors are not yet well understood. Perhaps we are perceiving threats where none exist. Yet while there may be less cause for concern in some arenas, in agriculture the threat seems much clearer and more immediate.However perceived, interest in sustaining natural resources is clearly increasing. We at CIMMYT see it as a lasting concern resting on significant considerations: the evident need to conserve resources for future production (what some call the problem of \"intergenerational equity\") and the impact that degradation of resources in one arena can have in another (the problem of spillovers). Also, some are concerned that the emerging environment will be less satisfying to the senses than the existing one (an We welcome the chance to present the views of two such informed and committed observers.There are various frameworks for dealing with \"sustaining natural resources.\" The concept itself, at its broadest, reflects the need to ensure that the future characteristics of natural resources are taken into account in current agricultural research. We follow the framework of the Consultative Group for International Agricultural In assessing future productivity, we believe that it is probably the better environments-those destined to provide an ever growing portion of the future's foodstuffs-that will warrant the greatest concern about sustaining natural resources. aesthetic effect). These considerations have a place in the discussion about agriculture and must be measured against other concerns, one of which must certainly be near-term productivity and income.It is clear that issues related to sustaining the productivity of natural resources used in agriculture are complex, and the relative importance given to problems varies considerably. For this reason, CIMMYT sought two \"points of view\" for this Annual Report. Dr. M.S. Swaminathan, Director of the Centre for Research on Sustainable Agricultural and Rural Development in Madras, India, has a lifelong experience in developing countries. Ambassador Robert Blake is Chairman of the Washington D.C.-based Committee on Agricultural Sustainability for Developing Countries, a coalition of environmental and assistance organiza-tio~s concerned about agricultural development. Both examine the interactions among population growth, poverty, and environmental degradation.It argues for \"the successful management of resources for agriculture to satisfy changing human needs while maintaining or enhancing the quality of the environment and conserving natural resources.\" As our Report makes evident, much of what we do fits comfortably within this framework; some quite obviously, such as the conservation of genetic diversity, and some less obviously, but probably with greater impact.TAC stresses \"maintaining\" the environment and \"conserving\" natural resources. It is axiomatic that conservation requires investment, and that such investment has an associated opportunity cost, at times, for example, in the form of reduced near-term productivity. Tradeoffs, then, must be made. The magnitude of the tradeoffs could be assessed more realistically, we believe, were there explicit recognition of two other potential means for saving natural resources. One is in new, natural resource-saving technologies, such as plant varieties that process natural resources more efficiently (see page 30). The second is in the substitution of one resource for another, such as capital or labor for natural resources. These natural resource-saving options could be especially important in assessing the effects on intergenerational equity of investments in conserving natural resources.Beyond definitions and concepts we are seeking more clarity about the important themes treated under the rubric of sustaining natural resources, in particular that pertaining to marginal lands (defined on page 28). While larger investments in marginal lands can be made in the service of sustaining natural resources (such lands do appear to be more susceptible to degradation, and hence require more protection), such investments are sometimes argued in terms of equity (as these areas have benefited less than others from improved technologies, a balance must be righted) and in terms of productivity (having received less attention in the past, there are opportunities for large gains). Discussions about such investments are sometimes vague as to expected gains.With respect to productivity, work by our Economics Program shows that rates of gain in marginal areas compare quite unfavorably with those in better Nathan Ru ssell 5Comments from Management environments. In the rainfed wheat areas of central India, for example, yields have increased over the past two decades by only about 1.4% per year. On the other hand, in the well-watered and irrigated areas of northern India, wheat yields have increased during the same period by about 2.8% per year. Comparable Indian research and management skills have simply done much better in the one area than in the other. I add that there is similar evidence from other regions around the world.Even so, there is cause for concern that rising populations will inexorably push onto marginal lands, strengthening the argument for larger investments there. We can avoid surprises by being explicit about how much conservation, equity, and productivity we expect to derive from such investments. The important point, however, is that both marginal land and better lands must be sustained while productivity in each is enhanced.We believe that one of the most effective means to protect marginal environments is to further enhance productivity in better environments. Advances in more favored areas can reduce pressure on marginal lands in two ways. Increased output from better land lowers prices, thereby dissuading those who might otherwise have been disposed to cultivate the marginal areas.(If, of course, the improved technologies will also lower production costs in marginal areas, as sometimes occurs, then the effect is reduced.) More important in the longer run and through agriculture ' s role as an engine of growth, advances in better environments will contribute to an increased demand for labor, which itself will create more attractive options than that More appropriate methods of fertilizer application should help farmers like these in Mindanao, the Philippines, make more efficient use of thi s input.of cultivating marginal lands. Both points are exemplified in India, where real prices for wheat have declined notably over the past two decades (see Figure 3, page 24), where much labor has been absorbed in nonagricultural pursuits, and where one must wonder what consequences for marginal lands were averted by the large production increases in better areas (see M.S. Swaminathan, page 12). Increased cropping intensity may exact some environmental costs in favored areas. However, these are clearly offset by the relief of pressure on the more vulnerable marginal areas that would otherwise be cultivated by those too poor to have any viable alternatives.Moreover, it is important to recognize that it is not only in marginal environments that resources must be sustained. Indeed, in assessing future productivity, we believe that it is probably the better environments-those destined to provide an ever growing Thomas Luba portion of the future's foodstuffs-that will warrant the greatest concern about sustaining natural resources.Let me now tum to some of the themes treated in the pages that follow. There are five major areas in which we believe that CIMMYT can best contribute to sustaining the resources used in agriculture.Much of our energy is focused on developing more efficient germplasm, materials that perform better than their antecedents at all levels of management (see Review of CIMMYT Programs,. While these measures can lead to more intensive cultivation in some environments, and consequently require more concern for the natural resources there, they will result in reduced pressure on the more fragile environments, as discussed earlier.Another important contribution of the Center is adding pest resistance to improved maize and wheat materials. Host plant resistance, usually at the heart of integrated pest management strategies, has the great advantage of permitting acceptable levels of production with less need to resort to pesticides. That means that costs of production are reduced, that farmers without adequate access to agricultural chemicals are not disadvantaged, and, most important to the point at hand, chemical threats to the environment are reduced (see pages [28][29].A third contribution is in the acquisition, conservation, regeneration, evaluation, and documentation of the genetic materials in our germplasm banks. Preserving the genetic diversity of maize and wheat ensures future access to the genetic combinations of the past, with their potential advantages in meeting new demands on plants (see pages [25][26].The development of maize germplasm with multiple resistance to insect pests is a good example of CIMMYT's efforts to provide sustainable solutions to developing country farmers ' problems. Borer leaf damage on resistant germplasm developed at CIMMYT (left) is minimal compared to the susceptible variety on the right.A growing portion ofCIMMYT 's -resources In particular, these programs and other such efforts give us special insights into the influence of biological, economic, and policy considerations on sustaining resources. What shapes much of our thinking is the knowledge that individual farmers make most of the crucial decisions about managing resources and the conviction that their actions can be made more congruent with conservation through imaginative public policies. As we see it, such policies should seek to more directly connect those who favor additional conservation with the farmers who finally decide on resource use. With our considerable experience in on-farm research we should have much to contribute in this area.Finally, our training programs, which cater to hundreds of developing country researchers each year, aim at sensitizing participants to the importance of taking the long view when shaping more productive technologies. In time, through our own accumulating experience and that of others, we can add to such training layers of substance about maintaining natural resources.These are five dimensions through which CIMMYT responds to the claims of the environment. We will be alert to new opportunities that might open up in the future.Three related changes occurred in CIMMYT's senior management team during 1990. In August, Dr. In his new position he will emphasize these dimensions of Program activities.CIMMYT's 1990 total funding reached US$ 33.2 million, with $25.6 million coming from core sources and $7 .6 million from special projects. Of special concern in 1990 was the continuing gap between Mexico's inflation and the devaluation of its currency, resulting in a dollar-denominated cost increase in Mexico of some 18% during the year. Conscious of the likelihood of this development, we curtailed 1990 spending. Because of this financial stringency, and its likely continuation, a program to reduce staff numbers was initiated in late 1990. At year end, accounts receivable from donors were again quite high, but our cash position had improved over the end of 1989 (see Financial Highlights, pages 56-57).As we move into the last decade of the 20th century, CIMMYT is healthy and leaner. With the changes in Maize Program leadership noted above, our senior management team has been entirely transformed during the past six years, bringing fresh insights as we convert challenge to opportunity. All of us-trustees, staff, and managementare increasingly sensitive to the longer term environmental concerns described in this Report, and we all remain committed to opening new options to the poor through productivity-increasing technologies. We think good progress is being made on both fronts, with much compatibility between the two ends. I trust that the reader will see it that way, too.Director General The onward march of the Green Revolution in wheat, rice, and maize is an ecological and economic imperative in population-rich but landhungry countries like Bangladesh, China, and India. If the Revolution is allowed to falter, the poverty of small-farm families will persist, since they will have very little marketable surplus and thus will not be able to profit from the remunerative output-pricing policies of governments. Nor will it be possible to prevent further expansion of cultivated area at the expense of forests and soils vulnerable to erosion or Consider the following differences between developed and developing country circumstances: In 1945 the USA had about 5.9 million farms . By 1985 this number had declined to about 2.2 million. In contrast, at the time India became independent in 194 7, the country had about 50 million farms. By the early 1980s, this number had risen to about 90 million (Figure 1 ). Projections indicate there are now some 100 million farms in the country (the decadal agricultural census is just starting). Today, every fourth farmer in the world is Indian, and nearly half of the country ' s land is being utilized for crop production. Meanwhile, in the USA only about 20% of the land is used for crop production. Affluent countries have gross national products (GNPs) that vary from 12 times the value of agricultural production (as in New Zealand) to 50 times that value (as in Belgium, Germany, the United Kingdom, and the USA). In these countries employment in the tertiary (services) sector exceeds that in the primary and secondary sectors combined (the first of which encompasses farming and other enterprises based on natural resources and the other forms of destruction.second manufacturing). In India, by contrast, over 30% of the GNP comes from agriculture. Even more significant, about 70% of the country ' s current population (nearly 850 million people) depends upon the primary sector for a livelihood.In general , opportunities for traditional rural societies to enhance their standard of living are closely linked to declines in the farm population. As can be seen in Figure 2, however, the trend in developing countries is headed in the wrong direction. About half the population of the world today is working or seeking work in agriculture.Only about 10% of the population in developed countries is now employed in the farm sector, having shrunk from about 38 % over the last 40 years.Compare that with the developing world. Forty years ago about 81 % of the population was working in agriculture; today some 63 % of all developing country residents are still employed in agriculture (Hendry 1988).The famine of food at the household level largely arises from a famine of jobs and purchasing power. The pace of progress in the movement of men and 12 women from agriculture to other sectors has been slow. Self-employment opportunities in nontraditional and offfarm occupations are limited, especially in slowly growing economies. On the other hand, population growth has resulted in the diminution and fragmentation of farm holdings. Diversification of employment opportunities and income sources, of course, can insulate people from violent fluctuations in their economic fortunes. In India, however, where there is relatively little diversification of incomes compared to developed countries, drought has caused serious disruption in the economy of the people, making it essential for the government to initiate large-scale \"food for work\" programs. Improved employment opportunities arising from rapid economic development are essential for food security as well as for resource conservation.These trends in employment, income, and land use provide the context in which the future of the Green Revolution in developing countries must be viewed. In 1965 farmers in India produced 48 million tons of wheat and rice on 54 million hectares of land. In wheat and rice on about 68 million hectares. Obviously, land-saving technologies have raised yields and thereby reduced pressures to expand cultivated area to forested and other protected areas. This is true in other developing countries as well. Even so, both the United Nations Environmental Programme and the Food and Agricultural Organization estimate that over 75% of the annual global deforestation of 17 million hectares occurs for expanding food production. Thus, there is no option but to adopt land-saving agricultural practices in countries where land is limited and population pressure is increasing. This is why defending the yield and economic gains achieved through the Green Revolution during the last 20 years and extending them to more regions and farming systems are both ecological and economic imperatives.In January 1968, when there was evidence that India was on the threshold of making impressive progress in wheat production using the semidwarf wheats introduced from CIMMYT, I made the following observations: intensive cultivation of land without conservation of soil fertility and soil structure would lead ultimately to the springing up of deserts. irrigation without arrangements for drainage would result in soils getting alkaline or saline. Indiscriminate use of pesticides, fungicides and herbicides could cause adverse changes in biological balance as well as lead to an increase in the incidence of cancer and other diseases, through the toxic residues present in the grains or other edible parts. Unscientific tapping of underground water would leau to the rapid exhaustion of this wonderfu l capital resource left to us through ages of natural farming. The rapid replacement of numerous locally adapted varieties with one or two high-yielding strains in large contiguous areas would result in the spread of serious diseases capable of wiping out entire crops .... Therefore, the initiation of exploitive agriculture without a proper understanding of the various consequences of every one of the changes introduced into a traditional agriculture and without first building up a proper scientific and training base to sustain it may only lead us into an era of agricultural disaster in the long run, rather than to an era of agricultural prosperity (Swaminathan 1968).Thus it was clear from the beginning that the indiscriminate use of chemicals and nonadoption of ecologically sound crop management practices might have a number of unfavorable effects. Public health problems could arise, and the sustainability of high yields over the long term could be threatened.Fortunately it appears possible to reduce input levels with no effect on yields by improving technical efficiency. Byerlee ( 1987) points out that technical inefficiency-the difference between actual production by farmers and their potential production given current levels of input use-generally ranges from 20% to 50%. He concludes that a new and more complex second generation of inputs and management practices can play an important role in productivity growth , while keeping input use at reasonable levels. Investments in betterPoints of View information and the skills of farmers to improve their technical efficiency are needed to maintain momentum in traditional Green Revolution areas.At the same time, the Green Revolution needs to be expanded to cover more crops, areas, and farming systems, and our emphasis should be on improving the technical efficiency of small-farm agriculture. This expansion, however, must be made in ways that consider the ecological implications of productivityenhancing technologies-a further \"greening\" of the Green Revolution.Growing concern over the level of input use is hardly limited to developing countries. Indeed, moves to reduce the use of agricultural chemicals are receiving considerable attention in Europe and the USA. These moves appear to have been at lea t partially inspired by notable prescriptions to achieve ecological farming , as described by Fukuoka the use of organic matter (as opposed to synthetic inputs) in maintaining soil fertility and resource quality. The efforts of industrialized nations to promote the long-term sustainability of current yield levels are indicative of the technology options under consideration. I wish to stress, however, that, while defending the status quo in yield may be the priority task in industrialized nations, raising average yields is the urgent need in developing countries. To what extent, then, is the experience of industrialized countries applicable to the generally small-scale farming circumstances of developing countries?Sustainable pathways toward \"greening\" the Green Revolution in developing countries like India and China may differ dramatically from those applicable to developed countries; that is, technological options must be appropriate both to the needs and opportunities of such population-rich but land-hungry countries. There are at least two difficulties in applying the Fukuoka and LISA models to the circumstances of developing countries.First, in tropical and subtropical environments, the oxidation of humus is high, and soils generally tend to be lower in organic matter content. They will benefit from the incorporation of crop residues, but such residues are invariably needed for other uses, such as animal feed. Many soils are eroded, and their nutrient status tends to be low due to continuous cultivation for centuries. Even so, farmers who are producing barely enough to meet the needs of their families find it extremely difficult to invest in resource-enhancing technologies (such as systematic cereallegume crop rotations). If unchecked, weeds, insects, and pathogens multiply and spread, causing considerable losses. Plowing or puddling is needed to control weeds, and resource-poor farmers must have improved varieties with genetic resistance to insects and diseases.Millions of tons of valuable topsoil are lost each year to erosion caused by overgrazing and other negligent land management practices.The second difficulty is that, while these models offer good longer term benefits, they entail few near-term advantages. It is hard for very poor farmers, whose main preoccupation is survival, to base their actions on the requirements of a distant and uncertain future. Yet sustainable agriculture requires that attention be paid concurrently to intra-and intergenerational equity.Intragenerational equity, which aims at giving a fair deal to the economically and ecologically disadvantaged, demands resource neutrality in technology development and dissemination. This new dimension complements the scale-neutral research already in process. In working toward intragenerational equity, agricultural researchers can help all farmers, regardless of farm size and capacity, to mobilize inputs and absorb risk. Obviously, research strategies and public policies will have to be suitably integrated to achieve this goal.Achieving intergenerational equity involves conserving the ecological foundations of sustainable advances in biological productivity. This will require greater efforts in conserving resources used in agriculture and in eliminating' agriculture' s contribution to the accumulation of greenhouse gases in the troposphere. I believe the appropriate measure of productivity is the value of output divided by the value of the inputs required to produce it, plus some factor that indicates changes in environmental capital stocks. If such a formula is to be useful, however, we need internationally accepted measurement and monitoring tools.The final report of the CGIAR Committee on Sustainable Agriculture noted in some detail the difficulties inherent in monitoring sustainability (Swindale 1990) Where Do We Go from Here?Given the complexities inherent in achieving sustainable agricultural systems, especially in developing countries, as well as the pressing need to do so, what are the key steps toward success? In my view, at a minimum they include the following:• We need to develop technologies that can help increase the productivity and profitability of small-farm operations, without forcing undue tradeoffs between current and future production systems. The world may well be faced in the not-too-distant future with a serious crisis in feeding its growing billions. Population in many developing countries is doubling every 20 to 30 years. At the same time international reserves of basic grains are declining, per capita food production is decreasing in large parts of Africa and Latin America, and the economic resources and governmental institutions needed to cope with these problems continue toThese facts present an especially difficult challenge for those developing countries that already have huge numbers of undernourished people, stagnating agricultural productivity, and rapidly degrading farmlands. Few are the developing countries that are not literally mining their soil in the name of higher agricultural production.Can they-and if so how can theyachieve sustainable farming systems so that not only this generation but also future generations can be fed? The answers to both questions are in real doubt. There are few signs that population growth will level off anytime before the middle of the next century.True, the burden of answering these questions will be on the governments and citizens of the developing countries. But the citizens of the United States and other industrialized nations hold many of the keys to helping solve these problems, particularly by assisting developing countries to apply the tools of science and technology more effectively. Hopefully we can also help them mobilize both the will and the resources to support the heavy weaken in many poor nations.expenditures and tough political decisions that will be required if sustainable agricultural systems have any chance of being created.Yet more than enough is already known to make a real start toward putting agricultural production on a sustainable basis, even in the case of less wellendowed lands . There is another serious impediment to the achievement of sustainability: too many governments still believe that they cannot afford to conserve their precious soil, water, and forests. Too often they fail to recognize that the costs of protecting these resources now are infinitely lower than the costs of trying to restore them later. The launching more-and more effectivecollaborative efforts between industrial and developing countries in agriculture, population, health, education , and the environment is badly needed. But events will not wait for changes in public opinion. USAID and other development agencies must be stimulated to do much more to promote agricultural sustainability now.World Bank-The World Bank is rhetorically committed to agricultural sustainability, but its actions in this regard still do not match its rhetoric. Of all the development agencies , it has the greatest potential to help developing countries make the difficult transition to agricultural sustainability. But there are big problems. The Bank thinks of itself primarily as a bank and not a development agency. As such, it is not yet ready to accept the risks of financing the large volume of small-scale, farmlevel agricultural production loans which the transition to a sustainable system requires. Its environmental department, which is the logical center for promoting such changes, still lacks the strength and the clout to persuade the key regional operations departments to dedicate the resources needed to ensure environmental soundness in agricultural (and other) projects. For example, irrigation projects that don ' t provide financing for necessary but expensive drainage systems, that don ' t provide for enough continuing slipervision, and that don't require enough participation in management by associations of irrigation users are still too often approved. Another point: Despite its strong verbal commitment to reducing poverty in the agricultural sector, the Bank is rapidly losing its A Nepali sc ienti st partic ipates in an informal field survey in Rupandehi District to hear about farmers' experiences with the rice-wheat rotation. This kind of monitoring alerts researchers to potentiall y serious problems that might never be perce ived in the more controlled condition s of experiment station s. capacity to plan and supervise povertyoriented, farm-level agricultural programs because of its failure to replace retiring technical staff.All these tendencies must be overcome. Fortunately, the Bank is full of good people who are well aware of the environmental consequences of Bank actions and who support important changes in the way the Bank operates.IDB-The Committee is increasingly working with the Inter-American Development Bank (IDB). That institution , with strong environmental leadership from its president, is in the process of initiating some groundbreaking programs in agriculture through its newly headed agricultural department and its newly formed environmental department. These are hopeful signs.Other development agencies-The Committee also follows, but much less closely, the work of other \"bilateral\" development agencies and regional banks. Almost all of them have, in the wake of the Brundtland Commission 's recommendations, come to acknowledge the primordial importance of promoting sustainability . Yet few have 18 established effective programmatic responses. Some, like the Swedish International Development Agency, have programs that promote one aspect or another of agricultural sustainability. However, these programs still tend to be small, both in relation to the agencies' total efforts and to developing country needs. Little has yet been done to eliminate conflicts and duplications of effort among development agencies in the promotion of sustainability.Centers-The Committee is concentrating an increasing amount of its attention on the work of the international agricultural research centers (IARCs). It is the Committee's view that the IARCs have an absolutely central role to play in the promotion of sustainability. The IARCs ' output over the last two years in this regard is encouraging overall but still far from large enough or sophisticated enough to respond to developing countries' sustainability problems. Individually and collectively they have been mandated to fully incorporate the principles of sustainability into their research. Some centers are further along this path than others. Most are paying increasing attention to breeding sturdier and more productive plants and to designing systems for nutrient supply and pest management that meet the needs of the millions of small farmers on less wellendowed lands. But as the centers point out, they are also faced with the crucial task of maintaining the productivity of the world's principal food crops. Dividing their finite resources between research on cropping systems and plant breeding for the most productive lands and research aimed at the less wellendowed lands is a continuing problem, as is ensuring against an overly \"topdown approach\" to research.Given the urgency of increasing global agricultural productivity and production, the key role that agricultural research must play in this effort, and the overall inability of the national agricultural research institutions in so many developing countries to meet their own needs, the challenge to the IARCs is enormous and growing. They must find more and better ways to interact with small farmers, to meet farmers' expressed needs, and to get new technology out to farmers. They must concentrate even more on designing cost-effective and labor-effective systems that incorporate the rapidly emerging lessons of sustainable production and resource conservation. If they are to do all this-and in as timely a manner as sound research permitsthe centers must be given the progressively greater support that our committee advocates.If there has been some progress in helping developing countries carry out environmentally sound agricultural development, the advances made so far have just not been good enough or widespread enough to touch more than a small number of farmers in the developing countries. Time is not on our side. We must lose no chance to move forward by finding ways to:• Utilize, on many more farms in every developing country, the more productive and more resourceconserving technology that has already been developed.• Develop the plants and the systems capable of doubling or even tripling present amounts of food without destroying natural resources.• Get governments in both the south and the north to face up to the gravity, difficulty, and urgency of allocating the necessary resources and to make the tough political decisions that the achievement of sustainability will require.The search for progress cannot just be left to others. We must all play our part. I would suggest a short list of priorities and invite readers of CIMMYT's Annual Report to reflect on how they can personally contribute. We must all:• Seek to better understand the obstacles to achieving agricultural sustainability and recognize-and incorporate into our thinking and work-the hard truth that providing global food security will require much higher production levels.• Try to launch some kind of personal collaborative effort with someone or some organization in a developing country, if possible going beyond what our own organizations may already be doing.• Recognize-and incorporate as an organizing principle into all that we do--that for rural poverty to be reduced and greater food security to be achieved, there must be much greater and more sympathetic involvement of the small farmers, including those on the less wellendowed but still viable lands.• Miss no opportunity to bring home to political and opinion leaders the importance and the possibility of making progress toward agricultural sustainability.• Do more to promote an effective, farmer-based participatory approach to agricultural research and to all aspects of agricultural development.Points of View• Give serious thought and attention to how better to get research results out to farmers. Study the work of at least one effective outreach program by a farm group or nongovernmental organization in a developing country.• Use our influence with the World Bank, USAID and other development agencies, and with the IARCs to convince them to give high priority to programs that promote agricultural sustainability. Work to help them come to terms with the institutional problems of adapting successful, site-specific village models more broadly.• Recognize that allocating resources and setting priorities are, above all, political problems and be ready to enter actively into this arena. Take our case to legislators, administrators, editors, reporters-anyone who can impact the political process. No one should hold himself or herself aloof--certainly not the scientist.Each of us has a special niche where he or she can be effective.• Finally, work with universities, private voluntary organizations, and aid-giving institutions to establish more realistic, multidisciplinary, and culturally sensitive training in sustainable agriculture for students from developing countries.These are tough challenges. We must pursue them with vigor, skill, and urgency. With the passing of the Cold War, much of our attention will have to be directed toward how to bridge the huge and growing gap in resource use and living standards that separates the industrial and the developing countries. This is not just an ethical and humanitarian problem; it is loaded with political dynamite as well. By promoting new and successful models in north-south cooperation in achieving agricultural sustainability, we can contribute not only to the welfare of millions of people but also to lasting peace.Mural We also comprehend the huge dimensions of the challenges we face, and the high cost of failure.To the year 2000 and beyond, agriculture worldwide must provide sustenance for an additional 80-100 million people each year. Nearly 90% of these new arrivals will be born in developing countries, where land is already under heavy population pressure; some regions, such as sub-Saharan Africa, already face severe food deficits. To maintain food production at an adequate level without degrading our natural resource base will, in the words of the 1987 Brundtland Report to the World Commission on Environment and Development, take an effort \"colossal both in its magnitude and complexity, presenting a greater challenge to the world's food systems than they may ever face again.\"In recent years, the \"sustainability\" of agriculture has captured widespread interest, and many descriptions of what the concept means are now available.We in CIMMYT take that offered by the Technical Advisory Committee (TAC) of the Consultative Group for International Agricultural Research (CGIAR) as a good first approximation (see Comments from Management, page 4). The TAC holds that sustainable agriculture should involve \"the successful management of resources for agriculture to satisfy changing human needs while maintaining or enhancing the quality of the environment and conserving natural resources.\" In referring to changing human needs, the Committee is recognizing the dynamic aspects of the problem. TAC also obviously calls for protecting the existing endowment of Nature.As was mentioned earlier (pages 4-5), we favor a more open framework for assessing the sustainability of agriculture, one in which larger harvests for growing populations can be obtained by substituting other resources, whether capital or labor, for those left us by Nature. Our view also emphasizes the potential for technolog-ical change to enable greater efficiency in using resources, as in the case of improved plants that are more efficient in the use of nitrogen (see page 30). Thus, our framework permits the possibility, over the long term, of drawing down on Nature's endowment. That need not imply, however, circumstances prejudicial to future generations.We do not encourage a cavalier attitude toward Nature's bequest. Indeed, we must be as careful as we can in deciding about investments aimed at conserving natural resources. Still, conserving resources for the future requires sacrifices in the present, and the poor in developing countries can easily be the losers when such sacrifices are made.Our point is that the potential payoffs from resource substitutions and improved technologies should permit us to be somewhat less parsimonious with the earth's natural resources than TAC appears to believe necessary. Of course, the science that leads to the discovery of new sources of productivity and the development of improved technologies that save natural resources is itself costly, and those costs should be factored into the debate about sustainability as well.Many justifications for sustaining natural resources used in agriculture have been put forth, most of which seem to fall into one of three broad categories: a desire for intergenerational equity, the problem of negative spillovers (such as pesticide residues in food), and concern for environmental aesthetics. Much of the debate about sustainability issues stems from the relative importance accorded these considerations. In the USA, for example, the importance given to the theme rests on perceived environmental and public health costs exacted by extensive use of chemical fertilizers and pesticides. To reduce input costs, preserve the natural resource base, and protect human health, a growing number of US farmers are exploring alternative agricultural systems (National Research Council 1989). In an affluent country where demand for food is growing slowly (if at all) and where food security is less of an issue than public health, a definition of sustainable agriculture that emphasizes reducing negative spillovers while maintaining 22 current levels of production makes perfect sense. Developing countries, however, are not well served by such a static conceptualization.Population growth and rising incomes in Third World countries require an emphasis by them (and by CIMMYT) on the \"changing human needs\" mentioned in TAC's definition. Based on current growth rates for population and per capita incomes in developing countries, we estimate that Third World demand for maize and wheat will increase each year at about 3.1 % and 4.2%, respectively, until the year 2000.Assuming that the area planted to wheat can be expanded by some 0.8% annually until then, yields will have to increase by about 2.3% per year to meet growing demand. Maize yields will have to increase even more vigorously, at about 3.2% per year, assuming that area planted to the crop expands at an annual rate of 1 % in developing countries.We believe that such \"land-saving\" productivity growth in maize and wheat can be achieved in the more favorable production areas in the developing world, and that such growth helps protect the environment (see Comments from Management, page 5). The challenge for policy makers, researchers, and farmers is to achieve these productivity increases without destroying the natural resource base upon which sustainable agriculture depends.The current debate about sustainable agriculture comes at the end of a period of extraordinary growth in cereal production worldwide. Since the end of World War II, basic cereal production has increased at a rate of 2.8% per year, keeping well ahead of the 2.3% annual increase in population growth. As a result of the Green Revolution, dramatic increases were achieved during the 1960s and 1970s in the production of four of the major cereals, but particularly of wheat and maize. From the early 1960s to the late 1980s, production of wheat grew by an average of 3% per year globally and at an even more impressive rate in the developing world, reaching an unprecedented 4.9% per year. Production of maize increased slightly faster than wheat in a global context, and at a pace second only to wheat in the developing world (Table 1).Increases in the production of all cereals were largely due to yield gains. Wheat yields, for example, rose at a rate of 3.7% annually in the developing world, while area expanded by about 1.2%. Developing country maize yields increased at an annual pace of 2.7%, with area growing at about 1 % per year (Table 1).Such data, however, can be misleading.In 1988, Lester Brown, president of the World-Watch Institute, stated that growth in grain production had slowed in the developing world's most populous countries, including China, India, Indonesia, and Mexico. He also noted that Africa's per capita food production had declined by 15% during the previous two decades, and that during the 1980s Latin America had become the second major region to experience a substantial decline in per capita grain production (Brown 1988).Since then, several studies involving particular crops and countries have lent credence to Brown's concerns. An examination of wheat yields in the Punjab of Pakistan, for example, showed that while yields increased rapidly during 1967-76, they grew at a significantly lower rate during 1977-86 (Byerlee and Siddiq.1990). This is surprising in view of the rapid growth in the use of inputs in the area, especially irrigation water and fertilizer. By the mid-1980s, for example, Pakistani farmers were applying an average of 120 kg of fertilizer per hectare (application rates have since increased to about 150 kg/ha). Conservative estimates indicate that this level of fertilization should have brought about yield increases of at least 725 kg/ha, but the actual increase was only little more than half that from the early 1970s to the mid-l 980s.Much the same experience with inputs has occurred in other countries that were prominent participants in the Green Revolution. Given the increased use of inputs, it seems reasonable to conclude that, at least in specific countries, the fruitful combination of high-yielding varieties, improved irrigation, and application of fertilizerwhich together accounted for more than 75% of the total increase in wheat yields in Asia during the past two decades-has reached the stage of diminishing returns. The total output of wheat is continuing to rise, but to obtain each additional kilogram of yield requires increasing amounts of inputs Sustaining Agricultural Resources in Developing Countries (Byerlee 1989). Furthermore, in developing countries as a whole, the rate of growth in wheat yields has slowed over the past decade (Table 2).Other crops are experiencing similar problems. The growth rate of rice yields in Indonesia, Malaysia, Pakistan, and other key wheat-producing countries has declined, even though important advances have been made in the improvement of pest resistance and earliness (Pingali 1988). The global rate of increase in maize yields has dropped from 2.9% per year in the 1970s to 0.2% in the 1980s (Table 2). Among developed countries, where growth in maize production slowed from 2.8% to 0.2% over that period, much of the decline was the result of two severe droughts that occurred in the USA during the 1980s. In the developing world, a less precipitous decline in the rate of yield increases occurred, from 2.8% to 1.4%, though differences among regions are significant (Table 2) .Clearly, a continuation of these trends would not bode well for developing countries. The increasing productivity of agriculture has led to declining real prices for a number of commodities, including maize and wheat, an obvious boon to the poor in developing countries. Evidence of this strong downward trend is shown in Figure 3. Note that price trends in selected developing countries long associated with the Green Revolution tend to mirror the international trend (anomalies are usually a function of government support polices).CIMMYT is committed to helping developing countries address the challenge of maintaining and indeed of extending the gains of the Green Revolution, but in ways consistent with the need to conserve natural resources.We believe that we can be most effective by continuing to focus on those things we do best:• Conserving and using maize and wheat genetic resources.• Developing and distributing improved germplasm.• Developing sound crop management principles and practices in conjunction with national agricultural research programs. An important contribution to understanding the requirements of sustainable agriculture comes from agroecologists, who point out that, for a system to be sustainable, it must be resilient to stress or external shocks. That resilience rests on the diversity represented in the system, either in terms of genetic variability in a given area or the diversity over time and space of farming operations.CIMMYT concerns itself with the genetic variability found in maize and wheat. Our interest stems from the dual role of that variability in protecting farmers against potentially devastating disease epidemics, and as the foundation upon which future progress in germplasm improvement rests. Our strategy for conserving and using the genetic diversity contained in our crops is described in detail in the Center's 1988 Annual Report (CIMMYT 1989).A central feature of our strategy, however, is to acquire and preserve sources of genetic diversity for maize and wheat, including materials whose value may not yet be apparent. We view such work as an essential function for the Center, one directly related to our concern for the future. In preventing the irreversible loss of this diversity we help maintain potentially productive options. But for those options to be exercised, at CIMMYT or elsewhere, we must also ensure efficient access to bank holdings and continually seek effective means for using them. The developing world's hard-won advances in food production were brought about in large measure by the development and spread of highyielding varieties. These varieties were able to take advantage of higher levels of inputs and, not surprisingly, progress was more rapid in favorable productionIn a genetic study in the greenhouse to confirm the variability of environments than in marginal areas.From the early 1960s to the late 1980s, for example, wheat production grew at an annual rate of 4% where the crop is grown under favorable conditions, compared to only 2% under more marginal circumstances (Morris et al. 1990).Curiously enough, now that we are faced with the task of maintaining, even increasing, the high rates of gain to which crop research has contributed so heavily, some people have the impression that plant breeding is less relevant than other disciplines. Some even believe that high-yielding varieties are part of the problem. One assertion is that the rapid spread of improved varieties and associated technologies has caused the production of cereals to become less stable. Strong counterarguments to that idea-based on a considerable body of evidence accumulated over the past two decades-have been made in recent years (see box, page 27).In addition to concern about yield stability, some critics of modern agriculture point to negative spillovers from erosion and the use of chemical inputs. They are also concerned about the effects on soil fertility of intensified cropping patterns made possible by earlier maturing or less photoperiodsensitive varieties.As noted earlier, CIMMYT's view is that the widespread adoption of landsaving technologies has tremendously reduced the pressure to farm more fragile lands. Increased productivity in favored areas resulted in additional marketable surplus, which lowered commodity prices over time (Figure 3, page 24) and reduced farmers' incentives to expand onto more fragile and less productive lands. Increased productivity also contributed to agricultural development and economic growth, helping to create employment alternatives for the rural poor who, for the lack of such options, tend to support themselves by farming ever more fragile lands. We see this as a very positive result of the improved yield potential of modem varieties. But our plant breeders (and crop management specialists) are also cognizant that a considerable investment must be made to maintain those gains and to address concerns related to the environment. Some of these efforts are described below.Our breeding work is organized around relatively homogeneous megaenvironments of at least one million hectares each (some are much larger).We strive for wide adaptability of improved genotypes within those environments, providing national programs with classes of highperformance materials that they then refine in their own breeding programs to meet the more specific needs of farmers. This approach has proven remarkably effective and we are convinced that it has more to offer. In late 1990, for example, CIMMYT brought on staff a specialist in geographic information systems to help refine our characterizations of maize and wheat mega-environments. By doing so, we can become more sensitive to the environmental circumstances for which we breed. Maize and wheat physiology research is also becoming more prominent in our crop improvement work, as we add to the efficiency of new genotypes in the use of moisture and nutrients.The Yield Stability ControversySome have said about the Green Revolution in wheat, rice, and maize production that the rapid spread of high-yielding varieties (HYVs) and associated technologies has caused the production of these crops to become less stable over time and space.Unstable yields are a major source of risk, which in tum makes farmers less inclined to invest in improvements that would raise production and result in more efficient use of resources.A considerable amount of evidence now suggests that improved varieties, more often than not, give high and stable yields across environments in which they are adopted.Many contributions to the debate on this subject have come from CIMMYT staff. In studies of data from the Center's international wheat trials, for example, Worrell et al. (1980) and Crossa et al. (1991) indicate that some HYVs developed in high-yielding environments perform better (i.e., produce higher and more stable yields over time)than local varieties and landraces even in marginal areas. CIMMYT staff presented similar arguments at an interdisciplinary workshop held in 1986 by the German Foundation for International Cooperation and the International Food Policy ResearchInstitute (Pfeiffer and Braun 1989;Pham et al. 1989), and have published in various journals on the subject (Crossa et al. 1988a(Crossa et al. , 1988b(Crossa et al. , 1989)). This is not to deny the existence of yield variability where HYVs are widely grown.The point is simply that 1) improved germplasm generally possesses yield-stabilizing traits that endure over time and across environments and 2) HYVs do not necessarily yield less than local varieties under unfavorable conditions. What may happen, however, as suggested by Anderson and Hazell (1989), is a sharp decline in the yields of input-responsive, high-yielding varieties during a year when inputs are not available, environmental conditions are not favorable for their use, or grain prices lead to changes in fertilizer leveh. Thus, instability is not inherent in the HYV itself but may occur in the circumstances affecting its production.It appears that the most important of these circumstances are environmental. In a study of wheat yields from 1950 to 1986 in 57 countries, Singh and Byerlee (1990) found that most variability could be accounted for by climatic factors, such as moisture availability, as well as by the size of a country's wheat area. They concluded that HYVs and fertilizer had no significant effect on yield variability and that in most cases (especially that of wheat production in India) yield variability had actually declined with the rapid adoption of HYVs. These and other studies constitute a strong case supporting the notion that HYVs need not be associated with yield instability. difficult to obtain and sustain higher levels of productivity. The potential for negative spillovers from agriculture grows as well. Moreover, large numbers of poor people live in these areas and rely on agriculture for their livelihood. Thus, favorable environments must continue to receive a large share of the resources committed to research aimed at sustaining resource productivity.Even so, a significant share of the poorest of the poor in developing countries live in rural area:s classified for a variety of reasons as marginal for producing crops. For our purposes, an environment is considered marginal when the yield of a crop is reduced to less than 40% of that environment's potential, as determined by the amount of radiation received during the growing season. This poor productivity might be caused by a shortage of moisture, by flooding, soil erosion, extreme temperatures, disease and/or insect pressures, soil acidity, soil salinity, and deficiencies or toxicities of nutrients or minerals. In those areas already under cultivation and where only one or a few major constraints limit production, we see good opportunities to increase productivity.North With the exception of a small amount research aimed at developing resistance in wheat to stem sawfly, Hessian fly, and Russian wheat aphid, CIMMYT's allocations to insect resistance work are focused on maize. Although progress has been slower than in our work on disease resistance, significant advances have been made recently. We have developed maize germplasm with resistance to several insect pests, including various species of borers and fall armyworm, that severely limit production in the subtropics and tropics (Mihm 1985(Mihm , 1986;;Smith et al. 1989).Work is also in progress to develop maize materials tolerant to pests of stored grain.For lack of effective controls, chemical or otherwise, developing country farmers lose some 30% or more of their maize production to field and storage pests. In some areas of West Africa, they avoid planting maize altogether in Subsistence farming families, such as those in the high mountains of Nepal, often suffer significant losses of their stored grain to insects. In addition to improving yield and other desirable traits, CIMMYT is working to enhance the grain storage characteristics of its mandate crops.certain seasons, because experience has taught them that the crop will be completely destroyed by insects (Bosque-Perez et al. 1989). Our resistant germplasm is now in the hands of national programs, but until it is widely distributed to farmers in the tropics and subtropics, insect pests will continue to be a major constraint of maize production and a serious threat to sustainable agriculture. Host plant resistance will provide an inexpensive and effective solution to insect problems and greatly reduce the need for pesticides.In combination with heavy disease and insect pressures, nutrient and moisture deficiencies can dramatically reduce agricultural productivity. Often , however, abiotic stresses are so severe that there is little yield to protect from disease and insect attack. Germplasm that is better suited to environments where such stresses occur frequently may at least provide farmers with respectable and more stable yields through greater efficiency in the use of limiting resources.In our research on drought tolerance in maize, for example (which we define as the ability of one genotype to be more 29 applying inorganic fertilizer, either because its use entails excessive economic risk or it is not available when needed. To enhance soil fertility for brief periods, many farmers practice shifting cultivation, leaving fields fallow to at least partially recover from the drain of cultivation. But with ever increasing demands on agriculture, fallow periods in such systems are becoming shorter, leading to a variety of productivity-inhibiting problems.Genotypes that extract and use available soil nitrogen more efficiently would help address both difficulties. Improved uptake efficiency would reduce the loss of the nutrient through leaching or denitrification, and improved nitrogenuse efficiency would allow farmers to get more grain from their scarce nitrogen supplies.We already know that there is genetic variability in maize both for total nitrogen uptake and the efficiency with which absorbed nitrogen is utilized. The results of early studies suggest that it should be possible to identify materials that show an advantage in these traits under both high and low fertility (Lafitte andEdmeades 1987, 1989). To examine the response to selection, our maize physiologists selected experimental varieties out of the cul ti vars chosen for study. Nearly 40% of the 33 million hectares of wheat cultivated in South Asia is now grown in rotation with rice-more than 11 million hectares in India, I million in Pakistan, nearly 500,000 hectares each in Bangladesh and Nepal, and a small but nationally significant area in Bhutan (see map). In many areas, farmers began growing wheat in the winter season after rice only with the introduction of the new wheat and rice varieties of the Green Revolution-less than 25 years ago. Today, the productivity of both crops seems lower than that which can be reasonably expected. In particular, long-term rice-wheat trials in India and Nepal are showing a significant downward trend in rice yields.With this in mind, CIMMYT and the International Rice Research Institute (IRRI) have begun implementing a joint special project with the national agricultural research programs of India, Pakistan, Nepal, and Bangladesh. This collaborative research endeavor-funded by the Asian Development Bank (ADB) and the US Agency for International Development (USAID)-involves a number of activities:• Project participants are identifying at key locations themes for applied and adaptive research directed toward major problems associated with the rice-wheat cropping system, including issues of near-term productivity and longer term sustainability.• A program of strategic crop management research is being developed with contributions from specialists in soil physics, microbiology, and other disciplines.• Over time, comparative analyses of prbblems affecting the rice-wheat system in South Asia will be conducted, and solutions that may prove effective across a wide range of local circumstances will be sought.• Participants will also seek to improve the understanding of how best to address sustainability issues through collaborative research, formal and informal training, and the exchange of information and scientific staff.A number of productivity constraints appear to be relevant across the region. Some, however, are likely to be specific to only a few locales. Due to that probability, along with the obvious need for on-farm research and for long-term experimentation, project implementation involves first identifying key locations in the rice-wheat system. The map shows where some of these key sites may be located.The first steps in the research process have been exploratory. Two CIMMYT wheat scientists based in Nepal (an agronomist and a pathologist), and a Center economist who is based in Thailand, have conducted, in collaboration with IRRI and national programs, diagnostic surveys of farmers' fields in areas tentatively identified as key sites for long-term research. These diagnostic surveys, the most recent of which was done during 1990 near Pantnagar University in the Indian state of Uttar Pradesh (see Wheat Research, pages 42-43), will help focus the project's research at each location.In addition to the diagnostic surveys, a program designed to monitor farmer practices and the productivity of their resources has been initiated. Some 160 farmers in the Rupandehi District of Nepal are participating in this work. Background information about their resources has been compiled, and rice and wheat yields, as well as production practices, will be monitored over time. Changes in these factors will be correlated with changes in measures of soil quality (such as phosphorus and zinc levels, pest levels, organic matter, and soil compaction), and with changes in technology (such as water management techniques and the adoption of new varieties).Together with IRRI, CIMMYT will help bring about the needed research by providing support to collaborating national program scientists at key locations and by ensuring back-up research when necessary. Current project plans call for one IRRI rice scientist to join one CIMMYT wheat scientist in the region to help facilitate the research effort and to participate directly in various aspects of the initiative.• Projected key sites Borders of South Asia's rice-wheat area are constrained by altitude and temperature for rice in the north, irrigation availability and temperature for wheat in the south, by irrigation availability, hills, and temperature for rice in the west, and by hills in the east.system was employed in which germplasm was grown alternately in Brazil on acid soils and in Mexico for selection of suitable plant types (Hettel 1989). Laboratory screening was also used to select for aluminum tolerance. Over 60% of the maize produced in the Central America and Caribbean region is grown on sloping soils that are highly subject to erosion. And the proportion is slowly increasing as maize is displaced from more favorable lands by higher value crops. If measures for controlling soil erosion are not put into practice more widely, this problem will soon pose a major obstacle to long-term growth in maize production. To counter this threat with technologies that are applicable in many parts of the region, CIMMYT staff have embarked on several cooperative research projects with national programs. This work is funded by the Swiss Development Corporation.One approach we are studying is interseeding of leguminous cover crops with maize.By providing greater soil cover, the legumes appear to reduce soil erosion and runoff, while increasing water infiltration. In addition, if farmers do not remove the legume (e.g., for use as animal feed), the practice can add organic matter to the soil. To explore the possibilities of the system, on-farm trials with three leguminous species have been conducted for two years by maize researchers and social scientists in several countries.Stizolobium deeringanum are grown in rotation with maize as green manure crops, in the following season they help maintain maize yield under low fertility. In addition to the on-farm trials, CIMMYT staff have been working with researchers in several Central American countries and more recently in Mexico to delimit areas where a maize-legume (S. deeringanum) rotation is already practiced and to study the elements that made this system attractive to farmers.A comparable effort got underway this year in the Metalfo-Guaymango area of El Salvador, where farmers have employed conservation tillage for as long as 15 years in a maize-sorghum system. Rather than use crop residues as animal feed or bum them before planting, as is commonly done in much of Central America, these farmers leave residues as a soil cover, which reduces erosion and runoff, increases water infiltration, and contributes to soil organic matter. It appears that adoption of conservation tillage in this area was heavily influenced by efforts of the extension services, perhaps by agrarian reform in 1980 (which made land owners of the majority of farmers in the area), and possibly by short-term beneficial effects on yield stability. Where cattle graze the stover, the long-term benefits of conservation tillage are much reduced. Onfarm trials were conducted in 1990 to examine the impact on maize yields of different levels of soil cover.Though not yet widely practiced in the tropics, conservation tillage would seem to be an especially promising alternative for crop production on sloping soils, since it requires much less labor than other methods of controlling erosion, such as terracing.We are hopeful that studies initiated by CIMMYT staff and their colleagues in national programs will lead to the development of effective strategies and systems for promoting conservation tillage throughout the Central America and Caribbean region.socioeconomic conditions conducive to the adoption of minimum tillage by farmers (see box, page 33).Our staff in Central America are also coordinating a series of regional trials in which legumes are interseeded with maize. The legume serves as a living mulch, protecting the soil against erosion; it fixes atmospheric nitrogen, thus lessening the need for chemical fertilizer in a subsequent maize crop; and it reduces certain weed populations America on sulfur deficiencies as they relate to phosphorus-use efficiency in volcanic soils.Such research requires careful monitoring of farm-level trials and helps reveal how farmers might be motivated to adopt practices that yield long-term payoffs. Much of this work draws on methods developed by CIMMYT over the years for conducting on-farm research and for monitoring changes in cropping systems, especially the effects of particular crop management practices.C IMMYT agrees with others who insist that sustainable agricultural systems are essential. We believe that much of what we do contributes to the development of such systems.through shading or allelopathic effects. One purpose of the regional trials is to compare the effects of different legumes. Species with particularly high carbon-to-nitrogen ratios may be more effective in maintaining and improving the soil, because more of the legume biomass is incorporated into the soilhumus complex upon decomposition (see box, page 33).CIMMYT staff working in a bilateral project in Ghana have also extensively researched cereal-legume intercropping, particularly the maize-cowpea system. Increasingly, these training efforts are taking on a sustainability perspective, encouraging course participants to consider the importance of sustaining agricultural resources over the long run. Trainees have the opportunity to learn how tools that may be new to them, such as computer-based crop models and certain statistical packages, can enhance their ability to deal with the long-term experimentation required by sustainability research. And we are making specific changes in curricula and in informal interactions to reflect our growing emphasis on this theme. For example, pending the availability of financial resources, we plan to establish several longer term research sites in major ecological zones of the State of Mexico, near the city of Chalco.Trainees would be able to experiment with a number of treatments at these sites (including various tillage practices, different forms of straw management, fertility trials, and a range of weed control measures) so as to gain insights into the effects on productivity of different practices. This is one example of our commitment to ensure that trainees are sensitized to environmental issues and that they learn about the impact of various practices on the quality and productivity of the natural resource base of agriculture.Winding through all these diverse research and training activities is at least one common thread: a growing interest in how to increase Third World agricultural productivity in the near term, while attending to the quality of the natural resource base upon which long-term productivity depends. CIMMYT agrees with others who insist that sustainable agricultural systems are essential. We believe that much of what we do contributes to the development of such systems. We also agree with our Point of View authors that there is more that CIMMYT staff and their national program colleagues can do, and we are seeking to identify those opportunities and implement appropriate activities. Persistence, imagination, and close integration across disciplines will be required to successfully meet the challenge of sustaining agricultural productivity. Fortunately, those same traits have come' to characterize most-of our endeavors during the past 25 years and will no doubt continue to do so. We believe that, far from having exhausted its usefulness, this research will account for a large share of future gains in yield and in more efficient use of farmers' resources. We are also convinced that the more successful this work is in the near term, the greater will be the eventual impact of newer research initiatives of the sort mentioned above. After all, the best candidates for collaborative research on restriction fragment length polymorphism (RFLP) technology will be those national research programs that have already fielded successful improved varieties and hybrids, and our most likely partners in the development of sustainable cropping systems will be countries that have already brought about substantial improvement in farmers' crop management.CIMMYT maintains a wide array of improved maize populations, some of which have been undergoing full-sib recurrent selection for well over a decade. In an effort to further diversify its offerings to developing countries, the Maize Program is also generating some new populations and employing other breeding schemes. Meanwhile, the currently available populations continue to be an extremely valuable source of improved germplasm for national programs and, even after many years of selection, appear to offer ample scope for further gains in yield and stress resistance.A Unlike the monogenic or major gene type, polygenic resistance is effective against various races of the pathogen and is fairly durable over time as the pathogens evolve.In addition to helping us document progress from selection for yield and disease resistance, the cycles-ofselection study demonstrated rather convincingly that our breeding methodology is very effective. One key feature of this scheme (which is applied both to the subtropical and all of our other advanced populations) is that during each two-year cycle of improvement progeny are sent for evaluation at up to five locations around the developing world. A primary advantage of this approach is that it allows many cooperators to sample the populations under different types and levels of stress and to identify progeny that are well suited to those conditions; based on cooperators' progeny selections we develop experimental varieties for further, more widespread evaluation.A potential disadvantage of this approach is that the diversity of the test sites may contribute to a large genotype x environment interaction, which could limit progress from selection. If that is the case, however, it is not apparent from the results of this study, in which the average improvement in grain yield of four subtropical populations was 4.1 % per cycle or about 2.0% per year. This is a quite respectable rate of gain and coincides with the experience of other researchers.Maize is unique among cereals in being highly susceptible to stress at flowering. If the crop is short of moisture then, as is all too common in many parts of the tropics, farmers can expect yield losses of more than 50% unless they are among the fortunate few in developing countries that can irrigate maize.According to CIMMYT physiologists, the damage seems to result from competition between the plant's male and female flowers (the tassel and ear). Under favorable conditions the two exist in harmony, because the plant is able to produce enough carbohydrates through photosynthesis to easily meet the requirements of both tassel and ear development. Thus, within about two days after the tassel begins to shed pollen at anthesis, the ear will normally have exposed silks to capture the pollen for fertilization and development of seed.Under drought (or high density), however, this fine tuned system goes awry: We have just completed two cycles of improvement in several tropical and subtropical populations for the various traits (including yield, vigor, and disease resistance) that contribute to inbreeding tolerance and will study changes in the inbreeding behavior of this germplasm over cycles.Apart from standing up under prolonged inbreeding, it is extremely important that source populations employed in hybrid development show a high degree of heterosis, or hybrid vigor, with one another. In an effort to provide such materials, we are further improving the cross performance of two populations, Tuxpefio-1 and ETO Blanco, that already fit a well-known heterotic pattern. After improving the inbreeding tolerance of these materials, by growing out S 1 lines and recombining the superior ones, we placed them in an interpopulation improvement scheme, in which lines from each population are selected partially according to their performance when crossed with a tester from the other population. While attempting to make better use of known heterotic groups, we are also seeking to develop new populations that combine well with each other. Toward that end we have conducted a multilocational evaluation of test crosses and on the basis of combining ability data will recombine selected lines during 1991 to form two tropical and two subtropical heterotic groups.Thomas Luba Leocadio Martinez, Maize Program technician, indicates the marked difference between ears from drought susceptible and tolerant lines. Low grain yield under this stress results from fierce competition between the male and female flowers (i.e., the tassel and ear). A selection technique developed by CIMMYT physiologists tilts this battle of the sexes in favor of the female flower, resulting in higher grain yields under stress.The projects described above are designed to generate germplasm as quickly as possible that is specifically suited to hybrid formation. In some of its other breeding projects, the Maize Program has also taken measures (particularly the adoption of SI and s2selection schemes) that over the long term will enhance the utility of our germplasm for both OPV and hybrid development programs. By these various means, we hope to ensure that, Zimbabwe and Zambia. One problem they are confronting is late planting of maize on about 350,000 of the estimated total of 1.2 million hectares grown by smallholder farmers, using ox tillage, in these countries' subhumid areas.Though responsible for large reductions in grain yield each year-anywhere from a quarter to a half million tons in Zimbabwe and Zambia-late plantinghas not yet been thoroughly researched.T uxpefio Sequfa is now available to national maize researchers, and in the next few years we will be providing additional improved populations that our cooperators can employ as sources of drought tolerance.rather than just making do with a limited collection of suitable lines, national programs will have far more numerous choices in developing more productive genotypes for farmers.Adopting a new variety is usually a farmer's first step toward increasing yields, but this seldom brings marked improvement unless accompanied by some modifications in crop management. In many maize production systems, it is still far from obvious what those changes should be. And this fact is symptomatic of the continuing need throughout the developing world for research aimed at assessing agronomic problems, identifying their causes, and generating effective solutions that are within the farmer's reach. Less obvious, though certainly no less important, are the large positive impacts on agricultural sustainability of our research. During the 1990s, the Program will more directly address selected sustainability issues, while continuing to emphasize the productivityenhancing aspects of its work.We are aware of sustainability issues in major cropping systems in which wheat plays a role, such as the rice-wheat rotation in South Asia, soybean-wheat in South America, cotton-wheat in Egypt, and maize-wheat in the highlands of Mexico. We are beginning to invest resources in research specifically aimed at such systems. One new collaborative project investigates the extent to which the productivity of South Asia's vast (over 13 million hectares) rice-wheat system may be declining and looks for relevant underlying causes (see box, page 31 ).The rice-wheat work is but one of more than 240 research projects currently underway in the Wheat Program. To manage all these efforts more effectively, we have revamped our activity review process and initiated a computerized project database. In addition to an annual in-house review of the Program's research agenda, in-depth assessments of selected activities will be conducted each year by external reviewers. In June 1990, we initiated this process with an intensive, I I-day evaluation of our collaborative work on winter/facultative wheats based in Turkey and Syria.The Program 's numerous endeavors range from continuing efforts to breed spring bread wheats for irrigated environments to an array of \"upstream\" research undertakings designed to support this essential breeding work. The latter involve exploring, for example, the genetic basis of durable resistance to leaf rust, or the use of callus culture for inducing wheat-rye chromosomal exchange. Many of the Program's projects directly involve our colleagues in developing countries, as well as institutions in the developed world. We also have cooperative agreements with the International Center for Agricultural Research in the Dry Areas (!CARDA), for work on spring and facultative bread wheat and durum wheat for the dry land areas of West Asia and North Africa; and the International Rice Research Institute (IRRI), for studies on sustaining the productivity of the rice-wheat system.The rice-wheat cropping pattern is prevalent in the swampy lowlands (tarai) of western Uttar Pradesh, India. This region is one of the study areas selected as part of the CIMMYT/IRRI/ national program collaborative research project mentioned above. In 1990, two preliminary diagnostic surveys were conducted in the area; one in February focused on wheat and one in September focused on rice. The surveys occurred in three districts around the G.B. Pant University of Agriculture and Technology (Pantnagar University).The diagnostic surveys are aimed at evaluating the productivity, profitability, and sustainability of a given area's rice-wheat system, to identify productivity problems and their causes, and to suggest research that may help. Participants in the Pantnagar surveys included senior researchers from the All-India Coordinated Wheat and Cropping Systems Research Programs of the Indian Council of Agricultural Research (ICAR), Pantnagar University , IRRI, and CIMMYT. This group represented a unique cross section of disciplines, including agricultural anthropology, agronomy, economics, engineering, entomology, extension, pathology, soil physics , water management, and weed science.During the surveys interviews with farmers indicated that wheat tends to yield better after sugarcane than after rice. This may be because cane cultivation improves soil fertility due to the relatively high levels of fertilizer and farmyard manure that this highvalue crop receives and because of the 42 abundant organic matter (crop residues) left behind. Moreover, sugarcane cultivation improves soil structure in that it requires no puddling and relatively little tillage. Many farmers told the survey teams that nutrient deficiencies currently do not restrict wheat or rice yields as long as zinc is included in the fertilizer package.Several farmers stated that they apply more fertilizer now than previously to get the same yield. Data from longer term rice-wheat trials at Pantnagar University show gradual declines in rice yield over four fertilizer treatments.Yields have declined at constant fertilizer levels in other parts of the region where the rice-wheat rotation prevails.Various hypotheses were developed during the surveys on problems affecting rice and wheat productivity in the tarai. The survey teams assigned tentative priorities to problems, hypothesized about causes, diagrammed interactions, and suggested follow-up research activities. Much of this methodology is described in detail in Tripp and Woolley (1989).Problems were classified as either long term-meaning a number of crop cycles will be required for adequate assessment--or near term-meaning they can be fairly well analyzed within a crop cycle. Two long-term sustainability issues were identified in these surveys: an increasing limit on the yields of wheat and rice due to nutrient deficiencies and an increasing reduction in rice and wheat yields due to pests, diseases, and weeds. Near-term problems cited for wheat include yield reductions due to late planting or late harvesting, the weed Phalaris minor, waterlogging and excess moisture, and poor plant stands.For rice, near-term problems include infestations by brown planthoppers, bacterial leaf blight, and delayed transplanting. For both crops, near-term difficulties include rats, inefficient use of nitrogen, sheath blight, and soilborne pathogens. The survey teams generated ideas for research directed at each of the pro-blems listed above. For example, for the problem of yield reductions due to late wheat planting, suggested avenues of research include:• Designing improved tractor-drawn implements that allow reduced or zero tillage (e.g., cultivators using horizontal sweeps, shallow rotovators, or specialized equipment for zero tillage) and more efficient handling of rice straw residues.• Developing establishment procedures for rice that reduce puddling or its deleterious effects on soil structure and plow-pan formation.• Identifying wheat varieties for late planting (heat tolerance during grain filling will be an important trait of these varieties).• Identifying earlier maturing rice varieties for late rice planting.The final report on the surveys' findings (Hobbs et al. 1991) indicates that one challenging aspect of the rice-wheat collaborative project will be to establish long-term monitoring in the Pantnagar region and at other key sites. But the data obtained from such work will prove invaluable in assessing the sustainability of this important cropping system.In the late 1960s, when semidwarf wheat germplasm was first introduced to the rainy coastal areas of Turkey and North Africa, including Tunisia, Algeria, and Morocco; most of it was found to be extremely susceptible to leaf blotch caused by the fungus Septoria tritici. Epidemics were so severe that some researchers felt there was a genetic linkage between susceptibility to the disease and reduced plant height.Favorable environmental conditions (splashing rain and moderate temperatures) and additional fertilizer, combined with susceptible varieties, caused yield losses of up to 50% in farmers' fields. Today, septoria tritici blotch is an important disease of wheat in large portions of the environments characterized as temperate, high-rainfall areas: the Mediterranean Basin; the highlands of East Africa, Mexico, and the Andean region; and the Southern Cone of South America.Crop residues can play an important role in the survival of the pathogen from one wheat crop to the next. Such cultural practices as burning the stubble break the disease cycle, but these conflict with desirable practices, such as retaining stubble for erosion control. Fungicides can provide effective control and are used in Europe, but few farmers in developing countries can afford them-not to mention the potential environmental costs associated with their use. CIMMYT's primary control strategy is to breed for resistance.During the last 18 years, our breeders have developed materials that combine reasonably good levels of septoria leaf blotch resistance with high yield potential, broad adaptation, and resistance to other diseases. The best sources for resistance to date have been the spring x winter crosses (e.g., Bobwhite, Bagula, and Milan) and germplasm emanating from the shuttle breeding project between Brazil and Mexico (e.g., Frontana-derived lines and Thombird).Recently, germplasm derived from our partnership with China to develop fusarium head scab-resistant germplasm and from our wide cross program has given a boost to the search for genetic variability for resistance to septoria diseases.In a collaborative effort that dates from about 1985, CIMMYT has drawn on the expertise of the Plant Protection Institute (IPO) in the Netherlands and Tel Aviv University in Israel. One objective of this project has been to confirm the diversity of resistance in some of the more important sources of resistance that the Program has been using in its breeding efforts. We are looking for as many different resistance genes as possible; we will then determine which ones are the most useful for combining and incorporating into superior wheat phenotypes. So far, it appears the sources of resistance derived from the winter wheats and the Brazilian germplasm are quite different in their genetic backgrounds.Through laboratory testing of more than 100 S. tritici isolates collected by our staff and colleagues around the world on a set of wheat varieties developed in Netherlands are funding a three-year collaborative project between Cornell University (USA) and CIMMYT in an effort to develop an RFLP linkage map for hexaploid bread wheat. Wheatmaize crosses are playing an important role in this work.A promising area of biotechnology is the use of RFLPs to identify and trackIn 1990, our wheat wide crosses laboratory had a 23% recovery rate of haploids from wheat-maize crossesconsidered to be exceptional by scientists working in this area.Israel, IPO has been able to confirm the existence of virulence differences in the pathogen. Dutch and Israeli scientists are studying virulence patterns and developing specific markers so that isolates of the S. tritici pathogen can be differentiated more precisely. For example, they are looking at the possibility of using micro-viruses found in the cytoplasm of the pathogen as markers to distinguish one isolate from another. If a specific pathogen or isolate carries the same virus all the time, technicians will be able to determine the isolate by identifying the virus that afflicts it. Our colleagues are also developing restriction fragment length polymorphisms (RFLPs) for use in the identification of specific isolates.In 1986, researchers in the UK demonstrated that it was possible, through the use of laboratory techniques, to recover embryos and obtain plants from wide crosses using wheat as the female parent and maize as the male parent. After fertilization, the maize chromosomes are eliminated from the zygote resulting in wheat haploids. Recently, we made crosses between bread wheat varieties assessed to be reasonably polymorphic with respect to DNA, and reconstituted wheat hexaploids (synthetics developed from crossing tetraploid durum wheat and the wild relative Aegilops squarrosa). We then pollinated the F 1 hybrid progeny with maize pollen to produce haploids. We currently have more than 400 haploids from several wheat populations undergoing chromosome doubling using the standard colchicine technique. Homozygous individuals will be produced and used in the continuing effort to construct an RFLP map for useful traits in bread wheat.Durum wheats-a staple food of the poor in West Asia/North Africa (WANA), Ethiopia, the Asian Subcontinent, and the Andes of South America-are cultivated by these regions' farmers on about 11 million hectares. About 70% of this durum area is dryland and concentrated in W ANA. Our major objective is to increase the efficiency with which durum wheat is grown, both in favorable and unfavorable environments, by supplying improved germplasm to national wheat research programs. In Mexico, our durum breeding emphasizes the development of high-yielding materials, as well as improved disease resistance and better grain quality. The CIMMYT I ICARDA breeding effort in Aleppo, Syria, focuses on greater tolerance to abiotic stresses, particularly drought and cold.Since the 1950s, as Figure 5 shows, durum varieties released in Mexico have exhibited steady progress in yield potential, by which we mean the yield of these varieties under irrigation and good management. Yield potential is an important measure of progress because numerous studies with both CIMMYT durum and bread wheats reveal that increased yield potential is associated not only with more efficient land use (yield/day), but also more efficient use of specific inputs of solar radiation, of nutrients (see Review of CIMMYT Programs, page 30), and of water-both when present at optimal or sub-optimal levels. The progress achieved with durum wheats derives from both increased biomass as well as increased harvest index (Figure 5). The 9.0 and 9.4 t/ha yield potentials of the Mexican varieties, Altar 84 and Aconchi 89, during the 1989-90 cycle at our northwestern Mexico station are the highest ever measured at this location.We expect to improve yield potential even further, in particular by increasing the harvest index from its current level of about 42%.In irrigated locations like northwestern Mexico's Yaqui Valley, it is obvious that higher yield potential will be reflected in higher on-farm yields even though the general level of durum yields obtained by progressive farmers may be 25% below those quoted above. --------------------~ changing opportunities in labor markets than of changes in wheat production technology.) In both rainfed and irrigated areas, large-scale farmers have consistently enjoyed the highest incomes from all sources (including crop production, agricultural labor, and nonagricultural employment). Nevertheless, during the past 25 years, poorer small-scale farmers and landless households registered faster real income growth (Figure 6). Particularly striking is the rapid growth of the incomes of poorer households in rainfed areas. In Pakistan, real agricultural wages in rainfed and irrigated areas have increased steadily, supporting the idea that the increased labor requirements of Green Revolution technologies benefited agricultural laborers in both favorable and marginal production environments. However, wages in nearly all sectors of Pakistan's economy have risen dramatically since the midl 970s, when large-scale migration to the Middle East began, creating labor shortages in many key sectors of Pakistan's economy (including agriculture). That the rate of income growth has been greater in rainfed areas than in irrigated areas over the past 15 years indicates that those nonagricultural opportunities proved to be even more remunerative than agricultural opportunities in the irrigated areas. An interesting implication of this finding is that differences in wheat production across environments may actually have provided a strong incentive for people living in Pakistan's less productive rainfed areas to broaden their income-generating activities outside of the agricultural sector.The results of this study suggest that continued investment in research for favored areas is a reasonable strategy to pursue. However, the study does not imply that research in marginal areas should be ignored. Given that people in marginal areas may not benefit indefinitely from employment opportunities off of the farm, it is important to investigate priority research issues in marginal environments.As the Pakistan study indicates (see preceding section), agriculture is influenced not only by localized events at the farm level but also by the more unsettling changes brought on by upheavals in the larger maize and wheat economies. If more resources are allocated to research aimed at marginal areas, where will future gains in productivity come from? Given that moisture is the key constraint, three strategies offer the most hope for increasing and stabilizing yields: 1) irrigation to improve the supply of water, 2) practices that conserve moisture, and 3) practices that use moisture more efficiently. India has long adopted the strategy of expanding irrigated area, and more recently Syria and Turkey have followed suit. But the two remaining strategies should not be overlooked: converting rainfed to irrigated land is costly, and even where irrigation is successful, its sustainability may be doubtful, depending on groundwater supplies.As for breeding research, although improved germplasm may help raise wheat and barley yields in marginal areas, improvements in crop and soil management practices will often precede changes in variety (as has already happened in Turkey). Traditional research programs focusing exclusively on cereal crops may not be as successful in marginal areas as in favorable locations, because intercropping, crop rotations and fallowing, and croplivestock interactions are so important. Instead, a more integrated systems approach to crop and soil management is needed. The role of extension will also be critical. The \"technology package\" approach often favored by extension is not so relevant in marginal areas, where high agroclimatic variability means that farmers must be able to select among an array of technological options to meet the requirements of a specific field or season.Likewise, appropriate policies are needed to encourage farmers to adopt improved crop and soil management practices, especially since many marginal areas lack effective input delivery systems and marketing infrastructure. Since economic incentives in many marginal areas favor livestock, price policy reforms may be necessary to increase the expected returns to cereal production and/or to reduce its riskiness. Precisely because they are characterized by a high level of climatic variability, rainfed marginal environments will require a stronger technology/policy effort if cereal production practices are to change significantly.Other commodity sector and policy studies in 1990 emphasized maize and wheat production at the national rather than the global or regional level. In Sudan, an intensive survey of wheat producers elicited data for an analysis of the tradeoffs likely to be involved in devoting more resources to improving domestic wheat production. The Sudanese government has determined to raise local wheat self-sufficiency because of limited domestic supplies of wheat, serious shortages of foreign exchange for importing wheat, and reductions in food aid. This is an ambitious goal in a country which, aside from being the warmest place in the world where wheat is grown commercially, produces every grain of its wheat under irrigation. Results of this study and a similar one in Kenya, evaluating the efficiency of domestic wheat production compared to maize and dairying, should be available in 1991. Along with earlier work in Zimbabwe, these studies should offer a clearer perspective on options for encouraging domestic wheat production and self-sufficiency throughout eastern and southern Africa, and for determining how much emphasis should be given to wheat research.In Paraguay, a preliminary study of the maize sector was completed (Morris et al. 1990). Results of the study highlighted issues in maize production and marketing that require further investigation. In 1991, a more extensive national survey of maize producers will offer researchers more precise information for developing a suitable national maize research strategy.The Economics Program conducted many and varied training courses during 1990, including a regional training workshop in eastern and southern Africa designed to address the needs of the region's growing number of social scientists. Two networks of soc ial scientists were also formed, one in Central America and the Caribbean and the other in eastern and southern Africa (in collaboration with the International Crops Research Institute for the Semi-Arid Tropics). The Central American network should improve communication among social scientists in the region, whereas the African network is specifically intended to foster work in policy analysis.The past year saw increased progress toward the institutionalization of training in OFR; it is now part of the curricula of several eastern and southern African universities. Finally, CIMMYT social scientists in all regions continued to work with colleagues in the university system to supervise thesis research by advanced degree students. A noted thinker about trends in information management recently wrote about \"information anxiety\"-the stress caused by a constant bombardment of seemingly important yet elusive or unintelligible information (Wurman 1989). Agricultural researchers in prosperous, industrialized countries experience this apprehension as they sort through a deluge of journals, reports, and personal communications in search of results relevant to their work. But information anxiety carries a different connotation for scientists in developing countries, who often face a lack of current scientific information, along with difficulties in disseminating results from their work. CIMMYT Information Services staff are striving to aid both groups of researchers, as well as key decision makers in governments and the donor community, to overcome these problems. They are doing so through the selective application of new electronic tools that help manage more information more effectively, and through a better conceptualization and targeting of information intended for those who can truly gain from receiving it.To facilitate the production of CIMMYT publications, for example, the Center recently invested in a \"desktop\" system that allows staff to explore quickly and inexpensively a broad range of possibilities for merging form with function. We have changed our production procedures to fit the system, bringing writers, editors, and designers together as creative \"project teams,\" and the result is more appealing and accessible publications produced more swiftly and at lower costs. New information technologies are yielding other benefits as well, such as the capacity for rapidly generating attractive support materials for presentations, again at lower cost, and a computerbased \"image bank\" that will permit the efficient retrieval of the over 3,000 color transparencies and black and white prints in CIMMYT's collection.As our production tools and methods have evolved, so too has the array of information products and the relative emphasis among them, to better reflect changes in Center priorities and the expressed needs of those we seek to serve. A growing focus, for example, on elucidating the science that underlies our germplasm research is leading to more publishing by. CIMMYT staff, especially in refereed journals (see pages 58-60). Likewise, among the roughly 50 CIMMYT imprimatur publications produced each year our emphasis has shifted from general information toward technical publications and practical manuals and guidebooks.The Center has inaugurated several publishing initiatives designed to reach specific audiences: • Finally, we are implementing a public awareness strategy that provides information to decision makers in developed and developing countries and, often in direct collaboration with donors, to key public constituencies. Our efforts emphasize improved targeting of specific groups with accessible, useful, and relatively inexpensive products. This perspective is increasingly evident in our Annual Reports. Whereas the series once featured general coverage of all Center activities (only some of which were of interest to any one group of readers), our Reports are now organized around themes of current interest and carry highlights on only a limited selection of research topics. We are complementing this approach to annual reporting with a series of inexpensive fact sheets that describe individual Center activities and subprograms. We are also stepping up efforts to reach the \"general public,\" by placing interesting stories about CIMMYT's work in various mass media.These information products and delivery strategies are intended to make the results of CIMMYT's efforts more accessible to external clients of the Center. But Center staff themselves, as well as their developing country colleagues, are concerned about access to information relevant to their work. In this regard, our scientific information unit (SIU) applies selected computerbased tools and systems to offer a range of services once unimaginable in traditional libraries. These include bibliographies, abstracts, tables of contents, full-text copies of articles, searches through more than a score of databases on compact discs, and the monthly automatic dissemination of information on specific topics, among other services. Line scientists and developing country libraries provide the focus for these services.To ensure that potential users are mindful of those offerings, SIU staff conduct \"awareness\" seminars for trainees, visiting scientists, and administrators, and have developed a variety of instructional and promotional materials. One 1990 project, for example, which was produced with the help of a consultant and other Information Services staff, involved the creation of an audiovisual presentation describing the information resources of 20 international agricultural research centers, including CIMMYT. Entitled Seeds of Knowledge, this program and its accompanying information packet are aimed at visitors, trainees, students in communication, and the faculties of agricultural universities worldwide. The SIU is also participating in the development of a full-text compact agricultural library on compact discs containing some 3,000 documents from those centers, including books, serials, and conference proceedings.But scientists of developing countries will feel much less anxious about information when they can count on adequate support at home. Toward that end, SIU staff participate in various national, regional, and global networks that promote the growth of such expertise, including the Mexican National Association of Agricultural Librarians (ANBAGRO), the Interamerican Association of Agricultural Librarians and Documentalists (AIBDA) in Latin America, and a network of the information units from 20 international agricultural research centers. The latter group recently produced a union catalog of over 3,600 journal holdings at 14 centers, which is being made available to interested developing country libraries in either electronic or printed form. This catalog will allow users of those libraries to request copies of specific articles that can be provided by the international centers.Germplasm improvement research at CIMMYT depends upon the international exchange of maize and wheat seed. The Seed Health Unit was Seed Health personnel are examining the effect of surface disinfestation with sodium hypochlorite on the storage life of seed of maize and wheat. It is expected that the removal of pathogens from the seed coat will improve viability after long-term storage in the case of both maize and wheat. The work is especially significant for wheat, since most bank materials are grown out on experiment stations in the south of Mexico, where wet conditions favor pathogen development.In 1990, Seed Health staff began exploring new ways to guarantee the health and long-term viability of seed in CIMMYT germplasm banks, including washing and laboratory testing of samples for storage and the inspection of current bank contents.instituted in 1989 to help augment fundamental health standards in Center operations. In this way, we protect agriculture in host countries and ensure our germplasm unencumbered transit worldwide.In 1990, Seed Health staff began to focus attention on another key aspect of our breeding programs: the collection and storage of germplasm. Seed for our banks has generally been grown out under the careful observation of breeders and genetic resources staff, who culled any samples showing signs of possible infection. Now, as part of an initiative endorsed generally by the principal CGIAR commodity centers and IBPGR, we are exploring new ways to guarantee the health and long-term viability of the seed in CIMMYT banks and, ultimately, ensure the quality and free movement worldwide of the germplasm we ship.CIMMYT researchers have also begun laboratory analyses of wheat bank holdings to inventory pathogens on the seed. This will allow us to certify the health of bank accessions, recommend suitable chemical treatments where necessary, and assess the effect of pathogens on the long-term viability of seed in storage. Our methodology involves grouping like accessions by species, location, and cycle, bulking samples from each accession, and removing and testing replicates from the bulk. We are looking for fungi in general, bacteria such as Xanthomonas campestris pv. undulosa, and barley stripe mosaic virus. A similar study for maize will take place in the near future.In classical breeding, plant DNA is manipulated and viewed \"from the outside in.\" Observable traits of whole plants in massive numbers and over many cycles of crossing and selecting are used to evaluate changes at the genome level. Recently, though, molecular genetics staff are applying restriction fragment length polymorphism (RFLP) technology to give breeders a glimpse inside the cell nucleus, allowing them to track genes for traits of interest.The RFLP technique compares minute snippets produced when nuclear DNA is placed in solution with a \"restriction\" enzyme that cleaves it at particular sites.The fragments can be sorted by length and individual ones detected using molecular probes. Each probe binds to a specific DNA sequence and is previously labelled with a substance that registers on film. The RFLP technique helps researchers locate genomic segments associated with particular traits in a given crop. The probes can serve as markers, permitting breeders to follow segments of interest over many crosses. In this way, selection need not depend solely on phenotypic characteristics, which often vary as a result of environment, plant growth stage, and interactions between traits.In applying RFLPs to breeding, we have tried to increase our efficiency through collaboration with leading institutes worldwide. Current projects include work with Cornell University, USA, to develop an RFLP map for hexaploid bread wheat (see page 44); with the Mexican Center for Research and Advanced Studies (CINVEST AV) of the National Polytechnic Institute (IPN) to determine relationships between RFLP probes and genomic segments associated with drought resistance in maize; and with an international group studying the use of RFLPs in research on quantitative traits of maize, such as resistance to southwestern corn borer (Diatraea grandiosella).The latter undertaking is CIMMYT's contribution to a project conducted by seven European laboratories engaged in a network supported through the DNA from a few grams of green leaf tissue will later be mixed with an enzyme that clips it into millions of fragments for RFLP analyses.Pan-European Funding Organization (EUREKA). During the project's initial phase, which was completed this year, our researchers characterized 51 inbred lines of tropical and subtropical maize.The results indicate great diversity in the materials, substantiate pedigree information, and have allowed researchers to identify genomic regions shared by related lines. Subsequent work will focus on generating RFLP \"maps\" to locate specific genomic regions that control resistance to borers, so that the corresponding probes may be employed as selection tools.An outgrowth of this project is software developed by our researchers for reading and analyzing RFLPs. The banding patterns used in RFLP studies are normally scored visually, a method that can be time-consuming and highly subjective. To remedy this, molecular genetics personnel developed a computer program that allows rapid and precise data entry with a digitizing pad and expedites the statistical analyses crucial to interpreting RFLP patterns.In addition, the laboratory is adopting the following innovations suited to RFLP studies and related work:• The polymerase chain reaction (PCR) technique for copying a specific DNA segment, which will allow a technician to quickly make 54 billions of copies of a selected probe. Over 100 different probes can be replicated and labeled in a few hours in the same operation, whereas prior methods for reproducing probes were much longer and laborious and entailed a separate step for labeling.• A protocol for detecting RFLPs that does not use radioactive substances, but rather involves first labeling probes with a nonradioactive compound, attaching enzyme-linked antibodies to probes bound to DNA fragments, and locating the enzyme by means of a light-emitting substrate.• Randomly amplified polymorphic DNA probes (RAPDs), which are used for detecting polymorphisms in plant and insect species. Unlike RFLP probes, RAPDs are not unique to a given species and can thus be used to fingerprint varieties and inbreds from any plant species, or even pests of crops. The technique is being explored in a collaborative project conducted at CIMMYT by two scientists from the Mexican National Institute of Forestry, Agriculture, and Livestock Research (INIFAP). They are comparing the utility of RAPDs and RFLPs in studying the purity of highland maize varieties and hybrids produced in different environments in Mexico. international research and training obligations depends on donor funding of core and complementary projects. The Center derives those funds from more than 28 donors from many different countries around the world.Our financial statements for this year show an increase in total assets. Cash and short-term investments increased, reflecting the decrease in accounts receivable and the increase in payments received in advance from donors. Although total accounts receivable declined, receivables from donors continue to be higher than in previous years due to several major core donations left outstanding. Property, plant, and equipment increased by 9% with replacement of existing fixed assets contributing to most of the expenditures made for capital items. It should be noted that the apparent growth in capital assets is largely due to the CGIAR policy of zero depreciation. Donor pledges in currencies other than US dollars are recorded at their dollar equivalent on the date of deposit. In 1990, the relative weakness of the dollar against other major currencies resulted in higher than expected dollar revenues from donations denominated in other currencies. In Mexico, the combined effect of exchange rates and inflation continue to erode the purchasing power of our dollar revenues.These financial highlights describe and summarize how funds were disseminated by the Center in its continuing effort to effectively meet the objectives of its mandate.As in the previous year, CIMMYT ' ","tokenCount":"17450"} \ No newline at end of file diff --git a/data/part_3/4587069886.json b/data/part_3/4587069886.json new file mode 100644 index 0000000000000000000000000000000000000000..bf57c8432ec76d31b1ad7ae16558c96c47e80ef4 --- /dev/null +++ b/data/part_3/4587069886.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"cd0dfdb56ac64f8fe5e92c516410f487","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/534c0d76-c170-457d-833f-80e97b45b485/retrieve","id":"-2083909217"},"keywords":["Myoporum","Vallesia","biochar","soil water holding capacity","drought tolerance","survival"],"sieverID":"a6455b95-e187-44f6-9788-9e11ab77f205","pagecount":"6","content":"Enhancing water use efficiency in urban green spaces is an increasing concern in hyper-arid megacities.Here we aimed to compare the efficacy of species selection vs. soil management as strategies for reducing water demand of ornamental trees in irrigated green spaces of the city of Lima, Peru. We compared the performance of a popular exotic shrub used as a living fence in Lima's green spaces with an alternative native species when grown in soils with or without biochar at different levels of soil water availability. Plant water stress and mortality were measured over 6-months. The native species outperformed the exotic in terms of resistance to water stress and suffered less mortality at low levels of soil water. The addition of biochar did not significantly enhance the leaf water potential. Its concluded that improved selection of species could significantly augment water use efficiency in urban green spaces in Lima and beyond.The proximity and size of urban green spaces are strongly correlated with quality of life and physical and psychological human health indicators (Wolch, Byrne, and Newell 2014;Marselle et al. 2020). Urban green spaces deliver pivotal ecosystem services such as air filtration, microclimate regulation, noise reduction, thermal comfort, recreational and cultural values (Bolund and Hunhammar 1999). In particular the potential for urban vegetation to dissipate radiative heat stress and provide a cooler microclimate may assume great importance in arid climates (Shashua-Bar et al. 2010;Winters et al. 2018).However in areas of water scarcity, water use efficiency and the costs of establishing and maintaining urban green spaces may strongly influence the size and spatial distribution of said green spaces (Nouri, Chavoshi Borujeni, and Hoekstra 2019). Lima, the capital of Peru is a good example of this. Lima is located in a desert environment with a mean annual precipitation (MAP) close to zero. Lima is the second-largest desert city in the world after Cairo, Egypt, but it stands out among major cities of Latin America and the world for the severity of the water stress faced by its approximately 9 million residents (Gammie, De Bievre, and Guevara 2015). Unlike Cairo, the city of Lima does not possess a large river or water reserves and relies almost exclusively on multiple smaller rivers coming down the Andes whose flows are diminishing due to melting glaciers, land degradation and increased use of water for agricultural purposes (Aquafondo 2021).The city has close to 30 million m 2 of urban green spaces managed by the various levels of government (Quispe 2017), translating to 3 m 2 of green space per inhabitant. Irrigating Lima's urban green spaces required 1,010,396 cubic meters of water, about one billion litres, during the single month of January 2017, the peak of the austral summer (SEDAPAL 2017). However, socio-economically Lima is a highly segregated metropolitan agglomeration with deep contrasts between the rich-and poor sectors of the population (de Córdova, Fernández-Maldonado, and Manuel del Pozo 2016). The distribution of green spaces is highly uneven across socio-economic classes (Loret de Mola et al. 2017). This is partly due to the fact that maintenance of green spaces relies close to 100% on irrigation water, whose availability is much more problematic in the poorer compared to the richer suburbs (Figure 1). The older, wealthier, and more established suburbs of Lima were built in the rich alluvial valleys that receive runoff from the Andes. However recent urban growth has been occurring on hillsides where access to water is extremely limited. Particularly in areas where urban growth is largely informal there is an unmet demand for basic services such as potable water, transportation and housing.Given the importance of urban green space to quality of life addressing this imbalance should be a priority (Ramaiah and Avtar 2019). Achieving this goal can be a complex undertaking as ecological, social and economic factors combined often contradict each other and can be difficult to optimize in any one area at the same time (Breuste and Artmann 2020). Nevertheless, one route to increase water use efficiency in green spaces in Lima and facilitate more greening with less water in the poorer suburbs resides in the selection of species that can persist with limited water (Toscano, Ferrante, and Romano 2019), combined or not with appropriate soil management. The use of biochar for example can both improve the water holding capacity of the soil and enhance plant growth (Atkinson 2018;Aller et al. 2017).Here we present a case study evaluating the potential efficacy of both these alternate strategies for maintaining urban green space in Lima's Desert Environment. To this end we compared the performance of a popular exotic shrub species (Myporum laetum), widely used as living fences in Lima green spaces, with an alternative native species (Vallesia glabra) when grown in soils with or without biochar at different levels of soil water availability. We hypothesized that (1) the native species would have a higher level of water use efficiency than the exotic species and (2) that addition of biochar to the soil would improve the water use of both native and exotic tree seedlings.An experiment which used a randomized complete block experimental design was carried out in a greenhouse at the Universidad Cientifica del Sur in Lima, Peru. The experimental design used three experimental factors: (1) species, (2) quantity of irrigation water, and (3) soil amendment (biochar).Vallesia glabra) suitable for use as living fences were compared in this experiment. Myoporum is an exotic shrub originally from New Zealand. Myoporum may grow to 10 m in height and its leaves possess waxy cuticles, which hints at potential for tolerating water stress (Lange 2021). It produces racemes of small white flowers but the plant is generally cultivated in Lima for its ability to re-sprout after pruning which makes it highly suitable for use as a living fence. The Myoporum seedlings used were donated by the municipality of Lurín. The second species Vallesia glabra is a native shrub that may reach 2-4 metres in height. It naturally inhabits the dry forests of the Peruvian coastal region, which also suggests potential for drought resistance.Vallesia produces tubular corolla type flowers commonly used by native hummingbirds (Gonzáles et al. 2020).Vallesia likewise re-sprouts vigorously after pruning also hinting at suitability for living fences. The Vallesia seedlings were sourced from the native species nursery located on Agricola Chapi's farm in Ica, Peru. This plant conservation project for the Peruvian coastal ecosystem is being carried out in partnership with the NGO Huarango Nature, and seeks to promote the use of native plants in the community (http://www.conservamosica.org/conica/relictos-bosques/).2) The second experimental factor was the level of irrigation. Two levels of irrigation were used: field capacity (500 ml per 5 L pot every third day), and ¼ field capacity (125 ml every third day). These levels of irrigation were based on rates of irrigation used by the Municipality of Lurin in green spaces that have connection to mains water (low-cost water) and green spaces that require high cost irrigation from a water truck, and which therefore receive less water (Figure 2).3) The third and final factor used in the experiment was soil amendment, which also had 2 levels: biochar applied at 30 tons per hectare (75 grams per pot) and no soil amendment. The biochar was made using municipal green waste and chicken manure in a Kontiki reactor, see Ladd et al. (2018) for more detail.All three experimental factor were completely crossed resulting in eight unique treatment combinations. Each combination was replicated 10 times in five-litre pots that were filled with sandy soil with a bulk density of 1.5 g/cm 3 obtained from the Municipality of Lurin from one of its urban parks. A single plant seedling was planted into these pots at the start of August 2018 and the experiment ran until November 2018.The experiment was conducted in a closed greenhouse with anti-aphid mesh and a polycarbonate roof, the average temperature in the greenhouse was 25 C° ± 2, however, there was considerable differences through time. During the first 2 months (August and September), winter, the maximum temperature was 20 C° and the minimum 17 C° with a relative humidity of 86.6%. In the final 2 months of the experiment, springtime (October and November) the maximum temperature was 31 C° and the minimum 19 C°, with an average relative humidity of 81.3%. Relative humidity and temperature were measured with an 'In & Out Max-Min Thermo Hygro Meter™'.From August to November 2018 the water potential of the vascular tissue in the plant leaves was measured every two weeks using a Pump-Up Pressure Chamber (PMS Instruments). Ten replicate leaves from each treatment were harvested for these measurements. Measurements were taken between 12.30pm and 1.30pm, to capture the maximum level of water stress experienced by the experimental plants (Williams and Araujo 2002). The time between excision of the leaves and the pressurization of the chamber was generally less than 15 seconds. For each sampled plant, we measured the fourth fully expanded leaf exposed to light. In addition to vascular water pressure we also recorded mortality. Leaf water potential was analysed via ANOVA considering, using biochar addition, species (native vs. exotic) and amount of water (high vs. low) used for irrigation, and the interaction of these factors as the relevant factors, with alpha value set at 0.05. The Akaike Information Criterion (AIC) was used to assess model performance in the ANOVA and we retain only the independent variables identified as relevant in the AIC to simply the presentation of the results. The mortality data was analysed via logistic regression using Xlstat (Addin soft, Paris), with the chi-square test used to assess the significance of model parameters in the logistic model. The significance value for the logistic regression was likewise set at the default value of 0.05.The only retained variables, following analysis of AIC values, that significantly explained variation in leaf water potential were species (native vs. exotic) and irrigation level (high vs. low). The water potential of Vallesia leaves, the native species, was significantly lower than the water potential of Myoporum leaves (the exotic species) indicating greater capacity to resist water stress in Vallesia (Figure 3). The addition of biochar did not significantly influence leaf water potential values of either species. Therefore, we accept the first hypothesis that the native species would have higher water use efficiency, and we reject the second, that biochar would improve water use efficiency of both species. The mortality data closely mirrored the results for leaf water potential though in this case we saw a significant effect of both species and irrigation level (Table 1). Of the 80 plants used in this experiment only five died during the experiment and all five were Myoporum seedlings in pots receiving the low level of irrigation (Table 2). The results of this case study did not support our initial hypothesis that soil management through the addition of biochar and species selection would be of equal importance for increasing drought resistance. Application of biochar at a rate of 30 tons per hectare, a large and costly application rate, improved leaf water potential by less than 5%. Further, biochar application had no impact on mortality rates. The impact of biochar on soil water content may depend on soil type (Abel et al. 2013), and potentially in this case very large amounts of soil amendment would be required to improve the water-holding capacity of the sandy soil. In contrast we found clear evidence that species identity is critical for drought resistance. Based on the results from this admittedly limited study we would strongly urge policy makers in Lima to prioritize species selection for improving water use efficiency in Lima's urban green spaces. The expansion of urban green space in Lima's economically marginal suburbs needs to be prioritized, especially considering the positive influence of urban green space on the quality of life (Wolch, Byrne, and Newell 2014;Loret de Mola et al. 2017;Marselle et al. 2020). This case study provides compelling evidence that more urban greening could be achieved with less water through strategic species selection. Further if we were to retro fit Lima's more affluent suburbs with native water saving species it may then become possible to free up water resources for use in poorer suburbs with critical deficits in urban green space.In addition to reducing the cost of generating and maintaining urban green space, a change towards more native species in urban greening could play a key role in conserving diversity of both plants and the fauna that depend on these plants in the hyper arid Peruvian Coastal region. Future research that expands the analysis to a broader range of species and to real-world field/urban contexts are needed (Klein 2020). Desert trees for example are known to have the deepest roots in the plant kingdom. Such physiological characteristics need to be studied In Peru's coastal desert flora. As observed In the Mojave Desert, plants with deep roots were less vulnerable to drought (Winters et al. 2018). Species such as huarango (Prosopis pallida and P. limensis), azote de cristo (Parkinsonia aculeata) or tara (Caesalpinia spinosa) could be other candidates from Peruvian dry forests that could be used in urban green spaces in the city (Fremout et al. 2021), however, further research is required to better understand their physiology before detailed policy recommendations are possible. There is also an urgent need to develop capacity in water treatment and recycling. An estimated 14% of the wastewater collected by SEDAPAL (the Peruvian Water Authority) receives secondary or tertiary treatment, and of this volume only half is reused for irrigation (ANA 2021), while the rest is discharged into the sea or rivers. A combination of measures that included both recycling wastewater and intelligent selection of species for urban green spaces could massively increase the quality of life for many people. ","tokenCount":"2278"} \ No newline at end of file diff --git a/data/part_3/4588805912.json b/data/part_3/4588805912.json new file mode 100644 index 0000000000000000000000000000000000000000..ce4c706e89268e65cce5fbb843c42fc8956d2de3 --- /dev/null +++ b/data/part_3/4588805912.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"55999da74d9287dd505f67b759fc46b8","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/2fdfc634-2352-4dbd-8e16-f69da47bdec7/retrieve","id":"861094853"},"keywords":[],"sieverID":"5c03ad45-63b2-452e-8187-15b461281f6c","pagecount":"21","content":"The field trip was organized to reach for two important objectives;  Establish four strategic (woreda level) and eight operational (kebele level) Innovation Platforms (IPs) in all Africa RISING Ethiopia project sites (Basona Worena in Amhara, Endamehoni in Tigray, Lemo in SNNPR and Sinana in Oromia). To give partners an overview of Africa RISING project activities to date and what future research-for-development activities are envisaged mainly through the innovation platformsDiscussion, observations and insightsAll workshops started with self-introductions of participants and expression of their expectations from the workshop. Most of the expectations were about understanding what Africa RISING has done so far; what innovation platforms are; what partners' roles will be in the Innovation platforms and future planned activities.An opening speech was made by higher officials from the zonal and woreda administrations. The officials emphasized how African RISING project objectives complement government agricultural development strategies particularly on scaling up and out of good practices that could come from Africa RISING and the need for collaboration with NGOs and research organizations to transform the life of the rural poor. They also expressed their commitment to work in collaboration with the different partners working in the project.Participants included representatives of government offices, NGOs, universities, agricultural research centers and different public and private sector organizations. A number of ideas were shared on the status of Africa RISING project activities, possible partnerships and the role of innovation platforms in joint planning, implementation and learning. Different kebele institutions, development agents (DAs), model farmers, cooperatives, micro-finance institutions and elders/religious leader were among the participant at the kebele level.Kindu Mekonnen gave an overview of the project objective, purpose and intervention areas and illustrated what sustainable intensification means and what it is trying to achieve. He explained how Africa RISING objectives of food and nutrition security, and income diversifications are in line with the government's goal of improving the livelihood of small holder farmers.Going through the project activities done so far, it was explained that a quick diagnostic study was conducted through telephone survey which was followed by livelihood survey using SLATE tool on 480 farmers to generate baseline information. A Participatory Community analysis was also done with 300 farmers to characterize farmers and have a profound understanding of the opportunities and challenges of the farming systems in the research sites.The completed and ongoing Africa RISING project activities include:-Telephone surveys -Livelihood surveys using SLATE -Participatory community analysis (PCA) -Studies on legume crop residues-FEAST-TECHFIT -IMPACTlite surveys: Household detailed characterization -Surveys on agro-ecological knowledge and community knowledge groups -Market value chain studies to identify dominate commodities and proposed interventions -On-farm research demonstrations -Crop and soil based fertilizer trials He gave a generic review of the seven Africa RISING research thematic areas and international, national and local partners that are working on the project. He emphasized the importance of collaboration among partners and acknowledged all partners but mainly universities for offering site coordination offices and highlighted Africa RISING effort in recruiting site coordinators, signing memorandum of understanding with partners and providing car and motor bike at the project sites for better facilitation and coordination of the project activities.A summary of the PCA result was translated into local languages and distributed to the kebele participants while a brief power point presentation of the PCA was made. Farmers' profiles, livelihood sources, institutions existing inside and outside the sites, the major crops and crop/livestock preferences (cash and food) among male, female and youth categories was presented from the detailed the PCA document (Participatory Community Analysis). Possible interventions to the diagnosed problems in crop and livestock subsystems that were identified with farmers and exhaustively listed on the PCA document were then discussed.  A government representative in Sinana appreciated Africa RISING taking nutrition as a cross cutting issue as food security is becoming better and better in the country but nutrition security is still an issues. Another representative emphasized the importance of considering gender in the project; which is already an important cross cutting team for Africa RISING.Africa RISING and CIP site coordinators and a university researcher (in Sinana) reported the main objectives of the field trial and the major activities conducted on the field demonstration on Wheat, Faba bean and Potato. The methodology of the demonstration was illustrated including the varieties used, seed rates, spacing, methods of planting, fertilizer rates, weed and pest management for all the three major crops in the research sites. Mid-season evaluation was done after the field trial with the objective of identifying and ranking the different varieties across different parameters of measurement like resistance to disease, early maturity, stand vigor and easy adaptation by male and female farmers and youth categories. When the crops reached maturity end-season evaluation was also conducted in similar fashion with the mid-season evaluation with consideration of other yield and yield related parameters.Inclusion of a new variety and working to have a clear ranking and preference on Faba bean was mentioned as important points by participants in Bosona Worena and Sinana woredas. Some woreda agricultural office representatives raised the importance of working on crop diseases as it has stayed as a major challenge for production and productivity and pinpointed the importance of bringing a tangible result so that the woreda will be intensively work on scaling up and out of the good outcomes of the project.A presentation was made on the nature of partnerships, representation, and envisaged functions at strategic and operational level IPs and innovation clusters. The presentation emphasized the importance of horizontally and vertically linking the different IPs and clusters to ensure learning and collaboration. The importance of different partner engagement was highly emphasized to realize effective collaboration, joint learning and impact. An example of commodity based value chains with actors and roles was also presented on the major crops and livestock/livestock products to give a picture of the typical value chain in the research sites. A preliminary assessment of the value chain on dominant crops and livestock/livestock products/ in the area was shared.A presentation was made on \"gender\" and the importance of its integration in agriculture in general and Africa RISING activities in particular. Accordingly, gender refers to socially constructed roles and responsibilities of men and women mentioning the lesser roles women are given in agriculture. The presenters stressed that one of the difficulties for having a sustainable change in agriculture is lack of systematically incorporating or addressing gender issues in interventions. Unequal access to assets, resources and services, credit and other key inputs or education are mentioned as major issues that affect equitable benefits between men and women. Power dynamics between male and females is also an important point raised that needs to be considered in mainstreaming gender in interventions. Finally, the implications of considering gender in Africa RISING research activities were explained to insure equitable and sustainable change in farmers' livelihood.Innovation Platforms -purpose, functions, membershipAfter showing a digital story on innovation platforms, Zelalem Lema kicked-off his presentations by asking if anyone had participated or knew anything about IPs. It was explained that IPs are learning platforms where different stakeholders come together to deal with common problems or opportunities. It was highlighted that IPs are becoming very instrumental to deal with complex development problems as solutions to such problems need the collaboration and participation of different actors. It is also a networking and capacity building platform for different actors around a particular system of focus.Strategic and operational IPs are the two types of platforms that will be established by Africa RISING with the objective of giving strategic direction at the woreda level IPs and their practical implementation at the kebele level (operational IPs). Three stages were listed from International Livestock Research Institute's (ILRI's) experience on how to establish IP:-Engaging with stakeholders and establishing IPs -Mobilization, Planning, Implementation, Learning and Assessing -Ensuring Sustainability Potential members and functions of the strategic IPs are also depicted based on the previously listed partners at IP training workshop at ILRI campus. Participants were very keen to the IP approach and expressed its potential in dealing with complex problems then discussed on possible IP members, purpose and functions already identified in the previously at ILRI campus.A short presentation was made at Lemo and Sinana on the rationale of integrating an M&E framework at different levels of the IPs and what possible roles and responsibilities partners will have in the process. A plan was discussed to share a draft M&E framework with IP technical group members and get a feedback on it before discussing it in detail in a planned learning event at ILRI campus in late May or early June.Farmers emphasized problems related to feed shortage saying there is indeed a serious scarcity where they only use crop residues as the primary feed source and there has never been any initiative to alleviate feed problem in their kebele. Only a few of them have recently started cultivating some grass species like Desho, Rhodus, Sesbania and Oats but only in small amounts.A SeedFeed project representative gave a brief of the project and how they plan to pilot fodder interventions in collaboration with Africa RISING to promote commercial feed seed production. The expert stressed that animal feed shortage is one of the most important challenges in the whole country affecting the productivity of the livestock sector. Many commercial initiatives in Ethiopia have produced industrial animal feed but could not reach the farm-gate level. The project aims to work on commercialization of feed seed giving better access to feed at the farmgate and potentially growing them into seed business and commercialization. The project wants to work with interested farmers as a pilot project on feed seed production, marketing and business development to generate evidence for a bigger scale adoption of animal feed related innovations. Wachamo University also showed interest to work with the project as they have already started dealing with animal feed shortage which has been a challenge to the recent estrus synchronization campaign of the government. Areka Research center representative also showed their interest as they have a problem to distribute viable feed seed which is tarnishing their reputation around farmers.One of the most important deliverable of these workshops was the establishment of \"Innovation Platforms\". A total of twelve platforms; four at the woreda level and eight at the kebele level were established in all Africa RISING research sites.Participants went through an interesting discussion to identify institutions and individuals that would be represented in the general assembly and technical committee of the IPs. The meeting places were also decided to be by rotation across the sites so that different partner institutions show their commitment by organizing meetings at their venues. Second, the partnership and networking among the members will be enhanced if IP meetings are organized by the different partners. The IP technical group members for the four woredas and eight kebeles are listed below, with members ranging from 7 -10. The total list of IP members is annexed at the end of this report. ","tokenCount":"1816"} \ No newline at end of file diff --git a/data/part_3/4599751264.json b/data/part_3/4599751264.json new file mode 100644 index 0000000000000000000000000000000000000000..18bc80404fef4fcf82f8b62023522fad3ec958a4 --- /dev/null +++ b/data/part_3/4599751264.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"bd0da3dec7a17aee25182f97432383c9","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/271471c3-651b-4cb3-8314-b6add9740b92/content","id":"-1499543175"},"keywords":["Sustainable development goals (SDGs)","Bangladesh","Santal indigenous people","wheat-maize innovations","gender"],"sieverID":"93cdd3d8-f314-4a7c-889c-f9aabbf1255b","pagecount":"21","content":"Bangladesh is strongly committed to the \"leave no one behind\" principle of the UN's Sustainable Development Goals. However, social norms and institutional biases in agricultural organisations can prevent indigenous peoples and women from participating in wheat-maize innovation processes, as they rarely meet the requisite criteria: sufficient land, social capital or formal education. The GENNOVATE (Enabling Gender Equality in Agricultural and Environmental Innovation) research initiative in Bangladesh shows that indigenous Santal women are obtaining access to and benefiting from wheat-maize innovations, enabling low-income Muslim women to benefit as well.Following the close of the Millennium Development Goals (MDGs) process, the governments of 193 countries agreed upon the \"Agenda 2030 for Sustainable Development\" with 17 Sustainable Development Goals (SDGs) and 169 targets in 2015 (UN General Assembly 2015). The SDG goals and targets are comprehensive because they integrate the economic, social and environmental dimensions of sustainable development (paragraph 5) and are founded on the respect, protection and promotion of human rights and fundamental freedoms (paragraph 19). In committing to Agenda 2030, UN member states:we pledge that no one will be left behind. Recognizing that the dignity of the human person is fundamental, we wish to see the Goals and targets met for all nations and peoples and for all segments of society. And we will endeavour to reach the furthest behind first. (UN General Assembly 2015, 3)The principle \"leave no one behind\" (LNOB) means that no goal is considered to be met unless it is met for everyone. Goal number 10 specifically commits to the social, economic and political inclusion and empowerment of all, irrespective of age, sex, disability, race, ethnicity, origin, religion and economic or other status (10.2). It recommends eliminating discriminatory laws, policies and practices and developing empowering legislation, policies and action (10.3). Goal number 5, supported by 24 gender targets across the SDGs, commits nations to \"achieve gender equality and empower all women and girls\" (Koehler 2016, SDG 5b). One mechanism of achieving this is through linking access to technology with women's empowerment (Koehler 2016). More broadly, Target 2.3 recognises strengthening women's roles in the agricultural economy as integral to doubling agricultural productivity and the incomes of small-scale food producers by 2030. Policy recommendations associated with this Target including promoting secure and equal access to productive resources, inputs, knowledge, financial services, markets and opportunities for value addition and non-farm employment (Koehler 2016).Bangladesh has translated Agenda 2030 at the national level by formulating a Perspective Plan (2010Plan ( -2021) ) and through bringing the SDGs into its seventh Five Year Plan 2016-2020 (Government of Bangladesh 2017a; 2017b). A \"Whole of Society\" approach involves all development partnersmulti and bilateral agencies, NGOs and civil society, the private sector and media, in interpreting and implementing the SDGs. A SDGs Implementation and Monitoring Committee has been formed at the Prime Minister's Office to facilitate the implementation of the SDG Action Plan. The country exhibits a generally positive commitment to gender equality at the policy level (Jafry 2013). However, the Global Gender Gap Index for 2016 (World Economic Forum 2016) suggests there is still some way to go, ranking Bangladesh 72nd out of 144 countries. It recorded improvements with respect to women's political empowerment, but a widening of the gender gap with respect to women's labour force participation and estimated earned income. These mixed findings are reflected in the Women in Agriculture Empowerment Index (WEAI) for Bangladesh (Sraboni, Quisumbing, and Ahmed 2013).A literature review of how various cultural norms in Bangladesh can contribute to leaving specific groups behind (Farnworth and Jahan 2014) found a tendency in some studies to generalise, in particular relying on what people say is happening rather than examining what is actually happening. This hampers analytic clarity on the interaction between different drivers of marginalisation. The situation is made more complex by lack of agreement on the number of different ethnicities in the country, with the government recognising 27 but others claiming 45 or more (Pant et al. 2014).In this article, we examine the drivers of marginalisation affecting the indigenous Santal people, the largest marginalised group in the country. We then examine the extent to which these drivers overlap with those affecting ethnic Bengali women from poor and middle-income groups and assess the implications of relatively greater personal freedoms for example, strong mobility experienced by Santal womenfor their ability to reach out to ethnic Bengali women and help them collectively seize control over development processes.To achieve our objectives, we examine the frameworks that suggest analytic pathways for conceptualising marginalisation processes. Mittal, Pereram, and Korkeala (2016) outline four structural drivers underpinning marginalisation processes: (1) an inadequate asset basenatural, physical, financial, human, social and cultural; (2) poor access to services and infrastructurehealth, energy, water, transport and markets; (3) weak political voice, empowerment and institutional governance; and (4) identity-based discrimination. The converse of the first three structural driversassets, services and voiceequally act as \"enablers\" to lift people out of poverty. This is not true, the authors argue, of the fourth driver. The processes of identity-based discriminationand the social norms which underpin and \"rationalise\" thisare an underlying driver hampering marginalised people from utilising the first three drivers to their advantage. This interlocking process is depicted in Figure A1 (Online Appendix).Identity-based discrimination operates at group levels and thus contributes towards the development of group-based \"horizontal\" inequalities (Kabeer 2016; see also Ribot 2009). The most enduring horizontal inequalities, Kabeer argues, are those associated with identities ascribed at birth such as race, gender, caste and ethnicity. She highlights how \"personal\" the articulation of social hierarchies can be. Cultural norms and practices can \"disparage, stereotype, exclude, ridicule and demean certain social groups, denying them full personhood and equal rights to participate in the economic, social and political life of their society\" (Kabeer 2016, 13). Stuart (2016) comments that the use of the term \"group-based\" is valuable yet paradoxical, as its real value is in allowing us to see the individual, rather than working with a concept of the poor, as aggregate poverty numbers. Understanding how different types of group-based marginalisation overlap, layering disadvantage upon disadvantagefor example, being poor, aged, a woman, a widow and a member of a discriminated-against ethnic minorityenables us to perceive almost viscerally what it means to be left behind and how difficult it can be to escape that situation (Mittal, Pereram, and Korkeala 2016).Conventional approaches to poverty reduction, which may focus on alleviating a specific type of inequality such as age or disability-based discrimination, have often been ineffective in transforming the situation of LNOB people because each of the overlapping inequalities they experience fuses with, and can exacerbate, the effects of the other inequalities, making it particularly difficult to develop pathways out of poverty (Kabeer 2016). In particular, an apparent lack of \"productive assets\" may mean that marginalised people are not targeted in mainstream development projects. Rural advisory services and agricultural research organisations often select farmers with a specified minimum land area and other assets to trial innovations, for example improved seed, machinery and other agricultural practices (Bellon, Hodson, and Bergvinson 2005). This can, by default, exclude marginalised communities. Since they are not included in training, their potential to benefit from innovations is diminished, thus leaving them further and further behind. Their marginalisation is systemic and systematic.However, this process can be counteracted. This article provides insights into how layers of overlapping disadvantage are being challenged in one community in northern Bangladesh. The hypothesis guiding our empirical research and analysis is that although the wheat-maize innovation processes in the community are primarily directed at middleincome male farmers, women from different income classes and ethnicities are seeking inclusion. The research questions are: (1) what strategies do women develop to participate in innovation processes as individuals and through organisations? and ( 2) what do women gain from securing inclusion? Collectively, these research questions set out to explore how women deploy their agency to lift themselves out of poverty by securing a role in wheatmaize innovation processes and whether these strategies differ depending on the type of marginalisationas women, indigenous minorities or low and middle-income farmers. In the conclusion, we build on Kabeer's (1999) work to define women's empowerment through the concepts of agency and power to help us interpret the findings. We expect this analysis and findings to help understand how agricultural research partners can work to strengthen the contribution and voices of the women who have long experienced differing forms of marginalisation; and support their resistance.In our discussion, we examine the ways in which the norms and practices emanating from the dominant socio-political classes in Bangladesh, which \"disparage, stereotype, exclude, ridicule and demean certain social groups\" (Kabeer 2016; see also Kelkar 2009), are extended towards indigenous peoples, particularly Santals, in the country. Evidence of Santal resistance to marginalisation processes is presented, followed by socio-economic data which nevertheless demonstrates the serious consequences of marginalisation for Santali development indicators. Sex-disaggregated data compares the situation of low and middle-income ethnic Bengali women and men to that of Santali in the same locations. This overview provides contextual information within which our research data can be assessed and understood. The special focus on Santals, rather than an equal focus on ethnic Bengali and Santals, is necessary to highlight additional features that serve to marginalise Santals. These do not apply to ethnic Bengalis.The politics of the Bangladesh post-colonial state, which sees itself as Muslim and Bengali, has served to render indigenous people \"ubiquitously absent as subjects, as actors, as agents in the national imagination; they are invisible in the administrative, educational, economical systems, and in the popular media\" (Priyadarshini 2012, 22; see also Karim 1998). The term \"indigenous\" is not officially recognised; with the government declaring that other ethnicities (in Bengali upojati, which means small ethnic group) only entered the country in the sixteenth century (Alam 2015). Substituting the terminology of indigenous peoples with small ethnic groups implies that the state does not need to follow international conventions with regard to acknowledging and respecting the rights of indigenous peoples. Indeed, the celebration by Santals and others of the International Day of the World's Indigenous Peoples was not permitted for some years after 2011 (Alam 2015). Celebration is now permitted in Dhaka, though not as a national event. The Bangladesh Adivasi Forum, the Bangladesh Indigenous Peoples Forum and other civil society groups seek recognition in the Constitution and are members of Citizens' Platform for the SDGs (http://bdplatform4sdgs.net).Indigenous women, alongside ethnic Bengali women, have a long history of active militancy and passive resistance in Bangladesh. Alam (2015) recounts how Santal and low-income ethnic Bengali women defied armed government troops during a demonstration against proposed mining activities in Phubari on 26 August 2006. Male demonstrators fled but women chased armed troops with choppers and brooms and blocked entrances to the village. The next day women organised a large demonstration at Phulbari municipality. The image of Santal and ethnic Bengali women working together to fight for the survival of their community drew the attention of the nation to the struggle. A national leader explained, \"usually [women] do not participate in regular meetings but whenever there is an emergency they never hesitate because they have stronger feelings than men for livelihood, house, children and other kin relations\" (Alam 2015, 42-43). Women also resisted by refusing to provide information on households to mining company members and chasing them away (Alam 2015). Santal women were part of earlier struggles such as the Tebhaga movement of indigenous sharecroppers, particularly in northern Bangladesh (our study location) to reduce the share given to powerful landowners from onehalf to one-third (Hashmi 1994, as cited in Alam 2015). Indigenous and ethnic Bengali women were active militants and fought alongside men in the Bangladesh Liberation War of 1971 (Harrington 2013). Harrington argues that male-dominated narratives of this war still find it too difficult to assimilate the transgressive nature of women guerrilla fighters, preferring to cast them as war heroines (birangona), defined as women who were sexually victimised as a consequence of the struggle, rather than as active fighters.Despite resistance struggles, the negative consequences of systemic discrimination over decades are evident. Brandt (2011) notes that Santal indigenous people have complex religious beliefs and are subjected to considerable missionary efforts by the Seventh-day Adventist Church. Whilst these efforts are placing a strain on Santal indigenous religion, she observes that missionaries are often the only institution interacting with the Santal (Brandt 2011; see also Gauri and Galel 2005;and Samad 2006). Priyadarshini (2012) contends that indigenous women in Bangladesh are sexually, economically and politically discriminated against by some ethnic Bengali. At the same time, indigenous women face gender-based discrimination and violence within their own households and communities. They have few inheritance or parental rights and do not participate equally in religious rituals (Priyadarshini 2012).Santals score very low on multiple indicators including health, educational level and land ownership (Abdullah 2014;Uddin 2009;Hossain and Tollefson 2007). Samad (2006, 9) argues that the effects of discriminationincluding land-grabbing, threats, evictions and killingare such that Santals are at a considerable disadvantage compared to some other indigenous groups as well as the majority ethnic Bengali population. Access to education and Santal language publications can be difficult and many Santali children do not attend school or perform poorly, due to their poor knowledge of Bengali (Cavallaro and Rahman 2009). A study conducted in six villages showed that over a period of 50 years Santal families holding more than 15 acres of land diminished from 72 to zero, partly due to poor understanding by Santals of their rights under land law and \"shrewd exploitation\" (Rahman and Bhuiyan 2008). The study comments dismally that the Santal are \"losing their existence with regards to their economic, social and political lives\" and that they now work as day labourers on the land they previously owned (Rahman and Bhuiyan 2008, 4). A comparative study of 288 couples (145 Muslim and 143 Santal) in one village (Uddin 2009) found significant differences in educational attainment, occupational status and income between Muslims and Santals. The study further recorded gender differences with respect to these indicators between women and men within each ethnicity, and between each ethnicity, as shown in Table 1.Table 1 shows that income differentials are sharp, with considerably more Santal couples in the low-income bracket, and very few in the middle to high-income brackets. Bengali couples are distributed more evenly across the three income bands. There is a strong differential in the number of men farming their own land. Low land ownership and low levels of education among Santal contributes to high levels of Santal men seeking work as day labourers. Discrepancies between the genders also emerge. Among Santal, few women and men have had any formal education. However, although Bengali Muslims are more educated, the gender gap between women and men on this indicator is more marked. The most startling difference between Santal and Bengali women is in occupation, with nine out of 10 Santal women in daily wage labour and nine out of 10 Bengali women remaining at home.Figure A2 highlights these interrelationships diagrammatically. It shows how constraints that typically apply to ethnic Bengali women also apply to Santal women, such as time-consuming responsibility for household and care work, and an inability to sell agricultural produce at formal markets. These constraints are shown in blue. However, the position of Santal women is worsened through identity-based discrimination, the loss of land, general lack of targeting in development programmes and even lower literacy than the average for Muslim women. Constraints specific to Santal women are shown in orange. Low-income Muslim women share some constraints with Santal women, particularly engagement in low-paying day labour. The constraints shared by Santal and lowincome Muslim women are shown in green. These drivers of marginalisation can act together to create a downward spiral, whereby negative outcomes cause further negative outcomes. The outcomes are unevenly distributed among women, with Santal women experiencing the most intense overlapping of drivers.The data used in this article is derived from GENNOVATE (Enabling Gender Equality in Agricultural and Environmental Innovation). This is a cross-CGIAR (Consultative Group for International Agricultural Research) initiative examining how interactions between gender norms, agency and other contextual factors shape access to, adoption of and benefits from agricultural innovations in rural communities worldwide (see more details on the Gennovate methodology in Petesch, Badstue, and Prain [2018]). Data collection in Bangladesh took place in 2015. GENNOVATE uses a comparative case study approach deploying standardised instruments to identify factors that hinder or facilitate and promote men and women's individual and collective capacities for engaging in innovation processes. The methods are qualitative sex-segregated focus group discussions (FGD) and semi-structured interviews (SSIs) with participants of different ages. The adult FGDs are sub-divided by economic class with respondents drawn from poor and middle-income categories using locally developed classifications. One-on-one interviews are held with locally recognised innovators. Landless women and men, who neither own nor lease land, are not included as a analytic category although they may be active in agriculture-related occupations. In all cases the facilitators and note takers are of the same gender as the respondents. The tools are summarised in Table A1 (Online Appendix).The FGD questionnaires comprise structured checklists to enable international comparisons between responses to be made with some scope for probing. Thus the questionnaires are not tailored to specifically enquire into the situation of indigenous peoples. However, since they allow some additional probing within the strict format, Bangladesh enumerator teams were able to explore differences between cultural norms, religious beliefs and other factors relating to innovations of FGD members. In this case study, participants in each FGD comprised of people from the Santal community, Bengali Muslims and Hindus. A total of 27 people from the Santal community were interviewed (75 respondents in total). Table 2 provides a breakdown of the distribution of respondents by research method and by gender and ethnicity/religious affiliation.The data was collected by a team from Global Communication Centre, Grameen Communications, BANGLADESH, and was translated into English by an externally hired translator. NVivo Qualitative Software was used to conduct the initial variable-oriented analysis. This permitted the identification of emergent themes within and across the data. This was followed by systematic in-depth data analysis.Kalipara (a pseudonym) is a village located on Bangladesh's northern plains. Agriculture is central to its economy. Rice, maize, wheat, dal, jute, mangoes, lychees and vegetables are important crops. Livestock, including goats, cattle, poultry and fish are widely raised. Over the past 10 years, maize and especially wheat have become popular commercial crops. New technologies, including improved seeds and breeds, machinery and new methods of cultivation have been introduced in almost all crops and livestock. The development of paved roads enables male farmers to sell produce in local towns, as does the widespread use of cell phones. Electrification and the internet have also helped to improve livelihoods. As a consequence, Kalipara has been experiencing important economic dynamism for around a decade. Many men now work in off-farm occupations, and some farmers are becoming wealthy as a consequence of all these changes. Since there have been so many changes, it is not possible to directly attribute improvements in livelihoods specifically to the adoption of wheat-maize innovations. At the same time, successful adoption of these technologies demonstrably plays a role in economic betterment as shown in the Findings.It was not possible to obtain nuanced data on relative income levels by ethnic group or religious affiliation. However, the Ladder of Life activity conducted as part of the Wellbeing FGD suggests that 40 per cent of all households in Kalipari are considered very low-income. A further 25 per cent are low-income. Middle-income households comprise around 20 per cent of all households, and 15 per cent of all households are categorised as wealthy.In Kalipara, the situation of the Santals initially appears much as presented in Table 1 above and Figure A1 in the Online Appendix. Santals once dominated the village numerically. Today they comprise approximately 20 per cent of the population due to immigration by Bengalis and most Santals have become Christian. Bengali Muslims account for 75 per cent and Hindus -5 per cent 1 of the population. Key informants claimed that the overwhelming nature of Bengali immigration, combined with low literacy rates among Santals, resulted in the latter losing almost all their land to Bengalis. Today, Santals hold less than 10 per cent of the land. The majority of Santal women and men work as day labourers, as do many low-income Muslim women and men.Respondents explained that, under Islamic law, daughters, as well as sons, can inherit land, though in reality daughters rarely claim their inheritance. Santal norms generally hamper women from inheriting land and they face other normative restrictions as noted by Priyadarshini (2012) above. Santal and Muslim women are responsible for house and care work, though, unlike Muslim men, Santal men help their wives from time to time in all tasks except childcare. Women from both communities also farm vegetables around the house, raise cattle and goats, and conduct post-harvest processing of field crops like rice and maize.Santal women experience considerable, though not total, mobility. This is in sharp contrast to Muslim women, particularly from the middle-income groups, who experience very little mobility and are not expected to work in the fields. Santal women work alongside men, and by themselves, in the fields on crops such as rice, wheat and maize. A middle-income Muslim woman commented, \"Married Santal women have freedom to participate both in field and home. These women are participating at all levels of agricultural activities.\" Cultural norms prohibit Bengali and Santal women from selling agricultural produce in local markets, though they sell vegetables, goats and cattle from the farm gate to middlemen. Although women can obtain credit from NGOs, this money is often turned over to men for their use.The International Wheat and Maize Improvement Centre, CIMMYT, has a strong presence in Bangladesh. In our case study, CIMMYT has partnered with a large NGO, Rangpur Dinajpur Rural Service (RDRS). RDRS is active in hundreds of communities across northern Bangladesh and forms farmer clubs through which it can introduce new agricultural technologies. CIMMYT piloted wheat-maize innovations through the Kalipara branch of RDRS in 2013 and rolled out the project in 2014/2015 to more farmers. The innovations included improved wheat and maize varieties, inorganic fertiliser and machinery including the power tiller operated seeder (PTOS). The PTOS is attached to a small two-wheeled tractor to simultaneously drill, sow and fertilise crops in lines.When the RDRS started its partnership with CIMMYT, it selected individuals who had proven successful experience in earlier agricultural innovation processes. RDRS targeted farmers with whom they had strong existing relationships and who were considered enthusiastic and willing to try out wheat-maize innovations. The amount of land deemed necessary for wheat-maize innovation varies across communities, but in Kalipara RDRS stipulated that participating farmers should farm at least 20 decimals (.08 hectare), whether owned or hired in. The land had to be upland, situated next to a road in order to maximise visibility of the trials and because when machinery is driven to more remote locations, fuel costs morethus making them unattractive to farmers at the early adoption stage. Potential participants also needed to have a minimum level of education. These criteria automatically excluded most low-income women and men, the majority of whom have never been targeted by RDRS or the government agricultural services. Even so, a few low-income Muslim men known to RDRS were targeted.The RDRS, with funding from the European Union and other NGOs, established a Union Federationan outreach platform specifically to reach women farmersin Kalipara in 2013. This is just one of many Union Federations established by RDRS across its intervention area. RDRS works through the Union Federation to direct agricultural innovations specifically to women. The Kalipara Union Federation provides courses in incomegeneration activities like vegetable growing, sewing and hobbies such as the harmonica, and it holds regular meetings where women members can share their experiences of new technologies, including wheat-maize innovations. At the time of study the Kalipara Union Federation had a membership of 826 individuals, of whom 766 were women and 60 were men. All men members were Santals (7% of the membership). Santal women comprised 55 per cent (422 individuals) of the membership; and Bengali Muslim/Hindu -38 per cent (344 individuals). Members were derived from Kalipara village, as well as surrounding villages. Since the Kalipara Union Federation building is physically located close to the homes of Santal people, this has promoted Santal participation as members and in the leadership. Currently, the president of the Kalipara Union Federation is a Santal woman, Joytee (a pseudonym), who was elected by Muslim and Santal women for her strong leadership skills, proven innovation expertise and personal motivation.Male trainers from RDRS come to the Union Federation to train women in wheatmaize innovations (and other technologies). The personal link between RDRS and the Union Federation is the president of the Union Federation. When women farmers have queries about wheat-maize innovations, they approach Joytee who provides expert opinion and solicits assistance from the RDRS, if required. Women are also free to approach RDRS directly, but in most cases they will do so with the knowledge and support of Joytee.Table A2 (Online Appendix) shows the actual percentages of farmers trained in wheatmaize innovations directly through the RDRS and through the Kalipara Union Federation. It shows that more Muslim/Hindu women (14.7% of all trainees) were trained than Santal women (12% of all trainees), although Santal women are more numerous in the membership (55%) than Muslim/Hindu women (38%). It further shows that 270 Muslim/Hindu men were trained directly by RDRS (72% of all trainees) and that only five Santal men (1.3% of all trainees) were trained (through the Union Federation). It appears that joining the Union Federation is the only way for Santal men to put themselves forward for potential targeting for wheat-maize training events. They are not targeted directly by RDRS unlike middle to high-income Hindu/Muslim men. This is presumably because all Santal men fall into the marginalised/low-income category. It would further appear that no low-income Muslim/Hindu men are targeted.Table 3 provides an overview of beneficiaries by income band. The 105 individuals trained through the Kalipara Union Federation are low-income Santals and Muslims (100 women and 5 men), and all the middle and high-income categories of trainees (total 270) are male Muslims or Hindus.The findings are presented as follows. First, we discuss differences in women's gender interests in maize-wheat technologies by ethnicity/religious affiliation and socio-economic class. Second, we explore the drivers which facilitate or deny women opportunities to meet their gender interests. Third, we examine the strategies women use to secure inclusion in wheat-maize innovations. We do not discuss the position of low-income Santal and Muslim/Hindu men, who are not targeted for any training in wheat-maize innovations. Further research on the implications for intra-household discussion processes and for the sustainable adoption of new technologies, when low-income women but not lowincome men are targeted, is required.The gender interests of women in wheat-maize innovations vary by socio-economic position and cultural norms. Middle-income Muslim women do not work on field crops. However, they want to be able to discuss agricultural innovations knowledgeably with their husbands and to make decisions together. They have a vested interest because innovation costs money and thus has the potential to impact negativelyor positively -the family budget. Whilst in such families men are expected to earn, effective household budgeting is considered a core management responsibility for women. Women argued that if they were able to participate in training on wheat and maize and thus understand the costs and potential financial benefits of the innovations involved, they could help to \"improve their household's position\". Low-income Muslim women have the same budgetary interests as middle-income Muslim women. However, low-income Muslim women experience substantially more freedom of movement. They work as daily hired labourers and on their family fields alongside men, and thus have clear interests in improving household income through using new technologies themselves. The use of machinery promises considerable labour savings in their own fields as well.Santal women, both middle-and low-income, similarly experience freedom of movement, except for being able to sell in local markets, which is a taboo for all women. Santal women in households with land work in field-based agriculture and, indeed, appear to be taking over from men in many activities, as men start to seek off-farm income generation opportunities. A \"good\" Santal wife, according to the Wellbeing FGDs, is expected to be knowledgeable about improved seeds, inorganic fertilisers, irrigation methods and the use of herbicides and pesticides. They thus have strong vested interests in all agricultural innovation processes including wheat-maize.Despite their interest in agricultural innovations, cultural norms frequently inhibit Muslim women, particularly middle-income, from participating in agricultural training courses in relation to wheat and maize. Such courses are in themselves not exclusionary of middle-income Muslim women, but women who do not adhere to cultural norms are at risk of social exclusion.Middle-income Muslim women noted, sometimes bitterly, that \"many men are not open to accept training for women, particularly regarding field crops\" since \"illiterate husbands think what will be the benefit if my wife attends agricultural trainings since she is not allowed to work in the field\" (interviews with participants). They agreed that, due to norms favouring seclusion, \"there is little scope to try out the new practices, but we want more opportunities which will help improve overall economic returns to the family\". They are further constrained by the fact that most agricultural extension officers are usually inaccessible to them, as women, because of the norms prohibiting interactions with non-family men: \"Most agricultural extension agents are men and this is a barrier for women to attend modern training. Our husbands and families don't let us\" (interview with a participant). These findings incidentally suggest that men rarely share information from technical training with their wives, though more research is needed to verify this.Low-income Muslim women are doubly excluded through their gender and through their low-income status. Although the RDRS and its outreach platform, the Kalipara Union Federation, are theoretically open to low-income households, in reality, the majority are unable to meet the minimum targeting criteria for training in wheat-maize innovations. Female and male low-income respondents expressed frustration and disappointment, reiterating that they want to try the innovations but do not receive training and support and do not have sufficient money to invest on their own account. They acknowledged that some poor farmers are risk-averse but argued that \"many poor farmers are motivated and inspired by the new practices; the absence of support is a barrier\" (interview with a participant). However, findings show that some low-income women and men have succeeded in raising themselves and their households out of deep poverty over a period of several years through determination, hard work, training in innovations like vegetable gardening and the respect and support of in-laws. This has enabled a few men to be selected for RDRS training courses on wheat-maize innovations.A cross-cutting complicating dynamic in this community is the identification of wheatmaize innovations with Santals in the RDRS and the Kalipara Union Federation. Some early male Muslim adopters using the PTOS were criticised by other Muslim men:We have worked so hard to plough and sow seeds on our farm but you haven't even cultivated your land! It will never produce a crop. What kind of method have you learnt from the aboriginal people? You will never get crops from here. (Interview with a participant)Here, the word \"aboriginal\" rather than Santal is intended to be derogatory. Some Muslim innovators were also accused of wanting to become Santal or Christian. Such attitudes initially hampered wider adoption among eligible Bengali Muslims with only eight men willing to try the new technologies to start with.The technologies themselves, as suggested in the quote above, also proved a source of contention. A Muslim woman explained:Other people discouraged us a lot. They said a lot of negative things and said things like our land won't grow any crops because we didn't plough it and we should just break the land and cultivate it again but we didn't listen to them. We were quiet and carried on with our decision of continuing to practice this method. (Interview with a participant)The data shows, in fact, that in almost every case neighbours and other community members were suspicious and negative towards the innovator regardless of their gender and ethnic/religious affiliation.Women agreed that it is a normative must for women regardless of ethnicity to seek permission from male spouses and elders in the lineage. Santal women generally demonstrated stronger voice in decisionmaking than ethnic Bengali women, though of course there is variation among both groups. Santal women emphasised that they lead discussions with spouses and their aim is to secure agreement with their objectives. They first discuss new technologies with agricultural experts from the RDRS and the Kalipara Union Federation. They then talk to their husband. For instance, selection and purchase of improved wheat seed \"is decided by a woman after discussing the matter with her husband\". A woman also \"discusses with her husband to decide about how much fertiliser is to be used where on the farm\".Securing male support entails much more than demonstrating observance of a cultural norm. All women innovators reported that wholehearted family support was critical to their willingness to take risks and try something new and they provided considerable detail of such encouragement. Some men innovators -Muslim and Santalalso stressed they talk to their wives and family members before trying something new: \"the money is going to be spent from family income so discussing with wives is important\". Some Santal women are not only taking up innovations, they are also adapting them and in this way secure respect from other farmers, men and women, Muslim and Santal. Joytee explained that when she used the PTOS, referred to as the Bednala process in Bengali, she realised that despite the labour saving advantages some technical issues remained. Some of the seeds were vulnerable to disturbance by chickens foraging for food. She also noticed that seeds germinated at different rates due to differences in soil water content and that they grew at various speeds due to differences in soil fertility. She therefore fenced her land, selectively improved soil fertility and developed an effective irrigation system. When she shared her experience with the RDRS, \"they told me that we taught you our method now you can do whatever you want\". Joytee then took her experience to the Kalipara Union Federation meeting where interest was higher. \"Women came to me to find out more. I told them to apply this method to get a better result. They listened to me very attentively.\" More broadly, Bengali and Santal women appreciate the Bednala process (PTOS) because it saves them a lot of time (amounting to several days). They can attend to their other work and this is their \"favourite thing\" about the new practice.Joytee was supported by her husband, brother-in-law and two daughters to innovate in wheat and maize. They encouraged her to try out new varieties and to participate in agricultural training courses. This included learning to drive the PTOS and operate a thresher, and now she acts as a hired machinery operator. Joytee started to access information on seeds, pesticides and market prices through her mobile phone and she went to the local market to obtain information directly from various NGOs. Whereas in 2013 Joytee and her family were among the most impoverished in the community, on the lowest rung of four according to the Ladder of Life exercise, in 2015 the household assessed itself to be on level 3 which is considered middle-income. She is sending her daughters to good colleges, has purchased quality furniture and started a savings account, and highlights that she has time for her family, as well as leisure. Joytee attributes her success to working closely with the RDRS and the Kalipara Union Federation and argues that anyone who wants to succeed must have institutional support. They cannot succeed on their own. They also have to have faith in the new technologies. Joytee's standing in the community has risen, such that Santal, as well as ethnic Bengali Muslims, both women and men, decided to imitate her by trialling the innovations, including leasing in land in order to try them out.A low-income Muslim woman called Bilkis (a pseudonym) is one of them. Over a period of around 10 years Bilkis accumulated funds working hard on family land and as a day labourer. She gained the respect of her in-laws for making thoughtful decisions and they now allow her to make all important decisions in her personal life and in agriculture. When she learned the Kalipara Union Federation was offering technical training on maize and wheat: I met with the president, Aunt Joytee. After this meeting, I joined the Kalipara Union Federation and formed a group with 25 other women in our village [to work on the innovations]. Aunt Joytee helped and advised me regarding anything I wanted to discuss.Bilkis followed the recommendations provided by RDRS through the Kalipara Union Federation and now her \"yields are booming\". Several low-income Muslim women are taking out credit to lease land to trial the innovations. One explained, \"the main good point of the new methods is that earlier I got 960 kg maize from 1 big ha of land [0.13 hectare: 0.33 acre] but now I am getting 1,600 kg maize from 1 big ha\"; and another said, \"My brother inspired me a lot. He told me that machines will bring great results but hard work is mandatory as well.\"As mentioned earlier, the hypothesis guiding the research and analysis of the GENNO-VATE data is that although wheat-maize innovations are directed at middle-income male farmers, women from different income classes and ethnicities are seeking inclusion. The research set out to determine: (1) the strategies women develop to participate in innovation processes as individuals and through organisations; and (2) the benefits women gain from securing inclusion. We now ascertain the degree to which the hypothesis and research questions have been answered. In the Conclusion we set our findings in the overall context of the SDGs and the ambition to \"leave no one behind\".The research hypothesis has been substantiated. The data show that women have strong vested interests in wheat-maize innovation processes, though the precise form of that interest differs according to locally specific cultural norms which shape their lives as low-and middle-income female farmers and whether they are Santal or Muslim. As a consequence of these differences, the strategies women have developed to access and participate in male-dominated innovation processes differ.Figure 1 is a Venn diagram which visually pulls together the key findings in relation to the first research questionthe strategies women develop to participate in innovation processes as individuals and through organisations. It depicts the key actors and their interrelationships with each other. The points at which boundaries overlap show where information-sharing on wheat-maize innovations is occurring. This is shown to be a strongly gendered process. The woman-dominated Kalipara Union Federation lies at the centre of the diagram. Its presence is decisive to the ability of women to develop and realise their strategies. The Kalipara Union Federation is an effective mechanism for RDRS with its male extension officers to train women in women-only groups in wheat-maize innovations. Santal women have been the primary beneficiaries. They have profited because they are strongly involved in all aspects of field crop agriculture, are physically mobile and because they have demanded inclusion. The success of Santal women has in turn inspired some low-income Muslim women to become members of the Kalipara Union Federation and to be trained in wheat-maize innovations themselves. That is to say, women who have been ethnically marginalised and those who have been marginalised due to their poverty have interests in common. Joytee, the Santal woman president, is an inspirational role model for such women. The least successful would-be participants in innovation processes are middle-income Muslim women. Their desire for training in wheat-maize innovations has yet to be met due to lack of support from male family membersthough a few of such women receive training on vegetable production and other forms of income generation at the Kalipara Union Federation. This suggests that cultural norms rather than ethnic identity shape their opportunities. Figure 1 further shows that RDRS interacts directly with middle-income Muslim and Santal men, and only very marginally with low-income Santal and Muslim men. Potential information-sharing relationships between low-and middle-income women and men were not explored in this study and are thus not depicted.The second research question enquires into the benefits that women gain from inclusion. The data is less rich on this but it suggests benefits can be large. Successful women innovators reap respect from their spouses and extended families, and from the broader community. Within the household this can translate into stronger participation into intra-household decisionmaking processes. Improved income means women start to achieve important household and personal goals. Women also save time because the new technologies are labour-saving.Our research shows that Muslim and Santal women in the study community continue to face institutional barriers to accessing agricultural technologies. Their access to resources, knowledge, financial services, markets and more varies according to their socio-economic location in society and their ethnicity. At the same time, the findings suggest that a relatively simple empowerment processtraining in wheat-maize technologies through a women's organisationhas started to enable women to secure access to innovations and start making important choices in their lives. The fact that they have a strong woman as a leader appears pivotal to success. It is worth analysing and verifying this process through an empowerment conceptual lens. Kabeer (1999) argues that the ability to make choices is a defining feature of empowerment: to be disempowered implies to be denied choice. The concept of empowerment refers to the processes by which people who have been denied the ability to make choices acquire such an ability. Kabeer considers that the ability to exercise choice can be thought of in terms of three inter-related dimensions: Resources (preconditions) → Agency (process) → Achievements (outcomes). Resources include material, human and social resources which serve to enhance the ability to make choice. Agency is the ability to define one's goals and act upon them. It can take the form of decisionmaking, bargaining and negotiation, deception and manipulation, subversion and resistance, and the processes of reflection and analysis. Taken together, resources and agency allow women to achieve outcomes important to them (Kabeer 1999).Kabeer's analytical framework (1999) is helpful to explore our findings further. She points out that the concept of agency has positive and negative meanings in relation to power. The negative sense of \"power over\" refers to the capacity of people (and organisations) to override the agency of others. To an extent, our data supports the enactment of this form of power through the RDRS (and its funders). Its targeting criteria, which are both \"hard\" (area of land farmed) and \"soft\" (the trainee should be known to us) exclude low-income women and men and thus disallow them the chance to express and build their agency. This may have the long-term effect of deepening their marginalisation. In the positive sense of \"power to\", agency describes people's capacity to define their own life choices and to pursue their own goals (Kabeer 1999). Our data supports this reading of agency as well. Some Santal and ethnic Bengali women are starting to define their own life choices and pursue their own goalsfacilitated by the women's organisation. A third form of agency, described as \"power with\", refers to the capacity to augment power through collective action. There is evidence of this form of power being operationalised in the study community. Successful women innovators receive support from male family members and their extended family. Santal and Muslim women are working together through the Kalipara Union Federation to cooperate in securing access to wheat-maize innovations. Finally, power can also exist in the absence of any apparent agency. Norms and rules governing social behaviour can ensure that certain outcomes, such as identity-based marginalisation, are reproduced without obvious exercise of agency (Kabeer 1999).The question arises as to the degree to which Santal women are able to use their personal agency to overcome the \"power over\" and the hidden forms of agency which combine to keep them left behind. An analytic model presented in the Introduction (see Figure A1) posited that four structural drivers underpin marginalisation processes:(1) an inadequate asset base; (2) poor access to services and infrastructure; (3) weak political voice, empowerment and institutional governance; and (4) identity-based exclusion and social norms. The first three structural driversassets, services and voicecan also act as \"enablers\" to lift people out of poverty. However, the processes of identity-based exclusionand the social norms which underpin and \"rationalise\" thisare an underlying driver preventing marginalised people (including middle-income Muslim women) from accessing and using the first three drivers to their advantage.Our data show that Santal women are beginning to flip the first three drivers of marginalisation to their advantage. They are using their agency to turn the tables on their identity-based exclusion through securing access to assets, services and institutional governance processes in relation to wheat-maize innovations, and that they have achieved this in a very short time. The data further shows that low-income Muslim women involved in field-based agriculture are seizing the opportunities first opened by the Kalipara Union Federation and Santal women in order to insert themselves into these empowerment processes. This includes setting up further women-led networksfor example, the lowincome Muslim woman who organised a learning group of 25 women in her community. Whilst Muslim and Santal women do not share all the features of horizontal group-based forms of marginalisation (see Figures A1 and A2), they share sufficient features to enable cooperation along specific trajectories. For example, low-income Muslim and Santal women are engaged in field agriculture, have the same household responsibilities and the same interests in securing income, but both groups have long been excluded from training on field crops.Taken together, this analysis suggests that the transformational power of women's agency has been underestimated in conceptualisations of the drivers of horizontal group-based processes of marginalisation. This conclusion is summarised in Figure A3. It shows that the establishment of the Union Federation and the channelling of technical training to women was the precondition for women, Santal and low-income Muslim, to effectively express their agency. This in turn has led to the ability of Santal and lowincome Muslim women to secure a range of achievements. In turn, this is starting to shift the balance of power towards women who have been left behind.It appears that even in circumstances of very low access to assets and services, weak political voice and identity-based marginalisation processes, women's agency is a powerful mechanism for overturning all of these, to a greater or lesser degree. This allows us to modify Kabeer's simple linear model with a more complex version (Figure 2). The twoway arrows symbolise what will become increasingly systemic iterations between agency, resources and achievements as feedback loops are set in motion. The challenge for agricultural research organisations and their partners is to feed into and reinforce these feedback loops in a positive way that speaks to the \"power to\" and \"power with\" forms of agency that we have described.Finally, we should take note of the extraordinary intrinsic power poor people can have to change their lives. In so doing, they very much illustrate Sen's (1990, 44) conceptualisation of empowerment as \"replacing the domination of circumstances and chance by the ","tokenCount":"7901"} \ No newline at end of file diff --git a/data/part_3/4603615824.json b/data/part_3/4603615824.json new file mode 100644 index 0000000000000000000000000000000000000000..b2eca408ee0f11ef033c83146c7ed2d12caa657d --- /dev/null +++ b/data/part_3/4603615824.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"96f82da2e09e04abe9dd6763472ef578","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/8b7793b4-52e5-4be2-9ae5-015574338f54/retrieve","id":"-242367256"},"keywords":["Aeneolamia varia","Brachiaria","high-throughput phenotyping","host-plant resistance","sensors","tropical forage grasses Aeneolamia varia","Brachiaria","fenotipado de alto rendimiento","gramíneas forrajeras tropicales","sensores","resistencia varietal"],"sieverID":"4f1906db-050c-4982-a728-24307c9e4153","pagecount":"9","content":"American spittlebug species (Hemiptera: Cercopidae) are major pests in Urochloa humidicola (syn. Brachiaria humidicola) cultivars in the neotropics. The U. humidicola breeding program of the Alliance Bioversity-CIAT aims to increase tolerance to spittlebugs. To develop tolerant U. humidicola genotypes, adequate screening methods are needed. Currently, visual scores of plant damage by spittlebugs is the standard method to screen for variation in plant tolerance. However, visual scoring is prone to human bias, is of medium throughput and relies on the expertise of well-trained personnel. In this study, estimations of plant damage from SPAD chlorophyll meter measurements and digital images with visual scoring from an inexpert evaluator and visual scoring from an expert were compared. This information should inform if different methods could be implemented in the U. humidicola breeding program. Time needed to evaluate damage was recorded for each method. Lin's correlation coefficient, Pearson's correlation coefficient and broad sense heritability values were calculated. Damage estimated from digital images showed the highest throughput (twice as fast as visual scoring from an expert), high correlations with visual scoring (r>0.80, P<0.0001) and heritability values for plant damage as good or better (>0.7) than those obtained by visual scoring from an expert. Results indicate that digital imaging could improve the efficiency of phenotyping in breeding for increased tolerance to spittlebugs in U. humidicola.Las especies de salivazo (Hemiptera: Cercopidae) constituyen una importante plaga en cultivos de Urochloa humidicola (sinónimo de Brachiaria humidicola) en el neotrópico. El Programa de Mejoramiento de U. humidicola de la Alianza Bioversity-CIAT tiene como objetivo incrementar la tolerancia al salivazo. Para desarrollar genotipos de U. humidicola tolerantes a estas especies, se necesitan métodos de detección adecuados. Actualmente, las evaluaciones visuales del daño causado por salivazo sobre las plantas es el método estándar para detectar variaciones en la tolerancia de las plantas. Sin embargo, la calificación visual es propensa al sesgo humano, tiene un rendimiento medio y depende de la experiencia de personal bien capacitado. En este estudio, se compararon las estimaciones de daños en las plantas a partir de mediciones del medidor de clorofila SPAD, análisis de imágenes digitales y puntuación visual de un evaluador inexperto y otro experto. Esta investigación debe confirmar si se pueden implementar métodos alternativos de evaluación en el programa de mejoramiento de U. humidicola. Se registró el tiempo necesario para evaluar el daño con cada método. También se calcularon el coeficiente de correlación de Lin, el coeficiente de correlación de Pearson y los valores de heredabilidad en sentido amplio. El daño estimado a partir de imágenes digitales mostró el rendimiento más alto (dos veces más rápido que la puntuación visual de un experto), altas correlaciones con la puntuación visual (r > 0.80, p < 0.0001) y valores de heredabilidad para el daño de la planta tan buenos o mejores (> 0.7)Urochloa humidicola is an important forage grass in the tropical savannas of America (Berchembrock et al. 2020). The productivity of current cultivars of U. humidicola is challenged by several American spittlebug species (Hemiptera: Cercopidae) (Cardona et al. 2004). The damage in Urochloa grasses is caused when nymphs and adults feed from the xylem sap of roots in their immature stage (5 instars) and from the shoot in their adult stage (Valério et al. 2001). Thus, visual damage depends on the insect stage. In the first 4 instars the damage is imperceptible, but when nymphs reach stage 5 an ascendant acropetal chlorosis is observed and, under a severe attack, the entire above-ground portion of the plant appears dry and dead (Valério et al. 2001). When adults suck xylem sap the damage is observed in young leaves, where whitishchlorotic spots appear around suction points due to parenchyma tissue dilution from the caustic substances present in saliva (Valério et al. 2001). The spots tend to coalesce in chlorotic lesions from the tip to the base of the leaf and, when there is heavy infestation, the leaves appear entirely yellow or necrotic (Figure 1) (Sotelo and Cardona 2001;Thompson and León-González 2005). Increasing tolerance to spittlebugs in U. humidicola is a major target for the Urochloa breeding program of the Alliance Bioversity-CIAT and adequate screening methods are needed to increase the accuracy of the selection process for tolerance. Currently, visual scoring of plant damage is the standard phenotyping method to evaluate plant tolerance to the spittlebug complex in Urochloa grasses. Visual scores rely on estimates of percentages of dead leaf tissue (Parsa et al. 2011). Overall, visual scoring is a low cost and medium throughput phenotyping method that has proven successful in the Urochloa breeding program of the Alliance Bioversity-CIAT (Cardona et al. 1999;Miles et al. 2006).Visual scoring is prone to subjectivity of the evaluator and may not be accurate enough for use for selection in plant breeding programs (Walter et al. 2012). Factors that can affect scoring of plants include expertise of the evaluator (different scores from different evaluators) and fatigue over working hours. To overcome these, sensor-based measurements are gaining momentum in the Urochloa breeding program (Cardoso and Rao 2019). Hand-held devices such as the SPAD series meters are used to nondestructively record greenness of leaves. These devices measure the difference between the leaf transmittance in 650 nm (red) and 950 nm (infrared) regions using 2 lightemitting diodes and a photodiode receptor, delivering a relative SPAD meter value proportional to the amount of chlorophyll of the sample (Ling et al. 2011;Yuan et al. 2016). Measurements using SPAD meters have been shown to be positively and linearly correlated with percentages of dead tissue in Urochloa grasses (Cardoso et al. 2013). Another method used to record percentages of dead leaf tissue in Urochloa grasses is digital imaging (Jiménez et al. 2020).Sensor-based measurements are currently used in the Urochloa breeding program, but not to measure tolerance to spittlebugs (Cardoso et al. 2019;Jiménez et al. 2017;Jiménez et al. 2020;Mazabel et al. 2020). Therefore, the main objective of the present work was to compare alternative phenotyping methods (SPAD measurements and digital images) and a visual scoring from an inexperienced evaluator with evaluation of visual scoring of damage from an expert. This information should inform which screening methodology is the most Digital images for scoring Urochloa tolerance appropriate in terms of ease, accuracy and throughput, and identify refinements needed. Improved screening methods should allow more accurate and intense selection, and hence, greater genetic gain for tolerance to spittlebugs in U. humidicola hybrids.Thirty-one U. humidicola genotypes were used in the present study, which was conducted at CIAT (Palmira, Colombia, 3°31′ N, 76°19′ W; 965 masl.). Genotypes with unknown tolerance included 24 hybrids originating from the U. humidicola breeding Program of the Alliance Bioversity-CIAT and 6 checks with known tolerance to spittlebugs. Checks included 3 tolerant genotypes (cultivars 'Llanero' and 'Tully' and 1 germplasm accession, CIAT/16888) and 3 susceptible ones (2 germplasm accessions, CIAT/26146 and CIAT/26375, and a hybrid, Bh13/2768). The germplasm accessions CIAT/16888 and CIAT/26146 are the foundation parents of the U. humidicola breeding program. All genotypes were planted as root splits from vegetative material. For each genotype, 10 root splits with 1 single tiller were harvested from plants maintained under greenhouse conditions at 28 °C and 80 % RH and then immersed for 5 minutes in a 1 % sodium hypochlorite solution. Root splits were rinsed in water and planted in cylindrical polyvinyl chloride (PVC) pots (5.3 cm wide × 6.5 cm deep) that contained 40 g of sterilized soil (3:1 weight soil: weight sand). Plants were watered daily and fertilized with 30 mL of nutrient solution prepared with a 15 % N-15 % P-15 % K soluble fertilizer at 3 g/L two weeks after planting. One month after planting, when sufficient superficial roots were available to serve as feeding sites for the nymphs, 5 plants/genotype were infested with 6 mature eggs of Aeneolamia varia as previously described by Cardona et al. (1999). The other 5 plants/genotype were not infested and used as controls. The eggs were previously obtained from the Alliance Bioversity-CIAT spittlebug mass rearing colony, selected for viability by visual inspection and incubated under controlled conditions (28 ⁰C, 85 % RH) (Parsa et al. 2011). Plants were organized in a randomized complete block with 2 treatments (infested with A. varia and un-infested) and 5 replicates.Three phenotyping methods were used to assess plant damage at weekly intervals for 5 weeks: 1) visual scoring from an expert and an inexpert evaluator; 2) SPAD measurements; and, 3) digital images. Plant damage, observed as chlorotic leaf area, was estimated and expressed in percentage as described below. Time spent for plant damage evaluation using the different methods was recorded.Visual scoring for plant damage was made as an assessment of the proportion of green to senescing leaf tissue (yellow to brown) of the whole plant. Visual scoring used a 11-point scale as follows: 0 = all leaves are green; 1 = 10 % of senescent leaves; 2 = 20 % of senescent leaves; 3 = 30 % of senescent leaves; 4 = 40 % of senescent leaves; 5 = 50 % of senescent leaves; 6 = 60 % of senescent leaves; 7 = 70 % of senescent leaves; 8 = 80 % of senescent leaves; 9 = 90 % of senescent leaves; 10 = 100 % of senescent leaves.To test whether the visual scoring was affected by a given person during an evaluation, an expert and an inexpert evaluator carried out visual scorings independently.SPAD meters (SPAD-502, Konica Minolta, Japan) were used to estimate greenness of different leaves. SPAD units were recorded on 3 fully expanded leaves for each plant and the mean taken. Plant damage was estimated from the difference in SPAD measurements between consecutive weeks as follows:Damage = [(SPADn-SPADn+1)/SPADn]*100. where:SPADn is a SPAD recording at any given week; SPADn+1 is the SPAD recording the week after.For image acquisition, individual plants were placed within a closed chamber (dimensions: 2×1.5×1 m) and illuminated from above with a 120 cm long, 32 W, T8 LED tube producing 2,500 lumens. Images were taken with a digital color camera (Nikon Coolpix P6000, Nikon, Japan) with the following set up: F-stop: f/2.7, Exposure time: 1/60, and ISO speed ISO-89 and from a Nadir, i.e. vertical, view of the plant. Images were saved in a 4,224 x 3,168 pixel JPEG format. To account for difference in illumination and color tones in images, images were pre-processed with GIMP software (GIMP 2.10) to apply a pre-saved color tone matching curve to all JPEG files. Images were then processed and analyzed using ImageJ (ImageJ 1.51). Image processing consisted of splitting the images into their color channels (red, green and blue), and then normalizing the blue channel (blue channel / red channel + green channel + blue channel). The normalized blue channel was used for image segmentation using the default threshold method of ImageJ. Image segmentation consisted of the separation of shoot (white pixels) from background (black pixels). Once the image was segmented, a mask was laid onto the original unsegmented image using the AND logic operation. The masked image was then used to calculate the difference between green and red channels (G-R), which enhances contrast between green tissue and senescing tissues. Once the G-R was calculated, K-means clustering was used to create 3 clusters of colors in the image: background, green tissue and senescing tissue (Figure 2). The number of pixels for each cluster was then quantified and plant damage was calculated as: Damage = [SP/(SP+GP)]*100 where:SP is number of pixels clustered as senescing tissue; GP is number of pixels clustered as green tissue.Mean values and standard deviations were calculated for estimations of plant damage for different dates and evaluation methods. Two-way analyses of variance were calculated. Analyses were performed only for infested plants and conducted in R (R Development CoreTeam 2015). Calculations of agreement, Lin's concordance index (Lin 1989) and Pearson correlation coefficient, were performed between estimates of plant damage from alternative methods. Broad sense heritability (H 2 ) was calculated for each of the different evaluation methods (Piepho and Möhring 2007). Digital images for scoring Urochloa toleranceThe digital images method was significantly faster than the other methods (Table 1). There were no significant differences between the expert and inexpert evaluation in time needed for visual scoring. The visual scoring methodology generally had higher values of damage for all the assessments, followed by digital images and SPAD measurements (Figure 3). Differences in estimates of damage between visual scores (from expert and inexpert evaluators) and the other 2 methods (SPAD measurements and digital images) were found from the first week of evaluation (Table 2). Throughout the experiment, estimates of damage were greater in visual scores compared to those obtained from SPAD meters (about 1.5-fold greater) and digital images (about 1.3-fold greater).Values of Lin's concordance coefficient (CCC) and Pearson correlations (r) increase with the time for all the methods compared with the visual scoring from the expert, obtaining values over 0.7 for CCC and over 0.8 for r (Table 3). Highest concordances and correlations were observed between visual scoring from the expert and inexpert evaluators (Table 3).Table 4 shows the weekly broad sense heritability (H 2 ) values according to evaluation method. All the H 2 values increased through time for the 4 evaluation methods. Greater values of H 2 (values closer to 1) were obtained using the digital images method, indicating that a large portion of the variation is due to genetic factors and a smaller portion due to environment and genotype-environment interaction. Conversely, lowest H 2 values were obtained for the visual scoring from an inexpert evaluator. The present study indicated that capture of digital images was the fastest method to record plant damage, as previously shown for other traits (Jiménez et al. 2020;Büchi et al. 2018). Reduction of time is among the improvements sought by most phenotyping methods (Shakoor et al. 2017;Araus et al. 2018) to allow more plants to be evaluated for plant damage, reduce the time needed or allow more intensive phenotyping (recording of additional traits that might be of interest).Results showed that there were no significant differences between estimates of damage from visual scoring from an expert and an inexpert evaluator, suggesting the inexpert evaluator followed carefully the instructions given by the expert evaluator. However, this might not always be the case for new evaluators. Successful training of a new evaluator is dependent on the inherent characteristics of the individual and previous knowledge of the plants, which likely affects the accuracy of any evaluation. Clear instruction and training increase the accuracy of visual estimates of plant damage minimizing errors (Bock et al. 2020). Despite estimates of damage from the expert and inexpert evaluators being similar, measures of data variability (i.e., standard deviation) from the inexpert evaluator were greater than those from the expert evaluator. Similar results were found by El Jarroudi et al. (2015) when comparing estimates of septoria leaf blotch severity (and measures of data variability) in winter wheat from different evaluators.Development of damage could be detected earlier under the visual scoring method. Since the magnitude and time of detection of damage were greater using visual scoring (for both expert and inexpert evaluators), it is likely that visual scores over-estimated damage as previously identified by Bock et al. (2010).Results indicate the inexpert evaluator got better with time in the visual scoring of plant damage, as shown in other studies (Bock et al. 2016;Bock et al. 2020). Despite the improvement gained by the inexpert evaluator, they were unable to distinguish percentages of damage below 20 %, whereas the expert evaluator could distinguish at 10 % (data not shown). Similar results were found when experienced and inexperienced evaluators assessed severity of Phomopsis leaf blight of strawberry (Nita et al. 2003). Also, the level of agreement between estimates of damage from visual scoring and digital images is considered low (McBride 2005). This is not surprising as estimates of damage from visual scoring were discrete values being compared to continuous values of plant damage estimated from digital images (McBride 2005) and with a likely overestimation of damage from visual scoring.All the methodologies except for visual scoring from an inexpert evaluator showed a high accuracy with heritability values over 0.7. Similar results for heritability were obtained by other authors when comparing imagebased phenotyping methods to visual evaluations (Makanza et al. 2018;Singh et al. 2019). A phenotyping procedure, such as digital imaging, that detects high heritability of any given trait allows a broader selection process, hence, the genetic advance through the breeding cycles is faster (Holland et al. 2002). Different methods require different equipment and skills and have different costs and advantages/disadvantages that also have to be taken into account together with accuracy (Table 5). The present work showed that estimation of plant damage from digital images yielded similar results to those obtained by the standard method of visual scoring by an expert evaluator. One of the major drawbacks of visual scoring is the dependence on an expert evaluator. Training of new evaluators for visual scoring of plant damage might be a straightforward mechanism to ensure continuity over time. However, inter-rater variation represents a major drawback for this method. Overall, SPAD measurements were more time consuming and showed a low correlation with the standard evaluation of visual scoring from an expert, which makes this method less suitable to assess large numbers of hybrids in the U. humidicola breeding program. Higher values of broad sense heritability and faster recording of plant damage from digital images suggests that this phenotyping method could be used to improve the efficiency of breeding for increased tolerance to spittlebugs in U. humidicola. • Software for image correction and processing.• Photobox with constant light.• SPAD meter.Labor and skill level• Semi-skilled labor for image capture.• Skilled labor to process and analyze the images.• Unskilled labor.• Highly skilled evaluators.• Higher accuracy through time for plant damage quantification. Fastest methodology -allows to collect higher numbers of data in less time.• Only needs one equipment and does not need trained personal.• Earlier detection of symptoms.Disadvantages • Requires qualified personal to automatize the process.• Time consuming.• Low correlation to the standard visual scoring assessment.• Depends on the evaluator expertise.• Over estimation of plant damage.• Costly because of continued rigorous training of new evaluators.","tokenCount":"3012"} \ No newline at end of file diff --git a/data/part_3/4658692029.json b/data/part_3/4658692029.json new file mode 100644 index 0000000000000000000000000000000000000000..dbdb8151b4cd912641f17f77552b943c184bf0e6 --- /dev/null +++ b/data/part_3/4658692029.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"9422ed205726de85f3a7afda2a055227","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/c91d35e4-2bd4-4bad-b787-045485884d8a/retrieve","id":"189232783"},"keywords":[],"sieverID":"0a384e2f-66c9-4f9c-ab25-da6307b656a6","pagecount":"5","content":"The Ghanaian cocoa sector made important strides towards climate-resilience under COCOBOD leadership. Exposure maps were combined with exposure gradient specific CSA practices in a national training manual of obligatory use for all public and private extension targeting the 800,000 cocoa farmers in the country. Additional CSA specific training materials were developed with World Cocoa Foundation which enabled the establishment of 4 pilots are on-going with private sector actors to study how to incentivize CSA uptake by farmers.The Ghanaian cocoa sector under the leadership of COCOBOD made important strides towards climate resilience. Exposure maps developed jointly with CCAFS were combined with exposure gradient specific CSA practices in a national training manual of obligatory use for all public and private extension targeting the 800,000 cocoa farmers in the country. Additional CSA specific training materials were developed with World Cocoa Foundation. Four pilots are on-going with private sector actors to study how to incentivize CSA uptake by farmers. This change occurred through on-going engagement by project partners (IITA, Rainforest Alliance, Sustainable Food Lab) with the World Cocoa Foundation, the Ghanaian Cocoa Board (COCOBOD) and key private sector actors such as Agro ECOM, Olam and Kuapa Kokoo and Mondelez.CGIAR innovations: Exposure maps, CSA practices identified by exposure gradient, cost benefit analysis Users / beneficiaries The benefits of this innovation lie in the development of site specific, climate resilient cocoa training materials and extension practices that improve production practices by small holder farmers. These materials constitute the core cocoa training curriculum in Ghana recognized and managed by COCOBOD and of obligatory use by all public and private extension efforts. This will support changes in knowledge, attitudes, skills and practices by farmers, extensionists and cocoa buyers. Potential farm level beneficiaries include: -In theory the COCOBOD training materials will reach all 800,000 cocoa farmers in Ghana.-Rainforest Alliance / UTZ certify ~300,000 cocoa producers in Ghana. This is a sub-set of the 800,000 total.-4 private companies. Company pilots include more than 100,000 producers. This is a sub-set of the 800,000 total.-With RA/UTZ focus has been placed on use of training materials for youth.• 102 -National extension training materials/ curriculum developed for cocoa in Ghana. These materials form the obligatory base for all public and private extension materials for cocoa in the country. The Ghanaian cocoa sector under the leadership of COCOBOD made important strides towards climate resilience. Exposure maps developed jointly with CCAFS were combined with exposure gradient specific CSA practices in a national training manual of obligatory use for all public and private extension targeting the 800,000 cocoa farmers in the country. Additional CSA specific training materials were developed with World Cocoa Foundation. Four pilots are on-going with private sector actors to study how to incentivize CSA uptake by farmers. This change occurred through on-going engagement by project partners (IITA, Rainforest Alliance, Sustainable Food Lab) with the World Cocoa Foundation, the Ghanaian Cocoa Board (COCOBOD) and key private sector actors such as Agro ECOM, Olam and Kuapa Kokoo and Mondelez.CGIAR innovations: Exposure maps, CSA practices identified by exposure gradient, cost benefit analysis Users / beneficiaries The benefits of this innovation lie in the development of site specific, climate resilient cocoa training materials and extension practices that improve production practices by small holder farmers. These materials constitute the core cocoa training curriculum in Ghana recognized and managed by COCOBOD and of obligatory use by all public and private extension efforts. This will support changes in knowledge, attitudes, skills and practices by farmers, extensionists and cocoa buyers. Potential farm level beneficiaries include: -In theory the COCOBOD training materials will reach all 800,000 cocoa farmers in Ghana.-Rainforest Alliance / UTZ certify ~300,000 cocoa producers in Ghana. This is a sub-set of the 800,000 total.-4 private companies. Company pilots include more than 100,000 producers. This is a sub-set of the 800,000 total. -With RA/UTZ focus has been placed on use of training materials for youth. Key activities -Elaboration of exposure maps with key stakeholders (CRIG, COCOBOD, companies, World Cocoa Foundation) -Workshops to share results with key value chain stakeholders -On-going interaction between Ghana-based staff from IITA and Rainforest Alliance with key local stakeholders (public & private) -Global engagement with traders and chocolate companies around these results by SFL and CIAT -Workshops to design pilot interventions. How can we use CCAFS science to solve real-world problems of cocoa producers in Ghana -Minor engagement with the public sector","tokenCount":"725"} \ No newline at end of file diff --git a/data/part_3/4679877377.json b/data/part_3/4679877377.json new file mode 100644 index 0000000000000000000000000000000000000000..fdeafa9add811448115ff305cda919381ab712a5 --- /dev/null +++ b/data/part_3/4679877377.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"d3fcaa5632295b7e34b1087899ff742e","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/c31b2bbc-1482-45e3-83b6-aeb2011be3e2/retrieve","id":"-812043383"},"keywords":["Plantain","Root specific promoter","Nematode invasion","β-glucuronidase","Transgenic defence"],"sieverID":"0cc5dbda-58ba-4bb2-9589-9ebab1a48208","pagecount":"9","content":"Background: Bananas and plantains (Musa spp.) provide 25 % of the food energy requirements for more than 100 million people in Africa. Plant parasitic nematodes cause severe losses to the crop due to lack of control options. The sterile nature of Musa spp. hampers conventional breeding but makes the crop suitable for genetic engineering. A constitutively expressed synthetic peptide in transgenic plantain has provided resistance against nematodes. Previous work with the peptide in potato plants indicates that targeting expression to the root tip improves the efficacy of the defence mechanism. However, a promoter that will provide root tip specific expression of transgenes in a monocot plant, such as plantain, is not currently available. Here, we report the cloning and evaluation of the maize root capspecific protein-1 (ZmRCP-1) promoter for root tip targeted expression of transgenes that provide a defence against plant parasitic nematodes in transgenic plantain.Bananas and plantains (Musa spp.) are ranked 8th in the global harvest of staple crops [1,2] providing 25 % of the food energy requirements of over 100 million Africans [3]. Several species of plant parasitic nematodes including Radopholus similis cause severe yield losses to these crops [4][5][6] and there are very few control options available to farmers in Africa. Plantains are not readily improved by conventional plant breeding because of their sterile and triploid nature. This characteristic, however, eliminates the risk of transgene flow and so enhances the biosafety of genetic engineering. Consequently, a transgenic approach that can address the need to control the pests and diseases that hamper production of the crop is favourable [7].One promising approach for nematode control involves transgenic expression of a non-lethal synthetic disulphide-constrained 7-mer peptide with the amino acid sequence CTTMHPRLC [8]. It is taken up by nematode chemoreceptive neurons and subsequently disrupts coordinated responses to chemoreception and limits root invasion by the pathogen [9,10]. It confers resistance in the field to a cyst nematode on potato [11] and to R. similis on plantain in a glasshouse [8] and field [12], when expressed constitutively with a cellular export signal. It is rapidly degraded in soil and is without adverse effects on non-targeted soil nematodes [8,11].Targeted expression for defence such as the synthetic peptide requires a promoter that is active at the site of invasion by the nematodes. In potato, the Arabidopsis root cap specific MDK4-20 promoter driving a synthetic peptide conferred a higher level of resistance to Globodera pallida than the constitutive CaMV35S promoter [13]. To date, only constitutive heterologous promoters from maize ubiquitin 1, the rice actin 1 [14] or a CaMV35S promoter enhanced for monocot expression [15,16] have been used for the production of transgenic banana plants. Several promoters are known to be actively driving expression of transgene in the roots of rice including rolC [17], RCg2 [18], Tub-1 [19] and PHT1 [20]. Though rolC and RCg2 also drove gusA expression in leaf sheaths, gusA expression from the Tub-1 promoter rapidly declined as the plants aged while the expression from the PHT1 promoter is dependent on the level of phosphate in the growing medium. None of the studied promoters provide root tip specific expression required for anti-nematode defences.The delivering of gene expression to tissues invaded by nematodes by a promoter that drives a defence must also continue to express throughout the infection process. The gusA and gfp expression from the CaMV35S promoter has been shown to be progressively down regulated at the infection sites of Meloidogyne incognita and cyst nematodes in Arabidopsis thaliana roots [21,22]. GUS activity from the CaMV35S promoter is also limited following Heterodera schachtii infection in the roots of A. thaliana [23]. However, MDK4-20 promoter of A. thaliana directs effective root-specific transgenic expression of the secreted nematode-repellent peptide in A. thaliana and Solanum tuberosum [13]. The Zea mays Root Cap-specific Protein-1 (ZmRCP-1) is a homologue of the Arabidopsis MDK4-20 gene and is active in lateral root cap cells in maize [24]. In this study, we demonstrate that the ZmRCP-1 promoter provides a root tip specific activity suitable to deliver the anti-nematode defences in a monocot crop plant.The construct pBI-RCP-1:GUS was prepared by cloning the ZmRCP-1 promoter and inserting the promoter fragment into the HindIII and BamHI sites of the binary vector pBI121 immediately 5′ to the β-glucuronidase (gusA) gene (Fig. 1a). The pBI121 plasmid containing the gusA gene under regulation of CaMV35S promoter was used as the constitutive expression construct (Fig. 1b). These constructs were confirmed by sequencing and then transferred to Agrobacterium tumefaciens strain EHA105.The plasmid constructs were isolated from colonies of transformed A. tumefaciens and verified by PCR analysis using the promoter specific primers. The amplicon of 2 kbp was obtained for pBI-RCP-1:GUS amplifying the ZmRCP-1 promoter and fragment of 835 bp amplifying the CaMV35S promoter was observed in pBI121 plasmid construct (Fig. 1c).The Agrobacterium-infected embryogenic cells multiplied and regenerated on kanamycin selective medium whereas the control untransformed cells turned black (Fig. 2a-d). In total, 20 lines of RCP-1:GUS and 15 lines of CaMV35S:GUS of plantain cv. 'Gonja manjaya' were generated from one Agrobacterium-mediated transformation experiment using cell suspension. The regenerated transgenic shoots were proliferated and transferred to rooting medium. All the shoots developed roots within 2-3 weeks (Fig. 2e). The rooted plantlets were transferred to the soil in pots in contained glasshouse (Fig. 2f ). The lines were confirmed by PCR analysis to contain the gusA gene, including those used for further studies (Fig. 3).A histochemical GUS assay performed on the young tissue culture plants from the laboratory revealed expression of gusA in all roots of RCP-1:GUS lines and CaMV35S:GUS lines. The CaMV35S:GUS lines had uniform blue staining in leaves (Fig. 4a) and roots (Fig. 4b) whereas RCP-1:GUS lines stained intensely blue at the root tips and showed less intensity of blue coloration in the upper parts of the root (Fig. 4d). No staining was observed in the leaves of RCP-1:GUS lines (Fig. 4e). Similar results were observed for all of the 20 lines of RCP-1:GUS and the 15 lines of CaMV35S:GUS.The GUS activity in plants grown in soil with or without nematode challenge was assessed. The pot grown CaMV35S:GUS lines showed uniform expression of gusA in roots at 28 days post infection (dpi) (Fig. 5a) similar to in vitro plants of the same line (Fig. 4). The same was true for the pot grown RCP1:GUS lines, which showed gusA expression only in the root tips at 28 dpi with R. similis (Fig. 5b) similar to in vitro plants of the same line (Fig. 4). Infection with R. similis had no effect upon the gusA expression pattern of RCP-1:GUS lines (Fig. 5b) when compared to non-infected plants (Fig. 5c).Two experiments, using two different cultivars of banana, were carried out to study root invasion by nematodes. In a preliminary experiment, which was done to establish the protocol with banana cv. 'Cavendish' , 100 R. similis were inoculated close to root tips of 16 non-transgenic banana plantlets of cv. 'Cavendish'; all nematodes were within 15 cm of the root tip. The distribution of the nematodes was such that 50 % of them (±95 % confidence limits) were present within 5.92 ± 0.77 cm of the root tips for the 'Cavendish' plants. This was followed by an experiment with the transgenic cv. 'Gonja manjaya' plants developed in this study along with non-transgenic controls. A mixed population of R. similis, Helicotylenchus multicinctus and M. incognita was used for inoculation of 'Gonja manjaya' . The population of R. similis was highest near the root tips of this plantain and declined distally. At 7 dpi, 83 % of R. similis were present in the first 8 cm distal to the root tip but a few nematodes were also present at 12 and 24 cm. However, at 14 dpi all R. similis were within 8 cm of the root tip (Fig. 6). In total, only eight M. incognita and eight H. multicinctus were recovered from the roots and all were within 6-12 cm of the root tip (Fig. 6).This work establishes the potential of ZmRCP-1 promoter isolated from maize for delivering transgenic traits when activity is only required at the root tips of transgenic plantain. As expected, the CaMV35S promoter provided intense gusA expression along the root and in leaf tissues (Figs. 4,5). Such constitutive expression is an undesirable trait in commercial transgenic plants when only particular tissues need to express a transgene to provide the trait of interest such as nematode resistance. ZmRCP-1 has provided an expression pattern that is limited to the root tips of both tissue culture and soil grown plants up to 28 dpi (Fig. 5). Further work is required to establish the root expression pattern across the whole crop cycle under field conditions. There is a need to confirm the expression in younger root tissues close to the tips persists in mature plants and that the nematodes remain predominately in this region. Additionally, protection of roots in younger banana plants is important to favour crop establishment.In maize, ZmRCP-1 expression is restricted to the lateral root cap cells and does not extend more than about 0.3 mm behind the root tip [24]. In contrast, this promoter delivered expression of gusA gene in transgenic plantain that extended throughout young roots and to 0.5 cm from the tip in mature roots (Fig. 6). A similar difference in pattern of expression between plants has been reported for MDK4-20 a homolog of ZmRCP-1 isolated from A. thaliana [13]. The MDK4-20 promoter directed the expression of gusA gene specifically to peripheral cells of root tip and lateral root cap cells of A. thaliana [13,24]. Its activity in potato was also in outer cells of the root tip but it extended further towards the zone of elongation. This less restricted pattern of expression in potato delivered a higher level of repellent peptide defence to cyst nematodes in potato than in A. thaliana where the pattern of expression was more limited [13].In this study, vegetatively micro-propagated transgenic plantains of cv. 'Gonja manjaya' for several cycles were used to investigate the gusA expression pattern under the control of ZmRCP-1 promoter. Similar study has been conducted with vegetatively micro-propagated S. tuberosum to establish the root cap specific expression of gusA under AtMDK4-20 promoter [13]. Transgenic plants of 'Gonja manjaya' expressing a cystatin and a synthetic peptide to provide single and dual resistance against soil nematodes have also been studied under screen house and field conditions [8,12]. Field trial of Xanthomonas wilt disease-resistant bananas have been carried out using vegetatively propagated bananas [25]. In other studies, vegetatively micro-propagated plants have been used to confirm the role of A. thaliana NHL1 and NHL8 genes in the Soybean defence mechanism against Heterodera glycines [26] and in post-transcriptional hairpin RNA-mediated gene silencing of vital fungal genes to confer resistance against Fusarium wilt in banana [27].There were no significant differences between the population means of R. similis per 100 g root for the transgenic plants of ZmRCP-1 lines and CaMV35S lines and non-transgenic control plants. The gusA gene expression is known not to affect nematode establishment in plants and this has been evident in previous studies of nematode invasion [19,21]. A decline in ZmRCP-1 promoter activity with root age is also evident in this study (Figs. 4, 5). The GUS activity becomes root cap specific and the promoter activity is restricted within 5 mm from the tip at 28 dpi (Fig. 5). In younger roots, GUS activity was high at the root tip but also extended further up the root end (Fig. 4). It is observable that there was a variation in the intensity of GUS expression between the roots of young tissue culture plants and those of older plants , 5). A decline in promoter activity has been reported previously for other root active promoters. For instance it occurs partially for that from ubiquitin-1 (Ubi-1) and fully for the promoter of tubulin-1 (Tub-1) over 10 weeks in rice roots [19]. On rice, Pratylenchus zeae feeds similarly to R. similis on Musa spp. Similar to this work, nematodes did not modify Ubi-1 or Tub-1 promoter activity in rice [19].The particular advantage of expressing anti-nematode defences in root cap cells is that they are responsible for much of root exudation. They also remain active for a period of up to a few days after detachment from the root [13]. This ensures delivery of the defence to the nematode in the rhizosphere before root invasion can occur. The efficacy of a root-cap active promoter in delivering nematode control also depends on other factors. One is the rate of root border cell production. Two Musa acuminata cultivars produce a relatively high number of these cells [28] and many more than Solanaceae [13,29]. Border cell production is conserved at the plant family level but regulated by endogenous and environmental signals [29].This work established that R. similis preferentially feed in the first few centimeters of both plantain cv. 'Gonja manjaya' (Fig. 6) and dessert banana cv. 'Cavendish' roots. While expression from the ZmRCP-1 is present in the more proximal root regions that harboured nematodes, previous studies have reported a preferential invasion and establishment of nematodes close to the root tip. M. incognita [30] and R. similis [31,32] preferentially invade the roots near the root apex. Expression at the root apex and in root border cells, as is the case here, therefore delivers the peptide to the locale of nematode invasion. Constitutive expression of the peptide-mediated nematode defence is not required in parts of the plant where these parasites do not occur. Restricting expression to roots avoids unwanted exposure to the transgene of non-target organisms associated with aerial tissues. It also ensures that the plant is not burdened with miss-targeted production of the defence.Targeted expression of a transgenic defence designed to disrupt nematode invasion and establishment requires a root tip specific promoter. Such promoters exist for dicot plants; for instance, phytase has been secreted into the rhizosphere of potato plants using the promoter of the tomato LeExt1.1 gene that directs expression in trichoblasts [33]. However, such promoters are not available for monocot plants. Our study demonstrated that ZmRCP-1 promoter directs the expression of gusA reporter gene to root cap in transgenic plantain. ZmRCP-1 promoter has potential to provide targeted expression of transgene for nematode resistance in transgenic plantain, potentially contributing to the biosafety of nematode resistant plantains if it delivers effective peptide-mediated resistance to banana nematodes throughout the cropping cycle. We intend to develop transgenic plantains expressing a repellent peptide under the control of ZmRCP-1 promoter.For the root cap specific construct, the ZmRCP-1 promoter was cloned from a Corn Lambda Genomic Library (Stratagene, La Jolla, CA, USA) using forward (5′ -GT TAC TA AG C T TC C TATGTC A AT TA AG G GAGTTGATG-3′) and reverse (5′-GTTACTGGATCC-AGCTCATACTGCTTCTGTGACTGT-3′) primers that amplified 2 kbp immediately 5′ to the RCP-1 open reading frame [24] and introduced 5′ HindIII and 3′ BamHI restriction sites. Amplification was performed using Phusion High-Fidelity DNA Polymerase (NEB, MA, USA) using cycling conditions of 30 s @ 98 °C followed by 30 cycles of 10 s @ 98 °C, 15 s @ 60 °C and 30 s @ 72 °C with a final extension step at 72 °C for 10 min. The ZmRCP-1 promoter fragment was cloned into the Hin-dIII and BamHI sites of the binary vector pBI121 [34] immediately 5′ to the β-glucuronidase (gusA) gene to generate construct pBI-RCP-1:GUS (Fig. 1a) using standard molecular cloning techniques [35]. For the constitutive expression construct, pBI121 plasmid that already contained the gusA gene under regulation of CaMV35S promoter [34] was used (Fig. 1b). Both constructs were confirmed by sequencing before transforming into A. tumefaciens strain EHA105 [36] by electroporation. Constructs were verified by PCR analysis using the same primers used for cloning the ZmRCP-1 promoter. For pBI121, forward primer (5′-ACATCTAGAATGGTG GAGCACGACAC-3′) and reverse primer (5′-ACAG GATCCTCGAGAGAGATAGATTTG-3′) were used that amplify the 835 bp of CaMV5S promoter (Fig. 1). Amplification conditions were the same as for cloning.Embryogenic cell suspension of plantain cv. 'Gonja manjaya' (Musa spp. AAB) was transformed as described previously [16]. The Agrobacterium-infected embryogenic cell suspensions were regenerated on selective medium supplemented with cefotaxime (300 mg L −1 ) and kanamycin (100 mg L −1 ) with transfer every 2 weeks to fresh medium of the same type. The regenerated transgenic shoots were maintained and multiplied on proliferation medium consisting of Murashige and Skoog (MS) medium [37] supplemented with 5 mg L −1 benzylaminopurine (BAP), at 28 °C for a 16/8 h light/dark photoperiod under fluorescent tube lights. Regenerated putative transgenic shoots were transferred to rooting medium (MS medium supplemented with 1 mg L −1 indole-3-butyric acid [IBA]). Rooted plantlets were transferred to sterile soil in pots and maintained in a contained glasshouse. Regenerated putative transgenic shoots were regularly micro-propagated and clonally multiplied to obtain sufficient plantlets of each line for nematode challenge in glasshouse and maintenance of the line in vitro.The transformation experiments were performed at biosafety level II research facility of National Agricultural Research Laboratories following the national biosafety guidelines.The plant genomic DNA was extracted from the regenerated putative transgenic plants using a DNeasy kit (Qiagen, Hilden, Germany) from leaf tissue of in vitro plants ground using liquid nitrogen. DNA quality and concentration was determined by NanoDrop 2000c (Thermo Scientific, Wilmington, USA). PCR analysis was performed using gusA gene specific primers to confirm the presence or absence of the transgene in the plant genome. The forward (5′-TTTAACTATGCCGGAATCCATCGC-3′) and reverse (5′-CCAGTCGAGCATCTCTTCAGCGTA-3′) primers amplify a 528 bp region of the gusA gene. PCR amplification was carried out in a total volume of 20 µL containing 4 µL of 200 ng µL −1 genomic DNA, 0.5 µL of each 0.2 μM primer and 10 µL of GoTaq Green Master Mix (Promega, Madison, USA). Thermocycling began with denaturation at 94 °C for 5 min, followed by 35 cycles of 94 °C for 50 s, 55 °C for 40 s and 72 °C for 50 s, and a final extension of 72 °C for 10 min.Histochemical detection of the gusA gene was carried out according to the modified protocol of Jefferson [38] as described in Tripathi et al. [16]. Roots and leaf material were washed in 70 % ethanol for 2 min and fixed in 0.3 % v/v formaldehyde, 10 mM MES, pH 5.6, 0.3 M mannitol for 45 min at room temperature followed by three washes in 50 mM sodium phosphate, pH 7.0.The fixed material was vacuum-infiltrated in substrate solution (1 mM X-gluc, 50 mM sodium-phosphate, pH 7.0, 5 mM potassium ferricyanide, 5 mM potassium ferrocyanide, 10 mM EDTA and 50 mM ascorbic acid) for 4 min and then incubated at 37 °C for 48 h. The chlorophyll of the leaf material was then removed by immersing in 1 % NaOCl solution for 3 h and subsequently dehydrated in sequential 30 min incubations in 50, 70 and 95 % ethanol. Staining was imaged by DSC-F828 camera (Sony, New York, NY, USA).The nematode challenge trial was carried out in a contained screen house authorised for use with transgenic plants at the National Agricultural Research Laboratories (NARL) at Kawanda, Uganda. Forty two transgenic plants and six non-transgenic plants for the nematode challenge trial were set up in a randomized design within the screen house. Three plants each of five lines of ZmRCP-1, two lines of CaMV35S and non-transgenic control plants (24 plants in total) were challenged with nematodes in a bioassay. The potted plants were grown for 8 weeks before inoculation with 1000 juveniles of R. similis per plant. The nematodes were watered onto GF/A filter paper and placed onto exposed roots. Three plants of each transgenic and the non-transformed lines were left uninfected as controls. The trial continued for a further 4 weeks in the screen house at ambient temperatures with daily watering. The height, girth and numbers of functional leaves were recorded at 2 week intervals and were used to calculate the total leaf area (TLA), TLA = n (0.411G + 0.381H−0.404) where n is the number of functional leaves more than 50 % green and fully attached to the pseudostem, G is girth (cm) at the base of the pseudostem and H is the plant height (cm) measured from the base to the axil of the topmost pair of fully expanded leaves [39]. Root samples, including root tip, were collected from each plant at infection and at 4 weeks for histochemical detection of gusA expression. At the end of the trial, the root tissue fresh weight was recorded before the roots were cut into 1 cm pieces. Root samples were placed in polypropylene bags and submerged in 10 ml of 1 % H 2 O 2 solution [40]. Nematodes were collected and counted using a stereo-microscope after 7 days of incubation at room temperature in the dark.The analysis was done to determine the distribution of nematodes population at various root sections from the start of the infection period. An initial experiment was carried out using 16 plants of banana cv. 'Cavendish' that were infected with R. similis for 28 days to determine the distribution of nematodes along the length of roots in which the nematodes occurred. The subsequent experiment used mixed population of 1000 nematodes containing equal numbers of R. similis, H. multicinctus and M. incognita to infect roots of 10 non-transgenic control plants of cv. 'Gonja manjaya' . At 7 days post infection (dpi), roots of five of the plants were collected cut into 2 cm sections and pooled into 2 cm groups from the root tip. The nematodes that emerged from the roots were counted in 200 µl aliquots using a stereo-microscope. The procedure was repeated for the remaining five plants at 14 dpi.All data were analyzed using SPSS v20 (IBM Corporation Armonk, New York, USA; http://www-01.ibm.com/ software/analytics/spss). The choice of analysis used for data was informed by both the help files of the package and a standard text [41]. A univariate ANOVA was carried out to establish any significant differences in the growth parameters of infected ZmRCP-1 and CaMV35S cell lines. Levene's test was used to establish homogeneity of variances.","tokenCount":"3659"} \ No newline at end of file diff --git a/data/part_3/4681310256.json b/data/part_3/4681310256.json new file mode 100644 index 0000000000000000000000000000000000000000..c371c0bb554e17fdef799649bf158592ed8b80a5 --- /dev/null +++ b/data/part_3/4681310256.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"3d3d99c269e8d60e088e21864af6a00b","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/1534d075-df41-411e-a0ff-430da626d31a/retrieve","id":"-1540311710"},"keywords":[],"sieverID":"707e5112-4b27-4f95-81aa-7fcf55400342","pagecount":"61","content":"Esta Guía es el resultado de un esfuerzo compartido entre científicos del Instituto de Investigaciones del Arroz (IIA) de Cuba y del Centro Internacional de Agricultura Tropical (CIAT), con el apoyo del Fondo Latinoamericano para Arroz de Riego (FLAR). Se trata de uh manual que ha sido diseñado para ser usado por los agricultores y las personas que trabajan directamente en la producción de arroz y por los participantes a talleres y cursos sobre Manejo Integrado del Cultivo. La Guía recoge importantes conceptos y experiencias recolectados a través de muchos años de investigación arrocera en Cuba y en CIA T. Esta tercera edición incluye una nueva sección sobre enfermedades del arroz. La mayoría de los conceptos aquí presentados se encuentran desarrollados en forma más exhaustiva en nuestra publicación: \"MIP en Arroz: Manejo Integrado de Plagas (Artrópodos, Enfermedades, Malezas)\", 1997.El FLAR nace como respuesta de un sector arrocero que entiende que el reto regional frente a los procesos de apertura exige mantener, en forma ininterrumpida, mecanismos para acrecentar el conocimiento a través de esquemas de colaboración. La vocación científica y la afición por el conocimiento tienen que estar dirigidos a lograr incrementos en la competitividad de nuestra producción. Antes que enfatizar los conocimientos adquiridos, el FLAR se preocupa por el modo de aprender, propiciando intercambios regionales que permitan poner los conocimientos de otros al servicio de los usuarios e inversionistas de nuestra red.Esta sociedad para la transmisión del saber nos recuerda que, más que el dinero, el recurso fundamental en estos procesos es el de tener una actitud abierta a la colaboración y al intercambio de conocimientos.Por lo anterior, el FLAR agradece el generoso apoyo recibido por el Instituto de Investigaciones del Arroz (IIA) de Cuba y del CIAT en la elaboración de esta ''Guía para el Trabajo de Campo en el Manejo Integrado de Plagas del Arroz\", la cual ya ha sido de gran utilidad para los arroceros de la región y para aquellos que han participado en los Talleres sobre MIP que hemos venido realizando en América Latina desde 1996.Director Ejecutivo FLAR Manejo Integrado de Plagas (MIP) es el sistema que en el contexto del medio ambiente y la dinámica poblacional de las especies plagas, utiliza todas las técnicas y métodos de lucha de una manera compatible, para mantener las poblaciones tan bajas que no ocasionen daños económicos.El objetivo básico es elaborar un programa de ordenación de las actividades en el cultivo del arroz, que proporcionen la mayor cantidad posible de producción con los mínimos insumas necesarios y la menor cantidad de perturbación y contaminación ambientaL El criterio es ecológico, en que no hay que escatimar esfuerzos en mantener las poblaciones por debajo de un nivel económico de daños, empleando para ellos todos los recursos disponibles de forma compatible.El arroz en Cuba es afectado por diferentes insectos plagas: (Tagosodes orizicolus, Oebalus insularis, Lissorlroptrus brevirostris y Spodopterafrugiperda) y diversas especies de malezas (Braclriaria mutica, Diplaclme fascicularis, Echinoclrloa spp. y Vigna vexillata) y las enfermedades Virus de la Hoja Blanca, Pyricu/aria grisae y Rltizoctonia solani. Todas estas plagas en determinadas épocas del año ocasionan graves pérdidas económicas al cultivo del arroz.Estas especies también han sido reportadas como las causantes de grandes pérdidas en el rendimiento arrocero en diversos países de América Latina, fundamentalmente T. orizicolus, el Virus de la Hoja Blanca y las enfermedades fungosas.El programa de Manejo Integrado de Plagas debe tener la flexibi lidad y competencia suficiente para adaptarse a los cambios que sean necesarios para disminuir los efectos nocivos de las plagas, con la protección de medio ambiente y la salud de los trabajadores.Esta guía es una síntesis del libro \"Principales plagas del arroz y su Manejo Integrado en Cuba\" adaptada para facilitar el trabajo práctico de campo.El MIP no es una tecnología, sino fundamentalmente una cultura para realizar un mejor manejo del cultivo con el objetivo de minimizar los daños, incrementar los rendimientos, la protección del medio ambiente, la biodiversidad y la salud de los trabajadores.Tagosodes orizicolus (Muir) (Homoptera: Delphacidae)Este insecto es conocido vulgarmente como \"Sogata\". Los machos tienen una longitud aproximada de 2,0 mm, son más pequeños que las hembras y de color pardo oscuro a negro. Las hembras miden de 3,33 a 3,35 mm, de color ámbar y más claras que los machos, el dorso del tórax hasta la quilla lateral es pálido y esta coloración se extiende hasta el ápice de la cabeza.La ninfa pasa por cinco instares para alcanzar el estado adulto. En su primer instar es de color blanquecino y de pequeño tamaño (0,65 a 0,90 mm de largo y de 0,20 a 0,30 mm de ancho) pero a medida que crece, se va incrementando la nitidez de las listas paralelas de color pardo que poseen en el dorso. El tamaño del último instar es de 2,8 a 3,0 mm de largo y 1,2 mm de ancho.La duración de los estados está influida por las temperaturas que inciden en los diferentes meses, siendo el periodo de incubación de los huevos de 7, 14 a 19,20 días~ para las ninfas de 14,00 a 21 ,30 días y para los adultos de 14,60 a 31,10 días, en función de la época del año.Esta plaga, a pesar de que puede encontrarse sobre plantas de arroz en diferentes estados de desarrollo, especialmente durante las épocas donde se registran los mayores niveles de población, se ha observado que se alimenta preferentemente sobre plantas de arroz jóvenes (desde germinación hasta ahijamiento activo) posiblemente, entre otras causas, por ser los tejidos de éstas más tiernos y por lo tanto adecuados para su alimentación.Los machos de T. oridcolus son esencialmente más activos respecto al vuelo que las hembras, éstas y las ninfas se caracterizan por una mayor actividad en la alimentación y son más sedentarias.En los campos de arroz se colecta mayor proporción de hembras que de machos, mientras que en las trampas de luz esta relación es inversa. Esto es motivado que las hembras de T. orizicolus tienen su abdomen engrosado por los huevos, lo cual Guia para ti Trabajo di! Campo en el MIP las incapacita para volar largas distancias. Al mismo tiempo en las colonias de esta plaga abundan hembras braquipteras o ápteras que no pueden volar.En temperatura promedio entre 25 a 27°C, se encuentran las condiciones más favorables para el incremento de la densidad de población de T. orizicolus. Las temperaturas inferiores a 25°C, así como las grandes oscilaciones térmicas, tienen influencia negativa sobre el crecimiento y desarrollo de este insecto.Los máximos valores en la densidad de población de la plaga se presentan entre los meses de abril a noviembre. Este período abarca los meses que en Cuba se caracterizan por temperaturas más cálidas. De junio a septiembre cuando predominan temperaturas más elevadas, así como precipitaciones superiores a los 1 00 mm , se observa un notable descenso en la población de r ori=icolus, en este período manifiestan los enemigos naturales una notable actividad . Destacándose dentro de éstos: Paranagrus perforator, parásito de huevos y Tytthus parviceps. predador del mismo estado de desarrollo de la plaga.El insecto comienza a alimentarse de las plantas desde que éstas tienen pocos días de germinadas; pero el daño principal es la inoculación del agente causal de la enfermedad \"Virus Hoja Blanca del Arroz\" (VHB). Se observan los primeros síntomas en las plantas afectadas, en función de la edad de las mismas. Estos son apreciados en las hojas que emergen después de la Inoculación del virus y consisten en áreas cloróticas o en lesiones típicas en dependencia de la variedad de arroz.Las afectaciones severas traen como consecuencia un bien definido amarillamiento en las hojas, que progresivamente van tomando color chocolate claro; otro síntoma que indica el ataque es la formación de fumagina en las hojas. Estos se observan en los campos en forma de manchas, que si no son los insectos controlados, se van extendiendo a todo el campo de arroz.El muestreo recomendado para la señalización de la plaga es mediante el Jamo Entomológico. En el muestreo se tomará el primer punto a 20 metros del canal de riego y en el mismo se efectuaran 10 pases de jamo, en los restantes 9 puntos se realizarán también 10 pases de jamo, éstos siguiendo las diagonales del campo y tratando de abarcar toda la longitud y área del mismo (aproximadamente 30 ha).Adicional a este muestreo se toma en cada campo, 100 hojas de arroz, distribuidas estas plantas al azar, con el objetivo de determinar las puestas de T orizicolus y T parviceps y el parasitismo por P. perforator, para poder tomar las medidas precisas desde el primer momento de la incidencia de la plaga.El Umbral económico es de 9 \"Sogatas\"/pase de jama en la etapa de Germinación a Ahijamiento activo y de 28 \"Sogatas/pase de jama para la etapa de Ahijamiento activo a Cambio de primordio.Muestreo de la enfermedad Hoja Blanca del Arroz (VHB) a. Se tomarán cinco muestras por campo, si se observa visualmente una infección inferior al 5 % de las plantas de arroz con síntomas del VHB.b. Con porcentajes más elevados se utilizará un marco de 0,5 x 0,5 m (0,25 m 2 ) para cada muestra, distribuyéndolas al azar en el campo (5 puntos), con el objetivo de determinar las plantas afectadas.c. Cuando la evaluación anterior se realice en campos en la Etapa A (germinación a ahijamiento activo) se determinará el total de plantas afectadas por la enfermedad y las sanas. En las Etapa B se cuantificará el daño por el conteo de tallos sanos y los afectados por el virus.d. Se calculará el porcentaje de afectación del campo para la determinación del nivel de acción a seguir.Es importante realizar una rápida acción contra la enfermedad Hoja Blanca, pues evitará la propagación de la misma. Se deberá tener presente que los índices de T. orizicolus se reducen hasta el 50% en dependencia de la virulencia detectada en los campos de arroz.Medidas de control cultural l. Eliminación de restos de cosecha y malezas.2. Epoca de siembra.3. Siembra de variedades resistentes.Eficacia de los enemigos naturales fundamentalmente: Paranagrus perforator y Tytthus parvicepsGuia para el TrabaJa de Campo en el M/PEl parasthsmo ocasionado por P. perforator en el estado fenológico de la germinación al ahijamiento activo de las plantas de arroz es aproximadamente del 50%, disminuyen éste con la edad del cultivo, al igual que las oviposiciones de T. orizicolus.En investigaciones en condiciones semicontro ladas se determinó que la cepa Empoasca de Beauveria bassiana controló el 88 % de las hembras de T. orizico/us y el 83% de los machos; la cepa Niña Bonita de Metarltizium anisopliae obtuvo el 78% de mortalidad de las hembras del insecto y el 66 % de los machos.Este aspecto es fundamental si se tiene en cuenta que la capacidad de las hembras de T. orizico/us de trasmitir la enfermedad Hoja Blanca a través del huevo, lo que de obtener un insecticida microbiológico con estas condiciones es factor priorizante en el manejo de la plaga.Solo se debe utilizar en casos en que los métodos anteriores no logren disminuir la población de la plaga, por debajo del Umbral económico, aplicando los insecticidas más selectivos para los enemigos naturales de la plaga.Carbaryl 85 % P.H. (2,5 Kg/ha).Tamaron 60 % C.S. ( 1 ,O 1/ha).Methyl Parathion 50 % E.C. (2,3 1/ha) Medidas de control de la \"Hoja Blanca\" Todo campo de arroz que se encuentre antes del cambio de primordio con un 20 % o más de Hoja Blanca y que a la vez el número de plantones sanos por metro cuadrado sea superior al 85 % será necesario analizar los siguientes aspectos:• Población de T orizicolus.• lndice de virulencia del insecto.• Ubicación de las áreas afectadas en relación con campos de arroz jóvenes sin afectaciones.• Estimado del rendimiento del campo.• Posibilidades reales de reducir la población de \"Sogata\" a los niveles establecidos.Metodologfa para la eliminación de las áreas infestada por Hoja Blanca Se utilizarán diferentes métodos para la eliminación de estos campos según la etapa fenológica en que se encuentran las plantas l . Campos de arroz en la etapa \"A \" (Germinación hasta Ahijamiento activo)• Grada • Fangueo • Aplicación de herbicida total y aniego a las 24 horas 2. Campos en la etapa \"B \" o posteriores. (A partir del Ahijamiento activo)• Grada• Fangueo • Aniego a las 24 horas.Todos estos aspectos son muy importantes en la eliminación de la \"Hoja Blanca\", pero son vitales las medidas preventivas, tales como; el empleo de variedades resistentes, las épocas de siembra, preservación de los enemigos naturales, eliminación de restos de cosecha y plantas hospedantes del insecto vector.(Coleoptera:Curculionidae)El nombre común es ''Picudo acuático del arroz\", es la plaga de más dificil control, debido a los hábitos de adultos y larvas. Los adultos de ambos sexos son de color grisáceo oscuro con una sombra más oscura marcando el centro del dorso, presentan los élitros fuertemente unidos en la zona de la sutura central por 1 + 1 pequefias láminas que se superponen al entrar en contacto los élitros, al cerrarse.La longitud promedio corporal de los machos de L. brevirostris es de 2,91 mm y de las hembras de 3,28 mm. Las larvas son de color blanco amarillento, ápodas, con la cabeza de color carmelita, pequeña en relación con el cuerpo, acentuándose este carácter en los últimos instares.La pupa recién formada es de color blanco, similar al adulto en tamaño y forma, con la cabeza dirigida hacia el orificio de conexión con la raíz de la planta hospedante.La duración promedio desde la oviposición hasta la emergencia de los adultos fue 50 días, viviendo éstos alrededor de 714 días. • Pueden permanecer hasta 52 horas sumergidos en el agua sin morir, debido a que pueden aprovechar el aire retenido entre los pliegues de las alas, por los espiráculos abdominales.• Poseen hábitos sedentarios, abandonando las plantas solamente al ser molestados, por escasez de alimento, o en los vuelos nocturnos hacia los campos con arroz joven.• Cuando las condiciones climáticas son desfavorables (temperatura media menor de 25°C) permanecen inmóviles en los lugares más bajos de los arrozales, pudiendo estar sin ingerir alimentos hasta 205 días, como promedio.• Los adultos viven como promedio 714,5 días, sólo se alimentan entre el 8 al 10% de estos días y en el97% lo realizan en horas de la noche.• Poco tiempo después de la eclosión la larva se traslada por el parénquima lagunar de la vaina foliar de la planta, donde comienza a comer de los tabiques transversales, saliendo del interior de ésta por uno de los orificios donde estaba insertado el huevo o uno hecho por ella, moviéndose por gravedad dentro del agua hacia el suelo y las raíces, en uno o dos minutos.• Las larvas extraen de las raíces de las plantas hospedantes el oxígeno necesario para su respiración con sus espiráculos abdominales.• Viven generalmente hasta una profundidad de 5 a 7 cm. en suelo inundado, prefrriendo para su alimentación raíces de 0,600 a 1,375 mm de grosor.• Son capaces de trasladarse horizontalmente hasta una distancia de 20 cm bajo .• .suelo inundado.• Pueden permanecer vivas en suelo inundado carente de raíces entre 24 a 52 horas en dependencia del instar larval.Las gramíneas (=poaceas) son las principales hospedantes para los diferentes estados de desarrollo de L brevirostris, destacándose por su abundancia en los campos: Brachearia mutica, Paspalum distichum, &hinochloa colana y E. crusga/li.Las mayores densidades de población de L. brevirostris en todos sus estados de desarrollo se producen en la época del afio en que se combinan temperaturas promedios entre 25,0 y 27 ,5°C y precipitaciones cercanas o superiores a los 100 mm.El adulto se alimenta de las plantas de arroz y de otras especies que le sirven de hospedante secundario, dejando una cicatriz horizontal donde fue separada la superficie de la hoja, con una longitud promedio de 6,00 mm y ancho de 0,45 mm.Se evaluará el total de adultos en las 20 plantas en cada uno de los puntos seleccionados del campo y las hojas con síntomas del daño de los adultos (3 últimas hojas de cada tallo). Si el promedio de todo el campo es de 3 a 4 adultos/20 plantas y/o si el 50 % del total de plantas evaluadas tienen cicatrices en las hojas nuevas, en el campo debe realizarse una medida o táctica de control.Medidas de control cultural l. No drenar los campos de arroz.El drenaje de los campos fue utilizado durante antes de la década 70's, pero se ha determinado que éste ocasiona más desventajas, que los pocos beneficios que puede aportan con el control de las larvas de L. brevirostris , además la incidencia del insecto ocurre en la etapa fenológica del cultivo de amplia demanda de nutrientes y si el campo es drenado, puede afectar el estado nutricional de las plantas de arroz. Cuando se realiza un drenaje prolongado para el control de las larvas, el campo se puede infestar con malezas, las que resulta dificil eliminar en esta etapa del cultivo. Por lo tanto es preferible no drenar los campos de arroz con el objetivo de controlar las larvas de L. brevirostris.2. Época de siembra del cultivo 3. Eliminación de restos de cosecha y malezasHasta el presente en Cuba no se ha observado en los campos de arroz acción de enemigos naturales, en ninguno de los estados de desarrollo de L. brevirostris.Beauveria bassiana y Metarhizium anisopliae han manifestado acción depresiva sobre la población adulta de L. brevirostris.En condiciones semicontroladas estos hongos han alcanzado más del 95 % de control de los adultos de la plaga y en campos de arroz hasta el 84% (valoración de más de 20 000 ha)Las aplicaciones de M anisopliae, se realizarán fundamentalmente en dos etapas, la primera antes de la preparación del suelo en los diques y canales, principalmente durante los meses de febrero y marzo y la segunda aplicación cuando las plantas de arroz presenten de 10 a 17 D.D.G. La primera aplicación lO Prlncipalel lmecto1 Plaga thJArrozdurante los meses posteriores se realizará después de la aplicación del herbicida Propanil. En todas las aplicaciones se utilizará una dosis de 1 X 1 O 12 conidios/ha.El insecticida químico que mejor control ha mantenido sobre la plaga es el Carbofuran a dosis entre 0,55 a 0,75 Kg ia/ha, con porcentaje de control entre el 96 al 100 %. Actualmente en determinadas zonas arroceras la efectividad de este insecticida ha disminuido en el control de las larvas de L brevirostris.Dierksmeier (1995) expresó que la vida media del Carbofuran en suelo es de sólo 6 días. Se observa una caída brusca de la concentración del insecticida después de los 5 días de aplicado. Una cinética de tal naturaleza indica una microflora adaptada para la degradación de este carbamato.El Fipronil (nombre común del Regent 5) es un insecticida Pyrazol que actúa por contacto e ingestión, aunque sin ser sistémico, en observaciones de campo, después de la aplicación se ha determinado cierto efecto sistémico sobre algunas plagas. La dosis letal (DL 50) oral para el producto técnico es de 97 mglkg y para las formulaciones; 1.5 G es de >5 000 mglkg y para la de 3 G de >2000 mg/kg. No es irritante a los ojos y piel de los usuarios y no tiene efectos ni mutagénicos ni cancerígenos.Presenta baja acción de control contra los insectos benéficos. Las dosis de Fipronil de 75 a 100 g ialha han obtenido un control de las larvas del picudo acuático entre el91,0 al94,5% Este insecticida resulta una buena alternativa en el control de las larvas deL brevirostris.Oebalu.s insularis (Heteroptera:Pentatomidae)Este insecto es conocido vulgarmente como \"Chinche del arroz\", es considerado como una de las tres plagas más importante del arroz en Cuba.Los adultos son de color carmelita claro o pajizo, observándose unas depresiones amarillentas en el tórax, que semejan dos medias lunas.El macho es ligeramente menor que la hembra, con longitud del cuerpo de 8,38 y 9,22 mm, como promedio, respectivamente.Las ninfas pasan por cinco instares, siendo en los dos primeros de color verde, éstas se tornan más oscuras con el tiempo. La longitud corporal es de l, 11 a 6,11 mm, como promedio de los diferentes instares.Existe una estrecha relación entre la incidencia de la plaga y la paniculación del arroz y de otras poaceas que crecen y se desarrollan en los arrozales. En los campos de arroz con infestación de gram íneas son generalmente más atacados por la chinche que los campos libres de malezas, ya que el insecto prefiere ovipositar y desarrollar el estado ninfal en las gramíneas, fundamentalmente del género Echinochloa.Las mayores densidades de población de la \"Chinche\" se registran en la zona arrocera del Sur del Jíbaro en Sancti-Spiritus entre los meses de mayo a octubre en los cuales se presentan temperaturas promedio entre 26 a 28°C, así como alta humedad relativa (por lo general entre 75 a 85 %) e intensas precipitaciones.Este insecto afecta al arroz tanto en estado ninfa! como adulto, e l daño lo ocasionan al chupar los granos lechosos o cerosos por medio de su estilete, aunque en los estudios de dinámica poblacional sólo se colectó del total de O. insularis, el 4,6% de ninfas, lo que significa que el daño causado por esta plaga al arroz, lo produce fundamentalmente el adulto.El insecto al alimentarse del grano realiza frecuentes picaduras lo que permite la entrada de microorganismos patógenos, como por ejemplo Bipolaris oryzaeLa afectación en el rendimiento agrícola es entre el 27 al 65 % con poblaciones entre 0,3 a 1,1 O. insularis por panícula de arroz, al ser comparados con el testigo libre de insectos.Si el arroz es destinado a la producción de semilla ocurre una disminución de la germ inación entre 6 y 14% cuando es afectado por densidades poblacionales entre 0,3 y 1,1 chinches por panículas.El rendimiento industrial también es afectado por la alimentación deO. insularis llegando ésta hasta el9% cuando incidieron 0,3 insectos por panícula.En las fases de floración del arroz y cerosa del grano se presentan afectaciones en el rendimiento, aunque más tolerante que en el estado lechoso del grano, etapa donde se debe extremar las precauciones en muestreo y el control de esta importante plaga del arroz.Tomando en consideración que la distribución de O. insularis en el campo es agregada, se determinó que para la evaluación del insecto deberá tomarse las muestras preferentemente en los lados correspondientes al frente y fondo del campo, paralelo a los canales de riego y de drenaje secundario, respectivamente.Cada muestra constará de 10 pases sencillos del jamo entomológico, estando el número total de muestras en dependencia de las densidades de población de O. insularis: de 6 a 8 muestras para densidades menores de 1 insecto por 10 pases de jamo; de 3 a 5 para densidades de 1 a 4 por 10 pases de jamo; y de 1 a 2 para 4 o más O. insularis por 10 pases de jamo.En el muestreo se deberá incluir muestras cercanas a los canales de riego y de drenaje.El Umbral Económico es 2,20 chinches/pase de jamo en la Floración; de 0,67 chinches/pase de jamo en el estado lechoso del grano y para el grano ceroso de 4,34 chinches/pase de jamo.Cuando se detecte en el muestreo estos valores o superiores, se debe ejercer una táctica de control.Medidas de control cultural l. Eliminación de restos de cosecha y malezas Esta práctica es de suma importancia para incrementar el control de las plagas, pero en la \"Chinche\" aún es más importante, pues este insecto vive en sus etapas juveniles en estas malezas y posteriormente invadirán y afectarán a las plantas de arroz. La destrucción de las malezas cuando ayuda al control de estas plagas, constituye una práctica cultural de doble propósito.Gula para el Traba¡o de Campo en el MIPEn el período de mayo a noviembre deberá estrecharse la vigilancia sobre esta plaga, en especial los campos cuyo estado de desarrollo coincida desde la floración al llenado del grano.Estudios realizados en Cuba demuestran que en las variedades comerciales no han encontrado diferencias en la resistencia a la Chinche, por lo que deberán tener similares medidas de protección contra los daños de este insecto.Estudios recientes en el Instituto de Investigaciones del Arroz, han demostrado que la cepa Niña Bonita de M anisopliae logra un control sobre O. insularis del 96 % a los 1 O días posteriores a la aplicación del hongo entomopatógeno, otras cepas del mismo hongo han obtenido resultados similares.El control químico sólo será empleado cuando los índices poblacionales de la plaga alcancen o sobrepasen los Umbrales Económicos establecidos para las diferentes fenofases de la paniculación.El insecticida más utilizado para el control de la plaga es el Methyl parathion a 0,5 Kg ialba.(Lepidoptera:Noctuidae)En los últimos años ha incrementado sus afectaciones en el arroz donde se conoce vulgarmente como \"Palomilla\".Los huevos de S. frugiperda son redondos con dimensiones de 0,45 a 0,50 mm de diámetro, son puestos por la noche, presentan variados colores, entre ellos gris oscuro y diversas tonalidades de verde.El estado más dificil de observar dada las características de los hábitos nocturnos es el adulto. Estos tienen unos 25 mm de largo, la hembra es generalmente mayor que el macho. El color del cuerpo es grisáceo, en el ángulo apical de las alas anteriores se aprecia una mancha cenicienta y en la parte media, otra mancha parecida a un signo de admiración de color pardo.Cuando las larvas emergen son oscuras con el casquete cefálico más ancho que el cuerpo, durante todo su desarrollo su color varía desde el verde claro basta casi el negro, con tres rayas longitudinales más claras por el dorso hasta el último segmento.La longitud del cuerpo en el último instar es entre 35 a 40 mm. La pupa es de color rojizo cuando tiene poco tiempo de transformada y de color caoba, cuando el adulto está próximo a eclosionar.El ciclo desde la oviposición hasta la emergencia del adulto es aproximadamente de 23 a 25 días, con una duración promedio de los adultos de 14 a 15 días.Contrario a L. breviro~tris existe una relación negativa entre la incidencia de la \"Palomilla\" y el establecimiento de la lámina de agua en los campos de arroz, afectando ésta fundamentalmente, entre los 5,52 a 8,50 días de germinadas las plantas (D.D.G.) etapa fenológica donde no hay agua en los campos, a partir del aniego permanente de los mismos, disminuye considerablemente esta plaga. Las mayores poblaciones de las larvas de S. frugiperda se colectaron entre los meses de abril a septiembre, influido entre otras causas fundamentales, por la temperatura, encontrándose el óptimo para esta especie entre 25 y 27°C.Las larvas de S. frugiperda pueden ocasionar daño durante todo el período vegetativo del cultivo, fundamentalmente hasta el establecimiento del aniego permanente en los campos de arroz. El mayor riesgo es durante la etapa de plántula, fundamentalmente cuando ésta se encuentra en los últimos instares, motivado por el alto porcentaje de área foliar que consume. Durante todo el estado larval puede consumir hasta 153 . 157 cm 2 del área foliar de las plantas de arroz y si este daño ocurre a los pocos días posteriores a la germinación puede hasta matar a las plantas.El coeficiente de nocividad como expresión de la reducción del rendimiento, es influenciado por la abundancia de las larvas y la edad del cultivo, oscilando este valor para la variedad J-104 entre 5,6 al 100 % ; para la IACuba-14 es del 7,6 al 97,35 % y para la PERLA del 7,3 al 78,2 % , cuando el insecto ataca a las plantas de arroz entre los 7 a 11 días de germinados (D.D.G.) Muestreo de la \"Palomilla\" Para el muestreo de S. frugiperda en el cultivo del arroz se ha desarrollado el método de pases del jamo entomológico y el conteo de insectos por metro cuadrado. El muestreo del campo se realizará en 10 puntos seleccionados de forma similar al realizado para la Sogata, efectuando el conteo de los insectos en cada punto seleccionado mediante un marco de 0,5 X 0,5 m.El método del muestreo mediante el jamo entomológico desarrollado por Murguido et al (s.f.) es recomendable utilizarlo a intervalos no mayores de 7 a 1 O días en el período crítico al ataque de la plaga. Para la toma de la muestra se seleccionarán de forma similar los 1 O puntos y se realizarán 1 O pases de jamo en cada uno de ellos.La señal para la ejecución de una medida de control será emitida cuando se detecte 2 larvas por pase de jamo, durante el período crítico del cultivo.En ambos métodos de muestreos se comenzará su realización a partir de los 5 D.D.G. las plantas de arroz hasta el establecimiento permanente de la lámina de agua en el campo, con un intervalo semanal.El Umbral Económico de las diferentes variedades de arroz fluctúa entre 1,03 y 13,84 larvaslm 2 .Medidas de control cultural l. Eliminación de restos de cosecha y malezas.2. Epoca de siembra.Motivado que la mayor incidencia de S. frugiperda ocurre cuando las plantas tienen entre los 5 y 8 días de germinadas y en esta misma fecha se realiza fundamentalmente la aplicación de herbicidas es por la utilización del manejo del agua es el método más recomendado para el control de la \"Palomilla\". Inundar el campo por 20 horas es lo correcto para el control de todos los estados del insecto. Con este tiempo se controla el 95 % de las larvas y pupas de la plaga presentes en los campos de arroz.El depredador más colectado es Coleomegilla cubensis cuya acción más depresiva la ejerce en el período de abril a junio. Chelonus texanus presentó un nivel de parasitismo hasta el 80,7% en las parcelas experimentales y hasta un 78% en muestras del CAl Arrocero \"Sur del Jíbaro\".Otro parásito importante es Telenomus, colectándose puestas de la plaga con un 58 a 93 % de huevos parasitados.En condiciones semicontroladas el hongo M anisopliae (Cepas Belice y Niña Bonita) ocasionaron una mortalidad entre el 69,3 al 88,5% de las larvas de S.frugiperda. La cepa Niña Bonita de M anisop/iae alcanzó mejor control que la cepa Belice, lo que facilita que la aplicación de este hongo entomopatógeno pueda controlar más de una especie de insectos plagas en el cultivo del arroz.Con el objetivo de buscar nuevas alternativas para el control de S. frugiperda se han evaluados diferentes cepas de hongos entomopatógenos y de Bacil/us thuringiensis con el objetivo de incluirlos en el Manejo Integrado de esta importante plaga del arroz.Con B. thuringiensis se ha alcanzado en condiciones semicontroladas hasta 95% de mortalidad de las larvas de S. frugiperda y en condiciones de los arrozales entre el 65 y 95 %, ésta en dependencia de la calidad del biopreparado.La utilización de este insecticida resulta muy efectiva dentro del Manejo Integrado de la S.frugiperda ya que al poco tiempo de aplicado el mismo, las larvas dejan de comer, aspecto este muy importante, fundamentalmente cuando inciden entre los 5 y 9 días de germinadas las plantas de arroz. Para la implementación del Manejo Integrado de esta importante plaga del arroz en Cuba es necesario además de todos los aspectos sociales, económicos y relacionados con el adiestramiento de los especialistas y técnicos, ejecutar los aspectos siguientes:l. Realizar todas las siembras con semilla certificada de las variedades resistentes a la plaga, utilizando las dosis recomendadas para cada tecnología de siembra, efectuarla preferentemente desde diciembre a febrero.2. Destruir todos los restos de cosecha y malezas que resultan hospedantes de las plagas, en la preparación de suelo, también mantener limpios diques y canales de riego y drenaje.3. Nivelar bien las terrazas, para la realización rápida del manejo del agua y control de las malezas e insectos.4. Proteger los enemigos naturales del ecosistema arrocero mediante la utilización mínima de los plaguicidas químicos.S. Efectuar el muestreo mediante pases de jamo, desde los cinco días de germinadas las plantas de arroz, con una frecuencia semanal, fundamentalmente de marzo a septiembre.6. Ordenar una medida de control cuando se alcance el Umbral Económico para las diferentes edades del arroz.7. En el control del insecto se tendrá en consideración:a. Aplicar un insecticida solo en el caso que en el muestreo del campo se obtenga valores simi lares o supenores al Umbral Económico de T. orizicolus.b. Utilizar los insecticidas más se lectivos y menos tóxicos para los enemigos naturales y el ecosistema arrocero.Guia para el Trabajo de Campo en el MlPEn el Manejo Integrado de esta importante plaga es de suma importancia la observancia de los siguientes aspectos:A. Ejecutar las orientaciones de la 1 a la 4 recomendada para el Manejo Integrado de T. orizicolus.5. Mantener limpios diques y canales. principalmente donde crece P. muticum pues debajo de estas plantas se protege el insecto a partir de septiembre hasta finales de marzo, de donde vuelan hacia los campos de arroz.6. Incrementar los muestreos en todos los campos en aniego permanente a partir de marzo por ser este mes crítico para la señalización de L. brevirostris y continuarse hasta septiembre debido a que este período resulta de máxima actividad de la plaga.7. Orientar una medida de control cuando se alcance el Umbral Económico de L. brevirostris de acuerdo a la edad de las plantas y el ataque de adultos o larvas del insecto.8. En el control del insecto se deberá tener en cuenta: 20 a. No efectuar el drenaje de los campos, con el objetivo del control de las larvas de L. brevirostris, por resultar generalmente esta práctica más perjudicial para el cultivo.b. Aplicar para el control de los adultos de la plaga los hongos (M anisopliae o B. bassiana) a las dosis de 1 x 1 O 12 conidios/ha. c. Aplicar el control microbiológico en dique y canales de aquellas áreas endémicas de picudo acuático del arroz, si es factible durante el mes de febrero o principio de mano, En aquellos campos con ataque de adultos de la plaga y no sea posible la aplicación de hongos entomopatógenos y coincida con los meses de marzo y abril es recomendable la utilización de Carbaryl (2,21 Kg ia/ha).d. Efectuar el control de las larvas o altas incidencia de adultos mediante la aplicación de Carbofuran a dosis de (0,55 a O, 75 Kg ia!ha).e. Aplicar Fipronil (75 a 100 g ia/ha), como una buena alternativa en el control de las larvas. f. Realizar las aplicaciones de insecticidas (microbiológicos o químicos) por avión en horas tempranas de la mañana o finales de la tarde, dado los hábitos del insecto.A. Realizar las orientaciones de la 1 a la 4 del MANEJO INTEGRADO de los anteriores insectos.5. Efectuar los muestreos mediante pases de jamo, según la metodología descripta en el presente trabajo, desde la etapa de la floración hasta el estado yesoso del grano de arroz, con una frecuencia semanal, desde marzo hasta noviembre.6. Proteger los enemigos naturales, principalmente Telenomus mediante la utilización mínima de los plaguicidas químicos.7. Ordenar una medida de control cuando en los muestreos de campo se alcance o sobrepase el Umbral Económico de las diferentes fases del arroz.8. En el control de la plaga se deberá tener en consideración:Aplicar un insecticida químico, preferentemente Parathion methyl (0,50 Kg ia/ha) si • los demás métodos de control han fallado.Dentro de las principales consideraciones para la implantación del Manejo Integrado de la plaga se encuentran, ejecutar los puntos del 1 al 4 de los insectos anteriores.5. Realizar los muestreos semanales de la plaga a partir de los cinco días de genninadas las plantas de arroz hasta el aniego pennanente.6. Efectuar quincenalmente, durante diciembre y enero los muestreos, a partir de marzo y hasta septiembre, motivado por el aumento de la temperatura, debe incrementarse la vigilancia de todos los campos, principalmente en aquellos de pocos días de genninados, etapa más susceptible al insecto.7. Orientar una medida de control cuando se alcance el Umbral Económico de S. frugiperda, en las diferentes edades:8. En el control del insecto se deberá tener en cuenta: 22 a. Realizar éste cuando las larvas sean pequeñas, debido a que su alimentación es baja y mayor su susceptibilidad a las medidas que se adopten.b. Utilizar la inundación de los campos por 20 horas, con el objetivo de controlar todos los estados del insecto.c. Aplicar preferentemente Lambda-cyhalothrina a dosis de 6,25 a l 0,00 g ialha, mezclado con el Propanil dentro de las necesidades del control de las malezas en los campos.d. Efectuar las aplicaciones por avión realizarse preferentemente en horas tempranas de la mañana, dado los hábitos del insecto.Principales Malezas del ArrozLas malezas son elementos importantes y dinámicos en un ambiente agrícola y actualmente comienza a existir una mayor conciencia en el sentido que es necesario entender la relación de las malezas con el cultivo, las prácticas agrotécnicas y el medio ambiente para tratar de manejar eficientemente las malezas.La presencia de las malezas en un cultivo de arroz causa daños directos e indirectos.Los directos son los que resu ltan de la interferencia de la maleza con el desarrollo del arroz. La interferencia comprende las distinta interacciones negativas que surgen entre las plantas, tales como competencia, alelopatía o parasitismo. Esta reduce el crecimiento del arroz y su rendimiento en granos.Los daños indirectos son ocasionados por las malezas son: cuando sirven de hospederos a plagas. afectan la cosecha y reducen la calidad del grano. por lo tanto elevan los costos de producción.Para establecer un programa eficiente de malezas es necesario identificar con exactitud las mismas y conocer completamente su comportamiento en los diferentes ecosistemas arroceros.Dentro de los factores principales dentro del sistema. de arroz de riego que deben tenerse en cuenta son la nivelación del campo y el manejo del agua. Si el terreno está bien nivelado es posible establecer una lámina de agua de inundación pennanente que impida el crecimiento de gran parte de las malezas.En muchas ocasiones los productores no están conscientes del problema de las malezas. Esto se debe a que el daño ocasionado por las mismas es menos visible, o no tan obvio como el causado por los insectos, por ejemplo el daño de la \" Palomilla\" (Spodopterajrugiperda) en el arroz o por la enfennedad \"Piricularia\" (Pyricularia grisae).Los estudios efectuados sobre el período crítico del arroz por las malezas han pennitido establecer que el mismo se encuentra entre 30 y 45 días de germinado el arroz para la campaña de primavera y entre los 45 y 60 días para la campaña de frío.Estos resultados indican la necesidad de mantener libre de malezas el cultivo del arroz Jos primeros 45 y 60 días después de la germinación en las campañas de primavera y frío, respectivamente para alcanzar los máximos rendimientos agrícolas y disminuir Jos costos de producción.Las investigaciones realizadas sobre los Umbrales económicos de las principales malezas del arroz en Cuba, penniten establecer criterios sobre la toma de decisiones para su control en el cultivo del arroz. Se aprecia que Thalia geniculata y Vigna vexillata con Umbrales económicos de 0,43 y 0,96 malezas/m 1 son muy competitivas con el arroz, lo que demuestra que las mismas deben ser controladas en etapas muy tempranas de las malezas, con el objetivo de disminuir sus daños (Cuadro 2).CUADRO Las mismas prácticas culturales que implementa el hombre son las responsables de tener que lidiar con un determinado tipo de comunidad de malezas, este el caso del ARROZ ROJO que durante muchos años ha constituido una plaga de gran envergadura en el cultivo, especie reportada como una de las principales causas de los bajos rendimientos en los países de siembra directa del arroz, por lo requiere de recomendaciones especiales.En esta especie hay varios tipos de arroz, diferente del cultivado, que se encuentran en el trópico y en las zonas templadas .Son plantas de hábitos semiacuáticos, de morfología variable, generalmente más altas que el arroz cultivado y de hojas más claras que éste.Se propaga por semillas que se desgranan precozmente de la panícula. La latencia prolongada de estas semillas, el empleo de semilla comercial sin certificar y el pastoreo de los rebrotes o socas por los anímales aseguran la reinfestación de los campos.A los efectos de evaluar bajo un mismo criterio el grado de intensidad del ARROZ ROJO en las diferentes áreas arroceras del País y a la vez que ello permita recomendar las tácticas de control más adecuadas, se estableció una escala para su evaluación. (Cuadro 4.) La determinación de la intensidad de ARROZ ROJO en los campos arroceros debe efectuarse visualmente, realizando un recorrido minucioso por toda el área del campo, alrededor de los 30 a 60 días de germinado el arroz para las campañas de primavera y frío, respectivamente. Es importante realizar la evaluación en esta etapa, para detectar en el momento óptimo la presencia del ARROZ ROJO, antes de que éste comience la paniculación y poder disminuir las afectaciones en la variedad comercial.Para los campos con ARROZ ROJO con intensidad de afectación Ligera (hasta 500 plantas de arroz rojo/ha) se recomienda el uso del Glyfosate dirigido, para lo cual se empleará un guante de goma con un material esponjoso pegado a los dedos del mismo, el guante se humedecerá periódicamente con una solución de Glyfosate al 1 O% (a cada litro de agua añadirle 25 mi de Glyfosate 48% C.), que se lleva en una botella con una tapa perforada con un pequeño tubito. La aplicación de Glyfosate (\"tocar\" las plantas de ARROZ ROJO con el material esponjoso impregnado de la solución del herbicida) se efectuará cuando se diferencie en altura el ARROZ ROJO de la variedad comercial, lo que ocurre alrededor de los 30 a 60 días de germinado el arroz.Para el control del ARROZ ROJO en campos con intensidades de afectación Media e Intensa, se recomienda el Método Agrotécnico-Químico, que en síntesis consiste en: Preparación del suelo en seco hasta nivelación; levantamiento de diques en Jos campos de curvas de nivel, en los de dique rectos no es necesario; pase de agua para provocar la germinación del arroz rojo y otras malezas; aplicación de herbicida total (Glyfosate o Gramoxone); aniego durante 5 a 7 días; siembra con arroz pregerminado; pases de agua con intervalos cortos de 56 6 días, para evitar que el suelo se agriete y germinen nuevas semillas de ARROZ ROJO y por último establecimiento del aniego permanente en el menor tiempo posible.El Manejo Integrado de Malezas es la combinación de prácticas agronómicas (curativas y preventivas) que reduzcan la población de malezas a un nivel en que éstas no causen daños económicos (umbral de daño económico) al cultivo.Tal integración de prácticas permite la diversificación del control de malezas, aspecto que es fundamental en el manejo de un sistema sostenible. Se plantea que el empleo continuado, durante años de una sola práctica de control de malezas tiende a desestabilizar el ecosistema arrocero. Esta integración es un factor estabilizador en el manejo de malezas, a condición de que se eficiente, compatible con el medio ambiente y económico.En el control de las malezas es importante la aplicación de diferentes medidas que conlleven a su Manejo Integrado con el objetivo de disminuir su resistencia a Jos herbicidas. (Cuadro 5). Las variedades de arroz de alto rendimiento se siembran en monocultivo y requieren, además, fertilización con alto contenido de nitrógeno.Estas dos prácticas agronómicas, principalmente, incrementan la incidencia y la severidad de enfermedades del arroz que han causado grandes epifitias en los últimos 20 años.Dentro de las enfermedades que mayores afectaciones ocasionan en el cultivo del arroz se encuentran: Virus de la Hoja Blanca del Arroz, Añublo del Arroz, Añublo de la Vaina y Pudrición de la Vaina.Virus de la Hoja Blanca del Arroz (VHBA), ;¡¡ 1!1 ! ~ l . . ~~I .. :•..'lJLa \"hoja blanca\" es la enfermedad viral que más ha afectado hasta ahora el arroz en América Latina.El primer reporte que se tuvo de ella en Colombia apareció a mediados de 1930.En Cuba en 1946 el Ing. J. Osorio reporta los primeros síntomas de la enfermedad.Resurgió en forma epidémica la virosis en 1950 y causó agrandes pérdidas en el rendimiento en las zonas arroceras del Caribe, de América Central y de la parte norte de América del Sur.Las epifitias del VHBA están relacionadas con T. orizicolus que actúa como vector del virus, razón por la cual los agricultores tratan de reducir los efectos de la enfermedad por medio del control químico del insecto. Sin embargo, esa no es mejor solución ya que no todos los individuos del insecto son vectores del virus: en cambio, el uso persistente de los insecticidas puede afectar seriamente la relación plaga -controles biológicos en el campo. La alternativa más apropiada para disminuir los efectos del VHBA es el uso de variedades resistentes al virus.El virus manifiesta los siguientes síntomas:• En la boja: bandas blancas, moteado clorótico o amarillento y variegación o mosaico.Estas manchas, al incrementarse, se fusionan formando franjas de color amarillo pálido a lo largo de la hoja. Los síntomas van acompañados de un secamiento descendente de la hoja, que es más notorio cuanto más joven sea la planta.• En la panícula: deformación y distorsión en espiral del eje; las espiguillas sufren manchas y vaneamiento. Estos síntomas se presentan en infecciones tardías.• En la planta: los daños se manifiestan en la reducción del macollamiento y de la altura de la planta.Cuando el ataque del insecto vector es severo, hay producción de fumagina y secamiento total de la planta a causa del daño mecánico.Los síntomas difieren según la variedad y la edad de la planta infectada. Si la infección ocurre al inicio del desarrollo vegetativo la planta muere.El VHBA es trasmitido principalmente por T. orizicolus en forma persistente, o sea, pasa a la progenie transováricamente, si está en la hembra, o por los espermatozoides del macho.El virus puede ser adquirido por insectos de ambos sexos que se hallen en estado ninfa! o adulto. Los períodos de incubación del virus son, en promedio:• De 20 a 22 días en el insecto;• De 7 a 9 días en plántulas de arroz de 1 O días de edad.El VHBA no puede transmitirse mediante inoculación mecánica ni por la semilla de plantas infestada.El virus produce también efectos deletéreos en el insecto. Por ejemplo:• Disminución de la fecundidad de la hembra.• Reducción de la viabilidad de las ninfas y de la longevidad de los adultos.Manejo Integrado del VBBA Cuatro componentes fundamentales interactúan en el campo durante el desarrollo de la virosis:l. Características de la población de insectos 2. Características de la variedad de arroz 3. Prácticas de manejo del cultivo 4. Algunos factores ambientalesDos factores principalmente influyen en la frecuencia de transmisión del VHBA en el campo.• Cantidad de insectos presentes.• Porcentaje de vectores en esa población.Una población típica de T. orizicolus contiene vectores con diferentes capacidades:• Vectores activos, que son genéticamente capaces de transmitir el virus porque lo han obtenido de la madre mediante un proceso transovárico.• Vectores potenciales, que son insectos genéticamente capaces de adquirir y transmitir el virus, una vez que tengan acceso a una fuente del virus.• Insectos no vectores, los cuales son genéticamente incapaces de transmitir el virus.La determinación del porcentaje e vectores potenciales en una población de T. orizicolus es, por consiguiente, de vital importancia para conocer el desarrollo de una epidemia de hoja blanca en el arroz.La mayoría de las variedades modernas tienen resistencia al daí'ío mecan1co causado por T. orizicolus , sin embargo éstas no siempre presentan resistencia al VI-IBA, por lo que es necesario incorporar también en esas variedades la resistencia contra la enfermedad.Por consiguiente, el manejo eficiente del VHBA exige la combinación de dos resistencias: una al virus y la otra al insecto vector.Las variedades resistentes al virus soportan, generalmente, ataques de Sogata en que haya hasta 7% de insectos vectores, sin embargo, las variedades susceptibles están en riesgo de sufrir una epidemia del virus cuando más del 1 % de la población de T. orizicolus son insectos vectores.El manejo del cultivo influye en dos aspectos de la plaga:• La cantidad de insectos que haya en el campo.• El porcentaje de insectos vectores.Debe evitarse la migración de insectos desde campos en la etapa de reproducción o maduración del grano hasta campos recientemente sembrados. Las plántulas son altamente susceptibles al daño que ocasiona T. orizico/us. El riesgo de migración se elimina planificando apropiadamente la siembra del arroz.El uso acertado de los plaguicidas es el componente más importante del manejo. Mal usados, pueden interferir con el control biológico y en consecuencia, estimular la resurgencia de la plaga.Conviene recordar que no hay método de control químico del VHBA.Hay dos métodos para determinar el porcentaje de vectores:• La técnica ELISA (método bioquímico)• La evaluación de insectos individuales.El método ELISA requiere la producción de un antisuero contra el VHBA y requiere de un laboratorio y personal especializado.Para la evaluación de insectos individuales se requiere colectar los mismos en campos comerciales de arroz y colocar cada uno en plantas sembradas en potes.(Deuteromicetos: Moniliales)Principale1 Enfermedades de1A\"oz El hongo P. grisea (=P. oryzae) causa el añublo o quemazón del arroz (denominado regionalmente \"piricularia\"), que es la enfermedad más limitante del cultivo en todo el mundo.La distribución del añublo es mundial: se encuentra en todos los agroecosistemas de los trópicos y de las zonas templadas en que se cultiva el arroz comercialmente.Todas las partes de la planta que crezcan sobre el nivel del suelo pueden ser atacadas por este hongo.Los síntomas de la enfermedad en la hoja y en el cuello de la panícula son característicos. Permiten, por tanto, hacer un diagnóstico claro de la enfermedad.El hongo afecta todas las partes aéreas de la planta de arroz: la hoja, los nudos del tallo, el cuello de la panícula y la panícula misma.Las lesiones foliares varían desde pequeños puntos de color café hasta rombos o diamantes de color verde oliva o gris, rodeados por un halo más claro.Los bordes de la lesión son de color pardo o pardo oscuro. Las lesiones pueden crecer hasta juntarse unas con otras.La forma, color, tamaño y número de las lesiones varían según las condiciones ambientales, la edad de la planta y el grado de susceptibilidad de la variedad.Alrededor de los nudos de los tallos se extienden manchas de color café oscuro en forma de anillo que pueden producir un estrangulamiento de dichos nudos. Este síntoma se observa únicamente en las variedades más susceptibles.Cuando el nudo del tallo se infecta, el pulvínulo de la vaina foliar se pudre, se dobla y se parte permaneciendo unido a la vaina sólo por el septo.La infección también ataca al cuello de la hoja.En el cuello de la panícula se forma inicialmente una mancha de color pardo grisáceo que rodea luego la base de la panícula.Puede ocurrir el vaneamiento total de la panícula si el ataque se presenta durante la floración. Si el ataque sobreviene cuando el grano se halla en estado lechoso, la maduración puede anticiparse y se cosecharán entonces grano vanos o parcialmente formados junto con granos normales; éstos últimos serán de baja calidad molinera.Los factores del medio y de la planta que favorecen el desarrollo del hongo son:• Los períodos de alta humedad y el rocío• La fertilización nitrogenada.• La susceptibilidad de las variedades.• El tipo y las características del suelo.Las siguientes condiciones climáticas son particularmente propicias para el hongo:• Un promedio bajo de temperatura producido por noches frías seguidas de días calurosos y por humedad relativa alta.• Las lloviznas prolongadas.• La luminosidad escasa.• Los vientos suaves.• Los períodos de rocío de 12 a 24 horas.El ataque de la enfermedad es más drástico cuando se aplican fertilizantes nitrogenados de acción rápida, como el sulfato de amonio, o cuando se manifiesta algún efecto retardado de la fertilización.Este efecto ocurre porque la aplicación fue muy fuerte o la temperatura muy baja en las primeras etapas de crecimiento de la planta.En algunas variedades de arroz, su alto contenido de nitrógeno y de aminoácidos libres facilita el establecimiento del patógeno y el desarrollo de la enfermedad.La temperatura óptima para que se desarrolle el micelio del hongo en las plantas es de 28 °C.Las lesiones se producen en las heridas que sufren las hojas de arroz, principalmente cuando la humedad relativa está entre un 85 y un 93 %; con menos humedad, casi ninguna lesión se desarrolla.La siembra de variedades resistentes y el empleo de fungicidas son los principales métodos de control del añublo del arroz, empleados actualmente en la mayor parte de las regiones arroceras.Los fungicidas no son, generalmente, económicos ni deseables para el medio ambiente.La resistencia varietal, particularmente cuando el patógeno presenta una gran variabilidad patogénica, ha sido de corta duración.El desarrollo de variedades resistentes a la Piricularia se orienta, en la actualidad, hacia la combinación de genes que resistan al ataque de diferentes familias genéticas del hongo y no de razas individuales de éste.Por otro lado, las diferentes prácticas de cultivo del arroz; manejo del agua, fertilización, densidad de siembra y elección de una variedad mejorada, desempeñan por sí solas, un papel muy importante en el desarrollo del añublo del arroz ..El manejo integrado de enfermedades se ha convertido en el principio básico de todos los sistemas de protección vegetal.Los patógenos, las variedades de arroz, las labores de cultivo, los agroquímicos y el medio ambiente, que suelen manejarse separadamente por los técnicos y agricultores, deben ser considerados como componentes de una misma actividad.Hay otros componentes del MIP, no menos importantes, como las fechas de siembra y de saneamiento: éstos deben considerarse según la región geográfica y las condiciones abióticas.Este manejo integrado del cultivo contribuye a que el nivel de producción se mantenga alto, el cultivo se desarrolle en armonía con el medio ambiente y los costos de producción sean bajos.Rhizoctonia spp.El hongo R solani causa el añublo de la vaina y se considera actualmente una de las principales enfermedades del cultivo en las regiones arroceras tropicales, subtropicales y templadas de Asia, Africa y América.En muchas regiones tropicales y subtropicales, la enfermedad cobró importancia, por dos razones:• La introducción de variedades de alto rendimiento, enanas, de abundante macollamiento, de período vegetativo corto y que respondían rápidamente al nitrógeno.• El empleo de altas densidades de siembra.El añublo de la vaina es más grave en el sistema de riego que en el de secano.El patógeno está presente en todas las zonas arroceras y en condiciones de humedad y temperatura altas, puede lanzar un ataque severo.Los síntomas se presentan inicialmente sobre las vainas y luego en las hojas de la base del tallo.Las lesiones típicas son de forma elíptica un poco irregular, de 2 a 3 cm de longitud y de color verde grisáceo; tienen un centro blanco grisáceo y márgenes de color caf é rojizo.Las lesiones pueden juntarse causando la muerte de las hojas superiores.Las manchas aparecen en la vaina de las hojas, cerca de la superficie del agua (en arroz de riego) o junto al nivel del suelo (en condiciones de secano).La enfermedad progresa rápidamente desde un comienzo, extendiéndose de la vaina hacia la hoja; en los ataques severos destruye el tallo.Con frecuencia se forman esclerocios que se diseminan fácilmente sobre la superficie de las manchas.La presencia de varias manchas grandes en una vaina causa, generalmente, la muerte de la hoja. Muchas veces, las plantas debilitadas por la enfermedad se vuelcan o acaman.En el campo, la enfermedad suele presentarse en \"parches\" irregulares dentro del cultivo. Los síntomas se manifiestan, generalmente, a partir del periodo de más intenso macotlamiento.La disminución del rendimiento por la enfermedad se ha estimado de varias maneras:• En la hoja bandera ha sido calculada en un 20 %. En ataque severos, cuando todas las vainas y láminas foliares están totalmente infectadas, esas pérdidas de rendimiento alcanzan el 40 %.• La reducción en el peso de los granos es el factor más importante de esas pérdidas.Factores que favorecen la enfermedad Los principales aspectos de un cultivo de arroz que propician la incidencia y \\a severidad del añublo de la vaina son los siguientes:• Siembra de variedades susceptibles.• Alto contenido de nitrógeno en la fertilización.• Altas densidades de siembra.La principal fuente de inóculo son los esclerocios producidos por el hongo sobre las lesiones en hojas y tallos. Estos esclerocios sobreviven en el suelo y residuos de cosecha de un semestre a otro (de una campaña arrocera a otra).Los esclerosios se diseminan durante la preparación del suelo y más tarde, con el agua de riego. Flotan en el agua e inician la enfermedad al entrar en contacto con los tallos de las plantas.La infección comienza al nivel del agua y se extiende hacia la parte superior de la planta, atacando tanto la superficie como el interior del tejido vegetal.Al principio, la enfermedad se desarrolla en sentido vertical, extendiéndose hacia las vainas de las hojas superiores. Después se desarrolla horizontalmente e infecta los tallos vecinos.Si las condiciones ambientales no son favorables, es común encontrar una alta incidencia de la enfermedad, pero las lesiones causadas por ésta sólo en las vainas inferiores sin causar pérdidas de rendimiento.La enfermedad es especialmente destructiva en condiciones de alta temperatura (28 a 32 °C) y de alta humedad relativa (más de 96 %).La temperatura de la planta depende de la temperatura ambiental; su humedad relativa, en cambio, está muy influida por la densidad de plantas del cultivo. A mayor densidad, mayor humedad relativa.La integración de factores agrometeorológicos y factores agrónomicos es fundamental para diseñar una estrategia de manejo de la enfermedad.Agente causal del Añublo de la VainaComo se señaló anteriormente esta enfermedad es causada principalmente por el hongo Rhizoctonia solani Khun. Está clasificado en el orden Agonomycetes y su estado perfecto se conoce como Thanatephorus cucumeris (Frank) Donk.Producen síntomas similares al añublo de la vaina varios microorganismos del género Rltizoctonia, entre ellas R. solani, R. oryzae, R. oryzae-sativae y las especies Sclerotium oryzae y S. hydrophilum. Se encuentran, con frecuencia, varios de estos patógenos atacando una misma planta.En las regiones tropicales de América Latina, por ejemplo, en Colombia, Venezuela y Panamá, el principal causante de esta enfermedad es R. solani que, con mucha frecuencia, se asocia con S. oryzae.En el sur del continente (Uruguay, Argentina y Brasil) se encuentra principalmente R. oryzae-sativae asociado con S. oryzae. En Brasil es común encontrar las tres especies antes mencionadas causando una sola enfermedad.Manejo Integrado del Añublo de la VainaEn el Instituto Internacional de Investigaciones del Arroz (IRRI, en inglés) situado en Filipinas, ha evaluado miles de líneas de arroz que, en su mayoría, han sido susceptible a este hongo. El resultado de la evaluación indica lo siguiente:• Las variedades indicas son, en general, más resistentes que las japónicas.• Las variedades de maduración tardía son más resistentes, posiblemente por el escape de la infección.• Las variedades de porte alto con pocas macollas son más resistentes que las de porte bajo con gran macollamiento.Algunas prácticas de cultivo propician la aparición del afiublo de la vaina. Las principales son las siguientes:• Usar altas densidades de siembra.• Aplicar niveles altos de fertilización nitrogenada.• Sembrar variedades de ciclo corto, porte bajo y de abundante macollamiento.• Sembrar constantemente monocultivos (si n rotación).• Sembrar en fechas tales que las épocas de a lta humedad relativa coincidan con períodos de gran susceptibilidad de la planta a la enfermedad. El manejo adecuado de las prácticas antes mencionadas ayuda a disminuir la incidencia de la enfermedad.Cuando existe una fuente de inóculo en el suelo, se recurre a técnicas de control para reducir la cantidad de esclerocios que se hallan en el sue lo.Sin embargo, tanto e l número de esclerocios como su viabil idad se reducen cuando éstos son incorporados en el suelo a gran profund idad durante el fangueo.La reducción de la viabilidad se asocia con condiciones anaeróbicas y factores microbianos que prevalecen en el suelo después del fangueo.Actualmente se reporta una alta incidencia del añublo de la vaina en zonas arroceras donde se practica la preparación superficial del suelo en seco.Esta actividad mantiene viables los esclerocios que son disemi nados Juego por el agua de riego; inician la infección cuando las condiciones ambientales les son favorables.El manejo integrado del añublo de la vaina debe considerar todas las prácticas que tiendan a disminuir el inóculo primario, es decir, los esclerocios del hongo que llegan al suelo.La quema de socas reduce micho la fuente de inóculo. La operación es efectiva si Jos residuos de la cosecha se dispersan uniformemente en el campo. La razón es que una quema muy uniforme destruye el mayor número posible de esclerocios.La incorporación de residuos a una profundidad de 20 a 30 cm, después de la quema, es recomendable.La inundación del campo, finalmente, establece un período anaeróbico prolongado que aumenta el porcentaje de destrucción de esc lerocios y reduce, por tanto, la incidencia de la enfermedad. Se recomienda que el periodo mínimo de inundación sea de 15 días.La fertilización nitrogenada debe basarse en la disponibilidad de los nutrientes del suelo y en las necesidades nutricionales de la variedad.La fertilización alta en nitrógeno favorece el desarrollo de la enfermedad y la fertilización rica en potasio reduce la severidad de ésta.El control químico ha sido la única solución para el problema del añublo de la vaina en muchas regiones arroceras del mundo, especialmente en Japón.Como se señaló anteriormente la enfermedad está presente en todo el ciclo del cultivo. Sin embargo, sólo las lesiones que se desarrollan de la cuarta hoja hacia la parte superior de la planta están asociadas con la pérdida del rendimiento.Se recurre al control químico cuando la infección alcanza la cuarta hoja. Esta situación se presenta, generalmente, de 5 a 15 días antes de la floración, según la variedad sembrada.Las lesiones se desarrollan rápidamente. Por consiguiente, el fungicida que se aplique debe ser de acción preventiva y curativa y debe tener residualidad prolongada.El principal componente del manejo de esta enfermedad es la eliminación de los esclerocios que están en el suelo después de la cosecha.El hongo S oryzae (= Acrocylindrum oryzae) ocasiona la enfermedad Pudrición de la Vaina, descrita por primera vez por Sawada en 1992 en Taiwan, se encuentra también en Japón y en todos Jos países del Sudeste Asiático, Estados Unidos y varios de América Latina.A pesar que cuando los ataques de esta enfermedad son severos, las pérdidas pueden alcanzar el 20-85%, la misma no ha sido estudiada ampliamente en nuestro continente.Principales Enfermedades del Arro:: Sintomatología Las lesiones aparecen en las vainas de las hojas superiores y en la vaina de la hoja bandera, estas lesiones son oblongas y alargadas con borde café y centro grisáceo. A medida que la enfermedad progresa, las lesiones se alargan y coleasen, cubriendo gran parte de la vaina de la hoja. Infecciones severas y tempranas no permiten que la panícula emerja completamente y en algunas ocasiones se pudra; las panículas que logran emerger presentan flores curvas y de color café rojizo a café oscuro. La esterilidad, y el vaneamiento de los granos son síntomas que también están asociados con el ataque de esta enfermedad.El hongo produce conidióforos verticales con una o dos ramificaciones. En la parte terminal de los conidióforos se forman las conidias, las cuales son cilíndricas y en algunas ocasiones curvas; son hialinas y uniceluladas.Epidemiología y ciclo de la enfermedad El micelio de S. oryzae es capaz de sobrevivir en residuos de cosecha y en la semilla. Este patógeno tiene como hospederos alternos algunas malezas y el bambú Reportes de literatura sugieren que aislamientos de este hongo provenientes de malezas son capaces de infectar al arroz.El hongo penetra en la planta a través de los estomas y heridas causadas por algunos insectos, y una vez ha penetrado en la planta crece intracelularmente. El daño causado por insectos especialmente ácaros, barrenadores del tallo y algunos chinches ayudan al desarrollo de la enfermedad, siendo esta también favorecida por bajos niveles de Nitrógeno, altas densidades de siembra, humedad relativa mayor del 90% y temperaturas que oscilan entre los 20-25°C.Existen reportes que en Asia esta enfermedad esta muy asociada con la presencia de altas poblaciones del insecto Leptorisa acula.Se recomienda e l uso de variedades resistentes. En investigaciones realizadas por el IRRl , se han encontrado algunas variedades resistentes al patógeno como es el caso de Tetep, Zenith, Intan y Ramtulasi.Un adecuado manejo cultural como la eliminación de residuos de cosecha, buen balance nutricional y adecuadas densidades de siembra, entre otros.La adopción generalizada de los conceptos, metodologías y medidas del Manejo Integrado de Plagas (MIP) por parte de los agricultores, para quienes está dirigido el programa, es probablemente la fase más crítica para la implantación del sistema, ya que ellos en muchos casos deben cambiar sus concepciones, además son los encargados de su aplicación práctica en los campos de arroz.La integración de procedimientos del Manejo Integrado de Plagas puede darse en varios niveles; contra una sola plaga o contra las principales, actuando de forma multidiciplinaria para el beneficio del cultivo del arroz.La simple integración de tácticas no es suficiente para mostrar un cuadro total del problema por resolver. La solución de las medidas y la determinación del nivel y modo apropiado de coordinar su uso están condicionados por los prerrequisitos del MIP. (Estos son los conocimientos sobre la biología, dinámica poblacional, hospederos, daños ocasio nados a cultivo).Resulta imposible diseñar e implementar un programa de Manejo Integrado de Plagas sin considerar cuidadosamente a estos prerrequis itos como fundamentos firmes sobre los cuales se apoyan la utilización apropiada de las tácticas de control.En la siguiente sección se detallan las etapas en que se ha subdividido el ciclo del arroz así como las principales actividades y acciones recomendadas para la implementación del Manejo Integrado de Plagas de forma sistém ica, con el objetivo de brindar una PROTECCION INTEGRAL DEL CULTIVO, priorizando las medidas de control biológico y las culturales, por ende disminuir las afectaciones de las plagas, la contaminación del medio ambiente e incrementar la biodiversidad y salud de los trabajadores.Como se señaló ante rio rmente el cultivo del arroz se ha subdividido el ciclo para el muestreo y la aplicación de labores agrotécn icas en varias etapas, que abarcan desde la preparación del sue lo hasta la maduración del grano (Cuadro 6.) CUADRO 6. Insectos plagas: Observación visual de En función de la población orientar las plagas de l suelo y otras presentes en una medida de control: el campo. En los campos endémicos de \"Picudo acuático\" aplicar el Metarltizium anisopliae a dosis de 1 X 10 12 conidios/ha, en los diques y canales, durante febrero y marzo.La incidencia de las plagas es menor en Sembrar preferentemente durante los la campaña de siembra de frío. meses de diciembre y enero, buen método de control para las plagas. \"Sogata\": Muestreo mediante pases de jama, en lO puntos del campo con 1 O pases en cada uno de ellos.\"Palomilla\": (Jamo o marco de 0.25 m 2 ) en lugares similares al muestreo de so gata.\"Hoja Blanca\".Muestreo de los campos según el método establecido. \"Píricularia\".\"Rhizoctonia\": Observar la incidencia de las mismas en el campo. Aplicar una medida de control si existe población igual o superior a 3.00 poaceas/m 2 , . Dosis del herbicida en función de la especie y total del hojas (malezas).Drenar las partes BAJAS del campo para favorecer la germinación del campo.Umbral Económico: (9 Sog/Jam) Realizar el control con valores iguales o superiores al Umbral.Similar decisión si existe (1 a 2.7 larvas/m 2 ó 2 larvas/pase de jamo). Realizar una medida de control, preferentemente de inundación total del campo por \"20 HORAS\" Generalmente coincide con el aniego posterior a la aplicación del Propanil.Si existe incidencia de «Hoja Blanca\" tomar de acuerdo a la metodología.Aplicar el plaguicida correspondienteen función del tipo de patógeno y la resistencia del mismo.Efectuar a las 24 a 48 horas posteriores a la medida de control. Manejo del agua: Se debe observar la Incrementar o disminuir la lámina de altura de la lámina de agua, para evitar agua en dependencia de la altura de la que ésta sobrepase los 15 cm. misma .1 nsectos Plagas:\"Picudo acuático\" Se debe evaluar fundamentalmente las larvas, según la metodología de muestreo.\"Chinche\": Muestreo mediante pases de jamo, fundamentalmente en los lados correspondientes al frente y fondo del campo, para lelo a los canales de riego y drenaje. En cada punto se realizarán 1 O pases de jamo, según lo previsto en la metodología de muestreo.Maleza: Evaluar fundamentalmente \"Bej uco Godínez\" y \"P iatanillo\".Realizar el control del campo con insecticida químico : Carbofuran (0.55 a 0.77 Kg ia/ha) o Fipronil (80 a 100 g ia/ha) si la población larval es igual o superior a 4 a 5 por plantón.Si en el muestreo en la floración se colecta, igual o supenor a 2.20 chinches por pase de jamo se debe ejecutar una aplicación de insecticida químico.Aplicar el herbicida correspondiente, si se alcanza e l Umbral económico de 1 maleza/m 2 en ambas especies.la Aplicar el fungicida correspondiente incidencia de las mismas, mediante el en dependencia de la enfermedad Enfermedades: monitoreo establecido.presente.Efectividad técnica: Si se ejecutó una medida de control, se realizará el muestreo.Efectuar el muestreo entre las 24 y 48 horas posteriores a la ejecución de la medida de control, para los insectos; y para las malezas de acuerdo a la metodolog ía establecida.","tokenCount":"11431"} \ No newline at end of file diff --git a/data/part_3/4685030816.json b/data/part_3/4685030816.json new file mode 100644 index 0000000000000000000000000000000000000000..4afc4bbf9e3266fb605adbe0e85f35d700f53dcf --- /dev/null +++ b/data/part_3/4685030816.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"20911191f76541a38ce53c6ae26be00f","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/64c91482-b23b-4b11-a79a-5ab7015ae2ec/retrieve","id":"-1557195228"},"keywords":[],"sieverID":"2e2138c1-6f2b-444b-aa30-83a165bac02a","pagecount":"1","content":"FMOs are not well organized and lack capital.• Vehicle problem to carry out the activities particularly at planting and harvesting period.• The main gaps in input supply chains was no authority to certify soybean seed and accessibility of inoculants.• The gaps in capacity development were trainers in ToTs did not train as much farmers as needed and trainings regard to soybean recipe was limited to women farmers.• Data collecting tools are multidisciplinary & time taking.Special thanks to N2Africa for funding budget, Ministry of agriculture and Natural resource, Ethiopian Institute of Agricultural Research, Facilitator for Change and all other collaborators in cooperating and facilitating to achieve the objectives..• The involvement of all concerned stakeholder in planning and implementation phase contribute a lot for the successful achievement of activities.• Organizing partner platform contribute a lot to achieve the objectives of the project.• Participation of women in every stages of activities result in getting reliable feedback and information.• Legume technology evaluation approach confirms the effectiveness of biofertilizer technology dissemination..• The highest grain and biomass soybean yield was obtained from application of starter fertilizer and inoculants.• Legume technology dissemination needs market linkage to sustainable income generation.• Targeted districts: Tiro Afeta and Kersa districts, Jimma zone.• Targeted legume: Soybean • Partners and collaborators: EIAR-Jimma Agricultural Research Center, Facilitator for Change (FC), OARI-JAMRC, Farmers Marketing Organization (FMOs), PCs/Unions, Woreda BoAs.• ToTs were provided for 135 male and 97 female participants constituted from farmers, DAs and agriculture experts on techniques of rhizobium inoculation, improved agronomic practices, post harvest management and soybean recipe. • Feedback from trainees showed that they can implement according to the trainings but they have challenges on accessibility of rhizobium, lack continuity of trainings particularly on soybean recipe.• Disseminated legume technology through:• Demonstration trials (20 farms),• Adaptations (122 male and 84 female farmers)• Technology evaluation,• Field days (593 farmers): organized in Tiroafeta in Decha Nedhi kebele .• Amount of input distributed: 1505 kg of soybean seed (Clark 63K variety), 824 kg NPS, 310 sachets of inoculants (MAR1495 and USB-12) were used. • Farmers groups technology evaluation and field day events are cost effective and innovative approach in reaching more farmers.• FMO played vital role in input demand assessment and distribution. Moreover, It is the main source of soybean seed. In 2016, • Gafo Burkabaso FMO multiplied soybean seed on 3.75 ha of land. The FMO accessed basic seed from JARC . • FMO and JARC produced 1840 kg of certified seed and 400 kg of basic seed, respectively.• Jimma cluster tried to support FMOs to link with cooperative and/or unions and Menagesha Bio-fertilizer industry. The cluster has a gap in linking legume grain producers / FMOs with cooperative/unions and soybean processing industry.• Existence of organized farmers groups and women associations• Suitable whether condition for soybean production• JARC start soybean value chain project besides N2Africa project• Legume has multipurpose importance.• Link soybean producers with unions and other buyers• Provide soybean recipe training for women in urban.• Organize and train women and self help groups in soybean value addition.-p +I +p +I +p -I -p -I","tokenCount":"510"} \ No newline at end of file diff --git a/data/part_3/4716457205.json b/data/part_3/4716457205.json new file mode 100644 index 0000000000000000000000000000000000000000..3fe7bbe37bd45ca7f7d95947b0442d76c2399e3a --- /dev/null +++ b/data/part_3/4716457205.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"f61a9d176c5ea91fa42c7cf1b8f8794d","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/92bf6303-2f5d-4c4d-8b27-a0a8c4a8f140/retrieve","id":"904599648"},"keywords":[],"sieverID":"9f71a5ed-94e5-42cf-8ca6-b60cf996a62f","pagecount":"7","content":"We are implementing a new tool available at PestDisPlace, to recognize cassava disease symptoms from field photographs. We describe the setting-up of the machine learning development environment, data preprocessing, model training and evaluation, and deployment of the model in production. The application enables field survey officers to focus on collecting images and do the disease recognition upon uploading their images in bulk in the PestDisPlace platform. The application performs early detection or flag affected fields infected with Cassava Mosaic Disease.Continuing with the development of tools available at PestDisPlace, we present here the validation of an AI tool targeting the the 'recognition' of Cassava Mosaic Disease (CMD) symptoms, a major disease of cassava in Africa and in Asia. We built the underlying classification model using state-of-the-art deep learning algorithms that leverage transfer learning methods. Transfer learning involves using a pre-trained model, trained on millions of images, and using it as a parameter to initialize the training of our model. The dataset of cassava diseases images comprised 6306 images. This training dataset was distributed among the various categories (Figure 1), with 2,357 images for the Cassava Mosaic Disease (CMD) class, 2132 for Cassava Brown Streak (CBSD), Cassava Bacteria Blight (CBB) having 1037, while the Healthy category consisted of 530 images.As previously reported, the model performance was evaluated on an initial testing set using accuracy and F1 evaluation metrics. As shown in the classification report in Figure 3, the model attained an accuracy score 91% and F1 score of 89%. As shown in Figure 3, the model correctly classified all the healthy images and performed considerably well in the other classes.We now report the first results obtained from evaluating groups of CMD symptomatic and nonsymptomatic plants, as classified by an expert, collected during field surveys carried out in Cambodia, Vietnam and Laos. The photographs used for validation were taken using a standard protocol (Figure 3). Although the model include the recognition of CBSD and CBB, our main goal here was to evaluate CMD classification through the web tool implemented in the platform.Here we can observe the object of prediction, which contains predicted_class (in this case CMD) and confidence scores; it will show the prediction with the highest confidence score. It also gives us information on other possible diseases (see: classes_cat and confidence_scores). Confidence scores is asigned in the same order of the lists.To make use of the classifier in PestDisPlace you can Access the tool from the Table of Samples to evaluate one image at a time, clicking the button in column Run_AI (Figure 4). The results are shown as an additional column next to the results recorded by the experts. Alternatively you can classify a group of images from each of your project's Manage Folder (Figure 5). 1831 images were classified as 'Healthy', which corresponded to 94% of the images. 57 images were classified as CMD, 34 as Cassava Brown Streak Disease and 10 as Cassava Bacterial Blight. In total, images classified as a disease other than CMD, corresponded to 6% of the total.The follwing evaluation corresponded to a dataset of 3252 images of CMD symptoms identified by an expert. The results were as follows:In this case a 78% of the images (2541) were rightly classified as CMD by the tool, but the 22% restante was classified as other disease (or as Healthy). What is next? Our goal is to minimize the time taken to identify disease symptoms from field surveys. Using this tool researchers and extension workers can focus on survey more fields per unit of time. This approach, AI integrated within the PestDisPlace platform to analyze large amounts of data in parallel, has the potential to accelerate early warning, detection, recording, and communication of outbreaks. Ongoing work will improve the models' performance further by annotating more data and retraining the models with additional cassava diseases (e.g. Cassava Witches' Broom disease). While annotation is a time-consuming task, we maintain collaboration with experts in specific cassava diseases as part of the Cassava Crop Protection team. This also include the confirmation of a disease by molecular methods. In the latter case images confirmed by molecular diagnosis will be given a special annotation flag so that the machine is trained, especially on confirmed disease and pathogen strain. The image detection models described will be applied to screening CMD symptoms from different cassava genotypes, as part of selection for resistance assays. They can also be extended to other crop diseases. ","tokenCount":"735"} \ No newline at end of file diff --git a/data/part_3/4722739581.json b/data/part_3/4722739581.json new file mode 100644 index 0000000000000000000000000000000000000000..cf22595d6b59dd8244da6616801382e1279f2073 --- /dev/null +++ b/data/part_3/4722739581.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"fe57875df892ca39393089ccf30db449","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/5562e2a1-8394-4ee6-a59e-390bc19eefba/retrieve","id":"-690588088"},"keywords":[],"sieverID":"78020c4f-acd5-43bb-917f-5bad2e8c76c0","pagecount":"7","content":"Según Hall (2006), la perspectiva de sistemas de innovación reconoce que la interacción que se genera entre distintas personas y sus ideas y el entorno social en el que se desarrolla esta interacción son factores determinantes de la innovación, como proceso de generación, acceso y aplicación de los conocimientos.Esto difiere del viejo pensamiento lineal que planteaba que los institutos de investigación generan conocimientos y tecnología, la extensión difunde asesoría y los agricultores adoptan nuevas prácticas. Los sistemas de innovación reconocen que la clave para el intercambio y la aplicación de conocimientos está en el vínculo que se establece entre las personas y las organizaciones. \"Los procesos de innovación pueden enriquecerse creando mayores posibilidades de interacción entre los actores\" (Waters- Bayer et al., 2006).Un informe impulsado desde el Secretariado Técnico de FORAGRO en IICA (Salles-Filho, 2007) hace hincapié en el aspecto 'colectivo' de esta línea de pensamiento al señalar que: \"La superación de la perspectiva lineal del proceso de innovación trajo el entendimiento de que la innovación es un proceso netamente colectivo, porque: i) involucra a distintos actores con distintas perspectivas; ii) apunta a un objetivo común con conceptos, herramientas y perspectivas distintos; iii) necesita división de trabajo; iv) necesita repartición de derechos de propiedad; v) tiene economías de escala y de alcance; vi) necesita coordinación. \" Kristjanson y colegas (2009) aplicaron este marco de innovación a proyectos de investigación pecuaria en África Resumen: La actual crisis alimentaria ha reinstalado la agricultura y la seguridad alimentaria en las agendas nacionales y de desarrollo. Se han movilizado recursos internacionales adicionales, se han reforzado las iniciativas nacionales y regionales y se han propuesto una serie de instrumentos y enfoques nuevos e innovadores. La mayoría de estos esfuerzos requieren de mayor inversión en la generación de conocimientos, el acceso a información y el uso más amplio de tecnologías de información y comunicación (TIC).Este artículo explora lo que este renovado interés podría implicar para los especialistas en información y comunicación agraria. Partiendo de la base de una perspectiva de \"sistemas de innovación\", se destacan algunas oportunidades promisorias para los especialistas en información y comunicación. Estas incluyen: aprovechar los conocimientos de los agricultores, emplear tecnologías de la información y comunicación (TIC) para fomentar actividades de desarrollo agrícola, asegurar que las inversiones públicas generen bienes públicos cuyos beneficios puedan desplazarse, permitiendo que los contenidos agrícolas sean abiertos y accesibles, aprovechado el poder de la web 'social' y transformando el papel de las bibliotecas y centros de información.Abstract: e recent food crisis has pushed agriculture and food security back on to national and development agenda's. Additional international funds have been mobilized, national and regional initiatives have been strengthened, and a wide range of new and innovative instruments and approaches have been promised. Most of these efforts call for greater investment in knowledge creation, information access, and the wider use of information and communication technologies (ICTs). Agricultural Information Worldwide -3 : 1 -2010 y Asia. La conclusión a la que llegaron fue que 'la vinculación del conocimiento con la acción' puede reforzarse si responde a siete principios, entre ellos: \"combinando distintos tipos de conocimiento, aprendiendo y conectando enfoques, a través de asociaciones sólidas y heterogéneas que aseguren igualdad de condiciones y fortaleciendo las capacidades para la innovación y la comunicación. \" ¿Qué implica esto para la gestión de la información y comunicación agraria? El Consejo de Ciencias de CGIAR (2005) sugiere que \"todos los actores que participan en el proceso de I&D-desde quienes diseñan la investigación hasta quienes aplicarán el resultado de ésta en el campo-deben comunicarse entre ellos y tener acceso equitativo al conocimiento\". Se hace necesario contar con enfoques de intercambio de conocimientos que sean globales y participativos.Estos conocimientos deben ser movilizados desde diversas fuentes. Por ejemplo, no basta con que los institutos de investigación accedan sólo a los informes que estos mismos publican. También deben aprovechar los innumerables flujos de información alternativos, incluidos los agricultores, y encontrar formas para documentar y ofrecer acceso a estos conocimientos. Deben desarrollar productos y servicios de información para públicos más diversos. Deben diseñar mecanismos nuevos, colaborativos e interactivos para compartir e intercambiar información.Han surgido oportunidades en este ámbito para nuevos 'comunicadores' que cuenten con la capacidad técnica para facilitar la colaboración y los procesos interactivos en los que están involucrados los diversos copartícipes, y que permitan a las personas captar y compartir distintos tipos de conocimiento.También han surgido oportunidades para contribuir a la 'innovación generada por el usuario'-donde los conocimientos especializados permitirán que operen los sistemas de innovación.Ann Waters-Bayer (2006) y colegas del proyecto PROLINNOVA sostienen que los agricultores y las comunidades locales son actores clave en los sistemas de innovación agraria -\"el tipo de innovación que a la larga marca la diferencia es el que los agricultores deciden llevar a cabo\". Sin embargo, los investigadores suelen subvalorar los conocimientos ancestrales de los agricultores. Los agricultores y los consultores externos suelen considerar a los agricultores simplemente como \"receptores de tecnologías, información e instrucciones y no como personas que tienen algo que ofrecer\".Por lo tanto, PROLINNOVA promueve el desarrollo de la innovación de manera participativa con los agricultores, fomentando la 'experimentación dirigida por agricultores' y la integración de las comunidades campesinas a los procesos de innovación. La idea es fomentar el intercambio de información entre los agricultores y otros actores de la innovación, instando a los agricultores a comparar y compartir sus experiencias y a experimentar de forma más crítica. También promueve la 'documentación dirigida por agricultores' a través de la cual las comunidades rurales expresan sus conocimientos, experiencias y prácticas en sus propias palabrasempleando frecuentemente una combinación de medios tradicionales y modernos: texto, dibujos, fotografías, grabaciones en video y audio.1Hay varias iniciativas como esta: Bioversity Interna-tional2 trabaja con comunidades locales para documentar sus conocimientos tradicionales, en tanto IFAD y la FAO apoyan el proyecto 'Linking Local Learners'3 en África del Este donde grupos de agricultores aprenden juntos, intercambian sus conocimientos o 'know-how' y organizan sus propias redes de conocimientos e intercambio. La comunidad de TIC para el desarrollo aborda estos asuntos desde la perspectiva de la oferta de 'contenido local' en la Internet. 4 Un aspecto muy interesante es la experimentación que se está llevando a cabo empleando distintos formatos de intercambio de conocimientos, desde dibujos hasta la Internet, y desde bases de datos hasta videos participativos. 5 Surge una oportunidad aquí para que los especialistas en información exploren mecanismos que permitan conectar sus actividades a los sistemas de conocimientos rurales y campesinos actuales. ¿Cómo podemos facilitar el intercambio autónomo entre ellos? ¿Cómo podemos ayudar a incorporarlos a las ciencias y desarrollo agrícolas convencionales?También necesitamos reconocer que valorar los conocimientos de los agricultores plantea un tremendo desafío para los 'expertos' en investigación y extensión tradicionales y para los profesionales de la información. Quizás nos corresponde cumplir la función de catalizadores de la comunicación e intercambio de conocimientos entre los agricultores y otros grupos, más que llevar la tecnología y conocimientos modernos a comunidades subdesarrolladas.Estamos presenciando una transformación en la forma en que las comunidades rurales interactúan con la información, las TIC, los teléfonos móviles y la prestación de servicios. Mantenerse al tanto de todos los avances constituye un enorme desafío. 6 Uno de los principales impulsores del cambio ha sido el uso cada vez mayor de las tecnologías de la información y comunicación (TIC)-incluidos los teléfonos móviles-para conectar a los agricultores y productores con los mercados y crédito, así como los servicios gubernamentales. Los agricultores ahora pueden recibir información oportuna sobre mercados, precios y el tiempo, así como asesoría técnica; estos servicios frecuentemente disponen de expertos para responder las consultas. 7 Los agricultores, los investigadores y los extensionistas se están vinculando a través de diversos sistemas y portales basados en las TIC.En 2006, los especialistas en información y comunicación agraria realizaron una reunión en línea (www. dgroups.org/groups/inars) para explorar las distintas dimensiones de esta revolución, intercambiando experiencias sobre \"gestión e intercambio de conocimientos agrícolas\" Los siguientes son algunos de los puntos centrales que se trataron: ■ 'La comunicación común' es tan importante como el 'intercambio de conocimientos' más sofisticado. Los teléfonos móviles son ampliamente utilizados porque satisfacen necesidades comunes de comunicación. ■ Los proveedores de servicio local y los operadores de telecentros cumplen una función importante como intermediarios de las comunicaciones entre las comunidades rurales y los proveedores de información. Los sistemas de extensión también deben transformarse si han de hacer un uso efectivo de las nuevas TIC. ■ La Internet no reemplaza las fuentes tradicionales de información para los agricultores. Los mejores resultados se producen si se combinan diversos medios como, por ejemplo, teléfonos, radio, televisión, kioscos de información interactiva, computadores, cámaras de video y digitales y a través de la Internet, la Web y los servicios de correo electrónico. ■ Los agricultores tienen necesidades de información y comunicación que van más allá de lo que dice relación con la agricultura. Necesitamos abordar de manera holística la necesidad de las comunidades rurales de intercambiar y compartir información. ■ Para emplear las TIC de manera eficaz en apoyo a los agricultores y las comunidades rurales, el primer paso es empoderar a las comunidades agrarias para que ellas mismas definan sus propias necesidades. Emplear las TIC en la \"interfaz\", es decir, el punto de contacto entre los agricultores, la extensión y la investigación, es uno de los ámbitos en los cuales se observa mucha experimentación e innovación.Francisco Proenza8 ha reunido varios informes y material interesantes sobre proyectos que se han llevado a cabo en Latinoamérica y Asia. Por ejemplo, el proyecto VERCON en Egipto9 emplea la Internet para reforzar los vínculos investigación-extensión a fin de optimizar los servicios de asesoría agrícola. La Open Academy for Philippine Agriculture ha creado la Pinoy Farmers' Internet, 10 el primer sistema de apoyo a la extensión del país basado en la Internet. También se está desarrollando algo similar en los EEUU11 a través de la National Extension Initiative que está creando un entorno de aprendizaje interactivo que ofrecerá conocimientos y \"conectará a los consumidores de conocimiento con los proveedores de conocimiento\".Otra área promisoria vincula el uso de TIC con la disponibilidad de servicios crediticios y financieros en las comunidades rurales. En las Filipinas, el proveedor de e-commerce (comercio electrónico) b2bpricenow.com12 desarrolló el 'programa de e-commerce para agricultores' que comprende un e-marketplace (mercado electrónico) donde se pueden comprar y vender commodities agrícolas en línea, centros locales en zonas rurales de 'b2b' ('business to business' o negocio a negocio) y comercio móvil para ayudar a las cooperativas y agricultores a realizar transacciones monetarias. En la India, un proyecto conocido como 'Lifelong Learning for Farmers'13 reúne asociaciones comunitarias en aldeas rurales, los operadores de \"kioscos\" de TIC, una empresa de TI, universidades agrícolas y el Banco del Estado de India. El proyecto combina el acceso a la información, el aprendizaje y las oportunidades de crédito con miras a mejorar las condiciones de vida a nivel local, fortaleciendo capacidades (conocimientos y aptitudes), ofreciendo créditos blandos y generando empleo.Países como India están experimentando a gran escala con telecentros rurales que ofrecen una amplia gama de servicios, tanto gubernamentales como del sector privado. En África y América Latina también han surgido movimientos activos de telecentros. 14 Uno de los ámbitos en expansión es el aprovechamiento de las TIC para mejorar los mercados agrícolas, los sistemas de comercialización y el intercambio de commodities. 15 Ofrecer información, particularmente de precios, a los agricultores los empodera en su capacidad de tomar decisiones más efectivas-y obtener mayores ingresos por sus productos.Hemos visto un interés masivo y mayores inversiones en la telefonía móvil en 2008 y 2009 para apoyar a los agricultores con información.Mantenerse al tanto de todos estos avances plantea un gran desafío, sin embargo, han abierto una serie de oportunidades inéditas para los especialistas en información. En particular, existe un campo de aplicación para nuestra información y contenidos (que seguramente tendrán que ser adaptados) para acceder a nuevos mercados y clientes. Surgirán nuevos servicios basados en distintos tipos de contenidos y portadores de tecnología. Dado que, como sabemos, la información no fluye por sí sola, están surgiendo nuevos roles como catalizadores, facilitadores e intermediarios de información y conocimientos. Los innovadores y los empresarios en estos proyectos suelen contar con conocimientos tecnológicos y empresariales, pero existe una gran necesidad de contar con personas con capacidades técnicas para acceder a, organizar y empaquetar contenidos de todo tipo.El carácter de 'bien público' aplicado a la investigación, y los pasos necesarios para que efectivamente sea considerada como tal, ha estado al centro del debate mundial. Este debate respecto del posicionamiento de la investigación frente a otras actividades de desarrollo también es importante para la agenda de información y comunicación. 16Los institutos de investigación tradicionalmente producen una diversidad de 'bienes' , especialmente nuevos conocimientos y tecnologías para ser usados por otros. Dependiendo de quién patrocina y cómo se diseña la investigación, estos productos podrían o no ser considerados un 'bien público'-en el sentido de que el producto es 'no excluyente'17 (si se ofrece a una persona, se ofrece a todos) y 'no rival' (el consumo del bien por parte de una persona no afecta al consumo de los demás).El CGIAR ha participado activamente en este debate. 18 Un documento publicado recientemente (CGIAR, 2006) plantea las razones detrás de la necesidad de que el CGIAR aborde la cuestión de los bienes públicos mundiales, que Ryan (2006) ha definido de la siguiente manera:Se consideran bienes públicos mundiales los conocimientos y tecnologías generados a partir de la investigación estratégica y aplicada, que sean aplicables y se encuentran fácilmente disponibles mundialmente, para abordar cuestiones y desafíos genéricos en consonancia con las metas de CGIAR.La clave está en la aplicabilidad y accesibilidad mundial como aspectos esenciales del conocimiento público y los productos tecnológicos. En el mismo informe, Pardey sostiene que \"gran parte de los resultados de las investigaciones no son intrínsecamente públicos\". Estos \"pueden llegar a ser más o menos públicos (o no) a través de políticas y acciones prácticas\" (CGIAR, 2006).Este último punto es sumamente importante. Sugiere que la información y el conocimiento no son intrínsecamente 'públicos' . Es necesario adaptarlos para que lo sean, es decir, hacer que estén disponibles y que sean accesibles y aplicables.Por lo tanto, la forma en que se accede al resultado de una investigación nos permite determinar si se convertirá en un bien público. Un ejemplo clásico serían aquellos resultados de investigaciones públicas que son difundi dos a través de revistas científicas de acceso restringido que excluyen a algunos usuarios, o resultados que sólo están disponibles a través de sitios web a los que no tienen acceso quienes no cuentan con una conexión de banda ancha. Esta lógica también se ve reflejada en los resultados que se encuentran disponibles en un solo idioma, están escritos en un lenguaje 'científico' o están publicados con propiedad exclusiva o licencias restringidas de propiedad intelectual. Todo esto producto de decisiones que tomamos o estamos obligados a tomar. Independiente de lo que dicten las políticas, estas decisiones prácticas determinarán si un bien es o no es un bien público.Para hacer públicos los datos, la información y el conocimiento, tenemos que gestionarlos para que sean creados e ingresados a depósitos en formatos y sistemas que permitan el acceso perpetuo; estén licenciados para permitir y fomentar su uso masivo, contengan descrip-tores y estén indexados para facilitar su búsqueda y difusión, y hayan sido optimizados para fomentar su utilización masiva.Estas son tareas que la mayoría de los especialistas en información ya realizamos. Ahora tenemos la oportunidad de posicionarlas al centro del debate en torno a las políticas a adoptarse en el ámbito de las ciencias y la investigación agraria. Podemos mostrarle a un científico o a un investigador exactamente cómo su trabajo puede convertirse en un bien púbico… ¡invirtiendo en nuestra labor! En 2008, surgió una nueva iniciativa para abordar estos desafíos-Coherencia en la Información para la Investigación Agraria para el Desarrollo (CIARD, por su sigla en inglés). 19 Este grupo multiagencial, creado con el apoyo de la FAO, ha suscrito un Manifiesto en el que se comprometen a: \"Hacer que la información y conocimientos de la investigación agraria de dominio público sean verdaderamente accesibles a todos\". Este grupo está abocado a desarrollar un conjunto de 'vías' que puedan aprovechar tanto individuos como organizaciones para ofrecer mayor acceso a la información que poseen.Uno de los aspectos fundamentales de la perspectiva de los sistemas de innovación es que son muchos los actores involucrados. Por ende, son muchas las fuentes, tipos y formas de conocimiento e información que deben circular, ser comunicados y agregados para ir en apoyo de un 'estilo nuevo' de investigación agrícola e innovación para el desarrollo.En la Internet se observan tendencias similares. Diez a quince años atrás, pocas organizaciones contaban con un sitio web. Sus bibliotecas almacenaban colecciones de documentos impresos indexados en catálogos electrónicos. Los investigadores, los responsables de formular las políticas y los profesionales se comunicaban por carta, fax y, quizás, por correo electrónico, y a veces se encontraban 'cara a cara' . El 'contenido' estaba basado principalmente en texto y se compartía a través de informes escritos, comunicados de prensa y boletines informativos. Producir, publicar y difundir contenidos era caro, y lo que se cobraba generalmente era para cubrir los costos. Las comunidades se comunicaban a través de redes y asociaciones que ofrecían espacios de encuentro bien definidos (conferencias) y mecanismos de intercambio (boletines y revistas).Hoy, esta información circula de otra manera. Los acervos de información, tanto en formato electrónico como impresos, aún existen. También contamos con acceso en línea a bibliotecas y otras bases de datos, y muchos organismos publican informes y documentos en texto completo en sus sitios web, sin costo para los usuarios. Las comunidades se han convertido en redes y comunidades virtuales. Cada día son más las personas que tienen a lo menos una cuenta de correo electrónico, toda organización tiene su sitio web y publica contenidos digitales en diversos formatos-audio, video y texto. Técnicamente se está haciendo cada vez más fácil para una organización, grupo o individuo publicar y difundir contenidos digitales.También hemos visto cómo se ha ido extendiendo el uso de los medios sociales o aplicaciones 'Web 2.0' como los blogs, las Wikis, las fuentes de contenido RSS y las redes sociales. 20 Tal como ocurre con los sistemas de innovación, esta Web 2.0 'social' ofrece una gama de oportunidades para el intercambio participativo de conocimientos, donde el conocimiento es obtenido de diversas personas. La Web social puede actuar como catalizador de la interacción entre las personas y el intercambio fructífero de conocimientos y la comunicación.Se han producido cambios de gran magnitud. Están surgiendo los blogs, 21 las organizaciones están ofreciendo contenidos a través de fuentes de contenido RSS22-y un número cada vez mayor de éstas están publicando fuentes de contenido de organismos asociados en sus propios sitios web. 23 También vemos cómo han surgido enfoques completamente nuevos impulsados por estos nuevos medios: en los EEUU y Filipinas, la 'e-extension', o extensión digital, conecta a los agricultores con las ciencias y la asesoría. 24 ¿Qué implica esto para los especialistas en información agraria? Estos medios indudablemente abren muchas oportunidades. Pueden ayudar tanto a transmitir mensajes como a recibirlos, refuerzan nuestra base de conocimientos, agilizan la comunicación y la propagación de ideas, pueden emplearse dentro de la organización para reforzar el intercambio de conocimientos e información, y pueden ser una buena forma de trabajo colectivo. También pueden ser exigentes, difíciles de 'controlar' y requieren del aprendizaje de un nuevo conjunto de herramientas y una predisposición mental distinta.Charlie Leadbeater (2008) en su libro publicado recientemente, resume muy bien estos cambios: La expansión de la Web nos invita a vislumbrar el futuro desde otro punto de vista, para comprender que lo que compartimos es tan importante como lo que poseemos; lo que tenemos en común es tan importante como lo que nos reservamos para nosotros mismos; que lo que optamos por regalar podría valer tanto o más que lo que cobramos. En la economía de las cosas, te identificas por lo que posees: tus tierras, tu casa, tu auto. En la economía de las ideas que la Web está generando, eres lo que compartes… El mayor cambio que provocará la Web en nosotros es que nos permitirá compartir con los demás de manera distinta y, particularmente, compartir ideas.Oportunidad 6: Reconsiderar la función futura de las bibliotecas ¿Qué implican algunos de estos avances para los profesionales en gestión de información tradicionales como las bibliotecas? En enero de 2009, se realizó un encuentro sobre el futuro de las bibliotecas agrícolas en el evento 'Knowledge Share Fair for Agricultural Development and Food Security' (Feria 'compartiendo conocimientos para el desarrollo agrícola y la seguridad alimentaria'). Los participantes evaluaron el futuro papel y el valor agregado de las bibliotecas agrícolas. 35 Algunos de los puntos centrales que se abordaron fueron los siguientes: ■ Las bibliotecas a futuro asumirán funciones más amplias. Cumplirán un papel más activo en la apertura del acceso a la información y el conocimiento, en la difusión -no sólo la recopilación y documentaciónde bienes globales, convirtiéndose en catalizadores del intercambio de conocimientos entre las personas, ofreciendo plataformas integradas para la gestión de la información y el conocimiento y proporcionando una gama de servicios y productos focalizados. ■ Las bibliotecas a futuro se irán convirtiendo cada vez más en 'e-libraries' o bibliotecas digitales, ofreciendo acceso al conocimiento actual y de archivo en una amplia gama de formatos digitales. ■ Las bibliotecas a futuro se irán convirtiendo cada vez más en lugares de intercambio e interacción y administrarán y facilitarán procesos de organización y de difusión y colaboración. ■ Las bibliotecas a futuro formarán parte de sistemas más amplios de información e intercambio de conocimientos en los cuales los 'usuarios' se convertirán cada vez más en 'colaboradores' y los bibliotecarios en catalizadores e intermediarios del intercambio de conocimientos. Estos cambios probablemente obligarán a cambiar considerablemente la orientación de los centros de información tradicionales-alejándose de sus habituales actividades de 'recopilación' para asumir otras más relacionadas con la 'conexión' . Estas bibliotecas tendrán que incorporar las capacidades de gestión de conocimientos, medios sociales, comunicación participativa y tecnologías de la información a su actual enfoque central en contenidos agrícolas.Así como en los sistemas de innovación, este artículo es un compendio personal de los ámbitos en los cuales existirían oportunidades para los gestores de información y comunicación agrícola.La selección de temas refleja los cambios que he observado en el 'negocio' de la información y comunicación agraria-a medida que se van incorporando nuevos actores y las tecnologías van transformando los procesos, productos, servicios y expectativas. El escenario de 'business as usual' seguramente será la excepción y no la norma.La gestión de la información y el conocimiento agrícola inicialmente era bastante lineal y sus procesos eran administrados por especialistas. Lo que se coseche a futuro brotará de enfoques más orgánicos en los cuales los innovadores agrícolas se unirán a nosotros como creadores y gestores activos de información y conocimientos, y los gestores de la información se convertirán en innovadores e intermediarios. Esta 'infovación' ya se está dando a nuestro alrededor: los investigadores se han convertido en 'bloggers', los científicos publican sitios web, los agricultores crean redes de aprendizaje, los extensionistas construyen \"Wikis\" y los bibliotecarios se han convertido en cineastas. Nosotros podemos ubicarnos al centro de estos avances, creando nuevas oportunidades y compartiéndolas con nuestros colegas.Una de las vías que he encontrado para explorar y aprovechar dichas oportunidades es a través de la agrupación profesional. Grupos como IAALD ofrecen espacios y redes para encuentro, conectarse, intercambiar experiencias y especialmente para descubrir los beneficios que nos brindan estas oportunidades. Estos constituyen la oportunidad número 7.","tokenCount":"3927"} \ No newline at end of file diff --git a/data/part_3/4723008772.json b/data/part_3/4723008772.json new file mode 100644 index 0000000000000000000000000000000000000000..818f1c16a60288dba4d5e0e3cead8460f9aae71e --- /dev/null +++ b/data/part_3/4723008772.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"966f7b76391340c7136d0244731410e4","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/42445c85-acdc-4f55-8bed-ab38aec092ed/retrieve","id":"632262111"},"keywords":[],"sieverID":"c1e9f68e-6026-4595-ba14-3d36e57e72e4","pagecount":"3","content":"Regional integrated agricultural development project in the great lakes (PRDAIGL) ILRI PROJECT PROFILE Improving productivity and marketing of milk and dairy products in Burundi Livestock contributes about 14% of Burundi's national GDP and 29% of agricultural gross domestic product. However, livestock productivity is low due to factors such as small landholdings, low productivity of indigenous livestock breeds and unavailability of forages.The regional integrated agricultural development in the great lakes (PRDAIGL) project has been working to improve dairy production and productivity in Burundi's Cibitoke, Bubanza, Bujumbura, Rumonge, and Makamba provinces. The project has been facilitating access to modern animal husbandry practices, strengthening Burundi's capacity for disease surveillance and control, accelerating genetic improvement through artificial insemination, improving animal nutrition through improved forage varieties, and building the capacities of government institutions.Project duration: Nov 2020 -Dec 2022 Objectives ","tokenCount":"134"} \ No newline at end of file diff --git a/data/part_3/4733334661.json b/data/part_3/4733334661.json new file mode 100644 index 0000000000000000000000000000000000000000..5e52a7b6d8de743a0ce21c8837ff63d9ab18b5d9 --- /dev/null +++ b/data/part_3/4733334661.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"becb6250ea27b6e29a79531606f15e26","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/206ede0b-5d1e-4abb-aac1-a0b7e0b65eb9/retrieve","id":"290229177"},"keywords":[],"sieverID":"d864fbb1-506a-467a-a502-29299dfb7242","pagecount":"45","content":"AFRICA RISING -Enhancing partnership among Africa RISING, NAFAKA, and TUBORESHE CHAKULA Programs for fast tracking delivery and scaling of agricultural technologies in Tanzania.1.1 Executive summaryThe Africa RISING-NAFAKA partnership project focuses on the delivery and scaling of promising interventions that enhance agricultural productivity in Tanzania. The key interventions are the promotion of climate-smart agricultural innovations, dissemination of best-bet crop management packages, rehabilitation and protection of natural resources, and reduction of food waste and spoilage. The project focus is on three crop enterprises-maize, rice, and legumes (common bean, chickpea, cowpea, and green gram)-with nutrition and postharvest handling as cross-cutting themes. The key partners in the project include one USAID-funded project under the Global Food Security Strategy (GFSS) Initiative in Tanzania-CMSD/NAFAKA, Tanzania Agricultural Research Institute (Dakawa, Hombolo, and Uyole Centers), district councils, the International Center for Tropical Agriculture (CIAT) as well as the private sector (seed companies, millers, and processors), and non-governmental organizations (NGOs). During the current quarter, project activities were implemented in eight districts in the regions of Iringa, Manyara, Mbeya, Morogoro, Njombe, and Songwe, all in the GFSS Zone of Influence (ZoI).Seven activities were implemented in the current quarter: (i) The maize/legumes team developed training materials (manuals and facilitator guides) focusing on soil and water management, and maize and common bean production; (ii) training of 19 community members (extension/VBAAs) on utilization and processing of soybean (11 male, 8 female) in Kilolo District and 41 quality declared seed (QDS) producers on production principles (26 male, 15 female) from Mbozi and Mufindi Districts; (iii) participation in national agricultural shows (nane nane) in Mbeya, with 507 visitors hosted (381 male, 126 female); (iv) certification of QDS seeds produced was provided by the Tanzania Official Seed Certification Institute (TOSCI) for a total of 186 t for rice produced by 107 growers and 19 t for common beans (56 growers); (v) yield data were collected and analyzed with advantages shown in respect of the technologies promoted: improved varieties of rice (TXD306 and Komboka) yielded 7.1-7.9 t/ha with use of fertilizers and good agricultural practices (GAPs) as compared with 4.8-5.7 t/ha for local varieties. For salt-affected soils (SAS) the salt-tolerant rice varieties (SATO I and SATO 6) yielded 6.5-9.1 t/ha compared with 3.2-7.3 t/ha for non-tolerant local varieties. For maize, yields in sub-humid areas where farmers were applying fertilizers before project inception, yields varied depending on maize variety from 4.9 to 5.9 t/ha with recommended practices compared with 3.7-5.1 t/ha with farmers' practices. In semi-arid locations, yields of improved varieties with recommended practices (fertilizer use, water management) varied between 3 and 3.8 t/ha compared to 2.4 t/ha for improved varieties but with no other GAPs. Furthermore, a yield difference of about 200 kg/ha was noted at sites treated with lime and with fertilizers applied, compared with sites where only fertilizers were applied; (vi) preparatory activities for the 2018/19 cropping season were conducted including selection of 78 maize/legume demonstration (demo) sites out of the expected 150; (vii). integration of ICTs by developing an application (UKULIMA IQ) which will be pretested in Babati and then launched in the rest of the project's operational areas in Iringa, Mbeya, and Songwe Regions.The key planned activities for the next quarter are: (i) boot camp for all project staff and implementing partners to update their skills in project implementation; (ii) identification of more demo sites and delivery of agroinputs at the identified sites; (iii) refinement of protocols for the various demo sites; and (iv) further processing of the developed documentation products.1. Africa RISING and partners are involved in the delivery of agricultural information and technology packages through a network of projects and other public and private sector actors; these include ACDI/VOCA that leads NAFAKA, the USAID-funded cereals project in Tanzania. These collaborations are aimed at improving efficiency and enhancing disciplinary integration while contributing to the goals of the Global Food Security Strategy (GFSS) of harmonizing regional efforts to fight hunger and poverty in countries with chronic food insecurity and insufficient production of staple crops. Attractive interventions in this project include promotion of climate-smart agricultural innovations, dissemination of GAPs, rehabilitation and protection of natural resources, and postharvest management.The project focuses on three crop enterprises (maize, legumes, and rice) with postharvest handling and nutrition as cross-cutting themes. The key partners in the project include the International Institute of Tropical Agriculture (IITA) as the Lead institution, the International Center for Tropical Agriculture (CIAT), three institutions of the Tanzania Agricultural Research Institute (TARI)-Dakawa, Uyole, and Hombolo-and one USAID-funded cereal crops project: and NAFAKA (led by ACDI/VOCA). These work in partnership with the district local government institutions, specifically DAICOs, the private sector (seed companies, millers, and processors), and NGOs to deliver on the following objectives: 1. Introduce and promote improved and resilient varieties of food crops to farm households in a manner that complements their ongoing farm enterprises, contributes to sustainable agricultural resource management, and offers nutritional advantages and alternative market channels. 2. Disseminate GAPs along with the most promising new crop varieties suited to widely representative agroecological zones and market proximity. 3. Protect land and water resources and foster agricultural biodiversity through the introduction of soil and water management practices. 4. Introduce and promote postharvest management technologies for maize, rice, and legumes to reduce losses and bring quality up to market standards. 5. Offer and expand capacity-building services to members of grassroots farmers' associations, platform partners, and development institutions in the scaling process, paying particular attention to the special opportunities available to women farmers as technical and nutritional innovators and resource managers.The project is currently being implemented in six Regions in Tanzania; Manyara, Njombe, Morogoro, Iringa, Mbeya, and Songwe, all in the GFSS ZoI (Fig. 1). 2.2 Implementation status and planned activitiesThe maize/legumes team consisting of staff from IITA, TARI Hombolo, TARI Uyole, and ACDI/VOCA (NAFAKA) met in Morogoro from 28 to 29 August, 2018 for a write shop aimed at developing training materials. These materials will be used by project implementers for future activities. During the write shop, six sets of draft training materials were developed and will be further processed and made ready for use by the beginning of the 2018/19 season. Development of these materials drew from the expertise and experiences of the institutions participating in project implementation as well as the available literature. The materials included the following:• Maize production manual and facilitator guide • Common bean production manual and facilitator guide • Soil and water management manual and facilitator guideTwo categories of training activities were conducted. Forty-one QDS bean growers in Mbozi and Mufindi Districts were trained on principles of seed production, field inspection of the crops, and seed registration/certification processes. Participants were 21 from Mbozi District (15 male, six female) and 20 from Mufindi District (11 male, 9 female). The overall goal is to facilitate formation of QDS producers' associations which will be in position to provide access to services, such as inspection from TOSCI, and market the seeds as part of the sustainability strategy of the project.The other training activity was for 19 community members (11 male, 8 female) drawn from among village-based advisors and extension staff in 10 villages in Kilolo District on soybean processing and utilization. The objective of the training was to impart knowledge and improve service providers with skills and confidence in the preparation of nutritious foods from soybean, and advocate for the improvement and diversification of nutritious family feeding through exhibition of participatory food preparation. Other objectives were to pilot-test the appropriateness of various soybean recipes and evaluate the local perception and acceptability of selected soybean-enriched products. The training covered the following aspects:• Introduction to family and community nutrition Major nutrients and their sources; roles of common nutrients in the body; food groups and how to plan balanced meals using locally available foods; soybean and the importance of the crop in human nutrition.Participants were trained on how to plan a balanced diet for families with different incomes using locally available foods. The exercise demonstrated that even with meager resounces, most families can eat a balanced meals using foods available at the household level if they are equiped with the information and skills on how to plan a balanced meal.Nineteen recipes were demonstrated (Table 1). During the week of 1-8 August 2018, Africa RISING-NAFAKA co-participated with other USAID IPs in Mbeya Region to showcase innovations that can improve livelihoods and contribute to national development. A total of 507 participants interacted with the technologies in Mbeya, including 38 Government officials and 65 private sector/NGO actors. The female visitors accounted for 24.7% of the attendance.The following technologies were exhibited.• Maize shellers of different capacities ranging from 0.5 to 3.5 t/ha) Working in collaboration with TOSCI, staff of this project and the NAFAKA project successfully processed approval and certification of 205 t of QDS seeds produced during the current year for sale and planting next season. These amounts were produced by 163 growers (107 VBAAs for rice QDS and 56 growers (some are not VBAAs) for beans). Table 2 shows the production levels of common beans and Table 3 shows the rice produced in each of the districts. Data on the effect of five technology packages were collected from the mother demos. For rice, the package consisting of use of improved varieties, fertilizers, and other GAPs indicated that, as for previous years, improved varieties led to higher yields than local varieties with or without fertilizers and other GAPs. With prilled urea (PU), Urea super granules (USG), and other GAPs, the average yield of improved varieties across sites ranged between 7.1 and 7.9 t/ha compared with the yield for the local varieties from 4.8 to 5.7 t/ha (Fig. 2). With other GAPs only (i.e. without fertilizers) improved varieties yielded 4.5 -4.6 t/ha while local varieties yielded 3.5 t/ha. The second package for rice was management of salt affected soils (SAS) whereby salt tolerant (SATO) varieties are being promoted together with GAPs.Results indicated higher yields from the SATO varieties (6.5 -9.1 t/ha) compared with nontolerant local varieties (3.2 -7.3 t/ha) with or without GAPs (Fig. 3). The results once again prove that rice farmers could increase productivity by adopting the improved varieties and the accompanying GAPs. For maize, the first technological package was on optimizing fertilizer use on different varieties.In Mbozi and Kilolo where most farmers were already using fertilizers at project inception, the demo was on optimizing the use of YARA ® fertilizers on different maize varieties in three splits (recommended practice) as opposed to applying fertilizer in two splits (farmer practice). Data from the demos showed an increase in yield of between 500 and 1200 kg/ha depending on the maize variety (Table 4) with the recommended fertilizer application. There were, however, huge variations in yield among sites, largely due to the soil fertility status and the way in which demos were managed (time of planting, timing of weeding and pest control). Overall, the recommended practices led to higher yields. It should be noted however, that the yields between the two practices were confounded by the damage caused by the fall armyworm.The first component of the second maize-based technology package was on integration of soil fertility management options with tillage methods in semi-arid locations of Iringa rural and Wanging'ombe districts. These included application of diammonium phosphate (DAP) fertilizer at planting stage based on a P application rate of 20 kg/ha top dressed with urea at 40 kg N/ha; use of farm yard manure (FYM) at 5 t/ha top dressed with half rate of N at 20 kg/ha; use of tied ridging to conserve soil water or flat cultivation) and a combinations of the tillage methods and soil fertility management. The yield advantage obtained from optimum use of mineral fertilizers ranged between 25.5 and 49% over conventional farmer practices i.e. flat cultivation without use of fertilizers (Figure 4). Interestingly, use of tied-ridging alone without fertilizers gave 25.5% yield advantage over conventional farmer practices (i.e. FC). The effect of tillage did not feature out as expected because of heavy rains received in March which led to excess water ponding which in turn was reflected in poor performance of tied ridging technology.*FC = Flat cultivation/conventional farmers practice's; TR = Tied ridging tillage method. The second component of the second technology package was for sub-humid areas of Kilolo, Mufindi and Iringa rural districts. By the end of this quarter, harvesting had only been completed in Kilolo district. Accordingly, flat cultivation (FC) in combination with 5 t/ha of FYM applied in combination with 10 kg P/ha and 20 kg N/ha registered the highest yields (Figure 5). Although there were no significant statistical differences among treatments, the importance of conserving water with tied ridges was noted when a full dose of inorganic fertilizers was used. Moreover, the benefit of combined use of organic and mineral fertilizers were clearly demonstrated. It was also clearly shown that application of moderate's rates of FYM 5 t/ha, which is within reach of most livestock keepers, can cut down by half the cost of mineral fertilizers and achieve same yields as obtained by applying full rates of recommended P and N fertilizers.The third technology package for maize focused on the effect of lime application. Farmers in some of the project locations had complained about the low yields below the potential of the maize varieties despite their use of all the GAPs, and the cause was traced to the acidity of soils. Demonstration on the importance of liming to increase fertilizer use efficiency were tested in fields with acidic soils in Kilolo District. Lime was applied in combination with two common fertilizer application regimes: (i) YARA® Mira Cereal (NPKSMgZ) (23:10:5:3:2:0.3) applied in three equal splits (at planting, 3 weeks after emergence, and finally at tasselling; and (ii) DAP at planting top dressed with urea 3 weeks after emergence.Although application of lime and fertilizers had no significant effect on maize grain yield during 2017/2018 cropping season, the treatments with lime exhibited slightly higher yields compared with treatments without lime (Fig. 6). From the literature, the effects of lime are not instant, and we plan to continue with this lime technology for the next two seasons at the same demo sites. Nevertheless, the results for the first season are promising. During the current quarter, some preparations for the next (2018/19) cropping season were made. These included confirmation and selection of the sites for demo plots since farmers and extension staff had complained in the past that if we make contacts late in the year after farm space has been allocated to other activities, we risk getting poor sites. To this end, 78 demo sites out of the expected minimum of 150 for maize/legume activities were identified in six districts as indicated in Table 5. This exercise will continue during the first half of the next quarter in addition to other preparatory activities. The rice team also finalized harvesting of 6 t of rice-3 t each of TXD306 and Komboka varieties which were planted at the TARI Dakawa Center with project resources. The seeds will be further processed for subsequent official testing and certification by TOSCI after which they will be distributed to QDS producers and other stakeholders that will be engaged in the project activities during the 2018/19 cropping season. Other preparations which will flow into the first weeks of the next quarter include further preparation of yield data and drafting of training documentation into items that will be used for feedback meetings with beneficiaries and extension staff, as well as confirmation of orders for procurement and delivery of agroinputs from our private sector partners for the next season.As part of the efforts to increase access to information on agronomy, climate services (weather information), and markets, we developed prototype apps that were tested with farmers in Babati District where Africa RISING is operational. About 30,000 project beneficiaries (farmers and extension staff) in the Africa RISING-NAFAKA database located in Mbeya, Iringa, and Songwe Regions will be linked to these information sources as part of scaling-up efforts. The app, UKULIMA IQ, can be accessed at the link below, and will provide opportunities for both written and audio-visual services: https://play.google.com/store/apps/details?id=com.pondipb.pondibrian.ukulimaiq&rdid=com.p ondipb.pondibrian.ukulimaiq Photo 9. Screen shots of the Ukulima IQ App.We also engaged with existing actors in ICTs for agriculture in Tanzania, and these are elaborated in section 3.5 on sustainability.Damage to the rice-legume sequential cropping/QDS fields by roaming livestock. We plan to engage with local leaders and extension staff to enforce by-laws that will ensure protection of the fields.The key planned activities for the next quarter include the following: i. On the advice of the project AOR during the second quarter of the current year, a boot camp for all project staff and implementing partners was suggested to update their skills in project implementation. This will be effected during the next quarter. ii. Identification of more demo sites for the 2018/19 cropping season and delivery of agro-inputs at the identified sites. iii. Refinement of protocols for the various demo sites and establishing the sites in districts with favorable planting conditions. iv. Further processing of the developed documentation products and sharing of them during feedback meetings that will also take place next quarter.The AR-NAFAKA project approach emphasizes gender consideration at all levels of project implementation. In the process of building capacities of farmers, both males and females were trained, considering different gender groups, i.e., adult males and females and the youth (of both sexes). Both male and female members have equal opportunities in the groups and efforts are being made to increase the number of females taking part as male participants constitute about 70% of project participants. For instance, community nutrition training conducted during the reporting period was characterized by a fairly balanced participation of men (58%) and women (42%). There is still need to consider some measures to improve women's participation in future trainings because they are the primary care providers in households.Youth involvement is a key aspect of the project interventions. The youth are equally encouraged to participate in all activities. During the reporting period, about 40% of project participants have been young adults under 35 years of age. The youth are also engaged as service providers for the application of agrochemicals and as artisans for postharvest technologies and QDS production.As in past years, the project continues to work with Government agricultural extension staff at district and village levels. In addition, collaboration by Africa RISING and NAFAKA continues in supporting and training VBAAs who not only complement extension staff trainings but also play a key role as frontline actors in the rural agro-input dealer network. Furthermore, the project works with farmers' groups and associations whose capacities are developed in GAPs and related technical areas.The NAFAKA field staff coordinate the Africa RISING-NAFAKA partnership project activities supported by Africa RISING in all the project districts (except Babati). In addition, we have successfully sought collaboration with the private sector (Syngenta, Seed Co, Meru Agro, Tanzania Fertilizer Association, and BASF) to support demo sites in all project districts. The companies provided both inputs and technical support, and actively participated in organizing and implementing the field days. In addition, the preparation and delivery of the nutritional training included contributions from the Center for Counseling, Nutrition, and Health Care (COUNSENUTH).The close collaboration with the district agricultural extension services and private sector actors aims at linking the farmers to partners and development initiatives that will provide support beyond the life of the project. In collaboration with the NAFAKA project, the team works with VBAAs and selected Lead Farmers who manage demo plots, provide access to inputs, and produce QDS for legumes and rice to sustain the availability of varieties being taken to scale. Furthermore, the project team plans to continue linking local input and other service providers (e.g., machinery, crop insurance) with farmers and local extension staff to ensure the technologies continue to be accessible after the project ends. For ICT services, there are exploratory engagements with different private sector partners, namely ESOKO and Andre and Ross, towards improving the platform, as well as closely working with TARI Uyole which already has a running ICT-platform for agriculture; this is led by CABI and Farm Radio International (FRI) through the project Upscaling Technologies in Agriculture through Knowledge Extension (UPTAKE).In accordance with the project PERSUAP and other guidelines, the team emphasizes the judicious use of agro-inputs by promoting integrated soil fertility management without damaging the natural resource base. In semi-arid locations we encourage farmers to use improved in-situ water conservation technologies, such as tied ridges. Management technologies for soils on steep slopes or those affected by acidity or high salinity and calcium content underlie the approach used in this project. Given the increase in problems of water availability for production, we emphasize the importance of using organic manure and minimizing the use of water in rice production. This is done, among other methods, by promoting the water-saving technologies such as the AWD technology and in establishing bunds around paddy plots in rice.Since the project is operating in the context of climate change we have embraced scaling of technologies and agricultural practices that enhance resilience to climate variability.The project's activities are in line with the Government's policy of fostering agricultural development. Consequently, the team has received tremendous support from National, Regional, and District and Village Local Governments in all areas where the project activities are implemented.The project works directly with three agro-input/seed companies in Tanzania-Syngenta, Seed Co, and BASF. Their staff have been instrumental in providing guidance on matters related to agro-inputs as well as in participating in the rural agro-input network spearheaded by the NAFAKA project.The demand for the mechanical shellers/threshers and hermetic storage bags is gradually increasing owing to the increase in awareness about the technologies. We established partnership with the Poly Machinery Co. Ltd, based in Dar es Salaam, that can supply mechanical shellers/threshers and provide spare parts and after-sales services to farmers. We also established partnerships with two manufacturers of hermetic storage bags, i.e., A to Z Textile Mills Ltd and PPTL Co. Ltd. The companies have shown interest in continuing to work with farmers and other supply chain actors to strengthen the supply network especially in the rural areas. This will enhance continuity of the use of the technology.Nothing to report this quarter.See sections 3.3 and 3.4.Haroon, the Project Coordinator, relocated to Mbeya NAFAKA office in September 2018 so that he is able to coordinate better with the various partners instead of operating from Morogoro.The PMP indicators are presented in Annex 1. 1. Wash and cut meat and fish into bite-sized pieces.2. Season with sliced onion and ground tomatoes, salt and pepper, and cook for 10 minutes. 3. Meanwhile, wash and cook garden eggs with a little water, blend, and strain. 4. Add enough water to the soup on the fire; cook for 5 minutes. 5. Mix the soy paste with a little water and add to the soup. 6. Add the strained garden eggs to the soup and allow to simmer for 35-40 minutes with seasonings added to taste. 7. Serve with fufu, ugali, boiled rice, boiled yam, etc. Masuala ya msingi ya lisheChakula ni muhimu kwa binadamu wote. Chakula huupatia mwili nishati -lishe na virutubishi mbalimbali kwa ajili ya kufanya kazi mbalimbali. Ili kuwa na hali nzuri ya lishe ni vyema kuzingatia ulaji unaofaa ikiwa ni pamoja na kula mlo kamili. Ulaji unaofaa ni muhimu kwa watu wote bali ni muhimu zaidi kwa wajawazito kwa sababu ya ongezeko la mahitaji ya baadhi ya virutubishi mwilini na kwa watoto wadogo kwa ajili ya ukuaji na maendeleo yao.• Chakula: Ni kitu chochote kinacholiwa na kuupatia mwili virutubishi mbalimbali. Chakula huupatia mwili nguvu, kuulinda na kuukinga dhidi ya maradhi mbalimbali.• Lishe: Ni elimu ya chakula, mlo na namna mwili unavyokitumia chakula kilicholiwa. Inahusisha jinsi mwili unavyosaga, unavyoyeyusha chakula na hatimaye virutubishi kufyonzwa na kutumika mwilini.• Virutubishi: Ni viini vilivyoko kwenye chakula ambavyo vinauwezesha mwili kufanya kazi zake.• Nishati -lishe: Ni nguvu inayopatikana baada ya virutubishi kuvunjwavunjwa. Mwili huitumia kufanya shughuli mbalimbali; mf. kutembea, kupumua.• Kilokalori: Ni kipimo kinachotumika kupima kiasi cha nishati -lishe.• Lehemu: Aina ya mafuta inayopatikana hasa kwenye vyakula vyenye asili ya wanyama na pia hutengenezwa mwilini. Lehemu inayotokana na vyakula vya asili ya wanyama ikizidi mwilini huleta madhara.• Makapi-mlo: Aina ya kabohaidreti ambayo mwili hauwezi kuiyeyusha. Makapi-mlo hupatikana kwa wingi kwenye matunda, mbogamboga na nafaka zisizokobolewa.• Asusa: Ni kiasi kidogo cha chakula ambacho sio mlo kamili, kinachoweza kuliwa bila matayarisho makubwa. Mara nyingi huliwa kati ya mlo mmoja na mwingine.• Utapiamlo: Ni hali ya kupungua au kuzidi kwa baadhi ya virutubishi mwilini ambapo husababisha lishe duni au unene uliozidi.• Mlo kamili: Ni ule ambao hutokana na chakula mchanganyiko kutoka katika makundi yote ya chakula na una virutubishi vyote muhimu kwa ajili ya lishe na afya bora. Mlo huu unapoliwa kwa kiasi cha kutosha kulingana na mahitaji ya mwili angalau mara tatu kwa siku huupatia mwili virutubishi vyote muhimu.• Ulaji unaofaa hutokana na kula chakula mchanganyiko na cha kutosha (mlo kamili) ili kukidhi mahitaji ya mwili. Ulaji unaofaa pia huzingatia matumizi ya kiasi kidogo cha mafuta, chumvi na sukari; pamoja na ulaji wa mbogamboga na matunda kwa wingi na kutumia vyakula vyenye makapimlo kwa wingi. Ulaji unaofaa huchangia katika kudumisha uzito wa mwili unaotakiwa kwa kuzingatia mahitaji ya mwili kutokana na jinsi, umri, hatua za mzunguko wa maisha, kazi au shughuli na hali ya afya.• Hali nzuri ya lishe ni mwili kuwa katika hali nzuri ya afya, ambayo hutokana na kula chakula ambacho kinaupatia mwili nishati-lishe na virutubishi vyote muhimu ambavyo vinahitajika kwa uwiano sahihi, ili uweze kufanya kazi zake kwa ufanisi. Njia mbalimbali hutumika kutathmini hali ya lishe na vipimo vinavyotumika (kama uzito, urefu, haemoglobin, lehemu) hulinganishwa na viwango maalum vilivyowekwa na Shirika la Afya Duniani.• Antioxidants ni viini ambavyo vina uwezo wa kukinga seli za mwili zisiharibiwe na chembechembe haribifu (free radicals) ambazo huweza kusababisha saratani na magonjwa mengine. Viini hivyo huungana na chembechembe hizo haribifu na kuzidhibiti ili zisisababishe madhara. Mifano ya antioxidants ni pamoja na beta-carotene, vitamini C, E, na A Faida za chakula kwa binadamu:• Kutengeneza seli za mwili na kurudishia seli zilizokufa au kuharibika • Ukuaji wa akili na mwili • Kuupa mwili nguvu, joto na uwezo wa kufanya kazi • Kuupa mwili kinga dhidi ya maradhi mbalimbali Faida za kuwa na hali nzuri ya lishe Hali nzuri ya lishe huuwezesha mwili:• Kukua kikamilifu kimwili na kiakili;• Kuwa na nguvu na uwezo wa kufanya kazi kwa ufanisi;• Kuwa na uwezo wa kujilinda na kukabiliana na maradhi na hivyo kuwa na afya nzuri; na • Kuzuia magonjwa sugu yasiyo ya kuambukiza Aina za virutubishi, umuhimu na vyanzo vyake: Vyakula karibu vyote vina virutubishi zaidi ya kimoja ila kwa kiasi tofauti. Vyakula vingine huwa na virutubishi vya aina fulani kwa wingi zaidi kuliko vyakula vingine. Kuna aina kuu tano za virutubishi ambavyo ni kabohaidreti, protini, mafuta, vitamini na madini. Kila kirutubishi kina kazi yake katika mwili wa binadamu na kiasi kinachohitajika hutofautiana.Hiki ni kirutubishi muhimu ambacho huupa mwili nishati kwa ajili ya kazi mbalimbali pamoja na kuupa joto. Kabohaidreti ndio inayochukua sehemu kubwa ya mlo. Kabohaidreti inajumuisha wanga, sukari na makapimlo ambayo ni muhimu katika uyeyushwaji wa chakula. Vyakula vyenye kabohaidreti kwa wingi ni pamoja na mahindi, mchele, uwele, ngano, viazi vya aina zote, muhogo, ndizi, sukari na baadhi ya matunda.Protini ni muhimu kwa ukuaji wa mwili na akili. Protini pia husaidia mwili kutengeneza seli mpya, vichocheo, vimeng'enyo mbalimbali na wakati mwingine protini huupa mwili nishatilishe kwa ajili ya matumizi mbalimbali. Ingawaje protini hupatikana kwenye vyakula vingi baadhi ya vyanzo vizuri vya protini ni pamoja na aina zote za nyama, samaki, vyakula vya jamii ya kunde kama choroko, kunde, maharagwe, soya, karanga, korosho, pia maziwa, mayai, dagaa na wadudu wa aina mbalimbali wanaoliwa kama kumbikumbi na senene.Mafuta huhitajika mwilini kwa ajili ya kuupa mwili nguvu na joto, pamoja na kusaidia ufyonzwaji wa baadhi ya vitamini (A, D, E, K). Mafuta pia hulainisha chakula na kukifanya kiwe na ladha nzuri, na hivyo kumfanya mlaji ale chakula cha kutosha. Mafuta hupatikana kwa wingi kwenye samli, siagi, baadhi ya nyama, baadhi ya samaki, soya, mbegu zitoazo mafuta kama ufuta, korosho, mbegu za maboga, karanga, alizeti, kweme, mawese pamoja na nazi.Vitamini zinahitajika mwilini kwa ajili ya kulinda mwili pamoja na kuufanya mwili ufanye kazi zake vizuri. Vitamini ziko za aina nyingi na zinapatikana kwa wingi kwenye mboga-mboga, matunda na kwenye vyakula vinavyotokana na wanyama kama maziwa, aina zote za nyama, mayai, dagaa na samaki.Madini pia hulinda mwili na kuufanya ufanye kazi zake vizuri. Kuna aina nyingi za madini. Baadhi ya vyakula vyenye madini kwa wingi ni pamoja na vyakula vinavyotokana na wanyama, dagaa, samaki, mboga-mboga na matunda. Jedwali Na. 1, linaonyesha baadhi ya virutubishi, umuhimu na vyanzo vyake na dalili zinazojitokeza upungufu unapotokea.Pamoja na kuzungumzia virutubishi mbalimbali, umuhimu na vyanzo vyake; ni muhimu kuzungumzia makundi ya vyakula. Hii husaidia kupanga mlo kamili kwa urahisi na kuwezesha vyakula vyote muhimu kuwepo. Ili kuweza kupata virutubishi vyote muhimu vinavyohitajika na mwili ni vizuri kula vyakula kutoka katika makundi mbalimbali. Hii ni kwa sababu hakuna chakula cha aina moja ambacho kinaweza kuupatia mwili virutubishi vyote vinavyohitajika. Hivyo ni muhimu, kutumia makundi ya vyakula badala ya aina za virutubishi katika kujifunza ulaji unaofaa.Vyakula vyenye virutubishi vingi vinavyofanana huwekwa katika kundi moja. Makundi ya vyakula husaidia kupanga mlo kamili kwa urahisi na kuwezesha vyakula vyote muhimu kuwepo Makundi hayo ni:Vyakula hivi ndivyo vinavyochukua sehemu kubwa ya mlo na kwa kawaida ndiyo vyakula vikuu. Vyakula katika kundi hili ni pamoja na mahindi, mchele, mtama, ulezi, ngano, uwele, viazi vikuu, viazi vitamu, muhogo, magimbi, viazi mviringo na ndizi.Vyakula vya jamii ya kunde ni pamoja na maharagwe, njegere, kunde, karanga, soya, njugu mawe, dengu, njegere kavu, choroko na fiwi. Vyakula vyenye asili ya wanyama ni pamoja na nyama, samaki, dagaa, maziwa, mayai, jibini, maini, figo, senene, nzige, kumbikumbi na wadudu wengine wanaoliwa.Kundi hili linajumuisha aina zote za mboga-mboga zinazolimwa na zinazoota zenyewe. Mboga-mboga ni pamoja na mchicha, majani ya maboga, kisamvu, majani ya kunde, matembele, spinachi, mnafu, mchunga. Aina nyingine za mboga-mboga ni pamoja na karoti, pilipili hoho, biringanya, matango, maboga, nyanya chungu, bamia, bitiruti, kabichi na figiri.Kundi hili linajumuisha matunda ya aina zote kama papai, embe, pera, limau, pesheni, nanasi, peasi, chungwa, chenza, zambarau, parachichi, ndizi mbivu, fenesi, stafeli, mabungo, madalansi, pichesi na topetope. Aidha ikumbukwe kuwa matunda pori au yale ya asili yana ubora sawa na matunda mengine.Matunda hayo ni kama ubuyu, ukwaju, embe ng'ongo, mavilu na mikoche.Mafuta ni muhimu lakini yanahitajika kwa kiasi kidogo mwilini. Mafuta yanaweza kupatikana kutoka kwenye mimea kama mbegu za alizeti, ufuta, pamba, korosho, karanga na mawese. Mafuta pia yanaweza kupatikana kutoka kwa wanyama, kwa mfano: siagi, samli, nyama iliyonona na baadhi ya samaki. Sukari pia inaweza kutumika kwa kiasi kidogo. hupatikana kwenye sukari ya mezani, miwa na asali.Maji kwa kawaida hayahesabiwi kama kundi la chakula, lakini yana umuhimu mkubwa katika afya na lishe ya binadamu. Inapaswa kunywa maji safi na salama ya kutosha, angalau lita moja na nusu (au glasi nane) kwa siku. Inashauriwa kunywa maji zaidi wakati wa joto kali ili kuzuia upungufu wa maji mwilini. Vile vile unaweza kuongeza maji mwilini kwa kunywa vinywaji kama supu, madafu, togwa na juisi halisi za matunda mbalimbali.Mlo kamili na umuhimu wake Mlo kamili ni ule ambao hutokana na chakula mchanganyiko kutoka katika makundi yote ya chakula. Mlo huu unapoliwa kwa kiasi cha kutosha kulingana na mahitaji ya mwili angalau mara tatu kwa siku huupatia mwili virutubishi vyote muhimu na huupa mwili afya bora Jinsi ya kupanga mlo kamili • Mlo kamili hupangwa kwa kuchagua angalau chakula kimoja kutoka katika kila kundi la vyakula na kuliwa kwa pamoja. • Tumia vyakula vinavyopatikana katika mazingira unayoishi na vile ambavyo vipo kwenye msimu, kwani ni freshi na bei huwa nafuu.Ili mtu awe na afya na hali nzuri ya lishe anapaswa kuzingatia ulaji bora. Mlo kamili humwezesha mtu kula vyakula mchanganyiko ili kuupatia mwili mahitaji yake ya kilishe kikamilifu. Mtu anapokula chakula kwa kiasi cha kutosha kulingana na mahitaji yake, mwili hupata virutubishi vyote muhimu. Mara nyingi mlo wako ukiwa na rangi mbalimbali pia huwa na virutubishi vingi; hivyo chagua vyakula, matunda na mboga-mboga zenye rangi mbalimbali.Ni muhimu kula vyakula mchanganyiko kwa sababu baadhi ya virutubishi hutegemeana ili kuweza kufanikisha kazi zake mwilini. Mfano wa virutubishi vinavyotegemeana ni:• Madini chuma na vitamini C: Aina ya madini chuma (non -haem) yanayopatikana kwenye vyakula vya mimea kama mboga-mboga za kijani na vyakula vya jamii ya kunde hufyonzwa kwa ufanisi mwilini iwapo katika mlo huo kuna vitamini C ambayo hupatikana kwa wingi kwenye matunda, mfano chungwa, pera, nanasi, pesheni, ubuyu. • Vitamini zinazoyeyuka kwenye mafuta (A, D, E na K) hutumika kwa ufanisi mwilini kutegemea uwepo wa mafuta katika mlo. Hivyo basi, ni muhimu kutumia mafuta kidogo wakati wa kupika hususan mboga-mboga.Usafi na usalama wa chakula, maji na mazingiraChakula na maji vinaweza kuwa ni miongoni mwa vyanzo vya maambukizi mbalimbali ya maradhi ikiwa usafi na usalama wake hautazingatiwa. Tabia ambazo hazizingatii usafi, huchangia sana kuleta maradhi ya kuhara, maradhi ya tumbo, minyoo, malaria, hata vifo. Watoto wadogo na wagonjwa ndio wanaoathirika zaidi. Kuwepo kwa choo safi kinachotumika ipasavyo kwenye hospitali na katika kaya hupunguza kwa kiasi kikubwa maradhi ya kuhara. Kuzingatia kanuni za usafi, kunaweza kupunguza maradhi na pia kupunguza utapiamlo. Kuboresha mazingira kuna manufaa makubwa kwa afya ya watu wote katika jamii. Mambo muhimu ya kuzingatia ni pamoja na usafi wa mtayarishaji wa chakula, usafi wa vyombo, usafi wa sehemu ya kutayarishia chakula, usafi na usalama wa chakula chenyewe na maji ya kunywa na usafi wa mazingira.Mtayarishaji wa chakula ni muhimu:• Kuosha mikono kwa sabuni na maji yanayotiririka na ya kutosha, kabla na baada ya kutayarisha chakula. Majivu yanaweza kutumika pale ambapo hakuna sabuni. • Kunawa mikono mara baada ya kutoka chooni au kujisaidia au kumsaidia mtoto au mgonjwa, kabla ya kutayarisha chakula, kabla ya kumlisha mtoto na mara baada ya kupenga kamasi. • Kuzingatia usafi wa mwili na nguo. Ikiwa ni pamoja na kukata kucha na kufunika nywele • Kufunga vidonda vya mkononi ili kuzuia sibiko (contamination) wakati wa kutayarisha chakula.Njia sahihi ya kunawa mikono -Lowesha mikono yako -Sugua kwa sabuni au majivu kwa muda usiopungua sekunde 20 -Sugua kati ya vidole, chini ya kucha, mpaka kwenye kifundo nyuma ya mkono -Suuza kwa maji yanayotiririka -Kausha kwenye hewaInashauriwa:• Kutumia vyombo safi kwa kutayarishia chakula na kupakulia. • Kuosha kwa maji ya kutosha na sabuni vyombo na vifaa vinavyotumika kutayarishia vyakula na hasa vilivyotumika kutayarishia nyama mbichi, samaki wabichi au mayai mabichi, kabla ya kuvitumia kwa matayarisho ya vyakula vingine. Majivu yanaweza kutumika pale ambapo hakuna sabuni. • Kuwa na kichanja cha kuanika vyombo. Vyombo viondolewe punde vinapokauka na kuhifadhiwa sehemu kavu iliyo safi.• Iwapo kitambaa cha kukaushia vyombo kitatumika; ni muhimu kifuliwe mara baada ya kutumika, kianikwe na kipigwe pasi pale inapowezekana.Inashauriwa:• Kusafisha sehemu zote za kutayarishia chakula, ikiwa ni pamoja na kufagia jiko au kudeki mara kwa mara ili kuzuia wadudu watambaao na panya. • Kukusanya uchafu na mabaki ya vyakula katika ndoo au chombo chenye mfuniko na baadaye kutupa ipasavyo kwenye shimo la takataka.Inashauriwa:• Kuhakikisha vyakula vya aina ya nyama, samaki na mayai vinapikwa na kuiva vyema ili kuepuka maambukizi mbalimbali kwenye mfumo wa chakula kama yanayosababishwa na vijidudu vya \"salmonella\". Vyakula hivyo visiliwe vikiwa vibichi, kwani vina hatari kubwa ya kuleta madhara mwilini (food poisoning). • Kupika chakula mpaka kiive vizuri na kuhakikisha vitu vya majimaji vinachemka sawasawa. Chakula kilichopikwa kiliwe kingali moto. • Kuosha matunda na mboga-mboga hasa zinazoliwa bila kupikwa kwa maji ya kutosha (ikiwezekana yaliyochemshwa). Matunda pia yanaweza kumenywa. • Kufunika chakula daima ili kuzuia wadudu, hasa inzi na mende.• Kuepuka kutumia vyakula vilivyosindikwa viwandani, kwani mara nyingi vyakula husindikwa kwa kemikali ambazo wakati mwingine zinaweza kumdhuru mtumiaji hasa kama ni mgonjwa. • Kuepuka nafaka au vyakula vingine vilivyoota ukungu.• Kupasha moto kiporo au chakula kilichokaa zaidi ya saa mbili baada ya kupikwa hadi kichemke kabla ya kula, hata kama bado kina uvuguvugu. • Kuhakikisha hakuna mwingiliano wa vyakula vilivyopikwa na vyakula vibichi vinavyoweza kuleta maambukizi kama nyama mbichi, samaki wabichi na mayai mabichi. • Kuhakikisha muda wa kutumia vyakula (expiry date) haujapita hasa kwa vyakula vya madukani. • Kukumbuka kusoma lebo ya vyakula kabla ya kutumia.Inashauriwa:• Kuhakikisha maji ni safi, na yachemshwe na kuachwa yaendelee kuchemka kwa muda wa dakika 5 ili kuua vimelea vya maradhi. • Kutunza maji katika chombo safi chenye mfuniko na kuweka mahali penye ubaridi. • Kuchemsha maji ya kutengenezea barafu au juisi.• Kuwa na utaratibu mzuri wa kuchota maji usiochafua maji yaliyohifadhiwa, kwa mfano kuwa na chombo maalum cha kuchotea maji ambacho kina mpini mrefu ili kuzuia watu kukitumia kunywea maji au kugusa maji kwenye chombo.Kuhifadhi maji salama kwenye chombo sahihi chenye mfuniko. Hifadhi maji ya kunywa katika dumu au mtungi wenye shingo nyembamba ulio na mfuniko unaobana au katika chombo safi kama vile ndoo yenye mfuniko iliyowekewa bomba la kufungulia (stopa). Kila wakati funika chombo kilichohifadhi maji na fungia mfuniko kwenye chombo ili usianguke.Kumbuka: Maji yaliyochemshwa ni salama kwa kunywa ndani ya saa 24. Yanatakiwa yaondolewe kwenye chombo kabla maji mengine yaliyochemshwa kumiminwa ndani ya chombo hicho.6. Usafi wa mazingira Takataka, zinapotupwa ovyo, huchafua mazingira na kuhatarisha maisha ya binadamu na wanyama. Taka ambazo zinaweza kusababisha matatizo ya afya ni pamoja na kinyesi cha binadamu na wanyama, taka ngumu, maji machafu, taka za viwandani, na taka za kilimo. Hali duni/mbaya ya usafi wa mazingira husababisha maradhi ambayo huigharimu jamii kiafya na kiuchumi. Madhara mengine ni pamoja na kuathiri mandhari ya makazi ya watu kutokana na kuzagaa ovyo kwa uchafu wa kila aina ukiwemo taka ngumu kama mifuko ya platiki, harufu mbaya inayotokana na kuoza kwa taka na maji machafu yanayotiririka ovyo. Ni muhimu kusafisha maeneo ya makazi, barabara, kuzoa taka, kufukia madimbwi ya maji, kuzibua mifereji, kufukia makorongo, kupanda majani na miti pamoja na kuelimisha na kuihamasisha jamii juu ya usafi wa mazingira. Jamii inapaswa kuzingatia kwa makini usafi wa mazingira kwa kuepuka vitendo vya kujisaidia na kutupa takataka ovyo. Uboreshaji wa mazingira una manufaa makubwa kwa afya ya watu wote katika kaya na katika jamii. Usafi wa mazingira unahusu pia udumishaji wa kuratibu usafi kwa njia ya huduma kama vile ukusanyaji wa taka na maji machafu kila wakati.-Utupaji sahihi wa taka mbalimbali -Kusafisha maeneo ya makazi, barabara, kuzoa taka, kufukia madimbwi ya maji, kuzibua mifereji, kupanda majani na miti -Kuelimisha na kuihamasisha jamii juu ya usafi wa mazingira.Matendo ya msingi ya usafi yanayotekelezeka katika jamii/kaya 1. Maji salama ya kunywa Kufanya maji salama• Chemsha kwa usahihi Kuhifadhi salama kwa chombo sahihi chenye mfuniko • Hifadhi maji ya kunywa katika dumu au mtungi wenye shingo nyembamba ikiwa na kifuniko kinachobana au katika chombo safi kama vile ndoo yenye mfuniko • Kila wakati funika chombo; funga kifuniko kwa kamba katika chombo ili kuzuia kisianguke Kuchota maji kwa usalama • Inamisha dumu na mimina maji ya kunywa moja kwa moja katika jagi, kikombe au bilauri • Chota maji ya kunywa kutoka kwenye mtungi au ndoo kwa kutumia chombo chenye mshikio mrefu kilicho safi na mimina katika kikombe au bilauri safi • Tengeneza ndoo yenye bomba la kufungulia (stopper).• Osha kikombe, bilauri kwa maji na sabuni baada ya kutumia na kifunikize kwenye chano, beseni au kabati • Weka chombo cha kunywea maji mbali na watoto na wanyama 2. Kunawa mikono Sabuni na mbadala wake• Tumia sabuni au majivu • Kunawa mikono kwa usahihi Nyakati muhimu za kunawa mikono Nawa mikono kwa usahihi:• Kabla ya kuandaa chakula • Baada ya kumtawadha mtoto • Baada ya kutoka chooni • Kabla ya kula • Kabla na baada ya kumhudumia mtoto au mgonjwa 3. Utupaji salama wa kinyesi Nawa mikono kwa maji yanayotiririka na sabuni au majivu au majani baada ya kutoka chooni au kumsaidia mtoto au mgonjwa.• Tumia choo kilichoboreshwa mchana na usiku • Hakikisha kinyesi kimedondoshwa vizuri katika tundu la choo • Funika choo kwa mfuniko wenye mkono baada ya kutumia Kuwa na choo bora ambacho:• Kina kuta na mlango imara vilivyotengenezwa kwa kutumia vifaa vya bei nafuu vinavyopatikana kwa urahisi; na mlango uwe na kitasa au komeo • Kina paa imara lisilovuja lililotengenezwa kwa vifaa vinavyopatikana katika mazingira unayoishi","tokenCount":"6632"} \ No newline at end of file diff --git a/data/part_3/4749771057.json b/data/part_3/4749771057.json new file mode 100644 index 0000000000000000000000000000000000000000..f410d8be33160ff1d23b4f2c48a3ce3e36b9f795 --- /dev/null +++ b/data/part_3/4749771057.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"13644777346d4bd681bdd64fccdc4198","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/24de676c-d845-4ca0-b5cd-ee9b509a70d2/content","id":"866956954"},"keywords":["durum wheat","genome-wide association","stem rust","multiple-race","major gene","field resistance"],"sieverID":"80cd653c-6427-4789-98a6-6b2cb37ca4f0","pagecount":"18","content":"Stem rust of wheat caused by Puccinia graminis Pers. f.sp. trtici Eriks and E. Henn., is the most damaging fungal disease of both common (Triticum aestivum L.) and durum (Triticum turgidum L., ssp. Durum) wheat. Continuously emerging races virulent to many of the commercially deployed qualitative resistance genes have caused remarkable loss worldwide and threaten global wheat production. The objectives of this study were to evaluate the response of a panel of 283 durum wheat lines assembled by the International Maize and Wheat Improvement Center (CIMMYT) to multiple races of stem rust in East Africa at the adult plant stage and map loci associated with field resistance. The lines were evaluated in Debre Zeit, Ethiopia and Njoro, Kenya from 2018 to 2019 in five environments (year × season). The panel was genotyped using genotypingby-sequencing. After filtering, 26,439 Single Nucleotide Polymorphism (SNP) markers and 280 lines and three checks were retained for analysis. Population structure was assessed using principal component analysis. Genome-wide association analysis (GWAS) was conducted using Genomic Association and Prediction Integrated Tool (GAPIT). The broad-sense heritability of the phenotype data revealed that 64-83% of the variation in stem rust response explained by the genotypes and lines with multiple race resistance were identified. GWAS analysis detected a total of 160 significant marker trait associations representing 42 quantitative trait loci. Of those, 21 were potentially novel and 21 were mapped to the same regions as previously reported loci. Known stem rust resistance genes/alleles were postulated including Sr8a, Sr8155B1, SrWeb/Sr9h, Sr11, Sr12, Sr13/Sr13 alleles, Sr17, Sr28/Sr16, Sr22, and Sr49. Lines resistant to multiple races in East Africa can be utilized as parents in durum wheat breeding programs. Further studies are needed to determine if there are new alleles at the Sr13 locus and potential markers for the known Sr13 alleles.Durum wheat (Triticum turgidum L., ssp. Durum (Desf.) Husnot, 2n = 4× = 28; AABB genome) is among the tetraploid wheat species used for making pasta, couscous and other traditional recipes mainly consumed in the Mediterranean regions (Shewry and Hey, 2015). The European Union, Canada, the Mediterranean basins, the North American plains and Mexico are the major producers of durum wheat in the world (Bond and Liefert, 2017). A number of biotic and abiotic stress factors challenges the production of durum wheat. Among the biotic factors, stem rust of wheat caused by Puccinia graminis f.sp. tritici Eriks. & E. Henn (Pgt) is the most destructive fungal disease of both common and durum wheat (Roelfs et al., 1992). Stem rust can occur in all wheat growing areas and can cause complete yield loss under severe epidemics when susceptible cultivars are grown (Dean et al., 2012). The shriveling of grain due to stem rust can also downgrade the quality of the harvest and resulting end use products.East African highlands are considered as hot spots for the emergence of new stem rust pathogen races. The emergence of new virulent races in East Africa and other parts of the world caused severe losses and continue to pose a threat to global wheat production and food security (Olivera et al., 2015;Singh et al., 2015;Bhavani et al., 2019). Many of the races evolve with corresponding virulence to commercially deployed resistance genes and some have broad virulence spectrum. The races in East Africa including Ug99 (TTKSK) and its lineage, TKTTF (\"Digalu\"), TRTTF and JRCQC defeated the resistance conferred by many major/ R-genes in breeding lines and commercial cultivars. Stem rust race Ug99 was identified in Uganda in 1999 and spread across other countries in East Africa, the Middle East and South Africa. To date, 13 races identified from different countries with broad virulence to commercially deployed resistance genes, are considered part of the of the Ug99 lineage (Singh et al., 2015;Nirmala et al., 2017;Bhavani et al., 2019). Due to the continuously evolving races in the Ug99 group, most of the worldwide wheat germplasm were found to be moderately to highly susceptible to this group of races (Bajgain et al., 2015b;Singh et al., 2015).Breeders in different regions of the world are incorporating resistance genes effective against the Ug99 lineages in their germplasm. However, the continuously emerging virulent races unrelated to Ug99 such as TKTTF, TRTTF, and JRCQC in East Africa (Olivera et al., 2015) and the rest of the world, continue Abbreviations: APR, Adult plant resistance; BLUPs, Best linear unbiased predictions; CI, coefficient of infection; CIMMYT, International Maize and Wheat Improvement Center; CMLM, Compressed Mixed Linear Model; DArT, Diversity arrays technology; FarmCPU, Fixed and random model Circulating Probability Unification; FDR, False Discovery Rate; GBS, Genotyping-bysequencing; GAPIT, Genomic Association and Prediction Integrated Tool; GID, Genotype identification number; GWAS, Genome-wide association analysis; IT, Infection type; KASP, kompetitive allele-specific PCR; LD, Linkage Disequilibrium; LMM, Linear mixed model; LOESS, Locally estimated scatterplot smoothing; MAF, Minor Allele Frequency; MLMM, Multi-locus Mixed Linear Model; MTAs, Marker trait associations; PCA, principal component analysis; SNP, Single Nucleotide Polymorphism; QTL, quantitative trait locus/loci; Q-Q, quantile-quantile; SSRs, simple sequence repeats.to defeat major resistance genes effective against the Ug99 race groups, threatening global production of both common and durum wheat. Race TKTTF identified in Ethiopia during the 2013/14 epidemics caused close to 100% yield loss on 10,000 hectares of land planted with the wheat variety \"Digalu.\" This race defeated the resistance conferred by SrTmp which was effective against the Ug99 lineages. TKTTF has broad virulence to several other major genes (Olivera et al., 2015). Races JRCQC and TRTTF have combined virulence to the most frequent resistance genes/alleles in durum wheat, namely Sr13b and Sr9e that are effective against TTKSK and other races from the same lineage (Olivera et al., 2012). Due to the emergence of JRCQC, a very large proportion of the global durum wheat germplasm including many of the CIMMYT and North American durum wheat germplasm which were protected by Sr9e and Sr13b became susceptible in Ethiopia where this race is predominant. These two races also have broad virulence to other major Sr genes deployed in commercial cultivars. TRTTF is virulent to SrTmp and Sr36 and was the first to defeat the resistance conferred by the 1AL-1RS rye translocation (Sr1RS) (Olivera et al., 2012). As a result all spring and winter wheat varieties carrying these genes became susceptible to Pgt races identified in Africa and Asia (Olivera et al., 2012;Singh et al., 2015). Among the alleles of Sr13, Sr13a is effective against races TTKSK, TKTTF, TRTTF, JRCQC and the race recently identified in Italy and Georgia (TTRTF) while Sr13b is effective only against TTKSK and TKTTF (Zhang et al., 2017;Olivera et al., 2019). These resistance alleles, unless deployed properly in combination with other genes, are likely to be defeated by an emerging race.More than 60 stem rust resistance genes have been cataloged and about 34 of them are located in the A and B sub-genomes. However, most of them are R-gene/major-gene resistances and many are effective against specific races only ( McIntosh et al., 1995McIntosh et al., , 2017). Among the cataloged Sr genes, only five confer adult plant resistance (APR), namely Sr2, Sr55 (Lr67/Yr46/Pm39), Sr56, Sr57 (Lr34/Yr18/Pm38), and Sr58 (Lr46/Yr29/Pm39) (Singh et al., 2015). Adult plant resistance (APR) is quantitative in nature controlled by several genes each with small effects and is thought to be more durable than the qualitative major genebased resistance. Quantitative resistance is generally expressed at the adult plant stage and identified through field evaluations of seedling susceptible lines (Laidò et al., 2015). Conversely, evaluation of lines for field response regardless of their seedling response can be applied to identify all stage resistance genes but, selection for APR could be challenging due to the masking by major or R-genes. Deploying combinations of several APR genes or in combination with effective major genes is a possible strategy to increase the durability of resistance in stem rust management (Bhavani et al., 2011). The genetic characterization and identification of available sources of resistance in a given germplasm pool is important for the judicious use of different resistance sources and subsequent deployment of gene combinations with proper stewardship. Genetic studies characterizing sources of resistance to stem rust are more limited in durum wheat than in common wheat (Chao et al., 2017). The limited genetic studies in the past used low density markers such as simple sequence repeats (SSRs) and Diversity arrays technology (DArT) (Haile et al., 2012;Letta et al., 2013) and very few used high density SNP markers. The lines used in the current study were not previously characterized for their field responses to the multiple stem rust races currently prevailing in East Africa and their genetic basis of resistance was not wellunderstood. In the current study, a panel of lines from the CIMMYT germplasm pool were evaluated against multiple races of stem rust in Ethiopia and Kenya, and we used high density SNP markers discovered through the Genotyping-by-sequencing (GBS) approach to identify genomic regions associated with the field responses of the genotypes.A panel of 283 spring durum wheat genotypes composed of a wide collection of advanced breeding lines and some cultivars that represent the current CIMMYT durum wheat germplasm was evaluated for adult plant response to stem rust for three seasons in Ethiopia (Debre Zeit Agricultural Research Center); off-season (January to May) 2018 and 2019, main season (June to November) 2018; and two seasons in Kenya (KARI, Njoro Station) during the main season (June to October) 2018 and 2019; hereafter abbreviated as ETOS18, ETOS19, ETMS18, KNMS18, and KNMS19, respectively. Among the 283 genotypes included in the panel, 10 harbor Sr25 (translocation from Thinopyrum ponticum onto chromosome 7A), 6 carry the Sr25+ Sr22 (Sr22 is a translocation from T. boeticum onto chromosome 7A), and 8 have Sr38 (a translocation from T. ventricosum onto chromosome 2A) that were developed through marker-assisted selection and represent resistances that are not present in any of the durum germplasm pools worldwide (Ammar, personal communication, 2020). In the Debre Zeit nursery, lines were planted in dual rows of 1 m length with 0.2 m inter-row spacing arranged in randomized incomplete block design with two replications. Two susceptible (\"Arendato\" and \"Local red\") and one moderately resistant (\"Mangudo\") checks were repeated after every 50 plots. In addition, the 20 stem rust differential lines with known stem rust resistance genes (Fetch et al., 2009) were planted at the beginning and end of the nursery in Debre Zeit, Ethiopia. The plots were surrounded by spreader rows planted with a mixture of susceptible lines, namely \"Arendato, \" \"PBW 343, \" \"Morocco, \" and \"Digalu\" in equal proportions. In the Njoro nursery, plots consisted of two rows of 0.7 m with 0.3 m inter-row spacing arranged using the same design as in Ethiopia. The plots and the experimental field were surrounded by spreader rows planted as hill plots with an equal proportion mixture of the stem rust susceptible cultivars \"Cacuke\" and \"Robin, \" and six lines carrying Sr24 (Genotype identification number (GID) = 5391050, 5391052, 5391056, 5391057, 6391059, and 5391061).Disease infection was initiated by artificial inoculation of the spreader rows with a bulk of stem rust urediniospores collected at each specific location from the previous season to ensure uniform disease distribution in the trials. Spreaders were inoculated with a mixture of field collection of stem rust races TTKSK, TKTTF, JRCQC, TTTTF, and TRTTF in Debre Zeit, Ethiopia; and races TTKSK, TTKST, TTKTT, and TTTTF in Njoro, Kenya. Inoculation was done by suspension of urediniospores in distilled water and adding a drop of Tween 20 (a drop/0.5 lt) and syringeinjection of the spreader rows (at ∼30 cm interval per meter) at stem elongation (∼Zadok's growth scale 31, first node detectable) (Zadoks et al., 1974) and repeated two to three times. Then urediniospores prepared with a similar protocol were sprayed one to two times on the spreader rows to enhance infection and disease development. In the off-season nurseries, furrow irrigation was applied for the establishment of the nursery and for providing a humid environment for proper disease development.Disease severity was scored according to the modified Cobb's scale by estimating the proportion of the stem area (0-100%) covered by rust pustules (Peterson et al., 1948). Infection response was scored according to Roelfs et al. (1992) based on the size of pustules and amount of chlorosis and necrosis on the stem. The responses classes are: \"0\" for no visible infection, \"R\" for resistant, \"MR\" for moderately resistant, \"MS\" for moderately susceptible and \"S\" for susceptible. A combination of responses was scored in the case of an overlap of infection responses on a single genotype by taking the most frequent response first followed by the less frequent. Stem rust was scored two to four times in each environment at 8-10-day intervals and the final scoring was considered for analysis. The stem rust severity and response were combined in a value called coefficient of infection (CI) calculated by multiplying the severity values with a linearized scale of 0-1 assigned to the respective responses. The scale was assigned as: immune = 0.0, R = 0.2, MR = 0.4, MS = 0.8 and S = 1.0, and the mean of the scale of responses was used to calculate CI in the cases where combinations of infection responses were scored for a given genotype (Stubbs et al., 1986).The CI was used in the statistical analysis using R statistical software version 3.6.1 (R Core Team, 2019) and ASReml-R version 3 for spatial correction (Gilmour et al., 2009). We fitted different models and finally chose a model which resulted in the highest estimate of broad-sense heritability. In some cases, a model with a significant Wald test for fixed effect was considered when the row and column effects were fitted as fixed (Gilmour et al., 2009). For the off-season 2018 nursery in Ethiopia, a linear mixed model (LMM) described in Eq. 1 was fitted on the CI using ASReml-R to extract the best linear unbiased predictions (BLUPs).Where: y ijk is the response of the ith line in the jth column and the kth replication, g i is the random effect of the ith line, C j is the fixed effect of the jth column, and r k is the random effect of kth replication and ε ijk is the residual associated with the model. For the main season 2018 nursery in Ethiopia, the LMM described in Eq. 2 was fitted on the square-roottransformed CI using the lmer() function of the R package lme4 (Bates et al., 2015) and extracted genotypic BLUPs (R Core Team, 2019).Where: y ij is the response of the ith line at the jth replication, g i is the random effect of the ith genotype (line), r j is the random effect of the jth replication, ε ij the residual associated with the model. For the off-season 2019 nursery in Ethiopia, the LMM described in Eq. 3 with the residual variance (ε ij ) fitted as ar1(row):ar1(column), the first order autoregressive correlation of the residuals of the row and column, as random effects, which assumes the residuals could be correlated (Gilmour et al., 2009) was fitted on the square-root transformed CI using ASReml-R and BLUPs were extracted. For the nursery in Kenya during the main season 2018, the LMM described in Eq. 3 was fitted on the square-root-transformed CI using ASRreml-R (Gilmour et al., 2009)) and genotypic BLUPs were extracted.Where: y ijkl is the response of the ith line in the jth row, in the kth column and lth replication, g i is the random effect of the ith line, R j the fixed effect of the jth row, C k is the fixed effect of the kth column, r l is the random effect of the lth replication and ε ijkl is the residual associated with the model. For the main season 2019 nursery in Kenya, the MLM described in Eq. 2 was fitted on the square-root transformed CI using the lmer() function of the R package lme4 and genotypic BLUPs were extracted. From the variance components estimated from each model, broad sense heritability was calculated following the method by Holland et al. (2003).Where: H 2 is the broad sense heritability, V g is the variance due to the genotype (line), V p is the variance due to the phenotype, V p = V g + V e , V e is the residual variance.Two cm-long young leaf tissues were collected and frozen at −80 o C for 2 weeks. The frozen leaf samples were then lyophilized and shipped to the USDA-ARS Eastern Regional Small Grains Genotyping Laboratory in Raleigh, NC for genotyping. Genomic DNA was isolated from the lyophilized tissue samples using a sbeadex plant DNA isolation kit (LGC Genomics, Middlesex, United Kingdom) according to manufacturer's instructions. Genomic DNA was then fragmented using a PstI-MspI double restriction digest following the GBS protocol of Poland et al. (2012). Sequencing adapters were ligated to DNA fragments, and single-ended 100 bp short read sequencing was then performed on an Illumina (San Diego, CA) Novaseq instrument. SNP genotype calling was done using TASSEL software version 5 (Glaubitz et al., 2014) and the recently published durum wheat reference genome of cultivar \"Svevo\" (Maccaferri et al., 2019) was used to assign a physical position to each SNP marker. Thereafter, SNP markers with missing data above 50%, minor allele frequency (MAF) below 5%, and heterozygous call rates above 15% were filtered out. Missing data was then imputed using Beagle 5 (Browning et al., 2018). Following imputation, PLINK 1.9 (Chang et al., 2015) was used to remove all but one SNP in groups of SNPs in perfect linkage disequilibrium (LD) with each other (r 2 = 1), using a sliding window of 250 SNPs, advancing by 10 SNPs per step. In total, 26,439 SNPs were called in 283 lines (including three checks) and retained for genome-wide association analysis.All lines were also screened with kompetitive allele-specific PCR (KASP) assays developed around SNP linked to the resistance genes Sr2 and Lr46/Sr58. For Sr2, lines were evaluated with marker Sr2_ger93p (Mago et al., 2011). For Sr58, lines were evaluated for SNP CIMwMAS0085 tightly linked leaf rust APR gene, Lr46 1 . Lines were also evaluated with a KASP assay targeting Sr13, the major gene most frequent in durum wheat which provides effective resistance to the Ug99 lineage. The Sr13 assays was designed around the mutation at amino acid W743R (Zhang et al., 2017). Lines having the 734R amino acid associated with resistance to TTKSK were noted as having an Sr13 allele for resistance. KASP assay primer sequences are noted in Supplementary Table 10.If not taken into account, population structure results in false positive marker trait associations (MTA) in GWAS analyses. In the current study, the presence of population structure was assessed using principal component analysis (PCA) using the R function \"prcomp\" and visualized for the clustering of PC scores. The extent of LD in a population is useful for determining the resolution of association mapping. The LD between pairs of markers for the 26,439 markers was calculated as the squared allele frequency correlation (r 2 ) by applying a sliding window of 50 markers using TASSEL software version 5 (Bradbury et al., 2007). The r 2 values of pairs of loci were plotted against the physical distances in Megabases (Mb) after randomly sampling 10% of the total loci pairs. A locally estimated scatterplot smoothing (LOESS) curve was fitted using \"geom_smooth\" in R package ggplot2 (Wickham, 2016) to visualize the decay of LD in each of the 14 chromosomes. The r2 threshold to verify that LD was likely to be due to linkage was estimated from the 95th percentile of the distribution of the square-root-transformed r 2 of unlinked markers (Breseghello and Sorrells, 2006). The point at which the horizontal line at the r 2 critical value and the LOESS curve on the LD scatter plot intersected was treated as the estimate of the extent of LD for each chromosome in our study population.The BLUPs derived from the respective models fitted on the phenotypic data were considered as the response to fit GWAS models. The analysis was conducted using GAPIT by fitting four models; Mixed Linear Model (MLM) (Lipka et al., 2012), Compressed Mixed Linear Model (CMLM) (Zhang et al., 2010), Multi-locus Mixed Linear Model (MLMM) (Segura et al., 2012), and Fixed and random model Circulating Probability Unification (FarmCPU) (Liu et al., 2016). MLM is a single locus model that fits one marker at a time as a fixed effect, population structure as a fixed effect (Q) and marker based additive relationship matrix or Kinship (K) as a random effect in the model (Q+K model). CMLM fits MLM after clustering individuals to estimate kinship and reduces computational time (Zhang et al., 2010). MLMM estimates variance components using a stepwise forward-backward linear mixed-model regression and fits the significant SNP as a covariate for the following step (Lipka et al., 2012), and FarmCPU uses both Fixed Effect and Random Effect models iteratively. It fits one marker at a time in the Fixed Effect Model with significant markers as covariates. Then the kinship of the significant markers is used to fit the Random Effect Model (Liu et al., 2016). The first two PC scores were used to account for population structure in all models. A False Discovery Rate (FDR) of 5% was applied for multiple comparison adjustment and as a threshold to declare significant markertrait associations (MTAs) (Benjamini and Hochberg, 1995). The deviation of the observed −log10 p-value distribution from the expected distribution in the quantile-quantile (Q-Q) plots was used to compare the models and results were interpreted from MLM and FarmCPU. Manhattan plots of −log10 p-values were generated using the R package qqman (Turner, 2017). A linkage disequilibrium heatmap was plotted for significant markers on chromosome 6A and the Sr13 marker, and the significant markers on chromosome 7A using the R package LDheatmap applied on the square matrix of the squared allele frequency correlation between pairs of markers (Shin et al., 2006). Significant markers tagging quantitative trait loci/locus (QTL) were gathered from previous QTL studies on durum and common wheat. The sequences of these markers were searched from the GrainGenes database. Then the fasta file of the sequences was aligned against the respective chromosomes of the \"Svevo\" reference sequence using the blastn program of the IWGSC database for similarity of physical positions with the significant markers identified in the current study and for postulation of resistance genes/alleles.The distributions of the CI were skewed toward resistance in all environments except ETOS18 which was close to normal distribution (Figure 1). The percentage of resistant lines (CI ≤ 18) varied from 10% in ETOS18 with a mean CI of 40-65% in KNMS18 with a mean CI of 18.3 (Table 1). The broad-sense heritabilities estimated from the variance components of each model fitted were 0.71 for ETOS18, 0.64 for ETMS18, 0.83 for ETOS19, 0.77 for KNMS18 and 0.69 for KNMS19 indicating that most of the variation in the response (64-83%) was explained by the genotypic component.Screening of the lines with markers linked to Sr2, Sr13, and Sr58 (using Lr46 linked marker) revealed that 69% of the total number of lines evaluated were likely to carry Sr13, 46% were likely to have Lr46 (Sr58), 30% (85 lines) were likely to have both genes (Sr13 and Lr46/Sr58) and 15% (43 lines) were lacking both genes. Among the lines positive to Sr13 and Lr46/Sr58, 14.3% showed resistance (CI ≤ 18) in all the five environments, 16.7% in four environments, 32.1% in three environments 21.4% in two environments and 15.5% in a single environment (Supplementary Table 1). Three lines with an Origin GID 7147179, 7147180, 7147182 showed immune responses in most environments (Supplementary Table 1). None of the lines from the current panel was found to carry Sr2. Among the 43 lines that lack Sr13 and Lr46/Sr58 based on the marker screening, a line with GID 7145241 was consistently resistant in all the five testing environments, line GID 6951159 was resistant in four environments except ETOS19, line GID 5928165 was resistant in three environments, line GID 7408527 was resistant in ETOS19 and KNMS18, line GID 7409573 was resistant in KNMS18 and KNMS19. Lines with GID 7383430, 7407575, and 7384241 were resistant in KNMS18 while GID 7408885 was resistant in KNMS19 (data not shown).The scatter plot of the first two PC scores indicated two putative groups although the clustering was not no clear. The first and the second PC scores explained 3.79 and 2.78% of the genetic variation in the panel, respectively (Figure 2). The genomewide LD calculated for the 26,439 markers resulted in a total of 1,320,675 pairwise comparisons of loci. Out of the total pairs of loci compared, 37.4% (494,449) were in significant LD (p < 0.001). The mean genome-wide LD (r 2 ) for the population was 0.39. Of the total loci pairs, 1.28% (16,860) of the loci pairs were in wide range LD on different chromosomes, and 1.09% (184) of those on different chromosomes were in significant LD (p < 0.001). The LD threshold for the population estimated from the 95th percentile of the distribution of square root transformed r 2 of unlinked markers (markers located on different chromosomes) was 0.16, the critical value beyond which LD was likely due to physical linkage. The decay of LD for the linked markers varied across chromosomes in both subgenomes (Supplementary Figure 1). The LOESS curve crossed the horizontal line of threshold value at approximately 4 Mb in all chromosomes of the A genome except chromosomes 2A (8 Mb), 3A (3 Mb), and 5A (5 Mb) with an average of 4.5 Mb. For the B genome, the LOESS curve crossed with the horizontal line of the critical value at 5 Mb for chromosomes 1B, 2B, and 7B, at 4 Mb for chromosomes 3B and 5B, at 8 Mb for 4B, and at 4.5 Mb for 6B with an average of 4.6 Mb. The decay of LD in chromosome 2A and 4B was slower (8 Mb) than the rest of the chromosomes (Supplementary Figure 1).GWAS analysis was conducted by fitting four models (MLM, CMLM, MLMM, and FarmCPU) for each of the evaluation environments. Based on the Q-Q plots and the power of FarmCPU to limit potential false positive and false negative associations, we limited the interpretation of results to those from MLM and FarmCPU models. Many of the significant MTAs identified by MLM were confirmed by FarmCPU and the unconfirmed MTAs were assessed for consistency across environments to determine if they were reliable MTAs (Supplementary Tables 2-7). FarmCPU selected the most significant marker from linked markers falling within the same QTL, such as for chromosomes 6A and 7A in the GWAS results of the MLM. FarmCPU also identified novel as well as previously reported MTAs unidentified by MLM (Supplementary Table 2).The results of the CMLM and MLMM were not considered further for the following reasons: the Q-Q plot of CMLM fitted the data well only for ETOS18, ETOS19, and KNMS18 and under such circumstances, the significant MTAs identified by MLM and CMLM were the same. Although MLMM had an acceptable Q-Q plot, this model identified the fewest significant MTAs in all the five environments (data not shown). MLM identified a total of 135 significant MTAs for field resistance to multiple Pgt races in Ethiopia and Kenya across the five testing environments. From these 14.1% were detected in all the five environments, 7.4% in four environments, 5.2% in three environments, 16.3% in two environments and 57% in only one environment (Supplementary Tables 3-8). Among the 57% (77 markers) identified in a single testing environment, most were on chromosomes 6A and 7A and they were in LD with other nearby markers identified across multiple environments (Figures 5, 6). From the total MTAs identified by MLM, 9.6% were confirmed by FarmCPU (Supplementary Tables 2, 7) and most of the significant markers on chromosome 6A and 7A identified by MLM were in LD with the those identified by FarmCPU on the same chromosome. FarmCPU identified a total of 47 significant MTAs (Supplementary Table 2). Among the total, 4% were identified in three testing environments, 11% in two environments and the remaining 85% in a single testing environment (Table 2). Out of the total MTAs identified by the two models, nine MTAs were on unaligned contigs (Supplementary Tables 2-7). Three significant MTAs were identified on chromosome 1A at 95, 144, and 485 Mb (Figure 3 and Supplementary Figure 2). The QTL at 95 and 485 Mb explained 3 and 3.73% of the phenotypic variation, respectively, and the MTA at 144 Mb was close to the threshold (FDR adjusted p = 0.04) (Supplementary Tables 2, 5). On chromosome 1B, four significant MTAs were identified at 183, 546, 587, and 620 Mb (Supplementary Figure 2 and Figure 4). The three MTAs on chromosome 1B except the 183 Mb (FDR adjusted p = 0.045) represented three QTL that explained 3.43-4.59% of the phenotypic variation (Supplementary Tables 2-4). Seven significant MTAs (20,67,78,135,699,728, and 770 Mb) were detected on chromosome 2A (Figures 3, 4). Six of the MTAs represented putatively six QTL and one at 699 Mb had an FDR adjusted p-value close to the threshold (0.049) (Supplementary Table 3). Four MTAs (56, 456, 759, and 780 Mb) were identified on chromosome 2B (Supplementary Figure 2 and Figures 3, 4). The three MTAs represented three QTL that explained 2.37-3.93% of the phenotypic variation while the 56 Mb region was close to the threshold (FDR adjusted p = 0.046) (Supplementary Table 3). Three putative QTL represented by three significant MTAs (9, 313, and 344 Mb) were identified on chromosome 3A using FarmCPU (Figures 3, 4). The phenotypic variance explained by the two MTAs at 313 and 344 Mb was 3.25 and 2.98%, respectively, and was very low for the 9 Mb region (data not shown). All the significant MTAs identified on chromosomes 1A, 1B, 2A, and 2B were identified at a single testing environment and using either one of the two models.Five significant MTAs (38, 55, 97, 213, and 724 Mb) representing three QTL were detected on chromosome 3B. The MTA at 55 Mb was identified at a single environment using MLM and it explained 4.04% of the phenotypic variation. The 97 Mb region identified using MLM was consistent across four (ETOS18, ETMS18, ETOS19, KNMS18) of the five testing environments and it explained 3.91-4.81% of the phenotypic variation (Supplementary Tables 2-6). The QTL at 724 Mb was consistent across two testing environments (ETOS18 and KNMS18) and the two models (Table 2). This QTL (724 Mb) explained 3.28% of the phenotypic variation on average (Supplementary Table 3). The two MTAs at 38 and 213 Mb were close to the FDR threshold (FDR adjusted p = 0.04) (Supplementary Table 3). Two significant MTAs representing two putative QTL were identified on chromosome 4A using MLM. The 619 Mb region was consistent in all the five testing environments and explained 5-7.84% of the phenotypic variation while the association at 651 Mb region was detected in a single environment and explained 3.99% of the phenotypic variation (Supplementary Table 3-7). Two significant MTAs (8 Mb and 35 Mb) representing two putative QTL were detected on chromosome 5A using FarmCPU. These two MTAs were identified in one testing environment (Supplementary Table 2) and explained only 2.66 and 1.71% of the phenotypic variation, respectively (data not shown). Seven MTAs (at 12,13,581,671,688,691,and 692 Mb) representing five QTL were identified on chromosome 5B (Figures 3, 4 and Supplementary Figures 2, 3). The QTL represented by the MTAs at 12 Mb and 13 Mb (LD, r 2 = 0.46) was identified using FarmCPU in KNMS18 and ETOS18, respectively (Supplementary Table 2). This QTL explained 2.6% of the phenotypic variation on average (data not shown). The QTL at 581 Mb was consistently identified by MLM and FarmCPU in KNMS19 and explained 5.56% of the phenotypic variation. Two QTL represented by single markers at 671 Mb and 688 Mb regions explained 3.17 and 3.63% of the phenotypic variation, respectively, and both were identified in one testing environment and one of the two models (Supplementary Tables 2, 3). The QTL at 691 Mb and 692 Mb identified by FarmCPU (LD, r 2 = 0.86) was consistent across four of the five testing environments (Table 2).On chromosome 6A, 52 significant MTAs representing five putative QTL were identified using MLM and FarmCPU (Supplementary Tables 2-8). The MTA at 592 kb identified using FarmCPU was consistent across two environments (Table 2) and explained 2.68% of the phenotypic variation on average (data not shown). This marker (592,006 bp) was in strong LD (r 2 = 0.89) with a significant marker at 4 Mb (4,914,394 bp) identified using FarmCPU which explained 3.18% of the phenotypic variation. An MTA identified by FarmCPU in a single environment at 1.4 Mb explained 3.18% of the phenotypic variation (data not shown). A QTL at 28 Mb was consistently identified at two testing environments and explained 4.42% of the phenotypic variation on average while the 334 Mb region was consistent across all the five testing environments and explained 3.52-7.39% of the phenotypic variation (Supplementary Table 4). Forty-five MTAs extending from 606 to 615 Mb represented one putative QTL on chromosome 6A that explained 3.38-9.79% of the phenotypic variation. All the significant markers identified on chromosome 6A that extended from 598 to 615 Mb except one marker at 612 Mb were in LD with the Sr13 marker (r 2 = 0.10-0.40) (Figure 5). The 598 Mb region was identified in a single environment and contributed less to the variation in the phenotype (R 2 = 1.62%). Twenty-three MTAs identified by MLM extending from 609 Mb to 615 Mb were consistent across two to four testing environments (Supplementary Table 4), whereas nine MTAs from 606 to 615 Mb were consistently identified by MLM and FarmCPU (Supplementary Tables 2-7). One MTA at 612 Mb was consistently identified across three testing environments using FarmCPU (Table 2). From the MTAs on chromosome 6A that extended from 606 to 615 Mb, the most significant markers were located at 612 Mb (612,802,438 bp) (p = 1.01E-07) for ETOS18, at 611 Mb (611,495,915 bp) for ETMS18 (p = 8.47E-07) and ETOS19 (p = 5.61E-10), at 612 Mb (612,043,936 bp) for KNMS18 (p = 3.13E-09), and KNMS19 (p = 3.71E-09). The marker at 611 Mb (611,495,915 bp) was consistent across two testing environments and the two models. This MTA explained 5.31-9.49% of the phenotypic variation and this marker was in weak to strong LD (r 2 = 0.12-0.75) with 22 significant markers that extended from 598 Mb to 610 Mb (Figure 5). The MTA at 612 Mb (612,043,936 bp) was consistently identified across four environments using MLM and three testing environments using FarmCPU (Supplementary Table 4 and Table 2). This MTA explained 3.44-9.79% of the phenotypic variation across the test environments. The other most significant marker at 612 Mb (612,802,438 bp) was consistent across three environments and the two models; it explained 4.94-9.29% of the phenotypic variation. This marker was in weak to strong LD (r 2 = 0.14-0.96) with 20 significant markers that extended from 612 to 615 Mb on chromosome 6A (Figure 5).Six significant MTAs were detected on chromosome 6B (Figures 3, 4 and Supplementary Figure 2). A QTL at 30 Mb and 31 Mb (LD, r 2 = 0.33) identified using FarmCPU was consistent across two seasons in Ethiopia (Table 2) and explained only 2.36% of the phenotypic variation on average (data not shown). The MTAs at 666 and 692 Mb were identified in single environments using FarmCPU (Supplementary Table 2). The QTL at 666 Mb explained 2.35% of the phenotypic variation while the 692 Mb region contributed very low to the phenotypic variation (data not shown) and had low MAF (0.053). A QTL at 686 Mb and 687 Mb (LD, r 2 = 0.64) was identified using MLM in ETOS19 and explained 3.72% of the phenotypic variation on average (Supplementary Table 5).On chromosome 7A, 60 significant MTAs were identified using MLM and FarmCPU (Figures 3, 4 and Supplementary Figures 2, 3). Four MTAs at 43, 117, 139, and 285 Mb regions were inconsistent across the testing environments and the two models. The remaining MTAs that extended from 668 to 727 Mb (55 Markers) explained 3.42-10.38% of the phenotypic variation (Supplementary Tables 3-7). These markers were in weak to strong LD and may represent the same QTL (Figure 6). On chromosome 7A, 23 MTAs that extended from 690 to 724 Mb identified using MLM were consistent across two to five testing environments (Supplementary Table 4). Two MTAs (700 and 717 Mb) were consistently identified by MLM and FarmCPU in all the five testing environments (Table 2). The markers at 700 Mb (700,805,183 bp) and 717 Mb (717,518,884 bp) were identified as the most significant markers in each of the testing environments using MLM and FarmCPU (Supplementary Tables 2-7). The MTA at 700 Mb explained 5.25-9.05% the phenotypic variation across the five testing environments (average = 7.13%) while the one at 717 Mb explained 5.06-10.38% of the phenotypic variation across the five testing environments (average = 7.66%). These two markers (700 and 717 Mb) were in strong LD (r 2 = 0.83) (Figure 6). Five MTAs representing four QTL were identified on chromosome 7B. Two QTL at 46 and 717 Mb detected by FarmCPU and one QTL at 707 Mb detected by MLM were identified in single environments. A QTL at 622 and 644 Mb (LD, r 2 = 0.64) identified by MLM was consistent across four of the five environments and explained 3.78-5.77% of the phenotypic variation (Supplementary Tables 2-7).The characterization and identification of widely effective resistance available in breeding program's elite pool is valuable for addressing the stem rust problem in durum wheat. In the current study, we evaluated the reaction of a panel of 283 elite durum wheat lines and cultivars representing the CIMMYT germplasm pool to multiple races of stem rust in East Africa and mapped a number of previously reported and novel genomic regions associated with field resistance to the locally prevailing races (Lists of Pedigrees: Supplementary Table 9).The skewed distribution of the lines toward the resistance side in all testing environments except in ETOS18 could be due to the differences in race compositions across the testing environments (Figure 1). In contrast to races in Kenya which are less virulent on durum wheat, those in Ethiopia are composed of races such as the JRCQC with combined virulence to the most deployed stem rust resistance genes/alleles (Sr13b and Sr9e) in worldwide durum wheat germplasm and cultivars (Olivera et al., 2012). The similar frequency distribution of the CI of the lines in ETMS18 and ETOS19 to that of the two seasons in Kenya is not expected (Figure 1). The possible explanation for this result is that the spores collected in the previous season to inoculate the ETMS18 and ETOS19 trials are possibly composed of high frequency of durum avirulent races than virulent ones. Among the resistant lines across the five testing environments, 85 lines were likely carrying Sr13 and Lr46 which showed resistance against multiple stem rust races in single testing environment (15.5%) and all the five testing environments (14.3%) (Supplementary Table 1). This inconsistency in the response across environments while carrying these two genes could be due to the seasonal variation in race composition, race specificity of R-genes/alleles such as the alleles of Sr13 since the marker used for screening of the lines for this gene was not allele specific and the subjectivity of disease scoring may also contribute. Lines lacking Sr13 and Lr46 that showed resistance to multiple-races across the testing environments may carry other resistance genes. These lines harboring widely effective field resistance would represent potentially useful parents that can be utilized in durum wheat breeding programs. Moreover, the risk of introducing linked undesirable alleles in utilizing these lines as sources of resistance in durum wheat breeding programs is unlikely since the study population is a collection of breeding lines from the CIMMYT durum wheat breeding program. Evaluating the multiple race resistant lines for agronomic performance and combining more resistance genes/alleles to the best performing lines can increase durability of resistance to stem rust in future varieties.The population structure in the current study panel was minimal indicated in the PCA plot and the variance explained by the two PCs (Figure 2). This could be because our study population was a panel of breeding lines sourced only from CIMMYT. The resolution of GWAS mapping relies on the level of LD, which can vary based on the population used for study (Chao et al., 2017). For our population, the decay of LD varied across chromosomes of both sub-genomes with an average of 4.5 Mb for the A subgenome and 4.6 Mb for the B sub-genome (Supplementary Figure 1). The average LD of the A sub-genome (r 2 = 0.39) and B sub-genome (r 2 = 0.40) was not divergent (p = 0.6961) which may indicate comparable selection pressure for important agronomic traits in the two sub-genomes of the durum panel. Chromosomes 2A and 4B had the slowest in the rate of LD decay (∼8 Mb) (Supplementary Figure 1) indicating that the mapping resolution on these chromosomes is low although chromosome 4B did not contain any significant MTAs. Studies on LD patterns in durum wheat were reported using low density markers (Letta et al., 2013(Letta et al., , 2014) ) and some using relatively high density markers (SNP markers) (Mengistu et al., 2016;Chao et al., 2017) on worldwide durum wheat collections and landraces. Although the decay of LD in these studies was described in genetic distances which may be difficult to compare with our results, it was reported that LD can vary from 5 cM in diverse breeding lines to 20 cM in worldwide collections (Chao et al., 2017).The comparison of our results with previous linkage mapping and association mapping studies on resistance to multiple races in East Africa and few others from different regions of the world validated many of the significant MTAs identified in our study (Supplementary Tables 2-8). Many of the MTAs in our study were consistent across two to five seasons (Table 2 and Supplementary Table 8) indicating the reliability of the results of our GWAS analyses and effectiveness of resistance to multiple stem rust races though seasonal variability in the frequency of race compositions is inevitable in the respective regions of evaluation as indicated in the differences in the mean responses of the population across the five environments (Table 1).Three significant markers (95, 144, and 485 Mb) were identified on chromosome 1A (Figure 3 and Supplementary Figure 2). Markers IWB57448 and IWA8622 reported by Bajgain et al. (2015b), one of the flanking markers of a QTL identified by Bhavani et al. (2011) (wPt-734078), and markers IWA2057 and IWA5702 reported by Gao et al. (2017) tagging Sr31 for resistance to TTTTF and TRTTF were not close to the markers we identified on 1A. These three markers were in linkage equilibrium. The MTAs at 95 and 485 Mb may represent novel QTL while the 144 Mb region was on the threshold line (FDR adjusted p = 0.04) (Figure 3) which makes this association unreliable and it could be false positive.On chromosome 1B, four significant MTAs were detected (Figure 4 and Supplementary Figure 2). The marker at 546 Mb is close to barc61 (2.7 Mb away) reported by Letta et al. (2014) for seedling resistance of durum accessions to TRTTF, TTTTF, and TTKSK while the marker at 620 Mb region is 2.2 Mb away from barc81 reported by the same author for seedling resistance to races TTTTF and TTKSK and may tag the same QTL. The MTA at 183 Mb is 3 Mb away from IWB9794 reported by Bajgain et al. (2015b) for seedling resistance of spring wheat to TRTTF, but this marker had an FDR adjusted p-value close to threshold (0.045) while the MTA at 587 Mb is 1.5 Mb away from IWB40197 reported by Edae et al. (2018) for seedling resistance of spring wheat to race QFCSC likely representing the same locus. Chromosome 1BL is known to harbor the adult plant leaf rust resistance gene Lr46, that is tightly linked to the APR gene for stem rust, Sr58. However, one of the flanking markers to Lr46, wmc44 and the same marker reported by Letta et al. (2014) for seedling resistance of durum wheat to TTTTF and JRCQC are further away from the marker we detected. Screening of the lines with the KASP marker designed for Lr46 (CIMwMAS0085) 2 indicated that 46% of the lines are expected to carry Lr46/Sr58, however, this locus was not significant in our study. This may be because of the confounding effect of major gene resistances in our population as the lines were evaluated for field response regardless of their seedling response or the Lr46 marker may not be predictive.We identified seven significant MTAs on chromosome 2A (Figures 3, 4). The MTA at 20 Mb detected in ETOS18 is close to wPt-5839 (386 kb away) reported by Letta et al. (2014) for seedling resistance of durum wheat accessions to TRTTF, TTTTF, and TTKSK likely representing the same QTL. No known marker close to the QTL at 67, 78, 135, 728, and 770 Mb regions was reported previously. Therefore, these five markers are representing putatively novel loci. One MTA at 699 Mb with an FDR adjusted p-value close to the threshold (0.049) is likely to be false positive (Supplementary Table 3). Chromosome 2A is known to host Sr21 and Sr38 transferred to hexaploid wheat from Triticum monococcum and Triticum ventricosum, respectively (Singh et al., 2011;Chen et al., 2018). About eight lines in the panel possess Sr38 (Ammar, personal communication, 2020) but it is unlikely to be detected due to the MAF below the threshold. Both Sr21 and Sr38 are ineffective against the Ug99 lineages (predominant in Kenya), TKTTF and JRCQC (predominant in Ethiopia) (Olivera et al., 2015).On chromosome 2B, four significant markers were identified (Figures 3, 4). The MTA at 759 Mb is close (8 Mb away) to marker wmc361 reported by Letta et al. (2013) and Yadav et al. (2015) likely representing the region of SrWeb/Sr9h. SrWeb/Sr9h is effective against Ug99 (Jin et al., 2007;Rouse et al., 2014a) and this MTA (759 Mb) was identified in KNMS19 where Ug99 is predominant. The MTA at 780 Mb is 7.4 Mb away from wmc356 reported by the same author for APR of durum wheat to Ug99 that co-locates with the region of Sr28/Sr16. Several markers were reported by a number of authors on chromosome 2B (Letta et al., 2013(Letta et al., , 2014;;Yu et al., 2014;Bajgain et al., 2015b;Chao et al., 2017;Gao et al., 2017;Edae et al., 2018), but none are close to the remaining two significant markers. The 456 Mb region may represent a novel locus but identified in one season only while the 569 Mb region had an FDR adjusted p-value close to the threshold (0.046) which may indicate unreliable association (Supplementary Tables 2, 3). Chromosome 2B is known to carry the alleles of Sr9 (Sr9a, Sr9b, Sr9d, Sr9e, Sr9f, Sr9g, SrWeb/Sr9h), Sr28, Sr36, and Sr16. Among the seven alleles of Sr9, five of them are ineffective against Ug99 while Sr9e is reported to be inconclusive (Jin et al., 2007;Rouse et al., 2014a). Sr9a, Sr9d, Sr9e, and Sr9g are ineffective against JRCQC and TKTTF (Olivera et al., 2012). Sr28 is effective against Ug99 but Sr16 is not (Rouse et al., 2014a). Sr36 confers resistance to TTKSK and TTKST (Jin et al., 2007;Rouse et al., 2014a) but ineffective to TTTSK (Ug99 lineage), TTRTF and TKTTF (Jin et al., 2009;Olivera et al., 2012Olivera et al., , 2015) ) and this gene was transferred to common wheat from Triticum timopheevi (Jin et al., 2009) and it is unlikely to exist in the durum wheat panel.Three significant markers (9, 313, and 344 Mb) were identified on chromosome 3A (Figures 3, 4). Markers wPt6854 and barc12 reported by Letta et al. (2013) are close to the marker at 9 Mb (5 Mb away) indicating that this marker may represent the same region though identified in one season only.Markers wmc264, wPt-8203, barc1177, and wmc388 reported by Letta et al. (2013Letta et al. ( , 2014) ) are further away from the remaining two markers on 3A. So, the MTAs at 313 and 344 Mb may represent novel loci for field resistance to Pgt races in Ethiopia albeit both were identified in one season. Chromosome 3A is known to host Sr27 and Sr35, and both are effective against Ug99 (Jin et al., 2007;Rouse et al., 2014a). Sr35 was transferred from Triticum monococcum to common wheat (Zhang et al., 2010) while Sr27 was transferred from rye to common wheat (Jin et al., 2009;Letta et al., 2013). None of these wild relative-derived genes are known to have been introgressed into the CIMMYT durum germplasm.Five significant MTAs were identified on chromosome 3B (Supplementary Tables 2, 3). Markers wPt-0365 and wPt-6802 reported by Yu et al. (2014) tagging Sr12 is 14 Mb away from the MTA at 724 Mb. Flanking markers of Sr12 (wPt-0544 and wPt-6047) reported by Rouse et al. (2014b) are further away from the 724 Mb locus. However, this marker lies between the regions reported by Yu et al. (2014) and Rouse et al. (2014b) indicating that it could be representing Sr12. Rouse et al. (2014b) reported that Sr12 confers resistance to Ug99 (TTKSK) at adult plant stage when combined with other resistance loci in a QTL study of Thatcher/McNeal RIL population. Although no significant interaction was observed with any of the known Sr genes postulated in our GWAS result, significant interactions were observed between the marker at 724 Mb region and QTL on chromosome1B (at 620 Mb) (p = 0.020903) and 5B (688 Mb) (p = 0.013911) for resistance to multiple races in Ethiopia and Kenya, respectively. The MTA at 9 Mb region that was consistently identified in four of the five testing environments using MLM was not close to any of the previously reported markers suggesting that it may represent a novel locus unidentified by FarmCPU (Supplementary Table 8). The remaining three MTAs were identified in one season only. One of the three markers at 213 Mb region had FDR adjusted p-value close to the threshold (0.042) (Supplementary Table 3) and this marker is close to wmc43 (4.5 Mb away) reported by Letta et al. (2014) but less reliable. The MTA at 55 Mb region is 14 Mb away from wPt-6945 reported by Yu et al. (2011) likely identified the same region. No known marker close to the MTA at 38 Mb region was reported previously and this marker had an FDR adjusted p-value close to the threshold (0.036) which makes this association less reliable. The short arm of chromosome 3B is known to harbor the known APR gene, Sr2 but this gene is not present in the CIMMYT durum germplasm as confirmed by the screening of the panel using KASP marker designed for Sr2 (Sr2_ger93p, Mago et al., 2011) and the absence of the pseudo black chaff trait (morphological marker for Sr2) in any of the lines in greenhouse and field.Two significant MTAs (619 and 651 Mb) were identified on chromosome 4A (Supplementary Tables 3-7). The region at 651 Mb is 1.5 Mb away from one of the flanking marker (wPt -5857) of a QTL on chromosome 4AL reported by Yu et al. (2014) on Ug99 resistance consensus map of wheat and likely identified the same locus. None of the markers reported by Letta et al. (2014), Yu et al. (2011Yu et al. ( , 2014)), and Bajgain et al. (2015b) are close to the marker at 619 Mb region indicating that this marker is likely representing a novel resistant locus. Chromosome 4A hosts the alleles of Sr7 (Sr7a, Sr7b). Sr7a confers resistance against race TKTTF (Olivera et al., 2015) whereas Sr7b is effective against race JRCQC (Olivera et al., 2012).Two significant markers were identified on chromosome 5A at 8 and 35 Mb regions (Figures 3, 4). Markers IWA1062, IWA5040, and IWA5368 reported by Chao et al. (2017) for seedling resistance of durum wheat accessions to races TTRTF, JRCQC, and bulk races in Debre Zeit, Ethiopia; IWB47184, IWA2224, IWA2836, and IWB34927 reported by Bajgain et al. (2015b) for APR of spring wheat to Ug99 and seedling resistance to TKTTF; barc165 reported by Letta et al. (2014) for seedling resistance of durum wheat accessions to race JRCQC are not close to the markers we detected on 5A. These two markers likely represent novel loci for field resistance to multiple races in Ethiopia and Ug99 lineages in Kenya, but they were identified in one season.On chromosome 5B, seven significant MTAs were identified (Figures 3, 4). Bansal et al. (2014) reported markers sun209 and sun479 flanking Sr49 which is effective against all the races in Australia. The MTA at 691 Mb co-locates with sun479 (530 kb away) while 692 Mb region co-locates with sun209 (485 kb away). These two markers (691 Mb and 692 Mb) were consistent across four of the five seasons though limited by the low MAF (0.053 on average) which indicates that this gene is rare in the panel (Supplementary Table 2). The 691 Mb locus was detected for resistance to TKTTF at the seedling stage (manuscript on preparation) indicating that these two markers are representing an all stage multiple-race specific resistance gene likely Sr49. Bhavani et al. (2011) reported flanking markers wPt0750 and wPt5896 on chromosome 5BL in biparental mapping (PBW343/Juchi) for APR to Ug99 in hexaploid wheat. The MTA at 581 Mb identified in KNMS19 using both models, is close to these flanking markers (∼5-6 Mb away) and was detected at the adult plant stage in Kenya only. Hence, this marker is likely tagging the same locus as Bhavani et al. (2011). One of the flanking markers (wPt8604) of a QTL reported by Yu et al. (2014) on the Ug99 resistance consensus map of wheat is 7 Mb away from two MTAs identified at 13 and 12 Mb regions likely representing the same QTL (Figures 3, 4). A number of markers have been reported by several authors on chromosome 5B (Letta et al., 2013;Bansal et al., 2014;Yu et al., 2014;Bajgain et al., 2015a;Mago et al., 2015;Chao et al., 2017) but none of them are close to the markers at 688 Mb and 671Mb regions identified in ETOS18 and KNMS19, respectively (Supplementary Tables 2, 3). The long arm of chromosome 5B hosts the adult plant resistance gene Sr56 and an all stage resistance gene Sr49 (Bansal et al., 2014(Bansal et al., , 2015)). Both durum and common wheat can have Sr56. However, markers linked to Sr56 reported by Bansal et al. (2014Bansal et al. ( , 2015) ) are further away from the MTAs at 671Mb and 688 Mb. Therefore, these two markers may represent novel loci for field resistance to races in Kenya and Ethiopia although detected in only one season.On chromosome 6A, 52 significant MTAs representing five QTL mapped the regions of previously reported loci and novel loci (Supplementary Tables 2-7). None of the markers reported by Letta et al. (2013Letta et al. ( , 2014)), Bajgain et al. (2015b), andChao et al. (2017) are close to the MTA at 592 kb region. Markers IWA7913, IWA7006, IWB23519 reported by Bajgain et al. (2015b) and Gao et al. (2017) for seedling resistance of spring wheat to race TRTTF and BCCBC are very close to an MTA at 4 Mb region (∼3-5 kb away). Guerrero-Chavez et al. (2015) reported that these markers are linked to Sr8a. Marker IWB72958 reported by Nirmala et al. (2017) is linked to Sr8155B1 in durum wheat that is effective against TTKST and TRTTF and this marker is ∼4.8 kb away from the marker at 4 Mb region. Moreover, Sr8155B1 was reported effective against races in Njoro, Kenya but not effective against races in Debre Zeit, Ethiopia (Nirmala et al., 2017). Similarly, the MTA at 4 Mb region was identified for adult plant resistance of durum lines in Kenya only where race TTKST is predominant. This indicates that the MTA at 4 Mb likely maps the region of Sr8155B1. The marker at 592 kb was in strong LD (r 2 = 0.89) with the 4 Mb region. However, the 592 kb region was associated with resistances to races in Ethiopia where the virulent races to Sr8155B1 (JRCQC and TTKSK) are predominant indicating that this MTA may represent a new allele at the Sr8 locus or a novel gene linked to the Sr8 locus. The high LD between these two loci may indicate limited recombination rate in the regions or the resistance alleles might be selected together. Markers wPt1742 and wPt1377 reported by Letta et al. (2013) for field resistance of durum wheat accessions to Ug99 are close to (∼765 and 845 kb away). An MTA at 1.4 Mb identified for field resistance in ETOS18 (Supplementary Table 2). Markers IWA272, IWB64917, IWB64918, IWB5029, IWB35595, IWB43808, IWB72956 reported by Bajgain et al. (2015b) for seedling resistance of spring wheat to TRTTF are 1 Mb away from the MTA at 1.4 Mb indicating that this MTA likely maps the region of Sr8a though identified in one season only. It is known that the short arm of chromosome 6A hosts the alleles of Sr8 (Sr8a and Sr8b) and Sr8a confers resistance to the predominant races in Ethiopia, TRTTF (Jin et al., 2007;Nirmala et al., 2017) and JRCQC (Olivera et al., 2012) but both alleles are ineffective against TTKSK and TTKST at seedling and adult plant stage (Jin et al., 2007). No known marker close to the markers at 28, 189, and 334 Mb regions of chromosome 6A (Supplementary Tables 3-7) was previously reported. The MTAs at 28 Mb and 334 Mb regions likely represent new loci whereas the one at 189 Mb was identified in one season only and is on the FDR threshold line (Supplementary Figure 2) which makes this association less reliable. All the significant markers identified on chromosome 6A from 606 to 615 Mb regions collocate with markers tagging Sr13 region including CD926040 and barc104 reported by several authors (Simons et al., 2011;Letta et al., 2013Letta et al., , 2014)), IWA4918 reported by Chao et al. (2017), IWA7495 reported by Gao et al. (2017) for seedling and adult plant resistance to multiple Pgt races, and the flanking markers of Sr13, CJ671993, and CJ641478 reported by Zhang et al. (2017). Therefore, the MTAs extended from 606 Mb to 615 Mb regions of chromosome 6A likely represent Sr13/alleles. It is known that Sr13 is an all stage resistance gene to the Ug99 lineages. The higher percentage of lines (69%) carrying Sr13 on marker screening may indicate the wide usage of this gene in CIMMYT durum wheat breeding program. This result is proven by the higher frequency (27-85%) of the favorable alleles at the Sr13 locus. However, more than one allele is expected as indicated in the differences in allele frequencies and the LD between nearby markers (Supplementary Tables 3-7 and Figure 5). The alleles, Sr13a and Sr13c confer resistance to the most virulent races of durum wheat including JRCQC and TTRTF and to the Ug99 lineages (Olivera et al., 2019, Olivera, personal communication, 2020) while Sr13b confers resistance against TTKSK, TKTTF, TRTTF (Zhang et al., 2017;Randhawa et al., 2018) but is ineffective against JRCQC and TTRTF (Zhang et al., 2017). Three MTAs, at 611 and 612 Mb (two at 612 Mb) identified as the most significantly associated markers for field resistance to multiple races (Supplementary Tables 2, 3) in the different testing environments were also identified at the seedling stage (manuscript on preparation). These markers could potentially be used to identify the different alleles of Sr13 although further study and validation on different populations will be needed. In some cases, the LD between the significant markers identified on chromosome 6AL at the Sr13 region was slightly below the threshold or weak (Figure 5), suggesting that the region could be a recombination hotspot which can lead to low intra-chromosomal LD.On chromosome 6B, six significant MTAs representing four putative QTL were identified (Supplementary Tables 2, 5). Several markers (IWB24880, IWB46893, IWB48548, IWB71190, IWB47075) reported by Bajgain et al. (2015b) for seedling resistance of spring wheat to TKTTF, and IWB35697 for adult plant resistance to Ug99 in Ethiopia and Kenya, are close to the MTA at 692 Mb (229 kb-2 Mb away). Marker KASP_6BL_IWB72471 reported by Nirmala et al. (2016) as a predictive marker for Sr11 is 2 Mb away from this marker indicating that it is likely mapping the Sr11 locus. However, Sr11 is ineffective against TTKSK, JRCQC, and TRTTF at the seedling stage and is effective against TKTTF (Jin et al., 2007;Olivera et al., 2012) which is among the predominant races in Ethiopia where the association was identified (ETOS19). It is known that residual effects of ineffective major gene resistances are among the possible mechanisms of field quantitative resistance. Two MTAs at 686 and 687 Mb region were in strong LD (r 2 = 0.64) and represent the same QTL (Supplementary Table 5). Several markers reported by Bajgain et al. (2015b) are close to these two markers. The closest markers, IWA4245 and IWA4246 are 502 kb away from the 686 Mb locus while IWB59175.2 is 196 kb away from 687 Mb region indicating that the two markers may represent the same region as the one reported by Bajgain et al. (2015b). None of the markers reported by Bajgain et al. (2015b), and markers wPt1541, barc79, wPt4930, wPt5333, and wPt5037 reported by Yu et al. (2014) are close to the MTAs at 31 Mb, 30 Mb and 666 Mb regions. The two markers at 31 Mb and 30 Mb regions were in LD (r 2 = 0.33) indicating that they represent the same QTL in the short arm of 6B which is likely novel and the MTA at 666 Mb region could also be representing a novel locus (Supplementary Table 2).We identified 60 significant MTAs on chromosome 7A (Supplementary Tables 2-7). The markers that extended from 668 to 727 Mb were in LD and may represent a single QTL (Figure 6). The 700 and 717 Mb regions were identified in multiple seasons (Supplementary Table 8) suggesting that these markers are tagging a multiple-race resistance locus. Markers IWB5070, IWB1874, IWB4830, and IWB62560 reported by Bajgain et al. (2015b) for adult plant resistance of spring wheat to Ug99 are 2 Mb away from the MTA at 700 Mb region. Marker IWB48466 reported by the same author is 5 Mb away from the MTA at 717 Mb region. Marker IWA2270 reported by Chao et al. (2017) for resistance of durum wheat accessions to race TTTTF tagging the Sr22 locus co-locates with the MTA at 673 Mb (∼5 kb away). These three markers (673,700,and 717 Mb) were in moderate to strong LD (r 2 = 0.37-0.83) indicating that these MTAs are representing the region of Sr22. This gene confer resistance to TTKSK (Jin et al., 2007), JRCQC and TRTTF (Olivera et al., 2012) and transferred from T. monococcum (Olson et al., 2010). The resistance allele at the Sr22 locus is probably rare in the study population as observed in the frequency of the favorable alleles (Supplementary Tables 2-7). Some of the lines in the panel (∼10 lines) poses Sr25 (Ammar, personal communication, 2020). However, it is unlikely to identify the Sr25 locus due to MAF below the threshold (0.05). Sr25 and Sr22 come with severe yield penalties in durum wheat (Ammar, personal communication, 2020). So, breeders should be prepared to conduct several cycles of selection to use these gene with minimal to no performance penalties. None of the markers listed earlier including markers IWA7200 reported by Chao et al. (2017), barc70 and wmc479 reported by Letta et al. (2013), Xbarc121 reported by Yu et al. (2014) are close to the MTAs at 43, 117, 139, and 285 Mb regions of chromosome 7A and these MTAs were identified in one season only. Moreover, two of the regions had FDR adjusted p-value close to the threshold (Supplementary Table 2, 5) indicating that these loci could be false positives.On chromosome 7B, we identified five significant MTAs (Supplementary Tables 2-7). The MTA at 717 Mb is 8 Mb away from IWB47548 and IWA4175 reported by Bajgain et al. (2015b) for adult plant resistance of spring wheat to Ug99 indicating that this MTA is likely representing the same locus. The MTA at 644 Mb is 7 Mb away from an SSR marker linked to Sr17 (wmc517) reported by Letta et al. (2014) for seedling resistance of durum wheat accessions to races TTTTF and TTKSK. So,this MTA (644 Mb) and an MTA at 622 Mb (LD, r 2 = 0.64) likely represent Sr17. The consistency of these two MTAs across three seasons may indicate the reliability of association although the resistance allele at this locus is rare in the population (only 7% of the lines/19 lines carry the resistance allele on average). Markers wmc182, wmc517, wPt1715, wPt4298, wPt7191, wPt4045 reported by Letta et al. (2013), and marker wPt1149 reported by Yu et al. (2014) are further away from the MTA at 46 Mb region and this region is likely novel. The MTA at the 707 Mb is 2 Mb away from IWB47548 and IWB4175 reported by Bajgain et al. (2015b), but the FDR adjusted p-value was close to the threshold (0.047) which makes this association less reliable. We identified nine significant MTAs on an unknown chromosomal location (Supplementary Tables 2-7). Four of the nine MTAs were identified in one season only while the remaining five were identified in three to five seasons and we were unable to find a location for these markers.Overall, a number of lines were consistently resistant across the five seasons in the two hotspot regions (Ethiopia and Kenya) and can be used as sources of resistance to multiple stem rust races in East Africa. Once these lines are evaluated for agronomic performance, combining more resistance alleles and/or genes to the best performing lines may increase durability of resistance to potentially emerging races. Among a total of 160 significant MTAs identified using MLM and FarmCPU with known chromosomal locations and grouped to 42 QTL, 21 QTL are putatively novel and the remaining 21 are mapped to previously reported regions. The regions representing Sr12, Sr13/alleles, Sr17, Sr22, and Sr49 are among the known resistant genes consistent in two to five seasons for resistance to multipleraces in East Africa. Sr13 was more frequent in the population while Sr12, Sr17, Sr22, and Sr49 were less frequent. Novel loci consistent across multiple seasons were also identified on chromosomes 3B, 4A, 6A, and 6B and the resistance alleles at the loci on chromosomes 3B, 4A, and 6A were less frequent. Therefore, breeders should try to retain these rare genes/alleles during the selection process in future breeding plans. The markers identified in the current study once validated and optimized for high-throughput platforms, can be used in markerassisted selection to combine sources of resistance to stem rust in durum wheat. The information on the available sources of resistance in this panel is also useful for future deployment of the resistance sources in durum wheat breeding programs. The region of Sr13 on chromosome 6AL is wider and the extent of LD is complex. Therefore, allelism tests and further studies on the validation of potential allele specific markers for Sr13 are needed.","tokenCount":"11187"} \ No newline at end of file diff --git a/data/part_3/4759025403.json b/data/part_3/4759025403.json new file mode 100644 index 0000000000000000000000000000000000000000..ee591a143fd829ca71c861962a7cafc34946addd --- /dev/null +++ b/data/part_3/4759025403.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"85a59ba95daea2813457adc5ac3e8e55","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/ac2a4dab-0fd6-4cb0-a911-febab05eaf0b/retrieve","id":"1310123949"},"keywords":[],"sieverID":"29d385f3-b2ac-4a71-a48e-e042c1fc5e05","pagecount":"88","content":"Cuốn \"Sổ tay hướng dẫn Đánh giá nguy cơ hóa học trong an toàn thực phẩm\" được biên soạn bởi Nhóm hành động về đánh giá nguy cơ an toàn thực phẩm -Taskforce. Nhóm có sự tham gia của các chuyên gia về an toàn thực phẩm từ các cơ quan, viện nghiên cứu, trường đại học, như: Cục An toàn Thực phẩm, Đại học Y tế công cộng, Viện Kiểm nghiệm An toàn Thực phẩm, Viện Dinh dưỡng, Viện Vệ sinh dịch tễ Trung ương, Cục Thú y, Viện Thú y, Học viện Nông nghiệp Việt Nam. Trong quá trình thu thập thông tin và biên soạn cuốn sổ tay, nhóm tác giả đã nhận được sự quan tâm, góp ý, thảo luận và cung cấp tài liệu hữu ích từ các chuyên gia của các đơn vị liên quan để hoàn thiện cuốn sổ tay.Chúng tôi xin cám ơn Cơ quan Hợp tác Phát triển Thụy Sỹ (SDC), Đại sứ quán Thụy Sỹ tại Việt Nam, Viện Nghiên cứu Chăn nuôi Quốc tế (ILRI) và chương trình nghiên cứu CGIAR CRP A4NH đã hỗ trợ về kinh phí và kỹ thuật trong quá trình biên tập cuốn sổ tay này.Chúng tôi mong muốn nhận được các ý kiến đóng góp của quý độc giả và các đồng nghiệp để cuốn sổ tay tiếp tục được hoàn thiện hơn. Đảm bảo thực phẩm an toàn để bảo vệ sức khỏe con người và sự phát triển ổn định của kinh tế, xã hội là yêu cầu quan trọng trong chiến lược phát triển của mỗi quốc gia. Do vậy, đánh giá nguy cơ đối với các sản phẩm nông nghiệp nói chung và an toàn thực phẩm nói riêng đã được triển khai rộng rãi tại nhiều nước trên thế giới và mới bắt đầu triển khai tại Việt Nam trong những năm gần đây. Đề án xây dựng hệ thống cảnh báo nhanh về phân tích nguy cơ và an toàn thực phẩm tại Việt Nam, được Thủ tướng Chính phủ phê duyệt ngày 27/3/2013, là yếu tố quan trọng thúc đẩy quá trình áp dụng các phương thức đánh giá nguy cơ để quản lý an toàn thực phẩm.Từ năm 1991, Tổ chức Nông lương Liên Hợp Quốc (FAO) và Tổ chức Y tế Thế giới (WHO) thông qua Ủy Ban tiêu chuẩn Thực phẩm Codex Quốc tế (CAC) đã bắt đầu đưa các nguyên lý về đánh giá nguy cơ vào các quy trình xây dựng các văn bản, tiêu chuẩn về quản lý an toàn thực phẩm. Năm 2003, CAC đưa ra nguyên lý phân tích nguy cơ và an toàn thực phẩm áp dụng khung phân tích nguy cơ của Codex (Ủy Ban tiêu chuẩn thực phẩm quốc tế), trong đó đánh giá nguy cơ là một cấu phần quan trọng. Nhiều mối nguy an toàn thực phẩm đã được đánh giá và giám sát bằng khung đánh giá nguy cơ và được xuất bản thành các tài liệu chuyên khảo như tuyển tập đánh giá nguy cơ vi vật do WHO và FAO xuất bản. Các mối nguy phổ biến được đánh giá bao gồm Salmonella, Campylobacter, Listeria… với nhiều nhóm thực phẩm khác nhau; các tài liệu chuyên khảo về đánh giá nguy cơ với mối nguy hóa học trong thực phẩm như tài liệu hướng dẫn đánh giá nguy cơ hóa học trong thực phẩm của WHO và FAO (WHO, IPCS, 2009), công cụ đánh giá nguy cơ sức khỏe con người: áp dụng đối với mối nguy hóa học (WHO, IPCS, 2010), hướng dẫn đánh giá nguy cơ hóa học của hội đồng hóa học quốc tế (ICCA, 2011), khung đánh giá nguy cơ sức khỏe môi trường Australia, 2012.Đánh giá nguy cơ hóa học trong thực phẩm có thể mô tả tổng quát về đặc tính của mối nguy và các tác động tới sức khỏe của con người khi phơi nhiễm với các mối nguy này qua ăn uống và các hoạt động tiếp xúc khác. Tổ chức Y tế thế giới trong tài liệu \"Khái niệm và phương pháp đánh giá nguy cơ hóa học trong thực phẩm\", cho rằng đánh giá nguy cơ là cấu phần trọng tâm của khung phân tích nguy cơ. Đánh giá nguy cơ là nền tảng khoa học để định hướng cho quản lý và truyền thông nguy cơ cũng như đưa các quyết định chính sách cần thiết để bảo vệ sức khỏe con người.Bốn bước của đánh giá nguy cơ hoá học trong thực phẩm theo WHO (thông qua thảo luận với JECFA và JMPR) bao gồm: Xác định mối nguy, mô tả mối nguy (bao gồm đánh giá liều đáp ứng), đánh giá phơi nhiễm, và mô tả nguy cơ.Xác định mối nguy được thực hiện theo một quy trình cụ thể từng bước giúp đảm bảo tính đồng nhất của mối nguy khi tiến hành thu thập mẫu nghiên cứu và xác định đầy đủ hồ sơ của mối nguy đó. Quá trình này có thể thực hiện qua các xét nghiệm nhằm phân lập hoặc định loại, định lượng mối nguy trong thực phẩm. Các thông tin từ tổng quan tài liệu cho biết các chỉ số cần thiết trong hồ sơ hóa chất, bao gồm thông tin phân loại hóa chất theo độc tính.Mô tả mối nguy thực hiện mô tả định tính hoặc định lượng đặc tính của mối nguy với các tác động sức khỏe gây ra do mối nguy đó. Các thông số cần được xác định đối với các mối nguy hóa học bao gồm liều không gây ra đáp ứng sức khỏe có thể quan sát được (NOAEL), liều thấp nhất gây ra đáp ứng có hại quan sát được (LOAEL), hệ số gây ung thư (cancer slope factor), mức tiêu thụ hàng ngày chịu đựng được (TDI: tolerable daily intake), mức tiêu thụ hàng ngày chấp nhận được (ADI: acceptable daily intake).Đánh giá phơi nhiễm cần trả lời các câu hỏi nhóm đối tượng bị phơi nhiễm là ai? phơi nhiễm ở đâu? khi nào? bằng cách nào? bao nhiêu? thời gian phơi nhiễm ngắn hay dài?... Đường phơi nhiễm thông thường được đề cập trong các đánh giá nguy cơ an toàn thực phẩm là đường ăn uống. Tuy nhiên, khi triển khai đánh giá tại các khu công nghiệp thì chúng ta có thể quan tâm tới các đường phơi nhiễm khác như đường thở và tiếp xúc qua da. Đánh giá phơi nhiễm cần xác định các thông tin quan trọng như nồng độ hóa chất trong thực phẩm, mức tiêu thụ thực phẩm trung bình hàng ngày để từ đó ước tính được liều nhiễm trong mỗi lần phơi nhiễm.Mô tả nguy cơ là bước cuối cùng của hoạt động đánh giá nguy cơ và được thực hiện dưới nhiều hình thức khác nhau. Cách mô tả nguy cơ phổ biến nhất là so sánh kết quả đánh giá phơi nhiễm với các hướng dẫn hoặc các giá trị khuyến nghị từ các cơ quan quản lý về nguy cơ sức khỏe; hoặc ước lượng các nguy cơ sức khỏe cụ thể khác trong đó, ví dụ ước tính nguy cơ gây ung thư của các hóa chất trong thực phẩm. Quy trình đánh giá nguy cơ hóa học trong thực phẩm được thực hiện dựa trên khung đánh giá nguy cơ do CODEX đề xuất năm 1999Xác định mối nguy là bước đầu tiên của quy trình đánh giá nguy cơ hóa học trong thực phẩm. Bước xác định mối nguy hóa học trong thực phẩm đặt ra nhiều câu hỏi cần trả lời liên quan đến hóa chất, thực phẩm và nguy cơ sức khỏe con người.Hầu hết các thông tin để trả lời các câu hỏi này sẽ được thực hiện thông qua tổng quan tài liệu, khảo sát thực địa và tham vấn chuyên gia.Trong các loại thực phẩm đó, loại nào được sử dụng phổ biến?Tổng quan tài liệu là bước đầu tiên nên thực hiện nhằm thu thập, tổng hợp và phân tích các thông tin liên quan đến chất ô nhiễm trong thực phẩm từ các bài báo khoa học, báo cáo tại hội nghị khoa học, các trang tin điện tử hoặc các cơ sở dữ liệu khác như báo cáo của các nhà máy, công ty chế biến thực phẩm (nếu có).Ví dụ minh họa từ nghiên cứu số 1. Ví dụ từ nghiên cứu số 1Trong nghiên cứu về thực trạng ô nhiễm chì và cadimi trong cá rô phi và rau muống ở sông Nhuệ tại huyện Kim Bảng, tỉnh Hà Nam và nguy cơ sức khỏe. Mô tả mối nguy thực hiện qua tổng quan tài liệu từ y văn, bài báo khoa học, báo cáo kết quả nghiên cứu và các nguồn thông tin đáng tin cậy khác. Thông tin được tổng hợp mô tả các vấn đề sức khỏe như nhiễm chì/ cadimi, nhiễm độc cấp tính chì/cadimi, nhiễm độc mạn tính chì/cadimi liên quan đến ăn uống.-Mô tả những đặc tính cũng như cơ chế hoạt động của tác nhân hóa học trong thực phẩm ảnh hướng đến khả năng gây ra những tác động tiêu cực cho người bị phơi nhiễm.-Mô tả những ảnh hưởng bất lợi tới sức khỏe của người có phơi nhiễm với các tác nhân hóa học gây bệnh.-Mô tả mối quan hệ liều đáp ứng với tác nhân hóa học, tỷ lệ nhiễm và/hoặc mắc các bệnh nếu ăn vào.Qui trình ban đầu -Liều không gây ra tác động có hại quan sát được (NOAEL) là liều mà tại đó không quan sát được bất kỳ một tác động tiêu cực nào tới sức khoẻ.Phương thức đơn giản nhất để có được các chỉ số này là sử dụng khuyến nghị của các cơ quan quản lý hoặc của các tổ chức chuyên môn có uy tín như TCVN, QCVN, WHO, FAO.Ví dụ từ nghiên cứu số 1:Trong ví dụ này, Pb và Cd trong cá và rau muống, theo tham chiếu của Cơ quan bảo vệ môn trường Hoa Kỳ (US. EPA), giá trị NOAEL của Pb và Cd tương ứng là 1,4 mg/kg/ngày và 0,01 mg/kg/ngày; giá trị LOAEL của Pb và Cd tương ứng là 0,5 mg/kg/ngày và 3,5-7,5 mg/kg/ngày. Theo WHO, TDI của Pb và Cd tương ứng là 25 µg/kg/tuần, 25 µg/kg/tháng Ngoài ra, theo quy định của QCVN 8-2: 2011/BYT về ô nhiễm kim loại nặng trong thực phẩm do BYT ban hành, hàm lượng tối đa cho phép của Pb trong rau muống và cá rô phi là 0,3 mg/kg; hàm lượng tối đa cho phép của Cd trong rau muống và cá rô phi tương ứng là 0,2 mg/kg và 0,05 mg/kg. Ngoài ra, chúng ta có thể xác định các dữ liệu về mô tả mối nguy bằng các nghiên cứu thực nghiệm và/hoặc kết hợp với các phương pháp ngoại suy. Tuy nhiên, các phương pháp này tốn kém và liên quan chặt chẽ tới các điều kiện ngặt nghèo trong đạo đức nghiên cứu nên ít được sử dụng Tại mỗi điểm, mẫu rau muống và cá được lấy ngẫu nhiên và đảm bảo tính đại diện mẫu. Mẫu rau muống được lấy ở 5 vị trí khác nhau của bè rau và gộp lại thành một mẫu, bao gồm đủ cả thân, rễ, lá; mẫu cá rô phi lấy ngẫu nhiên cả cá to và cá bé vì kim loại nặng có tính chất tích lũy trong cơ thể.Mẫu rau muống và cá rô phi được lấy lặp lại 3 lần tại cùng một địa điểm, mỗi lần cách nhau 2 tuần để đảm bảo tính đại diện của mẫu trong các điều kiện khác nhau về thời tiết, dòng chảy của sông. Tỷ lệ phát hiện Cd trong rau muống và cá rô phi tương ứng là 100% và 96,3%, hàm lượng nhiễm trung bình là 4,5 µg/kg (1,2 -9,5 µg/kg) và 3,4 µg/ kg (0,1 -5,0 µg/kg).Để đo lường phơi nhiễm cần xác định được đường nhiễm của hóa chất vào cơ thể. Trong trường hợp hóa chất trong thực phẩm thì đường phơi nhiễm chính yếu là đường ăn uống.Trong thực tế, phơi nhiễm có thể được đo lượng một cách trực tiếp, mô hình hóa hoặc tính toán từ số liệu sẵn có. Để áp dụng phương thức tiếp cận phù hợp cần căn cứ vào khoảng thời gian cần thiết để các phơi nhiễm đưa đến kết quả đầu ra là một tác động có hại đến sức khỏe.Trong các phương thức trên, tính toán từ các số liệu sẵn có thường dễ dàng hơn cả nhưng không mang tính đặc thù cho cộng đồng nghiên cứu, đồng thời không phải lúc nào cũng sẵn có. Vấn đề này thường gặp khi đánh giá nguy cơ với các mối nguy mới, ví dụ như các loại kháng sinh do tính đề kháng của vi sinh vật với kháng sinh và tốc độ nghiên cứu các dòng kháng sinh mới. Hoặc với các loại vi sinh vật mới phát hiện.Phương pháp đo lường trực tiếp có thể giúp khắc phục được những nhược điểm này. Tuy vậy, kinh phí và thời gian đầu tư cho phương pháp đo lường trực tiếp thường tốn kém hơn (WHO, IOMC, 2010). Trong các nghiên cứu trường hợp được các tác giả giới thiệu ở đây, tất cả đều sử dụng phương thức đo lường trực tiếp để đánh giá phơi nhiễm. Dựa trên bản đồ chung triển khai hoạt động đánh giá phơi nhiễm, sơ đồ đánh giá phơi nhiễm bằng phương thức đo lường trực tiếp được phát triển như hình 5.Các Để triển khai hiệu quả đánh giá phơi nhiễm cần xây dựng một kế hoạch chi tiết, phù hợp. Đối với bước xác định mối nguy và mô tả mối nguy, các số liệu đa phần được thu thập từ tổng quan các y văn, đặc trưng cho từng loại hóa chất và thực phẩm. Với các cộng đồng dân cư khác nhau, các số liệu này không có sự khác nhau quá nhiều ví dụ như Pb tồn tại trong rau muống tại Hà Nội và Hà Nam thường không có sự khác biệt về độc tính, tính chất vật lý. Tuy nhiên, nồng độ Pb trong rau muống được trồng tại Hà Nội và Hà Nam có thể khác nhau do điều kiện môi trường, phương pháp canh tác khác. Đồng thời, hành vi tiêu dùng rau muống của người dân sinh sống tại Hà Nam cũng có thể khác người dân sinh sống tại Hà Nội về cách lựa chọn rau, lượng tiêu thụ, cách thức chế biến, bảo quản. Do vậy, số liệu từ đánh giá phơi nhiễm là đặc trưng cho mỗi cộng đồng cụ thể được đánh giá nguy cơ. Đánh giá phơi nhiễm được coi là một nghiên cứu tổng hợp gồm nhiều nghiên cứu thành phần nhằm cung cấp các số liệu cần thiết.Trong nghiên cứu này, chúng tôi xin giới thiệu tới các đồng nghiệp cách thức triển khai đánh giá phơi nhiễm như sau. Một nghiên cứu cắt ngang được thực hiện trên 142 người dân sinh sống trên lưu vực sông Nhuệ về thói quen ăn rau muống và cá rô phi, sử dụng bộ câu hỏi cấu trúc sẵn.Gia đình bác/anh/chị mua/đánh bắt cá rô phi ở đâu?Trong tuần qua gia đình bác/anh/chị có ăn cá rô phi không? ăn bao nhiêu lần?(Chi tiết xem tại phụ lục 2 và 3) Vậy, tại sao phải hỏi về khối lượng thức ăn đã ăn và tần suất ăn? Vì đây là cơ sở để xác định liều nhiễm -một thông số quan trọng để mô tả nguy cơ. Nếu không xác định được lượng thức ăn một người đã ăn thì không xác định được lượng hóa chất người đó đã ăn vào (liều nhiễm). Đồng thời, thức ăn được đánh giá tiêu thụ phải có cùng nguồn gốc với thức ăn đang được xét nghiệm (mẫu thực phẩm của đánh giá nguy cơ). Không xác định được liều nhiễm thì không thể mô tả được nguy cơ sức khỏe liên quan. Giả sử (µ) là hàm lượng hóa chất ô nhiễm trong thực phẩm, (m) là khối lượng thực phẩm mà một cá thể đã ăn trong một lần ăn, thì liều nhiễm (d) hóa chất trong một lần ăn thực phẩm của cá thể là: d = µ x m Nghiên cứu về thực trạng ô nhiễm chì và cadimi trong cá rô phi và rau muống ở sông Nhuệ tại huyện Kim Bảng, tỉnh Hà Nam và nguy cơ sức khỏe. Hàm lượng trung Pb trong rau muống là 126 mg/kg, khối lượng rau muống ăn trung bình của một người dân là 108,9 g/lần. Với giả định người dân ăn rau muống trồng tại sông Nhuệ thì liều nhiễm Pb trong một lần ăn rau muống của người dân là 132 x 0,1089 = 14,38 mg/lần. Bên cạnh liều nhiễm, điều tra tiêu thụ thực phẩm của người dân còn cung cấp cho chúng ta số lần ăn thực phẩm đích trung bình của cá thể trong một đơn vị thời gian. Quy ước rằng, mỗi lần ăn thực phẩm đích là một lần cá thể phơi nhiễm với các hóa chất có trong thực phẩm, với liều nhiễm (d). Tần suất ăn chính là tần suất phơi nhiễm của cá thể với hóa chất tác nhân trong thực phẩm.Như vậy, kết thúc đánh giá phơi nhiễm đã cung cấp cho chúng ta 2 thông số quan trọng là liều nhiễm và tần suất phơi nhiễm. Đây là bước chuẩn bị quan trọng để thực hiện mô tả nguy cơ.Mô tả nguy cơ là bước tổng hợp kết quả của 3 bước trước đó của khung đánh giá nguy cơ hóa học trong thực phẩm. Mục đích của mô tả nguy cơ là xác định định tính hoặc định lượng xác suất của các tác động có hại của hóa chất trong thực phẩm đến sức khỏe trong bối cảnh thực trạng ô nhiễm hóa chất trong thực phẩm và mức tiêu dùng thực phẩm được mô tả tại bước đánh giá phơi nhiễm. Cơ sở của các nhận định về mức nguy cơ căn cứ theo các mức khuyến nghị được xác định trong nội dung đánh giá liều -đáp ứng của bước mô tả nguy cơ.Đầu ra của mô tả nguy cơ sức khỏe do hóa chất trong thực phẩm có thể là tỷ lệ các mẫu thực phẩm có hàm lượng hóa chất vượt ngưỡng khuyến cáo của WHO hoặc các quy định của Bộ Y tế. Đối với sức khỏe, nguy cơ có thể được mô tả qua tỷ lệ cá thể trong cộng đồng có mức nhiễm hóa chất do ăn thực phẩm ô nhiễm vượt ngưỡng của tổng liều chấp nhận được (TDI) trong một lần ăn và/hoặc trong một đơn vị thời gian xác định (tuần/tháng). Nguy cơ sức khỏe cũng có thể được mô tả dưới dạng xác suất xuất mắc một bệnh cụ thể, đối với hóa chất có thể là các bệnh dị ứng, ngộ độc hoặc ung thư. Các bước thực hiện theo sơ đồ sau ( Ví dụ từ nghiên cứu số 1:Trong nghiên cứu đánh giá nguy cơ Pb, Cd trong rau muống và cá rô phi tại Hà Nam, nguy cơ được mô tả trên cộng đồng dân cư sinh sống tại lưu vực sông Nhuệ tại huyện Kim Bảng, Hà Nam, với lượng tiêu thụ trung bình (bảng 2) thì lượng hóa chất ăn vào tương ứng là kết quả tại bảng 3. Nguy cơ sức khỏe của người ăn được phiên giải khi so sánh lượng hóa chất ăn vào với các chỉ số NOAEL, LOAEL, MRL, TDI của hóa chất tương ứng. Chúng ta cần phiên giải cụ thể kết quả nguy cơ tương ứng tại cộng đồng. Ví dụ, trong kết quả đánh giá nguy cơ, tỷ lệ người dân ăn rau muống có liều nhiễm Pb vượt mức TDI cho phép là 14,1% sẽ được phiên giải như sau: Khi một người dân ăn rau muống bị nhiễm Pb với hàm lượng trong khoảng 126 ± 86,0 µg/kg, khối lượng rau trung bình 1 lần ăn là 108,9 ± 63,88 g/ lần, tần suất ăn rau muống là 75 lần/năm thì nguy cơ người đó sẽ ăn phải 1 khối lượng Pb vượt quá ngưỡng khuyến nghị của WHO (25 µg/kg/tuần) là 14,1%. Hay nói cách khác, nếu một cộng đồng dân cư tiêu thụ rau muống với các điều kiện như đã nêu ở trên thì sẽ có khoảng 141/1000 dân có nguy cơ ăn phải 1 khối lượng Pb vượt quá ngưỡng khuyến nghị của WHO (25 µg/ kg/tuần). Đối với các hóa chất gây ra các tác động sức khỏe hậu quả là các ung thư, mô tả nguy cơ sẽ đưa ra các nguy cơ về ung thư trong một lần ăn thực phẩm và nguy cơ ung thư theo một đơn vị thời gian hoặc toàn bộ cuộc đời. Để mô tả được dạng nguy cơ này, bước mô tả mối nguy cần xác định được hệ số ung thư (Cancer Slope Factor) đặc trưng cho mỗi loại hóa chất trong thực phẩm. Đồng thời, cần xây dựng mô hình đánh giá nguy cơ phù hợp.Trong các nghiên cứu trường hợp cho tài liệu này, không có mô tả nguy cơ đối với nguy cơ ung thư do Pb, Cd trong thực phẩm. Vì vậy, chúng tôi sẽ sử dụng nghiên cứu \"Thực trạng ô nhiễm asen trong nước giếng khoan dùng cho ăn uống và nguy cơ sức khỏe của người dân xã Chuyên Ngoại, Duy Tiên, Hà Nam năm 2011\" của tác giả Bùi Huy Tùng và cộng sự, để mô tả cho nội dung này. Trong nghiên cứu về Asen, tác giả đã xây dựng mô hình đánh giá nguy cơ ung thư do sử dụng nước nhiễm Asen, thể hiện như công thức dưới đây: Đối với mỗi nhóm tuổi \"i\", nguy cơ ung thư của một người khi bị phơi nhiễm với asen được tính như sau:Trong đó: C = Hàm lượng asen trong mẫu nước phơi nhiễm. Đơn vị cần được quy đổi ra mg/l (1 mg/l = 1000 ppb).IR i = Thể tích nước sử dụng cho ăn uống trung bình trong một ngày đối với nhóm tuổi \"i\". Đơn vị tính toán là l/ngày.BW i = Trọng lượng của đối tượng bị phơi nhiễm tính cho tuổi \"i\" (kg).EF i = Mức phơi nhiễm thường xuyên với asen tính cho tuổi \"i\" (ngày/ năm). Đại lượng này mô tả tần suất đối tượng phơi nhiễm trong thời gian một năm.ED i = Khoảng thời gian phơi nhiễm với asen tính cho tuổi \"i\" (năm). Đại lượng này cho biết đối tượng phơi nhiễm bao lâu trong suốt quãng đời của họ. AT = Tổng thời gian \"quãng đời\" bị phơi nhiễm (tính theo ngày). SF = Hệ số Cancer Slope Factor (mg/kg-ngày)-1.ADAF i = Hệ số phụ thuộc hiệu chỉnh theo tuổi \"i\" (không có đơn vị).Ngoài ). Kết quả được báo cáo tính theo giá trị tổng độc chất tương đương (TEQ), dựa theo TEFs của Tổ chức Y tế thế giới đưa ra đối với dioxin [24]. Số liệu sẵn có về thói quen, mức độ tiêu thụ thực phẩm của 2 vùng Nam Trung bộ và Đông Nam bộ cũng được sử dụng để tính toán và đánh giá mức tiêu thụ hàng ngày đối với dioxin của người dân tại 2 điểm nóng theo các tình huống giả định khác nhau [1].Mô tả nguy cơ: đây là bước cuối cùng trong mô hình EHRA nhằm tổng hợp các thông tin từ các bước xác định yếu tố nguy cơ, đánh giá liều-đáp ứng, đánh giá phơi nhiễm, mô tả nguy cơ đối với cá nhân và cộng đồng do phơi nhiễm dioxin trong môi trường, tính chất và mức độ nguy hiểm của những ảnh hưởng sức khoẻ tiềm tàng, đồng thời mô tả các giả định và những điểm không chắc chắn trong suốt quá trình đánh giá nguy cơ. tác động lên sức khỏe bằng cách liên kết với một phân tử phức tạp gọi là aryl hydrocarbon hay chất cảm thụ \"Ah\". Theo các nhà khoa học thì mức độ liên kết càng chặt chẽ thì độc tính càng cao. Chất độc nhất trong nhóm này là TCDD, chính là chất có khả năng liên kết chặt chẽ nhất với Ah. Một yếu tố chính khác quyết định độc tính của dioxin đó là số nguyên tử clo trong phân tử. Những chất có số nguyên tử clo trong mỗi phân tử là 3 hoặc ít hơn 3 thì ít có độc tính giống TCDD. Ngoài ra, vị trí của các nguyên tử clo trong phân tử cũng quyết định độc tính của các hóa chất này, cụ thể mức độ độc tính tăng lên nếu các nguyên tử clo được liên kết tại các vị trí 2, 3, 7 và 8. Số nguyên tử clo trong phân tử cũng như vị trí liên kết ảnh hưởng độc tính của các phân tử bằng cách thay đổi hình dạng phân tử và do đó thay đổi khả năng liên kết với chất cảm thụ Ah [6].Các chất thuộc nhóm dioxin có nhiều tính chất vật lý giống nhau như ít hòa tan trong nước nhưng hòa tan rất tốt trong dầu mỡ và các dung môi hữu cơ. Chúng bám chắc vào các thành phần hữu cơ có trong đất, nước và không dễ bay hơi. Dioxin không phản ứng với ôxy, nước và ít bị phân hủy bởi vi khuẩn nên chúng tồn tại trong môi trường trong một thời gian rất dài. Đây chính là lý do giải thích vì sao việt phun rải chất diệt cỏ đã kết thúc cách đây gần 40 năm nhưng nồng độ của dioxin (phần lớn là TCDD) ở nhiều điểm nóng ô nhiễm dioxin ở Việt Nam như sân bay Biên Hoà và Sân bay Đà Nẵng hiện vẫn còn rất cao [9,10,20]. Dưới một số điều kiện, các chất này có thể bị phân hủy bởi ánh nắng mặt trời; tuy nhiên, quy trình này diễn ra với tốc độ rất chậm. Những chất khó phân hủy nhất trong môi trường chính là các chất có từ 4 nguyên tử clo trở lên [5,14].Khi được thải vào môi trường, dioxin có thể tồn tại trong đất, nước, không khí và thức ăn. Trong đất, dioxin tồn tại bền vững trong một thời gian dài. Thời gian bán hủy của dioxin ở bề mặt đất với độ sâu 1 mm là khoảng 9 đến 15 năm. Ở độ sâu trên 1 mm kể từ bề mặt, thời gian bán hủy của dioxin có thể kéo dài 25 tới 100 năm [16]. Dioxin cũng có thể được thải trực tiếp vào môi trường nước từ các nguồn phát thải hoặc do xói mòn đất. Do tính chất của dioxin là kị nước hydrophobic và tan tốt trong chất béo lipophilic, một khi được thải vào môi trường nước, dioxin thường tích tụ lại trong cơ thể sinh vật thủy sinh và với nồng độ ngày càng tăng lên trong chuỗi thức ăn từ sinh vật phù du, tới cá tôm, cua, ngao, sò, ốc v.v. và tới con người, hoặc tích tụ trong lớp bùn đáy của sông, suối, ao, hồ và biển. Ví dụ nghiên cứu gần đây của Hatfield Consultants cho thấy nồng độ dioxin trong một số mẫu cá lấy ở các hồ trong và xung quanh Sân bay Đà Nẵng là rất cao [2,10]. Đối với môi trường trên cạn, dioxin trong các hạt bụi bám vào cây cối hoa màu. Các động vật ăn cỏ như trâu bò, dê và các gia súc gia cầm chăn thả tự do tại khu vực ô nhiễm thường tích tụ dioxin với nồng độ cao [6,19]. Trong cơ thể động vật, dioxin không được chuyển hóa và thải ra ngoài trong phân hay nước tiểu mà tích tụ lại trong các mô mỡ. Khi con người tiêu thụ thịt, mỡ, sữa và các sản phẩm từ thịt, sữa động vật thì sẽ bị phơi nhiễm với dioxin. Thông thường, rễ cây không hấp thụ dioxin, trừ một số loài cây như bí ngô và cà rốt [15]. Như vậy, tại các điểm nóng nhiễm dioxin như sân bay Đà Nẵng thì cá, cua, ốc, tôm nước ngọt (đặc biệt là những loài sống ở tầng đáy và có hàm lượng mỡ cao), thịt gà, vịt, ngan, trứng, bí ngô và cà rốt… chính là những loại thực phẩm nguy cơ cao.Việc hấp thụ dioxin phụ thuộc vào đường phơi nhiễm, kích cỡ phân tử và khả năng hòa tan của chất đó [14]. Ở các thí nghiệm trên động vật, ví dụ trên chuột, 50% đến 90% dioxin trong thức ăn được hấp thụ vào trong máu [18]. Theo một nghiên cứu, một người đàn ông 42 tuổi tự nguyện uống 105 ng TCDD và hơn 87% liều này đã được hấp thụ qua đường ruột [8]. Mức hấp thụ dioxin ở phổi cũng tương tự như ở ruột, còn hấp thụ qua da thì hạn chế. Chỉ khoảng gần 1% dioxin được hấp thụ qua da khi cơ thể phơi nhiễm qua đường da [14]. Khi dioxin được hấp thụ vào trong cơ thể, hệ tuần hoàn giúp cho việc phân bố dioxin tới các cơ quan trong cơ thể [18]. Vì dioxin không tan trong nước nên một khi được hấp thụ vào máu, dioxin chỉ tồn tại trong máu trong một thời gian ngắn và sau đó tích tụ lại trong các mô mỡ và gan [25]. Nghiên cứu của Schecter và cộng sự 2003 cho thấy nồng độ dioxin trong các mẫu mỡ là cao hơn nhiều so với mẫu thịt, ví dụ TEQ cho ngan vịt là 286-343 ppt trọng lượng ướt, trong khi trong mỡ là 536-550 ppt; đối với thịt gà thì nồng độ dioxin trong thị là 0,35-48 ppt trọng lượng tươi còn trong mỡ gà là 0,95-74 ppt; đối với cá thì nồng độ trong thịt cá là 0,19-66 ppt trọng lượng tươi còn trong mỡ cá là 3,2-15.349 ppt [19]. Cơ thể đào thải dioxin nhờ quá trình chuyển hóa dioxin ở trong gan thành các chất dễ tan trong nước và ít độc hại hơn. Thời gian bán hủy của dioxin trong cơ thể người thường dài hơn trong cơ thể động vật. Trong cơ thể con người, thời gian bán hủy được báo cáo vào khoảng 2,120 ngày hoặc khoảng từ 5,8 đến 14,1 năm [18].Dioxin là một mối đe dọa cho môi trường, hệ sinh thái, sức khỏe con người và là thách thức lớn cho ngành y tế công cộng. TCDD được xếp vào chất ung thư Nhóm 1 -nghĩa là \"chất gây ung thư ở người\" [14]. Ngoài khả năng gây ung thư, nhiễm dioxin cũng được cho là có khả năng gây ra một loạt các vấn đề sức khỏe khác như rối loạn chức năng sinh sản, phát triển, hệ thống miễn dịch và có liên quan tới các đột biến gây dị dạng bẩm sinh ở trẻ, giảm khả năng sinh con, các vấn đề về phổi, da v.v. [6]. Viện Y khoa Mỹ cũng đã thành lập Ủy ban đánh giá các bằng chứng về phơi nhiễm dioxin và ảnh hưởng sức khỏe. Theo Viện Y khoa Mỹ, đến thời điểm 2014 đã có đầy đủ bằng chứng khoa học để kết luận \"có mối liên quan\" giữa phơi nhiễm dioxin và các bệnh sau đây: ung thư máu (ung thư bạch cầu dòng lympho dạng mãn tính), ung thư mô mềm (bao gồm tim), ung thư dạng không-Hodgkin, ung thư dạng Hodgkin và chứng mụn trứng cá do Clo [12].Bảng 4, liệt kê một số tác động có hại của dioxin và ước lượng liều trong cơ thể (body burden) gây ra các tác động này trên các đối tượng thí nghiệm là khỉ, chuột và chuột nhắt. Thịt bò (2 mẫu trộn) 0,3-3,3 3,8-Thịt lợn ở chợ (2 mẫu trộn) 0,06-0,08 0,3-1,0 37,4 Thị Minh Huệ và cộng sự cũng cho thấy trẻ sơ sinh có nguy cơ cao bị phơi nhiễm với dioxin trong sữa mẹ nếu người mẹ sinh sống lâu dài tại điểm nóng dioxin [11]. Do đó cũng cần có các hoạt động tư vấn cho các phụ nữ đang mang thai và phụ nữ cho con bú về nguy cơ này. Nghiên cứu này cũng cho thấy vai trò của công tác đánh giá nguy cơ sức khoẻ môi trường là rất quan trọng để cung cấp bằng chứng khoa học cho công tác quản lý nguy cơ.Một điểm hạn chế của hoạt động lượng giá nguy cơ này là việc lượng giá phơi nhiễm được dựa trên số liệu phân tích nồng độ dioxin trong 46 mẫu gộp của khoảng 500 mẫu đơn gồm các loại thực phẩm khác nhau thay vì phân tích nồng độ trong các mẫu đơn do chi phí phân tích quá đắt và. Phần mức tiêu thụ thực phẩm chưa áp dụng số liệu điều tra thực tế tại địa phương mà áp dụng số liệu từ kết quả điều tra dinh dưỡng quốc gia. Phần mô tả nguy cơ đang áp dụng cách mô tả nguy cơ trung bình thay vì áp dụng mô tả nguy cơ theo xác suất. Trong quá trình phỏng vấn Bác/Anh/Chị có thể dừng cuộc phỏng vấn bất cứ khi nào.-------------------------------------------------------- ","tokenCount":"5695"} \ No newline at end of file diff --git a/data/part_3/4778036875.json b/data/part_3/4778036875.json new file mode 100644 index 0000000000000000000000000000000000000000..fba1413b9d3cf6a6e74cff8eabba018fda858c86 --- /dev/null +++ b/data/part_3/4778036875.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"59f6589c888a489a7302e3e3fe92c873","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/90a1a0bf-5b7a-4ee0-a2ef-c3b2e8ed26cb/retrieve","id":"-1121345123"},"keywords":[],"sieverID":"f3ea17bd-a629-42a6-8224-68a043341291","pagecount":"119","content":"Aly Yousef (NIOF), Dr. Shawki Zaki Sabaa (NIOF), Mr. M. Zaki (LNDA), Prof. Paul van Zwieten (Wageningen University, Netherlands). Their respective contribution is fully acknowledged.The Challenge Program on Water and Food (CPWF) contributes to efforts of the international community to ensure global diversions of water to agriculture are maintained at the level of the year 2000. It is a multi-institutional research initiative that aims to increase the resilience of social and ecological systems through better water management for food production. Through its broad partnerships, it conducts research that leads to impact on the poor and to policy change.The CPWF conducts action-oriented research in nine river basins in Africa, Asia and Latin America, focusing on crop water productivity, fisheries and aquatic ecosystems, community arrangements for sharing water, integrated river basin management, and institutions and policies for successful implementation of developments in the water-food-environment nexus.\"Improved fisheries productivity and management in tropical reservoirs\" The objective of the project was to contribute to the current research on reservoirs enhancement fisheries in tropical countries through the implementation of a series of action-research activities implemented in two small reservoirs in the Indo-Gangetic basin in India, and two very large reservoirs in Africa, the Lake Nasser (Egypt), and the Volta Lake (Ghana). Socio-institutional analyses were also conducted in these reservoirs to improve our knowledge regarding some of the main social processes that influence reservoir productivity. Overall the results of the project stress that while the natural biophysical constraints of the reservoirs are important in defining the ecological production processes, it is the socio-economic settings characterizing the community/societies around the reservoirs that eventually shape the human production enhancement possibilities.Each report in the CPWF Project Report series is reviewed by an independent research supervisor and the CPWF Secretariat, under the oversight of the Associate Director. The views expressed in these reports are those of the author(s) and do not necessarily reflect the official views of the CGIAR Challenge Program on Water and Food. Reports may be copied freely and cited with due acknowledgment. Before taking any action based on the information in this publication, readers are advised to seek expert professional, scientific and technical advice.Citation: Béné, C., Abban, E.K., Abdel-Rahman, S.H., Ayyappan, S., Brummett, R., Dankwa, H.R., Das, A.K., Habib, O.A., Katiha, P.K., Kolding, J., Obirih-Opareh, N., Ofori, J.K., Shehata, M., Shrivastava, N.P. and Vass, K.K. 2009. Improved fisheries productivity and management in tropical reservoirs. CPWF Project Number 34: CGIAR Challenge Program on Water and Food Project Report series, www.waterandfood.org.Reflecting our recognition of the central role played by women in many different aspects of smallscale fisheries in the world, only gender-sensitive words have been used in this report. In particular the word 'fisherman' which carries an inappropriately gender bias has been systematically replaced by gender-neutral terms such as 'fisher', 'fisherfolk' or 'fishing community'. Exceptions only hold for the particular term 'chief fisherman' or to refer to existing official names of organizations (e.g. \"the Fisherman Cooperative Society\" of Dahod reservoir in India). Table 1.1. Distribution (in %) of the studied reservoirs according to area across Indian IGB states. Table 1.2. Morphometric and hydrological features of Indo-Gangetic basin reservoirs Table 1.3. Comparative account of the project's two case studies' reservoirs Table 1.4. Fish catch composition at Dahod reservoir during pre-project years Table 1.5. Fish catch composition at Pahuj reservoir during pre-project years Table 1.6. Fish yield in reservoirs of five out of 12 Indo-Gangetic Basin States Table 1.7. Fish production potential and actual fish yield in selected Indo-Gangetic Basin reservoirs Table 1.8. Comparison of water parameters from previous studies and the current one Table 1.9. Catch per Unit of Effort (CPUE) by fishing gear and estimated annual fish catch from the Volta Lake at Dzemeni from March 2007 to June 2008. Table 1.10. Species composition in weight (Wt%) and number (No%) for different gear types in Lake Nasser during the study period based on 1529 samples Table 1.11. CPUE (Kg/50m-net/ night or shot) for different gear types and parts of Lake Nasser during the study period Table 1.12. Size indicators in standard length (SL) and total weight (Wt) for different gear types and parts of Lake Nasser during the study period. Table 1.13. Construction costs for a 48m 3 small-scale aquaculture cage manufactured from locally available materials in Dzemeni, Ghana (1 USD = 0.92 Ghana ¢). Table 1.14 a. Fish stocking, growth and harvest data for the first of two pilot cage trials Table 1.14 b. Fish stocking, growth and harvest data for the second of two pilot cage trials Table 1.15. Economic analysis (1 US$ = 1.12 Ghana ¢). Table 1.16. Cost of production, revenues and return on investment. Table 1.17. Proportion of large (>300g), medium (250-300g) and small (<250 g) fish obtained over the six month trial Table 1.18. Mean ± standard deviation of water quality parameters measured bi-monthly (n=10) at mid-cage depth (1 m) 2.6. OLS model between productivity and the variables' coordinates along PC1 Table 2.7. SIMPER analysis with a cut-off threshold set at 40% Table 2.8. Pairwise Multiple Comparison Procedures for both depth and stock density Table 2.9. Statistic summary of the reservoirs grouped by arrangements Table 2.10. Socio-economic statistics of the fishers operating in Lake Nasser Table 2.11. 2SLS estimates Table 2.12. Statistics summary of the socio-economics data Table 3.1. Series of workshops run by the projects as part of the capacity building objective. Table 3.2. Aggregated cost of the wooden cabin (for the 3 cabins) Table 3.3. Number of spoiled salted fish tins Table 3.4. Mann-Whitney Rank Sum Test Table 3.5. Comparative analysis of production level and retail price before and after CP34 intervention Table 3.6. Comparative analysis of catch and return per unit of effort before and after CP34 intervention Table 3.7. Characteristics of the two fish smoker ovens LIST OF FIGURES Fig.1.1. Relation between fish productivity and index of Relative Lake Level Fluctuation in 21 lakes of the Indo-Gangetic Basin. Fig. 1.2. Maps of Dahod reservoir (left) ad Pahuj reservoir (right). Fig. 1.3. Planktonic population in Dahob (top) and Pahuj (bottom). An ever-growing number of small, medium and large reservoirs in the world are being built for irrigation or hydro-power purposes. While some fishing activities take place on these water-bodies, the productivity of their fisheries is often far below the identified biological potential. Yet, fisheries and their associated activities (fish processing and fish trading) have been recognized to play an important role in terms of food security and economic development in developing countries.Reservoir fisheries productivity can be increased through a number of interventions combining better harvesting strategies, carefully adapted stock enhancements, and aquaculture activities. To achieve this untapped potential while securing ecosystem services such as water quality and biodiversity, a holistic approach and improved understanding involving both biological principles and stakeholder participation is necessary.The main objective of this 3.5 year project was to contribute to the current research on reservoirs enhancement fisheries in tropical countries through the implementation of a series of actionresearch activities aiming at increasing the productivity of the water bodies and providing sustainable livelihood options to the rural poor in four reservoirs: two small reservoirs in the Indo-Gangetic basin, and two very large reservoirs in Africa, the Lake Nasser in the Nile Basin, and the Volta Lake in the Volta Basin.First, the project evaluated traditional and established fish and fisheries production and management approaches in the four reservoirs. A series of fisheries enhancement tools were then developed and tested in each of the four selected reservoirs in collaboration with the main stakeholders: small-scale cage culture technology on the shore of the Lake Volta, a combination of seed stocking, and cage and pen units in the two selected reservoirs in India, and enclosures that combines stocking of preferred species with the removal of predators in three embayments (khors) of the Lake Nasser.Second, a series of socio-institutional analyses was also implemented in the three basins. Those analyses did not simply confirm the importance of institutions in shaping the economic and social inter-actions occurring in fishery activities in general. They also stressed the role that those institutions play in determining which technological option(s) can be considered and adopted, and how this adoption impacts on the various socio-economic groups in the population.The third main component of the project was a series of capacity strengthening activities aimed at supporting the other fisheries productivity interventions of the project. These capacity building interventions included a succession of eight 'capacities strengthening' and 'community consensus' workshops organized in each basins and a series of post harvest interventions on fish processing and fish trading implemented with the fishing communities involved in the project. Substantial amount of primary data was generated through these various activities, thus improving knowledge in different domains (bio-physical and ecological attributes of the reservoirs, and economics, institutional and social dynamics of the communities living in the vicinities of the reservoirs), while a concurrent effort was made to synthesize existing secondary data.Overall the results of those different researches stress that while the natural biophysical constraints of the reservoirs define the ecological production processes, it is the socio-economic settings that eventually shape the human production enhancement possibilities of the reservoirs. In other words, manipulation of reservoir ecosystems to improve productivity and outcomes for lower income communities is feasible, but to realize this, adaptive research needs to work closely with users to ensure that the rationale of the intervention and the technical details are fully appreciated by local stakeholders and, maybe more importantly, that research and extension come to understand the real opportunities and constraints confronted by potential investors.An ever-growing number of small, medium and large reservoirs are being built in the world for irrigation or hydro-power purposes. While some fishing activities take place on these water-bodies, the productivity of their fisheries is in many cases far below the identified biological potential. Yet, fisheries and their associated activities (fish processing and fish trading) have been recognized to play a critical role in terms of food security and economic development.Reservoirs are only semi-natural ecosystems, usually being the result of humans having transformed a river into a lake, with a sometimes poorly adapted and consequently highly dynamic aquatic fauna. The productivity from reservoir fisheries can be increased through a number of approaches combining better harvesting strategies, carefully adapted stock enhancements, and aquaculture activities. To achieve this untapped potential while securing ecosystem services such as water quality and biodiversity, a holistic approach and improved understanding involving both biological principles and stakeholder participation is necessary. The natural biophysical constraints of the reservoirs define the ecological production processes and the socio-economic settings shape the human production enhancement possibilities. By synthesizing these mechanisms into general principles and predictive indicators it should be possible to provide various options and scenarios for improved productivity that can be adapted to the local cultural and institutional settings.The main objective of this 3.5 year project (CP34) was to increase the productivity of reservoir fisheries and provide sustainable livelihoods to the rural poor through a series of interventions in tropical reservoirs. The main project activities focused on two reservoirs in the Indo-Gangetic basin (Dahod in Madhya Pradesh, and Pahuj in Uttar Pradesh, both in India), the Lake Nasser in Egypt as part as the Nile basin, and the Volta Lake in Ghana as part as the Volta basin. For each of those sites the specific objectives of the project were:Objective 1: To identify, develop, and test in collaboration with the main stakeholders, fisheries enhancement tools and strategies leading to increased fish productivity and better community livelihood prospects; Objective 2: To improve the understanding about the overall human contexts of those reservoirs and identify potential socio-institutional obstacles to the adoption of increased fishery productivity innovations; Objective 3: To facilitate the implementation of these fisheries productivity interventions by improving the stakeholders' management skills and fostering their institutional capacities;In addition to those objectives, the project encompassed an initial data inventory from a wide variety of tropical reservoirs within the three basins, and the detailed assessment of the selected reservoirs, including market evaluation and post-capture improvements.Overall, a substantial amount of primary data was generated by CP34 in various domains (biophysical and ecological attributes of the reservoirs studied, economics, institutional and social dynamics of the communities living in the vicinities of these reservoirs) while a concurrent effort was made to synthesize existing secondary data. Through the generation of this primary and secondary information, the project greatly contributed to the body of research on reservoir fisheries.A series of fisheries enhancement tools were developed and tested in line with the first objective of the project. Mixed results emerged.In Ghana, small-scale cage culture technology was tested on the shore of the Lake Volta. Despite the difficulties encountered, the technical feasibility of the cage culture system was demonstrated. Low yields and profits were recorded however, which raised the question of the economic viability of the technique. Despite this uncertainty, some 20 cage operations in the lower Volta River basin are now adopting and adapting the technology demonstrated by the project on the Lake.In India, a combination of seed stocking (species composition of fish seed, direct stocking of higher value fish seed to support natural reproduction, and installation of cages to raise the required size of seed for reservoir stocking) was successfully developed in Dahod and Pahuj reservoirs. Results show a substantial change in the species composition of the reservoirs with an increase in major carps and catfishes (some of the stocked species). In Pahuj, the catch increased by 145%.In Egypt, efforts to improve productivity in Lake Nasser are particularly constrained by government policy vis-à-vis water quality. As a result, a practical system of enclosures that combines stocking of preferred species with the removal of predators was tested in three embayments (khors) of the Lake. The model is yet to show tangible results.Overall these different results show that manipulations of reservoir ecosystems to improve productivity and outcomes for lower income communities are feasible, but to realize these, adaptive research needs to work closely with users to ensure that the rationale for the intervention and the technical details are fully appreciated by local stakeholders and, maybe more importantly, that research and extension come to understand the real opportunities and constraints confronted by potential investors.Along with these technical interventions, a series of socio-institutional analyses was also implemented in the three basins. The objective was to investigate the socio-institutional and economic dynamics of some of the different processes associated with fisheries reservoirs and to explore in particular the potential links that exist between these socio-institutional processes and the capacities of local actors to engage in technical innovations to enhance reservoir fisheries.In India, our results suggest that a large part of the reservoir productivity is not explained by the bio-physical or ecological parameters of the reservoirs, but, rather, by the economic and institutional context of the communities, and in particular the leasing system through which different types of actors can compete to obtain the reservoirs' fishing and management rights.In Egypt, our results show that the different types of share contracts that exist in the fishery are essential for the overall productivity of the fishery in that they allow the different actors (license owners, fishing gears owners, boat crews) who generally do not possess all the different types of capital and resources necessary to engage in the sector to combine their individual resources with other agents' resources and put them to productive use.The Egyptian case also underlines the importance of macroeconomic policies in shaping the socioinstitutional context of fisheries and, in particular, in influencing the actors' abilities to engage positively (or negatively) in the sector. In our case it demonstrates how the combination of inappropriate macro-economics policies has led to the creation of a massive black market for fresh fish.In Lake Volta, we investigated the potential tension and social issues that are often associated with the 'privatization of the commons', following investments in fishery enhancing techniques. In our case we looked at this issue in the context of acadjas (brush parks), a form of fishery intensification/enhancement technique found in many fishing communities along the shore of the Lake and elsewhere in the developing world.Finally, our last results relates to capacity building. This series of interventions arises from the recognition that one of the most constraining factors to the adoption of (technical or institutional) innovations by the poor is their limited organizational and institutional capacities. Both at individual and collective levels, the ability of poor households to engage in innovation and change is often more limited than for the better-off households. The last objective of the project was therefore to identify and implement a series of capacity building activities. These included a succession of eight 'capacities strengthening' and 'community consensus building' workshops organized in each basins and a series of post harvest interventions on fish processing and fish trading implemented in the communities involved in the project.The outcomes and impacts of the project are, like the results above, somewhat mixed. Some immediate positive outcomes were observed in the two small reservoirs in India (in the form of a direct increase in the productivity of the reservoirs and in economic returns to individual fishers and fish traders). At a higher level, the provincial state officials were convinced about the feasibility and application of the project outputs and selected another 51 reservoirs to implement an enhancement model similar to the one tested by the project.The situation on the shores of the Lake Nasser and the Volta Lake is more ambiguous. The cage culture experiment conducted in Lake Volta has motivated an increasing number of households to engage in this activity -even though the project trial had not been as successful as it could have been. It is however too early to consider these households as evidence of a real 'take-off' in the adoption of small-scale cage aquaculture, or even to draw conclusions about the (long-term) economic viability of the activity. In particular the initial minimum investment required to establish cage culture system represents an important constraint for the poorest.In Egypt, although a certain number of khors' 'owners' have expressed the wish to adopt the enclosure model tested by the project, the current experiment has yet to demonstrate increased productivity and benefits to the local fishers (or to the consumers). More methodological and technological efforts are required to master both the technique and the evaluation of its impact. More effective in terms of direct impact were the activities implemented in relation to the salted fish processing. Overall, improved management of the Lake Nasser fishery remains, however, severely constrained by current smuggling activities.By developing, testing and publishing results of a combination of ecological research and carefully adapted stock enhancements and aquaculture strategies adopted in three different basins and four biophysically different tropical reservoirs, the project contributes significantly to the current research on reservoirs fishery enhancement in tropical countries. Beyond the areas of direct intervention of the project, the project offers useful lessons for practitioners and/or researchers interested in similar activities in the same basins or elsewhere in tropical regions. A large part of these lessons concerns technical aspects (see below) but also some wider reflections on the general issue of water productivity in small and larger reservoirs. These lessons are embodied in three individual basin reviews produced by the project, a global synthesis document and a specific report on water productivity in fisheries.Another area where the project contributes to IPGs is the knowledge base on socio-institutional and economic processes associated with fisheries enhancement activities. Through various analyses, we investigated several of these socio-institutional processes, including the role of leasing rights on reservoir productivity, the effect of contractual arrangements on fisher incentives and capacity to engage in reservoir fisheries, and the potential issues related to the 'privatization of the commons' associated with investments in yield intensification technology (cages, stocking, etc.). A series of publications that describe and analyze those different issues has been submitted to peer-reviewed journals.However, the main effort of the project has been on developing and testing appropriate tools and methodologies to increase productivity of fisheries in lakes and reservoirs: enclosures in Lake Nasser embayments (khors), cages to raise fry for stocking Indian reservoirs, and small-scale cage culture in Lake Volta. The main results of these trials were documented in a series of articles submitted to peer-reviewed journals and in a series of five Technical Manuals.Finally, a number of fish processing/conservation techniques have been developed and/or tested during the implementation of the project and are documented in this report: fish smoking ovens in Lake Volta, wood chambers for fish salting in Lake Nasser, and ice boxes for fish transportation in India.Given the general lack of understanding of biological production processes in larger (but also to some lower extent, smaller) reservoirs, there is still a need for further fundamental research on those processes.It is possible to manipulate, govern, and determine a natural environment, but vast opportunities still exist for increases in productivity from a purely biological point of view. The level of intensive methods should therefore be seen in relation to the spatial scale of the reservoir.The environmental sustainability of yield enhancement technology, especially the introduction of potentially eutrophying feeds and stocking of fish which do not naturally recruit into reservoir will depend to a large extent on the intensity and density of cages, enclosures and the invasiveness of introduced species. These impacts are easier to manage in smaller reservoirs. Larger bodies of water seem inherently less amenable to management.There is a need for carefully document and understand the natural production processes and their controls and limitations before endeavouring into technological solutions that may turn out to be economically or technically unaffordable for the poorest.The historical context and inherent scientific preconceptions that characterize research and management institutions should be acknowledged when evaluating the chosen pathways or ideas in the attempt to increase reservoir fishery productivity. Still, they should also be evaluated in a larger framework within currently available scientific knowledge and practices in order to classify these choices and help in understanding the distinction between theory and knowledge (separate beliefs and facts). In developing international programs as the current Challenge Programme, time and space should be made available to enable such evaluations.A close engagement with the local communities to identify the ongoing activities and developments, and gaps in the institutional knowledge, as well as a willingness to objectively test without prejudice their various adaptations seems at present to be much more rewarding in terms of increased productivity than technological solutions that require close control over all links in the chain.Given the importance of the socio-institutional and policy processes in influencing the overall capacities of local actors to engage/invest in technical innovation, further research and analysis of those processes is critical if one wishes to ensure a better contribution of research to the question of the productivity of reservoir fisheries.To increase their potential impacts, improved fish productivity projects in tropical countries should, as much as possible, include interventions that aim at increasing the capacity of fisherfolk communities in low-cost technologies and post harvest losses.Technological approaches to increasing productivity may have only indirect positive impacts on the poorest of the poor. Government logistical and technical support can increase the benefits accruing to lower income groups the overall cost of private investment in these technologies limits direct participation to less poor groups.Conflicts seem nearly inevitable in any system where benefits from the exploitation of common resources appear to accrue disproportionably to one group among several. Consultation and participation with local institutions and stakeholders can reduce these conflicts, but in situations of extreme poverty and heavy dependence upon natural resource exploitation for livelihoods, the extent to which privately-owned investments in common pool resources can contribute simultaneously to increased productivity and poverty reduction is therefore limited.Reservoirs are an essential component of most irrigation systems and, together with those built for flood control and power generation retain a large volume of water worldwide. The 60,000 largest reservoirs in the world -those with a volume of 10 million cubic meters or more-are estimated to cover a surface of about 400,000 km 2 and together hold some 6,500 km 3 of water.In addition to their role in providing water for agriculture, industrial and domestic purposes, and in power generation, most of these reservoirs also play an important role in fish production and contribute significantly to the livelihoods of communities along their shores. Yet there is widespread recognition that the fisheries potential of most of these reservoirs greatly exceeds current use, provided that environmentally and socially sustainable management systems can be developed and adopted.The productivity or development benefit from reservoir fisheries can be increased through a number of approaches. First the yield from existing fisheries can be increased through better management measures. For example, established fishery regulations are mostly based on singlespecies management and associated gear restrictions, but there is increasing evidence that a diverse combination of fishing gear, resulting in an overall unselective fishing pattern on the fish community, not only maximizes the yield but also maintains the relative structure of the ecosystem and the biodiversity (Misund et al. 2002, Jul-Larsen et al. 2003). For example, on the Zambian shore of Lake Kariba, fishers using such approaches have been shown to obtain sustainable yields that are four times higher than the catch per unit area in Zimbabwe (Kolding et al. 2003a).Second, the value of many fish catches can be increased through improvements in processing and marketing. For example in Lake Chad basin there is considerable potential to increase the value of the fishery if the harvest can be marketed in urban centers at higher prices (Neiland and Béné 2004). It is also widely recognized that in most reservoir fisheries in the developing world, there is substantial scope for improving equity through establishment of community management systems for reservoir resource use.Building upon these improvements in the existing fishery, most reservoirs have substantial potential for fishery enhancement using a range of techniques. For example in Asia potential yields from reservoir fisheries are estimated to be 500-2000 kg/ha/year, while the use of cove culture in the water inlets to reservoirs in China brings productivity in these areas up to the level of pond aquaculture, approximately 4500-7500 kg/ha (Li 1994). In India, reservoirs yield an average of 20 kg/ha, which is far below the potential. Even a moderate increase of 100 kg/ha for small and 50 kg/ha for medium and large reservoirs can provide additional 170,000 t of fish (Sugunan 1995). Cage aquaculture may also be used to increase production. First developed in China, cage culture is now used in an increasing number of countries where it is seen as a means of increasing aquaculture potential without using scarce land resources, and as a means of compensating for loss of agricultural land underwater behind dams. The full range of enhancement technologies, including cages, has been estimated to be able to increase freshwater yields by up to 20 percent (Lorenzen et al. 2001).By working with local fishing communities to design fisheries management systems that are adapted to the biological diversity, natural productivity, and other uses of these reservoirs, the range of fishery development options available provide a significant opportunity for increasing water productivity in many tropical river basins.To achieve this and harness the potential of these different possibilities of enhancement, an improved understanding of the biophysical dynamics and ecology of these reservoirs is a prerequisite. However, for these enhancements to be socially beneficial, interventions need to be rooted in community-based research where the socio-economic and institutional contexts of the communities in which these enhancement activities take place are also taken into account. Indeed, experience has shown that the changes induced by the introduction of new species or the productivity increase following the adoption of enhancement techniques may not only affect the ecological dynamics of the water-bodies, but also alter the socio-institutional arrangements that link the different actors involved in the enhanced fishery activities (e.g. Ahmad et al. 1998, Apu andMiddendrop 1998). Mechanisms such as enclosure (i.e. privatization of the common property resources), social exclusion of one part of the community, usually the poorest, re-appropriation by the more powerful (local elite) may annul partially or even totally the potential benefits generated by an adopted enhancement program (Ali andIslam 1998 Capistrano et al. 1994). The socioinstitutional changes induced by these improved productivity activities needs therefore to be anticipated, assessed and carefully managed.The project presented in this report was aimed at addressing those different issues. Its main objective was \"to increase the productivity of water and provide sustainable livelihoods to the rural poor through improved fisheries management in tropical reservoirs\". For this, three basins were selected amongst the 9 Benchmark basins of the Challenge Programme, and within those specific basins a series of reservoirs were identified for study: two small-scale reservoirs in India as part of the Indo-Gangetic basin, Lake Nasser in Egypt as part of the Nile basin, and the Volta Lake in Ghana as part of the Volta basin.The specific objectives of the project were: 1. To identify, develop, and test in collaboration with the main stakeholders, fisheries enhancement tools and strategies leading to increased fish productivity and better livelihood prospects in reservoirs communities; 2. To improve the understanding about the overall human contexts of those reservoirs and identify potential socio-institutional obstacles to the adoption of increased fishery productivity innovations; 3. To facilitate the implementation of these fisheries productivity interventions by improving the stakeholders' management skills and fostering their institutional capacities; 4. To compile, analyze and disseminate the knowledge, methodologies and know-how on enhanced fisheries in tropical reservoirs generated by this project in order to contribute to the improved understanding of reservoir management.Section 1: Fisheries enhancement toolsUnlike rivers, reservoirs offer ample scope for fish yield optimization through suitable management. The sheer magnitude of the resource makes it possible to enable substantial increase in yield by even a modest improvement in productivity. In India alone 19,370 small, medium and large reservoirs exist with a total area of 315,366 ha (Sugunan, 1995). Reservoirs thus represent an important opportunity to increase productivity in inland fisheries, but to realize this potential a balance must be struck between the objectives of income generation, yield optimization and environmental issues.As part of the first specific objective of the project, a preliminary task was to improve and/or update scientific knowledge about the bio-physical and ecological dynamics of the reservoirs in the three basins under consideration in an attempt to estimate more precisely the potential productivity. Both primary and secondary data were used. Different approaches were undertaken in the three basins, reflecting their different status and number of reservoirs.In the Indo-Gangetic Basin, where several hundreds of reservoirs are scattered over various climate, altitude and ecological conditions, a comprehensive survey of 604 reservoirs was completed in the eight states of the basin. The survey included morphometric, physico-chemical, nutrient and biological attributes as well as socio-economic and institutional data (results regarding this second component are presented in Section 2). In the Volta Basin where the focus of the project was on the Volta Lake, bio-physical data were collected, and a community-based catch assessment conducted with the help of local fishers. Secondary (published and gray) literature was also collated. Similarly in the Nile Basin where the project focused on Lake Nasser, physical, chemical and limnological features of the lake were collected to complete the existing literature and experimental fishing were conducted to update our knowledge about the status of the main species. The sections below summarize the main results of those activities.A performa was developed and circulated by CIFRI to collect the preliminary information on 604 reservoirs from 8 different states in the IGB. The Department of Agriculture, Animal Husbandry, Dairying and Fisheries, Government of India adopted the performa for collection of data on reservoirs and also asked the State Fisheries Departments (SFDs) to provide the information. The information collected through the survey, however, turned out to be insufficient or of poor quality in some states. Complementary surveys were organized to fill the gaps, but information on some important parameters is still lacking, as it was not documented initially by the SFDs or the Department of Irrigation who control reservoirs for management in states.The data 1 was collected in different districts of eight Indian IGB states, namely, Himachal Pradesh, Punjab, Haryana, Uttar Pradesh, Bihar, Jharkhand, Rajasthan and West Bengal. The collected information was then tabulated and subjected to statistical treatment. The variables considered included the reservoir area, mean depth, reservoir age, stocking density, species stocked, yield, etc.The main characteristics of the two case study sites (the Dahod reservoir in Madhya Pradesh and Pahuj in Utter Pradesh) which were subsequently selected for the project are also presented below.For the purpose of fishery management, reservoirs in India are classified as small (<1000 ha), medium (1,000 to 5,000 ha) and large (>5000 ha) although, different states have varied classification, according to size wise distribution. Sugunan (1995) had estimated the total area to be 1,485,557 ha for small, 527,541 ha for medium and 1,140,268 ha for large reservoirs. Indo-Gangetic basin has 1.16 m ha area or 36.8% of total reservoirs in the country (Table 1. 1.). Small reservoirs cover the largest proportion (40.6%) followed by large (33%) and medium (26.4%). Small reservoirs are also the most numerous (>566) followed by medium ones (>80) while only 26 reservoirs are large. Most of the reservoirs in the small size group lie below 500 ha while many of the reservoirs in medium category are within 1000-2000 ha. The claim that Indo-Gangetic reservoirs should have a much higher production of fish than they have is mainly based on limnological arguments. In particular, relying on hydro-chemical factors and primary productivity, the large reservoirs in India are thought to have a productive potential of 65-190 kg/ha, the medium reservoirs 145-215 kg/ha and small reservoirs 285-545 kg/ha per year.As with many natural lakes, biophysical factors that determine productivity in reservoirs can be summed up as morphometric (area, depth, shoreline), edaphic, physico-chemical and climatic. A number of morphometric indexes: the Shoreline development index (SDI), the Volume Development Index (VDI), the Catchment to Reservoir Area and the Flushing Rate have been proposed to relate these factors to potential productivity. For other key variables, such as water level fluctuations and area of shoreline inundation between low and high water levels, both of which are known to be dynamic predictors of fish productivity and yields, data is lacking.Mean depth (volume/area) is considered to be the most important parameter indicative of the extent of the euphotic/littoral zone (Hayes 1957). Below 18 m, reservoirs sometimes serve as a 'nutrient sink' (Rawson 1955) as seen in some deep reservoirs of India. Hydel reservoirs on the mountain slopes with steep basin walls for instance are considered 'biological deserts'. Depth is not always a constraint for production, however, with deep reservoirs such as Bargi (14 m) in Madhya Pradesh, Chamera (43.5 m) and Govindsagar (55.0 m) in Himachal Pradesh, Rihand (22.8 ha) in Uttar Pradesh, Badua (14.5 ha) in Bihar being productive due to other favorable factors. Most of the Indo-Gangetic basin reservoirs in the small and medium size groups have a low mean depth (4-7 m) (Table 1.2) and are expected to have a high potential for fish production. The Shore development index (S/2√πA where, S = shoreline length, A = area of the reservoir) indicates the degree of irregularity of shoreline. High values of this index are indicative of higher productivity. Reservoirs with a dendritic shoreline, (such as Lake Nasser or Lake Volta) with many sheltered bays and coves, and with extensive littoral areas are likely to be more productive, while many of the IGB reservoirs have fewer branches and so might be considered less so.The Volume Development Index (VDI = 3 x mean depth/max depth) denotes the depth of the basin in relation to the nature of basin wall. If the value is >1, the basin is cup shaped; <1 the basin is saucer shaped. Deep reservoirs with less littoral area have a VDI of >1 and are generally less productive. In contrast, the VDI of many of the small and medium reservoirs of Madhya Pradesh, Rajasthan, Uttar Pradesh, Punjab, Bihar and Arkhand is <1 and moderately productive.Relative Lake Level Fluctuation In general, system productivity increases with increased relative variability of water level. The index of Relative Lake Level Fluctuation (RLLF) defined as the relation between mean lake level amplitude and mean depth is an expression which attempts to reflect those dynamics (Kolding and van Zwieten, 2006). For a number of the reservoirs surveyed, average annual fluctuations are known and have been used to investigate relations with productivity and effort (Fig. 1.1).Though a significant relation between RLLFs and fish productivity was found this result depended entirely on the outlier of the highly productive and highly variable Gulariya Reservoir. This is a small reservoir in Uttar Pradesh that covers 300 ha when full, shrinks to 6.7 ha during summer and dries up completely during extreme years. When this data point was removed the relation between productivity and RLLF became non-significant.Fig. 1.1. Relation between fish productivity and index of Relative Lake Level Fluctuation (RLLFs = % average annual drawdown/mean depth) in 21 lakes of the Indo-Gangetic Basin.Under CP34, detailed primary data was generated on two reservoirs selected (Fig. 1.2). Both fall under small category reservoirs. The data generated on different biophysical and fishery aspects gives the basic idea about their production functions. Based on the information generated on these reservoirs, appropriate enhancement strategy was planned and executed at both sites during the project period (see section 1.2 below). In Dahod, the annual water level fluctuation is quite significant. During pre-monsoon the minimum water depth can drop as low as 2.5 m. Apart from natural water level changes, the water discharge is also controlled by the authorities of the irrigation department. In Pahuj, the water level fluctuation in this reservoir was less in comparison to Dahod. During post-monsoon, especially in winter, the water depth does not fall below 3.0 m, while the depth remained > 5.0 m during most of the year. This adequate water depth appeared to be very much helpful for congenial growth of fish stocks. The minimum water level changes in this reservoir had a positive impact on overall productivity of the reservoir.In Dahod, the data on main water quality parameters viz., pH (7.2-8.5), dissolved oxygen (5.5-8.5 ppm) total alkalinity (35-90 ppm), hardness (30-60 ppm), suggest good conditions for fishery productivty. These parameters recorded seasonal variations strongly related with monsoon dilution and temperature seasonality as well. The nutrient ranges vary significantly. The concentrations are very low in some period, probably being used at a faster pace by some food chain elements in the ecosystem.In Pahuj, the data on main water quality parameters viz., pH (7.5-8.6), dissolved oxygen (7-10.6ppm), total alkalinity (100-170ppm), total hardness (80-170ppm) indicate that concentrations of major parameters are on a higher side, which is very congenial for sustaining good fishery. The higher oxygen concentration in some months is due to myxophyceae bloom observed in the reservoir. The parameters do record seasonal variations strongly related with monsoon inflows and temperature seasonality. The nutrients ranges viz., nitrates (<50 ->300 ppb) and phosphate (<50-350 ppb) are moderate to support the food chain. They also register seasonality with peaks during post-monsoon period. The concentrations during certain months are very low. In Dahod, the total plankton ranges between 513-7321 units/l, in which zooplankton represents between 100 to 1200 units/l. Phytoplankton is dominated by the members of myxophyceae and bacillariophyceae while chlorophyceae had marginal contribution. There was a marked seasonality among populations but usually summer and winter peaks were encountered (Fig. 1.3). The zooplankton population is mostly dominated by the members of protozoa and rotifers with peaks recorded during the post-monsoon period. The members of copepods also contribute to the food chain with a marginal cladocera population as well. The seasonal trend among different groups is well defined.In Pahuj, the total plankton population ranged between 1088 to 9266 units/l, in which zooplankton density was in the range of 450-1300 units/l. The phytoplankton populations were well represented by different groups recording main summer peak and a minor peak during winter. The peaks were contributed by the members of myxophyceae. In comparison the bacillariophyceae remain uniform but occasional significant population of chlorophyceae were also recorded. The population composition indicates marginal symptoms of eutrophication. But it contributes to the primary production potential of the system (Fig. 1.3). The species composition of zooplankton indicates dominance of cladocerns and rotifers. Very insignificant populations of protozoans were recorded. The peak densities were recorded during post-monsoon when the general water temperature is low.The data generated and depicted in Fig. 1.4 indicate that during the winter months primary production per unit drops but registers major and minor peaks during pre-monsoon period. This may be related with availability of more nutrients, active plankton population coupled with longer day length and favorable temperature. While analysing the primary production recorded for Dahod, it is observed that the lower production value is 200 mg C m -2 h-1 .In contrast in Pahuj the value does not drop below 400 mg C m -2 h-1 . The higher production values in case of Pahuj is above 1200 mg C m -2 h-1 with a peak of 1800 mg C m -2 h-1 while in Dahod the higher production of 450 mg C m -2 h-1 with peak record of 750 mg C m -2 h-1 . This clearly indicates that Pahuj reservoir has significantly higher production potential in comparison to Dahod. This does reflect on variability in fish production from the respective reservoirs (see below). The tabulated comparison of two ecosystems (Table 1.3) indicate that while located in the same basin but different catchments, the patterns of water level fluctuations and existing anthropogenic situation of the two reservoirs result in variability in key biophysical parameters, which strongly impinges on the overall production potential of the ecosystems.In Dahod reservoir, a fixed quota has been imposed by the SFD. The data reveals (Table 1.4) that the quota has not been achieved during the last 10 years prior to the project (1995)(1996)(1997)(1998)(1999)(2000)(2001)(2002)(2003)(2004).Through the years of random stocking by the SFD the percent contribution of Indian major carps registered an increase from 8.74% in 1995-96 to 26.24% in 2003-04 with a major contribution from Labeo rohita. To harness the potential of this reservoir an appropriate shift towards scientific management in required.In Pahuj reservoir where no fixed quota system has been imposed Table 1.5 indicates that the production has recorded varied peaks and lows. The reservoir was not managed as per any sustained plan but the potential exists to enhance its fish production. The data further reveals that during last ten years the percentage contribution of Indian major carps increased from almost zero to 27%; minor carps from 2% to 22.8%; catfishes from nothing to 11.37% while minnows dropped from 96 to 38.8%. The management approach in this system would be to bio-manipulate the stocks to raise the contribution of Indian major carps to about 50% and leaving remaining 50% for minor carps, catfishes and minnows. Fish production from the Indian states located in the Indo-Gangetic Basin has increased from 0.92 million tonnes to 2.08 million tonnes during the past 13 years, passing from 24% in 1990 to about 33% of total Indian fish production in 2003. The state of West Bengal is responsible for over 56% of production in the basin followed by Bihar and Uttar Pradesh. The highest percentage growth of fish production was seen in the state of Punjab where it reached 83 thousand tonnes in 2003 from 11 thousand tonnes in 1990. For most of the basin states fish production has increased over the 13 years examined (1990)(1991)(1992)(1993)(1994)(1995)(1996)(1997)(1998)(1999)(2000)(2001)(2002)(2003).Despite these trends, the productivity of Indo-Gangetic Basin reservoirs (expressed as fish yield per hectare) remains very low and the reservoirs are usually considered under-exploited with an average fish yield of only 16 kg/ha. Small reservoirs produce an average of 29 kg/ha while medium and large reservoirs yield 13 and 9 kg/ha, respectively (Table 1.6). Modified from Sinha and Katiha (2002) The fish productivity of most of the Indo-Gangetic basin reservoirs is low compared to the overall average for the country, except for medium reservoirs, where it is marginally higher. Within the Basin, fish yield is highest in the state of Himachal Pradesh followed by Rajasthan and Madhya Pradesh (Table 1.7). Considering their existing and potential productivity, the reservoirs within the IBG seem to have a very high scope for increasing fish yields.Table 1.7. Fish production potential and actual fish yield in selected Indo-Gangetic Basin reservoirs. More globally, the average productivity of all Indian reservoirs appears to be relatively low, when compared to fisheries that have developed in lakes and (small) reservoirs elsewhere in the world.In African lakes and reservoirs, yields of up to 329 kg ha -1 year -1 are reached; in Latin America and the Caribbean reported yields are up to 125 kg ha -1 year -1 while in Asia, yields reach up to 650 kg ha -1 year -1 (FAO 2002). Note however that, as these are lakes of often wildly different in terms of geomorphology and exploitation, such comparisons should be made with cautious (see below section 1.1.4).The 98 Indo-Gangetic reservoirs reviewed by Sugunan (1995) have an average productivity of 66.5 kg/ha. As the distribution is highly skewed (Fig. 1.5), a better descriptor of the distribution would be the median or (4.2 kg/ha) or the geometric mean (5.2 kg/ha) 2 . Over the whole of Indian reservoirs with their average yield of 20 kg ha -1 , this productivity seems far below the potential. Even a moderate increase of 100 kg ha -1 for small and 50 kg.ha -1 for medium and large reservoirs could provide an additional 170,000 t of fish in the sub-continent (Sugunan 1995). The Volta Lake is divided into eight segments referred to as strata, based mainly on ecological consideration (Fig. 1.6). For the CP34 activities, a station was established in Stratum II at Dzemeni (lacustrine), Stratum III at Kpando (lacustrine) and Stratum VII at Yeji (riverine). A fourth station was located on a smaller Volta reservoir below the Volta Lake at Kpong.Methods used in studies on bio-physical characteristics are presented in Table 1.8. Selected water quality parameters including Temperature, Transparency, Nitrite -N, Nitrate -N, Ammonia -N, Phosphate -P and Dissolved Oxygen were obtained from water samples taken bimonthly initially and later quarterly at various depths 100 m and 500 m from the shore and analyzed according to Standard Methods (APHA, 1998). Data in the current study were compared with that available for previous studies.Stock assessment was undertaken using the 'fisher participatory approach' developed in Zambia (Ticheler et al., 1988;Kolding et al., 2003b). Five fisher groups, each comprising three members were formed to record the fish catches in two fishing days per week. The fishing gears deployed by the participating fishers in the study area were gillnets, net traps, basket traps and acadjas. In addition, experimental gillnets (a battery of 5 different mesh sizes of gillnets -15.0 mm, 20.0, 25.0, 30.0 and 40.0 mm) were also deployed. Fishes caught were individually identified based on keys of Paugy et al. (2003, Vol. I & II), Levêque et al. (1988) and Dankwa et al. (1999). Data of catch recordings were compiled on monthly basis in Excel and exported into PasGear for analysis. Summarized in Table 1.8 are the results of parameters obtained in the current study compared to previous studies. Temperature profiles from surface to 8.0 m depth at the four stations showed that very narrow differences (1.0-1.5 º C) existed between 0.0 and 8.0 m depth at all the stations. Dissolved Oxygen (DO) concentrations exhibited a decrease of about 0.25 mg l -1 per meter drop at almost all stations from 0.0 to 8.0 m depth, while mean DO was about 6.8 mg l -1 . Conductivity of the lake ranged from 51.1 to 83.3 µs cm -1 . Transparency varied from station to station. Generally, higher values (200-325 cm) were recorded at Kpong, below the lake and lowest at Yeji (about 20-125cm) but predominantly below 50 cm through a year. Values for nutrients measured are considered generally low and, though not very different from what has been reported in previous studies, N and p were somewhat higher while transparency showed a dramatic decrease over time.Fish Catch Assessment:The main fishing gears used by local fishers were monofilament gillnets of various mesh sizes (GN), medium basket traps (MBT), small net traps (SNT), and big net traps (BNT). Length frequency distribution of all species caught from all the gears is shown on Fig. 1.7. The mean length of fishes caught in acadjas was about 29 cm compared to 20 cm from traps and 15-75 cm from gillnets. Total catch from all gears deployed in the study (Fig. 1.9) consisted of 32 species belonging to 21 genera. However, about 95% by number and 84% by weight of the catch were made up by five fish genera. There was a general decreasing trend in catch from all the gears during the study period (Fig. 1.11). The Figure also shows that decline in catch was inversely related to lake level changes. Fig. 1.12. Total number of days fished over 15 months and average catch per fishing day (kg/day) for the 11 fishers engaged in the sampling scheme.The above information complements the daily catch estimate for the various gears used in the study in Table 1.9. Limited information was available for the acadja's to construct this table. On the average 3 acadjas are harvested a day. During high water level period Oct-Dec Acadja's fishers hardly operate due to difficulties in harvesting. The same acadja is harvested once in about 2 months (based on interviews with the chief fisherman in Dzemeni). The average values of temperature, dissolved oxygen and nutrients at all sites considered were comparable to what has been reported from similar areas in previous studies. Concentrations of nutrients were generally still low and may have implications for primary productivity of the Volta Lake. The low nutrient level of the Lake has been reported by previous researchers and was attributed the insoluble granite formations of the Volta basin (Antwi, 1990;Viner, 1969).Transparency was the only parameter that showed a dramatic change from a mean of about 134 cm since the early part of the Lake formation to below 50 cm during the current study. This is considered to be caused due to various anthropogenic activities around the Lake.Historical Perspectives:The closure of the dam in 1964 led to the disappearance of some species especially from the genus of Chrysichthys which are sensitive to low oxygen levels. It also lead to the disappearance of riverine species e.g., Mormyrids, Brycinus, Hydrocynus and schilbeids from the lacustrine area.The basic trend in the changes of the fish community was towards the development of a community of species with herbivorous food habits e.g., Tilapias, Distichodus and Labeo.Insectivorous species as e.g., Alestes, Brycinus, Schilbeids, Chrysichthys and some Synodontis species kept decreasing. Some 36 years later Tilapias dominated the catches until the late 1990s when Chrysichthys took over dominance all over the Lake.Officially recorded total catch increased from 44,000 tons in1976 to 60,000 tons in 1998. Over the same period, CPUE declined from 11 kg/boat/day in 1970 to 4kg/boat /day in 1998 presumably due to increased effort in terms of canoes rising from 9,113 in 1971 to 24,035 canoes in 1998 (MOFA, 2003). The increase in catch over the years was inversely related to changes in water level of the Lake.Fish Species. The number of fish species encountered in the current study ( 32) is low compared to the 121 species listed for the Volta Lake (Dankwa et al., 1999) and 60 commercially important fishes of the Volta Lake recorded by Denyo (1969). The low diversity encountered presently was attributable to the following two factors: i) the range of gears deployed in the previous studies were wider and were also different from those used in the current study, ii) studies were undertaken over longer periods and iii) may have presented different hydrological Lake conditions.Catch Composition. Although 21 genera were represented in catches during the study, only 5 of them made up 96.9% and 84.1% of total numbers and weight of fish caught respectively. These were Chrysichthys, Tilapia, Hydrocynus, Synodontis and Bagrus (Fig. 1.8). Previous studies also indicated dominance of a few fish groups in commercial catch on segments of the Volta Lake (Braimah, 1995;Abban, 1999). The extreme skew of catch towards a few species in catches of individual gears could be attributed to selectivity of the gears, which is an established phenomenon (Denyo, 1969). This being so it also reflects the actual species composition of the lake as fishers generally do optimize gears to available fish species and size classes. However, the predominant catch of Hydrocynus by one gillnet operator among the 11 fishers involved in the research was considered an innovation by that local fisher. Predominance of Chrysichthys in basket traps compared to heterogenous catch in net traps was attributable to Chrysichthys preferring 'darker' areas, while the preference of Tilapias for acadja could be attributed the attraction of these fish species that have an affinity for woody and vegetated areas in waters. (Hem et al., 1994;Welcomme, 2000) Relative catch per gear. Essentially, data obtained here suggested that locally evolved traps (basket and net traps) were most efficient in terms of the size (in weight) of the catch compared to gillnets. Even more important for fisheries management, was the indication that bigger mesh size gillnets were more effective in fishing in terms size of catch compared to smaller-meshed gillnets at least in certain periods of the year and for specific target species. It remains to be calculated how this difference works out in the economics of these fisheries.Lake Water Level and Catch. Information available on the Volta Lake water levels suggests that water level had been decreasing for about 10 years and got to a lowest record in 2006. Since 2006, the situation started to improve. In relation to fish catch, data obtained during this study indicated higher species diversity in catch by all gears and higher CPUE at lower water levels within one year. Relationship between water level and fish catch usually requires temporal and spatial several considerations. However, the trends observed have been indicated by earlier authors including Leveque et al. (1998) and Paugy, et al. (1999) andvan Zwieten et al. (2009).Lake Nasser has a permanent storage of 31.6 cubic km, an active storage of 90.7 cubic km, and an emergency flood management storage of 41 cubic km. Lake Nasser has 84 side branches, known as khors. On the basis of ecological consideration, six khors were selected to cover different ecological conditions. They are: Khor El Ramla (R), Khor Kalabsha (K), Khor Gurf Hussein (GH), Khor Korosko (KR), Khor Tushka East (TE), and Khor Tushka West (TW) (Fig. 1.13).Fig. 1.13. Map of Lake Nasser.Lake wide surveys were done using the Research Vessel of Lake Nasser Development Authority in March 2006, February 2007, July 2007and March 2008. The surveys covered also the enclosures used for fish stocking (see below). Chemical and physical parameters were analyzed according to the American Public Health Association (APHA, 1998). Oxygen concentrations were measured by Winkler method according to APHA (1995). Biological oxygen demand (BOD) was determined by using 5 days incubation method. The total viable bacterial counts (TVBCs) were determined using spreads-plate method (APHA, 1998). Chlorophyll-a (measured as indicator of phytoplankton biomass) was measured by Trichromatic method according to APHA (1995). Zooplankton samples were collected using standard closing plankton net, having 55µ mesh size, 35cm mouth diameter and 80cm length. Samples were collected vertically from 5m deep up to the surface (photic layer) and from the aphotic layer (aphotic layer under the compensation level) at each station. Bottom fauna samples were collected by grab sampler.The deepest water depth in the lake was 51.1 m at Khor El-Ramla. Water depths decreased from the entrance areas to shorelines of the khors. The lowest value of water transparency was 1m at Khor Tushka west, while the highest value of 5 m was measured at Khor El-Ramla. Water transparency direct proportional to water depths and decreased from the northern khors toward the southern ones.The lowest air temperature over Lake Nasser was 18.7 Celsius ( 0 C) at Khor Tushka west in March, and the highest value was 31.1 0 C at El-Ramal in July. The sub-surface water temperature (0.5 m) ranged between 19.4-23.9 0 C at Khor Tushka west in March. At the same month, water temperature near bottom varied between 17.6 and 22.3 0 C at Khor Korosko. The air and water temperature increased southward. The pH values ranged between 8.04 at Khor El-Ramla and 9.14 at Khor Tushka East in March. The pH values decreased southward. Total dissolved solids (TDS) values ranged between 135 mg l -1 at Khor Korosko, and 185 mg l -1 at Khor El-Ramla. TDS increased northward.Oxygen concentration varies seasonally, vertically and horizontally. It ranged between 3 and 12 mg l -1 for the surface water, and from 0 to 8 mg l -1 for bottom waters in July. In summer, thermal stratification is noticeable, with oxygen reaching 0 mg l -1 at depths below 15m. The obtained results of biological oxygen demand (BOD) showed a regular distribution trend along the selected khors. Generally, the values decrease in the main channel and gradually increase at the two bank sides. The minimum value (0.8 mg/l) was recorded at the entrance of Khor Tushka East while the maximum value of 4.4 mg l -1 was recorded at the southern side of the same khor in March. The results of chemical oxygen demand (COD) showed a similar distribution trend as BOD values along the selected khors. Values decrease in the main channel (mean average 6.4 mg l -1 ), and gradually increase at the two sides with mean average of 7.4 mg l -1 during March. The minimum value (0.98 mg l -1 ) was recorded at the middle layer of first sector in Khor Gurf Hussein, while the maximum value of 15 mg l -1 was recorded at the surface layer in Khor Tushka East in winter.In most sites carbonate appear to be completely depleted in the main channel of the khors, while it was observed in most of the two bank's sites in the selected khors. The highest carbonate value (18.0 mg l -1 ) was recorded in the southern side of the middle sector in Khor Gurf Hussein in March.Bicarbonate values exhibit a regular homogenous distribution in the main channel at the selected khors with its highest values (132 mg l -1 ) in the surface layer of main channel of second sector in Khor Gurf Hussein in July. Its values however decreased presumably as a result of remarkable values of carbonates. The lowest value of bicarbonate (84 mg l -1 ) was recorded in the southern side of the middle sector in Khor Gurf Hussein in March.Sulphate results showed gradual increase southward along the selected khors, especially in the Khor Tushka West. The highest value (19.4 mg l -1 ) was recorded in the northern side of the first sector at Khor Tushka East, while the minimum one (11.96 mg l -1 ) was recorded at the surface layer of the main channel of first sector in Khor El-Ramala in March. Calcium results showed regular distribution pattern along the studied khors, with higher figures along the two banks as compared to the main channel in the same khor. The highest value (28.86 mg l -1 ) was recorded in the northern side of the second sector at Khor El-Ramala, while the minimum one (12.83 mg l -1 ) was recorded at middle layer of the entrance sector of Khor Korosko in March. The highest magnesium value (20.38 mg/l) was recorded in the northern side of the first sector at Khor Tushka West, while the minimum one (9.7 mg l -1 ) was recorded at southern side of second sector in Khor Korosko in March.Nitrite results showed an increase in southern khors. The highest value (44.1 µg l -1 ) was recorded near the bottom water layer in the main channel of the first sector at Khor Tushka West, while the minimum one (2.4 µg l -1 ) was recorded at middle layer of the entrance sector of Khor El-Ramala in March. Nitrate concentrations showed a similar trend as nitrite. The results of ammonia in the main khors in Lake Nasser exhibit homogenous distribution pattern, whereas their values fluctuated in a narrow range. The highest value (127.4 µg l -1 ) was recorded in the middle water layer in the main channel of the first sector at Khor Tushka East in July, while the minimum one (12.4 µg l -1 ) was recorded at northern side of second sector at Khor Gurf Hussein in March.Overall the concentrations of chlorophyll a at Lake Nasser ranged between 1.59 µg l -1 to 6.1 µg l -1 during the year. Regarding vertical distribution of chlorophyll a, the result showed that the highest value of chlorophyll a was found at depth of 5 meter from the surface, due to absence of light penetration.Chlorophytes were the most occurred group, 75 species constituted this group with relative occurrence of 41.9%. Diatoms ranked the second position with relative occurrence of 30.7% (55 diatom species were identified) while Cyanophytes ranked the third position with relative occurrence of 26.3% (47 species were recorded). The highest diatom abundance of 6148.5 x 10 3 cells cm -2 was obtained at Khor Korosko in July, while the minimum one of 120.3 x 10 3 cells cm -2 was found at Khor Kalabsha in March. Epiphytic biomass per lake littoral surface area is considered very high compared with the corresponding phytoplankton chlorophyll a values. The small taxa like Cymbella microcephala, Fragilaria constreuns, Achnanthes minutissima and A. lanceolata dominated in the khors present in the middle of the lake, considerable large cells belonging to Epithemiaceae and Cymbella obscura dominated in the khors at the middle of the lake.The maximum number of zooplankton organisms was recorded in khor Tushka East (98 x 10 3 org. m -3 ) in March, while the lowest number was recorded in khor Korosko (67 x 10 3 org.m -3 ) in March as shown in Fig. 1.14. Main zooplankton groups include rotifera, cladocera, and copepods. The biomass values of bottom fauna in the western side of the lake in March were higher than those recorded in the eastern one. This increase in the biomass was associated with the increase of Mollusca at these stations. 21,400, 20,250 and 19,100 individuals m -2 , weighting respectively 291, 333 and 258 g m -2 . Mollusks, aquatic insects, annelids, and crustaceans are the main groups of bottom fauna.Fish landing from Lake Nasser from 1965 to 2005 is presented in Fig. 1.15. The total fish landing increased with increase in water level in the lake from 1965 to 1981 to reach 35,000 ton at 1981, then decreased again from 1981 to 1986 as a result of drought and subsequent decrease in the lake water level. Starting from 1986 fish landings showed abrupt changes that were not related to water level but due to price fixation and consequently smuggling of fish (see section 2 below). (inner 3cm and outer 7cm; Gill nets 3.5 and 6 cm). Results are shown in Table 1.10. Average catch per unit effort (CPUE) computed as the catch in kg of fish by 50m length of the net in a unit of time (one night for gill net or one shot of trammel net) (Table 1.11).Table 1.10. Species composition in weight (Wt%) and number (No%) for different gear types in Lake Nasser during the study period based on 1529 samples caught with mesh bar sizes (Trammel net, inner 3cm and outer 7cm; Gill nets 3.5 and 6 cm). The main factors that have so far been affecting the recorded fish production in Lake Nasser are water level and the institutional context (e.g. the existence of a fixed price system for fresh fishsee below section 2). Fluctuations in lake water volume alters the ecology of a large portion of the Lake, decreasing sharply the spawning and nursery areas and, consequently, fish production when water level decreases -as it was the case for instance during the drought years from 1981 to 1986 during which fish landing decreased significantly.Referring to biophysical data, and comparing primary productivity, it was noticed that there was limited change over time in Chlorophyll a concentrations. It is possible to calculate the maximum yield of fish production from the lake from Chl a concentrations. The average primary net production of phytoplankton is estimated to be 4 kg (d.w.) m -2 year -1 , and considering that the total surface area of lake Nasser was estimated to be 2562 km 2 (2.56 x 10 9 m 2 ) at 160 m water level, and 5237 km 2 (5.23 x 10 9 m 2 ) at 180 m water level, the total catch was estimated to be 22.7 x 10 3 ton/year at 160m water level and 46.2 x 10 3 ton/year at 180m water level. The average is about 34,500 ton which is very close to the maximum total catch that was recorded in 1981. It seems that the lake is very stable ecologically.Tilapia species, Oreochromis niloticus and Sarotherodon galilaeus are identified as plankton feeder.During their early life stages up to fingerlings they feed mainly on zooplankton. Adult tilapiins are herbivorous, mainly feeding on epiphytes, macrophytes and attached algae which are also dominant with high densities in khors. The ecological conditions in the lake, especially in khors, are in favor of the reproduction, growth and feeding of tilapiine species. The spawning season of these species is synchronized with the maximum zooplankton density (early spring). Economically, increased abundance of both tilapiin species would be considered suitable. A fishery based on these herbivorous fish will therefore be more productive than one based mainly on species higher in the web chain such as Synodontis schall, Tetradon fahaka, or Clarias Lazera.Productivity levels and tilapiine species composition, however, differ. The southern region is richer in zooplankton than the northern region which may be attributed to the continuous flow of nutrients resulting in high productivity of phytoplankton essential for zooplankton. Generally, higher fish yield were recorded in the southern region of the lake, particularly close to Allaqi, Korosko and Toshka, where higher mean annual values of chlorophyll-a and zooplankton were recorded. The current estimates of CPUE do not contradict these observations, but differ between gears. The mean value of CPUE of gillnets used in the south was 1.82 times higher than in the north while CPUE of trammel nets in the north was 1.77 higher than in the south. Most of the fish caught in the north (62%) was of S. galilaeus with an average length of 15.4 cm (169 g), whereas the catch in the south was mainly O. niloticus (78%) of an average length of 23.8 cm (616 g).Although the open water areas are rich in phyto-and zooplankton, acoustic surveys were not able to detect fish populations in the main channel. Anoxic conditions and thermal stratification was noticed at depth >20m, with zero oxygen concentration in summer season. Special attention should therefore be given to the upper layer of open water areas of the lake and the potential for pelagic fish species to occupy this niche. Silver carp was tried as plankton feeder in floating cages set in the offshore area but was not pursued further due to many reasons (consumer's strong preference for tilapia, possibility of escape from the cages with potential impact on the tilapiine population as the two species would compete for the same food). Other species that could be considered are the true pelagic species as Limnothrissa miodon (kapenta) that was successfully introduced in a number of reservoirs in Southern Africa. However, as the lake is the main source of potable water for the very large majority of Egyptians, any introduction of new species should be treated with extreme caution due to its potential to change the lakes conditions.Generalisation about capture fish production per water surface area is difficult both due to the lack, or unreliability, of catch data and the paucity of data on water surface area in many countries. Productive reservoir fisheries have developed in small reservoirs in Africa with yields of up to 329 kg ha -1 year -1 , in Latin America and the Caribbean with yields up to 125 kg ha -1 year -1 and in Asia with yields up to 650 kg ha -1 year -1 (SOFIA 2002). By comparison, the estimated productivity of all Indian reservoirs (ranging between 11-46 kg ha -1 ) as well as the one from Lake Nasser of 36.4 kg ha -1 is extremely low. In contrast the productivity of Lake Volta, assuming a catch of 250,000 tonnes and an area of 8500 km, seems high with 294 kg ha -1 and even with the official (underestimated) landing statistics it would still be producing between 51-88 kg ha -1 . The low productivity in Nasser and the Indo-Gangetic basins thus may be a function of underreporting of catches, as with many other inland fisheries. Even so, in the case of Lake Nasser, if one assumes that the reported landings represent only 50% of the total landings as reported (see section 2.3.2 below), the production per ha is still only 73 kg ha -1 , comparable to low productive reservoirs in China (79kg ha -1 ) Thailand (74 kg ha -1 ) and Indonesia (64 kg ha -1 ). The productivity of Lake Nasser therefore may be indicative of the underutilisation of the available resources.It is difficult however to directly compare these data on yields per hectare, as yield generally is not proportionally related to the lake size. A direct comparison is possible, though, when calculating annual yields for a hypothetical 1000 ha lake based on log-log regressions of yield and lake area Fig. 1.16) (Kolding and van Zwieten, 2006;van Densen et al. 1999). This analysis, based on a selection of water bodies for which information was available provides estimates of annual average yields in Asian waters of 365 kg ha -1 for Philippine lakes, 239 kg ha -1 for Sri Lankan reservoirs, 79 kg ha -1 for Chinese reservoirs, 74 kg ha -1 for Thai reservoirs and 65 kg ha -1 for Indonesian reservoirs (Fig. 1.16 A). Similar regressions for South American reservoirs suggest annual yields for a 1000 ha reservoir of 144 kg ha-1 for Cuba and of 234 kg ha-1 for Mexico (Fig. 1.16 2B). Using the same approach, a hypothetical African lake of 1000 ha would produce 168 kg ha-1 (Fig. 1.16 C). In comparison, medium sized Sri-Lankan reservoirs are highly productive with catches reaching sometimes well above 200 kg.ha -1 yr -1 . These catches are dominated by the introduced tilapia which is produced without supplementary stocking.Following a similar analysis a hypothetical 1000 ha Indian reservoir yields one factor less with an average of 20 kg.ha -1 (Fig. 1.16 2D). By overall comparison this is anomalously low and seems to be far below the potential yield these reservoirs could yield. It is not clear from the general literature what causes this low productivity in the Indo-Gangetic basin reservoirs. This is generally thought to be due to the lack of understanding of reservoir ecology, trophic dynamics, inadequate stocking, wrong selection of species for stocking, low size of stocking materials and \"irrational\" exploitation\" (CIFRI 2006). To these may be added the impacts of hydrological regimes for electricity generation or irrigation that may not fit species habitat and spawning requirements as well as the management regimes regulating the fishing effort and fishing patterns. What is clear, however, is that a thorough study of the possible causes is warranted. The causes may not be wholly ecological but related to overall effort levels as well as management regime, suggesting that the theoretical potential for improvement is very high.We presented above an overview of the bio-physical and ecological dynamics of the reservoirs under consideration in the three basins. In the section below we now turn to the 'core' objective of this first part of the project, namely, identifying, developing, and testing fisheries enhancement tools and strategies, with the hope that those will lead to increased fish productivity and better community livelihood prospects. Three main interventions directly related to fisheries productivity were implemented in the three basins:small-scale cage culture in Lake Volta, khor enclosure in Lake Nasser, cage and pens in India.The first part of the section below will present in detail the rational, methods, results of those three different efforts to increase productivity, followed by a general discussion.For the Volta Basin, the site where the enhancement model was to be tested had been determined in advance during the proposal design. This was the Lake Volta. In this context, the two potential approaches that were then envisaged for enhanced fish productivity in the Volta Lake were: management of stocks through control of fishing gear and culture based fisheries approaches.Consultations with primary stakeholders 3 indicated that culture based fisheries options especially artisanal caged fish culture and penned fish culture systems were preferred.Cage aquaculture is practiced profitably in many parts of the world, generating jobs and making substantial contributions to fish supply (Hambrey 2006). From interviews with some of the major producers, current output of Nile tilapia cage aquaculture in sub-Saharan Africa can be estimated at about 4500 tonnes per annum, mostly from relatively large-scale, commercial projects in Ghana, Malawi and Zimbabwe.In Ghana, the government is actively promoting aquaculture development as a way to reduce the country's current fish supply-demand gap. As part of this policy, one percent of the total surface area (8,700 km 2 ) of the lake has been allocated to the development of cage aquaculture (Personal Communication, Hon. Gladys Asmah, Ghana Minister of Fisheries, Accra, 30 March 2007) with the hope that this initiative will actively encourage investors.If the yields reported for cage aquaculture elsewhere in Africa, i.e. between 50 and 150 kg/m 3 /9 months 4 , can be replicated in Ghana, production from less than 100 ha of fish cages could just about match the current capture fishery output of about 90,000 tonnes (Asante 2006). Conjointly, positive cash-flows have also been reported for medium-scale production systems with outputs of approximately 20 tonnes per month. The stocking, feeding and cage construction technology piloted by these farms was thought to be suitable to smaller-scale investors.The intention was therefore to design small cage technology model for local communities, to assess the local adaptability of this system by running an experimental trial, with the explicit objective to evaluate the production capacity and economic viability of the system, assess the technical manageability of the approach, identify potential key production constraints and technical difficulties, and determine the minimum scale for economic sustainability 5 .The lee of a small-uninhabited island off of the fishing and trading community of Dzemeni, South Dayi District, on the South West bank of the Volta Lake in Stratum II was chosen to run the trial.From October 2005 through December 2007, two six-month cycles of small-scale pilot cage aquaculture were carried out. In the first trial, four cages each of 6 x 4 x 2 m deep (48 m 3 ) were used. The cages were constructed entirely of locally available materials (Photos 1.1) at an individual cost of approximately $1000 (Table 1.13). For the second trial, an additional two cages were installed for a total of six.Photos 1.1. Cages used for the trial (Lake Volta)Mixed-sex fingerlings derived from a selected line of Oreochromis niloticus produced at the Ghanaian Aquaculture Research and Development Centre (ARDEC) in Akosombo, and reported by WRI to grow some 10-15% faster than the local wild stock, were stocked at rates ranging from 3000 up to 9000 fish per cage (63 to 188 fish m -3 ). Heavy mortalities incurred, however, due to poor transport and handling conditions, resulting in effective stocking rates of between 20 and 100 fish m -3 with fingerlings of between 13 and 32 g (Table 1.14 a).Fish in cages were fed locally available (GAFCO Inc.) floating extruded pelleted aquafeed containing approximately 30% crude protein. After 133 to 153 days, the cages were harvested, fish graded according to size class (>300 g, 200-300 g, <200 g), counted, weighed and sold to local fish traders to estimate their commercial value (Photos 1.2).Photos 1.2. Left: sorting fish harvested from cage trial into size groups; Right: selling of fish harvested from the cage. Production and growth data from the trials are shown in Table 1.14 a-b and Fig. 1.17 a-b. Two cages were sabotaged by locals and another was damaged as it became fouled with a submerged tree when the water level was low and then ripped open, releasing the fish, as the water level rose again. For those cages that survived the entire trial, gross yield ranged from 232 to 1176 kg cage -1 6 months -1 (5-25 kg m -3 ) averaging 456 ± 329.5 kg cage -1 (9.5 kg m -3 ). Overall, survival was low in all cages, averaging 29 ± 28.4%. Only about 30% of the mortalities floated up and were counted, at least another 40% sank or went unnoticed.Only the cage No.2 from which more than one tonne of fish (>96 fish weighing 24.5 kg m -3 ) was harvested made a significant profit (Table 1.15). Food conversion ratios (FCR) were estimated to range between 2.5 and 8.1 with an average of 3.54 (Table 1.14 a and b). Feed was the major component of cost, averaging over 50% of the total (Table 1.16). Fingerling purchase was another major cost, accounting for an average of 27% of the total. . Fish stocked at approximately 40 fish/m3 were fed a commercial diet over a culture period of six months. Three cages were damaged or sabotaged and harvested early.The WRI Akosombo Improved Strain exhibited an average specific growth rate in cages of 1.83% body weight per day (Table 1.14), but showed significant variation in final weight at harvest, ranging between 60 and 500 g. Overall, small fish (<200 g) averaged 17.5 ± 19.73%, medium fish (200-300 g) averaged 27.1 ± 9.9% and large fish (300-500 g) averaged 54.4 ± 24.1% of the harvest by weight (Table 1.17). The average price received from fish mongers on the shore within an hour after harvest was ¢3.14 per kg live weight. Although water level varied by up to 1.2 m and flow rate was at times nearly undetectable, water quality in the vicinity of the cages was generally stable and remained within the limits for good tilapia growth throughout the trials (Table 1.18) (Boyd 1990). No fish deaths attributable to poor water quality were recorded. In addition, there was no obvious impact of aquaculture on water quality in the immediate vicinity of the cages (Fig. 1.18). Improper handling and transport of tilapia fingerlings destined to be stocked in the cages was the major cause of low yields and profits. Typical survival rate in small-scale tilapia cage culture is in the range of 70-80% (Mikolosek et al. 1997, De La Cruz-Del Mundo 1997) although survival as low as 60% has been associated with stocking densities in excess of 70 fish m -3 (Yi et al. 1996). In a similar artisanal cage system tested in Côte d'Ivoire by Gorissen (1992), stocking mortality in 30 m 3 cages stocked with 30 g fingerlings at 100 m -3 was only 5.2%, implying that the problems encountered at Dzemeni can be remedied with proper fish handling techniques, even under rustic conditions. Simple linear regression of the number of marketable fish at harvest against net profit (y = 1.2x + 2521; R 2 = 0.54) suggests that a farmer using a system similar to that tested at Dzemeni would need to produce over 50 fish with an average weight of over 300g per cubic meter of cage volume to break-even. Typical FCR in O. niloticus cage aquaculture systems in Africa is between 1.4 and 2.5 (Beveridge 2004; Personal Communications, Patrick Blow, Lake Harvest Aquaculture, Zimbabwe, October 2006; Steve Murad, Tropo Farms, Ghana, November 2008; Karen Veverica, FISH Project, Uganda, January 2009). The higher than usual FCRs realized at Dzemeni are presumably the result of a high percentage of fines in the feed and possible variability in its proximate analysis, coupled to the ±40% over-estimation of the number of fish in each cage as a result of undetected mortality, and thus over-feeding. If the Akosombo strain of O. niloticus used in this study has the physiological capacity to achieve a mid-range FCR of 1.6 (Beveridge 2004), then an average of 47% of the feed inputs to the cages was wasted. At an average of 52% of total production costs, a 47% savings in feed would add an additional ¢700 to the bottom line, substantially improving the economics of the system.Although only about half of the fish reached the target size of 300 g, the overall average specific growth rate of 1.8% body weight per day (mixed sex; virtually unlimited feed) compares favorably with the 1.5% body weight per day calculated from a range of intensive caged tilapia grow-out trials reported by Balarin & Haller (1982) and El-Sayed (2006) Despite the difficulties encountered, the technical feasibility of the cage culture system was successfully demonstrated. The cages proved sufficiently robust to survive most of the prevailing natural conditions in the Volta Lake, although one of the cages was damaged by floating tree debris, a risk that should be further evaluated. Acts of vandalism and theft are a further risk to which fish cages are sometimes subjected. Prevalence varies with prevailing socio-cultural and economic conditions, governance and the type of development -e.g. scale, equitability of benefits sharing, impacts on livelihoods of other stakeholders. If the causes can be understood it may be possible to mitigate their impact (Beveridge 2004). According to the data collected at Dzemeni, a minimally profitable 48 m 3 small-scale cage aquaculture system in Ghana would have to produce at least 1 tonne of fish at an FCR of less than 2.5. With WRI technical assistance, some 20 smallscale investors in the lower Volta River basin are at the time of writing (May 2009) applying the cage aquaculture technology tested at Dzemeni (Photo 1.3).During the first trial, 4,990 kg of feed were added to the ecosystem, with no detectable effects of cage aquaculture on water quality in the vicinity of the production site. The lack of any clear correlation between water quality parameters that might be expected to fluctuate together (e.g., dissolved oxygen and nitrogen, electrical conductivity and turbidity) implies that external influences such as currents, localized flooding events, seasonal water level declines, inter alia seem to have an over-riding influence on the parameters measured at the production intensity tested. Such observations have often been made in the vicinity of small cage developments.Photo 1.3. Example of small scale cage trials being implemented by individuals in the lower Volta RiverAt higher density, however, cages will undoubtedly have impacts on water quality, indicating the need for careful site selection and ultimately some type of zoning system for cage aquaculture in the Volta Lake and monitoring to support an adaptive management system.In India, reservoirs are recognised as sleeping giant for fisheries development with their large expanse (3.15 million ha) and vast untapped production potential. The Indo-Gangetic Basin (IGB) has 1.16 million ha reservoir area (37% of total Indian reservoirs). The exploitation level of these waters is much below the potential due to traditional methods of fishing and non-adoption of methods for improving production (Sugunan, 1995). Fish yield enhancement in these reservoirs is possible with low capital investment and practically negligible environmental degradation through culture-based fisheries interventions. Enhancement options include stocking species of commercial value and habitat enhancements. Such enhancements will directly benefit poor traditional fisher communities, especially in the surroundings of the reservoir.In the IGB, the project objectives required that the sites be identified after careful evaluation of the expectations and the need of local stakeholders. In contrast to the other two basins, where the sites were pre-determined (Lake Nasser in the Nile Basin and Lake Volta in the Volta Basin), it was therefore necessary to screen a large number of reservoirs in the IGB, before finally narrowing down to two sites.Pahuj reservoir (518 ha) in Jhansi district of Uttar Pradesh and Dahod reservoir (460 ha) in Raisen district of Madhya Pradesh were the two reservoirs selected, as they belong to small category of reservoirs and considered as the representative for the reservoir offering potential for fisheries development. Amongst all possible options for fisheries enhancement 6 , two technically viable models were considered in consultation with the stakeholders 7 . Those were (i) seed stocking (species composition of fish seed, direct stocking of fish seed, installation of cage and pen units to raise the required size of seed for reservoir stocking) and (ii) improvement of the institutional arrangements (fishing regime and practices, leasing mechanisms, fish production and marketing institutions, credit, social and institutional support, etc.) and infrastructure of fish marketing and transportation.Details of the fisheries enhancement tools and strategies included in the component (i) were finalized through (a) technical assessment of water quality and fish production potential (implementation of physico-chemical tests for water quality of reservoirs and biophysical assessment of plankton, benthic and macrophyte communities), and (b) consultation and discussions with the local stakeholders on social, institutional, production and marketing issues.The interventions related to the component (ii) around marketing institutions are presented in section 3 of this report.The potential yield of the two project reservoirs was estimated at 285 and 312 kg ha -1 at Dahod and Pahuj, respectively. As per previous records, a maximum of 17% of this potential in case of Dhaod and 40% in case of Phauj was being harnessed. Based on this information the project targeted to achieve a fish yield in the range of 100 to 125 kg/ha in both the reservoirs through appropriate scientific intervention.To achieve the targeted fish yield, strategies on habitat, stock and species enhancements were formulated.Habitat enhancement: Prior to intervention, both reservoirs had significant coverage of aquatic marophytes that impacted negatively on the fish yield. In case of Dahod reservoir, stocking of C. idella (Grass carp) was one of the strategy to reduce the weed infestation. In Pahuj reservoir, fishing activities had been suspended during pre-project period (2005-06 and 2006-07) 8 since the FSD did not permit any individual or cooperative to harvest the stocks due to administrative reasons. In this process the reservoir became weed choked, resulting in a significant increase in the population of minnows. With the initiation of the project the concerned FSD permitted the operation of commercial fishing under the overall technical supervision of CP34's partners. These interventions resulted in bulk harvest of minnows and clearance of macrophytes. With these activities the habitat becomes slowly congenial for carp fishery. Additionally, a shift in fish species in favor of commercially important fishes was noticed following the stocking intervention implemented by the project (see below).Stock enhancement: The existing fish yield was much lower than the estimated potential, suggesting stock enhancement in both reservoirs. Based on the gap between the actual and targeted fish yield, the stocking rate was decided on the basis of anticipated targeted production and general growth rates of targeted species under reservoir conditions. Accordingly the rates 6 The major possible interventions for viable enhancement model considered in this case were: i) improved stocking practices (number, size, composition and time of stocking); ii) production of desired quality stocking material in pen/cages after collection of natural/artificially bred spawn; iii) fish harvesting practices and programme (type of fishing gear and craft, minimum size and weight of fish caught, closed season, lean, medium and peak season of harvesting, etc.); iv) optimum fish marketing practices (storage and transportation facilities, processing, direct and efficient fish disposal pattern); v) more interactions and better understanding among stakeholders; and vi) improved institutional arrangements and co-management for higher equity and access for fishers. 7 Stakeholder Consensus Building Workshop No.2 (20 June 2006) -see Table 3.1 below. 8 The reservoir could not be leased out due to drastic reduction in water level and inflow of domestic sewage and deterioration of the aquatic environment of the reservoir.were estimated at 435 and 386 advanced fingerlings ha -1 for Dahod and Pahuj reservoir, respectively. The stocking protocol implemented involved both direct seeding of fingerlings from local fish seed farms and fry raised in cages up to advanced fingerling stage. In the case of Dahod reservoir, out of 0.17 million fingerlings stocked, 60% fingerlings were procured from farms, while the remaining 40% fingerling was raised in the cages. For Pahuj reservoir, out of 0.2 million fingerlings, 70% fingerlings were procured from farms and the balance was raised in cages.Species enhancement: Another way of improving the productivity is through increasing the share of commercially important fish species in the total catch through species enhancements. The Indian major carps are preferred species in the country and command a much higher price in comparison to other species. Thus a strategy to improve the percentage of Indian major carps (Catla, Rohu and Mrigal) was planned in both reservoirs. The previous data of 1995-96 indicated that these species contributed only 5-8% of the total catch in both reservoirs. In Dahod the species composition of stocked fingerlings was 45% C. idella, 10% C. carpio (common carp) and 45% Indian major carps, while it was respectively 25%, 10% and 65% for the same species in Pahuj reservoir. This composition was decided based on the level of macrophyte infestation in each reservoir and harnessing of detritus through common carp.Availability of appropriate fish seed in time and space is one of the main constraints in reservoir fishery development. To overcome this problem, fingerling were raised from fry (18 mm average length) in situ in cages at both reservoirs. The results are highlighted below:Cage The impact of interventions made was assessed in terms of increase in fish production of targeted species and their percentage increase in total production. Besides, fishing intensity (number of fishers and fishing days) was also monitored and included in the assessment. The information on fish landings and fishing efforts was gathered from landing sites and records of respective SDFs.To assess the impact more clearly these parameters were compared in time scale and for pre and post project period.At the time of riting this report (May 2009) it is the second year of the fisheries enhancement interventions under CP34 and the impact is thus only available for one year. The project activities have increased the fish production of the reservoir from 17.50 to 22 t (Table 1.19). The data set reveals that during 1995-96 the production of major carps was only 1.34 t and contributed only 8.74% of the total catches. During the ten year period (1996-97 to 2006-07) during which some stocking programme initiated by the SFD took place, the production of major carps increased to 5.47 t contributing 31.25% to the total catches. After the project intervention the production of major carps increased to 11.14 t -increasing the percentage contribution to 51% in the total catches.It should be recalled (cf fisheries status in section 1.1.1) that a system of fixed quota has been imposed by the SFD in the region concerned by the project. In particular, for 1995-96 a quota of 18.0 t had been fixed on Dahod reservoir. During the pre-project period (2006-07) the target quota had been increased to 20.0 t. Note however that in both periods (1995-96 and 2006-07) the actual total production did not reach these quota (but only 15 t and 17.5 t respectively) -see Table 1.19. In contrast, during the project period (while the fixed quota had been raised further to 22 t) the total harvest reached the quota after only 3 months. It seems reasonable to assume that, had there not been any fixed quota, the fishing could have continued and higher catches and production achieved.Despite this fixed quota, the project data does reflect increased percentage in major carps. In particular, much more increase has been registered during the project period in comparison to previous ten years (Table 1.19). Since the major carps yield better price their higher percentages resulted in better returns per kg to fishers in spite of fixed quota policy. The outcomes of interventions will be more pronounced with time, as impact of regular stocking, species and habitat enhancements will be visible through better fish harvests in future. The result promises important scope for fisheries enhancement and other institutional interventions for both scaling up and scaling out. Recognizing the impact of the project, SFD put forward a massive plan for implementation of these interventions in most of the reservoirs of the state.In Pahuj reservoir, impact of interventions on the fish production and composition were analyzed and a trend of positive impact was noticed for both the production and composition of fish catch.Looking back at the 1995-96 period, SFD data indicate that major carps was characterized by a poor production of only 0.06 t, that is, a contribution of 0.44% in total catches, while minnows were contributing 96% (13.03 t) of the total catch. In subsequent years (except for occasional stocking of major carp seed by the department) no appropriate management plan was implemented.With fishing suspended in the reservoir for two years prior to its adoption under the project the huge biomass of minnows accumulated. As a part of habitat enhancement action plan, this biomass was partially harvested, yielding 300 t of minnows during 2006-07 in two phases. It may be mentioned here that for the implementation of this project the state authorities permitted the contractor/lessee to fish in the reservoir in consultation with project. After the clearance of weeds and minnows, the reservoir became quite favorable for growth of economic fish species. Based on the biophysical analysis, a phased stocking programme was implemented. The major carp catch during CP34 implementation increased to 32.39 t to a total production of 64 t registering 51% contribution of major carps. This contrasts sharply with the pre-project year during which the contribution of major carp in was only 6.62 t (25% of the total production of 26 t). In comparison to Dahod reservoir, there is no fixed quota policy for fishing in Pahuj. Thus in the case of Pahuj the positive impact of the project was its contribution in shifting a low economic reservoir (dominated by minnows) to higher economic reservoir with major carps contributing 50% to productivity and overall increase in reservoir catch to 64 t.Overall, data indicates an increment of over 145% in catch. The maximum percentage increase was for catfishes followed by major carps. But the scientific stocking did positively contribute to the increment in catch of major carps was 389%. Considering the wide gap between existing and potential fish production in the reservoir, regular stocking of carps is expected to improve further their production and contribution in total catch significantly.Choice of sites and fisheries enhancement models in the Nile BasinIn the Nile Basin, the focus of the project was on the Lake Nasser. Several series of discussions were organized with the main stakeholders of the fishery to identify potential options for enhancement. It should be noted here that the Lake Nasser is a very specific case in that respect.Due to the role that it plays as main source of drinking water for the population of Cairo, no exotic species can be introduced and no artificial feed or fertilizer can be used, limiting the types of enhancement options that could be envisaged. After discussion and consultation with the stakeholders, it was decided to engage in the stocking and management of fish enclosures established inside some of the lake's kohrs 9 . Three khors amongst the 41 existing along the shores of the lake were seclected (Tushka, Ambercab, Wadi Abyad) (Fig. 1.19) where the enclosures would be established and agreement was achieved with the owners of the khors regarding the succession of tasks to be completed.The Simultaneously, the systematic removal of Nile perch and Hydrocynus forskalii) was implemented with the objective to decrease the predator fish inside the enclosures. In September and October 2007 the second batch of 2,000,000 O. niloticus fry (average weight of 2-5 g) was released in Amberckab and Wadi Abyad -one million each. The third enclosure was kept unstocked as a blank experiment for comparison. From the third patch of fry, which released on November 2008, about 400,000 O. niloticus were kept in a small nursery inside Wadi Abyad enclosure.The objective of the predator's removal was to eliminate or decrease the carnivorous fish from the enclosure before releasing O. niloticus fingerlings. The predators were fished out using bottom gill nets with stretched mesh size of 13 cm and 16 cm in Ambercab and 12, 14 and 20 cm mesh size in Wadi Abyad. In addition longlines were used in both enclosures. Unfortunately, the data collected from the non-stocked control enclosure at Tushka was not in a format that allowed for calculating catch rates or species composition, and has therefore been omitted from this analysis. The data and results presented below should be seen as preliminary results. More work and data are needed to judge and evaluate the enclosure model as tested in this project.The predators composed of Lates niloticus, Hydrocynus forskalii and Bagrus bayad at Ambercab enclosure. Malapterurus electricus was also caught during the removal of predators. The total catch was 774 kg from April 2007 to July 2008. Hydrocynus forskalii recorded the highest percentage of 56.1 among the predators followed by Lates niloticus of 41.9% through the whole period. The total catch of the predators declined from 418 kg in April 2 kg in December 2007. Fifteen crocodiles were also caught inside the enclosure with different size ranged from less than 2 m to more than 3 m.In case of Wadi Abyad enclosure, the removal of predators took place from Mid May to Early August 2007. The total catch was 411 kg and consisting of Lates niloticus, Bagrus bayad and Hydrocynus forskalii. Other species were recorded during the predator removal such as Synodontis schall, Tetradon fahaka, Clarias Lazera, Malapterurus electricus and Mormyrus kannume. A declining trend in the catch rates was observed during the period (Fig. 1.22). Lates niloticus was the most abundant predator with 36.9% followed by Bagrus bayad of 24.7%. Two crocodiles of 3 m body length were caught and a large size monitor lizard with body length of 45-65 cm was recorded too.The initial average weight of the fingerlings was 15 g and the final weight ranged from 80 g to 260 g on the middle of March 2009. This means that the increment weight ranged from 65 g to 245 g through 135 days (average 1.3 g day -1 ). The majority of the 'small' tilapia is the non-stocked Sartherodon galilaeus (see below).As expected, the highest numbers of fish were collected by the 10 cm mesh size net (Fig. 1.24) for all the fish species with average body length of 25.6 cm (16.5-51.0 cm) with average body weight 541.1g (100-2340 g). The 12 cm mesh size net collected fish with average body length of 30.4 cm (20.5-70.0 cm) and average body weight of 887.5 g (180-3000 g). The average recorded body length of all fish caught by the 14 cm mesh size was 33.0 cm (21.5-48.0 cm) with average body weight of 1159g (320-2520 g). The data of the experimental fishing were compared with the commercial fishing inside Wadi abyad using 12-14 cm mesh size. The mean body length of the commercially fished Tilapia was 24.4 cm.The maximum number of O. niloticus collected by 10 cm net with average body length 27.6 cm (20.0-41.0 cm) and the average body weight was 702 g (120-2340 g). The 12 cm mesh size net caught the second maximum of O. niloticus with average body length of 29.6 cm (24.0-39.0 cm) with average body weight of 853 g (380-1760 g). In case of the 14 cm mesh size net, the average body length recorded was 32.9 cm (23.5-44.5 cm) with average body weight of 1145 g (340-2320 g).Fig. 1.24. Frequency distribution of body length of tilapia species by different mesh sizesIn case of Sarotherodon galilaeus all the fish were caught by the 10 cm net with average body length 20.6 cm (16.5-25.5 cm) and average body weight of 307 g (100-440 g). Only one fish with 21.5 cm body length (320 g) was collected by the 14 cm net, but no Sarotherodon galilaeus were recorded for the 12 cm experimental net. However, the majority of the measured fish (774 out of 988) in the 12-14 cm commercial gillnets inside Wadi abyad were Sarotherodon galilaeus.The relationship between body length and body weight of O. niloticus is shown in Fig1.25 and Fig. 1.26 for Ambercab and Wadi Abyad enclosure for all the data of experimental fishing with different mesh size (10, 12 and 14 cm) plus the samples collected by the commercial fishers.These curves are the function of W = a L b where W is the body weight (g), L is the body length (cm), and a, b are parameters. The length weight relationship of O. niloticus and S. galilaeus inside enclosures were estimated as follows:O. niloticus W = 0.045 L ) for all species inside the enclosures of S. galilaeus was 305 g while it was 379 g at Wadi Abyad enclosure. Mean weight of O. niloticus in Ambercab was 835 g and 1124 g at Wadi Abyad.The total catch for all species inside Ambercab and Wadi Abyad enclosure was drawn separately for the entire fishing trail during 2008 and2009 (Fig.1.28). Wadi Abyad enclosure recorded 10200 kg while Ambercab recorded 7400 kg. Also, the total average CPUE (kg boat -1 day -1 ) for each of the two enclosures were calculated as shown in Fig1.29. The Ambercab enclosure yielded a slightly higher average CPUE of 84.9 kg boat -1 day -1 compared to Wadi Abyad with 82.1 kg boat -1 day -1 .In Lake Nasser carrier boats operate within each location, collecting the fish from an assigned area from groups of fishers on regular basis. All of the collected fish are landed at different harbors in Aswan, Garf Hussein and Abu Simbel. Two of these carrier boats cover the area outside Ambercab enclosures (El Mubarak serves 12 fishing boats and El Hamd Allah serves 35 fishing boats) while three carrier boats are working outside Wadi Abyad enclosures (Barakat serves 35 fishing boats, Abd El Naby serves 32 fishing boats and El Tayeb serves 17 fishing boats). Two fishers were working on each boat and using trammel gill net with 14 cm and bottom gill net with 12.5 cm. The total catch from inside and outside (covering the months January to April by year) the enclosures (by carrier boat) is shown in Fig. 1.30. The total catch outside the enclosures are high compared to inside the enclosure, but they also cover a larger area.Fig1.30. Total catch (ton) for all species outside and inside enclosures during months of January to April by year.Fig. 1.31. CPUE (kg/boat/day) for all species outside and inside enclosures during months of January to April by year.Fig1.31 shows the CPUE (kg boat -1 day -1 ) for inside and outside enclosure for the same set of data.It is clear that the CPUE inside enclosure are higher than outside the enclosures, but they also represent a lower effort per unit area than outside with approximately 1 boat per km shoreline.It should be mentioned that both inside and outside are using the same length of net (100 m) but different mesh size. The mesh sizes used inside the enclosures are legal in contrast to the mesh size used outside. This means that most of the fish collected outside are smaller than the fish from inside enclosures.At present it is difficult to draw any firm conclusions of the effectiveness of the enclosures as implemented in this first experiment. While catch rates (fish density) are higher inside the enclosures, the total yields (production) are higher outside. However, as the fished areas and the total effort allocation are not comparable between inside and outside, it is at present not possible to determine whether the observed differences are a result of enclosure treatments (predator removal and/or stocking), or just reflecting different fishing effort. In the continuation of the experiment a more detailed monitoring is needed. In particular the results will need to be standardized on an area, effort and time basis.In India field work emphasized the importance of understanding nutrient dynamics and matching them to the known feeding preferences of both indigenous and non-indigenous fish species. As indigenous riverine Rohu (feeding on phytoplankton in water column), Catla (feeding on zooplankton) and Mrigal (feeding on phytoplankton more benthic) cannot reproduce in the reservoir, their contribution to the catch -which was limited to those that entered from the riveronly amounted to some 7% of the total catch. As these are the most popular and valuable species, boosting their percentage to 20% of the total was crucial in generating positive benefits. Basic biological and ecological data made this possible.Working in the field rather than the laboratory also enabled researchers to fully appreciate the constraints facing local communities when trying to improve reservoir productivity. For many years, the larger sized fingerlings needed to stock reservoirs have been unavailable. The development of a practical method for growing them in situ in cages created a new investment option for those relatively low-income local stakeholders who can access at least US$500 in capital to get started. At present, the major constraint to the further improvement of productivity may well be the government quota system. The latter was based on pre-project productivity. It needs now to be revised upward in light of the newly realized ability of local stakeholders to actively intervene in reservoir management to increase productivity.In the Volta Lake, in light of the rapid gains witnessed over the project period in the productivity of cage aquaculture, the government of Ghana with the active engagement of CP34 researchers is already considering aquaculture zoning designed to ensure sustainability of this new activity.Based on a long consultative process with the local communities, both the ability to work successfully and the generation of information from researchers to potential technology users were facilitated. Problems associated with sabotage of the pilot trials were limited to a few disgruntled individuals. Being able to put local households in the position of local entrepreneurs seeking to improve their own fish sales and incomes, enable the design and piloting of practical technology.The adaptation to local conditions and demonstration of practical cage aquaculture technology in Ghana, although a somewhat higher investment alternative compared to the nursing cages developed in India, nevertheless has engendered rapid adoption. With a capital requirement of about $3000, a significant return on investment of more than 25% can be expected to generate proportionally higher impacts through the value chain.In Egypt, efforts to improve productivity in Lake Nasser are particularly constrained by government policy vis-à-vis water quality. There are no possibility to introduce a pelagic species that might take advantage of a largely vacant niche for a pelagic planktivore, or to introduce feed-based aquaculture technology. Researchers instead engaged with local stakeholders to match knowledge of ecology to develop a practical system that combines known productivity patterns in the lake, stocking of preferred species and displacement of predators. While the preferences of local khor owners to wait in exploiting their managed stocks makes impact of these interventions difficult to gauge at the time of writing, further adaptation of the system and improved monitoring are being planned, assuring continued engagement of research with local stakeholders. Such collaboration can only improve the quality of data being collected about the fishery and the ability of researchers to intervene usefully on behalf of local fishers.Manipulation of reservoir ecosystems to improve productivity and outcomes for lower income communities is feasible, but to be realized, adaptive research needs to work closely with technology users to ensure that the rationale of the intervention and the technical details are fully appreciated by local stakeholders and, maybe more importantly, that research and extension come to understand the real opportunities and constraints confronted by potential investors.Productivity in large reservoir ecosystems is intimately linked to the interplay between hydrology, nutrient dynamics and the fauna and flora which generate the services on which human communities depend for food and livelihoods. Large reservoirs are ecosystems in transition from riverine to lacustrine. The two large dam reservoirs studied in this project are about 50 years old and their fish populations remain in flux as species adapted to rivers evolve at both the biological and ecological levels into a more or less stable lake stock. Two major phenomena dominate this process: 1) relative competitiveness for altered food resources leading to the reduction or elimination of species that may once have been abundant and vice versa and, 2) the development of vacant ecological niches where no riverine species is able to take advantage of a new food resource. Most particular in this latter case are species that can capture and digest newly generated abundance of phyto and zooplankton, which are normally rare in rivers.The introduction of species that might take advantage of underutilized food resources is constrained by the dangers associated with the introduction of non-indigenous species. In cases where this has been done, huge gains in productivity have often been achieved, but sometimes with dramatic loss of biodiversity. However, even in large reservoirs where exotic species introduction is not permitted, feeding and fish stock enhancement through release of preferred species either managed in enclosures and cages, or released for later capture in the fishery can also yield productivity increases.In the present study, the reservoirs in the Indo-Gangetic Basin were the most amenable to manipulation, being relatively small and under strict government control with local management. Both cage aquaculture (nursing of small fingerlings to stocking size with artificial feeding) and the subsequent stocking of preferred (indigenous and non-indigenous) species resulted in gains both in quantity and value of the catch. The ability to match the stocking regime to available food resources was made possible by a quantitative and qualitative mastery of the nutrient dynamics of the ecosystem.In the Volta Lake, both the size of the reservoir and government prohibition on the release of nonindigenous species limit the range of interventions to those involving localized habitat improvement (vis-à-vis preferred species), either through the creation of structure (e.g., acadjas, see below) or direct feeding of fish held in cages or enclosures. Dozens of new adopters of cage and pen technology piloted and disseminated by CP34 testify to its utility and relevance to local opportunities and constraints enabled through participatory research.In Lake Nasser, the interdiction of both species introduction (to take advantage of the large ecological niche left unexploited in the plankton-rich pelagic zone) and the use of feeds, further limits the options for increasing water productivity. The elimination of predators by protecting stocked fish in enclosures has not yet shown any tangible result, but the processes through which participatory trials were conducted has improved the working relationship between fishers and research.All of these experiences underline the importance of good social, economic and biological baseline to underpin management decision-making and to the drawing of clear conclusions from field trials. The generally congenial atmosphere among stakeholders that evolved over the course of CP34 was crucial in the collection of quality data and successful project implementation and has laid the foundation for future gains. However data collection remains problematic in all of the basins studied and a constraint to complete modeling of the ecosystem and fishery.From our research, it appears that the interventions which yield the highest returns on research and extension investment, as well as time and money contributed by local stakeholders tend to be out of reach of the poorest of the poor. Two reasons seem to predominate: 1) capital required for enclosure, cage or stock enhancement exceeds the spending power of the lower echelons of society and, 2) management skills and an orientation towards organized labor investment are generally lacking among the very poor.Benefits accruing to the poor through the value chain of culture-based fisheries activities (e.g., employment opportunities, lower cost fish for home consumption) are possible, but were not documented in this study. For the poor to be directly involved at a level that has a chance of producing impacts on a scale with the levels of poverty prevailing in Egypt, Ghana and India will require substantial government and/or NGO involvement, which may take the form of subsidies in terms of capital and/or logistical and technical support. In the absence of such subsidies, development of the culture-based fisheries sub-sector will continue to be a haphazard affair with increased productivity resulting from the occasional happy coincidence of competent management combined with community support, sound technology and adequate capital.Section 2: Socio-institutional analysisImproving the productivity of water-bodies is clearly dependent on the capacities of local actors to solve technical innovation challenges. This has been fully illustrated through the three cases reviewed above (small-scale cage culture in Lake Volta, enclosure in Lake Nasser, cage and pens in India). Institutional economists and social scientists would however argue that adoption and dissemination of innovation are not simply the result of technical 'fix'. A great part of the factors which influence the success (and the failure) of the adoption and/or viability of technical innovations are related to social, economic and more broadly, institutional factors.In order to reflect and account for this reality the second main component of the project was aimed at focusing on socio-institutional dynamics. Its specific objective was to analyze the overall human contexts of the reservoirs where the project was operating and to identify socioinstitutional factors influencing reservoir fishery productivity.Our initial analysis of the Indo-Gangetic Basin situation revealed that the productivity of the IGB reservoirs is in general below the national average, and well below some other countries performances. Further analyses were therefore performed in an attempt to 'explain' -or at least better understand-the various factors that affect reservoir productivity in the IGB. We did not however limit our investigations to bio-physical or ecological factors. Instead we hypothesized that the institutional context characterizing the communities (e.g. the type of leasing system adopted for the reservoir or its duration) greatly influences the decision-making process and the collective actions in relation to the reservoir fisheries operations (e.g. incentives or disincentive to invest, or to comply with existing regulation).We used for those investigations the database of 604 reservoir collected during the initial phase of the project. Only for a fraction of those reservoirs (82) however, a large enough combination of variables had been properly completed (see list in Table 2.1). We used this sub-sample of 82 reservoirs in the rest of the analysis presented below. Due to the nature of the variables and their general lack of normality (Table 2.2), conventional multivariable statistical analyses could not be applied. We used instead tests available from the software PRIMER (Clarke and Gorley, 2006) particularly adapted to those statistical constraints. We adopted a two-step analysis. First a 'bio-physical' model was considered where the productivity of the 82 reservoirs was tentatively correlated to a sub-set of physical and stocking-related variables. For this we used the BEST procedure (BVSTEP option) -after adequate transformation. The objective of BEST procedure is to search subsets of a multi-variable matrix (in our case a subset of physical and stocking-related variables) which best explain a given factor (reservoir productivity). The principle is to search for high rank correlations between a similarity matrix and a resemblance matrix generated from different variable subsets (see details in Clarke and Gorley, 2006).Applying this procedure to our data, the analysis shows that the combination of explanatory variables which best explains the reservoir productivity includes 3 variables effort, mean depth, and area. The statistical significance of the model was confirmed by a global test (Table 2.This result is conformed to the expectations. In particular the fact that the two variables depth and area have a significant effect on productivity is in line with the literature. On the other hand, the absence of correlation with any of the variables reflecting the stocking process (stock density or stocking quantity) is more surprising. A second point worth noticing is the positive correlation between productivity and effort (the variable for which the correlation is actually the strongest). This point will be discussed further below. Second, a general model was constructed using not only physical and stocking-related variables but also some of the socio-institutional variables for which data had been collected. Those included the period and price of the leasing arrangement, the identity of the leasee who obtain the temporary management rights (the lease) over the reservoir and the identity of those who are subcontracted by the leasee to fish the reservoir on his behalf. A BEST procedure was applied to those potential variables. It indicates that the variables that best explain the productivity are (in decreasing order): leasee, fishing effort, reservoir area, leasee period, and mean depth (Table 2.4). The statistical significance of the test was confirmed at a 0.1% level. The comparison between Table 2.3 and Table 2.4 reveals some instructive results. First there is a strong coherency between the two models in the sense that the explanatory variables identified through the bio-physical model (effort, mean depth, and area) were identified again in the general model (in the same order). However, two new socio-institutional variables were also identified through the BEST procedure: leasee and lease period. Logically the explanatory power of the 'general' model is stronger than the one of the bio-physical model -as the model contains more significant variables. But the important point is that the first variable of this general model is one socio-institutional variable, namely the category of the leasee. This result will be discussed in greater length below.A Principal Component Analysis (PCA) was then conducted on the full set of explanatory variables in order to explore the potential 'structure' that links some of those variables together. The results are shown in Table 2.5. The first 3 axes of the PCA explain 83.7% of the variance of the explanatory variables and the first axis PC1 explains 47.7%.Table 2.5 indicates that the first axis (PC1) is mainly explained by the following variables (in decreasing order): leasee category, access rights, lease period, and mean depth while the second axis (PC2) is explained by the stock density and the area. Fig. 2.2 represents the first two axes of the PCA. On the figure, the different categories of leasee arrangements and access right subcontracts have been distinguished (using the codes defined in Table 2.1, i.e. fishing cooperative =1, group of fishers = 2, and private contractor = 3). Thus the [3-2] combination (shown as red lozenge in Fig. 2.2) indicates reservoirs where the leasee is a private contractor [3] who contract a group of individual fishers [2] to fish the reservoir for him. This corresponds for instance to the situation of the Pahuj reservoir. In contrast the Dahod reservoir is under a [1-1] combination (blue square) as it has been leased by a cooperative, the members of which exploit it themselves. The figure shows that those arrangements have a strong influence on the other characteristics of the reservoirs. Note also the 'logical' result displayed along the second axis PC2, where area and stock density appear to be inversely related. This is expected as the variable stock density is by definition an inverse function of area -see Table 2.1 for definition. Passed (P = 0.3609)Exploring further the data reveals a decreasing gradient of productivity from right to left along PC1 -as illustrated by the 'bubbles' analysis in Fig. 2.3. The reservoirs located on the right side are on average characterized by higher productivity than those located on the left-hand side. This result was confirmed through OLS estimation between productivity (log-transformed) and the coordinates of the variables along the axis PC1 (Table 2.6).From these different analyses, it appears clearly that the different types of institutional arrangements -in particular the types of leasing contracts and the associated subcontracts on access rights-are critical in shaping the overall 'landscape' of cultured-based fisheries activities in the IGB. Based on Fig. 2.1, a series of hypotheses was proposed: Hypothesis No.1: arrangement 1-1 is characterized by lower productivity than the other arrangements Hypothesis No.2: arrangement 3-2 is characterized by higher stock density than the other arrangements (or alternatively, arrangement 1-1 is not characterized by a stock density different from 3-3 and 2-3)L og (pr od u c ti vity + 1 ) 0.9 We investigated these two hypotheses through a series of tests. First a SIMPER procedure was applied in order to estimate the contribution of each variable to the distances between the four institutional arrangements. The principle of a SIMPER analysis is to decompose dissimilarities matrixes into percentage contributions between all pairs of variables (Clarke and Gorley, 2006). When applied to our data (Table 2.7) the SIMPER analysis shows that the arrangements 3-3 and 2-3 are very 'close' to each other (average squared distance = 12.58), confirming the graphical observation of Fig. 2.2.Perhaps more importantly, the SIMPER analysis reveals that although productivity is one of the factors which differentiates arrangement 1-1 from the others arrangements (confirming at first sight hypothesis No.1 above), the main differentiating factor is depth, not productivity. In one case (2-3 vs 1-1) productivity is actually not amongst the 2 most significant differentiating factors.Incidentally this result was also shown in the PCA where depth appeared to be the main 'biophysical' factor explaining PC1. In other terms, the low productivity characterizing the arrangement 1-1 is mainly explained by the mean depth of the reservoirs (deeper than those operated under the other arrangements), and not by the lack of efficiency or investment (in particular in terms of stock density).The second result of interest is that stock density is amongst the 2 main factors differentiating the arrangement 3-2 from 2-3 and 3-3, thus confirming hypothesis No.2 above. In contrary arrangement 1-1 is not different from arrangements 3-3 or 2-3 in terms of stock density (Table 2.7). Those results were confirmed statistically through a series of Kruskal-Wallis (K-W) analyses on ranks.First a K-W on ranks (H = 21.4, d.f. = 3, P = <0.0001) completed by a Pairwise Multiple Comparison Procedures (Table 2.8) confirms that 1-1 is statistically operating on deeper reservoirs than the other arrangements. The KW analysis also reveals that the groups of reservoirs operated under 3-2 is characterized by a mean depth which is statistically shallower than the reservoirs under 2-3 and 3-3 arrangements. In sum, reservoirs under the arrangement 3-2 turn to be small, shallow water-bodies (Table 2.9).A parallel KW shows that reservoirs under 3-2 are also characterized by higher stock density than the other arrangements (H = 24, d.f. = 3, P = 0.0001) but also that 1-1 has not a statistically lower stock density than 3-3 (Tables 2.8 and 2.9). Further analysis shows that the higher density of stocking under 3-2 is more the consequence of the small size of the water bodies (in so far as the quantity stocked under this arrangement is actually lower than under all the other arrangements (including 1-1) -see Table 2.9. A complementary KW on ranks indicates that indeed there is no statistically difference between the four arrangements in terms of quantity stocked (H = 3.89, d.f. = 3, P = 0.27).In the literature, factors constraining tropical reservoir productivity are usually related to morphometric (area, depth, shoreline), edaphic (nutrients loading) and/or climatic (e.g. flushing rate, water level fluctuation) conditions. A rich body of literature is available that proposes to link existing reservoir productivity to a wide range of environmental factors.Very little has been proposed on the other hand to include socio-institutional considerations into those discussions, despite the significant literature that emphasizes the importance of collective actions and social and/or economic factors in explaining activities related to the exploitation of natural resources and common pool resources (e.g. Ostrom 1990).The research presented above was a first attempt to address this flaw. Using the IGB data-base created in the early stages of the project, we explored some new directions regarding the potential factors influencing the productivity of the IGB reservoirs. The investigations were obviously limited by the nature and quality of the information, but interesting conclusions were nevertheless achieved. Some of those results, not only confirm the crucial role that socio-institutional factors seems to play in shaping the system productivity -something one should not be surprised to observe-, but also suggest -perhaps more unexpectedly-that arrangements supporting private ownership may not necessarily lead to better or more efficient outcomes when compared to collective arrangements.Let us first recall that our results are in line with the more conventional work focusing on the role of bio-physical factors. Our first model confirms in particular that the productivity of the IGB reservoirs is influence by the size and depth of the reservoirs, two of the factors that are usually recognized to have a strong influence on reservoir productivity. The absence of correlation with any of the variables reflecting the stocking process (stock density or stocking quantity) is more disappointing. This suggests a poor efficiency in the mastering of the stocking techniques for the group of reservoirs included in the data-base.Secondly, the positive correlation between productivity and effort is worth noticing but more complex to account for. As 'effort' is a variable resulting from the number of fishers operating in the reservoir considered combined with the number of fishing days per year (see Table 2.1), one potential explanation is that this effort variable is actually driven by productivity. The higher the 'natural' productivity of the reservoir, the larger the number of fishers which the reservoir can sustain.In a second part of the analysis, we investigated the potential role of what we termed socioinstitutional factors. Those included the period and price of the leasing arrangement, the identity of the leasee who obtained the temporary management rights (the lease) over the reservoir and the identity of the fishers who were subcontracted by the leasee to fish the reservoir on his behalf.In the literature, the absence of individual property right and market mechanisms in the production, distribution and consumption of public goods is usually thought to render these goods susceptible to under-supply and over-consumption (Sargeson, 2002). In particular neoclassical economists argue that private ownership provides the necessary incentive for actors to invest and develop their activity. Johnson (1972) for instance explains that, for a rational individual to be able to maximize his rewards and minimize his costs for exploiting a resource, costs and rewards should be internalized. According to his theory, private individual property only allows this and provides incentives to ensure that marginal benefits are being maximized. In our case this view means that leasing arrangements under a private contractor are expected to be characterized by higher investment (e.g. in terms of stocking density), better management and therefore higher outputs (productivity).Alternative approaches however have been developed which challenge the neoclassical theory. A few authors in this arena deny the validity of the basic collective action and CPR management problems outlined by the neoclassical writers. Rather, they suggest that other behavioral considerations condition and work within the individual benefit versus collective good decision structure and suggest mechanisms through which these considerations exert communication and facilitate the learning and convergence of interests that make cooperation more likely (Morrow 1994, Seabright 1993, Runge 1984). They argue that in the CPR context of mutual resource reliance, the dominant individual incentive is neither free-riding nor refusal to cooperate, but rather coordination (Runge 1984(Runge , 1992)).Despite these arguments in favor of local collective management, there is still a strong belief, specially among western society, that such collective arrangements are inherently unstable, subject to inevitable pressure from free riders and are bound to be degraded into `tragedy of commons' situation. In our case this means that arrangement 1-1 corresponding to a situation where both investment and management related to the reservoir stocking and fishing are made by a cooperative are expected to be less effective than other arrangements involving private contractors.Our results challenge those assumptions. While arrangements 1-1 appear indeed to be characterized by lower productivity than the other arrangements, the analysis shows that this lower productivity is mainly related to the mean depth of the reservoirs, which in those cases is statistically larger than for the other reservoirs managed under other types of contract. In order terms, the low productivity characterizing the arrangement 1-1 is not due to a lack of efficiency or investment (in particular in terms of stock quantity) but to some bio-physical characteristics of the reservoirs.The second result that challenged the conventional wisdom is the fact that although the arrangements 3-2 appears to be characterized by higher stock density than the others -and in particular than the 1-1 arrangement-, a feature than some would quickly interpret as the evidence of the superiority of the private ownership over collective one in terms of investment, the data reveal that this higher density under 3-2 result instead from the fact that the reservoirs operated under 3-2 (but also 3-3 and 2-3) are particularly small. When one analyzes the stock quantitywhich reflects more appropriately the actual level of investment-one observes that the arrangement 3-2 is actually characterized by a lower stock quantity than all the other arrangements -and in particular the arrangements 1-1. In other words, the view that cooperatives are likely to invest less than private contractors is not confirmed by our data.What those different results show is that private entrepreneurs target specifically small, shallow reservoirs as they know that those are naturally particularly productive, while they deliberately disregard larger, deeper reservoirs. In those conditions, these larger reservoirs are more likely to remain under the management of cooperatives, which is what we observed here. On the other hand, these cooperatives can not compete with the private contractors for smaller (but more productive) reservoirs.In sum what is often interpreted as a better capacity of private contractors to invest and manage reservoirs is in fact the result of their higher financial capacity to win the leasing bids of the smallshallow reservoirs. The cooperatives and the independent groups of fishers, characterized by less cash facility are then left with the remaining larger (and less productive) reservoirs.As the analysis of the Indo-Gangetic basin presented above has clearly demonstrated, the capacity of tropical reservoirs to produce fish does not depend only on their bio-physical characteristics. A significant part of the productivity of these systems is influenced by the human (social, economic, institutional) dynamics of the activities which take place around the reservoirs. Lake Nasser is no exception to this rule. In this section we present the results of two distinct -but closely relatedanalyses that were implemented as part of CP34 in an attempt to better understand the human context of the Lake Nasser fishery and analyze how some of the socio-institutional factors that characterize the fishery may become obstacle to, or conversely help, the productivity of the system.The first of those two studies looked retrospectively at the policy and management reforms that have been implemented in the fishery since the 1970s. The analysis showed how those various economic and management measures which were initially aimed at responding to a perceived environmental crisis where the resource was seen as over-exploited, eventually had a totally opposite and counterproductive result. They encouraged an increasing number of fishers to engage in a parallel black market whereby a substantial part of the production started to be smuggled away from the 'centralized' commercialisation channels, thus reducing further the control that the central authority was trying to re-establish on the fishery.The second analysis was a micro-economic analysis that looked at the various contractual arrangements existing in the Lake Nasser fishery between different actors (license owners, boats owners, fishers). Like in many fisheries in the world, the remuneration of nearly all of the 8000 fishers operating in the Lake Nasser fishery is mainly determined by share contracts. One remarkable characteristics of this situation, however, is that no less than four different types of share arrangements co-exist at the present time in the fishery. The objective of the analysis was to determine whether those different contracts influence the behavior of the different economic actors and eventually the productivity of the fishery.The recorded yields of the Lake Nasser fishery have varied considerably since the creation of the lake in 1963 (Fig. 2.4). In the first two years following the filling up of the lake, the production reached 1000 tonnes caught by a few hundred fishers. From then on, the development of the fishery accelerated. In the early 1970s, the growing potential of the fishery rapidly attracted an increasing number of migrants from all parts of Egypt. Along with the development of the fishery and its economic potential, interest for this new income opportunity also steadily increased amongst the local populations. In order to reduce the potential conflicts that the entry of these new actors might have created, a license system was introduced in the fishery. Without license, fishers were not allowed to operate on the lake. Initially, licenses could be sold and/or exchanged. Some boat owners thus managed to acquire as many as 100 licenses.During the first years of the Lake Nasser fishery development, a single state-owned company organized the marketing of the fish in Aswan. This company, the Egyptian Company for Fish Marketing (hereafter called Taswik), was linked administratively to the Ministry of Supply. At that time, the fishery, as well as the fisherfolk, was of little concern to the central government whose main interest was to provide the country with cheap protein. The price of fish from Lake Nasser was, therefore, fixed at a very low level and the whole commercialisation process was under state control 10 .Over the two decades following the landing peak of 1981 where more than 34,000 tonnes were caught, the fishery yield diminished continuously. It passed from 650 kg boat -1 day -1 in 1981 to a mere 35 kg boat -1 day -1 in 2000. This declining trend was interpreted by many scientists as the sign of serious ecological over-exploitation of the resource (e.g. Khalifa et al., 2000;MALR-LNDA, 2001) despite the fact that the number of fishers had not necessarily increased over that specific period. Faced with those decreasing landings, the management agencies imposed a series of new measures. A closed period and a minimal legal size on the catch were introduced in an attempt to release the pressure over the resource.While the price of fish in the rest of Egypt was already free in the 1980s, the government continued to maintain a fixed price for Lake Nasser landings. This exception was officially justified by the recent history of the lake: whereas other lakes and coastlines in Egypt had been supporting long-established fishing communities, Lake Nasser was not hosting any permanent fishing population but only seasonal fishers. It was argued that this particular situation was a good reason for the central authority to control the fishery, with no other (social) consideration than maximizing the supply of cheap fish to the rest of the increasing urban population of Egypt.Albeit having increased over time, passing, for instance, from EGP 0.64 to EGP 1.05 per kg between 1988 and 1990, the fixed price was still more than 25% below the free national market at that time. This situation gave both fishers and traders a very good incentive to engage in a parallel black market whereby an increasing quantity of fish is diverted from the official channels. Secretly landed in isolated creeks at night, these fish are loaded on trucks and sold directly on the urban markets of Cairo and other main towns of the country. Smuggling fish traders could offer a better price (than the fixed price) to the fishers and still make a profit as the difference between the price at the Lake's harbors and at the national market was substantial.In addition to a higher price, smuggling also offered fishers the opportunity to avoid some of the constraining governmental regulations. For instance, the government levied taxes on the official market to finance the development of the fishery, the management of the harbors and the social security system for the workers. These taxes may not be prohibitive but still contributed to making smuggling more profitable than official business. More importantly, smuggling offers the possibility to circumvent the stringent resource conservation regulations put in place by the government (the minimum size regulation and the seasonal closure).Another major factor that has contributed to the magnitude of the smuggling is that the Lake Nasser fishery -like a large number of artisanal fisheries in the developing world -has been attracting an increasing number of poor people from all over the country. In Egypt, where Nasser's land reform has been progressively dismantled by several series of counter-reforms, it is estimated that about 75% of the small tenants have been forced to leave the agricultural sector in the last 10 years (Bush, 2002). In those conditions, the Lake Nasser fishery played a substantial role as 'labour buffer' (Jul-Larsen et al., 2003) for many poor or landless fellahin who turned to the fishery as a safety net activity. The problem is that the total number of license has been fixed to 3000 by the authority and license can not be sold or bought. As a result, many fishers are now operating illegally in the fishery (without a license) and can not, therefore, land their catch at the official landing sites. For them the only solution is to go through the black market. In 2006, the number of unlicensed fishers was estimated to be about 3000 (Habib, 2006 pers. comm.).Finally, the form of ownership of the fishing rights and the nature of the labor arrangements also encouraged registered fishers to smuggle. In particular, the laborers who all operate under a sharecropping system, have good reasons to engage in smuggling. For them, even a price much below the free market level often left them better-off than with the meager revenues that they obtain through the sharecropping system.In summary, our analysis shows that many actors are facing various, sometimes additive or complementary, reasons to support and participate in the black market. In fact, the fact that smuggling benefits actors on both sides of the trade equation (fishers and fish traders) makes the whole cycle even less likely to be broken. In this regard, the statistics are impressive. In 2006 alone, the police and the LNDA arrested as many as 357 trucks filled with smuggled fish, that is, more than one truck a day if we account for the fishery closed season. This statistic gives an idea of the intensity of the smuggling and of the large economic and institutional forces that create it. In effect, fish smuggling does not involve only poor fishers but also a substantial number of betteroff fish traders. It is a 'big business' and many actors in the sector would agree that it has become almost a formal activity. Today it is estimated that probably half the total landings of the Lake Nasser fishery is smuggled.Far from comprising a homogenous and coherent social group, the majority of the fisherfolk involved in the activity of Lake Nasser fishery are seasonal, unsettled, workers coming from different parts of the country. Those fishers operate from temporary fishing camps established along the 7800 km of the lake's shorelines. With no electricity, no running water and no access to public services, the living conditions in those remote camps are rough. Only male fishers live there, usually staying in rudimentary cane-made shelters for up to seven months.The remuneration of nearly all of those fishers is partially determined by share contracts, though the method of calculation and size of the share varies by contract type (see below). Four main categories of share contracts can be identified. Three apply to the 'raeis' (plurial = roasa), who is the 'patron' or supervisor of the fishing camps. Those contracts -which we propose to call 'owners', 'renters', and 'partners' contracts-differ from each other by the contractual arrangements through which the roasa access licenses, and to a lesser extent their ownership of boats and gear. Fishers in the fourth category, called 'laborers', work for one raeis, living in his camp, and using his boats, gear, and licenses. In addition to those different groups engaged in fishing, a large number of license owners are non-fishing (urban-based) elite who act as \"license lords\", leasing their licenses out to roasa, in exchange for either fixed cash rent or a share of the catch. The features distinguishing the four contracts are sketched in Fig. 2.5 and described below.Owner is the most straightforward category of raeis' contracts. Those owners own licenses (thus don't need to lease it from the license lords). They also own boats and gear, and bear all fishing operating costs except for the portion that they share with the crew through the payment of net shares. While they fish (unlike the license lords), they usually do not possess labor in the quantities necessary to operate all the boats of their own fleet, and must therefore hire laborers in order to be able to put their equipment and license to productive use. The owner category is also the most homogenous of the patrons, exhibiting the least intra-category variation in fleet size, investment, and production (see Table 2.10) 11 . 11 The statistics and contract analysis presented here are derived from a socio-economic survey that was carried out between January and May 2007 as part of CP34 activities -see Finegold et al (submitted) for a more comprehensive analysis. One hundred and twenty five fishers were interviewed during this survey. The nature of the data collected included basic personal information regarding family size, migratory status, age, and fishing history; employment details, including number of licenses, revenue sharing arrangements, affiliations to cooperatives, and engagement in other economic activities; and details of fishing activity, including production data, estimated operating costs, and information on boat and gear ownership.Renters are professional fishers who typically own boats and gear, but do not own licenses. Like owners, they need to hire laborers, but they also need to lease a license, and in some cases to access money for capital investments. They are totally independent from the license lord except for rent payments. As rent is paid as a fixed amount, the license lord does not share operating costs either, though in some cases renters and license lord may jointly purchase boats or gear.The data indicate that renters tend to be younger and more educated than other fishers 12 . They are also characterized by smaller household size than the other groups (Table 2.10).Like renters, partners are professional fishers who do not own licenses. They often own boats and gear. The majority of partners provides some or all of the necessary fishing equipment and share both costs and revenues with the license lord, though a sub-part of them ('non cost-sharing' partners) bear all the costs and share only revenues with the license lord -see below.All the other ('cost-sharing') partners own boats and gear, although it is not uncommon for them to share ownership of one or both with the license lord, or for the license lord to provide one or the other. Cost-sharing partners must hire laborers, lease a license, and access money for operating costs and in some cases capital investment. They share operational costs 'upward' with the license lord through the payment of license rent as a share of net income rather than gross, and 'downward' with laborers.'Non cost-sharing' partners on the other hand do not share costs 'upward' with license lords, but only 'downward' with the laborers. Their license rent r is calculated as a share of gross income (between 10 and 35%).The last group is the 'laborers'. Laborers do not own boats or gear, and do not own or lease licenses. They possess only their own labor, and must work for a raeis who provides them with equipment and (access to) licenses in order to fish. They are recruited by those roasa, and work for them as crew members. They are paid their share at the end of the fishing season, and are provided with food and drink while in the fishing camp, the cost of which is subtracted from gross income along with other costs before shares are calculated.Those different groups are obviously not similar as indicated by the various indicators shown in Table 2.10. What is however relatively surprising is that there is little difference in production per boat (annual catch per boat) between roasa who are share-workers (partners) and roasa who are not (owners and renters). One the other hand, laborers appear to catch more fish per boat than roasa do. The small share size laborers receive could constitute an incentive for higher production, as it requires them to work hard to earn even a small wage, paralleling the use of plot size to control effort in agriculture (Johnson 1950, Cheung 1969, Bhaduri 1983, Braverman and Srinivasan 1981). Indeed, laborers both carry out more fishing operations per week (Fig. 2.6) and catch more than any other category (Fig. 2.7).While this incentives for higher production is in theory true of all of the fishers whose income is calculated on a share basis (i.e. the roasa as well), the small share size received by the laborers means that extra income obtained through extra effort could be critical to maintaining a subsistence level of income. The ratio of their marginal utility of income to marginal disutility of effort is substantially higher than that of the roasa, whose income is well above the subsistence level. A series of statistical test were then performed to explore further those points. The objective of this statistical analysis was to test formally whether the productivity of the different groups of fishers is influenced by the nature of their contract. If, indeed, the form of the contract affects (positively or negatively) the productivity of the different groups through their contract, one would then expect to see statistical correlation between contract and productivity.To test for this, we considered the Cobb-Douglass production function of the fishery (measured in kg fisher -1 year -1 ) with inputs including fisher status (education, experience, cooperative membership), fishing effort (number of operation week -1 ), fishing strategy (number of fishing day week -1 , diversity of gear, and dummy variable for geographic sector and targeted species), and a series of shift dummy variables: Owner, Partner, Renter, and Laborer defined as follows:Owner = 1 when the fisher is an owner; = 0 otherwise; Partner = 1 when the fisher is a partner; = 0 otherwise; Renter = 1 when the fisher is a renter; = 0 otherwise; Laborer = 1 when fisher is a laborer; = 0 otherwise.As fishing effort was suspected to be endogenous, we used two-stage-least square (2SLS) procedures where the endogenous variable was instrumentalized by the number of licenses and the number of units in the four fishing gear categories: duk, kobok, sacarota, and Sinnar. Furthermore, the models appear to be consistent with fisheries science in the sense that fishers' individual productivity are positively correlated to fishing effort (in a polynomial function of degree 2), and to the number of fishing day per week. Also significant is the gear diversity. Fisher experience (number of year operating in the fishery) or geographic sector don't appear, however, to have significant impact on the fishers' individual productivity, even if we could have expected so 13 . Similarly, the type of species targeted does not influence in a significant way the productivity. More importantly for our discussion, the 2SLS models show that none of the four contracts has significant effect on the fishers' productivity. Even in the case of laborer (for whom the productivity appears to be relatively higher than that of the three other groups), the t-test shows no statistical effect.This last analysis suggests that the existence of the complex set of contractual relationships as observed today in the fishery can not be explained by the direct impact that those different contracts have on the productivity of the various groups of fishers engaged in the fishery.Additional factors need to be considered. In the following paragraphs, we contend that one of those factors is the ability of the current contract arrangements to allow different actors to combine their own assets and/or skills with other productive resources to enter the fishery.Access to credit has been recurrently identified as a constraint to the development of small and micro enterprises in Egypt (UNDP 2004, ENCC 2006) and formal finance is often limited and fails to reach the poor (IFAD 2005, Zeller and Sharma 1998), with land ownership typically required as collateral for rural loans (Mohieldin and Wright 2000, Kruseman and Vullings 2007). Roasa must therefore either have enough cash to cover their initial investment and operational costs or access informal credit through their license lords. In this sense, the endowments of different actors shape the contract choice, as those with less capital are limited to those contract types which either do not require them to meet these costs upfront or those which give them access to informal sources of credit. Laffont and Matoussi (1995) describe a similar pattern among Tunisian sharecroppers, with working capital endowments shaping contract choice and accounting for the co-existence of a range of contractual forms.While a detailed analysis of endowments of each fisher was beyond the scope of our study, we were able to identify some broad trends from the data which give us a general idea of the ways fishers in different categories access capital for investment and operating costs. Owners appear to have among the most resources of any of the categories (except labor). In addition to owning a license, nearly all of them own their own boats and gear, and are likely to have enough cash available to cover their own operating costs.Renters also need to have cash available for initial operating costs, though they have the option to share gear or boat purchases with license lords, and several of them work with partners instead of owning their own equipment. While some renters report controlling a large number of licenses (up to 26) in their fishing camp, three out of the top five do not own the boats associated with those licenses, and a fourth shares ownership with the license lord. Most of those who own boats outright have just one or two. Renters have also the least gear per boat, which could further indicate that they have less money available for investment, as fewer of them purchase gear in conjunction with license lords, and they are responsible for a larger share of the operating costs.Partners, on the other hand, have more gear per boat, and handle the largest fleets. This may be attributable to many of them opting to share ownership of boats and gear with license lords, as those partners appear to be in charge of more boats (on average 17.33 for those partners sharing boat ownership with license lord versus 5.76 for partners who own boat on their own) with more gear per boat than those who own all their equipment. Even those partners who own both boats and gear tend to have more boats (5.76 average vs 3.54) and more gear per boat than renters who also own boats and gear. It is plausible that some of the money which would otherwise be spent on operating costs is available to them for investment, allowing them to purchase additional gear and boats.Those different analyses illustrate how contracts enable the partners and renters to access money for investment and initial operating costs, which would otherwise be unobtainable due to the lack of access to credit. On the other hand, some partners and renters are also able to access capital through their license lord who invests in boats and nets, and the majority of partners also use this relationship to partially cover their operating costs.These different points confirm that one of the major function of the contractual arrangements as observed today in the Lake Nasser fishery -despite their relatively complexity-is to allow different actors endowed with different factors of production (licenses, fishing gears, labor), skills and capacities, to combine those assets and skills with other productive resources that lie outside their immediate possession, and to enter the fishery.2.4. Socio-institutional analysis of Lake Volta fishery: the case of acadjasThe previous section on Lake Nasser illustrated the importance of accounting for socio-institutional factors. We saw that both macro and micro-level institutions can have dramatic positive (or negative!) effects on the incentives and/or capacities of the actors engaged in the fisheries to improve the productivity of the system. In this section we present some related research in the case of brush park fisheries in the Lake Volta.Adopted essentially in calm, shallow freshwater bodies such as lakes, reservoirs, tributaries and coastal lagoons, brush parks are artificial reefs made from tree branches and/or vegetation. Those low technology techniques are used to attract fish which aggregate under those 'shelters', making it easier for fishers to catch them. As such, brush parks greatly increase the efficiency of fishing operation. Spread all over the developing world (India, Bangladesh, Sri Lanka, Mexico, Madagascar) they are especially common in Africa, in particular in the Western part of the continent (Nigeria, Benin, Ivory Coast, Ghana, Togo) where they are known as 'acadjas'.Despite their small areas relative to the total surface of the water bodies where they are operated, those acadjas and brush parks can 'boost' considerably the fisheries production. The parks of the Negombo Lagoon in Sri Lanka for instance, have been estimated to contribute 35% of the total catch of the lagoon (Costa and Wijeyaratne 1994). Along the Oueme River in Nigeria, brush and vegetation parks contributed together 32% of the total annual catch and 77% of the Lake Nokoue and Porto Novo lagoon in Benin came from brush parks (Welcomme 1971). Overall, five-to tenfold increases in catch per unit-area are not uncommon for those types of fisheries and a recent world review on inland fisheries and aquaculture indicates that well-managed brush parks can even equal semi-intensive or intensive aquaculture operations in terms of annual per-unit-area cropping rates (Sugunan et al. 2007). As such, these techniques can contribute significantly to the water productivity increase that is needed in the developing world. Brush parks represent therefore a potential option in water-bodies where they can be developed.However, as mentioned earlier, the adoption of these techniques is not without raising a certain number of questions (both environmental and social). In particular, acadja and other water productivity enhancing techniques have a particularly 'bad reputation' as they are considered in many places as a potential source of tension and social conflicts between those who can develop those techniques and those who can't.Beyond this conflict dimension -or perhaps attached to it-is also an equity issue. As in many other technical innovations, past experience has shown that those more productive techniques are not necessarily poor-neutral. They are generally adopted by the wealthier part of the communities (or sometimes by external urban-based entrepreneurs) who can afford the financial, social and institutional costs of investing in those innovations. In that context, the poorer may lose twice: firstly, because they cannot afford investing in these techniques, and secondly, because those techniques may actually affect their own access to the resources, or the return that they get from these resources.Fieldwork was carried out over a 2-month period (April -May 2007) during which 182 household interviews were completed in 10 fishing communities along the shore of the Volta Lake. Five communities with parks and five communities without parks were therefore identified and sampled. Within those 10 communities, households were then selected randomly for interview.Those households fell within one of three categories: owners of brush parks, non-owners of brush parks (in the same villages); and non-owner in villages without brush park. An individual questionnaire was administered to the head of those households, with the objective to generate information about a range of different aspects of the fishing households' economy (see Béné and Obirih-Opareh (in press) for more details).Detailed data was collected on household assets. This included access to basic needs (running water, toilet facilities, and electric power), ownership of productive assets (fishing gear and boats, land plots, motorbike, bicycle), livestock, and other housing and general assets (TV set, refrigerator, and mobile phone). Based on these data, an individual household asset-based poverty index was computed for each household (using local market prices). Fishing assets (numbers of boats, outboard engines, and bundles of fishing nets) were also combined to compute a fishing asset index for each household. Finally, a series of 15 questions focusing specifically on acadja (ownership, perception, up-front investment and operational costs, etc.) completed the questionnaire.Some preliminary investigations suggested the potential social tensions that may emerge in fishing communities where acadjas are introduced. Some of the main arguments put forward by the opponents refer to potential negative externalities on both the fishing operations (e.g. reduction of the fishing ground, interaction with fishing nets) and economic activities (decrease of the market price) for those who do not own those acadjas. Overall, there is a feeling that acadjas 'increase inequity in the community'. One way to test this statement was to determine whether acadja owners differ from the other households in the same communities in terms of socio-economic status. Table 2.12 presents a summary of the various statistics that were generated through the survey.We first looked more closely at the three 'wealth' indicators: the total income index, the total assets index, and the fishing asset index and tried to determined whether those indicators vary between the three groups considered in the study: acadja owners, non-owners, and fishers in nonacadja villages. The analysis shows that the acadja owners are better off than the non-owners and the fishers in non-acadja villages both in terms of income and fishing assets. The data, however, also indicates that the acadja owners are characterized by very high variability for the two indexes (as shown by the 95% confidence intervals on the figures), suggesting that this group is relatively heterogeneous.Statistical tests (two-way ANOVA and Student-Newman-Keuls (SNK) tests) were run to verify those observations. As far as the income index is concerned, the test shows that despite a higher average income (7191 Ghanaian cedis (¢) for acadjas owners versus 3781 ¢ and 1835 ¢ for the non-owner and non acadja village fishers respectively -US$1 = 9100¢) the difference in those averages is not statistically significant (ANOVA F (1,181) = 1.53 P = 0.218), essentially due to the high variability of the acadja owner data. In contrast analysis confirms the result suggested by Fig. 4.b, namely, that the fishing asset index of the acadja owners is higher than that of the two other groups (F (1,181) = 13.99 P < 0.001, q c = 5.29).In short, the results from this comparative analysis highlight the following points: acadja owners seems to be better endowed in terms of fishing assets (engines, boats, nets) than the other fisherfolks in the same acadja villages or in non-acadja villages. Those acadja owners also seem to have higher total income per household (as suggested by the data in Table 2.12). On the other hand, acadja owners do not seem to be better endowed than the non-owners in the same villages in terms of assets. In a subsequent analysis we investigated the potential economic inequity associated with acadja. This issue had already surfaced several times in the course of the analysis; firstly, during the preliminary analysis, when non-owners of acadjas were denouncing the fact that acadjas 'increase inequity within the community' -which would suggest an inter-group heterogeneity (between owners and non-owners); secondly, during the economic analysis above, when we noted that the group of the acadja owners was systematically displaying a higher statistical variance than the two other groups -suggesting an intra-group heterogeneity.To investigate those hypotheses we computed the respective Gini coefficients for each group (owners, non-owners and other fisherfolks in non-acadja villages), as well as for the aggregate group (owners + non-owners in the acadja villages), using the household total income index. The results of those different computations are displayed in Fig. 2.8. The figure shows that acadja owners is the group with the highest level of income inequality (G = 0.89), followed by the nonowner group (G = 0.83) while the fishers operating from non-acadja villages have a lower inequity index (G = 0.78). When combined together the aggregate group (owners + non-owners of acadjas) display a Gini coefficient of 0.86. Those last results corroborate both hypotheses of intra and inter-group inequities. They confirm in particular that the high intra-group variance observed for the acadja owners was indeed due to a high inequality of income within the group. But the results also confirm what the opponents of acadja have claimed: inequity is higher in villages with acadjas than in villages without acadjaeven if the average income or assets indexes are lower in villages without acadja.In line with the inequity analysis above, we investigated whether acadja is a 'poor-neutral' technology. For this, we looked at where acadja owners are located along the community income ladder, determining in particular what proportion of them belongs to the poorest half of the community (i.e. the quartiles Q 1 and Q 2 ) as opposed to the 'wealthiest' half (Q 3 and Q 4 ). In addition, we compared within each quartile Qi the income of those acadja owners with the income of the rest of the population in the same quartile. For this the ratios R Qi = I O Qi / I P Qi with i = 1,..,4, was computed, where I O Qi is the average income of the acadja owners and I P Qi is the average income of the rest of the population in the same quartile Qi. In short, a ratio R Qi > 1 would suggest that acadja owners are better off than the other households in the same quartile, while a R Qi close to 1 for all quartile would suggest that acadja are poor-neutral.The data showed that acadja owners are found in all four quartiles. A greater proportion of them (57.6%), however, belong to the two wealthiest quartiles of the population Q 3 and Q 4 . This tendency was confirmed by the rest of the analysis (Fig. 2.9). The ratios R Qi show that the acadja owners of the 4 th quartile (the richest part of the population) are twice as rich as the other households in the same quartile (R Q4 = 1.98). This effect is also observable for the 3 rd quartile where acadja owners are on average 15% richer than the other households in the same quartile (R Q3 = 1.15). In contrast, for the poorest part of the population (quartiles Q 1 and Q 2 ), acadjas do not seem to help their owners to generate higher income than to the rest of the population. In fact, acadja owners in the poorest quartile are actually slightly poorer than the non-owners (R Q1 = 0.89). In brief, acadjas appear to be effective in boosting the incomes of the richest owners, but failed to have the same effect on the poorer owners, indicating clearly that acadja is not a propoor, or not even a poor-neutral, technology. Quartiles R Qi Fig. 2.9. Comparison of the incomes of acadja owners with the rest of their respective quartile population using ratios R Qi (see text for calculation detail). Q 1 = lower quartile, Q 4 = higher quartile.Brush parks have been recognized to be a relatively efficient fishing technique to enhance fisheries productivity, and as such could contribute effectively to increase food productivity in the rural areas where they are adopted. The development of those brush parks appear, however, relatively controversial, as they are frequently recognized to be a form of enclosure of the commons and, as such, to create intra-community conflicts and increase inequity.Our analysis showed that the impact of acadjas on the fishing communities of the Lake Volta is mixed. There is evidence that this technique probably helps enhancing the supply of protein-rich food to the (local) communities where they are introduced -and possibly to the more distant urban areas (e.g. Accra and Kumasi). Combined with a possible reduction in fish price, this increased in fish supply may contribute to improve consumers' food security.Those positive contributions to food security and local economic growth appear, however, to be greatly reduced by other more negative effects associated with the establishment of acadjas. Our analysis showed in particular that acadjas are certainly not pro-poor and probably not poor-neutral either in the sense that their contribution to household income appear to benefit disproportionably the wealthier owners. The analysis also showed that acadjas increase economic inequity in communities where they are adopted.The larger bulk of the scientific effort published so far in the literature in relation to reservoir fisheries focused essentially on the bio-physical and ecological parameters (depth, areas, primary productivity, etc.) of those reservoirs and the way those parameters affect fishery productivity.In contrast, very little is known about the social, economic, or more broadly institutional processes related to the process of enhancing reservoir fisheries productivity. Yet, the few analyses that are available (e.g. Ali andIslam 1998 Capistrano et al. 1994) suggest that those socio-institutional factors are critical in shaping the way enhancement technique are adopted, disseminated or in contrary rejected by fishery actors. For instance, it is usually assumed that the identity of the leasee (private entrepreneurs, groups of fishers, or cooperatives) who is entitled the fishing and management rights over a specific water body, has usually an important influence on the overall production level of that system. Through his investment or management decisions (e.g. regarding the stocking intensity or level of fishing effort) and his capacity to organize and monitor fishing activity over the water-body he controls, the leasee has the capacity to modify substantially the production level or even the productivity of the reservoir. In that regard, collective groups and cooperatives are often viewed as affected and constrained by collective actions or CPR issues such as free riders behavior (Sargeson, 2002), leading to underinvestment and/or misallocation of resources. In contrast, private contractors -due to their greater financial capacity and supposedly greater entrepreneurial skills-are expected to be more 'effective' or more 'successful' in managing and exploiting enhanced reservoirs.Our results in India suggest a more complex and subtle reality. Due to their more robust financial capacities, private contractors are generally able to outcompete cooperatives and/or groups of individual fishers at the auction stage and thus to acquire leasing rights over the most productive (small, shallow) reservoirs. As a consequence, cooperatives are often left with the remaining larger, deeper (and less productive) reservoirs. Thus the low productivity characterizing cooperatives-managed reservoirs is more often the consequence of the bio-physical characteristics of the reservoirs (in particular the higher depth of the water-bodies leased by those cooperatives) than a real lack of management efficiency or investment. The CP34 data for instance show that cooperatives do not necessarily stock lower quantities of fries than private entrepreneurs. This result directly challenges the view than collectively managed resources systematically lead to under-investment. In addition to selecting naturally more productive reservoirs, private contractors are also able to purchase larger fingerlings (thus more likely to survive) than the smaller (and cheaper) fries purchased by cooperatives.In Egypt, our analysis focused on another important aspect of fishery institutional setting: the remuneration contract that binds together the different actors engaged in the fishery (license owner, fishing gears owners, and laborers). In Lake Nasser fishery, like in a large number of other fisheries in developed and developing countries, remuneration is determined by some forms of share contracts (Platteau and Nugent 1992). In this context, the objective of our research was to determine whether a thorough understanding of those remuneration contracts could help us unfold some of the functions provided by what appeared to be a relatively complex contractual system. Of particular interest was the question of whether those various contracts have an influence on the productivity of the individual fishers. Statistical analysis revealed however that the combination of complex contractual arrangements that exists between license owners, fishing gear owners and laborer (boat crew members) does not seem to influence directly the level of productivity. In particular, no correlation was found between the types of contract and the level of productivity observed at the individual fisher level.Instead, we postulated that, in absence of formal or efficient local capital and/or cash credit institutions, another major function of this complex set of share contracts is to allow different groups of actors who do not necessary possess all of the capital and resources necessary to engage in the sector, to combine their individual resources with others agents and put them into productive use. One of the most important functions served by the Lake Nasser fishery contracts is therefore that of mobilizing capital for investment and operational costs.Institutions or policies may not, however, always provide positive incentives for individual or collective behavior. They can also, in certain circumstances, create counterproductive environment which will, in the long-term, greatly limit the sound development of a specific economic activity.That is what has been observed in the case of the Lake Nasser fishery where our research showed how the combination of inadequate policies and economic and management tools have led to the creation of a massive black market. Some of these negative incentives include the imposition a fixed price for fresh fish and the limitation of the number of license to 3000, forcing de facto 3000-4000 fishers to operate illegally. As a consequence it is estimated that today about 50% of the fishery production is smuggled and commercialized through a parallel market.In Lake Volta, we looked at the other 'side' of the problem by investigating on how technical innovations (in this particular case, brush park acadjas) influence some of the economic and social features of the locale communities. The data show that while acadja increases fish supply, reduce fish price and therefore improve fish food security at the local -and possibly-national level, it also reinforces the economic inequity in the community. Besides, because it is a form of privatization of the commons, acadja is often seen -or perceived-as a source of tension between the owners and non-owners of these acadjas.Those last results are in line with other studies where enhancing fisheries programmes had been successful in increasing the total production of the fisheries but failed to improve the well-being of the poorest in the communities (e.g. Ahmad et al. 1998, Apu andMiddendrop 1998).In each of the three countries considered in this analysis (Ghana, Egypt, and India), recent changes were introduced in policies in direct relation to some of the issues discussed above. A brief analysis highlights some of the potential incoherencies or difficulties that these new policies are likely to face.In Egypt the local law which had been imposing a fixed price on fresh fish for more than 45 years has been abolished recently (Oct. 2008). This new policy, which was passed in an attempt to curb the smuggling, did not bring so far the expected outcome. Although some may argue that it may be too earlier for this change to happen, there are strong reasons to pre-empt that this policy (although necessary) will not be sufficient to ensure the disappearance of the black market. Some of the reasons for this include:• The limited number of license. As the regulation limiting the number of licenses has been maintained, a large number of fishers (approximately 3000 to 4000) are still operating illegally (i.e. without license) on the lake. These fishers are not authorized to land their catch on the official landing harbors. The black market is therefore for them the only option to continue selling their catch.Under-sized catch. An unknown (but probably non-negligible) proportion of the fish is caught under-sized (i.e. smaller than the size limit imposed by the authority). The black market offers an opportunity for fishers to sell their under-sized fish that would otherwise by seized if landed at the official landing harbors.Institutionalization of the black market. The black market has now becomes such an institution, deeply entrenched in the local and national economy (with ramification all the way from Aswan down to Cairo), that it will take years to eradicate it. Too many people (fishers, fish-traders, fish retailers) are now depending upon it.Faced with this plague, the authorities have chosen to toughen the military control on the water and the shore of the lake. Patrolling such a large lake (the second largest in Africa) and its 7000+ km of beach is not however without costs, risks and problems. Perhaps a more effective way to reduce the smuggling would be to release the number of license. This, however, would certainly face some opposition from the current license owners (mainly from the local elite) who benefit from the rent created by the current status quo.Finally note that eliminating this black market would not necessarily have a direct, positive, impact on the productivity of the lake, but may instead simply enable scientists to gain a better appreciation of the current production level of the lake in relation to its potential.In Ghana, the contrasting position adopted by the government regarding acadjas on one hand and cage culture on the other is worth noticing. While the central authorities clearly do not encourage the development of acadja -local authorities (District Assemblies and fishing associations) have been advised to discourage acadjas-, they strongly support cage culture. As part of this policy, one percent of the total surface area (8,700 km 2 ) of the lake has been allocated to the development of cage aquaculture. Yet, cage culture and acadja are comparable in many respects relevant for our initial consideration:• they can both increase fish-supply and therefore contribute to improve consumers' food security• they are both a form of privatization of the commons, and documented evidence exists about the potential social tension that they both can create locally.They both are not poor-neutral in the sense that they benefit wealthier entrepreneurs.The major difference lies in the investments requested to run those two activities. It takes about 10 times more (approx US$5000) to build up a cage while only US$500 are necessary to build up an acadja. Besides, because acadja does not require as much management and daily technical attendance that cage does, it allows household to engage in other parallel activities. Acadja is already widely spread and adopted in the region. Those apparent advantages question the coherence of the authorities in their choice to support cage culture.In India, while the authorities have recognized the strong contribution that reservoir fisheries can play in poverty alleviation -in particular for the rural population living in the vicinities of those reservoirs-, they are also clearly aware of the important potential of those reservoirs as sources of cheap fish-supply for the growing urban populations. The National Fisheries Development Board is therefore now actively supporting reservoir fisheries development, in particular through loan facilities. Those supports, which are available for seed purchase, are poor-neutral: they do not target specifically cooperative or poor communities but are instead available to anyone (private contractors, cooperative, informal groups of fishers) who is willing to invest in fisheries activities.Clearly the priority is on supporting effective production of food. More 'pro-poor' support exists, however, through for instance the provision of a 25% subsidy proposed specifically to cooperatives during the auction procedure.The objective of the second main component of the project was to investigate the socioinstitutional and economic dynamics of some of the different processes associated with fisheries reservoirs and to explore in particular the potential links that exist between those socioinstitutional processes and the capacities of the local actors to engage in technical innovations in relation to increased reservoir productivity. The results of CP34 research do not simply confirm the importance of institutions in shaping the economic and social inter-actions occurring in fishery activities in general (something which is already well established). They also stress the role that those institutions play in determining which technological option(s) can be considered and adopted, and how this adoption is likely to impact on the various groups in the population.Where academics or even fishery managers are used to see practical problems 'fixed' by technical solutions, this part of the research remind us that even those practical problems and technical solutions are often the results of specific institutional contexts or macro-economic policies. In other words, the issue is often not technical (we know how to build a small-scale cage), but institutional (what are the social or economic factors that prevent the local populations from adopting this small-scale cage technique?).Those reflections highlight the necessity to continue to combine social, economic and policy analysis with the more conventional ecological and bio-physical approach if we are intended to improve our capacities to engage with and support local populations and governments in their attempt to improve the productivity of tropical reservoir fisheries.Section 3: Strengthening stakeholders' capacitiesOne of the greatest constraining factors to the adoption of (technical or institutional) innovations is the limited organizational and institutional capacities of the poor. Both at the individual and collective levels, the ability of those destitute households to engage with innovation and changes is often more limited than the capacities of the better-off people in the same environment (due to a better education, a better human capital, a higher risk-aversion, etc.). A great part of the recurrent effort of CP34 was therefore to address this low capacity. In particular, the third component of the project was aimed at facilitating the implementation of the fisheries productivity interventions selected in each sites by improving the stakeholders' management skills and fostering their institutional capacities. This was done through a variety of activities. In particular:A series of 8 'capacities strengthening' and 'community consensus' workshops were conducted in parallel in each of the 3 basins during the course of the project.Post-harvest interventions were conducted in the 4 reservoirs with the objectives to improve the post-harvest fish processing or to strengthen the capacities of the actors involved in those post harvest activities.Two series of four 'capacities strengthening' and four 'community consensus building' workshops were conducted (Photos 3.1), with the specific objective to address capacity issue. The two series were implemented in the three basins as follows (Table 3.1).Photos 3.1. Consensus building workshops in Pahuj (left) and Aswan (right)Table 3.1. Series of workshops run by the projects as part of the capacity building objective.hole in the ground or in clothes and placed in a primitive container. After a drying period of 3 to 5 days, the fish are packed into tins (Photos 3.2). The tins are then covered with plastic and transported to the markets where they are sold. Each tin weighs approximately 27kg and its value fluctuates around EGP 650 (EGP 25/kg). The fish are ready for consumption after 1-3 months.Photos 3.2. Top: traditional salting technique: fish are partially sun-dried, slated and then stored into clothes or primitive containers for 3 to 5 days. The whole process is however operated in open air, favoring bud, fungi, and bacterial infestation. Bottom: three wooden houses built up on site to allow for salting operations to be completed in improved hygienic conditions Three wooden cabins were manufactured and assembled on site (Photos 3.2), with an overall cost of approximately EGP7000 per cabin (Table 3.2). Each cabin was equipped with mosquito nets on its openings and a specially designed container which allows the residual liquid from the salting process (water, blood) to be evacuated. The objective was to reduce the insect infestation and improve the general hygienic condition during the salting process. In addition, adjustments were proposed for the use of recyclable containers (in which gutted fish are heeled with salt) in an attempt to reduce cost while improving quality of product. Batches of tins processed inside and outside the cabins by the fisheries were sampled for the three sites over the period Jan 2007-Dec 2008. A total of 2748 tins constituting 54 batches (29 inside and 25 outside) were thus sampled. The number of spoiled tins inside and outside was recorded (Table 3.3). Non-parametric statistical tests (Mann-Whitney Rank Sum Test) showed that the proportion of spoiled tins proceeded inside the cabins was statistically lower than outside (Table 3. 4 and Fig.3.1). The data collected over the 2-year survey period by the CP34 confirms the positive effect of the wooden cabins on the salting process. Completing the fish processing within the cabin decreases significantly the proportion of salted fish spoiled during the process. Unfortunately it was not possible to determine whether the use of the cabin also altered (positively) the price at which the salted fish are then sold at the harbor (as no price data could be collected). Given that the difference in number of spoiled tins is 18 out of a total of 2748, assuming no change in the unit price of the tins (approx. EGP 675/tin), the financial value lost for 1000 tins is EGP 4420, which represents only 0.66% of the total value (worth EGP 765,000). Note however that the total value of those 18 tins that were 'saved' from spoiling through the use of the wooden cabin is EGP 12,150 over 2 years, meaning that the cost of the 3 wooden houses (EGP21,000) would be recovered in less than 4 years. The group of local fishers who benefited from the wooden houses have advised the project to increase the size/capacity of the house in order to facilitate the process of an increased amount of salted fish.One of the major problems in fish disposal is access to the reservoir and maintaining quality of fish before its disposal. To solve these problems market and transportation support was provided to the Fisherman Cooperative Societies in the form of six bicycles fitted with iceboxes in the two reservoirs in India where CP34 operated (Photos 3.3). The market survey and opinions of fishers and market intermediaries revealed good impact of the intervention (Photos 3.3 and Table 3.5).Create awareness amongst the fishers of the SFD's current saving scheme policy that consists in contributing an equal matching fund to fisher's account, if the latter raises some funds. This policy is thought to provide additional incentive for fishers to save and raise their own finance.A self-finance system was therefore established in Dahod, with the opening of a saving bank account at the local bank, namely, Satpura Kshetriya Gramin bank, Nurganj in the name of cooperative society -Narmada Matsya Palan Sahkari Sanstha, Nurganj. Eighteen members of the society have been depositing Rs 50 every month since December 2008, with an equal matching amount deposited by the project as part of an incentive for further savings.Fish smoking has always been a major fish post-harvest approach to conserve and add value to some fish in developing countries in Africa. Thus technology to improve it remains on the agenda of appropriate institutions such as the CSIR-FRI, Ghana. During the past two decades the most significant improvement related to fish smoking involvements in the Africa region has been the introduction of the Chorkor Smoker. It was initially developed at the fishing community of Chokor, a suburb of Accra in Ghana, but is currently used in several countries in Sub-Sahara Africa. Major advantages of the Chorkor -Smoker over the traditional oven included the following:Increase smoking capacity; more efficient use of fuel wood; reduced contact between layers of fish being smoked on same oven; elimination of need to manually turn fish to have two sides of fish smoked; and reduction in attendance by (women) smokers, thus reduced exposure to smoke and heat and their related health implications.During the initial six months of the project, a participatory assessment exercise conducted in Dzemeni on the shores of the lake revealed the necessity to search for an improved fish smoking technology. A need to improve on parking of fish from smoking centers to markets was also identified. Following this, a half-day workshop on fish smoking involvements (as cooking, drying and flavoring) and functioning characteristics of available smoking ovens, especially the 'Chorkor-Smoker' was organized on 28 June 2006 under the leadership of a Post-Harvest researcher from CSIR-FRI, Ghana. The objective of the workshop was mainly an introduction and evaluation of a new fish smoking oven, called the 'FRI-Smoker', considered to be an improvement over the Chorkor-Smoker. Both the Chorkor -and the FRI-Smokers are products of the CSIR-FRI.The current project's search for an improved fish smoker necessitated a liaison with the CSIR-Food Research Institute's working Group on the subject. The linkage recently, informed the CP34 of the construction of a 'FRI-Smoker' by the CSIR-FRI with support of the Food and Agriculture Organization (FAO) at another suburb of Accra, Tsokome. Leaders and representatives of four fish smoking groups or associations from Dzemeni were assisted to travel to Tsokome where the nearest of the only two of FRI-Smokers currently is situated (Photos 3.4 a-d).The activity of fish smoking was reviewed. Functional characteristics of the two smokers and the relative status of smokers, after discussion are indicated in Table 3.7 (directly transcripted from the women processors meeting). The visit and technical discussions which ensued encouraged fish smokers in project pilot areas to initiate self-financed activities to acquire the new oven for groups of fish smokers. A local NGO decided to disseminate the new oven to other fish smoking communities. Where approximate time required could be estimated person involved could be completely engaged in another activity till fish smoking is over.Persons smoking and around smoking area exposed to smoke and heat.Persons smoking fish and around free from heat and smoke.6. Product appeal for potential market value tag• Less evenly smoked.• Could have burns because fish fat could drop onto fuel wood and set flame. • Product dry and less appealing.• Evenly smoked • Can not have burns because fat from fish eventually falls to floor of smoker as fire is on sides. • Product not dried up but glossy and appealingThe project undertook capacity building of primary fisheries stakeholders in the three basins covering several areas of fisherfolk activities.Sensitization: reference to sustainable utilization of fish resources, advocacy for use of authorized or approved mesh sizes of fishing nets, capture of approved sizes of fish species were highlighted during the formal (e.g. workshops) or informal (conversation) interactions with the communities. Observation of closed fishing seasons was advocated. Reference to conservation of other fisheries resources, advocacy against destructive fishing gear with respect to spawning and nursery grounds were also done. Debates and sensitization discussions were conducted on food quality issues and the advantages of using ice during fishing expeditions and marketization.Post harvest activities: To improve the preservation of captured fish, capacity of primary fisheries stakeholders were strengthen in all three basins. In the Volta basin, basic entrepreneurship training was provided to fish traders and smokers. Capacity building was aimed at enhancing quality of fish and processed fish. Emphasis has been put on enhancing knowledge of fish smokers of fish-smoking regarding cooking, drying and fish flavoring processes. As part of this process, the project partners identified an advanced fish smoking oven that was thought to produce an improved quality product for higher market value, reduce health risk for fish smokers and allow fish smokers to engage in other parallel (domestic or out-of-house) activities during the smoking process. In India the emphasis was on building fish-traders' capacity in understanding relationship between fresh fish quality and price. The project piloted assistance to transport fish in ice boxes on bicycle over the 10 km distance between the reservoir and the local market. Net result included increase in fish price from 35 Rs kg -1 to 74 Rs kg -1 . Soon after, the project helped the fishers to establish a self-financing scheme and facilitated the establishment of a micro-credit scheme to advance project gains. In Lake Nasser the project aimed at improving the capacity of salted fish processors to enhance production and quality of their products through the use of wooden houses specifically designed to reduce fish exposure to insect infestations. The houses were shown to improve the quality of the salting process.In small-scale fisheries (in particular in tropical countries with high temperature, humidity and risk of insect infestation), capacity building interventions associated with post harvest losses are likely to produce immediate and measurable impacts. The project demonstrated that increased capacity of fisherfolk in appropriate low-cost post-harvest technologies can reduce fish post harvest losses (fish spoil) greatly and have positive impacts on food quality. Possibly, this can also contribute to improve resource conservation by increasing incomes of fisheries dependant communities through two complementary mechanisms: (1) quantity-effect: as the post-harvest losses are reduced, the total quantity sold increase, thus increasing the total revenues, and (b) price-effect: as the quality of the fish processed increases, the unit price of the product is also likely to increase.Beyond those direct, tangible interventions on post-harvest and fish trading issues, a greater part of the capacity and consensus building activities undertaken by the CP34 focused on -perhaps less measurable but certainly also-extremely important issues of fisheries management, with specific sensitization discussion on local issues such as smuggling and misbehavior (use of illegal and/or armful fishing techniques), resource stewardship, and potential obstacles to increase reservoir fishery production.The literature on reservoir ecology tells us that productivity in large reservoir ecosystems is intimately linked to the interplay between hydrology, nutrient dynamics and the fauna and flora which generate the services on which human communities depend for food and livelihoods.Large reservoirs are ecosystems in transition from riverine to lacustrine. In particular, the two large dam reservoirs that were included in this project (Lake Volta and Lake Nasser) are about 50 years old and their fish populations remain in flux as species adapted to a riverine context evolve at both the biological and ecological levels into a more or less stable lake stock. Two major phenomena dominate this process: 1) relative competitiveness for altered food resources leading to the reduction or elimination of species that may once have been abundant and vice versa, and 2) the development of vacant ecological niches where no riverine species is able to take advantage of a new food resource. Most particular in this latter case are species such as the lacustrine pelagic clupeids, Limnothrissa miodon from Lake Tanganyika or Rastrineobola argentus from Lake Victoria that can capture and digest newly generated abundance of phyto and zooplankton, which are normally rare in rivers.In general terms the introduction of species that might take advantage of underutilized food resources is constrained by the dangers associated with the introduction of non-indigenous species. In cases where this has been done however, huge gains in productivity have often been achieved (e.g. Lake Kariba), but sometimes with dramatic loss of biodiversity (e.g. Lake Victoria) 14 . On the other hand, even in large reservoirs where exotic species introduction is not permitted -as it is the cases of Lakes Nasser and Volta-, feeding and fish stock enhancement through release of preferred species either managed in enclosures and cages, or released for later capture in the fishery may also yield productivity increases.The context and background for the chosen methods to increase productivity are however largely based on the institutional context or perceptions about the system states and processes -and how one may influence them. Those perceptions -which may have, for their majority, their origin in scientific knowledge-have not however been necessarily systematically tested. Solutions to improving productivity in Indian reservoirs were for instance initially based on a view on mechanisms governing productivity while actual empirical evidence of these relations is scarce, and a more comprehensive view of productivity processes and fish communities is still needed. In Lake Nasser stocking of native fish (tilapia) has already been performed regularly since 1990 without prior examination of the natural recruitment potential of these species, and with no later empirical information or evaluation on the effect of stocking. In Lake Volta, adoption of the smallscale cage culture was considered as the only viable option due a mixture of perceived negative impact of the present exploitation pattern and the success of private aquaculture farms in the lake.The inherent constraints of the institutional knowledge and tradition are illustrated by the achieved results. Although the implementation of methodologies was partly successful in some of the cases, it must be generally concluded that the overall success of the chosen approaches were limited. For the IGB case, there was found to be no clear relations between the ambient bio-physical indicators and the reservoirs production, and this suggests that exerted fishing effort is determined by other factors than reservoir productivity (van Zwieten et al. 2009). In accordance, the analysis (page 61) highlighted that \"a great part of the factors which influence the success (and the failure) of the adoption and/or viability of technical innovations are related to social, economic and more broadly, institutional factors\" pointing for instance to the leasing arrangements on reservoirs. For Lake Nasser, the enclosure experiment is yet inconclusive (partly due to poor monitoring), although similar previous private attempts in the lake have to a large extent been abandoned, which indicates limited success. For Volta Lake, the economically viable scale of small-cage aquaculture may be beyond the means of the really poor, but the catch assessment and the acadja study at least gave a much better understanding of the ongoing local exploitation pattern in the lake than was available prior to the project.Overall the present study suggests that reservoirs in the Indo-Gangetic Basin were the most amenable to manipulation, being relatively small and under strict government control with local management.A potential useful comparison that was largely untapped in the project would have been between the highly fluctuating lake Volta, with its enormous changes in lake surface area that in many ways make the lake resemble a floodplain and its associated highly adaptive multispecies-multigear fisheries, and the more lacustrine Lake Nasser with its basically single species targeting fisheries. Both lakes are deemed oligotrophic but have highly divergent fisheries production characteristics, causes of which could have been explored further to better understand productivity processes and potential improvements in them. Rivers and floodplains are much less open to classic fisheries controls and Lake Volta fisheries has all the characteristics of such fisheries: highly motile fisheries population, chosen appropriate gears and spaces throughout the flood-cycle; highly dispersed and temporal markets with large role for fish traders; production processes to a large extent driven by the environment. Lake Nasser fisheries, can in principle be organized more formally (though the present set-up with only a few markets and a requisition of collector boats to report a certain amount of fish may be too restrictive) as it resembles much more a stable system dominated by a few important species. The institutional context however precludes such an analysis because of the dominant fisheries management paradigm that fisheries effort drives fisheries production, and optimisation of inputs or outputs by regulating effort should take place.A relatively rich literature is available that links existing reservoir productivity to a wide range of environmental factors. In contrast, very little has been proposed to include socio-institutional considerations into those discussions, despite the significant literature that emphasizes the importance of collective actions and social and/or economic factors in explaining activities related to the exploitation of natural resources and common pool resources.The research presented in this report was a first attempt to address this flaw. Using the project primary data, we explored some new directions. The investigations were limited by the nature and quality of the information, but some instructive conclusions were achieved.Let's first recall that institutions or policies may not always provide positive incentives for individual or collective behavior. They can also in certain circumstances create counterproductive environment which will, in the long-term, greatly limit the sound development of a specific economic activity. That is the case in particular in the Lake Nasser fishery where our research showed how the combination of inadequate policies and economic and management tools have led to the creation of a massive black market.From the research, it also appears that the interventions which yield the highest returns on research and extension investment, as well as time and money contributed by local stakeholders tend to be out of reach of the poorest of the poor. Two reasons seem to predominate: 1) capital required for enclosure, cage or stock enhancement exceeds the spending power of the lower echelons of society and, 2) management skills and an orientation towards organized labor investment are generally lacking among the very poor.Benefits accruing to the poor through the value chain of culture-based fisheries activities (e.g., employment opportunities, lower cost fish for home consumption) are possible, but were not documented in this study. For the poor to be directly involved at a level that has a chance of producing impacts on a scale with the levels of poverty prevailing in Egypt, Ghana and India will require substantial government and/or NGO involvement, which may take the form of subsidies in terms of capital and/or logistical and technical support. In the absence of such subsidies, development of the culture-based fisheries sub-sector will continue to be a haphazard affair with increased productivity resulting from the occasional happy coincidence of competent management combined with community support, sound technology and adequate capital.In sum, manipulation of reservoir ecosystems to improve productivity and outcomes for lower income communities is feasible, but to be realized, adaptive research needs to work closely with technology users to ensure that the rationale of the intervention and the technical details are fully appreciated by local stakeholders and, maybe more importantly, that research and extension come to understand the real opportunities and constraints confronted by potential investors.Overall, those different reflections highlight the necessity to continue to combine social, economic and policy analysis with the more conventional ecological and bio-physical approach if we are intended to improve our capacities to engage with, and support, local populations and governments in their attempt to improve the productivity of tropical reservoir fisheries.The current project has been conceptualized, planned and managed to a large extent by social (science) concerns -as well as general CPWF requirements -resulting in a strong focus on engaging with communities to adopt and adapt technologies to improving productivity. A clearly positive effect of this focus is that it has forced institutions with a strong \"natural science\" background to go out and engage with local communities to find the gaps in knowledge and discuss the adaptation of the existing technologies to local circumstances. However, it is still by and large implicitly assumed that the local communities shall adjust more to the institutions than vice versa. We, as part of these institutions, are the providers, while they, the communities remain the recipients.Community responses to increasing demands for fish are always resulting in local solutions to increase production and productivity on a constant trial and error basis. For instance, in Lake Nasser local experiments with enclosures were already tried and tested well before CP34 started, and increased production (unreported) was simply provided by an increase in effort (although unlicensed and technically illegal); cage culture is already being attempted in Lake Volta by various types of entrepreneurs with different (variable) results, and culture based fisheries, such as brush-parks (acadja's) have already a long history in West Africa. Likewise stocking of reservoirs in India has been deemed necessary and practiced for years. In that context, adapting institutional set-ups, frameworks and management to carefully understand and evaluate initiatives from the community will go a long way in facilitating these processes, instead of per default regarding any local adaptation or innovation as a potential recipe for disaster. The top-down \"management belief\", often accompanied by a \"technological fix belief\" of most fisheries institutions is in many ways hampering the synergetic processes that should link practical bottomup (local) ingenuity and entrepreneurship of the local communities with theoretical insights and comparative experiences developed elsewhere.Overall, most of the chosen methodologies are relatively expensive and requires a far better control of the biological production processes than most natural reservoirs can offer (with the exception perhaps of the very small reservoirs). The technologies tested in India gave good and predictable results but these might only be marginal in the wider context. The larger question still remains: why productivity is so extremely low in Indian small reservoirs? Testing enclosures in Lake Nasser was perhaps one of the few options that actually could be done to attempt increasing productivity without deeper knowledge about natural productivity. But again the larger questions would be to know what the actual natural productivity of Lake Nasser is, what the main controlling factors of this productivity are, and what the status of the exploited stocks are in relation to the existing fishing pressure.In other words, the achieved results are in many ways relatively marginal compared to the already developed fishing practices, largely adapted to the natural productivity of the different stocks, and their economic viability has yet to be proven. Again there seems to be a paradoxical discrepancy between the institutional theoretical -and mostly expensive-solution, and the local practical adaptations through trial and error. Where the institution believes it can govern, manage, enhance, manipulate and control the production processes, the local fishers follow, fluctuate, optimize and adapt to the given natural production processes. Often (as illustrated by the catch assessment study in Lake Volta) they have local knowledge about fish behavior, production and seasonal changes that largely outstrips the institutions that are supposed to regulate them, and they are able to increase production by a variety of methods. Unfortunately, as demands increases, many of the methods, such as a decrease in mesh sizes and an increase in the diversity of gears in order to utilize at all categorical, trophic, spatial and temporal levels, are often technically illegal, although the scientific rationale behind these regulations has rarely been studied. At the same time the institutions (as the case with Nasser and Volta) are not in a position to even monitor the resulting increased production from local activities, but instead become inherently worried about unsubstantiated overfishing threats. For both Lake Nasser and Lake Volta the official landing statistics are seriously underestimated, and for all the cases the actual natural potential, or factual status of the exploited stocks, is virtually unknown. Such limitations make the achieved (technical) results of the present project very difficult to evaluate objectively both quantitatively and economically.The general problem, which is not unique to the present project, seems to be the fundamental different perceptions of the exploited system between the managing institutions and the performing practitioners. Of the changes listed above, which have the greatest potential to be adopted and have impact? What might the potential be on the ultimate beneficiaries? CIFRI -Low cost in-situ production of fingerling through cage units; Bicycle mounted icebox for fish transport. Both interventions improved fish productivity and in turn benefited fisher community / lessee. NIOF-LNDA -The idea of establishing fish enclosures in selected and ecologically suitable sites seems to be the most excepted idea for stakeholders to increase fish production. With a huge area in the lake that can be converted to fish enclosures, the beneficiary effect could be huge in increasing fish production from the lake. WRI -The changes with greatest potential to be adopted include:intensive participatory research in bio-physical, fish catch and stock assessments -by researchers; promotion of small scale cage culture -by researchers, primary fisheries stakeholders and entrepreneurs; improved fish smoking oven -by fish processors, entrepreneurs and development partners; fisheries record-keeping by the primary stakeholders (fishers, fish processors and traders). The potential on the ultimate beneficiaries include: • Adoption of intensive participatory research approach: (i) in research planning, implementation and output; (ii) enhancing community insight and appreciation of research benefits; (iii) enhancing traditional and local authority attitude and recognition.Adoption of small-scale fish cage culture has the potential of: (i) employment generation, (ii) food security, (iii) recognising and having better understanding of the economics of fish cage culture.Adoption improved fish smoking oven has the potential of: (i) enhancing income of fish smokers and traders through presentation of improved quality fish on the market; (ii) reducing health risks associatedThe involvement and commitment of fishers in catch data collection were above expectation.With respect to quality of data and therefore contributed to research output. The project did not anticipate the level of commitments of the fishers because (i) the fishers had to combine their usual fishing and other livelihood activities with the project assignments.The involvement and commitment of fishers in catch data collection enabled the research team to save time, and got more and quality data. Low uptake/involvement of fishers in small-scale fish cage culture compared to non-fishers.Why were they unexpected? How was the project able to take advantage of them?NIOF-LNDA It is the first time to use this technique for fish transportation in Lake Nasser, and melted ice was not expected to cause this problem. The project advised carrier boat owners to use a new method for fish transport. Size and species grading is proposed at the fishing site, then fish is transported by carrier boats with ice to the landing site. Trucks (refrigerated or using ice) are used to transport fish from landing site to whole sale market.The low uptake of fishers in small-scale fish cage culture compared to non-fishers might be due to the inability of the former to raise the necessary capital to invest in this technology. The project encouraged entrepreneurs to engage fishers in their operation of small-scale fish cage culture so as to build capacities of fishers to be able to establish their own in the future.What would you do differently next time to better achieve outcomes (i.e. changes in stakeholder knowledge, attitudes, skills and practice)?Refine and upscale the data collection approach for bio-physical, fishery, social structure and enhancement technologies in reservoir located in varied agro-ecological situations.Based on the knowledge gained provide additional inputs to policy makers for harnessing potential technology of increasing productivity. Conduct more demonstration programmes and identify one site for continued training for developing of adequate trained manpower in reservoir fishery management.We would encourage the attitude of more carrier boat owners, fishers and fish traders to use this technique. This could be done by increasing awareness and knowledge among these people about the advantages and benefits of this method.WRI -Limit the range of activities of the project to enable greater involvement of the primary stakeholders in order to achieve better results/outputs. Broaden the range of target group for training in small-scale fish cage culture to include fishers and small-scale entrepreneurs; Would have requested more resources to undertake more demonstration Would have organised training of trainers programmes for the trainers to facilitate changes in knowledge, attitude, skills and practice in the activities of the project.By developing and testing a combination of carefully adapted stock enhancements and aquaculture activities in three different basin and four different sized reservoirs, the project provides an interesting overall insight into the current research on reservoirs enhancement fisheries in tropical countries. Beyond the areas of intervention of the project, those researches offer useful lessons for practitioners and/or researchers interested in similar activities in the same basins or elsewhere in the tropical region. A large part of those lessons concerns technical aspects (see 'tool and methodology' in this IPG section below) but some wider reflections on the general issue of water productivity in small and larger reservoirs were also discussed. Those reflections have been initiated through three individual basin reviews (CIFRI 2005, NIOF-LNDA 2005, WRI 2006), a global synthesis document (van Zwieten et al., 2009) and a specific report on water productivity in fisheries (Lemoalle 2009). Additional works were published on specific bio-physical or fisheries characteristics of some of the reservoirs (e.g. Abd Ellah 2008, El Haweet et al. 2008, Karikari et al. submitted).Another critical area where the project offers relevant insights for which very little is usually found in the literature is the socio-institutional and economic processes associated with those fisheries enhancement activities. Through various analyses and different angles the project investigated several of these socio-institutional processes, including the role of leasing rights on reservoirs productivity, the effect of contractual arrangements on fisher incentives and capacity to engage in the fishery, and the potential issues related to the 'privatization of the commons' usually associated with investments in enhancing techniques (cage, stocking, etc.). A series of publications that describe and analyze those different issues has been submitted to various peer-reviewed journals (Béné e al. 2008, Béné and Obirih-Opareh -in revision, Finegold et al. submitted, Katiha et al. submitted).The main effort of the project has been on developing and testing appropriate tools and methodologies to increase productivity of fisheries in lakes and reservoirs: enclosures in Lake Nasser embayments (khors), pens and cages to raise fry for stocking Indian reservoirs, and smallscale cage culture in Lake Volta. The main results of those trials were documented in a series of articles submitted to peer-reviewed journals (Ofori et al. in press, Das et al submitted). A series of Technical Manual produced by the project summarizes the practicalities of applying those methods in the three basins (CIFRI-CP34 2008, 2009, LNDA-CP34 2009, WorldFish-CP34 2009, WRI-CP34 2009).In addition a number of fish processing/conservation techniques have been developed or tested: the SRI fish smoking oven in Lake Volta, wood chamber for fish salting in Lake Nasser, and ice boxes for fish transportation in India. Those represent as many options that can adopted in other part of the world.NIOF-LNDA 1-Partnership achievements in science: Scientific cooperation and exchange of ideas, project management procedures, scientific publications, workshops with WorldFish Center. Ph.D. program to study Bio-socio-economics of Lake Nasser Fisheries between LNDA and Tanta University.Ph.D. program to study zooplankton and epiphytic zooplankton in Lake Nasser. Scientific cooperation between LNDA and NIOF in studying biophysical conditions and fisheries in Lake Nasser. Scientific cooperation with South Valley University in studying the macrophyte distribution in Lake Nasser.Cooperation with enclosure owners to apply new methods for fish transportation.Cooperation with fisher to improve salting procedures of fish and apply new techniques using hygienic methods inside wooden cabins. Applying locally new system for fish culture inside enclosures in Lake Nasser adapting economic practices.Scale out project advantages stakeholders of new research results and its application to improve fish production from the lake Scale up the recommendation gained in the project to decision makers Partnership between scientists and primary stakeholders harmonised strict scientific approaches and real human needs modifications. The partnership also increased incorporation of scientific attitude and approaches of primary stakeholders in their activities. Finally, this partnership enhanced traditional knowledge of the scientists in the fisheries activities of primary stakeholders which could improve on interpretation of results.Partnership between projects and NGOs enabled the application of business principles to the activities of the primary stakeholders.Given the general lack of understanding of biological production processes in larger (but also to some lower extent, smaller) reservoirs, there is still a need for further fundamental research on those processes.It is possible to manipulate, govern, and determine a natural environment, but vast opportunities still exist for increases in productivity from a purely biological point of view. The level of intensive methods should therefore be seen in relation to the spatial scale of the reservoir.The environmental sustainability of yield enhancement technology, especially the introduction of potentially eutrophying feeds and stocking of fish which do not naturally recruit into reservoir will depend to a large extent on the intensity and density of cages or enclosures and the invasiveness of introduced species. These impacts are easier to manage in smaller reservoirs. Larger bodies of water seem inherently less amenable to management.There is a need for carefully document and understand the natural production processes and their controls and limitations before endeavouring into technological solutions that may turn out to be economically or technically unaffordable for the poorest.The historical context and inherent scientific preconceptions that characterize research and management institutions should be acknowledged when evaluating the chosen pathways or ideas in the attempt to increase reservoir fishery productivity. Still, they should also be evaluated in a larger framework within currently available scientific knowledge and practices in order to classify these choices and help in understanding the distinction between theory and knowledge (separate beliefs and facts). In developing international programs as the current Challenge Programme, time and space should be made available to enable such evaluations.A close engagement with the local communities to identify the ongoing activities and developments, and gaps in the institutional knowledge, as well as a willingness to objectively test without prejudice their various adaptations seems at present to be much more rewarding in terms of increased productivity than technological solutions that require close control over all links in the chain.Given the importance of the socio-institutional and policy processes in influencing the overall capacities of local actors to engage/invest in technical innovation, further research and analysis of those processes is critical if one wishes to ensure a better contribution of research to the question of the productivity of reservoir fisheries.To increase their potential impacts, improved fish productivity projects in tropical countries should, as much as possible, include interventions that aim at increasing the capacity of fisherfolk communities in low-cost technologies and post harvest losses.Technological approaches to increasing productivity may have only indirect positive impacts on the poorest of the poor. Government logistical and technical support can increase the benefits accruing to lower income groups the overall cost of private investment in these technologies limits direct participation to less poor groups.Conflicts seem nearly inevitable in any system where benefits from the exploitation of common resources appear to accrue disproportionably to one group among several. Consultation and participation with local institutions and stakeholders can reduce these conflicts, but in situations of extreme poverty and heavy dependence upon natural resource exploitation for livelihoods, the extent to which privately-owned investments in common pool resources can contribute simultaneously to increased productivity and poverty reduction is therefore limited.Finegold C., Béné C. Shehata M., Habib, O.A. 2009. Productivity, capital mobilization and moral hazard in fishery: investigating their links through share contract theory in Lake Nasser (submitted)This paper examines contractual relations in Egypt's Lake Nasser fishery, seeking to understand why so many seemingly redundant contract types coexist and what effect they have on productivity. Based on the results of a recent socio-economic survey conducted in the fishery and drawing on the existing literature on agricultural sharecropping and on share remuneration systems in fisheries, the paper analyzes the roles of the different contractual relations observed in the Lake Nasser fishery. In particular, it discusses the incentives, limitations, and opportunities that these contracts offer to the different groups of actors (gear owners, crew members), and shows how these arrangements influence and shape the fishing strategies, capital mobilization, and ultimately labor productivity of those different groups. While the debate on share contracts generally emphasizes their efficiency relative to other types of contracts, particularly in terms of the options they provide for sharing risk and the incentives they hold, our analysis provides a more nuanced explanation, highlighting in particular how they contribute to meeting the production needs of the varied range of actors present in the fishery.El Haweet A., El Hussein A., Sangq Y., and Elfar A. 2008. Assessment of Lake Nasser Fisheries.Egyptian Journal of Aquatic Research 34(2): 285-298Four fisheries surveys were carried out in Lake Nasser, the largest lake in Egypt (about 6000 km2), in order to assess the lake fisheries during the period from March 2006 to March 2008. Random fishing boats were inspected to investigate their fishing gears and methods (e.g. trammel and gill nets) and their catches. Artisanal fishery in the lake is conducted nearer to the shoreline in areas not more than 15m deep targeting only 6 species. The most dominant species were; Tilapia group (O. niloticus, S. galilaeus, and T. zillii), pelagic fishes (A. dentex and H. forskalii) and L. niloticus. A size-range of each species and their distribution pattern in different areas of the lake was described for the major fish species in the lake. The time series of size distribution showed high exploitation rate for most important commercial species in the Lake. Catch per unit effort (CPUE) of different fishing methods in the Lake was estimated as the catch in Kg of fish by 50m length of the nets per night or shot. The results indicate that the southern part of the lake is more productive for gill net while the opposite is recorded for trammel net. Unreported landings are still considered to be a major problem in the landing estimate of the lake which is used as a tool for fisheries management. Options for the management of Lake Nasser fishery are suggested.Ofori J.K., Abban E.K., Karikari A.Y. Brummett R.E. Production economics of small-scale tilapia cage aquaculture in the Volta Lake, Ghana. Journal of Applied Aquaculture (in press)To calculate the potential for cage aquaculture to create economic opportunities for small-scale investors on the Volta Lake a local NGO with technical support from the Government of Ghana ran 10 trials of small-scale cage aquaculture in the town of Dzemeni. Cages were built locally from available materials at a cost of approximately US$1000 per 48m 3 cage. An indigenous line of mixed sex Nile tilapia, Oreochromis niloticus, was stocked at an average rate of 103 fish/m 3 and grown on locally available pelleted feeds for approximately 6 months. Total costs averaged US$2038 per six-month production cycle. Gross yield ranged from 232 to 1176 kg/cage averaging 460 kg/cage (9.6 kg/m 3 ). Mortality resulting primarily from poor handling during transport and stocking averaged 70% and was a major determinate of production and profitability. To break even, harvested biomass of fish needed to exceed 15 kg/m 3 . At 25 kg/m 3 , small-scale cage aquaculture generated a net income of US$717 per cage per six months (ROI =30.2%) on revenues of US$3,500. Water quality in the area surrounding the cages was not negatively affected by aquaculture at the scale tested (5 tons of feed per six months).","tokenCount":"36246"} \ No newline at end of file diff --git a/data/part_3/4780610046.json b/data/part_3/4780610046.json new file mode 100644 index 0000000000000000000000000000000000000000..ca723641517ba39d1ec64cd4eae5d5ed2bddc1e2 --- /dev/null +++ b/data/part_3/4780610046.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"26ff9a99f7276da8f41118ae20fbc046","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/ec65dca7-88c3-465c-a127-b14680c383c7/retrieve","id":"-801009734"},"keywords":[],"sieverID":"52050e6c-d460-4167-881d-d002f2b1f6d1","pagecount":"9","content":"Globally, climate change is a major factor that contributes significantly to food and nutrition insecurity, limiting crop yield and availability. Although efforts are being made to curb food insecurity, millions of people still suffer from malnutrition. For the United Nations (UN) Sustainable Development Goal of Food Security to be achieved, diverse cropping systems must be developed instead of relying mainly on a few staple crops. Many orphan legumes have untapped potential that can be of significance for developing improved cultivars with enhanced tolerance to changing climatic conditions. One typical example of such an orphan crop is Sphenostylis stenocarpa Hochst. Ex A. Rich. Harms, popularly known as African yam bean (AYB). The crop is an underutilised tropical legume that is climate-resilient and has excellent potential for smallholder agriculture in sub-Saharan Africa (SSA). Studies on AYB have featured morphological characterisation, assessment of genetic diversity using various molecular markers, and the development of tissue culture protocols for rapidly multiplying propagules. However, these have not translated into varietal development, and low yields remain a challenge. The application of suitable biotechnologies to improve AYB is imperative for increased yield, sustainable utilisation and conservation. This review discusses biotechnological strategies with prospective applications for AYB improvement. The potential risks of these strategies are also highlighted.Food security, climate change, and crop diversity are closely associated in complex ways. Without crop diversification, food security will be almost impossible to achieve (Marino, 2019). Globally, climate change is a major factor that contributes significantly to food insecurity, limiting crop yield and food availability (Jimenez-Lopez et al., 2020). Whereas efforts are being made to curb food insecurity, millions of people still suffer malnutrition due to insufficient protein intake and micronutrient deficiency (Khan et al., 2016). Diets deficient in proteins, vitamins, and minerals hinder the growth and development of infants. At the same time, steady consumption of calorie-dense foods can lead to obesity and overweight. There are about 250 million undernourished people in Africa and 500 million in Asia, making these two continents regions with the highest prevalence of malnutrition (Mustafa et al., 2021). Crop diversification can help improve human diets and livelihood while mitigating nutrition insecurity (Mango et al., 2018). About 30,000 edible crop species exist globally. However, only 103 crop species are consumed, with rice, wheat, and maize being the most cultivated (FAO, 2018;Mustafa et al., 2021). Reliance on only a few staple crops can pose an ecological, nutritional and economic risk (Dissanayaka et al., 2021).Legumes are the second most important group of crops after cereals. They play a vital role in providing protein, oils, and minerals in human diets, thus boosting health and lowering the risk of several chronic diseases (Becerra-Tom as et al., 2019;Cui et al., 2021;Foyer et al., 2016). Legumes also offer advantages in utilisation as livestock feed and a source of income to small-scale farmers (Reddy et al., 2012). They enhance sustainable agriculture due to their nitrogen-fixing ability, limiting the use and impact of inorganic nitrogen fertilisers (Considine et al., 2017;Quilb e et al., 2021). With climate change affecting global agriculture, orphan legumes are alternatives for crop cultivation and utilisation (Murthy and Paek, 2021). The term \"orphan\" crops refer to minor crops, which have received limited research attention globally. Consequently, orphan crops have remained economically significant only in specific local regions in most developing countries (Cullis and Kunert, 2017). Synonyms used to describe orphan crops include \"underutilised\", \"neglected\", \"promising\", or \"minor crops\" (FAO, 2019). Underutilised legumes have the advantage of being climate-resilient and providing nutritional security (Paliwal et al., 2021). Some examples of underutilised legumes include African yam bean (Sphenostylis stenocarpa), Bambara groundnut (Vigna subterranean), Kersting's groundnut (Macrotyloma geocarpum), etc. (Paliwal et al., 2020).This review highlights the application of different biotechnological strategies and their prospects for improvement in African yam bean (AYB). The potential risks of these technologies are also discussed.Google Scholar and ScienceDirect were employed to search for the following keywords: African yam bean, Sphenostylis stenocarpa, biotechnological tools, biotechnological approaches, plant biotechnology, crop improvement and underutilised legumes. To enhance the likelihood of finding relevant articles, Boolean operators were used to combine keywords in the following manner: \"biotechnological approaches and African yam bean\", \"crop improvement and biotechnological approaches\", biotechnological approaches and underutilised legumes\", and \"crop improvement and underutilised legumes\". Only studies that related to the topic of interest were included for the review. Also, only articles written in English were included. The publication date was a constraint limiting the articles used over the past 10 years to 11% based on relevance. Other publication dates were limited to the last ten years (2011-2021), accounting for 89%. Also, other articles used include original articles, review articles and information from institutional websites such as the Food and Agriculture Organization (FAO), The International Institute of Tropical Agriculture (IITA), etc. A total of 109 published articles were used for this review. The result of this review is categorised into three sections. The first section discusses the AYB crop, its benefits and limitation. The second section discusses the biotechnological tools that have been applied in AYB improvement, while the third section discusses future perspectives for AYB crop improvement.AYB is a tropical African orphan crop, which belongs to the family Fabaceae. It is a leguminous seed crop (Figure 1) with swollen shoots commonly found in West Africa (Nigeria), Northeast Africa (Ethiopia), East Africa (Kenya), Southern Africa (Malawi), and Central Africa (Adewale and Odoh, 2013). It is cultivated in local communities of Africa for its edible tubers and seeds, which are rich in nutrients (Adewale and Odoh, 2013). The nutritional content of AYB compares favourably with those of other commonly consumed legumes. The protein content of AYB varies between 17 and 30% (George et al., 2020;Oluwole et al., 2020), higher than those of Bambara groundnut, common bean, chickpea, and pigeon pea (George et al., 2020). A study by Ajibola et al. (2016) revealed that the predominant proteins in AYB are globulin and albumin. Additionally, the crop is rich in starch, dietary fibre, and vital minerals (Aremu et al., 2019;Baiyeri et al., 2018;Oluwole et al., 2020).AYB is used extensively for intercropping because of its nitrogenfixing ability, which enriches the soil (Klu et al., 2001;Abdulkareem et al., 2015). Arisa and Ogbuele (2007) reported that diabetic and hypertensive patients could consume AYB. In diabetic patients, the authors observed that AYB digests slowly, causing a gradual increase in blood sugar levels. Also, the enzymatic protein hydrolysate of the plant can serve as a potential ingredient in nutraceutical products (Esan and Fasasi, 2013). Nnamani et al. (2017) reported using AYB as a remedy for treating acute heart diseases in South-eastern Nigeria. Other uses of the plant include the preparation of animal feeds (Abioye et al., 2017;Onuoha et al., 2017) and production of insecticides from its processed extracts (Omitogun et al., 1999;Okeola and Machuka, 2001). Biotechnology-assisted improvement of AYB is imperative, particularly with respect to reduced cooking time (to save cost), resistance to diseases, enhanced yield and other target traits. This could boost its social acceptance as a protein-dense legume and production given SDG goal 2, which aims to achieve zero hunger by 2030.Although AYB is a crop with high nutritional value, its production depends on the cultivation of landraces by local farmers. The plant's breeding system is not yet fully understood; hence, improved varieties are yet to be released. Adewale and Adegbite (2018) posited that it is difficult to achieve hybridisation in AYB, given that the plant is more of an autogamous crop than an allogamous one in the ratio 9:1. Unlike the known staple crops, AYB has been neglected by the scientific community and industries because of little or no information about its economic value. Insufficient information on the nutritional benefits has hindered the consumption of the crop. Many of the farmers who are knowledgeable about the crop are aged and without formal education, leading to poor or no documentation on the crop (Nnamani et al., 2017). Therefore, younger farmers need to engage in its cultivation to prevent the loss of information and value. Besides, several other factors have contributed to the limited productivity of AYB, including low yields, prolonged cooking duration, anti-nutritional factors present, and extended maturity period (Ojuederie et al., 2016;Nnamani et al., 2017). The cooking time of AYB can last for several hours, which is a discouraging factor. A reduced cooking time, as well as improved processing techniques, can bolster AYB utilisation. Having refined food products made from the crop can facilitate its utilisation if a functional value chain is available. Another limiting factor to AYB production is the requirement for staking. Since the plant is a climber, farmers require stakes to obtain a better yield. There is also insufficient information on the reproductive biology, pod-filling, and photoperiodic sensitivity that influence planting time and season of the crop (Adewale and Odoh 2013). In addition, AYB is susceptible to several diseases such as leaf spots and stem blights caused by Sclerotinia sclerotiorum (Akinlabi et al., 2015), flower bud and pod rot (Figure 2) caused by several fungi (Afolabi et al., 2019). Farmers are also faced with the problem of labour-intensive farming methods. The absence of farm machinery limits production and post-harvest activities such as dehulling. These limitations can be overcome to achieve enhanced productivity. The use of conventional breeding to improve AYB may take several years (Adewale et al., 2015); hence, biotechnological approaches are crucial for precise and efficient crop improvement (Kumar et al., 2015). It is vital to consider the suitability and local farming practices of AYB to identify lines with specific traits of interest (Muhammad et al., 2020). Table 1 shows a list of accessions with known phenotypes that can be deployed as parental materials.Most AYB accessions have been classified based on phenotypic traits, such as seed pattern and seed coat colour. This kind of classification contains limited genetic information, which may mislead and provide lean evidence on the available genetic diversity of the crop (Adewale and Odoh, 2013). Knowledge of the crop's cytogenetics is paramount for overall improvement and genetic manipulation (Popoola et al., 2011). Popoola et al. (2011) and Adesoye and Nnadi (2011) reported the bivalent chromosomal status of AYB to include 2n ¼ 18, 20, 22, and 24 with TSs-3 having 2n ¼ 18. Most of the AYB accessions had 2n ¼ 22.Biotechnological strategies useful in crop improvement include the following: (i) molecular markers for the assessment of genetic diversity and marker-assisted breeding, ii) plant tissue culture for mass propagation (iii) genetic modification for novel trait integration, and (iv) omics e.g. genomics, proteomics and metabolomics for unravelling gene function and regulation (Dawson et al., 2009;Obembe, 2019).So far, there is a paucity of information on the genetic improvements of AYB (Popoola et al., 2011). The biotechnological approaches reported on AYB include the use of molecular markers for estimating genetic diversity and micropropagation (Table 2). Currently, no transgenic AYB has been reported, neither has genetic engineering nor marker-assisted breeding methods been exploited for improvement in the crop.This section discusses the applications of micropropagation techniques for the in vitro regeneration of AYB. Aliyu and Adesoye (2007) demonstrated that 0.1 % mercuric chloride was most appropriate for AYB explant sterilisation. Otsoseng (2005) developed a clonal propagation procedure for landraces of AYB using nodal explants. The author maintained nodal segments of stems on MS basal media fortified with several cytokinins (N-phenyl-N 0 -1,2,3 thidiazol-5-ylurea [TDZ], 6-(γ,γ-dimethylallylamino) purine [2iP] and 6-benzylaminopurine [BAP]). Compared to the other cytokinins, BAP induced a more satisfactory effect in both culture establishment and shoot proliferation stages. The author also observed persistent callusing in both phases. In the same study, the application of growth regulators like gibberellic acid (GA 3 ) and 2,3,5-triiodobenzoic acid (TIBA) known to inhibit callogenesis had no positive effect. Whereas erratic adventitious root formation was detected in vitro, some shoots were rooted in the presence of the auxins α-naphthalene acetic acid (NAA) and indole-3-butyric acid (IBA). IBA gave a more satisfactory effect than NAA, as it elicited more roots. Generally, the author noted that cuttings of AYB formed adventitious roots regardless of whether auxin was present or not.Akande et al. ( 2009) investigated callus induction from the root, stem, and leaf explants of two AYB accessions, SSSWN56 (brown seed) and SSSWN75 (grey seed). According to the authors, stem explants from both accessions cultivated on medium augmented with 1.5 mg/L each of kinetin (KIN) and NAA elicited maximum callus percentage (100 %) with minimum callusing observed with root explants. Callus induction was not detected on plant growth regulator free (PGR)-free and indole acetic acid (IAA)-fortified media.In vitro regeneration by direct organogenesis from an embryo, leaf, cotyledonary node, and shoot tips explant of AYB was studied by Adesoye et al. (2012). The authors observed 100 % multiple shoots induction when embryo explants were maintained on MS medium augmented with 0.5 mg/L of BAP and 0.05 mg/L of NAA. Leaf explant produced callus without organ formation. Shoot tip and cotyledonary node explants maintained on medium with 2.0 mg/L of BAP alone responded with a maximum shoot number of 4.75. However, minimum shoot responses were detected when explants were cultured on 0.1 mg/L of kinetin. Although multiple shoots derived from the embryos rooted directly on shoot induction medium, shoots derived from shoot tips rooted on medium amended with 0.5 and 0.25 mg/L of NAA. Cotyledonary node-derived shoots did not generate roots. Ogunsola et al. (2016) reported in vitro morphogenic responses of two AYB accessions (TSs154 and TSs5) to PGRs. They maintained explants derived from mature embryos on PGR-free medium and NAA-and BAP-augmented medium. The authors also cultivated nodal cuttings derived from the shoots of regenerated embryos on a medium supplemented with different concentrations and combinations of BAP, KIN, and NAA. According to the authors, medium without PGRs supported embryo regeneration and growth than medium fortified with growth regulators. Although both media enhanced shoot formation and rooting, none could elicit multiple shoots from embryo explants. Nodal explants of TSs154 produced multiple shoots with the maximum average number of shoots, roots, and leaves of 5.3 AE 2.3, 3.7 AE 2.9, and 7.7 AE 3.6, respectively. More so, root lengths of 3.1 AE 0.0 cm were formed on medium fortified with 0.03 mg/L and NAA 0.6 mg/L BAP for TSs154, while for TSs5, the maximum average number of 3.2 AE 2.5 shoots and 5.9 AE 1.5 leaves were formed in medium with 0.05 mg/L of NAA and 2.0 mg/L of KIN.Recently, the assessment of genetic diversity in AYB using molecular markers has been on the rise. AFLP, SSR, RAPD, and SNP have all been deployed to estimate genetic diversity in the species (Table 3).Whereas pre-breeding programs are ongoing, an improved variety of AYB is yet to be released. Many studies have focused on morphological characterisation, which is affected by environmental factors. Molecular studies are of importance in ensuring that variation is genetic and not environmentally induced. For AYB breeding, assessment of genetic diversity is pertinent. Accurate information on genetic variability is vital for the conservation and utilisation of germplasm resources. Moyib et al. (2008) and Popoola et al. (2017) used RAPD markers in the genetic analysis of AYB, respectively. The similarity indices recorded in these studies ranged from 0.42 -0.96 and 0.72-0.93. According to Moyib et al. (2008), cluster analysis for the 24 accessions were grouped into eight clusters at a similarity index of 0.80. The principal component -Callus induction (from leaf, root, and stem explants) Akande et al. (2009).-Explant sterilisation Aliyu and Adesoye (2007).-Direct organogenesis (from the embryo, leaf, cotyledonary node, and shoot tip explants) Adesoye et al. (2012).-In vitro morphogenic response in mature embryo explant Ogunsola et al. (2016). -Evaluation of genetic diversity using amplified fragment length polymorphism (AFLP) Ojuederie et al. (2014); Adewale et al. (2015).-Transferability of cowpea simple sequence repeat (SSR) for the evaluation of genetic diversity in AYB Shitta et al. (2016).-Genetic diversity assessment using inter simple Sequence Repeat (ISSR) markers Nnamani et al. (2019). analysis (PCA) showed the first three principal components contributing 30.20, 22.17, 8.60, respectively and it is about 60.98 % of the total variation observed among the twenty-four accessions of AYB. The PCAs were consistent with phylogenetic tree and structure results. The separation of the accessions into these groups was based on phenotypic differences, mainly tuber formation, tuber flesh colour, and seed shape (showing a predictive relationship between genotype and phenotype. In the latter study with ten accessions, RAPD markers detected three clusters. Adewale et al. (2015) evaluated the inter-specific diversity in 77 accessions of AYB using a total of five EcoRI/MSeI primer combinations. About 26 % (59) of the 227 bands produced were polymorphic. E-ACT/M-CAG had a polymorphic efficiency of 85 % and E-AGC/M-CAG with the least polymorphic efficiency of 80.6 % out of all primer combinations. Among the AYB accessions studied, the Jaccard genetic distance ranged between 0.048 and 0.842. The accessions were grouped into four major clusters consisting of 8, 20, 21, and 28 accessions, respectively. The mean fixation and mean expected heterozygosity indices of 0.203 and 0.284 revealed a large genetic base in the AYB accessions. Ojuederie et al. (2014) used four AFLP primer combinations in assessing genetic diversity in forty AYB accessions. The primers amplified 1730 fragments, out of which 1647 were polymorphic fragments (95.20 %). E-AGC/M-CAG produced the most number of bands (520). Polymorphic information content ranged from 0.9447 to 0.9626. Two primer combinations E-AAC/M-CAG and E-ACT/M-CAG recorded 100 % polymorphism. The forty accessions of AYB were grouped into two major clusters with similarity indices of 0.66-0.91.Presently, there is no AYB-derived simple sequence repeat (SSR) markers. Shitta et al. (2016) used 36 cowpea-derived SSR primers (16 genomic, 10 unigene, and 10 EST-SSR) to screen AYB for genetic diversity. The amplification ability of the 36 primers was tested across genomic DNA extracted from 67 accessions of AYB used in the study. Thirteen of the SSRs (36%) were able to amplify AYB, while only eight out of these SSRs gave an amplification rate of above 60% in AYB genomic DNA and were thus used for the study. The polymorphic fragments generated from the primers were 55, with an average of 6.9 per primer. The simple matching coefficient ranged from 0.458 to 1.000. A dendrogram drawn based on UPGMA produced three main clusters, with cluster 1 being the most diverse with a dissimilarity range of 0.517-1.000, suggesting a large amount of genetic diversity in the AYB accessions to be exploited for AYB improvement.Several advanced genomic tools can be applied in AYB improvement. Diversity array technology sequencing (DArTseq) has been deployed for high-throughput genetic analysis of different traits in AYB. The DArTseq procedure is based on genome complexity reduction using a suite of restriction enzymes. Microarray hybridisation is used in the detection of the presence or absence of individual fragments in genomic representations. This technology is increasingly being used in the characterisation and diversity studies of several crops for enhanced conservation in genebanks. Some tropical crops and a few orphan crops are have been analysed using this cost-effective technology (Huttner et al., 2005).Genome-wide association studies (GWAS) is a tool used to assess the relationship between single-nucleotide polymorphisms (SNP) and variation in a particular phenotypic trait. This technique overcomes some limitations associated with conventional breeding (Luo et al., 2020) and has been applied in several crops to identify genes controlling specific characteristics (Table 5). In using GWAS, consideration is given to the magnitude of linkage disequilibrium (degree of non-random association of alleles at different loci); and likely spurious association derived from the population structure and genetic relatedness (Zeng et al., 2017). The rate of false-positive errors can be corrected using a mixed linear model (MLM) and compressed MLM (Zeng et al., 2017). GWAS identifies the loci responsible for a specific trait via single-nucleotide polymorphism (SNP) and phenotypic variation based on linkage disequilibrium. GWAS on AYB is currently ongoing at the Genetic Resources Center (GRC) of the international institute of tropical agriculture (IITA), Ibadan, Nigeria (Paliwal et al., 2020). In a preliminary study by Oluwole et al. (2020), GWAS of nutritional traits in AYB generated 3.6K SNPs using the DArTseq. The authors identified about 50 putative QTLs linked with seed starch, protein, and oil contents. 4.2.2.1. Bioinformatics. Bioinformatics refers to the organisation of biological data for logical evaluation (Edwards and Batley, 2004). It involves integrating computer science, biology, and information technology to have a global view from which unified principles in biology can be obtained (Kumar and Chordia, 2017). Bioinformatics combines data from different omics field, provides meaningful interpretation of the same and aids the discovery of novel issues. It combines data from different omics fields (Edwards and Batley, 2004). The advancement in high-throughput omics technologies has led to the expansion of bioinformatics due to the generation of a large dataset (Jha et al., 2019). Various web-based databases abound from which information can be retrieved, and some include the chickpea transcriptome database (CTDB) (Verma et al., 2015) and the legume information system (LegumeInfo. org) (Dash et al., 2016). Bioinformatics tools have been used in AYB analysis. For example, TASSEL (Trait Analysis by aSSociation, Evolution and Linkage) was used to analyse the GWAS of AYB nutritional trait (Oluwole et al., 2020).Several modern biotechnological tools have been employed to improve different legume crops (Table 4). With the advancement of high-throughput techniques, it is crucial to consider integrating various omics technologies to initiate a global view rather than a single-omics approach (Narayana and von Wettberg, 2020). Omics technologies such as transcriptomics, genomics, proteomics, and metabolomics should be deployed in AYB to further understand and improve the crop (Popoola et al., 2019). The various omics tools are helpful in improving crop nutrition quality, gene analysis, protein modelling, and developing varieties resistant to biotic and abiotic stress (Shafi et al., 2019). Le Signor et al. (2017) reported success in combining GWAS and proteomics in identifying genes responsible for the synthesis of globulin in Legumes. Genomics is the study of genomes, and it is applicable in the analysis of gene regulation, genomic variations, genome evolution, genomic variations, gene regulation, and genome sequence information (Zheng et al., 2021). So far, not all aspects of genomics have been applied for AYB improvement. For a robust breeding program, the whole genome sequencing of the crop is essential. As such, the Alliance for Accelerated Crop Improvement in Africa (ACACIA) is currently undertaking the whole genome sequencing project of AYB (ACACIA, 2020). The availability of a complete whole genome sequence would significantly improve marker discovery and precise detection of various QTL positions in the AYB genome (Paliwal et al., 2020). Molecular markers associated with specific traits in AYB need to be developed to aid improvement. Through translational research (Jacob et al., 2018), valuable traits of AYB can be transferred to major crops or vice-versa through biotechnological strategies. Also, identifying transposable elements, which are usually found in the genomes of flowering plants, can help identify specific genes for crop improvement (Popoola et al., 2019).Genome editing, one of the game-changing technologies in biological sciences, can also be applied towards AYB improvement. It enhances the precise and targeted modification of specific traits of interest, thus accelerating crop improvement. Genome editing technologies such as CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 can alleviate the limitations of conventional breeding, thus increasing food production in a cheaper and faster manner (Gao, 2018). Recent advancements in CRISPR technologies have brought about precise and targeted genetic manipulation of crops, accelerating the shift towards crop enhancement via precision breeding (Zhang et al., 2020). The CRISPR/Cas9 method of editing has been applied in the improvement of about 20 different species of crops for several traits, which include disease resistance, tolerance to biotic and abiotic stresses, and yield improvement (Ricroch et al., 2017). This can also be applied for gene expression regulation, modification of epigenetic loci, and precise optimisation of traits in AYB to improve its resistance to diseases and maximise productivity especially under adverse and erratic weather conditions, even to reduce the prolonged cooking time in AYB. Genome editing of AYB can also reduce the crop's extended maturity period and anti-nutritional compounds (Table 5). The nutraceutical properties of AYB can be improved for proper utilisation through the application of CRISPR/Cas9.Recent studies have shown that genetic engineering to improve photosynthetic processes can improve yield potential vital for meeting future demand for food (Foyer et al., 2017;Simkin et al., 2019). Some biotechnological blueprints which can be adopted for improving yield potential include enhancing the kinetics of RuBisCO (Ribulose-1, 5-bisphosphate carboxylase-oxygenase). RuBisCO is a vital enzyme in plants, and it is the point of entry for carbon dioxide (CO 2 ) into the Calvin-Benson-Bassham cycle. Other strategies include increasing the mesophyll conductance, modulating the photorespiratory pathway, improving photon utilisation and reducing photodamage (Singer et al., 2020). The application of these biotechnological strategies can contribute to increased plant productivity in AYB.Proteomics is another very useful omic tool for studying the cellular units of proteins under a specific condition (Afzal et al., 2019). It can be used to monitor candidate genes/proteins responsible for biological processes at a particular stage or condition in a specific tissue. Proteomics can be used to determine the function of several genes in a single experiment as well as discover new genes useful in providing solutions to biotic and abiotic stress (Zargar et al., 2017). Combining the omics approach with breeding programs can potentially facilitate legume sustainability, including AYB.Transcriptomics is the study of all the RNA transcripts in an organism at a particular time. The genetic make-up of an organism is encoded in the DNA of the genome, which is then expressed via transcription (Lowe et al., 2017). Plant transcriptomics makes use of Next Generation Sequencing (NGS), which provides detailed information on the genome sequence of any crop, including non-model crops. Transcriptomics has been applied in non-model plants to optimise in vivo and in vitro biosynthesis of essential oils, biodiesel feedstock, and medicinal compounds (Stander et al., 2020). There is a need to discover new transcript genes as well as develop molecular markers for specific traits, which can be exploited to improve legume breeding programs. NGS is economical and provides excellent insight into transcriptomics (Afzal et al., 2019). Wang et al. (2015) and Ferreira-Neto et al. (2019) reported the application of transcriptomics in soybean. Ferreira-Neto et al. (2019) confirmed that the expression of Raffinose Family Oligosaccharides (RFO) and INS (inositol and inositol phosphates) pathways were involved in the under root dehydration of various soybean accessions while Wang et al. (2015) provided an understanding into the modulation of abiotic stress responses and development in soybean. Transcriptomics can be used for disease diagnosis and profiling in AYB. RNA-sequencing (RNA-Seq) can be used to detect disease-associated SNPs to help scientists understand the disease causal variant. It can also be used to study plant-pathogen interaction to develop efficient control measures. The use of dual RNA-Seq can be used to simultaneously profile the expression of both the plant (host) and pathogen. The advent of transcriptomics has made it possible to identify genes and pathways that can detect abiotic and biotic stress; and identify genes responsible for specific phenotypes (Lowe et al., 2017).The field of metabolomics has developed powerful tools useful in plant and food science (Llorach et al., 2019). Metabolomics was introduced to analyse compounds with low molecular weight in various biological systems (Pereira Braga and Adamec, 2019). The metabolome possesses components identified to be end-products of gene expression, which help define the biochemical phenotype of a tissue or cell. The measurement of the metabolites gives a broad perspective of the biochemical make-up of plants, which can be used to assess gene function (Ghatak et al., 2018). Improved mass spectrometry (MS), ultraviolet-visible spectroscopy (UV-Vis), and nuclear magnetic resonance (NMR) are majorly used in metabolomics analysis because they provide detailed characterisation and structural exposition of the agents. Ramalingam et al. (2015) applied quantitative mass spectrometry to evaluate the metabolomics diversity in Medicago symbionts. Llorach et al. (2019) also reported a metabolomics study that compared the bioactive compounds of chickpeas, beans, and lentils. So far, the use of metabolomics in legumes is limited (Afzal et al., 2019). While advances have been achieved in various platforms of analytical chemistry that provide highly efficient techniques for metabolome analysis, they are not yet fully understood (Salem et al., 2020).Biotechnological techniques have varying benefits and risks depending on economic, environmental, cultural, or social factors. The application of plant biotechnological tools such as genome editing (GE) offers great potentials for developing new crops (Harfouche et al., 2021). The application of advanced biotechnology to develop engineered crop varieties can make crops with better yields available throughout the year (Dwivedi et al., 2018;Ionescu et al., 2017). Engineered AYB varieties can help improve AYB adaptation for shortened growing seasons. Another positive impact of biotechnology is the development of crops that are resistant to pests and diseases. Gene editing technology supports targeted and high-precision restructuring of plant genomes, reducing the cost of product development (Lassoued et al., 2019).Although plant biotechnology has many benefits, it also has its disadvantages. One of the major challenges is that consumers are not willing to accept genetically modified foods because their long-term effects on their health are unknown, such as toxicity, intolerance, allergies, and antibiotic resistance (Wieczorek, 2003;Lassoued et al., 2019). Another challenge of biotechnology is that developing countries would always have to depend on developed countries for biotechnological tools because the tools are not readily available in developing countries. There is also the issue of monopoly by producers. For example, Monsanto is the leading seed company globally, which could result in negative effects on consumers (Panzarini et al., 2015). Other challenges of biotechnology (GMOs) includes genetic pollution and gene transfer in the environment (Hansson, 2019;Massabni and De Souza, 2020). Gene editing tools can also be used as biological weapons if such technology gets to the wrong hands; there could be effects on non-target species and loss of diversity in crops (Khan, 2019).The improvement of underutilised legumes can achieve a robust agricultural system that addresses food and nutrition security. Underutilised legumes still have a lot of untapped potentials, and there is a need for an extensive focus on improving such legumes, like AYB, for food and income purposes. Biotechnological approaches that have been deployed to improve staple crops can be transferred to these underutilised crops. The International Institute of Tropical Agriculture as well as independent researchers are working on how AYB can be improved using genomic and biotechnological tools. This review identified some bottlenecks in AYB improvement, and with the aid of biotechnological tools, discovering the genetic basis of any trait of interest would be easier and faster. Advancement has been made in genetics and genomics; however, other omics technologies are yet to be explored in AYB. Modern techniques need to be applied for yield improvement, reduced cooking time and maturity period, as well as resistance to pests and diseases to make the crop suitable for food and income security in sub-Saharan Africa. The integration of all the omics technologies can facilitate the assessment of the complex cellular life of AYB. The application of biotechnology can help unravel the genetic potential of AYB for crop improvement, which can lead to further research opportunities.","tokenCount":"5162"} \ No newline at end of file diff --git a/data/part_3/4781322044.json b/data/part_3/4781322044.json new file mode 100644 index 0000000000000000000000000000000000000000..f0bf275824d31af83d8def418d99b35b11f639e1 --- /dev/null +++ b/data/part_3/4781322044.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"44b197bc57d98c131bf78dc29ccddaa1","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/1518ada7-a78f-498c-8f10-83dc3ad3b584/content","id":"-819119510"},"keywords":["Acrylamide formation","atmospheric frying","chemical composition","plantain and cooking banana","plantain hybrid","ripening stage"],"sieverID":"7a0bf0fa-56e3-4733-9d90-5a182e5c3b97","pagecount":"15","content":"The present study investigated the effect of ripening stages and chemical precursors on acrylamide formation in deep-fried chips of five plantains and one cooking banana. The highest level of acrylamide was found in the cooking banana, followed by False Horn plantain and French plantain, respectively. French plantain hybrids exhibited a significantly lower (P < 0.05) level of acrylamide when compared to French plantain. The ripening stage demonstrated a positive Pearson correlation (P < 0.05, r = 0.57) with acrylamide formation. As ripening progressed, the levels of glucose and fructose significantly increased (P < 0.05) and showed a positive correlation with acrylamide formation (r = 0.85 and 0.96, respectively). The level of the amino acid asparagine during ripening was not correlated with acrylamide formation. In contrast, the level of histidine, arginine, iso-leucine and cystine during ripening was positively correlated (P < 0.05, r > 0.60) with acrylamide formation in fried chips. The higher level of TP was significantly related (P < 0.05) to the lower level of acrylamide (r = À0.62). The reduced levels of carotenoid isomers, except lutein, during fruit ripening were positively correlated (P < 0.05) with acrylamide formation, especially trans-BC (r = 0.72) and 9-cis-BC(r = 0.64).Plantain (AAB subgroup), which is sweet acid and starchy, is an essential staple for more than 70 million people in sub-Saharan Africa. Other starchy bananas, like Bluggoe, belong to the ABB group (Eggleston et al., 1992). The main plantain producers in the continent are small-scale farmers who grow the crop for their own consumption or local markets. In 2019, Ghana produced over 4.9 million tonnes of plantain, the highest globally, followed by the Democratic Republic of Congo, Cameroon and Nigeria (FAO-STAT, 2021), together comprising 60% of total production. Plantain fruits are a good source of dietary carbohydrates, fibre, antioxidants (phenols), vitamins A and C and minerals K and Fe (Tribess et al., 2009). Besides, plantain is recommended for diabetics due to its low glycaemic index value (Eleazu & Okafor, 2015). When ripe, the fruit can be eaten fresh for energy and is locally used in many different dishes, according to the ripening stage and sociocultural norms of each ethnic group (Honfo et al., 2011). Green or unripe fruits are often boiled or processed as chips or flours (Anyasi et al., 2015).Deep-fat frying in palm oil is one of the main postharvest operations for preserving the quality of plantain in Africa, and the fried chip is a popular snack for both internal consumption and export. The process involves simultaneous transfers of mass (losing water and absorbing oil) and heat (Krokida et al., 2000). During frying at a high temperature (150-200 °C), heat from the oil is transferred to the food surface by convection and continuously transferred into the centre by conduction (He et al., 2013). Like other fried products, oil content and colour change are crucial organoleptic properties that affect acceptability and consumers' decision to buy fried plantain chips. Apart from the adverse effects due to excessive fat consumption, the frying process also leads to a high accumulation of acrylamide, especially on the surface of carbohydrate-based foods (Bassama et al., 2011).Acrylamide is classified as a potential carcinogen to humans (group 2A) due to its neurotoxic and genotoxic properties on the basis on animal studies (IARC, 1994). At elevated temperatures, the main mechanism in acrylamide formation is most likely due to the Maillard reaction between the asparagine amino acid and reducing sugars, notably glucose and fructose (Stadler et al., 2002;Wang et al., 2019) and/or from reducing sugars and other amino acids that can produce acrylic acid, such as b-alanine, aspartic acid, carnosine, cysteine and serine (Yaylayan et al., 2005). Given the presence of amino acids and reducing sugars in a food, the formation of acrylamide can follow either a generic amino acid route (Nguyen et al., 2016) or a specific route of asparagine (Parker et al., 2012). The generic amino acid route involves a dicarbonyl intermediate. When reducing sugars react with any amino group, a Schiff base is formed and rearranges afterwards to give an Amadori product (in the case of an aldose) or a Heyns product (in the case of a ketose). These products dehydrate and fragment to form the highly reactive dicarbonyl compounds, deoxyosuloses and/or hydroxycarbonyl compounds. The dicarbonyl compounds subsequently react with asparagine via Strecker degradation, leading to the formation of acrylamide (Yaylayan & Stadler, 2005;Champrasert et al., 2021). In the specific amino acid route, acrylamide is generated without rearrangement of the Amadori products and fragmentation of sugar (Nguyen et al., 2016).Other potential indirect routes to acrylamide formation have been also identified. For example, lipid oxidation pathway contributes to acrylamide formation in fried products (Gertz & Klostermann, 2002). In the presence of carbonyl groups, such as aldehydes and ketones, lipid oxidation breakdown products could react with asparagine to form acrylamide despite the absence of reducing sugars (Ehling & Shibamoto, 2005). This is in agreement with a study of Kuek et al. (2020) who indicated that secondary lipid oxidation constituents have resulted in a positive influence to acrylamide formation during intermittent frying of French fries. Apart from asparagine pathway, Weishaar (2004) and Yaylayan & Stadler (2005) proposed minor pathway such as acrolein as the alternative route for acrylamide formation. The acrolein which can be formed by different pathways, including the oxidative degradation of lipids, could react further via acrylic acid to form acrylamide (Kuek et al., 2020). Aspartic acid can also release acrylic acid without the involvement of sugars or a carbonyl source following a concerted decarboxylation/deamination pathway (Yaylayan & Stadler, 2005). The concentration of acrylamide depends on various determinant factors such as cultivar, soil characteristics and fertilisation, pre-treatment process, cooking temperature and time, the level of main precursors present in plant-derived foods and storage conditions (Friedman, 2015).There are a few known studies for evaluating physical and chemical changes in plantain chips due to the frying process. A study by Ikoko & Kuri (2007) showed that oil intake, moisture content, total volume and frying time were reduced by osmotic dehydration pre-treatments, while there was an increase in colour parameters, texture peak force and rancidity after frying. Quayson & Ayernor (2007) reported that plantain chips contained a low level of acrylamide compared to other Ghanaian traditional foods derived from roots and tubers. The reduction of asparagine during postharvest ripening could contribute significantly to reducing acrylamide in plantain-based foods (Bassama et al., 2011) when they evaluated acrylamide content in a plantain matrix during heating without additional precursors. Shamla & Nisha (2017) investigated the effect of ripening on acrylamide formation in deepfried plantain chips made from the Nendran variety (Musa paradisiaca). They observed that reducing total phenolic and total flavonoid content during ripening had a negative correlation with acrylamide formation. However, no studies on the effect of cultivar and ripening stage on nutrient composition and acrylamide formation in plantain chips have been reported. Therefore, this study investigated the effect of different cultivars (plantains, cooking banana and plantain hybrids) and ripening stages on the changes in the chemical composition of plantain and sought to determine their correlations with acrylamide formation in deep-fried plantain chips.(3°21 0 N, 11°28 0 E, 624 masl). Elat has a French-type bunch, while Batard has a False Horn bunch. The French plantains are characterised by both male and female flowers when mature, whereas False Horn type bunches have only female flowers and much bigger fruits compared to French-type bunches. PITAs are plantain hybrids of French-type bunch which have resistance to black leaf streak disease and other pests.In this study, fully developed bunches with deep green undamaged fruits were harvested. Four ripening stages according to peel colour were used for making the chips: 1 = all green; 2 = green with a little yellow; 3 = green with some yellow; and 4 = yellow with some green. The fruits were left to ripen naturally in a wellaired room to reach each stage. At each stage, fingers were picked randomly from the different bunches, cleaned, peeled manually and thinly sliced into 2-mmthick slices before frying.A commercial electric, 6-L capacity, deep fryer (model FR-18-Silver, Fry King, Thailand) was used. In this study, newly refined palm oil (CEMAC par S.C.R. MAYA & ICE, Cameroon) was heated to 170 °C for 10 min to imitate normal frying conditions and kept at a temperature of 170 AE 5 °C. About 500 g of sliced plantain was fried in 3 L of heated oil. Each batch was fried at the set temperature for 5 min. Frying temperature and time used in this study were optimised earlier based on final moisture content and sensory evaluation in comparison with commercial products. After frying, the plantain chips were air-cooled for 5 min then sealed in polyethylene bags and kept at 25 AE 2 °C less than 3 days prior further physicochemical analysis. The experiment was performed in triplicate.Plantain chip moisture content was determined by the AOAC method (1990). The sample was dried in a hot air oven (model UF55; Memmert Oven, Buechenbach, Germany) for 16 h at 105 °C. The moisture content was taken as the weight loss. The Kjeldahl method was used to investigate protein content. Conversion from total nitrogen to percentage crude protein was by a factor of 6.25. The method of AOAC (1990) was used to determine ash content by exposing moisture and all organic constituents to a temperature of 600 °C in a VULCAN TM furnace (model 3-1750; Cole-Parmer, IL, USA). The ash content was taken as the residual weight after incineration. The samples' fat content was also calculated by the AOAC method (1990), using the Soxhlet extraction technique (model FOSS Soxtec TM extraction, Sweden). Crude fibre content was established using fibre extraction equipment (model FOSS Fibertec TM 2010, Sweden). The carbohydrate content was determined by subtracting the percentages of moisture, crude protein, ash, fat and crude fibre from 100. Atwater's conversion factors were used to calculate the caloric value (kcal per 100 g) according to the caloric coefficients corresponding to the protein (4 kcal g À1 ), carbohydrate (4 kcal g À1 ) and fat (9 kcal g À1 ) contents. All measurements were taken three times.For the sugar analysis, 10 mL of deionised water was added to 1 g of homogenised fresh pulp, then stirred for 10 min. The suspension was centrifuged at 1200 g for 10 min. The supernatant was filtered through a 0.22-lm syringe before analysis. High-performance liquid chromatography (HPLC, Agilent Technologies, Cheshire, UK) was used to analyse the amounts of glucose and fructose. The equipment consists of a pump (model LC-20AD; Shimadzu, Kyoto, Japan), a column oven (model CTO-10ASVP; Shimadzu, Kyoto, Japan), a system controller (model CBM-20A; Shimadzu, Kyoto, Japan) and a refractive index detector (model RDI-10A; Shimadzu, Kyoto, Japan). The sugars were separated at a temperature of 80 °C using a carbohydrate column Rezex RNM-column (Phenomenex, Torrance, CA, USA). Deionised water was used to facilitate a flow rate of 0.4 mL min À1 . Standard calibration curves of sugar standards were used to quantitatively measure each peak as a reference. Results were expressed as g per kg per FW of a sample.To analyse the amino acids in fresh plantain, the precolumn derivatisation with 6-aminoquinolyl-Nhydroxysuccinimidyl carbamate (AQC) and HPLC with a fluorescent detection procedure was used. The following chemical reagents were purchased: acetonitrile (HPLC super gradient grade) and methanol (HPLC super gradient grade) from Lab-Scan (Dublin, Ireland), hydrochloric acid (36.5%) and trichloroacetic acid from Penta (Chrudim, Czech Republic) and aaminobutyric acid from Sigma-Aldrich Chemie GmbH (Schnelldorf, Germany). The Milli-Q Plus system (Millipore Corporation, Danvers, MA, USA) was used to produce ultrapure water, while the AccQÁTag Reagent Kit was bought from Waters (Milford, CT, USA). The reagent kit consists of Waters AccQÁfluor borate buffer, powder (6-aminoquinolyl-N-hydroxysuccinimidyl carbamate-AQC), diluent, amino acid analysing column (Nova-Pak C18, 4 µL, 150 9 3.9 mm) and amino acid hydrolysate standard. Each ampoule contains a 2.5 mM mixture of the seventeen hydrolysate amino acids (except for cystine-1.25 mM), including aspartic International Journal of Food Science and Technology 2021 acid (Asp), serine (Ser), glutamic acid (Glu), glycine (Gly), histidine (His), arginine (Arg), threonine (Thr), alanine (Ala), proline (Pro), cysteine (Cys), tyrosine (Tyr), valine (Val), methionine (Met), lysine (Lys), isoleucine (Ile), leucine (Leu) and phenylalanine (Phe).Five micrograms of the pulverised sample was hydrolysed with 5 mL of constant boiling 6 M HCL in a 10-mL hydrolysis tube using a microwave discover workstation (CEM Microwave Technology Ltd., Buckingham, UK). Each hydrolysate was centrifuged at 1200 g for 10 min to obtain a clear solution. Subsequently, 10 µL of the diluted hydrolysate was pipetted into a 6 9 10 mm sample tube, and an equal amount of 0.1 M NaOH was added to neutralise the excess acid before derivatisation. From this, 10 µL of the solution was taken for the derivatisation procedure.In the derivatisation process, 10 µL of the diluted hydrolysate and 70 µL of AccQÁFluor Borate Buffer were mixed in a sample tube. The mixture was briefly homogenised with vortex; then, 20 µL of reconstituted AccQÁFluor Reagent was added and mixed again for 60 s. The contents were transferred to an auto-sampler vial that was put in the heating block at 55 °C for 10 min.A Waters Alliance 2695 HPLC system with a 2475 multi-k fluorescence detector (Waters) was used for the HPLC analysis with an excitation at 250 nm, emission at 395 nm and AccQÁTag amino acid column Nova-Pak C18 (4 µm, 150 9 3.9 mm) (Waters). The column was set at 37 °C with an injection volume of 10 lL. A gradient mobile-phase comprised eluent A (prepared from Waters AccQÁTag Eluent A concentrate, by adding 200 mL of concentrate to 2 L of Milli-Q water and mixing), eluent B (acetonitrile, HPLC grade) and eluent C (Milli-Q water). The best programme for gradient separation was performed at the following intervals: 0 min at 100% A, 0.5 min at 99% A and 1% B, 18 min at 95% A and 5% B, 19 min at 91% A and 9% B, 29.5 min at 83% A and 17% B, 33 min at 60% B and 40% C, 36 min at 100% A and 53 min at 100% A.To prepare the internal standard, a calibration standard solution was mixed with an internal standard (6.45 mg a-aminobutyric acid to 25 mL 0.1 M HCl). Then, 40 µL of amino acid hydrolysate, an internal standard solution of 40 and 920 µL of Milli-Q water were transferred to a sample tube as a stock standard solution. To derivatise the calibration standard, 10 µL of the stock standard solution was transferred into a 6 9 10 mm sample tube; 70 µL of AccQÁFluor Borate Buffer was added and vortexed. Thereafter, 20 µL of reconstituted AccQÁFluor Reagent was added, and the solution was mixed for 60 s. The content was then transferred to the bottom of a low volume insert vial and placed on a preheated heating block at 55 °C for 10 min. The process was allowed to stand for few minutes and 5 µL of the derivatised standard was injected into the chromatographic system. Calibration curves were observed to be linear (r 2 > 0.990), the limit of detection (LOD) was in the range of 0.01-0.08 mg mL À1 , and the recovery was between 92% and 108%.For the first extraction, approximately 1 g of fresh ground samples was mixed with 10 mL of 70% methanol for 10 s before sonication for 10 min. The sample was filtered through Whatman No. 4 paper to obtain a clear solution. In the second extraction, 10 mL of 70% methanol was added over the residue, homogenised on a vortex and dispensed in a water bath at 80 °C for 5 min. The homogenised sample was filtered into a volumetric flask, and extracting solution was added up to a final volume of 25 mL. The extracted sample was then stored at À20 °C before analysis.The TP content in plantain samples was evaluated using the Folin-Ciocalteu assay as described by Shamla & Nisha (2017) with a slight modification. A total of 400 µL of the extracted sample was mixed with 8 mL of distilled water and 0.5 mL of 2 N Folin-Ciocalteu reagent in a test tube. The mixture was shaken continuously and allowed to react for 6 min. Afterwards, the sample was mixed with 1.5 mL of 20% (w v À1 ) sodium carbonate solution then incubated in a water bath at 40 °C for 30 min. The UV-VIS spectrophotometer measured the TP content at 765 nm. Gallic acid was used to plot the standard calibration curve. The TP content was expressed as mg of gallic acid equivalent (GAE) per g of sample.Plantain samples were extracted according to a modified procedure described by Amah et al. (2019). In short, 5 g of each homogenised sample was weighed and thoroughly mixed with 3 g of celite in 50 mL of cold acetone. The solution was filtered through a filter paper No. 4 in a B€ uchner funnel. The filtrate was added to 20 mL of petroleum ether in a separating funnel and shaken well by adding 300 mL of distilled water. Subsequently, the lower aqueous-acetone phase was discarded with distilled water and the upper organic phase was collected. The process was repeated 3-4 times for the entire filtrate. The carotenoids in petroleum ether were obtained as light yellow colour extract, and it was passed over funnel containing 25 g anhydrous sodium sulphate to remove traces of distilled water prior the final volume was adjusted to 50 mL with petroleum ether. About 25 mL of the extracted sample was concentrated and dried under nitrogen gas before reconstituting in 1 mL of dichloromethane: methanol (v v À1 ). The solution was then filtered through a 0.22-mm polytetrafluoroethylene International Journal of Food Science and Technology 2021 (PTFE) syringe filter (Millipore) into 2-mL vials (Waters PTFE/silicone septum).The analysis of the extract was carried out on a HPLC system (model Waters Alliance e2695, Waters Corporation) equipped with a photodiode array detector (PDA) and a polymeric YMCTM C30 5 µm column (4.6 9 250 mm). The mobile phase was acetonitrile: ethyl acetate: methanol at the ratio 80:10:10, and carotenoids were detected at wavelength of 450 nm. Sample injection volume was 20 µL and the flow rate was set at 1 mL min À1 at a temperature of 25 °C. HPLC analysis was done with acetonitrile at pump B and equal mixture of ethyl acetate and methanol at pump A in the ratio 40:60. An external standard method was used to identify lutein, a-carotene, transb-carotene (trans-BC), 13-cis-b-carotene (13-cis-BC) and 9-cis-b-carotene (9-cis-BC). Calibration curves were observed to be linear (r 2 > 0.999), the LOD was in the range of 0.005-0.020 lg mL À1 , and the recovery was between 90 and 96%. Total carotenoids (TC) with provitamin A activity were computed as pVACs (lg g À1 FW) = a-carotene + 13-cis-BC + 9-cis-BC + trans-BC; TC were computed as TC (lg g À1 FW) = total pVACs + lutein. Provitamin A content expressed in terms of b-carotene equivalents (BCEs) was calculated as BCE (µg g À1 FW) = 0.5 trans-a-carotene + trans-BC + 0.53cis-BC, where cis-BC is the sum of 13-cis-BC and 13-cis-AC.The sample preparation for acrylamide analysis was done following the slightly modified method of Shin et al. (2010). Two grams of fried plantain chips was put in a 50-mL polypropylene tube; then, 2 mL of [ 13 C 3 ]-acrylamide (internal standard, 1000 ng mL À1 ) and 18 mL of distilled water were added. The sample was sonicated in an ultrasonic bath for 60 min prior centrifuged at 1500 g for 30 min, and then 2 mL of the supernatant was transferred into a polypropylene tube. A C18 solid-phase extraction cartridge (Sep-Pak Plus, Waters) was activated with 5 mL of methanol and 5 mL of water, respectively; afterwards, the supernatant was applied. To collect all acrylamide in the sample, the residue in the cartridge was eluted again with 2 mL of distilled water. Four millilitres of bromination reagent was added to the collected solution and it was allowed to stand overnight at 4 °C in a refrigerator. The solution was titrated with 1 M of sodium thiosulphate until colourless solution was observed. Then, the solution was mixed with 4 mL of ethyl acetate, shaken for 3 min and centrifuged at 1500 g for 10 min. One millilitre of the supernatant was taken to mix with 100 lL of triethylamine, shaken for 15 min and centrifuged at 3500 g for 5 min. Lastly, 1 mL of the sample solution was compiled for acrylamide analysis using GC-MS method.The extracts and standards were introduced into a GC-MS system equipment (Agilent Technologies, Palo Alto, CA, USA) equipped with a DB-WAXETR capillary column (30 m 9 0.25 mm i.d. 0.25 lm film thickness) (J&W Scientific, Albany, NY, USA). The acrylamide was detected in a mass selective detector operated in selected ion monitoring mode with positive electron impact ionisation. The column was maintained at a temperature of 50 °C for 1 min before increasing to 240 °C and then to 300 °C. The temperature of the injector was set at 250 °C in the splitless mode. The purge time was 1 min, and the transfer line temperature to the mass selective detector was controlled at 280 °C. Acrylamide was separated using helium gas a carrier at a flow rate of 1 mL min À1 . For quantification, the transitions of m/z 149-151 for specific ions of 2-bromopropenamide were used. An isotopically marked [ 13 C 3 ]-acrylamide with the transition of m/z 152-154 for 2-bromo[ 13 C 3 ]-propenamide was used as an internal standard. A calibration graph was performed by plotting the peak area of acrylamide against the corresponding ratios of the amounts of analyte. Calibration curves were found to be linear (r 2 > 0.995), the LOD was 0.07 lg kg À1 , and the recovery was between 99% and 105%.The effect of different cultivars and ripening stages on the physico-chemical properties of plantain chips was subjected to statistical analyses using the general linear model programme (GLM). Fisher's least significant difference (LSD) estimated the differences among the means of each treatment at 5% of the probability level using the SAS program (version 9.4, SAS, 2002). This test has the lowest critical values acceptable which increases the power to detect an effect or mean difference between groups. The correlations between precursors (reducing sugars, amino acids, TP and carotenoid content) in all the four stages of ripening were studied using Pearson's correlation coefficient.The results gave a range of 56.8-63.3 g water 100 g À1 for moisture content at stage 1 for all raw plantain; the difference between the cultivars was not statistically significant (Table 1). The moisture content increased by approximately 4.3% when the fruits were ripened from stage 1 to stage 4. Shamla & Nisha (2017) reported that during the breakdown of starch into sugars over the ripening time, moisture is released from the fruit peel to the pulp due to osmotic pressure. The increase from 0.3-0.5 to 0.4-0.6 g 100 g À1 in crude fat was significant (P < 0.05), while crude protein rose from 1.1-2.5 to 1.9-3.2 g 100 g À1 and total ash from 2.0-2.6 to 2.3-2.8 g 100 g À1 during the process of ripening from stage 1 to stage 4. The level of crude fat and crude protein contents was highly increased in the French plantain 'Elat' (40.4%) and PITA 21 (40.9%), respectively, compared with the corresponding values of other cultivars. The breakdown of tissue during ripening may have caused an increase in total ash in ripe plantain probably associated with mineral elements being released. (Baiyeri et al., 2011).The reduction of crude fibre from 2.3-3.1 to 2.2-2.9 g 100 g À1 , carbohydrate from 29.1-36.3 to 24.9-33.7 g 100 g À1 and gross energy from 126.4-155.8 to 114.9-148.9 kcal 100 g À1 was found over the storage time of all cultivars. The carbohydrate content was highest in the False Horn plantain 'Batard' at stages 1 and 4, while the least was in hybrid PITA 27 at stage 1 and PITA 21 at stage 4. The reduction of carbohydrates could be explained by the conversion of starch to sugar during the ripening process (Shamla & Nisha, 2017). Eggleston et al. (1992) explained the variations in the physico-chemical properties of plantain, hybrids and cooking banana to bunch type and/or environment. They also reported that there was a little less amylose content in hybrids than in plantain and cooking banana.At stage 1, the initial glucose and fructose contents in all plantain cultivars were in the range of 1.0-4.3 g 100 g À1 and 3.3-10.6 g 100 g À1 , respectively (Table 1).The level of glucose and fructose contents significantly varied (P < 0.05) by the cultivars. As expected, glucose and fructose contents showed an increase by 48.7-85.7% and 42.1-76.9% from ripening stages 1 to 4, statistically significant at P < 0.05. Specifically, a higher level of glucose accumulation during the ripening process was observed in the cooking banana 'Daru', while the False Horn 'Batard' contained the highest level of fructose. Differences in fructose content among all PITA hybrids at stages 1 and 2 were not significant. However, PITA 21 presented the highest level (P < 0.05) of both glucose and fructose at stage 4. This agrees with Eggleston et al. (1992). They found significantly higher starch and sugar content in the cooking banana than the plantain and their hybrids. Besides, they observed that the starch content of two unripe plantain hybrids was slightly lower than their plantain parent. An increase of glucose and fructose during ripening was because of the degradation of stored starch in the pulp to sugars led to increased glucose and fructose during ripening via various enzymes including starch phosphorylase and amylase (Mohan et al., 2014). A study by Bhuiyan et al. (2020) noted that b-amylase is important in starch breakdown in plantain as the increase in amount of b-amylase at later ripening stage found. In addition, invertase, which is also responsible for starch breakdown, increases at postharvest ripening of plantain according to Iyare & Ekwukoma (1992).In this study, it could be seen that all amino acids significantly varied (P < 0.05) by cultivars (Table 2).Asparagine, an amino acid indicated as a major precursor to acrylamide formation, ranged from 0.7 to 2.8 mg g À1 at stage 1. The cooking banana 'Daru' contained the highest level of asparagine, while the lowest was found in PITA 14. During the postharvest ripening process, the level of asparagine declined by 9.1-76.5%, depending on the cultivars. The essential amino acid threonine ranged from 0.7 to 1.6 mg g À1 , valine from 0.2 to 2.1 and phenylalanine from 0.1 to 1.8, displaying a significant reduction (P < 0.05) when ripening progressed. On the contrary, the amino acids histidine, methionine, lysine, iso-leucine and leucine, which were in the range of 0.0-0.7, 0.0-0.1, 0.1-0.2 and 0.1-0.7 mg g À1 at stage 1, significantly increased (P < 0.05) by an average of 74.7%, 94.4%, 53.3%, 77.8% and 82.3%, respectively, when the fruits were ripened at stage 4. However, no significant differences were observed in the amino acids serine, glutamine, glycine, arginine, proline, cystine and tyrosine content in all cultivars at postharvest ripening. This agrees with Khawas et al. (2014), who reported a decline of essential amino acid content in culinary banana (Musa ABB) during the ripening process. In addition, Shamla & Nisha (2017) also indicated an increase of amino acids serine, iso-leucine, leucine and phenylalanine at stage 4.The different cultivars had diverse amounts of TP compounds. At stage 1, the average content of TPs varied significantly (P < 0.05) from 1.1 to 4.1 mg GAE g À1 FW (Table 3). A considerably higher concentration was observed in PITA 21, while PITA 14 contained the lowest levels in comparison with the other cultivars at stage 1. However, PITA 14 exhibited the highest content of TPs at stage 4, while the cooking banana 'Daru' had the lowest content. As the fruit ripened with more yellow than green, TPs of all cultivars significantly decreased (P < 0.05) by approximately 59.4%. The highest degradation of TPs during ripening was found in hybrid PITA 27 (71.9%). This International Journal of Food Science and Technology 2021 International Journal of Food Science and Technology 2021 results like that of Shamla & Nicha (2017), who noted a decline in TP and total flavonoid contents in plantain during ripening. Parr & Bolwell (2000) explained a reduction in TP to an increase of polyphenol oxidase (PPO) activity and an increased polymerisation of leucoanthocyanidins during fruit ripening as well as to losing astringency via hydrolysis of astringent arabinose esters of hexahydrodiphenic acid. Borges et al. (2019) also indicated that the bioactive amines, particularly serotonin and dopamine, which also act as antioxidants, decreased until stage 5 (mostly yellow) and increased at stage 7. Reduced serotonin and dopamine levels in banana cultivars are associated with oxidisation activated during ripening (Borges et al., 2019). While Ben-Ahmed et al. ( 2009) ascribed a reduction in TP content during ripening to the fact that various phenolic compounds can form complex compounds, such as tannin and lignin, that could not be investigated by the analytical method used.All analysed plantain cultivars showed a significant variation (P < 0.05) in carotenoid content (Table 3). It could be seen that the average concentration of lutein, a-carotene, 13-cis-BC, 9-cis-BC and trans-BC at stage 1 varied widely from 0.0 to 0.6, 0.2 to 4.9, 0.4 to 4.1, 0.2 to 0.3 and 0.1 to 0.3 µg g À1 FW, respectively. At this stage, the French plantain 'Elat' showed the highest value of pVACs, TC and BCE among the cultivars, followed by Batard and Daru. When the ripening progressed, lutein, a-carotene, 13-cis-BC, 9-cis-BC and trans-BC concentration significantly increased (P < 0.05) in all cultivars by an average of 75.1%, 78.1%, 86.5%, 38.7% and 64.1%, respectively. At stage 4, the highest value of pVACs, TC and BCE was found in the False Horn 'Batard', followed by Elat and Daru, respectively. It could be also seen that the carotenoid content of all hybrids with a French-type bunch was significantly lower (P < 0.05) than the French 'Elat'. Similarly, Amah et al. (2019) reported the highest proportion of pVACs (88%) in plantain compared to Musa acuminata cultivars (78%) and hybrids (67%). Alos et al. (2019) ascribed increased carotenoids in ripe pulp to degraded chlorophylls accompanied by a rise of carotenoids. Moreover, the different levels of carotenoid accumulation during ripening in each cultivar could be due to the different expressions and regulation of carotenogenesis gene transcripts and the structure and function of diverse metabolic enzymes (Ma et al., 2018) caused by the various growing conditions at the different sampling sites. Udomkun et al. (2020) indicated that at each ripening stage pVAC concentration differed across locations. Also, they International Journal of Food Science and Technology 2021 reported that the interaction between ripening stage, cultivar, bunch type and location significantly contributed to pVACs variability in plantain. On the other hand, the declining level of carotenoids during ripening was noted by Ngoh Newilah et al. (2009). This mechanism could be explained by the enzymatic cleavage of carotenoids, which may activate the synthesis of other carotenoid isomers like volatile compounds (Borges et al., 2019).Acrylamide concentration in fried plantain chips from stage 1 was in the range of 38.1-190.1 lg kg À1 , depending on the cultivar (Fig. 1). Specifically, the cooking banana 'Daru' at stage 1 had the highest acrylamide concentration, followed by Batard and Elat, respectively. Among the French bunch types, a significantly higher (P < 0.05) acrylamide concentration was found in 'Elat', while PITA 21 exhibited the lowest levels. Varying by cultivars, the concentration of acrylamide was significantly increased (P < 0.05) during the ripening process. An increase of 44.9% for Elat, 67.3% for Batard, 44.9% for Daru, 23.0% for PITA 14, 77.3% for PITA 21 and 17.4% for PITA 27 was observed when the fruits ripened at stage 4. At this stage, the highest value of acrylamide was identified in Batard, followed by Daru and Elat, respectively. In all hybrids, the level of acrylamide formation in PITA 27 and PITA 14 at stage 4 was not significantly different and was significantly lower (P < 0.05) than in Elat and PITA 21. Increased concentration of acrylamide in plantain chips could be caused by different mechanisms such as the Maillard reaction. The formation of this carcinogenic compound involves the interaction between the free amino group of amino acids and the carbonyl group of reducing sugars during the heating process (Friedman, 2015), the decarboxylation and deamination of the amino acid asparagine (Yaylayan et al., 2005) and/or the presence of phenolic compounds (Zhu et al., 2010).To analyse factors influencing acrylamide formation in fried chips, the Pearson correlation (r) was performed to determine the correlation between the ripening stage and other chemical precursors (Table 4). It could be seen that the ripening stage significantly influenced (P < 0.05) acrylamide formation in deep-fried chips with an r value of 0.57. The result also showed that the levels of glucose and fructose during plantain ripening significantly and linearly correlated (P < 0.05) with acrylamide formation with r values of 0.85 and 0.96, respectively. Although amino acid asparagine alone can generate acrylamide via a thermal decarboxylation and deamination reaction, reducing sugars are necessary to convert asparagine into acrylamide (Yaylayan et al., 2005). A finding in this study agrees with a report of Rydberg et al. (2005), who indicated that fructose plays a vital role in generating acrylamide in heated foods compared to glucose. Nonetheless, Robert et al. (2004) reported that the aldehyde group in glucose has more impact on acrylamide production than the ketohexose group in fructose when they studied acrylamide formation from asparagine under lowmoisture Maillard reaction conditions. Considering the effect of amino acids, it could be observed that the level of asparagine, which is reported to be the main precursor of acrylamide formation, showed an insignificant and very weak correlation (r = -0.07) with acrylamide formation in plantain chips (Table 4). At the same time, the formation of acrylamide was significantly related (P < 0.05) to the level of the amino acids glycine (r = 0.48), histidine (r = 0.89), arginine (r = 0.63), alanine (r = 0.42), proline (r = 0.59), cystine (r = 0.61), tyrosine (r = 0.48), methionine (r = 0.54) and iso-leucine (r = 0.62). There are numerous plausible reaction routes by which International Journal of Food Science and Technology 2021 amino acids may form acrylamide without going through acrolein. Within the frame of complex, multistage reaction mechanisms, involving hydrolyses, rearrangements, decarboxylations, deaminations, etc., have been proposed. However, it is not possible to point out any specific routes, or to exclude any possibilities (Lingnert et al., 2002). Though the amino acid asparagine is one of the strong precursors in generating acrylamide through the decarboxylation and deamination reactions, it is not the case of this study. The possible pathway of this phenomenon might be explained by the generation of acrylamide via the reaction of ammonia with acrylic acid from other amino acids. Yaylayan et al. (2005) studied acrylamide formation in model systems. They demonstrated that acrylic acid can be generated directly from certain amino acids or dipeptides such as carnosine, b-alanine, aspartic acid or indirectly from amino acids cysteine and serine. Also, they reported that cysteine and serine were found to reduce pyruvic acid to lactic acid, which can be converted into acrylic acid and form acrylamide compounds when it reacts to ammonia. Furthermore, Friedman & Levin (2008) reported that the concentration of asparagine does not have a significant effect on acrylamide formation in potatoes, while Yoshida et al. (2005) indicated that reducing sugars is the limiting factor for acrylamide formation in potato chips, not the content of asparagine in the tubers.When the level of TP content is considered, it was observed that a higher level of TP was significantly related (P < 0.05) to a lower level of acrylamide (r = À0.62) (Table 4). This implies that the reduction of TP content in plantain during ripening was also involved in acrylamide formation in deep-fried chips. Passo Tsamo et al. (2015) showed that hydroxycinnamic acids, particularly ferulic acid-hexoside, dominated as the major phenolic compounds in the pulp of the following plantain cultivars: Red Yade, Mbeta 1, Big Ebanga, Moto Ebanga, Batard, Essong, Mbouroukou 1 and Mbouroukou 3. A large diversity was seen among cultivars. In contrast, synaptic acid-hexoside and myricetin-deoxyhexose-hexoside were also present in most plantain cultivars. A study by Shamla & Nisha (2017) found that gallic acid, chlorogenic acid, syringic acid, q-coumaric acid and quercetin were identified as major phenolic compounds in the plantain cultivar Nendran. These phenolic acids have been reported as their potential antioxidant in inhibiting/mitigating the formation of carcinogenic/neurotoxic acrylamides by trapping carbonyl during the Maillard reaction (Kalita et al., 2013). Likewise, a positive consequence of phenolic compound chlorogenic acid, which could abstract reactive free electrons from the reactive intermediates formed during the Maillard reaction, was hypothesised by Zhu et al. (2010). However, conflicting results have been reported that some phenolic compounds with the higher hydrophilic property might increase the acrylamide formation (Zhu et al., 2009).Regarding carotenoid content effect on acrylamide formation, it could be highlighted that all carotenoid isomers, except lutein, showed a positive and significant correlation (P < 0.05) with acrylamide formation. Specifically, trans-BC exhibited the higher correlation with r value of 0.72, followed by 9-cis-BC (r = 0.64), a-carotene (r = 0.39) and 13-cis-BC (r = 0.29), respectively. This means an increase of these carotenoid isomers during postharvest ripening caused a higher level of acrylamide. Though antioxidant compounds can decrease acrylamide formation, the correlation between acrylamide content and antioxidant activity in some cases is controversial. In this case, the possible mechanism that could explain this variable result is the complexity of the acrylamide pathway as acrylamide is produced in series reactions between the amino acid asparagine and a carbonyl compound producing various intermediates. Therefore, molecular structure and functional groups can affect antioxidant compounds, including carotenoids. This interference can promote International Journal of Food Science and Technology 2021 or reduce acrylamide formation despite its antioxidant activity (Kahkeshani et al., 2015). Moreover, Jin et al. (2013) mentioned that related parameters influence acrylamide levels, such as system matrix, concentration and type of antioxidants, temperature, heating time, pH and moisture content that can cause opposite results.This study provides data on the alteration of the chemical properties of two plantain cultivars (French and False Horn bunch types), three plantain hybrids and a cooking banana during ripening and illustrated the effect of these chemical factors on the acrylamide formation in deep-fried chips of starchy bananas.Plantains at stages 1-3 are usually selected for producing chips. The results showed that the cooking banana 'Daru' at these stages exhibited the highest level of acrylamide formation when compared to plantains and plantain hybrids, respectively. At the same ripening stage, the False Horn 'Batard' had a higher level of acrylamide than the French 'Elat'. Comparing French and French hybrids at stages 1-3, a significant lower acrylamide concentration was also found in all plantain hybrids. Likewise, the acrylamide formation in plantain chips showed a significant positive correlation with ripening stages. The limiting factor for acrylamide formation in plantain chips was reducing sugars (glucose and fructose), not amino acid asparagine content. However, the formation of acrylamide was significantly related to other amino acids histidine, arginine, iso-leucine and cystine. It was also observed that a reduction of TP during the ripening process highly increased the level of acrylamide, while carotenoid isomers, except lutein, showed an opposite result. To alleviate the bioavailability of acrylamide in deep-fried chips, therefore, the proper cultivar needs to be selected and the plantain hybrids seem to offer an advantage over the landraces. In addition, plantains with lower and more predictable acrylamide-forming potential should be introduced by breeders and agronomists in the future. Also, the methods to decrease the concentration of acrylamide precursors in plantain while maintaining desirable nutritional and sensory properties should be conducted.","tokenCount":"6655"} \ No newline at end of file diff --git a/data/part_3/4817317425.json b/data/part_3/4817317425.json new file mode 100644 index 0000000000000000000000000000000000000000..bb9bda420d0c92fe547886ac878186753167906a --- /dev/null +++ b/data/part_3/4817317425.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"9506b6e13528b5c6d21eccab3dcede24","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/cfc71dfe-5804-4f06-9617-7165a8e44cf9/retrieve","id":"-521960089"},"keywords":[],"sieverID":"33d64d63-36de-4bd8-8c68-9f81092fc51b","pagecount":"56","content":"and FKRA (Norway). This booklet is produced for the training of public and private Agricultural Extension Agents, other field agents and soyabean farmers. The contents are based on the knowledge and experiences of the authors and augmented with information taken from a variety of sources, notably the soyabean production manuals of CSIR-Savanna Agricultural Research Institute, N2Africa Project and IITA, and are all duly acknowledged. The content are therefore the views of the authors and do not necessarily represent the opinions of NORAD, IITA and the other project implementing partner organizations. The user should make his/her own appraisal as to the appropriateness of the information contained in the booklet. Contributions from other SSPiNG project staff -Joseph K. Kansaki, Samuel Asinvim, David Darkoh, Selase K. Dotse, Vincent M. Afreh, Issahaq Suleman, and Theresa Ampadu-Boakye are acknowledged. Some of the photographs in this booklet, for instance on pests, diseases, and agro-chemicals were taken from multiple internet sources and each is duly credited. Other photographs, such as on intercropping, dibbling method of sowing, land preparation and others are courtesy of Dr. Michael Kermah and credited accordingly.▪ Soyabean has become a cash crop with demand for grains more than the supply. ▪ Unfortunately, farmers are unable to utilize this opportunity to increase their incomes as the grain yields are low (about 870 kg/ha or 350 kg/acre or less). ▪ The goal of every soyabean farmer is to increase grain yield for increased income. ▪ Farmers can increase their yield up to 2,000 kg/ha or 800 kg/acre (= eight 100 kg bags/acre) or morenote that the potential yield is 2,800 kg/ha (1,100 kg/acre). ▪ It becomes demoralizing for farmers when they are unable to achieve such goals. ▪ Some farmers only plant the soyabean and do not do anything else in terms of applying improved inputs or management, and still expect to achieve higher yields.▪ Plough without harrowing or levelling to make the soil ready for best sowing technique To increase yields and income, soyabean farmers need to do things differentlyembrace new technologies and/or proven or improved agronomic practices.So, what can farmers do differently to increase yields? Farmers must consider the following factors/practices:1. Ensure early planting, between mid-June to mid-July depending on the regularization of rainfall.2. Use non-shattering soyabean varieties to avoid grain loss at harvest.3. Ensure that the recommended plant population is achieved -400,000 plants/ha or about 162,000 plants/acre at harvest.4. Use recommended inputscertified seeds, inoculant and Yara legume fertilizer at recommended rates.5. Ensure timely application of inputs and appropriate methods to apply.6. Manage crop stress adequatelytimely and thorough weeding, effective pests, and diseases control.7. Adequately plan your harvest, do it on time to avoid shattering and grain loss.8. Do not grow soyabean over multiple seasons on the same field.\\ ▪ Majority of soyabean farmers, especially the smallholders, need more knowledge on such GAPs/productivity enhancing technologies or proven practices to enable them to achieve their goal of increasing soyabean grain yields for increased income.▪ The purpose of this manual, therefore, is to provide such knowledge/information or share experiences on proven/emerging technologies and/or agronomic practices that can be adopted by farmers to enable them to increase their soyabean grain yields.▪ The manual is structured into four Modules based on the productivity enhancing technologies/practices/factors that help to intensify and increase soyabean yields:Module 1 -Achieving optimum plant population Module 2 -Harnessing the power of improved inputsModule 4 -Proper harvest planning 9. Soybean can fix up to 40 kg or more of nitrogen per acre (around 1 bag of nitrogen fertilizer) from the air into the soil to improve the fertility.10. Therefore, it is best to rotate soyabean with maize or cereals/crops that need more nitrogen to grow well and produce higher yields. Rotating soyabean with maize is also vital to avoid pests and diseases build up or to break their cycles.11. . ▪ Trainees can identify sequentially, the key factors/proven practices that can help farmers achieve optimum plant population. ▪ Trainees acquired enhanced knowledge key factors or proven practices that can contribute to achieving optimum soyabean plant population.Factors or proven practices that can help to achieve the recommended soyabean plant population When the required plant population is achieved, the soyabean plants can form a closed canopy as seen in the picture. This essentially helps to suppress weeds growth and help to increase yield per unit area and ultimately yield per acre or hectare.Several factors or proven practices play crucial roles in helping to achieve optimum/recommended soyabean plant population per hectare or acre by enhancing good germination and survival of plants as required, to increase grain yield.These factors/practices include but not limited to the following: • access to mechanization services,• site/soil conditions.▪ Ploughing can be done 2 to 3 weeks before planting using a tractor or bullock depending on which one the farmer can access or afford. ▪ Do not burn the crop residues left on the field from the previous season. Rather, plough them into the soil to help with moisture retention and organic matter build up. ▪ If the land has a slope, ploughing should be done across the slope.▪ Ploughing is essential as it helps to loosen the soil, bring up nutrients from deeper soil layers and burry weeds. Loosening the soil is important for:• enhanced air circulation which is vital for soil micro-organisms that help to decompose organic materials to release nutrients for uptake by soyabean plants, • improving water infiltration, and penetration of plant roots into deeper layers to take up nutrients for better growth. ▪ Please, note that ploughing usually leaves the soil surface uneven (with soil clods/lumps and furrows/trenches/gutters). ▪ Therefore, it is necessary to harrow/level the soil surface either mechanically or manually before sowing to enhance seed germination.▪ Harrowing should be done about one week before planting to level the soil surface after ploughing to make the soil surface even, break up lumps of soil and provide a good soil tilth to enhance seed germination. ▪ It is mostly done mechanically, but if this is not possible, the farmer can use hand hoe to level the soil surface and make it ready for sowing.▪ Please, allow some days (up to a week) after ploughing for the soil to dry before harrowing to obtain a level surface. ▪ Harrowing/leveling of soil surface for sowing helps to:• break soil clods that form on the surface after ploughing and can prevent the seeds from germinating. • prevent water from collecting in holes/furrows left after ploughing which can make seeds rot or germinated seeds die for being soaked in water. • further destroy weeds and loosen the topsoil for the young roots of seedlings to develop well and the young plants to grow better.▪ Ridging can be done with tractor, bullocks or using hoes about one week before sowing.▪ It is vital for shallow soils or soils with a hardpan that could easily get flooded. In such cases, ridging allows water to collect in the furrows between the ridges and helps to improve drainage and keep the plants safe.▪ Ridging increases the depth of the topsoil which allows the roots of plants to have more soil room to exploit nutrients and water for better growth.▪ Ensure that the distance between the apex (tips) of any two ridges is 50 cm in accordance with the recommended row spacing ▪ If the farmer prefers to sow on both edges of the ridge, then the ridges should be made wide such that the distance between the edges is 50 cm.▪ Ridging with tractor/bullocks does not automatically give the required spacing since the discs are not usually adjustable. So, it is necessary for the farmer to do adjustments after mechanical ridging to achieve the require row spacing.▪ The ridges should be as high as practicable to improve water infiltration.▪ Some farmers prefer to prepare their lands with minimum or no soil disturbance, especially those that are engaged in conservation agriculture. ▪ With this tillage practice, the vegetation on the land is not cleared. Instead, planting holes are made, and the seeds are sown directly. ▪ The farmer then takes care of the vegetation by spraying herbicides (usually a total weed killer) immediately after sowing to kill the weeds and allow the seeds to germinate and grow without competing with weeds.▪ This type of land preparation is most suited to land/soil with the following conditions:• areas susceptible to drought and high soil temperatures.• land with steep slopes and those prone to erosion to prevent water loss through ruff off. ▪ soils with low water holding capacity to allow water conservation. ▪ Glyphosate is a good example of such non-selective or total weed killing herbicides. Below are some examples of non-selective herbicides with glyphosate as active ingredient and can be used for total weeds control when practicing minimum or zero tillage:Please, do not spray any of these herbicides after the soyabean seeds have germinated to prevent them from being killed together with the weeds.A non-selective herbicide for the control of grasses/broadleaf weeds and annual and perennial weeds.▪ 100-200 ml per 16L knapsack ▪ 0.4L/acre (about half bottle per acre) and 1L/ha2) RIDOUT -Glyphosate 400 g/L SLA non-selective herbicide for the control of grasses/broadleaf weeds and annual and perennial weeds.▪ 100-200 ml per 16L knapsack ▪ 0.4L/acre (about half bottle per acre) and 1L/ha3) Sunphosate -Glyphosate 360 g/L SLA non-selective herbicide for the control of annual and perennial grasses and broadleaf weeds.▪ 150-200 ml per 16L knapsack ▪ 1-2L/acre (i.e., 1-2 bottles per acre) and 2.5-5L/ha 4) Ridover -Glyphosate Ammonium 80 g, 75.7% SGA non-selective soluble granular herbicide for the control of annual and perennial grasses and broadleaf weeds.▪ 80-100 g per 16L knapsack▪ 324-405 g/acre and 800-1,000 g/haApplication method for the herbicides:Fill the Knapsack with half the required amount of water. Add the recommended amount of herbicide and mix thoroughly. Top up the tank with water to the required level and shake well to ensure thorough mixture and then spray.Conduct germination test between 10 -14 days before sowing to determine if the seeds are good enough for sowing. Germination test can be conducted in a variety of ways. These have been described below:1) Seedbed method ▪ Prepare a small seedbed and water it to make it moist but not wet or soaked. ▪ Make one 100 holes in the seedbed. ▪ Select one 100 seeds randomly from the seed pack and sow one seed in each hole. ▪ Count the number of seeds that have emerged by one week time.▪ Only use certified seeds from certified agro-dealers for sowing. ▪ If you receive the seeds from a nucleus farmer/aggregator, please verify that they are certified seeds and originally sourced from a certified seeds dealer. ▪ If required, conduct seed treatment by applying fungicides. ▪ Clean the seeds by removing damaged/broken seeds, debris, pest or disease infested and irregularly shaped seeds.▪ Fill a large bowl with soil and moisten the soil. ▪ Make one 100 holes in the seedbed.▪ Select one 100 seeds randomly from the seed pack and sow one seed in each hole.▪ Count the number of seeds that have emerged by one week time.Germination test can be conducted using other methods as well, and the number of seeds to be used for the test can be 100 or 1,000.Below is a guide on the required number of seeds that should be sown based on the outcome of the germination test.Irrespective of the sowing method, if birds/rodents may be a problem, and the field cannot be guarded after sowing, then sow at 3 seeds per hole or stand and thin to 2 healthy plants two weeks after sowing. ▪ Soyabean, being a legume crop rely more on nitrogen in the air for growth.▪ Soyabean roots do not spread much widely in the soil like other crops such as maize.▪ Therefore, soyabean can be planted close together because close planting does not result in intense competition for nutrients like maize and other crops.▪ At an early stage of growth, especially before nodulation, soyabean rely on soil nitrogen. Therefore, if the soil is deficient in nitrogen, it is important that a starter dose (a small amount of nitrogen, about 10 -15 kg N/ha or 4 -6 kg N/acre) can be applied to stimulate growth until nodulation.Do not broadcast your soyabean seeds and do not practice random planting as any of these will not help to achieve the recommended plant population.▪ This will allow the recommended spacing of 50 cm between rows (roughly the length of two footprints) and 10 cm between plants within the rows (roughly the length from the base of your thumb to the top of your index finger) to be applied and to achieve the required plant population. ▪ Planting in rows makes weeding relatively easier and harvesting and other management practices efficient (as less time is required) compared with random and broadcasting sowing methods.▪ Ensure there is good soil moisture prior to sowing, usually after a good rainfall but soil should not be soaked with water as the seeds will rot and not germinate.▪ Do not plant too early before the rains are well established as a prolonged dry spell after planting may cause the plants to die.▪ The best planting time for soyabean is between mid-June to mid-July with the rains likely well established.▪ Avoid deeper sowing (recommended depth = 3 cm; not deeper than 5 cm) as this may result in loss of seed vigor and poor germination or failure to germinate.1.5.1 Dibbling (the use of dibber, hoe, cutlass, planter):▪ On each row, make 2 adjacent holes about 5 cm apart and 3 cm deep as below. ▪ Each pair of adjacent holes should be 10 cm part from within the row. Sow 2 seeds in one hole. The other hole is for fertilizer and will be discussed in later section.▪ This sowing technique can be performed mechanically with a multipurpose planter, which can put both the seeds and fertilizer simultaneously.▪ Remember, the number of seeds to put in one hole depends on the results of your germination test (please refer accordingly).▪ On each row, make a furrow using a dibber with a flat edge of about 5 cm width. ▪ Sow the seeds at one side of the furrow with 2 seeds per stand and 10 cm between plant stands within the row and cover after sowing. The opposite side of the furrow is meant for the drilling of the fertilizer at sowing (see details under fertilizer application). ▪ Do not step on the covered seeds after sowing to allow seeds to emerge. ▪ Again, remember the number of seeds to put per stand depends on the results of your germination test. ▪ This method requires the land to be well preparedploughed to properly loosen the topsoil and harrowed/leveled (or double ploughed) to provide an even surface for sowing.Do not step on the planting holes after sowing to allow seeds to germinateIn areas such as the Upper East Region, some farmers usually intercrop soyabean with maize or other cereals.The cereal is usually planted as the main crop for household food security with the soyabean added to sell for income.In such cases, the farmers commonly plant 4 or more soyabean seeds in one hole between two maize plants on the same row.This practice is called an additive intercroppingan intercropping system where the main crop is planted at its recommended sole crop density and the intercrop (second crop) added at a certain proportion of its sole cropping density.To improve the efficiency and complementary use of growth resources (radiation, soil water, nutrients, etc.) for increased yield of both crops, the following additive intercropping sowing technique shown in the picture can be used:▪ The planting rows should be spaced 75 cm apart. ▪ Use a short duration maize variety and sow the maize seeds at 50 cm apart within the row. ▪ Make 4 holes between 2 maize plants on the same row and sow 2 soyabean seeds per hole. This will mean that the soyabean within-row planting holes are spaced 10 cm apart. ▪ Make sure the 4 soyabean holes are evenly spaced between the 2 maize plants. Do not put all 8 soyabean seeds in one hole.With this intercropping method, the taller maize may shade the soyabean to some extent. However, there is more complementary and efficient use of resources. For example, the soyabean fixes its own nitrogen from the air and allow the maize to utilize the nitrogen in the soil for growthso there is: ▪ reduced competition for nutrients, ▪ reduced competition for soil water due to different root systems between soyabean and the cereal, and ▪ efficient use of radiation because of differing canopy architecture. ▪ increased efficiency in land use and yield per unit area.▪ There are several animals (e.g., birds, rodents) that usually disturb the germination of seeds. ▪ Therefore, after sowing, the field should be guarded to protect the seeds and ensure good germination. ▪ Guarding of the field can be done in multiple ways:• The farmer or someone appointed need to watch over the field to scare away birds and rodents and prevent them from digging up the seeds or eating them when they emerge from the soil. • The farmer can put up some scare crows to steer away birds and rodents or free roaming livestock from stepping on the seeds sown. ▪ The field guarding should be done until germination is completed, and the resulting seedlings have attained at least 2 -4 leaves. ▪ Showcase a host of recommended inputs that can help to increase soyabean grain yield.▪ Trainees are aware of some recommended inputs to increase soyabean yield. ▪ Full understanding of the application rates, times, and methods of each of the recommended inputs.Introduction ▪ A host of improved inputs are available that farmers can use to assist them increase their soyabean yields.▪ Each of these inputs can be used alone or combined to better enhance the prospect of increasing soyabean grain yield.▪ ▪ Before buying certified seeds for planting, a farmer should first decide on which variety to use. ▪ Generally, a farmer must always choose a variety with the following attributes:• high yielding,• resistant to pod shattering,• earlymedium maturing to fit into the relatively short duration of the cropping season in the Guinea savanna agroecological zone, • resistant to drought, and tolerant to pests/diseases.▪ In addition, a farmer may also consider the type of contract or market he/she is targeting to sell his/her soyabean grains when deciding on which variety to use for plantinge.g., if the farmer is targeting/has a contract to sell the grains to a processor for oil, then a variety with seeds high in oil should be used. But the variety must conform to the traits indicated above.▪ Below are some improved varieties recommended by the SSPiNG project▪ It is important to always use certified seeds from a certified agro-dealer. Such seeds mostly give better germination for high plant population and higher grain yields. • soyabean seeds tend to lose their viability and vigor when poorly stored leading to poor germination and low yields. • the ability of seeds from previous harvest to give higher yields when re-used for planting generally tend to decline season after season.Introduction (Facts/important notes)▪ Rhizobium inoculants are commercially produced rhizobia applied to legume seeds before sowing to enhance nodulation, nitrogen fixation and better yield.There are several quality inoculants available for use on soyabeanfor example NoduMax-Plus and SariFix.▪ It is important to inoculate soyabean seeds because the rhizobia that normally cause soyabean to form nodules and fix nitrogen are naturally found in low amounts in most soils in the savanna.▪ Most essentially, on newly cleared lands or lands that have not been cultivated to soyabean before, the amount of the right rhizobia for soyabean is more likely to be even less or lacking. Hence, a farmer must always apply inoculant when growing soyabean on such lands/soils.▪ To ensure that adequate amounts of the required rhizobia is available in the soil, it is necessary to inoculate soyabean seeds. This will enable the plants to form more nodules, fix more nitrogen, produce more biomass/residues and grains.▪ When the soyabean is able to fix more nitrogen, it uses part for its own growth and leave some in the soil to improve the fertility which will then benefit a subsequent crop like maize grown in rotation with the soyabean.▪ Always check that the inoculant is the right one for soyabean before buying because some inoculants may not work on soyabean as each legume needs a specific rhizobium to infect its roots to be able to form nodules.▪ The inoculant packet always shows the legume types it should be applied to. ▪ Also check the specific rate to be applied because it differs for each inoculant as manufacturers use different formulations and carriers in developing inoculant.▪ Ensure that the inoculated seeds do not get in contact with fertilizers when sowing.Due to the different formulations/carriers used in developing inoculants, the method and rate of application also differs for each inoculant. Always check the instructions that come with the inoculant for the right method and rate.Both NoduMax-Plus and SariFix inoculants have the same application rates and method which is described below.▪ 10 g per kg of soyabean seeds OR 100 g (one sachet) per 10 kg of seeds.Application method (See the pictorial steps below):1. Measure and place 10 kg of soyabean seeds in a container large enough to accommodate all the seeds. 2. Dissolve the gum Arabic enclosed with the inoculant packet in 200 ml of warm water (about half of the small Voltic bottle) if preparing it for 10 kg seeds. This is the sticker. For 1 kg of soyabean seeds, use 20 ml of water to prepare the sticker.3. Add the gum Arabic solution to the seeds, mix until all seeds are uniformly covered. 4. Add 100 g (one sachet) of inoculant to the seeds already covered in gum Arabic solution and mix thoroughly until all the seeds are uniformly covered and/or coated with the inoculant. Avoid exposure of the inoculated seeds to sunlight by covering with a paper, cloth, etc. Exposure to sunlight will kill the rhizobia bacteria. 5. Cover the inoculated seeds with a piece of cloth and put under a shade to allow them to coolly dry for about 15-30 minutes (note that the time depends on the quantity of seeds inoculated) for sowing. 6. Ensure that you sow the inoculated seeds as soon as possible, particularly about 30 minutes after inoculation. In an extreme case where you cannot sow immediately, ensure that you sow the seeds on the same day they are inoculated.▪ Keep the inoculant package sealed until you are ready to use. ▪ Store the inoculant in a cool, dark and dry place away from heat, direct sunlight and moisture. ▪ Do not store the inoculant in a freezer as this will kill the rhizobium bacteria. ▪ Always follow the recommended storage instructions that came with the inoculant.'The Yara Solution' comprises of a bundle of soyabean yield enhancing inputs such as the YaraLegume and YaraVita Croplift Bio (Liquid fertilizer). ▪ This is a legume fertilizer produced and marketed by Yara Ghana. There are two types:1) YaraLegume:(0:18:13 + 6CaO + 2S + 3MgO + 0.075B)This fertilizer blend has phosphorus (18% P2O5) and potassium (13% K2O) as the main active ingredients. It also contains 6% calcium, 2% sulphur, 3% magnesium and some boron to support the growth of the plants.2) New YaraLegume:(4:18:13 + 6CaO + 2S + 3MgO + 0.075B)The New YaraLegume has the same active ingredients as the old one above. However, this new blend also has a 4% nitrogen as a starter dose to trigger rapid growth of the young soyabean plants until they are able to form nodules and fix their own nitrogen.▪ 100 kg/acre equivalent to 250 kg/ha, which should be applied at sowing (recommended).This is produced and marketed by Yara Ghana. It has: ▪ sticking agents to adhere it to the leaves, ▪ wetting agents to spread the product over the leaf surface, ▪ uptake agents to enhance nutrient uptake by the soyabean plants.▪ The product can be mixed with other chemicals (insecticides, herbicides, weedicides, etc) in one tank when applying.▪ 2 liters per acre and 5 liters per hectare▪ Apply 1 liter/acre or 2.5 liters/ha when the soyabean plants attain 4-6 leaves (about 3 weeks after sowing). Repeat this application 10 -14 days after the first application.• Measure 1 standard milk tin of product into a half filled 16-liters volume of Knapsack. • Top up the already filled Knapsack with water up to the 16-liter mark to uniformly mix and shake thoroughly. • Proceed to spray the leaves of your soyabean plants.The TSP is a water-soluble P fertilizer for legumes with 46 % P2O5 as the active ingredient.▪ 40 kg/acre (roughly 1 bag) equivalent to 100 kg/ha, which should be applied at sowing (recommended).▪ The fertilizer (YaraLegume or TSP) should be applied at sowing (preferred).▪ If for any reason the fertilizer cannot be applied at sowing, ensure that it is applied within one (1) to two (2) weeks after sowing and NOT later than 2 weeks after sowing.▪ With this method, the fertilizer is applied at sowing. ▪ The method requires the land to be well preparedploughed to properly loosen the topsoil and harrowed/leveled to provide an even surface. ▪ At planting, make a furrow using a dibber with a flat edge of about 5 cm width. ▪ Sow the seeds at one side of the furrow and cover seeds (please refer to sowing techniques) and then drill the fertilizer at the other side of the furrow opposite the side where the seeds were sown.Cover the fertilizer after application.b) Band placement/spot application method:▪ This method also requires the land to be well preparedploughed and harrowed/leveled. ▪ The method can be used to apply fertilizer both at sowing and after the seeds have germinated. ▪ If applying at sowing,• make 2 adjacent holes about 5 cm apart and 3 cm deep (refer to the picture under sowing technique). • Sow the seeds in one hole and place the fertilizer in the other hole and cover after application. ▪ If applying after germination, place the fertilizer 5 cm away from the base of the plant in a 3-5 cm deep trench and cover after application.Weed Growth to Compete with the Soyabean Plants ▪ Enhanced understanding of weeds management practices. ▪ Ability to identify the major pests and diseases of soyabean and their control/management measures.When is a crop stressed?A crop is stressed when an external factor/condition causes it to suffer and grow poorly and ultimately decreases the yield. Crop stress can result in low yields or even a total crop failure.If crop stress is not sufficiently managed, it can lead to:• Reduced number of soyabean plants per acre or hectare as it could affect the survival of the plants. In the end, optimum plant population cannot be achieved. • Stunted plant growth.• Limited production of biomass.• Poor nodulation and nitrogen fixation.• Low number of pods per plant.• Poor pod filling leading to low number of seeds or grains per pod. • Small seed or grain weight/size.Crop stress emanates from multiple external factors or conditions, which can be living organisms or non-living things. Prominent among these include:Diseases Weeds▪ Weeds compete with the soyabean plants for nutrients, water and light, depriving the plants of these essential growth elements and decreasing the yield. ▪ Weeds serve as host for some diseases and pests that attack soyabean plants. ▪ Weed seeds/residues can be mixed with soyabean grains and reduce the quality. ▪ Timely and thorough weeding is important for better growth, canopy closure, better weed suppression and higher yield. ▪ The number of weeding depends on the time and severity of weed infestation.▪ Hand weeding (with hoe) is preferred though labor intensive. ▪ Generally, 2-3 weeding should be done for better growth of soyabean. ▪ First weeding should be done at 2-3 weeks after planting and second weeding at 4-6 weeks after planting based on level of weed infestation.drought,lack of water,Poor crop management ▪ The second weeding should be done before flowering to prevent loss of flowers. ▪ Avoid weeding immediately after rain to prevent weed seed transport in the field▪ Weeds can also be controlled with herbicides / weedicides. ▪ The choice of herbicide depends on the predominant weed species in the field and the availability of herbicides. ▪ Chemical weed control can be performed at preemergence stage (before the soyabean seeds germinate, usually, same or next day after sowing) or at post-emergence stage. ▪ A post-emergence herbicide can be applied when the soyabean plants are at about 4-6 leaf growth stage or as early as weed infestation warrants it.Recommended herbicides that can be used for chemical weed management in soyabean Application rate:• 30-60 ml per 16L knapsack• 140-300 ml/acre and 350-730 ml/haA post-emergence herbicide for control of grasses and broadleaf weeds.Application rate:• 30-60 ml per 16L knapsack• 140-300 ml/acre and 350-750 ml/haApplication method for the herbicides:Fill the Knapsack with half the required amount of water. Add the recommended amount of chemical and mix thoroughly. Top up the tank with water to the required level, shake well to ensure thorough mixture and spray.▪ Pests attack plants at different stages of growthseeds, young plants, flowering, podding and pod-filling stages. Control should be targeted at these stages.▪ Most importantly, pests and diseases must be controlled between flowering, podding and pod-filling stages for better grain yield.Identification of some common soyabean pests ▪ These pests feed on the soyabean seeds in the pods when they are still developing.▪ They penetrate the pods, suck nutrients and fluids and eventually cause the seeds to be shriveled.▪ These pests are normally found on the undersides of soyabean leaves and stems.▪ They suck fluids and nutrients, and cause the plants to be stunted, abort flowers and ultimately reduce pod and grain yield.▪ This is one of the most common pests of soyabean that reproduces faster under hot and dry weather conditions. ▪ They are small insects that suck fluids and nutrients from soyabean plants, like the aphids and causing serious yield reduction.These pests suck the pods of soyabean, causing poor pod filling and reduced grain yield.3) Silverleaf whitefly▪ These pests vary in color ranging from yellow, green, tan or red with a small triangle behind the head.▪ They cause much damage on young soyabean plants by causing defoliation. Pest management measures ▪ Use clean or certified seeds for sowing. ▪ Use soyabean varieties resistant to pests. ▪ Practice adequate land preparationploughing and harrowing to kill weeds that could serve as hosts for pests. ▪ Practice crop rotation to break pest cycles. ▪ Use recommended insecticides to control pests.• Usually, one or two sprayings of these insecticides is adequate to control pests. • However, the level of pest infestation will determine the number of sprayings that will be needed. • When to first spray soyabean plants depends on the time pest infestation is noticed and the level of infestationbut usually first at flowering and then another spraying may be enough based on pest incidencenormally 21 days after the first spraying. • Spraying should be done early in the morning or late in the afternoon.Below are some recommended insecticides that can be used to control pests in soyabean. There are several diseases that can affect soyabean plants at different stages of growth and reduce the yield. These may either be caused by viruses, bacteria or fungi.Below are some of the common diseases that can affect soyabean:• 20-30 ml/16L ▪ Enhanced understanding of the best time to harvest soyabean to avoid shattering and yield losses. ▪ Increased awareness of the different harvesting methods and the associated benefits.▪ Most of the recommended soyabean varieties are medium maturing, taking between 110 -120 days (i.e., 3-4 months) after planting to mature. ▪ Harvesting must be properly timed to avoid pod shattering and yield losses. ▪ Do not harvest too early. This may lead to immature and poor quality grain, reduced yield and increased possibility of pest/disease attack during storage. ▪ Do not harvest too late as well to avoid problems of pests and diseases, too dry and cracked grains, etc. ▪ Soyabean pods are ready for harvest when about 85% or more of the pods have turned brown for a non-shattering variety. This is about when 9 out of 10 pods turn brown. ▪ For a shattering variety, harvest when 80% of the pods (that is 8 out of 10 pods) have turned brown. ▪ It is best to harvest when the grains contain between 13 -15% moisture.You can test the readiness of the pods for harvest in 2 ways:1) by shaking the pods. If you hear the seeds / grains making rattling noise within the pods, then they are ready for harvest.2) by applying minimum pressure on the pods between your fingers. If the pods break, then they are ready for harvest.At this stage, any further delay in harvesting may result in pod shattering.▪ Always harvest soyabean under dry weather conditions for better grain quality.▪ Harvesting is commonly done by uprooting the whole soyabean plants, heaping and allowing them to further dry before threshingmanual or mechanical. ▪ Soyabean can also be harvested by using hoes, sickle or machete, etc. to cut the plants at soil level. This method allows the roots of the soyabean plants to be left in the soil so that they can decompose and add nitrogen and organic matter to the soil to improve its fertility. Recommended.▪ After harvesting, heap the soyabean plants on a tarpaulin to dry in the sun for up to 10 days before threshing. It is important to turn over the heap at a regular interval for faster, proper and uniform drying. ▪ Always protect the pods being dried from possible rainfall, dust and other contaminants. ▪ Thresh mechanically using a thresher or manually by beating the dry pods with sticks. ▪ After threshing, clean the grains by removing weed seeds, debris and other foreign materials. This helps to ensure quality grains to meet recommended quality standards and for better grain price. ▪ Dry the grains to a commercial moisture content of 12-13% for storage lasting up to one year. If you intend to store for more than a year, dry the grains to a moisture content of around 10%. ▪ You can test the grains to determine if they are adequately dry for storage by biting. If the grain breaks or cracks, it is dry enough but if it bends or sticks between your teeth, the grains are not dry enough.▪ Store the well dried grains in clean and uncontaminated bags. ▪ Do not use recycled fertilizer or chemical bags to store soyabean grains. ▪ Store the soybean grains in a cool, dry and ventilated room or hut. ▪ Place the bagged soyabean grains on a wooden board such that the bags do not lie or touch the ground. ▪ Jute bags are usually preferable because they do not conserve heat and allow soyabean grains to be stored for a longer time.▪ Ensure that the storage room is well ventilated.▪ Do not burn the soyabean residues after harvesting. ▪ Leave all the residues (including falling leaves, stover after threshing, roots, etc.) in the field. ▪ Make sure to spread the residues uniformly across the field. These will decompose and add nitrogen to the soil to improve the fertility to enhance the yield of crops like maize that will succeed the soyabean in rotation. ▪ Retaining the residues in the field is also important for organic matter build up for moisture retention and longer-term soil fertility maintenanceespecially nitrogen and carbon stocks. ▪ Residues of plants that were infected with diseases and pests should be removed from the field and either deeply buried or burned.","tokenCount":"5959"} \ No newline at end of file diff --git a/data/part_3/4831553381.json b/data/part_3/4831553381.json new file mode 100644 index 0000000000000000000000000000000000000000..15f37a65fb400d2e21ded5f2d2cf9ceff2d52f28 --- /dev/null +++ b/data/part_3/4831553381.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"aaefe9cdd7aaa5de3e73b0de7bdd66ed","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/adc84053-ff86-43c2-8a05-83df5e86f6db/retrieve","id":"-1613096270"},"keywords":[],"sieverID":"ee7d8ac4-a133-4934-8f93-35d21bfc8c61","pagecount":"98","content":"CTA's tasks are to develop and provide services that improve access to information for agricultural and rural development, and to strengthen the capacity of ACP countries to produce, acquire, exchange and utilise information in this area. CTA's programmes are organised around three principal activities: providing an increasing range and quantity of information products and services and enhancing awareness of relevant information sources; supporting the integrated use of appropriate communication channels and intensifying contacts and information exchange (particularly intra-ACP); and developing ACP capacity to generate and manage agricultural information and to formulate information and communication management (ICM) strategies, including those relevant to science and technology This study, commissioned by CTA, details the information needs, and priorities of key agricultural institutions in Trinidad and Tobago.The objectives of the study were: to identify agricultural information needs of key actors / beneficiaries for CTA products and services; to identify needs of potential actors / beneficiaries of CTA activities and services in terms of building capacity for information and communication management; to identify potential partners / beneficiaries for CTA activities and services; to develop some baseline data to facilitate subsequent monitoring activities.The results of the study is expected to assist the three operational departments of the CTA as well as its local representatives to improve and better target interventions and activities aimed at potential partners and beneficiaries (including women, youth, private sector and civil society organisations), to have a more informed picture of their needs and aid in the elaboration of a strategy and framework of action. The study should also highlight where there are specific needs for CTA's products and services thereby enabling improvement in the delivery of the same.To accomplish these objectives a combination of qualitative and quantitative methods were utilized, including a desk review of available literature and information sources and the findings of programme evaluations. Face-to-face interviews with relevant stakeholders of the ten key institutions were conducted with a standardized CTA questionnaire and checklist to ensure the same questions were asked of all interviewees. vii The respondents from a selected group of institutions gave their views on information technology, information management and accessibility issues.The exercise is expected to produce one main report on Trinidad and Tobago including a country profile highlighting the current sources of agricultural information. The report also provides an analysis of information and capacity building needs as well as annexes detailing profiles of agricultural and rural development institutions.It was also expected that the results of this study will lead to identification / update of some priority agricultural information themes which will feed into a possible prioritysetting exercise in the region.The key institutions surveyed reported several categories of needs. The information needs to service their current programmes were primarily in the areas of production data, marketing data, specific training needs, event management, equipment sourcing, and understanding the relevant regulatory framework under which they operate. Information deemed difficult to acquire, in decreasing frequency of mention, included information on production data, marketing trends, equipment sourcing, environmental protection, new technologies and the regulatory framework.The institutions contacted unanimously listed specific forms of staff training as the \"resources and training needs necessary to achieve their strategic goals\". Also included were the need for tailor-made software, dedicated hardware, performance management procedures, wider networks, and marketing information. The identified needs for the institutions to improve their information management systems included appropriate software, dedicated hardware, a physical secretariat, production data, operational websites, staff training and marketing data.The stated information needs were predominately in the areas of production and marketing data. Examples include the need for timely and sector specific production data as stated by the Agricultural Society of Trinidad and Tobago or the need for small scale and subsistence level farm production data as stated by the Ministry of Agriculture, Land and Marines Resources. It suggests a requirement for more coordinated data collection in the field and a structured manipulation and transformation of said data into appropriate information. Crucial components of the information that have been deemed difficult to acquire are locally generated and must be collected as part of a structured, managed and integrated systemThe institutions surveyed were often operating without assigned staff, hardware or software to information services and programmes. Capacity building was identified by viii the respondents in light of the acknowledged importance of ICM as an area for immediate intervention (Table 8). In the absence of the tools and staff required, many of these institutions will continue to operate under their true potential and not fulfil their respective mandates. The main institutions, with the exception of the Ministry of Agriculture and NAMDEVCO, do not have the staff, hardware or software to manipulate the field data that might be collected. Many of the respondents were acutely aware of that shortcoming and saw this study as a precursor to assistance from CTA in that regard.The key institutions identified by this study all have mandates that would make them worthy candidates to be CTA beneficiaries and or partnersCTA should:Distribute more widely the list of available CTA publications by direct mailing to institutions listed in the study and through the regional branch offices of the Ministry of Agriculture and the Division of Agriculture in Trinidad and Tobago respectively.Through CARDI launch a series of briefings throughout the country on the range of services available from CTA including but not limited to, beneficiary criteria, mailed notifications, on-line registration, seminar support and the question and answer service. Support a \"Software and Data Manipulation Training Project\" focusing on the continuum from field collection to coding, linking, disseminating, centralizing, storing and retrieval.CTA should provide the institutions interviewed as part of this survey with a DVD/broadcast format multimedia presentation highlighting the benefits of 4. These operational departments are supported by Planning Corporate Services (P&CS) which is charged with the methodological underpinning of their work and monitoring the ACP environment in order to identify emerging issues and trends and make proposals for their translation into programmes and activities. This current exercise, therefore, falls within the mandate of P&CS is consonant with CTA's two operational objectives, as per its plan and framework for action, which are:to improve the availability of, and access to, information on priority information topics for ACP agricultural and rural development; to improve the information and communication management (ICM) capacity of ACP agricultural and rural development organizations.5. The objectives of the study were:to identify agricultural information needs of key actors / beneficiaries for CTA products and services; to identify needs of potential actors / beneficiaries of CTA activities and services in terms of building capacity for information and communication management; to identify potential partners / beneficiaries for CTA activities and services; to develop some baseline data to facilitate subsequent monitoring activities.6. The results of the study are expected to assist the three operational departments of the CTA as well as its local representatives to improve and better target interventions and activities aimed at potential partners and beneficiaries (including women, youth, private sector and civil society organisations), to have a more informed picture of their needs and aid in the elaboration of a strategy and framework of action. The study should also highlight where there are specific needs for CTA's products and services thereby enabling improvement in the delivery of the same.To accomplish these objectives a combination of qualitative and quantitative methods were utilized, including a desk review of available literature and information sources and the findings of programme evaluations. Face-to-face interviews with relevant stakeholders of the ten key institutions were conducted with a standardized CTA questionnaire and checklist to ensure the same questions were asked of all interviewees.The respondents from a selected group of institutions gave their views on information technology, information management and accessibility issues. ), had staff and/or a unit to specifically manage their institution's information. In all other cases the responsibility to manage the available information was left to the particular capability of a particular secretary. In many instances the secretary was neither trained nor experienced in the cataloguing or other manipulation of the stored information. With the exception of the previously named institutions, all of the others maintained electronic databases on computers that were not the property of the institution. Information management is a task performed by under-equipped volunteers using own equipment in most cases.20. Staffing arrangements ranged from six specialized units with trained/qualified staff in the MALMR, three departments in the ADB, NAMDEVCO's Unit staffed by two professionals, to the ASTT where the Secretariat is assisted by the four-member Publications and Public Relations Committee of the Board. Each of the five Departments in the THA-DAME manages their stored information. Only the MALMR had a dedicated properly maintained website.21. Communication refers specifically to the mechanisms for the dissemination and exchange of information through various means such as: radio and TV programmes, email, websites, electronic discussion groups, meetings, television and publications. The five institutions mentioned previously had dedicated staff and equipment to communicate with their internal and external publics. Invariably, the others depended on elected executive members to exchange information with their various stakeholders. Each of the institutions without dedicated hardware and software had an email address through which they could be contacted. Frequently, the address was in the name of an executive member.Without any expenditure, all of these institutions could have selected an address bearing the name of the organisation at a free host, instead of using the executive member's account.22. The ADB, MALMR, THA-DAME, NAMDEVCO and ASTT all had budgets, reprographic equipment, hardware/software, retrievable information resources and access to the Internet. Total annual operating budgets (for all activities including ICM) ranged from € 8.1 million at THA-DAME to € 100,000 at ASTT.23. All of the institutions contacted listed the Inter-American Institute for Cooperation on Agriculture (IICA) as a primary source of agricultural information. There were stated volume differences between the amounts of information accessed through IICA as opposed to other mentioned sources. The major medium for information flow was the printed hard copy, primarily as fact sheets, newsletters and brief publications. Three institutions recorded receipt of digitized information as part of an ongoing subscription. None of the interviewed institutions had heard of, or used, DORA, SDI or QAS. Significant use was being made of the publications of CARDI and MALMR and most interviewees had seen or had a subscription to \"Spore magazine\". The organisations without an organized information management system recorded \"Spore magazine\" subscriptions by individual members but there were no subscriptions in the name of the respective organisations. Neither the ASTT Journal nor the University of the West Indies publications was mentioned as a source of information. Other organisations mentioned were, NAMDEVCO, CARIRI, FAO, CCIB, GFAR see Annex III.2 24. Only the MALMR has in-house capability to produce educational/informative video. The use of still images as a means of conveying information is not widespread and is dependent on individual members for initiation.No mention was made of radio or television programmes as sources of information. Although the surveyed institutions listed Internet searches as a use of ICT, there was no indication that those operating without dedicated hardware and software sourced substantial information in this manner. Use of the Internet is widespread nationally. The number of computers per 1,000 people was listed as 80 with 138,000. Internet users (2002 est.) and there were 8,003 Internet hosts 10 .25. As with all structured interviews, the lack of perceived respondent anonymity and the chance that interviewer bias will be introduced was taken into account. Even the most experienced interviewers can give verbal or non-verbal cues to their respondents. As a result, respondents may alter their answers in order to impress or please the interviewer.Based on the interviewee responses and attendant casual conversation was the pervasive absence of a strategic framework to manage the information that was deemed to be lacking. This type of needs analysis is instructive not only in terms of what is requested but also what is not. Examination of some of the identified needs would suggest that the Institution has already acquired complementary and/or supporting. What was gleaned from further discussions was the absence in most cases of a culture of decision-making based primarily on appropriate information.26. Information has become a uniquely strategic resource for any organization -as vital as capital. Capital is easily depleted; information on the other hand is a regenerative resource that not only grows with use, but can also be used over and over again in different contexts to create value in multiple ways.Information management is the harnessing of information resources and information capabilities of the organization in order to create and reinvent value both for itself and for its clients or customers. In practice, the task of information management is to plan, design, and develop the organizational structures, resources, and processes to realize strategic objectives.The following are tabulated responses on the various types of information and data (technical, socio-economic, marketing, regulations, agreements, etc.) required to execute the key institutions' work programmes. It also includes information and data that are difficult to source or acquire and highlights the tendency of respondents to consider the print format primarily. Source: Based on interviews conducted with representatives of the institutions 28. To service their current programmes the leadership of the selected institutions sought information that can be categorized as follows in decreasing order of frequency 29. The leadership of the selected institutions deemed the following categories of information \"difficult to acquire\" in decreasing order of frequency 30 Capacity refers to the ability of the institution to identify and satisfy their information needs. Consequently, the tabulated responses to questions on capacity building refer to the need for equipment, funds, additional staff and the need for staff training, to better manage information and communication activities.Although not identified by several respondents, there were performance and skills gaps that suggested there might be need for assistance to develop a strategic information policy. Several of the institutions had ad hoc arrangements and goals for the satisfying of their information needs. 31 Respondents interviewed formally and informally noted the limited availability of publications that support decision-making in the agricultural sector in Trinidad and particularly in Tobago. Interestingly, most were unable to list/recall the full range of publications that were actually available. Several of the printing schedules were not routinely kept and distribution networks have been curtailed for UWI, CARDI and CFNI publications. Some of the offices visited still had on display fact sheets and bulletins that were particularly dated. These findings are similar to key problems identified by the Information Products and Services operational programme viz. limited availability of publications because of a weak local publishing structure, that support decision-making in the agricultural sector. Additionally, limited access to locally and externally published information on agriculture and rural development, due to weak distribution infrastructure. There was also a limited awareness of the existing local and external sources of information and the type of products and services available 32 Although most of the respondents were UWI graduates they were unaware of the range of access their graduate status gave them to the University libraries. Of particular concern was the total ignorance of CTA generated or sponsored publications and services. Of the forty technical, clerical and field staff contacted only one university professor of crop science was aware of DORA, QAS and SDI.33 Apart from IICA, CARDI and the Ministry of Agriculture, many of the respondents had niche overseas organisations from which they sourced information. Examples are the University of Utrecht, Global Forum on Agricultural Research and the Maryland Department of Agriculture. These relationships were based on reliability, mutual respect and a perceived willingness by the information provider \"to go the extra mile\" as quoted by a respondent from the Agricultural Society of Trinidad and Tobago. The IICA Representative was not surprised by the sector-wide penetration of his organisation as a source of information. Their activities are linked to, and determined by, national strategies borne out a consultative framework. Under Communication Channels and Services, the key problems identified such as weak networking services, limited use of ICTs for networking and dialogue and failure to take full advantage of opportunities for using radio, TV and other non-print media were echoed in this study 34 The THA Department of Agriculture, Marine Affairs and the Environment, the teachers association and over a dozen other interviewees have concluded that the CTA regional office must more pro-actively publicize its capabilities. Only two respondents were aware of the listing of agricultural websites facilitated by the University Library.An audit of available information sources points to a significant amount of raw data in various enclaves but a scarcity of organized information synthesizing and disseminating capabilities. This weak networking is similar to that found in other CTA studies as a Key problem.35 The need to widen existing local and regional networks was recognized by many respondents. Most were seeking hardware and software to more effectively network through the use of e-magazines and newsletters.Although most of the interviews captured the views of respondents as a snapshot, it was noteworthy how oblivious they appeared to be of other interactive and audio-visual information media. ICM Skills and System operational programme identified this limited knowledge of the design of cost-effective and participatory ICM systems as a key problem. The fact that the formal interviews were structured under the aegis of CTA, the perception could have been that Spore and the other print media discussed were the focus of the survey.36 With the exception of the Sugarcane Feeds Centre, none of the respondents appeared willing to take full advantage of opportunities for using radio, TV and other non-print media in communicating agricultural information and knowledge. These shortcomings have been noted by CTA in other studies and confirms them as key problems37 Even those institutions with information departments recognized the importance of strengthened ICT skills. Many of the Institutions are constrained by the lack of a secretariat and assigned staff to manage their information portfolio. They expressed the view that CTA would facilitate the design of cost-effective and participatory ICM systems. Weak ICM policies and strategies were a feature of other ACP institutions examined by CTA.38 The stated information needs (as listed in Tables 2,3 and 4) were predominantly in the areas of production and marketing data. Examples include the need for timely and sector specific production data as stated by the Agricultural Society of Trinidad and Tobago or the need for small scale and subsistence level farm production data as stated by the Ministry of Agriculture, Land and Marines Resources. It suggests a requirement for more coordinated data collection in the field and a structured manipulation and transformation of said data into appropriate information. Crucial components of the information that have been deemed difficult to acquire are locally generated and must be collected as part of a structured, managed and integrated system.39 The institutions surveyed were often operating without assigned staff, hardware or software. Capacity building was identified by the respondents in light of the acknowledged importance of ICM as an area for immediate intervention (Table 8). In the absence of the tools and staff required, many of these institutions will continue to operate under their true potential and not fulfil their respective mandates. The main institutions, with the exception of the Ministry of Agriculture and NAMDEVCO, do not have the staff, hardware or software to manipulate the field data that might be collected. Many of the respondents were acutely aware of that shortcoming and saw this study as a precursor to assistance from CTA in that regard.40 The \"CTA Draft Programme of Activities 2005\" reiterates the commitment to support partner organisations leading to the development of agricultural information and communication services that would be made available to resource-poor farmers and other small operators. It goes on to state that mainly professional farmers organisations, NGOs working in rural development, groups of private operators and decentralized public services having the same objective are eligible partners/beneficiaries. It would be legitimate to conclude that these identified key institutions all have mandates that would make them worthy candidates to be CTA beneficiaries and or partners. Whilst all the institutions selected are worthy beneficiaries as can be gleaned from their objectives, the ASTT has the reach, national scope and stated intent as an NGO with the capacity to play a coordinating role41 With respect to Information Products and Services the following recommendations are based on a review of the responses. There is a greater need for information inventories (i.e. listing of available information by type and source) as opposed to a widened information network. The required information is mainly field-accessible data of 'local' origin. The disparate approach to research across the Caribbean also highlights the need for more direct contact between researchers and scientists within the region. The institutions surveyed could all benefit in the short term, however, from widened access to the Distribution of Reference Books on Agriculture (DORA) programme as well as the Question and Answer Service.42 Distribute more widely the list of available CTA publications by direct mailing to institutions listed in the study and through the regional branch offices of the Ministry of Agriculture and the Division of Agriculture in Trinidad and Tobago respectively.43 Through CARDI launch a series of briefings throughout the country on the range of services available from CTA including but not limited to, beneficiary criteria, mailed notifications, on-line registration, seminar support and the question and answer service.44 Support a \"Software and Data Manipulation Training Project\" focusing on fthe continuum from field collection to coding, linking, disseminating, centralizing, storing and retrieval. 50 CTA in its 2003 Annual Report recognized the importance of farmers' organisations (FOs). These FOs are providing services once provided by the State and are expected to be the voice of farmers at the local, national and international levels.They are required to do all of this in the context of weak economies, under-developed agricultural sectors and the adverse effects of globalization. They have become major targets of multilateral donors thereby putting their financial and technical resources in far better shape. Although in most cases their human resources in terms of skills in advocacy, lobbying, extension and ICM remain inadequate.The mission of the ASTT is \"To be an effective advocate in the promotion of sustainable growth and development of the agricultural sector through linkages in all sectors\". Broad goals of the ASTT involve a commitment to effective advocacy as the recognized voice of agriculture in Trinidad and Tobago. The Society is determined to be the de facto umbrella body for all associations in the sector, whether those associations are based on commodities, producer interests or geography. It sees itself as a vehicle for poverty reduction, food security and rural development.The ASTT is ideally placed to partner with CTA because it has a stated mission and operating norms that are in sync with the range of activities identified by CTA. These activities include organizing workshops, exchange visits and strengthening their ICM capabilities to be able to produce magazines and newsletters. The Centre has stated its commitment to work more closely with FOs and establish a strong connection to assist them in defining their own information and communication priorities Cognisant of the central outcome of the study with respect to Institutions in the sector and based on an assessment of their current activities, past record and potential, the following recommendations are submitted:That CTA partner with the Agricultural Society of Trinidad and Tobago as the Organisation best placed to transform the sector. The opportunities for matched funding and other support are enhanced by the Society's clear mission and focused strategies including a major role in the Agricultural Sector Reform Programme. It is one of only two institutions in the sector that is truly national in scope and representation.That CTA consider all the preceding recommendations as part of a widened beneficiary support programme for the listed institutions. Said support to be based on clearly articulated proposals emanating from the institution's membership or primary stakeholders subsequent to briefing sessions by the CTA Branch Office -CARDI.The Technical Centre for Agricultural and Rural Cooperation (CTA) was established in 1983 under the Lomé Convention between the ACP (African, Caribbean and Pacific) Group of States and the European Union Member States. Since 2000, it has operated within the framework of the ACP-EC Cotonou Agreement.CTA's tasks are to develop and provide services that improve access to information for agricultural and rural development, and to strengthen the capacity of ACP countries to produce, acquire, exchange and utilise information in this area. CTA's programmes are organised around three principal activities: providing an increasing range and quantity of information products and services and enhancing awareness of relevant information sources; supporting the integrated use of appropriate communication channels and intensifying contacts and information exchange (particularly intra-ACP); and developing ACP capacity to generate and manage agricultural information and to formulate information and communication management (ICM) strategies, including those relevant to science and technology. These activities take account of methodological developments in cross-cutting issues (gender, youth, information & communication technologies -ICTs, and social capital), findings from impact assessments and evaluations of ongoing programmes as well as priority information themes for ACP agriculture 11 .In January 2002, CTA's Strategic Plan (2001-2005) was implemented and CTA's activities were distributed among three operational programme areas / departments:These operational departments are supported by Planning Corporate Services (P&CS) which is charged with the methodological underpinning of their work and monitoring the ACP environment in order to identify emerging issues and trends and make proposals for their translation into programmes and activities. This current exercise, therefore, falls within the mandate of P&CS.2. Background A comprehensive regional information needs assessment was undertaken in the Caribbean region, by CTA and the Caribbean Agricultural Research and Development Institute (CARDI), over the period 1995-1997. This study detailed the information needs, habits and priorities, of eleven sub-groups of users relevant to the agricultural and rural development sector, presented in sixteen national reports and a regional overview. The results of the studies were followed by a series of national consultations, missions and regional meetings, as well as pilot studies in information and communications management all aimed at arriving at or designing a strategy to meet information needs within the sector. The strategy proposed the development of a Caribbean Agricultural Information Service (CAIS) with a two pronged approach to improving access to information within the Caribbean region:Working with institutions at the national level to improve capacity in various aspects of information and communication management (e.g. network development, training, sensitisation). Developing information products and services to meet specific information needs identified.The CAIS strategy has been implemented since 2001. A number of capacity building exercises were executed including workshops and training courses; provision of technical assistance; network development, policies and systems. Since the implementation of this strategy in 2001, there have also been a number of changes within institutions in the region with respect to their awareness and use of information and communications tools and technologies.CTA works primarily through intermediary organisations and partners (nongovernmental organisations, farmers' organisations, regional organisations, …) to promote agriculture and rural development. Through partnerships, CTA hopes to increase the number of ACP organisations capable of generating and managing information and developing their own information and communication management strategies. The identification of appropriate partners is therefore of primordial importance.The \"Evaluation of the Implementation of the Mid-Term Plan (1997 -2000)\" emphasized the need for CTA to develop a more pro-active approach and elaborate criteria for decision-making with regard to the choice of partner organisations and beneficiaries. Based on this evaluation, the \"Strategic Plan and Framework for Action -2001 -2005\" identifies strategic issues for CTA being: improved targeting (including partnerships and beneficiaries), geographical coverage, decentralisation, regionalisation and thematic orientation. The Plan also expresses concern about: the extent to which CTA's activities are relevant to and reach the poor, gender awareness and how to identify potential partners especially in the independent sectors.Besides partner identification and selection issues, the observation has also been made that, the Caribbean region could benefit further from CTA's programme and activities. Finally, various national and regional partners with whom CTA has had a long-standing relationship have requested the current study which would serve to update the earlier studies done and allow them to provide more targeted assistance to their beneficiaries.The objectives of the study are as follows:to identify agricultural information needs of key actors / beneficiaries for CTA products and services; to identify needs of potential actors / beneficiaries of CTA activities and services in terms of building capacity for information and communication management; to identify potential partners / beneficiaries for CTA activities and services; to develop some baseline data to facilitate subsequent monitoring activities.The study should assist the three operational departments of the CTA as well as its local representatives to improve and better target interventions and activities aimed at potential partners and beneficiaries (including women, youth, private sector and civil society organisations); to have a more informed picture of their needs and aid in the elaboration of a strategy and framework of action. The study should also highlight where there are specific needs for CTA's products and services thereby enabling improvement in the delivery of the same.The consultant will use a combination of qualitative and quantitative rapid appraisal methods including: the desk review of available literature and information sources including the findings of programme evaluations; the conduct of face-to-face interviews with relevant stakeholders / concerned parties; the limited use of questionnaires.The rapid appraisal approach will allow a general overview of the key issues and company / organisational profiles on a per country 12 basis and may give rise to more indepth studies as and when needed in the future.One main report per country not exceeding 20 pages according to the following It is also expected that the results of this study will lead to identification / update of some priority agricultural information themes which will feed into a possible priority-setting exercise in the region in 2004.The country reports will not exceed 20 pages (excluding annexes). The annexes should include a list of acronyms, of persons/institutions interviewed with addresses, phone, fax numbers, e-mail addresses (if any) as well as bibliography.Draft final report is to be submitted within three months after contract signature by CTA Final report due two weeks after receipt of comments from CTA. Liaise with CARDI and Regional Coordinator throughout the study Invite the Regional Coordinator and Local Consultants for Briefing Meeting Provide input to the Regional Coordinator with regard to fine-tuning terms of reference, questionnaires, interview guide and reporting guidelines for the consultants Provide relevant background documents to the Local Consultants & Regional Coordinator Elaborate budget and discuss contractual obligations with the Team of consultants & Regional Coordinator Pay invoices for services rendered in a timely manner on condition that all payment conditions are fulfilled Overall responsibility for the supervision and implementation of the studies Bear the agreed costs of expenditure in respect of the study (economy class return tickets to Trinidad, hotel accommodation and subsistence allowances during briefing meeting, or during agreed and specified field visits) Provide feedback and comments on draft country reports to the Local Consultants Give feedback to the Regional Coordinator on the overall report for the Caribbean.The Petroleum resources: Trinidad and Tobago is by far the Caribbean's largest producer of oil and gas, with oil production averaging about 125,000 barrels per day (bbl/d) and natural gas production of 1,000 million cubic feet per day. Further, Trinidad and Tobago is the first LNG producer in the Latin American and Caribbean region, and is one of the major natural gas development centres in the world. Natural gas and oil reserves of Trinidad and Tobago are estimated at 22 trillion cubic feet and 700 million bbl, respectively. The Atlantic LNG plant is credited as being the largest single-train plant ever built, with plans presently underway to triple its capacity. Trinidad also has a vast downstream gas sector: gas-intensive industries such as steel, fertilizer, and petrochemicals are important to the country's economy.Biodiversity-Trinidad and Tobago, due to its continental origin, has the greatest biological diversity of the islands in the Caribbean archipelago, although the other Caribbean islands may have species with a high degree of endemism. Of the 2,160 species of flowering plants in Trinidad and Tobago, 110 are endemic, including many palms. There are approximately 420 species of birds, 100 mammals, 55 snakes, 25 amphibians and 85 reptiles. There are probably about 2,500 species of plants and about 10 times as many animals, the majority being insects and other invertebrates.Agriculture in Tobago is sufficiently different in intensity, technology and management to warrant separate treatment. There are greater information needs in Tobago when compared to the organisations and resources available in Trinidad. The Tobago House of Assembly has jurisdictional control of agriculture in Tobago whilst the Ministry of Agriculture, Land and Marine Resources is responsible for agriculture in Trinidad.Agriculture has been and continues to be a very important part of Tobago's economy.Although 70 % of Tobago's population engages in some form of agricultural activity there are many problems that plague the sector.Most Tobagonian farmers view agriculture as an adjunct activity and not a business. As a result, many do not keep records and are therefore unable to give the cost of production.In addition, there is an absence or shortage of basic agricultural services on the island. Farmers have to rely on Trinidad for supplies or services, a very time consuming process. Soil testing facilities, specialist advice and the provision of seeds and agro-chemicals are only a few of the services lacking in Tobago.The tractor pool services used primarily for land preparation are insufficient. Farmers often have to wait months to have their land prepared using the government service. Consequently, farmers turn to private services thereby increasing the cost of production.Vegetable farmers are unable to supply consumers with produce year round for mainly two reasons; the first being the farmer's inability to stagger his crops due to land constraints or technical knowledge, and the second being weather constraints. The latter brings to the fore the predicament of irrigation and drainage management. Many farmers are unable to establish and maintain an irrigation system, a necessity in the dry season. A lack of water supply hampers production thereby reducing profits.There is an absence of reasonably priced, high quality feed for livestock on the island. In some cases, animals have suffered and died as a result of nutritional diseases. There is a need for more research to be done using local raw materials to make a high quality feed for livestock. The government stock farm on the island is unable supply all livestock farmers with new stock and stud service. Some farmers have resorted to importing new stock for the purpose of breeding. This is quite costly, and requires specialist advice.Beekeepers are faced with the problem of a lack of technical advice on the island. Entire colonies are sometimes lost as a result of an attack from exotic and local pests, and the beekeepers' ability to identify and treat with the pest determine their production and hence profits.The demand for honey far outweighs the supply, therefore, there is a need to attract more persons to bee keeping to satisfy that demand. There are also other products that can be derived from bee keeping including honey combs, beeswax, and soap. This potential can only be realized if the technical support is made available together with other supporting services.The marketing of agricultural produce on the island is limited as farmers can be guaranteed sale on only a few products; pork being the only meat, and pigeon peas, hot peppers, guava, and sorrel being the only crops. There is however room for the development and marketing of value added products. Consumers, particularly foreigners, constantly enquire about local jams, jellies, candies and sauces.Trinidad and Tobago's total population for 2000 was 1,262,400 as listed on page 2 in the Republic of Trinidad and Tobago, Central Statistical Office, Pocket Digest 2002. The total labour force was 572,800 persons, whereas the total labour force for agriculture was 39,800 representing 6.9% of the total labour force.Official Government of Trinidad and Tobago, Central Statistical Office (CSO) figures for 2001 14 lists the percentage of men working in the category \"Agriculture\" at 6.2% of the labour force or 35,600 workers. In that report \"Agriculture\" includes \"sugar refining' but excludes \"food manufacturing\" and 'other agro-industries\". These figures are considerably lower than that for employment in the sector due to the other official categories listed by the CSO such as \"professionals\" and \"technicians\" that include agriculture workersCSO figures for 2001 lists the percentage of women working in the category \" Agriculture\" at 6,200 or 1.1% of the labour force. These figures are considerably lower than that for employment in the sector due to the other official categories listed by the CSO such as \"professionals\" and \"technicians\" that include agriculture workers The female population working in all industries was 243,100 (2 nd quarter 2004). In other agriculture, forestry and fishery there were 4,000 females or 1.6% of the female labour force 15 .Although no figures were found for youth in Agriculture both the past and present Minister of Agriculture, Land and Marine Resources -the Hon. John Rahael and Hon Jarrette Narine respectively, expressed concern with the lack of youth participation in the sector. However, Mr. Rahael stated the Youth Apprenticeship Programme in Agriculture (YAPA) focused on youths aged 17 -25 years. The programme trains youth to attain technical, professional and business levels within agriculture. He stated that over 1500 youth were exposed to this programme at that time 16 .Mr. Narine on the other hand stated that the 4-H programme involved youth 9 -25 years in vegetable production, livestock production, ornamentals, grow-box cultivation and food preservation. He stated that there were 160 clubs throughout the country involving 4,500 youth and generally touched the lives of approximately 50,000 youth in total over the years 17 .Several thousand acres of arable land have become available for agricultural production following the closure in 2003 of the production arm of the State-owned sugar company. The government has stated its commitment to more viable farm sizes and the sector plans emanating from the \"2020 Vision (the government's vision is to make the country a developed nation by 2020) Group Report on Agriculture\" emphasizes the raising of educational/training levels of twenty-first century farmers. This shift will reemphasize the importance of information as the base for a knowledge-driven economy.Soft engineering solutions to the perennial problems of flooding and landslips, as well as increased water catchment, are raising the national profile of non-food agriculture. There are also ongoing efforts to utilize biotechnological advances to augment traditional cultivars and plant types that offer soil-stabilizing solutions. Park and green space management are also underrepresented areas in terms of information sources.The total area of Trinidad and Tobago is 5,128 km² and the general pattern of land use is as follows: arable land is 14.62%, permanent crops 9.16% and other 76.22% (2001 est). The total arable land is recorded at 312,568 ha of which 44,239 ha are under permanent crops and 35,960 ha under annual crops 18 . In north Trinidad in the Aranguez area, which was historically an old sugar estate, fertile lands were divided into small tenant farms. Many of these remaining farms produce fruit and vegetables using a market gardening system (an intensive form of cultivation of vegetables, flowers or fruits); crops include sweet peppers, cauliflower, tomatoes, eggplant, beans and spinach 19 . Other areas of market gardening include Debe, Penal and Barrackpore in the south of the island. Trinidad and Tobago has a long history of successful management of both natural forests and plantations, and forests also play an important role in watershed protection and ecotourism. However, in the past two decades oil production has become a major economic focus, which has created considerable wealth, but has left out a significant proportion of the population. This has led to illegal encroachment into forest areas and their degradation, inter alia, by increased fire damage. This problem is exacerbated by high value housing development in prime forest areas.Trinidad and Tobago decided to reverse forest degradation by adopting a sector-based approach which would engage a wide range of stakeholders in forestry activities, including communities and poorer members of society. This policy shift aims to optimize the contribution of the forest resources of Trinidad and Tobago to the national economic development of the country through consensus-based, sustainable forest management.Total Trinidad and Tobago Forested Area in 2000 was 259,000 ha with a Forest Area per capita of 0.2 ha. In Trinidad, Wetlands (mainly mangrove forests) represent 23,540 ha and there are 230,000 ha of forest cover. The Northern Range is known for Tropical Rain Forests whereas there are mainly mangrove swamps in Caroni and Nariva. On Trinidad, the principal forest types are: tropical rain forest, semi-deciduous rain forest, littoral woodland, deciduous seasonal woodland, and swamp/mangrove forests.Within tropical rain forest there are several tiers of vegetation interlaced with lianas and vines while epiphytic orchids, bromeliads and ferns are common. Typical plant species include Carapa guianenis, Ceiba pentandra, Spondias monbin, Pentaclethra macroloba, and Brownea latifolia 22 . One notable type of forest found extensively in east Trinidad, especially near Matura and Mayaro, is mora forest, dominated largely by Mora excelsa. The tropical rain forest is restricted to sheltered mountain valleys of Tobago's Main Ridge. Lower montane forest, xerophytic rain forest, evergreen formations and some elfin woodland also occur.In 2000 the percentage share of forestry in the total Gross Domestic Product (GDP) of Trinidad and Tobago was 3.11% disaggregated data are not available. Consequently, information was not available on forestry's contribution for example, to employment.It is estimated that 80% of the annual national catch of marine species is effected by the artisanal inshore fleet. Information on landings and catches are more accurate and dependable for the inshore artisanal fishery as opposed to the semi-industrial and industrial fishing vessels that operate in the Exclusive Economic Zone and beyond 23 .The fishing industry of Trinidad and Tobago in the subsectors of marine, aquaculture, mariculture and ornamental makes quite a valuable contribution to the economy of the country, as illustrated by the export of fish and fish products in 1998 and 1999, and it also contributes to employment, where it is estimated that over 10,000 individuals may be employed directly, with another 50,000 or so engaged in ancillary and support services. It is estimated that the industry employs approximately 10% of the agriculture labour force 24 . There were 255 registered fishing boats in Tobago and 1216 in Trinidad by December 2000. Distribution of registered fishing vessels across the two islands is concentrated in Tobago, and the south and west coast of Trinidad. Of the 54 monitored landing sites in Trinidad, 31 are on the West Coast. There are 10 official landing sites in Tobago 25 . Shrimp fishing in Trinidad and Tobago takes place mainly in the Gulf of Paria where both artisanal fishermen and trawlers operate; the smaller boats tend to exploit the resources closer to the shore while the trawlers fish offshore. The Gulf of Paria is rich in nutrients -organic matter that supplies the shrimp and fish of that area. The productivity is high in this area because of four factors namely (1)the continental shelf (2)shallow banks (3) ocean currents and water flow and (4) nutrients 26 .In 1998, Trinidad and Tobago and Venezuela signed an Agreement for Cooperation in the Fisheries Sector, which allows trawlers from both countries to operate in a common area south of Trinidad and north of Venezuela. The Agreement also allows for joint research and study by both countries of the resources in this area and the Gulf of Paria. Trinidad and Tobago also participates in a Working Group with Guyana, Venezuela, Suriname and Brazil in a continuous assessment of the fish and ground fish resources of the Guiana/Brazil Shelf.However, the economy is dominated by oil, natural gas and petroleum exploration and export, so the contribution of the fisheries sector to the Gross Domestic Product (GDP) is small, and is estimated to be about 0.3%, representing about 13 % of the total contribution of agriculture to GDP 27 .Farming takes place on two levels in Trinidad and Tobago, on a subsistence level and on a commercial level. Thirty-five percent of farming occurs at a subsistence level and includes tree crops, root crops, vegetables, legumes and livestock. Approximately 65% occurs at the commercial level and crops include vegetables, sugarcane, rice, root crops, cut flowers, ornamentals, citrus, cocoa and bananas. The farming systems are generally mixed farming systems on both levels 28 .Agriculture in Trinidad has been characterized by the decline of traditional export crops due to relatively high costs of production and the loss of preferential marketing arrangements. Domestic agriculture has surpassed export agriculture in employing productive resources and in value of output. An agricultural census conducted in 2004 (results pending) was the first in 22 years and will underscore the extent of the decline and the diminished role of the sector within the national economy. However, the sector is poised to make an increasing contribution in light of recent (2003-2004) developments including the restructuring of the sugar industry, the importance of soft engineering environmental solutions and the agricultural sector reform programme.Agriculture represents 2.6% of the total Gross Domestic Product (2003 est.). The GDP was TT$10.52 billion with a real growth rate of 3.7% (2003 est.). The GDP per capita was $9,500 (2003 est.) 29 .The trend in actual contribution of the sector to GDP is shown in The main agricultural produce includes sugarcane, cocoa and coffee, rice, citrus and food crops -for e.g. tomatoes, eggplants, cucurbits, crucifers, bodi, beans and spinach 30 . Other agricultural products include rice and poultry 31 whilst minor amounts of root tubers such as sweet potato and vegetables such as broccoli are grown.Approximately 16,355 hectares (ha.). are under cocoa cultivation and this includes an area of intercropping of bananas and citrus, so a more realistic estimate of the current area of actively cultivated cocoa is 8,000-10,000 ha. The major cocoa growing areas are Diego Martin, Blanchisseuse, Toco, Arima, Cunupia, Chaguanas, San Rafael, Pointe-a-Pierre, La Brea, Trinity and Guayaguayare.There are approximately 7,901 farmers cultivating cocoa in Trinidad and Tobago and the sector provides employment for around 50,000 persons. The industry is labour intensive and is comprised of permanent, occasional and part-time workers. Vegetables are mainly grown by small farmers, the size of the plots ranging between 0.25 and 2.0 hectares.(ha.). The majority of farmers cultivate small areas of less than 0.5 ha. using varying levels of agro technology. The vegetables grown in Trinidad & Tobago include tomatoes, cabbages, cucumbers, melongenes, bodi, ochroes, lettuce, pumpkin, patchoi, sweet peppers, celery, cauliflower, chive, hot peppers, dasheen bush, and sorrel.During the year 2000, the vegetable and root crop sub-sectors contributed an estimated TT$65 million to Agricultural Gross Domestic Product.For the period January to December 2000, the estimated area of green vegetables planted under traditional cultivation was 3,997.0 ha. The major areas of production are in the counties of St. Patrick, Victoria, Caroni and St. George, with some of the major food crop farms located in the counties of St. Patrick and St. George (locations such as Penal, Debe, Barrackpore, Oropouche, Arouca, Aranguez, Santa Cruz and Paramin).The vegetable sub-sector, including root crops, is estimated to include approximately 20,000 farmers. In 2000, the majority of labour was permanent, seventy percent (70%) while nineteen (19%) was casual and eleven (11%) was occasional.Most of the vegetables produced locally are consumed by the domestic market and are traded in the wholesale and retail markets. The following is a summary of the production of selected vegetables for the period 1998-2002.Data show, that over the period 1998 to 2002, with the exception of 1998, when the quantity of vegetable imports stood at 12 million kilograms (kgs.), imports have fluctuated between 25 million to 26 million kgs. Similarly, domestic exports of vegetables ranged from 6 million to 8 million kgs., during the same period, with the exception of 1999, when an estimated 48 million kgs. were recorded (Table 14 refers Rice production, in addition to providing earnings to farmers, also provides an important source of revenue to the country through exports, thus contributing to Agricultural GDP. In 2000 the rice sub-sector contributed (TT$17 million). or 1.1% of agricultural GDP.Rice is concentrated mainly in the areas of Caroni, Oropouche and Plum Mitan. In 2001 it is estimated that 1000 ha. of land were under rice cultivation.At present there are less than 500 active rice farmers in T&T and the sector provides employment for approximately 1000 persons. Labour shortage continues to plague the rice industry as farmers find it difficult to attract labour since higher wages are offered in the majority of other activities rather than in the rice sub-sector. The main export markets for Trinidad and Tobago agricultural products are North America, Suriname, Guyana, Dominica, United Kingdom, St. Lucia, St Kitts 32 . The export commodities include fertilizer, sugar, cocoa, coffee, citrus and flowers 33 . Following a series of participatory stakeholders' meetings, culminating in a draft review meeting on March 27, 2001 an official sector policy document was released. The Ministry's central role as the major stimulant for growth in the sector was underscored and a slew of policy goals announced. These included increases in agricultural production, agricultural incomes, employment, stakeholder participation and food security. The official position of the Ministry on food security is that it should be addressed through food availability and not on notions of self-sufficiency, which it views as impracticable given land and productivity constraints. There was also a commitment to develop the capacity to exploit the anticipated developments in biotechnology.The policy also lists goals of reducing the food import bill, agricultural risks, degradation of the natural environment and praedial larceny 35In 2000 the Trinidad and Tobago population was estimated at 1,262,366 with a population growth of -0.71%. The population density per square mile was 554 36 . Literacy levels are defined based on those 15 and over who can read and write. The overall literacy is 98.6% where male literacy is 99.1% and female literacy is 98% (2003 est) 17 . The languages spoken in Trinidad and Tobago are English (official), Hindi, French, Spanish and Chinese 38The country has a longstanding commitment to universal access to services such as health and education.In 1994, the Regional Health Authorities Act was enacted, establishing five Regional Health Authorities (RHAs), four in Trinidad and one in Tobago, as independent statutory authorities accountable to the Minister of Health. Secondary and tertiary care are provided at one general hospital in Port-of-Spain and one in San Fernando (1,245 beds), at two county hospitals in Trinidad (111 beds), and at one hospital in Tobago (96 beds). Specialized hospitals and units also provide women's health, psychiatric, chest disease, substance abuse, geriatric, oncology, and physical therapy services, for a total 1,513 additional beds (the psychiatric hospital is the largest, with 1,060 beds). A comprehensive range of diagnostic services is available at the two general hospitals.Primary health care in the public sector is provided at no cost to the user at 101 health centres, 19 of which are in Tobago. The number of health centres per RHA in Trinidad varies from 16 in the eastern RHA to 30 in the central RHA. The ratio of population to health centre ranges from less than 3,000 per centre in Tobago to more than 21,000 per centre in Saint George West. While coverage is in principle universal, limited human resources and supplies of drugs limit effective coverage, as well as the range of services provided. The Chronic Disease Assistance Plan (CDAP) provides free medication for chronic diseases for all citizens; prescriptions can be filled at public or private pharmacies.There are some 497 Primary, 137 Secondary Schools, a campus of the University of the West Indies (St Augustine) and the multi-campus University of Trinidad and Tobago (launched in 2003) in Trinidad and Tobago. The following goals are part of the Ministry of Education's plan 2002-2007 39 :Government will improve the quality and equity of access to education and training;The provision of student support services; Improvement in the quality of education at all levels of the system; Promotion of skills development;Ensuring that no student is denied tertiary level training based simply on inability to pay; Creation of a culture of lifelong learning.The Trinidad and Tobago Electricity Commission (T&TEC) is the power transmission and distribution utility of the twin island republic of Trinidad and Tobago. T&TEC is responsible for the design, construction, operation and maintenance of the country's electrical transmission and distribution network. Its Marketing Department claims the ability to guarantee transmission to any consumer nationwide. The utility supplies electric power to its some 350,000 customers on both islands via a single interconnected grid.T&TEC purchases the bulk electric power from independent generation companies for resale and is also responsible for securing fuel supplies for the generation companies. It is state owned and regulated and is by law the sole retailer of electric power in the twinisland republic. Source: Tuning, listening, staff interviewsThe Telecommunications Services of Trinidad and Tobago Limited (TSTT) is the only full service telecommunication company in Trinidad and Tobago.TSTT was formed in 1991 and is the sole licensed provider of telephone services in Trinidad and Tobago. The company is jointly owned by National Enterprises Limited (NEL), a company incorporated in Trinidad and Tobago (51%) and Cable & Wireless (49%).Over the past five years, TSTT's customer base has grown at an average of 5.4% per annum. The number of subscribers grew from 181,000 in 1992 to 295,855 at the close of 2000. Services TSTT provides include basic telephony, cellular, Internet, leased lines and data services. The switching and transport infrastructure are both digital. The transport network comprises primarily fiber optic based systems supported by microwave radio systems. TSTT customers include: banks, insurance companies, petroleum and energy based industries and government and tourist offices. 45 There were 325,900 (2002) telephone main lines in use and 361,900 (2002) mobile cellular telephones whilst the general assessment of the system was recorded as \"an excellent international service and good local service\" 46 . The \"land line\" telephone coverage is nationwide; all areas of the country are serviced through a system of 31 Exchanges.Almost three out of four persons (73.0%) in each household used the computer. The proportion of male (51.0%) to female (49.0%) computer users was generally similar. 16.6% of computer users were between 15 -19 years, 16.3% between 30 -39 and 14.5% between 40-49. Of computer users, 50.0% had acquired secondary level education; only 3.8% had a university level education in computer studies. 50.0% of computer users were employed and self-employed and 39.0% were students. In Private Enterprises, 59.8% of employees used the computer compared with 29.7% in Government. Windows 98 and 95 were the main operating systems in 74.4% of households. Most households (70.8%) used the computer daily between two and five or more hours. Only 11.8% of households were engaged in software development and 20.2% accessed distance learning/education compared with other activities such as games (78.4%), Microsoft Office (66.0%), e-mail (62.4%) and web searches (61.5%). By value of e-commerce transactions, 42.2% of the households spent less than $500, while 35.6% spent between $500 and $2,999 over the six month period ending May/June, 2001. A significant proportion of households (40.0%) was dissatisfied with the service of Internet Access Providers due to 'high cost', 'too much time for connection' and 'interruption while working'.Of the households with Internet access, 19.5% reported e-commerce transactions, mainly in the purchase of computer hardware/software, electronic goods and books and magazines.The number of Computers per 1,000 people was listed as 80 with 138,000 Internet users (2002 est) and there were 8003 Internet hosts 48There are four major Internet Service Providers in addition to TSTT with TSTT as the sole telecommunications provider. All other providers dial up on TSTT hardware. ","tokenCount":"9275"} \ No newline at end of file diff --git a/data/part_3/4843056340.json b/data/part_3/4843056340.json new file mode 100644 index 0000000000000000000000000000000000000000..b66289bc99f40bb4837d590146f5497c6644d269 --- /dev/null +++ b/data/part_3/4843056340.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"6c8d3279195663f2d132db8e17b16b1c","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/90baaa1c-6fd8-490d-9e3e-b59bba8c1307/retrieve","id":"-80121711"},"keywords":[],"sieverID":"6cf6729c-a9fa-48ed-afa5-0631ec77b087","pagecount":"1","content":"Cassava (Manihot esculenta Crantz) storage roots are a staple source of calories that is indispensable to food security in Africa. Unlocking the potential of genetic improvement in cassava has not been possible due to the slow rate of genetic gain achieved through conventional breeding approaches and the long duration of breeding cycle. Phase I of Nextgen Cassava Breeding Project (http://www.nextgencassava.org/) using genomic selection has successfully shortened the breeding cycle for new cassava varieties through improved flowering and other genomic tools and also making cassava genomic information publicly accessible as an open database(https://cassavabase.org). Emphasis in the phase 2 is laid on improving the quality of data uploaded to Cassavabase. ","tokenCount":"108"} \ No newline at end of file diff --git a/data/part_3/4845536285.json b/data/part_3/4845536285.json new file mode 100644 index 0000000000000000000000000000000000000000..79e4cdc8f4cac4384b158e93ed489cb2ce5e1731 --- /dev/null +++ b/data/part_3/4845536285.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"32d5b33dca80dbd79aa5e14405091e92","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/0326ff69-28bf-444d-9435-399ae9641c1f/retrieve","id":"897478661"},"keywords":["banana","crop wild relatives","ex situ seed banking","genetic diversity","Musa balbisiana"],"sieverID":"007c66cf-a5c6-4d57-88c8-811c5b518a34","pagecount":"9","content":"Crop wild relatives (CWRs) play a key role in crop breeding by providing beneficial trait characteristics for improvement of related crops. CWRs are more efficiently used in breeding if the plant material is genetically characterized, but the diversity in CWR genetic resources has often poorly been assessed. Seven seed collections of Musa balbisiana, an important CWR of dessert and cooking bananas, originating from three natural populations, two feral populations and two ex situ field collections were retrieved and their genetic diversity was quantified using 18 microsatellite markers to select core subsets that conserve the maximum genetic diversity. The highest genetic diversity was observed in the seed collections from natural populations of Yunnan, a region that is part of M. balbisiana's centre of origin. The seeds from the ex situ field collections were less genetically diverse, but contained unique variation with regards to the diversity in all seed collections. Seeds from feral populations displayed low genetic diversity. Core subsets that maximized genetic distance incorporated almost no seeds from the ex situ field collections. In contrast, core subsets that maximized allelic richness contained seeds from the ex situ field collections. We recommend the conservation and additional collection of seeds from natural populations, preferentially originating from the species' region of origin, and from multiple individuals in one population. We also suggest that the number of seeds used for ex situ seed bank regeneration must be much higher for the seed collections from natural populations.Crop wild relatives (CWRs) play a key role in breeding by providing beneficial trait characteristics for improvement of related crops. However, the inter-and intraspecific diversity in CWRs is in decline due to global threats such as ecosystem degradation and climate change (Ford-Lloyd et al., 2011). Given the importance of CWRs for agriculture, different ex situ conservation strategies have been developed (Heywood et al., 2007). Seed banking has the advantage over other ex situ methods in that it allows long-term storage of plant material at a reasonable cost and that it can include a larger part of the gene pool (Li and Pritchard, 2009). Nevertheless, many CWR ex situ seed banks are underused because of the absence of genetic diversity information (Schoen and Brown, 2001;Dempewolf et al., 2017). Moreover, the lack of genetic diversity assessments in ex situ seed banks may result in the loss of genetic diversity when germplasm is regenerated, because the subset of seeds used for regeneration might not sufficiently reflect the total diversity in the collection (Schoen and Brown, 2001;Fu, 2017). If the genetic diversity in an ex situ seed bank is known, genetic resources conservation can be optimized by delineating core collections. Core collections are subsets of accessions that incorporate the maximal amount of genetic diversity present in the original collection (Brown, 1989). Genetic diversity in ex situ collections can be maximized by either maximizing allelic richness or genetic distance. A distant subset of widely-adapted accessions is desired by plant breeders, while subsets that include rare alleles are more interesting for taxonomists and geneticists (Marita et al., 2000).Dessert and cooking bananas (Musa spp.) belong to the most prominent tropical and subtropical food commodities in the world (FAO, 2019). The genetic contribution of the CWR Musa balbisiana Colla to banana cultivars has been associated with a higher tolerance to banana weevil infestation and drought (Stover and Simmonds, 1987;Thomas et al., 1998;Ocan et al., 2008;Kissel et al., 2015). M. balbisiana has a natural geographic range that reaches from India to South China (Perrier et al., 2011) with its centre of origin most likely situated in the northern Indo-Burma region (Janssens et al., 2016). In addition, feral M. balbisiana populations are found far outside its natural range (Perrier et al., 2011). M. balbisiana seeds can be stored after desiccation without losing their viability, making them suitable for ex situ seed bank conservation (Stotzky et al., 1962).Here, we quantified genetic diversity in seven M. balbisiana ex situ seed collections that were separately collected from three natural populations, two feral populations and two ex situ field collections (online Supplementary Table S1 and Fig. S1). Our research questions were: (i) how genetically diverse are these M. balbisiana seed collections and (ii) which core subsets of seeds maximize genetic distance, allelic richness, or both? Our study contributes to the delineation of a conservation strategy of M. balbisiana genetic resources, serving as an example for CWR seed conservation of dessert and cooking bananas.In total, 247 seeds belonging to seven ex situ seed collections available at the Bioversity International Musa Germplasm Transit Center (ITC) and Meise Botanic Garden were selected for this study (online Supplementary Table S1). Each seed collection was retrieved from one bunch of bananas, which is common practice in the collection of banana seeds. Three seed collections were obtained from two natural populations in Yunnan and one in Hainan (China). Two seed collections were retrieved from one feral population in Amami (Japan) and one in Lae (Papua New Guinea), while two other seed collections originated from two ex situ field collections at the IITA genebank facilities in Kampala (Uganda) and Arusha (Tanzania). An ex situ field collection consisted of M. balbisiana accessions originating from separate populations in separate regions that were brought together in one collection.The seed embryo was isolated using embryo rescue and subsequently germinated on a culture medium, substantially increasing the germination rate compared to seeds that are sown in a greenhouse (Afele and De Langhe, 1991). The leaves of the juvenile plants were dried on silica gel for DNA extraction. For the seed collection of Lae, DNA was directly taken from the embryo. DNA from the leaves and embryos was extracted using a modified cetyltrimethylammonium bromide protocol of Doyle and Doyle (1987). Eighteen polymorphic microsatellite markers (online Supplementary Table S2) were selected from previous studies on wild M. balbisiana accessions (Ge et al., 2005;Wang et al., 2011;Rotchanapreeda et al., 2016). The reverse primer of each marker was coupled to a universal primer sequence published by Schuelke (2000) and all primer combinations were arranged in four multiplexes using Multiplex Manager v1.2 (Holleley and Geerts, 2009). Microsatellite regions were amplified using the Type-it Microsatellite PCR Kit (Qiagen, Venlo, the Netherlands), following a modified M13-like labelling protocol, which is described in detail in Vanden Abeele et al. (2018). Afterwards, 1.5 µl of each polymerase chain reaction (PCR) amplicon was genotyped on an ABI 3730 sequencer (Applied Biosystems, Foster City, California, VS) with 12 µl of HiDi Formamide and 0.3 µl of the MapMarker 500 labelled with the DY-632 size standard (Eurogentec, Seraing, Belgium). The raw genetic data were scored with Geneious Pro v9.1.7 (Kearse et al., 2012). All microsatellite loci displayed distinct allelic patterns within each multiplex, validating the rearrangement of these markers into new multiplex PCRs.Genetic diversity variables including the average number of alleles (N A ), the average number of alleles with an allele frequency of at least 5% (N A≥5% ), the number of private alleles (N priv ) and observed (H O ) and expected (H E ) heterozygosity were calculated with the GenAlEx v6.5 plug-in in Microsoft Excel (Peakall and Smouse, 2012). Genetic differentiation between seed collections was assessed based on Wright's F-statistics (F ST ) and visualized by a principal coordinates analysis (PCoA) using the GenAlEx v6.5 plug-in in Microsoft Excel (Peakall and Smouse, 2012). The significance of F ST values was tested with 999 permutations. Genetic clustering was examined using a Bayesian Markov Chain Monte Carlo (MCMC) clustering analysis implemented in STRUCTURE v2.3.4 (Pritchard et al., 2000). A series of independent runs with K values ranging from 1 to 10 was run in order to determine the best fitting number of clusters. Subsequently, the probability for each K was computed using the median of medians (MEDMEDK), the median of means (MEDMEAK), the maximum of medians (MAXMEDK) and the maximum of means (MAXMEAK) (Puechmaille, 2016) implemented in StructureSelector (Li and Liu, 2018). These statistics were demonstrated to be more robust for large differences in sampling size between populations that are included in the dataset (Puechmaille, 2016). The admixture model with correlated alleles was selected and the burn-in period length and the number of MCMC replicates were set to 150,000 and 200,000, respectively, as these estimates generated stable results for each value of K.Five non-redundant accessions of M. balbisiana (i.e. core subsets) were selected using three different methods. First, the Maximization strategy (M-strategy) (Schoen and Brown, 1993), implemented in software CoreFinder (Cipriani et al., 2010), was used with an autogenerated random seed number and 99 permutations to delineate a core collection with the highest possible allelic richness. The M-strategy minimizes the sum of probabilities that alleles are not conserved in the core collection when a certain set of accessions is selected. At least one individual of every putative population is included in the final core collection (Schoen and Brown, 1993). Second, a maximum length subtree (MLST) (Perrier et al., 2003) was constructed using DARwin v6 software (Perrier and Jacquemoud-Collet, 2006) to select the genetically most distant individuals in our dataset. The MLST method required the reconstruction of a weighted neighbour-joining tree based on a dissimilarity matrix that was calculated for our dataset. The tree was subsequently pruned in a stepwise manner, each step removing one unit of each unit pair with the minimal length to the external edge. The number of individuals that remained present in the tree was set to be equal to the size of the subset that was determined with the M-strategy. Finally, the R package Corehunter III (De Beukelaer and Davenport, 2018), used in R v3.5.0 (R Core Team, 2018), was applied to maximize the Cavalli-Sforza and Edwards distance (CE distance) and the Shannon diversity index (SH index) through an advanced stochastic local search method. The CE distance is a Euclidean distance parameter that calculates distances between accessions as the square root of the differences between the allele frequencies of two individuals. The SH index reduces the redundancy of alleles in the collections by minimizing allele frequencies (Thachuk et al., 2009). A core collection that contained both a high number of alleles (high SH index) and genetically distant accessions (high CE distance) was constructed as well. The SH index and CE distance contributed in equal weight to the composition of this collection, resulting in a set of accessions that is interesting for both taxonomists, geneticists and plant breeders.Eleven out of 18 amplified microsatellite loci were polymorphic in the ex situ seed collections. The seed collections from natural populations of M. balbisiana carried a higher average number of alleles than those gathered from feral populations (Table 1). Within the group of seed collections from natural populations, the average number of alleles was higher for the seeds of Yunnan (Yunnan-1 = 2.06 ± 0.25, Yunnan-2 = 2.06 ± 0.27) than for the seeds of Hainan (1.72 ± 0.23). Seed collections from natural populations also had a higher number of lowfrequency alleles, while the seeds of feral populations had no polymorphic loci if rare alleles were not included (Table 1). Furthermore, the number of private alleles (N priv ) was relatively low in all seed collections, but N priv was much higher (0.30 ± 0.14) in the ex situ field collection of Kampala than in the other seed collections. The highest heterozygosity levels were observed in the seeds of Yunnan, while the observed and expected heterozygosity were remarkably low in the seed collections of Amami (feral), Lae (feral) and Kampala (ex situ field collection) (Table 1).All F ST values were very high (>0.4), except for the F ST value between Yunnan-1 and Yunnan-2 (Table 2). The PCoA results showed a clear genetic clustering in the dataset. The Kampala seed collection was positioned in the top left corner of the PCoA graph (Fig. 1), clearly separated from all other collections. Three other clusters were recognized along the first principal axis: one cluster with all seeds from Arusha and Lae, a second cluster that combined the Yunnan seed collections, and a third cluster that contained the seeds of Hainan and Amami. The STRUCTURE analysis for the most optimal value of k (k = 6) delineated similar clusters compared to the PCoA results (Fig. 2). The seed collections from natural populations showed some admixture, especially between the collections of Yunnan, and encompassed three clusters that were not found in other seed collections. The feral populations and the ex situ field collections were clearly assigned to three clusters, combining the seeds of Amami and Hainan in one cluster and the seeds of Arusha and Lae in a second cluster. The third cluster exclusively consisted of seeds from Kampala (Fig. 2).The two core subsets that were constructed by methods that maximize allelic richness (i.e. the M-strategy and the SH-index) contained many seeds from the Yunnan and Kampala seed collections (Table 3). The core subset that was composed using the M-strategy contained 12 genotypes, but 80% of the allelic diversity in the dataset was found in only four seeds originating from Yunnan-1, Hainan, Kampala and Arusha (online Supplementary Fig. S2). The seed collection from the ex situ field collection in Arusha also contributed substantially to the core subset that maximized the Shannon diversity index (Table 3). The two distance-based core subsets (constructed by the CE distance and the MLST method) predominantly included seeds from natural populations in Yunnan and Hainan (Table 3, Fig. 3). When the allelic richness (SH index) and genetic distance (CE distance) were both optimized, the resulting core collection mainly consisted of seeds from natural populations and ex situ field collections.This study assessed the genetic diversity in M. balbisiana seed collections retrieved from natural populations, feral populations and ex situ field collections. The genetic diversity in all seed collections (N A and H O ) is low compared to that previously reported in wild M. balbisiana populations (Ge et al., 2005;Jayaweera and Samarasinghe, 2016). However, some natural populations in China that were initially described as M. balbisiana populations were more recently assigned to another Musa species (i.e. Musa itinerans), which may partly explain the difference between our results and previously reported findings (Ge et al., 2005). The lower genetic diversity in seed collections may additionally be explained by two factors. First, seeds from the same bunch of bananas have a common maternal ancestry. So each seed collection consists exclusively of half-siblings which are, by definition, genetically less diverse than M. balbisiana populations with more related individuals assessed in previous studies. Second, pollen flow might be limited in M. balbisiana populations so that one bunch of bananas might only include alleles from a relatively small number of pollen donors. Consequently, the collection of a small number of seeds from different individuals within the same population might be necessary to efficiently conserve the genetic diversity in that population. Unfortunately, seeds of different individuals are in reality hard to find during one prospection, making it difficult to collect seeds from several individuals at once. Besides, M. balbisiana is a short-living species that clonally propagates via budding (Ge et al., 2005), two life history traits that are believed to decrease the ability of populations to persist after seed harvest (Meissen et al., 2015). Collecting seeds from multiple individuals might only be possible in large populations and is also preferentially spread through time in order to reduce the impact on population viability and allow for seed sampling from different individuals. We observed a higher genetic diversity in the two seed collections from Yunnan than in the seed collections from other regions. Previously reported genetic analyses of natural M. balbisiana populations from China had the highest diversity in Yunnan as well (Ge et al., 2005;Wang et al., 2007), confirming the high value of populations in its region of origin for conservation. Regional genetic diversity assessments of M. balbisiana only found moderate levels of genetic differentiation between populations (Ge et al., 2005;Wang et al., 2007;Jayaweera and Samarasinghe, 2016), which is in accordance with the low genetic differentiation that we observed between the two seed collections from Yunnan. Hence, the collection of seeds from several populations within the same region might not strongly increase the total genetic diversity in the ex situ seed bank. In contrast, the high genetic differentiation that was observed between seed collections from different regions rather suggests that gathering seeds from regions that are part of a wide geographical range should result in a higher increase in genetic diversity in the ex situ seed bank. These findings align with Rivière and Müller (2017) who provided evidence for common intraspecific sampling gaps in ex situ seed collections and argued that a more extensive sampling of the diversity across multiple biogeographic regions is required to fill these gaps. Prioritized sampling locations for seeds of M. balbisiana are especially located in its natural distribution area, and more specifically in its region of origin. The conservation of seeds from regions that are absent in the ex situ seed bank, such as the northeastern part of India and the northern regions of Laos, Vietnam and Myanmar should be of prior concern. In addition, land use changes have reduced the number of M. balbisiana populations in Papua New Guinea and in northern China during the last few decades, urging the conservation of the M. balbisiana genepool (Ge et al., 2005;Wang et al., 2007).The delineation of genetically diverse subsets substantially increases the manageability of collections, but the Fig. 3. Maximal length subtree that was derived from a neighbour-joining tree with 200 bootstrap replicates. Each individual is named after its origin and sampling number. composition of a subset varies depending on a high genetic distance or high allelic richness is preferred. Distance-based methods only select seeds from Yunnan or Hainan, indicating that these collections are especially interesting for plant breeders. However, methods that capture the highest allelic diversity include more seeds from the ex situ field collections, which makes these collections more important for taxonomists and conservation biologists (Marita et al., 2000;Thachuk et al., 2009). The high number of private alleles in the collection of Kampala suggests that these seeds contain a different part of the gene pool of M. balbisiana. However, the seeds in the ex situ field collections are open-pollinated and it cannot be excluded that certain unique alleles in the seeds from these field collections are introgressed from another Musa species, such as M. acuminata, which occurs in the proximity of M. balbisiana accessions. Furthermore, the seed collections from feral populations capture very low amounts of genetic variation, suggesting that the presence of these collections in the ex situ seed bank is only of secondary importance. However, these seed collections may serve as safety backups for alleles that are also conserved in other seed collections (van Hintum and Visser, 1995;Milner et al., 2019).In order to maintain a viable seed collection, it is necessary to regenerate a subset of seeds after a certain period of time. The regeneration of seeds can result in the loss of genetic diversity if the reared seeds do not properly cover the diversity in the entire seed collection or if the size of the regenerated sample pool is not large enough. Our results suggest that the number of seeds that must be used for regeneration to maintain the genetic diversity in a seed collection must be substantially larger for the seed collections from natural populations than for the collections from feral populations. Ex situ seed banking of M. balbisiana seed collections becomes much more efficient when these differences in genetic diversity between seed collections are taken into account.The results of this study indicate that the seed collections from natural populations, feral populations and ex situ field collections of M. balbisiana are three complementary sources of genetic diversity. The seed collections from natural populations, preferably sampled within the centre of origin of the species, include high levels of genetic diversity, and conservation and collection efforts should primarily focus on these regions. We also recommend collecting a relatively small number of seeds from multiple M. balbisiana individuals within one population to efficiently conserve genetic diversity in the target population. The seed collections from ex situ field collections add unique genetic variation to the ex situ seed bank. These collections are also easily accessible and their storage in an ex situ seed bank additionally safeguards the diversity present in the ex situ field collections. The seed collections from ex situ field collections are interesting for genetic or taxonomic research, while our results suggest that the contribution of these seed collections to plant breeding might be limited if plant material from natural populations is available. The seed collections from feral populations provide safety backups for genetic resources in the seed collections from natural populations. A small number of seeds is probably sufficient to conserve the genetic diversity in feral populations. Nevertheless, the number of seed collections available for this study was limited to seven and the collection and characterization of additional seed material is needed to validate our results.To view supplementary material for this article, please visit https:// doi.org/10.1017/S1479262119000376.","tokenCount":"3481"} \ No newline at end of file diff --git a/data/part_3/4849194838.json b/data/part_3/4849194838.json new file mode 100644 index 0000000000000000000000000000000000000000..bd7879074a092d4df9ab05b45c198010d3e5ade3 --- /dev/null +++ b/data/part_3/4849194838.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"a21b036969b514b5c67e5cd9da1d17c4","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/a243f7c1-b760-4a95-8d7e-3c4203a8bae3/retrieve","id":"1854797659"},"keywords":[],"sieverID":"c19b5593-1c76-4718-a704-f66e6af49835","pagecount":"1","content":"In Ethiopia, efforts to restore basic ecosystem services, through the restoration of more than 15 million ha of land, is a major challenge. The provision of appropriate germplasm is the major bottleneck.We would like to thank all funders who supported this research through their contributions to the CGIAR Trust Fund: https://www.cgiar.org/funders/ National tree seed sector assessment along the value chain; possible improvement areas suggested.Renovation and infrastructures development of seed centers in Amhara, Oromia, SNNPR, and Tigray.Training on seed, computer, entrepreneurship, and study tours abroad for 165 public and private tree seed actors.New Lab facilities: growth cabinet, moisture analyzer, seed collection equipment & maintenance of cold rooms.14 Breeding seedling orchards has been established in Amhara and Oromia.Numerous publications, posters and training manuals and platform for National Tree Seed Network initiated.This document is licensed for use under the Creative Commons Attribution 4.0 International Licence. May 2019","tokenCount":"144"} \ No newline at end of file diff --git a/data/part_3/4856445383.json b/data/part_3/4856445383.json new file mode 100644 index 0000000000000000000000000000000000000000..fb1ebc456cc3a7477499d43e40a445f2e29d74e3 --- /dev/null +++ b/data/part_3/4856445383.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"ef6ec7dacbe7839ebfb7a397a2a86a6a","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/2bc081e6-0cca-49b5-bd89-f228e5b5a1a6/retrieve","id":"464456634"},"keywords":[],"sieverID":"9e479026-4973-46d5-ae2d-c028788f7d7b","pagecount":"19","content":"Owing to climate change impacts, waterlogging is a serious abiotic stress that affects crops, resulting in stunted growth and loss of productivity. Cassava (Manihot esculenta Grantz) is usually grown in areas that experience high amounts of rainfall; however, little research has been done on the waterlogging tolerance mechanism of this species. Therefore, we investigated the physiological responses of cassava plants to waterlogging stress and analyzed global gene transcription responses in the leaves and roots of waterlogged cassava plants. The results showed that waterlogging stress significantly decreased the leaf chlorophyll content, caused premature senescence, and increased the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in the leaves and roots. In total, 2538 differentially expressed genes (DEGs) were detected in the leaves and 13364 in the roots, with 1523 genes shared between the two tissues. Comparative analysis revealed that the DEGs were related mainly to photosynthesis, amino metabolism, RNA transport and degradation. We also summarized the functions of the pathways that respond to waterlogging and are involved in photosynthesis, glycolysis and galactose metabolism. Additionally, many transcription factors (TFs), such as MYBs, AP2/ERFs, WRKYs and NACs, were identified, suggesting that they potentially function in the waterlogging response in cassava. The expression of 12 randomly selected genes evaluated via both quantitative real-time PCR (qRT-PCR) and RNA sequencing (RNA-seq) was highly correlated (R 2 = 0.9077), validating the reliability of the RNA-seq results. The potential waterlogging stress-related transcripts identified in this study are representatives of candidate genes and molecular resources for further understanding the molecular mechanisms underlying the waterlogging response in cassava.Waterlogging, or soil flooding, is estimated to affect more than 17 million km 2 of land area per year worldwide. Waterlogging events are expected to increase in frequency, severity, and unpredictability in the future because of global climate change [1]. It has been reported that the intensification of rainfall and evaporation in response to global warming will cause wet regions such as most tropical and subtropical zones to experience waterlogging [2]. Approximately 10% of irrigated farmlands suffer from frequent waterlogging, resulting in substantial yield losses (from 40 to 80%) [3,4]. In China, losses in crop production due to flooding were second to those due to drought in 2013, accounting for more than RMB 300 billion Yuan [5]. This abiotic stress also causes problems for agricultural production in Australia, North America and Central Europe, especially in regions with heavy-textured soils [6].The gas diffusion rate in water is much lower than that in air, which is a major determinant of the adverse effects of waterlogging. This low diffusion rate leads to reduced concentrations of oxygen in the root zone, limiting mitochondrial aerobic respiration, supplying energy for nutrient uptake and transport, and causing energy loss [7]. Waterlogging stress further decreases plant shoot metabolism, stomatal conductance, hydraulic conductance, transpiration, respiration and photosynthesis, which manifest as stunted growth and reduced biomass accumulation [8]. Obtaining sufficient knowledge about the mechanisms that drive waterlogging tolerance in plants to develop stress-tolerant crops and anticipate ecosystem changes is an enormous challenge for the plant science research community.To cope with anaerobiosis due to waterlogging and to regulate different adaptive responses, plants modulate various transcriptional and metabolic changes [9][10][11][12]. A major plant response to soil waterlogging is the metabolic switch from aerobic respiration to anaerobic fermentation [13]. This switch involves metabolic adaptations such as induced expression of fermentation pathway enzymes, which leads to a rapid reduction in cellular adenosine triphosphate (ATP) levels. Plants have also developed a series of antioxidant mechanisms to defend themselves against oxidative stress. Antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) have been reported to remove toxic oxygen substances and prevent or reduce cell damage in many plant species [14]. These reports strongly suggest that the regulation of the waterlogging response in plants involves more than a simple adaptation and is far more complex than anticipated for many years.Cassava (Manihot esculenta Grantz) is considered an important cash and biofuel crop species in Asia, Latin America and Africa because of its starchy roots, making it critical for food security and economic development [15]. This species has been reported to be very drought tolerant; moreover, it can also use light and water resources efficiently and is tolerant to heat [16]. However, existing cassava cultivars that are injured by waterlogging can sometimes never fully recover, and there have been few studies on the adaptations of cassava to waterlogging stress. Globally, although cassava is grown across a wide range of environments, the majority of this species is cultivated in areas where the rainfall is more than 700 mm per year [17]; therefore, cassava is subjected to excess rainfall during the summer rainy season. RNA sequencing (RNA-Seq) has been used as an efficient approach to understanding transcriptome profiles [18]. To better understand the molecular mechanisms underlying the response of cassava to soil waterlogging, the transcriptional profiles of waterlogged cassava roots were analyzed via RNA-seq. Genes expressed in the control and treatment groups were compared to determine the species-specific responses of cassava and to identify genes or strategies associated with waterlogging resistance.The cassava cultivar South China 6068 (SC6068), which is a common cultivar, was used in this study. Cassava plants were propagated clonally from cuttings of parental stems that had at least two nodes and were approximately 8 cm in length. The plants were grown in plastic pots (12 cm in height, 15 cm in diameter) containing a 2:1 mixture (V/V) of potting soil and vermiculite. One plant was grown in each pot. The plants were grown in a glasshouse under natural lighting and temperature (average daily temperature of 28-30˚C) at Hainan University (205 0' N and 108˚38' E). At 45 days after the cuttings were planted, those at the same developmental stage were waterlogged. Briefly, the plants were transplanted into plastic containers (62 cm × 36 cm × 42 cm) that were filled with water until the water level was approximately 3-4 cm above the soil surface. Waterlogging treatments were maintained for 6 days. The plants were separated into two groups. Three plants were randomly selected for each group, the leaves and roots of each plant were harvested for RNA extraction, and the remaining samples were used for physiological measurements. Four different types of samples were taken: leaves under waterlogged conditions (WL), roots under waterlogged conditions (WR), leaves under nonwaterlogged conditions (CL) and roots under nonwaterlogged conditions (CR). All the samples were immediately frozen in liquid nitrogen and stored at -80˚C until use. All of the waterlogging treatments were performed with three independent biological replicates.To estimate the relative chlorophyll content in the leaves of waterlogged plants, the chlorophyll contents were measured using a SPAD-502 Plus portable chlorophyll meter (Konica Minolta, Japan), which calculates a relative chlorophyll content value (SPAD) from the ratio of optical absorbance at 650 nm to that at 940 nm; major veins and areas of obvious visual damage were avoided. An average relative chlorophyll content was obtained for each leaf sample. The Fv/Fm values were measured using a handheld fluorometer (FluorPen FP100, Photon Systems Instruments, Czech Republic).Colorimetric assays were used to measure the contents of peroxidase (POD), CAT and SOD (the kit was purchased from Beijing Solarbio Science & Technology Co., Ltd., Beijing, China). A sample of leaves (0.1 g) without the midrib was thoroughly ground with a cold mortar and pestle in an ice bath. The grinding medium consisted of 1 mL of phosphate buffer plus homogenizing glass beads. The homogenate was centrifuged for 10 min at 8500 rpm and 4˚C. The supernatant in turn constituted the crude enzyme extract and was used to determine enzyme activity. The absorbance of the reaction mixture was determined by using an Infinite M200 PRO instrument (Tecan, Switzerland).Library construction, quality detection and Illumina sequencing were carried out by Beijing Biomarker Cloud Technology Co., Beijing, China (www.bmkcloud.com). In total, 1 μg of RNA per sample was used as input material for the RNA sample preparations. Sequencing libraries were generated using a NEBNext Ultra TM RNA Library Prep Kit for Illumina (NEB, USA) according to the manufacturer's recommendations, and index codes were added to attribute sequences to each sample. The adaptor sequences and low-quality sequence reads were removed from the data sets. Raw sequences were transformed into clean reads after data processing. Clean data (clean reads) were obtained from the raw data by removing reads containing adapters, reads containing poly-N sequences and low-quality reads and then mapped to the reference genome sequence. Only reads with a perfect match or one mismatch were further analyzed and annotated based on the reference genome. Hisat2 software was used to map the reads to the reference (https://www.ncbi.nlm.nih.gov/assembly/GCA_013618965.1). The accession numbers of the transcriptome data was PRJNA699429, which were deposited in the NCBI Sequence Read Archive (SRA) database.For annotations, all unigenes, which were proven to be longer than 200 bp, were subjected to a BLAST search (E-value < 1e -5 ) against the NCBI nonredundant (NR) protein database [19], manually annotated and reviewed protein sequence database Swiss-Prot [20], Gene Ontology (GO) [21], Clusters of Orthologous Groups of proteins (KOG/COG) [22,23], Protein family (Pfam) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases [24,25].Gene expression levels in each sample was analyzed by using FPKM (fragments per kilobase of exons model per million mapped reads) method [26]. Differential expression analyses of genes between two groups of comparison were performed using the DESeq2 package for FPKM data with biological replicates [27]. The p values were corrected using the Benjamini and Hochberg's method to control the false discovery rate (FDR). Genes differentially expressed with at least 2-fold change (i.e., the absolute value of log 2 Fold change � 1.0) and a FDR corrected pvalue of < 0.01 found by DESeq were considered as differentially expressed genes (DEGs). KOBAS software was used to test the statistical enrichment of differentially expressed genes in KEGG pathways [28]. The KEGG pathway with a FDR corrected p-value of < 0.05 were considered as enrichment in DEGs.The expression patterns of twelve genes were analyzed via qRT-PCR. A pair of primers for each gene was designed on the basis of content from the NCBI database (https://www.ncbi. nlm.nih.gov/). The primer pairs are listed in S1 Table . Approximately 1 μg of isolated total RNA was used to generate cDNA using a reverse transcriptase kit (Thermo, USA). qRT-PCR was then performed using a 7500 Real Time PCR System with a total reaction volume of 20 μL, which consisted of 2 μL of cDNA template, 0.4 μL of forward and reverse primers (10 μM each), 10 μL of qPCR Master Mix, 0.4 μL of Rox and 6.8 μL of sterilized ddH 2 O. The PCR conditions were as follows: 95˚C for 30 s; 40 cycles of 95˚C for 5 s, 60˚C for 34 s, and 95˚C for 15 s; and 60˚C for 1 min. The expression abundances of 12 genes were determined based on the ΔΔCT method described by Schmittgen and Livak [29], and relative changes in gene expression from the qRT-PCR experiments were calculated using elongation factor 1 alpha (EF1α) as a reference gene. EF1α was validated as one of two most stably expressed genes across different tissues and developmental stages in cassava [30]. Three biological replicates and three technical replicates of each group were assessed.All of the experiments used for data comparisons were repeated three times. The statistics were analyzed via analysis of variance (ANOVA) followed by Duncan's new multiple range test with SPSS version 20.0. The significance level was set to P < 0.05.We compared the morphological changes in control and waterlogged plants after 6 days of waterlogging stress. No morphological changes were observed in the control plants, which had green leaves and upright stems. However, the leaves of the stem base of the waterlogged plants were withered and yellow, although the young leaves remained green (Fig 1A).To investigate the photosynthetic ability of cassava plants under waterlogging stress, the chlorophyll content and Fv/Fm were determined. The chlorophyll content decreased by 20% under the waterlogging treatment (Fig 1B). The Fv/Fm values of the waterlogged samples also significantly decreased compared with those of the CL samples. In the WL samples, the Fv/Fm ratio was 0.5-0.6, while in the CL samples, the Fv/Fm ratio was approximately 0.7 or higher (Fig 1B). The observed decrease in Fv/Fm values may be associated with the sensitivity of the photosynthetic apparatus to waterlogging stress.The activities of SOD, POD and CAT were measured for the CL, WL, and CR (roots under nonwaterlogged conditions) samples and the WR (roots under waterlogged conditions) samples. The activity of three antioxidant enzymes increased in the WL and WR samples. The SOD activity in the WL and WR samples reached values that were 1.9-fold and 3.2-fold higher than those in the CL and CR samples, respectively (Fig 1B). The activity of CAT in the WL samples reached 353 U�g -1 , which was more than four times that in the CL samples (Fig 1B). The POD activity in the WR samples was 3.8 times higher than that in the CR samples (Fig 1B). After removing the unknown reads (those whose proportion of undetermined bases was > 10%), low-quality reads and reads that contained adapters and at least 39.4 million clean reads were obtained for each sample (Table 1). The clean reads were subsequently mapped to the reference genome, with the mapping ratio varying from 79.4% to 86.1%. More than 78% of the reads were uniquely mapped (Table 1). With a fold-change � 2 and a FDR corrected p-value of < 0.01 used as screening criteria, 15902 genes were identified as differentially expressed in at least one tissue between the nonwaterlogged conditions and waterlogged conditions (Fig 2, S2 Table ). Among them, 13364 differentially expressed genes (DEGs) were found in the CR vs WR pairwise comparison, and 2538 DEGs were found in the CL vs WL comparison. We discovered that there were many more DEGs in the CR vs WR comparison than in the CL vs WL comparison, suggesting that the waterlogging response is more complex in the roots than in the leaves. This is consistent with findings for Taxodium 'Zhongshansa' [31]. A total of 1523 genes were found to be shared between the two tissues, of which 625 showed opposite expression responses. Additionally, 11841 genes (5076 upregulated and 6765 downregulated) were exclusively differentially expressed between the CR and WR samples, and the expression levels of 1015 genes (517 upregulated and 498 downregulated) exclusively changed between the CL and WL samples (Fig 2, S2 Table ).Principal component analysis (PCA) was used to visualize the overall changes in gene expression in the different treatments. The first two principal components, which explained 76.7% of the total variance (58.2% by the first component, 18.5% by the second component), showed that the waterlogged tissues and nonwaterlogged tissues were dissimilar. Moreover, the replicates showed a high degree of similarity for all four treatments (Fig 3).To further characterize the expression changes discussed above, we compared the enriched KEGG pathways for DEGs between the two tissues, the results of which indicated some tissuespecific or highly performed functions (Fig 2). The following pathways were highly enriched in the DEGs whose expression was upregulated: 'alanine, aspartate and glutamate metabolism'; 'galactose metabolism'; and 'carbon fixation in photosynthetic organisms'. However, other pathways were highly enriched in the DEGs whose expression was typically downregulated in both tissues, including 'glyoxylate and dicarboxylate metabolism'; 'base excision repair'; and 'glycine, serine and threonine metabolism'. The pathways 'protein export', 'biosynthesis of amino acids', and 'protein processing in endoplasmic reticulum' were highly enriched in the DEGs whose expression was upregulated specifically in the CL and WL samples, while the 'mRNA surveillance pathway', 'spliceosome' and 'RNA transport' pathways were dramatically enriched in DEGs whose expression was specifically increased in the CR and WR samples. The DEGs involved in all aspects of photosynthesis, which were associated with 'carbon fixation in photosynthetic organisms', 'photosynthesis', 'carbon metabolism' and 'nitrogen metabolism', were listed as the top four enriched pathways in the CL and WL samples. The 'ribosome' pathway was the pathway most enriched by DEGs whose expression was downregulated specifically in the CR and WR samples.PSI, PSII, the cytochrome b6/f complex, photosynthetic electron transport, and F-type ATPase are key components in the photosynthetic pathway. The comparison between the CL and WL libraries revealed 12 DEGs related to the photosynthesis pathway, including three genes related to photosystem II (PSII), four related to photosynthetic electron transport, one related to the cytochrome b6/f complex, and four related to the F-type ATPase. DEGs involved in PSII, the cytochrome b6/f complex and F-type ATPase were downregulated in the leaves when cassava was under waterlogging stress, two upregulated and two downregulated DEGs were related to photosynthetic electron transport (Fig 4, S3 Table ). The malfunction of PSII reduced the efficiency of electron transport for photosynthetic reactions, which could result in substantive accumulation of reactive oxygen species (ROS) and further reduced PN under WL. Additionally, 12 genes involved in photosynthetic activities may be associated with the differences in leaf color and may cause a decrease in the Fv/Fm ratio.In both the roots and leaves of waterlogged cassava, many genes with potential roles in glycolysis and fermentation were identified as displaying a significant transcriptional response to ). A total of 113 DEGs (47 upregulated and 66 downregulated) were annotated as encoding enzymes involved in the glycolysis/gluconeogenesis pathway according to their KEGG classification (S4 Table ). The expression of most of the DEGs was upregulated in the WL samples compared to the CL samples and were involved in enzymes such as glyceraldehyde 3-phosphate dehydrogenase (GAPDH), phosphofructokinase (PFK), enolase, alcohol dehydrogenase (ADH), L-lactate dehydrogenase (LDH) and pyruvate kinase (PK). However, in the WR samples, the expression of major glycolysis-and fermentation-related genes in response to waterlogging stress decreased, indicating a decrease in throughput of these pathways (Fig 5).A comprehensive analysis of the DEGs in the leaves and roots involved in the galactose metabolism pathway identified two and four genes in the leaves and roots that encode glucuronosyltransferase (inositol galactoside synthase) (Fig 6 , S5 Table). This protein catalyzes the synthesis of inositol galactoside from UDP-galactose and myoinositol, which is the first key step in the synthesis of raffinose family oligosaccharides (RFOs) and the most critical regulatory step in RFO synthesis. The expression difference levels of two and three genes increased successively in leaves and roots, and one gene was downregulated in the roots (Fig 6, S5 Table ). The analysis identified four and five genes encoding inositol galactoside-sucrose galactosyltransferase (raffinose synthase) in leaves and roots, respectively. This protein mainly catalyzes the synthesis of raffinose from inositol galactoside and sucrose. One and three genes encoding β-D-fructofuranoside were identified in the leaves and roots and mainly catalyze the decomposition of stachyose and raffinose into melibiose and the decomposition of sucrose into glucose and fructose. We also found two genes in the roots encoding β-galactosidase (β-GAL), which mainly catalyzes the decomposition of lactose and raffinose into melibiose (Fig 6B , S5 Table). Two of the main pectin deglycosylating enzymes that participate in this process are alpha galactosidases (α-GAL) (EC:3.2.1.22) and β-GAL [32]. In this study, four α-GAL DEGs were identified, two of which were upregulated after waterlogging in the roots, while two of them were downregulated. One β-GAL gene was identified and downregulated in the roots. Two α-GAL DEGs were upregulated in the leaves (Fig 6). One alpha glucosidase (α-Glu) gene, which is involved in cellulose degradation, was downregulated in the roots (S5 Table ).TFs are key regulators of target gene expression in response to various biotic or abiotic stresses by binding to specific cis-acting elements in these gene promoters [33]. In this study, a total of 605 waterlogging-regulated TFs were identified according to their assigned gene families (Fig 7,S6 Table). Of these, 84 TFs (55 upregulated and 29 downregulated) were commonly expressed in the leaves and roots, whereas 66 TFs (43 upregulated and 23 downregulated) were expressed in the leaves only, and 455 TFs (179 upregulated and 276 downregulated) were expressed only in the roots. These data strongly suggest that transcriptional regulation occurs in response to waterlogging. Remarkably, genes belonging to the MYB, WRKY, NAC, and AP2/ERF families encode most of the differentially expressed TFs, implying that these genes have important roles in waterlogging stress responses (Fig 7, S6 Table ).To verify the reliability of the RNA-seq data, we selected twelve genes for further investigation using qRT-PCR methods (Fig 8A , S1 Table). The results showed that the expression patterns determined via qRT-PCR were highly consistent with the RNA-seq data, with a relative R 2 of 0.9077 (Fig 8B).Substantial progress has been made in understanding waterlogging or low-oxygen-stress response mechanisms at the transcriptional level in Arabidopsis [34,35] and in various crop species, such as rice [36], rape [37], cucumber [38,39] and maize [40], using transcriptomic approaches. These studies indicated that genes regulated by low oxygen availability are extremely diverse among species and are involved in ethylene synthesis, glycolysis, ethanol fermentation, carbohydrate catabolism, photosynthesis and galactose metabolism.Waterlogging stress is different from complete submergence in that only the lower and subsoil portions of affected plants are subjected directly to the stress. In this study, comparison of a transcriptional response to waterlogging stress between the aboveground tissues (leaves) and belowground tissues (roots) revealed a high number of DEGs during the same period. These data can be used to discern among the enriched gene function categories, which can be reasonably explained by the functional differences between the two tissues. A previous report showed that the ability to tolerate hypoxic stress in the leaves and roots could be genetically based [31,41], and the anaerobic induction of most known anaerobic proteins (ANPs) was root specific.Genes associated with functional categories related to mRNA surveillance, RNA transport and degradation were most highly enriched in the roots, but they were also dramatically enhanced in the WR samples, which indicated a large scale of energy savings under hypoxic conditions. However, few studies have analyzed the role of these genes in the waterlogging response. In addition, the genes that were involved with ribosomes and whose expression was downregulated were the most enriched in the WR samples, suggesting that waterlogging decreased ribosome biosynthesis. Ribosomes are large and complex molecular machines found within all living cells in plants and serve as the primary sites of biological protein synthesis or translation [42]. Downregulation of ribosomal genes has been found in several plant species exposed to heavy metal stress [43,44]. Our results suggest that there is a common ribosome biosynthesis network between waterlogging and heavy metal stress in cassava. Moreover, the disruption in aerobic respiration caused by waterlogging may inhibit the tricarboxylic acid (TCA) cycle and activate glycolysis and fermentation pathways at the wholeplant level, resulting in the accumulation of amino acids closely derived from glycolysis intermediates (glycine, serine, threonine, etc.) and a decrease in TCA cycle intermediate-derived amino acids (asparagine, aspartic acid, glutamine, glutamic acid, etc.) [45]. In this study, as expected, the genes related to 'alanine, aspartate and glutamate metabolism' and 'glycine, serine and threonine metabolism' were highly enriched in both tissues, suggesting that pathways related to carbohydrate and amino metabolism were activated when cassava was exposed to hypoxic conditions. This finding was consistent with those in alfalfa [46].Chlorosis is a typical symptom that inevitably occurs after severe waterlogging. Because waterlogging causes water saturation and subsequent rapid closure of stomata, a high concentration of O 2 cannot be released out, and photosynthetic electron transportation is blocked in chloroplasts [47,48].Waterlogging at the plant stage of cassava plants caused significant decreases in chlorophyll content and the Fv/Fm ratio and caused premature senescence of leaves (Fig 1). These results were consistent with those of previous studies in which waterlogging-induced chlorophyll loss was associated with a decrease in photosynthetic activity [49]. Interestingly, the Fv/Fm ratio was inconsistent with the findings of Guide and Soldatini [50], who observed that after 6 days of waterlogging, the Fv/Fm ratio remained unchanged and photosynthesis continued to decrease in the absence of stomatal closure in soybean. DEGs relevant to photosynthesis were abundant in the leaves compared with the roots. In this study, the top two enriched pathways by genes whose differential expression was specifically downregulated in the WL samples were associated with photosynthesis pathways, indicating a possible reduction in the photosynthesis rate (Fig 4,S3 Table). These DEGs were involved in PSII and the photosynthetic electron transport chain (cytochrome b6-f complex, ferredoxin, transporting ATPase subunit, etc.). The reaction centers of PSII in chloroplast thylakoids are also the major generation sites of ROS and are largely affected by abiotic factors such as low oxygen concentrations [37,51]. In addition, the expression levels of genes encoding rubisco and rubisco activase, which are involved in carbon-fixing reactions, were also downregulated, suggesting that waterlogging stress not only inhibits photosynthetic reactions but also reduces the efficiency of CO 2 fixation in cassava. Similar waterlogging responses in other crop species have been previously reported [37,52].Generally, plants receive their essential energy supply through glycolysis and ethanol fermentation when facing energy shortages caused by waterlogging stress [53]. In this study, many genes, including well-known hypoxia-related genes associated with glycolysis and fermentative processes, were identified as having a significant transcriptional response to waterlogging stress in both tissues, which indicated that the pathway was activated to maintain ATP production under hypoxic conditions. Most ANPs have been identified as enzymes involved in the glycolysis or sugar phosphate pathways that are needed to maintain energy production under waterlogging conditions [54,55].Fermentation is a process of energy conversion necessary during waterlogging stress, during which the expression of some anaerobic genes, such as PDC and ADH, is upregulated [56,57]. Overexpression of PDC1 and PDC2 in Arabidopsis improves survival under low-oxygen conditions [58]. A similar result was obtained by Rivoal et al. in rice [59]. ADH activity has been reported to increase under anoxia, and compared with wild-type plants, maize mutants deficient in ADH activity are more sensitive to waterlogging stress [60]. In this study, the expression of four out of five ADH genes was significantly upregulated in the roots under waterlogging stress (S4 Table ), and the expression of one PDC gene was also significantly upregulated. These results suggest that energy was produced under hypoxic conditions by the activation of alcoholic fermentation. The expression of none of the genes encoding PDC changed in the CL vs WL comparison. This finding was consistent with findings for Taxodium 'Zhongshansa' [31] and gray poplar [45]. In addition to PDC and ADH, LDH is also involved in the response to low-oxygen conditions and is activated in the initial stages of root hypoxia in many plant species. In a study on gray poplar, LDH transcripts were also rather abundant during the initial reaction to oxygen deprivation but decreased after approximately 5 h due to the decrease in cytosolic pH caused by lactic acid [45]. In this study, the expression of an LDH gene was significantly upregulated in the WL samples, while in the WR samples, it was unchanged. Additional quantitative real-time PCR experiments are needed to confirm the importance of LDH in the roots of cassava during waterlogging tolerance.The energy metabolism pathway is not only related to the alcohol dehydrogenase-catalyzed step of glycolysis but also associated with starch and sucrose metabolism and the galactose metabolism pathway. Accumulating data suggest that low oxygen concentrations play a key role in the induction of hypoxia metabolism, such as the expression of genes triggering anaerobic fermentation, sugar utilization and antioxidant defense [61,62]. We found that after waterlogging treatment, the expression levels of major genes related to galactose metabolism in the leaves and roots were upregulated. Raffinose and galactitol, as ROS scavengers, can reduce oxidative damage under abiotic stress conditions [63]. Additionally, raffinose can be transported to chloroplasts to protect thylakoids and stabilize PSII [64]. Both galactinol and raffinose accumulate at higher levels in plants in response to abiotic stresses [65]. They play a novel role in the protection of cellular metabolism from oxidative damage caused by salinity, chilling, or drought [66]. Under the condition of long-term waterlogging, the cell wall of plants will disintegrate before the whole cell disintegrates [67,68]. Degradation of cell wall polysaccharides is a consequence of synergistic action among several key cell wall modifying enzymes, including polygalacturonase (PG), pectin methyl esterase (PME), β-GAL and cellulase (CEL) [69]. In our study, two β-GAL genes in the roots and one β-GAL gene in the leaves were downregulated, suggesting that the cell wall degrades slowly under waterlogging stress (S5 Table ).Previous studies have reported that MYB TFs are closely related to the primary and secondary products of plant morphogenesis and to the metabolic regulation of plant resistance [55,[70][71][72]. The members of this TF family are also known to trigger ADH gene. For instance, the induction of AtADH1 expression is tightly coupled to the initial increase in AtMYB2 transcripts [73]. Research on wheat has shown that the expression of TaMyb1 is strongly induced in the roots under hypoxic conditions [74]. We found 23 MYB-and 34 MYB-related TFs in the upregulated group, indicating that these genes have potential roles in waterlogging stress responses and tolerance. ERF TFs belong to a plant-specific TF superfamily related to the stress response. Previous studies have shown that AP2/ERF TFs such as Sub1A, HRE1, HRE2, Snor-kel1, Snorkel2, and RAP2.2 are important for tolerance to plant hypoxia caused by waterlogging [75][76][77]. For instance, overexpression of SK1 and SK2 significantly enhances the waterlogging tolerance of rice and is characterized by excessive elongation of internodes [75]. Hinz reported that constitutive overexpression of HRE1 or HRE2 could rapidly induce the expression of hypoxia-responsive genes, such as PDC and ADH, to enhance waterlogging tolerance in Arabidopsis [76]. Under hypoxia, the presence of RAP2.12 in the nucleus may lead to not only relocalization of the existing protein but also de novo synthesis [78]. In this study, the expression of 26 and 21 AP2/ERF genes was upregulated and downregulated, respectively, under waterlogging stress. Whether the TF changes are related to cassava waterlogging tolerance requires further demonstration. Additionally, members of the WRKY and NAC TF families may also be associated with the transcriptional regulation of genes involved in the waterlogging response of cassava, as these TFs were overrepresented in the list of DEGs. These results were similar to those for soybean [79] and kiwifruit [11].In this study, we used high-throughput sequencing to characterize the transcriptome responses in the roots and leaves of partially submerged cassava plants. In total, 15902 transcripts were identified as being differentially expressed. KEGG enrichment analysis provided comparisons of iCL vs WL and of CR vs WR. The results suggested that waterlogging stress mainly represses photosynthesis reactions in the leaves and improves energy savings in the roots. Amino acid metabolism also greatly changed in both tissues, and a nitrate-producing pathway may be induced to help maintain ATP levels. Furthermore, complex interactions between energy production and the antioxidant enzyme system were observed, suggesting that they have important roles in the waterlogging response. The changes in the expression of these genes involved in the waterlogging response might be regulated by the synthesis and perception of some TFs, such as ERFs, MYBs, WRKYs and NACs.","tokenCount":"5160"} \ No newline at end of file diff --git a/data/part_3/4869347825.json b/data/part_3/4869347825.json new file mode 100644 index 0000000000000000000000000000000000000000..3357b9d9a2f2d30bba8e175266f9b29029333446 --- /dev/null +++ b/data/part_3/4869347825.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"00de37adc82de1868bbeb60ec02a8830","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/dbc152bb-e029-4bca-9a1d-dd529bfc6848/retrieve","id":"-1681526354"},"keywords":[],"sieverID":"1528dc1c-4924-44c2-a059-3802cca8959a","pagecount":"1","content":"de la Recherche Agronomique de Tunisie, 43 Avenue Hedi Karray, 2049 Tunis, Tunisie.The Tunisian citrus certification program for sanitary improvement and production of healthy plants free from virus and virus like diseases started in 1994 and has the following objectives: a) virus sanitation of the local varieties by shoot-tip grafting in vitro (STG); b) introduction of foreign varieties from the San Giuliano Agricultural Research Station (INRA-IRFA, Corsica); c) introduction of new rootstocks tolerant to Tristeza such as Citrus volkameriana, Citrumelo swingle and Citrange carrizo. The organization and the steps of this program were established according to the Tunisian law of plant certification. This law has put the rules of sanitation controls that guarantee production of virus free certified plants mainly from Citrus tristeza virus, Citrus psorosis virus, virus like diseases (Impietratura, concave gum, blind pocket), Citrus stubborn disease caused by spiroplasma citri and viroids (mainly Citrus exocortis viroid and Cahexia citrus viroid). Healthy mother plants are conserved under screen-house and multiplied in order to obtain pre-basic and basic materiel that is delivred to nurseries. Since its establishment, this certification program allowed the sanitation of 18 local and 17 imported varieties. Nurseries are assisted and supplied with about 4000 basic plants grafted on tristeza tolerant rootstocks for the production of certified seedlings.Mazen Alazem, Kristin Widyasari, John Bwalya and Kook-Hyung Kim, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea, Email: m.alazem@gmail.com Studies on functional genomics necessitate the use of silencing vectors such as Bean pod mottle virus (BPMV) vector. Soybean cultivar L29, which carries the resistance gene Rsv3, exhibits extreme resistance (ER) against the G5H avirulent strain of Soybean mosaic virus (SMV), but not against the virulent G7H strain. This resistance is attributed to the induction of abscisic acid (ABA), the antiviral RNA silencing pathway, and callose deposition. In attempt to silence few genes important for ER in L29 plants, BPMV vector was employed. BPMV vector, however, highly induced the expression of many genes in the salicylic acid (SA) and the RNA silencing pathways in the control plants compared with the healthy untreated plants. Rsv3 expression was reduced after BPMV infection, whereas genes involved in the ABA pathway remained unregulated in all soybean lines. Inductions of SA and RNA silencing genes were moderate in lines carrying Rsv1 and Rsv4 plants, and weak in rsv-null soybean plants. BPMV renders L29 plants more susceptible to G7H infection compared to untreated plants, but more interestingly, BPMV breaks the Rsv3-mediated ER of L29 against G5H allowing the latter to accumulate locally but not systemically. The coat protein large unit (CPL) of BPMV exhibited VSR activity in Nicotiana plants, and when CPL was expressed within the G5H genome, the latter accumulated locally but not systemically. Our findings suggest that the BPMV silencing vector breaks part of the Rsv3-mediated ER against the SMV avirulent strain by impairing the antiviral RNA silencing pathway, and triggers SA-related defence in plants with antiviral R-genes. It can be also suggested that BPMV silencing vector might not be a useful tool to study plant-virus interactions, and that such observation might also occur for other similar viral vectors. Chickpea (Cicer arietinum L.) ranks third among the pulse crops that attribute to global food security. Viruses that cause yellowing and stunting symptoms are considered a main threat to chickpea production worldwide. Currently, there is a great interest in applying eco-friendly smart technologies to achieve best control results. Results of serological [Tissue blot immunoassay (TBIA)] and molecular assays [Reverse transcription-polymerase chain reaction (RT-PCR)] used in fieled surveys carried out during four growing seasons (2006, 2007, 2017 and 2018) in chickpea fields, revealed that the polerovirus Chickpea chlorotic stunt virus (CpCSV) was dominant in all seasons. Thus, the objective of this study was to identify practices to reduce the effect of viruses causing yellowing and stunting of chickpea under Syrian ecology. This approach included screening 80 chickpea genotypes for virus resistance (obtained from ICARDA Gene Bank under open filed conditions. To reduce virus incidence in the field several practices such as planting date, plant density, locations, cultivars (Ghab-3, Ghab-4, Ghab-5, promising variety FLIP95-65C and susceptible variety JG62), as well as intercropping between chickpea and other crops like flax (Linum usitatissimum), black cumin (Nigella sativa) and coriander (Coriandrum sativum) were evaluated. Results revealed that few chickpea genotypes (such as IG9000, IG69434, IG69656, IG69693, IG71832 and IG128651) were found resistant/tolerant for CpCSV and it could be used as a resistance source in chickpea breeding programs. Virus infection was decreased around 50-80% and crop yield was increased by 5-35% with high significant differences when chickpea was planted during the first half of December with plant density of 20-30 plants/m 2 . In addition, yield was improved with low virus infection when chickpea was intercropped with flax in alternate lines or with coriander (1 line of coriander each 5-6 chickpea lines). Generally, the results confirmed the importance of the interaction between a number of practices which together formed an integrated system that influenced virus spread and can be considered a potential approach for sustainable virus diseases management.","tokenCount":"839"} \ No newline at end of file diff --git a/data/part_3/4873877071.json b/data/part_3/4873877071.json new file mode 100644 index 0000000000000000000000000000000000000000..199c547b5d29e30903b4854fdad1e279d6b4bfea --- /dev/null +++ b/data/part_3/4873877071.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"784d66133a1bf2c5c8d3b767a4e7c32b","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/46cc4d07-7be6-43e7-a649-30b1c171a858/retrieve","id":"-1722424707"},"keywords":[],"sieverID":"613ba72e-e98c-49c0-ae1c-0e1cea0ebd4d","pagecount":"2","content":"The decision checklist is a practical tool developed by the CGIAR Gender and Breeding Initiative to help breeding programs become more gender-responsive.positive impact on gender equality. Each decision point requires breeders, gender experts, and others involved in breeding to make decisions using reliable evidence on gender differences that can be applied to a target population of intended users.Communications Specialist, RTB h.holmes@cgiar.orgThe decision checklist in Table 1 is a practical tool for breeders that elaborates on the flowchart by linking decision points to the information -reliable evidencerequired for gender responsive results. This checklist can be introduced at any stage in a breeding program, but is likely to be most effective when used during early stages, when decisions about who to target and the breeding objectives are made. Further details can be found in Brief 1 Critical Decisions for Ensuring Plant or Animal Breeding is Gender-Responsive. • Value of desired traits • Definition of performance levels relative to desired impact 6) Have traits been valued with a gender dimension? 7) Have feasible trait packages been defined considering potential impact on gender equality?Product profiles with a gender dimension How is the program going to breed for the traits needed?Is new variation needed to meet the specifications of the product profile?How will selection of bred genotypes meet the specifications of the gender-responsive product profile?• Information on male and female users' criteria for evaluating genotypes • Methodologies for creating, screening and selecting genotypes 8) Has new variation been createdor identified considering genderdifferentiated trait preferences and priorities? 9) Are gender-differentiated preferences included in evaluation criteria?Breeding products with traits useful to women, men or both.What gendered constraints should be included in the design of delivery systems for the breeding products?• Constraints faced by men and women in different customer segments, to seed production and distribution • Information about gender inequalities that are potential or actual bottlenecks to adoption 10) Are gender-responsive strategies for seed production and distribution in use?Gender-responsive delivery strategy for breeding productsWhat to monitor and document?• Gender-disaggregated information on perceptions of materials in trials and on adoption by men and women 11) Are there information systems in place to track the stages of customer and product profile development, and the acceptability of released materials, by men and women?Feedback on product advancement with a gender dimension ","tokenCount":"380"} \ No newline at end of file diff --git a/data/part_3/4884647957.json b/data/part_3/4884647957.json new file mode 100644 index 0000000000000000000000000000000000000000..08681cd1d41ad2cae53d408b7ffebbb7d0197c2a --- /dev/null +++ b/data/part_3/4884647957.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"aaaa0720c0d71d4dbc18528d848de887","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/f5645167-c437-409c-a8ff-a1bf7104d621/retrieve","id":"1790507064"},"keywords":[],"sieverID":"84f60a61-a7ac-4e65-88c8-8361dff43772","pagecount":"36","content":"De 20 poblaciones desarrolladas desde 1995 las más De 20 poblaciones desarrolladas desde 1995 las más estudiadas han sido: estudiadas han sido: Lemont / O. barthii Bg90-2 / O. glaberrima Oryzica 3 / O. rufipogon Bg90-2 / O. rufipogon Bg90-2 / O. rufipogon • Caracteres Positivos Buen tipo de planta, tallos fuertes y alto potencial de rendimiento. Resistencia a Rhizoctonia Evaluación campo agricultores en 11 Localidades -2002 CIAT-ION-2003ACEITUNO ARMERO 0 1 .CT1 3 9 1 1 6 .CT1 3 9 5 8 0 2 .CT1 3 9 1 1 7 .CT1 3 9 5 8 0 3 .CT1 3 9 1 1 8 .CT1 3 9 5 8 0 7 .CT1 3 9 1 1 9 .CT1 3 9 5 8 0 8 .CT1 3 9 6 2 0 .CT1 3 9 5 8 0 9 .CT1 3 9 6 2 1 .CT1 3 9 5 6 1 0 .CT1 3 9 6 2 2 .CT1 3 9 5 6 1 1 .CT1 3 9 6 2 3 .CT1 3 9 5 9 1 2 .CT1 3 9 8 2 4 .CT1 3 9 5 9 1 3 .CT1 3 9 8 2 5 .CT1 3 9 7 6 1 4 .CT1 3 9 8 2 6 .Bg 9 0 -2 1 5 .CT1 3 ","tokenCount":"215"} \ No newline at end of file diff --git a/data/part_3/4886416233.json b/data/part_3/4886416233.json new file mode 100644 index 0000000000000000000000000000000000000000..dc759cd641b80ba0b06ac8c7e2f0d4b8be5f053f --- /dev/null +++ b/data/part_3/4886416233.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"f9510b22c4343c252b987cc68a1dcd35","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/9fcdaf0a-19fa-4d7c-b995-85d8befd38d3/retrieve","id":"-1652423313"},"keywords":[],"sieverID":"3c2428ab-7290-4944-a107-6fc746bb6700","pagecount":"16","content":"Rationale: This project will address the important external drivers that influence water resources of the coastal zone and to assess the anticipated changes in flooding, drainage congestions, salinity intrusion, water availability, sedimentation and risk of inundation of cyclone induced storm surge as a consequence of these drivers. The water resources in the coastal zone of the Ganges basin are vital for crop production, ecosystem sustenance and livelihoods. These resources are largely shaped by tidal dynamics and upstream flows, and are affected by changes in the natural, socio-economic and institutional systems. It is important to identify and prioritize these drivers, and assess their effects on water resources towards building resilient water governance and management to cope with the projected future conditions. Key activities of the project are: review of the existing model studies, literature, available data and collection of data; identification and ranking of external drivers; adaptation, calibration and validation of Soil Water Assessment Tool (SWAT) and Water Evaluation And Planning System (WEAP) models for assessing baseline hydrological conditions; setup, calibration and validation of Ganga-Brahmaputra-Meghna (GBM) basin model, South West Regional Model (SWRM), and Bay of Bengal (BoB) model; assessment of water flow pattern, salinity distribution, storm surge risk, sedimentation pattern in baseline and projected conditions; assessment of adaptation strategies to changes caused by key drivers; and exploration of policy implications for adaptation strategies and water governance. Key outputs of the project include: list of key external drivers; climate change projections for the study region; projection of scenarios for land-use and climate change; flow availability; salinity zoning map of the coastal Ganges; flood depth-duration map; water storage volume inside polders; storm surge risk map; sedimentation rate in peripheral rivers; plan for improvement of khal system, sluices and embankments; operation rules for sluices.Methodology: This project will develop a comprehensive list of external drivers based on past researches, global literature review, interaction with the major stakeholders and peers. This list will then be put under a well designed priority and ranking criteria for identification of the key drivers contributing to about 85-90% of the anticipated changes. On the basis of performance and field validation, appropriate models will be selected for studying the baseline conditions and effects of external drivers on salinity intrusion, water availability, drainage congestions and risk of inundation due to storm surges. The models available with IWM and partner organizations will be utilized to simulate the baseline and changed conditions in 2020, 2030 and 2050. The study will be conducted at two scales: regional level for the coastal regions of Bangladesh and at local level for the selected polders. On the basis of the anticipated impacts different adaptation strategies will be devised such as improvement of the land-use patterns, drainage canals, operation of sluices, strengthening of embankments, dredging, restoration of dry season freshwater flow for flushing salinity as well as restoration of the ecosystem. Specific adaptation strategies for choice and selection of the crops/aquaculture during different seasons and their salinity and submergence tolerance will be developed in consultation with G2 and G3 projects. Policy implications on these strategies and a required governance structure will be also explored in a participatory way. The implications of major national policies in the realm of national water policies, agricultural policy, environment policy, disaster management policy, and climate change adaptation strategy and action plan (BCCSAP) will be particularly emphasized. Likely Impacts: The output of this project is expected to be reflected in water use of local farmers and fishermen, water management by water control system managers and planning of the policymakers.The BDC goal is to reduce poverty and improve food security through improved water governance and management, and more productive and diversified agricultural-aquaculture systems for more resilient communities in the fresh-brackish water coastal zones of the Ganges delta. The present and future agriculture-aquaculture systems in these regions depend, to a large extent, on the availability of fresh water which in turn is governed by a number of external drivers. These interactions are likely to be more pronounced in future. The existing knowledge of the anticipated role of these external drivers on water availability and health of the coastal zones is limited. Through an improved understanding, this project shall help in development of appropriate agricultural systems, design suitable water infrastructure and its operating practices leading to climate resilient communities in the vulnerable coastal zones of the Ganges delta.In the first instance this project shall identify and prioritise the key external drivers of change in hydrology, water resources and soil and water quality in the coastal zone of Bangladesh. Furthermore, through rigorous data collection and state-of-the art modelling, the project shall assess the impact of these key external drivers for the selected study polders. The project shall also develop scenarios for the near long term future projections to facilitate physical, governance and policy interventions and targeted investments. For ease of understanding, we have disaggregated this complex research and development problem into four research questions. The following paragraphs describe these questions along with the proposed research methodology to achieve the desired outputs and outcomes:1. What are the key drivers of change in the hydrology and performance of the system?The hydrologic system in the coastal regions of Bangladesh is very vulnerable to impact of external drivers. The performance of the system varies seasonally, annually and especially during the occurrence of extreme events. The project will develop a comprehensive list of external drivers based on past researches, literature review, and interaction with the peers and major stakeholders. This list will then be put under a well designed priority and ranking criteria for identification of the key drivers contributing to about 85-90% of the anticipated changes. We shall also consult with TWG on global drivers in selecting and prioritizing the key drives. We shall organize a workshop of the major professionals and stakeholders (including the project leaders of G1, G2, G3 and G5) to seek their inputs, advise and finalization of the priority ranking and final selection of the drivers. Only the selected drivers will be considered in this study. We will visit the Indian part of the Ganges to gain knowledge about the situations in the upstream and experience of the people in the unpoldered regions of coastal Ganges. Based on previous studies the likely external drivers can be divided in two broad categories: (1) biophysical drivers such as land-use change, change in water use and water management practices, climate change impacts (change in temperature and precipitation, sea level rise), urbanization, industrialization, change in transboundary flow; and (2) socio-economic drivers including demographic change, change in water governance, shift in political economy of water, change in water/coastal zone policies and so on. There are interdependences among the biophysical and socioeconomic drivers. The future scenarios simulated in this study will be devised considering combination of various drivers.The project will review and evaluate models available in-house, with the partner organizations and globally. Based on the performance and suitability appropriate models will be selected for studying the effects of the drivers of changes. For flood, submergence, sedimentation and salinity intrusion the study will use the GBM basin model, regional models, the Bay of Bengal and RCM models based on MIKE basin, MIKE 11, and MIKE 21FM. (Details are available in Annex-I). Soil Water Assessment Tool (SWAT) and Water Evaluation And Planning Process (WEAP) models will be used for assessing the impacts of land-use changes on flow. The effect of storm surges of varying intensities and frequencies on polder overtopping and inundation will be assessed using the Bay of Bengal model based on MIKE 21. These models will be utilized to simulate the baseline and projected conditions in 2020, 2030 and 2050. The study will be conducted at the regional level for the coastal regions of Bangladesh as well as in three selected polders (Polder No.3,31 & 43/2f, see Figure 1: Study area map of G4). The projection years and the polders have been selected during the proposal development workshop through communication among the projects. Water flow, salinity, sediment and storm surge model results will be calibrated with respect to measured data and verified in consultation with the local communities. The preliminary findings will be discussed with G1, G2 and G3 (through G5) to obtain their feedbacks which will be incorporated in G4 research for further refinement of the model results.It is now well recognised that the existing adaptation strategies are inadequate to cope up with the enhanced magnitude and increased frequency of the impacts of the anticipated changes. The project shall employ a resilience framework to study the future impacts and devise appropriate short, medium and long-term adaptation strategies. In the beginning, the resilience of different agro-hydrological system for the southwest region and indentified polders will be analyzed. Based on the resilience and the anticipated impacts different adaptation strategies will be devised such as improvement of drainage canals, operation of sluices, strengthening of embankments, dredging, and restoration of dry season freshwater flow for flushing salinity as well as restoration of the ecosystem. Specific adaptation strategies for choice and selection of the crops/aquaculture during different seasons and their salinity and submergence tolerance will be developed in consultation with G2. Collaboration shall be developed with G3 and G5 projects for information on community/ institutional management of the resources and the operation of the water infrastructure and its governance at the polder level. Implications of these adaptation strategies will be determined using the models and stakeholder consultation. Polder-specific impacts and economic implications will be also analyzed. These upscaling and downscaling will be conducted through G5. Moreover, linkage with TWG on resilience will be established through G5 in order to devise resilience strategies.The implications of major national policies including the national water policies, agricultural policy, environment policy, disaster management policy, climate change adaptation strategy and action plan (BCCSAP), and water sharing agreements will be reviewed to identified their specific relevance to the present context and to determine what changes may be effective in coping with the anticipated changes. Specific development programs like IPSWAM, WAMIP, and CEIP, and those being conducted by LGED, Department of Fisheries and other organizations will be also analyzed to identify possible policy changes.The project shall then endeavour to develop potential strategies for consideration of the policymakers and major stakeholders involving G5. These strategies, both short and long term, shall be specific to the identified polders, for the south west region as a whole and Bangladesh. The project shall conduct a number of well-designed and targeted policy dialogues, round tables, one-to-one meetings with the key change agents and polder level meetings with the key stakeholders for familiarising them with the external drivers of change and their potential future impacts on water resources. These upscaling and downscaling will be conducted through G5. The project shall also develop high quality policy and media briefs, and electronic and published communication material for facilitating the informed decisions on policy changes. Extensive field visits and interaction meetings of the water control agencies and policymakers will be conducted to influence policymakers and stakeholders to adapt to anticipated changes. National stakeholder workshops and local training sessions will be conducted to disseminate the effects of anticipated changes on water resources and importance of changing the policies to cope with anticipated changes.A number of studies were carried out in the Ganges basin and study results are available. However, these studies did not address the availability of flow and storage capacity for crop planning and management. There is a lack of continuity of assessing implications of external drivers on water availability and salinity intrusion. Assessment of implication of recent projection of climate change on water resources has not been addressed in the Ganges basin. The IPCC 4th Assessment predicted seasonal percentage precipitation change occurring over a period of three decades for South-East Asia which can be very useful in developing climate change scenarios in the present study (Cruz et al., 2007). However, this prediction is for entire South-East Asia and not specifically for Bangladesh. The projections are summarized in the following table. World Bank completed a research project titled \"Bangladesh Economics of adaptations to climate change\" (World Bank, 2010). This project aimed at assessing the effects of climate change on flooding, water-logging, salinity intrusion and storm surge level in the coastal area of Bangladesh. In this project different adaptation strategies were devised and their effectiveness was assessed using available Ganges-Brahmaputra-Meghna Basin, Southwest regional (Ganges delta) and Bay of Bengal models. Key Lessons Learned:-Cyclone induced storm surge overtops a large number of coastal polders with and without climate change and sea level rise conditions. -Salinity front moves landward considerably due to sea level rise and freshwater pockets in the coastal area are likely to be lost. -A good number of coastal polders are likely to experience drainage congestions.Asian Development Bank (ADB) conducted a study on \"Bangladesh: Strengthening the Resilience of the Water Sector in Khulna to climate change\" (IWM and Alterra, 2010). The project was aimed at assessing the impacts of climate change on drainage, water availability, and the salinity situation in Khulna City; providing adaptation options based on social, economic, public health and urban planning aspects; and conducting workshops and trainings to develop capacity of relevant stakeholders/agencies to combat the impacts of climate change scenarios. The study considered A2 and B1 scenarios of IPCC to simulate the models for 2030 and 2050 conditions. Key Lessons Learned: -The dependable river flow decreased significantly for the scenarios at the study locations.-In climate change conditions, the maximum salinity exceeds the 1.0 ppt (Chloride limit for water supply) in Khulna and Gopalganj districts throughout a significant period of the year.-The water logging in the Khulna city area increases significantly in climate change condition. Bangladesh Water Development Board (BWDB) has completed the project titled \"Feasibility study and detailed engineering design for long term solution of drainage problems in the Bhabodah area (Jessore and Khulna districts)\", (IWM and DDC, 2010). Main activities of this study are in line with our present project and the study area is also in the coastal zone of the Ganges River. The study addressed the following issues: drainage congestion, sedimentation, excavation and dredging of khals, tidal river management and salinity. Key Lessons Learned: -Salinity level remains below 2ppt during the month of December, January and February of dry season, i.e. during the cultivation period of Boro.-Drainage congestion occurs due to spill of river flow and sedimentation of peripheral rivers.-The drainage improvement measures are excavation of internal khal system and construction of sluices at the outfall of khals. Bangladesh Water Development Board (BWDB) has completed \"Integrated planning for sustainable water management (IPSWAM) programme\" which assessed of present and future sediment deposition rate in the peripheral rivers and drainage performance of the selected coastal polders considering climate change and sea level rise (IWM, 2008). It also addressed Spatial and temporal variation of salinity level in the rivers with and without sea level rise. Key Lessons Learned: -Sedimentation rate in the peripheral rivers of the selected polders.-Availability of freshwater in the peripheral rivers.-Water storage capacity of internal khal systems in the polders. IWM is conducting a study is carrying out a project titled \"Forecasting of salinity and assessment of sea level rise on salinity in the southwest area\" under DANIDA funding. This study is being carried out to forecast seasonal variation of salinity in the coastal region of Bangladesh. The findings of this study may help to assess the salinity variation in the coastal region of Bangladesh.International Water Management Institute (IWMI) has completed a number of projects in the region including Global Irrigated Area Mapping (GIAM), Groundwater Governance in the Indo-Gangetic Basin and most recently the Basin Focal Project for the Indus-Ganges basin. These projects have helped in better understanding of the availability of water resources, water productivity of the crops and fisheries in the basin and linkages of water-land-poverty and the interventions for improved productivity (Sharma et al., 2011). The project has also assessed the impact of rise in temperature on the glacier melt and runoff on the Ganges flow regime. The database developed during the implementation of these projects shall also be highly useful and available for early implementation of this project.Previously, CPWF undertook IGB Phase 1 projects (PN 7, PN 10, PN 48 and so on) to enhance agriculture in the region. PN 7 (Ismail, 2009) focused on enhancing land and water productivity of rice-based cropping systems in salt-affected areas by integrating genetic improvement and management strategies that are environmentally sustainable and socially acceptable. This project carried out socioeconomic and biophysical characterization of target areas for baseline and socioeconomic surveys. At the same time both primary and secondary data were analyzed for this purpose. The following important recommendations were made in the report: (1) Make greater efforts to establish accurate databases on the extent and severity of salt-affected lands, crop losses, and coping mechanisms. This information is needed in defining recommendation domains for technology targeting. (2) Build on indigenous knowledge in traditionally saltaffected areas and understand the interface between the biophysical and socioeconomic circumstances of targeted communities for effective development and dissemination of technology options and policy formation. In this project the effects of external drivers on water resources and agriculture were not focussed in details . PN 10 (Tuong and Hoanh, 2009) focussed on water and land resources management for improving agriculture, aquaculture and fisheries in coastal zones of Bangladesh and enhance livelihoods of poor people in the region. The project assessed the positive impact of coastal polders for salinity and flood control, recommended water management and cropping patterns for better agricultural productions. To ensure and use of these research findings, our assessment of the impacts of anticipated external drivers of change on water resources in the region is needed.One of the major objectives of PN 48 (Amarasinghe, 2009) was to assess the most plausible scenarios and issues of water futures (for India) given the present trends of key drivers of water demand. These may be useful to generate the basin-wide scenarios for the present project, and determine how the local and regional contexts are affected under these scenarios. Exogenous or endogenous drivers that affect the water system were identified in the project. The exogenous drivers are mainly the primary drivers while the endogenous or secondary drivers are influenced by the exogenous drivers.Dependencies on other BDC projects to produce itFeedback for ranking of the drivers from G1,G2,G3 and G5 The study area of G4 includes the coastal zone of Ganges river in Bangladesh part for analysis of flooding, storm surge and salinity. The detailed analysis on salinity, water availability, storage capacity of drainage khals in the polders, storm surge and drainage congestion will be carried out for specific polders (3, 31 & 43/2F). Flow, salinity and storm surge risk will also be assessed for polders 30, 34/2 and 43/1 to support research works of G3. The study area is shown in following map. Annex A Project workbook, worksheet G4-OLMAnnex A Project workbook, worksheet G4-Gantt ChartActor IWFM is a premier institute for the advancement of knowledge and development of human resources in water and flood management. The Institute offers postgraduate degrees for the professional and fresh graduates in water resources development with the objectives of training and enhancing the knowledge and skills of professionals in planning and management of land and water resources, and widening their perspectives on Integrated Water Resources Management (IWRM). Since IWRM is a multi-disciplinary process, requiring a holistic understanding of the system with a good blend of engineering, agricultural, socio-economic and environmental analyses, a multi-disciplinary course curriculum is pursued. The multi-disciplinary programmes are aimed at engineers, planners, hydrologists, agriculturists, and physical and social scientists. Research activities of the Institute focus on priority areas in water management with major emphases on water resources management in floodplain environment, river and coastal hydraulics, wetland hydrology, hazard management, urban water management, irrigation and water management, environmental impact of water development, water resources policy, and climate change. A Climate Change Study Cell has been established at IWFM.Institution 3: Bangladesh Water Development Board (BWDB) BWDB is a Government institution under the Ministry of Water Resources. This institution is a major stakeholder for water management and governance in Bangladesh. BWDB has Knowledge on agriculture, water governance water and crop management, policies and strategies. This institution is capable of identifying proper outputs required for improvements of polder and crop management, providing policies, strategies for devising scenarios to assess impacts and adaptive measures for improved water and crop management, reviewing proposal, research outputs, reports and participation in the workshops. Moreover, this institution has vast field knowledge, field experience and linkage with other organizations. BWDB is well accepted as a major stakeholder in water management in Bangladesh.Following preparation of your budget in the excel table, provide a % calculation and $ value that each institutional partner will be allocated for their outputs using the table(s) below. Please complete and submit the budget spreadsheets using Please use Annex A Project workbook, worksheets G4 $ Summary, G4 $ Comments, G4 $ Time Allocation, G4 $ By Outputs, and G4 $ By Institution to this submission.","tokenCount":"3490"} \ No newline at end of file diff --git a/data/part_3/4890605112.json b/data/part_3/4890605112.json new file mode 100644 index 0000000000000000000000000000000000000000..15acc2ca8f7c3a9e9708c64209474bd4c5b2b948 --- /dev/null +++ b/data/part_3/4890605112.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"2579d82d6731a996ad2e82711f4d9a3b","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/bb901fb9-c805-426d-ae4f-d21cb1f19097/content","id":"-1818978481"},"keywords":[],"sieverID":"7390fdc9-a7bc-47bc-be99-2f7bc2f09771","pagecount":"10","content":"The Transforming Agrifood Systems in South Asia (TAFSSA) initiative implemented the Small Farmers Large Field ((SFLF) collective farming model in two villages of Nalanda, Bihar with 97 potato farmers in Rabi 2022-23. The farmers were provided input linkages, training in good agricultural practices and output linkages, among other things, to enhance their returns. This brief discusses a case study of ten potato farmers selected from the 97 participating farmers, growing Kufri Pukhraj variety of potatoes, who were encouraged to aggregate production and harvest potatoes 40 days early and take up a short-duration crop, such as red amaranthus. The underlying concept of this initiative was to create an opportunity for farmers, allowing them to explore crop diversification as a means to enhance their earnings.. The study reveals that early harvest of potatoes combined with the cultivation of red amaranthus (Amaranthus Cruentus) locally called Lal Kanka resulted in higher net returns for farmers compared to traditional full-maturity harvest, showcasing the potential of crop diversification through intensification to improve farmers' income. The SFLF model also demonstrated the benefits of collective farming in sharing agricultural practices and resources, contributing to enhanced returns for the participating farmers.Above: A Small Farm Large Field (SFLF) pilot farmer growing red amaranthus after the early harvest of potatoes. Photo Credit: Manish Kakraliya.Bihar is the third-largest producer of potatoes in India, behind Uttar Pradesh and West Bengal, with a 16 percent share in national production (NHB, 2020). The state displays the third highest yield of potatoes in the country, with about 27.6 tons per hectare, compared to the national average of 25.2 tons per hectare in 2021/22 (AgriCoop, 2022). Despite having a higher yield due in part due to the fertile land of the Indo-Gangetic Plains and high input rates, the sector faces some serious problems including adequate cold storage facilities, transportation bottlenecks and poor marketing facilities. This contributes to a crash in prices after harvest (Singh and Rai, 2011). For example, the average wholesale price in Bihar was Rs. 11,970 per metric ton (1000 kilograms) in May 2023, as compared to the national average of Rs. 15,280 per metric ton (Agmarknet, 2023).Due to the lack of adequate cold storage facilities, farmers face challenges in storage of their produce, forcing them to sell produce at a throwaway price immediately after harvest, which causes a sudden crash in prices during the peak harvesting season (NewsClick, 2022). Furthermore, the below national average monthly income of Bihar's farmers is also associated with traditional production practices, poor accessibility to farm inputs including seeds, irrigation, and climate extremes changes caused by climate change (Kumar et al., 2019). Small and marginal farmers are even worse off because of high production costs due to diseconomies of scale and a lack of bargaining power in input and output markets (Baruah et al., 2022).Above: Small Farm Large Field (SFLF) farmers Rajiv, Satyendra, Kaushal and Arun in Nalanda harvesting potato early. Photo Credit. Manish Kakraliya.Researchers have highlighted the need for crop diversification through intensification to improve soil health, productivity, farmers' income, and system productivity of a farm (Barman et al., 2022). Introducing a greater range of high-value and nutritious crops in a particular agroecosystem can contribute to diversification of agricultural production, which can contribute to agrobiodiversity and improve the ability of farmers to respond to market stresses (Khanam, Bhaduri and Nayak, 2018). These in turn contribute to nutritional security, income growth, food security, employment generation, and sustainable agricultural development (Barman et al., 2022).Since Indian agriculture is dominated by small and marginal farmers, research has suggested potential benefits from collective action to minimize disadvantages of scale effects on farmers and to garner bargaining power in input and output markets, which can in turn support crop diversification (Gulati, 2016;Chand, 2017;and Singh, 2018).In this study, a collective action farming model called \"Small Farmers Large Field (SFLF)\" was piloted in Nalanda, Bihar, a major potatogrowing belt in the state, where the majority of farmers are small and marginal. Researcher suggests that LFM development fosters a mutually beneficial social network of farmers, enabling the implementation of new interventions in their farming systems. (Thang et al., 2017).to purchase inputs, contract machine service providers for planting and harvesting, and synchronize their operations by adopting a single variety, thus converting their small landholdings into a large field or patch (Baruah, Mohanty and Rola, 2021). The implications of this approach for pest and disease management still require research.The SFLF pilot in Nalanda, Bihar is an effort of the One CGIAR's South Asia Regional Integrative Initiative, TAFSSA.The roll-out of the pilot was conducted with 97 farmers in two villages, Meyar and Kairi, in the Nalanda district. We collaborated with farmers to reduce costs and improve efficiency, thereby boosting profitability and creating favourable environments for diversification through intensification.After a series of meetings, farmers decided to purchase better quality Kufri Pukhraj seeds through a reputable seed company. Since most large seed companies are based in Punjab and have a minimum selling requirement of one truckload or multiples thereof (25 tons each), farmers collaborated to place a single bulk order for three truckloads (25 tons each) of Kufri Pukhraj seeds. This purchase was supplemented with training on recommended production practices.practices.Additionally, in response to the farmers' concern over inadequate supply and high cost of quality planting material and post-harvest storage of seed for the ensuing season, financial literacy sessions led by HDFC Bank, were conducted aimed at raising awareness of government schemes and credit availability.The capabilities of collective farming extend beyond providing backward and forward linkages. TAFSSA researchers are investigating the suitability of a collective action model to introduce new techniques and policy interventions supporting farmers.The cultivation of Kufri Pukhraj, an early bulking potato variety, within the collective farming system in Bihar presented our team of researchers with an opportunity to encourage farmers to diversify their crops and boost their earnings. Due to a market glut, farmers receive low prices for their potatoes when selling them after full maturity. farmers were informed about the trade-off between a higher price, lower cost of production, and lower yield in early harvest, along with the return from red amarunthus, compared to the lower price, higher cost of production, and higher yield in their traditional practice of selling potatoes after full maturity.At the end of the intervention, the team collected data on costs and returns for the ten participating farmers for both the scenarios -early harvest combined with red amaranthus cultivation and full maturity of potatoes.Out of ten farmers who planted red amaranthus after the early potato harvest, six of them had marginal land holdings, and the remaining four had small land holdings. On average, farmers harvested around 7 percent of their potato acreage and planted red spinach.The average yield for potatoes at early harvest was 40 percent lower than that of potatoes at full harvest. However, at the same time, the cost of cultivation for early harvest was 46 percent lower than that of full harvest. If we combine these yield and cost of production effects with an 11 percent higher price for early harvest, then full maturity harvest potatoes can result in a 20 percent higher net return for nine out of the ten farmers. As shown in Figure 2, the average net return was 20% higher for early harvest potatoes as compared to full harvest. This further increases to 27% when the net return of red amaranthus is added. For all ten farmers, net profit for every rupee invested was higher in the case of early harvest potato plus amaranthus compared to full maturity harvest, implying that for the same amount of investment, the earning from early harvest combined with growing red spinach would be higher than only harvesting potatoes.On average across the ten farmers, the early of harvest potato combined with red spinach resulted in a profit of INR 0.55 for every rupee in cost spent. Farmer #5, who had the highest profit from early harvest and spinach, even lost money from his harvest at full maturity due to the lower price of potatoes (Figure 3). . These results are attributed to the difference in net return between early harvest and full maturity harvest, and the notable difference in production costs. The cost of production for a full maturity harvest is substantially higher, being 46% more compared to an early harvest. This large disparity in production costs accounts for the variance in net returns.Above: Small Farm Large Field (SFLF) farmer Ashok Kumar of Kairi village in Nalanda harvesting red amaranthus. Photo Credit. Manish Kakraliya.On average across the ten farmers, the early harvest potato combined with red amaranthus resulted in a profit of INR 0.55 for every rupee in cost spent. This was more than double the return on potato at full maturity (INR 0.25 per rupee).The potential of crop diversification through intensification in enhancing farmers' income can be explored through the increased returns of the farmers in this pilot study. The objective behind this initiative was to create a window for the farmers to harvest an additional crop by encouraging them to harvest potatoes 40 days earlier and utilising the remaining period to grow red amaranthus. It should be noted that this experiment can also be conducted using other short duration varieties with the common aim of boosting farmers' returns. There is a need to conduct further assessments to test the feasibility of this experiment and document challenges at the larger scale.Diversification can be effective in boosting farm revenue and increasing nutritional security. Despite this, small farmers shy away from diversification because of a lack of knowledge and, more importantly, a lack of transportation and marketing facilities (Barman et al., 2022). According to this study, the very small and fragmented landholdings make it even more difficult for farmers to participate fully in crop diversification.But, as well as poverty reduction in developing countries, In this pilot, it was not surprising to witness that net returns from early harvest potatoes combined with red amaranthus were greater than net returns from fullmaturity crops, due to the lower costs of production combined with selling the produce when the markets have a shortage in supply. Further research needs to be conducted to understand the potential of scaling this intervention with more farmers and other short-duration crops. The introduction of a new crop within a collective farming approach suggests that farmers can share good agricultural practices and resources and subsequently enhance their returns. More than half of the SFLF farmers have decided to switch to early-bulking droughttolerant variety, 'Kufri Thar 2', to provide a window for a new crop. Furthermore, the added support through input and output linkages and financial education through onfield technicians appears to hold some promise to amplify the benefits of the model. Mohanty, S., Kakraliya, M., Janakiraman, D., Baruah, S., Choudhary, K.M., Gathala, M.K., Krupnik, T.J. 2023. Crop Diversification Through Collective Action: A Case Study of the Small Farmers Large Field (SFLF) Collective Action Farming Model in Nalanda, Bihar. TAFSSA Policy Note 2. Transforming Agrifood Systems in South Asia (TAFSSA).To learn more about TAFSSA, please contact: t.krupnik@cgiar.org; p.menon@cgiar.org To learn more, please contact: s.mohanty@cgiar.org This publication is licensed for use under a Creative Commons Attribution 4.0 International License (CC BY 4.0).","tokenCount":"1855"} \ No newline at end of file diff --git a/data/part_3/4905162108.json b/data/part_3/4905162108.json new file mode 100644 index 0000000000000000000000000000000000000000..b0947536560679047c2bcc9fe2a1f90f51504daa --- /dev/null +++ b/data/part_3/4905162108.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"cd655e5a96989b539bb63bffc8b3cbc4","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/5ffd78c9-5a5c-4c03-ade7-33b43b44e88f/retrieve","id":"-1955662124"},"keywords":[],"sieverID":"aebcd7d3-8430-43a5-af00-848063f1a633","pagecount":"83","content":"NOTE: This handbook uses WUA as a generic term, except when referring to the specific WUA that was established under the Pyawt Ywar Pump Irrigation Project. This scheme is presented to provide examples rather than a model to follow for other schemes.principles, processes for participatory stakeholder problem analysis and those linked to the creation of the various institutional layers -may be applicable to any canal-based irrigation scheme that serves a large number of farmers.\"When it comes to WUA formation and organizational strengthening, there is no 'one-sizefits-all' approach.\"This handbook draws on several decades of experience from around the world in organizing farmers to participate in the creation, improvement and management of irrigation schemes. A key conclusion from these experiences is that investing in the \"software\" component -training and institutional development -of irrigation is critical for the success of the entire scheme. In other words, although ensuring that the physical irrigation infrastructure is in good condition is key to systems delivering reliable water allocation and more equal water distribution, simply investing in maintaining the \"hardware\" (i.e., canals and other physical infrastructure) is insufficient. Implementation of PIM worldwide has highlighted the criticality of farmer empowerment through institutional strengthening, in order to ensure successful implementation of the policy and improved irrigation scheme performance. Moreover, it is important to recognize the importance of contextual factors and the wider agrarian society in the overall institutional design of the WUA. When it comes to WUA formation and organizational strengthening, there is no 'one-size-fits-all' approach. It is in recognition of these lessons that this handbook focuses on a specific type of irrigation scheme in Myanmar, bringing together lessons from other countries and first-hand experience in establishing a WUA in a pump-based irrigation scheme (see a local example (1)).A local example (1): The Pyawt Ywar Pump Irrigation Project.This handbook focuses on how to set up suitable WUAs for pump-based irrigation schemes in Myanmar. It draws on the experience and lessons learned by the International Water Management Institute (IWMI) and its partners in the Pyawt Ywar Pump Irrigation Project (PYPIP), funded by the Livelihoods and Food Security Fund (LIFT). The project sought to improve scheme governance from January 2017 to March 2019. The scheme, constructed in 2004, was rehabilitated, resulting in a potential command area of 4,333 acres (1,753.5 hectares). Water is drawn from the Mu River through one primary and two secondary pump stations (PSs), irrigating a range of crops including paddy (monsoon and summer), green gram, chickpea, sesame, groundnut, wheat, maize and cotton.The anticipated users of this handbook are practitioners responsible for planning and implementing programs to create and operationalize WUAs in Myanmar, especially in pump-based irrigation schemes. Practitioners include managers of such irrigation schemes, government agricultural and irrigation officials, and private initiatives and NGOs that are involved in the creation and operationalization of WUAs. The handbook is also targeted at donor agencies that often fund WUA creation as part of new schemes or the rehabilitation or modernization of existing schemes.The handbook is divided into four sections. Section 1 (this section) provides the principles and context for use of the approach laid out within. Section 2 provides a series of practical steps to be followed in order to successfully implement the recommended approach. It also presents examples from the Pyawt Ywar Pump Irrigation Project (see a local example (2)), not as a model to follow but to illustrate how these steps could be carried out in practice. Finally, references, additional reading and sample resources can be found in sections 3 and 4.A WUA is generally established to improve irrigation and provide overall management to increase scheme productivity (food production), while reducing the financial burden of O&M on the government. Globally, and in Myanmar, WUA formation is often driven by a donor's development agenda and the national government's development policy. If it is to be successful, WUA formation should start with discussion about how farmers can benefit from WUAs, how they envision the WUA organization developing in relation to these benefits, and how they can contribute to the overall decision-making process throughout the procedure of formation and subsequent functioning.\"In the context of a pump-based irrigation scheme, WUA organizational development should not be linked with farmers' ability to pay irrigation fees to fully recover the pumping costs, as the latter would burden and reduce farm households' ability to improve their incomes and food security. It is key to recognize that farm households will only drive WUA organizational functioning if they can benefit from it through improved irrigation water supply, more reliable and equal water distribution, and moving towards increased agricultural productivity and farm income.\"A WUA is in fact a concept that can only fully materialize through meaningful farmer participation and inclusive decision-making processes, rather than a fixed structure. It is the idea that farmer empowerment and greater involvement in irrigation scheme management would not only contribute towards better scheme performance, but also improve their livelihoods in terms of increased agricultural productivity (i.e., due to a more reliable water supply) and farm income. What institutional form a WUA should take will depend on the specific physical and social characteristics of each scheme, and how the different stakeholders within the local communities (villages) envision their role in overall scheme management. Converting the idea of a WUA into an actual organizational structure must be an adaptive, iterative process that responds to the specific needs of farmers and other key stakeholders living in each scheme.Establishing WUAs is a highly complex, intensive and time-consuming endeavor that might not always meet predefined milestones. Unlike building canals or other physical irrigation infrastructure (e.g., sluice gates, division structures, weirs, etc.), establishing WUAs implies introducing a new organizational structure into existing social, economic and political landscapes and power relations. To achieve effective functioning, the old and new need to be linked with each other to ensure synergy and strategic alliance. This requires comprehensive knowledge and understanding of existing sociopolitical structures and power dynamics. Ensuring such alignment calls for continuous adaptive management to understand and reconcile the needs and views of different stakeholders, address conflicts and vested interests, and fill often-significant gaps in capacity. This is especially the case in Myanmar where PIM represents a major cultural shift for both farmers and the government. Early withdrawal or reduction of support to the WUA may lead to its collapse or inability to achieve the planned potential productivity and profitability, or the restriction of the scheme and its benefits by a powerful minority. Therefore, it is recommended that the process of WUA design, establishment and stabilization is planned across 5 years, although the external support can normally be expected to gradually lessen no earlier than 2 years after the WUA is established. The government needs to continuously support the process of WUA organizational development, and make it an integral part of the country's irrigation and rural development program and activities. The shift from a government-driven to a farmer-driven approach to managing irrigation schemes represents a major transition, which requires the government's commitment to support WUA organizational development as part of the country's long-term development vision.\"It is recommended that the process of WUA design, establishment and stabilization is planned across 5 years.\"The Need for Diverse Skills and ExperienceWhen planning a program to establish a WUA, the organization tasked with this activity should have the expertise and capacity needed to work with men and women farmers (including landless farmers who lease land in the scheme), other water users such as livestock keepers and even households seeking domestic water supplies, and a range of government agencies at several levels of authority. They will need to facilitate the establishment/strengthening of the WUAs, and design and implement appropriate experiential training exercises. In addition to these central social skills, knowledge of agricultural water management and agronomy will also be needed to relate institutional development and social mobilization to the physical realities of the scheme and improve agricultural productivity. If there is no such single organization, a consortium of two or three organizations with specialist knowledge may be an option, although this will require a clearly defined lead organization, strong management skills and significant time investments to ensure the consortium works as a cohesive unit.\"A WUA is intended to enable its members (the water users) to pool financial, material, technical and human resources for the operation and maintenance of the irrigation and drainage system within their jurisdiction for the benefit of all the members.\"A \"WUA\" is an umbrella term for several different organizational forms such as Water User Organizations, Irrigation Water User Groups (WUGs), Irrigation Farmer Organizations and Irrigators' Associations (Meinzen-Dick 1997;Mwamakamba et al. 2017;Salman 1997). It is a non-profit organization comprising water users who share a common source of irrigation. Water users may require water for farming (agricultural or livestock) or domestic purposes. A WUA is meant to enable its members (the water users) to pool financial, material, technical and human resources for the operation and maintenance of the irrigation and drainage system within their jurisdiction for the benefit of all the members. A WUA may sometimes consist of a number of organizational layers, which will operate at various scales, depending on the size and complexity of the irrigation scheme.A local example (2): Pyawt Ywar Pump Irrigation Project.In the PYPIP, the WUA consisted of a 'nested' arrangement, with four institutional layers. This was based on an assessment of the coordination required for a scheme that has three pump stations, collectively serving almost 1,000 farmers in five villages and a command area of 4,333 acres (1,753.5 hectares).Since the late 1970s, considerable efforts have been made to developing and supporting WUAs around the world. The idea of forming WUAs was a response to the perceived failings of statemanaged irrigation systems, which took a top-down management approach that focused mainly on maintaining infrastructure, and less on providing good water services to farmers. WUAs were, therefore, intended to improve irrigation performance through increased farmer participation and involvement in irrigation scheme management, leading to more sustainable water use and more equitable sharing of the benefits. While the latter was not always achieved, given key structural and contextual challenges pertaining to large-scale irrigation scheme management (Box 1), many have highlighted the need to move beyond farmer participation and involvement, and towards farmer empowerment (Vermillion 1999).Box 1. Examples of structural and contextual challenges affecting WUA models. Technical top-down hierarchy in scheme management that does not correspond with WUA organizational development (WUA is based on a 'bottom-up' approach).  The WUA is positioned or perceived as an extension of the government instead of farmer representatives.  Elite capture; inequity of water allocation.  Penalties that disproportionately affect certain social or ethnic groups.Similarly, it was assumed that increased benefits will improve the payment of irrigation fees by farmers to cover the O&M costs, since their ability to make decisions and access better benefits would give them a stronger sense of ownership of the scheme. However, global experience shows that unless farmers benefit significantly from the WUA, payment of irrigation fees is unlikely to be sufficient to cover the O&M costs of the scheme, or reduce the government's financial burden of scheme management. All this emphasizes the importance of gaining farmers' views on how they expect to benefit from WUA formation, from the very start of the process.There are several possible incentives for farmers to participate in establishing and managing a WUA:  Equitable water distribution among farmers regardless of the location, type or size of the farm.  More reliable water supply that is more responsive to crop needs.  Quick and rule-based dispute resolution at the local level, leading to improved social relations.  Well-maintained canals (decreasing the time of irrigation due to less discharge fluctuations, reduced losses, etc.).  Less water theft/stealing.  Opportunity to contribute to the design of irrigation infrastructure, and selecting technologies that fit their financial and labor resources (for newly-constructed or rehabilitated schemes).  Potential to gain access to other services besides water management, which improve income.  Collective capacity to deal with external threats (e.g., climate change, competition for water from upstream users, changes in markets, etc.).\"It is recommended that any attempts to establish WUAs in Myanmar should look beyond cost recovery to other important development outcomes such as poverty reduction, food security and climate resilience.\"While the general rationales for establishing WUAs are set out above, the expected results have proven elusive. Several broad studies of experiences with WUAs (Garces-Restrepo et al. 2007;Ghazouani et al. 2012;Mukherji et al. 2009;Senanayake et al. 2015;Aarnoudse et al. 2018) have attempted to identify why this is the case. Among the causes highlighted are poor implementation, including the lack of inclusive user participation, and unclear formulation of the roles and responsibilities of WUAs. Other studies questioned the assumptions behind the WUA concept itself and whether they are always the most appropriate institutional arrangement to improve irrigation performance. An important finding particularly relevant to pump-based irrigation schemes is that expectations on cost recovery have been unrealistic, which is also supported by IWMI's experience in the PYPIS. All reviews conclude that responding to the broader socio-technical and economic context in which WUAs are supposed to function is central to finding solutions for irrigation management. Thus, it is recommended that any attempts to establish WUAs in Myanmar should look beyond cost recovery to other important development outcomes such as poverty reduction, food security and climate resilience.This handbook is mindful of these lessons from past experience with WUAs, and emphasizes the process by which a WUA is formed, and the principles that should inform this process. It is predicated on the understanding that trying to form WUAs rapidly, for example, by simply holding a meeting and 'electing' officers, does not work. Instead, there is a need to invest in a creative process to support men and women water users to form their own WUA that meets their needs and expectations (Box 2).\"…trying to form WUAs rapidly, for example, by simply holding a meeting and 'electing' officers, does not work. Instead, there is a need to invest in a creative process to support farmers to form their own WUA that meets their needs and expectations.\"Box 2. Ensuring the WUA and its development process is gender-sensitive.Ensuring gender equity 1 in irrigation is vital. According to FAO (2011), women can be as productive as men in the agriculture sector when they have access to the same quality and quantity of agricultural inputs. Therefore, achieving gender equity in the irrigation sector has become an important development goal. However, research on gender and irrigation shows that formal irrigation schemes are generally dominated by men both in terms of access to and control over production and associated inputs, and also in terms of benefits received from irrigation (van Koppen 2002;FAO 2012). This indicates that a \"gender blind\" 2 irrigation scheme design and design process may unintentionally introduce or exacerbate existing gender disparities in social norms and practices, and even create gender inequalities and new barriers for women (Lefore et al. 2017a).A gender-sensitive approach informed by gender analyses is, therefore, necessary from the outset. It will help the project (i) uncover underlying social issues around gender relations; (ii) identify men's and women's needs, preferences and resources that are relevant for irrigation management; and (iii) understand how WUA design and implementation can ensure that existing gender relations do not undermine women's ability to actively participate in and benefit from the WUA and the irrigation scheme. Such an analysis, which will need to be carried out early on in the process (in Phase 1 [Contextual Diagnosis] in this handbook), could also raise awareness among stakeholders about gender issues, and the ensuing dialogues could be used to identify, jointly with stakeholders, how key challenges can be addressed in WUA design and implementation.One option for conducting a gender assessment is the Gender in Irrigation Learning and Improvement Tool (GILIT) (Lefore et al. 2017b). This tool brings together best practices identified through previous research, and existing tools and indicators, with the principles promoted through various regional and global strategies for addressing gender equity in irrigation. In addition to gaining insights into existing gender relations and their potential implications for WUA design and implementation, the GILIT provides the basis for gender equity indicators to assess and improve performance at scheme level. These indicators cover aspects related to land, water, technologies, inputs (e.g., labor, fertilizer, pesticides), and market information or marketing services, as well as membership in related organizations, opportunities to participate meaningfully in scheme governance, and to benefit from the scheme. As such, this tool can also support impact assessments of the irrigation scheme.1 Gender equity refers to \"fairness of treatment for women and men, according to their respective needs and interests. This may include equal treatment or treatment that is different but considered equivalent in terms of rights, benefits, obligations and opportunities\" (ILO 2007).2 'Gender blind' refers to approaches to project design and implementation which have little or no gender analysis or consideration of local gender norms and relations. This contrasts with gender-sensitive and gender-responsive approaches that are informed by gender analysis.How are WUAs in Myanmar Envisioned Under PIM Guidelines?The PIM guidelines support the government's desire to increase agricultural production, for which the development of irrigation systems is an important strategy. These guidelines further recognize the need to repair and improve existing irrigation systems, and it explicitly recognizes the need to promote collaboration between farmers and the government to achieve this. Therefore, an important WUA role will be to facilitate farmer coordination and support scheme co-management where IWUMD and the WUA share distinct responsibilities (Box 3). It further acknowledges that effective and efficient utilization of water is an urgent need in Myanmar. Although there is a focus on rice production, the need to allocate water across a diversity of crops is also important. A very important feature in the guidelines is the responsibility placed on IWUMD officials to \"understand the institutions, to take an appropriate initiative and to transfer the knowledge and technology to the farmers through better communication\" (Government of Myanmar 2017, Chapter 2).With these objectives in mind, the guidelines expect a WUA to perform a range of functions, such as:  operating and maintaining the distributary (Dy) and minor canals;  working with IWUMD staff to formulate the irrigation schedule;  ensuring sufficient water is supplied to the scheme to distribute for irrigation;  ensuring equal and efficient irrigation supply with minimal disputes and water theft; and  ensuring the irrigation fees and other fees are collected from the water users, and the due amounts are transferred to the IWUMD.Many of these WUA functions are also shared by the IWUMD according to the guidelines, in keeping with the idea of the WUA fostering a working partnership between farmers and the IWUMD. As such, the IWUMD is also to perform a range of activities, for example:  conduct necessary surveys required for irrigation planning (e.g., topography, water demand, rainfall, water discharge);  participate in creating the list of farmers within the WUA, creation of water allocation plans and water distribution, and O&M;  support the establishment and operation of the WUA, including its sub-structure, in cooperation with related departments such as MoALI);  facilitate integrated management of production by coordination; and  share relevant information with farmers.In keeping with global practices, the guidelines envisage a WUA in Myanmar to consist of substructures (e.g., Water User Groups or other groups/committees at different parts of the scheme that support coordination functions) nested under an apex body. The need for flexibility is recognized, specifically in terms of the levels of the scheme at which the institutions that constitute the sub-structure should be established.Overall, the sub-structure is tasked with several core functions, which include:  equitable distribution of water and addressing disputes related to this;  maintenance of watercourses, minor or distributary canals, and related structures such as outlets;  providing timely information about the irrigation schedule to farmers;  communication across scales to ensure timely and equitable water supply; and  payment of the irrigation fees and other fees on time.Box 3. Summary of respective functions of IWUMD and WUA, and areas of comanagement that promote a working partnership for PIM. At each level of the sub-structure, the guidelines provide for leadership which is to be grounded in the farmer membership. At the apex level, two executive bodies are required for overall management: a Board of Directors (BoD) and a Management Board (MB), while all the farmers and other water users in the scheme make up the General Assembly (Figure 1). It makes clear that WUA membership must not discriminate based on gender, race, religion and place of birth, and should be open to all farmers in the scheme. The BoD is to consist of five members. While the General Assembly decides how many persons need to be in the MB, the MB does require five office bearers: Chairperson, Vice Chairperson, Secretary, Treasurer, and Auditor. Depending on the number of villages, the positions will need to be equally shared among the various villages to ensure inclusivity. The guidelines also provide for the registration of the WUA (Box 4) and the creation of a Management Fund in its name to finance O&M and other costs that may be incurred.The PIM Guidelines require WUAs to be registered. Registration results in a formal certificate of registration being assigned to the WUA that is valid for 5 years under current rules. There are several important advantages of registration, which include the following:  As a legal organization, a registered WUA will be able to more easily open and operate its own bank account. This will enable many functions of the WUA linked to infrastructure maintenance. It will also help make the financial activities of the WUA more transparent to its members, since bank transactions are properly documented.  A registered WUA will be given priority attention by IWUMD when major repairs to infrastructure are needed. This, again, can be critically important in a situation where state funds are limited.  As a legal organization, a WUA will be in a stronger position to receive funding from other NGOs or even donors, and can also enter into contracts with private sector organizations, especially with respect to strengthening access to markets or access to new production technologies. This will be important for developing the financial stability of a WUA in the medium to long term.To be successful, an irrigation scheme must optimize the productivity of water and land resources as well as the profitability of production, while benefitting farmers in terms of livelihoods and income improvement. While the government seeks to increase overall food production in the country, the scheme must also ensure the benefits of production are distributed equitably among the farmers in the scheme, irrespective of where they are located, their gender, ethnicity, religion or political affiliations. As noted in the Introduction, PIM is seen as a means of realizing these goals by empowering and organizing farmers to participate in making critical decisions for scheme management, and take on key O&M functions -in other words, by setting in place arrangements for the good governance of the scheme. To this end, it is recommended that the guiding principles shown in Figure 2 be adopted when designing and establishing an appropriate WUA structure and the process by which this occurs.\"Whatever the quality of the WUA structure, the key determinant of success in the long term will be the extent to which stakeholders own and support it. This is as dependent on the process and approach taken, as it is on the structure adopted.\" Farmer-led, bottom-up management: Farmers are empowered to take decisions and held responsible for doing so  The WUA fits stakeholder needs and emerges through a process whereby stakeholders construct their own organization  The WUA serves all, irrespective of any differences or defining characteristics  All have the same right to participate in decisions, to be represented and to be served by irrigation delivery  All have the same obligations to support effective scheme management  All are subject to the same rules and penalties  All stakeholders are accountable in their roles within the institutional design  Professionals prioritize and purposefully invest time and energy in developing trust-based relationships between their agency and farmers  Professionals listen closely and respectfully to farmers, communicate effectively with them, and recognize and seek to creatively accommodate their priorities and wishes without compromising the integrity of the scheme  Good scheme management is recognized as being dependent on technical knowledge and ongoing cooperation between specialists and farmers Principles FIGURE 2. Approaches and principles suggested for the design and implementation process and structure of a WUA.This handbook promotes the principles set out above as a response to some of the past weaknesses identified with WUA creation as noted in Section 1. These include poor implementation processes that do not create ownership of the WUA among the stakeholders, who thus lack incentives to sustain the WUA once the external facilitators leave. Principles such as stakeholder participation, accountability and transparency framed in rules developed by the stakeholders (Ostrom 1993) are, therefore, aimed at addressing these shortcomings. Focussing on equity further helps ensure that no stakeholders are excluded.It is, however, often the reality that local stakeholders may lack the capabilities and prior experience needed to effectively shift to collective action models such as a WUA for managing common resources such as water. Consequently, while farmers and other local stakeholders should drive the decisions that lead to the design and implementation of a WUA, this may not be wholly realistic in practice. The ground conditions in rural Myanmar appear to be such a situation, with relatively low literacy and limited traditional natural resource management systems based on collective action. The challenge is exacerbated by the technical nature of irrigation, both with respect to the hardware and water-use efficiency. For these reasons, and based on the experience of establishing a WUA in the PYPIS, the facilitating organization will need to strike a careful balance between facilitating stakeholder-driven decision making, on the one hand, and the need to ensure that realistic and technically sound decisions are made in designing and operationalizing the WUA, on the other. This may be especially the case in the WUA design phase (Phase 2 in this handbook) where technical and social considerations need to be addressed if the WUA is to effectively manage irrigation, and avoid inefficiency and social conflict. The degree to which the project team should influence key decisions will vary from one scheme to another, depending on local context characteristics such as human capacities, existing social structures for cooperation and the scheme's technical complexity. This is, however, not the same as imposing a predefined WUA structure. It means that all efforts should be made to include all stakeholders in the entire process and allow them to identify the solutions (e.g., WUA design), while the facilitating organization provides technical backstopping to ensure that stakeholder decisions address the challenges of the scheme adequately.We strongly recommend that the implementing agency contract an external organization, perhaps an NGO, with the experience and capacity needed to facilitate farmers and other water users to form and strengthen the capacity of their own WUA. This recommendation is based on decades of international experience in establishing WUAs which shows it to be a complex process. Lessons from past experience show that, for the WUA to be responsive to local conditions and sustainable, its development requires a creative and highly participatory approach. A team of facilitators will be needed to guide this highly multidisciplinary process. Therefore, the facilitating organization must bring together a range of skills, and ensure that individuals representing these skills work closely together to combine analysis across the irrigation engineering, agronomy and social science domains to build a multidimensional understanding of the scheme. These skills will be needed in all phases that follow from implementation and backstopping to monitoring and evaluation.The facilitating team will need a project leader who will provide overall direction and coordination, while also acting as a technical lead (e.g., social science). Other technical leads may be needed to run other components (e.g., irrigation engineering, agronomy), given the broad range of skills needed. Aside from the project leader and technical leads, hiring the correct field coordinator will be critical. While most of the analytical functions may be assigned to the technical leads, implementation, backstopping, and monitoring and evaluation on the ground will revolve around the field coordinator and a team of community facilitators (CFs). The skill sets and personal orientation of the field coordinator must have two key facets:1. Qualification in agronomy and affinity to irrigation.2. An ability to work with people and win their respect and confidence.While the first of these characteristics may be obvious, the second will prove to be invaluable, as lack of trust may emerge as one of the overarching problems to be overcome. Working in a trustdeficit environment and being an outside party unknown to both farmers and potentially government staff, building trust in the project and its staff, and trust between the stakeholders will be an essential condition of success. Given that the field coordinator is likely to have the most interaction with the full range of stakeholders during the life of the project, the project will depend heavily on him/her to meet this objective, and to manage the team of CFs. The CFs will be the primary resource for all field activities such as stakeholder identification, mobilization and continuous monitoring after the WUA structure is put in place. The field coordinator and CF positions must be filled by nationals. To ensure that the project empowers farmers to better manage water allocation according to crop water demand, it is important for the CFs to have a basic background in agriculture, and an interest in guiding farmers to adopt the best agricultural and water management practices.As the project progresses, the facilitators should be able to reduce their role and become involved only to assist in solving new problems or managing conflicts.The experience of establishing a WUA in the PYPIS suggests that the process can be divided into three phases:To build an understanding of local and national contexts, scheme structure, institutional landscape and agricultural systems. To identify opportunities, key challenges and their root causes.Pages 22-36Phase 2: DesignTo co-design the structure of the WUA based on contextual analysis, through inclusive and in-depth key stakeholder consultations, based on building a common understanding and joint visions on WUA formation and organizational development.Pages 37-45Phase 3: Implementation and supportTo implement the co-designed WUA structure and support each of its components to become effective and sustainable.Pages 46-54 Several months will be required for each of these phases, depending on the size and complexity of the scheme, experience of stakeholders in participatory management, experience of the facilitating organization, human resources and funds available. While it is difficult to provide strict guidelines on how much time should be spent on each phase, it is likely that Phase 1 will require between 5 and 8 months depending on the scale and complexity of the scheme, and given the consultative nature of the process, which requires diverse and several rounds of discussions. Phase 2 could require between 2 and 4 months, which again depends on complexity of the scheme, and how easy or difficult it is to achieve consensus among stakeholders. In Phase 3, establishing the institutional layers can take between 6 and 12 months, but could take even longer depending on how many layers are needed and how many of each layer needs to be created and operationalized (see a local example (3)).A local example (3): Pyawt Ywar Pump Irrigation Project.The sub-structure of the WUA in the PYPIS consisted of 53 sub-groups, 18 WUGs and three PSCCs, and required one Project Coordinator, five CFs and 12 months to establish. Less complex schemes will perhaps require fewer institutional layers and lower numbers of each layer.It will be important for the implementation strategy to include several irrigated cultivation seasons where the full WUA will be in operation. It is only when the WUA commences operations that unforeseen deeper challenges may surface. In addition, since the WUA structure and the roles farmers, in particular, will be expected to play are unfamiliar, a transition period will be required while new roles and responsibilities are fully understood, and skills are developed to support their implementation. In the Myanmar context, it is recommended that full implementation of the WUA is monitored and supported for at least 2 years after implementation. This will allow for its effectiveness to be tested and refined over four irrigated cultivation seasons (summer and monsoon seasons in each year). The winter season, when less irrigation is needed, can be used for taking stock of progress through evaluation surveys and multi-stakeholder workshops. In addition to the duration of the process, several practical considerations to ensure the process facilitates stakeholder participation and buy-in are discussed in Box 5.Where the project also involves introducing, rehabilitating or upgrading physical irrigation infrastructure, some additional steps might be required to strengthen the design of infrastructure and increase the likelihood it will meet farmers' needs.Each phase is divided into a series of key steps as shown below. However, these steps are intended as a guide only. In reality, several steps may be proceeding concurrently. Box 5. Laying and strengthening the foundations for an effective process.The project team should make use of every opportunity to remind stakeholders of the objectives of the overall process. These opportunities include beginning each consultation with a stakeholder with a recap of the objectives. This should also be done at the first meeting of each new part of the WUA structure. Ensure that the following points are conveyed:1. This is an organized and participatory effort in irrigation and drainage management.2. Together we seek to establish co-management responsibilities and authority for farmers through the WUA.3. Together we seek to enable greater equity in distribution of irrigation water. 4. The WUA facilitates more reliable water supply. 5. Through the WUA, there is better access to government and private sector facilities/inputs and other services as an organized group. 6. Self-governance. 7. Self-reliance.Meeting dates, times and venues should be fixed in such a way that it is convenient for water users, including women. For example, some water users might prefer to hold meetings in the evening to prevent it affecting their routine work. Ensuring maximum attendance will lend greater validation to the process, and possibly allow more individual voices to be heard and a greater selection of candidates for election to leadership positions. If announcements are made in the village 2 to 3 days ahead of the meetings and written messages are sent to all water users, this would be extremely useful. It is also important to work through elected village administrators and other active village members. Use any gatherings or gathering points, such as the village monastery, and the monastery abbot to encourage participation. All messages and announcements should include the topic/purpose of the meeting. If the participation is less than the set criteria (about 50-60% of all water users), the selection meeting should be rescheduled. To increase the likelihood of sufficient farmer participation, farmers who are unable to attend could be allowed to send a representative, such as a household member or other relative, and this should be mentioned in all messages and announcements about the meeting.All stakeholder discussions throughout this process must be recorded in detail. This documentation should capture the range of views and degree of support for WUAs (including statements of support, objections, suggestions and decisions); highlight whether the meeting was dominated by a few participants; and whether the participants really understood the discussions. One or more members of the project staff should be assigned and guided to perform this critical role. How many note-takers are needed will depend on the size and organization of each dialogue. For example, the multi-stakeholder dialogues, which may consist of group work, will require several note-takers, while individual village meetings will probably require only a single documenter. This documentation process should also include recording of attendance at each meeting.BOX 5 continues overleaf:Public meetings will be only one of several ways of obtaining stakeholder experiences, needs, views and suggestions, and these could include more private or discrete methods such as household surveys, focus group discussions (FGDs) with small groups of specific stakeholders and in-depth interviews with individuals.As each layer of the WUA structure is established, this documentation process should be transferred to the leader of each institution comprising a layer in the WUA structure (e.g., the leader of each WUG where these are created). These leaders will need to be initially supported in this function as they transition into their new role.\"The CONTEXTUAL DIAGNOSIS phase consists of building an understanding of the local and national contexts, and the key challenges and their root causes, across the biophysical, social, economic and political landscapes. Through effective analysis, stakeholders will identify risks that can be mitigated or avoided, and opportunities that can be used to successfully establish a sustainable scheme.\"To be successful, every WUA established must be responsive to the specific characteristics of the local context in which it is expected to operate. As an institution inserted into an existing biophysical, social, economic and political landscape, a WUA is especially at risk of failing to address these realities, unless the process leading to its design and operationalization makes the effort to understand specific contextual characteristics. This also means that replicating a WUA structure from another scheme will not be feasible. While similarities with other schemes can provide lessons and ideas, no two contexts are identical. Put simply, there are no short cuts to the process.Building a sense of ownership among the different stakeholders is critical to successfully establishing a WUA that has their support, especially the farmers who will form and drive the WUA, and key government agencies that will need to work with the WUA. This begins with ensuring that all stakeholders (individuals and groups) are identified at the outset and are brought into the contextual diagnosis process (Box 6). The stakeholders themselves should undertake analysis, with the project playing the important role of a neutral facilitator. Providing a non-biased analysis after considering all aspects, including the various stakeholder experiences, interests, perceptions and quite often biases, will be a critical role for the project personnel.This phase is likely to take several months and cannot be rushed. How long it should take will depend on several factors, such as the size and complexity of the scheme, diversity of stakeholders, local social and political context, range and severity of challenges that need to be understood, and the human resources available to the project.The stakeholders to be involved are likely to include the following:1. The farmers (including leaseholders) in the scheme (or proposed scheme). As the process may not be able to accommodate all farmers in all parts of the process, their interest in the scheme can be represented by one or more farmers elected by their communities. This should apply even to existing schemes where there may already be elected Canal Representatives (CRs) 3 . This is because, if the opportunity to represent farmer interests is only available to existing CRs, the analysis is at risk of being subject to existing power dynamics and vested interests that may represent the interests of some farmers but not others (Box 6). The fact that existing CRs have been elected does not always mean that they are impartial or have the approval of the majority of farmers. Those elected by communities to represent them could instead be village elders or others who work actively for the village.2. Other members of the villages who may not be landowners or leaseholders. This applies especially to women who often play important roles in agriculture but are not identified as the lead farmer or lead irrigator in most households. Women may also manage home gardens which are important for household nutrition. This could include other water users such as those keeping livestock, and households that depend on the canal water for domestic use. 3. The village administrator from each village served by the scheme. 4. The scheme manager and his/her staff from IWUMD in the case of an existing scheme, or the IWUMD staff to be assigned to a new scheme, if they have been identified, as well as pump operation staff from the villages. 5. Representatives of other important government agencies such as the Department of Agriculture (DoA) and the Department of Agricultural Land Management and Statistics (DALMS).The involvement of IWUMD staff in the scheme throughout this process is very important to ensure they are familiar with the process by which each WUA was formed, since it is these officers who need to work with the WUA as partners in scheme management. Given that these staff members will most often be engineers, familiarization (including training through participation) with participatory and consultative approaches to institution formation will help if they are transferred to another scheme where they are required to establish a WUA.Box 6. Representing farmer diversity.Farmers are highly diverse. There are large and small/marginal farmers, and landless farmers who operate as leaseholders. Gender, religion and ethnicity are other factors that may differentiate farmers. A third and equally important factor is farmers' location within the scheme. Some will be close to the pump station while others will be downstream; some are served from the main canal while others are served by tertiary canals. Where there are/will be multiple pump stations (in larger schemes such as in the PYPIS), representation will need to cover each pump station. Age should also be considered to ensure youth are involved.The project facilitators will need to be aware of these differences and actively encourage participation from across a diverse spectrum wherever appropriate. Awareness of diversity can be generated through a review of existing village-level data generally held by the village administrator, through a household survey, FGDs in each village, and informal discussions.Policy and legal framework PHASE 1 STEP 1It is essential to understand the overall policy, legal and administrative frameworks within which the scheme needs to be operated, including the design and operation of the WUA. The following actions are recommended to ensure understanding of the broader context within which the project is to work, and how this context may influence its work through rules to be followed and administrative systems to be engaged with. These activities will also identify some of the higher level stakeholders the project will need to link with from time to time, in order to provide progress updates, discuss key decisions and seek support in resolving issues that cannot be addressed at lower administrative scales.The activities of this step include:1. Review of any policies that relate to irrigation management at scheme level.2. Familiarization with the Canal Act (or any future replacement) and key provisions related to scheme operation and management, including any roles assigned to farmers. 3. Knowledge of the PIM Guidelines (currently in final draft form)a)The functions assigned to a WUA. b)The governing structure required. c)Roles and powers assigned to farmers and other stakeholders. d) Documentation and process required for WUA registration. 4. The vertical administrative structure of IWUMD and DoA from Naypyidaw to scheme level, and key individuals the project will need to liaise with. 5. The horizontal administrative structure at ground level in terms of the government departments that will have a role in the scheme, and how these functions are carried out and coordinated. 6. Ensure meetings have taken place with the appropriate officer(s) from each of these agencies, so that the project and key project staff can be introduced, the roles and operating procedures of each agency can be clarified, and the views -and orientation towards the scheme -of these officers can be understood.Spend time with IWUMD staff to learn about the scale, structure and operation of the scheme (Box 7) using maps of the existing or planned scheme. These maps can be provided by IWUMD. There are three primary areas to cover, and participatory methodologies should be integrated to engage the community throughout the process.Box 7. Scale, structure and operation of the scheme.Scale of the scheme:1. Area of farmland (total area, area irrigated by season and per canal).2. Number of households depending on water from the scheme for irrigation, livestock watering or other uses. 3. Number of villages. 4. Number of pump stations and their capacities.Structure of the scheme: 1. The source of water and any constraints for supplying water year round or as needed. These could include:  sufficiency and reliability of energy supply, its implications for irrigation in different seasons, and how shortfalls are managed;  Debris from upstream that clogs the intake pipes of the pumps, especially in the monsoon season, and how this is managed; and  Water quality, especially in the dry season. 2. The number, dimensions and layout of the canals, water gates/off-take points, pump stations and drainage network -main and distributary canals and watercourses, and irrigated area according to each off-take point. Use Google maps overlaid with spatial layers containing information on canal structure and off-take points to assess the irrigable land area within the scheme boundaries (see a local example ( 4)). 3. The condition of irrigation infrastructure. 4. The number of water users and area coverage for each of these canals.Operation of the scheme: 1. Pumping and irrigation schedules and how these are calculated. 2. Pump maintenance and associated costs. 3. Costs of pumping and efficiency of the scheme. 4. Time taken to supply water to different parts of the scheme. 5. The administrative structure supporting scheme operation: Existing institutions for scheme operation (e.g., groups, committees, key positions) and their composition and functions (see a local example ( 5)).  IWUMD staff and their roles, including the key role of the pump operator(s).  How IWUMD staff interpret and apply the Canal Act, bearing in mind that implementation of some provisions may not always be feasible on the ground.  How farmers are currently organized/represented (for existing schemes). This will usually be through one or more elected CRs from each village, although there could already be some form of farmer group.  Key processes for developing the irrigation schedule, water allocation, fee collection and resolving problems.  Role played by other government or non-government actors, such as DoA and DALMS, which is required to verify the land areas and size of each field prior to each cropping season.  Any formal or informal coordination committees among government agencies, the functions of these and how these operate. 6. The experiences and perspectives of IWUMD staff about the scheme, past performance, its potential and key challenges to be overcome to reach the potential command area.A local example (4): Using Google maps-based participatory resource mapping to understand biophysical and socioeconomic information.This method enables the development of a detailed map of the resources they depend on, which resources are used by whom, how they understand these resources and how these are managed. Quite often, these discussions also generate significant socioeconomic and other information by linking specific stakeholders with particular resources, and allowing for discussions around who is involved in accessing and managing resources and participating in other local decision-making platforms. This can be especially useful as a first filter to understand those who are marginalized and their positions regarding resource access and management, including women and those who belong to different ethnic, religious or wealth categories. This process can also help understand how regulatory frameworks impact resource use, how climatic variation and other external drivers impact resource availability and quality, and how stakeholders individually and collectively adapt to these factors.This approach is useful for the project to further multiple objectives. In addition to gathering information that can be cross-referenced across different stakeholders, it helps build knowledge of the project objectives among stakeholders, and familiarity between project staff and stakeholders. It can, however, be a time-consuming process for the project, depending on how comprehensive an assessment is desired, with more in-depth processes involving multiple steps and discussions. Methodologically, separate meetings with particular (and especially marginalized) stakeholders as well as validation meetings are recommended. This should include separate mapping exercises with men and women. Ideally men and women could be further divided into groups of younger and older women/younger and older men (GILIT in Box 2 is one approach).In the PYPIS, participatory mapping was used mainly to overcome the fact that the cadastral maps were out-dated, and more up-to-date data on land area and landownership were needed to verify which farmers owned or cultivated land serviced at the various off-take points along the secondary canal.Participatory mapping was, therefore, used to gather information on the following:  The land area serviced by each off-take point. Who cultivated each plot, recognizing it could be the landowner or a leaseholder.  Types of crops cultivated.  Extent of cultivation. If the entire plot is not cultivated, reasons why this is the case.Small groups of farmers (8-10) receiving water from one to three sub-groups were invited to discuss the landholding and ownership/lease arrangements using a high resolution Google Earth map depicting the canal infrastructure and the field boundaries. Farmers were first asked to identify the owner of the field closest to the off-take points and then continue until they reached the tail end of their command area. During this exercise, it is important to orient the map and help farmers identify key locations (e.g., canal infrastructure, row of trees, road crossing, etc.).A local example (4) continues overleaf:In addition to the above information, this process helps to identify the locations of water sources, and the relationships between factors such as the condition of canals, soil types and farmers' cropping decisions.While the focus of this exercise in this example was to overcome out-dated cadastral maps, participatory mapping can also be used to identify and understand other water uses and users, and gender dimensions of multiple water use. As such, it could be used in conjunction with an approach such as GILIT (Box 2).A local example (5): Schematic of the pre-existing institutional structure for scheme management developed through contextual analysis in the PYPIS.The approach taken to analyze the scheme in the example above demonstrates the value of integrating community engagement throughout the contextual diagnosis phase. The purpose of community engagement is to understand the social, cultural, political and administrative landscapes, and identify stakeholder diversity and perspectives. An irrigation system is far more than simply infrastructure bringing water to fields to support the production of crops. Even with the best infrastructure, the success of a scheme is rooted in the social and institutional structures necessary to effectively and equitably operate the system and maintain the infrastructure. While the key government stakeholders have been identified under steps 1 and 2, this stage will be key not only to understanding the diversity of stakeholders within the scheme's population, but also the sociopolitical dynamics that will provide critical insights into how the WUA should be structured. To ensure inclusive discussion and decision-making processes throughout WUA formation and organizational development processes, it is key that farm households' diverse characteristics in relation to their socioeconomic assets and farming strategies are well captured in the overall contextual diagnosis. A baseline socioeconomic survey and local institutional analysis can be used as a starting point to design the community engagement through a series of FGDs, focusing on particular groups of farmers (e.g., by farm size, access to land, position in the irrigation scheme, etc.) to ensure that each group can convey openly their views on WUA formation and organizational development. Particular attention to gender is important, given the importance of irrigation to overall human development, and the often-uneven roles played by men and women in irrigation that inhibits productivity and the opportunities for women to benefit from the irrigation scheme (Box 2). Gender analyses at the outset are an essential component of a gender-sensitive approach, helping to avoid gender blindness and bias in the design and implementation phases.\"Even with the best infrastructure, the success of a scheme is rooted in the social and institutional structures necessary to effectively and equitably operate the system and maintain the infrastructure.\"To this end, each village should be profiled through a range of informal meetings and dialogues (Box 8). This could be commenced through a briefing of the project objectives and an introduction to WUAs by the Project Coordinator in each village, allowing time for questions, clarifications and comments from the villagers. Afterwards, the CFs can meet people informally to establish relationships and get a feel of the local dynamics. Other structured dialogues could be conducted with smaller groups, e.g., farmers served by each watercourse, small-marginal farmers, the landless, women, youth who are farmers and non-farmers, ethno-religious minorities. Key informant interviews (KIIs) could be conducted with key individuals such as village administrators, and in-depth interviews with some of the participants from the small group discussions. A baseline survey can be part of this process to collect data on livelihoods, productivity and equity. This will enable credible assessments of the impact of the WUA at the end of the project.These engagements should also be used to introduce the project and key project staff, and to introduce the concept of a WUA, its objectives and its benefits. The CFs and other project staff attending these discussions must make it clear that they are ready to answer any questions the participants may have at the outset or as the discussions progress.Box 8. Checklist of discussion points for informal meetings/dialogues.Aspects discussed should include the following: 1. Households and population by gender, age, ethnicity and any other social denominations (data from village administrator). It should also include landless households that may be leasing land or using water for other purposes. 2. Ethnic and religious composition (data from village administrator), and how this influences social relations in the village. 3. Gender roles, especially regarding who carries out farming activities, but also how decisions around farming are made within households (household survey, FGDs and KIIs). 4. Landownership, landlessness and the extent of leaseholdings (census data from village administrator, prior records with IWUMD scheme staff and DALMS, household surveys). With the participation of villagers, Google Earth TM and other geospatial software can be used to map their irrigable land according to the various off-take points and canal structure (see a local example ( 4)). 5. Cropping calendar and cropping pattern across seasons (from village meetings). 6. Need for irrigation during each season (from village meetings). 7. All surface water and groundwater sources (from village meetings and transect walks): How they are accessed and used for irrigation, and other productive and domestic purposes,  What this means for water allocation from the canals (e.g., whether the canal water will need to support some degree of non-irrigation uses such as livestock watering holes, domestic uses). 8. The position of each village in the geography of the scheme, and how this affects access to irrigation water from the canals and relations with the other villages (from scheme maps, village meetings and KIIs, if necessary):  If the village receives water first from the pump station, it may be able to dominate water use for irrigation.  If the village receives water after another village (i.e., is downstream), farmers in this village may suffer from a lack of access to irrigation water (quantity, timing, quality), and this could be a root cause for inter-village conflict. 9. Whether farmers are familiar with the provisions of the Canal Act (or its future replacement) and the PIM Guidelines, and their views on these (from village meetings). 10. The level of experience farmers have with irrigating different crops and irrigation management overall. This helps understand the training farmers will need (from village meetings). 11. The roles and powers of key individuals, especially the village administrator and CRs, if they exist (from village meetings and KIIs). 12. History of collective action: formal or informal groups, their roles, membership, operation and relevance to farming and irrigation management in particular (from village meetings). 13. Perspectives of the various stakeholders (from village meetings, FGDs, KIIs, in-depth interviews):  Their experiences with the scheme (for existing schemes).  Their aspirations for the scheme in the future (whether an existing or new scheme). Key issues, root causes and how they think these can be resolved, including what kinds of institutions and processes these will require, and what role they could play.Facilitate a multi-stakeholder dialogue PHASE 1 STEP 4Through the first three steps, the project developed an understanding of the scheme structure and operations, and identified and characterized all stakeholders at the various scales. These dialogues have also helped introduce the project and its objectives to all stakeholders, and to explain the process by which it hopes to work with them to establish an institutional structure for effective and equitable PIM. The project is now ready to bring together representatives of the stakeholders for the first of a number of multi-stakeholder dialogues. At this stage, the objective will be to reach a consensus among the stakeholders about the following:1. Key challenges or weaknesses (in existing schemes), and their root causes.2. Options for solving each issue and what roles stakeholders/stakeholder groups can play to support these solutions.The first three steps engaged with stakeholders through a range of discussions at various levels (village, smaller stakeholder groups, KIIs). It is likely that there will be several views of the existing problems and opinions about how these should be resolved. This step (workshop) is the first time that representatives of all stakeholder groups -within and related to the scheme -are facilitated by the project to come together. Most importantly, this workshop is a self-assessment where the stakeholders themselves are the analysts of their own experiences and will broadly determine a collective vision for scheme performance in the future, and the key changes needed to realize this vision.How the workshop is structured will depend on the specific needs and stakeholders involved, but should include both plenary and group work components. What is discussed in the plenary and group sessions, and how stakeholders are distributed in the groups is again subjective. However, what is necessary, overall, is that a consensus is reached on the workshop objectives. Whether this can be achieved through one workshop or several will depend on the complexity of the situation (Box 9). It is, however, recommended that each workshop lasts no more than 2 days.The project staff will facilitate the process to ensure that all stakeholders are represented (farmers, landless, women, ethnic groups from all the villages, officers from key government agencies -IWUMD scheme staff, DoA, DALMS, General Administrative Department [GAD]), and that they are all provided opportunities to present their needs, views and suggestions, and to respond to those of others. An important part of facilitating this meeting should be the introduction of the core principles set out in this section at the outset of the workshop, as guidance for the duration of this workshop and all the other activities in the process. Posters of the core principles can be placed on the venue walls for constant reference by participants and project staff. Staff will take detailed notes of all discussions, being sure to indicate what was said and by whom. The project may also structure the workshop agenda to help participants recognize the interactions between scale, physical structure and social landscape in defining the control-dependency relationships that will be central to WUA design in Phase 2.The output of this step should be a workshop report that documents the objectives, diversity of views and ideas expressed in the discussions attributed to specific individuals/groups, consensus on problems, vision and ways forward, roles various stakeholders need to play as part of the solutions, and the participant attendance sheet.Box 9. Stakeholder self-assessment workshop on scheme governance.General objectives of the workshop are as follows:1. Help the project understand the different perspectives of each stakeholder and stakeholder group regarding the core issues in the scheme, and their underlying causes. 2. By discussing perspectives openly, ensure that stakeholders are better able to understand the views of each other, as a first step to building bridges between seemingly incompatible positions. 3. Take a first step towards identifying solutions to each of the core problems and their drivers, including the roles various stakeholders need to play, and the external support required. 4. Begin to generate the all-important sense of participation, empowerment and ownership of the process of designing institutional arrangements, which the stakeholders believe can help them collectively manage the scheme successfully.To obtain a holistic picture, it is important to invite a wide array of farmer and government representatives. Farmer representatives may include individual farmers, any existing canal representatives and village administrators. Other stakeholders are government officers such as IWUMD staff from the scheme (scheme manager, deputy managers and other technical staff); Township officers from DoA, Agricultural Mechanization Department and DALMS; and the Township Member of Parliament. Key project staff will facilitate the workshop and be in charge of taking notes and reporting.Depending on the complexity and the audience, the workshop can take up to a full day and be organized around the following key topics:  Problem tree analysis through group work. Plenary session where the results of the problem tree analysis are presented and discussed.  Solution matrix through group work. Plenary session where the results of the solution matrix are presented and discussed.Depending on the type of stakeholders present and their roles in the scheme, the group is split into smaller groups for the \"Problem Tree Analysis\" where each group represents a uniform stakeholder \"type\": 1. Farmers (ideally men and women farmers in separate groups).2. Canal Representatives.3. Scheme managers/staff. 4. Village administrators. 5. Other government stakeholders who are indirectly involved.Before commencing the group work, explain how a problem tree analysis should be carried out and walk them through the steps of an example. The project's facilitators are assigned to each group table to provide further guidance during the process, but with strict instructions not to influence the discussion. They can, however, create space and prompts for group members who are less active to speak, especially women from the farmer communities. Provide the necessary supporting materials (stationery, reference documents such as the Canal Act) to each table.BOX 9 continues overleaf:Each group is tasked with agreeing on a core problem, and then identifying the primary and secondary causes. The groups then move to identifying the primary and secondary impacts of the core problem and its causes.An example of a problem tree analysis of a Farmer Group: Core problem: Lack of access to sufficient water in a timely fashion Possible causes:1. Poor canal quality.2. Water taken from other canals and villages illegally (water being stolen), gates not closed, water cannot flow to designated places. 3. Unstable and insufficient electricity supply. When electricity is frequently cut off, water delivery is distorted and delayed (pumping has to be restarted). 4. Canal maintenance is not properly completed. 5. Late access to water due to poor irrigation scheduling. 6. Canals are broken through human and natural actions, such as tree roots destroying canals. Possible impacts: 1. Competing for access to water creates conflicts between farmers within the same villages and with different villages. 2. Lack of access to sufficient water leads to late fertilization, eventually causing low crop yields and productivity. 3. Water is only accessible late at night in some villages, and farmers could be at risk of getting bitten by snakes. 4. Since crop productivity is low, farmers always struggle with a vicious debt cycle. 5. Household food consumption is insecure due to low productivity of crops. 6. Children cannot go to school since parents struggle with financial crises, ultimately resulting in a big loss for the country's new generation. 7. Farmers' families have a lower standard of living (social, economic, health and education sectors). 8. Farmers are stressed and suffer chronic depression due to this economic crisis often leading to family health problems.Placing similar stakeholders in the same group means that the perceptions of each stakeholder of the core problems and underlying drivers are clearly brought out. At the same time, the group discussions reveal important intra-group differences that highlight a greater diversity of views than simply between groups of similar stakeholders.Presentation of each group's problem tree in the plenary session allows stakeholders to comment on the analysis of each group. This can help bring to light alternate perspectives on specific core issues or their causes, while moving towards a consensus on what the core issues and their underlying causes are.Once a consensus is reached, move to the step of the solution matrix. Match the groups from the problem tree session to the different levels in the scheme: 1. watercourse level 2. distributary canal level 3. pump station level 4. scheme level BOX 9 continues overleaf:Each group is required to identify possible solutions in response to the core issues and their causes using a matrix:  Core issue  Causes  Opportunities  What should be done?  Existing resources  Who should implement?  Indicators of successResults are presented in the plenary session followed by discussion. By focusing on what is needed to address the identified core issues, the discussion helps further break down the analysis of challenges in the scheme, providing a finer shared understanding of the problem tree, and where in the scheme the solutions would need to focus.The workshop ends with a recap of why it was held and its activities; a synthesis of what was discussed and agreed upon through the problem tree analysis and solution matrix; and an evaluation of the workshop by the stakeholders.Objective meta-analysis PHASE 1 STEP 5A key role of the facilitating organization is to provide objectivity and facilitate a neutral platform.Almost by definition, most, if not all, stakeholders are likely to knowingly or unknowingly hold biases and interests that will be reflected in their interactions with each other, and views on what is going wrong and how these should be fixed. Without the project acting as the gatekeeper in terms of what is best for the scheme overall, and how the scheme can be operated to ensure all stakeholders are heard and benefited, these biases and interests may infiltrate the WUA structure, and undermine its ability to address existing weaknesses. Furthermore, as discussed earlier in this section, limited stakeholder capacities in the face of a complex undertaking will require the project to actively participate to assist in arriving at effective and realistic solutions. This begins with guiding the problem analysis to ensure that stakeholders identify all aspects of scheme management and current strengths and weaknesses, and that these are brought together in a coherent analysis which the project, as a neutral actor with both technical and social science skills, is well positioned to do.The project team now combines the findings from the various dialogues conducted under steps 1 to 4 of Phase 1 into an objective analysis, guided by the core principles set out earlier in this section. This analysis is likely to be a refinement of the consensus reached among stakeholders in Step 4, with particular attention given to points of conflict among stakeholders and the role of the scale and complexity of the scheme, local stakeholder histories, attitudes and capacities, and government sector attitudes and capacities in shaping conflicts (see a local example (6)). Such an independent assessment will lead to a clear picture of the particular needs and expectations of different stakeholders, the key weaknesses currently affecting the scheme, and which of these can be realistically addressed by establishing a WUA. Such an analysis is also likely to result in a preliminary idea within the facilitating organization of what type of institutional layers and processes could be 34 needed at different levels of the scheme (e.g., sub-distributary canal, distributary canal, pump station, overall scheme) to address key weaknesses and ensure smooth operation of the scheme. This is not to suggest that this design will be presented to the stakeholders, but used by the organization to guard against unrealistic or insufficient design components arising in the stakeholder design Phase 2 (WUA design).A meta-analysis by the project team could be achieved through a 1-2 day in-house workshop. It is important that all key project staff participate in such a workshop to ensure the analysis combines the understanding of the physical, hydrological, ecological, economic, social and political features of the scheme. This knowledge is likely to be distributed among different members of the project team. Through analysis that brings together knowledge of the scheme across its physical, social and institutional domains, the project team will be in a better position to make an objective assessment of the stakeholder-driven ideas for an appropriate WUA structure, which will be developed in the institutional design phase that follows. Ensuring a balance between a stakeholder-driven participatory process and the need to ensure that the WUA design that emerges from that process appropriately addresses the challenges identified in the diagnostic phase is a key function of the project team.The output of this step should be a comprehensive picture of the scheme, key weaknesses and their root causes, options for addressing these weaknesses and potential roles the various stakeholders could play in resolving these issues. Central to this analysis should be how the various stakeholders are (or will be) able or unable to influence water allocation decisions and ensure they receive their allocations as planned. This aspect of influence is likely to be significantly shaped by where different groups of stakeholders are physically located within the scheme. Overall, inequalities in influence are likely to occur at several levels or scales in the scheme, leading to multiple points of conflict that will need to be addressed by the WUA (e.g., a local example ( 6)). Further considerations to take into account for WUA design are given under Phase 2.Where rehabilitation/modernization of the scheme is involved, the participatory and other principles adopted in this handbook must also be applied (Box 10).A local example (6): Scheme complexity, power inequality and conflict in Pyawt Ywar Pump Irrigation Scheme.The various stakeholder engagements brought to light several control-dependency relationships revealing differences in power between individuals, groups or communities. These relationships stemmed from the ability of Pump Station 1, which pumps water into the scheme from a river, to control how much water flows to Pump Stations 2 and 3. Such relationships also existed between the five villages in the areas supplied by each of the three pump stations, since upstream and downstream villages lie in each command area. The third point of power dynamics was at the intra-village level between a few CRs and the farmers who elected them. Not only were there too few CRs to effectively perform their functions, but they also accumulated significant power expressed through unequal water distribution. This role had become an opportunity to accumulate personal wealth by competing with each other to serve more farmers, each of whom paid their CR a service fee at the end of each cultivation season. Each of these power asymmetries gave rise to conflicts between the pump stations, the villages, the CRs and among farmers who were forced to compete with each other as the supply of irrigation water was erratic.These relationships were also understood as being linked partly to the physical layout of the irrigation scheme, where Pump Station 1 and some villages received water before others. This created upstream-downstream relationships between pump stations and the villages in each area, as well as at smaller scales such as distributary canals and watercourses.The control-dependency relationships created here had to be addressed through the WUA structure.Box 10. Rehabilitation/modernization of existing infrastructure of the irrigation scheme.The participatory and other principles adopted in this handbook must also be applied to the process of designing and implementing any rehabilitation/modernization of irrigation infrastructure. Not only must farmers and other local water users in the scheme feel that the engineering interventions reflect their needs, but how infrastructure improvements are conceived and implemented can influence the governability of the scheme. Hence, a mutual understanding of infrastructure design, O&M of the scheme and investment decisions should be created between the engineers, village stakeholders and IWUMD staff. In the absence of an established formal or informal WUA and as a precursor to WUA formation, small informal groups that would represent the collective interest of the communities in the scheme can be formed, e.g., at village level, to participate in the design dialogues.It will also be required to hold discussions with the scheme's water users (farmers, livestock owners and women as both cultivators and domestic users of water) to ensure their needs are reflected in the design, sequencing of the engineering works and linked to budget allocation. These discussions could occur after the self-assessment workshop on scheme governance, since some governance issues may be linked to infrastructure deficiencies. They could be in the form of meetings at the village and/or pumping scheme levels, depending on the size of the scheme and the importance attached to understanding cross-village or cross-scale management. In such a follow-up dialogue, the local stakeholders in the scheme should be allowed to first explain existing needs and shortcomings based on their experiences and aspirations for future cultivation and other production systems (e.g., livestock). Since men tend to dominate public dialogues, the facilitating organization must ensure female irrigators/water users are allocated time to speak. This will help the engineers better understand the multiple uses of canal water.The engineers and IWUMD scheme staff could respond to these local needs either in the same discussion or in a follow-up discussion a few days later after due consideration. In such a discussion, they can clearly explain the design options and their respective advantages and disadvantages, considering also the available budget, operational costs and the level of engagement required by the WUA and IWUMD staff to manage and maintain the scheme.Providing opportunities for representatives of farmers and other local stakeholders to give feedback at this stage will increase the likelihood that the physical structures will be practical and sustainable, while meeting the needs of the local stakeholders.\"DESIGN draws on the analysis of Phase 1 to create the structure for the WUA institution. The design and the strategy for implementing the WUA must be driven by all stakeholders.\"In this phase, the analysis carried out in Phase 1 will be converted into the design of the WUA structure and associated processes that will link the various parts of its structure. It will also take the process to the point of WUA implementation by developing an implementation plan. The project team will guide stakeholders through this process via a series of stakeholder visioning and planning activities to co-create a preliminary outline of the WUA design and implementation plan, both of which will be finalized during a second multi-stakeholder workshop to agree on the WUA structure and the implementation plan.The WUA structure to emerge from this process must target the root causes of problems, keeping in mind the core principles set out earlier in this section. In the case of the PYPIS, an overarching weakness was the absence of platforms for collective action among farmers, and for coordination within and across scales (see a local example ( 5)). It was realized that introducing additional institutional levels under the WUA could avoid the escalation of conflicts between farmers at watercourse, village and pump station levels, and between farmers and IWUMD staff through better planning and early identification and resolution of problems. Therefore, filling these institutional gaps was a key objective in shaping the WUA structure in this scheme (see a local example (7)).Importantly, establishing a WUA may not mean the complete overhauling of any existing institutions for scheme management. Any features of existing institutions that are either required by government rules (e.g., Canal Act or a future replacement) or useful to retain should be incorporated into the WUA design. However, modifications to these existing institutions may be necessary, or where these consist of individuals, their repositioning and reelection (if these are elected positions) within the new WUA structure. This was the case with the existing CRs in the PYPIS; the position was found to be a focus for accumulation of power and a source of disharmony among farmers (see a local example (6)).An important aspect in determining the number of institutional layers will be the area of land to be served, and whether this is feasible through WUGs alone or through sub-groups that enable large land areas to be managed in smaller parcels. Delineation of the WUGs depends on the area served by a distributary canal (i.e., main off-take point from the main canal). If the area served by one distributary canal is larger than 50-100 acres (20-40 hectares), decisions can be made with the stakeholders to divide the WUGs into sub-groups (SGs). It is important to discuss with the stakeholders the minimum structural operational level required, based on the ability of one individual to govern and manage irrigators. The discussion should address the challenges prevailing at that level, the number of irrigators and irrigated areas, and the diversity of the stakeholders. In cases where irrigators from multiple villages are dependent on the same off-take points, different additional groups may be required. For this step, participatory mapping results, cadastre information from the DALMS (if up-to-date) or farmer lists from IWUMD (if up-to-date) can all be used. Farmers are assigned to the various groups based on plot ownership.During the stakeholder discussions, participants are asked to justify and stipulate the functions of each institutional layer of the WUA they propose, along with the stakeholders it will represent, how it reflects the core design principles and the key weaknesses it will address. Once each layer is defined in this way, it will be necessary to detail how it links to other layers, to provide the crossscale coordination needed to solve weaknesses that arise from poor coordination across specific scales in the scheme (e.g., between different distributary canals, villages or pump stations). These meetings mark the beginning of the WUA design process. To ensure stakeholder buy-in, the process needs to begin at grassroots level and involve all stakeholders within the village as well as IWUMD and other stakeholders. Having these meetings at village level is suggested because most local water users would identify with a village. Ensuring all stakeholders (all water users, men, women, young and old, different ethnicities, etc.) are present and allowed to actively voice their opinions and suggestions is a key goal (Box 11). It is suggested that separate meetings are conducted with each stakeholder group in the village, IWUMD and other government institutions, followed by a multi-stakeholder meeting in each village to develop a consensus on the WUA design proposed by each village (Box 12).\"Examples of stakeholders to be included are large farmers, small farmers, the landless, women cultivators, women non-cultivators and livestock keepers. Ensuring all stakeholders are allowed to actively voice their opinions and suggestions is key.\"Box 11. Stakeholder-specific dialogues.The following agenda could be followed for conducting these dialogues:1. Present the outcomes of the first multi-stakeholder workshop where the strengths and weaknesses of the scheme were analyzed, and provide the opportunity for any additional observations to be made by stakeholders. These may bring out more detailed perspectives of specific stakeholders that did not surface at the multi-stakeholder workshop. 2. Seek stakeholder views on how the WUA should be designed to effectively address key challenges and realize the vision they have for a well-functioning irrigation scheme. This will involve conducting separate dialogues with the various stakeholder groups, including womenonly groups wherever possible. Significant facilitation by the project team is envisaged here. While recognizing that each stakeholder group may have somewhat different visions of the design of a well-functioning irrigation scheme based on their own needs, it will be useful to focus attention on the analysis of power dynamics (see a local example ( 6)) to avoid a repetition of past problems. Using a large printed copy of the scheme's structure and details of farm area, farmers, other water users, etc., the project team should guide each group to think about how water can be conveyed across the scheme most effectively to avoid irrigation delays and resulting social conflicts between and across various scales. These discussions should be facilitated as a creative process where stakeholders use their indepth knowledge of their societies and the scheme to come up with options. However, given the potential gap between stakeholder capacities and the complex socio-technical nature of irrigation management, the project team may need to draw on its own internal analysis at the end of Phase 1 to ensure that emerging ideas are realistic in the light of the problem analysis and technical realities of the scheme. In such situations, the facilitating organization must explain why a particular suggestion may not be feasible, and the groups should be encouraged to come up with alternatives.A diagrammatic presentation of the emerging WUA design should be developed along with the discussions, with functions and membership of each level of the WUA clearly laid out (see a local example ( 8)). The relationships between the various layers need to be detailed specifically to ensure that layers make sense collectively, and no gaps remain. BOX 11 continues overleaf:3. Seek stakeholder views on how the WUA should be implemented and other stakeholders' roles in this process. This could also include identifying the role played by the facilitating organization. The proposed plan must fit in with the available time and resources. One option that could be explored is a phased approach, especially in the case of larger more complex schemes with multiple pump stations. While this may be more time consuming, it does provide opportunities to learn and improve the implementation process.The implementation plan should include a Monitoring, Evaluation, Accountability and Learning (MEAL) framework. This should be a combination of indicators required by the project team to monitor progress, learning and accountability of all stakeholders involved. Indicators should be easy-to-use so they can be monitored by the WUA when the project is over. Identifying the indicators should be a collaborative effort between the stakeholders and the project team. In cases where a baseline survey was conducted, the indicators should link back to this survey to support documentation of impacts and lessons learned throughout the project. Stakeholder perceptions on the adequacy, reliability and equity of water supply between farmers and other water users at various scales (watercourse, distributary canals, villages, pump stations).  Stakeholder participation in each level of the WUA (using attendance sheets), including women and ethnic/religious minorities.  Topics discussed at each level of the WUA (through a standard meeting minutes format) to understand whether, for example, farmers are highlighting issues and whether these are being resolved and documented.  Conflict management: Type and number of conflicts raised and solved, and raised but unsolved, at the various levels of the WUA.  Livelihood and productivity-related impacts.  Stakeholder perceptions on the sustainability and manageability of the WUA and O&M of the scheme, including remaining key challenges.  Financial viability and effectiveness of the WUA.Box 12. Multi-stakeholder meeting at village level to develop a consensus on what each village suggests as an appropriate WUA design.Following the separate meetings held with different stakeholder groups in each village, a final village-level meeting with all stakeholders will be needed to harmonize the multiple WUA designs resulting from each group. The project team will facilitate decisions towards a composite structure and implementation plan that will almost certainly require compromises between groups. The final output from each village should be a WUA design and implementation plan, which enjoys consensus among the stakeholders.The project team should also promote the attendance of one or more IWUMD staff from the scheme as active participants at the final village meetings. While the focus of this process is on irrigators and other local water users as the future WUA members, cooperation with IWUMD staff will remain a fundamental factor for successful scheme operation as they will retain control over the pump stations, and the government-allocated operation and maintenance budget. Moreover, as noted in the government's PIM Guidelines, several key functions such as irrigation scheduling and maintenance will require the WUA and IWUMD staff to work together. Therefore, IWUMD's technical expertise during these final village meetings will facilitate the implementation of the emerging WUA design and underpinning logic.A multi-stakeholder workshop is recommended to develop a final composite design, implementation plan and MEAL framework, with representation similar to that conducted under Phase 1 Step 4. In fact, this second workshop is the logical continuation of the first one, which focused on collective problem analysis and provided the starting point for WUA design. At this second workshop, the objective is to harmonize the multiple WUA designs, implementation plans and MEAL frameworks arising from the villages in the scheme, resulting in a single final version of these. The workshop may require 2 days depending on the complexity of the scheme and the number of stakeholders. Beforehand, the project team should work with village administrators to announce the workshop and its objectives widely, using posters and local networks. Ensuring all stakeholder groups are represented from each of the villages is central to the success of this workshop. Government stakeholders are important as well as other stakeholders who were invited for the workshop in Phase 1.At the workshop, the project team will introduce the objectives of the workshop and summarize the process up to this point. The many meetings with government staff and village stakeholders should be emphasized along with the first multi-stakeholder meeting, which formed the foundation for the proposed WUA structure. This is extremely important if stakeholders are to recognize their considerable contributions to the final WUA design and its implementation and monitoring.A representative from each village can then present the WUA design, along with underlying rationales and the weaknesses of the current system that are addressed through their design.Presentations can be supported by displaying large diagrams of each of the village WUA designs for closer reference. Time for clarifications should be available after each village presentation. This will be followed by the development of a single final WUA design. While this could be achieved through another plenary session, it is recommended that the plenary is preceded by group work. The groups can represent a specific stakeholder group, and their task is to develop their own final design using the proposed designs by the villages. Each group must propose a design which they think will be effective, fully accepted by most people and will help them improve water management in the scheme. There are likely to be some challenges that the establishment of a WUA cannot solve (e.g., unreliable energy supply), and these must be made clear together with recommendations on who can solve them. Sufficient time should be provided in the agenda for this stage of the meeting to be completed comprehensively, including time for extended questions and discussion.Presentations of the group work and subsequent discussions in the plenary session should lead to a final consolidated WUA design and operations. If there are key issues where consensus cannot be reached, a follow-up workshop in a week or two could be an option, with smaller working groups set up in the interim to propose solutions to be discussed at the follow-up workshop. Where such outstanding issues do not occur, the project team must ensure that all participants clearly understand that the revised WUA structure is the final version that will be implemented.Once a WUA design is agreed among the stakeholders, the workshop can develop an overall implementation plan and MEAL framework. In this session, the implementation plan and MEAL framework are presented to plenary by each village, followed by group work and then a final plenary where these two components are finalized.An important final step at this workshop is to request that all participants brief the stakeholders they represent and share the workshop outcomes. This should include the final WUA structure, how it is expected to function and help the respective stakeholders, and how the structure will be rolled out in the scheme. This step should be followed up by the project team, the CFs at village level, and more senior staff with government institutions. Further activities to effectively communicate the WUA structure and underpinning logic should include brochures, using mainly graphics, and possibly videos. These will be followed up by illustrated presentations and discussions in each village with opportunities for stakeholders to gain clarifications in the implementation phase described in Phase 3 below. At least a month, if not more, should therefore be allocated between the end of this workshop and WUA implementation.While the multi-stakeholder workshop is key to further the process of WUA formation and organizational development, it should not be treated as an institutional means or process-based mechanism to rubber-stamp key stakeholders' agreements. On the contrary, if farmers and other key stakeholders cannot reach an immediate agreement on specific issues, follow-up mechanisms need to be developed to facilitate this process, while ensuring that the workshop is characterized by -and functions as -an inclusive discussion forum to provide stronger organizational roots, and consensus building for the formation and development of the WUA.A local example (8): Additional institutional layers leading to a final WUA structureThe table below shows the layers and functions required for the WUA design. The boxes on the right in the first diagram (after this table) represent the additional institutional layers identified for the PYPIS under the PYPIP. By combining these with the existing institutional arrangements, the final WUA structure was created, as depicted in the second diagram.Additional institutional layers leading to a final WUA structure for the PYPIS: A local example (8) continues overleaf:\"IMPLEMENTATION of the validated WUA design is not complete without continuous SUPPORT, until each of the WUA's institutional layers are well-established. The project team must therefore also have capacity building and exit strategy plans in view from the beginning.\"How this phase is structured will depend on the design of the WUA that emerges from Phases 1 and 2. Despite variations in structure among schemes, several similarities will exist because of the common need to build ground-up representative and participatory processes. It is, therefore, presumed that, while the steps detailed below may not be an exact match, many of these steps will be needed whenever a WUA is to be implemented, even if it is in a modified form. Moreover, many of the tools such as participatory mapping and other approaches for collective planning and implementation will be relevant whatever the WUA structure.Prior to commencing WUA implementation, hold meetings to update each village on the final WUA structure and process that led to its finalization by their respective representatives. The meetings are to ensure that all water users are fully aware of -and understand -the finalized WUA design and implementation plan (Box 13). Participation at these meetings should be promoted by announcing it in areas where people gather and through other local communication means. CFs should ensure that all stakeholders know that there is a meeting about the final WUA design and its implementation, where and when the meetings will be held. The meetings should be held at a time that the CFs can verify as being convenient for women as well as men. The meeting length should be limited to 60-90 minutes.Box 13. Meeting agenda for all water users.Each meeting should consist of the following activities:1. Explain the purpose of the meeting.2. Refer to the overall objective of establishing a WUA to improve operation of the scheme.3. Recount the main steps taken up to this point in terms of stakeholder consultation. 4. Present the WUA structure and explain that this reflects the discussions held at village level (and/or other scales), and the second multi-stakeholder workshop where representatives of farmers and other water users from each of the villages finalized the WUA design. This step is important because most stakeholder representatives who attended the second multi-stakeholder workshop may not have explained the outcomes of this workshop at all or in full. It also demonstrates how the WUA structure has been codesigned by the farmers and other stakeholders with support from the project team.5. Explain the purpose of each layer of the WUA structure, and how these contribute to achieving the overall objectives of establishing a WUA, and specifically how these can benefit farmers and other water users.Steps to Establishing a WUA Phase 3: Implementation and SupportDemarcate the operational level of the WUG PHASE 3 STEP 2If an operational level lower than WUGs (e.g., sub-groups or their equivalent) are part of the WUA design, the team will need to go through steps 2 to 4 twice: first developing the sub-group and electing the representatives and then establishing the WUG and electing the representatives (see a local example ( 9)). Where only WUGs are part of the WUA structure, the project team will only need to go through steps 2 to 4 once. The following steps are suggested during the village-level meetings when implementing the operational WUGs (and if needed the SGs):1. Demarcate the operational groups covering the scheme area (i.e., WUG or SG). Use a large map of the scheme (e.g., Google maps overlaid with the canal structure). Reiterate the criteria developed in Phase 2 to decide on how to delineate the groups.2. Invite farmers to comment on the groups and be open to modifications. Where modifications are suggested, work with farmers to identify any problems these could pose to the overall allocation of groups and how these could be solved.3. Once agreement is reached, set a date for the first meeting of each group, and agree on an agenda for that meeting (Box 14).Box 14. Meeting agenda for WUGs.The meeting agenda should include the following: 1. A further introduction to the overall institutional design and clarification of the functions the WUG is expected to perform. 2. Wherever possible, an address by the Scheme Manager to demonstrate that this process has government support, and to ensure the key government stakeholder at scheme level is part of the process, as buy-in is necessary by all stakeholders. 3. Drafting the rules and sanctions applicable to farmers and representatives as well as the criteria for electing the representative, including farmer agreement on the conditions for re-election in the case of any perceived misbehavior or misconduct before the end of the WUA term of office. This bolsters the institutional mechanisms for farmers to convey their voices and for the WUA to strengthen its representation, constituency and accountability.Meet to establish rules and regulations PHASE 3 STEP 3These meetings will allow farmers to meet for the first time as a group and develop the rules and sanctions applicable to themselves and their group representative, and the criteria for electing their representative.Use similar methods as explained in Phase 3Step 1 to ensure that many farmers from each group attend this meeting, adopting any modifications in communication pathways that were made after reflecting on their effectiveness in Step 1. Wherever possible, the project team should encourage the Scheme Manager to address the farmers to highlight that this process had his/her support.Start each group meeting with an introduction to the overall institutional design and clarification of the functions the group is expected to perform. Invite the Scheme Manager to speak, if s/he is in attendance. The CFs and other project staff should then facilitate the group to systematically develop the rules and sanctions by considering the roles played by farmers and representatives to enable the group to perform its functions under the WUA. Rule development should be followed by developing steps to be taken to hold themselves and their representatives accountable, such as sanctions for rule breaking, or non-performance of the representatives' roles. Among the other decisions a group will need to take include the fees to be paid to the representative for services rendered. In the case of the PYPIS, these fees are shared equally among the representatives irrespective of the area they serve, to avoid competition between groups based on the area they serve.At the end of this step, the members of each group should be requested to reconvene of their own accord to either identify volunteer candidates or to nominate one or more candidates for the representative position, after considering the criteria they have just developed. A separate group meeting should be held at a later agreed date to hold the election. Allow each group to determine the regularity with which it will meet, on the assumption that the representative is best placed to determine this in relation to the functions they are to perform. Leave the original rules and regulations with the sub-group and take a copy.A local example (9): Development of the SG and WUG layers.The project followed steps 1 to 4 to establish the SG and then reiterated a lighter version of steps 1 to 4 to form the WUG. The project team first held separate meetings at each SG to create awareness of the WUA, and guided farmers in designing the first set of rules and regulations for WUA members and the SGRs, and to define a set of criteria for electing the SGR. A second meeting was held in each SG to elect the representative (see a local example (10)).The WUG was established by aggregating the sub-groups at key off-take points along the distributary canal. Election of the representatives (in Pyawt Ywar called Canal Representatives (CRs)) involved a one-day workshop with all group members, IWUMD staff and relevant village administrators. The workshops were structured as follows: Project team repeated activities listed under Step 1 to further build awareness of the WUA.  Consolidation of SGs was discussed and the number of WUGs to be formed was finalized.  Presentation by a farmer of the rules applicable to farmers in the SG, and sanctions for failing to abide by these rules.  Presentation by the SG representatives of their roles and responsibilities, and sanctions for failing to carry out the duties.  Development of criteria for the selection of candidates for the CR position.  Election of the representative based on the criteria.The representatives elected at this level are expected to work with the representatives of the smallest operational level they oversee as well as with their peers served by the same pump station. They nominated one CR to liaise with the pump operator to convey the water requirements of farmers in the PS command area. The newly elected representatives received the farmer list with land area (acreage) and were asked to countercheck their members and validate the land area served. challenges that could not be solved at the WUG level were dealt with, and the needs of farmers served by each pump station in the apex level of the WUA could be represented to ensure there is equity between the areas served by each pump station.Where PSCCs are needed, each PSCC can be established through an inaugural meeting to introduce all stakeholders, explain and reiterate the purpose of the PSCC within the overall WUA structure, and clarify roles and regulations of the PSCC. In the PYPIS, the stakeholders in the PSCC were the SGRs and CRs from the pump station's command area, village administrators from the villages in the command area, the Deputy Scheme Manager assigned to the pump station, and the Pump Operator.The project team can facilitate the inaugural PSCC meeting and development of logistical arrangements regarding its operation, such as how often it meets, who will maintain meeting minutes, and how any costs associated with these meetings can be covered (e.g., transport costs).Allow each sub-group to determine the regularity with which it will meet, on the assumption that its members are best placed to determine this in relation to the functions an SGR is to perform. Its members will take turns to coordinate these meetings.Establish WUA governing bodies and by-laws PHASE 3 STEP 5The apex institutional layer will meet once the various operational layers are in place. In the PYPIS, this group initially consisted of all the SGRs, CRs, village administrators, the scheme manager and deputy scheme managers. This group was used to coordinate overall scheme management, and to make decisions on how the executive bodies of the WUA (a BoD and an MB) should be established according to the Draft PIM Guidelines (a local example ( 12)). Key functions of this apex level will include the following: 1. Putting in place overall needs for irrigation management, including verification of farmer lists, crop choices and cropping areas for each cropping season. 2. Finalizing the overall water allocation schedule and its modification as needed. 3. Coordinating the operation of pump stations and managing the impacts of power supply interruptions. 4. Supporting the consolidation of rules and regulations across the scheme into one set of rules and regulations. 5. Harmonizing the various fees paid by farmers (irrigation fee to the government, service fee to the representatives, WUA membership fee and other fees).These functions will be carried out in close consultation with IWUMD staff who will most likely retain overall authority over the scheme, and will operate the pumps and maintain the main and secondary canals. This apex level is also where links with other government agencies and non-government actors can be developed. The DoA and DALMS are critical, given DoA's central role in supporting cultivation, and DALM's role in validating the farmer lists and landownership upon which the water fees are based. Non-government actors could include input suppliers or buyers with whom, for example, supply/purchase contracts could be created at preferential rates. NGOs could also provide specific training.Steps to Establishing a WUA Phase 3: Implementation and SupportAt the first meeting, the project team should present the requirements under the PIM Guidelines, so that all participants are aware of what the WUA management structure should look like (the BoD and MB in particular), and what will be necessary to register the WUA with the government. This can be followed by a more detailed discussion of the roles of the BoD and MB. A consensus could then be reached on how the governing bodies will be populated among the different villages and whether they are filled by WUA members or by some of the representatives. As part of the project team's facilitative role, its staff should bear in mind the importance of equity in representation among the villages and pump stations (where more than one exists). While the scheme consists of multiple layers, it is likely that, for farmers too, the village unit will be the most relevant for representation in the WUA's governing bodies. Where the number of villages corresponds to the number of seats on the BoD and executive positions of the MB, ensuring equal representation will be easier (a local example ( 12)). Where this is not the case, the project team, together with the farmer representatives in the WUA, will need to work out a solution whereby all villages feel they have equal opportunity to participate in the WUA's management. This may require holding discussions at village level between the village administrator, farmer leaders and others. These discussions could be held both before and/or after a consensus approach is reached at the apex level of the WUA. In other words, village-level consultation could both feed into consensus building and validate the final arrangements agreed at the apex level.A local example (12): Populating the Board of Directors and Management Board.It was decided at the WUA meeting that the BoD should consist of the village administrators from each of the five villages. This was partly possible because the number of BoD members stipulated in the PIM Guidelines was also five. However, it clearly indicated the importance the farmers placed on equal representation among the villages. Similarly, the five executive positions in the MB were filled by selecting one individual from each village. Only three of these individuals were group representatives, while the other two were farmers who were identified by the BoD as qualified to perform the roles of the Secretary and Treasurer.During subsequent meetings (depending on the complexity of the scheme and layers), the project team should support the WUA's MB to consolidate the rules and regulations (by-laws) developed under each of the WUA's layers, including the development of by-laws that will govern the WUA's apex bodies (see Section 4 for the by-laws developed under the PYPIS). This should also include a final harmonization of the rules and regulations applicable to all the sub-layers. The freedom of each group to create its own rules and sanctions must be balanced against the need for these rules and sanctions to be harmonized across the scheme to avoid confusion. The project team can facilitate a discussion around whether members of each sub-layer agree with the existing rules. Any deviations or additional rules and sanctions will need to be recorded by the project team to support a final harmonization process. The same applies to the criteria for electing group leaders. Once harmonized, these rules, along with other by-laws of the WUA, should be clearly displayed in each village (see a local example (13) 4 ).A local example (13): Village signboard with WUA membership rules in words and graphics (note official signatures from government representatives).Steps to Establishing a WUA Phase 3: Implementation and SupportThese by-laws should be understood as being dynamic and changeable by the WUA as necessary, to adapt to prevailing conditions and needs. The consolidated by-laws should be clearly displayed in all villages, together with all contact information of the respective CRs (and SGRs, if SGs are created). By enabling farmers and farmer representatives to refer to what is required of themselves and each other, this measure furthers transparency and mutual accountability between farmers and their elected representatives. The display board should also include the signature of the scheme manager and relevant village administrator to indicate their support. To account for varying levels of literacy, the contents of these boards could be announced in the villages through megaphones/loudspeakers.Setting up the WUA apex body includes trainings and meetings about bookkeeping and record keeping, and collecting the fees/imposing the sanctions agreed in Phase 3 Step 3. While it is important to establish the apex body, it is even more important to empower the WUA to enforce the rules and regulations and ensure equitable water management. Once the WUA is established and roles and responsibilities are well defined, this implementation phase should focus around empowering the WUA to develop water allocation schedules between the pump stations through a constant dialogue with IWUMD. This can begin by facilitating an introductory meeting between the WUA (MB, BoD, CRs and SGRs), IWUMD staff responsible for all pump stations (scheme manager, deputy scheme manager and pump operators), DoA and other government stakeholders. At the end of the meeting, the MB/BoD should be asked to develop an overview of the area irrigated during the irrigation season per pump station for the upcoming meeting. A follow-up meeting will use those lists to explain the basic principles of water allocation and co-design a water allocation schedule with the WUA and IWUMD. This process will probably require several iterations depending on the complexity of the scheme and the feedback of representatives on propagating the water allocation through the PSCC -WUGs/SG level.WUA Registration PHASE 3 STEP 6The registration process consists of several stages and can take (at the time of writing) a year or more to complete. However, the WUA can be operational in the meantime. Preparations for submitting the registration application is likely to involve the following activities: Sourcing the application forms from the township level General Administration Department (GAD).  Discussing the application forms with the WUA's MB and BoD to be clear on all registration criteria and required information. The project team will need to support the WUA to make these preparations.Ensuring a newly established WUA has the capacity to effectively carry out its numerous tasks as an independent, self-managing, autonomous organization is arguably the most challenging aspect of this process. While careful design and continuous stakeholder engagement will help make the WUA structure relevant to the context in which it must operate, ensuring the various actors who will constitute the WUA structure and carry out its functions have the requisite interest and capacities will be central to long-term success.Backstopping these nascent institutions may require as much or more time than that allocated for WUA design and creation. While these phases should be carried out prior to any major investments in the physical structure, a large part of capacity building will need to happen once the cultivation in the scheme begins. This is when many of the key functions of the WUA -such as developing and implementing the water allocation schedule, conflict management and fee collection -will be tested, and when pivotal individuals such as the elected representatives will be challenged to carry out their duties, many of which may be new to them. While transitioning from a history of following directions provided by the state to taking responsibility for developing their own rules and electing their own leaders might be a steep learning curve for farmers and WUA members. Key to excelling in the learning process is the central positioning of collective action and how that is embedded in local institutional arrangements. Support must be available to farmer leaders for several irrigation cycles to help them to find ways of enforcing rules within their socio-political-cultural realities, and thereby gain acceptance and authority among farmers.It is recommended that the project team adopt a mix of formal training and development of informal communication lines between key stakeholders and the key project team. This should include the mentoring of key stakeholders such as CRs (and SGRs where SGs are created) through regular but less formal dialogues to identify challenges and explore solutions.Formal training at every level is necessary to impart basic skills to key actors in line with their functions. Likely topics for formal training include simple concepts on water allocation, monitoring, preparing and implementing maintenance plans, leadership incorporating conflict resolution and negotiation skills, bookkeeping, holding meetings and maintaining meeting minutes, and basic understanding of water allocation according to land area (acreage) served (i.e., aligned with water availability at the off-take points). The exact inventory of needs can be developed through discussions with farmers and their representatives in the WUGs and other levels of the WUA. Under the PYPIS, at each institutional level, farmer representatives have been trained in record keeping, which includes: attendance lists of meetings, maintaining meeting minutes using a standard template, cropping area cultivated, water allocated on a daily basis, etc. These records will support the various institutional levels at collecting the water fees, tracking the number of resolved conflicts, etc. Additionally, they will provide transparency between farmers, villages and IWUMD staff. Developing a set of basic training modules by the project team will be a good investment.Additional training can also be identified and channelled through the WUA structure to support other important aspects of crop production, including appropriate land and crop management practices, seed selection, input application and post-harvest methods. While these may not directly contribute to institutional performance, ensuring farmers improve their production and income will certainly contribute to their buy-in to the WUA as the mechanism that brings these services and benefits.This can include listening, problem analysis, advice, mentoring and joint efforts to resolve issues. Informal dialogues with key stakeholders and actors will help fill important information gaps left by more formal dialogues, such as the SG, WUG, PSCC and WUA meetings. Formal meetings will only allow the project team to partially assess the strengths and weaknesses of individual actors and the challenges they face, because not all stakeholders communicate effectively in the same way. In fact, it is typical for some group members to dominate discussions, while the majority remain mostly silent. Similarly, while some farmer leaders may be quite vocal, others may be less so by nature.Informal and confidential one-on-one conversations held privately (e.g., in the person's home) can bring to light problems that do not surface in formal forums. Knowing that the project team is at hand to help and guide them will potentially prevent elected representatives underperforming or giving up their positions altogether.These dialogues can also be a powerful tool to understand the challenges faced by the farmer leaders, why this is the case, and how they could be addressed. Where commonly shared issues are identified, they can be brought to the higher level formal decision-making forums (WUGs, PSCC or WUA), where a common solution and support from others can be obtained. These conversations will also help the project team profile each actor in terms of their attitudes towards their roles, their capacities and resourcefulness, and their networks and those of others. For example, in the PYPIS, this was an important source for identifying relationships among actors, and between actors and other influential people such as local politicians. Such individuals would be key targets for the project team to win over as supporters of the WUA.While the field coordinator and senior project team have important roles to play in these often oneon-one discussions, the CFs can also play an important role by continuously checking whether allocation schedules are followed at all layers; explaining rules and procedures; and highlighting conflicts or challenges facing the farmer leaders and project team. To do this well, the CFs will first need to be trained on how allocation should be monitored, and conflict scenarios be understood and reported in an impartial way.An effective way to build the confidence of water users to take on the O&M responsibilities is to show them an irrigation system successfully managed by a WUA. During such visits, the WUA representatives will be briefed about how that WUA is managing its system, as well as about organizational matters, rules, by-laws, fund-raising and irrigation service fee assessment, collection and use. This will help to build WUA confidence as \"seeing is believing\".Exchange visits to the project scheme by senior IWUMD staff are also important to enable them to verify in-situ progress made, and to understand the complexity of problems from the stakeholders and project team, how these are being addressed, and what they can do to facilitate solutions as higher level IWUMD managers. Such visits may also motivate farmers by demonstrating the importance placed by the government on this initiative. Facilitating access to such senior IWUMD staff may be appreciated by farmers, who would rarely have such opportunities.The exit strategy should be developed as part of the implementation strategy. During the various steps of implementation, the project team needs to reiterate and remind the various levels that the project will come to an end. Developing an exit strategy should include the following:1. Phasing out the level of engagement of the CFs on site over the various seasons:  Field engagement: In the first season after the WUA is established, the CFs will need to be present in the scheme on a daily basis. How long this needs to continue should be assessed on a case-by-case basis. In some cases, the involvement of CFs should continue for several more cultivation seasons, where transition to the new institutional structure and responsibilities is particularly challenging. When the time is right to reduce the field presence of the CFs, a gradual reduction could take the form of visiting every 2-3 days, then once or twice a week (depending on peak water supply and activities) and finally once or twice a month.  Facilitation of meetings: The CFs may need to facilitate the first 3-4 meetings in season 1, and should then be able to handover to the respective farmer leaders. The CFs can still be present at the meetings as backstopping, but will no longer actively lead the discussions.2. Phasing out the level of engagement of the key project team involved in the following:  Developing a water allocation schedule: Project-driven joint planning in season 1, facilitation in season 2 where the WUA takes the lead, and observation in the following seasons with strategic support as needed.  Developing cropping pattern: Project-driven joint planning in season 1, facilitation in season 2 where the WUA takes the lead, and observation in the following seasons with strategic support as needed.  Communication between WUA and IWUMD: Project-driven in season 1 where the project team initiates and facilitates dialogues, facilitation in season 2 where the WUA takes the lead, and observation in the following seasons with strategic support as needed.  Financial support and bookkeeping of WUA: Project-driven joint planning in season 1 where relevant WUA members are trained, facilitation in season 2 where the WUA members take the lead, and observation in the following seasons with strategic support as needed.The number of seasons given above for transition from project-driven activities to WUA-led activities is a suggestion only. In practice, the time that the project team will need to provide substantial support will depend on how quickly the WUA picks up these roles and other factors such as the level of coordination between the WUA and IWUMD staff.3. Strengthening IWUMD support to the WUA: Relationship building between IWUMD staff and the WUA begins at the beginning of this process, where IWUMD is a key stakeholder involved in the contextual diagnosis of Phase 1, and in reviewing the WUA institutional design in Phase 2.The IWUMD should, therefore, be familiar with the WUA structure, its underlying logic, and how its various layers are expected to function and link with its staff. Since the IWUMD is clearly required to provide continued support to the WUA under the Draft PIM Guidelines, affording IWUMD scheme management staff the opportunity to participate in the steps in Phase 3 will maintain the continued engagement needed to strengthen acceptance of the WUA and build interpersonal relationships between IWUMD and WUA leaders. Once functional, the WUA and IWUMD staff will be required to work together on several key activities, including developing and implementing the water allocation schedule while the project team step back.It is also advisable for the project team to facilitate discussions between the BoD/MD of the WUA and IWUMD scheme staff regarding future support to the WUA, and discuss the level of support that should be provided. This is important as it may require adjustments in the annual budget submitted by the Scheme Manager to the higher levels of IWUMD. It must be recognized that the actual budget the IWUMD receives for scheme management (including supporting the WUA) may be less than the amount requested. Nevertheless, not all support to the WUA may require finance, e.g., support that involves drawing on the engineering skills of senior IWUMD scheme staff. Another strategy for the IWUMD could be to link the WUA with other actors such as other government departments and NGOs for provision of specific support.  Support agricultural production of members in the scheme area.  Help members find high-yielding varieties.  Modernize agricultural production (e.g., agricultural mechanization) in the scheme.  Ensure members follow the rules and regulations.Chapter 2: Membership of WUA 1. Membership of WUA shall be available to all members who are owners or tenants of the land, use canal water and are directly engaged in the cultivation of land within the area of the irrigation system. 2. At the time of application for membership, he or she must be 18 years of age or above. 3. Applicant becomes a member upon payment of membership fee to WUA.Chapter 3: Duties and Rights of Members of WUA 1. Rights of Members  Everybody will get equal access to water.  Everybody can discuss issues related to the scheme in respective WUA meetings (e.g., SG, WUG, PSCC and General Assembly).  Everybody can grow whatever they want in agreement with neighboring members.  Everybody can vote for the sub-group representative and canal representative of the respective subgroup and water users group in which their plots are located (one vote per member per sub-group and per water users group).  Everybody has the right to know the financial status of the WUA.  Everybody has the right to submit a request or complaint in writing to the WUA.i. Members must follow the rules established by the WUA. ii. If the person fails to attend the meeting at the time of developing rules, he/she will need to follow the established WUA rules and cannot object to the newly established rules (see [i] above). iii. Constructing field canals and installation of off-take pipes must be carried out in coordination with CRs, SGRs and IWUMD (scheme engineer). iv. Members must collaborate with CR and SGR at the time of creating the water allocation schedule.Water will be allocated according to the confirmed water allocation schedule. v. Members must collaborate with each other in the same sub-group and along the same canal (this is within one WUG or between different WUGs). vi. If field canals or off-take pipes are broken, members must work together with their SGR and CR to repair them. vii. If water allocation is needed, a member must inform the SGR in advance. viii. In the case of issues or disputes, members must inform the SGR in time.ix. Members must pay the water fee, service fees, seasonal saving fees and membership fees in time to the SGR. x. Members must grow the same crop and variety (same growing length) in the respective sub-group.xi. Members must participate in the cleaning or maintaining of field canals and off-take pipes in the respective sub-group. xii. Members must use the water carefully and as required, and not store extra water. xiii. Members must not destroy field canals. xiv. Cattle or other livestock grazing should not be allowed close to the canals. xv. Members who take water from the canal using their own pumps (for any crop) still need to pay water, service, seasonal saving and membership fees. xvi. In the case of newly established or amended regulations by the WUA, members must follow the updated rules.Chapter 4: Suspension, Dissolution and Removal of member 1. Members of the WUA may be suspended or dissolved based on the following: i. The member does not use irrigation water for 3 years or more. ii. The member who does not pay water, service and seasonal saving fees (first, failure to pay will translate into suspension and removal from the WUA). iii. The member who breaches the WUA rules more than three times (the first two times will result in a warning being given by the BoD and MB). iv. The member who has not officially requested water from the WUA for over 2 years. v. The member who destroys existing field canal and does not allow negotiating for the construction of a new field canal.Chapter 5: Membership Fee, Taxes and Fund 1. Membership Fee Membership fee is MMK 1,000 (one thousand Kyats) per person or per household to be paid to the WUA.The seasonal saving is MMK 200 (two hundred Kyats) per acre according to the cultivated area for each cultivation season to be paid to the WUA.Service fee for SGRs and CRs is MMK 2,000 (two thousands Kyats) per acre according to the cultivated area for each cultivation season to be paid to the WUA.The water fee to be paid for paddy and other crops follows the rates of IWUMD, which is, at present, MMK 3,000 per acre for other crops, MMK 6,000 per acre for monsoon paddy and MMK 9,000 per acre for summer paddy. IWUMD has the right to adjust the water fee based on national policies.A fund can be created using donations by members or others, through revenue earned from taking part in business activities or other ways that are in accordance with national laws.  Carry out operation and maintenance within the approved annual budgets, as well as any budget available from IWUMD from annual government allocations.  Request approval from BOD for operation or maintenance expenditure above MMK 500,000.  Liaise with IWUMD to gain approval for the construction of new or rehabilitation of existing main canals, distributary canals and minor canals, and off-take points.  Approves new off-take points in consensus with IWUMD.  If a conflict cannot be solved by the WUA, the secretary writes an official letter signed by BOD (relevant Village Tract Administrator (VTA)) to the Scheme Manager, followed by IWUMD district office or GAD.Requirements to be a member of Management Board Members of the Management Board (except treasurer and auditor) shall be CR or SGR. For the treasurer and auditor positions, the persons shall have basic knowledge of accounting and bookkeeping.Members of the Management Board may be suspended or dissolved for the following reasons: i. The member misuses the fund. ii. The member does not want to continue carrying out his/her duties. iii. If the member does not attend three meetings in a row and has not sent any representative to contribute to decision-making (if the member is removed more than three times, suspend the person). iv. The member takes a bribe or engages in any other form of corruption, and there is a witness for such activity. v. The member does not conduct his duties properly (warning for the first two times and suspension on the third encounter).3.1 Duties and Authority of a Canal Representative i. CRs must conduct a field visit at least twice in a day to their respective water user group area (morning, noon/evening).ii. CRs must ensure to get sufficient water for the respective land area, according to acreage, soil types and crop varieties. iii. CRs must participate in PSCC and WUA meetings at the time of creating the water allocation schedule, and perform allocation of water according to the schedule. iv. CRs must solve the issues that cannot be solved by SGRs as soon as possible. v. CRs must take action against the SGRs who do not take action against undisciplined members at WUG level. vi. CRs must inform the SGRs about allocation date in advance and check whether allocation is carried out according to the water allocation schedule or not. vii. CRs must check respective sub-groups' outlets. viii. CRs must collaborate with IWUMD deputy scheme manager in their respective pump station, pump operator and SGRs. ix. CRs must inform IWUMD, if main, distributary and minor canals, and off-take pipes are broken.x. CRs must inform the SGRs about the date to collect water, service, seasonal saving and membership fees in advance, and check whether the water fee is paid for correct cultivated area or not. xi. CRs must ensure that the sub-groups to be united. xii. CRs must lead the water user group meeting. xiii. CRs must inform IWUMD when there is illegal settlement and illegal cultivation activity in the canal area. xiv. CRs must participate in the meetings and trainings related to water development and management, and share updates and knowledge to SGRs in the respective WUG. xv. CRs shall not be biased in the way they carry out their responsibilities. xvi. CRs must handover membership, seasonal saving, water and service fee and fines to the treasurer of the WUA. xvii. CRs must maintain meeting minutes of all WUG meetings conducted.Requirements to be a Canal Representative i. CR must be respected by most of the members. ii. CR must be in good health. iii. CR must own plots in the land area of the WUG. iv. CR should be brave enough to enforce the rules. v. CR should be 18 years or older. vi. CR should know the area of the WUG very well. vii. CR must be interested and active in performing the role of a CR. viii. CR must be able to decide fairly what is correct and what is not.ix. CR must have the ability to negotiate between members and the scheme management.x. CR should have sufficient time to carry out the functions of a CR. xi. CR should have experience in maintaining accounts, and have sufficient capacity to be able to maintain records and meeting minutes of the WUG. xii. CR may need to travel using a motorbike. xiii. CR shall be able to work at night time. xiv. CR shall be able to conduct and join meetings and trainings. xv. CR should be a person that is a permanent resident in the village, and should not be someone who migrates. xvi. CR should be a person who can fulfil the relevant duties.A canal representative may be suspended or dissolved for the following reasons: i. If the person misuses the fund. ii. The person is not able to conduct their duties properly, as confirmed by 75% of the members from his group. iii. The person is unable to ethically solve a water conflict in his group and takes a bribe (with witness). iv. The health of the person does not allow him/her to carry out his/her duties. v. The person does not want to continue his/her duties.4. Sub-group Representatives 4.1 Duties and Authority of a Sub-group Representative i. SGRs must allocate water according to soil type, crop type and cultivation areas (categorized by crop variety) of the total land area in their respective sub-group. ii. SGRs must collect the list of cultivatable areas (in acres) before the cultivation season starts. iii. SGRs must inform the members in their respective sub-groups about the water allocation schedule and other information about the scheme in advance. iv. SGRs must arrange the time of irrigation to different members' plots depending on soil type and crop variety. v. SGRs must check whether water is needed or not in the plots in their respective sub-group area, and check to ensure that everyone receives water during the allocation time (priority should be given to the members who need water the most). vi. SGRs must check the canals to ensure there is no water being wasted in the sub-group area. vii. SGRs must inform the CR when water is needed in their sub-group. viii. SGRs must conduct the regular meetings for members in respective sub-group and maintain meeting minutes. ix. SGRs must solve the issues that arise among members in their sub-groups in collaboration with the CR.x. If members do not obey the rules, SGRs must take action according to the rules and punishments identified by everyone. xi. SGRs must prompt the members to clean field canals and off-take pipes. xii. If canals and off-take pipes are broken, SGRs must organize the sub-group members to repair them in a timely manner. xiii. SGRs must work with the CR to collect water, service, seasonal saving and membership fees after the harvest in each season and handover the money collected to the CR. xiv. SGRs must attend water-related trainings and transfer the information gained to sub-group members. xv. SGRs must discuss and coordinate activities among each other when it is necessary. xvi. SGRs shall not be biased in the way they perform their responsibilities. xvii. SGRs must participate in the meeting for creating the water allocation schedule at PSCC level, and arrange water allocation according to the schedule. xviii. SGRs must collaborate with respective responsible persons to get accurate data when the survey is conducted to identify land area. xix. SGRs must discuss and coordinate among each other the regular updating of rules and regulations. xx. SGRs must visit the off-take points in their sub-group at least twice a day.Requirements to be a Sub-group Representative i. The SGR must be respected by most of the members. ii. The SGR must be in good health. iii. SGR must own plots in the land area of the SG. iv. SGR should be brave enough to enforce the rules. v. SGR should be 18 years or older. vi. SGR should know the area of the SG very well. vii. SGR must be interested and active in performing the role of a SGR. viii. SGR must be able to decide fairly what is correct and what is not.ix. SGR must have the ability to negotiate between members and the scheme management.x. SGR should have sufficient time to carry out the functions of a SGR. xi. SGR should have experience in maintaining accounts, and have sufficient capacity to be able to maintain records and meeting minutes of SG. xii. SGR may need to travel using a motorbike. xiii. SGR shall be able to work at night time. xiv. SGR shall be able to conduct and join meetings and trainings.xv. SGR should be a person that is a permanent resident in the village, and should not be someone who migrates. xvi. SGR should be a person who can fulfil the relevant duties. xvii. SGRs must have knowledge of soil types and cultivable areas (categorized by crop variety) of total land area in their respective sub-group.A sub-group representative may be suspended or dissolved for the following reasons: i. If the person misuses the fund. ii. The person is not able to conduct his duties properly, as confirmed by 75% of the members from his sub-group. iii. The person is unable to ethically solve a water conflict in his group and takes a bribe (with witness). iv. The health of the person does not allow him/her to carry out his/her duties. v. The person does not want to continue his/her duties.The tenure of members of Board of Directors is ended when he/she is no longer a village administrator, since all members of the Board of Directors are village administrators. The tenure of members of the Management Board is 5 years (with the first year starting in 2018). The tenure of CR is 3 years (with the first election in 2021). The tenure of SGR is 3 years (with the first election in 2020).Chapter 7: Penalties In the case of sanctions being collected, 20% will go to the WUA, 50% to the savings account of the respective WUG/SG and 30% will be the finder's fee.i. If a member does not follow the instructions of SGR, fines will be charged as follows: MMK 8,000 (first time), MMK 16,000 (second time), MMK 32,000 (third time) and water suspension for one season (Fourth time). ii. If a member does not participate in the meetings for creating the water allocation schedule, he/she must follow the schedule established by everyone who participated in the related meeting. iii. If a member does not collaborate with SGR when a canal is broken, fines will be charged as follows:MMK 8,000 (first time), MMK 16,000 (second time), MMK 32,000 (third time) and water suspension for one season (fourth time). iv. If water, service, seasonal saving and membership fees are not paid in time, water allocation for the next season will be suspended. v. If a member does not plant the same crop at the same time with other members in respective subgroup, he/she may have to take responsibility for their actions. vi. If a member does not take water according to the water allocation schedule, fines will be charged as follows: MMK 8,000 (first time), MMK 16,000 (second time), MMK 32,000 (third time) and water suspension for one season (fourth time). vii. If a member does not act in a responsible manner to not waste water, fines will be charged as follows:MMK 8,000 (first time), MMK 16,000 (second time), MMK 32,000 (third time) and water suspension for one season (fourth time). viii. Members who take water from the canal using their own pumps still need to pay the water, service, seasonal saving and membership fees. If not, action will be taken in accordance with the irrigation canal act. ix. If a member causes damage to the canal during water allocation, action will be taken in accordance with the irrigation canal act. x. Installation of off-take pipes must be carried out as instructed by an authorized engineer of IWUMD. If not, water allocation will be suspended.xi. Inform the SGR when issues arise, if not members must take responsibility for solving problems by themselves. xii. If a member does not close the gate after irrigation, fines will be charged as follows: MMK 8,000 (first time), MMK 16,000 (second time), MMK 32,000 (third time) and water suspension for one season (fourth time). xiii. If cattle or other livestock (buffalo, sheep and goat) grazing takes place close to the canal, fines will be charged as follows: one cow or one buffalo (MMK 10,000) and one sheep or goat (MMK 2,000).2. Penalties for Sub-group Representatives i. If a SGR neglects to carry out the relevant duties, action will be taken as follows: warning (first time), warning (second time), and dismissal from SGR position (third time) (service fees for previous activity will not be paid). ii. If a SGR neglects to take action on undisciplined members, action will be taken as follows: warning (first time), warning (second time), dismissal from SGR position (third time) (service fees for previous activity as a SGR will not be paid). iii. If a SGR allocates water for SG without informing the CR, action will be taken as follows: fines MMK 16,000 (first time), MMK 32,000 (second time), MMK 64,000 (third time) and dismissal from SGR position (fourth time) (service fees for previous activity as a SGR will not be paid). iv. If a SGR does not follow the water allocation schedule for the sub-group, action will be taken as follows:fines MMK 16,000 (first time), MMK 32,000 (second time), MMK 64,000 (third time) and dismissal from SGR position (fourth time) (service fees for previous activity as a SGR will not be paid). v. As SGRs are also members in the sub-groups, they have to follow the rules and regulations applicable to members. If not, action will be taken in accordance with rules and regulations for members.3. Penalties for the Canal Representatives i. If a CR neglects to conduct the meeting, action will be taken as follows: warning (first time), warning (second time), and dismissal from CR position (third time) (service fees for previous activity as a CR will not be paid). ii. If a CR neglects to inform the WUA and IWUMD when a main canal, distributary gate leaf or distributary canals is damaged, action will be taken as follows: warning (first time), warning (second time), and dismissal from CR position (third time) (service fees for previous activity will not be paid). iii. If a CR neglects to take action against undisciplined members and SGRs, action will be taken as follows:warning (first time), warning (second time), and dismissal from CR position (third time) (service fees for previous activity as a CR will not be paid). iv. If a CR does not follow the water allocation schedule for sub-groups, action will be taken as follows:fines MMK 16,000 (first time), MMK 32,000 (second time), MMK 64,000 (third time) and dismissal from CR position (fourth time) (service fees for previous activity as a CR will not be paid). v. As CRs are also members in the sub-groups, they have to follow the rules and regulations applicable to members. If not, action will be taken in accordance with rules and regulations for members. vi. If a CR neglects to request water allocation for respective WUG, action will be taken as follows: fines MMK 16,000 (first time), MMK 32,000 (second time), MMK 64,000 (third time) and dismissal from CR position (fourth time) (service fees for previous activity as a CR will not be paid). vii. If a CR neglects to solve the issues that SGRs cannot solve, action will be taken as follows: fines MMK 16,000 (first time), MMK 32,000 (second time), MMK 64,000 (third time) and dismissal from CR position (fourth time) (service fees for previous activity as a CR will not be paid).Chapter 8: Meetings of WUA 1. General Assembly a. General Assembly will be held three times per year. i. At the beginning of the monsoon season. ii. At the end of the monsoon season. iii. At the start of every financial year (January of every year).b. General Assembly will decide the seasonal activities and financial plan for the following season. Achievements and problems in the previous season will also be discussed. Members in the General Assembly are BOD, MB and CRs (mandatory). WUA members may participate to discuss relevant matters in the General Assembly. Secretary of MB will inform the members 7 days in advance of WUA meeting. At the end of every meeting, the date of the next meeting will be announced.An emergency meeting will be held if there are some problems or difficulty in allocation management. Every member of the MB and BOD needs to participate in this meeting to find a solution. Secretary of MB will inform the members of emergency meeting. At the end of every meeting, the date of the next meeting (if one is needed) will be announced.The WUA management meeting will be held as and when needed to discuss water allocation management and resolve related conflicts throughout each season among the PSCC. At each WUA meeting, all CRs and village administrators in the respective PS must participate in the meeting. The SGRs are welcome to participate. The CR is responsible for communicating the water allocation in the PSCC meeting and ensure that water allocation is followed. The WUA will need to inform the SGRs, CRs and village administrators one day before the meeting. At the end of every meeting, the date of the next meeting will be announced. Within the season, the WUA has the right to convene more frequently if needed.PSCC will be held every 2 weeks to discuss water allocation management and resolve related conflicts throughout each season. At each PSCC meeting, all CRs, SGRs and village administrators in the respective PS must participate in the meeting. The CR responsible for communicating member water needs to the pump operator will inform members one day before the meeting. At the end of every meeting, the date of the next meeting will be announced.WUG meeting will be held once a month. In the WUG meeting, the CR will lead the meeting to discuss water allocation with SGs within their WUG, will solve some problems that the SGR cannot solve and will discuss allocation with SGs according to the crops and land area of SGs. At the WUG meeting, respective CRs and SGRs must participate. CR will inform the members one day before the meeting. At the end of every meeting, the date of the next meeting will be announced.6. Sub-group Meetings SG meeting will be held twice a month within irrigation seasons and once a month outside of the irrigation season. SG meeting will be led by SGR, where water allocation within their SG is discussed. SGR will discuss crop performance and other agricultural production activities in their SG. At the SG meeting, all members in the SG must participate. SGR will inform the members one day before the meeting. At the end of every meeting, the date of the next meeting will be announced. ","tokenCount":"23715"} \ No newline at end of file diff --git a/data/part_3/4926333125.json b/data/part_3/4926333125.json new file mode 100644 index 0000000000000000000000000000000000000000..80a1fd4216a26b5e04ba6852e14f57568695ba4c --- /dev/null +++ b/data/part_3/4926333125.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"fab9c7e53742a463f06b52a12b0ed63c","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/3bbb33b4-8c7b-4b93-a0fd-d4fd008cb81d/retrieve","id":"1393889975"},"keywords":[],"sieverID":"9e8341f2-b9a1-4692-91f2-37ff447c8116","pagecount":"79","content":"The political, financial, technological, and environmental context of CGIAR's research continues to evolve. So as to make the most of new opportunities to reduce rural poverty, increase food security, improve human health and nutrition, and ensure more sustainable management of natural resources, CGIAR launched a reform process in 2009. In 2012 the initial changes proposed by the reform were fully implemented.CGIAR Research Programs are now the main organizational mechanism for planning and conducting research. The 16 CGIAR Research Programs represent a new program-based approach to doing research, thereby aligning the research activities of the CGIAR Research Centers and their partners into efficient, coherent, multidisciplinary programs that tackle cross-cutting issues in agricultural development across the globe. This research is aligned with the Strategy and Results Framework developed by the members of the CGIAR Consortium, and endorsed by the Funders Forum to establish common goals, objectives, and results for the whole CGIAR partnership.In order to capitalize upon the vast potential of CGIAR's ambitious research, which was specifically developed to tackle major global challenges for the benefit of the poor, a serious commitment from donors is required. Strong evidence of that commitment is witnessed by the significant increase in CGIAR funding and, consequently, activity. In the decade prior to reform (1998)(1999)(2000)(2001)(2002)(2003)(2004)(2005)(2006)(2007) the average growth rate in funding was 5%. From 2008 to 2011, the annual growth rate averaged 12%.In 2012, the total system revenue was US$887 million (including Center-generated income of US$27 million), a 21% increase of US$152 million above 2011 revenues of US$735 million. This level of growth is of particular note when it is placed in the context of the continuing fiscal difficulties experienced by many of the donor nations.Total grant income in 2012 was US$860 million, an increase of US$147 million (21%) above 2011 revenues. It contributes to the goal of reaching US$1 billion in 2013 to strengthen the suite of CGIAR Research Programs. Since 2008, total grant income has increased by US$329 million (62%), an average annual increase of 15%. This increased financial commitment by donors reflects their confidence in key elements of the reform, including a results-oriented approach to research. www.cgiar.org 4The CGIAR Fund aims to provide reliable and predictable multi-year funding and thereby enable: research planning over the long term  resource allocation based on agreed priorities  timely and predictable disbursement of funds.As of December 2012, the following donors had made multi-year commitments to the CGIAR Fund: Australia, Bill & Melinda Gates Foundation, Denmark, the International Development Research Centre (IDRC), Luxembourg, Netherlands, Russia, Spain, and the United Kingdom. Donors are increasingly beginning to channel their funding through the Fund: contributions increased by 33% from 2011 to 2012, growing from US$384 million to US$512 million. The total of US$512 million received by the Fund in 2012, together with US$127 million carried over from 2011, gave a total of US$639 million available for distribution. Amounts of US$458 million were disbursed during 2012, leaving a balance of US$181 million remaining in the Fund at the end of 2012. The high balance at the year end was because many grants were received by the Fund late in 2012. Of the total of US$458 disbursed in 2012, US$325 million was Window 1 and 2 funding and US$133 million from Window 3. Of the US$325 million of Window 1 and 2 funding disbursed, US$29.9 million related to 2011 activities that had been pre-funded by Centers, and the remainder of US$295.6 million was used to fund CGIAR Research Program activities.The Fund was the major donor to the system in 2012, financing US$316 million (45%) of total CGIAR Research Program activities during the year (2011: 45%). This comprised Window 1 and 2 funding of Expenditures in sub-Saharan Africa increased from an average of 43% during the period 1972-2008 to 53% in 2012. During the same period investment in Asia decreased from 31% to 27%, in Latin America from 15% to 13%, and in the Central and West Asia and North Africa (CWANA) region from 11% to 7%.Personnel costs as a percentage of total costs decreased from 43% in 2011 to 36% in 2012 while supplies and services increased from 30% to 35%, and partnership expenditures from 16% to 17%. The increase of 17% in partnership expenditures was noticeably up from a historical average of 4%, and clearly demonstrated a change in the modus operandi of Centers.System costs came down from more than 3% of total in 2009 to less than 2% in 2012.The 2012 financial data confirmed that, as was the case in previous years, CGIAR as a whole remains in a stable financial position. Cash and cash equivalents totaled US$834 million at the end of 2012, an increase of US$83 million compared to US$751 million at the end of 2011. Property, plant, and equipment net of depreciation amounted to US$110 million, up from US$84 million at the end of 2011. This represents an increase of US$26 million of new investments in fixed assets.The Centers' total net assets at the end of the year were US$356 million (2011: US$343 million). These assets are made up of US$242 million (2011: US$257 million) in unrestricted net assets (excluding investments in fixed assets), investments in fixed assets of US$110 million (2011: US$84 million), and restricted assets of US$4 million (2011: US$2 million). Unrestricted net assets by Center are set out in Figure 8.Unrestricted net assets of US$242 million represent 106 days (2011: 117 days) of operating reserves. The short-term solvency or liquidity ratio for CGIAR as a whole amounted to 152 days (2011: 176 days). The reduction in both of these indicators clearly shows that as total funding to the system increases, it impacts negatively on both the reserve and liquidity days and demonstrates the need to carefully monitor these indicators going forward.Cash and cash equivalents of US$834 million were held at the year end. However, of this amount US$150 million was held by Bioversity on behalf of the Global Crop Diversity Trust. Excluding this amount the net cash position represented 285 days of operating expenditures.In conclusion, the 2012 finances confirm the strong continuing donor commitment to the CGIAR system with an increasing amount of support being channeled through the Fund and targeted at CGIAR Research Programs. The system remains well on course to meet its target of US$1 billion in funding by 2013.Externally audited financial statements, from each Center, form the basis for this Financial Report. They were reviewed and aggregated according to fiduciary management and reporting standards approved by CGIAR to guide the Centers in these areas. In conformity with generally accepted accounting principles (GAAP), Center financial statements have been prepared on the accruals basis. To ensure that Center financial statements are prepared in accordance with international GAAP, the CGIAR Financial Guideline No. 2: \"Accounting Policies and Reporting Practices Manual\" is currently being updated to bring it into compliance with International Financial Reporting Standards (IFRS). Additional information on financial compliance is in Box 1, and Center external auditors are listed in Box 2.To ensure transparency and consistency in financial practices and the presentation of financial information, the 15 Centers of CGIAR are required to follow financial guidelines issued by the Consortium. Developed with input from Center finance personnel and external experts, these guidelines bring CGIAR's fiduciary practices into conformity with relevant international standards.As part of the annual review of substantive financial performance, a peer group of Centers' finance and internal audit professionals reviewed the Centers' externally audited 2012 financial statements to assess their compliance with CGIAR accounting policies and reporting guidelines, as well as to validate the analysis underpinning the CGIAR Financial Report. All of the Centers and the Consortium Office received an unqualified audit opinion from their external auditors.Total system revenues in 2012 amounted to US$887 million, an increase of US$152 million (21%) in comparison to US$735 million in 2011.Expenditures in 2012 were US$876 million, an increase of US$169 million (24%) over 2011 expenditures of US$707 million. The overall net result was a surplus of US$11 million, which was taken to reserves. The CGIAR Fund and donor contributionsIn order to capitalize upon the vast potential of CGIAR's ambitious research, which was specifically developed to tackle major global challenges for the benefit of the poor, a serious commitment from donors is required. That commitment has been demonstrated by the recent growth rate of the CGIAR Fund (the Fund), which has grown twice as fast as it did previously. From 2008 to 2011, the annual growth rate averaged about 12%. This can be compared to an average growth rate in funding of 5% in the decade prior to the reform (1998)(1999)(2000)(2001)(2002)(2003)(2004)(2005)(2006)(2007). In 2012, total funding to CGIAR was US$860 million, indicating steady progress towards the goal of reaching US$1 billion in 2013 to support the suite of CGIAR Research Programs. This increased financial commitment by donors reflects strong confidence in key elements of the reform, including a results-oriented approach to research. Recognizing that agricultural research requires funding stability that stretches well beyond political budget cycles, CGIAR's multi-donor trust fund aims to provide reliable and predictable multi-year funding and thereby enable research planning over the long term, resource allocation based on agreed priorities, and the timely and predictable disbursement of funds. As of December 2012, the following donors had made multi-year commitments to the CGIAR Fund: Australia, Bill & Melinda Gates Foundation, Denmark, IDRC, Luxembourg, Netherlands, Russia, Spain, and the United Kingdom.The total of US$512 million received by the Fund in 2012, together with US$127 million carried over from 2011, gave a total of US$639 million available for distribution. Amounts of US$458 million were disbursed during 2012, leaving a balance of US$181 million remaining in the Fund at the end of 2012.The amount of US$181 million remaining in the Fund at the year end was high because, as is shown in Figures 3 and 4, many grants were received by the Fund late in 2012 and could not be disbursed before the year end. Tables 2 and 3 shows donor contributions received by the CGIAR Fund. This being a co-mingled Fund, the disbursements are shown in Table 4, detailed for Windows 1 and 2 by activity/Program and broken down by donors for Window 3. A provisional amount of US$20 million had been received from four donors but not allocated at the year end. This was because the Fund was awaiting instructions from the respective donors as to which Programs they wished to fund.Note also that, in accordance with good financial management practices, the Fund has set a target of not less than US$30 million in Window 1 funding at the year end. This is to ensure that the Fund has resources available in case of emergency. Annex Table A5.1 shows expenditure cumulated for the last 40 years by Center, region, and object of expense.Annex Table A3.1 sets out expenditure by Center for the period 2008-2012.Annex Table 3.2 shows expenditure by geographic region.Of note is that expenditures in sub-Saharan Africa have increased from an average of 43% of total during the period 1972-2008 to 53% in 2012. During the same period investment in Asia has decreased from 31% to 27%; in Latin America from 15% to 13%; and in the CWANA region from 11% to 7%. Annex Table A3.3 provides detailed Center-level information on object of expenditure.Expenditures on personnel have decreased as a percentage of the total from 50% during the period 1972-2008 to 36% in 2012. During the same period expenditures on supplies and services have increased from 32% to 35%; on partnerships from 4% to 17%; travel has remained constant at 7%, and depreciation has dropped from 7% to 5%. The increase in partnership expenditures to 17% is a noticeable rise from a historical average of 4%, and clearly demonstrates a change in the modus operandi of Centers. A3.4 presents data on CGIAR staffing from 2008 to 2012.The aggregations of 2007-2012 Center data, shown in Table 9 and elaborated below, reflect the financial position of the CGIAR system as a whole. Annex Table A4.1 provides details by Center as of December 31, 2012.The 2012 financial data confirmed that, as was the case in previous years, CGIAR as a whole remains in a stable financial position. Supplies and services 35%Collaboration and partnerships 17%Travel 7%Depreciation 5% The short-term solvency or liquidity ratio is computed by taking current assets plus long-term investment minus current liabilities and dividing by per-day operating expenses excluding depreciation. For CGIAR as a whole this amounted to 152 days (2011: 176 days). These are set out in Figure 10.The reduction in both of these indicators clearly shows that as total funding to the system increases it negatively impacts on both the reserve and liquidity days and demonstrates the need to monitor carefully these indicators going forward.Cash and cash equivalents of US$834 million were held at the year end. However, of this amount US$150 million was held by Bioversity on behalf of the Global Crop Diversity Trust. Excluding this amount the net cash position represented 285 days of operating expenditures. Traditionally, CGIAR uses five financial indicators to monitor the financial health of Centers, and the Consortium Office is continuing with these indicators. These are the long-term financial stability ratio, which aims to measure the adequacy of an organization's reserves; the short-term solvency ratio, which aims to monitor the liquidity of a Center and its ability to operate in the short term; the indirect cost ratio, which aims to measure the efficiency of a Center's support functions; the management of donor receivable/payable ratio, which measures cash flow from donors; and the external audit opinion. Set out below are the indicators and how individual Centers measure up. As noted on page 7 all of the centers received an unqualified audit opinion. The donor receivable/payable ratio is 0.38.The measure of the long-term financial stability of a Center is computed as unrestricted net assets minus net fixed assets, divided by per-day operating expenses. The minimum recommended acceptable range is 75 to 90 days, and trends may be used to evaluate how a Center is performing over a period of time. Set out in Figures 8 and 9 Liquidity is an organization's ability to meet its short-term spending requirements. Two primary indicators of liquidity are current ratio and working capital. Current ratio is current assets divided by current liabilities, represented as a number. This liquidity measure is comparable across organizations, regardless of their size, because it is a relative figure. Working capital expressed in terms of future spending requirements is useful for such purposes. The Centers' liquidity levels hinge to some extent on the pattern of members' disbursements, which occur throughout the calendar year.The indirect cost ratio indicator is the ratio of indirect costs to direct costs (indirect costs divided by direct costs). In 2012, CGIAR's indirect cost ratio is an average of 15%, one percentage point lower than 2011. Working capital, as defined below, divided by per-day operating expenses, excluding depreciation. This indicator measures the ability of a Center to sustain current levels of operation in the event of donor delays in grant remittance.The document setting forth common goals (in terms of development impacts), strategic objectives and results (in terms of outputs and outcomes) to be jointly achieved by the CGIAR participants.System costs are for the components of the CGIAR structure that provide support services for the overall CGIAR. The costs are primarily for the operations of the Fund Office, Trustee, Consortium Board and Office, Independent Science and Partnership Council, and Independent Evaluation Arrangement.Unrestricted grants are provided to a Center by a donor, without restrictions, for the general objectives of that Center.Current assets minus current liabilities.Donors to the Fund may designate their contributions to one or more of three funding windows:  Contributions to Window 1 are the least restricted. The Fund Council makes decisions on how these funds are used, such as allocation to CGIAR Research Programs, payment of system costs or otherwise applied to achieving the CGIAR mission. ","tokenCount":"2640"} \ No newline at end of file diff --git a/data/part_3/4961341222.json b/data/part_3/4961341222.json new file mode 100644 index 0000000000000000000000000000000000000000..c146bab104de05c3323f78ff06212ed10c99153e --- /dev/null +++ b/data/part_3/4961341222.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"b37b501b79a0623a6d1f6b086e64a4f0","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/27f0bbbf-50e4-4659-a23c-4f51656c74b0/retrieve","id":"-2057747444"},"keywords":["14","4 15","6 16","2 16","2 20","3 22","1 Agriculture"],"sieverID":"9058e4ea-6a5f-4ec4-9d3b-1403f8929000","pagecount":"4","content":"Transformation of the agri-food system (AFS) is a leading pathway to achieve the USG Global Food Security Strategy Objective 1 of \"Inclusive agriculture-led growth\". The AFS encompasses the primary agricultural sector, as well as all upstream and downstream agriculture-related activities. An expansion of the AFS's off-farm components is central to the process of agricultural transformation and is strongly associated with economic development. The Percent change in value-added in the agri-food system (AgGDP+) and Employment in the agrifood system (AgEMP+) indicators are useful to track this process.$ bil. Projecting AgGDP+ in Mali ($ bil.)• In 2020, the AFS generated 48.4% of total GDP in Mali and 75.0 % of total employment, while agriculture alone represented 38.6% and 68.1%, respectively.• AgGDP+ fell by 4.6% and AgEMP+ grew at 4.2% between 2019 and 2020, reaching $7.9 billion and 5.1 million workers in 2020. This section provides data on the structure of Mali's economy as a whole and of its agri-food system in 2020. Table 1 shows the breakdown of national GDP, employment, and trade. Agriculture's importance for the economy extends well beyond the sector itself, with many industrial and service sectors forming parts of the AFS. Table 2 reports estimates of AgGDP+ and AgEMP+ by component of the AFS. Agriculture generated $6.3 billion in GDP and employed 4.6 million workers in 2020. Agro-processing generated a further $0.7 billion in GDP and 74,000 jobs. Both sectors use domestic inputs, whose production created more value-added and jobs. However, the supply of inputs to farmers and processors account for a relatively small share of the AFS. A much larger off-farm component is the trading of agriculture-related products between farmers, processors, and consumers. This created $0.7 billion in GDP and employment for 0.4 million workers, making it the second largest component of Mali's AFS and responsible for about two-fifths of the total trade and transport GDP (shown in Table 1). In total, Mali's AFS generated half of total GDP and three-quarters of employment in 2020. Table 3 breaks down the AFS into different value chains based on major product groupings. The livestock value-chain, for example, includes the on-farm animal husbandry, including raw animal products like milk and eggs (agriculture); the processing of primary animal products into meat and dairy products (manufacturing); the trading and transporting of animal-sourced foods; and the preparation of meals in hotels and restaurants using raw and processed animal-sourced inputs (food services). The livestock value-chain makes up 37.6% of Mali's AFS. The last column shows the share of off-farm components (beyond the farm gate) in the AFS GDP by each value chain. For example, of the GDP generated by the livestock value-chain, 10.8% comes from off-farm activities. Note: GDP is gross domestic product measured in constant 2017 US dollars. Off-farm GDP includes agri-food processing; trading and transport of agricultural and food products; food services; and the domestic production of inputs (see Table 2). Final column is the ratio of off-farm to total GDP generated by each value chain (column 3 divided by column 1).","tokenCount":"500"} \ No newline at end of file diff --git a/data/part_3/4963638107.json b/data/part_3/4963638107.json new file mode 100644 index 0000000000000000000000000000000000000000..f1fbdf311a03ff29e3f546138242f78be8303dec --- /dev/null +++ b/data/part_3/4963638107.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"76280dd18038dcbb2fe1fc318010d78c","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/92e63408-0658-4272-9104-8c109d4e4a78/content","id":"1913097852"},"keywords":[],"sieverID":"f17c95b1-a598-4352-82fa-95681ff2fa35","pagecount":"62","content":"• Benefit cost ratio for conventional method of sowing, simple zero tillage drill and happy seeder was estimated as 1.24, 1.67 and 1.69 respectively.Combine harvesters disperse crop residues during harvesting due to which residue left behind is more likely to be burnt than residue left after a rice crop has been harvested using manual labor. In rice wheat system of Punjab combine harvesters are very popular with farmers as they offer financial and time savings • Findings of the study reveals that zero tillage and zero tillage happy seeder not significantly effects the yield of the crop but its cost saving effect alone make these technologies profitable and is the main driver behind its spread • Study recommends that policy makers and other stakeholders should play a pre-emptive role in encouraging the use of the happy seeder machine in order to decrease rice residue burning • There is a need for further research in order to assess the long term impact of the Happy Seeder technology on yield and soil fertility • Study also revealed that there is a huge potential in the supply side of zero tillage machinery, manufactures of the zero tillage machinery in Daska and Faisalabad have the capacity to take the orders in bulk and manufacture in a given time.Load shedding was also an issue for the manufacturers, about 91% response was yes when asked about decrease in efficiency and productivity of the company.Government should give subsidy to the manufacturers for manufacturing of zero tillage and zero tillage happy seeder machinery, so that this can also be accessible to our small farmers• According to the results of study one key barrier is financial issue. A large number of farmers, particularly smaller ones, are discouraged from using laser leveling by the high rental price incurred for leveling land, to address this constraint it could be better be to offer financial incentives for adoption, especially in KPK where land laser leveler is only provided in Nowshera and D.I.Khan. ","tokenCount":"330"} \ No newline at end of file diff --git a/data/part_3/4977846073.json b/data/part_3/4977846073.json new file mode 100644 index 0000000000000000000000000000000000000000..3c696f075a5240069132a9a3e7d738058df40ca8 --- /dev/null +++ b/data/part_3/4977846073.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"753ca165df4dbd601b89260a5d9c2259","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/bf379cf1-6f80-4101-9f35-eb2f1cdc83d6/retrieve","id":"-283662836"},"keywords":[],"sieverID":"89f791ce-de06-4406-8e69-ebed21b32fa7","pagecount":"10","content":"Photoperíod insensitivity in the germplasm collection of beans (Phaseolu$ vulgaris) held at CIAT is found mostly in accessions from higher latitudes. Cold tolerance is found in accessions from the high Andes, but these are all photoperiod sensitive. A break in adaptation seems to occur at about 15°C, between accessions specifically adapted to cool or \\1arm temperatures. Those adapted to cool temperatures tend to have large seeds. An attempt ;s being made to combine adaptation to growing and yielding at low tempera tu re with photoperiod insensítivity. A number of breeding lines have been selected which combine improved cold temperature tolerance with photoperiod insensitivity (e.g. VRA 81078, VRA 81072). The extent to which production regions of the world can be stratified according to the o~timum photoperiod/temperature response required in bean cultivars i5 being studied in an international phenology nursery organized collaboratively by Cornell University and CIAT.Plant breeder and research student from Cornell Univérsity, lthaca, U.S.A., respectively.J.H.C. Davis and P. Gníffke J Centro Internacional de Agricultura Tropical (CIAT), A.A. 6713, Cali, Colombia .Photoperiod sensitivity in the world germplasm collection of beans (Phaseolus vulgaris} held at CIAT has been found to be related to the origin of the material and its growth habit, most insensitive accessions originating from the high latitudes and tending to be bush types (Growth Habits 1 and II}. Large seeded climbing types, príncipally from the Andean Region, show the lowest frequency of insensitivity (CIAT, 1977 and1982). In sensítive materials, higher temperatures increase the delay in flowering (Enriquez and Wallace, 1980), so that the photoperiod response is a more critical factor in warm locations than cool ones.Any given variety is found to have an optimum temperature and photoperiod at which normal flowering is achieved in a minimum amount of time (Wallace, 1980). Above this temperature flowering may be delayed both by temperature and by increasing photoperiod in sensitive material. Below this optimum temperature,. flowering is a1so de1ayed. Accessions are found \\.¡hich are specifica11y adapted to mean growing temperatures as low as 12-13°C, but all are sensitive to photoperiod and most are climbíng types from the high Andes. Others are specifically adapted to warm temperature. A sharp break in adaptation seems to occur at about 15°C. (Fig. 1; Hershey et al., 1982).The seed weights of groups of accessions adapted to different temperatures is shown in Table 1, demonstrating that accessions adapted to cold temperatures generally have larger seeds than those adapted to warm temperatures.In addition, there is an envíronmental effect of temperature on seed size which operates in the same direction as genetic adaptation, so that the largest seeds are obtained from accessions adapted to cold temperatures and grown at low temperature.Pl ant breeder and research s tudent from Corne1l Uní vers ity, 1 thaca, U.S.A., respectively.An attempt is being made to combine adaptation to grOl~ing and yieldíng at 10w temperature with photoperiod insensitivity. Lights have been placed in the field at the three locations in Colombia shown in Fig. 1, so that the adaptation response to temperature can be studied together with the photoperiod response. A number of breedíng lines have been selected which combine improved cold temperature tolerance with photoperiod insensitívity (e.g. VRA 81078, VRA 81072). These do not yet include the maximum level of cold tolerance available in the species, however.The low frequency of breeding lines obtained to date combining adaptatíon to high altitudes (cool temperatures) and photoperiod insensitivity is shown in Table 2. Much higher frequencies are available in smal1 black and sma11 red Central American types, and small/medium sized Brazilian types, all adapted to warm temperatures. Sorne selected breeding lines, representing insensitive and intermediate classes of photoperiod reaction, are shown in Table 3.Intermediate sensitivity to photoperiod can lead to improved yield under long days, for example in the variety Porrillo Sintético (CIAT, 1977). The extent to which production regions of the world can be stratified according to the optimum photoperiod/temperature response required in bean cultivars is being studied in an international phenology nursery . organized col1aboratively by Cornell University and CIAT. A first attempt at stratifying regions of Latin America and the Caribbean on the basis of climatic data is shown in Table 4 (fram Jones, CIAT, 1979). It is elear that most bean production occurs at a mean growing temperature of 20°C.The definition of the target environment is of fundamental importanee for setting the objectives of an international breeding programme, given that large genotype-environment interactions occur in beans (Voysest, 1982). Photoperiod and temperature are important factors responsible for these interactions. Any division of the total set of environments into more uniform target environments should decrease the potential magnitude of genotype-environment interactions within those target environments and increase the efficiency of genotype selection. Clímatir data can be regarded as the most fundamental basis for dívision, but other factors whích are not necessarily related to climate should also be considered, for example diseases and pests, and socío-economic factors including preferences for particular grain types. I Table l. lhe relatíonship between seed weight and adaptation to tempera tu re in beans. From CIAT, 1979.Seed weight, mg. ","tokenCount":"838"} \ No newline at end of file diff --git a/data/part_3/4977886303.json b/data/part_3/4977886303.json new file mode 100644 index 0000000000000000000000000000000000000000..1b768218280f9d0560bd8a7725917fc920d9928b --- /dev/null +++ b/data/part_3/4977886303.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"d973195220e89187fcb6011574d4e2c4","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/e14e2588-59e6-463e-86de-c86efc857954/content","id":"1429450368"},"keywords":[],"sieverID":"02013177-b5f2-4f6c-84c4-6e43b12dccfa","pagecount":"283","content":"Understand the physical background Understand the Objective Make sure what the client wants Put the problem in statistical terms This is a challenge step and where irreparable errors are something made. Once that the prblem is translated into the statistics languaje, the solution is often routine.Statistics starts with a problem, continues with the collection of data, proceeds with the data analysis and finishes with conclusions It is a common mistake of inexperienced statisticians to plunge into a complex analysis without paying attention to what the objectives are or even whether the data are appropriate for the proposed analysis The formulation of a problem is often more essential than its solution itself, which may be merely a matter of mathematical or experimental skills, Albert Einstein.Statistics starts with a problem, continues with the collection of data, proceeds with the data analysis and finishes with conclusions It is a common mistake of inexperienced statisticians to plunge into a complex analysis without paying attention to what the objectives are or even whether the data are appropriate for the proposed analysis The formulation of a problem is often more essential than its solution itself, which may be merely a matter of mathematical or experimental skills, Albert Einstein.Statistics starts with a problem, continues with the collection of data, proceeds with the data analysis and finishes with conclusions It is a common mistake of inexperienced statisticians to plunge into a complex analysis without paying attention to what the objectives are or even whether the data are appropriate for the proposed analysis The formulation of a problem is often more essential than its solution itself, which may be merely a matter of mathematical or experimental skills, Albert Einstein.Statistics starts with a problem, continues with the collection of data, proceeds with the data analysis and finishes with conclusions It is a common mistake of inexperienced statisticians to plunge into a complex analysis without paying attention to what the objectives are or even whether the data are appropriate for the proposed analysis The formulation of a problem is often more essential than its solution itself, which may be merely a matter of mathematical or experimental skills, Albert Einstein.It is important to understand how the data was collected 1. Are the data observational or experimental 2. Are there missing values 3. How the data was coded 4. What are the units of measurement 5. Beware of data entry errors. The last problem is all too common, almost a certainly in any real dataset of at least moderate size. Perform some data sanity checkIt is important to understand how the data was collected 1. Are the data observational or experimental 2. Are there missing values 3. How the data was coded 4. What are the units of measurement 5. Beware of data entry errors. The last problem is all too common, almost a certainly in any real dataset of at least moderate size. Perform some data sanity checkIt is important to understand how the data was collected 1. Are the data observational or experimental 2. Are there missing values 3. How the data was coded 4. What are the units of measurement 5. Beware of data entry errors. The last problem is all too common, almost a certainly in any real dataset of at least moderate size. Perform some data sanity checkIt is important to understand how the data was collected 1. Are the data observational or experimental 2. Are there missing values 3. How the data was coded 4. What are the units of measurement 5. Beware of data entry errors. The last problem is all too common, almost a certainly in any real dataset of at least moderate size. Perform some data sanity checkIt is important to understand how the data was collected 1. Are the data observational or experimental 2. Are there missing values 3. How the data was coded 4. What are the units of measurement 5. Beware of data entry errors. The last problem is all too common, almost a certainly in any real dataset of at least moderate size. Perform some data sanity checkIt is important to understand how the data was collected 1. Are the data observational or experimental 2. Are there missing values 3. How the data was coded 4. What are the units of measurement 5. Beware of data entry errors. The last problem is all too common, almost a certainly in any real dataset of at least moderate size. Perform some data sanity checkIt is important to understand how the data was collected 1. Are the data observational or experimental 2. Are there missing values 3. How the data was coded 4. What are the units of measurement 5. Beware of data entry errors. The last problem is all too common, almost a certainly in any real dataset of at least moderate size. Perform some data sanity check Basic concepts on experimental designs: The three Fisher basic principles Replication Why? It is the only way in which we are able to get an estimate of the experimental error How many replications? At least two. As higher number is better precision Unfortunately, there are a compromise between precision and cost Also, the number of replications to use depends of the response variable to be assessed Continuous variables do not need too much replications However for discrete variables (diseases, counts of insects), it is advisable to make more replications Basic concepts on experimental designs: The three Fisher basic principles Replication Why? It is the only way in which we are able to get an estimate of the experimental error How many replications? At least two. As higher number is better precision Unfortunately, there are a compromise between precision and cost Also, the number of replications to use depends of the response variable to be assessed Continuous variables do not need too much replications However for discrete variables (diseases, counts of insects), it is advisable to make more replications Basic concepts on experimental designs: The three Fisher basic principles Replication Why? It is the only way in which we are able to get an estimate of the experimental error How many replications? At least two. As higher number is better precision Unfortunately, there are a compromise between precision and cost Also, the number of replications to use depends of the response variable to be assessed Continuous variables do not need too much replications However for discrete variables (diseases, counts of insects), it is advisable to make more replications Basic concepts on experimental designs: The three Fisher basic principles Replication Why? It is the only way in which we are able to get an estimate of the experimental error How many replications? At least two. As higher number is better precision Unfortunately, there are a compromise between precision and cost Also, the number of replications to use depends of the response variable to be assessed Continuous variables do not need too much replications However for discrete variables (diseases, counts of insects), it is advisable to make more replications Basic concepts on experimental designs: The three Fisher basic principles Replication Why? It is the only way in which we are able to get an estimate of the experimental error How many replications? At least two. As higher number is better precision Unfortunately, there are a compromise between precision and cost Also, the number of replications to use depends of the response variable to be assessed Continuous variables do not need too much replications However for discrete variables (diseases, counts of insects), it is advisable to make more replications Basic concepts on experimental designs: The three Fisher basic principles Replication Why? It is the only way in which we are able to get an estimate of the experimental error How many replications? At least two. As higher number is better precision Unfortunately, there are a compromise between precision and cost Also, the number of replications to use depends of the response variable to be assessed Continuous variables do not need too much replications However for discrete variables (diseases, counts of insects), it is advisable to make more replications Basic concepts on experimental designs: The three Fisher basic principles Replication Why? It is the only way in which we are able to get an estimate of the experimental error How many replications? At least two. As higher number is better precision Unfortunately, there are a compromise between precision and cost Also, the number of replications to use depends of the response variable to be assessed Continuous variables do not need too much replications However for discrete variables (diseases, counts of insects), it is advisable to make more replications Basic concepts on experimental designs: The three Fisher basic principles Replication Why? It is the only way in which we are able to get an estimate of the experimental error How many replications? At least two. As higher number is better precision Unfortunately, there are a compromise between precision and cost Also, the number of replications to use depends of the response variable to be assessed Continuous variables do not need too much replications However for discrete variables (diseases, counts of insects), it is advisable to make more replications Basic concepts on experimental designs: The three Fisher basic principles Replication Why? It is the only way in which we are able to get an estimate of the experimental error How many replications? At least two. As higher number is better precision Unfortunately, there are a compromise between precision and cost Also, the number of replications to use depends of the response variable to be assessed Continuous variables do not need too much replications However for discrete variables (diseases, counts of insects), it is advisable to make more replications Basic concepts on experimental designs: The three Fisher basic principles Replication Why? It is the only way in which we are able to get an estimate of the experimental error How many replications? At least two. As higher number is better precision Unfortunately, there are a compromise between precision and cost Also, the number of replications to use depends of the response variable to be assessed Continuous variables do not need too much replications However for discrete variables (diseases, counts of insects), it is advisable to make more replications Basic concepts on experimental designs: The three Fisher basic principles Replication Why? It is the only way in which we are able to get an estimate of the experimental error How many replications? At least two. As higher number is better precision Unfortunately, there are a compromise between precision and cost Also, the number of replications to use depends of the response variable to be assessed Continuous variables do not need too much replications However for discrete variables (diseases, counts of insects), it is advisable to make more replications The three Fisher principles: Randomization Reduces the bias, avoiding to favor some treatments. The main assumption in all statistical linear models related to the experimental error isTherefore, the randomization guarantee that experimental units (e.u.) are independent to each other, in a such way that is possible to use the classical parametric statistical methodologies. Randomization is one of the most important components of a well-designed experiments.The three Fisher principles: RandomizationReduces the bias, avoiding to favor some treatments.The main assumption in all statistical linear models related to the experimental error isTherefore, the randomization guarantee that experimental units (e.u.) are independent to each other, in a such way that is possible to use the classical parametric statistical methodologies. Randomization is one of the most important components of a well-designed experiments.The three Fisher principles: RandomizationReduces the bias, avoiding to favor some treatments.The main assumption in all statistical linear models related to the experimental error isTherefore, the randomization guarantee that experimental units (e.u.) are independent to each other, in a such way that is possible to use the classical parametric statistical methodologies. Randomization is one of the most important components of a well-designed experiments.The three Fisher principles: RandomizationReduces the bias, avoiding to favor some treatments.The main assumption in all statistical linear models related to the experimental error isTherefore, the randomization guarantee that experimental units (e.u.) are independent to each other, in a such way that is possible to use the classical parametric statistical methodologies. Randomization is one of the most important components of a well-designed experiments.The three Fisher principles: RandomizationReduces the bias, avoiding to favor some treatments.The main assumption in all statistical linear models related to the experimental error isTherefore, the randomization guarantee that experimental units (e.u.) are independent to each other, in a such way that is possible to use the classical parametric statistical methodologies. Randomization is one of the most important components of a well-designed experiments.The three Fisher principles: RandomizationReduces the bias, avoiding to favor some treatments.The main assumption in all statistical linear models related to the experimental error isTherefore, the randomization guarantee that experimental units (e.u.) are independent to each other, in a such way that is possible to use the classical parametric statistical methodologies. Randomization is one of the most important components of a well-designed experiments.Factor: Are the explanatory variable (independent) variables that the researcher are interested in evaluate their effect. Levels: Are the different categories in which a factor can be divided.Treatments: Are the different procedures we want to compare. Sometimes correspond to the combination of factors and their levels.Experimental Units (E.U.): Are the smallest physical area in which we apply one and only one treatment.Responses: Are the outcomes thet we observe after applying a treatment to an experimental unit. Is a measure to judge what happened in the experiment. Control treatment: is a standard treatment that is used as baseline to compare with other treatments.Factor: Are the explanatory variable (independent) variables that the researcher are interested in evaluate their effect. Levels: Are the different categories in which a factor can be divided.Treatments: Are the different procedures we want to compare. Sometimes correspond to the combination of factors and their levels.Experimental Units (E.U.): Are the smallest physical area in which we apply one and only one treatment.Responses: Are the outcomes thet we observe after applying a treatment to an experimental unit. Is a measure to judge what happened in the experiment. Control treatment: is a standard treatment that is used as baseline to compare with other treatments.Factor: Are the explanatory variable (independent) variables that the researcher are interested in evaluate their effect. Levels: Are the different categories in which a factor can be divided.Treatments: Are the different procedures we want to compare. Sometimes correspond to the combination of factors and their levels.Experimental Units (E.U.): Are the smallest physical area in which we apply one and only one treatment.Responses: Are the outcomes thet we observe after applying a treatment to an experimental unit. Is a measure to judge what happened in the experiment. Control treatment: is a standard treatment that is used as baseline to compare with other treatments.Factor: Are the explanatory variable (independent) variables that the researcher are interested in evaluate their effect. Levels: Are the different categories in which a factor can be divided.Treatments: Are the different procedures we want to compare. Sometimes correspond to the combination of factors and their levels.Experimental Units (E.U.): Are the smallest physical area in which we apply one and only one treatment.Responses: Are the outcomes thet we observe after applying a treatment to an experimental unit. Is a measure to judge what happened in the experiment. Control treatment: is a standard treatment that is used as baseline to compare with other treatments.Factor: Are the explanatory variable (independent) variables that the researcher are interested in evaluate their effect. Levels: Are the different categories in which a factor can be divided.Treatments: Are the different procedures we want to compare. Sometimes correspond to the combination of factors and their levels.Experimental Units (E.U.): Are the smallest physical area in which we apply one and only one treatment.Responses: Are the outcomes thet we observe after applying a treatment to an experimental unit. Is a measure to judge what happened in the experiment. Control treatment: is a standard treatment that is used as baseline to compare with other treatments.Factor: Are the explanatory variable (independent) variables that the researcher are interested in evaluate their effect. Levels: Are the different categories in which a factor can be divided.Treatments: Are the different procedures we want to compare. Sometimes correspond to the combination of factors and their levels.Experimental Units (E.U.): Are the smallest physical area in which we apply one and only one treatment.Responses: Are the outcomes thet we observe after applying a treatment to an experimental unit. Is a measure to judge what happened in the experiment. Control treatment: is a standard treatment that is used as baseline to compare with other treatments.Factor: Are the explanatory variable (independent) variables that the researcher are interested in evaluate their effect. Levels: Are the different categories in which a factor can be divided.Treatments: Are the different procedures we want to compare. Sometimes correspond to the combination of factors and their levels.Experimental Units (E.U.): Are the smallest physical area in which we apply one and only one treatment.Responses: Are the outcomes thet we observe after applying a treatment to an experimental unit. Is a measure to judge what happened in the experiment. Control treatment: is a standard treatment that is used as baseline to compare with other treatments.Factor: Are the explanatory variable (independent) variables that the researcher are interested in evaluate their effect. Levels: Are the different categories in which a factor can be divided.Treatments: Are the different procedures we want to compare. Sometimes correspond to the combination of factors and their levels.Experimental Units (E.U.): Are the smallest physical area in which we apply one and only one treatment.Responses: Are the outcomes thet we observe after applying a treatment to an experimental unit. Is a measure to judge what happened in the experiment. Control treatment: is a standard treatment that is used as baseline to compare with other treatments.Factor: Are the explanatory variable (independent) variables that the researcher are interested in evaluate their effect. Levels: Are the different categories in which a factor can be divided.Treatments: Are the different procedures we want to compare. Sometimes correspond to the combination of factors and their levels.Experimental Units (E.U.): Are the smallest physical area in which we apply one and only one treatment.Responses: Are the outcomes thet we observe after applying a treatment to an experimental unit. Is a measure to judge what happened in the experiment. Control treatment: is a standard treatment that is used as baseline to compare with other treatments.Factor: Are the explanatory variable (independent) variables that the researcher are interested in evaluate their effect. Levels: Are the different categories in which a factor can be divided.Treatments: Are the different procedures we want to compare. Sometimes correspond to the combination of factors and their levels.Experimental Units (E.U.): Are the smallest physical area in which we apply one and only one treatment.Responses: Are the outcomes thet we observe after applying a treatment to an experimental unit. Is a measure to judge what happened in the experiment. Control treatment: is a standard treatment that is used as baseline to compare with other treatments.Factor: Are the explanatory variable (independent) variables that the researcher are interested in evaluate their effect. Levels: Are the different categories in which a factor can be divided.Treatments: Are the different procedures we want to compare. Sometimes correspond to the combination of factors and their levels.Experimental Units (E.U.): Are the smallest physical area in which we apply one and only one treatment.Responses: Are the outcomes thet we observe after applying a treatment to an experimental unit. Is a measure to judge what happened in the experiment. Control treatment: is a standard treatment that is used as baseline to compare with other treatments.Factor: Are the explanatory variable (independent) variables that the researcher are interested in evaluate their effect. Levels: Are the different categories in which a factor can be divided.Treatments: Are the different procedures we want to compare. Sometimes correspond to the combination of factors and their levels.Experimental Units (E.U.): Are the smallest physical area in which we apply one and only one treatment.Responses: Are the outcomes thet we observe after applying a treatment to an experimental unit. Is a measure to judge what happened in the experiment. Control treatment: is a standard treatment that is used as baseline to compare with other treatments.Factor: Are the explanatory variable (independent) variables that the researcher are interested in evaluate their effect. Levels: Are the different categories in which a factor can be divided.Treatments: Are the different procedures we want to compare. Sometimes correspond to the combination of factors and their levels.Experimental Units (E.U.): Are the smallest physical area in which we apply one and only one treatment.Responses: Are the outcomes thet we observe after applying a treatment to an experimental unit. Is a measure to judge what happened in the experiment. Control treatment: is a standard treatment that is used as baseline to compare with other treatments.Measurement units: Be careful do not confound with experimental unit, Example: Fertilizer is applied to aplot of land containing corn plants, some of which will be harvested and measured. The plot is the experimental unit and the plants are the meesurement units. treating measurement units as experimental units, usually leads to overoptimistic analysis, rejecting the null hypotheses more often than we should, and our confidence intervals will be short, do not having claimed coverage rates. The usual way around this is to determine a single response for each experimental unit. This single response is tipically the average or total of the responses for the measurement units within an experimental unit.Measurement units: Be careful do not confound with experimental unit, Example: Fertilizer is applied to aplot of land containing corn plants, some of which will be harvested and measured. The plot is the experimental unit and the plants are the meesurement units. treating measurement units as experimental units, usually leads to overoptimistic analysis, rejecting the null hypotheses more often than we should, and our confidence intervals will be short, do not having claimed coverage rates. The usual way around this is to determine a single response for each experimental unit. This single response is tipically the average or total of the responses for the measurement units within an experimental unit.Measurement units: Be careful do not confound with experimental unit, Example: Fertilizer is applied to aplot of land containing corn plants, some of which will be harvested and measured. The plot is the experimental unit and the plants are the meesurement units. treating measurement units as experimental units, usually leads to overoptimistic analysis, rejecting the null hypotheses more often than we should, and our confidence intervals will be short, do not having claimed coverage rates. The usual way around this is to determine a single response for each experimental unit. This single response is tipically the average or total of the responses for the measurement units within an experimental unit.Measurement units: Be careful do not confound with experimental unit, Example: Fertilizer is applied to aplot of land containing corn plants, some of which will be harvested and measured. The plot is the experimental unit and the plants are the meesurement units. treating measurement units as experimental units, usually leads to overoptimistic analysis, rejecting the null hypotheses more often than we should, and our confidence intervals will be short, do not having claimed coverage rates. The usual way around this is to determine a single response for each experimental unit. This single response is tipically the average or total of the responses for the measurement units within an experimental unit.Measurement units: Be careful do not confound with experimental unit, Example: Fertilizer is applied to aplot of land containing corn plants, some of which will be harvested and measured. The plot is the experimental unit and the plants are the meesurement units. treating measurement units as experimental units, usually leads to overoptimistic analysis, rejecting the null hypotheses more often than we should, and our confidence intervals will be short, do not having claimed coverage rates. The usual way around this is to determine a single response for each experimental unit. This single response is tipically the average or total of the responses for the measurement units within an experimental unit.statistical Linear modely ij : Is the response associated with the effect of the i th treatment in the j th replication µ: Is the general grand mean common to all experimental units before applying the treatments τ i : Is the effect of the i th treatment ij : Are the errors associated to the effect of the i th treatment in the j th replication Classical assumptions about the errors areCRD statistical Linear modely ij : Is the response associated with the effect of the i th treatment in the j th replication µ: Is the general grand mean common to all experimental units before applying the treatments τ i : Is the effect of the i th treatment ij : Are the errors associated to the effect of the i th treatment in the j th replication Classical assumptions about the errors areCRD statistical Linear modely ij : Is the response associated with the effect of the i th treatment in the j th replication µ: Is the general grand mean common to all experimental units before applying the treatments τ i : Is the effect of the i th treatment ij : Are the errors associated to the effect of the i th treatment in the j th replication Classical assumptions about the errors areCRD statistical Linear modely ij : Is the response associated with the effect of the i th treatment in the j th replication µ: Is the general grand mean common to all experimental units before applying the treatments τ i : Is the effect of the i th treatment ij : Are the errors associated to the effect of the i th treatment in the j th replication Classical assumptions about the errors areCRD statistical Linear modely ij : Is the response associated with the effect of the i th treatment in the j th replication µ: Is the general grand mean common to all experimental units before applying the treatments τ i : Is the effect of the i th treatment ij : Are the errors associated to the effect of the i th treatment in the j th replication Classical assumptions about the errors areCRD statistical Linear modely ij : Is the response associated with the effect of the i th treatment in the j th replication µ: Is the general grand mean common to all experimental units before applying the treatments τ i : Is the effect of the i th treatment ij : Are the errors associated to the effect of the i th treatment in the j th replication Classical assumptions about the errors areCRD statistical Linear modely ij : Is the response associated with the effect of the i th treatment in the j th replication µ: Is the general grand mean common to all experimental units before applying the treatments τ i : Is the effect of the i th treatment ij : Are the errors associated to the effect of the i th treatment in the j th replication Classical assumptions about the errors areCRD statistical Linear modely ij : Is the response associated with the effect of the i th treatment in the j th replication µ: Is the general grand mean common to all experimental units before applying the treatments τ i : Is the effect of the i th treatment ij : Are the errors associated to the effect of the i th treatment in the j th replication Classical assumptions about the errors areCRD statistical Linear modely ij : Is the response associated with the effect of the i th treatment in the j th replication µ: Is the general grand mean common to all experimental units before applying the treatments τ i : Is the effect of the i th treatment ij : Are the errors associated to the effect of the i th treatment in the j th replication Classical assumptions about the errors areExperimental Designs: Random Complete Block Designs (RCBD)The RCBD has as restriction that all the treatments are replicated once and only once in each block, using an unrestricted randomization independently in each blockIn the first block, the t treatments are assigned randomly to g units; then are generated other independent randomizations, assigning treatments to units in each of the other blocksExperimental Designs: Random Complete Block Designs (RCBD)The RCBD has as restriction that all the treatments are replicated once and only once in each block, using an unrestricted randomization independently in each blockIn the first block, the t treatments are assigned randomly to g units; then are generated other independent randomizations, assigning treatments to units in each of the other blocksExperimental Designs: Random Complete Block Designs (RCBD)The RCBD has as restriction that all the treatments are replicated once and only once in each block, using an unrestricted randomization independently in each blockIn the first block, the t treatments are assigned randomly to g units; then are generated other independent randomizations, assigning treatments to units in each of the other blocksExperimental Designs: Random Complete Block Designs (RCBD)The RCBD has as restriction that all the treatments are replicated once and only once in each block, using an unrestricted randomization independently in each blockIn the first block, the t treatments are assigned randomly to g units; then are generated other independent randomizations, assigning treatments to units in each of the other blocksExperimental Designs: Random Complete Block Designs (RCBD)The RCBD has as restriction that all the treatments are replicated once and only once in each block, using an unrestricted randomization independently in each blockIn the first block, the t treatments are assigned randomly to g units; then are generated other independent randomizations, assigning treatments to units in each of the other blocks RCBD statistical Linear modely ij : Is the response associated with the effect of the i th treatment in the j th replication µ: Is the general grand mean common to all experimental units before applying the treatments τ i : Is the effect of the i th treatment β j : Is the effect of the j th block ij : Are the errors associated to the effect of the i th treatment in the j th replication Classical assumptions about the errors are: ij ∼ NI (0, 1σ 2 ij )statistical Linear modely ij : Is the response associated with the effect of the i th treatment in the j th replication µ: Is the general grand mean common to all experimental units before applying the treatments τ i : Is the effect of the i th treatment β j : Is the effect of the j th block ij : Are the errors associated to the effect of the i th treatment in the j th replication Classical assumptions about the errors are: ij ∼ NI (0, 1σ 2 ij )statistical Linear modely ij : Is the response associated with the effect of the i th treatment in the j th replication µ: Is the general grand mean common to all experimental units before applying the treatments τ i : Is the effect of the i th treatment β j : Is the effect of the j th block ij : Are the errors associated to the effect of the i th treatment in the j th replication Classical assumptions about the errors are: ij ∼ NI (0, 1σ 2 ij )statistical Linear modely ij : Is the response associated with the effect of the i th treatment in the j th replication µ: Is the general grand mean common to all experimental units before applying the treatments τ i : Is the effect of the i th treatment β j : Is the effect of the j th block ij : Are the errors associated to the effect of the i th treatment in the j th replication Classical assumptions about the errors are: ij ∼ NI (0, 1σ 2 ij )statistical Linear modely ij : Is the response associated with the effect of the i th treatment in the j th replication µ: Is the general grand mean common to all experimental units before applying the treatments τ i : Is the effect of the i th treatment β j : Is the effect of the j th block ij : Are the errors associated to the effect of the i th treatment in the j th replication Classical assumptions about the errors are: ij ∼ NI (0, 1σ 2 ij )statistical Linear modely ij : Is the response associated with the effect of the i th treatment in the j th replication µ: Is the general grand mean common to all experimental units before applying the treatments τ i : Is the effect of the i th treatment β j : Is the effect of the j th block ij : Are the errors associated to the effect of the i th treatment in the j th replication Classical assumptions about the errors are: ij ∼ NI (0, 1σ 2 ij )statistical Linear modely ij : Is the response associated with the effect of the i th treatment in the j th replication µ: Is the general grand mean common to all experimental units before applying the treatments τ i : Is the effect of the i th treatment β j : Is the effect of the j th block ij : Are the errors associated to the effect of the i th treatment in the j th replication Classical assumptions about the errors are: ij ∼ NI (0, 1σ 2 ij )statistical Linear modely ij : Is the response associated with the effect of the i th treatment in the j th replication µ: Is the general grand mean common to all experimental units before applying the treatments τ i : Is the effect of the i th treatment β j : Is the effect of the j th block ij : Are the errors associated to the effect of the i th treatment in the j th replication Classical assumptions about the errors are: ij ∼ NI (0, 1σ 2 ij )statistical Linear modely ij : Is the response associated with the effect of the i th treatment in the j th replication µ: Is the general grand mean common to all experimental units before applying the treatments τ i : Is the effect of the i th treatment β j : Is the effect of the j th block ij : Are the errors associated to the effect of the i th treatment in the j th replication Classical assumptions about the errors are: ij ∼ NI (0, 1σ 2 ij )statistical Linear modely ij : Is the response associated with the effect of the i th treatment in the j th replication µ: Is the general grand mean common to all experimental units before applying the treatments τ i : Is the effect of the i th treatment β j : Is the effect of the j th block ij : Are the errors associated to the effect of the i th treatment in the j th replication Classical assumptions about the errors are: ij ∼ NI (0, 1σ 2 ij )statistical Linear modely ijk : Is the response associated with the effect of the i th treatment in the j th row and the k th column µ: Is the general grand mean common to all experimental units before applying the treatments τ i : Is the effect of the i th treatment γ j : Is the effect of the j th row δ k : Is the effect of the k th column ijk : Are the errors associated to the effect of the i th treatment in the j th row and the k th column Classical assumptions about the errors are: ij ∼ NI (0, 1σ 2 ij )statistical Linear modely ijk : Is the response associated with the effect of the i th treatment in the j th row and the k th column µ: Is the general grand mean common to all experimental units before applying the treatments τ i : Is the effect of the i th treatment γ j : Is the effect of the j th row δ k : Is the effect of the k th column ijk : Are the errors associated to the effect of the i th treatment in the j th row and the k th column Classical assumptions about the errors are: ij ∼ NI (0, 1σ 2 ij )statistical Linear modely ijk : Is the response associated with the effect of the i th treatment in the j th row and the k th column µ: Is the general grand mean common to all experimental units before applying the treatments τ i : Is the effect of the i th treatment γ j : Is the effect of the j th row δ k : Is the effect of the k th column ijk : Are the errors associated to the effect of the i th treatment in the j th row and the k th column Classical assumptions about the errors are: ij ∼ NI (0, 1σ 2 ij )statistical Linear modely ijk : Is the response associated with the effect of the i th treatment in the j th row and the k th column µ: Is the general grand mean common to all experimental units before applying the treatments τ i : Is the effect of the i th treatment γ j : Is the effect of the j th row δ k : Is the effect of the k th column ijk : Are the errors associated to the effect of the i th treatment in the j th row and the k th column Classical assumptions about the errors are: ij ∼ NI (0, 1σ 2 ij )statistical Linear modely ijk : Is the response associated with the effect of the i th treatment in the j th row and the k th column µ: Is the general grand mean common to all experimental units before applying the treatments τ i : Is the effect of the i th treatment γ j : Is the effect of the j th row δ k : Is the effect of the k th column ijk : Are the errors associated to the effect of the i th treatment in the j th row and the k th column Classical assumptions about the errors are: ij ∼ NI (0, 1σ 2 ij )statistical Linear modely ijk : Is the response associated with the effect of the i th treatment in the j th row and the k th column µ: Is the general grand mean common to all experimental units before applying the treatments τ i : Is the effect of the i th treatment γ j : Is the effect of the j th row δ k : Is the effect of the k th column ijk : Are the errors associated to the effect of the i th treatment in the j th row and the k th column Classical assumptions about the errors are: ij ∼ NI (0, 1σ 2 ij )statistical Linear modely ijk : Is the response associated with the effect of the i th treatment in the j th row and the k th column µ: Is the general grand mean common to all experimental units before applying the treatments τ i : Is the effect of the i th treatment γ j : Is the effect of the j th row δ k : Is the effect of the k th column ijk : Are the errors associated to the effect of the i th treatment in the j th row and the k th column Classical assumptions about the errors are: ij ∼ NI (0, 1σ 2 ij )statistical Linear modely ijk : Is the response associated with the effect of the i th treatment in the j th row and the k th column µ: Is the general grand mean common to all experimental units before applying the treatments τ i : Is the effect of the i th treatment γ j : Is the effect of the j th row δ k : Is the effect of the k th column ijk : Are the errors associated to the effect of the i th treatment in the j th row and the k th column Classical assumptions about the errors are: ij ∼ NI (0, 1σ 2 ij )statistical Linear modely ijk : Is the response associated with the effect of the i th treatment in the j th row and the k th column µ: Is the general grand mean common to all experimental units before applying the treatments τ i : Is the effect of the i th treatment γ j : Is the effect of the j th row δ k : Is the effect of the k th column ijk : Are the errors associated to the effect of the i th treatment in the j th row and the k th column Classical assumptions about the errors are: ij ∼ NI (0, 1σ 2 ij )statistical Linear modely ijk : Is the response associated with the effect of the i th treatment in the j th row and the k th column µ: Is the general grand mean common to all experimental units before applying the treatments τ i : Is the effect of the i th treatment γ j : Is the effect of the j th row δ k : Is the effect of the k th column ijk : Are the errors associated to the effect of the i th treatment in the j th row and the k th column Classical assumptions about the errors are: ij ∼ NI (0, 1σ 2 ij )statistical Linear modely ijk : Is the response associated with the effect of the i th treatment in the j th row and the k th column µ: Is the general grand mean common to all experimental units before applying the treatments τ i : Is the effect of the i th treatment γ j : Is the effect of the j th row δ k : Is the effect of the k th column ijk : Are the errors associated to the effect of the i th treatment in the j th row and the k th column Classical assumptions about the errors are: ij ∼ NI (0, 1σ 2 ij )Experimental Designs: Factorial DesignsThe main effect of a factor is defined to be the change in response produced by a change in the level of a factor However, in some experiments we may find that the difference in response between the levels of one factor is not the same at all levels of the other factor. When this occurs, there is an interaction between the factors When an interaction is large, the main effects have little practical meaning A significant interaction will often mask the significance of main effectsExperimental Designs: Factorial DesignsThe main effect of a factor is defined to be the change in response produced by a change in the level of a factor However, in some experiments we may find that the difference in response between the levels of one factor is not the same at all levels of the other factor. When this occurs, there is an interaction between the factors When an interaction is large, the main effects have little practical meaning A significant interaction will often mask the significance of main effectsExperimental Designs: Factorial DesignsThe main effect of a factor is defined to be the change in response produced by a change in the level of a factor However, in some experiments we may find that the difference in response between the levels of one factor is not the same at all levels of the other factor. When this occurs, there is an interaction between the factors When an interaction is large, the main effects have little practical meaning A significant interaction will often mask the significance of main effectsExperimental Designs: Factorial DesignsThe main effect of a factor is defined to be the change in response produced by a change in the level of a factor However, in some experiments we may find that the difference in response between the levels of one factor is not the same at all levels of the other factor. When this occurs, there is an interaction between the factors When an interaction is large, the main effects have little practical meaning A significant interaction will often mask the significance of main effectsExperimental Designs: Factorial DesignsThe main effect of a factor is defined to be the change in response produced by a change in the level of a factor However, in some experiments we may find that the difference in response between the levels of one factor is not the same at all levels of the other factor. When this occurs, there is an interaction between the factors When an interaction is large, the main effects have little practical meaning A significant interaction will often mask the significance of main effectsExperimental Designs: Factorial DesignsThe main effect of a factor is defined to be the change in response produced by a change in the level of a factor However, in some experiments we may find that the difference in response between the levels of one factor is not the same at all levels of the other factor. When this occurs, there is an interaction between the factors When an interaction is large, the main effects have little practical meaning A significant interaction will often mask the significance of main effectsFactorial Designs statistical Linear model Factorial Designs statistical Linear modelµ: Is the general grand mean common to all experimental units before applying the treatments τ i : Is the effect of the i th level of factor A (i=1,2,.....,n a ) δ j : Is the effect of the j th level of factor B (j=1,2,.....,n b ) (τ δ) ij : represents the interaction effect between A and B ijk : Are the random errors associated to the i th levels of factor A, and the associated effect in the j th level of B k: denotes the r replicates (k=1,2,....,r) Classical assumptions about the errors are: ijk ∼ NI (0, 1σ 2 ijk )Factorial Designs statistical Linear modelµ: Is the general grand mean common to all experimental units before applying the treatments τ i : Is the effect of the i th level of factor A (i=1,2,.....,n a ) δ j : Is the effect of the j th level of factor B (j=1,2,.....,n b ) (τ δ) ij : represents the interaction effect between A and B ijk : Are the random errors associated to the i th levels of factor A, and the associated effect in the j th level of B k: denotes the r replicates (k=1,2,....,r) Classical assumptions about the errors are: ijk ∼ NI (0, 1σ 2 ijk )Factorial Designs statistical Linear modelµ: Is the general grand mean common to all experimental units before applying the treatments τ i : Is the effect of the i th level of factor A (i=1,2,.....,n a ) δ j : Is the effect of the j th level of factor B (j=1,2,.....,n b ) (τ δ) ij : represents the interaction effect between A and B ijk : Are the random errors associated to the i th levels of factor A, and the associated effect in the j th level of B k: denotes the r replicates (k=1,2,....,r) Classical assumptions about the errors are: ijk ∼ NI (0, 1σ 2 ijk )Factorial Designs statistical Linear modelµ: Is the general grand mean common to all experimental units before applying the treatments τ i : Is the effect of the i th level of factor A (i=1,2,.....,n a ) δ j : Is the effect of the j th level of factor B (j=1,2,.....,n b ) (τ δ) ij : represents the interaction effect between A and B ijk : Are the random errors associated to the i th levels of factor A, and the associated effect in the j th level of B k: denotes the r replicates (k=1,2,....,r) Classical assumptions about the errors are: ijk ∼ NI (0, 1σ 2 ijk )Factorial Designs statistical Linear modelµ: Is the general grand mean common to all experimental units before applying the treatments τ i : Is the effect of the i th level of factor A (i=1,2,.....,n a ) δ j : Is the effect of the j th level of factor B (j=1,2,.....,n b ) (τ δ) ij : represents the interaction effect between A and B ijk : Are the random errors associated to the i th levels of factor A, and the associated effect in the j th level of B k: denotes the r replicates (k=1,2,....,r) Classical assumptions about the errors are: ijk ∼ NI (0, 1σ 2 ijk )Factorial Designs statistical Linear modelµ: Is the general grand mean common to all experimental units before applying the treatments τ i : Is the effect of the i th level of factor A (i=1,2,.....,n a ) δ j : Is the effect of the j th level of factor B (j=1,2,.....,n b ) (τ δ) ij : represents the interaction effect between A and B ijk : Are the random errors associated to the i th levels of factor A, and the associated effect in the j th level of B k: denotes the r replicates (k=1,2,....,r) Classical assumptions about the errors are: ijk ∼ NI (0, 1σ 2 ijk )Factorial Designs statistical Linear modelµ: Is the general grand mean common to all experimental units before applying the treatments τ i : Is the effect of the i th level of factor A (i=1,2,.....,n a ) δ j : Is the effect of the j th level of factor B (j=1,2,.....,n b ) (τ δ) ij : represents the interaction effect between A and B ijk : Are the random errors associated to the i th levels of factor A, and the associated effect in the j th level of B k: denotes the r replicates (k=1,2,....,r) Classical assumptions about the errors are: ijk ∼ NI (0, 1σ 2 ijk )Factorial Designs statistical Linear modelµ: Is the general grand mean common to all experimental units before applying the treatments τ i : Is the effect of the i th level of factor A (i=1,2,.....,n a ) δ j : Is the effect of the j th level of factor B (j=1,2,.....,n b ) (τ δ) ij : represents the interaction effect between A and B ijk : Are the random errors associated to the i th levels of factor A, and the associated effect in the j th level of B k: denotes the r replicates (k=1,2,....,r) Classical assumptions about the errors are: ijk ∼ NI (0, 1σ 2 ijk )Factorial Designs statistical Linear modelµ: Is the general grand mean common to all experimental units before applying the treatments τ i : Is the effect of the i th level of factor A (i=1,2,.....,n a ) δ j : Is the effect of the j th level of factor B (j=1,2,.....,n b ) (τ δ) ij : represents the interaction effect between A and B ijk : Are the random errors associated to the i th levels of factor A, and the associated effect in the j th level of B k: denotes the r replicates (k=1,2,....,r) Classical assumptions about the errors are: ijk ∼ NI (0, 1σ 2 ijk )Factorial Designs: Test of hypotheses and analysis of varianceThe test of hypotheses for factor A H 0 : τ i =τ i , for all i = i' H a : τ i = τ i ; for at least one i = i'The test of hypotheses for factor B H 0 : δ j =δ j , for all j = j' H a : δ j = δ j ; for at least one j = j'The test of hypotheses for interaction AB H a : τ δ ij = τ δ i j ; for all ij = i'j' H a : τ δ ij = τ δ i j for at least one ij = i'j'Factorial Designs: Test of hypotheses and analysis of varianceThe test of hypotheses for factor A H 0 : τ i =τ i , for all i = i' H a : τ i = τ i ; for at least one i = i'The test of hypotheses for factor B H 0 : δ j =δ j , for all j = j' H a : δ j = δ j ; for at least one j = j'The test of hypotheses for interaction AB H a : τ δ ij = τ δ i j ; for all ij = i'j' H a : τ δ ij = τ δ i j for at least one ij = i'j'Factorial Designs: Test of hypotheses and analysis of varianceThe test of hypotheses for factor A H 0 : τ i =τ i , for all i = i' H a : τ i = τ i ; for at least one i = i'The test of hypotheses for factor B H 0 : δ j =δ j , for all j = j' H a : δ j = δ j ; for at least one j = j'The test of hypotheses for interaction AB H a : τ δ ij = τ δ i j ; for all ij = i'j' H a : τ δ ij = τ δ i j for at least one ij = i'j'Factorial Designs: Test of hypotheses and analysis of varianceThe test of hypotheses for factor A H 0 : τ i =τ i , for all i = i' H a : τ i = τ i ; for at least one i = i'The test of hypotheses for factor B H 0 : δ j =δ j , for all j = j' H a : δ j = δ j ; for at least one j = j'The test of hypotheses for interaction AB H a : τ δ ij = τ δ i j ; for all ij = i'j' H a : τ δ ij = τ δ i j for at least one ij = i'j'Factorial Designs: Test of hypotheses and analysis of varianceThe test of hypotheses for factor A H 0 : τ i =τ i , for all i = i' H a : τ i = τ i ; for at least one i = i'The test of hypotheses for factor B H 0 : δ j =δ j , for all j = j' H a : δ j = δ j ; for at least one j = j'The test of hypotheses for interaction AB H a : τ δ ij = τ δ i j ; for all ij = i'j' H a : τ δ ij = τ δ i j for at least one ij = i'j'Factorial Designs: Test of hypotheses and analysis of varianceThe test of hypotheses for factor A H 0 : τ i =τ i , for all i = i' H a : τ i = τ i ; for at least one i = i'The test of hypotheses for factor B H 0 : δ j =δ j , for all j = j' H a : δ j = δ j ; for at least one j = j'The test of hypotheses for interaction AB H a : τ δ ij = τ δ i j ; for all ij = i'j' H a : τ δ ij = τ δ i j for at least one ij = i'j'Factorial Designs: Test of hypotheses and analysis of varianceThe test of hypotheses for factor A H 0 : τ i =τ i , for all i = i' H a : τ i = τ i ; for at least one i = i'The test of hypotheses for factor B H 0 : δ j =δ j , for all j = j' H a : δ j = δ j ; for at least one j = j'The test of hypotheses for interaction AB H a : τ δ ij = τ δ i j ; for all ij = i'j' H a : τ δ ij = τ δ i j for at least one ij = i'j'Factorial Designs: Test of hypotheses and analysis of varianceThe test of hypotheses for factor A H 0 : τ i =τ i , for all i = i' H a : τ i = τ i ; for at least one i = i'The test of hypotheses for factor B H 0 : δ j =δ j , for all j = j' H a : δ j = δ j ; for at least one j = j'The test of hypotheses for interaction AB H a : τ δ ij = τ δ i j ; for all ij = i'j' H a : τ δ ij = τ δ i j for at least one ij = i'j'Factorial Designs: Test of hypotheses and analysis of varianceThe test of hypotheses for factor A H 0 : τ i =τ i , for all i = i' H a : τ i = τ i ; for at least one i = i'The test of hypotheses for factor B H 0 : δ j =δ j , for all j = j' H a : δ j = δ j ; for at least one j = j'The test of hypotheses for interaction AB H a : τ δ ij = τ δ i j ; for all ij = i'j' H a : τ δ ij = τ δ i j for at least one ij = i'j'Factorial Designs: Test of hypotheses and analysis of varianceThe test of hypotheses for factor A H 0 : τ i =τ i , for all i = i' H a : τ i = τ i ; for at least one i = i'The test of hypotheses for factor B H 0 : δ j =δ j , for all j = j' H a : δ j = δ j ; for at least one j = j'The test of hypotheses for interaction AB H a : τ δ ij = τ δ i j ; for all ij = i'j' H a : τ δ ij = τ δ i j for at least one ij = i'j'Experimental Designs: Split Plot DesignsIn some experimental situations there is not practical accomodate all treatments of a factorial experiment in one complete block Thus, is necessary to use incomplete blocks, no all treatments are included in the blocks We can do this by using the split plot designs, where each block is named as whole plot and the subdivisions into the plot are named as small plots As example, suppose that we want test the effect of 3 irrigation methods (a1 = gravity, a2=sprinking, and a3=drip) and 4 yield maize varieties b1, b2, b3 and b4 So, the list of treatments will be: a1b1 a1b2 a1b3 a1b4, a2b1 a2b2 a2b3 a2b4, a3b1 a3b2 a3b3 a3b4, a4b1 a4b2 a4b3 a4b4Experimental Designs: Split Plot DesignsIn some experimental situations there is not practical accomodate all treatments of a factorial experiment in one complete block Thus, is necessary to use incomplete blocks, no all treatments are included in the blocks We can do this by using the split plot designs, where each block is named as whole plot and the subdivisions into the plot are named as small plots As example, suppose that we want test the effect of 3 irrigation methods (a1 = gravity, a2=sprinking, and a3=drip) and 4 yield maize varieties b1, b2, b3 and b4 So, the list of treatments will be: a1b1 a1b2 a1b3 a1b4, a2b1 a2b2 a2b3 a2b4, a3b1 a3b2 a3b3 a3b4, a4b1 a4b2 a4b3 a4b4Experimental Designs: Split Plot DesignsIn some experimental situations there is not practical accomodate all treatments of a factorial experiment in one complete block Thus, is necessary to use incomplete blocks, no all treatments are included in the blocks We can do this by using the split plot designs, where each block is named as whole plot and the subdivisions into the plot are named as small plots As example, suppose that we want test the effect of 3 irrigation methods (a1 = gravity, a2=sprinking, and a3=drip) and 4 yield maize varieties b1, b2, b3 and b4 So, the list of treatments will be: a1b1 a1b2 a1b3 a1b4, a2b1 a2b2 a2b3 a2b4, a3b1 a3b2 a3b3 a3b4, a4b1 a4b2 a4b3 a4b4Experimental Designs: Split Plot DesignsIn some experimental situations there is not practical accomodate all treatments of a factorial experiment in one complete block Thus, is necessary to use incomplete blocks, no all treatments are included in the blocks We can do this by using the split plot designs, where each block is named as whole plot and the subdivisions into the plot are named as small plots As example, suppose that we want test the effect of 3 irrigation methods (a1 = gravity, a2=sprinking, and a3=drip) and 4 yield maize varieties b1, b2, b3 and b4 So, the list of treatments will be: a1b1 a1b2 a1b3 a1b4, a2b1 a2b2 a2b3 a2b4, a3b1 a3b2 a3b3 a3b4, a4b1 a4b2 a4b3 a4b4Experimental Designs: Split Plot DesignsIn some experimental situations there is not practical accomodate all treatments of a factorial experiment in one complete block Thus, is necessary to use incomplete blocks, no all treatments are included in the blocks We can do this by using the split plot designs, where each block is named as whole plot and the subdivisions into the plot are named as small plots As example, suppose that we want test the effect of 3 irrigation methods (a1 = gravity, a2=sprinking, and a3=drip) and 4 yield maize varieties b1, b2, b3 and b4 So, the list of treatments will be: a1b1 a1b2 a1b3 a1b4, a2b1 a2b2 a2b3 a2b4, a3b1 a3b2 a3b3 a3b4, a4b1 a4b2 a4b3 a4b4Experimental Designs: Split Plot DesignsIn some experimental situations there is not practical accomodate all treatments of a factorial experiment in one complete block Thus, is necessary to use incomplete blocks, no all treatments are included in the blocks We can do this by using the split plot designs, where each block is named as whole plot and the subdivisions into the plot are named as small plots As example, suppose that we want test the effect of 3 irrigation methods (a1 = gravity, a2=sprinking, and a3=drip) and 4 yield maize varieties b1, b2, b3 and b4 So, the list of treatments will be: a1b1 a1b2 a1b3 a1b4, a2b1 a2b2 a2b3 a2b4, a3b1 a3b2 a3b3 a3b4, a4b1 a4b2 a4b3 a4b4Experimental Designs: Split Plot DesignsIn some experimental situations there is not practical accomodate all treatments of a factorial experiment in one complete block Thus, is necessary to use incomplete blocks, no all treatments are included in the blocks We can do this by using the split plot designs, where each block is named as whole plot and the subdivisions into the plot are named as small plots As example, suppose that we want test the effect of 3 irrigation methods (a1 = gravity, a2=sprinking, and a3=drip) and 4 yield maize varieties b1, b2, b3 and b4 So, the list of treatments will be: a1b1 a1b2 a1b3 a1b4, a2b1 a2b2 a2b3 a2b4, a3b1 a3b2 a3b3 a3b4, a4b1 a4b2 a4b3 a4b4Split Plot statistical Linear model The statistical linear model depends of the experimental design in which the whole and small plots are arranged For example, when the whole Plot (WP) and the small plots are arranged in a CRDSplit Plot statistical Linear model The statistical linear model depends of the experimental design in which the whole and small plots are arranged For example, when the whole Plot (WP) and the small plots are arranged in a CRDSplit Plot statistical Linear model The statistical linear model depends of the experimental design in which the whole and small plots are arranged For example, when the whole Plot (WP) and the small plots are arranged in a CRDSplit Plot statistical Linear model The statistical linear model depends of the experimental design in which the whole and small plots are arranged For example, when the whole Plot (WP) and the small plots are arranged in a CRDSplit Plot statistical Linear model The statistical linear model depends of the experimental design in which the whole and small plots are arranged For example, when the whole Plot (WP) and the small plots are arranged in a CRDSplit Plot statistical Linear model The statistical linear model depends of the experimental design in which the whole and small plots are arranged For example, when the whole Plot (WP) and the small plots are arranged in a CRDy ijk : Is the response for the whole plot i, small plot j, and the replicate k µ: Is the general grand mean common to all experimental units before applying the treatments A i : Is the effect of the treatment i over the whole plot i a(i) : Are the random errors associated whole plot B i : Is the effect of the sub-treatment j over the small plot j (AB) ij : represents the interaction effect between the treatment i and the sub-treatment j ijk : Are the random errors associated to treatment i, subtreatment j and replication r Classical assumptions about the errors are: ijk ∼ NI (0, 1σ 2 ijk ) y ijk : Is the response for the whole plot i, small plot j, and the replicate k µ: Is the general grand mean common to all experimental units before applying the treatments A i : Is the effect of the treatment i over the whole plot i a(i) : Are the random errors associated whole plot B i : Is the effect of the sub-treatment j over the small plot j (AB) ij : represents the interaction effect between the treatment i and the sub-treatment j ijk : Are the random errors associated to treatment i, subtreatment j and replication r Classical assumptions about the errors are: ijk ∼ NI (0, 1σ 2 ijk ) y ijk : Is the response for the whole plot i, small plot j, and the replicate k µ: Is the general grand mean common to all experimental units before applying the treatments A i : Is the effect of the treatment i over the whole plot i a(i) : Are the random errors associated whole plot B i : Is the effect of the sub-treatment j over the small plot j (AB) ij : represents the interaction effect between the treatment i and the sub-treatment j ijk : Are the random errors associated to treatment i, subtreatment j and replication r Classical assumptions about the errors are: ijk ∼ NI (0, 1σ 2 ijk ) y ijk : Is the response for the whole plot i, small plot j, and the replicate k µ: Is the general grand mean common to all experimental units before applying the treatments A i : Is the effect of the treatment i over the whole plot i a(i) : Are the random errors associated whole plot B i : Is the effect of the sub-treatment j over the small plot j (AB) ij : represents the interaction effect between the treatment i and the sub-treatment j ijk : Are the random errors associated to treatment i, subtreatment j and replication r Classical assumptions about the errors are: ijk ∼ NI (0, 1σ 2 ijk ) y ijk : Is the response for the whole plot i, small plot j, and the replicate k µ: Is the general grand mean common to all experimental units before applying the treatments A i : Is the effect of the treatment i over the whole plot i a(i) : Are the random errors associated whole plot B i : Is the effect of the sub-treatment j over the small plot j (AB) ij : represents the interaction effect between the treatment i and the sub-treatment j ijk : Are the random errors associated to treatment i, subtreatment j and replication r Classical assumptions about the errors are: ijk ∼ NI (0, 1σ 2 ijk ) y ijk : Is the response for the whole plot i, small plot j, and the replicate k µ: Is the general grand mean common to all experimental units before applying the treatments A i : Is the effect of the treatment i over the whole plot i a(i) : Are the random errors associated whole plot B i : Is the effect of the sub-treatment j over the small plot j (AB) ij : represents the interaction effect between the treatment i and the sub-treatment j ijk : Are the random errors associated to treatment i, subtreatment j and replication r Classical assumptions about the errors are: ijk ∼ NI (0, 1σ 2 ijk ) y ijk : Is the response for the whole plot i, small plot j, and the replicate k µ: Is the general grand mean common to all experimental units before applying the treatments A i : Is the effect of the treatment i over the whole plot i a(i) : Are the random errors associated whole plot B i : Is the effect of the sub-treatment j over the small plot j (AB) ij : represents the interaction effect between the treatment i and the sub-treatment j ijk : Are the random errors associated to treatment i, subtreatment j and replication r Classical assumptions about the errors are: ijk ∼ NI (0, 1σ 2 ijk ) y ijk : Is the response for the whole plot i, small plot j, and the replicate k µ: Is the general grand mean common to all experimental units before applying the treatments A i : Is the effect of the treatment i over the whole plot i a(i) : Are the random errors associated whole plot B i : Is the effect of the sub-treatment j over the small plot j (AB) ij : represents the interaction effect between the treatment i and the sub-treatment j ijk : Are the random errors associated to treatment i, subtreatment j and replication r Classical assumptions about the errors are: ijk ∼ NI (0, 1σ 2 ijk ) y ijk : Is the response for the whole plot i, small plot j, and the replicate k µ: Is the general grand mean common to all experimental units before applying the treatments A i : Is the effect of the treatment i over the whole plot i a(i) : Are the random errors associated whole plot B i : Is the effect of the sub-treatment j over the small plot j (AB) ij : represents the interaction effect between the treatment i and the sub-treatment j ijk : Are the random errors associated to treatment i, subtreatment j and replication r Classical assumptions about the errors are: ijk ∼ NI (0, 1σ 2 ijk ) y ijk : Is the response for the whole plot i, small plot j, and the replicate k µ: Is the general grand mean common to all experimental units before applying the treatments A i : Is the effect of the treatment i over the whole plot i ","tokenCount":"11971"} \ No newline at end of file diff --git a/data/part_3/4982083538.json b/data/part_3/4982083538.json new file mode 100644 index 0000000000000000000000000000000000000000..8add02caad6342c0c4c80f5f850d3fedca77de1a --- /dev/null +++ b/data/part_3/4982083538.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"1216ed7745eb77f69dadf2059347ec10","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/9be116d5-ccab-464b-8f63-40b5438ea312/retrieve","id":"-1453620606"},"keywords":[],"sieverID":"658a1a8b-c087-465a-a452-8315d14d8b4f","pagecount":"24","content":"What is the issue? Research questions and contribution Preview of key findings, 2046 -2050 Methods and approaches Modeling approach Key results, 2046-2050 Projected changes in rainfall Projected changes in temperature Impacts of climate change on crop yield Impacts of climate change on GDP and welfare Take home messagesMotivation: What is the issue?The world's climate system has changed due to human activities Climate change disproportionately affects the poor who rely on rainfed agriculture Others take a broader regional or national perspective (e.g., We address four policy questions:What are the potential impacts of climate change on crop yields and agricultural production at national and regional level in Zambia? aWhat are the implications of climate change for agriculture trade and economic development?What are the impacts of climate change on household welfare, poverty and food security nationally and regionally?What do the impacts of climate change on ag imply for adaptation policy in Zambia?a crops include maize, other cereal (barley, rice and wheat), root crops (cassava and potatoes), cotton and tobacco and Zambia is divided in five regions (not provinces) -central, eastern, northern, southern and western 1 Rainfall:▶ projected to reduce by 0.87 pp and between 3 and 4 pp in the southern and western regions ","tokenCount":"201"} \ No newline at end of file diff --git a/data/part_3/4995615302.json b/data/part_3/4995615302.json new file mode 100644 index 0000000000000000000000000000000000000000..6ca66bee377b515986bfb6dded44aa4a99725e84 --- /dev/null +++ b/data/part_3/4995615302.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"3cd49878701ccb2cb1d93a9068fdf65f","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/77661250-8570-4e41-a8c9-b507ee52e37f/retrieve","id":"159704452"},"keywords":[],"sieverID":"627be8b8-f89d-4b11-934b-0c21ce0eb9af","pagecount":"387","content":"Genotypes J. Colombia (N. Coast & Santanderes); Panama (Cocle) ¡ suJ::t¡umid belt of Africa (N Nigeria, Benin, Tanzania), Ecuador (NW Coast) Mexico (Tabasco) ¡ llanos of Colanbia & Venezuela; Brazil (Cerrado) 0Jba¡ W. Africa savannas; RliliWines; PanamaCASSAVA PROGRAM ANNUAL REPORT 1990 HIGHLIGHTS An in-depth analysis of the potential of 18 agricul tural crops as alternatives for research at CIAT--which were evaluated on the basis of growth, equity, natural resource conservation and institutional criteria--indicated that cassava can contribute substantially to achieving the overall CIAT goal of sustainable agricultural growth with equity. It has therefore been proposed that cassava remain part of the CIAT commodity portfolio in the 1990s.The current value of cassava production in Latin America and Asia is US$1.46 and 1. 76 billion, respectively.The Net Present Value (NPV) of research benefits from improved technology could amount to U5$738 milI ion and 1.978 billion, respectively, in Latin America and Asia, with poor consumere accruing benefits to the value of US$460 and 280 million. In addition, cassava development activities can generate 60,000 and 111,000 man-yeare of labor, respectively, on these continents.A first lot of 87,615 botanical seeds obtained at CIAT HQ by controlled hybridization and open pollination was introduced to the International Institute of Tropical Agriculture (lITA) as part of these two institutions' collaboration on cassava germplasm improvement in Africa.Half of these seeds were sown in three different ecologies of Nigeria, representing humid, subhumid and semiar id areas of Afr ica. The materials will be evaluated and selected on the basis of yield, growth habit and reaction to biotic constraints, particularly African cassava mosaic disease (ACMD) and cassava bacterial blight (CBB).CIAT-generated technology reaches farmers and consumers largely through the efforts of national research programs. CIAT has made a major effort to adjust its mode of collaboration to suit individual needs and capabilities. In Asia, for example, these programs are highly diverse. The establishment of CIAT' s regional office in Asia in 1983 has allowed a close working relationship to develop with many programs.This in turn has contributed to an evident progression of programs through developmental stages.In more advanced programs such as those of Thailand and Indonesia, this has reached the level of socioeconomic impact through adoption of new varieties. The Philippines, China, Thailand, Malaysia and Indonesia have all released varieties based on CIAT germplasm.Countries with recently established breeding programs, such as those of China and Vietnam, are systematically establishing the foundations for similar future impacto Over the past four years, the Cassava Program has cOllaborated with the Colombian Agricultural Institute (ICA) and local institutions in Cauca, Meta and six states (\"Departamentos\" on the North Coast of Colombia on the development of a methodology for farmers' participation in variety selection.This has directly resulted in the release of two clones, ICA Catumare and ICA Cebucán, in 1990, and the preparation of two more for release in 1991. The implementation of the methodology has led to a clearer definition of farmers' criteria for adoption and institutional strengthening via extensive interaction within the framework of the project.This methodology is now beginning to be used in other Latin American countries.Root rots constitute a major source of yield loss in cassava, and their incidence appears to be increasing in Latin America.In the \"várzea\" (holm) of the Amazon, more than 80,000 ha are affected by Phytophthora drechsleri and Fusarium solani. Following nine years of research conducted with the Center for Agricultural Research in the Amazon (CPAA), two resistant clones (Mae Joana and Zolhudinha) were released this year.For the Pivijay area of Colombia, where Diplodia manihotis is endemic, a technology package has been deve~oped. Cassava growers obtained yield increases of 208% for the resistant clone and 300% for the susceptible clone.The resistant clone yielded more than the susceptible clone with or without the associated improved cultural practices. Very high host plant resistance has been identified to Phytophthora nicotianae varo nic9tíanae, one of the most ímportant causal agents of cassava root rot in poorly drained plantations. Thís will make it possible to initiate a genetíc program to control this pathogen.The development of integrated pest management for the cassava mealybug remains a high-príority research area because of the seriousness of this pest in Africa.Further important natural enemies of the mealybug have been identified, including the parasitoids Aenasius vexans and Acerophagus coccois collected in Venezuela.In addition, three varieties resistant to Phenacoccus herreni have be en identified. Cassava whiteflies, apart from feeding on the crop, are known to be vectors that transmit a number of viruses that cause extensive yield reduction in certain cassava-growing regions.This year four clones with good resistance to cassava whiteflies were developed.The Cassava Green Mite (CGM) is a serious cassava pest in NE Brazil as well as in Africa.Based on taxonomic analysis, electrophoresis, differences in distribution and abundance patterns, the 10w diversity of parasitoid natural enemies and the re1ative1y high frequency of CGM outbreaks in Bra?il compared to northern South America, its area of origin is probably Colombia or Venezuela.The introduction of CGM into Brazil is not recent, but it appears that the Brazilian population of CGM has remained relative1y isolated.There is evidence for physio10gica1, roorpho10gica1 and ecological divergence froro the parent population, suggesting the presence of a distinct strain or biotype in Brazil.Differences in survival and fecundity on different acarine prey types have been demonstrated between geographical subpopulations of parasitoid predators of CGM. These findings corroborate ear1ier work which showed that reproductive incompatibility exists between geographical subpopu1ations of certain parasitoid species.Both types of evidence suggest strain differences between geographica1 subpopulations.Electrophoretic methods for distinguishing strains were successfu11y deve1oped. Se1ection of effective strains wi11 be essential for successful biological control in Africa and NE Brazi1.The feasibi1ity of deploying the fungal pathogen Neozygites sp. against CGM was investigated. No evidence was found for the pathogenicity of this fungus in phytoseiids.Although high re1ative humidity (> 65% RH) favor s development of the fungus on CGM, it inhibits the formation of the anadhesive conidia, responsib1e for its dissemination.New fundamental information on the mechanisms responsible for cassava's tolerance to prolonged water stress was obtained, strengthening the views that cassava has a greater comparative advantage than other food crops in semiarid regions such as sub-Sahelian Africa and NE Brazil. Varietal differences in response to water stress were found.Yield reductions due to stress were minimal in some clones with low hydrocyanic acid (HCN) levels.Severa1 germplasm accessions and new advanced breeding lines were identified for their high to1erance to acid soils with low phosphorus. Tolerance to low-P soils is roainly related to phosphorus use efficiency in terros of yield and bioroass production, not to phosphorus acquisition.The Program is dedicating increased attention to soi1 fertility maintenance and erosion control through research at two sites in Colombia (Santander de Quilichao and Pivijay) and through a series of trials set up in severa1 Asian countries in collaboration with national programs.In Colombia, the long-terro response of cassava to fertilizer application indicated that reasonable sustainable yields could be obtained on infertile soil with moderate levels of K fertilizer but no N and P applications, provided that iii organic matter (OM) is high.In sandy soils with low OM, sustainable casaava production requires application of NPK fertilizer.These results are being corroborated in Asia, where soils are low in organic matter and nutrients.In short-term trials, cassava has shown a marked response to N application but little or no response to either K or P.Research on bóth continents has shown that soil erosion in cassava-based cropping systems on hilly lands can be greatly minimized by cultivating cassava in contour ridges, with grass barriers, or by using mulch and live ground cover of forage legumes.Agronomic practices that resul t in rapid canopy closure, such as fertilizer application in poor soils and closer spacing, also reduce soil 106161.In smallholder agriculture cassava is frequently intercropped with other species, especially ma1ze.On-farm research (OFR) on the Atlantic Coast region of Colombia, carried out in cooperation with ICA, continues to increase our knowledge on the interaction of cassava with maize. Results this year show that cassava responds positively to fertilizer applications designed for and applied to the maize intercrop. Furthermore, nutrient balances reveal that cassava is more efficient than maize in the use of nutrients, especially P and K, per unit of dry matter (OM) produced.The trials also illustrate the important role that cassava plays in reducing risk and sustaining a minimum level of production for the small-scale farmer.In monocropping, the stability of cassava production over time is much greater than for maize.Finally, under the biotic and abiotic conditions prevailing in the region under study over a four-year period, no yield reduction was observed when planting material was selected from plants that had always been intercropped with maize as compared with planting material taken from monocrop plantations.This suggests that intercropping cassava with maize has no effect on the quality of the planting material produced.In the area of cassava utilization research, the highlights include the construction and initial operation of the first pilot plant for producing high-quality cassava flour. This plant is operated and managed by a small farmer cooperative in Córdoba, Colombia with funding from the International Oevelopment Research centre, IORC.A recently completed national market survey for cassava flour has identified a potential of 30,000 t/yr for the meat processing and biscuit industries.Improvements in the traditional starch extraction and fermentation industry processes in Colombia have been designed, and studies relating sour starch functional properties to physicochemical characteristics, initiated. Initial results showed the \"expansion power\" on baking, a characteristic of the starch.Improvement of small-scale indigenous starch (unfermented) processing is being Hcarried out by national programs in Ecuador and Paraguay with CIAT's assistance.Experiments have shown that the chemical treatment of the fresh roots to prevent microbial deterioration can be delayed for 24 h after harvest, provided the roots are immediately packed into polyethylene or polypropylene sacks. This permits centralized treatment and repacking of the roots, which has improved product quality contro,l in the Barranquilla pilot project.with respect to quality research, improved methodologies for starch and cyanide analysis were instituted during 1990. Results from soil fertility and water stress experiments of the Physiology Section clearly show the importance of the preharvest environment in determining root qua 1 i ty.Adequate levels of K are essential for obtaining roots with good eating quality while excessive application of P may have an adverse effect.During the second year of the Kellogg Foundation-financed project in the state of Ceará, Brazil, 20 new farmer groups were organized, and there are 35 cassava agroindustries functioning.The total output for this second year is approximately 1200 t of dry cassava chips.Institution strengthening has been actively maintained through the consolidation of the Ceará State Cassava Committee and the formation of five Regional Cassava Committees in each of the main areas covered by the project. These committees have started to play important roles in implementing the project, especially in areas such as training, selection and organization of new farmer groups, technical assistance for farmers, commercialization, and monitoring and evaluation of the project.CIAT HQ staff have been providing backup support for the state research and extension agencies in establishing technology validation trials (pre-production plots) and in developing methods for controlling the mycoplasmlike witches' broom disease, which is causing serious yield losses.After a difficul t year in 1989, the cassava development project in Manab1 Province, Ecuador has consolidated; and with the reactivation of the shrimp industry, it should have v a record year in terms of cassava flour and starch production. The 18 farmers associations have projected a total of 1800 t of cassava products, principally flour (8S%) for balanced shrimp feed and starch (12%) for the cardboard box industry.A high DM clone introduced from Colombia has proved to be well adapted to the prevailing edaphoclimatic conditions, and its widespread adoption could result in considerable benefits for cassava producers and processors.Research Networks and Workshops Existing regional research networks in Latin America and Asia were consolidated, and the first steps were taken toward the formation of a network for the subtropical region of Latin America.The II Latin American Cassava Breeders Network Meeting was held in Cruz das Almas, Brazil from 21-24 May with representatives from 9 countries. Impartant decisions were taken regarding future collaborative activities: (1) the systematic study of cassava ecosystems according to varietal performance; (2) the exchange of elite clones among countries; (3) the preparation of a uniform list of characteristics for evaluation in breeding and for communicating results; and (4) the establishment of informal communication mechanisms among members of the network.The III Asian Cassava Research Workshop was held in Malang, Indonesia froro 22 to 27 October.Researchers from 12 Asian countries presented 30 papers on varietal improvement, crop manageroent, processing and utilization of cassava.It was agreed that the scope of the regional network should be extended to include socioeconomic and utilization aspects of cassava, with emphasis being put on technology transfer and improved information exchange.A two-day meeting (15-16 October) was he Id in Asunción, Paraguay with representatives from southern Brazil, Paraguay and Northern Argentina to discuss the convenience of promoting horizontal cooperation among these countries with respect to cassava research and development for subtropical environments.Support for this initiative was unanimous: areas of cooperation were outlined, research priorities delineated, and a plan of action drawn up. The traditional 5-week intensive roultidisciplinary course for new cassava researchers and extension leaders was dropped in favor of a two-week introductory course organized around the productionj processingjmarketingjutilization cycle of the crop in which the interdisciplinary nature of cassava research and development was stressed. participants then either pursued a vi period of disciplinary specialization or participated in a three-week course on integrated cassava development projects.This arrat)gement appears to meet better the actual needs of Latin American cassava workers.Members of the Program participated in a very successful course organized by the Seed unit on cassava stake production and distribution systems held from 27 to 31 August for participants from Panama, Colombia and Ecuador. It is envisaged that the demand for this type of training will increase as further integrated cassava proj ects get under way.1. CASSAVA GERMPLASM RESOURCES DEVELOPMENT 1.1 IntroductionGenotype-based technology is one of the principal components of CIAT's strategy aimed at improving cassava's contribution to human welfare in the tropics. Through a range of activities in germplasm resources management and development, the CIAT Cassava Program supports national and international institutions by providing components for improving cassava varieties and for promoting these varieties to farmers. Within this mandate, the central activities are stewardship of the world germplasm collection, building the knowledge base upon which genetic improvement depends, genetic improvement for national program needs, and institutional support and strengthening.These activities necessarily involve a multidisciplinary effort within the Program and with other units in CIAT, and close linkages with collaborating national and international institutions. specific objectives of germplasm development are to: Play a leading role worldwide for cassava and wild Manihot germplasm management activities, especially conservation and characterization Build upon the knowledge base necessary for sustained genetic improvement, in areas of genetics, physiology, pest and disease management, crop and soil management, and quality Develop improved germplasm through genetic manipulation in the form of broad-based gene pools, from which national programs can directly select superior new clones, or alternatively, use selected clones as parental material in further breedingCreate mechanisms for networking among national programs Develop a production technology based on true cassava seed 1.1.2 Regional prioritiesThe Cassava Program has a world mandate.Priorities and modus operandi among regions are determined by a combination of factors including importance of cassava production, characteristics of national programs, available genetic diversity, presence of lITA with regional responsibility in Africa, and funding opportunities.The Program divides responsibilities for germplasm development into three sections: the HQ program, which responds to regional program needs and has principal responsibility for Latin America; an Asia regional program based in Bangkok; and an Africa regional program based at lITA HQ in Nigeria.Germplasm cOllection, conservation and evaluation, as well as gene pool development, are given emphasis in Latin America--center of diversity for cassava, its wild relatives and the pests and diseases affecting the crop. For Asia and Africa, the emphasis is on increasing genetic diversity and on introducing genes for resolving specific problems.A CIAT breeder is posted in each of these last two regions. In the case of Asia, the breeder coordinates activities directly with national programs; and considerable emphasis is given to institutional strengthening and networking activities.In Africa the breeder works within IITA's ongoing cassava improvernent efforts to assure the effective two-way flow of information and germplasm between the two centers.The following sections surnmarize the rnain activities and results of cassava breeding in the three regions.1.2 HQ Research/Latin America 1.2.1 Germplasm management 1.2.1.1Management objectives and strategies. Germplasm management includes the activities of collection, conservation, characterization and documentation of cassava and wild Manihot species.CIAT has assumed world responsibility for conservation of cultivated cassava, but no formal arrangements have yet been made at the international level to coordinate the management of the wild species.Nevertheless, CIAT intends to begin a major effort in wild species conservation, evaluation and utilization as part of a long-term strategy for exploiting these potentially valuable genetic resources. The main responsibility tor managing the wild species will reside with the Genetic Resources unit (GRU), working closely with the Cassava Program, especially with respect to evaluation and utilization.CIAT works toward management strategies that are costeffective yet provide high assurance of long-terro germplasm coneervation at low levels of risk of loss, contamination by peste or pathogens, or genetic modification.These strategiee at present include the conservation of the collection both in vitro and in the field.The latter is a working collection for providing planting material for experimental purposes and for direct evaluations.The in vitro col lection, while not technically a base collection, serves as a more se cure means of conservation and as a forro for international gerroplasm exchange. 1.2.1.2 In vitro management of cassava (Manihot spp.) gerroplasm. In February a new tissue culture laboratory was established in the Gerroplasm Resources unit (GRU).SUbsequently, the responsibility of in vitro cassava gerroplasm management was transferred from the Biotechnology Research unit (BRU) to the GRU.This responsibility includes three aspects of in vitro gerroplasm management: Gerroplasm conservation Gerroplasm exchange Production of disease-free clones in collaboration with the Virology Research unit (VRU) Germplasm conservation. As a valuable complementary method to back up cassava gerroplasm conservation in the field, in vitro conservation provides a means for maintaining large collections in small spaces, free of pests and diseases, and without risk of loss to climatic changes or soil problems.Cassava pathogen-tested clones are maintained in vitro to allow the propagation of new disease-free plants at any time.Cassava clones in the in vitro active genebank are maintained under the following slow growth conditions: 23-24 •C, constant throughout day (12 h) and night (12 h) 1000-1500 Ix illumination In a slightly modified culture medium Test tubes (20 x 150 mm) capped with aluminum foil Five test tubes per clone Materials need to be subcultured every 12 to 18 months, depending on the genotype.The nurober of in vitromaintained clones this year was 4354 from 23 countries (Table 1.1); thus, 94% of clones of the field genebank is already conserved. Gerroplasm exchange. Up to 1980 the principal forro of gerroplasm transfer was via lignified stem pieces (stakes). with the development of in vitro techniques, shipment of vegetative material has been almost exclusively by this method.Recently there has be en renewed interest in introducing vegetative material--either elite hybrids or basic gerroplasm. As many programs have developed a capability for producing their own hybrids, they are looking for specific traits from CIAT to incorporate into their breeding populations.In 1988CIAT began to make available, for distribution within Latin America, a few elite clones as stakes derived from virus-indexed mother plants.This method provides nearly the same level of phytosanitary security as meristems, but with greater ease of management. Five to ten test tli:>es per clone were shipped; often the sane clone was distrH:uted to several cOU\"Itries.Under the agreement of collaborative project, the IFAD-supported CIAT-EMPASC shipments to EMPASC (Santa Catarina, Brazil) were begun of 434 clones that or1g1nate from subtropical environments as pathogen-tested, in vitre clones.In vitro techniques, associated with extensive pathogen testing, have been used for distributing and introducing cassava germplasm in the last ten years. During this period, 2292 clones were distributed te 46 countries and 2010 clones were introduced to CIAT froro 15 countries (Table 1.3).Those figures demonstrate the scale and efficiency of the world in vitro germplasm exchange systero, which has been developed in collaboration with national and international agencies. 1 Usually 5 to 10 test tubes per clone were shipped; eften the same clones were distributed to several countries.Table 1. 4 summarizes seed shipments by regien over the last five years .In the late 19705, CIAT began te give relatively more emphasis te sending segregating populations rather than finished varieties as national programs developed increasing capabilities for managing the full range of breeding activities.Disease elimination. Whenever possible only cassava plants that show no evidence of viral diseases are selected for the in vitro collection.To ensure disease-free in vitro plantlets, a disease elimination technique was developed in the BRU for cleaning pathogens from clones. Small (0.2-0.3 mm) meristem tips are cultured from apical buds of newly sprouted shoots at 40•C day and 35•C night temp for 3 to 4 weeks. In cases where no stakes are available--Le., the germplasm was introduced to CIAT as in vitro plantlets--then in vitro thermotherapy is applied.Rates of virus elimination depend, to a large extent, on the size of the explant used for culture and on whether thermotherapy was applied or not, as well as on the virus strain. The disease-free status of the plants is validated through indexing.Viruses and viruslike diseases oi major concern for elimination at CIAT are cassava common mosaic virus (CCMV), cassava Colombian symptomless virus (CCSPV), cassava X virus (CsXV), Caribbean mosaic disease (CMD), frog-skin disease (FSD) and some latent agents.Thermotherapy before or during meristem tip culture has been applied at CIAT to some 4300 cassava clones in the last ten years.The development of sensitive virus diagnostic techniques by the VRU has facilitated producing pathogen-tested cassava clones. Tests to detect viruses are carried out on in vitro plantlets and on plants that have been moved to the greenhouse.A total of 1377 clones have been cleaned and indexed by using diagnostic techniques (ELISA) for at least CCMV and CsXV: and 140 clones have been indexed for the frogskin disease by grafting onto an indicator clone.The disease elimination technique continued to provide healthy material for: Distribution of elite clones to national programs Recovery of pest-infested, diseased or damaged clones from the field collection Provision of clean seed stocks for regional variety trials and eventual cleanup of the whole collection 1. 2.1. 4wild Manihot species. The wild relatives of !:L.. esculenta are receiving increasing attention for their potential as sources of useful traits for improving cassava. Genes for characters such as apomixis (form of asexual reproduction by seed), virus resistance and low HCN are thought to be present in wild Manihot germplasm. Table 1.5 shows the present status of wild Manihot germplasm conserved in the in vitro genebank.In vitro micropropagation techniques of cultivated cassava are not readily extrapolated to wild species. The BRU developed in vitro culture techniques for wild Manihot spp., whereby embryos from seeds are extracted and cultured in sterile media.A student thesis was initiated to study further improvement of the in vitro management of wild germplasm.Isozyme characterization. In 1988 the GRU began characterizing the entire cassava collection for banding patterns resulting from electrophoresis on polyacrylimide gels of alpha-beta esterase extracts of root tip tissue. Thls system was the one that demonstrated the highest degree of polymorphlsm (22 bands tentatively defined). The objectlves of thls analysls are to: Preliminary studies were carried out on the genetics of esterase isozymes. Understanding the inheritance is es sential for interpreting genetic variability in cassava properly; aiding in the definition of gene pools; determining relationships between cultivated and wild relatives; and constructing linkage maps.Ideally, the study of isozyme inheritance in cassava would involve selecting polymorphic parental material and characterizing F 1 , F 2 , reciprocal and backcross populations. Because of the aif!Lculty of obtaining seed in cassava, it is often not possible to meet the normal requirements for complete genetic studies. Nevertheless, some useful preliminary information was obtained.Four crosses were analyzed using both a hypothetical diploid and a tetraploid modeloThe esterase 1 locus (EST-l) comprises 4 active alleles (A , A , A and A 4 ), thus presenting a possible total of 1! ph~not~pes and 15 genotypes for the locus.EST-l presents a maximum of four bands (alleles) for the locus and two for each individual. EST-l was defined as monomeric, with a disomic inheritance. 1.2.1.6 Methodology for duplicate identification. Germplasm conservation for vegetatively propagated species is generally costly compared to seed conservation. Thus it is critical to continue seeking ways of making the process more efficient.One obvious contribution would be to eliminate duplicate accessions in the collection.While there have been no studies to date to quantify potential levels of duplication, simple observation indicates this to be on the order of 20%.Most of the collection has be en classified for the basic morphological descriptors defined by the International Board for Plant Genetic Resources (IBPGR). However, these alone do not provide a high enough level of confidence to make a definitive identification of duplicates.The additional b1ochem1cal descriptor, alpha-beta esterase, whose analysis has nearly be en completed for the germplasm collection, provides an additional powerful tool to raise the level of confidence in clonal characterization.During 1990, alternative procedures ware studiad for identifying duplicates. To develop a modal that could be applied to the entire collection, a group of 175 clones from the North Coast of Colombia, in which a high dagree of duplication was suspected, were studied.Grouping of clones was based individually on morphological and¡or b10chemical traits (alpha-beta esterase banding). The final criteria to select the best procedure included empir1cal analysis of which descriptors should be given greater¡lesser weight, depending upon the degree of environmental influence on their expression.The procedure consisted of that appeared to work most satisfactorily two stages:The first stage involved the grouping of clones on the basis of eight descriptors showing very little influence of the environment; Le., those for which level of confidence was highest (Table 1.8). In the second stage, cluster analysis was applied to another group of descriptors (9 morphological, 10 biochemical) that were of a somewhat lesser degree of confidence, but that nevertheless helped separate different clones formed by the first level of grouping.Table 1. 8 lRscriptors used for primary and secon:lary levels of classification te identify duplicates in the cassava gernplasm oollection.The model will now be applied to the entire collection.After defining potential duplicates via statistical analysis, these groups will be planted together in the field for a further comparison of morphological traits. If no differences are observed in these two stages of comparison, they will be assumed to be genetically identical (Le., duplicates). These duplicates will be eliminated from the field collection but will be maintained in the in vitro collection until a further level of testing can be applied to confirm genetic identity, such as other isozyme systems or restriction fragment length polymorphisms (RFLPs).1.2.2 Gene pool development 1.2.2.1 General objectives and strategy. Definition of gene pools on the basis of adaptation to climate and soil conditions, and biological constraints, has been a core concept of cassava varietal improvement at CIAT over the past decade (see past annual reports). During 1990, two basic modifications were made to the gene pool descriptions. First, based on the recognition of the growing importance of semiarid regions for expanding cassava production--especially in Africa and NE Brazil--this edaphoclimatic zone (ECZ) was added as a new objective for gene pool development.Secondly, the growing concern about effects of HCN on human heal th--especially in Africa but also in other regions-motivated the subdivision of each gene pool into a low HCN pool and one for which HCN was not considered. As high HCN is preferred for certain industrial processes, the generalized selection for low HCN cannot be justified. Two exceptions are the mid-altitude areas (ECZ IV) and the highlands (ECZ V), corresponding to the Andean zone and the mid-and high-altitude areas of Africa, where only low HCN clones are required. A summary of the new classification is presented in Table 1. 9 .To date, the strategy with regard to root sur'face color has been to maintain variability within gene pools, so that national programs can select according to their own preferences. This strategy may result in some instances of a high proportion of unsuitable root color and therefore a narrower than desirable genetic diversity available for selecting. Nevertheless, it is not felt that separating gene pools by root color is justified. As program emphasis shifts toward providing parental genotypes rather than germplasm for direct variety selection and with increased emphasis on Africa, a reassessment of the strategy for selecting for root sur fa ce color may be necessary. The proportion of white-rooted materials appears to be highest in the gene pool for ECZ I, due in large part to the extensive use of white-rooted materials as parents in the past decade. For 1.2.2.2 studies on efficiency of selection. Each harvest season a breeder faces the challenge of selecting genotypes within each gene pool that will be kept for next season and that can be used as new parents. Those rejected (the large majority) are generally lost permanently. Selection usually takes into account information about the performance of a particular genotype in previous years, other locations and early stages of development (especially with respect to disease and pest reactions). For optimal genetic progress, selection criteria need to be based on solid, well-analyzed data.Data from yield trials involving different sets of genotypes at four environments (2 locations, 2 seasons) were used to estimate the expected response to selection (% improvement over the experimental mean when selecting the top 30%). Four characters were considered: root yield (RY) (tjha), harvest index (HI), dry matter (% DM), and DM yield (tjha). Direct and indirect response to selection was estimated considering selection for each individual trait; simple index selection [(1= H P + H P + ••. + H P j, where H = broad sense heritabilitJY l¡,f tr~ii n, and P n= Ithe phenoty\\hc value of trait n]¡ and rank summation indeº.For this particular set of data (Table 1.10), using DM yield as the main selection criterion seems to be the most effective in terms of improving crop productivity. In two cases, using DM yield gave no expected improvement in % DM, but in those cases % DM is already high (> 32%).Using simple selection indices do es not seem to improve the efficiency of selection.Considerable emphasis has be en given in the past to MI as one of the principal selection criteria because of its high positive correlation with yield and its high heritability. At the levels observed in this experiment, however, other traits--possibly including duration of leaf area index (LAI), photosynthetic efficiency, and the capacity of a clone to take full advantage of the whole growing cycle-seem to contribute more to final yield.Even though the aboye yield components constitute high priority for selection, many other traits need to be considered as well, including MCN content and cooking quality, which seem to have little or no relation to yield. 1.2.2.3 Heritability estimates. since the beginning of the 80s, cassava breeding at CIAT has been oriented toward specific ECZ adaptation. In order to compare estimated and realized genetic progress in cassava breeding during this Selection tor fndiv1<:tu~l TreHs RY 0.22 0.07 0.02 0.26 0.13 0.12 -0.01 0.14 0.12 0.15 0.00 0.11 0.22 0.12 -0.03 0.22 HI 0.11 0.13 0.00 0.12 0.10 0.13 -0.01 0.11 0.25 0.10 -0_02 0.21 0.17 0.14 -0.02 0.17 XDM 0.07 0.00 0.06 0.14 -0.02 '0.01 0.05 0.01 -0.09 '0.04 0.06 '0.02 -0.02 -0.04 0.07 0.04 DMY 0.20 0.07 0.04 0.27 0.12 0.12 0.00 0.14 0.23 0.10 0.00 0.22 0.20 0.011 0.02 0.25 ......,¡ RY + MI 0.21 0.11 0.01 0.24 0.12 0.13 -0.01 0.13 0.24 0.11 '0.02 0.20 0.21 0.13 '0.03 0.21 RY+XDM 0.21 0.07 0.03 0.26 0.12 0.11 0.00 0.14 0.24 0.01 0.00 0.21 0.20 0.08 0.02 0.25 MI + X DM 0.13 0.11 0.02 0.16 0.08 0.12 0.01 0.11 0.10 0.14 0.02 0.10 0.16 0.14 -0.01 0.18Rank Sunnation Irdex RY + HI 0.21 0.11 0.01 0.24 0.12 0.13 -0.01 0.13 0.23 0.12 '0.02 0.19 0.21 0.13 '0.03 0.21 RY + % OH 0.19 0.06 0.04 0.26 0.06 0.05 0.03 0.09 0.15 0.05 0.03 0.17 0.11 0.02 0.04 0.17 MI + X DM 0.12 0.09 0.04 0.17 0.04 0.08 0.04 0.07 0.04 0.10 0.04 0.08 0.07 0.08 0.03 0.12 Estimates based on EPR tended to be higher for those traits with low and intermediate pooled-H estimates as compared to those from ca. Higher values were obtained for ECZ 1 and season B, for RY and % DM. A negative association between overall performance for a trait and H estimate was observed.1.2.2.4 Progress in gene pool development ECZ 1 (Lowland tropics with low to intermediate rainfall and long dry season). Media Luna (Magdalena) and ICA-El Carmen (Bolívar) are the principal and secondary selection sites, resp., for this zone.They are characterized by poor soils (especially low P), and severe water deficits during the latter part of the growing season. In 1990 there was a low incidence of the most relevant pests for the region (thrips and mites) in both seasons. Selection was based primarily on productivity, plant type and quality.During Season A, the pre-released clones (CG 1141-1 and CM 3306-4), together with clone CM 4777-2 had excellent % DM (Table 1.12). There were many clones with higher productivity (DM yield) than the checks and the prereleased clones; however, few of those had cooking quality as good as the local checks.These are of potential interest for industry.Four introductions from Brazil have demonstrated good adaptation and productivity under Media Luna conditions; and they will broaden the genetic base available for ECZ l. Ha;ouring Season B, selected entries presented similar percentages of superiority with respect to the checks as in Season A (Table 1.13).Changes in weed control resulted in better cooking quality than previous seasons. Weeds were controlled early in the season with a machete and left as mulch in the plots. No weed control was performed during the last part of the crop cycle. It is suspected that high soil temperatures negatively affect root quality.No clear relationship between % DM and cooking quality was found.Clones such as CG 959-1 and CM 4042-4, with less than 30% DM, were among the best for quality.Given the difficulty of testing a large number of entries, the cooking of samples is left for the final stages of selection (yield trials) when only preselected materials are tested. There is usually a low frequency of good-quality clones; for that reason clones that do not seem exceptional for other trai ts may be selected when showing excellent cooking quality.Many mediumproductivity, high-quality clones may be lost at intermediate stages of selection, highlighting the importance of improved rapid methods for evaluating root quality.ECZ II (Lowland tropics with acid-soil savannas and high rainfall). Previous years showed a steady increment in the incidence of CBB and SED at ICA-La Libertad near Villavicencio, Meta--the main selection site for ECZ II. It seemed that disease pressure conditions similar to Carimagua could be developed.This year, however, the level of disease incidence was low, especially for SED.It will probably be necessary to enhance disease pressure, possibly through artificial inoculation, in order to have adequate selection pressure.Otherwise \"elite\" clones that were never checked under heavy disease pressure will be accumulated, or conversely, clones of average productivity that could be valuable for their high disease resistance might be eliminated.During the last two months oi growing Season A, there was asevere mealybug attack, leaving little foliar area.Subsequent heavy regrowth prior to harvest resulted in low % DM. ICA-Catumare showed medium RY and high % DM, while ICA-Cebucán had low % DM. All tested entries had glassy roots when cooked, as a consequence of the regrowth (Table ECZ IV (Mid-al ti tude tropics). CIAT HQ serves as the selection site for ECZ IV.Although a relatively less important ecosystem than others, it provides a generally consistent possibility of selecting for thrips resistance and for ability of clones to respond favorably to fertile soil conditions. For these reasons, all materials selected in other ECZs are also evaluated at the Palmira station. There is not a particular genetic base built each season for the mid-altitude tropios.The genetic variability generated for ECZs 1 and 11 is used as the starting point (Tables 1.16 & 1.17).The high potential for thrips damage in this environment was again confirmed by high levels of damage in susceptible spreader rows.In recent years virtually all clones that arrive at the advanced yield trial stage of selection for any ecosystem are resistant to thrips. Mite resistance, however, still needs to be inoreased. HMC 1, used as the local check, seems to set a high standard for comparison.Just a few clones could significantly outyield HMC 1 this year in terms of DM yield.When cooking quality is considered HMC 1 is hardly equalled.In most years, however, many clones will outyield HMC 1. ECZ V (High-altitude tropics). The high-altitude tropics (1600-2200 masl) are mainly important in the Andean zone of Latin America and in East Africa.In Colombia, CIAT's Santa Rosa experiment station near Popayán, Cauca (1800 masl) , has been the main site for selecting highland-adapted materials.Two major changes are being introduced to the selection methodology for the highlands.First, in view of the potential importance of CBB in this ecosystem, greater efforts are being given to incorporating resistance. After outbreaks of CBB in Popayán over the last two years, attempts are being made to eradicate the pathogen from the experiment station, which implied a break in selection activities this past year. Whether or not the station can be kept CBB-free is still uncertain; in any case a major effort is under way to incorporate resistance from the ECZ 11 gene pool.In the East Africa highlands, CSB can also be of moderate importance. Two existing elite clones for ECZ V (M Col 262 and CG 402-11) have shown good CBB resistance. These are being (1-9)ex;1-37 The second modification in selection was introduced in an attempt to broaden the range of adaptation of this gene pool. As selection over the past years has been in a single region, there is some evidence of a fairly narrow range of adaptation of the resulting advanced lines. For example, in trials at altitudes of about 1550 masl, neither the ECZ IV nor the ECZ V materials performed very well.As of 1990, all materials beginning with F ~_1 are being planted and evaluated at both Popayán and~IAT HQ (1000 masIlo In order to be selected for the ECZ V gene pool, a clone most show good performance in Popayán and at last reasonable adaptation to Palmira.In the first across-site selection this year, it has been shown that this type of broader adaptation is feaslble.In the medlum term, this strategy should result in the ECZ V gene pool having a much broader relevance than at presento 1.2.3 Project for developing semlarid-and subtropicaladapted germplasm 1.2.3.1 General objectives and strategy. The International Fund for Agricultural Development (IFAD) agreed in mid-1990 to fund a five-year project to develop cassava germplasm for semiarid and subtropical regions. The overall objective of this project is to enhance food security in the drier tropical and subtropical areas of the world, with emphasls on Africa, through the introduction of preselected cassava germplasm from Brazil. This project will provide the means for the Brazilian National Cassava Research Center (CNPMFj EMBRAPA) and other institutions ln Brazil, under agreement with CIAT, to expand and accelerate the collection, evaluation and selection of cassava germplasm adapted to the drier and subtropical conditions of Africa, Asia and Latin America. Brazil has special comparative advantages in that it has a wide diversity of cassava-growing environments (including the subtropical and semiarid zones); a broad germplasm base; and an institutional base and experienced personnel for managing cassava breeding activities.Although external fundlng will not be available until 1991, several project-related activities were begun ln 1990. The subprojects for the subtropics and semlarid regions are essentially independent, except for certain administrative aspects.Some of the activities for each ecosystem are reported, as well as additional related activities for the subtropics, undertaken at CIAT and in Paraguay.Semiarid region. A planning meeting was held at CNPMF in May 1990, with the participation of representatives from several state and regional programs, CNPMF and CIAT. The main objective was to introduce the project idea and establish a preliminary basis for interinstitutional collaboration.Based on suitability of climate and soil conditions (including similarity to target regions in Africa), and institutional interest and capability, four sites were selected for preliminary germplasm evaluation (Fig. 1.1). The first year 500 accessions from the CNPMF germplasm col1ection (about 1200) will be evaluated at all sites as a basis for selecting parents, the seed of which will be sent to lITA for incorporation into their breeding program for Africa.Southern Brazil. In order to plan activities for the first year of the IFAD project (subtropics), a meeting was held in July involving representatives from the four southern states (RS, SC, PR, and SP) (Fig. 1.1).The main activities for 1990/91 are in vitro introduction from CIAT of all relevant accessions (particularly those from Paraguay); introduction to EMPASC-SC of germplasm collections from neighboring states; germplasm collection in the sta te of SC; establishment of regional trials with the most cornmonly grown clones in the region; establishment of crossing blocks with parental clones selected among the most cornmon varieties and elite genotypes from regional programs; and evaluation of an F 1 nursery under high CBB pressure (inoculation) with seeas introduced from CIAT. Paraguay. For the first time the national cassava collection (235 clones) was agronomically evaluated at IAN in Caacupe. Table 1.18 presents results from clones preselected for plant type.There is a high proportion of good clones (approx. 40%) that were selected to be advanced to preliminary tria1s.The Paraguayan collection represents an excellent germplasm source for cassava breeding in the subtropics.Introduction of sexual seed to southern Paraguay has resulted in few genotypes being selected at early stages (4 out of about 300), reflecting a need for better defining parental genotypes for this ecosystem. Three local clones are being multiplied and have be en distributed to regional cooperatives for promotion in a field day early next year.Genotype-by-photoperiod interaction. The main breeding support activity developed at CIAT for the subtropics has been recombination among accessions originating from areas in the subtropics, or between them and clones contributing resistance to CBB and SED (from ECZ 11). As a result of work done in the Colombian Llanos, there are a wide range of genotypes that may contribute resistance or toleranee to those diseases.Their use represents the introduction of valuable exotie germplasm to subtropieal regions.The reaetion of a set of 25 genotypes to photoperiod is being studied to determine the possibility of identifying characteristics as indicators for potential adaptation to the subtropics.The genotypes were planted under two photoperiod regimes: normal photoperiod at CIAT (NPP) (12 h 20')¡ and an extended photoperiod (EPP) (15 h of light). An early harvest was done at 5 mo and a normal harvest at 10 mo. Preliminary analysis of data showed that EPP resulted in an overall reduction of RY and HI, and an inereased production of aerial part (Table 1 Correlation of sensitivity with RY invol ves certain autocorrelation and must therefore be interpreted cautiously. Clones wíth profuse development of the aeríal part tend to be the most affected. EPP tended to stimulate foliage production, transloeating fewer carbohydrates to the roots than under NPP.That is also reflected in a elose negative eorrelation with HI under EPP.Clones wíth the highest HI were less affected or even stimulated by EPP eompared to those with a lower HI.1.2.4.1 Objectives and strategy. Sinee 1986 the Germplasm Development Seetion has been engaged in developing methodologies to involve farmers in the process of defining and refining selection eriteria. This work has eoneentrated in the Atlantic Coast region of colombia, to take advantage of several key factor s present there:(a) Cassava is a basíc traditional crop of the region, and farmers generally have well-formed opiníons eoncerning cassava production technology, including varieties; (b) with the expanding cassava drying industry of the regíon, an increased demand for improved production technology has been noted, thereby making farmers more reeeptive to reeeiving and evaluating new genetic material ¡ and (e) a well-established eassava working group exists in the region, with capability for managing trials in a network fashion. lt is significant that all these characters are closely tied to requirements for the fresh market.This indicates that even theugh farmers in the region may have access to the drying plants to sell their cassava, they want to maintain dual-purpose varieties that can also enter the higher priced fresh market. These traits should not necessarily be seen as the only important enes for farmer acceptance of a new variety. Within this group of clones, many traits had already been highly selected such as root flesh color and starch content; therefore, there was little discrimination by farmers among clones for these traits.Of several experimental clones evaluated on-farm for three years, CG 1141-1 and CM 3306-4 stood out for their superiority in nearly all traits and generalized acceptance by farmers in the region--both being rated considerably higher than the local checks. lCA is in the process of multiplying these clones and preparing one or both for release.The Cassava Program will study the feasibility of developing a true-seed alternative for commercial-scale production. vegetative propagation entails several constraints including virus accumulation, inefficient photosynthate partitioning, and difficulties in storage and management of planting material.Two well-recognized constraints to developing a trua-saed technology are seed production and germination. Preliminary studies of these two areas are reportad here. 1.2.5.1 Seed production enhancement. Assuming there is an internal competition for available photosynthates between the aerial part and the roots, and between seeds and the rest of the foliage, girdling (1. e., removal of a band of phloem near the base of the stem) was proposed as a means of enhancing seed production.Two clones were observad for flowering and seed production, with and without girdling, 1\\coeptabili~2 Mean of all sitas, where. 1 = good; 2 = inter.mediate¡ 3 = peor.and with and without removal of flowers. The girdled plants looked stressed one month after the treatment as a result of restricted carbohydrate flow to the roots, limiting active absorption of nutrients. This nutrient stress resulted in increased flowering and seed production for one of the varieties (Table 1. 23): and the increased availability of carbohydrates in the aerial part seems to have increased seed production. Cassava seeds germinate well under favorable soil conditions (good moisture and temp around 35\"C). Field conditions are usually far from optimal, however, resulting in low percentages of establishment when seed is planted directly in the field. Treating the seed before planting seemed a logical technique for enhancing germination. As many factors can potentially be included in pretreatment studies, combining them in one factorial experiment is difficult.Thus two separate factorial experiments were designed:(a) variety, temp and soaking effects: and (b) variety and red-light effects.open-pollinated seeds from two clones previously detected to have different germination rates were subjected to a high temp (45\"C) for different periods (O, 24, 48 and 72 h), and soaking using osmotic pressure), for the factorial of 16 treatments. two temp: optimal (35'C) and a solution with PEG (0.5% same periods, resulting in a Seeds were germinated under suboptimal (25•C).From the ANOVA (Table ;¡-.24) it could be observed that except for a slight 1ncrease in germination at the intermediate period of temp pretreatment (Table 1.25), there were no differential effects due to other pretreatments.The significant effects of variety and variety-by-germination temp were a result of seeds from clone 2 having lower percentage germination under optimal conditions than clone 1. Thus varietal or pregermination treatment effects did not resul t in much improvement of germination at suboptimal temp. In the second experlment, normal visible and red light were applied to seeds from other varieties for 72 h. The seeds were germinated under the same temp conditions as the previous experiment (3S ' and 2S'C). No effect on germination was observed due to variety or red light (Table 1.26).Low soil temperatures represent a common stressful condition for germination of cassava seeds. The treatments studied seem to offer 1ittle advantage for increasing poor levels of germination at 2S•C. other pretreatments need to be studled, as well as screening of the available genetic diversity for seed germination under suboptimal conditions. Facilitate inforrnation exchange between CIAT and lITA, especially with regard to areas lOhere the activities and expertise of the two centers are complernentary, particularly the area of utilization research.Transfer germplasm betlOeen Africa and Latin Arnerica, and follow through lOith evaluation and seIectíon of promising materíals prírnaríly for the dríer and the highIand areas, considering the relatively narrolOer germplasrn base for these ecologies ín Africa.Contribute to a better understanding of the cassava production systerns in use or lOith .potential to be deveIoped, in the drier areas of Africa, lOhere food deficits are especíally acute.Three basie sourees of germplasm were identified for emphasis in the early stages of the new eollaborative arrangement between CIAT and lITA, with a view toward complementing the existing germplasm base in Afriea.1. 3 . 1.1 Brazilian germplasm. The IFAD-funded proj ect for developing germplasm adapted to semiarid and subtropica1 ecosystems (see 1.2) has as a major objeetive the introduetion into Africa of improved, drought-tolerant and pestresistant materials.This project got under way in late 1990, and the first seed shipments are expected during 1991.CIAT elite germplasm. The edaphoclimatically oriented gene pools developed by CIAT will be a principal source of germplasm to be introduced into Africa for eva1uation under similar ecologies.lITA has requested that special emphasis be given to materíals showing the following charaeteristies:high RY and hígh DM; 10w HCN and 9000 cookíng qua1ity; high earotene eontent (ye110w root f1esh); resistance to CGM and cassava mealybug; adaptation to dry eonditions; and adaptation to low temp. A shipment of seeds was sent from CIAT to lITA in ear1y 1990. Their management and evaluation are deseribed in detail in the following sections. Therefore, more emphasis will be given in the future to these Africa X Latin American crosses.A total of 87,615 botanica1 seeds obtained by contro1led hybridization and open po1lination at CIAT-Pa1mira were sent to lITA in 1990. This was the first seed lot introduced as part of the IITA-CIAT collaboration on cassava germplasm improvement in Africa.Seeds were collected from crossing blocks and open po11ination fields established at CIAT on the basis of adaptation of parents to specific agroecological zones.Prior to shipment, seeds were tested for Cassava American Latent Virus by the CIAT Virology Unit and inspected for general phytosanitary status by ICA quarantine authorities.Seeds sown in Nigeria in 1990 (40,000) were processed according to recommendations of IITA's Phytosanitary Committee. This included treatment in hot water before sowing in screenhouses. Samples of each eros s were tested for presence of bacterial and fungal diseases. The resulting seedlings were inspected by lITA virologists and pathologists to ensure that the introduced material was free of viruses and other pathogens.The seeds were sown in three different areas of Nigeria representing the humid, subhumid and semiarid ecologies of Africa. Locations were chosen on the basis of similarity to the different target agroecologies, availability of infrastructure, and similarity to zones of adaptation in Latin America where the parents had been selected.Seeds potentially adapted to mid-altitude areas were not sown for lack of basic infrastructure.Progenies being evaluated at Ibadan (subhumid) and Onne (humid) represent 149 and 78 families, resp.The genetic base of the materials planted at both locations is similar as 94% of the families being evaluated at Onne are also planted at Ibadan.The 62 families at Rano (semiarid) are of different origin as the seeds were obtained from parents adapted to CIAT's ECZ I (lowland tropics with low to intermediate rainfall and long dry season).Evaluations are being done on both an individual and family basis.Data on plant height, branching height and leaf retention, as well as scoring for the main pests and di seases, are being taken at monthly intervals.Plants will be harvested at 12 mo from planting and selected on the basis of yield, growth habit and reaction to biotic constraints.Data presented on the reaction to ACMD and CBB refer to the first 5 and 4 mo of the growth cycle at Ibadan and Onne, resp.1. 3.2.1 Reaction to ACMD. As this viral disease is not found in South America, the progenies introduced from CIAT were expected to show a high degree of susceptibility at Ibadan, a hot spot of the disease in Nigeria. On the other hand, as some of the introduced families were hybrids between lITA elite clones existing at CIAT and South American materials, a higher level of tolerance was expectéQ for those cases.Table 1.27 gives the results of monthly evaluations being done at Ibadan and Onne since June 1990. Individuals that fall into classes 1 and 2 of the standard evaluation scale (1 = no symptoms to 5) were considered tolerant. The number of individuals classified as tolerant sharply decreased at Ibadan after the first evaluation. As expected, a low average level of tolerance is being observed at that location as a result of the high ACMD pressure. The percentage of individual s with no or light disease symptoms was always higher than in Ibadan, as was the vector (Bemisia tabaci) population (data not shown). However, symptom expression is still increasing over time at Onne although not so fast as was observed at Ibadan. These preliminary results confirm the usefulness of Ibadan as the best site for selecting for ACMD resistance in Nigeria as already recognized by lITA' s cassava breeding program in its long-term improvement research.Progenies planted at Ibadan and onne are also being compared on the basis of the origin of progenitors. Progenies obtained by controlled hybridization at CIAT were divided into three different groups:thosa that have M Nga 1 (TMS 30001) as one of the parents; those that haya M Nga 2 (TMS 30572) as one of the parents, and; those of pure Latin American origin, usually originated from crosses involving CIAT's elite germplasm.TMS 30001 and TMS 30572 are among llTA's most ACMD-resistant elite clones and were introduced to ClAT in 1986 as sources of ACMD resistance.Figure 1.2 shows that progenies derived from crosses between lITA clones and ClATjLatin American materia1s have a higher percentage of tolerant individual s compared with those of pure Latin American origino These observations, although preliminary, suggest that resistance to ACMD was incorporated in the crosses with Latin American germplasm and opens up the possibility of combining the beneficial traits present in South America and resistance to ACMD.In the first 4 mo of the cycle, a few individual s of pure Latin American origin also showed no symptoms of ACMD in the fie1d at lbadan despite the high incidence of the disease (Table 1.28). Although the possibility of escape cannot be ruled out, this suggests that some Latin American material s may have the potential to express certain levels of tolerance, at least during part of their growth cycle.Five months from transplanting, light symptoms of ACMD deve10ped in those seedlings, but they are still maintaining a low level of symptom expression when compared with the great majority of the germplasm under evaluation.% Seedlíngs (withín classes 1-2; scale 1-5) Evaluation scale: 1-5 (1 = no symptoms).IncreaseB in no. of seedlingB froID 60 to 120 DAP are due to sprouting of seedlings previously wilted as a result of CSS infection.Among the familias obtained from open pollination, those originated from M Nga 1 and M Nga 2 also Bhow a higher percentage of individuals with no or light symptoms of ACMD, confirming the tendency observed in the families obtained by controlled hybridization.Families SM 1275 and SM 1276, which have as respective female parents lITA clones TMS 30001 (M Nga 1) and TMS 30572 (M Nga 2), were the ones with the highest percent tolerant individual s (38 and 18%, resp.) at Ibadan between the second and fifth months after transplanting.When all the families under avaluation are considered, 4.1% of the individuals were classifiad as tolerant in tha same pariod. Three months after transplanting, no symptoms of ACMD were observed at Kano (semiarid zone).Although no information exists on the degree of ACMD severity at Kano, it seems it is not a serious constraint in semiarid areas. Previous studies show that population buildup of ~ tabaci iB favored by high rainfall (150-280 2 mmjmo), temp of 27-32\"C, and Bolar radiation of 400 9 cal/cm. Climatic conditions at Kano are characterized by a unimodal pattern of rainfall distribution with a dry sea son of 6-8 mo. The seedlings being evaluated were planted late and received only 423 mm of rainfall (mid-Aug.-Sept.).However, further data are needed to confirm the potential pressure of ACMD at Kano, especially in plants established at the onset of the rainy season. A high percentage of ClAT' s families under evaluation at lbadan and Onne were obtained from parents adapted to ECZ 2. The crosses involving both lITA and CIAT materials also have a considerable potential for CBB resistance as the lITA sources used as parents (M Nga 1 and M Nga 2) are al SO resistant to CBB under the conditions of Nigeria.Results obtained after 5 and 4 mo of field evaluations at lbadan and Onne, resp., cannot be considered conclusive. A higher incidence of caa was observad at lbadan compared to that at Onne, even causing the death of several young seedlings at 50 and 90 days after transplanting (DAT).The reaction of the germplasm to caa at the two locations is shown in Table 1.29 and Figure 1.3.Symptom express ion at lbadan was high at 50 days froro transplanting and then decreased.It should be noted that the reduction in the proportion of susceptible material (classes 3-5) after the second month was partially due to the death of susceptible individuals. CBB incidence at Onne was low in 1990 although the environmental conditions (high rainfall, temp and RH) were highly suitable for pathogen development.Further evaluation of the resul ting clones and new seed introductions are needed in order to assess the potential of CIAT germplasm for resistance to CBB at that location. Comparison oi progenies originated from crosses involving pure Latin American and IITA/CIAT parents shows that the latter present a higher percentage of tolerant individuals (Table 1. 30) • These preliminary results may reflect not only the degree oi resistance of both materials to the disease, but also the adaptation of lITA material s to the conditions prevalent at Onne.Some of the world's strongest national programs in cassava varietal development, as well as institutions that are just beginning to develop their research capacity, are found in Asia. Through its regional office in Bangkok, CIAT tailors its collaboration according to individual program needs and requests.The principal areas oi input are institutional strengthening through training and network activities; technical input through extensive consulting throughout the region; and facilitating germplasm exchange between CIAT HQ and national programs, and among national programs.Highlights of these areas are presented for 1990. Phase 111, \"Selection of superior genotypes, 11 is where maximum progre ss is currently being made and is dealt with in depth in the next section.The strength of national programs in Phase IV, \"Varietal release and extension,\" is highly variable.Building on good cooperation in Phase 11 and 111 will help national programs gain momentum in varietal release and dissemination.Numerous new varieties have been released by the national programs in the past few years (see later discussion).Phase V, \"Socioeconomic returns of new varieties,\" is usually the ultimate objective of a breeding programo Given the increasing emphasis on environmental viability and social equity, the assessment of socioeconomic returns becomes ever more complexo Nevertheless, improved production efficiency by new varieties will rema in one important facet of new technology to provide additional flexibility for producers and consumers. At last I some 18 years after starting from point zero at CIAT HQ, CIAT-related varieties can be seen planted on ten s of thousands of hectares (see later discussion). 1 The do~tedlline for Iodones;~ cQrresuoods tQ th\" orogre\" ... de witb Mira 4, for whch most of. the cr.dit .ces to nat:lOlla organ:tzat:tons; the dotted tille tor 1.nO:t4 corresponda to the progresa made mostly mdependent trom CIAT cooperation. Selection from hybrids among local germplasm also produced an excellent variety (Adira 4)'. in Indonesia. However, initial selection progress seems to exhaust the chance of further selection with local germplasm rather quickly.Thus virtually all cassava breeding programs in Asia now largely depend on introduced germplasm from CIAT HQ or the Thai -CIAT program as the source of immediate varietal selection and use fuI cross parents. Many of the cross parents for the CIAT HQ cassava breeding materials distributed to Asia are selections from the original germplasm collection and the hybrids among them identified at CIAT HQ during the 1970s.These breeding materials are characterized by high HI, resistance to some of the major diseases and pests, and tolerance to acid soils.However, they do not necessarily possess vigorous vegetative growth, high root DM content, good plant type, adaptation to drier lowland climate, low root HCN content, or good eating quality. While efforts to further improve in these areas continue at CIAT HQ, the Thai-CIAT breeding program concentrates on improving these traits based on crosses between local varieties and CIAT parents.During the past eight years, steady progre ss has been made in mean dry RY of the breeding populations in Thailand (Fig. l.Sa). This progress is even more appreciable when the data are expressed in relative values to the yield of Rayong 1, the highly successful local variety (Fig. 1.Sb). The major part of this yield improvement was attributable to improved fresh root yield (Fig. 1. 6a); yet improvement in root DM content (Fig. 1.6b) was also significant. As great emphasis had been given during the 1970s to improving HI at the CIAT HQ breeding program and at the Rayong Field Crop Research Center (RFCRC) in Thailand, the breeding population had a high HI at the start of this analysis, and no further improvement took place in HI thereafter (Fig. 1.7a). On the other hand, significant progress occurred in total plant weight of the breeding population (Fig. 1. 7b).In recent years the majority of the breeding materials at the RFCRC and the Kasetsart University Sriracha Experiment Station (KU-SRC) breeding centers in Thailand are of good plant type, which is closely related to ease of field management, Crop Year Chnn~e in menn fresh RY nnd root DM content (all-entry mean of y1eld tria1s) for 8 years in Thailnnd (PT = preliminary tríal at Rayong, AT = advanced trials at 3 locations, RT = regional trials at 7 locations). (2) Ptant type (1 = poor f 5 = excellent); mean of 6 locations.ea se of handling planting stakes and good-quality planting material.Thus the significant improvement in total biological yield, root DM and plant type was the major breeding achievement in the Thai-CIAT and cassava breeding program during the 1980s.One good example that demonstrates the present status of cassava varietal improvement in Thailand is the result of regional yield trials in 1989/90 (Table 1. 31) .Rayong 1, the world's most successful cassava variety, is basically a high-yielding variety capable of producing 20.3 t/ha dry roots or 61.4 t/ha fresh roots under the high-yielding environment of Mahasarakarm.Yet, in the overall average, virtually all the varietal entries gave higher dry root yield and root DM content than Rayong 1. CMR25-105-112 was outstanding, with an extraordinarily high yield (27.1 t/ha dry or 72. O t/ha fresh roots) in 11 mo without irrigation and with 4 mo of no rain) at Mahasarakarm. M KUC28-77-3, a selection from the Kasetsart University breeding program, was also outstanding in its ability to give high yields throughout low-to high-yielding environments.The Thai-CIAT cooperative breeding program--established in 1983 as a cooperative effort among the Dept. of Agriculture, Kasetsart University and CIAT--now has dual functions of varietal development for Thailand and generation of breeding materials for other Asian cassava improvement programs. Encouraging results came from a replicated yield trial conducted at Hong Loe Field Research Center in South vietnam, in which three recommended varieties from Thailand were compared with a local industrial variety (Table 1.32). Rayong 60 and Rayong 1 outyielded the best local industrial var. Hong Loe 24, both in fresh RY and root DM content, suggesting that the Thai materials can do well under edaphoclimatic conditions similar to those of Thailand.In the wetter climate of Umas Jaya Farm (UJF), Lampung, Sumatra, Indonesia, selections both from CIAT HQ and Thai-CIAT hybrid populations gave encouraging results compared with the performance of a traditional local variety (Table 1.33).The selections of CIAT HQ origin appeared to be slightly superior to those of Thai-CIAT origin, at least in this particular trial.Thus the recent hybrid materials from CIAT HQ offer good opportunities for immediate varietal selection in the wet low1and tropics, while they are a good source of selecting use fuI cross parents in the seasonally dry low1and tropics of Asia.Three types of germplasm--i.e., germplasm accessions including recommended varieties, hybrid clones and hybrid seeds-are available from CIAT in the form of stakes, meristem (2) aoot slcin color. 8 = brown~ W ~ white.(3) Root flesh color. W = white, WY = slightly yellow f y: yellow_ cul ture or true seeds.The breeding materíals from the Thaí-CIAT program are beíng transferred to natíonal programs ín each of these forms, dependíng upon the capacity of the recipíent program and the likelihood of accidentally íntroducing díseases or pests.From CIAT HQ, true seed ís the major mean s of transfer, occasionally supplemented by meristem culture.During the past 15 years, sorne 235,000 hybrid seeds from some 4000 eros ses have been distributed to the eassava breeding programs in Asia from CIAT HQ (Table 1.34).From this source, various varieties have been seleeted in several Asian eountries and numerous cross parents seleeted in Thailand.Encouraged by the favorable results of Thaí hybríds, first ín Indonesía and more recently in South Vietnam, a systematic distribution of Rayong hybrid seeds to Asian national programs started in 1989 (Table 1.35). More than 40,000 seeds had been distríbuted to 17 institutions in 11 countries by 1990.A systematic transfer of selected clones, mostly in meristem culture occasionally supplemented by stakes, also started this year (Table 1.36). Recommended varieties in Thailand and the most promising clones from the RFCRC and KU-SRC are included in the list of clones transferred to the eleven countries (Table 1.37).Varietal selection and multiplication take a long time with cassava.Dissemination of varieties takes still longer. Moreover, official release of recommended varieties has not been the principal means of disseminating new eassava varieties, at least in the pasto Thus it will take a mueh longer time to be able to assess the socioeconomic benefits varietal improvement work brings about for cassava than for major cereal crops.Nevertheless, official release of varieties is one measure of the Program's eommitment.Several new names have been added to the list of reeently released CIAT-related cassava varieties (Table 1.34).From now on, the number of varieties selected from local X introduced parents and from Thai-CIAT clonal introductions is expected to become more ímportant. (3) WLT ;:; wet lowland tropics, OLr = dry lowland troplcs# ST = subtropics.(4) ST : starch productjon. AF ::: animal feed, FC = Fresh for human consumpt¡on.The Biotechnology Research unit (BRU) continued its research and informationjtechnology transfer activities in support of cassava in the areas of germplasm conservation, cryopreservation of cassava shoot tips, pollen culture, genetic transformation of cassava, biochemistry of cassava fermentation, and a cassava biotechnology network.Storage under minimal growth conditions and the effect of acetyl salicylic acid (ASA)With the aim of increasing the transfer time to fresh medium of the in vi tro cassava clones, the effect of ASA on the growth and viability of 15 different cassava varieties maintained under in vitro storage conditions for 15 mo was evaluated.This treatment has been reported to improve shoot growth in Sol.anum cardiophyllum (López, 1985) and other species (Dougall 1987).Two time points (5 and 10 mol were evaluated, the latter being due in December 1990. Response levels were dependent on the variety; qualitatively, however, all behaved similarly, with the control showing higher levels of defoliation.-5 :10 M ASA gave the highest number of green nodes and shoots, as well as highest leaf retention. Thus far this concentration of ASA results in the hiq~est viability, making it ideal for long-term storage.10 M ASA, on the contrary, had a drastic effect on the plants, most of them dying soon after the onset of the experimento The varieties tested were chosen either for their field characteristics or their in vitro storage behavior.The life span of two of them--which show rapid deterioration under normal storage conditions in the pilot In vitro Active Genebank (P-IVAG) y!.oject--could be expanded from 9-10 mo up to 14 mo with 10 M_~SA.In general most varieties g~1ie best results with 10 M ASA; in only a few cases did 10 M seem to give better results.After defining the conditions for the cryopreservation of seeds and zygotic embryos (BRU Annual Report 1989;Marin et al. 1990;Roca et al. 1989), the cryopreservation project concentrated its efforts on the difficult task of developing cryopreservation protocols for cassava shoot tips in liquid nitrogen.The methodology developed thus far tor M Col 22 is simple and reproducible, yielding a high percentage of survi val and plant recovery.The next step will be to verify whether this methodology can be applied without modifications to other cassava accessions. Experiments are presently under way invol ving 12 different cassava accessions, representative of Latin American germplasm, as a first step to test the methodology with a large germplasm collection.To solve the problems encountered in the cryopreservation of cassava shoot tips required the study of every single factor involved.In 1988 the project was far from finding a solution to the problem: few shoot tips survived the storage in liquid N, and those that did lost their morphogenic capability completely.In 1989 it was possible to push the 1 imi t down to -25' e and grow plants from frozen shoot tips.The protocols for the best results obtained were the starting point for the work done during 1990, when it became possible to achieve a survival rate of 10-95% (avg 68%), while plant recovery ranged from 0-44% (avg 19%).Discussion of the results follows.2.1.2.1 Tbe preculture medium. Previous studies had shown the favorable effects of cryoprotection over a long period of preculture before going into the liquid phase of cryoprotection, which is stronger and shorter in duration. Results of the preculture experimenta in osmotic media are shown in Table 2.1.As can be observed, the first shoot tips frozen in liquid N suffered severe damage because only callus was formed by the surviving specimens. Doubling of the dimethyl sulfoxide (DMSO) concentration with respect to the original protocol slightly increased the survival rate of the frozen tisaue, but decreased the no. of plants recovered. Doubling of the sucrose concentration had an overall positive effect, but the contrary was true for the agar concentration.2.1.2.2 Cryoprotection. Table 2.2 shows survival in several experiments and, for the first time, the recovery of plants from in vitro shoot tips frozen in liquid N.The main characteristic of this successful experiment is that the shoot tips were dehydrated after the liquid cryoprotection procedure. Drying the shoot tips for 1 h on sterile filter paper after liquid cryoprotection markedly increased the rate of recovery.Drying at room temp gave better results than drying on ice (35 vs 7% plant recovery).Shoot tip size. Shoot tip size ia a logistical factor, more labor being involved in isolating smaller specimens « 1mm) than in large ones (2mm).Large shoot tips had a low survival rate (only 8%) and produced only calli; while for small shoot tips, tissue survival rate rose to 72%, with a plant recovery of 20%. In more recent experiments, plant recovery rates have been averaging 50% (Fig. 2.1).Recultivation conditions. Washing the DMSO away with medium after thawing had no influence on survival rate, but had a detrimental effect on plant recovery. Several combinations of medium, duration of cultivation, photoperiod and temp were studied for recultivation (Table 2.2). Morphologic variants of pollen are found in some plants at anthesis (P-grains), starting at very early stages of pollen development and reflectéd finally as sterile pollen grains. Such abnormal pOllen grains have been considered as potentially embryogenic pollen grains as found in research done on tobacco, barley and peonies.To identify dimorphic pollen from cassava (normal and abnormal) growing in the field, an examination was made of mature flowers excised at anthesis.At anthesis a dimorphism was evident in cassava pollen grains (Fig. 2.2).Normal pollen grains were 140-160 ~m in diameter and contained abundant starch and densely stained cytoplasm.The smaller grains were 80-100 ~m in diameter, contained little starch and were characterized by weakly staining cytoplasm (putative p-grains). In view of this, it seemed pertinent to study whether these P-grains represented a particular form of male sterility originating from a deviation from normal male development at the sporophyticgametophytic transition in the microspore mother cell (Fig.Pollen fertility (capacity for in vitro germination) was evaluated using a special in vitro culture medium optimized to reach a high percentage of germination (Fig. 2.3B). Germination was evaluated after 2 h at 40'C under light and high RH conditions.A strong correlation exists between pollen dimorphism and fertility.Normal grains showed a fertility level of 23-75%, while abnormal pollen ranged from 0-16% (Table 2.3).The next step was to elucidate whether normal and abnormal pollen grains would exhibit differential behavior in anther and isolated microspore culture.Once having hypothetically defined abnormal pollen grains as embryogenic and having characterized cassava microsporogenesis and gametogenesis, the appropriate stage for anther and microspore in vitro culture seemed to be around the tetrad to the uninucleated stage of development; that is, when the flower bud is around 0.8-1.5 mm in size.The methodology for microspore isolation was modified and optimized. The new method (Fig. 2.4) not only reduces labor time but also reduces sources of contamination.It starts from whole flower buds, which are subsequently macerated and filtered to yield very pure microspore preparations after washing and decantation steps. , \"1 ,--.4 MOdified, highly effieient methodology for isolating mierospore cultures using complete flowers: (a) flower bud, (b) maeeration of complete flowers, (e) filtration (750 ~), (d) filtration (double filter 150 ~), (e-f) decanted pollen, (g-h) washing twice with resuspension and deeantation, and (i-j) isolated mierospore culture in droplets.Potential embryogenic pollen grains are determined early during pollen ontogenesis.As it has been reported that stressed plants give rise to abnormal polI en grains due to changes in general metabolism, work is being done with cassava plants stressed in the field in cooperation with the Cassava Program Breeding Section.A total of )00 six-month-old plants representing 55 different clones were stressed in the field using stem girdling. Figure 2.5 shows their response to in vitro anther culture. Among the factors tested were temp, light and different basal media at different pH values modified with various levels of sucrose, vitamins, amino acids, organi~ add!tives (coconut water), and the N supplement ratio (NH 4 ¡NO) l.Stem girdling increased the frequency of abnormal pollen grains.High temp pretreatment and a specific hormonal balance induced microspores to undergo first mitotic divislons in vitro (CM91-3, CM2766-5), the first step toward androgenesis.Producing stress by grafting did not work beca use of incompatibilities between the genera used (Jatrofa, Ricinus). Grafting onto wild species should be tried as the stress produced by the expected hormonal imbalance could lead to higher yields in abnormal pollen grains.Work is under way to do single-cell culture with isolated microspores, trying to induce sporophytic microspore development.The utilization of conditioned medium for this purpose seems to be one of the relevant factors.The development of a transformation and regeneration protocol for cassava is of central importance for breeding programs as a means of introducing use fuI agronomic traits asexually.Infection of cassava by Agrobacterium tumefaclens and the associated expression of foreign genes has already been demonstrated (Calderón, 1989), the next step being the production of transformed, regenerated plants.As a model for developing the transformation¡regeneration protecol, the pGV1040 plasmid (PGS, Gent-Belgium) ls belng used (de Block et al. 1987, de Creef et al. 1989).This plasmid shows the universal appllcability of such approaches as lt ls belng used also fer developing transformation¡ regeneratlon pretocols in common beans and Stylosanthes. This plasmid contains two selectable markers: the nptII gene conferring resistance to the antibioticum kanamycin and the bar gene conferring resistance to the herbicide Basta (phosphinotricin), as well as a scorable marker I the uidA gene (Jefferson 1987), coding for p-glucuronidase (GUS), whioh is very useful for histological characterization of the express ion pattern and level of the gene in the transformed tissue using the ohromogenio substrate X-GaloVar. M Col 1505 was chosen as the transformation model because it gave the best response to the somatic embryo regeneration procedure developed at the BRU (Szabados et al. 1986) . Two wild A. tumefaciens strains isolated at CIAT (1182 and 1183) were chosen from 27 A. tumefaciens and A. rhizogenes strains tested on the basis of infectivity experiments conducted on varo M Col 22, M Col 1505, M Cub 74 and M Mex 55. Besides the wild-type A. tumefaciens strains, the disarmed, nontumorogenic strain EHA 101 (Hood et al. 1986) was used. The plasmid pGV1040 was introduced into all these strains by conjugation or by diract transformation. In the case of the wild-type strains, one can expect transformad tissues that are chi~erio with respect to tumor formation and express ion OP the genes contained in the plasmid.Plants would be regenerated from the nontumorogenic regions of the transformed tissue.The faotors being determined presently are optimal age of embryos for infection, the inoculation system and the period of co-oultivation of the embryos with the bacteria.Other factors being determined are the addition of phenolic compounds that might induce the virulence functions of the Ti-plasmid, the role of pH, and the influence of stress on bacterial virulence.Following three different protocols, embryos expressing GUS activity have already been obtained, but transformation efficiency has yet to be optimized. Protocols are being developed for using the particle gun for transformation purposes.The gun accelerates DNA-ceated metallic microprojectiles (1 ~m in diameter) to high speed so that they can penetrate cell walls without killing the penetrated cell in many cases, thus being a useful vehicle fer plant transformation with foreign DNA. Some preliminary bombardments were carried out on roets and embryes, showing GUS transient gene express ion from 3 to 20 days latero A high level of transient gene express ion usually correlates well with efficient stable transformation. This is one more advantage of the GUS system, which allows a quick assay at any stage of development.There are only a few existing reports on cassava genetics and cytogenetics, for a number of reasons:Cassava is traditionally prepagated by means of stem cuttings from mature plants. About 20% of CIAT's germplasm collection flowers only rarely or never (Hershey, pers. comm.).Seed set through controlled pollination in cassava tends to be low; an avg of 0.8 seeds are formed per female flower (CIAT, 1980).Cassava is probably an allotetraploid with a basic chromosome number, n = 9 (Magoon et al. 1969).Cassava is generally heterozygous; self-pollination occur naturally. among genotypes, selfing produces depression.The fact that male and female flowers of an inflorescence mature at different times tends to reduce selfing during open pollination.The amount of variation found in cassava, both among and within plants (as heterozygosity), is great, hence the difficulty in finding useful heterozygotic lines for genetic studies.The electrophoretic characterization of isozymes provides data that differ fundamentally from those derived from morphological characterization or the chemistry of secondary metabolites. The colored band patterns of isozymes on gels represent areas of enzymatic activity catalyzing a particular reaction.Differences in the electrophoretic mObility of enzymes usually reflect changes in the structural genes cOding for the corresponding polypeptides, thus being the direct result of genetic differences (Crawford 1983).Isozyme patterns are simple as compared with those of total proteins, which are very complex; however, sorne enzymes with nonspecific substrates su eh as phosphatases and esterases still provide large number of bands.Esterases have often been used for genetic studies given their high degree of polymorphism. Esterases have been reported as monomers and dimers depending on the plant species studied.In potato even a tetramer with three types of subunits has been postulated. Chavez et al. (1988) reported 16 esterase bands among a population of 100 selected cassava accessions displaying a wide range of the variability present in CIAT I s cassava collection.Hershey & Oc ampo (pers. comm.) have already found 22 bands in 3288 accessions screened thus faro Based on knowledge from other crops, cassava esterase activities could be codified by 7-11 loci. Like in other crops, the fas test anodical esterase from cassava root tips shows the highest enzymatic activity.This region of the pattern, called EST-1, is codified by one single locus.In an analysis of 100 accessions, Sarria (1989) found the presence of 11 phenotypes in the locus EST-1, some of them displaying a one-or two-band pattern, as well as a null phenotype, suggesting a null allele at this locus. These 11 phenotypes were confirmed in 257 progenies from 7 additional crosses to the 4 (76 progenies) reported last year.The phenotypes observed exhibited 0-, 1-or 2-band patterns, but never a 3-band pattern, suggesting that the esterase at this locus behaves as a monomer.The data were analyzed under hypothetical diploid and tetraploid models, the result being more compatible with a diploid modelo In conclusion, the 11 phenotypes found for the locus EST-1 suggest the presence of 5 multiple alleles including a null allele (A to A 4 ). These 5 alleles should yield 15 different PhenOeypes; the 4 invisible phenotypes corresponding to the null allele-carrying heterozygotes.Preliminary study of the EST-2 locus (intermediate running group of modera te active bands) suggests that EST-2 is a single locus cOding for a dimeric enzyme; however, this requires further substantiation.The development of RFLP technology has opened a door to detecting, monitoring and manipulating genetic variation in plants in a previously not possible manner (Tanksley et al. 1989). One of the immediate applications of this technology is for assessing genetic variation in natural populations and in phylogenetic studies (Song et al. 1988).DNA fingerprinting techniques are currently displacing other techniques used to characterize the genome because of their extensive covera~e of the genome and their insensitivity to environmental and plant developmental factors--problems often encountered with morphological and even protein markers. DNA-based technology can also detect variation in coding as well as noncoding regions of the genome.The work presented here involves producing a cassava genomic library and searching for clones that exhibit polymorphisms on 3 cassava varieties included in the P-IVAG project (BRU Annual Report 1989). The primary goal consists of obtaining an intermediate repetitive DNA probe. Such probes give more or 1ess complex hybridization patterns (ca. 20 bands), which may detect differences between closely related accessions. The degree of variation in the P-IVAG, as well as genetic stability after long storage, will be evaluated.A cDNA library of cassava is currently being prepared. Besides being the source of further clones for genome mapping, this library will be used to isolate genes involved in CO fixation, as the pep-carboxylase, the pepcarboxikinase and the malate dehydrogenase genes.The aim is to e1ucidate the putative C3-C4 hybrid character of cassava at the molecular level.The extraction protocol used was similar to that described by De1laporta et al. (1983) DNA was precipitated from the supernatant with isopropanol and after resuspension, RNase treated, phenol extracted and reprecipitated with ethanol.After resuspension DNA was quantified spectrophot.ometrically and stored at 4'C. The constructs were then transformed inte Endamoeba coli DH5, plated out on ampicillin-selective medium and checked for loss of p-galactosidase activity due te insertion into the plasmid's lacZ region with the help of the specific chromogenic substrate X-galo Plasmids were reisolated from individual colonies, excised with the corresponding restriction enzyme, and their size determined with the aid of \\-DNA mol wt standards.The sizes of the inserts obtained ranged from 0.2 to 7 kb.The cassava varieties used in this study were M Col 22, M Col 1505 and CM 507-35 from the P-IVAG project.After isolation, DNA from each variety was digested with the following 13 restriction enzymes: Apa 1 , Bam HI, Dra 1, Eco RI, Eco RV, Rae 111, Hind 111, Hinf 1, Rpa 11, Msp 1, Pst 1, Taq 1 and Xba 1 (Fig. 2.6).Methylation-sensitive enzymes such as Apa 1, Msp 1 and Pst 1 cut the DNA ineffecti vely, suggesting a high degree of methylation of the genomic cassava DNA. There is some evidence that methylation of DNA plays a role in regulating gene express ion. By cloning only the fragments cut by Pst 1, for example I one can enrich a library for expressed genomic regions as Pst 1 will not cut highly methylated regions, which are supposedly inactive.The digested DNA was run on an agarose gel and transferred to a nylon membrane by capillary force (Southern 1975). Whole plasmids containing inserts ranging3~rom 0.2 to 3 kb were labeled by random prim\\pg with a P-dATP to high specific activities (1-10 x 10 cpm/,ug) (Feinberg & Vogelstein 1983) and hybridized to the nylon membranes containing the blotted restricted cassava DNA. polymorphisms were detected with several clones, but usttaIIy two clones were necessary to discriminate among the three varieties (Fig. 2.6).Only one Hind 111 clone has been found that was able to discriminate among the three varieties analyzed. Of 40 clones tested to date, about 10% were intermediate repetitive clones, but none showed polymorphisms among the accessions tested. These clones could still be useful to discriminate among other accessions.Recently a Pst 1 clone (P12, 0.7 kb) was found that hybridizes only to M Col 22. Two additional varieties tested (M Ven 82 and M Bra 191 from Venezuela and Brazil, resp.) did not cross-hybridize with P12 either. This sequence might be use fuI as an RFLP marker or for gene tagging. P12 has be en partially sequenced, and homology searches are being run in the Genbank and EMBL databases to identify its function. Sour cassava starch is a typical product obtained through natural fermentation of native cassava starch in Latin America. This product has many applications in the bakery and cookie industry, as well as in the production of some traditional specialties such as cheese bread (\"pan de bono\"), where its use is irreplaceable because of its specific functional properties.Nevertheless, the product presents many quality fluctuations that make it impossible to guarantee the satisfaction of national and international markets.The Cassava Utilization Section (see 7.4), in cooperation with the BRU, is studying the sour cassava starch production process to improve and standardize its qua lit y and thereby facilitate its industrial utilization (Cereda 1986).The fermentation process occurs naturally in the tanks of the traditiona1 starch-extraction operations (\"rallanderías\") over a 25-to 30-day period, under anaerobic conditions without movement, this being one of the main stages responsible for the quality of the producto During this process the starch granules are structurally modified, their water absorption capacity increases, and organic acids and alcohols are produced (Cereda et al. 1985;Zapata & Parada 1988). Some research has been carried out to understand the fermentation mechanisms and the role of the different microorganisms involved (Cárdenas & Buckle 1989;Ducrocq 1990;Gallego 1990;Nwankwo et al. 1988;). Initial results showed that the fermentation process is mainly homolactic and strictly anaerobic--different bacteria, yeasts and molds being involved (see Utilization section).Taking into account that the principal substrate is starch, amylolytic activities must play the central role in the metabolic processes involved. This led to a search for a methodology to determine and differentiate the amylolytic activities along the process, to characterize the enzymatic systems of the microorganism and to measure the production of excreted enzymes. Results were as follows:The fermented starch samples were extracted with water at different times of the fermentation process in order to detect amylolytic activities using an enzymatic assay for aamylase, as well as iodine staining of starch-containing acrylamide gels.A new technique was adopted that involved running the samples in acrylamide gels and then electrotransferring the proteins to a second gel containing starch, where the iodine staining takes place (Kakefuda 1984).To increase the sensitivity of the method, starch concentration in the gels was reduced froro 0.52% as described, to 0.02% to detect better the amylolytic activities on the iOdine-stained, otherwise dark, background. This modification improved detection considerably.Dilutions of the commercial a-amylase were made (1:5 to 1:3125) to determine the sensitivity of the method.The starting concentration was 6 u/~l. It was possible to detect the activity down to a dilution factor of 625, which is equivalent to 0.0096 u/141.Besides showing amylolytic activity, the iOdíne-staining procedure yields different colors for each amylolytic enzyme: orange and blue for p-amylase, purple for pullulanase, and transparent for a-amylase.To fínd out whether this procedure was adequate for detecting excreted amylolytic activities, an amylolyt~u bacterium isolated from cassava starch fermentation was used.The bacterium was grown in starch-containing medium; pelleted by centrifugation; and the supernatant was either directly used for activity measurements or the proteins were acetone precipitated.Additionally, cassava extract was obtained (squeezed and centrifuged juice) to detect amylase activity on acrylamide gels (Fig. 2.5).The transfer step has been simplified in that the electrophoretically separated proteins are directly blotted by capillary forces onto the starch containing gel. This process has been optimized, the entire procedure taking just 1 h at 2S\"C in a moist atmosphere.The amylolytic activitíes are detected with iodine as highly resolved, colored bands on the starch-containing gels.The control enzymes used were commercial preparations of a-amylase, p-amylase, amyloglucosidase, isoamylase, pullulanase and maltase.A balance of the mineral salts was made to define better the fermentation conditions that will preferentially lead to homolactic and more efficient fermentation.Thus far samples of day O and 15 have been analyzed. Results indicate that P might be a limiting factor during the fermentation process.(Phosphorylation of the reducing sugars is one of the first metabolic steps in starch degradation.) Elemental analysis will also be done in fractions following the profile of the fermenting starch mass to determine whether the process is homogeneous.This electrophoretic methodology will be used to select and classify isolated amylolytic microorganisms through their respective patterns.These patterns will make it possible to monitor the presence and development of the amylolytic activities throughout the fermentation process.During the three-year period of the P-IVAG project, important components of the establishment and operation of an in vitro active genebank were assessed (see the BRU 1989 report).This year the project concentrated on two objectives: monitoring the effect of (a) sub culture frequency during in vitro storage on genetic stability of three cassava genotypes with striking morphological and isozyme pattern differences (M Col 22, M Col 2264 and M Pan 127) ¡ and (b) storage time on stability using 10 clones maintained under slow growth conditions for 9 to 10 years in the world cassava in vitro collection at CIAT. These clones have been micropropagated 8 times on the average.Polyacrylamide gel electrophoresis (PAGE) for two isozyme systems a P, EST and a, P ACP and morphological evaluation of the in vitro material were carried out. The morphological descriptors were: no. of shoots, presence or absence of callus, roots, aerial roots and etiolation.The first micropropagation yielded four cultures, the second gave rise to eight, the third to 16, and so on. Of the four morphological evaluations performed to date, no differences from the patterns of the controls have been found.As for the electrophoretic patterns, the major bands also remained unchanged.Genetic stability was evaluated on the basis of changes in EST, ACP, GOT and DIAP electrophoretic patterns.The electrophoretic patterns of the control and the material from storage showed stability in every isozyme tested for 7 of the 10 varieties.Fourteen isozymes, in two running systems, were done wi th the P-IVAG material.No changes were found after storage.Results are summarized in TableThe database developed for the P-IVAG has been updated systematically.The raw data collected during the four years of the project related to passport, field characterization, disease indexing, electrophoresis, storage location details, in vitro viability evaluation, and all the technical and logistical aspects of the project have already be en classified and fed into the database. The approach through a network of cooperating researchers has been received with a wide level of general acceptance by the agricultural scientific community and national and international funding agencies. This is evidenced by the number of research projects under way in just two years.Table 2.5 shows the existing 20 research projects in developed and developing eountries as of September 1990 in eomparison with 4 projeets in September 1988. 'learly meetings are proposed to guarantee continuous interaction among the constituting members, their role being to advise on the functioning of the network including periodic reviews of research projects under way and new proposals, planning of scientific meetings, training needs, communication media and funding possibilities.Communications: Preparation of an introductory brochure on the Network; publication of a network newsletter twice ayear; other network pUblications such as reports and proceedings on an ad-hoc basis.CIAT has been providing initial coordination sinee 1988; but as the network evo1ves, the increasing work load calls for the appointment of a full-time coordinatorjscientist at eIAT. Data on plots of ll-month-old healthy and diseased plants of the traditional clone Cruvela Rastreira, derived from stakes collected from symptomless plants in plantations with different percentages of infection, show the following (Table 3.1):Root weight and aboveground plant weight (AGPW), as well as HI, of healthy and di sea sed plants did not show any statistical difference among plots whose stakes were taken from plantations with different percentages of infection. This indicates the relatively stable sanitary condition of most plants during the growing cycle.The root weight of healthy plants was 57.9% greater than that of diseased plants, indicating that disease losses induced by witches' broom can be of great magnitude in this traditional clone.The ABPW of healthy plants was diseased plants as a result induced by the pathogen.As a consequence of the two foregoing findings, the HI of diseased plants was lower than that of healthy plants. Most carbohydrates produced by diseased plants are utilized to produce shoot tissue.When stakes were taken from a 25%-affected plantation, the losses induced by wi tches' broom averaged 51% i but losses can range from 23.5 to 87.1%, depending on the level of infection of the mother plants (Table 3.2). This indicates that los ses induced by this disease are related to the infection status of the mother plants. -Vi el d ------------------------------------------------------------------------1 Oata taken from 15 plants/rep/treatment.The incidence of witches' broom disease of cassava was reduced drastieally by planting stakes seleeted from symptomless plants;, but percent disease reduction was related to the percent infection in plots from where mother plants were taken (Table 3.3). This indieates that the disease ean be controlled by selecting symptomless plants from the least affected plantation in the endemic area.The percent of symptom remission induced by the witches' broom pathogen was drastically reduced after planting stakes from infected plantations in a neighboring nonendemlc area (Table 3.4). This indlcates that the disease can also be controlled by producing planting material in areas where ecological conditions restrict pathogen multiplication and invasion into the host.Thus witches' broom disease can be redueed both by planting stakes from symptomless plants and by producing stakes in locations where environmental conditions reduce pathogen infection.Commercial implementation of these control mea sures has commenced in the Ibiapaba region of Ceará state, Brazil.Control of root rot causal agents by fungal specles.A straln of Trichoderma sp., isolated from the root rhizosphere of a cassava plantation, showed promising results in vitro for eontrolling root rot causal agents. The strain inhibited growth of Diplodia manihotis, Fusarium solani and ~ oxysporum; however, it was unable to inhibit the growth of Phytophthora dreschleri or E. nicotianae varo nieotianae. Nevertheless, these two species of Phytophthora were rapidly colonized only 5 days after infection (Table 3.5). Trials to determine the effectiveness of this strain in controlling root rots under field conditons, as well as attempts to isolate more efficient strains of this species from different ecological areas, are under way.Control of root rot pathogens by beneficial bacterial species. Two strains of Pseudomonas fluorescens (Pf F-259 and Pf F-44) signlficantly increased the root weight of two cassava clones (M Col 1468 and CM 342-170) after root inoculation in the early stages (1 mo after germination) with P. nicotianae varo nicotianae under greenhouse conditions (Table 3.6).These results are similar to those reported in 1988 for controlling other root rot pathogens under greenhouse conditions (CIAT Annual Report 1988), suggesting likelihood of success under field conditions.Commercial plots of M Col 2215 (susceptible) and M Col 1505 (resistant) were planted in a D. manihotis-endemic area (La Colorada, North 1 Avg root wt of 20 plantletsjtreatment 2 roo after treatment; plantlets grown under greenhouse conditions (26'C ± lO'C, 80% RH) .2 Plantlets inoculated by pourirY;J 30 ml of a suspens!on of 1.1 x l t 9 ctbjmljpot of tile P.f. strain; arxl 30 ml of 1 x 10 zoosporejmljpot of tile pathogen 5 days before plantirY;J.Coast of Colombia), where CBB and anthracnose normally occur at low levels of severity.Stakes were dip-treated and plants sprayed monthly with a bacterial suspension (strain P.f. C5a). Results showed a yield increase of 28 and 123% for the susceptible clone M Col 2215 when planted with stakes taken from commercial plantations or from meristem cUlture-derived plants, resp. (Table 3.7). The lowest yield was obtained on plots planted with untreated stakes of the same susceptible clone obtained from meristem culturederived plants (Table 3.7). The highest disease rating was also shown on untreated plants from stakes taken from meristem culture-derived plants, indicating the efficiency of the protective effect exerted by the native microflora living on stakes taken from commercial plantations. This micro flora is probably acquired after many growing cycles. Finally, the bacterial treatments did not increase yield levels significantly on the resistant clone M Col 1505 because the intrinsic genetic resistance of this clone overcame the possible stresses caused by the pathogens.These results open up the possibility of using strains of fluorescent pseudomonads commercially to prevent root and foliar diseases on susceptible cassava clones; their commercial deployment in various production systems is being investigated.The effect of native microflora on disease protection was reported in 1988 froro data taken on experimental plots planted with stakes taken from commercial plantations and froro meristem cul ture-der i ved plants, coroparing untrea ted and treated in a suspension of Pseudomonas putida (F-44) (CIAT Annual Report 1988). Results obtained in commercial plantations this year confirmed these data (Table 3.8). Disease severity and field infection (%) for CBB, SED and Choanephora leaf blight were higher on plantations from stakes taken froro meristem-derived plants than from stakes taken from comroercial fields (Table 3.8). Native roicroflora provide effective protection against cassava pathogens when they are living epiphytically on the plant epidermis. These results suggest that it is advisable to reestablish beneficial flora on the epidermis of meristem-derived stakes before their use for propagation; they can be dip-treated with the respective beneficial bacterial strain (i.e., efficient strains of P. putida or P. fluorescens) a few hours befo re planting.For lack of a dependable field methodology for evaluating germplasm for resistance to Phytophthora spp. on cassava, the following root-bore inoculation method was developed: healthy swollen roots froro 10-12 mo old are bored to a depth _ _ _ _ --'manUE;.!;'ih!}!ot\"\"\"\"i..,s-en:lemic area, with !roderate CBB blight arxi anthrac:nose infection during their g:t.\"CMing cycle. 1 Bacteriza~ion: stakes were dip treated in a bacteria! suspension of 1 x 10 cfbjml; arxi plots ~ spray-treated ronthly with a bacterial suspension of 5 x 10 cfbjml.2 Plots were harvested 10 mo after planting; results followed by the sama letter were not statistically different. taken from more than l-ha plantation for stake source; data taken at peak of epidemic.of 3-4 cm, using a disinfested O.l-cm diameter borer.The holes are filled with agar-mycelium taken from a 15-day-old PDA-growth culture and sealed with the peeled root cortex. Roots are then incubated in sealed plastic bags for 5 days. Resistance is related to the percentage of pathogen invasion through the root tissues from the inoculation point; clones with less than 15% invaded root tissue are considered resistant.This method makes rapid evaluation possible (i.e., 1 mo vs. 1 yr for field evaluation).From among 46 elite clones evaluated for resistance to .e.... nicotianae var. nicotianae using the root-bore inoculation method, clones M Col 2302, M Col 2265 and SG 799-9 showed the highest grade of resistance.As a result of nine years of cooperative research with the Center for Agricultural Research in the Amazon (CPAA) and CNPMF-EMBRAPA, two clones (Mae Joana and Zolhudinha) resistant to E. drechsleri and 1':. solani and adapted to the flooded Amazonian Basin zone (\"várzea\"l were released in Manaos this year. In commercial trials the avg RY of these two clones in a 6-to 7-month period was 20 t/ha, which is 80% higher than the yield of traditional clones in noninfected plantations. Planting material of these two clones was delivered to more than 100 cassava growers who expressed a strong preference for these clones over the others for their yellowish colored cortex, which is highly valued for producing roasted cassava flour (\"farinha\").Two unreported stem and root rot pathogens of cassava were isolated from several affected cassava plantations in the eastern and northern coastal areas of Colombia.3.1. 4.1 verticillium dahliae.V. gahliae affects young plants, inducing light brown root deterioration.Stems are striated showing black microsclerotia at the base; stems of adult plants (> 6 mol are al so striated.Plants suddenly wilt and die.Swollen roots show necrotic spots very similar to those of the \"smallpox\" disease, but without signs of insect or wound damage on the epidermis surrounding the spots. The pathogen penetrates the root tissues through the root peduncle from affected stems.These symptoms are commonly found at the onset of the dry season.It appears that the fungus penetrates the stem or root peduncles through wounds induced by environmental stress es or any type of physical or mechanical damage.It was found that the fungus grows well with abundant production of spores on PDA (potato-dextrose-agar) and LBA (lima bean-agar).The optimum temp for growth and spore production is 26°C.The hyphae are hyaline, whitish to cream after 1 wk, later becoming black with the formation of microsclerotia. Conidiophores are abundant, erect, hyaline, verticillately branched; phialides are variable in size; conidia arise singly at the apices of the phialides, ellipsoidal to irregularly subcylindrical, hyaline, mainly simple but occasionally l-septate. Dark brown resting mycelia are formed only in association with microsclerotia.Each microsclerotium arises from a single hypha by repeated budding.They are highly variable in size and shape, from elongate to irregularly spherical.3.1.4.2 Scytalidium sp. was found affecting stems and roots of 10-mo or older plants.Affected stems showed black necrosis of vascular strands, very similar to those symptoms induced by º. manihotis. However, the epidermis of affected stems swells and breaks longitudinally, releasing a mass of charcoal-like blackish conidia, which are easily disseminated. These symptoms differ from those of D. manihotis in the absence of pycniocarp formation on the bark of stems or roots (Fig. 3.1).Colonies on PDA are effuse, dark blackish brown with immersed and superficial mycelia; hyphae are smooth with dark brown septae. They do not produce stroma (Fig. Damage induced by this pathogen is commoner at the end of the rainy season; it usually appears in association with ~ manihotis, where they are hard to differentiate.After four years of evaluating 90 clones for resistance to D. manihotis under field conditions in a Diplodia-endemic area (La Colorada, Atlantic Coast of Colombia), only seven clones survived (Table 3.9). Five had been previously rated as resistant or of intermediate resistance by the stake inoculation method under greenhouse conditions (CIAT Annual Report 1986). The other two clones were susceptible but had acquired resistance (bioprotection given by acquired epidermal microflora). These results stress the reliability of the method for identifying resistance to º. manihotis under greenhouse conditions; show the importance of Diplodia root rot when susceptible clones are planted in endemic areas; and partially explain the progressive decline of susceptible clones planted in soil-borne infested plots.RY of these resistant and intermediate-resistant clones planted on a Diplodia-infested plot, with and without .!h manihotis produces protuberant pycniocarpes. fertilization, is shown in Table 3.10. There was a moderate or even negative effect of the fertilizer treatment on RY of resistant clones in contrast with the highly significant effect of the fertilizer on RY of the intermediateresistance clones. These data also show the importance of the disease in the area, which can decrease RY by more than 45.5% on even intermediate-resistance clones. Additionally, these data stress the importance of genetic control as a means of partially overcoming the problem. This is supported by the data presented in Table 3.11 regarding the RY of a resistant (M Col 1505) and a susceptible (M Col 2215) clone obtained on plots by alternating different cropping systems over a 4-yr periodo Percent RY increase by the fertilizer application was lower on plots planted with the resistant clone than on plots planted with the susceptible one, independent of the cropping systern used.Similarly, the best cropping system for ~ rnanihotis-endemic areas was ayear rotation with rnaize and sesame; the worst was continuous cassava planting. By far the largest effect was variety, indicating the possibility of selecting varieties suited across a range of cropping systems and disease pressures (Table 3.11).These results will be used to rnodify the production package promoted in 1987 (CIAT Annual Report 1989) and validated during 1988-1989. More than 30 cassava growers are now successfully growing cassava following this technological package.For example, data collected among 12 cassava growers who followed this production package showed a RY increase of 208% when they planted a resistant clone and 300% when the clone was susceptible (Table 3.12).It is expected that the new genotypes incorporating resistance to this pathogen and to other important constraints will greatly increase production in the area.Studies on genetic control of SED of cassava (caused by EIsinoe brasiliensis) covered the following subjects: 3.1.6.1 Morphological resistance. This type of resistance was suspected after finding that pee1ed stems of resistant clones showed susceptible reaction (CIAT Annual Report 1983).Histological studies carried out this year showed that the cuticles of three-mo-old shoots of resistant clones (CM 523-7 and M Ven 77) were 3.7 times thicker than those of susceptible clones (M Col 22 and M Col 113) when the plantlets were incubated at 24,000 Ix. This stem-cuticle thickness ratio decreases at low light intensities; e.g., at 920 Ix or lower the cuticle-thickness decreased dramatically and differences between resistant and susceptible clones disappeared (Table 3.13).Temp and RH had no effect on these parameters. Similarly, measurements on other stem tissues 2 Each fertitized plot received 100 kg/ha of NPK applied at 1 1 2 and 3 IDO after planting.did not show significant differences between the susceptible and resistant clones used. This finding apens up the possibility af devising a rapid screening system for resistance to E. brasiliensis, which can replace the field screening evaluation system that is currently being used for identifying genotypes resistant to this disease.3.1.6.2 Field evaluation. To determine the most apprapriate location for field evaluation of genotypes for resistance to SED, genotypes belonging to 17 families were planted at three locations where the disease is endemic: Carimagua and Villavicencio (Llanos Orientales of Colombia) and Huimanguillo (Tabasco, Mexico).Disease levels were recorded at the height of the epidemic in each location, and the probability af finding resistant clones among genotypes of each family per site was calculated accarding to Grizzle, Starmer & Koch (1969). Disease severity was highest at Carimagua, 1 M Col 1505 M Col 2215 where disease stress reduced the probability of finding plants of low disease damage in each family (Fig. 3.2); similarly, the avg disease scores were highest. Consequently, this location appears to be the most appropriate for field evaluations of resistance to SED among the three locations investigated.As expected, the families that showed the highest proportion of resistant progenies in Carimagua were those obtained from crosses with high parental resistance.3.1.6.3 stability analysis. Stability of resistanee to SED and caB was investigated by planting clones belonging to three families over a 5-yr periodo stability analysis of these data, aeeording to the modified joint regression method of Digby, showed the following (Fig. 3.3):The general response of the evaluated clones to SED and CBB during the five growing eyeles was unstable.Despite this resistanee to families and family. instability, differences in levels of these two diseases were identified among among genotypes belonging to the same Disease pressure for both SED and CBB was different eaeh year, whieh justifies clonal evaluation for several growing cycles.The families that showed the best stability for resistance to SED and CBB were CG 890 (CM 723-3 x M Col 638) and CM 3581 (CM 849-1 x CM 523 -7).AII these parents have intermediate to high resistanee to both SED and CBB.Thus far 20 speeies of fungal endophytes have been isolated from stem samples of native clones growing in different plots.The effeet of 9 of these endophytes on 3 eassava clones (M Col 2215, M Bra 191 and M Col 1468) after inoeulation by spray, immersion and puncturing methods was determined by comparing the root weights of inoculated and noninoculated control s (Figs. 3.4 & 3.5).It was found that:Most endophytes had a detrimental effeet on M Col 1468 (a root-rot susceptible clone), especially when plants were immersed in the fungal inoeulum.The detrimentaljbeneficial effect depended on the inoculation method; c:::urvularia sp. was detrimental when of some endophytes e.g., on M Col 2215, 2 3 4 5 6 7 8 9 1 1 ' 1 1 1 1 1 1 2 3 4 5 6 7 8 9 \" 1 1 1 1 1 Probability for SED resistance amonq genotypes belonging to 17 families plantad at 3 SED-endemia locations. Stability of genotypes beloqing to 3 families planted over a five-year period (5 growing cycles) planted at a CBB-and SED-endem1c location (carimagua); stability analysis according to the modified joint regression method (Digby). spray-inoculated and beneficial when inoculated by immersion or puncturing.Rhizoctonia sp. did not induce symptoms in leaf and stem tissues, but was detrimental to root production in the three inoculated clones (all three inoculation methods); however, when the roots were mechanically wounded, the fungus induced root necrosis.There were varietal differences in relation to the behavior of the endophytes on cassava, as well as in relation to the inoculation method used. similarly, i t appears that sorne fungal species can behave as endophytes on a given plant part (living as epiphytes on stems or leaves) or as pathogens on others (affecting the root tissues).Similarly, sorne endophytes appear to be beneficial when affecting the epidermis (epiphytic stage), but detrimental when infecting the host tissues (parasite stage).Further research is under way in relation to these interactions.A summary of research on the storage of vegetative planting material of cassava was previous1y reported (CIAT Annua1 Reports 1987& 1988).The storage method was improved in 1988 by watering the stem bundles during the first 2 wk of storage under open field conditions (full exposure to sunlight) in order to promote rooting and sprouting at the onset of storage.Additionally, it was found that all storage practices led to RY reduction after 2 mo, suggesting that this practice should be avoided or implemented only when necessary. This year, however, it was found that RY on plots planted with stakes stored for 4 mo under the very dry conditions of the Pivijay area (28\"C avg; 60% RH) were similar to RY obtained on plots planted with unstored control s if there was adequate fertilization (Table 3.14). Fertilized plots also showed significant improvement in establishment, plant vigor and RY in relation to both control plots or plots planted with stakes stored in shade.Based on these and previous findings, the following storage system is advisable in tropical environments:Stakes should be selected from visually heal thy plants of clones showing satisfactory levels of resistance to storage (more than 80% establishment after 60 days I storage of long-stem stakes).Mother plants should be those with the highest RY at harvest. stakes should be more than 1.20 ro long, taken froro the bottom half of 8-to ll-mo-old mother plants. They should be arranged in bundles (no more than 10 stakes each) and treated prior to storage with a fungicidepesticide mixture (benomyl, 3 gjlt; maneb, 3 gjlt; and malathion, 1-2 ccjlt).Bundles should be stored vertically under opan field conditions by burying the first 5-10 cm of the stakes in the soil and watering during the first 2 wk of storage.At planting time, 10 cm of both ends of each stake should be removed, as well as any shoots produced during the storage periodo stakes for planting should be 15-20 cm long and treated again with the fungicide-pesticide mixture before planting.Fertilization (based on soil or plant-tissue analysis) should be done within the first 45 days after planting.Geographic .distribution and potential risk for six cassava. diseases Based on epidemiological studies, surveys on disease severity, and climatological data extrapolations done with the Agroecological studies Unit, it was possible to determine the geographic distribution in Latin America and the potential risks of CBB, SED, the mycoplasm-induced witches' broom, Phytophthora root rot, and Fusarium and Diplodia stem and root rots . These data show that:The highest potential risks for foliar and stem pathogens (CBB and SED,Figs. 3.6a & b) exist in areas with moderate temp (18-25'C) and more than 1200 mI rainfallj yr, where prolonged periods of high RH occur (in the case of SED, Fig. 3.6b) andjor where dayjnight temp fluctuate more than 10'C (in the case of CBB, Fig.The highest risks for stem and root rot pathogens (Fusarium and Diplodia) exist in areas where high temp (> 25°C) and heavy rainfalls for short periods of the wet seasons are frequent (Figs. 3.6c & d). If the temp of the area is more than 20•C and the land is periodically flooded during the rainy season or badly drained, Phytophthora root rot can be of great importance (Fig.The mycoplasm-induced witches' broom is characteristically found in areas where the temp ranges from 15-20'C for a period of more than 3 mojyr (Fig. 3.6f). symptoms of this mycoplasmlike disease are moderate to mild, or might disappear as temp increases.Consequently, witches' broom can be a threat in areas where cool temp occur during the year or for more than a 3-mo periodo categorical data by linear models. 504.1969. Analysis of Biometries 25:489-Progress was made over a broad range of eassava viruses and viruslike diseases. Cassava Colombian Symptomless (CCSpV) and Cassava American Latent viruses (CALV) were added to the cassava viruses that can be routinely identified using ELISA. The molecular characterization of Cassava Common Mosaie virus (CCMV) is progressing, and the sequencing of over half of the virus is complete. The area that has progressed most is the characterization of the agents of Caribbean mosaic (CMD) and frogskin diseases (FSD). The causal agent of CMD is a member of a new subgroup of the phyto-reoviruses. A similar but distinct virus is the causal agent of the mosaic symptoms associated with FSD. diseases in Latin America: Both these diseases are viruslike disorders of unknown etiology that are present in Colombia. These two diseases were reported as distinct because the root symptoms associated with FSD are either absent or very mild in plants with CMD.Although CMD can cause significant RY loss in susceptible clones, there are many tolerant clones. There are few reports of clones that are resistant or tolerant to FSD, however. Secundina is the cassava clone used for detecting both CMD and FSD as both diseases produce mosaic symptoms on its leaves. CrAT has disease-free, in vitro culture clones and greenhouse-grown stakes of Secundina available for indexing programs.Viruslike particles were found in the leaves, petioles and stems of cassava plants infected with either FSD or CMD (Fig. 3.7). These partieles, whieh are approx. 80 nm in diameter, are similar in size and morphology to reovirus partieles. Viruslike inelusion bodies were found only in the roots of the eassava varo M Col 113, which develops root but no leaf symptoms. Double-stranded RNAs were purified from cassava plants infected with either CMD or FSD and run on both agarose and polyaerylamide gels. On agarose gels, there appear to be 3 or 4 bands; but on polyacrylamide gels there are 10 bands for FSD and 9 for CMD (Fig. 3.8). The no. and size of the ds-RNA bands differ between FSD and CMD. The relative molecular weights (M )--the number of the ds-RNAs found in CMD-and FSD-infected plants--are similar to genomes of the Fiji subgroup of phyto-reoviruses (Table 3.15). Reoviruses have unique genomes that consist of either lOor 12 segments of ds-RNA. Table 3.15 gives the sizes of the ds-RNA segments of selected phyto-reoviruses and the ds-RNA segments found in CMD-and FSD-infeeted plants. The genomie segments are often of similar or equal size in the characterized phyto-reoviruses. As several of the bands in both FSD and CMD are similar in size, only 3 or 4 are deteeted by agarose gels; and 9 or 10 bands are resolved using polyacrylamide gels, which have greater resolving power.It is predicted that there are 10 segments of ds-RNA, but only 9 bands found in polyacrylamide gels of CMD. There are probably two genomic segments of egual M r •The whitefly Bemisia tuberculata has been suspected as the vector of FSD based on experiments using field-collected whiteflies. until this year, the only viruslike disease that had been transmitted by whiteflies was the WF isolate, which originates from whiteflies collected in the field. Healthy eassava plants infected with the WF isolate showed mosaic symptoms on the indieator clone Secundina but did not show root symptoms typical of FSD. The estímate for FSD ís from isolate 29; for CMD, isolate 5.These were compared with ds-RNA markers, which were isolated from mycoviruses provided by Dr. R.L. Bozarth, Indiana State university.Manipulating the acquisition times of the vector increased efficiency of transmission. Isolate 29 of FSD was consistently transmitted although the rate of transmission varied from 10-60% (Table 3.16). An acquisition period of one day gave the highest rates of transmission. According to these results, the disease agent does not need to replicate in the vector I but the whiteflies do need a minimum acquisition period of one day before they are able to transmit the virus. Table 3.17 lists the viruslike diseases transmitted by B. tuberculata.The plants that developed the mosaic symptoms in the transmission tests were analyzed for the presence of ds-RNA species. Both the mother plants used as the source of inocula and Table 3 ments had similar ds-RNA patterns. Also leaf dips of the infected plants contained viruslike partieles with diameters of 80 nm. There were no viruslike partieles or ds-RNAs in the healthy control plants.B. tubereulata were fed on plants infected with either CMD or FSD and examined using inseet dip preparations for viruslike partieles. Partieles 80 nm in diameter, similar in size and morphology to the viruslike partieles found in plants infeeted with CMD or FSD, were found in these sam-pIes. The strueture of the viruslike partieles extraeted from B. tuberculata is more distinet than that of the partieles found in the plants (Fig. 3.9). Whiteflies that fed on healthy plants contained no viruslike partieles. In blind tests, the whiteflies that had fed on the infeeted plants were eonsistently identified.Figure 3.9 Viruslike partieles found in B. tubereulata that were fed on plants infeeted with isolate 29 of FSD. Similar partieles were found in B. tubereulata fed on CMD-infeeted plants. No viruslike partieles were found in whiteflies that fed on healthy plants.In conclusion, viruses similar in morphology and genomic structure to the phyto-reoviruses are associated with CMD and FSD. Both viruses are transmitted by the whitefly B. tuberculata. Additional experiments are needed to determine that all symptoms associated with CMD and FSD are present in the plants infected by the whiteflies. Currently some of the plants infected in the transmission experiments are being grown in a small field plot in a se re en house to determine the type of root symptoms caused by the virus transmitted by B. tuberculata. Additional experiments will be conducted in field trials.Based on the ds-RNA patterns, the virus associated with CMD appears to be distinct from the one associated with FSD. Based on their morphology and genomic structure, these viruses appear to be members of a new subgroup of phytoreoviruses. The main difference between the Fij i subgroup of the phyto-reoviruses and those associated with CMD and FSD is the type of vector. The vectors of phyto-reoviruses are leaf-or planthoppers; and all, except wound tumor virus (WTV) , infect only monocotyledons. The vector of viruses associated with CMD and FSD is B. tuberculata, and the only known host for these viruses is cassava, a dicotyledon.Most of the phyto-reoviruses are unstable and difficult to purify; yet knowing the type of virus usually makes the task easier.The development of a rapid assay method for these viruses will be a priority this coming year.Cassava Colombian Symptomless Virus (CCSpV) was originally isolated from cassava infected with CMD. There are no symptoms produced in cassava infected only with CCSpV, which is only present in some of the characterized isolates of CMD or FSD. An antiserum to ccspV (provided by Dr. Harrison at SCRI) is being used to screen germplasm for the presence of this virus. ccspV is serologically related to Cassava X virus (CsXV) but distinct from it. Although neither virus causes any apparent disease in cassava, CIAT germplasm is being screened for both of them by ELISA to assure virus free germplasm.The molecular characterization of CCMV is continuing, and the sequence of approx. half the genome is complete. Figure 3.10 is a diagram of the predicted molecular organization of the virus. Based on homology at the RNA and protein sequences, CCMV is most closely related to potato virus X (PVX). The Cassava Trans proj ect (Dr. R. Beachy, Washington Universi ty, has successfully demonstrated that coat proteinmediated cross protection of CCMV is effective in Nicotiana benthamiana. The major technical limitation of its deployment as a resistance gene in cassava is the transformation of cassava. A survey was conducted of viruses infecting cassava in NE Brazil (states included parts of Bahia, Perambuco and Ceará) • Much of this semiarid are a is usad for salecting and producing the germplasm for the IFAD project (emphasis on Africa). Basad on the observations of symptoms, CVMV is widespread throughout these areas of BraziL Typical infaction rates were 20-30%, but some fields had 100% infection. Exact losses in cassava infected with CVMV are unknown, but the plant does produce good RY even though the virus is prevalent. This viral disease is probably similar to CCMV, which causes 20-30% RY losses in infected plants. More information on the losses caused by this virus is needed to determine its importance. The development of rapid diagnostic techniques for detecting CVMV is al so needed to facilitate the exchange of clean germplasm.A new nepovirus of cassava was reported (Dr. B. Walter, ClRAD, Colmar, France), isolated from samples infected with CCMV that had been collected in humid lowland areas around Manaus, Brazil and in French Guyana. CALV does not produce syrnptoms or apparent disease in cassava. It is not known whether the virus causes RY losses or if it is seed transmitted.As nepoviruses are frequently seed transmitted, the seeds being sent to lITA in Nigeria were studied using an antiserum to the virus (provided by Dr. Walter, CIRAD). Both seed lots and mother plants of seed lots to be sent to lITA in 1991 were tested for the virus. Results were negative, and it appears that this virus is not present at CIAT. CALV (like CCSpV and CsXV) is a minor problem that causes no obvious disease.More work needs to be done to determine its distribution, seed transmission and effect on RY.Research in cassava entomology and acarology stresses the need to develop effective, cost-efficient, environmentally sound crop protection methologies that will assist in stabilizing production and eliminate the need for pesticide use.Host plant resistance, biological control and agronomic practices are emphasized.Recent research results in entomology are as follows:Two species of cassava mealybugs--Phenacoccus manihoti and P, herreni--can cause serious yield los ses in cassava.~ manihoti, native to Paraguay and limited areas of SW Brazil (Mato Grosso do Sur), appears to be under control because of the presence of two natural enemies.In Africa, on the other hand, this pest caused severe damage until key natural enemies were introduced from the neotropics to bring ~ manihoti under control. The CIAT Cassava Entomology section continues to collect, evaluate and send natural enemies to lITA for evaluation and possible release for P. manihoti control on that continent. Two predators recently sent were Cleothera onerata and Hyperaspis sp.Life table and consumption studies with ~. onerata are presented here. E. ,herreni has caused severe damage in NE Brazil and the Colombian Llanos.Research at CIAT has concentrated on biological control and host plant resistance.The sudden appearance of 1'. herreni in NE Brazil in the mid-1970's suggested that it was introduced into that area. Possible areas of origin are being explored in order to study the natural enemies associated with this mealybug. In order to define the geographic distribution of P. herreni, a survey of cassava-growing regions of Venezuela (Fig 4 .1) was initiated in 1989 and continued during 1990.Of 47 farms visited, 14 had 1'. herreni infestations. Nine of the 14 infested fields were planted to bitter cassava from 6-12 mo of age, three were planted to sweet cassava of 9-12 mo, and two fields had a mix of 10-mo-old sweet and bitter varieties.The altitude and weather conditions were recorded for each site.The mealybug-infested cassava fields occurred from 25-275 masl, with temp between 28-35'C and RH from 40-70%.This information supports previous observations and studies that show that 1'. herreni is primarily a pest of the lowland tropics with high temp and prolonged dry seasons. Parasites and predators found during this year's survey added valuable information to 1989 observations. The most frequently found predators were Nephus sp. (Coccinellidae) and Ocyptamus sp. (Syrphidae) (Table 4.1).Three other coccinellids of the Hyperaspini tribe were present in a few fields.The two wasp (Hymenoptera) species found parasitizing R.... herreni were subsequently identified as Aenasius v~xans (Encyrtidae) and Acerophagus coccois (Encyrtidae) by R. Noyes of the British Museum. A. vexans was found in nearly Approximately one generation per month of Aephus sp. and two generations per month of the two encyrtid parasites can be reared under lab conditions.Lab studies were conducted of the two parasitoid species on two mealybug species: P. herreni and P. madeirensis (= ~ gossypii) .The latter will feed on cassava but is not considered an important pest of this crop and is usually observed only at low populations.(For details on rearing techniques utilized for mealybug and parasitoid species, see previous Annual Reports).Whereas A. vexans preferred to parasitize P. herreni over ~ madeirensis under free-choice lab conditions, host preference was found when these two mealybug species were offered to A. coccois (Table 4.2).These data indicate that ~ vexans may be more specific for P. herreni--a hypothesis that will require further evaluation. No evidence was found for host stage preference in A. vexans (Table 4.3).Second and third instar nymphs and adult females of ~. herreni were parasitized with equal frequency; whereas first instar nymphs were not preferred although occasional parasitism did occur (Table 4.3).li. coccois showed a strong preference for second instar nymphs of both P. herreni and ~. madeirensis (Tables 4.3 & 4.4).Whereas A. coccois oviposited in adult females of P. madeirensis, parasitism of this stage was insignificant in P. herreni.Neither li. coccois nor ~ vexans appears to parasitize eggs of P. herreni (Table 4.3).A. coccois was previously found parasitizing ~. herreni in COlombia and has been studied at CIAT (Annual Report 1985). The Colombian species showed a marked preference for ~ madeirensis.Although the second instar of P. herreni was preferred (as with the Venezuelan species), the Colombian species had equal preference for the adult female stage, as Selected clones were evaluated first at CIAT and ultimately at Carimagua, where there are high natural mealybuq pepulations. In addition to natural populations, artificial infestatiens are used te ensure the uniform, adequate infestation needed for effective screeninq. Nearly 3000 cassava varieties have now been evaluated over several screeninq cycles.One hundred clones were screened for resistance to ~ herreni in Carimaqua.They were planted in 4 blocks in plots of 5 plants/clone.Each plant was infested with 1-2 ovisacs of P. herreni. Highly branched clones were infested with two ovisacs/plant.Three months afterward, damaqe was evaluated using a scale of 1 (no damage) to 9 (necrosis of branches and plant death).Three clones were selected: CM 6069-3, CM 5263-1 and SM 540-8 (Table 4.8) for continued evaluation.These clones are also reported as tolerant to Cercospora, CBB and SED, which severely limit production in the savannas of Colombia.RY ranged from 13.6 t/ha for SM 540-8 to 24.8 t/ha for CM 6068-3.Damage levels for CM 6068-3 and CM 5263-1 were at 4, but only at 1 for SM 540-8. The selected clones will be evaluated further in an experiment with a larger plot size to determine resistance levels.Three clones selected durinq 1989 (SG 250-3, SG 106-54 and CM 2177-2) were sown in 36-plant plots, using a split plot design with four replications. Some plots were protected with aldicarb, while nonprotected plots were infested with mealybug ovisacs to ensure adequate populations.Yield depression due to mealybug attack is an indication of Based on a damage scale of 1 (no mealybuqs) to 9 (necrosis and plant mortality).resistance levels in protected clones. Results showed only a 10.1 and 9.3% reduction in yield between the protected and nonprotected plots of clones SG 250-3 and CM 2177; while SG 106-54 had a 34.2% reduction in yield (Fig. 4.4). These results indicate that there exist adequate levels of resistance or tolerance in clones SG 250-3 and CM 2177-2, which are suitable for use in a resistance breeding programo Additional greenhouse and lab studies are required to determine whether this resistance is due to an antibiosis mechanism or tolerance due to high plant vigor.To obtain more information on RY loss potential in cassava due to mealybug attack, an experiment using M Col 77 was conducted in Carimagua.A random plot design with three reps and treatments of dimethoate 48% (0.720 kg a.L/ha), monocrotophos 50% (0/5 kg a.i./ha), and dimethoate + monocrotophos.The control received no pesticide; but at 30 days, each plant was infested with 2 mealybug evisacs. Pesticides were applied at 30 and 75 days after germination. RY (8.6 tjha) in the control plots was reduced by an avg of 28%; there was no significant difference among the three insecticide treatments (avg RY 11. 9 tjha). When aldicarb 10% (3 kg a.i.¡ha) was applied, RY increased 47.3% over the control (16.4 t¡ha); however, aldicarb is prohibi ti vely expensive (one application costs US$297¡ha vs. US$9. 52¡ha for monocrotophos) and its high toxicity makes it unacceptable for mealybug control on cassava. 4.1.4 Pseudococcus mandio: the cassava root mealybug P. mandio was first reported attacking both bitter and sweet cassava varieties in Sombrio (SC, Brazil) in 1986. This mealybug has since been observed attacking cassava roots in the subtropical cassava-growing areas of South America; that is, Paraguay, Argentina and southern Brazil (especially in Santa Catarina).Additional hosts are Cyperus rotundus and Ergeron bonairensis. The mealybug is normally found feeding on underground plant parts including the underground portion of the stem.Root damage is manifested by darkened spots, possibly caused by fungal pathogens introduced through mealybug feeding.This damage not only reduces the commercial value of the root but also its culinary quality (roots becoroe harder when cooked).Highly infested plants display chlorosis and defoliation of lower leaves.A collaborative project, using contract research funds, was set up with the EMPASC Experiment station at Itajai, SC to study the occurrance, behavior and damage caused by ~ roandio.Preliminary data indicate that mealybugs appear during warmer temp which, under subtropical conditions, corresponds to about 3-to 4-mo-old plants.The number of plants attacked and ~ mandio populations increase as plants roature and warmer temp occur. The female life span froro egg to adult is about 45 days. Observations and studies of this pest will continue.The cassava hornworm--a major pest of cassava throughout the Americas--can cause severe defoliation resulting in considerable yield losses, especially when repeated attacks occur. Over 40 natural enemies including parasites, predators and pathogens have been identified.It is speculated that due to the highly migratory habits of the sphingid moth adult, stable biological control is difficult to achieve and maintain in cassava fields.Recent research at CIAT has concentrated on using a naturally occurring baculovirus, which has been shown to be effective in controlling hornworm populations.The advantage of this virus is that it is storable (under refrigeration) by farmers; and when hornworm attacks occur, it can be applied similar to a pesticide. This technique is being used by farmers in Brazil and certain areas of Colombia.The pathogenicity of the baculovirus on hornworm larvae was evaluated using seven concentrations prepared in distilled water. The number of inclusion bodies par liter water was estimated by electron microscopy.A standard curve was prepared from these data (Fig. 4.5).An objective of the study was to determine the mean lethal concentration (LD so ) for each instar and the incubation period required to obtaln this mortality level. Evaluations for each instar were run until 90% mortality was obtained.The effect of virus concentration and larval instar on mortality was tested.After 72, 96, 120 and 144 h for instars 1, 11, 111 and IV, resp., 90% mortality was obtained with the highest virus concentration (0.9 mI virus/lt H 2 0 = to 1.5 x 106 inclusion bodies) (Fig. 4.6).A sigmo1.dal relationship between concentration and mortality was found for instars 1, 11 and IV.In the third instar, the relationship was asymptotic, with high mortality at a much lower concentration than in the other instars (Table 4.9). In the control larvae, mortality was never higher than 10%. -------+--------r-------~-------i--------+-------~ 0.00 -----------------------------------------------------------------------Preliminary tests with fifth instar larvae resulted, even at the highest concentration, in most larvae reaching the prepupal stage: but 22.5% and 40% of these died within 144 h after virus application for the lowest (185 x 104 inclusion bodies/lt H,O) and the highest (4.5 x 106 inclusion bodies/ lt H 2 0) concentrations, resp.Of those that reached the prepupal stage, 80% also reached adult stage.Of the remaining 20%, some mummification was observed, and no adult emergence occurred for some pupae.Determination of LD O and a detailed study of the interaction of virus concentr~ tion and time of mortality is in progress.Whiteflies, which can cause severe yield losses in cassava as a result of direct feeding, are also major vectors of cassava virus diseases. High whitefly populations have been reported from certain areas of colombia (Tolima, Valle del Cauca), Paraguay and NE Brazil.Several species have been reported, and no single species appears to predominate. Bemisia tabaci transmits ACMD in Africa.Although present in the Americas, it had not been reported feeding on cassava until recently, suggesting the existance of a distinct biotype in the Americas.In recent years, however, ~ tabaci has been reported feeding on cassava in Florida, Puerto Rico and the Dominican Republic, indicating the possible introduction of a new biotype in these areas.If this biotype is capable of transmitting ACMD and the disease enters the Americas, it could have devastating effects on cassava production; therefore, continued research on whitefly dynamics is a priority.Recent research at CIAT has concentrated on identifying resistant clones. The predominant whitefly species present is Aleutotrachellus socialis although field populations usually contain Trialeurodes variabilis and B. tuberculata as well.Screening cassava germplasm in the presence of this species complex has been in progress for several years. Four clones have been selected and evaluated in the field (ICA-Nataima, TOlima, Colombia).Whitefly population estimates, damage scores and yield in the clones were compared to the regional varo Quindiana and to CMC 76 and CMC 40 in an area ol high whitefly population pressure.Four reps of 36-plant plots of each clone and variety were treated with a pesticide and compared to untreated plots.The lowest damage seo res and highest yields were obtained from the clones. Clone yi.elds in the unprotected plots were higher than the check s (CMC 76 and CMC 40) and regional variety in the protected plots (Table 4.10). There was no significant difference in clone yields between protected and nonprotected plots (9% avg reduction), indicating that effective levels of resistance exist in these clones. Yield depression for the two checks and the regional variety averaged 33%.The high DM content and cUlinary quality of the regional varo Quindiana are primary criteria for farmer selection and probably account for this variety' s success in the Tolima region.Crosses between whitefly-resistant clones and the regional varo Quindiana have already been made in collaboration with the Breeding Program; and progeny will be evaluated in future trials.The feeding of Q.. bergi, a soil-borne hemipteran, causes severe deterioration to the roots and the loss of their commercial value. This polyphagous insect feeds on numerous other hosts (CIAT Annual Report 1989), thereby complicating control efforts. Although previous studies have shown that C. bergi can complete its development stages feeding only on cassava, it appears that cassava is not its preferred host. Bitter cassava is detrimental to its development and causes marked mortality; but even sweet cassava does not permit optimal population growth.Twenty pairs of C. bergi adults were placed in soH-filled plastic boxes with onions, cassava or maize as feeding media. Fresh roots were provided every 4 days. The no. of surviving adults was counted every 7 days, and oviposited eggs were separated from the soil by washing and filtering. Egg and adult counts continued until all adults had died. oviposition was highest when maize was provided and lowest on the cassava dieto A peak in oviposition on maize occurred in the first half of the adult stage1 thereafter, egg production was sustained at a constant level until death. Egg production was appreciably lower on both the bitter (M Col 1684) and sweet (CMC 40) cassava varieties.On onions and cassava, eggs were produced in the latter part of the adult stage, suggesting that essential nutrients for egg production are lacking in these hosts (Fig. 4.7).The death rate on all food types was constant (Fig. 4.8); the principal effect of food type on survivorship was lifespan. The LD 50 on maize was 95 days, compared with 68.5 on onions and 66 and 64 days, resp., on cassava clones CMC 40 and M Col 1684. Maize is clearly the superior host in terms of survival and fecundity.The major difference between cassava and onions is that the latter is a better host for reproduction.Although survival and fecundity of C. bergi were similar on CMC 40 (a sweet variety) and M Col 1684 (a bitter variety), the sweet variety is the preferred host when a choice is offered.Root damage levels were always severer on sweet varieties. These fecundity data help explain two observations on C. berqi behavior.Difficulties in maintaining ~ bergi colonies in the lab had be en experienced when sweet cassava was the medium provided for fecundity and reproduction. Since maize has been introduced as the feeding substrate, reproduction and subsequent colony maintainance has improved dramatically. During 1990 an avg of more than 10,000 nymphs and adults was provided each month, thereby facilitating numerous ongoing lab studies.In addition, it has been observed in field trials (especially in Santander de Quilichao) that after several cycles, C. bergi populations and subsequent root damage decrease, resulting in disappointing experimental results. As cassava is such a poor medium for oviposition, C. bergi populations may be decreasing over time for lack of a suitable host for maximum oviposition.Cassava and onions appear to be alternate hosts, which represent a viable means for survival but are not suitable for reproduction and population increases. The vegetative period was from May 1989-May 1990, and damage evaluations were made at harvest. Avg damage levels (grades 2-4 on a 0-5 damage scale) for commercial and noncommercial roots were 26.6% and 36.8%, resp. (Table 4.11). However, damage to roots (especially commercial roots) of M Bra 12, M Ven 11 and M Ven 1 was considerably higher than to roots of M Col 1505 and Sardina. These results are confusing in that M Bra 12, a high-HCN variety, should be the least attacked and show less damage than the sweet varieties.In this trial M Bra 12 had the greatest damage of the 5 varieties. The \"susceptibility\" of M Bra 12 indicates a possible \"behavior\" change; it may have a greatly reduced HCN content when grown under the edaphic and climatic conditions of pivijay. In a separate trial, 7 varieties were sown at 2 distinct vegetative cycles (May-May and Oct.-Oct.) and evaluated for insect and mite populations and damage.~.bergi damage averaged 24.3% for the 7 varieties during the May-to-May vegetative cycle, but only 0.6% during the Oct.-to-Oct. planting (Table 4.12). These results indicate that environment and/or edaphic conditions are more favorable to 'º-'bergi activity during the May-to-May cycle when high precipitation and subsequent greater soil moisture (combined with lower soil temp) may alter C. bergi behavior, resulting in less root damage. This hypothesis will be evaluated further.In ciénaga de Oro, damage reached 60% root damage in 'º-'bergi control experiments.It can be seen that C. bergi is becoming an important pest in cassava fields on the Colombian North Coast and requires monitoring in the future. Varieties that expressed little or no damage symptoms in other cassava-growing regions (i.e., Valle del Cauca) display severe damage symptoms on the North Coast. This phenomenon needs further investigation.The black lacebug, A. macha lana (Hemiptera: Tingidae), was first reported on cassava in COlombia, Venezuela and Ecuador in 1987.A closely related species, A. opaca Champion, which has also be en identified, is indistinguishable from A. macha lana in field infestations. Damage, which is primarily to the lower plant leaves, is manifested by considerable speckling, which in severe infestations whitens the leaves.To evaluate the potential economic importance of this pest on cassava, a field trial was conducted at CIAT from Oct. 1989 to Sept. 1990 using var. M Col 22 in a random plot design, with and without pesticide application (2 cc dimethoatejlt water).In naturally infested fields, a damage grade of 3 (O to 5 scale) was recorded from the 4th to the 9th mo after planting, while damage level reached 0.8 in the control plots. There was a 39% reduction in RX compared to the control (pesticide-applied plots) (Fig. 4.9).The within-plant distribution of ~. machalana was evaluated in four clones (M Sra 12, M Ven 77, M Bra 677 and HCM 1). Within-plant distribution was similar for all clones:The lower and intermediate leaves supported 83% of the adults and immatures (Fig. 4.10).The relationships among damage, population density and duration, and yield loss 1S unknown; thus preliminary screening for sources of resistance was based on the se lection of clones from yield trials.Under natural field infestation, 278 clones were evaluated during high lacebug populations using a damage scale of O (no damage) to 5 (necrosis and defoliation). Low damage scores (Grade 0-1.5) were found on 94 clones (Fig. 4.11). As screening was done with natural populations of A. machalana, escapes are probably included in this group; thus continued evaluation of selected clones as well as additional material from the germplasm bank is planned.preliminary studies on the life cycle of A. macha lana were done in the lab on excised leaves of the varo CMC 40 in petri dishes at a constant temp of 28 0.6), improvement in yield could be achieved by improving the crop photsynthetic capacity through higher leaf area and higher leaf photosynthetic rate (carbon assimilation source) and by increasing storage root no. (sink strength).Tolerance to low-P soils also appears to be directly related to both assimilation capacity and storage root no.High assimilation capacity and high sink strength would probably lead to higher Puse efficiency, particularly in soils low in P (see section 5.2).Long-term response of cassava to NPK fertil izer in acid soils For the last 7 years cassava was grown at two experimental sites in the acid soil at Santander de Quilichao to assess the effect of this permanent production system on cassava productivity and its response to applied fertilizer.One site was initially fertile (fertile plot) while the second was very low in fertility (exhausted plot). Two cassava clones (M Col 1684 and CM 91-3) were planted at the two sites annually.Fertilizer treatments consisted of three levels of NPK (O, 50, 100 kgjha each of NPK). Each oí the three elements was also varied independently at three levels (O, 50, 100 kgjha) while the other two elements were kept constant at 100 kgjha.The treatmentsH (4 reps) were allocated in a complete randomized block design within each site.AlI fertilizer treatments were applied at planting. Harvesting was at 11 mo after planting.Figures 5.10 and 5.11 illustrate cassava yield response to the combined fertilizer applications at the two sites for 6 yr.For both varieties, first-year yields in the fertile plot were higher than in the exhausted plot, indicating the extremely low fertility in the latter. This enhancement in yield was apparent despite the level of applied fertilizer.In absence of applied NPK, yields in the fertile plot decreased from initial levels of about 38 tjha to around 15-20 tjha by the sixth yr. The rate of yield reduction was greater in CM 91-3 than in M Col 1684. On the other hand, the level of productivity in the exhausted plot without NPK fertilizer remained almost stable (ca. 15-18 tjha) for both varieties, which was equivalent to the lowest yields achieved in the fertile plot by Yr 6 of cassava production. This mimimun level of productivity clearly illustrates that sustainable yields could be obtained in infertile soils without fertilizer application, provided that the soil OM is adequate to release available nutrients. Furthermore, annual application of fertilizer can ensure higher levels of productivity when cassava is continuously cultivated in the same site without fallow or crop rotation.These data contradict the long-held views that cassava cultivation causes soil depletion and degradation in the tropics.It has been documented that cassava produces more biomass per unit nutrients removed from the soil or from applied fertilizer than most other annual grain and root crops.Nevertheless, the long-term concern of soil fertility dictates that reasonable levels of fertilizer application be practiced irrespective of the kind of crop produced. Cassava should not be considered an exception in this case.For resource-poor farroers, who are the main growers of cassava, alternative means for improving soil fertility should be sought. Perhaps by seeking better patterns of land uses and crop production systems, soil fartility could be maintained to levals capable of sustaining reasonable productivity.In soils similar to those at Quilichao, long-terro cassava production appears to be more limited by the level of K than of N and, to certain extent, of P.Figures 5.12-5.17 illustrate the long-terro response of cassava to NPK.It is clear that cassava is highly responsive to K, particularly when the soil is poor in this element (Figs. 5.12 & 5.15); 50 kg Kjha almost doubled the yield of cassava.Moreover, in the absence of adequate K levals, no benefit in productivity i5 achieved by 5upplying the crop with high levels of N and P.This conclusion is further substantiated by the lack of 1arge responses to N and P when K levels were high (Figs. 5.13-5.17). In cassava a large portion of absorbed K (>60%) is removed with the harvested roots; whereas significant amounts of absorbed N and Pare recycled to the soil through fallen leaves and crop residues. It is known that a crop of cassava can return to the soil from 3 to 6 t of dry leaves during its growth cycle of 10-12 mo.In addition to the native OM in the soil, this relatively large amount of crop residue can serve as a source for nutrients. Figure 5.17 Long-terro responses to P application in acid soils, Santander de Quilichao, Clone CM 91-3.In conclusion, it can be stated that long-term cassava productivity can be maintained at a reasonable level in acid soils high in OM provided that moderate levels of K fertilizer are applied to compensate partially for the removed soil K in the harvested roots. However, when soils are poor in OM or sandy, other nutrients such as N and P would limit productivity.In contrast to the Quilichao soils, the Media Luna soils (Magdalena state, Colombia) are sandy with extreme1y low OM and nutrient contents (CIAT Annual Report 1988). Yields of cassava in that region have declined rapidly in the last few years.One of the more obvious reasons (see Pathology section, Chapo 4) is the disappearance of the traditiona1 \"fallow system\" due to pressure on the limited land available to local farmers.In addition, the resource-poor farmers rarely apply fertilizer. Field trials were initiated in the last two years to assess the value of applying a moderate level of NPK fertilizer (50 kg/ha NPK or 330 kg of 15-15-15 compound fertilizer), which is equivalent in cost to the frice of one ton of fresh cassava (ca. Col. Ps. 28,000).Tria1s were conducted on a private farm using 15 cassava clones including local varieties as well as sorne CIAT advanced lines. Split applications of the fertilizer were made at 30 and 60 days after planting.Table 5.4 contains data on DMY and biomass production for the 1989-90 season. The experimental site was the same for the 1988-89 trials, but with a new group of cassava clones. Average increases for all clones due to fertilizer application were 103%, 136% and 116% for DMY, top growth and total biomass, resp. These differences in yield and biomass due to fertilizer application are more than twice the increases in the 1988-89 trial (ca. 47% increases, CIAT Annual Report 1989). This indicates that by continuously growing cassava in this poor sandy soil, productivity decreases and the need to fertilize the soil becomes more crucial.Among this group of genotypes, the increase in RY ranged from 38% for M Ven 25 to 275% for CG 1411-1 (a CIAT clone). As a result of the fertilizer, the three local varo (M Col 1505, M Col 2215 and M Col 2216) showed yield increases of 124%, 81% and 171%, resp.Beside these substantial increases in RY, top growth was also greatly increased. This is of paramount importance to cassava growers as production of sufficient good-quality stakes is critical in that 1 Avg exchange rate for 1989-1990 season, Col. Ps. 433.73 ~ US$1.00. region.The cost of added fertilizer is insignificant compared to the large gains in yield and the supply of planting materials.There was also a reduction in labor costs for weeding as ferti1izer enhances cassava growth and results in reduced weed populations.The Cassava Program has be en conducting research on production management practices effective in minimizing soil eros ion in erosion-prone hilly lands, both in Latin America and Asia (see section 5.3).Resul ts of these research efforts indicated some useful practices that can sustain cassava productivity and also help in soil conservation. Table 5.5 summarizes data on soil 10ss as affected by various production practices along with cassava yield at Quilichao station. Similar results were obtained on private farms with steeper slopes (20-30%) at Mondomo (Cauca state). Annual soil loss from bare soils ranged from 50 to 200 tjha at Quilichao (~ 12% slope) and from 50 to 300 t/ha at Mondomo (~ 25% slope).A major portion of this loss can occur in a very short time because of water runoff during high-intensity rains (CIAT Annual Report 1989). This suggests that in less than a decade, the thin top soi1 of those regions can completely disappear and the land will become unproductive.The findings also point to the high risk in growing cassava on vertical ridges where soi1 loss is very high as compared to other more effective practices. Growing cassava in association with annual grain legumes (e.g., common beans, cowpeas, peanuts) also resu1ts in more soi1 loss than growing cassava alone. Some of the most effective practices in minimizing soil erosion are growing cassava on contour ridges with live barriers of native grasses or with elephant grass. Cassava in association with some forage legumes (as live ground covers) also appears to be effective; nevertheless, the feasibility of the latter practice has to be determined because of the difficulties inherent in establishing and managing the legumes in association. Research on soil erosion control has been strengthened by a joint project with the University of Hohenheim, funded by the Federal Republic of Germany.Generally in the tropics, particularly in Latin America, the cassava-growing areas are characterized by a strong acid, P-deficient soil. Low P levels can limit cassava yield. CIAT germplasm is currently being characterized for tolerance and adaptation to low-P soils at Santander de Quilichao.Since 1980, more than 1500 clones have been evaluated, several of which have been found to be tolerant to low-P soils (CIAT Annual Reports 1982-87).A collaborative research project between CIAT and the Swiss Federal Institute of Technology and funded by the Swiss Development Cooperation (SDC) was initiated in 1988 to study varietal response to P and to elucidate possible mechanisms underlyinq this response.Two crop cycles (1988-89 and 1989-90) have been conducted on a private tarm near CIAT's Quilichao station.The experimental site was under tropical pasture grass tor several years, and soil-P was about 2.5 ppm--lower than the critical level required tor optimum cassava growth.The experiment was laid out in a split-plot design with three reps: and the following fertilizer treatments (P as triple superphosphate, K as KCl, N as urea) were assigned to the main plots: (1) unfertilized: (2) 100 O 100 kg NPK/ha; (3) 100 50 100 NPK/ha; and (4) 100 100 100 kg NPK/ha. The same treatments in the same plots were maintained in the second crop cycle. Before planting the second crop, 500 kg/ha of dolomitic lime were incorporated in all plots. Cassava varo CM 523-7 (released in 1989 under the name ICA-Catumare for the Llanos Orientales de Colombia), CM 489-1, M Col 1684 and CMC 40 were planted as sUbplots at a population density of 10,000 pI/ha. Sequential harvests of 8 protected pl/plot were made every 2 mo (up to 10 mol to determine the pattern of qrowth over time. The plants were separated into 7 \"parts\": younqest leaf blades (nonfully expanded leaves), mature 1eaves, petioles, stems, storaqe roots, original stakes and new formed tissues at this level (which is neither root nor stem), fallen leaves (with fallen petioles), collected between two harvests.In the second crop cycle, flowers and fruits were collected separately. P content was determined for each plant part, and total P uptake was estimated as the sum of P accumulated in the different plant parts.This was obtained by multiplying P concentration in each plant part by its dry weight.Soil samples (taken to a depth of 20 cm at 2-mo intervals) were analyzed for available P and exchangeable K (Bray 11 extraction method). For fine root density determination, 12 soil samples per plot were taken at the mid-distance between two plants by hand auger (433 cm3) in the 0-20 cm soil layer. Rootlets were separated from soil by flotation, and length was estimated using the grid line method. Vesiculararbuscular mycorrhiza (VAM) infection of fine roots was determined under stereoscopic microscope after Trypan blue staining.Single-leaf gas exchanges (C02 uptake and H20 loss) were measured on the 5-7th upper canopy leaves 2, 3, 4 and 5 mo after planting, using a portable infrared gas analyzer. Measurements were always made from 0800 to 1300 h with a solar irradiance over 1000 ~ mol m-2s-1 in the active photosynthetic range.P and K fertilizer application increased soil nutrient availability (Fig. 5.18). N application had no effect (data not shown). In the first crop cycle, at 2 mo after planting and app1ying NK fertilizer, there was very 10w availability of P in the control treatment (O kg P/ha)--the only one under the critical level (6 ppm).During the second cycle (1989)(1990), soil P in the control treatment ranged from 2.5 to 5.3 ppm.Comparing these levels with that at the beginning of the experiments in 1988 (2.5 ppm), cassava caused no apparent P depletion after two crops.Two consecutive applications of 100 kg P/ha/yr induced a dramatic buildup of P to 25 ppm in the second ayale. With intermediate P applications (50 kg p/ha/yr), P availability reached an optimal level for cassava growth.The yearly application of 100 kg K/ha maintained exchangeable K aboye the critical level (0.15-0.17 meqf100 9 soil) after two cycles (Fig. 5.18).In plots without fertilizer application, soil K contents fe11 from 0.15 meq K at the beginning of the first cycle to 0.10 meq K 6 mo after p1anting during the second cycle, stressing the importance of K fertilization to sustain cassava production (see Sectien 5.1).Figure 5.19 i11ustrates fresh RY and its evolution over time after planting for each of the two crop cycles.Clone CM 489-1, which had the highest yield at any given P level, showed a significant response te P in both years.M Col 1684 did not show any significant response to P at final In the second year, yield of unfertilized plants decreased compared to the first crop cycle, partly bécause of K stress.Figure 5.20 shows DMY at final harvest for both crop cycles. Generally, yields were higher ln 1989 than in 1990, partlcularly in the zero fertilizer treatment. In the second cycle no significant difference was noted between 50 and 100 kg P/ha for any clone despite large differences ln 5011 P availability, confirming the optimal fertilizer rate of 50 kg P/ha/yr. Differences between the two cycles could be due to changes in climatic factors (storm with some plant lodging in 1990) and canopy development (see below); however I the dlfferential clonal response to P was consistent across both years.The two most contrasting clones (CM 489-1 and M Col 1684) maintained different behaviors over the years; i.e., a significant response to P application in CM 489-1 but not in M Col 1684.Under P stress, however, these two clones had similar yields both years.Figure 5.21 illustrates the effect of fertilizer treatment on LAI evolution over time during the two crop cycles.In 1990 LAI reached higher values in all clones than in 1989. The rapid leaf area development was already evident at 2 mo a!ter planting, reaching its maximum at 4 mo.At that point, M Col 1684 showed the highest response to P; CM 523-7, the least.The LAIs in CM 489-1 and CMC 40 were significantly increased by P application.In 1989, LAI reached its maximum from 4 to 6 mo after planting, but with lower values and less response to P than in the 1990 crop. In 1990, leaf fall was very marked just after reaching maximum values.Excessive shading due to large canopy enhanced rapid senescence and subsequent leaf fallo The apparently large leaf regrowth in CM 523-7 and CM 489-1 might partly explain the decrease in RY as compared to 1989.It is known that cassava response to soil fertility is markedly expressed in lea! canopy changes (confirmed by the present data, Fig. 5.22); however, the varieties differed in their response to P level with respect to leaf canopy. CM 523-7 had the highest avg LAI values with no significant response to p¡ whereas CMC 40 had the lowest avg LAI values and significant response to P. The two contrasting clones CM 489-1 and M Col 1684 had very similar LAI values and response to P.M Col 1684 could not transform its leaf canopy increase into economic yield increases because of a poor HI at high P rates (HI = 0.65 at high P and 0.77 at o P) ¡ while the HI of CM 489-1 did not change much with P rates (HI ~ 0.68 at high P and 0.7 at O P). M Col 1684 is known to have a high HI (HI = 0.71 avg for all treatments), higher than CM 489-1 (HI = 0.68 avg for all treatments). As varieties with comparable HI may respond differently to LEAF AREA INDEX 4. 5~---------------------- increased soil fertili ty, HI is not a good parameter for predicting cassava reactions in this regard.Figure 5.22 also shows the influence of fertilizer treatments on no. of storage roots. All varieties showed a significant response to P.As in 1989, Clone CM 489-1 reached the highest values.No. of storage roots was significantly correlated with final DMY (r=0.70, P. concentr~tion, suggesting nonstomatal regulating mechanisms.The hypothesis of a \"feedback\" effect of sink-capacity on photosynthesis appears to be confirmed partia11y. Final DMY was significantly correlated with avg leaf photosynthetic rate (r=O.65, P '\" <11 .c: ...... It can be seen (Table 5.11) that cassava yields were low even when fertilizers were applied because cassava could only be planted in August (i.e., toward the end of the wet season) and had to be harvested at 9 mo, 5-6 mo of which were very dry.Thus the growing of a green mahure crop before planting cassava may not be feasible in areas with only one relatively short wet season because much of the wet season will be used for growing the green manure and little is left for cassava. Green manuring may be a more attractive alternative in areas with a bimodal rainfall distribution or in those that have a longer wet season. In Thailand it may be useful only if cassava can be left in the ground for 15-18 mo and grown in a 2-yr cropping cycle. ----------------------------------------- *,*\" -Means within a colurn, followed by the same letters are not significantly different at 5X and 1X levels t resp., OMRT.manuring is to grow a legume crop together with with the purpose of protecting the soil from controlling weeds and contributing N to the cassava to green cassava, eros ion, crop.Thus in 1988 and 1989 several legume species were grown as cover crops under cassava in Pluak Daeng, Thailand. In 1988 the cover crops were seeded in rows at the time of planting cassava.AIl cover crops competed with cassava, causing a reduction in cassava yields (1989 Annual Report).In 1989 each legume plot was split in two; in one half, 30-cm wide strips for planting cassava were prepared mechanically with a hand tractor, whila in the other half the strips wera prepared by spraying an herbicide (Gramoxone = paraquat) to kilI the cover crops.Cassava was planted at 110 x 90 cm distance in the preparad strips.Table 5.12 shows the number of plants harvested and the cassava RYs obtained for both methods of plant bed preparation. The cover crops had no significant effect on cassava establishment, but significantly decreased cassava yields due to competition for *,** -Meaos wfthin a column, followed by the same letters are not significantly diffenent at 5% and 1% tevels_ resp.f DMRT~ 1 ight , water and nutrients. As the cover crops were cut at a 3D-cm height at regular intervals to prevent excessive light competition, cassava yield reduction was less pronounced in the second year than in the first when the growth of cover crops was not controlled. Nevertheless, cassava yields were significantly reduced by the oover crops of Centrosema pubesoense and C. acutifolium, as well as by siratro (Macroptillium atropurpureum) and Stylosanthes hamata when the strips were prepared by herbicide spraying (there was much less yield reduction when a hand tractor was used). Given its relatively slow establishment, S. hamata was the least competitive cover crop in the first year; however, in the second year it was among the most oompetitive cover orops, causing a significant reduction in cassava yield with both methods of plant bed preparation. Mimosa envisa, Arachis pintoi and Desmodium ovalifolium were among the less competitive cover crops. Soil analyses after every cassava harvest indicate that the cover crops had no significant effect on soil fertility and could not prevent a significant reduction of the level of OM, from 0.93% before planting the first cassava crop to 0.57% at harvest of the second. Thus, while cover crops may be effective in reducing eros ion, they seem to contribute little to the maintenance of soil fertility and can cause severe competition for cassava, especially during periods of drought.For that reason, it is unlikely that farroers will find this a useful practice.Table 5.13 shows the results of a similar trial conducted at the South China Academy of Tropical Crops (SCATC) on Hainan Island.Four rows of cassava were alternated with one row of pasture species, four grasses and four legumes, with the objective of establishing apasture after the cassava harvest. Brachiaria dictyoneura and ~ humidicola were the most competitive grasses; setaria anceps, the least competitive.Among the legumes, stylosanthes guianensis and Q.... hamata were less competitive than the two Desmodium spp., mainly because of their slower rate of establishment. Brachiaria decumbens was most productive in terros of DM production. The strip cropping of pasture species within a cassava stand seems to be a promising way of establishing pastures without seriously affecting cassava yields. (1) 4 rows of cassava var. se 205, alternated with 1 row of pasture spp.5.4.1.4 Effect of intercropping. Intercropping cassava with grain legumes will establish a rapid soil cover and reduce erosion; and the crop residues of the intercrops, if left in the field, can contribute nutrients to cassava and help maintain soil fertility.During 1988-89 a trial was conducted in Rayong, Thailand to determine the best spacing of peanuts, mung beans and soybeans intercropped between cassava rows.Cassava was planted at 180 x 55 cm at a population of 10,100 plants/ha. Table 5.14 shows that cassava RY was not significantly reduced by the mung bean intercrop, but was reduced by intercropping with 3 rows of peanuts or with 2-3 rows of soybeans. Cassava RY was always higher when the intercrops were planted at 60 rather than at 45 cm from the cassava row, but the intercrop yields were generally slightly higher at 45 cm. Although intercropping always increased the land equivalent ratio (LER), the various spacing treatments had no significant effect on the LER. Gross income was significantly increased only by intercropping with peanuts, while soybeans or mung beans had no positive effect on income.Another intercropping trial was conducted in Hung Loc centre, South Vietnam, where cassava was intercropped with seven grain legumes and maize.Table 5.15 shows that cassava RY was slightly increased by intercropping with soybeans and mung beans, which produced very low grain yields, but decreased by intercropping with winged beans, peanuts, cowpeas and maize.Net income was greatest for cassava monoculture or when intercropped with peanuts. All other crop combinations were less profitable.Because of its slow rate of early growth, cassava normally takes several months for complete canopy closure. For that reason cassava cultivation can cause serious problems of soil erosiono However, once the crop is well established, the foliage is quite effective in protecting the soil from the direct impact of rain drops. To be effective in reducing soil erosion, cultural practices should therefore aim at rapid canopy closure I minimum disturbance of the soil, or provision of barriers to slow down water runoff. To determine the most effective soil and crop management practices that reduce erosion and increase cassava yields, simple eros ion control trials were conducted at 10 locations in 5 countries.Different management practices were established on relatively large plots with a uniform slope; a contour channel was built below each plot to catch the eroded soil sediments, which were weighed at month1y intervals. In most locations the channels were lined with plastic sheet s that had little holes to let the runoff water seep out; but at a few locations the channels were lined with a tightly woven 660 cde(1) 45/2 and 45/3 refers to planting 2 ot 3 rows 01 the intercrops at 45 cm from cassava row; 60/2 and 60/3 i& same at 60 cm frctn cassava row; no. in pa~theses 15 plant distance (cm) within the intercrop row.plastic mesh or with bricks and cement to improve durability. In one location a special splitter system was installed to measure runoff water as well.Minimum or zero tillage usually produced a low level of erosion (Table 5.16); at Pluak Daeng (Thailand) it also produced the highest cassava RY. However I in many other locations such as on Hainan Island (Table 5.17) I RY decrea sed as a result of soil compaction or inadequate weed control. The localized preparation of planting holes with a hoe (Table 5.17) further reduced erosion and gave better RY. contour-prepared strips alternated with unpreparad strips, was not affactive in reducing eros ion in either Thailand or Hainan (Table 5.17); it also resulted in low yields.Normal plowing followed by harrowing always resulted in high so11 losses in Thailand, Indonesia, China and the Philippines unless this practice was followed by contour ridging.Contour ridging was consistently effective in reducing erosion and usually resulted in high yields (Figs.5.35 & 5.36; Table 5.17).Planting intercrops or live barriers of grasses, legumes or hedgerow trees generally reduced erosion, but tended to reduce cassava RY because land was occupied by the barrier species or there was direct competition for light, water and nutrients.In Thailand (Table 5.16) intercropping with peanuts reduced erosion but also seriously reduced cassava RY. In Lampung Province of Indonesia, intercropping cassava with maize, rice or peanuts also reduced eros ion (Fig. 5.37) but seriously reduced cassava yields (Table 5.18).Gross income was highest when cassava was first intercropped with peanuts, followed by mung beans.In E. Java it was found that live barriers of elephant grass (Pennisetum purpureum) or setaria grass (Setaria anceps) were more effective in reducing erOS1on than those of peanuts or hedgerows of Leucaena or Gliricidia (Fig. 5.3a). Elephant grass, when regularly cut, is a highly promising live barrier. On Mainan Island of China, a live barrier of Brachiaria decumbens was generally more effective in reducing eros ion than one of Stylosanthes guianensis.Application of dry grass as a mulch was found to be highly effective in the Philippines, reducing erosion and increasing cassava RY, probably through the release of some nutrients.Althouth application of chemical fertilizers reduced eros ion consistently in various trials in China, the Philippines and Thailand (Figs. 5.35 & 5.36;Table 5.16), it increased eros ion at some locations in China, probably due to the loosening of soil during application; moreover, the fertilizers had no significant effect on growth and yield. It i9 mainly on very poor 90ils that fertilizer application will increase yields and reduce erosion through a mora rapid canopy closure. The latter can also be achieved by closer plant spacing, which was very effectiva in Thailand in reducing erosion and increasing yield (Table 5.16).A spacing of 80 le 80 cm could be recommended.In Lampung, Indonesia, square planting (100 x 100 cm) reduced erosion markedly when compared with single (200 x 50 cm) or double (273 x 60 x 60 cm) row planting even when these rows were grown along the contour (Fig. 5.37; From these experiments it may be concluded that soil erosion can be greatly reduced by (a) simple agronomic practices that result in a rapid canopy closure, such as fertilizer application, closer spacing and square planting arrangements; (b) establishing a soil cover such as applieation of mulch, intercropping, and minimum tillage with crop residues left on the soil surface; or (e) by barriers that slow down the runoff water, such as contour ridges or banks, live barriers of elosely spaeed tillering grasses and even rock barriers along the contour. Fertilizer application, mulching and closer spaeing will often also increase cassava RY, which make these practices most attractive to farmers.During 1990 the Agronomy section of the Cassava Program conducted outreach activities, mostly OFR in several countries of Latin America.Support research, mostly in intercrop systems with cassava, was conducted both at HQ and on the North Coast of Colombia, the results of which are presented here.Performance of the cassava/maize intercrop across different environments on the North Coast of ColombiaIn most countries where maize and cassava are intercropped, the number of new maize varieties released by national institutions is larger than the number of new cassava varieties.Improvements in the coverage of extension services and the efforts of private seed companies are al so contributing to better availability of new maize varieties te farmers.Adoption of improved varieties depends mainly on their availability on the local market and on the farmers' economic conditions.Most of the recently released maize varieties have be en developed •for intensive production in monoculture, with improved Hl as the main breeding objective; however, small farmers cultivate maize using traditional management practices, treating impreved varieties exactly like traditional ones: intercropped with other species, planted at similar densities and stored in the same facilities.Such production practices modernize slowly as the new varieties become more and more familiar te farmers.The inclusion of new maize varieties in the cassavajmaize intercrop represents a technological innovation with several management implications.National research and extension teams of Colomb ia, Ecuador, Paraguay, Ecuador and, more recently, Brazil are conducting OFR to adapt this new technology better te their specific production conditions.Several diagnostic studies conducted by ClAT and lCA on the North Coast of Colombia since 1985 indicate that farmers intercrop cassava mainly with traditional maize varieties. The low market availability of seed was given as the main reason for not using new maize varieties more frequently. At the time, two new varieties (V-156 and V-109) were released on the North Coast, based on their performance as a monocrop in farmers' fields.lt was expected that as more seed became available, new maize varieties would replace the traditional ones in the intercrop with cassava. similar situations were developing in other countries where the cassava/maize intercrop is commonly cultivated. since 1985 a series of studies of the agronomic implications of new maize varieties for the maize/cassava intercrop have been conducted jointly by CIAT and ICA-Regional Ir. This ICA unit is responsible for the Colombian North Coast sta tes of Córdoba, BOlívar, Sucre and Atlántico. Several diagnostic studies were conducted, and different experimental procedures were tested in the field.Training in field evaluation methods and data analysis was provided to improve the ability of the national team to conduct OFR on intercrop systems.Similarly linked research and training efforts have been pursued with national institutions of other countries. The fOllowing summary of findings is based on 4 years' research.Venezolana, the most commonly grown cassava variety on the North Coast, was used in all on-farm trials. Three to five new maize varieties were tested during the experimental phase reported here; however, ICA varo V-156 and V-lOS and the local maize variety were always included.Maize and cassava were intercropped in alternate rows at 1.2 x 1.2 m in a split-plot design with cropping system (maize and cassava in monoculture and the maize/cassava intercrop) as the main plot and maize variety as the subplot.Selection of planting material, protective stake treatment, application of preemergence herbicida and planting wara done jointly by researchers and farmersi however, crop management was the responsibility of each farmer.Statistical analyses were based on 479 plots grown on 19 farms with at least two reps per farm. Half the plots were planted te maize or to maize associated with cassava, and the other half to cassava as asole crop or associated with maize.Cassava was intercropped with improved maize varieties on 189 plots and with the traditional maize variety on 51 plots.improved maize varieties increased cassava y ield by ca. l. O t/ha over the association wi th traditional varieties (Table 5.19).Cassava yield reduction, when intercropped with either traditional or improved maize varieties, was small (2-3 t/ha) compared to the cassava monocrop, and was compensated by the additional yield from the maize component (Table 5.20).This may explain why Nerth Coast farmers rarely plant cassava in moneculture. The avg yield of 13 t/ha for cassava as asole crop was very close to the avg yield fer the area, as reported in surveys conducted by ICA and CIAT; but lower than expected gi ven the consistent usa of stake selection and treatment, and preemergence herbicides.Significant differences in yields of all cropping systems were found between years (P ~ 0.05), which is a characteristic of rainfed, small-scale agricultural systems and is an important factor in farmers' decisions to plant intercrops rather than sol e crops as part of their risk-aversion strategy.Significant differences in all cropping systems (P ~ 0.05) were found among farms. This variability is related to physicobiological characteristics of the farm itself, as well as to differences in management.In addition to the variability in rainfall distribution froro year to year-which is probably the main cause of differences in yields between years--the environment changes continuously as the farmer rotates from one plot to another within the farm. A progressive decrease in soil fertility from one cropping season to the next occurs if a crop is cultivated on the same piece of land. variations in management were expected even though several activities including planting were standardized through the participation of the researcher; and several cultural practices were common among the farmers included in the study.No differences in yield were found among cropping systems for improved or traditional maize varieties; however, improved varieties were always superior in yield to traditional ones (Table 5.20).Yield of improved maize was calculated as the average of at least three varieties and was compared with only one traditional variety. The traditional variety is similar in origin and general agronomic performance throughout the North Coast although some variation in performance between farms occurred, as is characteristic of landraces. This variability was not studied.Comparing yields of cassava and maize in monoculture and in association, the LERs were 1. 77 with traditional varieties and 1.72 with improved maize.These high LER values, in an area where access to land is very limited, clearly explain the farmers' preference for intercropping.Although both interactions were significant, the level of significance of the interaction between year and cropping system was greater than for the interaction between farmer and cropping system.This could be interpreted as an indication that variations in environmental conditions (e.g., rainfall distribution) affect yields of maize and cassava in all cropping systems tested, more than the variability between farms as production units (e.g., soil fertility, water hOlding capacity, crop management). When cassava' s reaction to intercropping with improved and traditional maize varieties is evaluated without including the cassava monocrop as a check, cassava yields when intercropped with traditional or improved maize varieties are not statistically different.As the improved maize varo V-109 was included in the field experiments from 1986 onward, comparisons between the yields of cassava intercropped with traditional and improved maize varieties were based on data from 1986-88 (Table 5A one tjha difference between the yields of cassava intercropped with traditional and with improved varieties of maize would not be detected by an analysis with a 26% coefficient of variance; however, for intercropped maize varieties, the sensitivity of the analysis was 0.38 tjha.Neither traditional nor improved significant yield reductions as cropping with cassava. These data maize varieties suffered a consequence of interfor maize corroborate Based on analyses of three consecutive cropping seasons, the main effects of year and farm on yield of the cassava¡maize association were highly significant. The interactions of year x farm, and among year x farm x cropping system were also highly significant, suggesting that the cassava¡maize association will perform similarly regardless of the maize variety planted; but it will vary as a whole depending upon the environmental conditions prevailing in a given cropping season, the specific conditions of the farm or locality and¡or farmers' management.Differences due to year and farm were the main sources of variability for the improved maize (V-156, V-I09)¡cassava (var. Venezolana) intercrop (bivariate analysis; P $ 0.01). Cassava¡maize V-156 was the best combination in terms of yield across the localities tested (DMRT, P $ 0.05).No interaction was found for year and cropping system, indicating that the same results should be expected over time despite yearly variation in factors such as weather.Given the yield increases that can be attained with improved maize varieties with no negative consequences for cassava production, adoption of improved maize varieties would be expected to proceed more rapidly if there were an increase in the relative price of maize. A survey of 360 farms on the North Coast showed that 37% of the farmers were already planting new maize varieties.In Córdoba, where maize monocropping is more common than in the other North Coast states, the proportion of farmers' planting improved varieties was even higher.The stability of different cropping systems across different environments was tested, and the sensitivity of cropping systems to various environments was estimated. For purposes of this analysis, environments refer to a series of farms with characteristic physical, biological and management properties.The environmental favorability oi farms was based on relative comparisons within the range of farms selected as experimental sites. At present, the available regional information on the spatial variability in physicobiological characteristics is inadequate; therefore, the analyses of environmental sensitivity provided in this report should be considered as preliminary.As asole crop, cassava is less sensitive (Fig. 5.39a) to different environments than any of the maize varieties tested (Fig. 5.39b). Cassava yield estimates varied between 10 and 14 tjha across the environments tested.From this analysis cassava would be expected to yield over 10 tjha even in the least favorable environment although it does not respond very positively to more favorable environments.The reaction of maize to different environments is very unlike that of cassava.The improved and traditional varieties respond positively to better environments but do not perform very well in the less favorable ones.Contrary to what was expected, the traditional maize variety did not perform better than the improved varieties in the les s favorable environments; but as expected, its performance in the most favorable environments was inferior to that of improved varieties (Fig. 5.39b).V-I09 is claimed to be more drought resistant than V-156.This observation is consistent with the superior yields obtained with V-l09 in less favorable environments; however, the performance of V-156 was superior in more favorable environments.The general performance of maize as sol e crop and in association wi th cassava is similar in terms of environmenta1 sensitivity. The behavior of each variety under intercropping can be predicted from its behavior in monoculture; however, the expected yields in intercrops are lower than in sole crop (Figs. 5.39a & c).From the standpoint of cassava, association with maize increases its sensitivity to different environments as the cassavajmaize performance is inferior to that of cassava as sole crop in less favorable environments and much better than cassava monoculture in more favorable environments.Deciding upon fertilizer recommendations for intercrops is difficult because the components generally differ in their requirements for nutrients and in the manner and timing of ---Maize V-l56 + Cassava 1.-----Maize V-I09 + Cassava -1700 -1100 -500 o 400 1000 1600EIIV lRO!OOlIITAL EFFECT Figure 5.39 Sensitivity analysis for (a) eassava sol e erop and intercropped with a regional and two improved maize varieties¡ (b) three maize varieties as sole erop¡ and (e) three maize varieties intereropped with eassava. Environments to the left and right sides of the perpendicular divisory lines are less and more favorable, resp. (analysis of ineomplete data from experiments on the North Coast of Colombia, 1985-88.) application.Furthermore, the relative ability of a given species to take up a specific nutrient while competing with the root systems of other species is not well understood. When cassava is intercropped with maize, the latter will probably respond positively to increases in N applications up to a level that depends on variety and soil type. Cassava, on the other hand, will increase its HI at N levels that are still adequate for increased maize yield. Similar relationships occur with other nutrients and other crop combinations.In practice, farmers will decide whether to fertilize a given intercrop based mainly on the probable return on investment in fertilizers by either or both crops.Improved maize varieties have outperformed traditional varieties in association with cassava at several experimental sites, without negatively affecting cassava yields. New maize varieties perform even better in an intercrop with cassava if small amounts of fertilizers are applied.If the tendency to replace traditional with improved maize varieties continues, farmers will eventually be faced with the decision of whether to fertilize the maize planted in association with cassava in order to benefit fully from the use of improved maize varieties, which allocate more photosynthates to the grain than traditional varieties.Consequently, soil nutrient depletion will proceed at a faster rate as new varieties replace the traditional landraces. In most regions where the cassava/maize association is found, production systems rely on fallow periods for the restoration of soil fertility.As improved maize replaces traditional varieties, the duration of the fallow phase will have to be increased, or fertilization of the new maize varieties will be required if soil fertility is to be maintained. possible benefits of fertilization to the cassava/maize intercrop include higher maize yields in the short term and greater sustainability of production in the long runo Few recommendations for fertilization of the cassava/maize association are available in the literature; however, positive responses to small amounts of fertilizers were obtained with new maize varieties intercropped with cassava in preliminary experiments at a few sites on the Colombian North Coast. Direct application of fertilizer (in bands) to maize, approx. 10 days postemergence, rather than to the two crops simultaneously at planting gave the best results in small-scale trials.As the improved maize varieties were developed for cultivation in monoculture but performed better than traditional ones in association, the existing technical recommendations for fertilizing maize as sole crop could presumably be used for intercropped maize.On-farm trials were planted in order to verify these preliminary results and test the performance of intercropped maize when fertilized according to the recommendations for maize as a monocrop.Based on soil analyses, three farms were selected with high, medium and low soil fertility levels (Table 5.22).Farms were chosen from a single state in order to minimize differences in rainfall, planting dates and management practices.A completely random block design of three blocks and four fertilizer levels (low, medium, high and no fertilizer; see Table 5.23) was used (3 reps within each farm).Except for the fertilizer treatments, management decisions were taken by the farmer.The effects of fertilizer treatment (Table 5.24) and farm fertility level on yield were highly significant, and the interaction between these factor s was also highly significantoThe low level of fertilization resulted in an increase in maize yields of ca. 1. O t/ha.Yields obtained with the medium and high fertilization rates were not statistically different. Cassava plant height was significantly higher at high levels of fertilization; however, the total weight of the aerial part was not significantly affected by the fertilization treatments.Yield of marketable cassava roots was not affected by the level of fertilization applied to the maize. Cassava HI was not affected by the fertilization treatments; however, there was a significant interaction between 10C81ities and fertilization level for this variable.Given that cassava yield was not affected by fertilization level, a cost/benefit analysis of fertilization was made based on maize yields only (Table 5.25). The low application rate resulted in the largest marginal net return (5.68) per unit of money invested in fertilization (cost ef the fertilizers plus cost of the labor used).The maximum marginal benefit, however, was realized with the medium level of fertilization.Yields of maize intercropped with cassava were increased significantly using relatively low levels of fertilization. The results demonstrate that the fertilization recommendations for maize in monoculture are appropriate for intercropped maize.The application of fertilizer in bands, directly to the maize rows of the intercrop, 10 days postemergence, appears to be an effective practice.The statistical significance of the interaction between localities and levels of fertilization suggests that better characterization of agricultural environments (soils in this case) can improve the relevance of technical recommendations for specific cassava-producing regions. and potassium chloride = $89.8. The price of one kg of maize was $116.5 (U5$1 = 463.42 Col. 15 Mar. 1990).Biomass partitioning and nutrient uptake by the cassava/rnaize intercrop The replacernent of traditional rnaize varieties will accelerate the depletion of nutrients from soils in areas where the maizejcassava association is commonly cultivated. Improved varieties allocate more photosynthates to the grain than traditional ones; therefore, more nutrients will be exportad from production units as grains. Consequently, the recirculation of nutrients within farms will be modified.To gain more knowledge about biomass partitioning in traditional and improved maize varieties intercropped with cassava, nutrient uptake and recirculation were studied at at Palmira. Maize clone H-211 and ICA varo V-258 were used as improved varieties and the regional materials, Limeño and Clavo represented traditional varieties.These varieties were planted in association with the cassava clone CMC 40 at a density of 20,000 pI/ha.As asole crop, maize was planted at 20 and 50,000 pI/ha, the densities used in crop association (AO) and the commercial density (CO), resp. Cassava was also planted as sole crop at densities of 8300 and 10,000 pI/ha. The first planting density was also used in the intercrop (AD) with maize, and 10,000 pI/ha is the recommended planting density (CO) for the region. As differences in the performance of the cassava/maize association due to spatial arrangement had been reported previously, two spatial arrangements were used: intercrop of maize and cassava in alternate rows (AR) and intercrop on the same row (OR).A split-plot design was used with spatial arrangement as the main plots; cropping system, the subplot; and maize varieties, the sub-subplots.The total biomass produced by cassava was not affected by the association with maize or the maize variety with which it was associated (Table 5.26).CV values for cassava biomass were relatively high (ca. 30%); consequently, the analysis could not detect a 4. O t/ha difference between total biomass values. Uptake of nutrients by cassava was not affected by the type of maize with which it was associated (Table 5.27). As the sole crop cassava data (Tables 5.26-27) are an avg of AD and CO planting densities, in general terms the biomass accumulation and nutrient uptake of cassava are similar, whether monocropped or associated with different maize varieties\" Total biomass and nutrient uptake by cassava as asole crop (10,000 pI/ha) was higher than in the other treatments, but this difference was not statistically significant.The total biomass accumulation of the two improved and two traditional maize varieties was similar, but a significant difference between variety types was observed in the al location of photosynthates to product (grains) biomass.Traditional varieties allocated more biomass to vegetative parts of the plant than improved ones (Table 5.28). Allocation of photosynthates to grains was different in the two traditional maize varieties (Table 5.29); however I no difference between the two improved ones was found as to total biomass or biomass allocated to grains.In the traditional varieties, the difference in biomass allocated to grains was . statistically significant (Table 5.29), suggesting that they have dístinct origins and, consequently, differ substantially in agrononlÍc performance.The exaet origins of Limeño and Clavo were not known to farmers, but both are considered local varieties in the Valle del Cauea.Maize intercropped with cassava yielded less biomass than maize as sol e crop (Fig. 5There was interaction between total bíomass and spatíal arrangement of the intererop (Fig 5 .40b).As expected, more total biomass and more leaves plus stems were produced at 50,000 plants regardless of maize variety, cropping system or spatial arrangement (Fig. 5.41).In terms of total biomass, traditional maize varieties yielded more than the improved ones at the 50,000 density, but this difference was not statistica1ly signíficanto At 33,000 densíty the improved varíeties yielded sígnifieantly more total biomass than the traditional ones (Fig. 5.42) ¡ however, most of the total biomass was alloeated to vegetative parts ín the latter.There was an interaetion between the improved maíze varieties and spatíal arrangement.H-211 yíelded consíderably more total biomass in association with cassava in the AR than in the OR spatíal arrangement.In monoculture there was no ínteraction between maíze type and spatíal arrangement (Table SA larger proportion of photosynthates was alloeated to grains by H-211 regardless of spatíal arrangement. It is not known íf hígher yíelds ín alternate rows is a general characteristic of hybrids or specific to H-211. The higher yields of maíze hybrids ín ARs have been mentioned in the literature, but no systematic research has be en conducted to test this hypothesis.In either spatial arrangement, association wíth eassava (CMC 40) did not affeet the ability of improved maize varíeties to allocate a large proportion of bíomass to the grains. The efficiency characteristics of improved maize varieties are particularly evident in H-211.Nutrient uptake by cassava was not affected by spatial arrangement or maize type. The traditional maize varietias usad more nutrients than improved ones (Tabla 5.31). More nutrients were allocated to leaves and stems in traditionalOry Biomass (l/ha) in alternate rows and in the same row, resp.Table 5.31 Nutrient uptake by traditiona1 and improved maize varieties; avg of intercrop with cassava and sole crop. varieties and to the grains in the case of improved varieties.If leaves and stalks of traditional varieties are 1eft standing in the fie1d after harvesting the cobs, more efficient recirculation of nutrients is expected than if the residues are removed to feed animals.Association with cassava affected the amount of nutrients used by maize.Intercropped maize always extracted fewer nutrients than maize alone, not on1y because it yielded 1ess total biomass in the intercrop, but because the percent of each nutrient in the tissues, except Mg, was always 1ess in the intercrop than in the monocrop (Table 5.32). Uptake of K, Ca and Mg in intercropped maize varies signi-ficant1y between spatia1 arrangements (Fig. 5.43). Regard-1ess of maize type, cropping system or spatial arrangement, heavier nutrient use by maize occurred only as the no. of pI/ha was increased (Table 5.33) from 33,000 to 55,000 (CO).In monoculture, improved maize varieties used more N than traditional varieties, but this difference was not statisti-ca1ly significant.Monocultures of traditiona1 maize varieties extracted significantly more P, K and Ca than improved varieties (Table 5.34).It appears that traditional varieties cul tivated at relatively high densities tend to use nutrients, particularly P, K and Ca rather inefficiently I at least in favorable environments such as Palmira.Clone H-211 extracted significant1y more nutrients (particularly N) than the improved variety. The two traditional maize varieties also differed in nutrient uptake (Table 5.35) • 5.5.3.1 Efficiency in nutrient use. Two indices were used to compare the efficiency of nutrient use by maize, cassava and in the intercrop of these.Biomass Efficiency Index (SI) is the quantity (kg) of a given nutrient required to produce 1000 units of dry total biomass of either maize or cassava.Production Index (PI) is the amount (kg) of a given nutrient necessary to produce 1000 units of either dry maize grain or dry cassava roots. The smaller the value of the index, the more efficient the biomass production. Table 5.36 gives values for the SI and PI indices for the cassava monocrop (mean of two plant densities), the cassava/maize intercrop and maize as asole crop at two plant densities.Cassava is more efficient than maize in production of both total biomass and per unit of nutrient extracted. The data for cassava in Table 5.36 were averaged over 8300 and 10,000 pI/ha as no significant difference was found between the nutrient uptake efficiency at these densities.With maize there was a difference in nutrient use efficiency between 33,000 and 50,000 densities; therefore, the results for these densities are presented separately.Cassava was a more efficient user of NPK and S than maize at any plant density. Maize was more efficient than cassava in production of stems and leaf biomass per unit of Ca and Mg. \"N\"~u\"t~:r~ie:\"n~t_U~p.\"t:=a~k~e\"~(:k~g~/\":h\"~a~) _____ \" ____ \" _________ ~ ____ \" _______ \"_. -----Magnesium -----------su1fur ----- 1 YM = Cassava/maize intercrop; Y. = Cassava; MI = Maize sale crop planted at 33,000 pI/ha and M2 = Maize sale crop planted at 50,000 pI/ha.The efficiency of biomass production in maíze is improved by intercropping with cassava.BI was similar in improved and traditional maize varieties; but improved varieties were significantly more efficient in nutrient use and allocation of resources to the grain instead of the leaves and stems. H-211 was by far the most efficient user of N for grain production in association with cassava (Table 5.37).Intercropping cassava and maize resulted in efficiency values slightly aboye those of the cassava as asole crop, but significantly different from maize as asole crop.No significant differences were found between the indices in maize or cassava as sole crops or in association for most of the nutrients studied.This means that maize and cassava will be equally efficient in nutrient uptake whether monocropped or in association.Phosphorous was an exception, used more efficiently for biomass production when maize was planted in association with cassava. The BI index was 2.71 tor associated maize and 2.93 for maize as sole crop. Significant differences in PI were found between the traditional maize varieties.Limeño was more efficient than Clavo for most of the nutrients tested.TO compare the production efficiency (PI) of a crop combination (cassava/maize) vs. the sum ot its components (cassava + maize), Table 5.38 was constructed. only K, Ca, Mg and S are shown as no difference were found in PI values for N or P.A difference in favor of the crop association in comparison with the sum of the components can be observed for the selected nutrients included in this table.NutrÍent content and export by a cassava/maize system. A model of nutrient content that includes the percentage of each nutrient in different plant parts is presented in Figure 5.44.Maize roots were not included although they constitute ca. 5% of total maize biomass. The model does not include soil, which is the main source of nutrients.The export of nutrients from the crop system is representad by maize grains and cassava roots.In reality, the export of nutrients by maize could be greater if the leaves and stems leave the farro system.If the leaves are consumed by the animal subsystem on the farro, recirculation may take place in other plots within the farro.Cassava roots are always taken out of the plots, but most of the aboveground biomass returns to the soil in the forro of planting material or is left in the borders of the fields to decompose.The model is based on management practices coromon on the North Coast of Colombia, where maize leaves and stems are not consumed by the animal component of the system, but are left in the field until decomposition.Recirculation in the model assumes decomposition and mineralization at similar rates for all biomass components and for each nutrient.In Figures 5.45a-d, the amounts and percentages of each nutrient in different plant organs are represented for the four maize varieties under study. The amounts of NPK vary between the organs and the maize varieties. Cassava contains approx. 73% of the total Ca and 72% of the total Mg of the crop system. As only 10 and 20% of Ca and Hg, resp., are exported by the system, cassava i5 the component that recircula tes most of these elements to the environment (ca. 87 and 80% for Ca and Mg, resp.).Recirculation in the model assumes the composition and mineralization at a similar rate for all the biomass and each nutrient in particular ).The cropping system with maize (H-2ll) exports ca. 45% of the NPK out of the system, while an intercrop that includes a traditional maize varo such as Clavo exports only 35% of the same nutrients. This Gr.h'll kg/h. u., M 10,0 ... '\"' ¡\"\"\"\"\"~\"\"'¡~c..,', ...... difference ls due to the heavy allocation of biomass te the grain in the impreved maize varieties.Improved maize varieties in monoculture recirculate ca. 50% of N and P, while traditional varieties recirculate 70%.The inclusion of improved maize varieties in a cassava/maize intercrop will slightly increase the percent of N that is recirculated, but it will decrease the percent recirculation of other nutrients. Cassava as a sale crap recirculates ca. 70% af N, 55% of P, 39% of K, 87% of Ca and 80% of Mg.When cassava was associated with maize, recirculatian af K was decreased by ca. 30% campared with each component as a sole crop. A similar pattern was observed with P although the decrease in recirculation was aprox. 13%.As a result of the dynamics of K in the soil, a decrease in recirculation due to intercropping should not affect the performance of the system in the long runo A similar situation is anticipated for the P in soils that are deficient in this elemento Improved maize varieties in association with cassava increased the recirculation of N by 7% in comparison with traditional varieties, while maintaining tne same level of recirculation for P.In general terms, considering cassava and maize as sole crops as well as in association, the recirculation of nutrients was always aboye 50%.These amounts are sufficient to replace the quantities exported outside the system in the form of maize grains and cassava roots. The nutrient 1055 by percolation and surface runoff should probably be replaced by fertilizers or other soil management practices. A summary of the dynamics of nutrient recirculation is presented in Table 5.39.Performance of di fferent cassava varieties intercropped with maize, cowpeas. yams and sweet potatoes Worldwide, most cassava is grown in association with other species; therefore, the characterization of cassava germplasm for its ability to grow as an intercrop component is important for both cassava breeding and agronomy.Several studies carrried out at CIAT HQ have indicated that not all cassava varieties perform similarly when intercropped with other species, particularly maize.Cultivars with less foliage and high HI tend to yield less in inter- It has also been suggested that more erect and late-branching cassava types tend to yield more when intercropped with other species, particularly maize.To continue with the study of the reaction of different cassava varieties to intercropping, an experiment was conducted at HQ with seven representative cassava varieties in association with maíze, cowpeas, sweet patatoes and yams. The cassava clones selected for this experiment and their plant characteristics are presented in Table 5.40.Maíze (H-211), the new yam varo CDC-18, the sweet patato varo S-2 (El Carmen de Bolívar collectian), and the S-5 cowpea (ICAls collection in Palmira) were each intercropped wíth cassava.These crops were planted simultaneously as monocrops and in alternate rows with cassava at 33,000; 100,000; 8300 and 40,000 pI/ha, resp.Cassava was planted at 8300 pI/ha both as asole crop and in association with other species.Treatments were arranged in a split-plot design where the main plots were the species intercropped with cassava and the cassava clones were the subplots. Four reps were planted.The performance of the maize clone H-211 intercropped with different cassava varieties is presented in Figure 5. 49a. Maize yielded significantly more when intercropped wíth medium-height cassava clones, but the differences in the yield of maize intercropped with short and tall cassava varieties of cassava were not significant (Table 5.41). Cassava branching habit did not significantly affect the performance of maize; however, there was a tendency for higher maize yie1ds in intercrops with erect types of cassava. This tendency was more evident as the size of the cassava plants decreased. Apart from dry (14% MC) grain yield, other variables such as total biomass, no. of cobsj plant and no. p1jha were not affected by the cassava clone. Maize as a sale crop registered one of the lowest yields, corroborating results from previous studies. Cowpea yields were not affected by cassava clone (Fig. 5.4 9b); moreover, there were no differences between the yields of cowpeas intercropped with cassava and as asole crop. Other variables recorded for cowpeas such as no. of podsjplant; no. of grainsjpod¡ no. of grainsj100 9 and total cowpea biomass, were not affected either by cassava type or by cropping system.The S-5 cowpea variety performed similarly with all cassava varieties tested; this may be due to its relatively short growing cycle (80 days).As shown in Figure 5.49c, sweet potato yields were significantly lower in the intercrop than in the monocrop. The no. of rootsjplant (2.14 vs 1.21), mean weight of marketab1e roots (0.5 vs 0.4 kg); aerial biomass (4.0 vs 2.7 tjha) and HI (0.4 vs 0.3) were a11 higher when sweet potatoes were grown as a sale crop than in association with cassava. The cassava clones tested did not affect sweet potato yields differently.There was no significant effect of cassava clone on the other sweet potato variables that were evaluated.The new yam var. cnC-18 was severely affected by foliar pathogens, and some plots were negatively affected by root rot pathogens.As a result of this highly variable yam growth, the CV values for yields were very high (46%); and the avg yield (6 tjha) (Fig. 5.49d) was much lower than obtained in previous experiments (ca. 30 tjha) with other yams varieties in Palmira. Under these experimental conditions, differences as large as 2.6 tjha between treatments were not registered as significant. A summary of the yield reductions in cassava due to intercropping with maize, cowpeas, sweet potatoes and yams is presented in Table 5.42.The medium-height, moderately branched cassava varo CM 849-1 outyielded other varieties in monoculture, but this was an exceptional case.Generally the highest yields were obtained in the short cassava varieties (Fig. 5. 50a) • CM 849-1 also yielded more than the other clones in association with cowpeas, sweet potatoes and yams, and performed relatively well in association with maize (Fig. 5.50b-e). Cassava clone CM 523-7 performed relatively well as an intercrop component.Only CM 849-1 performed better in association with cowpeas, sweet potatoes and yams, and CM 523-7 outperformed CM 849-1 in the intercrop with maize. Shorter cassava clones suffered greater yield reductions as a consequence of intercropping than the other varieties. M Ven 218 yielded poorly both as an intercrop and as asole crop.Fresh yield in tall, erect cassava types was less affected by intercropping than medium and short types (Table 5.42) .In an analysis of correlations between plant height, stem diameter, no. of stemsjplant, no. of leavesjpl, stem diameter mul tipl ied by stem height and fresh RY, only no. of leavesjpl, plant height and stem diameter were correlated with fresh RY (Table 5.43).The largest number of significant correlations were found between variables evaluated 141 days after planting.The number of positive correlations diminished significantly for the subsequent sampling dates.The number of significant correlations between the aboye variables and yield did not vary with sampling date.No significant correlations were obtained for any sampling date for some clones such as CM 849-1 and SG 107-35 (Table 5.44).In general, the correlations between the aboye variables and the yield of marketable fresh roots were lower and less frequent than in the case of total fresh roots.A number of surveys indicate that the majority of small farmers use their own cassava stakes as planting material year after year.since cassava is primarily grown in association with other crops, the stakes that are used as b\\\",,,,,\\'(,.\\'(,.\\,,,,~,,,,\\\\\\,,,,,,,,\\'(,.~\\,,,,,,,,,,,,~~'l ' ,4&, : t 19.99~~\\\"\"\"'\\'(,.\\\\\"'*''''\\'''\\\\'''\\'''\\''''''''~~~~~'íR>~~'''~ 18.87~íí*}\\\"\"\"\"\"\"~'(,.\\ §$Y,\\\",\\\",\\\"\"\",,\"\"\\,,,,*,~'l&%W)m ------------------------------------------------------------------------ ------------------------------------------------------------------- --~-------------------------------------~------------------------------DAP = Days after planting~ planting material come from mother plants that were intercropped with one or more species.Competition with other species usually reduces the aerial biomass of cassava plants.As a result, planting material coming from intercropped p1ants tends to be 1ess vigorous than the p1anting material from plants grown in monocu1ture.If stakes obtained from intercropped cassava are planted year after year, a progressive decline in quality coupled with 10wer yie1ds is to be expected.A study of the effect of the origin of cassava planting material was conducted over a period of three years. Stakes originating from intercropped cassava grown in a1ternate rows, from mother plants grown continuous1y in monoculture, of leaves/pl (leaves), plant height (neight) end stem diameter (diam.) for seven cassava varieties.- ---------------------------------------------------------------------- ------------------------------------------------------------------------and from cassava grown in association with other crops in alternate years, were included in the experimento The eight treatments are summarized in Table 5.45.Cassava (CMC 40); yams (CDC-lB) and maize (H-211) were used in the experimento Cassava mother plants were randomly selected from the center plots of either cassava grown in association or as asole crop. Immediately before planting, a random se1ection of cuttings was made.There was a significant difference between the yields of cassava grown in monoculture and in association with maize and yams; but within cropping systems, no differences in yield due to stake origin were registered.Cassava yie1ds corresponding to the different treatments are presented in Figure 5.51. Maize tended to yield more when it was inter- cropped with cassava grown from stakes of mother plants intercropped continuously (Fig. 5.52)~ however, this difference was not statistically significant with a 10% value for CV. Maize intercropped with cassava plants from continuously intercropped mother plants produced more cobsjplant than maize intercropped with cassava from stakes of plants grown continuously in monoculture.Cassava grown froro stakes from mother plants continuously intercropped probably has a slower initial growth than when grown from stakes of other origins and therefore competes less strongly with the intercropped maizel however, initial growth rates of cassava and maize were not recorded. No significant differences were found between the yields (fresh root weight) of yams intercropped with cassava planted from stakes of mother plants previously intercropped or grown in pure culture (Fig. 5.53).Yams intercropped with cassava from stakes in continuous monoculture yielded significantly more rootsjplant than than yams from other treatments (Table 5.46). Cassava plants from stakes grown continuously as asole crop had vigorous initial growth, which provided yam vines with good physical support, resulting in more yam roets/plant.Treatments 1 and a are considered the twe extremes for this experimentoIn Table 5.47 differences in no. of leavasj plant and plant height ara presented fer thesa two extreme treatments.Yam Yields (t¡ha) 10,-----------------------------------------------,• Means followed by the same letter in the same sampling period are not significantly different (P $ 0.05, DMRT).Plant height and no. of leaves/pl were higher for cassava monocultures planted from stakes originating from continuously intercropped plants.The no. of leaves/pl in plants grown from stakes that were always intercropped increased until the last sampling date while the no. of leaves/pl remains constant after 181 days for cassava grown from stakes originating from continuous monoculture.Heights of intercropped cassava p1ants from stakes of mother plants continuous1y intercropped and plants from stakes continuous1y grown as asole crop were not statistically different (Tab1e 5.47); but the no. of leavesjpl in cassava plants from stakes of continuous1y intercropped mother p1ants was significantly higher than in cassava plants grown from stakes continuous1y grown as asole crop (Table 5.48).In other experiments with cassava associated with maize, with yams, and with roaize and yams simu1taneously, a higher no. of 1eavesjp1 and, consequent1y, a higher leaf area were recorded immediate1y after harvesting the associated crops than in cassava of the same age but grown as asole crop. Means followed by the same letter in the same sampling period are not significantly different (P ~ 0.05, DMRT).The Economics section of the Cassava Progra,n at HQ has the responsibility for conducting research within a threedimensional framework.As such, it has to work in an integrated fashion across disciplines within the Programo The section also identifies and analyzes issues within its own discipline.Not only does the section work in Latin America but al so in Asia and Africa. Given the presence of lITA in Africa, the section plays a minor role there.In Asia, on the other hand, cassava production and consumption developments have been dynamic, thus requiring an increasing amount of economics resources given the absence of a CIAT cassava economist stationed in the region.To assist in optimizing the efficient development and diffusion of improved cassava technologies, the Economics section allocates its resources among five major work areas (within the aboye framework): Collection of regional and country data to monitor production and consumption of cassava (products) and related commodities Generation of identify and marketing and primary farm-and household-level data to analyze cassava production, processing, consumption problems and opportunitiesEx-ante analyses of potential technologies in order to assess priorities, feasibility and probability of success Collaboration in evaluating and diffusing improved technologies Ex-post analyses of technology diffusion and impactIn 1984 the External Program Review recommended that CIAT undertake studies to assess the future demand for cassava and cassava products.Since then the Cassava Economics Section has focused its efforts almost entirely on cassava demand studies in Latin America and Asia. With support from the Rockefeller Foundation (RF), lITA, CIAT, NRI and severa1 other institutions initiated a baseline survey on cassava production, processing, marketing and consumption in Africa under the name of COSCA (Collaborative study of Cassava in Africa) in 1988.The studies for Latin America and Asia were completed in 1987. The results clearly demonstrated that cassava products have a significant potential for the developing world, depending on the area; that for various processed cassava products there exists a strong and growing demand; that these praducts will continue to serve as an important source of relatively inexpensive calories for the very poor; and that on-farm or rural processing of cassava intermediate praducts (e.g., chips, starch, flour) can significantly improve incomes of the resource-poor, small farmer in the developing world.Besides this major effort on the cassava demand studies, the Economics Section has allocated limited resources over the last 5 years, to supportive research on technology development and diffusion, as well as the ex-post measurement of technology adoption and impact, almost exclusively in Latin America.Given the adjustment of CIAT's research goals and objectives to meet the ever-evolving demands in a developing world, the section's current research agenda includes the following major activities:Adoption and impact studies of already diffused technologies, both in Latin America and Asia Assessment and analysis of alternative cassava-based praducts markets in Latin America and Asia Updating and expansion cassava products and America and Asia of the socioeconomic database for related commodities for Latin Readjustment of activities for America the methodology and use of moni toring Cassava Integrated Projects in Latin Caordination of the setting up of benchmark studies on cassava in Asia Provision of economics input in technology development.The Economics section warks on these topics together with a wide range of partners and under different institutional, organizational and financial conditions; e.g., networking, thesis work, contract research and training. In additian, a majar emphasis for the next two years will be placed on adoption and impact studies. Table 6.1 lists the Economics section's majar projects and activities during 1990.Of this year's activities, two sets of research results will be discussed: a reevaluation by CIAT's economists of the Center's commodity portfolio and a study of the rapid development of Integrated Cassava Projects in Latin America and how monitoring activities can be a strategic device to refocus project strategies, while at the same time measure regional impact of an improved technology.The criteria used to assess the current importance or future potential of a crop reflect the user's objectives and goals. International agricultural research centers may have criteria that differ from those of developing country decision makers (in the short run); and the relative weights of criteria shift over time.In addition, especially in the case of cassava, the crop production system, production area, intensity of cropping, methods of processing, cassavabased product range and consumption patterns, change. These dynamics can, to a large extent, change the outlook of a crop.In order to reexamine CIAT's commodity portfolio, a range of commodities (including CIAT's mandate crops) were evaluated on the basis of four sets of criteria: economic growth, equity, conservation of the natural resource base, and institutional considerations. The methodology developed for the analysis combines several different approaches.An initial hierarchical screening process was followed by a multiple-criteria model, based on a cost-benefit analysis using estimates derived from consultations with commodity experts. To establish the relative importance of cassava, this analysis focuses on only a small sample of the initial set of 18 commodities--cassava, beans, rice and sorghum--in Latin America.In the case of cassava, Asia is also included (for the original study, see Janssen et al. 1990). 6.3.1.1 Economic growth, as the principal aim of technology development, is by far the most widely used criterion.It is generally interpreted as the direct effect of increased production per unit of land or labor. Nevertheless, as the increased supply of a commodity can indirectly influence demand for other commodities (or goods and services) in nonrelated sectors, a linkage effect was introduced in the model to capture this indirect effect.other economic growth criteria included present value of production, expected demand growth and potential foreign export earnings including import substitution.The direct effect of potential technological impact on a commodity's supply and demand from 1990-2025 was estimated in a partial equilibrium framework.Estimates on commodity productivity increase, cost reduction, lag time and adoption rate were obtained through an expert-opinion survey. Benefits from research were calculated at net present value (NPV) , applying a 10% discount rate (for model specifications, see Janssen et al. 1990).The indirect effect was estimated in a general equilibrium framework, and a distinction was made between tradeable and nontradeable commoditieso When commodities are evaluated (Table 6.2) for the criterion of monetary benefits from research only, rice technology can generate (direct and indirect) research benefits of well over US$5 billion.Cassava benefits at US$738 million are comparable to the other cropsl however, it should be noted that cassava benefits are considerably higher when Asia is included.When looking at the criteria of potential foreign export earnings and future demand growth, it becomes clear that cassava benefits in Asia and sorghum benefits are the .*. = high; ** = medium; • : low (includes import substitution).winners. The last criterion--current value of production-to a large extent reflects a similar relative importance of rice.Thus, if the commodity's importance is measured by the toregoing economic growth criteria alone, rice technology presents the best picture.Nevertheless, cassava technology generates a relatively better pay-off than either beans or sorghum. 6.3.1.2 Equity criteria, as re1ated to income improvement, have become increasingly important as the primary mechanism for reducing poverty and malnutrition.Agricultural commodities playa dual role:as food crops for small farmers and as generators of economic development.Development in Latin America has been characterized by intensive use of capital, with low labor absorption and labor displacement. Large producers benefit more than small ones from public policies, farm mechanization and input subsidies, resulting in increased urbanization, landless labor and increased poverty. Moreover, small farmers have often been pushed to 1ess fertile or marginal lands.Therefore, equity criteria need to include benefits for small farmers and poor consumers, generation of labor and direct nutritiona1 contributions.For purposes of this analysis, measurement of the benefits to poor consumers was based on the resul ts of the partial equilibrium model tor the NPV of research benefits.The second criterion of benefits to small farmers was captured by using the share (%) for small farmers (Le., earning a family income of < U8$3000) among total farmers. The criterion of labor generation was introduced in the form of a technology-derived employment effect, which was measured using the general equilibrium model.The employment effect is comprised of (a) the direct effect, which measures employment changes within the commodity sector as influenced by technological changes: and (b) the indirect effect, which captures employment changes outside the subsector and is calculated through the linkage effect of the model. Total calories and proteins make up the last two equity criteria.The results for the equity criteria are shown in Table 6.3. When considering benefits to poor consumers, rice technology can generate more than U8$ 2.5 billion to this group: while cassava and beans can contribute US$ 461 and 415 million, resp.The contribution of sorghum to poor consumers is rather low. The picture changes dramatically, however, when inspecting the share of small farmers who benefit from technology.It can be seen that benefits are targeted to more than half the cassava and bean farmers: whereas for rice and sorghulll f only 18 and 13%, resp., of the small farmers will profit frolll improved technology.Hence the largest proportion of rice and sorghulll technology benefits will make intermediate and large farmers better off. In the case of cassava and beans, a relatively larger group of small farrners will benefit.Moreover, when considering derived benefits to Asian cassava producers, improved cassava technology automatically translates into improved incomes for the rural poor as 90% are small farmers.The effect of employment shows relatively higher values for rice and cassava in Asia. This is in line with the knowledge that cassava products in Asia and rice employ a considerable labor force during the processing stage.Total ca 1 ories and proteins are high for rice and beans; but it should be noted that these values are expressed for direct human consumption. If the amount of cassava used in animal feed to produce animal protein (direct human consumption) were calculated, the calorie and protein values for cassava would be significantly higher.The same reasoning applies for cassava starch used in human food products.In the past little consideration was given to natural resource preservation in assessing the relative importance of agricultural commodities research. Economic growth, equity and natural resource management interact and link in such a manner that a negative effect of one of the them will have a negative impact on the combined outcome in the long runo Together they have to be sustainable for beneficial results in the future.Although one can identify suitable parameters that would incorporate or at least approximate sustainable resource management criteria, their quantification is a serious bottleneck for lack of \"hard\" data, which if they exist, are often too general and too rough.Hence in the current analysis an attempt was made to qualify the relative contribution of commodity technology to the conservation of the natural resource base in specific ecozones of Latin America. CIAT's Agroecological unit recently defined three ecozones, which in line with future Latin American development will benefit most from agricultural research in an integrated resource managementjgermplasm development framework. These are (1) the hillsides, (2) the savannas and (3) the seasonal forest transition zones.There are no significant differences among the commodities for this criterion (Table 6.4). Cassava techno1ogy may have an intermediate contribution for all zones, while rice may have a large contribution for the savannas (based on integrated ricejlegume pastures technology).Sorghum contributes the least to natural resources preservation. Although somewhat inconclusive, the scoring of these criteria (based on commodity expert opinion) may serve in a decision-making process when weights are attached to each.The last set of criteria--institutional considerations--is of great importan ce to agriculture research. without a viable institutional research capacity the potential of a crop may never be realized.In this analysis, three criteria were used to incorporate institutional aspects.Of prime importance is current investigation by national programs.To score this, an attempt was made to evaluate national program presence, capacity, effectiveness and sustainability.Especially this last parameter is often rather questionable.National program human and capital resources are very dependant upon the country's economic and political performance, which do not tend to be very stable in Latin America.The second criterion lists other international research efforts. The last criterion is the lead time of research, which to a certain extent measures the difficulty in developing improved technology for a commodity.From the results in Table 6.4, it can be observed that cassava has weak national program investigation: while beans, rice and sorghum have intermediate scores.Nevertheless, this needs sorne clarification.The intermediate score for bean research is based on the real strength of the demenstrated that technelegy-derived benefits te consumers in the lowest 40% income groups amount to U8$460 and $280 million in Latin America and Asia, resp.Because of improved cassava technology, 60,000 and 111,000 person-years of labor can be generated on these two continents.Moreover, it is primarily the small, resource-poor farmer who is the ultimate beneficiary.From a natural resources preservation perspective, it was noted that cassava research can have an intermediate contribution te the conservation of the natural resource base in several Latin American ecozones.From an institutional standpoint, it was shown that cassava research at the natienal level is weak in general.Benefits from improved technology ha ve a 6-to 7-year research lag time.The second major conclusion that can be drawn from this analysis is that the relative importance of a commodity vis-a-vis others can significantly change depending on the criteria that are used. Table 6.5 gives a summary of the four sets of criteria used in the analysis. If the decision maker uses only the criterion of economic growth to assess the importance of a crop for research investment, rice would Tabte 6.S SUffimary of scores for four sets of criteria for evaluatfng the relative importance 01 COIlI'IlOdities. Hence, if decision makers have clearly defined their goals and objectives, they are able to place weights on each criterion, covering all the different aspects that need to be considered. Depending on the objectives, the outcome would probably be a portfolio of commodities whose potential technology would influence a broad range of essential criteria positively, within the decision maker's mUlti-objective decision framework.The following short analysis not only quantifies the dynamic adoption of a cassava technology but also demonstrates the value of monitoring. The integrated cassava project concept was initially developed in the Atlantic Coast region of Colombia in the early 1980s. Small cassava farmers' associations using small-scale processing methods started to produce chips for the animal feed industry as an alternative to selling for the fresh market. Over the last 9 years this methodology has been rapidly adopted throughout Central and Latin America (Fig. 6.1).By 1990, there were four other major cassava-producing countries, besides Colombia, with integrated cassava projects.While the no. of cassava drying plants on the Colombia North Coast increased by 11% annually, in Ecuador the rate was almost twice that (20%). In Brazil (state of Ceará) the no. of plants remained constant until the start-up of a special project funded by the W.K. Kellogg Foundation, after which the no. of plants increased by 23%.It must be noted here that in Colombia and southern Brazil, additional plants have sprung up (for which no official data exist), so the total no. of drying plants in these countries exceeds the figures presented. other information from Brazil (Fig. 6.5) shows that most of the cassava grown for the drying plants is produced by smallholders. This information can, over time, shed light on technology impact on landholding systems. At the same time, it serves to verify the goals of the project with respect to what type of farmer the technology is benefiting.A similar issue is demonstrated in Figure 6.6, where cassava sales according to membershipjnonmembership in the farmers' drying cooperativejassociation are compared between Colombia and Ecuador.In 1987 member sales to the drying plants in Ecuador, were greater than nonmember sales; after that year, however, there was a gradual proportional (%) decrease; and by 1990 members supplied only two-thirds of the drying plant' s raw material requirements.This may prove that insufficient incentives exist for small farmers to become members.As such, membership growth may decrease further, ceteris paribus.In the case of Colombia, the situation is similar.The reason why the no. of members as percent of total suppliers is so low and has remained low over time needs to be investigated. Information of a different nature is shown in Figure 6.7, which compares the use of different cassava varieties over time, by suppliers to the drying plants in Manabí, Ecuador. The variety \"Taurino\", which in 1985 accounted for the largest share (41%) fell to only 11% in 1990.A similar trend was shown by \"Chola.\" However, the reverse was true for \"Tres Meses,\" whose share increased from 37% in 1985 to 88% in 1990.This very strong evidence of a variety that becomes dominant within 5 years and other varieties that virtually disappear needs to be studied by cassava breeders, processing specialists and economists to see whether it was caused by abiotic stresses, changing quality demand, starch content, etc. This sample analysis of monitoring data demonstrates that if collected timely, analyzed properly and fed back to the right audience of project coordinators, supporting institutions and researchers, the information is of great value in helping cassava integrated projects become more efficient and effective in increasing employment and incomes of the rural poor. The Section actively pursues collaboration with relevant institutions in the developed and developing world in the areas of process and product development as a mechanism for allowing a greater proportion of core resources to be devoted to research on cassava quality issues. During this past year, collaboration was received from CEEMATjCIRAD of France on research on fermented cassava starch; NRI of the UK on research on cassava flour and quality (especially HCN); and the financial support of IDRC, Canada for the pilot phase of the cassava flour project. Research collaboration with the Universidad del Valle (UNIVALLE) Cali on cassava flour and starch process and product development was intensified. An agreement with the University of the State of Sao Faulo (UNESF, Botucatu) will strengthen collaboration in the areas of cassava starch, eating quality and HCN research.7.1 Cassava Quality 7.1.1 Cyanide analysis. The Utilization Section has used Cooke's (1978) enzymatic method for analyzing root cyanide content for the last 10 years.This method requires extracting free cyanide and cyanogenic glucosides into a stable medium (orthophosphoric acid) .The subsequent enzymic hydrolysis of the cyanogenic glucosides uses exogenous linamarase and the determination of total cyanide is based on color reaction with piridinejpirizolone. This method was recently modified by the NRI.A different initial medium increases the time permitted between extraction and hydrolysis from 4 to 30 days.The amount of piridine used is also greatly decreased, reducing costs and the risks involved in handling this toxic chemical. This modified method also permi ts the quantification of cyanhydrin intermediaries in addition to the free and bound cyanide already possible. Cyanohydrins are an intermediary step in the breakdown of cyanoglucosides to free cyanide. Although unstable in fresh roots, cyanohydrins may be found in some processed products.A third variation of the enzymatic method (Monroy, 1990) was al so tested.The color reaction is carried out using For the second step, the glucose resulting from the acid hydrolysis method was quantified using a copper reagent, whereas for the enzymatic method glucose oxidase was used to determine glucose contento Table 7.3 shows the percent starch found in each of the four varieties of cassava analyzed using the two methods. Values were lower for acid hydrolysis than for the enzymatic method, which also had smaller standard deviation values. Acid hydrolysis was probably less efficient at hydrolyzing all the starch than the enzymatic method, which is now standard in the Utilization section. Another advantage is a 50% reduction in cost compared with the acid hydrolysis method.7.1.3 Effect of preharvest variables on root quality continuing collaboration between the Physiology and utilization sections has provided a wealth of information on the effects of the preharvest environment, especially fertilizer application and water stress, on root quality factors such as DM and cyanide contents and eating quality. Experiments were managed by the Physiology section in Santander de Quilichao (Cauea) and Pivijay (Magdalena) Colombia (see section 5.1 for production-related results).The utilization seetion took root samples from relevant experiments for DM, starch, cyanide and eating quality evaluations. These show that many of the treatments used in the experiments do affect root quality. Cyanide centent has preved especially variable in this respecto Considering each element separately, N application (Table 7.6) increased root DM content and decreased cyanide contento There was al so an effect on eating quality of roots from plants treated with progressively increasing levels of N, which improved in taste and texture.The source of N was also important in affeeting DM content and eating quality. Conaidering individual varieties, there were some differenees; for example, SM 414-1 signifieantly inereased in DH with P applieation against the general trend.From the standpoint of root quality, varieties adapted to low P would appear to be valuable.Applications of K, even at moderate levels, decreased root cyanide eontent significantly and tended to inerease OM eontent although this wae not aignificant (Table 7.8). This agrees with the resulte of the NPK tri al s (Tables 7.4 Considering all these NPK trials together, it is clear that root quality is greatly affected by the levels of applícation of each element, and that although K and N appear to improve quality and P to decrease it, considerable varietal differences exist that could be exploited to achieve highquality roots at low levels of fertilizer application. Cyanide content showed great variation, being significantly lower at 7 mo than at 5 or 10 mo. Table 7.10 shows how cyanide content varies with age for both stressed and irrigated treatments. Cyanide content was higher in , 1985, -1987, for Bucararnanga project and 1987, -1989 for Barranquil1a reports).The process was technologically satisfactory, and good acceptance of the stored product was obtained by retai1ers and consumers, which led to the placing of orders for storable cassava from rnany superrnarkets and shops in Barranqui11a and other markets. Scale-up of the vo1umes of fresh cassava treated and packed beyond the 10 tjwk maximurn achieved to date has been frustrated by two bott1enecks--one in the area of the Note: Differences significant at 1% level, LSD = 1.9.organization of fresh cassava supply and the other in the area of product distribution and promotion.Cassava reaches the Barranquilla market from several production areas--all in the Atlantic Coast region but with differing planting and harvesting times. Thus a constant, reliable provision of good-quality fresh cassava is difficult to achieve.Numerous farmer groups had to be trained in the use of the technology (treatment and packing must be carried out at the farm level immediately after harvest). Cassava quality is highly variable; and at times it is necessary to move to new production areas for quality rather than availability considerations. The constant changing of farmer groups carrying out selection, treatment and packing operations has made quality control difficult.Consequently, experiments were carried out to develop a more flexible supply approach.If the treatment could be delayed by 24 h, greatly simplifying the operations to be carried out in the field, greater flexibility could be achieved in changing production areas and hence in assuring good-quality cassava.An experiment using three cassava clones carried out at CIAT (Fig. 7.1) showed that treating the roots with thiabendazole could be delayed for 24 h after harvest with no negative results as regards the amount of physiological or microbial deterioration 12 days after storage. An additional delay between harvest and treating (2 days) did, however, cause elevated levels of both types of deterioration.Although thiabendazole treatment can be delayed 24 h, the roots must still be packed at harvest in bags that retain moisture if physiological deterioration is to be prevented. When field treatment of the roots was practiced, roots were immediately packed into the 5-or 12-kg polyethylene bags in which they were to be commercialized.delayed 24 h, roots can be selected, treated and packed in a central location, provided that they have been packed in the field into bags. These bags can be larger, and an experiment was conducted to see if reusable polypropylene sacks could replace polyethylene bags for this initial 24 h period only.Resul ts (Table 7.13) suggest that al though not as effective as polyethylene bags over a 3-day period, the polyethylene sacks were a significant improvement over the traditional sisal sacks used for cassava marketing in Colombia. The experiment shown in Figure 7.1 was carried out using root storage in polypropylene sacks for the 24-h period between harvest and treatment, with good results.The economics of the process was improved by developing a means of using roots with high levels of mechanical damage. Such roots are cut cleanly to present a smooth surface and then a dessicant (e.g., caCO) is applied to prevent the buildup of excessive moisture ~t the cut surface, effectively reducing the incidence of bacterial rotting (which thia- This novel treatment means that all previously discarded damaged roots (10-20% of total roots harvested) can now be stored for two weeks. Figure 7.2 compares the original and new fresh cassava storage processes. One major consequence of the new process is the transfer of treatment and packing operations froID rural to urban areas.In practice, the process has be en carried out as a small business in one of the marginal areas of Barranquilla, thus providing employment for the urban poor.The change has, however, resulted in a much greater flexibility in cassava root supply I with roots coming from cassava coops andjor individual farmers who need no training in treatment or root selection, only in the provision of high-quality fresh roots.Previous reports detailed the experimental phase of the project to develop a high-quality cassava flour for human consumption.In 1989 IDRC funded the second phase, which contemplated the construction and operation of a pilot plant for producing the flour; the execution of in-depth market surveys to assess the demand for a cassava flour in the food industry; and the use of cassava production technology package s at pilot level to ensure sufficient cassava production to supply the planto During the first year of the project (mid-1990), the following activities were carried out in collaboration with DRI and UNIVALLE. pre-miller: re-enforced by soldering between screens and roller milIs• coke burner: additional grate to improve fuel-use efficiency Equipment modification will continue during the trial operation of the plant as required.A serious bottleneck developed with regard to the supply of water to the pilot planto Although an aqueduct with sufficient supply passes close to the plant and an agreement had been reached with the local community for the plant to take its full requirement from this aqueduct, at a later date said agreement was anulled as a result of internal community conflicts.The efforts of DRI and other national agencies failed to persuade the local inhabitants to resume supply so a new source of water for the plant had to be found and additional funding sought to take advantage of this supply. This has resulted in the provision of an independant water supply for the pilot plant financed by a loan obtained by ANPPY. The delays encountered prevented operating the pilot plant until November 1990.Despite this setback, the plant has been operating from June 1990 onward, producing cassava chips suitable for the animal feed market.These chips have been produced using the process for cassava flour production (i.e., strict root selection, artificial or mixed drying systems) and hence have suffered from higher costs than is usual for chips sun-dried for the animal feed market.Nevertheless, with careful cost control ( good fuel-use efficiency and a reasonable price paid for the raw material, losses have been kept to a minimum.An unexpected result of this operation has been the tentative justification of mixed or artificial drying systems to produce a product for the animal feed market in Colombia.Conversion rates of fresh roots:dried chips as low as 2.42 were obtained.Coke requirements varied from 1600 to 670 kg per ton of chips produced, showing that as the workers become more practiced in plant operation, cost reductions can occur.Although the cassava production component of this project is contained within the Agronomy section (see 5.5), it 1S interesting to note that no problems were experienced in obtaining a supply of raw material for the plant in the off season and that the local Venezolana variety had a higher root DM content than the introduced P-12 variety, which has significant implications for process economics.Future production trials will emphasize Venezolana rather than P-12.Initial studies were carried out to detect potential markets for cassava flour in the food industry.Market studies were carried out with food industries that use flours in their product formulations, in the following geographical regions of Colombia:• National: Bogotá Medellín, Cali• Atlantic Coast: Barranquilla, Cartagena, Santa Marta • Area close to pilot plant: Montería, Sincelejo, Corozal, Chinu, etc.AII industries received samples of cassava flour in sufficient quantities for conducting their own product formulation trials, and they were interviewed on the results of these trials. The main conclusions were:Preliminary estimate of potential demand ín the food industry for cassava flour of 30,000 tjyr, for the substitution of other raw materials, principally wheat flourThe wide variety of both products and impressive.Products most suitable with cassava flour are: processed meats• biscuitsjcookies (all types)• pastas• cakes, bakery goods in general food industries is for substitution• mixtures for starch-based drinks (\"coladas\")• mixtures for soups for breading chickens, etc.• ice cream eones sauce bases, spices, etc.In sorne products cassava flour has clear functional and product quality advantages over other flours regardless of price; e.g., processed meats, biscuitsjcookies, ice crea m canes and mixtures for breading.The main flour substituted by cassava flour is wheat (80%); others include rice, maize starch and cassava starch.The industry requires 50-kg sacks of flour.At a price 15-20% below that of wheat flour, cassava flour would be very attracti ve to the food industry. This price should be achievable by the pilot plantoOf the major cities close to the pilot plant, Barranquilla and Medellin, the latter has a larger potential demand for the flour.Subseque~t actions will be to promote the use of cassava flours 1n those markets with greatest potential. This implies the development of market channels for the new producto Two possible rnarket channels exist: pilot plant Pilot plant client.wheat milI wheat mill industrial client wholesaler --small volume A third option--that of milling the chips to flour at the plant itself--will become available at a later date if a viable small-scale, efficient milI can be developed.Wheat milIs in Medellin and Barranquilla have milled 1-ton lots of cassava chips, with conversion rates of 70-95%. Both expressed great interest in milling the chips as a commercial proposition. Few modifications are necessary to achieve a consistent 90-95% conversion rateo Product promotion activities will be concentrated in Medellin once the pilot plant is producing flour of an adequate quality.In collaboration with UNIVALLE, research has continued in tha following areas: Product devalopment using cassava flour for starch-based drinks (\"coladas\"), pastasjnoodles for soups and \"manjar blanco\" (a typical Colombian milk-based dessert). Sorne changes in the process for producing the items are required to maintain product quality using cassava flour, but these are relati vely easy to achieve wi th practica.Processing equipment coupling of washer to machine itself. improvement: root washer, the chipping machine, and the chipping Development of milling and gradinq equipment for inplant production of cassava flour. A small-scale roller milI with a siftingjgrading system that can function to milI pre-milled cassava chips is beinq evaluated. This system has a 200-300 kgjh capacity.Storage studies. 900 kg samples of chips and flour were placed in 3 warehouses of IDEMA (Colombian state agricultural marketing organization) in Montería (Atlantic Coast), Bogotá and Cali.From February 1990 onward, monthly samples were taken; and the microbiological quality and physicochemical characteristics, evaluated. Initial results (Feb. -July) show that moisture content has remained stable (11.0-12.2%) as have protein, reducing sugar and fiber contents.The microbiological status of the samples has also been stable, with apparent reductions in fungal and yeast counts over this periodo No Salmonella or E. coli bacteria have been found in those samples destined for human consumption.Cyanide elimination studies. Cassava flour for human consumption must meet standards of 50 ppm HCN, yet the artificial dryinq system used to obtain flour with an acceptable microbioloqical quality a1so reduces the cyanide los s as compared to the sun-dried producto Flour samples from the pilot plant will be monitored for HCN contento Preliminary experiments at CIAT suqqest that breakinq the artificial dryinq time into two 4-6 h periods (with an overnight break) allows more time for enzymic release of free HCN, and has the potential to reduce the final level of HeN. This is also a practical operational procedure for the pilot plantoAn economic feasibility study will be completed during 1991, using data and costs obtained from pilot plant operations. A model for calculating financial profitability (Financial Rate of Return, FRR) has been developed, which will be used for this analysis. Using the best information available at present, the costs of producing cassava chips for the food industry market are Col. $12 o, OOOjt: $ 7 4,000 for raw material, Col.$12,OOO for transport and Col.$9,OOO for coke.1The reroaining costs relate -mainly to labor and financial costs.A roargin of Col. $28,000 is envisaged to produce a sale price in Medellin of Col. $140, OOO/t. This compares with a price for wheat in Medellin of Col. $159, OOO/t; i. e., cassava is 12 % cheaper than wheat. Given these prices the FRR is highly positive (30%, twice the 15% needed to justify the project).Nevertheless the pilot plant operation will permit substitution of assumed prices/costs etc. by real commercially obtained data, thereby providing a true picture of the commercial viability of the process. In Latin America, many sroall-scale cassava starch industries exist where the product has specific food uses, typically for the production of \"sour\" starch (Brazil, Colombia). \"Sour\" starch is a naturally fermented starch whose characteristic functional properties are necessary for making traditional cheese breads:\"pandeyuca\", \"pandebono\" in Colombia or Ecuador, \"biscoito\", \"pan de queijo\" in Brazil. This traditional industry has a real socioeconomic importance for the local economy and for adding value to cassava production.Nevertheless, this sector presents many probleros in terros of production, processing and comercialization, which limit its development.A collaborative CIAT-CEEMAT/ClRAD project on \"Production and utilization of cassava starch\" was initiated in 1989 to improve new technologies for this industry (see Annual Report 1989).For defining research priorities compatible with local needs, the following methodologies were used:Analysis and diagnosis of the Colombian traditional process technology (see also biotechnology section) Identification of the \"bottlenecks\" of the technioeconomic system Organization of workshops on this theme with the participation of researchers, producers and users Constitution of multidisciplinary interinstitutional teams.The following priority areas of research and development on cassava starch were established in 1989:1 Exchange rate averaged Col. Ps.$50l.10 to US$l for the perlod June-July 1990. in the mouth between the tongue and the palate, the color of a flame in the presence of starch dust, or the form and expansion of a starch hall made of sour starch and saliva put on the extremity of a lighted cigarette). No quality test with a scientific basis exists. The establishment of a simple method for evaluating sour starch quality has been a research priority. The main quality characteristic that seur starch users (small-scale bakeries or large companies) require is \"expansion power.\" This is \"the ability of a fermented starch to increase the volume of a dough containing that starch and suhmitted te a proces:: of baking. ,\" The simplest parameter for determining expans~on power ~s the specific volume of bread after baking. Nevertheless, this expansion power depends not only on the starch quality but also on the cheese quality (which is also very variable), product forroulation, dough texture and consistency, bread forro and baking conditions. For designing a reproducible and sensitive baking test, several assays using good-and bad-quality samples were carried out under different baking conditions and forroulations (cheese, fat, salt, yeast, etc.) using a domestic electric oven.The following protocol was standardized:Manual preparation of a dough made of sour starch (1 part) , commercial white (\"campesino\") cheese (1 part) and cold water (0.5 part) at ambient temperatures • Baking oi 6 or 8 small round breads of 15 9 at 450°F for 7 mino• Determination of the average specific volume of the cheese breads by the method of seed displacement This protocol has the advantages of using or having:• A formulation similar to that of traditional products A sweet consistency of the dough Very good (R = 1, P < 0.001) for good-quality starches Not significant (R = 0.79, P = 035) for regular and poor-quality starches Thus the traditional knowledge of the product permits identification of only the good-quality products.Correlations between specific volume and starch character parameters (biochemical, physical and functional properties) were also studied.The following correlations were significant (p < 0.05):• Total organic acids • Lactic (+) and acetic (-) acids Color (brightness)• Swelling power at 90'C• Water absorption at 40 and 500 BU Thesa results show that acid lactic production and the modification of the functional properties of native starch during fermentation are important. To improve the extraction rate and the \"sour\" or/and \"sweet\" starch quality, some equipment modifications were proposed, looking at the possibilities of scale reduction of those used in advanced technology.The improved equipment was designed, built and is now belng evaluated with the producers in some traditional starch-extracting operations (flrallanderias fl ).Washing/peeling. The presence of external peel affects the product color and increases the quantity of \"mancha\"; so, the modifications have been:Addition of 2 or 4 abrasive rollers Distribution of washing water from the central axle The other problem is excessive fiber content in the final producto This can be overcome by: Grating with a system of root disintegration by cutting blades fixed on a plastic drum with a higher rotation velocity Extracting with water in a traditional cylindrical extractor equipped with four mixing screws to get better contact between water and cassava mash Refining of starch milk in a vibratory sifter with two sieves (80 and 120 mesh) 7.4.4.3 Starch separation. Natural decantation of starch milk in the settling tanks takes one day. To avoid removing starch on a daily basis, several successive sedimentations are carried out during one week. The natural fermentation that occurs modifies the functional properties of native starch; under these conditions, the final product does not respond to the general requirements for industrial uses of \"sweet starch.\" Also, some starch is lost when the supernatant is removed. An improved system--sedimentation in settling tables--which is already used in India and Brazil, reduces starch los ses and allows starch classification by purity and granule size.A survey of starch producers was carried out in the municipalities of Santander and Caldono (97 rallanderias in Cauca, Colombia), to learn their opinion about the influence of cassava varieties en starch extraction yields and en sour starch quality. Ranking of the varieties using Friedman's test (Fig. 7.4) shows differences between quality and yield for the two main varieties used (Fig. 7.5). M Col 8 (Blanquita) gives the best yield but the worst qualitYi M Col 1522 (Algodona) the best quality but the worst yield.A study of the suitability of cassava varieties for sour and sweet starch production was undertaken.Varieties were planted at CIAT and the starch production area in order to:Monitor the evolution of the raw material as a function of plant age and the preharvest environment Obtain precise data on extraction rate and on the sour starch quality for each variety Understand varietal differences in yield and quality by characterizing the native starch 7.4.6 study of natural fermentation 7.4.6.1 Physicochemical parameters. The physicochemical parameters and functional properties of sour starch are highly variable from one processing plant to another and from one fermentation to another in the same planto Factors such as ambient conditions, variety, water quality and traditional knowledge may be involved in this variability.A study of several fermentations showed that natural fermentation is homolactic; that is, lactic acid explains 99% of the variation of total organic acids, but is in itself extremely variable (20-800 mg/lOO 9 of starch DM basis). Nevertheless, a tendency can be shown for the evolution of pH and lactic acid production (Fig. 7.6). The process can be divided into three stages: ) Different behavior of the starch paste: greater ease of cooking; i.e, time to reach the maximum viscosity starting from the beginning of the gelatinization phenomenon, a lower gelatinization index (Ve-Vr) and a greater setback value (Ve-Vm).Screening the starch structure by SEM microscopy showed a selective decrease in the size of some starch granules, mainly during the last stage of fermentation. The evolution of the degree of polymerization using gel permeation chromatography wi11 be studied to obtain more information on the changes in starch structure during fermentation. A small population of yeast and rool2s, roorelor less c?nstant after the 5th day, about 10 and 10 , resp.A progressive inerease in the proportion of Lactobacillus (froro 5% to 20% of the total population) during the entire fermentationThe roieroorganisms present in the mediuro have starch as their only earbon souree. Oxygenation conditions change rapidly froro aerobic to strictly anaerobic; thus seleetion of anaerobic amylolytie flora is important. For this, media progressively less rieh in nutitive elements were used until one was obtained whose only carbon source is starch. It was found that in all the steps of the process, there are amylolitic microorganisms, some of whieh are producing a great quantity of gas, identified by mass spectrophotometry as CO 2 • Lactic bacteria (in MRS medium) with amylelytic activity, which play an important role in the process, were selected. Taxonomic characterization, metabolism and enzymatie system are being studied for the 20 isolates. Research en the amylolytic activity of the enzymes involved in microbial fermentation of cassava starch is reported in seetion 2.6. 7.4 .6. 4 Fermentation influences on sour starch baking power. Based on previous results, the following hypothesis is presented to explain the baking power property of sour starch:Fermentation step. The amylolitic microorganisms (sorne are lactic bacteria) produce reducing sugars that are immediately consumed by lactic bacteria (the reducing sugar content in the medium has a zero value for the entire fermentation) to produce organic acids (mainly lactic acid) and carbonic gas. These may be absorbed by the starch¡ the attack by amylolitic enzymes and the acidification of the medium modify the functional properties of native starch.Baking step. During the heat treatment of baking, the dough moisture is volatilized (initial and final water contents are about 50 and 8-12%, resp.). Lactic acid and CO produce the expansion power of the dough and the de~reased gelling tendency, which together give the characteristic texture of the final producto The project is expected to contribute to the development of a general methodology, technologies and expertise for implementing small farmer integrated rural development projects based on the specific characteristics of the cassava crop in other regions of Brazil and other countries of Latin America. CIAT is promoting the formation of a network of national agencies interested in cassavabased integrated rural development projects1 and Brazil, as the largest cassava producer in Latin America, could be one of the principal actors.Since 1979, Brazilian agricultural institutions have been trying te implement activities to promote the production of dry cassava chips for animal feed as an alternative cornmercial activity for the cassava farmers in NE Brazil.During the period 1980-86, efforts included the installation of the first dry cassava agro industries in the state of Ceará (1981).These units were not very successful for various reasons, among these severe drought , which substantially reduced crop production; and the agroindustrial model chosen relied on large farmer coops (400-500 members), which greatly diminished farmers' interest in participating in the administration of the agro industries.In 1986 the CIAT Cassava Program initiated closer collaboration with agricultural research and rural extension agencies of Ceará; and in 1987, during a training event held at CIAT, a group of technicians from NE Brazil did a diagnosis of the principal problems of the cassava crop in 7 states of the region. Production of dry cassava for animal feed was identified as a marketing alternative for the cassava farmers in the region.In More than 50% of the work force is engaged in agriculture-related activities (IBGE, 1980).More than 70% of the families live below the poverty line (Le., cannot fulfill their own basie needs of food and basie services).Land distribution is greatly skewed; the no. of farros with• fewer than 10 ha represent 70% of the total but account for less than 6% of the tatal farro area; whereas the no. of farros over 100 ha represent 6% of the total but oceupy more than 40% of the total farro area (Fig. 8.1) .The NE's contribution to total Brazilian agricultural production represents about one fifth of the total value, and sOme of the most important agricultural commodities produced in the region (sugarcane, cotton, cassava) represent a significant share of national production. The state o~Ceará is the fourth largest state in NE Brazil (148,000 km).Population projections indicate that by 1990, the total population of Ceará was about 6.4 million, 36% of whom will be living in rural areas.Agriculture is the main economic acti vi ty , employing 56% of the sta te , s labor force (IBGE 1989).Average per capita income in the rural areas is one of the lowest in the NE. Income distribution patterns are extremely skewed, with 50% of the population earning less than the minimum salary (US$75 in Oct. 1990), accounting for only 15% of the total income in the Sta te.High rates of infant mortality (25/1000), malnutrition and illiteracy are major socioeconomic problems (IBGE 1989).Land distribution in Ceará, as in the rest of NE Brazil, presents a highly skewed pattern, where farros with under 10 ha represent 48% of all farros but account for only 3.9% of the total farro area.Conversely, the no. of farros with areas over 1000 ha represents only 0.44% of the total no. of farros (20.5% of the total area available). Some 60% of the rural producers are classified as nonowners: and of those considered as owners, 40% have no legal title (IBGE, 1989) (Fig. 8.1).Cotton, beef, fruit, beans, maize, sugarcane and cassava are some of the State's most important agricultural products.Cassava is grown throughout Brazil.According to FAO, the area planted in 1989 was 1.9 million ha with a total production of 23.2 million t and an avg productivity of 12.5 t/ha. Brazil used to be the most important producer in the world, but recently this position was lost to Thailand.On a countrywide basis, cassava holds eighth place as regards total area planted and seventh place in monetary value (FAO, 199?) • Cassava, which is a major caloric source in Brazil, is consumed in two principal forros: \"farinha\" (toasted flour) and fresh. Per cap ita consumption of farinha (17,6 kg/year) is much more important than consumption of cassava in fresh forro (6.1 kg/yr) (IBGE, 1989).In the NE, cassava is produced mainly by small farroers. The climatic conditions in this area are much harsher than those of other cassava-growing areas of the country; consequently, yields are Iower.In 1989 a total of 1. 09 million ha of cassava were planted for a total production of 11.7 million t and an avg productivity of 10.7 t/ha. Most of the cassava harvested in the region is used for making farinha, with smaller amounts sold fresh for human consumption and minimal quantities used for animal feed.In the State of Ceará, cassava production is one of the main agricultural activities.From 1985-87, avg annual production was on 113,035 ha with avg productivity at 9.6 tjha. This production ranked fifth statewide in terms of total crop area planted and second in terms of total monetary value. Cassava is mainly used in the form of farinha (64%), for animal feed at the farm level (25%), and minimal quantities are used in fresh form for human consumption (ISGE, 1989).The project is intended to lmprove the welfare of the rural poor invo1ved in cassava production in communities throughout the State of Ceará, NE Brazil. This objective i8 to be achieved through the introduction and adoption of improved cassava production, processing and marketing technology. Expansion phase to semicommercial-and commercial-scale production 8.1.5 Progress toward project outcomes 8.1.5.1 Selection of pilot project site. The selection of the State of Ceará as the site for the pilot project was strongly influenced by prior involvement of some agricultural institutions in Ceará--especially the State Rural Extension Agency (EMATERCE)--in the promotion of activities related to small-scale cassava farming and processing. The concept of small-scale cassava-based agroindustries for producing dry cassava chips for animal feed, which had remained practically frozen in Ceará from 1981-86, was reactivated; and in 1987, five cassava agro industries were installed across the state.However, the farmers' groups performed poorly once again as a result of the poor selection of areas and farmers' groups, the lack of credit for planting, and scarcity of planting material.The formation of the CCC in 1988 facilitated the coordination of support activities in the state. with other sources of funding, nine new farmer groups were organized around dry cassava processing facilities that year.In May 1989 the coordinating activities of the CCC were strengthened; and during this reporting period (May 1989(May -0ct. 1990) 24 new producer groups were organized to install and operate dry cassava processing agroindustries.By December 1990 38 agroindustries will be installed (Table 8.1). 8.1.5.2 Identification of local institutional capacity and financia! support. This objective is being pursued at four levels: State, regional, municipal and community. Identification of financial support at national and local level has been more difficult because of the prevailing economic situation in Brazil although the cce has been able te obtain access to some development programa (PAPP-Support Program for Small Farmers; SUDENE-Superintendency for Oevelopment of the NE; BNB-Bank of NE Brazil), which are supporting farmer groups to install cassava processing agroindustries. 8.1.5.3 Production technology. Minimal adoption of improved agricultural technology and lack of good-quality planting material were identified as two of the main constraints in implementing the production technology component of the pilot project. Actions taken to overcome these constraints have included the setting up of (a) demonstration/preproduction trials and (h) seed production plots. During the first planting sea son (Jan-March 90), 16 of these trials were established; for the next planting season, a total of 35 preproduction plots will be installed.The strategy for these trials is twofold: (a) Apply all the components of available improved technoloqy in combination with those components of traditional technology for whieh no improvements have been developed in an area bigger than that used in elassieal experimental work; and (b) faeilitate the integration of research and \"extension workers at field level through their active involvement and evaluation of the trials. If sueeess-fuI, these trials will form the basis for preparing local, regional and national produetion plans.Cassava seed produetion plots. The expected impact of the projeet on the cassava produetion and commercialization systems in the State of Ceará, is likely to increase farmers' demand for improved, good-quality planting material. To meet this demand, seed production plots are being set up in collaboration with the farmers' groups.During the first year 16 seed plots (1.0 ha) were installed¡ for the second year the goal is to establish 35.This work is being undertaken as communal enterprises so as to promote group cohesiveness and facilitate farmer participation and control of the production and distribution of the planting material. 8.1.5.4Processing technology. Implementation of a dry cassava processing technology among small-scale farmers so that they can function as supp1iers of raw material to the animal feeding industry, is faced with the problem of meeting large-scale demand on a continuous basis. The sma11 farmers generally have difficulties maintaining consistency of price, quantity and quality.The following parameters have been established to facilitate evaluation of farmers' groups performance in the adoption of the new processing technology and the new marketing alternative: efficiency of plant use and of processing, global efficiency, yields and conversion ratios. Some results obtained in assessing progress in this activity are as follows:Efficiency of plant use. This parameter gives an idea of the availability of cassava in the area of influence of each agroindustry.In Ceará sun-drying can be carried out between August and December (24 wk).The climatic conditions prevailing during this period permit the drying of a lot of chips in two days (60 lotsjyr). Where sun-drying is practiced on a day-to-day basis using only half the drying area each day, the no. of lots processed rises to l20jyr.Table 8.2 shows the efficiency of use of the drying plant for some of the groups that produced dry cassava the first year (1989). The values obtained were generally low, which is considered standard for the first year of operation. Data for the second year of processing are not yet available. Efficiency of processing. This parameter gives an idea of the assimilation of the processing technology by the farmers.It compares the amount of cassava chips processe~per unit of drying area with an optimum amount (10 kgjm ).Values below 75-80% are considered low (Table 8.3).Global efficiency. This parameter combines efficiency of plant use with that of processing. Values below 50% are considered low.Table 8.4 shows some rates obtained by farmers groups during the first two years of operation. Complete data for the second year are not yet available. ---------------------------------------------- - ---------------------------------------------------------------------- ----------------------------------------------------------------------- Yields and conyersion ratios. Table 8.5 presents the yields obtained during 1989-90 by the 12 farmer groups that participated in cassava processing activities. In 1989 the total output was 265 t of dry chips (702 t of cassava roots). During 1990 (23 groups and only 4 mo of processing activities, July-Oct.), total output was 932 t of dry chips (2438 t of cassava roots). This production represents an increase of 247% in relation to the first year.The conversion rates obtained in the two processing seasons--2. 64 and 2.61 resp. --are considered acceptable. 8.1.5.5 Commercialization. This project activity operates under the basic assumption that as a result of the project's activities a new alternative market will be developed for the cassava crop through the cassava processing agroindustries, allowing small-scale farmers to sell dry chips to animal feed manufacturers for use as a partial substitute for cereals in feed rations.This assumption, which had proved to be valid in similar projects in Colombia and Ecuador, has not been fully realized in the Ceará Project thus faro Most of the dried cassava produced in Ceará has been sold directly to dairy farmers in the vicinity of the drying plants. Of the 115 users for the dry cassava processed in 1989, only three were commercial manufacturers of animal feed although they purchased 30% of total output. Although only partial data are available for the 1990 processing ----------------------------------------------------------------------- ------------------------------------------------------------------------season¡ the tendency appeare to be the same with a large number of low-volume consumers. This situation may be due to the fact that animal faed manufacturers are usually high-volume consumere throughout the year and the project is not yet eufficiently developed to stimulate their interest. Those who purchased more than 10 t accounted for 68% of the total production (Table 8.6).• Local level: In each municipality where there are cassava processing groups, the goal has been to promote the formation of technical teams composed of agricultural extension agents, social extension personnel and sUbject-matter specialists drawn from EPACE, EMATERCE and other agricultural agencies. These teams are coordinated by the respective Regional Cassava Committee and are responsible for giving technical assistance to rural communities in the organization and administration of community-based groups around integrated cassava production and processing activities.Farmers. Organization building among farmers participating in the proj ect is been pursued through the establishment of small-scale farmers organizations who are responsible for the installation, operation and administration of the cassava-based processing agroindustries. Achievements in this area during the reporting period have been as follows:• In 1989 twelve farmers' groups were reorganized andjor reactivated for cassava processing activities. Although the majority of these groups were established before the initiation of the project, they had no experience in operating cassava agroindustries under a commercial farmer-owned scheme, and most of their cassava-processing experiences had be en under the community-owned scherne, which characterizes most of the coromunal cassava flour (\"casas de farinha\") production units existing in rural NE Brazil.• During 1990 another 24 cassava farmers' groups were organized, and it is expected that by the end of 1990 a total of 36 groups will be engaged in producing dry cassava for animal feeding.The project is fomenting the organization of second-. order groups at the regional level (Associations of Farmers' Groups) in order to improve their bargaining power and thei~ participation in central project planning and implementation. This type of organization could play an increasing role in areas such as marketing, channeling of funding, farmer-to-farmer traíning and could al so facilitate institutional work in the adaptatíon of cassava production and processing technology, as well as the implernentation of agronomíc, agroíndustrial and social research activities.In 1990, in two of the regions where the project operates initial steps were taken toward forming Assocíations of Cassava Farmers' Groups (Ubajara and Distribution of project benefits among intended beneficiaries.After the two cassava processing seasons, some preliminary information has been collected in the following areas: 8.1.6.1 Characteristics of project participants Land tenure. Currently there are 3 S active farmers I groups in the project. Members operate their holdings under three types of land tenure systems: owners, sharecroppers and renters (Table S.9). The main difference between sharecroppers and renters is the land rental agreement, which in the case of the latter is often arranged for periods of more than one year.Age of participants. The maj ori ty of the farmers are between the ages of 30 and 60, with fewer than 20% below 30 and 12% above 60 (Fig. S.3).Size of farmers I organizations. Most of the farmers' groups participating in the project have undergone a transition from community groups originally organized around communal activities such as farinha production units and communal wells.The dry cassava processing groups being formed within the Ceará Project are different in nature and organization, and their functioning has been initiated on the basis of farmerowned and operated cassava agro industries (Table 8.10). ----------------------------------------------------------- --------------------------------------------------------- Partial information available on 1990 56%-of the raw material processed was and 44% from members (Fig. 8.4).In relation to land tenure status of the farmers, during the first year 69% of the cassava sold to the processing units was from smallholders, 22% from renters and 9%froro sharecroppers. Information on the 1990 processing sea son indicates that 66% of the raw material sold to the drying plants was coming from smallholders, 30% from renters and only 4% from sharecroppers (Fig. 8.5). Cassava Drocessina wages. Besides selling the roots, another form of benefits gained by the farmer members of the cassava agroindu~~ries is in the form of wages paid at the drying plants during the processing activities. During the first drying season (1989), the wages benefiting the farmers were distributed as follows: 52% to smallholders, 35% to renters and 13% to sharecroppers. Preliminary data for the second drying season (1990) show that 26% of the wages paid at the processing plants went to smallholders, 53% to renters and 21% to sharecroppers. (Fig. 8.6).Total incomes. Benefits accruing to farmers' groups who participate in cassava processing activities include cassava sales, wages and the sharing of annual profits among members.During the first processing season, 58% of the total income earned by the processing groups went to smallholders, 32% to renters and 10% to sharecroppers. (Fig. 8.7).Total information about the second processing season is not yet available beca use sorne of the agro industries will be processing dry cassava until December 1990.Preliminary data from 5 agroindustries indicate that 53% of the total incomes went to renters, 25% to smallholders and 22% to sharecroppers (Fig. 8.8). Additionally, the distribution of this total income according to the size of cassava plots planted in 1989, shows that more than 70% of the total income went to the farmers who planted between 1. O and 2. O ha of cassava and that farmers with more than 3. O ha received less than 10% of total income. In 1990 the results of 5 agro industries show that 94% of the total income went to farmers with cassava areas of up to 2. O ha and that those farmers with more than 2.0 ha of cassava received less than 10% of total income (Fig. This report summarizes activities until Hay 1989, the processing year from June 1989 to April 1990, and the current project situation. with a good rainy season at the end of 1988-89 and greatly expanded drying space, UAPPY-Manabi and the collaborating sections in the Cassava Program fully expected an excellent production and process ing season; nevertheless, the year fell short of expectations. No one factor or problem can be singled out ¡ rather a constellation of related occurrences resulted in much lower processing and decreased benefits for UAPPY-Manabi members.However, experiencing a \"bad\" year may well have served good purposes for the long-terro sustainability of both the UAPPY and the larger cassava programo As a result of the good rains, cassava production in the region was good, and association members prepared for harvest.The cassava producer and processing associations (APPYs) began to demand operating funds fer precessing from the UAPPY.These were depleted, however, because of the investments made in drying patios; and the UAPPY was awaiting new PL-480 funds, which did not arrive. The only income was from the sale of flour to shrimp feed producers.As available UAPPY funds ran out, the APPYs turned to private lenders and borrowed operating capital at high rates of interest (8-10%/mo). The UAPPY moved quickly to turn around the milled flour to the feed factories to generate sufficient operating capital. As the year progressed, conditions for drying were optimal, but money became tighter.In September Ecuador suffered a drop in the demand for exported shrimp due to strong competition from Asia. At the same time, national producers were faced with a growing shortage of larvae to stock their ponds. As their production declined, feed factories immediately stopped buying UAPPY cassava flour, traditionally usad not only as a source of carbohydrate but as the natural agglutinant for the pellets used to feed the shrimp.UAPPY was faced with sto res full of dried chips, no market, and still no funds from PL-480.APPYs with access to their own or privately borrowed resources continued to process; however, the majority simply stopped all work.There were also problems of support from other participating institutions. The National Argicultural Research Institute, INIAP, continued with its program of varietal and agronomic work, but with reduced collaboration from CIAT HQ and decreasing attention to pestharvest issues. An exception to this was a thesis en drying technology cenducted by a university student whe was subsequently hired by INIAP. The secioeconomics team conducted its fifth round of the farrolevel production systems survey but did not complete the interviews.Funding frem IDRC was somehow misplaced in ministerial circuits; and problems were compounded by a move of the IDRe regional office from Bogotá to Montevideo, leading to a halt in INIAP collaboration in the monitoring of the processing plants and preventing the final round of the farro-level production systems survey.This si tuation was further aggravated by the absence of direct socioeconomic support and participation from CIAT, as well as by delay in the analysis of the survey information.The end result was a growing gap between the work of the roota and tubers program at the local INIAP research station and the needs of the farmers associated with the UAPPY.In the case of the Ministry of Agriculture, MAG, the person in charge of the cassava extension activities and activity involved with the UAPPY was transferred to another post in 1988. As his replacement did not have the same interests, collaboration was reduced, except in the area of accounting. Another problem directly affecting UAPPY was a virtual stalemate in the procedures within the MAG to legalize the APPYs.Uncertainty over legal status affects the APPYs I ability to obtain access to government resources that could be put to use in processing activities.It also affects APPY participation in UAPPY I s electoral acti vi ties. UAPPY voted to revise its statues in order to ease the entry of rural workers' associations without legal ownership of land; however, MAG approval is still pending.FUNDAGRO also underwent staffing changes that affected the Cassava ProgramoThe position of Director of Programs was vacant for the entire year, and the Director of Research who resigned in late 1989 was not replaced until March 1990. The FUNDAGRO cassava coordinator was fully occupied with the problems of funding, commercialization and legalization of the UAPPY; and a shortage of professional staff reduced FUNDAGRO I s capaci ty to monitor and support all programs, including cassava research.Given the lack of money and market, as well as the decline in support from institutional cOllaborators, UAPPY could have virtually collapsed; but they resorted to several survival strategies.~n order to conserve funds, half the administrative staff returned to their respective APPYs, and activities including training were put on hold.The jeep was stored to save on gasoline.Remaining UAPPY staff went on half salary, meetings of members were reduced, and the annual November get-together among members was cancelled. The UAPPY administrator and marketing committee--made up of older, experienced members--began an intense search for new markets for UAPPY products.Problems with the UAPPY-Manabi also contributed to increasing organizational and operational problems in Esmeraldas. The coordinator, an expatriate volunteer, went on an extended funding trip and did not return for seven months. Given a certain lack of leadership and a lack of funding, the farmer groups were unable to sustain their processing activities. For lack of a local collaborating institutional environment and sustained contact with CIAT, the project is still in a state of reorganization and recovery.When part (S./30,000,000) of the promised PL-480 funds finally arrived at the end of December, it was too late to process so this money was used to pay oEf debts and to complete the last of the processing. A study on the potential of cassava starch for industrial markets, commissioned by FUNDAGRO, pointed out the potential of the cardboard box industry.Samples of starch produced by the two women' s groups were sent to a major box factory. As a result of the strong potential for this market, one of the larger APPYs invested money in the construction of starch processing facilities.Other explorations of potential markets began to yield tentative results, and further samples were sent for industrial experimentation.More importantly, the shrimp feed factories began to huy again.Slowly t UAPPY began to sell off its stored production, and funds were available again for operating at full capacity.In the meantime new human resources were added to the project. FUNDAGRO made an agreement with the local technical uni versi ty for agronomy students to do their required year of rural work wi th UAPPY in conj unction wi th INIAP' s supporting research, training and extension activities.In October a doctoral student in nutrition from the Univsity of Arizona arrived to do research on the nutritional and consumption impact of the Cassava Programo She initiated a series of surveys that increased contact between the Cassava program as a whole and the cassava farmer community.The CIAT socioeconomics input to the Ecuador project was revived, and the final step of the farm survey was initiated.Although things were finally looking up, several hard lessons were learned.First and foremost was the recognition of the need to expand markets. This meant not only new markets for existing products but also for new products, implying new processing techniques and different marketing strategies.Second, UAPPY learned that it could no longer depend on one sole source of external funds but must make a concerted effort to locate more reliable sources of external funding in order to create sustained internal revolving funds for organizational growth.By the time the new project technical advisor had arrived (April 1990), UAPPY's situation had greatly improved.The remaining stores of cassava chips had been milled and soldo A new market was taking hold with a major plywood factory in Quito.UAPPY began sifting the unpeeled cassava meal to obtain a finer product equivalent to wheat flour for use by the plywood factory as a filler for the resins used to glue the sheets of wood together.Industrial experiments revealed that up to 40% cassava flour could be used to replace the wheat flour.In March 1990 the plywood factory began buying cassaVa flour at arate of 6 timo, in August, their demand doubled to 12 timo, and they anticipate doubling production and thus their demand for cassava flour in 1991. UAPPY, which has al so explored other buyers in the wood industry, just received a new order for 7.5 t from another plywood factory, which intends to substitute 50% of its wheat flour filler.UAPPY also continued to explore the market for selling starch to the cardboard box industry. After several tests, one company began buying at arate of 25 timo in July¡ the following month, it was doubled. The type of starch demanded by the industry, which is referred to as common starch (\"corriente\"), requires less labor to produce than higher quality starch and can be dried directly on a cement patio. As this demand is far greater than UAPPY's current capacity for starch production, they are buying starch from selected private producers. Although UAPPY plans to increase starch production capacity during the coming year, management is considering how these small starch producers might be organized into an association and join UAPPY.UAPPY has started producing cassava flour for human consumption on a somewhat smaller scale. The flour is produced at the Demonstration Center using an artificial dryer, as well as at one or the associations which dries all the chips on trays raised aboye the ground. The flour (3 timo) is sold to a noodle factory in Ambato.Although the market is small, UAPPY intends to maintain it while it explores other potential buyers in the food industry.With these new markets, UAPPY has moved into a cornmercial phase of production. Rather than being 95% dependent on the shrimp feed industry, 40% of the production this year is going to the new markets.New products are being produced requiring different processing technology (e.g., sifting the cassava meal)¡ and some associations are beginning to look at specialized production (e. g., flour for human consumption).Both efforts will require a different research focus.Despite the growth in the commercial sector, cassava production was poor in the Manabi region this year. Rainfall was lower than normal during the rainy season, which was al so shorter.Some private starch producers never stopped production¡ they simply continued making starch through the scant rainy season and drying when it was sunny. Some made a product called \"bagazo y todo,\" where the cassava is grated and dried without removing the starch.Middlemen, taking advantage of the market for shrimp feed opened up by the UAPPY, buy this product for sale to the feed factories.The low rainfall had another important impacto Unless farmers irrigated their crop, much of it was too poor to harvest this year.This created a shortage of fresh roots for both UAPPY associations as well as private starch producers. In addition, the short rainy season allowed for processing to begin much sooner than normal, before the local harvest would begin even in a good rainfall year.To meet the demand, UAPPY and the APPYs themselves traveled to the humid zone (4-5 h to the east of Manabi) and made contracts with cassava growers to buy their production. Located in a zone with year-round rainfall, these producers, normally supply much of the large urban fresh market demand; however, production has increased and prices have fallen, making it attractive for both producers and processors to bring the cassava to Manabi for processing.The roots from this region are usually larger and of better starch quality than those produced locally. APPY processors have noted that the conversion rate is better than local cassava during a normal year and that the roots are much easier to peel by hand.Large quantities of cassava were brought in during the June-September period until the better local areas began to be harvested.It is likely that the comparison for this year between fresh supply from UAPPY members vs nonmembers will be on the order of 25 to 75%.The móve to purchase cassava outside the region is indicative of the overall maturation of the UAPPY and its members as a whole. The experience of the past year has taught them that they must be quick and flexible to take advantage of the entire period of sun-drying. The farmers are discontent with the qua lit y of their own production and are' making quite vocal their demands for better, early-maturing (7-9 mo) varieties that are more drought tolerant and maintain a consistent DM content despite fluctuations in rainfall over the growing season. These demands were presented by farmer representatives at the interinstitutional committee meeting in October to develop the next work plan for FUNDAGRO support.Changes in the plans by INIAP agronomists for on-farm trials reflect these demands.UAPPY maturity is also demonstrated in the management and administration of the commercialization and the distribution of credit to the APPYs. As a result of last year's experience, UAPPY did not invest all its profits in construction; instead, funds went into strategic activities to support the development of new markets.Although supporting institutions are collaborating in the search for new funds, UAPPY pursued the remaining PL-480 funds that had be en promised the previous year.This sum (S./20,000,000) was now worth less than half its value in dollars the previous year; however, it was still a sizable amount for operating expenses.PL-480 administrators decided to make this a donation to UAPPY, with the restriction that it be used as a revolvlng fund with near-commercial rates of interest so as not to lose its remalning value. Once again, there were multiple changes in the bureaucracy, and the money again arrived quite late in the season (early Nov.). This time, however, UAPPY used reserve funds and its own credit at the bank to tide over the demands for operating capital from the associations. A broader range of products and markets al so kept UAPPY funds circulating until the PL-480 funds arrived. Nonetheless, UAPPY has stepped up its efforts to locate other funding sources; and even some of the associations are beginning to conslder seeking independent grants for their specific construction needs.As such funds are captured, UAPPY will push ahead with plans to bring all the APPYs up to full processing capacity with adequate drying space and ultimately with the infrastructure to process elther flour or starch ln order to have greater flexibility in responding to market demands or variations in price.After a fairly long hiatus in the building of new associations, several new groups are entering UAPPY. One group of women worked with a Peace Corps volunteer to se cure a donation of US$500U for constructing their processing planto UAPPY assisted them in developing the proposal and i5 now focusing promoter activities on assisting and training the new members in operating and managing their processing activities and association.UAPPY assisted a second group of woman, organizad last year, in securing funds to purchase a plot of land; and with a small operating fund from UAPPY, they will process using borrowed equipment in order to earn funds for construction next year.A third group of women has recently ini tiated discussions with UAPPY to consider starch making as an economic activity for their community organization.In Esmeraldas, two woroen I s groups recently received externa 1 funding froro the UK and will begin processing shortly.The growing involveroent of women in both UAPPYs is quite interesting and appears to demonstrate some practical lessons regarding women's participation in agricultural development projects in the coastal region of the country. Nomen and men are considered as individua1s rather than household representatives in the UAPPY associatlons. A 1imit of 3 related persons in any APPY is genera11y the rule; however, both men and women from the same household can be members of the same APPY or members from one household can belong to different APPYs as ls the case in both of the older all-woroen APPYs.This makes calculating the benefits on a per-member or per-household basis more complicated, but it serves to encourage female participation in the organization.Women are also part of mixed associations; and in several, they hold the senior elected offices.Nomen participate fully in the UAPPY general assembly, hold office on the directorate, and hold the administrative positions of secretary, office manager and accountant. Although the women have not been active as promotors, they have been involved in farmer-to-farmer technology transfer, hosting new women members and teaching them how to process starch.While it appears that women in mixed associations have earned more than those in all-female APPYs, this is due more to the limited production areas of the two older womens' groups rather than to their production ability. This issue will be tested as the new Las Piedras women's group starts to work in its plant, which was designed to be the same in size as the best of the all men' s groups.The prevalent gender-based division of processing activities in the UAPPY (men produce flour and women do starch) has likely contributed to the presence of women in the organization.The validity of the division will be tested as more groups begin to process starch.However, the experience of the one all-male group processing starch shows that the roen may build the structure, but they hire women as the processors. This increases the job opportunities for women in the cornmunity, which has probably been the most important gender impact of the project. External observers of the UAPPY have noted in several reports that the income generated by the women in UAPPY has served to enhance their socioeconomic status as well as their economic independence, which in turn appears to be affecting their social status with respect to meno This observation requires further careful analysis, however.While UAPPY opera tes on a July-to-June calendar, research operates on an annual calendar funding and planning basis. Research results for this year are mixed.Three years of agronomic testing show that the varo M Col 22-15, introduced from ClAT because it is widely used in drier areas of Venezuela and Colombia, is appropriate to the region; and it will be released next year as INlAP Porto Uno.Plans for wider scale mul tiplication of planting material are under way and will invol ve considerable UAPPY participation in managing five multiplication plots with association members. A collaborative project among UAPPY, INlAP and thesis students will be in charge of this effort.The socioeconomic farm-level production systems survey was finally completed in August, and analysis is under way iR collaboration with ClAT. Collection of the processing plant monitoring information from 1989-90 was also completed.A major initiative in this area for next year will be the merging of the various data bases on cassava production and socioeconomics and the comparative analysis and interpretation of results. The methods for conducting the monitoring of production and processing activities will be modified to allow for a more focused data collection procedure, greater involvement of APPY members in the data collection, and a more agile analysis system to permit more immediate use of the information by UAPPY.Unfortunately, a large part of the research planned by INIAP was not implemented. Less than half the research budget was spent, and a large part of the training funds (> U8$30,000 allocated by FUNDAGRO) were not touched.UAPPY, on the other hand, normally uses all of its FUNDAGRO budget for its planned activities in institutional support, development and training of farmer members.consequently, FUNDAGRO has changed its procedure for allocating research funds. Explicit attention will be paid to INIAP's actual capacity for implementing the planned activities; and budget al locations will be made only for those where sufficient human resources are available. All training funds will be placed in a central fund for access by all project participants rather than being explicitly allocated to INIAP's research programo Finally, a separate research fund will be created to meet project demands that INIAP is unable to meet. These funds will focus on postharvest issues, quality control, environmental impact, marketing, and new product research. Collaborative research projects between private and public sector research entities will be encouraged.The intent is to bring a larger community of R&D institutions together in support of the Cassava Program's needs.Research activities undertaken by the CIAT technical advisor for the Cassava Program are only just getting under way. In addition to synthesizing the project's history and development, considerable time has been allocated to assisting in the reorientation of the research program and to facilitating greater interinstitutional participation in the project planning process.Egual time has be en spent in providing direct assistance to the farmer groups in Manabi and Esmeraldas in identifying R&D needs and directions, as well as arbitrating a reorganization of the Esmeraldas project. Greater FUNDAGRO support for this group will decrease this role and allow for some more focused research activities to get under way in support of the farmer groups.The major focus of CIAT-supported research activities this year has be en on cassava starch.In direct support of UAPPY's need to open new markets, a diagnostic survey of the traditional and potential starch industry was initiated in July.First an inventory of all industrial users in the country was made using secondary sources at bank and ministerial levels.This information was used to select industries from the wood, textile, bOK, food processing and glue sectors for informal interviews.This information was analyzed by the economist hired to conduct the study in collaboration with CIAT and FUNDAGRO specialists. The report, which has stimulated further exploration of additional markets, will be the basis for dAsigning a more formal study of the potential starch market next year.An important finding of the starch users survey was that virtually none of the potential users outside of the box and shrimp feed factories had had any previous experience with cassava starch and had very little information about its potential.To address this knowledge gap, the Cassava Program is planning to hold an industrial users seminar in order to provide information on how to use cassava starch and experiences in using the starch at industrial levels in other countries.The FUNDAGRO-supported seminar will receive collaboration from CIAT and other national programa.'The second part of the starch diagnostic study focuses on the local marketing system of the well-known middlemen in the region.Because of difficulty in using formal or even informal research methods and the lack of researchers to obtain this information, a group of UAPPY members with long-term involvement in the traditional starch productiv areas are COllecting this information on their own via their personal relationships in the communities. This information will be assembled in December, and a strategy designed for further research in this area.The final and lengthier part of the diagnosis consists of a survey of all starch processors in the region.The survey instrument, which was adapted from one designed by CIAT for Colombia, is applied in interviews (30-60 min) of all the private, largely family-based processors in three zones covering nearly all of the known starch-production areas in the country.The survey team consists of two uni versity students and one farmer member from an association in the major starch-producing zona.To date 154 have been interviewed, and an estimated 100 remain in part of one zone and all of the third. The survey will be completed in December.Preliminary findings indicate that two processing systems are in operation: one is semimechanized with the grating done by machine; the other, entirely by hand.There is a total absence of machinery for peeling, washing or straining starch.Products include three types of starch (\"corriente,\" \"chillón industrial\" and \"consumo humano\") and two by-products (\"cachaza,\" the proteins, fats and phenols with the starch, known as \"mancha\" in Colombia; and \"bagazo,\" the fibrous mash left after straining). As variations have been observed in product quality at different processing sites, a study of quality of production will be initiated at the end of November in collaboration with a specialist from Colombia. There is also some product adulteration among processors; but this practice is more widespread among middlemen. As a result UAPPY is faced with a major constraint in opening up new markets among the box factories because they have had bad experiences in the past with the quality of starch supplied by the local middlemen. All these products have markets, but the by-products tend to be sto red for sale during the rainy season when starch ls scarce. Prices fluctuate greatly over the processlng season and very few formal credit systems are used. A small group of middlemen in each locality control the commercialization of the products, advancing credit or buying on credit with different producers. Initially, research concentrated on the technology for producing dried cassava for the animal feed market; but sinee 1988 CIAT has had no role in this now successfu1 small-scale rural agroindustry.Upon request, CIAT does provide some support to the National Association of Cassava Producers and Processors (ANPPY) in the form of technical advice and assistance in project formulation.Research activities within the DRIjCIAT framework in 1990 were fresh eassava storage, cassava flour for human eonsumption, and cassava production (especially the preproduction plots destined to supply the pilot plant for high-quality cassava flour).For details of these areas of research, see the utilization and Agronomy sections. This institutional arrangement is valuable in providing (a) a means for the Program to generate technologies in el ose contaet with farmers, processors and consumers; and (b) a highly efficient interface between research, extension and development--something that has been amply demonstrated in previous years.In January 1990 another meeting of the GRUYA (Group of Cassava and Associated Crops t Research) was held on the Atlantic Coast of Colombia.This group, which has been meeting for five years, consists of people from ICA, the caja Agraria (Agrarian Bank) , the universities of Sucre and Córdoba, and the Agricultural Secretariats of Bolivar and Córdoba in addition to CIAT. GRUYA planned all experiments to be planted in the Atlantic Coast sta tes of Suere, Córdoba, Bolívar and Atlántico during 1990.In Atlántico the emphasis was on associations with sorghum and early-maturing maize.In Córdoba, experiments with yuca, maize and yam associations were planted; while in Bolívar and Sucre the yuca/maize association was of most interest. Experiments were conducted ei ther in farmers I fields or at the lCA experiment station in Carmen de Bolívar.In July a group of GRUYA members received training at ClAT in experimental techniques and statistical designo Results of their field experiments were used for the statistical exercises.Many of the experiments planted by the GRUYA involved the new cassava varieties due for release by lCA in 1991, and planting material of these varieties is being multiplied.Moreover, all field experiments that resulted in the acceptance of these varieties had been carried out by this group.Over and aboye the traditional research activities in farmers I fields, GRUYA maintains 10 pre-production plots distributed throughout the region which, together with those carried out in collaboration with ClAT, total 30 plots in which the most advanced cassava production technology components are tested as a package.Finally, GRUYA published another volume of research results, covering 1988-89.In 1989 a joint project was initiated between CIAT and the PNR of the Popular lntegration Secretariat attached to the Office of the President.The PNR is a government program designed to bring development to those areas of the country ignored by the public sector (henee suffering from public order and rural poverty problems). The small-scale eassava processing eoops were viewed as one of few viable alternatives available to the small farmers in these areas.Under the auspiees of the agreement, the Cassava Program is working in a multi-institutional environrnent in three regions of the country (Suere, Córdoba and Cesar on the Atlantic Coast; Meta; North and south Santander) where cassava is a traditional erop but laeks alternative markets. During 1990 drying plants were built in Suere, Córdoba, Santander and Meta, and another is under construction in Cesar.In Meta, where there is high precipitation during the harvest season, a rnixed natural-artificial drying plant was built.In order to test prornising CIAT clones in the region, trials have been established in eollaboration with ICA in Cesar, North and South Santander, and a program for the mUltiplication of two recently released varieties is under way in Meta (PNRjICAjCIAT Seed Unit). This two-year project will end in mid-1991, when responsibility for those activities currently undertaken by CIAT will be assumed by Colombian national institutions.The agricultural research and extension team that works with cassava in Paraguay was trained at CIAT and has gradually increased in capacity to the point where it now receives greater in-country support for its activities.A study of fresh cassava commercialization in the country was published this year. Team members have participated in international meetings and courses, and two members will obtain masters degrees in 1991.Four years of field research have resulted in the characterization of at least seven local varieties of good yield and eating quality.In addition, improved production technology now exists, and appropriate crop management recommendations can be made.Current field research ~s focusing on soíl management and conservation and on germplasm improvement.Research on cassava utilizatíon is becoming increasingly important. Oiagnostic studies have been completed, with the termination of surveys on starch processing industries and markets during 1990. The cassava storage technology developed at CIAT is now being used at a pilot commercial level in Asunción, with excellent results.The first cassava drying plant is under construction in collaboration with a farmers' coop.Equipment improvements for small-scale starch extraction will be tested, based on solving the problems identified in the surveys.Animal feed trials using fresh, ensiled and dried cassava are also planned.CIAT reduced its activities over the last two years in light of the financial problems of local institutions. Oespite these difficulties, farmers participating in the Integrated Cassava Project have continued drying cassava for sale to private industry.The agricultural policy of the new government appears favorable for small farmers in cassavaproducing areas, and renewed government interest in cassava is anticipated.The Ministry of Agriculture recently named a coordinator of a National Cassava Program, who works closely with the national agricultural research institute, IDIAP, in all cassava-related activites.The national research team recently compiled a document summarizing the experiences of the Integrated Cassava Project since its inception. This document will be useful in planning future activities.The private sector has responded efficiently to the opportunity for using cassava in animal feed rations (especially for chickens), and at least one business has planted considerable areas of cassava close to Panama City in order to cut transport costs.Contact was resumed with Bolivia after an interim of B years.Two development proj ects (UN and USAID funding) working on coca substitution in the Chapare region contacted CIAT with respect to developing cassava processing for the local animal feed industry.In addition, the University of Santa Cruz is carrying out cassava production research and is also interested in processing.Although the difficulties caused by working toward substitution of coca by other crops are enormous, they are not insurmountable.Cassava is one of the most attractive alternative options if small-scale processing can be introduced for small farmers. One advantage is that most farmers already have drying patios. Nevertheless, the economics of cassava processing are not clear: the price offered to farmers for the fresh root must be attractive to compete with coca, but the cost of the dried cassava must be low enough to compete as a carbohydrate source with local maize. As prices of coca and maize fluctuate in a relatively free market, eCOnomic feasibility is not easy to estimate.The UN project in Chapare has funded a pilot plant for producing dried cassava, based on the Colombian modal with sorne innovations. Project personnel were trained at CIAT in processing and cassava integrated projects.CIAT will monitor the operation of the pilot plant during 1991 and collaborate in feasibility studies for project expansiono An in-country course on cassava, organized by IBTA-Chapare, is planned for June 1991. 9. REGIONAL NETWORKS AND TAAINING 9. 1 11 Latin American Cassava Breeders' Workshop (cruz das Almas, Brazil, 21-25 Hay 1990) As a resu1 t of a meeting held at CIAT in 1988, a Pan-American Cassava Network was created with representatives from eight countries.The network's original objectives were to promote the integration of and communication among Cassava programs in the hemisphere through meetings, training, pub1ications and other network activities.A set of priority areas was established in order to organize workshops (marketing, transfer oE techno10gy, breeding, etc.). This breeders' workshop was the second to be. organized at the Pan-American leve1 and the first within the framework of a cassava network.The objectives of the meeting were to:Interchange information about cassava breeding activities, the status of the crop, and its main limitations Discuss breeding re1ated aspects that were mentioned as re1evant in a previous1y conducted \"Delphi\" survey Analyze and propose specific breeding activities to be conducted within the network.Discussion was organized around the country presentations, and roundtables were organized on specific topics. The most important points arising from these discussions were: 9.1.1 Characterization of the main environments for cassava Some ten years ago CIAT proposed a classification based on edaphic, c1imatic and bio1egica1 factors, intended te provide a bread framework fer the different cassava regions to be classified.The discussien raised the issues of how wel1 the different growing regions in Latin America fit lnto that c1assification and the importance of considering other aspects of the crop such as product utilization for future subdivisions of the present classification.Determining the homology among cassava-growing areas of the continent wi11 facilitate the movement of elite germp1asm among regions. C1assification into different agroecosystems (ECZs) reduces the variability within a particular ECZ, but does not e1iminate it.There is stil1 variation in soi1 type, incidence of pathogens, differences in pathotypes, uti1ization aspects, etc., representing what is referred to as microenvironments or intra-ECZ variation. submitted. included as continent.Mantequeira (eMC 40, M Col 1468) will be a common check for advanced yield trials on the 9.1.5 Communication within the Cassaya Breeder's Network Reactivation of the Cassava Network Bulletin was recommended.It was also decided to include in it two annual reports from the participating programs, describing the main activities conducted and results.Given its comparative advantage, CIAT will centralize the information and dissemina te it.The next meeting of the 1992, to be hosted by (second).Breeders' Network was proposed for CUba (first priority) or Mexico 9.2 111 Asian Cassava Research Workshop (Malang, Indonesia, 22-27 Oct. 1990) One of the functions of CIAT's Regional Cassava Program is to promote collaborative research among national programs by forming networks through which information exchange and utilization of technical expertise can be enhanced. One of the mechanisms for achieving this goal has be en the organization of periodic (every 3 yr) regional research workshops.The first workshop, co-sponsored by the ESCAP-CGPRT Centre, Bogor was held in Bangkok in 1984, the primary emphasis of which was on cassava in Asia, its potential and research development needs. The second workshop was held in 1987 in Rayong, Thailand in cooperation with the RFCRC, Dept. of Agriculture.Each national program reported on its major research accomplishments in varietal improvement and cultural management, and priority research areas were discussed.In this year 1 s workshop, the main emphasis was on cassava processing and utilization, with seven countries presenting papers on the markets, products and processes for cassava, together with a description of the research being undertaken and future areas of priori ty.Progress made in varietal improvement and agronomic research during the past three years was also discussed.Regional-level achievements in varietal improvement and agronomic research have been reported herein (sections 1.4 and 5.5) and in previous annual reports.with respect to modifications in regional research priorities that will have a bearing on future CIAT collaborative activities, it is interesting to note that quality factors are now an important criterion for selecting improved genetic materials. There was also a felt need for further economic analysis of the data being generated on soil fertility and erosion control measures, coupled with on-farm testing of those technologies that appear both technically and economically viable.The presentations on cassava processing and utilization highlighted the diverse end uses 1n Asia (Table 9.1), particularly the import role of starch production. In terms of common research priorities, two major areas were apparent.Indonesia, India, the Philippines and vietnam are interested in small-scale rural processing, especially for producing dry cassava products or intermediate products for further processing.On the other hand, Thailand, China, Malaysia, India and, to a lesser extent, Indonesia, are focusing on industrial-scale production of derived or modified products principally from starch.In both areas the link between the physicochemical properties of the raw material and the quality of the end product was recognized.The workshop was the first opportunity for integrating breeders, agronomists and processing specialists at the regional level.It was proposed that this integration be strengthened at the next workshop through country presentations that cover the three areas, rather than treating the disciplines separately.Finally, a recommendation was made that communication among countries be improved, and the Asian Insti tute of Technology, Bangkok agreed to act as a clearinghouse for collecting and disseminating information, possibly through a regional newsletter, if funds could be found. Since its inception in 1972, the Cassava Program has been unable to cover the research needs and potential opportunities of the subtropical cassava-growing regions adequately. On a world basis the importance of this ECZ in terms of cassava production may not be that significant; however, 22% of the total area planted to cassava in Tropical America is located in the subtropics, making it the single most important cassava ecosystem on that continent. Other important subtropical cassava-growing regions are found in southern China and North Vietnam. Although CIAT has provided training and research support for national programs in southern Brazil, Paraguay and more recently northern Argentina, little systematic attempt has be en made to promote horizontal cooperation among these countries or to define the principal research areas that might be dealt with on a regional basis.The objectives of this meeting were therefore threefold:Analyze the convenience of improving communication among professionals working on cassava in the countries.Identify technical areas of specific interest to the institutions in each country and about which it would be useful to interchange more information. Prepare tutions needs.an agenda on future activities among the instithat will satisfy their common information Interestingly, while supporting enthusiastica11y the idea of improving subregional communication among the countries, participants also recognized that there is deficient communication among institutions within the same country. steps wi11 be taken to improve this situation. With respect to mechanisms for improving communication among countries, it was recommended that: A country coordinator be designated who wou1d meet periodically with counterparts in the other countries An information network be formed with the interchange of annual reports in the first instance A study be carried out on the feasibility of creating a regional cassava society A regional cassava workers directory be preparedThe technical areas in which It was felt there was insufficient expertise within the subregion were soil microbiology, soil conservation, root rots, postharvest physiology and genetic tolerance of low temp.To support these research needs, it was proposed that agreements be sought with both national and international institutions.Four areas of expertise that could present opportunities for horizontal cooperation were identified: breeding, production, postharvest aspects and socioeconomics. The resulting information will be used to formulate a project to obtain funding for these regional activities. The project will be formulated jointly at a meeting of country coordinators, together with a representative from CIAT in mid-199l.The training activities of the Cassava Program, carried out in collaboration with the Training and Communications Support Program, have be en progressively changing their focus and contento In common with other commodity programs, there is now a reduced need for the intensive type of multidisciplinary course usually targeted at young research workers and extension leaders with little or no previous experience with the crop in question.In the case of researchers, a period of in-service training in their particular discipline is now seen as the most effective way of preparing them for carrying out their jobs. On the other hand, extensionjdevelopment personnel and on-farm researchers, many of whom have several years' experience with cassava, often require greater skills in problem and opportunity identification so as to respond to the changing needs of their client farmers.Problem areas may arise from production, processing or marketing limitations. The Program's experience in executing integrated cassava development projects in collaboration with national cassava research and development organizations in Colombia, Ecuador, Paraguay and Brazil has provided the basis for structuring a course that meets the needs of on-farm researchers and development personnel more directly.The first course was held this year (see 9.4.1).To complement both in-service specialization and training in integrated projects, a two-week introductory course on cassava production and utilization was offered, mainly for those country professionals who had not previously attended a CIAT cassava course.Introductory course on cassava production and utilization rCIAT), 3-14 Sept. 1990) This two-week course gave the 16 participants (8 Latin American countries) a general overview of cassava production","tokenCount":"60262"} \ No newline at end of file diff --git a/data/part_3/4996194218.json b/data/part_3/4996194218.json new file mode 100644 index 0000000000000000000000000000000000000000..d7336702f35f01a2300eeefb8ba2477dc2b54fc0 --- /dev/null +++ b/data/part_3/4996194218.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"e86c1be96de91ce94217f8aa84c7d8c9","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/f20cfdf4-c47e-4592-8e8d-bd74a0ba7743/retrieve","id":"-1973591098"},"keywords":[],"sieverID":"7450deea-35fe-4d61-8869-775c9697303e","pagecount":"25","content":"Climate change is becoming one of the most serious challenges to Kenya's achievement of its development goals as described under Vision 2030. Kenya is already extremely susceptible to climate-related events, and projections indicate that the impacts are likely to affect the country in the future. In many areas, extremes and variability of weather are now the norm: rainfall is irregular and unpredictable; some regions experience frequent droughts during the Long Rain seasons or severe floods during the Short Rains. The arid and semi-arid areas are particularly hard hit by these extreme changes putting the lives of millions of households and their social and economic activities at risk.In 2010, Kenya developed a National Climate Change Response Strategy (NCCRS) which recognized the importance of climate change impacts for the country's development. This was followed by the development of the National Climate Change Action Plan (NCCAP) in 2012. The focus of these initiatives including the development of country climate profiles have been considered at national level. As the country shifts towards County governance and focus, there is need to mainstream climate change perspectives in programmes and development plans at the County level.In support of this effort to strengthen local capacities of stakeholders to reduce the near-, medium-and long-term vulnerability to current and future climate variability, the Kenyan Government, through the Ministry of Agriculture, Livestock and Fisheries (MoALF) is implementing the Kenya Adaptation to Climate Change in Arid and Semi-Arid Lands (KACCAL) project. The project is funded with a grant from the Global Environmental Facility (GEF) / Special Climate Change Fund (SCCF) through the World Bank (WB). The present study is part of the KACCAL project. It aims to inform the County Government and stakeholders on the climate change risks and opportunities for agriculture so that they are able to integrate these perspectives into their development plans and processes. This document presents the Climate Risk Profile for Homa Bay County, where climate variability has been accompanied by a significant increase in attendant risks, as often reported in national news. In recent years, flash flooding has triggered mudslides and repeatedly caused major rivers to overflow their banks, leading to displacement and even death. In 2015, rivers Maugo, Awach Tende, Rangwe and Riana overflowed destroying homes and reclaiming farmland on more than 300 farms. That same year, seven people were lost to floods and landslides in Homa Bay County alone. The effects of the flash floods were compounded by the fact that the County had faced more than two years of persistent drought that compromised human and agricultural water sources, forcing the most affected residents in Kojwang to travel over two dozen kilometers to collect water. The drought saw hundreds of livestock, particularly cattle and donkeys, to perish and led to outbreaks of waterborne diseases, especially in Karachuonyo. Measures to address these threats have included handling vaccines, partnering with World Vision to improve water harvesting and de-silt water pans; working with state researchers to introduce drought-tolerant millet crossbreeds; statesponsored distribution of drought tolerant crop seeds. The disastrous nature of extreme weather makes the identification of impending climate risks an urgent matter. Likewise, considering how practices that help citizens become more resilient in the face of imminent threats to their health, safety, and livelihoods becomes an exercise with the potential to affect hundreds of thousands of lives.The Profile is organized into six main sections, each reflecting an essential analytical step in studying current and potential adaptation options in key local agricultural value chain commodities. The text first offers an overview of the County's main value chain commodities key to food security and livelihoods, as well as major challenges to agricultural sector development in the County. In the next section, the main climate hazards are identified based on the analysis of historical climate data and climate projections, including scientific assessments of climate indicators for dry spells, flooding, and heat stress among other key hazards for agriculture. Then it continues with an analysis of the vulnerabilities and risks posed by the hazards deemed to be potentially most harmful to the respective value chains. Based on these vulnerabilities, current and potential on-farm adaptation options and off-farm services are discussed. The text also provides snapshots of the policy, institutional and governance context that can enable adoption of resilience-building strategies. Finally, it presents potential pathways for strengthening institutional capacity to address potential future climate risks.Climate change is becoming one of the most serious challenges to Kenya's achievement of its development goals as described under Vision 2030. Kenya is already extremely susceptible to climate-related events, and projections indicate that the impacts are likely to affect the country even more in the future. In many areas, extreme events and variability of weather are now the norm: rainfall is irregular and unpredictable; some regions experience frequent droughts during the long rainy season, others severe floods during the short rains. The arid and semi-arid areas are particularly hard hit by these climate hazards, thereby putting the lives of millions of households and their social and economic activities at risk.1 As reported by online newspaper (Floodlist, 2015). 2 As reported by Daily Nation online newspaper (Daily Nation, 2014). 3 As reported by Daily Nation online newspaper (Daily Nation, 2015).The County of Homa Bay covers an area of 4,267.1 Km2 and is located in south western Kenya along Lake Victoria, the largest freshwater lake in Africa with a surface area of 1,227 Km2. Homa Bay County borders Kisumu and Siaya Counties to the north, Kisii and Nyamira Counties to the east, Migori County to the south and the Republic of Uganda to the west. The County has 16 islands, with unique fauna and flora and an impressive array of physiographic features with great aesthetic value of nature. Because its proximity to Lake Victoria, fishing is one of the main activities together with agriculture.Agricultural activities in the County vary with the Agroecological Zones (AEZs). The County is divided into several (AEZs), namely:The upper midlands (UM1) occupy the southern parts of Kasipul and Kabondo Kasipul Sub Counties where tea and coffee are grown.The upper midlands (UM3) cover the Gwassi hills of Suba Sub County. Maize, millet, pineapples, sorghum, sunflower and tomatoes grow well here.The upper midlands (UM4) cover areas surrounding Gwassi hills of Suba as well as Ndhiwa and Nyarongi areas of Ndhiwa Sub County. It supports maize, soya beans and pineapples.The lower midlands (LM2) occupy parts of Ndhiwa, Homa Bay Town, Rangwe, Kasipul and the north of Kabondo Kasipul Sub Counties. This zone supports green grams, millet, sorghum, tobacco, sunflower, sugarcane, beans, pineapples, sisal and groundnuts.The lower midlands (LM3) occupy parts of Homa Bay Town and Rangwe sub-counties. It is suitable for growing maize, sorghum, cow peas, ground nuts, beans, soya, sweet potatoes, sunflower, simsim, green grams, rice and vegetables.The lower midlands (LM4) occupy a strip along east of Karachuonyo, central Mbita and Gwassi areas of Suba Sub County. The area is suitable for growing cotton.The lower midlands (LM5) occupy south-west Suba, Rusinga and Mfangano islands, Lambwe Valley and Gembe and Kasgunga areas of Mbita Sub County. The area supports livestock rearing and millet growing.Agriculture is the leading income contributor to the households and it plays a crucial role to food and nutrition security in Homa Bay County. According to the 2009 Kenya Population and Housing Census, the employed population in the County stood at about 393,374 representing about 79.5% of the labour force of which 74% are employed in the agricultural sector. In 2012, the County earned about KES 4.1 billion from the major crops, with maize and beans contributing about KES 2 billion and KES 0.9 billion, respectively. Maize and beans account for 74% of the estimated income from the main crops (GoK, 2014) (Annex 1).The value estimations for horticulture are higher than for other crops since they have higher gross profit margins per hectare. In the fiscal year 2012-2013, 322,290 tons of cash crops valued at KES 1.18 billion were produced. The main cash crops grown in the County include cotton, sugarcane, rice, pineapple, sunflower and ground nuts. Coffee and tea are also marginally produced in the upper zones of the County.Milk and beef generated KES 1.8 billion and KES 783 million, respectively. The main livestock kept in the County include zebu cattle, the red Maasai sheep, the small East African goat and indigenous poultry. Annex 2 presents information on the quantity and value of livestock products generated in the County.Most of the income is derived from crop, livestock and fishery activities. Adult men receive more income from on-farm activities compared to adult women and youth. On-farm income earns the households an average of KES 98,496. Crop income represents 40% of all on-farm income and livestock represents 21%. Woodlot activities earn male-headed households an extra KES 19,050 per year and female-headed and youth-headed households KES 7,600 and KES 3,733 per year, respectively (GoK, 2014) (Annex 3).Fishing forms a major economic activity in the County, as the County borders Lake Victoria, generating annual revenues of approximately KES 7 billion. It is a prominent activity in the County, engaging over 18,300 people and 3,600 families. The main species caught include Nile perch, tilapia and clarias (Omena). In 2012, 76,710 tons of fish worth KES 7 billion wereAs indicated above, the great majority of the County`s population is employed in agriculture, dividing their activities between crop production, livestock rearing, and fishery. About 104,464 hectares are dedicated According to the 2009 census, in 2012, the population was projected to be 1, 038,858 persons (498,472 men and 540,386 women). The population is expected to rise to 1,177,181 by 2017. Rural population from the 2012 projections stands at of 956,501 which is about 92% of the total population of the County. About 44% of this rural population are poor. (GoK, 2013). About 50% of the population of Homa Bay County is food insecure (GoK, 2013). The overall proportion of households who do not have enough food to meet their household requirements throughout the year is 82%. Among the male-, female-and youth-headed households at least 82%, 81% and 84% of households do not have enough to meet the household needs 5 . (GoK, 2014) 6 Food insecurity peaks between July and August and between December and March, when food stocks have been depleted.The manifestation of malnutrition among children is in the high incidences with prevalence of stunting 26.3%, underweight 15%, and wasting 4.2%. According to the Kenya Integrated and Household Budget Survey (KIHBS) the absolute poverty level in the County is 52.9%, higher than the national level of 45.2%. The major factors which contribute to poverty are: high unemployment, high cost of living, population pressure, poor yields, low price of agricultural produce, poor infrastructure, and lack of credit and high incidence of HIV/AIDS. The majority of the poor are women and youth. The literacy rate in the County stands at 64% with men accounting for 66%, women 54% and youth 74%.5 Food security is defined as a state whereby, at individual, household, national, regional and global levels, \"all people, at all times, have physical and economic access to sufficient, safe and nutritious food to meet their dietary needs and food preferences for an active and healthy life\" (FAO, 1996) 6 Household food security refers both to the availability and to stability of food, together with purchasing power of the household (GoK, 2014) ) were selected for indepth analysis based on their contribution to food security, productivity characteristics and importance to the economy. These VCCs, validated by local stakeholders, have been selected from a list compiled from the above-mentioned documents using the following prioritization indicators: harvested area (hectares), production (90 kg bags), variation in production (in the past five years), value of production (KES$/bag), dietary energy consumption (Kcal/capita/ day), protein content (gr of protein/100 gr of product),Fish 7 Total income generated from the food crop was 4.1 billionMaize is a major contributor to the household food security and nutrition. The vast majority (80%) of farmers grow maize since it is considered a staple food (GoK, 2013). Maize has comparative advantage in the upper midland zones of the County (UM1, UM3, and UM4) and lower midland zone (LM3). The popular ugali is important in the Luo community, where dry maize is milled to maize flour and cooked to ugali which can be accompanied by vegetables and proteins such as fish and Nyoyo where the maize is mixed with beans. Income from maize production represented 50.84% (KES 2 billion 7 ) of the total income from major food crops generated in the County.Maize is grown in both the first season (March to May) and the second season (October to December) across the County. However in some parts of the County such as Lambwe, the farmers tend to grow maize only once a year (during the second season), due to the unreliable rainfall patterns. Maize requires abundant annual rainfall (1,200-2,500 mm) while rainfall in Homa Bay County is low and unreliable, ranging from 700 to 800 mm. While male-, female-, and youthheaded households alike grow maize on relatively small areas of land, male-headed households tend to use more inputs and register higher yields compared to women and youth. Annex 4 shows yields of major crops in the County by gender. Women, however, tend to use organic manure more than men as it is readily available on farm.Farm inputs are bought from seed companies and farm input dealers, The National Cereal and Produce Board (NCPB) depot is also responsible for providing farm inputs such as the fertilisers and seeds at iron content (mg of iron /100 gr of product), zinc content (mg of zinc/100 gr of product), and Vitamin A content (IU Vitamin A/100 gr of product).The selected value chains for Homa Bay are maize, beans, fish, and local poultry. Maize and beans were selected mainly for food security because they are staple foods in the County; fish on the other hand and local poultry were selected for economic purposes because of high demand in the market. The rest of this section focuses on the four value chain commodities and the subsequent sections discuss how they are affected by climatic conditions.subsidized prices. On-farm maize production also involves weeding to ensure pests and weed control to minimize competition and maximize yields. There has been increasing weeds and pests in maize production over the years according to the farmers' testimonials. Such weeds and pests include but are not limited to: parasitic striga weeds, stem borers and stalk borer and storage pesticides such as large grain borer commonly known by the farmers as osamaThe main storage facilities in the County include cribs (75% of the farmers use these) and gunny bags (24%). Only 1% of the population appears to use silos. Silos are used mostly by the NCPB at their mini depot in Magunga (GoK, 2013). The Big NCPB depot in Homa Bay Town is not used for storage of produce.There are no well-defined farmers groups and cooperatives in this value chain, maize is thus sold in most cases at the household level in the local market centres on market days. Major market centres in the County include: Sindo, Ndhiwa, Rodi Kopany, Kosele, Mirogi, Rangwe, Adiedo, Nyangweso, Aora Chuodho, Magunga, Ringa, Kadongo, Chabera, Misambi, Ruga, Nyandiwa, Ogongo and Sena.Fishing forms a major economic activity in the County. This is attributed to the fact that the County borders the largest fresh water lake in Africa, Lake Victoria, and has a number of rivers that are important in fishing activities. Homa Bay County has two types of fishing activities: capture fishing and aquaculture.A total of 17,000 fishermen in the County rely on fishing for their household income. The Riparian Sub Counties that engage in capture fishing include Rangwe, Karachuonyo, Mbita, Suba and Homa Bay Sub County and are located in UM3, UM4, LM3, LM4, LM5 zones. Aquaculture is practiced across the County. Fishing guarantees generation of annual revenues of approximately KES.7 billion. The main species caught include Nile Perch, Tilapia and Clarias (Omena) (GoK, 2013).In the year 2012, 76,710 tons of fish worth KES 7 billion were captured. Of these, Nile perch contributed KES 5 billion and clarias (Omena) contributed KES 1.7 billion (GoK, 2013).8 According to GoK 2013, of these BMUs, 61 are in Mbita, 33 in Suba, 30 in Rachuonyo North and four in Homa Bay.In almost every household, indigenous chickens freely roam around homesteads and scavenge for food with very little supplementary feeding and minimal additional inputs, such as sorghum, millet or maize. However, the economically-enriched farmers buy feeds from the local agro dealers to supplement the feeding of poultry for growth and productivity as most of them keep improved indigenous poultry.Beans are a staple food in the County and are grown in both seasons by a vast majority (80%) of farmers across the County (GoK, 2013). Beans thrive well in AEZs UM4, LM2, LM3. Incomes from bean production represented 23% (Ksh 0.9 billion) of the total income from major food crops generated in the County (GoK, 2014).Capture fishing requires nets and boats as inputs.The Beach Management Unit (BMU), fishermen and Government are involved in the conservation of the breeding sites to protect the fish stock. The County has 151 landing beaches 8 managed under 133 Beach Management Units. (GoK, 2013). These landing beaches have become influential trading centres in the County especially for fish products. Examples of landing beaches which have become thriving trading centres include Nyandiwa, Ringiti, Remba, Kwethumbe, Alum, Kaugege, Ndhuru and Sena. There are no fishing groups, or cooperatives in the County.The main challenge in this value chain are invasive species such as the recurrent water hyacinth, hindering fishing and depriving the lake of oxygen, overexploitation affecting the fish stock, exploitation by middlemen.Aquaculture is relatively underdeveloped in the County, even though it is practiced across the County. In all, 1,801 fishponds are found in Homa Bay, covering an area of 540,300 m 2 . There are about 2,000 fish farmers involved in aquaculture. Fingerlings, fishponds, feeds and fishing nets are key inputs required by farmers in this value chain.In aquaculture, there are fish farmer groups as well as a cooperative, also known as Homa Bay County Aquaculture Multipurpose Cooperative Society (AMCS). The presence of the cooperative helps in linking buyers and sellers, pricing and the promotion of the value chain. Other actors that play a role in marketing are middlemen and BMU's. Fish farmers use cooler boxes to store their fish.Homa Bay County is home to two fish processing industries in Homa Bay Town and Mbita Point from which fish produce is exported to other counties as far as Nairobi County (GoK, 2013). Processing enhances the quality and increases the shelf life of fish.Beans grow at temperatures that range between 17.5 and 27 o C. The temperatures in the County range from 17.1°C to 34.8°C (GoK, 2013). Beans require a moderate, well-distributed rainfall of 900-1200 mm per annum, however, dry weather during harvest is very important. Irrigation is important to maintain a continuous production. However, rainfall in Homa Bay is low and unreliable; the County receives an annual rainfall ranging from 700 to 800 mm.Suitable soil type for growing beans range from light to moderately heavy to peaty (with organic matter) soils with good drainage. This is not quite the scenario in Homa Bay County, hence the need for fertilisers to increase the soil fertility. Farm inputs are bought from seed companies and farm input dealers in market centres, The NCPB depots in Homa Bay and Kendu are providing farm input such as fertilisers and seeds at subsidized prices. Some farmers also use pesticides to achieve pest and disease control for high output.Post-harvest activities refer to threshing and winnowing to add value, packaging, dusting and storage to lengthen beans' shelf life. Most of the farmers (75%) use cribs and gunny bags (24%) for storage (GoK, 2013).The prices of beans are determined by the market forces of demand and supply and there are no cooperatives in this value chain. Thus, bulking, bargaining power, accessibility of trade facilities and setting of prices is compromised. Beans are sold at the household level at local and major market centres. Annex 4 shows the yield of beans by season and gender. Male-headed households tend to use more inputs and register higher yields. Men dominate in decision-making for market-oriented crops such as beans and others such as green grams, kales, and maize. However, the role of women is more prominent in groundnuts and sweet potatoes which are also market oriented (GoK, 2014).Local poultry production is found across all AEZs in the County. Indigenous chickens are reared for both food security and income generation. The proceeds are used to pay school fees and for emergencies such as hospital bills etc.Some farmers have built housing to protect the poultry from predators, diseases, pests and adverse climatic conditions. Because of the informal nature of production, information related to inputs and production volumes and quantities is limited. Most of the decisions regarding local poultry is done by women who have a say in the disposal, sale and use of income accrued from the sale. Women are more likely to be owners of small livestock compared to men who prefer larger livestock such as the local cow, goat and sheep as they fetch more income than poultry keeping.Homa Bay County has the potential to feed itself and export surplus to neighbouring counties, however it faces perennial food shortages and food insecurity due to low productivity (GoK, 2013) Low mechanization of production to increase efficiency and poor storage facilities have hampered progress in the sector as over 90% of farmers use traditional production and storage methods which limit their output. The main storage facilities in the County are cribs (75%) and gunny bags (24%). Only a paltry 1% of the population appears to use silos. Silos are used mostly by the National Cereals and Produce Board in their mini depot in Magunga (GoK, 2013).The general lack of market information and skills amongst farmers and the business community has hampered the expansion of markets for products from the County. Weak and inadequate farmers' cooperative societies coupled with the poor road network in the County are major hindrances to the marketing process. Cooperatives such as Homa Bay County AMCS, Homa Bay CLPVCCS are not taking up their role adequately in the market dynamics. Poor organization of farmer groups has exposed farmers to exploitation by middlemen.HIV/AIDS-related morbidity and mortality has diminished the workforce and reduced agricultural productivity in the County. The County has an HIV/ AIDS prevalence of about 27.1% compared to the national average of about 6.3% (NACC, 2014).10 Refers to the wettest 1-day event (mm/day) indicator in the infographic. 11 Note that this is 20 mm on average over the entire County, so specific parts of the County will have experienced greater than this (possibly much greater), whereas other parts will have experienced less. 12 The two RCPs, RCP2.6 and RCP8.5, are named after a possible range of radiative forcing values in the year 2100 relative to pre-industrial values (+2.6 and +8.5 W/m2, respectively).The pathways are used for climate modelling and research. They describe two possible climate futures, considered possible depending on how much greenhouse gases are emitted in the years to come. RCP 2.6 assumes that global annual GHG emissions (measured in CO2-equivalents) peak between 2010 and 2020, with emissions declining substantially thereafter. In RCP 8.5, emissions continue to rise throughout the 21st century.Other factors which have hampered farming activities include rules of inheritance of land and subsequent land fragmentation. This has reduced land sizes among families leaving only small plots of land for food production.Despite being major contributors to agricultural production, cultural norms deny women access to production resources and decision-making. Men still control the means of production. Women cannot access credit for significant investment requiring a title deed as collateral as land title deeds remain under control of men. Culturally, women are not empowered to make serious decisions unless it is in consultation with their spouses.Major constraints to the growth of the fishery industry include: water hyacinth (which obstructs the fish landing sites), use of illegal fishing gears, inadequate patrols, receding water level, exploitation by middlemen and declining fish stocks due to overexploitation in the lake.The major problems facing the livestock sector are Tsetse fly infestation, especially around Lambwe valley, drought, malnutrition, and low quality livestock breeds.There is some variation in precipitation throughout Homa Bay County, with the southern areas further from Lake Victoria receiving the most precipitation around 1750 mm, and the northern areas closer to Lake Victoria receiving 1000-1250 mm of precipitation per year. The temperature is fairly consistently warm through the year. Precipitation also consistent throughout the year, although the first wet season (January-June) receives a slightly greater amount.Intense precipitation and heat stress are both hazards that contribute to agricultural risk in the County throughout the year, whereas dry spells are more an issue in the second wet season. Water level in the lake is rising due to extreme rainfall and/or the deposition of sediment brought in by the rivers upstream.Maize production in Homa Bay County is almost entirely dependent on rainfall, and thus highly susceptible to climate shocks. Moisture stress is a major limiting factor for maize growth and productivity, as is high rainfall/floods. Maize requires high rainfall of 1,200 to 2,500 mm, whereas the County's annual rainfall is low and unreliable ranging from 700 to 800 mm. The lakeshore lowlands areas (Mbita, Karachuonyo, Homa Bay, Suba) are more likely to be affected by the predicted reduction in rainfall that will affect soil moisture in the LM2, LM3, LM4 and LM5 agro ecological zones. Maize yields are therefore likely to be affected unless soil and water conservation measures, use of drought-tolerant varieties and irrigation are adopted. Maize is also vulnerable to weeds and pests that proliferate during moisture stress, requiring treatment with pesticides or chemicals that most of the farmers in the County cannot afford. This is attributed to the high absolute poverty rate that stands at 44.1% 13 . Maize production over the years according to farmers' testimonials has experienced increased weed and pests such as: parasitic striga weeds, stem borer and stalk borer, and large grain borer commonly known by farmers as osama. The increased incidences of weed infestation lead to competition for soil nutrients and lower production consequently leading to demand spikes and high prices for buyersThe reduction in soil moisture makes tilling the land difficult and leads to seeds scorching which causes poor germination. Maize is sensitive to acidity which exacerbates when there is moisture stress. Increased incidences of pests such as the large grain borer can cause considerable losses in stored maize and also lead to a higher demand of storage pesticides. The economically endowed can cope with price increases, however, poor farmers can't. This is further exacerbated by the poor storage facilities in the County. In spite of this, farmers are culturally attracted to maize and reluctant to shift to heat-resistant sorghum or millet. Lack of diversification makes them more vulnerable to climate risks. Farmer groups and insurance companies could cover smallholders' risks against adverse climatic conditions, however, there are no farmer cooperatives in this value chain.Heat stress is a limiting factor to the growth of beans and so is flooding. Beans require a moderate, welldistributed rainfall (900-1200 mm) per annum, however, dry weather during harvest is also very important. During the dry season, beans require up to 50 mm of water per week. Prolonged dry conditions are harmful to beans. Rainfall in Homa Bay County is low and unreliable, ranging from 700 to 800 mm. Lake shore lowlands (LM2, LM3, LM4 and LM5) such as Mbita, Karachuonyo, Homa Bay, Suba are more vulnerable to the heat stress compared to the uplands. Suitable soil type for beans range from light to moderately heavy with organic matter in the soil, however some parts of the County have black cotton soil which is very hard when dry and difficult to till.Heat stress leads to poor quality, inadequate and high cost of seeds in the County. Beans experience scorching of the seed leading to low or no germination. Resourcepoor farmers (especially women) are more vulnerable to this impact, as they are not able to buy the good quality seed when prices are high. Pests and diseases are also more pronounced during the heat stress, e.g. a higher incidence of aphids. This will exacerbate yield losses and at the same time require a higher usage of pesticides leading to increased production costs. The high temperatures also make the dusting chemicals ineffective.Local poultry are adversely affected by heat stress due to inadequate feeds, water availability, and the increased incidence of disease leading to poultry deaths. This consequently leads to a decline in production and/or the loss of stock.Beans are also sensitive to flooding. Farmers in the lake shore low lands (LM2, LM3, LM4 and LM5) are more susceptible to flooding than the upland farmers. Beans require a moderate, well-distributed rainfall of 900-1200 mm per annum, however, rainfall in excess can be detrimental. Excessive rainfall leads to rotting of bean seeds and leaching of soil nutrients and fertilisers applied reducing the fertiliser efficiency. Incidences of pests and diseases are also more pronounced during floods, they include whiteflies, root rot, angular leaf spot. Farmers have little or inadequate knowledge on proper drainage and raised-bed cropping. However, the economically endowed farmers are able to use some of these techniques unlike the poor farmers.Flooding choke plant roots interfering with the translocation of nutrients. Suitable soil types for the bean range from light to moderately heavy, with soil organic matter. However, most soils in the County are black cotton soils that, difficult to till when wet.Flooding also leads to poor quality of seeds due to moulding which lowers colour and quality, reducing the palatability and market price of the seeds. This will make the household that depend on the sale of beans for their livelihood more vulnerable than others.Dusting, threshing and winnowing are all compromised. Dry weather during harvest is very important. However, the wealthier farmers have the capacity to buy tarpaulins, covered sheds, drying granary for post-harvest handling. This kind of equipment is not accessible to poor farmers in the County.Excessive rain damages the road network in the County, affecting transport and leading to increased production costs.Pest and disease incidences for bean are likely to increase with droughts and floods. This includes aphids during the dry periods, white flies during the wet season, as well as diseases such as root rot and angular leaf spot. These lead to increased production losses and higher use of pesticides.Flooding, likewise, has adverse effects on maize production. The lower agro-ecological zones (LM2, LM3, LM4 and LM5) such as Karachuonyo, Gwasi, Mbita and Ndhiwa are more vulnerable to flood risks. Flooding leads to crop yield losses, soil erosion, water logging, and leaching of soil nutrients and fertilisers. The seeds viability is also reduced as the seeds rot in the soil.Excessive rainfall especially during harvest can lead to increased rotting. In addition, inadequate drying of maize under wet conditions is likely to increase chances of aflatoxin contamination. Only 1% of the population appears to use silos for storage (GoK, 2013).Damage to the road network due to flooding leads to increased prices of farm inputs. Flooding also causes transport problems to the 12 islands which are accessible only by boat increasing the cost of transportation and consequently production costs.Heat stress leads to increased evaporation and reduced water levels both at the fresh water lake and the fishponds. The nets become difficult to use when the water level is low. Low water levels compromises the survival of fingerlings. This also has an impact on the breeding sites, making harvesting difficult and in many cases forcing farmers to reduce grow out period from 9 to 6 months.Heat stress increases the cost of preservation of fish and also leads to a shortage of fish in the market, creating the need for fish imports (such as the China fish).Fish is also sensitive to high rainfall and flooding, causing migration out of the ponds. High rainfall may have adverse impacts on the power supply and communication network which is an important input for storage. Power cuts will affect the quality of the fish harvested and kept in cooler boxes and refrigerators. Damage to the road network will affect the transportation, processing and access to the market.Again, the effects of heat stress are not experienced equally by all farmers; wealthier farmers will have the capacity to procure water or engage in water harvesting techniques and purchase and/or store supplementary feed as well as construct proper housing for the birds. Contrarily, the increased costs of production will adversely impact the poor and likely result in low volumes of trade, and increased prices. Farmers in the lowland lake shore areas are more likely to be affected than the upland farmers. Farmers with inadequate knowledge on the usage of vaccines are likely to be affected more than farmers who have the knowledge and access to vaccines.In addition, high rainfall/floods damage storage facilities and road networks, threatening the availability and price of important inputs such as vaccines. As the market supply reduces, the price for local poultry increases.To cope with climate change and variability, farmers in Homa Bay County have come up with a number of on-farm adaptation strategies. Some of the most widely used on-farm strategies include: tree planting, improved soil and water conservation, adaptation of early-maturing varieties and water harvesting, postharvest handling, value adding processing, among others. There is a lot of integration of indigenous knowledge in adaptation options such as the use of sawdust in the preservation of grains and the use of salting, smoking, drying of fish. The infographic below presents into more detail these adaptation options, along with potential strategies that could complement these, to increase farmers' resilience to climate hazards. Annex 5 identifies patterns of adaptation options by head of household, as well as the common input requirements and challenges to implementation.Soil and water conservation strategies are most common in the warm and dry AEZs (LM2, LM3, LM4 and LM5) and they include conservation agriculture (cover cropping, minimum tillage, and crop rotation techniques), planting of Napier grass, mulching. Such practices are mostly adopted by youth-and maleheaded households (28%), given that soil conservation is usually more labour-intensive. There is a need for more awareness raising about the benefits of such practices among farmers in order to scale out adoption.Water harvesting techniques used in Homa Bay County involve the construction of water pans, shallow wells, and water tanks. Such strategies are, however, less adopted by farmers 14 , given the large fresh water surface area of the County (1,227 km 2 ), as the county borders Lake Victoria to the west. Additionally, such strategies tend to be capital-intensive, limiting adoption by resource-poor farmers.Tree planting and agroforestry initiatives are facilitated by the National Environmental Management Authority (NEMA), the Kenya Forestry Service (KFS), and Caritas Homa Bay, who actively support the County's efforts to increase its forest cover. However, community participation in such initiatives is still low and is related to limited awareness raising among the County population.Farmers also opt for change in crop, livestock and fish types and varieties/breeds to respond to climate shocks such as increased temperatures, drought and floods. Farmers in the warm and dry zones have taken up early-maturing varieties (of maize [DH 04and Simba], cassava [MM series, Minjera] and beans, among others) and varieties resistant to drought (groundnut, millet, green gram, and sorghum). In aquaculture, farmers shorten the fish-rearing period from 9 to 6 months. However, in general, adoption of such strategies are hampered by farmers´ poor access to improved seeds, given high prices (especially of the early-maturing varieties and improved breeds of livestock and artificial insemination).Most of the farmers in the County depend on natural fodder. However, due to the climatic shocks in the County, some of the farmers shift to feed conservation and diversification. The push-pull technology that discussed in the next section, promoted by the International Centre of Insect Physiology and Ecology (ICIPE) has had significant benefits for dairy farming, since silverleaf desmodium (Desmodium uncinatum) and Napier grass are both high quality animal fodder plants. Farmers in the warm and dry AEZs (LM2, LM3, LM4, and LM5) tend to practice this more as they are adversely affected by climate shocks.Value addition increases the shelf life of the products and competitive advantage on the markets, yet it is not widely practised by farmers in Homa Bay County. Some of the few value addition activities include grading, dehulling and flour-making (for cereals and pulses), oil extraction (for oil crops such as sunflower, common in AEZs UM3, LM2 and LM3), drying and extraction (for medicinal plants), grading and chopping (in the case of fodder crops). Fish farmers and fishermen engage in salting, smoking, drying activities. In general, there is little knowledge on value addition techniques among farmers.Off-farm services, such as early-warning systems, extension, capacity building and training, postharvest handling and storage facilities and market information, are offered to farmers to increase their adaptive capacity. Such services are offered by a variety of actors, from local government (such as the meteorological, veterinary, agriculture, and livestock departments) to faith-based organizations such as Caritas of Homa Bay, to international organizations such as the International Centre of Insect Physiology and Ecology (ICIPE) and the United States Agency for International Development (USAID).Many of the off-farm services are organized through participatory scenario planning meetings facilitated by the ASDSP. These meetings are organized every season and bring together key stakeholders under the guidance of professional experts who assist in collectively finding ways to interpret the information (both local and scientific knowledge) into a form that is locally relevant and useful. They plan for worse, normal and good scenarios in every season based on seasonal forecasts given by the meteorological department. This information is then disseminated to different stakeholders through participatory advisory bulletins. These bulletins include advisories on the weather forecasts, highlights, expected hazards, type of seed varieties that will best suit a particular agro ecological zone, and the best breeds that are most adaptable to the expected hazards, adaptation strategies, such as conservation agriculture, tree planting etc. They also disseminate it through the radio as the majority of farmers can afford radio and listen to broadcasts of vernacular radio stations such as ramogi and sunset.Early-warning systems enable farmers to know when and where to plant and when to move with the livestock in the event of climate hazards. The Kenya Meteorological Department (KMD) is responsible for the County's early-warning systems. By integrating scientific and traditional knowledge, KMD generates seasonal forecasts and disseminates the information to relevant stakeholders through Chief barazaas and WhatsApp to the heads of the departments.Agricultural extension officers are used to sensitize and train farmers on sustainable land management practices such as intercropping, conservation agriculture, water harvesting, composting, and agro ecological crop selection by considering crops that have a comparative advantage in a particular area. Extension agents play a key role in supporting the adoption of improved farming practices and adaptive coping techniques through practical on-farm demonstrations.The Kenya Department of Agriculture (KDA) organizes demonstration plots of crops that have comparative advantage in the agro ecological area, for instance, sunflower in Mbita and Suba Sub Counties, maize in the upper parts of the County such as Karachuonyo. These demonstration farms are located within the 40 wards of the County vary in sizes from 0.25 acres (banana), 0.5 acres (pineapple) and 1 acre (maize, sorghum, sunflower). In these model farms, the KDA is providing inputs and capacity building to farmers. However, the challenge is the high farmer-to-staff ratio, which is at 1 to 1600 farmers.Caritas Homa Bay is involved in capacity building of farmers to enable local-lead research. Other nongovernmental organizations such as ICIPE are also involved in extension services and farmer field days, farmer field schools (FFS) and farmer teachers. The KLD also provides extension services and training and disseminates livestock technologies.The Adaptation to Climate Change insurance program and the Weather-Based Index insurance introduced in the County ended in 2014. The uptake by farmers was poor. Some farmers felt that the services offered by insurance companies were unfavourable. For instance, fish farmers preferred that the engine of the boat should be insured in the waters and not on-shore.As the risk of the former is higher than the latter, the insurance companies were not willing to insure thus few farmers bought the premiums.The various cooperatives that focus on production and marketing for different value chains often assume responsibility for providing market information for their members, as well as linking farmers to direct buyers or markets. Such cooperatives include AMCS, LPVCCS, Rangwe Dairy Cooperative Society (RDCS) and Homa Bay County Peanut Value Chain Cooperative Society (PVCCS). The cooperatives and farmer groups such as Ogongo Development Group are engaged in promotion, pricing and linking farmers to the buyers. However, the information regarding markets and marketing channels is weak and not uniformly distributed across the County.The main storage facilities in the County are cribs (75%) and gunny bags (24%). Silos are used mostly by the NCPB in their mini depot in Magunga. The rudimentary method of food storage has led to several cases of aflatoxin contamination (GoK, 2013). Caritas of Homa Bay is actively involved in post-harvest handling techniques such as the use of sawdust and solar dryers. A small percentage of the farmers use metal silos. The County government is also involved in the provision of cooler boxes to the BMU along the riparian areas for safe storage of fish produce before it is sold.The capacity to deliver relevant and timely information to farmers throughout the County is constrained by coordination, infrastructure, and resource constraints and must be managed through collaborative efforts with the key stakeholders. The dissemination of push-pull technology by ICIPE developed in collaboration with other partners addresses the five key constraints of cereal-livestock mixed production systems in Africa -insect pests (stem borers), the parasitic striga weed (as well as other weeds), poor soil fertility, soil moisture management, while also fulfilling the need for high quality animal feed. The push-pull technology involves intercropping cereals with a pest-repellent plant, such as desmodium, which drives away stem borers from the target food crop. An attractant trap plant, for instance Napier grass (Pennisetum purpureum), is planted around the border of this intercrop, with the purpose of attracting and trapping the pests. As a result, the food crop is left protected from the pests. In addition, desmodium stimulates suicidal germination of Striga and inhibits its growth. Push-pull also has significant benefits for dairy farming, since silverleaf desmodium and Napier grass are both high quality animal fodder plants. Additionally, desmodium is an efficient nitrogen-fixing legume that improves soil fertility. Moreover, because both plants are perennial, push-pull conserves soil moisture and continually improves soil health.Like programs and policies, institutions are key to agriculture decision-making, since they shape actions and outcomes related to resource use. Climate risks have detrimental impacts on the lives of the population of Homa Bay County, including famine experienced in the lowland AEZs (LM2, LM3, LM4 and LM 5), losses of crops and livestock and depletion of fish stock.Farmers traditionally use their indigenous knowledge to adapt to climate change. Some of the most widely used safe and sustainable pest-and vector-management technologies in various agro-ecological zones. Research activities at ITOC cover four themes: human, animal, plant and environmental health. In particular, ITOC is the base of ICIPE´s push-pull technology.Currently, the main dissemination pathways are farmer field days, farmer field schools (FFS), farmer teachers, print materials, extension personnel, and to a lesser extent, mass media.The Forest Social Initiative (FSI) specializes in dryland species for charcoal production and. It is based in Magunga, where FSI promotes acacia species, as these are suitable species for this very dry area. However, community participation in this initiative is weak. World vision has worked with different stakeholders in Homabay county in initiatives such as planting trees to manage the climate change risks in Homabay. However, the institution is financially constrained in implementing its mandate considering that the needs of the county are way to many.With the support of cooperatives, farmers can pool production from their individual farms in order to better meet market demand, reduce risk, access better financing acquire and share farm machinery and other assets, negotiate better prices, and jointly market their produce.Cooperatives in the County vary in size and influence. Some of the cooperatives in the agricultural activities include AMCS, LPVCCS, RDCS, and PVCS. The cooperatives and the farmer groups such as Ogongo Development Group are engaged in promotion, pricing and linking farmers to the buyers. However, the cooperatives and farmer groups are not well structured and not well coordinated, limiting their activities.Private sector actors are also key actors. Agro-veterinary companies engage in the distribution and sale of agrochemicals and other farm inputs and often train farmers on the safe utilization of pesticides, fertilisers and other input supplies. Financial institutions such as banks provide loans to farmers. These are not specifically agricultural loans, but general loans that farmers use to purchase production and storage inputs. The extent to which such formal financial institutions are accessible and used by farmers is not clear.on-farm strategies include: tree planting, improved soil and water conservation, adaptation of early-maturing varieties and water harvesting, post-harvest handling, value adding processing, among others. However, integration with scientific knowledge can be improved to ensure effective adaptation to changing climate conditions.The majority of farmers rely on rain-fed agriculture which is unreliable in Homa Bay County in particular in the warm and dry low AEZs (LM2, LM3, LM4 and LM5). Opportunities include water harvesting for crop and livestock production, development of irrigation schemes to increase yields during the dry seasons through smallholder irrigation schemes and through Public-Private Partnership & collaboration. Water harvesting and promotion of efficient water-use technologies (drip irrigation, green house), and conservation agriculture is key for these AEZs. There is also a need for promotion and production of drought-tolerant crops such as millet, sorghum, green gram to cope with the recurrent climate shock experienced in these zones.Expensive farm inputs limit agricultural productivity in the County, as most of the farmers are not in a position to afford the expensive inputs. This is further exacerbated by climate risks resulting in scarcity, high demand and consequently higher prices of inputs. Farmers in the lower AEZs (LM2, LM3, LM4 and LM5) are more vulnerable to adverse climatic conditions. Organization of farmers into groups/ cooperatives would facilitate access to inputs, credit, and markets and would increase the likelihood of better process.Homa Bay County has a high prevalence of HIV/AIDS (27.1%) leading to high morbidity. There is a strong correlation between health and productivity. Thus, there is an urgent need to tackle the high incidence of the HIV/ AIDS that is particularly affecting the fish value chain. This can be achieved through mass campaigns where the key stakeholders need to be involved.Farmers in Homa Bay County experience post-harvest losses due to rudimentary storage methods. Over 90% of farmers use traditional production and storage methods which limit their output. Only a minority (1%) uses silos.There is a need to adopt adequate storage facilities and technologies such as hermetic bags, community grain and input storage facilities, alongside the promotion of agro processing. This effort needs to be the result of collaboration of various stakeholders, including research institutions, financial institutions, relevant County department, community and individual farmers. Such efforts wound lead to reduced post-harvest losses and increase the value of the produce and the trading prices on the market.Regarding distribution and marketing, inadequate and insufficient markets and outlets where farmers can sell their produce, coupled with limited processing or value adding opportunities can be counteracted with the development of farmer groups, market infrastructure and processing plants that can help meet the demand and increase the value of products. In order for this to occur, access to timely, accurate information (especially market-related) is crucial for farmers and the business community. Climate change Act, 2016 provides a framework for promoting climate resilience. There is the need to downscale this to the county level so as to manage the climate change risks.","tokenCount":"8003"} \ No newline at end of file diff --git a/data/part_3/5002829630.json b/data/part_3/5002829630.json new file mode 100644 index 0000000000000000000000000000000000000000..9f9c948712d69098484e117631da3a3f70995029 --- /dev/null +++ b/data/part_3/5002829630.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"670b83513515adeb316ec39a13c3c1a2","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/b4fde23b-e57e-4662-b663-a1503d9edc27/retrieve","id":"425193080"},"keywords":[],"sieverID":"03abe4c2-7508-4b16-8e32-16f27a3f8d71","pagecount":"17","content":"The CGIAR Research Program on Roots, Tubers and Bananas (RTB) is a partnership collaboration led by the International Potato Center implemented jointly with the Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), the International Institute of Tropical Agriculture (IITA), and the Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), that includes a growing number of research and development partners. RTB brings together research on its mandate crops: bananas and plantains, cassava, potato, sweetpotato, yams, and minor roots and tubers, to improve nutrition and food security and foster greater gender equity especially among some of the world's poorest and most vulnerable populations.The production of potato in Assam is lower than the national average. There are several reasons for this including low potato seed availability, low seed quality, and a lack of scientific knowledge on potato cultivation and pest and disease management. There have been various initiatives to improve the potato sector in Assam and the Government of Assam is putting a lot of resources into it, for example, by bringing in national and international agencies to work on its upliftment.The Assam Agri-business and Rural Transform (APART) is one such program established to develop a potato value chain in Assam to benefit farmers including addressing its constraints and through farmer support to overcome them. Although potato is grown in almost all of Assam's districts, APART activities are concentrated in 45 potato clusters in 14 major potato-growing districts (Figure 1). Assam's geography is suitable for potato cultivation, particularly in the Rabi season -when crops are sown in winter and harvested in the spring. This is one of the reasons why Assam ranks 8th nationally for potato production and 6th for the area under potato cultivation. However, the biggest constraint is time. The state has a window of only 90-100 days for potato cultivation after the paddy harvest. This is mainly due to flood incidences in the state and the late sowing of sali paddy as well as long-duration paddy varieties. Hence, the state needs early-maturing varieties of potato for a timely harvest and better yield. The other important issue is limited awareness among farmers about potato varieties. It was found at the time of the value chain analysis that the farmers in Assam hardly know the varieties they grow beyond the place of origin, for example, Agra, Nainital, Bhutan, Bengal, and Jyoti varieties. This makes it quite challenging for them to choose the right variety and grow it successfully.CIP from its long experience of working in multiple geographical locations across the globe has introduced a conservation agriculture-based approach of zero tillage with rice mulch (ZTRM) for potato cultivation in Assam through APART. This technology means that planting can happen immediately after the paddy harvest, with no land preparation, earthing-up, or digging of the soil at harvest. It conserves soil moisture and extends the days available for potato cultivation to fit in the short window between the two rice seasons and above all does not compromise yield compared to using conventional methods. It also enables farmers to save about 30% on cultivation costs.Conventionally, farmers wait for about a month after the paddy harvest to prepare land for potato cultivation which further shortens the available window and means the crop faces a delay in planting and harvesting. From February to March the temperature starts to rise which impacts yield and the storability of the crop.ZTRM allows farmers to eliminate the time required for land preparation and is useful for sowing potatoes within a few days of rice harvesting. Moreover, it is a technology that eliminates the entire cost of land tillage and digging and significantly reduces the costs of inputs and labor ( Table 1). It is a quite simple and cost-effective technology for farmers to use and it also means that a longduration potato variety can fit into the available time window quite easily.ZTRM got good responses from the farmers wherever it was demonstrated under the APART project and adoption in the last two years has increased, although more work is needed to reach out to a larger number of farmers to increase awareness and adoption. Another big advantage of ZTRM is the availability of rice straw after paddy harvest which can be used for potato cultivation rather than burned, creating an additional benefit for both the farmers and the environment. One of the basic requirements for zero-tillage with rice mulch (ZTRM) is the availability of plenty of soil moisture at the time of planting. Moisture content in Assam soils is high and the evaporation rate is low because of prevailing high humidity. Rice mulch further reduces soil surface evaporation. As a result, in many areas crops can be grown without any irrigation or with one or two very light irrigations.Immediately after the rice harvest, potato crops can be planted as no soil tillage or other preparations are required. Well-sprouted seed tubers are placed directly on the soil in rows at 50 x 25 cm spacing, while farmyard manure is placed on the tubers and chemical fertilizers are placed between the rows of tubers. All chemical fertilizers are applied as a basal dose at the time of planting. After 30 days of plant growth, water-soluble fertilizers and micronutrients are applied as foliar spray (Table 2). Tubers are covered with a 15-20 cm thick layer of paddy straw or 4-5 kg of rice straw/m 2 . For mulching one bigha of the zero-tillage potato crop, rice straw from 3 bighas can be used. Potato plants come out of the rice straw in 15-20 days and rapidly grow to cover the entire available area. Weed growth is practically nil due to the thick rice mulch. Needs-based chemicals or bio-pesticides are applied. Mulching results in a 90% reduction in cutworm incidence and the onset of late blight is also delayed due to changes in the crop's microclimate. The crop is harvested after 75 to 90 days by removing the mulch and picking the tubers from the soil surface. Again, no digging of the soil is required -see Images 1, 2, and 3. The above strategy was envisioned to be executed during 2020-2021 in four districts. The detailed activities are shown in Figure 2. In this season, farmers have adopted zero-tillage technology on 68 hectares across Assam. This achievement was excellent for the technology at a time when seed prices were very high after the COVID-19 pandemic. In parallel, Assam Agricultural University under the APART project is evaluating this technology with CIP to make a final Package of Practices for the State.","tokenCount":"1091"} \ No newline at end of file diff --git a/data/part_3/5004857274.json b/data/part_3/5004857274.json new file mode 100644 index 0000000000000000000000000000000000000000..ce58ee8ac0c400ad0aec9a8fe4ac3d6d0d32ca46 --- /dev/null +++ b/data/part_3/5004857274.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"76e0c608ecb61e3ff6b41437760ac5ff","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/a492a3c1-7615-476a-b2fd-0cd772400f89/retrieve","id":"-1144736318"},"keywords":["lesion nematode","Pratylenchus goodeyi","orphan crop","planting material quality","enset crop"],"sieverID":"b57c4d4c-29a1-4eac-9a6c-fb67bd2e9372","pagecount":"6","content":"Enset (Ensete ventricosum), is a perennial herbaceous plant belonging to the family Musaceae, along with banana and plantain. Despite wild populations occurring in eastern, central and southern Africa, it is only in Ethiopia that the crop has been domesticated, where it is culturally and agriculturally symbolic as a food security crop. Although an under-researched orphan crop, enset serves as a staple food for about 20% of the Ethiopian population, comprising more than 20 million people, demonstrating its value in the country. Similar to banana and plantain, enset is heavily affected by plant-parasitic nematodes, with recent studies indicating record levels of infection by the root lesion nematode Pratylenchus goodeyi. Enset is propagated vegetatively using suckers that are purposely initiated from the mother corm. However, while banana and plantain suckers have proven to be a key source of nematode infection and spread, knowledge on the infection levels and role of enset suckers in nematode dissemination is lacking. Given the high levels of plant-parasitic nematodes reported in previous surveys, it is therefore speculated that planting material may act as a key source of nematode dissemination. To address this lack of information, we assessed enset planting material in four key enset growing zones in Ethiopia. A total of 340 enset sucker samples were collected from farmers and markets and analyzed for the presence of nematodes. Nematodes were extracted using a modified Baermann method over a period of 48 h. The root lesion nematode P. goodeyi was present in 100% of the samples, at various levels of infection. These conclusive results show that planting material is indeed a key source of nematode infection in enset, hence measures taken to ensure clean suckers for planting will certainly mitigate nematode infection and spread. The effect of nematode infection on yield and quality on enset remains to be investigated and would be a way forward to complement the nematode/disease studies conducted so far and add valuable knowledge to the current poorly known impact of pests and diseases.Described as the \"tree against hunger\" (Costa and Lockhart, 1984), enset (Ensete ventricosum) is a perennial monocarpic single-stemmed herbaceous plant belonging to the family Musaceae, along with banana and plantain. Although wild species occur in eastern, central and southern Africa (Baker and Simmonds, 1953) enset is cultivated in, and solely unique to, Ethiopia, where it is culturally and agriculturally symbolic; cropping systems in the south and southwest are based around this pivotal, yet under-researched orphan crop. Unlike bananas, enset does not produce edible fruits, instead, it is grown for its carbohydrate-rich food obtained from the pseudostem, leaf sheaths and underground corm, which are harvested and processed into food products. Harvest can be at any time during the year, at any growth stage and the fermented products can be stored for long periods, a combination of characters that make it an important food security crop, upon which millions depend. Its value was prominently highlighted during the harsh Ethiopian famine in the 1980's when enset growing communities were unaffected by the calamity (Dessalegn, 1995). However, on a regular basis, approximately 20% of the Ethiopian population depends on enset as a key staple food crop, primarily in the south and southwestern part of the country (Borrell et al., 2019(Borrell et al., , 2020)). Furthermore, it is used for several other purposes, such as animal feed, fibre, construction material and in traditional medicine. The crop best grows at cooler, higher altitudes and is found mostly between 1200-3100 m above sea level (Brandt et al., 1997).Harvest commonly occurs after 4 to 6 years after transplanting, but there is variability in when plants are harvested, with indications as early as three years and up to twelve years (Brandt et al., 1997;Borrell et al., 2020). Enset is vegetatively propagated using suckers that are produced through a succession of growth stages. Unlike banana, it does not produce suckers aside the mother plant, instead suckers are purposely initiated from a mother corm, obtained from harvested plants, after cutting off the pseudostem and roots and removing the apical dominance. Corms are then buried in the ground, just below the surface, and from which multiple suckers sprout and develop. Depending on the genotype and the size of the corm, between 20-100 suckers will arise (Brandt et al., 1997). After approximately one year, these suckers are transplanted into a well-manured nursery and repeatedly replanted, up to four times, into increasingly wider spaced nurseries until the suckers are removed for use as planting material. Suckers aged two to four years are used for planting into the field, many of which are sold at designated local seedling markets each year between December and February (Olango et al., 2014). Farmers also raise their own suckers or exchange planting materials between themselves.Similar to banana and plantain, enset is heavily affected by plant-parasitic nematodes (Coyne and Kidane, 2018). Several plant-parasitic nematodes are associated with enset, with the lesion nematode, P. goodeyi, considered the most important threat to the crop (Peregrine and Bridge, 1992;Bogale et al., 2004;Addis et al., 2006;Kidane et al., 2020). For banana and plantain, the use of infected planting material (suckers) represents a key source of nematode dissemination and the perpetuation of the problem. Farmers exchange planting materials, and this practice is responsible for the continuous distribution of nematodes to new fields. The use of healthy planting materials, therefore, is essential to arrest the spread of nematodes and prevent losses due to the pests. A range of techniques is used in order to create healthy planting materials, such as through the use of in vitro tissue cultured material, macro propagation and sucker sanitation by paring and hot water treatment (Tenkouano et al., 2006;Coyne et al., 2010). The use of clean and healthy banana and plantain planting material plays a crucial role in averting the spread of nematodes and other root-borne pests and diseases and the damage they cause, especially in smallholder farming systems, where expensive management strategies are not feasible (Coyne et al., 2006).Given the sparse knowledge by farmers of nematodes, as well as the current high incidence and levels of P. goodeyi infection on enset (Kidane et al., 2020), it is speculated that, similar to banana and plantain, nematodes are being disseminated to newly planted farms through the use of infected enset suckers. To date, there appears to be no information available or studies conducted to assess the level of nematode infection of enset suckers. The current study was undertaken to assess the infection status of enset planting materials as a basis for developing suitable nematode management options.Enset suckers aged between 1-2 years were collected from farmers (Figures 1A,B) and markets (Figure 2) in September-October 2019 in four key enset growing zones in Ethiopia (Dawro, Keffa, Guraghe and Wolayita) (Figure 3). In each of these growing zones, 13 locations were randomly selected and 16-40 enset suckers were collected at each site. The altitude was recorded for each site. The suckers were transported to the Plant Disease Diagnostics Lab of Jimma University, where roots were carefully washed, cut longitudinally, and chopped roughly into ∼0.5 mm-size pieces and a 10 g sub-sample used for nematode extraction. Nematodes were extracted using a modified Baermann method over a period of 48 h (Coyne et al., 2018). Nematode suspensions were decanted, collected on a 38 µm sieve, rinsed into beakers, reduced to 10 ml and densities counted from 1 ml aliquots using a counting slide under a compound microscope. Nematode densities were calculated for each root sample and expressed as the number of nematodes per 10 g root. Pratylenchus specimens were identified to species level based on available keys (Sher and Allen, 1953;Castillo and Vovlas, 2007).Nematode root density data were analyzed for any differences in infection levels between the regional zones. Each root sample was considered for analysis. All data were analyzed using R and RStudio R after log(n+1) transformation so that the data conformed to normal distribution (Zuur et al., 2010). The association between nematode density and altitude was analyzed using Pearson's correlation analysis.A total of 340 enset samples each comprised of 2 to 3 suckers was assessed during the study. P. goodeyi was recovered from the roots of 100% of sucker samples which ranged in density from10 and 190 per 10 g roots (Table 1). Apart from a few nonparasitic nematodes in some samples, P. goodeyi was the only plant-parasitic nematode recovered from roots. Although the age of the suckers was not specifically recorded for each sample, in general younger suckers appeared less infected, than larger, older suckers (Kidane pers. obs.). On some suckers, especially the larger, older ones, lesions were clearly evident on their roots and corms (Figure 4).ANOVA revealed a significant difference (P < 0.05) in P. goodeyi root infection levels of sucker samples amongst sites. However, there was no correlation (r = 0.014; P = 0.85) in nematode infection with altitude, across all locations.Infection of enset planting material with P. goodeyi is clearly widespread across the main enset growing zones in Ethiopia, and consequently acting as a key source of contamination of new fields. The nematode-infected suckers, often visibly affected with lesions on their roots and corms, are planted into new fields. Other than trimming the roots and parts of the corms, which is a common procedure performed during transplanting, there is no further treatment undertaken to reduce the nematode infection. With 100% infection incidence of planting material during the study, it is highly likely that this reflects the situation across all enset production systems in Ethiopia. Sucker infection levels were relatively high in some cases, and infection levels varied significantly amongst samples. This variability could be attributed to differences in susceptibility of the cultivars (Kidane et al., 2021), due to high genetic diversity among cultivated landraces (Kidane et al., 2020), each with varying levels of resistance against P. goodeyi. The current study aimed to assess the planting material most commonly available and used by farmers, which was suckers aged 1-2 years. However, when processing the suckers for nematode extraction, the older, larger suckers appeared to be relatively more infected, with more apparent lesions and damage observed in general (Figure 4). The variability in sucker age across samples may have additionally contributed to the high variability of nematode densities.Interestingly, just one nematode pest species was recovered during the study. While several species of plant-parasitic nematodes are associated with enset in Ethiopia, P. goodeyi is the principal and most prevalent species (Bogale et al., 2004;Addis et al., 2006;Kidane et al., 2020). This is unlike other members of Musaceae, such as banana and plantain, for which several species often occur in combination (Coyne and Kidane, 2018;Sikora et al., 2018). As it appears that nematode pests are being constantly disseminated through contaminated planting material that is exchanged between farmers, the implementation of interventions that can avert this should be sought. Given the similarities with banana and plantain, experiences drawn from successful sucker sanitation practices in these crops, such as paring of corms and sucker immersion in boiling water for a brief 30 s prior to planting (Tenkouano et al., 2006), hold promise for enset.In the current study, we observed that enset farmers had no perception of nematodes and the possible damage that they cause. This is despite a common practice of trimming necrotic sections from suckers before transplanting. Although the suckers are trimmed and cleaned to some degree, large amounts of necrotic tissue often remained on the transplanted suckers (Figure 3), indicating a lack of awareness of the importance of this damage by farmers. To date, there is no information available on the levels or extent of the damage being caused to enset production by P. goodeyi. It is effectively present in all plantations, to varying degrees of infection, but can be present at extremely high densities (Kidane et al., 2020). This blanket contamination of enset crops in Ethiopia has undoubted consequences to production and quality, which requires attention. Interventions to improve awareness of nematodes, the damage they cause, and suitable management strategies are required. However, the implementation of simple and effective options for the establishment of healthy seedling systems and sucker sanitation need to be prioritized. It is not surprising that a principal mode of nematode transmission on enset is through the dissemination of contaminated planting material. The current study confirms this and provides a basis for developing management options to amend this. Despite it being an important crop in various regards, the highly localized enset-based farming system has received only limited research attention, which needs to be rectified to ensure and improve the productivity of this neglected orphan crop (Brandt et al., 1997;Borrell et al., 2020).","tokenCount":"2089"} \ No newline at end of file diff --git a/data/part_3/5012854040.json b/data/part_3/5012854040.json new file mode 100644 index 0000000000000000000000000000000000000000..1bead14f1e8bb12d170a678f7d86c29d2ce76021 --- /dev/null +++ b/data/part_3/5012854040.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"879056eb570c489d239c27c62293dc26","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/c1029a3e-2da1-41e1-b39f-385505ef2200/retrieve","id":"-1876054015"},"keywords":[],"sieverID":"b2e5588a-a56f-42ad-a422-f14dae9393b9","pagecount":"20","content":"Selección semilla …………………………………………………………… 5 Selección y preparación de terreno……………………………………… 5 Tratamiento de semillas…………………………………………………….. 6 Siembra …………………………………………………………………………7 Relevo de maíz …………………………………………………. ……………………... 7 Asocio de maíz ………………………………………………………………………… 8 Monocultivo …………………………………………………………………………… 8 Fertilización …………………………………………………………………………… 9 Fertilización orgánica ………………………………………………………………… 9 Fertilización química ……………………………………………………………………9 Control de malezas…………………………………………………………… ……….9 Control manual ………………………………………………………………………… 10 Control químico………………………………………………………………………… 10 Control Plagas ……………………………………………………………………………11 Control enfermedades …………………………………………………………………14 Cosecha ………………………………………………………………………………… 17 Postcosecha ………………………………………………………………………………17 Referencias ……………………………………………………………………………….18Guía para buenas prácticas en el manejo del cultivo de frijol en Guatemala.Herlindo Morales; Salomón Pérez Noviembre 2024El frijol común (Phaseolus Vulgaris L), es la principal fuente de proteínas, calorías y minerales como el hierro en la dieta de los guatemaltecos, principalmente en las familias de escasos recursos económicos, las cuales se dedican a la producción de este grano para autoconsumo y comercialización local de pequeños excedentes de la producción.En el oriente de Guatemala, en la zona denominada como el corredor seco, el frijol negro es un cultivo practicado por miles de personas agricultoras, que afrontan una serie de retos en la producción primaria, por diversos factores dentro de los cuales podemos destacar suelos con baja fertilidad, sequias prolongadas, plagas, enfermedades, escaso o nulo acompañamiento técnico, no disponibilidad y acceso a variedades mejoradas, así como malas prácticas de manejo de cultivo y post cosecha.Para responder a esta necesidad la Alianza Bioversity Internacional y el Centro Internacional de Agricultura Tropical (CIAT), a través de la iniciativa regional AgriLAC Resiliente ha preparado esta guía que reúne una serie de buenas prácticas de manejo del cultivo que se han implementado a través de una serie de procesos de validación en la región, con el objeto de mejorar el rendimiento y la calidad del frijol, en especial variedades de frijol biofortificado, a través de una serie de capacitaciones en diferentes comunidades de productores del país, para mejorar la disponibilidad de alimentos, la ingesta de micronutrientes esenciales como hierro y zinc, a la vez que se incrementa la generación de ingresos y el bienestar de las familias productoras?Selección semilla para siembra Se recomienda utilizar semillas de calidad reconocida de preferencia certificada que cumpla con las siguientes características: Limpia, libre de plagas, enfermedades e impurezas.Tabla 1. Características de variedades de frijol recomendadas para la región oriental o tierras bajas de Guatemala.Mosaico Selección y preparación del terreno para la siembra Se de be seleccionar un terreno bien drenado que no tenga exceso o falta de humedad, ya que esto puede afectar el desarrollo de la planta. Una vez preparado, el suelo debe quedar bien suelto y parejo, evitando dejar hoyos o zanjas que puedan retener agua y dañar el cultivo, eliminando todas las malezas de forma manual con azadón o machete o Cuma, dejando las malezas eliminadas sobre la tierra para que hagan la función de cobertura y evitar la aparición de otras malezas.Foto 1. Preparación manual del terrenoCon la finalidad de prevenir el ataque de plagas del suelo se recomienda tratar las semillas previo a la siembra, para ello puede aplicar un insecticida que puede ser Cruizer® o Blindaje®, a una dosis de 1.5 cc por libra de semilla.Es importante que lea el panfleto y sigua las instrucciones de uso y manejo del agroquímico.Foto 2. Preparación y envoltura de la semilla de la certificada de la variedad de frijol biofortificado ICTA Chortí entregada en el marco de las capacitaciones realizadas en asocio con CRS-CARITAS en el oriente de Guatemala.En el oriente se recomienda sembrar entre el 15 de agosto y el 15 de septiembre, sembrando 50 -50 centímetros entre surcos y 30 centímetros entre posturas, dejando los granos bien cubiertos a profundidades de 2 a 4 centímetros.En esta zona se cuenta con tres sistemas de siembra: Relevo de Maíz, Asocio con Maíz y monocultivo.El sistema de siembra de fríjol en relevo de maíz consiste: En sembrar el fríjol posterior a la dobla del maíz cuando este ha alcanzado su madurez fisiológica, lo cual permite que los tallos del maíz cumplan la función de tutor para las plantas de frijol, con un distanciamiento de 30 centímetros entre surcos y 30 centímetros entre planta colocando de 2 a 3 granos por postura, logrando una densidad de 194,000 plantas/Mz.Foto 3. Campo de frijol en relevo con maízEl fríjol y el maíz están en asocio cuando se siembran en el mismo sitio y en la misma época. Se entiende por el mismo sitio cuando las semillas de las dos especies son sembradas en el mismo terreno en hoyos separados, pero de tal manera que el sistema radicular del fríjol y maíz se alcanzan a entrecruzar. En forma similar, la misma época se refiere a la siembra de las dos especies durante el mismo día o en un período de tiempo tan corto que desarrollen simultáneamente desde su germinación.La siembra de maíz se realiza a un distanciamiento de 2 mts entre líneas y 0.40 mts entre plantas, depositando 2 granos por postura, logrando una densidad de 17,500 plantas/Mz.La siembra de frijol se realiza con un distanciamiento de 40 centímetros entre surcos y 30 centímetros entre planta colocando de 2 a 3 granos por postura, logrando una densidad de 145,000 plantas/Mz.Foto 4. Campo de frijol en asocio con maízSe entiende monocultivo cuando se plantan semillas de una sola especie, en este caso con un distanciamiento de 30 centímetros entre surcos y 30 centímetros entre planta colocando de 2 a 3 granos por postura, logrando una densidad de 194,000 plantas/Mz. Foto 3. Campo de frijol en asocio con maízLos abonos orgánicos son mejores para extensiones más pequeñas que una manzana y deben aplicarse al momento de la siembra y debajo de la semilla. Utilice el abono orgánico de la forma acostumbrada.Para que los fertilizantes sean mejor aprovechados por las plantas de frijol, es necesario que las raíces lo encuentren fácilmente.El frijol tiene buena respuesta a la aplicación de Nitrógeno y Fósforo con la dosis 30-30-0 kilogramos por manzana, que son 3 quintales por manzana de fertilizante de fórmula 20-20-0, o 4 quintales por manzana de fertilizante de fórmula 15-15-15.Es mejor aplicar al sembrar a la par de la semilla, evitando que entre en contacto directo, pero se puede aplicar también de 8 a 10 días después de la siembra, incorporándolo al suelo.El cultivo debe estar libre de malezas desde la siembra hasta la cosecha, es necesario que las plantas de fríjol no tengan competencia de malezas en los primeros 60 días, siendo los periodos más críticos los primeros 35 a 40 días.Realizar la primera limpia a los 15 días después de la siembra, con azadón o machete, la segunda se debe realizar a los 40 días después siembra.Foto 4. Control manual de malezasEn terrenos con malezas, de hoja angosta se recomienda la aplicación del herbicida pre-emergente Pendimetalin; así como la aplicación de herbicida post-emergente Fluazifop-p-butil a los 15-25 días después de la siembra, para el control de malezas de hoja ancha se recomienda la aplicación de Linuron.November 24 | Guía para buenas prácticas en el manejo del cultivo de frijol en Guatemala. Cultural: Eliminar las malezas de hoja ancha, basura y otros hospederos, mantener bien drenando el terreno. Manual: Colocar trampas para la recolección manual. Químico: Utilizar cebos a base de masa de maíz fermentado y mezclar en proporción 3 a 1 con metaldehído.Las larvas cortan los tallos al nivel del suelo causando la muerte de las plantas. Los lotes con alta presencia de malezas gramíneas son más susceptibles a esta plaga.Antes de la siembra, una larva por cada cinco muestras de suelo de 30 × 30 y 20 cm de profundidad. Después de siembra, una planta cortada por cada 20 plantas muestreadas. El insecto se encuentra en residuos de cosecha y restos de tierra atacando directamente a la semilla. Esto puede ocasionar grandes pérdidas.Cero tolerancias debido a su alta capacidad de reproducirse.Para hacer más efectivo el control tomar en cuenta las siguientes recomendaciones• El monitoreo constante de la plantación es una buena la forma correcta de identificar la plaga oportunamente.• Las aplicaciones de insecticidas se deben realizar en las horas más frescas ya que: El calor disminuye efecto, En las horas de mayor calor los insectos se retiran de los cultivos para refugiarse en las áreas más frescas.• No olvide utilizar equipo de protección al aplicar químicos y seguir las instrucciones del fabricante. En las hojas se observan pequeñas manchas de color gris o café, de forma cuadrada o triangular, con borde amarillento. En las vainas se observan manchas circulares color café con el borde más oscuro. Se transmite por semilla.• Uso de semilla sana y nueva (preferible certificada).Rotar por un año con yuca maíz o sorgo.Eliminar restos de cosecha infectados • Aplicar Azoxystrobin 100 grs/Mz, previo a la floración.Aparecen manchas o hundimientos color café oscuro o negro tanto en hojas como en vainas. En ataques tempranos la vaina se tuerce y no produce granos. Se transmite por semilla. Ataques muy tempranos limitan la eficiencia de los fungicidas.• Uso de semilla sana y nueva (preferible certificada). • Tratamiento de semilla con benomil, carbendazim, carboxin.• Aplicar fungicidas como: azoxistrobina, propiconazol, tebuconazol antes de floración y durante la formación de vainas.En las hojas se observan puntos amarillentos que, después de cuatro días de su aparición, presentan en el centro un punto de color oscuro, que se abre y libera un polvo rojizo o color ladrillo.No sembrar muy tupido.Aplicar fungicidas (carboxin, clorotalonil, oxicarboxin, triadimefon) a partir de la tercera semana o antes de floración.Rotar cultivos y eliminar restos de cosecha Virus del Mosaico Dorado Amarillo del Frijol (BGYMV)Es la enfermedad viral más importante en América Central.En el campo aparecen plantas amarillentas distribuidas al azar. En las hojas se observa un moteado de tonos amarillos hasta amarillo fuerte con venas más blancas de lo normal. La hoja puede enrollarse hacia la parte inferior. Las vainas se deforman, producen semillas pequeñas, mal formadas y descoloridas.Usar variedades mejoradas.Sembrar frijol lejos de otros cultivos que son reservorios de mosca blanca (tomate). • Controlar mosca blanca.Eliminar malezas o frijol voluntario que pueden conservar el virus.Para hacer más efectivo el control tomar en cuenta las siguientes recomendaciones.• La inspección visual y Colección de muestras constante de la plantación es una buena la forma correcta de identificar las enfermedades oportunamente.• La eliminación de plantas enfermas es el procedimiento adecuado para evitar la propagación.• Aplicación de un producto químico apropiado para la enfermedad.• No olvide utilizar equipo de protección al aplicar químicos y seguir las instrucciones del fabricante.En hojas, se inicia como pequeñas manchas acuosas, que se oscurecen, aumentan de tamaño y se unen para dar aspecto de quema, con borde amarillo claro. En las vainas se ven pequeñas manchas húmedas, que se vuelven color café oscuro con el borde rojizo. Se transmite por semilla.• Usar semilla sana y certificada libre de la bacteria.Rotar cultivos; eliminar plantas enfermas.Aplicar fungicidas a base de cobre. El uso de antibióticos resulta caro y propicia la aparición de resistencia en el patógeno • Antibióticos como la estreptomicina Cosecha ▪ Para realizar una cosecha oportuna tome las siguientes recomendaciones ▪ Realizar el arranque de las plantas cuando el 90% de las vainas han cambiado de color.▪ Realizar el aporreo oportunamente, de tal forma que el grado de humedad permita la trilla o desgrane con el mínimo de pérdidas por granos partidos o dañados.▪ El contenido de humedad del grano estará entre el 16 y 18 %.▪ Recuerde que las plantas no pueden permanecer mucho tiempo en el campo cuando ya están maduras porque pueden perder su calidad.Foto 7. Cosecha frijol POSTCOSECHA ▪ Inmediatamente después de la cosecha realice la limpieza del grano para posteriormente secarlo al sol en tendidos o lonas plásticas, hasta llevarlo de 13 a 14 % de humedad para su almacenamiento.▪ Cuando la producción es para semilla, la temperatura debe ser inferior a los 45 °C.▪ A temperaturas bajas y en ambientes ventilados se conserva mejor el grano.▪ Almacenar el fríjol en cuartos secos, limpios, ventilados y previa aspersión de las paredes colocarlo sobre estibas.▪ Antes de almacenar semilla de fríjol para siembra, debe tratarse con fungicidas (Benomil) e insecticidas (Deltametrina). ","tokenCount":"1989"} \ No newline at end of file diff --git a/data/part_3/5031621725.json b/data/part_3/5031621725.json new file mode 100644 index 0000000000000000000000000000000000000000..f1988376abd56cae0b358ebded1e063a4b9a278c --- /dev/null +++ b/data/part_3/5031621725.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"6aa355aa7a233797083d9208151c9cc3","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/9e7aa55e-4a90-4e8d-ad1b-6aafb9393008/retrieve","id":"-2123501490"},"keywords":[],"sieverID":"eaedc061-4004-4804-af69-903d2db04570","pagecount":"3","content":"BNFB is led by the International Potato Center (CIP), and is implemented through a consortium of partners with diverse expertise:• the International Center for Tropical Agriculture (CIAT) -high iron beans;The Building Nutritious Food Baskets (BNFB) project is testing a scaling up model through a multiple crops \"food basket\" approach, drawing on complementary CGIAR expertise for scaling up biofortified crops in particular. The model being tested focuses on i) advocacy efforts aimed at catalysing policy change and mobilizing resource commitments; ii) strengthening community, national and regional institutional capacities; and iii) disseminating proven biofortified technologies ready for scaling up. • HarvestPlus -scaling up biofortification at country level;• Forum for Agricultural Research in Africa (FARA)responsible for policy engagement and advocacy at regional level; • the governments of Nigeria and Tanzania and • a range of national implementing partners from public, private and civil society organizations.The project builds on the experiences and lessons learned on advocacy, promotion, capacity development, seed systems, and dissemination under the RAC project, and leverages other projects on biofortified crops.Hidden hunger is particularly severe in Sub-Saharan Africa (SSA), where many people do not consume enough essential micronutrients to lead healthy and productive lives. This is especially true among poor, rural, and other vulnerable populations. One person in four in this region is undernourished. There is need for scaling-up utilization of multiple biofortified crops to ensure access to affordable micronutrients to small-scale farmers and the poor communities in rural and urban areas who do not have access to diversified diets. What do we want to achieve?The BNFB project is working on catalyzing sustainable investment for the utilization of biofortified crops at scale. A consortium of partners is working together on advocacy, policy development, nutrition education, and behavior change communication (BCC) for demand creation, capacity strengthening, and institutional learning to support the scaling up of multiple biofortified crops (Fig 2). Overall, the project impact will be demonstrated by a general increase in policy action in the national arenas of food production and nutrition, increased access and intake of biofortified foods that are rich in vitamin A and iron, and increased food and nutrition security at the household level. BNFB endeavors to create synergy with complementary ongoing projects and initiatives in order to add value and fill critical gaps. It is anticipated that 2,175,000 additional households will adopt biofortified crops in the two countries as a result of the BNFB investment over the next five years.There are two major objectives:(Advocacy efforts at country and regional levels.Advocacy efforts aim at ensuring that biofortified crops are prioritized in the revised National Agricultural Investment Plans (NAIPs) based on the post Malabo Comprehensive African Agriculture Development Programme (CAADP) Roadmap and Strategy. Ultimately, this will catalyze policy change and help generate new investments --by governments, developmental partners, and the private sector --to scale up adoption and utilization of multiple biofortified crops. This will be demonstrated through strengthening the enabling environment for investments in biofortified crops in Nigeria and Tanzania in particular. In these two countries, BNFB aims to have at least 7 country policies/strategic plans developed and implemented that prioritize support to biofortification to accelerate the scaling of biofortified crops within wider agricultural and nutrition/ health sectors.Trained national advocates and champions will seek to influence leaders in the fields of agriculture, health, nutrition and education as well as NGOs, private sector and donor organizations to expand investment in the promotion, production and utilization of the multiple biofortified crops (vitamin A (yellow) cassava, vitamin A (orange) maize, vitamin A (orange) sweetpotato and high iron beans) as food-based interventions to combat hidden hunger in Nigeria and Tanzania. Our target is to raise at least $10 million investment devoted to biofortified crops programs in Nigeria and Tanzania by public, private and NGO sectors in support of biofortification.At regional level, BNFB will create a pool of champions who will ensure inclusion of biofortified crops as an integral part of strategies endorsed by regional and sub-regional bodies in SSA to address nutrition insecurity and micronutrient malnutrition. BNFB will work with regional champions from diverse regional and sub-regional bodies to have at least 3 regional policies/strategic plans prioritize support to biofortification to accelerate the scaling of biofortified crops.(Develop Institutional and Community Capacity for Biofortified Crops. The BNFB project will develop institutional and individual capabilities to produce and consume biofortified crops for increased income for farmers and improved nutrition, particularly for adolescents, women of child-bearing age and young children, in both rural and urban areas. The project will develop capacity of national implementing agencies to design and implement technically strong, gender-responsive programs and interventions that will drive uptake of biofortified crops. BNFB will support technical training and step-down modular courses in priority areas identified as key gaps to be addressed. We aim to strengthen the capacity of at least 10,000 change agents with skills to design and implement gender-sensitive projects/programs along the value chains that drive uptake of biofortified crops (Fig 3).BNFB will catalyze impact-oriented seed systems. The project will work with on-going initiatives and add value by addressing prioritized key gaps along the seed systems value chains of iron rich beans and vitamin A yellow cassava, orange maize and orangefleshed sweetpotato.The project will assess and appraise the demand for seed/planting material of the selected biofortified crops, establish specific champions' platforms to spearhead production and marketing of biofortified crops; work with national seed agencies, the private sector; farmer/women/youth groups for strategic large scale production of biofortified crops and facilitate maintenance and continuous supply of breeder seeds.The BNFB project was officially launched during the inception workshop held in Arusha, Tanzania in March 2016 (Fig 4). Subsequently two planning workshops have been held with strategic stakeholders (August in Nigeria and September in Tanzania) to identify priority areas of intervention in the short-term. Reduce hidden hungerStrengthen enabling environment for investmentsStrengthen institutional and community capabilitiesDemonstrate how scaling up of \"multiple biofortified crops\" can be achieved CONTACT:Promotion and Advocacy. To create awareness about biofortification and nutritious food baskets, BNFB has held various promotion activities with national implementing partners, including government ministries and civil society organizations. BNFB has participated in exhibitions at key conferences, shows and fairs.Advocacy efforts for biofortified crops have begun at country and regional levels. As an entry point to develop evidence-based advocacy for fundraising and policy change strategies, situation analysis (SITAN) studies have been commissioned in Nigeria and Tanzania and at regional levels to inform the development of advocacy strategies.In Tanzania, BNFB actively participated in the development of a draft \"Multi-Sectoral Action Plan for Prevention of Micronutrient Deficiencies (NMNAP) 2, \" and biofortification was integrated in the implementation plan.In Nigeria, a series of promotion and advocacy engagements have been carried out with development partners/donors and private and public sectors on biofortified crops, including the Department for International Development, Food and Agriculture Organization of the United Nations, Dangote Foundation, and Civil Society Scaling-Up Nutrition in Nigeria, the Vice President and heads of 36 states.At regional level, BNFB has participated in several regional meetings, conferences and side events and advocated for biofortified crops (Fig 5 Under seed systems, BNFB has facilitated national seed agencies to self-organize, multiply and test for large-scale production of seeds of biofortified maize and beans. BNFB has provided seed companies (Meru Agro, Tanseed, MAMS and Aminata in Tanzania and Premier Seed, Seed Co. and MASLAHA in Nigeria) with biofortified seeds to conduct multi-location trials to facilitate release of biofortified maize, beans and OFSP varieties. BNFB has also engaged processors on the processing of nutritious foods.To facilitate systematic monitoring, data collection, reporting, evaluation and effective learning, BNFB has developed a monitoring, learning and evaluation (MLE) plan. A one day workshop for thematic leaders was held in Dar-es-Salaam in September 2016 to facilitate internalization and ownership of the plan. ","tokenCount":"1282"} \ No newline at end of file diff --git a/data/part_3/5062008981.json b/data/part_3/5062008981.json new file mode 100644 index 0000000000000000000000000000000000000000..5ac69d0093ff832f76c168399f4f1272388eddd0 --- /dev/null +++ b/data/part_3/5062008981.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"5e496f6ad8d4c93270530be593bc101f","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/c39dfce4-085b-4a9c-a15c-552241ddfa48/retrieve","id":"-250712200"},"keywords":[],"sieverID":"14ecc52f-1e7b-4c4e-b7f7-c73bc2104ba6","pagecount":"5","content":"A close collaboration with the Bangladesh Planning commission has resulted in the successful use of future scenarios to formulate the government? central development plan ? the 7th 5 year plan. Based on this success, Planning Commission members and other members of governments requested a long-term collaboration to build institutional capacities for foresight in the Bangladesh government, which has continued to guide country-wide planning, particularly around SDG implementation and next generation 5 year planning.The CCAFS South Asia Regional Coordinator, Dr. Maliha Muzammil and team Leader, Dr. Vervoort started working the Government of Bangladesh (GoB) in 2014 to co-design the 7th Five Year Plan (FYP) by creating down-scaled and policy-specific scenarios with national stakeholders; and analyzing, informing and integrating the workshop outcomes into the draft plan. The CCAFS scenarios team used regional scenarios that were developed with diverse stakeholders, and quantified two agricultural economic models, IMPACT (IFPRI) and GLOBIOM (IIASA). Recommendations were integrated to create a more robust plan. See the below references for evidence.This successful collaboration on the 7th five year plan has led the Bangladesh government to request a longer-term partnership with CCAFS to build internal foresight capacities among their staff. Training and capacity building workshops were held on using/formulating participatory future scenarios for the use in the upcoming FYPs and the perspective plans; workshops also covered the use of future scenarios to understand the co-benefits and tradeoffs between different Sustainable Development Goals (SDG) implementation in Bangladesh. The SA Regional coordinator along with ICCCAD has trained government officials in the Planning Commission on issues related to climate change, sustainable development, food systems transformation and agriculture. See the dropbox folder with training materials for reference.","tokenCount":"274"} \ No newline at end of file diff --git a/data/part_3/5088902374.json b/data/part_3/5088902374.json new file mode 100644 index 0000000000000000000000000000000000000000..64491312ba72678d20b1c3dc2f866237e239dcd0 --- /dev/null +++ b/data/part_3/5088902374.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"a88772cee892bfbc2c4cac7d4e9381c6","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/743ee242-3a31-43e6-9316-c2714709b254/retrieve","id":"-2036695684"},"keywords":[],"sieverID":"518779e6-ba84-4586-8d3c-e715575a83cf","pagecount":"1","content":"Rural communities in the Global South and their agricultural livelihoods, with a specific emphasis on the role of women.• Women encounter unique challenges shaped by cultural and societal norms.Methods Locations• 'Decision-making dartboard (DmD)framework ' (Brown et al., 2021, p. 257) used as framework for preparation of question schedule.• Purposive sampling and snowball methods applied.• Data transcribed, and thematically coded (Dedoose).To explore how evolving factors like rural outmigration, labor scarcities, and changing responsibilities are prompting a transformation in gender norms and roles within agriculture.The role of women in agriculture across the Eastern Genetic plains is strongly defined… …Yet despite this, some women are forced to bend these gendered norms out of necessity … … and this is creating new opportunities for women that are likely to become more prevalent as changes move from individual households to the wider communityOverall Farm work, Herbicide spraying, Tilling , Mobility in public spacesHousekeeping duties , CaringParticipation in transplanting:e.g., 'We need women for trans-plantation and men for making the edges of the fields' S28Manual weeding: e.g., 'When the farmer sprays herbicides in the field, then it reduces weeds from the field, but they never spray on bunds. In this case, women have to do manual weeding on the bunds' B12Post harvesting activities: e.g., 'The women members of the family do these types of work…After harvesting and threshing of the crop with the help of labour, the drying of the grain is done by the women members' B26Taking food and water to the fields: e.g., 'Women never go to the farm. Sometimes they come to the farm to provide water or food. They only come to the farm to see how the crop is' B42Although gender norms have been evolving, women can still face societal backlash for defying these norms. Positive changes have been observed within individual families but have yet to permeate broader community and societal levels. Transforming the deeply embedded gender standards in the EGP will be a gradual process.Several factors are likely to contribute to this ongoing transformation (e.g., persistent shortage of available labor, supportive family environment, peer support). These elements should be the focus of future interventions in the agricultural sector.Therefore, this study emphasizes the need for increased opportunities for inclusive exposure for all community members, regardless of their position in the household and society.Publication: ","tokenCount":"382"} \ No newline at end of file diff --git a/data/part_3/5102787578.json b/data/part_3/5102787578.json new file mode 100644 index 0000000000000000000000000000000000000000..875a9cd1ad7edb1412a341b9281d282067408e65 --- /dev/null +++ b/data/part_3/5102787578.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"3093417bfd0a2888844f45a763c9a41d","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/e5e1db9c-68bf-4e44-910d-f527aa091a61/retrieve","id":"-1603130380"},"keywords":[],"sieverID":"f879665b-ee36-4f94-84fa-db164284f327","pagecount":"20","content":"This working paper has not been peer reviewed. Any opinions stated herein are those of the author(s) and do not necessarily reflect the policies or opinions of AICCRA, donors, or partners.Licensed under a Creative Commons Attribution -Non-commercial 4.0 International License.The overall objective of the training of trainers' workshop was to increase awareness and scale adoption/integration of the module on soil nutrient and water management in crop production across the RUFORUM Network and other non-AICCRA countries. Specifically, the Tot was held to:1. To increase awareness on the module on soil nutrient and water management in crop production among academic leaders and lecturers in RUFORUM member universities;2. To receive feedback on the content of the developed curricula; and, 3. Explore effective pedagogical approaches for strengthening the delivery of the curricula.The first ToT on soil nutrient and water management in crop production was held virtually on 28 February-3 March 2023 through Zoom video and audio conferencing platform. Each session was delivered in 2 hours for four consecutive days. The workshop consisted of presentation and discussion sessions. The participants included Principals, Deans and lecturers from across Africa. 158 (Male=126; Female=32) participants from 81 universities in 26 countries attended the training. The detailed list of participants is included the annex 3 disaggregated according to gender, institution and country of residence. Prof Zelalem Bekeko from Haramaya University, Ethiopia, facilitated the training. A post workshop evaluation was conducted for the ToT using a scale of 1 to 10 (1 = Poor and 10 = Excellent) (annex 2). Additional comments to improve the content and delivery of the module were solicited from participants. The program for the training is indicated in annex 1.From figure 1, 80% of the participants who attended the training were male while the female were 20%. This could be attributed to the current gender imbalance in number of male and female university staff in African universities. According to UNESCO, the current proportion of male and female staff in African universities is 75% to 25% respectively. The findings show that the mean scores were all above 7 out of 10 for the different attributes of the questionnaire. This demonstrated that participants were generally satisfied with the training workshop. Participants highlighted the following aspects to improve the delivery of the module on soil nutrient and water management in crop production:• The module should incorporate more case studies and practical experiences from across Africa.• There is a need to go beyond just online trainings and incorporate practical sessions.• In future, consider providing take home assignments when delivering the module.• The facilitator needs to make more reference to already published material on CSA technologies.• There were challenges with connectivity that is why physical trainings are recommended.The training increased awareness of soil nutrient and water management in crop production among academic staff in RUFORUM member universities. Participants indicated their interest in incorporating the training material into their university curricula. The following recommended actions are proposed for follow-up:1. RUFORUM to organise physical trainings in selected universities to deepen awareness creation in universities by engaging multidisciplinary audiences such as lecturers from different faculties/schools and end users (media, extension workers and private sector actors). These trainings should incorporate practical demonstration field visits to learn successful cases of CSA/CIS technologies.2. RUFORUM to harness opportunity to disseminate the training curricula through various events such as the RUFORUM Annual General Meeting.","tokenCount":"556"} \ No newline at end of file diff --git a/data/part_3/5109966192.json b/data/part_3/5109966192.json new file mode 100644 index 0000000000000000000000000000000000000000..a69caec017c032f18307edcbbcf360c5ea8c3ada --- /dev/null +++ b/data/part_3/5109966192.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"920dcb333f761a43912bf33c0039f17f","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/fd28beb6-b9a8-4162-bb4a-8db2ffe69977/retrieve","id":"-1988975751"},"keywords":["'","'",". :. UNI Lf","J -OE l\"fO~M\"CIOJll OU¡;UMENTACIOR"],"sieverID":"883ba30f-b66c-4a3a-a8bc-48ad9b18459b","pagecount":"28","content":"The , .To meet with some. of the ,institutes .involved ,io religious groups and the private sector. . other sectors of their farming system . local policy makers, NGOs, church groups, women groups, traders, private companies, etc.) participated .,. The benefits that• project participating farmers ' pointed out to the visitor include:• Gain in knowledge and experjence in Illajor bean pest ecology and management strategies (including the use of traditional . Farmer groups have planned tomaintain the integrity of • their groups and activities because they now realize the benefits of the participatory approach in solving various production problems.The participatory group approach has enabled .An IPM participating farmer with improved bean genotype harvests in 2003 season","tokenCount":"116"} \ No newline at end of file diff --git a/data/part_3/5115895509.json b/data/part_3/5115895509.json new file mode 100644 index 0000000000000000000000000000000000000000..7ea632614fc400ea68c25dea6472c4f5b345e4f6 --- /dev/null +++ b/data/part_3/5115895509.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"1f5535655490ec06b4c568e49aae989c","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/ba35df2e-1a34-4d0b-bf7c-9a6194d2c685/retrieve","id":"-569316916"},"keywords":[],"sieverID":"a77334a6-53a9-416d-9e5f-cd77121e0674","pagecount":"35","content":"We have audited the accompanying statement of the financial position of the International Centre for Research in Agroforestry (ICRAF), a non-profit organisation, as at 31 December 2003 and2002, the related statement of activity, and of cash flows expressed in United States dollars, for the years then ended. The financial statements set out on pages 3 to 20 have been prepared in accordance with the accounting policies set out in Note 1.The financial statements are in agreement with the books of account. We have obtained all the information and explanations, which to the best of our knowledge and belief were necessary for the purposes of our audit.The trustees are responsible for the preparation of financial statements, which give a true and fair view of the Centre's state of affairs and its operating results. Our responsibility is to express an independent opinion on the financial statements based on our audit and to report our opinion to you.We conducted our audit in accordance with International Standards on Auditing. Those standards require that we plan and perform our audit to obtain reasonable assurance that the financial statements are free from material misstatement. An audit includes an examination; on a test basis, of evidence supporting the amounts and disclosures in the financial statements. It also includes an assessment of the accounting policies used and significant estimates made by the directors, as well as an evaluation of the overall presentation of the financial statements.In our opinion proper books of account have been kept and the financial statements give a true and fair view of the state of the Centre's financial affairs at 31 December 2003 and 2002 and of the results of its activities and cash flows for theyears then ended, and have been prepared in accordance with the CGIAR's financial guidelines contained in the Accounting Policies and Reporting Practices Manual (Revised March 1999).For the Year Ended 31 December 2003International Centre for Research in Agroforestry (ICRAF), established in 1978; is an autonomous, nonprofit, international organisation, recognised as such by the Government of Kenya, whose purpose is to help mitigate tropical deforestation, land depletion and rural poverty, through improved Agroforestry systems. ICRAF is a member of the Consultative Group on International Agricultural Research (CGIAR).Established in 1971, the CGIAR is an association of about 50 countries, international and regional organisations, and private foundations working together to support agricultural and forestry research around the world.The accounts are prepared under the historical cost convention.Revenue consist of Grants and other revenue:Grants are recognized as revenues only upon or until the conditions have been substantially met or the donor has explicitly waived the conditions.Grants are supports with donor-imposed conditions and are either restricted or unrestricted.Unrestricted grants are grants received which the center may freely use for whatever purpose the center may deem fit.Restricted grants are received in support of specified projects or activities mutually agreed upon by the centre and the donors.Grants with donor-imposed restrictions only limit the use of such grants but they do not change the transaction's fundamental nature of being a conditional support.In cases where grants are received yearly in advance in accordance with the approved annual work program and budget, and where a condition to submit a statement of expenditure ishposed prior to the withdrawal from the grant account for subsequent years, grant revenue is recognized to the extent of funds actually received and spent.In cases wherein the centre would deem that the donor receivable to be doubtful as to its collection, then an appropriate allowance for doubtful account should be provided. This is regardless of the time. the centre would decide to write-off the donor receivable.Other revenue is recognized as earned.Property and equipment are stated at their net book value which is acquisition cost less accumulated depreciation. Acquisition cost includes the purchase price plus cost of freight, insurance, handling charges and installation costs. Items of lasting value, which cost less than US$800 are treated as operating expenses. Subsequent expenditure, which extends the lives or enhances the operating efficiency of the assets is capitalised, if material.The cost of normal repairs and maintenance of existing fixed assets are treated as current operating expenses. In addition to charging annual depreciation expense, it is ICRAF's policy to provide for the future renewal of fixed assets by way of an appropriation of the unrestricted net assets.Property and equipment acquired from restricted funds are owned by the project and will normally revert to the collaborating national institutions at the end of their lives or of the project. Consequently, ICRAF fully expenses the acquisition costs of this category of assets against operating income of the year of acquisition. These assets are presented as assets in custody in the notes to the financial statements.Property and equipment previously owned by a project is recognized in ICRAF books, at fair or appraised value, upon termination of the project if it is expressly provided in the grant agreement that the ownership of item will be transferred to ICRAF.ICRAF's accounts are presented in United States Dollars (US$).Transactions involving currencies other than the U.S. Dollar are recorded in the books in U.S. dollars at the exchange rate prevailing on the date of transaction. Monetary assets and liabilities in currencies other than the US. Dollar are restated to the prevailing exchange rate at year-end. Any resulting exchange differences are included in Other Revenues in the statement of activities.Stocks are stated at the lower of cost and net replacement value. In general, cost is determined on a weighted average basis. Net replacement value is the price at which the stock can be bought at the balance sheet date. Goods in transit are stated at cost. Provision is made for obsolete, slow moving and defective stock.Full provision is made for gratuity payable to employees at the end of their contracts. Provisions are also made in respect of outstanding leave days accruing to all staff and international staff repatriation costs.The government of Kenya has undertaken to exempt the Centre from all local taxes including customs duty on goods and services received by the Centre. Consequently, the Centre does not account for tax in its financial statements.Surplus funds are invested in fixed deposits and in US dollar short-term money market instruments, which are carried at market value.-.Account receivables are carried at the original amount less an estimate made for doubtful receivables based on a review of all outstanding amounts at year-end.Bad debts are written of in the year in which they are identified. I. Unappropriateduse of assets is not designated by center management for special purposes.2. Appropriateduse of assets has been designated by center management for specific purposes such as reserve for replacement of property and equipment and net investment in property and equipment. Appropriation from unrestricted net assets is done on an annual basis based on Board of Trustees' resolution.Temporarily restricrednet assets -Net assets subject to donor-imposed restrictions permits the center to use up or expend the assets transferred as specified and is satisfied either by the passage of time andor by actions of the center. ICRAF had no temporarily restricted net assets as of December 31,2003 and2002 Permanently restricted net assets -Net assets subject to donor-imposed restrictions that stipulates that the assets transferred be maintained permanently but permits the center to use up or expend part or all of the income or fruits derived from the assets transferred. ICRAF had no permanently restricted net assets as of December 31,2003 and 2q-3. In 2002, European Commiiisi.ontple.dgeL Eurosl.665 million (US$1.810 million) to ISRAF to.?fund several specific.proje+ in:specific regions in the Centre's ap-~rSv,t@$&bmtenn plan (MTP.). &sed on a communiqu$ from theEC regarding requests @.the; reallocation of funds betv&n~~&~@$&$ pr6jects.within E&I&i gnated regions, .IGRAF.management-on a:nixobj&iq:nlbaQ!s -proposed withinmion reallocations:ofrfunds~a.~~:the. ECdesignated projects. In t.he absehnof a . r e b ~l : ~m ~t i e . E C i : l a ~~F fully expended the EU aI!~tio@$rpO2 in4Mm@nner proposed by ICRAF, Le., rebalanced allocations across %e%E*&approved project. The audited f i n a ~~a I i s t ~~~~. ~~~~~~~~~R ~. ~. a c t w l , . . % .expenditures incurred on each ECdesignated pr&Ct.Notification that the EC.d,i$J&@tur with ttiemallocation of funds among the designated projectswas received in the 3d ICRAF operates a defined contribution.pension scheme for all its regular employees. The scheme is administered by an insurance company, and is funded from contributions from I C M F and its employees. ICRAW contributions to the pension scheme are charged to operating expenses in the year to whi ch they relate. ","tokenCount":"1406"} \ No newline at end of file diff --git a/data/part_3/5141558961.json b/data/part_3/5141558961.json new file mode 100644 index 0000000000000000000000000000000000000000..49a68866931abb9bad09f915a6f4843073f7b6f7 --- /dev/null +++ b/data/part_3/5141558961.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"13b5d03d1123d8950e3b0efd9f2356c9","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/f2c02546-0ab4-4e37-9a27-190980cca06d/content","id":"1147561834"},"keywords":[],"sieverID":"0b726218-24f1-4bbd-8b27-8d08b33ea1c2","pagecount":"13","content":"The phenomenon of genotype • environment (G • E) interaction in plant breeding decreases selection accuracy, thereby negatively affecting genetic gains. Several genomic prediction models incorporating G • E have been recently developed and used in genomic selection of plant breeding programs. Genomic prediction models for assessing multi-environment G • E interaction are extensions of a singleenvironment model, and have advantages and limitations. In this study, we propose two multi-environment Bayesian genomic models: the first model considers genetic effects ðuÞ that can be assessed by the Kronecker product of variance-covariance matrices of genetic correlations between environments and genomic kernels through markers under two linear kernel methods, linear (genomic best linear unbiased predictors, GBLUP) and Gaussian (Gaussian kernel, GK). The other model has the same genetic component as the first model ðuÞ plus an extra component, f, that captures random effects between environments that were not captured by the random effects u: We used five CIMMYT data sets (one maize and four wheat) that were previously used in different studies. Results show that models with G • E always have superior prediction ability than single-environment models, and the higher prediction ability of multi-environment models with u and f over the multi-environment model with only u occurred 85% of the time with GBLUP and 45% of the time with GK across the five data sets. The latter result indicated that including the random effect f is still beneficial for increasing prediction ability after adjusting by the random effect u:The long, rich history of the development of statistical models for assessing genotype • environment (G • E) interaction in agricultural and plant breeding experiments precedes the development of the analysis of variance. Fisher and Mackenzie (1923) pointed out that the differential responses of genotypes to environments could be better fitted by a product operator (multiplicative) than by a sum formula. More than a decade later, a multiplicative operator consisting of a simple linear regression of line performance on the environmental mean was proposed by Yates and Cochran (1938) (joint-regression analysis). This is a method that approximates G • E interaction by one multiplicative term. Several decades later, other multiplicative operators based on singular value decomposition (SVD) of the G • E were proposed within the framework of linear-bilinear, fixed-effect models (Cornelius et al. 1996). Later, Piepho (1998) and Smith et al. (2001Smith et al. ( , 2005) ) employed the SVD operator for modeling G • E but in the context of multivariate linear mixed-effect models, while Crossa et al. (2004Crossa et al. ( , 2006) ) and Burgueño et al. (2008) considered using structured covariance matrices to model G • E based on pedigree linear mixed models for estimating the BLUP of the breeding values. These models account for the average performance of the interaction across the entire genome without distinguishing parts of the genome that may be more influenced by the environment than others, and using environments without characterizing climatic factors that may interact with regions of the genome.The first to propose whole-genome regression methods (genomic selection, GS) by jointly fitting hundreds of thousands of markers with major as well as small effects were Meuwissen et al. (2001).Implementing whole-genome regression methods poses important statistical and computational challenges because the number of markers (p) greatly exceeds the number of data points (n) available; however, shrinkage estimation procedures allow the implementation of wholegenome regression methods. Recently, standard GS models were extended to multi-environment data. For instance, Burgueño et al. (2012) were the first to use a multi-environment version of the GBLUP where G • E was modeled using genetic correlations; however, they did not attempt to incorporate environmental variables as surrogates for environments. Jarquín et al. (2014) proposed a Bayesian reaction norm model that is a type of random effects model where the main effects of markers and environmental covariates (ECs), as well as the interactions between markers and ECs, are introduced using covariance structures that are functions of marker genotypes and ECs. The proposed approach represents an extension of the GBLUP and can be interpreted as a random effects model on all the markers, all the ECs, and all the interactions between markers and ECs using a multiplicative operator.The reaction norm model of Jarquín et al. (2014) has some limitations, for example, the Gaussian prior does not induce variable selection and the shrinkage induced by Gaussian prior density may not be particularly appropriate when markers or ECs may have large effects. Furthermore, the reaction norm model considers the case of a particular multiplicative interaction model and, as such, may be considered a simple approximation to the complex phenomenon of interaction between genes and environmental conditions which, in practice, may take many different forms.To solve some of the challenges of the reaction norm model, López-Cruz et al. (2015) proposed a marker • environment interaction model where marker effects and genomic values are partitioned into components that are stable across environments (main effects) and others that are environment-specific (interactions); this interaction model is useful when selecting for stability and adaptation to target environments. Consistently, genomic prediction ability increased substantially when incorporating G • E or marker • environment interaction. The marker • environment interaction model has some advantages over previous models: it is easy to implement in standard software for GS and can be implemented with any Bayesian priors commonly used in GS, including not only shrinkage methods (e.g., GBLUP), but also variable selection methods (which cannot be directly implemented under the reaction norm model) (Crossa et al. 2016).The marker • environment interaction model of López-Cruz et al. (2015) estimates the phenotypic correlation between any two environments as a ratio of variance components, thus forcing the covariance between pairs of environments to be positive. Therefore, the marker • environment interaction model is appropriate for use with sets of environments that are positively correlated. However, in practice, this G • E pattern may be too restrictive in cases where several environments have close to zero correlations; this determines a large variance component of G • E as compared with the genetic variance component (Burgueño et al. 2011).In a recent article, Cuevas et al. (2016) applied the marker • environment interaction GS model of López-Cruz et al. (2015), but modeled not only through the standard linear kernel (GBLUP), but also through a nonlinear GK similar to that used in the Reproducing Kernel Hilbert Space with Kernel Averaging (RKHS KA) (de los Campos et al. 2010) and with the bandwidth estimated using an empirical Bayesian method (Pérez-Elizalde et al. 2015). The methods proposed by Cuevas et al. (2016) were used to perform single-environment analyses and extended to account for G • E interaction in wheat and maize data sets. In single-environment analyses, the GK had higher prediction ability than GBLUP for all environments. For cross-validation where some lines are observed only in some environments and predicted in others, the multi-environment G • E interaction model with GK resulted in prediction accuracies up to 17% higher than that of the multi-environment G • E interaction model with GBLUP linear kernel. For the maize data set, the prediction ability of the multi-environment model with GK was on average 5-6% higher than that of the multi-environment GBLUP. Cuevas et al. (2016) concluded that the higher prediction ability of the GK models coupled with the G • E model is due to more flexible kernels that account for small, more complex marker main effects and marker-specific interaction effects. However, the marker • environment interaction model using the GK of Cuevas et al. (2016) also assumes sets of environments that are positively correlated (as in López-Cruz et al. 2015).In this study, we propose two multi-environment G • E genomic models that attempt to overcome some of the restrictions of previous genomic models. The main objective was to compare the prediction ability of the two proposed multi-environment G • E genomic models, each used with two kernel methods: linear (GBLUP) and nonlinear (GK). One multi-environment G • E model considers the genetic effects u that is modeled by the Kronecker product of the variancecovariance matrix of genetic correlations between environments with the genomic relationship between lines (using GBLUP or GK methods); this model with u is parsimonious because it estimates the combination of the genetic main effect plus the unstructured genetic variance-covariance interaction matrix between environments. The other model has the same genetic components as the previous one ðuÞ plus an extra component, f, that attempts to capture random effects between environments that were not captured by u: Both genomic prediction models assume that errors have a diagonal variance-covariance matrix ðΣÞ:A total of five extensive genomic data sets were used to compare the prediction ability of the two multi-environment G • E genomic models (each with GBLUP and GK methods) among themselves and with the prediction ability obtained by the single-environment (also with GBLUP and GK methods). These five data sets have been used in previous genomic studies where prediction ability was assessed only for individuals observed in some environments but not in others (crossvalidation method 2, CV2, by Burgueño et al. 2012).Single-environment model: The semiparametric regression model for each single environment (j ¼ 1; . . . ; m environments) of lines ði ¼ 1; . . . ; n j Þ is given by:where y j is the response vector containing n j phenotypic values, 1 nj is a vector of ones of order n j ; m j is the overall mean of the j th environment, and the random vectors of the genetic values u j and the errors e j are independent random variables with u j $ Nð0; s 2 uj K j Þ and e j $ Nð0; s 2 ej I nj Þ; respectively, where s 2 uj K j is the variance of u j ; K j is a symmetric semipositive definite matrix representing the covariance of the genetic values, and e j is the vector of random errors in the j th environment with normal distribution and common variance s 2 ej : The biallelic p centered and standardized molecular markers in the j th environment are represented in incidence matrix X j such that K j ¼ G j ¼ ðX j X j 9=pÞ is a linear kernel. Model (1) is known as the GBLUP (VanRaden, 2007(VanRaden, , 2008)). Single-environment model ( 1) is similar to model (1.2) of Pérez-Elizalde (2015) when the linear kernel is used.It should be noted that under the conditions given above, model (1) estimates the genomic relationship by means of its linear kernel ðX j X j 9Þ: However, nonlinear kernels such as the GK can also be used (Cuevas et al. 2016). The GK commonly used in genomic prediction is -Rodríguez et al. 2012), where d ii9 is the distance based on markers between individuals i; i9 ði ¼ 1; . . . ; n j Þ for the j th environment and h j . 0 is a bandwidth parameter, which in this study is estimated based on the Bayesian method proposed by Pérez-Elizalde et al. (2015).Multi-environment models: For multi-environments, the random model considers that the individuals between environments are correlated such that there is a genetic correlation between environments that can be modeled with matrices of order m • m: Therefore, the extension of random model (1) that accounts for genetically correlated environments is expressed aswhereà 9 where m is the vector with the intercept of each environment, and random vectors u; and e are independent and normally distributed (Burgueño et al. 2012) with u $ Nð0; K 0 Þ and e $ Nð0; RÞ: When the number of individuals included in each environment is different, then where s 2 uj is the genetic variance of the j th environment and s ujuj 9 is the genetic covariance between two environments, j th and j th' , K j is the kernel constructed with the markers of the individuals in the j th environment and K jj9 is the kernel constructed with the markers of the individuals included in the two environments, j th and j th' . Also, the residual matrix is assumed to be diagonal where s 2 ej is the random error of the environment. When the number of individuals in the environments is the same ðn j ¼ n j ' ¼ nÞ, the kernels are the same K j ¼ K; and the identity matrices are the same I j ¼ I, then K 0 ¼ U E 5 K; and R ¼ Σ5I; where 5 denotes the Kronecker product and K is unique (calculated for all genotypes, regardless of the environment in which they were tested) and could be the genomic relationship matrix as defined for model (1). The matrix K 0 is the product of one kernel with information between environments ðU E Þ and another kernel with information between lines based on markers ðKÞ, similar to the multi-task Gaussian process (Bonilla et al. 2007). The mixed model used in genomic prediction can have several structures for modeling matrix U E (Burgueño et al. 2012). When there are not many environments, the unstructured variance-covariance could be used for U E ; of order m • m such that where the j th diagonal element of the m • m matrix U E is the genetic variance s 2 uj within the j th environment, and the off-diagonal element is the genetic covariance s uju j9 between the j th and j th' environments. For a large number of environments, a factor analytical model usually performs as well or better than the unstructured model (Burgueño et al. 2012). Also, matrix Σ is an error diagonal matrix of order m • m; i.e., Σ ¼ diagðs 2 e1 ; . . . :; s 2 em Þ: As described, model ( 2) is parsimonious because it expresses the genetic values within the environment derived from the markers plus the interaction between these genetic values with the environments. Model (2) can be used with the linear kernel matrix G or with the GK that allows capturing small cryptic genetic epistatic effects. Jarquín et al. (2014) argued that due to \"imperfect linkage disequilibrium (LD) between markers and genes at causal loci or because of model misspecification (e.g., interactions between alleles that are unaccounted for), the regression on markers may not fully describe genetic differences among lines.\" Therefore, it is reasonable to add another component that would attempt to model the variation between individuals that was not captured by u: Thus, we added to model (2) a random component f representing the genetic variability among individuals that was not accounted for as a function of the markers in component u:Therefore, multi-environments with random effects considering genetic correlations between environments (model ( 2)) can be extended by adding an extra variability to account for the genetic variance among individuals across environments that was not explained by u; that is f. Therefore, the extension of the random linear model ( 2) is expressed aswherewith the random vectors f independent of u and normally distributed f $ Nð0; QÞ: In general, when the number of individuals is not the same in all environments,where s 2 fj is the genetic effects in the j th environment not explained by the random genetic effect u and s fjf j9 is the covariance of the genetic effects between two environments not explained u: When the number of individuals is the same in all the environments, thenMatrix F E ; is unstructured and captures genetic variancecovariance effects between the individuals across environments that were not captured by the U E matrix; in this case, matrix F E can be expressed as where the j th diagonal element of the m • m matrix F E is the genetic environmental variance s 2 f j within the j th environment, and the offdiagonal element is the genetic covariance s fjf j9 between environments j and j'.Considerations on the application of the proposed models: An objective of this article was to compare the use of linear and nonlinear kernels for matrix K to determine the relationship between lines, for each of the three models described earlier. Thus, for each of the five data sets, we fitted models (1)-( 3) for K as a linear kernel using the GBLUP, and K as a nonlinear GK with the bandwidth parameter estimated according to Pérez-Elizalde et al. (2015) on model (1).The same numbers of individuals in each environment were employed in these applications. Therefore, in this case, the same kernel K constructed for all individuals was developed. Also, the observations in each environment were standardized with the aim of examining and comparing the proportion of variance components explained by each random component of the single-environment model with those from the two multi-environment models, and also between the variance components of the random effects u and f of models ( 2) and (3). Although the intercepts were expected to be close to zero, they were included in the model as parameters to be estimated.Implementation of Bayesian models: Single-environment model (1) was fitted with the Bayesian Generalized Linear Regression (BGLR) package of de los Campos and Pérez-Rodríguez (2014). The BGLR considers a Bayesian model and, from that point of view, a linear mixed model is a three-stage hierarchical model (Jiang 2007). In the first stage, the distribution of the observations given the random effects is defined and, in the second stage, the distribution of the random effects given the model parameters is added. In the last stage, a prior distribution is assumed for the parameters. Under normal distribution these stages may be specified as follows: the conditional distribution of the data from the j th environment is p The hyperparameters were set using the rules given by Pérez-Rodríguez and de los Campos (2014). In this study, we assumed default values of df e ¼ df u ¼ 5; with the intention of avoiding infinite variance values. We also assumed that the model explained 50% of the phenotypic variance; then S e ¼ 0:5varMore details on the use of the BGLR can be found in Pérez-Rodríguez and de los Campos (2014).Multi-environment models (2) and (3) were fitted using the Multi-Trait Model (MTM) software of de los Campos and Grüneberg (2016) that uses a Bayesian approach, assuming the K j are the same in all the environments and considering that, at the first level, the conditional distribution of the data can be modeled by a multivariate normal distribution pðyjm; u; f ; ΣÞ ¼ Nðyjm þ u þ f ; Σ5IÞ: At the second level, the prior distributions for u and f are multivariate normal with mean vector zero and variancecovariance matrices U E 5 K; and F E 5I; respectively, that is, pðujU E ; KÞ ¼ Nðuj0; U E 5KÞ; pðf jF E Þ ¼ Nðf j0; F E 5IÞ: At the third level, a flat prior distribution for the intercepts of each environment is used, and the prior distributions of U E andwhere the scale matrix S 0 is an identity matrix of order m (number of environments) and the degrees of freedom df 0 ¼ m: For the prior distribution of the elements of s 2 ej of the diagonal of Σ; we used a scaled inverse Chi-squared distribution with the hyperparameters' degree of freedom and a scaled factor equal to 1.Both packages, BGLR and MTM, fit the models with Markov Chain Monte Carlo (MCMC) using the Gibbs sampler with 30,000 iterations, with a burn-in of 5000 and a thinning of five, so that 5000 samples were used for inference. Convergence and diagnostic tests were performed. The Gelman-Rubin convergence tests for all parameters of the three models were satisfactory, using lag-5 thinning results in low autocorrelations in each of the three models. The Raftery-Lewis test suggested a small burn-in between 10,000 and 20,000 iterations for the five data sets used.The R codes with a brief description for fitting multi-environment model (3) using the MTM package of de los Campos and Grüneberg (2016) are given in Appendix A.Prediction ability was assessed using 50 TRN-TST (TRN = training and TST = testing) random partitions; we used this approach because it provides higher precision in the predictive estimates than the framework that uses different numbers of folds. For single-environment model (1), 50 random partitions were formed with 70% of the observations in the training set and 30% of the observations in the testing set.For multi-environment models (2) and (3), we simulated the prediction problem that assumes that 70% of the individuals were observed in some environments but not in others (CV2, Burgueño et al., 2012). We used the procedure of López-Cruz et al. (2015) to assign individuals to the training and testing sets. We formed TRN sets with 70% of the n • m observations and TST sets with 30% of the n • m observations to be predicted (their phenotypic values were not observed and appear as missing).In each random partition, Pearson's correlations between the predicted and observed values for each environment were computed; these are considered the prediction accuracies of those models, and thus the average correlation for all random partitions and their standard deviation are reported. The variance components of the three models using the full data are also reported.When random cross-validation partitions simulated the prediction of a portion of individuals that represents newly developed lines not observed in any environment (random cross-validation 1, CV1, Burgueño et al. 2012), it is possible that f (of model ( 3)) could account for part of the random error. However, in this study, we observed all the individuals in at least one environment and predicted other individuals that were not observed in some environments (random CV2, Burgueño et al. 2012); therefore, under CV2 random cross-validation, f is predictable.In this study, we used five data sets that have been used in different studies. Wheat data set 1 was used by Crossa et al. (2010) and Cuevas et al. (2016), maize data set 2 was employed in the studies of Crossa et al. (2013) and Cuevas et al. (2016), and wheat data sets 3-5 were analyzed by López-Cruz et al. (2015). Brief descriptions of the phenotypic and marker data sets are given below.Wheat data set 1: This data set, from CIMMYT's Global Wheat Program, was used by Crossa et al. (2010) and Cuevas et al. (2016) and includes 599 wheat lines derived from 25 yr of Elite Spring Wheat Yield Trials (ESWYT). The environments represented in these trials were grouped into four basic agroclimatic regions (megaenvironments). The phenotypic trait considered here was grain yield (GY) of the 599 wheat lines evaluated in each of the four mega-environments. The 599 wheat lines were genotyped using 1447 Diversity Array Technology (DArT) markers generated by Triticarte Pty. Ltd. (Canberra, Australia; http://www.triticarte.com.au). Markers with a minor allele frequency (MAF) , 0.05 were removed, and missing genotypes were imputed using samples from the marginal distribution of marker genotypes. The number of DArT markers after edition was 1279.Maize data set 2: This data set was first used by Crossa et al. (2013) and then by Cuevas et al. (2016); it includes a total of 504 double-haploid (DH) maize lines obtained by crossing and backcrossing eight parents that formed 10 full-sib (backcrosses) and six sib families. Each DH line was crossed to an elite single-cross hybrid of the opposite heterotic group to produce 504 testcrosses. The trait analyzed in this study was GY (kg/hectare) in three optimum rain-fed trials. The field experimental design in each of the three environments was an a-lattice incomplete block design with two replicates. Data were preadjusted using estimates of incomplete blocks nested in replicates.The initial total of 681,257 genotyping-by-sequencing (GBS) markers had a percentage of missing cells per chromosome ranging from 51.3 to 52.8%; after editing, this percentage decreased to around 43-44% of the total number of cells. Around 20% of cells were missing in the edited GBS information used for prediction after imputation. After filtering markers for MAF, a total of 158,281 GBS were used for prediction.Wheat data sets 3-5: These three data sets were described and used by López-Cruz et al. (2015) for proposing a marker • environment interaction model. The phenotypic data consisted of adjusted GY (tonnes/hectare) records collected during three evaluation cycles of different inbred lines evaluated in different environments. All trials were established using an a-lattice design with three replicates in each environment at CIMMYT's main wheat breeding station at Cd. Obregon, Mexico. The environments were three irrigation regimes (moderate drought stress, optimal irrigation, and drought stress), two planting systems (bed and flat planting), and two different planting dates (normal and late). The phenotype used in the analysis was the Best Linear Unbiased Estimate (BLUE) of GY obtained from a linear model applied to the a-lattice design of each cycle-environment combination.Wheat data set 3 had 693 wheat lines evaluated in four environments, wheat data set 4 included 670 wheat lines evaluated in four environments, and wheat data set 5 had 807 wheat lines evaluated in five environments. Genotypes were derived using GBS technology, and markers with a MAF , 0.05 were removed. All markers had a high incidence of uncalled genotypes, so we applied thresholds for incidence of missing values and focused on maintaining relatively large and similar numbers of markers per data set. After editing the missing markers, we had a total of 15,744 GBS markers for analyzing wheat data sets 3 and 4, and 14,217 GBS markers available for analyzing wheat data set 5.Phenotypic and marker data for the five data sets can be downloaded from http://hdl.handle.net/11529/10710.In the following sections, we present prediction accuracies for each data set, and describe two main comparisons: (1) method GBLUP vs. method GK for models (1)-(3); and (2) model ( 1) vs. model (2) and model (3) vs. model (2) for methods GBLUP and GK.Results showed increased prediction ability for models (1) and ( 2) for GK over GBLUP ranging from 12 to 16% for E1, E3, and E4. Also, model (3) showed 12 and 9% increases in prediction ability of GK over GBLUP for E1 and E4, respectively (Table 1), whereas the percent difference of GK model ( 3) vs. GBLUP model (3) was only 21 and 1% for E2 and E3, respectively.Empirical phenotypic correlations of zero or negative values between E1 and all the other environments (Table 2) were found, whereas E2-E4 were positively (moderately to highly) associated among themselves. Table 2 shows the average prediction ability of each of the four environments given by the three models for linear kernel (GBLUP) and nonlinear kernel (GK). The three GK models had higher prediction ability than the corresponding three GBLUP models for E1, E3, and E4, whereas the best prediction model for E2 was GBLUP model (3). Results for this data set indicate a relatively important level of G • E, basically caused by the differential response of individuals in E1 compared with their responses in the other environments.Differences in the prediction ability of GBLUP model (2) and GBLUP model (1) were 2, 34, 60, and 12% for E1-E4, respectively; for GK these differences were 0, 44, 62, and 9% for E1-E4, respectively (Table 1). GBLUP model (3) was 6, 13, 17, and 5% more accurate than GBLUP model (2) for E1-E4, respectively. GK model (3) was 5, 4, 2, and 3% more accurate than GK model (2) for E1-E4, respectively. In summary, for all environments in wheat data set 1, model (3) had higher prediction ability than models (2) and (1) for GK and GBLUP. As for the methods, GK was better than GBLUP for all three models and environments, except E2.Variance within environments (diagonal) and covariances between environments (off diagonal) were higher for f (expressed in F E ) for GBLUP than for GK (Appendix Table B1), except for cases involving E1; however, the opposite is true for u (expressed in U E ), where the absolute variance-covariance values and correlations for GK were larger than those for GBLUP, and therefore reflected in the increases in the prediction ability of the models and methods. Also, diagonal residuals estimates were smaller in GK than in GBLUP.Higher prediction ability of GK over GBLUP for models (1)-(3) ranged from 1 to 12% for E1-E3; the advantage of GK over GBLUP was lower in model (3) (3, 1, and 10% for E1-E3, respectively) than the advantage of model (2) vs. model (1) (Table 1). Comparing model (2) vs. model (1), the differences were similar for GBLUP and GK (8, 12, and 2% for GBLUP and 10, 7, and 2% for GK). There were no differences between model (3) and model (2) for GK and only small differences for GBLUP (3, 1, and 2% for E1-E3, respectively). Appendix Table B2 shows that the covariance between environments in F E was close to zero due to the low contribution of random component f for both the GK and GBLUP methods.The empirical phenotypic correlations between the three environments in the maize data set showed moderate positive values (Table 2), with all the elements of covariance in matrices U E and F E being positive or zero (Appendix Table B2). The elements of U E ; for the GK method were all larger than those for the GBLUP method, and the opposite occurred with the elements of variance-covariance matrix F E for GBLUP vs. GK and the diagonal values of residual matrix Σ (Appendix Table B2). The low values of F E for the GK methods produced a small increase in prediction ability of model (3) over model (2) (Table 2), although GK model (3) always gave the best predictors for the three environments (E1 = 0.645, E2 = 0.582, and E3 = 0.578) and was slightly superior to GK model (2). In general, results for this data set indicate that the prediction ability of the GK method was always superior to that of the GBLUP method, and model (3) was slightly better than model ( 2) and clearly superior to model (1).Wheat data set 3 GK models (1)-(3) were better predictors than GBLUP models (1)-( 3) for the four environments except for E2 (GBLUP model ( 3)) and E4 (GK model ( 1)) (Table 2). For E1 and E2, the prediction ability of model (2) over model (1) was about 14% higher, whereas for E3 it was 12% and for E4 it was 2% (Table 1). An almost negligible increase in prediction ability (2) was observed when comparing model (3) vs. model (2) for GBLUP and GK for predicting individuals in all the environments (Table 1 and Table 2).GK model (3) was the best predictor of E1 and E3, GBLUP model (3) was the best predictor of E2, and single-environment GK model (1) was the best predictor of E4 (Table 2). Similar to the results for maize data set 2, the very low values of the elements of matrix F E (Appendix Table B3) for the GK and GBLUP methods produced modest to negligible increases in prediction ability of GK model (3) and GBLUP model (3) over GK model (2) and GBLUP model (2) (from 0 to 2%, as indicated in the last two columns of Table 1).The four environments included in this set of trials had a relatively low empirical phenotypic correlation (especially E1 vs. E3, with 20.054), except E2 and E4 (0.414) (Table 3). This indicates a relatively important level of G • E and therefore increases in prediction ability when modeling interaction, especially when comparing singleenvironment model (1) vs. multi-environment models (2) and (3) for the GK and GBLUP methods. For GBLUP, model (2) was a better predictor than model (1) for E1 (0.03 increase), E2 (0.10 increase), E3 (0.078 increase), and for E4 (0.100 increase), with an average increase of 17% (6,25,15,and 23%,respectively,Table 1). This superiority of model (2) over model ( 1) for all environments increased further in the GK, where it gave an average increase in prediction ability of 32% over the GBLUP (27, 46, 17, and 37%, respectively) (Table 1).n Table 1 Percent change in prediction accuracy of GK vs. GBLUP for each of the three models ( 1)-( 3), prediction accuracy of model ( 2) vs. model ( 1) for GK and GBLUP, and prediction accuracy of model ( 3 The increase in prediction ability of model (3) over model ( 2) was important for GBLUP but not for GK; overall, GBLUP gave an average increase in prediction ability of model (3) over model (2) of 12%, whereas for GK this increase was, on average, 0.75% (Table 1). Although the increase in prediction ability of model (3) over model (2) in GK was marginal, overall, GK model (3) was slightly superior to GBLUP model (3) for E1 (0.601 vs. 0.616; Table 3) and E3 (0.609 vs. 0.613; Table 3); GBLUP model (3) was slightly better than GK model (3) for predicting E4 (0.611 vs. 0.607; Table 4) and they had similar accuracy for predicting E2 (0.588 vs. 0.587).Appendix Table B4 shows that GBLUP model (3) could not capture sufficient variability associated with random component u reflected in the within (diagonal) and between environment (off diagonal) variability of ðU E Þ: Therefore, GBLUP model (3) with f explained more of this variability, and this is reflected in the better prediction ability of GBLUP model (3) for E2 and E4. In contrast, GK model (3) explained most of the within and between environmental variance reflected in the large values of the elements of U E : Therefore, F E could not explain much; thus, the predictions of GK model (3) are similar to (although slightly lower than) those of GK model (2).The gains in prediction ability of GK over GBLUP were consistent across models, ranging from 0 to 13% (Table 1). For the GBLUP method, the gains in prediction ability of model (2) over model (1) were very modest (for E1-E3), except for E4 and E5 (with high empirical phenotypic correlations of 0.546); gains in prediction ability of model (3) over model (2) were almost negligible, except for E4 and E5 (3%, Table 1).The superior prediction ability of the three GK models over the GBLUP models is clearly shown in Table 3. Also, in contrast to GBLUP, the better prediction ability of GK model (2) over GK model ( 1) is clear for all the environments; interestingly, this increase in prediction ability due to adding interaction matrix U E to model ( 2) with respect to model (1) was not reflected when adding the extra variance-covariance matrix F E to model ( 3) with respect to model (2) (Appendix Table B5).GBLUP and GK models (1)-(3), which were proposed, described and used in this study, are flexible and can be used not only with genomic information but also with pedigree information. We performed preliminary analyses with models (1)-(3) on wheat data set 1 using only pedigree information, but the prediction ability was not higher than any of the correlations obtained using the genomic relationship matrix (data not shown).Models (2) and (3) proposed in this paper jointly estimate the genetic and the genotype • environments interaction effects. The proposed models are more parsimonious than those that explicitly separate and estimate genotype and environments affects from their interaction. In general, models that jointly estimated the main effects of genotypes and genotype • environment are preferred to those that do it separately because researchers are interested in examining the predicted values of pure precommercial cultivars and single crosses as well as their interaction and stability with environments.Below we discuss some of the advantages and limitations of these G • E genomic prediction models (2) and (3).When fitting model (2), estimations of the off-diagonal values of U E can be positive, close to zero, zero, or negative. This is a more flexible model than the multi-environment model of López-Cruz et al. (2015) with a linear kernel or the multi-environment model of Cuevas et al. (2016) with a nonlinear GK. Both propositions impose the restriction that the correlation between environments is positive; therefore, prediction ability of lines in environments with negative or zero correlations is low.For model ( 2), the correlation between any two environments from the standardized data are equal to the sum U E þ Σ; thus, when the correlations between environments are close to zero, matrix U E tends n Table 2 Mean prediction accuracies for the different environments of wheat data set 1, maize data set 2, and wheat data set 3 for GBLUP and GK methods, and three models including a single-environment (model ( 1)) and two multi-environment models (models (2) and ( 3 to be diagonal so that model (2) will fit each environment almost independently from the other environments; this will produce prediction accuracies similar to those obtained by single-environment model (1), as evidenced in our results. When the correlation between environments is positive (or negative) and intermediate to high, matrix U E has positive (or negative) values in its off-diagonal; this allows borrowing information from one environment to predict other environments with positive (or negative) correlations, such that the linear or nonlinear kernels will increase the prediction ability of the lines in those environments. Therefore, the diagonal of matrix U E influences the prediction ability in a specific environment and the off-diagonal values of matrix U E affect the exchange of information between environments. According to Cuevas et al. (2016), in general, nonlinear kernel GK had better prediction ability than linear kernel GBLUP. These results were generally found in model (2) as well, because GK explained the variance within and between environments better than GBLUP, and this is reflected in the values of matrix U E (Appendix Table B1, Table B2, Table B3, Table B4, and Table B5).Table 1 shows that the differences when comparing model (2) vs. model (1) are close in methods GK and GBLUP (i.e., maize data set 2, wheat data set 3, and wheat data set 5); model (3) with GBLUP and with GK had negligible gains in prediction ability over model ( 2) with GBLUP and with GK. In contrast, when there are differences in models ( 2) and (1) in GK and GBLUP (i.e., wheat data set 1 and wheat data set 4), GBLUP model (3) substantially increases prediction ability with respect to GBLUP model ( 2), but this does not seem to be the case for GK.Multi-environment model (3) Model (2) explained only part of the variability, whereas multi-environment model (3) incorporated a random effect f that attempts to explain a portion of the genotypic variance that is not explained by u and therefore has the potential to further capture that variability, which will improve prediction ability. The reaction norm model of Jarquín et al. (2014) applies this principle when adding a genomic component to the phenotypic component or adding ECs to explain environmental variability. We did not add any ECs to our model; therefore, matrix f will have a pre-dictive effect only when lines are predicted in one environment using information from other correlated environments (random crossvalidation scheme CV2). Under the random cross-validation scheme, where certain lines were not observed in any of the environments (cross-validation scheme CV1), there is no borrowing of information from the lines in the training set to predict other lines not observed in any of the environments (testing set); therefore, matrix f is not predictable and the prediction ability for one environment will be the same as that obtained by single-environment model (1) (López-Cruz et al. 2015).Results from five data sets show that the increase in prediction ability of model (3) over model ( 2) is a function of the magnitude of the absolute values of the variance-covariance between environments ðF E Þ and the method used (linear or nonlinear kernel). In general, the increases in prediction ability of model (3) over model (2) are with GBLUP because, as mentioned, model (2) explained only part of the genotypic variance; on the other hand, the increases in prediction ability of GK model (3) with respect to GK model (2) are smaller than those observed in the GBLUP because the nonlinear kernel with model (2) takes most of the variability and does not leave much variability to be explained by the covariance between environments ðF E Þ: Model (3) adds a random effect f representing part of the interaction between genetic factors environment that were not captured by u; when used with the GK, part of the small cryptic variations represented by the small epistatic effect might be included in f :Comparing prediction ability of multi-environment model (3) with other multi-environment genomic G 3 E models in the literature In this section, we compare results obtained in this study with multienvironment model (3) using methods GBLUP and GK with those obtained by other models and methods for the same data set and published in other articles (Burgueño et al. 2012;Cuevas et al. 2016;López-Cruz et al. 2015). It should be pointed out that this comparison of results is not completely objective because different random partitions and different numbers of partitions were performed in the different studies.n Table 3 Mean prediction accuracies for the different environments of wheat data sets 4 and 5 for GBLUP and GK methods, and three models including a single-environment (model ( 1)) and two multi-environment models (models (2) and ( 3 and decomposed the interaction into two components: the main effects of markers across all the environments and the specific effects of markers in each environment. The reason for these differences is that the model of Cuevas et al. (2016) assumes positive correlations between environments; when there is a negative correlation between environments, its predictive capacity declines, as happened with the relatively low prediction ability of E1 (0.458). GK model (3) (and also GBLUP model ( 3)) is more flexible, admitting any correlation (positive, zero, or negative) between environments, and therefore predicted all four environments (E1-E4) better than the EB-G • E and FA models (Table 4). 4). Also, GK model (2) had consistently higher prediction ability than EB-G • E.Wheat data sets 3-5: These three data sets were used by López-Cruz et al. (2015) to fit the marker • environment interaction GBLUP-ME. GBLUP model (3) and GK model (3) showed consistently higher prediction ability than model GBLUP-ME, except in E4 of wheat data set 3, where GBLUP-ME had a prediction ability of 0.516, which was higher than the accuracy of GBLUP model (3) and GK model (3).In this study, we used five data sets with the same number of individuals in all the environments. This does not seem to be a limitation when the main idea is to predict the same number of individuals in all environments. However, when the total number of individuals is different in different environments, then the within-environment K j is different in each environment and the MTM software cannot be used directly. Fitting models (2)-(3) in this case is more complicated because, although it is possible to fit the models with the mode of the integrated likelihood, this requires much computing time. Fitting models for a large number of environments, even when the same number of lines are evaluated in each environment, also requires much computing time.A possible solution for reducing computing time is to reduce the number of parameters to be estimated by assuming that matrices U E ; F E are proportional to the phenotypic correlation, which does not seem unreasonable if the response data are standardized. However, more research on the use of this simplification is required to establish whether the prediction accuracies thus obtained are similar to those computed using the proposed estimation method.The Bayesian genomic G • E models described, implemented, and used in this study are novel and overcome some of the limitations imposed by previous genomic G • E models. Models (2) and (3) allow an arbitrary genetic covariance structure between environments, because an unstructured covariance matrix was used and its parameters were estimated from the data. These multi-environment models can be implemented using existing software for GS such as MTM. The cross-validation used 50 replicates and predicted lines in environments where they had not been observed using two sources of information: genomic relationships between lines and genetic information between environments. In all five data sets, models (2) and (3) had higher prediction accuracies than single-environment model (1) regardless of the genetic correlation between environments. In general, models (2) and (3) with the nonlinear GK had higher prediction accuracies for the lines unobserved in the environments than those obtained by the linear kernel (GBLUP) method. Under G • E interactions such as those found in the five data sets studied in this article, nonlinear GK models (2) and(3) performed very similarly and had higher prediction accuracies than linear GBLUP models (2) and (3). These models are clearly superior to single-environment genomic model (1) with GBLUP and GK, and their results are also superior to previous results from more restrictive marker • environment models. Prediction accuracies of models (2) and (3) with GK were higher than those obtained by other models and methods.","tokenCount":"7507"} \ No newline at end of file diff --git a/data/part_3/5143799134.json b/data/part_3/5143799134.json new file mode 100644 index 0000000000000000000000000000000000000000..9bf39ca76082af3a8cc4ffb97a60f8dbd5e3016d --- /dev/null +++ b/data/part_3/5143799134.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"6b5301526acff2d05896a3cf10787aae","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/de62f199-bb39-48d5-b5bc-405321878645/retrieve","id":"-2086152891"},"keywords":["Aflatoxin","Aspergillus Section Flavi","Peanuts","Peanut Market Outlets"],"sieverID":"1808c24c-8010-4d25-8e05-dab75beb8578","pagecount":"10","content":"The population and diversity of fungal species and levels of aflatoxin contamination were investigated in 228 marketed peanut samples; 140 from formal and 88 from informal markets, in Kericho and Eldoret towns of Kenya. Ground peanut samples were cultured on Modified Dichloran Rose Bengal (MDRB) agar while aflatoxin level was quantified based on indirect competitive ELISA. Correlation between the incidence of major aflatoxin-producing fungal species and aflatoxin levels was also established. Fungal species commonly isolated from the peanut samples included Aspergillus flavus L strain, A. flavus S strain, A. parasiticus, A. tamarii, A. caelatus, A. alliaceus (all of Aspergillus section Flavi) and A. niger. Fungi isolated in low frequency included Fusarium spp., Penicillium spp., Mucor spp. and Rhizopus spp. Aflatoxin levels in peanut products ranged from 0 to 2345 µg/kg in raw peanuts, 0 to 382 µg/kg in roasted coated peanuts, and 0 to 201 µg/kg in roasted de-coated peanuts. Overall, levels of total aflatoxin were higher in samples from informal (mean = 97.1 µg/kg) than formal (mean = 55.5 µg/kg) market outlets. There was a positive and significant correlation (R 2 = 0.63; p ≤ 0.05) between aflatoxin levels and the major aflatoxin producing fungi in raw peanuts from formal markets in Eldoret town. Additionally, total aflatoxin in raw peanut samples from informal markets in Kericho was positively and significantly correlated (R 2 = 0.81; p ≤ 0.05) to the population of A. flavus (L and S strains). In roasted coated peanuts sampled from formal market outlets in Eldoret, aflatoxin levels correlated positively and significantly (R 2 = 0.37; p ≤ 0.05) with A. flavus S strain. There is need to create awareness among peanut traders and consumers on proper handling of peanuts and health risks associated with consumption of unsafe peanut products.Peanut (Arachis hypogeae L) is one of the main crops grown in Kenya [1], primarily for local consumption but also export mainly through the World Food Programme in Kenya [2]. In 2010, FAO statistics indicated production of 99,072 metric tons of peanuts with shell in Kenya, harvested from 19,291 hectares [3]. Peanut is rich in protein (26% to 39%), fat (47% to 59%), carbohydrates (11%), Na (42.0 mg/100 g), K (705.11 mg/100 g), Mg (3.98 mg/100 g), Ca (2.28 mg/100 g), Fe (6.97 mg/100 g), Zn (3.2 mg/100 g) and P (10.55 mg/100 g) [4,5], as well as vitamins E [6,7] and B [7]. Due to its high nutritional value, it has several uses such as in therapeutic food [8], confectionery [9], and as an animal feed [5].A major challenge in peanut production is fungal and aflatoxin contamination. Aflatoxins are a group of mycotoxins that adversely affect food safety, mainly of grains and peanuts, as well as trade and human and ani-H. NYIRAHAKIZIMANA ET AL. 334 mal health. Aflatoxins are the most toxic and carcinogenic compounds among the known mycotoxins [10] and are mainly produced by Aspergillus flavus and A. parasiticus [11][12][13]. There are four major aflatoxin types: B 1 , B 2 , G 1 and G 2 so designated based on their blue and yellow-green fluorescence [14]. Aspergillus flavus produces aflatoxin B 1 and B 2 while A. parasiticus produces B 1 , B 2 , G 1 and G 2 [10]. Other aflatoxin producing species include A. nomius which produces B and G aflatoxins [15], A. pseudotamarii, A. bombycis and A. ochraceoroseus [16,17].Peanuts and maize are the main sources of human exposure to aflatoxin due to their high level of consumption e.g. 13.3 million tons of peanuts were consumed in Kenya in 2001-2003 with a projected consumption of 16.32 million tons in 2030 [14]. Reference [18] found Eurotium repens, A. parasiticus, and A. flavus to be the most potent aflatoxigenic species with average levels of aflatoxin above 100 µg/kg in peanuts from markets within Nairobi. High prevalence of A. flavus L strain (> 77%) and A. flavus S stain (> 65%) has been reported in peanuts from Busia and Homa bay counties in Kenya [19]. Marketing of peanuts in Kenya is generally through informal market outlets [1,20], where peanuts are not properly protected from environmental influence and are not properly packaged; making them susceptible to fungal contamination. According to [20,21], peanuts at market level in Kenya are more contaminated with aflatoxin than those stored by farmers.Recent reports indicate that aflatoxin is common in peanuts and grains in different parts of Kenya [1,2,20], posing a serious health challenge. In order to minimize consequences of aflatoxin on food security, trade, health and meet national and international mycotoxin regulatory standards, there is need to monitor fungal species and mycotoxin contamination periodically. The objective of this study was to investigate the incidence and diversity of aflatoxin producing fungal species and aflatoxin levels in marketed raw and roasted peanuts in Eldoret and Kericho towns in Kenya. The correlation between the population of major aflatoxin producing fungi and total aflatoxin levels in peanuts marketed in different outlets was also established. Within each town, stratified systematic sampling plan was followed in acquiring samples of peanut products on sale. Formal markets referred to stockists, shops and supermarkets while informal markets included hawkers and open markets. Half a kilogram sample of raw shelled, roasted and roasted de-coated peanuts was collected from each vendor operating formal and informal market outlets. The peanut samples collected from informal markets were packaged and sealed in a sterile polythene bag. All samples were then transported to the laboratory where they were stored in a cold room at 8˚C until laboratory analyses.Information on the source and handling of peanuts on sale was gathered through direct observation and interview using a semi-structured questionnaire that captured the type of peanut product traded, nature of market outlet, packaging material used, source of the peanut products, mode of transport to the market, storage structures and conditions, whether or not peanuts were sorted before selling, the sorting criteria used, and the time interval between buying and selling (data not shown).Each peanut sample was thoroughly mixed and 250 g drawn and ground to a fine powder using a Black and Decker blender machine (BX525-B5 Type 02, Shanghai, China). Two replicates of 100 g each were weighed where one replicate was used for mycological analysis and the other for aflatoxin analysis.Samples Peanut samples were cultured on modified dichloran rose bengal (MDRB) agar medium [22]. The medium was prepared by mixing 10 g glucose, 2.5 g peptone, 0.5 g yeast extract, 1 g KH 2 PO 4 , 0.5 g MgSO 4 , 7H 2 O, 20 g agar, and 25 mg rose bengal in 1 L distilled water. The pH of the medium was adjusted to 5.6 using 0.01 M HCl. The medium was autoclaved for 20 minutes at 121˚C and 15 psi, and cooled in a water bath at 60˚C. To inhibit the growth of bacteria and ensuring that the medium was semi selective for Aspergillus species, 5 ml of 4 mg/l dichloran (in acetone), 40 mg/l streptomycin (in 5 ml distilled water) and 1 mg/l chlorotetracycline (in 10 ml distilled water) were added to the medium through a sterile 0.25 µm syringe filter paper after cooling to 50˚C. Approximately 20 ml of the medium was dispensed in disposable Petri plates, and allowed to settle for two to three days before use.From the 100 g ground peanut sub-sample, two subsamples of 2.5 g each were weighed and transferred into falcon tubes into which 10 ml of 2% water agar solution (2 g of agar dissolved in 100 ml sterile distilled water) were added and mixed thoroughly. The first sub-sample was serial diluted to 10 −1 and the second to 10 −2 . A 0.2 ml aliquot of the suspension from each dilution was pipetted and spread onto MDRB plates under aseptic conditions. There were six replicates for each sample (three for 10 −1 and three for 10 −2 ). The plates were incubated for seven days at 30˚C after which fungal colonies were counted. The fungal colonies were sub-cultured on clean MDRB agar medium Petri plates for identification.of Colonies Pure colonies on MDRB agar medium were sub-cultured onto the Czapek yeast extract agar (CYA; 1 g K 2 HPO 4 , 10 mL Czapek concentrate, 5 g powdered yeast extract, 30 g sucrose, 15 g agar), whose pH was adjusted to 7.2 and the plates incubated at 30˚C for 7 days. Species of Aspergillus section Flavi were identified based on cultural and morphological characteristics including colony colour, size of sclerotia, texture and conidial morphology characteristics [23], and by comparison with reference strains obtained from the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) Plant Pathology laboratory. The reference cultures were sub-cultured at the same time of plating the peanut samples. Colonies of other isolated fungal pathogens were identified to genus level. The colony forming units (CFU) of each fungal species were counted using the Gallenkamp colony counter (Gallenkamp manufacturer, Frodsham, England). Equation ( 1) was used to determine the population (CFU/g peanuts) of the fungal species.The volume plated was 0.2 ml while the dilution factors were 0.25 for the first dilution (10 −1 ) and 0.025 for the second dilution (10 −2 ).The level of total aflatoxin in each peanut sample was determined by indirect competitive Enzyme Linked Immunosorbent Assay (ELISA), a method approved by the Association of Analytical Chemists (AOAC) [24]. A 100 g sub-sample peanut powder was well mixed and 20 g taken, triturated in 70% methanol (70 ml absolute methanol in 30 ml distilled water, v/v) containing 0.5% (w/v) potassium chloride in blender for 2 minutes. The extracts were transferred to a conical flask and shaken for 30 minutes at 300 rpm. The extract was filtered through Whatman number 41 filter paper and then transferred to a sterile container, stored in a freezer (−20˚C) until analysis for total aflatoxin. The extracts were analyzed for aflatoxin level at the Plant Pathology laboratory in IC-RISAT-India.Data on fungal population and aflatoxin levels in peanuts were compared based on the type of market (formal and informal), type of peanut product (raw, roasted coated and roasted de-coated) and towns (Eldoret and Kericho). The diversity of fungal species contaminating peanut products sampled from the two market types and towns was compared based on Simpson diversity index (D) values. Equation (2) was used to compute D values. Low index value indicates that a few species dominated over the others.Where S = number of species; ; i = 1, 2, 10  i CFU g peanuts for species i P Total CFUs  Aflatoxin level was not normally distributed and did not have constant variance implying that the assumptions for parametric t-test did not hold (Shapiro-Wilk test for Normality, p < 0.001 and Bartlett's test for homogeneity of variances, p < 0.001). Therefore, in comparing any two groups of the variables, the non-parametric Mann-Whitney U (Wilcoxon rank-sum) statistical test was used to analyze the data. In comparing more than two groups, data were analyzed using analysis of variance (ANOVA) under unbalanced design (GenStat version 14). The means were separated using Fisher's protected least significant difference (LSD) at 5% level of significance. SPSS version 16 statistical software was used to conduct correlation analysis.Seven Aspergillus species-A. flavus L strain, A. flavus S strain, A. parasiticus, A. tamarii, A. caelatus, A. alliaceus (members of Aspergillus section Flavi) and A. nigerwere isolated from 69% of the peanut samples (Table 1).Out of 228 total peanut samples analyzed, 28% were infected with one Aspergillus species or strain; while 41% were contaminated with more than one Aspergillus species. Other fungal genera isolated from the peanut samples included Mucor, Rhizopus and Fusarium. Table 1 shows the mean population (CFU/g peanuts) of fungal species isolated from various peanut products from different market outlets. The incidence of major fungal pathogens was as follows in decreasing order: A. flavus L strain (mean = 574 CFU/g), A. tamarii (mean = 109) and A. flavus S strain (mean = 97). Aspergillus niger, A. parasiticus, A. alliaceus and A. caelatus were isolated in low frequency with averages of 39, 18, 4 and 3 CFU/g substrate, respectively. Generally, the incidence of fungal pathogens in peanut samples from informal markets was significantly higher (p ≤ 0.05) than from formal markets. For example, the incidence of fungal pathogens in raw peanuts from informal market outlets was significantly higher (p ≤ 0.05) than from formal market outlets, both in Eldoret and Kericho towns. However, the incidence of fungal pathogens was significantly higher (p ≤ 0.05) in roasted coated peanuts from formal markets than in samples from informal markets. There was also variability in infection levels of peanuts sampled from Eldoret and Kericho towns. The incidence of fungal pathogens in raw and roasted de-coated peanuts sampled from Kericho town was significantly higher (p ≤ 0.05) than in similar samples from Eldoret town. However, there was no significant (p ≥ 0.05) difference in the incidence of fungal pathogens in roasted de-coated peanuts sampled from formal and informal markets in Kericho town. Similarly, there was no significant (p ≥ 0.05) difference in the incidence of fungal pathogens between roasted coated peanuts and roasted de-coated peanuts from formal and informal markets in Eldoret and Kericho towns.The diversity of fungal species was generally higher in peanut products sampled from Eldoret than Kericho town (Figure 1). However, there was no significant (p ≥ 0.05) difference in the diversity of fungal species among different peanut products.The population of major aflatoxin-producing species (A. flavus L strain, A. flavus S strain and A. parasiticus) was significantly (p ≤ 0.05) higher in peanuts from Kericho than in Eldoret town. However, the population of these species was not significantly different in roasted coated and roasted de-coated peanuts from both formal and in-formal market outlets (Figure 2). The incidence of A. flavus (L and S strains) and A. parasiticus was significantly lower (p ≤ 0.05) in raw peanuts sampled from formal than informal markets in Eldoret town (Figure 2). Aspergillus flavus L strain was pre-dominant in roasted coated and roasted de-coated peanuts from formal markets with an incidence of 98.9 and 94.9%, respectively (Table 2). The corresponding incidence in raw, roasted coated and roasted de-coated peanuts from informal markets was 68.5, 99.9 and 100%. The incidence of A. flavus S strain was significantly higher (82%) in raw peanuts from formal markets than from informal markets (28%) while Aspergillus parasiticus was isolated in low incidence in same raw peanuts from both formal (5%) and informal (6%) markets.There was variation in total aflatoxin levels between peanut samples from formal and informal market outlets, Eldoret and Kericho towns as well as among peanut products (Table 3). Eighty one percent (185 out of 228) of the peanut samples analyzed had detectable levels of total aflatoxin. Aflatoxin levels in peanut products ranged from 0 to 2345 µg/kg in raw peanuts, 0 to 382 µg/kg in roasted coated peanuts, and 0 to 201 µg/kg in roasted de-coated peanuts. Generally, raw peanuts were the most contaminated (mean = 146.8 µg/kg), while roasted decoated peanuts were the least contaminated (mean = 19.9 µg/kg). Similarly, raw peanuts sampled from informal markets had higher levels of aflatoxin (mean = 210.2 µg/kg) than samples from formal market outlets (mean = 83.4 µg/kg). In contrast, roasted coated peanuts from formal markets were more contaminated (mean = 74.3 µg/kg) than samples from informal markets (mean = 38.8 µg/kg). The level of total aflatoxin in roasted coated peanuts was higher in Eldoret than Kericho town. Raw peanuts sampled from informal markets in Kericho town had significantly higher levels of aflatoxin (mean = 340.2 µg/kg, with 83% contaminated samples), compared to roasted de-coated peanuts from formal markets in Eldoret (mean = 7.9 µg/kg, with 74% contaminated samples). Overall, the levels of total aflatoxin were higher in informal (mean = 97.1 µg/kg) than formal (mean = 55.5 µg/kg) market outlets.The population of A. flavus (S and L strains) and A. parasiticus in raw peanuts had a significant positive correlation (R 2 = 0.69; p ≤ 0.05) with total aflatoxin level (Figure 3). However, there was no significant (p ≥ 0.05) correlation between the two fungal species and aflatoxin levels in roasted peanuts. The population of A. flavus and A. parasiticus significantly influenced the levels of afla-toxin in peanuts sampled from formal markets in Eldoret town (R 2 = 0.63; p ≤ 0.05). On the contrary, aflatoxin levels in roasted coated peanuts from informal markets were not significantly correlated (R 2 = 0.09; p ≥ 0.05) to the population of A. flavus and A. parasiticus. In formal markets, the population of A. flavus S strain significantly positively correlated (R 2 = 0.37; p ≤ 0.05) with the levels of aflatoxin. However, the level of aflatoxin was not significantly correlated (R 2 = 0.102; p ≥ 0.05) to the population of A. flavus and A. parasiticus in roasted de-coated peanuts sampled from formal markets. There was a highly significant correlation (R 2 = 0.807; p ≤ 0.05) between aflatoxin level and the population of A. flavus (L and S strain) in raw peanuts sampled from informal markets in Kericho town. However, aflatoxin level in raw peanuts sampled from formal markets in Kericho was only significantly correlated (R 2 = 0.48; p ≤ 0.05) to the population of A. flavus S strain. For roasted coated and de-coated peanuts from both formal and informal market outlets, aflatoxin level was not significantly (p ≥ 0.05) correlated to the population of A. flavus and A. parasiticus.This study investigated the occurrence of Aspergillus species and aflatoxin contamination in raw and roasted peanuts from formal and informal markets in Eldoret and Kericho towns in Kenya.Six Aspergillus species-A. flavus L and S strains, A. parasiticus, A. tamarii, A. caelatus, A. alliaceus, A. ni- ger-were isolated from marketed raw and roasted peanuts in Eldoret and Kericho towns. Sixty-seven percent of the peanut samples analyzed were contaminated with the major aflatoxin producing fungi (A. flavus L strain, A. flavus S strain and A. parasiticus) with A. flavus L strain (> 98%) being the pre-dominant pathogen followed by A. flavus S strain. The occurrence of these fungi especially A. flavus S strain implies a high risk of aflatoxin contamination of peanuts marketed in Eldoret and Kericho towns. The incidence of the three fungi in peanuts concurs with the findings of a recent study in western Kenya [9]. Similar to findings of the current study, two morphotypes of A. flavus, the S and L strains, have been isolated in other studies on peanuts in Kenya [9,19]. The role of A. tamarii, A. alliaceus and A. caelatus as common pathogens of peanuts in Kenya has also been documented [19]. Generally, in both towns, peanuts from informal markets had higher fungal species diversity in raw peanuts an observation which concurs with the findings reported in [18].The type of market outlet influenced the incidence of pathogenic fungi in peanuts. This could be attributed to handling practices including superior packaging, sorting and storage conditions that were characteristic in formal markets. In contrast, raw peanuts sold in informal markets were generally not packaged or sorted and were stored in stalls exposed to weather fluctuations. In addition, some peanuts were sold in open air systems subjecting them to weather changes and abrupt rainfall which could promote fungal proliferation.The incidence of aflatoxin producing fungi was significantly higher in peanuts sampled from markets in Kericho than in Eldoret town. This could be attributed to the fact that raw peanuts sampled from informal markets in Eldoret were sold under covered structures whereas in Kericho, open air markets were more common. Peanut roasting and de-coating reduces fungal population in and/or on kernels [25]. Indeed, during roasting process, peanuts are exposed to dry heat at high temperatures [26] that kill or reduce the population of fungi. However, the incidence of aflatoxin producing fungi was not signifycantly lower in roasted peanuts sampled from Kericho town. This could be attributed to handling practices which could result in re-contamination of roasted kernels.Aspergillus flavus and A. parasiticus are fungal species that have an affinity for nuts and oilseeds, and are the main producers of aflatoxin which are the most toxic and carcinogenic compounds among the known mycotoxins [10]. Aspergillus flavus produces AFB 1 , AFB 2 in addition to cyclopiazonic acid [27] which targets the liver, kidney and gastrointestinal tract in animals, while A. parasiticus produces AFB 1 , AFB 2 , AFG 1 and AFG 2 [10]. Aspergillus tamarii produces AFB 1 , AFB 2 and cyclopiazonic acid [28] while A. alliaceus produces ochratoxin [29]. Ochratoxin is nephrotoxic, hepatotoxic, immunotoxic and possibly neurotoxic [11]. Fusarium spp. produce trichothecenes, fumonisins, and zearalenone among other mycotoxins while Penicillium spp. produce ochratoxin A and patulin [30]. Although the above toxins were not the subject of investigation in this study, the presence of fungal species known to produce them implies a greater health risk to consumers of peanut products. In addition, this observation reveals the need for management strategies that target the control of both aflatoxin-producing fungi and pathogens that produce other types of mycotoxins.This study also investigated the levels of total aflatoxin in different peanut samples. Aflatoxin levels ranged from 0 to 684.8 μg/kg and 0 to 2344.8 μg/kg in samples from formal and informal markets, respectively. These results are consistent with the findings in [19] where aflatoxin levels ranging from 0 to 2687.6 μg/kg and 0 to 1838.3 μg/kg were reported in peanuts sampled from Busia and Homa bay regions in Western Kenya. High incidence of aflatoxin in raw peanuts (83% of raw peanut samples had levels of aflatoxin averaging 340.2 µg/kg) corroborated findings from Botswana [31], where contamination incidence of 78% of raw samples and aflatoxin concentration ranging from 12 to 329 μg/kg were reported. Previous studies [25,32] have shown that peanut roasting and de-coating processes reduce the risk of aflatoxin production. This study revealed that there was higher risk of exposure to aflatoxin through raw than roasted peanuts. Roasting kills aflatoxin producing fungi thereby reducing the risk of aflatoxin contamination.Aflatoxin contamination of peanuts should be a public health concern not only in Eldoret and Kericho towns but also in other parts of Kenya as well as other tropical countries. Reference [33] reported a mean content of 40 μg/kg of aflatoxin B 1 in over 85% of peanut oil samples from Senegal, while [34] reported high aflatoxin content of 25 to 600 μg/kg in Sudanese peanuts. Different levels of aflatoxin were also reported in peanuts collected from processors, stockers, farmers and traders in Benin [35], while [36] reported total aflatoxin level of 56 μg/kg in unprocessed peanuts in Brazil. Roasted de-coated peanuts had high percentage (74%) of contaminated samples whereas the concentration of aflatoxin was relatively low with an average of 7.9 µg/kg. Previous studies have shown that exposure of humans to high levels of aflatoxin leads to acute aflatoxicosis and that long-period of exposure to aflatoxin, even in low concentration, may lead to liver cancer, stunted growth in children and to immune system disorders through chronic aflatoxicosis [14,37].There was a strong positive correlation between the population of aflatoxin-producing fungi and total aflatoxin levels detected in raw peanuts. However, total afla-toxin levels in roasted peanuts from formal and informal markets were not significantly correlated to the population of aflatoxigenic fungal species. These findings concur with those in [9,25,32] who have reported that roasting and de-coating processes reduce fungal population.The population of A. flavus S strain was found to significantly influence aflatoxin production. This concurs with the findings by [19] who reported that the incidence and population of A. flavus S strain significantly and positively correlated with the levels of total aflatoxin in peanuts. The presence of A. flavus S strain implies a major health problem to consumers of peanuts because it has been reported to produce greater amount of aflatoxin especially aflatoxin B 1 [19] which is also classified as class 1 carcinogen [38]. Aspergillus flavus S strain produces greater quantities of aflatoxin than A. flavus L strains [39]. Reference [40] reported A. flavus S strain to be the primary cause of contamination events in North America and Africa.In conclusion, the incidence of aflatoxin producing fungi in different peanut products analyzed was high (up to 76%), and the levels of aflatoxin differed in peanuts sampled from formal and informal markets. The highest population of aflatoxin-producing fungi was recorded in raw peanuts sampled from informal market outlets. The high incidence of aflatoxin producing fungi in peanuts and peanut products implies poor quality of peanuts marketed in Eldoret and Kericho towns, and conesquently, a high risk of aflatoxin contamination and health risk to consumers of peanut products. There is therefore need to improve quality standards of peanuts marketed in the two towns. The significantly higher aflatoxin contamination of raw peanuts compared to roasted de-coated peanuts implies that processing-combining roasting and de-coating-potentially reduces the incidence of aflatoxin-producing fungi and aflatoxin production in peanuts. There is need for raising awareness among peanut traders and consumers on proper handling of peanuts, and the health risks associated with consumption of aflatoxin contaminated products.","tokenCount":"4154"} \ No newline at end of file diff --git a/data/part_3/5144289764.json b/data/part_3/5144289764.json new file mode 100644 index 0000000000000000000000000000000000000000..a278f020763cd96420346bc0dad322e060f2637b --- /dev/null +++ b/data/part_3/5144289764.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"aeadc9d92c724c51f76613ae92e027c3","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/e4fd6464-d683-450b-b0dd-735a4275e51e/retrieve","id":"1089837462"},"keywords":[],"sieverID":"4025edaf-2568-4f89-92e7-f7f41e31bf1c","pagecount":"38","content":"The Global Rice Science Partnership (GRiSP), a research program of the CGIAR, represents for the first time ever a single strategic and work plan for global rice research. GRiSP brings together hundreds of scientists to embark on the most comprehensive attempt ever to harness the power of science to solve the pressing development challenges of the 21st century. Cutting-edge science is deployed to develop new rice varieties with high yield potential and tolerance of a variety of stresses such as flooding, salinity, drought, soil problems, pests, weeds, and diseases. Improved natural resource management practices will allow farmers to fully realize the benefits of such new varieties on a sustainable basis while protecting the environment. Future rice production systems are designed to adapt to climate change and to mitigate the impacts of global warming. Policies conducive to the adoption of new varieties and cropping systems will be designed to facilitate the realization of development outcomes. GRiSP will train future rice scientists and strengthen the capacity of advisory systems to reach millions of farmers. For impact at scale, GRiSP scientists collaborate with hundreds of development partners from the public and private sector across the globe.GRiSP was launched in 2010 and is coordinated by three members of the CGIAR Consortiumthe International Rice Research Institute (IRRI, the lead institute), Africa Rice Center (AfricaRice), the International Center for Tropical Agriculture (CIAT)-and three other leading agricultural agencies with an international mandate and with a large portfolio on rice: Centre de Cooperation lnternationale en Recherche Agronomique pour le Développement (Cirad), L'lnstitut de Recherche pour le Développement (IRD), and the Japan International Research Center for Agricultural Sciences (JIRCAS). Together, they align and bring to the table consortia, networks, platforms, programs, and collaborative projects with over 900 partners from the government, nongovernment, public, private, and civil society sectors.Total GRiSP staff numbers in 2016 were comparable to those in 2015: a total of 925 of whom about 420 were female (see annex 5 of the GRiSP annual report 2015 for details). Numerous outputs and outcomes were produced that advanced the development of improved rice varieties, improved natural resource management and postharvest technologies, strengthened rice value chains, and provided policy advice. Detailed achievements are provided in the separate GRiSP center reports and in the annexes on gender, capacity development, and publications-all publically accessible at grisp.net. The scientific basis of these achievements is evidenced by the publication of 297 ISI-indexed journal articles, of which 7 had an impact factor above 10, and of which 146 were open access (49%). Some 19 data and information bases are available open access and received more than 4 million downloads in 2016. To accelerate scaling-out of GRiSP technologies, engagement with development and scaling partners was reinforced, new participatory multistakeholder platforms were established, and significant investments made in capacity development. A total of 420 scholars were enrolled in (or finished) degree training, of whom 199 (47%) were women. Around 18,492 female and 24,591 male scientists, technicians, farmers (farmer leaders), input and service providers, millers and traders, and other stakeholders participated in training and capacity development events through short courses, field days, demonstrations, and other learning events.An important pathway to poverty alleviation and enhanced food and nutrition security is through genetic improvement. Figure 1 provides a summary of typical GRiSP output and outcome indicators that provide contribution evidence for this impact pathway. The numbers in Fig. 1 are derived from GRiSP annual reports 2014-2016, with specifics for 2016 reported in section C below. Similarly, section C provides evidence of adoption and impacts of improved natural resources management, postharvest technologies, and strengthened value chains. During its six years of existence, global rice production has increased. In 2010, GRiSP estimated that, to meet the increasing demand, global rice production needed to increase from 439 million tons of milled rice in 2010 to 496 million tons in 2020. In 2016, global rice production was well on target with more than 480 tons of milled rice 1 . Given GRiSP's evidence-based impact pathway and theory of change (see chapters 1 and 2 of the Companion Document in the Annex to the RICE proposal), and its emphasis on delivery and adoption, it can be assumed that GRiSP contributed significantly to this increase in the global rice supply.Synthesis of the two most significant achievements/success stories in the year (gender disaggregated where pertinent), with references to associated evidence and website links for more details. Significant impacts are being achieved from adoption of new rice varieties. In Asia, the Adoption of Swarna-Sub1 reduces downside risk by providing flood tolerance, which has positive effects on area cultivated, fertilizer used, credit demand, and adoption of a more labor-intensive planting method. Income spent on productive purposes was 18% higher for households that adopted Swarna-Sub1 than for nonadopting households. In Africa, the adoption of NERICA varieties on average reduced poverty incidence by 21% and increased the food consumption score by 33-46% compared to nonadopters.  Novel collaborative mechanisms facilitated by AfricaRice are catalyzing innovation and impact in Africa. In 2016, more than 74 rice hubs were operational in various agroecological zones in 25 countries. Innovation platforms at these hubs serve as a vehicle for change and, ultimately, impact. Through these, new partnerships have been developed with the private sector along the rice value chain in areas such as seed production, mechanization, and postharvest. National agricultural research and extension systems and other development partners adopted the innovation platform approach to facilitate collective innovation in technology and institutional change processes in at least ten countries.Overall financial summary: actual total spending (from all sources, including bilateral and Window 3) and percentage expended on gender research, compared to expected budget.As per extension proposal, the originally approved GRiSP budget for 2016 was USD 86.36 million in total, of which USD 44.92 million was from W1,2. However, by October 2015, the allocated W1,2 funds for 2015 had decreased to USD 18.7 million. By January 2017, actual W1,2 contributions for 2016 had stalled at USD 16.1 million-causing the GRiSP centers to draw an additional USD 2.6 million from their reserves. Table 1 summarizes the approved and the realized budget. Impact pathways and theories of change were reviewed and adapted for the revised RICE proposal. In addition, a conceptual priority setting framework was developed (see Addendum to the RICE proposal), which was further elaborated in a RICE priority setting and foresight workshop in October 2016.A set of 15 key indicators is proposed for monitoring progress toward (sub)-IDOs in RICE; this set will be refined in 2017-18 in collaboration with the other CRPs and the System Management Office in the drive towards an integrated CGIAR results-based framework (see also section H Lessons Learned).GRiSP research resulted in the publication of 297 ISI-indexed journal articles, of which 7 had an impact factor above 10 (the highest being 31.6) and 49 had an impact factor above 5; 146 were open access (49 %).A new tablet app \"Investment Game Application (IGA)\" was developed by IRRI to help farmers prioritizing the traits they want rice breeders to develop for their rice varieties. A total of 14 researchers from NARES partners were trained and an IGA experiment was conducted with 320 farmers (160 women) in Bangladesh.The remote-sensing and crop model-based rice yield forecasting and estimation system is fully operational in Tamil Nadu (India) and the Philippines. The system has been providing the Philippine Department of Agriculture with data crucial for monitoring rice production as well as for preparing for and mitigating the effects of disasters such as typhoon and drought. A sustainability plan along with codevelopment and intensive capacity building has been initiated to make the system fully operational and ensure its continuity beyond the project duration.To elaborate and identify potential insurance options in Africa, a survey was conducted in irrigated rice systems in the Senegal River. Preliminary results showed that 90% of the rice farmers were aware of the existence of the agricultural insurance program. The adoption rate was 44%. The risks faced by rice farmers are the nonavailability of good quality seed, low paddy price, and lack of machinery during land and soil preparation.Rice farmers' preferences for contract farming were analyzed in Benin, where data was collected from 574 rice farmers including 281 women. Producers preferred contracts with six major attributes: shortterm payment on delivery, collective selling, agreement on quantity, no provision of credit, application of the market price, and no control by the partner. Preference of men and women for certain attributes of contract farming appeared heterogeneous.Two web resources are now available for the bulk download of the 3,000 rice genomes: the Amazon Web Services Public Dataset for 3,000 rice genomes, and the Advanced Science and Technology Institute of the Department of Science and Technology of the Philippine Government. The improved rice SNP-Seek Database, containing a total number of 42 million SNPs and an additional 3 million small insertions and deletions, has new functionalities to work with lists of user-defined SNPs and lists of varieties, while an allele-mining tool has been added to find similar haplotypes. Genome, germplasm, and phenotype data are coordinated by the International Rice Informatics Consortium (IRIC). In parallel, a genome-wide survey of _______________________________________________________________________________________ polymorphism identified important genomic regions under strong selection with potential useful agronomic traits.The 3,910 indigenous African rice germplasm available at the AfricaRice gene bank were genotyped with 31,739 SNP markers. Samples comprised accessions representing the African germplasm (Oryza glaberrima, O. barthii, and O. longistaminata) held in trust and 95 NERICA and ARICA varieties. Based on the SNP data, a core collection was defined to represent most of the genetic variation in each species. The accessions of O. glaberrima were phenotyped for more than 40 phenotypic traits (agromorphology, phenology, grain quality, and yield and yield component).CIAT completed the genotyping by sequencing half of a Nested-Association Mapping (NAM) rice population, in collaboration with Yale University. This population captures allelic diversity of 20 rice accessions in recombinant, fixed segregating lines. 2,000 lines are available for the rice research community to carry gene discovery studies. Using genome-wide association studies (GWAS) for the hoja blanca virus tolerance, four SNP associated with tolerance to the virus were found.Breeding lines possessing tolerance to multiple abiotic and biotic stresses were developed using markerassisted introgression of different genes and QTLs, viz., drought, submergence, blast, bacterial leaf blight, brown planthopper, and gall midge. Swarna-Sub1 + drought lines developed through marker-assisted backcrossing of SUB1 and the three drought grain yield QTLs-qDTY 1.1 , qDTY 2.1 , and qDTY 3.1 -have completed two years of evaluation under irrigated control, reproductive-stage drought, and vegetativestage submergence. Replicated yield trials of the selected best 15 breeding lines showed 20% higher yield than the check cultivars in experiments conducted at IRRI-Philippines, Senegal in Africa, and CIAT-Colombia.AfricaRice's breeding program is targeting 54 trait combinations, covering important agronomic traits and grain quality. Five regional multi-environment trial (MET) networks were established to evaluate breeding materials in upland, rainfed lowland, irrigated lowland, high elevation, and mangrove swamp mega-environments. In 2016, more than 400 new MET entries were received that were developed by various institutions such as IRRI, CIAT, NARS in Africa, and AfricaRice and subjected to evaluation for stability of traits incorporated in prior breeding processes and adaptability to target environments.At CIAT, the phenotyping of 300 varieties from the indica PRAY panel, with a 50% reduction in light during the grain-filling stage in the field, resulted in the selection of five promising lines with no significant yield reduction. Three promising upland rice lines were developed and delivered to the national agriculture program in Colombia, and basic seeds were provided for semi-commercial evaluation in the ecosystem of the Colombian upland plains.Efforts were strengthened on integrated systems approaches. In Myanmar, in rice-rice production systems, mechanical seeding plus integrated nutrient management increased yield by 15% and income by 20% (versus farmer practice), and the combination of improved varieties and best management practices increased yield by 15% and income by 14%. In rice-pulse systems, improved postharvest practices led to 3-9% losses compared with 11-21% losses for farmer practices.In Africa, results from yield gap analyses indicated a large yield gap for rice and identified key constraints for yield gap closure. Phosphorus (P)-deficiency problems were addressed by a combination of variety selection and improved management practices. By exploiting genotypic variation, improvements in P balances could be achieved in the range of less than 1 kg P/ha in low yielding systems to 1.5-5 kg P/ha in higher yielding systems. On-station experiments in Benin confirmed the positive effect of a micro-dose of P in the planting hole on grain yield in direct-seeded rice. Simultaneously, micro-dosing of P fertilizer in the planting hole was evaluated with farmers in Tanzania using demonstration plots and farmer training. On _______________________________________________________________________________________ average, grain yields were 26% higher with the micro-dose of P compared to the control, increasing profits by around USD 250/ha.Project 5 supported outscaling activities as reported in section C2 and in coordinating capacity development activities as reported in section F. Specific activities of Project 5 included the development and support of innovation platforms. Two highlights are: Through the Africa-Wide Breeding Task Force (BTF) led by AfricaRice, African national research systems evaluated GRiSP materials for further breeding or for direct release. In total, around 7,000 entries were shipped to 22 countries. The AfricaRice Genetic Resources Unit (GRU) distributed 746 accessions to 48 different partners. AfricaRice dispatched 643 advanced lines for evaluation in shuttle breeding trials in Mali, Nigeria, and Senegal. A set of 391 lines for five agroecosystems was shared with partner breeders. Specifically for evaluation in irrigated lowlands, AfricaRice distributed 784 seed sets containing 149 breeding lines and checks to Burkina Faso, Burundi, Gambia, Mali, Mozambique, Nigeria, Senegal, and Uganda. An initial set of hybrid rice varieties developed by AfricaRice was shared with seven countries in West and East Africa. In total, 85 hybrid rice lines were shared with Mali and Senegal, while 34 hybrids were shared with Nigeria, Mauritania, Côte d'Ivoire, Kenya, and Uganda. Partner countries released an estimated 17 new varieties that originated from the African GRiSP breeding programs. For example, Mali released 10 varieties with high yield potential and/or tolerance to drought, flooding, or low temperatures for irrigated and rainfed lowlands and for uplands. Two salt-tolerant varieties for irrigated lowlands were released in Tanzania and five mangrove varieties were released in Sierra Leone. The GRU multiplied about 1.5 tons of seeds from 746 accessions that were requested by 48 users (breeders and partner scientists). Through partnerships with seed producers, which included private seed companies, the production of certified seed was accelerated: in Nigeria, 76 seed producers (67 male and 9 female) received improved foundation seed (FARO 44 and FARO 55) for certified-seed production in Lafia in Nasarawa State; in Mali, through a partnership with the seed enterprise FASO-KABA, 150 tons of certified seeds of nine rice varieties were produced; in Uganda, 11.5 tons of certified seeds of improved varieties (Namche 1, Namche 3, and Namche 6) were produced by the National Agricultural Research Administration in partnership with private seed enterprises. Over 6,000 tons of rice seed were produced by partners and delivered to the three countries affected by the Ebola virus (Liberia, Sierra Leone, and Guinea). In other African countries, 830 tons of certified seeds of NERICA L-20, NERICA 4, and TGR-19 were produced by 100 farmers and five seed enterprises (e.g., NASECO and ADAG-ANII).In Latin America and the Caribbean (LAC), a total of 743 new crosses made in 2016 gave origin to 16,202 families for field evaluation and selection at CIAT facilities in Palmira and Santa Rosa. Out of these, 7,211 families and lines were delivered to FLAR partners from 11 LAC countries. In addition, workshops at experimental stations were used to distribute germplasm directly to partner breeders. In 2015-16, a total of 972 lines were selected by 42 breeders from 25 institutions that participated in the third GRiSP breeders' workshop in Santa Rosa. Similarly, rice lines selected in the second GRiSP breeders' workshop were multiplied and distributed to different institutions in LAC countries. At least five new rice varieties for irrigated rice were released in four LAC countries in 2016. These varieties have high grain yield, excellent grain quality, and tolerance to major rice diseases.Uptake by end users. For lack of a comprehensive system that tracks global adoption of rice varieties, an estimate is derived from a synthesis of pertinent literature and adoption studies (the same methodology that has been used to derive USAID Feed-the-Future (FtF) indicators since 2011). Ex post impact studies show that around 70% of the Asian rice area is planted to modern varieties, 70% of which have IRRI germplasm in their pedigree. With an average harvested area in Asia of 134 million hectares, and assuming that the average varietal age is 15 years (replacement rate), the annual rate of adoption of new IRRIderived varieties is 134,000,000 *0.7*0.7/15 = 4,380,000 (harvested) ha. For sub-Saharan Africa, the actual adoption rate is 26% for NERICA varieties and 24% for other improved varieties. The harvested area in 2009 was about 1.1 million ha for NERICA varieties and 1.7 million ha for other improved varieties. Assuming a replacement rate of once every 15 years, this gives 187,000 hectares of annual new adoption of AfricaRicederived varieties in sub-Saharan Africa. For LAC, no reliable adoption data were available. Assuming the same adoption pattern as in Asia, the following area is obtained: 6,000,000*0.7*0.7/15 = 196,000 ha.Combining the estimates for the three continents, the global total adoption rate of improved varieties with parentage from AfricaRice, CIAT, or IRRI is around 4,763,000 hectares. Specific adoption studies provide evidence that supports the above synthesis. In South Asia, it is estimated that about 2.7 million ha are planted to submergence-tolerant rice varieties, involving about 5.5 million farmers; 0.83 million ha are under drought-tolerant varieties, covering 1.6 million farmers; and 0.32 million ha are under salt-tolerant varieties, covering 0.65 million farmers. In Africa, over the period 2000-14, adoption rates of NERICA varieties reached 75% in The Gambia, 83% in Guinea, and 95% in Sierra Leone. NERICA varieties as a group occupied about 1.4 million ha in 2014-15, up from some 0.5 million ha in 2009, and 200,000 ha in 2006. An in-depth study on the dissemination processes of NERICA varieties in central Benin was conducted using interviews with some 1,500 farmers in 2009. By 2009, 74 % of farmers belonging to a farmer group had some experience growing NERICA varieties, while only 29 % of farmers who did not belong to the group had such experience. This difference was attributed to approaches used by the public extension service, which has mainly worked with farmer groups as an entry point for NERICA dissemination. As women accounted for 70 % of farmers in farmer groups, this approach achieved gender equality on the adoption of NERICA varieties. The seed production business has become an incentive for farmers to grow NERICA varieties, as their seed may be purchased at higher than local market price by the public sector for further dissemination. Male farmers tended to sell greater amounts of NERICA varieties, as female farmers have limited land for their cultivation. In LAC, CIAT, in collaboration with the Ecuadorian Agricultural Research Institute (INIAP), completed the preliminary analysis of the adoption of improved rice varieties and agronomic practices. Ecuadorian rice farmers are using varieties with CIAT and IRRI pedigree on 80% of the country's total rice area. An expert survey among FLAR members estimated that around 19% of harvested rice area in the region is planted with CIAT/FLAR varieties. Projects 1, 4, and 5) In Asia, IRRI and its partners developed the Rice Crop Manager (RCM), a web-based decision-support tool that generates fertilizer and other crop management recommendations for extension staff, crop advisors, farm service providers, and farmers. In 2016 in the Philippines, more than 335,000 printed RCM recommendations were distributed to rice farmers across 16 rice-growing regions. Field verification trials in 274 farms showed a 0.3-0.5 t/ha increase in yield with an added net-benefit of USD 100-122/ha. In Odisha, India, RCM was used by 1,183 farmers (20% women) from 28 districts to obtain field-specific fertilizer recommendations. In Bihar, India, 780 farmers (6% women) used an expanded version of RCM to obtain field-specific fertilizer recommendations for their rice (91%), wheat (8%), and maize (1%) crops.In India, the Cereal Systems Initiative for South Asia (CSISA) project participated in the planning meetings of the Department of Agriculture of Bihar, in which priorities for expanding the area under directseeded rice (DSR) were endorsed as a state priority in 2016. CSISA's best-bet agronomic tips for DSR (6,000 distributed each to Bihar and Eastern Uttar Pradesh) were extensively used by district-level officers and grassroots extension workers. Tips on DSR were also developed for Odisha and endorsed by the Odisha State Department of Agriculture. In both cases, the tips have been adopted for extending key messages to farmers as well as for internal capacity development purposes. In total, CSISA supported the provisioning of direct-seeding services to 6,530 farmers, covering an area of 5,334 ha in Odisha, Eastern Uttar Pradesh, and Bihar hub domains. Machine transplanting of rice was also facilitated: CSISA-supported service providers (192) covered 3,265 hectares, a 50% increase from 2015. Yield advantages were confirmed in this broader geography with paddy yields of 5.1 t/ha compared to 4.6 t/ha with manual transplanting in Bihar and similar results in Eastern Uttar Pradesh and Odisha. In Bangladesh, more than 23,000 farmers were trained on the principles of healthy rice seedlings for higher yields through interactive village-based video shows and trainings organized by CSISA and the Agricultural Advisory Society. In addition, 20,000 leaflets on raising healthy rice seedlings were distributed to farmers. CSISA facilitated the development of community seedbeds in Bangladesh, involving 85 farmer groups each with 10-20 farmers. In Odisha, 50 farmers' groups consisting of 300 farmers in total raised rice seedlings at community level. Similarly, in Bihar and Eastern Uttar Pradesh, 13 farmers' groups comprising of 150 farmers in total developed community _______________________________________________________________________________________ nurseries. In the Feed-the-Future (FtF) zone of Bangladesh, 2,200 farmers adopted premium-quality rice production.In Africa, NARES and other development partners adopted the innovation platform approach to facilitate collective innovation in technology and institutional change process across the rice value chain in at least ten countries (Nigeria, Benin, Madagascar, Ghana, Uganda, Côte d'Ivoire, Niger, Sierra Leone, Senegal, and Tanzania). Manual weeding tools were fabricated in ten countries by local artisans trained by AfricaRice. In Tanzania, three types of motorized lowland rice weeders were tested against a hand-pushed rotary weeder. About 260 axial flow threshers were built by 16 manufacturers in 11 countries (Benin, Nigeria, Cameroon, Senegal, Chad, Mauritania, The Gambia, Liberia, Côte d'Ivoire, Mali, and Burkina Faso). Two light threshers (manual and motorized) and two motorized paddy cleaners were built and tested in Uganda and Mauritania. Nineteen postharvest technologies were evaluated by national partners. Eleven private manufacturers trained by AfricaRice built and sold over 260 postharvest equipments (GEM parboiling plants, husk pelleting and briquetting machines, and husk gasifier cook-stoves). RiceAdvice, a decision-support tool that provides farmers with field-specific management guidelines in Africa, is now downloadable via Google Play, and was downloaded more than 500 times in 2016, mainly by extension officers. In Senegal, rice farmers who adopted the insurance program improved their total production by 4,406 kg and their income by USD 451 per farm.A review was conducted of 25 evaluation and impact studies on new rice technologies and practices tried and used by smallholder rice farmers in developing countries. Overall conclusions include: stress-tolerant rice are found promising; African farmers benefit from NERICA varieties; some natural resource management (NRM) practices have been evaluated in farmer trials and were found beneficial. However, the NRM evaluation studies faced difficulties in defining NRM \"technology\" and \"adoption,\" and these difficulties remain as future challenges for evaluation studies.Several randomized control trials (RCT) were conducted to evaluate both varieties and NRM practices including Swarna-Sub1 (submergence-tolerant rice) in Eastern India, alternate-wetting-and-drying (AWD) in the Philippines, and water saving through drought-tolerant varieties in Bangladesh. Results published in the American Economic Review suggest that adoption of Swarna-Sub1 (that reduces downside risk by providing flood tolerance) has positive effects on area cultivated, fertilizer used, credit demand, and adoption of a more labor-intensive planting method. Income spent on productive purposes (education, irrigation investment, etc.) was 18% higher for households that adopted Swarna-Sub1 than for nonadopting households.A study examining the effective targeting and dissemination of improved technologies in Asia found that strong informal social networks can potentially act as a barrier for dissemination unless appropriate dissemination methods are used. To identify rice varieties that farmers grow, DNA fingerprinting was applied on rice seed samples collected from farmers in Bangladesh and India. The results on 1,302 seed samples collected from 544 farmers in 2014 and 2015 indicated that about 7% of the seed samples were submergence-tolerant rice varieties, i.e., BR11-Sub1 (5%) and Swarna-Sub1 (2%). Farmers' identification of varieties was poor for old varieties but was relatively better for new varieties.A study was completed to assess the contribution of the adoption of improved rice varieties to poverty reduction and food security in sub-Saharan Africa. In 2013-14, a total of 4,658 randomly-selected rice producers in the rice sector development hubs in 16 countries were surveyed using a structured questionnaire and computer-assisted personal interview tools. Key findings showed that, on average, the adoption of NERICA varieties reduced the poverty incidence by 21%, which corresponded to a lifting of about 8 million people out of poverty. The adoption of NERICA also significantly increased the food consumption score (FCS) though the effect varied from one period to another. During the period of abundance, the gain obtained by adopters of NERICA on their FCS was 46% compared to the nonadopters. This gain became 43% and 33% on the average during the \"availability\" and \"lean\" periods, respectively.Another study in Africa aimed to identify the determinants of participation in collective marketing of rice; quantification of its impact on household income and food security was carried out in Benin. Data was collected from a random sample of 257 smallholder rice producers. Results showed that participation in collective marketing of rice had positive effects on income and food security. The collective marketing of rice increased the income of rice farmers by USD 646/ha. Ex ante impact assessment showed that the use of the GEM parboiling technology in Benin for a period of 10 years with an adoption rate of 12% will generate a social net gain of USD 378,000.In 2016, a number of studies were conducted and large datasets were analyzed to discern gender dynamics along rice value chains and production systems. Qualitative studies have been conducted to complement these findings and to provide deeper insights into the gender dynamics and differences around technology adoption and impacts. Details are found in the GRiSP gender report 2016, while some highlights are presented here.A rigorous qualitative study was conducted in three villages in the Central Plains of the Philippines as part of the cross-CRP study (GENNOVATE) on influence of social norms and practices on agricultural innovation. Women are mostly involved in transplanting and hand weeding, while seedbed and land preparation as well as fertilizer and chemical application are usually carried out by men. Harvesting, threshing, drying, and other postharvest activities are done jointly. Marketing of agricultural and processed products is mostly done by the women. 10-75% of the women villagers work as farm laborers. To explore the gender gap in agricultural knowledge acquisition and adoption in West Africa, baseline data collected in 2013 and 2014 in five countries (Benin, Côte d'Ivoire, Niger, Nigeria, and Togo) with 499 surveyed households were analyzed and published. The most quoted source for acquiring knowledge on rice farming methods was 'other farmers,' showing the importance of social capital for rural African farmers. In Benin, a gender gap was noted in rice farmers' access to agricultural knowledge sources, with women being more advantaged. In Côte d'Ivoire, Niger, Nigeria, and Togo, no significant gender gap was observed in rice farmers' access to agricultural knowledge sources. Regarding the level of knowledge and use of rice farming methods in Côte d'Ivoire and Niger, significant gender gaps were observed. The gender approach to rural development is having impact in West Africa with regard to farmers' access to agricultural information. However, interactive rural learning approaches (such as farmer-to-farmer videos) need resorting to, to make the technologies' principles well-known and improve the ability of the marginalized poor to adopt and or innovate with local or limited resources. In a case study in Nigeria, Africa, it was shown that efforts targeted at reducing poverty among rice farming families in Nigeria led to a positive impact on female-headed households.Decision making: While decision-making patterns are rather diverse and complex across contexts, in majority of the cases women have limited control over decision-making in farming-related aspects and major household expenditures. In Ecuador, although women are not identified as main producers, they contribute as decision-makers in rice cultivation. Studies in Burkina Faso, Cote d'Ivoire, Guinea, Madagascar, and Sierra Leone reveal that cultural/community norms and social hierarchy, demographic factors, institutional and political structures, economic factors, education, and access to training all influence labor division, access and control over resources, and women's participation in decision making. Men made most of the decisions about agricultural input use and, in 38-58% cases, female household members jointly make decisions about credit in most of Asia.In Ecuador, women participation in decision making increased the probability of adoption of a modern rice variety. While stress tolerance, market demand, and biophysical factors influenced men's choice of new rice varieties, women were influenced by the market prices and availability of capital. A participatory evaluation of new salinity-tolerant rice varieties in Myanmar, revealed that the two highest-yielding varieties (IR11T 159 and Salinas 15) were more preferred by men because they produced more tillers and more spikelets per panicle, had good plant height, and produced higher grain yield. Women preferred IR77674-2B because of its long grains and higher yield. RCTs _______________________________________________________________________________________ in five states of Eastern India revealed that women farmers receiving training on quality seed production had a 13% higher likelihood of adopting stress-tolerant rice varieties (STRV) than male farmers. Also, they sowed nearly 18% more STRV seeds than did women farmers who did not receive the training. A qualitative assessment of farm technologies by women farmers in Eastern India revealed that they prefer technologies that are time-and cost-saving, reduce drudgery, and improve crop establishment and yield.Entrepreneurial engagement of women in rice value chains: Efforts to engage women in entrepreneurial activities along the rice value chain (including seed production, mechanization service provision, and postharvest processing) showed mixed but generally positive results. A gendered analysis of the rice value chain in West Africa prioritized better organization of the chain, the promotion of parboiling, improved access to credit, and improved control over productive resources as key factors for improving the performance of the chains and for empowering women. Low levels of organization of women rice parboilers were identified as one of the major constraints in Nigeria. After training to build technical, entrepreneurship, and leadership skills, some 25 groups of female rice parboilers were formed. In Bangladesh, despite efforts to engage women in agricultural mechanization, the numbers of women local service providers remained limited, because this non-traditional role usually requires work far from home and does not conform to social norms. Collaboration with the USAID's Women's Empowerment Program has resulted in the training of 25 women entrepreneurs, which subsequently created awareness and piqued the general interest of women in agricultural mechanization and rural business services. Machine transplanting of nonpuddled rice was introduced to groups of women farmers in Bihar, India. In 2016, the women's groups transplanted about 50 hectares, generating a total income of USD 4,301. Pilot enterprises on healthy rice seedling in Bihar generated a total income of USD 600 by the involved farmers.Special attention was paid to raising gender awareness through popular outlets such as the Rice Today magazine, blogs, podcasts, and seminars. Examples include: Three real-life Heroes: An update of three women farmers in India who were successful in their quest of rewriting their destiny  Women Rice Farmers: Agents of change in eastern India  Empowering women farmers in the polder communities of Bangladesh  Podcast at the Rural Women's Day  ¿Es género una variable determinante en la adopción de variedades modernas? El caso de arroz en Ecuador  Rice Field Days in Liberia attract many women farmers  Innovations Boost Income for women rice farmersAnnex 2 of the RICE proposal provides an updated partnership strategy, including a clear set of partnership principles, partnership choices, and partnership characterization. An updated partnership list in 2015 included close to 600 formal collaborators. Annex 6 of the RICE proposal details planned collaboration with other CRPs. In 2016, GRiSP strengthened its interaction with other CRPs through the processes of CRP Phase II development and site integration (see Annex 7 \"Linkages with other CRPs and site integration\" of the RICE proposal). Demand for research and development investment in the rice sector is explicitly identified in national rice development strategies of most countries that GRiSP targets (Africa and Asia). Some novel partnerships in 2016 included the following:In Asia, IRRI formed a global partnership with Access Agriculture (AA) to collaborate on video-led extension approaches to accelerate scaling-out of its technologies. In India, AA signed a MoU with six partners: Digital Green, Green TV, National Institute of Agriculture Extension and Management, M.S. Swaminathan Foundation, Pragati Koraput, and Watershed Organization Trust. In Bangladesh, AA has eight partners: Agricultural Advisory Society, Ashroy Foundation, Bangladesh Institute of ICT in Development, Muslim Aid UK, RDRS Bangladesh, Rural Development Academy, Thengamara Mohila Sabuj Sangha, and _______________________________________________________________________________________ Win Miakai. In both countries, IRRI and AA organized workshops on video production and video translation, each workshop attended by at least 12 participants from the partner agencies.In Africa, under the special initiative of the Federal German Ministry for Economic Cooperation and Development (BMZ), Green Innovation Centers were established at the AfricaRice research station in Cotonou, Benin, to promote innovation in the agricultural and food sectors in order to combat rural poverty and hunger. Many partnerships with AfricaRice revolve around the rice sector development hubs, or 'rice hubs.' In 2016, more than 74 rice hubs were operational in various agroecological zones in 25 countries. Core rice hub countries include Nigeria, Senegal, Mali, Côte d'Ivoire, Madagascar, and Tanzania. Satellite rice hub countries include Sierra Leone, Guinea, Niger, Burkina Faso, Benin, Gambia, Ghana, and Uganda. Innovation platforms in the rice hubs serve as a vehicle for change and, ultimately, impact. Through these, new partnerships have been developed with the private sector in areas such as seed production (e.g., with NASECO and ADAG-ANII in Uganda, FASO-KABA in Mali) and mechanization (e.g., with Hanigha in Nigeria and Intermech in Tanzania). To strengthen the rice value chain, additional partnerships were formed in the Kahama hub in Tanzania with the NGO, Small Enterprises Institutional Development Associates. An apex of association was formed and legally registered to undertake joint marketing of rice. Another partnership with CARITAS strengthened the rice value chain in the Kilombero hub in Tanzania. In Nigeria, sharing of AfricaRice's marketing strategies and competences to evaluate the quality of rice products was done in partnership with the Competitive African Rice Initiative, supported by GIZ, to improve smallholder processors' access to urban markets.In Latin America and the Caribbean, apart from the ongoing collaboration with partners through the FLAR, new alliances were established in 2015-16. In Brazil, a new partnership was formalized between CIAT and Embrapa on rice breeding, initiating effective germplasm exchange and discussions on a strategy for shuttle breeding.Numbers of short-and long-term trainees are summarized in Annex 1, with more details provided in the GRiSP CapDev report 2016. Capacity development topics varied from scientific capacity development to vocational training, business model development, improved farming and postharvest practices, hybrid rice production, seed production, and gender awareness. Many other training events were organized through GRiSP's partners. Some capacity development highlights in 2016 were:  In Nigeria, at the end of December 2015, 200 female rice parboilers were 'sensitized' and trained on the importance of farmer organization. After the workshop, in 2016, most of the women conducted sensitization meetings in their respective villages. As a result, at least 25 female rice parboiler groups were formed and have become functional. Across Benin and Nigeria, about 2,000 actors, mostly women, have been trained on how to use the GEM parboiling technology to produce high-quality parboiled rice for better incomes and livelihoods. Innovation platforms in Nigeria and Benin using the GEM parboiling technology produced on average of 30 t/month of high-quantity and -quality parboiled rice, sold at a higher prices.  To strengthen rice value chains, 137 farmers were trained on marketing aspects including organization management, quality and postharvest management, and building linkages in the Kahama and Kilombero hubs in Tanzania. In addition, in the Kilombero hub, good agricultural practices were introduced to 517 rice farmers, including 251 women. More than 60 rice value chain actors, including 48 women, underwent training in entrepreneurship, business management, and contractual arrangements in the Malanville hub in Benin.  In Bangladesh, farmers received crop production training (2,603), business training (2,515), and both crop production and business training (4,018).  Also in Bangladesh, GRiSP supported women in creating off-farm income-generating activities through a partnership with organizations promoting women entrepreneurship. Working in partnership with the FtF Bangladesh Women Empowerment Activity, the project trained 2,678 women in 85 groups on production of rice and other crops grown in rice-based cropping systems. A total of 200 participants (70 women) from India and 31 (all women) from Nepal from the Departments of Agriculture, NARES, NGOs, and seed companies were trained on quality-seed production and postharvest management technologies. In Odisha, India, 1,400 (650 women) farmers were trained on quality-seed production and storage.  The CSISA project trained some 11,000 farmers on improved technologies in rice and other crops in Bihar, Odisha, and Eastern Uttar Pradesh in India; 969 in Bangladesh; and 297 in Nepal.  In Latin America and the Caribbean, CIAT and FLAR organized field days and training activities on breeding and agronomy, attended by 5,552 (640 women) farmers and technicians.In AfricaRice developed e-learning modules for rice and other agricultural systems as part of its contribution to the Green Innovation Center in Benin. The five modules on rice-upland rice production, rainfed lowland rice production, irrigated rice production, rice parboiling, and gender concepts-gained a following by 840 users in a period of two months. GRiSP has successfully internalized and mainstreamed the collection of sex-disaggregated data across many of its flagship projects. However, efforts need to be made to systematize the analysis and effective use of that data to inform technology development and targeting. Active engagement of women in participatory technology development and dissemination is on its way to becoming a routine, rather than an exception. One of the main challenges encountered is the limited capacity for gender research. Research partnerships and capacity development across the new flagships projects of RICE will be planned for 2017 onwards to overcome this challenge.Major lessons were learned on results-based management (RBM). Impact pathways, theories of change, multidimensional performance indicators, learning and feedback loops, adoption, and impact assessment constitute key elements of an RBM framework. Though most GRiSP staff conceptually develop and apply many of these elements, making them more explicit and documenting them systematically was found to strengthen RBM. Good progress in doing so was made especially in the development of impact pathways and theories of change, and in monitoring progress using a variety of indicators and narratives as exemplified in the GRiSP annual report sections C and Annex 1. Though learning and feedback loops are implicit in project management, RBM can benefit from formalizing these processes more, making these more explicit and documented better. Experiences with the formulation of indicators, targets, and the socalled (sub-)IDOs have been more 'frustrating' over the six years of GRiSP. The concept of IDOs was only introduced by the CGIAR after CRPs were up and running, and changed considerably in 2015-16 with the development of the new CGIAR Strategy and Results Framework. So far, the development of system-level (sub-)IDO indicators across the CGIAR has proven elusive, with a number of attempts through work groups and task forces mostly having failed. With each attempt, the number of indicators proliferated beyond 'doability,' venturing into multiple dimensions and temporal and spatial scales. IDO indicators are getting complemented by 'performance' indicators, spanning aspects of science quality, capacity development, partnership, gender, open access and open data, and intellectual asset management. A major lesson learned by GRiSP is the overriding importance to focus on a limited number of key indicators that are measurable, doable, and affordable to collect (and analyze!). It is expected that the elaboration of indicators will remain a challenge in the years ahead. RICE will remain engaged with the CGIAR Indicator work group to explore and develop meaningful solutions.Another lesson learned in relation to RBM is on the use of theories of change. At the level of GRiSP/RICE and its flagship projects, theories of change were found to be mostly useful as conceptual and generic frameworks but that review, adaptation, and active management (including the use of annual learnings and feedback mechanisms) are more appropriate at a lower level of sub-projects and even activities. Impact pathways and theories of change are extremely context-and site-specific, and each technology × location combination will have specific sets of these. For example, the impact pathways and theories of change for the development and dissemination of improved drying systems will be different in _______________________________________________________________________________________ the Mekong Delta in Vietnam from the Ayeyarwady Delta in Myanmar (and even within these deltas, differences will exist among districts or villages). However, we also learned that some lessons obtained at these scale levels can be aggregated upward to the GRiSP/RICE flagship project level. For example, an important finding was that it is not only farmers' preferences that drive varietal adoptability, but that preferences of millers, processors, traders, and-ultimately-consumers have become a major driver for adoption under conditions of increasing market integration and structural transformation. Hence, RICE will increasingly invest in preference surveys among all value-chain stakeholders and in incorporating such preferences in its breeding and varietal diffusion efforts. Finally, it should be stressed that the use of impact pathways and theories of change should be flexible and that new alternatives should be explored when proposed ones fail. Submergence-tolerance genes (not only SUB1) 3.Phosphorus-deficiency genes (not only PSTOL) 4.Salinity-tolerance genes (not only Saltol1) 5.Drought-tolerance genes 6.Genes related to pest and disease resistance 7.Genes conferring aroma 8.Genes related to quality \"appearance\" (e.g., chalkiness, length and width of grains, texture) 9.High-yield rice for favorable environments 10. Stress-prone rice (drought, submergence, salinity) 11. Golden Rice 12. High-zinc rice 13. C4 rice 14. Aerobic rice 15. Hybrid rice 16. Ecological engineering 17. Direct-seeded rice as production system 18. Nutrient management options (such as, but not limited to, site-specific nutrient management) Improved marketing strategies for women's groups in Africa; addresses # 25 above 3.Ecological engineering; addresses # 16 above 4.On-farm seed preservation (mainly done by women of the households); addresses # 22 above 5.Improved parboiling technologies for women entrepreneurs in Africa; addresses # 24 above 6.Stress-tolerant rice; addresses # 9 above 7.Labor-saving (mechanization) technologies (reducing back-breaking and drudgery work done by women farmers); addresses # 27 above 8.Community seed banks targeted at women farmers (groups); addresses # 30 above 9.Strengthening entrepreneurial skills of women along the value chain; addresses #22-25 above 10. 10 Mechanized transplanting and service provision for women (see section D) addresses #27 above These 10 technologies cover 45% of the 22 relevant technologies listed under indicator 1 (excluding the 8 gene-related technologies). Improved parboiling technologies for women entrepreneurs in Africa; addresses # 24 above 3.Stress-tolerant rice for women farmers; addresses # 10 above 4.Labor-saving (mechanization) technologies (reducing back-breaking and drudgery work done by women farmers); addresses # 27 above 5.Gender-differentiated adoption of NERICA varieties in Africa (Mahoukedel et al 2015; see section D of report); addresses # 9 above 6.Gender-differentiated adoption of modern rice varieties in South America (Twyman et al 2015; see section D of report); addresses # 9 above 7.Effect of women participation in decision taking on adoption of new rice varieties in Ecuador; addresses #9 above. 8.Gendered disaggregated adoption of NERICA in Africa and its impact on gender; addresses # 10 above Following the logic explained above, these 8 technologies cover 36% of the 22 relevant technologies listed under indicator 1 (excluding the 8 gene-related technologies). Rice production training manual 3.Nutrient Manager on computer and cell phone, Asia 4.Crop Manager on computer and cell phone, Asia 5.RiceAdvice on cell phone, Africa NAThe numbers are cumulative since the start of GRiSP.Rice eHub portal is the virtual information platform for the rice hubs of AfricaRice 8.The world's first international standard for sustainable rice was launched, which sets new and more efficient standards for rice cultivation. Progress toward compliance can be measured through a set of quantitative performance indicators. 9.Rice management practices for stress-prone environments 10. WeRice decision-support system for rainfed rice production 11. Rodent management 12. Rice simulation models (RIDEV, Oryza) 13. International Rice Information System 14. Season-long extension training manual 15. Weed identification key to identify rice weeds 16. WeedSmart is a decision-support tool primarily designed to help farmers manage their fields by providing information that will guide them to efficiently manage and control weeds. 17. Large number of technology videos, and videos on community approaches, Digital Green videos 18. FieldLab (software for data collection using handheld devices) released 19. STAR (Statistical Tools for Agricultural Research) 20. PBTools (Analytical Tools for Plant Breeding) released 21. Facilities for high-throughput DNA extraction and SNP genotyping made available for GRiSP partners 22. Online SNP analysis tools through the IRRI GSL-Galaxy Resource 23. CSSL Finder, a program for managing introgression lines, is particularly useful for developing chromosome segment substitution lines (CSSLs). 24. MapDisto is a program for mapping genetic markers in experimental segregating populations such as backcross, F2, doubled haploids, singleseed descent, and highly recombinant lines. 25. The NGSEP software, Next-Generation Sequencing Eclipse Plugin (NGSEP), a new software tool for integrated, efficient, and userfriendly detection of single nucleotide variants (SNVs), indels, and copy number variants (CNVs) All 5. % of tools that have an explicit target of women farmersThe tools themselves are not specifically targeted at men or women, though some of the information and technologies conveyed by these tools are. These are reported under other indicators and not repeated here to avoid double counting. 0 0 0 NA All 6. % of tools assessed for likely genderdisaggregated impactThe tools themselves are not specifically targeted at men or women, though some of the information and technologies conveyed by these tools are. The Amazon Web Services Public Dataset for 3,000 rice genomes 3.The Advanced Science and Technology Institute, Department of Science and Technology of the Philippine Government. 4.Rice SNP Seek database (accessed around 36,500 times) 5.Rice genebank collection information provided through Genesys 6.World Rice Statistics 7.Farm Household Survey Database 8.Rice Improved parboiling technologies for women entrepreneurs in Africa; addresses # 54 above 3.Stress-tolerant rice for women farmers; addresses # 17, # 18, and # 19 above 4.Labor-saving (mechanization) technologies (reducing back-breaking and drudgery work done by women farmers); addresses # 39 above 5.Community seed banks targeted at women farmers (groups); addresses # 17, # 18, and # 19 above 6.Effect of women participation in decision taking on adoption of new rice varieties in Ecuador; addresses #9 above. 7.Gendered disaggregated adoption of NERICA in Africa and its impact on gender; addresses # 10 above Following the logic explained above, these products relate to 8 of the 41 technologies of indicator 18 (excluding the 13 FP 1 technologies from the 54): 20% 34(a) number of women farmers concerned 34(b) number of male farmers concerned average farm size of rice farmers is 1 ha, and assuming an average of two farmers per household, the number of farmers applying new technologies is 1.4 times the area under new technologies: thus, the number of farmers is 6,128,000. In Africa, with farm size of 0.5 ha and assuming three to four farmers per household, this gives 3.5*187,000/0.5 = 1,309,000 farmers. For Latin America (LA): Farm sizes in southern LA are large (we assume 20% of total area), but we estimate 1 ha again for Central America and northern LA. Assuming two farmers per household, 0.8*2*196,000 = 313,000 farmers. On average across the globe, about half of all rice farmers are females. The CRP has defined and collected baseline data on the main dimensions of gender inequality in the CRP's main target populations relevant to its expected outcomes (IDOs).GRiSP status: See above, plus specialized gender surveys are carried out in case studies. GRiSP has defined a gender-specific IDO (Increased gender equity in the rice sector) and is testing the feasibility and usefulness of its sub-IDOs (Women's control over resources; Women's participation in decision making). Evidence that such data are used to diagnose important gender-related constraints is provided for Asia, Africa, and Latin America and the Caribbean in section D of this report.The CRP targets changes in levels of gender inequality to which the CRP is or plans to contribute, with related numbers of men and women beneficiaries in main target populations. CRP scientists and managers with responsibility for gender in the CRP's outputs are appointed, and have written TORs and funds allocated to support their interaction.GRiSP status: GRiSP has appointed gender experts in all of its three centers with written TORs; funds are allocated for gender research (see details in both POWBs and annual financial reports).-Procedures defined to report use of available diagnostic or baseline knowledge on gender routinely for assessment of the gender equality implications of the CRP's flagship research products as per the Gender Strategy GRiSP status: dedicated product line under its Flagship project 1 with specified gender-related outputs that are monitored through its own milestones (see also reporting under section D of this report).-CRP M&E system has protocol for tracking progress on integration of gender in research.GRiSP status: This is incorporated in the GRiSP Gender Strategy; several capacity development initiatives have already been undertaken throughout GRiSP's lifetime -see section D and the detailed GRiSP gender report 2016.The CRP uses feedback provided by its M&E system to improve its integration of gender into research.GRiSP status: Results from gender studies are being discussed among flagship project leaders and key GRiSP staff at the annual 'GRiSP gender, impact and ME&L workshop'.GRiSP's mission is to reduce poverty and hunger, improve human health and nutrition, reduce the environmental footprint, and enhance the ecosystem resilience of rice production systems through high-quality international rice research, partnership, and leadership. ","tokenCount":"8413"} \ No newline at end of file diff --git a/data/part_3/5147696981.json b/data/part_3/5147696981.json new file mode 100644 index 0000000000000000000000000000000000000000..06aa9b8fbb17e92a00163e0fa6fccbcad5ebef06 --- /dev/null +++ b/data/part_3/5147696981.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"e38178a93c5caaa5d79688c2b3840713","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/89278358-f717-49bb-9c2e-8f8b4c410ee5/retrieve","id":"-995502719"},"keywords":[],"sieverID":"589c2f51-8f11-4a5a-b211-a1434dc17bda","pagecount":"117","content":"The current reporting period presents substantial research products as most of the research data were collected during this period. In some cases, it is a build-up, reflecting trends starting with data collected in previous seasons.We continued deployment of elite crop varieties, which have a critical and significant role in improving smallholder agricultural production systems using the SI approach. Drought tolerant and high yielding maize hybrids are among the elite crops that were validated in central Tanzania. Eighteen best performing hybrids selected from previous years' studies, were further validated for their performance under on-farm conditions during the 2019 cropping season. Out of these, four hybrids (CKDHH170114, CKH160231, CKDHH170346, and CKDHH1600016) have now been identified for scaling, based on their superior yield and agronomic performance as well as profitability. Africa RISING is partnering with formal seed companies, notably Meru Agro, to push for promotion of these hybrids as a precursor to production of seed for farmers.In the same central region of Tanzania, new Africa RISING crop (groundnut, pigeonpea, sorghum, and pearl millet) varieties, released or proposed for release, were tested. The elite materials out-performed the landrace controls and had relatively less yield loss, sometimes up to three-fold less when planted late compared with the landrace There was differential site reaction of the test material, confirming our early classification of sub-ecologies, while identifying the suitable adapted high performing material. We therefore successfully mapped genotype to ecology to inform scaling out. Production of seed for these crops is through the informal community seed bank approach.To address improved availability of seed for the introduced elite crop varieties, both maize and groundnut seed value chains were studied as representatives of the formal and informal seed systems in central Tanzania. Preliminary analysis of the survey data shows that improvement of the groundnut seed systems to deliver technologies requires, among others, strategic partnerships and building the seed value chains from the supply side. Grain production is slowly driving demand for improved inputs such as seed. Starting with informal seed systems is critical because it provides basic information to guide private sector investment into formal seed systems.In Malawi, Africa RISING consolidated availability of quality seed for soybean, groundnut, and nutrient-dense common bean varieties, through a network of 300 seed producers who received 20 kg foundation seed each during the 2017/18 cropping season. About 46 tons (t) of Quality Declared Seed (QDS) were distributed to over 4000 baby farmers at 10 kg seed for each farmer during December 2018. During 2019, we engaged the same experienced 300 farmers to produce seed, with an estimated 50t seed produced. Seed farmers have been linked to the Agriculture Extension Coordination Committee (DAECC) for assistance with marketing the seed they produced. Over the next few months, we will study the viability of this community seed production and marketing system when farmers seek for real markets, beyond the Africa RISING project facilitation.Validation of cereal-legume intercrop and rotational diversity has continued in terms of identifying when and where each offers advantage and sufficiency. In Malawi, four cropping systems that have been running since 2016 (sole pigeonpea rotated with maize, sole groundnutrotated with maize, groundnut/pigeonpea doubled-up intercrop rotated with maize, and the maize/pigeonpea intercrop system rotated with another maize/pigeonpea intercrop system in the second year) were compared with the traditional maize/pigeonpea intercrop system. Maize yield was 5.51 > 5.01 > 4.06 > 3.05 Mg/ha when grown after sole pigeonpea, sole groundnut, groundnut/pigeon pea doubled-up intercrop, maize/pigeonpea intercrop system rotated with another maize/pigeonpea intercrop system in the second year, respectively. However, of the alternatives tested here, the novel doubled-up intercrop rotated with maize was the only one to perform as well economically as the farmer check. Sufficient economic and environmental returns are required to compensate for opportunity costs associated with maize production limitations due to small farm sizes.The on-seasonal drought in Babati District of Tanzania suppressed the effects of another novel Mbili-Mbili intercropping technology as treatment differences were not observed in the yield assessment of the maize crop. But there were differences in the yield of the early maturing bean intercrop (in two out of 3 eco-zones), ranging from 0.3 t/ha under Mbili-Mbili to 0.5 t/ha under the doubled-up legume system. The drought equally suppressed yield performance of other agronomy trials in central Tanzania, including intercropping with agroforestry's Gliricidia sepium. However, data generated for other growth indicators like leaf chlorophyll, photosynthetically active radiation, and soil moisture & temperature during the different growth stages are presented to explain some differences between treatments.Crop systems simulation modelling using the Agricultural Production Systems sIMulator (APSIM) has been initiated, using both own and secondary data, to predict performance of different cereal-legume cropping systems. In central Tanzania, the application of the APSIM model showed that pigeonpea-sorghum and pigeonpea-groundnut intercrops have high potential to de-risk production in drought environments. We find that medium duration pigeonpea (takes up to 180 days to mature) are best suited for these ecologies compared to the long duration (takes up to 240 days to mature), currently used by farmers. However, medium duration pigeonpea is affected by shading especially when intercropped with fast growing maize, a common practice in these ecologies. In Malawi, APSIM is being used to explore resource use efficiencies and maize-legume rotational systems. Model calibration and simulation runs were completed. Simulated maize and legume grain yield generally approximated the observed yields from the 2012/2013 to 2017/2018 cropping seasons (RMSE = 1317 kg/ha for maize and 274 kg/ha for groundnut) confirming prior observations that APSIM is able to predict maize response to fertility inputs, rotation, and intercrops. Total soil organic C simulated in the top 15 cm of soil decreased over the 1986-2019 period for continuous sole maize in all three agroecological zones of Malawi. Integration of legumes into the maize systems slightly reduced the magnitude of this decrease in soil organic C, especially when pigeonpea was added to the cropping system, signifying the importance of grain legumes in sequestering soil C and eventual sustainability of the cropping systems.The results presented in this report on the effects of net houses and biopesticide application vegetable production represent the end of the experimentation on these technologies. A manuscript for publication is being drafted. In general, net houses increased overall plant performance in terms of vegetative and reproductive growth in both sweet pepper and tomato. The modified weather conditions inside the net houses favour growth of plants compared to open field crops as they prevent/reduce disease outbreaks during adverse weather conditions, especially fungal diseases. Fruits inside net houses are protected from direct sunlight, which often leads to sun scalding. The use of bio-pesticides (Metarhizium anisopliae) was more efficient in controlling T. absoluta rather than whitefly (B. tabaci) although the average insect count of both pests was lower in net houses compared to open fields. Farmer evaluation confirms the research findings; they observed that crops grown inside the net houses performed better than those grown in open fields in terms of quality (skin color, test, texture), low pest incidence leading to low pesticide use, and higher marketable fruits.First season evaluation of the impact of improved management practices (IMP -a technological package of good quality improved seed, healthy seedlings, and good agronomic practices) on the performance of vegetables grown by 64 farmers in Karatu District of Tanzania showed that the practices increased the yield of tomato by 48%, of nightshade by 30%, and of Ethiopian mustard by 28%. Respective incomes increased 57% (tomato), 39% (nightshade), and 40% (Ethiopian mustard). Besides, IMP reduced postharvest losses by 86-98% for all three vegetables crops. Market participation increased by 14% for tomato, 36% for nightshade, and 11% for Ethiopian mustard.Enhancing soil water infiltration and moisture conservation for better crop growth in semi-arid cropping areas of central Tanzania appeared to falter under the severe drought conditions that prevailed during this cropping period. For example, while rip tillage had 52% grain yield advantage over the control, it was only over a measly total yield of 0.7 t/ha. There were no differences between treatments in biomass yield. This opens up a whole new approach of setting situation boundaries for defining when a technology can be applied successfully. However, because the soil and water conservation studies have been conducted over periods of 3 or more years, they have presented an opportunity for gender and social dynamics analyses. Preliminary results from these analyses show that (i) although gender roles did not emerge as very pronounced in the labor process, the decision of establishing fanya juu terraces is predominantly taken by men, and (ii) both men and women perceived tied ridges as more beneficial in terms of soil moisture, productivity, and income from sales, is less labor intensive during weeding but more during field preparation. Further studies are planned to address social dynamics within collective action groups and capturing the drudgery involved.Other innovations options being validated for soil, land, and water management options have included (i) conservation agriculture (CA) with its associated practices, (ii) combining tied ridges with fertilizer application, (iii) combined climate-smart farming practices, and (iv) contour farming with the use of fodder trees and grass forages to stabilize the bunds.During this reporting period, the CA work engaged in collecting and analysing data from all field trials and conducting a socioeconomic survey whose data analysis is in progress. There are several learning points from the analysed data:• In intercropping trials under low soil fertility, maize-cowpea and maize-lablab rotations had the highest maize yields whereas sole maize and maize-lablab intercropping after 21 days were lowest. • Under higher soil fertility maize-lablab intercropping after 7 days outperformed all other treatments and maize yield was lowest in the sole maize treatment and the maize-lablab intercropping after 21 days. • Pigeonpea and lablab provided a great amount of additional biomass both under low and high fertility.• Maize grain yield in the maize-pigeonpea ratooning trials was dominated by maizepigeonpea full rotations but were not significantly different by different ratooning strategies, especially those that were ratooned at harvest and after maize seeding. • After more than 4 years of CA practice, there is no more maize yield suppression in maize intercropping trials which means that all legumes will be an added advantage to farmers and not a penalty. • The legume biomass yields obtained in addition to the maize biomass yield by far outweighs sole cropping of maize and will, in the long run, improve soil fertility besides other benefits (firewood, groundcover, nutrition etc.). However, to become attractive to farmers, the legumes also must provide sufficient grain yields to sell. There is need for more research to increase grain yield production. • Legume grain yields can be very low when (i) they are planted late, (ii) rainfall is high, leading to reduced legume growth due to diseases, and (iii) there is insufficient or ineffective spraying against blister beetle and pod borers. • Soil chemical analysis between treatments did not show many significant differences although an increase in total N was observed in the maize-lablab treatment, and higher infiltration in the maize-pigeonpea intercropping. Soil quality results are not yet conclusive and require further research.Maize productivity was assessed across several sites in a split-plot experimental design where water management (tied-ridges or ridges only) were the main plots and fertilizer management were sub-plots. Implementation of tied ridges without fertilizer application did not increase maize productivity. Water management had more effect when fertilization was at 100% of the recommended fertilizer rates in the different sites. These results suggest that the benefits of water conservation measures are more pronounced when N and P are adequately supplied.Four fields with climate-smart approaches including micro-catchments, planting of weatherinformed varieties, and utilization of slow-release N fertilizer were successfully implemented in Babati District. Collection of the associated data, except dry weight measurements of pigeon pea, is complete. The prevailing weather conditions during the season played a significant role in bean performance in the two eco-zones of Babati. For example, one of the two fields with intercropped beans in Gallapo eco-zone had total crop loss due to on-season drought. Maize grain yields ranged from 1.5 t/ha under the conventional intercrop system to 2.3 t/ha under the system with maize variety choice based on regional weather forecast. Economic profitability of the cropping systems under study will be examined after pigeon pea yield data measurements have been finalized.Productivity and economic benefits of contour farming were determined with maize, Guatemala grass, and G. sepium as test crops. Relative to the farmer practice, contours improved maize grain yield by 200% during the 2018 cropping season. The low and sporadic rainfall patterns appear to have masked the response of maize to improved soil conditions on contours. Fodder and wood yields were less affected by drought and hence contributed to higher gross margins (76-112%) and returns to labor (12-74%) when compared to farmer practice. In previous good seasons, maize contributed up to 50% of the gross income. These results demonstrate the benefits of crop diversification in contour farming to enhance agroecosystem resilience and the adaptive capacity of farmers.Increased crop productivity has necessitated research attention to identify and validate technology products that reduce postharvest losses. Three of such products (single hermetic liner bag [AgroZ], double hermetic liner bag [PICS], and metal silo) were installed in 39 farmers' stores and evaluated for their context-specific challenges in storing maize and beans grain over a period of 7 months. The following are key findings.1. Overall grain damage levels across the villages were different; relatively higher levels occurred in the higher altitude villages compared to the lower altitude ones. 2. Insect pests survived in all the hermetic containers (maize storage), but the populations were rather low compared with the control. The populations were lowest in the AgroZ bag and highest in the metallic silo. The resultant grain damage by insects followed the same pattern. 3. The hermetic bags used to store maize were perforated by insects. The double liner PICS bags were more damaged by insects compared to the AgroZ bags. About 30% of the PICS bags had > 20 punctures on the inner liner and half of these had also > 20 insect holes in the outer liner. About 15% of AgroZ bags had insect holes > 20. When the hermetic bags are extremely damaged after a single use, they are no longer attractive to farmers. The issue of quality consistency (quality assurance) should be followed up with the private sector manufacturers. If not, a technology that in principle is very useful may disappear from the market. 4. Unlike in previous trials undertaken in our group, the Larger grain borer (Prostephanus truncatus, Horn; LGB) was identified in farmer's stores. The prevalence was 5-9% and the pest was found in all the villages. 5. Two thirds of host farmers liked the metallic silo more than the bags because of stability against damage by insects or rodents, and the possibility to store more food in a confined space. 6. From the present results, the PICs bag was not profitable for maize storage while AgroZ was profitable in the 2 nd year of use; returns to investment = 6.57%; Net returns 10 $/ton. 7. The different bean varieties exhibited storability differences both in PICS bags and the control; the effects of variety and storage technology were statistically significant. 8. The PICS bags were highly perforated by bean bruchids (at least 50% of bags had over 50 insect holes on the inner liner and 30% had over 50 insect holes on the outer liner as well. 9. Profitability of the PICS bag for bean storage varied with variety depending on the market value, vulnerability to damage, and attack by insects of different varieties. This is new knowledge. Out of the three varieties examined, the technology was profitable for only one variety \"Oval yellow\"; returns to investment: 10.8-13.5%; Net returns: 59.4-$72.8 $/ton.With the introduced elite crop varieties, some of which were based on their improved nutritional values, a study was conducted to determine drivers of food choice that would lead to adoption of nutrient diets. Pearl millet and pigeon pea were used as test crop products targeting feeding to school children in central Tanzania. Although pearl millet grain is largely perceived in the communities as food for caregivers who generally tend to be female, young, and school going children, over 60% of the caregivers were unaware of the nutritional benefits of pearl millet. A trend of consumption, similar to that of pearl millet, was also observed for pigeon pea.The study concluded that there is need to promote innovative recipes and approaches to expand consumption of these nutritious crop products, especially by adolescents who are a nutritionally vulnerable group. This would probably apply to such other crops like the nutrientdense bean varieties (SER83 and NUA45) introduced in Malawi's maize-based cropping systems. In this case, nutrition never featured as a reason for selecting between technologies that involved intercropping the beans with maize during a participatory technology selection exercise.One approach of promoting innovative recipes is messaging, whose potential impact is being tested with vegetables in Karatu District of Tanzania. The baseline survey identified that although several vegetables types are grown, most farmers do not grow any, and 81% of the yield is sold. Farmers still lack knowledge about the nutritional content of vegetables and their health benefits. But more than 80% of the households would like to increase vegetable consumption while 60% of the households indicated that they plan to increase consumption of vegetables among family members. This confirmed the need for training and messaging to increase nutrition knowledge among households in Karatu. Subsequently, a nutrition training was conducted in eight villages during August involving 332 farmers (52% women), 10 NGO employees, eight government extension staff, and 16 restaurants/food kiosk staff. The training equipped participants with knowledge and skills on food groups and better feeding practices to reduce undernutrition, particularly in children under 5 and women of reproductive age. For practical purposes, two new recipes were developed during nutrition training. The impact of these activities will be evaluated during the coming years.Another form of messaging we are exploring is the use of ICTs for linking farmers to markets. The objective of this work is to scale out promising technologies beyond the Africa RISING target sites in Tanzania by providing advice on agronomy, climate services, and market information via mobile phone. Use of interactive videos for training was also deployed as an add-on to improve the knowledge transfer to the farmers. The videos were developed involving the communities and in Swahili language in Tanzania to ensure the literacy gap was bridged, and to give the communities a sense of ownership. During this reporting period, we reached more than 2,200 smallholder farmers (unique profiles in Babati) using SMS information services; 70% were males and 30% females. The low number of registered female farmers may be attributed to mobile phone ownership, which is skewed in favor of men due to cultural and socioeconomic factors. Dissemination of SMS messages for land preparation will soon commence as guided by the cropping calendar. To make the database more attractive and an inch closer to sustainability, profiling at least 200,000 farmers is being targeted.Apart from messaging, the ESA Project is deploying several other approaches to taking the technologies to scale. We are applying the GIS approach to generate regionally relevant extrapolation domain mapping for multiple technologies; included in this report are the fodder trees and grass forage maps, maize-legume cropping maps and vegetable varieties maps. Related to this is the piloting of FarmMatch (Matching Agricultural Technologies to Farms and their Context) which identifies (i) the most suitable and promising technologies for different types of farms, (ii) where the hotspots of suitability of technologies and potential adopters are, and (iii) which contextual farm and technology characteristics promote the adoption and scaling of technologies. Testing the algorithm for performance, matching, and signaling is still ongoing.We have commenced testing the framework for a number of GIS gridcells in Babati, Tanzania. Developing a \"data pipeline\" that can extract ARBES data and insert it into farm models, to allow rapid assessment of more complex SI indicators for sampled farms in Africa RISING case study areas.The ESA Project is seriously taking on developing partnerships with institutions whose main role is technology delivery as the driver for taking our technologies to scale. Where these have been successful, technology demonstration sites have been used by the researchers to train partner institutions' staff and provide them with knowledge about the technology as well as consolidating their abilities in delivery of that technology. During this reporting period, the ESA Project has directly offered short-term training to about 3,300 trainees (about 47% women) being mainly farmers and extension agents. We had one PhD, two MSc, and one BSc students on board. Nine peer review manuscripts were published as journal articles.The ESA-wide geo-referenced sites are shown where Africa RISING was implementing either research activities or technology dissemination over the project time, updated to the current reporting period (Fig. 1). In addition, most areas in Kongwa and Kiteto have poor soils with low fertility; therefore, these two major factors, combined, limit maize yields on-farm to an average of 1.1 t/ha in a season. The crop growing season in 2019 in Tanzania was affected by a very severe drought, which covered a wide region in eastern Africa, so much so that yield data from our experiments could only be obtained from three out of the seven sites. It is under these conditions that the 18 best performing hybrids selected from previous years' studies were further validated for their performance under on-farm conditions. Four best performing hybrids were selected based on their yield and agronomic performance (Table 1). These same hybrids have high profitability based on gross margins. Consolidating availability of quality legume seeds through production of Quality Declared Seeds (QDS)In Malawi, we have consolidated availability of quality seed for soybean, groundnut and nutrient-dense common bean varieties, through a network of 300 seed producers who received 20 kg foundation seed each during the 2017/18 cropping season. About 46 t of Quality Declared Seed (QDS) were distributed to over 4000 baby farmers at 10 kg seed for each farmer during December 2018. Groundnut seed was stored in the shell until just about planting time. This resulted in nearly 100% seed viability, largely surpassing viability of commercial seed that originates from agrodealers. During 2019, we engaged the same experienced 300 farmers to produce seed, with an estimated 50 t of seed produced. As part of our exit strategy, we have only purchased 15 t of this seed for distribution to baby farmers. Seed farmers have been linked to the DAECC for assistance with marketing the rest of the seed they produced. Over the next few months, we will study the viability of this community seed production and marketing system when farmers seek for real markets, beyond the Africa RISING project facilitation. During the past two cropping seasons, Africa RISING bought all the seed produced, save for a mandatory 20 kg that each producer was required to retain for scaling SI technologies on their farms.In Tanzania, availing to farmers the seed of best performing crops has been tested through multiplying seed through Community Seed Banks (CSB), and the results are promising (Table 2).For pearl millet & sorghum, each farmer gives back 4 kg of seed to CSB to be issued to two new/beneficiary farmers for the following season (2 kg of seed is enough to plant one acre). For pigeon pea, each farmer gives back 6 kg of seed to CSB to be issued to two new farmers for the following season (3 kg of seed is enough to plant one acre). Continuing/current farmers (pigeon pea, sorghum, and pearl millet) are allowed to sell excess seed to earn cash for the betterment of their livelihood. Sustainability of rain-fed cropping across southern Africa is undermined by the dominant maize (Zea mays L.) monoculture. Farmers have traditionally intercropped maize with food legumes, an important source of field and dietary diversity. However, the question remains if intercrop diversity is sufficient, or if rotational diversity is more advantageous. Four cropping systems were tested and set up in a randomized complete block design with four replicates per location.The four cropping systems consisted of (i) sole pigeon pea rotated with maize (PP-MZ), (ii) sole groundnut rotated with maize (GN-MZ), (iii) groundnut-pigeon pea doubled-up intercrop rotated with maize (GNPP-MZ), and (iv) the maize-pigeon pea intercrop system rotated with another maize-pigeon pea intercrop system in the second year (MZPP-MZPP). The traditional maize-pigeon pea intercrop (MZPP) system was included as the control. Data were analyzed for the period 2016 to 2019.Crop yields. Pigeon pea, groundnut, and maize grain yields are reported in Table 3. Location had a strong influence on grain yield for both pigeon pea and groundnut. In contrast to the pattern observed for biomass, modest to nil grain yield was produced by pigeon pea (0.03 to 0.6 Mg/ha), and it was not influenced by cropping system. Groundnut yields were moderate to high (0.5 to 1.8 Mg/ha) and followed biomass accumulation patterns. For example, aboveground biomass was markedly high at Linthipe B (4.9 Mg/ha), as was belowground biomass (0.2 Mg/ha) and groundnut grain yield was high at this site as well (1.7 to 1.8 Mg/ha). About one-half as much groundnut biomass was accumulated at Linthipe A and Golomoti B, which were also the low yielding sites at 0.5 to 0.9 Mg/ha (Table 3).Productivity of legumes was assessed during year one with a rotational maize crop used to quantify the cropping system effect in year two. Both location and cropping system had a significant effect on maize grain but with no interaction effect. In a comparison of all systems that were fertilized (69kg N/ha for sole maize and 35 kg N/ha for the MZPP intercrop), performance of maize yield across locations in 2017 varied. Maize yield after sole pigeon pea produced the highest maize grain (5.51 Mg/ha), maize after sole groundnut was 5.01 Mg/ha, maize after the GNPP intercrop was 4.06 Mg/ha, and maize yield was lowest in the MZPP intercrop system at 3.05 Mg/ha. These findings were consistent across four of the five locations, the one exception was the lowest yielding site (Golomoti B). During the 2016 agricultural season, the sole groundnut cropping system produced the lowest shoot biomass across all sites. However, the system supported good maize growth and grain yield in 2017 (Table 3). Pr > F = <.0001* Pr > F = <.0001* Pr > F = <.0001*Pr > F = 0.1631 Pr > F = 0.7605 Pr > F = <.0001*Pr > F = 0.6991 Pr > F = 0.9323 Pr > F = 0.2677Presented values are means followed by standard deviations. Cropping systems shown are sole pigeon pea (PP), groundnut-pigeon pea intercrop (GNPP), maize-pigeon pea intercrop (MZPP) and sole groundnut (GN).Economic feasibility. Gross margins of the four cropping systems ranged from $1145 (PP-MZ) to $1407 (GNPP-MZ). The best two performing cropping systems in terms of monetary gain were the GNPP-MZ and the MZPP-MZPP systems with gross margins of $1404-7. The cropping system with the highest cost of production was GNPP-MZ at $353 and the lowest was PP-MZ at $223. Overall, when legume stems and haulms are included with prices at $0.03 and $0.08, respectively, the order of technology system valuation is GNPP-MZ = MZPP-MZPP > GN-MZ > PP-MZ (Table 4). However, when the prices are 30% less, the order changes to GN-MZ > GNPP-MZ > MZPP-MZPP > PP-MZ.Considering economic feasibility is critical because farmers usually have multifaceted goals and have to consider costs and returns associated with a cropping system before they adopt. Initial cost of production with all systems involving groundnut were high because groundnut seed is significantly more expensive than maize and pigeon pea. In India, Bhuva et al. (2017) 1 reported similar results to ours, in that high groundnut seed expense did not reduce attractiveness of groundnut-based systems as gross returns were high relative to other systems. A crop modeling study conducted in Central Malawi (Smith et al., 2016) 2 combined with an economic analysis found 75% higher profits associated with a groundnut rotation compared to maize monocultures; due in large part to 50% reduced requirements for nitrogen fertilizer in the maize phase of the rotation (Komarek et al., 2018) 3 .The high gross margin associated with farmer MZ/PP intercrop system was not surprising, that a farmer check system was economically robust. Of the alternatives tested here, the novel doubled-up GNPP intercrop rotated with maize was the only one to perform as well economically as the farmer check. This is consistent with earlier findings of farmer preference for a highly diverse doubled-up rotational system (Snapp et al., 2018) 4 . A breadth of economic and environmental returns are required to compensate for opportunity costs associated with maize production limitations due to small farm sizes.Table 4. Economic feasibility of four cropping systems involving maize, pigeon pea, and groundnut across three agroecologies in central Malawi. Groundnut yields in Malawi remain low, averaging 600 kg/ha against yields > 2500 kg/ha that are obtained at research stations. Use of recycled seed, poor agronomy, and low soil fertility are blamed for low yields. Absence of literature in Malawi on yield penalties as a result of use of recycled legume seed prompted studies to evaluate productivity gaps in groundnut in Machinga and Dedza. In the 2017/2018 season, a set of experiments evaluated the effect of seed generation (certified vs. recycled) and planting density (double rows vs single row) on groundnut biological nitrogen fixation and grain productivity. The trials had a split-plot design with seed generation (recycled vs. certified) as main plot factor, while sub-plot factors inoculation (inoculation vs. uninoculated) for soybean experiments and planting density (single vs. double rows) for groundnut. In all cases, planting groundnut on double rows on a ridge significantly increased biomass and pod yields, and biological N2-fixation (Table 5). Groundnut seed generation was less important for biomass productivity, but certified seed had relatively larger pod yields. Productivity for certified seed was negatively affected by poorer germination compared to that achieved with farmer recycled seed. We have noted that farmer-retained seed had consistently better germination compared with seed that originates from Lilongwe agrodealers. This is probably due to poor commercial handling as machinery is used for shelling. Contrary to this, smallholder farmers always keep their groundnut in the shell and only handshell within a month of planting. There were larger residual effects when maize was sequenced with double-row groundnut, irrespective of seed generation (Table 6). Grain yield assessment. Across the fields, maize grain yields ranged from 1.7 t/ha to 2.3 t/ha (data not shown as no treatment differences were expected or observed). On the other hand, bean yields ranged from 0.3 t/ha under the Mbili-Mbili to 0.5 t/ha under the doubled-up legume system. Across the three eco-zones, bean productivity was highly affected by on-season drought. Harvesting was done in two of the three agroecologies, with Gallapo eco-zone experiencing total bean failure. Besides, the second bean phase was also affected by soil moisture deficiency leading to total crop failure in all eco-zones. After compilation of the pigeon pea yields, economic profitability for the three crop species will be examined on each of the seven cropping systems being tested (these systems are as presented in Table 7).Chlorophyll assessment. Leaf chlorophyll is a key indicator of the nitrogen content in a leaf. The amount of chlorophyll helps to inform the effect of a cropping system or field management practice on nitrogen uptake by plants. As expected, leaf chlorophyll was significantly (P ≤ 0.01) affected by treatments and time. At leaf V8 and V12 stages, leaf chlorophyll content under Mbili-Mbili and the treatment with two maize plants per hill were significantly lower than that of the control (Table 7). Competition for moisture, nutrients, and sunlight amongst the intercropped plants could have reduced leaf N content compared with sole maize under the control treatment. During the period before the reproductive growth stage 4 (R4), Meru 513 variety had a higher chlorophyll content compared with a similar system with Meru 515. This points to varietal differences including improved resistance to soil moisture stress by Meru 513, which may explain its yielding levels similar to treatment of sole maize. Photosynthetically active radiation. The amount of light intercepted by the maize canopy affects the proliferation of the understorey legumes in the intercropping system. Photosynthetically active radiation (PAR) readings are available on pigeon pea crop after maize was harvested (R6 stage). As expected, the level of light interception by pigeon pea canopy was significantly affected by treatments (P ≤ 0.01). In the majority of cases, doubled-up legume had the highest light interception pointing to improved growth of the pigeon pea (Table 8). This system had no maize planted and common beans matured early thus increasing light access for pigeon pea. The ability of pigeon pea to maximally utilize PAR is associated with improvement in final yields and enhanced biological nitrogen fixation, a proposition that will be validated at the end of this study. Soil moisture and temperature assessment. Monthly soil moisture and temperature readings recorded from the V6 maize stage to the physiological maturity of pigeon pea plants show that time of sampling influenced (P ≤ 0.01) the amount of moisture in the soil. However, no soil moisture effects were observed across the treatments (Table 9). Soil moisture content, at different maize growth stages, ranged between 0.09 m 3 m -3 under doubled-up legume at V9 stage to 0.24 m 3 m -3 in system with Meru 513 variety at R4 stage (data not shown). The lower soil cover under the doubled-up legume at the V9 stage could have resulted from the slow establishment of pigeon pea within a bean intercrop, which might have exposed the system to increased evaporation, elevating moisture losses to near air-dry soils (0.05 m 3 m -3 ). In the period between the V9 and V12 maize stages, Mbili Mbili had low moisture content (0.13 m 3 m -3 ) compared to other treatments, which can be attributed to both uptake and evapotranspiration of water by the actively growing crops. Besides, the period immediately before V9 and tasselling stage had the lowest soil moisture recorded. Averaged across maize growth stages, use of Mbili Mbili and the vertical leaf architecture of Meru 513 increased the soil temperatures compared to the conventional system with untopped maize and the sole maize crop (Table 9). Testing Gliricidia intercropping strategies for drought resilience For the rainout shelter experiment whose set up was described in the October 2018-March 2019 report, maize yield data collection and processing for analysis are complete. Pigeon pea yield data collection was done in three phases throughout the month of August and the data are still under processing. Analysis of tissue nutrient concentration in maize and soil moisture determination of destructive wood samples are ongoing in the laboratory. We also collected data on stomatal conductance, air temperature, relative humidity, economics, and gender responses, and these are being analyzed. Preliminary results of maize grain yield indicate that intercropping maize with pigeon pea or G. sepium (2-crop intercropping) has no effects on maize grain yield compared to sole maize under ambient rainfall with fertilizer treatment (Fig. 2). But 3-crop intercropping (maize-pigeon pea-Gliricidia) supressed maize grain yield, reflecting competition for nutrients and/or soil moisture due to poor soil fertility and low and sporadic precipitation on this site. As a result, there was no significant yield increase due to fertilizer application or intercropping under the resource limiting conditions (drought and/or without fertilizer). However, the intercropping advantage is not considered based on the yield of one component only as presented in these preliminary results. Thus, more information on the land use efficiency (based on the land equivalent ratio-LER), agroecological interactions, and economic benefits of intercropping will also be used to validate the technology once processing of pigeon pea grain yields, wood yield, nutrient uptake, farm operation costs, and income are completed. We submitted an abstract summarizing preliminary results to a special issue of the journal Frontiers in Sustainable Food Systems, which is titled \"Diversifying farming systems for adaptive capacity\". The abstract has been accepted for developing a full manuscript for peer review by March 31, 2020. Letters indicate significant differences between group means across all 4 panels (i.e., all cropping system-fertilizer-water combinations) at P < 0.05 according to Tukey's studentized range test. M = sole maize, MP = maize-pigeon pea, MG = maize-Gliricidia, and MGP = maize-Gliricidia-pigeon pea.A study on the use of net houses and biopesticide (Metarhizium anisopliae) in controlling Bemisia tabaci and Tuta absoluta on solanaceous vegetables (tomato and sweet pepper) has been completed. It was conducted in Babati District of Tanzania. A draft journal article is being finalized and fruit yield results are presented in Figures 2 and 3. The findings show that net houses combined with biopesticides increased plant yield in terms of marketable weight and total weight for both tomato and sweet pepper. Total yields from tomato and sweet pepper in the open fields were at times higher compared with net house yields. However, the nonmarketable weight was higher in the open fields (up to 40% of total yield) because of full interception of sunlight by plants, which creates a platform for the presence of sap sucking insects such as whiteflies, and the scalding of fruits.The evaluation by 14 women and 15 men farmers who had been testing the technology for two production seasons was that the technology impacted positively in terms of production, income, and nutrition. Farmers mentioned that crops grown inside the net house performed better than those grown in open fields in terms of quality (skin color, test, texture), low pest incidences leading to low pesticide use and higher marketable fruits, confirming the findings presented in Figures 3 and 4. Specifically, women mentioned that their husbands now are participating in vegetable production and often request their wives to include vegetables in the meals to enjoy the nutritional and health benefits of vegetables. A technological package combining good quality improved sees, healthy seedlings, and good agronomic practices (GAPs), dubbed Improved Management Practices (IMP) was validated with smallholder farmers for the first season in Karatu District of Tanzania. Results show that IMP significantly (P ≤ 0.05) increased the yield of tomato by 48%, of nightshade by 30%, and of Ethiopian mustard by 28%. Respective incomes increased 57% (tomato), 39% (nightshade), and 40% (Ethiopian mustard). Besides, IMP reduced postharvest losses by 86-98% for all three vegetables crops (Table 10). Market participation increased by 14% for tomato, 36% for nightshade, and 11% for Ethiopian mustard. Farmer evaluation of the IMP based on the rating of its impact on production (yield), economics (profit), environment (pesticide use and soil fertility), human condition (vegetable consumption and diversity), and social activities (labor sharing, control of crop output, and conflict of resources between husband and wife), was that IMP had a positive effect on productivity, profitability, and nutrition, but with less effect on the environment and social aspects. The latter two aspects require longer exposure time to be appreciated. A second season study has been planned. The Principal Investigator of this activity (UDOM) has delivered an unintelligible report. We consider this a serious delivery failure and are discontinuing support to this activity.Output 1.2 Demand-driven, labor-saving, and gender-sensitive research products to reduce drudgery while increasing labor efficiency in the production cycle piloted for relevant typologies in target areasIn this study, four treatments combining rip tillage and two maize varieties were evaluated. Productivity results are given in Figure 5 and show that rip tillage significantly increases maize grain yield (> 52% yield advantage), irrespective of the variety, even though the biomass yield did not follow this trend. The differences in yield are attributed to a lowered bulk density after ripping, which allows for better root development, increased infiltration (> 100%), and soil water retention at deeper depths (e.g., 8% soil water content for rip tillage compared to 5% for conventional tillage-at flowering stage). Rainwater use efficiency was increased by about 1.4times by rip tillage. Yield differences between varieties were not significant. The generally low grain yields were due to a prolonged drought spell during the growing season. In August 2019, a team of scientists from TARI, IITA, ICRAF, and UDOM collected social science data on fanya juu terraces and tied ridges in four villages of Kongwa District. In a two-day workshop preceding the fieldwork we shared knowledge on soil and water conservation practices (including social issues surrounding them). A visit to the fields of a lead farmer equipped social scientists with a better understanding of the practical use and establishment of terraces and ridges. Team members also discussed ways of operationalizing the Sustainable Intensification Assessment Framework (SIAF) for gender analysis and honed the tools for the subsequent investigation. During fieldwork we facilitated 16 gender-separate focus group discussions, conducted 32 participatory exercises (activity profiles, matrix scoring, seasonal calendars) and administered a short questionnaire to the same respondents (135 respondents in total). Currently, audio-recordings from focus group discussions are being transcribed for analysis. Survey data will be entered. Preliminary results from participatory exercises are summarized in what follows.Fanya juu terraces. Although gender roles did not emerge as very pronounced in the labor process, it was reported that the decision of establishing fanya juu terraces is predominantly taken by men. Men were described as taking up supervisory roles and as being in charge of technical aspects such as preparing measurement equipment and marking the measured furrow. Respondents indicated that all gender and age groups participate in activities that require substantial labor. Collective action groups facilitate access to non-household labor and the required equipment. Wealthier households engage hired labor. Because of the strong outmigration of men in the study area, women play an important role in the preparation and maintenance of terraces.Tied ridges. In matrix scoring exercises respondents compared maize flat cultivation and maize cultivation with tied ridges in relation to four indicators from the Sustainable Intensification Assessment Framework (SIAF). Both men and women perceived tied ridges as more beneficial in terms of soil moisture, productivity, and income from sales. However, for the fourth indicator (labor requirement) mixed views emerged. Flat cultivation was perceived as less labor demanding during field preparation compared with the construction or maintenance of tied ridges. On the other hand, weeding appeared less labor intensive under tied ridges than under flat cultivation.During the 2019/2020 season, all data will be analyzed and written up. In addition, a short follow-up study on two aspects is planned: First, focus group discussions did not allow for a sufficient exploration of social dynamics within collective action groups (establishment of terraces/ridges). Individual semi-structured interviews are a more suitable method for this topic and will be used. Second, there is a need to better capture the drudgery involved in the establishment and maintenance of tied ridges compared with flat cultivation. We will therefore collect drudgery scores in a smaller investigation.Farmer/Extension messaging (forage production and use, crop residue processing and use, and feed rations) using MWANGA. See ICT Report under Output 4.1.Fodder trees and grass forage maps. A spatially explicit land degradation index (LDI) is being developed for Kongwa and Kiteto districts of central Tanzania. The LDI map is expected to guide spatial targeting of land rehabilitation programs using agroforestry and other soil and water conservation practices that are validated in sub-activities 2.1.1.4 (Land rehabilitation through integration of fodder trees and grass forage species in dryland farming), 2.1.1.5 (Evaluation of land rehabilitation benefits of shelterbelts and contours), and 2.2.1.6 (Validation of residual tied ridging as a labor-saving technology in semi-arid areas of Central Tanzania). This work is part of MSc research of a student from the Centre for Remote Sensing of Land Surfaces (ZFL), University of Bonn. The study area has a semi-arid climate with a unimodal precipitation distribution from October to May. Land degradation is assessed using TrendsEarth plug-in of QGIS and Google Earth Engine. Following the UNCCD Good Practice Guidance (GPG 17) for SDG indicator 15.3.1, assessment is conducted for three sub-indicators of land degradation (LD): Land Cover (LC), Soil Organic Carbon (SOC), and Land Productivity (LP).Change in LC is assessed using the ESA-CCI LC classification for 2000 and 2015 with a 300-m resolution. This spatial resolution was found to be coarse for a sub-national analysis and was therefore substituted with a new (2019) land cover map produced by SERVIR/RCMDR with a spatial resolution of 30 meters. The maps produced during preliminary analysis are being improved by employing higher resolution (20-30 m) land-cover. Transitions from cropland to forest are evaluated as improvement, whereas changes from grasslands to settlements are classified as degradation. SOC is based on the modelled ISRIC SoildGrids250m. LC conversions trigger corresponding changes of SOC values with a time delay of up-to 20 years, based on established LC coefficients.LP was measured with the Normalized Differences Vegetation Index (NDVI), which serves as a proxy for net primary production (NPP). Annual NDVI-integrals are calculated based on the MODIS bi-weekly products with 250 m spatial resolution. LP consists of three individual subindicators, namely: trajectory, performance, and state. Trajectory indicator measures the rate of change over time based on a linear regression and the significance is determined using a Mann-Kendall test. Water use efficiency was considered to account for influence of climatic variability, i.e., precipitation and evapotranspiration on NPP. The state sub-indicator detects recent changes of LP by comparing the last three years to the preceding period. Annual integrals of NDVI are classified into 10% percentiles and transitions of more than two classes between the baseline and recent period are flagged as improvement or degradation. The performance subindicator compares the local LP with other similar vegetation types in comparable LC types and soils in the study area. If the NDVI is lower than 50 % of the maximum value, then it is assessed as degraded. The three sub-indicators were finally integrated into one indicator of LP using the \"one out, all out\" (1OAO) approach.So far, results show that in the last 15 years, land productivity declined in over 70% of the Kongwa and Kiteto districts and croplands are more affected by degradation (Fig. 6). No significant changes were detected for land cover and soil organic carbon, that is, as a result of the coarse spatial resolution of input data. Preliminary results revealed that the 250 m spatial resolution of input NDVI grid layers is coarse for a sub-national (district) scale analysis. Methods for improving the NDVI layers are being explored by data fusion with Landsat.Fieldwork is planned, starting October 2019, to verify the type and magnitude of land degradation at farm level and assess the area under different sustainable land use practices. Drivers of declining land productivity will be assessed using a mixed effect model with productivity trend derived from remote sensing as the response and farm level dataset as explanatory variables. Maize-legume cropping maps. The aim of this activity was to collate time-series, gridded, climatic data with high-spatial and temporal resolution for Kongwa and Kiteto districts in Tanzania. The gridded monthly time series for rainfall and minimum and maximum temperature was obtained from the TerraClimate database. The monthly climate layers had a spatial resolution of 4 km covering the period 1981 to 2017; therefore, the time series for each input variable had 444 layers. The accuracy of the gridded climatic data was evaluated using available gauge station data. Long-term spatial and temporal trends of rainfall and minimum and maximum temperatures were mapped.Results show a significant negative trend of rainfall in October and May (-0.01 to-1.6 mm/yr, Figure 7). The two extreme temperature variables show a consistent significant warming trend (+ 0.001 to + 0.057 o C/yr) recorded across the two districts in all months although the increase of Tmax in March to May was not significant (Fig. 8). The warming trend is most severe in the months of December. The observed trends point to increasing moisture and heat stress in the two districts that could decrease agricultural productivity.The gridded time series data will be used as an input to investigate the effect of climatic variability on cereal production in Kongwa and Kiteto districts of Tanzania for sub-activity 1.1.1.7 (monitoring the impact of weather and climate variability on the productivity and resilience of maize-legume cropping systems of Kongwa and Kiteto, Tanzania). Deliverables for sub-activity 1.1.1.7 included collation of current and historical grain yields of maize that is ongoing (first season harvest grain yields quantified). The historical yield data will be correlated with the gridded climatic variables to determine the spatial variation of climatic influence of maize yields. Moreover, automated gauge stations were installed for daily weather monitoring that would be used for evaluating the accuracy of satellite data that is available for a long period (over 30 years).One of deliverables for sub-activity 1.1.1.7 is a household survey to gauge the level of understanding of weather/climate variability and associated impacts on cereal and legume production among the communities in Kongwa and Kiteto districts. The generated long-term spatial and temporal trends of rainfall and minimum and maximum temperatures generated in this study will be compared with farmers' perceptions on climate variability (obtained from survey conducted under sub-activity 1.1.1.7) to gauge their knowledge compared to conventional measurements. Given the tremendous high yield and profit margins of the two varieties grown under IMPs, the challenge is to determine where else to extrapolate the IMP technology packages for the two varieties with the lowest risk of failure in other farms in Babati District. We hypothesized that technological packages that show high yield potential in reference trial sites will also perform equally well in outlying areas with similar environmental conditions. The aim of the study was to delineate extrapolation suitability index (ESI) maps for two improved vegetable varieties grown under IMPs in Babati District. These maps are expected to guide extension staff to prioritize scaling out of IMPs of the two varieties to sites with high potential. Maps of the extrapolation suitability index (ESI) were generated from 11 selected biophysical and socioeconomic variables that directly affect suitability of vegetables in the study area (Table 11). ESI maps were generated using methodology proposed by Muthoni et al. (2019 6 ) for identifying priority areas for targeting bundles of agronomic technologies. The environmental conditions at the location of trial sites were used as a reference. A Mahalanobis distance was calculated between reference conditions and the rest of the grid cells in covering the district. Before extrapolations, the homogeneity of environmental conditions in the reference grid cells was investigated by fitting a principle component analysis (PCA). A biplot of PCA results revealed three relatively homogenous clusters of trial sites in regard to their environmental composition (Fig. 10). The first two PCA axes explained 63% and 23% of variance in environmental conditions, respectively. Cluster 1 and 2 were discriminated from first axis. Most trial plots were located within cluster 3 that included high potential for agriculture due to high elevation, precipitation and SOC compared to low potential areas represented by cluster 1 that was characterized by warmer temperatures (high Tmin) and sandy and alkaline soils (Fig. 10). Cluster 3 was more correlated with the second PCA axis and represented areas with high CEC and longer distance to the market. Clusters 2 and 3 showed the highest mean of quantity produced (Qty Prod) and monetary income for African eggplant and tomato, respectively. Therefore, trial plots located in the two clusters were selected as the reference sites when delineating the respective extrapolating suitability maps for African eggplant and tomato. The ESI maps for Tengeru 2010 tomato (Fig. 11) represented the risk of extrapolating Tengeru-2010 tomato with the IMP package to achieve an average yield of 64 t/ha with a benefit-cost ratio (BCR) of 8.5 that translates to an average income of about $22,000/ha. The lower the ESI index, the more a particular location is similar to the reference sites and therefore is more suitable/has greater potential of achieving the target yield when the same package is applied. The lower ESI values (green color) represents areas with a lower risk of extrapolating the package to achieve an average yield of 64 t/ha with a benefit-cost ratio (BCR) of 8.5 that translates to an average income of about $22,000/ha.The extrapolation suitability (ESI) maps produced for vegetable technologies are useful guides to extension and development partners on priority sites for targeting scaling intervention to achieve a-priori defined yield or income; but the index relies largely on biophysical conditions of the reference trial sites. However, there are other intervening factors that may result in low adoption of a technology by farmers despite being located in high potential sites. These include differences in resource endowments, level of awareness, and production orientation. Therefore, ESI maps are a necessary guide to scaling interventions but do not represent all variables that may hinder suitability of a given technology package.Output 2.1. Demand-driven research products for enhancing soil, land, and water resource management to reduce household/community vulnerability and land degradation piloted in priority agroecologiesNo activities were implemented during this reporting period.Lessons from long-term on-station Conservation Agriculture trials in Zambia Trials were established at Msekera Research Station by ZARI. The results of these trials will be invaluable in the recommendation of CA and GMCC systems and will be used to influence the decision making on a newly funded EU project where CIMMYT is a key partner. Detailed trial results are shared below.Maize legume intercropping trial. The on-station legume intercropping trials revealed interesting aspects between the fertilized and unfertilized areas of the plot (Fig. 12). The treatments here are: a) maize sole; b) maize-pigeon pea intercropping; c) maize-lablab rotation; d) maize-lablab intercropping at 0, 7, and 21 days after maize planting; e) maize-cowpea rotation, and f) maizecowpea intercropping.The unfertilized area had much lower yields but showed significant yield differences in grain yield amongst the treatments (Fig. 12). Here maize-pigeon pea, maize-lablab, and maizecowpea rotations were on top whereas the sole maize treatment and maize with lablab planted 3 weeks after the maize were at the bottom. In the fertilized area, maize planted with lablab at 7 days was the best performer whereas the lowest was sole maize. We can clearly see from the intercropping strategies that there is a yield benefit emerging and it is strongest in the treatments that fix a lot of nitrogen (e.g., lablab at 7 days) while providing sufficient groundcover under CA.Combined biomass yield of both maize and legume showed significant results in both the fertilized and unfertilized areas. All treatments that had pigeon pea and/or lablab showed superior results whereas the sole maize treatment, rotations with cowpea and lablab or intercropping with cowpea had little effect. The top performer here was the maize-pigeon pea intercropping (Fig. 13). In the fertilized area the trend was very similar, having greatest combined biomass yield (8412 kg/ha) for maize and pigeon pea intercropping compared with sole maize only (2157 kg/ha). Cowpea biomass yield was in general low as by the time of harvesting, most of it had already decomposed. (Fig. 13). Maize-Gliricidia trial. The Maize-Gliricidia trial compared three different treatments: a) Maizegroundnut rotation; b) Maize/Gliricidia dense spacing-groundnut/Gliricidia dense spacing; and c) Maize/Gliricidia dispersed shading-groundnut/pigeon pea/Gliricidia dispersed spacing. There was no significant maize grain yield difference discovered between treatments, but there was a reduction in the dispersed shading treatment in groundnut grain yield (Fig. 14). It seems that in fertilized trials the effect of Gliricidia is overestimated and the benefits will only come out clear once the trials are compared with unfertilized controls. We are yet to see if there is a longerterm effect of applying Gliricidia leaves as the length of the trial is still too short. Pigeon pea ratooning trial. In the ratooning trial where we researched the best strategy for managing pigeon pea in intercropping systems, we found significant results. The highest maize yields were recorded in the full rotation and lowest yields in the sole maize treatment, and the maize-pigeon pea treatment uprooted at harvest, which coincidently is the traditional farmers' practice. All other treatments were in between. Ratooning two weeks after maize planting and, ratooning during maize harvest seemed to be the best choice for pigeon pea when planting maize in combination with pigeon pea (Fig. 15).When looking at the combined grain of both maize and pigeon pea, the maize that was planted after the full growth pigeon pea was the best performer (Treatment 3) and second was the maize with pigeon pea ratooned at harvest and 3 weeks after maize seeding (Fig. 15). The lowest biomass yield was achieved in sole pigeon pea followed by the sole maize treatment.In conclusion, we can summarize the following learning points:• In intercropping trials under low fertility, maize-cowpea and maize-lablab rotations had highest maize yields whereas sole maize and maize-lablab intercropping after 21 days were lowest. • Under higher fertility maize-lablab intercropping after 7 days outperformed all other treatments and maize yield was lowest in the sole maize treatment and the maizelablab intercropping after 21 days. • Pigeon pea and lablab provided a great amount of additional biomass both under low and high fertility.• No significant grain yield differences were recorded in the maize-Gliricidia trial although groundnut yields were lower in the dispersed shading treatment. • Maize grain yield in the maize-pigeon pea ratooning trials was dominated by maizepigeon pea full rotations but were not significantly different by different ratooning strategies, especially those that were ratooned at harvest and after maize seeding. Seasonal rainfall variability and within season dry spells are responsible for poor response to applied soil nutrients. Nutrient use efficiencies could be increased through increased rainwater capture in situ. Simple tied ridges store excess rainwater, creating more residence time for infiltration and reduced run-off losses. Overall, this increases the effectiveness of rainfall that comes at intensities that are higher than the infiltration rates ordinarily associated with particular soils. Maize productivity was assessed across several sites in a split-plot experimental design where water management (tied ridges or ridges only) were the main-plots and fertilizer management were sub-plots. Implementation of tied ridges without fertilizer application did not increase maize productivity (Fig. 16). Water management had a larger effect when fertilization was at 100% of the recommendation fertilizer rates in the different sites. These results suggest that the benefits of water conservation measures are more pronounced when N and P are adequately supplied.Figure 16. Mean maize productivity across several sites with or without tied ridges for unfertilized maize, maize fertilized at 50% recommended rates (@50% F) and maize fertilized at 100% recommended NP rates (@100% F).The four fields with climate-smart approaches including micro-catchments, planting of weather informed varieties, and utilization of slow-release N fertilizer were successfully implemented in Babati District. Collection of the associated data, except dry weight measurements of pigeon pea, is complete.The prevailing weather conditions during the season played a significant role in bean performance in the two eco-zones of Babati. For example, one of the two fields with intercropped beans in Gallapo eco-zone had total crop loss due to on-season drought. Generally, bean grain yields were not significantly affected by treatments. Bean yields ranged from 0.2 t/ha under treatment with Selian 11 variety to 0.3 t/ha under the intercrop system with tied ridges. Besides, bean variety influenced the developmental patterns of the beans, an influence observed in the attained yields. For example, the average biomass yield at podding ranged from 0.7 t/ha for Jessica to 1.2 t/ha for Selian 11 variety (data not shown). In addition, the average pod number for the Selian 11 variety was 4 pods per plant while Jessica had 6 pods per plant. This resulted from the early maturity trait characterized by the Jessica variety, which enhanced early bean podding at a time when Selian 11 was still flowering (Fig. 17). From anecdotal evidence, Selian 11 can produce more than Jessica in a good season, however, the latter would be a perfect choice in a poor season. Further studies are required to test the performance of the two bean varieties under favourable weather conditions.Maize grain yields ranged from 1.5 t/ha under the conventional intercrop system to 2.3 t/ha under the system with maize variety choice based on regional weather forecast. Economic profitability of the cropping systems under study will be examined after pigeon pea yield data measurements have been finalized. Leaf chlorophyll assessment. The use of different crop varieties, nutrient blends, and soil water conservation strategies are expected to affect the leaf chlorophyll content in the plant leaves. Leaf chlorophyll content did not vary during the initial stages of maize growth (i.e., V8-V12; Table 12) an effect associated with soil moisture stress following in-season drought, which might Table 13. Effect of treatments on soil moisture and temperature under the different nutrient and soil water conservation strategies during the LR 2019 in Babati (P ≤ 0.05).All the treatments had beans and pigeon pea except the treatment where beans were substituted with a cowpea relay. Maize growth stages are categorized into 2 Phases, i.e., the vegetative stages (V) and the reproductive stages (R). Vegetative stages begin from seed emergence VE to tasseling (VT). Reproductive stages start at silking (R1) to dent stage (R6) when maize grains have attained maximum dry weight, i.e., physiological maturity.Productivity and economic benefits of contour farming were determined with maize, Guatemala grass, and G. sepium as test crops (Tables 14 and 15). Relative to a farmer practice, contours improved maize grain yield 200% during the 2018 cropping season due to improved soil conditions and/or use of improved maize variety (question on attribution to contour effect only). The low and sporadic rainfall patterns appear to have masked the response of maize to improved soil conditions on contours. Fodder and wood yields were less affected by drought and hence contributed to higher gross margins (76-112%) and returns to labor (12-74%) in contours compared to the farmer practice. In good seasons like 2018, maize contributed 50% of the gross income on this site while in bad seasons like 2019, G. sepium wood contributed to 89.7% of the income. Also, seasonal distribution of Guatemala grass yields and income increase the purchasing power of farmers, contributing to improved food access during lean periods when supply from the farm is finished. These results demonstrate the benefits of crop diversification in contour farming to enhance agroecosystem resilience and the adaptive capacity of farmers. A study on the use of the Residual Tied Ridging (RTR) tillage technique as a labor-saving technology was initiated during 2016 as a sound strategy for alleviating labor bottlenecks. A principal benefit is derived from this technique: In the first cropping season the land is ploughed, ridges and cross ties are made, and high labor input is required. In the subsequent cropping seasons, tied ridges made in the previous season are not disturbed, so less labor is required for maintaining the ridges, hence the name Residual Tied Ridging. During this reporting period, maize and sorghum crops were used as test crops for two different agroecologies, each comparing a local check and an elite variety.The sorghum test crop trial. Residual tied ridging performed poorly, even worse than the control, in terms of grain yield when the soils were sandy clay (Fig. 18), but dry matter yields were not significantly different. There were no significant treatment effects on soils that were not sandy. The grain yield results did not relate to the soil bulk density, which was significantly higher for conventional tillage at planting only at the 20 cm depth. Annual tied ridges and residual tied ridges had significantly higher (> 3 times) cumulative infiltration than conventional tillage.The maize test crop trial. The data of this trial were so variable because of the drought that affected crop growth during this cropping season. We are looking at a broader synthesis of treatment results of previous years to attribute the actual treatment effects.In general, while labor requirement was less for land preparation with the residual tied ridges treatments, it significantly increased with the weeding operations (Table 16). This was possibly because the limited soil disturbance also allows for less disruption of the weed seed banks in the soil, resulting in higher weed regrowth. The baseline survey conducted during July shows that there are no significant differences between the messaging-beneficiaries and control groups (Table 17), thus both groups can be used to estimate the impact of nutrition education.Several vegetables are grown in Karatu, but by a few farmers, including Ethiopian mustard (27% of farmers), Chinese cabbage (17%), African nightshade (14%), onions (11%), tomato (9%). and pumpkin leaves (7%); 81% of the yield is sold. Farmers still lack knowledge about the nutritional content of vegetables and their health benefits. More than 80% of the households would like to increase vegetable consumption while 60% of the households indicated that they plan to increase consumption of vegetables among family members. This confirmed the need for training/messaging to increase nutrition knowledge among households in Karatu. The training equipped participants with knowledge and skills on food groups and better feeding practices to reduce undernutrition, particularly in children under 5 and women of reproductive age. Major activities included the provision of information on the importance of eating diverse foods, recipe preparations, ways to add value to their farm produce based on relationship between plant health and human health, and tips/approaches to change diet-related habits that would ultimately improve nutritional status.For practical purposes, two new recipes were developed during nutrition training (Fig. 19). The impact of these activities will be evaluated during the coming years. Maize storage trials were conducted in farmers own stores (n = 39) using three types of locally manufactured (private sector) hermetic storage technologies-PICS bag, AgroZ bag, and metal silo. These were compared with farmers' storage structures, being made of a brick wall with a concrete floor and roofed with iron sheets (48%, n = 39) or wooden poles plastered with mud with an earthen floor and roofed with iron sheets (43%). The variety of stored maize was not strictly controlled but was noted; farmers stored their home cultivated varieties. A total of 14 varieties was recorded hybrids (9), composites (2), and traditional ones (3). In some cases, farmers had mixtures of more than two varieties. Insect infestation, insect damage, overall damage (includes mold/rot/disease damage, rodent damage, broken grain, shrivelled grain, impurities/foreign matter and discolored grain) and total loss was determined. The hermetic bags were also examined for insect damage (perforations).There were differences in overall maize grain damage levels across the villages after 7 months (Fig. 20). The damage levels were higher in the higher altitude villages: Buger (1686-1725 masl), Kambi ya Simba (1545-1626 masl), and G. Lambo (1474-1486 masl) compared to the lower altitude ones: Chemchem (1219-1240) and Changarawe (1375-1440 masl). An earlier study that also compared physical quality of stored grain in two contrasting agro-locations of neighboring Babati District also showed that the grain damage levels were higher in the high-altitude location (Mutungi et al., 2019 7 ). Usually, lower altitude zones would be favorable for insect multiplication because of warmer and more humid conditions, so would experience higher grain damage. The cooler conditions, however, also encourage mold, but could also encourage insect damage due to higher grain moisture; moist grain is softer and insects bore into it easily during oviposition. Thus, the higher overall grain damage recorded in the high-altitude villages may be attributed to the interaction effect of temperature and relative humidity on insect population development, but also the progression of other forms of biodeterioration. The cultivated varieties and farm practices may also have contributed to the observed differences, although specific data in this direction could not be generated with certainty.The performance of hermetic storage technologies was not significantly different (P = 0.628), and neither amongst the villages (P = 0.641). Similar results have been reported (Abass et al., 2018 8 ). The overall grain damage levels averaged 8-9% and translated into physical quantity losses of 4.4-4.9% after 7 months of storage. These losses can be considered reasonably low (a damage level > 5% is considered significant because the grain attracts significant price discounting in the market; Compton et al., 1998 9 ). However, three other interesting observations were made:(1) Insects survived in the hermetic containers. The populations were lowest in the AgroZ bag and highest in the metallic silo. The resultant grain damage by insects followed the same pattern. It is not strange that the insects surviving in the hermetic containers did not have a huge impact on grain damage. This is because the activity of the insects was reduced by the relatively low oxygen conditions. Nonetheless, the presence of active insect activity signals that sound handling and management of the technologies by farmers must also be ensured, especially because farmers would need to open the containers more frequently. (2) A significant number of the hermetic bags had insect punctures (Fig. 21). Interestingly, the double liner PICS bags were more damaged by insects compared to the AgroZ bags, which are made of micro-multilayer sheets forming a single hermetic liner. An example of one extreme case is shown in Figure 22. Air-tight bags with insect holes are ineffective are no longer attractive to farmers after a single use. Earlier research showed that air-tight bags should be reusable for at least 2-3 seasons to be economically attractive (Kotu et al., 2019 10 ).(3) Unlike in previous assessments, the Larger grain borer (Prostephanus truncatus, Horn;LGB) was identified in some farmers' stores during the current trial (Fig. 20). The average LGB incidence on the harvested maize before storage was 4.7% (Changarawe village 12.5%; Bashay 10%; Slahhmo 12.5%; 0% in the other villages. At 7 months the prevalence was 8.5%, and the pest was noticed in all the eight villages except Buger. The incidence of the common grain weevil was 76% on harvested maize before storage, and 72 % at 7 months sampling. The LGB is the greatest threat to stored maize, especially in the warm humid regions; the pest tolerates drier conditions better than other storage pests (Haines 1991 11 ) and causes more damage in the drier environments. It was therefore not surprising that the extreme case depicted in Figure 6 was in Changarawe which is about 1220 masl. Successful grain storage devices must demonstrate the ability to control or supress this pest, which is capable of causing extensive damage to storage structures. The round yellow variety exhibited higher, but not significant, infestation and damage by bruchids, right from the field and during storage. Overall damage (includes insect damage and other forms such as change in color, shrinkage, and mold damage) by variety was significant (P = 0.030; Fig. 24); the round yellow variety was most damaged in both PICS and PP storage. This finding agreed well with what farmers had earlier reported. The effect of storage technology was also significant (P = 0.000; Fig. 25) but there was no significant interaction effect between variety and storage technology. Integrity of hermetic bags. The PICS bags were perforated by bruchids. Where the bruchids did not make perforations, clear transparent lesions were evident. The lesions were similar to windows often seen covering the maturing adults inside infested seed, just before the adults emerge, but these collapsed quite easily into holes, which would allow in air. There were more perforations and lesions on the inner liner compared to the outer one (Fig. 26). More than half of the bags had over 50 insect holes on the inner liner whereas about a third had at least 50 clear insect holes on the outer liner. The bean weevil (Acanthoscelides obtectus Say), and the Mexican bean weevil (Zabrotes subfasciatus Boheman) are the common bruchids known to attack beans. The two pests are thought to co-exist but A. obtectus is reported to be more widely distributed in East and Southern Africa and is distinguished from Z. subfaciatus by the ability to oviposit on maturing pods in the field, whereas the latter hardly does so (Giga and Chinwada, 1993 12 ). The incidence of adult bean weevil infestation was 58% at the time of storage. The median infestation level at the onset of storage was 20 adult insects/kg, but infestation levels as high as 200 adults/kg were determined. This was an indicator of already high levels of latent infestation. As a counter measure, an additional step to disinfect the grain before bagging, e. g., solarization on mats, is recommended.Bruchid populations in the PICS bags were low up to 3.5 months, but then increased significantly by the 7 th month, suggesting that the insects did not die, and the hidden infestation was able to emerge and reproduce further in some stores. Low oxygen environments can trigger insects to enter diapause, an hypometabolic state in which activity is highly minimized (Mutungi et al., 2014 13 ). The return to normal state could then happen with frequent opening of the bags as would be done by users in many households to draw grain for consumption or sale. Furthermore, immature stages of many insect species exhibit higher tolerances to hermetic storage conditions than adults (Annis, 1986 14 ), which would then explain bruchid resurgence at some point, if produce is internally infested at the time of storage. In the present case, the hermetic PICS bags used to store beans for 7 months were highly perforated by bean bruchids possibly because of the combination of factors including high initial infestation levels, poor sealing, and even poor-quality bags. With this high extent of perforation, farmers would be unable to reuse the bags as recommended for economic reasons.Farmer perceptions of the technologies. Most farmers (66%) liked the metallic silo which could not be damaged by insects or rodents and was able to store more food in a confined space. However, we also noticed that 27 out of 35 households (77%) participating in the demos were unable to accommodate the 500 kg silo because it was too large to pass through the door of the houses or stores, otherwise they would have to make do with modifications or adopt a smaller silo. Farmers were interested in the local availability and suggested that having it manufactured locally would probably make it cheaper. There were also queries regarding durability; farmers felt that it was too light and thought it would be attractive if manufactured from a stronger material.A main concern regarding the hermetic bags was consistency of quality from batch to batch (season to season). Farmers who had applied the technology before pointed out that the bags introduced in the past years were stronger and offered better protection. According to farmer ratings, the single liner AgroZ bag performed better than the double liner PICS bags. Farmers felt that the bags were not suitable for beans, arguing that bean weevils (bruchids) punctured the bags with more ease than maize weevils. Gender and socio aspects of the technologies were not assessed. To be able to elicit meaningful responses on these, it was advised that farmers/users should have a long period of interaction with the technologies, at least two seasons.Economic interpretation of the produce damage abatement. From the work of Compton et al.(1998 15 ) insect damaged grains attract a price discount of 0.6-1% for every addition 1% grain damage. Similarly, from Mishili et al. (2011 16 ) common beans may attract a price discount of 2.3% for every bruchid hole per 100 bean seeds in the urban retail markets of Tanzania. Conservatively, this value can be taken to mean a 2.3% discount for every 1% damage. We apply the following data (Tables 18-20) to compute profitability of the various technologies for maize and beans. We assume a 25% opportunity cost of capital and apply the framework of Jones et al. (2011 17 ) to derive the returns to storage. Other assumptions: hermetic bags could be used for a second season. Cost of the hermetic bag was straight-line depreciated over two years (crop seasons). An example of the estimation is shown in Table 21, and results summarized in Tables 22 and 23. 1. From the present results, the PICS bag was not profitable for maize storage because of the high grain damage levels and losses. The AgroZ was profitable in the 2 nd year of use; returns to investment = 6.57%; Net returns 10 $/ton. 2. Profitability of the PICS bag for beans storage varied with variety depending on the market value, vulnerability to damage, and attack by insects of different varieties. The technology was profitable for only one variety \"Oval yellow\"; returns to investment: 10.8-13.5%; Net returns: 59.4-72.8 $/ton. Earlier work revealed that the three varieties had different traits with respect to storability, nutritional value, and economic value. The round yellow variety attracts a higher market price because it cooks fast and uniformly and does not cause flatulence. It is therefore preferred in urban markets where cooking fuel is a constraint. Nonetheless, it is more susceptible to insect attack during storage and also undergoes a color change during storage, which are likely to cause a higher amount of grain that cannot be sold at a premium price. The Purple specked bean resists insect damage but is least preferred because it takes too long to cook and causes flatulence while the oval yellow bean is a moderate variety (Table 24). -Causes Less flatulence compared to PS.-Less flatulence as YR.--Superior taste.-Less tasteful than PS.-Less tasteful than YR. Economic --Lower prices in the market.- 2000 18 ). Individual minerals were analyzed using atomic absorption spectrophotometry.Common beans. Storage duration influenced the levels of all measured nutritional parameters except fiber (Table 25). The interaction effect of storage duration and variety was also significant for all the parameters except fat. Storage technology was significant on total ash and iron; on average the beans stored in PP bags had 3-5% higher levels of total ash and iron. The interaction of storage technology and variety was, however, significant for protein, iron, and manganese, further supporting the observation that air-tight storage did not perform the same way for the different common bean varieties. Significant effects (P -values at 95% CI) are presented, followed by partial eta squared (ηp2), in parenthesis, which is a measure of effect size or relative contribution of the factor of factor combinations to the overall variability observed for the particular dependent variable.Maize. Crude protein, fat, and fiber content of maize stored in PICS and PP bags did not differ with storage technology, while total ash, Fe, and manganese were significantly higher in the maize stored in PP bags (Table 26). Storage duration had clearer and more pronounced effects. Unlike common bean protein, fat and ash increased in the first 3.5 months after which a decrease seemed to occur. With respect to protein content, a similar trend was reported (Pinto et al., 2006 19 ). In the present case, increases were 0.6-6.7% (protein), 13-19% (fat), and 16% (ash). The greater increase in the first months is probably because of the development of insect larvae inside the grains and the decrease that follows could be attributed to emergence of adult insects and the feeding on the grains that continue thereafter. Unlike bean bruchids that continue to reside for some time inside the grains after reaching adult stage, the adult maize weevils are more active and tend to leave the grain at once to oviposit on new grains (Ngángá et al., 2016 20 ). The levels of the three micro-elements-iron, zinc, and manganese-increased linearly probably due to increasing hidden infestation. The increases were by 26%, 16%, and 29% and 56%, 36%, and 113%, after 3.5 and 7 months, respectively. Fe and Zn are known to accumulate in grains. For the maize stored in hermetic containers, these nutritional improvements are useful, but should be confirmed. Significant effects (P-values at 95% CI) are presented and are followed by partial eta squared (ηp2), in parenthesis, which is a measure of effect size or relative contribution of the factor/ factor combinations to the overall variability observed for the particular dependent variable.A study was conducted to investigate the drivers of food choice in the semi-arid central zone of Tanzania. Focus group discussions were used to develop and test a contextualized survey tool. A survey of drivers of food choice relating to pearl millet and pigeon pea feeding to school going children was conducted with 130 respondents. Highlights of some results are given below.Pearl millet. The grain is largely perceived in these communities as food for caregivers who generally tend to be female, young, and school going children (Table 27). Yet over 60% of caregivers were unaware of nutritional benefits of pearl millet, though they were aware of the benefits of iron and zinc (which are present in pearl millet) to the health of their children. The study finds that adolescents are a nutritionally vulnerable group (Table 27) that could benefit from the nutrients in pearl millet, especially iron and calcium, needed for growth. There is need to promote innovative recipes and approaches to expand consumption to the group. A total of 65% of the caregivers were not worried about availability of the grain, but 30% indicated the time required for processing prior to feeding to be a challenge. The respondents also identified medical doctors as the trusted and influential personnel in disseminating nutrition and health messages. Pigeon pea. A trend of consumption, similar to that of pearl millet, was also observed for pigeon pea. Knowledge on the high protein and iron content of pigeon pea was limited (< 50%) among caregivers even though caregivers were aware of the importance of iron containing foods to the health of the child. During nutrition education, the iron content of pigeon pea should thus be emphasized to drive acceptance of pigeon pea in daily diets especially for groups such as adolescents. Unlike for pearl millet, the majority of caregivers (54%) were worried about the limited supply of pigeon pea while 39% consider the processing time a challenge.The results show the need for increased promotion of pigeon pea production, together with its promotion for consumption. For both pigeon pea and pearl millet, the promotion of promotion of labor-saving processing technologies will likely improve their consumption. Health service providers appear to have the most influence on nutritional advice to caregivers; up to 93% of them believe the doctors' opinions to be very important. Strategic partnership with health service providers is thus a good starting point to increase nutrition knowledge delivery.Maize occupies a disproportionately high percentage (70-80%) of cropped land in central Malawi, leaving only at most 30% of the land for grain legumes and other minor crops. Dietary diversity studies have confirmed the dominant role of maize in diets. Consequently, protein and micronutrient deficiencies are widespread. Over the years, we have advocated for a shift towards intensified scaling of grain legumes on farms. While this is one pathway towards bringing more balance on farms and improved nitrogen cycling through biological N2-fixation, there is an opportunity to improve nutrition without necessarily changing the proportion of land allocated to grain legumes. This could be achieved through increased use of nutrient-dense and drought-tolerant bean varieties in the maize-based cropping systems to increase land productivity in areas with small land holding capacity. Maize and common bean are both major food crops in the cereal and pulse categories, where maize is a source of carbohydrates as bean is for protein in human diets.A study was carried out on maize/bean intercropping under field conditions on three experimental sites: Dedza, Linthipe, and Chitedze. At Dedza and Linthipe, the trials were located in farmers' fields, while the one at Chitedze was at a research station farm. This experiment tested the combination of maize with two types of common bean growth habits (bush and climbing). Within each bean growth habit, there were two types of varieties, which were selected on purpose. Among the bush bean category, both varieties were released in Malawi, where SER83 is known for drought tolerance, and NUA45 is known for nutritionbiofortified (high Fe and Zn) content. In the climbing bean category, there was a local variety (Domwe wawilira) and a new test variety (MAC109). To compare maize with maize/bean intercrop treatments, one plot was planted to maize pure stand. Likewise, to compare bean/maize intercrop with bean only, the whole set of bean varieties were planted in pure stand, where the climbing bean was supported by stakes.The mean grain yield of common bean was 600 kg/ha at Linthipe, 431 kg/ha at Dedza, and 298 kg/ha at Chitedze (Table 28). The main attribute to low grain yield across the sites was the heavy rains associated with cyclone Idai in March 2019, which led to excessive bean flower drop and subsequently poor pod set. In addition, the excessive rains came along with diseases like angular leaf spot and floury leafspot at Deadza. Across all the three testing sites, common bean yield was higher in pure stand compared to the intercrop. The mean yield of maize was higher in Linthipe (4875 kg/ha), followed by Dedza (2191 kg/ha) and Chitedze (671 kg/ha). At Chitedze, the maize crop was attacked by fall army worm at the vegetative stage and this led to low grain yield while at Dedza the acidic soil and cool temperatures might have contributed to low maize grain yield. Despite the low grain yield of both common bean and maize, especially at Chitedze and Linthipe, the land equivalent ratio was greater than 1.0 (Table 28) in all the testing locations emphasizing the economic advantage of intercropping common bean with maize. The farmers were given cards with different numbers to use for ranking. The farmers were to choose from different varieties of beans, and different cropping systems. They were given a card with number 1 for their best choice; 2 for their second choice, and 3 for their third choice. To effect the selection of a technology and its ranking, each participant had to place a corresponding card in a plastic bag located in each technology plot. Men and women made their choices separately beginning with the best choice. After tallying the selections, reasons were given for each choice (Table 29).Table 29. Participatory technology selection.Focus group discussion results on gender implications of the different bean varieties. Nineteen farmers from Linthipe EPA were invited for a focus discussion on gender issues in relation to the bean crop. The interaction had 7 male and 12 female participants aged from 24 to 57 years. Table 30 summarizes the bean production themes and consequent responses.Table 30. Responses that were advanced in relation to gender participation in common bean production.The decisions are made as a couple depending on the size of land required for the crop.Decision is made as a couple depending on how much money is available in the household.Land preparation, planting, fertilizer application, weeding, and harvesting are done by both men and women. When children have closed from school for the day, they assist with field activities. Postharvest activities are mostly done by women and girls. The activities include drying, de-husking, winnowing, and postharvest treatment 4. Selling of harvest Depending on the quantities involved, either men or women are involved. If the quantities are less than 50Kgs, women take the beans to the market. If quantities are above 50Kgs, men take the produce to the market because of the effort required.In rare cases, husband and wife sell beans without the knowledge of the other to purchase alcohol.A couple decides on how the funds should be used. Funds have been used for paying school fees for children and procurement of inputs. The study was conducted in the semi-arid ecologies of central Tanzania and the following are the key findings: 1. Groundnut seed value chain is under-invested by the private sector, including the government seed agency (ASA) in central Tanzania (Table 31). As such, the informal systems predominate, with seed supply (production), mostly being done by farmergroups, managed through associations. Most of the seed producers (51.6% of the farmers involved in seed production) are producing quality declared seed followed by those engaged in certified seed production. The study established that 68% of the seed producers are women. 2. The main improved seed sources are public research agencies such as ICRISAT and TARI-Naliendele. The groundnut seed value chain is also not competitive, being prone to production risks (weather and diseases). The formal seed sector is still weak with very few private seed companies engaged in production, along with their agro-dealer networks to sell groundnut seed. The private sector albeit, shows a slowly growing demand for improved seed, mostly driven by the grain market in Kibaigwa, that supplies grain to the country and region. 3. Grain production in that case is slowly driving demand for improved inputs such as seed. 4. Seed production standards exist for groundnut and the seed being produced should adhere to distinctiveness, uniformity, and other key seed production measures. 5. The seed production regulatory services are offered at a fee whereby seed companies are mandated to pay the fee in case of producing certified seed whereas for QDS the fee is paid by the government. The government system has no distinct incentives to promote investment in development of improved varieties, but investors are rewarded with intellectual property rights for groundnut. The authority ensures the seed under commercialization follow the agreed standards through field inspections, sorting, and grading; and issuance of seed certification and quality mechanisms are in relation to quality and shelf life. 6. Seed production is supported by the extension staff from government, but they experience several challenges when executing their support services such as low level of education of trainees, group cohesion, and limited supply of inputs (some of the farmers expect to get inputs free of charge) to a large extent; and lack of collateral in relation to input acquisition. 7. Though the public sector supports seed production, neither they nor the private sector are fully involved in ensuring efficient delivery of groundnut seed. As such, an integrated seed supply system would offer a sustainable solution, and this calls for concerted efforts to have strategic partnerships towards achieving this goal. Opportunities in support of this approach were identified (Table 32).Table 31. Groundnut seed supply avenues in central Tanzania.Frequency Percent Remarks and in-depth views Agro-dealer 7 10.9The seed supply in the region was being done by a number of organizations including community seed banks, with NGOs and research institutes (TARI and ICRISAT) dominating with moderate supply from the agro-dealers. Most of the community seed associations sell the TOSCI certified seed direct without involving the agro-dealers.The agro-dealers stated that red colored groundnut is the most preferred by the market; and one kg of shelled seed cost Tzsh-20-0. The supply from the agro-dealers was low due to the fact that there was no major private seed company distributing groundnut seed in the country.1. This was stated by the agro-dealers as a major drawback since the demand for quality seed is high. In addition, some farmers tend to recycle seed from the previous season, thus reducing the demand that the agro-dealers would cater for. 2. The model of production entails both contractual and own production, thus this serves as an avenue for employment for youth and women who are hired to produce the seed. The proportion of women contracted as per the seed companies interviewed is 74% while the rest are youth. Among the seed producers, only one (DASPA) was involved in the production of seed for other crops, and groundnut represented 40%. The producers sell the seed direct to farmers and farmer groups. 3. Market information and infrastructure were highlighted as major challenges the seed producers face in seed distribution. The seed producers were well supported by government research and extension departments in terms of provision of early generation seed, linkage to farmers and markets, agronomy, postharvest, and storage. The producers get fertilizer from manufacturers. The seed producers have processing units but the stated access to machinery and packaging of the seed as major challenges they encounter. 4. The seed producers are governed by government seed policies (distinctness, uniformity, stability, isolation distance) that they have to adhere to, and they testified that these policies support their seed production business objectives. The existing regulations include registration and licensing, at least 3 field inspections, laboratory testing, and certification/permit to sell seed. The seed producers have access to credit to support their agro-enterprises at an interest rate of 7-18%. 5. The seed producers are part of associations that produce seed and in support of Agroenterprises as well. They also participate in agricultural shows, initiatives which they attribute to stimulating demand for their seed. The companies are also involved in market scoping missions annually.Table 32. Opportunities in input supply system in support of seed production in central Tanzania.Supply of early generation of seedThe study identified key entry points that would act as economic drivers to farmers in central Tanzania. Seed multiplication was identified as the most feasible option. This is can go a long way in stimulating the supply of quality seed in the region. As such developing a concrete strategy that would ensure access to basic seed, credit services, and extension support to feed into the seed multiplication initiative would contribute to making the groundnut seed value chain more vibrant. Improving the functioning of markets for the grain in the region can translate to more demand for seed.Provision of credit services 11 16%Seed multiplication business 31 46%We conducted the seed VCA study survey in Kongwa, Kiteto, and Babati between the last week of August and the last week of September. The survey involved key actors in the seed value chain households (consumers/grain producers), input suppliers, seed producers/suppliers, seed regulatory authority, and researchers involved in variety release. The information and data are being analyzed and the results will be submitted by December 15.The objective of this work is to scale out promising technologies beyond the Africa RISING target sites in Tanzania by providing advice on agronomy, climate services, and market information via phone. Use of interactive videos for training was also deployed as an add-on to improve knowledge transfer to the farmers. The videos were developed involving the communities and in Swahili language in Tanzania to ensure the literacy gap was bridged and give the communities a sense of ownership.During this reporting period, we reached more than 2,200 smallholder farmers (unique profiles in Babati) using SMS information services; 70% were males and 30% females. The low number of registered female farmers may be attributed to mobile phone ownership, which is skewed in favor of men due to cultural and socioeconomic factors.Currently, dissemination of SMS on agronomy is ongoing in trickles as the postharvest season is winding up and preparations for land preparation will soon commence. Equally, messages on Agri-tips on harvest, postharvest technologies, and storage and marketing tips were delivered to an audience of 2,200 farmers. We are engaging with project partners to tailor messages to the farmer's needs towards providing reliable, relevant, and timely information on postharvest interventions and livestock activities.Other accomplishments during the reporting period are: 1. Successful engagement and partnership with ESOKO.2. Showcasing AR-NAFAKA work part of which includes components from Africa RISING at the NaneNane Agricultural show in Tanzania. 3. Showcasing Africa RISING MWANGA Platform at the AGRF in Accra in September2019. 4. Cleaning smallholder farmers' profile information and developing a database of the project beneficiaries for both the Southern Highlands and Babati farmers.Africa RISING partners and personalized information based on farmer profiles. 6. Report on beneficiaries' user experiences for monitoring and evaluation purposes. 7. Align the SMS dissemination with the radio programs to ensure complementarity. 8. Deployment of the K-Plus video module to the Platform.• Feedback mechanism: Farmers requested for a phone number they can call when they have inquiries on farming, markets, weather, or inputs. We feel the most appropriate channel is a call center running a farmer helpline, which they can call and get answers from. Esoko Tanzania is seeking to establish this as it will be a necessity as the number of farmers being reached increases. • Sensitization and creating awareness through mass media: There should be a provision for running radio or TV campaigns before engaging farmers to ensure they have some background of the project before engaging them on the ground. This can also be used for aiding in farmers self-subscription and registration. • Early deployment: The most vital and key component of improving production for smallholder farmers lies in seed variety selection. Therefore, it is important to start the campaigns early enough so that the farmers can make informed choices based of the information they get about the improved seed varieties. We encourage colleagues (Partners) to remember invitation of agro-dealers to field days. • Increase the number of farmers profiled, ICT is all about scale, the bigger the number the better: To make the database more attractive and an inch closer to sustainability, investment in profiling at least 200,000 farmers is recommended. This project is only reaching 13,000 farmers but there is potential to reach hundreds of thousands with an additional 25,000 in the database unprofiled due to the absence of phone contact. Data from all the sites reveal interesting results. The density plots in Figure 27 show peaks of the conventional ridge tillage system, which was lower than the CA systems in central Malawi and was at par with the maize/legume intercropping under CA in southern Malawi. CA systems in central Malawi seemed to occupy a wider range of yield spaces in both cases, which is probably an indication for a greater resilience to climate change. A similar trend was observed for sites in Eastern Zambia (Fig. 28) where main peaks of conventional systems were found around 3.5-4 t/ha; again, CA systems occupied a wider yield space.Average yields in the four agroecologies (Fig. 29) were mostly significant for CA treatments. In central Malawi, both CA interventions out yielded the control whereas in southern Malawi it was only the direct seeded treatment without intercrop. In the manual CA system of Eastern Zambia, only the maize-legume rotation under CA had a significant yield benefit while it was significant for both CA systems under animal traction in eastern Zambia. These overly positive yield results in the last cropping season clearly show a strong proof of concept that the SI systems we promoted have yield benefits. Interestingly maize-pigeon pea and maize-cowpea intercropping in southern Malawi and Eastern Zambia had yield penalties. This is likely due to the strong competition effects between maize and legumes in this relatively good cropping season with well distributed rainfalls in the target agroecologies. Legume rotational yields from both clusters of site in Malawi confirmed that both groundnut and pigeon pea yields were higher under CA systems than under the conventional control treatment. For groundnut in central Malawi, farmers could harvest between 396 and 546 kg/ha more grain yield (42-57%) if they planted them under CA. For southern Malawi the yield benefit for pigeon pea was 182-206 kg/ha (15-17%) if planted under CA. FarmMatch is an innovation designed to identify (i) the most suitable and promising technologies for different types of farms, (ii) where the hotspots of suitability of technologies and potential adopters are, and (iii) which contextual farm and technology characteristics promote the adoption and scaling of technologies. Testing the algorithm for performance, matching and signaling is still ongoing. A software engineer was hired to program the matching algorithm of the FarmMATCH framework. He has been working with researchers of IITA and IFPRI to prepare data from ARBES and GIS maps, and analyzed these data for their use in FarmMATCH. We have commenced testing the framework for a number of GIS gridcells in Babati, Tanzania. Developing a \"data pipeline\" that can extract ARBES data and insert it into farm models, to allow rapid assessment of more complex SI indicators for sampled farms in Africa RISING case study areas, has been initiated.This study will likely take into consideration the findings of a study (Jambo et al., 2019 21 ) that analyzed the role of intrinsic and extrinsic motivations among 246 sampled households alongside the perceived benefits and constraints from SI practices in five districts of Malawi and Tanzania. The results showed that farmer decisions were not exclusively dependent on external incentives, but also on intrinsic values which farmers attach to their production resources and farming practices. Despite various benefits perceived, farmers highlighted the lack of financial resources as a major constraint to the use of externally proposed SI practices. The results demonstrated equal importance of intrinsic and extrinsic motivations in influencing the number of SI practices which smallholder farmers used. It was proposed that explicitly addressing both intrinsic and extrinsic motivations in further research in combination with socioeconomic and biophysical variables would give a better reflection of what drives farmers' decisions to use more sustainable farming practices.Cost-benefit analysis. Socioeconomic data sheets to collect labor data were shared with partners in the three research areas. Labor data, input quantities, and prices for each treatment were collected, entered, and cleaned and cost-benefit analysis (CBA) of different cropping systems done in all target areas.The CBA results of different systems revealed that in a normal season with rainfall evenly distributed, in high productivity areas, all cropping systems will produce positive net-benefits.We analyzed different sets of data looking at partial budgets of maize only, of maize in combination with legume rotation, and at maize in combination with a doubled-up legume system (Tables 33-36).In southern Malawi, looking at the maize treatments only, CA maize-legume intercropping provided the highest net benefit and return to labor followed by the CA sole maize. In central Malawi net benefits of the intercropping strategy were lower due to failure of the intercrop (cowpea) in these areas. It was interesting to note that in central Malawi and the Eastern Zambian animal traction system, the CA sole maize cropping system outperformed the CA maize legume cropping system, yielding the highest net-benefits among the cropping systems promoted in these target areas (Tables 33 and 34). CA maize legume intercrop provided the highest net benefits and return to labor in the manual systems of Eastern Zambia (Table 34). This is mainly because in a rotation, the cropped area is divided between both the maize and the legume, whereas in intercropping treatments they share the same space, which has a direct bearing on the gross benefits.The matrix ranking of technology preference show that both men and women prefer the CA maize legume intercrop or CA maize legume rotation over other cropping systems. During the interactive discussion, women highlighted that they preferred the CA maize legume intercropping for two main reasons; reduction in weeding labor and increased food diversity, whilst men liked these systems for reduced market risk and improved income stability. Notes: Returns to labor is calculated as: Gross benefit-(total cost-labor cost))/labor cost; Net benefits are calculated as: Gross benefits-total costs. Notes: Returns to labor is calculated as: Gross benefit (total cost-labor cost))/labor cost; Net benefits are calculated as: Gross benefits-total costs. Notes: Returns to labor is calculated as: Gross benefit-(total cost-labor cost))/labor cost; Net benefits are calculated as: Gross benefits-total costs.Gender and labor distribution. Socioeconomic studies on the impact of CA-based sustainable intensification technologies on labor distribution, food & nutritional security, and income both at household and community level in three districts of eastern Zambia and five districts of Malawi were implemented. An integrated mixed method approach, which combined structured questionnaires to gather quantitative data and gendered focus group discussions for qualitative data were administered. Using this integrated approach, the implication of these improved livelihood changes on gender dynamics particularly with regard to labor distribution and decision making were analyzed.The preliminary results reveal that though SI technologies help in spreading and reducing the labor of women during land preparation and weeding by 30%, increased yields from these systems increase workload for women during threshing and storage by 15 to 20%. Women in all the target communities did not perceive the increased workload during harvesting and storage as a burden as they had control over the use of produce and income of the promoted food legumes (cowpea, groundnut, and pigeon pea). It was interesting to note that SI promoted technologies contributed to 39%, 35%, and 38% of the total household income in southern Malawi, central Malawi, and eastern Zambia, respectively (Tables 33-36).Nutritional benefits. Three indicators were used to assess the contribution of CA-based SI practices to household food security and nutrition outcomes. First, the household food insecurity access score (HFIAS) that captures the experience of food insecurity calculated (following methods outlined by Coates et al., 2007 22 ), reflecting the food insecurity of members of the household. Second, the household dietary diversity score (HDDS) was applied, which is a count of food groups that household members have consumed over a 24-h and/or seven-day reference period, following the approach documented in the SIAF guidelines by Swindale and Bilinsky (2006 23 ). Third, the food consumption score (FCS) which calculates the frequency of consumption of different food groups by a household during a seven-day reference period, using weights assigned to each food group by nutritional value, adapted from the World Food Programme (WFP 2008 24 ).The analysis of results and report writing is still in progress and will be available soon. The preliminary results revealed that all the food and nutrition security indicators have improved over the years (from 2012-2019) in the target communities (Table 37). This may indicate that households are diversifying their consumption following production diversification and improved incomes. The results also show that greater improvements in the food security indicators were observed in the southern Malawi and Lundazi district of eastern Zambia. Since 2012, there has been an overall reduction in food insecurity of members of the households of 32% and 27% in the target communities of southern Malawi and Lundazi District, respectively (Table 37). In this report, data and discussions have been presented on various impact aspects of CA. To illustrate their combined effect, we used the SIAF to construct two radar graphs for central and southern Malawi sites using the average yields of maize and legumes for the 2018/2019 cropping season, the net benefits, calculations of protein and calories, reduction in erosion, increase in soil carbon, rating of technologies, and reductions in labor (Figs. 30 and 31). The radar graphs for both southern and central Malawi show an overly positive assessment of improved technologies as compared with the conventional control practice. The difference was more pronounced in southern than in central Malawi due to harvest from more crops (e.g., from pigeon pea intercropping and pigeon pea alleys), which failed in the central Malawian trials. 38); 1) eight treatments based on fixed-N application strategies to a maximum of 92 kg/ha and 2) one variable N application strategy, hinged on the quality of the rainfall season. All plots received 10 kg/ha P as single super phosphate. Basal N fixed, further application a function of rainfall Maize productivity. During Year 1, maize grain yields increased from 0.9 Mg/ha for P only treatment to a maximum of 3.5 Mg/ha when 92 kg N/ha was applied. Due to an extended dry spell, a maximum of only 46 kg N was applied for the variable N treatment, achieving yields of 3.2 Mg/ha (Fig. 32). During Year 2, there was excessive rainfall in February 2019 (related to Cyclone Idai), resulting in very poor yields of 0.47 t/ha maize grain when no fertilizer was applied. There was a large response to fertilizer resulting in highest average yields of 4.2 t/ha with 92 kg/ha N applied. Depending on rainfall received in a specific site, between 69 and 110 kg N/ha was applied for the rainfall responsive N application strategy, with an average of 3.8 t/ha (Fig. 32). The N response strategy does not necessarily result in the highest yields but increases N-use efficiency substantially. This is essential for improved economic gains with use of expensive N fertilizer resources. Soil moisture dynamics. To monitor soil moisture, Hobo soil moisture sensors were installed in two low N (Treatments 1 and 2) two high N treatments (Treatments 6 and 7). The hobo sensors from the four plots were connected to a central data logger, which receives and processes data. Soil moisture data was downloaded directly from the data logger. Examples of soil moisture profiles are shown in Figure 33 in m 3 /m 3 against time. It would appear that low N treatments lagged in utilization of soil water when the crop had reached full canopy. This is important for water use efficiency-better fertilization is associated with more efficient transpirative water use. In Malawi, the Africa RISING program introduced several technologies: Fertilized maize, no fertilizer, legume/maize rotations, doubled-up legume technology, maize and pigeon pea intercrop, and double row planting of groundnut and soybean. Farmers select one or more from the above technologies to practice in their own fields depending on their preferences or farming objectives.A structured questionnaire and focus group discussions were administered to assess farmers' preferences on several selected technologies. The assessment focused on household food production, income generation, and labor requirements. Data collection was done in Nsanama extension planning area. The results are presented in Table 39.Table 39. Gender disaggregated rating of SI technologies based on food security, income, production input requirements.Household food production. Maize with full rate of fertilizer, maize intercropped with pigeon pea, and maize rotated with pigeon pea were rated highly by both men and women (100%) as major contributors to household food production. Due to limited soil fertility in the sampled area, maize with fertilizer usually yields better compared to zero or half-rate fertilizer-maizebased technologies, hence contributes effectively to household food security, which is a major concern among both men and women in rural Malawi. Apart from yielding better, maize and pigeon pea intercrop contribute more to pigeon pea biomass. They together make nsima (maize meal) and relish, which is a major meal in southern Malawi for both men and women. This combination of maize and pigeon pea also contributes to nutrition security as it provides required carbohydrates and protein, respectively. Maize rotated with pigeon pea was also rated highly by both men and women due to the high yield of maize produced with less inputs (fertilizer) as a result of pigeon pea biomass. Maize with no fertilizer and maize with half-rate of fertilizer were least-preferred technologies by both men and women (100%) due to their failure to contribute fully to household food production. Low nutrient levels in the soils makes inorganic fertilizer to be a key component to maize production in the sampled area. Mixed reactions were observed from both men and women on contribution of pigeon pea and groundnut intercrop to household food production. All men (100%) ranked it highly as opposed to only 70% of women. Men considered total yields contributed by both legumes to be significant to household food production while women thought groundnut yields reduce more when intercropped with pigeon pea. On the other hand, the contribution of sole groundnut and sole pigeon pea to household food production was both rated highly (100%) by men as compared to 60% and 70% of women, respectively. The higher rating was due to low production costs as they require limited amounts of fertilizer.Income generation. All men and women rated maize with fertilizer full rate, maize in rotation with groundnut, maize in rotation with pigeon pea, and groundnut and pigeon pea as the best technologies and major contributors to household income generation. This is because they produce better yields among all the introduced technologies in the area, hence enabling them to have a surplus of good quality for sale. Maize with zero fertilizer was rated the least by both men and women because of little or no yield produced due to nutrient deficiency in the soil.Men differed with women on maize with half-rate fertilizer and soybean on income generation. Just like maize with zero fertilizer, men (100%) rated maize with half-rate fertilizer and soybean as poor on income generation while women partly agreed with men on soybean (60%) but differed on maize half rate. Women (100%) rated maize with half the rate of fertilizer highly on income generation. Both men and women agreed that soybean performed poorly in the area due to insufficient rainfall especially during later stages. Women, on the other hand, believe maize with half rate fertilizer can still perform better and produce a surplus for sale.Input requirements. Both men and women (100%) rated soybean, groundnut, and pigeon pea as the best technologies in relation to input requirement compared with all maize technologies. This is because legumes perform well even with limited or no fertilizer application. A total of 90% of both men and women also rated maize rotated with pigeon pea highly on input requirements as it performs well with a minimum amount of fertilizer. On maize rotated with groundnut, 10% of women disagreed with the rest (both men and women) as they think it is poor on input requirement. Pigeon pea and groundnut intercrop was rated the least by both men and women (100%) on input requirement. This is because pigeon pea develops faster in the area hence depriving groundnut of sunlight, which eventually affects their yield. Only 10% of men thought maize with half rate fertilizer was better on input requirement while the rest of both men and women thought otherwise. Some 30% of men also thought maize with the full rate of fertilizer was much better on input requirement due to its better yield which compensates for the cost of inputs.Labor requirements. On labor requirement, only sole pigeon pea received the best score by both men (100%) and women (90%) followed by maize intercropped with pigeon pea (80% men, 90% women). Pigeon pea was rated highly compared with other crops because the plant spacing is wider (90 cm) and most of the farmers do not apply fertilizer hence a low labor requirement. Groundnut intercropped with pigeon pea was rated poorly by both men and women (100%) on labor requirement. Any SI technology that had many several operations was rated poorly on labor, despite high productivity that may be associated with that technology. These operations included planting, weeding, fertilizer application, spraying, and harvesting, most of which occurs more than once. Harvesting of groundnut also has to be done carefully when intercropped with pigeon pea to avoid damaging pigeon pea roots, requiring more labor. The poor rating of soybean resulted from planting, which many farmers thought tedious due to the plant spacing (5 to 8 cm). Men and women differed on labor requirements of maize in rotation with groundnut and sole groundnut. All men rated labor requirement for maize in rotation with groundnut highly while the opposite happened with women (100%). Men thought labor requirement could be compensated with better yield and sometimes basal fertilization is bypassed on maize rotated with groundnut. A total of 90% of women thought sole groundnut required more labor while 70% of men thought sole groundnut did not require more labor. The women attributed their decision to ridge requirement (flat on top), plant spacing (10-15 cm), and double row planting for groundnut.Choice of technologies by smallholder farmers is influenced by a number of factors, which include, but is not limited to, contribution of the technology to household food production, income generation, input requirements, and labor requirements. Most of the farmers prefer technologies that contribute highly to household food production followed by income generation. However, the poor rating on labor was not related to overall preference for a technology-what was overriding was productivity and food security.A meeting was held in Babati District to discuss livestock technology scaling plans and commitments for 2019/2020 with World Vision Tanzania (WVT), FIDE, Re-greening Africa, and Farm Africa (FA). FA and FIDE already implemented training activities in the reporting period. Materials to use in developing MoUs to guide implementation were identified.Formulating feed rations from Napier grass, maize stover, and bean haulms for improved milk yield This activity is ongoing, having started during August 2019, and is being conducted in Long/Bashnet and Hysum villages in Babati District. Thirty-four farmers were selected to host the trials, in collaboration with village extension officers and the project data clerk, based on the following criteria:• Providing animals for the trial • Entrusting the project with their animals over the experimental period • Providing the basal rations-Napier grass and the other types of crop residues • Providing labor-to chop feed, actual feeding, and data recording as needed Formulating home-made chicken feed rations based on Gliricidia sepium leaf meal and vegetable waste This activity was initiated during August and is being implemented in four villages (Mlali, Mwanya, Matufa, and Seloto/Bermi) in Kongwa, Kiteto, and Babati districts, and is ongoing. A total of 32 farmers were selected to participate in the poultry nutrition experiment. Visits to selected farmers were conducted to ensure they met the selection criteria. A total of 1632 dayold chicks were procured from AKM Glitter Company and distributed to the experiment host farmers. Each farmer received 51 chicks and, as a starter pack, 28 kg of chick mash feeds, one packet of antibiotics, one packet of vitamins, and one packet each of Newcastle, Gumbolo, and Fowl pox vaccines, enough to vaccinate all experimental chicks and neighbors' chicks. a. The 32 farmers were trained on the experiment implementation and management. The following roles and responsibilities were agreed upon by the farmers: i. Farmers roles and responsibility ▪ NOT sell any of the experimental chickens before the end of feeding experiment ▪ Contribute maize grain, maize bran, sunflower seed cake, and medication for chickens during the experiment. ▪ Improve dairy houses, feeders, and drinkers. ▪ Contribute labor for grinding feeds and feeding chickens ii.Project roles and responsibilities. ▪ Provided to farmers materials for data collection during the experimental period ▪ Donate the chickens to farmers after the experiment. ▪ Provide vaccines, Gliricidia leaf meal, minerals, premix, weighing balance, fuel for grinding feed grains, and the grinding machine b. In addition, 82 farmers (26 females and 56 males) were trained on poultry husbandry, poultry feed processing, and poultry housing.Crop simulation modelling with APSIM to explore medium-to long-term SOC, and resource use efficiencies in intercropping systems of Malawi Estimating soil water characteristics. Crop growth models such as the Agricultural Production Systems Simulator (APSIM) are useful in simulating the effects of biophysical heterogeneity and management strategies. However, they require detailed biophysical data for simulation of crop production in the resource-constrained environments of SSA. Soil water characteristics are often poorly estimated as part of model parameterization. In this work, we bridged that gap by determining the Drainage Upper Limit (field capacity) and the lower limit (wilting point) for major soils for APSIM parameterization (Fig. 34). We then parametrized APSIM and evaluated how the detailed soil water characterization improved Plant Available Water Capacity (PAWC), water balance, and yield simulations for legume systems as tested on Africa RISING on-farm sites. Simulation modelling with APSIM. We parameterized and tested APSIM for a doubled-up legume SI technology against experimental data from on-farm experiments conducted in central and southern Malawi. We used soil and crop yield data from on-farm trials. The calibrated model was used to simulate groundnut-pigeon pea intercropping, maize-pigeon pea intercropping and maize-groundnut rotation, soybean-maize rotation, and continuous maize under a range of N fertilizer inputs.Simulated maize and legume grain yield generally approximated the observed yields from the 2012/2013 to 2017/2018 cropping seasons (RMSE = 1317 kg/ha for maize and 274 kg/ha for groundnut) confirming prior observations that APSIM is able to predict maize response to fertility inputs, rotation, and intercrops. Maize yields were reduced by around 30% in intercrops with pigeon pea compared with sole maize. However, the depressed maize yields were compensated for by pigeon pea grain. Similarly, the depressed groundnut yields in intercrops with pigeon pea were compensated with pigeon pea grain yields. Sole groundnut and soybean were highly beneficial to the following maize yields. Averaged across sites, maize yield after sole groundnut gave similar yields to maize receiving the full fertilizer rate. Hence, the nutrient gap for maize across the sites was largely filled by the legume rotation treatments receiving 50% of the fertilizer rate. This result indicates a potentially huge saving in fertilizer costs for maize production (setting aside opportunity costs of forgone maize in the preceding season) (Kiwia et al., 2019 25 ). Total soil organic C simulated in the top 15 cm of soil decreased over the course of our study for continuous sole maize at all three agroecological zones. Integration of legumes into the maize systems slightly reduced the magnitude of this decrease in soil organic C, especially when pigeon pea was added to the cropping system signifying the importance of grain legumes in sequestering soil C and eventual sustainability of the cropping systems. This result is in tandem with Smith et al. (2016 26 ) that reported higher total C and N levels in doubled-up legume systems compared with sole maize.Towards precision agriculture through hand-held monitoring of soil organic carbon and targeted fertilizer use Our Panel Survey that tracks progress being made by farmers in adopting SI technologies is data intensive and requires an innovative data handling system. To respond to this challenge, we began work on migrating from paper-based questionnaires to phone/tablet-based electronic surveys, and concurrently started training on the use of the Land PKS application and the handheld reflectometer for rapid evaluation of soils in fields of Africa RISING beneficiary and nonbeneficiary panel fields during April-May, 2019. Of particular interest was finding a rapid and inexpensive method to determine soil organic carbon (SOC) content. SOC status explains a large proportion of poor crop yields, as it determines early crop growth and regulates soil nitrogen and phosphorus availability. SOC status has an impact on fertilizer recommendations, as there is a threshold level that is necessary for crops to respond profitably to fertilizer. Fields below the threshold are not good fertilizer investments, they must be rehabilitated through SOC building practices. The consequences of this is that increasing doses of fertilizer should be applied to fields with increasing SOC as this largely determines yield potential. Soil samples from the panel farms were scanned with the inexpensive hand-held reflectometer to predict SOC and regressed against standard lab analysis of SOC (dry combustion, the benchmark method). We have since established a usable relationship between the soil spectral signatures and SOC content (Fig. 35).Recent work has improved the R 2 value to 0.74. Thus, we have a potential \"game changer\". Until the advent of the hand-held reflectometer, it was not practical or economical to determine soil SOC status for a given field. We are now moving on to test the efficacy of this new approach at district level in Ntcheu, where extension workers from four Extension Planning Areas (EPAs) are going to be trained on the use of the reflectometer in October 2019. They will subsequently use the reflectometers to advise farmers on which fields to target fertilizer application for maize production during the 2019/20 cropping season. Maize productivity will be determined for farmers who would have received their reflectometer-based recommendations for fertilizer targeting (treated group) and non-participating farmers in a similar agroecology. The approach for giving back results to farmers included the presentation by host farmers followed by the researcher. During the presentations, participants asked questions and shared comments on key lessons and observations. For example, farmers were able to express their understanding on the role of legume biomass in improving soil fertility. In particular, farmers reiterated that double row planting for both soybean and groundnut results in better productivity and improves soil fertility.Some important points raised were:• The Africa RISING project had increased experimentation by farmers as baby farmers considered themselves \"mother\" farmers after many years of experimentation. This confidence was evident from the coherent explanations on virtually all agronomic questions that the research team posed to the farmers. • Labor rating of technologies: Both men and women agreed that the most labor demands were associated with land/preparation, which principally is making ridges. Double-row planting was associated with minimal additional labor. What was of more concern to farmers, though, was not the additional labor, but the additional seed requirements with double row planting. Farmers welcomed the community seed production initiated by Africa RISING, which had resulted in more quality seed being produced locally.• Women farmers noted that there was increased consumption of healthy foods linked to soybean or groundnut processing. This was also directly a result of Africa RISING interventions.• Viability of certified seed from Lilongwe agro-dealers was generally poorer than QDS produced by farmers. It was intriguing to listen to farmers as they explained that seed stored in pods was always superior. • Most female farmers preferred Nsinjiro variety as its flour was rated highly for relish preparation. Exploring the productivity domains of selected legumes and cereals to elucidate their best fitting cropping system at community/landscape level and their dissemination A mother-baby study approach was used to establish field demonstrations in Kongwa, Kiteto, and Iringa districts under stressed and non-stressed conditions. Fourteen mother demonstrations were established (Table 40) to determine performance of legumes and cereals crops under different ecological and management regimes, and from these data were taken and analyzed; key results are presented below:Groundnut. There were significant differences (p < 0.05) in genotype reactions in the three subecologies when planted both early and late planting date (Table 41). As expected, the high potential sub-ecologies had the best performance and were able to support genotypes of medium duration-Virginia groundnut (takes 110-120 days to mature, e.g., ICGV-SM 02724). Nevertheless, the medium duration Virginia ICGV-SM 02724 losses up to 57% of its grain, when planted late in a low potential environment such as Igula and Njoro. Whereas the short duration Spanish ICGV-SM 05650 genotype out yielded the Virginia genotype by almost 300 kg/ha, its relative yield losses under a stressful environment were higher (Table 41). Higher yield losses were found for the landrace showing the advantage of superior genetic-environment interactions. The highest grain yield was found in Mlali, Moleti, and Manyusi-all in Kongwa District; whereas the lowest yields were in Igula, Njoro, and Kiperesa (Fig. 37). Overall, yield penalty ranged from 38 to 63% and from 17 to 46% in high and moderate sub-ecologies, respectively. Guide for dissemination: The elite material had superior genetics and indeed fitted well in the micro-environments earlier detected. Virginia groundnut, that takes about 120 days to mature, performed best in the high potential ecologies such as Mlali in Kongwa District compared to the short duration Spanish elite and local landraces, respectively. The relative yield losses in the landraces compared to elite Spanish and Virginia material, show the relative advantages of these improved genotypes, and suggest that Virginias, though high yielding, may only be best adapted for high potential areas where they secure harvests even in the event of a drought. Blanket adoption messaging is not advised.Pigeon pea. Significant differences in reaction (P < 0.05) of the genotypes was found in the different sub-ecologies and planting date (Table 42). All three materials are improved, and this may explain the non-significance in reaction to stress. However, in general, better performance was found for medium duration material (ICEAP 00554, and 00557), that take up to 180 days to mature, compared with the long duration variety ICEAP 00040 that takes up to 240 days to mature. At late planting, the medium-duration varieties also register high yield losses. Hardly any yield losses were recorded for the long-duration material due to its long crop phenology, compared with the medium duration that lost up to 82% of its yield moderate environments (Table 42). As such, the two medium-duration materials are best adapted for this region. Interestingly ICEAP 00040, a long-duration variety, was the most stable genotype across the different environments with moderate yields (Fig. 38). Guide for dissemination: The long duration variety (ICEAP-0040-Mali) that takes up to 240 days to mature was least adapted, especially under severe drought stress compared to the two early maturing varieties (00554 (Ilonga M1), 00557 (Ilonga M2). Yet the long duration pigeon pea, locally called Mali is popular. This shows the impact of limited access to improved seed of recently released material such as Ilonga M1 and Ilonga M2, which should be promoted to overcome the low farm yields.Sorghum. Generally, all the three improved varieties outperformed the local check. For the moderate potential environment, sorghum was planted in four villages. Late planting (two weeks after the first planting and onset of the rains, coincided with severe drought resulting in complete crop failure (Table 43). The new materials were highly adapted, Gambella 1107 being the best performer. The local landrace lost up to 71% of its grain when planted late, in a high potential sub-ecology compared to 11% for Gambella and 32% for IESV 23010 DL. This demonstrates the advantage of superior genotypes even under harsh conditions. Guide for dissemination: Pearl millet was only evaluated in three villages that fall in the low potential agroecology as identified by multivariate analysis of the genotype and genotype by environment interactions in the 2016-2027 cropping season. Interestingly while improved material such as IP 8774 matured earlier and produced high yields of up to 1.6 tons/ha, the comparator yield loss in the landrace was 11.4% compared to 28% in the improved material. Promotion may be guided by another factor-biomass production. The local check had the highest biomass perhaps reflecting selection for fodder, being a dual-purpose crop for semi-arid ecologies.Legume-cereal cropping systems. In Kongwa, intercropping elite pigeon pea and sorghum reduced sorghum grain yields by 400 and 160 kg/ha grown in alternate rows and within row, respectively, when intercropped with long duration pigeon pea variety ICEAP00040 (Fig. 40; Kongwa).In Kiteto, sorghum grain yields were reduced by 180 kg/ha when intercropped within row with medium duration pigeon pea ICEAP00057 (Fig. 37; Kiteto). This suggests that in this environment the medium duration pigeon pea variety offered competition for soil water with sorghum since medium duration pigeon pea reaches maximum vegetative growth before sorghum reaches maturity. Similar to the results obtained in Kongwa, the highest reductions in sorghum yield were realized when sorghum was intercropped with long duration pigeon pea variety ICEAP00040 in Iringa. Sorghum grain yields were reduced by 440 and 380 kg/ha when intercropped in alternate rows and within row with ICEAP00040, respectively (Fig. 40; Iringa). Further in Kongwa, there was a significant (P < 0.001) effect of pigeon pea variety on yield. ICEAP00040 gave 560 kg/ha more grain yield than ICEAP00557. There was significant (P < 0.05) interaction of variety and cropping system at Iringa. While there was no significant interaction between sole cropping and within row planting for ICEAP00040, planting ICEAP00040 in alternate rows with sorghum gave 45% lower grain yields than sole cropping (Table 45).Similarly, within row planting gave 70% lower pigeon pea yield compared with sole cropping for ICEAP00557. In Kiteto, pigeon pea grain yields were not influenced by intercropping. We developed protocols for data collection and parameterization and used them to collect data for parameterization of the model. Yield data was generated from our three experimental sites that evaluate the performance of improved legume and cereal varieties under intercropping in stressed and moderately stressed conditions of Iringa, Kongwa, and Kiteto districts. Data collected included soil samples for analyses of chemical and physical parameters, plant populations, crop phenology, biomass, PhotosynQ data, Leaf Area Index, and days to 50% flowering.APSIM was parameterized using soil data generated by ISRIC soil grids. Soil water characteristics, bulk density, and % soil organic matter were estimated using the SPAW model. Daily rainfall data was obtained using rain gauges at each study site while temperature and solar radiation were obtained from NASA power. The parameterized APSIM model was used to calibrate newly developed varieties of legumes and cereals and model evaluation before assessment of changes in resource base, resource use efficiencies, and productivity using long-term climatic data.Key results were that:• Simulated cereal (sorghum and pearl millet) and legume (pigeon pea and groundnut) grain yields, approximated the observed yields showing that APSIM can predict cereal response to intercropping (Fig. 40). A second season of trials is needed to validate these results. • In the low potential sites such as Igula and Iringa, pigeon pea grain yield was reduced by up to 30% when intercropped with sorghum, especially where the long duration pigeon pea cultivar was used, suggesting that varietal phenology is critical. • In pigeon pea and groundnut doubled-up cropping systems, the faster establishing groundnut used up most of the available water resources especially under drought as was experienced in the 2018-2019 cropping season, before the slow-establishing pigeon pea, especially for the long duration material, resulting in reduced pigeon pea yields. Thus, productivity can inadvertently be affected by crop and variety compatibility. • Total soil organic C simulated in the top 15 cm of soil increased over the course of our study especially when pigeon pea was added to the cropping system signifying the importance of grain legumes in sequestering soil C and eventual sustainability of the cropping systems.Modeling using APSIM shows that pigeon pea-sorghum and pigeon pea-groundnut intercrops can enable farmers in Central Tanzania to de-risk crop production by using multiple cropping.Integrating pigeon pea into the cereal-based cropping systems has an additional advantage of increasing total soil C overtime compared with continuous sole cereals. While this study has shown the potential of the APSIM model to devise appropriate management systems for cereallegume production under smallholder farmers' conditions in Central Tanzania, practical experimentation among smallholder farmers is advocated to allow resource-limited farmers to determine the cereal-legume systems that suit their conditions as part of a strategy to build soil fertility while providing immediate household needs. This work was aimed at gaining understanding of power dynamics between different innovation platform (IP) actors and the processes conducted to and/or desired to be conducted by the IP. The focus on understanding power dynamics is because IPs are often promoted as a means of addressing power imbalances between farming communities, researchers, and decision-makers, being regarded as a model of inclusive innovation. The focus IP was the Kongwa-Kiteto IP established in Phase 1. Key findings are presented below:1. The study mapped, ranked, and investigated the availability of key-service providers in Africa RISING study villages of Kongwa and Kiteto districts. No significant differences were found between IP member and non-member IP control groups in the ranking of importance and availability of service providers (Fig. 41). Aggregators were, however, found most readily available, suggesting working as an IP benefits from their services. 2. Culture influences gender and land ownership but does not affect access to knowledge and technologies. 3. Key actors providing knowledge in Kongwa and Kiteto are mostly public institutions, i.e., extension, research, and/or civil society. But because they are not-for-profit based, and therefore, have a limited direct role in improving farm household incomes, they cluster together away from knowledge and technology providers and producers (Fig. 42).We held meetings during August 2019 in Arusha with Meru Agro Seed Company, MAMS Agriculture, and Aminata Quality Seeds and discussed partnerships for scaling of the new DT QPM hybrids. These companies have a great interest in marketing QPM. The two released QPM hybrids were allocated to Meru Agro and this means these hybrids cannot be marketed by Aminata Seeds or MAMS Agriculture. For this, MAMS and AMINATA were looking for new DT or QPM hybrids that can be released under their names. This implies that the new DT hybrids being tested in Kongwa and Kiteto can eventually be allocated to these companies if their applications for the hybrids can be considered through the CIMMYT product allocation processes.According to Meru Agro, the license from CIMMYT provides the mandate for them to market the new hybrids allocated to them. However, their main challenge is that the new product should be promoted first; therefore, they have to identify resources to support promotion of these new products.Partnership with Islands of Peace (IoP) in Tanzania to scale postharvest management technologies Africa RISING partnership with IoP seeks to deliver to farmers postharvest technology packages that improve the productivity social, human, and economic conditions of smallholder farmers in Karatu District. The overall goal is to contribute to sustainable family farming and responsible food systems. Four activities were implemented during this reporting period, aimed at winding up actions in the eight villages of Karatu District that were started during July 2018. The activities were for strengthening the capacity of IoP staff and lead farmers to enable them to expand scaling activities in these and other villages. The activities were: 1. A workshop to disseminate results and review activities of the collaboration. This was attended by 24 participants representing IoP staff, local government extension staff, and farmers' representatives. Feedback from the workshop was that (i) metallic silos were preferable over the PICs bags because they were resistant to insect and rodent damage, more consistently re-usable and stored more produce; and (ii) there were differences in grain damage levels between villages considered to be influenced by altitude and its effect on temperature. 2. Refresher training for lead farmers and IoP staff. The aim was to build the confidence of lead farmers to be able to spearhead scaling actions including setting up of technology demonstrations and forming postharvest committees as a mechanism for increasing advocacy and improving accessibility of the technologies in the villages. Twenty-six farmers were trained in the aspects of (i) Improved postharvest technologies and their contribution to improved grain quality; (ii) improved drying and grain moisture verification, threshing, and storage; (iii) Grading and classification of grain lots based on physical quality parameters; (iv) Grain quality standards and specifications for grain (East African grain standards); (v) Sampling and grain quality assessment techniques for small-scale farmers; (vi) Aflatoxin and the pre-and postharvest mitigation approaches; and (vii) Storage hygiene and store management. 3. ICT messaging. Eight (8) short messages, which included actionable tips and reminders on good postharvest practices (good harvesting procedures, threshing and drying; sorting prior to bagging, improved storage techniques; aflatoxin control approaches; store preparation and storage hygiene) were test-disseminated through SMS (Fig. 43). These were intended to reinforce knowledge acquired through training and practical demonstrations. In the coming months, village postharvest committees will register and obtain consent from new farmers across the villages to take advantage of these benefits. The leading research partner, CIMMYT, supports the scaling activities of CRS through the provision of technical knowledge and building of expertise around GMCCs. In previous years, this has been through sharing reports, presentations, and discussion tools. This year Africa RISING has involved the Senior Agriculture Officers and the Provincial Agriculture Coordinators in field tours to expose them to new GMCC strategies and technologies. These mainstreaming activities are likely to continue. A newly funded project from the EU will take on some of the preliminary work on GMCCs and agroforestry to scale these technologies further. Also, technical knowledge has been included into the programming of a large GCF project where CRS is a lead designer, who will support scaling on GMCCs in the future. Over the years of project implementation, 4,647 farmers were reached in Eastern Zambia producing pigeon pea. Many more farmers attended awareness events and trainings. These were:• Trainings and Learning Events: o 28 community-based sensitization meetings were held with a total of 3,702 participants. o 6,242 farmers attended community-based trainings which included holistic natural resource management, integrated pest management, postharvest handling and storage, and marketing. o 2,223 farmers attended 12 field days to learn about intercropping, integrated pest management, and benefits of growing pigeon pea and Gliricidia. o 40 (8 women and 32 men) Agriculture Development Agents (ADAs) were trained in facilitating pigeon pea production and marketing. • Production and Market Linkages: o In the 2 years of project support, farmers on average produced 73 kg of pigeon pea.This production was used as follows: 10% (7 kg) for household consumption, 4% (3 kg) as seed for the coming season, 10% (7 kg) paid to ADAs for loan repayment, and 77% (41 kg) delivered to the bulking centers for marketing. o During the period of the project, out of the 4,647 farmers reached by the project, 988 (23%) were linked to a pigeon pea buyer. The total quantity of the marketed commodity was 63,827 kg valued at K214,003 (approximately US$20,370), translating to an average net income of K216 (approximately US$21) per farmer compared to the situation before the intervention where farmers realized approximately K114 (approximately US$11) each.o 26,880 Gliricidia seedlings were distributed to 450 farmers, 82% of the distributed seedlings established.Partnership with development actors to conduct on-farm trials using different GMCC and grain legume intercropping strategies.Green Manure Cover Crops (GMCC) intercropping trials were established in 18 on-farm locations in Chipata and Lundazi in Zambia with the help of ZARI, CRS, GRT, and CARITAS personnel. These trials were also to act as demonstrations for scaling the technologies. Not all GMCC intercropping on-farm trials could be established due to lack of commitment by our collaborating partners-CRS and CARITAS. However, the trials in Chipata looked generally better managed than in previous years. Problems in late procurement and distribution of inputs by the NGOs still exist which affected the general performance of these trials. The cropping season had favorable rainfall, which translated to high maize yields at all sites. Legume yields on the other hand were low and more affected by the high rainfall.In the trials, a sole maize treatment was compared with four different legume intercropping strategies: i) maize intercropped with pigeon pea, ii) maize intercropped with cowpea and pigeon pea, iii) maize intercropped with lablab, and iv) maize intercropped with Gliricidia and rotated with a pigeon pea/groundnut doubled-up legume system.Results from the trials showed no difference in grain yield between the maize sole cropping, and all other intercropping strategies. This shows that there is no further yield penalty in growing legumes with maize after the third cropping season. However, in the assessment of biomass, maize/lablab intercropping had a small yield penalty.Legume grain yield in all intercropped treatments was extremely low (Fig. 46), which was a big surprise and disappointment. The high rainfall could have led to the reduction in legume grain yields; -but more likely the well growing maize provided too much shade to the under sown legume. Also, late planting of the trials by our partner organizations could have contributed to the low legume yield. Where there were only groundnut and pigeon pea (Treatment 5), there was a more adequate grain yield (Fig. 46) amounting to 1392 kg/ha for groundnut and 284 kg/ha for pigeon pea. Biomass yield of the legumes was fairly high and above 2 t/ha in all treatments (Fig. 47).Combined grain and biomass yield of maize and legumes showed no change in this trend due to low grain yields of the legumes, but there was a huge increase in combined biomass on all intercropped treatments (Fig. 48). Pigeon pea added a large amount of extra biomass input into the system when compared to growing maize as a sole crop. This will have future benefits on soil fertility if the system is to be continuously planted. The results confirm those gathered in the 2016/2017 and 2017/2018 cropping seasons. Soil sampling and infiltration measurements using the time to pond method were done in March 2019. The soil analysis results show very few significant differences between treatments, which was mainly due to large variability between on-farm trial replicates. Nevertheless, we found a difference in total N content at a soil depth of 0-20cm soil depth in the maize-lablab intercropping, outperforming other treatments. A second significant difference was found in K, where the control treatment outperformed the others.Significantly, the highest water infiltration was recorded in the maize pigeon pea treatment followed by the control. Lowest infiltration rates were recorded in the maize/Gliricidia-legume rotation treatment. Both results are not yet conclusive and will require further research.From the development partner-managed on-farm trials we can capture the following learning points:• There is no longer any maize yield suppression in maize-intercropping trials, which means that all legumes will be an added advantage to farmers and not a penalty. • Only the lablab intercropping treatment led to a slight yield reduction on maize grain yield which was however not significant. • Legume biomass yields obtained in addition to the maize biomass yield by far outweigh sole cropping of maize and will in the long run improve soil fertility besides other benefits (firewood, groundcover, nutrition etc.). However, to become attractive to farmers, the legumes must also have sufficient grain yield for sale. There is need for more research to increase grain yield production. • Legume grain yields were very low and possible reasons are late planting of trials in onfarm sites, high rainfall leading to reduced legume growth due to diseases, and insufficient or ineffective spraying against blister beetle and pod borers, which all affected the yield. • Soil chemical analysis between treatments did not show many significant differences although an increase in total N was observed in the maize/lablab treatment. Geographically, requests have been received from institutions based in the US, Australia, the Netherlands, India, Japan, and Tanzania. The following are the reasons why some data owners were refused data access: (1) the scientist responsible for managing the data is still studying and analyzing it, or (2) the data are part of a multiyear trial and are not yet ready for public release. ","tokenCount":"24124"} \ No newline at end of file diff --git a/data/part_3/5173063999.json b/data/part_3/5173063999.json new file mode 100644 index 0000000000000000000000000000000000000000..8ede008a10ce9482dc6eb6f8674a563219f68988 --- /dev/null +++ b/data/part_3/5173063999.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"60df505be66122dd94af8d5e92e6c61b","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/b6bb9226-171a-4453-83fd-b1a6d52ff8b1/content","id":"-1469351509"},"keywords":[],"sieverID":"d0934831-6c03-4971-958a-5a633347aa63","pagecount":"26","content":"Advanta). Affordable and comprehensive phenotyping for food-feed and fodder traits in all key cereal and legume crops is feasible. The ILRIcrop-centre collaboration developed and validated NIRS equations for nitrogen (N), neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent lignin (ADL), in vitro organic matter digestibility (IVOMD) and metabolizable energy (ME) of CRs of sorghum, pearl millet, groundnut, pigeon pea, chickpea, cowpea, rice, wheat and maize. ILRI NIRS specialists have trained hundreds of laboratory technicians from public and private sectors in South Asia and East and West Africa on NIRS operations. NIRS hubs exist in India and Ethiopia, and NIRS hubs in Nigeria, Mali and Burkina Faso are being established. These hubs are based on NIRS equations developed by ILRI and partners and on extensive training given by ILRI NIRS specialists.Outcomes and Aspects of Impacts of Multidimensional Crop Improvement 499 Economic impact of multidimensional crop improvement 500 The Future 500 References 501The problemLivestock provides food and income for almost 1.3 billion people across the world. Grazing has long been a principal source of feed in much of South Asia and in sub-Saharan Africa. Due to population pressure, land degradation and conversion from grazing to arable land, grazing areas have contracted, resulting in feed shortages. The conversion of grazing land is likely to be aggravated by climate change (Blümmel et al., 2015b).The increasing demand for animal-sourced food is another factor in putting pressure on feed from all sources (Blümmel et al., 2017). Feed supply and demand scenarios for South Asia and sub-Saharan Africa have shown that crop residues (CRs) such as straws, stover and haulms commonly provide 50-70% of the feed resources in smallholder systems (Blümmel et al., 2014b;Duncan et al., 2016). In the highlands of Ethiopia, cereal CRs have emerged as the main components of the livestock diet but are generally poor in their nutritive value with a low crude protein content (4%) and digestible organic matter (less than 50%).Lignocellulosic biomass from forest, agricultural waste and CRs is the most abundant renewable biomass on earth with a total production estimated to range from about 10 billion to 50 billion t (Sanchez and Cardena, 2008). About 3.8 billion t are contributed by CRs, with cereals contributing 74%, sugar crops 10%, legumes 8%, tubers 5% and oil crops 3% (Lal, 2005). Considering the quantities of CRs available and the high nutritive quality of its basic constituentshexose and pentose sugars -attempts to improve CR biomass for fodder began a century ago (Fingerling and Schmidt, 1919;Beckmann, 1921).These and later attempts to improve CR biomass included chemical, physical and biological treatments. Chemical treatments, particularly the use of hydrolytic agents such as sodium hydroxide and ammonia (Jackson, 1977;Owen and Jayasuriya, 1989), received significant research attention.However, little uptake of chemical treatments was observed, despite efforts by the international research and development communities, and investments into chemical straw treatments have declined since (Owen and Jayasuriya, 1989).The lack of adoption of postharvest treatments of CRs gave way to a new model of improving the fodder value of CRs by selection and plant breeding (Reed et al., 1988a) and by identifying anti-nutritive factors in crop biomass (Reed et al., 1988b(Reed et al., , 1990). In the mid-1990s, the International Livestock Research Institute (ILRI) and International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) began a joint programme on improvement of grain and CR traits, focusing on sorghum (Sorghum bicolor) and pearl millet (Pennisetum glaucum (L.) R. Br.) in the semi-arid tropics of India. Ex ante estimates of potential productivity gains from genetic improvement of the digestibility of multidimensional food and fodder crops would produce high rates of economic return in the form of incremental meat, milk and draught power (e.g. Kristjanson and Zerbini, 1999, for pearl millet and sorghum in semi-arid India). Similar work started in West Africa in the 1990s among the International Institute of Tropical Agriculture (IITA), ICRISAT and ILRI, targeting cowpea. This chapter therefore addresses the following questions. What is the extent of cultivardependent variation in CR fodder quality? Can these variations be exploited without detriment to grain yield? Have quality improvements in CRs from plant selection and breeding been achieved? Have such improvements made a field impact on crop and animal productivity?The principal scientific achievement was to force a reconsideration of the single-trait (i.e. grain) model in favour of the multi-trait and whole-plant (i.e. food and fodder) model. While there are as yet few public-sector decisions to include stover traits as cultivar release criteria -sorghum and pearl millet are recent examples -public and private crop-improvement programmes have reoriented their efforts towards whole-plant improvement. Crop-improvement paradigms are changing to whole-plant optimization, as, for example, reflected in the new CGIAR Research Program (CRP) on Grain Legumes and Dryland Cereals.Under this principal achievement, scientific impacts are the findings that: (i) there is significant variation in CR quality; (ii) such variation does not compromise grain yield; (iii) near-infrared spectroscopy (NIRS) methods are accurate for rapid screening of quality traits; and (iv) recent molecular analyses can detect variations in fodder quality early in breeding material.NIRS equations were also developed for grains of key crops, including routine quality traits such as protein, starch and fat but also amino and fatty acids.The fodder quality of CRs can be increased by targeted genetic enhancement using conventional or molecular crop-improvement approaches such as marker-assisted breeding, use of quantitative trait loci (QTLs) or genome-wide association studies (GWAS). Nepolean et al. (2009) used QTL to map the genomic regions controlling stover quality and yield traits in pearl millet, while Blümmel et al. (2015a), used stay-green QTLs in sorghum. GWAS was used to unravel favourable native genetic variations for traits of agronomic and economic importance across many cereal crops (Vinayan et al., 2013).Genomic selection (GS) or marker-enabled predictions can predict untested phenotypes from whole-genome information. Blümmel et al. (2014b) developed a GS model of fodder quality traits to predict superior lines from a collection of doubled-haploid lines from the maize work of the International Maize and Wheat Improvement Centre (CIMMYT) in Asia.Apparently, small differences in CR fodder quality result in substantial differences in livestock productivity because of the additive effects of higher diet quality and higher feed intake.Mapping recommendation domains has allowed spatial stratification of farming systems to better assess the potential of multidimensional cereals (Kristjanson and Zerbini, 1999).Market studies in India and West Africa have identified significant differences in CR prices attributable to CR quality in India and West Africa. This information is valuable to crop extension programmes.Adoption studies have shown that materials with higher straw digestibility improve livestock productivity, which is again valuable to extension work.Plant breeding and selection have led to the availability of crop cultivars with higher-quality CRs in sorghum, pearl millet, groundnut, rice and maize in India, and in cowpea in West Africa.Higher productivity and income come from sales of CRs and from livestock production. Salient examples are as follows:• An ILRI-CIMMYT collaboration identified a multidimensional maize hybrid (NK 6240), which is now a very popular hybrid in India (Anandan et al., 2013). ILRI, CIMMYT and Syngenta are now exploring branding for CR fodder quality traits.• Adoption of improved multidimensional cultivars based on seed production has been difficult and at times contradictory to estimate. Randomized adoption studies by household surveys show generally less adoption than estimates based on seed production.• Adoption of hybrids is much faster because seed availability is less of a problem than with open-pollinated varieties. Thus, a new dual-purpose maize hybrid (MHM4070 or Lall-454) specifically bred by CIMMYT and ILRI for high temperatures in India reached more than 23,000 ha within 3 years.• Concomitant increases of about 10% each of pod yield, haulm yield and haulm fodder quality in some new cultivars has provided sufficient incentives for their fast and largescale adoption.Fodder market studies in South Asia and West Africa have shown that: (i) market prices reflect fodder quality differences within and between crops; (ii) customers are willing to pay price premiums for apparently small differences in fodder quality traits; (iii) the price of CRs relative to grain has increased during recent decades (Kelley et al., 1993;Sharma et al., 2010); and (iv) in some Indian markets, income from CR sales exceeded that from grain sales (Samireddypalle et al., 2017). The growth in demand for animal-source food in low-and middle-income countries provides challenges and opportunities. A principal challenge is to raise fodder and animal yields per unit of land in a situation where the shrinking natural resource base in terms of land and water makes feed production harder.In addition, feed resourcing and feeding are at the very interface where positive and negative effects from livestock occur (Blümmel et al., 2013b). Feeds are the single most important input cost into livestock production and largely determine its profitability (Swanepoel et al., 2010). Feed production accounts for the bulk of water required in livestock production (Singh et al., 2004), as well as direct (enteric methane production) and indirect (land use and conversion) greenhouse gas emissions (Steinfeld et al., 2006).Previous work by the ILRI and partners has identified feed shortage as a major constraint to higher livestock yields; this feed constraint will worsen with the increasing demand for animal-sourced food (Blümmel et al., 2017). Opportunities for improving feed resources are constrained by shortages of arable land and, increasingly, water, and these constraints are likely to become aggravated by climate change (Blümmel et al., 2015b). Feed supplydemand scenarios for South Asia and East and West Africa have shown that CRs such as straws, stover and haulms are already the most important feed resources, commonly providing 50-70% of the feed resources in smallholder mixed crop-livestock systems (Blümmel et al., 2014b;Duncan et al., 2016).Generally, lignocellulosic biomass from forest, agricultural waste and CRs is the most abundant renewable biomass on earth, with a total production estimated ranging from about 10 billion to 50 billion t (Sanchez and Cardena, 2008). About 3.8 billion t are contributed by CRs, with cereals contributing 74%, sugar crops 10%, legumes 8%, tubers 5% and oil crops 3% (Lal, 2005). Considering the huge quantities of CRs available from agricultural production and the high nutritive quality of their basic constituents -hexose and pentose sugars -it comes as no surprise that attempts to upgrade CR biomass for livestock fodder reach back to the beginning of the 20th century (Fingerling and Schmidt, 1919;Beckmann, 1921). These and later attempts included chemical, physical and biological treatments, but chemical treatments received the maximum attention of researchers, particularly the use of hydrolytic agents such as sodium hydroxide and ammonia (reviewed by Jackson, 1977;Owen and Jayasuriya, 1989). However, comparatively little uptake of these technologies was observed, even though considerable effort was made by the international research and development community (Owen and Jayasuriya, 1989). For example, Owen and Jayasuriya (1989) listed and reviewed 12 major international conferences addressing the improved use of CR biomass for livestock feed from 1981 to 1988 and concluded that large-scale adoption of treatment interventions was very rare and did not continue once project activities ceased, despite efforts to simplify treatment technologies and to use local inputs.The lack of adoption of postharvest approaches to improving CRs gave way to a new research paradigm of targeted improvement of CR fodder value by plant breeding and selection. This was discussed at an international conference by the International Livestock Centre for Africa (ILCA) in 1987 (Reed et al., 1988a). At that time, research on improving CR fodder value at source was largely restricted to barley because of the importance of green barley in the mixed systems of the eastern Mediterranean (Capper et al., 1988). The ILCA proceedings (Reed et al., 1988a) contained 12 papers: three addressed the use of CRs as livestock feed in smallholder crop-livestock farming systems (globally: McDowell, 1988, andKossila, 1988;West Asia and North Africa: Nordblom, 1988) and three focused on the limited nutritive quality and characteristics of CRs but exclusively on cereal CRs (Mueller-Harvey et al., 1988;Owen and Aboud, 1988;van Soest, 1988). The excellent fodder quality of many of the legume residues was not addressed. Crop and cultivar variations in CR fodder traits were explored by Ørskov (1988) and Capper et al. (1988) in some depth with regard to the number of cultivars investigated, while the remaining papers focused more on types of cultivars, such as bird-resistant versus non-bird-resistant cultivars (McIntire et al., 1988;Reed et al., 1988b), or on very few cultivars (Khush et al., 1988;Pearce et al., 1988). Both Ørskov (1988) and Capper et al. (1988) reported highly significant cultivar-dependent variations in CR fodder quality traits with limited trade-offs with grain yields. Kelley et al. (1993) at ICRISAT surveyed fodder trading of cereal straws and farmer perceptions of grain and straw value in India from a more demand-side perspective. These authors found that farmers paid attention to stover quantity and fodder quality in new sorghum cultivars and that new cultivars could be rejected if found lacking in these traits. The authors furthermore reported that the monetary value of sorghum grain relative to stover decreased from about 6:1 to 3:1 within two decades and concluded and recommended that crop improvement consider CR fodder traits in future crop improvement work. It was in the mid-1990s that ILRI, a successor of ILCA, and ICRISAT concluded a memorandum of understanding to jointly attempt concomitant improvement of grain and CR traits.The present chapter reviews the findings, outputs and outcomes of research on multidimensional crops in the tropics, focusing mainly on cereals and grain legumes. Specifically, the chapter addresses the following:• Establishment of CRs as traded commodities and their changing valuation as the impetus for multidimensional crop improvement.• Trait identification and development of infrastructure for quick and affordable phenotyping for CR fodder quality.• Exploitation of existing cultivar-dependent variations in CR fodder quality.• Targeted genetic enhancement for multitrait food-feed-fodder cultivars.• Trade-offs between CR fodder traits and primary traits, notably grain and pod or straw yields.• Outcomes of multidimensional crop improvement and future work.Future work on multi-trait crop improvement.Increasing the feeding value of CRs by multidimensional crop improvement depends on the inherent variation among cultivars of the same crop in the nutritive value of their residues fed to livestock. Practical evidence of such variation has been observed in fodder markets in India for many years, as reviewed by Kelley et al. (1993Kelley et al. ( , 1996)).While the fodder quality of CRs was largely ignored in historical crop-improvement programmes, farmers and fodder traders long recognized differences in the fodder quality of CRs, even within the same species. At the farm level, new pearl millet cultivars that had been improved only for grain yields had sometimes been rejected by farmers because of low CR quantity and quality (Kelley et al., 1996), and similar findings were reported by Traxler and Byerlee (1993) for wheat. Kelley et al. (1993) reported from surveys of sorghum stover trading from 1985 to 1989 in four districts of Maharashtra, India, that stover from landraces realized on average 41% (range 24-61%) higher prices than modern cultivars. These surveys provided early evidence that CR fodder quality differences are reflected in livestock production responses of some magnitude. In addition, the collaboration between ILRI and ICRISAT starting in the mid-1990s was preceded by an ex ante assessment of the impact of improving the quality of sorghum and pearl millet stover on livestock performance (Kristjanson and Zerbini, 1999). These authors calculated that a 1% increase in digestibility in sorghum and pearl millet stover would increase milk, meat and draught power outputs by 6-8%. These estimates appeared very high and were questioned by Thornton et al. (2003), who argued that a mere increase in only digestible energy, for example, without regard for protein would not result in a significant improvement in livestock productivity.One support for a higher productivity impact is market prices of sorghum stover where a difference in digestibility of 5% was associated with price premiums of 25% and higher. Blümmel and Rao (2006) surveyed six major sorghum stover traders in Hyderabad, India, monthly from 2004 to 2005 and observed that six different stover types were usually traded. Customers usually had the choice of two or three sorghum stover types offered by the same trader. The poorest and best-quality stover (perceived in terms of colour, softness, sweetness, etc.) were sold on average for INR3 and INR4 per kg of dry matter, respectively. Blümmel and Rao (2006) investigated these traded stovers for laboratory fodder quality traits, such as crude protein and IVOMD, and related these laboratory traits to stover prices. While stover crude protein content was not related to stover prices, IVOMD accounted for 75% of the price variation. In rice straw, trading differences in IVOMD as low as 2-3 percentage points were associated with similar price premiums (Teufel et al., 2010). Incidentally, these findings were in accord with the above-reported observations of Kelley et al. (1993) that stover from sorghum landraces achieved on average mean prices 41% higher than modern cultivars. Customers would not pay such price premiums if feeding of stover from landraces would not result in significantly higher livestock productivity. Findings from the surveys of sorghum stover (Blümmel and Rao, 2006) and rice straw (Teufel et al., 2010) trading are combined in Fig. 14.1. ILRI-ICRISAT work on fodder trading in India was followed by research in Mali, Niger and Nigeria by ILRI, ICRISAT and IITA. Price premiums related to fodder quality differences were also observed in West African markets (Jarial et al., 2016a,b). Livestock producer preferences for haulms from groundnut or cowpea varied with haulm quality between groundnut and cowpea. Thus, cowpea haulms were costlier than groundnut haulms in fodder markets in Mali and Niger, but they also had superior N content and IVOMD than groundnut haulms, while the reverse was true in Nigeria (Table 14.1).Price differences between cowpea haulm and groundnut haulm reflected quality differences. There was also consistency in pricing of cowpea haulm, groundnut haulm, sorghum stover and pearl millet stover over 2 years at four fodder markets in Niger (Table 14.2). The average price per kg of legume haulms was about five times that of the cereal stover; the average price per unit of N was about 2.7 times as high. Sorghum stover received about 30% higher prices than pearl millet stover, probably because of a 5% unit difference in IVOMD. Across the four CRs, N accounted for 98% (p = 0.008) of the variation in price and IVO-MD for 91% (p = 0.04), respectively. While Jarial et al. (2016b) did not report price differences for CRs within crops related to cultivar differences, observations at a fodder market in Kano in September 2016 found cultivar differences in price in sorghum stover and in groundnut haulms (M. Blümmel, personal observation, September 2016).A further point is the relative monetary value of grains and CRs. In legume haulms, the monetary value of grain and CRs can reach parity (Samireddypalle et al., 2017), and grains can occasionally (e.g. when there is high demand for mutton during Muslim festivals) even be cheaper than haulms (Ayantunde et al., 2014). In sorghum stover trading in India during the past decade, stover prices were about 50-60% that of sorghum grain value (Sharma et al., 2010).In summary, CR fodder market studies in South Asia and West Africa showed that: (i) traders and customers are aware of CR fodder quality differences within and across crops; (ii) customers are willing to pay considerable price premiums for apparently small differences in fodder quality traits; and (iii) the monetary value of CRs relative Blümmel andRao, 2006, andTeufel et al., 2010.) to grain values is considerable and has been increasing over recent decades (Kelley et al., 1993;Sharma et al., 2010). In fact, depending on harvest indices and/or CR fodder quality, more money can be earned from CRs than from the primary product (Samireddypalle et al., 2017).The findings from fodder markets as far apart as West Africa and South Asia send strong signals that both fodder quantity and fodder quality of straws, stovers and haulms do matter.Livestock productivity trials conducted with the private sector confirmed information from fodder market studies. In India, Miracle Fodder and Feeds Pvt Ltd designed so-called densified total mixed ration (DTMR) feed blocks that consist largely of by-products such as sorghum stover (about 50%), bran, oilcakes and husks (about 36%), with the rest contributed by molasses (8%), maize grain, urea, minerals, vitamins, etc. (Shah, 2007). In a series of experiments with Miracle Fodder and Feeds Pvt Ltd, the authors tested these feed blocks with two objectives: (i) to estimate probable maximum productivity levels on cereal CR-based diets; and (ii) to estimate the importance of the quality of the basic CR going into the blocks on overall livestock performance.In an experiment with a large private Indian buffalo dairy (Anandan et al., 2010), two experimental DTMR feed blocks were produced from low-quality (47% IVOMD) and premium-quality (52% IVOMD) sorghum stover traded in the fodder markets (Blümmel and Rao, 2006). The results from these trials are reported in Table 14.3. Using premium sorghum stover ('Raichur' in Fig. 14.1) resulted in more than 5 kg higher daily milk potential than using the lower-quality stover ('Local Yellow' in Fig. 14.1). This differential yield potential was due to higher ME content/kg DTMR and also higher feed intake in the ration containing the premium stover. These accumulating effects of higher ME content and higher feed intake are the reason that apparently small difference in feed quality can have considerable effects on animal performance. The increase in milk potential of 5 kg compared with the ration containing the lower-quality stover explains the decisions of customers to invest in higher-quality stover. However, only part of the incremental increase in milk potential was due to the higher-quality stover, as this group also consumed more concentrate (0.85 kg/day), which contributed about half to the DTMR. The increased milk potential attributable to higher stover quality is estimated to be 2.4 kg/day (increase from 4.4 to 6.8 kg/day; Table 14.3). This would be an increase of about 24% relative to the milk potential of the DTMR with the lower-quality stover of 9.9 kg/day. This increase appears to agree with the price premiums paid for the higher-quality sorghum stover at the fodder markets in India. It also seems to align with the price differences observed between sorghum and pearl millet stover traded at fodder markets in Niger (Table 14.2).The effect of CR quality on livestock productivity is clearer in cases where the residues are fed as sole diets rather than as basal diets, as is generally the case with cereal CRs. Table 14.4 summarizes work where legume haulms were fed as sole diets to small ruminants. Cultivardependent variations in haulm fodder quality were considerable. In the case of groundnut haulms harvested from six different cultivars in Nigeria, sheep could lose weight on haulms from one cultivar while gaining 46 g/day on haulms from another cultivar. In India, weight gains in sheep could differ by more than twofold (from 65 to 137 g/day) depending on haulm fodder quality difference among groundnut cultivars. Similar proportional genotypic variations have been reported for faba bean haulms in Ethiopia (Table 14.4). For unsupplemented barley straw from eight different cultivars, Capper et al. (1988) reported daily weight changes from 150 g to little above live weight maintenance. Protein supplementation resulted in cultivar-dependent variations in weight gain from 100 to 250 g/day.These examples show that the effect of cultivar variations on fodder quality of CRs on livestock productivity can be substantial. The high response in livestock performance to apparently small differences in CR fodder quality is the result of two cumulative effects: higher diet quality and higher feed intake. However, this effect can only be effective where feed is offered ad libitum, which is not always the case, and often CRs are in short supply and fed in a restricted fashion (Mayberry et al., 2017). It is also worth pointing out that higher productivity can be achieved on mostly, or even completely, by-product-based feeding systems. In the case of DTMR, milk yields in cross-bred cattle of more than 20 kg/ day seem achievable (Table 14.3) and these DTMR consist of more than 90% by-products. Feeding legume haulms as the sole feed to sheep can result in daily weight gains of well over 100 g/day (Table 14.4). These are productivity levels more commonly associated with concentrates than with CR diets. Findings from the livestock productivity trials are consistent with price premiums paid for fodder quality differences (Fig. 14.1, Tables 14.1 and 14.2). It is important to point out that the variations seen in the fodder markets and livestock productivity trials came about largely by chance and that those differences in fodder quality were not the intentional results of crop breeding or selection. We will see in a later section that the fodder quality of CRs can be increased further by targeted genetic enhancement using conventional or molecular breeding crop-improvement approaches.Residue Fodder QualityFodder quality is ultimately determined only by livestock production and productivity, but livestock performance trials are unsuitable for routine feed and fodder quality analysis. This is particularly valid in crop improvement, where many samples must be analysed and where initially the biomass availability is low. Simple laboratory fodder quality traits are needed, but these traits must be well correlated with actual livestock performance measurements. 'Simple' here refers not only to logistical and economical laboratory demand but also to the need for the traits to be comprehensible to, and usable by, crop scientists, seed producers, fodder traders and development practitioners with no or little training in livestock nutrition. When the ILRI-ICRISAT collaboration on multidimensional crop improvement started, a wide range of potential morphological, chemical and in vitro traits were investigated and related to livestock performance measurements usually obtained with sheep (Sharma et al., 2010). Ravi et al. (2010) investigated morphological, chemical and in vitro traits in pearl millet stover and related these traits to organic matter digestibility, organic matter intake, digestible organic matter and N balances in sheep. Generally, fibre components and in vitro laboratory traits were more closely related to in vivo measurements than morphological traits, even though plant height and stem diameter were both consistently and statistically significantly inversely related to the in vivo measurements of 40 pearl millet stovers. In contrast, traits such as leafiness, including estimates of residual green leaf area, which are often employed for sensory phenotyping by crop-improvement programmes and farmers, were less well related to in vivo measurements. It is important to realize that all stovers were offered chopped (which is increasingly the practice or the trend, at least for stover utilization in India and elsewhere), which might reduce the importance of leafiness and other morphological traits on intake responses.Bearing in mind the above considerations about the simplicity and meaningfulness of fodder quality traits, NDF (a cell wall estimate), ADF (an estimate of cellulose) and in vitro digestibility seem to be good indicators for ranking fodder quality in pearl millet, sorghum (Ramakrishna et al., 2010) and maize (Ravi et al., 2013) stover, while ADL (an estimate of lignin) seems to predict fodder quality in groundnut haulms better than any of the aforementioned traits (Prasad et al., 2010). Combining different laboratory traits using stepwise multiple regressions improved predictions of in vivo measurements in most cases in pearl millet, sorghum stover and groundnut haulms. In all three cases, laboratory traits related to available feed energy (in vitro digestibility, ME and fibre constituents) were found to exhibit more consistent relationships with in vivo measurements than CR N content (Prasad et al., 2010;Ramakrishna et al., 2010).Conventional laboratory analysis cannot efficiently cope with the large set of sample entries from multidimensional crop-improvement programmes. NIRS is a non-invasive technique routinely used since the 1960s in the food industry, forage breeding and pharmaceutical industry. Most instruments used are manufactured by FOSS (Forage Analyser 500 and 6500), which has the advantage that NIRS equations developed in one laboratory can be transferred to other laboratories using FOSS. The ILRI-crop-centre collaboration developed and validated NIRS equations for N, NDF, ADF, ADL, IVOMD and ME of CRs of sorghum, pearl millet, groundnut, pigeon pea, chickpea, cowpea, rice, wheat and maize. We generally expected an R 2 value of at least 0.90 between conventionally analysed laboratory traits and blind predictions by NIRS (see also Sharma et al., 2010). With new global interest in monogastric and fish feed, NIRS equations were also developed for grains of key crops, including routine quality traits such as protein, starch and fat (Choudhary et al., 2010) but also amino and fatty acids (Prasad et al., 2015), which still mostly rely on costly high-performance liquid chromatography analysis.NIRS equations can be transferred across FOSS-type instruments with little spectra standardization to account for instrument-toinstrument variation. Over the past one and a half decades, ILRI NIRS specialists have trained hundreds of laboratory technicians from CGIAR and the national public and private sectors in South Asia and East and West Africa on NIRS operations, including NIRS networking and the generation of NIRS equations. Fully functioning NIRS hubs exist now in India and Ethiopia, and NIRS hubs in Nigeria and Mali are being set up. Thus, quick, affordable and comprehensive phenotyping for food-feed and fodder traits in all key cereal and legume crops is feasible, but sample processing (drying, grinding and shipping) limit experimental efficiency. Mobile NIRS applications can potentially overcome this constraint. Two new mobile hand-held systems manufactured by Phazir and Brimstone have been explored during the past 2 years to remove, or at least mitigate, the sample processing constraint (Prasad et al., 2015). Phazir and Brimstone currently cost about US$40,000 each, but recently an extremely cheap (about US$450-500) and small pocket NIRS system called Scio came on the market and is currently being tested at ILRI in India and Ethiopia.A widespread misconception about how superior CRs can be generated is that targeted crop breeding is invariably required. However, phenotyping for fodder quality to detect genetic differences in food-feed-fodder traits in advanced cultivars and exploiting them often suffices. Exploiting existing variations in traits and targeting genetic enhancement towards specific traits are separate approaches, and the first is possible without the second. The first approach does not require much investment besides phenotyping for CR traits and has short delivery pathways. The second approach requires more investment and time but promises greater impact. This timespan of crop improvement can be shortened by phenotyping CRs of released cultivars for fodder quality and by promoting superior dual-purpose cultivars with farmers, traders and processors. This approach is particularly promising where the private sector is involved, usually in the promotion and marketing of hybrids. A collaboration between ILRI and CIMMYT identified such a superior dual-purpose maize hybrid (Anandan et al., 2013), which is now a very popular hybrid in Asia, and its producer, Syngenta, has recently approached ILRI and CIMMYT for ways of advertising the high fodder quality on the seed packets of the hybrid. ILRI, CIMMYT and Syngenta are now exploring processes to bring about such branding and seed bag labelling for CR fodder quality traits. Work is ongoing in the use of check cultivars analogous to current methods of comparing grain yields of yet-tobe-released cultivars with yields of selected check cultivars; in addition to grain yields, CR quality traits could also be compared. Another option is comparing CR quality of yet-to-bereleased cultivars with longer-term average qualities of CRs traded at fodder markets or with the average values of CR qualities given in nutritional textbook/feeding tables for a given country. In any event, getting the private sector interested in dual-purpose traits is of great strategic importance for mainstreaming Multidimensional crop improvement and for scaling of new cultivars, as public-sector crop improvement groups are watching the private sector closely.Phenotyping pipeline hybrids that are close to release is also cost-effective and has short delivery pathways. This was implemented with a private-sector maize programme in India; examples of this work from 2014 onwards are presented in Fig. 14.2, where 24 pipeline hybrids were tested at four locations in India. The hybrids with the highest average grain yield also had highest stover N and second highest stover IVOMD (Fig. 14.2a,b). The variation in stover IVOMD among the top grain yielders of 9-10 t/ha was like the variation between the best and poorest sorghum stover in fodder trading in India (Fig. 14.1) or between the average sorghum and pearl millet stover traded in Niger (Table 14.1), which resulted in appreciable price premiums for the better-quality stover in both cases. The implication for promoting the maize hybrid with the highest IVOMD rather than the lowest IVOMD among the top yielders in dairy productivity can be extrapolated from the findings in Table 14.3. However, while combination of highest grain yields and highest stover traits such as N and IVOMD are entirely feasible, these trait combinations seem to be associated only with intermediate stover yields (Fig. 14.2c,d). Institutionalized Multidimensional crop improvement has advanced only slowly. In 2002, the National Research Centre for Sorghum (NRCS) decided to include sorghum stover traits as release criteria for new sorghum cultivars. Interestingly, this was influenced by a visit of the then Director of the NRCS to the sorghum fodder markets in Hyderabad described earlier. This involved seconding NRCS technicians to the ILRI NIRS Hub hosted by ICRISAT to analyse stover of all new sorghum cultivars submitted for release under the All-India Coordinated Research Project (AICRP) on Sorghum (Venkatesh et al., 2006). This work continues and is now being explored for minor millets by IIMR. Stover traits have now also been included as release criteria for pearl millet, although this crop is, paradoxically, currently not under the mandate of IIMR. Less formalized pilot studies have been undertaken with the Indian Directorate for Maize, where the modification of cultivar release criteria to include maize stover traits was discussed during recent annual maize meetings, although without a formal decision yet being taken. The situation is similar in Ethiopia, where the International Centre for Agricultural Research in the Dry Areas (ICARDA) prepared the ground with EIAR by phenotyping lentils, chickpeas and faba beans for haulm fodder quality traits during release processes (Alkhtib et al., 2016(Alkhtib et al., , 2017)).The targeted concomitant improvement of grain and CR traits requires more investment and time than the mere detection and exploitation of already existing variations but promises greater impact. In ILRI-ICRISAT-CIMMYT collaborations, both conventional and molecular breeding approaches were applied for targeted genetic enhancement of CR fodder traits within the paradigm of simultaneous improvement of grain and fodder traits.Bidinger et al. (2010) showed that within two recurrent selection cycles, digestible organic matter intake of pearl millet stover measured in sheep increased from 12.9 to 15.1 g/kg live weight (LW), an increase of 17%, and the N balance changed from negative (−0.016 g/kg LW/ day) to positive (0.05 g/kg LW/day). The improvement in stover quality did not come at any penalty for grain or stover yield. A further pilot study was conducted to increase the key fodder quality traits of N content and IVOMD through two cycles of FS recurrent selection of open-pollinated pearl millet cultivar ICMV 221 (base population, C 0 ). Six experimental varieties were selected from the first cycle (C 1 ) and second cycle (C 2 ) of selection for: (i) high grain yield; (ii) high grain and stover yield; (iii) high stover IVOMD, (iv) low stover IVOMD; (v) high stover N content; and (vi) low stover N content. Stover N and IVOMD increased by 9.5% and 2%, respectively, in the C 1 bulk, and by 21% and 5%, respectively, in the C 2 bulk over the base population C 0 . The high-N experimental varieties showed the highest N percentage and stover N yield, while the high-digestibility experimental varieties showed the highest ME and IVOMD values from both selection cycles. The findings suggest that stover N and IVOMD can be improved without significant detriment to grain and stover yield.In South Asia, dual-purpose maize breeding was supported by the CRP on Maize through a competitive grant scheme to ILRI. Zaidi et al. (2013) reported substantial variability for stover quality in maize working with germplasm available from CIMMYT-Asia with no negative effect of the stover quality traits (IVOMD and ME) on grain yield, indicating the possibility for simultaneous improvement of both stover quality and grain yield. In addition, substantial progress has been made in identifying trait-specific genomic regions for use in targeted breeding programmes to improve stover quality and grain yield (Vinayan et al., 2013). This breeding initiative for improving stover quality has led to the development of advanced lines with high digestibility (over 50%) and energy (greater than 8.0 MJ/g) for use as parents of new hybrid combinations. Results from evaluation of these experimental hybrids under optimal growing conditions have shown promise in terms of their yield performance (roughly 8.0 t/ha) and in vitro digestibility (over 50%). Studies of the performance of commercial hybrids within India also led to identification of promising hybrids such as NK6240 (Syngenta) with high digestibility (over 50%) (Anandan et al., 2013) and high grain yields (over 9.0 t/ha) during the rainy season.Maize is fast replacing some of the major cereal crops grown widely in these regions and currently ranks first followed by rice and wheat in terms of production and growth. One of the emerging seasons for maize cultivation in India is spring, particularly in South India (usually a rice-fallow system), where adverse weather conditions prevail (high temperature and low rainfall). Several pipeline hybrids and breeding lines have been tested to suit this environment, and preliminary investigations led to identification of potential hybrids that have good grain yield and high stover quality. The progress of this maize hybridization programme to simultaneously improve food and fodder traits is exemplified in Fig. 14.3 using data from sorghum stover trading as reference values; the perceptions of farmers and traders in India are that sorghum stover is nutritionally superior to maize stover (Blümmel et al., 2014b). Fig. 14.3 shows that maize stover is not inferior to sorghum stover, which was also confirmed in trials with dairy animals (Blümmel et al., 2014b). Furthermore, the average IVOMD (54.4%) of the new hybrids targeting areas with adverse weather conditions is about 2.5% higher than that of the highest-quality traded sorghum stover (Fig. 14.3). This was one of the sorghum stovers used for the dairy experiments described in Table 14.3. It is very likely that dairy productivity would be substantially further enhanced if the sorghum stover were replaced by a maize stover with 56% IVOMD as available in the new hybrids, and even more so by a maize stover with an IVOMD of close to 60% now available in the new dual-purpose breeding lines (Fig. 14.3).Similar findings were reported from CIM-MYT-ILRI dual-purpose maize breeding research in East Africa (Ethiopia, Tanzania and Kenya). Ertiro et al. (2013) produced 60 experimental dual-purpose hybrids from 16 parental lines, yielding 10 t of grain with an IVOMD of up to 62% (range 53.1-62.3%). Mid-parental key stover traits such as IVOMD were well related (r = 0.78; p < 0.0001) to the IVOMD of the hybrids produced from them, also strongly suggesting the opportunity for dual-purpose hybrid breeding. Nepolean et al. (2009) used QTLs to map the genomic regions controlling stover quality and yield traits in pearl millet. Marker-assisted breeding would be an effective tool to exploit these genomic regions and to choose breeding lines having combinations of better stover quality and high grain yield without linkage drag between these traits. With these objectives in mind, QTLs for stover IVOMD and ME content were identified and introgressed into four parental lines of existing hybrids showing good agronomic performance. Three generations of marker-assisted backcrossing and subsequent selfing of backcrossed progenies having target QTLs was carried out with the help of QTL-flanking microsatellite simple-sequence-repeat markers. Single QTL introgression lines that were homozygous for target regions were identified. Improved hybrids were synthesized from these QTL homozygous lines and were evaluated in multi-location field trials. The results from the laboratory analysis of stover samples showed that one of the improved hybrids was at least 8.5% higher in ME and 6.3% higher in IVOMD than the control hybrid. The new hybrid also produced a 10% increase in grain yield and a 4% increase in stover yield. These results suggest that new hybrids can be developed, concomitantly improving grain and stover traits using QTLs (Nepolean et al., 2009). Blümmel et al. (2015a) introgressed staygreen QTLs into the sorghum genetic backgrounds S-35 and R-16, generating 52 and 39 lines, respectively, to investigate the effects of stay-green introgression on stover traits and grain-stover relationships. The stover quality traits analysed were N, IVOMD, ADF, ADL and neutral detergent solubles (= 100 -NDF) using a combination of conventional nutritional laboratory analysis with NIRS. Field trials were conducted under treatments of unlimited (control) and limited water supply. Significant (p < 0.0001) differences were found among lines for grain and stover yield and all stover quality traits under both water treatments. Water treatment had greater effects on grain and stover yields, which decreased by between 20% and 32% under water stress, than on stover quality traits, which varied at most by 8% between treatments. Year had the greatest effect among treatments, followed by water treatment and cultivar. Trade-offs between stover quality traits and grain yields were largely absent in both backgrounds. However, the effect of QTLs on selected stover quality traits was background dependent. In S-35, one stay-green QTL (stgB) significantly increased stover IVOMD and grain and stover yield, while no concomitant trait improvement was observed in the background R-16. The QTL in S-35 also increased the wateruse efficiency of the whole plant in terms of grain yield, stover yield and stover ME (Blümmel et al., 2014a).GWAS have the potential to unravel favourable native genetic variations for traits of agronomic and economic importance across a wide range of cereal crops. Vinayan et al. (2013) studied a panel of 276 inbred lines from CIMMYT's Drought Tolerant Maize for Africa (DTMA) project using their test-cross hybrids with the maize line CML312, and the single crosses were evaluated for grain and stover yields, plant height, days to 50% anthesis and silking, stover N, NDF, ADF, ADL, IVOMD and ME content. GWAS analysis was carried out using genotyping by sequencing, and 55K single-nucleotide polymorphism arrays revealed several regions of significant association for N, ADF and IVOMD, each explaining from 3% to 9% of the phenotypic variance for these fodder quality traits. GWAS was helpful in uncovering genomic regions of interest for target traits.GS or marker-enabled predictions can predict untested phenotypes from whole-genome information. In one study, GS models were developed for fodder quality traits to predict superior lines from the collection of doubled-haploid lines generated by the Global Maize Program of CIMMYT in Asia. Using high-density genotypic information as well as fodder quality phenotypes of approximately 700 lines from two association panels -DTMA and the CIMMYT-Asia Association Panel (CAAM) -marker effects were obtained for fodder quality traits using GS models. The results indicated significant relationships between genotyping-by-sequencing-derived values and the phenotypes, with r values ranging from r = 0.44 to r = 0.45 across IVOMD and ME, respectively (Blümmel et al., 2014b). These predictions of fodder quality phenotypes in biparental populations indicated that genomic selection can be used to: (i) improve fodder quality in maize breeding populations; and (ii) select parents in breeding for fodder quality from maize repositories without phenotyping the lines.The increasing importance and demand for CRs as fodder is reflected in four major trends: (i) increasing labour investment in collecting and storing CRs in more extensive systems (Valbuena et al., 2015); (ii) farmer preferences for dual-purpose crop varieties; (iii) higher market price for CRs with a higher feed quality; and (iv) higher livestock productivity with CRs with a higher feed quality. Evidence for cultivar preferences based on feed traits comes from farmer rejection of new sorghum and pearl millet cultivars that had been improved only for grain yields and had low stover quantity and quality (Kelley et al., 1996). Recently, farmers ranked maize stover traits highly when assessing cultivars in East Africa (de Groote et al., 2013). Trading of CRs is expanding in volume and distances, and CR:grain price ratios during the past two decades have decreased (Kelley et al., 1993;Blümmel and Rao, 2006;Berhanu et al., 2009). Nevertheless, grain yields remain the primary trait that most crop-improvement programmes focus on. When multidimensional crop-improvement programmes target CR traits, they need to address potential trade-offs between grain and CR traits.It is important to understand what causes trade-offs between grain and CR traits. In its simplest form, a nutrient limited by soil fertility and/ or fertilizer application, such as N, is partitioned between grain and the CR. A more complex example is in the partitioning of photosynthetic products (which are not finite quantities such as soil and fertilizer N), notably soluble carbohydrates, which contribute significantly to CR digestibility and therefore to fodder quality. Trade-offs can also arise from more indirect mechanisms of ensuring grain yields and efficient harvest, such as lodging resistance, which can affect fodder quality of CRs through increased stem lignification.On the most basic level of trade-offs, grain and CR yields were only moderately correlated in sorghum (Blümmel et al., 2010), groundnut (Nigam and Blümmel, 2010), pearl millet (Bidinger and Blümmel, 2007), cowpea (Samireddypalle et al., 2017), maize (Blümmel et al., 2013a) and wheat (Blümmel et al., 2012a). Grain yields rarely accounted for more than 50% of the variation in CR yields. In other words, variation in harvest indices were considerable and grain yield is an insufficient predictor of CR yield. Breeding for increases in grain yield was often accompanied by shortening of stems to prevent lodging, resulting in the longer term in increasing harvest indices (Hay, 1995). While this relationship has been shown in temperate cereals, it is less clear in pulses and tropical cereals such as rice and maize (Hay, 1995). In recent years, investments in second-generation biofuel technologies have resulted in renewed interest in variations in harvest indices, as CRs provide valuable feedstock for ethanol production (e.g. Dai et al., 2016). These authors also reported considerable cultivar-and managementdependent variations in harvest indices, suggesting that CR yields cannot be satisfactorily calculated from grain yields. Grain yield and total biomass yield should therefore be recorded in Multidimensional crop-improvement efforts. These considerations are also relevant for conservation agriculture, as higher biomass yield would make the partitioning of CRs between livestock feeding and soil improvement perhaps less contentious (Baudron et al., 2014).Relationships between the N content of CRs and grain and CR yields vary. Under balanced crop management, when no restrictions were imposed on fertilizer or water, trade-offs between the N content of CRs and grain and CR yield were largely absent (Fig. 14.4). (The data in Fig. 14.4 were derived from a collaboration between the National Research Center for Sorghum, later renamed the Directorate for Sorghum Research, and Indian Institute for Millet Research). No relationship was observed between the protein content of sorghum stover (which is calculated as stover N × 6.25) and grain yield (Fig. 14.4a). Under high Kharif (sorghum grown in the rainy season in semi-arid India) grain yielders of 5 t/ha, stover protein content could vary from 4% to 7%, the latter being adequate to provide minimum microbial N requirements in the rumen (van Soest, 1994). Sorghum stover protein and stover yield were significantly positively correlated, but the correlation coefficients were low (Fig. 14.4b). Bidinger and Blümmel (2007) and Blümmel et al. (2007a) imposed N restrictions by limiting fertilizer application while increasing pressure on partitioning of N and adjusting planting densities on different cultivars (landraces, open-pollinated varieties (OPVs) and hybrids) of pearl millet. Even under these imposed restrictions, the authors found no inverse relationship between the stover N of pearl millet and grain yields (Fig. 14.5a). However, stover N and straw yield could be significantly inversely associated under low fertility and high population density (Fig. 14.5b).Water restriction reinforces trade-offs under normal management and growing conditions. For example, in chickpea cultivars, haulm, N and grain yield were inversely correlated (r = −0.41) under normal growing conditions but this association became closer (r = −0.62) under water restriction (Fig. 14.6a). Associations were positive between haulm N and grain yield and again the association was stronger under water restriction (Fig. 14.6b). Similar relationships have been observed for groundnut (Blümmel et al., 2012b).As with CR N content, relationships between CR digestibility and grain and CR yield are affected by water stress. No relationship was observed between stover digestibility and grain yield in Kharif sorghum, while this relationship was significantly inverse in Rabi sorghum (grown in the dry season) (Fig. 14.7a). The variation in stover digestibility in high Kharif grain yielders of about 5 t/ha was close to 10% (Fig. 14.7a), which is twice the difference observed in sorghum stover trading situations (Fig. 14.1).Even in Rabi sorghum, with the overall negative association between stover digestibility and grain yield, stover digestibility among Rabi high grain yields of about 3.5 t/ha could vary by a similar magnitude.In pearl millets, stover digestibility and grain yield were unrelated, regardless of N fertilizer level and population density (Fig. 14.8a). In chickpea haulm, digestibility and grain yield were weakly although significantly (r = −0.13, p < 0.03) associated under irrigation, but the trade-offs became more pronounced (r = −0.50, p < 0.0001) under water restriction (Fig. 14.9a). In all three crops, stover and haulm digestibility and stover and haulm yields were significantly positively associated (Figs 14.7b and 14.8).The relationships between stover and haulm digestibility and grain yield would be affected, for example, by arrested translocation of soluble carbohydrate from the stem to the grain or from lignification of stems to prevent or counteract lodging. While these mechanisms might be real, they were expressed only mildly in the relationships of CR digestibility and grain yields in rice (Blümmel et al., 2007b), groundnut (Nigam and Blümmel, 2010), cowpea (Samireddypalle et al., 2017), maize (Blümmel et al., 2013a) and wheat (Blümmel et al., 2012a).Considerable elasticity exists between biomass yield (grain and CR) and CR fodder quality. Evidence comes from the water production function for groundnut components. Water stress had a substantial negative effect on biomass yield in groundnut, while fodder quality traits such as N and IVOMD were much less affected (Table 14.5).Outcomes are commonly defined by behavioural changes and changes in mindsets by secondary beneficiaries. The work presented in this chapter has contributed to such changes in both public and private crop improvement. The principal outcome of research on multi-trait crop improvement was the reconsideration of the single trait (i.e. grain) model in favour of the multi-trait and whole-plant (i.e. food and fodder) model. While there are as yet few formal decisions such as the decision of the NRCS (now IIMR) to include stover traits as new cultivar release criteria in sorghum (and now pearl millet, although under a different mandate), there are strong indications that public and private crop-improvement programmes have reoriented their efforts towards whole-plant improvement. In the design of the second phase of the CRPs, most crop commodity institutes targeted whole-plant improvement for which the expression 'full-purpose crop' established itself. Syngenta was joined by other private breeders such as Seed Co targeting dual-purpose maize in East and southern Africa, exploring branding and seed bag labelling for CR fodder traits in their hybrids.Much of described work was conducted within the framework of CGIAR and its national partners. While drafting proposals for the second phase of the CRPs (2017-2022), several of the former crop commodity programmes, such as the CRPs on Grain Legumes and Dryland Cereals and on Maize, specifically devoted flagships to work simultaneously for grain and CR improvement, suggesting further mainstreaming of a paradigm shift in crop-improvement efforts. The CGIAR nomenclature chosen for food and fodder improved cultivars was 'full-purpose crops'. These CRPs have considerable reach as they work in global consortia comprising a wide range of national and international public and private research organizations, development practitioners and private-sector companies.A milestone is reached when cultivar release agencies start to amend release criteria that include CR fodder traits, as has happened with the AICRPs on Sorghum and recently on Pearl Millet. Co-option and buy-in of the private sector will also be crucial. It is encouraging to see the increasing interest of the seed sector in exploring marketing of CR fodder traits. The discovery, proof-of-concept, pilot and, to a lesser degree, scale phases described above have helped to build a community of practice of experts and practitioners from animal nutrition, crop improvement, socio-economics and private-sector seed, feed and dairy companies, and from non-governmental organizations and NARES. This community of practice is the core around which further multi-trait crop-improvement efforts need to take place. CGIAR crop institutes have well-established relationships and collaborations with NARES mandated to work on specific crops. Describing the adoption of new cultivars is a key variable for estimating the impacts of crop improvement. Assessing levels of adoption of new cultivars is usually done indirectly through the monitoring of seed production and sales and crop-specific seed rates to estimate the areas planted under new cultivars (Teufel et al., 2011). An example of the problem of measuring and evaluating adoption is that of an early-maturing, high-yielding and drought-tolerant dual-purpose groundnut variety (ICGV 91114) introduced in the Anantapur district of semi-arid India. ICGV 91114 produced 15% higher pod yields, 17% more haulm and 11% better-quality fodder than the locally grown variety in on-farm trials in three villages in the Anantapur district of India. Farmers who fed their dairy cows and buffaloes the improved fodder saw daily milk production increase by about 10% per animal (Pande et al., 2006, p. 23).An impact study of 376 farmers estimated that adopters of ICGV 91114 earned 34% additional net revenue compared with traditional varieties, including a 29% gain in haulm value, while incurring unit costs that were 6% lower (Birthal et al., 2011, p. 22). A non-governmental organization, the Rural Development Trust/ Accion Fraterna, promoting the new cultivar estimated, based on seed production and sales, that by 2005 about 10,000-12,000 ha had been planted with ICGV 91114. However, when Teufel et al. (2011) tried to trace this adoption using randomly selected villages in the district, they reported only a 'handful' of adopters and concluded that the previous estimates of adoption were dramatic overestimates. ICRISAT staff have since maintained that: (i) ICGV 91114 is the third most popular cultivar in what is called 'Breeder Seed Indented', providing about 13% of all the groundnut seeds produced in this nationwide scheme in India; (ii) groundnut breeders estimated a lower figure of 4% of area coverage; and (iii) 4% of area coverage equals about 185,000 ha under ICGV 91114 (P. Janila, Hyderabad, personal communication, 2016). While the estimates based on seed production and area planted are in considerable disagreement, they are strongly suggestive of more than a 'handful' of adopters. Making direct assessments of areas under new cultivars has obvious logistical challenges; the approaches currently being explored are around genotypic fingerprinting of new cultivars (Kosmowski et al., 2016).The new cultivars benefit farms, fodder markets and livestock production. A general conclusion of our India work on dual-purpose crops is that adoption is faster and broader where the private sector is engaged. This conclusion usually applies to hybrids rather than to OPVs, where seed multiplication is public. Work on multi-trait crop improvement with OPVs identified promising new cultivars to scale (e.g. to more than 100,000 ha) or at least to pilot (more than 1000 ha), but this work was frustrated by a dearth of seed (for one recent trial, just 100 g of seed of a dual-purpose legume was provided). The reason for this lack of seeds in new public-sector OPVs might be related to misplaced incentives in public-sector crop improvement, where the release and registration of new cultivars is recognized rather than their adoption. Often, it would have been necessary, even before piloting, to multiply seed for several years -a challenging proposition. In contrast, where private-sector hybrids are concerned, as they are in maize, seed availability has rarely been a constraint.The traditional large-scale seed sector can bring hybrid crop cultivars to scale and collaborate in their 'branding' and seed labelling processes. Small-and medium-sized seed enterprises can move new cultivars from proof-of-concept stage to pilot stage by multiplying basic/foundation seeds of OPVs/niche crops, often obtained from NARES. Once a threshold in supply of OPV seeds is passed, farmer-to-farmer seed exchange becomes significant. Small-and medium-sized feed enterprises can provide decentralized feed processing and value addition to improved CRs, can provide income and employment opportunities to disadvantaged rural people, and can act as a 'pull factor' for the adoption of new cultivars. Large dairy enterprises using smallholder milk suppliers can serve as mediators and conveyors of new cultivars, feed intervention packages and customers for existing small-and medium-sized enterprises, and as stimulators of new ones.","tokenCount":"9419"} \ No newline at end of file diff --git a/data/part_3/5174188295.json b/data/part_3/5174188295.json new file mode 100644 index 0000000000000000000000000000000000000000..05d24744327eb9f2ec44683459c3e071b401a6ee --- /dev/null +++ b/data/part_3/5174188295.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"01b54550db39a09d5c83440f29546fca","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/1bfe472d-26ed-4cd1-9de0-7c4a5ddd2ef4/retrieve","id":"857017326"},"keywords":["Musa acuminata","Musa balbisiana","Musa spp.","banana","DArT","domestication","taxonomy","classification","domestication"],"sieverID":"2c82e19a-1ac8-4c2d-bcfd-cfbe9678bda7","pagecount":"10","content":"Background and Aims Dessert and cooking bananas are vegetatively propagated crops of great importance for both the subsistence and the livelihood of people in developing countries. A wide diversity of diploid and triploid cultivars including AA, AB, AS, AT, AAA, AAB, ABB, AAS and AAT genomic constitutions exists. Within each of this genome groups, cultivars are classified into subgroups that are reported to correspond to varieties clonally derived from each other after a single sexual event. The number of those founding events at the basis of the diversity of bananas is a matter of debate.Methods We analysed a large panel of 575 accessions, 94 wild relatives and 481 cultivated accessions belonging to the section Musa with a set of 498 DArT markers previously developed.Key Results DArT appeared successful and accurate to describe Musa diversity and help in the resolution of cultivated banana genome constitution and taxonomy, and highlighted discrepancies in the acknowledged classification of some accessions. This study also argues for at least two centres of domestication corresponding to South-East Asia and New Guinea, respectively. Banana domestication in New Guinea probably followed different schemes that those previously reported where hybridization underpins the emergence of edible banana. In addition, our results suggest that not all wild ancestors of bananas are known, especially in M. acuminata subspecies. We also estimate the extent of the two consecutive bottlenecks in edible bananas by evaluating the number of sexual founding events underlying our sets of edible diploids and triploids, respectively.Conclusions The attribution of clone identity to each sample of the sets allowed the detection of subgroups represented by several sets of clones. Although morphological characterization of some of the accessions is needed to correct potentially erroneous classifications, some of the subgroups seem polyclonal.Banana, including cooking banana, is a vegetatively propagated crop of great importance for the subsistence of small-scale farmers in developing countries. This fruit and starchy crop is grown in more than 130 countries, mainly tropical, and is a major staple food for millions of people. In addition, more than 19 million tonnes of bananas, i.e. 13 % of the total global production, are exported (http://faostat3.fao.org/faostat-gateway/go/to/ home/E). This makes banana critical for both the food security and the economy of many developing countries.Banana, Musa spp., is a monocotyledon. With the exception of Australimusa Fe'i banana, not considered in this paper, it carries four known genomes, A, B, S and T, which correspond to the species Musa acuminata, M. balbisiana, M. schizocarpa and M. textilis, respectively. No hybridization among B, T or S genomes has been observed independently of the A genome but M. acuminata hybridizes with any of the three other species. However, there are few cultivated bananas composed of S and T genomes. The two main progenitor species of the domesticated forms of bananas are thus M. acuminata and M. balbisisana. Although no subdivision exists within M. balbisiana taxonomy, based on different observed chromosome structures M. acuminata has been divided into at least seven subspecies with different geographical distributions (Simmonds and Shepherd, 1955;Shepherd, 1999).The four species at the origin of cultivated bananas have combined to generate a wide diversity of diploid and triploid cultivars with diverse genetic make-ups varying from AA, AB, AS, AT, AAA, AAB, ABB, AAS to AAT. Within each of these genome groups, cultivars are classified into subgroups that are considered to correspond to groups of varieties clonally derived from each other after a single sexual event. The most well known of the subgroups of banana are seedless triploids, such as the commercially important Cavendish dessert banana (AAA) and the staple cooking African Plantains (AAB), which have importance for food security. However, quite a high number of diploid cultivars are also cultivated, especially in the centre of origin, i.e. the South-East Asia/Melanesia region (Simmonds, 1962;Lebot, 1999). The origin of modern bananas, especially of the commercial triploids, has been investigated and domestication schemes have been proposed (De Langhe et al., 2009;Perrier et al., 2011). The emergence of triploid cultivars is believed to have ensued from a multi-stepped process. Modern edible diploids may have been preceded by what De Langhe et al. (2009) named 'cultiwilds', i.e. pre-domesticated forms of bananas that might have been devoted to uses other than food, exhibiting intermediate levels of parthenocarpy and occasionally producing seeds. These cultiwilds, originating from different subspecies of M. acuminata, then probably diffused through exchanges between human communities and/or following human migrations. Once brought into contact, they are thought to have hybridized with local genepools and to have given rise to edible diploids. Due to parental chromosomal rearrangements and unbalanced meiosis in these hybrids, diploid gametes were sometimes formed, so that in some cases the occurrence of sexual reproduction between them led to the emergence of triploid cultivars (reviewed by Perrier et al., 2011). The most striking example is the likely resolution of the direct ancestry of the Cavendish AAA sub-groups: restriction fragment length polymorphism (RFLP) and simple sequence repeat (SSR) markers have revealed that two AA landraces originating from the Mlali and Khai clusters were the most likely providers of their AA and A parental gametes, respectively (Carreel et al., 2002;Raboin et al., 2005;Perrier et al., 2009;Hippolyte et al., 2012).A range of molecular markers have been used to characterize and study banana diversity: amplified fragment length polymorphism (AFLP) (Ude et al., 2002), RFLP (Carreel et al., 2002;Raboin et al., 2005) and more recently microsatellites (Perrier et al., 2009;Christelov a et al., 2011;Hippolyte et al., 2012;de Jesus et al., 2013;Irish et al., 2014). Originally developed for rice, diversity arrays technology (DArT) markers (Jaccoud et al., 2001) are most widely used. They were designed to enable whole-genome profiling without the need of sequence information. Due to their high polymorphism information content (PIC), DArT has been successfully applied to various crops, from wheat (Akbari et al., 2006) and sorghum (Bouchet et al., 2012) to chickpea (Roorkiwal et al., 2014). In banana, DArT has already been used for a range of applications, from diversity studies (Amorim et al., 2009;Risterucci et al., 2009) to genetic mapping (Hippolyte et al., 2010;D'Hont et al., 2012).In this study, we propose to use a batch of 498 polymorphic previously developed DArT markers (Risterucci et al., 2009) to explore the genetic diversity of a large sample composed of 575 accessions of bananas, covering most of the known diversity of wild and cultivated diploids and triploids from the section Eumusa. The accessions are conserved for distribution in Bioversity International's Global Collection of Banana, the International Transit Center (ITC), hosted in the Catholic University of Leuven, Belgium. These accessions originate from diverse field collections and collecting missions (accessed through MGIS, http://www.crop-diversity.org/banana/) and constitute a good representation of the existing diversity of Musa worldwide. The results obtained allowed us to provide a global image of Musa diversity and to validate the accuracy of DArT markers in detecting genome composition and revealing clustering in banana accessions. Secondly, we discuss the extent of the consecutive bottlenecks that underpinned banana domestication. Finally, we argue for the anchorage of the taxonomy of cultivated bananas within an evolutionary perspective.A total of 575 accessions were obtained from the ITC's in vitro genebank. The sample set was composed of 94 wild accessions and of 481 cultivated accessions, including 208 diploids, 269 triploids and four mixoploids, i.e. accessions exhibiting diploid and triploid cells while measured with flow cytometry. The numbers of individuals per different species and genome groups are summarized in Table 1.DNA extraction and DArT procedure DNA was extracted from lyophilized samples provided by ITC following the protocol described at https://www.diversityar rays.com/files/DArT_DNA_isolation.pdf Development of the DArT assay and DArT array was described by Risterucci et al. (2009). Briefly, each DNA sample was digested with a combination of PstI and TaqI restriction enzymes, the adapter for PstI overhang was ligated and fragments with PstI ends that are missing the TaqI internal restriction site were amplified using primers targeted to the PstI adapter sequence. Genomic representations thus created in that manner (targets) were quality-checked through gel electrophoresis and then fluorescently labelled with either Cy3 or Cy5 fluorescent dye. Labelled targets and FAM-labelled internal control (polylinker of the cloning vector used for DArT library construction) were hybridized to a banana array containing 6144 DArT clones printed in duplicate for 16 h at 62 C. Slides were subjected to four washes of increasing stringency with a final rinse in water followed by drying. Slides were scanned using a Tecan laser scanner at three wavelengths matching emission of the three fluorescent dyes used in hybridization. The images generated by the scanner were stored in DArTdb (http://www.diversi tyarrays.com/dart-technology-package-dartDb) and used in marker data extraction. More detailed descriptions of the lab techniques are given by Kilian et al. (2012).Markers were scored '0' for absence and '1' for presence of the restriction fragment corresponding to DArT probe in the genomic representation. DArTsoft v.7.4 (Diversity Arrays Technoogy P/L, Canberra, Australia) was used to automatically identify and score polymorphic markers. The threshold criteria of call rate and reproducibility were set to be higher than 80 and 97 %, respectively.Global representation and structure of Musa diversity. Darwin 5.0 (Perrier and Jacquemoud-Collet, 2006;Perrier et al., 2003) was used to calculate genetic distances between pairs of the 575 accessions. To do so, both modalities (0,1) were given equal weight using the Sokal and Michener (1958) dissimilarity index as the proportion of unmatching markers. The dissimilarities matrix was first used to perform a principal coordinate analysis (PCoA).A Bayesian Markov chain Monte Carlo (MCMC) approach was then used to detect genetic clusters within diploids. This model-based analysis was run using the program STRUCTURE version 2.3.3. (Pritchard et al., 2000). We used the admixture model along with the assumption of correlated allele frequencies between groups (Falush et al., 2003) and the optimal value of K was then determined by examining the posterior probabilities Ln P(D), the partitioning of individuals across the K clusters and DK (Evanno et al., 2005) as implemented in the web software STRUCTURE HARVESTER (Earl and vonHoldt, 2012). STRUCTURE then partitioned individuals of the sample according to the membership coefficient Q, which ranges from 0 (lowest affinity to the group) to 1 (highest affinity to a group), across the pre-defined K groups. Taking into account that the models implemented within STRUCTURE pre-supposed panmixia, we first analysed seeded accessions and then the edible diploid accessions as they exhibit a higher chance to meet this criterion than triploids. For each analysis, we ran ten replicates of each value of K ranging from 1 to 10 with a burn-in length of 400 000 followed by 1 000 000 iterations of each chain.Clonal diversity of edible banana. The number of distinct multilocus genotypes (MLGs) present in the cultivated component of our sample (G) was determined using the software GenoType (Meirmans and Van Tienderen, 2004) based on the genetic distances matrix generated by DARwin. GenoType allows choosing a threshold (Th), i.e. the maximum pairwise genetic distance allowed between individuals to belong to the same clonal lineage, or to be clonemates, and then assigns a clonal identity to each individual. We ran two different datasets. The first involved cultivated diploid individuals only (208 samples) and led to the identification of 115 distance classes. The second involved cultivated triploid individuals only (273 samples including 269 triploids and four mixoploids) and led to the identification of 157 distance classes.We then followed Douhovnikoff and Dodd (2003) to determine the threshold that would enable us to delimit banana clonesets through the observation of the frequency histogram of distances.The PCoA performed on the distance matrix between genotypes of the whole sample is presented in Fig. 1. Factors 1 and 2 represented 52.67 % of the total variation observed. Axis 1, counting for 44.92 % of the variation observed, clearly discriminates accessions according to the proportion of the B genome involved in their genomic composition, going from pure B at the left to pure A at the right.The discrimination displayed by Axis 2, accounting for 7.75 % of the variation observed, correlates to some extent with the geographical origins of the cultivated accessions, going from the North, e.g. ABB subgroups Pome and Mysore originating from India at the bottom of the graph, to the South with the cultivated AA originating from Papua at the top. However, this pattern does not fit with M. acuminata subspecies: if banksii is located at the top of the graph near the cultivated diploids from Papua New Guinea, the diversity of the main South-East Asia subspecies, zebrina from Java, malaccensis from the Malay-Thai peninsula and burmannica from Myanmar, is not structured according to geography. Interestingly, none of the subspecies included in this study clusters at the bottom of the graph where there is a large group of cultivated diploids and triploids including the AAA Cavendish and Gros Michel.Finally, the clustering of the main cultivated subgroups is consistent with the accepted taxonomy of the samples.The overall results obtained from STRUCTURE on the set of 93 wild samples are displayed in Fig. 2. Examining the posterior probabilities of the data for each K, here called Ln P(D), along with their variance across runs, and Evanno et al.'s (2005) DK (Fig. 2A), we noticed that the highest peak of DK appears for K ¼ 2. However, the occurrence of smaller peaks along the graph suggests additional levels of clustering, notably for K ¼ 3, K ¼ 4 and K ¼ 8, all corresponding to stable values of Ln P(D) across runs. As the over-representation of the subspecies banksii probably introduced some bias into the results, we investigated the partitioning of the individuals across genetic clusters for all these putative values of K (Fig. 2B). The first level of clustering allows a clear discrimination of M. balbisiana from the M. acuminata/M. schizocarpa samples. The second level of clustering, K ¼ 3, allows the further discrimination of M. acuminata burmannica/M. schizocarpa from M. acuminata banksii. The other subspecies from South-East Asia are considered as admixed accessions at this stage. For K ¼ 4, M. schizocarpa clusters apart from any M. acuminata subspecies while the South Asian subspecies appear as a homogeneous group with punctual banksii introgressions. The pattern displayed for K ¼ 8 is more complex but also allows the discrimination of South-East Asian M. acuminata subspecies burmannica, malaccensis and zebrina. In addition, it also provides three accessions classified as malaccensis with a hybrid status between malaccensis and zebrina. However, of the eight putative genetic clusters identified by STRUCTURE, only six display fully assigned individuals (Q > 0Á8).The Evanno et al. (2005) method applied to the results obtained from the analysis of the set of 208 cultivated diploid accessions with STRUCTURE (Fig. 3) suggests K ¼ 2 as the real value of K even though a secondary peak of DK exists at K ¼ 3. As we suspected a bias due to the probable overrepresentation of accessions collected in Papua, we also investigated the different clusters detected for K ¼ 3 (data not shown), but the pattern displayed for K ¼ 2 was the most convincing. The partitioning of individuals across the different clusters identified for K ¼ 2 according to their countries of origin is presented in Table 2. Cluster 1 is composed of 50 accessions, mostly originating from South-East Asia, and cluster 2 is composed of 84 accessions, of which 82 originate from Papua, the two other accessions being ITC0299 'Guyod' from the Philippines and ITC1253 'Mjenga' which probably originated from Zanzibar (J. P. Horry, CIRAD, pers. comm.). Seventyfour accessions are admixed between both groups, i.e. Q < 0Á8. A majority of these admixed accessions originate from Papua (42) and the Philippines (11).Considering the accessions fully assigned to a given cluster only, South-East Asia countries exhibited mainly accessions belonging to cluster 1 while the majority of the accessions collected in Papua belonged to cluster 2.We investigated the number of distinct MLGs, or clones, identified in the two cultivated datasets, diploids and triploids (including mixoploids).At Th0, i.e. no difference allowed, GenoType identified 175 different MLGs out of the 208 cultivated diploids and 221 different MLGs out of the 273 cultivated triploids and mixoploids. However, this estimation of the number of different MLGs did not take into account genotyping errors and accumulation of mutations as putative sources of genetic divergence among the accessions. In addition, DArT detects not only DNA sequence variation, but also, at a lower frequency, methylation variation at the PstI site used for the complexity reduction step (Wittenberg et al., 2005;Kilian et al., 2012). Therefore, the distance estimated based on DArTs not only includes scoring errors, which correspond to a fraction of 1 % given the cutoff of 97 % technical reproducibility and clonal accumulation of mutations, but also epimutations which are likely to accumulate in the meristems of clonally propagated materials. Histograms of the distributions of the pairwise genetic distances for the 50 first classes of these distances (Fig. 4) revealed thresholds that appeared appropriate to evaluate the number of initial founding events, i.e. sexual events, at the origin of each of the sets. The histogram obtained for the cultivated diploids (Fig. 4A) exhibits a clear pattern, with the first peak located at the second distance class. This peak appears to end at the fifth distance class, which we considered to be the threshold value for the cultivated diploids. Therefore, the estimated number of different MLGs in this sample was 117 distinct MLGs out of 208 (see Supplementary Data Table S1).Of these 117 MLGs, 36 were composed of 2-13 accessions while 81 were composed of unique accessions. However, we suspect that at least seven multi-accession MLGs are composed of duplicates or synonyms (Table S1). It is noticeable that the two AB accessions, in the accepted classification, are classified in the Ney Poovan subgroup, but here are not recognized as belonging to the same clone. Equally, cultivars ensuing from hybridization between M. acuminata and M. schizocarpa (AS) separate into two different clonal groups.The pattern of genetic distances for the cultivated triploids, including mixoploids, is different (Fig. 4B): the first peak is also reached at the second genetic distance class but stretches until the eighth distance class. In addition, it is higher than that observed in the diploid accessions, suggesting higher rates of clonal differentiation among the triploids. This first high peak is followed by two lower peaks that suggest the occurrence of Partitioning of the individuals according to their membership coefficient Q across the K groups for K ¼ 2, 3, 4 and 8. Cluster I is composed of 27 M. acuminata banksii; cluster II of six M. acuminata burmannica/burmannicoı ¨des; cluster III of one M. acuminata errans and three M. acuminata qualified as hybrids; cluster IV of 13 M. acuminata malaccensis; cluster V of two M. acuminata microcarpa; cluster VI of one accession qualified as hybrid, of two M. acuminata siamea, of one M. acuminata truncata and one M. acuminata without known subspecies; cluster VII of seven M. acuminata zebrina; cluster VIII of hybrids between M. acuminata and M. schizocarpa; cluster IX of 11 M. balbisiana; and cluster X of 11 M. schizocarpa.closely related accessions within the sample. We investigated the MLGs clustering at threshold 8 and observed that, for this value, the cultivated triploids displayed 78 different MLGs out of the 273 accessions of the sample (Table S1). Thirty-one of the identified MLGs were composed of 2-44 accessions while 47 were composed of unique accessions. For 27 of the unique MLGs, no taxonomy information was available while 20 were classified as belonging to known subgroups. Noticeably, ITC0686 'Pisang Umbuk', ITC0176 'Lacatan' and ITC0002 'Dwarf Cavendish' classified as Cavendish are here considered as unique clones when 37 accessions classified as Cavendish and Gros Michel are considered as belonging to the same clone. Equally, ITC0060 'Guineo', ITC0170 'Ingarama' and ITC0177 'Makara' are considered unique genotypes but are classified as Mutika/Lujugira when 37 other Mutika/Lujugira accessions are considered as a single clone.We also noted that AAB Plantain was considered here as a unique clone but Iholena and Silk were composed of two sets of clones each. Most of the Pome and Mysore accessions were considered as a unique clone.With few exceptions, the results obtained for ABB are consistent with the taxonomy for the subgroups Pisang Awak, Pelipita and Klue Teparod. However, they are not consistent for the accessions classified as Saba, Monthan, Bluggoe, Ney Mannan or Peyan, for which the accessions belong to several MLGs that are themselves a mix of the different subgroups.DArT markers and the characterization of the diversity in Musa Molecular markers have proved to be useful tools for the resolution of banana taxonomy and management of ex situ collections (Hippolyte et al., 2012;de Jesus et al., 2013;Irish et al., 2014). Here we analysed a wide sample of wild and cultivated bananas conserved in the more diverse of the Musa genebank, the ITC, with 498 DArT markers. Overall, the clustering of the accessions within our sample is consistent with the acknowledged taxonomy of banana. Compared to a previous study performed with SSR markers (Hippolyte et al., 2012), the clustering of the accessions is consistent and similar. However, the organization of the clusters differs as the tree built with SSR markers did not show an organization of these clusters according to their genomic composition, as is the case here, but according to their common ancestry. Therefore, DArT appears more robust in detecting the genomic composition of accessions, especially in estimating the number of B genomes displayed by each sample (Fig. 1). With regard to the dominant nature of the markers used, the hierarchical clustering of the accessions according to the number of B copies present in their genomic composition is surprising but the same pattern was observed with dominant AFLP markers (Ude et al., 2002). More surprising is the clustering of both accessions classified as Klue Teparod (ABB) within the wild M. balbisiana sample. Some authors have claimed the occurrence of parthenocarpic BBB cultivars (Valmayor et al., 2000). Ribosomal DNA analysed for one of these accessions, ITC0652 'Kluaı ¨Tiparot', indeed revealed a B genome component only (Boonruangrod et al., 2008) while internal transcribed spacer (ITS) sequence and cytogenetic analyses of satellite DNA unambiguously confirmed , 2013). Therefore, the potential occurrence of an incomplete A genome within this subgroup needs to be investigated.Several true duplicates were identified within the MLGs identified by GenoType (see Table S1). However, in most cases they did not cluster together as Th0 (data not shown) revealing that the amount of genetic variation generated by the 'genotyping error' may be equivalent to that between accessions clonally derived from each other. Therefore, although DArT is confirmed as providing reliable markers for estimating and studying the diversity present in a Musa germplasm collection, the issue of providing a molecular footprint that would enable the unambiguous discrimination of each particular cultivar cannot be resolved with DArT markers. In such a context, the platform and methodology using a set of SSR markers presented by Christelov a et al. ( 2011) is likely to be more accurate.DArT markers also highlighted discrepancies between the known genetic background of some of the accessions and their clustering in the diversity analysis. For example, ITC1253 'Mjenga' was considered on the basis of morphological and SSR data as a clone belonging to the Mshale subgroup (Hippolyte et al., 2012), whereas it clusters here within the Papuan cultivated accessions and not with the other Mshale. We thus suspect a mislabelling problem, either in the ITC or during the DNA processing. On the other hand, the discrepancies observed between the taxonomy of some wild accessions and their clustering in the STRUCTURE analysis may be due either to their erroneous classification or to their hybrid status as explained at K ¼ 8 for some of the wild samples (e.g. several burmannica accessions). Although such hybridization could be due to the occurrence of natural and regular gene flow between the different genepools of M. acuminata (Carreel et al., 1994), we cannot exclude that they hybridized and accidentally lost their genetic integrity when maintained in ex situ field genebanks (Visser and Ramanatha Rao, 2005) prior their introduction to the ITC. Equally, the patterns displayed by some of the ABB subgroups, in which memberships to sets of clones do not follow the taxonomy provided with the accessions, suggest the erratic classification of these accessions. Both types of discrepancy will be investigated through field verification that will allow the growth, characterization and documentation under standard conditions of the accessions concerned followed by expert consultation (Chase et al., 2016). Low cost, fast, accurate and applicable to the whole genome, DArT markers are good tools to help manage ex situ collections of banana.Organization of the diversity and implications for its origin Wild samples. Examining the successive partitioning displayed by STRUCTURE for the 94 wild accessions according to the number of clusters considered is particularly interesting. As postulated by Meirmans (2015), most of the wild species and populations exhibit different levels of organization in their genetic structure that can be reflected by different possible values of K. With an increase of K, we progressively discriminate the different species and subspecies involved in this study consistently with the phylogenetic results published by Janssens et al. (2016), the only surprising pattern being the fusion of M. schizocarpa and M. acuminata burmannica at K ¼ 3. Equally, the species M. schizocarpa originates in Papua but in the PCoA (Fig. 1) it clusters closer to the South-East Asian subspecies of M. acuminata than to the banksii from Papua.Cultivated samples. The rise of cultivated triploid bananas from their direct wild ancestors, M. acuminata and M. balbisiana among others, can be seen as a three-step process in which the anthropogenic circulation of pre-domesticated forms of diploid bananas extracted from the different wild genepools (Step 1) led to the production of edible and diploid hybrids (Step 2) that occasionally produced unreduced gametes and resulted in the emergence of triploid varieties (Step 3). The founder event that is common to steps 2 and 3 is sexual reproduction. First, sexual recombination led, within cultivated plots, to the birth of diploid specimens suitable for food consumption; second, rare sexual events still occurring among the edible diploids gave birth to triploids (Perrier et al., 2011). Therefore, identification of the number of distinct MLGs in both edible diploid and triploid accessions provides an estimation of the number of founding events for each ploidy type of banana and allows us to thus estimate the extent of the two consecutive bottlenecks that gave birth to present-day bananas. Our estimation of the number of MLGs constitutes a straightforward method for such estimations: the sample is wide and takes into account the biological specificity of each sample according to ploidy levels. We estimate that the 208 cultivated diploids of our sample may have arisen from 117 distinct sexual events while 80 sexual events may be at the origins of the 273 triploid accessions. The scores we obtained, in particular for the triploids, are low and highlight the narrowness of the genetic basis of the triploid bananas, despite what was hypothesized by Li et al. (2013) based on the study of nucleotide diversity in the Waxy and Adh1 genes.Taking into account that the ITC is seeking the most diverse and rare cultivars for conservation purposes, the estimation given by Bakry and Horry (2016) that 95 % of world banana production relies on 7-14 sexual events is not challenged by our results. It merely highlights the extent of under-utilization of banana genetic resources. The identification, using STRUCTURE, of two main genepools within the diploid samples, one corresponding to South-East Asia and the other to Papua, is consistent with what was described for other vegetatively propagated crops in the region, such as taro (Colocasia esculenta Schott.) (Krieke et al., 2004) and great yams (Dioscorea alata L.) (K. Abraham, CTCRI, and G. Arnau, CIRAD, pers.comm.), and supports the hypothesis of an independent centre of domestication for some crops, including banana, in Papua (Lebot, 1999). This view therefore challenges the acknowledged representation of banana domestication, for which edible diploid cultivars arose from crosses between the different wild genepools, the structural heterozygosity of the genomes obtained being considered as a major force that underpinned the selection of unseeded cultivars (Perrier et al., 2011). We may therefore consider at least two different domestication centres for banana, one in South-East Asia and one in New Guinea, in which the selection forces that applied to domesticated bananas were probably different from the currently accepted representation of banana domestication.The results obtained when estimating the putative number of MLGs, i.e. of sexual events that occurred within our sample, are of particular interest for taxonomic purposes. This analysis supports the assumption that the subgroup Plantain originated from the vegetative diversification of a single seed (Noyer et al., 2005) as all Plantain are considered a single clone (Table S1). However, it does not discriminate Gros Michel from Cavendish, whereas these two subgroups were hypothesized as siblings with two different n gamete donors, 'Khai Nai On' and 'Pisang Pipit', respectively (Hippolyte et al., 2012). Despite this supposed difference, the level of genetic divergence assessed with DArT markers between Gros Michel and Cavendish is equivalent to that observed for a monoclonal subgroup. In contrast, subgroups such as AA Pisang Jari Buaya, AB Ney Poovan, AAA Cavendish, AAA Mutika/Lujugira, AAB Silk and AAB Iholena seem to be composed of several clonal entities each. We cannot exclude that this pattern partly results from the potential erroneous classification of some clones, although the recent study of Kagy et al. (2016) confirmed the occurrence of polyclonal subgroups. The question raised by such a pattern is the definition of subgroups. Do we consider only monoclonal sets as subgroups sensus stricto or do we accept that a subgroup is likely to be composed of different clonal entities? In their paper considering the Iholena subgroup, defined based on its particular fruit and bunch morphology, Kagy et al. (2016) observed that this Pacific AAB subgroup was indeed composed of at least two different but related genotypes and postulated that they probably arose from the same restricted subset of parental diploids. Therefore, we may acknowledge that a subgroup could arise from different sexual events that occurred within the same genepools, conditional to morphological similarity. In such a context, molecular markers are of great help in detecting evolutionary differences underlying the emergence of subgroups. However, revising the taxonomy of banana requires joint morphological and molecular characterization of ambiguous accessions to check their classification and, if necessary, to refine the morphological criteria delimitating the subgroups concerned.We have conducted one of the largest and most comprehensive studies of the genetic diversity of banana germplasm. We confirmed that DArT markers were good tools both for resolving the taxonomy of accessions and for identifying mislabelling problems. The identification of two main genepools in the cultivated diploid accessions suggests at least two main regions of domestication, one in New Guinea and one, if not more, in South-East Asia. If it is consistent to hypothesize that the Papuan cultivars were domesticated from the local subspecies M. acuminata banksii, the South-East Asian domestication scheme is probably far more complex as it involves several subspecies. These subspecies are far from well known. As we postulate here, many of the accessions conserved in the ITC, and thus in their source collection, are likely to be hybrids between two or more genepools rather than pure representatives of their taxa. Whether hybridization occurred during their conservation in field ex situ collections or in the wild prior to being collected is not clear. The poor representation of some of the M. acuminata subspecies in ex situ genebanks does not help to clarify this issue. A striking example is Musa acuminata errans that was described in the Philippines (Valmayor, 2001). Currently, the only available specimen affiliated to this subspecies is ITC1028 'Agutay' and it appears here that it may well be a banksii hybrid. It is thus not possible to strictly assess, from this given accession, if errans participated in the build-up of cultivated bananas. The large group of AA/AAA cultivated bananas that does not cluster with any of the M. acuminata subspecies present in our sample suggests in addition that not all the diversity of the wild M. acuminata has been studied. To fill these gaps in both our knowledge and in the available genetic resources, systematic prospecting coupled with thorough phylogenetics and population studies should be undertaken in the future.SUPPLEMENTARY DATA Supplementary data are available online at www.aob.oxfordjour nals.org and consist of Table S1: assignment of clonal IDs to the sample accessions.","tokenCount":"5399"} \ No newline at end of file diff --git a/data/part_3/5193300526.json b/data/part_3/5193300526.json new file mode 100644 index 0000000000000000000000000000000000000000..1dd52bf323685f278699d9e2130743b04cc66f0b --- /dev/null +++ b/data/part_3/5193300526.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"0886a7819ecef50946cdae1c863b4bf4","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/34a1609b-1594-4497-a50a-c774bce09b3d/retrieve","id":"344007066"},"keywords":[],"sieverID":"63059125-3599-42ef-81f3-3fe46b928e44","pagecount":"2","content":"With climatic uncertainty, including floods, droughts, cyclones and heat waves, projected to increase in the future, agriculture and food security are more vulnerable than ever. This instability puts productivity, incomes and ecosystems at risk. Poor smallholder farming communities will be hardest hit.In 11 countries, Bioversity International is working through its Seeds for Needs initiative to help farmers adapt better to climate change through the use of agricultural biodiversity.The Seeds for Needs concept is simple -if an array of different crops is grown on a farm or in a landscape, farmers are more likely to be able to cope with unpredictable weather. But farmers do not always have access to information or planting material to help them choose different crops or varieties that suit their conditions.Seeds for Needs started in Ethiopia in 2009 and now has project sites in eleven countries. Cambodia: rice, sweet potato; Colombia: beans; Ethiopia: barley, wheat; Honduras: beans; India: rice, wheat; Kenya and Tanzania: sorghum, pigeon pea, cowpea; Laos: cucumber, long bean, rice, sweet corn, watermelon; Papua New Guinea: taro, sweet potato; Rwanda and Uganda: beansFarmer involved in the Seeds for Needs initiative, India. Credit: Bioversity Intenational/ C.Zanzanaini Seeds for Needs addresses both these issues by:• Exposing farmers to more crop varieties, increasing their knowledge about different traits.• Strengthening their local seed systems so they have access to seeds that fit changing needs.Farmers are directly part of evaluating and selecting varieties throughout the growing season, providing feedback on their preferred traits to scientists. Since 2011, the initiative has been using a crowdsourcing approach: each farmer is given three randomly-assigned varieties out of a broader selection to compare with their own varieties. By carrying out these mini trials with such a small number of varieties, more farmers can participate as 'citizen scientists'. The initiative is also using mobile technology as a cheap and accessible way to communicate with farmers.The Seeds for Needs initiative is now working with around 10,000 farmers worldwide. From 25,000 varieties of durum wheat and barley, 500 were short listed using geographic information system (GIS) technology and characterization. Out of this short list, farmers and scientists selected 50 to test for local adaptation.All of the 500 varieties have been made available to farmers either through established or new community seedbanks in the three regions where Bioversity International works.Seeds for Needs in India started with some 30 farmers in 2011 and has exponentially increased to 5,000 farmers through crowdsourcing. In the coming two years, Bioversity International hopes to work with over 30,000 famers, with a strong focus on increasing women farmers' access to knowledge and information.The initiative has also set up weather sensors, known as iButtons, in farmers' fields to record local temperature and humidity. This data is then compared with feedback from farmers on crop performance. Bioversity International is developing a data analysis software called ClimMob to help identify trends and give farmers feedback based on the collected data.Farmers scoring durum wheat varieties according to their preferred traits in a field trail, Northern Ethiopia. Credit: Bioversity International/C.FaddaFarmer observing neighbour's wheat trials in India. Credit: Bioversity International/C.Zanzanaini Bioversity International's Seeds for Needs initiative provides an effective and cost-efficient way to provide farmers with vital information and improve their seed systems. The aim is to test and then develop solutions at scale, ensuring more potential benefits to more farmers and their families. Now more than ever, there is the potential to create lasting solutions for resilience and climate adaptation for smallholder farming communities worldwide.","tokenCount":"577"} \ No newline at end of file diff --git a/data/part_3/5216014438.json b/data/part_3/5216014438.json new file mode 100644 index 0000000000000000000000000000000000000000..c0b3ac7c02504567971554591000e4272a952b12 --- /dev/null +++ b/data/part_3/5216014438.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"13f15911b6d445e3f53661c00f76dd51","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/a3dd34e3-0890-4945-ab81-486251a60875/retrieve","id":"-1277904422"},"keywords":[],"sieverID":"66622a75-a96d-4435-a15b-a18185fab869","pagecount":"28","content":"Outline  Study sites, design and methods  Experience of climate shocks and coping strategies  Perceptions of climate change  Adaptation strategies, desired adaptations, and constraints  Determinants of adaptation INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE Conclusions and Policy RecommendationsSemi  Greater emphasis on livelihood diversification activities as an adaptation strategy, including  Factors vary widely depending on the adaptation strategy chosen. Different strategies are needed to support the adoption of particular adaptation options.  Extension services support the adoption of almost all adaptation measures, although certain types of extension are more effective for particular adaptation strategies.  Climate information is important for changing planting dates  Diversified sources of income (mixed crop livestock production and off farm sources of income) and credit support adaptation of some measures Social safety nets (food or other aid) support the adoption of some practices (changing crop variety, changing planting dates, and changing livestock feeds).  However, farmers receiving food aid (usually targeted to the poorest households) were less able to take on larger investments, such as tree planting.  Access to irrigation is an important determinant of whether farmers change crop types, suggesting that investments in irrigation infrastructure would help farmers switch to higher-value crops.  Access to land is important for changing crop variety, planting trees, and constructing soil and water conservation measures. Climate shocks, particularly drought, pose hardships on poor smallholder producers  Households have difficulties coping with shocks (many coping responses are \"last-resort\" decisions e.g. reducing consumption, selling livestock etc.)  Households need greater resilience to cope with climate variability, through the accumulation of assets and wealth  Particularly women who are less likely to take action in response to shocks  Households in the arid zone have few options at their disposal Short term coping strategies, such as food aid, are necessary but need more support for long-term adaptation (e.g. livelihood diversification)  Development/government agencies should focus more on supporting long-term adaptation strategies through greater investments in rural and agricultural development ","tokenCount":"332"} \ No newline at end of file diff --git a/data/part_3/5217682651.json b/data/part_3/5217682651.json new file mode 100644 index 0000000000000000000000000000000000000000..7b8be6deae57295af93719f92b455ead5749aecb --- /dev/null +++ b/data/part_3/5217682651.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"89bef476882e03b7612e9e5f6b23fe4e","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/9f501c41-5691-4533-b4f5-3d923682b90c/retrieve","id":"-2097504720"},"keywords":[],"sieverID":"ee32bc1d-d5cb-4e57-a151-e5205ba0744e","pagecount":"1","content":"We acknowledge ILRI N2Africa project for financial support. We are also grateful to all partners participated in South cluster • BoA and Unions mobilized and coordinated the participants (farmers)• Input distribution and farmers selection were carried out through unions and BoA• Taken together a total of 294 females and 1454 males were reached through different dissemination activities• Relevant data (N2Africa using data tools) were captured and uploaded• A total of 25 demonstration trials were established by HWU and EIAR-MARC• 9 variety by strain trials were established• 397 farmers participated on adaptation trials• Bean seed was multiplied on 30.5 ha at 5 woredas Input Supply• 71.15 quintals of seeds, 44.15 quintals fertilizer and 419 sachet of inoculants were purchased and distributed to farmers• ACOS keyo was sourced from ACOS Ethiopia and Nasser variety sourced from Unions and SARI• Both varieties of bean were used for seed multiplication and Adaptation• MBI and Agro dealer were the source of inoculant.• Input distribution was coordinated where all partners were involved• ACOS provided red bean variety seed (25 qt) for potential market links• 30.5 hectare of land were used for seed multiplication in 5 woredas• 90 farmers (in two woredas, all coops members) were involved.• For market linkage agreement was signed between ACOS and Sidama Elto union, and between MBI and Sidama Elto Union• Agreement was also made between MBI and Agro dealer ","tokenCount":"228"} \ No newline at end of file diff --git a/data/part_3/5233026282.json b/data/part_3/5233026282.json new file mode 100644 index 0000000000000000000000000000000000000000..9f90ae9cd293e3c9f90ea7679bf7e15d15c28d87 --- /dev/null +++ b/data/part_3/5233026282.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"3e4a3e01a14c5dc376694c0a82fa5a8e","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/11c19caf-dbf1-4b88-91cc-214758a279b5/retrieve","id":"-500689110"},"keywords":["Livestock","agriculture","innovation","poverty reduction","technology","partnerships","India","Nigeria","livestock innovation systems","innovation capacity","institutional change","fodder","welfare outcomes","counterfactual","parallel universe","plausible causal connections","M&E","benchmarking","evaluation","learning"],"sieverID":"d2e92a29-b5e4-4377-bf19-02eed3503d22","pagecount":"59","content":"This document, divided into three sections, develops a conceptual framework for a project on livestock fodder innovation -the Fodder Innovation Project (FIP). Livestock is important to the livelihoods of poor people in many regions of the developing world. A generic problem found across this diverse range of production and marketing contexts is the shortage of fodder. This paper argues that to address this problem it is necessary to frame the question of fodder shortage not from the perspective of information and technological scarcity, but from the perspective of capacity scarcity in relation to fodder innovation. To support this position the first section presents case studies of experience, from an earlier fodder innovation project, that suggest that while fodder technology is important, it is not enough. There is a large institutional dimension to bringing about innovation, particularly with respect to the effectiveness of networks and alliances needed to put technology into use. The second section begins by reviewing the evolving paradigms of agricultural research and innovation over the last 30 years or so and explains the emergence and relevance of the innovation systems concept to agricultural development. It then presents a framework for exploring fodder innovation capacity, with particular emphasis on the patterns of interaction needed for innovation and the policy and institutional settings needed to enable these processes. The third section reviews the wide range of existing tools available to investigate institutional change. It then recommends that an eclectic approach of mixing and matching tools to the emerging circumstances of the research is the best way forward.Technical change has played a major role in the rural development strategies of most developing countries over the last half century. This is a strategy that is as notable for its failures as its successes in countries that usually rely on either technology imports from the developed world or research-driven technology transfer. This document, divided into three sections, develops a conceptual framework to revisit this conundrum. The framework developed draws inspiration from contemporary ideas about innovation. The empirical focus of the paper is the case of livestock fodder scarcity -a particularly intransigent problem that UNU-MERIT, ILRI and their partners are trying to apply the innovation perspective to.Livestock is important to the livelihoods of poor people in many regions of the developing world. A generic problem found across this diverse range of production and marketing contexts is the shortage of fodder 1 . The reasons range from increasing competition for resources to environmental degradation in common property areas and the need to increase animal intake in intensive production systems. This is not a new problem and the agricultural research community has made considerable efforts over the last 40 years or so to develop new fodder technologies and to introduce new fodder varieties and feeding systems.While there have been successes, this research -and associated efforts to disseminate fodderrelated technologies -has made limited progress in resolving the fodder scarcity problem. This is particularly disappointing because maintaining or improving livestock production and marketing could have important social and economic consequences for poor people with livestock-based livelihoods. In addition, upgrading throughout the livestock value chain is needed to survive, cope and compete in dynamic production and market conditions at subnational, national and global scales.The term fodder is used in the sense of plants grown specifically for feeding animals. These include grass, legume and tree species as well as crop residues.The International Livestock Research Institute (ILRI), United Nations University in Maestrict (UNU-MERIT), The International Crops Research Institute for the Semi Arid Tropics (ICRISAT) and the International Institute of Tropical Agriculture (IITA) are collaborating on a research project to explore fodder scarcity from a new perspective. This new perspective involves exploring ways to strengthen the capacity to innovate. To make the same point differently, the research will frame the question of fodder shortage not from the perspective of information and technological scarcity, but from the perspective of capacity scarcity in relation to fodder innovation.In recent years, attempts to deal with the shortcomings of a technology-led approach to innovation have led to the emergence of a number of principles on how to move forward: the need to recognise the complexity of farming as part of a wider system of social and economic activity; the need to create patterns of interaction between different sources of agricultural knowledge; the need to change the working practices of pivotal organisations, particularly agricultural research organisations, but also others in the development sector; and the need to create an enabling policy environment for technical change. These ideas have led to an increasing focus in rural development policy on innovation rather than research (see World Bank 2006).Much of the contemporary policy debate on technology and economic performance is founded on similar concepts. Critical to this viewpoint is the recognition of innovation as a systemic, embedded phenomenon where the capacity to respond to change by a process of continuous innovation assumes importance over specific technologies and is the result of the particular patterns of interaction of many players in a specific context. In other words, rather than just giving emphasis to the creation of knowledge and technology through research, the new perspective emphasises the whole range of processes, factors and actors that shape how knowledge is created, adapted, diffused, shared, and most importantly, put into use. This emphasis on using knowledge in economically and socially significant ways -as the definition of innovation would suggest -resonates very strongly with growing levels of accountability in public interventions like agricultural research, where impacts articulated in welfare terms are taking precedent over outputs articulated in technological terms.One of the ways these ideas are being brought to bear on development policy debates is through the concept of an innovation system. It is this idea that takes centrestage in the research project, undertaken by ILRI, UNU-MERIT and its partners, which this paper discusses. The geographic focus of this work is India and Nigeria.This paper provides a conceptual framework, methods and guidelines for conducting this research. The first section reviews the historical experience of developing and promoting fodder technology and, in particular, the lessons learnt from the approaches experimented with in an earlier phase of this current project (for convenience this earlier work is referred to as Phase I). The second section reviews the conceptual and empirical literature dealing with recent thinking on agricultural innovation and builds on this to develop a conceptual framework for exploring fodder scarcity from a systems-of-innovation perspective. The third section reviews methods and tools for conducting this sort of research.Fodder scarcity and the poorAn adequate supply of livestock fodder is crucial to the livelihoods of millions of people across the developing world. Livestock producers meet their fodder requirements through a combination of crop residues and grazing on common lands, private lands, forests, fallow agricultural lands and harvested agricultural lands. Fodder requirements are also met through cultivated forage crops (cultivated mostly by large landholders). Others purchase this fodder. Availability and access to quality fodder resources, however, is emerging as an important constraint in livestock production. Increasing fodder and water shortages are recurring phenomena, not only in arid and rain-fed regions, but also in irrigated areas and regions receiving higher rainfall. A policy push toward more productive but input-intensive breeds has also increased the demand for more fodder. At the same time, the shrinking of common property resources (industrial use, plantations, etc.) and the deterioration in their quality has reduced the availability of grazing lands.The estimated doubling of demand for meat and milk in developing countries in the next two decades offers significant opportunities to poor livestock producers to increase their income from livestock farming. Livestock is important not only to farmers who own farmland and practise mixed crop-livestock agriculture, but also to a large number of landless people who depend mainly on common property resources for fodder and to pastoralists who migrate with their livestock. There are 20 to 25 million pastoralists in Sub-Saharan Africa and similar numbers in South Asia. The chief difference between the two regions is that in Sub-Saharan Africa pastoralists tend to be cattle-keepers, whereas in South Asia they mainly keep small ruminants -sheep and goats.4Livestock is also increasingly becoming a fully commercial (industrial) enterprise in regions that are well-connected with milk markets in cities and big towns. It is estimated that in India alone almost 18 million people derive their livelihood from livestock.The major approach for addressing feed and fodder scarcity traditionally revolved around evaluating various forage crops (grasses, shrubs, trees) for their yield, nutritional content and impact on livestock production parameters (e.g. milk yield, liveweight gain), and then disseminating this knowledge as fodder technology (usually embodied as seed of improved varieties and their management and use) through animal husbandry departments and dairy development agencies. To support production and availability of these improved seeds, the national/state governments often established fodder seed production farms. Apart from making these seeds available to public sector agencies for wider distribution, these farms also served as demonstration and training units for fodder promotion. Lack of availability of quality fodder seeds was initially considered to be the main reason for limited availability of fodder and so the approach was to develop improved varieties of fodder crops through research; multiply them in fodder seed farms; distribute the same along with information on their benefits and use (extension). The key assumption was that lack of technology was the key constraint and that research could address this problem.At the global level ILRI, The International Centre for Tropical Agriculture (CIAT in its Spanish acronym), and the International Centre for Arid and Dryland Agriculture (ICARDA) -international research centres of the Consultative Group for International Agricultural Research (CGIAR) -have taken a lead role in fodder research (evaluation of different crops and varieties and developing better systems of production and management). Other CGIAR centres -ICRISAT, IITA and the International Centre for the Improvement of Maize and Wheat (CIMMYT in its Spanish acronym) -have, often in partnership with ILRI, CIAT and ICARDA, concentrated on developing dual-purpose varieties for grain and fodder (e.g. sorghum, cowpea, maize). National programmes were established in many developing countries during the 1960s and 1970s to test improved genotypes in forages to generate forage production technologies relevant to the socio-economic conditions in different agro-climatic regions. Technologies on managing pasture lands have also been developed through this network of international and national agricultural research organisations.With little evidence of adoption in farmers' fields, fodder researchers in the 1990s began experimenting with participatory research approaches, i.e., engaging farmers directly in technology development and testing. This was expected to better match varietal characteristics with the real needs and interests of livestock producers. The process ranged from getting feedback on fodder varieties from livestock producers before releasing the varieties, to the provision of a range of forage species (grass, legumes, trees) for farmers to experiment with ('baskets of options'), to creating forage systems best suited to their farming conditions. \"The underlying principle was to give farmers ingredients and information and not recipes (Hill and Roothaert, 2002)\".Researchers have evaluated forages for adaptation and yield at many sites throughout the tropics over the last 20 years, including through regional networks convened by CIAT and ILRI with their national partners in Latin America and Sub-Saharan Africa (Toledo and Schultze-Kraft, 1982;Dzowela, 1988). However, although a range of species has been evaluated and superior accessions for a range of environments and farming systems or niches identified, the germplasm available in the genebanks of CIAT and ILRI has not yet been widely adopted by smallholders (ILRI, 2006a;b). Experience from the Indian Grasslands and Fodder Research Institute (IGFRI) is no different. \"Even after investing enormous amounts of scientific manpower and economic resources for more than 25 years, IGFRI's efforts generally fail to serve the majority of the farmers, especially small-holder farmers in rain-fed areas. \" (Biradar and Ramesh, 2002).Although fodder research and development is still publicly funded and directed in most developing countries, recent years have witnessed a number of private companies getting involved in fodder seed multiplication and distribution. In India, for example, the organised private sector dairy industry has taken an interest in fodder promotion. There have also been several experiments in fodder delivery promoted by co-operatives and NGOs. For example, Krishna (Dairy Co-operative) Milk Union in Andhra Pradesh experimented with \"satellite fodder farms\" to decentralise fodder availability. Some villages in Andhra Pradesh in southern India have emerged as fodder seed (multiplication) villages where farmers grow fodder crops to produce seed for sale.Following the renewed interest in indigenous knowledge in recent years, several NGOs have initiated efforts to document the traditional knowledge on livestock production, feeding and fodder systems. Organisations like the Andhra Pradesh Grazing and Fodder Forum (ANTHRA) in India have documented the species traditionally used as fodder and have also validated their nutritional qualities. Moreover, many of these NGOs also have a strong focus on poor people in livestock development and have attempted to understand the fodder scarcity issue. Some NGOs, such as the Bharatiya Agro Industries Foundation (BAIF) in India, have been experimenting with different systems of fodder management under sylvo-pastoral systems. Others, such as the above-mentioned ANTHRA, have started to advocate policy change in relation to fodder.Policies related to land use, grazing, forest management and wasteland development influence the availability and use of fodder and, in particular, affect landless, nomadic livestock keepers who rely on these areas.It is now apparent that the availability of and access to fodder is no longer a mere technological issue, although new knowledge on fodder continues to be important. The next segment looks at the experience of an earlier phase of ILRI's fodder promotion work in order to draw out some more specific principles for reframing the fodder scarcity question.6The Phase I project, as originally conceived, framed the problem of fodder scarcity as one of technical and information scarcity on fodder production. Its central approach involved identifying and disseminating new varieties of fodder or dual-purpose crops aimed at increasing fodder supply. This involved participatory selection 6 of fodder options with an emphasis on geneticallyimproved germplasm and new planting designs. The project used the language of \"scaling-out\" to describe the way technologies would diffuse beyond the project scale; and \"scaling-up\" to describe the way an enabling environment for technical change would be created at the level of national policy. Scaling-out was envisaged as taking place through farmer-to-farmer exchange and the dissemination activities of development organisations partnering with the project. Scaling-up in the policy process was largely not addressed by the project.During Phase I it became clear to the project team 7 that the approaches of the project -that were broadly of a technology transfer type -were not adequate to facilitate changes likely to lead to a reduction in fodder scarcity. As the project progressed it became apparent that, in fact, technical change was going to need the co-operation of many players related to the livestock sector and that this, rather than the technical robustness of particular fodder varieties, would determine success.In the meantime the project had inherited a number of different fodder-related activitiesusually building on ongoing programmes of partner organisations 8 . The role of the project was to support these ongoing activities -mainly by the provision of improved planting material. These different initiatives (some of which are discussed in detail later in this section), in many senses, developed a momentum of their own. They were managed by partner organisationsboth public research organisations and NGOs -and while fodder was a common interest, they all pursued strategies that reflected imperatives and mandates of their organisations and the particular context in which they were working. So, for example, while the research organisations gave priority to promoting varieties they had developed, the NGOs tended to have a more broadbased interest in helping their constituencies of rural communities.Meanwhile, the project team realised that it would be useful to document these different experiences and use lessons from them as a foundation for developing a more effective way to deal with the fodder scarcity problem. Recognising that the scope of partnership was likely to be a critical concern in any approach developed, the project had the foresight to commission studies of the patterns of interaction of its project activities in particular rural domains. These The project team and its documentation used the term partner to describe its relationship with those it worked with. In reality these relationships varied: some resembled partnerships while others were, at best, organisations sub-contracted to undertake specific project components (authors' observations of Phase I project meetings). The description of the Phase I activities in this paper continues to use the term \"partner\" , recognising this caveat.studies reveal important gaps that enabled the project to learn from its own mistakes (see case studies below). The project also supplemented its own experiences by undertaking a number of case studies of initiatives where fodder-related innovation processes seemed to be taking place quite successfully (see case studies below). This provided a historical perspective on the process around fodder technical change and highlighted the non-linearity of the innovation process and the range and diversity of innovations -technical, institutional and policy -required to make interventions achieve their desired social and economic impacts. Of equal importance were the insights into the operational implications for new projects that these case studies provided.The next segment provides case studies both from the Phase I experience and from the wider set of studies the project documented.Case study 1: Strategies of international agricultural research organisations in promoting dual-purpose crop varieties: 9This case describes a project component on promotion of improved crop varieties and the eventual realisation that this is a task that goes beyond technology transfer.In India, this project component was led by ICRISAT, an international research institute with a mandate for crop improvement. Having a large number of successfuly developed varieties of groundnut, ICRISAT was keen to engage in the project as a way of finding uptake mechanisms for its groundnut varieties. To this end, it began farmer participatory varietal selection trials in the major groundnut producing area of Ananthapur in the Indian state of Andhra Pradesh.Farmers selected a variety of groundnut (ICGV 91114) that provided increased yields of both grain and fodder. However, spread of the technology from on-farm trials was not immediate despite the project's initial promotion of the varieties. This was partly due to the insufficient quantities of seed available. Although it was technically feasible for farmers to use saved seed to facilitate scaling-out, in practice their cash flow needs and difficulties of seed storage meant that the entire crop was sold shortly after harvest and new seed purchased each season. Although private sector merchants were present, they did not trade in groundnut seed because they were priced out of the market by government provision of subsidised seed.However, even the subsidised government seed system was not helpful in getting preferred varieties to farmers. The routine practice with the government seed supply system was to make decisions on variety and quantity at the state or national level. As a result, the government seed made available did not match with the choice made by farmers in the participatory trials in Ananthapur.At the other end of the value chain, traders could not provide an assured market of new seed unless their clients, the oil millers, were confident the supply would be adequate to justify technical and operational modifications to the oil extraction process. While dealing with these wider systems issues was beyond the scope of the project and the mandate of the lead partner in this component, it did alert the project leaders to the need to address these wider linkage and institutional issues. It also highlighted the fact that participatory farmer selection of varieties is insufficient to stimulate innovation; they might know what varieties they want, but getting those varieties and using them is a totally different matter.Very much like the case of groundnuts in India, the focus in the equivalent component of the project in Nigeria -led by the international agricultural research organisation IITA -was on introducing dual-purpose varieties; this time, of cowpea. While some of the contextual features of the seed system in India and Nigeria were different, similar conclusions were reached. Farmers liked the new, dual-purpose cowpea varieties introduced by the project. However, while government extension staff was aware of the high demand for the seed varieties, there were inadequate mechanisms for articulating that demand to seed suppliers.Extension agents, and NGOs partnering with the project, looked to the researchers to provide new seed each year, but inevitably its capacity was limited. The project initiated meetings to bring private seed suppliers and extension workers together to discuss ways in which the supply issue could be addressed. However, suppliers were still not prepared to invest money in a new variety for which the demand was not proven.Therefore, project leaders decided to initiate a new activity. Rather than continue to supply seed to partners, an agreement was made with a private company that the project would underwrite 50% of any losses resulting from poor sales of new seed they produced. This provided the incentive required for the seed company to take a risk and produce seed of the new variety for sale in the following season.By intervening in such a way, the project helped build the capacity of the seed system by ensuring that a key actor -in this case the private sector -played a critical role in making technology available to farmers. The project thus illustrated the importance of facilitating others to become part of a system for putting knowledge and technology into use.This project component was led by the National Dairy Development Board (NDDB) and the associated Dairy Cooperative Societies (DCS) in the Ananthapur district of the Indian state of Andhra Pradesh. It illustrates the way that institutional changes are as important as technological changes in bringing about innovations in livestock fodder practices relevant to poor people.As a cooperative, NDDB is focused on the needs of member farmers, although these are not necessarily the poorest in the community. The project took advantage of NDDB's networks and the trust associated with these, and helped introduce institutional innovations that made NDDB a technology-supply mechanism with an increased focus on the poor.NDDB has a well established seed production and distribution system. It always hoped that this would act as a mechanism to disseminate new varieties of fodder. The project helped to provid new materials for testing (hybrid Napier varieties for irrigated conditions and Stylosanthes spp. for rainfed areas), and uptake was then tracked. Seed was sold through the Dairy Cooperative Societies (DCS) and cuttings of Napier hybrids were provided free to farmers on the understanding that once plots were established they would pass on material to neighbouring farmers.Project leaders held meetings with NDDB representatives and technical staff from the milk unions responsible for fodder delivery. This helped facilitate a discussion among farmers and others about the relative merits of the new fodder varieties. It also allowed a discussion of other second order problems that needed to be dealt with in order to facilitate the wider use of the new varieties and of suggestions of other possible interventions that could address the problems encountered.One issue raised was the poor adoption rates -despite the efforts of union staff to promote the new varieties. This was initially seen as a result of farmers' lack of knowledge. However, discussions revealed that because of the diversity of both agricultural production contexts and household needs of livestock keepers, the introduced materials were not always appropriate.The NDDB officials and milk unions' fodder extension officers associated with the project began to realise that a new approach was needed. The institutional innovation that emerged from this included a greater emphasis on understanding local farmers' needs and the provision of a basket of options rather than the promotion of materials identified as promising by NDDB headquarters or the project.It also became apparent that some of the most interesting changes that increased farmers' access to feed and fodder centred on the development of another non-technical change. It was noticed that the provision of Napier grass to farmers with access to irrigation initially excluded landless farmers for obvious reasons. However, as livestock is often an important livelihood strategy for poor, landless households as well, these farmers started to develop new arrangements whereby they leased small plots of land from landowning households. Landowners provided planting material and access to water, while the landless livestock-owning households provided fertiliser (manure) and undertook production and harvesting of the Napier grass.Notable about this case is not just that the poor could access new seed varieties that suited their needs, but also the fact that the project was able to strengthen the capacity of the existing arrangement to respond to the needs of the poor -i.e., the changes to NDDB strategies. While institutional innovations created this new capacity, its outcome was technological change in the animal feeding system: the adoption of new fodder types by different wealth categories of farmers.10Case study 3. Institutional learning: Investing in studying the missing links in the Phase I project. 11 This case study illustrates efforts to reveal the wider set of players that were actually relevant to the sorts of fodder-related changes that the project was trying to stimulate. The case shows the importance of investing in the investigation of the wider context in which technological change is taking place, and using this information to adapt the project approach both in terms of what sort of organisations to work with as well as the sorts of relationships needed to engage productively with these different players.The Phase I project commissioned a study on the range of players related to the co-operative dairy sub-sector and their interactions in the Krishna and Guntur Districts of Andhra Pradesh, India -an area where the project was working with NDDB as a partner, evaluating different kinds of fodder in 15 villages. The study used an actor-linkage matrix to understand the nature and strength of linkages among the various actors.The major findings are as follows: Although a number of actors are present, strong linkages exist only among the ILRI staff involved in the project, NDDB staff directly employed in the project, fodder officers of the Krishna and Guntur Milk Unions, and participating livestock farmers selected by the project in target villages.While these linkages are not surprising, the study concluded that there were a number of potentially critical actors present in the area that the project should have partnered with. For example, employment programmes implemented through the District Rural Development Agency (DRDA), and Zilla Parishad (ZP) Block panchayats (local administrative structures) could have been utilised for the promotion of fodder technologies. These organisations would have brought with them a strong poverty focus. Similarly, women's self help groups (found in most villages) could have been harnessed for testing, evaluating and promoting fodder as an enterprise. Private sector seed companies, dairy cooperatives and milk vendors were also identified as important players in the sub-sector with a role to play in fodder technical change. But the project had not explored the roles of these players, nor were they included in fodder interventions.The study concluded that the project would be more effective if it spent more time and resources on developing relationships with a range of sector-related players at the district level. The project's efforts to reveal these shortcomings is also notable (and laudable) as it demonstrated a commitment to institutional learning -in this case, how to change the scope of its partnering to improve the effectiveness of the project's intervention strategy.Our final two case studies illustrate what fodder innovation looks like in practice. These are presented here with the specific purpose of trying to draw out some implications for how to structure interventions to deal with fodder innovation.Case study 4. Navigating the quagmire of innovation: Livestock, livelihoods and second generation problem 12 This case study documents the way an Indian government rural development projecttitled Velegu -having chosen livestock as an entry point, had to deal with a large number of second generation challenges that subsequently arose. After introducing large numbers of high-yielding buffaloes, the effectiveness of the intervention became limited by other issues, including vet services, fodder supply, and credit. Although there was no forward planning to cope with these unforeseen difficulties, the project formed partnerships with different government departments and NGOs in order to access the resources and assistance needed to make highyielding buffaloes a viable livelihood option.Velegu Intervention 4. Working capital credits. In most cases, the purchased buffalo was the first or only animal owned by the household participating in the project. This resulted in a breeding gap and declining milk procurement -buffaloes produce milk only after they have calved.Velegu could not advance a second loan for a second animal, so almost 70% of the programme households approached BASIX -a micro-finance company -for a second animal loan.Intervention 5. Connecting farmers to the dairy market through partnerships. Part of Velegu's strategy was to try to revive dairy activity as an additional livelihood opportunity for poor households. It was doing this in the traditional way that a development project would -paying attention to participating households' needs, but (perhaps paradoxically) paying less attention to commercial viability. Village Milk Societies were created to cover producers across 3-4 districts. Dairy managers were contracted by the government DRDA at each Bulk Cooler location and officers were appointed to collect and procure milk, test it and make payments regularly. To address the breeding gap, the dairy approached the JK Trust (a private foundation) as well as BAIF (a large livestock-focused NGO). JK Trust proposed lower milk quality and quantity targets, and as a result, was not approved by the then District Collector (the chief public administer for the district and ultimately responsible for the implementation of government programmes like Velegu). This decision, however, led to a serious drop in milk procurement, accompanied by the risk of losing the confidence of producers associated with the programme. To address this, Velegu invited NDDB to provide technical expertise to train supervisors and help set up input delivery and related support systems needed for increasing the procurement.Partnerships -The Adilabad Velegu Project depended upon several partnerships within and outside the government in order to bring about innovations in livestock practice. A key partner was the Animal Husbandry Department, despite a rather shaky start. Partners such as BASIX were sought to bring new resources -credit, in this case. Inviting NDDB to set up procurement systems and train supervisors and testers has been a way of both tackling procurement as well as raising Velegu's credibility in the case of dairy enterprise management. These partners have often had different working styles and Velegu has had to accommodate this in order to achieve its goals and overcome emerging challenges.Impact of the political context -When the project was initiated, the State Government in place at the time used it as an election tool towards the end of its term. A new government took over and continued implementation of the programme under a different name. However, because the earlier government representatives (now part of the Opposition) told project participants that they need not repay their loans, low recovery rates have emerged as a new challenge. This, in turn, is preventing the establishment of further support services and activities.The project initiated dairy activities by providing loans for high-yielding animals. Upgraded animals needed better management, i.e., regular healthcare, better/ more nutritive feeding, and also a more reliable market linkage. This led to collaborative arrangements with the AHD for veterinary services, the district administration to permit use of revenue wastelands, and NDDB to streamline dairy operations in the eight locations Velegu was implemented. It is, therefore, evident that one action (the initial loan programme for participants: the first buffalo) led to a whole series of new problems. The evolving nature of problems generated a new set of partners -vet service suppliers, credit provided, etc. Simultaneously, there was a parallel need to make linkages to organise producers, make services and inputs available and to market the milk. Velegu teams coordinated the inputs of the various agencies involved. The anchoring role played by the project facilitated convergence between the programmes of different partners and the project.After a number of years in the doldrums the project is starting to show some success. The case illustrates just how messy the process of livestock innovation can be. The implication of this is not just that partnership can be an essential strategy for coping with an evolving set of problems -although it has been central in moving this example forward. More importantly, the case suggests that ways of bringing about innovation need to be approached experimentally in each location. Velegu really is a story of trial and error and muddling through. Developing principles about how to structure this process of trial and error and finding ways of speeding it up could make a valuable contribution to livestock-related problems such as fodder scarcity.This case documents the way a livestock-focused NGO -The Andhra Pradesh Grazing and Fodder Forum (ANTHRA) -identified a critical policy constraint affecting poor peoples' access to fodder and how they went about bringing about the policy innovation needed to resolve fodder scarcity. It is easy to forget that policy change is a key innovation, and for this to have the desired outcome it needs to result from a process with the capacity to articulate user needs in policy formulation. The case also illustrates that while emphasis needs to be given to technical and institutional innovations in the sphere of rural development around projects or other interventions at a local level, it needs also to be recognised that policy changes affect the livelihoods of poor people. This case discusses the way networking strategies were used to bring about policy changes in relation to grazing rights that affected poor livestock farmers.ANTHRA is an NGO working on livestock and peoples' livelihood concerns that took the lead role in creating and coordinating an informal platform to discuss and debate livestock, fodder, grazing and livelihood issues in Andhra Pradesh, India. deliberate on issues related to fodder security for livestock in Andhra Pradesh, and to attempt convergence among micro-level interventions addressing different components of peoples' livelihoods and natural resources. The forum also examined the \"Strategy and Vision Document for Agriculture\" of the Government of Andhra Pradesh, and the \"Strategy Paper on Agriculture and Allied Sectors\" made public in January 2000 and January 2001, respectively. ANTHRA published and circulated an analysis of the vision document that examined the implications for poor smallholders, and suggested an alternative vision and strategy for socially and ecologically sustainable livestock development.In 2001, the State handed over the responsibility of formulating a Grazing Policy to the Forest Department as a component of the World Bank-funded Andhra Pradesh Community Forestry Project 14 . The draft policy was anti-people in that it imposed severe restrictions on the entry and use of forest resources, including charging grazing fees. It listed all the ill effects of grazing without offering any alternative to the forest dwellers and people depending upon livestock and forests for their survival.The forum convened a meeting to discuss the Draft Grazing Policy and the concerns raised were widely circulated to farmers and livestock keepers across the state. This meeting drew the attention of the Principal Secretary, Department of Animal Husbandry, Dairy Development & Fisheries, and motivated a letter to be written to the Principal Secretary, Department of Environment, Forests, Science and Technology with a request to withhold finalisation of the policy in consideration of the issues raised by the forum. The Principal Secretary then called a meeting of senior Forest Department officials and forum members where he was apprised of the widespread negative responses of the farmers to the draft policy. The need for formulating a grazing policy aimed at strengthening and protecting peoples' livelihoods within and outside forests was duly emphasised.As a result, the Forest Department decided to withdraw the draft grazing policy. A government order (GO Rt. No. 78 dtd. 27/02/02) was issued for the formation of a committee consisting of a senior officer from the Forest Department, an Additional Director from AHD and with ANTHRA as a member of the forum. This committee was to interact with all the stakeholders, including local forest-dependant communities, sheep and goat-rearers, line department officials, NGOs, and relevant activist groups from across the state. The forum accepted the Government Order conditional to incorporating the grazing/fodder security policy in forest regions within the larger context of developing a fodder development and management policy for the state. It organised a consultation workshop to work out specific priority issues, strategies and a timeframe for the proposed study. All concerned departments presented their positions and suggested strategies to improve fodder resources. Consequently the policy document was redrafted as the Fodder Development and Management Policy for Andhra Pradesh.14 According to the draft policy document, during the negotiations for the finalisation of the AP Forestry Project in 1993, the Government of Andhra Pradesh and the Government of India agreed to formulate and introduce a grazing policy for the State as a condition to World Bank funding.The AP Grazing and Fodder Platform emerged as an active network of different players, each with a different stake in the question of the forest and grazing policy and each seeking an opportunity to influence policy development. Influencing policy is a tenacious process and each actor, while constantly learning about the other actors' perspectives, priorities and limitations, realised progressively that their roles were part of a larger social endeavour. Identifying and inviting players who had specific knowledge or political consistencies that could affect policies, and recognising that these players need to be brought into a process of redrafting a policy document, is a key feature of the process of bringing about this policy innovation. Indeed, this case is as much about an innovation in the policy process as it is about a policy innovation. This underscores the interconnectedness of policy processes and policy change.The case also reveals the way the roles of players changed to bring about this sort of innovation. The government's policy-making bodies took on a much more consultative role, while unusually, NGOs and activity groups were faced with navigating the complexities of different interest groups in their coalition for policy change. ANTHRA obviously played a special role, acting as a champion and coordinator of a process that clearly would not have happened through the actions of either only the government or the NGO groups involved. ANTHRA was not the only champion. Quite clearly the Principal Secretary, as the seniormost Government bureaucrat involved, played an enormously important role in legitimising the consolations and negotiations that led to policy change.In short, what this case shows is the way that innovation -even policy innovation -requires the shepherding of different players, with different resources and knowledge in a coalition around a common purpose as a way of better reflecting user needs in the development process. ANTHRA did not have a plan on how to do this. Its actions were an intuitive response to the situation it found itself in and it muddled though the difficulties of developing an effective policy advocacy coalition. Once again, understanding how to structure and speed up this muddling through would help others tackling similar policy-related fodder constraints that affect poor livestock keepers.The experiences of the Phase I project as well as the additional case studies of fodder innovation provide many useful insights to help guide future investigation of fodder innovation. The key lessons and principles are as follows:At the beginning of the project, participatory research was the state-of-the-art answer to the agricultural innovation conundrum. The groundnut case study 1 showed that even though participatory methods helped identify the varieties most preferred by farmers, this did little 16 to help them actually access this new technology and put it into use in their fields, since the architecture of seed supply systems was either absent or insensitive to identified priorities.Both the groundnut initiative in India and cowpea initiative in Nigeria in case study 1 demonstrated that for effective technology development, adaptation and delivery, a network of players who function in an articulate way is required. In this case, it involved seed suppliers, extension agents, private seed companies, legislators, oil-seed millers, and market traders. The players may be different for different innovation themes (For example, those associated with co-operative dairying illustrated in case study 2 and 4). Whoever they are, without a cohesive network of linkages, technical change seems to be inhibited and the innovations needed for social and economic impacts do not take place.Project interventions can inadvertently put in place arrangements that either do not work or that work in ways that ignore the concerns of certain social groups -usually the poor. Case study 2 illustrates the way two project partners were promoting Napier grass provided by the project, but were doing so in a way that resulted in very limited uptake. This was mainly because the organisations, both with fairly strong top-down traditions, were not adequately consulting livestock keepers about their preferences and needs. The project facilitated a discussion between these different players. As a result, the project shifted from promoting only one variety to promoting a menu of options. This improved uptake considerably.Unlike many projects, the Phase I project actually invested resources to help itself learn.The project team realised that the original project design was not as effective as it might have been. It then made explicit efforts to document experiences and processes in its own activities -this was the basis for cases 3-5. It commissioned additional studies on the scope of its partnering to see how its strategy could be improved and explored experience beyond the project. These explicit measures helped the project devise ways of improving the way it addressed fodder scarcity. This is a process often referred to as institutional learning (Watts, et al, 2003). This would suggest that projects need to invest in this process and use it for continuous course corrections.As the different project initiatives started to expand, and the number of partners involved also grew, the different habits and traditions of the organisations came into play. For example, government departments have a top-down way of working, whereas NGOs usually -although not always -are more client-oriented (see the case of the dairy co-operative initiative in case study 2). These different working styles can prevent critical partners working together and interacting productively; there is no point in partnering with an organisation that ignores your ideas and opinions. Changing these styles of working, sometimes referred to as a process of institutional learning or institutional development, can improve the effectiveness of interventions.As the different project activities proceeded, it became apparent to the project team that while viable technologies were important, more important still was the creation of a network of players that could deliver and use the outputs related to those activities. The initiatives led by international agricultural research organisations discussed in case study 1 show the way the project shifted to facilitate linkages in systems in order to deliver the technologies developed by these partners. The dairy co-operative example in case study 2 showed the way it was necessary to get organisations to change the way they worked, both in order to be sensitive to the needs of poor stakeholders and also to allow collaboration to take place between different players. The policy innovation example in case study 5 shows how it was important to develop coalitions for advocacy and change.All of these actions actually concerned strengthening the capacity of a network of players to access, adapt and use technology and bring about changes in fodder availability and use. This shift -undertaken intuitively by the project -is very important as it signals the fact that the fodder-related innovation process, while requiring technological (and other knowledge) inputs, is actually dependant on capacity changes. And this capacity is not just the technical skills held by particular organisations. Rather, it is a combination of: skills and resources; relationships for collaboration, cohesiveness and communication between different organisations, including farmers in the public and private sectors; the habits, routines and ways of working (the institutions) that shape the pattern of relationships between different organisations and how this shapes the way things are done in relation to technology and innovation.At the risk of overlabouring this point, the experiences of the Phase I project clearly point to the fact that fodder scarcity is not a problem of technological scarcity that can be overcome by technology transfer alone. Rather, it is a problem of innovation capacity scarcity relating to the ability of the many different players, processes and policies associated with livestock sectors to bring about technological, institutional and policy changes in response to changing circumstances. And in this case those changes may be the availability of new fodder technology, changes in animal production systems, changes in degrees of market integration, and with this, changes in demand for quality and price. The implication of this is that the problem of fodder scarcity needs to be addressed from the perspective of investigating shortcomings of existing capacity (in this wide sense) and experimenting with ways of strengthening this capacity. This is precisely what the Phase II project will do. Section II is devoted to locating the empirical findings of the Phase I project in the contemporary conceptual debates about innovation and thus providing a guiding framework for investigating empirically the nature of fodder innovation capacity 15 and ways of strengthening it.By way of summary it is worth highlighting some operational lessons from our discussion of Phase I of the project.Process-driven investigation. As a number of the cases show, the process of innovation is far from linear, often due to unexpected second generation challenges and opportunities emerging, or with mid-course corrections being required. Case studies discuss this as \"muddling through\".To investigate how to strengthen the capacity that underpins this process, a process-driven approach is required. This suggests that an action research approach should be used.Principles rather than a capacity blueprint. The cases discussed suggest that ways of bringing about innovation need to be approached experimentally in different locations and that ways of bringing about institutional change needed for capacity strengthening will also have a very location-specific flavour. This suggests that a project investigating fodder innovation capacity should seek to develop principles rather than formulaic blueprints. Operationally, this means that the research design will need a strong comparative element so that generic principles can be drawn from contrasting experiences and cases.Wider scope of partnership. The Phase I project concentrated on a relatively limited number of partners in each intervention domain. The evidence of the study reported in case study 3 suggests that this needs to be expanded. Operationally, this means that the new project should concentrate on facilitating the emergence of clusters of partners around perhaps a nodal partner in each location with an explicit responsibility for coordinating the involvement of linkages. The experience of the early project suggests that identifying champions who are willing to experiment with the new approach will be critical. See, for example, the role of NDDB in case study 2 or ANTHRA in case study 5.Since partnership is a central part of the approach, the project will need to invest in building up the partnering skills of those it works with. However, like charity, this process should start at home with the project team. For example, the project development process, conducted without consultation of those it seeks to work with, leaves a lot to be desired in terms of working in a genuine partnership mode.Engaging with the policy process. The Phase I project made no attempt to bring about policy changes that might lead to scaling up of its efforts. The example of ANTHRA's platform for policy advocacy (see case study 5) suggests that not only is policy innovation important, but also that the way of engaging the policy process is to build platforms with wide participation from both the fields of policy and practice. This means that a project on fodder innovation needs to be wide enough in scope to deal with both the enabling environment that may be impeding fodder innovation in specific contexts and locations, as well as the processes that come up with these policies.The problem of translating fodder-related research and technology development into improvements in fodder availability in different animal production and marketing environments is not a unique one. Evidence suggests that agricultural research has largely failed to make its promised contribution to social and economic development. There is now broad agreement that research-led technology transfer is ineffective in bringing about innovation. Here, we use the term innovation to refer to the whole process by which knowledge is created, diffused, accessed, adapted, and, most critically, put into use.From decades of agricultural research and technology promotion experiences 16 , a number of important principles have emerged. These are summarised by Hall, et al (2007) as follows:(i) Despite the planning emphasis on setting up specialised research centres for developing agricultural technology, success rarely takes place unless technology users are consulted and involved in the R&D process from a fairly early stage. (ii) Technology development is only a relatively small component of the larger process of technology production, supply and use -i.e., the entire innovation process -and technical change often requires complementary changes in, for example, the organisation of production or marketing of products. As a result, interaction within a diverse set of players, who embody different information and skills, is required for innovation to take place. (iii) While innovation may involve radical technical changes such as a new crop variety, animal breed or a new type of machine, it is usually a series of incremental changes -tinkering, adaptation and creative imitation -in technology, organisation or strategy. (iv) Innovation can be triggered in many ways, not just by research; for example, changes in policy; patterns of competition and consumer demand; pest and disease outbreaks; and international trade rules or domestic regulations. (v) Technology delivery processes need to adapt to the agricultural, market and livelihood conditions prevailing in specific contexts at specific points in time -in other words, there is not a one-size-fits-all recipe for this. As a result of this context specificity, local processes of experimentation and learning assume great importance in the innovation process. (vi) It is the institutional context of technology development/ promotion initiatives -i.e. the combinations of different organisations, and the roles, routines and rule sets associated with them -that determine the extent to which these wider processes operate effectively and thus whether innovation is enabled or not. If welfare of poor households is to be addressed by innovation, specific institutional and governance innovations are usually required.It is becoming increasingly apparent that institutional contexts, because of their centrality to the innovation process, determine the extent to which agricultural technology-related interventions result in technological change (Biggs 1990(Biggs , 1995;;Hall et al. 2002, Hall et al 2003;Watts et al 2003).Institutional settings thus determine whether agricultural technology contributes to the development process. An important point of departure in contemporary thinking on the production and use of knowledge is the recognition that institutional factors are a central component of capacity (Edquist, 1997;Oyelaran-Oyeyinka 2005, Fukuda-Parr et al 2002). These perspectives resonate with the empirical findings of Phase I discussed in Section I of this paper. These are also perspectives that reflect recent thinking associated with the use of the analytical concept based on the notion of an innovation system. Before explaining the historical development of this concept and its key analytical insights, it is useful to first locate this perspective within the changing paradigms of agricultural research over the last 40 years or so. This helps highlight the key points of departure and the additional analytical insights that the innovation systems concept will contribute to this study.Agricultural innovation in developing countries presents some particular problems. In contrast to the industrial value chain, agricultural production is different in four major respects, as detailed below.(i) The production context (agro-ecological conditions) is highly variable both between locations (soil type, climate) and over time (pest incidence, markets, climate). (ii) This heterogeneity is compounded by the fact that the sector is made up of very large numbers of uncoordinated production units, namely farmers. Social variability -wealth, gender, ethnicity, individuality -is also very high. This means that technology and innovation need to address multiple and often micro agendas and application contexts, thereby reducing the effectiveness of strategies that rely on the centralised development of generic technologies. (iii) Much of agricultural technology is embodied in biological material (new seed varieties or animal breeds), which, being highly sensitive to production conditions, tends to compound the problems of production heterogeneity. (iv) Due to the perceived importance of agricultural research as a public good, policy emphasis has tended to stress the separate roles of public and private sectors. This has been based on the misplaced idea that public goods should not be sullied by the profit-driven private sector. However, paradoxically, public policy has often falsely assumed that the market can act as an effective mechanism for the development and delivery of certain types of agricultural technology. Policy has thus reinforced the division of labour between the public and private sectors and has consequently missed opportunities for collaboration toward innovation.The recent focus on innovation and the use of ideas like the innovation systems concept is relatively new to policy and other forms of support to the agricultural sector in developing countries. The traditional focus in these countries, and in donor assistance to them, has been on building the capacity of agricultural research systems and related technology transfer arrangements, as well as providing operational funds for these. Over the last four decades, agricultural innovation has revealed itself to be much more difficult than initially assumed. While there have been many critiques of the research-led technology transfer approach it is useful to recognise that approaches have evolved over time with a number of distinct paradigms apparent. The characteristics of these different paradigms are summarised in Table 1. There are perhaps two points about the changes illustrated in Table 1 that are worth emphasising.The first is that the technology transfer paradigm has been questioned by scientists and social researchers since at least the 1970s. In other words, the question of how to organise the process of agricultural innovation has been with us for a long time. The fact that fortunes of some of the technology transfer and alternative paradigms have waxed and waned, however, does not necessarily mean that they should be judged inferior. Indeed it has been argued that the technology transfer paradigm was quite sufficient for the food production strategies required in the development scenario of the 1960s and '70s. The fact that the development scenario has become much more multidimensional and that markets, technology and agendas are changing much more rapidly and that new players, particularly the private sector, have emerged means that the old technology transfer paradigm is simply no longer adequate (Hall et al 2001).Nevertheless, farming systems and participatory research paradigms were important institutional innovations and helped build up further knowledge on the relative merits of alternative ways of organising the innovation process. These models, in many senses, laid the foundations for the innovation systems paradigm. They legitimised the role of technology users in the innovation process; they recognised that innovation draws information from multiple sources; they championed the idea of participation; and they saw how action research could be used to explore development phenomena that are complex and evolutionary in nature.While the actual idea of an innovation system emerged in parallel with economic studies of industrial countries, its central ideas resonated with the institutional innovations taking place around agricultural research approaches in the 1990s. Moreover, there are many parallels between the economic context of industrial countries and those now faced by developing countries: increasing exposure to global markets, and with this, increasing competition and ever more stringent quality standards. As a result there is a need to deal with the development scenario that is changing rapidly and in unpredictable ways. Of course, social equity and the need to improve the livelihoods of poor rural households in developing countries is an additional and unique concern for agricultural development policies. Innovation system ideas, however, brought fresh thinking and impetus to the discussion of agricultural science, technology and innovation in development that had, in many senses, got stuck and had, to a large extent, slipped off the agenda of many development agencies.The second and arguably most important point about the changing paradigms is the gradual shift from technology delivery to capacity enhancement and, specifically, the capacity to innovate. Underlying this is the idea that in order to be effective in an ever-changing world a continuous process of innovation is required to adapt the economic process to presenting situations -for example, livestock disease outbreaks or changing consumer preferences. As a result, it is not technology per se that is important, but the ability to adapt -often through technical or design changes -to meet the new demands of production conditions, markets or technology users. The caveat is that changes in ways of working (institutional innovations) go hand in hand with these technical and design changes and thus the propensity for institutional learning and change is central to innovation capacity. This is a considerable break from the linear technology-led way of promoting innovation This is where the innovation systems perspective is particularly valuable because it is a way of conceptualising capacity in terms of the different players, processes, skills and resources that are needed to allow innovation to take place on a continuous basis. This is a major departure from earlier agricultural innovation paradigms. To make the same point differently, the innovation systems perspective shifts the underlying premise of agricultural development interventions from framing them as a problem of information and technological scarcity on production, processing or markets, to framing it as capacity scarcity in relation to the ability to innovate.The concept provides a number of key policy and analytical insights that have relevance to the nature of capacity development 17 .In contrast to most economic frameworks, which focus on production (output), the innovation systems framework focuses on innovation processes. Innovation is often confused with research and measured in terms of scientific or technical outputs. However, the framework stresses that innovation is neither research nor science and technology, but rather the application of knowledge (of all types) to achieve desired social and/ or economic outcomes. This knowledge may be acquired through learning, research or experience, but until applied it cannot be considered innovation. These processes of learning and acquiring knowledge are interactive, often requiring extensive links among different sources of knowledge. The implication is that capacity development needs to focus not just on enhancing the ability to produce knowledge, but also the ability to put it into productive use.Institutional settings play a central role in shaping the processes critical to innovation: interacting, learning, and sharing knowledge. Again, the meaning of institutions is often misunderstood. The innovation systems framework distinguishes institutions from organisations. Organisations are bodies such as enterprises, research institutes, farmer cooperatives, and government or non-government organisations (NGOs), while institutions are the sets of common habits, routines, practices, rules or laws that regulate the relationships and interactions between individuals and groups (Edquist, 1997). Because institutions shape innovation, institutional change is a large element of capacity development.The role of policies: Policies are also important in determining how people behave. However, an environment that supports or encourages innovation is not the outcome of a single policy but rather of a set of policies that work together to shape innovative behaviour. Furthermore, habits and practices interact with polices. Therefore, to design effective policies it is necessary to take into account the habits and practices of the people affected (Mytelka, 2000). For example, the introduction of more participatory approaches to research is often ineffective unless the habits and practices of scientists are also changed. Capacity development therefore needs not only the clusters of policies needed to support innovation, but also the interaction of these with institutions. This hints at the embedded, context-specific nature of capacity.The framework stresses the importance of including stakeholders and of making organisations and policies sensitive to their agendas and demands. Demand shapes the focus and direction of innovation. It is articulated not simply by the market but also by non-market drivers, such as collaborative relationships between the users and producers of knowledge. Demand for certain sorts of innovation can also be stimulated by policy -for instance, by providing incentives to adopt a certain technology or management practice. This can be especially important where key stakeholders are poor and have limited social and economic power or where the negative environmental impact of development needs to be addressed. Skills and institutional settings needed to create stakeholder involvement are thus part of capacity.The dynamic nature of innovation systems: The habits and practices that are critical to innovation are learnt behaviors that may change either gradually or suddenly. They are often ¬enshrined in institutional innovations, such as farmer field schools or participatory plant breeding that emerge through scientists' experimentation and learning. These new approaches to research and ¬development often require not only new ways of working but also new partners. Thus capacities develop in incremental ways through learning. However, a key element of capacity is the ability to reconfigure approaches and patterns of partnership to deal with changing circumstances.Changing in the face of change: One characteristic of a successful innovation system is that its component organisations tend to create new partnerships and alliances in the face of external shocks. Examples of such shocks might be: a new pest problem that requires collaboration between a different set of scientific disciplines; the advent of a new technology, such as GM crop varieties, which requires the formation of partnerships between the public and private sectors; or changing trade rules and competitive pressure in international markets, which creates the need for new relationships between local companies and research organisations. It is not possible to determine the kinds of networks, links and partnerships that will be needed in the future as the nature of future shocks is, by definition, unknown. The way to deal with this is to develop capacity that creates the flexibility in working habits and institutions that allows dynamic and rapid responses to changing circumstances.There is as yet no accepted definition of the term innovation capacity, but it captures the creative and non-linear events that sustain the change process. In a similar vein, more than a decade ago Bell and Pavitt, (1993) used the narrower term technological capacity. They contrasted research capacity and technological capacity, stating that the former concerns the resources needed to conduct scientific research. In contrast technological capacity concerns the resources needed to manage technical change -including skills, knowledge and experience (scientific, but also entrepreneurial), institutional structures and linkages or networks connecting science, consumers, entrepreneurs, intermediary organisations and policy bodies.The innovation capacity concept recognises these same broad sets of skills, links and structures, but does so in relation to the total process of producing, accessing, diffusing and, most importantly, putting into use knowledge in socio-economically useful ways (Table 2). It stresses that institutional settings (including the policy environment) are a critical part of this capacity and that capacity development is often an issue of institutional and policy change. Innovation capacity is thus an embedded capacity that cannot be understood or developed without considering its contextual setting. Furthermore innovation capacity is a dynamic capacity not just concerned with systems, linkages and institutions as they exist today, but also with the ability to reconfigure these arrangements in response to changing demands and circumstances.As Clark (1995) points out, the need is to understand capacity in terms of holistic evolutionary systems of learning and change, where future states were unknown and unknowable. A working definition of the concept of innovation capacity might be as follows:learning -thus incrementally improving their ability to utilise knowledge and information.\" (Hall, 2007-Global STI forum paper Washington 14-16 Feb 2007) The generic elements of agricultural innovation capacity might resemble the following 18 : To give operational focus to the Fodder Innovation Project's investigation of innovation capacity, it is probably not particularly useful to think in terms of a national fodder innovation system. A more useful approach would be to think of loose networks of livestock and fodder-relatedThis list is adapted from Hall 2005. players in the domains in which project partners are working. The project partner would form a node around which other players would be coordinated. The precise nature of the players in this network will be dependant on the particular focus of the project partner. So, for example, the players related to innovation in a nomadic pastoralist system are likely to be very different from those in a cooperative dairy system. It is anticipated that players in this loose network will be from the public, private and civil society sectors -including livestock keepers -and that these players will be related to livestock production, marketing and related services as well as to development agencies working with livestock-dependant poor people.The term 'loose' is important here as this does not mean that this capacity will be a set of rigid partnerships, nor does it mean that the boundaries are fixed. Rather it will resemble a fluid cloud of players -an innovation cloud -some of whom will connect together at particular points in time in response to particular needs and innovation tasks. It may be around seed supply, around market access or around dealing with animal disease outbreaks, for instance. There may be a number of firm connections within a particular cloud and new players may become part of that cloud.This innovation cloud would ideally also have connections to research and policy bodies at a national level that may be geographically distant (although not necessarily dependent on location). Market links could also connect to organisations/players, environments, opportunities and challenges beyond the immediate scale of the project. In other words a fodder innovation system would have a nucleus of dense interactions in geographic proximity to a project partner's intervention domain -what we are calling an innovation cloud. However, connections to national and even international research and policy bodies and the market would also be a critical part of this capacity. A national fodder innovation system would, therefore, be made up of a collection of these dense interactions. This might be viewed as the architecture hardware of this capacity.However, of equal importance is the software of fodder innovation capacity outlined in principle in the list above. This is really the largely invisible things that pattern how organisations and people do things, and most critically in relation to innovation, how these interact to share knowledge; how they create and adapt knowledge; how they learn; and how they take risks.What are these invisible things? Confusingly referred to as institutions, these are the usually unwritten set of rules that guide us all: for example, an organisation might have a very top-down working style and this will prevent it interacting effectively with other players in an innovation cloud. A research organisation might have a tradition of focusing on technology promotion through demonstration, when actually the nature of the fodder problem is access to credit to buy fodder. The private and public sectors often have a tradition of mistrust and this prevents them working together. NGOs might have a habit of participating in development projects with research organisations simply to access technologies and they may not be interested in working on projects that explore how projects learn from mistakes. Other organisations might have a habit of hiding mistakes and this can prevent them from learning.As can be seen, institutions are a very diverse set of social incentives, but are clearly critical to the effectiveness of the architectures associated with the innovation cloud and its links to other players and contexts. It is anticipated that a fodder innovation capacity will include an institutional setting that is conducive to the critical innovation processes mentioned above.The precise nature of these habits and practices is difficult to predict in advance. Following the logic of the innovation systems concept one should not get particularly fixated on \"ideal ways of working\". Rather the concept would anticipate that the ability to change habits will be a more critical factor and hence the habits about practices that facilitate institutional learning and change (ILAC) may ultimately be more important (this is discussed in Section III of this paper, which reviews tools and methods). Building ILAC processes in combination with the creation of appropriate links is anticipated to be the main way of strengthening innovation capacity.The final elements of innovation software are the incentives and other devices that pattern behaviour and are found in the wider policy and institutional environment at a national level.The question of which policies and institutions -beyond the obvious ones relating to R&D and livestock sector development -are likely to affect the enabling environment for fodder innovation is largely an empirical one and will have to be investigated by the project. However, it is anticipated that these may include not only policies related to common property resources and waste land development, but also those related to the regulation and promotion of milk marketing. Also, understanding how policy change takes place is equally important as formulating new policy recommendations. By extension of this policy research should be an interactive process whereby key stakeholders are closely involved and where there is interaction between field level results, policy imperatives, and different stakeholder agendas as well as the wider set of institutional settings that shape behaviour and mediate or skew the outcomes of different policy initiatives. Principles on how to conduct research in this sort of interactive way still need to be developed and insight into what these might be would be a valuable contribution to rural development.Since the preceding conceptualisation places such strong emphasis on the role of institutional innovations in strengthening innovation capacity, it is worth considering how these emerge.In traditional development practice these have emerged through centrally planned schemes and projects; for example, a new extension approach; new seed laws or seed systems; new tertiary agricultural education arrangements; new rural credit schemes. Almost inevitably these scheme-based institutional innovations have been generated externally (to a specific rural area or often the specific country). And, almost inevitably, these have failed.It is now well established that technical innovations and institutional changes need to emerge from -and only have meaning in -particular social, historical, economic and political settings (Brass 1982, Biggs 1990). In reviewing a number of cases where unexpected institutional innovations have arisen out of projects, Biggs (2006) observes that \"there were no 'spontaneous developments' , 'hidden hands' or 'natural' evolutionary processes that gave rise to institutional innovations and change. There were continuous political/cultural battles taking place, with effective people and coalitions taking actions to bring about changes in power structure. \" He explains that where social inclusion is part of the agenda of influencing local/ project actors, institutional innovations that support the poor can occur, although rigorous and continuous analysis of outcomes on the poor is required to ensure this and support the scaling-up of such innovations.The innovation systems conceptualisation is very much in line with these perspectives, arguing that institutional changes are often a learnt response to new information or changing conditions; and that institutional innovations are often a way of bringing about technological innovation. For example, reviewing the promotion of small scale irrigation technology in Bangladesh, Hall et al (2007) explains how the success of the programme was largely a result of institutional innovation around pump quality standards. The NGO running the programme initially insisted on promoting a high quality, but also relatively expensive, pump that could last seven years. However, noticing that copycat fabricators were producing and selling a \"cheaper and just about good enough\" pump that only lasted two years, the NGO changed its strategy to promoting a range of different priced pumps with different qualities. The lowest quality pump proved the most popular and, of course, this was the pump of choice for households with the lowest spending power -and the target of the NGO's programme.What this means for a project investing innovation capacity is that rather than testing out different institutional models -the usual approach of many development projects -the focus of the project should be on experimenting with ways of stimulating institutional innovations and identifying \"spontaneous\" institutional innovations for up-scaling. The approach also needs to be aware of the fact that these institutional innovations may be changing that bring upscaling into wider practice either like the Bangladesh case or by changing approaches taken by government schemes.In the initial design of this project a number of stakeholders felt that the project should test two contrasting hypotheses:A. The entry point for strengthening innovation capacity is new technology -for example, a new fodder variety. B. The entry point is to create capacities as technological solutions already exist.These hypotheses would clearly have implications for the choice of case study (ILRI 2006b). Now that the conceptualisation of the project has been more fully elaborated in this paper, these contrasting hypotheses seem less relevant. This is because the research question is now framed as one about capacity and the institutional changes needed to develop this capacity. The Phase I project (discussed in Section I of this paper) illustrated that with technology as an entry point, institutional changes were required to embed and utilise this knowledge in a system of innovation. The need for institutional change is therefore now a given and this points to the need to take a lead from a diagnosis of gaps in innovation capacity in a particular location and the identification of any positive institutional changes that warrant further development and promotion. This diagnosis will define the entry point. It is anticipated that in some cases it will be technological; in some institutional; and in others a more likely combination of the two.The word entry point -actually starting point -is important here. The project's conceptualisation predicts that problems will reveal themselves more fully. However, as different capacity gaps are resolved, this, in combination with the changing contexts that interventions are likely to encounter, will lead the project in a different direction. Thus, the initial starting point will have little relevance as an analytical parameter.Instead, the variable for comparison in the project will be location diversity, as sufficiently generic principles can only be derived by a comparative analysis of approaches to institutional change and capacity development in different contexts. CRISP (2007), in their development of partner selection criteria for this project, define this diversity in terms of three characteristics: (i) organisational types (public, private, NGO); (ii) fodder regimes (embodies agro-ecological and social diversity); (iii) degree of market integration (covering commercial to subsistence spectrum). They go on to stress that, \"There is no indicator of diversity of individual organisations. What is required, however, is that sufficient diversity is created across the selected partners, remembering that the selected partner will form the nucleus of a number of clusters or coalitions of organisations and individuals around specific innovation themes. \"The formal hypothesis for this study is as follows:'Generic principles on how to strengthen fodder innovation capacity can be derived by experimenting and learning from institutional and policy change processes across the local to national levels in India and Nigeria that are inclusive of the livelihood needs of livestock dependant poor people. ' 'Fodder innovation capacity will be strengthened when institutional and policy change enable a continuous process of framing and reframing of the way fodder-relevant knowledge is created, diffused, adapted, shared and put into use in ways that are inclusive of the livelihood needs of livestock-dependent poor people. 'We have put forward the argument in this paper that a better way to address fodder scarcity than the usual technology transfer approach is to concentrate on building the network of linkages and associated institutional developments needed to enable innovation. Our bigger argument being that if innovation is enabled, welfare outcomes -hopefully positive -will be felt by livestock-dependent poor people. We bolster this argument by saying that we are not just going to identify the institutional changes that can enable innovation, but specifically those changes that will make processes and outcome more relevant to the poor. How do we prove that this approach is actually working better than existing alternatives and how do we know when we have \"better\" innovation capacity? Of course there are huge amounts of well-documented empirical evidence that underpin the general principles embodied in an interactive approach to innovation that we are adopting and the sort of institutional changes we are seeking to bring about -for example, participation, inclusiveness, and so forth. But it is still worthwhile setting out the logic that would create that proof and explaining what that proof would look like.The term counterfactual is used by economists to mean the outcome of a similar situation without the project intervention. Biological scientists call this a control, and in laboratory experiments it is feasible to create a scientifically convincing design with a 'without situation' . In clinical trials the counterfactual is the double blind placebo. The counterfactual approach to project evaluation was championed, among others, by Gittinger (1982) and his 'with and without' appraisal techniques. The simple logic behind this is that the marginal social and economic benefits of a \"with\" situation could be compared to those of a \"without\". Judgments could then be made of the cost/benefit ratio of the intervention.However, even in a fairly straightforward situation of examining what would have happened with and without, for instance an irrigation scheme, it is extremely difficult to try to control for pre-and post-project conditions in two different locations. Impact assessment of returns to investment in research follows a similar logic. In recent years the use of such approaches to track the performance of public investments in international agricultural research has been criticised because of their limited contribution to learning how to organise science for better impact (Horton and Mackay 2003;Hall et al., 2003).Innovation capacity as a project outcome is even more problematic given the difficulty in setting up reliable counterfactuals that will allow a \"with and without\" type impact assessment. This is because innovation capacity in any particular location is very much a product of the history, starting conditions and evolution of those conditions over time. In other words it is a classic complex systems phenomenon and, as Ekboir (2003) and others have argued, it would be foolhardy to apply conventional impact assessment approaches.The counterfactual approach seems to thus present three difficulties for measuring and proving the worth of innovation capacity development.(i) The absence of a parallel universe: The capacity to bring about fodder innovation in, for instance, Ananthapur, Andhra Pradesh, India in July 2007, has unique characteristics that are related to this place and time and the history, starting conditions and evolution that go with it. Of course one could argue that you could compare the effectiveness of the innovation capacity developed in Ananthapur with a situation in a similar district in Andhra Pradesh. However, the people, the organisations, the administrative traditions and local politics -all key determinants of innovation capacity -would be different. If one was willing to ignore these differences, one could fool oneself into believing that this was a valid comparison. In reality, the only way to get a scientifically valid comparison based on the \"with and without\" logic is to compare the situation of Ananthapur in July 2007 in a parallel universe where there has been no intervention. As far as the authors are aware, economists have not yet mastered this parallel universe approach, although one could imagine that fiendishly elaborate data intensive simulation modelling might start to address this.(ii) The inappropriateness of comparative metaphors: Even if one chooses to ignore the parallel universe argument, unlike irrigation infrastructure (the classic metaphor for Gittinger's 'with and without' project appraisal approach) the ideas about building innovation capacity by strengthening links and networks will spread beyond the point of intervention. So, at best it will be \"with\" and \"with-some\". Similarly, if one takes the biological research counterfactual metaphor of a 'with fertiliser treatment' and control the case with building innovation capacity, the treatment is going to start off as a fairly weak chemical nitrogen fertiliser, increase in strength over time and then maybe switch to organic fertiliser when energy prices increase because of an unpredicted development in international politics. Obviously, this evolving treatments scenario presents all sorts of problems for measuring welfare outcomes of an approach that is based on the idea of nurturing institutional changes in a dynamic environment with strong local-to-global connections. Again, a sufficiently large sample size and sophisticated modelling approaches may be able to deal with this, but these lay beyond the reach of most of us.(iii) Lagged outcomes from failure-based learning: Of course we are interested in tangible welfare outcomes of creating capacity and it would be nice to be able to conclusively measure these. However, because institutional change -and thus capacity development -can occur through failure of activities as well as successes, there can (and usually is) a long lag time before welfare outcomes become apparent. Take for example a project that tries to use participatory plant breeding to improve the nutritive value of crop residues fed to animals. The project produces excellent varieties that farmers and their animals like and which have high nutritive value. However, the technology does not spread because the scientists did not work closely enough with companies in the private sector-led seed delivery system. The welfare outcome of the initiative is limited, but the scientists have learnt to work in a different way -i.e., to include the private sector as well as farmers in their work. This has strengthened the capacity to innovate and will underpin future welfare impacts. This means that conventional approaches will either miss key outcomes as they will be institutional in nature or will at least grossly underestimate changes as these will only be viewed in short term tangible welfare terms. Is this amenable to mathematical modelling? Given enough time and data it is not inconceivable that this can be dealt with, but it is not a widely understood approach.Rather than wasting huge amounts of time and resources in trying to construct an elaborate experimental design to test a counterfactual, a more pragmatic approach to assessing the impact of an innovation capacity approach is to devise a way of benchmarking this capacity and monitoring changes in it over time (a before and after comparison). This is really a question of tracking institutional change over time and relating this change to likely and actual welfare changes. We have typologies of desirable institutional changes. Socioeconomic benchmarking and the qualitative documentation of episodes of institutional and technical change and consequent socioeconomic outcomes (episode analysis) would be a way of tackling this (This is discussed in further detail in Section III of this paper).Such an approach, relying on multiple sources and types of information, can be used to build up plausible causal connections 19 between particular types of institutional change and the welfare impacts that are desired. Discussion with biometricians likens this to the way evidence on climate change has been amassed (pers. Com. Dr Richard Coe). There is no counterfactual for climate change (N=1!). Different pieces of evidence have been gathered over time to make the case. Let us just hope that it does not take so long to convince people that we need to be building innovation capacity rather than carry on transferring technology.It is easy to understand the discomfort some may have with an approach that focuses on institutional change with welfare impacts lagged and mediated through long term and unpredictable patterns of capacity development. But when it comes to addressing fodder scarcity in a way that could helps poor people, what viable alternatives are there? Currently, very few!The analytical insights into innovation capacity that is described in Section II of this paper frame two key activities in research to explore fodder innovation capacity. The first concerns diagnostic studies at both the micro level (the immediate networks and local contexts that the individual project initiatives will be embedded in, referred to as innovation clouds (see Section II) and the macro level, which would include the broad policy and institutional context in which project activities would be situated. Of course, a systems view of innovation capacity would suggest that this separation is artificial and unhelpful and that micro-level contexts always need to be thought of in the wider setting. It is nevertheless useful to highlight different elements of the contextual setting of innovation.The second activity concerns facilitating and exploring institutional change. As discussed in Section II, institutional change is at the heart of the process of strengthening innovation capacity. Due to the location-specific nature of institutional arrangements these cannot be specified without reference to a particular context. So how then does one know what institutional arrangements are required in any given location? The solution we believe is to use a processdriven approach to derive them experimentally. This also serves as a way of investigating how institutional change can be achieved. The generic deliverables from this research will not be the specific institutional innovation developed as these may be very context specific (although some may be more generic). Rather, it will be the principles about how to stimulate institutional innovations that are locally relevant and relevant to policy goals such as poverty reduction or market development or environmental sustainability or a combination of these. Diagnostic studies might also reveal interesting institutional innovations and experimentation may focus on how these can be further developing and diffused more widely.Another facet of the institutional changes that needs to be investigated is the project process itself, particularly how its approach -and changes to its approach -have consequences for innovation capacity outcomes. In other words, the project team and its actions can no longer be thought of as removed and separate from the institutional setting and network of players that the project is trying to influence and change in order to enhance fodder innovation capacity. The project team is part of the experiment and the process through which it implements the project needs to be process-driven, scrutinised for conformity to systems concepts and analysed for lesson and principles. The ethnographical studies of international research and development organisations by David Lewis (Lewis et al. 1998) have shown that despite the rhetoric, the way these organisations deal with issues such as \"partnership\" tends to undermine the success of projects where often skewed relationships and opaque agendas inhibit information flows and institutional learning. This project needs to deal with this tendency and report on any institutional innovations it achieves in this regard.A rider to all of this is that institutional changes and strengthened innovation capacities need to be sensitive and inclusive of needs and agendas of the livelihoods of livestock-dependant poor people. Here the word inclusive means that institutional change should not only include the agendas of poor people, but recognise that creating opportunities for the poor often involves innovations that help non-poor people -particularly innovations that strengthen enterprise development and create employment opportunities, or pro-poor services and products. As mentioned in the analytical framework in Section II, the value of institutional innovations to the agendas of the poor has to be rigorously assessed as part of the process-driven approach to facilitating and promoting (desirable) institutional change.The way to do this is through socioeconomic benchmarking studies in the pilot innovation sites, with periodic re-surveys at appropriate points during the project. Such surveys would need to look at several things, including: the internal profile of the household (gender, education); household assets (land, livestock); sources of income; social capital ('networkyness' and reciprocity) and membership to peoples' organisations; features of livestock production, the livestock enterprise and/or livestock-related livelihood options; and \"muddling through\" strategies of the livestock enterprise (innovation capacity). Qualitative assessments -through episode analysis, for example -will also be useful, but a quantified benchmark study is required, supplemented by participatory assessments.From an operational and analytical perspective this means that tools are needed to do the following tasks: Before going on to review a number of tools to carry out these tasks it is useful to raise some cautionary points on M&E. These are raised because as a process-driven project M&E assumes a special importance -it becomes a management tool for making mid-course correction and fine-tuning approaches by both the project team and by partners in pilot innovation clusters. However, as Biggs (2006) points out, while countless publications, guidelines and training programmes have been devoted to project M&E, the problems of getting M&E procedures implemented are well documented as well (Biggs and Smith, 2003). Biggs (2006) points to a recent World Bank publication on good practice, where it said, \"M&E systems have been weak in World Bank Agricultural Knowledge & Information Systems and the AKIS programmes that they support\" (Byerlee and Alex, 1998, p.v). This is in spite of the Bank being one of the primary promoters of project management and M&E manuals for over 30 years.Part of the problem may be that the term M&E is often viewed as being synonymous with policing of project partners -and this is often the case. If M&E is to avoid becoming the Achilles Heel of this project, it is suggested that the language of M&E be dropped, and tools to achieve the institutional learning objectives of the project be selected -Learning-Based Management (LBM), perhaps. It is worth noting that many development projects have tackled this issue by making social learning the central activity around which all other things hang (see discussion of RAAKS below).Rapid Appraisal of Agricultural Knowledge System (RAAKS) was devised by Engel (1997) as a way of operationalising systems thinking on agricultural innovation. The methodology is set out in detail in Salmon and Engel (1999). The ideas underpinning it have much in common with the innovation systems concepts, with networking, learning and institutional change being given centrestage. RAAKS is described as a structured inquiry into the social organisation of innovation. Engel (1997) explains that it was designed as a participatory action research methodology to bring out social learning issues relevant to innovation and to design strategies for improving it in practical situations. The approach uses an elaborate and well thought out set of exercises and tools, which is described in detail in a manual titled \"Networking for Innovation\" (Salmon and Engel, 1996). The approach built on many years of field experience by Engel and his colleagues, particularly in the area of agricultural extension communication. The main elements of RAAKS are follows:• Strategic diagnosis -an appraisal of constraints and opportunities leading to a joint definition of useful strategies • Creative tension -contrasting findings produced by multiple analytical perspectives • A task-orient path -leading participants from analysis and interpretation toward the design of potentially useful solutionsWhether it was ahead of its time, or whether it simply did not receive the attention it deserved, RAAKS is an approach that has not come into the mainstream in the 10 years since the manual was published. Those with experience of using it talk of its complexity. Indeed the manual sets out, at times, a daunting set of exercises, steps and tools. The other feature of the approach is that it tends to focus mainly on activities in the rural domain, rather than looking at the wider set of actors that might be involved in an innovation system.Despite these niggles, the focus of RAAKS on \"complex innovation theatres and interorganisational relationships\" in rural settings is clearly of direct relevance to this project's investigation of institutional changes associated with strengthening fodder innovation capacity.It is recommended that the project use specific exercises and approaches from the RAAKS tool box appropriate to specific tasks. It is anticipated that these will be found particularly relevant to part of Task 1 and Task 2.In the words of Biggs (2006), \"the idea of appreciative enquiry is simple: learn from the positive. This involves purposely seeking out and learning from past and contemporary political/ cultural situations where positive things have already occurred, and learning from the way different actors were effective in bringing about positive changes. The entry point for this analysis is finding situations where there is empirical evidence that positive changes have already taken place. This is a very different entry point from much mainstream poverty and social exclusion analysis where the preoccupation is either with (1) describing how bad a situation is (the problem), what the barriers and constraints are to change, and then suggesting solutions, or (2) learning mainly from earlier, planned development interventions. Learning from the positive does not discard learning from the outcomes of past planned interventions; however, it opens up the possibility of looking for different things in new places. Consequently, learning from the positive is a more inclusive approach than just learning from past development intervention success (or failure) studies. Not to be confused with \"development success story\" literature.Guidance on the approach can be found in, for example, Hammond and Royal (1998). Examples (again from Biggs, 2006) of institutional innovations that have been identified by looking for unexpected outcomes include: changes in variety release policy to include farmer varieties; changes in R&D arrangements to allow farmer ideas to be used in research priorities and design; changes in national small-scale irrigation schemes to allow farmer technical innovation to be supported.The business literature recognised a similar idea -positive deviance. For example, Sternin and Pascale's (2005) paper, \"Your Company's Secret Change Agent\", published in the Harvard Business Review. They argue that some business problems never seem to get fixed. Yet, they suggest that the tyranny of averages always conceals sparkling exceptions -isolated groups or individuals operating with the same constraints and resources as everybody else and who prevail against the odds. They argue that if these outliers can be identified, and what they do differently be understood and brought into wider use, then these (institutional) innovations can be used to great affect throughout the company. They recommend using the innovator as the 'evangelist' rather than trying to codify breakthroughs into \"best practice\". Ironically, Sternin and Pascale cite the sources of this great business insight not as IBM or Microsoft, but development projects dealing with malnutrition, AIDS and education. Their account of finding ways of helping Indian sex workers get their client to practice safe sex using bananas and condoms guarantees that the reader will never forget either the concept of positive deviance or the meaning of the words 'institutional innovation' .These ideas are very relevant to the fodder innovation project as they provide a way of identifying promising institutional innovations that happen unexpectedly and which the project can then further develop and diffuse to others. These 'positive deviants' might already exist in pilot learning clouds as a result of earlier interventions or on-going processes. They might also emerge as unexpected by-products of pilot innovation cloud activities themselves. It is recommended that these approaches are used in Task 1, Task 2, Task 3 and Task 5.Socioeconomic benchmarking is a way of tracking change and continuously testing assumptions about the outcomes of different actions on households of differing wealth status. This helps identify unexpected outcomes and quantitative survey approaches can strengthen the voracity of lessons learnt from the project. This is the most useful tool for underpinning pro-poor claims of the institutional innovations developed by the projects. The questionnaire survey method can be customised to deal with the specific needs of the project outlined in the introduction of this section. It is recommended that this approach be used for Task 2. Combining such methods with participatory appraisals will be very powerful in building the plausible causal connections needed to demonstrate the way institutional change can lead to innovation that has positive welfare outcomes for specific social groups.Institutional Learning and Change (ILAC) refers to a cluster of tools that have been developed and adopted to promote the process of institutional change in international agricultural research centres (Watts et al, 2003). The idea is rooted in innovation systems ideas (Hall, et al, 2004). The success of the approach is far from well established. In all fairness, the ILAC initiative in the CGIAR has been useful as a discussion forum for these sorts of ideas and it has helped bring together relevant resources and briefing notes. It is probably best not to think of this as a single approach, but as a tool box of options.Of particular relevance to this study are the institutional histories/ innovation histories idea (Shambu Prasad et al, 2007). This is a participatory approach to developing the history of a particular initiative over several years, identifying key institutional innovations that took place and investigating how these allowed programme objectives to be achieved. These histories also often reveal the institutional factors that stop programmes succeeding. One of the difficulties with them is that they unearth contested histories and political tensions between key actors. However, the trick with using them is to use the process of collecting information and discussing it with actors as a way of reconciling different positions, identifying blockages and finding ways forward. In other words, in the hands a skilled facilitator, this can be a useful tool in bringing about institutional innovation.This sort of approach clearly has relevance to this project, particularly its use for helping to reflect on progress and identifying ways forward. It may also be a useful way of exploring the starting conditions of pilot innovation clouds as these will inevitably have a history that will have implications for new interventions. It is recommended that this tool is used for Task 1, Task 3 and Task 5.The use of process documentation can be traced back to the development sector in the early to mid 1990s. It became increasingly apparent at that time that getting processes correct and then building the capacities for change that came with them was much more important than infrastructure development and other development project favourites (Mosse et. al., 1998). As the term suggests, the idea is that an organisation collects information on process. This might involve keeping project diaries or other ways to record activities and the decision-making process. As can be imagined such a broad information collection remit can be a very dangerous thing in untrained hands. Often information is collected that is so trivial that it offers little scope for analytical insights (\"meeting decided to have tea at 2 p.m. rather than 3 p.m. \"). Alternatively, so much information is collected that its organisation and analysis into anything meaningful becomes unmanageable. The authors are not aware of any review of process documentation approaches that could guide of us in exploring institutional change, although the idea clearly resonated strongly with those of innovation systems.It is recommended that the project not use process documentation unless it is to be carried out by a trained process documentation specialist who knows how to collect and analyse such information. Institutional histories and episode analysis and other forms of facilitated reflection and learning approaches make for a useful alternative -particularly in a developmental setting where partners are likely to be \"doers\" rather than \"writers\". However, institutional histories have a drawback in that it takes a significant period of time before useful lessons emerge from project -often years.Innovation surveys are widely used in the industrial sector in developed countries. These are usually indicator-based and work well in situations where innovation is at the knowledge frontier and thus where measures of R&D activity are a good proxy for innovativeness. These methods, however, struggle to capture the systemic coherence dimension of innovation capacity. This approach is not suitable for exploring fodder innovation capacity where R&D activity will not be a particularly good proxy for innovation and where systemic coherence is likely to be the critical aspect of capacity.It is also useful to classify linkages by the types of learning that they support. The innovation system recognises that learning can take a number of forms: learning by interacting, learning by doing, and learning by imitating (in order to master process or technology), learning by searching (for sources of information) and learning by training. Again, while all of these forms of learning are important, successful innovation systems are characterised by a high degree of interactive learning. Specific links through networks and sector association to inform and influence policy.Collaboration in the marketing of products, sharing customer bases, sharing of marketing infrastructure. Usually governed by a memorandum of understanding. Can involve one or more organisations. Board collaborative objective.Mainly informal but also formal arrangements connecting organisations to raw materials, inputs and output markets. Includes access to credit and grants from national and international bodies. Narrow objective of access to goods.Limited opportunities for learning. Some learning by interacting Hall et al, 2006 As far as the authors are aware the only published tool for undertaking diagnostic studies of agricultural innovation capacity is the Four Element Innovation Capacity Analysis Tool (aka The World Bank Methodology see Hall et al 2006). It was used in the World Bank study on Enabling Agricultural Innovation and is based on a conceptual framework and methods paper published as Hall et al (2006). Hall and his colleagues' explanation of the purpose of the tools and its intended users is as follows:\"A rapid methodology that could be used by a non-expert in combination with limited training and which would lead to the identification of plausible intervention points for national governments and development assistance agencies. The scope of this approach would not include a systemic survey of actors in the sector, although the guidelines and the checklists of questions set the parameters for the subsequent design of a survey instrument if this was found to be necessary.\"It is called the 'Four Element' tool, as its four main analytical categories for understanding innovation capacity are:A. Actors and the roles they play B. Patterns of interaction between actors C. Habits and practices (institutions) D. The enabling policy environmentIt also provides guidelines for undertaking a diagnostic assessment (Box 1). It gives a checklist of things to be investigated and an explanation of the framework for each analytical point. It also lists possible sources of information (the guidelines are provided in full in Table 4): The guidelines outline is as follows:(i) Sector Timeline and EvolutionCentral message or diagnosis from this section: What is the nature and dynamics of the sector? Who are the main players? What has been the performance of the sector till date? What challenges does the sector face? How effective have policies and support structures been in triggering innovation and developing a dynamic innovation capacity?(ii) Sector Mapping • Is a sufficiently diverse set of organisations from the pubic and private sectors actively engaged in a sector considered in policy and intervention design -appropriate to the nature of the sector, the stage of development of the market and the institutional setting in a particular country.• Linkages, networks and partnerships between companies and between companies and research and policy organisations for knowledge-based interactions • Degree of integration of poor stakeholders and mechanisms to promote their agendas • Presence or absence of sector co-ordinating bodies and their effectiveness in particular institutional settingsThe presence or absence of stakeholder bodies such as farmers and industry associations, the scope of their activities, particularly knowledge-based activities such as research, training, technology acquisition and market and technology foresight. Institutional setting will also determine the effectiveness of such bodies• Habits and practices that enable or restrict collaboration between organisations • Forms of behaviour that restrict change or which cause organisations to play the wrong role •The existence and strength of social capital -patterns of trust and reciprocity -as foundations for evolving patterns of linkage across the innovation system • Culture of innovation -demand for research in the private sector; an emphasis on problem solving rather than capacity building for future eventualities; limited use of collaborative arrangements for knowledge-based activities; an emphasis on both technological learning (mastering new technology) and institutional learning (mastery of processes for accessing and using knowledge more effectively)4. Enabling environment -policies and infrastructure.Source: World Bank 2006Central message and diagnosis from this section: What habits and practices do organisations have that restrict interacting, knowledge sharing, learning, investing and inclusiveness of the demand side? What types of habits and practices should be developed and in which organisations? Are there policies that are designed to support innovation but being negated by existing habits and practices? What measures could be put in place to account for this?Central message and diagnosis from this section: What is the set of policies put in place to encourage innovation? Which policies have a positive impact on the behaviour of actors and organisations and which do not? Are there contradictory policies that are counteracting each other? Are some of the policies that are not working being affected by habits, practices and institutions of actors and organisations and what additional measures or incentives would be needed to account for this? Similarly, are support structures effective, and if not, how do they need to be adapted?The tool has been used on a number of occasions. It was used by local and international consultants in the original World Bank study to undertake case studies. Most of the case studies, while providing a good description of sectors and their evolution, had not initially analysed these with the framework provided in the tool. The cases did provide the right information but this had to be subsequently analysed by the lead consultant on the study and lead author of the guidelines. The two best written case studies (on Colombia and India) were by consultants who already had substantial experience with using the analytical framework over many years.In general, the cases (and, therefore, the tool) were weak in identifying differential social implications of particular innovation trajectories and institutional changes -although there were some useful examples.The tool was used in 2005 by Rose Kiggundu to undertake a diagnostic survey of post-harvest and livestock innovation capacity in Uganda. Personal communication with Dr Kiggundu suggests that the approach would need to be modified for rapid appraisal techniques.The tool has also been adopted by the DFID Research Into Use (RIU) programme to undertake diagnostic assessments in Sierra Leone (Clark), Rwanda (Barnet) and Bangladesh (Matsreat). Personal communication with Norman Clark revealed that after an intensive three-week study with two national professionals, he was able to produce a report that identified a strategy for interventions that would build innovation capacity.To conclude, the World Bank methodology is one of the only tested approaches available for doing an agricultural innovation systems diagnostic assessment of capacity that is inclusive of everything from macro to micro elements of this capacity. It should form the cornerstone of the diagnostic assessments used by this research on fodder innovation capacity. However, it should be supplemented with tools that give sharper focus to the differential roles and impacts of the innovation process on both the poor and non-poor. Greater participation in the diagnostic process by the organisation being assessed would help. It is most effective when used by researchers who have substantial experience of understanding innovation systems analysis. This last point hints at the fact that this form of assessment contains mainly tacit elements that are difficult to codify in guidelines. For this reason, the participatory and village level elements of diagnosis should take full advantage of the expertise of partners in pilot innovation clouds.Fodder scarcity is a problem for which innovation capacity presents a multidimensional approach to investigate. The central focus on institutional arrangements, institutional innovation and the innovation process is itself multidimensional and needs to be accompanied by socio-economic and technical appraisals. No one research tool fits this requirement. Fortunately, there already exists a whole 'raft' of tools that is used intelligently and can cover the information gathering needs of this project. This eclectic approach to tools and methods is important not just from an operational perspective, but also in terms of the contribution of the research to scholarship and learning in this area. Putting together this collection of existing tools and ideas in a new way to investigate fodder scarcity from a new perspective is an important innovation in its own right. Given the importance of the eclectic approach, the project should guard against getting bogged down in the dogma of any one particular method, using tools flexibly in ways that best achieve the project's analytical objectives.Bearing this in mind, tools for dealing with the six analytical tasks outlined at the start of this section are summarised in Table 5.This paper demonstrates that despite the fact that research-led technology transfer has largely failed to address the fodder scarcity issue, there is a wealth of empirical experiences that are pointing ways forward. One of these ways points to the need to revisit fodder scarcity as an issue of fodder innovation capacity scarcity. Understanding how to develop fodder innovation capacity requires an analytical framework that can explore the patterns of interaction that lead to innovation and institutional and policy settings that shape this process. The innovation systems framework can guide the exploration of these issues as it gives specific focus to institutional change. This, in turn, raises methodological questions about how institutional change can be tracked during an action research project, and how such a project is managed to deliver results that address both research and development objectives. These are the challenges. ","tokenCount":"18148"} \ No newline at end of file diff --git a/data/part_3/5254771289.json b/data/part_3/5254771289.json new file mode 100644 index 0000000000000000000000000000000000000000..4c32326085eb94d0ea21c248a349f8c06bac4eb8 --- /dev/null +++ b/data/part_3/5254771289.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"2d84dcd1f238230149daacd91f960920","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/5a2332e9-04da-4b53-871a-5d2aa66e7c72/retrieve","id":"-1943657958"},"keywords":[],"sieverID":"2ee23c4e-5d12-4995-aca3-62a715929aff","pagecount":"1","content":"To understand the current gender dynamics in northwest Bangladesh and how these shape the barriers and opportunities for women and men to engage in and benefit from aquaculture and agriculture, we employed a mixed qualitative methods approach, integrating various qualitative approaches. Following tools were used to collect data.The mixed qualitative methods allowed us to capture the multi-faceted perspectives of various community members thus providing rich information of changes in gender dynamics over the past ten years. The KIIs, FGDs and IDIs were carried out in 8 villages and 4 districts from July to August 2019. continue to be unevenly distributed between women and men (FAO 2017). This study on gender dynamics, barriers, opportunities and risks in targeted areas provides important information on the barriers faced by women and men in entering into-and benefitting equitably from-aquaculture and agriculture in northwest Bangladesh.transportation, input and other businesses, and private-sector jobs. The biggest change for women is that they mostly handled household domestic responsibilities in the past but are now more engaged in income-earning activities.4. Women's empowerment is limited, but there are openings:4.1. The data revealed that women have access to microloans, they do not usually make decisions about how the loans are spent. Beside, providing micro credit, the NGOs are working to enhance women's skills and better control over their livelihoods.4.2 Older women and women who have been married longer have more decision-making power while educated women are more empowered and have more autonomy in utilizing their loans and in entrepreneurship. ","tokenCount":"248"} \ No newline at end of file diff --git a/data/part_3/5264346870.json b/data/part_3/5264346870.json new file mode 100644 index 0000000000000000000000000000000000000000..991b67988f4199fa391a2bc5215b0dc45a1740e8 --- /dev/null +++ b/data/part_3/5264346870.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"1901559e134c9e6183dda63a628e29e7","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/788e4214-bbdc-42f3-889f-85e242ce4f67/retrieve","id":"193260692"},"keywords":[],"sieverID":"1da9b4b6-2df4-4caa-beb8-cd0fa35fbf37","pagecount":"15","content":"Through the development of a participatory approach to breedíng barley for stress conditíons, Ihe project will identify ímproved barley varieties that fulfill the needs of poor fanners in the most difficult environmenls of Jordan and, by ínvolving farmers in selectíon and testing, enhance the rate of adoptíon of these varieties.• Does use of the material require prior informed consent of any country/community (access legislation)? • What are the implications ofthe legal status oflhe germplasm for the use and distribution of any results, such as plan! varieties? Type cases for PPB analysisBelow we have oullined a range of cases in which there has been PPB collaboralion. They include bcth farmer-Ied and formal-!ed collaboralions. The cases in general represen! the mosl cornmon of the curren! applications ofPPE. However, severa! have been constructed lO anticipate future trends inPPB.Case 1• Formal breeders decide to increase the production of a crop in a given farming area.• There is no prior agreement with the local population, which is mixed ethnically and has no strong views on germplasm rights one way or the other.• Formal breeders screen exotic stabílized materia!s received from an IARC and make decisions at all stages.• Formal breeders decide what lo pul inlo on-farm trials.• Individual farrners, mostly male, ron the on-farm trials.• Farmer preferences are taken into account for the formal release of varieties.• The released varieties are forwarded to the stale seed-distribution chain.Case 2• Formal researchers are given the government mandate to improve crop production in marginal areas and specifically seek out farmer breeding priorities there.• There is no prior consultation or subsequent formal agreement with the cornmunities involved.o Researchers realize that the exístíng avaílable NARS gennplasm has líttle promising materíal. They initiate a crossing program using some local gennplasm and some gennplasm supplied by a neighboríng NARS.o Dn-station, breeders do several cycles of screening. Interested fanners from the local target communíties, some women, sorne men, are brought on-station for evaluation ofmaterials, including feedback on specific desired traits.• Dn the basis of farmer and breeder assessments, segregating material ís put with farming communities in researcher-desígned but cornmunity-managed plots.o The materíal stabilízes on-farm.• Fanners and breeders pick the most promising finished materials.• Varieties are put through formal release and multiplícatíon processes.Case 3o Fanner communities make a deeision to build on and improve the qualíty of their existing local germplasm. While they want higher yields, they are eoncerned about keeping their local varietal diversity. They highly value free exchange of materials among themselves. In faet, giving a seed gift is a true sign of friendship . o The scientist is paid and thanked and the cornmuníty decides its own path.Case 4• This case ís a variation on case 3, where a technology that is a private company's patent ís involved.o A large women's cooperative thínks ít canmake money offofpotatoes ifthey get ridofthe tubers' blemíshes. Supported by an NGO aimíng for female empowerment, they call in a NARS researcher for consultation. He índeed confirms a virus problem and agrees that he and his institute can help the women's group.• He proposes to breed potaloes resistan! to the blemish-causing virus. For this purpose, a patented resistance gene will be introduced into the potatoes. A private company holds the patent granted for the gene.• NARS personnel a1ert the cooperative that the end product has to be officíally cleared under the newly adopted biosafety framework.• Subsequently, the wornen's group gets their product. It is simultaneously put through an official release proeess.Case 5• In the course of doing a survey, formal researchers discover an innovative farmer breeder who has developed an \"interestíng population\" from local materials. They ask the farmer if they can have a sample but no formal agreernent ís made. Scientists plant this population on-station, stabilize it, and come up wíth a híghly productíve mix.• The produet is sufficiently homogenízed so as to be put out through a formal release process.Case 6• Scientists are con cerned about lhe decreased use of a certain minor erop, whieh is important for local nutritional needs. As this particular erop is not among the NARS priority mandates, they aim to develop a program lhat strengthens farmers' own skills to maintain the erop and ensure planting material qualíty.• Scíentists invite key farmers from the region-Ioeally recognized as experts-to pursue specialized training on plant improvement.• Cornmunities involved have thernselves prioritized the need for technícal support to ensure the crop' s maintenance but no formal collaborative agreemént has been signed.• Fífty local experts are trained, both men and women, and formal scientists remain on hand to give occasional advice.• The training proves effective for conserving and even improving lhe quality ofthe local crop. Plant breeding has been beneficial 10 fanners who enjoy favorable environments or those who can profitably modify their environment to suit new cultivars. It has not been so beneficial to those fanners (the poorest) who could not afford to modify their environment through the application of additional inputs (Byerlee and Husain 1993). Fanners in favorable environments using hígh levels of inputs are now concemed with the possibility of adverse environmental effects and the 1088 of genetic diversity. Poor fanners in marginal environments conlínue 10 8uffer from chronícally low yields, crop failures, and in the worst situations, malnutrition and famine. Because of its past successes, conventional plant breeding has tried to solve the problems of poor farmers living in unfavorable environments by simply extending the same melhodologies and philosophies applied earlier to favorable, high-polenlial environments.The essential concepts ofthe conventional breeding approach can be summarized as follows:• Seleclion is conducted under lhe well-managed conditions of experiment slalions.• Cultivars, especially in self-pollinating species, should be pure lines and should be widely adapled over large geographical areas.• Locally adapted landraces should be replaced because lhey are low yielding and disease susceptible.• Dissemination of seed of improved cultivars should lake place through formal mechanisms and institutions, such as variely-release committees, seed-certification schemes, and governmental seed-production organizations.• The end users of new varieties need not be involved in selection and testing; Ihey are only involved at the end of the consolidated routine (breeding, researcher-managed trials, verificatíon trials) to verif'y which ofa Iimited selection offinished cultivars are acceptable.In situations where the objectives are lo improve yield and yield stability for poor farmers in difficult environments, plant-breeding programs rareJy question the efficiency and the effectiveness of Ihe conventíonal approach. The implicit assumption is Ihat what has worked well in favorable conditions must a1so be appropriate to unfavorable conditions, and very little attentíon has been given to developing new breeding strategies for low-input agriculture in less-favorable environments.There is mounting evidence lhat this assumption is not valid and that, in faet, lhe problems ofmarginal environments and their farming systems mus! be addressed in new and innovative ways.In Ihose few cases where the application of conventional breeding strategies lO marginal environments has been assessed, the following has been found:experiment stations tends 10 produce cultivars tha! are superior to local Jandraces only under improved management and nol under lhe low-input condilions characteristic oflhe farming systems (Galt 1989;Sirnmonds 1991;Ceccarelli 1994). The result is lhat many new varieties are released, but few, if any, are actual1y grown by farmers in difficult environmenls.• Poor farmers in diffieult environments tend to maintain genetic diversity in lhe form of different crops, different cultivars within lhe sarne crop, andlor heterogeneous cultivars in order to maximize adaptation over time (stability), ralher lhan adaptation over space (Binswanger and Barah 1980). Adaptation over time can be improved by breeding for specific adaptation, Le., by adapting cultivars lO their environment (in a broad sense) ralher lhan modif'ying the environmentto fit new cultivars (Ceccarelli 1996). Since diversity and heterogeneity serve to disperse or buffer lhe risk of total crop failure due to environmental variation, farmers may resist lhe idea of abandoning traditional cultivars.• When an appropriate cultivar is selected, adoption is much faster through non-market methods of seed distribution (Grisley 1993).• When fanners are involved in the selection process, their selection critería may be very different from those of the breeder (Hardon and de Boef 1993;Sperling, Loevinsohn, and Ntabomura 1993). Typical examples are crops used for animal feed, such as barley, where breeders often use grain yield as the sole selection criterion, while farmers are usually equally eoncerned with forage yield and the palatability ofboth grain and straw (Saade et al. 1993).Because the concepts of conventioual plant breeding are rarely questioned, the blame for the nonadoption ofnew cultivars is variously attributed to the ignoranee offarmers, the ineffieiency of extension services, and the lack of availability of seed of improved eultivars. Thus, an impressive . amollOt ofhuruan and financia! resources eontinue to be invested in a model that has not been, and most likely will not be, suecessful in llOfavorable agroc1imatie conditions.We base our approaeh on the following four assumptions:l. Farmers have aecumulated experienee and know their speeifie environment better than breeders. 2. Farmers operate aeeording lo speeifie needs and objeetives, whieh may not confonn to breeders' research objectives. 3. Farmers will determine the sucee•ss of a new variety, not breeders. 4. It is possib!e to integrate the seientific knowledge of breeders (in areas such as genetics, breeding, physiology, agronomy), as well as their broader experience aeross environments and theír ability to ereate and manipulate genetic variability, with the knowledge and experienee of farmers.The concepts ofthe projeet are not new. F anners have been participating to a greater or lesser extent in the pigeon-pea and pearl-millet programs of the International Crops Research Institute for the Semi-Arid Tropics (ICRlSAT), in the breeding program carried out by the Centro Internacional de Agricultura Tropical (CIAT) in Rwanda, and in a number of projeets implemented by ICARDA and national agricultural researeh systems (NARS) in Syria, Tunisia, Moroeeo, Eritrea, and Yemen (Cecearelli et al. 2000(Cecearelli et al. , 2001)). These projects, however, were only experiments in participatory plant breeding, since they did not incorporate the cyclieal nature ofplant breeding. The projeet presented here represents a step forward beeause it will transfer to farmers' fields various steps of a fonnal breeding programo Although we wiIl document farmers' selection eriteria, and whether seleetion criteria differ between men and women, through descriptive indigenous-knowledge studies, emphasis wiIl be given to (l) measuring and quantifying the effect of using fanners' selection eriteria on the performance and adoption of improved barley and (2) developing an approach tbat can be readily utilized by other NARS in deve!oping eountries.The geographical scope ofthis researeh is the dry areas of Jordan where drought stress is the major biotic stress and where barley IS often the only possible erop for resource-poor farrners. This area eneompasses a range of agroeeological conditions, a11 ofwhich may be considered as low-potential emironments for cereal production. Arable land is predominantly cultívated with barley landraces.In Jordan, the popularity ofbarley among fanners, despite the failure to improve yields, Iies in its use as feed for small rurnÍnants (sheep and goats); meat, milk, and milk products represent the prin-cipal source of income for rural households in marginal areas, Barley grain and straw constitute the most important source of feed fo! the small ruminants throughout much of the year when grazing is in short supply. In the driest areas, a grain yield ís obtained onJy one year in lO. And yet barley is sown every year, essentially as a forage crop whose value depends on biomass yield rather tban grain yield (figure ¡, table 1). Barley is mainly cultivated in tbe dryland areas tbat cover part of east Jordan. These areas are characterized by low rainfal!, irregular1y distributed, with most of the rain falling during the winter. Temperatures vary widely, witb frequent feost in early spring and in late spring, resulting in head sterilíty, low yields (table 2) and often in crop failure. The unpredictable envirorunental conditions, along with poor soils and crop management, have made it difficult to introduce new cultivars and obtain yield increases.Table 1. Planted Ares, Production, and Productivity ofBarley in Jordan (1990Jordan ( -1997) ) Nore: Data are !he means of84 barley lines during the 199611997 growing soaSoo.The long-tenn goal oflhe project is the improvement oflhe welfare ofsmall, resource-poor fanners by increasing and stabilizing barley and livestock productíon.The imrnediate objectives of the project are• to develop a participatory approach to breedíng barley for stress conditions• to improve barley varieties Ihat fulfill Ihe needs of poor fanners in Ihe marginal rainfed environrnents of Jordan• to enhance the rate of adoption of new varietíes through fanners' participation in selection and testing• to identify dífferences in seleetion eriteria used by different types of farmers (aceording to gender, enterprise mix, and other farm characteristics)At the end of the project we expect the following outputs:• documented and validated information on farmers' objeetives, know ledge, and field condilions• the performance and quality, under both farmers' and station conditions, of barley fines selected by farmers in their fields, compared with the performance and quality oflines selected on the experiment station using breeders' setection erítería• doeumentation of the selection eritería used by different types of farmers andlor different members offarm households• a number oflines selected and developed through this participatory breeding program multiplied by farmers and tested by neighboríng farmers• the importance of the interactions between selection erítería and selection envíronment assessed• incorporation of participatory approaches by the two national breeding prograrnsAl each ofthe locations included in the project area, cooperating farmers (\"host farmers\"), who will hos! breeding plots and make individual selections, will be recruited from the pool of participants in previous on-farm research and cooperatíve research programs in ongoing research-and-devetopment projects. A rapid-appraisal exercise will be conducted wíthin the agricultural cornmunity assocíated with each ofthe selected agroecologicallocations, and a group oflocal \"expert farmers\" wiU be identified and recruíted on the basis of reputatíon, key farming contacts, past performance, gender representation, producer and consumer categories, and se1f-selectíon. The expert farmer groups, together with the host farmers, wíll participate as key informants in the indigenous-knowledge study and will perform group selections from their respective host furmers' germplasm collectíons.Ibis component has several crucial outputs for developíng the partícipatory-breeding approach.First, there will be an enquíry into farmers' objectíves, reasons for producing barley, and different end-uses ofthe crop. This will include theírperceptíons ofthe dífficulties they experíence in reaching these objectíves. Household economic securíty and rísk considerations will also be considered in the context of production objectives and genotype evaluation.The índigenous-knowledge study will pro vide the information needed for the analysis of concepts 5uch as how farmers, both men and women, value various characteristics ofthe barley erop and how much they understand adaptatíon for specific environments and uses. The methodology for data collectíon and analysis will rely prímarily on formal ethnographíc techniques used in sociocultural anthropology, including participant observation, structured interviews, and taxonomic and componential analysis of labeled traits. As much as possible, badey characterístícs recognized by fanners will be classified hierarchically to enable selection procedures to be applied one afier the other aeeordíng to prioritíes reported by fanners. Indígenous methods for reeognízing desirable characteristies within populatíons ofbarley eultívars will be documented, and activities of fanners applying these methods will be recorded in detail.An important aspect ofthis component i5 the ídentíficatíon ofwomen's seleclíon eriteria, partícularly, but not only, al those locatíons where barley is u5ed for human consumption.Specific outputs for tbis component inelude the following:• evaluatíon of the innovatíve capacity of fanners and insíght into theír potentíal for direct participation ín formal breeding programs• lí518 of desirable characteristícs, prioritized and cross-referenced to environment and utilization• indigenous knowledge and perceptions of environment-genotype ínteractions in barley landraces• the theory, objectíves, and implementation ofthe participatory-breeding prograrn will be discussed thoroughly with the host fanners and expert farmer groups in order to obtain their input into the design of the breeding scheme, including selection procedures, such as the proper time for selection, how ofien selection is done, etc.This componen! represents the major empirical thrust ofthe project and will quantify the effects of the selection environment (experiment station vs. fanner's field), of who does the selection (breeder vs. farmer), and whether these effeets interact or vary from year to year.The traits that fanners select for, and the eriteria they use in their selection, will be recorded by the breeders and social scientists, and compared with objective measures of trai18 used by barley breeders, including the yíeld and quality of graín and straw.A common set oflines and populations (including the farmers' cultivars) will be grown on a typically well-managed experiment station field and on one fanner's field at each of six !ocations in Jordan under fanners' management practices (fertilízer use, rotations, date and method of sowing, land preparation, etc.). The locations will be as follows:Al-Mohay 60 km southeast ofK.arak and about 130 km south of Aroman, with an annual rainfull of about 1 3Q....1 50 mm Al-Muaqure Ramtha Khanasri RaMa Ghwer 55 km east of Amrnan, in the arid areas, with an annual rainfaIl of 150 mm 160 km north of Amrnan, with an annual rainfall of 250 mm 135 km north of Amrnan, with an annual rainfall of200 mm 140 km south of Amman, with an annual rainfall of 340 mm 160 km south of Aroman, with an annual rainfall of 280 mm By ineluding locations with less than 200 mm average annual raínfall, there will be opportunities to investigate the performance of breeding material in environments where barley is a forage crop rather than a grain erop. In addition, small graín-producing areas occur wíthin the < 200 mm zone. These are seasonally f100ded wadi f100rs (marrabs), where high graín yields are normal wíthín a generally arid environment. Because of theír ímportanee locally, and the uniqueness of the agroecosystem, these !ocations are included in the project.[n the project area, the majority of farmers still grow barley landraces ¡hat are heterogeneous populations composed of a large number of individual genotypes. Although the population buffering of such heterogeneous populations-and, hence, their role in reducing ¡he risk of crop failures-is well documented, we do no! know whether farmers perceive this type of diversity as importan! and jf this is the reason for the popularity of landraces. To gain information on this specific point, the genetic material will include high-yielding fixed or nearly fixed lines, segregation populations, and farmers' cultivars. The use ofbolh pure lines and heterogeneous populations will provide a means for testing the attitude of farmers towards heterogeneity, as opposed to the conventional breeders' propensity for homogeneity. The farmers' cultivars, which are likely to be different at each location, wíll be collected from each farmer during the harvest of the previous year, and all farmers' cultivars will be grown at each site. Selection will be conducted on the experiment station by breeders, and in each host farmer' s field, selection will be conducted by both the breeders and the host farmers, their spouses, andlor olher household members. Whenever possible, neighboring farmers wiJI also participa te in lhe selecnon process.The collaborating farm householders will make selections from theír fields. Following a group selection procedure similar to thatused by ICRISAT in Rajasthan (ICRISAT 1996:98-100), the expert farmer groups wíll be asked to select material from lhat grown by lheir host farmers, material lhat they think would be use fui for-them and olher farmers in lheír area. The selectíon wiIl be conducted in such a way as to reveal the criteria being used by lhe farmers and olhers when they make their choices. There will be detailed discussions regarding lhe cultivars selected and the eriteria used in selection. Farmers' observatíons, expected performance, and crop-management practices wíll be recorded.At lhe end ofthe frrst year, in addition to the breeders' se1ections from lhe experirnent stations, for each particípating farmer, the following groups of selected Iines wíll be available: 1. lines selected by lhe breeder 2. Iines selected by the farmer 3. Iines selected by other household members 4. lines selected by lhe farmer's neighbors In lhe second year, each host farmer wilI growall lhe Iines selected in hislher ficld in the fust year, regardless of who made lhe selection, Le., groups 1 to 4 aboye, as well as the lines selected by the breeder in lhe experiment station. The selections will be grown as one populatíon oflines without obvíous distinctions between the groups to avoid any possible bias in the second cycle of selection. AH lhe lines selected in lhe first year wíl1 also be grown on the experiment station in the sccond year to provide enough seed for lhe third year. Data on grain and straw yield will be collected at each host farmer' s field and at lhe experiment station. Response to selection will be evaluated using lhe farmer's cultivar as reference. In lhe second and trurd year, selection will be done, as in the first year-on the lines resulting from the first and second cycle of selection. Thus, during lhe second and third cycle (year) of selection, lhe farmers and lhe breeders wí11 be exposed to the material selected by each olher. By lhe third year, the project will have involved a total of36 households in lhe target area and will have simulated tbree cycles of selection of the sarue type of cyclical processes !hat take place in conventional breeding prograrns (figure 2).","tokenCount":"3507"} \ No newline at end of file diff --git a/data/part_3/5278913933.json b/data/part_3/5278913933.json new file mode 100644 index 0000000000000000000000000000000000000000..a58587b6ed76a1316dd1bcd0f773f6177c694a81 --- /dev/null +++ b/data/part_3/5278913933.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"03d0dda08e9130631b893eca218c073a","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/233cf75d-a658-419c-8049-95abbcaf2467/content","id":"613473898"},"keywords":["genomic selection","maize","drought","QTL","DH"],"sieverID":"910bc008-28f8-4232-93f7-ee19b4d18da4","pagecount":"12","content":"To increase genetic gain for tolerance to drought, we aimed to identify environmentally stable QTL in per se and testcross combination under well-watered (WW) and drought stressed (DS) conditions and evaluate the possible deployment of QTL using marker assisted and/or genomic selection (QTL/GS-MAS). A total of 169 doubled haploid lines derived from the cross between CML495 and LPSC7F64 and 190 testcrosses (tester CML494) were evaluated in a total of 11 treatment-by-population combinations under WW and DS conditions. In response to DS, grain yield (GY) and plant height (PHT) were reduced while time to anthesis and the anthesis silking interval (ASI) increased for both lines and hybrids. Forty-eight QTL were detected for a total of nine traits. The allele derived from CML495 generally increased trait values for anthesis, ASI, PHT, the normalized difference vegetative index (NDVI) and the green leaf area duration (GLAD; a composite trait of NDVI, PHT and senescence) while it reduced trait values for leaf rolling and senescence. The LOD scores for all detected QTL ranged from 2.0 to 7.2 explaining 4.4 to 19.4% of the observed phenotypic variance with R 2 ranging from 0 (GY, DS, lines) to 37.3% (PHT, WW, lines). Prediction accuracy of the model used for genomic selection was generally higher than phenotypic variance explained by the sum of QTL for individual traits indicative of the polygenic control of traits evaluated here. We therefore propose to use QTL-MAS in forward breeding to enrich the allelic frequency for a few desired traits with strong additive QTL in early selection cycles while GS-MAS could be used in more mature breeding programs to additionally capture alleles with smaller additive effects.Agriculture faces the challenge of increasing grain yield of major crops under climate scenarios with higher temperatures and more erratic precipitations as a result of anticipated climate change (Lobell et al., 2011). Climate change will have the strongest detrimental effects on crop production in tropical and subtropical environments since climate change is expected to have larger negative impact than in most other environments (Porter et al., 2014;Rosenzweig et al., 2014). Drought affects approximately 20% of the tropical and subtropical maize produced in developing countries in any given year (Heisey and Edmeades, 1999). Moreover, frequency and intensity of drought are projected to increase in the next decades (Li et al., 2009). Rates of genetic gain are below the ones needed to meet the projected demand in the next few decades in many countries in Sub-Saharan Africa, Central America and Asia (Ray et al., 2013). Under drought, genetic gain is limited by large genotype-byenvironment interaction and the complexity of the genetic basis of drought tolerance (Bartels and Sunkar, 2005;Trachsel et al., 2016). Development of maize tolerant to drought that also performs well in non-stressed conditions is essential to ensure food security in the future (Pennisi, 2008).In the past, secondary traits with strong genetic correlation with grain yield, high heritability, and cost-effective to measure have facilitated the selection in tropical breeding programs (Chapman and Edmeades, 1999;Betrán et al., 2003). Examples include anthesis silking interval (ASI), ears per plant, time to anthesis, leaf rolling, PHT, and senescence (Edmeades et al., 1999;Monneveux et al., 2006). More recently, NDVI measured during canopy development stages, as an indicator for early vigor was proposed as a secondary trait to be included in breeding for maize grain yield under both WW and DS conditions (Trachsel et al., 2016).Traditional marker-assisted selection using QTL-MAS has been another complementary tool to speed up and make selection more efficient in maize breeding programs (Ribaut and Ragot, 2007;Tuberosa and Salvi, 2009;Beyene et al., 2016). Moreover, several QTL have been identified for grain yield under WW conditions (Messmer et al., 2009(Messmer et al., , 2011) ) and drought stressed conditions (Hao et al., 2010;Almeida et al., 2013), for PHT and NDVI (Trachsel et al., 2016), stay green (Almeida et al., 2013) and root traits (Trachsel et al., 2009). However, identification of QTL that are constitutive across environments and populations is essential for use in marker-assisted selection (Bernier et al., 2008). As a result of genotype-by-environment interaction, genetic correlation among traits and QTL detected usually differ among environments (Bolanos and Edmeades, 1996;Tuberosa et al., 2002). Moreover, QTL detected for a trait usually differ among genetic background (Rong et al., 2007) and between inbred line per se and their testcross hybrids (Mei et al., 2005;Szalma et al., 2007).Many QTL studies carried out in the past have limited value for breeding because marker densities and genetic resolution were too low. Recently, however, genotyping-by-sequencing (GBS) has been proposed as an approach to increase the availability of molecular markers from ∼100 to thousands of SNP evenly distributed throughout the genome (Elshire et al., 2011;Poland et al., 2012). Thus, the confidence interval surrounding a QTL was reduced, allowing the development of genetic maps with high resolution and precise mapping of QTL.Marker-assisted selection based on genomic selection (GS-MAS) was highlighted as a new approach for maize breeding (Meuwissen et al., 2001). In GS-MAS, favorable individuals are selected based on genomic estimated breeding values (GEBVs).The major advantage of GS-MAS is that alleles with minor effects can be captured and used in selection (Meuwissen et al., 2001). Both QTL-MAS and GS-MAS require a high marker density in the discovery or training phase, respectively. In the deployment phase QTL-MAS only requires the use of markers flanking the target QTL (more for backcrosses with selection against the genome of the donor outside the area of the target QTL), while GS-MAS requires a higher number of markers adequately covering the entire genome resulting in higher genotyping cost for GS-MAS (Peng et al., 2014).Simulation and empirical studies indicate that GS-MAS outperforms QTL-MAS for complex traits controlled by many QTL with minor effects or low heritability (Bernardo and Yu, 2007;Mayor and Bernardo, 2009;Heffner et al., 2010;Guo et al., 2013). If adequately integrated in the breeding workflow GS-MAS can partially replace field testing and reduce line development time (Heffner et al., 2010), while QTL-MAS can be used to introgress favorable alleles into an elite background and for integration of (native) traits into a breeding pipeline (Lorenzana and Bernardo, 2009;Zhao et al., 2012;Peng et al., 2014).A combination of QTL-MAS and GS-MAS has also been suggested as an integration of knowledge on functional markers as either known causative mutations or known QTL associations with yet to be identified genes, for improved prediction (Zhao et al., 2012;Jonas and De Koning, 2016;Cao et al., 2017). These propositions suggest the importance of flexible GS as a method for introduction into breeding programs and combining it with QTL-MAS (Nakaya and Isobe, 2012). For both QTL-MAS and GS-MAS the success depends on excellent phenotypic characterization during the discovery or training phase, respectively.In an aim to better understand the genetic architecture of drought tolerance and to evaluate the suitability of QTLor GS-MAS for selection toward drought tolerance, we used genotyping-by-sequencing technology to detect QTL and to develop GS models for grain yield and secondary traits in a DH population in per se and testcross evaluations, under WW and DS conditions. The specific objectives of this study were to: (i) evaluate QTL consistency across per se and testcross evaluations under WW and DS conditions, and detect QTL that are constitutive across studies with related populations; (ii) compare how QTL mapping and GS are affected by population (line per se vs. testcrosses) and treatments (WW vs. DS) and strategize their deployment in a drought breeding program.A bi-parental DH line population, consisting of 169 genotypes and the testcross hybrids, consisting of 190 genotypes was evaluated. The DH population was derived from an F1 cross between drought tolerant lines, La Posta Sequia C7-F64-2-6-2-1-B-B (LPSC7F64), and an elite inbred line from CIMMYT, CML495 (Cairns et al., 2013). The first parental line is traced to the La Posta Sequia Population (LPS), a white dent, Tuxpeñorelated synthetic, well adapted to lowland tropics. Full sib recurrent selection was carried out under drought conditions from cycle 0 to cycle 7. The second parental line is a white flint line described as late-lowland with tolerance to rust, helminthosporium, good standability, belonging to heterotic group A. The lines were testcrossed to CML494 for the phenotypic evaluation.Each of the populations (i.e., hybrids and lines) was evaluated under well-watered (WW) and drought stressed (DS) conditions in experiments conducted in different locations in Mexico during winter cycles of 2013, 2014, and 2016 (Table 1). A total of 11 experiments were conducted in Iguala (Guerrero, Mexico; IG), Agua Fria (Puebla, Mexico; AF) and Tlatizapan (Morelos, Mexico; TL); three for hybrids-WW (IG2013, AF2016, TL2016), four for hybrids-DS (IG2013, TL2013, TL2014, TL2016), two for lines-WW (IG2013, TL2013) and two for lines-DS (IG2013, TL2013).For all the experiments, the design was an alpha-lattice (0, 1) replicated twice with incomplete blocks size of 5. Plots consisted of one row 4.5 m long at row spacing of 0.75 m. Plots were handseeded with two seeds per hill and thinned to one plant per hill (22 plants per plot; 6.6 plants/m 2 ) three weeks after planting.For the DS treatment, water deficit was induced by withholding irrigation 12-15 days (∼190 GDD) before flowering with the aim of reaching the permanent wilting point at flowering at 40 cm soil depth. In the case of severe drought, as indicated by an ASI above 5 d on trial average, irrigation was applied 7 d after completion of anthesis, while a second irrigation was applied 3 wk after completion of anthesis. In the case of moderate DS, only one irrigation was applied during the grain filling period, 2 wk after completion of anthesis. For the WW experiments, evapotranspirated water was fully compensated for through weekly irrigations. Soil moisture content was measured at 10, 20, 30, 40, 60, and 100 cm soil depth three times weekly using Delta-t PR2/6 soil moisture probes (Delta-T devices, Cambridge, United Kingdom) to schedule irrigations in the drought stress treatment. Fertilization, insecticides and herbicides were applied as needed. Fertilizer quantities applied at each location are reported in Table 1.Several phenotypic traits were measured in each plot throughout the growing season. Two, four, five, and six weeks after planting the NDVI was measured using an RT-505 Greenseeker (Trimble, Ukia, CA, USA). NDVI measurements were taken by running the sensor in the middle of each plot at a height of 80 cm above the canopy. NDVI was calculated per the following equation: R NIR -R Red /R NIR +R Red , where R NIR is the reflectance of near infrared wavelength, and R Red is the reflectance of red wavelength. The NDVI illustrates the part of red wavelength which is absorbed by the plant. At flowering, anthesis and silking dates were recorded when 50% of plants within a plot were shedding pollen and growing silks, respectively. The ASI was calculated as the difference between female and male flowering dates. Two, four and six weeks after flowering senescence was measured visually using a scale ranging from 1 (no senescence) to 9 (complete senescence) to approximate stay green (Trachsel et al., 2016). Leaf rolling was measured visually at flowering, and one and two weeks after flowering using a scale ranging from 1 (unrolled, turgid) to 5 (rolled, onion leaf). For NDVI, leaf rolling and senescence, the area under the curve was calculated by integrating a polynomial function of second degree fitted to individual measurements taken before (for NDVI) or after flowering (for senescence and leaf rolling). In this study, a new secondary trait indicative of early vigor, senescence and overall green leaf area and duration (GLAD) is proposed and evaluated. GLAD was calculated as: GLAD = (PHT x NDVI)/senescence were PHT is plant height at flowering and NDVI and senescence are area under the curve of four NDVI readings and three senescence scores as described above. The area under the curve (AUC) for NDVI and senescence was calculated by integrating a polynomial function of second degree fitted to individual measurements taken before (for NDVI) or after flowering (for senescence).After physiological maturity was reached, all ears of each plot were collected and shelled, grain moisture was recorded. Grain yield is reported at 12% moisture.The mixed effect linear model used for the analysis of phenotypic data measured in multilocation trials was:Where Y hmlk is the trait value of the h th genotype (h = 190 and 169 for hybrids and lines, respectively) for the l th location (hybrids-WW: l = 3; hybrids-DS: l = 4, lines-WW: I = 2; lines-DS: I = 2), the m th replication (m = 2); µ the overall mean, α h the main effect of the genotype, E ml the effect of the location, α hEml the genotype-by-location interaction, r m (E ml ) the replication within location effect and r m (E ml )δ k the effect of blocks within replicates within locations and the random error term e hmlk . All factors except µ were set as random. Best linear unbiased predictors (BLUPs) of genotypes, variance components, and broad sense heritability were obtained. Data for each populationby-treatment combination were analyzed separately. Analysis of the genotype-by-treatment (i.e., WW and DS) interactions was carried out separately for hybrids and lines. For that, terms for treatment and genotype-by-treatment interaction were added to the model described before. Location, genotype and treatment were set as fixed and the rest as random factors. Plant stand was used as a covariate for grain yield and NDVI calculations. Plots with less than 18 plants were removed from the analysis. Variance components were estimated by restricted maximum likelihood (REML) and heritability as the relationship between genetic and phenotypic variance, according to the formula:where σ 2 G is the genotypic variance, σ GxE 2 the genotype-byenvironment interaction variance, e the error term, l the number of environments and r the number of replications within environments.BLUPs for genotypes effects are shrinkage predictors obtained as: α = GˆZ'Vˆ− 1(y − 1µ) using matrix notation, where y is the vector of the response variable, Gˆthe matrix of variance covariance of the random effects, Z the design matrix for random effects in the model, Vˆestimated variance of y, 1 a vector of ones and µ the overall mean, the only fixed parameter in the model. The cor.test function in R was used to calculate correlations among BLUPs. Genetic correlations among traits were estimated with a method described previously (Cooper and Delacy, 1994).For all the maize lines tested in this study, leaf samples bulked from 12 plants of each line were used for DNA extraction with a Cetyltrimethylammonimum bromide (CTAB) procedure (CIMMYT, 2005). A genotyping-by-sequencing (GBS) protocol commonly used by the maize research community was applied at the Cornell University Biotechnology Resource Center in this study (Elshire et al., 2011;Wu et al., 2016). Briefly, the GBS libraries were constructed in 96-plex, and genomic DNA was digested with the restriction enzyme ApeK1. Each library was sequenced on a single lane of Illumina flow cell. SNP calling was performed using TASSEL 5.0 GBS Discovery Pipeline with B73 as the reference genome. Initially, 955,690 SNPs evenly distributed on maize chromosomes were called for each line; 955,120 of them were assigned to chromosomes 1-10, and 570 of them could not be anchored to any of the 10 maize chromosomes. A bin map was constructed by using 20,473 high quality filtered GBS SNPs, details on how to construct the linkage map were described previously (Cao et al., 2017). In brief, neighbor SNPs having high similarity haplotype information were clustered into one bin, and each bin was treated as single marker to construct the genetic map. The following steps were performed to reduce genotyping error and eliminate the low quality SNPs from the bin map: (1) DH lines with heterozygosity rate greater than 5% and/or missing rate greater than 20% were eliminated from further analysis; (2) unlinked SNPs were removed from further analysis, where the window size was 8, similarity rates of all the SNPs within each window were calculated to remove the unlinked SNPs, threshold of similarity rate was 95%; (3) the consecutive SNPs with high similarity rate, i.e., 95%, were merged into one bin; and (4) bins were treated as genetic markers to construct a genetic map. The genetic map was constructed with 191 bins in software QTL IciMapping Version 4.0 (www.isbreeding.net; Wang et al., 2014). The total genetic map length was 987.35 cM resulting in an average distance between markers of 5.15 cM.Genomic prediction was implemented in rrBLUP package (Endelman, 2011) in DH population. SNPs in the genetic map were used for genomic prediction. Details of the implementation of rrBLUP were described earlier (Zhao et al., 2012). A fivefold cross-validation scheme with 100 replications was used to generate the training and validation sets and assess the prediction accuracy. The average value of the correlations between the phenotype and the genomic estimated breeding values was defined as genomic prediction accuracy (r MG ).A population of DH lines was evaluated per se and in testcross combination under WW and DS conditions. Significant genotype-by-location interaction was detected when experiments were combined by population and irrigation treatment (i.e., hybrids-WW and hybrids-DS; lines-WW and lines-DS) for all traits, with exception of PHT for lines under DS (Table 2). For most traits, heritability of the combined analysis remained Grain yield for lines and hybrids was on average reduced by 63% under DS relative to WW (Table 2). Drought stress equally increased ASI (1.94 and 0.38 days for hybrids and lines, respectively), decreased PHT (26 and 10 cm for hybrids and lines, respectively) and delayed anthesis (1.8 and 2.2 days for hybrids and lines, respectively). Differences in NDVI between WW and DS before the onset of drought, can be explained by differences in environments as a result of unbalanced experimental data. Drought trials were all carried out in the winterseason (with lower temperatures compared to the summerseason), while the non-stressed trials were grown in both the summer and winterseason. Since the crop typically develops slower in winter and NDVI readings were taken in calendar days after planting, plants were on average less developed in Winter, relative to plants grown in trials carried out in both summer and winter, resulting in lower NDVI values.DS were measured at completely dry locations (∼900-1,100 masl) whereas additional WW treatments were included in locations with higher precipitations.Senescence, leaf rolling and GLAD were only recorded under DS conditions. Averaged across treatments, hybrids reached anthesis six days earlier, grew 101 cm taller and had 24% higher NDVI than lines. Leaf rolling, and GLAD were 30 and 177% higher in the hybrids than in the lines and senescence was 11% higher for the lines. The ASI did not differ among lines and hybrids (p > 0.05).Correlations among grain yield and secondary traits differed across populations and irrigation treatments (Table 3). Grain yield was moderately correlated to NDVI (r g = 0.84; r p = 0.53) and GLAD (r g = 0.70; r p = 0.49), for hybrids-WW and hybrids-DS, respectively. Grain yield correlated moderately to weakly with PHT, with highest correlation coefficients (r g = 0.67; r p = 0.54) for hybrids-WW. Correlations with anthesis, ASI, leaf rolling and senescence were weak or even non-significant for some trait-by-treatment combinations.Detected QTL for Grain Yield and Secondary Traits; Collocation in Bins 1.02, 1.03, and 7.04The analysis revealed a total of 48 significant QTL for nine traits evaluated (Table 4). They included 13 QTL detected in hybrids-WW, 12 in hybrids-DS, 12 in lines-WW and nine in lines-DS. Thirteen QTL were detected for PHT, eight for grain yield, seven for anthesis, six for senescence, four for ASI, three for GLAD and two each for leaf rolling, NDVI and DSS. In most cases, the allele derived from CML495 increased trait values for anthesis, ASI, PHT, NDVI, DSS, and GLAD, while it reduced trait values for DSS, leaf rolling and senescence. The LOD scores for all detected QTL ranged from 2.0 (grain yield, hybrids-DS) to 7.2 (grain yield, lines-WW) explaining 4.4 (grain yield, lines-WW) to 19.4% (grain yield, lines-WW) of the observed phenotypic variance. Only one constitutive QTL for grain yield was detected, which mapped to bin 8.08 for lines in WW and DS. The trait increasing allele was derived from LPSC7F64 in both cases. None of the 39 QTL detected for secondary traits overlapped for hybrid and line or across treatments. A collocation of QTL for grain yield (hybrids-WW), anthesis (lines-DS), PHT (hybrids-WW), NDVI (hybrids-WW), and GLAD (hybrids-DS) was detected in bin 1.03 (Table 4). The phenotypic variance explained by each QTL ranged from 4.8 (GLAD, hybrids-DS) to 13.8% (NDVI, hybrids-WW). The allele derived from CML495 delayed anthesis by 1.07 d, increased GLAD by 0.16, grain yield by 0.18 t/ha, NDVI by 0.13 and PHT by 2.89 cm. Another collocation was identified in bin 1.02, where QTL for DSS (hybrids), anthesis (hybrids-DS), PHT (hybrids-WW) and GLAD (hybrids-DS) were detected. The phenotypic variance explained by those QTL ranged from 4.7 (GLAD, hybrids-DS) to 10.9% (anthesis, hybrids-DS). The allele derived from CML495 delayed flowering by 0.26 d, increased GLAD by 0.16, PHT by 1.55 cm and DSS by 1.12%. Another collocation of QTL for PHT (hybrids-WW), leaf rolling (hybrids-DS) and senescence (hybrids-DS) detected in bin 7.04 is indicative of a beneficial effect of early vigor when stress occurs during the post flowering period. The allele derived from CML495 increased PHT and decreased leaf rolling and senescence.The positive effect of a short ASI on grain yield was confirmed by a collocation of repulsive QTL for ASI and grain yield in bin 4.08 (Table 4). A collocation of repulsive QTL for anthesis and grain yield in bin 4.10 is indicative of the contribution of this chromosomal region to drought escape by early flowering. The grain yield QTL in this bin had the largest phenotypic variance explained among all detected QTL in this study (19.4%), with the trait increasing allele derived from LPSC7F64.The variation (R 2 ) explained by all QTL for a single trait-byexperiment combination was moderate for grain yield (25.1%, lines-WW), PHT (37.3%, lines-WW) and senescence (25.2%, lines-DS), indicating that genetic control was well captured and is potentially usable in QTL-MAS (Table 5). Lower R 2 values for the rest of the trait-by-experiment combinations indicate that traits are controlled by many minor effect QTL and genotypeby-environment interactions are high, which are not suitable for QTL-MAS. The prediction accuracy of GS models was larger than the R 2 values for grain yield and secondary traits, for hybrids and lines both under WW and DS conditions; except for grain yield and ASI in lines-WW and for leaf rolling in lines-DS. The advantages of the GS-MAS over the QTL-MAS approach were larger under DS than under WW conditions for grain yield, anthesis and PHT as indicated in differences between R 2 (QTL-MAS) and prediction accuracies (GS-MAS); for instance, prediction accuracy of GS and R 2 values for grain yield were 16.9 vs. 0 and 22.3 vs. 0 for hybrids-DS and lines-DS, respectively. Moreover, the prediction accuracy of grain yield under WW was better than under DS (23.5 and 19.6 for the average of hybrids and lines under WW and DS, respectively) and the prediction of most of the secondary traits were better than for GY except for lines-WW. A similar trend was also observed for the secondary traits. A positive correlation was observed between the genomic prediction accuracy and trait heritability for hybrids-WW (R 2 = 0.83; p < 0.02, Figure 1). For the other treatmentby-population combinations the correlation between genomic prediction accuracy and trait heritability was low.The best ten hybrids for WW and DS conditions out-yielded the commercial check (DK357) and the trial mean by 12 and 13% under WW, and by 18 and 11% under DS conditions, respectively (Table 6). Although the genotype-by-water treatment interaction was significant (data not shown) three hybrids with outstanding yield potential and stability (i.e., good performance under WW and DS) were identified (Table 6). The hybrids (LPSC7F64/CML495)DH220/CML494, (LPSC7F64/CML495)DH290/CML494 and (LPSC7F64/ CML495)DH30/CML494, ranked 1st, 2nd, and 3rd under WW conditions, and 22nd, 18 th , and 13th, out of 190 under DS conditions, respectively. On average, the three hybrids with high yield potential and yield stability across environments out yielded the commercial check and the trial mean by 12 and 13% under WW and by 12 and 6% under DS, respectively.We created contrasting WW and DS conditions for the per se evaluation of DH lines and in testcross combination. The grain yield reduction of 63% under DS compared to WW conditions was similar to the ones reported for experiments following the same protocols, with a related hybrid population (Trachsel et al., 2016). Moderate to severe drought stress levels allowed us to detect QTL across experiments and treatments (i.e., hybrids-WW, hybrids-DS, lines-WW and lines-DS) and to identify lines and hybrids with good performance across treatments.Both PHT and NDVI were positively correlated with grain yield under WW and DS conditions, supporting their potential utility for indirect selection for improved grain yield under drought stress as suggested previously (Messmer et al., 2011;Trachsel et al., 2016). GLAD had large positive correlations with grain yield both for lines and hybrids (only measured under DS conditions). GLAD integrates information on different morpho-physiological traits related to grain yield (i.e., early and general vigor and senescence) and could be used to identify genotypes that better combine those traits. Since neither PHT nor senescence were correlated with grain yield for hybrids, it is likely that the positive correlation was caused by large NDVI.Beneficial Effects of Early Vigor and Escape on Grain Yield Evidenced in Bins 1.02, 1.03, and 7.04A collocation of QTL for anthesis (hybrids-DS), PHT (hybrids-WW), GLAD (hybrids-DS), and DSS (hybrids) is indicative of the importance of bin 1.02 for the genetic control of grain yield and early vigor. Detection of QTL for anthesis and for DSS in this region indicates that the physiological mechanism conveying grain yield under drought stressed conditions is drought escape achieved through an earlier flowering. The importance of this bin is further supported by collocations with QTL detected for anthesis (Salvi et al., 2011) and PHT (Schön et al., 1993) in other genetic backgrounds. Collocations of QTL were detected for PHT, NDVI and senescence, which are all components of GLAD, in the same bin (Trachsel et al., 2016). Two candidate genes potentially accounting for the detected QTL are ct2 (compact plant2) and cfr1 (coupling factor reduction1). The first gene is involved in CLAVATA signaling, which controls shoot meristem size and shoot growth (Bommert et al., 2013), while cfr1 affects chloroplast function and seedling vigor (Echt et al., 1987).A collocation of QTL for anthesis (lines-DS), GLAD (hybrids-DS), grain yield (hybrids-WW), PHT (hybrids-WW), and NDVI (hybrids-WW) was detected in bin 1.03, indicative of the importance of this bin for the genetic control of early and general vigor (i.e. NDVI and PHT) and grain yield. Candidate genes for the response related to this chromosome region are a set of genes related to chlorophyll fluorescence (hcf3,hcf31, hcf6) and leaf color (pg * -N484A, pg * -N484B, and pg * -N526C), which may relate to seedling vigor. TABLE 6 | Grain yield (t/ha) for the top 10 performing hybrids, the local check (DK-357) and the mean of all evaluated hybrids, under well-watered (WW) and drought stressed (DS) conditions, and grain yield for three hybrids with best combination of potential and grain yield stability, also under well-watered and drought stressed conditions. A collocation of QTL for PHT (hybrids-WW), leaf rolling (hybrids-DS) and senescence (hybrids-DS) detected in bin 7.04 may suggests that general vigor confers stress avoidance later in the season, since the QTL for PHT was in repulsion with the QTL for leaf rolling and senescence. While PHT reflects general shoot vigor, it may also indicate root vigor (Richner et al., 1996;Hammer et al., 2009;Grieder et al., 2013) as a result of allometric root-shoot relations. Shoot vigor indicative of a vigorous root system, would indirectly allow for greater water and nutrient uptake from deeper soil layers resulting in lower stress levels and reduced leaf rolling and senescence under drought stress. This hypothesis is supported by QTL previously detected for PHT (Sibov et al., 2003) and root architecture in this bin (Tuberosa et al., 2003;Trachsel et al., 2009;Cai et al., 2012). Potential candidate genes underlying the observed response are hcf101, hcf103, and hcf104, which are related to chlorophyll fluorescence conveying sufficient assimilates and plant vigor.Although a total of 48 QTL were detected for grain yield and secondary traits, none of them was consistently detected in hybrids and lines as a result of the low correlation found among lines and hybrids and across treatments as a result of genotype-by-environment interaction, epistasis and heterosis (Mei et al., 2005;Mihaljevic et al., 2005;Szalma et al., 2007;Hallauer et al., 2010). These results highlight the need to use the testcross' phenotype in mapping studies rather than lines' as done previously (Trachsel et al., 2009(Trachsel et al., , 2010)), when aiming to identify QTL to be deployed in hybrids. Only one QTL detected for grain yield in lines was constitutive across treatments. Since there was low correlation of grain yield among lines and hybrids, its usefulness in breeding programs is limited. No QTL for any other trait was detected across treatments, as observed previously (Edmeades et al., 1999). Nevertheless high correlations were found across treatments for anthesis (hybrids and lines) and for PHT (lines).One constitutive QTL was identified when QTL reported here were compared to results from another study evaluating the same population under nitrogen deficient conditions (DHpop1; Liu personal communication) and an advanced backcross population with a common parent (LPSC7F64; Trachsel et al., 2016) under DS and WW. A senescence QTL under drought (Trachsel et al., 2016) and nitrogen deficient conditions (Liu personal communication) was also detected in bin 4.05; only for lines-DS here, for two populations of hybrids under low N stress (Liu personal communication). These findings are in agreement with two QTL related to senescence detected in this bin by Belícuas et al. (2014) under rain-fed conditions. This QTL has great value for breeding as it could bring yield advantages under two common stresses occurring in tropics (i.e., drought and low soil nitrogen) through improved stay-green. Two candidate genes related to senescence have been reported in this bin. One is SWEET15a, which regulates sucrose translocation in the plant (Chen, 2014). The second is nnr1, which regulates nitrate reductase, a crucial enzyme in nitrite assimilation in plants (Rockel et al., 2002).In this study, the results showed that the prediction accuracy of grain yield under WW conditions was better than that under DS conditions. The prediction accuracy of the secondary traits were generally higher than the prediction accuracy of GY under almost all the conditions. However, a positive correlation was only observed between the genomic prediction accuracy and trait heritability for hybrids WW. Low correlation between genomic prediction accuracy and trait heritability was observed for all other treatment-by-population combinations. Since the training population was of the same size for all traits the lower prediction accuracy irrespective of the heritability could potentially be attributed to reduced phenotypic variation or large genotype-byenvironment interaction (Zhang et al., 2017). Since Combs and Bernardo (2013) additionally show that prediction accuracy may also be dependent on the genetic architecture of a specific trait it is conceivable that genetic and physiological mechanisms acting under stressed conditions are responsible for the observed lack of correlation between trait heritability and prediction accuracy.R 2 of QTL and Prediction Accuracy of GS Models for Grain Yield and Secondary Traits Prediction accuracy of GS-MAS was higher than the overall variance explained by all QTL for a trait (R 2 ) in QTL-MAS for grain yield as observed previously (Meuwissen et al., 2001;Bernardo and Yu, 2007;Lorenzana and Bernardo, 2009;Mayor and Bernardo, 2009;Heffner et al., 2010;Guo et al., 2012;Zhao et al., 2012). A similar pattern was observed for secondary traits (i.e., anthesis, PHT, ASI, NDVI, senescence, leaf rolling and GLAD). From a practical point of view, strong QTL remain important in QTL-MAS, as suggested by Heffner et al. (2010). While GS-MAS requires several hundred markers, only flanking markers of target QTL are needed in QTL-MAS. Detected QTL with beneficial effects on early vigor, drought escape, grain yield and stay-green, such as the ones detected in bins 1.02, 1.03, 7.04, and 4.05 could be used in forward breeding to enrich alleles for these traits in a breeding program or for line conversions, while GS-MAS could be used in more mature breeding programs to additionally capture alleles with smaller additive effects (Heffner et al., 2010;Cao et al., 2017). Ideally selection could be carried out for major and minor additive effects simultaneously by using major QTLs as fixed factors in GS-MAS as described by Bernardo (2014).To be commercially successful, a hybrid needs to perform well under non-stressed and stressed conditions. The fact that no hybrid reached the top ten under both WW and DS conditions is indicative of the difficulty to achieve high grain yield across environmental conditions due to potential physiological tradeoffs between optimal and stressed conditions. However, hybrids (LPSC7F64/CML495)DH220/CML494, (LPSC7F64/CML495)DH290/CML494 and (LPSC7F64/CML495)DH30/CML494 performed well under WW conditions (all of them in the top ten) and drought stressed conditions (all of them were within the best 22 out of 190). Their superior yield potential and stability was reflected by 12% higher grain yield relative to the commercial check (DK357) under both WW and DS conditions. Also, the hybrid (LPSC7F64/CML495)DH109/CML494, ranking 14th and 27th out of 190 under WW and DS conditions, respectively (data not shown) ranked fourth in a study where the same set of hybrids was grown under low nitrogen (Liu et al., personal communication). After further evaluations across sites, in combination with multiple testers, lines DH220, DH290 and DH30 could be released as CIMMYT maize lines for deployment in drought prone environments, while line DH190 could potentially be used in environments prone to drought and low nitrogen.","tokenCount":"5602"} \ No newline at end of file diff --git a/data/part_3/5295802512.json b/data/part_3/5295802512.json new file mode 100644 index 0000000000000000000000000000000000000000..bdb0136b4fc16303a6898dd720f21bad5055fe82 --- /dev/null +++ b/data/part_3/5295802512.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"bb7ed6a4ad368ec62622709a641f024f","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/f0215b1f-3d4e-4a6b-b36a-9711485bc810/retrieve","id":"-514999082"},"keywords":[],"sieverID":"11e4e573-449e-4f23-9a26-359ab88c2a64","pagecount":"13","content":"Improving the productivity of sheep and goats in pastoral production systems offers an opportunity for enhancing household incomes and building resilience within communities in the face of climate change. Practical equitable schemes with robust and weather-aware plans for propagating improved animals can help communities adapt to changing climates while sustainably managing and improving the productivity of their flocks. However, there is limited information on pastoralists' knowledge of anticipated climatic changes, adaptation options, and behavioral change practices they would need to adequately cope for the survival and management of their livestock genetic diversity. The existing capacities of national, and sub-national institutions and knowledge support systems also need to be enhanced to more equitably support the production and offtake of sheep and goats to enable better livelihoods for pastoral communities experiencing climatic shocks. To enable the scaling of practices and more sustainable use of the technologies and adapted methodologies for improving sheep and goat production in the pastoral systems, the project is using a Training of Trainers (ToT) approach targeting national, county, and private sector actors engaged in livestock production interventions in Baringo County. Through the ToT, it is anticipated that a larger number of communities will benefit from new knowledge and practices for improving the productivity and marketing of their livestock.The first ToT was held for 10 technical personnel from the Department of Agriculture, Livestock Development and Fisheries in Baringo County (Table 1). The ToT program introduced the planned community-based innovations and practices for climatesmart sheep and goat production under pastoral production systems through interactive learning sessions covering the following topics:• An impact pathway for best practices for selective breeding of improved sheep and goats in pastoral systems. • Developing a county profile around sheep and goat enterprises in pastoral communities • Engaging and integrating communities in planned interventions around their livestock resources • Collection and monitoring of livestock data in pastoral systems using digital tools. \"Best practices for selective breeding for improved livestock productivity\" Module 1:Enquire. 1  ICT-based application: \"Core Innovation Groups for Livestock Improvement Part 1: ENQUIRE\" https://srm.ilri.org/module1/.The facilitation team's unpacking of the impact pathway sparked significant interest among the training participants, leading them to outline the existing infrastructure and institutions supporting sheep and goat production in the county and to identify critical areas that required change. The information generated through this activity is presented in Table 2.1 Ojango, J.M.K., Oyieng, E., Milia, D., Audho, J., Kariuki, J. and Jakinda, S. -Livestock keepers require training on the ways of accessing, disseminating, and utilizing livestock market information. This enables more optimal offtake and sale of animals.-Slaughterhouses and butcheries need to be equipped with cold storage facilities such as deep freezers and cold stores.-Infrastructure in the main livestock markets needs to be repaired.Microfinance Hand in Hand iv.The Kenya Climate Smart Agriculture Project (KCSAP) v.Agriculture Sector Development Support Programme (ASDSP)These institutions are responsible for the formulation of policies and the provision of extension services to livestock keepers.Technical personnel within these institutions should be supported to train farmers on communitybased climate-smart production of sheep and goats.Stakeholders in sheep and goat production need to prioritize aspects of improving breeding and marketing systems to enable the livestock keepers to get better value from their livestock.The course participants also identified the specific actors involved in different nodes of sheep and goat enterprises and mapped them based on their roles (Table 3 and Figure 1). The discussion around this activity enabled the participants to identify gaps and areas requiring intervention and capacity development at different levels.The need for adopting and integrating community-based innovations was evident. Participants committed themselves to engaging with and supporting the project team when community interactions would begin in the next phase of the program. ","tokenCount":"612"} \ No newline at end of file diff --git a/data/part_3/5327407421.json b/data/part_3/5327407421.json new file mode 100644 index 0000000000000000000000000000000000000000..ad3b7f71d5d33d7f3abc6edf288e9bcaf871c2e7 --- /dev/null +++ b/data/part_3/5327407421.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"692294e60026c86ad9e97e83e7cd205c","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/c58eb308-8f9b-4dfc-b8d3-cd4911e084ca/retrieve","id":"-705113909"},"keywords":[],"sieverID":"8931b338-d2f7-4c48-9378-90672b052b78","pagecount":"28","content":"Tropical (CIAT) brinda soluciones científicas que abordan las crisis mundiales de malnutrición, cambio climático, pérdida de la biodiversidad y degradación ambiental.La Alianza se enfoca en el nexo entre agricultura, medio ambiente y nutrición. Trabajamos con socios locales, nacionales y multinacionales en África, Asia y América Latina y el Caribe, y con los sectores público y privado y la sociedad civil. Con colaboraciones novedosas, la Alianza genera evidencia e integra innovaciones para transformar los sistemas alimentarios y los paisajes a fin de sostener el planeta, impulsar la prosperidad y nutrir a las personas en medio de una crisis climática.La Alianza es parte de CGIAR, el mayor consorcio mundial en investigación e innovación agrícola para un futuro sin hambre, dedicado a reducir la pobreza, contribuir a la seguridad alimentaria y nutricional y mejorar los recursos naturales.Este trabajo fue realizado como parte del CGIAR Research Program on Livestock. Este programa ofrece soluciones basadas en investigación para ayudar a los pequeños productores en la transición hacia medios de vida sostenibles y resilientes con el medio ambiente para alimentar las futuras generaciones. El objetivo es aumentar la productividad y rentabilidad de los sistemas agroalimentarios de ganado de manera sostenible, generando una mayor disponibilidad de productos agropecuarios a un mundo en desarrollo. Los autores agradecen a los donantes por sus contribuciones.Los esquemas de Pagos por Servicios Ambientales (PSA) han venido ganando terreno en la búsqueda por contrarrestar las crecientes tasas de deforestación y los factores que amenazan el medio ambiente. En los países en desarrollo, los PSA se perciben como una forma de reducir las restricciones de liquidez en el corto plazo y, consecuentemente, pueden influir positivamente en la decisión de participación y en la adopción de tecnologías (Zbinden y Lee, 2004).Más ampliamente, los esquemas PSA también contribuyen a la sostenibilidad desde múltiples ópticas pues hacen referencia al reconocimiento del derecho de las personas a guiar su propio desarrollo, buscar la integridad ambiental, mejorar la resiliencia económica, apoyar la seguridad alimentaria y encarnar los principios de equidad y justicia (FAO, 2011). Los esquemas PSA entonces, pueden utilizarse como un punto de referencia para evaluar qué tan eficiente es el apoyo brindado hacia un modelo de desarrollo sostenible. Aquellos que adoptan los PSA se embarcan en un viaje que requiere pasos bien pensados, y para los tomadores de decisiones y creadores de políticas, dicho viaje debe iniciar buscando que los futuros mecanismos se orienten hacia tres pilares: costo-eficiencia, sostenibilidad financiera y cumplimiento de los objetivos ambientales (Jack et al., 2008).Para ser costo-eficiente, un PSA debe lograr el mismo nivel de beneficios ambientales al menor costo al compararlo con otras posibilidades. La sostenibilidad financiera hace referencia a la permanencia del esquema en el tiempo, incluso cuando éste ha terminado. Mientras que, para cumplir con los objetivos ambientales, es importante que un PSA sea equitativo en su acceso y ejecución (Pappagallo, 2018). Para ello, los PSA parten del establecimiento de un valor monetario en los recursos naturales en el que diversos mecanismos de mercado contribuyen a proteger los servicios del ecosistema.La eficacia de los PSA, en especial en relación a las hectáreas de bosque conservadas y recursos económicos ejecutados, han sido analizadas por varias disciplinas y dimensiones (Locatelli, Rojas y Salinas, 2007). Pagiola et al. (2002) han identificado un numero de factores clave que son críticos para el éxito de estos incentivos dentro de los cuales se encuentra el aseguramiento de la demanda efectiva, la flexibilidad del programa, el aseguramiento de la participación de los pequeños productores, y el cubrimiento de los costos. Sin embargo, estudios han identificado la complejidad que puede tener el análisis de éstos y más factores en contextos dinámicos y en condiciones de pobreza, situación que realza la importancia de investigar a profundidad, no sólo las dimensiones sino también las relaciones entre ellas.Bajo este propósito, el presente documento pretende brindar una serie de reflexiones y recomendaciones para el diseño de incentivos enfocados en el manejo sostenible de predios y pastos; esto es, para el establecimiento de sistemas silvopastoriles dentro de sus propios contextos, coyunturas y dinámicas. En esta investigación se sugiere una aproximación basada en el trabajo de Pappagallo et al. (2018) quienes se enmarcan en el análisis de los factores previos al establecimiento de esquemas PSA. Estos son: el contexto político y económico (p. ej. la gobernabilidad, las políticas, los regímenes de tierras), el contexto social (los roles de género y la juventud), el ambiental (condiciones de los predios, servicios eco sistémicos que se pueden ofrecer), el análisis de los riesgos y desafíos (p. ej. la transparencia de las estructuras, la sostenibilidad financiera), las soluciones complementarias y la identificación de compradores, vendedores, intermediarios e instituciones que pueden influir en el diseño de un esquema PSA, entre otras.Es importante tener en cuenta que las dimensiones descritas forman el punto de partida, pero no son exhaustivas, y por lo tanto es responsabilidad del investigador realizar ajustes de acuerdo a los contextos particulares de cada región de análisis. Más bien, se trata de establecer un inicio para que los futuros esquemas PSA dirijan sus esfuerzos y ajusten su análisis conforme avanzan en su identificación. Los esquemas PSA se entienden aquí como una estrategia económica para promover sistemas que contribuyan a la preservación del medio ambiente. Aunque la definición de un esquema PSA resulta ser el centro del debate actual por su poco ajuste a la realidad, se asume aquí la versión más conocida: Wunder (2006) define dichos esquemas como una transacción voluntaria donde el aumento, mantenimiento o provisión de un servicio ambiental se reconoce económicamente por al menos un comprador de ese servicio a uno o varios proveedores una vez se haya generado el servicio o se hayan adoptado usos de la tierra o prácticas para producir dicho servicio.Bajo el enfoque de implementar esquemas PSA para el establecimiento de sistemas silvopastoriles, la estructura del presente documento se define así: en primer lugar, se presenta el marco de las dimensiones de análisis y a continuación se remarca la importancia de cada una. Dichas dimensiones se van definiendo en forma de caminos o fases y van acompañadas de preguntas que deben realizarse los investigadores interesados en ahondar en dichas cuestiones. Finalmente, se presentan recomendaciones encaminadas a contribuir en la implementación de esquemas PSA.Este trabajo requiere que el investigador cuente con competencias específicas como la comprensión de los contextos locales, el conocimiento técnico para entender los retos y oportunidades que brinda un esquema PSA, así como las dinámicas que se pueden presentar en cada una de las etapas del monitoreo y la documentación derivada de la provisión del servicio. Igualmente, debe tener la capacidad de observar los factores de análisis incluso a escalas reducidas (Pappagallo et al., 2018).El investigador debe tener entendimiento acerca de la implementación de esquemas PSA en países en desarrollo. Aquí se proponen las siguientes lecturas como recomendaciones antes de sumergirse en la investigación: Operationalizing PES for pastoralists in rangeland Settings (Pappagallo et al., 2018)  Payments for ecosystem services: getting started (Waage et al., 2018)  Payments for environmental services and the poor: Concepts and preliminary evidence (Wunder, 2008).  Designing payments for ecosystem services: lessons from previous experience with incentive-based mechanisms (Jack et al., 2008).  Paying for Environmental Services: An Analysis of Participation in Costa Rica's PSA program (Zbinden e al., 2005).  Implementación de sistemas silvopastoriles y el pago de servicios ambientales en Esparza, Costa Rica: una herramienta para la adaptación al cambio climático en fincas ganaderas (Casasola et al., 2009).  Farmers value on-farm ecosystem services as important, but what are the impediments to participation in PES schemes? (Page y Bellotti, 2015).Para la revisión de la literatura, las investigaciones se han basado en tres niveles: en primer lugar, una revisión bajo tres líneas: a) definiciones sobre los PSA; b) experiencias de la implementación de los PSA c) análisis de cada una de las dimensiones abordadas. Para la realización de entrevistas, talleres y grupos focales se recomienda establecer lazos con a) partes interesadas y b) productores objeto de intervención.En países latinoamericanos como Colombia, Nicaragua y Costa Rica se han presentado avances en la implementación de esquemas PSA para Sistemas Silvopastoriles con proyectos como \"enfoques silvopastoriles para el manejo de ecosistemas\" 1 . Para el caso colombiano existe evidencia más reciente a través del proyecto \"Ganadería Colombiana Sostenible\" 2 , de manera que es posible obtener información específica del contexto a través de fuentes secundarias. No obstante, se puede presentar la necesidad de obtener información específica con fuentes primarias a través de entrevistas con actores encargados de implementar los proyectos.En este propósito, deben documentarse los hallazgos encontrados en las entrevistas, las transcripciones, así como los apuntes que se hayan realizado, buscando que los futuros facilitadores puedan construir sus propios resultados del estudio.La figura 1 muestra las dimensiones propuestas por Pappagallo et al. (2018) para entender la información relevante en la construcción de un esquema PSA. Se trata de un marco general (más no exhaustivo) del abordaje de un esquema PSA. La construcción de un marco de referencia debe ir orientado a lograr la efectividad ambiental, la sostenibilidad financiera y los beneficios sociales de los esquemas PSA, pero también debe garantizar que el servicio eco sistémico tenga continuidad una vez haya finalizado la provisión del incentivo.La conservación de un ecosistema a través de un incentivo debe perdurar incluso cuando dicho incentivo se detiene. Para que esto pase es importante establecer, a priori, las condiciones en las que se establece dicho incentivo, así como los elementos de la realidad que permiten su continuidad. Una primera precondición debe ser entender cómo el establecimiento de un incentivo temporal puede afectar la provisión o el cuidado de un ecosistema.También es importante determinar si existen condiciones para el establecimiento de un esquema PSA de acuerdo a sus conceptos; ¿Existen compradores y vendedores del servicio eco sistémico a ofrecer? ¿Existen actores interesados y compromiso por parte de éstos? ¿Los pagos estarían condicionados a la entrega de los beneficios eco sistémicos obtenidos? ¿Los actores beneficiados realizan el pago directamente a los proveedores del servicio o existe un esquema de intermediarios legalmente reconocido? ¿El hecho de asegurar determinado ecosistema implica la pérdida o degradación de otro ecosistema?Figura 1. Diseño de Esquemas de pagos por servicios ambientalesComo ya se ha dicho, es preciso evaluar la existencia de condiciones que permitan introducir esquemas de PSA. A través de su revisión, FAO (2011) identifica que a pesar de que los esquemas PSA tengan una estructura predominantemente económica, ellos también se encuentran orientados a contribuir a las dimensiones ecológicas, sociales y culturales, las cuales presentan oportunidades y brechas en su implementación. Por ejemplo, al analizar los factores sociales y culturales que motivan la participación de los PSA es posible elaborar un consenso social mucho más cohesivo, el cual mejorará la cooperación dentro de la comunidad. A su vez, los análisis costo-beneficio permitirán identificar las áreas con alta provisión de servicios eco sistémicos y las áreas que presentan riesgos.Los marcos legales juegan un rol importante en el desarrollo de los esquemas PSA pues ellos proveen los instrumentos para asegurar un adecuado sistema de gobernanza (Bracer et al., 2007). Asimismo, la falta de un marco legal apropiado tiene el potencial de obstruir la implementación de los esquemas PSA. Contrario a esto, existe la noción de que un entorno legal propicio puede estimular un uso más eficiente de los recursos financieros y promover la integración de diferentes actividades relacionadas con los PSA.Examinar las condiciones que habilitan un esquema PSA es uno de los elementos más importantes en la creación de estas iniciativas. De acuerdo a Jack et al. (2008), el análisis de los contextos políticos también debe examinarse a la luz de los tres pilares antes mencionados: efectividad ambiental, costoefectividad y la búsqueda de la equidad (Figura 2). A su vez, los marcos legales deben estar armonizados entre sí; es decir, los esquemas deben enmarcarse dentro de los marcos legales en todos los niveles (local, nacional e internacional) (Figura 3). Es importante que los PSA tengan una asignación clara de los derechos de los predios, las propiedades y el uso de la tierra; los marcos legales deben definir quién o quiénes son elegibles para participar, las formas de financiación, así como la orientación de estos esquemas. El investigador debe describir los lineamientos en materia legislativa.Ahora bien, generar un diagnóstico sobre la legislación en relación con el funcionamiento de los esquemas PSA es también importante para conocer qué ajustes deben realizarse en aras de optimizar su funcionamiento. De aquí la importancia de alimentarse de las experiencias previas. Para esto, es preciso ahondar en las oportunidades y desventajas de la legislación en términos de efectividad de los esquemas PSA. Lo que se observa a nivel general es que las políticas ambientales consisten en la creación de controles y castigos para desalentar las prácticas y comportamientos dañinos con el medio ambiente, pero no incentivan o refuerzan las actitudes positivas hacia un comportamiento proactivo (FAO, 2011).Por ejemplo, la mayoría de las políticas de conservación estuvieron basadas en la idea básica de separar a la población de su entorno ambiental. Amplias áreas de las altas montañas y laderas de los Andes tropicales fueron declarados como áreas protegidas para la conservación de la biodiversidad y de los servicios proporcionados por los ecosistemas locales, frecuentemente sin considerar la existencia de derechos de propiedad y/o uso por parte de las poblaciones rurales que habitaban estas áreas (Llambí y Lindemann, 2013).Figura 2. Factores a examinar en el diseño de una Política para PSA. Fuente: (Bracer et al., 2007). Así, aunque no es necesario que en la regulación de las constituciones nacionales se haga referencia a los esquemas PSA, si es importante que se reconozca el valor de la naturaleza y los ecosistemas, lo cual, constituye una plataforma para promover los PSA. Al reconocer la importancia de los servicios eco sistémicos se presenta la oportunidad para que el desarrollo político y jurídico se oriente hacia la conservación de los ecosistemas y, consecuentemente, hacia los diversos mecanismos que contribuyen en dicho objetivo. Por el contrario, el papel del Estado en las constituciones en cuanto al cuidado de los servicios eco sistémicos puede obstaculizar las iniciativas privadas de los PSA, razón por la cual es importante generar recomendaciones.Ahora, es importante que el investigador revise si existen normas de PSA específicas para un ecosistema o para la provisión de un bien ambiental determinado, pues es así como se pueden elaborar iniciativas que se articulen hacia el bien priorizado en la legislación. Ahora bien, los PSA pueden desagregarse por el tipo de creación: privados, públicos o mixtos y es importante analizar la legislación para estos esquemas. Gobernanza Describir los arreglos de gobernanza ambiental es de particular relevancia ya que dentro de éstos se enmarca la gestión de los recursos naturales bajo el contexto de los servicios ambientales. Es por esto que es importante entender cómo funcionan los marcos normativos de política pública, los marcos institucionales -formales e informales-y los actores que propician la instrumentación y participación de los PSA (Flores et al., 2018).En los países en desarrollo, a menudo se observan debilidades e incoherencias en los marcos legales y entre los roles de las instituciones, de manera que pueden constituir impedimentos para el éxito de dichos esquemas. Para minimizar estos atenuantes, es importante definir quiénes son los actores que pueden comprar los servicios eco sistémicos, así como aquellos que los ofrecen. Por ejemplo, en Latinoamérica es común encontrar a organizaciones como The Nature Conservancy, al banco mundial y el Fondo Mundial como las instituciones con más incidencia en la elaboración y ejecución de estos esquemas (Flores et al., 2018).Tabla 1. Tipos de esquemas PSA de acuerdo a su esquema de gobernanza Por el lado de los proveedores, hay que profundizar en los arreglos de gobernanza ambiental en torno a los PSA; se trata de un primer paso para determinar el accionar de los actores de base (comunidades locales). Por ejemplo, en contextos con amplio involucramiento de organizaciones de base -como grupos de campesinos y comunidades indígenas-, dichas iniciativas han resultado más favorables que aquellas experiencias impuestas de arriba abajo, en relación a los beneficios socioeconómicos y ambientales (Muradian y Rival, 2013). Figura 4. Preguntas guía para la identificación de los sistemas de gobernanza en un PSA.A pesar del potencial que presentan los atributos sociales y culturales para impulsar los esquemas PSA, éstos a menudo no son tenidos en cuenta en la etapa del diseño. En general, ¿Cómo es la comunicación entre instituciones relacionadas con los PSA? ¿Cuáles son los cambios en curso y las tendencias esperadas en los sistemas de tenencia de tierras? ¿Cuáles son los desafíos esperados de integrar los esquemas de PSA a las actuales prácticas de gobernanza?¿Qué instituciones nacionales e internacionales son relevantes para la gobernanza local de los predios el desarrollo de PSA estará determinado por el contexto en el que está surgiendo. Dentro de este contexto, se necesitarán esfuerzos para satisfacer las necesidades de los vendedores y usuarios de servicios eco sistémicos de bajos ingresos.Sin un esfuerzo dedicado, el PSA pasará por alto a la población de bajos ingresos y a las poblaciones minoritarias. Por lo tanto, las oportunidades deben desarrollarse, fomentarse y controlarse cuidadosamente para garantizar que las personas más necesitadas obtengan los beneficios. Pero pese a la necesidad de mejorar los ingresos de la población objetivo, es poco probable que los participantes en PSA se involucren únicamente por razones económicas (Page y Bellotti, 2015); de hecho, la participación en PSA rara vez es rentable en comparación con los usos alternativos de la tierra (FAO, 2011;Jindall y Kerr, 2007). Es por esto que es importante estudiar el contexto social pues ofrecer beneficios no financieros como el desarrollo de capacidades, y la búsqueda de la igualdad y equidad puede ser fundamental para la participación y el compromiso de los interesados más allá de los programas, y para ello, es necesario saber cuáles son los incentivos que les interesan.Por otro lado, los esquemas PSA se orientan a crear actitudes positivas y estimular comportamientos proactivos hacia el desarrollo y la utilización de soluciones amigables con el medio ambiente (FAO, 2011). En esta dimensión, el objetivo es asegurar que las dinámicas sociales puedan promover el mantenimiento de los sistemas silvopastoriles y las buenas prácticas en los predios para obtener como resultado final un servicio eco sistémico. De ahí la importancia para el investigador de plantear preguntas que le permitan establecer un camino para la continuidad de los servicios eco sistémicos aún después de terminado el incentivo. Es decir, evaluar el contexto social debe permitir crear un set de herramientas para continuar la motivación y las capacidades de los productores que implementaron las tecnologías y las prácticas de conservación.Conocer y examinar las motivaciones, las prácticas y los valores de la población ganadera para saber cómo redirigirlas surge como un elemento principal. El investigador debe preguntarse entonces por los valores culturales, los incentivos, así como la existencia de relaciones entre éstos últimos y los productores. Debe identificar las relaciones sociales entre actores interesados y las dinámicas de género pues así podrá brindar un diagnóstico más matizado y completo de las dinámicas sociales en los territorios de intervención.Figura 5. Preguntas guía para la identificación del contexto social en territorios de intervención.El uso de redes existentes puede proporcionar una vía adecuada para dirigirse a individuos y comunidades que son candidatos apropiados para la participación. Sin embargo, los esquemas de PSA deben conocer a las personas y las comunidades fuera de los marcos sociales e institucionales establecidos, y quienes pueden ser los custodios de los activos ecológicos que son cruciales para el éxito del proyecto. Dado que la búsqueda de la adicionalidad se considera un componente clave de los PSA, involucrar a terceros puede ayudar a lograr ganancias ecológicas que de otro modo no habrían ocurrido sin incentivos financieros. Al diseñar un proyecto PSA, se deben tener en cuenta las necesidades de todo el ecosistema. La implementación de un proyecto no debe ir en contravía de otro servicio eco sistémico.Por ejemplo, los proyectos de secuestro de carbono mal diseñados podrían tener un impacto negativo tanto en la cuenca como en la biodiversidad si conducen a la generación de monocultivos a gran escala (Waage et al., 2008).En Colombia, Costa Rica, Guatemala y Nicaragua, se han elaborado programas de PSA para la ganadería en los que se han combinado las estrategias de conservación con las de la búsqueda de aumentos en la producción y diversificación de mercados a través de sistemas silvopastoriles que combinan arboles con pastos (Casasola et al., 2009). Lo que el investigador debe buscar, es tratar de establecer zonas agrícolas y agropecuarias caracterizadas por la fragmentación de hábitats naturales, y que a su vez tengan potencial de servir como corredores biológicos para reconectar los hábitats remanentes. Los PSA resultan más exitosos cuando se aplican en contextos locales y específicos, mientras que a medida que aumentan su diámetro de acción, su capacidad de eficiencia se difumina, razón por la cual es importante tener una zona bien delimitada.Es conveniente concentrar los PSA hacia lugares que puedan producir una mayor efectividad en la provisión del servicio ambiental. Por ejemplo, se pueden dirigir a zonas donde existe una alta tendencia de deforestación por ganadería, o en sitios donde el cambio del uso del suelo tenga más efectos sobre la provisión de los recursos hídricos. Es importante entonces correlacionar los usos del suelo y las condiciones socioeconómicas con las externalidades de la producción agropecuaria.¿Qué servicios eco sistémicos pueden ser redirigidos en los esquemas PSA para sistemas silvopastoriles?¿Existen tendencias o amenazas de deforestación en las zonas donde se ubicará el incentivo?¿Cuáles son las amenazas medioambientales que enfrentan los pastizales en la región?Antes de invertir en un acuerdo de PSA, los encargados de realizar la planificación del proyecto, no solo deben realizar una evaluación de riesgos para comprender si estos problemas u otros son relevantes para un sitio y contexto específicos, sino también deben examinar las situaciones en las que los acuerdos de PSA pueden tener más impacto y, consecuentemente, presentar más probabilidades de éxito.Existen incentivos a corto plazo para las prácticas insostenibles en territorios forestales y agrícolas. Éstos pueden reducir el capital natural y limitar las opciones para el desarrollo futuro, condiciones entendidas como riesgos que afectan la efectividad de los esquemas (Waage et al., 2008). Por su parte, la introducción de los esquemas PSA son la puerta de entrada de oportunidades hacia nuevos incentivos para la gestión sostenible: los pagos regulares a su vez podrían promover la adopción de prácticas agrícolas sostenibles en el largo plazo, e incluso la conservación de la base de recursos al proporcionar una fuente confiable de ingresos suplementarios, así como un empleo adicional en la comunidad. Un pago modesto, entregado de manera confiable durante muchos años, puede en ciertos contextos proporcionar un aumento significativo en los ingresos netos, y es a su vez un mecanismo para adoptar una gestión sostenible de la tierra.Los PSA reconocen el papel de los administradores de predios que manejan criterios de sostenibilidad, razón por la cual contribuyen a fortalecer la posición de las áreas rurales en relación a otras negociaciones basadas en recursos. La clave es considerar cuidadosamente los beneficios por los cuales se interesaría una comunidad, un grupo de vendedores y/o vendedores individuales de servicios eco sistémicos. En el corto plazo, algunos de los beneficios que los proveedores pueden encontrar no se limitan al aumento de los ingresos; también pueden percibir mayores interacciones con intermediarios dentro de los esquemas PSA, lo cual les brinda mayor competitividad gracias a las experiencias con actividades comerciales externas (Waage et al., 2008). Asimismo, se espera un incremento en el conocimiento del manejo de prácticas agrícolas sostenibles a través de la asistencia técnica asociada a los acuerdos PSA. En el largo plazo, los servicios eco sistémicos presentarán mejor resiliencia, así como mayor potencial para aumentar la productividad dadas las mejoras en la calidad de la tierra y en los servicios del ecosistema.¿De qué manera los vendedores podrán monitorear los servicios eco sistémicos que se proveen por sus pagos? ¿Hay compatibilidad entre los valores culturales de la población y el esquema PSA?Pero a pesar de los posibles beneficios, el investigador debe tener en cuenta que los esquemas PSA no son la solución de todos los problemas. Las iniciativas PSA no son aplicables a todos los contextos y no solucionan completamente la situación económica de las familias o comunidades. Por el contrario, puede aumentar la pérdida de empleos a causa de una deficiente gestión de las tierras (Waage et al., 2008). Dentro de los riesgos que se pueden encontrar es la carencia de la capacidad institucional o la falta de transparencia en los territorios abordados, pues limita la confianza de los compradores de los servicios eco sistémicos; el investigador debe indagar sobre qué tan fiables son las instituciones de control, así como los mecanismos para realizar las transacciones y para hacer cumplir los acuerdos.Ahora bien, el hecho de que los esquemas PSA se focalicen en mejorar las condiciones monetarias de poblaciones con bajos recursos, no necesariamente garantizará mejoras en la equidad (Pappagallo et al., 2018). El diseño de un esquema PSA debe, además, estar focalizado en empoderar grupos marginalizados como mujeres y poblaciones indígenas. Sin embargo, esta no es la única condición; los incentivos a las minorías no garantizarán resultados equitativos en aspectos como la tenencia de tierra, lo cual, puede ser un riesgo para la efectividad de los PSA en el futuro por los desequilibrios que se pueden generar.Dado que en muchos casos los PSA buscan insertar las actividades agropecuarias con los mercados, indagar sobre la estructura de los mismos deviene como recurso útil para evitar riesgos. La asimetría de la información entre actores puede ocasionar la repartición de los ingresos netos de forma injusta desalentando así a los proveedores de los servicios, de manera que es preciso indagar sobre los mecanismos para evitar distorsiones. Identificando estrategias PSATodo esquema PSA involucra tres grupos distintos de actores: compradores, vendedores e intermediarios. Cada uno de estos grupos puede estar compuesto por individuos, organizaciones, e incluso gobiernos. Examinar las motivaciones de estos grupos, conocer los roles e identificar antagonismos y cooperaciones entre actores es un recurso importante para el diseño de un esquema PSA para sistemas silvopastoriles. Asimismo, es necesario abordar la fuerza de las relaciones y conocer cómo puede afectar los esquemas PSA.Dentro de las personas o instituciones que se pueden incluir dentro de éstos grupos se encuentran los usuarios de los servicios eco sistémicos, grupos o asociaciones de agricultores, gobiernos locales, empresas de servicios públicos, corporaciones multinacionales y hasta los gobiernos nacionales y ciudades que desean la provisión de productos responsables con el medio ambiente (Figura 6).Figura 6. Actores que intervienen en un esquema PSA. Fuente: Bracer et al, (2007) Figura 7. Preguntas guía para esclarecer las relaciones entre actores.A medida que los contextos ambientales, socioeconómicos y políticos cambien, las señales creadas por los mecanismos basados en incentivos también cambiarán (Jack et al., 2007). Los posibles cambios futuros deben tenerse en cuenta al diseñar políticas de PSA porque estos cambios dinámicos en el contexto pueden alterar el desempeño de una política, modificando el rendimiento de la sostenibilidad financiera, la costo-eficiencia y la equidad.Por ejemplo, los PSA son instrumentos para vincular a los productores agrícolas en las formas sostenibles de producción, pero la articulación de los productores a mercados que recompensan sus esfuerzos en sostenibilidad implica una reducción de su dependencia de los PSA tradicionales; esto es, se puede presentar una tensión entre el aumento de la productividad y la conservación pues el costo de oportunidad del incentivo aumenta por lo cual intervenir tierra adicional es más atractivo que el PSA propuesto (Kosoy et al., 2007;Phalan et al., 2016;Vélez, 2017). Otro ejemplo es el de los vendedores del servicio con restricciones al crédito: si obtienen un pago en efectivo por cuidar una parcela, se obtienen los ingresos necesarios para comenzar un uso perjudicial para el medio ambiente en otra (Jack et al., 2007). Así, no sólo se afecta la costo-eficiencia del esquema sino también los objetivos ambientales del mismo.Es por esto que es importante tener en cuenta esta variable en los ingresos de los productores y producir ajustes conforme las dinámicas observadas. Los controles a esta situación pueden ir desde la zonificación y delimitación de los usos de la tierra, el desarrollo de tecnologías agrícolas y de asistencia en zonas geográficas específicas. Asimismo, se propone la creación de esquemas de certificación ambiental y la utilización de instrumentos económicos como los impuestos sobre la tierra, y pagos directos hacia tecnologías que pueden incentivar la intensificación de los cultivos y pastos (Phalan et al., 2016).Figura 8. Preguntas guía para identificar posibles dinámicas en un esquema PSA.Esta fase del proyecto indicará si el acuerdo está logrando los objetivos propuestos. Además, proveerá información a los vendedores sobre cómo mejorar la provisión de los servicios eco sistémicos (Waage et al., 2008). De acuerdo a Blanco et al. (2008), los PSA implementados en Colombia presentan deficiencias en la fase de monitoreo y evaluación. La mayoría de los casos no pueden documentar el impacto en términos del cambio o mejoría del servicio ambiental pagado, situación que, como se documentó, constituye un riesgo para la futura financiación de los proyectos PSA.¿Qué cambios en los comportamientos se pueden esperar después de implementado el PSA?? ¿Cómo afecta el aumento de los ingresos las dinámicas de los proveedores?¿Qué mecanismos se pueden utilizar a nivel local para contrarrestar las posibles externalidades de un esquema PSA?Estos autores afirman que sólo el proyecto de PSA para la adopción de sistemas silvopastoriles \"Enfoques silvopastoriles integrados para el manejo del ecosistema en Colombia\" llevado a cabo en la cuenca media del Río La Vieja, ha podido documentar el efecto del incentivo a partir de una línea base de predios y cuantifica los cambios generados en la captura de CO2 y la mejora de la biodiversidad (ver Zapata et al., 2007). Los demás proyectos documentan el monitoreo en términos de gestión como son las hectáreas reforestadas, los proyectos financiados, el número de beneficiarios entre otros.En este punto es importante que los ejecutores del proyecto definan a los proveedores el servicio ambiental que se proveerá y posteriormente establecer directrices para la medición del progreso obtenido. Dado que existe complementariedad entre servicios eco sistémicos, también es importante definir qué otros servicios pueden verse beneficiados y medirlos igualmente (servicios secundarios). Entre más objetiva sea la definición del servicio y el indicador de medición, más fácil será determinar el cambio de nivel en la provisión del servicio. Por ejemplo, examinar el efecto del establecimiento de sistemas silvopastoriles, no sólo desde las áreas bajo este sistema, sino también desde la disminución de la frontera agrícola, la conservación de la biodiversidad (aparición del cucarrón estercolero) y hasta la mejora de los recursos hídricos (cambios en los flujos de agua, parámetros de calidad del agua, entre otros).El establecimiento de la línea base debe iniciar con la aplicación de una encuesta socioeconómica en cada uno de los predios, acompañadas de visitas a las fincas junto con los propietarios realizando recorridos de campo con GPS. Adicionalmente, se deben tomar imágenes satelitales de alta resolución para identificar el tamaño de las fincas, los usos de la tierra y el área dedicada a cada uno de ellos. Los servicios secundarios también deben ser medidos y con base en ellos se deben realizar proyecciones de mejoras en los mismos y criterios de evaluación.Monitoreo y Evaluación?¿Es posible establecer indicadores indirectos (p. ej. reducción en el uso de pesticidas)?¿Los participantes se encuentran satisfechos con los parámetros que serán monitoreados?El lector habrá observado que las dimensiones se traslapan entre sí: una situación descrita en una sección puede afectar otra dimensión, tanto de manera positiva como negativa, y con diferentes escalas de magnitud. Es por esto que la construcción de un esquema PSA requiere de un vínculo estrecho entre múltiples disciplinas capaces de observar cada dimensión, tanto por separado, como por su interacción con las demás. Visualizar las posibles coyunturas derivadas del contexto y sus interacciones con la implementación es un requerimiento imperativo en las capacidades de un investigador.Es importante recalcar que este protocolo es indicativo, de manera que los investigadores y ejecutores de un proyecto PSA deben estar abiertos a nuevas situaciones o dimensiones que se puedan presentar. A pesar del incremento de estudios sobre los PSA en Latinoamérica y el mundo, aún es necesario incrementar los esfuerzos hacia la provisión de evidencia empírica para obtener una comprensión más clara de cómo diseñar programas de PSA para abordar de manera eficiente y efectiva la protección de cuencas hidrográficas, paisajes, pastos y biodiversidad.","tokenCount":"5402"} \ No newline at end of file diff --git a/data/part_3/5336056591.json b/data/part_3/5336056591.json new file mode 100644 index 0000000000000000000000000000000000000000..6ee1f6218361f7a1b1e8738aea94fb2a90520352 --- /dev/null +++ b/data/part_3/5336056591.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"f9bfb08f51f1f180f799ba799cb0e7a7","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/c79c1836-d156-4944-89d9-8975036b3796/content","id":"-789941095"},"keywords":["bread wheat","genotyping-by-sequencing","genetic diversity","EigenGWAS","selection signatures","gene annotation"],"sieverID":"53459fce-c8d9-4274-8b2e-7aa10b5d1328","pagecount":"17","content":"Synthetic hexaploid wheats and their derived advanced lines were subject to empirical selection in developing genetically superior cultivars. To investigate genetic diversity, patterns of nucleotide diversity, population structure, and selection signatures during wheat breeding, we tested 422 wheat accessions, including 145 synthetic-derived wheats, 128 spring wheat cultivars, and 149 advanced breeding lines from Pakistan. A total of 18,589 high-quality GBS-SNPs were identified that were distributed across the A (40%), B (49%), and D (11%) genomes. Values of population diversity parameters were estimated across chromosomes and genomes. Genome-wide average values of genetic diversity and polymorphic information content were estimated to be 0.30 and 0.25, respectively. Neighbor-joining (NJ) tree, principal component analysis (PCA), and kinship analyses revealed that synthetic-derived wheats and advanced breeding lines were genetically diverse. The 422 accessions were not separated into distinct groups by NJ analysis and confirmed using the PCA. This conclusion was validated with both relative kinship and Rogers' genetic distance analyses. EigenGWAS analysis revealed that 32 unique genome regions had undergone selection. We found that 50% of the selected regions were located in the B-genome, 29% in the D-genome, and 21% in the A-genome. Previously known functional genes or QTL were found within the selection regions associated with phenology-related traits such as vernalization, adaptability, disease resistance, and yield-related traits. The selection signatures identified in the present investigation will be useful for understanding the targets of modern wheat breeding in Pakistan.Bread wheat (Triticum aestivum, also called common wheat) is one of the most important staple cereal crops that feed more than 35% of the world's population (Paux et al., 2008). Bread wheat is an allohexaploid species (2n = 6x = 42, AABBDD genomes) that arose ∼8,000-10,000 years ago in Fertile Crescent (Kihara, 1944;McFadden, 1944;McFadden and Sear, 1946) by hybridizations between the tetraploid emmer wheat (Triticum turgidum, 2n = 4x = 28; AABB) and diploid wild goatgrass (Aegilops tauschii, 2n = 14; DD).Its large and complex hexaploid genome of approximate 16 Gigabases, had hindered genomic analysis in this species (Chapman et al., 2015;Appels et al., 2018). Genomic variations in wheat are mainly driven by multiple factors such as polyploidization events, domestication, spread to new geographical regions from origin sites, gene flow, and postdomestication selection or breeding (Tanno and Willcox, 2006;Luo et al., 2007;Cavanagh et al., 2013;Choulet et al., 2014;Zhou et al., 2018).Approximately seven decades ago, semi-dwarf spring wheat varieties from Mexico resulted in a breakthrough in Pakistan, India, and other parts of the world (Dowswell, 1989). In subsequent years, improvements in agronomic practices and conventional breeding methods have contributed to a radical increase in cereal crop production, including wheat, which played a crucial role in food security. Consequently, crop improvement activities might have resulted in the loss of genetic diversity (Reif et al., 2005), which could be due to a founder effect associated with a restricted ancestral base. It is now estimated that further increase in the harvest index needs innovations in breeding and germplasm resources. Wild relatives of wheat offer great potential to increase allelic diversity for multiple traits, including grain yield, nutritional quality, and adaptability in stressed environments (Rasheed et al., 2018). Synthetic hexaploid wheats are one of the proven resources to restore lost genetic diversity and introduce untapped genetic variations in elite germplasm (Rasheed et al., 2018). Synthetic hexaploid wheats and their advanced derivatives developed in Pakistan have been reported to have better agronomic performance than non-synthetic wheat (Afzal et al., 2017(Afzal et al., , 2019)). Afzal et al. (2019) evaluated the genetic diversity and population structure of 171 synthetic hexaploid derivatives and 69 bread wheat cultivars from Pakistan using 90 K SNP array. They reported that synthetic derivatives have noticeable differences from bread wheat for genetic diversity patterns, genetic population structure, and haplotype blocks. Also, synthetic derivatives were more genetically diverse as compared to bread wheat cultivars. In another study, a diversity panel comprised of 213 accessions, including synthetic-derived wheats and elite bread wheat cultivars was evaluated using allelic variations of 87 functional genes (Khalid et al., 2019). They observed that synthetic derivatives and bread wheat lines could be separated into two groups. To date, many synthetic derivatives have been used as potential parents to improve the agronomic characteristics of elite cultivars.During the process of domestication, natural selection, and human-mediated selection, crops have experienced intensive selection for better yield, quality, stress, adaptation, and stress resistance (Yamasaki et al., 2007;Cavanagh et al., 2013;He et al., 2019). Molecular evidence of selection remains in the patterns of genetic variations and selected regions within cultivated genomes. Genes and/or genetic variations within selected regions are always associated with agriculturally important traits and reflect the main driving forces for genome-wide divergence at the population level (Cavanagh et al., 2013;Zhou et al., 2018). In addition, Hyten et al. (2006) indicated that a relatively small number of loci impose phenotypic improvement on modern cultivars in wheat breeding while a large proportion of the genome remains unchanged. Thus, insights into genetic variations and identification of loci under selection during crop improvement can provide valuable guidelines, opportunities, and breeding targets for future breeding programs (Morrell et al., 2012;Cavanagh et al., 2013). Although classical forward genetics approaches (e.g., linkage mapping and genome-wide association mapping) effectively detect causal variants related to specific traits, they are limited to detecting genetic variations associated with domestication and improvement (Morrell et al., 2012;Ramey et al., 2013).In population genetics, eigenvectors derived from genetic data have extensively been used to quantify the genetic differences across populations and to infer evolutionary history (Patterson et al., 2006;Reich et al., 2009). By combining the statistical framework of genome-wide association studies (GWAS) with eigenvector decomposition, Chen et al. (2016) proposed a method called EigenGWAS (genome-wide association study with eigenvector decomposition), which identifies loci under selection without a requirement for discrete populations (Chen et al., 2016;Li J. et al., 2019). Conceptually, the EigenGWAS statistical framework is similar to conventional GWAS methods, except that the phenotype is substituted with PCA's eigenvector to capture cryptic relationships of the studied population. EigenGWAS has been successfully deployed to identify genomic regions that had undergone selection in recent studies on humans (Chen et al., 2016), pig (Tang et al., 2020), chicken (Zhao et al., 2018), bird (Bosse et al., 2017), insect (You et al., 2020), wheat (Afzal et al., 2019;Liu et al., 2019), maize (Li J. et al., 2019(Li J. et al., , 2020)), rice (Ma et al., 2016), and barley (Li Z. et al., 2020). These studies have identified genomic regions under selection enriched for genes associated with biologically important traits.To date, a few studies have reported the patterns of genomic variations and identification of genomic loci that had undergone selection in Pakistan wheat germplasm (Afzal et al., 2019;Liu et al., 2019). Therefore, the impact of selective breeding on genomic variations and selection signatures remained poorly understood in Pakistan wheat breeding germplasm. In this study, we used a panel of 422 wheat accessions, including cultivars, advanced lines, and synthetic-derived wheats using GBS technology. Our objectives in this study were to (1) investigate the genetic diversity and population structure of this panel; (2) identify the genomic regions that were directionally selected, and (3) associate the selective regions with reported QTL/gene known to influence traits of breeding interest.A panel of 422 hexaploid wheat accessions was examined for molecular characterization analyses. Seed samples were obtained from the Plant Genetic Resources Institute, National Agricultural Research Center, Islamabad, Pakistan. Based on the given samples information, the 422 wheat accessions (hereafter referred to as the whole population, WP) were classified into three subpopulations, including 145 synthetic-derived wheats (SYN-DER, developed by crossing primary synthetic hexaploid wheats with advanced lines and elite cultivars of Pakistan and CIMMYT), 128 commercially released Pakistan cultivars (PC, i.e., genotypes that are unique and stable, and have been selected for agronomic traits), and 149 advanced lines (AL, i.e., group of lines developed for better agronomic characteristics). Detailed information on the 422 wheat accessions can be found in Supplementary Table S1.Five viable seeds of each accession tested in this study were planted in 5 cm diameter plots. Genomic DNA was isolated and purified from fresh leaf samples of 2-week-old seedlings using the cetyltrimethyl ammonium bromide (CTAB) method (Doyle and Doyle, 1987). DNA of all the samples was sent to the Cornell University Biotechnology Resource Center for GBS genotyping. The GBS method was performed according to the protocol proposed by Poland et al. (2012) using a two-enzyme (MspI-PstI) approach. A GBS analysis pipeline in TASSEL version 5.0 (Trait Analysis by aSSociation Evolution and Linkage) was used for SNP calling (Bradbury et al., 2007). A total of 133,738,39 GBS-SNPs were retrieved based on the \"Chinese Spring\" reference genome v.1.0 from International Wheat Genome Sequencing Consortium (IWGSC). Identified GBS-SNPs were named as \"chromosome number_physical position, that is, 1A_555961328. More than 50% of the GBS-SNPs were removed from the dataset due to their missing rate being higher than 50%. Unmapped GBS-SNPs were also excluded from the dataset. The remaining SNPs were imputed using Beagle version 5.1 with default parameters (Browning et al., 2018). Then, 18,589 GBS-SNPs with heterozygosity <0.2 and minor allele frequency (MAF) exceeding 0.05 were retained using TASSEL version 5.0 (Bradbury et al., 2007) for the follow-up analysis.PowerMarker version 3.25 software (Liu and Muse, 2005) was used to calculate population genomics parameters, including MAF, heterozygosity (He), genetic diversity (GD), and polymorphism information content (PIC) for the WP and each of the three predefined subpopulations (i.e., SYN-DER, PC, and AL). To investigate the patterns of nucleotide variations, transition (Ts) to transversion (Tv) mutation statistics, Tajima's D tests, and nucleotide diversity (π) were evaluated using VCFtools version 0.1.15 (Danecek et al., 2011). The population structure of the WP was assessed using NJ-tree and PCA. NJ analysis was conducted using TASSEL version 5.0, while PCA analysis was performed using an R \"SNPrelate\" package (Zheng et al., 2012). TASSEL version 5.0 (Bradbury et al., 2007) was used to perform linkage disequilibrium (LD) among pairs of SNPs of each subpopulation by estimating squared allele frequency correlation (r 2 ) of alleles. The LD decays within WP and three subpopulations were evaluated, as was the distance among pairs of SNPs with non-linear regression using a custom R script.The relative kinship analysis implemented in the GAPIT (Genomic Association and Prediction Integrated Tool) R package (Lipka et al., 2012) was performed to reveal the genetic identity (or genetic relationship) between any two given accessions. Negative kinship coefficient values between two accessions, indicating the existence of a weaker genetic relationship than would be expected between two random accessions, were set to zero. Roger's genetic distance was estimated using BIO-R software version 2.0 (Pacheco et al., 2016). Negative genetic distance values were replaced by zero. The analysis of molecular variance (AMOVA) and pairwise F ST analyses were performed using Arlequin 3.5 software to estimate genetic differences between predefined subpopulations (Excoffier et al., 2005).EigenGWAS implemented in the GEAR software (freely available from https://github.com/gc5k/GEAR), was used to identify genes/QTL that underlying population genetic differences and to detect candidate regions of the wheat genome under selection in any genetic population (Chen et al., 2016). The EigenGWAS is a single marker regression method based on the PCA. It is similar to a typical GWAS method; however, the phenotype is replaced with an individual-level eigenvector (EV) derived from the genotypic data. Briefly, EigenGWAS involved three steps: first, 18,589 high-quality GBS-SNPs were used to generate the genomic relationship matrix for WP; second, the first 10 eigenvalues and their corresponding eigenvectors (i.e., EV1-EV10) were calculated; and third, marker effects were estimated by regressing each GBS-SNP for a selected eigenvector from the second step. More detailed instructions can be found on the \"GEAR\" software website (https://github.com/gc5k/GEAR/wiki/ EigenGWAS). To exclude the effect of genetic drift (Devlin and Roeder, 1999), the p was adjusted using a genomic control factor (λ GC ), denoted as P GC , and was used to identify genomic regions under selection. To determine the threshold of significance of genomic regions under directional selection, the first EV was reshuffled 1,000 times to simulate the null distribution. The 95th quantile of the 1,000 most significant P GC was calculated using 1,000 permutations to determine the cutoff. After log 10 (p) transformation, 5.0 was applied for -log 10 (P GC ) of EigenGWAS analyses in all 10 EVs to declare as regions under selection.To exclude the strong effect of LD, significant SNP loci within 5 Mb both up-and downstream based on the LD level of the WP were merged as potential selected regions. Functional annotations of the target GBS-SNPs were performed using SnpEff software (Cingolani et al., 2012). The wheat IWGSC RefSeq Annotation v1.0 as a \"ggf3\" file format was downloaded from the EnsemblPlants database at https://plants.ensembl.org/. The PANTHER Overrepresentation Test (release 20210224) using Gene Ontology (GO) database (release 2021/05/01) using Triticum aestivum database as a reference list. GO analysis included biological process, molecular function, and cellular component. The raw p < 0.01 was set as the threshold to declare the significant differential expression. A total of 18,589 high-quality GBS-SNPs were well distributed across the genome in the current diversity panel (Table 1). The GBS-SNPs covered a physical distance of 14,053.03 megabase (Mb), with an average density of 1.26 Mb per SNP. The number of GBS-SNPs identified were 7,423 (40%), 9,035 (49%), and 2,131 (11%) in A, B, and D genomes, respectively (Table 1). Among genomes, the highest and lowest number of GBS-SNPs were recorded on chromosomes 2B (1575 SNPs) and 4D (128 SNPs), respectively. The marker density for the Dgenome (0.53 Mb per SNPs) was lower than that for the A-(1.51) and B-(1.74) genomes (Table 1). Chromosomewise marker density varied from 0.25 (4D) to 2.05 (7A and 7B). Chromosome sizes ranged from 473.05 Mb (6D) to 829.74 Mb (3B).The genetic diversity parameters including MAF, He, GD, and PIC were calculated using 18,859 GBS-SNPs for the WP and each of the three predefined subpopulations per chromosome in each genome of the panel. The frequency distribution of GBS-SNPs for MAF, He, GD, and PIC is presented in Figure 1. The details of GBS-SNPs per chromosome and across genomes are presented for values of MAF, He, GD, and PIC for WP and subpopulations (Supplementary Table S2). For the WP, as expected the MAF value across genomes ranged from 0.05 to 0.5 with an average of 0.21. As expected, the subpopulations still contained GBS-SNPs with MAF ranging from 0 to 0.05 (Figure 1A). It suggests that some of the common alleles in the WP were rare (MAF <0.05) in the subpopulations. The PC subpopulation had a higher number of rare GBS-SNPs than the other two subpopulations (i.e., SYN-DER and AL). The numbers of GBS-SNPs with MAF ranged from 0 to 0.05 were 2,015, 2,513, and 1,034 in SYN-DER, PC, and AL subpopulations, respectively (Figure 1A). Viewing the WP, rates of GBS-SNP heterozygosity varied from 0 to 1.99, with an average of 0.019 (Figure 1B). The averaged heterozygosity rate for subpopulations was 0.010 (SYN-DER), 0.036 (PC), and 0.012 (AL) (Supplementary Table S2). The GD values in A, B, and D genomes were 0.319, 0.312, and 0.263, respectively (Supplementary Table S2). At the subpopulation level, SYN-DER (0.294) and AL (0.294) had the highest GD while PC (0.281) had the lowest GD (Supplementary Table S2). The average PIC values varied from 0.09 to 0.375, with an average of 0.245 in the WP (Figure 1D and Supplementary Table S2). The numbers of GBS-SNPs with PIC values ranging from 0.2 to 0.4 were 12,301 (66%), 12,056 (65%), and 12,977 (70%) for SYN-DER, PC, and AL, respectively (Figure 1D).Two types of GBS-SNPs were determined according to nucleotide substitution analysis: (1) transitions (A/G and C/T) and ( 2) transversions (A/T, A/C, G/T, and C/G). Transition-type SNPs (73.24%) were more frequent than the transversions (26.76%), and transition/transversion (Ts/Tv) ratio was 2.73 (Table 2). The C/T transition type (36.80%) had the highest frequency, while the A/T transversion type (3.67%) had the lowest frequency among all six SNP types of nucleotide substitution (Table 2). The frequencies were almost similar between A/C and G/T. To better understand the patterns of nucleotide variations within a population, we also evaluated the genome-wide nucleotide diversity (also known as π) and Tajima's D statistics based on 18,589 high-quality GBS-SNPs in the WP and among three subpopulations (Figure 2). The mean nucleotide diversity across windows for the WP was estimated at 8.28E-07 (Supplementary Table S3). Nucleotide diversity was high in the telomeric regions than in the pericentromeric regions of all 21 chromosomes (Figure 2A). Furthermore, among the three genomes, D-genome had the lowest nucleotide diversity π and Tajima's D statistics than the A-and B-genomes (Figure 2). The AL (8.32E-07) subpopulation showed the highest nucleotide diversity, followed by SYN-DER (8.12E-07) and PC (7.93E-07) Supplementary Table S3). The average Tajima's D statistics across windows was positive (i.e., 1.42) for the WP (Figure 2B and Supplementary Table S3). On the other hand, the average Tajima's D statistics in SYN-DER, AL, and PC were 1.13, 1.21, and 1.04, respectively. The mean Tajima's D values were positive for the WP and all subpopulations (Supplementary Table S3), reflecting populations may have gone through balancing selection.To investigate possible population structure and genetic relationships among the 422 wheat accessions, NJ-tree, PCA, and kinship analyses were conducted (Figure 3). Based on the NJtree analysis, we found that the three subpopulations (SYN-DER, PC, and AL) were separated with some admixture (Figure 3A). The AL and SYN-DER were more scattered over PC-1, while PC were more separated along the PC-2. We also inferred the genetic structure and relatedness among the WP by PCA analysis (Figure 3B). In PCA, the first and second principal components explained 9.12 and 4.97% of the total variation, respectively. The weak population structure was detected by both NJ-tree and PCA in the diversity panel, as revealed by Figures 3A,B. The SYN-DER and AL subpopulations were relatively more scattered than the PC subpopulation, indicating that there exists broad genetic divergence in the present collection (Figure 3B). A low level of population structure was also supported by the VanRaden kinship analysis (Figure 3C), which was in accordance with NJtree and PCA analyses. The kinship coefficient between pairs of 422 accessions ranged from 0.00 to 3.42 (Figure 3C).To gain further insights into genetic relationships, we calculated the frequency distribution of kinship coefficients and genetic distances for the WP and the three subpopulations (Supplementary Tables S4, S5). Kinship coefficients near zero indicate no relationship, while those near 2.0 indicate a closer relationship (Supplementary Table S4). For the WP, 60% of the kinship coefficients were equal to 0, 39% varied between 0.01 and 0.8, and the remaining 1% fell between 1.2 and 3.4 (Supplementary Figure S1A). The proportion of kinship coefficients equal to 0 in SYN-DER, PC, and AL were 65, 63, and 60%, respectively (Supplementary Figure S1A). The pairwise genetic distances among the 422 accessions varied from 0 to 0.68 (Supplementary Figure S1B and Supplementary Table S5), with an average of 0.53. The genetic distance between pairs of accessions fell in the range of 0.50 to 0.70 were 82.23% of the WP, 90.06% of the SYN-DER, 90.06% of the PC, and 86.57% of the AL (Supplementary Figure S1B). Most accessions had an estimate between 0.50 and 0.60, regardless of the subpopulations.Genetic differentiation of predefined subpopulations (i.e., SYN-DER, PC and AL) was assessed using AMOVA analysis (Table 3). AMOVA results showed that 3.41% of the total variation was attributable to the differences among subpopulations, whereas 90.74% was within subpopulations (Table 3). Furthermore, pairwise F ST analysis was computed to investigate subpopulation divergences and presented in Table 4. The F ST coefficient among subpopulations varied from 0.0492 to 0.075. The F ST coefficients showed that the divergence between the SYN-DER and AL (0.0492) was lowest, while the divergence between PC and AL was highest (0.075). Results suggest a low level of genetic differences and in accordance with the NJ-tree and PCA analyses.The summary statistics results for each chromosome in each genome of LD between adjacent GBS-SNPs were computed in the three subpopulations and the WP (Supplementary Table S6). The average r 2 values ranged from 0.06 (5D) to 0.33 (4B). The average r 2 for WP was found to be 0.19. The averaged r 2 reached the lowest in the AL subpopulation (0.06), and the highest in the AL subpopulation (0.35) (Supplementary Table S6). The averaged r 2 was decreased with an increase in distances of the genome for all the subpopulations, suggesting that the probability of LD was low between widely separated SNP pairs (Figure 4 and Supplementary Figure S2). The LD decays at 8.52, 5.79, 8.34, and 6.25 Mb for SYN-DER, PC, AL, and WP at r 2 of 0.1, respectively (Figure 4 and Supplementary Figure S2).To identify genomic regions that have undergone directional selection (the so-called \"selection signature\") during wheat improvement, EigenGWAS was conducted based on positive and negative coordinates of the 422 wheat accessions from Pakistan on the corresponding EV, and their selection differentiations were quantified by F ST (Table 5). The average genetic relatedness among 422 Pakistan wheat accessions was −0.0046, suggesting that the effective sample size of the WP was 218.60. The effective number of genome segments was 14.33. The largest eigenvalue was 74.45, while the 10th eigenvalue was 15.61 (Supplementary Table S7). The genomic inflation factor, namely, the λ GC computed from EigenGWAS, which is commonly used in adjusting population stratification for GWAS ranged from 29.98 to 7.20 (Supplementary Table S7). To facilitate the comparisons, EigenGWAS and F ST analyses were performed on the WP, and two results were drawn as the Miami plot for each of the 10 EVs (Figure 5). Generally, the peaks from -log 10 (P GC ) and F ST fairly mirrored each other, indicating reasonable grouping as defined by F ST . Overall, EigenGWAS detected selection signatures on all 21 chromosomes (Figure 5 and Supplementary Table S8), while 83 significant GBS-SNPs were identified on 6 of the 10 EVs. To exclude the effect of LD, significant GBS-SNPs overlapping with each other were merged within the 5 Mb genomic window, and highly significant GBS-SNP [i.e., SNP with largest -log 10 (P GC )] within one region was used to declare as representative. In total, therefore, 38 selection regions were identified and are shown in Table 5. The total length of the selection regions was 418.97 Mb (Table 5). The distribution selection regions across different chromosomes varied considerably, except for 1B, 1D, 4A, 4B, and 4D. Chromosome 2B (6) and 7B (6) had the highest number of selection regions while 2A (1), 3A (1), 5A (1), 5B (1), 5D(1), 6A (1), 6D, and 7A (1) had the lowest across EVs. Besides, significant selection regions were only identified under EV1 (5), EV2 (24), EV4 (2), EV8 (1), EV9 (5), and EV10 (1) (Table 5).The number of selection regions identified in the B-genome were 19, followed by the D-genome (11), and only 8 selection regions were located in the A-genome. The largest selection region (i.e., 1A_45252081) was identified on chromosome 1A under EV2 spanning roughly over 30 Mb (Table 5). In contrast, a region (i.e., 2B_769950981) on chromosome 2B spanned approximately 5 Mb was the smallest selection region detected under EV8. To understand the biological background of the identified selection regions, we particularly aligned previously reported genes, marker-trait associations, and biparental QTL described for grain yield and yield-related traits, baking quality, disease resistance, adaptation, and flowering-time-related traits (Table 5). Results revealed that 22 (i.e., 57%) out of 38 selection regions were falling within proximity of known functional genes and/or QTL with meaningful agronomic implications as existing support. Results suggest that the 2D region (11.96-21.96 Mb) could be involved in dwarfism in wheat (Rht8) and flowering time (Ppd-D1a.1) (Table 5). The region 3D (567.09-577.09 Mb) consists of grain color gene Myb10-D1, which controls the red pigment of wheat grain. In this region, two QTL for grain yield and kernel width were also reported. The region 1A (0-10.49 Mb) includes one gene and five QTL, which includes a low-molecular weight glutenin subunit Glu-A3 controlling gluten quality of the wheat, while QTL were associated with phenology-related traits such as grain yield, biological yield, flag leaf length, and kernel width (Table 5).The 5A region spans from 36.22 to 46.22 Mb, which includes photo-period responsive gene (Ppd-A1) controlling flowering time in wheat. The 5A region (558.36-569 Mb) consists of QTL associated with spike-related traits in wheat such as spike number, awn length, and spike length (Table 5). Similarly, two regions 5D (436.03-446.03 Mb) and 6B (0-9.52 Mb) also included QTL associated with awn length. A region 7D (42.66 −52.66 Mb) encompasses the Lr34 that is known to be associated with leaf rust resistance (Table 5). Notably, the association of selection regions with previously known genes/QTL is speculative; however, further pieces of evidence are required to validate the present results. Allele frequencies of selected regions across three subgroups are presented in Supplementary Table S9.Functional annotation was carried out to evaluate the genome composition (e.g., intergenic, exon, intron, UTRs) using the whole-genome SNPs (i.e., 18,589 GBS-SNPs) and significant SNPs identified by EigenGWAS (i.e., 38 selection regions) (Figure 6). Of the whole-genome GBS-SNPs, over onethird were located in the intergenic region; more than 15% were in the regions of transcript (i.e., 19%), downstream (18%), and upstream (16%), respectively (Figure 6A).A similar proportion of genome composition could be observed from the gene annotation of 38 selected regions (Figure 6B). Functional enrichment analysis based on genes (IDs recognized by Panther Classification System) within the selected region was performed to identify possible biological pathways associated with the differentially expressed genes (DEGs). Of the 7,263 GO terms annotations, 4,010 GO terms were in the biological function, 2,358 GO terms were in the molecular function, and 895 GO terms were in the cellular component. The distribution of most significantly enriched GO terms revealed several important processes as catalytic activity (GO:0003824), Adenyl ribonucleotide binding (GO:0032559), iron ion binding (GO:0005506), molecular function (GO:0003674), cellular respiration (GO:0045333, GO:0009060), phosphotransferase activity, alcohol group as acceptor (GO:0016773), transferase activity (GO:0016740), ATP binding (GO:0005524), carbohydrate derivative binding (GO:0097367), ribonucleotide binding (GO:0032553), nucleotide binding (GO:0032559, GO:0030554, GO:0032553, GO:0017076, GO:0032555, and GO:0000166), nucleoside binding (GO:1901265 and GO:0035639), NADH dehydrogenase (ubiquinone) activity (GO:0008137), oxidoreductase activity, acting on NAD(P)H (GO:0016651), and so on (Supplementary Figure S3). Significant SNPs identified by EigenGWAS were also subjected to GO enrichment analysis and shown in Supplementary Figure S4. Annotation of DEGs revealed that they were involved in chloroplast organization (GO:0009658), plastid organization (GO:0009657), response to far-red and red light (GO:0010218, GO:0071489, GO:0010017, GO:2000030, GO:0010114), regulation of photomorphogenesis (GO:0010099), lipid modification (GO:0030258), cellular response to light stimulus (GO:0071482), cellular response to radiation (GO:0071478), cellular response to abiotic and environment stimulus (GO:0071214 and GO:0104004), response to salicylic acid and gibberellin (GO:0009751 and GO:00009739), and so on (Supplementary Figure S4).The hexaploid wheat diversity panel used in the current study was primarily developed in Pakistan and was compared with wheat cultivars from Pakistan used as the reference set. The wheat collection comprised three different subpopulations, which enable us to infer genetic diversity on the basis of highthroughput GBS-SNPs. Consequently, this may allow us to better understand genetic diversity within a germplasm collection to establish genetically divergent heterotic groups, which can be used for wheat improvements in Pakistan. It is generally agreed that subsequent domestication and frequent crossing and selecting among the best genotypes are big challenges for developing high-yielding varieties (Hao et al., 2006;White et al., 2008;Allaby et al., 2019). Introgressing alien chromosomal segments from relative species has its issue referred to as linkage drag of undesirable traits (Klindworth et al., 2013). Novel sources for genetic diversity are expected to be available in less-explored genotypes such as wild relatives, exotic lines, and advanced breeding lines. Furthermore, knowledge about loci that had undergone directional selection is an important step to exploit markers associated with the useful agronomic traits, which might underpin future wheat breeding efforts (e.g., GWAS) as well as to develop ad hoc breeding strategies in an attempt to restore part of lost genetic variability (Lopez-Cruz et al., 2015;Taranto et al., 2020).In this study, the 18,589 high-quality GBS-SNPs were identified across the three wheat genomes (A, B, and D) using stringent filtering criteria, and used for downstream analysis (Table 1). In concordance with previous studies based on different types of molecular markers such as GBS-SNPs, 90K SNP array, RFLP, SSR, AFLP, and DArT markers (Liu and Tsunewaki, 1991;Röder et al., 1998;Peng et al., 2000;Chao et al., 2009;Nielsen et al., 2014;Voss-Fels et al., 2015;Alipour et al., 2017;Eltaher et al., 2018), we found that a high level of GBS-SNPs were located in the B-genome, while low levels were located in the Dgenome, indicating that D-genome is the least diverse wheat genome. Furthermore, Dubcovsky and Dvorak (2007) concluded that a large proportion of natural gene diversity in hexaploid wheat came from the polyploid nature of its tetraploid ancestor (AABB) than the diversity found in Ae. tauschii (DD) during domestication. This conclusion could be a good explanation of the high levels of GBS-SNPs in the A-and B-genomes observed in this study (Table 1). The filtered markers spanned a physical distance of 14,053.07 Mb, with an average marker density of 1.28 Mb/marker for the WP, which was slightly lower than previous reports on wheat (Liu et al., 2019). The present study observed more transitions-type SNPs than transversion-type SNPs across three wheat genomes (Table 2), which is in agreement with several previous studies on hexaploid wheat (Alipour et al., 2017;Kumar et al., 2020). The abundance of the transition-type SNPs was due to the mutation of methylcytosine to uracil and then into thymine (Alipour et al., 2017). The hexaploid wheat genome is highly methylated because it arose from two polyploidization events, which may explain transition-type SNP abundance in wheat. Moreover, various studies support the fact that transitiontype SNPs are preferred over transversion-type SNPs, in addition to InDels or multiple allelic SNPs for SNP array development (Bianco et al., 2016;Clarke et al., 2016). The higher Ts/Tv ratio improves the accuracy of SNP prediction with a greater level of confidence.The molecular characterization of genetic resources remains the most promising option for efficient conservation and sustainable use of their diversity in crop breeding (Alipour et al., 2017;Liu et al., 2019). Genetic variability in Pakistan wheat panel revealed by GD and PIC reflected genetic diversity at the nucleotide level of a genetic population which is a key to understanding the effect of past selective forces on germplasm resources. The average GD (0.30) and PIC (0.25) were estimated in the WP in this study, which is fairly similar to GD and PIC values in previous investigations on wheat (Eltaher et al., 2018;Mourad et al., 2020). On the other hand, Kumar et al. (2020) reported higher GD and PIC values for a set of 483 spring wheat genotypes from India genotyped with 35K Axiom Wheat Breeder's Array.In the present study, AL and SYN-DER subpopulations had higher GD than the PC subpopulation, possibly reflecting recent breeding progress in the diversification of germplasm resources (Supplementary Table S2). Similarly, the higher PIC value was also noted for the AL subpopulation, followed by SYN-DER and PC subpopulations (Supplementary Table S2). Moreover, considerable variation was also noted within the different subpopulations for diversity among the three wheat genomes.As expected, the D-genome showed the lowest genetic diversity for all three subpopulations (Liu et al., 2019). These observations were further supported by nucleotide diversity π and Tajima's D analysis (Figure 2). The differences in genetic diversity among AL, SYN-DER, and PC subpopulations indicated that AL and SYN-DER subpopulations were relatively more diverse. This might be because AL and SYN-DERs subpopulations were developed by crossing Pakistan and exotic parental genotypes as parents (Supplementary Table S1), and have been selected in the field for agronomic superiority (Afzal et al., 2019). It is also possible that artificial selection has fixed targeted regions and resulted in genetically homogenous individuals. Consequently, the genotypes present in AL and SYN-DER subpopulations can be used to enhance genetic variation for selection and to accelerate wheat improvement.The main challenges associated with the analysis of any genetic data are (1) to explore whether the studied population is genetically homogeneous or contains distinct subgroups, and (2) to find quantitative evidence that supports the presence of these subgroups (Patterson et al., 2006). In this study, NJ-tree, PCA, and pairwise kinship analyses were used to assess the population structure of 422 wheat accessions (Figure 3). Interestingly, these different analyses could not differentiate accessions from predefined subpopulations, which raises the possibility of exchanging adapted germplasm in crop improvement activities within the country. It has been widely reported that foreign wheat genotypes (e.g., Mexico and United States) have extensively been used as parents in Pakistan crossbreeding programs that lead to new cultivars (Ain et al., 2015;Rasheed et al., 2016;Liu et al., 2019), which was in general agreement with pedigree information (Supplementary Table S1). Furthermore, the targets of Pakistan crossbreeding programs included improvement of yield potential; resistance leaf and stripe rust; and tolerance to drought, salinity, and terminal heat stress (Rasheed et al., 2016), which could be another reason for overlap between accession from predefined subpopulations. The present results are generally consistent with several other studies (Rasheed et al., 2016;Afzal et al., 2019) which reported overlap between bread wheat cultivars (or landraces) and synthetic derivatives based on genotypic data. However, it was also noted that advanced lines derived from synthetic wheat were separated from non-synthetic wheat.The resolution in terms of similarity, the coefficient of kinship matrix is dependent on the number of genotypes and markers used in a study. The low numbers will restrict the exploitation purposes in deciphering novel alleles for economic traits and will exhaust in the short term. Large numbers of both genotypes and markers will increase the dissimilarity coefficients, and this can give a possible overview of the collection in use. It is recommended for long-term breeding goals to explore genetic relatedness and divergence among genotypes and to subject for high-density genotyping (Kumar et al., 2020). Regarding kinship, 60% of the pairwise kinship estimates were equal to zero, indicating that these accessions were distantly related (Supplementary Figure S1A). The kinship estimates identified in the present study could be useful to avoid inbreeding. The average Rogers' genetic distance was larger for SYN-DER as compared with AL and PC (Supplementary Table S4). Approximately, 82% of pairwise comparisons of genetic distance among 422 accessions were in the range of 0.50-0.70 (Supplementary Figure S1B). Consequently, these results provide evidence of a very low degree of genetic redundancy with this diversity panel and support our conclusion that the AL and SYN-DER subpopulations are genetically diverse (Figure 3). Furthermore, AMOVA suggested a high degree of genetic diversity within subpopulations and a low degree of variation among populations (Table 3). These variations were highly significant according to the partition value (p < 0.001). The selection for agronomic traits in the Pakistan crossbreeding programs was considered the main reason for this high variation within subpopulations. The low degree of diversity among subpopulations could be due to high genetic exchange or gene flow (Eltaher et al., 2018;Kumar et al., 2020). Therefore, breeders can select genotypes as parents in crossbreeding for improving economic traits, from the same subpopulation than selecting from different subpopulations. Pairwise F ST among subpopulations revealed moderate genetic differentiation (Table 4), which is in agreement with population structure analysis (Figure 3). In the present study, the low level of F ST was found between AL and SD, indicating a lowlevel genetic differentiation between these two subpopulations (Table 4). This coincided with the AMOVA result (Table 3), where a large proportion of genetic diversity was accounted for within subpopulations. LD reflects the degree of linkage between loci, referring to the non-random association of two or more loci in the genome, and influences the genetic forces that structure a population (Morrell et al., 2012). LD decay is one of the most important factors in evaluating the marker coverage to determine the resolution of GWAS results. It is well reported that different populations and different genomic regions of chromosomes always show varied LD, in accordance with the results of the present study and with previous reports (Morrell et al., 2012;Afzal et al., 2019;Liu et al., 2019). In the present collection, the overall genome-wide LD decay was shorter than that reported for other investigations on Pakistan wheat germplasms using different classes of molecular markers (Afzal et al., 2019;Liu et al., 2019). Some researchers have reported low or null decay in diversity in different germplasm resources (e.g., landraces and modern cultivars), although they observed the impact of breeding on LD patterns and allele frequency (Taranto et al., 2020). The distances of LD decays in the SYN-DERs and AL were higher than in the PC due to SYN-DERs and AL germplasm under high directional selection pressure than in the PC. In all three subgroups, the mean r 2 value was higher than for the entire population (Supplementary Table S6), indicating that more alleles are in LD with a weak population genetic structure.The genetic bottleneck is an important challenge in crop breeding and artificial selection, which also eliminates standing variation of surrounding genomic regions. Identification of genomic regions for artificial selection is a basic step in understanding breeding history (Liu et al., 2019;Li J. et al., 2020). The trait-associated genes/QTL identified within selection regions should have undergone selection during wheat breeding activities and could be valuable for marker-assisted selection of traits useful for agriculture and assist the use of germplasm. In the present study, 38 genomic regions were found in the present diversity panel and were compared with previously known genes and reported QTL in different wheat populations (Table 5). From population structure analysis, there is no clear separation among the three subpopulations (Figure 3), and in agreement with pairwise F ST calculated among the three subpopulations (Table 4). Therefore, EigenGWAS approach was chosen because it does not require predefining the subpopulations (Chen et al., 2016). An eigenvalue reflects the mean genetic variation captured and was used as the phenotype in EigenGWAS. Whereas λ GC of eigenvector in EigenGWAS represents median of variation (Supplementary Table S6). Moreover, the difference between eigenvalue and λ GC is equivalent to the difference between the mean and a median of a population, implicating the existence of strong selection that could be due to natural or artificial selection during domestication or breeding (Li J. et al., 2019;Liu et al., 2019). In recent studies, the EigenGWAS combined with F ST analysis has been deployed to identify wheat selection regions (Afzal et al., 2019;Liu et al., 2019). Liu et al. (2019) detected genomic regions by wheat 90 K SNP array in 687 accessions, mainly collected from Pakistan and China, and found that most of the selected regions were associated with known phenotypes for disease resistance, vernalization, quality, and adaptability traits. Afzal et al. (2019) investigated 240 Pakistan wheat accessions, including 171 accessions for SYN-DERs and 69 accessions for PC and AL with wheat 90 K SNP array, and found 89 selection regions within the proximity of functional genes associated with phenology-related traits such as Vrn-D3 and TaElf3-D1 for flowering time, TaCwi-A1, TaCKX-D1, TaSus1-7A, and TaGS-D1 for grain size and weight. However, the use of 90K SNP array could lead to ascertainment bias because the representative SNPs were discovered mainly from the wheat cultivars from Australia, United States, and Europe. The majority of selected regions identified in the present diversity panel were located in B genome (50%) as compared to D-genome (29%) and A-genome (21%), a finding consistent with previous reports (Afzal et al., 2019;Liu et al., 2019), reflecting that the B-genome has experienced intense selection pressure than the D-genome. A total of 38 selected regions were identified in the present study. Of which 22 selected regions were overlapped with previously reported functional genes or/and QTL for important agronomic traits including yield-related traits (QGy, QGw, QTkw, QKw, QSn, QKl), plant height (Rht-8, QPh), end-use quality (Glu-A3), flag-leaf-related traits (QFla, QFlw, QFll), biotic resistance (Lr34), and vernalization (Vrn-D3 and Ppd-A1) (trait nomenclature is presented in Table 5 legends; Table 5). Similar investigations reported in other crops such as maize, barley, and soybean, also suggested that most of the selected regions are associated with phenology-related traits (Liu et al., 2017;Li J. et al., 2019Li J. et al., , 2020;;Li Z. et al., 2020). Our findings suggest that the selected regions observed in the Pakistan diversity panel may be (or have been) under direct selection and are plausible because it reflects wheat breeding targets in Pakistan. These selected regions will be of interest to further understand their contribution to crop improvement and adaptation of Pakistan wheat germplasm resources.Although many selection regions had been identified in Pakistan wheat germplasm before (Afzal et al., 2019;Liu et al., 2019), the function of many genomic regions remains unclear. Thus, it is crucial to gain more information on the architecture of selected regions. The functional annotation results revealed that most of the loci were mapped to intergenic regions than that to coding regions (Figure 6), in agreement with previous reports (Jordan et al., 2015). Several studies reported that intergenic regions are genetically diverse and are associated with phenotypic variations (Mei et al., 2018). Viewing the whole-genome GBS-SNPs, the GO analysis revealed that inferred genes were mainly associated with molecular functions (e.g., catalytic and enzymatic activity), the biological process of protein phosphorylation, cellular respiration, aerobic respiration, signal transduction, and cellular component (e.g., Photosystem II reaction center) (Supplementary Figure S1). Whereas, annotation results of selected regions showed inferred genes mostly encoding chloroplast and plastid organization, lipid oxidation, cellular response to red or far-red light, cellular response to abiotic, environment stimulus, response to gibberellin, response to salicylic acid, and so on (Supplementary Figure S2). For instance, response to salicylic acid (GO:0009751) was a significant GO term, which controls the growth and stress response (e.g., drought) in wheat (Loutfy et al., 2012). Liu et al. (2019) identified drought tolerance genes (NAM-6A, and 1-FEH-w3) within the selection regions in Pakistan wheat germplasm, which supports our observation. Comprehensive knowledge of genetic diversity, population structures, and the identification of selection regions offer the potential to assist plant breeders in better understanding the implications of the selection regions on targeted crop improvement and facilitate the use of germplasm.","tokenCount":"7008"} \ No newline at end of file diff --git a/data/part_3/5339174812.json b/data/part_3/5339174812.json new file mode 100644 index 0000000000000000000000000000000000000000..30aad9d45e2ae743f23f38f1d7fd96b9ac8e4784 --- /dev/null +++ b/data/part_3/5339174812.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"1bc0dfb29bc7b9bdb32f1d612cb6307a","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/a007737a-57cc-4d97-a2b5-5dbd896ab203/retrieve","id":"562415147"},"keywords":[],"sieverID":"bfe4d3ad-44ba-4b74-a22b-21f00272c461","pagecount":"11","content":"In Goma, the project supports raised bed drying of coffee cherries and their marketability for fetching premium prices. Coffee is grown and produced organically by smallholder farmers, even though discharges from coffee processing plants (dry and wet) represent a major source of river pollution, especially during October to January because coffee is picked and processed mainly during these months each year. The process of separating beans during wet or dry processing generates enormous volumes of waste material (liquid and solid). The by-products of coffee processing are mainly coffee pulp, processing effluent, parchment husks and coffee husks. This results into bad odours of the surrounding atmosphere, breeding of disease vectors, and pollution of ground water and surface water bodies through leaching and run-offs, respectively. The composition of coffee pulp and husk is organic and mainly contains carbohydrates, proteins, fibres, fat, caffeine, polyphenols, and pectins. However, the decomposition of these organic wastes in rivers causes the water unsuitable for various uses and damages the aquatic ecosystem. Ecological impacts are reported from the discharge of organic pollutants from the coffee processing plants to rivers, depriving aquatic plants and animals of essential oxygen.Farmers in Goma have also reported skin damages (removal of hair) on livestock who consumed water from polluted with wet coffee processing effluent.Farmers may be encouraged to expand exotic poultry production programme supported by the project. The expansion of this exotic poultry production and its expansion in Goma may cause erosion of the indigenous breed because of their less performance. However, the project will make all possible measures to minimize the impact.Trypanosomosis has been identified as a major problem in the low lying areas close to Dedessa River. Cattle have been suffering and number declining as a result of this disease. On the other hand, improved dairy as well as cattle fattening and poultry production programmes are being supported by the project and expected to expand in many parts of the wereda. These activities are expected to bring about increased use of veterinary drugs and chemicals. Similarly, support to these programmes is also expected to bring about environmental pollution related to smell and noise, especially in and around urban centres where population density is higher. In order to minimize the effects of these activities, the project will encourage modest utilisation of veterinary drugs and chemicals. Improved livestock production programmes in less populated areas will also be encouraged to minimize smell and noise pollution.Goma wereda is one of the 13 weredas in Jima zone known for predominantly growing coffee. It is located 390 km south west of Addis Ababa and about 50 km west of the Jima Zone capital (Jima). One of the coffee biodiversity centres in Ethiopia is found in this wereda. There are 36 peasant associations and 3 towns' associations (Table 1). The number of agricultural households in the wereda is 45,567 (35,533 male headed and 10,034 female headed), while the total population of the wereda was 247,326 in 2006/07. Goma is the second most densely populated wereda in the zone with a size of 93,657.72 ha, excluding the state coffee farms. The two farms, Goma I and Goma II, have a total area of 2704 ha. Hence the total area of the wereda is 96,361.72 ha (96.4 km 2 ).Unlike other areas in Ethiopia, the south and southwestern regions of the country receive reliable rainfall. Goma wereda is one these areas in this region that enjoys well distributed annual rainfall. Based on 15 years weather data obtained from Goma wereda, it indicates that the average annual rainfall is 1524 mm. The annual rainfall variability is very low. Rainfall is bimodally distributed. The small rains are from March to April and the main rainy season from June to October. All in all, there are about 7 rainfall months in the wereda. However, rainfall is sometimes received even during the other months. Hence, crop and livestock production is not constrained by the amount and distribution of rainfall as in other parts of the country. Seasonal and area wise variability of rainfall is low and hence one can make plans of crop/livestock production based on the existing rainfall amount and pattern.Agroecologically, Goma wereda is classified as 96% wet Weina Dega (wet midland) and 4% kolla (lowland). Altitude in Goma ranges from 1387 to 2870 metres above sea level (m asl). Most parts of the wereda lay between 1387 and 1643; and 1849 and 2067 m asl. However, few of the areas in the wereda have altitudes ranging from 2229 to 2870 m asl. These characteristics of altitudinal difference are observable as one drives from Jima to Agaro.The three dominant soil types are Eutric Vertisols, Humic alisols and Humic Nitosols. Among these soil types, Nitosols is the most abundant covering about 90% of the wereda (Fig. 4). These soils are young soils and are generally acidic soils. However, farmers grow crops that are acid tolerant. The pH of the soils in Goma ranges between 4.5 and 5.5. However, the commonly observed problem related to aluminum and magnesium toxicity as a result of low pH is minimal.Goma is one of these weredas in the country where forest cover is relatively high. Major forest tree species in the area include Albizia lebbeck, Milita ferruginea, Juniperus procera (remnants) Cordia africana, Croton macrostachys, Acacia spp., Podocarpus gracilior, Prunus africana (\"Tikur enchet\") and schefflera abyssinica (\"Geteme/a\"). However, there is very fast encroachment of these forest areas due to high population pressure. Evidence from some reports indicates that the natural resources (vegetation, wildlife and soils) are facing indiscriminate depletion mainly due to expansion of croplands (Oromia, 2003 1 ). It is becoming hard to find large areas under conserved natural forests. Currently, the wereda has about 2209.2 ha of natural forest and 2296.1 ha of manmade forest cover. These vegetation covers represent 2.3 and 2.5 % of the total wereda area, respectively.The topography, vegetation and rainfall pattern in the wereda encourages the existence of many perennial rivers. The rivers drain to Ghibe/Omo to the east and Dedessa River in the north. There are about 5 rivers in the wereda. Even though available land and water resources offer high potential for irrigation development in Goma, .the present utilisation level is very poor. Only about 215 ha have been developed and are in use under traditional irrigation system (Oromia, 2003). The same study also estimated that there are about 1128 ha which is suitable for irrigation development. The wereda has planned to develop 2256 ha land for horticultural development by 2011.According to the OoARD, more than 52% of the wereda land mass is devoted for growing both annual and perennial crops. However, information from the digital data in Fig. 5 shows that more than 80% of the area is under cultivation. The overall land use pattern is shown in Table 3. Average land holding of households is between 0.5 and 1.0 ha.The principal environmental issues in the PLW are interrelated, being associated largely with poor catchments management. They are as follows: Malaria in humans and trypanosomosis on livestock in the low lying areas are common in the PLW. Natural resources (vegetation, wildlife and soils) are facing indiscriminate depletion mainly due to expansion of croplands. Many areas which were allocated as communal grazing areas are now being converted into crop lands. Goma is one the areas in the country where forest cover was thought very high. However, due expansion of agriculture, mainly cereal production, many areas with indigenous trees are being converted into croplands, in which soil erosion and land degradation in general is increasing. Pollution of rivers and streams by wet coffee processing plants, especially during the beginning of the dry season when rivers and streams carry lower water volumes but when coffee processing is peak. Shortage of land and continuous cultivation and hence low productivity as a result of poor fertility is common in the wereda. Goma wereda is one these areas in the country which enjoys well distributed annual rainfall. As a result of this and other factors, the area is affected by soil acidity which is also significantly contributing to crop yield reduction.Table (i) sets out: Possible negative environmental impacts before the introduction of mitigating measures;  Planned mitigating measures;  Expected negative environmental impacts after implementation of mitigating measures. Notes  Expanded cultivation of fruit and vegetables will be accompanied by organic fertilizer and composting programmes, thus producing a positive environmental impact.  The promotion of apiculture will in turn promote bee forage, which will result in a growth in vegetation and pollination, leading to the flourishing of springs and a general improvement in the environment.Pollution of rivers and streams as a result of wet coffee processing plants has been raised by the community as affecting both human and livestock health. Considering that about 3,000 tons of washed coffee is produced in Goma and 50 M 3 of water is used per ton of coffee bean, about 150,000 M 3 of waste water per year is being discharged into the rivers in the wereda. However, if all wet coffee processing plants in Goma are working at full capacity (130 tons/season/plant), they have a collective capacity of processing 6,500 tons of clean dry coffee beans. This will generate 325,000 M 3 polluted water each year. At the same time, a similar amount of pulp and hull is dumped around the rivers. This generates pungent smell. As this takes place in only 4 months each year, the level of concentration of the organic waste in the rivers is very high and hence impacts are also high. Heaps of dried pulp is also generated from dry processing plants which some times create fire hazards and leaching to rivers during rains.Deforestation, soil erosion and sometimes excessive and even shortage of rainfall have been some of the environmental problems raised by many farmers and experts. Excessive rainfall has been causing runoff on farmlands, resulting in serious soil erosion. On the other hand the shortage of rainfall has also been reported to cause low initiation of flowers in coffee and hence low production. Coffee is the major cash crop in which nearly all farmers in Goma depend for their livelihoods. Much of the livelihoods of farm households in Goma are dependent on coffee. These problems have been considered as some of the environmental issues of concern.Table (i) relates to the operations phase of the project. There is no pre-construction phase, construction or closure phase. Accidents and malfunctions are covered within the Integrated Pesticide Management (IPM) Plan.Table (i) incorporates both direct and indirect impacts.After implementation of the recommended mitigating measures, no significant adverse effects are likely.Technically and economically feasible mitigation measures are set out in Table (i).1. Expansion of coffee production 2. Loss of poultry species diversityi) As a result of dumping coffee pulp and waste water onto rivers and streams human and animal health will be affected.(ii) It is also affecting the fauna in the rivers and streams in the wereda.(iii) Public Concern: Pollution of streams and rivers; and pungent smell as a result of coffee processing in the upper slopes has been raised.(i)Extensive use of exotic poultry breeds may narrow the biodiversity and hence if these breeds become dominant, they might be susceptible to diseases and because of the narrow genetic base, they may be easily affected during events of disease outbreaks.(i) Uncontrolled or careless use of livestock veterinary drugs or chemicals may pollute the groundwater, resulting in health hazards for human and animal life.(ii) As a result of improved health conditions of livestock, the number may increase and hence enhance overgrazing of natural pastures. Similarly, soil fertility depletion due to excessive removal of crop residues for livestock feed may enhance erosion . (Iii) Smell and sound pollution in densely populated areas may be encountered(i) Training will be given to coffee de-hulling and pulping plant managers/owners, Wereda NRM and Environment experts and farmers on the side effects of dumping on to rivers. The experts will then enforce environmental safety in the wereda (ii) Alternative uses of these by-products will also be demonstrated, like composting, use dried pulp for brickettes making and modern construction materials, (iii) There are plants that used to clean is also another means of cleaning polluted water. Encouragements to growing of polluted water cleaning trees/plants will be recommended.(iv) Use of eco-friendly coffee processing plants (example: less water use, like the one around Dilla) will be encouraged) (i) Regional or Wereda Agricultural Office should monitor the production rates of new breeds (diversify of breeds under production), and should liaise with the concerned bodies to ensure that the exotic breed will not be a total replacement to the indigenous breed. (ii). Promoting indigenous chicken rearing groups and certifying them as the local genetic breed suppliers. III. Promoting indigenous chicken raring group and certifying them as the local breed genetic source or something like that ??? How do you see it.(i) A Drugs and Chemicals Management plan will be drawn up and implemented, covering acquisition, application, accidents, storage and disposal of livestock veterinary drugs and chemicals; (ii) Promote backyard forage development practices and Improve the productivity of natural pasture. (iii) To avoid smell and sound pollution, the project will liaise with the urban Public Health authority and will include their representative in training workshops, in order that any regulations controlling the keeping of cattle in the urban areas are recognized and enforced. (IV). Promoting bad smell absorbents currently in wide use among Jima Dairy farmers IV. May be promoting bad smell observant chemical currently in wide use among Jima Dairy farmer s??????After implementation of mitigating measures, no adverse environmental impacts are expected.After implementation of mitigating measures, adverse environmental impacts are expected to minimal.After implementation of mitigating measures, no adverse environmental impacts are expected.Goma Wereda CIDA 1519-2E Environmental Assessment and Screening Report 9The following potential long-term cumulative effects could be postulated:Uncontrolled adoption throughout the PLW and beyond of a newly introduced exotic poultry species could lead to a situation whereby the genetic base of the indigenous poultry is unduly narrowed. This could mean, for example, that in the event of an outbreak of disease, there is no alternative strain available. It is thus recommended that the regional or wereda agricultural office should monitor expansion rates of the exotic breeds, and should liaise with the concerned bodies to ensure that the exotic breeds are total replacements to indigenous ones. To counter this effect, the project is also promoting local chicken production because of their suitability to smallholder management system and disease resistance.Although the Project is not promoting zero-grazing in high-density urban areas, the zerograzing being promoted (which by reducing grazing and often livestock numbers is generally environmentally beneficial) may eventually lead to uncontrolled adoption of zero-grazing in high-density urban areas, with resultant health hazards, noise and smell pollution. To avoid this from happening, the project will liaise with the urban Public Health authority and will include their representative in training workshops, in order that any regulations controlling the keeping of cattle in the urban areas are recognized and enforced.The PLW is a high rainfall area and hence is not a drought-prone wereda, and no significant impacts of the environment on the project are anticipated. However, possible environmental problems related to high rainfall are listed below.Many Peasant Associations are sometimes experiencing run-off after torrential rainfall. This is because there is very fast encroachment of the forest areas due to high population pressure and some farmers' plots are affected by soil erosion. Similarly, gulleys are also eating some farmlands despite that the area seems to be relatively well vegetated. This is all happening mainly due to indiscriminate deforestation mainly due to expansion of croplands. It is becoming hard to find large areas under conserved natural forests.Similarly, areas which were once communal grazing lands are now converted into croplands which will lead to increased run-off leading gullying and ultimately land degradation. All this aggravated due to heavy and longer rainfall.Four PAs (Dedessa, Meti Koticha, Geta Bore, and Odow Adami) in Goma are found in the lowland areas of the wereda bordering Welega. There have been reports of trypanosomiasis outbreaks in these PAs. The effects of the diseases in this part of the wereda could expand because of the transhumance practices to other parts of the wereda.On the other hand, these PAs are endowed with extensive grazing lands and hence many farmers could bring their cattle and infest them and then move to the other parts of the wereda. Hence the efforts of the project could be affected. Visits to ILRI Ghibe research site could open up opportunities to learn more on effective tryps control measures.Gome is a high rainfall area with predominantly Nitosols which are acidic. This could also affect the productivity of the crops that the project is working on. The government's MoARD has plans to mitigate this problem. To this effect, the project has provided 5 lime crushers of which 2 are for the Oromiya BoARD so that lime is applied to neutralise the acidic soils like the ones in Goma.There has been extensive public participation in the design of the IPMS interventions in this PLW, including a well-attended two-day workshop in the PLW on 21-22, May 2007.In addition, a number of training sessions for farmers and Development Agents (DAs) and visits to various areas have been conducted since the launching of the project. Many farmers are benefiting from the project's intervention in the area and hence participation is very high.A follow-up program to ensure that the recommended mitigating measures are implemented as required will be conducted by the staff of the Environment and Natural Resources Unit in the wereda agricultural office, with support from IPMS RDO and RDA as required.In the project design workshops, it was agreed by the community and the wereda agricultural office that there are no viable alternative means for conducting the project, other than by supporting the Wereda Agricultural Office and the Development Agents (DAs). A document has been developed following these workshop encompassing relevant activities to be carried out in the wereda.","tokenCount":"2992"} \ No newline at end of file diff --git a/data/part_3/5356068895.json b/data/part_3/5356068895.json new file mode 100644 index 0000000000000000000000000000000000000000..93cf7b4b77f5ca58cadba228c4c5a12fa211d027 --- /dev/null +++ b/data/part_3/5356068895.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"83f7b10eb3e66ee242254e0a898e6c67","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/3d0090fd-4917-4475-9b83-a2029aafa6e8/retrieve","id":"411378306"},"keywords":[],"sieverID":"f923bf81-8a7c-4fc0-9ef8-c3d72486093f","pagecount":"21","content":"To reorient food systems to ensure they deliver healthy diets that protect against multiple forms of malnutrition and diet-related disease and safeguard the environment, ecosystems, and natural resources, there is a need for better governance and accountability. However, decision-makers are often in the dark on how to navigate their food systems to achieve these multiple outcomes. Even where there is sufficient data to describe various elements, drivers, and outcomes of food systems, there is a lack of tools to assess how food systems are performing. This paper presents a diagnostic methodology for 39 indicators representing food supply, food environments, nutrition outcomes, and environmental outcomes that offer cutoffs to assess performance of national food systems. For each indicator, thresholds are presented for unlikely, potential, or likely challenge areas. This information can be used to generate actions and decisions on where and how to intervene in food systems to improve human and planetary health. A global assessment and two country case studies-Greece and Tanzania-illustrate how the diagnostics could spur decision options available to countries.Food systems include the people, places, and methods involved in producing, storing, processing and packaging, transporting, and consuming food; they can consist of either long or short supply chains and be global or local [1,2]. Food systems have the potential to yield multiple positive outcomes including delivering healthy diets that protect against multiple forms of malnutrition and disease; safeguarding environments, ecosystems, and natural resources; and supporting fair, equitable livelihoods [3][4][5]. However, food systems are currently managed and governed in ways that do not meet these outcomes as well as they could [6][7][8].More specifically, approximately three billion people cannot afford a healthy diet, and an estimated 738 million are hungry and unable to access sufficient dietary energy [9]. At the same time, the trade and sales of ultra-processed foods (UPFs) high in salt, added sugars, refined flours, and unhealthy fats are increasing, associated with poorer nutrient profiles of diets and adverse health effects [10][11][12][13][14]. Poor diets are associated with malnutrition in all its forms, including as a cause of nutrient deficiencies and undernutrition and as a risk factor for increased deaths and cardiovascular disease, diabetes, and some cancers [15]. Current extractive food systems are unsustainably using land and water resources while contributing 21 to 37% of global greenhouse gas emissions (GHGe) [16,17]. Agricultural land use occupies five billion hectares, with 1.5 billion hectares used for cropland and 3.5 billion for grazing land [18]. This use accounts for 40% of the ice-free land mass [19]. These large land requirements drive deforestation and loss of biodiversity while producing GHGe including carbon dioxide, nitrous oxide, and methane [6]. In addition, food systems account for 70 to 80% of freshwater consumptive use [20,21] and are currently a source of significant soil degradation, air and water pollution, and solid waste [22][23][24][25].Food systems can be transformed to reduce negative impacts on human health and the environment with comprehensive policies, increased investments, and enhanced risk management [26][27][28][29]. Food systems; however, are complex, and human and environmental health outcomes related to food systems are multi-faceted. As a result, it is difficult to have a clear picture of how and where to act to target specific challenge areas in any given setting [30]. In order to make sound investments, decision-makers need information on the current state of their food systems and how they relate to food security, nutrition, health, and environmental outcomes. In short, there is a need for better diagnostics of food systems to strengthen food systems governance and accountability [31].The Food Systems Dashboard (FSD) was launched in 2020 to provide a single platform for food systems data relevant to diet and environmental outcomes, and to enable the use of these data for policymaking [32]. The FSD is intended for policymakers, non-governmental organizations, civil society leaders, educators, researchers, businesses, and other actors to enable timely visualization of national food systems and compare across countries, regions, income classifications, and food system types. It combines data for over 200 indicators from over 40 sources, for more than 230 countries and territories (about 630,000 data points). This information is organized into major components of food systems, including agricultural production and supply chains; food environments; diets, nutrition, and health; environmental outcomes; and socio-ecological drivers of food systems.This paper aims to build the parameters for diagnosing likely challenges within food systems, using the data assembled in the FSD. This diagnosis will aid the interpretation of food systems data, so that decision-makers can see what is going relatively well and what is challenging in each setting and consider a range of possible actions to address challenges and maintain successes. First, out of all 200 indicators currently on the FSD, a set of indicators with diagnostic value is identified. Second, cutoff points to diagnose likely challenges are discussed and proposed for each indicator. Results across countries are presented for these indicators using the diagnostic criteria. Third, a rubric for identifying possible underlying causes for each outcome indicator is shown. This diagnosis can be used to identify an array of possible actions to improve food security, diet, health, and environmental outcomes. Two country case studies are presented to illustrate how this approach can be used to diagnose likely challenge areas in two different types of settings and point toward possible actions to address these challenges. This is the first paper to identify possible cutoffs to signal low to high likelihood challenge areas across a suite of key food systems indicators.The FSD includes indicators relevant to the food systems conceptual framework from the Food Systems Countdown Initiative, which was adapted from the UN High-Level Panel of Experts on Food Systems and Nutrition report (Fig 1) [1,29]. Not all the indicators available on the FSD (over 200) are useful in diagnosing challenges in achieving nutrition and environmental outcomes; many are purely descriptive without any causal relationship to outcomes (e.g., percent urban population). To select diagnostic indicators, the following criteria were applied: 1) the indicator has a clear target value or direction (i.e. higher is better, lower is better, or a certain range is better); 2) the target value is universal and not dependent upon context; 3) data for the indicator are available for the majority of countries; 4) data are recent (the indicator has been updated at least once since 2010, as older values may not be representative of the current status of a country); and 5) the indicator is globally acceptable and preferably available in the public domain.A total of 39 diagnostic indicators were selected for the FSD diagnostic approach (Table 1). These indicators describe four major components of food systems illustrated in the conceptual framework (Fig 1): food supply chains; food environments; food security, diet, and nutrition outcomes; and environmental outcomes. All indicators and their sources are identified in Table 1. For food supply chains, five indicators were chosen that describe crop biodiversity and food losses. Production indicators, such as cereal and vegetable yield, were not included because appropriate thresholds for these indicators may depend on a country's agroecological setting. For the food environment, 11 indicators met the diagnostic criteria, encompassing food availability, food affordability, and product properties. For nutrition and food security outcomes, 14 indicators were selected that describe food security, diets, nutritional status for adults and children, and diet-related noncommunicable diseases (NCDs). Few diet indicators have been included due to lack of data, despite dietary outcomes being of high interest and importance as outcomes of the food system and being closely related to food environments as well as other nutrition, health, and environmental outcomes. The only measures of dietary intake included were three indicators of diet quality among infants and young children because they are the only diet quality indicators that are current and comparably collected across countries. These are collected by Demographic and Health Surveys (DHS) and are available mostly in low-and middle-income countries (LMICs). Dietary measures for other age groups (school-aged children, adults, and adolescents) do not currently meet the geographic distribution requirements to be included in the diagnostic approach, but diet quality data currently being collected by the Gallup World Poll and DHS will be added as soon as they are available, covering indicators of dietary adequacy and NCD risk factors in the general population [33]. For environmental outcomes, nine indicators met the diagnostic criteria and described production-level outcomes and consumption-level outcomes.To establish cutoffs for each indicator, there was a need to develop criteria for flagging values that would indicate a likely challenge associated with each indicator. In many applications, cutoffs are used to interpret continuous indicators, where a value on one side of the cutoff is diagnosed as problematic, while a value on the other side is diagnosed as acceptable. Because the severity of a condition is rarely tied to an exact value, but rather to a position of greater or lesser risk within a continuous range of values, setting cutoffs for diagnosis requires careful consideration. Each diagnostic indicator was categorized into three categories: green (unlikely challenge area), yellow (potential challenge area), or red (likely challenge area). Since different levels of evidence exist for each indicator, thresholds were established using four different methods, as follows. First, when possible, pre-defined cutoff values representative of global consensus on public health significance (such as pre-defined low to high categories for the prevalence of stunting in young children) were used (S1 Table ). However, for most indicators, such predefined cutoff values do not currently exist. Second, where normative recommendations exist, these were used to establish cutoffs (S2 Table ). For example, thresholds for fruit supply adequacy were based on globally recommended per capita intakes of fruit, with countries in the green category having a supply of fruit at or above the recommended intake and countries in the red category having a supply of less than half of the recommended amount. Third, where no cutoffs have been published and no normative values exist, the relative values of country data points can be compared as relatively higher or lower. For each indicator, density plots, a variation of histograms, were used to examine the distribution of data, using the data assembled on the FSD (S3 Table ). A density plot was chosen over a histogram to view a smoothed distribution of the data using kernel density estimation. Most indicators had an approximately normal distribution and were divided into tertiles, rounded to interpretable values. We prioritized retaining meaningful or more easily interpretable cutoffs over exact tertiles. Fourth, some indicators had a bimodal or highly skewed distribution; in these cases, the peaks were bifurcated by the two cutoff points (low/medium; medium/high). An example of each of these is shown in Fig 2.The cutoffs for each indicator, as well as the method used to set them, are shown in Table 1.Four example indicators are explained to demonstrate the methodology for determining the cut-offs. As mentioned above, the prevalence of stunting is an example of an indicator where cutoffs are based on published consensus on cutoffs [50]. An example of an indicator where cutoffs are based on normative recommendations is vegetable supply. This indicator is included as vegetable supply is a precursor of vegetable consumption; thus, the cutoffs are set based on the World Health Organization's recommendation for vegetable consumption as part of a healthy diet. Vegetable losses, on the other hand, is an example of an indicator where no normative cutoffs or recommendations exist. Because the data for this indicator are normally distributed across countries, the cutoffs are set using rounded tertiles. The prevalence of adult obesity similarly has no published or accepted cutoffs for public health significance, but the distribution shows two large peaks, so bimodal curve-based binning is used to set cutoffs.The analysis of national-level data included 195 countries globally. The most recent data available for all countries was used. Countries for which the most recent value was prior to 2010 were excluded. For visualization and analysis, countries were stratified by the 2022 World Bank income classification [51]. Analysis, visualization, and data management were conducted using the R Statistical Computing Environment (version: 3.6.2) [52].Diagnosing challenging areas across food systems begs the question, \"then what?\" The intention of the diagnostic approach is to spur policy debate and advocacy for possible solutions to the challenge areas. To aid this process, a menu of possible actions can be linked to each challenge area. While possible actions are primarily up to the users to deliberate and decide, and may be very context specific, the diagnostic approach provides evidence to inform this deliberation, and a selection of possible evidence-based policies and actions to consider toward improving outcomes for each challenge [53]. Each of the diagnostic indicators is matched with other indicators in the FSD (Table 2), providing a road map to other potential contributing factors upstream that may provide deeper understanding into the causal pathway. Some outcomes have multiple food and non-food causes (e.g., poor nutritional status); only the possible causes related to food (e.g., food insecurity and inadequate diets) are identified.To demonstrate the use of the diagnostic approach in specific settings, two country case studies are presented. Tanzania and Greece were chosen to demonstrate how the diagnostic approach can be applied to different types of food systems, Tanzania having a predominantly rural and traditional food system and Greece an industrial and consolidated food system [54]. Furthermore, diet quality data for the general population were available from these two countries, which allowed for a richer analysis of the problems that food systems may need to address. Comparable diet quality data are currently being collected by the Gallup World Poll and DHS and will soon be available for a growing number of countries [33].Of the 195 countries assessed in the analysis, the average country coverage for indicators was 158 or 81% of countries (Table 1). Five indicators had established prevalence thresholds for public health significance: prevalence of wasting in children under 5 years (WHZ < -2), prevalence of stunting in children under 5 years (HAZ <-2), prevalence of underweight in women (BMI <18.5), prevalence of anemia in women 15-49 years, and prevalence of overweight and obesity in children under 5 years (WHZ >2). For 13 indicators, cutoffs were based on global recommendations, and for the remaining 21 indicators, cutoffs were based on the global distribution of the data (Table 1). Taking a systems approach, Figs 3 and 4 bring the indicators together, highlighting patterns of challenge areas across the set of 39 indicators. Fig 3 shows the percentage of countries that have a likely challenge area for each indicator by country income classification [51]. Patterns in likely challenge areas are visible by income status, with some indicators moving more or less strongly with income, or in different directions. For example, supply of dietary energy and of fruits and vegetables are frequently flagged as likely challenge areas in lower-middle-income countries, but not often in upper-middle-or high-income countries. Meanwhile, pulse supply appears to be low across all income groups, though the relative cost of legumes is particularly a challenge in higher-income settings. The percentage of the population who are hungry, food insecure, or who cannot afford a healthy diet are challenges in low-income countries, reflected in the dietary outcomes of low dietary diversity and low consumption of fruits, vegetables, and animal source foods among infants and young children in low-income countries. Sales of UPFs and adult obesity are challenges particularly in high-income countries. The set of nutrition outcome indicators tend to show nutrition transitions that mirror the food environment and dietary patterns. While low-income countries are mainly grappling with child undernutrition and food insecurity and high-income countries are largely grappling with adult obesity [55], middle-income countries are dealing with double burdens of malnutrition challenges [56]. Notably, however, adult raised blood pressure is much more problematic the lower the income, despite being an indicator of NCD risk. Moreover, diabetes presents the most significant challenge in upper-middle-income countries, not high-income countries. On the environmental side, eutrophication, GHGe, and consumption footprints are particular challenge areas in high-income countries, while threats to soil biodiversity, agricultural land change, and natural vegetation within agricultural landscapes are pressing challenge areas across countries of all incomes. Each country faces a unique set of likely challenge areas across the food system or within a subsector of the food system. Fig 4 shows the diversity of country-level challenges within a randomly selected set of countries in each income classification. There are many countries which follow typical patterns seen by income classification, including greater challenge areas of undernutrition in low-and middle-income countries (e.g., anemia) and greater challenge areas of obesity and UPF sales in high-income countries. But there are also interesting country outliers for many indicators. For example, child wasting is an unlikely challenge area for several low-income countries, including Tanzania, Mozambique, and Liberia; UPF sales are atypically high in Costa Rica, Mexico, Russia, and Serbia compared to other low-and middleincome countries; and the low affordability of a healthy diet stands out in the Maldives. On the environmental side, the food supply chains of the Gambia, Liberia, and Mozambique have fewer challenge areas compared to other low-income countries. Few food supply chain indicators are flagged as challenges in high-income countries, but there are some notable exceptions on food losses in individual countries, such as high fruit losses in Japan and high vegetable losses in Greece and Korea. Positive deviants can also be identified. For example, Cyprus and Japan have relatively fewer food systems-related environmental challenge areas than other high-income countries.Performance across indicators within a specific food systems component, within an individual country, is typically varied, rarely consisting of all likely challenge areas or no likely challenge areas. For example, Angola, a lower-middle-income country, has several likely challenge areas in the food environment related to the availability of food-including the supply of vegetables, pulses, and the overall dietary energy supply-and the cost of an energy sufficient diet is also a likely challenge. However, the premium consumers must pay for nutrient-dense foods, evident in the relative cost of fruits, vegetables, and pulses, and the relative cost of a healthy diet, is not a likely challenge area, as it is in many higher-income countries. Still, the cost of a healthy diet relative to household food expenditure (affordability) is a likely challenge area, which may indicate that the general cost of food, across all food groups, is still high.To use the diagnosis to inform decision-making, one of the first steps is to explore the possible factors related to each challenge area. In Table 2, such factors are identified among indicators where data are available on the FSD, following the food systems conceptual framework (Fig 1 ). For example, the high prevalence of infants and young children with zero fruit and vegetable intakes might trace back to high cost of fruits and vegetables, and in turn low availability of fruits and vegetables, possibly linked to the supply chain issues of low crop biodiversity and/or high fruit and vegetable losses. Countries that have high unaffordability of healthy diets tend to have low supply of fruits and vegetables.Tanzania. Tanzania is a low-income country with a food system that is predominantly rural and traditional [54]. The country has made steady progress in combating child stunting, which fell by approximately 10% from 2010 to 2018 [40]. However, 32% of children under five are stunted today-well above the 20% prevalence cutoff indicating a likely challenge areaand progress towards the elimination of stunting, a target within SDG 2, remains an unfinished agenda [57]. Though stunting is a multisectoral challenge with determinants beyond the food system, the diagnostic approach can help identify priority areas to be addressed in order to maximize the food system's contribution to ending stunting.The FSD shows that Tanzania performs relatively well on breastfeeding, with nearly 60% of infants exclusively breastfed for the first six months of life and 92% still breastfed at one year, but complementary feeding still requires more attention [53]. Just 21% of children 6-23 months of age achieve minimum dietary diversity (MDD), making this a likely challenge area for Tanzania, and a probable cause of stunting. Unpacking MDD further, just 35% of children 6-23 months of age consume any meat, eggs, or fish, making this a likely challenge area, while consumption of fruits and vegetables are a potential challenge area with 29% consuming zero fruits and vegetables in the previous day [39]. Animal-source foods (ASF) are important for child growth, due to their favorable amino acid profile and their high density of micronutrients such as iron and zinc [58,59].The diagnostic approach can be used to trace further causal pathways through other areas of the food environment and food supply chains. Particularly relevant for MDD are the availability and affordability of diverse foods. Fifty-six percent of Tanzania's dietary energy supply is derived from cereals, roots, and tubers, which is a potential challenge area. The affordability of a healthy diet may be another area of concern, also flagged as a potential challenge area, though relative costs of fruits, vegetables, and pulses are low.Recognizing the intergenerational nature of stunting, examining women's nutritional status and dietary intake may also shed light on possible causes of stunting. Nutritional status at the preconception stage and during pregnancy may influence intrauterine growth and birth outcomes [60]. The diagnostic approach indicates that anemia-which has both dietary and nondietary causes-is a significant problem in Tanzania, affecting 37% of women of reproductive age. Diet Quality Questionnaires (DQQ) collected in Tanzania from the Global Diet Quality Project provide more insights, including that only 63% of women consumed an ASF during the previous day compared with 71% of men. ASF consumption has been associated with reducing the risk for small-for-gestational age and low birthweight babies [61,62]. Looking at the sociocultural drivers of the food system, Tanzania's gender inequality index is high, which is consistent with this gender disparity in diets.After identifying likely challenge areas that may be worth more in-depth, contextualized analysis, national stakeholders may be a step closer to selecting policies and actions that may be appropriate to address these challenges. In this example related to stunting in Tanzania, these could include investing in market infrastructure to enhance access to nutritious food and utilizing social protection platforms to enhance the purchasing power of women, especially around pregnancy.Greece. Greece is a high-income country and its food system is indicative of an industrial and consolidated typology [54]. Countries associated with the Mediterranean Diet, like Greece, have historically consumed diets that are low in red meat and high in plant foods, including pulses, with high fat intake from olive oil [63,64]. Greece has 747 grams of fruits and vegetables available per person per day, an abundant supply making it likely that most people in Greece would be able to access at least 400 grams of fruits and vegetables per day, the WHOdefined minimum [65]. However, Greece's national pulse supply is just 14 grams per person per day, indicating a likely challenge area, while other Mediterranean countries, including Italy and Spain, are 14 and 15 grams, respectively, and France is just 4.7 grams per person per day, indicating it is a likely challenge area for all of these countries. As this diagnostic exercise demonstrates in Fig 4, a common challenge for many countries is to provide sufficient supply of pulses in their food environments, but this is especially problematic for high-income countries. Pulses could play a key role in transforming food systems for improved nutrition and environmental sustainability, as they are less intensive in their GHGe and use of water than other protein-rich foods, and their consumption has been associated with reductions in key NCD-related risk factors, including low-density lipoprotein (LDL) cholesterol concentration and blood pressure [6].Recognizing the influence food environments have on consumer behavior and ultimately diet quality, a next step in this analysis might be to investigate whether diets are, in fact, also low in pulses. DQQ data from the Global Diet Quality Project indicate that in Greece, pulses are indeed a dietary gap, with just 18% of a nationally representative sample having consumed pulses in the day prior to the survey; this is coupled with relatively high consumption of red meat (44%) and processed meat (23%), and in contrast to high consumption of fruits and vegetables (95%) [33]. These diet data indicate that higher pulse consumption could substitute for some red and processed meat consumption, with co-benefits for NCD risk and environmental impact. In addition to the low physical supply, low pulse consumption could be brought on by unaffordability of pulses; however, in Greece the cost of pulses relative to starchy foods is cheap, indicating that cost is less likely to be a contributor.Examining its production-related indicators, Greece performs well on crop species richness, but has a likely challenge area related to average threats to soil biodiversity. Greece's average soil organic matter is also 47 tonnes per hectare, slightly lower than the Southern Europe regional average of 59 tonnes per hectare [66].A policy area for consideration to address these likely challenge areas may be to realign agricultural incentives towards increased production of pulses. Greater integration of pulses in agriculture may present an opportunity to improve environmental outcomes. Agroecological approaches emphasize agrobiodiversity as a means of enhancing the natural resources and ecosystem services that support sustainable yield gains, with low environmental impacts [67]. Inclusion of pulses in intercropping, cover cropping, and crop rotation strategies has been shown to improve soil structure, nitrogen fixing, and pest management [68][69][70].These factors suggest that pulses could feature well in a dual strategy to shift diets and improve soil quality in Greece. Agriculture policy could incentivize pulse production to increase availability and environmental co-benefits. Consumer demand creation activities centered around the Mediterranean diet could also be considered to complement agriculture policy that includes or focuses on pulses.This paper is the first of its kind to develop a methodology to diagnose food systems' performance to help inform food systems governance and accountability. The results indicate certain clear and consistent trends across income groups. However, each country faces a unique set of likely challenge areas. While many trends observed by income classification may be intuitive, the diagnostic approach presented here adds numbers and nuances to these trends and supports the consideration of multiple likely challenge areas together. Jointly, this approach suggests a high potential for learning from different policy and programmatic interventions across countries-e.g., by identifying the positive deviants for a given indicator within a particular income classification or food system type, by connecting challenge areas, and by understanding the reasons behind successes and which ones could be replicated in other contexts.As illustrated by the above case studies, this diagnostic approach can inform policy making. For countries where the diagnosis suggests unlikely challenge areas, policies can be encouraged to sustain success and share lessons learned. For likely challenge areas, policies can be encouraged to improve the highlighted sub-optimal outcomes. The diagnostic approach also helps identify bundles of challenge areas for policy action: for each nutrition outcome, a road map is provided to relevant indicators within the food supply chain and food environment. Diagnosis within these food supply and food environment indicators pinpoints areas of relatively poor performance upstream from diet outcomes, where attention can be focused on context-specific policy actions that could improve outcomes. In other words, the diagnostic approach identifies both the symptoms of a malfunctioning food system as well as potential contributing factors, providing evidence to then suggest an appropriate set of interventions or treatments to consider. This analysis will be further strengthened in future iterations of the FSD with additional dynamic tools that can use data to guide decision-making.It is important to note that the diagnostic approach uses indicators to highlight likely challenge areas within food systems, but for many indicators the cutoffs were selected based on countries' relative performance, rather than absolute standards or targets. In addition, the indicators themselves are rarely an addressable problem-and should not be viewed as such. Rather, each indicator highlights one outcome of a complex causal chain of actions and interactions, along which there are several potential intervention points. For example, child stunting is a useful marker of delayed development and later chronic disease risk and indicative of multiple forms of deprivation occurring over a period of time-e.g., suboptimal nutrition, inadequate care, regular infection [71]. From a policy perspective, the key concerns are the underlying determinants and associated developmental outcomes of stunting. A high level of stunting indicates multiple underlying problems and should lead policy makers to seek to address these determinants (and their determinants). A proper diagnosis can thus begin with the indicator but not end there-instead looking for the possible points of leverage along the causal chain to that outcome. These points of leverage will vary across contexts and need to be interpreted with that local insight. Other indicators available on the FSD and elsewhere can help with this analysis-as indicated in the case studies shown above-but will also need to be combined with qualitative knowledge about the local culture, political economy, and which actions are likely to be most impactful. It is thus a guiding tool-not a determinative algorithm.Previous efforts have developed aggregate indices to assess food systems sustainability and performance [72,73]. Indices developed by Be ´ne ´et al. and Chaudhary et al. encompass 25 to 27 indicators, respectively, which are used to calculate a composite score. Indicators and composite metrics used to describe food systems in these two papers are continuous, which is useful to avoid misclassification, but from a policy standpoint, it is harder to identify areas within the food system for policymakers and other stakeholders to intervene. To our knowledge, the present paper is the first attempt to undertake a systematic food systems diagnosis using a dashboard approach with a diverse set of indicators spanning food systems components and applying this across countries.Strengths of this work include the use of a food systems framework (Fig 1) [29] to guide the identification of priority indicators and their interpretation, leveraging a uniquely broad dataset (both in terms of geographical coverage and food systems components) from the FSD. It is also highly transparent, with all data publicly available and all thresholds and approaches for setting them presented here. The relative simplicity of the approach, which leverages the best available data and evidence from diverse sources but translates this into an easily understood 'stoplight' rating, is also an advantage, although it comes at a cost of masking complexity. When considering use for policy, this simplification is useful, as excess complexity can be paralyzing and difficult for non-specialists to interpret. The work has also helped to advance understanding on development of actionable food systems indicators-that is, highlighting which indicators (among a large number available) can be used to inform real-world decisions.There are also certain limitations to this work. First, narrowing focus to just a few dozen indicators was necessary to prioritize and make the diagnostic approach understandable and actionable, but it may leave out other indicators that are also meaningful, especially in specific country contexts. In addition, there are certain components and outcome areas of the food system, such as livelihoods and cultural identity, which are not well covered with high-quality, relevant indicators-and are thus necessarily excluded here. Dietary data are also an important gap: due to limited availability of robust dietary data for most countries, dietary outcomes (aside from MDD, prevalence of infants 6-23 months consuming zero fruit or vegetables, and prevalence of infants 6-23 months consuming no meat, fish, or eggs) are omitted until they become available across countries. In the future, the FSD will include more dietary outcomes to better assess diets as the critical link between food environments and nutrition and environmental outcomes. These outcomes will include the minimum dietary diversity for women of reproductive age (MDD-W); an indicator of consumption of all five recommended food groups (vegetables; fruits; pulses, nuts, and seeds; animal source foods; and starchy staples); and indicators of risk factors for NCDs defined within WHO and other global recommendations, including consumption of adequate fruits and vegetables; whole grains; pulses, nuts, and seeds; and fiber and limited consumption of free sugar, salt, fat, saturated fat, and red and processed meat [33]. It is also recognized that the quality of data for certain indicators (e.g., GHGe) might differ between countries and that might affect identified patterns. Second, this systems approach allows users to consider bundles of challenge areas and draw potential connections between those, but to make statements about causality, more in-depth analysis is needed. Third, the presented results focus at the global and national levels and do not consider subnational data-even though certain countries (e.g., India) have considerable subnational diversity within their food systems as well as locally devolved policymaking processes. Fourth, many of the indicators come from official global repositories, the most reliable and comparable data sources (e.g., FAOSTAT); however, these often poorly capture the role of wild or local foods in diets, the environment, and local economies [49]. Finally, for indicators where no cutoffs have been published and no normative values exist, the cutoffs are based on density plots and countries' relative performance. These cutoffs could be refined in the future with more evidence of meaningful normative values.There are several opportunities to build on this work. First, identifying potential challenge areas through this quantitative approach can trigger and support in-depth context-specific analysis, which includes stakeholder consultation and the integration of qualitative information to provide a more nuanced diagnosis and resulting decision options. National stakeholders may also enrich their analyses by supplementing the diagnosis with other data available at country-level, as has been demonstrated in the case studies in their drawing on DQQ data for Tanzania and Greece. Second, each of the diagnostic indicators could be paired with relevant policy and programmatic innovations (be they technological, nature-based, or societal) to improve both diets and planetary health. While no single action can fix food systems, governments, non-governmental organizations, civil society, and businesses can each act to start to transform food systems. It is hoped that the diagnostics presented in this paper are a step towards better monitoring of food systems performance that can lead to stronger governance and accountability of food systems and their transformation.","tokenCount":"5660"} \ No newline at end of file diff --git a/data/part_3/5387886691.json b/data/part_3/5387886691.json new file mode 100644 index 0000000000000000000000000000000000000000..094f108dca182b8895dad9dd17f0286080c7e0c7 --- /dev/null +++ b/data/part_3/5387886691.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"3f789bca9fbff94ac32632bb22663907","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/000b857b-b525-4d66-a6fa-45db2e751b9b/retrieve","id":"-796558831"},"keywords":["biological applications, ecosystems, ecology pollination, vertebrates, arthropods, ecosystem services, shade cover, forest distance CO-A, 0000-0002-4106-5586","BM, 0000-0001-9461-3243","EAM, 0000-0001-5785-9105","ET, 0000-0002-7838-6228","TH-D, 0000-0002-5399-7014","N-CS, 0000-0002-1434-271X","CU-S, 0000-0001-7580-4415","FFY, 0000-0002-6084-5860","TT, 0000-0002-4482-3178","IS-D, 0000-0003-1359-3944"],"sieverID":"bb2bacd7-040c-4bf1-a911-e1d5b284ce5c","pagecount":"9","content":"Animals provide services such as pollination and pest control in cacao agroforestry systems, but also disservices. Yet, their combined contributions to crop yield and fruit loss are mostly unclear. In a full-factorial field experiment in northwestern Peru, we excluded flying insects, ants, birds and bats from cacao trees and assessed several productivity indicators. We quantified the contribution of each group to fruit set, fruit loss and marketable yield and evaluated how forest distance and canopy closure affected productivity. Fruit set dropped (from 1.7% to 0.3%) when flying insects were excluded and tripled at intermediate (40%) compared to high (greater than 80%) canopy cover in the non-exclusion treatment. Fruit set also dropped with bird and bat exclusion, potentially due to increased abundances of arthropods preying on pollinators or flower herbivores. Overall, cacao yields more than doubled when birds and bats had access to trees. Ants were generally associated with fruit loss, but also with yield increases in agroforests close to forest. We also evidenced disservices generated by squirrels, leading to significant fruit losses. Our findings show that several functional groups contribute to high cacao yield, while trade-offs between services and disservices need to be integrated in local and landscape-scale sustainable cacao agroforestry management.Ecosystem services such as pollination and pest control support yields of globally important crops, thus ensuring a considerable part of the world's food supply [1,2]. These nature-based services are biodiversity-driven [3] and provided by multiple animal groups. Vertebrates such as birds and bats, as well as arthropods, may control pest populations [4,5], while bees and many other animals are important crop pollinators [6]. But animals can also cause substantial disservices: some herbivorous arthropod species are pests threatening yields of many crops. Aside from arthropods pests, rodents or other mammals can damage or raid fruits [7,8]. Some animal taxa can be involved in more than one ecosystem service [9], while other taxa are known to provide both services and disservices in the same crop system [10], which can result in management trade-offs. Interactions among services exist as well. For example, beneficial effects of pollination on yields can depend on the level of pest control (e.g. by herbivores lowering attractiveness to pollinators [11]). Therefore, assessing both ecosystem services and disservices is essential to account for potential trade-offs and interactions in biodiversityfriendly and sustainable crop management [12]. Yet, only a handful of studies have addressed multiple services and disservices simultaneously [13,14].In cacao, a tropical crop grown in agroforestry systems that can be wildlife-friendly [15], multiple animal groups mediate yields. Animal pollination limits productivity: the exclusion of flower visitors can result in fruit set values equal or close to zero [16], even though the identity of pollinator species remains unclear [17]. Pollination gains can be undermined by insect pests causing fruit loss [18], but these pests can be successfully controlled by birds and bats. Yield gains have been attributed to arthropod control by flying vertebrates [19,20]. Other vertebrates, such as squirrels and other rodents, prey on mature cacao fruits and can cause severe harvest losses [8]. Harvest loss can also be due to fungal infections, and by propagating fungal spores, ants can enhance fruit loss [5,10,18]. However, ants can also support yield gains, through reduction in flower and leaf herbivory [5]. Knowledge on combined effects of animal groups is critical to improving our understanding of services and disservices, which in turn might allow developing more efficient management recommendations for profitable and sustainable biodiversity-friendly cacao agroforestry.The abundance and diversity of services and disservices provided by animals in cacao agroforests are also affected by agroforest and landscape characteristics, such as shade cover and forest distance [5]. Shade cover provided by the canopy of non-cacao trees in agroforests, can improve growing conditions for cacao [21], the prevalence of birds and bats [22], and cacao flower visitation rates [23]. On the other hand, high shade cover can promote the occurrence of pest species and counteract natural pest control [18]. Forest proximity can also influence pest control and pollination, as forest remnants in the landscape provide habitat to many animals, including flying vertebrates and arthropods [24], potential natural enemies of cacao pests. For example, typically, more birds and bats can be found foraging in cacao agroforests closer to the forest than at further distances [22]. As for arthropods, there is evidence of certain cacao flower visitors [25] and ant species [26] being impacted by increasing distance to forest, though this is not consistent across studies [23]. Forest distance and shade cover thus have important implications for biodiversity and the ecosystem functions they provide.Understanding the complex interactions between animals, the services and disservices they provide, and their dependence on local and landscape characteristics is crucial for aiding decision-making in sustainable cacao agroforestry management. We quantified multiple ecosystem services and disservices in cacao agroforests established in a Peruvian tropical dry forest environment, using exclusion cages and barriers to prevent access of certain animal groups to cacao trees. We excluded flying insects, ants, birds and bats and measured four productivity parameters: fruit set, marketable yield and fruit loss. We analysed fruit loss due to squirrels separately from other fruit loss causes, as these rodents are an important pest species in the study region. Additionally, we assessed how forest distance and canopy cover affected productivity to identify key animal-driven services and disservices.We performed the study in 12 organic cacao agroforests located around the farmer community of La Quemazón, in the Piura region of northwestern Peru (5.31°S, 79.72°W, 240 m.a.s.l.; electronic supplementary material, figure S1). The region is characterized by a hot and semi-arid climate, with mean annual rainfall of 235 mm, mostly concentrated between December and March, and a native vegetation cover of submontane, seasonally dry tropical forests [22,27]. To compensate for low water availability in the dry season, agroforests are irrigated by means of gravity-fed flood canals every four weeks on average, depending on water availabilityThe cacao agroforests ranged in size between 0.3 and 1.1 ha, had comparable cacao planting densities (3 × 3 m or 3.5 × 3.5 m planting grids) and age (5-to 10-year-old) but differed in shade cover (39-84%) and distance to forest (0.1-1.2 km). Shade cover was assessed using a Forest Suppliers spherical densiometer with convex mirror, by averaging the readings of canopy closure (%) in 20 points spread over an area of about 0.15 ha, to obtain a mean value per agroforest. Shade trees were mainly fruit trees such as Inga spp., avocado (Persea americana), mango (Mangifera indica) and mamey (Mammea americana) [28].Distance from each agroforest to the nearest forest (kilometre) was calculated with ArcMap 10.5.1, using a land-use map of Piura [29] updated through ground-truthing [22,28]. The vegetation in the tropical dry forests near the agroforests was scarce in comparison with wet tropical forests. Vegetation was dominated by trees with low diameter at breast height [30], the most common species being Prosopis sp. and Ceiba trichistandra ( [22] and references therein).We established three vertebrate exclusion treatments in September 2019 (figure 1) with exclusion of birds and bats, only birds or only bats, and one open control treatment in each of the 12 selected cacao agroforests and maintained them functional for approximately 1 year, until October/November 2020. Vertebrate exclusions consisted of cages with a size of 2 m wide, 5 m long and 3 m high, each containing two adult cacao trees. Pairs of experimental trees were spaced by 6-9 m, in an area of approximately 0.15 ha. The scaffolds of the structure were made of bamboo poles, and fishing mesh with 2.5 cm openings was used to cover all sides and roof of the cage, preventing the access of birds and/or bats. Selectivity was ensured by differential opening times of each treatment: (1) control treatments consisted of two cacao trees per agroforest left permanently accessible to vertebrates and without a cage constructed around them; (2) bird exclusion cages were kept closed during the day (6.00-18.00) and open during the night (18.00-6.00), to allow the access of nocturnal vertebrates; (3) bat exclusion cages were kept open during the day and closed during the night; (4) full exclusions were permanently closed. Cages were opened and closed manually, every day, for the entire duration of the experiment. By excluding flying vertebrates, we also royalsocietypublishing.org/journal/rspb Proc. R. Soc. B 289: 20221309 excluded squirrels (white-naped squirrel; Sciurus nebouxii), notorious diurnal fruit predators in the region [31][32][33]. All trees, including uncaged control trees, were regularly pruned to ensure a standardized tree size throughout the experiment. It is likely that due to the regular pruning, yields on experimental trees were lower than on other trees.One of the two trees per vertebrate exclusion treatment was subject to an ant exclusion treatment consisting of a vinyl cone located at the base of the trunk, covered with Schacht insect sticky glue, to prevent ants from crawling up the plant from the ground (figure 1). The vinyl cones were tied with rubber tires to the cacao bark at around 30 cm height and isolation foam was stuffed between the cone and the bark (electronic supplementary material, figure S2D). Further, we used cotton wool to stuff cracks, to avoid the smallest ants from crawling up the cacao trees. To also eliminate tree-nesting ants, we applied small doses of a plantbased insecticide Atoxin 15 EC (10 ml l −1 ) with a pipette inside existing ant nests, and when necessary, the application was repeated every two weeks for the entire duration of the experiment. Glue layers were refreshed every two weeks, to prevent the glue from drying out. Experimental trees were pruned regularly, so that the crowns and branches of trees within each cage did not touch each other or the nets, to avoid ant recolonization.We excluded flying insects from flowers on each of the 96 experimental trees by covering a 35 cm long branch section with UV-stabilized polypropylene gauze (0.5 mm mesh size), supported by an aluminium framework, and sealed with plant wire (figure 1; electronic supplementary material, figure S2B). To permit the access of ants, we inserted little twigs between the nets and the cacao branches, but only in the trees without ant exclusions (electronic supplementary material, figure S2C). Although we aimed to selectively exclude ants only, other crawling insects, such as beetles or bugs could have also entered the exclusion cages through the twig, and likewise, could have been excluded by the ant-barriers.Every two weeks from November 2019 until October/November 2020, we conducted counts of all recently fertilized fruits (measuring between 1 and 3 cm) and open flowers on each tree. Flower counts started two weeks earlier than the fruit counts and both counts were repeated every 14 days over a period of 1 year. As in other studies [25], small fruits between 1 cm and 3 cm were summed per tree, over the year. Fruits less than 7 days old are smaller than 1 cm and thus not large enough to be reliably monitored. Therefore, we considered only the first 7 days of flowering relevant for calculating fruit set rates. We multiplied the sum of daily flower counts by 7 to obtain an estimate of the total number of flowers that could have given rise to the observed fruits, assuming that flower counts on day one of each 14-day period were representative for the first 7 days. Subsequently, the estimates of small fruits were divided by the total number of flowers, to obtain an estimate of yearly fruit set (%) per tree. Because the decrease in fruit set on the exclusion branches could have been compensated by increasing fruit set on other flowers, outside of the exclusion treatments, as found in other crops [34], the fruit set rates on the tree level that we present here could be slightly overestimated.Additionally, harvested and lost fruits were counted every two weeks. Squirrel-related fruit loss (%) per tree was established as the proportion of non-harvested mature fruits, i.e. fruits that were large and almost harvestable but were not marketable due to seed predation by squirrels (electronic supplementary material, figure S5). We pooled all other, non-squirrel-related causes of fruit loss (electronic supplementary material, figure S3), i.e. insect damage, germinated seeds or malformed seeds to calculate nonsquirrel fruit loss (%). Cacao beans from harvested fruits were dried in the sun and then weighed with a 0.01 g pocket scale to obtain a final measurement of dry weight. The dry weight per tree (kilogram) was summed per tree over all counts (over a period of 1 year) and then multiplied by the number of trees/ha typical for our study area (1100 cacao trees, at a 3 × 3 m planting grid) to obtain a total yield value (kg ha −1 ).We constructed generalized linear mixed effect models (GLMM) using R Statistical Software [35] in R STUDIO 4.1.2 [36] to evaluate the effects of our exclusion treatments on productivity indicators. All models were assembled in the 'glmmTMB' package [37]. Diagnostic plots and tests for overdispersion and zero-inflation were done with the 'DHARMa' package [38], adapting the probability distribution when necessary. Model performance indicators were extracted with package 'performance' [39] and Wald χ 2 -tests (Anova type II) reported were conducted with package 'car' [40]. Predictions were obtained with package 'ggeffects' [41].We used a traditional null hypothesis testing approach in which we only included ecologically relevant fixed effect variables and interactions. We restricted ourselves to a priori hypotheses and two-way interactions to avoid overparameterizing our models. In all models, shade cover and forest distance were scaled, i.e. the values were subtracted by the mean and divided by standard deviation. In the first model, we assessed the effect of exclusion treatments and farm characteristics (shade cover and forest distance) on cacao fruit set rates. We used a betabinomial distribution with logit link function, using flowers as weights and site as random effect variable. Flying insects, ants and vertebrate exclusions, as well as canopy closure and forest distance were included as fixed effects. We also included two-way interactions of flying insect exclusion with canopy closure, forest distance, ant exclusion and vertebrate exclusion, as each of these parameters could affect the way insect exclusion altered fruit set. E.g. canopy closure and forest distance can affect insect abundances directly, and since ants and vertebrates might be involved in predator-prey relations with flying insects, we considered those the interactions of interest for the fruit set model.Second, we evaluated changes in cacao fruit loss due to squirrels (squirrel fruit loss/mature fruits), using a model with binomial distribution and logit link, using numbers of mature fruits per tree as weights. Fixed effect variables included were ant exclusion, vertebrate exclusion, canopy closure and forest distance, as well as the two-way interactions between the exclusion treatments and forest distance and canopy closure, respectively. We considered the interaction of ant and vertebrate exclusion not meaningful, because other, non-squirrel related fruit loss cannot be detected when pods are attacked by squirrels. Therefore, this interaction was left out of the analysis. Third, cacao fruit loss due to other causes (non-squirrel fruit loss) was analysed with a similar model as for squirrel-related fruit loss, the only difference being the inclusion of the vertebrate and ant exclusion interaction in this model. We assumed the interaction could be meaningful, for example when birds and bats have different ant predation rates. Fourth, we modelled cacao yield with a hurdle-gamma model (ziGamma), a distribution used to model continuous data with non-constant error that allows zero as a response, overcoming the restriction of a classical gamma distribution to strictly positive observations [42]. We included site as random effect variable; all other fixed effect variables and their interactions were included as in the non-squirrel fruit loss model.In total, 3337 young cacao fruits developed in total (mean per tree: 35.5 ± 3.0). Only 702 fruits fully matured, 596 of which were harvested, 52 were lost due to squirrel seed predation and 54 were lost due to other, non-squirrel related causes.Average yield was 220.0 ± 23.9 kg ha −1 (electronic supplementary material, table S1). Mean fruit set rates were 1.7 ± 0.2% for open pollination and 0.3 ± 0.1% for the flying insect exclusion treatment. Mean open fruit set rates doubled from 1.3 ± 0.3% under full vertebrate exclusion to 2.6 ± 0.5% when both birds and bats had access to the cacao trees, irrespective of ant exclusion (figure 2a and table 1). In open controls, predicted fruit set decreased with increasing canopy closure, from 3% under intermediate (39%) canopy closure to 1% under high canopy closure (84%, figure 2b and table 1).Squirrel fruit loss was highest in the treatments in which all vertebrates, including squirrels, had access to the trees (10.2 ± 3.8%), and was lower when partial and full exclusion treatments prevented squirrel access to cacao trees (figure 3a and table 1). Ant access was related to an increase in nonsquirrel related fruit loss, from 4.2 ± 1.3% to 6.9 ± 2%, independent of shade cover and forest distance (figure 3b and table 1). Yields more than doubled (114% higher) when both birds and bats had access to trees (331.2 ± 62.9 kg ha −1 , figure 4a and table 1), than under full vertebrate exclusion (153.6 ± 27.7 kg ha −1 ). There was weak evidence for an interaction between ant and vertebrate exclusion (table 1). In the presence of birds and bats, yield decreased 28% when ants had access (291.9 ± 79.8 kg ha −1 ), compared to when ants were excluded (374.1 ± 101.0 kg ha −1 , electronic supplementary material, figure S4). However, in the presence of only birds, ants seemed to benefit yields: their access improved yields by 43%, from 168.2 ± 52.2 kg ha −1 to 240.8 ± 83.7 kg ha −1 (electronic supplementary material, figure S4). Yield also decreased with distance to forest, but only in the presence of ants, not in their absence (figure 4b and table 1). Predicted values ranged from 612 kg ha −1 next to the forest to 98 kg ha −1 at distances further than 1 km from the forest. No such effect was observed on trees from which ants were excluded (figure 4b and table 1).Understanding interactions and trade-offs between ecosystem services and disservices of animals is crucial for establishing biodiversity-friendly sustainable management strategies, and to achieve higher-yielding cacao agroforests. Here, we provided a first quantification of the complex interactions between services and disservices in cacao agroforestry. Through our full-factorial experiment, including the yearround assessment of fruit set, fruit loss and yield, we quantified insects and vertebrates' impact on cacao productivity. Fruit set increased when flying insects as well as birds and bats had access to cacao trees and flowers. We also demonstrated a yield increase due to bird and bat access. The effect of ants was twofold: when ants had access, yield increased, but only in agroforests close to forest. Yet, ants also caused minor fruit loss (annually: −9.2 kg ha −1 ). Fruit loss due to squirrels was of bigger importance (annually: −30.1 kg ha −1 , figure 5). Overall, yield gains due to birds and bats (177.6 kg ha −1 ) and flying insects (272.8 kg ha −1 ) were larger than fruit losses caused by squirrels and ants.Our simultaneous assessment of services and disservices support the design of local and landscape-scale sustainable management strategies that maintain functional biodiversity and maximize benefits for smallholder farming.(a) Flying insect services: fruit set increaseMean fruit set dropped from 1.7% to 0.3% when flying insects were excluded from flowers, underpinning the importance of flying insects as pollinators of cacao that ensure fruit set and yield [16,43]. Therefore, farm management in favour of flying arthropods can likely enhance yield, despite the difficulties associated with scaling up data from the branch to the treelevel and current knowledge gaps about the precise identity of cacao's pollinators [16]. Here, pollination services were better supported by intermediate than high shade cover. This observation is concordant with previous evidence of high yield values in cacao with intermediate shading [5,21] while conserving biodiversity [15]. It is also in line with previous evidence of correlations between shade tree density and abundances of insects that are pollinator candidates, such as ants and Dipteran flies [23]. Considering that abundances of some cacao flower visitors can be promoted by improving habitat conditions [23,44], appropriate shade management might help creating microclimatic conditions that favour flying insect visitors [45], thus enhancing cacao yields.Flying vertebrate access enhanced fruit set. However, in the absence of data on arthropod abundances, we can only speculate about the underlying processes. A direct effect through birds and bats pollinating the crop seems unlikely: these vertebrates are much larger than the tiny cacao flowers (1-2 cm intersection). Indirect effects, such as increased pollination and/or reduced herbivory [46,47], are more likely to explain our observations. The large proportion of insectivorous bird and bat species in our study area may control arthropod populations [19,22]. The absence of birds and bats may have resulted in an increased density of mesopredators, which may have reduced the abundance of cacao pollinators. Indeed, exclusion of flying vertebrates has been linked to higher abundances of spiders and ants [20], which in turn may prey on cacao pollinators, causing lower fruit set rates. Further, access of birds and bats to cacao trees is expected to negatively impact the densities of aphids and other herbivores [19], preventing flower damage and potentially fruit abortion, hence increasing fruit set. Similar to other areas, in our study area, sap-sucking arthropods such as aphids and mealybugs are some of the most abundant pests of cacao, as well as phytophagous leaf beetles (Coleoptera: Chrysomelidae) [19,48]. However, their effects on cacao productivity, or the identity of top predators that may control them has not yet been assessed. A lower activity of herbivorous arthropods could result in higher fruit set by increasing the resources that the plant may allocate to fruit production, rather than leaf or flower regeneration [49]. But, detailed data on arthropod densities and food webs is required to test the hypotheses of potential pollination increase and/or herbivory reduction due to the joint access of birds and bats.(c) Bird and bat synergistic services: yield increaseOur study showed that birds and bats make a large contribution to cacao yields: their presence increased yield by 114%. The contribution we found, is larger than reported before [5,19], maybe due to the involvement of birds and bats in fruit set rates, and presumably, also in pest control, as in other studies. Both in previous and current studies, the cacao yield increase found in the presence of both birds and bats, was higher than the single benefits provided by birds or bats alone [19]. Such synergistic effects are common when different groups provide complementary ecosystem services [1], as may be the case in this study. It is probable that birds and bats have complementary diets, by consuming insects with different ecological functions. For example, one group could be consuming mostly leaf-consuming insects, while the second one consumes mostly flower herbivores or potential cacao pests [50]. Moreover, the differences in day and night-time activity peaks of the two taxa might allow no enemy-free time for potential cacao pests [51], which might be critical for arthropods whose activity peaks change during their lifetime (e.g. Lepidoptera with palatable larvae) [52]. In order to safeguard and improve birds' and bats' synergistic contributions to yield, strategies such as creating artificial nesting and roosting spaces for birds and bats could be considered [53,54]. However, benefits of such strategies should be locally assessed because the successes vary across regions [55].(d) Ant-related services and disservicesThe contribution of ants to cacao fruit production is complex [5,56,57], probably because their contributions depend on species identity and community properties [10,47]. On one hand, we found higher levels of fruit loss related to ant presence, but at the same time, close to forest cacao yield tended to be higher in trees to which ants had access. By forming symbioses with sap-sucking herbivores, and by propagating fungal infections, ants can provide disservices in cacao [5,56]. Detailed mapping of food webs in cacao agroforests would be required to unravel which of these mechanisms was causing ant-related fruit loss. Despite the ant-related fruit loss, yield benefited from ant access in proximity to forest patches. Presumably, some ant species that provide beneficial services to cacao agroforestry systems are dependent on the forest as a refuge or for reproduction, as forest properties can affect tropical ant communities [58]. Detailed information about the composition of ant communities and changes in function of forest distance in our study area would be needed to confirm this pattern. Owing to the association between forest and the persistence of particular ant species [58], maintaining existing forest patches in agricultural landscapes might be beneficial to enhance cacao yield. Known ways in which ants contribute to cacao fruit development are through pest control or aiding pollination by enhancing visitation of small insect visitors of flowers [4,10], but the functional ecology of ants largely depends on the species [59]. Because of the varied functional ecologies of ants, identifying the role of different ant species will be crucial to confirm the positive combined effect of forest maintenance, ant presence and increased yields [58,60].(e) Squirrel-related disservices: fruit predationWe quantified an important disservice of vertebrates in cacao: fruit predation by squirrels caused an average loss of 10% of mature fruits from unmanipulated trees, totalling to 30 kg ha −1 annual yield loss. The lower squirrel-related fruit loss in the partial vertebrate exclusion than in the control trees which did not have cages built around them, might indicate that exclusion cages deter squirrels, even when the nets are open. An alternative explanation is that by opening of the nets during dusk and dawn, when squirrels are most active, they avoided the caged trees more than the free-standing ones. Fruit predation by squirrels [32] and other rodents [8] have been reported elsewhere as well, and sometimes even more severe. In Ecuador for instance, fruit losses of up to 30% have been related to the same squirrel species, Sciurus nebouxii [32]. Farmers believe that in our study area, squirrel populations have surged due to a combination of habitat loss and reduced abundances of native snakes which could be natural squirrel predators. As such, biocontrol by introduction of natural enemies could be a management option to further investigate. The need for research on realistic management alternatives to minimize squirrel disservices in cacao is underlined by the large harvest losses due to squirrels.In summary, we quantified the benefits that insects, birds, and bats provide to cacao yield by improving fruit set rates and marketable yield, but we also showed that squirrels and ant species can provide important disservices by enhancing fruit loss (figure 5). Because the yield losses by ants and squirrels represent significant income losses for farmers (9.2 and 30.1 kg ha −1 yr −1 , respectively), management should aim at minimizing these disservices. Nevertheless, the positive yield contributions by biodiversity surmount the yield losses. Yield gains due to flying insects could mount to 272.8 kg ha −1 yr −1 , whereas birds and bats provide benefits of 177.6 kg ha −1 yr −1 . Our results also show variations in contributions of ants and flying insects, due to forest distance and shade cover (not shown in figure 5). Based on our findings, we propose that biodiversity-friendly and sustainable management should: (1) comprise intermediate levels of shade cover of around 40%, to foster populations of flying insects that are indispensable for fruit set success; (2) maintain or restore forest patches at distances of only a few hundred meters to maintain beneficial effects on marketable yields; and (3) implement management strategies that account for interactions among services and disservices.Ethics. The research was developed under permit no. 0519-2019-MIN-AGRI-SERFOR-DGGSPFFS. All farmers granted us permission to work in their farms.","tokenCount":"4616"} \ No newline at end of file diff --git a/data/part_3/5391805831.json b/data/part_3/5391805831.json new file mode 100644 index 0000000000000000000000000000000000000000..5c3f746691eb7bab3a89b1c2c1013f7a93e7f71c --- /dev/null +++ b/data/part_3/5391805831.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"ba3bcd82573d3515ea32808bce659abc","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/41f1c1aa-3a1f-4faa-a53e-076b400a6720/retrieve","id":"1463952609"},"keywords":["lowland rice","lines","correlations","leaf bronzing score","yield","iron-toxicity"],"sieverID":"a2a26b5a-46c0-47b2-bb8a-f0e4c28e7850","pagecount":"14","content":"Rice is a major grain crop in numerous countries. In lowland areas, high iron levels in the soil severely hinder its cultivation. The current study explored high-yielding and Fe-toxicity-tolerant irrigated lowland rice (340 lines) among a population derived from a cross between Suakoko 8 and Bao Thai in Edozighi and Ibadan, Nigeria. In contrast to Ibadan, the soils in Edozighi contain a significant amount of iron. For the stated purpose, we carried out a two-year experiment using an alpha lattice design. The data showed significant differences between genotypes for the days to heading, plant height, number of tillers per plant, number of panicles per plant, panicle length, and grain yield. The results revealed that multiple characteristics had both direct and indirect effects on cultivated rice yields. There was a direct and positive influence on the number of days in the 50% heading period (0.31), a direct and negative effect on plant height (−0.94), a direct and positive effect on tiller and panicle numbers, and a direct but negative effect on panicle length (−0.56). The leaf bronzing score was adversely correlated with yield, panicle length, and plant height, while it was positively correlated with the number of panicles, tillers, and days to heading. The findings showed significant changes in yield and yield characteristics between genotypes. Grain yields ranged from 283 to 11,700 kg/ha in the absence of iron in the soil, contrary to 0 to 8230 kg/ha in soil with iron toxicity, with losses estimated between 6 and 94%, demonstrating the resulting disaster. In contrast to the elite parents and varieties used in this study, the ten top genotypes exhibited smaller losses in yield. The authors strongly recommend using these lines for further studies as donors or releasing them in farmer fields in Africa.In Western Africa, rice is a crucial food security staple [1,2]. Due to population expansion, urbanization, and rising demand, rice consumption in this region has rapidly expanded [3]. The sub-region's average per-capita consumption rose from 32 kg in 1990 to 34 kg in 2000 before peaking at 49 kg in 2012 [4]. In West Africa, where local production only meets 60% of the region's needs, there is regrettably still a constant rice shortage. Rice self-sufficiency rates are less than 40% in nations like Senegal, Ghana, Benin, and Côte d'Ivoire [5]. According to estimations for 2011 and 2012, regional imports totaled between 7 and 8 million tons, costing between USD 3.5 and USD 4.0 billion [6]. More than half of West Plants 2024, 13, 1610 2 of 14 Africa's rice imports come from Nigeria, Senegal, Côte d'Ivoire, and Benin [7]. According to Fitzgerald et al. [8], rice is the most significant crop among the essential carbohydrate sources that feed the world's population, providing over 21% of the caloric demands of the overall population. Researchers cite abiotic and biotic stresses as the main factors that reduce yield in rice [9].Most organisms require iron for normal growth. As a chelating molecule, iron (Fe) is essential for plant metabolic processes like mitochondrial respiration, photosynthesis, electron transport, and other redox reactions [10,11]. Iron toxicity, on the other hand, can result from excessive Fe buildup in cells, causing nutritional problems, physiological and agronomic decline, and even plant mortality, Li et al., 2024 [12,13]. One of the most significant abiotic pressures on rice productivity in lowland areas in many parts of the world is Fe toxicity, and Mahender et al. [14] found that this stress affects about 18% of soils worldwide.Depending on the rice genotype, the quantity of Fe contamination, and the soil fertility level, decreases in rice production under Fe stress ranged from 12 to 100% [15,16]. Within the oxygen-poor conditions of tropical lowland rice fields, ferric oxide (Fe 3+ ) changes into the reduced ferrous form of Fe 2+ . This makes more Fe toxicity available [12]. According to several studies [17,18], the extra Fe 2+ is transferred from the root to the shoot and causes leaf bronzing, cellular oxidative harm, nutritional deficit, and reduced rice development. Rice exhibits several defensive strategies against Fe toxicity in diverse ways at different developmental stages [17]. According to Rasheed et al. [12], several genes have been linked to numerous physiological and agronomic reactions to Fe toxicity, including Fe 2+ absorption, translocation, subcellular translocation, and Fe 2+ regulation. A fantastic answer to the Fe toxicity issue is the breeding of Fe 2+ -tolerant rice varieties. In order to release rice varieties that are tolerant/resistant to Fe 2+ , a marker-assisted breeding method is a promising approach. Rice intra-specific and inter-specific mapping populations have been used in a number of studies to try and discover quantitative trait loci (QTLs) or genes linked with Fe 2+ toxicity [19][20][21]. The identification of QTLs and genes linked to Fe 2+ toxicity-related depictions in rice has also been performed using genome-wide association studies [21][22][23].To test plant material in multiple environments, many plant breeders conducted multi-environment trials to develop varieties adapted to various conditions [24]. Multienvironment trial data have helped discover high-yielding maize, sorghum, irrigated, and upland rice varieties [25][26][27][28][29][30]. Classical statistical models analyze genotype-environment interactions and provide important information. These models include site regression, genotype regression, shifted multiplicative, totally multiplicative, and genotype-by-environment biplot. Additive Main Effect, and Multiplicative Interaction (AMMI), and Genotype × Genotype × Environment (GGE) are popular with plant breeders. AMMI used analysis of variance and principal component analysis [31], while GGE biplot used genotype and environment scores. The AMMI model only captures genotype by environment using singular value decomposition on twice-centered, two-way data. However, in environment-centered two-way data [32], GGE uses singular value decomposition to capture genotype and genotype by environment. Genotype-by-environment models have been used in upland rice breeding for drought stress resistance [33,34], adaptation and yield stability [35], optimum planting date [36], and root morphology [37].The current study explored high-yielding and Fe-toxicity-tolerant irrigated lowland rice among a population derived from crossing Suakoko 8 and Bao Thai under field conditions.According to the first assessment, there was no difference in rainfall between Ibadan and Edozighi in July 2012 (Figure 1). August was rainier in Edozighi, while the rest of the months were rainier in Ibadan. In 2013, Ibadan was the rainiest during the whole evaluation period. The average temperature was the same (p < 0.05) between Ibadan and Edozighi from July 2012 to September 2012 and 2013, but the heat recorded in Edozighi was higher until the end of the two experiments (Figure 1).According to the first assessment, there was no difference in rainfall between Ibadan and Edozighi in July 2012 (Figure 1). August was rainier in Edozighi, while the rest of the months were rainier in Ibadan. In 2013, Ibadan was the rainiest during the whole evaluation period. The average temperature was the same (p < 0.05) between Ibadan and Edozighi from July 2012 to September 2012 and 2013, but the heat recorded in Edozighi was higher until the end of the two experiments (Figure 1). Shapiro-Wilk normality tests on genotype growth characteristics yielded p-values under 0.001 (Table 1). Thus, the quantitative variable's normalcy assumptions are rejected with 99.99% confidence. In this scenario, the Kruskal-Wallis test serves as an alternative to the analysis of variance. There were significant differences between genotypes in the number of days until 50% heading (DH), plant height (PH), number of stems per plant (NT), number of panicles per plant (NP), panicle length per plant (PL), and yields by genotype in kg/ha (GY). The Kruskal-Wallis tests on the median values of the studied genotype growth characteristics are shown in the Table 1. Shapiro-Wilk normality tests on genotype growth characteristics yielded p-values under 0.001 (Table 1). Thus, the quantitative variable's normalcy assumptions are rejected with 99.99% confidence. In this scenario, the Kruskal-Wallis test serves as an alternative to the analysis of variance. There were significant differences between genotypes in the number of days until 50% heading (DH), plant height (PH), number of stems per plant (NT), number of panicles per plant (NP), panicle length per plant (PL), and yields by genotype in kg/ha (GY). The Kruskal-Wallis tests on the median values of the studied genotype growth characteristics are shown in the Table 1. The analysis of the variables' distributions displays different patterns observed in all prior quantitative parameters studied. Table 2 presents the summary and findings of numerous identified trends. The average period from sowing to heading at the Ibadan location was 85.7 ± 8.79 days after sowing (DAS), with a range of 62.0 to 110 DAS. The duration in Edozighi ranged from 69 to 116 DAS, with an average of 91.8 ± 9.85 days. Days from sowing to heading (DH) fluctuated between 62 and 116, with an average of 88.7 ± 9.82 days. The median analysis showed that more than half of the plants had reached semi-flowering 90 days following plantation. Plant heights in Ibadan ranged from 102 to 201 cm with an average of 130 ± 17.5 cm, while in Edozighi they ranged from 58.3 to 148 cm with an average of 108 ± 12.6 cm. The average height at both sites is 134 ± 30.5 cm, with extreme values ranging from 58.33 to 201 cm, including a median height of 127 cm. Plants were taller in Ibadan than in Edozighi, characterized by an abundance of iron in the soil. High Fe 2+ levels in the soil in Edozighi resulted in a decrease of around 32.5% in plant height compared to the average recorded in Ibadan (Table 2).According to the results, Edozighi had more tillers on plants than Ibadan. In Ibadan, tillers ranged from 5.00 to 23.00, with an average of 11 ± 2.97 tillers per plant. However, in Edozighi, the genotypes had 10.00 to 36.30 tillers per plant, with an average of 19.50 ± 4.82 tillers. The population analyzed had tillers per plant ranging from 5.00 to 36.30, with an average of 15.20 ± 5.85 and a median of 14.3. Edozighi had more panicles per plant than Ibadan, whose soil had low iron levels. In Ibadan, the number ranged from 3.33 to 26.7, with an average of 9.47 ± 2.80 panicles per plant. The study found an average of 16.5 ± 4.69 panicles per plant in Edozighi, with a range of 6.67 to 34.3. More than half of the accessions evaluated had more than 12 panicles per plant, with a median of 12.0. There was a 12.5% decrease in panicle length in plants evaluated in a growing condition with a high Fe 2+ content, as compared to plants sown in Ibadan (Table 2). In Ibadan, panicle lengths ranged from 20.0 to 41.0 cm, with an average of 28.8 ± 3.17 cm. In Edozighi, panicle length varied from 18.3 to 32.0 cm per plant, with an average of 25.2 ± 2.99 cm. Panicles in Ibadan are longer than in Edozighi, measuring 18.3 to 41.0 cm, with the majority exceeding 27 cm.Plant output is higher in Ibadan than in Edozighi, where plants are more susceptible to Fe 2+ . Yields in Ibadan varied between 283 and 11,700 kg/ha, with an average of 6120 ± 2520 kg/ha. In Edozighi, yields ranged from 0 to 8230 kg/ha, with an average of 1390 ± 665 kg. Moreover, half of the plants evaluated yielded more than 2240 kg/ha, resulting in an average yield of 3750 ± 3000 kg/ha. The excessive Fe 2+ content in Edozighi Plants 2024, 13, 1610 5 of 14 reduced the yield by 77.28% reduction in yield when compared to the average yield in Ibadan.The correlogram illustrates that there are a few substantial relationships at 5% between flower growth traits (Figure 1). The correlation study revealed a high positive association between stem number and panicle number (0.97). Stem and panicle counts, on the other hand, have a negative correlation with grain yield. However, the number of days at 50% heading (DH) has a negative correlation with plant yields, panicle lengths, and plant height. However, the number of days observed at the 50% heading stage has a positive and weak relationship with the number of tillers and panicles, respectively. A highly significant negative correlation was noticed between the Fe toxicity score and plant height (−0.84), panicle length (−0.51), and plant yield (−0.78). However, a significant positive relationship was recorded between Fe toxicity and the number of tillers and panicles. Similarly, we observed a positive association between iron toxicity and the time required for heading.The path analysis of the examined variables revealed both direct and indirect effects on cultivated rice yields (Figure 2). According to the analysis, the transition to a high-iron toxicity environment has a direct and positive effect on the number of days in the 50% heading period (0.31), a direct and negative effect on plant height (−0.94), a direct and positive effect on the numbers of tillers and panicles, and a direct but negative effect on panicle length (−0.56).longer than in Edozighi, measuring 18.3 to 41.0 cm, with the majority exceeding 27 cm.Plant output is higher in Ibadan than in Edozighi, where plants are more susceptible to Fe 2+ . Yields in Ibadan varied between 283 and 11,700 kg/ha, with an average of 6120 ± 2520 kg/ha. In Edozighi, yields ranged from 0 to 8230 kg/ha, with an average of 1390 ± 665 kg. Moreover, half of the plants evaluated yielded more than 2240 kg/ha, resulting in an average yield of 3750 ± 3000 kg/ha. The excessive Fe 2+ content in Edozighi reduced the yield by 77.28% reduction in yield when compared to the average yield in Ibadan.The correlogram illustrates that there are a few substantial relationships at 5% between flower growth traits (Figure 1). The correlation study revealed a high positive association between stem number and panicle number (0.97). Stem and panicle counts, on the other hand, have a negative correlation with grain yield. However, the number of days at 50% heading (DH) has a negative correlation with plant yields, panicle lengths, and plant height. However, the number of days observed at the 50% heading stage has a positive and weak relationship with the number of tillers and panicles, respectively. A highly significant negative correlation was noticed between the Fe toxicity score and plant height (−0.84), panicle length (−0.51), and plant yield (−0.78). However, a significant positive relationship was recorded between Fe toxicity and the number of tillers and panicles. Similarly, we observed a positive association between iron toxicity and the time required for heading.The path analysis of the examined variables revealed both direct and indirect effects on cultivated rice yields (Figure 2). According to the analysis, the transition to a high-iron toxicity environment has a direct and positive effect on the number of days in the 50% heading period (0.31), a direct and negative effect on plant height (−0.94), a direct and positive effect on the numbers of tillers and panicles, and a direct but negative effect on panicle length (−0.56). Furthermore, the transition to a high-iron environment helps to increase the number of tillers (0.73%). This increase in the number of tillers supports an increase in the number of panicles, with a total variance of 75%. However, the panicles obtained had a 56% reduction in length. On the other hand, increasing plant height stimulates an increase in production; the delay during the flowering phase and the small size of the plants had a detrimental influence on plant yield. At that point, the move to an environment with Fe toxicity correlates to a sharp reduction (60.16%) in grain yields.Plants 2024, 13, 1610 6 of 14The studied genotypes were divided into four homogeneous groups using hierarchical classification and principal component analysis (Figure 3). The first two groups represented those exposed to environmental iron toxicity, whereas the latter two represented those cultivated in the control environment. Figure 3 summarizes the results of this study. The first category accounted for 20.29% of the tested population. It comprised 98.18% of genotypes grown under conditions characterized by iron toxicity. This group of genotypes had an average height of 111 ± 12.8 cm, 24.1 ± 3.46 tillers, and 21 ± 3.43 panicles. On average, this category's plants attained 50% heading in 93.7 ± 9.02 days. Their average yield per hectare was 1550 ± 832 kg. This category included those who produce more grains. The second group included 30.88% of the study's individuals. About 96.90% of genotypes grew in an environment with Fe toxicity. This group of genotypes had an average of 13.4 ± 2.51 panicles and 16.2 ± 2.66 tillers. These genotypes had a median size of 107 cm and produced an average of 1310 ± 643 kg/ha. This group included genotypes with low yields at the end of the trial.of tillers (0.73%). This increase in the number of tillers supports an increase in the number of panicles, with a total variance of 75%. However, the panicles obtained had a 56% reduction in length. On the other hand, increasing plant height stimulates an increase in production; the delay during the flowering phase and the small size of the plants had a detrimental influence on plant yield. At that point, the move to an environment with Fe toxicity correlates to a sharp reduction (60.16%) in grain yields.The studied genotypes were divided into four homogeneous groups using hierarchical classification and principal component analysis (Figure 3). The first two groups represented those exposed to environmental iron toxicity, whereas the latter two represented those cultivated in the control environment. Figure 3 summarizes the results of this study. The first category accounted for 20.29% of the tested population. It comprised 98.18% of genotypes grown under conditions characterized by iron toxicity. This group of genotypes had an average height of 111 ± 12.8 cm, 24.1 ± 3.46 tillers, and 21 ± 3.43 panicles. On average, this category's plants attained 50% heading in 93.7 ± 9.02 days. Their average yield per hectare was 1550 ± 832 kg. This category included those who produce more grains. The second group included 30.88% of the study's individuals. About 96.90% of genotypes grew in an environment with Fe toxicity. This group of genotypes had an average of 13.4 ± 2.51 panicles and 16.2 ± 2.66 tillers. These genotypes had a median size of 107 cm and produced an average of 1310 ± 643 kg/ha. This group included genotypes with low yields at the end of the trial. The third category comprised 15.44% of the study's genotypes. About 99.09% of the accessions planted at the Ibadan control site were what set it apart. These individuals had roughly 9.86 ± 3.09 panicles and 11.4 ± 3.01 tillers, with a median plant height of 146 ± 17.0 cm and an average yield of 5570 ± 2110 kg/ha. These plants had an average panicle length of 29.3 ± 3.03 cm. This category included cultivars with low grain yields from the start. The fourth category represented 33.38% of the genotypes in the study. This category encompassed all genotypes grown at Ibadan's control site. This group had around 9.17 ± 2.40 panicles and 10.6 ± 2.67 tillers, with median and average heights of 168 and 168 ± 12.2 cm, respectively, with an average grain output of 6500 ± 2550 kg/ha. This was the group of accessions that had a high basic yield.Plants 2024, 13, 1610 7 of 14An in-depth evaluation of the tested population revealed yield losses of up to 94%. The ten best genotypes, their parents, and the controls utilized, together with their yields in kg per ha, are presented in Table 3. Our findings revealed that IR 88638-230-1-1-1-1-1-1 (2855 kg/ha) and IR 88638-39-1-1-1-1-1 (2803 kg/ha) under stress outperformed 4793 and 5223 kg/ha under control, with a yield loss of 40 and 46%, respectively. Under stress, some of these lines, such as IR 88638-34-and IR 88638-208-1-1-1-1-1, had a higher yield than the donor parent of the tolerant gene (Suakoko 8) with 987 kg/ha. Similarly, based on the observations, the three lines IR 88638-325-1-1-1-1-1-1, IR 88638-102-1-1-1-1-1-1, and IR 88638-34-1-1-1-1-1-1 showed a very minor loss in yield at the lack of and with an excess of iron in the soil, with LBS of 6, 7, and 7. Under stress, the chosen lines produced better yields than their two parents and the local elite varieties used as controls. A Supplementary File (Table S1) contains a complete list of population yield performances in Edozighi and Ibadan. Edozighi GY Ibadan GY %Losses The field assessment was carried out in the Nigerian cities of Edozighi and Ibadan in 2012 and 2013, approximately encompassing five months from July to December, which corresponds to the rainy season. Figure 4 shows the weather conditions in the two sites. The town of Edozighi is located in the state of Niger in northern Nigeria. According to Nwilene et al. [38], Edozighi is in the tropical-warm/sub-humid agro-ecological zone, with acidic (pH 4.2-5.2) clay loam soil [39]. In contrast, Ibadan is located in Oyo State, and the trial was conducted in the wetland of the International Institute of Tropical Agriculture (IITA), situated at 7 • 29 ′ N and 3 • 54 ′ E, with alfisol type and acidic (pH < 6). The Edozighi site is well known for the extreme Fe 2+ toxicity that afflicts its rice farming, whereas the Ibadan site is distinguished by the lack of symptoms associated with Fe 2+ in the organs of the plant [40]. The soil properties were the same as reported by Sikirou et al. [40].For the first test, 340 genotypes of rice were used. These included the F5 and F6 families of 335 lines that were developed by crossing the elite irrigated resistant rice variety Suakoko 8 and the susceptible one Bao Thai [40,41]. The other five were the controls that comprised the two parents of the families (Suakoko 8 and Bao Thai), BW348-1 and WITA4 (both resistant), which mostly grow in Nigeria, and IR64 (susceptible), which are widely cultivated in several rice crops in Africa and Asia. Deep plowing had been the first step in preparing the land, then harrowing and soil leveling followed. Grasses were uprooted during soil preparation operations but remained on the surface and were manually removed. The fertilizers used were NPK (15, 15, and 15) and urea applied at a rate of 200 kg/ha and 50 kg/ha, respectively. Urea was applied on the day of the transplant, and NPK was provided in two split applications at 50% of the normal rate. The first application was at 42 DAS, and the second was at 63 DAS. These dates marked the peak of tillering and heading for most genotypes.Prior to transplanting at 14 days after sowing (DAS), at each of the two experimental sites, a seedbed was carefully constructed to serve as a nursery. To prevent mixing accessions, a labeled line represents each genotype. Water was administered twice a day to ensure the proper germination of the seeds. The field transplanting process involved transferring the seedlings, one plant per plot, to their respective elementary plots. The experimental set-up used was an alpha lattice in two replications (each of the two localities) per year. The trial contained a total of 364 elementary plots, divided into 13 incomplete blocks of 28 plots. The parcel area consisted of a single 3 m row where seedlings were transplanted, with a spacing of 0.2 m × 0.2 m as the distance between two consecutive plants and rows. With only 340 genotypes, out of the 24 unoccupied plots, 24 were filled by controls. At the end of the year 1 evaluation, plants that had not succumbed to the Fe 2+ toxicity disease had been harvested. This previous behavior, added to the quality of the For the first test, 340 genotypes of rice were used. These included the F 5 and F 6 families of 335 lines that were developed by crossing the elite irrigated resistant rice variety Suakoko 8 and the susceptible one Bao Thai [40,41]. The other five were the controls that comprised the two parents of the families (Suakoko 8 and Bao Thai), BW348-1 and WITA4 (both resistant), which mostly grow in Nigeria, and IR64 (susceptible), which are widely cultivated in several rice crops in Africa and Asia.Deep plowing had been the first step in preparing the land, then harrowing and soil leveling followed. Grasses were uprooted during soil preparation operations but remained on the surface and were manually removed. The fertilizers used were NPK (15, 15, and 15) and urea applied at a rate of 200 kg/ha and 50 kg/ha, respectively. Urea was applied on the day of the transplant, and NPK was provided in two split applications at 50% of the normal rate. The first application was at 42 DAS, and the second was at 63 DAS. These dates marked the peak of tillering and heading for most genotypes.Prior to transplanting at 14 days after sowing (DAS), at each of the two experimental sites, a seedbed was carefully constructed to serve as a nursery. To prevent mixing accessions, a labeled line represents each genotype. Water was administered twice a day to ensure the proper germination of the seeds. The field transplanting process involved transferring the seedlings, one plant per plot, to their respective elementary plots. The experimental set-up used was an alpha lattice in two replications (each of the two localities) per year. The trial contained a total of 364 elementary plots, divided into 13 incomplete blocks of 28 plots. The parcel area consisted of a single 3 m row where seedlings were transplanted, with a spacing of 0.2 m × 0.2 m as the distance between two consecutive plants and rows. With only 340 genotypes, out of the 24 unoccupied plots, 24 were filled by controls. At the end of the year 1 evaluation, plants that had not succumbed to the Fe 2+ toxicity disease had been harvested. This previous behavior, added to the quality of the grains and yield, is one of the factors that motivates rice farmers to adopt improved rice commodities (personal communication). The early lines of the family were harvested at 120 DAS, and water maintenance in the plot was stopped at 90 DAS to avoid grain loss due to rotting with excess moisture during irrigation. Harvesting and ginning had been performed manually. Figure 5a,b depict plant appearances after the heading stage in Idaban and Edozighi, respectively.Plants 2024, 13, x FOR PEER REVIEW 9 of 14 grains and yield, is one of the factors that motivates rice farmers to adopt improved rice commodities (personal communication). The early lines of the family were harvested at 120 DAS, and water maintenance in the plot was stopped at 90 DAS to avoid grain loss due to rotting with excess moisture during irrigation. Harvesting and ginning had been performed manually. Figure 5a,b depict plant appearances after the heading stage in Idaban and Edozighi, respectively.(a) (b) Agromorphological data were collected at the appropriate growth stage of rice, following field collection techniques [42] and the Standard Rating System (S.E.S.) for rice (IRRI, 2002). Six quantitative traits were evaluated, such as days to heading (days up to 50% heading), plant height, number of tillers, number of panicles, panicle length, and grain yield. The Leaf Bronzing Score (LBS) was collected based on leaf symptoms and general appearance on a scale of 0 to 9 (0 = normal or near-normal plant; 9 = nearly dead or dead plant) using a scale developed at the International Rice Research Institute (IRRI) at 35, 56, and 77 DAS [43].The open-source statistical analysis software R 4.3.2 was used to carry out the data analysis. We used the 'stats' package to do descriptive statistics, the Kruskal-Wallis median analysis test, and a correlation study of traits like plant height (PH), number of tillers (NT), number of panicles (NP), panicle length (PL), and yield in kg per hectare (GY). The 'ggcorrplot' package was required for correlogram representation. The 'FactomineR' and 'factoextra' packages were called for the principal component analysis (PCA) of our study's quantitative variables, as well as the creation of the hierarchical classification model. Path analysis was used to evaluate direct and indirect interactions among a variety of variables of interest. The packages 'lavaan', 'semPlot', 'OpenMx', and 'GGally' were required for this analysis. At the end, the formula of Reyniers et al. [44] was used to separate genotypes that performed best in terms of grain yield under stress.As a result of pollution, climate change, and food shortages, there is a need to find ways to grow more crops and develop new rice varieties that can cope with all the problems that come up. To contribute to this goal, we created a rice population using pollen from the iron-tolerant Suakoko 8 variety to improve the Bao Thai variety. For two years, we studied F5 and F6 populations that came from the above cross in Edozighi and Ibadan, which were different because the soils there were high in iron and low in iron, respectively. Following this phenotypic evaluation, different quantitative and qualitative data collected on the genotypes during these field experiments were analyzed for a deeper comprehension of the iron toxicity effect in the rice population developed on the one hand and the identification of iron-excess-tolerant genotypes in the lowlands [22,44], which Agromorphological data were collected at the appropriate growth stage of rice, following field collection techniques [42] and the Standard Rating System (S.E.S.) for rice (IRRI, 2002). Six quantitative traits were evaluated, such as days to heading (days up to 50% heading), plant height, number of tillers, number of panicles, panicle length, and grain yield. The Leaf Bronzing Score (LBS) was collected based on leaf symptoms and general appearance on a scale of 0 to 9 (0 = normal or near-normal plant; 9 = nearly dead or dead plant) using a scale developed at the International Rice Research Institute (IRRI) at 35, 56, and 77 DAS [43].The open-source statistical analysis software R 4.3.2 was used to carry out the data analysis. We used the 'stats' package to do descriptive statistics, the Kruskal-Wallis median analysis test, and a correlation study of traits like plant height (PH), number of tillers (NT), number of panicles (NP), panicle length (PL), and yield in kg per hectare (GY). The 'ggcorrplot' package was required for correlogram representation. The 'FactomineR' and 'factoextra' packages were called for the principal component analysis (PCA) of our study's quantitative variables, as well as the creation of the hierarchical classification model. Path analysis was used to evaluate direct and indirect interactions among a variety of variables of interest. The packages 'lavaan', 'semPlot', 'OpenMx', and 'GGally' were required for this analysis. At the end, the formula of Reyniers et al. [44] was used to separate genotypes that performed best in terms of grain yield under stress.As a result of pollution, climate change, and food shortages, there is a need to find ways to grow more crops and develop new rice varieties that can cope with all the problems that come up. To contribute to this goal, we created a rice population using pollen from the iron-tolerant Suakoko 8 variety to improve the Bao Thai variety. For two years, we studied F5 and F6 populations that came from the above cross in Edozighi and Ibadan, which were different because the soils there were high in iron and low in iron, respectively. Following this phenotypic evaluation, different quantitative and qualitative data collected on the genotypes during these field experiments were analyzed for a deeper comprehension of the iron toxicity effect in the rice population developed on the one hand and the identification of iron-excess-tolerant genotypes in the lowlands [22,44], which impairs the expansion of rice cultivation in Africa [15,45]. This method contributed to the efficiency of the selection process and the rice breeding goals [46]. This study discovered that there was a significant variation between the genotypes studied for all the attributes evaluated. Statistical analyses revealed that those genotypes differed significantly depending on the phenology, with lines having early, medium, and late heading days. Plant materials with early and late maturity could be used for the desired maturity or based on the forecasted climate. Early maturity genotypes can avoid stress intervals that trigger drought avoidance and the harmful consequences of salt stress in rice [47,48]. The results revealed that Fe 2+ toxicity delayed flowering in Edozighi compared to Ibadan. Correlation studies confirmed this pattern, revealing a slightly positive relationship between DH and LBS. The path analysis also corroborated this pattern, indicating a positive relationship between LBS and DH. Theerawitaya et al. [49] supported these findings by using genome-wide association analysis to identify features responding to iron toxicity stress at various stages in rice. According to these researchers, multiple QTLs in plants are linked to this mechanism.The results demonstrated a high level of variation within the population for agronomic traits such as PH, NT, NP, PL, and GY. In Edozighi, the soil's iron content significantly reduced PH, PL, and GY levels. Our findings are in line with the research investigations of Faruk et al. [50], who investigated various rice genotypes subjected to high iron levels in the soil. Our findings highlight a previously reported reduction in plant height caused by iron [51,52]. The negative effect of high iron on rice yields is consistent with earlier findings [15,17,50]. On the other hand, the current study found that the number of panicles and tillers per plant increased in the area with high iron levels in the soil. Correlation analysis, which demonstrated a favorable relationship between iron toxicity and an increase in the number of tillers and panicles per plant, was also supported by previous trends. Furthermore, path analysis revealed an identical attitude among the populations tested for iron toxicity tolerance. This group's unusual behavior was comparable to an adaptation mechanism some species have developed to counteract the effects of stress. During this investigation in Edozighi, the increase in the number of tillers and panicles reported on the plants is circumstantial. As a result, the majority of these abnormally emitted tillers died before they reached maturity. During the harvest, too many panicles were stunted and sterile, which is similar to what Faruk et al. [50] found: 50% of the grain on each panicle was empty when they looked at the grain yield under Fe toxicity conditions. According to Arthaud [53], no organism can endure the whole range of ecological conditions on earth, and natural selection has resulted in a variety of adaptations to environmental limits. Adaptations are described as an organism's traits that help it to survive or reproduce more effectively in its environment. The presence of these adaptations in an organism is limited by energetic trade-offs, as limited resources in the environment can only be allocated to particular types of adaptation. These modifications concern anatomical features, physiological processes, and behavioral mechanisms. Plants, being sessile organisms, are severely confined by environmental pressures and exhibit several adaptations when compared to animals, which, for the most part, have the ability to move throughout their environment to acquire the various necessary supplies.The correlation results and path analysis showed that plant height and panicle length had a significant impact on yields. Farmers' biggest concern is the grain yield because they need to sell it after harvesting. As a result, the breeder must prioritize these two characteristics when selecting the best line to reduce the negative impacts of iron toxicity on field yield. Our findings clearly highlight plant height and panicle length as essential components of rice productivity, and they corroborate various earlier studies. Li et al. [54] studied the relationships between yield and yield-related features for rice varieties released in China from 1978 to 2017. They found that plant height, number, and panicle length had a direct effect on yield, along with a number of other agronomic traits. Similarly, Bocco et al. [55] reported that plant height and panicle length per plant helped reduce rice losses during drought. On the other hand, Sikirou et al. [17] discovered that while working in pots on soils from diverse regions, plant height or number of panicles did not significantly affect grain yield. This difference between the findings, which stated that plant height and panicle length had a positive direct effect on yields, and the one that revealed that they had no influence on yields, may be due to the severity of the stress in situ. Similar results were found between grain yield and iron toxicity, while confirming that leaf bronzing score is a secondary trait of an indicator in selection for iron toxicity tolerance (18). Several genes, influenced by a wide range of variables, result in different behaviors, making all the above patterns typical. This study might have collected field data using only effective panicles and tillers. Thus, only tillers and panicles that have at least one well-filled seed would be considered. As a result, the tillers and panicles produced by the plant to avoid iron toxicity would not be considered during data collection. This research did not find a link between genes and the number of tillers and panicles per plant. This suggests that genotypes' tendency to produce an excessive number of tillers and panicles may be due to high environmental variances. Furthermore, for this assessed population, taller, high-yielding plants under stress with good panicle length and well exerted would be preferable. A longer panicle has a great chance of possessing several branches and grains to increase yields.The visualization of yields by genotype in the two areas revealed the amount of rice loss due to the high iron content of the soil. Grain yields in the two study contexts ranged from low to high (6-94% loss) due to the application of the Reyniers et al. [44] formula and some breeder decisions. Three lines, IR 88638-325-1-1-1-1-1, IR 88638-102-1-1-1-1-1, and IR 88638-34-1-1-1-1-1, have demonstrated consistent and stable yields throughout the trials, making them suitable for use as donors in the short term. High-performance lines can be developed or employed in a breeding program to combat this constraint in the medium and long term. Several lines showed very modest losses when exposed to iron toxicity, in contrast to the tolerant parent, Suakoko 8. Similarly, some offspring generated more than both parents combined. The population behavior reflects the heterosis effect evident in multiple generations, resulting in enhancements in agronomic traits. Our findings are supported by previous research on controlling rice constraints, particularly iron toxicity, weeds, drought, blasts, submergence, and gall midges [17,[55][56][57][58][59]. These researchers found resistant varieties and crossed them with susceptible parents to create more resistant lines. Nowadays, all researchers agree that genetic improvement of plants is one of the most effective ways to develop plants that are resistant to various constraints.This assessed population exhibited significant variation, with genotypes ranging in plant height, number of tillers, number of days at 50% heading, panicle length, and grain production (kg/ha). This difference, as revealed by variance analysis, is inherited and derives from both parents' sides as a result of gene exchange. The findings demonstrated a negative association between iron toxicity and plant height, panicle length, and grain yield. Conversely, this study found a link between the leaf bronzing score and the number of days at 50% plant heading, the number of panicles, and the number of tillers per plant. Grain yield was positively correlated with plant height and panicle length. Grain yield was negatively correlated with the quantity of tillers and panicles per plant. This final remark is a translation of the plant's survival mechanism, which involves initiating complementary organs to resist stress, because these characteristics are stated as yield components. Path analysis demonstrated that a high iron toxicity had a direct and positive effect on the number of days at the 50% heading period, a direct and negative effect on plant height, a direct and positive effect on the number of tillers and panicles, and a direct but negative effect on panicle length. The clustering analysis identified four groups with distinct traits. Excess iron in the soil is expected to cause losses in yield ranging from 6 to 94%. The authors suggest that the three resilient lines (IR 88638-325-1-1-1-1-1, IR 88638-102-1-1-1-1, and IR 88638-34-1-1-1-1) be used as donors because they lose less yield by 6, 7, and 7, respectively. Our findings suggest immediate, short-term, and long-term strategies for research and mitigating iron toxicity in rice farming. Additional research would be required to corroborate the performance described in this study.","tokenCount":"6672"} \ No newline at end of file diff --git a/data/part_3/5400467635.json b/data/part_3/5400467635.json new file mode 100644 index 0000000000000000000000000000000000000000..87554f1743d3e37ad4286ee106fa699d63feddd1 --- /dev/null +++ b/data/part_3/5400467635.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"3f02a7f633be128f9c0bf8233d246b0c","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/9cb8bc31-e802-41e6-9459-992b1d104537/retrieve","id":"1808759359"},"keywords":[],"sieverID":"c44ecbf5-fa57-46c5-acc0-9f4889603b64","pagecount":"1","content":"In order for the two countries to meet these commitments, they urgently need to identify agricultural systems of proven effectiveness for increasing carbon sinks, protecting endangered forests, enhancing the adaptation capacity of local communities to climate change, and improving agricultural productivity.CIAT has embarked on a project aimed at assessing options at two sites -Loreto (Peru) and Caquetá (Colombia) -which were chosen due to their high rates of deforestation (associated with cattle ranching, expansion of commercial agriculture, reduction in the productive capacity of the soil, and road building) and because local policymakers show strong interest in reversing land degradation. The project's goal is to provide national environmental authorities and local farmers in Colombia and Peru with science-based evidence that will enhance their capacity to mitigate and adapt to climate change, while enhancing ecosystem services and socio-economic benefits for farmers.Project scientists will collect field data, engage with farmers using participatory approaches, model the potential impacts of climate change on crops and ecosystem services, and analyze national development pathways and their implications for the transformation of selected landscapes. Through this research, the project will help determine to what extent:• Mitigation options also better enable communities to adapt to climate change.• Agricultural systems contribute to the conservation and sustainability of landscapes.• Sustainability can be quantified through indicators based on scientific evidence as well as local perceptions and this, in turn, facilitates dialog with policy makers.Peru and Colombia, which encompass 23% of the Amazon rainforest, are committed to reducing net losses of their natural forests to zero as well as to designing national action plans for mitigating and adapting to climate change.","tokenCount":"267"} \ No newline at end of file diff --git a/data/part_3/5402588160.json b/data/part_3/5402588160.json new file mode 100644 index 0000000000000000000000000000000000000000..8ca610d9c22f83a800b77092e1f06d5a746a7ada --- /dev/null +++ b/data/part_3/5402588160.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"49962279791a3c2b080f91afe3a324e3","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/6ac0eacb-19fa-4f8e-adec-9a08aac65c47/content","id":"924832643"},"keywords":["biofortification","hidden hunger","iodine","iron","selenium","wheat grain","zinc"],"sieverID":"255e6bf2-874a-4352-be84-1fbac491beb2","pagecount":"11","content":"Field experiments were conducted on wheat to study the effects of foliar-applied iodine(I) alone, Zn (zinc) alone, and a micronutrient cocktail solution containing I, Zn, Se (selenium), and Fe (iron) on grain yield and grain concentrations of micronutrients. Plants were grown over 2 years in China, India, Mexico, Pakistan, South Africa, and Turkey. Grain-Zn was increased from 28.6 mg kg −1 to 46.0 mg −1 kg with Zn-spray and 47.1 mg −1 kg with micronutrient cocktail spray. Foliar-applied I and micronutrient cocktail increased grain I from 24 μg kg −1 to 361 μg kg −1 and 249 μg kg −1 , respectively. Micronutrient cocktail also increased grain-Se from 90 μg kg −1 to 338 μg kg −1 in all countries. Average increase in grain-Fe by micronutrient cocktail solution was about 12%. The results obtained demonstrated that foliar application of a cocktail micronutrient solution represents an effective strategy to biofortify wheat simultaneously with Zn, I, Se and partly with Fe without yield trade-off in wheat.Deficiencies of zinc (Zn), iodine (I), selenium (Se), and iron (Fe) represent a serious global health problem because these micronutrient deficiencies are affecting more than one-third of the global population, especially in developing countries. 1 Micronutrient deficiencies are commonly known as hidden hunger and constitute an important form of human malnutrition. Published reports indicate that hidden hunger causes not only serious health concerns but also an important economic burden on health care system of the developing countries. Hidden hunger may cost an average loss of up to 5% in gross domestic product of the concerned countries. 2 Micronutrient deficiencies occur usually in regions where soils are low in plant available concentrations of micronutrients. Existence of a general geographical overlap between soil Zn deficiency and human Zn deficiency has been already postulated. 3,4 As agriculture-based food products are the major source of human nutrition, the relationship among nutrient status of soils, food crops and human health is understandable. 1,5 Historically, the agricultural systems have never been purposely designed to achieve a better human nutrition and health. Instead, producing more food was always the major aim to avoid hunger problem and famines. Staple cereal grains, like wheat, are however inherently low in micronutrient concentration and bioavailability to adequately meet human nutritional needs. 3,5 Therefore, it is widely recognized that in areas of the world where staple cereal-based foods are the main dietary source, inadequate dietary intake of micronutrients is the predominant cause of the prevalence of human micro-nutrient deficiencies. 1,5,6 Recently published papers show that wheat, rice, and maize are extremely low in I concentrations and contain around 10−15 μg of I per kg of grain, which are far too low to meet the daily dietary I requirement of human populations. 7,8 The required daily amount of I for human body varies between 90 and 250 μg. 6,9 Similarly, in most of the wheat-producing regions, grain Zn usually ranges between 20 and 30 mg kg −1 , whereas the desirable Zn concentrations to avoid risk of human Zn deficiency are around 40−50 mg kg −1 . 5 Also Se delivery to food systems is greatly affected from the available Se sources in soils. Low Se soils are often associated with low Se concentrations in cereal grains as shown in a number of countries. 10,11 Thus, enhancing micronutrient densities in staple cereal grains through agricultural practices is considered an effective approach to combat micronutrient malnutrition in humans. 3,12 In most of the developing countries, wheat is a predominant source of daily calories and micronutrients, especially in resource-poor populations. 1,3 For example, in China wheatbased food products supply more than 70% of daily calorie needs and more than 20% of Zn and Fe requirements. 14 The target countries of this study, i.e., China, India, Mexico, Pakistan, South Africa, and Turkey, produce about 278 million Mg wheat per annum, which accounts for almost 37% of total wheat production in the world. 15 In these countries, deficiencies of Zn, I, Se and Fe are prevalent in soils, cereal grains, and humans. 3,6,7,16,17 As population of these six countries accounts for about 43% of the total world, 15 increasing wheat grain with Zn, I, Se, and Fe would be of immense significance for human nutrition in these areas.Biofortification of staple cereals with micronutrients by using agricultural approaches, such as plant breeding and agronomic biofortification represents a useful, cost-effective and sustainable strategy to combat micronutrient deficiencies in human populations. 3,12,16 Plant breeding and fertilizer strategies are, indeed, complementary and synergistic. Combining of these agricultural approaches would result in additive and synergistic impacts on grain micronutrient concentrations. 1,5 Multicountry research programs conducted under HarvestPlus-HarvestZinc projects have demonstrated that foliar Zn fertilization is an effective agronomic approach to attain desirable concentrations of Zn and I in wheat and rice for human nutrition. 8,16−18 In these studies, it has been, however, shown that soil Zn or I applications were much less effective on grain Zn or I, compared to foliar applications. Foliar application of Se also proved very effective to increase wheat grain Se concentration to attain the target concentration of 300 μg kg −1 . 10,19 By considering the high potential impact of the Zn fertilizer approach on improving grain Zn and contributing to public health, Joy et al. recommended governments to consider subsidy programs for fertilizers containing Zn. 20 However, in contrast to Zn, I, and Se, foliar application of Fe fertilizers was found to not be effective in enhancing the wheat grain Fe to the target concentration. 21 The positive effects of soil or foliar Fe fertilization on grain Fe was evident only if plants have a good nitrogen (N) nutrition. Increasing N nutrition has promoting effects on root uptake, shoot transport, and seed deposition of Zn and Fe. 13,22 Almost all of published papers related to agronomic biofortification of food crops by spraying micronutrients foliarly have focused on application of a single or rarely two micronutrients in a given country. In a field experiment conducted in the central part of the Loess Plateau of China, Mao et al. studied the effects of combined soil application of Se, Zn, and I and combined foliar application of Se and Zn. 23 There was only a statistically significant increase in grain micronutrients following soil Se application and foliar Zn and Se spray. Very recently, Mangueze et al. showed that a simultaneous foliar spray of Zn and Se to rice cultivars grown in Mozambique significantly increased concentrations of Se and Zn in whole as well as polished grain. 24 Combined foliar spray of Zn and Se was also effective in increasing grain Zn and Se in field pea plants grown under greenhouse conditions. 25 To our knowledge, there is no study that assesses the effect of combined spray of Zn, Se, Fe, and I on grain concentrations of different wheat cultivars grown on a range of soil types and under different environmental conditions and management practices in six countries. This study has investigated the impacts of a combined foliar spray of Zn, Se, Fe, and I on grain yield and grain concentrations of these micronutrients in wheat grown at 27-site years field experiments in six countries over 2 years. foliar application of I (0.05% KIO 3 , w/v); and (iv) local control + foliar application of a micronutrient cocktail including 0.5% ZnSO 4 • 7H 2 O + 0.05% KIO 3 + 0.2% FeEDTA and 0.001% NaSeO 4 , w/v. The field experiments were established in a randomized complete block design with four replications, except for Mexico where replications were three. The aqueous solution of each treatment, ranging between 600 and 800 L ha −1 , was applied twice as following: the first spray was conducted 1 week prior to heading and the second spray at the early milk stage until most of the leaves got wet. 28 The spray was realized either under cloudy day or during the sunset. Basal NPK fertilizers were applied before crop sowing. The given dose of N fertilizer was split-applied, twice or thrice, at preplanting, tillering, or early jointing stage. The rates and forms of NPK fertilizers were based on respective country's recommendations, as shown in Table 2.Chemical Analysis. At maturity, the grain yield of wheat (at 13% moisture) was recorded from the 4 to 6 m 2 central area of each plot by threshing the grains manually in China. In other countries, the grain yield was based on yield obtained at the harvesting time. A subsample from each plot was secured for analysis of Zn, I, Se, and Fe. Grain samples were washed rapidly with tap water and deionized water and then dried at about 45 °C in a forced-draft oven to constant weight. The dried grains were thereafter ground to fine flour by using an agate mill (Pulverisette 9, Fritsch GmbH, Germany) and digested with HNO 3 + H 2 O 2 in a microwave accelerated reaction system (CEM Corp.) for analysis of Zn, Fe, and Se. For I analysis, grain samples were extracted in tetramethylammonium hydroxide (TMAH) at 90 °C using a closed-vessel microwave reaction system (CEM Corp.). 8 Zinc and Fe concentrations in the digested solutions were measured by inductively coupled plasma-optical emission spectroscopy (ICP-OES; Vista-Pro Axial, Varian Pty Ltd., Mulgrave, Australia), and I and Se concentrations in the digested solutions were measured by inductively coupled plasma mass spectrometry (ICPMS; 7700 series, Agilent Technologies).Statistical Analysis. The effects of different foliar fertilization treatments on the dependent variables were determined using onefactor ANOVA at 0.05 level of least significant difference (LSD) test using SAS software (SAS 8.0). For overall effectiveness, the data sets across locations and years were compared by the paired t test method of SPSS 13.0 for Windows. The linear models were used to evaluate correlations among various parameters.Grain Yield. Irrespective of the experimental treatments, the grain yield of wheat varied greatly in different field locations, cropping years, and countries (Table 3). In the case of the local control treatment (i.e., no foliar treatment), the overall average grain yield was 5.2 Mg ha −1 across all locations, years, and countries. The highest grain yields (6.2−9.2 Mg ha −1 ) were obtained at the field locations in China, and the lowest yields (1.4−4.6 Mg ha −1 ) were obtained at the locations in South Africa. Across all locations, years, and experimental treatments, foliar Zn or I, applied alone, had no significant effects on grain yield over the local control treatment. Though foliar micronutrient cocktail tended to decrease overall grain yield by 3.8%, a significant decrease in yield occurred only at Gurdaspur in India and at Gujranwala in Pakistan in 2017 (p < 0.05). Contrarily, foliar I and foliar micronutrient cocktail sprays significantly increased grain yield at Faisalabad in Pakistan in 2016 (p < 0.05; Table 3).Grain Zinc Concentration. Without any foliar treatment, wheat grain Zn concentration across all field locations in all countries over 2 years varied from 16.6 to 37.3 mg kg −1 , with an overall mean of 28.6 mg kg −1 (Table 4). Foliar application of Zn alone or micronutrient cocktail significantly increased wheat grain Zn concentration across all site-years (p < 0.05). On average, for all locations over 2 years, foliar Zn spray increased grain Zn concentration from 28.6 mg kg −1 to 46.0 mg kg −1 and the foliar micronutrient cocktail spray from 28.6 mg kg −1 to 47.1 mg kg −1 . Out of the total 27 site-years field experiments, a target grain Zn concentration of 40 mg kg −1 was attained at the 22 field locations with foliar Zn and at 25 locations with foliar micronutrient cocktail. Apparently, there was a kind of synergistic effect of foliar I treatment on grain Zn; however, an increase in the grain Zn concentration with foliar-applied I was 7.3% only (Table 4).Grain Iodine Concentration. There was a large variation in grain I concentrations among the locations without foliar treatment (i.e., the local control). The variation found in grain I concentration of the control treatment was between 2 and 80 μg kg −1 , with a mean concentration of 24 μg kg −1 (Table 5). Foliar I and foliar micronutrient cocktail treatments significantly increased grain I concentration at all locations in each country, except for the Langgewens location in South Africa in 2016. Generally, the increases in grain I after foliar spray were lower in Turkey than other countries. The reason for such differential result could not be understood. As shown in Table 5, in the Ludhiana location in 2016, there was a particular increase in grain I (i.e., from 17 to 1447 μg kg −1 ). When the value 1447 would be excluded as an outlier; on average, over all experimental locations, grain I concentration increased from 24 to 316 μg kg −1 by foliar I spray with an increase of 13.1fold. In the case of foliar micronutrient cocktail spray, grain I concentration increased from 24 to 249 μg kg −1 resulting in an increase of 10.3-fold, respectively. The value 1447 has been considered as outlier and the grand mean given has been calculated without considering the value 1447.Grain Selenium Concentration. Grain Se concentration in wheat grown without foliar spray of micronutrients varied drastically from 4 to 549 μg kg −1 , with an average of 90 μg kg −1 (Table 6). Foliar micronutrient cocktail resulted in significant increases in grain Se concentration across all site-years. It is obvious that the net increases in grain Se after foliar spray of the cocktail solution were higher in South Africa compared to other countries (Table 6). Depending on the field site and year, the net increases in grain Se showed variation within each country.Grain Iron Concentration. Grain Fe concentration of wheat grown without a foliar spray of micronutrients across all field locations varied from 22.6 to 38.7 mg kg −1 , with a mean concentration of 32.6 mg kg −1 (Table 7). Foliar micronutrient cocktail spray significantly increased grain Fe concentration from an overall average of 32.6 to 36.8 mg kg −1 across all locations in all countries and exhibiting a mean increase of 12.9% over the local control (p < 0.05). While foliar I did not affect wheat grain Fe, foliar Zn application increased grain Fe concentration from 32.6 mg kg −1 to 35.4 mg kg −1 , i.e., by 9.1% (p < 0.05).Relationships between Grain and Soil Concentrations of Zn, Fe, Se, and I. Figure 1 shows the correlations between soil and grain concentrations of Zn, Se, Fe, and I. Soil DTPA-extractable Zn and Fe concentrations showed a negative relation with the grain Zn and Fe concentrations, while soil extractable Se tended to show a positive relationship with the grain Se. In the case of I, there was almost no relationship between soil I and grain I concentrations (Figure 1).In this study, the effects of foliar applications of Zn alone, I alone, and a micronutrient cocktail containing Zn + I + Se + Fe on wheat grain yield and grain concentrations of these micronutrients were investigated over two cropping seasons by using 10 different wheat cultivars at a total of 27 site-years field experiments in six countries. In general, foliar Zn, I and micronutrient cocktail applications significantly increased grain concentrations of Zn, I, and Se but not grain yield. Grain Fe concentration was only slightly increased by the micronutrient cocktail application. According to several earlier studies, wheat grain yield can be increased by foliar application of Zn, but most commonly only in soils with very low plant available Zn, such as in soils having DTPA-Zn ≤ 0.2 mg kg −1 . 29,30 In the present study, foliar application of Zn alone had nonsignificant effect on wheat grain yield, probably because the soils in the experimental sites were not severely Zn-deficient (average DTPA-Zn in 16 field soils, 0.71 mg kg −1 ; Table 1), and Zn was applied to foliage rather at a late stage of the growth. In addition, it is known that the expression of Zn deficiency problem in plants is affected not only from the amounts of plant available Zn in soils but also from seasonal climatic variations, especially from rainfall pattern (i.e., soil moisture) and duration of hot sunny days. 29,31,32 Foliar application of I in the form of KIO 3 and at the rate of 0.05% KIO 3 had no grain yield trade-off in the present study across all site-years in six countries, which is consistent with the results of the recently published field study on wheat conducted in Turkey and Pakistan. 8 Iodine is not an essential micronutrient for higher plants. 33 However, some published reports indicate that I may influence the growth of plants under certain growth condition by affecting different physiological processes. 34 In good agreement with the results by Cakmak et al., 8 this study suggested that foliar spray of I at a concentration of 0.05% KIO 3 can be considered as a useful rate for biofortification of wheat grains with I without yield tradeoff.In the case of foliar application of the micronutrient cocktail, the grain yield of plants exhibited a slightly decreasing trend at some locations (Table 3). Among 27 field locations, only in 2 locations the grain yield showed a statistically significant decline by foliar application of the micronutrient cocktail while in one location there was a significant increase in the yield. Based on these observations, it can be suggested that the micronutrient cocktail spray solution used in the present study represents a useful micronutrient cocktail without causing a harmful effect on plant growth and yield.Though foliar applications of Zn alone, I alone, and micronutrient cocktail did not affect grain yield of wheat, the foliar treatment of these micronutrient significantly enhanced grain concentrations of Zn, I, and Se in all locations of six countries over 2 years (Tables 4−6). Grain Zn concentration was increased by 61% and 65% with foliar application of Zn alone and micronutrient cocktail, respectively (Table 4). It is obvious that the concentrations and forms used for Fe, I, and Se in the micronutrient cocktail solution did not exert any antagonistic effect on leaf absorption and transportation of Zn. Recently, Mangueze et al. showed that Zn and Se sprayed together significantly enhanced grain Zn and Se concentrations in rice grain. 24 Similarly, also Zhang et al. showed that spraying Fe and Zn together did not affect grain Zn accumulation in wheat. 35 It was interesting to note that foliar Zn application tended to improve grain Fe concentrations. The average increase in grain Fe by foliar Zn spray in all locations over 2 years was about 9% (Table 7). Similarly, in our previous study, foliar Zn application had significant positive effects on grain Fe concentrations of the bran and embryo parts of the wheat grain which were not related to any Fe contamination of grain samples through soil dusts or particles. 22 Also the findings of Li et al. showed that foliar Zn application increased wheat grain Fe concentration to some extent. 36 Increases in grain Fe after foliar Zn was also found in wheat grown at the CIMMYT Research Station in Obregon (I. Ortiz-Monasterio, unpublished results). In potatoes, foliar Zn spray had no antagonistic effect on the tuber Fe concentration. There was even an increasing trend in tuber Fe concentrations after foliar Zn spray. 37 All these results in wheat and potatoes are, however, in disagreement with the results published by Saha et al., who showed a very clear decrease in grain Fe by foliar Zn application in rice. 38 Kutman et al. suggested that increases in grain Zn following foliar Zn spray probably resulted in Znbinding compounds in grain which most likely act as a sink for Fe transport and storage. 22 Existence of highly positive correlation between grain Zn and Fe has been reported very often in several cereal germplasms. 13 Foliar-applied Zn and micronutrient cocktail at 27 total field sites proved effective in attaining the generally accepted target grain Zn concentration of 40 mg kg −1 at most of the field locations (Table 4), which is in good agreement with the earlier results reported by Cakmak et al. and Zou et al. 13,16 It has been often shown that soil Zn applications have a minimal effect on grain Zn while foliar application of Zn fertilizers are highly effective in increasing Zn both in whole grain and also in endosperm parts of the grains. 17,28 Similarly, also DTPA- ns indicates no significant difference; ***, *, and ** indicates significant differences at p < 0.001, < 0.05, and <0.01, respectively. extractable Zn did not show a positive correlation with grain Zn, and there even was a negative relationship (Figure 1). Previously, existence of a poor relationship between grain Zn and extractable Zn in soils has been also shown for several plant species. 13,39,40 Zinc has relatively high phloem mobility in plants, especially in the case of a good N nutrition. 22,23 Therefore, adequate foliar supply of Zn at appropriate crop growth stages at adequate N nutrition could significantly increase the grain Zn concentration of wheat to desired levels. According to Cakmak and Kutman, keeping a high amount of readily available Zn pool in vegetative tissues during the grain filling stage (i.e., when the translocation of photoassimilates toward the grain is underway), for example, by foliar Zn spray, is of great importance for a successful biofortification of cereal grains with Zn. 5 Foliar application of I alone or together with the micronutrient cocktail solution resulted in particular increases in the grain I concentration (p < 0.05; Table 5). Whereas without I application, the average grain I concentration across all field locations was 24 μg kg −1 only, and with foliar-applied I alone or in the micronutrient cocktail it increased to 316 μg kg −1 and 249 μg kg −1 , respectively. In the Ludhiana location in 2016, a particular increase was found in grain I (i.e., from 17 to 1447 μg kg −1 ) that might be a consequence of an unknown contamination problem or likely a surface contamination of seeds with I during foliar treatments. The samples with extremely high I have been measured again and the results were same, indicating that very high levels of I are likely related to direct contamination (fortification) of seeds with I through foliar spray, when the florets at the spray time were open. The differential effects of foliar-applied I alone and micronutrient cocktail on enhancing grain I might be attributed to inhibitory effect of other micronutrients in the cocktail (i.e., Zn, Se or Fe) on leaf absorption and/or translocation of I from wheat leaves to grains. In a previous study, it has been shown that in hydroponically grown lettuce plants, combined application of KIO 3 and SeO 4 −2 did not antagonize root absorption of I or Se; rather there was a synergism between these two micronutrients during their root absorption. 41 As transport of I through the xylem is more efficient than through the phloem, I loading into cereal grains has been suggested to be less efficient. 42,43 However, in a study with tomato plants it has been shown that foliar-applied I may be effective for increasing I reserves in stem and leaf tissues of tomato plants for a subsequent remobilization into fruits. 44 Recently, Cakmak et al. demonstrated that I was able to transport from older into younger leaves as well as from vegetative tissues into grain in wheat. 8 According to Hurtevent et al., I exhibits a medium phloem mobility in wheat plants. 45 In the study by Cakmak et al., it was shown that soil applied I was effective in increasing shoot I concentrations but remained less effective in improving grain I. 8 These results together with the results obtained by Hurtevent et al. 45 show that I most probably exhibits a moderate phloem-mobility. Therefore, as indicated for Zn above, a foliar spray of I during the early stage of the seedfilling (i.e., when the extensive phloem translocation of photoasasimilates into seeds takes places) would generate a highly available pool for I in leaf tissue for an immediate phloem loading and transport into grain.In the control (no spray) treatment, wheat grain Se concentration varied considerably from site-year to site-year, ranging from as low as 4 μg kg −1 (at the Topraksu location in Turkey in 2017) to as high as 549 μg kg −1 at the Ludhiana location in India in 2017), with average Se concentration of 90 μg kg −1 (Table 6). Wheat grown in the Ludhiana and Faisalabad locations exhibited very high Se concentrations although Se was not sprayed (Table 6), probably due to higher amount of chemically available soil Se concentrations (Table 1). The plants grown in the Ludhiana and Faisalabad locations with very high grain Se concentrations without Se spray showed similar net increases in grain Se following foliar Se spray when compared to the plants grown in other locations. It is, therefore, very likely that very high grain Se concentrations in the Ludhiana and Faisalabad locations are not related to contamination or an error problem in the Se assay. The repeated measurements showed the same Se results in those samples. As shown in Figure 1, soil Se tended to correlate grain Se although the relationship was not significant. The positive correlation between soil Se and grain Se has been already shown in wheat. 46 Plants also respond very significantly to increasing soil Se applications with corresponding increases in grain Se. 6,10,11 Foliar-applied micronutrient cocktail was quite effective in increasing grain Se concentration, on average by about 3.8-fold, from 90 μg kg −1 to 338 μg kg −1 (Table 6). The achieved grain Se concentrations following foliar spray of the micronutrient cocktail were close or above the estimated target grain Se level of 300 μg kg −1 in wheat grain for better human nutrition at most of the field locations. 10 In Finland, before the start of the well-known nationwide application of Se-enriched NPK fertilizers, Se concentrations of wheat were around 25 μg kg −1 in the early 1980s and this value increased over 150 μg kg −1 in the past 30 years with significant impacts on human health. 11 According to a new meta-analysis, grain Se concentrations are significantly increased if an optimal Se rate, Se formulation, and Se application methodology are selected and implemented. 47 Selenium fertilizers, applied to soil or foliar either in form of Na-selenite or Na-selenate are known to be highly effective in enrichment of food crops, but it appears that the selenate form, that is used in the present study, is more effective than selenite in increasing Se accumulation in edible parts of the plants. 10 It is known that compared to selenite, selenate is better absorbed and transported into the shoot of wheat plants. 48 As agronomic biofortification of wheat grains with Se has proven tobe quite effective, being a major staple food all over the world, Sebiofortified wheat can greatly help in improving human health by reducing Se malnutrition. Most of the Se in wheat grain is known to exist in the form of selenomethionine (SeMet) which is a highly bioavailable form of Se in wheat grain. 10,49 It seems that a high proportion of Se accumulated in wheat grain after foliar spray is converted to SeMet in the grain. According to Galinha et al., up to 70−100% of the agronomically increased Se in wheat is assimilated into SeMet. 49 In this study, grain Fe concentration was only slightly increased (by 14.0%) with foliar application of micronutrient cocktail containing Fe in form of FeEDTA (Table 7). In an earlier study conducted on wheat, foliar application of Fe was more effective in improving grain Fe and resulted in an increase in grain Fe up to 28% (p < 0.05). 35 Less increase in grain Fe concentration by agronomic biofortification compared to Zn may be attributed to poor phloem mobility of Fe from leaves to grains. 33 Also Aciksoz et al. showed that both soil and foliar application of Fe fertilizers has very minor effect on grain Fe concentrations. 21 As discussed by Aciksoz et al., application of Fe fertilizers to durum wheat plants in the form of FeSO 4 or a chelated form including Fe-EDTA, Fe-EDDHA, or Fe-citrate had no or minimal effect on shoot and grain concentrations of Fe. 21 Probably, when Fe is needed, wheat plants release Fechelating compounds (so-called phytosiderophores, PS) high enough to improve Fe mobilization and root absorption and to meet Fe demand. In good agreement with these results, it has been found that there is no or a very low relationship between soil Fe and grain Fe, and there is even a negative trend (Figure 1). The results showing a poor relationship between grain and soil Fe are in good agreement with the previous results 39,40 It was encouraging to observe that increases in grain Zn, I, and Se concentrations by the foliar-applied micronutrient cocktail did not reduce the grain Fe concentration; rather, foliar-applied Zn promoted grain Fe concentration over the control treatment by 9.1%, as discussed above. Considering also the results from the literature, it can be suggested that foliar application of Fe is not an effective approach to enhance wheat grain Fe to the desired level for human nutrition. Therefore, further studies are warranted to find out more effective strategies of adequately enriching wheat grains with Fe. It is known that optimized nitrogen (N) nutrition of wheat plants could significantly contribute to grain Fe concentration. 21,50,51 Foliar application of more effective sources and formulations of Fe in combination with N fertilizer warrant investigation to increase grain Fe biofortification, rather than spraying Fe alone. 21 In conclusion, the results of this extensive field study have clearly demonstrated that simultaneous foliar applications of Zn, I, and Se in the same cocktail solution has effectively enhanced concentrations of Zn, I, and Se in grains of different wheat cultivars grown under variable management and environmental conditions in six countries without grain yield trade-off. Since wheat is a predominant staple cereal around the globe, this agronomic biofortification strategy has huge practical relevance and importance for improving human health in resource-poor communities. Wheat grains were, however, not enriched sufficiently with Fe by foliar application of the same micronutrient cocktail, suggesting consideration of alternative agricultural approaches with high potential to contribute to grain Fe. Recent results of the long-term and successful HarvestPlus breeding programs show that new wheat, rice, and bean genotypes are now available having extra Fe (as well as Zn) up to 10 mg kg −1 grain thanks to breeding efforts (Andersson et al., 2017; www.harvestplus.org). 52 Combining genetic and agronomic (i.e., fertilizer) approaches may further raise grain micronutrient concentrations. Future studies should pay attention to additive and synergistic effects of genetic and agronomy on accumulation of micronutrients in food crops.Corresponding Author *Telephone: 0090 216 483 9524. E-mail: cakmak@ sabanciuniv.edu.","tokenCount":"5123"} \ No newline at end of file diff --git a/data/part_3/5407007254.json b/data/part_3/5407007254.json new file mode 100644 index 0000000000000000000000000000000000000000..d3e26fb2a223a2810267dc7ddab1a4bbc8f893c5 --- /dev/null +++ b/data/part_3/5407007254.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"e258e4d1852ca7e17825617be3112a10","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/61f84242-b371-4f1e-b359-0dd8d8116cb5/content","id":"1501813292"},"keywords":["Maize","Agricultural economics","Seed production","Plant breeding","Pollination","Hybrids","Planting date","Models","Small farms","Training programmes","International cooperation","South Africa CIMMYT","FAO AGRIS category codes: E6 Production Economics F03 Seed Production"],"sieverID":"be64d02c-92e3-4dc1-bed8-e1660052b66c","pagecount":"31","content":"CIMMYT® (www.cimmyt.org) is an international, not-for-profit organization that conducts research and training related to maize and wheat throughout the developing world. Drawing on strong science and effective partnerships, CIMMYT works to create, share, and use knowledge and technology to increase food security, improve the productivity and profitability of farming systems, and sustain natural resources. CIMMYT is one of 5 Future Harvest Centers of the Consultative Group on International Agricultural Research (CGIAR) (www. cgiar.org). Financial support for CIMMYT's work comes from the members of the CGIAR, national governments, foundations, development banks, and other public and private agencies.Maize varieties may be either hybrid or open-pollinated. Hybrid varieties are made by crossing selected parents (sometimes known as inbred lines) in the field, while open-pollinated varieties (OPVs) are broad populations of many parents. Open-pollinated varieties show greater variability than hybrids, but have the advantage that unlike hybrids, their seed may be saved for re-planting without much yield loss. These differences are explained in greater detail below.Hybrid plants are produced by cross-pollinating two unrelated male and female parents. Crosses made between two unrelated inbred parents are known as single-cross hybrids (Figure ). Those from three parents are three-way hybrids (Figure 2), and those from four parents as double-cross hybrids (Figure 3). The female of a three-way hybrid is a single cross hybrid, while the male is an inbred line. The parents of a double cross hybrid are both single-cross hybrids. Another type of hybrid is the top-cross, in which one of the parents is an OPV, and the other is a single-cross or an inbred line.Plant breeders carefully select the parents of hybrids over many years of testing and evaluation. Hybrid parents are chosen based on characteristics such as early maturity, disease resistance, drought tolerance and yield potential. The resultant hybrids are evaluated for yield potential and field characteristics appropriate to farmers. Only the best hybrids are advanced to commercial seed production and sale. In order to ensure consistent uniformity and performance of the hybrid, the parents are maintained in a very controlled manner, and the production of hybrid seed is done following strict procedures.Hybrid seed is produced in a controlled fashion far from other maize fields, in order to avoid contamination. Male and female parents are inter-planted in alternating rows (Figure 4), usually composed of 3 to 6 female rows and or 2 male rows. The female plants are de-tasselled (i.e. their male inflorescence is removed) before a single tassel starts to shed pollen, and pollination of the female is achieved with pollen from the male plants. Field inspection is done regularly to ensure that emerging tassels on the females are all removed, and that there is no contamination by pollen from the female rows or surrounding fields (see isolation distance below). To avoid seed mixing during harvesting the male parent rows are cut down once they have provided pollen to the female parents.A key factor in both yield and quality of hybrid seed production is the coincidence of flowering of the male and female parent plants, known as nicking. If male pollen flow begins after the emergence of the female silks or ends before the female silks are fully emerged, not only will less seed be set, but the risk of contamination by foreign pollen increases.In most countries the isolation distance for hybrid seed production is about 400 meters. This is the distance that has to be maintained all around the hybrid seed production unit. Four hundred meters is greater than the normal dispersal range of maize pollen, so the isolation ensures that pollen from neighbouring fields does not reach the hybrid seed production site.Both parents of single-cross hybrids (inbred lines) have low vigor and low seed yield, and therefore need excellent crop management for good seed production. Three-way and doublecross hybrids have as one of their parents, a single-cross hybrid, which is vigorous and high yielding, but they, too, require good crop management. Hybrid plants are uniform in colour, maturity, plant height and other plant characteristics (Figure 5). The uniformity of hybrid plants enables farmers to carry out certain operations, such as harvest, at the same time, which is useful for those farmers using combine harvesters. Hybrids are usually higheryielding than OPVs, but they generally require much higher standards of field management than OPVs to achieve their yield potential. The higher yield of hybrids is the result of a biological effect known as heterosis, which describes the superiority of the first generation over the parents.However, hybrid plants will not reproduce uniform plants similar to themselves if the hybrid grain is recycled as seed in the following season. Furthermore, the yield following recycling will decrease by 30-50%, depending on the type of hybrid originally grown, due to an effect known as segregation.Single-cross hybrids suffer much greater yield reductions from recycling, than do three-way or double-cross hybrids. For best results, therefore, fresh hybrid seed should be purchased every year.Hybrids are higher-yielding than open-pollinated varieties (OPVs). Research has shown that the yield advantage of hybrids over OPVs is about 5%, depending on the varieties being compared. Some improved OPVs may yield as well as some poorly adapted hybrids. Therefore, farmers in high potential environments who can afford inputs such as fertilizer, stand to benefit the most from growing adapted and suitable hybrids (Table ., Figure 6). When to grow an OPV• The farmer expects to harvest more than • The farmer does not expect to harvest more than 2 tons/ha (15 bags per acre) of maize grain.2 t/ha of maize grain. • The costs of hybrid seed will be recovered from its yield• The costs of hybrid seed may not be paid for by advantage. Hybrid seed costs about 10 times the price its yield advantage over the OPV. of grain, and therefore the yield advantage of the hybrid should be at least 250 kg/ha. • The farmer is located in a high potential environment and• The farmer is located in a low potential environment can afford inputs such as fertilizer and pesticides. and cannot afford extra inputs. • Hybrids adapted/suitable for local conditions are available.• No locally adapted/suitable hybrids are available. • The farmer can obtain seed for timely planting.• The farmer cannot readily obtain seed. Open pollinated varieties are known sources of open pollinated plants. Some have been improved and have variety names. The grain of an OPV may be saved for replanting if it is isolated from other maize varieties, or harvested from the middle of the field. The recycled seed will grow and yield as well as the original plants. Compared to hybrids, OPVs are less uniform (Figure 7) and usually lower-yielding than hybrids in optimal environments. OPVs, however, have the advantage of being more stable than hybrids in low-yielding or stress environments.For both hybrid and OPV seed production there is a three-stage process of seed multiplication, as follows (see also Figure 8).The first stage, the production of breeder's (or pre-basic) seed, is carried out by the breeder. This stage produces the least amount of seed, with the highest level of varietal purity. Breeder's seed is produced in small plots where a breeder can monitor the plants to ensure that there is no pollen contamination, and that the plants are 'true to type'. The breeder or the developer of the variety is responsible for maintaining breeder's seed, i.e. ensuring that its genetic purity is maintained. Foundation or basic seed is the first increase of the breeder's seed. The seed is produced in isolation and with great care to ensure the variety remains true to type. The foundation seed is produced by breeders or by seed companies. The seed companies will sell foundation seed or give it to selected farmers to produce certified seed under contract.Certified seed is the last stage in seed multiplication. Seed companies contract farmers to produce certified seed. The seed is produced from foundation seed and grown in isolation and under controlled standards to ensure purity and identity. This seed is processed and packaged for sale to farmers to produce grain.The quantity of seed produced increases from one stage to the next. Only small quantities of breeder's seed are produced, while large volumes of certified seed have to be produced to meet the demand for the grain production (Figure 8).Before seed is certified, the authorizing agency must check that the seed meets all the set quality and purity standards. The agency also provides labels and makes spot checks at points of sale. Physical seed quality tests include laboratory testing for moisture content, seed purity, germination, viability, and absence of pests and diseases. This ensures that the seed is viable and healthy. Seed certification for maize is mandatory in most countries. Some countries may allow OPV seed to be sold as 'truthfully labelled' or standard seed. Truthfully labelled seed meets minimum standards for purity, and its producer guarantees the quality as described on the label. In order to protect farmers from poor quality seed, the government seed certification agency verifies the source of the seed, through field inspections (of foundation and certified seed production fields) at specified stages of the growing season and after harvest. Field inspectors check that the seed is planted according to the quality standards required, isolation distances are met, the fields are free of weeds, and all the 'off type' plants are removed from the field. If the field inspector finds that some of the requirements are not met, he/she may recommend that the crop is destroyed, or that the harvest is used only as grain, or that certain field operations are carried out immediately (rules vary from country to country).Farmers who are far from seed retails shops can benefit from growing maize OPVs, as the grain they harvest may be replanted as seed without significant yield loss. OPV seed may be recycled for a maximum of three seasons without significant yield loss. The longer a farmer recycles OPV seed, the greater the risk of contamination by pollen from neighbouring fields, and deterioration of the variety.Seed production of OPVs is simpler than that of hybrids, because only one variety is planted and there is no need for detasseling. Nevertheless, maintenance of the OPV and production of the foundation seed of OPVs requires some special procedures, similar to hybrid seed production.The OPV seed production fields may be isolated in space or time, or both. The isolation distance for OPV seed production is normally 250-350 m. Isolation by time requires a planting interval (difference in sowing time) of 4 to 6 weeks to ensure that there is no pollen contamination of seed plots by other maize fields. The number of days to tasseling and silking of the seed field and neighbouring fields helps to determine the proper time isolation (Figure 9).If farmers cannot isolate by time or distance they may harvest from the middle of their fields to minimize contamination, and the field should be at least about one hectare.At least 500 cobs should be harvested to ensure that the OPV maintains its own distinct variability. It is recommended that farmers harvest their ears at a grain moisture content of about 6-20 % (i.e. once the husks are dry) and sun-dry to about 4 % moisture content before shelling. The cobs are husked, selected for uniformity and quality (i.e. pest-and disease-free, not discoloured) and spread out in the sun for drying. In most areas, farmers may sun-dry their seed to the desired moisture content. When sun-drying, ensure that the seeds are turned frequently to prevent \"sun-burn\" damage to the embryo. Most farmers sun-dry their maize seed on a concrete slab, but if this is not available, the seed may be spread out on black plastic sheeting.Shelling may begin once the grain has reached a moisture content of 4%. Farmers can apply a simple test to check whether the seed has reached 4% moisture content: Shell a cob and mix about 00 kernels with one gram of salt; if the salt feels moist after 5 minutes then the cobs need to be dried further, but if salt remains dry then the shelling can begin.Shelling by hand minimizes seed damage, but if a mechanical sheller is used, lower the settings (speed and severity of threshing action). The shelled seed may then be cleaned (winnowed), and any chipped or diseased seeds removed by hand.The seed is then treated with insecticides and fungicides against storage pests and fungi. When treating with pesticides, observe safety recommendations, and ensure that the seed is uniformly treated. Treated seed must never be used as food for animals or humans. The seed is then stored in bags or in bulk a cool, dry place, away from direct sunlight. Ideally, seed should be stored at 2% moisture; low seed moisture increases the viability and storability of the seed. Certified OPV seed Farmers' field production Grain for food, feed and sale Shell, dry, and then store the seed under appropriate conditions.Select good cobs for seed from the middle of your field.YOU MAY RECYCLE AN OPV FOR 1-3 SEASONS BEFORE BUYING NEW CERTIFIED SEED.Farmer recognize seed as one of the most important inputs in agricultural production. Seed carrying traits such as earliness, disease resistance and increased yield potential can improve productivity as well as the value of the commodity on the market.Regardless of the crop, most of the seed in sub-Saharan African comes from the informal seed sector, namely farmers' own saved seeds, farmer-to-farmer seed exchange, and local seed markets. This sector supplies mainly local landraces, local and improved varieties, and recycled hybrids. The seed markets in the informal sector are unstructured and usually lack marketing strategies. The seed quality is assured primarily through existing trust between seed buyers and sellers. Sometimes the seed provided through these channels may be of poor quality (low genetic purity, contaminated with pests and diseases, or poor germination).To improve seed availability and quality, government institutions and non-governmental organizations (NGOs) and have initiated community-based seed production and supply schemes (CBSPS) with the aim of improving the availability of quality seeds of improved varieties. The CBSPS are informal in the sense that seed quality standards required in seed production are not as stringently enforced as in the formal seed sector. Many CBSPS have been effective in disseminating improved varieties; others have been unsustainable, and this is attributed to various factors, including the following:• Farmers and NGOs staff have inadequate knowledge and skills in seed production, qualityenhancing measures and seed systems.• Advice on seed issues and extension, mainly provided by government seed service units, does not reach small-scale farmers due to poor rural infrastructure, and sometimes, too few extension workers.• Some plant breeders and researchers do not make an effort to promote their varieties, so they remain unknown to farming communities.• The seed demand within the community is difficult to estimate.The formal seed sector is unreliable for crops that it considers unprofitable such as mungbeans; cowpea; minor millets; and even maize OPVs, on which private seed companies do not hold exclusive marketing rights.Chapter 2• Issues pertaining to sustainability are not well thought through in the establishment of CBSPS.• Poor linkages of CBSPS to agricultural research, seed market information, seed companies, and extension have resulted in limited supply of foundation seed.• Many of the new improved varieties do not meet farmers' needs, and so farmers do not adopt them.• Seed policy pertaining to community-based seed production is not well understood, or it does not exist.• Due to the small land holdings, isolation distance requirements for quality seed production are problematic, if not impossible to achieve in some community areas.Strengthening the capacities of partner organizations involved and interested in CBSPS is key to empowering farmers in availing and accessing quality seed of improved varieties.Most of the seed policies in sub-Saharan Africa are aimed at the formal seed sector, and the informal sector, including CBSPS, has been long neglected. It is only recently that the importance of the informal seed sector, which provides more than 85 % of the seed requirements of resource-poor farmers in sub-Saharan Africa, is being appreciated (Monyo et al., 2004, Figure ). It is therefore necessary that CBSPS are strengthened, as a means of empowering farming communities, increasing their productivity and ultimately their incomes and food security.Setting up a CBSPS starts with understanding farmers' existing seed systems, including their seed channels/suppliers, the type of crops they plant, and their major farming constraints. Before setting up a CBSPS, its purpose should be well defined. This might be to increase farmers' access to improved and preferred varieties in order to generate income, or to achieve better seed security. Usually the income generation aspect is only thought of after a CBSPS is in place, but without the business skills to manage the seed production/sale as a business, the scheme often falters.Seed production starts with a few kilograms of a specific preferred variety, which a seed grower multiplies and makes available to other farmers in the community. The demand for seed of a preferred variety within the community should be assessed, so that quantities to be produced are estimated, to prevent under-or over-supply of seed. For CBSP, certain conditions must be met, e.g.• Planting material must meet specific quality standards, to ensure variety attributes and the quality of seed.• The seed grower must know the variety and be able to recognize it; this minimizes contamination from other varieties.• Adequate crop protection and other quality/yield enhancing techniques should be used.• The produced seed should pass germination/quality tests.As such, seed production is a unique (specific) business, and not any farmer can be a seed grower. Seed growers are usually lead farmers in the community, who understand the technical aspects of seed multiplication. They should also be socially accessible, so that other farmers can readily access the produced seed.Unfortunately, most of the CBSPS started in southern Africa have not been sustainable. Once external support is terminated the schemes have collapsed and the farmers have reverted to experiencing shortages of improved seed.If a CBSPS succeeds and becomes efficient and sustainable, the farmers could become future contract seed producers for seed companies, and continue meeting their communities' seed requirements. Information on new improved OPVs, their characteristics, and prices should be provided to farmers by the producers of the OPVs, and extension workers. This, and other elements of sustainable CBSPS, are summarized in Box , and Figure 2.• Continuous exposure of farmers to new promising and preferred varieties in a way that stimulates the market. Smallholder farmers should be informed of the advantages of buying fresh seed.• Strong linkages between national agricultural research and extension systems (NARES), international agricultural research (including the CGIAR) centers, seed companies, small-scale seed producers, and extension.• Ready supply of improved germplasm and relevant information.• Seed production models that suit the target communities.• Farmer empowerment with business skills and training on technical aspects of seed production.• Analysis of the entire production chain-from seed/grain production through to consumers/buyers-to discover where interventions would be most beneficial.• Agricultural policies that favor and strengthen the informal seed sector.• Marketing and distribution strategies for small seed producers.• Promotion of alternative income sources -e.g., a women's group in Uganda produces OPV seed and also re-packages fertilizer for sale to smallholder farmers who cannot afford to buy large quantities.In many smallholder communities in the region, it is difficult to find farmers with large enough fields to meet the isolation distances needed to produce maize seed (see Chapter 1).Several approaches could help overcome the problem of isolation distance in a community, as summarized in Box 2.Seed growers within communities should be linked to NARS or other institutions such as seed companies, which can provide them with foundation seed. Both the seed growers and their support service providers (such as NGOs and extension services) should be aware of seed policies governing CBSPS in their countries. In most countries, seed policy allows CBSPS to market and sell seed only within the communities. If a CBSPS plans to markets and sell its seed farther afield, it has to follow additional regulations and process, such as registration as a seed producer. • Farmers involved in seed production should be allowed to plant before other farmers (time isolation). However, this is often difficult because of irregular rainfall in many areas.• Farmers in the immediate surrounding of the seed growers can be offered for free (or at a lower price) seed of the same variety, to minimize contamination.• Seed production can be done during the off-season (time isolation) if irrigation is available. Usually this is the best time to produce seed as there are only a few crops in the field, and disease pressure is lower.Because of the above policy restrictions on the sale of seed, CBSPS can only multiply and sell seed of crop varieties that are adapted to local farming conditions, and are known and preferred by other farmers within their community or region. The process for variety selection for CBSP is usually as follows:• NARS issues promising varieties for testing by farmers in a community.• Farmers' skills and knowledge in the areas of crop agronomy, and variety selection is enhanced.• Group of farmers, individually or by consensus rank the varieties of their choice.The success of a CBSPS depends on the support and goodwill of multiple parties from the public and private sectors.• Government should develop agricultural/economic policies that promote CBSPS.• NARS should support communities with foundation seed of improved varieties.• Extension and NGOs should train farmers and their communities in quality seed production, entrepreneurial skills, and sustainable resource management; most farmers lack initial credit to start CBSPS, and NGOs are well placed to source the initial credit to support farmers.• The private sector should link more closely with the communities. As the communities acquire more experience in seed production they can become contract seed growers for private seed companies. Such linkages would also provides a sustainable market for the community to sell their seed.• The international and national research communities should continue to develop and promote new improved varieties that farmers want to grow, and information targeted at extension and farmers.Monyo, E.S., Mgonja, M.A., Rohrbach, D.D. ( 2004) New Partnership to strengthen seed systems in Southern Africa: Innovative community/commercial seed supply models. In Setimela P.S., Monyo E.S. and Banziger M. (eds.). 2004. Successful community-based seed production strategies/Produção de sementes de culturas alimentares na região da SADC, CIMMYT. Mexico D.F.The community-based seed production scheme in the Limpopo Province, South Africa was initiated in 2000, with the aim of addressing the seed security of smallholder farmers. The project focused on Vhembe and Capricorn districts, and was supported by Gesellschaft für Technische Zusammenarbeit (GTZ). Before the start of the project, smallholder farmers in the two districts had been exposed to field trials aimed at addressing their specific environmental and socioeconomic constraints.In 2002/2003 farmers in Mashushu community of Capricorn district selected ZM 421, an open pollinated variety. The main reasons for selecting this variety were its comparative high and stable yield, drought tolerance, and early maturity compared to other varieties in variety evaluation verification and observation (VEVO) trials. Its early maturity was especially attractive, because it eased the burden of guarding the crop from destruction by baboons.Farmers in Vhembe district selected two OPVs, ZM 52 and Grace, in 2000/2001. ZM 521 was high yielding, matured early and had good milling properties. Grace was selected for its suitability for making green mealies (boiled green maize). Both varieties were released in 200.Farmers were trained in producing the seed of their preferred varieties, for local seed security and income-generation.South African National Seed Organization (SANSOR) has been involved in the seed certification of ZM 52 since 2002. SANSOR works closely with farmers producing this variety, to ensure that the seed that they produce is certified.Seed production involves registration of seed units within 28 days from the date of planting (Table 3.), inspection of the seed units at different plant physiological stages, and presentation of seed samples for certification. Four officials from the Department of Agriculture Limpopo Province (DALP) completed the SANSOR course for authorised seed inspectors.The first certified seed was produced in 2003, and the project was officially launched on 7 August 2003. Madzivhandila College of Agriculture was registered with the National Department of Agriculture (NDA) as a seed establishment, authorized to carry out seed cleaning and packaging.Seed growers associations have been formed in the two districts, and a seed growers' cooperative, and seed collection and processing points identified. Farmers grow the seed for the cooperative individually, but they obtain many services communally, including transportation and processing of seed.Department of Agriculture Limpopo Province (DALP) has made available R 00,000 for the renovation and construction of a Service Cooperative, as well as seed collection and processing points. The seed producers are now selling their excess seed to the outside market, after meeting their communities' seed demand.Three seed units planted in February 2004 were harvested and certified in September 2004. The yield was lower than expected due to poor quality of basic seed received from Capstone Seed Company, South Africa; prevalence of maize streak virus (MSV); and poor soil fertility management.At the time of going to press, the seed units at Mbahela, planted in September 2004, had been harvested, the seed cleaned at Madzivhandila College and presented for certification. Those planted in January 2005 had been registered with SANSOR, and the seed inspections carried out at different physiological stages. Ten seed growers associations (SGAs), one in each village, were formed in Vhembe district (Table 3.4). These SGAs have been trained by Yebo Cooperative on management of SGAs and seed co-operatives. The Cooperative also assisted the SGAs to register a seed service cooperative with the Registrar of Cooperatives in December 2004.Currently, the farmers in Limpopo Province are selling seed at R 17.50/kg (1US$ = R 6.20).However, economic analysis of the seed production schemes shows that the seed's total production and processing costs are approximately R 21.60/kg, which includes both invisible and visible costs. This high production cost is due to opportunity costs (invisible costs) which make up about 38% of the total. These include organization of meetings, time, storage of the seeds in the homestead, security, and support from DALP. The umbrella body organization constitutes 4% of the invisible cost, which is paid in kind by farmers. The Limpopo agricultural extension contributes 10% of its time and resources to the project. Visible costs make up 48% of the actual cost, and include land preparation, purchase of basic seed, registration of units, seed treatment/processing, seed inspection, and purchase of plastic bags. The farmers pay for these goods and services in cash.Three villages in Tshiombo produced 3.33 tons of seed during the last season of 2004. Seed processing was done at the Madzivhandila College of Agriculture, where the farmers spent -2 weeks at a time treating and packaging the seed. A simple concrete mixer is being used for treating the seed with Gaucho. As there are no alternative chemicals or generic forms of Gaucho in the market at present, seed treatment has been expensive, making up more than 40% of the total seed production costs. It is expected that generic forms of Gaucho will soon be available in the market, which will reduce seed treatment costs.If the above-mentioned challenges (especially the high cost of seed dressing and processing) cannot be addressed properly, the current community based seed production model of Limpopo Province will not be sustainable.The formation of a Seed Growers Service Cooperative and seed collection/processing points will help reduce the cost of seed production by undertaking complementary functions. The Cooperative will be located in the center of the participating villages, so it is accessible to all. The SGA will be registered with NDA Genetic Resources as a seed establishment, and it will have the following functions:• Serve as a seed storage, processing and packaging establishment. This will reduce costs of transport incurred by farmers. • Trade and negotiate prices on behalf of the farmers, including negotiating discounts on Gaucho (seed treatment insecticide), and other products.• Liaise with DALP and SANSOR inspectors for inspection and certification of seed. Qualified seed inspectors from Limpopo Department of Agriculture (LDA) will assist in seed inspection and submission of seed samples from the farmers to the National Department of Agriculture for germination and purity tests.• Organise for marketing of seed surpluses from the local seed production scheme.• Provide the seed growers with basic seed; the cooperative may source the basic seeds from ARC and other suppliers.This will be managed by local seed growers associations, and have the following functions.• Storage of seed after harvesting. Storage is currently a serious problem. Farmers normally store their seeds in their kitchen and bedrooms after harvesting, which makes fumigation difficult. During the harvesting season children have to vacate their bedrooms and stay with relatives until all the seed has been threshed, fumigated, and sent to the College for treatment.• Ease transportation. Seed is currently treated in Madzivhandila Agricultural College. Farmers living far from Madzvhandila have difficulty transporting their seed to and from the college. At the moment the farmers around Vhembe village (about 60 km from the college) are transported to and from the college daily, but some stay on for 2-3 days to do the seed treatment and packaging. The costs incurred in this exercise include transportation, meals and accommodation.• Host equipment and supplies, including a weighing scale, seed treatment equipment and a moisture meter for the farmers' use, as well as packaging materials such plastic bags, labels and seals bought from the Seed Services Co-operative. The above equipment and materials will facilitate seed cleaning, dressing, packaging and labelling. It will be possible for farmers to receive maize flour or fertilizer in exchange for their seed through the CPP.Following more than 5 years of successful demonstration of the potential of agroforestry technologies to make a positive impact on the livelihoods of smallholder farmers in the region, the World Agroforestry Centre-ICRAF Southern Africa has been focusing its efforts on scaling up these technologies to reach as many farmers as possible in the five countries (Malawi, Mozambique, Tanzania, Zambia and Zimbabwe) where the project operates. The project has focused on a process of institutionalizing agroforestry in the research, extension and development policies of these countries.Strategies employed by ICRAF to enhance this institutionalization in the program countries are: capacity building, developing effective partnerships and networking, and promoting policies more conducive to adoption, with the central focus being strengthening the capacity of farmers for agroforestry innovations that meet their needs. Among the key interventions of the strategies are the following fundamentals: farmer-centred research and extension approaches; establishment of strategic partnerships; knowledge and information sharing; establishment of viable seed systems; developing market options; local institutional capacity strengthening; diversification of agroforestry options; and influencing policy at different levels.ICRAF is building the capacity of farmers in management and problem-solving skills through a four-pronged scaling up strategy that involves:. Direct training of farmer trainers and local change agent teams (group of agroforestry trainers selected by the community;2. Training of partners to undertake farmer training and other forms of extension;3. Facilitating farmer-to-farmer extension and exchange;4. Supporting national extension initiatives on sustainable agriculture.The four-pronged approach outlined above is supported by other activities aimed at creating awareness of agroforestry options through farmer field days, and development of extension materials. We discuss the approach in greater detail here, and examine further refinements that would improve agroforestry adoption and its positive impacts. This 'Farmer first' approach to capacity building has been found to be efficient (Boehringer, 2002) as it ensures that farmers enhance their skills and knowledge through training.Farmer trainers have been very effective in promoting the adoption of agroforestry technologies when the trainers themselves have experienced the benefits of practicing agroforestry on their own farms. The project's experience has also shown that the multiplier effect of this approach can be significant when the farmer trainer is highly motivated and committed.Prong 1 has been implemented as the major approach in the pilot scaling up areas (PSUAs) of the USAID-supported TARGET project in Malawi, Mozambique, Zambia and Zimbabwe.PSUA change agent teams (each comprising 24 farmers, two traditional leaders and four local extension officers) were selected. In the project, ICRAF facilitated group formation. During the sensitization meetings, the community would be advised on the importance of selecting good representatives that would ensure the communities benefited from their involvement as trainers. Alternatively, selection was done through partners who mobilized and assisted communities to form training groups. The training could either take 2 years, or be done as an intensive week-long course. The modules presented in both approaches are the same and include:• Introduction to agroforestry (all agroforestry technologies described);• Nursery establishment and management;• Transplanting, tree management, and horticulture (budding and grafting);• Leadership, team building, marketing, farmer organization;• Enterprise development.Other activities such as farmer competitions, review meetings, exchange visits and field days are conducted with farmers to complement their activities in the field.The farmer trainers are also exposed to skills and practice on preparing and presenting lessons. At the end of the training the farmer trainers make an action plan for their area, which includes a program for training, distribution of seeds, setting up of a nursery and monitoring of activities.Farmer trainers are expected to undertake the following tasks: create awareness among their fellow farmers on agroforestry; train fellow farmers; source and distribute seed; establish nurseries; and monitor field activities. In addition, the trainers establish their own fallows, so as to lead by example. Trainers are also expected to conduct field days and host farmers' tours.While it stands to reason that capacity building at the local level is an effective way of creating sustainable dissemination of agroforestry technologies, experience from the field, especially in the Chinyanja Triangle (TARGET) Project, covering Malawi, Mozambique and Zambia, has shown that the approach requires enormous levels of continuous technical and logistical support. It has also emerged that ICRAF does not have the capacity (human and otherwise) to offer direct support to farmers. Major modifications to the approach include a significantly reduced role of community mobilization by ICRAF. It is expected that this shift will contribute to enhanced local ownership of community dissemination work.Prong 2 is designed to build the capacity of partner organizations (largely NGOs) that work at the grassroots level. Ideally, partner NGOs should be able to contribute financially to the training of their staff/farmer trainers, alongside their core business. This approach has led to mutual learning amongst partners by directly sharing information and experiences, and an increase in joint planning and implementation of agroforestry and other activities.In this approach partner organizations select some of their staff to be trained, and invite ICRAF to provide the training. These partner staff are expected to, in turn, train their community groups. However, staffing limitations within partner organizations have stood in the way of this approach; so far, partners have only been able to mobilize community groups they wish trained, and provide resources for the training.The project has established partnerships with a wide range of development agencies that include NGOs, CBOs, and faith-based organisations (FBOs) in all five countries. It has been found that partners with a strong grassroots presence are best able to reach large numbers of farmers, and monitor field activities at the farm level. Where such partners have long-term commitment in the community, sustainability of the adoption of agroforestry technologies is more secure, The most effective partners are also those that consider agroforestry a priority in their development agendas. Such partners typically commit substantial resources towards promotion of agroforestry in their areas. For Prong 2 to be effective therefore, ICRAF needs to identify and work with partner NGOs/CBOs that use appropriate participatory approaches and are genuinely committed to the empowerment of local community development structures, including the establishment of viable community based seed production systems.This approach involves exposing new farmers to agroforestry by facilitating their visits to farmers who have been practicing agroforestry for some time and have started to reap its benefits. For farmers, \"Seeing is believing.\" (Pretty, 1995). The process of farmer-to-farmer training starts with the host farmers being approached on the willingness to host their fellow farmers. After agreement is reached, the host farmers meet as a group in their own area and assign roles to different individuals. These roles include training, guiding the field visits, and appointing a moderator who is responsible for logistics. As the benefits accruing from agroforestry technologies (especially the soil fertility improvement options) take time, showing new farmers the benefits realized by fellow farmers from the technologies is a very powerful way of promoting adoption.Farmer-to-farmer exchange visits were a major approach for enhancing adoption of agroforestry technologies in the TARGET project. In this project ICRAF facilitated cross-border visits of farmers between Zambia, Malawi and Mozambique. Local change agent teams were the target audience for the exchange visits. The visits helped team members hear first hand, the experiences and benefits of agroforestry from practicing farmers. Furthermore, other farmers within the locality of host farmers, joined in the visits, and learnt about agroforestry.Exchange visits are, however, expensive and therefore should not be used on their own, but to complement other scaling up pathways. Where ICRAF works through partners, exchange visits could be encouraged and costs shared with partner organizations. It is expected that partners will be willing to pay for exchange visits because of their effectiveness in enhancing adoption. Ultimately, however, the most sustainable way to support exchange visits, is by the farmers themselves contributing towards their costs.In all five countries there has been substantial institutionalization of agroforestry in the national research and extension system. However, the level of government support for promotion of agroforestry technologies varies from country to country. Each of the countries has a National Agroforestry Steering Committee (NASCO) responsible for facilitating the institutionalization of agroforestry in research, extension and development.• identifying priority research areas and guiding donor support accordingly;• reviewing the research proposed by various departments and advising them on areas for collaboration;• developing policies on the development of agroforestry;• liaising with extension services to facilitate technology transfer; and• organising seminars and workshops on agroforestry. Hence the NASCOs are critical for facilitating vertical processes of promoting the adoption of agroforestry.However, the operations of the NASCOs have been severely hampered by funding constraints, and as such they have not been very effective in attaining their mission, particularly at the development level. Furthermore, the NASCOs have not been as effective in influencing government policies as expected, likely because the committees are external to government decision-making structures.NASCOs' memberships have typically been skewed towards the national research system, extension, and to a lesser extent institutions of higher learning. It has been recognized that such a composition is not ideal. Inclusion of NGOs and the private sector is essential. This fact is appreciated by some of the NASCOs and reconstitution of membership has been initiated in Zimbabwe.It is important to note that the ultimate goal of scaling up, regardless of which prong is used in dissemination, is to reach more farmers, through trained farmer trainers. However, the sustainability of this local farmer-to-farmer extension depends on continued support from the local public extension system.In areas where extension officers are present, it becomes easy to organise the farming community into groups for training and other events. Farmers and the local farmer trainers require continuous technical backstopping, which can best be provided by personnel that live within the community, such as agricultural extension officers. Many NGOs have high staff turnovers and sometimes, as a result of their short durations in the farming communities, are not able to connect effectively with them. Hence, prong 4 becomes important as it aims to develop and enhance the capacities of these agricultural extension staff to a level that enables them to confidently provide technical backstopping to the farmer trainers and farmers, as well as partner staff.While Prong 4 has great potential for facilitating horizontal processes of promoting adoption of agroforestry technologies (scaling out), a major challenge has been under-investment in the public research and extension systems.In reviewing the different approaches and documenting lessons learnt in scaling up strategies, four additional prongs have been proposed: ). This prong ensures that more training requests from interested organisations can be accommodated, eases the burden on ICRAF staff, and builds local capacity.• Prong 6. Support to agroforestry networking. This involves support to agroforestry networks, as a means to cater for the less strategic organizations, as well as updating existing well established partners. Grouping all interested organisations and stakeholders into agroforestry networks can cut costs and increase outreach. These networks should primarily be seen as fora for the exchange of knowledge and experience, and fostering collaboration among participants. Network members are encouraged to meet frequently on an individual basis, share reports and materials, organise exchange visits and synchronise their activities more.• Prong 7. Establishment and strengthening of school community links. Reaches farmers through agroforestry activities in schools.• Prong 8. Sensitising policy makers about the benefits of agroforestry. By producing policy briefs and use of public media channels and events (local radio, TV programmes, documentaries, field days, agricultural shows etc.), it may be possible to reach policy shapers including parliamentarians, provincial-, district-and village-level administrators, and traditional authorities. This can catalyse the adoption of agroforestry in their respective constituencies.","tokenCount":"6838"} \ No newline at end of file diff --git a/data/part_3/5407400892.json b/data/part_3/5407400892.json new file mode 100644 index 0000000000000000000000000000000000000000..2bd1bd41ef5b79d8682936aa6204afe1867e0061 --- /dev/null +++ b/data/part_3/5407400892.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"d6f4b619c5b291f3e99a1266780444b8","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/f4a92504-9237-4550-ab85-39a0ac6ba421/retrieve","id":"-1182817604"},"keywords":["decision-making","climate services","risk management","dry corridor","systems thinking"],"sieverID":"f5046b0f-0fa2-4939-b395-f3b534b47ecd","pagecount":"14","content":"The growing complexity of the relationship between climate information and agricultural decision-making necessitates the development of relevant and timely climate services for farmers. These services can e ectively support risk management strategies in agriculture by fostering a comprehensive understanding of the intricacies involved in farmer decision-making dynamics. This paper addresses this critical gap by analyzing the drivers influencing decision-making processes that shape adaptation strategies for staple grain and co ee farming systems in Central America. The study answers the following research questions: (i) Does the mind map tool e ectively provide a holistic understanding of farmers' decision-making processes? (ii) How do Central American farmers make decisions within their farm systems at multiple timescales? (iii) Which climate factors trigger these decisions? Employing a combination of systematic literature review and a case study in Honduras, the study identifies critical decisions farmers make throughout their crop cycle and their respective triggers. These decisions were grouped into three clusters (production, household, and environmental) and classified into lead-time categories (operational, tactical, and strategic). Findings reveal that farmers base their decisions regarding future climate expectations on their traditional knowledge, religious dates, and memories of recent past seasons' rainfall patterns, and that one of the most significant factors influencing farmers' decisions is food security shortages resulting from extreme events. For example, recent mid-summer droughts have led farmers to prioritize sowing beans over maize in the Primera season, while during the Postrera season, they face challenges due to excess rainfall and the hurricane season. We conclude that the mind map tool developed in this paper provides an e ective and appropriate method and that the variation in farmers' decision-making complexity across systems and landscapes presents a significant opportunity to design mind maps that span multiple timescales, facilitating the exploration of decision spaces. Farmers actively seek tailored weather and climate information while still valuing their existing experience and local knowledge, emphasizing the importance of integrating these elements into the development of climate services.Over the last century, prolonged droughts, shifting rainfall patterns and extreme events have significantly impacted Central America, where more than two-thirds of the population depends on agriculture (Imbach et al., 2017). Climate variability and change, with a variety of other local stressors, can motivate a shift in strategy in farmers' decision-making, such as planting a new crop, experimenting with a new variety, or migration of a household member (Eakin et al., 2014). The literature recognizes that farmer decision-making is highly dynamic and complex, and is influenced by social relations, individual experiences and their context (Soares et al., 2018). Farmers are constantly making decisions about what, when, and where to plant, management practices and about resource allocation to farm activities such as livestock and other livelihoods. Climate services can create opportunities to better integrate local knowledge and scientific information into the decision-making process (Guido et al., 2021). Climate services are defined as the processes that involve the production, translation, transfer, and use of weather and climate information, all aimed at enabling and informing effective decision-making (Born et al., 2021).In Central America, previous studies have analyzed farmers' responses to various climate-related changes including hurricanes (Alayón-Gamboa et al., 2011;Cruz-Bello et al., 2011), El Niño droughts (Ewbank et al., 2019), interannual climate variability (Eakin, 2000), and climate change (Harvey et al., 2017(Harvey et al., , 2018;;Bielecki and Wingenbach, 2019;Gerlicz et al., 2019). Individually, these studies typically help identify what events affect farmers, and decisions are (or should be) made in response to such events, with only limited attempts to establishing a link between the decisions and the broader spatio-temporal and socioeconomic context. There is thus a significant gap in the literature on (i) how Central American farmers make decisions within their farm system at multiple timescales, (ii) the climate factors that trigger those decisions, and (iii) how to map farmers' decision-making dynamics together with their farming and support systems for climate services development.To address these gaps, we chose a systems thinking approach to gain a more holistic understanding of farmers' decision-making in Central America. Systems thinking can be classified under \"hard\" or \"soft\" approaches (Darnhofer et al., 2012;Rose et al., 2018). Hard approaches tend to rely on mathematical or economic models based primarily on utility maximization outcomes (e.g., income, cost-benefit, or highest yields) and are driven by assumptions that farmers have full access to information (e.g., on seeds, soil, climate) and make decisions on a single time frame (e.g., a production cycle), thus simplifying assumptions of human behavior in the decisionmaking process. Soft systems, on the other hand, view decisionmaking with a focus on decisions as processes rather than just a set of well-defined outcomes (Frisch and Clemen, 1994). They allow more holistic enquiry and understanding (Singh et al., 2016), and place emphasis on decision rules and social appraisals, mind maps and ontologies, traditional ecological knowledge and adaptive pathways (Darnhofer et al., 2012).Soft systems thinking has not been used so far to inform the development of climate services in Central America. Climate services are considered by many providers to be the delivery of higher-quality data (e.g., information and products) rather than to provide an integrated process for improved decisionmaking (Lourenço et al., 2015;Findlater et al., 2021), involving and encouraging users to make their own decisions based on the analysis of information and their demands. Indeed, the generation of output or product may not be as important as the process itself. The definition of climate services, as provided by Findlater et al. (2021), has shifted the focus from solely providing information to emphasizing the importance of understanding the processes behind decision-making, including who is involved and why and how decisions are made. This represents a significant paradigm shift in the field of climate services.Here, we aim to first understand Central American farmer decision-making and then explore how this understanding can be integrated into the development of climate services. A \"holistic picture\" of farmers' decision-making was created using the mind map approach, which combined the results of a literature review through a set of framing questions and a case study conducted with farmers and crop experts in the field in Honduras. Our study aims to help fill the knowledge gap on farmers' decision-making in Central America by (i) documenting whether and how specific decisions are triggered by weather and climate variables; and (ii) what weather and climate information are required to support decision-making by small-scale farmers who cultivate coffee, maize and beans in Central America. We conclude by discussing the implications of the results within the context of climate services for agriculture.. Materials and methodsOur study area is the Central American Dry Corridor (CADC)-a drought-prone area, mainly in Guatemala, El Salvador, Honduras, and Nicaragua (herein referred to as CA4 countries). Climate in the CADC is semi-arid, with two rainy seasons, divided by a long dry season, and a mid-summer drought or canícula. Variations in temperature and precipitation trigger severe droughts and short dry spells, which impact farming systems and food security (Alpízar et al., 2020). According to PRESANCA and the FAO (2011), there are 2.3 million small-scale farmers in the Central American Dry Corridor. The CA4 countries have two main smallscale farming systems: basic grains (maize and beans) and smallscale coffee production. Bouroncle et al. (2017) offer a review of agricultural statistics in the area and report that the most important cash and subsistence crops in terms of cultivated area are maize (34%), coffee (16%), beans (14%), followed by sugar cane (8.4%), rice (5.8%), and sorghum (4.9%). Figure 1 shows livelihood zones in the CADC, which integrate economic activities and farming systems within each CA4 country (Grillo and Holt, 2009).The landscapes in the livelihoods zone map include rain-fed coffee and basic grain production. Basic grains are produced under the milpa system (Olson et al., 2012 andHellin et al., 2017), with average farm sizes ranging from 0.9 to 4.5 ha (Bokusheva et al., 2012;Alpízar et al., 2020;Baumann et al., 2020). In the coffee (Coffea arabica L.) zones, namely GT11, SV02, HN05, and NI12, the annual rainfall ranges between 1,000 and 2,000 mm, while the temperature ranges between 12 and 28 • C. In the zones of the subsistence grains maize (Zea mays) and beans (Phaseolus vulgaris), namely GT10, SV01, HN07, and NI03, the annual rainfall ranges between 800 and 1,500 mm, while the temperature ranges between 21 and 30 • C. Mean household head age is 47.8 years and a mean household size of five to six members (Hellin et al., 2017;Dodd et al., 2020). Furthermore, household heads generally have a low level of formal education (i.e., have not completed primary school) and limited access to technical support (Eakin et al., 2014).According to FEWS NET ( 2007), the income sources in livelihood zones are from sales of crops (i.e., basic grains, coffee, and fruits), livestock, and firewood; migration to sugar cane and coffee areas for harvest seasons; and remittances.A critical aspect of the decision-making is the timing of decisions with respect to the productive cycle of the crops, and the local agroecosystem dynamics. In the CA4 region, climate services for agriculture that support farmer decision-making have concentrated more on seasonal to decadal climate information through the Climate Outlook Forum (Garcia-Solera and Ramirez, 2015) than on weather timescales (i.e., hours to days). However, this neglects the fact that the production systems involve a sequence of interrelated decisions at multiple timescales. The study thus starts from understanding the full extent of farming system dynamics across time, to then create links at all relevant temporal scales through the mind map. To this aim, agro-climatic calendars were developed for the two systems in question (coffee and maize/beans) through a comprehensive literature review to identify the crop cycles that are commonly used in the CA4. The calendars were then refined and validated through consultation with experts (field officers) and small-scale farmers, providing a better understanding of the context.A mind map is a tool for organizing ideas and identifying thematic groups that show interconnections between ontologiesthe distinction of different types of existing knowledge and their elements, concepts and relations (Buzan and Buzan, 2006). The mind map is a non-formal representation of ontologies that can then evolve into a semi-formal (e.g., Unified Modeling Language-UML) or a more formal Ontology Web Language (OWL) structure (Husáková and Bureš, 2020). Mind maps have been used to understand farmer decision-making in several sectors and countries including biodiversity conservation in Australia (Farmar-Bowers and Lane, 2009) and crop production in Ethiopia (Kraaijvanger et al., 2016), Sri Lanka (Walisadeera et al., 2015), Nepal (Afzal and Kasi, 2019), and Thailand (Kawtrakul, 2012).To define the purpose and scope of the mind map four Competency Questions (CQs, Walisadeera et al., 2015; Table 1) were determined. This enabled the necessary information to be obtained from the literature review as well as in the case study. The Decision Name (DN) encompasses the critical decisions that farmers make in their crop cycle, ranging from why they plant their crops to whether they harvest for the market or consumption. The Decision Type (DT) allowed us (i) to classify decisions into leadtime categories, namely short-term operational decisions (days to weeks; e.g., land preparation), tactical medium-term decisions (months; e.g., crop selection), and strategic medium-to longterm decisions (a year or more; e.g., selection of irrigation system); (ii) to determine decision timing (e.g., the month or crop stage when a decision is made); and (iii) to identify trigger events (e.g., prolonged droughts) that influence farmers' decision-making processes (Fountas et al., 2006;Hollinger, 2009;Prokopy et al., 2013;Robert et al., 2016). The Information Needs (IN) encompasses the information required for making decisions (e.g., rainfall forecast). Lastly, the fourth CQ pertained to the Decision Maker (DM), allowing us to understand the roles of different household members in the decision-making processes (Rose et al., 2018).We chose a systems thinking approach-mind map tool-to gain a more holistic understanding of farmers' decision-making. This approach integrates a systematic literature review and a mind mapping tool to better comprehend these processes through qualitative analysis (Figure 2). The first three steps of the data collection and analysis process (steps 1-3) relates to compiling and systematizing the literature sources, whereas step 4 focuses on building a first mind map, and then enriching it with case study information. To create the case study, we used qualitative techniques (i.e., interviews, focus groups and observations) to increase the study's internal validity, aiming to develop a holistic picture of the farmer's decision-making. We applied the mind map to the main crops in the CA4 countries-maize, beans, and coffee, structuring the process along the four Competency Questions (CQs) shown in Table 1.Relevant literature was examined to identify common vocabulary for the mind map through web searches with different combinations of keywords connected with the AND-OR operators, including \"farmersm, \" \"decision-making, \" \"coffee, \" \"maize, \" \"bean, \" \"Central America, \" \"dry corridor, \" and \"climate services, \" using Google Scholar and Web of Science. Only peer-reviewed articles, books, and dissertations published from 2000 to 2020 in English or Spanish were included in the review. Snowball sampling was employed to identify additional literature cited within the initial search. This process resulted in the identification of 74 articles in Central America.Next, we assessed articles for inclusion based on their abstract using three criteria (see Supplementary Table S1 for a list of the criteria). An essential criterion for inclusion was that each article involved collection of primary data in the field with farmers through surveys, interviews, or participatory approaches. The final list of 31 selected references that address used for the analysis are shown in Supplementary Table S2.In this step, we first performed a descriptive analysis of the abstracts using word clouds in NVivo 12 (Zhou et al., 2016; see Supplementary Figure S1). The word clouds allowed analyzing the frequency of certain words and are especially useful if one can identify some of the decisions for each system in the study area (e.g., cultivars and diversification) as well as some factors that influence such decisions (e.g., seasonal variability, hurricane, and coffee rust). Next, the articles were classified and coded in nodes using NVivo 12, requiring close reading and interpretation on the researcher's part. In NVivo 12, a node refers to a collection of references that deal with a specific topic and are used to group articles (Verdonck et al., 2015). In this paper, each node represented a classification according to each CQs (Table 1), and certain paragraphs of an article were assigned to a specific node.We constructed a first version of the mind map using three inputs from the literature review, (i) the key decisions that the farmers make in their farm system, (ii) when those decisions are made and who by, and (iii) the information and relations to the weather and climate variables that trigger those decisions. The key decisions identified are the nodes in the mind map and the arrows are the relations with the other CQs. After the first version of the mind map was completed, a case study was conducted with field officers (n = 5) and farmers (n = 7) in 2021. The case study involved nine interviews and three focus groups in which participants were purposively and snowball-selected in Honduras due to their wellknown experience and knowledge of coffee and basic grain systems (Table 2). No other characteristics were taken into account for the selection. The snowball selection consisted of first identifying field officers as participants, and then asking them to identify at least two farmers' associations. For the farmers, they were asked to identify at least three individual farmers. This process was repeated three times until at least 15 participants were identified. We involved these domain \"experts\" in the field to verify and address any gaps in the mind map. They provided advice/input on the following two aspects of the first version of the mind map: (i) the contentsdecisions and (ii) structure-relations. The case study involved semi-structured interviews and focus groups (∼2 h) for answering the CQs (see Supplementary material for the case study protocol).The case study involved open questions: When and why did you start planting beans/maize/coffee? When did you plant the crop? How has the crop been in recent years? Second, the interviewees were asked to draw an agro-climatic calendar with the specific activities that they perform on their crop, how these activities have been affected by weather and climate, and the role of family members in them. Finally, the decisions list identified from the literature was used to ask the interviewees whether they identified them as relevant and why. They were also asked whether any decision was missing, as well as what information they would require to make better decisions. The interviews and focus groups were conducted in Spanish in July and August 2021. The case study protocol was approved by the University of Reading's Research Ethics Committee. The transcripts from the sets of interviews were coded and analyzed with NVivo 12 following the same process as for the systematic review. For the synthesis, a qualitative content analysis was conducted linked to the CQs. The mind maps were built using the Mindmaster tool (Edrawsoft, 2022).. ResultsTable 3 presents the maize/beans and coffee agro-climatic calendars based upon the literature review and the case study. Small-scale farmers in the CA4 region generally grow the first crop-maize-at the beginning of the rainy season (i.e., late May or early June) and harvest it in October, locally called the Primera season. By contrast, the second crop-beans-is planted regularly during the growing seasons of September-December and December-March, locally called the Postrera and Apante seasons, respectively (Hellin andSchrader, 2003 andBaumann et al., 2020;Ibáñez et al., 2022). In addition, the most frequently reported lean months-June, July, and August-coincide with the Mid-Summer Drought (MSD, known as \"canicula\"), and are associated with a lack of income (Bacon et al., 2014). Maize and beans have an approximate cycle length of 3-5 and 2-3 months, respectively. The process is divided into four phenological phases, from planting and germination to harvesting. Coffee production is divided into six phases, from germination and seedling to harvesting (Table 3). The exact length of the cycle and timing of the phases vary according to the variety, environmental conditions, and crop management (Bacon et al., 2014). Moreover, as coffee is a perennial crop, the vegetative and reproductive growth phases may occur simultaneously but in different plots on the same farm. The lifespan of a coffee plantation can be up to 30 years (Bunn et al., 2015).As a result of the systematic literature review, relevant information to answer the CQs were found. We identified the decisions that farmers make in their production systems, the timing of these decisions, and the factors that influence them. However, most articles have addressed only a particular decision without a holistic view of the farming system and the roles of household members in the decision-making processes. A total of 13 decisions triggered by weather or climate events were found in the 31 articles from the CA4 countries (Table 4). The decisions were grouped into the following three clusters, Cluster A: Production system, which comprised decisions related directly to maintaining or improving crop production; Cluster B: Household strategies, which comprised decisions linked to family projects or collaborative networks for reducing vulnerabilities and maintaining or improving living standards; and Cluster C: Environmental management, which comprised decisions that allow farmers to adopt longer-term planning horizons to sustain ecosystem services, preserve biodiversity, and enhance soil health.This section presents the results of the mind map regarding the findings of the literature review and the case study. Figure 3 illustrates the holistic understanding that maize, beans, and coffee farmers have of their system, and how they make decisions within it. The mind map enumerates every decision (e.g., A.1. What crop can I plant?), the timing of the decision (long before the planting season begins) and associates it with the main factors related to decision-making. These factors are influenced by both climatic (shaded boxes) and non-climatic variables (on a line). The shaded boxes present factors that are influenced by climatic variables (e.g., water availability, food security, and land slope). Due to their dependency on climate variables, these factors are relevant for the development of climate services in the CA4 region. A detailed explanation of the mind map can be found in the subsequent sections. The findings reveal that farmers' decisions to plant maize or beans are influenced by household demands related to food security and seed availability (Mendoza et al., 2017). Farmers association FFGFA02 stated the following: \"Planting staple crops allows us to obtain the government bonus, which provides seeds\". However, need for an income has pushed farmers to start planting coffee. The shift between maize and another crop (e.g., beans, sorghum) is triggered by the late arrival of the rains (Eakin, 2000). The slope of their land is why they decide to plant coffee over annual grain crops (FOCoffee01). For staple crops, in some cases, the preference for seed selection is due to culinary, tradition and cultural importance, and access to community-based grain banks (FFGWA01). For example, native or local varieties to make tortillas, tamales, and atole (a maize drink), are often consumed in almost every meal (van Etten, 2006;Hellin et al., 2017). The trigger events that lead to choosing short-stature and fast-maturing maize varieties are crop lodging from high winds and drought risk from an extended midsummer drought (Eakin, 2000). In the case study, coffee farmers FCoffe01-03 cited resistance to disease and pests (coffee rust), heat and water stress tolerance, and higher yields are the primary reasons for selecting suitable varieties. Additionally, the use of low stature coffee varieties allows for higher spacing and facilitates pruning (Eakin et al., 2006).This study emphasizes the importance of planting date selection as the most critical operational decision. Despite its significance, there is limited evidence regarding the utilization of weather and climate information to inform this decisionmaking process in Central America (Imbach et al., 2017). In the case study, the farmers (FBean01 and FMaize02) mentioned that some peers traditionally sow on the same date for the Primera season -Día de la Cruz 3rd May-waiting for the rains to begin. The first rains that fall early or mid-May trigger farmers to decide to plant. However, farmers risk planting and poor germination due to a false start to the rainy season; they have to replant with differences in height and maturity, creating problems at harvest time (Baumann et al., 2020). Farmers also consider alternative crops if an extreme event destroys their first planting at a date that prevents replanting with maize (Eakin, 2000). For coffee, a shade-grown coffee plantation lasts ∼30 years, but on a sun-grown plantation with intensive production would have to be renewed more frequently (Bunn et al., 2015). Replacing susceptible varieties with resistant varieties will trigger the renewal decision for coffee. For example, field officer FOCoffee02 stated the following: \"After the impact of rust in the 2011/12 season, coffee production recovered through the renovation of production areas with improved varieties that were tolerant to rust.\"During case study data collection, it was observed that some small-scale farmers in Honduras prepare the land and sow on the same day, predominantly using herbicides and machetes for weed clearance (Eash et al., 2019). The soil moisture levels that accompanies the first rainfall triggers farmers to make the decision to prepare their land; moreover, the timing of input management also depends on the rainfall and temperatures. In addition, farmers alter the landscape by creating terraces and furrows to take advantage of rainfall run-off in areas where erosion is high, or flooding is frequent (Eakin, 2000). However, land tenure affects how farmers manage their plots influencing their willingness to invest in sustainable land management practices (Mendoza et al., 2017). In the focus group, the farmers association (FFGFA02) mentioned have access to inputs at a reasonable price through rural banks-cajas rurales-or waiting to receive a bonus from the government to avoid the risk of losing crops. Furthermore, bean farmer FBean01 stated the following: \"preparing organic fertilizers is cheaper but takes time, and we need training on how to prepare them.\"Coffee pruning is an operational decision made once a few weeks before the beginning of the coffee harvest season and after it ends (Cerda et al., 2020). In the focus group, the coffee association FFGCA01 mentioned that the rainy seasons trigger them to decide to prune regularly to increase yields, ensure free entry of light, and rejuvenate the coffee plants. However, in times of crisis, households reduce the time and money that they dedicate for coffee maintenance practices such as weeding, pruning, and fertilization (Eakin et al., 2006). Finally, a successful staple harvest is essential for food availability in the family and selling the remainder in local markets (Baumann et al., 2020). A forecast of a prolonged midsummer drought or an extreme event (e.g., hailstorm or hurricane) can affect the harvest of a crop, ending in total loss if the farmer does not make the correct decision of when to harvest. Mendoza et al. (2017) reported that maize growers base their harvest dates on key calendar dates (e.g., after All Saints' Day, celebrated on November 1st) or moon phases, with a full moon considered to result in much tougher grain. Coffee farmers FCoffe02-03 stated the following: \"If there is rain, the coffee ripens quickly, but when it is heavy rain and excessive sun the next day, then the coffee suffers and burns, and we have ripe but black coffee berries.\"We found that weather and other factors heavily influence postharvest decisions for basic grains. Upon harvest, households must evaluate grain availability and decide whether to store it for later marketing or consumption, or to consume and sell their entire harvest. Extreme events that affect crop productivity can cause food shortages and hunger spells (Alpízar et al., 2020), and preclude farmers from storing grain. In northern Nicaragua, a majority of farmers buy a portion of their grains in the market (Bacon et al., 2014). In the case study, bean and maize officers (FOBean01 and FOMaize02) mentioned that the price fluctuates due to extreme weather and climate events and that this, among other factors, triggers decisions to store the grains. Farmers mentioned that they have space on their farms with patios to dry the grains in the sun for storage (for 4 months or more) in silos (Bokusheva et al., 2012). These stored grains are used mainly during periods of high prices or food shortages in the community.In this study, on-farm diversification is considered a strategic decision made by households to adapt to climate variability and change. In the literature review, it has been identified as a factor in managing food security risks, with diversified livelihoods generally being more food secure (Gerlicz et al., 2019;Hellin et al., 2019;Dodd et al., 2020). In the case study, the respondents mentioned home gardens, fruit trees, coffee agroforestry systems and timber as enterprises that can improve household income and food security and buffer environmental effects-high or low temperatures, strong winds, and heavy rains. However, in some cases farmers are unwilling to engage in crop diversification due to problems associated with new pests and diseases and knowledge gaps in understanding which crops it would be best to diversify associated with growing coffee (Bielecki and Wingenbach, 2019).The findings of this study reveal that families complement and finance farm production with family members finding employment in temporary or seasonal labor (i.e., collection and processing during harvest season), generating strong mobility within and between the CA4 countries. The cash obtained during the coffee harvest is used to (i) meet the food needs of households, mainly during the food shortage season due to extreme events; and (ii) the purchase of inputs for planting staple crops in future seasons (Bacon et al., 2014). But migration can also be permanent, triggered by loss of harvest, bad prices for farmers and permanent deterioration in the standard of living of the staple grains and coffee families. The households with permanent migrants are more vulnerable to food insecurity due to the reduced family labor available, such as for replanting crops or rebuilding farm infrastructure following extreme events (Tucker et al., 2010;Ibáñez et al., 2022). However, remittances from migrants could offset these negative impacts of reduced family labor (Davis and Lopez-Carr, 2014;Alpízar et al., 2020). According to the U.S. Census Bureau 2019 the contribution of Immigrants to the United States from the CA4 Countries are: El Salvador (37%), Guatemala (29%), Honduras (19%), and Nicaragua (7%).In Central America, linkages exist between extreme weather events, climate change, and land-cover change. In the focus groups, the coffee association FFGCA01 mentioned shift from coffee to sugarcane due to market and climatic stressors, along with migration-partially propelled by the coffee crisis-that impacts alternative crop viability and land use in coffee-growing areas. Furthermore, financial incentives encourage reforestation of marginal agricultural land and safeguarding of forested areas against conversion into farmland (Tucker et al., 2010). The shift in farming practices in Central America is evident as the region transitions from predominantly cultivating annual crops to prioritizing planted trees, with cereals playing a subsidiary role (Gerlicz et al., 2019;Alpízar et al., 2020). This shift not only addresses land use challenges but also bolsters the resilience of farming households when faced with extreme weather events (Harvey et al., 2018).Converting slash and burn into slash and mulch called the Quesungual-agroforestry system is gaining importance in Central America to increase soil fertility (Schnetzer, 2018). In the case study, the women association (FFGWA01) mentioned having environment conservation objectives in mind when deciding to stop burning residues. On moderate to steep slopes, contour and terrace planting of coffee is necessary, as they are practical measures that limit soil surface erosion, water retention capacity and loss of organic matter (Harvey et al., 2017). In the case study, the field officers (FOCoffee01-02) mentioned that farmers who experienced severe rainfall or hurricane impacts started establishing soil conservation techniques.In recent years, the \"climate-friendly\" certification is gaining recognition in the coffee sector, offering a price premium to farmers who implement favorable climate adaptation and mitigation practices based on ecosystem services' conservation, restoration and sustainable management (Eakin et al., 2014). Ecosystem-based adaptation (EbA) is also a way to enhance farm management with environmental outcomes. EbA includes planting live fences, creating barriers to animal movement, and providing animal fodder, firewood, timber and fruits (Harvey et al., 2017). Many other farm-level practices have external benefits when implemented at the landscape scale, such as helping retain moisture and regulate the temperature of the soil. However, improved management with environmental outcomes in mind can be limited by (i) the lack of formal property rights that precludes farmers from longer-term planning and from making more ambitious investments in their lands; and (ii) lack of family labor due to out-migration as a barrier to implement new practices (Kearney et al., 2019;Alpízar et al., 2020).Farmer engagement in the early stages of the development of climate services can help identify variables or meteorological events of interest. It can also help determine lead times of information, formats and translation tools, and capacity gaps to enable use. Figure 4 shows the weather and climate information needs, along with the required variables (in colors), identified in the literature review and the case study for each type of farmer's decision. These decisions are categorized base on the timescale that influences them (for further details, see Supplementary Table S3). Operational and tactical decisions are made based on known or predicted conditions, and strategic decisions are based on plausible conditions or scenarios. The graph shows that extreme events and rainfall data appear to be the most required information that could support the farmers' decisions across different time scales in Central America. However, variation exists between types of decisions in terms of what information is most useful.• Operational decisions impacting farmers' day-to-day fieldwork are based on local knowledge (bioindicators, observation), recent past weather conditions (e.g., days to week), current weather, short-term forecasts (3-5 days), and/or sub-seasonal (2-4 weeks) forecasts. Short-term information and early warning systems allow relatively rapid feedback and learning (Griggs et al., 2021). The production cycle of staple grains and coffee highly depends on rainfall patterns. For example, when the rains will start informs when land preparation should commence. Additionally, germination and flowering are triggered by the first rains of the rainy season. However, in the case study, the farmers mentioned that shorter Primera season (first rains) and extended mid-summer droughts in recent years are precluding the sowing of maize, in favor of beans. Thus, the mid-summer drought, which coincides with the maize flowering and grain-filling phases poses significantly limits small-scale farmers in CA4 countries (Baumann et al., 2020). By contrast, in the Postrera season (second rains), farmers are affected by excess rain and the hurricane season. Strong winds lead to lodging and grains falling, and torrential rainfall in the Eta and Iota hurricanes in 2020, for instance, brought caused substantial damage to coffee plantations, and \"milpas\" (intercropping of maize and bean) were lost entirely due to landslides (Pons et al., 2021).• Tactical decisions support planning actions that depend upon farmer perceptions of the past season, climatological information, seasonal forecasts (3-6 months) and interannual variability (i.e., El Niño, La Niña, and neutral conditions) to minimize food insecurity risk and maximize annual farm profits. Tactical planning involves decisions such as crop and variety choice for staple systems, postharvest, soil conservation, diversification, and implementation of agroforestry systems that impact different stages of production. For these, farmers need access to historical climate information, seasonal rainfall, and drought forecasts. Agroforestry systems and soil conservation strategies play a crucial role in mitigating the effects of droughts. These tactical decisions, well-adapted to the region's dry and hilly conditions, are renowned for their resilience to climate change, as they help conserve water, maintain soil health, and support biodiversity.• Strategic decisions require advance planning based on medium-to long-term information (interannual up to 10 years and multiple decades). For example, a 3-year drought (2014)(2015)(2016) in the dry Pacific region of Central America resulted in 1.6 million people becoming food insecure and 3.5 million requiring humanitarian assistance (FAO, 2016).In the case study was difficult for the extension officers and farmers to anticipate responses due to complexity of longterm planning, and to the uncertainty of any available climate information at those timescales. However, long-term climate scenarios have been shown useful to determine suitable cropping zones (Bunn et al., 2015). Strategic planning is especially useful for coffee, which is a perennial crop. Varietal choices, diversification, full exposition or agroforestry, and migration are some of the decisions that can use mid-to long-term climate projections. The most useful information at this timescale includes historical climate data to identify any existing trends (climate change) or lack thereof, as well as to examine the current frequency of events (e.g., droughts) over extended periods, projections of drought frequency and intensity, rainfall and temperature, and changes in the frequency of ENSO and extreme events.Climate Services can be a powerful way to better integrate local knowledge and scientific information into the decision-making process in Central America. According to Born et al. (2021), \"as complex as farmer decision-making for climate risk management might be, understanding the farmer decision space allows for identifying potentially useful information and gaps in information provision\". This paper used a mind map approach to gain a deeper understanding of how farmers make decisions within their farm systems in the CA4 region at various timescales, as a holistic system. It identifies the factors that influence these decisions at the farmer level and discusses the approach's limitations and opportunities. This analysis carries significant implications for the development of climate services in Central America. The results reveal that (i) the mind map approach facilitated and provided a holistic understanding of the farmer's decision-making. The approach was flexible enough to involve literature review and field data in the various stages of the development, whereby farmer decisionmaking processes can be presented in a mind map diagram, which is more understandable for the non-modelers and, thus, enhances farmer's discussion, (ii) 13 critical were identified that farmers make in their crop cycle and their triggers, allowing to group them into three clusters (production, household and environmental) and classify the decisions into lead-time categories (operational, tactical and strategic) and (iii) explored the role of the weather and climate information in the maize, bean and coffee production systems involving a sequence of interrelated decisions at multiple timescales, where one of the most important factors that trigger the decisions of farmers is the food security shortages due to extreme events in Central America.The findings highlight distinct considerations in comparison to more extensively studied regions, particularly Africa. Evidence from Africa reveals that climate services for agriculture have brought about significant changes in how farmers access and utilize climate information, influencing decision-making (Guido et al., 2020;Born et al., 2021). These studies emphasize the importance of integrating short-term actions with long-term resilience-building efforts. In Central America, marked differences in farming systems, decision-making processes, socioeconomic contexts, trade agreements, and non-climatic constraints compared to Africa play a pivotal role. These disparities underscore specific challenges that shape farmers' decisions and strategies in the region. Historical factors like land tenure disputes and civil conflicts influence decision-making. Additionally, access to credit and financial services through rural banks plays a crucial role, further highlighting the unique challenges faced in this region.The mind map approach encouraged dialogue between farmers and agriculture experts in a two-way communication helping set opportunities and gaps in the early design of climate services. Farmers have developed strategies to decide what, when, and where to plant. The results suggest that many farmers in CA4 base the decisions of their future expectations of climate on their traditional knowledge, religious dates, and memories of near past seasons' rainfall. However, in light of this study, climate services must increase the understanding of the usefulness of weather and climate information. For example, short-term information is helpful for operational decisions that are continually adjusted in the next few days (i.e., apply inputs, land preparation and management). On the contrary, a rainfall forecast for the next few days would be inadequate to decide on a crop or variety for planting. However, the weather forecast may be adequate to determine the planting window, whereas a climate forecast for the entire season appears not to be (Guido et al., 2020). This study facilitated an understanding of the usefulness of specific weather and climate information, as well as the potential applications for operational, tactical, and strategic farmer decisions.This paper makes several contributions to the design and implementation of climate services in Central America for smallscale farmers in staple and coffee systems. First, the climate services developers must recognize that many coffee and basic grain smallscale farmers already actively demand tailored weather and climate information without leaving aside their existing experience and local knowledge. Second, the fact that farmer's decision-making complexity varies across systems and landscapes represents a significant opportunity to design cross-time scale climate services. Third, the results also indicate the need to enhance climate literacy among farmers, enabling them to better incorporate and demand relevant information. This improvement will empower farmers to determine which tools and knowledge are most valuable for their specific situations.With the development of the mind map it was possible to identify gaps and provide recommendations for providing climate services in Central America based on evidence from the literature review and a range of qualitative data (i.e., interviews, focus groups and observation). However, this research does not address how farmers can access weather and climate information to support their decision-making. This implies that farmers may be utilizing data from various sources that this study was unable to account for. This paper acknowledges that the impacts of using climate and weather information cannot be isolated from other variables, such as price fluctuations, migration caravans, or government incentives. Despite the study's novelty, only a semi-structured interviews and focus groups with a small sample in Honduras were conducted with a relatively small number of participants as a case study. Future studies could involve a larger sample of farmers and extension officers from various staple and coffee zones in Central America to gain deeper insights into the usability of climate and weather information services for on-the-ground decision-making. Additionally, research is needed on gender, youth, and social inclusion in climate services considering the roles of different household members in decision-making and differing access to information.The mind map was the first non-formal representation of ontologies applied in Central America to better understand farmer decision-making that could evolve into a more formal Ontology Web Language, establishing a decision support system to help the process of co-production into the climate services development. However, as technologies emerge, it is important to consider the integration of traditional knowledge with new sources of information (e.g., advice from extension officers, seasonal forecasts, early warning systems, and agroclimatic calendars) to foster innovation for decision-making. This study could help the farmers adjust their decision-making to operate time-efficiently and avoid extreme climatic events during sensitive growing phases. However, more efforts should be made to improve farmers' capacity and skills toward using weather/climate information in farm management decisions, ensuring agricultural cropping systems' future adaptability and profitability.By examining the farmer decision-making mind map within their system, understanding the factors that trigger those decisions, and identifying the weather and climate information required, along with the challenges faced by small-scale farmers in Central America, regional governments, in collaboration with donors, researchers, and the private sector, can effectively support small agricultural producers in implementing climate change adaptation measures. For this, small-scale farmers require tailored climate services with technical assistance and financial and legislative support to implement the appropriate adaptation measures for their production systems and their local context.","tokenCount":"6903"} \ No newline at end of file diff --git a/data/part_3/5411495956.json b/data/part_3/5411495956.json new file mode 100644 index 0000000000000000000000000000000000000000..3cdfc0a63f58895dfe078071e49a5e849332a2b8 --- /dev/null +++ b/data/part_3/5411495956.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"9c5b11a15b0b673c0628e40fc8bd60d9","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/daf7be41-6f88-413e-a63e-a1f88396d3a4/retrieve","id":"327985661"},"keywords":["CCAFS -P262","LAM","Síntesis, investigación y participación local a nacional / regional CCAFS FP4 -P1604","Soluciones Digitales Integradas Agroclimáticas"],"sieverID":"92a55ea7-4899-4ec8-9372-a37f774983a5","pagecount":"34","content":"En el marco de los proyectos Soluciones Digitales Integradas Agroclimáticas (Agroclimas Fase 2) y Territorios Sostenibles Adaptados al Clima (TeSAC) ambos parte del programa de investigación del CGIAR sobre Cambio Climático, Agricultura y Seguridad Alimentaria (CCAFS), se busca generar evidencia de la implementación de servicios climáticos participativos. Específicamente en el TeSAC de Olopa 1 , CIAT-CCAFS con el apoyo de los socios estratégicos, en particular la Asociación Regional Campesina Ch'orti' (ASORECH), y en asocio con el Centro Universitario de Oriente (CUNORI) de la Universidad de San Carlos de Guatemala (USAC), se adelantan procesos de capacitación relacionados manejo agronómico, información climática y la toma de decisiones basadas en condiciones de tiempo y clima En este contexto CIAT-CCAFS está realizando intervenciones en sistemas de producción de fríjol del TeSAC de Olopa orientadas a mejorar la toma de decisiones con respecto a la variabilidad climática histórica y pronosticada. Se están llevando a cabo experimentos en pequeñas fincas sobre manejos de fechas de siembra u otras prácticas que den evidencia sobre el desempeño de las decisiones basadas en pronósticos estacionales. El presente reporte muestra los avances de ensayos de frijol en el departamento de Olopa, en los que se evaluarán prácticas de manejo y rendimiento, que den indicios de mejoras en las comunidades que han implementado metodologías de métodos participativos de servicios climáticos.La necesidad de consolidar políticas y acciones estratégicas que vinculen el sector agropecuario y el cambio climático, con el fin de encontrar alternativas en campo, que permitan reducir el impacto negativo de la variabilidad climática, a través de la conservación del capital natural, el fortalecimiento de los medios de vida y el logro de la seguridad alimentaria de los miles de productores de granos básicos del Corredor Seco.Es por esto que el Ministerio de Agricultura, Ganadería y Alimentación de Guatemala (MAGA) junto con el programa de investigación del CGIAR en Cambio Climático, Agricultura y Seguridad Alimentaria (CCAFS) y el Centro Internacional de Agricultura Tropical (CIAT) han unido esfuerzos en torno al concepto de Agricultura Sostenible Adaptada al Clima (ASAC) para identificar, priorizar y promover las prácticas o tecnologías agrícolas que contribuyan al logro de los objetivos planteados, a través de un esfuerzo integrado en tres pilares fundamentales: el fortalecimiento de la seguridad alimentaria por medio del incremento de la productividad de forma sostenible, el aumento la capacidad de adaptación de los agricultores y el desarrollo agropecuario bajo en emisiones a través de la reducción/eliminación de gases de efecto invernadero (mitigación).Las prácticas ASAC aquí presentadas corresponden a la lista priorizada participativamente con los actores del sector agropecuario de Guatemala y representan puntos de entrada para orientar la toma de decisiones basadas en múltiples criterios, promoviendo la inversión en tecnologías viables para los agricultores del Corredor Seco.Son estructuras de piedra o material inerte (rastrojo) disponible en la finca, que se apila en hileras no mayores a 60 cm de alto y que reposan en una base aplanada. En zonas de ladera se disponen en curvas de nivel perpendicular a la pendiente. La tecnología se puede utilizar en todas las altitudes y zonas climáticas, especialmente en suelos con pendiente pronunciada y buen drenaje. Es posible complementar con el uso del aparato \"A\" (piezas de madera en forma de letra A) para trazar las curvas de nivel. A mayor pendiente menor distancia entre barreras: Pendiente suave (hasta 15%): 10-20 m; moderada (15-30%): 6-10 m; fuerte (30-50%): 4-6 m.Entre los diferentes tipos de labranza, esta se enfoca en no realizar laboreo o arado del suelo (labranza cero) realizando la siembra manual directamente en el suelo usando chuzo o espeque (vara de madera que sirve como instrumento para hacer el agujero donde irán la semillas) y en mantener sobre el suelo el rastrojo o residuos de cosecha de cultivos anteriores picado y distribuido uniformemente en el suelo a manera de cobertura o mulch. Se puede utilizar en todas las altitudes y zonas climáticas. En suelos compactados es posible sembrar cultivos de cobertura con raíces fuertes y pivotantes para mejorar la estructura del suelo. En suelos muy arcillosos y secos, la siembra directa puede ser difícil, por lo que se espera la temporada de lluvias para hacer la siembra.Consiste en la excavación y aislamiento del suelo para la captación y reserva de agua lluvia en puntos donde puede aprovecharse la escorrentía superficial. Las dimensiones y capacidad del reservorio varían de acuerdo a la capacidad de mano de obra, uso de herramientas manuales o maquinaria, área disponible y características del terreno. Para facilitar el riego aprovechando la gravedad, y en algunos casos evitar el uso de motobombas, los pozos se construyen en laderas de entre 10 y 30% de pendiente, en lugares firmes, en lo posible por debajo de las fuentes de agua y encima de las parcelas a regar.Es un sistema de riego de baja presión que transporta y suministra agua de forma localizadas por medio de mangueras plásticas dispuestas a nivel del suelo que poseen emisores o goteros distribuidos a una distancia definida según el cultivo a regar. Cuenta con un sistema de válvulas y filtros para controlar el taponamiento de los goteros debido a las impurezas del agua. Suministra una cantidad uniforme de agua manteniendo la zona radical húmeda o a capacidad de campo. Las fuentes de presión para el agua pueden provenir de un reservorio o estanque ubicado sobre el nivel del terreno a ser regado (gravedad), usando una motobomba o a través de la red de acueducto pública.Consiste en la siembra de diferentes cultivos, de forma sucesiva en un terreno determinado.En el caso del corredor se puede dar con la siembra de maíz y posterior a este frijol o sorgo.La rotación de cultivos puede hacerse en todo tipo de altitudes y condiciones climáticas, se debe tener en cuenta la adaptación de nuevas especies a la región, cultivos con diferentes profundidades de enraizamiento, efectos alelopáticos, sincronización del calendario de cultivo y actividades, manejo de residuos de cosecha, oferta y demanda del producto para la comercialización, entre otros. En sistemas de rotación entre maíz y leguminosas, en este caso frijol, existen efectos positivos en el rendimiento por aportes de nitrógeno al suelo. Es posible integrar en las rotaciones períodos de barbecho o descanso.Barreras vivas: Consiste en plantar hileras con especies perennes o que duran más de un año (permanentes); que presentan un follaje denso, resistentes a la fuerza de la escorrentía y a la sequía. Se siembran siguiendo las curvas a nivel con el fin de evitar la erosión. Es posible usar especies gramíneas (vetiver, caña de azúcar), frutales (piña) o leñosas bien conocidas en el corredor seco como Madre cacao (Gliricidia sepium) y Palo de pito (Erythrina berteroana).Se puede implementar en todas las altitudes y zonas climáticas (teniendo en cuenta la especie a usar) especialmente en suelos con pendiente variable. Es posible complementar con el uso del aparato \"A\" (piezas de madera en forma de letra A) para trazar las curvas de nivel. A mayor pendiente menor distancia entre barreras: Pendiente suave (hasta 15%): 15-30 m; moderada (15-30%): 10-15 m; fuerte (30-50%): 4-10 m.Consiste en el uso de variedades de semilla criollas o mejoradas por métodos convencionales, tolerantes/ resistentes a los daños y pérdidas de rendimiento o del cultivo ocasionadas por insectos plaga o enfermedades.Consiste en el uso de variedades de semilla criollas o mejoradas por métodos convencionales, con tolerancia a condiciones de falta de agua ó sequía y aumento de temperatura especialmente en el período de floración. En este caso se ejemplifica a través de una variedad de maíz de libre polinización (ICTA B-7) con porte bajo, buen potencial de rendimiento y tolerancia al acame de tallo y de raíz por lo que es menos afectada por la incidencia de fuertes vientos, tolerancia a enfermedades foliares y de la mazorca. Ciclo vegetativo de 110 días, 53 días a floración, con grano blanco semi-dentado. Esta variedad se adapta a las condiciones marginales de la zona del Nor-Oriente y algunas regiones de la Costa Sur-Occidental de Guatemala.Son zanjas o canales de forma trapezoidal construidas a desnivel en dirección transversal a la pendiente. Estas estructuras son de 0.5 m de ancho, 2 -3 m de longitud y una profundidad entre 0.5 -0.75 m. La función de la estructura es principalmente la de la conservación de agua funcionando como acumulador de agua que mejora la infiltración en la zanja. Existe el riesgo que se llenen rápidamente durante lluvias fuertes y se formen cárcavas donde el agua desborda en el lado inferior de la zanja. Si se construyen en suelos superficiales hay que reducir la distancia entre zanjas Cualquier paso adelante en la consolidación de inversiones a favor de la ASAC para cada contexto dentro del Corredor Seco, requiere desde el inicio que las prácticas sean aceptadas y reconocidas por parte de los agricultores y sus formas de organización, respetando la diversidad cultural de la región, para luego sí dar paso a la identificación a nivel de parcela y territorio, de las barreras que dificultan su adopción y las oportunidades para superarlas, desde el punto de vista tanto de quien las implementa como de quien las promueve.El enfoque de los Servicios Integrados Participativos de Clima para la Agricultura (PICSA, sus siglas en inglés) busca facilitar que los agricultores tomen decisiones fundamentadas, basándose en información climática y meteorológica precisa y específica por sitio; cultivos pertinentes según su ubicación; alternativas de especies pecuarias y actividades de subsistencia; todo mediante el uso de herramientas participativas.Por tanto, para tomar buenas decisiones es esencial considerar las opciones de producción agrícola y pecuaria y actividades de subsistencia dentro de un contexto climático. El enfoque PICSA se diseñó teniendo en mente al personal de campo y tiene por objetivo brindar a usted el apoyo necesario para realizar su trabajo de mejor manera, mediante información y recursos mejorados.El enfoque PICSA combina información climática local e información sobre cultivos, especies pecuarias y medios de subsistencia con Herramientas participativas de planificación que los agricultores pueden utilizar para decidir cuáles son las mejores opciones agropecuarias y de subsistencia para ellos. PICSA utiliza en gran medida información climática proporcionada por los Servicios Meteorológicos Nacionales para facilitar que los agricultores analicen los riesgos y oportunidades.Variedad de hábito de crecimiento determinado, pero la carga mayor se da en la base de la planta, su altura es de 0.60 m y la floración ocurre entre 29 y 30 días después dela siembra, el color de la flor es lila; la vaina madura es de color crema, con seis granos de color negro oscuro, la madurez fisiológica se presenta a los 64 días y puede cosecharse a los 71 días o antes, si el clima está seco. Es resistente a Mosaico Dorado y tolerante a Antracnosis, Bacteriosis y Roya (Beaver, Rosas 2002). Variedad biofortificada con Hierro y Zinc de habito de crecimiento indeterminado arbustivo, con guía larga, su altura es de 0.60 m en promedio y la floración ocurre 35 días después de la siembra, el color de la flor es Morado, el color de la vaina es crema muy uniforme, con siete granos color negro opaco y alargados por vaina, la madures fisiología está comprendida en 70 días y se puede cosechar a los 78 días después de la siembra. Posee tolerancia a Roya, Mancha Angular, Virus del Mosaico Dorado y sequía.Figura 1. Tipo de semilla empleada para los ensayosEl ensayo se realizará en dos localidades del Municipio de Olopa, Aldea la Prensa y Caserío Tishmuntique, de aldea Tituque. Las parcelas de Siembra con que cuentan los productores de dicha localidades son de aproximadamente 1 tarea de terreno cada productor, siendo estos seis productores destinados para la producción de las tres variedades de frijol a evaluar en siembra de segunda o también llamada postrera.El proceso de selección del sitio para la ubicación de los ensayos se realizó a través del reconocimiento y sondeo de la zona. La primer área experimental se encuentra ubicada a km de la cabecera del municipio de Olopa, a una altura de 1,050 msnm. Con coordenadas N 14º 43' 43.3\" y W 89º 21' 51.5\". La segunda área experimental se encuentra ubicada a km de la cabecera del Municipio de Olopa, a una altura 883 msnm. Con Coordenadas N 14º 43' 54.0\" y W0 89º 15' 50.4\". Figura 2. Primer área experimental de Olopa Figura 3. Segunda área experimental de OlopaEl Municipio de Olopa, se encuentra ubicado en la cumbre de una montaña que lleva su nombre, el clima es variable según la estación, de lo templado a lo frío, su temperatura promedio es de 15°C y mantiene un ambiente húmedo; en invierno y primavera prevalecen en la región los vientos del norte y en el verano los vientos del sur. Es una región de lluvias fuertes en el invierno y en el verano es un lugar muy seco, la precipitación media anual es de 1,300 milímetros (mm). Por la altura en que se encuentra, le favorecen los vientos que soplan la región y hacen el clima agradable. La mayor temperatura se registra en el mes de abril con 35°C y la temperatura mínima en el mes de enero de 18°C. El período de lluvias más largo es entre mayo y noviembre.Se ubican dentro de las llamadas tierras templadas; el área se considera dentro de la zona de vida Bosque Húmedo Subtropical Templado (Bs-T); las características climáticas de la zona indican una precipitación media anual de 900 a 2,000 mm, distribuida en los meses de mayo a octubre, período en el cual precipita el 94% de las lluvias y el 6% ocurre de noviembreabril. (Oficina Forestal Municipal. 2014) El efecto de las sequías prolongadas, durante la época seca, incide en la producción agrícola disminuyendo los rendimientos, provocando pérdidas físicas de los cultivos, disminución hasta casi el desaparecimiento de las fuentes de agua, tanto para su uso agrícola como para consumo doméstico.Para generar evidencia de los cambios asociados a la implementación de prácticas ASAC bajo el enfoque PICSA, se implementaron tres parcelas de 300m 2 cada una, por localidad; de las cuales, dos parcelas fueron manejadas bajo prácticas ASAC y una bajo el manejo tradicional de producción de frijol. Así mismo, la parcela será dividio en sub-parcelas de 100m 2 , en donde se sembraron tres variedades de frijol de Postrera (Segundo Ciclo) por subparcela, siendo Vaina Morada, ICTA Ligero e ICTA Chortí.Se seleccionaron sitios representativos de cada comunidad y fincas de tres agricultores con alto conocimiento en la metodología PICSA. Se seleccionaron las fincas representativas un área de aproximadamente 100 m 2 por ensayo (variedad), con facilidad de acceso para la realización de las evaluaciones periódicas. Se tendrá así mismo una finca testigo por localidad de un agricultor que no haya recibido capacitación de PICSA y/o que no haya implementado ninguna practica ASAC.El área experimental está constituida por un área de 900 m 2 en las localidades de Aldea La Prensa y caserío Tishmuntique de Aldea Tituque, del municipio de Olopa. Para la evaluación de la metodología ASAC se establecieron 3 parcelas grandes de 300 m 2 cada una, dentro de las cuales se encontrarán las parcelas medianas constituidas por las 3 variedades, teniendo una dimensión de 100 m 2 por variedad. El área de las parcelas será de 100 m², que consistirá de 10m de ancho y 10 m de longitud; donde se establecieran 25 surcos aun distanciamiento de 0.30 m entre plantas y 0.40 m entre surcos.El diseño experimental que se utilizará en la evaluación es de Parcelas Divididas en un arreglo completamente aleatorizado con 6 tratamientos y 5 repeticiones.Tabla 1. Tratamientos a evaluar en el Diseño Experimental.El modelo lineal para las observaciones de este experimento es el siguiente: Y ijk = U + Ti +Uj(i)+Rk + TR ik + E ijk Donde: YIjkl = representa la respuesta observada en i-ésimo nivel del factor Practicas y j-ésimo nivel de factor Variedad. U = representa la media general de la respuesta, Ti= representa el efecto del i-ésimo nivel del factor asociado a las parcelas principales Uj(i)= corresponde al error de la parcela grande Rk= representa el efecto del j -ésimo nivel del factor asociado a la variedad.TRik= representa el efecto de la intereacción del ik-ésimo tratamiento.Eijkl= representan los efectos aleatorios de los errores experimentales respectivamente. Figura 6. Captura de datos de altura de la plantaSe tomaron al azar quince plantas de cada parcela neta, de las que se recolectaron las vainas para contarlas y determinar el promedio correspondiente por planta.Se tomaron al azar 50 vainas de la parcela neta y se procedió a retirarles y contar los granos, para obtener el promedio por vaina. Figura 8. Captura de datos de granos por vainaCuando el grano presente 12% de humedad, se tomaron al azar 100 granos de cada tratamiento y se determinó el peso en gramos. Figura 9. Captura de datos e peso de 100 granosLuego del aporreo, secado y limpieza del grano de cada parcela neta, se procedió a pesar.Con este dato se proyectará el rendimiento en kg/ha de cada tratamiento.Figura 10. Captura de datos de rendimiento por granoSe llevarán registros de costos (insumos, herramientas, mano de obra, etc.), con el fin de determinar el costo de producción en cada tratamiento. Con base en el rendimiento que se obtenga, se harán los cálculos necesarios para proyectar los ingresos que generó cada tratamiento, para determinar la rentabilidad de cada tratamiento.Se utilizó el programa estadístico INFO-STAT, donde se utilizarán los siguientes análisis: análisis de varianza (ANDEVA) a través de modelos lineales generales y mixtos, y para los tratamientos que presenten diferencias significativas se someterán se someterán al test DGC (Di Rienzo et ál. 2002) Se delimito el área de siembra y luego se procedió a la limpieza de las malezas de forma manual, incorporando el rastrojo en el área de siembra a excepción de la parcela que se sembrara de manera tradicional de 8 a 10 días antes de la siembra.Figura 11. Preparación del terrenoPara prevenir el daño de la semilla causado por las plagas y hongos existentes en el suelo, se aplicó el tratador de semilla Thiamathoxam (2 cc/kg de semilla) para protegerla semilla.  La primera fertilización de 16-8-12 a los 15 días después de la germinación. La Segunda fertilización de 16-8-12 a los 30 días después de la germinación.Figura 15. Segunda fertilizaciónEl control de las malezas se llevo a cabo de forma manual a los 35 días después de germinado utilizando herramienta conocida como machete pando.Se realizó una aplicación de Metaldehido 60 GB (0.45 Kg/Ha) aplicándose al primer día después de germinación realizando la segunda aplicación a los 15 días después de germinar para el control de babosas y caracoles. Se utilizarán insecticidas sistémicos y de contacto. La primera aplicación se realizó con Alphacypermethrin + Teflubenzuron (286cc/ha), actúa contra insectos chupadores y masticadores, la segunda aplicación se realizó con Lambdacihalotrina +Tiametoxam (130cc/ha). Estas aplicaciones se realizaron en la mezcla con las fertilizaciones foliares.Figura 16. Control de plagasSe realizaron 2 aplicaciones para el control de enfermedades, se aplicara Propineb a los 10 días después de la germinación en la mezcla con la aplicación foliar Bayfolan Forte y Boscalid+Piraclostrobina a los 20días después de la germinación en la mezcla con la aplicación foliar de bayfolan forte.Figura 17.Control de enfermedadesSe realizó la cosecha al observar que las plantas han finalizado su madurez fisiológica, entre los 70 a 75 días después de la siembra. Las plantas fueron arrancadas de forma manual, separando la producción de cada parcela neta para cuantificar el rendimiento de cada parcela neta.Figura 18. CosechaA continuación se presentar resultados parciales de la tabulación de la información captura en campo para su posterior análisis. En algunas parcelas se tuvo la problemática de perdida de planta por ataque de chimilca, donde se efectuaron aplicaciones preventivas con productos caracolicidas, así también perdida por perjuicios causados por conejos.También se presentó el aumento de lluvias perjudicando en algunas parcelas la germinación de semilla por ahogamiento, así como también presencia de enfermedades fungosas como la Pata Negra y mosaicos.Para lograr la cosecha de las parcelas de las tres variedades de frijol la variedad vaina morada se alargó 15 días más debido a que se presentaron frentes fríos que retardaron la maduración de la vaina en la localidad de Tishmuntique.Otra limitante que se presento fue que los agricultores salen a trabajar en los meses de Noviembre y Diciembre para poder ganar el sustento para su familia y ganan su jornal cortando café en fincas cafetaleras del Municipio de Esquipulas y en fincas del País vecino de Honduras complicando así la asistencia para realizar actividades en el cuidado y manejo de las parcelas de frijol evaluadas.","tokenCount":"3408"} \ No newline at end of file diff --git a/data/part_3/5413306300.json b/data/part_3/5413306300.json new file mode 100644 index 0000000000000000000000000000000000000000..c2c5ca03dfc9bf36956ad39e5069a8cde09b02e3 --- /dev/null +++ b/data/part_3/5413306300.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"0903b1e99dcf40ef97de2991cca8c926","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/101dffaf-a659-4a1a-b301-a8f30eb639ff/retrieve","id":"-514616285"},"keywords":[],"sieverID":"7417f41b-1fd0-4bcb-83c3-d17fe082784d","pagecount":"8","content":"This research note presents initial findings from a high-frequency market survey conducted in four districts of Northern Bangladesh. The survey examines price fluctuations from farmgate to market, food production diversification, and consumer dietary choices from August to October 2023 in the Rajshahi, Chapai Nawabganj, Rangpur, and Dinajpur Districts, which are part of TAFSSA's learning landscape locations. High-frequency data collection has occurred biweekly six times thus far and continues. Future analyses and research will delve into price transformations following the sale of diversified crops in which farmers are participating in experiments. This research note is based on six rounds of data collection and offers preliminary insights into how farmers contribute to and benefit from a sustainable food supply chain in these regions.1. The TAFSSA Integrated Market Survey comprehensively investigates the intricate interactions within the local food system, focusing on the relationships between agricultural plots, farm gates, markets, and consumers. 2. A significant proportion, approximately three-quarters, of the farmers surveyed reported no sales of their produce during the period from August to October 2023. Among those who did sell their produce, the sale of groundnuts and animal-based products was notably prevalent. 3. The survey identified local farm-gate traders as the predominant purchasers of agricultural produce within the study area. 4. The practice of directly selling agricultural products to consumers and vendors in local villages and markets was observed to significantly influence the dietary composition within these communities, at least at a village level. 5. A high frequency of purchases of animal products (such as eggs, poultry, meat, and fish), green leafy vegetables, and dal, coupled with a low frequency of purchasing deep-fried foods, offers preliminary evidence suggesting the prevalence of relatively healthy dietary patterns in the study areas.The dominance of agribusinesses, food retailers, manufacturers, and food service firms in the food chains exerted a changing influence on retail food commodity markets, in turn contributing to a re-shaping of market dynamics (Popkin et al., 2020). This transformation is particularly relevant to subsistence farming, local consumption patterns, and the degree of profitability experienced by farmers. As the dominant players in the food chain tend to prioritize efficiency and profit, they may overlook the needs and sustainability of small-scale farmers, leading to a widening gap between commercially-oriented agriculture and subsistence farming. Additionally, the concentration of power in the hands of a few market actors can lead to unfair pricing practices and limited choices for consumers, further exacerbating the challenges faced by farming communities.Understanding the complex dynamics of market accessibility and farmers' choices regarding sales channels is essential for obtaining insights into agricultural value chains. In recent decades, researchers have emphasized integrating smallholder farmers into these value chains (German et al., 2020;Ros-Tonen et al., 2015).The core focus of this study is the acknowledgment that farmgate pricing and market prices are crucial in forming the broader food supply chain. These factors significantly affect consumers' food purchasing and consumption habits. Comprehending the relationship between farmgate pricing and market prices is vital for assessing the economic viability of smallholder farming, as well as its influence on food security and nutrition outcomes (Molitor et al., 2017;Woodhill et al., 2022). Furthermore, analyzing consumers' food purchasing and consumption habits offers valuable perspectives on how market prices affect consumer choices and preferences. This analysis shapes the demand for agricultural products, as detailed by Ali et al. (2010). The setting of farmgate prices by producers directly influences their revenue and profitability. This impact, in turn, affects vital decisions regarding crop selection, production practices, and the sustainability of agriculture. On the other hand, consumers, influenced by market rates determined by supplyand-demand dynamics, pay prices that mirror the broader economic forces in operation.Addressing these concerns, this research focuses on the role of pricing mechanisms in agricultural and consumer markets, and their impact on altering farmers' behavior and crop production choices. The primary aim is to improve market efficiency, guarantee fair compensation for farmers, and aid in the development of sustainable food systems. This study is distinctive in its use of high-frequency data collection techniques, offering a detailed and real-time perspective. Contrasting with conventional periodic methods, this approach delivers a dynamic representation of the constantly changing agricultural and consumer landscape, thus enhancing the depth and accuracy of the study's conclusions.This study aims at uncovering insights regarding pricing mechanisms and consumption patterns in farm and consumer markets.In particular, itexamines the temporal distribution of food prices from farmgate to other existing markets to investigate whether there are any high-price zones or areas where production or cropping systems aligned with the marketing system. It also explores the patterns of food purchasing and consumption of local consumers.Our study area includes Rajshahi, Chapai Nawabganj, Rangpur, and Dinajpur districts in Northern Bangladesh, where TAFSSA's participatory research where farmers test varied agronomic, market, and nutrition innovation bundles through structured multi-year studies.Respondents to the TAFSSA integrated household (HH) survey include a total of 100 farmers from 12 villages in the four districts mentioned above. In the eight villages where on-farm texting of innovation bundles are bring carried out, five farmers and five non-trial farmers were selected. In the other four control villages, where no testing of innovation bundles is taking place, five farmers each have been selected. The respondents of both production and consumption modules are same.In the area surrounding of these villages, 26 markets have been identified (Table 1). In each marketplace 6-7 vendors were selected to cover sentinel food items, with particular focus on cereals, pulses, vegetables and fruits. In total 168 vendors are the respondents of this market survey.The data for this brief is from the first six waves of high-frequency data collection for both farmers and vendors. Table summarizes the type of markets, respondents and sample size of the surveys.We used the CAPI tool to collect data 1 . High-frequency data collection started on August 6, 2023, and is repeated every two-weeks. Note that only 26% of farmers did sell produce during this period.Figure 1 presents an overview of the proportion of different food items that were sold by farmers between August and October 2023. During this period, a substantial proportion (74%) of farmers did not engage in any sales.Considering the remaining 26% of farmers who sold their produce, rice, wheat, maize, and mustard combined contributed to 14.54% of the total frequency of food sales. Groundnut sales contributed substantially (29.80%) to the market participation during this time period. Farmers' sales portfolios have a low representation of pulse crops, with lentil accounting for only 0.62%. This likely reflects the unseasonable time in which data were collected as pulses would be sold earlier in the year. Poultry and eggs account for a noteworthy proportion of sales (9.32% and 5.59%, respectively). Milk, derived from diverse sources such as cows, buffaloes, and goats, contributes to 14.28% of observed sales, highlighting the significance of dairy farming in these areas. Potatoes (6.85%), fish (0.62%), pumpkin (1.24%), green leafy vegetables (0.62%), brinjal (8.09%), banana (3.1%), and other fruits (4.3%) are also sold.Figure 2 shows who buys the produce from farmers, including the most prominent market participants and the primary channels through which farmers sell their commodities. More than three-fifth of farmers sell their farm produce to local traders, \"Bepari\". 11.76% sell their products directly to village neighbor consumers (households).Only a few farmers (2.35%) sell directly to millers or processing plants. Conversely, more than one-fifth (21.76%) of farmers sell their products to vendors at the local markets.A small fraction (2.94%) opted for vendors located in other markets. This suggests that a substantial proportion of farmers are supplying their agricultural products to local markets, contributing to the food demand of local communities.More than 97% of farmers surveyed sell at either farmgate (42.94%) or weekly open markets called haats (35.29%) or village-level markets (18.82%) (Figure 3).Respondents indicated that farmgate sales are considered easy and straightforward. This attributes to the prominence of local traders ('Bepari') in agricultural marketing in These districts of Bangladesh.Figure 4 highlights the purchasing habits of consumers for different food or food groups. Purchase frequency of protein rich animal source foods such as eggs and fish are very high (70% and 90% consumers reported buying eggs and fish at least once in a week, respectively). Interestingly significant proportion (about two-fifth) did not purchase deep fried foods, and a onefifth did not buy biscuits, however if bought these products are more often purchased at a higher frequency (more than once a week for ~30% of the respondents). Bananas were also not purchased by more than one-fifth of the respondents, though this is lilely due to seasonality of the survey. The majority of consumers (80%) bought green leafy vegetables at least once a week and only 10% did not. Dal is another food more frequently purchased -several consumers resort to multiple purchases, or use homemade, gifted, or saved sources (25.8%). Figure 5 illustrates that the household diet encompasses a range of foods, deriving nutrients from diverse sources and including both healthy and unhealthy options. The respondents regularly consume staples such as rice, potatoes, onions, other vegetables, fruits, fish, eggs, as well as tea/coffee, biscuits, and baked sweets. There is a high consumption of healthy foods like onions, fruits, eggs, fish, and poultry. However, it is noted that several consumers did not include vegetables other than onions and milk in their diet during the recall period. On a positive note, a significant proportion of consumers avoided deep-fried foods and other unhealthy options, such as soft drinks and sweetened juices, during this period.1. Only 26% of the producers sold any of their produce between August and October 2023. 2. Local traders, 'Bepari', are the most dominant buyers of agricultural produce and farmers most frequently sell their produce at the farmgate followed by at haats and village markets. 3. High purchasing frequency of animal source foods (eggs, poultry meat and fish), green leafy vegetables and dal as well as low frequency of deep-fried foods purchases indicates the potential for healthy diets. To learn more, please contact: p.chellattanveettil@irri.org To learn more about TAFSSA, please contact: t.krupnik@cgiar.org; p.menon@cgiar.org","tokenCount":"1662"} \ No newline at end of file diff --git a/data/part_3/5416551589.json b/data/part_3/5416551589.json new file mode 100644 index 0000000000000000000000000000000000000000..d3e9e469503cbd9c61c78bbb889a81a946bde597 --- /dev/null +++ b/data/part_3/5416551589.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"7b2ba60271dea378009277e67069994d","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/ceab2cc1-bfdf-4334-94df-c3bd33157421/content","id":"1826090322"},"keywords":["Nenkam","A. M.","Wadoux","A.-C.","Minasny","B.","McBratney","A. B.","Traore","P. C. S.","Falconnier","G. N.","& Whitbread","A. M. (2022). Using homosoils for quantitative extrapolation of soil mapping models. European"],"sieverID":"aa3b6796-f1ee-43bb-94ba-70883c82f0cc","pagecount":"19","content":"Since the early 2000s, digital soil maps have been successfully used for various applications, including precision agriculture, environmental assessments and land use management. Globally, however, there are large disparities in the availability of soil data on which digital soil mapping (DSM) models can be fitted. Several studies attempted to transfer a DSM model fitted from an area with a well-developed soil database to map the soil in areas with low sampling density. This usually is a challenging task because two areas have hardly ever the same soil-forming factors in two different regions of the world. In this study, we aim to determine whether finding homosoils (i.e., locations sharing similar soil-forming factors) can help transferring soil information by means of a DSM model extrapolation. We hypothesize that within areas in the world considered as homosoils, one can leverage on areas with high sampling density and fit a DSM model, which can then be extrapolated geographically to an area with little or no data. We collected publicly available soil data for clay, silt, sand, organic carbon (OC), pH and total nitrogen (N) within our study area in Mali, West Africa and its homosoils. We fitted a regression tree model between the soil properties and environmental covariates of the homosoils, and applied this model to our study area in Mali. Several calibration and validation strategies were explored. We also compared our approach with existing maps made at a global and a continental scale. We concluded that geographic model extrapolation within homosoils was possible, but that model accuracy dramatically improved when local data were included in the calibration dataset. The maps produced from models fitted with data from homosoils were more accurate than existing products for this study area, for three (silt, sand, pH) out of six soil properties. This study would be relevant to areas with very little or no soil data to carry critical soils and environmental risk assessments at a regional level.• Soil mapping models were fitted with soil data within the homosoils of Mali.• The fitted models were applied to our study area.• Model accuracy dramatically improved when including local data.• Homosoil maps were more accurate for 3 out of 6 soil properties compared to global and continental maps.• New opportunity to map the regional soil pattern of areas with limited soil data coverage.cubist, digital soil mapping, model-based validation, soil spatial variation, soil-forming factorsDigital soil mapping (DSM) has gained importance for the last two decades (Minasny and McBratney, 2016) and soil maps have been effectively used in several applications, including precision agriculture (Shatar and McBratney, 1999), land degradation mitigation (Raina et al., 1993) and environmental and land use management (Hartemink, 2002). Digital soil maps are usually produced with statistical techniques that relate soil data collected at sites with spatially exhaustive environmental covariates known to influence soil formation. Common techniques used for DSM are geostatistics (Heuvelink and Webster, 2001) and machine learning (Wadoux et al., 2020).Globally however, there are large disparities in the availability of soil data on which DSM models can be fitted. Soil data density varies dramatically among areas (Minasny et al., 2013). For example, Hengl et al. (2017a) had a sampling density of 1 sample per 1000 km 2 for mapping a wide range of soil properties globally, whereas Hengl et al. (2017b) had a sampling density of 3 samples per 10,000 km 2 for mapping soil minerals in the whole continent of Africa. This disparity can be attributed to the priority given to soil data collection (Minasny et al., 2013) and to the lack of funding in different countries. Several areas in the world still have a relatively low soil data coverage available publicly. This precludes the development of DSM because DSM models are datadriven and hence rely on the quantity and spatial distribution of the available soil data (Wadoux et al., 2020). One obvious solution to this problem is to collect data in the area of interest through an additional soil survey, which requires investment. Another solution that may appear cheaper in terms of new soil data collection and more readily applied is to extrapolate DSM models from one area to another. Extrapolation of DSM models relies on the assumption that the empirical relationships between the soil property and the environmental covariates are structured similarly between the two areas so that they can be transferred.Axiomatically, two regions with similar soil-forming factors should develop similar soils. Any soil is a function of factors of soil formation (Dokuchaev, 1883). This concept was later adapted by Jenny (1941) through a state factor model of soil formation which provided a convenient theoretical basis for McBratney et al. (2003)' scorpan equation for DSM. Using the principle that similar soil forming factors lead to similar soils, several studies attempted to extrapolate a DSM model between two areas which were assumed to have similar soils (e.g., by Bui and Moran, 2003;Thompson et al., 2006;Lemercier et al., 2012;Cambule et al., 2013;Silva et al., 2016;Abbaszadeh Afshar et al., 2018;Du et al., 2021;Summerauer et al., 2021). Grinand et al. (2008) predicted soil classes between two adjacent areas using different environmental covariates (topography, lithology, land-cover) and concluded that upscaling the covariates to represent the regional trend of soil spatial distribution significantly improved predictions accuracy. Malone et al. (2016) predicted soil spectral indices using terrain attributes across two areas in the same region and found that the extrapolated model's accuracy was dependent on the covariate similarity between the two areas. Angelini et al. (2020) predicted quantitative soil properties across geographically remote areas using structural equation modelling that combines expert pedological knowledge and statistical correlation. They concluded that differences in the soilcovariates relationship between the two areas were the main causes for model prediction accuracy. Overall, these studies concluded that extrapolation is a challenging task and that the model's accuracy decreased when applied to the extrapolated area.In our previous study (Nenkam et al., 2022), we used the homosoil concept to find areas in the world with similar soils, with the objective of obtaining new soil data for an area of interest. Homosoils are any two soils in the world sharing similar soil-forming factors. This concept assumes that soils with similar soil-forming factors have undergone similar soil-forming processes in the past leading to similar soils today. Homosoils are relevant for DSM model extrapolation because through the mathematical calculation of covariate similarity indices, it is possible to find soils that might be similar. This may be very useful for DSM purposes, because this information can be used to delineate areas from which DSM models can be fitted or areas within which they can be transferred geographically, under the assumption that the soilcovariate relationship is similar.In this study, we aim to determine whether finding homosoils can help the geographic extrapolation of a DSM model. We hypothesize that within areas in the world considered as homosoils, we can leverage on areas with high sampling density and fit DSM models, which can then be applied in an area with little or no data. The paper is organized as follows. First, we find homosoils of a study area and collect global soil data available within homosoils. Next, we fit a DSM model using these data, and transfer it to an area with little/no data. Finally, we validate the predicted soil maps and compare them with existing DSM products. We consider clay, organic carbon, pH, sand, silt, and total nitrogen as soil properties of interest.Our study area covers 440,000 km 2 in the Southern part of Mali in Western Africa (Figure 1). The area is characterized by a North-South gradient of vegetation: open shrub savanna in the north, dense shrub savanna in the center, and lightly wooded savanna and woody woodland in the south (Rian et al., 2009). The parent materials dominating the area are igneous (intermediate volcanic, basic and intermediate plutonic) and sedimentary (evaporites and unconsolidated sediments) rocks as shown in Figure 1. The semi-arid zone in the north is dominated by Aridisols and receives less than 400 mm of annual rainfall. The Sudanian zone at the center is dominated by Alfisols (annual rainfall <800 mm), while Ultisols and Vertosols dominate the Sudanian-Guinean climatic zone in the south and receive up to 1200-1400 mm of rainfall on average annually (FAO, 2000;Giannini et al., 2017). These soils are often physically and chemically degraded (erosion, low soil nutrient content, acidification, aluminium and iron toxicity) due to unsustainable management practices (Mbow et al., 2015;Lal and Stewart, 2019).F I G U R E 1 Area of interest located in the southern part of Mali. The map depicts the major parent material that spans over the study area.The main crop types in the study area are rice, cotton, maize, peanut, sorghum and pearl millet.We used an initial set of 40 environmental covariates as proxies for the state factors of soil formation. Note that, state factors refer to soil-forming factors where each factor comprises one or more environmental covariates, as shown in Table 1. The covariates consisted of 1 parent material covariate (16 classes), 3 topographic covariates, 12 bio-vegetal covariates and 24 climate covariates. The original spatial resolution of these covariates spans from 30 m  30 m to 1 km  1 km. All covariates were resampled to the same spatial resolution with grid cells of 1 km  1 km resolution using the pyramiding policy toolbox of Google Earth Engine (Gorelick et al., 2017), which computes the mean or the mode (category that appears most frequently within the 1 km  1 km cell) of lower-level pixels for quantitative or categorical covariates, respectively. Next, we applied principal components analysis to reduce the set of climate and biovegetal covariates and selected a number of components that explained at least 97% of the original dataset variance. The parent material covariate (lithology) was converted from categorical to continuous using non-metric multidimensional-scaling (nMDS). More information on nMDS and how it was used can be found in the Supplementary Material. Table 1 shows the final list of 18 covariates after dimension reduction.Homosoils were found by the method described in Nenkam et al. (2022), which we summarize here. The study area was grouped based on the environmental covariates described in Table 1 using the k-means clustering method. This was done for computational efficiency, because a homosoil is found for a spatial location and there are hundreds of thousands spatial locations in the area. Therefore, to limit the number of spatial locations for which we find homosoils, we classified our study area into five homogeneous clusters whose pattern was inline with the major agro-climatic regions (Andrieu et al., 2017). We proceeded by finding the homosoil of each cluster centroid, leading to five homosoils corresponding to five spatial locations. Finding the homosoil for a spatial location is done in three steps:We sought the homoclime (any two locations in the world with similar climatic conditions) to the spatial locations by computing the similarity indices between its climate and that of each node of a fine grid (1 km  1 km) of climate covariates covering the world. We consider as homoclime the set of nodes whose similarity indices were smaller than a threshold value. A threshold equivalent to the 10th percentile of the similarity indices was used. This helped remove areas with different climatic conditions from being considered as homoclime.We built a numerical database of environmental covariates within the homoclime's spatial extent. Covariates corresponding to each state factor were obtained based on their global availability (Table 1) and expert pedological knowledge on their impact on soil-forming processes.We identified homosoils by (i) computing the similarity indices between each state factor of the spatial location and that of each node of the fine grid of covariates within (2002) Note: The set of covariates used for finding homosoils are obtained after dimension reduction. Categorical covariates were transformed to quantitative covariates prior to this step. We refer to the supplementary material in Nenkam et al. (2022) for the complete set of covariates before dimension reduction.the spatial extent of the homoclime, and (ii) average these similarity indices with each state factor being equally weighted. We consider as homosoil the set of nodes whose similarity indices are smaller than a threshold value. The threshold equivalent to the 20th percentile of the similarity indices was selected as a cut-off value based on trial and error. As discussed in Nenkam et al. (2022), the cut-off value mainly controls the spatial extent of the resulting homoclime and homosoils. The Mahalanobis distance (Webster, 1977;De Maesschalck et al., 2000) was used as a similarity index to find both the homoclime and the homosoils.Within homosoils, we collected soil data from the World Soil Information Services (WoSIS, Batjes et al., 2020). The soil depth intervals were harmonized using a mass preserving soil-depth function spline (Bishop et al., 1999), to the standard GlobalSoilMap specification depth intervals 0-5, 5-15, 15-30, 30-60, 60-100 and 100-200 cm. The soil properties collected are clay, silt and sand (%), organic carbon (OC, g/kg), pH (H 2 0) and total nitrogen (Total N, g/kg). The clay, silt and sand values were harmonized so that their sum equals 100%. These soil properties were selected primarily for their importance for crop growth and availability in the WoSIS dataset.We used a model-tree, cubist, based on the M5 algorithm of Quinlan (1992) to define the relationship between the soil data and the environmental covariates. The tree is built by partitioning the covariates into different rules called nodes. Each node consists of a covariate-based condition and an ordinary least square regression model used to make predictions. The condition at a node can be nested with the condition of another node (child node) up to a terminal node referred to as a leaf. Predictions are made at each node, and smoothed using the predictions of the parent node. Predictions made by the model at the terminal node are the final predictions. A cubist model has two primary parameters: committees and neighbour.Committees is a boosting-like parameter used to adjust predictions by creating an iteration of rule-based models so that predictions from one model is adjusted by the predictions from the previous model. The estimates from these individual models are then averaged to generate the final prediction. On the other hand, neighbour defines the number of neighbouring points from the training set and is used to adjust predictions when predicting new samples. Model trees like cubist are advantageous in that the logical construct of the model rules require little data pre-processing and can handle nonlinear relationships between the explanatory and the response variables (Kuhn and Johnson, 2013). Cubist models were calibrated for each soil property and horizon depth interval using two calibration strategies. In the first calibration strategy, models were calibrated using WoSIS soil data within homosoils excluding those of the study area. Models were then geographically extrapolated to predict the soil property within the study area. In the second calibration strategy, models were calibrated using the WoSIS soil data collected for both within homosoils and within the study area, and then used to predict the soil property in the study area. The objective of the first strategy is to evaluate the prediction accuracy when the model (built within homosoils only) is extrapolated geographically, while the second strategy evaluates the prediction accuracy of the model when the training dataset include both the data collected within homosoils and within the study area. Maps of soil properties at 1 km  1 km resolution were generated for each depth interval. The map predictions of clay, silt and sand at any prediction location were normalized to satisfy the condition that their sum should be equal to 100%.The cubist models were calibrated with 10 committees for the two calibration strategies, using 0 and 9 neighbours for the prediction of the first and second calibration strategies, respectively. The implementation was provided by the Cubist package (Kuhn and Quinlan, 2020) in the R programming language.The maps generated from the two models were validated using the following three approaches: the first approach was used to validate the maps from the first calibration strategy. This approach is the most common method for map validation. The second and third approaches were used to validate maps from the second calibration strategy. When we used the first calibration strategy, we validated the predictions using the WoSIS data for the study area (within Mali). Recall that in this calibration strategy, the WoSIS data within the study area were not used for model calibration. Predictions made at validation locations were compared to the measured values with statistical indices.The second approach for validation made use of models calibrated with the second calibration strategy.Predictions were obtained through a 10-fold crossvalidation of the WoSIS data within the study area, and compared to the measured values of the soil property using statistical indices.Finally, maps, from models calibrated with the second strategy, are validated using an independent dataset obtained from multiple sources (i.e., Doumbia et al., 2009;Benjaminsen et al., 2010;Verbree et al., 2015;Degerickx et al., 2016;Falconnier et al., 2016;Bayala et al., 2020;Birhanu et al., 2020;Huet et al., 2020). The units of the soil properties in this dataset were harmonized to that of the WoSIS dataset. Their depth intervals were also standardized. However, because most of the sources measured soil properties at 0-15 cm depth interval, the values of the 0-5 and 5-15 cm samples were combined to 0-15 cm where appropriate, and only this dataset was used for validation. Since this independent data exhibit spatial clustering, we use a model-based validation approach to obtain the validation statistics (Brus et al., 2011;de Bruin et al., 2022). This is done by computing the residuals at validation location, and using them to estimate a variogram of the residuals. The sample variogram is fitted by the Methods-of-Moment with a spherical correlation function. We use the fitted variogram to generate 500 simulations of the residuals over a fine grid (1 km  1 km) covering the study area using sequential Gaussian simulation (Webster and Oliver, 2007). From the 500 residuals fields, we compute the expected values of the validation statistics and their 0.05 and 0.95 quantiles.The validation statistics used to evaluate and compare the maps are the mean error (ME):where z s i ð Þ and b z s i ð Þ are observed and predicted soil property at location The root mean squared error (RMSE):The RMSE is a nonnegative statistic with no upper bound and optimal value of 0. It indicates the magnitude of the error in the soil property's unit. The Pearson's r correlation coefficient:where z and b z are the mean of the measured and predicted values, respectively. The modelling efficiency coefficient (MEC, Janssen and Heuberger, 1995) which quantifies the improvement made by the model over using the mean of the validation data as prediction,A value of 1 indicates a perfect prediction, while a value of 0 indicates that the model prediction is as accurate as using the mean of the validation data as prediction. Note that the MEC can be negative if the residual variance is larger than the variance of the validation data.The maps generated using the second calibration strategy were further compared against existing digital soil maps produced at continental (i.e., iSDAsoil, Hengl et al., 2021) and at global (i.e., SoilGrids, Hengl et al., 2017a) extents. These maps were also generated using the WoSIS database. We compared them using two approaches: first, we carried a visual comparison to evaluate the predicted spatial pattern of the soil property at 0-15 cm soil depth interval. Second, we validated the maps using the third validation approach on an independent dataset and compared the resulting validation statistics. Because of the computational demand to carry the third validation strategy, the global and continental maps were brought to a common resolution of 1 km  1 km.The homosoil areas for the five cluster centroids were merged and the final map is shown in Figure 2. The colored area represents the spatial extent of the homosoils and shows that many areas in the world have similar soils as the study area in Mali. These areas include Mexico, Eastern Brazil and Northern Argentina in America, the Sahelian band in Africa, Southern Africa, Yemen, Pakistan, India, Myanmar, Thailand and northern Australia. The Homosoils of our study area, therefore, fall within semi-arid and tropical regions of the world. Figure 2 also shows negligible homosoil areas in Eastern American, Guatemala, Venezuela and East China.The black dots in Figure 2 are the soil OC samples collected from WoSIS for the soil depth interval 5-15 cm. Many areas within homosoils have high sampling density, such as in inter-alia Western Mexico (365 samples), Eastern Brazil (102 samples), the center of the Sahelian band (Burkina Faso: 648, Niger: 451, and Nigeria: 408). India and the eastern part of the Sahelian band (Tchad, Central Republic, Sudan, Ethiopia and Kenya), conversely, have few samples sparsely distributed. Despite the large areas covered by the latter, they amount to 197 samples. The total number of soil samples collected for both the study area and the homosoils for all soil properties and depth intervals is presented in Figure 3. Clay had the largest number of soil samples in both areas (565 and 6123 sample for the 5-15 cm intervals within the study area and homosoils, respectively), while OC had the lowest number of samples (450 samples at 5-15 cm) within the study area and total N the lowest number in the homosoils (3748 samples at 5-15 cm). Total N was, overall, the property with the lowest number of samples. For all properties, the number of available samples decreased with depth. The deepest depth interval (100-200 cm) always had the smallest number of samples.Figure 4 shows the boxplots of the soil properties within the study area and within homosoils. The spread of the soil property values within homosoils was nearly always larger than the spread of the soil property within the study area. Figure 4 also indicates that the average value of soil properties within homosoils and the study area were different. The pH, sand and total N content were larger for homosoils, whereas soils in the study area had a relatively high and constant silt content across all depth intervals. For example, 75% of the measured values of silt were larger than 19%. The average value of silt content in Mali was also 60% higher than that within homosoils. Clay content increased with depth, while soil OC and total N content decreased with depth. Overall, the soil properties in the study area in Mali and in its homosoils showed disparities in the range of values but similar trend across depth intervals.Figure 5 shows the validation statistics (i.e., ME, RMSE, r and MEC) for the first and second validation approaches. Validation approaches 1 and 2 refer to validation of models calibrated using the homosoils only, -5, 5-15, 15-30, 30-60, 60-100, 100-200 cm). Lines are added for visualisation purposes and homosoils plus data in Mali, respectively, for each soil property and soil depth interval. Figure 5 shows a significant difference between the two model calibration strategies. The models validated using the second validation approach overall performed better than those validated using the first validation approach, as indicated by the ME and RMSE which were always closer to zero than those of the first calibration strategy. The ME and RMSE from validation approach 2 were on average 100% and 32% smaller than those from validation approach 1. The Pearson's r correlation values of the second validation approach were on average 190% higher than those of the first validation approach, indicating a better linear relationship between the measured and predicted values by the model. Finally, the MEC of the first validation strategy was nearly always negative for all soil properties and all horizon depth intervals. This suggests that the models from the first calibration strategy performed poorly, and that using the mean of the measured values as an estimate would be a better predictor than the predictions from the models from the first calibration strategy. Models from the second calibration strategy, conversely, had positive MEC values (on average 160% larger than that from the first calibration strategy). Thus, Figure 5 shows that the performance of an extrapolated model calibrated on homosoils values of soil properties dramatically changed whether or not it included training dataset from the area of study within Mali. While maps generated by the second calibration strategy were on average more accurate, Figure 5 further F I G U R E 5 Validation statistics of the two validation approaches. The first and second validation approaches refer to the validation of the first and second calibration strategies, respectively. Note that lines are shown to ease visualisation. The red and blue lines represent the validation statistics for the models from calibration strategy 1 and 2, respectivelyshows that the accuracy of the model predictions validated with this second approach varied greatly between soil properties and depth intervals. The accuracy of models for clay, silt and sand was rather constant across soil depth intervals while it was not the case for that of pH, OC and total N. The ME values of the second validation approach show that predictions were unbiased. However, the model predictions for silt and pH always overestimated and underestimated the measured values, respectively. The model accuracy of pH increased with depth, while that of OC and total N showed an opposite trend, as indicated in Figure 5 by the increase of the average error indices (ME and RMSE) and the decrease in r and MEC values for pH, and by the validation statistics of OC and total N showing an opposite trend with depth. For instance, for OC, the ME and RMSE values at soil depth 0-5 cm were 0.47 and À0.3 g/kg respectively, while they were À0.06 and 1.8 g/kg at soil depth 100-200 cm. This trend can be attributed to the variance of the measured values which was increasing with depth for pH, whereas decreasing with depth for OC and total N (Figure 4). Overall, for the second validation strategy, clay had the best prediction accuracy as indicated by the relatively high and stable values across depth intervals of the MEC (the average value is 0.31 across depth intervals) and r (the average value is 0.59 across depth intervals). Conversely, total N had the lowest prediction accuracy with an average MEC and r values of 0.08 and 0.51, respectively.Table 2 shows the validation statistics obtained by the third validation approach for the 0-15 cm soil depth interval along with their 90% interval. The lower and upper limits of the 90% intervals were represented by the 0.05 and 0.95 quantiles obtained from 500 realizations of the residuals and denoted q 0.05 and q 0.95 . Recall that this validation strategy refers to the validation of maps obtained by the second calibration strategy. The negative ME values show that the maps are overestimating the soil properties, with the exception of sand, whose ME value was positive. The maps explained at least 15% of the variation of the measured values, for all soil properties.Positive values of the MEC are large for total N (MEC is 0.53) and relatively low for pH (MEC is 0.15). The 90% interval of the validation statistics, however, showed large variation in the range of values. The magnitude of the MEC variation, for example, was largest for OC (1.40) and lowest for pH (0.44).Figure 6 shows the maps of clay content predicted with models from the second calibration strategy for all soil depths. The maps show considerable spatial variation in clay content over the area. Large clay content (i.e., clay >40%) was consistently found in the East and West of the center of the study area across all soil depth intervals, while the northern part of the area consistently had the lowest clay content (clay ¡ 10%). Moreover, clay content in the study area in Mali increased depth; the 0-5 cm soil depth interval contains 18% clay on average, while the 60-100 and 100-200 cm depth intervals contain 31% and 28%, respectively.Figure 7 shows maps of all soil properties for the topsoil (0-5 cm). The maps show substantial magnitude in spatial variation but a similar pattern for all soil properties. There is a south-north decreasing gradient except sand and pH which increase towards the North. The southern part of the study area is relatively more acidic (pH <5.5). On average, the topsoil contained 57% of sand, 25% of silt, a pH of 6.2, an OC content of 7.6 g/kg and a total N of 0.64 g/kg. We refer to the Supplementary material for the maps of all soil properties at all depth intervals.The maps from three different products: homosoils maps made by the second calibration strategy, and two existing products: SoilGrids and iSDAsoil, are shown in Figure 8 for the depth interval 0-15 cm. The maps had differences in spatial pattern, both in terms of magnitude and spatial variation. Spatial pattern of clay maps varied greatly between products, but was similar in magnitude:T A B L E 2 Validation statistics of the maps using the third validation approach ME q 0.05 q 0.95 RMSE q 0.05 q 0.95 MEC q 0.05 q 0.95 Note: q 0.05 and q 0.95 are the 0.05 and 0.95 quantiles of the validation statistics from 500 realisations of the validation residuals.minimum and maximum values of clay content are similar. Maps of silt, sand, OC, pH and Total N have both similar spatial pattern and magnitude of values, but maps from iSDAsoil were consistently smoother than those from homosoils and SoilGrids.The validation statistics of the homosoils, SoilGrids and iSDAsoils maps using the third validation approach are shown in Figure 9 for all soil properties at a soil depth interval of 0-15 cm, along with their 90% interval. Figure 9 showed significant differences between the accuracy of the different maps. Maps from homosoils had a higher MEC for silt, sand, pH and total N. The MEC of sand, for example, is 0.3 for homosoils, 0.22 for SoilGrids, while it is 0.05 for iSDAsoil. The SoilGrids map explained the largest amount of variation for clay (MEC is 0.22), while the largest amount of variation explained for OC is by the iSDAsoil map (MEC is 0.33). These MEC values were supported by F I G U R E 6 Maps of clay (%) for the six soil depth intervals (0-5, 5-15, 15-30, 30-60, 60-100, 100-200 cm) F I G U R E 7 of clay, silt and sand (%), OC and total N in g/kg for the topsoil (0-5 cm) F I G U R E 8 Maps of from homosoils, SoilGrids and ISDAsoils (1 km  1 km) for the soil depth of 0-15 cm. Clay, silt and sand are in percent, OC and Total N are in g/kg low ME and RMSE values which indicated relatively small bias and error between the predictions and the observed values except for total N. Despite the map from homosoils having a slightly higher MEC value than that of iSDAsoil for total N, predictions from iSDAsoil have the smallest bias. The 90% interval of the 500 realizations of the validation statistics showed variable range across the maps and soil properties. The magnitude of the range varied greatly between the maps for MEC and RMSE, while it was relatively constant for ME as shown by the greyed area of MEC, RMSE and ME in Figure 9.We found that many areas in the world have soil forming factors similar to those from our study area in Mali, F I G U R E 9 Validation statistics of the homosoils, ISDAsoils and SoilGrids maps using the third validation approach and for the depth interval 0-15 cm. The shaded area represents the 90% interval which suggest that there could also be similar soils. Within these areas, large regions in India and the Eastern part of the Sahelian band had relatively low sampling density, whereas areas within Australia, Brazil, Burkina Faso, Bostwana, Mexico, Niger and Nigeria had higher sampling density. Mexico, for example, has 0.64% of its area covered by homosoils (i.e., 125,213 km 2 ), from which we sourced 365 OC samples from WoSIS for the 5-15 cm depth interval. These samples have a relatively good spatial coverage of the area and represented a density of 3 samples per 1000 km 2 . This sampling density is higher than usual density of many large-scale digital soil mapping studies (see also the studies reported in Wadoux et al., 2020). A similar density was found in Burkina Faso, where homosoils cover 78% of the country (i.e., 213,823 km 2 ), from which 648 samples were collected with a sampling density equivalent to 2 samples per 1000 km 2 . In India, conversely, 48% of the country was covered by homosoils (i.e., 1,504,226 km 2 ), but with only 0.3 samples per 1000 km 2 . One reason for the dense soil sampling density in Mexico and Burkina Faso, among others, was the presence of well-established soil survey systems through which soil data are consistently and regularly collected (Van Wesemael et al., 2011). Another reason may be the development of specific soilrelated projects, in the 1960s, which allowed soil data collection for many decades (Van Ranst et al., 2010). For instance, the WoSIS soil data gathered for Burkina Faso were collected between 1966 and 2000. The low sampling density, as found in India, reflects the difficulty in accessing country data (Reddy et al., 2021). Overall, it was possible to find some areas in the world that share similar soil-forming factors as our area of study, which suggest they might also have similar soils, and these areas also have a relatively high sampling density.The soil data collected within the homosoils and the study area showed a similar vertical pattern with different variability (Figure 4) for most soil properties. The average pH content, for example, was generally constant across soil depth intervals, but higher in homosoils compared to our study area. This is expected because of the dominating climate regime (semi-arid to arid) covering the homosoils. In semi-arid to arid environments, the presence of evaporites or carbonate rocks, or the accumulation of salt due to the evaporative behaviour of the soil may be the main source of high pH in the soil (Weil and Brady, 2018;Lal and Stewart, 2019). Silt content was also constant across depth intervals, but systematically higher in our study area than in the homosoils. This is because Mali is exposed to local environmental factors such as airborne dust storm which originates from the Sahara-desert from which aeolian sediments (particles of 10-50 μm) are transported to Mali, thus contributing to the accumulation of silt (Nickling and Gillies, 1993;Schütz, 1980). On the other hand, for both the homosoils and the study area, clay content increased with depth as a result of vertical clay movement (eluviation/ illuviation), whereas sand content decreased with depth. This opposite trend suggested the presence of contrast soil texture within the areas. Moreover, homosoils had larger sand content compared to our study area, because they span over a wide range of semi-arid to arid environments whose soils experience large sand particles accumulation (Department, 2014). The homosoils defined in our study did not take into account aeolian processes. For other properties such as OC and total N content, there was more variability in homosoils than in our study area, but the trend with depth was similar (i.e., total N and OC content decreased with depth). The large variability in homosoils can be ascribed to differences in land management practices which greatly influenced the dynamics of both OC and total N in the soils.Our study showed that extrapolating soil mapping models between homosoil areas was a challenging task. We tested two extrapolation strategies and found that nearly all the models built using only homosoils data had quasi-null accuracy when extrapolated to the study area (except for 19% of these models which included one to three soil depth intervals of the dynamic properties -OC, total N and pH). These results confirm the results reported in Angelini et al. (2020), in which it was found that the predictive performance of the models for mapping OC, cation exchange capacity (CEC), and clay was quasi-null when extrapolated between two geographically remote areas considered as homosoils. On the other hand, a more recent study found contradictory results. Du et al. (2021) extrapolated topographical random forest models from one area to a geographically close area (15 km away), and showed that the models could explain most variance (i.e., 73%) of the measured soil OC without including local data (i.e the data within the extrapolated area). Our results and the studies of Angelini et al. (2020) and Du et al. (2021) suggest that geographical proximity plays an important role when transferring soil mapping models. This might be a reason for the low predictive power of the models. This is reflected in Figure 4 by the high variation in the soil properties between the study area and the homosoils which certainly led to differences in the soil-covariate relationship between the two regions, and which then affected the predictions when the models were extrapolated. Another possible reason for the low predictive power is probably the influence of other soil forming factors which we disregarded in this study. Our results suggest that the global soil-forming factors defined by the homosoils may miss important soil processes that affect local soil variation. Such processes include anthropogenic activities and/or site-specific environmental factors (e.g., aeolian sediments deposits mentioned earlier), among others, which greatly vary per region and can influence the soil dynamics differently. A third reason is that homosoils are defined for a single spatial location which highly depends on the conditions of surrounding spatial locations following the soilscape concept presented in Lagacherie et al. (2001). Further work could integrate this concept at a local scale by including the surrounding conditions of the spatial locations when defining homosoils, to homosoilscape.We found that including soil data from within the study area increased prediction accuracy. In particular, adding local soil samples dramatically improved the MEC and RMSE by 160% and 32%, respectively. These results corroborate previous studies (e.g., from Lemercier et al., 2012;Du et al., 2021). Lemercier et al. (2012) extrapolated models to a region that included the area within which the models were built, and found that the models could explain up to 49% of the variation of parent material, and 52% of the variation of soil drainage. Similarly, Du et al. (2021) increased the amount of variance explained OC by 8% and decreased the prediction error by 25% through the addition of local soil sample information. Our study suggests, similarly, that extrapolation between homosoil areas is possible but that local samples from within the extrapolated area are necessary.We recognise the similarity between our approach for local mapping using homosoils and approaches based on machine learning models calibrated with global data. It is likely that machine learning models such as used in Soil-Grids and iSDAsoil assign higher weights when predicting to observations that come from similar environments (i.e., observations that are close to each other in the covariate space), so effectively applying the homosoils concept developed in this study for DSM. Comparing the two approaches could be the purpose of further research. In our study, when comparing the maps made with models fitted on data within homosoil areas and Soil-Grids and iSDAsoil maps, we found that, generally, our approach performed slightly better. This is, however, made at the expense of adding an extra step before model calibration to find the homosoils. Moreover, finding homosoils leads to more soil science discovery (such as knowing where similar soils might be and what are their properties) rather than the global DSM approach.Here, we summarize the most striking map features in our study area. The pattern of soil texture is linked to the dominating soil types. Clay accumulated in deeper soil horizons due to the dominating soils types alfisols and ultisols (USAID, 1983). Moreover, clay content was consistently higher (>35%) in the east of the center of the study area. This region corresponds to the inland delta of the Niger river in Mali (Thom and Wells, 1987) and is dominated by hydromorphic soils which are generally silty with clayey alluvial deposits (Diarra et al., 2004;Ajayi et al., 2012). A large portion of the study area has high (i.e., >25%) silt content which mainly originated from aeolian sediments deposits. The pattern of sand content in the north east of the study area was characterized by the presence of aridisols (Nettleton and Peterson, 1983). Climate regime controls the spatial variation of pH with Alkaline soils (pH >7) being common in arid regions due to the presence of carbonate rocks or the accumulation of soluble salt (Weil and Brady, 2018). OC and total N followed the distribution of climate and landcover, respectively. High and low values of the dynamic properties (OC and Total N) were found in humid (in the south) and arid (in the north) regions of the study area, respectively, which reflect higher and lower net-primary production. The distribution of OC in our study corroborates findings from Akpa et al. (2016) in Nigeria. The soil maps presented in our study area share similar spatial pattern to the coarse-resolution global maps from Soil-Grids (Poggio et al., 2021) and the African maps from iSDAsoil (Hengl et al., 2021) products for Mali (shown in Figure 8). These soil maps were calibrated mainly using the WoSIS dataset as used in this study, however because they were generated with limited soil data coverage, they may only be useful at a regional scale, inhibiting their application at a local scale where availability of soil information is more critical. In such circumstances, only new soil data collection might reverse this issue.We acknowledge that the comparison of the maps (homosoils, SoilGrids, iSDAsoils) was made using an independent and spatially clustered sample, which may result in biased estimates of the map accuracy. Clustered data in the geographic space often lead to a clustering in the covariate space (Elliott and Valliant, 2017) and failure in assessing map accuracy in areas with zero sampling density, thus leading to over-optimistic map accuracy estimates. However, unbiased estimates of digital soil maps accuracy can only be obtained through the collection of a post-mapping independent soil dataset with probability sampling and design-based statistical inference methods (Brus et al., 2011). Due to the pandemic, we could not collect an additional probability sampling for map validation and therefore used a modelbased validation approach using a geostatistical model, where the map residuals were kriged with ordinary kriging and the sampling distribution of the map accuracy indices was computed using 500 simulations of the residuals. We considered this approach suitable to deal with the clustered data. Moreover, in case of clustered data, model-based validation approaches based on weighted cross-validation had smaller bias than conventional cross-validation (de Bruin et al., 2022). In our case, the model-based approach showed a high uncertainty of the map accuracy indices as shown by the 90% interval. Validating digital soil maps using clustered data is not straightforward and needs further research.One major limitation of this study is the inaccuracy of the covariate that describes the state factor lithology. The global lithology dataset (Hartmann and Moosdorf, 2012) is described with multiple orders: first, second and third lithology orders. The highest order, wherever present, provides further granular differentiation within a given first-order lithological unit. This surely has had an effect on the soil classes and properties due to the different mineral content and morphology (particularly texture) that it represents. In our study, we only used lithological information of the first order because higher orders were not publicly available. The effect of lithology is reflected in the statistical indices (RMSE, r and MEC) presented in Figure 5, where those of the texture maps (i.e., stable properties clay, sand and silt) significantly improve for validation approach 2, whereas that of the dynamic soil properties (OC, pH and total N) shows no significant difference. This may reflect differences in lithology between our study area and its homosoils, and part of these differences could be ascribed not only to the unavailability of the highest order lithological units but also, probably, to the spatial resolution at which the homosoils were found. Recall that the lithology variable was upscaled from 250 m to 1 km which may have decreased the granularity of the information and thus contributed to these differences. Therefore, accessing lithological units at a finer resolution would require finding homosoils at a much higher resolution (e.g., 250 m and below), besides accessing higher order lithological units below 100 m may be practically challenging when working at a global scale.Another limitation of this study was the omission of the anthropogenic soil forming factor in both identifying the homosoils and in generating the maps, because these were not available at global scale. Several studies have stressed that human activities greatly influence soil dynamics (Amundson and Jenny, 1991;Hooke, 2000;Wilkinson, 2005;Richter Jr et al., 2007) and may be the main soil forming factor (Kuzyakov and Zamanian, 2019) because of their critical influence on soil-forming processes. This implies that data on anthropogenic activities are critical for digital soil mapping exercise. However, both actual and historical management practices are needed, which is practically impossible to obtain. Besides, data on actual anthropogenic activities are barely available at local scale, and much less at the continental and global scale. Generating such spatially exhaustive information at large scale and on a time-scale would certainly make a valuable extension to future soil mapping studies.We tested the geographic extrapolation of a model to map soil properties. The model was applied to our area of interest in Mali after being calibrated with data from its homosoil area. We tested different calibration and validation strategies, including or not local data for calibration. From the results and discussion, we draw the following conclusions:• Within areas considered as homosoils, we can leverage on areas with relatively high sampling density and build a soil mapping model which can be applied on areas with limited soil data. • The soil data collected within the homosoils showed a similar vertical pattern but large variability compared to our study area. • Homosoils help transfer soil information from one area to another by means of DSM model extrapolation methods. The model built within the homosoils performed poorly when extrapolated to our study area, however this accuracy increased dramatically when local soil samples were also used to calibrate the model. • The maps generated from homosoils were more accurate than those generated at the continental and global scale for our study area in Mali, for three (silt, sand, and pH) out of six soil properties. However, the spatial pattern was similar. ","tokenCount":"7760"} \ No newline at end of file diff --git a/data/part_3/5455616741.json b/data/part_3/5455616741.json new file mode 100644 index 0000000000000000000000000000000000000000..4fb66eb2df12db556e0ab0fc7c120e17fb06dc95 --- /dev/null +++ b/data/part_3/5455616741.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"d5ee65985a9956cfbb364f6f3424fdfd","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/910a50a5-f1cd-43b6-869d-5d84e7892225/retrieve","id":"-1876483544"},"keywords":[],"sieverID":"00eda4e1-e558-4f64-99dd-73c073aab7ab","pagecount":"4","content":"Achieving gender equality in food systems will help revitalize rural economies, increase food security and boost economic growth to reduce poverty.One of today's biggest challenges is that millions of women remain mostly excluded from agricultural development through no fault of their own. They are unable to participate in the urgently needed transformation of food systems, essential to sustainably defeat hunger and produce enough, and good enough, food under the ongoing climate crisis.Women have a right to the same opportunities and the same benefits from agriculture, natural resources and food production as men.What's more, only when both women and men are able to contribute to food systems equally can they successfully nourish families, communities and entire nations, today and in the future. Breaking down the structural barriers that hold women back is essential to support farmers in developing countries to weather the impacts of climate change.That's why the CGIAR GENDER Platform aims to create a 'new normal' -a world in which greater gender equality drives more equitable, sustainable, productive and climate-resilient food systems.Ending GENDER aims to transform the way research is done to kick-start a process of genuine change toward greater gender equality and better lives for smallholder farmers everywhere. Our research agenda is driven by the needs expressed by women and men in developing countries, by global and regional development agendas and by fellow scientists.Module In addition to the CGIAR Research Programs and Platforms, which are core members of the Platform, GENDER also serves external partners. This group includes national agricultural research and extension systems, university partners, nongovernmental organizations, multilateral and private sector institutions as well as governments with whom CGIAR collaborates.GENDER seeks to support leaders and decision-makers to develop new research and development perspectives, evidence and collective action for eliminating gender inequalities in food systems. We aim to change organizational cultures and enhance capacities for achieving gender outcomes within CGIAR and its partner institutions, making equality a core principle in priority setting, research and day-to-day activities. ","tokenCount":"327"} \ No newline at end of file diff --git a/data/part_3/5461685127.json b/data/part_3/5461685127.json new file mode 100644 index 0000000000000000000000000000000000000000..95442daaf5355b82b589c7e5d3ee2e994c8b139d --- /dev/null +++ b/data/part_3/5461685127.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"e6a91f5241b62d38452d30b02be1010d","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/510d56b4-add0-406a-9a9f-ce22162d53aa/retrieve","id":"1007032354"},"keywords":[],"sieverID":"0bd65741-c56b-4c56-9a97-d456f4da8905","pagecount":"7","content":"Since the start of the massive use of the Web in the mid 1990s, the way we carry out our work in research and development has changed markedly. These changes have given rise to speculations about the future role of libraries. Some people predicted a diminishing role, claiming that most scientific literature soon would be available electronically via the Web, and that powerful search engines, such as Google or Altavista, would make obsolete the classifying and indexing work done by librarians and other information management (IM) professionals. However, most research librarians have taken quick advantage of the changes, and have embraced the Web as a platform to reach a broader audience with better and more efficient services. Moreover, librarians and other IM professionals are increasingly assuming new roles and responsibilities, and their skills in organizing large amounts of data for specific user groups are in high demand, thus making them attractive members on multi-disciplinary knowledge teams (Klugkist, 2001). This short chapter attempts to shed some light on the evolving role of libraries in the Information and Knowledge Era.Predictions made about the possible diminishing roles of research libraries have not come true (Weston, 2002). Some of the predictions are reviewed below and contrasted with realities.Most scientific literature will soon be available online. Large publishing houses have moved quickly towards making their journals accessible via the Web. To date, about 20,000 scientific journals are accessible online, of an estimated total of 200,000 (Harnad, 2003). Online full-text access is usually provided for the most recent volumes and years, although a few publishers are making efforts to scan historic collections for online accessibility. Smaller publishing houses are catching up only slowly, particularly in developing countries. The International Network for the Availability of Scientific Publication (INASP; www.inasp.info/ajol/) has provided valuable help enabling access to currently 160 African journals (mainly table-of-contents and abstracts, and accompanying them with document delivery services). The Scientific Electronic Library Online (SciELO; www.scielo.org) also facilitates free full-text access to about 100 peer-reviewed Latin American scientific journals.Many publishers provide initial free trial access to their journals, but soon advise the user to register and to pay for personal or institutional subscriptions. Developing country researchers and institutions usually cannot afford to pay, and are switching to free information sources that often are not peer reviewed, thus contributing to the bias against quality research. This tends to further increase the already existing \"digital divide\" between rich and poor, and north and south.Several \"open access\" journals have become available over the past few years, and many adhere to strict peer review processes in the same way as commercial refereed journals. However, their number and coverage is still limited (Suber, 2003). (A listing of licensed and open access journals of interest to staff of the International Center for Tropical Agriculture [CIAT, the Spanish acronym] and collaborators is available in: www.ciat.cgiar.org/biblioteca/electronic_journals.htm)Most scientific literature will be retrievable via Web search engines. Search engines, such as Google, Altavista, and others, have become powerful and can retrieve important and highly relevant results. However, only a small percentage of current scientific literature is actually available online, the amount varying greatly by subject area (Herring, 2001). Furthermore, users are usually overwhelmed with hundreds or even thousands of hits, and have difficulty filtering them either by range of years, subject category, language, geographic indicators, or other relevant criteria.Bibliographic databases will become obsolete. Most bibliographic databases, whether commercial or free access, global or institutional, have been made available via the Web. They are used a great deal for complex and comprehensive literature searches, and often constitute the backbone for many other value-adding services. With over 2 million new scientific articles published every year (Harnad, 2003), well-structured databases and XML-indexed Web information is a must, especially since the number of scientific articles is estimated to double every 15 years, because of advancements in science, increasing specialization, and more recently the rapidly increasing number of doctorates in countries such as China and India (Meier, 2002). Knowledge workers are rediscovering standards, methodologies, and knowledge taxonomies (also called thesauri-see www.fao.org/agrovoc or ontologies-see www.fao.org/agris/aos/ About.htm) developed and refined by librarians and other IM professionals over the past 30 years. Classifying and indexing done by librarians and other IM specialists is still an important task, although artificial intelligence applications can facilitate some of the work.Based on what has been outlined above, the prediction that libraries will play diminishing roles has not come true. On the contrary, library knowledge and skills are in high demand, and librarians and IM specialists are important members of numerous multi-disciplinary knowledge teams (see also list below Evolving Roles of Libraries).Over the past several years, many libraries have had to cope with decreasing budgets because decision makers have been more concerned with building and strengthening the information technology (IT) infrastructure. Furthermore, decision makers rarely use scientific literature themselves; rather they delegate literature search tasks to their assistants. These facts, combined with the uncertainties about the future role of libraries in light of the predictions above, have contributed to the weakening of many libraries.Today, however, the crucial role of libraries in development and democratization processes is in little doubt. Particularly in developing countries, young researchers and students will not be able to afford home computers and pay for Internet access. Although the number of Internet cafes is increasing in urban areas, certain licensed materials will be available only via institutional computers. Most scientific journals available to non-profit institutions in developing countries at low or no cost will be controlled via Internet Protocol (IP) authentication. Each institution has been assigned a range of IP numbers by the respective national Internet domain agency. Publishers use these IP numbers to control and monitor access to their information resources. Librarians, together with their IT departments, will have to implement proper user authentication procedures and policies.Publishers providing free or low-cost access to their electronic resources in developing countries are concerned that these special access privileges might be misused. They cannot afford to lose out on markets in private sector institutions in developing countries, nor in public and private institutions in countries in the north. Consequently, they see librarians as their natural allies in making sure that access privileges and copyright regulations are fully understood and respected accordingly.Librarians are assuming new responsibilities, but still need to carry out their traditional tasks. For example, they will have to educate users about copyright regulations. Under the European Union Copyright Directives issued in April 2001 (European Union, 2001), each country had to implement new copyright regulations by December 2002 that differ from country to country. The US Digital Millennium Copyright Act (DMCA) was implemented in 1998, and its implications are still under debate because regulations now are considerably more restrictive than they were in times of paper-based documents (Lutzker, 2001). Librarians will also have to negotiate electronic usage licenses, and handle publishing permissions to populate their virtual library Web sites. The list below gives new and traditional librarian tasks. As already pointed out, the standards, methodologies, and tools developed in libraries in the 1970s, when computers became widely used, are now becoming important tools for knowledge representation systems on the Web (Berners-Lee et al., 2001). Multi-lingual knowledge taxonomies, such as the AGRIS thesaurus and classification schemes, are regaining importance as metadata indexing tools.Preserving electronic resources for future generations becomes an increasingly challenging task (Schaffner, 2001), particularly as people are noticing with concern the ephemeral nature of Web-based content. Policies and procedures on how best to handle the preservation tasks are currently being discussed at the institutional and national levels, and librarians are making important contributions to this debate.Furthermore, librarians provide training on electronic information resources, participate in multi-disciplinary knowledge teams that establish Virtual Libraries and prepare other Web contents (e.g., e-learning materials), and are generally involved in a variety of knowledge-sharing and capacity-building initiatives (Rosenfeld and Morville, 1998).CIAT's library is involved in numerous information-sharing initiatives at local, national, and international level (Figure 1), and provides advice and training to many Colombian IM professionals, to professors and researchers in collaborating academic and research institutions, and more recently to coordinators of telecenters and rural information systems. At national level, CIAT's library actively collaborates with the Agricultural Information System of the Cauca Valley (SISAV, the Spanish acronym), with a CIAT-led telecenter project in the Valle del Cauca (InforCauca), and with the Colombian Agricultural Information and Documentation Network (RIDAC, the Spanish acronym). At regional level, the library is an active participant in the Information and Documentation System of Latin America and the Caribbean (SIDALC, the Spanish acronym), submitting its in-house databases to the AGRI2002 bibliographic database on a regular basis. At international level, CIAT collaborates with the Food and Agriculture Organization (FAO), the World Health Organisation (WHO), Cornell University, and with major publishers to implement Access to Global Online Research in Agriculture (AGORA), an initiative to make scientific journals in the agricultural and environmental sector available free or at low cost to developing countries. Participation in the global AGRIS network and the Consultative Group on International Agricultural Research (CGIAR) InfoFinder (http://infofinder.cgiar.org/) ensures that CIAT research results are accessible to global audiences. The recently created CGIAR Library and Information Services Consortium (CGIAR-LISC) will result in broader access to scientific journals for all 16 CGIAR centers (Ramos et al., 2003). When fully implemented during 2003, CIAT researchers and library walk-in clients will gain access to 350 scientific journals, at practically the same subscription price the library has been paying for its 70 current subscriptions. In addition, CIAT continuously updates the CGIAR journal catalog, an important tool for library collaboration and document delivery services (see www.icrisat.org/ text/partnerships/srls/srls.asp).There is clear evidence that libraries will be playing progressively more important roles, because scholars heavily depend on scientific information resources usually only accessible via libraries. Increasingly, non-profit institutions in developing countries are granted access privileges for highquality scientific literature at no cost or discounted prices. However, this access will be tightly controlled via IP authentication. Librarians will not only select and manage these important resources, but also be responsible for implementing proper user authorization processes and policies, as well as promoting these resources with staff and library walk-in users. Decision makers will have to take decisive steps to support their libraries, recognizing their crucial role in democratic development processes, and in bridging the digital divide between rich and poor, and north and south.","tokenCount":"1716"} \ No newline at end of file diff --git a/data/part_3/5465765323.json b/data/part_3/5465765323.json new file mode 100644 index 0000000000000000000000000000000000000000..646266aa036a7a5e0c7ca9b6f2eca2e203d7e2a3 --- /dev/null +++ b/data/part_3/5465765323.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"125318c0a3ce16053c2cee8a4184c2cb","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/a786cd98-5fb5-4512-9837-f33419e7cd04/retrieve","id":"-1963154525"},"keywords":[],"sieverID":"0b110f62-ff3b-40b7-80f3-2a807f778e6d","pagecount":"31","content":"The project \"Managing trypanocide resistance in the cotton zone of West Africa: A coordinated regional study\" seeks to ensure the future efficacy of trypanocides as an effective component of improved integrated trypanosomosis control strategies in the region. To achieve this goal, national research and development institutions, international and regional research centres, and German universities are working in partnership to develop farm-level and regional strategies for reducing the risk of trypanocide resistance. The emphasis is on improving informational and technical supports to farmers, service providers, veterinary professionals and policy-makers that will promote integrated control and rational trypanocide use to reduce the long-term risk of resistance, without compromising the ability of livestock keepers to protect their livestock from the debilitating effects of trypanosomosis.This brief report documents the process and outcome of participatory planning and budgeting in a community-based trypanosomosis control project in Kenedougou, Burkina Faso. It discusses how and why farmers choose different trypanosomosis control options, and compares farmers' perspectives with those of researchers. The report also gives detailed descriptions and methodological notes on carrying out participatory trypanosomosis control, on which there is little published information.The activities described here took place within the project 'Improving the management of drug resistance in the cotton zone of West Africa: A co-ordinated regional study' 1 . This project has the goal of improving the livelihoods of smallholder farmers in West Africa, where trypanosomosis is a major threat to livestock and to the animal traction systems that farmers rely on for food and income. The project objective is to safeguard farmers' options for managing trypanosomosis. The project is working in three countries (Mali, Burkina Faso and Guinea) and addresses policy, practice and economic aspects of trypanosomosis control in the presence of chemo-resistance.In Burkina Faso, community-based trypanosomosis control is an important component, and the objective of the Kenedougou sub-project is to assess the efficacy, impact and sustainability of community-based trypanosomosis control in the presence of chemo-resistance. The sub-project also provides an opportunity to learn lessons and develop methods that can be used to improve trypanosomosis control by communities both in the presence and in the absence of external support.Participatory approaches to tsetse control have been used for over 20 years in Burkina Faso, most using a combination of insecticide-treated traps or targets plus treating cattle with insecticides by pour-on or spray. We reviewed eight projects covering 60 villages, and found that in all cases tsetse control was highly effective and in no case was it sustainable. This is not an uncommon finding: there is general consensus that sustainability is challenging for community-based tsetse control projects, but debate continues over whether this is due to approach problems (mainly lack of participation) or to inherent structural problems. The distinction is important and has policy implications. If poor sustainability is approach-related, it can be remedied by changing the practice of control, but if the problem is structural then the present model of community-based control will only work in the presence of external support, and should be adapted to reflect this. By implementing a project with a high-level participatory approach in an environment where all projects with low-level participatory approaches have failed to be sustainable, the Kenedougou project will throw light on this question of approach versus structural problems; the project described here can be seen as a proof of concept experiment.Multiple Drug Resistance brings a new urgency to the problem of sustainability. The strategy most widely used for trypanosomosis control in communities is the use of trypanocidal drugs. Participatory Rural Appraisals in the study villages gave some evidence that drugs were being used improperly. The irrational use of drugs is both a cause and consequence of resistance because when drugs do not work, farmers use drugs more, leading to further development of resistance. If levels of resistance are high and drugs are not effective, then vector control is one of the few options practicable by smallholder farmers.The six villages which are part of the community-based project are located in the Province of Kenedougou in southern Burkina Faso. The inhabitants are predominantly agro-pastoralists with a minority of settled pastoralists. In addition transhumant Fulani with large numbers of animals share water and pasture for two to five months of the year. The villages vary in dimensions posited to be important determinants of the success and sustainability of trypanosomosis control, including proportion of cattle-owning households, presence of pastoralists, dependency on cotton and arable agriculture, remoteness, wealth, capacity for communal action, experience of development, prevalence of trypanosomosis and level of chemo-resistance.The previous phase of the project had identified villages where drug resistance was a problem. The four villages with highest levels of resistance were offered the opportunity to participate. Three chose not to participate and were replaced by other villages with known resistance levels.The project started with a scoping visit to introduce the project team to the villages and plan activities. Participatory Rural Appraisal was carried out to help project staff and villagers better understand the general context and the specific problem of trypanosomosis. This was complemented by a household Knowledge Attitude and Practice (KAP) survey and entomological and epidemiological assessments. These studies triangulated participatory assessment, gave additional socio-economic and animal health details and provided a baseline for future evaluation.After this, Village Ateliers were held. These were participatory meetings attended by all interested livestock keepers, local leaders and representatives of the women in the villages. In these meetings, trypanosomosis was analysed within the context of other problems to find out whether control was a priority for the farmers. The workshops found that, though trypanosomosis was not always the major problem in the villages, it was a serious constraint, and the major animal health problem. All villages wished to improve control and expressed their willingness to manage community-based control. 2 To get more information on trypanosomosis control, each village appointed a farmer researcher team. Farmer researchers and scientist researchers together visited three sites where vector control projects had taken place (Dafinso, Satiri and Bondukuy), and analysed the benefits, costs and sustainability of control with the villagers there. 3 The farmer research visit was followed by another participatory village meeting to choose the strategies for control and budget. This meeting is described in detail in this report. The sequence and content varied in the different villages, reflecting their different circumstances, but in general the workshop contained the following elements:• Greetings, introductions and presentations • Impacts of trypanosomosis control are quantitatively and qualitatively very different for livestock-rich and livestock-poor farmers and for pastoralists and agro-pastoralists. Livestockpoor farmers, who make up the great majority of livestock keepers, are more interested in the control of biting flies than trypanosomosis control.The project agreed to pay for the first treatment, and gave communities the choice between pour-ons worth US$ 3000 or sprays worth US$ 300. Although farmers prefer pour-ons, most (80%) chose sprays because they considered it the more sustainable option, a powerful testimony to the communities' commitment to the sustainable control of trypanosomosis.• In terms of impacts of trypanosomosis, there are wide differences between what researchers measure and what matters most to farmers.• The ideal method of control for farmers would be used every three months, on less than 50% of animals and cost under 100 FCFA per head. Farmers find pour-ons more effective and easier to use than sprays.• A self-interest cum patronage template where livestock-rich farmers synchronise treatments and manage small numbers of screens may be the best bet for sustainable vector control.All communities chose improving current ways of managing trypanosomosis, animal baits and screens as strategies for managing trypanosomosis. Over the next three months communities will receive intensive support in managing these strategies. This will be followed by six months of 'hands-off' counselling, after which the communities will be entirely responsible for control.The workshops were well attended in all villages. There were 174 participants in total (166 men, 8 women), an average of 1 participant from every 1.2 cattle-owning households. However, as shown in Figure 1, owners of large and medium herds were more likely to attend than farmers with small herds (one livestock-poor participant for every two livestock-poor-households, two livestock-rich farmers for every one livestock-rich household).There are several factors which may contribute to the four-fold higher participation of livestockrich farmers:• They benefit more quantitatively than farmers with few cattle. A ten percent reduction in mortality means an extra ten animals for the owner of 100 cattle; but nothing for four out of five small farmers who have only two animals each.• They benefit more widely than farmers with few cattle, as they also have female cattle and will derive benefits from more milk, higher conception rate and less calf mortality.• They benefit more certainly than farmers with few cattle. By the law of small numbers, 1 the outcomes of control will be much less predictable for livestock-poor farmers, and higher uncertainty reduces proclivity to invest.• They can more easily meet the costs of participation (giving up time) and of control (time and money).• They are often more educated and more interested in working with outside agencies (as is frequently noted in Farmer Participatory Research).• They are more likely to be active in village politics, and hence more interested in participating in public gatherings.Self-selection of livestock-rich households may enhance tsetse control efficacy and sustainability. The effectiveness of animal baits depends on the numbers of cattle treated and contact of cattle with tsetse. Treating 50% of the cattle may be enough to control tsetse, and this proportion can be achieved by many livestock-poor farmers or few livestock-rich farmers working together. (In Sokoroni, for example, just seven farmers own more than 50% of the cattle, the remainder being owned by 76 farmers). Moreover the livestock-rich farmers are more likely to use rivers for watering and to graze their animals in higher-risk areas, so treating their animals is more effective at killing tsetse. Livestock-poor farmers often have the option of avoiding tsetse by using water pumps and wells, which is impracticable for large herds, and may spend less time in tsetseinfested areas. Involving livestock-rich farmers is organisationally easier as they are fewer, more highly motivated, more interested in vector control and have more money than livestock-poor farmers. This is a possible way of getting around the communal action problem of tsetse control (that everyone wants to be a free-rider, so no one provides control). Uphoff suggests that individuals will provide a communal good providing the benefits to themselves are higher than the costs. 2 In this model for vector control, a small number of livestock-rich farmers effectively provide vector control to the community, as a by-product of benefits to their individual herds. This is also institutionally viable as it is compatible with the patron-client norm of villages.From the development perspective, the opting out of livestock-poor farmers is less attractive. Livestock-poor farmers are most vulnerable and hence of higher development priority (a farmer with many animals can absorb the loss of two cattle, but the same loss for a small farmer may mean falling out of animal traction farming and having to use physically demanding and less profitable hand-cultivation). Although the livestock-poor will benefit from vector control provided by livestock-rich farmers, they will benefit to a lesser extent and will not be involved in control. This may result in equity problems, real or perceived. Many participative vector control programmes experienced problems with thefts and damage to screens and traps, and this is more likely to be a problem when large sections of the community are not actively involved in control or feel the costs and benefits of control are unfairly distributed. Many development programmes have a pro-poor approach and a tsetse control method that preferentially works with the livestockrich may be less attractive.The low attendance by women was anticipated. Women rarely have primary responsibility for cattle and are not involved in cattle health decisions. Village society is patriarchal and it is not usual for women to participate actively in mixed-group meetings. However, women do have responsibilities for milk, manure, feeding cattle, and small ruminants and so they have interests in trypanosomosis control. The project discussed this with the communities during the first PRA and the villagers agreed that women should attend the meetings. Although women attended, they did not actively participate; in three villages they left before the meeting was finished and in only one village (Mbie) were they asked for their opinions (in the other villages they were silent spectators). It is important that all the community (including women, non-livestock owners and children) are aware of control to avoid losses of screens.• The possibility of incentivising livestock-rich farmers to lead tsetse control will be investigated further.• The project will emphasise communal benefits of individual control to livestock-poor farmers, and individual benefits of animal baits to livestock-rich farmers.• The project will encourage those groups who receive most individual benefits to take responsibility for informing other groups of the communal benefits of control.• The project will use other means for accessing livestock-poor and women who did not attend (women-only groups, household visits).Methodological note: Group meetings need to be organised well in advance and care taken to ensure that everyone concerned is informed. The project team should always arrive before the start of the meeting. Farmers often start arriving when they see the outsiders have come, and if a farmer arrives at the meeting and finds no one he is likely to go away and not come back. It is important to disaggregate data by wealth, gender and any relevant minorities. Women and minorities often have difficulty in participating in public meetings and special arrangements must be made to ensure they are able to attend.The workshop started with traditional greetings, benedictions and the presentation of participants. Presentation by all the participants is an important step in the participatory process. This sets the scene for participation, and reduces distance between outsiders and villagers. Everyone gets to take centre-stage, if only for a minute, and if the group is large, this may be the only time some participants speak to all the assembly. By giving their names, people give a public commitment to being part of the process. When people make public resolutions, they are much less likely to subsequently change their minds. Finally presentation allows participants' names to be recorded and this can be cross-checked with other data to see who is participating and, more importantly, who is not participating. Methodological note: Presentation takes time; you should allow 30 minutes for a group of 20-40 people. The rapporteur can start noting names with the help of a participant while waiting for the meeting to start.The project team then recapitulated the objectives of the meeting and space was given for questions and additions. The main objective (agreed at the earlier village Atelier) was for farmers to analyse and then choose the additional trypanosomosis control strategies which were most appropriate for their situation. The project team also reminded the communities of the agreed roles of the partners. The project was there for a short-time (six months) to give advice and help with the problem, the farmers were in charge of making decisions and managing the process of vector control, the DPRA would give support and advice. After six months the communities would be in charge of continuing tsetse control themselves.Methodological note: Large participatory meetings risk losing focus, and it is important to agree objectives and keep returning to them. In smaller and longer workshops, 'house-rules' should also be agreed at the start, a very useful tool for avoiding and resolving any subsequent problems. When groups are small, ice-breaker presentations are better than self-presentation.Farmer exchange visits had been a successful strategy in previous projects in Burkina Faso, and were adopted by the Kenedougou sub-project with two significant changes. The first is that farmers went as researchers not students. This shift in perspective encourages critical thinking and empowers farmers -they are there not only to learn (passive, lowers, infantilising) but to find out and apply (active, highers, empowering). The second difference was that farmer researchers went, not to sites where projects were running as had been the case in the past, but to sites where projects had left and the community had failed to continue with control. This helped farmers concentrate on sustainability and also provided practical learning of the important lesson that 'tsetse come back'.Each village had chosen 10 representatives for the fact-finding mission, and as 3 sites were visited, there were 3 presentations by farmer-researchers. Most of the reports contained the following elements:• Details on how control started. These were often simplified and narrativised. Several farmers mentioned that farmers in the study site had not understood that trypanosomosis was caused by tsetse.• A description of the methods of control. These were a combination of screens, traps, pour-ons and sprays. Farmers remembered precise details about the strategies, for example, that screens had to be placed every 100 metres.• Mention of the price of control strategies and the amount contributed by the farmers. From the start of the project, price and contribution have been important concerns of the farmers.• A description of the good effects of control. The most mentioned benefits were: reduction in flies, more animals, better health, less abortions, less expenditure on medicines, ability to keep donkeys, return of households which had left. These benefits were noticed within a few months of starting control. Farmers remembered striking anecdotes about control -the example of a Fulani herder who had no cattle as a result of trypanosomosis and now has more than 300 was often repeated.• The difficulties with control. There was very little mention of the difficulties of control, only occasional reference to the fact that placing screens was hard work, and to difficulties with relations within the communities.• The current situation. In all cases control had stopped, flies had come back and farmers were once more having problems from trypanosomosis. All of the reports included the point that the farmers regretted the project had gone and wanted it to come back.• Advice from the farmers in the previous projects. This was generally in the form of exhortations -to work with the project and take control seriously. After the farmers made a report, the project team also gave a report -this summarised the experience of community control in Burkina Faso and other countries as follows:Participative vector control was very effective; in nearly all cases, tsetse are successfully controlled and trypanosomosis is reduced to very low levels. Farmers usually get many benefits from control, including fewer animal deaths, less sickness, higher production and less expense on treatments. However, long-term continuation with control is difficult to achieve. Three things are necessary for control, and the project would work with the community to try and make sure that these were met:• Farmers must know how to carry out control • Farmers must be able to manage control • Farmers must be able to pay for control.Methodological points: At the start of the project, communities are reluctant to focus on the difficulties and problems. This goes against the village norm of politeness that when outsiders come with ideas and money, it is not polite or politic to criticise. The project may need to take the initiative in drawing attention to problem areas; if they are left unexpressed, they are likely to cause problems later.The baseline of the project included a KAP survey to understand better farmers' beliefs about trypanosomosis and tsetse control. This showed several important and widespread misunderstandings which are likely to jeopardise the sustainability of control and foster chemo-resistance. The review of projects in Burkina Faso drew attention to other possible misunderstandings. The project team emphasised the following points which they have found are often not understood: 1. Trypanosomosis is only caused by tsetse 2. After vector control, trypanocide use can be reduced 3. Tsetse eventually come back after vector control is stopped 4. Control efforts can be reduced considerably once the level of tsetse are reduced 5. Animal baits control tsetse by killing flies (rather than protecting cattle) 6. Drug resistance is a cause of treatment failure 7. When drug resistance is widespread, vector control may be the only option.This was followed by questions from the farmers. Some beliefs are very persistent, especially the belief that trypanosomosis has many causes and that trypanocides can be used as general tonics. These have come up repeatedly in discussions with the same community group, and been repeatedly clarified, but misunderstandings persist. Changing false beliefs and introducing new concepts is not easy. Often the new concept is accepted, but the old (and logically incompatible) belief is still retained. For example, most cultures in Africa believe in a metaphysical aetiology of disease and the western paradigm of physical aetiology of disease has been added onto rather than replaced the metaphysical model. Similarly, while it is now accepted that the direct cause of trypanosomosis is an infected tsetse fly, many farmers believe that the reason why the infected fly bites one person's cattle and not someone else's requires further explanation (witchcraft, malevolence).Methodological note: It is important to validate or appreciate all participants' inputs. Most beliefs have an element of truth and even when correcting mistaken beliefs, emphasis should be placed on this, or on the importance of raising the issue. For example, farmers believed that ticks were also a cause of trypanosomosis, facilitators dealt with this (false) belief by saying: 'That is a very good point, and it is true that ticks can cause serious diseases and some of these are very like trypanosomosis. Killing tsetse with sprays can also kill ticks and so prevent these diseases, too'.Analogies are a useful way of introducing new ideas. Farmers can very easily understand drug resistance by using the example of malaria. They all know that the drugs that once worked for malaria now often do not, and this concept can be transferred to trypanosomosis, with the additional reminder that while there are now new drugs for malaria, there are not likely to be new drugs for trypanosomosis.The most important part of the workshop from the perspective of the project team was to support farmers to make good decisions about trypanosomosis control. People prefer to implement the ideas they themselves think of, and there are pragmatic as well as ideological grounds for participatory planning. However, unstructured decision-making is not always optimal 1 . It has been shown, though, that simple decision-support tools can greatly increase the quality of decisionmaking.The project used PRA tools in order to help analyse the benefits of control. PRA has traditionally been mainly used for analysis but is also very useful in aiding planning.• It makes the decision-making process open and explicit, preventing elites and narrow interest groups from diverting decision-making towards their own interests.• PRA is a group activity and draws on the wisdom, knowledge and experience of all presentthis facilitates the detection of errors.• PRA also encourages everyone to participate, and this generates ownership of the results.In this case, using PRA for analysing advantages, costs and preferences allowed the communities to practice decision-making before the choosing of strategies. This was important because of the strong norm of accepting gifts brought by outsiders. Unless choice of strategies is actively managed, communities are very likely to go along with everything the project suggests without questioning the appropriateness for their situation.Earlier work had shown that livestock ownership was significantly skewed, and that in some villages there were minorities of settled pastoralists who owned large numbers of animals. It was hypothesised that this would have significant differences on interests and therefore participants were divided into three groups: a livestock-rich group, a livestock-secure group and a livestockpoor group.The first tool used was Pairwise Ranking. Participants buzzed on all the advantages they would have if trypanosomosis did not exist. They then made comparisons between each pair to see which is the most important.This exercise was carried out by groups of livestock-poor farmers (and in one village also with livestock-secure and livestock-rich farmers). There were interesting differences between the villages but the overall trend is clear; livestock-poor farmers consider the most important benefit to be the reduction of biting flies, followed by benefits clustered around traction, then by benefits clustered around saving money and, in last place, benefits from milk and meat. There were few major differences between livestock-poor and other farmers; although the latter valued reduction of biting flies less, perhaps being less exposed as they work less with cattle, and milk production (from which they derive more benefits as they more female cattle) higher. Table 1 gives an example of the Pairwise Comparisons tool from one village, and Table 2 summarises and compares the results from all four villages. Methodological Note: Categorising advantages is not always straightforward. Advantages which say the same thing (for example 'more animals survive' and 'less animals die') can be combined. Indirect advantages can be reduced to direct advantages (for example 'crops grow better' is included in more manure). If an advantage has important and heterogeneous sub-components, 1. Cognitive bias is any of a wide range of observer effects identified in cognitive science, including very basic statistical and memory errors that are common to all human beings (first identified by Amos Tversky and Daniel Kahneman) and drastically skew the reliability of anecdotal evidence and decision-making ability. We are biased toward alternatives that perpetuate the status quo; we want to confirm what we already suspect and look for facts that support it; we ascribe causality to correlation and make faulty generalisations; we are profoundly influenced by the way a problem is framed; we naively extrapolate trends and draw inferences from samples that are too small or unrepresentative; we are overly influenced by peer pressure (group think); we routinely overestimate our abilities and underestimate the effort involved in completing a difficult task.these can be separated out (for example, more cattle may be divided into more cattle for sale and more cattle for traction). Farmers in some villages drew a distinction between the closely related advantages of a) having stronger cattle (more force); b) cattle being able to work better in the existing area (more traction) and c) being able to expand the area under cultivation. If an advantage considered a priori important is missed, the facilitator can suggest it, and the participants decide if it should be included. But even after resolving these issues, it is often the case that farmer classification is different from outsider classification. If this occurs, farmers' interpretations are privileged. Counting the number of times an advantage is preferred in the Pairwise Ranking gives a guide to its priority; looking at individual comparisons can also be informative.The table also shows if preferences are transitive or intransitive (for example if 'savings' is preferred to 'manure', and 'manure' is preferred to 'sale of cattle', logically 'savings' is also preferred to 'sale of cattle' (and this was the case for the PRAs carried out in the workshop). Although not all preferences are transitive (as participants who cannot rank two choices may rationally sometimes prefer one and sometimes the other), a high level of non-transitive preferences indicates the tool is not being used properly.Pairwise Ranking also allows money-equivalents to be assigned to non-marketed benefits. For example, 'savings on drugs' is preferred over 'manure'. Livestock-poor farmers spend on average 4000 FCFA on drugs in this village, so their choice indicates that the extra manure produced from having more animals and more healthy animals is worth less than 4000 FCFA to them. This is very useful in predicting what farmers will be willing to pay for vector control.• The most preferred advantage was reduction of biting insects as a result of insecticide-treated screens and animal baits. This was important for two reasons: farmers said that, firstly, animals disturbed by biting insects do not graze well and can even run off wildly and, secondly, that biting flies cause annoy people and can make them ill.• More traction as a result of more healthy animals was very highly preferred. Farmers considered there were three main benefits. First was cattle replacing manual labour; second was doing the existing work more quickly and so saving time; the third was enlarging the area cultivated and so earning more money. Better general condition was closely linked to traction, the main advantage being that animals in good condition were fit for traction, but there were secondary advantages in that cattle in better condition were less likely to fall ill, fetched a better price in the market and were more pleasing to the eye. More cattle were also valued primarily for the contribution of cattle to traction.• Saving money on drug treatments was highly valued, and saving money was rated considerably higher than earning money through cattle sales. This is a reflection of two factors: livestockpoor farmers make little gains from livestock sales, and the general phenomenon of 'loss aversion' or 'endowment effect', that people assign higher values to an item they have than to the same item when not in their possession.• More manure was also valued; interestingly farmers considered manure a more valuable byproduct than milk.• Transport and sale of cattle were somewhat valued.• The least-valued advantages from trypanosomosis control were milk and meat. Earlier PRA work had shown that deliberately slaughtering cattle for consumption is almost non-existent among livestock-poor farmers. When animals seem likely to die, they are slaughtered and the meat consumed; however, meat from an ill animal is not highly valued. Farmers said that if a man eats meat from a strong animal, he will become strong, but if he eats meat from a weak animal, he may become ill himself (this reflects the universal anthropological Law of Similarity, that underlies belief in sympathetic magic, \"Like is like and like produces like\"). The low value of milk is probably related to the fact that livestock-poor farmers possess mainly male animals for traction, and in these households, women have responsibility and control over milk.• Better condition (linked to less illness or animals being in good health) and more cattle (less death) did not seem to be related either to the level of trypanosomosis found during the baseline survey (prevalence), the proportion of animals identified as sick by the farmers (disease) or the level of drug resistance identified in the previous phase of the project. The baseline survey indicated that concern over livestock health is not tightly coupled to actual livestock health; this will be investigated further during the project. The livestock-rich farmers also analysed the hoped-for advantages from successful control of trypanosomosis. For this they used a modified version of the problem/solution tree tool. In this tool, the successful control of trypanosomosis is the trunk of the tree, the advantages expected from successful control are the main branches. The benefits from the advantages are the subbranches (branches and sub-branches may inter-and intra-link). The advantages, and then the benefits from the advantages, are ranked in order of importance.A major difference is seen between groups with mainly pastoralists (Sokouraba) and groups with mainly agro-pastoralists (Sokoroni and Mbie). Pastoralists' priorities are herd size, milk and saving in drug costs. The agro-pastoralists priorities are traction and milk. Biting insects was of little importance, even for the agro-pastoralists, in sharp contra-distinction to the results from the livestock-poor group, perhaps because the livestock-rich participants in this group do not themselves work in the fields. Milk, which is of little interest to livestock-poor farmers, is of high importance to livestock-rich.Methodological Note: This tool is less useful for making detailed comparisons between advantages or assigning value to advantages. A major strength is that it allows the identification of impact as well as benefit -farmers' (and development agencies') main interest is not the direct benefit of control, but how the benefits of control are used to reduce vulnerability and build livelihood assets. The advantage tree also allows decomposition of the benefits into their component parts; this is not so easy in pairwise ranking as there is often some overlap between categories.The second part of the advantage tree consisted of analysing why the benefits of trypanosomosis control were important, and what could be done with the benefits received.In general, farmers anticipated that benefits of control would be firstly invested in the farm enterprise, secondly used for household consumption and lastly sold for money. For example, traction was seen to be important firstly because it allows more food to be produced, secondly because it saves time and lastly because more money is earned. The same pattern is also seen in the ranking assigned to the benefits received from more milk (Table 4). This finding is not surprising as farmers are poor and vulnerable and only partially integrated into the cash economy. They are more interested in securing their livelihoods by investing in existing assets than in transforming these assets into money.Even the benefits received from money are oriented towards decreasing vulnerability and increasing social capital (popularity, helping others, Hadj, marriage) and human capital (health).Other interesting points emerging from this exercise were:• The use of animal products as nutraceuticals (medical therapy)• The importance of presents and transfers (social capital and risk avoidance through asset diversification)• Saving time is often valued more highly than earning money • For pastoralists, manure is important to improve the quality of pasture; for agro-pastoralists, manure is important as a fertiliser for crops• Manure is of high importance to agro-pastoralists, who want more animals firstly for traction, secondly for manure and only thirdly for sale• Planned off-take for sale (but not for home consumption) occurs in all the systems (livestockrich, livestock-poor, pastoralists and agro-pastoralists) but is of relatively minor importance for all farmers• When selling animals, farmers are interested not only in the amount of money earned, but also the rapidity, underlining the role of cattle as savings which can be cashed in during times of emergency (liquidity). In general farmers' assessment of anticipated benefits is accurate and realistic. Many studies have been carried out on trypanosomosis impact, and although methodologies and farming systems differ considerably, the overall pattern of benefits is consistent. In cases where trypanosomosis is epidemic, it often results in catastrophic losses (this usually occurs when susceptible cattle are first brought to high-risk areas, for example, in resettlement programmes, or migrations resulting from droughts). In the more common endemic situation, losses from trypanosomosis are less, and benefits from control will also be lower. Control in ranches and in systems with trypanosusceptible animals has higher benefits than control in villages and systems with trypanotolerant animals.Taking the results from 33 published studies on benefits of control, the benefits which might be reasonably anticipated in the endemic situation in Kenedougou are as shown in Table 6. A more detailed comparison between the studies carried out by researchers and the concerns of livestock-poor farmers reveals some interesting trends. Table 7 shows the variables measured in 33 impact studies. 1 There are striking differences between what farmers are most interested in and in what researchers measure most. Many studies focus on aspects of least interest to livestock-poor farmers such as reproductive rates, calf and cow weight (variables easy to measure and of high importance in western farming systems, perhaps explaining their salience). Conversely, the aspects which are of most interest to farmers (such as fly nuisance, traction and manure) are significantly less studied. The interests of researchers seem to be more closely aligned with the interests of livestock-rich farmers; the ranking follows almost the same order.Farmers tend to use emergent 2 qualities to assess benefits. For example 'condition of animals' was an important benefit in all villages. Further discussion showed that this was valued because it resulted in more traction, a better sale price and more meat, but farmers felt that it could not be decomposed into these three categories. They assigned a value to the totality of condition which exceeded the sum of the component parts. Emergent qualities are not easy to assess by researchers and are rarely considered.Researchers focus almost entirely on the direct impacts of trypanosomosis on animal health and production; farmers are less interested in these than in the benefits derived from having healthier and more productive animals. Furthermore, it is the indirect benefits which are more likely to provide the motivation for continuing with trypanosomosis control.Researcher studies have looked mainly at what benefits accrue, but farmers are also very interested in to whom benefits accrue. The PRA tools show how the benefits anticipated by livestock-rich farmers are qualitatively very different from those anticipated by livestock-poor farmers; the difference between pastoralists and agro-pastoralists is equally marked. 9. Control in the context of household production, consumption, sale and purchaseThe next exercise was a listing, valuing and categorising of the farm household outputs. This had the objective of locating trypanosomosis control within the context of the farm household system. Farmers do not consider trypanosomosis control in isolation, and the methods of control chosen need to be coherent with the importance of cattle, the labour availability, and the amount and timing of cash inflows and outflows. By making explicit the amount of money earned from traction and cattle, this tool helps farmers decide how much money is appropriate to invest in control.• Cotton is important in all villages and very important in two. In terms of income, however, cotton is the single most important crop though it only provides 30% of the total (Figure 4)• Farmers have a diversified portfolio of crops, with 8 to 15 different types per village. The staples of cotton, maize, beans, peas, sweet potatoes, yam, ground-nut, sesame and fruit are grown in all villages. Crops grown in some villages included ginger, rice, hibiscus, pearl millet and fonio (the smallest millet species). The main cash crops are cotton (grown only for cash), hibiscus, ginger and avocado (grown mainly for cash but also home consumption, Figure . 4)• All farmers bought food crops, most commonly, maize, rice and sorghum. Livestock-poor farmers bought much less than livestock-secure farmers.• Farmers produced products worth on average US$ 5 000; they consumed products worth US$ 2 000 and sold products worth US$ 3 000. Livestock-secure farmers sold two to three times as much as they consumed and livestock-poor farmers consumed more than they sold (Figure 3). A previous study in these villages had shown that farmers used US$ 300-400 worth of agricultural inputs, which included phytosanitary products and fertilisers. There had been considerable discussion on the strategies suggested for trypanosomosis control, and by the time of the workshop there was consensus on the choices available. These were listed and categorised as follows: The only completely novel strategy was screens, as farmers are already using sprays for tick control. However, the idea of spraying large numbers of animals at the same time in order to control tsetse was a new and difficult concept. In order to investigate how feasible it would be, a practicability analysis was carried out on three essentials of animal baits: the proportion of the herd it was possible to treat, the frequency at which it was possible to treat and the price it was possible to pay. Farmers considered that the price it was possible to pay depended on the frequency of treatment and the number of animals treated. 40-120 FCFA per animal every 2 months was considered feasible by farmers in Sokouraba, Mbie and Sokoroni. Farmers in Kotoura preferred 800 FCFA every 3 months. This seems implausible (though consistent with the low rank given to financial gain in Kotoura). There are three possibilities: farmers are giving wrong information because they want to use pour-on and know the project will pay for the start-up treatments; farmers are mistaken in their assessment of future behaviour; farmers are correct in their assessment of their future behaviour, and pour-on is the most suitable option for them.Methodological note: Each criterion was looked at separately for ease of analysis. Farmers' estimates of difficulty were established by using iterative bidding -this method is successfully used in contingent valuation studies and is similar to exchanges when buying and selling. Analogies and simple mental constructs were used to express percentage (e.g. if you had ten animals, would it be easy to treat two of them? then four of them?)Farmers use a wide repertoire of strategies to cope with and manage trypanosomosis (endogenous strategies). These strategies are already being practised without external support, and so are more likely to continue after the project. Various suggestions for enhancing these endogenous strategies had emerged during the course of project activities:• Sharing of knowledge on husbandry and risk avoidance between farmers • Improving farmer skills on animal nutrition and general health through knowledge exchange and training• Skills-training for the women in the problems of small ruminants • Intensive training for local livestock experts who would then act as community knowledge banks.11. Long-term viability: Start up and recurrent costs At the initial Village Atelier, roles and responsibilities of the different partners in the project were discussed and the project had explained its way of working as follows: a) it was only there for a short length of time (six months intensive support and six months semi-intensive support), b) the project was there to advise but the farmers were responsible for managing control and c) all recurrent (running) costs would have to be met by the farmers.The review of projects in Burkina Faso and the visit by farmer researchers had revealed that the high cost of vector control was a major reason for the lack of long-term viability. However, farmers did not realise that the initial high levels of control could be reduced after tsetse populations were reduced to a certain level. Raising money either internally or externally for once-off expenses is, of course, much easier than open-ended provision of resources for never-ending expenditures. Two conclusions arise from this:• It is permissible for the project to provide some initial costs.• It is essential that the ongoing costs be kept to the minimum possible.A box chart was used to analyse the start-up and recurrent costs. The project first gave information on the high levels of control which would be needed in the initial phase (column 2 in Table 10) and the lower levels of control that might be needed for long-term control (column 3 in Table 10). This information was given for each of the potential control strategies (column 1). Unfortunately, very little work has been done on the minimum efforts needed to sustain control (as past projects have generally tried to maximise technical efficacy rather than minimise financial and nonfinancial costs), so little detailed information was available on this. Moreover, the estimates available need to be modified to take into account levels of factors such as the pressure of reinvasion, number of flies, species of flies, presence of alternative hosts, density of cattle, location and extent of high-risk areas etc., and that it is likely that the level of control will need continuous adjustment.The recurrent costs needed to maintain activities was then subtracted from the level required for start-up in order to display graphically the contribution of the project for the first six months (highlevel control minus low-level control), the contribution of the community in the first six months • Community-based vector control (CVC) has not yet been sustainable in Burkina Faso; it seemed logical to see if community control was workable before trying to establish whether it can be auto-financed• The literature agrees that communities are unlikely to pay for start-up costs of trypanosomosis control• Evidence is emerging from this study that benefits perceived by farmers (and when farmers have to pay, it's their reality which counts) are at least an order of magnitude less than benefits measured by conventional cost accounting, and in some cases benefits may be less than the costs. Until this issue was clarified, it did not seen ethical to risk charging farmers more than it was worth to them for vector control.(low-level control), the contribution of the project after the first six months (0) and the contribution of the communities after the first six months (low-level control). The question as to whether contributions should be communal, individual or some combination of the two was left open at this stage of the process. As mentioned above, it seems that provision of vector control by individuals or small homogenous groups of farmers is more likely to be sustainable, so this model will be encouraged as far as possible in the execution phase.Methodological note: Strategies were represented by photographs, time periods (e.g. six months) by moon symbols and percentages were explained by analogies and mental constructs, and represented by stones and found objects.12. Choice of strategy This was the most important stage of the workshop. By now participants had:• Reported on the strategies used for control in other villages and the benefits and problems encountered• Been given more information to help them better understand how control works and correct misunderstandings about control• Analysed the direct benefits that different interest groups might receive from control • Assessed the positive impacts which would result from the direct benefits • Summarised the overall production and consumption-oriented activities at household level and the role of cattle and traction in these• Analysed the costs and practicalities of the different strategies • Agreed the principles of cost-sharing (the project meets initial costs, farmers meet recurrent costs). At this point of the workshop, farmers were gathered round a chart showing the various options for control and their costs. The facilitators went through the various options and then a general discussion was held. There was a high level of participation and a feeling of excitement, with many people talking at once, cross-discussions, questions, and occasionally heated debate. This was a marked contrast to the earlier meetings where one or two spokespersons had dominated the debate and the majority of farmers were silent, and shows how the success of the PRA process in getting everyone involved and participating. In all cases, consensus was achieved (in most cases taking 20-30 minutes).All the communities chose the option of improving endogenous control strategies through skillbuilding and information provision. They were most interested in a combination of general meetings which all could attend, together with in-depth training for those who already had a lot of expertise in livestock (vaccinators, herders, local experts).All the communities chose the option of screens. This option was attractive in that most of the costs are start-up costs which were met by the project. Three of the communities chose sprays rather than pour-ons. Pour-ons are much easier to use, more convenient and villagers believe them to be more effective than sprays. Villagers also knew that the project would meet the high initial cost (US$ 3 000). However, they chose instead sprays which are less convenient but much less expensive and hence more sustainable (the start-up cost of sprays is US$ 300) 1 . This is a powerful indication of how seriously villagers took the participatory planning process and the issue of sustainability, and that the objective of villagers is not to maximise short-term gain from the project, but to try and sustainably control trypanosomosis. 25 1. A constraint to the use of animal baits identified by the farmer researchers was that although most farmers used sprays, they used them at different times because of cash flow problems. The project agreed to give an initial free treatment in order to synchronise the farmers' accounts for treatments. This is not included in table 10 to avoid complexity.Having decided on the strategies that would be implemented, the project team and villagers next outlined the activities needed. The next phase will be strategy implementation; during this phase, project field staff will provide intensive support to the villagers to help them put in place their chosen strategies, and build or strengthen systems that may be able to go on providing services when the project is over. In light of the poor sustainability of communal control, emphasis will be placed on individual strategies so that even if communal control is not practicable, sustainable benefits will continue.","tokenCount":"7963"} \ No newline at end of file diff --git a/data/part_3/5480265932.json b/data/part_3/5480265932.json new file mode 100644 index 0000000000000000000000000000000000000000..2879f80761cb6b3ea90f6114972bce5433fd1a91 --- /dev/null +++ b/data/part_3/5480265932.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"19563012974ba4633f2721c46ed9e758","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/01b54b46-2aba-4ffb-b679-a2aaf8d9530b/content","id":"-2145389097"},"keywords":[],"sieverID":"3b16a4d2-2287-4736-89cd-ed5db9a087ed","pagecount":"6","content":"Maize accounts for 70% of ZlfYlbabwe's cereal growing are8. Its proc1IctivIty, particular1y in the communal areas, is lmited by both soil and moisture constraints.Most soils in communal areas are course-textured sands derived from granite. They are inherently deficient in nitrogen and phosphorus (Grant 1981;Mashiringwani 1983), IHld have a poor water retention capacity. The majority of these areas are situated in marginal rainfall zones and do not have irrigation facilities, making the application of large quantities of fertiliser risky and uneconomical.A maize fertiliser x plant population on-farm trial conducted by the Agronomy InstiMe at 19 sites showed that applying more than 50% of the recommended fertiliser-In most cases 350 kg Compound Z 8:14:7Iha and 400 kg ammonium nltratelha-was uneconomical (Whingwiri 8t af. 1987; Mataruka 8t af. 1987). However, maize response to nitrogen and phosphorus separately could not be assessed by using compound fertilizers. To establish economically optimum levels for both nitrogen and phosphorus, researchers should use trials with straight fertilizers. This paper c:lscusses results from two seasons of an on-fann trial being conducted by the Agronomy Institute to determine the effects of nitrogen x phosphorous on maize.The trial was conducted at eight sites in Zimbabwe natural regions II, III, and IV during 1986/87, a season characterised by poor rainfall, and 1987/88, • during which there were relatively good rains. Four of the sites used in 1986/87 were written off due to drought. Total rainfall received from planting to harvest, along with the amount received one week before and two weeks after topdressing, are shown in Figures 1 and 2. The average soil pH, soil nitrogen after incubation, and P205 statuses of the sites are given in Table 1. In general, the soils exhibit relatively high phosphate levels.The maize hybrid R201 was planted at a spacing of 30 em by 90 em. The experimental design was a randomised block with three replications. Nitrogen In both the high and low rainfall environments, there was a positive response to 30 kg Nlha applied as a basal-dressing. Further increase in applied nitrogen up to 90 kg Nlha (topdressing up to 60 kg Nlha) significantly increased grain yield in the high rainfall group. No advantage for treatments beyond the basal application was achieved in the drier areas (Fig. 3).From Figures 1 and 2, it would appear that responses to topdressing were influenced by the total rainfall received from planting to harvest, as well as the rainfall distribution just before and after topdressing. 2) both of ammonium nitrate. A blanket application of 60 kg K 2 0 per hectare was applied as muriate of potash to all the plots at planting.In 1986/87 (a dry season), only four sites could be analysed, whereas all eight sites were analysed in 1987/88. In the latter season, the distribution of rain was favourable except at two sites.The statistical analysis revealed differential responses for the different sites. Where rainfall was high and well distributed, particularfy during the period around the nitrogen topdressing, there was a response to the topdressing. Where the distribution was poor (Fig. 1 and 2), there was little response. The sites were then grouped into two categories, depending on the rainfall received around topdressing. Six sites fell into the high rainfall groups and six into the low rainfall group. The data used to calculate these budgets are given below: • Minimum acceptable rate of return. 60%The response to phosphorus was low in both environments (Fig. 4). Under the present communal area production levels, a response to P205 levels above 18 ppm should not be expected. There was a significant increase in grain yield between zero and 60 kg P20. per hectare under high rainfall, but this was not economic. The poor response to phosphorus was probably due to the generally high inherent phosphate levels in the soHs at the experiment sites.No significant interactions between treatments were detected.Economic analyses for the high and low rainfall environments are presented for nitrogen only (Fig. 5 and 6), since P gave no technical or economic response In either situation and there was no significant interaction between N and P. For each rainfaH environment, two analyses were conducted:one based on the basal application of ammonium nitrate, as occurred in the trials, and the other based on the basal application of Compound 0, which reflects farmers' practices and the current recommendations. Figure 5 shows the profitability of using nitrogen on maize under high rainfall conditions, assuming a 60% minimum rate of return on investment.In this situation, given a basal application of 30 kg of nitrogen (ammonium nitrate) and additional nitrogen as a single application topdress, it is economical to apply up to 60 kglha of nitrogen (or 174 kgt11a ammonium nitrate). This contrasts with current recommendations, which hold that farmers should apply 300 kglha compound 0 and 200 kgt11a ammonium nitrate (I.e. the equivalent of 93 kgt11a nitrogen 1 ). The economical level as indicated by these data is around 65% of the current recommendations, but this holds only if ammonium nitrate is used for both the initial application and the topdressing.Figure 5 shows that applying Compound 0 prior to emergence is not economical. The initial loss resulting from Compound 0 outweighs even the benefits from the nitrogen subsequently applied as topdressing.Though the same minimum acceptable rate of return is used here, the risky nature of crop production in low rainfall areas means that the required rate of return may be higher than the 60% used for analysis of the data from the high rainfall sites.Under low rainfall conditions, if the source of nitrogen is ammonium nitrate, it is economical to use 30 kg nitrogen as a basal application. Additional applications of nitrogen result in losses, as shown in Figure 6. The economical level of nitrogen (30 kglha) is equivalent to 87 kglha ammonium nitrate. Current recommendations endorse the use of 200 kglha compound 0 and 100 kglha ammonium nitrate, (the equivalent of 51 kg nitrogen!. The economical level, as indicated in Rgure 6, is about 60% of the current recommendation. Figure 6 also shows that using Compound 0 as the basal N source is considerably less attractive than using ammonium nitrate or not using fertilizer at all, assuming farmers require a 60% return on their cash outlay.1 AGRITEXUnder high rainfall conditions, there was an agronomic response with up to 90 kg Nlha. However, it was economical only up to 60 kg Nlha, while under low rainfall conditions 30 kg Nlha was both the agronomic and economical optimum. In soils with marginal-to-adequate phosphorus levels, it may also be uneconomical to apply phosphate fertilizer. Thus, if profitability is the farmer's only concern, it is not economical to apply Compound D. This however may have serious consequences for soil fertility in the long run, and a long term study on phosphorus requirements may be necessary to identify any danger of soil depletion.Although these analyses cannot be used for making recommendations to farmers, they may serve to indicate a course for further experimentation. Since there was no interaction between nitrogen and phosphorus, it seems justifiable to look at the efficiency of use of these two elements independently.A low response to P in researcher managed experiments means that there will likely be an even lower response to P under normal farming conditions, since most farmers apply their compound basal dressings after emergence, whereas most researchers use pre-emergence applications in their trials. Recommendations for basal compound fertilizer prior to or at planting are based on the assumption of a positive response to P from these early applications. If there is no such response or if farmers do not follow these recommendations because of labour constraints, then the recommendations regarding application methods for P and initial N should be reconsidered. Sustainability considerations may dictate applying P, but this could be done more cheaply and conveniently at a time other than around planting, which is a labour-intensive period for smallholder farmers.Given the increasing scarcity and expense of fertilizers, there is a need to investigate ways of improving the efficiency of their use. These preliminary results Indicate the potential to substantially Improve the economic efficiency of N application In maize on communal farms by:• reducing recommended application levels • changing initial N application from compound fertlHzers to ammonium nitrateIn adcltlon, researchers need to take into account the rainfall characteristics of the <:Ifferent natural regions when designing nitrogen fertilizer trials. In high rainfall areas, work needs to be done on the levels and timing of topdressing as well as on the form of basal N applications. In contrast, the emphasis in the low rainfall areas should be on optimum timing, form, and levels of Initial nitrogen applications. In both areas the questions of form, timing, and levels of P applications for maintaining soil fertility require investigation.","tokenCount":"1452"} \ No newline at end of file diff --git a/data/part_3/5495606490.json b/data/part_3/5495606490.json new file mode 100644 index 0000000000000000000000000000000000000000..225d024aaac4e08e77bd3ddec1225cc75f325489 --- /dev/null +++ b/data/part_3/5495606490.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"653d6fa3e7326e96233695818fe751e8","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/c65df01e-6d3c-46a9-a19b-0c785c230279/retrieve","id":"-1942743595"},"keywords":["Allium altaicum Pallas. Courtesy P. Havránek","Olomouc Genebank","Czech Republic"],"sieverID":"b8633c90-e310-4477-9cd9-5d0a4377e2e8","pagecount":"108","content":"The European Cooperative Programme for Crop Genetic Resources Networks (ECP/GR) is a collaborative programme among most European countries aimed at ensuring the long-term conservation and facilitating the increased utilization of plant genetic resources in Europe. The Programme, which is entirely financed by the participating countries and is coordinated by IPGRI, is overseen by a Steering Committee composed of National Coordinators nominated by the participating countries and a number of relevant international bodies. The Programme operates through ten broadly focused networks in which activities are carried out through a number of permanent working groups or through ad hoc actions. The ECP/GR networks deal with either groups of crops (cereals, forages, vegetables, grain legumes, fruit, minor crops, industrial crops and potato) or general themes related to plant genetic resources (documentation and information, in situ and on-farm conservation, technical cooperation). Members of the working groups and other scientists from participating countries carry out an agreed workplan with their own resources as inputs in kind to the Programme.The geographical designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of IPGRI or the CGIAR concerning the legal status of any country, territory, city or area or its authorities, or concerning the delimitation of its frontiers or boundaries. Similarly, the views expressed are those of the authors and do not necessarily reflect the views of these participating organizations.Opening and Welcoming Address Dr Dave Astley, Chair of the Allium Working Group, welcomed the participants to the sixth meeting of the Group and expressed his thanks for the privilege of being hosted in Bulgaria.Dr Stanko Georgiev, vice-director of the Institute for Plant Genetic Resources (IPGR), Sadovo, welcomed the participants of the European Cooperative Programme to Bulgaria. He apologized on behalf of the institute director, Dr Rada Koeva, for her absence due to her attendance at a meeting in Switzerland. He then thanked all the staff of the Sadovo institute for their contribution in the organization of the present meeting, and he wished success and good health to all participants and their families.Dr S. Georgiev then summarized the history of the IPGR, going back to the time when the first School of Agriculture was established in Sadovo in 1882. In 1902 it grew into an Agricultural Experimental Station and in 1977 it became what is now known as the Institute for Plant Genetic Resources with five independent programmes. The institute employs about 170 people, 40 of whom are scientists and 60 research assistants. The land available for experimental fields covers about 180 ha. The basic aim of the plant genetic resources programme is the collecting, study, conservation and use of the cultivated plants and their wild relatives. The accessions stored are mainly cereals and legumes. Collections are evaluated and data are computerized. The germplasm is freely exchanged with foreign countries. The other national programmes for which the institute is responsible are wheat breeding, peanut and sesame breeding, rice breeding and biotechnology.Dr D. Astley thanked Dr Georgiev for this extremely warm welcome.Lorenzo Maggioni, ECP/GR Coordinator, thanked IPGR for hosting this meeting, expressing special gratitude to Dr R. Koeva and Dr S. Neykov for the efforts they put into the excellent organization of the meeting. He also acknowledged the valuable contribution of other members of the institute's staff. L. Maggioni welcomed all the participants on behalf of IPGRI and particularly those attending an Allium meeting for the first time, as well as the observers from Russia, Czech Republic and the various Bulgarian research institutes. He thanked those corresponding members who sent reports from the respective countries (Cyprus, Portugal, Romania and F.R. Yugoslavia) and invited the Group to establish contacts also with all the other full members of the Group, although they were absent here. The ECP/GR Coordinator mentioned also the receipt of a letter from FAO, in which interest for this meeting was expressed, although it was not possible to send a representative at this time. He forwarded to the Group very special greetings from Thomas Gass, director of the IPGRI Regional Office for Europe, who remembers with pleasure his involvement in the activities of this dynamic group.Since the Group met for the last time in May 1995, L. Maggioni reported the objectives and the new structure of ECP/GR, defined during the Technical Consultative Committee have not provided the necessary data. With hindsight, the development of the new database has taken so long that such data would inevitably be out of date long before any practical use was made of them.There have been several successful initiatives by Group members that have stimulated activities in areas of direct interest to the Group, such as the EU GEN RES Allium project, FAIR onion quality project, EU Biotechnology GALAHEAD project proposal, in vitro/cryo training and collecting.The ECP/GR Group has a presence on the World Wide Web via the ECP/GR homepage, and also through the GEN RES project and national genebank homepages. As a Group we have not progressed in this area as rapidly as other ECP/GR Working Groups. Their experiences offer us the opportunity to progress more quickly over the next few years.Dave Astley reviewed the status of the European Allium Database (EADB) and explained the relationship between the activities of the EU GEN RES 20 Allium project and the ECP/GR Allium Working Group. The work defined in the Technical Annex of the GEN RES project encompasses the objectives outlined in the workplan of the ECP/GR Working Group. The complementarity of the actions, and the injection of funds by the EU promotes the overall objectives of the ECP/GR. This has been further enhanced through a training link between Germany and Poland for cryopreservation supported by Phase IV ECP/GR funds as a fully complementary action to the GEN RES 20 project. It is hoped that this collaboration will lead to the development of a cryopreservation laboratory at the Research Institute of Vegetable Crops (RIVC), Poland. Dave Astley agreed to forward copies of future GEN RES newsletters to members of the ECP/GR Allium Working Group to promote the flow of information.The development of the new EADB has progressed only slowly, determined by the rate of receipt of the data from national programmes. Following the agreement by the ECP/GR Documentation Network and the ECP/GR database managers on a draft multicrop passport descriptor list, the initial EADB format was updated to conform to this format (see Part II,page 23). An important task for the Working Group to consider was the ratification of the multicrop passport descriptors and the definition of any additional crop-specific passport descriptors for the EADB.The EADB currently includes data from 19 collections from 12 countries totalling 7527 accessions. This total is greater than recorded in the EADB92 (1992 version of the database), even though the data from several important national collections have not yet been received. Data from the Research Institute of Crop Production (RICP), Olomouc collection and updated data from Bulgaria were received during the meeting.The Group agreed that every effort should be made to obtain additional data sets by the end of January 1998 and that the EADB be made available by end February 1998. D. Astley agreed to investigate the possibilities of the EADB being made available on-line on the Internet.Nevertheless the database will be distributed to national Allium coordinators on diskette to ensure access for those institutes without access to the WWW.L. Maggioni summarized for the Group the background leading to the compilation and approval of the Multicrop Passport Descriptor List during the meeting of the Central Crop Database managers in Budapest (October 1996). This list was accepted as a standard format for data exchange and was prepared to facilitate the documentation management, especially in cases of genebanks dealing with several crops. A final version of the list, including some descriptors suggested by FAO for its World Information and Early Warning System (WIEWS), was published by IPGRI in the report of the Budapest Workshop. 4 Since then the list was adopted by several ECP/GR Working Groups, to be used as the passport list for the respective European Crop Databases. The list was enriched with additional crop-specific descriptors by the Prunus, Forages, Malus/Pyrus, Barley and Brassica Working Groups.Considering that the same list was also accepted by the partners of the GEN RES 20 EUfunded project on Allium genetic resources, the ECP/GR Allium was invited to consider the adoption of the multicrop list for the EADB.The Group agreed that the complete IPGRI/FAO Multicrop Passport Descriptor List should be adopted for use in the EADB.In a brief introduction D. Astley compared the Multicrop Passport Descriptor List with the list of passport descriptors used by the Group for the EADB up to the present. After a short discussion, the Group agreed on the following:The Allium passport descriptor list should include the following additional descriptors, identified as specific for the Allium passport by the prefix EA in the field name:Daylength requirement (EADAYLREQ) Common name (EACOMMNAM) Collecting institute (EACOLLINST) Mode of reproduction (EAMODREP) plus all WIEWS descriptors as defined as an addendum in the Multicrop Passport Descriptor List.The descriptors AVAILABILITY and NEED_REG defined in the 1995 report were removed from the EADB file. The Group agreed that such information is very difficult to maintain sufficiently up-to-date to provide any practical benefit.It was noted that the SAMPLE STATUS field states differ between the multicrop descriptors and old EADB. Dave Astley agreed to highlight this fact for all data donors with a request that all data forwarded to HRIGRU in the future should utilize the multicrop descriptors format.The Group approved the above-mentioned recommendations (see Appendix II, Allium Passport Descriptors).The efforts of the GEN RES team to characterize collections of garlic and shallot had highlighted some anomalies in the ECP/GR minimal characterization descriptors. The onion descriptors were not adequate for the characterization of shallot. Joachim Keller outlined the problems for garlic in presentation on the morphology studies in garlic. The GEN RES project team requested that the ECP/GR Group consider the anomalies raised and review the minimal characterization descriptors for garlic and shallot.The Group nominated two ad hoc subgroups of crop experts to consider these problems, as below:• Garlic: E.R.J. Keller (Coordinator), H.D. Rabinowitch, P. Havránek, T. KotliÕska and possibly F. Mansilla (Cordoba). This subgroup was defined after a presentation in which J. Keller reminded the Group how, in the course of the specific discussions of the GEN RES 20 Project, it became evident that there is a need to further develop the descriptors of the various Allium crops, in this case those of garlic (see Keller and Senula,Part II,page 26). To support this process, a detailed analysis was performed on the most important morphological descriptors of the minimal descriptor list using the 51 accessions in the IPK part of the GEN RES 20 core collection of garlic. The scientific background of the core collection has been provided by a preliminary morphological classification, data of geographical origin and a detailed analysis of isozyme and DNA patterns. 5 The accessions have been split into subclones (maximum 6) with a sample size of 20 plants per subclone. The following descriptors have been analyzed:• Ability to produce scape (G4.2.7)• Number of whorls in bulb (G4.1.15)• Bulb shape regularity (G4.1.16)• Number of cloves per compound bulb (G4.1.14)The analyses resulted in the following conclusions: 1. \"Ability to produce scape\" is a complex character, in which the formation of the inflorescence is mixed with the ability to form bulbils. It is suggested that the two characters be split into two different descriptors, making the bulbil (top sets) formation (bulbil weight) an independent character. 2. \"Whorls\" is not the appropriate description of the bulb structure, because the cloves are derived from collateral axillary buds, thus producing semi-circular overlapping formations. 3. The classification of scores for \"Number of cloves\" has to be discussed again. 4. \"Pseudostem height\" and \"Pseudostem diameter\" are proposed as new descriptors for garlic.The above results will be integrated with the already published classification proposals of Messiaen and Burba.• Shallot: H. StavAElíková (Coordinator), T. KotliÕska, K. Henriksen and H. Rabinowitch The subgroup reviewed the descriptors sets used by the Nordic Gene Bank and RICP, Olomouc to develop a draft list of minimal characterization descriptors. Helena StavAElíková agreed to prepare a full draft of this list including descriptor states for further consideration by the subgroup (end December 1997).A final proposal for the new garlic and shallot descriptors will be sent by the coordinators of the two subgroups to the ECP/GR Coordinator and to H. Rabinowitch by 31 January 1998. 6 The Group reaffirmed the decision recorded in the 1995 report that all characterization data for the minimal characterization descriptors for crops should be forwarded to HRIGRU. This information will be stored in crop-specific files defined in 1995 with links to the EADB via INSTCODE and ACCENUMB. Therefore all data sets for characterization have to include complete data for these two fields. 5 H.I. Maass and M. Klaas. 1995. Intraspecific differentiation of garlic (Allium sativum L.) by isozyme and RAPD markers. Theor. As of October 1998, work on the descriptors is in progress; advanced drafts for shallot and garlic have been discussed; final versions are not yet available.L. Maggioni informed that IPGRI is currently deciding which crop descriptors should be published in the next year or two. He said that the possibility exists that IPGRI will take into consideration the publication of revised Allium descriptors, if a well-coordinated network like the ECP/GR Allium Working Group can prepare a new version, as a result of a collaborative elaboration. Considering the importance of the Allium crops in several parts of the world and the age of the present IBPGR Allium descriptors, dating back to 1981 and amended several times, these descriptors could have a good chance to be included in the list of the next IPGRI publications. ECP/GR could partially contribute to the printing of the revised list of Allium descriptors, if the coordinating effort of the Allium Working Group was appropriately acknowledged. The necessary circulation to the other regions of an advanced version of the revised list of new descriptors could also be relatively quick, if the Group was able to adopt the revised list of descriptors formerly agreed upon (previous meetings of the Allium Working Group in Tápiószele, 1984;Gatersleben, 1991;and Skierniewice, 1995).The Group reiterated the urgency and the necessity to produce a new version of the IPGRI Allium descriptors, also considering that updated versions of some descriptors are published in different reports and should be compiled. The ongoing effort of the ECP/GR Allium Working Group to produce new specific descriptors for garlic and shallot, also in the context of the GEN RES 20 project, makes it natural to reach a conclusive compilation of an almost accomplished effort.The Group agreed that a subcommittee, composed of H. Rabinowitch, J. Keller, D. Astley and S. Samaras, prepare an advanced draft of the Allium descriptors by 31 January 1998. These will be redistributed to the Group for comments, to be received by the end of March 1998. The revised draft will then be sent to IPGRI by the end of May, with the intention to receive comments from the regions by the end of September 1998. In order to facilitate the task of the subcommittee, the ECP/GR Coordinator will provide, by mid-November 1997, if available at IPGRI, an electronic version of the previous IBPGR Allium descriptors and of all the amendments published in the Allium meetings reports. The ECP/GR Coordinator will also try to make sure that the descriptors are included in the list of IPGRI publications for early 1999.A subcommittee made of D. Astley, H. De Clercq, R. Theiler, I. Boukema, G. Poulsen and S. Neykov will develop specific descriptors for leek and send a draft proposal to the ECP/GR Coordinator and H. Rabinowitch by 31 January 1998.A subcommittee composed of J. Keller and the Nordic Group will review the chives descriptors list in full and send their draft revision to the ECP/GR Coordinator and H. Rabinowitch by 31 January 1998. 7 Opportunities for an Internet presentation of the EADB L. Maggioni presented the latest version of the Internet European Information Platform for Crop Genetic Resources . He informed the Group that the development of this Internet site was recommended during the Budapest Workshop (October 1996) by the European database managers, as a site offering access to the on-line 7 A final version of the chives descriptors has been submitted to the ECP/GR Allium Working Group for inclusion in the descriptor list. central databases and to other sources of information and services of interest in the crop genetic resources field. He then showed examples of the model Entry Pages currently prepared in a common format for all the ECP/GR European Central Crop Databases. The Entry Pages, according to the recommendations of the Internet Advisory Group 8 , include the ECP/GR logo and the logo of the institute managing the central database, the name and address of the database manager, a short description of the contents of the database and the type of software used. From the Entry Page, access is given to either an on-line searchable or an off-line downloadable database, as well as to more detailed information about the database. L. Maggioni mentioned the possibility of IPGRI preparing a similar Entry Page for the EADB, should the Group agree to present in this way on Internet the database under development.The Group considered it very useful that the EADB be included in the list of databases accessible via the Information Platform and asked that IPGRI prepare an Entry Page for the ECP/GR Allium Database, with the HRI and the ECP/GR logos. To this purpose, D. Astley will send to the ECP/GR Coordinator, by 15 November 1997, a short description of the contents of the database, for inclusion in the Entry Page and two files with the list of contributing institutes and their addresses and the list of species included in the database. These will be linked to the Entry Page as additional information. The Group agreed that an Entry Page for the EADB should be present on the Internet platform as soon as possible, for information purposes and in preparation for an imminent effective availability of the database itself on the Web. The Group agreed that an off-line downloadable version of the EADB should be made available as soon as possible and D. Astley will look into the possibility of uploading it onto a UK server.At the time of publication of this report, the EADB Entry Page is accessible on the Information Platform for Crop Genetic Resources linking to the site where the off-line downloadable EADB is available in two versions (MSAccess or MSExcel) , see p. 26.The European field collection of long-day Allium species Following a detailed introduction on the history of the Allium genebank in Olomouc, Pavel Havránek (curator of the European Collection of vegetatively propagated long-day Allium species) informed the Group that the Institute of Vegetable Genetics (Olomouc) was merged with the local university. However, the collection remains under his supervision.• Garlic: of the about 600 accessions, about 300 originate from the former USSR and Czechoslovakia, the rest coming from other European sources, e.g. Austria, Bulgaria, Poland and Portugal. Using meristem culture propagation technique, a number of clones were cleaned from viruses (checked for Onion Yellow Dwarf and Garlic Latent viruses) and are currently maintained in insect-proof net-houses. The virus-free plants are more vigorous and produce 40% higher yields than the infected ones.The collection suffered strong damages from the 1997 torrential rains and thus a duplicated collection is essential to guarantee the safe existence of this precious collection.The field collection has now reached its full capacity, thus furthering the maintenance and evaluation will require financial support.• Shallot: Helena StavAElíková is in charge of this collection of 133 accessions. The main core of the collection is based on material received from Finland, and is currently under evaluation in accordance with IPGRI and UPOV lists of descriptors.The collection is maintained by Haim D. Rabinowitch in Rehovot (coastal valley), at the experimental farm of the Faculty of Agricultural, Food and Environmental Quality Sciences, and is supported by the Israeli Gene Bank (IGB). The collection started in 1983 and currently contains 246 entries of garlic, 11 entries of Allium longicuspis Reg., 16 entries of great-headed garlic (elephant garlic), 50 entries of tropical and subtropical shallot and 20 additional entries of seven different species. In recent years, only a few entries were received from external sources. The majority of the new acquisitions were obtained by active collection work in Kazakstan and neighbouring countries (supported for a limited period by a private fund), and from sporadic purchases in local markets.The collection in Israel includes material from southeast Asia, Africa (especially North Africa) and Central and South America. A few accessions from southern European countries and USA successfully grow in Israel, and are therefore maintained in the collection.Support by IGB is very limited, and does not cover the minimum needs for preservation of the collection. It is essential to get additional support for the adequate maintenance of this unique (non-duplicated) collection.The Group recognized the uniqueness of this collection of short-day vegetatively propagated Allium. The Group wishes to have information on the properties of the collected accessions and endorses the request for adequate support to guarantee the safety of this collection and for its evaluation in accordance with the recommended descriptors list.The collection was established in 1983 in the Taxonomy Department of IPK in the course of a complex research project on the genus Allium, aiming to reinvestigate the phylogenetic relationship within this large taxon. The collection includes about 2000 accessions maintained as permanent field collections, with a back-up of seeds mainly derived from open-pollination, stored in seed storage chambers at -15°C. Running research projects on this collection are mentioned in Part II, page 40.The Group underlines the importance of the taxonomic research collection of Allium wild species at IPK as a reference collection for determination of any new and unknown material. The accessions in this collection represent an important genepool, the future maintenance of which should be supported.The Group appreciates that IPK is willing to support the taxonomic determination of Allium material on the basis of bilateral agreements.The Group highlighted, yet again, the need for detailed ecogeographic information to be collected and collated on wild taxa to provide the basis for conservation and regeneration practices. There was a consensus that IPK develop a collaborative project proposal on this topic for submission to the ECP/GR Steering Committee.Further information was received from J. Keller on virus testing at IPK. Together with the characterization of a core subset of the Gatersleben garlic collection, work is under way to analyze the virus infection of the field collection, eliminate the viruses via meristem culture and/or thermotherapy, and establish a virus-free in vitro collection. From 5000 meristem explants cultivated initially, 18% developed into plantlets. So far, in vitro clones have been established in 47 of 50 accessions; 33 of them were finally found to be free of the onion yellow dwarf virus (OYDV), leek yellow stripe virus (LYSV), garlic common latent virus (GCLV), shallot latent virus (SLV) and mite-borne filamentous virus (MbFV). The tests for virus infection and virus-free conditions after meristem culture have been performed using the method of enzyme-linked immunosorbent assay (ELISA).In vitro duplicate collection at IPK J. Keller informed that in vitro maintenance of Allium clones was started in 1992 at IPK, with a collection of gynogenetic onion haploids and donor genotypes with haploid-formation ability. During the development of the in vitro collection the emphasis shifted to the garlic collection of IPK, which is now the main object of maintenance. The clones are maintained in cycles consisting of a cold storage and a warm multiplication phase. Improvement of the maintenance is a matter of technological investigations and physiological research closely connected to the activities within the FAIR and GEN RES projects.In cooperation with the GEN RES Project, joint activities have been started in IPK, Gatersleben and RIVC, Skierniewice to develop cryopreservation methods. The very helpful support of IPGRI and the Istituto sperimentale per la Frutticoltura, Ciampino, Rome have to be emphasized. These institutions provided a 2-week training course in cryopreservation for one researcher each of IPK and RIVC in September 1997. Immediately after this course, the cryopreservation activities started with a half-year research stay of a scientist of RIVC at IPK, financed by IPGRI. It is planned to test the main methods of cryopreservation (encapsulation-dehydration, vitrification and slow freezing) on various explants of garlic using also information of methods already established in Germany for other crops, such as for potato (an already completed special project of IPGRI/BMZ).The Group expressed a broad interest in cryopreservation methods, stressing the need to put more efforts into this subject, since Allium crops are supposed to have special features to be investigated for cryopreservation. The submission to the EU of a collaborative project proposal to make Allium cryopreservation a feasible technology would be strongly endorsed by the Group. J. Keller accepted to coordinate such a project.This section briefly highlights the reports of participants. Full papers are given in Part II, section on National Collections. Before the meeting, A. Della had informed the ECP/GR Coordinator that there is currently no research work on Allium genetic resources at the Agricultural Research Institute in Nicosia. However, collecting of Allium spp. is planned for 1998 in collaboration with the Greek National Genebank.J. Keller indicated that the Gatersleben Allium collection includes a total of 1422 accessions comprising 348 Allium cepa L., 485 A. sativum L.,154 A. proliferum (Moench) Schrader,91 A. ampeloprasum L.,18 A. schoenoprasum L.,78 A. fistulosum L. and 248 others. Seed-forming accessions are preserved as seed at -15°C cold storage rooms. The vegetatively propagated forms and wild species are maintained in a permanent field collection. The increase of the numbers documented in the previous report results from collecting missions, breeders and NGO donations, and transfer of garlic and wild species accessions from the taxonomic research collection to the genebank.S. Samaras reported on the collecting missions undertaken by the Greek Gene Bank in various regions of Greece, both continental and in the islands, in the framework of the EU GEN RES 20 project \"Protecting future European Community crops: a programme to conserve, characterise, evaluate, and collect Allium crops and wild species\". In summer 1996, 108 accessions were collected and in summer 1997 another 114 accessions.B. Baji indicated that the Allium collection held at the Institute for Agrobotany, Tápiószele contains 417 accessions. Since the last ECP/GR meeting, emphasis was set on the regeneration of old national material. The regenerated accessions were evaluated according to ECP/GR Allium descriptor lists. The onion collection was checked for duplicates.I. Boukema reported on the CGN Allium collection, currently consisting of 242 accessions available for distribution. All material included in the CGN collection has been regenerated Another 184 additional accessions will be included after regeneration. Information on the collection can also be found on CGN's Web site . Passport data have been included in the European Allium Database (EADB). The collection is safetyduplicated at HRI, Wellesbourne, UK, and holds safety-duplicates for HRI, RIVC and IPGR. Most of the material is characterized/evaluated for the minimum descriptors and more specific screenings are carried out in the framework of the GEN RES and FAIR projects.G. Poulsen indicated that the NGB Allium collection consists of 204 accessions originating from Denmark, Finland, Iceland, Norway and Sweden (141 seed material, 63 clonal). The majority of the seed-propagated material is described using NGB descriptors. Further characterization and evaluation will take place within the GEN RES project. For all the new material accepted for NGB storage, UPOV descriptors are available. The clonal material of shallots and potato onion has been characterized using UPOV descriptors. The viability of the material will be secured through regenerations during the project period.During NGB's presentation on vegetatively propagated forms of Allium cepa, a question was raised about the difference between potato onions and shallots. No consensus could be found about the validity of a separate category \"potato onion\". The Group agreed to forward the question to the IPK Taxonomy Department, requesting molecular analysis on representative forms from NGB and other genebanks.T. KotliÕska provided a detailed report on the Allium collection held at the Research Institute of Vegetable Crops in Skierniewice (RIVC), which is part of the national programme coordinated by the Centre for Plant Genetic Resources of IHAR, Radzików. The collection contains 877 accessions, including 183 of onion, 72 of shallot, 259 of garlic, 349 of other cultivated and wild Allium species. The Botanical Gardens in Poland located in Kraków, Lublin, Wroclaw, Poznan, Warszawa, Warszawa-Powsin, Bolestraszyce also maintain collections of Allium species originating from Poland and abroad (total of 209 accessions representing 190 Allium species).A report was sent by R. Farias on the activities of the Banco Português de Germoplasma Vegetal (BPGV) for Allium: collecting missions of Allium cepa L. and Allium spp. (total of 378 accessions collected); a survey and collecting of wild Allium spp. were made in the Alentejo region in 1997; characterization and preliminary evaluation of some accessions of vegetatively propagated garlics -A. ampeloprasum L. (12), A. sativum L. (192) and A. schoenoprasum L. (1) (started in 1994); morphological characterization and preliminary evaluation of A. cepa (in 1997). Isozyme characterization of A. sativum was also started at the Minho University, Braga.I. Scurtu sent information about the Allium cepa L. collection held at the Research Institute for Vegetable and Flower Growing (RIVFG), Vidra-Ilfov, consisting of 126 accessions including male sterile lines, maintainer lines for sterility, inbred lines, hybrids, Romanian and foreign varieties, and listed the other Allium species in the collection.V. Perezhogina informed that the Allium collection held at VIR, St Petersburg, comprises 2035 accessions from 58 countries, including 982 accessions of common onion ( Allium cepa L.), 398 accessions of leek (A. porrum L.), 325 of garlic (A. sativum L.) and 330 of perennial species. The collection is preserved in the National Seed Store at the Kuban Experiment Station, Krasnodar Region, and in refrigerators at the Institute in St. Petersburg. Regeneration is performed at the experimental stations of VIR. New germplasm materials received by VIR undergo quarantine testing at specialized quarantine nurseries. The Allium collection, which includes the whole intraspecific diversity of Allium cepa, is screened under different climatic conditions to identify useful traits, such as disease and pest resistance.B. Lazic sent information on the national collection which contains 29 accessions of Allium cepa L., 46 of A. sativum L. and 6 of A. porrum L. Active collections are held at the Institute of Field and Vegetable Crops in Novi Sad, the Center for Vegetable Crops in Smederevska Palanka, and the Faculty of Agriculture in Pristina. Endangered old varieties have been collected in Kosovo and Metohija. In addition, the following activities have been conducted at the Institute of Field and Vegetable Crops in Novi Sad: collecting, characterization and partial evaluation of A. sativum; evaluation of garlic ecotypes for protein composition; collecting, characterization and evaluation of several wild Allium species from the Vojvodina Province.Dave Astley outlined the objectives for regeneration from the 1995 report to direct the priorities for the regeneration of seed-propagated accessions within national programmes by using the EADB. This has not been successful owing to the delay in the development of the EADB, and because no data were received indicating the need for regeneration (NEED_REG) from national programmes.The Group agreed that attempts to coordinate and prioritize regeneration centrally was not pragmatic. The priorities for regeneration within national programmes must be for material originating within their national boundaries. Where there is an interest in regenerating other material, the onus to check the availability of such accessions in the country of origin lies with individual genebanks. This can be done through the EADB or preferably by direct contact with national programmes. Such practices will minimize the duplication of effort in regeneration activities. The Group also recognized the benefit of bilateral links, which often provide the opportunity for the repatriation of germplasm back to the country of origin.The discussion on the priorities for regeneration highlighted the common problem of the seed production in wild taxa; all participants reported such difficulties. It was noted that many genebanks maintain the same accession of a wild taxon, such as Allium roylei Stearn.The Group agreed that upon receipt of the EADB, individuals should assess their accessions of wild taxa for uniqueness in relation to other accessions in other collections and attempt to identify duplicates. The concept of \"most original collection\" as used in the European Brassica Database (Bras-EDB) would be a useful tool to apply in an attempt to provide a recognized source for each accession of a wild taxon.In the 1995 report the Group considered the taxa of the Section Allium as having a high priority for regeneration. Although this is certainly still true, the Group recognized that the increasing interest in the use of Allium taxa for decorative and medicinal purposes makes the choice of priority within, or even between, Sections increasingly difficult.Individuals commented on the current institute/national policy for regeneration:• IPK: decisions are made on the basis of the whole collection, based on the viability and seed quantity of each accession • NGB: has the responsibility for Nordic material and works with a regeneration standard of 60% • Greece: priority for national material and has particular problems with wild taxa • Hungary: priority for national material • Bulgaria: priority for national material • Russia: material is stored under long-term conditions in Kuban and is monitored for seed quality and quantity with accessions transferred to VIR for regeneration.Additional detailed information was received after the meeting on pollination systems used at IPK (J. Heller) and RIVC Skiernewice (T. KotliÕska). These papers are included in Part II, pages 65 and 66, respectively.D. Astley introduced the subject of the importance of safety-duplicating the Allium collections and reminded the Group that this activity was originally recommended by the Technical Consultative Committee (now Steering Committee) of ECP/GR during its fifth meeting in Bulgaria (August 1993). He informed that duplication of seed Allium accessions is regularly made between HRI and CGN, with about 70% of HRI accessions safety-duplicated at CGN and about 85% of CGN accessions safety-duplicated at HRI. Seed accessions are occasionally safety-duplicated within the Allium Working Group, but this was always done as an informal exchange between genebanks (e.g. 40 accessions of Allium spp. were sent for safety-duplication from IPGR, Sadovo to CGN, Wageningen). Portuguese garlic was also safety-duplicated at the European field collection of Olomouc and Polish and Czech garlics were sent at IPK, Gatersleben for this same purpose. At present IPK is maintaining safetyduplicates of vegetatively propagated material (mainly garlic and shallot) for the genebanks at Olomouc (108 accessions), Cordoba (25 accessions) and Skierniewice (21 accessions). The safety-duplication of vegetatively propagated material is much more labour-consuming than the seed duplication and it has clearly different features (especially the need of annual reproduction of the material). However, a clear picture of which vegetative and seed material still needs to be safety-duplicated is not available.L. Maggioni made a few comments about the concept of safety-duplication. He reminded the Group that the duplication of accessions for safety reasons should be considered essential both for sound long-term conservation and to facilitate the rationalization of many collections. He explained that the \"safety\" of the duplicates does not simply require the duplication of the accessions in a second long-term conditions storage. The formalization of the safety-duplication in a bilaterally signed agreement is an important additional trait of safety. A Memorandum of Understanding between the Nordic Gene Bank and the Institute of Biology of Latvia was shown as a practical example. The agreement is intended for the safety-duplication in the Nordic Gene Bank (NGB) of seed material of agricultural and horticultural crops originating in Latvia. Here the concept of safety-duplication as a 'black box' arrangement is formalized. This implies that the material to be safety-duplicated remains the property of the originating institute, which also maintains the responsibility for all seed-management activities. The safety-duplicate is deposited in the hosting institute, together with the respective accession data, but it is not intended for use or distribution without consent. The official nature of this kind of agreement is considered beneficial to secure the long-term continuation of the safety collaboration. This can also be perceived as a guarantee that, in a regional context, the responsibility for the maintenance of specific accessions of national origin is accepted and secured, ideally also for the benefit of third parties. The document can also be useful when presenting the activities undertaken by the genebanks to administrators and the public in general. L. Maggioni stressed the importance of placing the safety-duplicate preferentially in a different country, as an additional measure to safeguard against natural or human-caused disasters, unfortunately recurrent in the European history.The Group endorsed the concept of safety-duplication by 'black box' arrangement 10 as the most satisfactory and cost-effective procedure. The importance of the formalization of safety-duplication bilateral agreements was also acknowledged by the Group and, in the case of seed samples, the genebanks were invited to undertake formal bilateral agreements, following a model similar to the Nordic Countries-Latvia example (a copy of this document, reproduced in Appendix III, was distributed to all the participants).The Group acknowledged that the safety-duplication of vegetatively propagated material would also benefit from the establishment of formal agreements. However, the specific nature of this living material will require the development of a suitable model of agreement. The issue of the safe movement of phytosanitary controlled material and the definition of long-term safety storage of the accessions should be addressed. The possibility that cryopreservation becomes in the future an effective method for the safetyduplication of vegetatively propagated material should also be considered, although at the moment the technique requires development.The Group was informed that a model of agreement is being prepared in the ECP/GR Malus/Pyrus Working Group. Considering that this document should address similar problems, the Group is looking forward to seeing the draft and using it as a basis for revision and final adoption in the Group's context.The Group also stressed the importance of each national programme giving support to the existing national collection of vegetative material, on the basis of its specific interests, priorities and internationally agreed responsibilities. Efforts should then be made for the safety-duplications, in collaboration with another ECP/GR member country.The genebanks of RIVC, Poland (-18°C); HRI, UK (-20°C); CGN, The Netherlands (-20°C); IPK, Germany (-15°C) and the Nordic Gene Bank (-5°C) offered to host safetyduplicates of seed accessions under bilateral agreements.The Group stressed the need to support the broad application of already developed molecular markers, to characterize the collections, find duplicates and rationalize the collections.J. Keller reported on the EU FAIR Project CT95-465 \"Tailoring the onion crop for the 21st century\" which was started in March 1996. It is a complex research project planned for 5 years, aiming at using a broad genetic background and modern methods to improve onion breeding material. The participants are CPRO-DLO (The Netherlands) as the coordinator; HRI Wellesbourne (UK); IPK Gatersleben (Germany); COOPd'OR-INRA Dijon (France); Institut Supérieur d'Agriculture de Beauvais (ISAB) (France); University F. Rabelais, Tours (France); University Paris XI, UFR Pharmacie, Châtenay-Malabry (France), and University of Patras (Greece). The main tasks consist of:• building a working collection of 100 accessions using material of all participating genebanks which differs in dry matter contents, flavour components and other characters • establishing a genetic linkage map of onion using specific crosses, including several methods as analyses of chromosome addition lines, DNA microsatellites, etc. • research on carbohydrate metabolism to improve the insight into the formation process of the main storage compounds (fructans) and to develop in vitro methods for storage of genotypes of special putative interest • analysis of flavour components, pyruvate contents etc.• developing analysis methods usable for onion processing.The part of IPK was explained in detail. The development of microsatellite markers on a specific test cross resulted in the design of 17 usable primers which have been tested on 19 accessions of onion and shallot, giving a good basis for the further development of this subject. A test subset for carbohydrate studies has been created together with the partner in Dijon comparing long day vs. short day and high vs. low dry matter content forms. The clones have been micropropagated. A first long-term storage experiment on the influence of light and sucrose on storability of in vitro bulblets was started and morphological and biochemical analyses are currently running on the bulblet formation, energy metabolism and fructan contents on in vitro bulblets.H. Rabinowitch reported about the increased awareness, in recent years, of the potential decorative value of some Allium species, especially among those belonging to the Melanocrommyum subgenus. Rina Kamenetsky, from the Department of Floriculture of The Volcani Center, Israel, started in 1991 a collection of wild Allium species with the aim of studying floral induction and florogenesis mainly (but not exclusively) within the above taxon. This work is supported for 3 years by a Dutch-Israeli Binational fund and is carried out together with scientists from CPRO-DLO in Wageningen, The Netherlands. In addition, R. Kamenetsky evaluates the potential of the plants preserved in her collection as ornamental crops. The collection of about 200 entries is maintained in Bet Dagan (coastal plain), in a shaded screen-house, and so far has not been supported by public funds.The Group acknowledges the importance of this collection and would like to have it as a complementary part of the ECP/GR field collection.Country representatives reported about the collecting activities planned by their respective institutes in the next 3 years.A survey of the remaining landraces of leek will be undertaken (December 1997-March 1998).Collecting of wild species in the Bulgarian mountains and joint collecting missions in Greece and Turkey are planned in the next 2 years.An expedition to Cyprus for collecting of Allium is planned in the near future in collaboration with the Agricultural Research Institute, Nicosia.In the next 2 years it is planned to continue collecting of onion landraces and of other Allium spp. in Kazakstan.Collecting of the few remaining shallot landraces and of A. schoenoprasum will be undertaken.The exploration of the country will be extended to mainly the northern and eastern parts, with the purpose of collecting onion, garlic and shallot landraces. Collecting expeditions to Ukraine and Slovakia may also be planned.Expeditions for the collecting of A. cepa and A. sativum will continue.After the expedition of the present year to the Altai mountains, future collecting will depend on the funds available, although collections from the northern part of Russia may be expected.Further collecting of A. ampeloprasum accessions by Worcester College will take place, although this activity is expected to come to an end.This section briefly highlights the reports of participants. Full papers are given in Part II, Research Activities.Leek breeding for thrips tolerance/resistance R. Theiler reported on the breeding work carried out since 1992 at the Swiss Federal Research Station, focused on the investigation of leek resistance to thrips (Thrips tabaci), including their own, open-pollinated cultivar ZEFA Plus, as well as other commercially available varieties and different Allium species ( A. ampeloprasum L., A. commutatum, A. tuberosum Rottl., A. scorodoprasum L. and others). From highly infested field trials, individual plants which were slightly (tolerant) or severely (highly susceptible) attacked by thrips were selected and self-pollinated to obtain inbreeding lines. In addition, bulbils were induced on the same plants for clonal propagation. Generative and vegetative progenies were grown and tested in the field again to confirm their tolerance or susceptibility. Those plants which were significantly less susceptible than the control plants were selected for further breeding.J. Keller gave an overview of the research activities in the genebank and taxonomy departments of IPK: hybrid analyses (the 'grey shallot', top onion, ornamental hybrids in subgenus Melanocrommyum ), production and analysis of artificial hybrids of A. cepa with 17 wild species of subgenera Rhizirideum and Allium, molecular analysis in garlic by isozymes and RAPDs, seed storability records in onion and germination studies in 100 species of the genus Allium, studies on virus infection of the garlic collection and meristem culture for virus elimination. Furthermore, a broad spectrum of molecular analyses on the phylogenetic relationships within the genus Allium has been performed in the taxonomy department.I. Boukema indicated that at CPRO-DLO, The Netherlands, a group of nine researchers is working on three main themes: genome organization, quality and resistance.• The theme genome organization consists of several projects: a) development of an Allium AFLP molecular marker map based on the interspecific cross A. cepa x A. roylei, b) study of the genome organization of the bridge cross between onion and the hybrid A. fistulosum x A. roylei with GISH, c) genetic transformation of Allium, and d) the introduction of CMS in leek.• The theme quality is carried out in an EU project analyzing the carbohydrate and sulphur pathways in onion in order to develop onions with added values. • The resistance project includes projects together with Indonesia to develop shallots resistant to anthracnose and purple blotch and the introduction of beet army worm resistance into tropical onions and shallots using Bt constructs. In a project together with Israel, sources of resistance to Sclerotium species are being identified in ornamental Allium.A project on resistance to white tip disease in leek has been completed successfully. In the EU Allium GEN RES project, leek and wild relatives will be screened in field tests for resistance to white tip, rust and thrips.Kaj Henriksen presented preliminary results of the evaluation of 24 accessions of bulb onions for agronomic and other characters, according to the IPGRI Descriptor list and to UPOV guidelines, focusing especially on resistance to downy mildew (Peronospora destructor).Ilija Ceschmedziev highlighted the great diversity of the genus Allium in Bulgaria , represented by 44 species , 39 wild and five cultivated. Data on the florogenetic structure and ploidy levels of the wild species are presented. Some could be used as ornamentals. Cultivated onion species were also included in the investigations. Allium proliferum (Moench) Schrader and A. cepa var. aggregatum G.Don f. were reported for the country. The horizontal and vertical distribution of [wild] species is rather irregular. Some species not yet listed should be considered as rare/endangered, e.g. A. nanum (Asch. & Gr.) Ceschm., A. thracicum Halacsy & Gheorghieff, etc. The status of threatened populations should be evaluated and measures for their preservation urgently undertaken.P. Suvandjieva presented the results of the evaluation of 116 samples originating from the whole world and tested under the conditions of the Experimental Station for Vegetable Crops, Gorna Oryahovitsa, Bulgaria. The following characters were evaluated: vegetation length, form, shape and colour of the bulb, productivity, dry matter and sugar content, resistance to Peronospora, and storage qualities.Y. Todorov gave an overview of the history of onion breeding in Bulgaria, starting with the study of local forms and introduction of foreign varieties, and following with the description of the breeding methods used to obtain new varieties (individual selection; inbreeding; intervarietal hybridization -using foreign varieties which gave unsatisfactory results in direct introduction; heterosis). Research work is carried out for the use of cytoplasmic male sterility in hybrid seed production.Y. Todorov also provided a detailed description of the Bulgarian varieties: 'Liyaskovski 58', 'Konkurent', 'Trimontsium', 'Plovdivski 10', 'Pioner', 'Jubilee 50', 'Asenovgradska 5', 'Ispanski 482', 'Plovdivski red', 'Liyaskovski 90', 'Uspeh 6 F1', including data on the planting method, vegetation period and bulb characteristics (weight, index, vegetation buds, dry matter content).The draft report was presented to the Group and adopted with some modifications.Dave Astley was elected to chair the Group until the end of next meeting, which would be scheduled pending the decisions of the Steering Committee meeting on a future Phase of ECP/GR.The Working Group identified their priority action for the future as:• the assessment of safety-duplicates already in long-term stores and the nature of the agreements between participants • the transfer of additional material to safety-duplicate stores • an assessment of the volume and nature of characterization data held by institutes (paper/computer database) • a review of the wild taxa in collections • an assessment of the in situ distribution of taxa in Section Allium.The Bulgarian hosts were thanked by the Group for their very warm hospitality and for the very successful organization of the meeting. Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Gatersleben, GermanyIn the framework of the running GEN RES project, the Gatersleben group concentrated particularly on the use of the existing minimum descriptors for garlic. 11 An attempt has been made to correlate this with the groups derived by the Gatersleben taxonomists by using isozyme and RAPD markers (Maass and Klaas 1995).A core collection of 51 accessions was selected from the 485 accessions of garlic recently present in the Gatersleben collection (Table 1). The plants were planted in rows and characterized after splitting the accessions into 2-6 subclones. Cloves were planted on 21 August 1996 and harvested 18-25 August 1997. During the cultivation phase, the sprouting behaviour and finally, the following characters were recorded: (1) number of cloves per compound bulb, (2) bulb structure (the intention was to count the number of whorls) and bulb shape regularity, (3) bulbil weight, (4) pseudostem height, (5) pseudostem diameter, (6) leaf erectness, (7) ability to produce scape.The number of cloves varied between 2 and 27 in single plants; for averages of each clone see Table 1. It is a rather stable parameter. In some accessions this number was constant, especially in accessions with lower clove numbers. Groups could be found which, in several cases, clearly correlated with our isozyme/RAPD groups. Groups 1 and 4 posses lower clove numbers, group 3 was in the middle whereas group 2 had rather various, sometimes very high numbers (accession All 116 was the highest with 23 cloves per bulb on average). We characterized the accessions with five scores according to the minimum descriptor list of the ECP/GR database. However, in group 2, two clearly distinct subgroups were found correlating with the accessions: this was obvious within the clones but also between the isozyme/RAPD groups; in the group with lower numbers were 1b, 1c, 4b, 4e, 4d; in the other group 1a, 1d, 4a, 4c. We conclude that score 2 should be split into two scores, thus increasing the number of scores from 5 to 6. In Table 1, the scores assigned using the old (CO) and the proposed new (CP) scoring systems are compared. In attempting to count the whorls of the garlic bulbs, we found that the structure cannot be described well by \"whorls\", because the structure is developed from collateral axillar buds of different leaves. The more leaves take part in axillar bud formation, the more complex the structure. The final appearance of the clove arrangement is rather a system of \"shells\" than one of whorls. Whereas in bulbs with larger numbers of cloves, a certain variability was found within one accession concerning the number of shells, this character is rather stable in bulbs with lower numbers of cloves. This is true for bulbs with four or two cloves. We suggest the use of a picture table for characterization of the types as structure types (Fig. 1). For type I, we found that there may be some overlapping of the subsequent shells. Because we can assume that there are many transient cases with more or less overlapping, we did not conclude that they should be separated into different types. The descriptor \"Bulb shape regularity\" should be combined with \"Number of whorls\". Especially the southern short-day types, which very often do not form a flower stalk, show an irregular structure (type VI). This can be connected also with incomplete bolting and an inflorescence hidden in the bulb. We should consider that despite the relative stability of the structure, there are always some deviating bulbs in one accession owing to physiological disorder or damage of the meristem in early developmental stages. Therefore to characterize an accession, at least 10 bulbs should be compared. In cases of variability, we gave more than one score to the characterization as shown in Table 1. It might also be possible that the score which is present only in rare cases can be put into parentheses. This parameter has been measured using 50 randomly selected bulbils after 14 days of dry storage of the ripe bulbils at ambient temperature. The differences between the bulbil weights are statistically highly significant and several groups can be distinguished. Thus, the isozyme/RAPD groups 1a, 2a,b, 4a, 4c-e possess small bulbils, groups 2c,d and 3 have large bulbils. Interestingly, in group 4b there are accessions with small and large bulbils. This corresponds to the distinctly different description of the accessions with large bulbils as Allium sativum var. pekinense by several authors. In Table 1, these accessions have been marked with [P]. Measuring the bulbil weight seems to be the quickest method to characterize the size of the bulbils. Examples of inflorescences with different bulbil sizes are given in Figure 2.Heights and diameter of the pseudostem are parameters which are easy to measure. We used the distance between the soil surface and the uppermost lamina notch. The measurement of this distance has some advantages over the distance between bulb neck or bulb base, respectively, and the upper lamina notch because (1) it is not necessary to dig the plants out for characterization and (2) the part of the plant below soil surface is rather variable depending on the planting depth of the bulbs. We did not find any correlation of the pseudostem parameters with the isozyme/RAPD groups. Two groups exist, a weak one and a stronger one. Within these groups both \"short and thick\" and \"tall and slender\" types exist. The thicker types correspond to some extent to the types possessing additional bulbils between inflorescence and bulb (see parameter \"Ability to produce scape\").The leaf erectness was scored as described in the minimum descriptor list. Very often, we found intermediate types. Consequently, we added the score \"6\" (semi-erect) as shown in Table 1. Studying the diversity of garlic in our core collection, we found that the structure of this descriptor is not consistent in its present form. Two different characters have been mixed: (1) the extent to which the inflorescence stalk is able to expand. It ranges from zero to maximal length. Additional bulbils may be formed between the top inflorescence and the bulb. (2) The flower head structure itself (flower bud formation, bulbil formation, numbers of these two organ types). Surely, there are some interrelationships between both sides of this parameter. However, they can unambiguously be separated from each other.Further to this analysis and an intensive discussion with F. Mansilla Sousa (CIFA, Córdoba, Spain), we decided to accept his proposal for the parameter \"Ability to produce scape\" also for our accessions. Following his proposal, we suggest a new 5-score descriptor excluding the bulbil and flower bud formation which are dealt with in other descriptors: 0 Scape absent 1 Scape enclosed in the bulb but flower head visible outside 2 Scape shorter, equal to, or slightly longer than the pseudostem, bulbils in the inflorescence, additional bulbils between bulb and inflorescence 3 Scape shorter, equal to, or slightly longer than the pseudostem, bulbils in the inflorescence only 4Scape clearly longer than the pseudostem, bulbils in the inflorescence, additional bulbils between bulb and inflorescence 5Scape clearly longer than the pseudostem, bulbils in the inflorescence only.Table 1 shows the characterization of the GEN RES 20 core subset using this descriptor. A footnote should be made to the types which usually do not develop a scape (scores 0 and 1). In several accessions, there are some individuals which form a scape; their score is given between parentheses in Table 1. This rare flowering might be caused by some physiological variation of daylength or cold requirement within the accession. In Table 1, this case has been marked by an asterisk. It has been found also by other garlic researchers.An intensive study of the morphological characters in a core subset of garlic resulted in the conclusion that several descriptors of the ECP/GR minimum descriptor list have to be reviewed and reformulated after a detailed discussion among the garlic specialists. The descriptors should be changed as follows: 1. \"Number of cloves\": score 2 (2-10 cloves) should be divided into two scores. 2. \"Number of whorls\" and \"Bulb shape regularity\" should be combined and reformulated as \"Bulb structure types\". 3. \"Weight of bulbils\" is proposed as a new descriptor. 4. The pseudostem parameters \"Height\" and \"Thickness\" should be used. 5. \"Leaf erectness\" should be completed by an additional score 6 (semi-erect). 6. \"Ability to produce scape\" should be entirely reformulated using the proposal of F.Mansilla Sousa, Spain (1997, pers. comm.).Maass, H. I. and M. Klaas. 1995. Intraspecific differentiation of garlic (Allium sativum L.) by isozyme and RAPD markers. Theor. Appl. Genet. 91:89-97.Research Institute of Crop Production (RICP) Prague, Vegetable Gene Bank Olomouc, Czech RepublicThe germplasm collection of vegetatively propagated Allium species with long-day requirements has existed in Olomouc (Czech Republic) for nearly half a century. It was established in 1950 by F. Mare¹ek with the introduction of some 60 Russian garlic landraces, and the collection continued its existence in the Vegetable Research Institute (VRI) under the guidance of J. Moravec for more than 30 years. There the distinguished Czech scientists Prof. Frimmel, Prof. Kabelík, Dr O. Konvi¹ka (Konvi¹ka 1955(Konvi¹ka , 1973) ) and Dr F.J. Novak (Novak 1990) all used this germplasm collection as a source for their experimental models.In 1986, the Olomouc collection joined the European network by sending data to the European Allium database. Since that time the collection has been functioning as the European field collection for long-day Allium spp., in a partnership with the European field collection for short-day Allium spp., which is maintained in Israel.From 1986 to 1990 we increased the number of garlic accessions to nearly 300, participated in two international expedition missions (Central Asia 1988 and West Siberia 1990) (KotliÕska et al. 1990), and expanded the collection of another vegetatively propagated Allium, shallot.The Vegetable Research Institute was abolished in 1990 as a consequence of radical economic transformations in our country, and the existence of our collection started to be uncertain. This difficult period (1990-93) ended after the vegetable germplasm collections of the former VRI were included in the Research Institute of Crop Production, Prague and continued in Olomouc as a separate station with close links to the Botany Department of Palacký University. The financial support received from IBPGR was very helpful, as well as the newly formulated governmental National Programme for Conservation of Crop Germplasm.Unfortunately the unexpected extensive flooding affected our Allium collection this summer (1997). Further to this recent disaster we strongly feel the importance of safetyduplication measures for sustainable conservation of genetic resources.Our garlic germplasm collection now contains 600 accessions (Fig. 1). An important part of our collection represents the old Czech garlic landraces, collected in the White Carpathia Mountains and South Moravia, as well as primitive and wild garlics from Central Asia and Siberia with various important properties such as pollen fertility and resistance to frost. In recent years we accepted responsibility for maintaining safety-duplicates of garlic collections from Portugal, Poland, Austria and recently from Bulgaria. We continue to maintain a specialized collection of virus-free garlic based on material from former VRI which needs to be multiplied in isolation cages. These accessions have been used for breeding three new garlic cultivars.The germplasm collection of shallot was originally assembled and maintained by J. Moravec at the former Vegetable Research Institute in Olomouc and is currently under the responsibility of H. StavAElíková. The Gene Bank at Olomouc now contains 133 accessions (Fig. 2). A very interesting part is represented by shallot of Scandinavian origin (Norway, Finland) maintained as safety-duplicates for the Nordic Gene Bank. Czech landraces are also held there. Some shallots from Siberia belong to intermediate types between shallot and onion, connected with the great morphological diversity of bulb shapes, skin colour, plant habitus as well as reproduction behaviour.Owing to the prevailing vegetative multiplication of shallot, v irus contamination frequently leads to degeneration of shallot clones. Similarly to garlic, we maintain the virusfree state of a small part of shallot clones (10 accessions) under protective sheets .An essential part of the work carried out on the shallot collection is the morphological and reproductive characterization of accessions. A specific descriptor list was first created on the basis of available lists (UPOV 1976; Astley et al. 1982). The evaluation includes 12 parameters: foliage colour, leaf erectness, presence of leaf wax, height growth, plant growth habit, shape of full grown bulbs, uniformity of bulb shape, bulb skin colour, average number of bulbs to cluster, retention of the common tunicate scales, ability to flower and widened flower stem. The results of 3-year observations are summarized in Table 1.The collection of wild Allium species is a subject of collaboration with students and postgraduates of Palacký University. It contains 63 accessions of different long-day species with potential of apomictic strategy (some types of A. angulosum L.), both facultative or obligate vegetatively propagated species (A. scorodoprasum L., A. carinatum L., A. oleraceum L.) from our flora as well as from Central Asia and Siberia (A. nutans L., A. altaicum Pall.). We maintain an original collection of cytotypes of A. schoenoprasum L. subsp. riparium ( ‡elak.) Hayek with B-chromosomes, based on the work of Dr R. Fialová (Fialová 1995). In the last 2 years this collection has been subject to taxonomic redetermination in cooperation with specialists from IPK Gatersleben.For the future of our working Allium field collection, which has now reached its maximum size limit, continued financial support and scientific interests are very important factors. More than new accessions, we now need new skilled people and new solutions for some old problems with long-term conservation, phytosanitary measures, plant tissueThe status of Allium collections in Belgium H. De Clercq Departement voor Plantengenetica en -veredeling (DvP), Melle, Belgium (Ceschmedziev 1989).The genus Allium in Bulgaria includes 39 wild species and five cultivated species.Allium collections in Bulgaria (see also Table 1).• At the Institute for Plant Genetic Resources, Sadovo, the Allium collection consists of 258 accessions, including 122 Allium cepa L., 12 A. porrum L., 94 wild species and 30 local wild and cultivated forms. The largest part of the collection (186 samples) was received from Germany and the United Kingdom.• The Institute of Vegetable Crops \"Maritsa\", Plovdiv, holds a collection of 315 breeding material of A. cepa with the following distinctive traits: high dry matter content (113 lines), cytoplasmic male sterile forms (64), lines with white skin colour (35), level lines from direct cultivars (37) and F 1 materials (66). Fifty-three accessions were introduced from HRI, Wellesbourne, UK. The Institute also maintains 15 local varieties and 140 accessions of A. sativum L. (80 local and 41 breeding material), mostly of subsp. vulgare and for a small part subsp. sagittatum, winter and summer forms (vegetative propagation in the field). For safety-duplication reasons 88 accessions of garlic were sent to the Olomouc Gene Bank.• At the Experimental Station for Vegetable Crops , Gorna Oryahovitsa, the collection of Allium cepa contains 285 accessions including 230 breeding lines, mostly for annual growing, and 55 introduced and local accessions with long-day, short-and semi-short day requirements. There are also 203 forms of A. sativum, mostly subsp. vulgare (180 local).• The High Agriculture Institute, Plovdiv maintains ex situ 15 wild species.In IPGR most accessions (240) were evaluated (Neykov 1988;Neykov et al. 1992) for morphological, biological and economical characters.At ESVC (Suvandjieva and Suvadjiev 1995) and IVC (Todorov 1985;Manuelyan et al. 1995) collections were evaluated with limited characterization data.For seed multiplication, 195 samples have been regenerated and 115 are kept in storage at the IPGR, Sadovo Genebank. During summer 1997, three other collecting missions were carried out (Table 2).• In the first mission, the collecting team visited Lesvos island in the Dodecanese, where 22 accessions of wild Allium were collected. • The second expedition collected 45 accessions of Allium in the Cyclades islands:Andros, Tinos, Mykonos, Syros, Naxos and Paros. • During the third collecting mission, Stelios Samaras was joined by project member Willem Wietsma, whose travel was supported by the British Council. The team collected 36 accessions of wild Allium on the Sporades islands, Skopelos and Skiathos and in the mainland on Olympos and Voras mountains.Prof. Tzanoudakis will assist the Greek Gene Bank to identify taxonomically some of the accessions and carry out the characterization. All the collected accessions were planted in pots for ease of maintenance, characterization and multiplication.Bela Baji Institute for Agrobotany, Tápiószele, Hungary Since the last ECP/GR meeting, emphasis was set on the regeneration of old national material. The regenerated accessions were evaluated according to ECP/GR Allium descriptor lists. We checked the onion collection for duplicates. The number of accessions in different groups is as follows: All material included in the CGN collection has been regenerated and fulfils our standards for quality and quantity (germination over 80%, more than 4500 seeds). Of the material not yet included, about 30 accessions have been regenerated and will be available soon, depending on the results of the germination tests. About 75 accessions are being regenerated and will become available in the next 2 years. The rest of the material will be regenerated in the following years. Constraints in regeneration are still faced for cultivated onion from Pakistan as reported during the meeting in 1995. Regeneration of the wild material also caused difficulties. It will be several years before enough seed is produced to fulfil our standards.For regeneration, 60-120 plants are used. After onion bulbs have been harvested, dried and potted, they are placed in an unheated glasshouse for overwintering. Because of problems with Fusarium attack, seedlings of leek are planted directly in pots and overwintered from November on in a glasshouse at 5-10°C. As soon as flowers appear the plants are transferred to isolation rooms and pollinated by blowflies.The seeds are dried until a seed moisture content of about 5% is reached. The seed samples are packed in laminated aluminium foil bags and stored at -20°C for long-term storage. User samples are stored at 4°C.About 85% of the material included in the CGN collection is duplicated at the Genetic Resources Unit of HRI, Wellesbourne, UK. The rest will be duplicated before January 1998.CGN stores safety duplicates of HRI and of the Research Institute of Vegetable Crops, Skierniewice, Poland. Duplicates of IPGR, Sadovo, Bulgaria will be stored within a few months.The Nordic Gene Bank holds a relatively limited number of Allium accessions because its mandate comprises conservation and documentation of crop germplasm of Nordic origin only, and with potential value for agriculture. The material originates from Denmark, Finland, Iceland, Norway and Sweden.Since the last meeting we have received two big donations of primarily modern varieties from variety-testing agencies in Denmark and Sweden. The new samples have increased the Allium collection by about 50%. For most of the new accessions the NGB responsibility has not yet been established, hence they still have pending status.The majority of the seed-propagated material is described using NGB descriptors, further characterization and evaluation will take place within the GEN RES project. For all the new material accepted for NGB storage, UPOV descriptors are available. The clonal material of shallots and potato onion has likewise been characterized using UPOV descriptors. The viability of the material will be secured through regenerations during the project period. Regeneration of Allium material takes place in NGB when germinability drops below 60%. Safety-duplicates of accepted seed material are stored in an abandoned coal mine in Svalbard. Only 10 accessions of A. cepa var. cepa and one A. porrum are presently safetyduplicated. All of the accepted clonal material is safety-duplicated in the Czech genebank at Olomouc. Additionally the A. cepa var. solaninum clones are grown and stored in two separate locations in Finland.Teresa KotliÕska Plant Genetic Resources Laboratory, Research Institute of Vegetable Crops (RIVC), Skierniewice, PolandThe conservation of Allium germplasm is conducted within the vegetable genetic resources conservation programme at the Research Institute of Vegetable Crops (RIVC) in Skierniewice. It is part of the national programme coordinated by the Centre for Plant Genetic Resources of IHAR, Radzików.In the Allium collection 877 accessions are registered, including 183 of onion, 72 of shallot, 259 of garlic, 349 of other cultivated and wild Allium species. The current status of Allium germplasm is given in Table 1. The passport data are nearly complete for the collected accessions and most passport data are included in the European Allium Database (EADB), but an update is needed because new material has been added. Passport data are stored in dBase files and a copy is maintained in the Polish genebank in Radzików. Evaluation data are stored in separate dBase files according to type of evaluation, year and experiment. In most cases data contain the results of a 3-year evaluation of yieldforming traits, quantitative and qualitative characters. The field trials were usually conducted over three growing seasons in 3-4 replications by the method of randomized blocks.Characterization and evaluation of the morphological and agronomic traits and other parameters are conducted according to the descriptor lists elaborated by IPGRI, UPOV, USDA and RIVC.The collected materials are stored at the Centre for Plant Genetic Resources in Radzików or maintained in field collections and include: onion (A. cepa), shallot landraces (A. cepa var. aggregatum), garlic (A. sativum ), edible and wild Allium species.The collection of A. cepa maintained at RIVC Skierniewice consists of 183 accessions, including 48 advanced cultivars, 69 breeding lines and 66 landraces. Landraces originate from Poland, Russia, Tajikstan, Kazakstan, Kyrgyzstan, Uzbekistan, Ukraine, Slovakia and Albania. Minimum characterization (14 traits) for 62 accessions of onion from the genebank has been prepared and included in the EADB. Characterization covers 46 morphological and economical traits following the descriptor lists developed by IPGRI, and partly established by UPOV and RIVC.The collection of shallot landraces was established at RIVC in 1991, based on landraces originating from Poland and neighbouring areas. In Poland, there are no advanced cultivars of shallot; landraces are grown in home gardens.Currently, 65 accessions (57 from Poland) are maintained in the collection. All collected accessions of shallot are documented for passport data and 58 accessions have been evaluated for 40 traits according to IPGRI, USDA and UPOV descriptor lists.No garlic cultivars were bred before 1993, but various local garlic populations selected by individual growers called \"types\", were grown in Poland. The introduction of new Polish cultivars can lead to elimination of old garlic populations.The garlic collection established in 1986 is located in the southern part of Poland (300 km south of Skierniewice) in the old centre of garlic cultivation. In 1996 the garlic collection included 259 accessions (159 for winter cultivation and 100 for spring cultivation) after 3-year trials, and 58 accessions in multiplication and preliminary evaluation. In 1997 the collection contains 192 accessions. Part of the material froze totally or was partly damaged at the beginning of winter. In December 1996 frost went down to -37°C without any snow cover. After winter it appeared that 192 accessions had survived.Forty-eight garlic accessions collected in Ukraine and Slovakia and multiplied for the first time are totally lost. Some accessions from the collection also require regeneration. During the 1997 season, 28 accessions were regenerated from topsets. Part of the accessions need to be regenerated by using duplicates from other collections (Olomouc, Moskow, Madison, Rehovot).After multiplication the accessions are included in 3-year trials (3-4 replications) to evaluate their economic value. After a 3-year research cycle, the accessions are maintained in a field collection in one replication (100 plants of each accession). Evaluation is conducted according to the descriptor lists elaborated by IPGRI and RIVC.The accessions maintained in collection are documented for passport data. Minimum characterization of 14 traits has been prepared for 259 garlic accessions and sent to EADB.In addition, with IPGRI's financial support, computerized documentation was prepared for:• 259 accessions of garlic, documented for 31 characters from the IPGRI list of descriptors • 170 accessions of garlic from the collection, covering the results of 3-year field trials.The results of evaluation data of 39 characters regarding the economic value of garlic show a great variability in the collected materials. On the basis of these results, several accessions of garlic have been selected for a breeding programme• 259 accessions of garlic and 10 Allium longicuspis Regel -the variability of six enzyme systems was analyzed and also the content of alliine, dry matter, sugars and Vitamin C • 15 accessions of garlic and 9 accessions of Allium longicuspis, which have been studiedto determine the variability of 13 morphological traits between populations and within population. The observations were made on 25 plants of each accession.The collection held at Skierniewice contains 234 accessions collected in Central Asia, Siberia and wild species occurring in Poland. Nearly all accessions are documented for passport data and included in the EADB. Characterization and evaluation, according to IPGRI and USDA descriptor lists, are complete for 129 accessions and cover 49 traits. The evaluation data are included in the computerized database.According to investigations conducted at Jagielonian University in Kraków, 11 wild Allium species grow under natural conditions in Poland (Table 2). The distribution of eight of these species on the Polish territory is shown on Figure 1. The most common are Allium vineale and A. oleraceum . The distribution of native wild Allium species and details of their occurrence are contained in a computerized database created by Prof. B. Zajac at Jagielonian University. The Botanical Gardens located in Kraków, Lublin, Wroclaw, Poznan, Warszawa, Warszawa-Powsin and Bolestraszyce maintain collections of Allium species originating from Poland and abroad. In total, 209 accessions representing 190 Allium species are held in the above-mentioned Botanical Gardens (Table 3). The detailed list of species is given in Table 4. The Allium collections currently maintained at the Botanical Gardens need to be documented electronically. It is necessary to develop a documentation system which allows us to record and include the existing data in the database of the Polish genebank and the EADB.The collected materials are stored in the Central Gene Bank storage, in twist-type glass jars. Seed samples are dried until a seed moisture content of about 5-7% is reached. The seeds are stored at -18°C for long-term storage and 0°C for short-term storage.Currently, 57 seed samples of onion and 10 samples of shallot are deposited in CGN, Wageningen, and also 78 accessions of garlic in Olomouc as safety-duplicates.The first seeds of Polish advanced cultivars were deposited in the genebank in 1982 for storage. Most of these cultivars are still used in production. The accessions taken from storage for evaluation are also regenerated. Each year limited numbers of accessions from the genebank storage or from different donors are regenerated and multiplied under isolation.The weather during the reported period was rather favourable, but in July 1997 there were extremely heavy rains, and for a few days the collection fields were under water. It was possible to evaluate the reaction of wild Allium species and shallot on extremely wet soil. Most of the accessions from transplants, seeds and old plants in the collection survived that time in good condition. Slight damage was observed on the leaves of some accessions.This year an atypical behaviour of early flowering Allium species was noticed. Some of the accessions were flowering much earlier and for a significantly shorter period (in some cases 2 or 3 weeks shorter than in other years).In spite of unusual vegetation conditions, it was possible to increase successfully the seeds of 45 accessions of Allium . The pollinators used were honey bees or puparia of wild bees (Osmia rufa L.) and flies (Musca domestica).During the period 1995-97, 162 Allium accessions were regenerated (69 accessions of onion, 8 of shallot, 57 of wild species of Allium and 28 garlic accessions from topsets). Explorations within Poland are organized each year to collect indigenous germplasm. This includes visits to local markets and small isolated villages, particularly in the southern, eastern and northern regions of Poland and neighbouring countries, where farmers still maintain local cultivars of various vegetables. Eight explorations between 1995 and 1997 have resulted in the collecting of 175 accessions among which are 43 accessions of onion, 34 of shallot, 92 of garlic, 2 of chive, 3 of leek, 1 of other Allium (Table 5). Each seed sample collected is split in two parts: one part is added to the base collection, the other is used for multiplication and preliminary evaluation. During 1995-97, the following Allium accessions were introduced in the genebank: 30 accessions from Poland, 175 from explorations and 137 from abroad (Table 6). Between 1995 and 1997, we distributed to users in Poland 582 seed samples of Allium: 54 of onion, 78 of shallot, 416 of garlic, 6 of leek, 28 of other Allium. Since 1995 we have sent to users abroad 164 seed samples: 89 of onion, 21 of shallot, 54 of garlic (Table 7). The most requested materials are those that provide new sources of resistance to diseases and pests and tolerance to environmental stresses. More often, the breeders prefer cultivars to wild or primitive populations as sources of these characteristics and of various economic traits. Landraces of onion originating from Central Asia and Siberia are used as source of dry matter content and also, quality of dry skin, source of sterility, earliness, good storability, adaptation to different environmental conditions.Allium germplasm has been used in research conducted in the Institute of Vegetable Crops (biochemical study on different Allium , i.e. querticine content in shallot landrace range from 256 to 393 mg/kg of fresh matter, in onion cultivars 75-109 mg/kg and in wild species from 1 mg/kg (A. ledebourianum Schult, A. ampeloprasum L., A. caesium Schrenk, A. nutans L.) to 185-232 mg/kg ( A. vavilovii M. Pop. et Vved., A. x proliferum (Moench) Schrader, A. galanthum Kar. et Kir.).Our research in plant genetic resources is directed toward improving the availability of useful germplasm. The following are additional recommendations in this perspective:• to collect native germplasm; to accumulate data on important characteristics of the conserved germplasm; to further develop the database management system; to publish the catalogues of Allium germplasm collection in the country • to supplement morphological and economic evaluation of variability with modern techniques like isozyme electrophoresis, and the application of molecular markers to help identify duplicates within the collected material, search, and classify the marker genes for beneficial characters • to establish in vitro conservation of the garlic collection with the collaboration of IPGRI and IPK • to carry out taxonomic identification of unrecognized species of Allium • to try developing in situ and on-farm conservation of selected wild species and landraces, old cultivars (for example in cooperation with the Forestry Gene Bank) • to gather information about Allium spp. maintained in Poland (Botanical Gardens, Universities, National Reserves, other institutions) and related research programmes dealing with the genus Allium; continuation of investigation on chemical, biochemical and nutritive composition of some Allium species which can be introduced as new plants for food or ornamental use • to safeguard more materials from collections as duplicates, particularly those vegetatively propagated • to determine viruses in the garlic and shallot collections.Banco Português de Germoplasma Vegetal (BPGV), Direcç±o Regional de Agricultura de Entre Douro e Minho (DRAEDM), Quinta de S±o José, S±o Pedro de Merelim, Braga, PortugalSystematic collecting missions of Allium cepa L. were carried out for the first time from 1990 to 1994 by the staff of the Branco Português de Germoplasm Vegetal (BPGV), Direcç±o Regional de Agricultura de Entre Douro e Minho (DRAEDM) Advisory Services, together with Dave Astley, Coordinator of Conservation of Genetic Resources, Horticulture Research International, Wellesbourne, UK.Further to observations made during the field missions we decided to start with the collecting of Allium cepa L. and also to collect Allium spp. in Portugal. Several collecting missions were carried out throughout Portugal and one small collection was made in Madeira island. Species collected are listed in Table 1. The participants in these collecting missions were: Rena Farias, Head of Branco Português de Germoplasm Vegetal (BPGV), (DRAEDM) Merelim, Braga and Estaç±o Nacional de Melhoramento de Plantas\" (ENMP), Elvas, Portugal; Dave Astley, Genetic Resources Unit, Horticulture Research International (HRI), Wellesbourne, UK; Takeomi Etoh, University of Kagoshima, Japan; M. Tavares de Sousa of ENMP, Portugal; E. Varandas, (DRAEDM), Braga, Portugal; Cecilia Cheung So Mui, Parque de Seac Pai Van, Macau; Francisco Pina Madeira, Estaç±o Nacional de Melhoramento de Plantas, Elvas, Portugal.A survey and collection of wild Allium spp. was made by Rena Farias and Francisco Pina Madeira from ENMP in the Alentejo region in 1997. Next year we will continue this work in this region and in the whole of Portugal.Twenty-two duplicates of Allium spp. were sent to Pavel Havránek, Olomouc, Czech Republic. In 1996, 13 accessions were collected in the Minho and Alentejo regions together with Takeomi Etoh, from the University of Kagoshima, Japan, where these accessions are duplicated.In 1994 we started the evaluation and characterization of some accessions of vegetatively propagated garlics: Allium ampeloprasum (12), A. sativum (192) and A. schoenoprasum (1). Multiplication has been carried out in BPGV by Rena Farias and Pina Madeira in two different regions of the country and maintained in a field collection, to protect the collection against disasters or genetic erosion. The collection is kept in field collections in Quinta de S±o José, S±o Pedro de Merelin, Braga and in the Estaç±o Nacional de Melhoramento de Plantas (ENMP), Elvas, Alentejo.The minimum list of descriptors has been used for the characterization of A. ampeloprasum, A. cepa and A. sativum (IBPGR 1992;Gass et al. 1996). The results will be published next year.One hundred and forty agronomic ecotypes of onion collected in Portugal and kept in a -20°C chamber in the BPGV were characterized morphologically in the field and in the laboratory in 1997. The bulbs will be planted in 1997-98 for multiplication.For characterization the minimum characterization descriptors recommended by IBPGR (1992) were followed; the growing techniques recommended in Seabrook (1976) and Biggs (1980) were also followed.This work, with the title of 'Morphological Characterization and Preliminary Evaluation of the Agronomic Ecotypes species of Allium cepa L.' is being carried out by Carla M.R. Silva as her dissertation for the degree of Engenheira Técnica Agrária. This study, using Portuguese onion landraces, is an original one regarding the genetic resources. After the second year of cultivation of the material (1997-98) the results will be published.Isozyme characterization was started with some accessions of clones of A. sativum at the Minho University, Braga by Ana Vincente (DRAEDM).Next year molecular characterization of Allium spp. collected in Portugal will begin.The database of Allium spp. has been established by Filomena Marcelino, responsible for the Information and Documentation of the BPGV. Part of it has already been sent to Dave Astley.Gass, T., D. Astley, H.D. Rabinowitch and E.A. Frison, compilers. 1996 The collection of Allium L. dates back to 1926 when the first onion accessions were registered at the Institute of Plant Industry (VIR). These were samples received from French plant breeding companies and also landraces from western China, Syria, Ukraine and Russia. At present the collection of onion germplasm comprises 2035 accessions from 58 countries, including 982 accessions of common onion (Allium cepa L.), 398 accessions of leek (A. porrum L.), 325 of garlic (A. sativum L.) and 330 of perennial species.The collection contains the whole intraspecific diversity of Allium cepa, which according to the classification of Dr A.A. Kazakova is represented by the Southern, European and Northern subspecies, while the diversity of cultivars is represented by 30 varietal types. The basic collection of Allium porrum includes the following varietal types: 'Karantansky', 'Brabantsky', 'Elephant', 'Bolgarsky', 'American Flag' and summer types. There are also perennial species in the collection of VIR, such as Allium fistulosum L., A. nutans L., A. odorum L., A. schoenoprasum L., A. altaicum Pall., A. ursinum L., A. subulosum L., A. angulosum Lour. and others. Welsh onion is represented by the samples of Japanese, Chinese and Russian subspecies.Studies of the collection under different climatic conditions revealed a very wide variability of commercial and biological traits in the varieties of Allium cepa and other species, depending on geographic and ecological environments of onion cultivation. As a result, varieties of the Spanish group and a number of samples from the United States, Canada, the Netherlands, Denmark, Japan, Kazakstan and Ukraine were identified as promising by a complex of characters: yield, market quality, storability and disease resistance. Unmatched in earliness were the Spanish varieties 'Valenciana Tardia' and 'Morada de Amposta' as well as accessions from Japan. It became possible to identify heatresistant varieties among landraces and local varieties from Russia and Kazakstan as well as Japanese samples.In Russia the harmful diseases of Allium are downy mildew (Peronospora schleidenii Ung.) and neck rot (Botrytis alii), while the most active pests are onion fly (Hylemia antiqua Meig.) and onion nematode (Ditylenchus allii).Immunological analysis showed that most of the accessions of common onion were severely affected by Peronospora strains. As for diseases, onion varieties demonstrated great differentiation.The onion collection is preserved in the National Seed Store at the Kuban Experiment Station, Krasnodar Region, and in refrigerators at the Institute in St. Petersburg. Regeneration of seed is performed at the experiment stations of VIR. New germplasm materials received by VIR undergo quarantine testing at specialized quarantine nurseries.New accessions are studied with respect to their morphological, biological and commercial characters in the major agricultural areas of Russia. On the basis of the analysis of experimental data, genetic sources are identified for plant breeding practice.VIR sent out 230 onion samples in 1996 and 261 samples in 1997 upon request to various research institutions in Belgium, The Netherlands, Czech Republic, Israel, the Republic of Korea, India, Mongolia, Bulgaria, Belarus, Lithuania, Ukraine, Moldova, Uzbekistan, etc. In 1996-97 the Institute received 81 onion samples from abroad.By using materials from the collection of VIR, over 40 onion cultivars and hybrids have been commercialized in Russia. They are now being cultivated both in Russia and in adjacent countries.One of the present priorities is to finalize the passport database of garlic. It is also necessary to develop a database for evaluation data. For this purpose we need to carry out a series of experimental studies and summarize the results of many years of research.Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Gatersleben, GermanyThe seed-forming species of the genus Allium are outbreeders. Therefore, pollination measures have to be accompanied by a careful separation of the different accessions. We do it usually by growing the accessions in isolation greenhouses in a system consisting of the Allium accession together with a set of other outbreeding crops (e.g. carrots, cabbages, chicory, etc.), or by covering the field plot with isolation cages. Consequently, pollination needs to be done either by hand or by insects, the latter being much more efficient if done properly.An insect breeding and research programme has been running for many years at IPK. For Allium the main pollinators were found to be flies and bumble bees, and to a lesser extent also the red mason bee (Osmia rufa L.).The hover fly (Eristalis tenax L.) belongs to the family Syrphidae. The larvae have a very characteristic form, called rattail larvae. They leave the eggs 2 days after the clutch has been laid. In natural conditions, the larvae live in mud or muddy water. They can be maintained in a substrate made of soaked oats placed in a 10-cm layer in a container. When the larvae come to the maturation phase they begin to migrate, and can be collected into a pupating vessel. The pupae rest for 8-15 days depending on the breeding temperature. The imagines have a lifespan of about 4 months. Hover flies have been used for pollination of many different crops.The red mason bee (Osmia rufa ) can also be used for pollination of Allium, but, in sets with other species, it will not prefer the Allium. This is especially true for the white (onions) or greenish (bunching onions) flowering species, which are pollinated by these bees only if they are the only plants in the isolation cages. In comparison with honey bees, solitary bees have the advantage that they can be used in lower numbers, which is especially sensible in small isolation cages where populations of honey bees would starve and die very soon after the beginning of their activities. The solitary bees are maintained in hives as for honey bees. Various easily exchangeable nesting supports are added to the hives, e.g. pieces of reed stalks or paper tubes. The bees require a supply of wet loam-containing soil which they use to build their nests. It is possible to store the cocoons in cold temperatures of 0-3°C for durations up to 1 year. An area of 10 m 2 is sufficient for one couple of bees. In natural conditions in Germany, the bees fly between April and June. This can be extended until November if the cocoons are stored in cold conditions. The user should take care of eventual parasites (especially mites) and remove the infested material and animals.Bestäubung von Kulturpflanzen in der Genbank Gatersleben. Kulturpfl. 37:79-126. Gladis, T. 1994. Aufbau und Nutzung einer Massenzucht von Eristalis tenax (Diptera, Syrphidae) in der Genbank Gatersleben. Insecta (Berl.) 3:92-99.Plant Genetic Resources Laboratory, Research Institute of Vegetable Crops (RIVC), Skierniewice, PolandTo obtain good-quality seeds under isolation it is necessary to use effective pollinators. In Poland honey bees (Apis mellifera L.) or home flies (Musca domestica L.) are usually used as pollinators for onion, shallot and other Allium species. Observation shows that conditions in isolation cages are not very favourable to honey bees, and the home fly is not so tolerant to unfavourable weather conditions (especially low temperature) during flowering time. Therefore, it is necessary to conduct investigations on the breeding and introduction of other species of pollinating insects. This study deals with the use of wild bees (Osmia rufa L.) for the pollination of cultivated and wild Allium species for different sizes of isolation cages, and a comparison of the pollination effect with honey bees and home flies.The wild bee Osmia rufa ( O. bicornis L.), a small insect belonging to the family Megachilidae (Wojtowski 1979), is the most common species of solitary bees that forage in the spring and occur all over Poland. The female is covered on the dorsal side with dense hair, rusty or ginger-red coloured. On the ventral side, the hair is bristly, yellowish-brown, and forms a so-called abdominal brush to gather nectar and pollen eventually used for pollination. The length of the body is 10-12 mm and that of the mouth organ 4.8 mm.Solitary bees of O. rufa start foraging in the first 10 days of April and continue until the end of June. Following the swarming period, female bees make their nests in natural conditions, i.e. look for shelter in cracks of buildings, dry-rot trees or empty stems of dry plants.For pollination under a controlled environment, solitary bees are easily available from rearing under trap nests (Wojtowski and Wilkaniec 1969;Wilkaniec 1991). Housed trap nests ought to be maintained at 1-3ºC to restrain the bees from emergence and coordinate their foraging with the flowering period of plants. There is considerable opportunity to adjust and control the flights of O. rufa. This insect is polyphagous and gathers nectar and pollen from blossoms of fruit trees, bushes, cultivated plants, etc.The insects used for pollination of Allium species were obtained through controlled breeding in nest traps on reed stalks. Inhibited traps were stored in refrigeration at 1-3ºC in order to synchronize flight of the bees with the blooming of the flowers. Before the flowers began to bloom, the reed stalks were cut open and the cocoons removed. The cocoons were put into plastic boxes covered by cotton net and stored in a cool room at 1-3ºC and 65% RH, to keep inhibited bees (Wilkaniec and KotliÕska 1998).The cocoons in plastic boxes were counted and placed in the isolators with the plants whose flowers had started to bloom. The isolators made from nylon net were 3 x 6 x 1.80 m, or 3 x 3 x 1.80 m or 3 x 2 x 1.80 m.The insects (male and female) which emerged (were set free) from cocoons flew out from the boxes through holes in the walls and began to work on flowers. After 2-3 hours the first male forms emerged from cocoons, followed the next day by female forms. After 2-3 days all insects had emerged. If the period of flowering was very long, cocoons were added.The average number of cocoons per flower stalk depended on the number of flower stalks and varied from 0.5 to 4.0.The number of blossoms (flower stalks in isolation cage) ranged from 7 to 380 depending on the Allium species.Osmia rufa worked effectively under isolation cages, in greenhouses and plastic tunnels for about 1 month.The advantage of these solitary bees in comparison with honey bees and bumble bees (Bombus hypnorus L.) is that their cocoons can be stored in controlled conditions for more than half a year (from January to August). During that time it is possible to set the bees free from cocoons for pollinating, at the time and in the amount selected.These solitary bees do not sting, do not need food or drinks during the pollination period if the plants produce nectar even in very small quantities, and are also very tolerant to bad weather condition.Observations show that O. rufa is easy to manage and very effective for the pollination of many different Allium species blooming from May to September. It is a promising insect for controlled pollination in the genus Allium.Osmia rufa was used for the pollination of 30 Allium species (onion, shallot, A. victorialis, A. ochotense, A. nutans, A. galanthum, A. pskemense, A. altaicum, A. obliquum, A. ledebourianum, A. fistulosum, A. flavum, A. tuberosum, A. ampeloprasum, A. alyncolicum, A. hymenorhizum, A. montanum and others) and also for carrot, parsley and radish.The effectiveness of the pollination and germination ratio obtained with O. rufa was at the level of those with honey bees and home flies, and in many cases much better.These solitary bees are very useful, because it is possible to prepare the pollinators at a suitable time, and the costs of production are much lower than in the case of other pollinating insects.Thrips (Thrips tabaci) have become a severe problem throughout the northern European countries (Germany, the Netherlands, Belgium, France, Switzerland) during the past decade, owing to the lack of pesticide effectiveness. According to C. Mollema, CPRO-DLO, The Netherlands (pers. comm.), Dutch growers spray leek plantations more than 20 times during the growing season against thrips with limited effect. Similar observations were reported from other countries. Therefore alternatives for thrips control are being investigated, such as different cultural methods (cover crops, use of nets, intercropping, etc. (Imhof et al. 1996)) and the search for resistant plants. At the SFRS, a breeding programme was initiated in 1992 to select and maintain thrips tolerance in our own cultivar ZEFA Plus. Progeny from inbreeding lines from low susceptible plants showed a significantly lower attack by thrips, compared with those plants obtained from inbreeding lines of highly susceptible plants (Theiler and Buser 1996). On the basis of these results it was concluded that there is a genetical base for thrips resistance in leek. Further experiments revealed that field selection could be misleading with respect to thrips-tolerant plants. To avoid such problems, the selection system was modified: after field selection, inbreeding of tolerant leek plants is forced as well as the formation of clones by bulbils. The following year, these clones are tested again in the field and only those which clearly show a significant lower attack by thrips than control plants are included in further breeding programmes. In addition, different planting schemes were compared with respect to thrips infestation and severity on leek. This report summarizes results obtained during 1997.Cultivars, breeding lines and clones (bulbs) used are listed in Table 1 and were either grown at high densities in nursery beds (100-500 plants/m 2 ) or replanted in the field (16-20 plants/m 2 ). Seeds were sown in April in a nursery bed and partially replanted in June. Investigations on thrips incidence started in the middle of September until the middle of October, or just before harvesting time (October/November).Thrips infestation occurred naturally at high population densities (e.g. >100 adult thrips per blue trap per week during summer 1997) and were evenly distributed throughout the experimental trials. Leaf damage caused by thrips could be recognized clearly on susceptible plants from July onwards.Thrips infestation on individual plants was recorded using a classification system introduced by Püntener (1981) which distinguishes five classes: C-1 = no attack; C-2 = <10% of leaf area attacked; C-3 = 10-25% of leaf area attacked; C-4 = 26-50% of the leaf area attacked; C-5 = >50% of the leaf area attacked.Until 1996, the evaluation of thrips infestation and selection of low-susceptibility plants was made on and from field-grown plants, planted at a density of 16-20 plants/m 2 . With such a selection scheme, the total number of plants (and numbers of cultivars and breeding lines) to be evaluated is limited by space (available land) and labour. During 1997, using seeds from ZEFA Plus, a comparison of different planting schemes was made with respect to thrips infestation: field-grown plants (FGP); plants sowed in rows at high density (HD); leeks grown in quick-pots at 500 plants/m 2 (QP) and densely planted leek at 100 plants/m 2 (DP). The results showed that plant density had only a minor effect with respect to the percentage of plants graded in classes 2 and 3 and led to an increased percentage of the most infected plants (class 5) (Fig. 1).Additionally, different Allium spp., inbreeding and breeding lines were tested mainly at dense plantation (DP). Plants from Allium scorodoprasum subsp. jajlac (A.s) were the least susceptible progeny tested and showed the highest percentage of plants classified in class 2, followed by the progeny of A. tuberosum (A.t) of which >90% of the plants were scored in class 2 and class 3. From the two sources of A. ampeloprasum tested, that from Egypt (A.a-80) clearly showed a higher percentage of plants in class 2 and class 3 than that from the UK (A.a-81) which was comparable to the control ZEFA Plus (ZP). Thrips incidence on plants from A. commutatum (A.c) varied considerably but showed >20% of plants in class 2 (Fig. 2).One inbreeding line (ZP-R.21), obtained from a self-pollinated ZEFA Plus plant (low susceptibility, thrips infestation class 2), showed a higher proportion of plants in classes 2 and 3 than that of the control ZEFA Plus (ZP) and the two other tested progenies, obtained from crosses of low-susceptibility plants (thrips infestation class 2) from cv. Arial (AL-R) and Paragon (PA-R) respectively (Fig. 3). Bulbils (clones) were induced on flowering plants selected as resistant to thrips infestation (class 2: B-7, B-14, B-15, B-17) in 1996 and further cultivated in the greenhouse during winter and spring before planting in the field in June 1997. As control, bulbils from a highly susceptible plant (class 5: B-1) and seedlings from ZEFA Plus (ZP) were used (Fig. 4).Plants from B-1 were severely infested by thrips (>95.5% of plants in class 5), resembling the high susceptibility of the donor plant, whereas more than 75% of the cloned plants of B-14 and B-17 were recorded in class 3, similar to their donor plants and regarded as more tolerant. This was not the case for the cloned plants derived from B-7, which were infested in the same proportion as the plants from ZEFA Plus (ZP), and regarded as susceptible. Plants grown from bulbils from the donor plant B-15 varied considerably in their susceptibility to thrips infestation, but showed the highest ratio of plants in class 2. The results from 1997 on leek susceptibility to thrips infestation (presented here) confirmed those from previous years (Theiler and Buser 1996) and indicated a considerable variation of susceptibility in leek cultivars and related Allium species. Breeding for thrips resistance seems possible, but should include testing of cloned plants, obtained from selected donor plants and further inbreeding. In addition, it could be demonstrated that the selection of thrips-resistant plants is possible at high density planting scheme as described for other plant species (Panda and Khush 1995). Plants scored in classes 2 and 3, grown either from seed (e.g. ZP-R.21, or Allium ampeloprasum Egypt) or from bulbils (e.g. B-15, B-14, B-17), were selected for further breeding.Centre for Plant Breeding and Reproduction Research (CPRO-DLO), Department of Vegetable and Fruit Crops, Wageningen, The NetherlandsThe Allium group of CPRO-DLO currently consists of nine researchers working on different aspects of Allium genetics. The three main themes are genome organization, quality and resistance. 13This theme consists of several projects.• The first is concerned with the development of an Allium AFLP molecular marker map.We have constructed a map of 110 markers spread over 10 linkage groups with a total length of 650 cM. This map, which covers about 80% of the genome, is based on an interspecific cross between A. cepa L. and A. roylei Stearn (Kik et al. 1996). • The next project studies the genome organization of bridge crosses between onion and the interspecific hybrid between A. fistulosum L. and A. roylei, via genomic in situ hybridization (GISH). The results obtained so far suggest that there is a fair chance that the 'gap' between A. cepa and A. fistulosum can be bridged using A. roylei as an intermediate (Krustaleva and Kik 1998).• Another research project in this theme is genetic transformation of A. cepa. We have established a reliable tissue culture system by optimizing callus induction from mature and immature embryos and plant regeneration from suspension cultures (Zheng et al. 1998).At the moment we are trying to establish a reliable and quick transformation protocol.• The last research project in this theme concerns the introduction of CMS into leek. In the past a reliable protoplast regeneration protocol was developed (Buiteveld et al. 1993;Buiteveld and Creemers-Molenaar 1994;Buiteveld and Fransz 1994) and this enabled us to carry out protoplast fusions between leek and CMS onions. By means of somatic hy(cy)bridization we have obtained plants from which the nuclear DNA consists mostly of leek and the mitochondrial (mt) DNA consists mostly of onion. Analyses of the mtDNA variation in leek and its wild relatives showed that there is very little variation in leek but enormous variation in its wild relatives. Furthermore we observed that crosses between leek and its wild relatives from the A. ampeloprasum L. programme complex are possible. This research showed that introduction of alloplasmic CMS in leek via interspecific crosses might be feasible (Kik et al. 1997).In this theme we have been carrying out research, since 1996, in the framework of an EU project coordinated by CPRO-DLO 14 which analyzes the carbohydrate and the sulphur pathway in onions. The ultimate goal of this project is to develop onions with added value (van Raamsdonk and Kik 1997). Our task in this project is to map keygenes on an onion AFLP/microsatellite marker map for dry matter content and reducing sugars on the one hand, and pyruvate content on the other hand. The mapping research is carried out in close cooperation with IPK in Gatersleben.Together with the Research Institute for Vegetables (Lembang, Indonesia) we are trying to develop shallots which are resistant to Colletotrichum gloeosporioides (anthracnose) and Alternaria porri (purple blotch). For Colletotrichum we developed a reliable and quick biotest and identified sources of resistance. Furthermore we analyzed the resistance present in A. roylei to a Brazilian isolate of C. gloeosporioides and we found that it is most probably determined quantitatively (Galvan et al. 1997).Since 1996 we have been carrying out with the Volcani Center (Israel) a project in the framework of a bilateral agricultural research programme between our countries. The project is partly concerned with resistance breeding to Sclerotium species (white rot) in ornamental Allium. We observed that two Sclerotium species are active in The Netherlands, namely S. cepivorum and S. perniciosum . We found that S. perniciosum is more aggressive than S. cepivorum and showed that interactions in virulence are present between Allium and Sclerotium species. Furthermore we identified sources of resistance in ornamental Allium to both Sclerotium species.The research project on Phytophthora porri (white tip disease) in leek, analyzing epidemiological and resistance breeding aspects, has been completed succesfully (Smilde et al. 1995(Smilde et al. , 1996(Smilde et al. , 1997)). Material with a high level of resistance has been issued to several plant breeding companies who are currently using it in their leek improvement programmes.In the framework of a genetical resources project financed by the EU, which started in 1996, we are carrying out disease resistance testing for Phytophthora porri (white tip disease), Puccinia porri (rust) and Thrips tabacci (thrips) in leek and its wild relatives. The ultimate aim of this project is to develop a well-documented Allium database.The final project in this theme is the introduction of resistance to Spodoptera exigua (beet army worm) into tropical onions and shallots. Together with our Indonesian counterparts we are trying to introduce the resistance to this pest via genetic transformation (see genome organization) using Bt constructs and via marker-assisted breeding (MAB). For the MAB part we have developed a reliable biotest for the identification of sources of resistance in Allium cepa and its wild relatives. The next step will be to develop a population in which the resistance segregates, which allows us to link the resistance gene(s) to molecular markers.Danish Institute of Agricultural Sciences, Department of Fruit and Vegetables, Aarslev, DenmarkDowny mildew (Peronospora destructor) is one of the most common leaf diseases in onions and may cause losses of yield and quality in most years. It is an airborne disease in which infection very often begins with early transplanted onion sets. Not only does the disease cause serious damage by itself, it also opens avenues for further damage by Alternaria and Stemphylium. As growth management systems change toward environmentally safer systems (IPM, organic) there is an increasing interest in resistant varieties.Genetic resources material will be field-tested for resistance to downy mildew. Test accessions are grown in field plots with cultivars known to be susceptible to the disease ('White Lisbon' or 'Albion'), thus promoting infection in the plots and acting as inoculum sources for test plants. Field tests have been shown to be a useful method of evaluating resistance.The initial evaluation will be carried out using a randomized complete block design with eight blocks, each block consisting of individual accessions in plots of 20 plants. This design is necessary to carry out comparisons between varieties on an equal level of infestation. Plants will be evaluated for resistance at regular intervals beginning with the first attack in the trial.Nineteen NGB accessions were sown in March and April, propagated in a glasshouse, and planted to field in May or June. Three accessions of A. fistulosum L. and a sample of the downy mildew resistant A. roylei Stearn received from CGN, Wageningen were included in the experiment. For details see Annex 1.Plants of the susceptible cultivar 'Albion' were transplanted to all plots with a density of 2 plants per m 2 . If no accession was infected naturally by Peronospora, infected leaves from other fields were placed in each plot.For each plot/accession 2-4 observations were made in the field to assess the attack of downy mildew. The total number of infected plants as well as the percentage of infected leaf area on individual plants were assessed on a 0 to 10 scale, where 0 = no sporulation and 10 = completely diseased plants.All 19 NGB accessions will be described for agronomic characters according to the \"Minimum Characterization Descriptors\" recommended by the ECP/GR Allium Working Group (see Annex 3). In the Red Data Book of Bulgaria (Dakov 1984(Dakov -1985, vol, vol. 1) the species A. angulosum, A. cupani Rafin. and A. stojanovii I. Kowatschev (= A. amethystinum Tausch) are included in the category \"rare\", and A. senescens is categorized as \"threatened\". The investigations proved that A. amethystinum is more common than the Red Data Book of Bulgaria shows and, in our opinion, it might be removed from the book. The same species has been included in the List of Rare, Threatened and Endemic Plants in Europe (Council of Europe 1982), as well as in the European Red List of Globally Threatened Animals and Plants (Economic Commission for Europe 1991) in the category \"rare\". There are other species in the country which could be categorized as rare or threatened (A. nanum (Asch. & Gr.) Ceschm., A. thracicum , etc.).The intensive anthropogenic activities have disturbed the balance in the populations of a number of species. For example, in the locality Ostrova near Plovdiv, the cutting down of poplars disturbed the ecological balance and the population of A. ursinum is strongly damaged. It should be pointed out that this population is one of the two in the Bulgarian flora where this species grows at the lowest altitude (160 m). Especially alarming is the situation in the Black Sea coast, where, due to intensive resort construction and mass visits in summer, whole populations are threatened with extinction and a sharp decrease in density. It should be emphasized that this floristic region is inhabited by about 53% of the species, including some rare ones.Evaluation of the status of threatened populations and measures for their in situ and ex situ conservation should be undertaken urgently in the country to preserve its valuable Allium genetic resources.Experimental Station for Vegetable Crops (ESVC), Gorna Oryahovitsa, BulgariaThe basic aims of the scientific and applied research on onion during recent years are the creation and introduction of onion varieties and hybrids for different purposes. The existing local material for initial selection is limited. Therefore it was necessary to test and evaluate foreign collections under the climatic conditions of Bulgaria, with the aim to select genotypes adapted to the local conditions, including daylength requirements.One hundred and sixteen foreign accessions were tested under the conditions of the Experimental Station for Vegetable Crops, Gorna Oryahovitsa.• The major part (76) consists of annual samples, planted in spring • Twenty-seven samples were tested for shorter daylength by late planting (sowing date 5-15 September) • Thirteen samples were tested for biennial cultivation by sets.The plants tested were examined and evaluated for vegetation length, form, shape and colour of the bulb, productivity, dry matter and sugar content, resistance to Peronospora, and storage qualities.Classic selection methods were used, aiming at the development of new starting material for breeding.Research results of selection for economic and biological traits are given in Table 1.The annual early and middle-early accessions are distinguished by their high productivity and good storage.Selected biennial accessions which have globular, thick bulbs with high dry matter content (18-20%) have a practical value.From selection for cytoplasmic male sterility, varieties 1713 and 1770 were created; they are adapted to our conditions and have good economic quality. Line 1713-B is resistant to Peronospora R0. The Maritsa Vegetable Crops Research Institute, Plovdiv, BulgariaOnion is a traditional and basic vegetable crop in Bulgaria. It is used almost every day and is versatile throughout the year, consumed early in the spring as green onion, from the beginning of summer as fresh bulbs, and during fall and winter as stored bulbs. Onion is very important for the canning industry, for drying.In terms of cultivated area, the most important are varieties of pungent onion from sets. Therefore breeding is focused on the improvement of varieties from this group, known as varieties for biennial cultivation.A pioneer in research and breeding work with onion from 1937 was Acad. Pavel Popov. Later onion breeding was continued by Prof. Zhechka Zhecheva (1938-73), Prof. Iliya Minkov (1952-82), Prof. Dr Stefan Buchvarov (1953-87) and Prof. Dr Y. Todorov from 1967 (Todorov 1985).The achievements of onion breeding and introduction are summarized below.During the first stage of research work, the resources and diversity of local forms derived by Bulgarian farmers were studied. Simultaneously with local varieties and forms in the collection, over 250 onion varieties and accessions coming from foreign seed companies and research institutes from Hungary, USA, France, Germany, Russia, The Netherlands, Poland were tested. These studies established that foreign varieties from more northern or more southern origin respectively prolong or accelerate their vegetation under Bulgarian conditions because of the photoperiodic reaction; they have more vigorous or weaker growth and do not form high-quality bulbs. Comparatively better results with 1-year cultivation are obtained with some American onion varieties ('Early Yellow Globe', 'Southport Yellow Globe', 'Texas Grano') which, however, do not exceed the developed local varieties (Zhecheva et al. 1977). These results direct breeders' attention to genetic resources of local origin. Therefore the most valuable foreign varieties are used in breeding for hybridization.From a study of local populations, Acad. Pavel Popov describes (Daskalov and Popov 1941):• 'Lyaskovski' (synonym Bulgarian arpadzhik) -the most well-known and widespread local variety in the whole country • 'Slivenski' -with more globe-shaped bulbs than those of 'Lyaskovski' • 'Starozagorski' -with flatter shape • 'Asenovgradski zhult' -with the highest transportability, shaped like 'Slivenski' • 'Melnishki' -strongly flattened shape of the bulbs, with yellow skin and good storability.• 'Samovodska kaba' (synonym Bulgarska kaba, Kantar topuz) -bulbs with conical shape, sweet taste, average winter storability • 'Shumenska burzitsa' -earlier than 'Samovodska kaba' • 'Gyumyurdzhinska kaba' -bulb shape is flat, with good storability and firmness, resistant to downy mildew • 'Asenovgradska' -the most widespread red salad variety for South Bulgaria.The great heterogeneity typical of local populations imposed from the start that improvement work in the Maritsa Vegetable Crops Research Institute be directed toward the creation of more uniform varieties with improved economic properties, high and stable yield.As a result of group-family selection from local onion populations the following varieties were bred (according to Daskalov and Atanasov 1966) Intervarietal hybridization was used for the development of varieties with new, more valuable economic properties, resulting in the creation of onion varieties 'Trimontsium', 'Pioner', 'Konkurent', 'Yubilei 50' and 'Plovdivski cherven'.• 'Trimontsium' is created by crossing the varieties 'Plovdivski 10' and 'Ispanski 482' and selection • 'Pioner' is a result of hybridization between Bulgarian and American varieties • 'Konkurent' is a result of hybridization between the Hungarian variety 'Makoj' and the Bulgarian var. 'Plovdivski 10'. It possesses valuable economic properties of both parent varieties. It is suitable for cultivation by sets and direct sowing. • 'Yubilei 50' is created by crossing of the Hungarian variety 'Makoj' and the Austrian 'Bernsteinfarbige'. Semi-pungent, with almost globe bulbs, well stored during winter. • 'Plovdivski cherven' is developed by selection in a cross between 'Red Wethersfield' from Burpee Seed Co. and 'Red Flavour' received from the Netherlands. Its bulbs are purple red, semi-pungent, with good storability.Research work for the use of cytoplasmic male sterility (CMS) in the breeding of hybrid onion varieties started in 1957-58 by Zhecheva et al. (1970) who discovered male-sterile plants in almost all onion varieties. They started intensive and large work for the development and study of male-sterile lines. From 1962From to 1974From , 1925 male-sterile lines of different varieties and accessions were studied. The successful breeding work for development of CMS maintainer lines was performed with the varieties 'Lyaskovski 58' (Zhecheva et al. 1972), 'Makovski' (Buchvarov and Trifonov 1976) and 'Ispanski 482' (Todorov 1977).The comparative analysis between the results theoretically expected and those obtained in the breeding of male sterility maintainer lines show that CMS is of a classical type in varieties 'Lyaskovski 58' and 'Ispanski 482' (Todorov 1976). Besides, we studied some problems of hybrid seed production, variation and inheritance in F 1 of vegetation period, yield and a number of morphological and quality characters of the bulbs.Simultaneously with the breeding of maintainer lines, the general and specific combining abilities of male-sterile lines are also tested. Out of the 305 combinations tested during 1966-74 a number of F 1 hybrids proved to be very promising. The State Variety Comission registered for growing in Bulgaria two hybrids, 'Uspeh 6', created in the Maritsa Vegetable Crops Research Institute, Plovdiv, and 'Rekord 2', bred in the Experiment Station for Vegetable Crops, Gorna Oryahovitsa. Their practical use is still limited for economic reasons and low introduction of direct sowing.• The local onion forms and over 250 foreign varieties and accessions were tested. Foreign varieties gave unsatisfactory results in direct introduction and practical application. Therefore, the most valuable of them were used for hybridization. • The following onion varieties were developed by the method of individual selection:'Lyaskovski 58', 'Slivenski', 'Samovodski podobreni', 'Gyumyurdzhinska 11', 'Asenovgradska No. 5', 'Samovodska' and 'Ispanski 482'. • The new variety 'Lyaskovski 90' was created by the inbreeding method and selection for dry matter content. • The varieties 'Trimontsium','Pioner','Konkurent','Yubilei 50' and 'Plovdivski cherven' have been developed by intervarietal onion hybridization. • Research work is carried out for the use of CMS in hybrid seed production. The developed hybrids are used on a small scale for economic reasons and restricted use of growing onion by direct sowing. Todorov, Y. 1977. Inheritance of vegetation period length and storage of the bulbs in some F 1 onion hybrids. . Zhecheva, Z., I. Minkov, S. Buchvarov and Y. Todorov. 1977 10. Latitude of collecting site (LATITUDE) Degrees and minutes followed by N (North) or S (South) (e.g. 1030S). Missing data (minutes) should be indicated with hyphen (e.g. 10-S).(LONGITUDE) Degrees and minutes followed by E (East) or W (West) (e.g. 07625W). Missing data (minutes) should be indicated with hyphen (e.g. 076-W).(ELEVATION) Elevation of collecting site expressed in meters above sea level. Negative values allowed.(COLLDATE) Collecting date of the original sample where YYYY is the year, MM is the month and DD is the day. The coding scheme proposed can be used at 2 different levels of detail: Either by using the global codes such as 1, 2, 3, 4 or by using the more detailed coding such as 1. 16. Donor institute code (DONORCODE) Code for the donor institute. The codes consist of the 3-letter ISO 3166 country code of the country where the institute is located plus number or an acronym as specified in the Institute database that will be made available by FAO. Preliminary codes (i.e. codes not yet incorporated in the FAO Institute database) start with an asterisk followed by a 3letter ISO 3166 country code and an acronym.(DONORNUMB) Number assigned to an accession by the donor. Letters should be used before the number to identify the genebank or national system (e.g. IDG indicates an accession that comes from the genebank at Bari, Italy; CGN indicates an accession from the genebank at Wageningen, The Netherlands; PI indicates an accession within the USA system)Any other identification number known to exist in other collections for this accession. Letters should be used before the number to identify the genebank or national system (e.g. IDG indicates an accession that comes from the genebank at Bari, Italy; CGN FAO WIEWS DESCRIPTORS 1.Location of safety duplicates (DUPLSITE) Code of the institute where a safety duplicate of the accession is maintained. The codes consist of 3-letter ISO 3166 country code of the country where the institute is located plus number or an acronym as specified in the Institute database that will be made available by FAO. Preliminary codes (i.e. codes not yet incorporated in the FAO Institute database) start with an asterisk followed by a 3-letter ISO 3166 country code and an acronym. Multiple numbers can be added and should be separated with a semicolon.Availability of passport data (PASSAVAIL) (i.e. in addition to what has been provided) 0 Not available 1 Available 3.Availability of characterization data (CHARAVAIL) 0 Not available 1 Available 4.Availability of evaluation data (EVALAVAIL) 0 Not available 1 Available 5.Acquisition type of the accession (ACQTYPE) 1 Collected/bred originally by the institute 2 Collected/bred originally by joint mission/institution 3 Received as a secondary repositoryType of storage (STORTYPE) Maintenance type of germplasm. If germplasm is maintained under different types of storage, multiple choices are allowed, separated by a semicolon (e.g. 2;3). (Refer to FAO/IPGRI Genebank Standards 1994 for details on storage type) 1 Short-term 99 Other (elaborate in REMARKS field) 2 Medium-term 3 Long-term 4 In vitro collection 5 Field genebank collection 6 Cryopreserved §6 In case of accidents or any other event that may inflict upon the viability, germinability, or availability of the deposited seed, NGB will not be liable to pay any damages to the IB.ii. Of relevance for the IB: §7 The IB is responsible for all seed management activities (threshing, drying, packing, germination tests, etc.). §8 The IB accepts to deliver a recornmended number of 5000 high quality seeds per accession to be included in the SDC. All shipments shall be accompanied with a Phytosanitary Certificate issued by the Plant Quarantine Service in the country of the IB. §9 The IB further accepts the responsibility of supplying NGB with a safety duplicate of computerized passport and relevant management data pertaining to each stored accession. §10 Decisions regarding the inclusion or removal of accessions from the SDC will be taken by the IB within the scope defined in Section I. Purpose.iii. Of relevance for both: §11 The material deposited in the SDC at Alnarp is the property of the sovereign State of Latvia. §12 Upon notice, the IB has the right to inspect the SDC at any suitable time. §13 This MOU may be modified or discontinued at the request of either party. §14 Requests for termination or any change to the MOU shall be submitted to the other party for consideration not less than six (6) months prior to the desired effective date of termination. §15 This MOU has indefinite duration, but shall be reviewed once every five (5) years for relevancy.Signed: Alnarp, 8 Janua ry 1997 Salaspils, January 1997The Director The Director Nordic Gene Bank Institute of Biology Currently: Eva Thorn Currently: Gunars Andrusaitis","tokenCount":"20228"} \ No newline at end of file diff --git a/data/part_3/5507669133.json b/data/part_3/5507669133.json new file mode 100644 index 0000000000000000000000000000000000000000..60d432d55a2a74f6a321b496a13acc749349f48a --- /dev/null +++ b/data/part_3/5507669133.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"f0e63dabd187e6876b3b4f6f219b5dd4","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/1295ee00-901f-4eeb-8c46-2921997fcaff/retrieve","id":"-1515893638"},"keywords":[],"sieverID":"5bf5942a-239b-434e-85bc-b038eec9b7a6","pagecount":"50","content":"This report highlights findings of a study that was carried out to characterize and estimate the demand for common bean seed in Angonia District of Tete Province in Mozambique. The study gathered information on the area planted to the common bean annually, engaged key informants and surveyed of 332 households in eight Localidades between April and May 2015. According to the study, 99.7 % heads of households depend on agriculture as the main occupation; working on average family farm size of 1.4 ha, often augmented with 0.06 ha available through leasing annually. In addition to family-owned farms, husbands and wives solely own 30% and 26% respectively. The main crops grown in Angonia District in descending order of prevalence, were maize (97%) common bean (94%), soybean (59%) and groundnut (45%). Other crops grown included Irish potato, cowpea and tobacco. The common bean has a long history of cultivation in the district; mean bean production experience of participating farmers was 16 years.Bean production, estimated to cover 31,000 ha annually in the district by SDAE-Angonia, is dominated by local varieties such as Phalombe (red) (52%), Khaki (44%) and white (Kayera) (42%) while recently released varieties were the least cultivated (5 %). The common bean is grown in two main seasons; rainfed planting in mostly maize intercrops and irrigated cool season with 30 % sole cropping. While rain fed plots are often larger (1.2 ha) than irrigated plots (0.7 ha), interestingly, the two consume equal amounts of seed (about 20 kg). From these plots, an average bean farmer harvests 172 kg of which 26 kg is kept for seed. The study revealed that 77% of bean farmers kept their own seed; 23% bought seed and 18% of the respondents planted bean improved varieties. Also, bean production was characterized by low and inconsistent use of certified seed (17%), fertilizers (30 %) and crop protection chemicals (11%). Bean farmers procured planting material at an average price of MZN 33/kg, a priced deemed expensive by over 70% of farmers who would afford bean seed at MZN 25/kg. Most farmers sold common bean grain on local markets as individuals at an average price of MZN 30/kg compared to MZN 21/kg for maize and MZN 7/kg for pigeon pea. Due to this statistic, farmers want to adopt improved varieties and 94 % would like to increase bean production in future to improve marketable outputs. While there seemed to be a balance in participation of men and women in bean production, husbands made the decisions to grow and sell beans and controlled income from bean sales in the household. In selecting bean varieties farmers considered the following attributes in order of priority: a definite market, short time to maturity and high grain yield.The radio remains a very important channel through which farmers learn of improved varieties of common bean (62%) and other crops (58%), hence widely viewed as a channel of choice for future awareness creation on varieties and seed availability. There was a general dearth of information on markets and visits by extension personnel which seemed to limit effective seed demand. Meanwhile, econometric analysis showed that adoption rate, household wealth, household food security status and price of improved bean seed significantly influence demand for seed. On the other hand, superior grain yield characteristics of an improved variety, a known market or demand for the variety and household size significantly influence adoption of improved been varieties in Angonia. Overall, the results of the study estimated the potential demand for bean seed in Angonia at 2069 tonnes which was slightly lower than the 2,500 t estimate from SDAE, the variance being primarily due to use of the sub optimum seed rates. The data collected in study will be critical in targeted extension services in order to enhance use of bean improved varieties and bean productivity in Angonia district.Mozambique is one of the least developed countries which ranks 178 out of 186 countries on the human development index (UNDP, 2013) and has a per capita annual income of USD 360 which is among the lowest in the world. The country is making a remarkable recovery from the devastating effects of nearly two decades of civil war, posting an average annual economic growth of eight percent between 1996 and 2004, but poverty remains high, especially among the rural population which makes nearly 70 percent of the country's vulnerable households (FAO, 2013).While the number of undernourished and their prevalence in the population has been reducing, though at a slower rate in sub-Saharan Africa, estimates for Mozambique are still of concern to United Nations the (FAO, 2013) as 60 % of the population lives on less than US$1.25 per day (FAO et al, 2013).In addition to widespread poverty, the country has high rates of; food insecurity (46 %), chronic undernutrition-stunting (46%) and underweight (12 %) in children (FAO, 2013) and wasting (over 20 %) (UNDP, 2013). Paradoxically, the country has vast agricultural potential yet cross-country analyses demonstrated double effectiveness of agro-based gross domestic product (GDP) growth in reducing poverty compared to non-agro based GDP growth (World Bank, 2007;Barrett et al, 2010) as shown through the experiences of Brazil and China. Equally, poor productivity from the agricultural sector has knock on effects on the economy and this has been the case for Mozambique where approximately 76 percent of the population is dependent on an under-performing agricultural sector for livelihoods (FAO, 2013) resulting widespread poverty. Poverty in Mozambique is multi-faceted with causes that include: i) lack of employment opportunities (FAO et al, 2013), ii) high illiteracy rates especially among women, iii) high household dependency rates, iv) low agricultural productivity stemming from non-use of suitable high yielding seed varieties and other agricultural inputs, especially in the small-holder sector and v) infrastructural constraints, particularly in rural areas.Mozambique is therefore caught up in a vicious cycle of poor productivity, poor markets leading to low incomes, low investments in agriculture and low yields. The agricultural sector is characterized by a large number of small-scale farmers, rain-fed subsistence production, low mechanization, use of labor-based production techniques, and little use of external inputs resulting in low productivity. There is also lack of information on better crop and soil management practices.Mozambique has a low protein consumption per capita of 39g per day of which only 5g per day is animal derived (FAO, 2013). Legumes such as common bean can therefore, provide a cheaper source of protein than meat and 2-3 times the amount of protein than cereals (BGMF, 2012) if produced and consumed in rural areas. The common bean is an important legume in human diets globally; providing protein, iron, zinc, fiber and complex carbohydrates (Gepts et al., 2008) and food for over 400 million people in Africa. Furthermore, common bean is also a very important source of income for small holder farmers. The production of common bean in Mozambique increased by 55 percent between 2002 and 2012 as farmers increasingly realized market potential of the crop and therefore devoted more cropping area (Table 1).According to survey reports, between 2012 and 2014 common bean was planted on an average area of 102,000 ha per year in Mozambique, but the average yield on small holder farmers' fields is below 550 kg/ha (MASA, 2014) due to the use of local varieties and inappropriate agronomic practices. The production of common bean is highest in Niassa and Tete provinces where more than 30 percent of small scale farmers produce the crop (Table 2).More than 80 % of the common bean grain produced in Mozambique is marketed locally, especially in the major urban centers with an estimated demand of 10,000t. The export market takes up an estimated 6 % of the common bean produced in the country (Upcoming Bean Atlas).Highlighting its importance, a recent study ranked common bean as the second most important cash crop after maize in the medium to high altitude bean producing areas of Mozambique (Rusike et al., 2013). Where irrigation is available, farmers can successfully grow three bean crops per calendar year;deriving food and cash from leaves, fresh pods and the dry grain, making the common bean a In these locations, the bean crop is grown in combination with a number of other crops and regional preferences in grain types exist. Generally, farmers in Southern Africa (including Mozambique) prefer the large seeded cream (manteiga), red-speckled (sugar), red and red-mottled bean types. Furthermore, farmers are interested in culinary qualities such as cooking time and taste, maturity period, yield and tolerance to pests and diseases. To address these needs, CIAT in collaboration with IIAM have developed bean varieties that are highly adaptable to diverse agro-ecologies while meeting the nutrition and market needs.Bean research efforts resulted in the release of varieties by the national programme in the mid-1980s. Over the years, several other stakeholders including private seed companies have also released bean varieties. IIAM working with CIAT released bean varieties that are widely adapted to the major bean agro-ecologies of Mozambique and have resistance to multiple biotic and abiotic constraints (Table 3). These varieties also possess preferable market and nutritional traits. Among these varieties, is NUA 45, a variety that is bio-fortified with iron and zinc, targeted at contributing to addressing the prevailing high level of under-nutrition in the country. The varieties were developed and selected together with farmers through participatory evaluation and also address the culinary qualities that farmers look for in bean varieties for home consumption. Following these advances, a survey by the Ministry of Agriculture, Mozambique reported increasing use of seed of improved common bean varieties. The adoption rate of improved common bean varieties in Mozambique remains low, but was reported to be 15% in 2010 (Lopes, 2010), up from 4.9 % in 2003and 8 % in 2008(World Bank, 2012). Similarly, use of seed of improved varieties of other legumes also remains very low at 4.6 % for groundnut and 2.9 % for cowpea. The low adoption rates for improved varieties in Mozambique can be attributed to the low presence of seed companies to disseminate seed in bean production areas and a generally underdeveloped seed sector, stemming from monopolistic policies. Until the year 2000, Sementes de Moçambique (SEMOC) was a state monopoly created in the late 1980's with the mandate to supply all commercial seed in Mozambique. (Howard et al, 2001). In an effort to control the market The study had the following specific objectives: i. To characterize common bean farmers in Angonia district in terms of household demography and the bean types they produce.ii. To understand the socio-economic drivers of specific bean production practices and how these influence potential bean seed demand in the district.iii. To estimate the potential demand for bean seed in the districtThe study was carried out in Angonia district which is situated in the northern part of Tete Province in the central region of Mozambique (Figure 1). Its administrative center is the town of Ulongué.Within Mozambique, Angonia district borders the districts of Tsangano in the south and Macanga in the west, while it borders Dedza (north and east) and Ntcheu (east) on the Malawian frontier. 4. Angónia is a plateau of 1200-1600 metres above sea level (masl) in altitude (Ulongue, 1270 masl) (Voortman and Spiers, 1986). The climate is cool in winter and warm/mild in summer. The area receives high total annual rainfall (900-1200mm) in the rainy season from late November to early April. Rainfall is very much, seasonal and unimodal. Due to high rainfall, the soils have an inherent low soil fertility status primarily due to low pH and associated acidity, aluminum toxicity and phosphorus fixation. Two soil types dominate much of the region, namely the eutric leptosols in the relatively higher altitudes and the haplic lixosols (sandy clay loam to sandy loam) in the flat plains and valley bottoms. Angónia district was considered one of the granaries of Mozambique because of its production of maize and potatoes, a prestige which ended with the onset of the civil war after independence in 1975. Nonetheless, to date, the district is still within the maize belt of the Chinyanja Triangle region, where farmers plant more than three times as much area to maize as other crops (Amede et al, 2014).Higher-value crops are grown in the valley bottoms mainly under irrigation or the dambo (wetland) system. In the dambo system, crops use residual moisture along with some supplementary irrigation to ensure adequate water supply during the growing period. Farmers also practice flood irrigation, furrow irrigation and in a few cases motorized pumps to deliver water to fields. The relatively higher-income and middle-income farmers are commonly the ones using motorized pumps while the low income farmers predominantly use furrow irrigation or manual treadle pumps to transfer water from small springs.With the increasing market opportunities in Tete and its surroundings, due to the expanding mining sector, small-scale irrigation could help farmers to produce high-value agricultural products, access regional markets and improve their capacity to respond to emerging demands and climatic shocks. Angonia district also has a high population density, which has significantly reduced the land holding per family, hence irrigation becomes critical. Angonia district is relatively rich in agricultural and animal resources with very arable land. However, the livestock is not used for land preparation, leaving most farmers to use hand hoes for the activity.Data was collected from more than 300 smallholder farmers randomly sampled in the district. A lot of information was collected from the respondents in the form of a survey. The study collected data on the status of livelihoods in the study area including (education, occupations, income, food security, and nutrition), agricultural production and market access. Establishing the status of all the mentioned variables was key to understand impact of previous interventions, adoption of the promoted varieties and demand for the improved seed. Stratified random sampling was used to gather data from 332 farming households from Angonia District. The sampling procedure heavily relied on the units within the administrative structure and their respective proportional populations.Typically, a district in Mozambique has five levels of administrative units, in descending order: 28) Solomon ( 5) Catito ( 6) Chicolongue ( 5) Muende ( 6) Nancuaze( 6)Seze-Sede ( 19) Dzimeza ( 18) Nehata ( 18) Namingona ( 42) Gorethi ( 21) Mphulu ( 21) Mangane ( 80) Kankhani ( 8) Mazunga ( 8) Mandota ( 8) Chiphole ( 8) Yotamo ( 8) Ndachepa (8) Massoco-Bena (8) Hombele ( 8) Macuanguala ( 8) Ngawa ( 8) Chifumbe(31) Mbuca ( 8) Kungulo( 7) Mandala ( 8) Lonsa ( 8) Binga (30) Gassiteni ( 10) Chinkhuamba ( 10) Cavumbwe ( 10) Dziwanga (26) Malhaudzo ( 13) Manhanguli ( 13) Kalio (40) Kalio-Sede ( 14) Mthanzi ( 13) Mathemba ( 13) All households at Povoado level had an equal chance of being selected as we applied strict random sampling with the help of local community leaders. The survey was carried out in eight Localidades of Angonia District. It was carried out in 10 days as follows; two days of training enumerators, one day of pre-testing and seven days of data collection.The study was conducted in the form of survey. The main tool for data collection was a structured questionnaire. The questionnaire collected information on household demographic characteristics, agricultural production and marketing, adoption of improved bean varieties, varietal preferences, variety characteristics and demand for seed, income, assets, decision-making, importance of beans and other crops in the household's economy, dietary diversity of the households (with children under five), and other general household specific information. The questionnaire was pre-tested, corrected for errors before administering it for final data collection. Face to face interviews with 332 smallholder farmers were done to collect the data. We collected information on beans and other crops so as to establish the general current agricultural crop production trends and interrelationships between the various crop enterprises. The survey was correctly timed as it was conducted soon after harvesting of the summer crop. Participation of farmers in selected areas was voluntary. The research team explained the purpose of the survey in each and every data collection point. Where possible respondents were gathered at selected points by the local leadership, but in other locations, enumerators had to go household after household.Enumerators were recruited based on their proficiency in both Chichewa and Portuguese languages and previous similar experience with Beira Corridor. Both Serviço Distrital de Actividades Económicas (SDAE) and the Beira Agricultural Growth Corridor Lda assisted in identifying the candidates for the survey. Individual interviews we done to assess capability of the candidates; with focus on general understanding of agriculture and proficiency in Chichewa and Portuguese.The questionnaire was prepared in English, translated to Portuguese but Chichewa language was used during the training and farmer interviews. The enumerators were taken through all the questions discussing how to phrase them and remove ambiguities. The tool was pre-tested firstly by pairing enumerators to ask each other the questions before each enumerator had field pre-testing with two farmers each from a nearby Povoado. Final copies were printed after incorporating the observations and comments from the training and pre-testing. Data collection was supervised by CIAT staff and SDAE extension supervisorsAnalysis of data was done using a combination of SPSS version 20, STATA version 12 and Microsoft Excel. The bulk of the analysis was however descriptive analysis. Econometric modelling was only applied to estimate factors influencing improved seed demand and adoption rate simultaneously using a system of equations in STATA. Results presentations are mainly in the form of tables.Drawing on the demand theory for consumption goods characteristics and production input attributes, this study estimated improved seed adoption and demand for seed factors simultaneously using cross-sectional data collected from 332 randomly selected smallholder farmers. The system of equations approach was used because it uses more data and produce more efficient estimates when compared to single equation estimation approaches (Langyintuo et al., 2005). The econometric model used in this study adapts a similar approach used by Edmeades et al. (2004) to determine factors that jointly influence demand of banana varieties and their potential adoption in Uganda. Application of the joint specification and estimation approach is meant to account for both production and consumption aspects of seed, which performs better than the ordinary least squares (OLS) when fitted with household level data from Angonia Mozambique.It was however, logical to take this approach since when a farmer adopts an improved variety, he/she jointly decides on how much seed he/she would require to plant a pre-determined area. In support of using system estimation, Zepada (1994) pointed out that single equation estimation in such a case (our case) is more likely to bring simultaneity bias as demand and adoption are endogenously determined. Smallholder bean farmers in Mozambique plant both local and improved bean varieties obtained from different sources; the market, recycled from previous harvest, and some from input support programs (World Bank, 2012). Every growing season, farmers must decide what source of seed to use in growing beans. They might purchase seed in the market or use a portion of their own grain production as \"seed.\" Adoption of commercial seed technologies may lead to costly changes in the mix of other productive inputs such as land and labour, thus making any investment in seed technologies more costly and riskier than is often perceived. Facing nontrivial costs and risks, bean producers must choose between buying or not buying seed in a manner that maximizes their utility given both market and non-market factors.Using improved bean varieties as the target commodity, our model estimates improved variety adoption and seed demand (seed purchase) decision factors jointly in Angonia Mozambique. The main reason for using joint estimation is that more information can be used and as a result, more precise parameter estimates are obtained compared to single equation estimation i.e. OLS regression estimates. Like in other developing economies, some farmers did not plant any improved bean variety and therefore we defined the dependent variable as the proportion of area under improved bean varieties censored at zero. This implies a censored regression specified by a Tobit model of the form:Where: Yi = proportion of area planted to and improved bean variety, i*= non-observed latent variable and T= non-observed threshold level. Once a household has agreed to plant an improved variety, it simultaneously decides on the quantity of seed required to plant per given area.Assuming that the improved variety is made available, the household seed purchase decision is conditioned by the traditional input market factors, as well as other household specific attributes that may form part of the adoption decision model. The demand model may be specified as follows:Where: D= the quantity of seed demanded by the i th household (taken to mean strictly seed purchased from the bean seed market), Z= a matrix of household socioeconomic factors influencing seed demand, E= a matrix of exogenous input market factors, and Φ and γ are parameters to be estimated while ε = stochastic error term. It is important to note that variables contained in B and Z could overlap.The correlation coefficient between the errors of the two models measures the extent of correlation between the two equations. To account for any cross-equation correlation, the two models were estimated simultaneously. List of independent variables selected for the adoption model were chosen based on adoption literature. Basically we use; household socioeconomic attributes, crop production characteristics, crop management style, improved bean variety attributes and improved variety characteristics to explain variability in improved seed adoption and demand. Only smallholder farmers adopting the improved bean varieties were included in the demand model.The results for the sampled households showed active participation of both men (57.8%) and women (42.2%) in agricultural activities in Angonia. The results also show that bean farming in Angonia is done by both men and women which imply both gender groups are interested in the crop. Interest for the crop by both men and women is a good thing as it can impact positively on productivity and production of the crop. In addition, results showed that most (79%) most of the smallholder farmers were married, and only 21% of the sampled smallholder farmers were not married. Most of those who were not married were found to be; single never married (16%), divorced (3%), and widowed (2%). Marital status is a reflection of the strength and stability of the family system and it has knock-on effects on farm productivity. Literature shows that high proportions of divorced or widowed often returns a high dependency ratio as there will be more dependents compared to the active workforce which negatively affects productivity.Literacy is important as it a good proxy for education (both formal and informal); it determines a household's level of awareness to new ideas and technologies which might better the household's living conditions. Generally a greater percentage of the households were found to be literate as 55% of the household heads could read or write. The other portion (45%) were reported to be illiterate, they indicated that they could neither read nor write at the time of the survey. Illiteracy was found to be higher amongst women than men; 57% of the illiterate farmers were women.The result on literacy came as a surprise since Angonia is one of the rural districts with the highest number of schools. Table 7 below indicates statistics on literacy levels. Results also show that most of the farmers are experienced in farming in the district. Average number of years of experience of farming in the district was found to be 16 years. The common bean has a long history of cultivation in the district; one farmer indicated growing the crop consistently for 56 years. On average, each household had about 3 members who could provide labor in the field. This could imply labour was not a challenge that could significantly constrain productivity in the study area.The study showed that 99.7% of household heads are occupied in agriculture as their main livelihood activity to which they allocate most of their resources (land, financial and human).Households that prioritize farming as a main occupation ahead of other livelihood activities are more likely to take up agricultural technological innovations (including seed of improved varieties) compared to their counterparts who prioritize other livelihood activities. Table 9 shows the proportion of farmers into fulltime farming. Ownership of household agricultural equipment reflects the ability of a household to timely execute agronomic operations, for instance tap into moisture opportunities. Households that do not own the basic agricultural equipment such as hoes or ploughs have to delay the execution of agronomic activities such as land preparation and in some cases planting and weeding since they have to either hire or borrow. As such, they fail to compete with the rainfall regime and this negatively affects the potential yield. 10 shows that, most of the households owned hoes (96%), bicycles (70) and radios (77%). For other equipment, results show that very few farmers owned them. For example, only 8% of the farmers owned a sprayer, 2% owned a moldboard plough, 2% owned a wheelbarrow, 11% owned an ox-cart, and only 39% owned a cellphone. The results show that ownership of basic agricultural equipment and assets is very poor. Assets are important in raising total farm productivity in smallholder farming, ownership of sprayers, moldboard ploughs and wheelbarrows for example is expected to improve total farm productivity. Traditionally, the farmers in Angonia do not use ploughs; they instead use hoes to make ridges and plant on the ridges. The low ownership of assets could imply serious scarcity of some vital assets a phenomenon that can constrain adoption of improved bean seed and other technologies in Angonia, Mozambique.In Mozambique's smallholder farming systems, livestock forms a key component of a household's overall economic well-being. On the other hand, livestock is seen as the accumulation of wealth which the household can fall back to during time of need. The proportion of households who own livestock in the form of cattle, donkeys, sheep, goats and chickens is tabulated in Table 11. livestock can serve as sources of income (when need arises households can sell to get income), livestock waste can also be used as farmyard manure, and cattle and donkeys can be used to supply draught power. In rare cases, households can also slaughter their animals to supply the family with food, implying that they can be a source of the much needed protein in rural settings. This therefore implies that livestock ownership can influence positively adoption of improved crop varieties.Land holdings represent a key factor of production for agricultural enterprises in smallholder farming systems. The amount of land which a household allocates to a particular crop depends largely on the land holding which a household owns. In Total land allocated to Legumes 3.15 3.15Results show that in Angonia District, the main crops grown are maize (97% of respondents) common bean (94%) and soybean (59%) and groundnut (45%). Other crops grown in the district include Irish potato, cowpea and tobacco. Table 13 show the statistics for the major crops grown in the district. In the table we report number of farmers who indicated to have grown the crop in the 2013/14 season, the average seed rate per hectare and mean output per hectare. Mean seed rate for maize per hectare was found to be 30 kg implying the farmers are slightly exceeding the recommended rate for maize which is supposed to be 25 kg, due to two possible reasons. First over seeding to primarily to cater for unreliable seed germination of poor quality seed. Second, the use of old open pollinated varieties that typically have large kernels. Maize plant population management could have implications on common bean production since most of the farmers grew common bean in intercrops with maize. Overpopulation of the maize crop could reduce productivity of the intercrop due to competition for resources (moisture nutrients in the soil).Meanwhile, mean seed rates for all the other crops including the common bean were below the recommended rates. For the common bean, the low seed rate was due to the wide row spacing used in maize-based intercrops. In terms of output, results show that average maize output was 1926 kg/ha. For the other common legumes such as common bean and soybean the yield per hectare was found to 172 and 231 kilograms respectively. Generally, productivity for most of the crops except maize was low. This highlights the impact of lack of productive resources as highlighted earlier such as low ownership of productive assets and livestock. Nonetheless, a further inquiry will be required to establish the constraints productivity in the other crops. Otherwise the results suggests that more allocation of scarce resources to the main staple, maize at the expense of all other crops such as the common bean and soybean despite their importance as sources of food and income for the households.Cropping systems are very important as they can have implication on crop and total farm productivity. Results show that most farmers grew beans as an intercrop. Data collected for four cropping seasons show that at least 90% of farmers grew beans in intercrops in the summer season.The main component crop in the intercrops was found to be maize. However, in winter it was found that sole cropping was a slightly high as farmers indicated that at least 29% of beans were grown as a single crop. Intercropping was still the dominant cropping system as more than 70%used the practice regardless of the season (Figure 2). Respondents also highlighted that the winter cropping is mostly used to bulk seed for the summer season, suggesting a complementarity between the two systems. Table 14 shows statistics on the proportion of farmers and the cropping systems they applied to beans in the past four seasons. Bean production is one common practice in Angonia. Farmers grow beans for their household dietary needs and also for the market. Results show that on average, households in the area have been growing the crop for 16 years. Table 15 show bean production trends in the past five seasons. Results for the past five seasons show that common bean production is common in the summer season; at least 76% of farmers grew common beans in summer, but the proportion dropped to at least 50% in the winter season. The percentage drops in winter probably because of resource constraints faced by farmers, especially access to dambos with consistent water supply. Results also show that farmers on average, used a minimum seed rate of 18kg/ha and a maximum of 25kg/ha rate in the past between 2010 and 2014. This seed came from farmers' own farm-saved seed (76.9%), free distribution from government/ NGO (0.3 %) or purchase from the local market (22.7 %). Despite, being slightly higher than for winter, seed rates for the rain-fed bean crop were still below the recommended seed rates. This shows that farmers are using only 25 % of the recommended seed rate of 100kg per hectare for the large seeded varieties that they grow. This could also be attributed to lack of resources such as irrigation facilities, seed, chemicals and fertilizers as farmers choose to cover larger areas with less seed and other resources. Consequently, the results also show that harvested yields were low with a maximum of 179 kg per ha and a minimum of only 89 kg per hectare, representing only 7% and 3 % of yield potential (2,500kg / ha) of released bean varieties. After harvesting, farmers kept an average of 69.02 kg for household consumption and 26.45 kg for seed.the rate of use of some important productivity enhancing inputs in 2013/14 season including use seed of improved varieties, use of fertilizers and inoculants. Results show that only 2% of the farmers in the 2013/14 season used inoculants in their bean production. Legume inoculants are used in attempts to ensure sufficient rhizobia for maximum nodulation and nitrogen fixation. Our results imply that level of inoculation was very low which can be attributed to lack of access to the inoculants for the common bean. Moreover, only 32% of the farmers used basal fertilizers, 30% used top dressing and only 21% used organic manure. Level of fertilizer use for both organic and in organic was generally low.In smallholder farming households, members also practice division of labor as they share responsibilities in the family for efficiency purposes. Results from our study showed that men dominated most decision making roles within the households. Results reveal that about 69% of decision makers on whether to grow common bean or not within the households were men. In other cases decisions to grow beans were made by women (13.6%), or by both husband and wife (17%) and rarely by the whole family including children (0.6%). Moreover, a more similar trend was found for control over bean production processes. Men were found to dominate control in production processes (49.2%), with wife controlling production less (25.1%). Joint decision making in controlling production was found to be at 24.1%. Joint decision making involving whole family was rare in all circumstances. Table 18 shows the proportions on decision making. Moreover, men also dominated in deciding whether to sale beans or not (71%) and on control of income from bean sales (55%). Women's role in marketing and control over income was very low at less than 16% in both occasions. Joint decision making involving the husband and wife increased slightly on control over income from bean sales to (29%). Overall, results show that men had significantly higher control than women over bean production and marketing activities in the study area. Results are however inconsistent with the general notion that common bean is a women's crop, men in Angonia were shown to have a bigger role to play in production and marketing of common bean in the district. The main reason for this observation is that, common bean is a major cash crop with high returns in the area. According to some respondents, especially women, men get more involved in controlling the crop when scale of production increases. It therefore implies that an increase in adoption of improved bean seed by the farmers in the district can raise percentage involvement of men in common bean production and marketing.3.1.9 Bean varieties grown, diversity and geographical spreadThe study also collected data on the different varieties grown by households in the past two seasons, particularly to take note of the dominant bean varieties and also to assess the levels of use of some of the improved bean varieties. Variety names were captured using both local and official names. Results show that the most commonly planted variety for the past two years was Phalombe (52%) and the least were the improved varieties known by name; A222, AFR703, CAL143, NUA 45, SUG 131, VTTT 924/4-4, and VTT925/9-1-2 planted by only 0.3% of the farmers in the previous two years (Table 19). On the contrary, 20 % of the farmers reported knowledge of the existence of these improved varieties. Some modestly common varieties were found to be Namalaga (42%), Khaki (Woyanga) (44%), Demeter (29%), Khaki (Mkhalatsonga) (34%), Domuewawilira (23%), Mgogodo (21%) And Kayera (42%). Other names of local that were reported by farmers were Nazirombe (Calima / red mottled type) in Domue Mtengo umodzi area and Kaburungire (sugar type) in MacangaThe names of some varieties are mostly based on colour of other known/popular varieties. There is a general overlap in names as farmers use their own non-official naming system; for instance, the names CAL 143, Kachiyata and Napilira describe all red mottled varieties, Mgogodo and Khaki describing khaki varieties and Domue and Domue wawilira for cream varieties. Similarly, Demeter, Katalina, Charachankono, Kamphesa and Nkhawayatha, are all sugar type beans. Domue is popular with farmers because it is very high yield. This small seeded variety, however does not have a good market due to poor taste, hence its production is waning. Nkhawayatha is a sugar type of variety, rounded, but smaller than Kamphesa. This variety is popular around the areas of Seze and Domue. Phalombe is a red kidney local landrace, which has been passed down the generations.It was first popular in a district called Phalombe in Malawi. Farmers in Angonia grow this variety in response to its ready market in Malawi. The farmers emphasized that whenever they grow the varieties Domue and Chakuda (black bean), it will be for home consumption mostly due to lack of a defined market. For instance, during the time of the survey (mid marketing season), the following prices were prevailing at the Domue market: MK 450 5 (US$1.02) per kg for the Khaki type, MK 400 6 (US$0.91) for Kamphesa whereas there were no prices at all for the varieties Domue and Chakuda Characteristics that influence variety selection and adoption by farmers was another area of focus of the study. Paying attention to the attributes farmers consider most when selecting bean varieties is key as it can improve on adoption of improved varieties. Table 20 shows the proportions of farmers who consider the given variety characteristics as very important in selecting bean varieties.Farmers were found to consider a lot of attributes when selecting varieties to adopt and grow.Results show that the most common characteristic considered by farmers in the study was known market for the variety (70%) while grain color was considered the least important characteristic (40%). Known markets for a variety are very important as farmer will have specific targets upon 7 Varieties marked with an asterisk (*) are improved varieties recently released in Mozambique harvesting their produce. This result confirms the earlier finding that farmers in the area grow beans not only for consumption but also for sale. In addition, farmers also revealed that time taken by variety to maturity and grain yield for the variety are also very important. Results indicate 68% of farmers considers time to maturity to be very important and 67% indicated that grain yield of the variety is important. Another two important characteristics farmers indicated were whether a variety has edible leaves and whether the variety took less time to cook. Results from the survey indicated that 65% of the farmers listed the two characteristics as very important. If a variety has edible leaves, it means that the farmer will benefit from consuming the leaves as relish and then later as grain as well. Cooking time is important also as it saves energy and resources of the farmer by taking less time during cooking.Other characteristics that were indicated by farmers to influence their choice of variety were;drought tolerance (52%), pest resistance (43%), drought resistance of variety (48%), plant vigor (41%), grain size (50%), grain taste (58%), nutrition (54%) and performance in mixed cropping (42%). It is very important to take note of the characteristics farmers pay attention to in future interventions aimed to improve adoption of improved bean varieties. One more thing will be to improve on awareness of the attributes of improved varieties so as to influence adoption significantly.The study also assessed the farmers' awareness on some of the bean improved varieties that were being promoted in the study area. Results show that awareness of availability of improved bean varieties was high (80%). However, use of improved varieties was very low (25%) at the time of the survey. A positive result from the survey was that most (91%) of the farmers expressed willing to plant improved varieties in future (Table 21). Furthermore, the high rate of awareness can have direct influence on adoption levels of bean improved varieties Ever planted a bean improved variety 25%Wish to adopt in future (%) 91%Market information is important as it reduces transaction costs for farmers in search of markets. It improves decision making of the farmer especially when choosing whether to participate in the market or not to and also when deciding on the choice of marketing channel to use. Market information access for the improved bean varieties is also important as it can jeopardize adoption of improved varieties by the farmers as well. Lack of market information for available improved varieties on the market can reduce adoption of the varieties.The survey captured sources of various market information and information sharing. This information was captured so as to have an improved understanding of the various sources of information for the smallholder farmers in the study area and if information sharing is a common practice in the area. Information collected covered output and input prices, quantities demanded and supplied in different markets, marketing opportunities, quality standards, availability of transport and input support. Level of access to the various information and the level of sharing is shown in Table 22. Results revealed that most of the farmers access input and output prices information (64%).Moreover, information on input and out prices information is shared the most as 94% of farmers who had access indicated that they share the information with others. Other common types of information were found to be marketing opportunities information access (57%) and quantities demanded information access (55%). However, supplies in different markets (31%), information on quality standards (36%), transport services information (31%) and input support (36%) were less common. The interesting part of the result is that those farmers who had access to information shared with other farmers. Results found that at least 80% of farmers with access to information shared it with other farmers.Sources of information are also important as they reveal level of accuracy and reliability of information. The study gathered data on the main sources of information and ranked sources using individual farmer scores. Results revealed that the main source of information for all the listed sources except transport information is farmer groups and associations (51%). Farmer group associations are making significant contributions in bean farming in the study district though improving farmer cooperation and as reliable sources of information. Main source of transport information was found to be other individual farmers. Results of the sources of the different types of information are shown in table 23. Results from the econometric analysis in table 25 revealed that adoption rate, food consumption score, wealth index and price of bean per kilogram significantly influenced demand for seed (seed purchase).Adoption rate of improved bean seed variety was found to influence improve seed demand significantly which implies that working to improve adoption of improved bean seed varieties directly improves quantity of seed purchased. The result is an important indicator of the utmost importance of working to improve adoption of improved varieties in Angonia Mozambique if we are to raise demand significantly.The food security status of the household as proxied by the food consumption score (FCS) was found to have a positive significant influence on improved seed demand. This implies that households that are food secure are more likely to demand improved seed than their counterparts.This could be explained by the fact that, households may have their prime objective of feeding their families before anything else. They are only moved to attend to other resource demanding activities when their families are in a reasonable food secure state. This again gives an important lesson on interventions meant to improve seed demand and adoption as failure to consider the food security situation in target areas can jeopardize expected impact.Wealth index was also a significant variable found to influence seed improved seed demand positively. Household's wealth index is a measure of level of liquidity within the household. In developing countries, including Mozambique, smallholder agriculture where households are usually found to be resource poor and have limited access to credit, their wealth is usually equivalent to their productive assets (Freeman et al., 2004). The wealth status of the household significantly influences quantities of seed purchased (demanded). It therefore means that if a household improves from a lower wealth status to a higher level demand for improved seed demanded increases.In addition price of a kilogram of improved bean seed was also found to have a negative significant influence on improved seed demanded. Precisely model results reveal that a unit increase (decrease) in price (1 metical) will reduce (increase) demand by 0.22% ceteris paribus. The classical demand theory dictates that the quantity of demanded for a normal good decreases with increasing price. It is only for luxury goods we see an opposite trend. The result therefore imply that we should consider price set for improved seed in order to influence demand in a positive way, hiking improved bean seed prices may lower seed purchase significantly.Results from the econometric analysis in table 25 revealed that grain yield characteristics, known market, seed purchase and household size significantly influenced adoption of improved bean seed.Grain yield characteristics of improved seed were found to have a positive significant influence on improved bean seed adoption. This implied that if farmers perceived the improved bean seed variety to have superior grain yield characteristics than the local varieties chances of adopting the improved variety increased by 15%.In addition, known market as a characteristic for the improved variety was also found to have a positive significant influence on adoption. Results reveal that if the farmer knows the market for a certain improved variety say for example NUA45 probability of adoption for that farmer will increase by 26%. It therefore shows the importance of improving awareness and education to farmers on the specific superior characteristics of promoted improved varieties. Researchers and technology disseminators should intensify on farmer education on the improved varieties so as to have a significant influence on adoption.Moreover, it was found that household size had a negative significant influence on adoption of improved been seed varieties. An increase in the household size by a single member was found to decrease odds of adopting improved bean seed varieties by 4%. This could be because household size represents size a financial burden the household faces, hence competition with seed purchase.Big household sizes, especially those with a high number of dependents, are therefore less likely to have additional resources to adopt improved bean varieties. Similarly, it has generally been observed that poor households are less likely to adopt new technologies especially when acquiring them requires some resources (Gebre, 2012).From the study results descriptive statistics and econometric estimation we can a number of conclusions.First, agriculture is the mainstay of Angonia district; engaging more than 99 % of the farmers on a full-time basis, both experienced and economically active men and women. Men seem to control the land and cropping choices. The common bean is traditional crop in the district; farmers had a mean experience of 16 years and reports of transgenerational knowledge transfer abound.However, low literacy, especially among women could be limiting use of technologies and negatively affecting demand for seed of improved varieties.Second, farmers in the district are slightly resource-constrained shown by the low average wealth index of 0.55 and low ownership of assets, household farming equipment and big livestock. Most of the farmers owned hoes and chickens as shown by the high percentages. Despite the resorce constraints, the households in the district were close to food secure with an average food consumption score (FCS) 8 of 36.Third, farmers have access sizeable pieces of land where various crops are grown, and the common bean comes second after maize, grown by 94% of the farmers for household income and, food and nutrition security. Despite its high ranking in importance, the common bean faces low yields due to suboptimal seed rates in both sole and mixed cropping systems and low use of productivity enhancing inputs such as fertilizers, pesticides and quality seed of improved varieties. Bean production is therefore characterized by production of traditional varieties using farm-saved 'seed', high awareness (80%), but unreasonably low (25%) use of improved varieties.8 FCS=ƩaiXi Where, ai is the weight assigned to one of the eight broad food groups, based on its nutritional importance and Xi is the frequency for a seven-day recall period with which the food group is consumed. The eight food groups and their relative weights are cereals and fibres (2), pulses (3), vegetables (1), meat and fish (4), milk (4), sugar (0.5) and oils (0.5). Households with an FCS of less than 21 are deemed food insecure, those with an FCS between 21 and 35 are considered to be borderline and those with an FCS above 35 have an acceptable food security status.Fourth, choice of bean varieties is driven by complex combination set of traits ranging from field / agronomic characteristics to food-related attributes. For farmers in Angonia, with a market participation of 64 % and selling 40 % of their produce, the market had a huge influence of varieties grown, mostly determined by the grain colour or market class. Control of the crop, from land allocation to use of income from bean sales is dominated by men, who are often the registered members of farmers' groups or associations, which in turn are pivotal in disseminating information on bean production and markets. Information sharing amongst members was also found to be very high.Fifth, based on the econometric estimation of factors influencing demand for seed, results show that annual effective bean seed demand in the district is about 518 t, against a current potential demand of 2,069 t. Both figures are way below the ideal potential demand of 9,500 t based on the recommended seed rate. Reaching these seed demand figures would require streamlining the bean improved varieties to specific markets; a known market was cited as a major driver for bean variety choice. The current proportion of farmers (22.7 %) that purchasing grain for planting offers a starting point to ramping up effective demand for seed of improved bean varieties.","tokenCount":"8209"} \ No newline at end of file diff --git a/data/part_3/5509014996.json b/data/part_3/5509014996.json new file mode 100644 index 0000000000000000000000000000000000000000..d5875b8f0c67f176efd7e1667f86cb92c6026248 --- /dev/null +++ b/data/part_3/5509014996.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"80daab07b9dca8da42bae99ed6d15099","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/a9bbcf20-5cd6-4d17-946d-8de47c040fc0/content","id":"360401141"},"keywords":[],"sieverID":"4f917065-a841-460c-9e8f-04d12d99d1ce","pagecount":"2","content":"Weed control is one of the most important activities in smallholder agriculture and success or failure depends on effective and timely management of weeds. Poor weed control at the beginning of the season may greatly reduce yields. One of the options for effectively controlling weeds is the use of herbicides. Chemical weed control is quick, labour saving and can be very effective if applied properly. However, the cost and availability of herbicides, and the lack of technical ca Glyphosate is highly effective and affordable. Glyphosate is a desiccant and will give complete control of all growing (green) plants i.e. control of the first flush of broadleaved weeds and most of the perennial grasses.Glyphosate is relatively friendly to the environment and there are few cases of its release into groundwater.Glyphosate has sometimes led to weed resistance; however, very few cases have been reported to date. pability to apply them safely, correctly and precisely can be major draw backs. Glyphosate has long been a preferred herbicide in CA and this bulletin will focus on its correct use.After successful and continuous control of weeds in the first years, the herbicide dosage can gradually be reduced. lyphosate only controls living and growing plants and will kill plants only if it is effectively absorbed by living tissue. The best application time is before or soon after sowing the crop. Glyphosate is more efficient at low pH and a handful (150gr) of urea mixed with the water and herbicide in the knapsack sprayer will decrease pH and increase its efficacy. On a maize field it can be applied up to four days after planting but before crop emergence. In general, a rate of 2.5 litre/ha glyphosate applied at an application rate of 100 litre water/ha will give good weed control for most perennial weeds. Some problematic weeds will need several consecutive years of application to be completely controlled by the herbicide.On contact with the soil, the herbicide is rapidly deactivated by clay and therefore has little or no residual effect. It is extremely important to mix glyphosate with clean water in the sprayer to avoid deactivation. Year-round weed control, which involves glyphosate, will eliminate problematic weeds like couch grass ( L.).Glyphosate is not recommended for use on soils with very high sand content (>90%) as it may remain active and damage emerging crops.Are there any risks when applying glyphosate? Knapsack sprayers are commonly used to apply glyphosate. For successful and uniform application the type of nozzle used is critical. Flat fan nozzles are recommended for glyphosate application. Damaged or worn out nozzle tips lose the ability to properly regulate the spray pattern and should be replaced. Nozzles mounted on multiple nozzle booms increase efficiency and coverage of the herbicide application, which is important to achieve complete control. Use protective clothes when applying herbicides. These should include a rain coat, gum boats, rubber gloves and respiratory mask.. The application rate depends on:the pressure in the boom; the size of the nozzle; the width of the spray (swath) and the walking speed of the operator (which should not vary). It is very important to keep the pressure in the sprayer boom constant, select the right nozzle type and size (e.g. LF3) for your application rate, and keep all nozzles operating correctly.Sprayers must be calibrated to avoid too high or too low application rates of any herbicideDetermine speed:Determine discharge rate:Rinse and fill the tank with water; remove, clean and replace nozzles and strainers; start the pump and check for leaks; apply pressure and check if nozzles work properly.easure off a convenient distance e.g. 50 m and, with a watch determine how long it takes to walk the measured distance. It is useful to walk the distance several times until the walking speed is fairly constant.With a single nozzle lance put the nozzle at spraying height (about 50 cm above the ground), apply pressure and turn on the sprayer, measure the width of the area being covered.Fill the tank to a defined mark, apply pressure and start spraying and walking from the starting point at the previously selected walking speed, after the 50 m mark, return while spraying continuously. Immediately after spraying for 100 m (50m x 2), measure the remaining water in the tank with a measuring cylinder. Alternatively, if you have access to an accurate weighing scale, the sprayer can be weighed before and after application to estimate the amount of liquid sprayed. Remember that 1 litre = 1 kg.Select a walking speed that you can maintain through the working day.The swath of multiple nozzle booms can be calculated by as follows: Distance between nozzles x number of nozzles; or in a similar way as described for a single lance. Ther efore, to apply glyphosate at a rate of 2.5 l/ha, 375 ml of herbicide have to be mixed with water in a 15 litre knapsack spr ayer. There will be 7 full tanks applied per hectare (105 ÷ 15).Herbicide per-knapsack sprayer = 105 litres/ha x 15l = 0.357 litres","tokenCount":"832"} \ No newline at end of file diff --git a/data/part_3/5516669310.json b/data/part_3/5516669310.json new file mode 100644 index 0000000000000000000000000000000000000000..47e4fce339ba1d89d2e23f95a9f5041431643b33 --- /dev/null +++ b/data/part_3/5516669310.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"7a2b009014a635ad3bf19fec5f4d8183","source":"gardian_index","url":"https://data.cimmyt.org/api/access/datafile/:persistentId/?persistentId=hdl:11529/10549138/4","id":"322772642"},"keywords":[],"sieverID":"4b0a2050-938d-4a29-bcf7-c68eeac27617","pagecount":"6","content":"This is a report for soil analysis results obtained using mid-infrared (MIR) spectroscopy technique combined with machine learning. The results are obtained from 210 soil samples collected from Rwanda and 172 soil samples collected from Tanzania under the GAIA project.The Rwanda samples were submitted to ICRAF Soil and Plant Spectral Diagnostics Laboratory in Nairobi on 14/June/2022 whereas the Tanzania samples were submitted on 13/July/2022. All the 382 samples were scanned in duplicates on a Bruker Invenio-S Fourier-Transform Infrared (FTIR) spectrometer. The Rwanda samples were scanned on 30/June/2022 and the Tanzania samples on 18/August/2022. From each country, a subset of the samples had been selected for wet chemistry analysis and this was done at the Crop Nutrition Laboratory (CROPNUTS) in Nairobi.The samples were predicted for the requested soils parameters using ICRAF's global soil models. The models are fitted using Bayesian Regularization for Feed-Forward Neural Networks (BRNN) and Random Forest (RF) algorithms.The performance of the model was based on a 30% hold-out validation set. 1. Before scanning, the samples were prepared following the CIFOR-ICRAF sample preparation protocal.For more information on sample processing including labeling, subsampling and packing see ICRAF's general soil sample processing standard operating procedures.2. Spectral measurements for the 210 (Rwanda) and 172 (Tanzania) soil samples were acquired using Bruker FTIR HTS-xt spectrometer fitted with a high sensitivity liquid nitrogen cooled Mercury-Cadmiun-Telluride (MCT) detector. The spectra were recorded in the range 7498 to 599 cm -1 which were subset further during processing to work with mid-infrared (MIR) region from 4000 to 600 cm -1 . More details on the scanning procedure is explained in this protocol. Scanning on the InvenioS uses same protocol.3. The spectra were pre-processed using the Savitzky-Golay derivatives (Savitzky & Golay, 1964) followed by mean-centering method. This is to enhance the peaks of the spectral measurements related to certain absorption features. Spectra preprocessing removes extraneous sources that are not important to the analysis, and reduce curvature and baseline shifts effects.4. The spectra were projected on the spectral space of the existing model to assess how well these soils spectra are represented in the library spectra space as shown in Figure 1. If the points from the two sets give fair to perfect overlay (no new points outside the model's spectral space), it means the existing models can be used to make predictions for the new spectra.Figure 1: PCA scores plot overlaying points from calibration models' spectra and for the survey samples (N=467). The red points are the survey samples to be predicted based on models developed on grey points (samples used in the development and evaluation of the spectral models). About 70 percent of the grey points (N = 2435) were used to develop calibration models and 30 percent for evaluation (N = 1040). The distribution of the red points in the PC space indicates that they are within the same population as the samples used to develop the prediction model. Thus, the model yields reliable predictions of the properties.1. Calibration models used for predictions were fitted using BRNN and RF.2. The samples included in each dataset (calibration and validation) were different for each model since the data with value that lie between 5% and 95% of each property were included. In this way, we excluded extreme values that will bias the model and the predictions.3. The performance of the validated models is summarized in Table 2.4. For soil properties that had wet chemistry data, the data was used to validate the soil properties models and the validation performance is summarized in The csv file with the MIR predicted soil data is sent on email as an attachment together with this report to the client(s) or scientist(s) who had requested the analysis. The MIR spectral table is only available on the shared dropbox link because it is large to be sent via email.","tokenCount":"635"} \ No newline at end of file diff --git a/data/part_3/5519737954.json b/data/part_3/5519737954.json new file mode 100644 index 0000000000000000000000000000000000000000..8fbabd25ac6b9fa6fd50fa0f94bf58aa8c3c109c --- /dev/null +++ b/data/part_3/5519737954.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"f0fbeb6238584e97dacc61d900df6c6f","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/4baa0adc-2e07-4d63-aa43-319201a96dfb/retrieve","id":"-382570349"},"keywords":[],"sieverID":"cb0c1d14-efe9-4e31-9dfd-5233310e60c4","pagecount":"21","content":"Fair dealing and other rights are in no way affected by the above. The parts used must not misrepresent the meaning of the publication. ILRI would appreciate being sent a copy of any materials in which text, photos etc. have been used.The Gender, Equity and Empowerment Unit of the CGIAR Research Program on Agriculture for Nutrition and Health (A4NH) ensures that gender and equity is integrated into the research and activities done by the program. Gender is widely recognized as an integral part of the different systems of agriculture, nutrition, and health. A4NH defines equality as being concerned with the sameness of an outcome, and therefore the final distribution of a good; while equity is concerned with the fairness of a process, and therefore the just distribution of a good. In practice, this means that inequity can refer to differences which are unnecessary and avoidable but, in addition, are also considered unfair and unjust in the context of what is going on in the rest of society. Despite clear tests of avoidability and fairness, equity approaches are difficult to operationalize. Nonetheless, it is possible to work towards equitable policy; with an equity lens, five areas of policy come more sharply into focus:• The role of universal access to public services in better including the marginalized;• The role of targeted action for disadvantaged groups in actively addressing issues facing the marginalized; • The role of social protection in ensuring that the marginalized do not drop below a minimum level of welfare; • The role of redistribution through different policies in improving equity by reducing financial inequality; and • The role of embedded power imbalances in causing and sustaining inequity, and challenges to these.A4NH commissioned an external review of equity issues in A4NH research. Based on this review, the program management unit, with input from the program management committee, have prepared an implementation plan for integrating equity into A4NH research during Phase II. The review suggested the following aspects of equity: gender; income; age; youth; geography; ethnicity; disability. Gender, income, ethnicity and age were considered well-covered in Food Safety, but youth and geography are not well covered.Marginalized groups relevant to the food safety flagship are street vendors (often harassed by authorities), Pork joints/pubs and role of women, immunosuppressed (high risk of foodborne disease and may be stigmatized), youth (often searching for business or work and food systems provide opportunity), indigenous or tribal people (often have specific food safety risks), or intersectionality (especially youth, trade, gender and processing).Organizers: Kristina Roesel, Elizabeth Waithanji, Nicoline de Haan and Delia Randolph Facilitators: Elizabeth Waithanji and Kristina Roesel This training was conducted to enable participants to pursue equity and/or to intentionally address inequity in their areas of research and development work until inequity is eliminated.1. To introduce concepts of equity, gender and empowerment 2. To demonstrate ways in which equity affects veterinary work 3. To demonstrate how equity can be integrated in veterinary work 4. To give practical lessons on how to implement equity and gender in veterinary workThis session started with a quiz on the participants understanding of gender, the subject under which the concept of equity has been addressed most extensively (Box 1). Other terminologies used in gender discussions and whose effects intersect with the effects of gender, e.g. equity, equality, empowerment, were examined. The responses to this quiz enabled the facilitators to adjust the training to respond to the areas where students were less knowledgeable. Definition of equity, gender, empowerment and associated concepts This is a summary of how the concepts were used in the workshop, with some examples included from discussions with the participants.The principle that people should be treated as equals and that despite many differences, all people share a common humanity or human dignity. The three principles of equity are: equal life chances, equal concern for people's needs and fair access to opportunities (meritocracy) (Jones 2009). Equity refers to the fair distribution of a good or process among individuals or groups. Inequities are differences that are unnecessary, avoidable, unfair, and unjust. Inequities have been associated with the following concepts/conditions (Harris and Mitchell 2017).Gender: Gender is a social category usually associated with being a man or a woman. It encompasses economic, social, political, and cultural attributes and opportunities as well as roles and responsibilities (Rubin et al. 2009). Gender is a socially constructed system of dynamic differences among boys, girls, men and women. It is the process through which differences based on presumed biological sex are defined, imagined, and become significant in specific contexts (Hanson 2010).Workshop example: According to the students, in Malawi, a good woman cooks well, does not talk much, carries out instructions from husband without talking back, lays out water and clothes for spouse as part of her home making obligations. A good man provides for his family, fixes broken things in the home, is courageous and protects the family.Because it is socially constructed, gender changes and is changeable. Gender, therefore is a social identity for humans. It differs from the biological identity sex, which is used in the entire animal kingdom and is mainly unchangeable. Sex is the biological state of being male or female (human and animals) and is represented by the presence of distinct anatomical features like gonads (testicles and ovaries), penis, vagina, mammary glands and beards/manes.The processes that define gender are always influenced by other dimensions of perceived difference (e.g. age, ethnicity, economic status -class, caste, physical ability) and develop through everyday practices (Pratt and Hanson 1994). This influencing of dimensions over each other is called intersectionality (Hankivsky 2014).Gender issues are pervasive in all aspects of development. Income: Income is money received, especially in regular intervals, from work done, goods and services sold or from investments. Income, and poverty more generally, is a key equity issue. Income and poverty, therefore, can be used as a key lens through which to research equity.Workshop example: The students indicated that women from Malawi generally earn less money than men. It is difficult for women and youth to access loans, but lately many government programs that lend women money have emerged.Life-stage/age: Equity in the life cycle implies relative power between people depending on their position defined by age, marriage, household position (head/widow etc.) and which intersects with other facets of identity, most notably gender. For some projects, it will make sense to focus on certain life stages as conditioning different forms of marginalization. E.g. the experiences of unmarried first-time mothers are important to understand, or of the elderly in livestock keeping households. Depending on the project, therefore, different life stages are important to consider when conducting research on equity.Workshop example: Men from Malawi, according to the students, are pushing for a paternity leave, but the government is reluctant to give them because it is likely that they'll spend this leave in bars.Youth: This category can stand alone or belong to the life-stage or age category depending on the prominence it takes in research and/or development. E.g. youth as a marginalized group in livestock ownership and the industry in general.Geography: Geographical inequities can be observed in access to land, roads, markets, and comparisons between areas such as rural and urban, or highlands and lowlands. Inequity in terms of access to markets and to services is therefore captured as part of a focus on geography.Workshop example: Students said that Njeru, in Malawi, has no public transport vehicles on Sundays.Ethnicity or caste: Ethnicity (and in some contexts, caste) is acknowledged as an important aspect of marginalization in some contexts. Ethnicities tend to cluster in the same geographic locations, focus on ethnicity may be underestimated if geographical focus is implicitly addressing this aspect of marginalization. It would, therefore, be important to make this explicit in research to tease out the different aspects of marginalization at play.Workshop example: \"In Malawi, ethnic inequity is a guarded secret\", said one student, who was supported by the rest.Disability: Disability, whether physical or mental, is a final aspect of marginalization that has emerged in literature as an important dimension through which inequity in livestock research and development can be understood.Workshop example: Students noted that there are no physically disabled students in the veterinary school. The level at which a person can define, choose, have control over and share resources like another person. In gender equality, therefore, women should be able to define, choose, have control over and share resources, just like men. Equality means that the outcome is the same for all groups despite the differences among the groups.Table 1. Differences between equality and equity Equality Equity Founded upon efficiency and utility principles underpinning much development economics Founded upon distributive justice or socially just allocation of goods. It is about achieving the highest average levels of achievement of distribution of goods such as education to farmers, access to social services It is about how distribution is done, whether it is fair and according to (i) need and (ii) features of people to whom distribution goes e.g. Marginalized populations.Focuses on process -fair process, equal life chances and equality of opportunityEmpowerment: is the expansion of people's ability to make strategic life choices, particularly in contexts where this ability had been denied to them. Empowerment is the ability to define, choose, have control over and share resources. For empowerment to happen, one must have an enabled agency. Agency is the capacity of an individual to act independently to make his or her own free choices (Brown and Westaway 2011) and is enabled by skills and confidence (AWEP n.d.). Agency is, therefore, a prerequisite for gender equality and women's empowerment. Once women's agency is strengthened, they can challenge the way they relate with household and community members, e.g. by being able to negotiate for more autonomy in making decisions on income expenditure. This ability to negotiate enables women to transform the usually oppressive structures that define their and others' identities and the unequal relations of power that ensue among them. Some slides presented in the training on concepts: To start off the discussion, the facilitator can give own example about how veterinarians do not like working in rural areas, livestock owners get limited services from community animal health workers; Gender issue -when I visit a farm, I often find the farmer's wife who insists that I must speak to and agree with her husband (works in an office in the city and is most likely less knowledgeable about the cow than wife) before I treat the cow). Some students' experiences: Disability inequity: There are no disabled people -e.g. lame, in the veterinary profession. There are no considerations for them on campus. You must be able bodied around here.Stage in life cycle/youth/gender inequity: \"I was on attachment at the wildlife services department. A very knowledgeable young female ranger was not allowed to accompany me (young male veterinary student) to the forest patrol and I was assigned a less knowledgeable male ranger because, as the boss stated, \"there were too many snakes around\". I felt she was denied an opportunity to share her knowledge and acquire more because she is female and young.\" Gender inequity: \"Working on attachment at a commercial chicken farm, I (young female vet student) was surprised to learn that there was no female employee working with the chickens -feeding them, cleaning or collecting eggs. When I asked why there were no women working at the chicken unit, I was told that there used to be some female workers, but they were removed because \"they were not strong enough\". Other considerations?The traffic light tool will help you show the area of equity used and the extent to which the various components of your study delves into equity issues. Is it deep (used in the analysis), superficial/implicitmentioned but not used in analysis or lacking. It is important to know this from the onset. The colours of the lights may also be replaced with signs such as ++ for green; + for orange and nothing for red (Table 3). Participatory methods from social science have been adapted for use in veterinary medicine in resource-poor communities with limited veterinary coverage and limited data on disease. Tools used during a participatory rural appraisal include focus group discussions, key informant interviews, mapping, ranking, scoring, proportional piling, seasonal calendars, and activity clocks. Examples for each were repeated during the training including how to carry out the exercise and how to present the results generated with the community in a research report.Following that, we discussed what traits make a good facilitator in participatory methods and shared a checklist.The twelve participants were asked to form three common interest groups constituted by four participants each. Each group was asked to identify a veterinary research proposal project addressing (in)equity issues resulting from the context in which the problem occurs. Participants were free to present their current proposals under consideration for funding, but they all chose three different projects. Three proposals, whose titles are listed below were developed during the training.Group 1: Impact of the pass-on dairy program on the youth Background: A dairy cow pass on program to low income households is being implemented in parts of Malawi where an in-calf-heifer is given to the male in female headed vulnerable households. In these households there are unemployed single male and female youths (18-30 years) that constitute family labour. These youth search for and collect (cut and carry) fodder for the cattle that are given to households with landholdings too small to sustain the cow. The study intends to investigate how the youth are involved in the project, if and how the youth benefit, and if there is a difference between roles by and benefits of male and female youths. The findings will inform the implementing agency and project facilitators on areas of inequity (along age and sex) while suggesting how the inequities can be reduced.Background: Rabies is endemic in Mitundu with human cases and deaths being reported occasionally. The study will attempt to establish how men and women and boys and girls of different ages interact with dogs, what kind of interactions are likely to result in bites and which sex and age group is most likely to be bitten by dogs and hence contract rabies. The findings from this study could be used to inform a reduction in risky behaviour interventions targeting different sexes and ages according to the different risk factors identified in the study.Background: In the last week of November 2018, 10 hippos from the Liwonde national park were confirmed dead from anthrax. River Shire is the main fresh water supply for domestic and livestock use to the communities that live next to the park. The river has a healthy population of fish, which constitutes these vulnerable communities' main source of protein. The river is also infested with crocodiles. The study intends to investigate how men, women, boys and girls from these communities could have been affected by (morbidity and mortality), and which gender roles resulted in (increased) exposure to anthrax. The study will also try to establish if and how other wildlife e.g. the crocodiles, fish and domestic livestock were affected by the outbreak.Identify if your research project is a formative or action research project. Identify equity areas that make sense for your project. Develop one or more equity objectives and for each objective, the research question(s) you want to ask. For each project: Give a handout of tables 1 -3. Clearly identify the issue -the problem you want to investigate (research) or address (intervention). Specify the type of project guided by tables 2 and 3.Participants presented their proposals in plenary. Participants and facilitators critiqued the research ideas, objectives and questions. Groups noted suggested revisions and implemented them in group work sessions where they also populated their proposal outlines. Participants then developed outcome maps, activity plans and budgets. They also evaluated their proposals for inclusion of equity using the traffic light tool. They presented these in plenary and could revise and submit the final proposals in two days' time. • Slides on introduction to equity, gender and empowerment • Handout with elaborate notes on some concepts presented in slides and information in tables not presented in the slides• Handout -the \"livestock bingo\" tool used as an icebreaker in the introduction session, quiz to evaluate the extent of understanding of trainees of equity, gender and empowerment and the impact evaluation questionnaire• Slides: participatory epidemiology tools and how to be a good facilitatorTwelve sixth-year veterinary students, ten males and two females between ages 23 -34 attended the training. There was a simple evaluation on the first day using a mood meter and a detailed final evaluation on the second day.A flip-chart paper with three faces depicting happy, ambivalent and sad moods was placed on the wall and participants ask to indicate how they felt about the training in the morning and afternoon of each day. Concerns would be discussed during the recap session of the second day. By the afternoon, most ambivalent trainee's moods had shifted to happy. The mood meter was, therefore not discussed.In the morning of the first day of training, seven trainees were happy and four were ambivalent. None of the trainees were unhappy.In the afternoon of the training, ten trainees were happy, two ambivalent and none was unhappy.On the next and final day, the mood meter was replaced with the more detailed final evaluationThe detailed final evaluation is appended in Annex 2.Overview 1. In response to the things they liked the most, 45% liked the training content and 23% liked the involvement of participants in many practical sessions the best.2. The things they disliked the most about the training, 55% did not like the way time was managed and 22% stated that the training time was inadequate.3. On improvements they desired to see the most, 55% would like to see an improvement in time management and 15% would have liked practical sessions improved.Responses to specific questions, rated on a scale of 1-10, where 1 represented extremely dissatisfied, and 10 excellent, participants' reposes ranged between 9.2 and 9.9 for 17 questions.Ten students agreed that they should get involved with equity and gender issues in the vet profession? Two did not respond to this question. The reasons they gave for responding in the affirmative include the following, for one student each. The response \"it will help improve veterinary services\" was given by two students.• Wide knowledge and equity gaps exist • People in the field still do not believe that ladies can be veterinarians. They need to be sensitized Annex 1: Trainee experience of inequity in veterinary work1. Female ranger with more knowledge was not allowed to join a patrol because \"there were too many snakes around\" (she is denied an opportunity) -male student on attachment at wildlife services 2. Chicken ownership, most village chickens owned by women, but proceedings controlled by men -he wants to find out if the females know about Newcastle disease and control measures -male student 3. Mona (female student) on the chicken farms: only male workers (feeders), all female workers removed because \"they were not strong enough\" 4. One month at a state vet farm feedlot, only men living there -male student 5. Only male vets vaccinate cattle -male student 6. State vets should go out and enforce drug policies instead of sitting in the office and sending women to the field to enforce the policies. Especially because vet drug dealers object to punitive measures in violent ways -e.g. chasing the drug inspectors with sharpened machetes. Moreover, the ratio of veterinarians is 1 woman: 10 men. -male student 7. Youth and mentorship/succession/empowerment plans or projects are lacking in our country. Older veterinarians work like they will never grow old and slow down. They do not mentor younger vets. -all students 8. Quality of the profession: The veterinary department (there is no veterinary faculty) got 75% of the funds allocated to the Faculty of Agriculture. The rest of the departments were against this, which they perceived to be unequal distribution of funds. Equal distribution of resources to the different departments can affect the quality of veterinary work which requires different inputs from the rest of the departments. Other departments did not appreciate the equitable distribution of funds. -all students 9. Some diseases like Toxoplasmosis from cats could affect a female vet doctor. Should pregnant female veterinarians hand over all cat cases to male veterinarians? (Facilitator: No, ideally, all veterinarians should take precautions when handling cats and all other animals that can affect them in various ways, but not send a man Age: 25,34,24,23,30,25,23,23,25,34,27, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 9, 9, 9.8 Objective I. Introduce concepts of Gender, Equity and Empowerment 10,10,10,8,10,10,10,10,10,10,8,8,9.5 Objective III. How can equity be integrated in veterinary work 10, 10, 9, 10, 10, 8, 10, 10, 10, 10, 8, 9 9.5 Need for more clarification on the linkage of gender equity and equality to the veterinary profession Objective IV. Practical lessons on how to implement equity and gender in veterinary research 10,9,10,10,6,10,10,10,10,10,9 ,10,10,10,10,10,10,10,10,10,9,8 9.8 Mood metre 10,10,10,8,10,10,10,10,10,10,8,7 9.4 This evaluation 10,10,10,10,10,10,10,10,10,10,9 10,10,10,10,10,10,10,10,10,9,10,10 9.9Presentation of revised proposals in the plenary 10,10,10,10,10,10,10,10,10,9,10 ","tokenCount":"3505"} \ No newline at end of file diff --git a/data/part_3/5530886566.json b/data/part_3/5530886566.json new file mode 100644 index 0000000000000000000000000000000000000000..f978b746455c6ae197632938a1a9af6486bbb2e8 --- /dev/null +++ b/data/part_3/5530886566.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"fd5d769c8a4be2f950d0fb34795933e5","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/b10ca66d-73ef-451d-95f3-f8616b0125fa/retrieve","id":"-837015820"},"keywords":[],"sieverID":"4cd5feda-485e-48c8-b1ac-39a7b4f47015","pagecount":"10","content":"The Transforming Agrifood Systems in South Asia (TAFSSA) initiative implemented the Small Farmers Large Field ((SFLF) collective farming model in two villages of Nalanda, Bihar with 97 potato farmers in Rabi 2022-23. The farmers were provided input linkages, training in good agricultural practices and output linkages, among other things, to enhance their returns. This brief discusses a case study of ten potato farmers selected from the 97 participating farmers, growing Kufri Pukhraj variety of potatoes, who were encouraged to aggregate production and harvest potatoes 40 days early and take up a short-duration crop, such as red amaranthus. The underlying concept of this initiative was to create an opportunity for farmers, allowing them to explore crop diversification as a means to enhance their earnings.. The study reveals that early harvest of potatoes combined with the cultivation of red amaranthus (Amaranthus Cruentus) locally called Lal Kanka resulted in higher net returns for farmers compared to traditional full-maturity harvest, showcasing the potential of crop diversification through intensification to improve farmers' income. The SFLF model also demonstrated the benefits of collective farming in sharing agricultural practices and resources, contributing to enhanced returns for the participating farmers.Above: A Small Farm Large Field (SFLF) pilot farmer growing red amaranthus after the early harvest of potatoes. Photo Credit: Manish Kakraliya.Bihar is the third-largest producer of potatoes in India, behind Uttar Pradesh and West Bengal, with a 16 percent share in national production (NHB, 2020). The state displays the third highest yield of potatoes in the country, with about 27.6 tons per hectare, compared to the national average of 25.2 tons per hectare in 2021/22 (AgriCoop, 2022). Despite having a higher yield due in part due to the fertile land of the Indo-Gangetic Plains and high input rates, the sector faces some serious problems including adequate cold storage facilities, transportation bottlenecks and poor marketing facilities. This contributes to a crash in prices after harvest (Singh and Rai, 2011). For example, the average wholesale price in Bihar was Rs. 11,970 per metric ton (1000 kilograms) in May 2023, as compared to the national average of Rs. 15,280 per metric ton (Agmarknet, 2023).Due to the lack of adequate cold storage facilities, farmers face challenges in storage of their produce, forcing them to sell produce at a throwaway price immediately after harvest, which causes a sudden crash in prices during the peak harvesting season (NewsClick, 2022). Furthermore, the below national average monthly income of Bihar's farmers is also associated with traditional production practices, poor accessibility to farm inputs including seeds, irrigation, and climate extremes changes caused by climate change (Kumar et al., 2019). Small and marginal farmers are even worse off because of high production costs due to diseconomies of scale and a lack of bargaining power in input and output markets (Baruah et al., 2022).Above: Small Farm Large Field (SFLF) farmers Rajiv, Satyendra, Kaushal and Arun in Nalanda harvesting potato early. Photo Credit. Manish Kakraliya.Researchers have highlighted the need for crop diversification through intensification to improve soil health, productivity, farmers' income, and system productivity of a farm (Barman et al., 2022). Introducing a greater range of high-value and nutritious crops in a particular agroecosystem can contribute to diversification of agricultural production, which can contribute to agrobiodiversity and improve the ability of farmers to respond to market stresses (Khanam, Bhaduri and Nayak, 2018). These in turn contribute to nutritional security, income growth, food security, employment generation, and sustainable agricultural development (Barman et al., 2022).Since Indian agriculture is dominated by small and marginal farmers, research has suggested potential benefits from collective action to minimize disadvantages of scale effects on farmers and to garner bargaining power in input and output markets, which can in turn support crop diversification (Gulati, 2016;Chand, 2017;and Singh, 2018).In this study, a collective action farming model called \"Small Farmers Large Field (SFLF)\" was piloted in Nalanda, Bihar, a major potatogrowing belt in the state, where the majority of farmers are small and marginal. Researcher suggests that LFM development fosters a mutually beneficial social network of farmers, enabling the implementation of new interventions in their farming systems. (Thang et al., 2017).to purchase inputs, contract machine service providers for planting and harvesting, and synchronize their operations by adopting a single variety, thus converting their small landholdings into a large field or patch (Baruah, Mohanty and Rola, 2021). The implications of this approach for pest and disease management still require research.The SFLF pilot in Nalanda, Bihar is an effort of the One CGIAR's South Asia Regional Integrative Initiative, TAFSSA.The roll-out of the pilot was conducted with 97 farmers in two villages, Meyar and Kairi, in the Nalanda district. We collaborated with farmers to reduce costs and improve efficiency, thereby boosting profitability and creating favourable environments for diversification through intensification.After a series of meetings, farmers decided to purchase better quality Kufri Pukhraj seeds through a reputable seed company. Since most large seed companies are based in Punjab and have a minimum selling requirement of one truckload or multiples thereof (25 tons each), farmers collaborated to place a single bulk order for three truckloads (25 tons each) of Kufri Pukhraj seeds. This purchase was supplemented with training on recommended production practices.practices.Additionally, in response to the farmers' concern over inadequate supply and high cost of quality planting material and post-harvest storage of seed for the ensuing season, financial literacy sessions led by HDFC Bank, were conducted aimed at raising awareness of government schemes and credit availability.The capabilities of collective farming extend beyond providing backward and forward linkages. TAFSSA researchers are investigating the suitability of a collective action model to introduce new techniques and policy interventions supporting farmers.The cultivation of Kufri Pukhraj, an early bulking potato variety, within the collective farming system in Bihar presented our team of researchers with an opportunity to encourage farmers to diversify their crops and boost their earnings. Due to a market glut, farmers receive low prices for their potatoes when selling them after full maturity. farmers were informed about the trade-off between a higher price, lower cost of production, and lower yield in early harvest, along with the return from red amarunthus, compared to the lower price, higher cost of production, and higher yield in their traditional practice of selling potatoes after full maturity.At the end of the intervention, the team collected data on costs and returns for the ten participating farmers for both the scenarios -early harvest combined with red amaranthus cultivation and full maturity of potatoes.Out of ten farmers who planted red amaranthus after the early potato harvest, six of them had marginal land holdings, and the remaining four had small land holdings. On average, farmers harvested around 7 percent of their potato acreage and planted red spinach.The average yield for potatoes at early harvest was 40 percent lower than that of potatoes at full harvest. However, at the same time, the cost of cultivation for early harvest was 46 percent lower than that of full harvest. If we combine these yield and cost of production effects with an 11 percent higher price for early harvest, then full maturity harvest potatoes can result in a 20 percent higher net return for nine out of the ten farmers. As shown in Figure 2, the average net return was 20% higher for early harvest potatoes as compared to full harvest. This further increases to 27% when the net return of red amaranthus is added. For all ten farmers, net profit for every rupee invested was higher in the case of early harvest potato plus amaranthus compared to full maturity harvest, implying that for the same amount of investment, the earning from early harvest combined with growing red spinach would be higher than only harvesting potatoes.On average across the ten farmers, the early of harvest potato combined with red spinach resulted in a profit of INR 0.55 for every rupee in cost spent. Farmer #5, who had the highest profit from early harvest and spinach, even lost money from his harvest at full maturity due to the lower price of potatoes (Figure 3). . These results are attributed to the difference in net return between early harvest and full maturity harvest, and the notable difference in production costs. The cost of production for a full maturity harvest is substantially higher, being 46% more compared to an early harvest. This large disparity in production costs accounts for the variance in net returns.Above: Small Farm Large Field (SFLF) farmer Ashok Kumar of Kairi village in Nalanda harvesting red amaranthus. Photo Credit. Manish Kakraliya.On average across the ten farmers, the early harvest potato combined with red amaranthus resulted in a profit of INR 0.55 for every rupee in cost spent. This was more than double the return on potato at full maturity (INR 0.25 per rupee).The potential of crop diversification through intensification in enhancing farmers' income can be explored through the increased returns of the farmers in this pilot study. The objective behind this initiative was to create a window for the farmers to harvest an additional crop by encouraging them to harvest potatoes 40 days earlier and utilising the remaining period to grow red amaranthus. It should be noted that this experiment can also be conducted using other short duration varieties with the common aim of boosting farmers' returns. There is a need to conduct further assessments to test the feasibility of this experiment and document challenges at the larger scale.Diversification can be effective in boosting farm revenue and increasing nutritional security. Despite this, small farmers shy away from diversification because of a lack of knowledge and, more importantly, a lack of transportation and marketing facilities (Barman et al., 2022). According to this study, the very small and fragmented landholdings make it even more difficult for farmers to participate fully in crop diversification.But, as well as poverty reduction in developing countries, In this pilot, it was not surprising to witness that net returns from early harvest potatoes combined with red amaranthus were greater than net returns from fullmaturity crops, due to the lower costs of production combined with selling the produce when the markets have a shortage in supply. Further research needs to be conducted to understand the potential of scaling this intervention with more farmers and other short-duration crops. The introduction of a new crop within a collective farming approach suggests that farmers can share good agricultural practices and resources and subsequently enhance their returns. More than half of the SFLF farmers have decided to switch to early-bulking droughttolerant variety, 'Kufri Thar 2', to provide a window for a new crop. Furthermore, the added support through input and output linkages and financial education through onfield technicians appears to hold some promise to amplify the benefits of the model. Mohanty, S., Kakraliya, M., Janakiraman, D., Baruah, S., Choudhary, K.M., Gathala, M.K., Krupnik, T.J. 2023. Crop Diversification Through Collective Action: A Case Study of the Small Farmers Large Field (SFLF) Collective Action Farming Model in Nalanda, Bihar. TAFSSA Policy Note 2. Transforming Agrifood Systems in South Asia (TAFSSA).To learn more about TAFSSA, please contact: t.krupnik@cgiar.org; p.menon@cgiar.org To learn more, please contact: s.mohanty@cgiar.org This publication is licensed for use under a Creative Commons Attribution 4.0 International License (CC BY 4.0).","tokenCount":"1855"} \ No newline at end of file diff --git a/data/part_3/5536780747.json b/data/part_3/5536780747.json new file mode 100644 index 0000000000000000000000000000000000000000..47e15160f0e211efe912e1b4acc83aa55e2c7f92 --- /dev/null +++ b/data/part_3/5536780747.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"4d1e656d58b3e556bcc42b4c7f6cebde","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/9f889920-dc34-435f-8e2f-088af380c242/retrieve","id":"-1611860798"},"keywords":[],"sieverID":"cb23e101-caaa-4af3-96ec-3467456075bd","pagecount":"27","content":"The CGIAR Initiative Transformational Agroecology across Food, Land, and Water Systems develops and scales agroecological innovations with small-scale farmers and other food system actors in seven low-and middle-income countries. It is one of 32 initiatives of CGIAR, a global research partnership for a food-secure future, dedicated to transforming food, land, and water systems in a climate crisis. www.cgiar.org/initiative/31-transformational-agroecology-across-food-land-and-water-systems/Agroecology is an approach to achieving sustainable farming and food systems, rooted in a set of principles (recycling, input reduction, soil health, animal health, biodiversity, synergy, economic diversification, co-creation of knowledge, social values and diets, equity, connectivity, governance of land and natural resources, and participation) that emphasize the need to work with nature rather than against it. It aims to achieve social justice by co-creating knowledge, increasing the participation of farmers and multiple stakeholders in decision-making, while strengthening the connection between producers and consumers.It is in this context that the CGIAR Initiative on Agroecology project, through one of its specific objectives, aims to produce scientific evidence on the performance of agroecological farming systems, in order to promote their large-scale development in local areas. Achieving this objective requires collecting data and evidence on the performance of agroecological farming systems.In order to produce locally relevant and globally comparable data on the performance of agroecological farming systems, Work Package 2 of the CGIAR Initiative on Agroecology has developed the HOLPA (Holistic Localized Performance Assessment for Agroecology) tool. But before applying this tool at farm level, the following steps are essential: (i) drawing up a context document taking into account the current situation of the targeted farming systems of the producers described using technical, economic, environmental and social criteria as well as the 13 principles of agroecology, (ii) getting to grips with the HOLPA tool and (iii) identifying local indicators specific to the milk value chain in the Agroecological Living Landscape (ALL).As a reminder, in Burkina Faso, activities under this CGIAR Initiative on Agroecology project focus on the dairy value chain, with an ALL based on the Bobo-Dioulasso multi-stakeholder dairy innovation platform established in 2020 and other partner members affiliated to it. In 2023, the dairy innovation platform (DIP) was consolidated into an ALL with the incorporation of new members and partners as part of the said project.To achieve this, the implementation of these activities involved researchers and the participation of several cooperatives of milk producers, processors, representatives of the public sector (Regional Directorate of Agriculture, Animal Resources, and Fisheries, Town Hall), Technical and Financial Partners, NGOs and professional organizations. All these stakeholders were involved, each in their own right, in drawing up the context document, identifying local indicators, familiarizing themselves with the HOLPA tool and collecting quantitative and qualitative data.This report summarizes all the activities carried out in 2023 to assess the performance of agroecological farming systems based on evidence gathered in the Bobo-Dioulasso dairy basin.The context document prepared as part of the CGIAR Initiative on Agroecology project presents agriculture and its agroecological characteristics in the Hauts Bassins region, which is the implementation area for the Agroecological Living Landscape project in Burkina Faso.Agriculture in this region is based on agro-sylvo-pastoral systems in which cotton production plays a predominant role, with a greater or lesser presence of livestock on the farms, particularly cattle exploited for their milk. In the first part, the document presents a brief review of the main elements making up the physical, administrative, social, economic and political context of the Hauts Bassins region. It then presents the main characteristics of the region's production systems:• The characteristics and evolution of the agro-sylvo-pastoral system, the main form of agriculture in the region;• The dairy production systems that will be the focus of our work as part of the CGIAR Initiative on Agroecology;• Legume production systems (seed and fodder) which, through their production of highquality fodder biomass, have very important potential links with dairy production systems.Further information on agriculture and its agro-ecological characteristics can be found in the latest version of the context document, which can be cited as follows: Getting to grips with the tool was achieved through a workshop whose main objectives were to :• Understand the HOLPA tool and how it will be used to answer questions about the performance of agroecological farming systems.• To examine the processes involved in implementing the HOLPA tool as part of the CGIAR Initiative on Agroecology project in Burkina Faso.• Identify the next steps in implementing the HOLPA tool.The implementation of the HOLPA tool will result in the generation of evidence on the performance of agroecological farming systems to deliver sustainable, resilient and inclusive livelihoods and food systems in all contexts.The questionnaire used to collect the data comprises two parts: 1) a general section; 2) an agroecologyspecific section, i.e. the performance of agroecological farming systems specific to each case study.The general section includes the following parts: general information on the farm, respondent characteristics, farm household characteristics, political context and motivation for transition.The specific agroecology component addresses the following points: (i) recycling, (ii) input reduction, (iii) soil health, (iv) animal health, (v) biodiversity, (vi) synergy, (vii) economic diversification, (viii) knowledge co-creation, (ix) social values and diets, (x) equity, (xi) connectivity, (xii) governance of land and natural resources, and (xiii) participation.The HOLPA tool focuses on a set of 19 indicators (Table 1) that are simple, robust and holistic, and are to be assessed on all project sites. Beyond these general indicators, local priority indicators will be assessed at each site.In a recent publication (Vall et al., 2023), we showed that in the agro-sylvo-pastoral systems of western Burkina Faso, crop-livestock interaction practices and the recycling of plant and animal by-products into fodder and organic manure contribute strongly to the agroecological characteristics and performance of these farming systems. The concerned practices are as follows:1) Storage of crop by-products (straw, tops) for fodder purposes 2) Production of manure and compost from animal and plant by-products in night pens and manure pits3) Night-time herd parking in fields for fertilization purposes 4) Reasoned management of organic fertilization of fields 5) The use of animal power for tillage and transport However, these practices are not taken into account in the 19 indicators of the HOLPA tool. The absence of these indicators in the HOLPA tool will have the consequence of obscuring a very important part of the agroecological characteristics of the farming systems studied in Burkina Faso. The identification of specific indicators to the case study (Local Indicator Selection Process -LISP) to qualify the agroecological character of the agricultural and food systems studied in Burkina Faso was carried out during a workshop (Figure 1). During the workshop, the concepts of performance indicators and agroecology were clarified for the participants.The four dimensions (i.e. agricultural/technical, social, economic and environmental) on which the identification of local indicators should be based were presented to participants, enabling them to identify indicators in line with the ALL vision for Burkina Faso. As a reminder, the ALL's objective is to produce, collect, process and market 18,000 liters of local milk per day in the Bobo-Dioulasso production basin by 2028.It was therefore necessary to identify context-specific indicators. To limit themselves to these specific indicators, participants were asked to identify what they would like to see in relation to the various objectives and changes envisaged, and then to discuss how they might measure or monitor the changes.Once the local indicators had been identified, they were evaluated on the basis of the following criteria:• Relevance to the sustainability of agricultural systems in the SahelFollowing assessment of the quality of the indicators, the three priority indicators per dimension are as follows:• Agricultural dimension: 1) number of manure pits/farm, 2) quantity of fodder produced in all seasons/farm and by type (quality fodder, roughage), 3) number of fodder storage facilities/farm.• Social dimension: 1) number of local milk industry players trained in innovative agricultural practices, 2) number of public and private services that include local milk in coffee breaks and meals, 3) number of local milk producers who are aware of and master the rules of living together (respect for others).• Economic dimension: 1) cost of forage production, 2) cost of boreholes, 3) cost of health coverage.• Environmental dimension: 1) number of mini-dairies equipped with hygiene equipment, 2) areas secured through title documents, 3) number of users of biodegradable packaging.The 3 priority indicators per dimension were used to develop a complementary questionnaire that was integrated into the household survey form for the application of the HOLPA tool on dairy farms. 5 Application of the HOLPA tool on dairy farmsData were collected from milk producers located in the ALL intervention area in Bobo Dioulasso, in the Hauts-Bassins region of western Burkina Faso (Figure 2). The region comprises three administrative provinces: Houet, Kénédougou and Tuy. These three provinces comprise a total of 33 communes, three of which have the status of urban communes, corresponding to the regional capitals. These are the communes of Bobo-Dioulasso, Orodara and Houndé. They cover a total area of 25,479 km², or 9.4% of the national territory.The Hauts-Bassins region has a Sudano-Sahelian climate. Rainfall is characterized by an alternating dry and rainy season during the same year. At the Hauts-Bassins latitude, the longer dry season lasts around 8 months (from October to May). The region is then subject to harmattan activity, a warm, dry wind during the day, cool at night, blowing in a north-easterly to south-westerly direction from the Sahara high pressure zone. The shorter rainy season extends from June to September, with maximum rainfall in August. Average annual rainfall over the past 25 years has not exceeded 1,200 mm in the Hauts-Bassins region. Average daily temperatures are also subject to seasonal variation. In the middle of the rainy season, they are low, with an average of 26°C. During the dry season, they are high, with an average maximum of 32 to 33°C. Evapotranspiration (ET) is generally very high. It exceeds rainfall during the period from October to June, i.e. for more than nine months, leading to a significant drop in water resources, which is detrimental to livestock farming. However, the effects of climate change are a reality in the Hauts-Bassins region.The population of the Hauts-Bassins region is young. According to the Institut National de la Statistique et de la Démographie (INSD, 2022), the 5-14 age group accounts for 27% and the 15-64 age group for 55% of the total population, estimated at 2,239,840 (including 1,094,100 men and 1,145,740 women).The gender structure of the population of the Hauts-Bassins region is similar to that of Burkina Faso as a whole. The population is made up of around 49% men and 51% women. The Hauts-Bassins region, with 10.9% of Burkina Faso's total population, remains one of the most densely populated regions.Over the period 2006-2019, the Hauts-Bassins region recorded an intercensal population growth rate of 3.29%. The working-age population represents 54.7% of the total. This represents an economic and social challenge for local authorities in terms of health, education and employment. We used non-probability sampling to select producer households for our data collection. Our survey covered 52 producers associated with local milk production systems in 2023. To ensure an agroecological gradient within each production system, farm selection was based on the following inclusion criteria:• Producers affiliated to the Bobo Dioulasso ALL who may or may not have already participated in agroecology projects.• Producers who intend to join the Bobo Dioulasso ALL and who express the desire to convert to sustainable practices.• Voluntary producers implementing the agroecological package (Fodder Demo-Plot, manure pit, reasoned co-product management (with the CoProdScope tool), reasoned dry-season dairy rationing (with the Jabnde tool)).Qualitative and quantitative data were collected in this study using an electronic questionnaire loaded onto KoboToolbox. The information is collected by successively applying the household and farm surveys to each producer. After obtaining the respondent's consent for the data to be published without their personal information, the questionnaire addressed some data on general information such as location, scale (e.g. plot, farm, landscape) and interviewer details. Four modules were covered in the household questionnaire. These were: (i) context module, (ii) agro-ecology (Ae) integration module, (iii) global key performance indicators module and (iv) local indicators module.The various themes addressed in the context module include the collection of demographic information and involves the recording of respondent characteristics such as age, gender, sociolinguistic group, education, marital status, occupation, length of residence in the community, relationship with the head of household, involvement in farming activities, participation in farmers' associations and involvement in agricultural research or development projects. In addition, farm household characteristics such as household structure, agricultural production system, end use of agricultural products, fertilizer inputs and disease management, farm size and land tenure patterns are collected to assess socio-economic and environmental factors related to the unit of assessment.The context assessment also seeks to explore motivation and attitude towards agroecology by assessing personal perspectives on agroecology.The agroecological integration module is designed to assess the current state of practices using questions covering the 13 principles of agroecology and two additional questions to determine selfperceived adherence to these principles. The module aims to characterize the current level of adherence to agroecology, or the degree of agroecological transition, by assessing farming practices and the overall benefits derived from these practices. Most questions are multiple-choice, using a fivepoint Likert scale. All survey responses are scored from 1 to 5. On the basis of a median score reported for all Ae principles, a composite score between 1 and 5 can be generated to characterize the overall agroecological state. The cross-cutting theme on \"self-perceived adherence\" is assessed on the basis of questions designed to gauge the respondent's opinion of the extent to which their field, farm or landscape is agroecological, with responses varying between extremes of completely nonagroecological to completely agroecological. Self-perceived adherence provides an alternative way of assessing the level of transition to agroecology.The global indicators module is used to assess the agro-ecological performance of the farming system at a selected scale, using a set of survey questions and field measurements of indicators. The sections of the survey questionnaire and field measurements cover several different elements related to the four general domains of agriculture, economy, environment and social. The data collected in this module are used to estimate agricultural, economic, environmental and social performance when formulating the following questions: 1) What are the impacts of increased adherence to agroecology?, 2) What are the trade-offs between sustainability dimensions?The local indicators module addressed questions on the four dimensions of farm performance evaluation. In terms of the technical/agricultural dimension, questions concerned the number of manure pits/farm, the quantity of fodder produced per farm and per type (quality fodder, roughage) in all seasons, and the number of feed storage facilities. As for the social dimension, data are collected on local milk industry players trained in innovative farming practices and farm management, and on local milk producers who are aware of and master the rules of living together (respect for others, hygiene). The costs of fodder production, boreholes and sanitary coverage were collected for the economic dimension. Finally, the environmental dimension focused on areas secured through title deeds and the use of biodegradable packaging.For the farm survey, data on biodiversity, soil health and crop health are collected for use in assessing these different parameters. Soil samples are also taken for laboratory analysis to determine soil organic carbon on these farms.Before launching the survey, the questionnaire was tested by the interviewers on a few farms in order to :• finalize the survey questionnaire and make final adjustments;• check that interviewers are familiar with using the tablets and the questionnaire (understanding the questions and possible answers).Analyses were performed using R 4.3.2 software (R Core Team, 2023). Data on socio-demographic profiles and farm technical performance were subjected to descriptive statistics. Producers' perceptions of agroecology and their well-being are presented in the form of likert-scale graphs after subjecting the data to tests through the tidyverse (Wickham et al., 2016 and2019) and likert (Bryer and Speerschneider, 2016) packages.Data from local indicators taking into account the four dimensions of farm performance evaluation were subjected to Factorial Analysis of Mixed Data with Hierarchical Ascending Classification using the factoextra package (Kassambara and Mundt, 2020). This data analysis enabled the emergence of homogeneous groups of farms with regard to the 11 selected variables (Table 3). An analysis of variance (ANOVA) was performed on the 9 quantitative variables. This was supplemented by a Student Newman-Keuls test for comparison of means in the event of significant differences (p < 0.05) observed between farm groups using the agricolae package ( de Mendiburu, 2023). However, Kruskal Wallis tests were applied when certain data failed to meet the conditions for applying ANOVA. 6 Results and discussionThe majority of respondents are men, representing 90.38% of the sample, while women make up only 9.62% of the sample (Table 4). Most respondents (65.38%) can neither read nor write, while 32.69% can read and write. Only 1.92% can write. The majority of respondents have no level of education (59.62%), followed by primary (19.23%), secondary (13.46%) and university (7.69%). The vast majority of respondents are cohabiting (90.38%), followed by those who are single (3.85%) and married (3.85%). The Peulh community is the most represented in the sample with 71.15%, followed by respondents from other sociolinguistic groups such as the Bissa and Gouroussi (5.77%), the Dafing (5.77%), the Mossi (13.46%), and the Bobo (3.85%). The vast majority of respondents (98.08%) are engaged in agricultural and/or livestock work, while a small proportion work in public administration (1.92%). As far as capacity-building activities are concerned, most respondents attended training courses focusing on innovative or better management agricultural practices (53.85%), followed by agri-food management and value-added (15.38%), and other training (7.69%). Other training topics included animal husbandry practices, entrepreneurship, cooperative management and livestock feed formulation. Of the 13 items that gathered producers' understanding of what agroecology means, 10 items received a favourable opinion: (i) eating local food, (ii) eating chemical-free food, (iii) caring for nature on one's farm, (iv) enjoying nature, (v) caring about nature, (vi) offering fair wages to workers, (vii) agroecology enables sound business decisions, (viii) opportunity to change community decisions, (ix) power to change production practices, (x) identifying oneself as an agroecological farmer (Figure 4).On the other hand, producers recognize that current agricultural systems are not working well and need to be changed. They also say that decisions about what food to buy are not made primarily on the basis of price. As for the assertion that people take care of nature, opinions are rather mixed. Overall, producers expressed a sense of satisfaction with specific aspects of their lives (Figure 5). The assertions for which satisfaction is good are: (i) fulfilment in life, (ii) nutritional security, (iii) feeling integrated into the community, (iv) personal relationships, (v) standard of living, (vi) own life and personal situation, (vii) profession, (viii) time available to do the things one likes to do, (ix) health, (x) economic security, (xi) quality of the local environment. Opinions are mixed, however, when it comes to \"feeling safe\".Figure 5. Producers' satisfaction with specific aspects of their lives 6.1.6 Power and freedom to make important decisions in the food systemAmong men, the feeling of having the power and freedom to make most of the important decisions in the life of their household was total 10 years ago (100%), but today it has decreased slightly (96% -Figure 6). Among women, the feeling of not having the power and freedom to make most of the important decisions in the life of their household remains ultra-dominant (96%), even if the situation has improved slightly over the past decade.Legend:Step 1: Almost no power or freedom to make decisions;Step 2: Only a small amount of power and freedom; Step 3: Power and freedom to make important life decisions; Step 4: Power and freedom to make many important life decisions; Step 5: Power and freedom to make most important life decisions.The various animal species raised on the farms and their numbers are shown in Table 6. Cattle come first, with a mean of 41 head/farm (ranging from 3 to 180 head). For goats, the mean is 15 head/farm, with numbers ranging from 4 to 50. For sheep, the mean is 17 head/farm, with figures ranging from 4 to 40. For poultry, mainly chickens, the mean is significantly higher at 207 head/farm. Values range from 0 to 1000 head, reflecting great variability in chicken numbers, with some flocks being very large. The majority of producers (61%) self-produce, exchange with their peers or collectively manage all animal genetic resources (Figure 7). For 29% of producers, 25% of animal genetic resources (e.g. chicks, young animals, semen) are purchased on the market, and the remaining 75% are self-produced or exchanged. A minority of producers (6%) declare that all animal genetic resources are purchased on the market and 4% of respondents estimate that 75% of animal genetic resources are purchased on the market and the remaining 25% are self-produced or exchanged. The majority of respondents (73.08%) rely on surface water (dams/lakes) as a source of watering, while groundwater (wells, boreholes) is used by almost half of respondents (48.08% -Table 7). In terms of pasture, fodder and organic manure practices, manure collection (88.46%), parkland (80.77%) and the production of fodder legumes are the most common on farms. The practices concerning animal feeding, care and welfare, such as providing constant access to adequate feed, providing clean drinking water, offering shelter, carrying out regular checks for injuries/diseases, maintaining a hygienic environment, and providing medical assistance when needed, are declared by all respondents (100%) as widely adopted. Nearly all respondents (98.08%) felt that a diversified diet was offered to the animals. Vaccination and the use of antibiotics are the disease management practices implemented by all respondents (100%). The farms studied are mainly cattle-oriented, and most producers rely on the farm's own herd for animal renewal. This enables them to better control the risk of diluting the farm's existing genetic resources, to maintain the performance of the best sires and to limit the risk of disease coming from other animals outside the farm. These practices do, however, have a negative impact on the risk of inbreeding if reproduction is not properly controlled. The farms collect sufficient quantities of manure and dispose of sufficient quantities of paddock soil, which is used to improve soil fertility or sold to other producers. This limits the use of mineral fertilizers. All respondents claim to want to guarantee perfect feeding, watering, shelter and care for their animals. They show a strong interest in the production of fodder legumes to ensure animal feed, without worrying about the grazing load.Watering is mainly provided by surface water, and animal health is managed more through conventional veterinary care that does not meet agroecological principles. If we compare the livestock farming systems described with the principles of agroecology suggested by Wezel et al. (2020), we find that the practices implemented align with the following principles: recycling, input reduction, soil health, animal welfare, biodiversity, synergies and economic diversification.6.3.1 Soil fertility levels and soil fertility improvement practicesInformation on producers' perceptions of soil erosion, the fertility level of their farmland, and the practices they use to improve soil fertility is presented in Table 8. As far as soil erosion is concerned, half of the respondents (50.00%) consider this to be a minor problem on their farm, and a significant proportion (48.08%) feel that soil erosion is not a problem on their farm.As for the level of fertility of farmland, the vast majority of respondents (80.77%) stated that their farmland was moderately fertile.As far as soil fertility improvement practices are concerned, all respondents (100%) apply organic fertilizers or manure to improve soil fertility. However, a significant majority of respondents (51.92%) also use mineral fertilizers. On the farms, five of the 16 agricultural practices included in the HOLPA questionnaire are implemented. Crop rotation is declared by 90% of respondents. Apart from this practice, other practices such as monoculture with annual crops (25%), agroforestry (10%), intercropping (10%) and other practices (10%) were declared by respondents (Figure 8). Crop pest management practices are presented in Table 9. The most widely adopted method is the planting of improved or resistant varieties (90.38% of farms). The majority of respondents (65.38%) prefer approaches such as the use of cover crops, intercropping and crop rotation to promote biological interactions. A minority of respondents (1.93%) opt for cultural control, manually removing plants and fruit showing signs of disease. The various crops grown on the farms and information on their average yields are shown in Table 10.In terms of cereals, maize has an average yield of 777.57 kg/ha. Sorghum and millet yield 215.99 kg/ha and 170.33 kg/ha respectively. Rice had an average yield of 488.89 kg/ha, with significant variability represented by a standard deviation of 571.28 kg/ha. As for legumes, soya has an average yield of 600 kg/ha, and groundnuts 480 kg/ha. Cowpea yields average 98.87 kg/ha. Sesame yields 83.33 kg per hectare. Grain yields measured in 2023 are extraordinarily low compared with local averages (maize between 2 and 2.5 t/ha, millet and sorghum between 0.8 and 1 t/ha, rice between 1.5 and 2 t/ha, groundnuts and cowpeas between 0.5 and 1 t/ha). On farms in the Bobo-Dioulasso dairy basin, which are more livestock-oriented, farming is also practiced. According to the respondents, the soils are moderately fertile and do not seem to have soil erosion problems. Organic manure from livestock is mainly used to improve soil fertility. On the farms, crop rotation is widely practiced. Yields are very poor, indicating the weak character of the agroecological cropping system. Although respondents consider their soils to be moderately fertile, this factor alone cannot explain the very low crop yields recorded. These very low yields could be linked to a number of factors, such as: biases in estimating production and area per crop, failure to subtract the area of plots decimated by animals, thus making reported production per unit area low, and pockets of drought recorded during the data collection reference period (October 2022-September 2023). These cropping systems respect only two of the 13 principles of agroecology suggested by Wezel et al. (2020): soil health and synergies.Based on the 11 variables shown in Table 3, three groups of producers were distinguished (Figure 9 and Figure 10).Producers with the most advanced plant and animal co-product recovery and recycling practices, and therefore a priori the most agroecological, are in the minority (11%) (Table 11). Group 3 is characterized by producers with 4.17 ± 2.32 ha of land under their ownership. These producers have at least one manure pit and distribute the largest quantities (p<0.001) of quality fodder (76.25 ± 58.04 kgDM) and roughage (160.42 ± 160.44 kgDM) per TLU. They are also the only producers with an average silo for forage storage. They have also all (100%) been made aware of the rules of living together, with the exception of expenditure on veterinary inputs, which seems to be higher in this type.Group 2 is made up of 33% of producers with the worst indicators of practices for valorizing plant and animal by-products into fodder and organic manure (with the exception of the level of fodder shed equipment). These group 2 producers have the largest (p<0.001) areas of cultivated farmland, and 94% of these areas have non-negotiable property rights. These group 2 producers have the largest (p<0.001) herd sizes (39.90 ± 28.80 LU) and have an average of one forage shed. They spend an average of 2,500 FCFA/cow per year on health monitoring.Group 1 comprises 56% of producers with plant and animal by-product management practices similar to those of G2 (with slightly higher indicators). The only indicator that characterizes them positively is that they spend an average of 2,500 FCFA/cow/year on health monitoring. Most of the respondents to the 2023 HOLPA survey conducted on 52 farms in the CGIAR Initiative on Agroecology (IAE) intervention area in Burkina Faso (an area corresponding to the Bobo-Dioulasso dairy production basin and the Agroecological Living Landscape intervention area) are men (90.38%), illiterate (65.38%), of Peulh origin (71.15%) and live in cohabitation (90.38%). On the whole, they say they are satisfied with their living conditions, with the exception of concerns about insecurity. The men expressed a feeling of freedom in their decision-making, unlike the women.A majority of respondents (61%) claim to have very little theoretical knowledge of agroecology. For them, agroecology is a concept that mainly means: (i) eating local food, (ii) eating food without chemicals, (iii) taking care of nature on the farm, (iv) enjoying nature, (v) caring for nature, and (vi) offering fair wages to workers.Farms are mainly cattle-breeding operations, with the renewal of animals mainly ensured from the farm's own herd. All respondents claim to want to guarantee perfect feeding, watering, shelter and care for their animals. Watering is mainly provided by surface water. Although there is a strong interest in forage crops for feeding, few respondents seem to be concerned about managing the grazing load. There is also a strong interest in organic manure management.On these farms, where agriculture is also practiced, there do not appear to be any major soil fertility or erosion problems. Pest management is mainly ensured by the use of pesticides. Of the 16 agroecological practices listed in the HOLPA tool, only crop rotation is widely practiced by respondents. The yields recorded for 2023 are very poor (although it is quite possible that a methodological problem led to these yields being significantly underestimated). Given that most producers are livestock farmers, field sizes are not very large, while herd sizes are high. Thus, we would normally expect to see better crop yields because the producers had enough parkland which is used to further improve soil fertility. However, this was not the case, and these low yields can be explained by a number of factors, such as: biases in estimating production and area per crop, failure to subtract the area of plots decimated by animals, thus making reported production per unit area low, pockets of drought recorded during the reference period of data collection (October 2022-September 2023), etc.When we refer to the agroecological factors highlighted for the area's farming systems by the study by Vall et al (2023), we see that a minority of producers (G3) have globally agroecological practices, which still leaves enough room for progress to be made in the ALL of the Bobo-Dioulasso dairy production basin. It remains to be seen whether these practices translate into improved technical, economic, environmental and social performance.As the data used to arrive at the results presented in this report are limited to 52 farms, they are not yet very representative of the population of dairy farmers in the ALL area in the Bobo-Dioulasso dairy basin.With data collection underway to cover at least two hundred households and farms, the final results to come will enable more objective conclusions to be drawn about the agroecological performance of these farming systems.","tokenCount":"5123"} \ No newline at end of file diff --git a/data/part_3/5580382995.json b/data/part_3/5580382995.json new file mode 100644 index 0000000000000000000000000000000000000000..3e32abec370e74dfc0800c7825e7d4d46f379b49 --- /dev/null +++ b/data/part_3/5580382995.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"f598201468cc0348713b04656185e69d","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/3c8b66c1-9c78-415c-b912-8db30fec8f22/retrieve","id":"-476476144"},"keywords":[],"sieverID":"418fd3bc-9243-45e7-9b7b-ca91ad3a5182","pagecount":"1","content":"Root necrosis and histological changes in surviving roots of white ash infected with mycoplasma-like organisms. Plant Dis.Sequence analysis of a cloned fragment revealed that the cassava phytoplasma was similar to the Chinaberry yellows phytoplasma (GenBank acc. no. AF495657, 16SrXIII Mexican periwinkle virescence group) and Cirsium white leaf phytoplasma (GenBank acc. no. AF373106, 16SrIII X-disease group), both with a sequence homology of 100% and 99% in two partial fragments with a total of 1.01 kb (Figure 6). Frogskin disease (FSD) is an important disease affecting cassava roots, whose causal agent remained unknown for many years. FSD has been reported with increasing frequency in Colombia, Brazil, and Venezuela. In Colombia, for example, incidences of up to 70% have been recorded in commercial cassava fields in the production areas of Valle del Cauca, Cauca, Meta, and the North Coast. Disease symptoms consist of small, longitudinal fissures distributed throughout the root. As the roots increase in diameter, the fissures tend to heal, giving the injuries a lip form. The root cortex or epidermis presents a cork-like appearance and peels off easily. Depending on the severity of symptoms, the depth and number of lesions increase until the root becomes deformed (Figure 1).Digestion with Taq I, Rsa I, and Alu I of amplified products of different samples showed similar restriction patterns (Figure 7).This study evidences the existence of an association between FSD and phytoplasma. By applying molecular tools and microscopy, phytoplasma was successfully detected in FSD-infected cassava roots, leaf midribs, petioles, and peduncles.Plant tissue. Roots, stems, petioles, and leaf midribs of both FSD-infected and healthy cassava plants, grown in the field and greenhouse, were analyzed.Small pieces of tissue, about 1 mm × 2 mm, were excised and then fixed in 2%-3% glutaraldehyde/0.1M phosphate buffer. Two staining methods were used: DAPI, a nonspecific indication of DNA in sieve elements (Dyer and Sinclair, 1991), and Dienes' stain, which metabolizes the phytoplasma and creates a blue color (Deeley et al., 1979). Ultra-thin sections (16 µm) of leaf midribs, petioles, peduncles, and small roots were prepared for DAPI and viewed under a fluorescence microscope. Samples consisting of ultra-thin sections (60-90 nm) were also prepared and viewed under a transmission electron microscope.DNA extraction. Total DNA was extracted as described by Gilbertson et al. (1991).Nested PCR analysis. One of the following primer pairs, P1/P7 or R16mF2/R16mR1, was used for the first amplification, with an annealing temperature of 55 °C. For the nested PCR, diluted (1:30) PCR products were used for amplification, with the primer pair R16F2n/R16R2 at an annealing temperature of 50 °C. PCR products were analyzed by electrophoresis on 1.5% agarose gel.RFLP analyses. The amplified PCR products were digested with the restriction endonucleases Taq I, Rsa I, and Alu I. The restriction products were analyzed by electrophoresis on 5% polyacrylamide gel.Cloning and DNA sequencing. Purified PCR products were ligated in pGEM-T Easy vector, which was introduced into the Escherichia coli strain DH5-α by electroporation at 2.4 kV/cm 2 . Transformants were selected on blue/white color screening by plating on LB/ampicillin/IPTG/X-gal media. Positive inserts were observed by plasmid restriction with EcoRI and electrophoresis in 1.5% agarose gel. Different-sized fragments were selected for sequencing by automated dideoxy sequencing (ABI Prism 377-96 DNA Sequencer), using a DNA-sequencing kit from Applied Biosystems.Grafting. Cassava stem fragments from the highly susceptible genotype Secundina were grafted on infected cassava plants.The presence of phytoplasma in different plant tissues of affected plants was confirmed by the DAPI and Dienes' staining methods and by electron microscopy (Figures 2, 3, and 4).The specific primers R16mF2/R16mR1 and R16F2n/R16R2 were used in a nested PCR assay to detect phytoplasma. Nested PCR revealed 1.3 kb fragments in root, stem, and leaf samples from symptomatic plants (Figure 5). No fragments were obtained from healthy plants.","tokenCount":"619"} \ No newline at end of file diff --git a/data/part_3/5588655896.json b/data/part_3/5588655896.json new file mode 100644 index 0000000000000000000000000000000000000000..c0e85a0913c6b10767dd0864007ceabc5e72fbe1 --- /dev/null +++ b/data/part_3/5588655896.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"eecbf1023a8640dc95b12ebd7daf99f6","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/bb3cec62-8a8f-4862-9535-3c6f2efa799f/retrieve","id":"-828652147"},"keywords":[],"sieverID":"9468221f-352f-4c79-b66c-67ae450b3511","pagecount":"12","content":"Titles in this series aim to disseminate interim climate change, agriculture, and food security research and practices and stimulate feedback from the scientific community.Ethiopia is located within 3.30°N-15°N and 33°E-48°E, in the Horn of Africa (Fig. 1). It covers an area of about 1.14 million square kilometers (944,000 square miles), with a total population of more than 85 million (MoFA,2013). The country's topography comprises high and rugged plateaus and the peripheral lowlands. From a topographic viewpoint, the country confines the Great African Rift Valley that bisects Ethiopia into the eastern and western escarpments. It gradually slopes up from the lowland edges of Rift Valley to the eastern and western escarpments into the southern, central, western and northern mountains.Major parts of the country are made up of a wide plateau and mountains of various heights (Fig. 1). The main objective of this activity is to analyze meteorological data on rainfall and temperature and develop a scientific report on the state of the climate in 2021 over Ethiopia (Figure 1). ","tokenCount":"168"} \ No newline at end of file diff --git a/data/part_3/5602288476.json b/data/part_3/5602288476.json new file mode 100644 index 0000000000000000000000000000000000000000..b2ae0fc91f2aba76d3d0c6f253183ccb5fa291bb --- /dev/null +++ b/data/part_3/5602288476.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"1459cb435066e0cdb0622b226c97f58d","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/3efca1bd-4fa9-4af1-8a82-cb46a032c2c4/retrieve","id":"2109581988"},"keywords":[],"sieverID":"33f30b2d-595c-4c96-bc3e-0b47e8d30e4b","pagecount":"91","content":"The European Forest Genetic Resources Programme (EUFORGEN) is a collaborative programme among European countries aimed at ensuring the effective conservation and the sustainable utilization of forest genetic resources in Europe. It was established to implement Resolution 2 of the Strasbourg Ministerial Conference on the Protection of Forests in Europe. EUFORGEN is financed by participating countries and is coordinated by IPGRI, in collaboration with the Forestry Department of FAO. It facilitates the dissemination of information and various collaborative initiatives. The Programme operates through networks in which forest geneticists and other forestry specialists work together to analyze needs, exchange experiences and develop conservation objectives and methods for selected species. The networks also contribute to the development of appropriate conservation strategies for the ecosystems to which these species belong. Network members and other scientists and forest managers from participating countries carry out an agreed workplan with their own resources as inputs in kind to the Programme. EUFORGEN is overseen by a Steering Committee composed of National Coordinators nominated by the participating countries.The geographical designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of IPGRI or the CGIAR concerning the legal status of any country, territory, city or area or its authorities, or concerning the delimitation of its frontiers or boundaries. Similarly, the views expressed are those of the authors and do not necessarily reflect the views of these participating organizations.The meeting was attended by 16 participants (see List of participants at the end of this volume). R. Volosyanchuk welcomed the participants and wished them a successful and pleasant meeting. The agenda was introduced by F. Lefevre, Chair of the Network. J. Turok welcomed the participants on behalf of IPGRI and presented the main outcomes of the second EUFORGEN Steering Committee meeting (held in Vienna, Austria, in November 1998) and other international developments relevant to the Network. R. Volosyanchuk provided additional feedback on the climatic classification used in their countries.During the last meeting it was agreed that progress made by the EUROPOP project be briefly reported at each Network meeting. An introduction to EUROPOP is given in the report of the fourth Network meeting. S. de Vries presented a summary of the progress made in EUROPOP. During the second meeting (held in Wageningen in January 1999), it was concluded that the project was on schedule:• Results of the isoenzyme analysis of the EUFORGEN reference collection were discussed and the results achieved by the participating labs were very similar. AnFLP analysis could not be standardized. For this reason each participating laboratory will analyze one primer set for all samples. • Cuttings from the selected trees in populations, genebanks and the reference collection were collected during the winter of 1998/99. These cuttings were multiplied during 1999 and the field trial was established with these cuttings in the spring of 2000. The trial contains 2 x 60 clones from populations, 100 clones from the genebank and 15 clones from the EUFORGEN reference collection (in total 235 clones).CpDNA polymorphism in the EUFORGEN core collection was analyzed. It turned out that polymorphism in P. nigra is low. One of the universal primers has been adapted to detect more polymorphism. Six primer sets/restriction enzyme combinations were selected. The protocol available for oak has been adapted for black poplar. Microsatellite-containing fragments were isolated and approximately 20 different fragments are available for sequencing. Four primers were selected from the homepage of Poplar Molecular Genetics Cooperative and these primers described for hybrid poplars were tested for P. nigra. As the results were satisfying, these primers will be used to start standardization for microsatellites.All partners selected two populations which meet the selection criteria. Trees were selected and mapped. All partners took cuttings and samples from their respective genebanks.An update of the EUROPOP homepage has / /www.ibn.dlo.nl/europop>; and a discussion site on the . been loaded at 1 % citation) (Fig. 11). Soil pH is generally basic or neutral; only one situation in acidic soil was cited (Table 21). Thirteen reserves mentioned occurrence of suitable conditions for regeneration (Table 22). It would have been useful to quantify this information as favourable conditions might be found in very restricted areas. In some cases, seedlings could be mentioned in the absence of favourable conditions, on a very restricted scale (but mentioned): such a situation is generally due to exceptional events (flooding etc.). This also means that exceptional events are important for the maintenance of the species. Concerning the river dynamics, only one answer per site was kept: the most frequent one (e.g. if 'annual flooding' and 'exceptional flooding' were mentioned, 'annual' was kept).However, some reserves might include various P. nigra populations submitted to various water regimes (Table 23). The riparian forest which includes P. nigra is generally not exploited, possibly due to the small size of the stands, the protection status, and the weak productivity (Table 24). No. of sites 2 5In the French Nature Reserve areas, black poplar is found in three different situations:• Large alluvial plains of the Rivers Loire, Rhone and Rhine, where huge stands can be found (see Table 13, area of the riparian forest, number of adult trees). These areas are also submitted to a strong pressure of agriculture, urban development, industry, communication routes, etc. Therefore natural reserves should play a significant role for the preservation of P. nigra in these sites.• Small lineal riparian forest stands along dynamic mountain rivers (the Pyrenees, the Alps). • Littoral zones where scattered trees can be observed on fine soil textures (clay, silt).Clearly, today, P. nigra is mainly found in advanced stages of the sylvigenesis, rather postpioneer than pioneer associations. Forest associations, accompanying species, and soil texture show that black poplar is mainly present beyond the active part of the riverside where conditions would be more suitable for regeneration. In fact, most pioneer associations including Salix, typical regeneration zones for poplar, were only mentioned three times. Thus, the current status of P. nigra should be considered with care:In the large alluvial plains, stands mostly consist of adult trees, inherited from a previously more dynamic situation of the ecosystem. Thus, Nature Reserves where the river dynamics has been preserved (Drome, Allier, Loire) play a major role for the conservation of the species. However, even in these places, the possibility for recent colonizing cohorts to reach the adult stage should be checked: this can only occur if the lateral movement of the riverbed is still allowed. If this is not the case, current poplar stands will definitely evolve towards hardwood alluvial forests: this is already the case along canalized rivers like Rhone and Rhine. In these situations, the preservation of black poplar would require active management to support regeneration. .Along mountain rivers, natural regeneration is favoured by exceptional natural floods which destroy previous adult stands and open new areas for colonization where poplars can then grow for a while. If no alteration of the water regime occurs (control of the river, erosion of the riverbed), and in the absence of overexploitation of the riparian forest itself, the P. nigra resource is supposed to be naturally preserved in such conditions.In littoral zones, the ecology of black poplar still needs to be specified in order to evaluate its sustainability.From a genetic point of view, large alluvial plains might also differ from narrow mountain rivers regarding scale of the geneflow (ecosystem more widely open for seeds and pollen) and amount of cultivated hybrids.For the conservation of genetic resources, we focused on three options as follows:• Where the riparian ecosystem is dynamic enough to ensure regeneration of P. nigra (some large alluvial plains, most mountain rivers), priority is given to the preservation of these dynamics, and to the limitation of exotic introductions. .. Large alluvial plains where river dynamics have been lost probably represent the highest priority for conservation as populations are still large, and probably contain important genetic variation, but threatened in the medium or long term. Moreover, the remaining old trees have been exposed to selection over a long period of time. .. In the littoral zones, due to the limited number of isolated trees, priority is given to ex situ conservation.Of course, due to the number of Nature Reserves involved in this survey, it was not possible to meet all reserve managers. This is considered to be a first step to identify a preliminary list of potentially interesting sites for in situ conservation. From the answers, 14 sites were identified a priori:.. Five reserves with dynamic rivers, where P. nigra could be self-maintained if the ecosystem is preserved in its present status.• Four reserves in large alluvial plains, where active management would be required to achieve regeneration. • Five reserves which only provided partial answers to the questionnaire but are supposed to be relevant fo! the conservation of the species.The next step will be based on further meeting and exchange of information with the managers of these reserves: they have the responsibility to decide whether the reserve should or should not enter a network for the in situ conservation of black poplar. The resource included in these areas will be further characterized in detail. The diverse experience from the whole group will serve the definition of management rules for in situ conservation of P. nigra, and a close collaboration with the EUFORGEN Network and the FAIR-EUROPOP research project is expected. Management rules for P. nigra should be compatible with the other objectives of the reserves.A first phase of the network for in situ conservation should then be formalized in the coming months. Later on, the network can be extended to other areas under different protection status (for example, the south-eastern part of France could be more represented).It should also be noticed that such riparian areas often include other tree species for which in situ conservation is recommended: Ulmus, Malus, Pyrus, etc., and a particular link should . .This stage occurs most frequently in favourable ecological conditions on newly formed deposits on river banks and islands, when these are conquered by the seeds of purple osier (Salix purpurea), white willow (Salix alba) and almond-leaved willow (Salix triandra). The growth of willow shrubwood and the development of phytocoenoses are dependent on favourable water levels over several years. Extremely high water levels lasting for several days may choke the shrubwood in the very first year.The most important pioneer associations of the initial stage are thicket of purple osier This stage is marked with the occurrence of mixed forests of white willow and black poplar (Salici albae-Populetum nigrae Tx. 1931), and forests of black and white poplar (Populetum nigra-albae Slav. 1952). Unlike pure forests of white willow, they develop under conditions of rare, short-lasting floods on elevated parts of the Danube islands with recent alluvial loamysandy 'Soils, in which intensive humus-forming processes are underway. Some white poplars with breast diameters of up to 2 m and heights of over 30 m can be found here.The floral composition of the shrub layer consists of Frangula alnus, Corn us sanguinea, Crataegus pentagyna, Viburnum opulus and Crataegus nigra, while the ground layer, along with swampy species from the initial associations, is composed of several mesophylous species, such as Lycopus europaeus, Scrophularia elata, Agrostis alba, Carex remota and others.The stage with forests of black and white poplars can last from one to several generations, depending on changes in synecological. factors. Therefore, these associations are often viewed as a permanent stage. As pedunculate oak frequently occurs in mixed poplar forests in numerous localities, such stands represent the upper boundary of forest vegetation.This stage is marked with forests of spreading elm and narrow-leaved ash (Fraxino-Ulmetum laevis Slav. 1952). In the Croatian Danube region fragments of these forests inhabit older and well-developed soils in the highest positions, where floods are rare and short. Apart from the spreading elm and narrow-leaved ash, there are also species of fresh sites, such as Acer campestre, Crataegus nigra, Rumex sanguineus, Festuca gigantea, and others. In the past, this phytocoenosis was distributed over a much wider area along the Danube, but the land has been given over for agricultural purposes.. 1. The floral structure and distribution of plant communities in riparian forests depend on the duration and height of floods, the elevation of the terrain, the distance from a riverbed, and the degree of parent substrate and soil genesis. Syndynamic processes are very intensive, and the manner and rate of changes depend primarily on the water regime, i.e. flood water. 2. The succession of riparian forests in the Danube region of Croatia from riparian shrubwood of almond-leaved willow (Salix triandra) or purple osier (5. purpurea), over white willow (Salix alba) and poplars (Populus nigra, P. alba) to climatogenous forests of Ulmus laevis, Fraxinus angustifolia and Quercus robur can be followed in three stages: initial, optimal and terminal. 3. The importance of riparian forests in Croatia is seen in their relatively well preserved state, their natural origin, and the fact that they provide important biotopes for the preservation of endangered plants and animals. The European black poplar is a typical species of alluvial soils near large rivers. In Croatia it grows along the Mura, Sava, Drava and Danube rivers. The black poplar stands have been considerably reduced by human activities, either directly by felling or indirectly by modification of ecological conditions in their habitats. Although today we have very wellpreserved riparian forests in the Baranja and Danube regions, as well as partly along the River Drava, in most other habitats the European black poplar has been reduced to smaller stands or individual trees.In 1925, the establishment of the first plantations with the so-called Canadian poplars (,Robusta' and 'Serotina' clones) started in Croatia along the Drava and Danube rivers in the riparian forest areas. Since 1960, new hybrid clones P. x euramericana have been introduced progressively in the cultures with a mass establishment of monocultures, mainly with the '1-214' clone. Later, the P. deltoides clones were introduced in the plantations; however, in the 1980s, due to lack of alluvial soils, diseases and the price decrease in the wood market, the afforestation volume was reduced. Some of the introduced clones were female, with their flowering time synchronized with that of the acclimatized poplar trees and the autochthonous black poplar trees. Nowadays, the European black poplar progeny, in which the existence of introgression with the Eastern cottonwood (P. deltoides) is questionable, or which was developed as the progeny from the female '1-214' hybrid, is found along the above mentioned rivers. For these reasons, based on the morphological characters, we wished to determine the phenotypical manifestation of some properties characteristic of the Eastern cottonwood in natural populations of the European black poplar. The determination of introgression variability would indicate the hybrid character of the European black poplar younger populations. Based on the leaf morphometrical research in the European black poplar carried out so far in Croatia, the presence of contamination by the Eastern cottonwood genes has been determined for some characters (Krstini6 et al. 1998).Leaf variability in the European black poplar was studied in young stands and adult trees by morphometrical analysis of leaves from short shoots. As within one tree the leaf dimorphism has been determined, for the leaf variability analysis in the generative progeny, leaves were taken from the short shoots only. This confirms the literature data (Rehder 1940, according to Zsuffa 1974) describing a rhombic-oval leaf shape on the long shoots and a rhombic leaf shape on the short ones. Seasonal heterophylly in poplars was also found. Preformed and neo£ormed leaves also often differ considerably in texture, shape and toothing. Preformed leaves generally provide a better taxonomical diagnostic than neoformed leaves and tend to differ more among major sections of poplars than among species within sections (Eckenwalder 1996).The analyzed material from populations was compared with the leaf measurements on the short fertile shoots from two European black poplar trees (Populus nigra L.) of about 200 years, one Eastern cottonwood (Populus deltoides Bartr.), one '618' ('Lux') clone, and one '1-214' hybrid clone (P. x euramericana (Do de) Guinier) as well as with the measurements concerning the Lombardy poplar clone P. nigra 'Italica'.Leaf samples for the European black poplar generative progeny were taken from a 3-4year-old generative progeny from seven locations. Five of the populations studied were close to the River Drava (Zirovnjak, Trscana, Bobrovac, Sucurica and Topolje), while two of them were near the River Sava (Jarun, Zapresic), as shown in Fig. 15.Bosnia and Hercegovina Fig. 15. Populations studied along the River Drava (1)(2)(3)(4)(5) and along the River Sava (6)(7).The analysis included only sound, fully-developed leaves, collected in mid-July. From each individual adult tree, 30 to 95 leaves were analyzed, while the generative progeny sample represented 300 leaves taken from 60 plants per population. The properties measured were:• maximum leaf blade length; • maximum leaf blade width; • distance between the leaf base and the leaf widest part; • petiole length; • leaf blade width at 1 cm from the leaf tip; and • a angle between the first lateral vein and the horizontal, as shown in earlier research (Krstinic et al. 1998).The possibility of mutual discrimination of the groups on the basis of the six characters analyzed was determined using discriminant analysis (Mardia et al. 1982;Kachigan 1991).The variables for grouping are the populations (Papulus delta ides, P. nigra, P. nigra 'Italica' and '1-214'), and the independent variables are the six morphological characters analyzed listed above. The independent variables were introduced in the model by the forward stepwise method. The tolerance limit for all analyses was 0.01. _ Each of the seven populations observed was compared with P. delta ides, P. nigra, P. nigra 'Italica' and '1-214' in seven separate analyses. Detailed results of this study can be obtained from the authors and will be published elsewhere.On the basis of the studied leaf morphological properties in seven natural young populations of the European black poplar in the Drava and Sava river areas, the existence of individuals which, according to the discriminant classification, can be attributed to the Eastern cottonwood, was found. Their presence can be explained by the recombinations and the transgression which occurred through crossing with the introduced representatives of the Eastern cottonwood or through the widespread hybrid clone '1-214' which is female.Of six morphological properties studied, the discrimination of the Eastern cottonwood from the European black poplar natural populations is influenced mostly by the property of the angle between the first lateral vein and the horizontal. This property might be indicative for the determination of the proportion of hybrids in the European black poplar populations. For these reasons, in works aiming at European black poplar genetic resources preservation, the selection should be made on old trees only, which have not been influenced by the Eastern cottonwood genes.","tokenCount":"19930"} \ No newline at end of file diff --git a/data/part_3/5634199738.json b/data/part_3/5634199738.json new file mode 100644 index 0000000000000000000000000000000000000000..e16418b21f66e86a84512a5f966239254a9c5111 --- /dev/null +++ b/data/part_3/5634199738.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"20788c6dc6c986ea7aa2ecd2ef43d8e8","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/9124d68f-88ef-429d-8143-73ddcc747f89/content","id":"36796564"},"keywords":[],"sieverID":"016a6306-ed27-4ece-a0cf-4126d3650738","pagecount":"5","content":"The objective of the ACME (Agile Crop Model Ensemble) software is to facilitate the simulation of large virtual experiments using an ensemble of crop models on personal computers running Windows OS. These simulations can either be point-based or spatially explicit. The package includes an ensemble of three crop models (executable files and input and output data) and two databases: 'MasterInputOutput' which contains the input and output variables of the models, and 'ModelDictionary', which contains the connections and required transformations between variables of the different models. In addition, an executable code 'DataMill' applies these transformations and manages the data flow between the MasterInputOutput database and the file system of each model, before (input parameters) and after (output parameters) running the virtual experiment.Cropping systems are complex systems in which plants interact with climate and soils, influenced by farmers' management. Crop models describe processes of crop growth and development as a function of weather and soil conditions, and management. Typically, such models predict the biomass of crop components (e.g., leaves, stems, roots and harvestable products) as they change over time and similarly, changes in soil moisture and nutrient status. \"Virtual experiments\" run by crop simulation models can be used as an effective means to explore the impact of changes in management and the environment on crops to help design more sustainable cropping systems. Numerous crop models exist with similar objectives and predictive capacities but with varying levels of detail across the components of the cropping system. The simulated data is subject to uncertainties related to model parametrisation and the structure of the model itself [1][2][3], which occasionally might be substantial enough to compromise the validity of the simulations (e.g. [4]). \"Multi-model ensembles\", i.e. sets of different simulation models, are increasingly being used to ensure better robustness of the conclusions drawn from virtual crop simulation experiments (see e.g. https://agmip. org/).However, the use of a multi-model ensemble amplifies the technical challenges with the use of crop models and increases the time needed to prepare model input files, to run the virtual experiment and to extract and analyse model output data. A crop model typically has more than 400 state variables, consists of more than 10 000 lines of computer code, and takes 0.3 to 1 s on a personal computer to run a 'simulation unit' (a crop growth simulation over one growing season). A basic simulation experiment to identify the best sustainable cropping practices in a given environment will require between 10 3 and 10 5 simulation units. This translates to a total simulation time ranging from a few minutes to over a day on a standard PC computer. Most crop models rely on a complex file system containing the necessary model inputs and the intended model outputs, without a standardized format for easily transferring inputs between different models [5,6]. Updating the file system of a single model with the data necessary for a virtual simulation experiment demands between half a day to a week for a scientist with expertise in the use of that model. This time depends on the size of the experiment and on how raw input data are structured. Furthermore, extracting and adapting model output data for systematic analysis and visualization may also take a significant amount of time from experts. The data to be extracted depends largely on the purpose of the virtual experiment.The objective of the software chain, 'Agile Crop Model Ensemble' (ACME), presented here was to reduce these technical challenges and hence the time needed for scientists and engineers to prepare and analyse large virtual experiments run by an ensemble of crop models. The software chain presented in this paper was developed to run on a PC under the current version of Windows OS (Windows 10 Professional 22H2 Build 19045.4170 and later)The software chain enables large virtual simulation experiments across soils and climates (including climate change scenarios) and spatialization over large geographic areas, using a set of crop models. These virtual experiments will contribute to answering critical research questions regarding how model uncertainty impacts recommendations for sustainable crop management, also aiding climate change adaptation and mitigation.The general concept of ACME is described in Fig. 1. The ACME software package consists of i) an ensemble of crop models, ii) a database enabling the management of input and output data of these crop models ('MasterInputOutput'), iii) a database containing tables that link the variables in the MasterInputOutput to the variables in the different crop models ('ModelDictionary'), and iv) the software that generates the data flows between these databases and runs the crop modelsnamed 'DataMill'. These components are described in the next paragraphs.The crop model ensemble comprises a number of dynamic crop models that simulate at a daily time step key variables of the cropping system. Each crop model is an executable file containing mathematical equations translated into a computer program, along with the commands handling the inputs and outputs from and to a file system specific to each model. This file system is hereafter referred to as the 'native files' of the crop model. Besides, each crop model has its set of input parameters and variables and its simulated output variables, hereafter named 'inputs and outputs' of the model. Currently, ACME incorporates the three following crop models: Dssat [7], Stics [8], and Celsius [9]. These are dynamic soil-crop process-based models that simulate potential crop growth, together with water and nitrogen stress. The models differ in the formalisms implemented to account for these stresses [10]. Any other crop model compatible with standalone execution could be included in ACME.MasterInputOutput is the database containing selected input variables and output variables for running ACME. In its current state, this set of variables, named ACME inputs and ACME outputs, with their names and units, was identified by a team of agronomists as the minimum set of variables required to evaluate the impact of climatic risks on cropping systems. It can be modified to include any selection of variables from the set of input and output variables formed by the union of all the sets of variables of each specific model.As a result, the total number of input (or output) variables of a specific model is greater or equal to the number of ACME inputs (or outputs). Certain input variables of a given model may match ACME input variables or input variables of other models of the ensemble. Among them, some may share identical names and units, while others may differ in one or both of these aspects. Certain input variables may be model-specific, and while there may be conceptual similarities, mathematical transformation can link these input variables. ACME input variables are organized in tables corresponding to each key component of the simulated cropping system (e.g. soil; weather; crop; and management).ModelDictionnary is the database containing: i) the list of ACME input and output variables with their description and type (e.g. real or integer number, text, Boolean), ii) the list of crop model inputs specific to the model of the ensemble, iii) the data defining the link between ACME inputs and model-specific inputs for each crop model of the ensemble, including the mathematical transformation applied to ensure the match between model-specific inputs and ACME inputs, whenever applicable, iv) default fixed values of model-specific inputs that are not related to any ACME input. For these inputs, model experts need to be consulted to ensure that the default values are appropriate for the study that is to be undertaken.Some crop models may have different assumptions and formalisms to simulate a given process (e.g. light utilization using the 'radiation use efficiency approach' or 'gross photosynthesis minus respiration', soil water dynamics using the 'tipping bucket capacity approach' or Richards equations, see [11]). For these types of parameters, the ACME software will not help to harmonize the parameter values across models and calibration of model-specific parameters by model experts is still required.DataMill is the executable code written in Visual Basic (VB.net). It reads ACME input variables from the MasterInputOutput database. For each model-specific input, Datamill assigns a value based on the link defined in the ModelDictionnary, i.e. either using the default value or applying the mathematical transformation. Then, each model-specific input is written in the model's native file system, and DataMill launches the model simulations and distributes the computing tasks across the processor cores. Finally, the code reads the selected output variables from the native file system of each crop model and writes them into the MasterInputOuptut database. The main input table in the MasterInputOuptut database, containing the list of simulation units, is indexed with a unique identifier, which is used for naming the files in the native file system of the models. This ensures immediate and secure retrieval of simulation outputs and inputs for comparison and data analysis.First, the user has to inform a database with tables containing the relevant information defining the virtual simulation experiment. Queries that compute the cartesian product of these tables generate the combinatory space needed for exploring how variations in input factors influence the outputs of the different models. These tables need to contain the factor levels for the virtual experiment (one factor per table), enabling the crossing of factors and their levels using simple queries. Additional queries are used to place the resulting data (derived from the queries computing the cartesian product of the initial tables) into the relevant input tables of the MasterInputOutput database.Subsequently, the user can launch the DataMill application. Through the user interface, the user can set the path to the MasterInputOutput database in his computer file system and generate the input files of the ensemble's models in their native file system. These native input files are stored in a subdirectory of the Datamill working directory, with individual subdirectories for each model. The user needs to provide the native plant file with plant parameters for each model.The user can adjust the number of processor cores used for the simulation. Launching simulations with the models of the ensemble is facilitated via model-specific buttons. The development of DataMill in VB.Net and the MS-DOS subsystem allow relevant parallelization on a single personal computer for batch computing when batch elements are independent as it is the case with the ACME virtual experiments.Once the simulations have been executed, the user can launch the summary function, compiling the main simulation outputs, in a table of the MasterInputOutput database, named SummaryOutput, referenced by the identifier of each simulation and the name of the model used.The approach was first developed and tested for field locations in Tanzania that represent contrasting climates and a diversity of ecoregions where crop production is prone to climate risks. We chose maize, as a typical crop sensitive to inter-annual variations of rainfall and temperature.We used ACME to generate, run, and analyse a virtual simulation experiment crossing key factors determining the agronomic and environmental performance of the maize-based cropping systems:-31 sowing dates covering, with a 10 days step, a large range of sowing dates starting from the earliest observed onset of the rainy season in the region of Tanzania under study, -4 soil types that are identical in terms of fertility (same organic carbon and nitrogen on a mass basis) but contrasting in their capacity to store moisture, -2 maize cultivars with contrasting crop cycle duration, thus with a contrasting potential to intercept solar radiation, but also with contrasting exposure to water and nutrient stresses -20 years of daily weather data , -6 locations with corresponding climate and thus with a specific series of weather data, -3 production situations: i) without stress to simulate 'radiation and temperature determined potential yield', ii) only water stress to simulate 'water-limited yield' and iii) nitrogen and water stresses. These production situations are achieved by de-activating the simulation of water and/or nitrogen stresses in the three models.This virtual experiment resulted in 31 × 4 × 2 × 20 × 6 × 3 = 89,280 simulation units for each of the three models in ACME, meaning a total of 267 840 simulations.The climate data (6 localities x 20 years x 365.25 days per year = 43,830 daily observation of rainfall, solar radiation, temperature, and potential evapotranspiration) was imported from global climate data servers (Chirps and AgERA5 data, https://data.apps.fao.org/catalog/da taset/global-weather-for-agriculture-agera5, https://www.chc.ucsb. edu/data/chirps) into the relevant daily climate data table of Master-InputOutput 'RAClimateD'. The list of the six locations with their coordinates was entered into the table 'Coordinates' linked one to many with RAclimateD. A list of the 31 sowing dates was created in the table 'IncrementSD', in the form of a list of values (0, 15, 30… to 30 × 15) that were added to the first sowing date considered in the analysis. A table 'YearList' lists the 20 simulated years. The four soils were added to tables 'Soil' linked one-to-many to 'SoilLayers', and their 29 parameters were typed manually. The three production situations were specified in the table 'SimulationOptions'.The tables containing the lists of factor levels for the virtual experiment were manipulated using SQL queries to generate the full set of 44,640 combinations of these levels, in the two following steps (where a field containing \"id\" as a prefix is a unique record identifier in a table):Step Step 2: generating the 44,360 simulation units in the table SimU-nitList designed for this purpose, linked one-to-one (e.g. CropManagement, coordinates, soil) or one-to-many (e.g. RaClimateD) with all the other tables containing model parameters. This was done by crossing CropManagement with YearList, Coordinates, Soils and SimulationOptions in a SQL query:Stics, Celsius and Dssat were run one after the other. Table 1 shows the computing time per model, using a standard PC laptop.Fig. 2 shows typical simulation results, as plotted with a plotting software using as input simple queries applied to the SummaryOutputs table built by dataMill into MasterInputOuput at the end of the simulations of each model.Virtual experiments with crop models pursue the general objective of exploring and assessing the sustainability of cropping systems and their management across a range of environments. The focus of these virtual experiments is increasingly on climate-related risk and the impact of climate change. They are powerful tools for the design of innovation in crop production systems.However, the computing time for running the models and the time needed for processing input and output data strongly constrain the potential of quantitative systemic approaches. The assessment or design of cropping systems using models is usually undertaken by large teams that combine agronomists, data scientists and computer engineers. While such teams are common in developed countries, the participation of scientists from low-and middle-income nations in sustainability assessments has been limited due to a lack of resources and skills. Our package considerably alleviates the constraints of preparing crop model simulations and output processing. Consequently, it allows to substantially expand the size of virtual experiments that are manageable by scientists using a PC. We expect this will be especially useful to small, emerging teams of low-and middle-income nations. These teams often address region-specific research questions that are also critical to inform global sustainability issues, but need quantitative crop modelling to answer them. These research questions that can be further explored thanks to our software revolve around sustainable intensification of cropping systems, climate change adaptation and mitigation in the context of smallholder farmers. What are the relevant plot-level technical options that contribute to sustainable intensification and adaptation to climate change? Current studies addressing this type of question often rely on the use of one crop model (e.g. [11,12] and neglect the uncertainty that arises from the use of different models. When the studies include large model ensemble, they are usually limited in scope due to the time required to coordinate modelling teams scattered around the world. For example, [10] explored model uncertainty when simulating maize response to individual climate variables, but the study could not include the exploration of climate change projections. We believe that our software can help individual users and small teams to compare crop models and improve their structure and calibration, thus increasing the relevance of the study and our understanding of sustainability issues. So far, the package has been used mostly by those who conceived and developed it. The software has been used so far for two virtual experiments that are the basis of three publications that are in the process of submission, one on the risk related to maize intensification in central Senegal, another on the risk related to delayed planting in Mozambique, and the third one on comparing existing crop calendars with optimal sowing dates determined with ACME in Zimbabwe and Zambia. One of the authors of this paper was not involved in software conception and development but successfully mastered the package after a few remote meetings with the developers. Subsequently, she designed and successfully performed a large virtual experiment, and contributed to improvements of the software.The use of databases facilitates the exploitation of the results as well as the archiving and reuse of virtual experiments. The ACME software package helps analyse models input and output variables at low cost and facilitates their understanding. The software package eliminates the need for tedious data entry, helps agronomists to focus on their research objective when designing innovative cropping systems, and allows rapid refinement of virtual experiments to test specific hypotheses. Our current efforts beyond the current version of the package aim at i) adapting the package to High Performance Computing under Unix/Linux operating systems, to allow large virtual experiments and simulations spatialized over large geographic areas such as the African continent, ii) including new models in the list of models managed by ACME, iii) increase the number of parameters handled by MasterInputOutput (and thus decrease the number of those fixed at a default value in the native file system of each model as generated by DataMill). For example, the share of stable organic matter is left at its default value in the different models. There is therefore an opportunity to expand the variables handled by ACME and build the connections between model-specific inputs and ACME inputs with the regard to the simulation of soil organic matter mineralization. ","tokenCount":"2984"} \ No newline at end of file diff --git a/data/part_3/5647561579.json b/data/part_3/5647561579.json new file mode 100644 index 0000000000000000000000000000000000000000..188a53cd7b33c8e309307c2c3cb701e03a78ebe8 --- /dev/null +++ b/data/part_3/5647561579.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"027f7f750aa7ff6e3171f350c513d00c","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/6bbf8903-e560-43a4-962c-d8afa457e5dd/content","id":"615972525"},"keywords":[],"sieverID":"4e48cb2b-eae5-42d6-a15f-ce5c78203bf5","pagecount":"8","content":"Resumen. El crecimiento del hongo Tilletia indica fue afectado por extractos de plántulas de las variedades de trigo harinero Bacanora T-88 y cristalino Altar C-84, previamente estimuladas con diversas preparaciones del micelio del mismo hongo. El mayor efecto inhibitorio se obtuvo con el filtrado de las plántulas estimuladas con una preparación del micelio esterilizado por microfiltración en comparación con esterilización por autoclave. Este efecto inhibitorio puede deberse a la presencia de fitoalexinas en estas plántulas, producidas como defensas químicas ante el contacto con derivados del hongo.Palabras clave adicionales: Carbón parcial, Neovossia indica, trigo harinero, Triticum aestivum, trigo cristalino, Triticum durum, Bacanora T-88, Altar C-84.Abstract. Growth of the fungus Tilletia indica was affected by seedling extracts from bread wheat cultivar Bacanora T-88 and durum wheat cultivar Altar C-84, which were previously estimulated by different fungal mycelia preparations. The greatest inhibitory effect was obtained with the extract from seedlings elicited with mycelia microfiltration instead of autoclaved sterilized mycelia preparation. This inhibitory effect may be due to plant phytoalexins produced as chemical defense against some derived fungal products. El trigo se siembra en casi todos los Estados de la República Mexicana y se adapta tanto a tierras pobres en nutrientes, como a tierras ricas, zonas húmedas, semi-secas y secas. Las zonas trigueras más importantes en México son: Sonora, Sinaloa, Baja California (Norte y Sur), el Bajío y Valles Altos en la parte central de México. Hasta 1997 se tuvieron 687,000 ha de trigo bajo riego y 225,000 ha de temporal (Villaseñor Mir, 2000). El carbón parcial (Tilletia indica Mitra), reportado originalmente en la India (Mitra, 1931) es la enfermedad más importante del grano de trigo (Triticum sp.) en el noroeste de México. Los síntomas se presentan después del estado masoso del grano. En esta enfermedad, no todas las espigas de la planta, ni todos los granos de una espiga son infectados, y su distribución es al azar. La gravedad de la enfermedad puede variar desde puntos pequeños de infección hasta la afectación total del grano (Bedi et al., 1949;Mitra, 1935). En la mayoría de los casos, los granos infectados son parcialmente dañados aunque en ocasiones pueden llegar a una destrucción total. Los granos parcialmente infectados pueden producir plantas sanas; sin embargo, los granos severamente afectados conservan sana sólo una pequeña porción de la región cóncava dorsal y la penetración del hongo al embrión no necesariamente causa daño; pero pueden perder su viabilidad o presentar una germinación anormal (Chona et al., 1961;Mitra, 1935;Rai y Singh, 1978). Durante la trilla del trigo, las teliosporas de T. indica que se encuentran adheridas bajo el pericarpio de la semilla son liberadas, depositándose en el (Recibido: Abril 24, 2006Aceptado: Junio 26, 2006) suelo o adhiriéndose a los granos sanos como contaminante externo. También pueden ser diseminadas a otros campos por medio del viento (Bedi et al., 1949;Mitra, 1935;Mundkur, 1943). Condiciones de alta humedad relativa, temperaturas moderadas y lluvia durante la floración, favorecen el desarrollo de la enfermedad (Aujla et al., 1977;Mundkur, 1943;Singh y Prasad, 1978). Al exceder los niveles de grano infectado más del 3%, se alteran las características organolépticas de la harina (Peña et al., 1992). Estos factores así como las regulaciones y cuarentenas establecidas a nivel nacional e internacional, afectan la economía de los agricultores y productores de semilla y el intercambio de germoplasma experimental (Brennan et al., 1992;Delgado, 1984;SAGAR, 1987SAGAR, , 1995)). Se calcula que el costo económico anual debido a esta enfermedad en el noroeste de México es de 7.02 millones de dólares (EUA), representando el 2% del valor promedio del cultivo en las áreas afectadas (Brennan et al. 1992). En el programa de mejoramiento se han identificado fuentes de resistencia genética mediante inoculaciones artificiales (Fuentes-Dávila y Rajaram, 1994), las cuales se están utilizando como progenitores dando lugar a la liberación de algunas variedades comerciales de trigo harinero (Triticum aestivum L.) con resistencia a la enfermedad (Barreras-Soto, 1995;Camacho et al., 1993;1998). A pesar de estos avances y aunque estudios genéticos indican que 8 genes confieren resistencia al hongo (Fuentes-Dávila et al., 1995), se desconocen cuáles son los mecanismos de resistencia que pudieran estar actuando en esta interacción. Las fitoalexinas son compuestos antimicrobianos de bajo peso molecular, sintetizados y acumulados en la planta después de su exposición a microorganismos o estímulos similares (Darvill y Albersheim, 1984). Se ha demostrado que en plantas resistentes, su acumulación causa inhibición del crecimiento de hongos y que tienen efectos bacteriostáticos y bactericidas (Smith, 1982). Algunos compuestos de la pared celular de ciertos hongos desempeñan un papel importante como estimuladores exógenos para la producción de fitoalexinas. Se sabe que estos estimuladores tienen diferentes grados de especificidad, algunos son específicos para determinadas plantas y se conocen como factores de avirulencia y otros son indeterminados y reconocidos por varias especies de plantas. Por ejemplo, algunos péptidos fúngicos son estimuladores específicos, pero los fragmentos de quitina se consideran como estimuladores indeterminados reconocidos por tomate (Lycopersicon esculentum Mill.), trigo y arroz (Oryza sativa L.). Se han descrito algunos estimuladores reconocidos sólo por cereales como NIP1 y YAMO similares a productos del gen Avr2, la siringolina que es un péptido de Pseudomonas syringae van Hall, glicopéptidos de Puccinia graminis Pers.:Pers. y de Magnaporthe grisea (Herbert) Barr., y carbohidratos solubles con residuos de manosa de Blumeria graminis (DC.) Speer (Lintle and Van der Westhuizen, 2002;Schweizer et al. 2000).Otros factores pueden estimular respuestas de defensa en plantas como el aluminio en trigo (Hamel et al., 1998).Algunos de estos estimuladores pueden ser liberados por medio de tratamientos sencillos como calor y filtración, o bien, por las enzimas presentes constitutivamente en la paredes celulares vegetales como las ß-glucanasas y quitinasas (Cano-Camacho, 1993). La producción de fitoalexinas como una respuesta inducida de defensa química, plantea interesantes alternativas para la prevención de enfermedades provocadas por patógenos en las plantas. Tienen la ventaja de ser biodegradables, y por lo tanto, pueden usarse como complemento o sustituto de los pesticidas sintéticos y por ser de origen biológico generalmente no dejan residuos. Por tal motivo, resulta importante el estudio de las fitoalexinas, ya que abre paso a nuevas investigaciones para inducir defensas en las plantas y disminuir el riesgo de enfermedades causadas principalmente por microorganismos patógenos (Lozoya et al., 1991). Ya que se han identificado líneas y variedades de trigo resistentes y susceptibles al carbón parcial (Fuentes-Dávila, 1992;Fuentes-Dávila y Rodríguez-Ramos, 1993;Fuentes-Dávila et al., 1993;Fuentes-Dávila y Rajaram, 1994), los objetivos de este estudio fueron: a) Evaluar el efecto estimulador del micelio del hongo Tilletia indica y de compuestos liberados de ese micelio, para inducir la producción de fitoalexinas en una variedad de trigo harinero (Triticum aestivum) susceptible al carbón parcial (Bacanora T-88), y de trigo cristalino (Triticum durum Desf.) resistente a la enfermedad (Altar C-84); y b) determinar el efecto de las fitoalexinas inducidas en el desarrollo del mismo hongo estimulador.Obtención del micelio del hongo a partir de teliosporas.Las teliosporas de Tilletia indica se obtuvieron raspando granos de trigo infectados; se colectaron en agua destilada con surfactante (Tween 20, 1 gota/L), y se dejaron reposar por 24 h. Posteriormente, la suspensión se filtró en un tamiz de nylon con malla de 60 µm y se centrifugó a 3000 rpm. El sedimento se desinfectó con hipoclorito de sodio 10% por 2 min y se lavó 3 veces por centrifugación con agua destilada estéril. Las teliosporas se mantuvieron suspendidas en agua con surfactante hasta el momento de la siembra, para lo cual se pasaron a agua pura, se sembró 1 mL de la suspensión en agar-agua al 2% y se incubó a 20-24°C con un fotoperíodo de 14 h durante 6-8 días. Para multiplicar el hongo y obtener esporidios secundarios, se depositaron bloques de agar con teliosporas germinadas en tapas de cajas Petri con medio papa-dextrosa-agar (PDA) en la base, y se incubaron a 20-24°C con un fotoperíodo de 14 h durante 10-14 días. Se agregó un poco de agua destilada estéril sobre las colonias formadas y se rasparon con una espátula estéril. Se inoculó 1 mL de esta suspensión en nuevas cajas con PDA y se incubaron durante 5-7 días. Para obtener suficiente micelio del hongo, se cortaron bloques de agar conteniendo micelio y se agregaron a cuatro matraces de 250 mL con caldo de levadura-malta previamente esterilizado. Posteriormente, se incubaron en agitación durante 5 días a temperatura ambiente (22-24°C), y se dejaron reposar tres días a 24°C. Después, se filtró el micelio al vacío en un embudo de vidrio con papel Whatman No. 1, recuperándose 25 g del micelio (6 g / matraz) y 1 L del caldo filtrado. Preparación de estimuladores de fitoalexinas a partir del micelio del hongo. El micelio obtenido se homogeneizó con 25 mL de agua destilada estéril en una licuadora durante 10 min a máxima velocidad. Independientemente, el caldo filtrado se concentró hasta la décima parte del volumen original (100 mL) calentando a 40°C. Ambas preparaciones se filtraron nuevamente y se dividieron en dos partes iguales, una se esterilizó en autoclave (121°C y 15 libras/pulgada 2 por 15 min) y la otra con un microfiltro Nalgene de 0.2 MC. En todos los casos, el volumen obtenido se llevó a 100 mL con agua destilada estéril y se guardó a 4-8°C hasta su uso posterior. Estas preparaciones se denominaron como: micelio esterilizado en autoclave (MA), micelio esterilizado en microfiltro (MM), caldo esterilizado en autoclave (CA) y caldo esterilizado en microfiltro (CM).Tratamiento del material vegetal con los estimuladores del hongo. Las variedad de trigo harinero utilizada fue Bacanora T-88, y la variedad de trigo duro fue Altar C-84. Se seleccionaron 100 semillas sanas de cada variedad, y se dejaron en reposo en agua destilada durante 24 h aproximadamente. Posteriormente, se lavaron con detergente comercial eliminando la tierra adherida enjuagando varias veces con agua destilada. Las semillas se agitaron durante diez min con 5 mL de hipoclorito de sodio al 4% y se lavaron con agua destilada estéril para eliminar los residuos del cloro, repitiendo todo el procedimiento tres veces. Una vez desinfectadas la semillas y con la ayuda de una espátula estéril, se sembraron en cajas de Petri estériles con 6 mL de agaragua al 2% colocando el área del embrión en contacto con el agar. Las semillas germinadas diez días después a partir de la siembra, se pusieron en agua estéril (5 semillas/50 mL) y se sometieron a agitación lenta a 22-24°C durante una semana. Posteriormente, se les añadieron 1.5, 2.5 y 5.0 mL de cada preparación de estimulador fúngico (MA, MM, CA y CM) y de agua destilada estéril como testigo. Se incubaron durante 48 h a 22-24°C en agitación lenta, y posteriormente se recuperaron las plántulas y los líquidos por filtración. Se realizaron cinco repeticiones de cada variedad con diez semillas, evaluándose el tamaño de la plántula (parte aérea) y longitud de la raíz a los diez días de siembra (datos no publicados). Ensayo de las posibles fitoalexinas en el crecimiento del hongo. Las plántulas de cada tratamiento se maceraron en un mortero con etanol 80%, el extracto se filtró y se evaporó a sequedad. Los líquidos en donde se incubaron las plántulas se evaporaron a 40°C hasta la sequedad. Ambos residuos se recuperaron por separado en 1 mL de cloroformo y se mezclaron con 20 mL de PDA en cajas de Petri. Como testigo se utilizó 1 mL de cloroformo puro. En el centro de estas cajas de Petri se colocaron fragmentos discoidales de la colonia del hongo, de aproximadamente 7 mm de diámetro y se midió el crecimiento radial a los 15 días de incubación a 20-24°C con un fotoperíodo de 14 h.Obtención de los estimuladores a partir del micelio y del medio de cultivo. A los 7 días de iniciada la incubación del hongo en 250 mL caldo de levadura-malta comercial en agitación, se obtuvieron 6 g de micelio algodonoso en la superficie del caldo (Fig. 1). Para la obtención de los estimuladores se utilizó el micelio de T. indica y el caldo de cultivo. Debido a que la alta temperatura de esterilización podría destruir compuestos estimulantes de la producción de fitoalexinas, se utilizó un microfiltro de 0.2 MC para eliminar microorganismos contaminantes, permitiendo la conservación de componentes potencialmente estimulantes presentes en el caldo. En la Figura 2 se muestran los aspectos de los 4 estimuladores obtenidos: El CA fue de color café oscuro; el CM presentó una coloración café claro y transparente; el MA presentó una coloración amarilla clara con pequeñas partículas en forma de grumos y el MM presentó una coloración amarilla clara semi-transparente. Con estos tratamientos se obtuvieron compuestos estimuladores derivados de las paredes celulares del hongo. Se ha encontrado que estos compuestos se pueden recuperar de filtrados de cultivos fúngicos, y ya se han aislado estimuladores de este tipo a partir de hongos fitopatógenos entre los que destacan Phytophthora infestans (Mont.) de Bary, Phytophthora megasperma Drechs., Botrytis cinerea Pers.:Fr., Uromyces appendiculatus (Pers.:Pers.) Unger y Colletotrichum lindemuthianum (Sacc. y Magnus) Lams.-Scrib., entre otros. Estos estimuladores se obtuvieron en forma más o menos cruda a partir de filtrados del medio de cultivo en donde crecieron los hongos, o por tratamiento de su pared celular con calor (Anderson y Albersheim, 1975;Ayers et al., 1976;Hadwiger y Beckman, 1980). La presencia de enzimas hidrolíticas en las paredes celulares de hongos, permiten la formación de estos fragmentos estimuladores como las b-glucanas. Existen reportes de una b-glucana altamente ramificada purificada del hongo P. megasperma, la cual indujo resistencia a virus en tejidos de siete especies de tabaco (Nicotiana tabacum L.), cuando fue rociada, inoculada o inyectada antes, durante, o dentro de las primeras 8 h después de la incubación de hojas de tabaco con partículas virales. La glucana fue efectiva contra varios tipos de virus, incluyendo el Virus del Mosaico del Tabaco (VMT), Mosaico de la Alfalfa (VMA) y Virus del Anillo del Tomate (VAT) (Cano-Camacho, 1993). Se han reportado algunos microorganismos que inducen mecanismos de defensa en trigo como conidios de Blumeria graminis f. sp. tritici (DC.) Speer. Éstos contienen un estimulador fácilmente lavable de la superficie que es termoestable y resistente a la extracción por fenol, pero sensible a la oxidación con periodato y a la hidrólisis ácida parcial. Esto sugiere que la actividad estimuladora es debida a residuos de carbohidratos siendo probablemente manosa el más importante (Schweitzer et al., 2000). Para el caso específico de Tilletia indica, se ha reportado la caracterización parcial de glicoproteínas inmunoreactivas en la pared de la teliospora. Una proteína similar se encontró en T. barclayana (Bref.) Sacc. y Syd. pero no en T. controversa Kühn ni en T. tritici (Bjerk.) G. Wint. Aparentemente, el residuo de carbohidrato de la glicoproteína de T. indica es específico y permite diferenciar entre distintas cepas de Tilletia, aunque no se le ha demostrado actividad estimuladora de mecanismos de defensa en plantas (Luster et al., 1998). También se ha observado que el tratamiento de hojas de trigo (Triticum aestivum) cv. Sideral con trealosa, un disacárido no reductor presente normalmente en muchos organismos incluyendo los hongos, reducen entre 50% y 95% el grado de la infección producido por B. graminis f. sp. tritici. Este tratamiento aparentemente resulta en la activación de las defensas de la planta evitando la deposición de la papila fúngica, y elevando las actividades de las enzimas fenilalanina amonio liasa (FAL) y peroxidasa (PO), conocidos marcadores de respuestas de defensas en plantas (Reignault et al., 2001). Efecto de las fitoalexinas obtenidas de las plantas en el crecimiento del hongo. El crecimiento radial de las colonias del hongo en las cajas utilizadas como testigos mostraron en general un crecimiento mayor comparado con los tratamientos diversos. En la Figura 3 se resumen los resultados obtenidos del crecimiento del hongo en presencia de los extractos de plántulas y filtrado de plántulas de Bacanora T-88 y de Altar C-84, cuando éstas fueron tratadas con los diversos volúmenes de las preparaciones de los estimuladores fúngicos. En todos los casos se tomó como 100% del crecimiento del hongo, la medida radial obtenida en medio con agua. Para cada volumen de estimulador aplicado hubo un testigo igual de agua que se usó para ajustar los datos en cada caso. Los valores que indican un crecimiento mayor al 100% significan que el hongo creció más en el medio con los extractos de plántulas o residuos de los filtrados de plántulas que con agua solamente. Esto puede deberse a que en esos extractos o filtrados se encuentran algunos nutrientes o sustancias que si no estimulan, tampoco inhiben el crecimiento del hongo y que fueron extraídas con cloroformo, como pueden ser algunos ácidos grasos, hormonas vegetales como brasinosteroides, etc. Se ha reportado que especies susceptibles (ej. Triticum aestivum) y resistentes (ej. Triticum timopheevii Zhuk.) de trigo, responden con un incremento o decremento respectivamente del crecimiento de plántulas ante el ataque del hongo Tilletia caries (DC.) Tul. y C. Tul. La concentración de ácido indolacético (AIA) también se incrementó en ambas especies siendo más rápida la acumulación en T. timopheevii. Una alta concentración de ácido abscísico (AAB) permaneció por más tiempo en las especies susceptibles que en las resistentes; pero en éstas últimas, el incremento de AAB fue transitorio y aparentemente asociado con el incremento en los mecanismos de defensa (Maksimov et al., 2002). Algunas de estas sustancias podrían también haber afectado el crecimiento del hongo dando las diferencias observadas con el testigo de agua. El único caso en donde no hubo un crecimiento mayor al 100% fue en donde el estimulador fúngico utilizado era el caldo de cultivo microfiltrado (CM). Además, en este caso se observa que conforme aumentó el volumen aplicado del estimulador, aumentó también la inhibición en el crecimiento del hongo. Esto sugiere que al aumentar la concentración del estimulador, se produjo una reacción de defensa de la planta de mayor intensidad, provocando muy probablemente la producción de más fitoalexinas o sustancias inhibitorias. También es notable que los filtrados de las plántulas tuvieron un mayor efecto inhibitorio en el crecimiento del hongo que los extractos de plántulas, siendo el filtrado de plántulas de la variedad de trigo Altar C-84 el que tuvo el efecto inhibitorio más intenso (29% del máximo). Considerando todos los datos, pudo observarse una tendencia hacia un mayor efecto inhibitorio en los casos en donde se aplicó el estimulador fúngico, ya sea micelio o caldo de cultivo, pero microfiltrado (MM y CM) en comparación con los esterilizados en autoclave (MA y CA). Esto sugiere que los posibles estimuladores de origen fúngico, que inducen la producción de sustancias inhibitorias del crecimiento en las plántulas, pueden ser termosensibles. Los resultados obtenidos sugieren la posible presencia de alguna(s) fitoalexina(s) estimulada(s) por los componentes del hongo probablemente de su pared celular. Asimismo, la inhibición al crecimiento del hongo por los inductores obtenidos de las plántulas y filtrado de las plántulas de Altar es un indicativo fisiológico de la reacción resistente de esta variedad a Tilletia indica, ya que es una de las variedades de trigo cristalino con resistencia a este patógeno, tanto en pruebas de campo en inoculaciones artificiales, como en pruebas bajo infección natural (Fuentes-Dávila, 1997). Desde hace tiempo se conocen ya los mecanismos de defensa que intervienen en algunos grupos específicos de plantas como las solanáceas y otras, y que son inducidos por el ataque de patógenos o por estimuladores derivados de ellos. En el caso de los cereales, estos mecanismos de defensa han sido poco estudiados; se tienen indicios de que algunos compuestos naturales como las saponinas y los benzoxazinoides son parte de estas defensas químicas (Osbourn et al., 2003). Las saponinas se han encontrado en gran cantidad de plantas y con diversas actividades, pero las 1,4-benzoxacinonas son ácidos hidroxámicos cíclicos presentes constitutivamente en forma de glucósidos en varios miembros de las gramíneas. Se encuentran principalmente en los haces vasculares y los más conocidos son el glucósido de DIBOA (2,4-dihidroxi-1,4benzoxazin-3-ona) en centeno (Secale cereale L.) y el DIMBOA (2,4-dihidroxi-7-metoxy-1,4-benzoxazin-3-ona) en maíz (Zea mays L.) y trigo (Fig. 4); no se han encontrado estos compuestos en arroz (Oryza sativa L.), cebada (Hordeum vulgare L.) ni avena (Avena sativa L.). En respuesta a la infección o por daño físico, los glucósidos de estos compuestos son hidrolizados dejando las agliconas respectivas que se descomponen rápidamente a las benzoxazolinonas correspondientes con liberación de ácido fórmico. Las agliconas, benzoxazinonas y sus productos de degradación tienen actividades fungistáticas y bacteriostáticas así como propiedades deterrentes contra algunos insectos. Las concentraciones de DIBOA y DIMBOA son elevadas en plántulas jóvenes y decrecen días después de la germinación. El gen BX1 aislado de maíz codifica para una enzima Revista Mexicana de FITOPATOLOGIA/ 39 homóloga de la triptofano sintasa involucrada en la biosíntesis de DIBOA y DIMBOA. Otros genes dependientes de la citocromo P450 monooxigenasa, también están relacionados con la biosíntesis de estos compuestos (Morrissey y Osbourn, 1999). Otro compuesto antifúngico denominado feruloilagmatina [1-(trans-4-hidroxi-3-metoxicinamolylami no)-4-guanidinobutano], se aisló de Triticum aestivum cv. chihokukomugi. La producción de este compuesto se indujo en trigo por exposición a bajas temperaturas (Jin y Yoshida, 2000). En el presente trabajo no se determinó la naturaleza de la(s) sustancia(s) inhibitoria(s) del crecimiento del hongo por lo que es importante continuar con este estudio, con el fin de identificarlas para su posible aplicación práctica en el control del carbón parcial.El crecimiento de Tilletia indica en el medio de cultivo fue afectado por sustancias inhibitorias, posibles fitoalexinas obtenidas de plántulas y filtrados de plántulas expuestas a varias preparaciones de estimuladores fúngicos. El inhibidor más efectivo fue el que se obtuvo de filtrados de plántula de la variedad de trigo cristalino Altar C-84 el cual inhibió hasta en un 70.2% el crecimiento del hongo en comparación con el testigo, y cuya producción aparentemente fue inducida por sustancias estimuladoras presentes en el caldo de cultivo esterilizado en microfiltro en donde creció el hongo. ","tokenCount":"3602"} \ No newline at end of file diff --git a/data/part_3/5657189557.json b/data/part_3/5657189557.json new file mode 100644 index 0000000000000000000000000000000000000000..ceaa9b9095ec2ecf462df6dce4dd14fef1808cbd --- /dev/null +++ b/data/part_3/5657189557.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"bdcc540cf14bf4f30eee18178fdb0dfd","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/d07b397e-ed83-4290-bbac-25d808bd2b8f/retrieve","id":"569240796"},"keywords":[],"sieverID":"b6f48edd-45df-43ab-8726-51d40b0c2b6c","pagecount":"24","content":"This project aims to identify the risks and benefits associated with the use of wastewater in urban and peri-urban fodder and vegetable cropping systems in India and Pakistan, where wastewater is largely untreated due to lack of public finance. Two mega-cities (Faisalabad, Pakistan and Hyderabad, India, with large untreated wastewater irrigation areas have been selected a) for comparative purposes and b) to develop and promote country-specific risk mitigation options. With a particular focus on food safety, livelihoods and livestock, the research will combine field and laboratory methods and structured interactions with producers, consumers, and authorities (urban planning, public health and water management).The goal of the project is to improve health and safeguard wastewater-dependent livelihoods of resource-poor urban and peri-urban farmers and consumers in developing countries. This overlaps with IWMI's mission to improve water and land resources management for food, livelihoods and nature. The project's purpose is to develop and promote the uptake of a set of risk mitigation options based on a comprehensive assessment of risks and benefits associated with wastewater irrigation in Hyderabad (India) and Faisalabad (Pakistan). The project will enable the uptake of the recommendations in two countries with large wastewater-irrigated areas and different politicalinstitutional environments.1. Framework of actors and interactions. Social and institutional map of the multiple actors (individuals and organizations) along the chain from wastewater source to end-use.2. GIS database of peri-urban and rural agriculture and wastewater irrigation.3. Evaluation of human health and agronomic risks from field to consumer.4. Economic valuation of the direct and indirect livelihood benefits as well as the health and adaptation-related costs of wastewater irrigation.5. Comprehensive assessment of tradeoffs, risks, costs and benefits at different levels along the chain from wastewater users to consumers of produce.6. Concrete, actionable risk mitigation recommendations (based on outputs 1-5 above).The project reports on an improved methodology to identify the contamination pathways and critical points of intervention in the wastewater crop/fodder production to end-user chain. The different components of the methodology (risk assessment and identifying critical control points, analysis of actors and institutions, economic valuation and the direct and indirect livelihood benefits) are presented here with the salient findings and achievements where relevant, collating the evidence base to better support the WHO guidelines on safe use of wastewater in agriculture. These findings have been used to develop a set of risk mitigation recommendations to be forwarded to the stakeholders for necessary action.The cities in the two countries (Pakistan and India) are heavy users of wastewater for agriculture, and the descriptions are given separately to highlight country specific achievements.1. Framework of actors and interactions, health and agronomic risks associated with wastewater agriculture in Pakistan and IndiaThe studies were carried in two villages, namely, Chakera (31 o 28' 2.73\" N / 72° 59' 51.79\" E to 31° 25' 53.76\"N / 73° 0' 57.82\"E) and Kehala (31° 29' 39.84\"N / 72° 57 ' 17.38\"E to 31° 28' 21.10\"N / 72° 58' 54.44\"E). Farmers form Chakera used wastewater (WW) where as those of Kehala used canal/ground water (CW) for agriculture. In Chakera, 550.5 ha (883 ha) and Kehala 865.5 ha (998 ha) were under agriculture production. A total population of 14,178 (Chakera, n = 5488, 769 HH) and Kehala, n = 8690, 1222 HH) inhabited the two villages at the time of the study (2006). Both villages were situated close to the city of Faisalabad.i. Framework of actors and institutions associated with wastewater agricultureSeveral groups and organizations that have a stake in various aspects of wastewater irrigation have been identified and their interactions have been linked as given below (Figure 1). These interactions appeared to have been developed over a period of time, with water scarcity (frequency of availability) and salinity triggering the increased use of wastewater, especially in areas close to the city. While wastewater use for agriculture was not officially recognized the Water and Sanitation Agency played a pivotal role, as it levied a fee for utilizing the sewerage water.IWMI made use of this opportunity to start-up a series of dialogues with the Water and Sanitation Agency (WASA) and related agencies (Ministry of Health, Environment Protection Department and community leaders of the villages) regarding improved management of the waste stabilization ponds (WSP) in Faisalabad, with a view to improving the water quality for irrigation, ground water quality and the quantity of urban wastewater being treated before it is returned to surface water bodies. IWMI has helped in the development of a proposal incorporating these ideas, to seek funds, and to the best of our knowledge the Institute is taking up the issue at its strategic planning meetings. IWMI on its part has adapted the same proposal and included it in another call for proposals and is awaiting its outcome (the GlobalHort).The institutional requirements for wastewater agriculture have been highlighted at various stakeholders meetings, where positive and the negative impacts have been discussed, so that institutional reforms can be incorporated in their strategic planning for the future. Community awareness on negative impacts of wastewater use and risk mitigation methods have been disseminated through its community health providers (Lady Health Supervisors -LHS and Lady Health Workers -LHW) with the involvement of the National Program for Family Planning and Primary Health Care (NPFP&PHC). The Social and Institutional maps are included in a separate descriptive report. Health (Chakera, n = 2577; Kehala, n = 2153) and stool (Chakera, n = 596; Kehala, n = 638) surveys among household members, anthropometric studies of children, ground water quality studies within the homesteads revealed the following.• The housing units comprised multiple units with extended families, sharing common kitchens.The houses were located close to each other in parallel rows with intervening roads, and therefore appeared as a clear cluster away from the fields. General hygiene within the households and the environment in both villages were poor. The health surveys revealed that latrine sharing was common (83 -87 per cent; Chakera = 365 and Kehala = 295 households) in both villages. Many households had their own ground water supply (67 -98 per cent). In comparison, the WW village had fewer infra structure facilities than CW village.• Communities engaging in agriculture (main income generating activity) were 30 % and 26% in Chakera and Kehala respectively. The numbers would increase, if those who engaged in farming as a secondary activity were to be added. Overall parasite infections (protozoa and helminths) among the farming communities in both villages were similar (65 -68 per cent) which was not expected. We expected the CW farming families to have less parasite burdens.• Parasite species found were Entamoeba coli, Entamoeba histolytica, Giardia lamblia, D. butschlii, Ascaris lumbricoides, Enterobius vermicularis, Trichuris trichura, Hook worms, Hymenolepis nana, and Taenia saginata -all parasite species also associated with poor sanitation and hygiene behaviour.• However, hook worm infections were significantly higher among the WW farmers (16 %), indicating that contact with wastewater compounded by poor sanitation and the habit of open defecation would have contributed to these evelvated figures. The Lady Health Workers (LHSs and LHWs) were used in health education and adopting mass-scale treatment for helminths. Antihelmintic treatment had a positive and significant effect on reducing the helminth loads. Key achievement was the involvement of the NPFP &PHC for the activity, which is being continued as part of the routine treatment during primary health clinics presently (ADB outcome story). 10 Its wider application among the WW farming populations is being discussed. Continued training of the health workers on health risk reducing methods and monitoring the impacts is required.• Protozoa infections (Entamoeba coli, Entamoeba histolytica, Giardia lamblia) were high in both WW and CW farming communities (31 -42 percent) indicating poor hygiene and sanitation in both villages. Communities were advised to take treatment for these infections from pharmacies as they were not made available through the government drug delivery system.• The water quality in the household bore wells as measured by levels of E. coli, total dissolved solids (TDS), electric conductivity (EC), were above the acceptable limits for drinking water, set by the WHO guidelines. The need for a drinking water supply was highlighted and brought to the notice of the authorities.• Microbial and helminth contamination of selected vegetables (spinach, cauliflower, fenugreek and coriander) from the plots, households (storage) to the market increased progressively. This study tested the produce from the same plots through its market chain process, starting from the fields, storage in houses overnight, and the market place. The evidence points to increased contamination in the market place. This has come up as a critical point for intervention, where the health sector and water and sanitation departments will have take action.For selected wheat varieties, vegetable and fodder crops, soil conditions (nutrient levels, salinity, selected heavy metals), and water quality (nutrient levels, selected heavy metals) studies revealed the following.• Across all wheat varieties soil nitrogen (N), phosphorous (P), potassium (K) and organic matter levels were significantly higher under WW as compared with CW irrigated plots. However, across all wheat varieties, long-term untreated WW irrigation resulted in no significant differences in grain yield (Dry Weight -DW), wheat straw biomass (DW), Grain: Straw Ratio, 1000 grain weight, wheat straw N-content or invitro-digestibility were observed between WW and CW irrigated plots.• Across all wheat varieties studied, soil salinity was significantly higher under wastewater (WW) as compared with canal water (CW) irrigated plots. As a precautionary note, ECe in 20 percent of WW irrigated plots ranged from >4.0 to <6.0 dS m -1 . This would suggest that ECe in WW irrigated wheat fields was bordering on the critical salinity threshold (6.0 dS m -1 ) above which reductions in yield could be expected.• In both CW and WW irrigated plots, soil cadmium (Cd), lead (Pb) and Zinc (Zn) concentrations were below the EU Maximum Permissible (MP) levels. Further, in contrast to popular belief, the long term use of domestic WW in had not resulted in elevated levels of soil Cd, Pb and Zn as compared with the CW irrigated plots.• For all wheat varieties across both CW and WW irrigated plots wheat straw (DW), Cd and Pb concentrations were orders of magnitude below the EC Maximum permissible levels (Directive 2002/32/EC) for these metals in feed materials. A similar trend was observed for Rabi season Egyptian clover and Kharif Season sorghum, maize and millet green fodders. Therefore, the current re-use of WW poses no risk to the fodder-milk/meat-human food chain and hence human or livestock health, with respect to these two heavy metals.Total concentrations (FW) of Cd and Pb in the vegetables sampled were orders of magnitude below the Maximum Levels established by the Codex Committee on Food Additives and Contaminants (CCFAC). Assuming a daily leafy vegetable intake of 0.011 kg (FAO, 1994) and a body weight (BW) of 60 kg for men (aged 20-50 yr) and 50 kg for women (aged 20-50 yr) the contribution to weekly Intake of Cd and Pb derived from the consumption of leafy vegetables cultivated in Chakera is for both men and women, less than 0.5 percent of the Joint FAO/WHO Expert Committee on Food Additives (JECFA) Provisional Tolerable Weekly Intake. Consequently, the consumption of WW irrigated leafy vegetables poses negligible risk (with respect to heavy metals), to the human food chain.iii. Economic valuation of the direct and indirect livelihood benefits as well as the health and adaptation-related costs of wastewater irrigation• Comparison of the socio-economic characteristics of the inhabitants of both sites showed that farmers were illiterate and majority was aged 45 -60 yr. Overall, the land under cultivation was less than 2 ha in both WW and CW sites.• The key input costs were seeds, fertilizer, irrigation, machinery and chemicals. The overall cost of production per ha was higher in the CW site for both seasons compared with the WW site. Seasonal differences were marginal in the WW site. In the CW site, the Rabi season cost of production was 3 times higher than in the WW site for the same season; fertilizer, irrigation and chemical costs being the main contributory factors. In general, input costs for seeds were more in the WW site for both seasons, compared with the CW site. The difference was highest (3 times) in the Kharif season, where germination rate was observed to be lower. More chemical application was reported from the CW sites than for WW sites.• Analysis of the yield of major crops (wheat, maize, berseem and sorghum) showed that the Gross Value of Production (GVP) in the CW site was higher as compared to the average GVP in the WW site. E.g. Average GVP for wheat was about 20 percent higher, while that of maize was about 53 percent. It is reasonable to assume that prolonged use of wastewater would have affected the soil nutrient content, which in turn would have impacted the yield of the cereal crops. A similar trend was observed in the analysis of Gross Margin.• In assessing the benefit-cost ratio based on the gross return on the cash costs, the returns were almost double for the WW site as compared with the CW site. This is attributed to the low cost of production.• Negative externalities associated with the different types of water use as measured by average days of illness showed that it was 19 percent more in the WW site. As a consequence the WW farmers were incurring around 18 percent more on expenses related to health. Overall, on average, the WW farmers were incurring 20 % more on day to day expenses compared to the CW counterparts.• Poverty analysis of the different groups and classes of people carried out using Foster-Greer-Thorbecke (FGT) class of measures and household expenditure, showed that incidence of poverty was highest among the non-farmers in the CW site.• Incidence of diseases and health expenditure ratios revealed that communities from the WW site were more susceptible to disease attack and the days of illness was about 19 percent higher, than its counterparts from the CW site.• Econometric analysis using Cobb-Douglas production function supported the above findings.The studies were carried out in six villages along the banks of the Musi River (78 0 34' 5 -78 0 46' 2 / 17 0 20' 3 -17 0 24' 5). They were zoned based on the distance from the city of Hyderabad. The cluster of first three villages (1 km from city municipal boundary), Parvatapuram, Kachivanisingaram, Quthbullapur referred to as the peri-urban zone, had a combined population of 6808 from 1562 households (HH). The rural zone comprised three villages, Chinnarawirala, Maktha Anantharam and Pillaipalli having a combined population of 5081 from 1109 HH. The total area coming under cultivation within the periurban and rural zones were 492 ha 518 ha respectively (2007), with sources of water for agriculture being a mixture of surface and ground water. The use of river water (82 per cent) was higher in the periurban site, and paragrass (56 percent) was the dominant crop. Rice (97 percent) was the dominant crop in the rural zone, with farmers expanding the area of cultivation with increased use of ground water (22 percent). Lift irrigation with both sources of water using pumps was quite common, which was attributed to the subsidies offered for electricity supply. Along the stretch of the Musi river, the river water quality used for agriculture improved for selected parameters with the exception EC and total nitrogen levels. In fact, the EC levels increased significantly, in downstream sites, which have been attributed to agricultural run-off and high evapotranspiration, according to a separate study.The actors and institutional arrangements for agriculture in the two zones were analyzed in the light of the dynamic changes observed in the city of Hyderabad during the period 2005 -2007. The Hyderabad Urban Agglomeration (HUA), which defines the new metropolis, is now over 778 km 2 having absorbed twelve new municipalities form the surrounding areas. Greater Hyderabad Municipal Corporation (GHMC) and Hyderabad Metropolitan Development Authority (HMDA; previously know as HUDA) are the new administrative institutions responsible for planning and executing its new development programs. And today, HMDA has a proposal to extend its jurisdiction over an area of 6,852 km 2 , which will include all the villages that are under study. Therefore, it is clear that the areas close to the city are becoming transition zones of high activity of different types (commercial development, increased dairying, and fodder and vegetable production) and the institutional analysis thus becomes complex and hazy. A major development program for the area is the \"Musi beautification program\", where incremental changes are taking place in a vast area covering the Musi Banks, but affecting the livelihoods of many. At the same time Musi River conservation project aims to provide cleaner water for down stream agricultural activities, with its plans for the larger sewerage networks and sewage treatment plants (STPs), some of which are already functional and some in the pipeline.Despite these dynamic changes, in the urban -rural continuum, the key institutions like the irrigation, agriculture and livestock institutions do appear to influence agricultural activities, directly or indirectly (Figure 2). The two study zones which come under an ancient irrigation scheme comprising a network of canals and lakes that provide water for agriculture along the banks of the river, are still serviced by these institutions by way of monitoring water releases and rehabilitation of the canals. From the community perspective, Water User Associations (USA), Primary Agricultural Credit Societies (PACS), Agricultural Marketing Committees (MAC) and Community-based Farmer Organizations engage interact for their needs and requirements. These outcomes appear to be complex and hazy without proper direction.It was apparent that the real-estate boom impacted the agricultural enterprise, reduced land under cultivation, especially, in the peri-urban fringes. While livestock rearing in the city was banned by an act of legislature, it has continued to be a vibrant business that carried on informally in certain parts of the city, and spilled over to the peri-urban zone where fodder cultivation was predominant. Thus, in an environment of rapid urbanization, agrarian institutional re-structuring did not keep pace with new developments, often constraining activities related to peri-urban agriculture. However, it has been observed that market forces of demand and need for fresh vegetables, meat and dairy products has in a way forced agricultural diversification, especially in the peri-urban areas under study.Wastewater regulation and water qualityWastewater generationAt the end of the study period, 45 scientists from 21 national and international organizations revisited the issues related to wastewater agriculture along the Musi River, in the light of the project findings, during a dissemination work shop. The opinions were diverse and context specific and the need for objective assessments of different studies were highlighted. The stakeholders (government) who attended the meeting was keen on having access to the different data bases, which according to them would serve as a baseline, for future planning activities.• Availability of Wastewater proved to be a valuable resource for both paragrass and green vegetable production, which required fewer inputs, according to the periurban farmers.• Market forces of demand and need for food (perishable vegetables, meat and dairy produce) have resulted in a diversification of agriculture from paddy to para-grass cultivation. Both vegetable and para grass production and the dairy industry reported growth.• In an environment of rapid urbanization, agrarian institutional re-structuring has not been complementary and many factors have constrained urban and peri-urban agriculture.• New growth and urbanization have not been conducive to traditional agricultural practices of paddy cultivation.• Supportive policies on the formation of cooperative societies and self-help groups, access to credit and microfinance was growing.• Institutional arrangements for providing cleaner water to down stream users are in place, but its implementation showed slow progress. By 2008, the largest Sewage Treatment Plant (STP) was in place and functioning. Increasingly, smaller STPs (20 mld) are becoming common, especially in association water bodies and new development sites, indicating a greater awareness on sustaining a cleaner environment within the city, which will have a positive impact downstream.• What was lacking were government policies that recognize the use of wastewater (it happens in reality) and provision of more support for wastewater agriculture. In a water scarce setting, with water being lifted from far off places for domestic use, closer scrutiny and necessary action on safe use of wastewater can have economic benefits as well.ii. Evaluation of Health and Agronomic Risks Associated with Wastewater AgricultureAn initial household listing of periurban (n=1319) and rural (n=1064) households revealed that when both primary and secondary income generating activities were considered, 50 percent and 90 percent of the population respectively, had engaged in agriculture. For health studies, comparisons were made across the periurban and rural zones, among the farming population, unless otherwise stated.• Health (periurban: n = 1145, rural =1047), stool (periurban : n = 232; rural = 261 ) and diarrhea (periurban: n = 295; rural = 298) surveys among household members, of children, ground water quality studies within the homesteads revealed the following.• In the periurabn zone the Individual housing units were well constructed but crowded, with the exception of one village where urbanization was felt only marginally. The houses were more spaced out in the rural setting with more garden space separating housing units. Latrine coverage in the periurabn zone was 80 percent, with 39 percent (n=164) sharing the facilities. In comparison in the rural village it was 60 percent (n=187) being shared. Open defecation was common in the rural zone and the hygiene standards were poor. There was an increasing demand for the city water supply (Krishan and Manjira) for drinking water, which was supplied to the periurban zone through special connections on the roadside. In the rural setting, most houses were dependant on groundwater which was pipe-borne to a large extent. City water supply had reached only the village of Chinnaravirala, and the other villages had to buy the water at a price from bowsers.• The overall parasite prevalence was low across the farming populations in both periurban (8 percent) and rural sites (9 percent). Parasite species present were Entamoeba histolytica, Giardia lamblia, Ascaris lumbricoides, Trichuris trichura, hookworms, Hymenolepis nana and Taenia saginata.• No hookworm positive cases were found in the sampled population in the periurban zone. Very low (3 percent) prevalence rates were reported from the rural zone. Irrigation water in the latter site was not positive for worm eggs, therefore, the infections were attributed to general sanitation conditions and high numbers of migrant labor that come to the village during the harvesting seasons.• At least a single diarrhea episode during the last 2-3 months was recorded by the farming population in the periurban and rural sites at 38 percent (n=295) and 57 percent (n=298) respectively. Cases reported for the non-farming categories were similar, and overall poor sanitation conditions in these areas would have contributed to the illness episodes. Deworming and treatment was recommended to those who reported positive during the study. Because of low prevalence rates, no mass scale deworming was undertaken in the Indian sites.• Microbial and helminth contamination of selected vegetables (Amaranthus, spinach, mint and coriander) showed that only spinach had E. coli levels above the permissible levels set by UK (<20 E.coli counts for market produce). Helminth ova posed negligible risk, for the period tested.For selected rice, vegetables and fodder crops, soil conditions (nutrient levels, salinity, selected heavy metals), and water quality (nutrient levels, selected heavy metals) studies revealed the following.• Across all three rice varieties soil N, P, K and organic matter levels were significantly higher under 'direct' as compared with 'lift' and control (ground water) irrigated fields. Across all three rice varieties no significant differences in straw yield or invitro-digestibility were observed between 'direct' 'lift' and control irrigated fields. However, rice grain yields were 30-40 percent lower in 'direct' as compared to 'lift' and control irrigated plots. This is in large part due to the high Nstatus associated with 'direct' irrigated plots.• Across all three rice varieties and villages no significant differences were observed in soil ECe between 'lift', 'direct' or control fields. However, the high soil ECe values observed suggest that salinity induced reductions in yields are to be expected.• 47 percent of rice field sampled had total soil Cd concentrations exceeding the EU Maximum Permissible (MP) level. Irrespective of irrigation type, all total soil Pb and Zn concentrations were significantly lower than the EU Maximum Permissible (MP) level for Pb and Zn in soils.• Across all three rice varieties investigated straw Cd and Pb levels were orders of magnitude below the EC Maximum permissible levels (Directive 2002/32/EC) for Pb and Cd in feed materials irrespective of irrigation method or duration of wastewater use. Therefore, the current re-use of WW poses no risk to the fodder-milk/meat-human food chain and hence human or livestock health. Similarly, Cd and Pb levels in paragrass were orders of magnitude below the EC Maximum permissible levels for Pb and Cd in feed materials.• Zinc Deficiency: Of the 64 plots tested, over 30 percent were associated with DTPA-Extractable Zn concentrations less that the critical threshold of 0.8 mg Zn kg -1 below which Zn deficiency symptoms would be expected in rice. This is supported by the fact that over 95 percent of the rice straw samples contained Zn concentrations of <15 mg kg -1 (DW) considered as a reliable indicator of Zn deficiency.• Contrary to general perception, total concentrations (FW) of Cd and Pb in the vegetables sampled were orders of magnitude below the MLs established by CCFAC. Assuming a daily leafy vegetable intake of 0.011 kg (FAO, 1994) and a body weight (BW) of 60 kg for men (aged 20-50 yrs) and 50 kg for women (aged 20-50yrs) the contribution to Weekly Intake of Cd and Pb derived from the consumption of leafy vegetables cultivated in the peri-urban villages is for both men and women, less than 0.5 percent of the JECFA Provisional Tolerable Weekly Intake.• Musi river irrigated rice varieties, fodder and leafy vegetables poses negligible risk to the human food chain, at the time of sampling. However, the need to monitor these parameters at regular intervals is recommended to see that these threshold values do not exceed through time.iii. Economic valuation of the direct and indirect livelihood benefits as well as the health and adaptation-related costs of wastewater irrigationIn economic terms, wastewater use in agriculture can be considered as a positive and/or negative externality depending on its benefits or ill effects. Thus, the analysis was undertaken in a broader framework, looking at various externalities that will help understand how best a city can deal with the generation and treatment of wastewater as well as asses the benefits to the farmer who uses it.In this analysis all six villages were compared with a control village (Vallala) that used ground water, situated away from the Musi river. In total, 471 households (WW villages -361; Vallala -110) were subjected to analysis. Where necessary, a further stratified analysis based on the landholdings was also carried out.• The households surveyed in the WW using villages were socially, economically and educationally backward. More than half of the total households were landless, and among the rest, majority were either small or marginal farmers. The major income generating activity was agriculture in over 40 per cent of the households. Only 5 per cent reported dairying as their main economic activity. Besides this finding, 67 per cent of the total workforce (considerable inter village differences were noted) engaged in activities which were either directly or indirectly related to wastewater irrigation.• The average area under paragrass cultivation (WW villages) per household was 1.34 acres 1 and ranged from 0.77 to 5.33 acres across all villages. Details of the economics of paragrass cultivation was difficult to obtained as a large number either leased out their land or engage contract labour for grass cutting. The lease rent ranged from INR 700 to 1300 per month per acre depending upon the quality of the land.• Twenty six percent of the households sampled engaged in livestock rearing and dairying. Paragrass cultivation supported livestock activity as evidenced by the 56 per cent of paragrass cultivators owning livestock. However, there was a negative correlation between land holdings for paragrass growing, and livestock rearing, indicating that livestock rearing and dairying is a vital economic activity for the small holder. The periurban farmers had significantly more heads of cattle (4.34 per HH), than the control village, which was clearly linked to the proximity of the city markets. It was estimated that 1.33 lakh liters of milk worth over INR 16.6 lakhs have been produced per year by the 102 households who reported dairy production (WW villages). The lowest per household milk production of 650 liters per household per year was observed in the control village.• Average productivity per acre for the two sites (rabi and kharif) for two seasons was significantly different. Wastewater irrigated villages produced 14.43 quintals per acre where as the control village reported 18.44 quintals per acre. The productivity difference was statistically significant.A Cobb Douglas Production function analysis, using inputs such as area under cultivation, labour, fertilizer, pesticide and seeds, showed that quality of irrigation water adversely affected outputs. It was noteworthy, that while the farmers regarded the wastewater as an asset, in terms of input costs, it was not significantly different between the wastewater and control groups.An analysis of input use and net returns from paddy cultivation, showed statistically significant differences with regard to the use of certain inputs. Labor costs (including family labor) and land preparation incurred the highest expense. However, the difference in the wastewater villages and the control village was not statistically different.Percentage of farmers using fertilizer was less in the WW (64 per cent) villages compared to the control village (90 per cent). Consequently, per acre cost of fertilizer was also higher in the control village (INR 1074 vs INR 382). Significant differences were reported for pesticide costs where WW farmers spent more on pesticides (INR 182 vs INR 70).• Considering four major inputs for paddy production, it was observed that the net returns for the control village were significantly higher (per acre input cost -WW village: INR 11,474; control village: INR 9,806). Accordingly, the earnings per acre of paddy were INR 7,568 in the wastewater villages and INR 10,233 in the control village. Based on these values, irrespective of the size of farm, the farmers in the wastewater villages incurred net losses from paddy cultivation.However, if the input costs of family labor were to be excluded from the calculation, the paddy farming activity appeared to be profitable. The major contribution of family labor, for paddy cultivation in the WW villages is noted. The livelihood benefits to the wastewater farmer are thus very clear. Families are able to keep the cost of production low, by using family labor.• While providing livelihood benefits, wastewater agriculture also imposed health and adaptation related costs. In the WW villages at least 50 per cent of the total households reported illnesses (fever, body aches, skin itching, stomach ailments). The estimated morbidity for per thousand population was 70 for males and 345 for females. High female morbidity was observed for the control village as well. A logit model analysis using details of variables showed that those who owned land and living in periurban areas are less likely to report morbidity, along with those who adopted protective measures such as using boiled water for consumption. However, living close to the wastewater irrigated land, ownership of livestock and being migrant labor placed some household members at risk.• The cost of illness which includes wage loss and medical costs was not significantly different in the two sites. What was significant was the high cost of illness related expenditure for small and medium farmers followed by landless households. The cost of illness is almost equivalent to 2 to 4 days of wage loss per month for a male worker in a household or 3 to 6 days of wage income loss per month for a female worker when estimated at average wage rate of INR 90 for males and INR 60 for females in the study area. This is a substantial loss of household income for those engaging in agriculture.• A large GIS database was created for each of the project locations in India and Pakistan. The individual layers were based on QuickBird satellite images purchased in 2006 (base maps). A semi-supervised classification of the satellite image in combination with \"ground truthing\" in the research area (for land use/land cover classification) formed the basis for analysis. Extensive field mapping of irrigation infrastructure, irrigation water types used, village landmarks, etc. were presented as maps for different discussions.• Further, GIS was used as a tool to bring together information collected from the different studies (health, agronomy, demography and socioeconomic). In particular, the spatial orientation of the information collected was very useful in the visualisation and understanding the major trends in wastewater agriculture, distribution of irrigation types and its implications for livelihoods.• A GIS manual was developed providing step-by-step methods on setting up a GIS data base in interdisciplinary studies. It comprises, information on how to set up a GIS database, with field mapping exercises (with ground truthing) in interdisciplinary settings, instructions on how to order, process and analyse satellite images, detailed instructions on technical tasks like setting GPS points and transferring into a GIS data bases. This now available in the internet.• A GIS database comprising GIS data and maps was produced for sharing and dissemination (on DVD) among the relevant institutions in India. The manual accompanies this data base which gives instructions on how GIS can be used as a tool for depicting the spatial orientation of information collected for enhanced visualization.• Key findings of the project was also summarised in the form of an atlas, and was presented at the final dissemination workshop in India. The atlas for Pakistan is under preparation. The final workshop was not held due to the political unrest and security issues in the country that prevailed at the time. .• Data collected from the different groups (health, agronomy and socioeconomic studies) were presented in a manner that highlighted the linkages between the findings from the different disciplines to better understand the upstream and downstream effects of wastewater agriculture. This provided a good base for critical analysis and discussion.• Six interns from Germany and Austria benefited from the GIS exercise. All interns spent two to four months in India and Pakistan at different stages of the project which was mutually beneficial. The training included field mapping, questionnaire administration, and data processing methods. The GIS data base was strengthened throughout with their contributions.• GPS training was given to members of other project groups, more than 20 Indian students who were involved in the project directly or indirectly, and the research staff involved in the project in both countries. The GIS manual was field tested during the process.• As part of knowledge-dissemination, maps were produced and handed over to village administrative representatives in Faisalabad as well as in India.• Some of the lessons learned during the GIS studies were:A rapid assessment of the area under study by quick \"ground truthing\" activities that gives a snap shot of the features at a given point in time was necessary prior to purchasing an image, so as to ensure the coverage of the area under study. Studies can be aided by the freely available Google Earth images which allow good visual interpretations, especially, if remote sensing analysis is not required. Land-use patterns tend to change and this dynamism has to be captured by frequent observations during the length of the project period. It is advisable to give an overview of the usefulness of GIS studies, and how the primary data bases should be compiled to all team members at the outset. This will aid in the easy compilation of GIS data across the disciplines. Setting up a functioning line of communication at all times, where process and progress documentation is achieved is vital. A discussion forum in the internet and a person dedicated to lead the process and for the purpose of keeping it alive and vibrant is a must.These are made based on the reality that wastewater farming is occurring despite the negative perspectives on wastewater use in agriculture. The usage of wastewater in many cases is due to the fact that farmers are experiencing water scarcity or not having access to cleaner sources of water. Therefore, the recommendations are aimed at looking for opportunities on a case by case basis, with the support of the decision makers to develop win-win situations.i. Formation of a platform for dialogue with key decision makers from the different sectors (health, Livestock and Animal Husbandry, irrigation, water and sanitation, city administration, research institutes universities and farmers) in the respective countries. Preparation of an agenda that addresses life cycle assessment of wastewater generation -Make realistic assessment of wastewater irrigated areas, crops grown, degrees and of pollution in soil water and crops. Assessment of suitable treatment options, suitable crop selection, safe practices on-farm and offfarm as per the ground situation and public health aspects in vegetable markets.ii. Design interventions based on #1 that support the livelihoods of farmers who depend on wastewater.iii. For the present (India) promote paragrass cultivation in areas where the water is not suitable for agriculture (after soil and water testing).iv. Provide necessary extension services to support the farmers; paddy farmers -India, and all types of WW farmers -Pakistan, to manage nutrient balances in the soils. Test out new varieties of different crops that can be grown in wastewater with the support of the extension services. In general, equip the agricultural extension services with knowledge and skills on how to deal with wastewater agriculture, accepting the fact that it is a reality.v. Develop integrated programs with the livestock sector so that animal health and zoonotic infections and food chain contamination via animals can be addressed in a holistic manner.vi. Rehabilitate the Waste Stabilization Ponds (Pakistan), so that farmers could have better quality water for agriculture, which will reduce health risks well.vii. Health and agriculture departments of both countries should have special training and awareness programs on safe practices to be adopted in wastewater agriculture. Clinics for regular deworming and regular health assessments of such communities.viii. Form a public health forum to assess and adopt safe practices in market places where vegetables are sold, to minimize health risks.ix. Develop good GIS data bases on productive uses of wastewater for better visualization and exchange of ideas and interventions.x. Develop programs to bring in the cohesiveness among farmers on emerging issues such as changes associated with city development. Strengthen the micro-credit groups linked to wastewater agriculture.xi. Develop and implement policies (platform members) and regulations based on evidence from the ground, to safeguard the lives of farmers and consumers alike, guided by the WHO guidelines for safe use of wastewater in irrigated agriculture, and support the livelihoods of persons engaging in wastewater agriculture.Most of the activities planned were achieved, with the no-cost extension granted. Delays in activities were due to unforeseen events, such as rapid staff turn over at all levels, and political unrest in Pakistan. As such, data collection and analysis were delayed, and therefore, the publications as well. Several publications are in the pipeline and these will be completed later this year and through next year.Overall, the institutional capacities of the research institute, collaborating NARS and German partners were enhanced and collaborative partnerships were strengthened, during the three year period. In the ensuing interactions the importance of inter-sectoral dialogue and action, especially among the key players (Departments of health, water and sanitation, irrigation and agriculture and, farmers), to ensure health and food safety were revealed. During the project period, it was possible to form a large net work of actors and institutions, to take up further challenges and research studies in this area of work. Newer proposals were formulated with partners, to address some of the research gaps that were realized at the end of this study (GlobalHort).The evidence base provided through the project findings was useful in convincing the stakeholders that the dialogue on wastewater generation and its re-use for food production should be a continuing one that leads to interventions. In this regard, it was made clear that the inter-sectoral institutional platforms are required to assess and address the dynamic changes that take place in the urban/periurban fringes and its impact on agriculture down stream. A good decision support system to safeguard the livelihoods of WW farmers and also to ensure safe production of food crops can be a positive outcome. For this, it was stressed that the commitment of the relevant stakeholders and the involvement of the decision makers have to be ensured.GIS studies were an integral part of the project providing the useful tools to capture the trends and dynamic changes, in the different components of the project. Such tools can become part of institutional activities strengthening their capacity the capture these changes to take action in a speedy manner. The manual that was produced could be used by any one as it provides the methodologies in a simple user-friendly manner. Together with this there are a number of other research products that can be used by different actors.The quality of the wastewater used for agriculture was different in the selected sites in Pakistan and India. In Pakistan, the farmers were forced to use wastewater in areas where water is scarce and saline. In the study village, it was seen that the sewer lines were being tapped directly to supply the water for agriculture and even a fee as levied by the Water and Sanitation Agency.In the city of Faisalabad, <10 percent of wastewater is directed at the cities sole Waste Stabilization Pond (WSP). Of this 68 percent is utilized untreated for agricultural production generating over 1800 and 1782 t yr -1 of wheat grain and wheat straw (DW) from a cultivated area of only 374 ha. The remaining >90% of wastewater generated in Faisalabad remains un-utilized. The results indicate that if effectively monitored and managed appropriately the contribution of wastewater re-use to the achievement of MDGs 1 and 7 could be significant.The stakeholder meeting that was held in 2007, helped to bring the stakeholders together in a common platform, to share some of the preliminary results generated. The fact that the leadership was given by the District Nazim, who is the head of the administration in the city of Faisalabad was a positive outcome. The meeting stimulated relevant stakeholders to work more closely with the project partners and also look for funds to improve the basic services in the WW village, in particular to rehabilitate the WSP, which had gone to disrepair with time. The findings of the project contributed directly to a dialogue between the Water and Sanitation Agency (WASA) and IWMI regarding improved management of the WSP in Faisalabad to improve water quality for irrigation, ground water quality and the quantity of urban wastewater being treated before it is returned to surface water bodies. The proposal has not yet been funded but has been adapted and included in a proposal for the GlobalHort.The Institutional interviews identified a number of areas in which agricultural extension services, irrigation provision and wastewater management could be improved to increase the safety and livelihoods benefits of wastewater agriculture.The information sharing meetings held in both villages revealed that people were keener on the irrigation and domestic water supplies, but not aware of the environmental sanitation aspects that was affecting their health directly. Involvement of the department of health enabled the institutionalization of WW related risk mitigation methods where Lady Health Workers were trained and mass-scale worm treatment effectively administered. Application of this model to other WW using systems is expected.In India, the use of wastewater for agriculture takes place in the banks of Musi River. An estimated 1000 mld of wastewater generated from the city reaches the river, making available the water for agriculture year round. However, starting from the city center up to 30 -40 km downstream, the water quality (some key elements) is affected, and farmers continue to grow paddy rice (downstream) having no other supply of water.Upstream water quality (city generated) has influenced the shift from rice to paragrass cultivation, combined with the high demand for paragrass for a growing dairy industry. At present, given the water quality, paragrass cultivation appears to be the best choice for good economic returns.However, land holdings are fast disappearing engulfed by an expanding city, and it is likely that fodder cultivation can spread downstream to meet these demands. The farmers in the rural zone however, are paddy cultivators as the distance to the city is prohibitive to engage in this activity.From the economic evaluation it is evident that the net outputs of paddy cultivation are impacted by the use of wastewater. In a concurrent agronomic study it was also shown that the yields from \"lift irrigated\" land (therefore, cultivated more recently), had yields comparable to ground water irrigated lands. Therefore, these farmers will need the expert advice and support of the agriculture extension officers, to remedy the soil nutrient balances affected by long-term impacts of WW irrigation.The analysis of economic valuation overall indicates that wastewater supports livelihoods of landowning farmers who are mostly small and marginal farmers and agricultural laborers directly and indirectly of those engaged as vendors and transporters of wastewater grown produce, suppliers of inputs for agricultural activities etc. Paddy yields are significantly lower in the villages falling under wastewater irrigation when compared to the control village. When the imputed cost of family labor is included in the cost of cultivation, it is seen that paddy cultivation is not an economically viable option. However, its importance in labor absorption and therefore providing livelihoods to small and marginal farmers as well as agricultural laborers is considerable. The study points out to the need to make measures to make paddy cultivation economically viable while making use of the nutrients contained in the water.Institutional set up is both promoting and prohibitive towards urban/periurabn agriculture due to the expanding city limits. While the supply of water for irrigation to the rural farmers is taken care of through the Water Users Associations, there is limited interest in the quality of water supplied and its impacts. The organizational capacity of farmers appears to be low, to address issues like water quality and health risk mitigation. Here in lies an area for future studies.Where possible the farmers have been made aware of the study findings; that the source of water is contaminated, but at present the levels of contamination in the food (rice and leafy vegetables) and fodder crops are negligible. However, the situation can change with upstream events, and therefore, close monitoring is necessary to capture events that take place upstream. It was also highlighted that the biological and chemical contaminants tested only for selected elements and short-term illnesses, due to the time frame of the project. Therefore, more long-term studies are required to capture the long-term health effects.With the evidence base generated on the health and agronomic risks, and knowledge and skills imparted (participants from universities), universities and research institutes can undertake more holistic studies to study the future trends. Curricula can include such current topics that generate an interest among the younger generation. It will be very interesting to observe the impacts of the two large projects namely, \"Musi River Conservation\" and \"Musi River beautification\" that are being implemented, albeit slowly.Finally, at present there are no policies or regulations linked to wastewater use in agriculture for both countries. The present evidence base affords opportunities to draft recommendations (see above) that can be converted into policies at a later date. Coupled with other instruments like, regulations, safety standards as stated in the WHO guidelines, wastewater treatment options, and information and education programs, wastewater can be put to better use in the future.In general, the findings on the institutional interactions, economic valuation and wastewater contamination pathways (agronomic and health) have been shared with the stakeholders and farmers in both countries at different platforms and stakeholder meetings. The project findings have been received well and recognized as a valuable evidence base for decision making and necessary action. Training opportunities have been provided for many research staff in partner institutions, where the research methodologies and other research products have been shared. What needs to be done by each country is the preparation of a stakeholder action plan, to implement some of the interventions that have been recommended.In general, on the agronomic front (apart from the key findings given above), the recommendation is to maintain systematic monitoring of water, soil and crop quality, as these are parameters that are likely to change with time. In the market chain of vegetable production, vegetable markets were a major point of contamination that required intervention in both countries. Therefore, putting in place a monitoring system will help pick the changes early, so that remedial action could be planned on time. This can be achieved through a sustainable institutional framework that looks after the infrastructure at market places, and social and health aspects of the communities.On the health front, the recommendations have been imparted to the vertical and horizontal health systems. IWMI established a collaborative link with the Pakistan's National Program for Family Planning and Primary Health Care (NPFP&PHC) which comes under the Ministry of Health. The NPFP&PHC which comes under the jurisdiction of the federal government, is aimed at delivering basic health services to the rural poor. The project utilized the community-based approach where by key staff [Lady Health Supervisors (LHSs) and Lady Health Workers (LHWs)] are trained from the communities, to address deliver the key findings and set of health risk mitigation methods, especially those engaging in WW agriculture. It was seen that the LHSs and LHWs strategically positioned for dissemination of knowledge and skills among community members. The right leadership of the Provincial and District Coordinators of the NPFP&PHC the lady LHSs and LHWs workers carry out specific activities designed jointly with IWMI. The results of the activities are shared with the higher authorities of the NPFP&PHC as well as the members of the community at the end of each activity. In India, the direct health impacts due to wastewater were low, how ever such information was shared with the Institute of Preventive Medicine, the main institute identified for collaboration.The methodologies used in this project (used in Pakistan) have been adapted and used in the WASPA project. Some of the findings, in terms of options for improved management, have already been tried in the WASPA project and are being written into current project proposals. For example, the BMZ project identified major gaps in the content of agricultural extension materials and the forms of their delivery. Efforts have therefore been made to develop materials that specifically relate to wastewater use problems and to reach urban and peri-urban farmers, who are often neglected by extension departments.In Hyderabad, High soil pH in the study are (>pH 8.0) and high P-status seriously reduces Zn bioavailability. It is recommended that farmers apply supplemental Zn-fertilizer at critical growth stages to alleviate the inherent Zn deficiency of these soils. This needs to be transferred to the farmers and Department of Agriculture Extension Officers.All products generated are in the public domain and can be accessed by the scientific community. The findings will be disseminated more widely in the coming months, and the project team has several papers in preparation and some have already been submitted to journals for review.Training and capacity building was an on-going process and occurred in all the components at different levels and intensities. GIS and Health studies trained a large number of people, as these areas required man-power in the field. Livelihood, agronomic economic studies offered training to a lesser degree.Over 6 members of the Pakistan team, from the University of Agriculture, Faisalabad, have been trained in participatory rural appraisal techniques (PRA) including focus group discussions, venn diagrams, community mapping and household interviews. They have also learned about data management and analysis. Similar exercises were conducted in India as well. Over 40 postgraduate students were trained in the administration of household questionnaires on health, and later used to administer the health questionnaires. Nearly 20 LHSs and LHWs were trained systematically, to collect health information from participants, distribute medication, and conduct awareness programs on adoption of self protection measures during wastewater use and good hygiene practices. Several research staff (IPH, Faisalabad and local team) were also trained on some of the water quality testing methods and faecal examination of stool samples.In India, over 30 university students were trained to carry out the health questionnaires. Several research staff at EPTRI and IPM were trained on the techniques used for health studies. Throughout the study, institutional staff and German students were offered opportunities to strengthen their skills on GIS. Some were able to visit both countries. The local trainers from partner institutes in India were unable to provide training to their counterparts in Pakistan, due to visa restrictions.The two country study was a great opportunity for partners from three different countries to meet and discuss the issues on health and food safety associated with wastewater agriculture. Having partners with different competencies added value to the project. Holistic and multi-dimensional discussions helped to understand the complex interactions among the actors and institutions in the wastewater irrigation to crop production pathway. However, bringing all partners together from both countries were not always possible, due to different commitments and time schedules in their respective institutions. More effort should be made to use other forms of communication to keep the connectivity among the country partners, so that experiences can be shared for capacity and skill building.Some of the learning experiences in one country could be easily transferred, if good working relationships are established. There could have been more exchange visits at all levels, to strengthen the cohesion among investigators. While this would have been beneficial, in some instances there were visa constraints for some partners that made such visits prohibitive, which was not very helpful. This can lead to demotivation.A rapid turn over of key staff members slowed down some components of the project. Political unrest in Pakistan compounded the problem. This had a direct impact on the activities, delayed data gathering on the ground and carrying out tests in the field. A no cost extension was beneficial to complete the tasks in the field, but has delayed the outputs. Some publications have been made, but several are in the pipeline and will be published later this year or early next year.The project outputs have been planned in anticipation of collecting ground level data in quick succession. However, this was not achievable at the expected rate. Therefore, not all outputs were achievable at the given target dates. A lesser number of targets spread out at a different time interval more suited to the ground situation in any given country would have been more appropriate.Buy-in of local stakeholders at the outset is beneficial. When interventions are planned, it is easier to adopt, if the key stakeholders have been part of the program planning from the beginning. It gives them a sense of ownership of the product, and is in the best position to implement interventions.Changes in water availability for all types of uses are evident from many research studies. With the expected reduction in 'fresh' water resources available for agriculture in arid and semi-arid countries through the re-allocation of water resources to urban centres and industry, the re-use of wastewater will, be unavoidable. There is still a reluctance to promote wastewater for agriculture in both countries though it is a reality. Therefore, as a first step, there needs to be more dialogue on this issue with stakeholders in order to convince governments to take an active interest in making it an asset.Pre-emptive research needs to be undertaken to optimize the potential for WW re-use in production systems that can fully utilize the nutrient loads associated with treated or untreated domestic wastewater, act as 'barriers' to potential human and livestock health risks and provide sustainable livelihoods to resource poor farmers. These need to be site and water quality specific solutions and include cereals, fodders, oil seeds and biofuels. If managed appropriately to minimize potential impacts on human and livestock health, soil quality and groundwater resources the contribution of wastewater re-use to food and livelihood security could be significant.In both countries, more research can be focused on institutional aspects. While actors and interactions have been identified, and recommendations have been discussed at a final workshop, its implementation now requires an action plan. Developing a multi-institutional framework that can discuss these issues in a sustainable manner needs further thought and action. It could be towards innovative institutional reforms, through systematic approaches that can identify synergies that exist among the institutions, some of which have been identified during this project. This would bring about better coordination, reduce competition and avoid duplication of efforts while every one is focusing on a common issue/s. is required.From an economic perspective there are several unanswered questions on the use of wastewater for irrigation and its various impacts. While the study attempted to explain the differential yields of paddy due to quality difference in the irrigation water, it has not been able to assess the dose response relationship. In other words, it has not answered what is the agricultural impact of wastewater at different water quality levels. What are the main water quality parameters and their values at which it impacts agricultural production, productivity and farmers profitability? This is important to suggest upto what level the wastewater should be treated to yield optimal benefits. Apart from this the study has also not been able to segregate long terms versus short term effects. The analysis of livestock and paragrass cultivation also leaves back some unanswered questions. Is the proximity to the city market that makes dairying an important livelihood activity or is it because of the availability of paragrass grown with wastewater that makes livestock an important livelihood activity? More research needs to be carried out before recommending paragrass cultivation and dairying as a recommendable and permissible activity using wastewater. Similar is the case with health analysis. While the study finds out that there are higher morbidity levels in the wastewater irrigated villages, it has not been able to establish the cause and effect relationship. The relationship between common illnesses like fever, cold headache etc with wastewater use could not be clearly established though the fact is that illness has resulted in significant cost of illness. Like in the case of agriculture, it has also not been able to analyze the long term health consequences of wastewater use. This apart, the report does not identify the level or extent of wastewater treatment required and its costs and juxtapose it with the direct and indirect benefits and costs of wastewater irrigation.Impacts of climate change and adaptation strategies for livelihoods dependent of wastewater agriculture, is another interesting area for future studies.Conference proceedings, abstracts, thesis and journal articles","tokenCount":"9797"} \ No newline at end of file diff --git a/data/part_3/5659982048.json b/data/part_3/5659982048.json new file mode 100644 index 0000000000000000000000000000000000000000..4f05a4be78fd894c656a982962bdc6c1cf39d2a8 --- /dev/null +++ b/data/part_3/5659982048.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"443138d22f497727e6caa57b11cf2acb","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/364a4840-0b49-4b66-aa80-404ef0857a1f/retrieve","id":"-1211658179"},"keywords":[],"sieverID":"1b0f858f-12b0-4277-bb38-9283be696afb","pagecount":"28","content":"Enkola eno egendererwa okwongera okukozesa emere y'omutakka n'amatooke obulungi okulaba ng'omulimi tafiirwa oluvannyuma lw'okukungula mu nkola aya CGIAR Research Program on Roots, Tubers and Bananas (RTB). Aba European Ynioni be bataddemu ensimbi, ate obuyambi obw'ekikugu nebuva mu IFAD Nanyini kifaananyi: Sara Quin [CIP] Okwongera okukozesa emere y'omutakka n'amatooke obulungi okulaba ng'omulimi tafiirwa oluvannyuma lw'okukungula Amatooke agalimibwa ku nsonzi z'obuvanjuba bwa Afrika agamanyiddwa nga amatooke mu Uganda, gavaamu emmere wamu n'ensimbi zomu maka agali mu Masekkati, Obukiikakkono, Amaserengeta g'Obugwanjuba n'Obuvanjuba bwa Uganda.Awamu, amatooke agalimibwa mu Uganda gateeberezebwa okuba nga gaavaamu ttaani obukadde 8.9 mu 2014, ate nga amatooke agayitibwa aggomu nsozi z'Obuvanjuba bwa Afrika, gaweza ttaani nga 8.2 bw'ogeraageranya ku bimera ebirala ebyettanirwa ennyo okugeza muwogo (ttaani obukadde 2.9) ne lumonde (ttaani obukadde 1.8) Abalimi abalina obubanjja obuttono (quota ya yiika) be basinga okwenyigira mu bulimi buno era ng'ensuku enneneko zisinga kusangibwa mu Maserengeta g'obuvanjuba. Kakaano, Disitulikiti ezisangibwa mu Bugwanjuba bwa Uganda okugeza Isingiro, Mbarara ne Bushenyi ze zisinga okulima amatooke -buli mwaka bafulumya ttaani obukadde 1.5. Wabula, emiwendo gyamatooke ku lusuku gili wansi nnyo olw'omutindo okuba wansi (okugeza, obutooke butono mu sayizi n'eminwe egirumbiddwa ekirwadde, eminwe egyakula obubi, n'okuba ne langi embi) okwo ssaako enkwata embi ey'amatooke agakunguddwa wamu n'obutakwatagana na byetaago by'akatale; n'ebirala bingi. Ekirala, engeri amatooke gye ganoonyerezebwamu akatale, omuli n'abalimi bassekinnoomu okukeenoonyeza wamu ne bakayungirizi abayitirivu ennyo [5-7] wakati w'omulimi n'omuguzi asembayo nakyo kikosa emiwendo eri abalimi.Enkola egobererwa n'olwekyo eteekeddwaawo okuyamba abalimi okulongoosa (1) omutindo gw'amatooke mu nsuku (2) enkola ezigobererwa oluvannyuma lw'okukungula amatooke okusobola okugafunira akatale akalungi. Enkola eno etegekeddwa mu butundu busatu (3) nga bwe kirambikiddwa wansi: Okuyungya n'obwegendereza kiyamba eminwe obutanuubulwa Enkota y'ettooke eri ku mutindo terina kubaako binuubule  Amatooke agataliiko binuubule gafuna akatale akalungi era gagulibwa ku miwendo gya waggulu nnyoOkuziyiza amatooke okugendamu obuwuka, weewale okugateeka ku ttaka.Amatooke gano gasobola okuteekebwa ku ndagala, matundubaali, oba ekintu ekirala kyonna okwewala okugateeka ku ttaka kwennyini.Amatooke gagereke okusinziira ku kika n'endabika yaago, okugeza sayizi y'enkota, langi, enkula, obuwanvu bw'omunwe, n'engeri gye likoseddwaamu.Okugereka amatooke era kyetaagisa nnyo mu kugategekera obutale obw'enjawulo obwagala ekika ky'omutindo ogwo, okugeza supermarket n'obutale obuli ebweru w'eggwanga.Kozesa ebintu ebiyonjo era ebikubiddwaamu obutuli okusobola okukuumira amatooke mu mbeera ennungi nga gaterekeddwa Ebikozesebwa mu kusabika amatooke BIRINA okugataasa obutakyafuwala, obutakosebwa, obutavunda n'obutayonoonebwa nga bagakwatakwata. Bilina okuba : Nga byangu okutikka  Nga byangu okulamba  Nga bisikiriza  Nga tebikosa butonde oba nga gabisobola okuddamu okukozesebwa  Birina okuziyiza amatooke okunyenyezebwa nga gasaabazibwa n'okuterekebwa.Tekiba kirungi amatooke okugasabika mu buveera kubanga kigaviirako okuvunda oba okwengera olw'ebbugumu eringi. Kiba kirungi okuzizika obulungi amatooke nga tegannaba kusaabazibwa Amatooke gasobola okuzizikibwa ng'okozesa ebikozesebwa ebiriwo mu butonde  Amatooke bwe gasabikibwa kigayamba okutafumitibwa ebintu ebisongovu ebibeera ku mmotoka.Amatooke galina okutambuzibwa mu bwangu ddala era n'okukuumirwa nga mawewevu.Amatooke bwe gaba gaakukung'anyizibwa, enkota ziba zirina okwetunulamu.Kino kiyamba enkota zino okubeera mu kifo kimu Okusobola akatale ak'ebweru w'eggwanga, ebitundibwayo birina okuba nga tebikosa bulamu, ate nga tebirina bulabe bwonna, nga biri ku mutindo ate nga biri mu bungi. Amatooke gatundibwa mu bipimo, ate nga gali mu biwagu oba mu minwe, era galina okuba nga gakaziddwa oba nga gali mu buwunga. Amatooke gatundirwa ku kontulakiti era emiwendo kwe gatundirwa ebweru w'eggwanga gisinga ku gyawano obulungi. ","tokenCount":"522"} \ No newline at end of file diff --git a/data/part_3/5672240527.json b/data/part_3/5672240527.json new file mode 100644 index 0000000000000000000000000000000000000000..e8016cbf22ef660982a4cf849995c3403b83ab0c --- /dev/null +++ b/data/part_3/5672240527.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"1bca75a85f562db5d9b04251b150005e","source":"gardian_index","url":"https://www.cifor.org/publications/pdf_files/infobrief/8389-Infobrief.pdf","id":"-2122274989"},"keywords":[],"sieverID":"9f27e942-1c2c-45ed-bf83-a340b2e1d3b9","pagecount":"6","content":"Secondary forest is an increasingly prevalent component of forest cover across the globe. Regional estimates of its area range from 63 percent of all forest cover in SE Asia (Mukul et al. 2016) to 34 percent in the lowland Neotropics. Estimates of secondary forest cover in Peru range from 3.7 percent of total forest cover (Smith et al. 2021) to 13.3 percent (Chazdon et al. 2016), but these figures depend on the scale, location, and method of analysis. Near Pucallpa (Peruvian Amazon), in 2013 almost half of the forest cover (44 percent) was second growth (Schwartz et al. 2017). The Peruvian state does not provide figures for secondary forest cover. Independent studies show that Peru has considerably more intact old-growth forest than other Latin American countries (Figure 1) and a correspondingly low area of secondary forest overall (13.3 percent).Individuals, communities and investors living and working in forested environments make decisions daily about the fate of trees and forest stands. Decisions are governed by both formal and informal rules, customary practices, and institutions, all of which frame stakeholders' rights, responsibilities, and ownership claims over forests and trees (Cronkleton andLarson 2015, Reid et al. 2017). This brief evaluates the context for secondary forest governance in Peru, identifies challenges to effective governance, and identifies opportunties to strengthen particularly local forest governance. We describe where they are located, which stakeholders claim and control them, and how they are used. We evaluate how current policies apply to secondary forest management and what happens at the interface of policy and practice.Secondary forest refers to natural forest regrowth after a clearance event and, in the case of anthropogenic origins, cessation of subsequent post-clearance land use. For the purpose of this brief, we use the definition in the 2011 Forest and Wildlife Law: \"successional forest originating from the natural recuperation of areas where the primary forest was cleared as a consequence of human activities or natural causes. Pioneer forests dominated by only a few rapid growing woody species are also considered secondary forest\" (Article 5 of the Regulations for Forest Plantations and Agroforestry Systems, SERFOR 2015). Much of the secondary forest in Peru is a result of widespread forest clearing for pastureland, commodity crops and subsistence agriculture in the 1970's with the support of agrarian bank loans (Coomes 1996). With the end of the loan program large swaths of these areas were left to fallow, generating what are today mature secondary forest.Today, active formation of secondary forest occurs where small-scale farmers practice shifting cultivation. There, forest regrowth is an ephemeral resting stage in the agricultural cycle, where crop fields are fallowed to recuperate soil fertility and control weeds and pests. These fallow forests, called \"purma\" or \"barbecho\" in Peru, are an important component of the socio-ecological landscapes in mid-tolow elevation farming communities.Secondary forest plays a critical role in meeting current planetary needs, locally providing habitat for flora and fauna, goods such as timber and medicines, and ecological services such as carbon sequestration and hydrologic regulation. Secondary forest contributes significantly to rural livelihoods and food security through production of fast-growting timber, provision of game animal, and nutrient cycling in crop fields. In its younger stages of stand development, secondary forest captures carbon dioxide in the growth process, storing carbon in the wood, thus serving a critical function in climate change mitigation (Cook-Patton et al. 2020). Their sequestration potential can translate to economic benefits to forest owners in the carbon market, motivating the expansion of forest regrowth and the sustainable management of existing stands.More than just a forest type, secondary forest is a product of cultural, social, environmental, economic and political factors. As such, increasing recognition of the contribution to local economies, conservation and climate change mitigation requires adaptive governance structures and processes that consider the multi-faceted contexts of its origin, management, and persistence.Due to the transitory nature of secondary forest, its effective governance-which supports the promotion, sustainable use, and protection of regrowth-is notoriously fraught with contradictions and barriers (Vieira et al. 2014, Henao et al. 2015, Toledo-Aceves et al. 2021). In Peru, two key barriers complicate the sound governance of secondary forest, first related to its legibility and second to conflicting governance structures.The first key aspect to secondary forest governance is legibility. Given its local importance, rural people are well aware of the locations, sizes and composition of secondary forest across the landscape. They utilize a typology in the local vernacular, which provides a legibility within and among communities. The state, however, has no typology nor map of the types, locations, and sizes of secondary forest. This absence of such information related to their origin, degree of persistence and stand structure and composition renders them essentially invisible and illegible to state entities, which contributes to the current paralysis in the development of relevant regulations and feasible regulatory mechanisms for secondary forest management (Sears et al. 2021) \"Forest management in secondary forests is a dynamic component of productive mosaic landscapes and represents an ideal niche for the production of timber in short cycle systems and for the harvest of non-timber forest products. Through the management of natural regeneration and enrichment planting, the growth of fastgrowing timber species is promoted in secondary forests. SERFOR, with the participation of the ARFFS [Autoridad Regional Forestal y de Fauna Silvestre], research institutes, and other related actors, establish and approve guidelines for harvest in secondary forests.\"Property rights, commonly referred to as 'ownership', can be understood as a bundle of rights that grant the ability to access the property, use resources from that property, make management decisions, exclude others from the resource, and alienate or sell/transfer rights over resources (Schlager and Ostrom 1992). Property rights provide a foundational framework for examining resource governance since they define a finite boundary on the resource in question as well as the legitimacy of stakeholder claims to it (Oviedo 2005, Larson et al. 2008).Second, secondary forest lies at the often conflicted junctions of agriculture and forestry, and forest use and forest conservation. Similarly, overlapping administrative jurisdictions and unrealistic regulatory frameworks provide incongruent coverage for policy guidance. Forest conservation issues related to carbon sequestration are the purview of the Ministry of Environment (MINAM). The Ministry of Agricultural Development and Irrigation (MIDAGRI) regulates land use change and land titling and governs forest use, and the Forest and Wildlife Service (SERFOR) under MIDAGRI governs forest management. The Ministry of Economy and Finance encourages economic development in the forest sector, promoting higher targets for timber production and export, which may conflict with MINAM's forest conservation goals. Importantly, the agency responsible for forest monitoring and law enforcement, OSINFOR, is autonomous and independent from political influence. Developing a coherent governance approach, therefore, requires coordination across these multiple agencies and administrative levels (Ravikumar et al. 2018).Understanding forest governance starts by examining what property rights apply to land and forest resources (Box 1), which stakeholders are classified as legitimate rights-holders, and what those rights allow them to do with the resource. Those who control tenure and access rights to secondary forest areas determine who benefits from their stewardship, including receiving technical and economic support for forest restoration (in this case, through passive management of natural regrowth), selling carbon credits on the market, and receiving payment for ecosystem services. In Peru, the principal stakeholders concerned with forest governance and outcomes of secondary forest management are rural farmers.Property rights of secondary forest are inherently tied to rights over farmland but are also linked to access rights to forest resources. Individuals can have clear rights to land -either customary rights or formal de jure title or concession -but the Peruvian constitution defines \"natural\" or \"native\" forest as national patrimony, meaning ownership of natural forest and trees is vested in the state (Monterroso et al. 2017), even if it is of anthropogenic origin. Thus, landholders must seek state authorization to manage trees located on property to which they have formal access. This partial devolution of forest rights to citizens -through titulo habilitante -creates a co-management regime in which stakeholders, including the government, share rights and responsibilities for forest stewardship (Berkes 2009).The Peruvian state has made a concerted effort to improve forest management guidelines, structures, and practices through the 2011 Forest and Wildlife Law (LFFS, No. 29763) and its regulating norms (issued in 2015) (Box 2). These mandate the development of implementing norms on secondary forest management, but these have yet to emerge. This is problematic because none of the existing regulations for forest management -management declaration, plantation registry, management plan -are feasible for secondary forest originating as agricultural fallows in the swidden systems of rural Amazonian farmers in Peru (Sears et al. 2018).Aside from the absence of appropriate regulatory instruments, the Peruvian state lacks infrastructure, personnel, and allocated budgets to effectively exert control over much of Peru's rural land base, especially in remote farming communities. This is problematic for two reasons: the state lacks control and therefore influence on land use decisions, and secondary forest stewards lack legal access to formal markets, leaving them vulnerale to sanctions and exploitation (Sears et al. 2018). Therefore, since national governements fail to govern secondary forests well, strengthening local forest governance can help to improve forest management and conservation.December 20211. Secure land and forest rights to include secondary forest in farming landscapes.2. Support the development and sustainability of farmer and forest steward associations through organizational capacity building 3. Create a national-scale dynamic map of second growth forest, include socio-ecological and land use layers 4. Recognize the role of secondary forest in family farming programs to promote their management, emphasizing both commercial and ecological values 5. Privilege incentives for managing natural forest regrowth over tree planting in forest restoration initiatives 6. Stimulate \"local forest\" movements that will promote forest education about their ecological, cultural, social, and economic contributions.7. Allow absentee landowners to retain land and tree ownership of secondary forest and provide incentives for them to conserve rather than convert forest cover.Engage a diversity of stakeholders across scales and sectors early through meaningful participation and throughout any reform process to allow for ownership and control.Conduct a people-centered reform process, listening to the forest stewards, to their needs, goals, and knowledge, providing deliberate space for marginalized groups (women, elderly, youth, indigenous, poor).Provide latitude in the governance framework to promote adaptive, localized governance with rules adaptable to the local context (ecological, social) and needs.Allow for traditional and culturally relevant practices, especially in food systems, providing the flexibility to incorporate local practices and ideasWe propose a series of interventions outlined in Table 1 that could be undertaken by communities, NGOs, and state and national government agencies to help strengthen local governance of secondary forest.In this mosaic of proposed interventions, forest property rights constitute a central element. Communities and rural landholders should be enabled to formalize their property rights and to include secondary forest under their titles. Local governments and civil society advocacy groups could thus collaborate on the creation of mechanisms that strengthen the legality and legitimacy of forest management on farms. Existing mechanisms such as the national plantation registry, agroforestry concessions, and conservation concessions provide models for recognizing and rewarding landowners for retaining and managing forest cover on their land, including secondary forest.Once rights are secured, both private and public incentives could encourage farmer associations or cooperatives to aggregate, and monitor and manage secondary forest areas. These cooperatives could serve as a viable governance structure for administering support programs but also provide an economy of scale for producers and investors. The development and empowerment of local institutions representing the interests of rural forest stewards can help to bridge the needs of the residents with the state development and conservation priorities and targets.Eventually, a national-scale dynamic map of second growth forest in Peru could be created, with overlays of land tenure and property type, legal forest classification, locations of supply chain hubs, and an accounting of environmental services. This socio-geographical information on secondary forest can provide a baseline against which to measure their persistence over time, a way to identify the forest stewards and other stakeholders and tailor incentives to maintain forest cover, and a framework for strategic planning for the integration of second growth in forest landscape restoration and rural development (Chazdon andGuariguata 2016, Crouzeilles et al. 2020).At the foundation of effective co-management of natural resources is effective relational capacity of the stakeholders, and especially of government agencies and functionaries (Miranda Beas 2020). Therefore, an inclusive and participatory approach would help to ensure that governance is constructed to accommodate local socioeconomic conditions and different ecologies (Box 3).December 2021More than just a forest type, secondary forest is a product of both social and environmental factors. As such, it requires adaptive governance structures and processes that consider the cultural, economic, and political contexts of its origin, management, and persistence. Any policy geared toward promoting the sustainable management of secondary forest should combine a realistic legal framework, accessible economic incentives, and support for sustainable behavior that motivates the expansion of secondary forest, increases their persistence, and promotes the sustainable management and use for forest products. Attempts to shift or support local forest governance structures should be participatory and inclusive. The policy must recognize secondary forest as a dynamic component of the broader landscape as well as the local knowledge and rules behind their management. Strengthening secondary forest governance must also attend to issues related to agriculture and other rural development objectives, such as rural income and food security, as well as forest restoration and conservation.","tokenCount":"2233"} \ No newline at end of file diff --git a/data/part_3/5698214642.json b/data/part_3/5698214642.json new file mode 100644 index 0000000000000000000000000000000000000000..defa2049a0072e962e93d7d30da1a419d9227746 --- /dev/null +++ b/data/part_3/5698214642.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"347053a3e836086d7c1b43ddc3fcb2e3","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/26f37601-9230-474e-87ec-fcd31728aa2e/retrieve","id":"1387362754"},"keywords":[],"sieverID":"6ca3f762-651c-4901-9d18-2a5b14135ae1","pagecount":"2","content":"the anaemia associated with trypanosome infections of cattle.Several other cytokines have recently been found to influence haemopoiesis positively. They include IL1, IL4, IL6, IL7 and stem cell factor. The latter has been shown to be an important regulator of early haemopoietic cell development. Stem cell factor has a profound effect on the erythroid lineage in costimulation assays with erythropoietin. Cloning and production of soluble stem cell factor at ILRAD is being approached in a manner similar to that used to produce TNF and IL3. Recombinant bovine stem cell factor will be a valuable tool for use in in vitro cultivation systems of bovine bone marrow as well as in making assessments of the effects of trypanosome infection on development of bovine blood cells. To evaluate TNF alpha, TGF beta and IFN gamma, which have all been described as suppressors of red blood cell production, ILRAD scientists have produced specific sets of primers. These are being used in reversetranscription PCR amplification reactions to analyse cytokine RNA expression and to localize activation of lymphocytes or bovine stem cells critical for protective or compensatory responses to disease. Recent research results from laboratories in Europe suggest that trypanosomes may respond directly to cytokines such as IFN gamma or may require these chemical messengers as growth factors. Cytokines may thus not only be critically important to immune and pathological processes of the host, but also be fundamental elements of host parasite interactions.This article is based on reports written by Bea Mertens and Maarten Sileghem, which were consolidated by Peter Gardiner.Experiments with twin calves offer evidence that cytotoxic T cells can clear T. parva infections DISEASES CAUSED by apicomplexan blood parasites are a significant factor in the progress of human and agricultural development in the Third World. Probably the most devastating of these diseases are the human malarias and the theilerioses of cattle. Caused by parasites of the genera Plasmodium and Theileria, respectively, these diseases have many features in common. In each case infection is initiated by the bite of an arthropod vector and characterized by invasion of host cells by the parasite. Expansion of the parasite within infected cells is accompanied by its differentiation to a stage infective for red blood cells. Invasion of erythrocytes following lysis of the infected cell allows the completion of the parasites' life cycle through the infection of another arthropod.The most important form of theileriosis in subSaharan Africa is East Coast fever, caused by Theileria parva. This disease threatens over 25 million cattle in eastern, central and southern Africa and is a major hindrance to agricultural development in the region. A major difference between East Coast fever and malaria is the stage of the parasite that gives rise to clinical disease. In malaria, sporozoites inoculated by an infected mosquito invade a small number of liver cells and differentiate to schizonts with no adverse effects on the host. The parasite undergoes a preliminary expansion within the infected hepatocyte before being released as merozoites. These invade red blood cells and undergo further expansion; it is this event that is associated with clinical disease. In contrast, sporozoites of T. parva invade a subset of white blood cells known as lymphocytes but their differentiation to schizonts is associated with uncontrolled proliferation of the infected cell. Severe clinical disease is therefore present before significant invasion of erythrocytes by the merozoite stage of the parasite.Cattle that recover from East Coast fever, either naturally or as the result of treatment, are solidly immune to challenge with the same isolate of the parasite. It has been established for some time that this immunity is directed at the schizontinfected cell and that it is mediated by immune cells rather than antibodies. In a series of experiments conducted on immune cattle at ILRAD, the dominant bovine cellular immune response to T. parva has been determined to be parasitespecific cytotoxic T lymphocytes. These killer cells are, like those seen in viral diseases of mouse and man, restricted in function to infected cells bearing self antigens of the major histocompatibility complex. Cytotoxic T cells are found in the blood of immune cattle under challenge about the time that the parasite is cleared, and the capacity of an immune animal to resist challenge with a different isolate of the parasite depends on whether its cytotoxic T cells can recognize that isolate. In spite of these observations, until recently scientists have been unable to provide direct evidence that cytotoxic T cells can actually clear an established infection with T. parva.QUESTIONS OF THIS NATURE have been answered in several murine disease model systems by inoculation of immune cells into naive animals and establishment by subsequent challenge that immunity is conferred on the recipients. Such experiments have been impractical in cattle due to the large numbers of cells that are required for transfer in this species. Recently, lymphatic cannulation techniques have been applied in the study of bovine immune responses to T. parva.In general, immune responses occur in the lymph node that drains the site of challenge. Lymphatic cannulation allows collection of the cells leaving a responding node over long periods of time, so that the precise kinetics of the immune response can be determined. These studies revealed that during the peak of the nodal response to T. parva, as many as 1 in 32 of the cells leaving the node can be a parasitespecific cytotoxic T cell. Since up to 10 11 (one hundred billion) cells leave the node during a 24hour period, this clearly allowed the collection of enormous numbers of parasitespecific cytotoxic T cells and raised the possibility that transfer experiments might be conducted in cattle.To achieve this, a method was developed at ILRAD to prepare large numbers of cytotoxic T cells by killing noncytotoxic Tcell populations in overnight collections of lymph fluid by complement mediated lysis. This method involves the use of a panel of monoclonal antibodies generated at ILRAD that defines subpopulations of lymphocytes, in conjunction with factors present in rabbit serum that give rise to lysis of cells coated with antibody. This technique allowed the preparation of cytotoxic Tcell fractions to levels of purity as high as 85%.To avoid problems with graft rejection, adoptive transfer experiments require identical donor and recipient animals. Identical twin calves were therefore generated at ILRAD using embryo splitting techniques. Three sets of these calves were used to determine whether parasite specific cytotoxic T cells could clear naive calves of established T. parva infections. The calves were infected with a lethal dose of the parasite such that the peak of the immune response of the donor twin would coincide with emergence of parasitosis in the naive recipient. In two experiments of this kind, as many as 10 10 purified T. parvaspecific cytotoxic T cells were transferred to lethally infected calves over a fourday period. In both cases, the recipient calves resisted challenge, while untreated control calves developed severe clinical signs that required treatment. In a third experiment, in which cytotoxic T cells were depleted from the inoculum by complement mediated lysis before transfer, no protection was observed in the recipient.These experiments provide the first direct evidence that cytotoxic T cells can clear T. parva infections in cattle. In addition, because of the similarities between malaria and Theileria infections, they provide support for the belief that parasitespecific cytotoxic T cells may play a role in the control of human malaria. Current efforts are focused on the identification of T. parva components that provoke cytotoxic T cell responses so that they can be incorporated in an improved subunit vaccine for East Coast fever.This article was written by ILRAD scientist Declan McKeever.Two genes encode an important trypanosome protein (PH.D.Thesis)AFRICAN TRYPANOSOMES are protozoan parasites that cause trypanosomiasis in people and their domestic animals. A promising approach to developing new therapeutic agents for this disease is to identify and characterize cellular processes and structures that occur in trypanosomes but not in cells of the parasite's host animal. Interventions targeted against these processes or structures would interfere little with host cells.The paraflagellar rod, which makes up a major part of the trypanosome's flagellum, is one such unique structure. The function of this rod is still unknown; it is a complex lattice of","tokenCount":"1360"} \ No newline at end of file diff --git a/data/part_3/5718683046.json b/data/part_3/5718683046.json new file mode 100644 index 0000000000000000000000000000000000000000..19922eb42c4fe1b9f8a73bbe3f6d814ee73b914a --- /dev/null +++ b/data/part_3/5718683046.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"b054e9fd06e23d47290da31481281c0c","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/d56d6629-a9bb-41df-8ec3-e467bee00aa8/retrieve","id":"-1409594551"},"keywords":[],"sieverID":"346dcbc5-4843-4302-9bc7-f5e83881f339","pagecount":"33","content":"Target population ▪ Low animal productivity due to the lack of inputs, diseases, poor husbandry practices ▪ Unstable output markets & low local demand ▪ Small, fragmented VC with low productivity ▪ Unbalanced meat consumption in daily dietThe livelihoods of all actors in the beef VC • Training package on animal health and biosecurity for livestock keepers and animal health workers with a gender and youth lens.• Capacity development of farmers, and animal health care workers (men and woman) in animal health and biosecurity, including via demonstration farms• Demonstration farms on best practices in livestock raising and management (beef cattle and pigs), including herd health and biosecurity (shared with IP1,2,3)• Social behaviour change communication on best practices in livestock raising and management (beef cattle and pigs), including herd health and biosecurity• Business models for animal health-care workers developed with a gender and youth lens.• Farmer groups (beef cattle and pigs) facilitating linkages between livestock keepers and animal health care workers (shared IP1,2,3,4)Progress:• SBCC on best practices in pig and beef cattle on herd health and biosecurityPlanned:• Farmer training on biosecurity and herd health -September ▪ Gender integration in implementing demonstration models of improved forage and feed technologies, models of animal health management, and capacity-building training activities on breeding and artificial insemination. ▪ Gender integration in business models, linkages between farmers, service providers, and markets.• Strategy of social behavioral change communication on gender: Community and household members adopt gender-transformative approaches and show more gender-equitable behavior (through local partnerships).• Community dialogues on gender norms, women's empowerment, and gender equity in livestock and livestock businesses.• Communicating messages on gender equality in livestock and livestock businesses through communication channels (distributing leaflets, developing and broadcasting content of changes of gender norms through loudspeaker systems of communes and villages, through partnerships with local entities).• Video clips on changing gender norms, stories of transformation, and typical models of women and men as positive deviants in livestock and livestock businesses (used to show at village meetings).Progress:• Integrated gender in baseline surveys and innovation packages of feed and forages, animal health, breed genetics, and value chain/business models• Implemented 01 survey on women's empowerment in livestock (WELI) and livestock business (WELBI) in 4 project communes and the Mai Son district area.• Implemented 01 qualitative study on gender norms in Mong and Thai communities in 4 project communes.• Key gender norms have been identified as inputs for designing messages of social behavior communication campaigns on gender.Package components/Interventions:• Gender and youth sensitive approaches for upgrading farmer groups and strengthening their linkages with input/output markets• Sustainable business models for successful delivery of innovation packages (bundle of innovation -genetics, animal health, and feed and forages) to smallholder farmers• Capacity development of input service providers and farmer groups on business incubation• SBCC campaign on best practices in beef/pig production and marketing www.cgiar.org• Assessment of business models for cattle AI conducted in Son La province • Finalize the business model for cattle AI service provision• Develop business models for delivering pig AI services, animal health services, and forage planting materials.• Training of input/service providers on the business models and business skills. Started on FOODSENSE with NIN in July 2023• Literature and secondary data review on food environment, food security and nutrition in the target sites (Mai Son) ongoing• Adaptation of the framework to Vietnam context ongoing -using the framework structure developed for Uganda• Mapping of human nutrition partners in Son La province, and those operating in Mai Son• Stakeholder workshop to share the framework and tools for further co-creation -planned for Oct-Nov 2023• Implementation of the framework and tools in the study sites -Quarter 1 2024• Share the results from FOODSENSE implementation for prioritization of interventions -Quarter 2 2024• Other components of the IP6 to be implemented subject to availability of funds IP6 Tools and approaches for improving nutrition and managing food safety risks along the value chains, with a gender lens IP7. Approaches for strengthening the policy and institutional environment for gender equitable and youth-inclusive value chains• Evidence packages on opportunities and constraints, equity and inclusion within the beef VC & arising policy recommendations.• Consultations with policy and decision makers on policy recommendations, including promotion of equity and inclusion.However;• Since this is a new area of policy engagement for Chan-henh team, the expected outcome is that policy and other decision makers have increased awareness and understanding of issues around pig and beef value chains.• Ultimately this is expected to contribute to use of evidence in policy (EoI4) however it will take time to build the evidence base for this.5-fold wins not always possible -trade-offs between different impact areas, scales, actors are to be expected","tokenCount":"769"} \ No newline at end of file diff --git a/data/part_3/5721278228.json b/data/part_3/5721278228.json new file mode 100644 index 0000000000000000000000000000000000000000..06cd37985bcf39cffacc561a1725b05b7baabc90 --- /dev/null +++ b/data/part_3/5721278228.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"df7c2b76ab8605dca45acebb2cce5fa0","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/ed166575-d8fa-438c-9b1c-044fdff6e179/retrieve","id":"2021243400"},"keywords":[],"sieverID":"c6d75e11-e6d7-4b3c-bd71-1bcc1f7d9874","pagecount":"1","content":"The Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub and the John Innes Centre (JIC) have joined forces to enhance their mutual efforts to empower African National Agricultural Research System (NARS) scientists and institutions to mobilize biosciences for Africa's development. A range of initial discussions and visits occurred since 2013 to assess respective capacities, and identify where these be leveraged to complement NARS strengths and agricultural improvement priorities. In 2014, a Memorandum of Understanding was signed between the BecA-ILRI Hub and JIC. Resources have been mobilized and priority activities are in full implementation. The partnership is already transforming the BecA initiative's capacity to support NARS scientists in addressing key challenges in new, cutting-edge, relevant areas of biosciences.To learn more about this Alliance contact: Jagger Harvey or Josephine Birungi (j.harvey@cgiar.org, j.birungi@cgiar.org) at the BecA-ILRI Hub; Chris Darby (Christopher.Darby@jic.ac.uk) at JIC. For more information on how you can link your research to exploring issues relevant to African agriculture, visit the BecA-ILRI Hub website hub.africabiosciences.org. BecA-ILRI Hub: Appolinaire Djikeng, Josephine Birungi, Jagger Harvey JIC: Giles Oldroyd, Chris Darby, Christian Rogers JIC at the BecA-ILRI Hub: Tilly Eldridge A range of African partners Plus an expanding group of researchers on each side, partnered with NARS researchers and their institutes.The progress in the first year has included:• ","tokenCount":"214"} \ No newline at end of file diff --git a/data/part_3/5733671324.json b/data/part_3/5733671324.json new file mode 100644 index 0000000000000000000000000000000000000000..63c11745d1aefc1dee57449a268a63837a5afdca --- /dev/null +++ b/data/part_3/5733671324.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"44d0fef80d3b16df98b55ebad43a257e","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/c137fd24-18ab-4d7b-911c-8d1fa550406c/retrieve","id":"-924021301"},"keywords":[],"sieverID":"bf8eb6f6-d950-47ea-9741-d09788367b2a","pagecount":"8","content":"ILRI works with partners worldwide to help poor people keep their farm animals alive and productive, increase and sustain their livestock and farm productivity, and find profitable markets for their animal products. ILRI's headquarters are in Nairobi, Kenya; we have a principal campus in Addis Ababa, Ethiopia, and 14 offices in other regions of Africa and Asia. ILRI is part of the Consultative Group on International Agricultural Research (www.cgiar.org), which works to reduce hunger, poverty and environmental degradation in developing countries by generating and sharing relevant agricultural knowledge, technologies and policies.This section sets out some 'principles' that will guide our investments in this area, briefly describes the expected 'actors and clients' for this component of the Program, and identifies four 'areas of intervention' and associated results where we will focus our efforts.Knowledge, information and data-and the social and physical infrastructures that carry them-are widely recognized as key building blocks for more sustainable agriculture, effective agricultural science and productive partnerships among the global research community (Ballantyne et al. 2009).Through investments in e-Science infrastructure and collaboration, and rapid developments in digital devices and connectivity in rural areas, the ways that scientists, academics and development workers create, share and apply agricultural knowledge is being transformed through the use of information and communication technologies (ICTs).These ICTs are being applied to all parts of the research for development continuum that connects agricultural science with agricultural and rural change: 'e-Science' (or e-Research) is characterized by global collaboration and the next generation of infrastructure that will enable it while 'm-Agriculture' uses mobile digital devices, such as phones, laptops and sensors, that puts ICTs, connectivity and applications into the hands of rural communities. Between these, ICTs are transforming agricultural extension, facilitating the delivery of education and learning through distance education, helping to empower the rural poor in developing countries, and powering a wide array of agricultural finance, credit, market, weather and other services delivered by public and private organizations.The integration of data management, knowledge management, information sharing, communications and advocacy across the Program is thus an essential way to achieve the necessary synergies and collective action that will be required for the Program to have impact.The CGIAR centres can do much in this area, but certainly not all. Particularly in the seven focus countries, a lot of 'ground-truthing' is required to match the general approach to local situations. To take on all the roles and tasks we envisage, we will need to draw on the skills and capacities of local and national partners as well as those of specialized partners. We will therefore include an assessment of capacities and opportunities in this area as part of the proposed 'participatory partnership analysis' processes that will take place in each of the seven focus countries.In the design of different interventions, we are guided by the following principles: Knowledge generated by the Program will be open and public • . We will encourage all partners to document and share their work from the outset using open platforms and systems with the minimum of technical, financial and legal restrictions. This knowledge will be accessible to all as an international public good, so it can 'travel' and be put to use locally and globally.We value the knowledge of our clients and partners. The idea that everyone has useful knowledge to offer underpins the notion of innovation systems and the 'social' web. We will explicitly encourage different actors to contribute their different forms of knowledge to the program, avoiding too much 'push' from the centre.. Recognizing that different actors and clients in and beyond the Program have different knowledge needs and interests and that they respond differently to messages in different formats, we will 're-purpose,' re-format, adapt and translate different outputs and messages for different audiences and purposes.: Collect, connect, converse. We will ensure that the knowledge of the program is 'collected' and disseminated for re-use and posterity. We will ensure that the actors and partners in the program are 'connected' to one another and to sources of data and knowledge. We will catalyse 'conversations,' dialogue and interactions among stakeholders, mobilizing and listening to diverse perspectives.. We will use all suitable ways to generate and exchange information and knowledge, paying particular attention to effective face-to-face events that also reinforce the social and human relationships that are essential for good development.Advocacy is everyone's responsibility • . We recognize that different partners in the program have different strengths. Researchers are usually good at generating evidence; development partners are often better in providing avenues into policy and change processes. We will combine the strengths of both groups to advocate collectively for pro-poor change.• . What we communicate, who to, and how will have a strong influence on program outcomes. We will integrate our communication activities into our outcome strategy.. We do not see communication solely as an 'external' activity towards external audiences. This Program aims to align and integrate the efforts of many people spread across four CGIAR centres, associated research partners, seven countries, and within them large multi-stakeholder networks of actors. We will maximize learning and communication across the Program as a value addition to other dispersed activities.Partnerships are the key to impact.We will mobilize the various skills and capabilities of the program's partners to create, share, communicate and put data, information and knowledge to use. These skills do not exist in any one partner so we need to build on-and reinforce as necessary-the capacities of the whole Program.. New information and communication technologies are revolutionizing both the ways we do science and the ways that the private sector, governments, and local communities engage in 'development.' We aim to grasp the opportunities these new tools provide to improve the ways we collect and create data and information; integrate, share and communicate this knowledge into our research and technology development activities; and get it into the hands of people directly working with the poor.Everyone engaged in the Program is a potential creators and consumer of data, information, and knowledge. There is also a large audience beyond the Program-locally, nationally and internationally-that will be interested in its results.Who are the people we will work with, and what are their knowledge needs?-within the Program and elsewhere need in-depth knowledge products, data, data sources, as well as methods and tools. We may need to help them produce a wider range of communication products than they are used to.• -public, non-governmental and private-need targeted knowledge products, dissemination products, training and capacity building products, decision-support tools, synthesized data and the chance to join events and dialogue. We will need to look carefully at communication between these groups and the researchers-there is frequently a cultural/communication gap that needs to be overcome. We also need to find innovative ways to capture and share their knowledge, recognizing that they may not be as used to publishing as are scientists.We aim to influence • decision-makers, investors and the global support community. They need focused knowledge and advocacy products, awareness products, decision-support tools, and synthesized data. Influencing them requires targeted strategies that combine a range of approaches, as well as timely advice and inputs from people they trust and the media.• -producers, traders, and the like-must also be reached. Here, we are likely to have greatest impact by working through other partners who are close to them, translating or adapting the program's outputs into locally accessible formats. National/local radio, print and television media will often be important partners in this. We will also join with organizations and initiatives that use more interactive tools that integrate web applications with mobile phones for example. These enable value chain actors to interact in real-time and to transact in more transparent ways.Program managers and implementers needs access to an effective M&E system, information on current program activities and events, shared methods and tools, data, training and capacity building products, outcome support tools, communication and collaboration spaces, and event planning tools.The program will operate in four different 'spaces' comprising different actors and stakeholders and requiring different knowledge and communication support. These are introduced below.Connecting and powering value chain development i.Working through innovation platforms in seven countries, we will catalyse rich interactions and communication among the key actors and partners working on each value chain. We will facilitate interactions with each other and with the specialized research teams working to overcome the identified technology development constraints. We will assist them to communicate their findings for local, national and global uptake, facilitating their access to relevant information and knowledge, locally and globally.Much of this communication will be face-to-face, requiring effective facilitation and innovative ways to engage multiple actors and their multiple interests. We expect to generate large amounts of 'raw' data and information that will be captured and organized for re-use. Many non-scientists will be involved in these activities, so we will use different approaches, incentives and tools to ensure that their different types of knowledge are also captured and incorporated in the process.Particularly in this component, we are likely to generate a wide range of intermediate knowledge products and outputs-and few classic scientific articles, books, and the like.We will capitalize on the increasingly widespread use of mobile phones and other devices that are now accessible and used in the remotest and poorest communities. We will partner with specialized partners-many from the private sector-that use these tools to apply relevant applications and content right across the value chain. By working with partners to integrate a range of different services and applications with mobile phones, we will enable poor and illiterate producers to better participate in the value chains and participate in local social networks.In this area, we expect to contribute directly to the value chain development efforts by informing all the actors involved, mobilizing their knowledge and know-how, creating a level 'knowledge space' for them to access and share information, and helping document and communicate the lessons and results for use elsewhere. We see these communication activities performing an essential 'gluing' role that reinforces the operation, cohesion and reach of the innovation platforms.Enabling technology development ii.We will ensure that each research group that is conducting technology development across countries and value chains on a small number of issues has necessary support and tools to gain access to its specific global knowledge and data 'base', to communicate and share the results of its work with partners working in the targeted value chains, and to inform science and policy audiences globally.Since the teams will be geographically dispersed, we will ensure that they are able to collaborate and 'do science' virtually across organizational, geographic and time boundaries. The communication products in this area are likely to be more 'traditional'-reports, articles, data and the like. One challenge will be to complement these with more accessible formats and channels for other audiences. Experimenting with emerging social media and alternative ways to do 'e-science'-for instance with the support of mobile phones-will maximize the potential for these products to travel and be taken up elsewhere. We foresee an important 'translation' and brokerage aspect to ensure that 'science' messages from this part of the Program are globally valued and are made accessible to 'local' stakeholders engaged in value chain development and associated activities.We expect these activities will get research results into the public domain and into the hands of target actors in the seven focus countries and beyond. They will also contribute to the scientific process by supporting collaboration spaces and platforms and providing access to global knowledge and databases.Communicating and learning across the Program iii.We will establish mechanisms to facilitate and catalyse learning, knowledge sharing and communication among the various elements of the Program. Within the countries, the working groups of partners play a key role in this. We will support 'routine' information sharing and communication in support of the efficient running of the program's components. We will also ensure that knowledge, data, and information is documented, captured, shared, synthesized, and put to good use across the program. This 'sharing' space will thus produce efficient information flows among the program's actors and partners. It will also capitalize on and reinforce learning across the various levels of the program. As in the other spaces, we will use emerging social and other media to ensure that these tasks are done in as open and accessible ways as possible.Communicating for wider impact iv.We aim to get our results and messages out beyond the program. We will establish necessary advocacy and communication products and approaches to ensure that these results and messages reach, and influence, national and international audiences. The public awareness end of the spectrum will include use of print, video and radio to deliver information and messages packaged appropriately for a range of stakeholders including farmers, extension workers, policymakers and scientists.We expect most of the outputs in this area will be synthesized, polished or adapted for non-specialist audiences.These activities need to be spread across the whole Program, with responsibilities for specific value chain advocacy and public awareness based in countries, but linked to an overall coordinated approach.The Program will use a common data platform, collecting and collating data from the diverse systems under study. Data collection will be system specific and embedded within each value chain, but by requiring that it conforms to common standards of format and content, we will allow it to be used by common analysis tools across the program.Integration, synthesis and communication of research data will be centralized where appropriate. This will allow lessons to be drawn across different value chains. The data management platform will ensure that data is made readily available in as near real-time as possible to researchers across the Program through the provision of web-based tools to extract information from the underlying databases. All data will be placed in the public domain as early as possible. There will be practical and ethical constraints in some cases; for example we may not allow information to be traced back to an individual farmer and we may not release information that would require national approval, such as evidence of a notifiable disease. But within these constraints, the overriding principle will be to make data available and to encourage its use and examination by the broad community.Our communication approaches and tools will be used to: co-create knowledge and information with our partners; inform and influence many audiences (directly or via partner 'infomediaries'); integrate, translate and adapt knowledge for different uses; and reinforce the potential 'network effect' of the program. We will also use these tools to help coordinate and manage the Program. Especially among national partners, we expect these tools to reinforce their communication capacities and provide a legacy of skills and expertise that can be spilled over into other activities.In general, we will use the following main channels:The Internet will be the most critical communication tool that we will use-from the exchange of basic • email and SMS messages, through collaborative work spaces for teams and sharing learning, online video and blogs, mobile phones and other devices, to targeted dissemination and outreach to audiences worldwide.Face-to-face and interpersonal discussions and meetings are critical; we will ensure that they are well-• facilitated to foster excellent dialogue and interaction; we will also use social reporting approaches to capture and share the essence of these discussions promptly.Traditional mass media like television, radio and newspapers still play an important role in reaching wide • audiences-beyond the web-and we will seek out partners and expertise to ensure that our messages reach targeted audiences.Traditional science communication and publishing-articles, books, posters and papers-will be a strong • element of the overall program, especially the technology development component. We aim to better integrate such scientific products with a wide range of other communication channels and products that may better influence pro-poor policy and development change.We will experiment and innovate with tools like mobile phones-as ways to collect and share data, • to interact with and reach many people, to get beyond the web, to link spatial information with other applications, and to connect various information and advisory services and applications (such as questions and answers, voice services, expertise networks, market prices and weather) with value chain actors. These applications also offer avenues for program monitoring and quality control systems that involve all stakeholders.We will also pay particular attention to five tools and approaches that reinforce communication:Mobile devices-that bridge and integrate local needs and demands with specialized information, advice, • and knowledge services. We already have various experiences in this area; we will extend and deepen these with specialized partners.Social media-that enable many actors to easily create, share and communicate information and knowledge • to various audiences. Some partners have started using these tools to enhance the reach of their research; we need to extend these uses across the entire program.Networking and community/network tools-that connect the partners and actors in networks and • communities in support of learning and sharing across the program. To fully engage our partners, we will put these in place early, providing easy to use facilities for all partners to contribute and be informed.Information and data repositories-that capture and make accessible the knowledge created and compiled • and allow local and global re-use and permanent access to these assets. We will need to re-align and repurpose some of the resources we already have, looking to integrate better different systems and content with emerging needs. We will also explore how they can be connected and presented to new audiences through, for example, mobile phones or enhanced graphic and mapping applications that enable better visualization of data and information.'Crowd sourcing'-a way of approaching data and information creation and maintenance that draws on the • contributions of many participants, amateur and expert. Using widely available ICTs (especially phones), these approaches allow us to draw in knowledge from many sources, reinforcing the multi-actor emphasis of the program and our intention to draw on all of their knowledge.A key element in the successful use of these tools and approaches is that participants adopt 'open' and 'prosharing' mindsets and attitudes. We will work towards this from the start, building on the positive lessons we gained developing the Program through an open process of consultation and engagement with multiple stakeholders.Important note: Full information on references is included in the Program proposal that can be downloaded from http://cgspace.cgiar.org/handle/10568/3248.","tokenCount":"3026"} \ No newline at end of file diff --git a/data/part_3/5745696762.json b/data/part_3/5745696762.json new file mode 100644 index 0000000000000000000000000000000000000000..a417f567f8063e654495424d9e9eae308be42c1e --- /dev/null +++ b/data/part_3/5745696762.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"b3f49bbf5cae5f9d77dbb95217e41df0","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/232811e2-4330-4599-b83d-2e765e8f3daa/retrieve","id":"-1365432468"},"keywords":["Finger millet","On-farm","Agro-morphological traits","Diversity","Nepal"],"sieverID":"9e6b0ef3-f5ab-4f05-bc14-0cf534ef6874","pagecount":"6","content":"The objective of the study is to assess the phenotypic diversity among the finger millet genotypes and evaluate overall performance for the recommendation of genotypes to the farming community of mid hills of Nepal. The overall performance of 8 candidate genotypes selected from diversity block of 46 varieties in 2015, were assessed in randomized complete block design (RCBD) with three replicates under on-farm conditions in Lamjung district during 2016. Highly significant (p≤0.01) variability among the selected 8 genotypes for agro-morphological traits viz., plant height, number of fingers per head, grain yield, 1000 grain weight, straw yield, days to heading and maturity was revealed. Strong inter-correlation among grain yield, plant height, time to flowering and straw yield was detected. The traits viz., plant height, grain yield, straw yield, days to heading and days to maturity were the most important traits contributing to the overall variability and thus, provide options for selection.Finger millet (Eleusine coracana Gaertn.), is an important food crop in the hills of Nepal. It can tolerate many of the abiotic stress conditions and provides nutritious staple food to millions of small holder farmers of the world [1,2]. Finger millet belongs to the C4 photosynthetic category of plants [3]. In Nepal, major area of production of finger millet was reported to lie in the mid hills between 600 to 2000 m above from the sea level (masl) representing more than 50% the population of Nepal but the crop is grown in diverse agroecological conditions from Terai and Inner Terai (100 masl) to valley, hills and mountain areas up to the elevation of 2500 masl [1]. Finger millet is highly valued due to its nutritional content, being especially rich in calcium, iron, manganese and methionine and tryptophan amino acids [4,5]. Its slow digestion indicates low blood sugar levels after intake, thereby, it is a safer food for diabetics [6]. Being rich in many nutrients, this millet is highly useful to hardworking farmers metabolically disordered people.The plant parts have been used in alternative medicine and recent reports validated that [7]. Devi et al. [8] reported health benefits of the crop both nutritive and medicinal properties. Finger millet is used in preparation of traditional food products of Nepal. Similarly, finger millet is strongly linked to the cultural value of ethnic communities such as Gurung, Magar and Tamang and is an important crop in Lamjung where Gurung community predominates.Finger millet can be used for extended storage as it is less susceptible to pests [9,10]. It can be utilized for animal feed as well. The green straw contains digestible nutrients is worthy for animal consumption [11]. In the wake of climate change, malnutrition and public health challenges, finger millet has tremendous potential to meet these challenges, provided its drought tolerance and ability to grow as monocrop, relay crop and inter-crop under low inputs conditions in diverse agro-ecology, along with other healthpromoting traits valued by humans. In this context, characterization and evaluation of landraces from ex-situ collection and on-farm, need attention as these valuable genetic resources have been poorly used [12].In order to assess and evaluate the phenotypic diversity among the 46 landraces, an un-replicated diversity block trial using rod row design was set up in Ghanpokhara VDC (Village Development Committee)-1 of Lamjung district in 2015 under on-farm conditions at elevation of 1515 masl. Diversity block is an experimental block of farmers' varieties managed by local institution for research and development purposes [13]. The genotypes included in the study were collected from ex-situ genebank and their sources of collection are depicted in table 1. The findings generated from the study were deployed to enable the selection of the candidate genotypes exhibiting superior agronomic performance for further evaluation in on-farm yield trial. Each landrace was planted in two rows of 3m length with the plot size of 1.2 m 2 with distance of 20 cm between row to row and 10 cm between plant to plant. The experiment plots were managed as per farmers' practice. The UPGMA cluster analysis based on Euclidean distance using JMP 13 was performed to group the landraces into distinct clusters. The observations on seven traits viz., time to heading and maturity, plant height, ear exertion (cm), flag leaf length (cm), finger width (mm) and grain yield (g plot -1 ) were recorded as per the descriptors of finger millet [14]. The data on grain yield was extrapolated in t ha -1 . These traits were considered in UPGMA clustering and the genotypes to be included in the yield trial were identified from the clusters showing high trait values.The yield trial was conducted during 2016 under on-farm conditions in Ghanpokhara VDC-1 of Lamjung district located at 28˚ 17.397' latitude North and 084˚ 19.344' longitude and altitude of 1525 masl. Total of eight genotypes (six selected from diversity block and two recently released varieties viz., Kabre-2 and Sailung-1) were included in the study for evaluating the agronomic performance. The genotypes included in the study along with their respective distinguishing traits and sources are presented in table 2. The field experiment was laid out in RCBD with three replications. In each replication, each cultivar was grown in a plot of 10 rows with a distance of 20 cm between row to row and 10 cm between plant to plant and the area of each experimental unit was 6 m 2 (2m x 3m). The sowing of each genotype was done in first week of May, 2016. The local farmer's practices were followed to raise the crop. Well decomposed FYM @ 5-6 t/ha was applied in the field during land preparation. No chemical fertilizers and pesticides were used. Two hand weeding cum hoeing were performed 30 and 60 d after sowing (DAS), respectively. The data were recorded for seven agromorphological traits such as plant height (cm), number of fingers/head, grain yield (g plot -1 ), 1000 grain weight (g), straw yield (kg plot -1 ), days to 50% heading and 80% maturity as per the descriptors. The data on grain and straw yield were later extrapolated to t ha -1 for data analysis.The data collected for evaluation of agronomic traits of the genotypes were subjected to analysis of variance under RCBD using statistical software R and the significance of differences between the means were compared using Least Significant Difference (LSD) at 5 percent level of significance. The Pearson's correlation coefficients between each pairs of traits and principal component analysis (PCA) was conducted using statistical software R and Minitab 15.0 in order to study the extent of association among the traits and to identify the patterns of agromorphological variation, respectively.The UPGMA cluster analysis based on Euclidean distance of 46 genotypes revealed five different clusters (fig. 1 and table 3). Cluster II was found to be the largest cluster containing 30 landraces with higher mean values of yield, finger width, flag leaf length and ear exertion while lower mean values for phenological traits. The cluster V which contained only landrace genotype viz., Lamsare Kodo also showed higher values for the desirable agronomic traits. Despite being desirable for most of the traits, cluster I, III and IV were found to be unworthy in terms of yield and phenological traits. The six landraces viz., Chhatre, Chhangre Kodo, Nangre Kodo (Lamjung), Dalle Kodo, Lamsare Kodo and Syakhkhad Kodo for displaying superior performance in terms of agronomic and phenological traits were selected for further evaluation and validation.Highly significant variation was noted among the selected genotypes for all the agronomical traits viz., days to heading and maturity, plant height, number of fingers, grain yield, 1000 grain weight and straw yield. Substantial variations in finger millet have also been reported in previous studies by [15][16][17][18]. The mean performance of the genotypes for these traits are shown in table 4. NGRC01431 (Chhatre) recorded the highest plant height (109.33±1.45 cm) which was at par with Chhangre kodo and Lamsare kodo. Similarly, NGRC01431 (Chhatre) recorded the highest grain yield (1.80±0.06 t ha -1 ) and highest number of finger (10.67±0.33). NGRC05049 (Sailung-1) recorded the highest 1000 grain weight (3.33±0.07 g) being statistically at par with Dalle kodo and Lamsare kodo. Syakhkhad kodo recorded the highest straw yield (7.61±1.03 t ha -1 ) and highest number of days to 50% heading (145±1.00). Similarly, Lamsare kodo was found to be the earliest to 50% heading (136.67±0.88 d) and 80% maturity (175.33±0.33 d).The association among the agronomical traits was estimated by correlation analysis (table 5). Plant height exhibited highly significant positive correlation with grain yield (r=0.577) while significant positive correlation with straw yield (r=0.441) was detected. Highly significant positive correlation (r=0.568) was found between grain yield and straw yield. Days to 50% heading exhibited highly significant positive correlation with straw yield (r= 0.597). Highly significant positive correlation between plant height and grain yield was also reported by Ulaganathan and Nirmalakumari [19], Assefa and Fetene [20] and Duke [9]. Similarly, Bastola et al. [2] found highly significant positive inter-correlation between plant heights, grain yield per plant, days to 50% flowering and straw yield per plant. The present findings are in concordance with Ulganathan and NirmalaKumari [19], Bastola et al. [2], Duke [9] and Assefa and Fetene [20].Table 6 presents the principal component and % of contribution of each component to the total in the finger millet genotypes. The first accounted for 43.07% of the total variation in the population. Plant height, grain yield, straw yield and days to 50% heading contributed more to the first component. Second principal component accounted for 24.76% of total variation. Number of fingers per head and grain yield contributed heavily to the second component in positive direction while 1000 grain weight and days to 80% maturity contributed more to the second component in negative direction. The third principal component accounted for 15.07% of the total variation. 1000 grain weight and grain yield contributed more to the third component in positive direction while days to 80% maturity contributed more to the third component in negative direction. The first three principal components with Eigen value ≥1 accounted for 82.89% of the total variation. Similar findings with regard to grain yield per plant, plant height and days to flowering were reported by Salini et al. [21] and Ulaganathan and Nirmalakumari [19] in prosomillet and finger millet, respectively. Previous studies support the findings [22][23][24][25]. The present finding indicated that indirect selection based on plant height, days to 50% heading and straw yield would be instrumental in identifying superior genotypes for finger millet crop improvement programme.Despite the promise of the finger millet in regard to climate change adaptation, medicinal and nutritional benefits, cultivation trend of finger millet is decreasing in Nepal [26,27] because of various socioeconomic constraints such as labour-intensive farming practice and post-harvest processing difficulties, identification of location specific varieties and unsupportive agricultural policies. In order to address these challenges, GEF/UNEP funded project on Local Crops [28] prioritized research on i) Participatory variety selection and grass root breeding to improve productivity and tolerance to stress [29]; ii) Diversity sourcing of seeds to match farmers' needs through rapid detection, on-farm evaluation and dissemination of choice varieties, iii) Technology diversification for processing and value chain enhancement of local crops, and iv) Community seed banks establishment for strengthening local seed security and agro-biodiversity conservation [30]. The present investigation, which is part of sourcing local crop diversity that matches farmer's needs, suggests existence of high level of phenotypic diversity among the finger millet genotypes which would be useful for choosing the genitors for crop improvement programme [31]. The evaluation studies facilitated the identification of robust finger millet varieties viz., Syakhkhad kodo, Lamsare kodo and Nangre kodo, diversifying the varietal choices for the farmers in state of very few promising cultivars available in national agricultural system. The findings bolsters the large scale testing of IRD kits for popularizing the variety [31] and registration in national agricultural system. In addition to this, community seed banks (CSBs) and district agriculture development offices (DADOs) can play a pivotal role in popularizing these robust varieties at community level via establishment of demonstration plots and distribution of IRD kits and, ensuring the accessibility of quality seeds by incorporating them in their routine conservation and seed multiplication activity. The wider dissemination and adoption of these robust finger millet varieties will assure augmented production and area coverage of finger millet in the mid-hills warranting food security in the region.","tokenCount":"2047"} \ No newline at end of file diff --git a/data/part_3/5754553714.json b/data/part_3/5754553714.json new file mode 100644 index 0000000000000000000000000000000000000000..fbb1eb02384704d1ef9d3013f3a999c2160e047e --- /dev/null +++ b/data/part_3/5754553714.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"33cda93312b1752ed38bf0530dd3db91","source":"gardian_index","url":"https://www.cifor.org/publications/pdf_files/posters/8639-Infographic.pdf","id":"-906194833"},"keywords":[],"sieverID":"77cfccd5-d457-4597-b8a2-caa3e5718ed0","pagecount":"1","content":"Lack of skill in good agriculture practices Lack of compliance with sustainability standard Lack of access to information, fair price and financial support Understanding a group's specific characteristics, potentials, challenges, and responses helps reach the right targets for intervention and upgrading of sustainability practices.The group comprises farmers originating from and residing close to their oil palm plantation plots. Most of them are members of farmer groups and manage oil palm plots themselves, when they were not working on farm lands. They acquired lands from inheritance and government grants, and established oil palm crops by converting agriculture and rubber plantations (three-quarters) or developing on bare land (one-third). CIFOR-ICRAF envisions a world in which people enjoy livelihoods supported by healthy, productive landscapes made resilient through the transformative power of forests, trees and agroforestry. CIFOR and ICRAF are CGIAR Research Centers. Forest, palm oil plantations and other types of land cover for 51.8%, 21.5% 26.7% of Kotawaringin Barat district land, respectively. Palm oil plantations comprise those managed by companies (18.1%) and smallholders (3.4%). Typologies are based on sampled plantation areas of 2,902 ha taken from 7% of the district's total smallholder plantation areas. This amounts to 42,770 ha. There 349 surveyed plots (defined as a compact oil palm plantation area owned by a smallholder) involving 308 households.A multivariate analysis with two-step clustering is used to build smallholder typologies and group them using log-likelihood function and Euclidean distance formula. It assesses relationships between structural variables (resources, assets) and functional variables (livelihoods, social).","tokenCount":"248"} \ No newline at end of file diff --git a/data/part_3/5780473366.json b/data/part_3/5780473366.json new file mode 100644 index 0000000000000000000000000000000000000000..a618c3f4418e343030eb0946862d74777b7ff0e3 --- /dev/null +++ b/data/part_3/5780473366.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"2f4c8e499e012f6c3132d484a9854b7f","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/30c8a888-afc3-4301-b4bf-a505dba7b22e/retrieve","id":"-1786002319"},"keywords":[],"sieverID":"6ac63b8b-19e7-42cf-af19-3b73398c021d","pagecount":"4","content":"The term \"participatory erap improvement\" is used to cover all aspects of erep improvement where farmers are involved in a participatery role. In this paper, we describe the approach aud results for participalory crep improvemenl in wheat, in Lunawada subdistrict, Gujaral, India. Nine villages were selected for study, and within eaeh village, farmers were ranked into categories by wealth. An initial baseline survey on farming praetices was conducted by semistruetured inlerviews on a sample of rarmers. Selected farmers from eaeh weallh calegory kepl weeldy f3rm calendars of all operations in their wheal fields. Selecled fields were termed \"intensive data plols.\" They provided a basis for analyzing Ihe farming syslem and profitability by weallh calegory, as well as for identifying conslrainls. The baseline surveys revealed lha! upper-calegory farmers benefitted most from the sale of wheal produce. The lower-category farmers consumed a large par! oftheir produce. Intensive dala plots showed Ibal upper-category farmers accrued higher nel gains from wheat cultivation Ihan Ihe lower-calegory farmers. Participatory varietal selection (PVS) offered new varieties to farmefs for selection. PVS resulted in significanl replaceroent ofthe old variety Lok 1, grown in abou! 90% oflhe area, by many varietíes Iha! increased yield levels and on-farm biodiversity. Resource-poor farmers benefitted as much as Ibe better-offfarmers from PVS activities. Participating farmers experimented on a simple, cheap agronomic inlervenlian: seed priming. Mosl farmers intended to adopt it beeause of ils multiple beneficia! effeels, incJuding íncreased yields. This holistic approach to participatory methods was effeclive in analyzing poverty issues, idenlilYing constraints and new opportunities, and moniloring impact.The existing varietal diversity in main-season rice was low in general and very low in the West Chitwan cluster. The differences between clusters reflected their physical and agronomic diversity.Because the dominant crop varieties grown by the fanners in the villages of the study area were 30 to 35 years old, fanners were not benefitting from several decades of progress in plant breeding, and because ofnarrow varietal diversity, these systems may be more vulnerable to pests and disease attacks, which contribute to instability in food production.The participatory varietal selection program was successful in thÍs high-potential production systemo F anners identified and adopted seven new rice varieties from the 16 given in PVS, Some of these, such as Swarna, PNR 381, PR 1 03, and Pant 10, had a distinct yield advantage over the varieties fanners were currently growing. Others were preferred for therr early maturity, lower water and nutrient requirements, or berter grain quality. New varieties were adapted to specific niches. For example Swarna is suitable for fields where the water stands for nearly all ofthe growing season; Pant 10, PNR 381, and Sarwati are suited to conditions ofpartial irrigation and medium fertility; and PR 103 and PR 106 were adopted for more fertile, higher yíelding environments. Radha 11 was found to be suitable for late planting conditions and for transplanting when the seedlings are more than one and one-half months old. This is an important trait for areas where rice transplanting is dependent on unpredictable monsoon rains.Varietal diversÍty can be quantified but such quantification is scale sensitive. Diversity estimated overall the FAMPAR villages as one unit gíves differentresults Ihan ifit's estimated on the basis of clusters. The varietal diversity in the WCC increased far more than in the other two clusters, whích both had higher inirial varietal diversity. From the viewpoinl of diversity deployment to enhance food security, increasing diversity in the most vulnerable arcas is not only important for the communities in those areas, but it also reduces the vulnerabílity of the system as a whole. The PVS approach in main-season rice has helped enhance varietal diversity on-farm in the same way that it has for other crops and areas (11alhi et aL, this volume;Virk el aL, this volume;Witcombe 1999aWitcombe , 1999b;;Joshi et aL 1997).Participatory varietal selection was effective in increasing production in HPPSs by matching agroecological niches 10 the most appropriate varieties. Such increases in production are essential if the deve10ping world is 10 feed its rapidly growing populations.Fanners in high-potential production systems (HPPS) of the Indian subcontínent adopted modero Green-Revolution cultivars in the 1960s and 1970s. Indigenous cultivars were quickly replaced with CIMMYT wheat and IRRI rice varieties. Rates of adoption of modero varieties have since slowed. For example, in India the average age of cultivated varieties is between lOto 27 years for most cultivated crops (Virk, Packwood, and Witcombe 1997). SIow tumover mtes of cultívars mean that fanners are growing older, and therefore inferior, genetic material.The extent of adoption of new varieties by farmers depends on multiple factors, including agronomic and socioeconomic constraints. We used a holistic approach to partícipatory crop improvement in wheat in the Lunawada subdistrict in Gujarat, India, to anaIyze constraints, provide new opportunities, and monitor the adoption of new cultivars chosen by farmers. ","tokenCount":"796"} \ No newline at end of file diff --git a/data/part_3/5783201654.json b/data/part_3/5783201654.json new file mode 100644 index 0000000000000000000000000000000000000000..ac3cbd030722149f2c068c896b392200ff5461df --- /dev/null +++ b/data/part_3/5783201654.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"138015c926a5ecedbab6ed7268433026","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/8df9ad22-0640-490d-8701-a6c10a7c5e07/retrieve","id":"2092151375"},"keywords":[],"sieverID":"b324ee1f-b0e3-4f34-8225-cd82eaacb35e","pagecount":"87","content":"This work benefitted from the valuable input of many colleagues and partners in Ethiopia, Kenya and Uganda where the study was conducted. We are deeply indebted to Dr Dil Peeling and Dr Otieno Mtula of the IGAD LPI for the useful comments they made in earlier drafts of this work. We also gratefully acknowledge the logistical support of Ms Mekdim Ketsela of IGAD LPI during the fieldwork and in the compilation of this work. The contribution of the National Technical Focal Points in the three IGAD countries, Dr Thomas Cherenet in Ethiopia, Dr Julia Kinyua in Kenya and Dr Justus Byamuto in Uganda is highly appreciated. This AU-IBAR/FAO collaborative work has been made possible by the support of the Director of AU-IBAR, Prof. Ahmed El Elsawalhy, of the former and current directors of the Animal Health and Production Division of FAO, Drs Samuel Jutzi and Berhe Tekola, respectively, and of the FAO Regional Office for Africa's Regional Animal Production and Health Officer, Dr Cheikh Ly, to whom we are grateful. Last, but not least, we are indebted beyond measure to the key informants in the three countries who spared time, under short notice, to respond to our questions.Livestock play multiple but important roles in the lives of people in the IGAD region. They provide food, fiber and social-economic services to millions of owners who keep them. These roles are critically important particularly among the pastoralists who largely depend on livestock for their livelihood. Hence, any policy, strategy or development programme designed to improve the performance of the agricultural sector in these countries must not only address livestock issues but also be mindful of its many livelihood services. This study evaluated how livestock-related issues have been articulated in the CAADP CCompacts of Ethiopia, Kenya and Uganda. In particular, the study (i) reviewed how the CAADP CCompacts endorsed by the three IGAD member countries appreciate the many livelihood services provided by livestock, and (ii) assessed how well the perspectives and priorities of various stakeholders, including the food insecure women, are reflected in the CCompacts. This was done in cognizance of the fact the CAADP framework is the prevailing continental \"road map\" for spurring the growth of African agriculture to enable it effectively contribute to the reduction of challenges arising from underdevelopment, food insecurity, hunger and poverty. In addition, many development partners concerned with the development of the agricultural sector in the IGAD region have agreed to realign their support to the CAADP agenda.The study used two approaches to achieve its objectives (i) a thorough desk review of the literature including country CCompacts, their supporting documents (policies, strategies, studies, etc) and other published and grey literature, and (ii) conducted key informant interviews with stakeholders who had participated in the CAADP process to assess the level of participation of various stakeholders, particularly the food insecure livestock keepers and women in that process. The key informants included the CAADP National Focal Points in the three countries, government officers, representatives of international organizations and other stakeholders who had been involved in the CAADP process.The study found that: I.All the documents reviewed completely fail to recognize the broader livelihood services derived from livestock. This may have arisen from the failure of prevailing policies and strategy documents used or consulted during the CAADP process to understand the multiple livelihood service of livestock and the needs and priorities of poor livestock dependant especially women and other vulnerable groups. All the documents are pre-occupied with promoting the maximization of livestock production and productivity to increase marketed surplus without specific attention to the needs of poor livestock keepers and particularly women. It is worth noting that the majority of livestock keepers in Africa are what can be termed as \"marginal livestock keepers\", meaning that they lack sufficient critical mass of assets to regularly produce a surplus from their livestock to be able to participate in the market.The failure to recognize the broader livelihood services and the perspectives and priorities of grass-roots stakeholders could be partly explained by the fact that policy design in the three countries is based on purely physical economic models rather than being informed by a more social-oriented livelihoods approach which takes into xi account a household's capabilities and assets (both material and social) and activities required for a means of living. Most economic models ignore this.Although the Ethiopian Compact is configured to align with the CAADP framework, the CCompact and its supporting document (PIF) does not adequately address livestock issues. Interestingly, however, the post-CAADP Compact roadmap proposes eight interventions under Pillar IV to develop livestock and pastoral areas.IV.The predecessor of the PIF (the PASDEP) was more articulate with regard to livestock issues compared to the PIF. It seems, therefore, that the PIF (which is supposed to be better) watered down the aspirations of the PASDEP with regard to livestock and pastoral development. Perhaps the failure of these policy documents to articulate livestock issues is due to the lack of a comprehensive livestock development policy and the weak representation of the livestock sector in Ethiopia's MoARD.V. Kenya's CAADP Compact does not seem to be well aligned to the CAADP four-pillar framework. Its six thematic areas are scattered across two strategic foci, one on subsectors and the other on production factors. The failure of Kenya to adopt the CAADP framework could be attributed to her initial reluctance to mainstream CAADP into her SRA arguing that the former would rival or even run parallel to the latter. In comparison to Ethiopia's and Uganda's Compacts, the Kenyan Compact addresses livestock issues and clearly identifies the investments needed to develop the sector. However, it still does not provide the livestock-related data and indicators used to identify interventions in the livestock sector.Kenya's ASDS in many ways replicates the provisions of the SRA, the document it was meant to replace. However, although it introduces the SLM pillar, gender issues, private sector and donor participation as well as a sector-wide approach to planning, it does not engender a \"business unusual\" approach to the agricultural sector policy discourse as expected.VII. Although Uganda's DSIP (the Compact supporting document) is packaged into four programmes, it is not explicitly cast into the CAADP four-pillar framework. In fact, the fourth programme dubbed \"Institutional Development\" is strictly not a programme but merely a reorganization of the MAAIF and its agents. The NDP, the successor of the DSIP, replicates the provisions of the DSIP, which borrows from the PMA. Hence, the three documents (the PMA, DSIP and NDP) ignore livestock and pastoral development issues and do not appreciate the multiple roles of livestock in sustainable livelihoods. The three documents do not add much value to each other begging the question on the need to develop multiple documents with overlapping contents and with no regard to lessons learned from their implementation.Based on the key informant interviews, it seems there was minimal, if any, participation of poor livestock keepers and women in the CAADP process in all the three countries studied. Some informants intimated that it would have been very expensive to conduct thorough consultations with grass-roots stakeholders. Others indicated that the time allocated to the process was too short to enable the country team conduct meaningful consultations with poor livestock keepers and women.Although gender issues somehow got their way into the CAADP Compacts, based on key informant interviews, there was little participation of women and youth in the CAADP process. In fact, almost all the CAADP teams in the three countries were entirely male (at least in Ethiopia; Kenya's team had two females in a team of 15; the composition of Uganda's team was unavailable).X.From the key informant interviews, there are strong indications that the Ethiopian CAADP process was consultant-driven. While the engagement of consultants is important in respect of capacity constraints, there is always the danger of alienating the bureaucrats some of who may feel \"used\" by outsiders leading to ambivalence and non-acceptance of the resulting policy. The Kenyan CAADP process was mainly driven by the Ministry of Agriculture and spearheaded by ASCU. However, the initial scepticism about CAADP by the Ministry of Agriculture meant that the CAADP process ran parallel to the revision of the SRA and that important activities such as stocktaking and the CGE modelling by IFPRI did not significantly inform the process as envisaged by the CAADP secretariat. Uganda's case was somewhat mixed with partial participation of consultants and the national focal point.Except Kenya's MTIP that disaggregates the budget outlay according to agro-ecological zones, the investment plans of Ethiopia and Uganda are not disaggregated enough to show how much money is allocated to livestock and to support the livelihoods of poor livestock keepers. This could be attributed to the lack of full integration of the livestock sector in both countries' Compacts.A keen examination of the various agricultural sector plans, policies and strategies in Ethiopia, Kenya and Uganda reveals some element of \"path dependency\"1 in the way the plans, policies and strategies have been formulated and articulated over time. This may be explained by the fact that the constraints facing the agricultural sector in each of the three countries do not change significantly over the usual five-year planning period. A key example is the relationship between Ethiopia's SDPRP, PASDEP and PIF. While the underlying development philosophy running through these documents is agricultural development-led industrialization (ADLI), the main strategic thrusts remain the same year in year out. In fact, the PIF uses the phrase \"foot on the ground\" in an indirect reference to path dependency in technology development. The observed path dependency in policy formulation can also be attributed to the poor participation of grass-roots stakeholders in policy making. Although most documents claim to have consulted widely, there is no tangible evidence of how the grass-roots stakeholders' issues and problems were identified and included in the policy design. In particular, the documents do not indicate the tools and data used for problem identification and policy analysis. Consequently, the documents ignore the priorities of poor livestock keepers. Those that include them tend to treat them casually.Although the CAADP allows member countries to develop their Compacts in their own way, the CAADP process itself is unwittingly \"top-down\" and predominantly externally driven. Right from funding to the signing of the Compact and the supervision of CAADP implementation through the peer review mechanism, the whole CAADP process somewhat compels countries to abide by its rules. This may be viewed as an external imposition by participating countries with the sanction that those who fail to align their development plans with the CAADP framework risk losing donor support. This view may have informed Kenya's initial reluctance to embrace CAADP.Based on the foregoing observations, therefore, there is need to build the capacity of CAADP country teams in policy formulation and analysis in order to break path dependency patterns, which tend to limit the much required policy innovations, and thus enhance the quality of their CAADP documents. The current ones are patchy and at times repetitive and too wordy for comprehension. Coupled to this and given the strategic mandate of AU-IBAR in guiding the implementation of the CAADP Livestock Companion Document, there is need to provide the CAADP country teams with some tool, particularly one that is based on a livelihoods framework, to help them appropriately entrench the livestock sector and pastoral development in the various CAADP documents.1.1 Role of livestock in the IGAD region: macro and micro perspectivesThe role of livestock in the Inter-governmental Authority on Development (IGAD) region 1 is well documented (Knips, 2004;Sandford and Ashley, 2008;Behnke, 2010). Sandford and Ashley (2008) indicate that the region hosts nearly half of sub-Saharan Africa (SSA)'s cattle, sheep and goat population. Ethiopia and the larger Sudan 2 have the highest livestock population in sub-Saharan Africa (SSA) comprising, respectively, 28.4 and 22.3 million livestock units, with the entire IGAD region hosting an estimated 68 million livestock units 3 . Of these, about 53 percent are raised by pastoralist communities on natural pastures in the arid and semi arid lands (ASALs). This demonstrates the importance of pastoralism in contributing to livestock production, one of the main economic activities of the IGAD member countries.According to AU-IBAR (2010), around ten percent of the human population of SSA is primarily dependent on livestock, while another 58 percent at least partially depend on livestock. Among the IGAD member states, Djibouti and Somalia have the greatest proportion of their populations in pasture-based production systems (71 and 76 percent of the populations respectively); while Sudan, Somalia and Ethiopia respectively have 8.1, 7.4 and 5.1 million in pastoral and agropastoral production. Except in Somalia where livestock contribute about 80 percent of the gross domestic product (GDP), livestock in the other six member states contribute about 15 to 20 percent of the GDP 4 (Fahey, 2007;Sandford and Ashley, 2008). Based on FAOSTAT data, livestock contribute between 18 and 88 percent of the net value of agricultural production in the IGAD countries (Figure 1).1 Consists of seven countries, namely, Djibouti, Ethiopia, Eritrea, Kenya, Somalia, Sudan and Uganda.2 Including South Sudan.A livestock unit (abbreviated as LSU) is a reference unit that facilitates the aggregation of livestock of various species and age groups by the use of specific coefficients established on the basis of nutritional or feed requirement of each type of animal. For instance, an adult dairy cow is 1.0 LSU; a sheep/goat is 0.1 LSU, a mature pig is 0.5 LSU, a broiler is 0.007 LSU and an equine is 0.8 LSU (see http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Glossary:LSU). The livestock sector is a major source of foreign exchange and industrial raw materials (meat, milk, eggs, hides, skins and fibre) in the IGAD member states. For instance, about 20 percent of agricultural exports in Sudan are livestock-based; hides and skins are Ethiopia's second biggest export; and in Somalia, livestock and livestock products account for 80 percent of exports in normal years (Fahey;2007;Sandford and Ashley, 2008). The livestock sector is also a major consumer of industrial inputs such as veterinary drugs, commercial feeds and machinery. As an example, Figure 2 shows the number of milking machines imported by four IGAD member countries between 2001 and 2008 1 . Notably, Kenya imported the most (1,710) milking machines probably because it has the largest dairy sector in the region. It was followed by Uganda at 1,113; Ethiopia and Sudan imported only 183 and 12 milking machines respectively over the same period. ). Although pulses (beans, peas, etc) are the single most important source of proteins in the IGAD member countries, livestock products collectively provide the highest amount of animal proteins consumed daily (Table 1). Among the livestock products, milk and bovine meat provide about 81 percent of animal proteins in the IGAD region. Pork and eggs are the least important sources of proteins. Among the IGAD countries, Sudan, Djibouti and Kenya have the highest per capita daily consumption of animal proteins at 25.6, 18.5 and 14.7g/person/day respectively. Interestingly, although Ethiopia has the largest livestock population in Africa, it has the least daily animal protein consumption per capita at only 4.7g. Whereas the IGAD member countries have high livestock numbers per capita, the average annual per capita consumption of animal products is low, even by developing country standards (Knips, 2004). In pastoral communities livestock are the major sources of household food and nutritional security. For instance, among the Maasai, milk and milk products account for 60 to 65 percent of the dietary energy and herds typically are 66 percent milk-providing females, while neutered males are raised for meat consumption and traditional and market exchange (Fratkin, 2001).Although highly debated by environmentalists and ecologists as the main cause of environmental degradation (e.g., see Hardin, 1968), the accumulation of large livestock herds among pastoralists is a rational method -when market and institutional imperfections loom large -of storing surplus meat on the hoof, which evens out food supply during the drier seasons (Western and Finch, 1986). In such cases, livestock act as a means of buffering food shortages during the years of poor crop production (Powell et al., 2004).The sale of livestock and livestock products (milk, meat, eggs, manure, draft power and fibre) generates the much needed income in livestock keeping households in Africa. In a review of 23 livestock-related studies undertaken in SSA, Nouala et al. (2011) found that livestock contribute between two and 49 percent of household income. Of these, three and four studies indicated that livestock contribute about nine and five percent of the household income respectively. This contribution emanates from the fact over 53 percent of the population in SSA keeps some livestock, meaning that one out of two persons in the continent is partly dependent on livestock for their livelihoods (ILRI, 2002, quoted in Nouala et al., 2011). Pica-Ciamarra et al. (2011) provide evidence that the poor and landless households derive a higher share of their income from livestock than the relatively better off. These authors cite the study by Adams (1993) who found livestock in Pakistan contributing about 20 percent to total income for households in the first three income quintiles, and 15 and 10 percent for households in the fourth and top quintile. Ellis et al. (2003) are reported to have found that livestock contribute less than 5.3 percent to the income of households in the top income quartile whereas they contribute 7.1 and 7.5 percent to the income of households in the first two quartiles in Zomba District of Malawi. Likewise, Akter et 1 Note: There were no data for Somalia.al. ( 2007) are said to have found livestock contributing over 25 percent to the income of the poorest quintiles and only seven percent to the income of the richest farmers in the Indian State of Andhra Pradesh. Delgado et al. (1999) are also reported to have found the contribution of livestock to income to be larger for the poorest households than for those with higher incomes, larger farm size and more balanced dietary adequacy in seven countries in Africa, Asia and Latin America.Livestock also serve both as insurance and as the primary repositories of wealth in many stockowning economies (Schneider, 1970;Moll, 2005;Behnke, 2010). At the household level, livestock act as \"living banks\" and as assets that provide interest-free credit. The enduring pre-occupation of the pastoralist to build large livestock herds is primarily motivated by the singular need to create wealth. This wealth (measured in livestock) may then in turn be used as savings, as investment capital, or as currency for increased consumption (Quam, 1978). These attributes of livestock are particularly important for the rural communities who are mainly unbanked and generally lack access to formal financial and insurance services (Behnke, 2010).To cope with the vagaries of life (e.g., risks associated with climatic variability) in the absence of or in the presence of restricted formal finance and insurance institutions, people in the rural areas tend to diversify risk by investing in livestock, gold, jewellery and tree crops (Moll, 2005). The insurance function of livestock results from the potential of being able to sell animals in case of emergencies. Therefore, having livestock is comparable with having insurance. Among the undermonetized rural communities, livestock serve as a standard measure of value and as a medium of exchange, the latter attribute owing to their high liquidity. Livestock also serve as symbols of wealth, which accords the owner social status. According to Moll (2005), the status function of livestock is related to the presence or absence of other means to display wealth, such as durable consumer goods and building materials in most livestock producing areas. Being a source of wealth, livestock facilitate access to financial services, both in formal and informal markets (Pica-Ciamarra et al., 2011).In the mixed crop-livestock production systems which characterize much of SSA agriculture, livestock play a key role in nutrient recycling where crop residues are used as livestock feed while manure is used as organic fertilizer (Powell et al., 2004). Thus, there exist a unique but inextricable complementarity between crop and livestock farming in these systems. Given the low uptake of inorganic fertilizer in much of SSA (Kaitibie et al., 2010), livestock manure remains the only affordable substitute to the costly mineral fertilizers. According to Powell et al. (2004), animal manure is one of the most important soil fertility amendments in smallholder farms in SSA. Hence, as long as mineral fertilizers remain unaffordable, the fertility of the cropland will continue to depend on nutrients supplied in the form of manure.Livestock also utilize the land resource that would otherwise be unsuitable for sustainable crop production. For instance, Knips (2004) indicates that 60 percent of the land in the IGAD countries is arid, i.e., it receives less than 500mm of rainfall annually with less than 90 days of growing period. Respective share of land of member countries classified as arid is as follows: Djibouti and Somalia (100%); Kenya (73%), Eritrea (67%), Ethiopia (41%), and Uganda (1%) (Knips, 2004). This land is either too dry or too infertile to support meaningful arable crop production. However, the land is highly suitable for livestock production based on natural pastures. Livestock harvest the forage and convert it into essential animal proteins and fibre for human use.In many SSA countries, draft animals, principally cattle, but also donkeys, horses, mules, and even camels provide power for ploughing, weeding, harvesting, processing, and marketing of farm produce (Powell et al., 2004). For instance, in Ethiopia there is evidence that cattle were first used for ploughing in the latter part of the third millennium while currently, between nine and ten million cattle are used for draft purposes (Astatke and Saleem, 1996). In Kenya, the use of oxen for cultivation was introduced in the 1920s by European settlers from South Africa; however, at present, only 12 percent of smallholder farms use draft animal power (Guthiga et al., 2007).Likewise in Uganda, the contribution of draft animal power to the total agricultural power need is relatively small at approximately eight to nine percent. The main benefits of using draft animal power include the timeliness of carrying out farming operations, increased yield through improved seedbed preparation, deeper ploughing, possibility of labor saving, reduced drudgery and possibility of income generation through off-farm transport and hiring (Guthiga et al., 2007).Studies show that farmers that own draft animals tend to have larger farms than those not owning animals, which ceteris paribus, increases farm output through increased land area cropped and improved timeliness of planting (Gryseels et al., 1984, quoted in Astatke andSaleem, (1996); Shumba, 1984, quoted in Powell et al., 2004).Except the provision of food and nutrition security, perhaps the other greatest role that livestock play is in socio-cultural exchange amongst the livestock keepers. The use of livestock as gifts and for the payment of bride price creates, preserves and fosters indispensible social capital that cements kinship ties. Such ties serve as \"social safety nets\" in times of calamities and emergencies. It has been shown that high bridewealth is positively correlated with large livestock holdings in many African societies (Schneider, 1964, quoted in Quam, 1978). Livestock are also used in the payment of liabilities and fines, and in meeting religious obligations (e.g., sacrifices to appease the dead, family celebrations, etc).It is worth noting that each service provided by livestock provides an opportunity to strengthen the owner's livelihood. It also provides an opportunity to add value to the livestock through policies and institutions which support that service. Furthermore, by focusing on the services most pronounced in the livelihoods of the poor or women, policy can focus directly on poverty and food insecurity in line with Pillar III of the CAADP.The need to include the livestock sector in the CAADP Compacts arose from three underlying factors. First, was the inadvertent omission of livestock issues in the main CAADP document in spite of the important role that livestock play in the economies of AU member countries (see Section 1.1). Although the CAADP document elaborated on the need for the agricultural sector to grow by at least six percent per year to reduce poverty in Africa by 2015, there was little reference in the document on the role that livestock, forestry and fisheries sectors would play in the achievement of this goal. This fact was noted by the Second Ordinary Session of the Assembly of the AU held in Maputo between 10 th and 12 th July 2003. Subsequently, the AU Assembly called upon member States to submit to the AU Commission proposals on strategic themes in these sectors for possible inclusion in the agenda of the Extraordinary Summit on Agriculture, Water Resources and Energy in Africa (Nyariki et al., 2008). , 2006). Overall, livestock production and productivity growth has not been sufficient to keep up with the demand of expanding populations. This has led to increasing levels of imports of livestock products into Africa. For instance, Africa imports 0.5 tonnes of meat and two million tonnes of milk annually, which is valued at US$2.3 million (Nyariki et al., 2008) and is expected to further increase with increase in human population, urbanization and income. The implications of these statistics is that there exists a viable but unmet market for livestock products, which can be catered for if local production capacity was improved through focused and coordinated interventions such as those proposed by the CAADP.The constraints perpetuating the poor performance of the livestock sector in SSA are legion. They include those related to production (e.g., high disease and pest incidence; poor breed and nutritional quality and management); marketing (e.g., missing or incomplete markets for livestock and livestock products; poor marketing infrastructure; low demand and supply factors); institutional arrangements (e.g., weak legal, policy and socio-cultural frameworks); research and development (e.g., few appropriate livestock technologies; low funding; limited human resource capacity); delivery of animal health, extension services and credit (e.g., low private-sector investment in animal health; low funding for livestock extension services; unavailability of livestock technologies); poverty (e.g., due to external shocks and low income levels); low value addition (due to e.g., lack of processing facilities), infrastructure (e.g., poor roads and telecommunications; lack of current livestock data); climate change (leading to variable and mostly extreme weather conditions), and an unconducive international trade environment (e.g., the costly requirement to comply with the WTO's/OIE's sanitary and phytosanitary standards (SPS) in an environment of weak animal health system amidst the presence of multiple and ubiquitous notifiable transboundary animal diseases (TADs)). The implication of these constraints is that much of the growth and poverty reduction potential that is offered by the growing demand for animal food dubbed the \"livestock revolution\" (see Delgado et al., 1999), will not be capitalized upon in Africa, unless they are urgently addressed. FAO (2006) notes that the livestock sector in Africa will need to grow by more than four percent annually to be able to satisfy the estimated 3.5 percent annual growth in demand for livestock products. The CAADP offers a unique framework for galvanizing and catalyzing Africa's efforts to address these constraints.The last factor that necessitated the inclusion of livestock in the CAADP Compact was the realization of the enormous benefits that the livestock sector would achieve if it were mainstreamed into the CAAP framework. Given that CAADP is now fully on board as the official continental \"road map\" for the achievement of the AU vision on African agriculture as expressed in the Maputo Declaration, all agricultural sector programs, investments and interventions are now being guided by national policy documents and investment plans that are, or should be aligned, to the CAADP framework. Additionally, many development partners have agreed to realign their support with the CAADP agenda. In this regard, the donor community has developed guidelines for donor support to the CAADP process at the country level 1 . Hence, any national strategy, program or intervention implemented to address the constraints and challenges facing the livestock sector must of necessity comply with the CAADP framework. It is worth noting that the CAADP Compact is a commitment by governments, development partners and other stakeholders to increase support to the agricultural sector. The most enduring aspect of this commitment is that it can be interrogated through the African Peer Review Mechanism (APRM 2 ). Hence, any sub-sector that is omitted from the CAADP will inevitably miss out on such support.This chapter presents a framework which would allow analysis of the Compacts in the IGAD countries in the subsequent chapters.The CAADP is a framework for the operationalization of the CAADP is guided by the following principles: (i) the principle of policy efficiency, dialogue, review and accountability, shared by all NEPAD programmes, (ii) the principle of partnerships and alliance to include farmers, agribusiness and civil society communities, (iii) the principle of accountability, whereby the roles and the responsibility of programme implementation are assigned to individual countries; that of coordination to designated RECs, while that of facilitation to the NEPAD secretariat.As explained in Section 1.2, livestock, forestry and fisheries sectors were inadvertently omitted in the initial CAADP document. Accordingly, the AU Ministers of Agriculture meeting in Maputo in 2003 requested that these sectors be given adequate attention in the NEPAD efforts. The NEPAD Steering Committee subsequently requested FAO to assist in preparing these elements for inclusion. Action was taken to prepare three separate documents on the livestock, forestry and fisheries sectors, and later to assemble them into a Companion Document to the CAADP (FAO, 2006). The preparation of the Companion Document was based on the initial drafts of the livestock, forestry and fisheries sector papers. The latter were revised using comments from African experts and institutions through various rounds of meetings and conferences.The CAADP Companion Document has five chapters. After laying the background on African agriculture in Chapter 1, Chapter 2 presents the interactions of the three sectors (livestock, forestry and fisheries) and their contribution to CAADP. Chapters 3, 4 and 5 are separately devoted to livestock, forestry and fisheries respectively. The \"Livestock Companion Document\" is presented in Chapter 3 under the heading \"Enhancing the role of livestock\". This Chapter is divided into six sections as shown in Box 2 below.Source: FAO (2006) In summary, Section 3.1 highlights the importance of livestock in GDP growth, assurance of food security, provision of draft animal power and manure, as well as in employment creation and generation of income. Section 3.2 focuses on the distribution of livestock in Africa noting that Eastern Africa accounts for half of all cattle population, more than a third of sheep and 40 percent of goat population. Western region caters for 35 percent of goat population while the Northern region accounts for 35 percent of poultry population. The Central and Southern regions have very low livestock populations due, inter alia, to adverse climate and high disease pressure.Section 3.3 presents the rationale for increasing livestock production and productivity noting that increased human population, urbanization and incomes have raised the demand for food of animal origin in Africa. However, the growth in livestock production and productivity in Africa still falls short of the growth in demand for livestock products, thereby necessitating importation. Section 3.4 presents the technical, institutional and agro-ecological zone-related constraints that limit livestock production and productivity in Africa.Section 3.5 presents the annual growth target for the livestock sector of 4.2 percent that is necessary to meet the annual growth in demand for livestock products of 3.5 percent. It also presents various agro-ecologically-stratified strategies aimed at enabling the sector to meet the growth target. In particular, in the semi-arid, sub-humid and highland zones, the strategy is to enhance the role of livestock in the agricultural intensification process, and promotion of marketbased livestock development. In the marginal arid areas, the focus is on the protection of vulnerable livelihoods by arresting the degradation of the rangelands. For the humid zone, efforts are to be geared towards the protection of the tropical rainforest. In general, the Livestock Companion Document captures almost all the livestock issues that need to be addressed to revamp the livestock sector in Africa. These issues range from policy and institutions to economic, biophysical and infrastructural constraints and solutions thereto.Understandably, the issues highlighted by the document are not new. However, the document does not capture some critical cross-cutting issues such as gender, HIV/AIDS and climate change.With regard to gender, it is well known that women form the backbone of the agricultural sector providing over 60 percent of agricultural labour, managing over 90 per cent of farms, and yet have limited access, control and ownership of natural resource base, especially land (ACORD et al., 2011). On the other hand, Africa is most vulnerable to climate change because of its heavy dependence on rain-fed agriculture and low adaptive capacity. Unfortunately, women farmers disproportionately bear the brunt of climate change impacts. Additionally, Africa has the highest number of HIV infections, which is threatening to slow down socio-economic development and has slowed down the growth momentum prevailing before the advent of HIV. The current version of the Livestock Companion lacks an indepth analysis of these and related issues. More specifically, it fails to address the specific needs of women and smallholders, as well as the best policy mechanisms for meeting their needs.Another major weakness of the Livestock Companion Document is its failure to focus on the understanding of the production objective of the livestock keeper whose production decision and choices may be highly intertwined with his/her socio-cultural circumstances, and not necessarily based on the \"optimal\" methods of production and trade envisaged by policy makers and analysts.The sobering fact is that the majority of livestock keepers in Africa are \"marginal livestock keepers\", i.e., they lack sufficient the critical mass of assets to regularly produce a surplus from their livestock to be able to participate in the market (Nouala et al., 2011). Conversely, only a minority of livestock keepers in Africa can be defined as \"small livestock producers\", which means they have the skills and resources that, when appropriate policies and institutions are in place, enable them to become successful entrepreneurs. In other words, they produce and sell surpluses of livestock and livestock products. Too often, the main preoccupation of policy makers and analysts has been to promote the physical production of livestock systems with an emphasis on marketed production. This preponderance fails to appreciate that most of livestock keepers are only marginal livestock keepers, leading to the formulation of ineffective and farmer-insensitive policies and programmes that have often reinforced some of the constraints highlighted by the Livestock Companion Document.Another weakness of the Livestock Companion Document is that it takes governance (in all its aspects) as \"given\". Whereas countries differ with respect to, inter alia, factor endowments, stage of development and the size of the economy, good governance is a necessary condition for effective policy formulation and implementation. Indeed, the persistence of some of the constraints identified in the Companion Document is traceable to poor governance.So, how are the CAADP and the Livestock Companion Document implemented? The CAADP and the Livestock Companion Document provide a continental policy framework and a regional context for country-led processes. As such, each AU member country is supposed to align its agricultural sector (including livestock) policies, programmes and strategies with the CAADP agenda as detailed in the CAADP and the Livestock Companion. However, although continental in scope and given the diversity of country contexts with regard to their level of development and in their current agricultural sector challenges and strategies, each country is expected to implement the CAADP Agenda in its own way, of course, being guided by the CAADP principles and pillar frameworks. It is worth noting that the CAADP (and its Companion Document) is not a set of supranational programmes to be implemented by individual countries but, rather, it is a pan-African framework -a set of principles and broadly defined strategies -to help countries critically review their own situation and identify investment opportunities with optimal impact and returns.In other words, CAADP is not intended to replace nor run in parallel to existing planning and development systems, but rather subjects these systems to rigorous analysis and reform.Accordingly, investment programmes are designed, implemented, reviewed, adapted and replanned in an ongoing fashion, thus building up performance and capacity in a continuous manner in each member country.The alignment of each country's policies, programmes and strategies to the CAADP framework is achieved through the so called \"national roundtables\". Essentially, a country roundtable is an iterative and interactive learning process comprising analysis, design, implementation and evaluation of agricultural investment. The country implementation process aims to improve the quality and effectiveness of agricultural sector programmes by integrating the principles and values of CAADP into national systems of development planning and implementation. The roundtable process focuses on (i) aligning state policies with regional priorities and the four CAADP pillars, (ii) exploiting synergies and discussing economic bottlenecks between neighbouring countries, and deciding appropriate action on those matters, (iii) identifying gaps in the donor funding needed to achieve agreed priorities, and (iv) initiating work to monitor and evaluate CAADP's progress at the national, regional and continental levels.The output of the national roundtables is a national pact or the \"CAADP Compact\" between individual governments, development partners and other stakeholders (e.g., RECs, civil society, private sector, farmer organizations, etc), detailing how countries will achieve the four CAADP pillars. The CAADP Compact is operationalized through an \"Implementation Plan\" that outlines the timeframe for requisite policy and institutional reforms as well as giving details on investment priorities, financial requirements and sources of funds.The process of developing a CAADP Compact involves the following key steps: (i) stocktaking to determine the country status regarding the CAADP targets. Ideally, the stocktaking exercise is a kind of a \"situational analysis\" of past and current performance of the agricultural sector. It also focuses on future growth requirements to meet the CAADP targets. It consists of five elements (a) technical analysis which identifies locally feasible technical options for attaining higher productivity by looking at agricultural practices that have succeeded or failed in the area/country (b) ecosystems analysis which identifies issues, barriers and opportunities on the natural resource base, (c) financial-economic analysis which assesses the existing funding levels for agriculture, (d) policy analysis to review policies related to agricultural sectors to identify the main bottlenecks that have the most impact (either positive or negative) on the development agenda, and (v) institutional/stakeholder analysis to map out relevant institutions/stakeholders (both public and private) at national and sub-national level related to the implementation of the agriculture agenda in the country; (ii) estimating the magnitude of change required to achieve the CAADP vision and objectives. In Ethiopia, Kenya and Uganda, this was conducted by the International Food Policy Research Institute (IFPRI) using country-level computable general equilibrium (CGE) and micro-simulation models; (iii) creating an inventory and identifying options to achieve the objectives of CAADP, (iv) prioritizing interventions and costing options to focus on the best returns for an investment plan and addressing the necessary conditions to meet objectives, (v) reviewing implementation options, roles, responsibilities and coordination, and (vi) finalizing and packaging an integrated programme that includes an investment and operational plan and institutional arrangements.The responsibility of developing and implementing the country CAADP Compact lies in the hands of the CAADP country team. As indicated in the \"Guide for CAADP Country Implementation\", the CAADP country team is a \"coalition\" of ideally five to eight members drawn from the middle to higher level staff from the Ministry of Agriculture, other ministries, the private sector, farmer organisations, civil society and other committed actors. In essence, its composition should reflect a balance of members with formal authority (by virtue of their positions in the ministries or stakeholder organisations), as well as technical competencies and responsibilities and cross-sector representation. The team is neither intended to be a permanent structure nor even a parallel government body. It should actually build on existing structures such as an existing agricultural sector coordination unit. The terms of reference of a CAADP country team are shown in Box 3.Source: Guide for CAADP Country Implementation One of the key principles of the CAADP initiative is the creation of partnerships and alliances to develop the agricultural sector. Because agriculture is a diverse sector with numerous actors, thePromoting CAADP and facilitating CAADP and agricultural sector related awareness, advocacy and training II.Developing a road map for the CAADP roundtable and related investment frameworks/programmes and managing a budget for preparing and supervising the roundtable process III.Organising and facilitating diagnostic/analytical work, including a list of relevant past and present interventions IV. Identifying and recruiting consultants to undertake required studies, approving consultants' outputs and disseminating the findings V. Organising and facilitating an all-inclusive country process on priority setting VI. Managing the work programme and contributions of other actors, including organising and sequencing the components of the CAADP implementation process VII.Stimulating and facilitating the engagement and involvement of various partners and stakeholders including development partners, key institutions, civil society organisations, public-private bodies, etc VIII.Coordinating and facilitating interaction and collaboration between the regional level and actors IX.Identifying capacity building needs for selected key institutions X.Promoting CAADP and programmatic approaches to agriculture and make the case for CAADP in national policy debates and fora XI.Facilitating and coordinating CAADP related knowledge management operations including monitoring progress in implementation, based on indicators roundtable process is expected to engage all stakeholders in government, private sector, civil society, farmers, and development partners. Accordingly, the CAADP country team is expected to consult widely with stakeholders to accelerate the achievement of the CAADP agenda. Such consultation can be achieved either directly (e.g., through participation in CAADP-related platforms and in the national roundtables) or indirectly through lobbying and advocacy. Other platforms may also be used to build partnerships, e.g., the business-to-business and private-public sector platforms suggested under CAADP Pillar II framework. In some countries, \"friends of CAADP\" groups have been formed for similar reasons.Whereas the CAADP country teams are charged with the responsibility of leading the implementation of CAADP agenda in their respective countries, donors (constituted as the Agriculture Donor Working Groups -ADWGs) support the CAADP process both financially and technically. The ADWGs work closely with the CAADP country team and liaise with stakeholders in facilitating the CAADP process. The framework for donor support to the CAADP process is set out in the \"Guidelines for Donor Support to CAADP Process at a Country-Level\" 1 . These guidelines profile donors' role in the CAADP process as (i) promoting the country-led CAADP process, (ii) working in partnership with CAADP country teams and stakeholders, (iii) building capacity of key stakeholders in the development and implementation of plans to achieve CAADP objectives, (iv) aligning donors' ongoing agricultural development efforts with the strategy and processes generated by CAADP, (v) co-financing investment programmes, and (vi) participating in monitoring and evaluation to review progress. The framework for the donor engagement with CAADP is based on the \"Joint Donor Principles for Agriculture and Rural Development Programmes\" 2 , which emphasize ownership, alignment, harmonization, managing for results, and mutual accountability. These principles integrate the commitments made in the \"Paris Declaration on Aid Effectiveness\" 3 and the \"Accra Agenda for Action\" 4 . They are also in line with commitments made in the \"L'Aquila statement\" 5 , which is based upon the principles of strategic co-ordination, support for country-owned processes, a comprehensive approach, use of effective multilateral mechanisms, and sustained commitment. The \"Guidelines for Donor Support to CAADP Process at a Country-Level\" provide details on how donors participate at each of the four stages of Compact development, namely, (i) engagement and partnership development, (ii) evidence-based planning, (iii) building alliances for investment, and (iv) program implementation, monitoring and evaluation and (v) peer review mechanism 6 . Table 3 summarizes the priority areas given in the framework under each pillar. Notably, some of the priority areas do not sound like real priority areas, especially those under Pillar IV. Others such as the promotion of disease free zones remain contentious due to implementation costs and the role of wild animals in livestock disease dynamics vis-à-vis the need to promote wildlife-based tourism in many African countries.In a nutshell, there are positive and negative implications for aligning national agricultural development plans with the CAADP. On the negative side though, although countries are free to develop their plans in their own way, the process is somewhat dictated by CAADP (and by extension, donors) right from the funding of the Compact development process to Compact signing and supervision of the CAADP implementation through the mutual accountability clause. While this approach ensures the coherence and consistency of policies, plans and institutions across the AU member states, it points to some \"loss of sovereignty\" as countries that do not align their development plans with the CAADP risk losing donor support. On the positive side, however, aligning the national plans with CAADP not only guarantees donor funding but also increases the efficiency of national policy formulation and implementation. This is entrenched by both the process of developing the CAADP Compact (which is based on the on the principle of institutionalized public participation) and the CAADP peer review mechanism. Both processes present a unique platform to interrogate and emasculate the bureaucracy that had hitherto dominated policy making and implementation amongst the AU member countries. As mentioned earlier, the national CAADP Compact is an outcome of the country roundtable process. At an appropriate stage in the country roundtable process, a special public roundtable meeting is organised where the CAADP Compact is endorsed and signed by representatives of government and country stakeholders (farmer organizations, private sector, civil society, and development partners). According to the \"Guide for CAADP Country Implementation\", the signing of the CAADP Compact is usually witnessed by representatives of AU/NEPAD and relevant RECs.The CAADP Compact demonstrates the commitment by government and its stakeholders to a shared vision and emerging strategies to collectively address the country's agricultural development agenda. Its endorsement obliges all parties to support and work towards increasing investment in the agriculture sector to ten percent of budgetary expenditure in order to achieve an average annual growth target of six percent in the agriculture sector pursuant with the Maputo Declaration. The CAADP Compact therefore provides the general framework for implementing the member country's agricultural development agenda as guided by the CAADP principles and pursuant with the CAADP pillars. The Compact, however, does not provide actual investment programmes but it contains sufficient details of evidence-based priority investment areas to allow specific financial commitment.Although the CAADP Compacts differ in details in reflection of the differing country contexts and development priorities, a generic Compact is typically a six page document with following key sections:This section highlights the origins of the CAADP. It points out that CAADP is an African owned agenda and a shared development framework aimed at accelerating growth and eliminating poverty and hunger among African countries through agriculture-led development. The section also explains how the CAADP framework will be implemented in a given country and identifies the country's investment priorities. Finally, the section highlights the CAADP value addition at the country level.This section explains the rationale for country CAADP Compacts as being (i) to set out the parameters for long term partnership in the agricultural sector, (ii) to specify key commitments of government and its stakeholders, and (iii) to clarify expectations with respect to agribusiness and farming communities in order to ensure successful implementation of agricultural sector development programs. The country CAADP Compact aims (i) to increase the effectiveness of programming and the execution of government efforts in the delivery of assistance to the agricultural sector, and (ii) to provide a solid framework under which public investment and development assistance can be scaled up to help meet the short and long term investment needs in the sector.This section highlights the long term vision of government for the general economy and particularly for the agricultural sector. Particular attention is given to the need to meet the country's food and nutrition security goals, to enhance agricultural productivity, employment and income generation, and to promote domestic and international trade.The main government agenda is embedded in agricultural transformation and modernization leading to an annual growth rate of the agricultural GDP of six percent, and agriculture's contribution to the annual growth target of GDP of seven percent. This growth rate is envisaged to reduce poverty and increase food and nutrition security.The section gives the purpose, principles and modalities of partnerships and highlights explicitly government's, donors', AU's, RECs', private sector's and civil society's commitments under the national agricultural sector development programmes.In this section, the institutional mechanism for the implementation of the country's agricultural sector development programmes is explained. The section has the following subsections: (i) coordination and oversight of the implementation process, (ii) funding mobilization and timeframe, (iii) implementation capacity, (iv) ongoing learning, information sharing, monitoring and evaluation, and (v) a post-Compact \"roadmap\" detailing what has to be done and related roles and responsibilities of the various in-country stakeholders and external players.This is the section in which the CAADP Compact is endorsed. By endorsing the Compact the representatives from government, development partners, AU, RECs, private sector, civil society and farmer organizations solemnly pledge to fulfil the commitments made in the Compact in line with the goals, objectives, principles and modalities set out in the national programmes and aid policy (e.g., the Paris Declaration of Aid Effectiveness and the Accra Agenda for Action).As noted earlier, the national CAADP Compact does not contain actual investment programmes. Such programmes are usually found in the post-Compact national agricultural investment plans. According to the \"Post Compact Review: Guidelines\" 1 , a national investment plan is a broad plan that emanates from the goals and targets stipulated in the CAADP Compact. It translates the sector challenges and opportunities into sector objectives and strategies and later details out specific programs that will achieve sector goals, objectives and targets. Such programs detail out key investment areas into concrete packages on how each of these will contribute to attainment of sector goals. Each program can be broadened into sub-programs and later activities are designed and costed. Ideally, the investment plan should be built on clear national/community priorities and expressed development needs. It provides detailed costing within the programs and subprograms with clearly defined financing gap(s) based on up todate financial and economic analyses. In other words, the investment plan indicates the levels of investment and timeframes, and forms the integral tool for identifying the levels of investment required to finance the agricultural sector, pursuant to the CAADP/AU-NEPAD principles and values. Pillar III: Enhance food security and improve disaster risk management -informs SO4: To achieve universal food security and protect vulnerable households from natural disasters.Pillar IV: Improve the agricultural research and extension system -informs SO1: To achieve a sustainable increase in agricultural productivity and productionThe PIF notes that the agricultural sector accounts for roughly 43 per cent of GDP, and 90 per cent of exports. Livestock production accounts for about 32 per cent of agricultural GDP and it also produces draught animal power that is critical for all farming systems. The document further notes that in all farming systems, livestock are the single most important household asset and that there is a strong correlation between lack of livestock ownership and poverty, particularly among woman-headed households.With regard to Pillar I on improving natural resources management and utilisation, the aim (as documented by the PIF) is to conserve and utilize Ethiopia's natural resources in a sustainable and productive manner. The role of livestock in this regard is seen in the negative as contributing to rangeland degradation, which threatens the livelihoods of pastoral communities in the lowlands. The PIF therefore calls for \"alternative forms of income generation to reduce grazing pressure, and better rangeland management including the use of exclusion areas, forage development and drought preparedness\" (paragraph 76). As such, there is no explicit mention of how livestock could positively contribute to environmental conservation, e.g., for example, through use of manure and, draft animal power and mixed crop-livestock farming. Although the PIF recognizes the challenges brought about to Ethiopian farmers and pastoralists by climate change, it just calls for the development of more robust and resilient farming systems that are able to adapt to a range of possible climate change outcomes as they unfold over the life of the PIF and beyond. The form that these \"robust and resilient farming systems\" will take is not specified and neither does the PIF propose any livestock-related investments in this regard.Pillar II on improvement of rural infrastructure, market access and trade capacities also does not explicitly mention the role of livestock in achieving the goals of this pillar. However, mention is made on the need to encourage private sector participation in commercial agricultural production [which one can assume also includes livestock], marketing, agro-processing and farm input supply. This commercialization is expected to (i) increase the amount of agricultural produce [which presumably includes livestock products] entering the marketing channels, (ii) increased diversification of smallholder production into higher value crop and livestock products, and (iii) increased supply of raw materials [which might include livestock products such as raw milk, meat, eggs, hides and skins] to the industrial sector. The main investment to be made in the next five years is the development of 3.3 ha of land for commercial agriculture [which could also include livestock production]. However, it is worth noting that Ethiopia currently lacks a comprehensive livestock development policy [see paragraph 37 of PIF] that would otherwise promote the commercialization of livestock. In addition, there is no formal institution that is responsible for the development of pastoral and agro-pastoral areas [see paragraph 51 of PIF], whose major economic activity revolves around livestock.Pillar III on enhancing food security and improving disaster risk management only mentions the need for the provision of safety nets to reduce the number of chronically food insecure households requiring food aid and other forms of assistance. The role of livestock in this regard is not mentioned. As such, there are no livestock-related investments mentioned.With regard to Pillar IV on improving agricultural research and extension system to increase agricultural productivity and production, again, no specific reference is made of livestock. The main objective of this pillar is to increase productivity and production as a prerequisite for food security and agricultural-led industrialisation. Productivity gains are expected to come from closing the gap between leading farmers [presumably including livestock keepers] and the majority, whose productivity performance is said to be far below potential. The following investments are proposed to increase production and productivity of Ethiopian agriculture [broadly defined to include livestock]: (i) up-scaling proven and appropriate agricultural technologies, (ii) revitalizing agricultural research and extension system, (iii) improving supply channels for farm inputs, and (iv) dissemination of simple agronomic packages including the use of improved seeds, fertilisers and fertility management, weed and pest control, and improved harvest and post-harvest management. However, the main focus will be on the high potential areas where the investment is likely to generate the highest returns. Given that most of the Ethiopian livestock herd is in the lowlands among the pastoral and agro-pastoral communities (see Sandord and Ashley, 2008), the proposed investments may not benefit the livestock sector in any significant way.Although the PIF does not adequately deal with livestock issues, the post-CAADP Compact roadmap 1 proposes the following activities for the livestock sector under Pillar IV: (i) improving the use water to produce high value export crops and livestock feeds to increase exports of animal products, (ii) strengthening the livestock sector within MoARD by establishing a livestock sector with a dedicated and strong team, (iii) supporting breed improvement, including artificial insemination services, (iv) developing a dairy sub-sector development policy, (v) strengthening support to animal health and nutrition issues with a view to promoting private sector participation through a review of the livestock breeding and animal health policies and support to their implementation, (vi) supporting pastoralists by better linking them to market opportunities, (vii) establishing community-based water and forage reserves in drought-prone areas, and (viii) clarifying the responsibility of developing pastoral areas. The data that informed these priority investments are not expressly provided.In summary, the PIF does not adequately capture livestock issues. Even where livestock are mentioned, no details are given and the document focuses mainly on production and productivity. The post-CAADP roadmap offers more information in this regard, though the information is also not well elaborated.The PIF presents budget estimates for the period 2010 to 2020 broken down into six programmes (Table 4). The total budget outlay is ETB 195.2 billion (or US$ 11.2 billion) 2 . While some aspects of livestock are definitely captured in the six programmes, it is difficult to know (from the way the budget is presented) how much money is allocated to livestock generally and particularly to poor livestock keepers. It is worth noting that disaster risk management and food security takes the largest proportion of the budget at 66.1 percent. This reflects the commitment of the Ethiopian government to address food security problems that have plagued the country for a long time. Most of those highly vulnerable to food insecurity in the Africa Horn are almost exclusively poor livestock keepers. It is therefore expected that a large proportion of the budget outlay will go to poor livestock keepers. The overall objective of the ASDS is to achieve an annual agricultural sector growth rate of seven percent over the next five years in order to contribute to the 10 percent economic growth target envisaged under the economic pillar of the Vision 2030. The strategic mission for the sector as stated in the ASDS is \"[a]n innovative, commercially oriented and modern agriculture\" (p. viii). Developed through a consultative process involving sector ministries, development partners, private sector and key stakeholders, the ASDS has six thematic areas, five of which fit into the CAADP four-pillar framework and one that is cross-cutting (Table 5). The distribution of the thematic areas across the two strategic foci may have been occasioned by the need to cater for the large number of agricultural sector ministries 1 in Kenya. Although the approach ensures that each ministry is catered for in the ASDS, it makes it hard to follow, link or even to identify the CAADP four-pillar framework. Thus, the ASDS does not seem to have adequately mainstreamed the CAADP framework. The implication of this failure is that it is difficult to benchmark the progress of CAADP implementation. Additionally, the haphazard organization of the ASDS does not easily lend itself to peer-review particularly considering that the document fails to expressly institutionalize the CAADP four-pillar framework or a reasonable but practical form of it. The result is a \"business as usual\" outcome, which certainly conflicts with the stated mission of transforming \"Kenya's agriculture into a profitable, commerciallyoriented and internationally and regionally competitive economic activity...\" (p. xii). Such a mission requires both critical and innovative thinking \"outside the box\" in order to develop strategies that will urgently transform Kenya's agriculture from subsistence oriented to a competitive agri-business.The ASDS devotes sections 2.4.2 (pages 14-15), 3.5.1 (page 22), and 5.2 (pages 35-42) to livestock. Section 2.4.2 gives the characteristics of livestock production in Kenya noting that the livestock sector contributes to the food and cash needs of farmers, provides employment to about 10 million people and contributes up to seven percent to the GDP and 17 percent to the agricultural GDP. The section also presents livestock statistics shown in Source: GoK (2010a) Section 3.5.1 on page 22 focuses on the features of agricultural services with respect to livestock pests and disease control. It notes that livestock diseases and pests are still a major constraint to livestock production and export trade in Kenya. Section 5.2 identifies the key challenges and constraints in the livestock sector and proposes the following interventions: (i) review of policy, legal and institutional frameworks, (ii) improving livestock productivity, (iii) integrating development and management of rangelands, (iv) improving animal health and quality assurance services, (v) improving access to markets, (vi) establishing a centrally coordinated livestock database, (vii) implementing the flagship disease-free zones project. Table 8 shows how these interventions relate to the four CAADP pillars. 7) are not perfectly aligned to the CAADP four-pillar framework, they address the main constraints to livestock production, marketing and trade in Kenya. However, these proposals do not explicitly address pastoral livelihoods particularly in regard to poor livestock keepers and women. Additionally, the interventions are based on the traditional pre-occupation of policy makers, namely, to improve livestock production/productivity and marketing, which in most cases benefits the better-off livestock keepers. Poverty reducing growth issues particularly those dealing with resource-poor smallholder livestock keepers who might be at the fringes of deprivation due to either internal or external shocks (e.g., capacitating pastoralists who have fallen out of pastoralism due to one reason or the other, and understanding their operational objectives and livelihood systems) are not fully articulated in the document. The implication of this is that the ASDS is likely to entrench rural poverty through the marginalization of resource-poor smallholder livestock keepers. The data that informed these investments are not provided in the document.Kenya's investment plan to operationalize the ASDS (and therefore the CAADP Compact) is entitled the \"Agricultural Sector Development Strategy Medium Term Investment Plan (MTIP) (2010-2015)\". It is divided into six investment pillars in line with the ASDS as shown in Table 8.The total budget is KShs 247 billion (or US$ 2.9 billion) 1 spread over five years. The investment outlay for the livestock sector is embedded in the total budget of the six investment pillars. The MTIP budget is further disaggregated according to the main agro-ecological zones as shown in Table 9. The ASALs are set to receive KShs 143 billion over a 5-year period, which accounts for 58 percent of the total MTIP budget. Most of this money will necessarily go to livestock and poor livestock keepers given that livestock keeping is the major economic activity in the ASALs. The allocation of 58 percent of the MTIP budget to ASALs demonstrates Kenya's commitment to the development of these areas, which have been marginalized by successive governments since the colonial period. The vision of the DSIP is to have a competitive, profitable and sustainable agricultural sector. The DSIP therefore provides a roadmap to guide government, the private sector, farmer organisations, other civil society stakeholders and development partners to make public interventions that will help meet the key objectives of growth, food security and poverty reduction in the agricultural sector. The overall objective of the DSIP is to increase rural incomes and livelihoods through improved household food and nutrition security. The specific objectives are to (i) sustainably enhance factor productivity (land, labour, capital) in crops, livestock, and fisheries, (ii) develop and sustain markets for primary and secondary agricultural products within Uganda, the region and beyond, (iii) develop favourable legal, policy and institutional frameworks that facilitate private sector expansion and increased profitability along the entire value chain, and (iv) engender the functioning of Ministry of Agriculture, Animal Industry and Fisheries (MAAIF) and Agencies as modern, client-oriented organisations within an innovative, accountable and supportive environment. The DSIP is packaged into four programmes in pursuant with the four specific objectives. The programmes are however not explicitly cast into the four CAADP pillars. An attempt to do is shown in Table 10. It is worth noting that programmes 3 and 4 do not fall within the four CAADP pillars but can be considered to be cross-cutting in nature as they propose to respectively improve the enabling environment for the agricultural sector and develop the institutions. Programme 4 is strictly not a \"programme\" in the actual sense of the word; it merely involves a reorganization of the MAAIF and its agents. , 2007) households that keep livestock tend to be generally less poor than those that do not. The section goes on to give livestock and production statistics and associated constraints. The document indicates that pastoralists and communal grazers hold about 95 percent of all cattle in Uganda and produce 85 percent of all the milk in the country, most of it for own consumption.There is no explicit indication in the DSIP of how livestock could contribute to the four CAADP pillars. This could be due to the failure of DSIP to organize the programmes according to the CAADP pillars. With respect to the budget given on pages 93-95, the DSIP lumps all the subsectors of agriculture together. For example, although the DSIP notes that there is an urgent need to develop a pastoral development policy in order to stabilize and increase production and productivity of pastoral activities, what would have been the vote for pastoral development in Northern Uganda (where pastoralism is widely practiced) is indicated in the budget as \"Agriculture in Northern Uganda\". Looking at the entire budget it is difficult to know how much money is allocated to crops, livestock, forestry or fisheries. This makes it difficult to track down both allocation and expenditure. The implication of this is that the livestock sector, which has traditionally been underfunded in many countries, may continue to be starved of funding in favour of the other subsectors of agriculture.Table 11 shows the proposed livestock-related investments extracted from the four DSIP programmes. Whereas all the proposed interventions deal will livestock, DSIP Programme I specifically aims to develop agricultural livelihoods in Northern Uganda through, among other things, capacity building of farmers, developing infrastructure and developing a community-based animal health programme. Northern Uganda is mainly inhabited by pastoralist communities including the Karimojong, the Langi and the Bahima. The emphasis on developing Northern Uganda is therefore a step in the right direction as it addresses the historical marginalization of these areas by various governments since Uganda's independence in 1962.However, the current focus of the DSIP on maximising livestock production alone needs to be replaced by one that recognises the multiple contributions that livestock make to livelihoods. This will require a greater understanding of who are the clients of livestock development efforts/services and what their priorities are. Lack of such understanding is the reason why there has been only limited uptake of 'improved' livestock technologies, which have largely been inappropriate to meeting the needs of livestock keepers in general and pastoralists, in particular. It is hoped that the proposed pastoral development policy will address these issues and tone down the traditional pre-occupation by policy makers of aiming to maximize livestock production to increase the marketed surplus.With regard to the development of water for livestock proposed in the DSIP, improving water sources for livestock is critical particularly in the arid part of Northern Uganda. However, experience with public investment in valley dams shows that both project implementation and use of the dams can be problematic if communities are not actively involved in designing, as well as managing, the projects. Inappropriately sited valley dams can cause social problems and even conflicts and may not meet the needs of pastoralists who need to migrate seasonally to find grazing lands. The investments presented in Table 11 have the potential to support smallholder livestock development particularly in regard to disease control, advisory, water provision, marketing, value addition and legal and policy review.The data that informed these investments are provided in the bibliography section in the DSIP. A sample of these references is given below:1. Benin, S., J. Uganda's DSIP is financed through the Medium Term Expenditure Framework (MTEF). The MTEF is summarized in page 95 of the DSIP. It is organized into four sub-programmes to correspond to the four DSIP programmes as shown in Table 12. The total budget is UShs 2,089.3 billion (or US$ 0.9 billion) 1 . Like in the case of Kenya, the budget for the livestock sector is embedded within the sub-programmes. The budget outlays, for example, for water and infrastructure development, value addition, agricultural statistics and pest and disease control partly affect the performance of the livestock sector. The only provision which is purely livestock-related is \"Agriculture in Northern Uganda\", which is allocated 3.2 percent of the budget. However, given the way the budget is presented, it is difficult to know the total amount of money allocated to the livestock sector generally and particularly to poor livestock keepers. PASDEP has recently been replaced by the ten-year CAADP-compliant policy dubbed the \"Agricultural Sector Policy and Investment Framework\" (PIF) (2010)(2011)(2012)(2013)(2014)(2015)(2016)(2017)(2018)(2019)(2020).Following the failure of the World Bank and International Monetary Fund (IMF)-led structural adjustment policies (SAPs) of the 1990s to spur meaningful private sector-led economic growth and development in low income countries, the Bretton Woods institutions came up with the PRSPs in 2000. As the name suggests, the PRSPs aimed to redress the problem of poverty that had spiraled out of control and the worsening macro-economic environment in most low income countries at the turn of the millennium. The low income countries were required (by the World Bank, IMF and bilateral donors) to produce a PRSP as a condition for either debt relief through the Heavily Indebted Poor Countries (HIPC) initiative or accessing monetary aid. The PRSPs were meant to help aid recipient countries meet the then newly crafted Millennium Development Goals (MDGs) through a country-driven, result-oriented, comprehensive and participatory development agenda.Ethiopia developed its PRSP I in August 2002 and termed it the SDPRP. The overarching objective of the SDRP was to reduce poverty by enhancing rapid economic growth while at the same time maintaining macroeconomic stability. In this regard, the SDPRP was anchored within four main pillars, (i) agriculture development-led industrialization (ADLI), (ii) justice system and civil service reform, (iii) decentralization and empowerment, and (iv) capacity building in public and private sectors. The ADLI [the main pre-occupation of this paper] was crafted as a long-term strategy to achieve faster growth and economic development by making use of labor-intensive but land augmenting technologies to improve food supply to enhance food security. During the first stage of ADLI, agriculture was expected to play a leading role in the growth of the economy, leading to industrial development in the longer term through strengthened production and consumption linkages. In order to achieve this, agriculture had to be made internationally competitive and commercialized through investment in agricultural research, credit provision, water management, training, and the development of agricultural input and output markets, cooperatives and the pastoral economy. The priority action areas in agriculture and rural development pursuant with the SDPRP are shown Box 5. The enabling non-agricultural sectors include education, health, water supply, road and transport services and small and medium industries development.A casual look at Box 5 shows that the SDPRP attempted to address livestock issues by proposing the development of forages, improved livestock breeds, provision of veterinary services and improving livestock marketing. Page 58 of the SDPRP proposes to develop the pastoral areas.Noting that the life of the people in these regions is based on livestock keeping characterized by livestock mobility, the SDPRP proposed to integrate the supply of drinking water and that of pasture so as to accelerate and improve animal resources in these regions. In addition, it proposed the development of institutions to administer pasture lands among pastoral communities, without violating long standing indigenous practices. On the other hand, on Page 72 the SDPRP proposed to settle pastoralists in order to enable the provision of the necessary infrastructure for sustained development arguing that selective settlement programs are the only viable options in the long run. The following strategies were envisaged in the SDPRP to achieve pastoral development:1. Design and disseminate a menu of agricultural extension packages that take into account agro-ecological diversity, opportunities for specialization, and likely market demand Although the SDPRP addresses above-mentioned livestock and pastoral issues, it does not seem to appreciate the multiple livelihood services that are derived from livestock, e.g., generation of cash, savings and insurance, as a source of animal proteins, manure and draft animal power (see Pica-Ciamarra et al., 2011). As such, the document does not propose any strategies to promote/amplify these livelihood services. This state of affairs might have arisen from the tendency of policy makers promoting the maximization of livestock production to increase marketed surplus without focusing on the livelihood options and resource endowment of rural livestock keepers.Although the SDPRP does not attempt to group the action areas into thematic pillars, the priority areas closely compare with the provisions of CAADP. For example, action areas 1-4 correspond with CAADP pillar IV, 5-7 & 10, to CAADP pillar II, while 8, 9 & 11 correspond to CAADP pillar I.The overall objective of the SDPRP is to reduce poverty and increase food security (CAADP pillar III).Ethiopia's PRSP II or the PASDEP (2005-2010) succeeded the SDPRP and was published in September 2006. The PASDEP aimed to build on the success of the SDPRP, namely a 6.4 percent economic growth, an increase of one percent of GDP on pro-poor spending, significant investment in infrastructure (particularly roads), and improved human development (e.g., the gross enrolment rate rose from 62 to 80 percent over the SDPRP period). Thus, the PASDEP built on the development strategies pursued under the SDPRP but laid a greater emphasis on commercialization of agriculture and enhancing private sector development, industry, urban development and a scaling-up of efforts to achieve the MDGs. However, the goal of poverty reduction still remained a major focus. The PASDEP was anchored within eight pillars: The growth acceleration pillar was to be driven by two main thrusts, namely, (i) commercialization of agriculture, and (ii) private sector development. The commercialization of agriculture was to be achieved through the intensification of marketable farm products -both for domestic and export markets, and by both small and large farmers. The strategy would include the shift to higher-valued crops, promoting niche high-value export crops, a focus on selected high-potential areas, facilitating the commercialization o f agriculture, supporting the development o f large-scale commercial agriculture, and better integrating farmers with marketsboth locally and internationally. To achieve this, the following instruments were proposed in the PASDEP: (e) Supporting small-scale irrigation and area irrigation through multi-purpose dams (f) Measures to improve land tenure security, and to make land available where feasible for large-scale commercial farming (g) Reforms to improve the availability of fertilizer and seeds (h) Better-functioning agricultural markets for both inputs and outputs, and institutions, including improved value chains, information flows, quality and standards support, and cooperatives that strengthen the position o f farmers in the market.Under the PASDEP, the pastoral areas were to receive special consideration. This would involve designing customized programs such as informal community-based schools, mobile outreach health services, improved veterinary services, livestock breed improvement, marketing, early-warning systems, construction of water points, and development of infrastructure (such as roads, communications, and small-scale irrigation).A closer look at these instruments shows that they do not differ significantly from the action areas proposed by the SDPRP (see Box 5 and the text thereof).The strategy for accelerating private sector development [the only major departure with the SDPRP] would follow five main elements: Although the PASDEP wholly integrates the provisions of the four CAADP pillars (albeit in a scattered manner), its provisions are too broad and do not take into account the multiple livelihood services derived from livestock. Its emphasis on commercialization of agriculture, private sector, industry and urban development does not take into account rural livestock-based livelihoods. It is also heavily lopsided in favour of promoting crop production compared to livestock/pastoral production. Experience shows that high transaction costs in pastoral areas associated with high poverty incidence, aridity, social insecurity, and poor communications infrastructure inhibit private sector participation in service provision in those areas (e.g., see Irungu et al., 2006;Catley et al., 2004).It retains the theme of agricultural development-led industrialization (ADLI) mainly focused on increasing the productivity of smallholder agriculture with farmers expected to graduate from purely subsistence farming to semi-subsistence/semi-commercial status.In this regard, sustainable natural resource management is critical. The role of social safety nets is emphasized to deal with disaster risk management and food insecurity. In general, the PIF is weak with regard to livestock/pastoral issues and particularly with regard to recognition of multiple livestock services.The three policy documents reviewed (SDPRP, PASDEP and PIF) sequentially add value to each other in terms of content and articulation of issues. The theme of agricultural development-led industrialization (ADLI) runs through the three documents but with a shift from emphasis on purely poverty reduction (in the SDPRP), to commercialization of agriculture and private sector development (in PASDEP) to Ethiopia aiming to be a middle income country by 2020. Although the agricultural-sector issues in the first two documents are scattered, they are nonetheless exhaustively analyzed and adequately presented. Of course, more editing would remove the unending repetition to make the documents more focused and concise. The PIF amalgamates most of these issues in the first two documents into its four cardinal pillars that are then aligned to the CAADP pillars. However, the PIF is rather weak as it fails to adequately address livestock and pastoral development issues compared to the PASDEP. All the documents completely fail to recognize the multiple livestock-based livelihood services. As noted earlier, this state of affairs may have arisen from the failure of policy makers to understand who the clients of livestock development efforts/services are and their priorities and hence they promote the maximization of livestock production/productivity to increase marketed surplus.Four documents were reviewed in this regard, (i) the Interim PRSP, (ii) the Strategy for Revitalizing Agriculture (SRA), (iii) the National Livestock Policy, and (iv) the ASDS.The document decried the high incidence of poverty in Kenya that affected about half the population in 2000. This was mainly caused by the contraction of the economy in the 1990s principally as a result of the failure of SAPs. The IPRSP had five policy objectives, to (i) facilitate sustained and rapid economic growth, (ii) improve governance and security, (iii) increase the ability of the poor to raise their incomes, (iv) improve the quality of life of the poor, and (v) improve equity and participation. Growth of agriculture was seen as an instrument for poverty reduction. Towards this end, a 4-6 percent annual growth of the agricultural sector was envisaged. To achieve this, the following actions were to be undertaken: The role of government was seen to be facilitative, only providing pure public goods (roads, research, security, etc) and setting up the regulatory framework (policies and legislation). There was no recognition of the broader livestock-based livelihood services.The SRA operationalized the Economic Recovery Strategy for Wealth and Employment Creation (ERS) promulgated by the Ministry of Planning and National Development in 2003. The SRA emphasized the revitalization of agriculture as the engine of economic growth. The vision was to transform Kenya's agricultural sector into a profitable economic activity capable of attracting private investment and providing gainful employment for the people.In order to achieve this vision, the following actions were to be undertaken:(i) Reform of the legal and regulatory framework governing agricultural operations in order to make it fair and just for all farmers, processors, and others involved in agro-related activities.(ii) Promotion of research and technology development.(iii) Reform of the extension service system to create a more effective linkage between research, extension and the farmers as the ultimate beneficiaries.(iv) Establishment and development of a market-based agricultural credit and inputs system.(v) Commercialization of agriculture through domestic processing of agricultural produce in order to provide increased opportunities for value-adding, employment creation and foreign exchange earnings.(vi) Creation of an environment to promote private sector-led agricultural development.(vii) Promoting closer regional cooperation in the management and regulation of transboundary activities that foster the growth of the sector and improve the well-being of Kenyans.(viii) Reducing the prevalence of Human Immunodeficiency Virus/Acquired Immune-Deficiency (HIV/AIDS), in collaboration with other organizations, especially by improving nutrition and creating awareness of the disease.In the livestock sector the following actions were to be undertaken: With regard to the development of ASALs, the following actions were to be undertaken: In order to promote domestic livestock trade, the following actions were to be undertaken:(i) Provide holding grounds, watering points, stock-routes, and livestock markets (ii) Encourage the private sector to invest in cold storage facilities (iii) Local Authorities to develop rural market centres and storage facilities for hire (iv) Develop a rural market information system.It seems, from above, that the SRA amplified the provisions of the IPRSP. And like the IPRSP, it did not appreciate the broader livelihood services derived from livestock.The livestock policy as promulgated as Sessional Paper Number 2 of 2008. It addresses the challenges in the livestock sub-sector in respect of livestock breeding, nutrition and feeding, disease control, value addition and marketing, and research and extension. Although necessary in its own right to guide the development of the livestock, the livestock policy has significant overlaps with the SRA. For example, it talks of animal genetic conservation, disease control, research and extension, livestock marketing and valuation, animal nutrition, and cross-cutting issues (environment, infrastructure, gender, land, water, etc). The policy has six specific objectives; to (i) achieve appropriate livestock management systems for sustainable development of the livestock industry (ii) improve and conserve available animal genetic resources effectively (iii) achieve effective control of animal diseases and pests in line with the relevant international codes and standards (iv) focus research efforts in the livestock sub-sector on resolving current and emerging problems (v) ensure quality standards and quality assurance at all levels of production and marketing chain for increased competitiveness of the livestock industry (vi) address various cross-cutting issues that impact on the livestock sub-sector; among such issues are land, water, environment, infrastructure, insecurity, livestock-wildlife interactions, HIV/AIDS and other human diseases, gender and capacity building.Although the document pledges to continue supporting pastoralism and agro-pastoralism as viable production systems, it does not appreciate the broader livelihood services derived from livestock. However, it mentions the need to stabilize and sustain pastoral livelihoods by initiating drought preparedness and recovery programmes, promoting sound range management practices, effective disease control and establishing appropriate livestock marketing infrastructure in the ASALs. It also pledges to support the establishment of the Kenya Livestock Research Institute to address the research needs of livestock and pastoral areas.As mentioned earlier, the ASDS arose from the revision of the SRA. The ASDS introduced the SLM or CAADP Pillar I and a sector-wide approach to planning and is more elaborate than the SRA on gender issues and private sector and donor participation in agriculture. Although the ASDS proposes to improve the productivity of the ASALs, e.g., through range rehabilitation, soil conservation, water harvesting, disease control, legal and institutional reform, etc, it does not mention the multiple livelihood services derived from livestock. It asserts that because pastoral systems are changing with increasing sedentarization due to changing lifestyles and land tenure, and adoption of crop production in marginal lands, agricultural growth in these areas \"must be led by intensification and substitution towards more high-value products, and expansion of the cultivated area through irrigation\" (p. 9). This assertion somewhat dilutes the National Livestock Policy's recognition of pastoralism as a viable production system.The IPRSP is a bit general but covers all the sectors of the economy. Although the SRA borrows some aspects of the IPRSP, it has amplified most of the provisions, carefully identifying the agricultural sector targets and the necessary instruments to achieve them. The National Livestock Policy, on the other hand, assembles together all the livestock-specific issues mainly from the SRA. The ASDS sort of replicates the provisions of the SRA although it introduces the SLM pillar, gender issues, private sector participation and a sector-wide planning approach to accommodate the ten agricultural sector ministries. It therefore does not seem to have added much value to the SRA apart from introducing the SLM pillar.Although each of these documents proposes specific strategies for improving livestock production/productivity, none takes into account the broader livelihood services provided by livestock. This could perhaps be due to the fact that the models used to analyze the livestock issues addressed in these documents were not based on livelihood approaches 1 but rather on economistic and mechanistic models that lack political, cultural and social perspectives other than market relations. For instance, Kenya's ASDS is based on the Threshold 21 model 2 , which does not focus on livelihoods.Four documents were reviewed. These are (i) the PRSP I (PEAP 2000), (ii) PRSP II (PEAP 2004(PEAP -2008) ) (iii) the Plan for Modernization of Agriculture (PMA), (iv) the DSIP and (v) the National Development Plan.Uganda's first PRSP was published in 2000 as a revision of the Poverty Eradication Action Plan (PEAP), which was first promulgated in 1997. The PEAP had four major pillars, (i) creating a framework for economic growth and transformation, (ii) ensuring good governance and security, (iii) directly increasing the ability of the poor to raise their incomes, and (iv) directly increasing the quality of life of the poor. The overall national goals espoused in the PRSP are (i) reducing absolute income poverty, (ii) raising educational achievement of Ugandans, (iii) improving the health of the people, and (iv) giving voice to poor communities. No much detail is given in the PRSP on how these goals were to be addressed.PEAP 2000 was eventually revised into the second PRSP dubbed PEAP (2004PEAP ( -2008) ) 3 . The latter plan aimed at contributing towards transforming Uganda into a middle-income country, involving industrialization based on private investment in competitive enterprises. Agriculture was envisaged to play a leading role in the industrialization process through value added agroprocessing. For this to happen, the short-run strategy was to strengthen both agriculture and manufacturing.In agriculture, interventions were to include infrastructure development (especially rural roads), provision of information and market development. For manufacturing, the strategy was also to strengthen infrastructure (especially electric power), improve governance (since corruption had been identified as a constraint for manufacturing), boost the education of the workforce, improve the financial system, and establish a regulatory regime that ensures a level playing field.In order to increase production, competitiveness and incomes, the key priorities in the PEAP (2004)(2005)(2006)(2007)(2008) were:(i) Modernization of agriculture 1 A livelihoods approach focuses on a household's capabilities and assets (both material and social) and activities required for a means of living (Carney, 1994).This is an integrated development model developed by the Millennium Institute and promoted by organizations such as the World Bank and the UNDP to help countries develop their medium to long term plans. It has been used to develop PRSPs in many developing countries. It is based on the \"economistic\" Cobb-Douglas production function.(ii) Preservation of the natural resource base, particularly soil and forests (iii) Infrastructure improvement including roads, electricity and railways (iv) Enhancing private sector skills and business development.The PEAP (2004PEAP ( -2008) ) provides broad economy-wide strategies which are synthesized into sector development plans. For the agricultural sector, the Plan for the Modernization of Agriculture (PMA) was designed.The PMA is a synthesis of the agricultural development interventions espoused in the PEAP (2004)(2005)(2006)(2007)(2008). The Plan focuses on agricultural modernization and commercialization by a multi-sectoral approach to address the constraints facing agriculture-based livelihoods. The overall objective of the PMA is to eradicate poverty through agricultural transformation. The specific objectives are to:(i)Increase incomes and improve the quality of life of poor subsistence farmers through increased productivity and increased share of marketed production (ii) Improve household food security through the market rather than emphasizing self sufficiency (iii) Provide gainful employment through the secondary benefits of PMA implementation such as agro-processing factories and services (iv) Promote sustainable use and management of natural resources by developing a land use and management policy and promotion of environmentally friendly technologies.These objectives are achieved through the following strategies: Although the document is elaborate in its articulation of agricultural development issues and strategies to revamp agriculture, the PMA does not have specific provisions for livestock especially those in the pastoral and agro-pastoral areas. In addition, it treats all agro-ecological zones as if they are similar in terms of resource endowment and exposure to constraints. Although it aims to address the constraints facing agriculture-based livelihoods, the PMA's preoccupation with agricultural modernization and commercialization is a sure sign of marginalizing poor livestock keepers particularly those who are still subsistent-oriented and rural-based such as the pastoralists. However, the PMA pledges to promote the participation of both men and women at all levels including formulation of research agenda and mainstreaming gender (including women and youth) and HIV/AIDS in all its activities.The DSIP borrows heavily from the PMA, both in content and also in its neglect of livestock issues. For example, the overall objective of the DSIP is to \"increase rural incomes and livelihoods through improved household food and nutrition security\" (ROU, 2010a), while one of the specific objectives of the PMA is to \"increase incomes and improve the quality of life of poor subsistence farmers through increased productivity and increased share of marketed production\" (ROU, 2004). The only difference between the two documents is that the DSIP has attempted to align its four cardinal objectives into the CAADP pillars. Both documents do not address issues of pastoral development and dwell too much on promoting productivity to increase the marketed surplus.The National Development Plan 2010/11-2014/15 (NDP) was promulgated in April 2010 with a vision to transform the Ugandan society from a peasant to a modern and prosperous country within the next 30 years. Its theme is \"growth, employment and socio-economic transformation for prosperity\" (ROU, 2010b). Each element of this theme provides a strategic thrust of the NDP with an over-arching policy goal of tying economic growth to poverty eradication. The NDP has eight strategic objectives: The NDP is guided by the following principles: (i) ownership, (ii) political will, (iii) good governance, (iv) resource availability, (v) rebalanced development, (vi) behavior change, (vii) linkage with the national planning processes, (viii) sustainable and equitable development, and (ix) effective implementation, monitoring and evaluation mechanism.The NDP proposes to use a quasi-market approach to realize its objectives. This approach emphasizes the role of the private sector as the engine of growth and development while government retains a facilitative and regulatory role to foster public-private partnerships. To achieve this, both the public and private sectors will need to adopt a corporate or business culture. With regard to different economic sectors, the NDP recognizes the primary role of agriculture in economic development and poverty reduction. It however proposes an annual growth target of agriculture of 5.6 percent, which is four points below the six percent envisaged by CAADP. Although the document recognizes this fact on page 78, it does not resolve it. Pages 79 and 80 deal with the Ugandan livestock sector giving statistics on herd sizes, production, trade and the attendant constrains across the value chain. When it comes to identifying the constraints in agriculture, the NDP lumps both crop and livestock constraints together and gives an overall picture rather than a sector-by-sector discrimination. Consequently, the unique constraints of the livestock sector and its players (farmers, traders, women, etc) are obscured.Table 13 gives the objectives, strategies and interventions in agriculture proposed in the NDP focusing on livestock and their correspondence to the CAADP four-pillar framework. There is no much value added in the apparently CAADP-compliant DSIP in relation to its predecessor, the PMA. As shown in Table 13, the objectives of the NDP are borrowed directly from the DSIP, which itself borrowed from the PMA. One wonders the need to develop multiple documents when their predecessors have not been implemented. As an example, an activity as mundane as relocating the MAAIF headquarters to Kampala proposed in the DSIP had not been implemented by the time of developing the NDP. Probably because the DSIP and the NDP have been derived from the PMA, there is no difference between them; in other words, there is no value added by subsequent documents. Additionally, all the three documents ignore livestock and pastoral development issues. Even strategy number 8 under objective 1 in the NDP on improving agricultural livelihoods in Northern Uganda (see Table 13) does not explicitly mention livestock and pastoral development issue; yet, Northern Uganda is principally pastoral and its livelihoods predominantly based on livestock production. The three documents mainly concentrate on increasing agricultural productivity generally to increase the marketed surplus particularly in crop agriculture. Like in the case of Kenya, these documents do not appreciate the broader livelihood services derived from livestock. This could be attributed to the fact that they are based on economic models rather than on a livelihood analytical framework.It is worth noting that in all the three countries, the poverty reduction strategic papers have not lost their poverty reduction focus in all their revisions. However, the lessons learnt from their implementation have not informed the subsequent revised documents.This Chapter is based on interviews carried out by the author with key informants in Ethiopia, Kenya and Uganda. These informants included the CAADP national focal points in those countries; government officers, representatives of international organizations and consultants who had participated in the CAADP progress.The CAADP process was launched in September 2008 and signed a year later in August 2009. The funding of the entire process was derived from a trust fund from donors kept with the Common Market for East and Southern Africa (COMESA). However, the actual cost of the entire process could not be established.The Ethiopia CAADP country team comprised of eight people who were all male: (i) the CAADP national focal point from the MoARD 1 , (ii) the Rural Economic Development & Food Security (RED&FS) secretariat coordinator, (iii) the CAADP Technical Assistant employed by the UNDP, and (iv) five consultants (four national and one international). The national consultants consisted of an agricultural economist, an agronomist, an expert on livestock and pastoral issues, and an expert on natural resources. The team was not based on gender but on technical merit. The team mix represented the four CAADP pillars. IFPRI provided the technical backstopping by undertaking the empirical study on investment, agricultural and income growth using a CGE model the results of which that informed the CAADP Compact. The CAADP team operated under a Steering Committee made up of the RED&FS Sector Working Group (SWG) consisting of agricultural sector ministries and 22 donors. The RED & FS SWG was divided into three thematic areas way before CAADP came to the picture. These included (i) Sustainable Land Management pillar, (ii) Agricultural Growth pillar, and (iii) Disaster Risk Management and Food Security pillar. The fourth pillar on Agricultural Research and Technology Dissemination & Adoption was introduced when the CAADP process started.The CAAD Steering Committee met twice a year. However, the CAADP country team worked nonstop throughout the one year period. According to the key informants, little consultation was done with stakeholders at the grass-roots (poor livestock keepers and women livestock keepers).The main consultation was done during a single regional consultation workshop organized by the CAADP Ethiopia Focal Point Office. Participants were invited from all nine Regional State Governments of Ethiopia. From each region, four bureau heads or senior staff from the four pillar areas were invited. In addition, the directors of the various Directorates of the MoARD were invited. The participants were invited to be informed about the work done and at the same time to discuss the draft documents prepared by the national consultants.The stocktaking exercise was undertaken by the consultants in three stages. The first stage was to take stock of existing policies, strategies and programmes following the four CAADP-pillar framework. Once this was completed, the second stage was undertaken by taking the first stage findings to the various Federal ministries, and other stakeholders including donor groups, the RED&FS, NGOs and civil society organizations (CSOs). The findings were discussed to identify policy gaps. On the basis of this, the national consultants prepared a document for the Regional Consultation Workshop, which was the third stage of the stocktaking exercise.The stocktaking exercise reviewed documents from Federal and Regional States governments. This included both published and unpublished study reports, progress reports of various Ministries and Bureaus. The main documents that were reviewed during the stocktaking exercise included:The With regard to the CAADP principles of inclusiveness and participation, the CAADP process in Ethiopia seems to be deficient in a number of areas. First, the process seems to have been driven by consultants. While the consultants were recruited locally and had the necessary qualifications and political goodwill, there is always the danger of alienating the bureaucrats in the policy making process leading to outcomes that are unacceptable to them. The bureaucrats may also feel \"used\" to help meet others' agenda without being recognized for personal effort leading to ambivalence about the outcome. Second, more important, the process did not involve the participation of grass-root stakeholders (poor livestock keepers and women) in identification of issues, problems and solutions thereto. In fact, one informant intimated that consulting the grassroots stakeholders would have consumed a lot of time and increased the cost exponentially particularly considering the varied spatial distribution of Ethiopia's poor livestock keepers. Thus, to save time and cost the consultants relied on Regional State government operatives to validate the draft already prepared by the consultants. One of the key principles of CAADP is inclusion and participation by all stakeholders in the CAADP process. No wonder then that many of the issues affecting the grass-roots stakeholders are not captured in the CAADP Compact. Thirdly, many government officers particularly those dealing with livestock did not know about the CAADP Compact, its contents and process. Only those who were directly involved, particularly those from RED&FS SWG, had some information. This gives the impression that the team that led the CAADP process in Ethiopia was somewhat exclusive; it did not share information with the rest of the stakeholders. One wonders then how the CAADP is going to be implemented and sustained. The failure to share information is not unique to Ethiopia; however, it is indicative of the failure of NEPAD/COMESA to raise the awareness of stakeholders about the CAADP process in the AU member countries. Finally, the move by the Government of Ethiopia to promulgate the Growth and Transformation Plan (2010)(2011)(2012)(2013)(2014)(2015) in November 2010 when the CAADP-compliant PIF has not yet been implemented leaves room for speculation as to how much it is committed to the CAADP.The Two rounds of stocktaking were undertaken by hired consultants. The first round conducted by two consultants focused only crop issues. It was later realized that livestock issues had been neglected in the first stocktaking exercise thereby necessitating the recruitment of another team of two consultants to audit the livestock sector.According to one of the key informants, the consultation process was restricted to the District level. The District Agricultural and Livestock Officers were used to identify 2-3 participants from each District who attended the consultation meetings. The identified stakeholders were those who were involved in farming and who could adequately articulate the issues. It seems there was little consultation of poor livestock keepers and women.According to Kibaara et al. (2008), one of the main turning points of the CAADP process in Kenya was that it was viewed by ASCU and the Ministry of Agriculture in particular, as a parallel programme to the SRA. ASCU argued that it had five TWGs that addressed almost all the pillars under CAADP. It was felt therefore that there was no need to create a TWG on CAADP under the SRA as this would be tantamount to duplication. Additionally, the review of SRA into the ASDS incorporated the Natural Resource Management (NRM) pillar which was absent in the SRA. The NRM pillar was be addressed through the creation of a sixth TWG. This way, all the CAADP pillars were captured in the ASDS. This observation partly explains why the Kenyan CAADP Compact does not seem to be well aligned to the four CAADP pillars.The following are some of the documents consulted during the livestock audit: (xii) Swift, J. (1977). In defense of nomads. Mazingira, 2:26-30.(xiii) Aklilu, Y., P. Irungu, and A. Reda (2002). An audit of the livestock marketing status in Kenya, Ethiopia and Sudan, Vol. I. Report prepared for CAPE of PACE, AU-IBAR, Nairobi.The CAADP process in Kenya was initially met with acrimony by the Ministry of Agriculture which argued that its SRA was more superior to the proposed CAADP four-pillar framework. According to an informant, this acrimony was based on a misunderstanding of what CAADP was -generally and particularly how it was going to be implemented. That is, it was not clear whether CAADP was a project that was to stand on its own or whether it was to run parallel to the SRA. The confusion can be traced, like in the case of Ethiopia, to the failure of NEPAD/COMESA to create the necessary awareness about the CAADP process among key stakeholders. Unlike in the case of Ethiopia, the CAADP process in Kenya was more home-grown as it was mostly led by government bureaucrats. However, due to the initial resistance to CAADP by the Ministry of Agriculture, critical activities such as the stocktaking exercise and the CGE modelling by the IFPRI team run parallel to the revision of the SRA; they did not significantly inform the design of the ASDS from which the CAADP Compact was extracted. On the other hand, although the CAADP country team in Kenya attempted to incorporate all stakeholders in the process, it did not adequately consult the grass-roots stakeholders (poor livestock keepers and women), probably for reasons of cost and time. The signing of the Compact on the same day when the ASDS was signed signalled a major change of heart by key government operatives in embracing CAADP. This change is a perfect example of how policy making in developing countries is held captive by the ideological rationality of government bureaucratic apparatus. Additionally, and like in the case of Ethiopia, many government officers particularly those in the Ministry of Livestock Development did not know about either the CAADP Compact or the CAADP process, which further points to lack of awareness creation by the proponents of CAADP.The CAADP process in Uganda commenced in December 2006 and ended with the endorsement of the Compact in March 2010. The funding was obtained from development partners through COMESA but the amount spent could not be established.The CAADP country team was composed of two groups, (i) technical team made of about 20 Sector Working Group (SWG) members from the MAAIF, Ministry of Trade, Industry and Cooperatives, in the case of Ethiopia and Kenya, most of the government officers particularly those in the Ministry of Livestock had no idea about the CAADP process. Some claimed it was only known to their counterparts in the Ministry of Agriculture who were directly involved. This reinforces the observation made earlier for Ethiopia and Kenya about the failure of the CAADP country team to share information and the lack of awareness creation by the proponents of CAADP.Livestock play multiple but important roles in the lives of people living in the IGAD region. They provide food, fibre, social-economic services to millions of owners who keep them. These roles are critically important particularly among the pastoralists who largely depend on livestock for their livelihood. Hence, any policy, strategy or development programme designed to improve the performance of the agricultural sector in these countries must address livestock issues. This study evaluated how livestock-related issues have been articulated in the CAADP Compacts of Ethiopia, Kenya and Uganda. In particular, the study (i) reviewed how the CAADP Compacts endorsed by the three IGAD member countries appreciate the many livelihood services provided by livestock, and (ii) assessed how well the perspectives and priorities of various stakeholders, including the food insecure women, are reflected in the Compact. This was done in cognizance of the fact the CAADP framework is the prevailing continental \"road map\" for spurring the growth of African agriculture to enable it effectively contribute to the reduction of challenges arising from underdevelopment, food insecurity, hunger and poverty. In addition, many development partners concerned with the development of the agricultural sector in the IGAD region have agreed to realign their support to the CAADP agenda.The study used two approaches to achieve its objectives (i) a thorough desk review of the literature including country Compacts, their supporting documents (policies, strategies, studies, etc) and other published and grey literature including searches on the internet, and (ii) conducted key informant interviews with stakeholders who had participated in the CAADP process to assess the level of participation of various stakeholders, particularly the food insecure livestock keepers and women in that process. The key informants included the CAADP national focal points in the three countries, government officers, representatives of international organizations and other stakeholders who had been involved in the CAADP process.The study found that:(i) All the documents reviewed completely fail to recognize the broader livelihood services derived from livestock. This state of affairs may have arisen from the failure of policy makers to understand who the clients of livestock development efforts/services are or even their priorities. All the documents are pre-occupied with promoting the maximization of livestock production/productivity to increase marketed surplus without specific attention to the needs of poor livestock keepers and particularly women. It is worth noting that the majority of livestock keepers in Africa are what can be termed as \"marginal livestock keepers\", meaning that they lack sufficient the critical mass of assets to regularly produce a surplus from their livestock to be able to participate in the market.(ii) Following from (i) above, the failure to recognize the broader livelihood services and the perspectives and priorities of grass-roots stakeholders could be partly explained by the fact that policy design in the three countries is based on purely physical economic models rather than being informed by a more social-oriented livelihoods approach which takes into (ix) Although gender issues somehow got their way into the CAADP Compacts, based on key informant interviews there was little participation of women and youth in the CAADP process. In fact, almost all the country teams in the three countries were entirely male (at least in Ethiopia; Kenya's team had two females in a team of 15; the composition of Uganda's team was unavailable).(x) From the key informant interviews, there are strong indications that the Ethiopian CAADP process was consultant-driven. While the engagement of consultants is important in respect to capacity constraints, there is always the danger of alienating the bureaucrats some of who may feel \"used\" by outsiders leading to ambivalence and non-acceptance of the resulting policy. The Kenyan CAADP process was mainly driven by the Ministry of Agriculture and spearheaded by ASCU. However, the initial scepticism about CAADP by the Ministry of Agriculture meant that the CAADP process ran parallel to the revision of the SRA and that important activities such as stocktaking and the CGE modelling by IFPRI did not significantly inform the process as envisaged by the CAADP secretariat. Uganda's case was somewhat mixed with partial participation of consultants and the national focal point.(xi) Except Kenya's MTIP that disaggregates the budget outlay according to agro-ecological zones, the investment plans of Ethiopia and Uganda are not disaggregated enough to show how much money is allocated to livestock and poor livestock keepers. This could be attributed to the lack of full integration of the livestock sector in both countries' Compacts.(xii) A keen examination of the various agricultural sector plans, policies and strategies in Ethiopia, Kenya and Uganda reveals some element of \"path dependency\" 1 in the way the plans, policies and strategies have been formulated and articulated over time. This may be explained by the fact that the constraints facing the agricultural sector in each of the three countries do not change significantly over the usual five-year planning period. A key example is the relationship between Ethiopia's SDPRP, PASDEP and PIF. While the underlying development philosophy running through these documents is agricultural development-led industrialization (ADLI), the main strategic thrusts remain the same year in year out. In fact, the PIF uses the phrase \"foot on the ground\" in an indirect reference to path dependency in technology development. The observed path dependency in policy formulation can also be attributed to the poor participation of grass-roots stakeholders in policy making. Although most documents claim to have consulted widely, there is no tangible evidence of how the grass-roots stakeholders' issues and problems were identified and included in the policy design. In particular, the documents do not indicate the tools and data used for problem identification and policy analysis. Consequently, the documents ignore the priorities of poor livestock keepers. Those that include them tend to treat them casually.1According to Kay (2005), a process is path dependent if \"initial moves in one direction elicit further moves in that same direction; in other words the order in which things happen affects how they happen; the trajectory of change up to a certain point constrains the trajectory after that point\" (p. 553).","tokenCount":"18008"} \ No newline at end of file diff --git a/data/part_3/5797496592.json b/data/part_3/5797496592.json new file mode 100644 index 0000000000000000000000000000000000000000..cfccb37efe8006c0ee1970af49414dda05172c70 --- /dev/null +++ b/data/part_3/5797496592.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"d35cf311371c536a0c476a2826925fc0","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/7ef3eb0c-198a-4913-a63c-b5810716506b/retrieve","id":"-1071980220"},"keywords":[],"sieverID":"d5a6ead3-99f1-43a3-9735-d2a55a8da1a3","pagecount":"28","content":"Fair dealing and other rights are in no way affected by the above. The parts used must not misrepresent the meaning of the publication. ILRI would appreciate being sent a copy of any materials in which text, photos etc. have been used.Pig production plays an important role for the livelihood of farmers, especially for poor people in the difficult-to-access rural and mountainous areas. In mountainous areas, pig production is associated with indigenous pig breeds which are low performance but well-adapted to the local harsh and deprived conditions, better resistant to disease than improved pig breeds. However, in recent years, crossbreds and exotic pig breeds have been introduced to farmers in mountainous regions. For example, in the Li-chan project, using the technology of artificial insemination (AI) with exotic semen for Ban pigs has been successful in Chieng Chung and Chieng Luong communes, Mai Son district, Son La province. Although there is a long traditional practice in pig production, farmers have limited knowledge on pig nutrition which greatly affects the productivity and health of the pig herd.One of the objectives of the CGIAR initiative on Sustainable Animal Productivity for Improved Livelihoods, Nutrition and Gender Inclusion (SAPLING), is to assess, test and promoted locally suited feed intervention strategies for cattle and pigs, in Mai Son and Phu Yen districts, Son La province, located in the Northwest Highlands of Vietnam. In order to achieve this goal, the project team has developed this training material focusing on knowledge about feed and nutrition for pigs to disseminate to local officials and farmers throughout Son La province, especially the two districts Mai Son and Phu Yen.Have a high energy value of over 2,500 Kcal/kg of feed (dry matter basis), mainly supply energy for activities such as moving, breathing, digesting food, etc. and helps to form products (meat, milk, pregnancy, semen, etc.). This feed group comprises:• Cereal grains and their by-products: corn, paddy, broken rice, rice bran, etc.• Roots and tubers: cassava, sweet potato, edible canna (Canna edulis Ker Gawl.), lesser yam (Dioscorea esculenta (Lour.) Burkill), etc.Have high protein content (>20% protein, dry matter basis), mainly to be synsthesized into body protein. This feed group includes:• Plant origin feeds: Soybean, sesame, peanut, peanut meal, soybean meal, etc.).• Animal origin feeds: Fish, fish meal, shrimp meal, meat meal, silkworm pupae powder, earthworm, termite, etc.• Have high mineral content, involved in forming bones and other organs.• This feed group includes: Powdered don (a type mollusk) shell, crab shell, snail shell, eggshell, bone meal, etc. • Mineral content of the diet exceeding the recommended level will cause poinsoning for pigs.High in vitamins, helping to enhance metabolism in the body. This group includes:• Vegetables, grasses, leaves, roots and tubers, fruits (carrot, pumpkin, kohlrabi, etc.).• In addition, synthetic vitamins and mineral-vitamin premixes are available to provide both minerals and vitamins for animals. • Farmers should understand well the nutritional needs of each breed at different stages in order to provide sufficient necessary nutrients for pigs to grow.Nurturing goals:• Female pigs reach reproductive age early,• Female pigs produce many piglets from the first litter.• Prolong the longevity of sows.• Sufficient nutrients should be given to gilt pigs so that their bodies are ready for mating, pregnancy and nursing piglets. • If gilt pigs are fed too much carbohydrate feed compared to their needs, they become overweight, leading to no or erratic oestrus, difficulties conceiving, high embryo mortality rate, resulting in lower numbers of piglets born. • If gilt pigs are not provided with sufficient nutrition, they will be underweight, thus have delayed or no oestrus, prolonging their first-service age; the gilts do not accumulate enough nutrients for their bodies during pregnancy and nursing at a later stage, resulting in earlier culls.Weight of pig (kg)Meals/day 10 -20 0.4 -0.8 2-3 2 21 -30 0.8 -1.0 3-4 2 30 -phối giống 1.0 -1.2 3-4 2• Feed mixed concentrates before fresh vegetables.• Fresh vegetables such as paper mulberry leaves, sweet potato vines, banana stalks, etc., only require washing before feeding, cooking is not necessary to avoid vitamin losses. • Human food leftovers should be cooked well before feeding to pigs.• It is necessary to adjust the feed intakes to suit each pig's conditions.• Give pigs enough clean water to drink.Complete compound feed (kg) 50-80 kg 2.4 80-120 kg 2.87• From the stage of 25 -110 kg: gilts should fed freely (food should always be in the trough so that pigs can access feed at any time) • From the stage of 110 kg until reaching the mating weight (130-135 kg): feed according to the individual pig conditions, adjust the feeding level accordingly depending on the level of fat and leanness of each animal. • Before breeding (5-6 days): feed freely to stimulate ovulation • Clean drinking water should be provided freely.• Ensures good fetal development, no miscarriages, no stillbirths • Pigs produce milk well and have little wear and tear when raising young ones • Piglets are born uniformly and large• Pregnant sows need adequate nutrients for good foetal growth. The gestation period is 114 days (fluctuating around 110-118 days), divided into 2 phases with different nutrition needs according to the growth of the fetuses:• Gestation phase 1 (from mating to day 84): Adequate volume and quality of food should be ensured for good featal growht and sows to accumulate for their bodies to prepare for the nursing period. • Gestation phase 2 (from day 85 until farrowing): The amount of food required for pregnant sows in phase 2 increases by about 25 -30% compared to phase 1 to provide enough nutrition for fetal growth. Fetuses grow fast in this phase (accounting for up to 65 -70% of the weight of newborn piglets).Feeding regime for pregnant sows Leg paralysis• Ensure food safety. Food that is stale, moldy or toxic, etc., will cause embryo loss, fetal mummification, miscarriage, premature birth, or weak piglets. • Provide sufficient clean water.• The amount of daily feed intake for pregnant sows depends on their conditions (thin, fat or normal). Thin sows must be given more concentrates and fewer roughages. Sows that are too fat should be fed fewer concentrates and more green vegetables. • In winter when there is extreme, damaging cold, sows should be fed more to sustain against the cold (0.2-0.3 kg concentrates/sow/day). • Rice distillers' grains and vinegar are not good for sows. Consuming too much of these will induce contractions, causing miscarriage. The amount of rice vinegar used for sows should be only 1/3-1/4 of that for meat pigs. Reduce feed to 1.0-0.5 kg• Applies to complete compound feed.• Adjustments are made immediately after mating day, adjusted weekly to ensure that when the day of farrowing, gilts' back fat thickness is 18-19 mm, 2nd litter pigs onwards are 20-21mm.• The specific amount of food is adjusted based on actual observation of the pig's body condition to ensure that pregnant sows are not skinny or fat during pregnancy. o Vitamin deficient piglets will grow slowly, have poor vitality, and easily die prematurely. o Foods containing lots of vitamins, vegetables, grass, tubers, fruits... o Lack of minerals causes weak bones, convulsions in sows, and paralysis of the hind legs.Food groups that contain a lot of minerals include bone meal, snail shells, mussel shells, eggshells, oyster shells, stone powder... o Should use mineral and vitamin supplements in the form of premix packages available on the market. Dosage according to manufacturer's instructions.Nurturing goals• Sows have more milk, less weight loss when raising piglets, and come into heat quickly after weaning their piglets. • Piglets grow quickly, evenly, and have a high survival rate.• Suckling sows should be provided with adequate nutrition to maintain their body condition and produce enough milk for their piglets. • Feeds for suckling sows should be more nutritious than for gilts and pregnant sows. It is necessary to increase both the quantity and quality of the feed for these sows. • Sows that produce many piglets and are thin should be fed more, and vice versa.• Sows should be fed feeds that are cooked into a gruel; concentrates should be mixed in well before feeding.• From day 6 onwards, feed the sows ad libitum. Sows nursing 8-10 piglets are usually fed 2.5-3 kg concentrates/day. Those nursing more than 10 piglets are given 3-3.5 kg concentrates/day. • Giving the sows at least 3 meals/day will help them to eat more and digest better. • Offer feed to lactating sows ad libitum, divide into many meals so that the sows can get fed as much as possible, meeting the need for lactation. Always ensure adequate supply of clean water to ensure milk production. • On the farrowing day, sows often stop eating or eat little. They should only eat 0.5-1kg/head to avoid milk fever. • Gradually increase the amount of feed according to the sow's intake need but must be consistent with the principle: Gradually increase the amount of feed in the first week by 1 kg each day, and by the 4th day increase to 4 kg. • From the 5th day onwards, feed lactating sows freely (estimated 5-9 kg feed/day, depending on the sow's condition and number of piglets.Early weaning for piglets• Start weaning when piglets reach 7-10 days old: roast cereal grains (rice, corn, soybean), ground into powder, sprinkle a little of the powder into the trough in the nest; as piglets smell and lick it, they will gradually get used to it. • From 10-14 days: introduce thick rice gruel; finely ground roasted soybean can be added to attract and increase the appetite of piglets.• From 15-21 days: mix concentrates for piglets, including 55% popped corn + 15% fine rice bran + 30% well roasted soybean or concentrates. When giving to sows, mix into their gruel at a 30% ratio. • After 21 days: add young vegetables to gruel and mix with 30% concentrates using the above formula. In this way, after weaning, there is no sudden change in feed for piglets to affect their weight gaining. • After 28-30 days, piglets have gotten used to solid food and can be fed as normal.• Packaged feeds can be used (cooking is not required) for weaning piglets. Ensure to buy from reputable feed manufacturers. • The purpose of early weaning of piglets is to increase litters/sow/year, reduce the chance of transmitting diseases from sows to piglets, and reduce sow depreciation after weaning so that sows can quickly return to estrus.Nurturing goals• Raised for meat, not used for any other purposes.• Ban pigs should be raised until about 7-9 months old, reaching about 25-30 kg. If the weight of the pig is too large, it will increase the fat ratio, feed consumption/kg weight gain will be higher, but the selling price will be decreased, does not meet consumer tastes.• The nutritional needs of Bản meat pigs could be divided into 2 phases: from weaning to 15kg and from 15kg to finisher. The nutritional values of feed at the first phase are higher than the second phase. • The daily feed intake for meat pigs should be increased gradually according to their age and weight to meet their body growth needs.For piglets after weaning until 15kg:• Usually equal to 4 -5% of body weight, e.g., a 10 kg pig can eat about 0.4-0.5 kg concentrates/day) • From day 4 after weaning, if pigs do not have diarrhea, increase the ration following the increases of the herd. Recommend ad libitum feeding so pigs can grow to their full capacity. Feeding regime for meat Ban pigsDay 1 Equal to 1/2 of the pre-weaning feed amount Day 2 Equal to 3/4 of the pre-weaning feed amount Day 3 Equal to the pre-weaning feed amount• Food quality requirements:o Providing feed enough nutrients for pigs to grow quickly. o Easy-to-digest feed, using available ingredients such as corn, soybeans, brown rice, broken rice, rice bran... Or using concentrated feed to mix with available ingredients. o Feed is not rancid, moldy, contaminated with toxins, ... o Vegetables, tubers, and fruits are available according to each season such as: sweet potato vines, banana stems, water potato leaves, aspen leaves, wild vegetables...• Feed rations for pig meats from 15kg until harvest: calculated as about 3-4% of body weight, e.g., a 20kg pig can eat from 0.6-0.8 kg concentrates. • If feeding concentrates, rations should be equal to 60% of pigs' intake, i.e., 1.8-2.4% x body weight. E.g., a 20kg pig needs 0.36-0.48 kg concentrates/day. • Traditional feeds: green vegetables, tubers, fruits, banana stalk, rice vinegar, etc.• Balancing nutrients in the diet, especially protein (in other words, amino acids) is a crucial factor in limiting fat levels when pigs are slaughtered.Nutritional regimen for meat pigs to increase the percentage of lean meat (Ban pigs)• Balancing nutrients in the diet, especially providing enough protein (amino acids such as lysine...) is an important factor in limiting the amount of fat when pigs are sold. If the diet has excess energy, lean meat production will be reduced. • Time to sell and slaughter pigs: The age at which pigs are slaughtered affects the lean rate, pigs should be slaughtered from 25-30kg, the longer the raising time, the leaner the lean rate will be, so it should be sold for sale. , slaughter pigs at the above weight milestone to have a high lean rate.o Water also plays an important role in the production of lean meat because the structure of lean meat consists mainly of water (water accounts for 70%, proteins account for 20% and fat accounts for 10%), while the structure of fatty meat (fat accounts for 88%, Protein accounts for 2% and water accounts for 10%); o The water content in lean meat is 7 times that of fatty meat, therefore, to maximize the ability to produce lean meat, it is necessary to provide adequate drinking water for porkers. If there is a lack of water, the ability to store lean meat will decrease, Fat storage will increase; Pigs should be allowed to drink water freely.  Add 100 liters of clean water to the mixture, stir well and let sit for 3-4 hours.  Put into plastic bags or sacks, keep them open for 5-6 hours, then tie them tightly closed and keep at warm or cool places.  After 2-3 days when there is a mild aroma, ready to feed.• How to feed: For piglets after weaning: Mix 1 kg concentrates + 5 kg fermented feed, feed 0.7-1.1 kg/piglet.  For pigs more than 15 kg/pig: mix 1 kg concentrates + 6 kg fermented feed, feed 1.2-1.7 kg/pig.  For sows: mix 1 kg concentrates + 7 kg fermented feed, then feed additional 80-90% mixed concentrates.Things to note when making silage• Use 2 layers of bags if making ensilage in plastic bags (the outer layer is sack and inner is plastic). After ensilage for 1-2 days, if the bag is inflated, open it to let air out and tie the bag tightly closed, store in a dry place, avoid rats and insects as they may bite open the bag. • To ensure quality, ensilage feeds must be kept in maximum anaerobic conditions (firmly pressed, tightly sealed, no bag puncture or torn); check the bag regularly, if it is torn or punctured due to rats or some causes, replace with another bag immediately to prevent silage spoiling. • Make sure to mix the ingredients evenly with additives, hence creating a premise for anaerobic microorganisms to operate. Each time after taking silage out, ensure that the bag is tightly sealed to avoid excess air. It is recommended to use up one bag before moving on to another. ","tokenCount":"2597"} \ No newline at end of file diff --git a/data/part_3/5797759769.json b/data/part_3/5797759769.json new file mode 100644 index 0000000000000000000000000000000000000000..712d7ec40460bf6ae7e25f816bff07fddbd5e830 --- /dev/null +++ b/data/part_3/5797759769.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c927fda922aab21d9056f8cfe99b54f1","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/67028315-7eef-4273-b57f-fd4c672ea8af/retrieve","id":"-681486505"},"keywords":[],"sieverID":"f285a27c-72d6-4824-b6d3-4ae7689e3a3d","pagecount":"14","content":"Background .Gender Equality (HER+) is a One CGIAR Research Initiative seeking to address the following four dimensions of gender inequality in agrifood systems: o Women's lack of agency or limited ability to define and act on goals, make decisions that matter to them, and participate in the economy and in public life; o Women's lack of access to and control over resources;o Social norms that discriminate based on gender; ando Policies and governance that fail to include and benefit women.HER+ uses impactful gender research to address the four dimensions of gender inequality by applying gendertransformative approaches to address harmful norms. It does this by bundling innovations for women's empowerment, leveraging social protection to increase women's access to and control over resources, and promoting inclusive governance and policies for increased resilience. HER+ will generate learning and evidence on levers and entry points to disrupt the foundations of inequality in agrifood systems (AFS). It seeks to achieve this by working through four work packages as illustrated in Figure 1. Specifically, VOICE seeks to identify, test, and scale:o Social innovations and organizational strategies to stimulate effective voice and agency of women in climate-related agrifood systems governance;o And public and private sector policies that effectively support women's resilience to climate changeWEAGov was developed by researchers at IFPRI under the HER+ research initiative to assess the state of women's voice and agency within national policymaking in the agrifood sector. Like IFPRI's Kaleidoscope Model (Resnick et al., 2015), it adopts a policy process approach, looking at each stage of the policy cycle-from why certain issues become salient and how policy solutions to address them are designed, to the organizational strategies and budgetary outlays that shape policy implementation, to how policies are assessed and tracked against these objectives. Within each of these policy stages, WEAGov provides tools and indicators for whether women are being considered, whether their voices are included, and whether they are influencing actions and decisions (see Figure 2).Source: Kyle and Ragasa (2023). https://www.ifpri.org/interactive/weagovWEAGov is theory-based and has been developed and refined over time in consultations with more than 50 other index developers, policy partners, researchers, donors, and practitioners worldwide. WEAGov was developed by combining insights from key informant interviews with a scientific literature review on women's empowerment, agrifood systems, and governance (Ragasa et al., 2022). In 2022, key informant interviews included experts involved in the development of other frameworks and indices measuring different aspects of gender and governance; donor agency representatives; academic experts; and policy partners, researchers, civil society leaders, and private sector leaders from three different countries with diverse agrifood institutions (Nigeria, Malawi, and India). In 2023, a pilot study was conducted in Nigeria, including a technical workshop to discuss and validate results and to collect further feedback on the measurement tools (Kyle et al., 2023). Figure 3 provides a full timeline of the process of developing WEAGov. Source: Reprinted with permission from Ragasa and Kyle (2023).The WEAGov methodology consists of six steps: The WEAGov framework was first piloted in Nigeria in 2023. In 2024, a second pilot study was conducted in India, building from these findings. The technical validation workshop is a core part of the WEAGov methodology; it enables detailed deliberations on the results from the landscape analysis, desk review, organizational survey, and expert survey discussed (steps 1-4 above). This helps to ensure the validity and interpretation of results as well as to resolve discrepancies and disagreements among experts on key indicators. At the end of the workshop, the following outcomes were achieved:1. A workshop report;2. Targeted feedback on measurement approaches for each indicator in the WEAGov assessment framework;3. Resolution for key measures which had ambiguous results from the desk review and expert surveys and overall validation of the pilot results;4. Targeted recommendations on future improvements for the measurement tools.The event was kickstarted with a set of introductions, followed by an opening speech by Shri Charanjit Singh, Additional Secretary, Rural Livelihoods, Ministry of Rural Development. In his speech, he focused on the importance of a data-and evidence-driven approach in policymaking along with feedback loop mechanisms allowing for immediate response from stakeholders both in the initial phase of policy design and during policy implementation. He noted that this type of structural change is particularly important given advancing climate change problems, which makes responsiveness in real time even more important. Additionally, he stressed that agrifood policies need to consider the socio-economic contexts and constraints that women face daily to ensure maximum impact.This speech was followed by an introduction to the WEAGov tool, a discussion of the pilot study in India, a presentation of results from the WEAGov Nigerian pilot study, and a question and answer session. After this, the o What are some emerging implications of the results / scores based for policy and programming?o Is there any indicator that you think is missing that would be important for understanding women's voice and empowerment within the policy process?The workshop participants eagerly contributed to the discussion, sharing valuable perspectives, raising concerns, and posing relevant questions. Several key insights emerged from the discussion, which we present below:o Overall, the participants expressed strong interest and consensus on the value of a nationwide exercise to understand the representation of women in agrifood policymaking in India. Participants indicated that this effort will be instrumental in identifying and addressing gaps to achieve greater gender equality. By the end of the workshop, participants felt confidence with the WEAGov conceptual framework and how to implement data collection.o A few comments addressed the desk review and policy analysis:o One significant source of discussion was on the policy landscape analysis and the potential differences between older and newer policies. Many of the key agrifood policies in India were initially developed a decade or more ago, and the participants noted that it is difficult to compare these policies to more recent policies, as views and attention to gender equality have changed over time. They also noted that older policies might score better on policy implementation because they have been in place longer and have a more well-developed capacity and implementation plan compared to newer policies. Participants recommended trying to narrow the timeline for the policies considered to ensure that they are more apples-to-apples comparisons.o Participants also discussed the scores for the policies, for example, they noted they would have expected higher scores for PM Kisan Saman Nidhi Yojna in particular, which was initially scored a 1. A public sector participant in the workshop noted that more than 30 million women farmers are benefitting from this scheme. We explained that WEAGov scoring is about the voice that women have within policymaking rather than the number of female beneficiaries reached by a policy. This is an important distinction between frameworks focused on women reached by particular policies and frameworks focused on voice and agency which can be further elaborated in future presentations of WEAGov.o Another suggestion was to refine the questions that refer to the \"past 12 months\" by instead naming specific events. For example, the question on scoring the Prime Minister's speech could be rephrased by referring to either the independence day speech or the G-20 speech or the budget speech for the particular year so that respondents can all refer to the same speech and comments.o Participants also discussed that several policies span agriculture, nutrition, and climate, so it is difficult to assign one policy to one of these sub-themes for scoring purposes.o Participants noted that policy implementation varies so much across states in India, that one score at the national level masks a lot of underlying variation, with some states scoring high and others scoring low for the same measure.o Participants noted that the WEAGov India pilot did not include North Eastern states, which tend to be quite a bit different in gender norms and culture than other areas. They noted the example of Meghalaya where matrilineal tribal communities are prevalent in particular. Including these areas would have increased the subnational variation in the results.o This point came up in particular in relation to indicators on women's policy design leadership and gender-inclusive staffing, as these were indicators with significant state-level variation. Participants were very interested in the degree of variation in gender inclusivity in staffing across states.o The participants also engaged in discussing the scoring of several indicators from the expert survey. These discussions helped to resolve ambiguities that arose for particular indicators for which there was low expert agreement on scoring from the survey. Table 1 provides an overview of the indicators which had unresolved scoring going into the technical workshop and how the scores were resolved by experts. o Participants also made recommendations on the WEAGov methodology.o Participants noted that they found the terminology for a score of 2, \"on the way\", to be vague and recommended adjusting this terminology, though they did not provide an alternative.o Participants noted that the survey instruments need to be shortened to ensure high quality engagement from experts.o The expert attendees suggested that a comparison of scores could be provided for themes that have been assessed using multiple measurement sources (organizational survey, expert survey, desk review). They noted that this would provide a way of comparing indicators from different sources to highlight discrepancies.o Participants also noted that some policies have publicly-available audit data which could be leveraged to further refine scoring o Participants argued that it would be interesting and valuable to disaggregate responses to the expert survey by respondent gender, noting that gender bias could affect responses.o Finally, participants noted that the expert survey questions were not always clear for questions regarding \"women's leadership\" and that respondents may have interpreted the questions differently. For example, women may serve as \"project managers\" but be underrepresented in senior leadership positions. The questions should clearly indicate to respondents whether roles like \"project manager\" are intended to be included as leadership roles.The WEAGov technical validation workshop provided substantial insights into the scoring of various indicators. Several next steps emerged from the workshop. First, these recommendations have substantially shaped and informed the forthcoming India WEAGov country report. Second, several of the recommendations about the broader WEAGov methodology are being incorporated into a forthcoming implementation manual which is intended to provide information for partners and stakeholders on how to implement WEAGov. Third, suggestions of the public sector participants in particular have been very helpful at further understanding the Indian agrifood policymaking contexts and helping to interpret results and to develop policy recommendations.","tokenCount":"1732"} \ No newline at end of file diff --git a/data/part_3/5798438927.json b/data/part_3/5798438927.json new file mode 100644 index 0000000000000000000000000000000000000000..0082a9fbbf10f170eb1730d8da8d4b6b5211e561 --- /dev/null +++ b/data/part_3/5798438927.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"36e69330fe19fb219d7ff8fc71eaa035","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/115ab2c0-ac6c-49aa-acbc-ba537adcc49d/retrieve","id":"-1137584991"},"keywords":[],"sieverID":"182ccc93-2dcd-4bbe-b25e-e546f7811f48","pagecount":"17","content":"En la Suram~rica tropical, existen m5s de 500 millones de hcct~reas de suelos Oxi\"soles y Ultisoles ácidos e inférti.le~ de los cuales ménos del. 5% han sido desar, ro)lados. Una alta p_roporción de• ésta inmensa área está en Brasil, pero hay áreas significat1:Va.s en .Co_lombia, Venezuela y P~ra. C~rca del 70% son bosques lluviosos~ y un 27% savanas, s~elos con -•pHs menores q~e 5 y las saturaci 1 across most of Tanzania and a localised exceptionally wet region over the northernmost part of Mozambique. The Makutapora and Limpopo sites (Fig. 1a) are located in areas representative of the large-scale north-south rainfall dipole. This spatial dipole pattern is very similar to the characteristic pattern of anomalies during El Niño across the region, as represented by the leading empirical orthogonal function (EOF) of inter-annual variability (Fig. S1b; Sect. S1), which correlates strongly with ENSO and Indian Ocean SSTs (Fig. S1c). Indeed, the EOF coefficient value for 2015-2016 is the second highest within the entire 1901-2016 period. As such, across our study region, 2015-2016 represents an extreme exemplar of the characteristic El Niño climate response. Of course, a complex set of processes on the planetary, regional and local scale related to, and independent of, El Niño are fully responsible for the observed anomalies (e.g. Blamey et al., 2018). The structure of the atmospheric anomalies, specifically the mean meridional overturning circulation associated with the large-scale SPEI-7 anomalies (Fig. 2a), shows large-scale anomalous ascent over EASE between ∼ 0 and 10 • S, indicative of enhanced deep con-vection, with compensating descent over SA throughout the depth of the troposphere, which acts to suppress convection. The low-level horizontal circulation (Fig. 2b) indicates key features associated with the SPEI-7 dipole, notably (i) an anomalous southerly flow from the southern Indian Ocean into continental SA (feature A in Fig. 2b), which weakens the transport of water vapour from the humid tropical Indian Ocean, leading to a decrease in moisture flux convergence over SA. This is associated with a weakening of the mean \"Mascarene\" subtropical high over the Southern Indian Ocean (feature B in Fig. 2b). (ii) Over EASE there are anomalous low-level westerlies over Tanzania (feature C in Fig. 2b), which weaken the mean easterlies and enhance convergence over Tanzania, a structural characteristic of wet spells (Berhane and Zaitchik, 2014;Nicholson, 2017).Groundwater recharge in the semi-arid tropics is favoured by high-intensity rainfall events (Owor et al., 2009;Jasechko and Taylor, 2015) within wet seasons, which may be modulated by climate anomalies during El Niño conditions. During 2015-2016, the intensities of the 80th percentile of daily rainfall, a simple proxy of potential groundwater-rechargerelevant rainfall, increased by ∼ 1-5 mm day −1 across much of EASE (Fig. 1b), representing a 100 %-150 % increase in many places. Whilst the association of rainfall intensity and enhanced recharge across large and heterogeneous regions remains to be resolved, this intensification of rainfall is consistent with greater groundwater recharge. Across SA the magnitude of the 80th percentile reduced by ∼ 1-2 mm day −1 , potentially reducing groundwater recharge.The 2015-2016 event in the historical context SPEI-7 IAF curves represent water balance anomalies across all spatial scales. For the SA region, 2015-2016 experienced the most extreme SPEI-7 drought within the historical period, with an estimated IAF curve return period of ∼ 260 years (range 190-290 years; Fig. 3a). The 2015-2016 drought was of greater intensity than those during previous El Niño events of comparable magnitude, 1997-1998 and 1982-1983, whose SPEI-7 IAF curve return periods are estimated to be only ∼ 6 years (range 4-9 years) and ∼ 43 years (range 35-47 years), respectively. The contrasting intensity of SA drought between these events highlights the diversity in responses over EASE and SA to El Niño, related to both the different character of the events in the Pacific sector (2015-2016 was strongest in the central rather than eastern Pacific as in 1997-1998; see Sect. S1) and the specific regional circulation features during these events which modulate the diverse ENSO teleconnections to SA (Ratnam et al., 2014;Blamey et al., 2018). Moreover, the 2015-2016 drought followed a moderate drought in 2014-2015 (Blamey et al., 2018), which had important implications for groundwater levels (Sect. 3.2.2), and statistically this 2-year drought event is remarkably unlikely. The extreme SPEI-7 anomalies over SA in 2015-2016 result from low rainfall and extremely high temperatures (Blunden and Arndt, 2016;Russo et al., 2016), potentially related to land-atmosphere feedback processes (e.g. Seneviratne et al., 2010), through reduced vegetation and soil moisture, perhaps persisting from 2014-2015. Uncertainty in the strength of land-atmosphere coupling over SA remains high with contradictory results from model analyses (e.g. Koster et al., 2006) and combined observation-model analysis (Ferguson et al., 2012), suggesting weak and strong coupling, respectively. Further, warming across SA in recent decades can be attributed substantially to anthropogenic radiative forcing (Bindoff et al., 2013). As such climate risks are changing. We estimate that the risk of a 2015-2016 magnitude SPEI-7 drought over SA increased by approximately 2 times due to the effects purely of anthropogenic warming. Note that this estimate does not include any anthropogenic changes in any of the other climate variables which determine SPEI, most notably precipitation, nor changes in variability of climate (see Sect. S2). Further, other drought indices may have differing sensitivities to anthropogenic temperature trends.Over the EASE domain as a whole, the 2015-2016 event was wet but not extreme, with an return period estimated by the SPEI-7 IAF curve (Fig. 3b) of only ∼ 10 years (range: 5-12 years). The anomalies were far weaker than those during the 1997-1998 El Niño (Fig. 3b). These differences may be associated with the state of the Indian Ocean zonal model (IOZM), an east-west structure of coupled ocean-atmosphere circulation, influencing convection and rainfall over East Africa (Saji et al., 1999, Sect. S1). The 1997-1998 El Niño coincided with a very strong pos- itive IOZM event, unlike that of 2015-2016, in which the IOZM was weakly positive. Indeed, the wettest EASE year on record, 1961-1962, experienced a very strongly positive IOZM event but no El Niño event (Nicholson, 2015).groundwater storageRegionally, GRACE ensemble-mean TWS anomalies (Fig. 4a), and estimated GWS (Eq. 1; Fig. 4d), for 2015-2016 reflect the north-south dipole over EASE and SA associated with the SPEI-7 climate anomalies related to El Niño (Fig. 1a). Positive TWS and GWS anomalies exist north of ∼ 10 • S across EASE (including the Makutapora site), the central Democratic Republic of the Congo (DRC) and northern Angola. Negative TWS and GWS anomalies occur over an extensive region of eastern SA including the Limpopo site. However, despite broad-scale structural similarity, there are some apparent inconsistencies between TWS (and other components of the water budget, includ- ing GWS) and the SPEI-7 climate signal that we consider below.Viewed more closely, the partitioning of large-scale TWS anomalies between the modelled SMS, SWS and residual GWS is spatially complex. First, we note that SWS (Fig. 4c) plays only a minor role across the domain. Further, the coherence of the spatial structure in anomalies in SMS (Fig. 4b) is much less clear than for TWS, reflecting uncertainties in soil moisture among individual LSMs, as highlighted by Scanlon et al. (2018). Then, considering the drought region over SA, a number of features emerge. (i) The relative magnitude of TWS deficits over South Africa are less than those of the SPEI-7, compared to the northern more humid parts of SA (compare Figs. 4a and 1a). This difference may be expected, since TWS is an absolute measure of water volume, whereas SPEI-7 is a standardised anomaly relative to climate, derived over a much longer time period from different rainfall data than those used in the GLDAS system. Consequently, these measures may be expected to diverge across mean rainfall gradients. Further, SPEI-7 reflects potential rather than actual evapotranspiration. (ii) Over the northern sector of Zambia, Zimbabwe and Malawi, the strongly negative TWS anomaly is almost equally shared between modelled reductions in SMS and GWS. (iii) To the south, over South Africa, however, the (rather weaker) TWS deficits are effectively accounted for by SMS anomalies such that GWS anomalies are actually close to zero or indeed slightly positive. The Limpopo study site lies at a transition zone between regions with apparently strongly reduced GWS to the northeast and close to zero or slightly positive GWS to the southwest. As geology is broadly continuous across the region, the transition is largely related to uncertainty in the estimation of modelled SMS.Further, considering the anomalous wet region over EASE to the north of ∼ 10 • S, GWS broadly mirrors the structure of TWS, but the detailed picture is complex. Over most of Tanzania and Angola, positive TWS anomalies are largely partitioned into the GWS rather than SMS, whereas over the southern DRC, the reverse is the case. Moreover, there are interesting apparent contradictions between the climate SPEI-7 and GRACE TWS data. Over Namibia and southern Angola, a negative SPEI-7 (Fig. 1a and SMS; Fig. 4b) coincides with positive TWS anomalies (Fig. 4a), leading to very strong positive GWS anomalies (Fig. 4d) that are therefore inconsistent with climate anomalies from SPEI-7. Conversely, and more locally, over northern Mozambique, a positive SMS anomaly, resulting from the driving rainfall data (see the SPEI-7 wet anomaly; Fig. 1a) is not reflected in a strong TWS signal, which leaves a counter-intuitive, negative residual response in GWS. As such, GRACE GWS exhibits inconsistent responses to both apparent anomalous dry and wet conditions. These are likely to be a result of (i) limitations in observational precipitation data, (ii) uncertainties in GRACE TWS retrievals (as well as unwanted artefacts from surface and tectonic deformation), (iii) uncertainties in estimation of the individual components of water storage from LSMs and (iv) differing timescales of response across the various data. Such issues have been noted and assessed elsewhere (Hassan and Jin, 2016;Zhao et al., 2017;Rodell et al., 2018;Scanlon et al., 2018). Resolving these issues is challenging, but recent studies have sought to constrain the uncertainty in the modelled components of water storage through assimilation of GRACE TWS into hydrological models (Khaki et al., 2018;Schumacher et al., 2018).Piezometry for the two observatory sites and changes in GWS estimated from GRACE and LSMs are shown in Fig. 5. First, we note that uncertainty in the mean GRACE GWS estimate (blue shading around blue line in Fig. 5a and b), whilst often large, is generally smaller than the signals of inter-annual variability which are the main focus of our analysis. However, variability in mean GRACE GWS within recharge seasons is small relative to uncertainty, such that we cannot confidently draw inferences at these timescales. Specifically, at the SA Limpopo site, observed piezometry (Fig. 5a) shows an annual cycle in GWS in most years, with a \"sawtooth\" pattern representing steady recessions in GWS during the dry season from May to October followed by rapid increases typically starting in December in response to the onset of the wet season to the peak post wet season in April (lagging peak rainfall by ∼ 1-2 months). GWS in 2015-2016 is well below average, with a seasonal but subdued GWS rise being delayed (until March) due to the highly anomalous early wet season drought. The GWS rise in March-April following rains in March is the second smallest on record; only 2002-2003 has a lower seasonal increase in GWS. The 2015-2016 drought is preceded by negligible recharge in the dry year of 2014-2015 (Fig. 5a) such that GWS as of mid-2016 was lowest in the 14-year record. As such, the major drought of 2015-2016 compounded weak recharge in the previous year, leaving GWS at historically low levels. This may have been compounded by increased abstractions during these dry years.Comparison of piezometry and GRACE-derived GWS at Limpopo (Fig. 5a) suggests a broad correspondence when seasonally averaged, (r = 0.62, significant at the 0.01 probability level). The prolonged decline over 2014-2016 is observed in both GRACE and piezometry. When averaged over all years, the mean annual cycle is similar in phase and magnitude (not shown). As such, at least for broad temporal averaging scales, GRACE is corroborated by piezometry at the Limpopo site, where the scales of spatial averaging are similar. However, within seasons, the uncertainty in GRACE GWS leads to a much \"noisier\" mean signal at Limpopo which cannot resolve the annual sawtooth pattern (Fig. 5a); in GRACE GWS, individual years have a rather variable annual cycle despite a clear cycle in rainfall. Notably, a strong rise in the ensemble-mean GRACE GWS during early season 2015-2016 is not corroborated by piezometry or rainfall. This period coincides with the greatest uncertainty in GRACE GWS among the three GRACE products (see blue shading around ensemble-mean GRACE estimates in Fig. 5a). There is some indication from Fig. S2 that during such periods of greatest GWS uncertainty, it is the uncertainty in GRACE TWS that makes most important contribution, rather than uncertainty in the GLDAS components. From the individual GRACE TWS products (Fig. S3) we note that the mean GRACE vs. piezometry GWS discrepancies in late 2015 result largely from the GRGS product, which shows a non-corroborated increase in TWS.At the EASE Makutapora site, observed piezometric GWS (Fig. 5b) shows little regular inter-annual variability, with long periods of GWS recessions, e.g. 2002-2006and 2012-2016, interrupted by irregular and infrequent GWS increases, which are, in declining order of magnitude, 2006-2007, 2009-2010and 2015-2016, all El Niño years. The wet conditions in 2015-2016 produced a major recharge event, though observed piezometric responses are smaller than in 2006-2007 and 2009-2010, despite higher rainfall (Fig. 5b). Under highly dynamic pumping regimes (Fig. 5c), GWS changes are only a partial proxy for groundwater recharge; the sharp increase (∼ 50 %) in well field pumping in May 2015 served to diminish the response in piezometric GWS to the 2015-2016 El Niño. Overall, however, the findings are consistent with the analysis of Taylor et al. (2013), who note highly episodic recharge at Makutapora over the period since the 1960s, associated with years of heavy rainfall. The 2015-2016 El Niño event represents a major event driving GWS at the Makutapora well field, despite moderate rainfall anomalies over EASE. There is only a rather general association between GRACE and piezometric estimates of groundwater storage variability at the Makutapora site. However, the episodic recharge events in the piezometry data of 2006-2007, 2009-2010 and 2015-2016 are matched quite well by the magnitude of major GRACE increases in GWS, although the second largest GRACE GWS increase occurs in 2014-2015 with no response apparent in piezometry. Overall, the seasonal correlation of GRACE GWS and piezometric GWS of 0.51 is only moderate (significant at the 0.05 probability level) but clearly reflects the low-frequency multi-annual trends (at least up to 2013) as well as inter-annual variability.However, stark differences between GRACE and piezometry are apparent. In contrast to piezometry, GRACE (Fig. 5b) shows increases in GWS in most years (with lag of ∼ 1 month after the rainfall annual peak), suggesting that recharge occurs annually. Further, GRACE GWS replicates the low-frequency recessionary trend over the period 2002-2007 but diverges substantially from piezometric observations after 2012. Resolving these contradictions is problematic, but two likely explanations emerge: (i) incommensurate scales of observation from piezometry (area ∼ 60 km 2 ) and GRACE (∼ 200 000 km 2 ) and (ii) errors in GRACE GWS resulting from inaccurate accounting of SMS and SWS, which leave a residual artefact of an annual positive GWS signal (see Sect. 3.1;Shamsudduha et al., 2017, andScanlon et al., 2018). For the latter, such errors may not be adequately accounted for in the uncertainty estimates in GRACE GWS given, for example, similarities in LSM design and driving data. Indeed, at both the Limpopo and Makutapora sites, we note stronger correlations between seasonal local rainfall and piezometric GWS than with GRACE GWS (not shown). For the former, more localised processes may dominate the piezometry record, perhaps including recharge sensitivity to contributions from local ephemeral river flow and rainfall. Further, the effects of local pumping strongly influence the piezometric record, obscuring recharge events of low magnitude. Specifically, the period 2002-2007 over which the data agree reflects a widespread groundwater recession, following the anomalously high recharge during the El Niño event of 1997-1998 (Taylor et al., 2013), whilst the recent accelerated recessionary trend since 2012 reflects the effects of a rapid increase in abstraction, which has a more localised effect apparent only in the piezometric observations. As such the piezometric record may only show episodic recharge, whilst GRACE may indicate annual and episodic recharge processes.We quantify the climate anomalies and groundwater response during the major El Niño event of 2015-2016 over Southern and East Africa, south of the Equator, across a range of spatial scales, from regional to local. Our analysis confirms that the event was associated with a pronounced north-south dipole pattern of positive or negative rainfall and water balance anomalies over EASE and SA, typical of the ENSO teleconnection to the region. It was the second largest such dipole event on record since 1900. Considerable diversity nevertheless exists in climate anomalies over Africa between El Niño events.The response of the water balance including GWS to ENSO is marked. Over EASE, total rainfall and daily intensities were higher than normal, and we estimate the return period for the SPEI-7 water balance metric, over the domain as a whole, to be ∼ 10 years. Wet anomalies over EASE were actually moderated by the occurrence of a rather weak IOZM event. Nevertheless, the anomalously wet conditions led to strong groundwater recharge over the EASE domain, as evidenced from GRACE. At the Makutapora well field in Tanzania, in 2015-2016 the strong rainfall related to El Niño acted to reverse a long-term decline in observed in situ groundwater storage associated with a rise in intensive pumping rates. Changes in GWS estimated from an ensemble of GRACE and LSMs also reflect the occurrence of substantial groundwater recharge in 2015-2016 and indicate annual groundwater recharge across the region. Broadly, the analysis reinforces the importance of large-scale climate events in driving episodic recharge, critical in replenishing heavily exploited aquifers.Over SA, the 2015-2016 El Niño was associated with extreme drought, the strongest within the observed 116-year record, with an estimated return period of ∼ 260 years, resulting from exceptionally low rainfall and high temperatures. The drought resulted in groundwater storage declines through most of the wet season at our Limpopo study site, with strongly reduced recharge experienced, the second lowest on record. Furthermore, this followed a dry year in 2014-2015, leading to 2 consecutive years of low recharge and the greatest recession on record. Clearly, groundwater provides a valuable buffer for periods of reduced surface water availability in drought conditions, although as our results at Limpopo show, consecutive dry years lead to marked storage reduction. Climate projections suggest reduced early season rainfall across much of SA (Lazenby et al., 2018) compounding rising temperatures, and the implications of this for climate resilience require a better understanding of these impacts on groundwater recharge as well as surface water resources.GRACE data and LSM outputs are clearly useful in complementing in situ data, but a number of issues emerge. Although at the broadest scale the GRACE GWS anomalies in 2015-2016 are consistent with rainfall anomalies, there are a number of apparent inconsistencies over quite large areas. Resolving the underlying reasons for these is problematic, but likely candidates include the effects of inadequate climate data over Southern Africa, influencing and compounded by uncertainties in SMS and SWS estimates simulated by land surface models on which the estimation of GRACE GWS depends. When averaged over comparable scales at Limpopo, GRACE and piezometry agree well, at least for seasonal averages. Comparison with the local observations shows that GRACE GWS estimates are considerably noisier, especially at Makutapora, where the spatial averaging scale of in situ data and GRACE differ greatly. Local groundwater abstractions are apparent in the Makutapora record and very likely at Limpopo. Our results suggest that further analysis of the robustness of GRACE estimates of GWS is advisable and, as such, that these estimates should be treated with considerable caution.Our results highlight the potential for adaptive strategies, such as managed aquifer recharge, for optimising the capture or storage of episodic recharge in East Africa during El Niño and/or positive IOZM events and by corollary over Southern Africa during La Niña events (given the opposing dipole structure of ENSO-related rainfall anomalies across SA/EASE). Of course other modes of climate variability driving rainfall extremes are also important. Such interventions can enhance the positive role of groundwater in climateresilient water and drought management. Seasonal climate prediction may have a potential role in informing such adaptive water management strategies. At Makutapora, managed aquifer recharge exploiting El Niño and/or positive IOZM events may contribute to resilient urban water supply systems for the city of Dodoma. Our findings strengthen the case for a greater understanding of the drivers of rainfall extremes over Africa and their relationship with recharge processes under past, current and future climates and at various temporal and spatial scales. Such knowledge is crucial in informing water management policies and practices for sustainable and climate resilient development in a region undergoing rapid development of groundwater resources.","tokenCount":"5998"} \ No newline at end of file diff --git a/data/part_3/5908071369.json b/data/part_3/5908071369.json new file mode 100644 index 0000000000000000000000000000000000000000..dcfd00a5f51d871bb8bee67236c31922cc582de2 --- /dev/null +++ b/data/part_3/5908071369.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"226f2925cd760317804bc349ea8ea695","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/256412f4-b701-4842-93ea-293b592633fa/retrieve","id":"-488760256"},"keywords":[],"sieverID":"6d0bf263-4b4e-43a9-bb3a-de0b97d48475","pagecount":"2","content":"Orange-fleshed sweetpotato (OFSP) purée can be used to substitute wheat flour by 25-60% depending on the product, without affecting the quality of baking procedures.• We developed a safe, vacuum-packed shelf-stable purée that lasts 3 months without refrigeration, using locally available preservatives• By carefully washing the roots, it is not necessary to peel them. This has enabled a high-fiber purée (Fig. 1) to be developed that significantly improves the profit margin for purée processors.CIP thanks all donors and organizations which globally support its work through their contributions to the CGIAR Trust Fund. https://www.cgiar.org/funders/Research during SASHA Phase 1 established that OFSP purée (steamed and mashed roots) as an ingredient makes better quality baked products and is more economically viable than OFSP flour. The major bottleneck to expanding use of purée is the inconvenience of having to prepare and store the purée. Currently, processors store and utilize the roots for purée as needed; or prepare the purée and freeze it for future use. This requires a reliable cold chain.Processors with mixed operations, such as livestock, can easily deal with the waste from processing roots, but those with limited space find dealing with the bulky root and its waste highly inconvenient. In the USA, highend continuous flow microwave systems with aseptic packaging exist that are difficult to transfer to sub-Saharan Africa (SSA). Clearly, an affordable vacuum-sealed, food safe purée that could be stored without a cooling system has the potential to be the breakthrough technology for the expanded use of OFSP purée in SSA.Our research focused on developing a high quality OFSP shelf-storable purée at room conditions for at least three to six months. We also sought to develop additional costeffective OFSP purée bakery products.The laboratory work was carried out at the Food Analysis and Nutrition Evaluation Laboratory in Nairobi, Kenya. We developed products and carried out food safety research in collaboration with Organi Ltd, a purée processing factory in Homa Bay County, Kenya. We also collaborated closely with food technologist Antonio Magnaghi of Euro Ingredients Ltd (IEL) in product development.Bakeries in several countries (Kenya, Mozambique, Malawi, Ghana) are successfully using OFSP purée to make OFSP bread (Fig. 2) and consumer acceptance of the color and taste of the bread is high. In these cases, most are making the purée and using it immediately, or storing it using freezers.OFSP purée is a wet product. Hence, good hygiene practice is essential in producing the purée. We also need to ensure that beta-carotene, the precursor for vitamin A is not lost during the storage process.Several experiments were carried out, the results of which are summarized below:• We compared several different combinations of chemical preservatives and natural preservatives to explore their efficacy in controlling microbial growth in vacuumpacked OFSP purée and at what cost. So-called natural preservatives (natamysin and nisin) work but are very expensive ($0.40/kg purée). The combination of recommended local preservatives only costs $0.04/kg.• A challenge test study was carried out to determine the antimicrobial effect of locally available preservatives-sodium benzoate (0.25%), potassium sorbate (0.25%) and citric acid (1%) --on the growth of Staphylococcus aureus and Escherichia coli as well as on spoilage microorganisms in OFSP purée stored at ambient conditions in vacuumpacked bags over 12 weeks. The concentrations of preservatives used were effective on improving the quality of the purée as well as suppressing foodborne pathogens during storage at room temperature.• We investigated the retention of β-carotene content in vacuum-packed OFSP purée treated with preservatives and stored at ambient temperature, which ranged from 15° to 23°C, for up to 12 weeks. At 12 weeks, the vacuum-packed purée treated with the locally affordable preservatives had retained over 80% of the initial β-carotene content.• We assessed the level of food safety knowledge, attitude, and hygiene practices of OFSP purée handlers at a purée factory in western Kenya. Compliance to Good Manufacturing Practices (GMPs) and environmental hygiene in OFSP puree processing environment was also assessed. Data generated were used for designingAt the factory, it was found that peeling the roots by hand resulted in highly variable loss rates-from 20-35% of initial root weight, significantly affecting the cost of the final product. By introducing stiff brushes to carefully clean the roots during washing, the peel could be left on. However, processing roots with peel did require a heavierduty purée machine. Consumers could not detect any quality differences when this high-fiber purée was used to make OFSP bread, compared to the peeled purée. In 2018, EIL developed a washing machine that uses high water pressure to clean 100 kgs of roots in just six minutes.Were there any key challenges or lessons learned?Two major drawbacks were found in using the shelf-storable OFSP purée for bread production. First, the shelf-stable OFSP purée bread had a lower volume compared to the bread with fresh OFSP purée without preservatives. We hypothesized that the preservative sorbate slowed down the yeast activity in shelf-stable purée breads. To correct this, the recipe was adjusted. Using yeast at 1.5% of the wheat flour, 1% baking powder and adding functional gluten produced the appropriate standard volume for bread.Secondly, the shelf-stable OFSP purée bread proofed much longer than expected compared to bread using the fresh OFSP purée and the standard white bread. Thus, shelfstable purée with chemical preservatives is best for baked products that do not need to rise (cookies, chapatis) or for bread in smaller bakeries where longer proofing time would not be a major constraint.Baked products are an economically viable entry point for the use of OFSP purée and are well-liked by consumers. A key challenge currently for the value chain is the consistent supply of roots for the purée manufacturers.We are proceeding on three fronts regarding the improvement and use of purée:1) Working with small and medium enterprises in East Africa to use the shelf-storable purée.2) Testing the use of the hot-fill technology, which permits developing a purée that can be stored without refrigeration for 6-12 months with minimal quality loss. Recently, we have identified a source of packaging that is affordable, which to date has been the major bottleneck to exploring this approach.3) For large-scale processors able to invest, the use of aseptic processing for purées with a shelf-life of 24-36 months and high nutrient retention is now possible, as the company Sinnovatek (Raleigh, North Carolina) has developed a unit costing US$450,000, down from US$2.5 million. In Kenya, CIP is collaborating with Burton and Bamber Ltd, Sinnovatek, North Carolina State University and EIL to commercially test the use of this preservative free, aseptically processed OFSP purée for different bakery and culinary applications.","tokenCount":"1087"} \ No newline at end of file diff --git a/data/part_3/5923547275.json b/data/part_3/5923547275.json new file mode 100644 index 0000000000000000000000000000000000000000..94500abf3ec3df8a2a37f831b1575640b144769e --- /dev/null +++ b/data/part_3/5923547275.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"45a30cce881b4e02e11daad95eb1cc2b","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/0cd5c2b8-82a4-4f5d-9083-cc6174054e48/retrieve","id":"315364770"},"keywords":[],"sieverID":"96ed2000-2e80-4e27-9c56-5a44d5f9bf70","pagecount":"36","content":"Tropical Agriculture (CIAT) delivers research-based solutions that address the global crises of malnutrition, climate change, biodiversity loss and environmental degradation.The Alliance focuses on the nexus of agriculture, nutrition and environment. We work with local, national and multinational partners across Africa, Asia, Latin America and the Caribbean, and with the public and private sectors and civil society. With novel partnerships, the Alliance generates evidence and mainstreams innovations to transform food systems and landscapes so that they sustain the planet, drive prosperity and nourish people.The Alliance is part of CGIAR, the world's largest agricultural research and innovation partnership for a foodsecure future dedicated to reducing poverty, enhancing food and nutrition security, and improving natural resources.Almost thirty years ago, the global community highlighted three critical environmental challenges at the 1992 United Nations Conference on Environment and Development (UNCED -or the 'Earth Summit'): climate change, the loss of biodiversity, and land degradation. Concurrently, gender inequality was garnering recognition as a root cause of economic, social, and environmental ails (United Nations, 1995;World Bank, 2011;Gates, 2014). These wicked problems have since continued to push the planet beyond a \"safe and just operating space for humanity\" (Raworth, 2012), eroding physical and cultural landscapes as well as livelihoods.Climate change, biodiversity loss, and land degradation are deeply interconnected issues (Grace et al., 2016). Maintaining and restoring healthy, biodiverse ecosystems is key to mitigating and adapting to climate change, while climate change threatens biodiversity and the integrity of ecosystems functions (e.g. Omann et al., 2009). Hence, while global political agendas such as the three Rio Conventions 1 articulate stand-alone objectives and commitments within their respective focal areas, they fundamentally operate in the same ecosystems and are mutually dependent.Land-and nature-based approaches in the agroforestry and forestry sectors provide a unique opportunity to generate win-wins toward achieving the environmental goals of the Rio Conventions (e.g. Joint Liaison Group, 2007;Joint Liaison Group, 2012). For instance, the reversal and restoration of deforested and degraded land is embedded in the CBD's Aichi Biodiversity Targets, the UNFCCC's Paris Agreement, the UNCCD's Land Degradation Neutrality (LDN) 2 goals, as well as in the Sustainable Development Goals (SDGs), explicitly SDG 15. The Bonn Challenge -a global goal to bring 150 million hectares of degraded and deforested landscapes into restoration by 2020, and 350 million hectares by 2030 (Bonn Challenge, 2021) -has arisen as an \"implementation vehicle for national priorities such as water and food security and rural development while simultaneously helping countries contribute to the achievement of international climate change, biodiversity and land degradation commitments\" (IUCN, 2020) 3 . Indeed, in an WWF (2015) analysis of 75 Intended Nationally Determined Contributions (INDCs) from forested countries, reforestation, afforestation and restoration goals were among the most common ones advanced to combat climate change.Harnessing synergies among global environmental agendas thus critically hinges on land-use decisions, which are influenced by social dynamics -including gender. The relevance of engaging with gender and social inclusion for achieving environmental objectives is acknowledged in the Rio Conventions, each of which has a plan to engage with relevant gender issues. Yet, despite the linkages between gender equality and climate change, biodiversity loss, and land degradation, approaches that generate desirable feedback loops among these processes remain poorly understood and applied. Likewise, the potential synergies to be achieved across conventions through their gender-responsive implementation, and the promise of nature-based solutions for achieving these, have received limited attention.Hence, this paper explores how putting gender equity at the forefront of nature-based solutions can help leverage synergies between efforts to combat climate change, biodiversity loss and land degradation, contributing to both human (social) and planetary (environmental) well-being. Moreover, it examines the possible risks that nature-based approaches used to advance the goals of the Rio Conventions can pose to gender equality if these approaches are not responsive to gender issues. The paper is divided into three parts. First, we describe the social equity framework that guides our analysis of gender issues in relation to biodiversity, climate change, and land degradation, and initiatives to redress these. Drawing on this framework, we then present three examples of nature-based approaches that hold potential for synergistically advancing gender equality, and climate, biodiversity, and LDN goals. We demonstrate that greater gains can be accrued from gender-responsive approaches that address a wider set of priorities, harness a broader set of skills to address environmental ails, enhance capacities of marginalized groups by securing their rights and access to resources, and generate more equitable incentives to garner the buy-in of an array of actors. Yet, our examples also illustrate potential tensions between social and environmental objectives, highlighting the need to carefully consider and reconcile trade-offs while incorporating strong social safeguards.2 Land degradation neutrality (LDN) is defined by Parties to the UNCCD as \"a state whereby the amount and quality of land resources necessary to support ecosystem functions and services and enhance food security remain stable or increase within specified temporal and spatial scales and ecosystems\" (IUCN, 2015a, p. iv). LDN is a function of the relationship among three processes: degradation, restoration, and sustainable land management.3 The Bonn Challenge. Accessed online on 5 February 2021 at: https://bit.ly/37A6BKG Photo: Kelvin TrautmanA social equity framework provides a valuable lens through which to understand gender issues in the context of the critical environmental challenges the world is currently facing. The framework foregrounds three dimensions: which are embedded in contextually specific power relations. As per Fraser (1995Fraser ( , 2009) ) and several others who have built upon her work from a social or environmental justice perspective (e.g. Forsyth and Sikor, 2013;Pascual et al., 2014;Forsyth, 2014;Martin, 2017, Sikor andNewell, 2014), recognition centers on the existence and unequal experiences and rights of different socio-cultural groups or identities. Discrimination on the basis of identities ascribed at birth, such as gender, ethnicity or caste -and their intersections, which position women from certain castes at the lowest levels on the social hierarchy, for example -can be particularly difficult to challenge. Recognition entails upwardly revaluing marginalized identities, recognizing the legitimacy of diverse stakes and knowledge systems in a given issue, publicly valorizing socio-cultural diversity, and transforming societal representations of marginalized groups' identities, which affect the group's sense of self.From an equity perspective, the recognition of marginalized identities and their histories is not only an end in itself, but also a condition for enabling groups experiencing collective disadvantages to have a seat and a voice at the decision-making table with respect to processes that affect their well-being. The second dimension of equity -procedural equity -refers to such representation and to the effective participation and influence of these social groups in political processes, such as decision-making in environmental management initiatives. It also entails the institutionalization of values and norms that enable effective participation for all groups. Fraser (2009, p. 16) refers to 'participatory parity' as \"social arrangements that permit all to participate as peers in social life. Overcoming injustice means dismantling institutionalised obstacles that prevent some people from participating on a par with others, as full partners in social interaction.\" These parity principles can apply to all spheres of life, from the household to markets, associations, and formal and informal politics. In addition to the ability to engage as full members of society, they include strategies for safeguarding the rights of communities and collectives participating in environmental management initiatives, such as through their 'free, prior and informed consent' (FPIC) and impartial and effective grievance mechanisms.Finally, distribution refers to the way costs and benefits (in our case, emerging from climate action, biodiversity conservation, and LDN initiatives) are shared, including the ability to decide over the mechanisms of delivery and allocation. For example, such benefits may be direct payments for planting trees or other remunerated work, but also indirect benefits, such as those derived from a range of ecosystem services (e.g. biodiversity, water regulation, provisioning services), new livelihood options, and intangible benefits such as social capital or knowledge. Costs can include opportunity and transaction costs for implementing land-use change, increased labor burdens as well as management costs and passive costs, such as reduced access to resources (Pascual et al., 2014) (2013, p. 420) describe this context as the uneven playing field \"created by the existing political, economic and social conditions under which people engage in and benefit from resource distributions -and which limit or enable their capacity to do both.\" Different actors engage in climate change, biodiversity and degradation initiatives within this context, and the original distribution of power and resources among actors influences their ability to gain recognition, engage in decision-making, and secure a fair distribution of benefits and burdens through these agendas (McDermott et al., 2013;Pascual et al., 2014).The three dimensions of equity are interrelated and may be mutually reinforcing. For instance, recognition is needed to gain a seat at the decision-making table, and procedural changes may improve distributive outcomes. In our below analysis, we consider gender-responsive nature-based approaches as those that include strategies or measures to enhance equity across these dimensions, and to mitigate the risks that other approaches can pose in this regard.Yet, there may also be tensions and tradeoffs across these dimensions and across (Rayner et al., 2010). Yet, as we demonstrate below, there is nothing inherently equitable about nature-based approaches; these must be intentionally and strategically developed to address gender and inclusion issues.Photo: Ulet Ifansasti/CIFORRecent shifts toward decentralization of forest governance have resulted in a range of community-based/collaborative forest management (CFM) arrangements (Joshi et al., 2020). Such arrangements acknowledge the rights of forest-dependent people to forest resources and benefits, including income, and aim to reconcile conservation and human development goals (Baynes et al., 2015;Hajjar et al., 2021). They are founded on the idea of sharing power, decision-making, responsibilities, and benefits between the state and forestdependent communities to enhance the efficiency and equity of forest management (Ansell and Gash, 2008;Berkes, 2009). Central to the implementation of CFM are community forest user groups (CFUGs), wherein community representatives come together to make forestrelated decisions. In some contexts, such as India and Nepal, regulatory reforms have introduced quotas and membership rules to increase local women's participation in CFUGs, thereby opening spaces for women in community forestry (Gupte, 2004;Martin and Lemon, 2001;Das, 2011;McDougall et al., 2013aMcDougall et al., , 2013b;;Wagle et al., 2017).When justly implemented, CFM arrangements can promote synergies among several environmental goals (Pratiwi et al., 2018 (Carter and Gronow, 2005;Hajjar et al., 2021;Baynes et al., 2015). For instance, in Kyrgyzstan, CFM enhanced the conservation of biodiversity in walnut-fruit forests, and local people's motivation to conserve the forest due to improved livelihoods through sustainable resource use and income generation (Carter et al., 2003). The high density and diversity of tree species conserved through CFM provides benefits for climate change mitigation and biodiversity conservation, as well as ecosystem services that offer a range of economic benefits.At the same time, if implemented through a gender-responsive approach, CFM can enhance gender equality by increasing women's voice and influence in forest management and governance, improving their access to forest resources, and enabling them to secure livelihood benefits. Gender-responsive CFM can also foster improved environmental outcomes of relevance to the Rio Conventions through various pathways. In India, Agarwal (2015) has shown that women's effective participation in decision-making influences the nature of decisions made in CFUGs, such as the rules regarding forest use and how these should be implemented, results in fewer violations against these rules, and increases the likelihood of improved forest condition. Various cases illustrate that women's participation in forest governance and management are positively linked with ecological conditions, including improved forest growth (greater biomass regeneration) (Agarwal 2009) and ability of forests to store carbon, and increase forestbased livelihood benefits (Mwangi et al., 2011;Coleman and Mwangi, 2013). In India, Das (2012) notes slight increases in the value of non-timber forest products in forests managed by all-female user groups compared to those managed by male-dominated groups. Likewise, in Nepal, women's active participation in CFUGs is found to promote more cooperative, sustainablemanagement practices as well as improved incomes from the forest (Upadhyay, 2005). In their review of the collective action literature, Leisher et al. (2016) substantiate that the Indian and Nepalese cases provide clear and strong evidence of improved resource governance and conservation outcomes when women participate in CFUGs, although important data gaps remain for other regions.Mixed-gender groups in particular have been linked to better community compliance with rules for resource use as well as conflict resolution, improved patrolling and rule enforcement, greater accountability and transparency, more equitable access to resources, and more effective resource conservation (Agarwal 2015;Leisher et al., 2017).Promoting more equitable voice and influence can also generate broader buy-in and enhanced capacities, thereby improving prospects for socioeconomic development and positive environmental outcomes (Covelli-Metcalf et al., 2015;Horlings, 2015;Lescourret et al., 2015).Yet, equity is far from assured in CFM. An incomplete devolution of rights and decisionmaking authority to communities in some cases has raised concerns about the equitability of the model, both in terms of representation as well as in terms of distribution of costs and benefits, even when significant progress around recognition has been made (Sarin, 2001;Sarker and Das, 2002;Nightingale and Ojha, 2013). Within communities, too, hierarchies, social norms and other institutional structures are (re)produced in formal and informal forest management institutions, creating constraints for certain groups to actively participate in and benefit from collaborative management arrangements (Agarwal, 2001;Varughese and Ostrom, 2001;Blaikie, 2006). Groups which are marginalized in terms of access to land, education and public influence -which are frequently also the most forest-dependentare typically excluded from forest management committees and decision-making (Agrawal and Gibson, 1999). Exclusions are particularly pronounced for those who are discriminated against due to several factors of social differentiation, such as gender and ethnicity or caste, socioeconomic status, age, and more (Agarwal, 2010;Nightingale, 2002).Approaches such as Adaptive Collaborative Management (ACM) have been developed to address these inequalities and exclusions, and support more equitable processes and outcomes (Evans et al., 2020). ACM is a collective problemsolving and management approach that fosters the participation of diverse community members and their capacities to contribute knowledge and learn to solve important challenges together (Mukasa et al., 2016). In ACM, people with interests in using forest resources agree to act together to plan, observe, and learn from the implementation of their plans (Colfer, 2013). ACM is characterized by conscious, facilitated efforts among such groups to communicate, collaborate, negotiate and learn collectively. The process involves actors at multiple scales, including CFUGs at the community level and district officials (Colfer, 2013).ACM, like other dialogic approaches (e.g. Hegde et al., 2017), is premised on the idea that effective participation in local resource governance can be supported through the creation of knowledge-sharing and discussion spaces, wherein diverse actors engage in dialogue and social learning around collective resource management. Social learning -a \"process in which multiple stakeholders bring together their different knowledge, experiences, perspectives, values, and capacities for a process of communication and critical reflection as a means of jointly understanding and addressing shared issues, challenges, and potential options\" -can play a central role in equitable governance processes (McDougall et al., 2008, p. 30). Knowledge-sharing platforms can take the form of elected committees and formal boards or informal meetings. CFM arrangements can support the creation of these spaces (Carter and Gronow, 2005), wherein careful and inclusive facilitation allows marginalized groups to feel more comfortable speaking up in group settings (Hegde et al., 2017).As women's heavy work burdens or social norms may keep them from participating in such a process, ACM promotes identifying appropriate locations and times for meetings, adapting activities around women's schedules, and bringing training to the community when women cannot easily leave their village (Mukasa and Tibazalika, 2018). Moreover, it focuses on strengthening women's capacities -increasing their knowledge, skills, leadership, and confidence -and on gender relations, through supporting mixed-gender dialogues that address gender issues and encouraging men to champion women's empowerment (Mukasa et al., 2016).An (Evans et al., 2014). At those meetings, participants envision goals for promoting gender equality; identify concrete actions to advance these goals; implement and monitor those actions; and reflect on and adapt the process as needed (Evans et al., 2021). For instance, in Uganda, researchers supported mixed-gender groups in identifying the factors constraining women's meaningful participation in forest management decisions and limiting their access to forests and trees, with the aim of enhancing women's active participation and tenure rights (Evans et al., 2014).After eight years of ACM implementation in Uganda, women's confidence, engagement, agency, and decision-making had increased in CFUGs (Evans et al., 2014), as the approach provided a safe platform for women to voice their interests in the presence of men without intimidation or retribution (Mukasa and Tibazalika, 2018). Women additionally felt empowered to seek out external assistance, and collective action in mixed CFUGs led to more effective and sustainable forest interventions (Mwangi et al., 2009). The development of horizontal linkages (with other communities) and vertical linkages (with the National Forest Authority and NGOs) garnered support and recognition for women beyond the local level (Mukasa et al., 2016).Yet, participation in CFM does not guarantee equal access to benefits, or distributional equity. Monetary cost-benefit analyses used to forecast the economic value of environmental change and the sustainability of investments are often gender-blind, and fail to capture the costs of women's labor (and other) contributions to forest management, restoration, or other LDN initiatives (Sijapati Basnett et al., 2017). Unintended consequences also need to be carefully monitored to avoid burdening women with additional responsibilities without gaining commensurate benefits. For example, initiatives to combat deforestation have often tasked women with nursing and planting seedlings without compensation (Rocheleau and Edmunds, 1997). This has added to their unpaid work responsibilities, while failing to directly benefit them due to their insecure rights to land and trees when these mature (Sijapati Basnett et al., 2017).By generating a shared vision for forest governance among forest users, ACM has shown potential to improve distributional equity in CFM. For example, in some communities in Uganda, cultural norms prevent women from planting certain tree species. Through ACM, which brought spouses together to discuss forest and tree management, men and women shared their concerns about this restriction and agreed that tree planting by women could benefit the entire family. The dialogues have resulted in some women having their own plots and planting a greater diversity of tree species, including formerly forbidden trees, such as Eucalyptus spp., Pinus spp. and Maesopsis spp., for income (Mukasa et al., 2016). The ACM approach further improved coordination among communities, state forestry agencies, and NGOs, and enhanced local people's access to resources. It enabled women to strengthen and protect their rights to trees on-farm within the community, and to lobby for equitable access to tree seedlings and allocation of land between women and men in government-managed central forest reserves (Mukasa and Tibazalika, 2018). This, in turn, enabled both women and men to restore degraded forestlands from which they derived forest income as well as environmental benefits (Evans et al., 2014).Strategies and lessons learned from ACM for generating synergies are also relevant to other nature-based approaches, such as those responding to climate change.3.2 3. 2012). Land degradation has been identified as an offshoot of deforestation through shifting cultivation and logging (Bai et al., 2008;Olsson et al., 2019). A national approach to REDD+ may require a country to maintain levels of forest Jonsson, 2015) and constraining their access to resources (Bee and Sijapati Basnett, 2017), which jeopardizes the efficiency and sustainability of interventions. Acknowledging the potential to achieve positive synergies among environmental and equity outcomes, some Nationally Determined Contributions (NDCs), which are the basis for national climate plans, include a framework for integrating gender equality, specifying the type of climate actions, related targets, policies and measures governments will pursue to account for how women and other underrepresented groups engage in these processes (Huyer et al., 2016).REDD+ calls attention to equity and community well-being (Larson et al., 2018) and to supporting the full and effective participation of relevant stakeholders, in particular Indigenous Peoples and local communities, in local planning and sustainable land management. The UNFCCC's Cancun safeguards (2010) 5 and Warsaw Framework (2013) 6 require countries participating in REDD+ to address and respect social issues, develop plans (including gender action plans) for doing so, establish safeguard systems, and report on how this is being achieved (Bhandari et al., 2018). Nonetheless, early REDD+ projects and programs have largely sidelined gender considerations, which has reduced their effectiveness (Larson et al., 2018). There are, however, ongoing efforts to make REDD+ more inclusive.Gender-responsive REDD+ acknowledges that: 1) actual and projected climatic changes will have differentiated impacts on diverse social groups depending on where they live, how they sustain their livelihoods, and the roles they play within their families and communities (Dekens and Dazé, 2019); 2) different gender groups hold valuable and differentiated knowledge, capacities, priorities, and constraints to adapt to climatic changes (Arwida et al., 2016); and 3) women -just as men -are key agents of change and must have a voice in climate action (e.g. Djoudi and Brockhaus, 2011). Hence, it recognizes the rightful claims of women and menparticularly from marginalized groups, which are most vulnerable to climate change -in climate action and as REDD+ stakeholders.Photo: Patrick Shepherd/CIFOR Yet, initiatives frequently fail to recognize and value the diversity of interests in, and contributions to, the management of resources under REDD+, particularly those of marginalized actors. In Larson et al.'s (2018) global comparative study, women and men shared many wellbeing goals, but women (unlike men) also emphasized the importance of having their own source of income. Lack of recognition of women's interests, however, resulted in a much greater drop in their perceived well-being over time in REDD+ villages compared to men.Such a lack of recognition results in an exclusion from participation in REDD+ decision-making.For instance, in two REDD+ projects in the Democratic Republic of Congo, Stiem and Krause (2016) found that although rural women spent as much time in the forests as men, the systemic devaluation of women's forest-related work and knowledge legitimized men's dominance in forest governance and related initiatives. In Vietnam, Pham et al. (2016) show that local women are poorly represented and lack influence in REDD+ processes. Strategic decisions for the programme are concentrated at the national and international levels (Westholm and Arora-Jonsson, 2015); and as research from Vietnam shows, even at the national level, women who participate in REDD+ meetings rarely occupy leadership positions or engage in REDD+ working groups (Pham et al., 2016). When decisions are made locally, women's influence is limited due to gender inequalities in rights to land and forest products, access to information, and to women's normative exclusion from public decision-making spaces, including those where REDD+ issues are discussed (Sarmiento Barletti et al., 2019).As a case in point, in Larson et al.'s (2018) comparative study, rural women in 62 villages participating in 16 REDD+ initiatives knew much less about the program than men and had little voice in local REDD+ decision-making processes.In Vietnam, women's nominal participation curtailed their ability to advocate for their preferred benefits from REDD+ and the means of receiving them. Initiatives opted for uniform cash benefits despite women's preferences for non-cash benefits, which constrained women's access to benefits and reduced their willingness to participate in project activities (Pham and Brockhaus, 2015;Pham et al., 2016). Findings from these studies highlight the need to examine shared and separate interests among women and men in REDD+ communities, and to engage with multiple actors to develop initiatives that will generate their buy-in and equitable benefits.Measures are needed at several scales (from the local to the national and international) to promote equitable access to decision-making spaces on climate change-related strategies, policies and programmes, such as REDD+ (Khadka et al., 2014;Saito-Jensen et al., 2014;UN Women, 2014;Westholm, 2016). Larson et al. (2018) underscore the need to engage local women across the entire life cycle of a REDD+ initiative to make relevant design and implementation decisions.Similarly, UN-REDD ( 2017) calls for equitably involving women and men in REDD+ workshops, committees, participation structures, task forces, consultations, decision-making, and capacity building. Other measures include encouraging women's nomination and participation in meetings; sharing workshop topics with all participants before meetings to ensure equal capacity to participate; identifying in-country mentors to encourage gender-equal participation in REDD+; and providing regular reports of women's participation rates within supported activities to REDD+ focal points (UN-REDD, 2017). Specific provisions, such as having women-only groups or mixed groups implementing REDD+, may also be needed to enhance women's active participation (Bee and Sijapati Basnett, 2017;Westholm, 2016).To be effective, these measures must be accompanied by capacity-strengthening processes and an attention to the power dynamics and institutional structures that maintain gender inequalities (Agarwal, 2010;UN Women, 2014). For instance, as social norms often constrain women's participation in forest decision-making (Stiem and Krause, 2016), there is a need to work with local opinion leaders who play an important role in shaping gender norms and perceptions in order to make space and create opportunities for women in REDD+.These approaches show promise for increasing women's buy-in and ownership of REDD+ initiatives, as well as the effectiveness, efficiency and sustainability of REDD+ by accounting more accurately for their specific knowledge, needs, priorities and contributions (Larson et al., 2018). Initiatives like REDD+ are inscribed in landscapes of pre-existing resource struggles, patronage, and politics, and distributional outcomes critically depend on measures to redress these interlocking political and economic inequalities (Eilenberg, 2015). In the absence of such measures, elite capture of REDD+ benefits has been reported (Indrarto et al., 2012). This, too, has a gender dimension, as rural women rarely have access to the authorities and policymakers who can facilitate access to benefits (Stiem and Krause, 2016;Westholm, 2016).Lack of formal rights to land and related ecosystem services further undermines the ability of marginalized groups to benefit from REDD+, which advises that benefits should accrue to 'forest and tree owners' (Indrarto et al., 2012;Sunderlin et al., 2018). Tying resultsbased benefits to land tenure has significant implications for gender equality because women's rights to land and trees are typically insecure and mediated by male relatives (e.g. husband, father, uncle) (Meinzen-Dick et al., 2019). As noted earlier, this means that as land gains value, it may revert to (male) landowners (Turner 2014), putting women at risk of dispossession (Arwida et al., 2017;Khadka et al., 2014;Larson et al., 2015;Peach Brown, 2011). Even when titling of lands to Indigenous communities is promoted through climate actions, interventions have not necessarily ensured that all women and men in those communities benefit, and may have actually reinforced inequalities (Robinson et al., 2017;Monterroso and Larson, 2018). Understanding land-use practices, claims, and customary and statutory tenure relations is thus integral for mitigating the risks REDD+ initiatives may pose to different land and tree user groups. Strong social safeguards are also needed to uphold the rights of marginalized people to decide on and control their resources (Elias et al., 2020).Several authors have stressed that tenure security and social inclusion are pre-conditions for successful REDD+ interventions, and that REDD+ can contribute to forest land tenure security and gender equality (Larson et al., 2018;Sunderlin et al., 2018). REFACOF's work in Cameroon demonstrates that REDD+ can indeed offer opportunities to enhance gender equality by contributing to global efforts to enhance women's land rights. The network has used REDD+ as an opening to bring articles and forest policies that secure women's rights to land and forests and enhance their access to benefit-sharing mechanisms to the table. As the network's President, Cécile Ndjebet, has stated: \"If women have the property rights to the forest, she will build in forest enterprises[sic], give added value, develop partnerships, gain money, change her status and the status of her family-we don't need money from REDD+, we don't need carbon from REDD+, we need reforms. Bring REDD+ for reforms-we care about reforms that will secure women's rights\" (IUCN 2015b, p. 3). These efforts have not gone in vain. According to IUCN (2015b, p. 4), REFACOF has \"achieved remarkable headway in reforming national land tenure laws through the lens of gender and REDD+ by presenting women's legislation for land tenure reform and using REDD+ as a window for opportunity.\" Given the links between secure tenure and sustainable land and resource management decisions, changes in this area also hold prospects for improved environmental outcomes.Despite potential synergies among the equity and environmental goals of REDD+, however, there may sometimes be a need to reconcile trade-offs or tensions among goals. For instance, research on climate mitigation/adaptation linkages in Burkina Faso has shown that women's livelihood options and access rights, which are associated with women's adaptive capacities, are significantly greater in indigenous tree-based parklands (dominated by Vitellaria paradoxa and Parkia biglobosa trees) and small-scale restored lands than in (less diverse) monoculture tree plantations (Djoudi et al., 2015). In this regard, women's adaptive capacities are positively linked with biodiversity goals. Yet, as some monoculture tree plantations contain higher carbon stocks than parklands, prioritizing carbon stocks for mitigation action over other goals can compromise women's adaptive capacities.Assessing the potential impacts of REDD+, or any other climate mitigation initiatives, on women's and men's adaptive capacities is needed to identify potential tensions or trade-offs among gender equality and resilience, climate action, biodiversity conservation, and LDN, and to develop options that can help reconcile these tensions. The same holds true for other naturebased initiatives, such as the development of tree-based value chains.The development of forest and tree product value chains offers additional opportunities to generate synergies among the equity and environmental agendas advanced in the Rio Conventions. These value chains include timber and non-timber products, and encompass all value-adding activities from production to consumption (Ingram et al., 2014). While the commercial exploitation of forest and tree resources may intuitively (and often rightly) be considered at odds with the ultimate objectives of the Rio Conventions, the development of sustainable forest and tree-based value chains is increasingly touted as a vehicle for incentivizing more sustainable land use. For instance, value chains that generate income from biodiversity can add value to biodiversity conservation relative to other land uses while improving smallholder income (de Leeuw et al., 2018). These prospects are often promoted to incentivize the adoption and sustainable uptake of restorative practices, such as agroforestry, that yield tree products with market value (Brancalion et al., 2017).Gender-responsive value chain development can support synergies between various environmental objectives in three key ways.First, the development of womendominated non-timber forest product (NTFP) value chains can provide economic incentives for restoring and conserving a greater diversity of species than if focusing only on typically male-dominated mainstream commodities, such as various timber species (e.g. Kristjanson et al., 2019). This, in turn, can support more biodiverse restoration and resource management options as well as climate change mitigation and adaptation through more diversified 3.3 3.3 Forest and tree-based value chain development livelihood portfolios (e.g. Shackleton et al., 2011;Djoudi et al., 2016).Second, while the implementation of many nature-based solutions relies on local women's and men's labor contributions, gender inequalities often limit women's access to benefits (Sijapati Basnett et al., 2017), thereby reducing their incentives to participate in such initiatives (e.g. Pham et al., 2016). The development of women-coded value chains can increase the flow of economic benefits to women and incentivize their contributions toward sustainable land management while diversifying and enhancing household livelihood portfolios (Ahenkan and Boon, 2011). For instance, the commercialization of NTFPs that are primarily traded by women, such as shea nuts and butter (Vitellaria paradoxa) or néré seasoning (soumbala or dawa dawa -Parkia biglobosa) in West Africa, can provide income-generating opportunities to women that motivate the protection of standing trees or forests (Carr and Hartl, 2008;Pehou et al., 2020).Third, entry barriers and inequitable access to service provision may constrain rural women's abilities to adopt sustainable land-use practices. In Ethiopia, for instance, Tsige et al. (2020) find that women farmers' capacity to adopt climate-smart agriculture is constrained by their limited access to cooperatives, extension services, and credit. Catacutan and Naz (2015) show that similar factors limit women's uptake of agroforestry practices in Vietnam. Gender inequities in terms of accessing machinery and information can lead to more ineffective resource use. For example, in Cameroon, women firewood producers who relied on machetes rather than chainsaws were found to often cut younger (and thinner) mangroves (Feka et al., 2011). Value chain development efforts that explicitly address inequities and enhance women's competitiveness in value chains, such as through enhanced technological capabilities or access to services, can hence help unlock synergies between equity and sustainability in rural value chains. For instance, the promotion of women-only cooperatives through an organic coffee certification scheme in Guatemala incentivized the uptake of more sustainable production practices while yielding improvements in women's skills and social status (Verhart and Pyburn, 2010).Given the high spatial overlap between tropical forests and the world's rural poor, forest product value chains are increasingly seen as channel for 'pro-poor' development (Ingram et al., 2014). To this end, the past few years have witnessed an increased emphasis on 'inclusive value chain development', often with the aim to improve smallholders' access to information, inputs, services and markets while developing more equitable relations between different value chain actors (Stoian et al., 2018). Yet, with their emphasis on an undifferentiated group of smallholders, these efforts often continue to overlook gender relations and undervalue women's roles in forest product value chains, maintaining the invisibility -or even the criminalization -of women's livelihood activities (Shackleton et al., 2011). In some instances, this is changing as some value chain development efforts are more explicitly targeting gender equality and women's economic empowerment (Stoian et al., 2018).Gender-responsive value chain development begins with a recognition of the gendered nature of market systems, and the legitimacy of women and men as stakeholders in these markets and in the management of tree resources on which they are based. Although both women and men play a role in collecting and trading in forest and tree products, gender specialization is evidenced in the gathering and processing of most types of forest products (Sunderland et al., 2014). For instance, across Latin America, Asia and Africa women dominate the collection of products used for food, fuel, fodder, and medicine, as well as for small-scale trade (Ertug, 2003;Gausset et al., 2005;Price, 2006), whereas men gather wood for construction or sale and dominate the collection of higher-value forest products sold on the market (Sunderland et al., 2014). Differences in reliance on tree biodiversity influence the knowledge women and men acquire about species, their uses, management, and markets, and result in gendered knowledge systems that are at times distinct, overlapping, and complementary (Degrande and Arinloye, 2014;Elias, 2016). Use and knowledge differences also occur within gender groups, and along the lines of ethnicity, age, marital status, socio-economic status, kinship, mode of livelihood, and other factors of social differentiation (Kiptot et al., 2014;Elias, 2016). Recognizing the legitimacy of this knowledge and of the roles women, Indigenous People, and other groups play in using, managing, processing, and trading in natural resources is needed to acquire reliable information on (Howard, 2003), and generate equitable influence and opportunities in, value chains.Gender norms and roles limit the ways and terms under which women participate in markets for more remunerative products, with women often being confined to less remunerative value chains and nodes and men capturing the trade of products that gain commercial value (Ingram et al., 2016). Nonetheless, recent studies highlight the significant, yet often less visible, roles that women play in conventionally men-coded value chains, such as charcoal (Ihalainen et al., 2020a), wood furniture (Nansereko, 2010) and oil palm (Li, 2015;Elmhirst et al., 2016Elmhirst et al., , 2017)). Gender inequalities both within and beyond most forest and tree-based value chains tend to disproportionately constrain women's participation and beneficiation by limiting their decision-making power and access to assets and resources such as information, inputs, credit, and markets (Ingram et al., 2016, Ihalainen et al., 2020b).Social norms also restrict women's influence and leadership roles in mixed-producer cooperatives and associations. For instance, women are less able than men to join coffee growers' associations or their boards, and when they do, negative stereotypes about businesswomen create hostility towards them. As Nestlé (cited in IFC, 2016, p. 35) notes, \"Women do more than two-thirds of the work involved in coffee farming in Kenya. However, fewer than 5 percent of leadership roles in coffee cooperatives in the country are currently held by women.\" Constraints must also be understood in relation to other factors of social discrimination (e.g. education, age, wealth and marital status), which intersect with gender to present women from different groups with differentiated opportunities.Discriminatory norms further restrict women's active representation and participation in the management and conservation of the forest or tree biodiversity that forms the basis of value chains at various scales. If not genderresponsive, integrated conservation-livelihood initiatives, such as those focused on tree product value chain development, can overlook women's strategic interests, fail to preserve and leverage their ecological knowledge, and augment their work burden (Elias, 2016). In contrast, gender-responsive approaches have already allowed women to actively participate in livelihood development activities and public decision-making platforms, including in the creation of policies (UN Women, 2018). Toward this end, Lewark et al. (2011, p. 203) call for \"consistent and long-term training programmes with a focus on gender equality to eradicate these socially embedded inequalities.\"The capacity of women and marginalized groups to participate in decisions around value chain development and to influence trade negotiations and the ways benefits are defined, transferred and consumed, has implications for fairness in the distribution of costs and benefits from these value chains (Martin et al., 2013;UN Women, 2018). The potential tree-based value chains hold for delivering equitable benefits and enhancing gender equality depends on the gender relations embedded in the type of production system in which these forest products are inscribed. For example, monoculture tree plantations, which tend to be controlled by men and which may supplant other land uses that sustain women's livelihoods, typically present different challenges for gender equality than products from agroforestry plantations or from the forest. Oil palm, for one, has been shown to displace local women from land on which they cultivate food crops (White, 2012;Li, 2015;Elmhirst et al., 2017). Women's contributions to large-and small-scale palm oil production are often poorly visible, rendering them 'shadow workers', and they are over-represented in the casual worker category, where they lack decent working conditions (Sijapati Basnett et al., 2016).In the organic coffee value chain, Kasente (2012) shows that women producers in Uganda provide unpaid labor on family farms that fall under their husband's authority, but have little opportunity to manage their own farms because of lack of secure rights to land and notions that coffee is a 'man's crop'. Hence, \"coffee production offers more income, and more possibilities for off-farm diversification for men, and while a few women may benefit from it, coffee production increases labour burdens, and strains social relations for women\" (Kasente 2012, p. 120).Products that are controlled by women producers such as argan oil in North Africa, and shea butter in West Africa, offer insights into possibilities for enhancing women's benefits from tree-product value chains. The expansion of economic opportunities available to rural women can help improve women's independent incomes, which in turn may be leveraged for renegotiating broader gender inequalities within the household and community (Ihalainen et al., 2020b). Benefits have been particularly significant when women producers come together and exercise collective action in cooperatives and associations (Rice, 2010). Women's full membership and influence in these associations, and the various functions and services these can offer, have supported women's empowerment and gender equality.For instance, women's argan cooperatives in Morocco provided literacy training, financial management, and home economics courses to members, as well as daycare facilities and shops with discounted products. Through cooperative membership and engagement with these services, women members reported gaining the respect of their husband and other male members of their community, and a sense of empowerment through increased control of their own incomes (Biermayr-Jenzano et al., 2014). Gender-responsive value chain development initiatives can support such processes. For example, in Burkina Faso, an association of shea butter producer groups, which received many years of support from NGOs, fostered knowledgesharing and innovation, joint production, and improved product quality and returns.Members strengthened their social relations and experienced changes in intra-household gender relations as a result of an increase in women's income, confidence, and skills (Elias, 2010). Other studies similarly show that women's meaningful participation in associative structures can strengthen social bonds, sense of identity, empowerment, and common culture (Le Mare, 2008), and that coming together outside the home around issues that matter to them can enable women to forward their own agendas (Elias and Arora-Jonsson, 2017). Hence, although they should not be idealized as necessarily empowering or egalitarian, women's associations do demonstrate the power that women's collective action can have for supporting gender equality at the household and community levels and across scales.The above examples illustrate that genderresponsive value chain development that addresses recognitional, procedural, and distributional equity can advance gender equality. Yet, concerted efforts are needed to tackle inequalities both within and beyond the value chain, and gender-responsive value chain development must not be reduced to simple 'add-ons' to environmental programming. The incorporation of marginalized populations into global value chains for niche products may make them vulnerable to price fluctuations and buyer policies (Elias and Saussey, 2013;Burke, 2012), and the commercialization of NTFPs of importance to women can result in men's appropriation of production activities (Shackleton et al., 2011). What is more, women's involvement in under-commercialized value chains may owe to socially constructed gender roles and inequities, rather than necessarily reflecting their preferences and aspirations (Arora-Jonsson, 2011; Westholm and Arora-Jonsson, 2015). Women's involvement is also no guarantee for sustainable value chains and may result in an overexploitation of resources (Marshall et al., 2006;Villamor et al., 2014) as women, just as men, are faced with material realities and social expectations that shape their engagement with natural resources. Hence, synergies between social and environmental outcomes must be carefully created, rather than presumed.When they strengthen local resource users' rights, abilities, and incentives to sustainably use and manage forest and tree-based landscapes, gender-responsive nature-based approaches hold promise for synergistically addressing climate change, protecting biodiversity, and combating land degradation. As we have shown, placing equity concerns at the heart of these approaches can integrate diverse knowledges, draw on a wider set of priorities, harness a greater range of capacities to restore diverse ecosystem functions, and deliver broader-ranging benefits that generate the buy-in of multiple stakeholders.Yet, as we have illustrated, synergies between gender equality and climate, biodiversity and land degradation goals must be created and nurtured rather than presumed. Trade-offs among goals may occur and need to be reconciled. As our case studies illustrate, the multiple dimensions of social equity -recognition, representation and distribution -offer a useful framework for identifying entry points and potential trade-offs, understanding key linkages, and promoting synergies between gender equality and environmental outcomes across various types of efforts and interventions.Our first example showed that gender-responsive approaches in collaborative forest management have the potential to open spaces for women's influence in forest management, improve their access to resources and decision-making, and enable them to secure livelihood benefits. The case highlighted that gender quotas alone are not enough to address gender inequalities; initiatives must also address social barriers, recognize rights, equitably distribute benefits, and enhance capacities.Our second case illustrated that the implementation of incentive-based mechanisms such as REDD+ requires recognizing rights, inclusive benefit-sharing mechanisms, and effective representation to avoid exacerbating social differentiation and increasing the vulnerability and exclusion of women. Furthermore, it called for integrating women's knowledge and priorities in initiatives to strengthen resilience and create more effective and sustainable land use systems.Finally, the third example showed the potential of forest and tree-based value chain development for improving gender equality and women's empowerment, expanding livelihood options, and increasing the uptake of sustainable practices in restoration and conservation.Indeed, advancing gender equity and social inclusion requires the recognition of women and marginalized groups as legitimate stakeholders, and equal value given to their knowledge, priorities and claims (Sijapati Basnett et al., 2017). It calls for strategies to enhance the participation, voice, and influence of women and marginalized groups in making decisions about land use and control and about priorities for resource management at multiple scales. Finally, it means equitably distributing the costs and benefits, and acknowledging and addressing any negative unintended consequences of environmental change and nature-based initiatives. Safeguards, discussed in the case of marketbased REDD+, are important mechanisms to address unfavorable gender outcomes, whereas further actions are needed to reconcile tensions and unintended outcomes in the development of value chains. For instance, although several certification bodies seek to promote equitable markets, important gender considerations remain unaddressed within certification standards, limiting the potential of these market-based mechanisms to address gender equality (Sijapati Basnett et al., 2016).All of our cases underscore the importance of addressing discriminatory gender norms and practices as well as exclusionary formal and informal institutions and processes that cause interlocking inequalities at the household, community, state and market levels, and that limit the ability of women and marginalized groups to voice their perspectives, interests and concerns effectively.The cases demonstrate that we should not assume that women's representation in environmental initiatives alone will result in more equitable decision making and benefits. Even well-meaning efforts may inadvertently reinforce or exacerbate marginalization if underlying inequalities are left unaddressed. To promote positive social-environmental synergies, gender-responsive policy and programming -and, critically, a broader enabling environment -will need to safeguard the rights of women and marginalized groups, strengthen their capacities to exercise leadership and influence environmental agendas, and ensure that they reap the benefits, and not only the costs and burdens, of environmental change.","tokenCount":"7581"} \ No newline at end of file diff --git a/data/part_3/5926018518.json b/data/part_3/5926018518.json new file mode 100644 index 0000000000000000000000000000000000000000..c17d676dc2e4fef4ddffa08c718b433cb95b7650 --- /dev/null +++ b/data/part_3/5926018518.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"821ed222e9a385f70c8f23b785054a22","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/c746f42a-e1ce-4409-9cfa-7248157ca5e1/retrieve","id":"1745258215"},"keywords":[],"sieverID":"e6cf073e-9be8-4172-a8a0-e40274d7fb7d","pagecount":"7","content":"y Farmers in the Mai Son district are increasingly embracing novel forage varieties, such as Green Elephant grass and legumes. Notably, Green Elephant grass is favored for its adaptability to the local climate, substantial biomass production, and positive impact on animal productivity. This adoption proves instrumental in fulfilling the growing demand for animal feed.y Key obstacles hindering widespread adoption revolve around limited access to training, information, and financial resources for investments. The challenges are particularly acute in remote and mountainous areas, with Hmong women experiencing additional hurdles due to language barriers. Efforts to address these barriers are crucial for fostering comprehensive adoption of beneficial forage technologies in the region.Georgina Smith/ CIATin livestock nutritional management within the Mai Son district of Son La province (Atieno et al., 2021a(Atieno et al., , 2021b)).Building on these achievements and as part of the OneCGIAR Initiative SAPLING, this study seeks to discern the preferences among the forage varieties promoted over the past five years. Additionally, it aims to identify factors that either encourage or discourage their adoption. This groundwork is essential for the subsequent expansion of these interventions to other regions in Vietnam. To achieve this objective, we have opted for a qualitative approach, employing semi-structured interviews conducted with both adopting and non-adopting producers, encompassing men and women in the Chieng Luong and Chieng Chung communes of the Mai Son District. A purposive sampling method was employed to ensure representation of both women and men farmers. Additionally, the socio-geographic typologies utilized in prior studies were maintained, distinguishing four farming systems and considering ethnic composition across three geographic systems: valley areas, mid-level, and highland areas (Tiemann, 2019;Hammond et al., 2021) (see Figure 1). We selected farmers who have embraced a minimum of one type of FT, with a particular focus on those advocated by the Li-Chan project. Our interviews aimed to pinpoint the specific species they have integrated, understand the primary motivations behind their adoption, explore the perceived benefits they have encountered, and identify the hurdles encountered throughout the adoption process. The interviews, conducted in Vietnamese in May 2023, were subsequently translated into English. Data analysis was conducted utilizing the content analysis method. The categories of analysis included in the tool encompassed 1) knowledge of the FT and 2) benefits and challenges associated with adoption.The predominant forage varieties adopted in the region include Green Elephant grass and Mombasa guinea, with Pinto peanut, Rice bean, Mulato II, and Ubon Stylo also seeing adoption, albeit to a lesser extent. Green Elephant grass emerges as the most favored variety across all types of farms, commonly utilized by both men and women. In farms categorized as Type A and C2, farmers are primarily influenced by the Li-Chan project and recommendations from fellow farmers who have successfully implemented forage technologies. Conversely, in Type B and C1 farms, diversifying feed sources, experimenting with new varieties, and increasing biomass production are the predominant motivations for adoption. Regarding gender differences in FT adoption, women often rely on expert recommendations, such as those from the Li-Chan project and neighboring farmers. In contrast, men emphasize the significance of augmenting biomass production.Farmers have recognized various benefits stemming from the implementation of these FT. The foremost advantages include reduced labor costs, attributed to the low maintenance requirements of these varieties, and increased animal productivity. Women particularly highlight the convenience of having forage plant areas closer to their homes, facilitating seamless integration with household labor. Farmers in Type C1 and C2 farms appreciate the ease of cutting these forage technologies without posing harm during harvesting. Table 1 gives a comprehensive overview of the benefits of adoption identified by the interviewees. Farmers who have adopted forage technologies encountered diverse barriers and challenges, leading to the discontinuation of some previously adopted varieties. Notably, Pinto peanut, rice bean, and Ubon Stylo are among the most underutilized varieties, primarily due to their low performance and poor adaptability to cool winters.Access to training for the effective management of forage technologies is identified as crucial, but not all farmers have had the opportunity to benefit from it. Farms located closer to the market (Type As and B), exhibit greater access to training compared to more distant farm Types C1 and C2. Furthermore, there is a gender disparity, with men having more access to training than women. Training initiatives have been provided by the Li-Chan project, veterinarians, and nongovernmental organizations. Similar challenges are observed in terms of access to information, particularly on farms situated in remote and mountainous areas (Type C1 and C2).All farmers interviewed from these areas express difficulties in accessing information, with Hmong women facing more significant challenges than men, including language barriers such as not speaking and reading Vietnamese. The internet and handouts serve as the primary sources of information for these farmers.Financial constraints and limited access to credit pose challenges for farmers. In farm Types A, B, and C1, farmers predominantly finance livestock activities using their savings.On the Type C2 farms, which are further away from the market, there is a prevalent fear among farmers of being unable to repay loans. Table 2 provides an overview of the barriers to adoption derived from interviewed farmers.Based on the identification of adoption conditions and key barriers faced by farmers in the region, the following recommendations are proposed to enhance the adoption levels of forage technologies:y Promote Green Elephant grass: Given that Green Elephant grass is the preferred variety among farmers in the region and has demonstrated positive results, ongoing promotion and adoption efforts should be continued.y Address challenges with Pinto peanut, rice bean, and Ubon Stylo: Recognizing the difficulties farmers face in adopting Pinto peanut, rice bean, and Ubon Stylo, focused efforts should be directed towards improving the performance and adaptability of these varieties, especially in cool winter conditions.y Sustain Li-Chan project activities: The Li-Chan project has played a significant role in motivating farmers to adopt forage technologies. It is essential for the project to persist in its activities to further boost adoption levels in the region, i.e., through the OneCGIAR SAPLING initiative.y Enhance training and information access in remote farms: Develop strategies to extend training and information access to farms located further away from the market. Potential initiatives may involve collaborations between research centers and rural extension programs. Additionally, a gender-inclusive approach should be integrated into these strategies to address the existing disparity in training and information access between men and women.y Mitigate fear of financing in remote farms: Recognize the fear among farmers in remote farms about seeking financing. Implement measures to create favorable and easy payment conditions, encouraging farmers to confidently request credit for financing their livestock activities.By implementing these recommendations, there is a prospect of overcoming existing barriers and fostering a more widespread and successful adoption of forage technologies in the region.Neil Palmer / CIAT ","tokenCount":"1125"} \ No newline at end of file diff --git a/data/part_3/5933115377.json b/data/part_3/5933115377.json new file mode 100644 index 0000000000000000000000000000000000000000..78c7cd9eed56b57b317199655307c8a49a8d468f --- /dev/null +++ b/data/part_3/5933115377.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"4da0e80560d0c6cbb7aee412fc45ac16","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/af2ab9e9-38e9-4ba6-8724-45739946f9ef/content","id":"-1874205860"},"keywords":[],"sieverID":"d993b159-57f0-4094-95bb-4d3c3ed5864f","pagecount":"46","content":"Why so important?• New race: Ug99 (Uganda 1999) -much of the world's wheat suddenly susceptible• Need for global monitoring -movement and next threats (new variants, other races etc.)• Stem Rust: the \"defeated disease\", a major agricultural success story of 20 th century• Feared: capable of 100% crop loss within weeks.• 30,000+ survey records • Crop monitoring is now feasible in all agro-ecosystems with modern remote sensing technologies.• Crop disease monitoring has to be #1 priority.• Satellite information combined with crop/SE models can indicate ways to maximize productivity in fragile and unstable ecosystems.• Precision agriculture possible for any farmer with a cell phone, leading to better livelihoods, while safeguarding the environment.• Remote sensing facilitates access to millions of accessions of genetic resources to help buffer crops against climate change.• More globalized networks can revolutionize crop monitoring in terms of coverage, comprehensiveness and access to data","tokenCount":"144"} \ No newline at end of file diff --git a/data/part_3/5938064584.json b/data/part_3/5938064584.json new file mode 100644 index 0000000000000000000000000000000000000000..631957be31ad50f4673047ed7e7ead2a0750b9b1 --- /dev/null +++ b/data/part_3/5938064584.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"1af94e6d8832069d379bf6e09ea9d819","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/2977f9ca-535a-4817-ae4d-5938c273964d/retrieve","id":"-1437671526"},"keywords":[],"sieverID":"b4018293-6854-4181-be75-4173a7ef122e","pagecount":"64","content":"El Centro Internacional de Agricultura Tropical (Ciat) agradece a los productores, procesadores, comercializadores, profesionales representantes de las entidades de apoyo e instituciones de investigación y demás actores vinculados a la cadena productiva de la piña en el Valle del Cauca; por su disposición para conjugar, en un solo lenguaje, las brechas tecnológicas de la cadena y determinar aquellas que pueden ser abordadas, a través de investigaciones, por las instituciones académicas y los centros de investigación de la región; en especial, los vinculados al proyecto \"Incremento de la competitividad sostenible en la agricultura de ladera en todo el departamento, Valle del Cauca, occidente\".De forma especial, expresamos nuestra gratitud con la Universidad Nacional de Colombia, sede Palmira, por habernos permitido liderar este proceso participativo que concluye con una hoja de ruta o guía temática para los investigadores interesados en esta línea productiva. Expresamos nuestra gratitud también con la Gobernación del Valle del Cauca y el Sistema General de Regalías como financiadores del proyecto. Así mismo, agradecemos a los integrantes del Comité Departamental de la piña y a los profesionales de la Secretaría de Ambiente, Agricultura y Pesca del Valle del Cauca, de la Universidad del Valle, de la Corporación Colombiana de Investigación Agropecuaria (Agrosavia), de la Asociación Hortofrutícola de Colombia (Asohofrucol), del Instituto Colombiano Agropecuario (iCA) y del Parque Biopacífico, por su constante compromiso y por la contribución con sus saberes, conocimientos y experiencias.Por último, extendemos un especial agradecimiento individual a: Alberto Díaz, Alejandro Fernández, Alfredo Ayala, Carlos Vélez y Claudia Ochoa (Univalle) Ana Milena Caicedo, Celina Torres (Asesoras técnicas del proyecto) Adriana Terreros (iCA) Alejandra Gálvez, Erika Mosquera, Juan Fernando Gutiérrez y Natalia Gutiérrez (Ciat) Alejandro Rincón, Álvaro Muñoz y Rubiela González Rodríguez (Secretaría de Ambiente, Agricultura y Pesca del Valle del Cauca) Anny Armitage, Jairo Gómez y Gustavo Vélez (dml Produce) Edwin Giraldo y Leyre Vera (Parque Biopacífico) Héctor Fabián Orozco (Agrosavia) Herney Darío Vásquez, Raúl Saavedra y Florencia Satizabal (Unal) Luis Miguel Cabal (C. I. Elixir) Marlon Sánchez (Pidelpa)Para impulsar la economía agraria se requieren, entre otros aspectos, acciones dirigidas al mejoramiento de la competitividad del sector agrícola, frente a los constantes cambios sociales, tecnológicos y del mercado. Por esta razón, es necesaria la articulación de todos y cada uno de los agentes involucrados en la producción, transformación y comercialización de los diversos productos del agro, al igual que de las entidades que en su objeto social contemplan la responsabilidad de contribuir al desarrollo sectorial. Dentro de estas últimas, se encuentran las instituciones científicas y la academia como miembros activos de la sociedad al generar conocimientos que se esperan impacten positivamente en las cadenas productivas.Al respecto, en el marco del proyecto de investigación \"Incremento de la competitividad sostenible en la agricultura de ladera en todo el departamento, Valle del Cauca, occidente\", coordinado por la Universidad Nacional de Colombia, sede Palmira, y financiado por el Sistema General de Regalías (Sgr) -durante los años 2017 y 2019-se priorizó el fortalecimiento de 3 cadenas productivas del subsector frutícola, con potencial para generar ingresos e impactos en la población rural de las laderas del Valle del Cauca, al responder, a su vez, a los planes de desarrollo sectorial y a las apuestas productivas departamentales.Para esta labor, la Universidad delegó al Centro Internacional de Agricultura Tropical (Ciat) la construcción de planes de investigación y desarrollo para las cadenas de aguacate, piña y mora. Así, en estos documentos, se definen temas de investigación que dan respuesta a las demandas tecnológicas de las agro cadenas, con el fin de ser atendidas en el corto plazo por los operadores del proyecto (la Universidad Nacional de Colombia, la Universidad del Valle y Ciat), y en el mediano o largo plazo por estas u otras entidades gestoras de conocimiento.La estructuración de los planes de investigación y desarrollo inició con la identificación de las brechas tecnológicas de las cadenas nombradas, con el objeto de proponer alternativas de investigación, que estuvieran alineadas a los principales requerimientos de los actores de cada eslabón de las mismas. Para lograrlo, fue necesario revisar la información secundaria disponible y trabajar de la mano de expertos y actores de las cadenas, en diversos ejercicios que permitieron priorizar las brechas tecnológicas de mayor premura en su atención.Así, el cuerpo de este documento, enfocado solamente en la cadena de la piña, incluye una descripción metodológica del proceso constructivo, la síntesis de las brechas tecnológicas graficadas en un árbol de problemas, una descripción breve de las tendencias de investigación a nivel internacional (con base en las principales bases de datos de publicaciones científicas dispuestas en Internet), la priorización de las demandas de investigación primordiales por parte de los actores de la cadena, un plan de acción para la ejecución de las alternativas planteadas, la descripción de la capacidad departamental en materia de investigación al servicio del sector agrícola, y las conclusiones derivadas del ejercicio.Este plan de investigación y desarrollo hace referencia a las necesidades específicas de la cadena de la piña en el Valle del Cauca, y tiene la finalidad de constituirse como una herramienta de consulta, que otorgue elementos para la toma de decisiones a los interesados en ejercer procesos de investigación y desarrollo a nivel regional. Es preciso resaltar que, además de los productores, transformadores y comercializadores de piña, la construcción de este documento fue posible gracias a la participación de profesionales de entidades como la Universidad Nacional de Colombia, la Universidad del Valle, la Corporación Colombiana de Investigación Agropecuaria (Agrosavia), la Asociación Hortofrutícola de Colombia (Asohofrucol), la Secretaría de Ambiente, Agricultura y Pesca del departamento, y el Instituto Colombiano Agropecuario (iCA), entre otros.Por último, es necesario aclarar que este documento hace parte de una serie de entregas para el proyecto referido. En este sentido, la información que fundamenta este instrumento, tal como el estado del arte de la cadena productiva y la descripción detallada de sus brechas tecnológicas, puede ser consultada en el documento de autoría de Ciat (2018) denominado Brechas tecnológicas de la cadena productiva de la piña del Valle del Cauca.• Elaborar un plan de investigación y desarrollo para la cadena de la piña en el Valle del Cauca, basado en las brechas tecnológicas de la misma.• Identificar alternativas de investigación que busquen subsanar las brechas tecnológicas de la cadena de la piña en el Valle del Cauca. • Definir las propuestas de investigación apropiadas para el alcance del proyecto.La construcción del plan de investigación y desarrollo obedece a 3 grandes fases, las cuales contienen una serie de actividades que confluyen en los resultados presentados en este documento (ver figura 1). A continuación, se describe esta metodología de trabajo: Figura 1. Metodología para la estructuración del plan de investigación y desarrolloFuente: elaboración propia.A mediados del 2017 y durante el 2018, a través de visitas a las zonas de producción, entrevistas semiestructuradas y actividades grupales con diferentes actores de la cadena de la piña, se logró la identificación de brechas tecnológicas y no tecnológicas 1 . A partir de estas problemáticas, se categorizó cada eslabón y se priorizaron las brechas que podrían ser atendidas a través de la investigación (es decir, las de tipo tecnológico).Durante jornadas de trabajo 2 con profesionales del Centro Internacional de Agricultura Tropical (Ciat), la Universidad Nacional de Colombia, sede Palmira; la Universidad del Valle y Agrosavia, se analizaron las brechas de la cadena y se plantearon posibles alternativas de investigación. Para el desarrollo de la actividad, se diseñó una Guía para la evaluación de alternativas de investigación, la cual contenía los parámetros de valoración de las propuestas de investigación resultantes del ejercicio. Así, de manera grupal, se evaluó la pertinencia técnica de las mismas (en una escala de 1 a 3); para ello, se consideraron los siguientes factores: 1) investigaciones previas, 2) viabilidad de adopción, 3) tiempo para lograr impacto, 4) capacidad de respuesta institucional, 5) impacto social, 6) impacto ambiental, y 7) impacto económico (ver tabla 1).Como resultado, se obtuvo un listado de posibles temas de estudio de los cuales se priorizaron, de forma participativa, aquellos que podrían ser atendidos en el marco del proyecto. Con el propósito de complementar el ejercicio, se llevó a cabo una jornada de trabajo 3 para socializar los resultados obtenidos con los demás integrantes de la cadena y evaluar, desde su perspectiva, las soluciones o estudios que generarían mayor impacto en la misma.Por último, se realizó un ejercicio de comparación entre las alternativas de investigación definidas por los expertos -y las destacadas por los demás actores de la cadena-con el fin de identificar aquellas que bajo las 2 perspectivas demandan mayor atención.Tabla 1. Factores de evaluación de las alternativas de investigaciónHace referencia a los resultados de investigaciones previas (entre los años 2000 y 2017), reportados a través de publicaciones científicas que se pueden ubicar en los repositorios de universidades y centros de investigación de la región 4 .Se refiere a la viabilidad técnica y económica para la implementación de los resultados de cada investigación por parte de los actores de la cadena productiva.Factor determinado con el fin de evaluar el tiempo requerido para la generación de impactos a corto, mediano o largo plazo con los resultados de cada investigación.Se relaciona con la capacidad técnica y económica de todas y cada una de las entidades que llevan a cabo procesos de investigación, según la experiencia institucional, el equipo de trabajo, acceso a laboratorios, las investigaciones relacionadas, entre otros.Se refiere a la incidencia, o efectos sociales -positivos o negativos-, que el desarrollo o implementación de los resultados de la investigación pueda tener en la comunidad actoral. Para evaluarlo, se consideran aspectos como la calidad de vida, el desarrollo comunitario, la igualdad de oportunidades, el impacto en minorías -al igual que en las poblaciones vulnerables-y la distribución justa de los beneficios.Se asocia con los efectos ambientales -positivos o negativos-del desarrollo o implementación de los resultados de cada investigación, al tener en cuenta aspectos como el manejo sostenible de recursos, la protección del medioambiente y la preservación o restauración de hábitats.Hace referencia a los efectos del desarrollo o implementación de resultados de cada investigación en la economía de los actores de la cadena productiva del departamento, al considerar la reducción de costos de operación, la relación costo-beneficio, el mejoramiento de la productividad, la generación de empleos y el impulso de la competitividad.Fuente: elaboración propia.Para el desarrollo de esta etapa, se realizó una búsqueda de investigaciones previas 5 , disponibles en bases de datos de reconocimiento científico a nivel nacional e internacional (ver tabla 2). Como resultado, se logró compilar un listado de publicaciones científicas (principalmente artículos) divulgadas en Internet desde el año 2000 hasta mediados del 2018.Tabla 2. Bases de datos de publicaciones científicas consultadas para la revisión de tendencias de investigaciónBase de datos bibliográfica actualizada de forma permanente. Incluye citas de artículos de revistas científicas en áreas de ciencia, tecnología, medicina y ciencias sociales.Plataforma de búsqueda en línea. Contiene acceso a un conjunto de bases de datos de información bibliográfica y recursos de análisis de información.Scientific Electronic Library Online, o Biblioteca Científica Electrónica en Línea, es una biblioteca electrónica que permite consultar referencias de artículos de revistas científicas de América Latina y el Caribe.La Red de revistas científicas de América Latina y el Caribe permite acceder a artículos científicos de revistas iberoamericanas.La Biblioteca Agropecuaria de Colombia recopila información producida por Agrosavia y otras entidades de investigación que hacen parte del sector agropecuario en el país.El repositorio institucional de la Universidad Nacional de Colombia, denominado Sistema Nacional de Bibliotecas, contiene servicios digitales de información y recopila documentos científicos de diferentes áreas.Fuente: elaboración propia.Con el fin de efectuar una comparación del contenido de cada una de las bases de datos enunciadas, el proceso requirió hacer uso de herramientas de gestión bibliográfica como Mendeley y JafRef. Para la descripción de la investigación básica generada, a nivel internacional, se construyó una base de datos que acopia la información extraída de las fuentes consultadas.Para finalizar esta fase, se definieron algunas categorías y subcategorías para la clasificación de las publicaciones encontradas. En este aspecto, es importante enunciar que los temas definidos se ajustan a terminologías aceptadas por tesauros de reconocimiento en el campo académico (ver tabla 3). Así, se listaron y agruparon las publicaciones según las palabras claves que habían definido los autores de las mismas, o de lo expresado en cada abstract (resumen). Después de cuantificar para cada año el número de documentos referidos, se procedió a destacar, enunciar y graficar las tendencias de investigación 6 . Agroindustria UnescoTesauro Isoc de EconomíaMedicina experimental Tesauro de la biblioteca hispánica AecidBromelaínas UsdaFuente: elaboración propia.En esta etapa se realizaron 2 actividades: la primera consistió en un ejercicio de comparación entre lo que los expertos habían considerado como investigaciones viables y los estudios considerados de importancia de acuerdo con los actores de la cadena, con el objetivo de mejorar su competitividad. Esto permitió conocer las alternativas de investigación que requieren mayor atención por parte de la academia y de los centros de investigación.Para la segunda actividad se propusieron algunas entidades que podrían asumir el compromiso de llevar a cabo cada una de las investigaciones planteadas, se estimaron periodos de tiempo para su desarrollo, y demás aspectos requeridos durante la fase investigativa. Esto fue realizado de manera conjunta con los actores, entre los que se incluyeron representantes de las instituciones de investigación con presencia en el departamento.Es preciso aclarar que, aunque el planteamiento del presente plan de investigación y desarrollo da respuesta a los objetivos de un proyecto -y se destacan los aportes que pueden llevarse a cabo a través del mismo-se ha estructurado de tal forma que traza una ruta para seguir en aspectos de investigación a corto, mediano y largo plazo.Taller de evaluación de alternativas de investigación para las cadenas de aguacate, mora y piña del Valle del Cauca Ciat -16/04/2018. Participantes: investigadores de Agrosavia, Ciat, Unal y Univalle.En el Valle del Cauca, el crecimiento económico y social del sector primario es parte de los propósitos de las organizaciones públicas y privadas que, en su quehacer misional, se encuentran comprometidas con el desarrollo de una región de tradición agropecuaria. En este contexto, es necesario evaluar de forma permanente las brechas en los niveles de competitividad y rentabilidad de los renglones productivos que conforman la oferta agrícola y pecuaria del departamento. Así, para evitar el debilitamiento del sector, es necesario el consenso de todos los actores de cada cadena productiva e involucrar a los demás sectores de la economía.En este sentido, el progreso del engranaje económico regional -que se sustenta en la producción y comercialización de productos agropecuarios-necesita del planteamiento y de la ejecución de acciones que, en el corto, mediano y largo plazo, converjan en el cierre de brechas. De este modo, será posible acortar la distancia que existe, en el departamento y en el país, entre el modelo productivo actual y un modelo ideal en el que se distribuya equitativamente el valor agregado a lo largo de la cadena, al tiempo que se alcancen los requerimientos de competencia exigidos por el mercado.En este ámbito, con el fin de solucionar las diferencias de crecimiento y desarrollo, se requiere, además de la intervención del Estado, una acción mancomunada en la que los actores identifiquen y analicen los factores principales que afectan la productividad y la sostenibilidad de la cadena productiva, para proponer estrategias que busquen su fortalecimiento y desarrollo. Parte de las brechas que puedan encontrarse en cualquier cadena productiva pueden resolverse a través de la formulación y posterior ejecución de investigaciones. De ahí la importancia de las universidades y centros de investigación para fundamentar y desarrollar estudios nacientes a partir de las necesidades reales de la sociedad, lo cual dará lugar a la generación de avances tecnológicos e innovaciones que trasciendan la elaboración de documentos y se materialicen en la realidad socioeconómica.Según la información del estudio realizado por Ciat (2018) de la mano de los actores de la cadena de la piña en el Valle del Cauca, las principales brechas de tipo tecnológico que afectan de forma crítica el desempeño de la misma hacen referencia a los siguientes aspectos (ver figura 2):• Manejo inadecuado de la semilla en zonas de ladera La brecha es notoria en el establecimiento del cultivo realizado por los pequeños agricultores de las laderas del departamento, quienes, por lo general, recurren a seleccionar el material vegetal de propagación de sus lotes o de unidades productivas cercanas sin tener en cuenta criterios técnicos que garanticen la calidad de la semilla.Este hecho, que al parecer representa un ahorro para el productor en términos de costos de producción, sumado al inadecuado tratamiento de la semilla, incrementa la manifestación de fenómenos como la corona múltiple y la fascinación o crestación de la misma y afecta considerablemente la calidad comercial de la fruta.Debido a que la floración natural de la piña md-2 -acción que ocasiona una desincronización de las cosechas-se encuentra relacionada con diversos aspectos, entre estos la altitud y la temperatura, su manejo resulta ser más complejo cuando el cultivo se establece en zonas de baja aptitud para su desarrollo. Lo anterior afecta la formación de frutos comercializables, reduce de forma significativa los rendimientos de producción y genera un impacto negativo en la economía de los piñicultores del departamento, al no poder planificar las cosechas.• La producción de piña md-2 en las condiciones edafoclimáticas de la región se encuentra en periodo de aprendizaje y sistematizaciónAl igual que en el ámbito internacional, las tendencias de los consumidores han ocasionado que sea cada vez más frecuente la presencia de la piña md-2 en los mercados nacionales. En el caso específico del Valle del Cauca, esto ha llevado a los agricultores -que por tradición habían cultivado piña de la variedad manzana-a establecer lotes con el nuevo híbrido. Por esta razón, los agricultores, desde el más pequeño hasta el más grande, se han visto inmersos en un proceso de continuo aprendizaje, dada la diferencia del comportamiento del cultivo bajo las condiciones edafoclimáticas del departamento, tanto en las zonas planas como en las de laderas. Así, la estructuración de un paquete tecnológico para el cultivo es aún un proceso de continua retroalimentación.De acuerdo con los productores y comercializadores de piña, una malformación conocida coloquialmente como cintura, que se expresa en el no desarrollo de algunos frutillos, afecta la apariencia de la fruta. Si bien el fenómeno no ocasiona daños organolépticos, descarta un porcentaje de la piña comercializable en el exterior. Esta brecha demanda investigación, dado que los agricultores expresan desconocer los antecedentes de la problemática, así como las zonas productivas donde es más común su manifestación. Según esto, se desconocen las características climáticas, geográficas o de manejo que la ocasionan en el departamento o en el país.• Desconocimiento en la determinación de grados de translucidez de acuerdo con la madurez fisiológica, asociado con las prácticas de fertilización y riegoLos requisitos del mercado para la exportación de fruta son bastante exigentes e incluyen, entre otros, el índice de madurez o translucidez, el cual se relaciona con la apariencia de la fruta, es decir, con la coloración interna y el contenido de humedad. Para determinarlo, los comercializadores realizan un proceso de selección en las plantas de empaque y descartan algunas unidades que, al igual que las piñas retiradas por la deformación de cintura, deben destinarse al mercado interno al superar los índices aceptables de humedad para su exportación.• Desconocimiento de parámetros fisiológicos para determinar el momento de aplicación de reguladores artificiales o inductores de floración, y de los efectos de su uso inadecuadoCon el propósito de no perder oportunidades comerciales cuando la oferta de la piña supera a la demanda, algunos agricultores recurren a los reguladores artificiales o inductores de floración que liberan etileno, con el fin de cambiar el color verde de la cáscara para que tenga la apariencia de una fruta madura. Sin embargo, durante el proceso, el productor no suele tener en cuenta las especificaciones de aplicación, ni los tiempos que debe esperar para la recolección de la piña. Esto afecta la calidad organoléptica de la fruta que se comercializa a nivel nacional y causa importantes pérdidas en el mercado.Desconocimiento del impacto ambiental del cultivo a causa del uso no controlado de agroquímicos (p. ej., aplicaciones sin considerar los lmr y los periodos de carencia) e insuficiente control de trazas y residualidad en el ámbito nacional La producción de piña en el Valle del Cauca se lleva a cabo bajo prácticas de agricultura convencional que, al no ser manejadas de forma correcta, ocasionan impactos negativos en el ecosistema, en especial, en las zonas de ladera. En el mismo sentido, los actores perciben poca eficiencia en la gestión ambiental, desconocen la viabilidad técnica y económica de la incorporación de prácticas agronómicas alternativas al uso de agroquímicos y manifiestan una baja o nula respuesta diferencial del mercado nacional entre la producción orgánica, limpia y convencional.Esta situación se agrava dado que en el mercado nacional no se realizan controles de residualidad y no existen parámetros comerciales que obliguen a los agricultores a hacer uso adecuado de los agroquímicos. A excepción de los productores que dirigen la fruta al mercado internacional y de otros que han logrado entender la importancia de la calidad, estos no otorgan suficiente relevancia a los límites máximos de residuos (lmr) -establecidos en la Resolución 2906 de 2007 del Ministerio de la Protección Social-ni a los periodos de carencia de los agroquímicos. De igual modo, según los actores de la cadena, el nivel de conocimiento y adopción de las buenas prácticas agrícolas (BpA), que incorporan la búsqueda de una agricultura sustentable mediante el manejo integrado de plagas (mip), no es suficiente para garantizar el desarrollo del cultivo sin que se genere resistencia a ciertas plagas propias de las condiciones tropicales y se vean afectados los recursos naturales.• Inadecuadas prácticas de labranza (manejo de drenajes y cultivos a favor de la pendiente)En las zonas de ladera del Valle del Cauca, donde es habitual encontrar cultivos de piña en terrenos con pendientes pronunciadas, es común que las siembras se establezcan a favor de la pendiente, es decir, de forma paralela a la inclinación del suelo. Lo anterior repercute en el drenaje del agua, ocasiona una pérdida sustancial de los suelos a causa de la erosión y afecta la vocación o aptitud agrícola. Esto, según lo manifestado por los pequeños productores, se debe a la facilidad que encuentran para llevar a cabo las labores de mantenimiento del cultivo, por ejemplo, la labranza, la limpieza y la cosecha. Además, se presentan casos en los que se hace uso de coberturas plásticas sin tener cuidado con el manejo de las aguas de escorrentía.De manera frecuente, los programas de desarrollo agropecuario se centran en la producción primaria y carecen de estrategias que contribuyan al fortalecimiento de los demás agentes de las cadenas productivas. Esta discrepancia, que inclina la balanza hacia el impulso de productos agroalimentarios, afecta la competitividad de la economía sectorial debido a la baja participación de las empresas transformadoras y comercializadoras en la dinámica de las cadenas.En el caso específico de la piña del Valle del Cauca, un alto porcentaje de la producción es distribuido por los intermediarios hacia diversos mercados (p. ej., centrales de abasto en las ciudades de Cali, Medellín, Bogotá, Pereira y Pasto) para su posterior consumo en fresco, mientras que un porcentaje mínimo es dirigido a la agroindustria y otra pequeña parte es seleccionada para su exportación. De este modo, en los periodos de sobreoferta, son pocas las alternativas de los pequeños productores regionales para buscar un mejor precio.A partir de lo anterior, se evidencia el valor de la industria en la obtención de productos de consumo o en la elaboración de productos intermedios, lo cual apoyaría otros procesos industriales. Sin embargo, en la actualidad, debido a la poca innovación en los procesos de agregación de valor, se desaprovechan el potencial de la fruta y de sus subproductos en la industria cosmética, alimentaria y farmacéutica.• Ineficiencia de la infraestructura vial y portuaria y elevados costos logísticos (p. ej., fletes internos, tiempos de revisión y trámites de exportación) que causan pérdidas comerciales no estimadasEn cuanto a la comercialización de la piña del Valle del Cauca -destinada al mercado regional, nacional e internacional-, esta resulta ser bastante compleja debido al sin número de obstáculos que deben desafiar los actores de este eslabón de la cadena. A su vez, se desconoce el impacto negativo que estos costos logísticos representan para la economía.Mientras los comercializadores nacionales se enfrentan a una infraestructura vial deficiente, fletes elevados y precios cada vez más altos en los combustibles, los exportadores afrontan brechas fitosanitarias, de productividad y de calidad y altos costos portuarios (inmersos en el cargue y descargue de contenedores, almacenamiento, tiempos de espera, servicios logísticos de inspección aduanera y fitosanitaria, entre otros). Según los actores de la cadena de la piña, los costos en los que incurre un exportador de frutas, desde el puerto de embarque hasta las bodegas de los importadores, son mucho más altos que los de la competencia en otros países (p. ej., Costa Rica). La competitividad de la cadena de la piña md-2 del Valle del Cauca está afectada en términos productivos debido a la inexperiencia con el cultivo y la afectación del medioambiente a nivel agroindustrial a causa de la escasa innovación y, en el eslabón comercial, por la calidad del producto y los elevados costos logísticos.La competitividad de la cadena de la piña md-2 del Valle del Cauca está afectada en términos productivos debido a la inexperiencia del cultivo y la afectación del medioambiente a nivel agroindustrial a causa de la escasa innovación y, en el eslabón comercial, por la calidad del producto y los elevados costos logísticos.Desconocimiento de métodos y metodologías apropiadas para la instalación, manejo, cosecha y poscosecha del cultivo de piña md-2, principalmente en zonas de ladera Según Web of Science (woS) y Scopus -plataformas referentes por el alcance y la calidad de su contenido tecnológico en diversas disciplinas del conocimiento-, el país donde más se producen investigaciones con relación a la piña (Ananas comosus) 7 es Brasil. Este país aporta, al menos, el 30 % de las publicaciones realizadas durante el periodo del 2000 al 2018. Según estas bases de datos, otros países destacados por la generación de conocimiento relacionado con la fruta son Estados Unidos, India, Malasia, China y Tailandia, resultados que se relacionan con la producción mundial de piña.Según Faostat (2018), en el año 2017, Brasil se ubicó como el tercer país productor (al aportar el 7,63 % de la producción global), antecedido por Costa Rica (líder de las exportaciones) y Filipinas, y seguido por Tailandia, India e Indonesia. En cuanto a este aspecto, es importante destacar que, según Dossa y Fuchs (2017), Brasil destina gran parte de su producción al consumo interno (más del 90 %). La variedad perla es la de mayor representatividad en términos de producción (88 %), seguida de la Smooth Cayenne (12 %). Estas variedades tienen baja demanda a nivel internacional, razón por la cual este país no es un referente exportador. Por otra parte, aunque Costa Rica ha logrado imponerse en el mercado internacional con la oferta de la variedad md-2, se ubica en el puesto 18 de los países que reportan investigaciones relacionadas con la piña.Según woS, las publicaciones originarias de Colombia ubican al país en el lugar 26 en la lista de producción de conocimientos, organizada de acuerdo con su origen geográfico, aspecto que soporta la relevancia de la investigación y la necesidad de articular la cadena productiva de la piña con la gestión del conocimiento y la academia. En la categoría de recursos genéticos se agruparon 276 documentos (12,3 % del total) y en la de ciencias de la salud se localizaron 171 publicaciones (7,6 %). Por último, los temas menos abordados por los investigadores a nivel global se vinculan al área de mercados, al estudio de la competitividad de la cadena productiva y a su impacto social y económico.A partir de lo descrito, fue posible consolidar un panorama con las tendencias de investigación y la cantidad de información disponible para la generación de nuevos conocimientos. A continuación, según las categorías y subcategorías definidas en la tabla 3 y los resultados mostrados en la figura 3, se listan los temas de investigación más abordados durante los últimos 20 años:• Categoría: recursos genéticos En términos cuantitativos, las investigaciones relacionadas con esta categoría crecieron a razón de un 39 % en promedio anual a partir del año 2000 y hasta el 2017. En este periodo, los años 2015 y 2016 fueron los más representativos en cuanto a la generación de nuevos conocimientos. Hasta el mes de mayo del 2018, el número de publicaciones era equivalente a la totalidad de documentos generados en el año 2010 (ver figura 4). En la subcategoría de genética vegetal, las 136 publicaciones científicas reportadas a nivel internacional presentan una tendencia hacia el abordaje de los siguientes temas: análisis del genoma de la piña, caracterización y diversidad genética, conservación del material vegetal, influencia de los factores genéticos en el desarrollo de la planta, análisis genético de las plantas transgénicas, relaciones genéticas presentes en los híbridos y evaluación de modificaciones o mejoramientos genéticos.En la clasificación de propagación vegetativa, las 140 investigaciones se centralizan en aspectos relacionados con la multiplicación (y enraizamiento) in vitro, la conservación del germoplasma, la micropropagación clonal y el manejo de plántulas.• Categoría: producción En materia de agricultura, los 591 documentos referidos entre el año 2000 y hasta mediados del 2018 presentaron las siguientes particularidades por cada subcategoría:• La subcategoría denominada plagas agrupa el 11 % de las publicaciones encontradas en materia de producción de piña. Entre los insectos-plaga referidos están los siguientes: 1) la cochinilla de la piña Dysmicoccus brevipes 9 (Hemiptera: Pseudococcidae), 2) la hormiga Pheidole megacephala 10 (Hymenoptera: Formicidae), 3) la mosca Melanoloma viatrix 11 (Diptera: Richardiidae), 4) la larva Strymon megarus 12 (Lepidoptera: Lycaenidae) -también conocida como barrenador de fruto-y 5) algunos Coleópteros de la especie Metamasius, como el picudo de la piña M. dimidiatipennis y el gorgojo M. callizona 13 , además de diversas especies de artrópodos. Así mismo, se refirieron nematodos como Rotylenchulus reniformis 14 (Nematoda: Rotylenchulinae) y otros del género Meloidogyne (p. ej., M. arenaria 15 , M. enterolobii 16 , M. incognita 17 y M. javanica).En cuanto a la subcategoría enfermedades de las plantas 18 , esta representa el 23 % de las publicaciones que refieren al eslabón de producción. Entre las más estudiadas, según las bases de datos consultadas, están la pudrición negra asociada a especies como Chalara paradoxa (Microascales: Ceratocystidaceae) y Thielaviopsis paradoxa (Microascales: Ceratocystidaceae), y la Fusariosis causada por hongos del género Fusarium (Hypocreales: Nectriaceae) (p. ej., Fusarium ananatum, Fusarium subglutinans y Fusarium guttiforme). Además, se han estudiado afecciones atribuidas a algunos agentes patógenos del género Phytophthora (Peronosporales: Peronosporaceae) -pertenecientes al grupo Stramenophilla-, en particular, la pudrición del corazón y del cogollo ocasionadas por Phytophthora nicotianae y la podredumbre de raíz asociada a Phytophthora cinnamomi.De igual modo, se hace referencia a investigaciones relacionadas con: 1) algunas especies de bacterias patógenas del género Erwinia (Enterobacteriales: Enterobacteriaceae) (p. ej., Erwinia chrysanthemi) causantes de enfermedades necróticas, 2) los agentes causales de la marchitez de la piña (enfermedad vinculada con la cochinilla) y 3) los hongos Curvularia clavata y Curvularia eragrostidis (Pleosporales: Pleosporaceae) responsables de manchas foliares e incluso de afectaciones poscosecha.• El 19 % de los documentos científicos de la categoría de producción, hacen referencia a la exploración de los diversos métodos de instalación y manejo del cultivo. En este caso, en las publicaciones se destacan temas de control de malezas, métodos de fertilización, comparación de fertilizantes químicos versus orgánicos, sistemas de cobertura y alternativas ecológicas, prácticas de producción (p. ej., rotación de cultivos), manejo de residuos y periodos de siembra.• La nutrición de las plantas es la tercera área temática con mayor número de publicaciones (concentra el 15 % de los textos encontrados en materia agrícola). Esta subcategoría hace referencia a diversos temas entre los que se destacan los siguientes: la población microbiana relacionada con el cultivo, los niveles y absorción de micronutrientes, la composición nutricional de la fruta, los requerimientos hídricos del cultivo, la evaluación del crecimiento bajo diferentes esquemas de irrigación, los efectos de los residuos compostados en el rendimiento y desarrollo del cultivo y la caracterización de bacterias aportantes de nitrógeno al suelo.cambios morfofisiológicos durante el proceso de aclimatación, entre otros. En esta clasificación se ubicaron 27 publicaciones.De acuerdo con el número de registros, se evidencia mayor investigación en temas de transformación de la piña en comparación con los relacionados con poscosecha. A partir del año 2007 es notorio el incremento en la divulgación de artículos científicos relacionados con estas temáticas a nivel internacional (ver figura 6). Sin embargo, aunque el desarrollo de iniciativas industriales sea atractivo para la ciencia, en países con vocación agrícola -como Colombia-, se cuenta con mayor capacidad tecnológica para la producción primaria en comparación con la necesaria para la agregación de valor. Entre las temáticas más abordadas a nivel internacional, en la subcategoría tratamiento poscosecha, se encuentran la descripción de métodos utilizados para la conservación de las propiedades de la piña, el análisis del pardeamiento que se genera en la fruta a nivel interno (durante su almacenamiento), el impacto de la temperatura en la calidad poscosecha y el efecto del etileno en el proceso de maduración. De igual modo, otros temas abordados son los recubrimientos utilizados con el fin de extender la vida útil de la fruta recién cortada y el efecto de la aplicación de cera sobre la maduración.Con respecto a la agroindustria, las publicaciones hacen referencia a diversos temas entre los que se destacan:• Industria agroalimentaria: gran parte de los estudios se centran en el uso de enzimas extraídas de la planta y del fruto de la piña, denominada bromelaína, la cual es ampliamente utilizada en la industria alimenticia (p. ej., como ablandador natural de carne). Según las publicaciones revisadas, otros temas atractivos para los investigadores son la evaluación de los diversos sistemas de deshidratación de la pulpa (p. ej., liofilizado y secado por aire forzado, entre otras), la extracción de aceites esenciales, los aspectos de la piña mínimamente procesada, la elaboración de bebidas fermentadas y de otros productos, como barras de cereal, entre otros.En cuanto a la industria alimentaria con fines de consumo animal, se hace referencia a investigaciones dirigidas al uso de los residuos de la piña (en especial, la cáscara) para la elaboración de alimentos destinados a los pollos de engorde, las tilapias y el ganado.• Industria oleoquímica y de biocombustibles: entre los temas destacados se encuentra la producción de bioetanol a partir de la cáscara u otros residuos de la piña, como el corazón, que se plantean como alternativas biocombustibles de bajo impacto ambiental.• Otros desarrollos industriales: entre las publicaciones existentes, se encuentran estudios de la potencialidad de las hojas de la piña en aplicaciones textiles y de la fabricación de otros subproductos como el papel.Según las bases de datos consultadas y la clasificación categórica, entre el 2001 y el 2017, las publicaciones en el campo de la química han tenido un crecimiento anual promedio del 21 %. En este periodo el año 2011 fue el de mayor generación de conocimiento (ver figura 7). A continuación, se destacan los principales temas de investigación que se encontraron en los 607 registros clasificados en esta categoría:• Se hallaron 104 textos científicos que se enfocan en el estudio de las propiedades químicas de la enzima bromelaína, la cual tiene acción proteolítica. Estas publicaciones detallan diversos procesos de extracción de la sustancia a partir de los residuos de la fruta, su tratamiento (a través de métodos de fraccionamiento, aislamiento, purificación y tratamiento térmico) y su aplicabilidad en los campos clínico, farmacéutico e industrial.• En la subcategoría denominada fibras naturales, dentro de la cual se hallaron 112 documentos, los estudios se orientan a la observación y análisis de las propiedades mecánicas, químicas y físicas de las fibras de las hojas de la piña y su aplicabilidad (p. ej., en la producción de nanofibras de celulosa, la obtención de biopolímeros, la fabricación de materiales de uso acústico, el desarrollo de compuestos biodegradables y sostenibles, entre otros).• La clasificación designada como química agrícola, en la que se encontraron 98 textos científicos, hace referencia a la evaluación de las características fisicoquímicas de la planta durante su crecimiento, así como del análisis de los residuos de los agroquímicos usados en el cultivo.• Bajo la subcategoría química fueron clasificadas 293 publicaciones y, entre los temas referentes a la cáscara, pulpa, hojas o extracto de la fruta, se destacan:1) Los estudios de las propiedades químicas de la cáscara de la piña, así como de sus compuestos fenólicos, su potencial antioxidante y la eficacia de su extracto como agente microbiano, ocupan un lugar destacado. Dentro del conjunto de estas publicaciones, se encuentra la descripción y el análisis de los métodos de obtención de compuestos útiles en las industrias alimentaria, cosmética y farmacéutica.De igual modo, las investigaciones hacen referencia a la extracción de compuestos bioactivos y al análisis de las propiedades químicas, térmicas y morfológicas de la biomasa como materia prima para la sustracción de nanocelulosa.2) Las investigaciones relacionadas con la pulpa de la piña se orientan, en particular, hacia el estudio de sus compuestos bioactivos, su capacidad antioxidante, el análisis de su aroma y los cambios fisicoquímicos resultantes de las variaciones de temperatura durante el almacenamiento.3) En lo concerniente a las hojas de la piña, estas son un elemento atractivo para la generación de conocimientos por parte de la comunidad científica. Entre los asuntos de tendencia investigativa se puede citar el desarrollo de nanocompuestos de alta resistencia a partir de esta materia prima.4) En cuanto al extracto de la piña como sujeto de análisis, la comunidad científica ha publicado estudios relacionados con la valoración de las características fisicoquímicas y sensoriales de las sustancias extraídas de la fruta (jugos, zumos y vinos), las propiedades antioxidantes, la evaluación del contenido metabólico y la concentración de sólidos solubles.• Categoría: ciencias de la saludCon respecto a estas ciencias, los hallazgos del ejercicio de monitoreo de las investigaciones evidencian la divulgación de publicaciones, a través de bases de datos de acceso en la web, a partir del año 2004. Entre ese año y el 2017 se ha presentado una tasa de crecimiento con un promedio anual de 29 % en la generación de nuevos conocimientos, principalmente, en el campo de la medicina experimental, que representa el 81 % del total de los textos consolidados al respecto (ver figura 8). Con relación a los textos científicos clasificados en la subcategoría de salud nutricional, estos tan solo representan el 6 % de los textos de su categoría principal. Dichas publicaciones dan a conocer el valor de las propiedades nutritivas y antioxidantes de la piña -para la atención de la salud humana y animal-al tener en cuenta sus propiedades fitoterapéuticas, cicatrizantes, anticancerígenas y antiinflamatorias.La visibilidad de publicaciones referentes al mercado agrícola, el impacto económico y la competitividad de la cadena productiva de la piña es notoriamente inferior a la de las demás categorías planteadas en el documento. En particular, las acciones de monitoreo muestran la socialización de conocimientos a partir del año 2006, en materia de comercialización, mientras que el campo menos estudiado es el de la competitividad (ver figura 9). • En el caso de Benín, las publicaciones aluden al análisis de su sistema comercial y al consumo de productos procesados. • Ghana ha avanzado en la revisión del retorno de la inversión, como resultado de la implementación de normas de calidad. • Los estudios del mercado agrícola de Nigeria y de Malasia presentan los factores que determinan la participación del productor en el mercado interno y externo.En cuanto a la competitividad, se resalta la producción de estudios enfocados en el análisis de las cadenas de valor en los países productores, en los efectos de la expansión limitada de la agroindustria, en la necesidad de desarrollo de capacidades tecnológicas en respuesta al mercado internacional, en la determinación del nivel organizacional de productores locales y en el uso de la información sectorial como una herramienta clave para el agronegocio.Finalmente, en materia del impacto socioeconómico, los temas abarcados en esta última categoría hacen referencia a la evaluación del efecto social y económico del cultivo de la piña y de su comercialización. Las temáticas tratadas contribuyen a la determinación de estrategias frente a los cambios del entorno, según su importancia e influencia en especial para los cultivadores.A excepción de los requerimientos de investigación que deben partir del análisis específico del desarrollo del cultivo, bajo las particularidades edafoclimáticas del Valle del Cauca, debido a la curva de aprendizaje para el caso de la variedad md-2, o de las situaciones de las que, según los actores de la cadena productiva, se desconocen antecedentes, tales como las causas de la malformación a la que coloquialmente se le ha denominado cintura, se justifican, a continuación, las necesidades de investigación por cada brecha de la cadena departamental, teniendo en cuenta las tendencias expuestas en el numeral anterior:• Manejo inadecuado de la semilla en zonas de laderaEn el Valle del Cauca, más allá del manejo inadecuado de la semilla por parte de los pequeños productores, existe una amplia brecha entre el material vegetativo utilizado en gran parte de los cultivos de ladera y el que debería ser usado en las siembras por ser desarrollado con fines de propagación, para preservar la sanidad de las plantaciones y mejorar la productividad. Así, debido a la falta de calidad genética, física, fisiológica y sanitaria de la semilla, sobrevienen problemas durante el desarrollo de los cultivos y, por ende, en la calidad de la fruta. Lo anterior, evidencia que además de existir problemas de transferencia tecnológica para la divulgación de manuales de BpA, los productores no acceden a materiales genéticos apropiados para las particularidades de las zonas de producción; más aún, cuando se trata de la variedad md-2, que requiere procesos de adaptabilidad e investigación, en especial, en las laderas del departamento.En materia de zonificación, para el cultivo de la piña sobresalen, a nivel internacional, los estudios llevados a cabo en Brasil, mediante diversos métodos como la interpolación espacial y la validación de modelos en los que se tienen en cuenta variables climáticas y requerimientos hídricos. En Colombia, como respuesta a la priorización de la variedad md-2 como un cultivo promisorio con potencial exportador, se han realizado este tipo de estudios, en especial, aquellos que usan la metodología (a escala 1:100.000) de la Unidad de Planificación Rural Agropecuaria (Upra). Esta fue creada por el mAdr con fines de planificación del uso eficiente del suelo, según la vocación agrícola y pecuaria del territorio nacional.Un primer ejercicio fue socializado por Bancoldex y utCf (2015), en un informe que indica que, para el cultivo de piña md-2, el país cuenta con 20.283.799 ha con alta, mediana y baja aptitud, para la siembra de la fruta (es decir, cerca del 17 % de la superficie nacional). Este proceso de zonificación muestra que la mayor aptitud geográfica para la siembra de la variedad se encuentra en los departamentos de Meta, Caquetá, Magdalena, Córdoba y Cesar. Según el análisis geográfico, el Valle del Cauca cuenta con 295.850 ha aptas para la siembra de la fruta (de las cuales el 14 % se clasifica con aptitud alta, el 60 % con mediana y el 26 % con baja).Las cifras presentadas fueron validadas por la Upra (2017) En este contexto, Ciat inició un estudio de zonificación para este cultivo en el Valle del Cauca, a mediados del 2017 20 , con énfasis en las zonas de ladera y la incorporación de criterios relativos al cambio climático, además del análisis de las variables de clima, suelo y terreno; esto, con el fin de proyectar los posibles cambios en la aptitud edafoclimática, bajo el supuesto de diferentes escenarios probables debidos a los gases de efecto invernadero.• Desconocimiento en la determinación de grados de translucidez de acuerdo con la madurez fisiológica, asociado a las prácticas de fertilización y riegoLos hábitos de consumo de piña en el ámbito internacional han planteado retos a los productores y comercializadores de la fruta alrededor del mundo. Por ejemplo, en Hawái, Chen y Paull (2017) exponen que las prácticas de producción y la experiencia adquirida, durante décadas en el cultivo, parecen no ser suficientes para dar manejo a los nuevos cultivares de baja acidez, que se establecen para dar respuesta a la demanda de Estados Unidos, Japón y Europa y que presentan problemas de floración natural, traslucidez y niveles de acidez.Entre los antecedentes de investigación relacionados con la traslucidez, se encuentran algunos estudios que proponen métodos de detección y análisis del trastorno fisiológico, como el propuesto por Haff et al. (2006), quienes llevaron a cabo un estudio que relacionó los resultados de imágenes obtenidas a través del uso de rayos X con el tradicional método de observación. Del mismo modo, Lima et al. (2016) realizaron una investigación (en Brasil) que les permitió evaluar la translucidez de rodajas de piña de la variedad perolera, tratadas con recubrimientos comestibles, por medio del procesamiento de imágenes digitales y comparar los resultados con los obtenidos a través de evaluaciones sensoriales.En el desarrollo de este tipo de investigaciones es preciso tener en cuenta aspectos como la variedad de piña que será analizada y las condiciones de cosecha y poscosecha que ocasionan el trastorno fisiológico. Por ejemplo, Chen y Paull (2001) evaluaron aspectos como la temperatura en las diferentes etapas del desarrollo del cultivo en Hawái, así como los cambios térmicos posteriores a la cosecha frente a la ocurrencia de la translucidez.Lo anterior soporta lo manifestado por los actores en relación con esta brecha de conocimiento para la piña de variedad md-2 del Valle del Cauca. Esto, teniendo en cuenta las limitaciones comerciales presentadas en el proceso de selección de la fruta para el mercado internacional, en el que son descartadas las unidades con altos índices de translucidez.• Desconocimiento de parámetros fisiológicos para determinar el momento de aplicación de reguladores artificiales o inductores de floración, y de los efectos de su uso inadecuadoLa investigación aplicada bajo las circunstancias geográficas en las que se desarrollan los cultivos de piña, podría contribuir a aumentar de manera considerable las cualidades del producto. A modo de ejemplo, Pal et al. (2015) revelaron los resultados de un estudio llevado a cabo en la India entre los años 2009 y 2010, con el fin de evaluar los efectos benéficos del uso de reguladores de crecimiento (NAA y Ethrel) en las características y el rendimiento de la piña. Durante el proceso experimental, ellos tuvieron en cuenta diversas variables dentro de las que se encontraban las condiciones climáticas de la zona productiva. Como resultado, lograron descubrir efectos directos de las aplicaciones sobre la floración, el contenido de azúcar, forma y peso de la fruta. Resultados similares fueron reportados por Kuoos et al. (2011) al evaluar el comportamiento del uso de la urea y de un herbicida denominado diquat (del grupo químico: bipiridilo), como agentes reguladores de crecimiento en el retraso de la inducción floral para la piña de variedad perla en Brasil. En dicho estudio, los autores correlacionan el retraso de la floración natural y el tamaño del fruto, la longitud de las hojas y la concentración de sólidos solubles (grados Brix) en diferentes etapas del cultivo.En esta línea argumental, es conveniente anotar que el etileno 21 es una hormona que interviene en los procesos fisiológicos. Así, Maruthasalam et al. (2010) han expuesto que su acción es responsable del desarrollo del fruto, el cual puede ser forzado durante el ciclo productivo bajo tratamientos con frío. Según estos resultados, existen alternativas a la maduración inducida a través de aplicaciones de fitorreguladores. Por lo tanto, es relevante retomar los resultados de las investigaciones que preceden esta temática y evaluar los efectos tanto positivos como negativos de la aplicación de los reguladores y de las posibles alternativas para la liberación natural de etileno, como regulador de crecimiento. Para esto, se debe partir de la forma en la que es llevada a cabo por los pequeños agricultores del Valle del Cauca.• Desconocimiento del impacto ambiental del cultivo a causa del uso no controlado de agroquímicos (p. ej., aplicaciones sin considerar los lmr y los periodos de carencia) y controles insuficientes de trazas y residualidad en el ámbito nacional En el ámbito internacional, respecto a los antecedentes de investigación relacionados con la potencialidad de la producción orgánica, se encuentran estudios como el de Darnaudery et al.(2018), quienes expresan que, aunque el cultivo de la piña, al igual que el de otras frutas y hortalizas, requiere de la utilización de insumos agroquímicos debido a la fertilización necesaria con NPK (nitrógeno, fosforo y potasio), su producción sostenible es posible al hacer uso de métodos de fertilización orgánica, sin que se afecte el peso de la fruta, la calidad organoléptica, el comportamiento ante enfermedades fúngicas ni los costos del cultivo. Sin embargo, se encuentran algunas diferencias en el ciclo de producción y el rendimiento. Esta conclusión es el resultado de un estudio desarrollado por los autores, en una isla tropical francesa del océano Índico al experimentar con un cultivo de piña de la variedad reina Victoria.En lo que concierne a las investigaciones referentes al análisis de impactos de los agroquímicos utilizados en el cultivo de piña, se destacan algunos estudios llevados a cabo principalmente en Brasil y Costa Rica.Por ejemplo, Echeverría et al. (2012) caracterizaron los peligros ambientales de los pesticidas utilizados en plantaciones de piña cercanas a las comunidades ribereñas de la cuenca del Río Jiménez, en Costa Rica, al analizar su relación con el deterioro del hábitat, la calidad del agua y otros aspectos. De igual forma, Diepens et al. (2014), investigaron los efectos de algunos pesticidas organofosforados en peces tropicales del mismo país. Sin embargo, a criterio de estos autores, es necesaria la realización de más estudios que evalúen los riesgos de contaminación por pesticidas agrícolas en especies tropicales endémicas, ya que los investigadores se han centrado en la evaluación de impactos en los ecosistemas templados.En cuanto a Colombia, en el país existen estudios que sirven de apoyo a los programas de transferencia tecnológica dirigidos a los productores para el manejo del cultivo a través de las buenas prácticas agrícolas (BpA). No obstante, en las publicaciones científicas identificadas, no se evidencian suficientes investigaciones que profundicen acerca de los riesgos asociados con la aplicación de plaguicidas 22 en el cultivo durante los procesos de control de plagas y con la determinación de las trazas presentes en la fruta cultivada en las diferentes regiones del campo colombiano. Al respecto, Pinzón et al. (2011) llevaron a cabo un estudio de los residuos de plaguicidas organoclorados 23 de la piña de la variedad md-2, proveniente del municipio de Montenegro (Quindío). Como resultado del ejercicio de análisis, cuantificaron los residuos contenidos en diferentes partes del fruto y encontraron residualidad de 10 plaguicidas organoclorados con concentraciones principales en la parte externa. Esto supera, en algunos casos del ejercicio de muestreo, los límites máximos impuestos por la legislación nacional.Lo anterior corrobora la necesidad de llevar a cabo investigaciones que permitan conocer un intervalo de las concentraciones de los residuos de plaguicidas en la piña después de la cosecha, con el fin de generar alertas y tomar medidas necesarias para mitigar los posibles riesgos en la salud del consumidor, e inclusive del agricultor.• Inadecuadas prácticas de labranza (manejo de drenajes y cultivos a favor de la pendiente)Con respecto a la erosión del suelo ocasionada por el cultivo de piña, se encuentran pocas publicaciones dirigidas a evaluar de forma específica la problemática. Entre los antecedentes de investigación a nivel internacional, Ugahara et al. (2001) llevaron a cabo ensayos en los campos de piña de la isla de Ishigaki (en el sureste de Japón), donde establecieron parcelas demostrativas. Estos investigadores evaluaron las prácticas de labranza de los agricultores y plantearon alternativas entre las que se encuentran la siembra de algunas variedades de pastos y forrajes en los límites de los cultivos y el uso de coberturas para minimizar la degradación del suelo.En el caso de Colombia, el tema es abordado de forma conjunta con otras problemáticas ambientales derivadas de la agricultura en general, por lo que es preciso llevar a cabo evaluaciones de los tipos de suelo que se utilizan para el establecimiento del cultivo de la piña y medir el impacto ocasionado en el recurso como resultado de la práctica agrícola. De este modo, se generará consciencia y se podrán proponer alternativas que disminuyan el efecto negativo de la erosión (por ejemplo, el establecimiento del cultivo en curvas de nivel).Debido a la variedad climática y a las particularidades geográficas de Colombia, el país se caracteriza por su diversidad en la producción de frutas y hortalizas. No obstante, la instalación de cultivos no siempre obedece a la realidad del mercado nacional o internacional, lo que evidencia la baja articulación entre la oferta y la demanda. Así, con un amplio potencial de producción que se dirige principalmente al consumo en fresco, se evidencian manifestaciones de la inestabilidad del mercado, la cual se ve reflejada en las temporadas de oferta elevada que contraen los precios y otras que resultan en el escenario opuesto.Por otra parte, en Colombia, el problema central del sector agrícola y agroindustrial (bajo un enfoque de cadena) radica en la baja capacidad de generar innovación (Saavedra et al., 2011); un criterio que no debe restringirse a los aspectos tecnológicos en la producción de bienes agroindustriales, dado que es preciso innovar en todas las etapas de la cadena de valor, con una mirada hacia los cambios del mercado, en el que, además de la industria alimentaria, deben tenerse en cuenta las demás que requieran del sector primario para la fabricación de bienes.Además, existen brechas comerciales entre las industrias transformadoras de bienes agrícolas y la base productiva, lo cual afecta el dinamismo y la competitividad del sistema. En particular, en las cadenas frutícolas del país, a juicio de Tafur et al. (2006), el desarrollo de las agroindustrias se impulsa principalmente desde el sector privado y representa un verdadero pilar de desarrollo en la economía. No obstante, dichas agroindustrias son insuficientes para absorber la gran cantidad de fruta que se oferta en el mercado debido a la estacionalidad de las cosechas. De este modo, al visualizar la industria como un agente de crecimiento económico, se argumenta la necesidad de impulsar su desarrollo e inserción en las cadenas.En este sentido, Miranda (2011) analiza el panorama del subsector frutícola frente al cambio climático y las tendencias del mercado global, tales como las huellas ambientales (de carbono e hídrica) y las certificaciones (p. ej., de comercio justo y orgánicas). A partir de ello, el autor concluye que, para competir con los países líderes en producción de frutas, es necesario poner en marcha programas de desarrollo científico y tecnológico que incluyan un nivel alto de innovación desde la producción hasta el consumo.Al hacer hincapié en el Valle del Cauca, es preciso considerar que los niveles bajos de innovación, transformación productiva y comercialización -en emprendimientos y empresas del sector-se relacionan con los siguientes aspectos: 1) la baja inserción del sector empresarial en las actividades de investigación, desarrollo e innovación (i+d+i), 2) la falta de perspectiva empresarial, 3) la no adopción de instrumentos de desarrollo empresarial y 4) la ineficiencia del mercado (Gobernación del Valle del Cauca, 2018).Para el caso de los antecedentes de investigación relacionados con la transformación de la piña, es conveniente anotar que, si bien se evidencian investigaciones a nivel nacional e internacional referentes a la utilización industrial de la fruta y a los diversos productos que pueden obtenerse a partir de la misma y de los residuos del cultivo; desde la perspectiva de los actores de la cadena regional, es necesario que sus resultados sean socializados e, incluso, que se realicen nuevos estudios de la mano de los empresarios del sector, con el fin de desarrollar productos innovadores y con potencial comercial.En lo concerniente a las publicaciones de índole internacional, estas señalan la inserción de aspectos logísticos (del mercado interno y externo) en el desarrollo de investigaciones del mercado de la piña; por ejemplo, Gansemans et al. (2017) evaluaron la importancia de las normas laborales, el entorno institucional (junto con el ámbito gubernamental), la distancia al mercado objetivo y los aranceles contemplados en acuerdos bilaterales (respecto a los costos y precios finales) como aspectos determinantes que influyen en el acceso de la piña fresca hacia la Unión Europea (ue), aspectos que deben tener en cuenta los principales países productores, ya que facilitan o restringen los flujos comerciales.En la misma dirección, Apandi et al. (2017), tras un estudio llevado a cabo en Sarawak (un estado de Malasia), en el cual analizaron de forma estadística diversas variables, dan a conocer los factores que influyen en la selección de los canales de comercialización de piña por parte de los agricultores locales. Entre estos se encuentran la distancia hasta los puntos de venta, que afecta de forma negativa debido a la baja probabilidad de recibir retornos de la inversión, a causa de la naturaleza perecedera de la fruta y de los costos del transporte.En Colombia, el análisis de este tipo de variables es escaso y ha sido abordado, principalmente, en trabajos de grado (para optar a títulos profesionales o de maestría), a través de estudios dirigidos a analizar el comportamiento del mercado interno y la viabilidad de exportación de la piña md-2. Estas investigaciones describen la logística de la exportación de la fruta desde los cultivos hasta los puertos de destino, para lo cual han considerado aspectos de almacenamiento, empaque, embalaje, transporte (a centros de acondicionamiento, puertos de embarque y destino), trámites ante entidades de control, rutas, tiempos de tránsito, precios, volúmenes, condiciones físicas de los centros de empaque, entre otros. Sin embargo, no evidencian análisis de tiempos y operaciones que indiquen la verdadera relación costo-beneficio derivada de la operatividad o inoperatividad logística del negocio, tanto al interior del país como en el contexto internacional.A partir de las brechas tecnológicas identificadas, se plantea una serie de propuestas de investigación que se presentan en forma de árbol de soluciones (ver figura 4), con el propósito de mostrar de manera gráfica: 1) los objetivos que la cadena productiva debe tener en cuenta en materia de investigación y desarrollo, 2) las alternativas de investigación que buscan dar respuesta al problema central y a los cuellos de botella que lo ocasionan y 3) los posibles resultados que se obtendrían a partir del desarrollo de las mismas. A continuación, se propone un plan de acción que complementa este ejercicio con la definición de metas, el listado de las posibles entidades que a nivel regional podrían contribuir al cumplimiento del plan, desde sus objetos misionales, y la estimación de los tiempos que requeriría cada investigación en la fase académica. Por último, se concluye con la comparación de la evaluación de las propuestas por parte de los investigadores versus la priorización de las mismas por parte de los demás actores de la cadena. de los grados de translucidez interna de la fruta Reconocimiento de los periodos de carencia y lmr de los agroquímicos de mayor uso en el cultivo Presentar a la base productiva el resultado de estudios en materia agronómica, con el fin de mejorar los índices de productividad regional y la obtención de frutas que cumplan con requisitos de calidad para el mercado interno y externo Generar conocimientos científicos y tecnológicos que permitan mejorar la instalación, desarrollo y manejo del cultivo de piña md-2 en el Valle del Cauca Investigar el impacto ambiental y social del cultivo, y proponer alternativas de gestión de los recursos naturales, en la búsqueda de contribuir a la solución de los problemas ambientales del agronegocio Evaluar a través de procesos de investigación, la potencialidad industrial de la fruta, sus componentes y residuos, y el mercado potencial para productos procesados a base de piñaInstalar un banco de semillas, estudiar la influencia climática, seleccionar semilla clonal y asegurar la disponibilidad de material genético de calidad y adaptado a la laderaEvaluar los factores que inciden en la floración natural y afectan la productividad del cultivo en zonas de laderaValidar y ajustar paquetes tecnológicos integrales del cultivo para las zonas plana y de laderaRealizar investigaciones que conduzcan a identificar las causas de la malformación denominada cintura en la piñaDeterminar parámetros fisiológicos que permitan precisar los tiempos de inducción a la floraciónMedir los periodos de carencia, residualidad y lmr de los agroinsumos de mayor uso en el cultivo (planta, suelo y fruto)Estructurar un protocolo de uso de bioinsumos para cultivos limpiosEvaluar el impacto del uso del recurso hídrico en el cultivo en los principales municipios productoresEstudios de aprovechamiento industrial de la piña y sus residuosInvestigación de operación y procesos logísticos de comercializaciónRealizar un estudio de zonificación para el establecimiento del cultivoInstalar parcelas demostrativasDeterminar grados de translucidez adecuados de acuerdo con la madurez fisiológica, la nutrición, el riego y demás aspectos relacionadosMedir los efectos ambientales del uso de plaguicidasEvaluar el impacto socio económico y ambiental del cultivo de la piñaMedir las pérdidas de cantidades de suelo durante los ciclos de producción, y establecer alternativas de manejo y conservaciónEstudio de mercado para definir productos procesados a base de piña con demanda potencialFigura 10. Árbol de soluciones para las brechas tecnológicas de la cadena de la piña en el Valle del CaucaFuente: elaboración propia. ContinúaDe acuerdo con lo planteado en el árbol de problemas, el plan de investigación y desarrollo propuesto en este documento, tiene el siguiente objetivo principal:Contribuir, desde la investigación y la generación de conocimientos, al mejoramiento de la competitividad de la cadena de la piña md-2 en el Valle del Cauca Para ello, se proponen temáticas de investigación que, de llevarse a cabo, podrían mejorar la competitividad de la cadena regional de la piña. De igual modo, se sugieren actores para el desarrollo o implementación de las investigaciones, con base en la competencia y oferta institucional (ver tabla 4). Algunas de las propuestas de investigación consignadas en este documento no se atenderán por medio de este proyecto, ya que no se alinean con sus alcances; sin embargo, se presentan de tal manera que puedan ser consultadas por las demás entidades de apoyo e investigación vinculadas a la cadena de la piña. Taller de priorización de alternativas de investigación para la cadena de la piña del Valle del Cauca Palmira -22/06/2018Participantes: actores de la cadenaSegún lo indicado en el árbol de soluciones y en el plan de acción, se confluye en el planteamiento de 18 alternativas de investigación, las cuales requirieron 2 momentos de evaluación: el primero, bajo la responsabilidad de expertos y el segundo a cargo de los demás actores de la cadena (productores, transformadores, comercializadores y entidades prestadoras de servicios). La figura 11 contiene un plano cartesiano que permite ubicar los puntos resultantes en los ejercicios, y comparar las calificaciones otorgadas por los evaluadores. Parcelas demostrativas que busquen definir y comparar el resultado del manejo de agroinsumos (comerciales y genéricos) bajo criterios técnicos, para un manejo integrado de la producciónInvestigación dirigida a identificar las causas de la malformación denominada cintura en la piña en el Valle del Cauca A7 Investigación orientada a determinar grados de translucidez, de acuerdo con la madurez fisiológica, el manejo y la nutrición de la piña A8 Determinación de parámetros fisiológicos que permitan precisar los tiempos de inducción a la floración (transferencia tecnológica)Medir los periodos de carencia, residualidad y lmr de los agroinsumos de mayor uso en el cultivo (planta, suelo y fruto) A10 Medir los efectos del uso de los plaguicidas en el medioambiente vs. el uso de biocontroladores A11 Estructurar un protocolo del uso de bioinsumos para establecer cultivos limpios y evaluar la factibilidad económica y productiva A12 Evaluación del impacto socioeconómico y ambiental del cultivo de la piñaEvaluación del impacto del uso del recurso hídrico en el cultivo de la piña en los principales municipios productores de las zonas de ladera A14 Investigación que permita medir las pérdidas de cantidad del suelo durante los ciclos de producción, establecer alternativas de manejo y conservación, y evaluar el impacto ambiental del cultivo A15 Estudios de aprovechamiento industrial de la piña para la elaboración de productos innovadores A16 Estudios de aprovechamiento industrial de los residuos industriales de la piña Continúa A17 Estudio de mercado para definir productos procesados de piña con mayor demanda en el mercado nacional y con potencial de exportación A18 Investigación de operación y procesos logísticos de comercialización que permitan estructurar un protocolo de distribución y evaluar los efectos de los retrasos en la fruta de exportación Figura 11. Priorización y viabilidad de propuestas de investigación para la cadena de la piña en el Valle del CaucaCódigo de colores:Alternativas de investigación priorizadas por investigadores y con baja valoración por parte de los actores de la cadena Alternativas de investigación priorizadas tanto por los investigadores como por los actores de la cadena Fuente: elaboración propia.Gran parte de las brechas tecnológicas de la cadena de la piña en el Valle del Cauca y, por ende, de las alternativas de investigación, se concentran principalmente en los eslabones de insumos y producción. En la figura 11, es posible observar que 10 de las 18 investigaciones propuestas para contribuir al cierre de las brechas tecnológicas de la cadena se encuentran en el cuadrante superior derecho, lo cual indica que han sido priorizadas por los actores de la cadena y, a su vez, consideradas viables por los investigadores expertos.En cuanto a los temas priorizados, estos se relacionan con las necesidades mencionadas a continuación: 1) evaluar la adopción de tecnologías de producción limpia, 2) adaptar paquetes tecnológicos que permitan el manejo integrado del cultivo, 3) analizar la posibilidad de incursionar en nuevos mercados, 4) contar con material genético de calidad fitosanitaria y adaptado a las zonas de producción, 5) medir las pérdidas del recurso suelo durante el desarrollo del cultivo, 6) investigar alternativas de aprovechamiento industrial de la fruta, 7) valorar las repercusiones económicas causadas por los retrasos logísticos del proceso comercial, 8) estudiar el impacto de los plaguicidas, 9) evaluar la potencialidad de los residuos de la fruta y el cultivo y 10) estudiar el fenómeno denominado cintura de la piña.Entre las propuestas restantes se incluyen la determinación de parámetros fisiológicos para precisar tiempos de inducción floral, la medición de los lmr de los agroinsumos de mayor uso en el cultivo, los estudios de zonificación, la evaluación de factores que inciden en la manifestación de la floración natural, la valoración del impacto socioeconómico del agronegocio, la determinación de grados de translucidez vs. la madurez fisiológica y la instalación de parcelas demostrativas. Estas alternativas de investigación se ubican en el cuadrante superior izquierdo, lo cual señala que, aunque fueron consideradas viables por los expertos, no recibieron valoración similar por parte de los actores de la cadena en su conjunto.Es preciso aclarar que todas las investigaciones han sido consideradas de importancia; sin embargo, existen algunas que bajo la perspectiva de los actores requieren mayor premura. Esto muestra una importante brecha comunicacional entre la academia y las entidades de investigación, con los productores, transformadores y comercializadores.Además de las propuestas de investigación planteadas, los actores de la cadena propusieron los siguientes estudios:• El planteamiento de un modelo de negocio asociativo que involucre a productores, agroindustrias y comercializadores en una relación ganar-ganar. • Realizar una investigación que permita medir la productividad de la adopción de paquetes tecnológicos limpios u orgánicos en el cultivo de la piña. • Conocer los requerimientos del manejo del cultivo para la obtención de la segunda cosecha.En el marco legal, la Ley 811 de 2003 del mAdr reglamenta los requisitos que toda cadena productiva del orden regional o nacional debe tener en cuenta en su proceso de inscripción ante esta entidad, con fines de reconocimiento organizativo o gremial. La normativa dictamina que, en primera instancia, es preciso diagnosticar el funcionamiento de la cadena e identificar las brechas que fundamentan su visión, objetivos estratégicos, estrategias y metas, es decir, el plan estratégico.Respecto a lo planteado, es necesario que el plan de la cadena de respuesta a los siguientes puntos: 1) mejora de la productividad y competitividad, 2) desarrollo del mercado de bienes y factores de la cadena, 3) disminución de los costos de transacción entre los distintos agentes de la cadena, 4) desarrollo de alianzas estratégicas de diferente tipo, 5) mejora de la información entre los agentes de la cadena, 6) vinculación de los pequeños productores y empresarios a la cadena, 7) manejo de recursos naturales y medioambiente, 8) formación de recursos humanos y 9) investigación y desarrollo tecnológico.En lo que respecta a este documento, sus resultados aportarían al cumplimiento del noveno punto de la reglamentación (ver figura 12); por esta razón, existen elementos de congruencia y similitud entre el plan estratégico de la cadena y el plan de investigación y desarrollo -en lo que concierne a los aspectos de investigación-dado que de forma semejante, ambos ejercicios parten del análisis de brechas y concluyen en la definición de actividades, metas, indicadores y posibles entidades responsables de la ejecución de cada acción. Además, en el caso del plan estratégico, si bien los actores contaban con avances significativos en términos de su formulación, con el desarrollo de los talleres multiactores -que pretendían dar forma a este plan de investigación y desarrollo-fue posible ayudar al comité regional de la piña a concluir la estructuración del plan en su totalidad.Es preciso enfatizar que este plan de investigación y desarrollo aporta a la ejecución de algunas actividades propuestas en el plan estratégico de la cadena (o parte de ellas), dado que se enmarca en un proyecto delimitado en términos de tiempos, metas y presupuesto. Así, el principal aporte en conocimientos se dirige a cerrar brechas de investigación para el cultivo, procesamiento y comercialización de la piña de la variedad md-2. Objetivo de I&D de la cadena de la piña en el Valle del Cauca:Promover la realización de actividades de investigación, desarrollo, transferencia tecnológica e innovación, dirigidas a subsanar las brechas técnicas, comerciales, sociales y ambientales de la cadena productiva. competitividad Figura 12. Objetivo estratégico de i&d de la cadena regional de la piña Fuente: elaboración con base en la Ley 811 de 2003 y el plan estratégico de la cadena regional de la piña.El Valle del Cauca tiene una gran capacidad regional de investigación que está representada por entidades que promueven la búsqueda de nuevos conocimientos para el sector agrícola, entre las que se encuentran centros de investigación y desarrollo tecnológico y universidades que ofertan programas de agronomía, agroindustria y afines (p. ej., la Universidad Nacional de Colombia, sede Palmira; la Universidad del Valle, la Universidad del Pacífico; la Universidad San Buenaventura; y la Universidad Pontificia Bolivariana). Adicionalmente, en el departamento se ubican algunas entidades que hacen parte del ecosistema del sector agrícola y que fortalecen el desarrollo de conocimientos en numerosas temáticas a través de la ejecución de programas y proyectos.Además de universidades, entre las organizaciones que promueven el desarrollo del sector se encuentran, el iCA, Agrosavia, el Ciat, entre otros. Junto a ellas, con una gran importancia, aparece también el Parque Biopacífico, el cual está llamado a articular la oferta científica y tecnológica del departamento, con los fines de promover la competitividad e innovación agrícola e industrial en la región y de facilitar el relacionamiento institucional de la academia, los centros de investigación, el sector empresarial y las entidades estatales (Parque Biopacífico, 2017).Dentro de este marco, cabe resaltar la valiosa labor misional de investigación de Agrosavia. Esta entidad definió en el 2016 el \"Plan estratégico de ciencia, tecnología e innovación del Sector Agropecuario (Pectia 2017-2027)\", en el que se encuentran identificadas las demandas de investigación de las 5 regiones del país (Amazonía, Andina, Costa Caribe, Orinoquía y Pacífica), para 34 cadenas productivas, entre estas la piña, en la clasificación de frutales.En la actualidad, Agrosavia adelanta el desarrollo del macroproyecto nacional de la piña 2019-2023, denominado \"Opciones tecnológicas para el desarrollo y manejo sostenible del cultivo de la piña (Ananas comosus (L) Merril), en las principales zonas productoras de Colombia\" 24 , el cual tiene como propósito generar opciones tecnológicas para el cultivo de la variedad md-2 y valorar la potencialidad de otros cultivares de zonas productoras del país. En este programa, Agrosavia (2018) ha priorizado a los departamentos de la Costa Atlántica, Putumayo, Caquetá, Meta y Antioquia, para un ejercicio de diagnóstico, y a los departamentos de Santander, Cauca y Valle del Cauca, para una fase de investigación, con el fin de dar respuesta a una serie de demandas de investigación y desarrollo tecnológico de la cadena nacional.La primera etapa del programa consistió en el diagnóstico de las problemáticas (validadas junto con los comités regionales de cada departamento) y limitantes de la producción de la piña, la identificación de las mejores condiciones para el desarrollo de la producción y las potencialidades del cultivo; la segunda incluye el desarrollo de las recomendaciones técnicas generadas durante la primera etapa. Para desarrollar este conjunto de opciones tecnológicas se plantearon 4 grandes proyectos (ver tabla 5).Tabla 5. Componentes del macroproyecto nacional de Piña, 2019-2023, a cargo de AgrosaviaAmpliación de la oferta varietal de piña en ColombiaEste proyecto busca incrementar la oferta varietal de piña en Colombia a partir del germoplasma disponible. Dentro de las actividades que lo componen se encuentran las siguientes:• Identificar variedades promisorias.• Ampliar el banco de germoplasma nacional con la introducción de nuevas variedades. • Caracterizar morfoagronómica y molecularmente materiales genéticos.• Evaluar los cultivares promisorios en las principales zonas productivas.Estrategias de manejo agronómico para la piña md-2 en fase productiva (fruto y semilla), para las principales zonas productoras, al potenciar los parámetros de adaptación y sostenibilidad El objetivo principal de este proyecto es mejorar la productividad, sostenibilidad y adaptabilidad del cultivo, a través de prácticas en el manejo del suelo, del recurso hídrico y la promoción vegetal. Generación de estrategias para el manejo integrado de las principales enfermedades y plagas que se presentan en el cultivo de piña md-2 El propósito del proyecto es generar estrategias de manejo integrado para las plagas y enfermedades de mayor incidencia en el cultivo. Entre las actividades que incluye esta iniciativa se encuentran la siguientes:-Construir una línea base de plagas y enfermedades en las principales zonas de producción. -Realizar un análisis epidemiológico de enfermedades priorizadas, estudiar virus y validar el impacto de plagas limitantes.Desarrollo de alternativas de valorización de la piña en Colombia En este último proyecto, el objetivo es generar estrategias de valorización agroindustrial para la piña en Colombia. Entre los resultados que se esperan obtener, se mencionan los siguientes:• Plantear alternativas para prolongar la vida útil del producto y de los procesos agroindustriales. • Proponer parámetros de cosecha en diferentes condiciones edafoclimáticas.• Caracterizar parámetros de cosecha y poscosecha.• Diseñar prototipos de subproductos para el productor. Fuente: Agrosavia (2018).24 La información del macroproyecto contenida en el presente documento es resultado de la socialización del mismo el 21 de febrero de 2018 durante una reunión del Comité Departamental de la Piña, en las instalaciones de Agrosavia.Con el fin de revisar las capacidades regionales -en lo que se refiere a los grupos de investigación del Valle del Cauca-se realizó una búsqueda en los registros de la convocatoria nacional n.º 781 de 2017 de la red de información Scienti 25 , a cargo del departamento administrativo de Colciencias, para el reconocimiento y medición de grupos de investigación, desarrollo tecnológico e innovación en Colombia. De acuerdo con los resultados encontrados, a nivel departamental existe un total de 413 grupos de investigación (el 8 % de los grupos del país), categorizados y reconocidos en los municipios de Cali, Palmira, Tuluá, Guadalajara de Buga y Buenaventura (ver tabla 6). De estos, 91 grupos han aportado a la gestión del conocimiento para el sector primario y, a su vez, 15 han reportado nuevos desarrollos con relación a la piña en las siguientes categorías o grandes áreas de la investigación: 1) ciencias agrícolas, 2) ciencias naturales y 3) ingeniería y tecnología. En la gran área de ciencias agrícolas se reportan grupos que desde hace más de 3 décadas vienen realizando investigaciones en el sector (ver tabla 7). En 1993 el Valle del Cauca se posicionó en un segundo lugar en la producción de piña a nivel nacional; en esta época, la variedad cultivada mayoritariamente era la manzana, mutación de la variedad Perolera (Salazar, 1985). En su momento, instituciones como la Fundación Centro Frutícola Andino, el iCA y la Universidad Nacional de Colombia, sede Palmira, lideraron el proceso de investigación a nivel departamental; por ello, en ese mismo año, se organizó en Cali el Primer Simposio Latinoamericano de Piñicultura, en el que varios expertos, no solo nacionales sino extranjeros participaron exponiendo temas sobre recursos genéticos, tecnología de la producción, sanidad del cultivo, poscosecha, agroindustria y mercadeo.25 años después, estas instituciones, sumadas a otras como Agrosavia, siguen trabajando e investigando en temas relacionados con el sector. Históricamente se ha dado especial énfasis a la investigación del renglón productivo. Un ejemplo de ello es el estudio de la incidencia de plagas y enfermedades en el cultivo de la piña. Sin embargo, aunque este tema ha sido ampliamente abordado, aún se evidencia una transferencia deficiente de los conocimientos. Es común ver entre los productores, a pesar de haber recibido capacitaciones y manuales sobre los problemas fitosanitarios, que dicho problema aún persiste. Tales hallazgos sugieren que todavía es necesario encontrar un mecanismo efectivo para que la investigación trascienda y sea apropiada por los agricultores.Tabla 7. Grupos de investigación de la gran área de ciencias agrícolas que han abordado temas sobre piña Con respecto a la revisión e identificación de la oferta de publicaciones científicas a nivel local, nacional e internacional, el 26,2 % está dirigido al eslabón primario. Dentro de este porcentaje, los temas de enfermedades, nutrición, manejo del cultivo y plagas son los que agrupan un mayor número de productos de investigación. No obstante, temas como el cambio climático y sus consecuencias se presentan como nuevos retos sobre los cuales la investigación debe dar respuesta.se estudiaron los principales hongos, bacterias, ácaros y virus asociados a estos cultivos. Durante la ejecución del proyecto, los investigadores visitaron alrededor de 180 predios de pequeños productores de piña distribuidos en los municipios de Restrepo, Dagua, La Cumbre, Vijes Alcalá, Roldanillo, El Cerrito y Yotoco.Las principales especies de insectos asociadas al cultivo fueron S. megarus (tecla), M. dimidiatipennis (picudo), Scutigerella (sinfílidos) y D. brevipes (cochinillas). La investigación describió cada uno de ellos e identificó los daños ocasionados en la fruta. Así mismo, se detectaron enfermedades de alta incidencia en los diferentes estados fenológicos, como la pudrición radical, cuyo agente causal es Fusuarium spp., y la pudrición del cogollo y de la fruta ocasionadas por Phytophthora sp. Por último, se recomendó implementar estrategias de integración de prácticas, tales como el control cultural, químico (usado de forma controlada) y biológico, según su grado de compatibilidad; además, se resaltó que, para ello, es importante el esfuerzo y la participación de todos los sectores involucrados: productores, mAdr, Secretaría de Agricultura, asistentes técnicos, universidades y centros de investigación, con el fin de adoptar de forma eficiente el enfoque del Manejo Integrado de Plagas (insectos y ácaros).El grupo de investigación Frutales Tropicales de la Unal, en el año 2016, realizó un trabajo de maestría sobre determinación de los requerimientos nutricionales de la piña variedad md-2 en suelos ácidos en diferentes etapas fenológicas y su efecto en el rendimiento y la calidad de la fruta. Para ello, se usaron 6 tratamientos con combinaciones de diferentes niveles de elementos mayores (N, P y K). Los resultados evidenciaron que los componentes que el cultivo absorbe en mayor cantidad son el N y el P, en particular, en la primera etapa y, luego, van descendiendo hasta la inducción floral; lo contrario pasa con el K, el cual presenta menores niveles de absorción durante los primeros meses, pero, luego, se incrementa. Aunque el estudio realizó comparaciones de diferentes tratamientos y determinó el comportamiento en el análisis de crecimiento, el uso eficiente de nutrientes y la productividad, no estableció un comparativo de costo-beneficio que pudiera identificar qué tratamiento era más beneficioso en términos económicos para los agricultores.En este ámbito, desde el año 2000, el grupo Frutas del trópico de Agrosavia ha venido desarrollando investigaciones de los principales sistemas productivos frutícolas y de áreas temáticas relacionadas. En el caso de la piña, en el año 2006, junto con la Corporación Autónoma Regional del Valle del Cauca (cvc), a través del proyecto \"Transferencia de tecnología para el manejo y conservación de suelos de ladera en zonas productoras de piña de los municipios de Dagua y Restrepo\", desarrolló una estrategia para el manejo y conservación de suelos de ladera en la siembra de cultivos comerciales.A partir de este trabajo se generó una cartilla con aplicaciones prácticas para el cultivo de la fruta, tal como la siembra atravesada, la cual consiste en trazar surcos a través de la pendiente siguiendo la curva a nivel. Otra de las recomendaciones dadas fue el establecimiento de barreras vivas, cuya principal función es actuar como muro de contención para evitar el arrastre de los suelos que sucede por el efecto del deshierbe y por las pendientes mayores a 30 %.En la gran área de ingeniería y tecnología, se identificaron 6 grupos que han desarrollado investigaciones sobre procesos industriales y creación de valor de la piña (ver tabla 8). Algunas de las instituciones que participan al lado de sus grupos de investigación son las universidades Unal (sede Palmira), Univalle, Icesi y San Buenaventura. De este modo, la investigación en esta área ha resultado en documentos como tesis de pregrado y maestría, artículos y proyectos de investigación y desarrollo.Tabla 8. Grupos de investigación de la gran área de ingeniería y tecnología que han abordado temas sobre la piña Con relación a los grupos de investigación, la Universidad Nacional de Colombia, sede Palmira, por ejemplo, posee 2 grupos (Grupo de investigación en procesos agroindustriales [Gipa] y Grupo de investigación en manejo y agroindustrialización de productos de origen biológico) dedicados a la investigación en este sector. El primero de estos realizó un estudio titulado Efecto del tipo de corte y tipo de envase en la conservación de la piña 'Oro Miel' mínimamente procesada que trata sobre el tema referido por el título. El objetivo fue determinar el efecto del tipo de corte y envase apropiados para mantener la resistencia a la penetración, color y aceptación sensorial de la piña mínimamente procesada bajo condiciones de almacenamiento refrigerado. Los hallazgos del equipo llevaron a la conclusión de que el tipo de corte y empaque que conservaron mejor las características de calidad de la fruta correspondieron al corte en cuartos de rodajas y al empacado al vacío. Este hecho coincide sensorialmente con la calificación dada por los 30 panelistas no entrenados, quienes analizaron el sabor y la apariencia general.Además, los grupos mencionados realizaron otro estudio similar denominado Efecto de un recubrimiento comestible y diferentes tipos de empaque en los atributos físico-químicos y sensoriales de la piña \"Manzana\" mínimamente procesada, en el que se evaluaron diferentes mecanismos de conservación como un recubrimiento comestible y 4 envases, y su capacidad para conservar los atributos físicoquímicos y sensoriales de la fruta. A su vez, se realizaron análisis físico-químicos y sensoriales a los 0, 4, 8, 12, 16, 20 y 24 días de almacenamiento refrigerado. Como resultado, se halló que el tratamiento con mejor desempeño fue en bolsa plástica de peBd 70 μm a 5 ± 1 °C y 90 ± 2 % de hr, sin recubrimiento comestible y tratada previamente con ácido ascórbico (1 % v/v), ácido cítrico (1 % v/v) y CaCl 2 (1 % v/v).Por otra parte, la Universidad Icesi, con el grupo de investigación interdisciplinario Leonardo de la facultad de ingeniería, desde el 2003, participa en la investigación aplicada de la piña. A partir de ese año, se han generado diversos proyectos de pregrado, tales como Ujúma: sistema itinerante de trabajo para siembra de piña con semilla axial en cultivos de grandes extensiones del Valle del Cauca. Este proyecto se enfocó en dar solución a un problema de salud ocupacional evidenciado en el cultivo extensivo de la piña: el gran esfuerzo y desgaste físico que generan las posturas y jornadas de los trabajadores dedicados a la práctica de la siembra. Por tal razón, el proyecto diseñó una máquina agrícola ergonómica que mejora la condición de los trabajadores y hace más eficiente la labor de la siembra. Para ello, combinó los saberes del conocimiento ancestral y la tecnificación del proceso.Otro proyecto de grado generado por este mismo grupo de investigación se denominó Cabiriá: vehículo para la recolección y clasificación de la piña. Al igual que el anterior proyecto, este fue diseñado para utilizarse en cultivos extensivos y de topografía plana. Este vehículo transita en medio de los surcos del cultivo y debe ser sometido a tracción por 2 personas; además, posee una bandeja con capacidad de carga para varios guacales o canastillas.Entre las universidades, también se encuentra la Universidad del Valle (Univalle) con su Grupo de investigación en ingeniería de los procesos agroalimentarios y biotecnológicos (Gipab), que tiene como propósito fundamental, generar y difundir conocimientos sobre la transformación y valor agregado a los recursos agroalimentarios locales. Es así como desde hace 7 años, este grupo reporta trabajos investigativos sobre aplicaciones tecnológicas innovadoras para la concepción de nuevos productos a partir de esta fruta.En el 2012, el grupo mencionado realizó una investigación sobre el secado de piña (A. comosus) a través del método de ventana de refractancia, sistema que representa una alternativa para convertir alimentos de alta actividad de agua en productos más estables a las reacciones de deterioro. El objetivo de este estudio fue determinar el efecto de los tratamientos con respecto a las variables de respuesta (contenido de humedad, actividad del agua, color y ácido ascórbico); para ello, los investigadores trabajaron con muestras cilíndricas de piña fresca con contenido de humedad inicial de 83,26 % bh y 15 % de sólidos solubles, espesores de 2, 3 y 4 mm y temperaturas de 85 y 90 °C.El contenido de humedad alcanzado al final del proceso fue del 3 % para espesores de 2 mm. Para los demás espesores se reportaron valores menores a 7 % de humedad en base húmeda. Con respecto a las demás variables, los resultados de la investigación mostraron que la actividad de agua promedio final fue de 0,3485 ± 0,0507 aw, y el principal efecto fue el factor temperatura. Al respecto, es importante resaltar que la vitamina C o ácido ascórbico es termosensible, lo que significa que entre menor sea el tiempo de exposición del producto a altas temperaturas es menor la pérdida de la vitamina C (Abonyi et al., 2001).Por último, en esta gran área, la Universidad de San Buenaventura participó con su grupo adscrito de investigación en Biotecnología, el cual contempla dentro de su plan de trabajo la implementación y el desarrollo de proyectos de investigación en temas de interés para la industria y la región vallecaucana, con el fin de que puedan ser desarrollados por estudiantes de pregrado en ingeniería agroindustrial.Así, en el año 2007 se publicó la tesis de pregrado denominada Desarrollo de una conserva de piña (Ananas comosus) variedad Manzana Categoría II para comercializar en el mercado institucional en la ciudad de Santiago de Cali. El objetivo de este proyecto fue desarrollar un producto con valor agregado, con el uso de la fruta de categoría II, la cual no cumple con las especificaciones para ser vendida en fresco debido a deformaciones como puntos negros y quemaduras en la cáscara.A partir de lo anterior, se plantearon métodos de elaboración de conservas. Como resultado, se observó que, para la variedad manzana, el método de escaldado no era el más apropiado, debido a que esta fruta presenta un alto contenido de acidez; por tanto, se decidió procesarla mediante cocción durante 15-20 minutos con jarabe de sacarosa para favorecer el color de la conserva final. Luego, fue caracterizada y se obtuvo un producto con un pH inferior a 4,5 (con 18 ºBx) y un porcentaje de peso escurrido mínimo de 78 %. Al final de la investigación se concluyó que el 61 % del mercado institucional estaría dispuesto a adquirir conservas de piña, en especial, como materia prima para ser usada en pizzerías, pastelerías, panaderías y restaurantes gourmet.Por otra parte, en el 2012, esta universidad adelantó una investigación sobre la identificación de las levaduras nativas presentes en los zumos de piña, mora y uva. El objetivo principal de este estudio consistió en el aislamiento e identificación de las levaduras encontradas en el zumo de cada una de las frutas. Así, para la identificación de las cepas levaduriformes, se usaron técnicas moleculares que permitieron identificar un total de 66, de las cuales 20 correspondieron al zumo de piña. Algunas de las especies reportadas en la fase inicial, durante la fermentación de la chicha de la piña, fueron P. kluyveri y C. pseudointermedia. Finalmente, la investigación mostró la gran variedad metabólica de las especies aisladas a partir de las 3 frutas y enfatizó en la importancia y la aplicación de las mismas en el campo del biocontrol y la biorremediación en el sector agrícola.Por último, otra gran área es la de ciencias naturales, en la que se encontró la participación de 2 grupos de investigación (ver tabla 9). El primero se ubica en la subárea de ciencias biológicas, y se denomina Grupo de investigación en diversidad biológica de la Unal, sede Palmira. Su objetivo principal es estudiar la diversidad biológica en 3 áreas: 1) animal, 2) microorganismos y 3) vegetal. En esta última, los estudios se centran en las investigaciones relacionadas con la recolección de diversos frutales, así como también, su caracterización morfológica, junto con citogenética y palinología, caracterización molecular, selección de materiales superiores y su multiplicación.Con respecto a la piña, se reporta 1 trabajo de grado de maestría que consistió en medir el efecto del etefón en el desarrollo, floración, y calidad del fruto de la piña md-2 (A. comosus), en las condiciones del Valle del Cauca. Para ello, se evaluó las respuestas de 5 dosis de etefón (200, 300, 400, 500 y 600 ppm), y un testigo referente (0 ppm), y se midieron los porcentajes de floración a los 40 y 60 días después de la inducción, junto con las dimensiones y el peso real de los frutos. Entre las conclusiones y resultados más relevantes, el investigador determinó que la dosis de 200 ppm de etefón es adecuada para obtener porcentajes de floración superiores al 96 %, a 60 días después de la inducción floral, sin que se afecten las características de pH, acidez, grados Brix, vitamina C y translucidez del fruto.Tabla 9. Grupos de investigación de la gran área de ciencias naturales que han abordado temas sobre piña En segundo lugar, se encuentra ciencias químicas en cuya subárea participa el Grupo de investigación en electroquímica y medio ambiente (Giema) de la Universidad Santiago de Cali. En el 2014, este adelantó un estudio sobre el desarrollo, caracterización y estudio sensorial de una barra nutritiva a partir de bagazo de piña, semillas de chía (Salvia hispánica) y lactosuero.Posteriormente, en el 2018, se realizó un estudio sobre la generación de carbón activado a partir del cultivo de la piña (A. comosus), para su verificación en la remoción de metales pesados. Los residuos agroindustriales y otros materiales como maderas y cáscaras son usados para la elaboración de carbón activado, proceso en el que debe medirse su grado de adsorción y la capacidad de retener sustancias.En conclusión, a lo largo de este apartado, el plan de investigación presenta una síntesis de los estudios realizados hasta el año 2018. De este modo, los resultados encontrados a partir de esta búsqueda son los siguientes: de las 6 grandes áreas de investigación clasificadas por Colciencias 26 , 15 grupos están distribuidos en 3 áreas, ciencias agrícolas, ingeniería y tecnología, y ciencias naturales, las cuales han abordado investigaciones relacionadas con la piña en diferentes campos.Según este panorama, existen oportunidades para que los grupos de investigación de las demás subáreas del conocimiento participen en diversos temas de investigación que son de relevancia para la cadena productiva. Entre estos, se resaltan la problemática ambiental y los efectos desencadenantes que contiene el desarrollo de este monocultivo. Otra temática notable es el aprovechamiento integral de la piña, es decir, que además de la utilización de la pulpa se propongan alternativas de uso para la cáscara, el corazón y la corona.Si bien es evidente la capacidad con la que se cuenta para el desarrollo científico y la generación de conocimiento en cuanto a la cadena de la piña en el Valle del Cauca, el continuo crecimiento de los insumos científicos requiere del fortalecimiento de alianzas a largo plazo entre el sector público, el sector privado y la academia. Finalmente, la investigación debe considerar las demandas particulares de esta cadena, de tal modo que acorten las brechas presentes en cada uno de los eslabones y permita el desarrollo sólido de la competitividad de la misma. De esta forma, la información puede y podrá ser utilizada para la toma de decisiones y apoyo para el direccionamiento estratégico de la investigación.• Desde hace más de una década, la piña se cuenta entre los productos con potencial para la exportación. En el 2006, con el fin de aprovechar las potencialidades del campo colombiano, a la vez que se visualizaba una oportunidad del mercado proyectada al 2020, el Ministerio de Agricultura y Desarrollo Rural (mAdr) priorizó 10 grupos de productos, entre estos 14 frutas 27 , entre las que se incluye la piña (mAdr, 2006). En la actualidad, el Estado ha ratificado esto en el programa Alianza -Agro Exporta, que resalta los esfuerzos que a través del Programa de Transformación Productiva (ptp) llevarán a cabo el mAdr y el Ministerio de Comercio, Industria y Turismo (Mincit), con el objeto de impactar en 8 cadenas productivas (incluida la de la piña), para aumentar su calidad, productividad, comercialización y exportaciones (Gobierno de Colombia, 2018).potencial comercial a nivel nacional e internacional, que conlleva a un periodo de aprendizaje acompañado de posibles desaciertos y pérdidas económicas.• Desde la investigación, existe la oportunidad de generar nuevos conocimientos alineados a las dinámicas actuales de este monocultivo, por ejemplo, en el desarrollo de productos con valor agregado, con el fin de hacer uso integral de todas las partes de la fruta (no solo de la pulpa). Dado que la composición porcentual de la fruta es pulpa 33 %, corazón 6 %, cáscara 41 % y corona 20 % (Ticso, 2014), se recomienda desarrollar estudios de caracterización de todos estos componentes y demás residuos biomásicos que se generan tras la producción.• En medio de las brechas que afectan la competitividad de la cadena de la piña en el Valle del Cauca, se retomaron las siguientes problemáticas que dada su naturaleza requieren, entre otras cosas, procesos de investigación: 1) la disminución de la calidad genética de la semilla md-2 y la falta de parámetros técnicos para su manejo, 2) el establecimiento del cultivo en zonas de baja aptitud, 3) la ausencia de paquetes tecnológicos adecuados a las zonas planas y de ladera, 4) la manifestación de una malformación en el fruto (denominada cintura) que afecta su calidad comercial, 5) la obtención de frutos con grados no comerciales de translucidez, 6) la afectación de la calidad organoléptica del fruto asociada a la aplicación inadecuada de reguladores de crecimiento, 7) el desconocimiento del impacto ambiental del cultivo a causa del uso no controlado de agroquímicos que degradan el medioambiente e inhiben la respuesta ante plagas y enfermedades, 8) la erosión y afectación de la aptitud agrícola del suelo, 9) los bajos niveles de innovación agroindustrial y 10) los impactos negativos de la ineficiencia logística de los procesos comerciales.Esta identificación previa de las brechas que sesgan la contribución del cultivo a los indicadores económicos del departamento dio paso a la estructuración de este plan de investigación y desarrollo, en el que se ha tenido en cuenta el dictamen de expertos e investigadores y la perspectiva de los demás actores de la cadena, en la búsqueda de una mirada holística. Así, el plan propone 18 alternativas de investigación definidas como respuesta a las problemáticas enunciadas.Del total de las investigaciones propuestas, las 10 que se enuncian a continuación fueron priorizadas por los actores de la cadena y por los investigadores; así mismo, se manifestó que estas son las que requieren mayor premura en su abordaje y, por ende, deberían ejecutarse en el corto plazo: 1) valorar la adopción de tecnologías de producción sostenible, 2) adaptar sistemas productivos a las condiciones de las zonas que han demostrado mayor potencialidad para el cultivo, 3) valorar alternativas de mercado para la fruta y sus derivados, 4) estudiar las variables que inciden en la producción de material genético de calidad fitosanitaria, 5) medir las pérdidas en la cantidad y calidad del suelo tras las inadecuadas prácticas de labranza, 6) estudiar la potencialidad industrial de la fruta, 7) evaluar el impacto económico de los sobrecostos inmersos en las operaciones de comercialización nacional y de exportación, 8) analizar la potencialidad de uso de los residuos del cultivo, 9) evaluar los efectos de los plaguicidas sobre el medioambiente y 10) determinar las causas que impiden el correcto desarrollo de los frutillos de la piña y que ocasionan la cintura.Además de las alternativas de investigación nombradas, los actores hacen énfasis en la necesidad de generar y socializar conocimientos para que el productor pueda obtener una segunda cosecha con altos niveles de productividad y rendimiento. Por otra parte, debido a la capacidad institucional en materia de investigación, las propuestas planteadas para dar respuesta a las demás brechas tecnológicas recibieron un mayor puntaje de priorización por parte de la comunidad científica, en comparación con el que les otorgaron los demás actores de la cadena; sin embargo, todos los evaluadores coincidieron en afirmar que deben llevarse a cabo para subsanar las debilidades de la cadena. Entre estas, se destacan la necesidad de estudiar los aspectos que inciden en la floración natural en las zonas de ladera y analizar aspectos que determinan el grado de translucidez en la fruta.• En este documento se plantean opciones de investigación que se relacionan con objetivos estratégicos para cada eslabón de la cadena. De igual manera, se estiman tiempos de ejecución de las investigaciones y se proponen indicadores y posibles responsables (de acuerdo con las capacidades institucionales) para la realización de los estudios. No obstante, es importante tener en cuenta que la puesta en marcha y el seguimiento del plan en su totalidad, o parte del mismo, requiere de la acción mancomunada de la institucionalidad departamental, dado que, aunque su estructuración contó con representatividad de todos los eslabones, de la Academia y centros de investigación, es cada entidad la que finalmente debe evaluar la inclusión de estos requerimientos en sus planes de trabajo.El presente documento se constituye como una guía que se suma a los planes sectoriales y agendas regionales al brindar información de una cadena productiva en particular y al proponer una ruta para las organizaciones del conocimiento. Además, se articula con la Ley 811 de 2003 del mAdr, que rige a las organizaciones de cadena. De igual forma, se destacan las investigaciones que en el marco del proyecto \"Incremento de la competitividad sostenible en la agricultura de ladera en todo el departamento, Valle del Cauca, occidente\", pueden llevarse a cabo con el fin de hacer un aporte significativo a la cadena productiva.• Las problemáticas de desarrollo económico, social y ambiental en el Valle del Cauca repercuten en los índices de competitividad, ciencia, tecnología e innovación y muestran desarticulación regional frente a la trayectoria productiva y a las demandas del departamento (Gobernación del Valle del Cauca, 2018). En este sentido, es preciso que las organizaciones del conocimiento continúen articulándose con las demás entidades de apoyo, para generar y trasferir conocimientos que surjan de la realidad de los encadenamientos productivos y no de la mera intencionalidad de los investigadores.Además, es necesario involucrar a la sociedad (en este caso, a los actores de la cadena de la piña en el Valle del Cauca), de tal forma que sea posible cerrar las brechas que los distancian de una verdadera y equitativa generación de valor. Esto requiere que la investigación se vea acompañada de acciones de divulgación en un lenguaje apropiado para los interesados; solo así es posible llevar a cabo un proceso efectivo de transferencia tecnológica y contribuir al progreso de una comunidad.• Durante la descripción del estado del arte de la producción científica en el ámbito internacional entre los años 2000 y 2018, se realizó una clasificación categórica de las publicaciones dispuestas en diferentes bases de datos académicas. Como resultado, se observó una clara tendencia de la comunidad científica en preferir estudios relacionados con las propiedades químicas de la planta y su fruto, así como los aspectos relacionados con el desarrollo del cultivo, el manejo poscosecha y la evaluación de procesos de agroindustria, por encima de estudios relacionados con temas referentes al mercado agrícola, la competitividad, o el impacto social y económico de la cadena productiva.El panorama es similar a nivel nacional, a lo que se suma que, frente a otros países productores de piña como Brasil y competidores en el mercado externo como Costa Rica, Colombia se encuentra muy por debajo en los indicadores de producción de nuevos conocimientos. Esta desventaja comparativa desvirtúa las posibles expectativas del país a causa de sus potencialidades productivas e indica que aún hace falta camino por recorrer para superar las barreras que, en términos de competitividad, han limitado el crecimiento de las exportaciones de la fruta tropical.Para el caso del Valle del Cauca, los requerimientos del mercado externo han limitado la participación de los actores de la cadena en el comercio internacional; en particular, la de los pequeños y medianos productores que han adaptado sus conocimientos acerca del manejo de otras variedades (como la manzana) a la producción del híbrido md-2 con técnicas de producción a veces ineficientes. De este modo, deben dirigir su producción al mercado nacional, al ser este menos exigente en términos de calidad, planificación productiva e implementación de normas de certificación, entre otros. No obstante, en las temporadas de sobreoferta, este grupo poblacional enfrenta grandes desafíos económicos. Así, es necesario que se priorice el abordaje de estudios sociales, de mercado y de competitividad, con altos niveles de innovación, que coadyuven al pequeño productor a enfrentar la competencia y a vincularse a nuevas oportunidades comerciales de manera competitiva.Brecha tecnológica: para el caso del análisis de cadenas, son aquellos factores que limitan su desarrollo y competitividad y que pueden encontrarse en cualquier eslabón de la misma. Para dar solución a estas brechas, se requiere la adaptación o el desarrollo de conocimientos y tecnologías.El término brechas tecnológicas incluye brechas sociales, productivas, organizacionales, comerciales, informativas, entre otras.Cadena de valor: serie conectada de organizaciones, recursos y fuentes de conocimiento involucrados en la creación y entrega de valor al consumidor final (Lundy et al., 2014). Las organizaciones de la cadena se encuentran interrelacionadas por una serie de transacciones de negocios en las que el producto pasa desde la producción primaria hasta el consumidor final, a través de una serie de eslabones (Springer-Heinze, 2007).Cuello de botella: puntos críticos, problemas o restricciones que limitan o dificultan la operatividad eficiente de un proceso o sistema, lo cual afecta la competitividad o condiciona la capacidad en una o varias de las operaciones, etapas o eslabones que lo componen. No todos los cuellos de botella corresponden a brechas tecnológicas, ya que para la solución de algunos de ellos se requiere de intervenciones de carácter distinto al tecnológico.Ley 811 de 2003: norma que decreta los parámetros a ser considerados en el establecimiento de acuerdos entre los actores de las organizaciones de la cadena constituidas a nivel nacional o regional, con el propósito de ser inscritas ante el Ministerio de Agricultura y Desarrollo Rural (Congreso de la República, 2003).Objetivos estratégicos: declaraciones de los resultados que un sistema u organización se propone alcanzar en el mediano y largo plazo, para lo cual determina en su expresión las metas o los indicadores cualitativos o cuantitativos que permitirán el seguimiento o validación de su alcance.Plan de investigación y desarrollo: planteamiento sistémico que propone un listado de actividades dirigidas a la investigación, con el fin de gestionar o generar conocimiento útil para su posterior implementación, de tal forma que pueda materializarse en el mejoramiento o desarrollo de procesos, productos, servicios o tecnologías.La definición anterior se fundamenta en los siguientes conceptos:• Investigación básica: \"consiste en trabajos experimentales o teóricos que se emprenden, principalmente, para obtener nuevos conocimientos acerca de los fundamentos de los fenómenos y hechos observables, sin pensar en darles ninguna aplicación o utilización determinada\" (Ocde, 2003, p. 30). • Investigación aplicada: \"consiste en trabajos originales realizados para adquirir nuevos conocimientos; sin embargo, está dirigida fundamentalmente hacia un objetivo práctico específico\" (Ocde, 2003, p. 30). • Desarrollo experimental: \"consiste en trabajos sistemáticos que aprovechan los conocimientos existentes, obtenidos de la investigación y/o la experiencia práctica, y está dirigido a la producción de nuevos materiales, productos o dispositivos, a la puesta en marcha de nuevos procesos, sistemas y servicios, o a la mejora sustancial de los ya existentes\" (Ocde, 2003, p. 30).Planeación estratégica: \"herramienta de gestión que permite apoyar la toma de decisiones de las organizaciones en torno al quehacer actual y al camino que deben recorrer en el futuro, para adecuarse a los cambios y a las demandas que les impone el entorno, y lograr la mayor eficiencia, eficacia y calidad en los bienes y servicios que se proveen\" (Armijo, 2011, p. 15).","tokenCount":"17554"} \ No newline at end of file diff --git a/data/part_3/5940864147.json b/data/part_3/5940864147.json new file mode 100644 index 0000000000000000000000000000000000000000..80594c96a7187b22c5a043012cce45a4124591db --- /dev/null +++ b/data/part_3/5940864147.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"18c82ec8751d7c0bffd1923c37155ac2","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/c29c3c39-3539-43c1-a926-b0574d2471b1/retrieve","id":"-510080356"},"keywords":[],"sieverID":"dbf98d1a-6fd4-4b45-84a4-075d14d500a6","pagecount":"119","content":"Más información en www.sgrp.cgiar.org Queremos agradecer a las personas que contribuyeron proporcionando información y opiniones propias, muchas de las cuales se han consignado en este documento. Entre ellos destacamos la colaboraciónEl proyecto de Acción Colectiva para la Rehabilitación de los Bienes Públicos Mundiales en el Sistema de Recursos Genéticos del GCIAI -Fase 2 (GPG2) es una iniciativa a nivel de todo el sistema, apoyada por el Banco Mundial como parte de los donantes del CGIAR, para rehabilitar y mejorar la capacidad de los centros del CGIAR de conservar y poner a disposición de los usuarios de todo el mundo los recursos fitogenéticos y su conocimiento asociado como Bienes Públicos Mundiales. El enfoque de la iniciativa es fortalecer la acción colectiva en todos los centros en la consolidación de políticas, prácticas, procedimientos y mejorar la eficiencia en el manejo de las colecciones en fideicomiso y su información y conocimiento asociados, al igual que la planeación estratégica para elevar la capacidad del CGIAR de realizar investigación de punta en el campo de los recursos genéticos y contribuir con los esfuerzos de nuestros socios y actores interesados dentro del contexto del sistema mundial emergente.El Proyecto GPG2 se llevó a cabo con la participación de todos los centros del CGIAR involucrados en actividades con recursos genéticos de cultivos (AfricaRice, Bioversity International, CIAT, CIMMYT, CIP, ICARDA, ICRI-SAT, IFPRI, IITA, ILRI e IRRI).El proyecto \"Acción Colectiva para la Rehabilitación de los Bienes Públicos Mundiales en el Sistema de Recursos Genéticos del GCIAI\" fue posible gracias al generoso apoyo del Banco Mundial. Los centros del GCIAI * (CGIAR por su sigla en inglés) son quince organizaciones internacionales dedicadas a la investigación científica con énfasis en la alimentación y el medio ambiente. El Grupo Consultivo para la Investigación Agrícola Internacional (GCIAI) es una alianza mundial que busca contribuir al desarrollo a través de la investigación. Esta alianza está conformada tanto por los centros del CGIAR como por gobiernos de países industrializados y en desarrollo, fundaciones, organizaciones regionales e internacionales, y otros socios. Mediante la investigación de alta calidad en agricultura internacional, esta alianza entre donantes, investigadores y socios contribuye a reducir la pobreza y el hambre, mejorar la salud y nutrición del ser humano y la resiliencia de los ecosistemas en los países en desarrollo. El impacto mundial del CGIAR es multiplicado gracias a la cercana colaboración de cientos de organizaciones socias, que incluyen institutos de investigación nacionales y regionales, organizaciones de la sociedad civil, y el sector privado. El CGIAR genera bienes públicos internacionales disponibles para todos.El Programa de Recursos Genéticos del Sistema del GCIAI (SGRP, por su sigla en inglés) aúna las actividades que realizan los centros del CGIAR en el campo de los recursos genéticos en una alianza cuyo objetivo es maximizar la colaboración, especialmente en cinco áreas temáticas: políticas, conciencia pública y representación, información, conocimiento y tecnología, y formación de capacidades. Estas áreas temáticas se relacionan con asuntos o campos de trabajo que son críticos para el éxito de las actividades en función de los recursos genéticos. El SGRP contribuye al esfuerzo mundial para conservar los recursos genéticos agrícolas, forestales y acuáticos, y promueve su uso a través de metodologías consistentes con el Convenio sobre la Diversidad Biológica (CDB). El Grupo de Trabajo Intercentros sobre los Recursos Genéticos (ICWG-GR, por su sigla en inglés), el cual incluye representantes de los centros y de la FAO, actúa como Comité Directivo. Bioversity International es el Centro Convocante para el SGRP y a su vez es la sede desde donde opera su Secretariado Coordinador.1 La superficie total de 128.5 millones de hectáreas del territorio peruano se disgrega en un 12% correspondiente a la costa, el 28 % a la sierra y el 60% a la selva.2 Así, desde el 8,000 a.C. se tienen indicios de la existencia en el Perú de cultivos como la papa (Solanum sp.) el olluco (Ullucus tuberosus), la yuca (Manihot esculenta), el camote (Ipomoea batatas), la jícama (Pachyrrhyzus sp.), el pallar (Phaseolus lunatus), el frejol (Phaseolus vulgaris), la oca (Oxalis tuberosus) y el ají (Capsicum chinense). La presencia del zapallo (Cucurbita sp.) se remonta al 7,000 a.C. y el algodón (Gossypium barbadense) al 4,200 a.C. Dichos cultivos han sido testigos del nacimiento de imperios y culturas como los Wari, Chavin, Tiwanaku e Inca, entre otros, y de una herencia cultural milenaria. Otros cultivos como el maíz (Zea mays), de origen mesoamericano, tienen una historia en el Perú desde el 4,000 a.C. cuando fue adaptado a los diversos pisos ecológicos, llegando a existir, en la actualidad, más de 55 razas nativas.La agricultura en el Perú tiene una antigüedad de más de 10,000 años, por lo que su tradición semillera es tan rica como antigua. Las especiales condiciones de heterogeneidad geográfica y climática que abarca desde las llanuras desérticas de la costa (en adelante, costa), los Andes centrales (sierra) y la zona este de selva baja de la Amazonia (selva) 1 han favorecido la gran diversidad de cultivos y la gran variabilidad presente dentro de estos, y el asentamiento de una gran diversidad de culturas. 2 En el Perú se localizan 84 de un total de 104 zonas de vida natural que existen en el mundo y se alberga a una pluralidad de 45 diferentes etnias y 14 familias lingüísticas. Se estima que el Perú posee aproximadamente 17,000 especies de plantas, de las cuales una cantidad superior a 5,200 son endémicas (Brako y Zarucchi, 1993).En el Perú se encuentran dos importantes centros de origen y domesticación de cultivos como son los Andes y la Amazonia. Es, además, centro de variabilidad de otros cultivos que fueron introducidos, pero que han logrado adaptarse a la diversidad de climas y ecosistemas. El resultado es la existencia de aproximadamente 182 especies de plantas domesticadas nativas, de las que 174 son de origen andino, amazónico y costeño y 7 de origen mesoamericano introducidas hace siglos. Las especies cultivadas más importantes a nivel mundial cuyo origen es el Perú son la papa, el tomate, el camote, la yuca, el algodón, el achiote, el caucho y la papaya (Anexo I).No obstante su carácter de centro de origen y diversidad, el Perú no escapa a la interdependencia con otros países en términos de recursos fitogenéticos. Esta interdependencia llega a ser, según indica Flores Palacios en un documento de la FAO, del 80% al 93% en relación con cultivos no originados en la zona andina. Así, el nivel de calorías procedentes de cultivos que no se originan en la región es alto y proviene fundamentalmente del trigo, del arroz, del azúcar, del maíz, de la soya y del banano. No es sorprendente entonces que el Perú haya firmado y ratificado el Tratado Internacional sobre los Recursos Fitogenéticos para la Alimentación y la Agricultura (referido a partir de ahora como el Tratado). Mediante el Tratado los países reconocen que es vital asegurar la disponibilidad de los recursos fitogenéticos de los cultivos más importantes que los países necesitarán para alimentar a sus pueblos y crea, entre otras cosas, un sistema multilateral de acceso a sus recursos y reparto equitativo de los beneficios derivados de su utilización. El sistema multilateral del Tratado establece un proceso eficaz, efectivo y transparente para facilitar el acceso a estos recursos y compartir los beneficios de manera justa y equitativa entre los países que lo han ratificado (Halewood y López, 2008).Dadas estas circunstancias, el objetivo del presente estudio es identificar a los usuarios de los recursos fitogenéticos de importancia para la alimentación y la agricultura peruanas; analizar de dónde proceden y cómo se utilizan, con el fin de llegar a reconocer los intereses actuales y potenciales de estos usuarios, en iniciativas internacionales que faciliten el acceso, flujo e intercambio de dichos recursos. La importancia del análisis radica en identificar las oportunidades que ofrece el intercambio internacional de material genético para el país y en considerar lo que el Perú puede ofrecer a este sistema multilateral en aras a lograr un mejor aprovechamiento y conservación de los recursos fitogenéticos para la alimentación y la agricultura del futuro.La investigación se ha fundamentado en el análisis extensivo de la literatura existente sobre el tema, complementada con consultas con conocedores de la materia. Se constituyó un grupo de expertos conformado por especialistas de diversas instituciones que sirviese a manera de plataforma para intercambiar información y priorizar criterios que apoyasen el desarrollo del estudio. Los expertos están afiliados con el Instituto Nacional de Innovación Agraria (INIA), el Centro Internacional de la Papa (CIP), la Secretaría Técnica del CGIAR, el Ministerio del Ambiente, la Universidad Nacional Agraria La Molina y la ONG Coordinadora de Ciencia y Tecnología de los Andes. Asimismo, se elaboró un cuestionario con respuestas múltiples y abiertas que se distribuyó entre actores representativos en el En el Perú se localizan 84 de un total de 104 zonas de vida natural que existen en el mundo y se alberga a una pluralidad de 45 diferentes etnias y 14 familias lingüísticas.ámbito de la investigación agrícola, ONG, y empresas agrarias, entre otros. La sistematización de las consultas realizadas fue objeto de discusión en un taller nacional que congregó a los usuarios y actores más representativos en el uso de los recursos fitogenéticos en el Perú.El cuestionario se sustentó en doce preguntas indicativas del tipo de actividad que realizan los usuarios con los recursos fitogenéticos y su finalidad; la interdependencia nacional e internacional con fines de investigación y desarrollo; los movimientos hacia el exterior; la pertenencia a redes de mejoramiento y conservación, y la utilización de sistemas de información vinculados a su uso y conservación. Adicionalmente, se intentó elucidar el grado de conocimiento relativo al marco jurídico e institucional referido a las políticas de acceso y distribución de beneficios. En particular, temas pertinentes al grado de conocimiento sobre el Tratado y el sistema multilateral de acceso y distribución de beneficios previsto en el mismo, los obstáculos normativos y operativos que tienen lugar en el intercambio de material y la idoneidad de las previsiones contractuales anticipadas para ello, entre otros.Dicho cuestionario se distribuyó entre sesenta y cinco usuarios de recursos fitogenéticos, entendidos como aquellas personas cuyas actividades cotidianas están vincu-ladas a ellos, tales como la agricultura, la colecta y la investigación y el mejoram i e n t o , a s í como la importación, la exportación o la comercialización en general. De los mismos se recibieron un total de treinta y cuatro cuestionarios respondidos: doce corresponden a ONG; nueve a universidades y centros de investigación; siete a programas nacionales de investigación del INIA; cuatro a empresas y dos a funcionarios del Ministerio del Ambiente. El trabajo se complementó con nueve entrevistas a usuarios que incluyeron visitas a los programas de investigación de algunas universidades nacionales en Lima y provincias.En el taller nacional de validación de los resultados de la encuesta se trataron de manera específica los incentivos y desincentivos de participar activamente en el sistema multilateral previsto en el Tratado Internacional, así como los obstáculos y las oportunidades que ello implica en un futuro. Finalmente, las conclusiones obtenidas en el proceso fueron objeto de contraste con el grupo de expertos identificado en un inicio.La investigación enfrentó dificultades asociadas a la debilidad del sistema de información agrícola del país y a la antigüedad de ...los países reconocen que es vital asegurar la disponibilidad de los recursos fitogenéticos de los cultivos más importantes que necesitarán para alimentar a sus pueblos.algunas fuentes de gran trascendencia para el tema. Por ejemplo, el último Censo Agropecuario es del año 1994 (La Revista Agraria, 2009a), y desde esta fecha no se dispone de información fiable que ayude a identificar las dimensiones de las unidades agropecuarias; la importancia de las variedades mejoradas y de los cultivos nativos por superficie; la asimilación tecnológica; los niveles de acceso a los mercados, los productores involucrados en los distintos cultivos, entre otros. Esto dificulta el poder determinar con exactitud cuáles son las demandas de recursos fitogenéticos para los distintos tipos de agricultura que coexisten en el país. De la misma manera, los centros de investigación no mantienen récords estrictos de entrada y salida de material genético intercambiado con entidades internacionales, ni tampoco de los producidos a nivel nacional. Así, la información que puede indicar la interdependencia nacional e internacional de material fitogenético se encuentra dispersa en numerosas fuentes de la literatura y es, con frecuencia, incompleta. El Perú firmó el Tratado Internacional el 8 de octubre del año 2002 y lo ratificó mediante Decreto Supremo el 5 de junio del año 2003 (D. S. 012-2003-RE) entrando en vigor en el país el 29 de junio del año 2004. El Perú forma parte del Órgano Rector del Tratado. Entre los cultivos listados en el Anexo I del Tratado y de los que el Perú es centro de origen o diversificación y cuenta con colecciones de importancia, se encuentran la papa, el maíz, la yuca, el camote y el frejol.El Ministerio de Agricultura y, en particular, el Instituto Nacional de Innovación Agraria (INIA) fue la entidad que asumió el liderazgo en la firma y ratificación del Tratado ya que fueron sus funcionarios los que participaron en las negociaciones internacionales. El INIA se pronunció a favor de la ratificación del Tratado por considerar que el intercambio que comprendía el sistema multilateral era beneficioso para el Perú ya que incluía los principales cultivos para la alimentación y la agricultura y que éstos son fundamentales para la investigación agrícola del país, la capacidad exportadora y la seguridad alimentaria de la población peruana. Se c o n s i d e r ó que era indispensable garantizar un acceso fácil y permanente a dichos recursos para tales fines. Sin embargo, se ha notado que dicha decisión no fue objeto de discusión ni consulta con otras instituciones relacionadas como las universidades, asociaciones de agricultores, o expertos en políticas de acceso a los recursos genéticos.Esta circunstancia ha contribuido, en parte, a que hasta el día de hoy todavía se sigan planteando interrogantes en relación con la compatibilidad del Tratado Internacional con la legislación nacional en materia de acceso a los recursos genéticos y los conocimientos tradicionales con fines de investigación o bioprospección, y la distribución de beneficios ...el intercambio que comprendía el sistema multilateral era beneficioso para el Perú ya que incluía los principales cultivos para la alimentación y la agricultura y que éstos son fundamentales para la investigación agrícola del país, la capacidad exportadora y la seguridad alimentaria de la población peruana.1 resultantes de ello. Este cuestionamiento se presenta en particular, en relación con la Decisión Andina 391 3 que establece un régimen común para los países andinos en esta materia.Esta es la razón por la que la implementación del Tratado, a pesar de su entrada en vigor en el año 2004, ha estado supeditada a la aprobación nacional de un marco normativo e institucional que desarrollase la mencionada Decisión 391. A pesar de que dicha Decisión data del año 1996, no ha sido sino hasta febrero del año 2009 que se ha definido su aplicación en el Perú, mediante el Decreto Supremo 003-2009-MINAM. El Artículo 2, apartado c), de dicho reglamento contribuye a aclarar el panorama al excluir expresamente del régimen bilateral de acceso la obtención de material genético referido a las especies alimenticias y forrajes incluidos en el Anexo I del Tratado Internacional.A la fecha, todavía no existe un punto focal nacional del Tratado Internacional designado de manera oficial. Puede ser este el motivo por el que el Tratado es poco conocido entre los actores a ser involucrados en su potencial implementación, a pesar de las diversas actividades de divulgación realizadas. No obstante, la comprensión sobre el Tratado varía según los usuarios: si bien los agricultores lo desconocen en su mayoría, incluidos aquellos con mayor acceso a la información como la mediana y gran empresa; sí es conocido en el ámbito de los centros de investigación y centros ex situ como el INIA, universidades y el Centro Internacional de la Papa. Existe un mayor conocimiento entre representantes cercanos al diseño de normas y políticas vinculadas al acceso a los recursos genéticos y en materia de propiedad intelectual. 4 En general, los usuarios entrevistados asumen que su funcionamiento -tanto del sistema multilateral como en lo relativo a otros aspectos del Tratado-todavía no ha sido puesto en práctica. Entre los usuarios que conocen su contenido la percepción general sobre el Tratado es el de un acuerdo que implica un traspaso de derechos soberanos nacionales hacia un intercambio libre con fines de investigación para la alimentación y la agricultura. Respecto de los posibles beneficios del Tratado, los usuarios destacan el de garantizar la seguridad alimentaria. Sin embargo, no les queda muy claro cómo puede beneficiar a los pequeños agricultores; cómo se 3 Decisión 391 sobre el Régimen Común de Acceso a los Recursos Genéticos de 2 de julio de 1996. Disponible en http://www.comunidadandina.org/normativa/dec/D391.htm (Consultado diciembre, 2009).1 aplican los derechos del agricultor, ni tampoco cómo tendrá lugar la distribución de beneficios ni si se requerirá el reconocimiento del país de origen de los materiales. También existe confusión sobre el modo de distribución de los beneficios resultante del intercambio de recursos fitogenéticos al amparo del sistema multilateral y sobre los recursos fitogenéticos que se incluyen en el mismo.Los representantes del INIA y el personal de los centros de investigación vinculados a éste poseen mayor información en relación con las implicaciones del Tratado. No obstante, en este ámbito hay incertidumbre en relación con las colecciones que existen en el país y si éstas cumplen con los requisitos del Artículo 11.2 del Tratado con el fin de definir cuáles serán consideradas a efectos del sistema multilateral. Esta circunstancia, según algunos funcionarios de INIA, debe ser sometida a un debate de mayor alcance entre los actores involucrados en la conservación y el uso de los recursos fitogenéticos. La decisión, entienden, dependerá además de si la información y el \"stock\" de material genético con el que se cuenta son suficientes y de poder contar con los procedimientos pertinentes para hacer posible la disponibilidad de los materiales. Parece entonces que todavía quedan cuestiones pendientes por esclarecer tales como cuáles son los materiales que están bajo la administración y c o n t r o l d e l Estado y que se consideran de dominio público; el sistema de información que se debe desarrollar en relación con dichos materiales, y la política a seguir en relación con los materiales no incluidos en el Anexo I. Entre las previsiones necesarias para su puesta en práctica se encuentra, la adopción del Acuerdo Normalizado de Transferencia de Material (en adelante, ANTM) para el funcionamiento del sistema multilateral de acceso y distribución de beneficios del Tratado Internacional.Por último, en relación con la participación de la sociedad civil, es de destacar que la Asociación del Parque de la Papa ha seguido de cerca el proceso de negociación del Tratado Internacional. Entre los once proyectos seleccionados en el mundo por el Órgano Rector del Tratado, en su tercera reunión Entre los usuarios que conocen su contenido la percepción general sobre el Tratado es el de un acuerdo que implica un traspaso de derechos soberanos nacionales hacia un intercambio libre con fines de investigación para la alimentación y la agricultura. 1 celebrada en Túnez del 1 al 5 de junio del 2009, se otorgó financiamiento a la Asociación ANDES y a la Asociación del Parque de la Papa con el fin de potenciar al Colectivo Papa Arariwa en su trabajo de repatriación, conservación dinámica y fortalecimiento de las prácticas tradicionales con el fin de hacer frente al cambio climático. 5 Este apoyo es parte del programa del fondo de distribución de beneficios del Tratado Internacional (IT/GB, 2009).La población total del Perú reportada en el censo del 2007 fue de 28'220,764 habitantes, de los cuales entre el 24% y el 35% es rural (INEI, 2007). Algunos estudiosos sin embargo sugieren que la población rural está sub-reportada y que alcanzaría del 39 al 47% del total (La Revista Agraria, 2009a). El PBI total del país en el año 2008 fue de US$ 127.6 billones y el sector agrícola contribuyó con el 7.7% 6 del mismo. El análisis por regiones evidencia que existe una mayor contribución de la producción agraria a la economía regional de la que indica el promedio nacional. Tal es el caso de algunos departamentos de la selva como San Martín cuya producción agraria significa el 70% del producto bruto; en la sierra, el caso de Junín con 43%, Cajamarca con 38% y Cusco con 33%, mientras que en la costa, Ica y Lambayeque contribuyen entre 33% y 34% respectivamente (Iguíñiz, 2006; La Revista Agraria, 2009b). La agricultura esasí un sector importante para la economía y seguridad alimentaria del país. El sector agrícola es el primer generador de empleo y ocupa cerca del 20% de la población económicamente activa en el país. Cabe notar que dicha población económicamente activa agraria es muy importante en algunos departamentos de la sierra y de la selva: Cajamarca (60%); San Martín (54%); Cusco (38%); Junín (37%). También en algunos departamentos de la Costa como Ica (22%) y Lambayeque (21%). El contraste entre las cifras de contribución al PBI evidencia, según el Centro Nacional de Planeamiento Estratégico (CEPLAN, 2009), el bajo nivel tecnológico alcanzado por este sector en el Perú y su bajo rendimiento general. Algunos expertos, sin embargo, manifiestan que las cifras disponibles sub-representan las dimensiones del sector agrario lo que resulta en una baja inver-La superficie con potencial agrícola del Perú es de aproximadamente un 5.9% del territorio nacional (7.6 millones de hectáreas de un total de 128.5 millones).sión en lo que no sean cultivos de exportación (La Revista Agraria, 2009b). Por otro lado, contrastan las cifras del Reporte de Competitividad Global para el período 2009-2010, en el que el Perú ocupa el puesto 78 en el índice de competitividad global mundial (en un rango de 133 países), por encima de otros países de la región, como Argentina (88), Ecuador (104), Venezuela (105) y Bolivia (124) (World Economic Forum, 2009).La superficie con potencial agrícola del Perú es de aproximadamente un 5.9% del territorio nacional (7.6 millones de hectáreas de un total de 128.5 millones). En la actualidad, el área cosechada agrícola total es de 2.595,979 hectáreas de las que el 86% estarían destinadas al mercado interno y el 14% al mercado externo. 7 La disponibilidad de superficie agrícola por habitante es de únicamente 0.13 hectáreas, frente al promedio de 0.44 hectáreas per cápita de otros países de Sudamérica. Aproximadamente 1.75 millones de hectáreas disponen de infraestructuras de riego, pero solo 1.2 millones se riegan anualmente (Pérez, 2006).Según el Plan Estratégico Nacional Exportador 2003 -2013 (MINCETUR, 2004), en el Perú coexisten de forma muy segmentada tres tipos de agricultor fundamentalmente:• El agricultor moderno, que se caracteriza por utilizar insumos especializados de alta calidad, con alto nivel de investigación agraria y desarrollo tecnológico (con fines de incrementar la productividad, la calidad y la homogeneidad del producto); se dedica a la producción de espárrago, alcachofa, uva, palta, melón, cítricos y páprika, entre otros; • El agricultor tradicional, que utiliza insumos de calidad limitada, con insuficiente oferta a precios bajos y escasa inversión en investigación agraria y desarrollo tecnológico; se dedica a la producción de mango, olivo, higo, palmito, legumbres y café, entre otros; • El agricultor de subsistencia, con una producción destinada fundamentalmente al autoconsumo, utiliza insumos de mala calidad, con nula inversión en investigación y desarrollo tecnológico; se dedica a la producción de cultivos nativos, quinua, cochinilla y plantas medicinales, entre otros. Uno de los problemas del sector es el predominio del minifundio: el promedio de la unidad agropecuaria es de 3.1 hectáreas. En 1994 el 92% de las unidades agropecuarias era inferior a 20 hec-táreas y el 72% de los agricultores manejaba unidades menores de 5 hectáreas. Datos más recientes del 2006 señalan que las cifras no han variado mucho en quince años desde el último censo agropecuario, al indicar que el 80% de las unidades agropecuarias tiene menos de 5 hectáreas (La Revista Agraria, 2009c).Los principales cultivos en el país son según superficie cosechada, por este orden, el arroz, el café, la papa, el maíz amarillo duro, el maíz choclo, la cebada y el trigo (La Revista Agraria, 2008a). En general, las fuentes básicas de energía y proteína en el Perú son el arroz y el trigo, lo que lleva a un desbalance nutricional con alto consumo de carbohidratos (CEPLAN, 2010).En el Perú hay una situación de pobreza del 36%, y de pobreza extrema del 13%. En el ámbito rural, la incidencia de la pobreza alcanza al 60% de la población. La desnutrición crónica de los niños menores de 5 años es del 22% a nivel nacional y 36% en el ámbito rural. 8 En la sierra, todas las referencias citadas se elevan: el 88% de la población es rural; el índice de pobreza es del 76% y el de pobreza extrema del 46.5%. Los hogares más pobres son los más dependientes de la agricultura. El pobre extremo rural se dedica a la agricultura, posee únicamente media hectárea y se desempeña como trabajador familiar no remunerado que complementa sus ingresos vendiendo su fuerza de trabajo (Trivelli, 2007). Por último, existe una correlación entre ser indígena y ser pobre (Trivelli, 2005). Se estima que en el Perú hay 6,000 comunidades campesinas y 1,450 comunidades nativas reconocidas. Aproximadamente 3,800 comunidades tienen problemas en el reconocimiento de la titularidad de sus tierras (Panfichi y Coronel, 2009).En las zonas de mayor pobreza es donde se concentran los conflictos sociales. El descontento se alimenta en la percepción de injusticia y lejanía del Estado, en la desconfianza del sistema democrático 9 y en la percepción de que el gran crecimiento económico que ha disfrutado el país desde el 2002 no ha tenido su debido reflejo redistribuidor, perjudicando particularmente a las zonas del sur andino y la Amazonia (Panfichi y Coronel, 2009; Yancari, 2009).Los principales cultivos en el país son según superficie cosechada, por este orden, el arroz, el café, la papa, el maíz amarillo duro, el maíz choclo, la cebada y el trigo.La importación de semilla con fines de siembra referida a los cultivos del Anexo I evidencia la necesidad de importación del extranjero de cultivos que son nativos del Perú como el maíz amarillo duro, y más increíblemente, la papa (Cuadro 1). Es más, en el 2008, estos dos cultivos representarían la cifra más alta de las importaciones con un total aproximado del 95% y un 3% respectivamente del total de im- de trigo y maíz amarillo duro, entre otros. Según algunos expertos, se están sentando las bases para una situación futura de grave inseguridad alimentaria; el país depende cada vez más de las importaciones; progresivamente más tierras se dedican a productos de exportación y a biocombustibles; hay una mayor marginación de los pequeños agricultores que son los principales abastecedores de alimentos en el Perú y se tiene menor control sobre la producción de alimentos orientados a la población (La Revista Agraria, 2008b).L a s i m p o rtaciones registraron un crecimiento promedio anual del 18% durante el periodo 2000-2008, siendo los principales productos importados el maíz amarillo duro, torta de soya, trigo duro, harina de habas y de soya, manzanas, entre otros. 10 La agroexportación se ha incrementado y diversificado paulatinamente. En la actualidad, ésta se concentra en cultivos como café (76% del área total destinada a exportación), espárrago, ají páprika, alcachofa, mango, uva y otras frutas y hortalizas, y cacao. Particularmente, el valor de las exportaciones se sostiene en el café y el espárrago 11 que en el 2004 concentraban casi la mitad del total exportado. El mercado basado en productos orgánicos es el tercer rubro en exportación y está constituido básicamente por ocho cultivos: café, banano, cacao, mango, algodón, granos andinos, castaña y maca. 12 Entre los cultivos emergentes destacan la quinua, la kiwicha, la palta y los frutales de la Amazonia. De lo expresado, destaca la estrecha base en la que descansan las cifras del mercado orgánico, enfocado en ocho productos, y el mercado agroexportador, concentrado principalmente en cinco productos lo que apunta a la necesidad de diversificación de la base productiva.Existen ciertas amenazas de relevancia para la demanda de recursos fitogenéticos en el país.Según algunos expertos, se están sentando las bases para una situación futura de grave inseguridad alimentaria; el país depende cada vez más de las importaciones; progresivamente más tierras se dedican a productos de exportación y a biocombustibles.El Perú no solo tiene una riqueza biológica considerable, también posee una diversidad de pisos ecológicos y de climas y una amplia latitud geográfica que le permite disponer de largas temporadas de cosecha que le ofrecen un cúmulo de oportunidades. Casi todas las especies cultivadas en el mundo se pueden desarrollar en alguna parte del país. Esta misma diversidad de microclimas propicia, sin embargo, el desarrollo de nuevos biotipos de los agentes que producen enfermedades y plagas.Los fenómenos naturales adversos también constituyen una amenaza para la agricultura en el país: la alta incidencia de desastres naturales que sufre el Perú es casi el doble que en toda Latinoamérica. Terremotos, inundaciones, aludes de tierra, heladas, fuertes lluvias y vientos son fenómenos recurrentes. Los efectos son particularmente severos en los años de ocurrencia de \"El Niño\". Muchos de los impactos se agravan por las actividades humanas que afectan al ambiente como son la erosión de suelos y la deforestación (Perry, 2006). La erosión y la salinidad del suelo son graves problemas que afectan la productividad de un recurso ya de por sí escaso. Aproximadamente 18.9 millones de hectáreas presentan un nivel de erosión moderada a severa en el Perú y éstas implican la pérdida de 300,000 hectáreas anuales para uso agrícola. Esta circunstancia es especialmente crítica en relación con los suelos de la sierra, en donde cerca del 60% de las tierras están afectadas en distintos grados (40 millones de hectáreas). Por otra parte, la salinidad de los suelos impacta principalmente los valles costeros y restringe los rendimientos en cerca de un 40% de la tierra cultivable (World Bank, 2007).La tendencia viene marcada por una mayor incidencia de los desastres naturales como consecuencia del cambio climático. Durante el periodo 2000-2004 ha habido un incremento del 300% en el número de desastres naturales. 13 Las emergencias y los daños producidos a nivel nacional durante el periodo 2003-2008 habrían afectado 694,175 hectáreas e implicado la destrucción de un total de 151,219 hectáreas de cultivo. Los departamentos más perjudicados por las emergencias ambientales durante este periodo serían fundamentalmente los de la sierra (i.e. Apurímac con 2,765 emergencias; Cajamarca con 1,879 y Puno con 13 El costo económico de los mismos durante dicho período ha sido de aproximadamente US$ 325 millones anuales. Lee, D., Angulo, L (2007). Reducción de la vulnerabilidad a los desastres naturales en Perú. Taller de diseminación del análisis ambiental del Perú (CEA) Junio 6 y 7, 2007. Lima, Perú.El Perú no solo tiene una riqueza biológica considerable, también posee una diversidad de pisos ecológicos y de climas y una amplia latitud geográfica que le permite disponer de largas temporadas de cosecha que le ofrecen un cúmulo de oportunidades.1,818) y la selva (i.e. Loreto con 1,878 emergencias). 14 Según la Declaración de Lima sobre Seguridad Alimentaria del 2008, los cultivos más afectados por el cambio climático y los desastres naturales durante las últimas doce campañas agrícolas están muy asociados a la dieta alimentaria del peruano y son la papa, el arroz, el plátano, la yuca, el maíz, el frejol y el haba. Las regiones con mayor pobreza fueron las que sufrieron el mayor impacto debido, entre otros, a su escasa capacidad para adaptarse y tomar medidas para prevenir las pérdidas en sus cultivos. 15 En estos casos, la falta de semilla de cultivos alimentarios básicos con que contar en las siguientes campañas agrícolas se presenta como uno de los mayores impactos a los que el Estado es cada vez más incapaz de hacer frente. 16 Adicionalmente, el cambio climático tiene importantes consecuencias en la reducción de los glaciares, descenso de las fuentes de agua, el desplazamiento de los rangos ecológicos altitudinales hacia los pisos ecológicos más altos, la aparición de nuevas plagas y la radicalización de los cambios de temperatura. Todas estas circunstancias hacen urgente la necesidad de usar la diversidad genética de los cultivos para que mejoren la capacidad de recuperación de los agricultores y se utilice la capacidad de adaptación a las nuevas condiciones climáticas inherentes en la diversidad genética de los cultivos. 17 Con el fin de intentar delimitar las fortalezas con las que cuenta el país para poder participar de las oportunidades que ofrece el intercambio facilitado de materiales que se invoca en el Tratado Internacional, es determinante identificar la capacidad existente en investigación y mejoramiento y el nivel de dependencia e intercambio internacional actual, en relación con los recursos fitogenéticos para la alimentación y la agricultura. Para elaborar la presente sección se ha tomado como referencia la línea de base en investigación sobre recursos fitogenéticos y el análisis de las capacidades existentes en el país en mejoramiento y biotecnología, realizados por Ricardo Sevilla (Sevilla, 2008a, 2008).En el Perú, un número aproximado de 54 instituciones y organizaciones se encuentran vinculadas a la investigación en recursos fitogenéticos para la alimentación y la agricultura. Dicha cifra corresponde a 25 universidades, 12 Estaciones Experimentales Agrarias del INIA, 13 ONG, 1 fundación y 3 institutos de investigación (Anexo II).La mayor fortaleza en la investigación de recursos fitogenéticos se ubica en las universidades, el INIA, el Instituto de Investigaciones de la Amazonia Peruana (IIAP) y en otros institutos de investigación de naturaleza privada.La distribución geográfica de los centros de investigación peruanos es muy representativa ya que éstos se encuentran en regiones estratégicas y abarcan los distintos ecosistemas existentes en el país. El INIA, por ejemplo, cuenta con 12 Estaciones Experimentales Agrarias y más de 40 subestaciones que se ubican en zonas que abarcan desde el nivel del mar hasta los 4,200 m.s.n.m. Asimismo, el de agricultores que han adquirido cada vez mayor importancia, especialmente las relacionadas con determinados productos para la exportación. En relación con los cultivos del Anexo I del Tratado, merece la pena destacar la Asociación de Agricultores de Ica, el Instituto Peruano de Leguminosas, el programa PROMENESTRAS, la Asociación de Productores de Maíz y Sorgo, y el Instituto para el Desarrollo Agrario de Lambayeque (IDAL) referente al cultivo de arroz.Si bien se carece de mecanismos formales de coordinación entre los distintos centros de investigación, las alianzas bilaterales nacionales juegan un papel crítico en el intercambio de material genético y de conocimientos. Ello se refleja particularmente en las relaciones entre las universidades y las Estaciones Experimentales Agrarias del INIA. También el IIAP ha desarrollado muchos de sus programas de mejoramiento en papaya y cocona con la Universidad Nacional Agraria de la Selva, entre otras. Asimismo, a nivel regional se han originado consorcios de importancia que intentan aglutinar a distintas instituciones locales vinculadas a proyectos de investigación y al desarrollo en relación con recursos fitogenéticos. Estas asociaciones se conforman por lo general por instituciones de carácter público. Un ejemplo de ello es el CODESU. 18 Los consorcios en los que intervienen empresas del sector privado son una excepción, entre ellos es de destacar el de la empresa privada GENSIAGRO con la municipalidad de Churcampa (Sierra Central) creado con el fin de formar híbridos entre las poblaciones locales de maíz y hacer frente a las condiciones de semi-aridez que hay en las partes altas de los Andes.La debilidad de dichas alianzas radica en la falta de institucionalidad pues con frecuencia surgen en función de proyectos de investigación que no culminan en la construcción de equipos de trabajo y sobre cuyos resultados se carece de control y continuidad.A los centros de investigación mencionados, se suman los proyectos de muchas ONG que, con fondos de la cooperación internacional, han desarrollado selección y mejoramiento participativo con comunidades. Un ejemplo de ello lo ofrece el trabajo realizado en conservación de papa nativa por la Asociación ANDES en convenio con la Asociación de Comunidades del Parque de la Papa. En este ámbito es importante destacar que si bien inicialmente estas organi-18 Consorcio para el Desarrollo Sostenible del Ucayali. Es una organización civil sin ánimo de lucro formada por 17 instituciones que ha catalogado el germoplasma de yuca, maíz, frejol, maní y ají. Es importante su trabajo en investigación sobre el pallar, el frejol y la yuca con el apoyo de Bioversity (anteriormente IPGRI), el que ha dado lugar a publicaciones sobre conservación in situ....existen asociaciones y empresas de agricultores que han adquirido cada vez mayor importancia, especialmente las relacionadas con determinados productos para la exportación.zaciones se dedicaban al mantenimiento de bancos de germoplasma y al mejoramiento participativo, en la actualidad hay una tendencia al abandono de dichas actividades por las de creación de cadenas productivas y de comercialización. 19 Son características comunes al sistema nacional de investigación en recursos fitogenéticos la poca dedicación a programas de mejoramiento formal. La mayor parte de las instituciones realiza únicamente caracterización morfológica; la caracterización molecular es muy limitada, y no se hace una caracterización agronómica sistemática. Asimismo, es común la coincidencia en el objeto de investigación entre las diferentes instituciones y la ausencia de coordinación y de sinergias entre las mismas. La superposición de las investigaciones en relación con los recursos fitogenéticos que son objeto de investigación es particularmente relevante en el caso de la investigación en raíces y tubérculos andinos, en que casi todas las universidades de la sierra, en la costa y Estaciones Experimentales del INIA tienen germoplasma de raíces y tubérculos andinos, pero se carece de un sistema que construya sinergias entre las mismas (Sevilla, 2008a). Junto a ello, el olvido y la poca investigación existente en otros ámbitos, como es el caso de especies forrajeras. La \"atomización\" de los proyectos de investigación se agudiza ante el aislamiento con el que funcionan los distintos programas y la falta de coordinación entre las instituciones. Ambas características dificultan, a nivel de país, una mayor eficiencia en la asignación de recursos, en la competencia entre los centros ante las fuentes de financiamiento y en la maximización de los beneficios resultantes de las investigaciones.Por otra parte, en relación con los cultivos nativos, la investigación se centra en la caracterización y evaluación, incluidas la caracterización bioquímica y el desarrollo de productos derivados de cultivos nativos, cuyos avances no son considerados con frecuencia en los programas de mejoramiento genético. En este ámbito, son pocas las instituciones de investigación y cuentan con escasos recursos, por lo que ese germoplasma no es muy utilizado; no obstante, muchas veces los investigadores recurren a los centros CGIAR sin tener en cuenta que en las colecciones nacionales se cuenta con recursos genéticos promisorios, en donde esos recursos ya han sido caracterizados y evaluados. Por ello, el INIA está trabajando para difundir los materiales genéticos de que dispone y en el 2009 publicó el primer catálogo de materiales promisorios relativos a las colecciones de germoplasma que están bajo su gestión 20 (INIA-SUDIRGEB, 2009a).El INIA, a través de sus diferentes Estaciones Experimentales Agrarias, comprende distintos programas de investigación con el fin de generar tecnologías conducentes al manejo integrado de determinados cultivos de interés, con un enfoque de mercado y de incremento de la producción. Los denominados \"Programas Nacionales de Investigación\" son los siguientes:• Programa Nacional de Investigación de Arroz; Experimentales Agrarias, comprende distintos programas de investigación con el fin de generar tecnologías conducentes al manejo integrado de determinados cultivos de interés, con un enfoque de mercado y de incremento de la producción. orientando de manera particular hacia los cultivos nativos, por entender que tienen un valor per se con gran potencialidad en los mercados en un futuro y de importancia para la seguridad alimentaria nacional (Sevilla, 2008a).Esta última sería la tendencia de los 158 proyectos de investigación, desarrollo e innovación tecnológica que han sido financiados por INCAGRO (Instituto de Innovación y Competitividad para el Agro Peruano), 21 vigentes al 2007, en donde los recursos de investigación están relacionados, entre otros, con yacón, tara, quinua, maíz, papas nativas, sacha inchi, pitajaya, camu camu, aguaje y camote (Pastor y Sigüeñas, 2008).Las debilidades de que adolece el sistema nacional de investigación agrícola son las mismas que se evidencian en el Informe de Competitividad Global 2009-2010 en donde el Perú ocupa (de un total de 133 países) el puesto número 118 en calidad de las instituciones de investigación científica; el número 84 en la capacidad de innovación; el 104 en la colaboración de la universidad con la industria; el 90 en lo relativo a la inversión del sector privado en investigación y desarrollo y el 104 en lo relativo a la provisión por parte del gobierno de productos de avanzada tecno-logía (World Economic Forum, 2009).En relación con el sector público agrícola, desde 1990 la inversión ha estado destinada fundamentalmente a la dotación de infraestructuras, conservación de suelos y alivio de la pobreza. El gasto público en agricultura durante el 2008 tuvo su origen en un 35% proveniente del gobierno nacional; un 35% de los gobiernos regionales y un 29% de los gobiernos locales. Las dos terceras partes provendrían, por tanto, de las instancias locales de gobierno y según prescripciones presupuestales del gobierno nacional únicamente pueden destinarse a gastos de capital (i.e. construcción de canales); no pueden ser usados para gastos corrientes, como pagar sueldos de técnicos y profesionales. Esto implica que si bien son los gobiernos regionales y locales los que se encuentran en mejor capacidad económica para fomentar la investigación en recursos fitogenéticos para la alimentación y la agricultura; sin embargo, dichas iniciativas son imposibles de llevar a cabo: los servicios agropecuarios destinados al campesinado, la capacitación y la investigación no se consideran gastos de capital y, por tanto, susceptibles de inversión. Esta distorsión se refleja en que la fortaleza que implica la posesión de una gran diversidad en recursos fitogenéticos para la alimentación y la agricultura no se traduce en la creación de cadenas de valor que generen un mayor desarrollo local a partir de los mismos. Esta situación puede presentar cambios en el futuro ya que se están comenzando a flexibilizar los requisitos del Sistema Nacional de Inversiones Públicas al que deben someterse todos los proyectos de inversión a realizarse en el país (La Revista Agraria, 2009b).La investigación agrícola ha ocupado durante este periodo, cifras marginales (1.9% del total de la inversión agrícola). Por ejemplo, en el 2007, el presupuesto del INIA representaba el 8% (767 millones de soles) del total del sector agrario al que se sumaba el 4% del INCA-GRO (Ministerio de Agricultura, 2007). La escasez de recursos también se aplica a las universidades públicas y ha afectado los programas de investigación de largo plazo; en particular, los programas de mejoramiento y la selección y generación de semillas mejoradas (Sevilla, 2008b).Como consecuencia, el denominador común de todos los centros de investigación es una gran debilidad en recursos humanos y técnicos. Sevilla (2008b) indica que las capacidades nacionales en mejoramiento y biotecnología agrícola adolecen de recursos y tecnología mínima para realizar investigaciones de importancia. Es de especial preocupación la falta de profesionales dedicados a la investigación básica en recursos genéticos, debida, según el autor, a la ausencia de prestigio y de caminos promisorios para una carrera científica en esta área. Sevilla (2008b) sugiere que la tendencia a la reducción de las actividades de mejoramiento se debe fundamentalmente a la creencia reciente de que la biotecnología será suficiente para el mejoramiento de plantas y animales; el mal prestigio de la Revolución Verde a la que se acusa de la pérdida de diversidad genética y de la necesidad de insumos de carácter externo a los que los agricultores más pobres no tienen acceso; las expectativas en el rol del sector privado y la centralización de las actividades de mejoramiento en unas pocas compañías.Una de las recomendaciones básicas del estudio realizado por Sevilla (2008b), en relación con las capacidades nacionales en mejoramiento y biotecnología, es, precisamente, la necesidad urgente de reforzar las relaciones entre los centros nacionales de investigación y los centros CGIAR.Este contexto ayuda a entender la gran debilidad de la conservación de las colecciones ex ...la fortaleza que implica la posesión de una gran diversidad en recursos fitogenéticos para la alimentación y la agricultura no se traduce en la creación de cadenas de valor que generen un mayor desarrollo local a partir de los mismos.situ, a la que se suman la falta de entendimiento político, el entorno vulnerable a los desastres 22 y el incremento de plagas y enfermedades con motivo del cambio climático (INIA-SUDIRGEB, 2009b). Es común a las colecciones ex situ la necesidad de tener que recurrir a la conservación en campo ante la falta de medios para el almacenaje y la conservación de semilla, lo que añade mayor vulnerabilidad a las colecciones. Esto, a pesar de que dichas colecciones ex situ, especialmente del INIA, han jugado un rol importante en el repoblamiento con cultivos nativos de aquellas comunidades que, durante la violencia política ocasionada por el terrorismo en la década de los años noventa, tuvieron que abandonar el campo, migrando hacia las grandes ciudades, y cuando retornaron al área rural sus cultivos se habían extinguido.El estudio realizado por Sevilla (2008b) revela que las semillas mantenidas por los agricultores, incluidos algunos parientes silvestres, son la principal fuente de germoplasma de los programas de mejoramiento del Perú. De 148 veces cuando se usó germoplasma para investigación y mejoramiento, la principal fuente de recursos genéticos fueron los agricultores (35%), seguido de los centros CGIAR (18%), los bancos de germoplasma locales (11.5%), material obtenido por acuerdos bilaterales (9.5%), las redes de investigación (8%), los bancos de germoplasma nacionales (7%), las instituciones públicas de países desarrollados (5%) y las compañías privadas (4.7%) (Cuadro 3).En cuanto a los cultivos incluidos en el Anexo I del Tratado Internacional, el principal origen de los recursos fitogenéticos son los centros CGIAR (28%) seguido de los agricultores (27%), las redes de evaluación de germoplasma (10%), los bancos de germoplasma nacionales (10%) y bancos de germoplasma locales (9%) (Cuadro 3). La situación cambia radicalmente en relación con cultivos que no están incluidos en el Anexo I, en donde los agricultores (54%) y los bancos locales de germoplasma (15%) adquirirían una importancia crítica. Estos resultados deberían matizarse, según opinión de algunos Muchos de los programas de investigación (particularmente los relativos al maíz, cereales andinos, papa y tubérculos andinos) se realizan en estrecha colaboración con comunidades e incluso con instancias de gobierno local y regional, de manera que estos contribuyen con diversidad de material genético a cambio de la semilla producida por el centro de investigación. 24 S i n e m b a rgo, son limitadas las recolecciones planificadas y selectivas que se realizan por las universidades nacionales y las Estaciones Experimentales Agrarias del INIA para recolección de especies raras y en peligro de extinción, o para su conservación en colecciones ex situ, debido, fundamentalmente, a la carencia de recursos económicos, de especialistas y a la desactualización de las cartas geográficas (INIA-SU-DIRGEB, 2009b). Este es el caso, por ejemplo, de las colectas de especies amenazadas de frutales nativos, raíces y tubérculos andinos y plantas medicinales.El Segundo Informe sobre el Estado de los Recursos Fitogenéticos para la Alimentación y la Agricultura del Perú (INIA-SU-DIRGEB, 2009b) revela que las contribuciones de los centros CGIAR a los centros nacionales (INIA y universidades, fundamentalmente) se realizan a través de la dotación de variedades m e j o r a d a s y poblaciones en proceso de mejoramiento o material segregante. En los centros CGIAR se hace l a eva l u a c i ó n preliminar del germoplasma, la selección de progenitores, los cruzamientos, la generación de poblaciones segre-Muchos de los programas de investigación (particularmente los relativos al maíz, cereales andinos, papa y tubérculos andinos) se realizan en estrecha colaboración con comunidades e incluso con instancias de gobierno local y regional, ... gantes y la evaluación preliminar de líneas en condiciones controladas. Estas poblaciones, en forma de poblaciones heterogéneas o de líneas, son enviadas al Perú para evaluación, selección y posterior desarrollo de variedades adaptadas a las condiciones de los distintos ecosistemas peruanos (Sevilla, 2008a). Las actividades de pre-mejoramiento requieren de procesos de largo plazo y sobre todo, de la ampliación de la base genética de los materiales de mejoramiento de los que no se dispone, con carácter general, en el país. Es de notar que el CGIAR ha disminuido sus inversiones en América Latina y el Caribe en las últimas décadas. En la actualidad invierte un 12% de su presupuesto frente al 25% de hace dos décadas (FORAGRO, 2010).El Banco de Germoplasma del CIP en un período de veinte años (1988-2008) En este contexto, es preciso destacar la relación de colaboración del INIA con el CIP en el desarrollo de nuevas variedades de papa. El INIA es la principal entidad que hace mejoramiento de papa en el Perú, si bien trabaja muy de cerca con el CIP, que es la entidad que conserva el germoplasma de papa y camote en el país. El CIP genera nuevas poblaciones en sus programas de mejoramiento genético y las desarrolla hasta conseguir líneas avanzadas que son transferidas al INIA para el desarrollo de nuevas variedades. Asimismo, el INIA realiza independientemente mejoramiento de papa con la fina-lidad de desarrollar las variedades locales de las comunidades y en beneficio de las mismas. 30 En relación con las universidades, es muy importante la contribución que recibe el Programa de Cereales y Granos Nativos de la UNALM mediante la trasferencia de germoplasma de trigo y de cebada procedente del CIMMYT una plaga que afecta al cultivo de la variedad de trigo \"andino\" que se utiliza tradicionalmente en la región andina. Se estima que, en la actualidad, existen entre 5,000 y 10,000 hectáreas (de un total de 140,000 has dedicadas al cultivo de trigo) sembradas con dicha variedad en el Perú, con un rendimiento promedio de 1,5 toneladas por hectárea, con gran importancia para la seguridad alimentaria de las zonas alto andinas y la agroindustria. http://www.ciudadanosaldia.org/congresobpg/07/pdfs/1030am/ppt_LuzGomez.pdf (Consultado diciembre 2009). 32 Elsa Lau, Programa del Maíz -UNALM. Agosto 2009. Comunicación personal.que hace mejoramiento de papa en el Perú, si bien trabaja muy de cerca con el CIP, que es la entidad que conserva el germoplasma de papa y camote en el país.también es receptora de material procedente del CIP.A nivel descentralizado es menor la aportación de los centros CGIAR a las universidades. Entre los pocos casos, cabe mencionar el de la Universidad Nacional Daniel Alcides Carrión (sierra central) que con el apoyo del CIP ha identificado las principales enfermedades y plagas de la maca. Sin embargo, se evidencia la ausencia de este tipo de relaciones en otras universidades descentralizadas del país como la Universidad Nacional Jorge Basadre de Tacna (costa sur) que lidia con limitantes extremos como son la sequía, el estrés hídrico, la salinidad y la toxicidad del boro y, pudiendo hacerlo, no ha entablado relaciones con centros CGIAR que tratan con este tipo de riesgos, como por ejemplo el ICARDA.En relación con las ONG, es de resaltar el convenio de repatriación de papa nativa entre la Asociación ANDES y las Comunidades del Parque de la Papa y el CIP. El Instituto de Investigación y Transferencia de Tecnología Agropecuaria (INTTA) en la costa norte también se relaciona con el CIP y CIMMYT para realizar trabajos de investigación en maca y yacón.Recíprocamente, ha sido de importancia el aporte hecho por los centros de investigación nacionales hacia los centros CGIAR. El Banco de Germoplasma Nacional de Papa y Camote forma parte de la colección del CIP. El INIA es el principal socio para las colectas de germoplasma para los centros CGIAR, por ser la entidad del Estado que tiene a cargo la función de conservación de germoplasma.El banco de germoplasma del CIP se constituye de 4,167 accesiones de papa y 2,341 de camote, cuyo origen es el Perú. Dicho material habría sido proporcionado fundamentalmente por el INIA a través de los procesos de colecta mencionados o también mediante proyectos puntuales en los que INIA tenía encomendado el componente de colecta y conservación de germoplasma, siendo dichos materiales finalmente entregados al CIP para su conservación. En relación con el germoplasma de papa también habría sido relevante la aportación de la UNALM y de las Universidades de la Sierra del Con independencia de lo anterior, en los últimos diez años, ni el CI-MMYT ni ICARDA reportan ninguna transferencia de materiales procedentes del Perú.Entre el 2005 y el 2009, el Servicio Nacional de Sanidad Agraria (SENASA) hizo un total aproximado de 36 anotaciones de germoplasma importado para objetivos de investigación. Del total, el 44% de las importaciones las habrían realizado empresas del sector privado; el 33% universidades; el 17% el CIP y el 6% el INIA. Las semillas importadas habrían sido de maíz (45%); cebada (14%); trigo (14%); papa (8%); colza o canola (8%); triticale (5%) y arroz (5%). Los materiales habrían sido importados de México (31%); EEUU (14%); Francia (14%); Chile (8%); Colombia (8%); Uruguay (5%); Siria (5%); Argentina (5%); Inglaterra (3%); Nigeria (3%) y Hungría (3%).Las oportunidades que ofrece el intercambio de germoplasma se reflejan, en la práctica, a nivel del INIA, por los beneficios obtenidos por la Estación Experimental Agraria Santa Ana, en donde, a partir de germoplasma proveniente de Argentina y Japón se han podido liberar dos variedades de alverja. También, en los últimos años, la estación ha implementado un programa de producción de alcachofa sin espinas a partir de variedades extranjeras.Los acuerdos bilaterales o multilaterales de intercambio de germoplasma por parte de las universidades nacionales son numerosos y de carácter diverso. Por mencionar los más relevantes, el Programa de Cereales y Granos Nativos de la UNALM ha intercambiado materiales con el Organismo Internacional de la Energía Atómica, las Universidades estatales de Oregón y Nebraska, de los Estados Unidos; Universidades de Polonia y el Departamento de Agricultura de los Estados Unidos. También es de resaltar el mejoramiento participativo en cacao por el Instituto de Cultivos Tropicales (ONG) gracias a la colaboración del Centro de Investigación del Cacao de Brasil y del Agricultural Research Service de Estados Unidos. Al considerar todas estas actividades sorprende que el estudio de Sevilla (2008b) sólo indica que un quinto de los entrevistados es-Experimental Agraria Santa Ana, en donde, a partir de germoplasma proveniente de Argentina y Japón se han podido liberar dos variedades de alverja.timaron la necesidad de facilitar el intercambio de germoplasma proveniente del extranjero como una prioridad alta y limitante para la promoción de la investigación en el país. Esta prioridad se considera menos limitante que otros factores como la falta de financiamiento; el número de profesionales; la disponibilidad de laboratorios; el acceso a literatura y la falta de conocimiento en biología molecular.En el mismo estudio, se destaca que, de un total de diecisiete temas en los que se podría recibir ayuda de la comunidad internacional, la facilitación de intercambio de germoplasma ocupa la prioridad número cinco. Se consideró más prioritario el facilitar el acceso a nuevas herramientas en biotecnología; el promover programas de capacitación en herramientas de biotecnología; el ayudar en la preparación de proyectos para la obtención de financiamiento, y fortalecer la capacidad de los programas nacionales mediante inversiones. Sin embargo, el facilitar el intercambio de germoplasma se considera más importante que la concesión de becas para la realización de un máster y el promover programas de capacitación en métodos de mejoramiento convencional.De los dieciocho que eligieron el facilitar el intercambio de germoplasma como una prioridad en la actuación de la comunidad internacional con beneficios para el Perú, seis lo consideraron de prioridad alta; siete de prioridad media y cinco de prioridad baja.Por otro lado, los mejoradores nacionales señalan las dificultades de acceso al material procedente de fuentes internacionales, debido a las barreras impuestas por las exigencias fitosanitarias nacionales como uno de los desincentivos más fuertes al intercambio de germoplasma. También indican su preferencia por los materiales del CGIAR por adaptarse mejor y con menor costo a las necesidades locales.Recíprocamente, los flujos obedecieron fundamentalmente a donaciones o a la conservación de duplicados de colecciones en el extranjero. Este es el caso de la duplicación de las colecciones de cebada y de maíz 34 de los programas de la UNALM que existen en los Estados Unidos.En la actualidad, los únicos récords de movimientos hacia el extranjero de material genético son los concedidos mediante el Acuerdo de Transferencia de Materiales (ATM) del INIA ylos certificados fitosanitarios (SE-NASA), que figuran como única herramienta de control de los mismos.El Banco Nacional de Germoplasma del INIA se constituye de 30 colecciones nacionales, en donde se conservan 17,147 accesiones de 201 especies vegetales con aptitudes alimenticias, medicinales, aromáticas e industriales. De ese total 5,925 accesiones corresponden a 20 especies incluidas en el Anexo I del Tratado (INIA-SU-DIRGEB, 2009b). Ver Cuadro 5.El Banco de Germoplasma de la SUDIRGEB del INIA tiene su origen en 1986. Del total de accesiones, se estima que aproximadamente, el 60.4% (10,362) de las accesiones han sido colectadas en el Perú. El porcentaje restante proviene de accesiones del extranjero; sin embargo, no se ha podido determinar con precisión cuál es el porcentaje de material repatriado dentro de las muestras provenientes del extranjero. Hay un registro de 45 países de donde provienen las accesiones del Banco de Germoplasma del INIA. Bolivia y Colombia serían los principales proveedores, seguidos de Siria, Estados Unidos, Ecuador, España y Brasil (Gráfico 1).No obstante, es importante destacar que existe un 33.2% (5,700) de accesiones de las que se Intercambio y utilización de los recursos fitogenéticos en el Perú carece de datos de pasaporte, no consignándose ni siquiera el país de procedencia. Gran parte de esta carencia de datos tiene lugar en las colecciones de trigo, frejol, cebada, triticale, oca y kiwicha (Velarde et al., 2007).Sin embargo, ciertas colecciones son bastante comprensivas, como en el caso de la yuca. La colección de germoplasma de yuca de la SUDIRGEB-INIA está constituida por 740 accesiones de la especie Manihot esculenta. La distribución de la colecta es muy amplia, pues cubre dieciséis departamentos del país. Los datos de pasaporte son de buena a muy buena calidad en un 85%, mientras que el 15% de las accesiones hace referencia sólo al país de origen de las mismas.El desmantelamiento de los mecanismos de extensión que ha venido produciéndose durante las últimas décadas en el país ha tenido como corolario último la eliminación de esta competencia del INIA y su transferencia a los gobiernos regionales. En general, esta desarticulación ha concluido, al igual que en muchos países de Latinoamérica, sin haber promovido paralelamente las capacidades del sector privado en la difusión de las tecnologías (Núñez, 2007).Así, la función del INIA en la actualidad se circunscribe a investigación, asistencia técnica, conservación de recursos genéticos y producción de semillas, plantones y reproductores de alto valor genético. El INIA es la principal institución del país que genera nuevas variedades -principalmente de papa, camote, maíz, arroz, trigo, cebada, frejoles y otros cultivos nativos Gráfico 1. Porcentaje de accesiones en el Banco de Germoplasma de la SUDIRGEB según el país de origen Adaptado de: Velarde, D., Ríos, Ll., Carrillo, F. y Estrada, R. (Eds.), ( 2007).Otros 3% Siria 1% Sin datos 33%Colombia 2%e introducidos-, y es productor y comerciante de la semilla básica y registrada de sus variedades; las empresas productoras de semillas privadas recurren al INIA para comprar categorías superiores y multiplican las categorías siguientes para los agricultores consumidores de semillas. 35 Ver Cuadro 6. El INIA también es responsable de la zonificación de cultivos y crianzas en todo el territorio nacional. Las intervenciones en la difusión de tecnologías se desarrollan de forma aislada e inconexa por una pluralidad de instituciones, perdiéndose el enfoque de especialización (Sevilla, 2008b). La difusión de las tecnologías adquiere, asimismo, nuevas perspectivas en las que los centros de investigación intentan responder a la demanda, es decir, a las necesidades de los agricultores. La gran segmentación existente en los niveles de desarrollo de los agri-cultores en el país se refleja en los distintos niveles de intervención. Así, se han desarrollado iniciativas de mejoramiento participativo con agricultores de economías de subsistencia, de forma simultánea a la investigación en los cultivos más promisorios para los mercados nacionales e internacionales. Los primeros, en busca de una mayor interacción con los productores con el fin de responder a situaciones de máxima vulnerabilidad; los segundos, basándose en políticas en torno a cultivos que se entiende son promisorios, con miras a la agroindustria y la agroexportación. La última tendencia, precisamente, ha reconducido la actividad investigadora hacia los cultivos nativos que pueden ser promisorios para la exportación.Por otra parte, los últimos pasos dados han sido hacia la liberalización de las políticas de semillas en el país, como consecuencia de la firma de tratados bilaterales de co- Leguminosas de grano: frejol, pallar, haba, alverja mercio (particularmente el tratado bilateral EE.UU.-Perú). Las modificaciones a la ley y al reglamento de semillas han introducido mecanismos muy laxos que facilitan la entrada en el mercado de nuevas semillas arrojando serias dudas en relación con la calidad de las semillas que se comercialicen en un futuro. 36 Un paso adelante en este sentido viene dado con la creación del Centro de Biotecnología 37 Agropecuaria y Forestal administrado por el INIA. Este proyecto cuenta en la actualidad con un financiamiento de US$ 2 millones y su objetivo es identificar las demandas de la empresa privada para conseguir mayores sinergias con el sector de la investigación. Asimismo, se incluye como una de sus metas la generación de convenios internacionales con el fin de crear mayor conocimiento y valor agregado a partir de la riqueza en biodiversidad con que cuenta el país.Paralelamente, la mayoría de las universidades nacionales descentralizadas desarrollan, en la medida de sus posibilidades, semillas y plantones distribuidas o vendidas a los campesinos incluidos en su ámbito de influencia. Muchas de ellas realizan estas labores con el soporte de ONG de ámbito nacional e internacional 38 o con convenios con gobiernos locales y regionales. 39 Las nuevas universidades de naturaleza privada tienden a adoptar un enfoque multidisciplinario en la realización de los proyectos con el fin de vincularlos a proyectos de inversión. 40 Las alianzas con asociaciones de productores y empresas semilleras, sin embargo, no se dan en la Las modificaciones a la ley y al reglamento de semillas han introducido mecanismos muy laxos que facilitan la entrada en el mercado de nuevas semillas arrojando serias dudas en relación con la calidad de las semillas que se comercialicen en un futuro.dimensión que sería deseable. 41 En la difusión de material genético es interesante el trabajo realizado por el Programa de Maíz de la UNALM en donde a lo largo de su historia se han venido colectando cerca de 3,931 muestras de semilla de todas las regiones maiceras del país y, en la actualidad, cuenta con un archivo fotográfico que es revisado cada vez que un agricultor solicita semilla para cualquier lugar del país (Sevilla, 2008b). Las fotografías permiten definir mejor las cualidades de adaptación del maíz que el agricultor requiere para su zona de cultivo. Se han distribuido cerca de 1,000 muestras de semilla a pequeños agricultores y el resultado, hasta la fecha, ha sido muy favorable en términos de productividad. En la actualidad, los estudios se encuentran dirigidos al mejoramiento de la tolerancia al frío y a variedades de usos específicos (i.e. maíces con alta calidad proteica) (Sevilla, 2008a).Con similar impacto, cerca del 90% del área de cebada en el Perú está sembrada con variedades obtenidas por el Programa de Cereales de la Universidad Nacional Agraria La Molina, con el apoyo de la Fundación Backus (empresa privada de cerveza) (Gómez, 2007).Finalmente, ante la ausencia de servicios de carácter público en determinadas zonas del país, la provisión ha sido brindada por las ONG y entidades apoyadas por la cooperación internacional, que han implementado programas de extensión desde un enfoque de identificación de las demandas, inclusión de mecanismos participativos y empoderamiento de los campesinos. Las ONG también ocupan un papel importante en los órganos de concertación y toma de decisiones políticas en materia agraria en las regiones. 42 ...ante la ausencia de servicios de carácter público en determinadas zonas del país, la provisión ha sido brindada por las ONG y entidades apoyadas por la cooperación internacional, que han implementado programas de extensión desde un enfoque de identificación de las demandas, inclusión de mecanismos participativos y empoderamiento de los campesinos.No obstante, las ONG están cambiando progresivamente su agenda de intervención, desde enfoques más productivistas hacia otros articuladores de cadenas productivas, creación de valor agregado y comercialización.Como se puede extraer de lo mencionado, las tareas de extensión se llevan a cabo en la actualidad por una pluralidad de actores como consecuencia del desmantelamiento del sistema público producido en los años noventa. Esta circunstancia no ha facilitado una adecuada intersección entre el sector de la investigación y la empresa, de forma que dé lugar a la creación de una cadena coherente de investigación y desarrollo agrario y se concrete en demandas específicas por parte del sector privado.En general, son pocos los agricultores que tienen una comunicación fluida con los centros de investigación y la academia. Los problemas de acceso por parte de los pequeños agricultores radican fundamentalmente en la necesidad de poder contar con soluciones de bajo costo, de adaptación a las condiciones climáticas y físicas de cada zona de producción y de revalorización de las tecnologías tradicionales. Según Echenique (2009) la investigación con mayor acento en prácticas de bajo costo y menor riesgo (selección local de semillas, épocas de siembra, mejor uso de materia orgánica, entre otras) tiene mayor aceptación por parte de las agriculturas familiares, pero su ámbito es restringido porque la mayor parte de las innovaciones requieren de capital e insumos. Estas demandas no se ven suficientemente satisfechas por los centros de investigación, de ahí que la interacción entre los distintos actores sea mínima y la percepción general de los agricultores es de ausencia y de falta de retroalimentación por parte de los centros de investigación.Paralelamente, a los centros de investigación les es difícil identificar cuál es la demanda por parte de los productores (no identifican con claridad sus restricciones tecnológicas), así como a los actores que se pueden involucrar en los procesos de innovación. Estas circunstancias les llevan a interactuar y diseminar sus innovaciones, casi siempre entre las mismas comunidades 43 (Echenique, 2009).A lo anterior se suma el que la oferta de material fitogenético mejorado no cubre toda la demanda existente en el campo. No se dispone de son pocos los agricultores que tienen una comunicación fluida con los centros de investigación y la academia. Los problemas de acceso por parte de los pequeños agricultores radican fundamentalmente en la necesidad de poder contar con soluciones de bajo costo, de adaptación a las condiciones climáticas y físicas de cada zona de producción y de revalorización de las tecnologías tradicionales.suficiente semilla ni de semilleros de calidad que permitan replicar las innovaciones realizadas por los centros de investigación. Esto justifica las iniciativas recientemente adoptadas por algunas universidades de establecer convenios con gobiernos regionales para crear zonas de multiplicación de las variedades en asociación con comunidades campesinas, con el fin de incrementar la disponibilidad de semilla en dichas regiones. Por ejemplo, el Convenio entre la UNALM y el Gobierno Regional de Junín, en virtud del cual la UNALM proporciona la semilla variedad \"Centenario\" necesaria para sembrar mil hectáreas para la Campaña Agrícola 2008-2009 y el Gobierno Regional se compromete a apoyar a la UNALM en la convocatoria de los productores.De ahí que las nuevas tendencias apunten hacia una mayor comunicación con el conocimiento tecnológico de los campesinos, promoviendo su empoderamiento como medio para solucionar sus propios problemas. Este enfoque intenta dar respuestas (que sean más exitosas que las del pasado) a las necesidades de innovación de los productores, sea adoptando tecnologías de productos validadas por ellos o bien renovando su pro-pia tecnología tradicional (Núñez, 2007). 44 En este intento de comunicar los sistemas formales e informales de investigación agrícola, se han desarrollado los programas de mejoramiento participativo, las escuelas de campesino a campesino o las escuelas de campo de agricultores (ECAS), por mencionar algunos mecanismos de intercambio existentes en la actualidad. En la Sierra Central se ha desarrollado un programa de mejoramiento participativo que duró seis años (2003-2009) en departamentos de extrema pobreza, importante concentración de biodiversidad y con alto riesgo de erosión genética. Los recursos sobre los que han recaído los procesos de mejoramiento han sido habas, maíz y papas nativas. Como resultado de los mismos, cinco variedades de haba, seis de maíz y, al menos, quince de papas nativas, con características adaptadas a los criterios elegidos por los agricultores, están siendo liberadas entre las comunidades.En relación con el mejoramiento formal, como se ha mencionado anteriormente, las dificultades se manifiestan en una doble vía que afecta la capacidad de las instituciones de comunicarse con el campesino y a los campesinos de comunicar sus necesidades. 45 En este último punto, las asociaciones de campesinos cumplen un rol esencial y las mayores barreras se hallan en la ausencia de campesinos articulados en asociaciones que faciliten la identificación de las demandas y necesidades. Esta ausencia es un problema particularmente crítico en la sierra (que se ha unido al debilitamiento de las comunidades campesinas como forma de capital social) y es un freno para muchas iniciativas de desarrollo. Asimismo, las organizaciones ya existentes muestran una gran debilidad en comprometer a sus asociados en iniciativas de economías de escala, sea de contratación de servicios, sea en procesos de compras de insumos. Por ello, será fundamental el involucramiento en un futuro de los gobiernos regionales en estos procesos. Así se hace constar, por ejemplo, en la línea de base realizada para el Programa ALIADOS de desarrollo territorial en seis departamentos pertenecientes a la Sierra Central del Perú (GRADE, 2007).Cuando nos referimos a los programas participativos, la con-tinuidad de las alianzas entre los agricultores, las universidades locales y las ONG son un aspecto crítico para conseguir la sostenibilidad de las innovaciones alcanzadas y la diseminación de los productos resultantes del mejoramiento participativo.De las dificultades apuntadas hasta este momento, hay una confluencia en la ausencia de actores fundamentales en las cadenas de creación y provisión de semilla. No existen asociaciones que actúen como correas de transmisión para lograr una demanda efectiva. Tampoco suficientes multiplicadores comerciales de semilla de calidad, los cuales a partir de la semilla registrada puedan multiplicarla a fin de ofertar semilla en la cantidad suficiente, a tiempo y a un precio adecuado. La baja organización ...las asociaciones de campesinos cumplen un rol esencial y las mayores barreras se hallan en la ausencia de campesinos articulados en asociaciones que faciliten la identificación de las demandas y necesidades.cuarios no ha sido atendida desde el punto de vista de la acción normativa del Estado. El sistema ha optado por abandonar a su suerte a este importante eslabón de las relaciones económicas del sector. De esta manera, sin una organización agraria que pueda canalizar los legítimos intereses de los agricultores ante los industriales y comercializadores, el resultado es un funcionamiento ineficiente del mercado (Roca et al., 2008).De conformidad con el informe presentado por CGIAR (2009) ante la Tercera Reunión del Órgano Rector del Tratado Internacional celebrada en Túnez del 1 al 5 de junio del 2009, es regla común a estos centros el tener como destinatarios principales a las instituciones nacionales de investigación agraria, seguidos del intercambio entre centros CGIAR, las compañías comerciales y las universidades. Los agricultores ocupan el penúltimo lugar en la lista de destinatarios, antes que las transferencias a individuos.Es así que para un periodo de un año del 2007-2008 el Banco de Germoplasma del CIP reporta sus actividades mundiales del siguiente modo: 87 transferencias a agricultores (de un total de 973). Más de un tercio de las transferencias se hacen a institutos nacionales de investigación agrícola y otro tercio a otros centros CGIAR, cerca de un quinto a ONG y el resto a universidades. La mayoría de las muestras transferidas fueron de cultivos nativos o landraces (727); material de investigación o pre-mejoramiento (178); material mejorado (66) y parientes silvestres (2). En relación con sus programas de mejoramiento, el CIP habría transferido un total de 2,024 muestras. Los principales destinatarios de las mismas habrían sido los propios CGIAR (1,095) Las mayores dificultades, desde la perspectiva de intervención del CIP, radicarían en la presencia de un capital social débil para interactuar en los procesos de innovación. No siempre existe una identifica-ción clara de cuáles son los actores con los que se puede interactuar en el proceso de innovación, ni de los mecanismos de generación e intercambio de información.En esta línea, Ortiz et al. (2008) hacen una evaluación del rol de los distintos actores en el proceso de innovación de la papa en el Perú. El estudio concluye que en el Perú, al contrario de lo que sucede en otros países en donde el rol de las autoridades gubernamentales es mayor, las ONG y las compañías privadas serían las que dotarían de más dinamismo al proceso de innovación. Así, entre los resultados se destaca la baja intervención del gobierno nacional y de las asociaciones de productores, la alta intervención del sector privado, seguida de las ONG, y los gobiernos locales. Las interacciones entre las distintas organizaciones también sería limitada.Finalmente, el éxito de la contribución del CIP se puede medir por la adopción del número de variedades que han sido liberadas y por la superficie de cultivo destinada a dichas variedades. Según Thiele et al. (2008) el CIP ha contribuido al 70% del total de variedades de papa que han sido liberadas en el país, ó 34 variedades en un período de diez años (1997-2007).En particular, dentro del ranking de las variedades de papa de (Thiele et al., 2008). En relación con el total, si bien la información existente es incierta, ello implicaría aproximadamente un 42% de la superficie total de 242,264 has sembradas con papa en la cosecha 2005-2006.Los agricultores son los que usan y conservan la mayor diversidad de recursos fitogenéticos en el Perú. A ese respecto son numero-sos los estudios de conservación in situ que se han venido desarrollando. Por ejemplo, el Perú participó en un proyecto multi-país que sentó las bases científicas sobre la conservación in situ (Jarvis et al., 2000), en un proyecto enfocado en el manejo de la agrobiodiversidad in situ (Chávez-Servia et al., 2004 y Chávez-Servia y Sevilla, 2006) y en un estudio del análisis de los patrones espaciales de diversidad y erosión en la región Ucayali (Willemen et al., 2007), todos en colaboración con Bioversity International y pares de otros países.En particular, merece una mención especial el Proyecto conservación in situ de cultivos nativos y sus parientes silvestres (2001-2005) Distintos gobiernos regionales (Cusco, Puno, Junín, Iquitos y Huancavelica, entre otros) promueven la creación de grupos técnicos de agrobiodiversidad de carácter participativo y multidisciplinario, con el fin de fomentar políticas favorables a la conservación y uso sostenible de la agrobiodiversidad. Entre ellas, los gobiernos regionales están impulsando la creación de zonas de conservación de la agrobiodiversidad en su ámbito te-Distintos gobiernos regionales promueven la creación de grupos técnicos de agrobiodiversidad de carácter participativo y multidisciplinario, con el fin de fomentar políticas favorables a la conservación y uso sostenible de la agrobiodiversidad.rritorial para favorecer la inclusión del objetivo de conservación in situ dentro del presupuesto participativo de las mismas.En el Perú, asistimos en la actualidad a la creación de bancos comunitarios de germoplasma en distintas áreas andinas como el Cusco (en el Parque de la Papa), Ayacucho, Huánuco, Huancavelica y también de la costa como en Piura (en donde los agricultores han realizado documentos de su trabajo de protección del germoplasma de maíz) y Lambayeque (algodones de fibra de color). Este mecanismo se ha considerado como una herramienta de gran importancia para lograr la seguridad en el sistema de semillas de los campesinos y una vía para implementar los Derechos del Agricultor previstos en el Tratado Internacional a nivel nacional (Scurrah et al., 2009).El débil encadenamiento entre los agricultores, la industria y los centros de investigación nacionales motiva, entre otros factores, el limitado mercado formal de semillas en el Perú. 49 Tanto la disponibilidad (oferta) como el uso (demanda) de semilla formal son muy restringidos en el país. Ade-más, son pocas las especies que son objeto del sistema formal de semillas de calidad, así como son contados los actores que intervienen en su comercio. Esto lleva a veces a situaciones de dominio del mercado por un pequeño número de empresas que concentran el poder de negociación sobre los insumos agrícolas. Este es el caso del dominio de los pocos compradores de maíz amarillo duro que existen en el país y que aprovechan una oferta atomizada y desorganizada de los productores para abusar de su poder de negociación en el mercado (Roca et al., 2008).La superficie sembrada con variedades modernas o mejoradas oscila entre el 60% y el 95%; el arroz, el trigo y la cebada son los de mayor porcentaje y maíz y frejol los de menor participación, con mayor variabilidad genética en estos últimos (Cuadro 6 y Sevilla, 2008a).El mercado de semillas en el Perú representa US$ 30 millones, siendo uno de los de menor dimensión en comparación con otros países de la región (Bolivia US$ 40; Chile US$ 120; México US$ 350 o Argentina US$ 950). 50El número de variedades configuradas en el Registro de Culti-vares Comerciales 51 de SENASA es de un total de 384 variedades 52 , de las que 324 (un 84%) corresponden a cultivos incluidos en el Anexo I, 53 de estos últimos, un total de 83 variedades 54 habrían sido registradas con posterioridad al 29 de junio del 2004 (fecha de entrada en vigor del Tratado Internacional).De los cultivos registrados correspondientes al Anexo I, la mayoría (60%) habrían sido registrados por instituciones de investigación pública; 23% por el sector privado y 17% por universidades públicas (Cuadro 7). Los principales registros de variedades comerciales son de maíz y papa y siguen el arroz, el trigo y el frejol común.La tasa de uso de semilla certificada 55 para los cultivos de arroz, maíz amarillo duro, papa, cereales y leguminosas, para la campaña agrícola 2006-2007 en general es bastante baja y se muestra en el Cuadro 8.En el país hay un total de 293 productores de semillas registrados. 56 51 Semilla registrada es la semilla de una variedad que está inscrita en el Registro de Cultivares Comerciales, y sobre la que la autoridad competente (en semillas) ha certificado su pureza y calidad. Existe semilla comercializada que no está registrada en aquellos cultivos en los cuales no existe una regulación mediante un reglamento específico, es el caso de la quinua, kiwicha, cañihua, frutales, entre otros. 52 Cifra actualizada a 13 de octubre del 2009. 53 El resto de los registros de variedades comerciales serían de algodón (52 anotaciones), soya (5) y marigold(3). 54 Dicha cifra corresponde a 33 anotaciones de maíz, 10 de papa (a ello hay que añadir el registro comercial de 61 variedades nativas realizado por INIA), 10 de trigo, 9 de arroz, 6 de avena, 6 de frejol, 4 de cebada, 3 de haba y 2 de caupí. De esta cifra, cerca del 95% de los productores se encuentran dedicados a la producción de semilla vinculada con los cultivos del Anexo I (un total de 278 productores). La representación de productores de semilla por cultivos es la siguiente: arroz (41%); papa (24%); maíz (18%); leguminosas (frejol, lenteja, alverja) (5%); trigo (4%); cebada (4%) y caupí (1%). Únicamente una empresa estaría dedicada a la producción de semilla de camote y otra a la producción de semilla de forrajes (alfalfa, raigrás y trébol). De las empresas dedicadas a la producción de semilla que no corresponde a cultivos del Anexo I, tres son productores de semilla de cultivos nativos, en particular de ají, kiwicha y olluco y 15 son de semillas de algodón. Asimismo, existe un total de 1,227 comerciantes de semillas registrados a noviembre de 2009.De los datos enunciados se extrae la importancia del sistema informal de semillas en el Perú. 57 Es muy limitado el número de productores de semilla registrados y también la producción de semilla de calidad. La limitada disponibilidad de semilla de calidad en relación con algunos de los principales cultivos del país coincide, en su mayoría, con los incluidos en el Anexo I: papa, arroz, maíz, trigo, leguminosas de grano, cítricos 58 (Tejada et al., 2008; Instituto CUANTO, 2008).Al mismo tiempo, si bien es cierto que hay una cantidad considerable de variedades autorizadas para comercialización que han sido resultado de los procesos de mejoramiento genético, éste atiende a un número muy limitado de especies (maíz y papa fundamentalmente) e, incluso, reducido a un escaso número de variedades Cuadro 8. Producción de semilla y tasa de uso de semilla certificada por cultivos. 57 Los datos sobre la informalidad del sector agrario son indicativos de la estructura de este sector en el país.El número de contribuyentes agrarios en la economía formal es de 26,900 inscritos (octubre del año 2007).El número de contribuyentes procedentes del sector agrario que pagan sus impuestos de manera regular se han reducido en un 47.4%, si bien la recaudación de tributos en el sector creció en un 32% durante el periodo 2004-2007. Esta contradicción obedece al gran dinamismo de las agroexportaciones y a la concentración del PIB agrícola en cada vez menos manos, especialmente en el sector agroexportador. Esta alta informalidad del sector agrario, que viene determinada por la falta en el pago de impuestos, en realidad, constituye una desventaja para el agricultor pues le impide acceder al crédito y le ubica en condiciones inferiores de negociación con los intermediarios y con el mercado. 58 También en otros como algodón, café, palto, vid, mango y olivo.Intercambio y utilización de los recursos fitogenéticos en el Perú dentro de cada cultivo. Así, la base genética se ha estrechado y se evidencia la necesidad de ampliar el número de cultivares comerciales a otros cultivos que también son importantes para la alimentación nacional y mundial. En particular, el énfasis puesto sobre los cultivares modernos de primera necesidad (como arroz, maíz, papa, frejoles, trigo, cebada) y la imposición de estándares de uniformidad en los sistemas de certificación han implicado la marginación de los mercados de cultivos nativos ricos en biodiversidad.En el país todavía no existen incentivos para la producción de semillas de calidad de cultivos nativos. Tampoco de sistemas de distribución que fomenten la expansión de asociaciones locales de productores de semilla y de sistemas de distribución de semillas de cultivos nativos de calidad. Factores como la falta de incentivos para el desarrollo de mercados para estos cultivos, las limitaciones de los procesos industriales, la falta de información nutricional y de manejo, las restricciones legales, junto con el desconocimiento de los consumidores, entre otros, conducen a la baja representación de los mismos tanto a nivel comercial como político. Si bien hay algunas normas al respecto, están son meramente declarativas y en ellas se reconoce la necesidad de promover dichos cultivos nativos como la Ley 27821, de promoción de complementos nutricionales para el desarrollo alternativo (de 15 de agosto del 2002) y la Ley 28477 que declara a los cultivos, crianzas nativas y especies silvestres usufructuadas, patrimonio natural de la nación (de 24 de marzo del 2005).Un importante paso dado en esta dirección ha sido el realizado en noviembre del 2008, con motivo de la celebración del Año Internacional de la Papa, en el que INIA inscribió en el Registro de Cultivares Comerciales un grupo de 61 variedades nativas de papa. 59 Este registro permite a los agricultores producir semilla de estas variedades nativas en las categorías definidas por la Ley General de Semillas y su Reglamento General, lo que garantiza la formalización del mercado de papa nativa en el país. Con este fin, se desarrollaron nuevos estándares para la caracterización de la papa nativa: en relación con la identificación y la preparación de los reportes de eficiencia la base genética se ha estrechado y se evidencia la necesidad de ampliar el número de cultivares comerciales a otros cultivos que también son importantes para la alimentación nacional y mundial. Este Registro 63 reporta que en el periodo de junio de 1996 a diciembre de 2009 se concedieron 35 Certificados de Obtentor los cuales, referidos a cultivos del Anexo I, corresponden a arroz (4), maíz (3), fresa (1) y citrus (1). 64 Finalmente, el sistema formal de distribución de semilla se ve aquejado por la falta de información sobre siembras, cosechas y mercados; por la renuncia progresiva a trabajar la adaptabilidad de ...el sistema formal de distribución de semilla se ve aquejado por la falta de información sobre siembras, cosechas y mercados; por la renuncia progresiva a trabajar la adaptabilidad de nuevos cultivos y la investigación tecnológica, como se ha visto en el capítulo anterior, y por la práctica extendida de adulteración de insumos. 64 En el año 2008, el Perú comenzó el proceso para formar parte de la Unión Internacional para la Protección de Obtenciones Vegetales en su Acta de 1991 (UPOV por sus siglas en francés) como resultado de sus compromisos con la firma del tratado bilateral de comercio con los Estados Unidos.Intercambio y utilización de los recursos fitogenéticos en el Perú nuevos cultivos y la investigación tecnológica, como se ha visto en el capítulo anterior, y por la práctica extendida de adulteración de insumos. Este último aspecto es particularmente importante en el país y origina una actitud conservadora por parte de los agricultores que, ante situaciones de adulteración de semillas certificadas, optan por desconfiar de las nuevas tecnologías que entran en el mercado.A ello se suma la debilidad en la demanda, asociada a la gran heterogeneidad del agricultor peruano, con problemáticas muy distintas tanto desde el punto de vista tecnológico como socioeconómico.El pequeño agricultor tradicional y de subsistencia 65 depende mayoritariamente de un sistema informal de acceso y de provisión de semilla. Este segmento de agricultores mayoritario en el país no tiene capacidad para acceder a semilla de calidad. Las razones son, entre otras 66 económicas y de oportunidad de acceso al crédito: al no poder comprar semillas de calidad por su alto costo, este agricultor permanece excluido de los mercados de productos agrícolas. En la actualidad, únicamente uno de cada diez productores tiene acceso al crédito: 67 la capacidad de ser sujeto de crédito se vincula a la titularidad de la tierra y a la inversión en semilla mejorada, entre otras variables.El sistema formal de créditos en el sector agrario atiende una demanda aproximada de únicamente el 8% de los campesinos y se dedica a cubrir fundamentalmente cuatro cultivos como son el arroz, maíz amarillo duro, papa y maíz amiláceo (La Revista Agraria, 2009d). El 92% restante no accede a créditos porque no califica pues su rentabilidad no alcanza para devolver el préstamo; no tiene información o simplemente no le interesa, sea porque tiene otro crédito o porque teme perder su tierra si no puede pagar. Este 92% puede estar vinculado a sistemas de financiamiento informal, en donde el interés puede llegar al 10% mensual. Al mismo tiempo, el sistema de microfinanzas (apoyado por algunas ONG) está aumentando su presencia en los principales distritos rurales del 65 El 92% del total de unidades agropecuarias bajo riego tienen menos de 10 hectáreas; el 91% de las unidades agropecuarias de secano tienen menos de 20 hectáreas y el 55% de la superficie agropecuaria del país es ocupada por las comunidades campesinas y nativas según el Censo Agropecuario de 1994. 66 Según Echenique, J. (2009: 38) los elementos que limitan los cambios tecnológicos en la agricultura familiar en el Perú son de carácter estructural y difícilmente removibles con medidas aisladas. Estos se refieren al acceso restringido a tierra y agua; carencias de infraestructura y capital; imperfecciones en el mercado; baja capacidad negociadora; edad promedio avanzada de los titulares de las explotaciones y su bajo nivel de educación formal. 67 Los empresarios exportadores son los destinatarios fundamentales de los préstamos de la banca, siendo el crédito promedio de US$ 29,861. Los destinatarios de las instituciones de microfinanzas (cajas municipales, cajas rurales y edpymes) son los pequeños y medianos productores con un préstamo promedio de US$ 2,916.Intercambio y utilización de los recursos fitogenéticos en el Perú 0 país (en la actualidad existen 250 dependencias). 68 A ello se sumaría la falta de confianza de los pequeños agricultores en la semilla que se vende a través de fuentes alternativas a las tradicionales (LEISA, 2007). Los agricultores emplean primordialmente su propia semilla guardada de la cosecha anterior en un porcentaje superior al 80% del área sembrada, según estudios realizados por Hermann et al. (2009). En este sentido, De Haan (2009) señala que cerca al 40% de los entrevistados en relación con el intercambio de semilla de papa nativa en los Andes Centrales utilizan semilla procedente de sus propias fuentes.En relación con la semilla procedente de fuentes externas, los agricultores dependen en gran medida de la calidad de la información ofrecida por el proveedor en cuanto a rasgos, características de consumo, adaptación ambiental y calidad de semillas. La poca capacidad de asumir nuevos riesgos les lleva a preferir los sistemas tradicionales de provisión de semilla que consideran más confiables y que puedan responsabilizarse más fácilmente por la calidad de la semilla: el intercambio de semilla entre los miembros de la familia, en la comunidad y con agricultores vecinos; las ferias de semillas, los mercados locales, \"las rutas de semillas\", fiestas, entre otros. En ellos, el material genético es cercano al de la zona de cultivo y se encuentra respaldado por el conocimiento colectivo tradicional.Estas vías de abastecimiento están ligadas a relaciones de interdependencia y reciprocidad que forman parte del patrimonio cultural y la identidad de las comunidades campesinas. 69 Las redes de intercambio de semillas hacen posible que los agricultores dispongan de una 68 Consultar El Comercio. \"Una realidad que debe cambiar. Crédito formal no llega al 92% del agro peruano\" 4 de setiembre de 2009.Por ejemplo, el 22% de la producción de papa en el Perú se destina a la siembra (15% se pierde en mermas; 4% se destina a procesamiento; el 34% al mercado local y 25% al mercado regional). Los agricultores las compran de distritos con amplia tradición en la provisión de semilla de papa como Junín y Huasahuasi en la sierra central.Las redes de intercambio de semillas hacen posible que los agricultores dispongan de una diversidad de cultivos, dotándolos de autonomía y permitiéndoles hacer frente a las pérdidas en sus reservas de semillas, cuellos de botella en la producción y riesgos ambientales imprevistos.1 diversidad de cultivos, dotándolos de autonomía y permitiéndoles hacer frente a las pérdidas en sus reservas de semillas, cuellos de botella en la producción y riesgos ambientales imprevistos.En este sentido es especialmente importante lo indicado en el reciente estudio de Hermann et al. (2009) que destaca que son estos sistemas y no solamente los agricultores como individuos los que facilitan el uso y la conservación de la diversidad. Éstos satisfacen las exigencias de los agricultores en materia de semillas, que no se ven adecuadamente respondidas por los sistemas formales debido al limitado margen de variedades con el que operan y a la demanda intensiva de insumos que implican. En particular, la experiencia del Proyecto in situ en el Perú coincide con los nuevos estudios realizados por Hermann et al. (2009) en destacar la importancia de los caminos o rutas de semillas que son los recorridos realizados por los agricultores para abastecerse de semillas a través de largos viajes que duran muchas horas e incluso días, y constituyen un mecanismo importante de adquisición de semilla por parte del agricultor andino y el principal componente para la conservación in situ de los cultivos nativos y sus parientes silvestres (INIA-SUDIRGEB, 2007).En este espacio, como se ha manifestado, el campesino recurre a sus propias redes de protección para el acopio de semilla, 70 y en última instancia al Estado y a los centros de investigación. Del estudio de Scurrah et al. (2009) se extrae un cierto grado de insatisfacción en cuanto al material recibido de centros de investigación por su bajo nivel de germinación y su alto costo. En relación con estos últimos, los agricultores sienten que no tienen influencia sobre los criterios de selección de los profesionales encargados del mejoramiento. Por otra parte, los casos de mejoramiento participativo son limitados y la difusión de las variedades resultantes de los mismos es muy lenta. Este es el resultado de un estudio realizado en el 2008 sobre el cumplimiento de los Derechos del Agricultor 71 en el Perú, que contó con las percepciones y experiencias de 180 agricultores pertenecientes a comunidades alto andinas vinculados a la conservación de la agrobiodiversidad (Scurrah et al., 2009).Esta misma investigación destaca la paulatina desaparición de los sistemas tradicionales de intercambio, la pérdida de variedades 70 Los sistemas de información de mayor importancia para el poblador rural están basados en las relaciones familiares, vecinales y en las organizaciones locales. Sin embargo, mucha de la información que necesitan no se encuentra en las fuentes locales de información, estableciéndose un vínculo causal entre el poco acceso a la información y la pobreza. 71 Referidos en el Artículo 9 del Tratado Internacional. y la dificultad de acceso a material de propagación de buena calidad 72 de una amplia gama de variedades como los principales problemas en el acceso de semilla por parte de los campesinos tradicionales (De Haan et al., 2009; Scurrah et al., 2009). Todo ello redunda muy negativamente en la conservación in situ, a lo que se suma la progresiva desaparición del agricultor conservacionista.En esta línea, Hermann et al. (2009) señalan como principales factores que limitan la capacidad del sistema informal de abastecer de diversidad a los agricultores de una manera eficiente: la falta de información disponible acerca de las fuentes de semillas distintas a las redes familiares y comunitarias; la dispersión de la información sobre los atributos de uso de las variedades nativas, y la falta de garantías de rendimiento agronómico, y el almacenamiento inadecuado de las semillas. Todas las medidas de política que tiendan a disminuir estos costes de transacción para hacer más eficientes los sistemas informales de provisión de semillas favorecerían el desarrollo de los derechos del agricultor a nivel nacional. Scurrah et al. (2009) indican que los agricultores señalaron la necesidad de contar con una buena y extensa fuente de material genético; con cultivos que cosechaban antiguamente y que han desaparecido, y con semilla \"fresca\" para evitar que sus variedades se \"cansen\" , y sugieren que el acceso de los agricultores al material de propagación de buena calidad constituye la manifestación más clara del cumplimiento de los derechos del agricultor. Se han propuesto las siguientes medidas para garantizar dicho acceso: la creación de bancos de semillas comunitarios o locales, las ferias de semillas, la elaboración de registros y catálogos que documenten las variedades tradicionales locales y el conocimiento asociado, la creación de mecanismos de intercambio, la identificación de buenos agricultores semilleristas, la reactivación de antiguas fuentes de semillas conocidas por su alta calidad, la garantía de la seguridad y confianza en las fuentes de propagación de material, la protección de los derechos de los agricultores para el uso de los nombres de los se destacó la necesidad de la difusión de información y de buscar la colaboración de los investigadores en procesos de mejoramiento participativo en los que se parta de las necesidades de los campesinos como línea base para la investigación agrícola cultivares, la capacitación de los agricultores para las actividades de almacenamiento y mejoramiento. Asimismo, se destacó la necesidad de la difusión de información y de buscar la colaboración de los investigadores en procesos de mejoramiento participativo en los que se parta de las necesidades de los campesinos como línea base para la investigación agrícola, dado que muchos agricultores consideran que los trabajos que realizan los centros de investigación son irrelevantes para sus necesidades.Otro factor determinante según algunos expertos lo constituiría la preservación de las redes de intercambio y de los caminos de 73 Juan Torres, PRATEC. Marzo 2010. Comunicación personal.semillas ancestralmente frecuentados por los campesinos y en los que se fundamentan las estructuras sociales de preservación de la agrobiodiversidad. 73 Por último, los expertos opinan que un problema crítico para la conservación in situ de la agrobiodiversidad radica en la desaparición del agricultor conservacionista. Su envejecimiento y la ausencia de una continuidad generacional (por la migración a las ciudades, entre otras causas) es uno de los mayores problemas para la conservación in situ en un futuro. La solución ha de partir de la búsqueda de medios a favor del empoderamiento de los agricultores conservacionistas.El Perú participa desde 1993 en dos redes internacionales de recursos fitogenéticos: la Red Andina de Recursos Fitogenéticos (REDARFIT) y la Red Amazónica de Recursos Fitogenéticos (TRO-PIGEN). REDARFIT fue creada en 1992 e incluye Bolivia, Colombia, Ecuador, Venezuela y Perú. Sus objetivos son el fortalecimiento de la capacidad nacional en conservación y uso sostenible de los recursos fitogenéticos. Entre sus cultivos prioritarios se encuentran las frutas, raíces y tubérculos nativos de los Andes (Ramírez, 2008). TROPIGEN fue creada en 1992 y a ella pertenecen Bolivia, Brasil, Ecuador, Colombia, Guyana, Surinam y Perú. Sus objetivos son la conservación y el uso sostenible de los recursos fitogenéticos y la formación de capacidades. Entre los cultivos prioritarios se incluyen Bactris, Theobroma, Ananas y Carica (Ramírez, 2008). Las redes se han enfocado en diferentes aspectos del tema de recursos fitogenéti-. Participación en iniciativas internacionales de intercambio y conservación de germoplasma cos. REDARFIT ha enfatizado sus actividades de cooperación para la investigación y transferencia de tecnología, la que se ejecuta mediante la captación de financiamiento para proyectos; TROPIGEN se encuentra fundamentalmente orientado a la formación de capacidades. El Perú aporta a las actividades del IICA-PROCIS (PROCISUR y PROCI-TROPICOS en este caso) aproximadamente US$10,000 anuales, parte de los cuales son asignados a ciertas actividades de las redes. Un funcionario del IICA incluye a las redes en su portafolio de gestiones. 74 En general, la importancia de las redes es destacable (si bien sería deseable un mayor empoderamiento de las mismas) ya que ha permitido el desarrollo de capacidades; un mayor conocimiento de las iniciativas regionales; el desarrollo de proyectos regionales en la conservación del germoplasma y el aprender de propuestas para el incremento de su valor agregado. En especial, es de importancia 74 Manuel Sigüeñas, INIA. Febrero 2010. Comunicación personal para el Perú, pues le ha permitido su participación en distintos proyectos colaborativos, que incluyen organizaciones internacionales y pares de los países andinos.Entre los beneficios de la pertenencia a las redes mencionadas se señala 75 el fortalecimiento de la conservación de germoplasma al permitir la creación de nuevas colecciones y la capacitación en temas relativos al manejo y conservación de germoplasma. La participación en redes ha servido, asimismo, para identificar y priorizar los temas y cultivos objeto de conservación regional. Esto ha tenido lugar recientemente durante el desarrollo de la Estrategia Hemisférica de Conservación de Recursos Fitogenéticos para la Alimentación y la Agricultura en la que participaron los representantes de las seis redes de recursos fitogenéticos (Global Crop Diversity Trust, 2008).Los países participantes en la Estrategia Hemisférica realizaron un diagnóstico sobre el estado de las colecciones ex situ de los cultivos más importantes de cada país (indicándose el estado de conservación de las accesiones) y definieron una estrategia para la conservación de los recursos fitogenéticos (en donde se priorizaron las colecciones de interés para los países y las relativas a los cultivos listados en el Anexo I). Posteriormente, el Fondo Mundial invitó directamente a los responsa-bles de estas colecciones a presentar propuestas de proyectos para la regeneración y el refrescamiento de las mismas. En el caso del Perú, se priorizaron las colecciones de maíz, yuca y frejol. Asimismo, se seleccionó como proyecto regional el de la regeneración de haba, proyecto que se ejecuta también en Ecuador.Actualmente se están trabajando los proyectos enunciados a continuación, con el apoyo del Fondo Mundial (Global Crop Diversity Trust): -Regeneración de las colecciones de maíz (Programa de Investigación y Proyección Social de Maíz de la UNALM); -Regeneración de la colección nacional de yuca (INIA); -Regeneración de la colección nacional de frejol (INIA); -Regeneración de la colección nacional de habas (INIA).El desarrollo de los proyectos de yuca y frejol se coordina directamente con el Fondo Mundial y el de haba con Bioversity International y REDARFIT. Los proyectos buscan ayudar a las instituciones a reducir el número de accesiones que requieren regeneración, caracterización y duplicación. Éstos permitirán, a su vez, regenerar un duplicado de dichas colecciones para su conservación a largo plazo en un banco de germoplasma de reconocimiento internacional (CIP, CIAT, etc.) y opcionalmente en un depósito de caja negra en Svalbard. El plazo establecido para la duración de los proyectos va desde junio de 2008 hasta diciembre de 2011.La ayuda financiera para el proyecto de frejol es de US$ 30,000 al igual que para el de la yuca. Es imperante que el gobierno peruano se sume a estas iniciativas y plasme la voluntad política en conservar recursos genéticos de importancia para el país con las dotaciones presupuestarias y el apoyo económico adecuado que responda a las características de un país que posee gran diversidad entre cultivos y una gran variabilidad dentro de estos, algo que hasta el momento no ha sucedido pues los recursos del tesoro público son muy limitados. Prácticamente todas las iniciativas de conservación de recursos fitogenéticos se deben al apoyo de la cooperación internacional.El Perú también ha participado en redes impulsadas por el Fondo Internacional de Desarrollo Agrícola (FIDA); el Consorcio Andino (que involucra a Venezuela, Colombia, Ecuador, Bolivia y Perú); los \"Sistemas Ingeniosos del Patri-monio Mundial\" -GEF (coordinado por FAO); el \"Fortalecimiento de Organizaciones Indígenas y Apoyo al Rescate de Conocimientos en Zonas Alto andinas\" (FAO y Gobierno Neozelandés); el \"Sistema de Monitoreo de Conservación in situ\" y el \"Proyecto de conservación de la agrobiodiversidad en las chacras de agricultores\" (estos últimos a partir de lo trabajado en el Proyecto in situ -INIA, y con financiamiento del Estado peruano).Adicionalmente, con el apoyo de otras instituciones como Bioversity International, FONTAGRO, la Comisión de la Comunidad Europea, el gobierno español, GTZ y el IICA se han desarrollado proyectos de transferencia de tecnología agropecuaria, valoración y aprovechamiento sostenible de los recursos fitogenéticos referidos tanto a la conservación in situ como ex situ.En general, si bien las redes promueven actividades de tipo colaborativo, hasta la fecha no ha tenido lugar el intercambio de materiales, ni se han puesto en práctica acuerdos de transferencia de materiales en este ámbito. Existen dificultades para el intercambio de germoplasma entre los países de la región andina, sobre todo destinados al desarrollo de nuevos cultivos, por desconfianza y temores a competir en los mismos mercados y por limitaciones asociadas con las políticas nacionales de acceso.Una carencia de gran importancia para el sector agrario en general es la de un sistema de información fiable que permita realizar una mejor gestión del acceso y el uso de los recursos fitogenéticos para la alimentación y la agricultura. Esta laguna se reitera en el caso de los centros de i n v e s t i g a c i ó n : los sistemas de documentación son, en general, inadecuados y hay muy poca coordinación regional y nacional. En los centros de conservación ex situ se carece de un sistema de información que sea estandarizado, de acceso fácil a terceros interesados y que permita identificar la duplicidad de muestras, los posibles vacíos de las colecciones y la colaboración en estrategias de conservación. Esta cir-. Sistemas de información cunstancia aísla a los investigadores y obstaculiza la comunicación con los tomadores de decisiones y los agricultores. El resultado es una deficiente comprensión de la relevancia de la conservación de los recursos f i t o g e n é t i c o s para el desarrollo del país (i.e. sus beneficios en nutrición y para la seguridad alimentaria) y en particular, la atomización y duplicación de los proyectos de investigación. La ausencia de información sistematizada que permita conocer los resultados de las investigaciones, las iniciativas y proyectos de conservación; los usuarios y los materiales de las colecciones ex situ; la falta de documentación estandarizada, digital o georreferenciada y de informacióndisponible al público, son algunas de las debilidades que identificaron los entrevistados para la realización del presente estudio. A ello se suma la falta de estabilidad de los recursos humanos en las instituciones (sobre todo públicas) que contribuye a la dispersión y pérdida de la información producida y el bajo nivel de publicaciones existentes en el país.En el 2004 se llevó a cabo con el apoyo de USDA una gran remodelación de toda la infraestructura relativa a la conservación ex situ de los recursos genéticos existentes en la SUDIRGEB-INIA (creación de un laboratorio molecular, invernaderos de propagación, laboratorio de conservación in vitro, cámara fría, entre otros). En este contexto, se hizo un exhaustivo inventario de las colecciones del INIA y se puso en práctica el programa pcGRIN, que permitió integrar en un formato informático (y no manual, como se venía realizando hasta ese momento) la documentación existente en las colecciones nacionales referente a datos de pasaporte, taxonomía, evaluación, inventario y distribución de germoplasma, facilitando, asimismo, la comunicación entre las colecciones nacionales (Williams, 2006).El uso de dicho programa quedó descontinuado y pretende ser retomado con la ayuda del Global Trust. En la actualidad, la utilización de sistemas de intercambio de información queda reducida a SINGER que ofrece un punto central de acceso a la información de todo el germoplasma de cultivos conservado en los Centros del CGIAR, lo mismo que el GRIN de USDA. 76 Por otro lado el INIA tiene intención de participar en la iniciativa del GRIN-Global, un sistema de documentación que apoyará el manejo de los bancos y los datos sobre el germoplasma conservado. Esta es una iniciativa del Fondo Mundial para la Diversidad de los Cultivos (Global Crop Diversity Trust, 2010). Además, el INIA tiene el mandato de establecer el \"Mecanismo Nacional de Intercambio de Información sobre la Aplicación del Plan de Acción Mundial\" cuyo objeto es desarrollar un sistema que facilite el acceso e intercambio de información; sin embargo, todavía falta mucho para su implementación final. 77 Se han realizado, no obstante, algunos esfuerzos por sistematizar y poner a disposición del público información sobre recursos genéticos. En el Catálogo de 76 Manuel Sigüeñas, INIA. Febrero 2010. Comunicación personal. 77 A la fecha, se han llevado a cabo tres talleres de trabajo entre los años 2006 y 2008 que han permitido la recopilación de datos sobre instituciones, usuarios, contactos, proyectos, cultivares y convenios relacionados. Ahora corresponde al INIA sistematizar la información y colocarla en línea para que sea de fácil acceso. Sin embargo, aún no se cuenta con un servidor idóneo, presupuesto asignado para esta actividad ni se ha calculado cuándo culminará el proceso y si se podrá acceder al Mecanismo Nacional.las Colecciones Nacionales del Banco de Germoplasma de la SU-DIRGEB-INIA se presentan los datos de pasaporte de 22 de las 30 Colecciones Nacionales que lo constituyen; información que está siendo incorporada en un aplicativo informático desarrollado para tal fin, que se encuentra en las etapas finales de validación. Se han creado los Registros Nacionales de Papa Nativa 78 y de Maíz Nativo de acceso abierto a través de Internet.El primero se elaboró a partir de 28 descriptores de papa nativa y el segundo a partir de 11 descriptores de maíz, ambos identificados de forma participativa con criterios de los agricultores y de la comunidad académica. Una importante novedad que incorporan estos registros es que permiten identificar la fuente del material genético, el nombre y la localización del agricultor o de la comunidad de la que proviene el material genético.Por otra parte, la gran cantidad de información generada como resultado del Proyecto Conservación in situ de Cultivos Nativos y sus Parientes Silvestres (2001-2005), sobre recursos fitogenéticos y conocimientos y prácticas tradicionales vinculados a los mismos, sigue sin estar disponible desde la conclusión del proyecto. Ello se debe a que no han sido resueltas hasta la fecha cuestiones relativas a la operatividad del sistema per se, a la alimentación de la información, especialmente de los recursos fitogenéticos, al consentimiento informado previo de las comunidades y al temor por las instituciones participantes de que se produzca la apropiación indebida de los conocimientos y prácticas tradicionales, fundamentalmente.Con independencia de los sistemas de información de provisión pública, hay otros promovidos conjuntamente con la sociedad civil y cuyo objetivo es compilar, sistematizar y difundir la información agraria que existe en el país (destinado a investigadores y productores). En esta línea destacan Infoandina o AGRORED PERU 79. En concreto, AGRORED PERU es un metasistema cuya misión es promover el acceso, intercambio y uso efectivo de información relevante para el desarrollo agrario en el país y dirigida a investigadores, académicos, agentes de transferencia tecnológica, de desarrollo agrario y rural, empresarios y productores. 78 En la creación de una conciencia pública en relación con la utilización de los recursos fitogenéticos juegan una labor muy importante las redes de comunicación creadas desde la sociedad civil. Es de particular validez la difusión masiva realizada por CEPES mediante redes de comunicación radial (Tierra Fecunda) y la creación de revistas de distribución masiva (La Revista Agraria). También son de gran valor las redes de comunicadores comunales que utilizan el medio radial como instrumento para conectar a los pequeños agricultores y las comunidades más alejados y con menores recursos. Entre estos últimos podemos mencionar a la Red de Comunicadores Rurales de Cusco y Apurímac (con 71 emisores radiales, 210 comunicadores y 1 centro de información regional) 80 y la iniciativa de la Asociación Pullasunchis de \"Radio en las escuelas andinas\" también en la región del Cusco. 81 . Conciencia pública sobre los recursos fitogenéticos No obstante lo anterior, en general, la riqueza de que dispone el país en recursos fitogenéticos y su importancia para la agricultura y la alimentación mundiales están ausentes de la agenda curricular y la educación en colegios y universidades. Con independencia de las facultades de Agronomía, el principal acercamiento académico se hace desde la perspectiva de la restauración y gastronomía por parte de algunas escuelas y universidades dedicadas a esta especialidad en Lima (con un gran número de publicaciones relacionadas).Las iniciativas para la creación de conciencia pública han sido puntuales y se vinculan con la creación de mercados 82 y con la industria gastronómica, ahora en auge, y se fundamentan en la construcción de una identidad nacional (Ruiz, 2009). En esta dirección de consolidación de la identidad nacional las noticias que han apareci-do en los medios de comunicación y que han encontrado debido eco entre la población se vinculan también con la apropiación ilícita de los recursos y los conocimientos tradicionales que son propios del país. El tema de la biopiratería (Cuadro 9) ha sido de frecuente 82 Un ejemplo lo proporciona la Comisión Nacional de Productos Bandera que pretende promover mercados para determinados productos preferidos por los mercados externos y que resaltan la imagen y la identidad del país como la maca, la lúcuma, el algodón peruano, los camélidos peruanos, la gastronomía peruana y la cerámica de Chulucanas.- -20 noviembre 2007. \"Piden proteger sacha inchi\". El Comercio.-20 mayo 2008. \"La papa es peruana... Chile llega 400 años tarde en sus pretensiones\". La República.-26 mayo 2008. \"Chile inscribe 60 nuevas variedades de papa originarias de la isla de Chiloé\". Nacional.Chile.-27 mayo 2008. \"Inscriben 340 Especies como \"originarias\" de ese país. Perú y Chile en guerra ahora por la papa\".-27 Mayo 2008. \"Ahora Chile afirma que la papa le pertenece\". Expreso.-14 agosto 2008. \"Patentamiento de plantas\". Santiago Roca. Actualidad económica. La República.-4 diciembre 2008. \"Pronunciamiento contra la biopiratería\". Asociaciones del Cusco.-15 enero 2009 \"Combatirán biopiratería\". El Peruano.-26 de enero 2009. \"Gobierno abre las puertas a la biopiratería. TLC con Estados Unidos permitirá a compañías patentar genes sin permiso del Estado ni de comunidades\". La República.-3 febrero 2009. \"Pronunciamiento de la Mesa de Producción de Quinua del Altiplano en contra del patentamiento de la quinua\".-6 febrero 2009. \"Francia quiere patentar uso cosmético de quinua\". Perú 21.- aparición en los periódicos de distribución nacional.Por otra parte, iniciativas como la declaración del Día Nacional de la Papa 83 y eventos como los celebrados con motivo del Año Internacional de la Papa en el 2008 han contribuido de manera significativa a un mayor conocimiento de las oportunidades que ofrecen los recursos fitogenéticos, así como de las fortalezas y debilidades en la investigación de los mismos.Lo antes manifestado ha propiciado que los gobiernos regionales hayan promulgado normas relacionadas con la conservación y el acceso a los recursos genéticos y la creación de grupos técnicos relacionados con la biodiversidad, la agrobiodiversidad y los recursos genéticos. Otros focos de atención se encuentran referidos a la introducción de cultivos transgénicos al país y a los impactos de los tratados bilaterales de comercio sobre la agricultura nativa, que han impulsado a los gobiernos regionales a aprobar normas en estos temas.Asimismo, es importante destacar que se ha producido una presencia cada vez mayor de redes y de asociaciones de la sociedad civil 84 vinculadas a la defensa de la agrobiodiversidad. Son éstas las que han favorecido la inclusión de la conservación y el uso sostenible de los recursos fitogenéticos en las agendas de los medios de comunicación social nacional y local. La realización de numerosos talleres de capacitación con carácter descentralizado ha propiciado, igualmente, una mayor conciencia sobre la importancia de la agrobiodiversidad y sobre temas conexos como el uso de pesticidas o la utilización de transgénicos. 83 El Decreto Supremo 009-2005-AG estableció el 30 de mayo como el \"Día Nacional de la Papa\" con el fin de destacar las virtudes del tubérculo y su aporte para la seguridad alimentaria y la diversidad cultural andina. En su condición de receptores de recursos genéticos: contratos de acceso marco o contratos de acceso dependiendo de si los centros son calificados como centros de investigación o no En su condición de proveedores de recursos genéticos: Acuerdo de Transferencia de Materiales Fuente: Ruiz, M. (2008a).Marco legal e institucional de acceso y distribución de beneficios de varios proyectos y que faciliten el acceso a los recursos genéticos por parte de universidades, centros de investigación o investigadores reconocidos, el Art. 37 añade, a renglón seguido, que los centros de conservación ex situ no están exentos de los contratos de acceso. En general, los altos costos de transacción que estos implican han frenado la investigación y perjudicado fundamentalmente a los investigadores nacionales de los países andinos (Ruiz y Roca, 2004). 87 De esta forma, el carácter dinámico de intercambio de materiales que era común en el pasado se redujo con la entrada en vigor del CDB, tendencia que continuó cuando las regiones y los países empezaron a desarrollar las normas de acceso. En la región andina, cuando se aprobó la Decisión 391, se produjo una reducción en el flujo de materiales y esta situación se mantiene a nivel nacional en el Perú incluso con la reciente aprobación de su reglamento, en donde, en la actualidad, se mantiene un limitado acceso a los recursos genéticos. Por otra parte, es común que los centros CGIAR trabajen muy estrechamente con las instituciones nacionales de investigación en los países, y accedan a recur-sos genéticos c o n j u n t amente con las entidades nacionales, que, d e a l g u n a manera, facilitan el acceso a los recursos genéticos. Al menos, este es el caso del Perú, en donde actualmente el CIP tiene una autorización para realizar colectas de germoplasma de papa silvestre conjuntamente con el INIA. 88 La ausencia, desde 1996 hasta el 2009 (en que se promulgó el reglamento de acceso a los recursos genéticos), de un marco jurídico que definiera las competencias entre las autoridades nacionales en materia de acceso a los recursos genéticos ha implicado una paralización en la autorización de los contratos de acceso. A modo de referencia, en relación con las especies silvestres, el único contrato de acceso que tuvo lugar en el país fue con el Instituto Coreano de Biociencias y Biotecnología (KRI-BB); este contrato, tuvo por objeto la realización de investigación en plantas medicinales de uso tradicional de la Amazonia e implicó un 87 A estas conclusiones se llegó en el Seminario Regional sobre Acceso a los Recursos Fitogenéticos en la Región Andina: el CDB, la Decisión 391 y el Tratado Internacional de la FAO\" que se celebró el año 2003 en el Centro Internacional de la Papa y que congregó a expertos en políticas relacionadas con el acceso a los recursos genéticos. 88 Manuel Sigüeñas, INIA. Enero 2010. Comunicación personal.La ausencia, desde 1996 hasta el 2009 (en que se promulgó el reglamento de acceso a los recursos genéticos), de un marco jurídico que definiera las competencias entre las autoridades nacionales en materia de acceso a los recursos genéticos ha implicado una paralización en la autorización de los contratos de acceso.complejo arreglo institucional con la intervención de tres entidades reguladoras y siete en el comité científico (frente a una y dos coreanas, respectivamente) (Pastor y Sigüeñas, 2008).En el período de referencia, el acceso a las especies domesticadas y a los materiales procedentes de los bancos de germoplasma nacionales, únicamente se permitió con fines de investigación científica, mediante ATM celebrados por el INIA. Al firmar el ATM (de un formato mucho más simple que el ANTM; prácticamente se trata de una declaración unilateral), el usuario se comprometía a no reclamar ninguna forma de propiedad intelectual sobre el material genético transferido y en caso de realizar un uso comercial del material accedido se tenía que celebrar un contrato de acceso.Durante los años 2001 al 2006, el INIA únicamente denegó dos solicitudes de ATM presentadas por una empresa alemana con el fin de identificar el ADN responsable de la tolerancia al frío del maíz andino en los primeros estados de desarrollo. En este caso, la compañía alemana ofrecía capacitación a investigadores peruanos en biotecnología y formación doctoral en universidades alemanas. El contrato no llegó a realizarse por no estar definidas las competencias del INIA para poder autorizar el contrato de acceso.Según Pastor y Sigüeñas (2008) en dicho período se celebraron 23 ATM 89 y si bien en todos ellos se declara que es con fines de investigación, sin embargo, su objetivo apunta a un desarrollo comercial posterior (10, para fines de mejoramiento, ensayos de adaptabilidad u obtención de nuevas variedades; 7, caracterización molecular o bioquímica; 4, sobre identificación de metabolitos secundarios, de interés por su valor nutritivo o nutraceútico; 2, búsqueda de cultivos para exportación). El débil compromiso y monitoreo del ATM no evita que puedan ser utilizados con fines de bioprospección.Los datos son especialmente llamativos si tenemos en cuenta que el germoplasma transferido es en su mayoría de cultivos andinos y los destinatarios son instituciones extranjeras. De un total de 2,476 transferencias, el 94.7% han sido recibidas por instituciones extranjeras y el 5.3% sería con destino a investigadores nacionales Este aspecto evidencia que el flujo se realiza primordialmente hacia el extranjero, pero también el muy poco uso de las instituciones nacionales de los materiales genéticos que se encuentran en los bancos de germoplasma (Pastor y Sigüeñas, 2008).En enero del 2009 se desarrolló finalmente la Decisión 391 mediante un reglamento que delimita las competencias y el procedimiento administrativo en el acceso a los recursos genéticos en el Perú. 90 El material no incluido en el Anexo I, recibido por los Centros después del 29 de junio de 2004, estará a disposición según las condiciones establecidas entre el Centro y el país de origen del material. No obstante, los centros CGIAR han mostrado su preferencia en utilizar un único instrumento, el ANTM, tanto para los recursos referidos en el Anexo I como para los no incluidos, con el fin de simplificar los procedimientos en la distribu-ción de germoplasma y disminuir costes. 91 En cualquier caso, las colecciones anteriormente referidas de maca, arracacha, yacón y granos andinos que fueron recibidas por los Centros con anterioridad al 29 de junio de 2004 estarían sujetas al ANTM y no a la legislación general de acceso a los recursos genéticos del país.Lo anterior podría implicar la necesidad de modificar el reglamento nacional de acceso por estar en contra de lo acordado por el Órgano Rector del Tratado. Esta situación de incertidumbre ha llevado a que el CIP haya paralizado los envíos al extranjero de muestras de raíces y tubérculos andinos hasta que se aclare el ámbito y la compatibilidad entre ambos regímenes de acceso y distribución de beneficios. 92 Esto es relevante, sobre todo si se tiene en cuenta que cuando el recurso sea utilizado con fines comerciales, en cuyo caso, bajo la normativa nacional de acceso y distribución de beneficios, el acceso se concederá mediante la negociación de un contrato de b. Con fines comerciales: se deberá solicitar la autorización del acceso a las autoridades competentes para la suscripción del respectivo contrato de acceso. Se prevé la celebración de contratos accesorios entre el solicitante y el centro de conservación ex situ que esté en posesión de los materiales (el Acuerdo de Transferencia de Materiales se considera un tipo de contrato accesorio).Cuando en los proyectos de investigación se involucre conocimiento tradicional asociado, 94 se deberá considerar lo establecido en la Ley 27811 que regula el acceso a los conocimientos colectivos de los pueblos indígenas vinculados a los recursos biológicos que fue aprobada el 24 de mayo del 2002. Esta norma prevé la necesidad de contar con el consentimiento informado previo de los mismos y la conclusión de contratos de licencia cuando el uso de dichos conocimientos sea con fines comerciales.En los casos en que se trate de proyectos que se limitan a la 93 Art. 29. \"Salida de recursos genéticos de Centros de Conservación Ex Situ. La salida de todo recurso genético de los centros de conservación ex situ domiciliados en el país con fines de investigación, se realizará mediante un Acuerdo de Transferencia de Material en el que se establezcan las obligaciones y condiciones para la utilización de dicho material. El acuerdo incluirá condiciones para la transferencia de estos materiales a terceros, así como el reconocimiento de su origen.La salida de los recursos genéticos de los centros de conservación ex situ con fines comerciales se realiza mediante un contrato de acceso\". 94 Cuando en los proyectos de investigación se involucre conocimiento tradicional asociado, se deberá considerar lo establecido en la Ley 27811 que regula el acceso a los conocimientos colectivos de los pueblos indígenas. 1 recolección de muestras o especímenes biológicos de flora o fauna o microorganismos para fines de investigación científica, que no impliquen actividades a nivel genético o molecular o investigación sobre extractos (salvo cuando se requieren para estudios con fines ecológicos, taxonómicos, biogeográficos, sistemáticos o de filogenia) y que se realicen fuera de las áreas naturales protegidas, se aplican las normas que regulan la reglas de colecta científica. 95 El Gobierno Regional del Cusco ha emitido una norma por la que se \"regulan las actividades de acceso a los recursos genéticos y conocimientos, prácticas e innovaciones ancestrales asociadas a dichos recursos genéticos en los territorios tradicionales de las comunidades campesinas y nativas en la región Cusco\", 96 en la que se asignan competencias a las autoridades regionales para ayudar a las comunidades en la elaboración y el monitoreo de protocolos de acceso y concesión del consen-timiento informado previo y se crea un registro de actividades de bioprospección e investigación en la región.Finalmente, la Ley 28216 crea la Comisión Nacional contra la Biopiratería en el año 2004 97 cuya misión es identificar casos de biopiratería, entendidos por tales los que implican el acceso y uso no autorizado y no compensado de recursos biológicos o conocimientos tradicionales de los pueblos indígenas, en contravención de los principios establecidos en el CDB y las normas vigentes sobre la materia. 98 Durante seis años y con gran esfuerzo por parte de las instituciones, se han logrado paralizar seis solicitudes de patentes en recursos fitogenéticos de origen peruano como son la maca, el sacha inchi y el camu camu. 99 La Comisión Nacional contra la Biopiratería ha priorizado 35 recursos biológicos de origen peruano para identificar casos de biopiratería en solicitudes de patente y patentes ya concedidas 95 La regulación de la colecta científica con fines de investigación básica se recoge en el Reglamento de la Ley Forestal y de Fauna Silvestre (DS 014-2001-AG). La solicitud para realizar investigación científica con colecta de material biológico debe ir acompañada de un plan de investigación en idioma español en el que se contará con la participación de por lo menos un investigador o asistente peruano y, de ser el caso, el consentimiento informado previo de las comunidades de participar en el proyecto, así como del compromiso de entregar el 50% del material colectado por especies de flora y/o fauna silvestres, paratipos y los holotipos a una entidad científica nacional reconocida. La aprobación se realiza por la Dirección General Forestal y de Fauna Silvestre del MINAG y concluye con la firma de una Carta de Compromiso en la que el investigador se obliga a cumplir con una serie de obligaciones como, por ejemplo, el respetar estrictamente que \"los derechos otorgados sobre los recursos biológicos no otorgan derechos sobre los recursos genéticos contenidos en los mismos\". 96 Ordenanza Regional No. 048-2008-CR/GRC. Cusco. Diario Oficial El Peruano de 14 de enero del 2009. 97 Esta Ley se encuentra desarrollada mediante el DS 022-2006-PCM. 98 Según se expresa en la página web de la propia Comisión: www.biopirateria.gob.pe. (Consultado enero 2010). 99 Consultar el comunicado de prensa de INDECOPI de 11 de mayo del 2009, \"Comisión Nacional contra la biopiratería impidió que empresas extranjeras patenten cultivos autóctonos\".en las principales oficinas de patentes del mundo. De ellos, l5 son recursos fitogenéticos destinados a la alimentación y la agricultura (el resto se trataría de plantas de uso en la medicina, la cosmética o la industria). Ver Cuadro 11. En el estudio realizado por Pastor (2008) a través del motor de búsqueda de la Oficina Europea de Patentes, se destaca que en el año 2006 se identificaron un total de 946 documentos de patentes en las que se utilizaron recursos biológico-genéticos de 91 especies de la agrobiodiversidad nativa del Perú. Ninguna de las patentes corresponde al Perú y sólo 19 casos provienen de países latinoamericanos (Brasil y México) con los que se comparten muchas de las especies. Los países en donde principalmente se registraron dichas patentes fueron Japón (32%), Estados Unidos (19%), República de Corea (11%), China (5%) y distintos países de Europa (Reino Unido 4%; Rumania 3% y Francia 2%).Los usos innovadores que se alegan en dichos documentos de patentes (en el análisis de una muestra aleatoria de 341 documentos) indican que únicamente un 13% es con fines de mejoramiento genético destinado a la agricultura y el 66% restante se utiliza con fines distintos (para farmacia (29%), industriales (20%) y farmacéuticos (17%)). Entre las especies utilizadas en invenciones registradas en documentos de patentes (obtenidas con el motor de búsqueda de la Oficina Europea de Patentes hasta fines del año 2006) se incluyen el maíz, la papa común, el frejol y el camote.Cuadro 11. Comisión Nacional contra la Biopiratería. Recursos fitogenéticos destinados a la alimentación y la agricultura priorizados en la búsqueda de casos de biopiratería.Annona muricata Fuente: www.biopirateria.gob.pe (Consultado Enero, 2010).El sistema multilateral comprende el acceso facilitado a una reserva común de recursos genéticos, en virtud del cual, los distintos países comparten el acceso regulado a los recursos fitogenéticos procedentes de otros Estados miembros con fines de investigación, mejoramiento genético, conservación y capacitación. A través del mismo se facilita el intercambio de materiales en tiempo real y al menor coste. Las oportunidades que brinda este mecanismo implican la comunicación en una doble dirección: los países han de aceptar el compartir los recursos de que disponen a cambio de poder hacer uso de los materiales de los demás miembros.Las ventajas y oportunidades son, por tanto, las propias del bien público y la interdependencia en recursos e información. Tanto el nivel de aportación del país a la reserva común como su mayor o menor habilidad para apropiarse y beneficiarse de la misma van a depender de la arquitectura institucional y normativa del país, pero 10. Incentivos y desincentivos para la participación del Perú en el sistema multilateral del Tratado Internacional también, y fundamentalmente, de la capacidad con la que cuenten los programas nacionales de investigación y mejoramiento agrícola y de su poder de diseminación de las innovaciones resultantes.En el caso del Perú, confluyen elementos interesantes que actúan como incentivos y desincentivos para su participación en el sistema multilateral. Éstos se evidencian claramente en la situación que manifiesta Daniel Debouck 100 en relación con el frejol: \"Hay dos elementos interesantes en el caso del Perú. Uno, hay poca duda que es centro de origen de dos especies cultivadas de frejol (vulgaris y lunatus). Pero aún así, Perú usa recursos genéticos de frejol de otra parte. Y hay una explicación El sistema multilateral comprende el acceso facilitado a una reserva común de recursos genéticos, en virtud del cual, los distintos países comparten el acceso regulado a los recursos fitogenéticos procedentes de otros Estados miembros con fines de investigación, mejoramiento genético, conservación y capacitación.muy biológica a esta situación: los genes de resistencia o de mejora con frecuencia existen en el otro centro de origen (y viceversa para Mesoamérica). Asimismo, por problemas de manejo, la mayor y mejor colección de material peruano se encuentra en Palmira, Colombia. Estamos tratando de corregir esta situación, pero el Perú debería garantizar la adecuada existencia de capacidades en esta materia\".L a s o b s e rvaciones de Debouck resumen las ventajas de tener acceso a la fuente más amplia posible de diversidad de un cultivo, aun en el caso de un cultivo de origen peruano. Así mismo, la demanda de recursos fitogenéticos del Perú es de especies introducidas ya que buena parte de la agricultura que genera divisas para el país depende de especies introducidas y los principales cultivos del país, por superficie cosechada, vienen también de fuera como son el arroz, el café, la cebada y el trigo. Es más, como es sabido, la seguridad alimentaria de los campesinos más pobres de las zonas altoandinas descansa fuertemente en estos dos últimos cultivos de origen extranjero.Con vistas al futuro, la necesidad de acceder a recursos fitogené-ticos viene determinada por la urgencia de ampliar la estrecha base genética sobre la que descansa la agroindustria y el mercado orgánico con gran potencial exportador; usar mayor diversidad para confrontar las amenazas propias de la degradación de los ecosistemas altoandinos (erosión del suelo), así como enfrentar la aparición de nuevas plagas y la radicalización de los eventos atmosféricos como consecuencia del cambio climático. Este último factor va a tener especial incidencia futura en el país como ya lo están anticipando los desastres climáticos que se multiplican y que afectan de manera especial los cultivos listados en el Anexo I y a los agricultores de menos recursos de las zonas altoandinas. En especial, uno de los mayores impactos del cambio climático en estas zonas es la desaparición de semilla con que contar en las sucesivas campañas agrícolas; esto es uno de los mayores retos futuros para las instituciones nacionales como soporte a la resiliencia del agricultor peruano.Las ventajas que ofrece el sistema multilateral al ampliar la disponibilidad de recursos fitoge-néticos para la alimentación y la agricultura son evidentes en términos de desarrollo rural, oportunidad de mercado y como respuesta a las vulnerabilidades y riesgos ambientales. Estas variables son determinantes para un país con un muy reducido presupuesto en investigación agrícola; con necesidad continua de realizar investigación y mejoramiento agrícola por la multiplicidad de incidencias agronómicas que generan la diversidad de pisos ecológicos, climas y la amplia latitud geográfica que lo caracterizan. Estas circunstancias obligan a contar con material que amplíe la gama de diversidad genética a disposición de los productores. De igual manera, las condiciones de país para apropiarse de los beneficios del sistema son muy favorables: en el Perú confluyen pisos ecológicos y climas muy diversos que permiten la adaptación extensiva de cultivos foráneos, en particular, de los previstos en el Anexo I del Tratado.Recíprocamente, el Perú tiene un gran potencial para aportar al sistema multilateral dado que las colecciones públicas de germoplasma de determinados cultivos del Anexo I como papa, yuca, camote, maíz y frejol son de gran importancia. Muchas de estas colecciones nacionales cumplen con los requisitos del Art. 11.2 del Tratado Internacional: están dedicadas a la alimentación y la agricultura; se encuentran en el dominio pú-blico y bajo la administración y el control de las Partes Contratantes. Únicamente el Banco Nacional de Germoplasma del INIA comprende un total de 5,925 accesiones, correspondientes a 20 especies de las incluidas en el Anexo I.Asimismo, la conservación in situ practicada por las comunidades en todo el Perú demanda el reconocimiento de los conocimientos y de las prácticas tradicionales que permiten conservar la rica agrobiodiversidad del país. En este contexto, el desarrollo de políticas y normas que fomenten esta conservación mediante el reconocimiento de los Derechos del Agricultor es absolutamente relevante en el curso de la implementación del Tratado Internacional en el Perú.En el Perú hay una estructura institucional definida y con alta representación geográfica dedicada a la investigación en recursos fitogenéticos destinados a la alimentación y la agricultura. Ésta se asienta fundamentalmente en instituciones de investigación de carácter público (INIA e IIAP) y en las universidades públicas del país. La investigación es fundamentalmente en recursos genéticos y existe un incipiente desarrollo en el mejoramiento formal de cultivos. La mayor parte de las instituciones realiza únicamente caracterización Incentivos y desincentivos para la participación del Perú en el sistema multilateral del Tratado Internacional morfológica; la caracterización molecular es muy limitada, y no se hace una caracterización agronómica sistemática. Casi toda la caracterización se efectúa con descriptores IPGRI, hoy Bioversity International, lo cual facilita el intercambio de información universal.Sin embargo, no se termina de conformar un sistema nacional de investigación en recursos fitogenéticos por la escasez de recursos económicos, tecnológicos y humanos y el aislamiento con el que funcionan los distintos programas de investigación.No se cuenta con recursos y tecnología mínima para adelantar investigaciones de importancia y tampoco con la coordinación necesaria entre las distintas instituciones de investigación y mejoramiento. Los limitados medios económicos inciden especialmente en la debilidad de la conservación de las colecciones ex situ. La ausencia de sinergias es causa de la duplicidad de las colecciones; la superposición del objeto de las investigaciones; la coincidencia en el ámbito y finalidad de los proyectos; la ineficiencia en la asignación de recursos; la falta de consolidación de los equipos de trabajo; el débil empoderamiento del investigador (en especial, del destinado a la investigación básica en recursos genéticos); la discontinuidad de los proyectos de investigación a largo plazo y la escasa conectividad con la empresa privada, entre otros.La limitada capacidad de realizar mejoramiento formal puede actuar como un desincentivo de las instituciones para participar de manera activa en un sistema cuya ventaja principal es el poder acceder a una amplia y variada reserva genética. Si no existen los medios tecnológicos, financieros y humanos necesarios, es difícil que las instituciones deseen asumir nuevos retos.El acceso a recursos fitogenéticos y de información se cumple por medio de alianzas bilaterales a nivel nacional y con los centros CGIAR. Éstos y los agricultores son los principales proveedores de material genético de los cultivos listados en el Anexo I. En general, las alianzas nacionales carecen de institucionalidad, lo que impide su continuidad en el tiempo. El acceso al material procedente de los centros CGIAR es muy relevante para las instituciones de investigación porque les permite partir de materiales avanzados y poblaciones en proceso de mejoramiento o material segregante sobre el que trabajan para su adaptación a las condiciones del país.En relación con el flujo internacional de material genético, La limitada capacidad de realizar mejoramiento formal puede actuar como un desincentivo de las instituciones para participar de manera activa en un sistema cuya ventaja principal es el poder acceder a una amplia y variada reserva genética.son las compañías privadas y las universidades las que acuden en mayor medida a la importación de semilla para fines de investigación. El INIA ha obtenido poco material genético de fuentes internacionales, si bien con resultados muy positivos en la introducción de nuevos productos de interés agroindustrial y para la exportación. Asimismo, el Perú pertenece a dos redes de recursos fitogenéticos en Latinoamérica que no han sido plenamente exploradas y en las que a la fecha el intercambio de material genético no ha tenido lugar. Las dificultades para su mayor crecimiento se deben, sobre todo, a la desconfianza en el intercambio entre mejoradores y a los temores a competir en los mismos mercados, entre otras cuestiones. La debilidad de los centros de investigación se intensifica ante la necesidad de un sistema de información y documentación nacional dinámico y estandarizado que permita acceder con facilidad a la información de las colecciones y brinde información a los fitomejoradores. Para ello, se cuenta con la experiencia del programa pcGRIN, si bien se hace necesaria su modernización y mayor fortalecimiento. Como se nota más antes, en el texto el INIA ha indicado su interés en participar en los ensayos del sistema de información GRIN-Global (Global Crop Diversity Trust, 2010). En la actualidad, la información es fragmentada y públicamente inaccesible con carácter general: no existe información sistematizada ni digitalizada sobre el germoplasma conservado por los centros nacionales de investigación que sea de fácil acceso por terceras partes.En este sentido, la aplicación práctica del Tratado Internacional va a depender en gran medida de la mejor disponibilidad y accesibilidad a la información sobre material genético de que se dispone. Al respecto, el INIA tendrá que realizar esfuerzos, como coordinador y posible futuro punto focal, para que se disponga de información completa y fácil de consultar en relación con cada una de las muestras, de lo contrario, las mismas no podrán utilizarse. Así, solo podrá decirse que el material se encuentra verdaderamente incluido en el sistema multilateral si éste está documentado de forma adecuada y con carácter público. 101 Con ello, esta situación puede incentivar a la constitución del \"Mecanismo Nacional de Intercambio de Información sobre la Aplicación ...la aplicación práctica del Tratado Internacional va a depender en gran medida de la mejor disponibilidad y accesibilidad a la información sobre material genético de que se dispone.del Plan de Acción Mundial\" y, en consecuencia, mejorar el acceso a la información disponible a nivel nacional sobre el uso de los recursos fitogenéticos. Esto puede ser de gran beneficio para los fitomejoradores que se encuentran trabajando de manera descentralizada en el país y servir de gran ayuda para la constitución de una red de centros de conservación ex situ.La participación en el sistema multilateral puede fomentar la consolidación de un Sistema Nacional en Investigación en Recursos Fitogenéticos, empezando por los cultivos del Anexo I, con el potencial de incluir a otros en el futuro. Adicionalmente, puede ayudar a racionalizar las colecciones y mejorar los estándares de conservación. Asimismo, puede promover el uso de protocolos homogéneos, descriptores y estándares comunes entre los investigadores del país que permita el intercambio de la información sobre la evaluación y caracterización generada por distintos grupos. En este sentido, la disponibilidad de datos sobre la caracterización de los cultivos en distintos ambientes es de especial importancia por razones de cambio climático.Lo anterior puede reactivar, a su vez, el intercambio directo de información, la realización de actividades de difusión por especie o región (seminarios, talleres, reuniones) y las publicaciones en la materia. En consecuencia, puede ayudar a que la información generada en las etapas de caracterización y evaluación sea aprovechada de manera más eficiente a como viene produciéndose en la actualidad. Este mayor empoderamiento puede promover una mayor cooperación entre los curadores de las colecciones y los usuarios de las mismas, con un mayor énfasis en la participación de los mejoradores a la hora de definir las prioridades de caracterización y evaluación de las colecciones. Finalmente, puede promover el establecer redes nacionales y/o regionales para la evaluación de colecciones.Las mencionadas actividades se pueden insertar en una estrategia de conservación de recursos fitogenéticos. Así, se pueden crear mecanismos para proteger las colecciones de aquellos que son únicos y valiosos en el mundo y se encuentran mantenidos ex situ, al favorecer su caracterización, regeneración, documentación e intercambio de información sobre los mismos. También puede implicar la duplicación de germoplasma para dotar de mayor seguridad a las colecciones. Esta oportunidad puede vincularse a iniciativas como las desarrolladas dentro de la Estrategia de Conservación para las Américas. A nivel nacional, esta estrategia puede fomentar las relaciones de la conservación ex situ con la in situ, lo cual es crítico para la conservación de la agrobiodiversidad y de los recursos fitogenéti-cos de los que el Perú es centro de origen y domesticación. Asimismo, puede implicar el acceso a tecnologías para la conservación de dichos recursos, incluso podría significar el acceso facilitado a tecnologías protegidas con derechos de propiedad intelectual.La participación en el sistema multilateral puede ayudar a resaltar la interdependencia del Perú de cultivos foráneos, a pesar de su condición de país agrobiodiverso. Este mayor entendimiento puede conducir a priorizar y explorar material genético ubicado en centros de investigación extranjeros y con alto potencial para la agroindustria y los nuevos mercados agrícolas nacionales y de exportación. Las instituciones de investigación pueden así constituirse no solo en generadores de nuevas invenciones sino también en puentes de acceso a tecnología ya existente a favor de los usuarios finales de las mismas. Las relaciones entre investigadores y empresa pueden salir reforzadas en este ámbito nuevo de actuación.De la misma manera, ello también contribuye a evidenciar la dependencia del Perú del material depositado en los centros CGIAR y servir de impulso para intensi-ficar aún más las relaciones con dichos centros. Según el documento de posición presentado por FORAGRO resultante del proceso GCARD 2010 (Global Conference on Agricultural Research for Development), se recomienda la adopción de \"una presencia renovada\" de los CGIAR en América Latina en donde la contribución de estos centros se centre en el continente, entre otros aspectos, \"en el corto y mediano plazo, impulsar proyectos globales y regionales que contemplen, no solo la investigación sino también la transferencia de conocimientos a los sistemas productivos, territorios y cadenas agroalimentarias.-En el marco del punto anterior, el CGIAR no puede ni debe sustituir a los sistemas nacionales de investigación y extensión, pero en algunos casos el financiamiento de la investigación internacional en proyectos más orientados al desarrollo deberá impulsar más el uso del conocimiento generado (FORAGRO, 2010). Esto es determinante no solo para los centros de investigación que ya vienen beneficiándose de ellas sino para las universidades, tanto públicas como privadas, existentes a nivel descentralizado, en donde el aislamiento de los investigadores es mayor.La participación en el sistema multilateral puede ayudar a resaltar la interdependencia del Perú de cultivos foráneos, a pesar de su condición de país agrobiodiverso. 0 En este sentido, la colaboración en el sistema multilateral puede contribuir al desarrollo de capacidades y a la transferencia de tecnología. Hay una gran necesidad de promover la formación de los investigadores mediante maestrías y doctorados que fortalezcan la investigación en recursos fitogenéticos en el país y que empoderen este tipo de investigación en las universidades nacionales.El sistema multilateral puede promover la cooperación científica y el entablar alianzas que impliquen una transferencia de conocimientos y tecnología y una mejor capacidad en la búsqueda de financiamiento con destino a la investigación. El ganar experiencia en la participación en redes puede ser de gran interés en el empoderamiento de los científicos nacionales y en la motivación en el desarrollo de líneas de investigación y mejoramiento de cultivos que atiendan a las demandas existentes en el país e internacionalmente.En esta línea, el desarrollo de capacidades motivadas por este intercambio es vital para la investigación agrícola nacional. El sistema multilateral puede actuar como promotor en la apertura de líneas de investigación nuevas como es el comportamiento o respuesta de los materiales genéticos a los factores de cambio climático, hasta ahora ausentes en las agendas de investigación de los curadores o responsables de las colecciones de germoplasma. Asimismo, puede implicar una asignación más eficiente de los recursos destinados a la conservación ex situ e in situ con la priorización de recursos, y evitando la duplicidad de las colecciones.En el país se dan las condiciones para un mayor diálogo y una mejor comunicación entre los distintos actores en los procesos de innovación en recursos fitogenéticos: hay un número importante de instituciones públicas dedicadas a su investigación y con una significante cobertura geográfica; se cuenta con asociaciones de empresas de agricultores relacionadas con cultivos del Anexo I; con la participación de organizaciones de la sociedad civil promotoras de la conservación in situ y con cercanía a los usuarios finales; se tiene experiencia en alianzas con gobiernos locales y regionales en relación con recursos fitogenéticos; en la creación de consorcios en los que forman parte empresas privadas, universidades y tomadores de decisiones de política y en grupos de trabajo multisectoriales y participativos para la creación de políticas y marcos regulatorios para la conservación y el uso sostenible El sistema multilateral puede promover la cooperación científica y el entablar alianzas que impliquen una transferencia de conocimientos y tecnología y una mejor capacidad en la búsqueda de financiamiento con destino a la investigación. 1 de los recursos fitogenéticos y la agrobiodiversidad en el país.En los niveles de gobierno, es preciso buscar sinergias con IN-CAGRO 102 y con el Centro de Biotecnología Agropecuaria y Forestal que puede servir de enlace con el sector privado y la agroindustria para favorecer la inversión privada en investigación. Asimismo, los Gobiernos Regionales han asumido las funciones de extensión agraria y nuevas competencias en agricultura; estas circunstancias y su mejor capacidad económica les sitúan en una posición destacada para, junto con los gobiernos locales, promover la investigación agrícola en sus territorios y ámbitos de gobierno.Para aprovechar las oportunidades que ofrece el sistema multilateral es preciso estructurar este mapa de actores, roles y una estrategia de acción a corto y mediano plazo. Un paso siguiente podría ser la creación de una red de conservación ex situ (Sistema de Conservación de Germoplasma) que involucre a investigadores y mejoradores a nivel nacional. Esta plataforma puede contribuir a hacer viable y disponible la información sobre recursos fitogenéticos; a incentivar una mayor coordinación y efectividad de los programas; a promover las investigaciones de largo plazo y permitir una mayor organización del sistema de investigación en recursos fitogenéticos en general.Asimismo, la creación de una plataforma nacional de usuarios en torno a la conservación de los recursos genéticos puede ayudar a identificar interlocutores y aunar e s f u e r z o s entre agentes de innovación en la esfera privada que tienen la posibilidad de introducir cambios efectivos; ONG; asociaciones de agricultores y, en general, agentes sociales y económicos que impulsen procesos de innovación que respondan a sus necesidades. Esta Plataforma puede servir para poner en marcha recursos fitogenéticos prioritarios; evaluar materiales pertinentes con los campesinos; establecer mejores sistemas de multiplicación y difusión de variedades e incentivar la implementación de los derechos del agricultor en el país.El INIA tiene una posición privilegiada para actuar de eje articulador de los actores existentes a favor de la aplicación del sistema En relación con la extensión y diseminación de las investigaciones, es un desincentivo para participar activamente en el sistema multilateral el predominio de un servicio de extensión agraria desestructurado en donde intervienen una pluralidad de instituciones de manera muy dispersa y de un capital social débil como receptor de las tecnologías: destaca la ausencia de asociaciones de campesinos fortalecidas (particularmente en la sierra) como instancias articuladoras de demandas y de desarrollo de procesos de innovación, que actúen como interlocutores con las instancias de investigación.Adicionalmente, es importante considerar que si bien la mayoría de los productores de semillas certificadas registrados lo son de los cultivos listados en el Anexo I, domina el mercado informal de semillas y la alta importación de semilla para siembra por parte del sector agroexportador y la agroindustria. El agricultor tradicional no adquiere semilla de calidad por su alto coste y por la desconfianza en los mecanismos de provisión de la misma (por el alto nivel de adulteración). Las relaciones de la agroindustria y de los agricultores con los centros de investigación son muy deficientes en este sentido. Existe, también en este ámbito, una estrecha base genética en los 103 Este Sistema fue creado mediante Decreto Legislativo No. 1060 publicado en el Diario Oficial El Peruano de 28 de junio del 2008. 104 El Sistema Nacional de Innovación Agraria esta conformado por el Ministerio de Agricultura; ministerio de Educación; INIA; SENASA; instancias de los Gobiernos Regionales y de los Gobiernos Locales dedicadas a las actividades de investigación, capacitación y transferencia de tecnología en materia agraria; universidades públicas y privadas que realicen actividades de investigación y capacitación agraria; las empresas privadas dedicadas a actividades agropecuarias, agroindustriales, de producción de semillas, desarrollo de genética animal y biotecnología, empresas de procesamiento y de comercialización de insumos y productos agropecuarios; las organizaciones de productores agrarios; las personas jurídicas relacionadas con la investigación y capacitación agraria y el Instituto Nacional de Defensa de la Competencia y de la Propiedad Industrial (Art. 2). 105 Art. 5 del Real Decreto Legislativo No. 1060. Incentivos y desincentivos para la participación del Perú en el sistema multilateral del Tratado Internacional cultivos que ha sido objeto de certificación para su comercialización: los cultivos autorizados para la comercialización que han sido resultado de procesos de mejoramiento genético se concentran en un número limitado de especies y de variedades.Este panorama, que mina enormemente las condiciones para contar con semilla de calidad por parte del agricultor peruano (en particular la referida a los cultivos del Anexo I), no es ni más ni menos que la evidencia de una necesidad y la llamada a un cambio en la configuración del sistema de semillas en el país. La reactivación de la oferta y de la demanda de semilla de calidad requiere que se creen mecanismos de garantía en el mercado; que se asegure la independencia de las entidades supervisoras y exista un mayor control en la comercialización de semillas. Este cambio puede venir de la mano de los nuevos tratados bilaterales de comercio 106 en los que el Perú está participando y que obligarán a una mayor eficacia en la gestión pública, al entrar a formar parte en nuevos mercados donde la competitividad será mucho mayor. En este nuevo escenario, la participación activa del Perú en el sistema multilateral es muy relevante en la búsqueda de una mayor competitividad del sector agrícola nacional.No sólo es suficiente con que exista material genético, que sea viable y esté disponible; es necesario, además, que concurra un marco regulatorio e institucional claro y bien definido para el acceso a los recursos fitogenéticos, con el fin de conseguir que el objetivo de intercambio con fines de inve s t i g a c i ó n y mejoramiento de cultivos sea factible.En este sentido, los sistemas regulatorios del intercambio de material genético alcanzan una gran importancia en la práctica. En principio, los relativos a la aplicación de la normativa fitosanitaria son los que dificultan en mayor medida el intercambio de material genético. Tanto para exportar como para importar 106 El Perú ha firmado tratados bilaterales de comercio (TLC) con EE.UU., Canadá, China, Chile y Singapur, entre otros países.No sólo es suficiente con que exista material genético, que sea viable y esté disponible; es necesario, además, que concurra un marco regulatorio e institucional claro y bien definido para el acceso a los recursos fitogenéticos, material genético se requiere una certificación fitosanitaria que conlleva un gran coste en tiempo y recursos por ser muy burocrática y tediosa. En segundo lugar, el mayor impedimento vendría dado por la legislación de acceso.En efecto, en los últimos años ha existido mucho temor y desconfianza entre las instituciones en relación con el intercambio de material genético. Si bien se han producido prácticas heterogéneas en el sector académico y de algunos centros de conservación ex situ en sus envíos de material genético al extranjero; en general, se puede afirmar que el temor a ser acusado de biopiratería o de extraer del país recursos que pueden ser apropiados de manera ilícita, debido a la presión mediática y social, ha fomentado que las instituciones se inhiban en el intercambio de los mismos.En la actualidad, existe un marco claro y definido en el acceso a los recursos genéticos, en general, y fitogenéticos, en particular, con origen en el Perú. Este marco se inicia con el reciente reglamento de acceso a los recursos genéticos del año 2009 que identifica las competencias y responsabilidades de las autoridades públicas en la materia. En concreto, la regulación del intercambio de recursos fitogenéticos comprendidos en el Anexo I se realiza mediante un ANTM que deberá ser autorizado por el INIA. Este punto puede ser un incentivo para la construcción de la confianza nacional en los mecanismos de intercambio de material genético y para la participación activa del Perú en el sistema multilateral. La celebración de talleres que abunden en un mayor conocimiento del tratado internacional, el funcionamiento del ANTM y la nueva legislación nacional de acceso pueden ser de gran ayuda en este sentido.En los altos niveles de decisión política, el grado de conocimiento y la relevancia que se otorga a la conservación y disponibilidad de los recursos fitogenéticos para el desarrollo del país son menores. No se visualizan los beneficios que pueden derivarse del acceso por parte de los centros de investigación nacionales a una amplia diversidad de material genético. De ahí que las partidas presupuestarias en estos temas sufran del mismo abandono del que adolecen por parte de las empresas privadas.El futuro punto focal para la implementación del tratado internacional será el INIA y, en concreto, la SUDIRGEB. Las mayores preocupaciones que se plantean en relación con la puesta en práctica del sistema multilateral en el país se refieren, por una parte, a la provisión del material solicitado y, Las mayores preocupaciones que se plantean en relación con la puesta en práctica del sistema multilateral en el país se refieren, por una parte, a la provisión del material solicitado y, por otra, al monitoreo del uso del mismo.por otra, al monitoreo del uso del mismo. En el primer punto, el paso más inmediato consiste en la designación del INIA como punto focal encargado de la implementación del Tratado Internacional a través de la norma correspondiente. Otro aspecto es la identificación de los bancos de germoplasma que reúnen las características del Artículo 11.2 del Tratado y que se encuentran incluidos en el intercambio de los cultivos listados en el Anexo I.La colección de germoplasma del INIA referida a los cultivos listados en el Anexo I se encuentra incluida en el ámbito del sistema multilateral. No obstante, existe inseguridad en relación con otras colecciones que están en posesión de las universidades públicas y otros centros ex situ del país. La plataforma que se ha visualizado durante las consultas puede ayudar en gran medida a identificar los bancos de germoplasma y las colecciones que se consideran incluidos en el ámbito del sistema multilateral. También a esclarecer en qué medida éstos se pueden ver beneficiados de este intercambio facilitado de recursos fitogenéticos.El Perú posee importantes colecciones de los cultivos listados en el Anexo I, por lo que se prevé que las solicitudes de provisión de materiales serán numerosas en un futuro. Ante esto, las cuestiones que surgen son de orden práctico y se refieren a la carencia de recursos humanos para tramitar las solicitudes; a la necesidad de recursos financieros para proveer de los materiales solicitados (necesidad de propagación y multiplicación de los materiales); 107 a la dotación de stock suficiente de material genético y a las formas en que la información tiene que estar disponible.La preocupación en cuanto al monitoreo en el uso de los recursos es la misma que ha tenido lugar en relación con los ATM autorizados en el pasado. En estos casos, la autoridad nacional, ante las sospechas de usos o finalidades distintos a los previstos en el ANTM denegaba preventivamente el acceso. Ante ello, es importante fortalecer la capacidad de negociación y legal del INIA y acrecentar el entendimiento y puesta en práctica del ANTM a este nivel.Asimismo, se entiende que hay una excesiva concentración en la conservación ex situ y ello plantea dudas sobre la extensión de los beneficios hacia otras formas de conservación como la in situ. La diseminación de la información generada y la reversión de material premejorado hacia las comunidades, con el fin de desarrollar procesos de mejoramiento participativo, apuntan hacia una manera de potenciar la conservación in situ y contribuir desde los centros de investigación a la puesta en práctica de los derechos del agricultor. En este sentido, la financiación del Proyecto del Parque de la Papa puede servir de modelo y contribuir a este mejor entendimiento.Finalmente, la materialización de los derechos del agricultor se considera un tema prioritario que actúa como incentivo y como reto para la implementación del Tra-tado Internacional en el Perú. Las distintas instituciones necesitan de soluciones creativas que desde los distintos niveles (legal, de política y científico) permitan a los agricultores continuar con su trabajo de conservación y desarrollo de la diversidad agrícola y otorgarles el reconocimiento por sus esfuerzos. De igual manera, es especialmente importante que los beneficios de la implementación del Tratado Internacional alcancen a los usuarios finales, con impacto en los modos de vida de los pequeños agricultores y las comunidades que practican la conservación in situ. Colección parcial de arracacha, maca, yacón, oca, mashua, olluco, frejol ñuña, habas, quinua y kiwicha. La caracterización más avanzada es la de habas, además la evaluación para resistencia a pudrición radicular está casi completa. El único cultivo que se mejora genéticamente es el maíz. Se tiene núcleos de selección masal de las variedades Blanco del Cuzco, Opaco, Paccho y PMC-561.El germoplasma se conserva sembrándolo todos los años en campo; no hay facilidades para conservación ex situ. La universidad cuenta con un laboratorio especializado para análisis de virus de maíz, pero por falta de recursos no se usa para selección como estuvo originalmente programado aunque tiene capacidad científica para ello. Colección de germoplasma local de yacón y arracacha. Caracterización de germoplasma de yacón con RAPDs y AFLP en el Instituto de Biotecnología de la UNALM en La Molina, con apoyo del proyecto belga de fortalecimiento de universidades peruanas. Se está haciendo un estudio biosistemático de Oxalis tuberosa (oca) con apoyo de la IFS (Organización Internacional para las Ciencias)Internacional: International Foundation for Science.INIA. Estación Experimental Santa Ana.Mejoramiento genético de papa. En proceso de liberar varias variedades de papa. Mejoramiento de maíz. El germoplasma de frutales de la EE Santa Ana, incluye variedades de chirimoya, granadilla, lúcumo, melocotonero, ciruelo, manzano y pera. Otra área de importancia en la EE Santa Ana es la investigación en pastos nativos. Además de avena forrajera y vicia forrajera hay germoplasma de especies nativas del género Poa, Agrostis, Festuca y otros.Debilidades institucionales de distinta índole llevaron a la pérdida de la colección de tarwi.Internacionales: muy importantes con el CIP; Centro Internacional de Mejoramiento de Maíz y Trigo (CI-MMYT) también aportó en su momento germoplasma de maíz que le ha permitido a la estación liberar en este año una variedad de excelente calidad con características que no tiene el germoplasma peruano. Sus relaciones con otros programas foráneos le ha permitido a la Estación Experimental liberar dos variedades de alverja a partir de germoplasma proveniente de Argentina y Japón. En los últimos años, la estación ha implementado un programa de producción de alcachofa sin espinas a partir de variedades extranjeras.INIA. Programa Nacional de Investigación en Recursos Genéticos. Sierra Central.Conservación in situ en la Sierra Central de los siguientes cultivos: papa, maíz, frejol, maca, yacón, oca, olluco, mashua, granadilla, tomate de árbol y chirimoya.INIA. Estación Experimental de Canaán.Los cultivos principales son granos andinos: quinua, kiwicha y especies andinizadas como trigo, cebada y habas. La regeneración de quinua y kiwicha se hace sin control de la polinización. Las mejores colecciones de chirimoya, lúcuma y tuna del país se encuentran conservadas en campo. También hay una importante colección de papayo. La conservación in situ de chirimoya, lúcuma y tuna se hace dentro del proyecto \"Conservación in situ de los cultivos nativos y sus parientes silvestres\" que maneja la DNIRRGG del INIA.Crea sus propias tecnologías para secar granos y tubérculos a 45º sin necesidad de equipos de secado que exceden sus posibilidades económicas. Investigación en papa, maíz, cereales menores, leguminosas de grano, cultivos andinos y hortalizas.Además de investigación esos programas producen semilla.Nacional: ONG: Caritas, CESAM, para producción de hortalizas; con el Consejo Municipal de Huancayo, Consejo Distrital del Mantaro y Consejo Distrital de Huamalí. También hay convenios con Electro Perú para analizar fuentes hidroeléctricas y para la instalación de una caseta meteorológica digital.Universidad Nacional San Cristóbal de Huamanga. Facultad de Ciencias Agrarias.Trabajo en recursos genéticos de raíces y tubérculos andinos, granos andinos, frutales: lúcumo, palto, chirimoya, pacae, aguaymanto y tuna.Universidad Nacional Daniel Alcides Carrión. Escuela de Agronomía. Cerro de Pasco El trabajo en maca que se desarrolla en la Universidad es posiblemente el caso más notable de investigación en mejoramiento genético en raíces y tubérculos andinos, desarrollada en las universidades de la sierra del país. En 1993 se colectó la diversidad de maca, oca, olluco y mashua, dentro del proyecto de Biodiversidad patrocinado por el CIP (CONDESAN).A partir de la colección de maca se desarrolló un programa de mejoramiento que ya está generando materiales genéticos mejorados para producir variedades mejoradas de maca. La universidad produce maca y vende semilla de las poblaciones selectas. Investigación en arracacha y yacón.No cuenta con facilidades para hacer investigación agronómica, con laboratorios especializados para hacer análisis de plantas y suelos, lo cual es de importancia por ser Cerro de Pasco una zona de mucha contaminación minera y de gran altitud sobre el nivel del mar (por encima de los 4,000msnm). Ausencia de profesionales y gran aislamiento de la universidad.Mejoramiento genético de plantas y producción de semilla y asistencia técnica a los agricultores que compran su semilla. Produce semilla de maíz, maca, alverja y quinua.Nacional: convenio con la municipalidad de Chulcampa para solucionar los daños en maíz que produce la sequía. Con INIA para la ejecución del proyecto de sistema de información geográfica en quinua. Internacional: DRIS (Desarrollo Rural Integral Sostenible) para el análisis económico de los resultados de la investigación en maíz.Sector Informal), Ayacucho. (entidad financiera/microcréditos) Colección de tuna cuenta con 22 variedades Entidad financiera que tiene una gerencia de competitividad regional que trabaja en utilización de recursos genéticos. Prospección de la tuna en Ayacucho. Mantiene dos ecotipos de tara, almidón y morocho. Fomenta investigación en chirimoya, tara, granadilla, tuna, cochinilla. IDESI cuenta con viveros para producir 100,000 plantones. Se vende a las comunidades plantones de lúcuma, palta, chirimoya, palta, granadilla, ciruelo y de cladodios de tuna.Nacional: Universidad de Huamanga; Convenio para investigación de palta con SENASA. IDESI pertenece al comité de investigación de la tara en Ayacucho. Forma con otras 35 organizaciones, comités de productores hortícolas, frutícolas y forestales para validar tecnologías.Comunidad Campesina San José de Aymará Banco comunal de papa con el patrocinio del CIP Internacionales: CIP.INIA. Estación Experimental de Andenes.Mejoramiento de maíz, papa, trigo, cebada, triticale y de leguminosas de grano, haba, alverjas, frejol, tarwi. Excepto en el caso del maíz, cuyo mejoramiento es exclusivo de las variedades nativas y en el caso del tarwi, todos los demás casos son ejemplos de premejoramiento llevados a cabo por los centros internacionales CGIAR. El caso de la papa es notable por la calidad y cantidad de variedades mejoradas que están en proceso de liberarse. Regeneración de germoplasma de maíz, germoplasma de oca, olluco y mashua. Se mantiene la colección de Pasifloraceas patrocinada por Bioversity: tumbo, tan tin, granadilla. Se ha realizado prospección de lúcuma y chirimoya silvestre. Se produce semilla de hortalizas: rabanito, zanahoria, brócoli, col, lechuga y alcachofa. La DNIRRGG del INIA también se responsabiliza de la conservación in situ de maíz, papa, quinua, kiwicha, oca, olluco, mashua, granadilla, tumbo y tomate de árbol.Nacional: UNALM. Internacional: CIP (papa), ICARDA (cebada, haba, alverja), CIAT (frejol) y CIMMYT (trigo y triticale). Bioversity International.Abad del Cusco (UNSAAC). Facultad de Agronomía y Zootecnia. CRIBA (Centro Regional de Investigación en Biodiversidad Andina) y CICA (Centro de Investigación en Cultivos Andinos).Colecciones de raíces y tubérculos andinos Caracterización de cultivos de tubérculos, oca, olluco, mashua y papas nativas. Se han realizado estudios agroindustriales con yacón.Nacional: SENASA para la producción de entomopatógenos. Internacional: CRIBA con la Fundación McKnight en el Proyecto \"Fortalecimiento de la conservación in situ de los tubérculos andinos y la seguridad alimentaria en los ecosistemas frágiles de los Andes altos del sur del Perú\"; con CIP; Universidad de California.El CICA (Centro de Investigación en Cultivos Andinos) (ONG)Investigaciones en germoplasma y mejoramiento de papa, quinua, kiwicha, tarwi y maíz. Además, el CICA produce y distribuye semilla.Asociación Arariwa (ONG) Selección de variedades de quinua, haba, tarwi y alverjas usando metodologías participativas. Asociación de cultivos, maíz y papa con frutales. Producción de semilla de papa libre de virus. Colección de frutales desde 1970 Germoplasma de palto, mango, cítricos, lúcuma y chirimoya. Pre-mejoramiento de la facultad incluyen, evaluación de papas nativas, cruzas amplias de Aegilops con trigos harineros de la región para resistencia a roya y selección masal de maíz morado de la variedad Negra Tomasa. La facultad produce plantones de frutales y asesora en la producción de semilla de papas nativas.Nacional: con Gobierno Regional, Dirección Regional de Agricultura, y con diferentes distritos de la provincia de Huánuco para trabajar con los productores en raíces y tuberosas andinas. Internacional: En la publicación del catálogo del germoplasma de frejol del CIAT se encuentra la caracterización del frejol del Perú que se desarrollaba en esta Universidad y que ya no existe.Instituto de Desarrollo y Medio Ambiente (IDMA)(ONG)Conservación in situ en Huánuco, de papa, maíz, frejol, camote, yuca, granadilla, oca y otras especies; inventario de la agrobiodiversidad en microcuencas previamente identificadas; rescate e incorporación de germoplasma perdido a las comunidades; caracterización participativa con los agricultores de los recursos genéticos de las comunidades.Nacional: Universidad de Huánuco; Municipios de cinco distritos. Municipio de Kiski, donde hay mucha biodiversidad, patrocina el Festival de Papa Amarilla.Apoya también a la Asociación Departamental de Productores Ecológicos para la organización de ferias y es miembro del Comité de desarrollo de Cuencas.IDESI-Huánuco (Instituto de Desarrollo del Sector Informal de Huánuco)(ONG) Caracterización de papas nativas se hace con productores; la caracterización de planta y tubérculo se hace con los descriptores desarrollados por el CIP, pero se agrega además caracteres de uso industrial. En el caso de la papa, la evaluación de clones avanzados de papa con aptitud industrial hecha por el INIA con apoyo del PRA ha dado como resultado una papa para hacer hojuelas, de color azul, no amarga, resistente a la rancha, que se liberará próximamente. Se han identificado marcadores de exportación en olluco, aguaymanto, granadilla y maíz morado.Nacional Las primeras colecciones de pijuayo se mantienen en Yurimaguas. Premejoramiento del pijuayo se inició con la caracterización de las accesiones para fruto y palmito.Universidad Nacional de la Amazonia Peruana Se ha colectado cultivos nativos: ñatipapa, pituca, witina, dale-dale, pero el germoplasma no está bien conservado. Investigación en cultivos hortícolas, cultivos nativos y cultivos anuales como arroz y maíz. Investigación en especies vegetales nativas como el camu-camu, dale-dale y otras, con miras al desarrollo de mercados.Nacional: INIA e IIAP.Instituto de Investigación de la Amazonia Peruana (IIAP)Conservación in situ de camu-camu, yuca, aguaje y cocona. Recursos genéticos de las plantas amazónicas.Internacional: alianzas con muchas instituciones del país y el extranjero. La más relevante es con el gobierno de Finlandia que financió el proyecto BIODAMAZ. También tiene una alianza con el INRA de Francia para el desarrollo de la biotecnología. Agencia Española de Cooperación Internacional.Investigación en raíces y tubérculos tropicales y se mantiene el germoplasma en campo de cacao, cocona, pijuayo, guaraná y otros frutales tropicales. Germoplasma de camu-camu. Se conservan semillas de frejol, maíz, maní, algodón y ají del proyecto \"Manejo y monitoreo de variedades locales de cultivos amazónicos\".Alianzas con los centros CGIAR.Universidad Nacional de Ucayali (UNU). Facultad de Ciencias Agropecuarias.Prospección de frutales tropicales en Ucayali y mantiene en campo el germoplasma de muchas especies, especialmente camu-camu y aguaje, además de cacao (16 clones), palma aceitera, tuberosas tropicales. La universidad produce semillas y yemas de cacao y plantones de cítricos, mangos y de varios frutales nativos.Nacional: INIA, IIAP, Gobierno Regional y el MINAG.Es miembro de CODESU (Consorcio para el Desarrollo Sostenible de Ucayali) y de FUSEVI (Fundación Selva viva). La UNU es miembro del Consejo Regional de Investigación Agraria (CRIA). Preside la Mesa de diálogo del camu-camu, de maíz y de algodón.Herbario Regional de Ucayali Identificación de plantas medicinales, apícolas y forrajeras. El herbario tiene aproximadamente 10,000 ejemplares, debidamente identificados y registrados en una base de datos.Consorcio para el Desarrollo Sostenible de Ucayali (CODESU) (18 asociaciones de la región) Proyectos de utilización sostenible de especies nativas, como aguaje y pijuayo y un proyecto de conservación in situ de la diversidad de seis cultivos de la región: algodón, ají, frejol, maíz, maní y yuca.Adaptado de: Sevilla, R. (2008a).Anexo","tokenCount":"28186"} \ No newline at end of file diff --git a/data/part_3/5946740456.json b/data/part_3/5946740456.json new file mode 100644 index 0000000000000000000000000000000000000000..82881eefa9aa04f01bf92f38de7a0b558f931642 --- /dev/null +++ b/data/part_3/5946740456.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"d09d64e9881bef3245a7191802f72069","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/29d3fac9-1212-42a5-ad52-361a86055857/retrieve","id":"524053805"},"keywords":[],"sieverID":"bef3e4d8-94de-4189-9128-000fe553f533","pagecount":"136","content":"La agricultura moderna exige la integraci6n de todos los factores de producci6n. Los factores de variedad. fertilidad, manejo de agua y control de insectos, enfermedades y malezas están relacionados !ntimame~ te de talllllulel'B que cualquier factor puede ser el Umitante en la expr! 8i6n 6ptima de todos los otros. Por ejemplo, la adaptaci6n de una nueva variedad de arroz sin el uso de abonos o control de plagas no rendirá c~ si nada puesto que tales variedades necesitan un nivel de nutrimentos mas alto que los tradicionales.Aunque el control de malezas se ha practicado desde hace miles de aftos. ha sido el 4rea m4s descuidada tecno16gicamente. El hecho de que este factor no haya sido estudiado anteriormente, tAnto como el control de insectos, por ejemplo, se debe a que el efecto de las malezas sobre los cultivos no es tsn obvio o espectacular como el dafto de insectos, enfer . medades y deficiencias de nutrimentos. Adem4s, siempre ha sido fAcil realizar desyerbas manuales o mecánicas. * Especialista en control de malezas CIAT, Colombia 1 y qu!mtco. CUADRO l.Tabla de susceptibilidad de algunas familias de malezas ha--. .Sin embargo, la necesidad de aumentar los rendimientos, de mejorsr la calidad de la cosecha y de reducir los costos de producci6n, obliga. ron a los científicos y agricultores a reconsiderar cuáles de 108 fact2 res de producci6n eran limitantes. Experiencias en el campo han demostr~ do que los estragoS causadas por malezas son de igual magnitud o mayores que los ocasionados por insectos y enfermedades.Bl control de malezas debe ser s!stemdtico e integrado. No existe un método de control que se adapte a todos los problemas. Para realizar un control integrado se deben considerar los métodos culturales, los me cánicos y los químicos.Por control cultural se entiende el control ejercido por el cult! vo sobre las malezas debido a su capacidad para competir con ellas. Sie~ pre se debe' recordar que un cultivo bien establecido y vigoroso es el factor més importante en un programa integrado de control de malezas.Las bases para un control cultural son: el uso de ,semilla certificada (libre de semillas de malezas), una buena preparación de terreno, buena humedad que asegure el rápido y buen establecimiento del cultivo, ,fertilización adecuada y densidades de siémbra óptima para la variedad y la zona (di~ tancia entre surcos y distancia entre plantas en el surco).Ademds, se debe mantener un buen programa de control de insectos y enfermedades y, en algunos casos, como en el cultivo del arroz, se debe mantener riego tal que conserve las malezas bajo control. En el caso de problemas como el arroz rojo, un programa de rotación de cultivos puede servir para reducir cons~derablemente la población de esta maleza.En cultivos \"cerrados\" como el arroz en donde el control mecllnico o manual es muy limitado el control cultural es de gran importancia y d~ be ser complementado con un control qu!mico.Bl control mecánico se realiza por medio de implementos adaptables al tractor o a mano y su prop6sito es desalojar l~s malezas de su conta~ to íntimo con el suelo causando su secamiento o enterrándolas. Uns de las condiciones ~s importsntes para un buen control mecllnico es que debe efe~ tusrse oportunamente, en los primeros 10 díss de cultivo para evitar pérdidas de rendimiento y por facilidad de control. Malezas de ~B de cinco hojas son difíciles de controlar mecllnicamente. Hay que tener en cuenta tambi~n que para realizar unl desyerba efectiva se requiere efectuarla tanto en el ,urco como entre surcos. En general, el control mecánico deja malezas en el Bureo si no se realiaa adecuadamente. El factor mis limitante con este mdtodo es que no hay ningdn control residual y en ! pocas lluviosas la maleza puede reinfestar el campo en corto tiempo. Al usarse cultivadoras, estas deben ser ajustadas de tal manera que con trolen las maleaas entre surcos, cubran y entierren las malezas en el surco y no daften el cultivo. Cuando el control mecánico 'es oportuno y • bien realizado, una o dos desyerbas pueden ser suficientes para obtener un cultivo libre de malezas.El control químico de malezas ha tomado un gran auge en aftas recie~ tes, debido al desarrollo de herbicidas altamente selectivos hacia cultivos espec!ficos. Sin embargo, siempre debe recordarse que el control químico es un medio de control de malezas, no el 4nico y de ninguna manera el má. efectivo en todos los casos.La selectividad en cultivos desarrollados es un factor importante en los herbicidas,sin embargo, aquellas malezas que más se asemejan al cultivo 80n más dif!ciles de controlar~ Por ejemplo, el alaclor (Lazo) y la trifluralina (Treflan), herbicidas selesctivos usados en cultivos de soya y algod6n, controlaft la mayor!a de las malezas que los frecuentan. Una de las exepciones má. sobresaliente es la batatilla que no es controlada por estos productos. La batatilla es una dicotiled6nea de semilla grande como la soya y el algod6n.En base a que ningdn herbicida es totalmente selectivo a un culti va especifico y que en la mayor!a de los campos el complejo de malezas es varisdo, siempre existe la posibilidad de que dentro de ese complejo se encuentren malezas resistentes al herbicida. (Cuadro 1).Con relaci6n a costos se debe hacer énfasis en que el método de control más barato no siempre es el m4s eficaz y econ6mico. Para ase~ rar un control efectivo se debe integrar el control cultural, mecánico complejo de malezas, el tipo de suelo (textura y materia org~nlca). los medios y equipo de que se dispone, los factores econ6a1cos, la residua-l1dad del heraidda, los cultivos de rotac:l6n y la compatibilidad con• otros inaUlllOs.Las malezas anuales son relativamente fácUes de controlar por medios mecjfnicos; las perennes, como el coquito (Cyperus rotundus) y el pasto A.rgentitta (Cynodon dactylon) por el cOlltrario son diUcUes de controlar mecjfllicamellte •.Respecto al complejo de malecas se puede decir que existen malezas dominantes y malezas secundarias. Si,. por ejemplo, el control qu{mico se enfoca dnicamente \\,lacia el control de las malezas dominantes, las ma lecas secundarias pueden volverse agresivas y dominantes, de tal manera que el control inicial de las malezas predominantes puede llegar a ser desventajoso por las p4rdidas que ocasionan las secundarias. Así, por ejemplo, el meloncillo, de hjfbito de crecimiento rastrero, puede ser una maleza dominante en un complejo de malezas gratatneaa y de hoja ancha. Si se le controla con el uso de .2,4-D ( en maíz) el desarrollo de las otras malezas, principal.aleate de las gramíneas puede ser de tales proporciones que el efecto de la competencia resulte ser mil. perjudicial al cultivo que el dallo que puede causarle al meloncillo. Otro ejemplo es el control del coquito con heraicidas t101carbamatoa (Vernam y Sutan). Estos productos controlan el coquito efectivamente, pero al eliminar esta maleza puede surgir UI1a poblaci6n de plantas de hoja ancha que impida el desarrollo normal del cultivo, El mal uso de herbicidas puede provocar dafto al cultivo ylo pérdi da de dinero debido a un control de malezas deficiente. Los herbicidas recomendados como preemergentes no deben emplearse como postemergentea y viceversa, Por ejemplo, el 2,4-D en preemergencia es tóxico al arroz y al sorgo mientras que en postemergencia la selectividad es ampliamen te adecuada. Los herbicidas recomendados para el control de un determ! nado tipo de malezas no deben emplearse pars el control de otras males zas. Por ejemplo, el 2, 4-D es un herbicida que debe emplearse duicamente para el control de ciertas malezas de hoja• ancha y no para el control de gramíneas.El tipo de suelo influye en la dosis del herbicida y eu algunos essos en la selectividad del herbicida. hacia el cultivo. En general, se requieren dosis m4s altas de herbicidas en suelos pesados que en suelos livianos. Con la materia or¡4ulca aucede los mismo, ya que ae .requiere una mayor dosis en suelos cou alt~ contenido de materia or g~uica. Algunos herbicidas como el IArmex, en algod6n y el Afalon,en soya, son recomendados duicemente en suelos pesados debido a que en suelos livianos pueden ser t6xicos al cultivo.Recientemente se ha incrementado el uso de mezclas de herbicidas. Estas mezclas son efectivas.y econ6micas dulcamente cuando se les utiliza con un fin determinado. Las razones para emplear mezclas de herb! cidas son: l. Aumentar la selectividad hacia el cultivo. Por ejemplo, uno de los herbicidas es muy efectivo para el control de malezas pero la selectividad hacia el cultivo es marginal. En mezcla con otro herbicida de alta selectividad, pero con menos eficacia de control se puede emplear reduciendo la dosis.2. Disminuir el costo. Cuando uno de los herbicidas de la mezcla es altamente eficaz pero demasiado caro.3. Disminuir la posibilidad de residuos hacia cultivos de rotaci6n.Por ejemplo, productos baratos y altamente efectivos pero con un poder residual largo y t6xicos al cultivo de rotaci6n Se pueden aplicar en una dosis reducida en mezcla con otro produ~ to no tan residual.4. Ampliar el•rango de acci~n del herbicida. El uso de dos herb! cidas que se complementan en el control de malezas resistentes a uno de los herbicidas en la mezcla, puede justificar su empleo.En el uso de mezclas, algunas combinaciones de herbicidas resultan t6xicas al cultivo aun cuando la selectividad de cada herbicida usado individualmente ses alta. En malz el uso de Gesaprim + aceite, o de 2, 4-D es relativamente selectivo. Cuando los tres son combinados en una aplicaci6n postemergente, el cultivo es severamente afectado.Los herbicidas ''hormonales'', como el 2,4-D el 2, 4,5-T, el picloram (Tardan) y el dicamba (Banvel D) deben emplesrse con mucha precau-ci6n. Todos los cultivos de hoja ancha Bon susceptibles a los herbicidas hormonales en dosis extremadamente bajas.Cultivos susceptibles a herbicidas\" hormonales\": En general, todos los cultivos son susceptibles a los herbicidas '~ormonales\", cuando se encuentran en estado de floraci6n. Se deben t~ mar las precauciones necesarias para preveDir el dafto a los cultivoscercanos susceptibles, tales como: reducir la presi6n de la aplicaci6n, no aplicar cuando hay viento hacia otros cultivos o cuando hay altas te~peraturas, usar una fo~laci6n no vo14til o de baja volatilidad.La aspersora que se use para aplicar productos hormonales debe l! verse primero con agua 1~1a y después con una soluc16n del 1 por cle~ to de a~n!aco y dejarse en la asparsora por 12 horas. Epocas de aplicaci6n l. Herbicidas presiembra incorporados (PSI) Son herbicidas que se aplican antes de la siembra y requieren 1n-corporaci6n o mezcla mec4nica con el suelo para que queden distribuidos en una capa unifo~, zona en la cual germinan la mayorta de las, s~i llas de malezas (cua~ro cent!metros superiores).Su incorporaci6n también evita la pérdida por volatilidad y fotodescomposici6n del producto. Mie~ tras mis corto sea el tiempo entre la aplicaci6n y la incorporaci6n. mayor ser4 ls efectividad, del producto. Es importante la profundidad recomendada. La incopporaci6n demasiado profunda del herbicida reduce su efectividad al distribuirse mucho en el suelo y adem4s puede ocasionarle daftos al cultivo. La incorporaci6n demasiado superficial puede pe~itir la ge~inaci6n de se~illas de malezas que quedan por debajo de la zona de incorporación. La ~zcla mec4nica distribuye estos productos por debs jo de la superficie del suelo, en la zona de 8e~1nación de las malezas, por lo tanto, la falta de lluvia después de la aplicaci6n no les impide que actden como ocurre con los herbicidas preemergentes.Las herramientas mas comunes para la incorporación de estos productos son: rastrillo de discos y el rotovator. Cuando se ~plea el rastrillo de discos es necesario hacer dos tastrilladas en cruz (la segunda rastrillada en direcci6n perpendicular a la primera).Son herbicidaa CJue ae aplican despds de la siembra pero antes de que broten el cultivo y laa melezaa. B.toa productos actdan aobre las semillas de melezas que estgn en el eatado de germinacl\"n. Por ser apl,! cados sobre la .uperficie del sueLo requieren iluvia despu4s de su spl,! caci6n para .er dl.tribuídos en la zona de germ1naci6n de las malezas. La ventaja de estoa he~bicidas es que no requieren incorporaci6n (mezcla mecgnica con el suelo).Algunas ventas de los herbicidas preslembra incorporados y preema! gentes: a) Dan mejor control de malezas que con aplicaeiones postemergentes b} Hay menos pUigro de daflar el cultivo, en cOlllp8rBc16n con apl:l. caciones postemergentes c) No hay competencia temprana del cultivo con el control inicial de las melezas d) Las malezas ya 'esedn controladas en caso de lluvias fuertes que no permitan. la real1zac1.6n de labores manuales o meeilnieas, e)' Se puede sembrar y aplicar en una sola operaei6n.Las desventajas son: a) AplieaeiOlles preemeraentes generalmente no son efectivas en eo~ dictones secas del suelo b) En suelos livianos, lluvias fuertes pueden Lixiviar el producto hasta la semilla del cultivo y presentar daftos e) No controlan muchas malezas perennes d) Pueden reducir la eficiencia de la siembra.Son los que se• aplican después de la emergencia del cultivo ylo las malezas. Tienen la ventaja de ser dtiles en emergencia, pues no se aplican hasta que hayan •saUdo las malezas. Pueden ser aplicados en cualquier tipo de suelo y no dependen de la condición de humedad del suelo. Hay mayor riesgo de dano al cultivo en algunos casos. No se deben aplicar cuando las plantas ya están mojadas de rocío o de lluvia, Asimismo, deben transcurrir por lo menos.ssis horas después de la aplicación sin llover para realizar el m!fximo efecto. A veces se recomienda el uso de surfactantes para aumentar la acción de estos herbicidas.Los herbicidas sI igual que otros pesticidas, se venden en varias formulaciones {Cuadro 2}. Los ro4s comunes son: polvos mojables, concea trados, soluciones, granulares y polvos solubles.Cuando se aplican polvos mojables, la aspersora necesita un buen sistema de agitación en el tanque pare 1ue no ocurra la sedimentación. Si la agitación no es s~ficiente, el control de malezas será deficiente y se puede ocasionar dano al cultivo, además de aumentar la posibilidad de residuos tóxicos para cultivos de rotación. CUADRO cultivos y este fenómeno se conoce con el nombre de \"competencia\". Partiendo de la definición de una maleza como planta fuera de lugar, el principal motivo de no desearla junto con cultivos ae debe a su capacidad de reducción en la productividad del mismo.En la Tabla 1 se aprecia el tremendo efecto que hace la maleza en competencia durante todo el ciclo con varios cultivos. Algunas conclusiones saltan a la vista; en primer lugar los cultivos tropicales (arroz, algodón, maiz y frijol) son más susceptibles a la competencia que los de clima fria (cebada, papa y trigo). A veces el cultivo no sufre por competencia,' pero en promedio se pierde más de la tercera parte de cultivo si no se controlan las malezas. El uso de herbicidas generalmente aumenta el ren dimiento, más aún que el uso de desyerbas. Eso puede ser que siempre ocurre algo de competencia antes de realizar la desyerba y a que segursmente ocurre algo de dafto fiaico al cultivo cuando se limpia éste mecanic~ mente.De todos los aspectos' que comprende el manejo de maleza, la competencia es uno de los más dificiles de estudiar; esto no se debe a que no haya sido estudiado 10 suficiente, ya que se encuentran cientos de publicaciones relacionadas con la competencie. Sin embargo al compararlas, para llegar a conclusiones generales, se encuentra tanta variacion entre los resultados que a menudo resultan contradictorias. La principal causa de esto es que hay muchos factores incluidos en le competencia y esto dificulta su estudio en conjunto.Tabla l. El efecto de la competencia de malezas con varios cultivos y el rendimiento de cultivos tratados con herbicidas en compara- 1 Promedio de 12 aftas de investigaciones en Colombia, realizado por el lCA. 2 Se comparó el mejor tratamiento quimico con ls parcela desyerbeda a mano.La ~ompetencis puede definirse como la lucha entre el cultivo y las malezas por obtener la luz, la humedsd, 108 nutrimentos y el CO 2 disponibles en un lugar determinado: Algunos factores intrínsecos establecen la habilidad competitivs de ciertas especies y esto permite, por ejemplo, que algunas variedades toleren la competencia mejor que otras.Aunque se ha empleado la palabra maleza, en realidad la competencia es entre \"plantas\" y es mucho más genérico, pero en la presente discusión resultará más práctico usar la palabra maleza. Se debe ten~r en cuenta 't, también, que la competencia puede ser inter y/o intraespeclfica y que en algunos casos ambas son importantes.La competencia entre plantas se debe a que en condiciones especificas, el ambiente y el suelo son capaces de proveer cantidades 1imit~• das de los factores esenciales para el normal crecimiento de una pobla ci6n determinada de plantas. Cuando las poblaciones exceden este limite, se inicia la competencia en las plantas cresdss por los factores limita~ tes. Aquellas plantas que poseen caracteristicas agresivas y que se e~ cuentran mejor adaptadas. compitan más favorablemente dominando asi las especies meDOS competitiva •• Casi siempre se encuentran malezas competitivamente iguales a los cultivos y de este concepto se desprende el principio de \"control de malezas\", que es de crear condiciones del ambiente y del suelo favorables al cultivo y no a las malezas.Se entiende por alelopat!a el efecto de algunas plantas sobre el desarrollo de otras, Eso puede ser por medio de sustancias producidas por unas plantas ó por compuestos producidos ó librados durante la degradación de residuos de plantas. La influencia de plantas en el desarrollo de otras a través de la secreción de sustancias, no es nada nuevo. Por ejemplo, es bien conocido que la germinación de Striga (Scrophulariaceae) está condicionada por la previa germinación de la planta de ma1z para establecer la relación entre esta y su parásito.Lo contrario sucede frecuentemente también, es decir, que las malezas pueden producir sustancias que estimulen Ó retarden el crecimiento del cultlvp. En el ano de 1832 De Condo11e, ya habia observado este fenómeno en relación a las plantas del género C1rsium, Se encontr6 hace tiempo tambien, que las raices de Juslans nigra (nogal) prOducían 5-hidroxi-alfa-naftaquínone, lo cual inhibe el desarrollo de muchas especies. As1 mismo, el abundante coquito (CyPerus rotundus) es otra especie ya comprobada•,que contiene sustancias inhibitorias en el desarrollo de cultivos y otras malezas.Es común encontrar casos en que ninguna especie crece alrededor de una planta ya establecida y por varios aftoa esto fue atribuido simplemente a la competencia. Ahora se reconoce que la alelopatia puede jugar un papel tan importante en eate fen6meno. Sintmbargo el muy dificil separar los efectos de competencia y alelopatia, especialmente cuando se refiere a malezas perennes. Por lo tanto, se ha reemplacado el antiguo concepto de competencia con la palabra \"interferencia\", la cual comprende los efectos tanto de competencia como de alelopatta.Generalmente se conoce que las malezas en áreas agricolas compiten directamente con los cultivos por luz, agua, nutrimentos y espacio e i~ directamente causan pérdidas económicas al afectar los costos de produ~ ción. la calidad de los productos y por una menor incidencia de insectos y enfermedades. A continuaci6n, Be especifican las pérdidas ocasionadas por malezas: l. Disminuci6n del rendimiento del cultivo 2. Disminuci6n de la calidad de la cosecha 3. Aumento en los costos de producci6n 4. Depreciaci6n de tierras 5, Mayor incidencia de enfermedades e insactos 6, Limitada escogencis de cultivos En la Tabla 2 se presentan ejemplos de malezas hospedantes de insectos y enfermedades. Se debe mencionar que a veces las malezas pueden hospedar insectos benéficos en el control biológico de plagas. y por lo tanto no siempre representan relaciones negativas con los bichos presentes. En cuanto a la limitación de selecci6n de aultivos. puede decirse que es importante y más severs cuando la maleza tiene un ciclo de vida parecido a la de los cultivos y/6 caracteristicIBmorfo16gicas y fisio-l6gicas similares. Cuando la male~a y el cultivo son semejantes, como lo Bon la Avena fatua y el trigo ó la cebada de clima fria, la Ipomoea y la 80ya y algod6n, y la Rottboellia exaltata y el sorgo en los climas célidos, limitan la escogencia de dichos cultivos en las áreas donde se presentan. Asi mbmo, la ,presancia de Cyperus rotundus ha 'causado a algunos agricultores el abandono de cultivos de secano por los de riego en el caso de arroz, 6 por potreros los cuales son más competitivos con dichas malezas.Ciclo' de vida parecido al cultivo.La población de malezas en una región que ha sido cultivada por algún tiempo, se caracteriza por su similitu:l con el cultivo, en cuanto a los ciclos de vida. Generalmente las malas hierbas germinan junto con el cultivo y maduran poco antes que éste. 6 a su mismo tiempo. Cuando se practican sistemas como rotación de cultivos, por ejemplo, el complejo de malezas se adapta de tal manera que al sembrar el cultivo, aquella parte del complejo que posee sus caracter1sticas semejantes al cultivo, se desarrolla y la otra parte aparece en forma secundaria, pero al cambiar el tipo del cultivo en la rotación, otras especies complejas se de sarrollan, Recientemente con el uso de herbicidas se ha visto una reducción del complejo de plantas indeseables en los cultivos; s1nembargo. frecuentemente escapan una ó dos especies del control que antes eran de poca importancia y ahora pueden tornarse en el problema principal • • Desarrollo rápido de raices y partes aéreas, Entre más rápido se establezca una planta. mayores ventajas tendrá para competir con otras. El desarrollo rápido de las rsLces le permite una capacidad más de absorción de agua, n~trimentos y además de tolerar sequia prolongada, El de las partes aéreas le dará una mayor área fdtosintética y la capacidad de crear sombra, lo cual detendrá el crecimiento de otras plantas. En general, las plantas con una tasa de crecimiento rápido producen follaje abundante en corto tiempo, Plasticidad de poblaciones.Al establecer una población demalezas,el número inicial de plán-t~las es elevado; al llegar a la madurez se puede observar que la p~ blación de dichas malezas se ha reducido: a este fen6meno se le llama plasticidad de la población, En otras palabras, se refiere al estable• cimiento de poblaciones iniciales altas, las cuales disminuyen con el tiempo, dejando un número de malezas vigorosas a un nivel óptimo para su desarrollo, Estp sucede a nivel de la comunidad de malezas, mostrado por el hecho que se quedan las especies más indicadas para un ambiente dado.Además, ocurre a nivel de especies individuales, reflejado en que la P2 b1ación de cada una se adapte a las condiciones ambientales y a los fa~ toras de crecimiento preeentes, dejando la cantidad de malezas óptimas de cada especie.Germinación desuniforme de las semillas de malezas.En la mayor1a de los cultivos, se busca la uniformidad en germinación por la necesidad de igualar la' cosecha. En cambio, el fenómeno de la germinación desuniforme en las malezas es de gran ventaja para su sobrevivencia, porque sl todas las semillas de una mala hierba germinan al tiempo. su control seria fácil pero si germinan en forma desigual 8010 es posible un control parcial, Esta ventaja también le permite a la maleza la sucesión de varias generaciones dentro de un ciclo vital.Una adaptación de gran importancia en algunas plantss es la producción da sustancias tóxicas que inhiben el crecimiento de otras, y a veces de la misma especie, presentándose solo en una área determinada. En general estos inhibldores actúan sobre las semillas de otras plantas impidiénd2 les su germinación. Un ejemplO en Colombia, es el efecto inhibitorio del follaje de Tagetes patula sobre la germinación de frijol, Amaranthus dubius, Euehorbia app, y Eléusine indica.Producción numerosa de semillas y órganos reproductivos vegetativos.La cantidad de semillas producidas por las diferentes malezaa varia considerablemente presentándoB.e en algunas de ellas un número al nivel de los cientos, mientras que en otras hasta más de 200.000 semillas por planta. En general la msyor1a de las semillas son viables aunque tienen una latencia que difiere según las especles. Algunas espeeiest~enen una tremenda capscidad de producir tubérculos, rizomas ó estolones, los cuales generan mucha más dificultad de controlar que las mismas semillas. El coquito, por ejemplo, puede alcanzar más de 40'.000.000 de tubéroulos en una hectárea.Adaptaciones a variaciones del ambiente.Generalmente los cultivos han sido seleccionados para rendir más, bajo condioiones limitadas del ambiente. Con relación al suelo requiere un determinado pH, buen drenaje ó riego. un nivel de fertilidad adeouado y una temperatura dentro de ciertos limites. Aunque la maleza también requiera condiciones óptimas, és;as prosperan con un rango más amplio del medio ambiente, de tal manera que si el óptimo de la maleza y el cultivo coinoiden, la maleza será beneficiada tanto como el cultivo. Entre más se alejen las condiciones óptimas del cultivo, la maleza estará más ben~ fictads debido a su flexibilidad. Por ejemplo, el coquito se desarrolla bien en terrenos húmedos y drenados, pero tienen mayor sgresividad en áreas mal drenadas. El barbasco (Polygonum segetum) es una maleza de clima fria que crece bien en terrenos fértiles y bien drenados, presentándose en mayor cantidad en los mal drenados y ácidos, por falta de c~ petencia con otraa plantaa y por Su flexibilidad de adaptación y crecimiento acelarado.Adaptación a diferentes medios ambientales.Con relación al ambiente, los factores de agua, luz y espacio son criticos para el crecimiento normal-de las plantas. Las malezas son ba~ tante flexibles a variaciones de estos factores, a~ptándose a los extremos de sequia Ó inundación, a luz limitante (sombra) y debido a la plasticidad de población, se adaptan al espacio disponible.Nutrimentos.Como toda planta, la maleza también depende de fuentes de todos los nutrimentos para vivir y reproducirse. Varios estudios han demostrado que frecuentemente las malezas acumulan mayores concentraciones de nutrimentos. En estos caBos, sunque la producción de materia seca pueda ser muy inferior por parte de las malezas, el consumo de los elementos esenc.!ales puede ser IllUcho mayor que lo que parece.Algunas veces eate tipo de competencia 8e puede eliminar ó al menos reducir, al agregar mayor cantidad de nutrimentos al cultivo a través de la fertilización. Por supuesto, esto puede resultar muy costoso y a veces el abaDO beneficiaria más a las malezas que al cultivo mismo y esto se deberá por la capacidad competitiva de ellas. Se sabe que el uso de fertilizantes incrementa la eficiencia de las plantas debido a que p»oducen un sistema radicular mejor desarrollado, permitiendo as! la exploración de niveles de suelo más profundos donde se encuentra más agua y nutrimentos, Aparentemente este becbo es igual para ambos, el cultivo y la maleza y en base a esto, se puede realizar la fertilización en bandas, reduciendo las posibilidades de utilización del fertilizante por las malezas y también reducir el costo por hectárea.La competencia por luz es tal vez una de las menos importantes, con exepción de situaciones muy especiales tel como la Sesbania exalta ea. que puede reducir el rendimiento de arroz de riego solamente si s~ la deja competir por casi 12 semanas debido a que crece rápidamente por encima del arroz y le da sombra. Otra por luz es la Rottboellia exaltata especie que ea (caminadora) capaz de competir la uusl parece que siempre es capaz de alcanzarla altura del cultivo y aún sobrepasarlo en 25 cm. Es decir, s, la soya está a 15 cm de altura. la caminadora tendrá de 90 a 100 cm; si el sorgo está a 1.2Q m. la caminadora alcanzará 1.5 m y si la cana de azúcar tiene una altura de 2.0 m, ésta maleza estará a 2.25 m.Generalmente una vez que el cultivo ha formado una sombra completa, la competencia de malezas deja de ser importante, La competencia por lu~ se vuelve critica a veces en estsdos tempranos del desaErollo del cultivo, cuando la disponibilidad de luz determina dominancia.La competencia por agua es una de las mis importantes y muchas veces supera a la competecnia por nutrimentoa. En un ambiente en el ciclo de cualquier cultivo, existe una cantidad determinada de agua para producir el rendimiento deseado. Si el agua se ve limitada a cualquier tipo de competencia por parte de las malezas, se reduce este rendimiento.Las malezas son por lo general verdaderas bombas absorventes de agua y 10 hacen muy eficientemente. A menudo se encuentran cultivos marchitos por falta de agua, mientras que la maleza aparece normal. Como en el caso de los nutrimentos. se puede contrarrestar estos efectos al --sum1nitrar agua por medio de riego; si tanto la maleza como el cultivo encuentra suficiente agua para su supervivencia la p~rdida resultante de la competencia se disminuye. Es por esto que los cultivos sufren menos por la presencia de malezas en ciclos de mucha lluvia, que en los ciclos de escasa agua.EPOCA S CRITICAS DE CCHl.'ETENCIA Para programar un control de malezas adecuado y economico, es necesario conocer el periodo en que las malezas ejercen la mayor competen cia. Aunque esto cambia con las condiciones ambientales, la disponibil! dad de los factores de crecimiento, el cultivo, su densidad, vigor y las malezas, se ha establecido que el tiempo critico de competencia de las malezas con los cultivos.es entre 108 O Y los 45 dlas y en muchos casos entre los 10 y los JO dias. Se han presentado reducciones en los rendimientos en un 40% durante los primeros 45 dias del cultivo y pérdida del 20% cuando la cOmPetencia se presenta en los primeros 20 a JO dias.Como regla general. se puede decir que una vez el cultivo haya \"cerrado\" (formado una sombra completa sobre el suelo). la competencia deja de ser importante. Por lo tanto cultivos coao yuca y cana de azúcar presentan épocas criticas de competencia más largas pido desarrollo inicial coao soya, sorgo y frijol. que cultivos de rá , -No obstsnte pueden haber ptros periodos criticos de competencia, sobre todo cuando coinciden con los periodos de mayor requerimiento de agua y/ó rápido crecimiento, como pueden ser: a).al final del periodo de e8tablecimi~nto del cultivo b) durante el macollamiento c) al comienzo d,e la formación del fruto d) al principio de la maduración del cultivo (botones jóvenes en algodón y en la maduración de 14s espigas en cereales)Considerando que el control manual y mecánico de las malezas no 're~ liza sino hasta que su poblaci6n se ha establecido (15 a 30 dias después de la emargencia del cultivo) es necesario hacer énfasis en la importa~ cía de un control oportuno •. En general, el control manual ae hace cuando las malezas están lo suficientemente desarrolladas como para arrancarse ó cortarse con machete 6 azad6n. Este tipo de control es lento y requiere bastante trabajo y se hace más intenso de acuerdo a la superficie cult! vada, al grado de infestaci6n y al cultivo.El control mecánico puede ser realizado antes que el manual puesto que se basa fuhdaménta1mente en la remoción violenta de la tierra, r~ piendo la relación intima entre malezas y suelo.El control oportuno puede ser afectado por condiciones adversas del ambiente durante el periodo critico de competencia. Aai por ejemplo, las 11uviaa'continuas pueden ea usar retraso de labores y pueden reducir la efectividad del control manual 6 mecánieo al crear condiciones favorables para la recuperaeión de las malezas.Seguramente la mayor explicación del aumento de produeción al emplear el control químico en vez de mecánico 6 manual (Tabla 1) se debe a que el control no se reslice oportunamente. En cambio es precisamente durante las primeras épocas de desarrollo que el herbicida da su mayor efecto y es intereSante anotar que las lluvias hacen trabajar aún mejor 108 herbicidad preemergentes, garantizando la protección de las malezas en periodos que seria imposible utilizar medios manuales ó mecánicos.Aunque lo más dramático sea la baja en el rendimiento, es de suma importancia tener en cuenta las pérdidas en calidad del producto y los efectos en la cosechabilidad. que malezas como la batatilla (Ipomoea spp,) pueden ocasionar. A pesar de que se puede controlar inicialmente y asi evitar reducciones en el rendimiento, ésta es capaz de germinar más tarde y reinfestar el cultivo y en el momento de la cosecha, la materia verde que contiene aumenta el costo a ~a recolección de los productos, además las semillas reducen la calidad del producto. Las malezas que producen cadillos (como Cenchru3 SpP. y Xanthium sPP.) frecuentemente daftan la calidad de la cosecha del algodón, RESUMEN En resumen, la competencia que ejercen las ~lezaa en los cultivos ea compleja y varia con el ambiente, con el cultivo y con el complejo de maleza •• Conociendo laa interaccionea de ea tos facto.!!ea ae puede es• tablecer un programa orientado y económico para el control de eatas plantas indeseables.La competencia causa pérdidaa directaa e indirectas y el rendimiento ea uno de los factores afectados. Cuendo se considera un programa de control de malezaa ea necesario conocer la época critica de competenc1s¡ este periodo generalmente es durante los primeros 30 a 45 dias de ¡ermi. nado. En algunoa casoa el control manual 6 mecánico es satisfactorio pero en otros, aunque el coato puede aer menor que el de otros métodos, ae debe tener en cuenta la pérdida económica debido a la competenci! inicial de las malezas.Juán Cé rdenas* Octavio Franco** Jerry Do11 *** El uso de productos qu1micos en el control de malezas es un concepto nuevo relativo al control qu1mico de insectos y enfermedades. Los herbicidas difieren de los insecticidas y fungicidas en que deben aplicarse más uniformemente.Una vez que se ha decidido usar herbicidas, es necesario s~ ber los principios de aplicación y cual tipo de aspersora debe uti lizsrse. Existen varios tipos de aspersoras, cada uno tiene sus ventajas y sus desventajas y se debe saber cuál aapenora ea ~ jor segdn su finca y cultivos.Por aspersi6n de herbicidas se entiende la distribuci6n uni forme del producto sobre un área determinada, lo cual se realiza por medio de aspersora. Para la obtenci6n de una aspersi6n unifo~ me se requiere: l.Equipo de aspersi6n en buen estado \" 2. Calibraci6n correcta 3.Operario de tractor con experienc'ia 4.Terreno bien preparado 5.Condiciones ambientales favorables 6.Conocer el producto a usarse antes de aplicar La cantidad de liquido a usarse varia si la aspersi6n se La ~yoria de herbicidas se aplican como liquidas, ya sea polvos mojables (pm) en suspensi6n, como sales en solución o como emulsiones concentradas (Ee) en soluci6n. AdemAs, algunos herbicidas son formulados en grAnulos, los cuales se aplican en seco. La aplicaci6n de herbicidas puede ser por via terrestre o Area de acuerdo a las necesidades y conveniencias del caso.Cualquiera que sea el método de aplicaci6n es imprescind1 ble una calibración exacta.A continuaci6n se enumeran las ventajas y desventajas de aplicaci~ nes terrestres y Areas.Venta la, : l.Favorable en Areas no accesibles a la aplicación aérea.Favorece el uso del herbicida que requiere incorporaci6n inmediata.Cuando el follaje es denso y se requiere cobertura total, es mAs efectiva la aplicación aérea especialmente con he~ bicidas de contacto.Facilita las aplicaciones en bandas.Permite aplicaciones localizadas y dirigidas.Presenta menos riesgo de perjuicio a cultivos cercanos o contaminación de fuentes de agua.La aplicación terrestre es menos afectada por viento o corrientes convencionales de aire cálido.No hay limitaciones de herbicidas o mezclas debido a dosis altas ylo baja solubilidad.Desventalas :1.Requiere mAs tiempo en la aplicación.Son susceptibles a condiciones adversas del ambiente tal como humedad excesiva después de lluvias.Necesitan ser aplicadas por operarios con buena experiencia. 4.En algunos cultivos extensos como el arroz de riego la apl! caci6n terrestre es limitada. S.Requiere grandes cantidades de agua (150 a SOO litros por hectárea). 6.Pueden causar daftos mecánicos al cultivo durante aplicaciones en post-emergencia. 7.Aplicaciones con tractor causan compactación del suelo.Ventajas í l. Facilita la aplicación de areas extensas en poco tiempo.Son preferibles en áreas accidentadas o con vegetación densa en donde la aplicación terrestre se dificulta.3.Requieren bajos vol6menes de agua (SOlitros/ha o menos)Permite hacer aplicaciones oportunas ya que las condiciones del suelo no son tan crJticas como las requeridas para apl! caciones terrestres.No causan daftos mecánicos al cultivo.l.VolUmenes excesivos de agua por hectárea pueden limitar su uso debido al costo de aplicación. Por otEa parte, el vol~ men de agua a usarse para herbicidas o mezclas de ellos e~ tA determinado por dosis sItas y/o baja solubilidad. 2.Con herbicidas de contacto el vol4men de agua requerido pu~ de negar SU uso prActico por ser anti~ econ6mico.No se adapta a la aplicación de herbicidas que requieren ia corpotación inmediata.El áres de aplicación debe estar libre de obstáculos como c~ , bIes de electricidad. árboles, postes de luz, casas o pobl~ dos.Presentan mayor peligro a cultivos susceptibles cercanos.Las aplicaciones aéreas son totales y no pueden ser local! zadss. 7.Debido a la velocidad de aspersión y el volúmen bajo de agua empleado, 108 errores de calibración se amplifican.a.La aplicación requiere bandereo.Como se puede apreciar ambos sistemas tienen ventajas y desventajas, siendo necesario determinar cuidadosamente la aplicación que mejor se adapta a las diferentes situaciones, teniendo siempre en cuenta tres aspectos principales: economla, efectividad y seguridad.En la aplicación de herbicidas es muy importante usar agua de buena calidad, puesto que ademb de alterar la efectividad del pr2, dueto afecta el funcionamiento y desgaste de la aspersora, Siempre debe usarse agua limpia y de buena calidad.El uso de surfactantes en aplicaciones post-emergentes no d~ Una cantidad excesiva de agua se traduce en control defi ciente puesto que una vez humedecido el follaje, el exceso de liqu! do cae al suelo en donde no ejerce su acci6n. Tipos y comepnentes de aspersoras terrestres Para que cualquier implemento de aplicaci6n funcione y sea considerado como aspersora, debe llensr los siguientes requisitos: l.La descarga del meterial debe ser uniforme y de fAci1 control.El herbicida debe quedar uniformemente distribuido sobre la superficie tratada.La calibraci6n debe ser tan fAcil que permita la aplicaci6n de dosla determinadas bajo diferentes condiciones.Su menejo debe ser sencillo, con facilidad para cargar y que permita un adecuado mantenimiento.Todo tipo de aspersoras tiene los siguientes componentes :Tanque. fuente de p~esi6n y sistema de descarga. Entre los diferentes tipos de aspersoras, las más sencillas son las de meno, en las eu! les la presi6n 'e obtiene por gravedad. A continuacibn se discutirAnlos distintos tipos de aspersoras, sus componentea, ventajas y desvea tajas.Existen diversos tipos de aspersoras de espalda, las cuales difieren principalmente en su capacidad de mantener una presi6n cotl §.tanteo En algunas, a menos de que tengan regulador, la presión dism1 nuye a medida que se realiza la apl1caci6n. Otras conUenen adapta ciones de tal manera que-el operario mantiene la presi6n bombeando constantemente al hacer la aplicaci6n. ( Ej. bombas de diafragma).Este tipo de bombas tienlD funcionamiento por intermedio de una c4ma• ra de aire que permite mantener una presi6n alta y constante, la cual alimenta el resto del tanque sin ser afectado por la cantidad del liquido que queda en el tanque.En general las bombas de espalda tienen una capacidad de 5a 20 litros y opersn a una presi6n de 40 a 60 libras y deben ser ll~ nadas a 3/4 de su capacidad para permitir suficiente presi6n en eltanque. Es importante al terminar la aplicaci6n abrir cuidadosamente el tanque de la-bomba pues es factible que todavia permanezca liquido bajo presión. !.ss aplicaciones hecbas con este tipo de bomba gen~ ralmente se realizan a úila velocidad de 2-2.5 kphl de acuerdo al op!. rario, topograf1a¡ tipo de aspersi6n y tamafto de la aspersora. de de : l.En cuanto a las venta'as. estaa aapersoras presenta las siguientes: l.Sencillez y facilidad de operaci6n.Bajo costo 3.F4cil de mantener 4.Especiales para aplicaciones localizadas 5.Pueden ser usadas en lpgares no accesibles 8 maquinaria 6.F4ciles de transportar 7.Peligro minimo a cultivos vecinos susceptibles.Entre las desventa1as. se anotan laa siguientes : • l.Se dificulta el control de la presiOn, requieren bombeo a~ guido.La calibraci6n y la uniformidad de aplicaciOn es másdiflcil debido a que influyen condiciones del ambiente y la topogr~ fta sobre el estado de ánimo del operario. Como consecuencia, se debe tener cuidado para no aplicar 8~ bredosis. lo cual aumenta el peligro hacia el cultivo, resul ta en desperdicio de herbicidas y tiempo y aumenta la posib! lidad de residuos tÓxicos a cultivos de rotaclOn. Mientras que dosis bajas se traducen en control bajo o nulo.No poseen sistemas de agitaciOn 4.Su uso es lento y limitado a áreas pequenas. 5.Generalmente se requieren vol6menes de agua altos, para asegurar una distribuciOn uniforme. 6.Cansan, sobre todo con bombas grandes. 7.Más contacto directo entre el operario y el plaguicida.Las aspersoras de espalda deben tener 108 .iguientes componentes pa~a asegurar su uso correcto : l. liltro de tanque 2.Bomba de aire o de presión 3. Tanque 4.Man6metro visible al operarioRegulador de presi6n6.Llave de paso 7.Tubo o lanza de aspersi6n 8.Igualmente debe tenerse en cuenta el tamafto bptimo de la aspereora de acuerdo al operario, el nivel del terreno, la clase de aspersiÓn, el área, la uniformidad deseada, etc. Realmente no se ju~ tifica comprar bOaDas grakdes si el operario va a cansarse en corto tiempo o si la topografla dificulta su carga. También es de impo~ taneia que al usar producto tÓxicos se proteja al operario y se limite al tiempo de aspersiÓn por operario.'.El man6metro debe estar en un lugar visible al operario y • el más adecusdo es cerca a la llave proveer uns• de paso. El regulador de la pr~ presión entre 20 y 60 libras 5iÓn debe ser capaz de (1,4 a 4.2 kilogramos) La manguera de descarga debe ser flexible y de suficiente longitud para que el operario pueda agilizar la ope-raci6n. La lanza de asp.ersi6n no debe ser pesada pero si fuerte. La llave de paso debe ser efectiva, de f'eil operaci6n y que permita controlar el goteo en la aspersi6n.Las boquillas deben tener filtros para evitar que el orificio de las msmas .e obstt'U}'a. Para apllcaciones de polvos mojables , se reco1ll1enda que el filtro ses de 50 mallas por pulgada. Cuando las boquilla. tengan un orificio muy pequefto o cuando se aplica he~ bicidas l1quidos se reco1ll1enda filtro. de 100 mallas.Las aspersoras de espalda sonde gran utilidad y en fincas donde se usan exclusivamente bacen buen complemento a otros tipos de equipo.Aspersoras de tractor pueden ser de dos tipos -montadas en el tractor o arrastradas por dicho implemento.El 111ll1te de agua para aspersoras montadas generalmente es de 400 litros. mientras que para las de arrastre puede ser de mayor capacidad. Ambos' tipos de aspersoras tienen los msmos componsntes: ' .l. TanqueSistema de agitaci6nConducto de retoroo 4.Filtro de Bucci6n5. Bomba 6.7. Reguladóu de pres16n 8.Llave de paso 9.Agui16n 10.Boquillas con filtros 11.Filtro de tuberla ( Véase Figura 1) 3 1 FIGURA l. Los componentes de la aspersora de tractor.El tractor empleado para la aspersi6n debe estar en buenas condiciones de funcionamiento. Debe mantener una velocidad sdecuada uniforme, entre 4 y 10 ¡pa de acuerdo a las condiciones del terreno. sI volúmen de sgua requerida por hectárea y sI cultivo. Es preferible que tenga veloc1metro. pero si esto no es posible debe marcarse bien la velocidad en el acelerador. En terrenos h6medos o muy pen . dientes en donde las ruedas del tractor pierden tracci6n este método no es adecuado y se requiere un veloclmetro.Velocidades menores de 4 IPE resultan en un rendimiento bsjo de aspersi6n, mientras que aspersiones a velocidades mayores de 10 KPH causan aplicaciones des uniformes y mayor desgaste del equipo. Tangue.El tanque de la aspersora debe ser construido con ~terial no corroible como acero inoxidable, de vidrio reforzado, de plAstico o' de fibra de vidrio. No es recomendable el uso de tanques de madera, . debido a que absorben los herbicidas y son dif1ciles de limpiar. Por otra ~arte, los tanques de aluminio son satisfactorios para muchos . tipos de materiales, pero no para productos corrosivos.El tanque debe tener dos orificios uno superior, el cual debe ser grande y ad~cuado para poder llenarlo sin dificultad y otro en el fondo para laa funciones de drenaje.El tamaHo del tanque depende de los siguientes aspectos :Capacidad del' tractor 2.Tipo de tlII)ntajeAres de aspersi6n '4.TamaHo,del agui16nLongitud del campo 6.VolOmen de aplicaci6n por hectárea 7.A mayor tamaHo del tanque se requieren llantas más grandes, mejores condiciones del suelo, sistema de agitaci6n adecuado y con la desventaja de que puede ocasionar mayor compactaci6n del suelo.Respecto a la agitaci6n debe hacer un sistema adecuado y fua cional puesto que una mala agitaci6n causa \"zonas muertas\" en las cuales se puede pres~ntar sedimentaci6n Ael producto. Por el contr~ do, demasiada agitaci6u\" (Ej. muy rápida o violenta) origina espuma excesiva debido a que tiende a incorporar aire en la soluci6n. Si esto se convierte en un problema serio, puede hacer lo siguiente : después verifique por separado la compatibilidad del plagicida con el espumante (Kerosene) y si resulta positivo agregue medio litro de Kerosene por cada 400 litros de soluci6n. Si la cantidad de esp~ ma se debe a exceso de surfactante este será neutralizado al tener que emulsificar al kerosene.,'Existen dos tipos de agitaci6n: mecánica e hidráulica. La mejor es la agitaci6n mecAnica.ya que mezcla mejor y en particular es mas efectiva para emulsiones con un alto porcentaje de aceites y para polvos mojable •• Hay do. métodos de aplicaci6n mecAnica:por paleta. y por hélice./ La agltaci6n mA. c0m6n e. por medio de paletas las cusles tienen una extensi6n aproximada a la mitad de la longitud del taa que. Dichas paletas adhesivas a un eje horizontal giran con éste.En cusnto a la agitaci6n por hélice éstas encuentran mos del tanque y all1 realizan su movimiento.en lo. extre ...El otro tipo de agitaci6n bastante común es el hidráulico. Este sistema consiste en hacer circular nuevamente el liquido antes de llegar al regulador de presi6n y después de pasar por labo~a. Esta nueva circu1aci6n se hace a través de la manguera de retorno que debe llegar hasta el fondo del tanque y proveer asi una buena agitaci6n. sin formaci6n de espuma. Este tipo de agitaci6n requi~ re mas energla y es esencial la forma como estA colocada la ma~ guera de'retorno para una buena agitaci6n.Existen dos tipos de manguera.: de succi6n y de retorno. Las de succi6n conducen el liquido del tanque ~l agui16n, pasando por la b~ mientras que las de retorno sirven para conducir el exce.o de liquido, que conducen las mangueras de succi6n, nuevamente al taa que. De esta manera alivian el exceso de presi6n,y crean agitaci6nhidráulica.El material de la$ mangueras generalmente es de caucho o plAL tico y deben ser flexibles y resistentes a diferentes presiones y a la corrosi6n. Si se usan solventes orgA.licos debe procurarse que el, contacto sea m1nimo o paca prolongado.Estos sirven para remover impurezas que puedan causar desga~ te excesivo a la bomba y tapar las boquillas.En general las aspersoras deben tener cuatro filtros:1.Filtro de tangue: filtra el agua al llenarse el tanque.Filtro de manRMera de succi6n: filtra el agua entre el tanque Bmnha.La bomba es el componente que crea la presión utilizada en la aspersión. Existen dos clases de bmnhae: de despla~amiento pos! tivo (Ej. bombas de rodillo) y de desplazamiento negativo o de su cción. (Ej. bo~e centrifugas). En general, las bombas de despla-~amiento positivo pueden ser accionadas por ~dio de toma fuerza del tractor, mientras que las de desplazamiento ~agativo o de su cci6n requieren propulsión por un motor independiente.Las bombas centrifugas crean presión debido a la alta velocidad desarrollada por el liquido que estA so~tido a ls fuerza cea tr1fuga. Este tipo de bomba tiene la ventaja de ser barata y resiL tente a materiales abrasivos; ademAs. debido a su capacidad de flJ!. jo, provee suficien~e fuerza para agilitaciÓn hidráulica. Entre sus desventajas se anotan las de requerir un motor ( no opera conel tomafuerza) y a altas velocidades.Este tipo de bomba debe quedar inferior al tanque para que el liquido llegue a ellá por gra•jedad.Las bombas de despla~amiento positivo ( de engranajes, rod! 110s, pistón o diafragma) pueden ser adaptada al toma-fuerzas del tractor. Cada tipo de bmnha tiene su uso particular y al comprar la aspersora debe considerarse una serie de factores tales como el tipo de aspersión, el vol6men de aspersión, el tamafto del aguilón, la presión deseada, el costo, el mantenimiento. etc. En la Tabla 2, se presentan algunas caracter1stlcas de las bombas .ja con uso d; lumen medio y presión: f! polvos mojacil de reparar bIes. sirve para t2, Necesita motor; das formula -hace presiones ciones; no se bajas. gasta con pr2, duetos abras.!, vos; volÍllllenalto. no se desgas-Volúmen bajo; tan con produs, diafragma de tos abrasivos; caucho nofácil de repa-resiste acei rar, presiones tes agricolas. medias.Cuando el sistema de agitaci6n es hidráulico la bomba debe producir una descarga mayor a la requerida para la aspersi6n. En general se requiere una descarga de 4 a 12 litros por minuto para o~ tener una buena agitaci6n. De esta manera si se requiere una descarga de 200 litros por hectárea con un aguil6n de 8 metros '. con cobertura sencilla y viaja a una velocidad de S kpb (cubre 4 ha/hora,) la capacidad de descarga deberá ser de 800 litros/ hora o 13 litros minuto. A esto le agregamos la necesidad de 4 a 12 litros/minuto para la agitaci6n, obteni!nd~se as1 una capacidad final de la bomba para descargar de 17 a 2S litro/mino Al conseguir la bomba debe preferirse una que descargue un poco m4s de 10 deseado y asl obtener : l.r Suficiente presi6n que asegure la unif,ormidad deseada Agitaci6n hidráulica adecuada Compensa el bajo poder de la bomba ocasionado por el desgas te de uso.Es un implemento que indica la presi6n, y es imprescindible para poder ajustar la presi6n en forma exacta. Debe estar localizado entre el regulador d. prasi6n y el agui16n, lo m4s cercano posible a • éste y que pueda ser visto por el operario. Se debe mantener siempre en buen estado de limpieza y mantenimiento.Regulador de presi6n.Con éste, se puede ajustar la pres16n a niveles constantes y uniformes. Los equipos para aspersiones con baja presi6n son menos cosotosos, se reduce el desgaste y el acarreo por el viento y brindan la posibilidad de usar boquillas con orificio más grande ylo un ~ yor nOmero de boquillas.Respecto a la aspersi6n. el tamafto de la gota está influea , ciado por la presi6n, el tamfto del orificio de la boquilla, la orien taci6n de las boquillas, las propiedades de la soluci6n y las condiciones ambientales. Entre más alta sea la presi6n, de menor dilmetro serán las gotas de mayor tamafto.En general con boquillas tipo Tee-Jet de abanico se recomiendan presiones entre 20 y 40 libras por pulgada cuadrada; presi~ nes mayores o menores a éstos limites pueden afectar el patr6n del abanico.Llave de paso. La iniciaci6n y terminaci6n de la aspersi6n regulando la direcci6n del flujo es controlada por esta llave. Durante la asper-816n permite el flujo del tanque hacia las boquillas y durante la succi6n ( al término de'la presi6n) permite el flujo del aguil6n al tanque. Igualmente evita el goteo al terminar la aspersión. Cuaa do el conjunto del aguilón está compuesto de varios aguilones en 8~ cciones es importante que la llave de paso pueda controlar las dif~ rentes secciones individualmente. Muchas llaves de paso tienen una sección para hacer las conexiones necesarias que facilitan realizar aplicaciones localizadas.Agui16n o barra de Aspersi6n.Es la unidad que porta las boquillas y debe ser fuerte y fAcil de ajustar su altura para obtener la cobertura deseada adaptándolo al cultivo y a las malezas. El tamafto del aguil6n depende de: Area de aspersiOn. topografla. tiempo disponible y cultivo. Se recomienda que la longitud no exceda de 18 1\\Ietros ,y que sea seccionado con manejo independiente en la llave de paso y en un extremo un tapón que facilite su drenaje.Es de suma importancia que el agu1l6n se encuentre a la al tura '. recomendada puesto que si es mayor la aspersión serA más susceptible al acarreo por viento y aplicar sobre dosis, y si es menor pueden que• dar \"conejos\" y ser interferido por los ohstlleulos del terreno.La altura del aguilÓn depende de: l.Cobertura deseada (sencilla o doble) 2.Distancia entre boquillas Si se desea cobertura doble con un tipo de boquilla que estA produciendo cobertura sencilla a una altura X. el agui16n debe elevarse a una altura de 2X. Si con las mismas boquillas y el mismo agull6n se pul. den doblar el aGmero de boquillas, la cobertura doble se obtiene sin• cambiar la altura del aguil6n.En caso de no poder ajustar la. altura se puede cambiar las boqu1 11as por otras de diferentes Angulas. Por ejemplo las siguientes boqu1 l1as esparcidas a 50 cm en el aguilón deben estar a las siguientes alturas para dar cobertura sencilla. La regla general para cambiar la cobertura de sencilla a doble sin cambiar la altura es cambiar el Angula por 1.5 veces mas amplio: Ej: Si se tiene un Angula de 80 grados y se desea obtener coberturadoble a la misma altura del agui16n, debe usarse una boquilla con Angula de 120 grados. Para evitar la aplicaci6n de sobredosis se debe t~ ner cuidado con las coberturas dobles al momento de la calibraci6n.Las coberturas dobles cubren mejor el terreno y son ideales para aplicaciones de herbicidas al follaje y en particular los de contacto.Boquillas.Las boquillas son de gran importancia ya que este es el único com ponente que controla la aspersi6n. Su funci6n consiste en convertir el liquido a gotas de aspersi6n y distribuir éstas en un patr6n de asper-si6n determinado.Existen diversos tipos de boqu'illas y las más comunes son de cono s61ido, cono hueco, abanico plano, abanico uniforme, (even spray) y otras para usos especiales, \\.rabIa 3). Para la aplicaciÓn de her bicidas se usan boquillas de abanico debido a que proporcionan una cobertura mas uniforme y mas fuerza de descarga del 11quido que las de cono. Las boquillas de cono son mejores que las de abanico para la aplicaci6n de herbicidas cuando el volúmen por hectárea de agua es menor de 30 litros. Las boquillas de abanico requieren una-presilln m1nima de 10 a 20 lb/pu1 2 de acuerdo con el tamaflodel orifi La aspersi6n de las boquillas de abanico plano debe estar superpuesta.Las boquillas de abanico uniforme producen Y9lVeen \", yniforme a través del completo ancho del abanico. Este tipo ~e boquilla ea especial para aplicaciones en bandas donde DO es oecesarlo UDS s~ preposici6n uniforme, con otra boquilla.La. boquillas especiales aOR boquillas de ángulos irregulares, las cuales permiten aplicaciones en carcas, taludes y bermas. Tee Jet, tieoe n6meros que designa su Angulo úe aspersibn y capacidad de descarga. Por ej~ plo. boquillas 8002-E indican que el An&ulo de asperai6n es de 80 grados y que la descarga de boqUilla a 401b/pu1 2 de presl6n es de 0.2 galones por minuto. 'La letra E iodica abanico uniforme (Eleven).El tamafto de gota de la aspersiÓn puede ser controlado de di ferentes maneras: l.Cambiando el tamano de los orificios (misma presiÓn) 2.Con mayor o menor presi6n.Para cambiar el tamano de la gota es preferibles cambiar el tamano del orificio que la presiÓn, puesto que para reducir el tamano de la gota en 501 se necesita aumentar la presiÓn cuatro veces.Siempre debe iniciarae la temporada de aspersiÓn con boquillas nuevas y cambiarlas después que cada boquilla haya aplicado 200 hect! reas. Estas pueden ser de acero inoxidable, aleaciÓn-cobre estano (brass) ser de nylon, o aluminio.Las mas comunes son de aleaci6n CO bre-estano.Cuando se emplean polvos mojables. el flujo de este tipo de boqu! llas pueden aumentar en un 201 a 48 horas de uso y 10 mas importante, el patrón de aspersión puede cambiar desunlformemente. En conclusi6n, conociendo todos los componentes de su aspersorase facilitará su uso, calibraci6n y manutenciÓn, obteniendo asl maya res ventajas de su equipo.Antes de usar la. aspersora ésta debe ser lavada cuidadosa mente para desalojar polvo o basura que se haya acumulado en el tanque. en las mangueras, el aguil6n y las boquillas. Lave todas las ba quillas.y filtros primero en una soluciÓn con detergente y luego con kerosene usando un cepillo de dientes. Después de usarla lAvela bién para eliminar los residuos que pueden afectar a las aspersoras por su acci6n corrosiva o por su toxicidad a otros cultivos.Para el lavado de aspersoras usadaa para herbicidas de fo~ lacibn polvo mojable o soluciones no hormonales llene el tanque de la aspersora con agua y agregue detergente al 0.51 agregue una solu, ción de amoniaco a razbn de un litro en 100 litros de agua.Para el lavado de aspersoras usadas para herbicidas de fo~ lación emulsión o cuando se emplean detergentes, surfactantes o acet tes con polvos mojables o soluciones, agregue al tanque de la aspersara una soluci6n de amoniaco al l~ o una soluci6n de soda cÁuaticaal 0.21. Después de llenar el tanque circule la solución por todos los componentes de la aspersora: taaque, mangueras, boquillas, etc. Después de descargar la soluci6n de la aspersora ll'nela conagua y detergente en el caso de emulsiones y con agua en el caso de polvos mojables y soluciones y sin dejar salir la solución circtilelamanteniendo la agitaci6n durante 15 minutos. Ejuage con agua.Para el lavado de aspersoras en las cuales sebanutilizado he~ bieidas hormonales (2,4-D;2,4,5-T) llene el tanque con agua y agregue amoniaco, acetona, o alcohol etilico en la proporci6n de una parte de solvente por SO partes de agua. Termine de llenar el tanque y baga circular la soluci6n por la manguera de retorno permitiendo salir unpoco por las boquillas. Apague el motor y deje que la solución perma-nezca en el sistema ~rante la noche, al dla siguiente pase toda la solución por las boquillas. Luego llene el tanque con agua baciénd2 la pasar por el aguilón sin boquilla ni filtros. Esta dltima operación debe hacerle dos o tres vecel consecutivas. Almacenamiento de as persoras , 'i;, l.Lave ls aspersora por dentro y por fuera con detergente y con un poco de aceite fino.2., Desconecte las mangueras y guardelas en un lugar fresco (ventilado) (no las doble).'3. Cerciórese de que no qUede llquido en el tanque, las mangueras, la bomba, los filtros o el aguilón.Desarme las boquillas, limpielaa y guArdelas.Un efectivo control químico de malezas depende de la aplicación de • una cantidad exacta de herbicida por unidad de superficie. Dosis bajas del herbicida resultan en un control de malezas, deficiente, se pierde la inversión y parte del rendimiento debidq a la competencia de las malezas o se incrementa el costo de producción al necesitarse un segundo control.Una dosis excesiva superior a la recomendada causs dsnos severos al cultivo. ocasiona pérdidas económicas por los sItos precios de los herbicidss al no obtenerse mayores beneficios de control, aumenta la posibilidad de acumulaci6n de residuos t6xicos hscia otros cultivos de rotaci6n, y, en algunos casos, como con productos hormonales (2,4-D) la efectividad del her~icida se puede ver reducida al causar la muerte inmediGta de los tejidos con los cuales entra en contacto y. as!. evitar su trans locación o movimientos hacia las raices u otros órganos de la planta.El dicho popular \"Si un poco es bueno. un poco más aerá melor\" no es propio para el uso de los herbicidad y por lo tanto es importante recordar que para el problema especifico de laa malezas en su cultivo debe usarse el herbicida apropiado en la dosis correcta y en la forma más adecuada. herbicidas por una aplieaeión defieiente aiga laa recomendaeiones sobre calibración de aaperaoras formuladas a eontinuaeión.La calibración correcta de laa 8apersoraa es de vital importancia para evitar problemas de control deficiente o dano al cultivo. Por calibración se entiende el ajuste correcto del equipo de aspersión para regular la descarga del herbicida a un nivel constante. uniforme y a una rata deseada.Para regular la descarga de una aspersora, se pueden modificar: La velocidad de aspersión La descarga por unidad de superficie es proporcionalmente inversa a la velocidad a la que se realiza la aspersión (Tabla l.) TABLA l. Relación entre velocidad de aspersión y descarsa (a una presión constante). Aunque la descarga no ea directamente proporcional a la presión (Tabla 2) al aumentar la presión se aumenta la desca.ga, Para cambios grandas es más fácil ajustar la descarga cambiando el tamafto de las boquillss o la velocidad de aspersión que la presión, La concentraQión del caldo Para calibrar aspersoras terrestres deben observarse las siguientes reglas: l. Empiece cada época de aplicación con boquillas nuevas. Las boqui llas viejas pueden presentar problemas de irregularidad de descarga por medio de desgaste desuniforme del orificio de las boquillas, En general cambie las boquillas d~spués de asperjar 200 hectárees, sobre todo si se están aplicando polvos mojables (Figura 2). 4. Auqque las boquillas nuevas están calibradas en la fábrica para descargar cierto volúmen de agua bajo presiones especificas, este dato es relativo ya que ha sido determinado con agua y no con soluciones de herbicidas. Tome ese dato como un indice y compruebe la descarga de cada boquilla individualmente usando la solución o caldo que se va a aplicar.Coloque un frasco debajo de cada boquilla y mida la descarga de cada una durante un minuto. La variación de descarga debe ser menor del 151. con relación al promedio de descarga de todas las boquillas. Si alguna boquilla está aplicando 151. menos o más del promedio de las demás, ésta debe cambiarse antes de hacer la calibración. Si la descarga de las bo~ quillas no es uniforme revise la malla y el orificio de la boquilla para determinar si están tapadas. 5. Calibre sobre el terreno de aplicación. Al cambiar de un terreno a otro diferente calibre nuevamente. La velocidad de aspersión puede cambiar debido a condiciones diferentes del terreno. En terreno firme la velocidad de aspersión es más uniforme que en terrenos muy arenosos o húmedos, 6, Nunca limpie los orificios de las boquillas con objetos duros como alambres, destornilladores, clavos, etc, Llmpielas con un cepillo utilizando agua o gasolina, 7, Cerci6rese de que la aspersora está en perfectas condiciones. Revise el equipo de aspersión minimo 30 di8s antes de su uso para poder efectuar cualquier cambio o ajuste y para poder conseguir 108 repuestos necesarios, 8, Cuando se aplican polvos mojables, use filtros de 50 mallas, Para aplicaciones de soluciones o emulsiones, utilice filtros de 100 mallss. 9, Compcuebe que el operario tenga experiencia.lO~ Al terminar la aspersión, no deje la solución en el tanque, so• bretodo si. son auspensiones de polvos mojables, las cuales se sedimentan, tapando mangueras, filtros y bbguillaa. Lave la aapersora con una solución de jab6n y enjuague con agua varias vecel, De preferenCia no use as parsoras con las cuales ~e han empleado productos hormonales, como el 2, 4-D, para hacer aplicaciones en cultivos susceptibles a áichos produ~ tos, si se han aplicado productos hormonales lave la aspersora tres o cuatro veces con una solución de amoniaco y anjudguala con jabón yagua para evitar dano a otros cultivos, ,La calibración de aspersoras de espalda es relativamente sencilla, siempre y cuando se toman en cuenta las siguientea reglas: Para usar aspersoras de espalda es necesario calibrar tanto la aspersora como al operario.La aspersora y el operario deben éalibrarse por lo menos dos veces diarias. Aspersiones prolongadas realizadas por el .isao operario lo fatigan causando una baja en eficiencia y, COIllO cousec'uencia, alteran ls calibración. Al cambiar de operario, la ca1ibraci6n se debe efectuar nuevamente.COmpre únicamente asper80ras que tenB!n regulador de presi6n y manómetro.Es imprescindible mantener una p.X'esión constante durante la asparsión ya que esto determina la uniformidad de la aplicaci6n. Esto se puede obtener por medio de un regulador de presi6n entre el tanque y la maguera de salida, ya sea bombeando inicialmente a una presión por encima de la presión de sspersión o manteniendo la presión promedio de bombeo constante.TABLA 5. efectos de tiempo de aspersión sobre descarga se presentan en 5.Presi~n en kg/cm Teniendo en cuenta lo anterior, calibre las aspersoras de espalda de la siguiente manera:1.M1da un Area de 100 metros sobre el terreno donde se va a realizar la aplicación. S. Manteniendo una presión constante efectúe una aplicación con agua a un paso normal sobre el terreno en que se va a efectuar la apli-caci6n.6. M!da el agua que se requiere para llenar la aspersora hasta el nivel inicial y obtenga asi la cantidad utilizada.7. Repita esta operación tres veces y obtenga el promedio.8. Calcule la cantidad de agua necesaria para una hectárea por medio de la siguiente fórmula: Agua utilizada en litros X 10000 m 2 /ha ____ ~~------__ -------------------a litros/hectárea Area aplicada en m~ Ejemplo: una aplicación én 100 .2 gasta 3.0 litros.3.0 X 10000 __________ -300 litros/hectárea 100 Calibración de aspersoras de tractor YA calibración de aspersoras de tractor se realiza en principio de la misma msnera que se hsce la calibración de asparsoras de espalda. Aunque la calibración del operario n6 es critica con este tipo de aspe~ sora. si se requiere un operario con experiencia que conozca bien el equipo, el cultivo, las malezas, el herbicida y los fsctores que afectan la aplicación de los herbicidas. La calibración se realiza con una de las siguientes maneras: Método A l. Llene el tanque de la aspersora con agua.2. Regule la presión entre 20 y 40 libraa por pulgada cuadrada (1, 4 a 2, 8 kg/cm 2 ). Si la aspersora no tiene manómetro, empiece la aspersión con una presión baja y vaya aumentándola hasta que los abanicos de aspersión se crucen~ Esta recomendación es sólo para uao en casos de emergencia. Toda aspersora debe tener un manómetro en buenas condiciones.3. Sobre el terreno donde se va a hacer la aplicación ajuste la velocidad del tractor entre 4 y 10 km/hora y fije una marca en el acelerador.4. Determine el tiempo que gasta el tractor en recorrer 100 metros. Repitase varias veces y promedie. 5. Fije la altura apropiada del aguilón para que moje uniformemente. Mida el ancho de cobertura del aguilón. Nótese que el ancho de cobertura es más largo que el ancho del aguilón. 6. Con el tractor parado cerciórese de que la descarga de las boqu! 11as sea uniforme. Coloque un recipiente debajo de cada boquilla y mida la descarga de cada una en litros durante el mismo tiempo qua tomó el tractor en recorrer los 100 metros.7. De acuerdo a la cantidad de agua descargada por el aguilón y.en el área cubierta en una pasada de 100 metros del tractor. cslcule la de~ carga de la asperaora en litros por hectárea con la siguiente fórmula: Descarga del aguilón en litros 3. Determine la altura adecuada del aguilón y mida la longitud de cobertura.4. Regule la velocidad del tractor entre 4 y 10 km/hora de acuerdo a las condiciones del terreno en donde se va a realizar ls aplicación y fije una marca en el acelerador del tractor.5. Determine la cantidad de agua deacargada sobre un trayecto de 100 metros llenando el tanqua de la aaperaora con agua hasta el nivel inicial o midiendo la cantidad de agua en el tanque.6. Calcule la cantidad de agwa utilizada por hectárea uaando la siguiente fórmula: Descarga en litros X 10000 uf/ha Area cubierta por la aspersi6n en 1lI 2 -litros/hectárea Ejemplo: una aspersora aplica 10 litros de agua en una distancia de 100 metros. El ancho de aspersión del agui16n es de 5 metros: 10 litros X 10000 m2/ha = 200 litros/ha 5 metros X 100 metros Calibración para aplicaciones en banda La calibración para este tipo de aspersión es igual a la calibra~ ción para aplicaciones totales, con la excepción de que cuando se considers el área sobre la cual se va a hacer la aspersión se debe tener en cuenta el ancho de la banda. La distancia entre boquillas y/o la altura del aguilón se modífican para este tipo de aspersión.Use uno de los mátodos preséntados anteriormente para determinar la descarga en litros por hectárea. La única diferencia es que se deben hacer los cálculos en base al área efectiva cubierta (las bandas), Ejemplo: Si se usa el método A de calibración de aspersoras terrestres y se requiere una banda de 33 centímetros sobre el surco en un cultivo qoe tiene una distancia de un metro entre surcos.Cobertura, total del aguilOftI'6 metros (6 surcos) Descarga por boquilla en 100 m : 1,0 litro Descarga aguilón de 6 boquillas: 6 litros en 160 m Ares efectiva de aspersión:En base a este dato se calcula la descarga por hectárea, Descarga del aguilón en litros X 10000 m 2 /ba ----------------------------• litros/hectárea Area efectiva de aspersión en m 2 6 litros X 10000 m 2 /ha -300 litros/hectárea Uns vez realizada la calibración en base a la descarga de la aspersara en litros por hectárea, calcule la cantidad exacta del agua y del herbicida que se debe anadir al tanque, Ejemplo: Capacidad del tanque 600 litros Area de aspersión 1,5 hectáreas Descarga de la aspersora: 300 litros/hectárea Dosis del herbicida: 2 kg/ha Pars aplicación total: a. Llene el tanque con 450 litros de agua (300 X 1,5) b. Con el sistema de agitación funcionando en el tanque de la aspersora, afiada tres kilogramos del herbicida (2 X l,S).Para aplicación en banda (banda de 33 cm lobre surcos de 1 m): a. Llé~ese el tanque con 150 litros de agua ~~o X 1,5 X 300) b. Con el sistema de agitación funcionando en el tanque de la aspersora, afiada un kilogramo de herbicida (~X 1,5 x 2) WO Cuando emplee herbicidas debe recordar que son productos tóxicos y requieren cuidado en su manejo. Siga todas las instrucciones y precauciones en el marbete o ls etiqueta. Almacene todos los plaguicidas fuera del alcance de niDos y animales. No haga aspersiones cuando haya viento excesivo (mayor 12 -15 kg/hora) o cuando la dirección del viento es hacia cultivos susceptibles. La persona que realiza la aplicación es responsable por cualquier daDo ocssionado por acarreo o'por viento de herbicidas.Siga las normas para la calibración de aspersoras y evite problemas debido s aplicaciones incorrectas.Juan Clrdenas* Frank S. Davis** Jerry Do11 *** Desde la introducci6n del herbicida 2,4-0 durante la segunda gu~ rra ~ndial. los herbicidas selectivos han aumentado considerablemente en ndmero y grado de selectividad. Ejemplos de herbicidas altamente selectivos son el tria late y el barban. los cuales poseen selectividad a un grado tan refinado que controlan la avena silvestre (Avena fatua) en trigo y cebada sin afectar al cultivo. En el desarrollo de insecticidas y fungicidas para protección de plantas la selectividad es mds f'cil de obtener que con herbicidas debido a que las diferencias anatómicas, morfológicas y fisiológicas entre insectos y plantas y entre patógenos y plantas son mucho mds pronunciadas que las diferen cias entre plantas.A medida que la ciencia de control de malezas se ha desarrollado, la necesidad de herbicidas altamente selectivos hacia cultivos espec! ficos se ha increment~do. Para poder hacer uso de las propiedades selectivas de herbicidas, es necesario conocer a fondo los factores que contolan el grado de selectividad, Factores que determinan selectividad Es importante entender que selectividad es un témino relativo ya que todos los herbicidas selectivos pueden perder dicha propiedad a dosis alta~ y/o bajo ciertas condiciones. As! por ejemplo, es univer• salmente conocido que el 2.4•0 se utiliza para el control de malezas de hoja ancha en maíz. Sin embargo, dosis excesivas ( más de 2 kilogramos de ingrediente activo por hect4reas (kg ia/ha) en postemerge!!, c14 y cuando el ma!z tiene más de 15 centímetros de altura y est4 cre ciendo activamente, pueden causar daftos severos en el cultivo. De lo anterior se desprende la definición de herbicidas selectivOS como aqu~ llos que a ciertas dosis y bajo ciertas condiciones afectan el crecimiento de algunas plantas y no de otras.Para que un herbicida pueda ejercer su acción fitotóxica, es necesario que ocurra lo siguiente: l. Contacto con la planta 2. Penetraci6n dentro de la planta 3. Movilizaci6n al sitio de acci6n t6xica 4. Ejercer acci6n tóxica afectando procesos vitales.De acuerdo a estas exigencias la selectividad de los herbicidas se puede regular controlando la cantidad del herbicida que entra en contacto con la planta y controlando parcialmente el grado y la rata de penetración del herbicida por medio de aditivos como surfactantes o aceites. De la planta depende la, cantidad y velocidad de penetración del herbicida, su movilización al sitio de acción tóxica y su capacidad de resistir la acción del herbicida sobre procesos vitales.Para que el herbicida pueda llegar a ejercer 8U acc~6n t6xica 80 bre una planta, éste debe sobrepasar una serie de obst4culos (Figura 1).Conociendo estos obst4cu10s en muchos casos se puede controlar la selectividad de los herbicidas. Estos obstáculos o factores que afectsn la selectividad se pueden,c1asificar de la siguiente manera: ftaicos y mec4nicos, ambientales. anatómicos y morfol6gicos y fisiol~ gicos y bioquímicos. •Factores ftsicos y'mec4ñicosSe denominan as! porque La selectividad se puede controlar manipulando el herbicida o el modo de su aplicación. Para poder manipular estos factores se requieren conocimientos ~el cultivo, de las malezas, del suelo y del herbicida. Además, se requieren implementos adecuados para su aplicación. Selectividad física o mec4nica se obtiene con ap1i caciones dirigidas, aplicaciones localizadas, incorporación y colocación de herbicidas, controlando La 'poca de aplicación con relación a la emergencia del cultivo y/o de las malezas, variando la formulaci6n del herbic~da y de acuerdo a las propiedades del suelo.Son aquellas hechas en postemergencia a las malezas evitando al m4ximo el contacto de la soluci6n herbicida con el cultivo (Figura 2).Por ejemplo, la aplicaci6n postémergente denoreamás MSMA* para el control de malezas en algodón debe hacerse en forma dirigida ya que si la soluci6n herbicida entra en contacto con el cultivo éste puede ser afectado severamente.Denominada así porque la aplicación del herbicida se hace en fo~ roa directa e individual sobre plantas indeseables evitando el contacto de la soluci6n herbicida con las plantas deseables. Ejemplos de e! te tipo de aplicaciones son las aplicaciones localizadas de dala pon para controlar gram!neas indeseables en potreros de grau1neas deseables.* Herban -M FIGURA 2. Aplicación dirigida hacia las malezas para evitar contacto con el cultivo.Por estos métodos se distribuye el herbicida por debajo de la su perficie del suelo de tal manera que el herbicida este en contacto ln timo con las malezas y -'no con el cultivo (Figura Selectividad se obtiene cuando se cons~dera el estado de crecimiento en el cual un herbicida no est6xlco hacia el cultivo. La aplicación del herbicida se efectda antes o después de la germinación del cultivo o las malezas. En aplicaciones postemergentes, el grado de se lectividad o de control varia con el estado de crecimiento de las malezas, En general, entre más pequeftas sean las malezas,más susceptibles son a los herbicidas. Cuando las malezas tienen menos de 5 cent! metros de altura son tiernas mientras que al desarrollarse se vuelven mds resistentes debido a la formación de capas cerosas en las hojas y al desarrollo de un sistema radicular mds profundo.La mayoría de los herbicidas selectivos tienen solo actividad preemergente o postemergente. pero existen otros que tienen tanto ac tividad preemergente como post emergente hacia ciertas plantas.Aplicaciones preemergentes a las malezss y sl cultivo son muy c~ munes y se basan en la resistencia de las semillas y las plántulss del cultivo y a la susceptibilidad de las malezas que germinan al herbicida.En aplicaciones preemargentes al cultivo y postamargentes s las ~ lazas se pueden utilizar herbicidas no aelectivos de contacto como el paraquat. Este tipo de aplicaciones es factible donde se ha preparado el terreno pero la siembra se ha demorado, permitiendo as! que las malezas germinen antes que el cultivo. En terrenos donde abunda el arroz rojo. es posible reducir la población de dicha maleza con este tipo de aplicación. Después de la preparación del terreno ae puede realizar un riego para inducir la germinaci6n e inmediatamente se siembra el cultivo.Las aplicaciones basajas en épocas de aplicaci6n se presentan en el Cuadro l.Aplicaciones preemergentes al cutivo y preemargentes o poetemergentes a las malezas pueden realizarse con herbicidas que actúan en pre y post~ mergencia. Tal es el caso del DNBP en trigo, el cual ejerce un efecto pree mergente y postemergente a las malezas. En papa, el linur6n o DNBP pueden aplicarse preemargente al cultivo y pre o postemargente a las malezas. En donde se realiza un aporque tar.d!o es pOSible 'hacer aplicaciones preeme!, gentes (al cultivo) tardías de estos herbicidas aprovechando su actividsd pre y postemergente. En general, este tipo de aplicación es deseable con este tipo de herbicida debido s que en poste~rgencia la gama de malezas suceptibles es más amplia.Bon de dos tipos. el caso de diur6n Recientemente la atrazina m4s aceite agrícola no fitot6xico se r ha empleado con mucho Exito para el control postemergente de malezas en malz. Este tratamiento, adem4s de ejercer control postemergente permite control residual posterior preeme~ente.Aplicaciones durante la latencia de un cultivo son selectivas debido a que el efecto de algunos herbie!das ocurre principalmente cuando estos se encuentran en perlados de crecimiento activo. Por ejemplo, el 2,4-D es mucho m4e eficaz en dosis bajas en clima calie~ te que en clima frlo debido a la rata de crecimiento de las plantas.En clima caliente el 2,4-D es mucho m4s efectivo durante épocas de . lluvia que durante épocas de eequla intensa, La alfalfa exhibe perí~ dos de latencia durante Epocas de sequía, de temperaturas bajas o en épocas post-corte. En este perlodo de latencia es posible utilizar herbicidas como la simazina, la cual ea t6xica s la alfalfa cuando está en periodo de crecimiento activo.Formulaci6n del berbicida es la manera en que el ingrediente Se tivo viene preparado en forma comercial. Los herbicidas pueden ser formulados como soluciones, emulsiones, polvos mojahles o solubles y granulados.En el caso de herbicidas con estructura hlsica de leidos. éstos pueden ser formulados en soluci6n como sales y aminas o como ésteres concentrados. La manera como los herbicidas est4n formulados afecta su grado de actividad y como consecuencia tsmbién su grado de selectividad, Un caso es el 2,4-D cuyss formulaciones ~steres son más activas y menos selectivas que la formulaci6n amina. En maíz, por ejemplo,la formulaci6n amina causa danos aplicada en postemergencia cuando el maíz tiene mis de 15 centímetros de altura mientras que la formulaci6n éster puede causar daftos severos al maíz cuando éste tiene mis de 10 centimetros de altura.En general, herbicidas formulados como ésteres penetran mis rápido en 6rganos aéreos, los cuales tienen cutícula y capas cerosas, que las formulaciones aminas.Al comparar formulaciones líquidas y granulares la diferencia en selectividad se manifiesta principalmente cuando la aplicaci6n es post~ mergente al cultivo. Si el herbicida se aplica en forma líquida éste es retenido por el follaje del cultivo, al cual puede ocasionar danos, Si el herbicida se aplica en forma granular, los gránulos no son retenidos por el follaje, llegando hasta la superficie del suelo. Aparte de obtener una mayor selectividad, si se desea hacer una aplicaci6n postemergente al cultivo y preemergente a las malezas, el uso de herbicidas granulados en postemergencia permite una distribuci6n mis efectiva sobre la superf! cie del suelo que laa formulaciones líquidas.La actividad de los herbicidAs aplicados al suelo C'na') preen¡eJ:gE!lltes o en presiembra e incorporados o colocados en el suelo es afectada por las características físicas y químicas del suelo. Una de las caracteristicas mds importantes de suelos con relaci6n a la selectividad de herbicidas es su capacidad de adsorci6n. La capacidad de adsorci6n del suelo sfecta la cantidad de herbicida en forma disponible y ademls afeE. ta el grado de su lix1viaci6n. La selectividad depende de la interacc16n entre los siguientes factores: l. Capacidad de adsorci6n Entre mayor sea la capacidad de adsorci6n del suelo mayor será la dosis de herbicida requerida y menor el riesgo de dafto a la semilla del cultivo. Esta capacidad depende de la textura y el contenido de la mat~ ria orgánica del suelo. Suelos arcillosos (suelos pesados) y de alto contenido de materia org4nica requieren dosis altas de herbicidas. Suelos arenosos (suelos livianos) y de bajo contenido de materia orgánica requieren dosis mis bajas de herbicidas para un control efectivo y para evitar dafto al cultivo.Las propiedades f1sico-qulmicas del herbicida influyen en la susce~ tibilidad de adsorci6n de 108 herbicidas. En general, entre mis solubles sean los herbicidas menor será la adsorci6n en el suelo (Tabla 1).Es.tas diferencias en propiedades flaico-químicas de herbicidas influyen en el grado de selectividad de los herbicidas. En general se pueden usar dosis mayores y herbicidas más solubles en suelos pesados (alto contenido de arcilla) y en ~rea8 de lluvia esc~ sa o moderada mientras que en suelos livianos con poca. materia org4nica y en 4reas de alta precipitaci6n se requieren dosis baáas y herbic! das de baja solubilidad para obtener un buen control de malezas y disminuir el peligro de fitotoxicidad al cultivo.Factores ambientales y su efecto sobre selectividad de herbicidas. '.Las condiciones ambientales son de mucha importanc.ia en la selectividad de herbicidas. Los factores ambientales que influyen en el gra do de selectividad de un herbicida son; temperatura, agua disponible, humedad relativa y luz. Eatos factores y la interacci6n de ellos infl! yen en la selectividad de un herbicids debido a su efecto directo Sobre el herbicida y su efecto sobre la morfología y fisiología de la planta.Dentro de ciertos l!mites, a medida que aumenta la temperatura del ambiente y del suelo, .. yor ser' la rata de crecimiento de las plan tu y .. yo.r seril la actividad del herbicida. Por debajo del límite, el herbicida pierde actividad mientras que por enci .. del límite•se aumenta su actividad, y este aumento puede reducir su selectividad.El efecto de temperatura sobre la actividad de un herbicida depende de las propiedades físico-químicas del herbicida. Herbicidas de alta volatilidad aplicados en cultivos en for.a dirigida pueden causarle da-Uos a temperaturas elevadas. Es el caso de formulaciones de ~,4-D ester que pueden causarle mds dafto a cultivos de trigo o .. rz que las aplicaciones de 2,4-D amina cuando hay temperaturas elevadas durante y después de la aplicaci6n. Esto se debe a la .. yor actividad de la formulac16n ester a temperaturas elevadas y a una rata de crecimiento .. yor de las plantas. El 2,4-D Y otros herbicidas\" hormonales\" pueden perder su selectividad hacia cultivos como trigo y .. ía cuando éstos estin en la etapa de desarrollo rápido. Eato se debe a la ausceptibilidad de tejidos activos o meristemdticos a estos productos. En el caso del maíz, el efec to es sobre los meriste.as en los nudos, Cuando éstos son afectados causan la caída del maíz y en consecuencia los nudos afectados permanecen en condiciones fr4giles durante el desarrollo del cultivo, Con nudos fr! giles, el maíz es susceptible a volcamiento excesivo durante ventarrones. En trigo el efecto se .. nifiesta como \" aplastamiento\" cuando la aplica~ ci6n se hace antes del macollamiento del cultivo y cuando Be realiza de~ pués de macollamiento completo, el dafto se manifiesta en deformaci6n de las espigas.La capacidad de penetraci6n se puede deber a un crecimiento rilpido con temperaturas elevadas, durante el cual los 6rganos nuevos de la pla~ ta permanecen tiernos, sin dep6sitos normales de cutícula o cera en las hojas. Bajo estss condiciones la penetraci6n de _ChOS herbicidas se f!, cLlLta o acelera, Un ejemplo del efecto de temperatura sobre el grado de selectividad de un herbicida hacia un cultivo es•el delinuron en •trigo. En clima frío el linuron es un herbicida recomendado para control de malezas en trigo. El grado de selectividad es bastante amplio. Sin embargo, este mismo producto en la misma dosis y el mismo cultivo, en • clima caliente (Valles de Cauca y To1ima, Colombia) pierde toda su se lectividad llegando a causar del 80 a lO~ de mortalidad del trigo.Por otra parte, también puede ocurrir pérdida de selectividad con te~ peraturas muy bajas. Como por ejemplo, en el caso de que la selectiv! dad del herbicida se base en su metabolismo dentro de ia planta, con temperaturas bajas la detoxificaci6n del herbicida podría ser demasia do lenta y como resultado el cultivo podría ser afectado.El agua influye en el grado de selectividad de un herbicida de diversas maneras. Por ejemplo, la interacci6n de solubilidad de un herbicida, su capacidad de ser adsorbido en el suelo, la cantidad e intensidad de la precipitaci6n y la textura del Buelo en una regi6n.Bon factores importantes¡ así en regiones de baja precipitaci6n, la selectividad es posible con herbicidas solubles. En regiones de pr~ cipitaci6n elevada la selectividad se puede obtener con herbicidas de baja Solubilidad.El agua disponible influye en la rata de crecimiento de plantas y en la dureza fisiol6gica de ellas. Bajo condiciones 6ptimss de agua disponible y otros. factores de crecimiento presentes, la rata de crecimiento es más elevada. A medida que el agua disponible disminuye, se establece en la planta un estado fisio16gico menos activo. Bajo e!. tas condiciones la susceptibilidad de la planta puede variar, cuando la selectividad se basa en la habilidad del cultivo de recuperarse después de dafto leve. Si el cultivo sufre de marchitamiento durante y después de la aplicaci6n de los herbicidas el cultivo no estar~ en condiciones de recuperarSe normalmente. Si el otro extremo ocurre, d~ mas Lada agua (suelos lIupersaturados). las raíces del cultivo sufren debido a la falta de oxígeno. Bajo estas condiciones el cultivo no puede recuperarse debidamente después de la aplicsci6n de estos herbicidas.La morfologta y la snatomta influyen en la selectividad de un herbicidad hacia la planta desde el punto de vista del contacto del herbicida con la planta, su penetraci6n y eventual translocación o movimiento hacia el sitio de acc16n t6xica.Los factores morfo16gicos de mayor importancia que influyen en la retención y penetración de un herbicida son: forma de la planta, posición de la hoja y área foliar, pubescencia, depósito de cera ylo cutícula en las hojas y distribución del sistema radicular.La forma de la planta (erecta, postrada, etc.), la posición de lS8 hojas y el área foliar influyen en la cantidad de herbicida inte~ ceptado y retenido durante aspersión o postemergencia.Plantas postradas con hojas anchas en posición horizontal y con Un área foltar abundante (ejemplo: hatati11a, Ipomea spp) interceptan y retienen una mayor cantidad del herbicida que plantas erectas, con hojas angostas en posición vertical y de .!Irea foliar reducida.La presencia o ausencia de pubescencia en los órganos aéreos de la planta influyen considerablemente en el grado de selectividsd de un herbicida. Este factor influye en la cantidad de la solución herbicida que entra en contacto directo con, la superficie de la planta., Entre III!. yor sea la pubescencia menor ser4 el contacto íntimo entre las gotas de la solución herbicida y la superficie foliar.La superficie foliar está cubierta por una capa cerosa y por la cuticula. Estas capas constituyen un obstáculo a la penetración del herbicida y varían en su. características y espesor de acuerdo a la especie de la planta y al estado de crecimiento de la planta.De los factores anat6micos la posici6n de los meristemas terminales y laterales y la distribuci6n del sistema vascular SOn los más impo~ tantes. La posición del meristema terminal o la presencia de merhtemas secundarios o laterales.ineluyen en el grado de selectividad de un herbicida. Las gramíneas, por ejemplo, tienen un merlstema secunda rio en la base de la hoja y en los nudos. Plantas dicotiledones s contienen un meristema continuo lateral a lo largo del tallo (cambium), como estos meristemas son zonas activas de crecimiento, ~stas tienden a acumular sustancias. En el caso de las plantas gramíneas las susta~ cias se acumulan en estas zonas y 4nicamente permiten el paso de cantidades limitadas de herbicidas. De esta manera, dnicamente uno o dos meristemas secundarios son afectados y el meristema terminal no es expuesto al herbicida.Las dicotiledoneas o plantas de ''hoja ancha\" no contienen dichos \"nudos\"o•meristemas secundarios sino que contienen el cambio o merilltema lateral continuo a 10 largo del tallo. Estos no conatituyen una barrera física al movimiento del herbicida. Este tipo de plantas contienen yemas (meristemas secundarios) además del cambio, las cuales son afectadas a medida que el herbicida es movilizado hacia los meri~ temas terminales. De esta manera tanto los meristemas secundarios como los meristemas terminales son afectados con dosis excesivas de algunos herbicidas. En maíz el 2,4-D afecta los nudos y estos impiden el paso del herbicida hacia los «pices. La posici6n del meristema terminal y de meristemas secundarios es de gran importancia para la sobrevivencia de especies. Aquellas que los tienen expuestos y por encima del suelo son, m4s susceptibles a la aplicaci6n directa del herbicida (dicotiledóneas). Muchas gramíneas tienen el meristema terminal bien protegido por órganos vegetativos o por debajo del suelo.Despu~8 de que el herbicida ha entrado en contacto con la planta, penetrado y movilizado, ~ste debe poder ejercer su acción tóxica.En general las plantas que absorben herbicidas f4cil~nte son más susceptibles que aquellas en las cuales la absorción se dificulta. En plantas leftosas, por ejemplo. la rata de absorción del 2,4,SaT por las hojas está directamente relacionada con su susceptibilidad al herbicida (D1Vis F. S., R. W. Brouj, and M.G. Merble, 1967. Foliar Uptake of herbicides in woody plants -Effect of lighe, concentratión, and species, Forest Science~: 164-169).Cuando la penetración es por las ralees, las formulaciones'aminas y sales penetran más fácilmente que las formulaciones 'ster. Esto se debe a que la cutlcula y las capas cerosas tienen propiedades lipoidea y las formulaciones 'sleres son lipoflliticas y las formulaciones sales y am! nas son hidrofilicas.En la cebolla el desarrollo de una capa cerosa excesiva permi,te el uso de una solución herbicida de ácido sulf~rico. Esta solución, al 10%, es rechazada por el cultivo pero es capaz de ejercer su acción tóxica sobre las malezas, La distribución del sistema radicular influye en el grado de selectividad de un herbicida. En general, plantas con raíces pro.undas toleran un mayor número de herbicidas aplicados al suelo. Este tipo de selectiv! dad depende de la solubilidad del herbicida, su sdsorbabi1idad, la cant! dad e intensidad de precipitación y de la textura y materia orgánics del suelo.Una vez que el herbicida ha penetrado dentro de la planta, 'ste debe ser movilizado al sitio de acción, En algunas plantas la estructura anatómica p.ede servir de factor de selectividad al obstacu1izsr el movimiento del herbicida en la ruta desde su penetraci6n a la planta hasta su sitio de acci6n. Por ejemplo, hay herbicidas que se movilizan únicamente por el 'f1oema ,y hay otros que 10 hacen úni~8mente por xi1sl118. Surfactantes son aditivos con propiedades detergentes y emulsif! cantes. Tienen propiedades lipofílicas e hidrofílicas debido a la nat~ raleza de las moléculas. Debido a esta propiedad lipo e hidrofílica •. el surfactante reduce la tensiÓn superficial de soluciones. Cuando este efecto se traslada a la interacci6n entre una soluci6n herbicida y la superficie de la hoja, el efecto del•surfactante es el de crear un contacto más íntimo entre las dos fases. En caso de pubescencia sobre la hoja, el surfactante permite que la soluci6n la traspase y entre en contacto directo con la superficie foliar. En el caso oe capas cer2 sas y cutículas, el surfactante facilita la penetraci6n del herbicida a través de estas barreras ejerciendo su poder lipofílico a través de la capa cerosa y a través de la porción lipofílica de la cutícula y ejerciendo su poder hidrofílico a través de la porci6n hidrofílica de la cutícula.Cuando la selectividad del herbicida hacia una planta se debe a la penetración del herbicida, el surfactante puede reducir la select! vidad como en el caso de MSMA en trigo. De aquí la importancia de !!Q. MIENDE SU USO. Cuando se desea ampliar la actividad del herbicida sobre un complejo de plantas, y cuando no existe el peligro de perder la selectividad hacia el cultivo, el aurfactante puede emplearse.Algunos herbicidaá requieren \"activacil.ln\" o una transformacil.ln a una forma t6xica de la mo14cula. Inicialmente la mo14cula herbicida es inactiva o de muy baja actividad. El ejemplo más c0m4n es el de dcido 2,4-diclorofenoxibutilico (2,4-DB) el cual tiene una actividad herbicida relativamente baja. Sin embargo, entre plantas dicotiled6neas (boja ancha) existen algunas que tienen un sistema activo de 0xidacil.ln beta. En otras 4ste funciona pero es lento. Por ejemplo, la alfalfa es un cultivo que es capaz.de oxidar el 2,4-0B a 2.4-0(Figura 5) pero el proceso es lento y el'2,4-D no se .llega a cumular en concentraciones t6xicas. MUchas malezas particulares a este cultivo son susceptibles al 2,4-DB porque acumulén cantidades tóxicas de 2,4-0.En este caso dosis excesivas de 2,4-08 o condiciones ambientales favorables a la transformaci6n del 2,4-D8 a 2,4-0 p~eden afectar el grado de selectividad. TambUn es de lIIUcha importancia preveer la capacidad de nuevas variedades del cultivo que puedan ser capaces de ha cer una conversi6n rdpida. La activaci6n de herbicidas fuera de la planta también es un fa~ tor de selectividad importante. Por ejemplo, aplicaciones p08temergen-, tes de la sal s6dica de 2,4-diclorofenoxietilosulfato (2.4-0ES) no d~ flan al cultivo de maní, adn cwando el producto entra en contacto con el follaje mismo. Sin embargo, este producto es transformado por proc~ sos químicos a una forma activa preemergente (Figura 6).12,4-DB I ,INACTIVOCI -0 0 -C~:-, e -OH + C~e -OH el ¡r----. . . . Es ~s comun la detoxificaci6n de herbicidas como factor de selectividad que su activación. En este caso la molécula herbicida es tóxica en la forma en que se aplica y la selectividad depende de la capacidad de la planta de convertir la molécula tóxica a una forma no tóxica.La selectividad del propanil en arroz se debe a la capacidad de detoxificación enzi~tica de las molécQlas herbicidas por parte del arroz (Figura 7). Malezas susceptibles a este herbicida (Ej. Echinochloa colonum) carecen de este proceso enzimdtico y son afectados por el •herblclda.La selectividad del propani1 hacia el arroz puede ser alterada por insecticidas orgánicos fosforados y por insecticidas carbamatos. Aplicación de dichos insecticidas pocos días antes, durante o pocos dlas después de la aplicación del propanil interfieren con el proceso enzimdtico de detoxificsci6n y resultan en pérdida de selectividad del herbicida hacia el arroz.En maíz la atrazina y la simazina también pueden ser deactivados enzimdticamente. El proceso de detoxificación esta controlado por una enzima (hidroxamato c1clico, Figura 8).FIGURA 8. Detoxificación de aimazina en maíz.La producción de la enztm. responsable de la detoxificación de las triazinas en maíz est4 controlada gen'ttcamente por un gene domi nante, Cuando él gene ~ecesivo ae manifiesta, como ocurre en ciertas variedades de maíz, el cultivo pierde su capacidad de detoxificar el herbicida.La selectividad fisiológica tambi'n puede ocurrir debido a la adsorción del herbicida por proteínas y otros compuestos celulares o por la acumulación de los herbicidas en órganos celulares inertes c~ mo las vacuolas. En otros casos la selectividad. fisiológica se debe a que la mol'cula herbicida no interfiere en lo absoluto con el pro~ ceso o los procesos vitales de ciertas plantas, o sea que aunque pe~ netre dentro de la planta y sea distribuido en la totalidad de la planta, no altera ningdn ~roceso fisiológico. obtiene ~ ciertas dosis y bajo cIertas condiciones. Todos los herbi cidas pierden su selectividad fuera ~e ciertos l!mites y bajo cLertas condiciones. Son muchos los factores que influyen en la selecti vidad de un herbicida y conociendo bien dichoS •factores, las propie dades del herbicida y las caracteristicas del cultivo los herbicidas pueden ser usados con seguridad y con 4xito. El éxito de los métodos modernos de control de malezas en fo~ me selectiva, radica en el poder que adquieren cantidades minimas de herbicida para cambiar el metabolismo de las malezas, de tal manera que se impida su crecimiento y desarrollo sin afectar los cultivos. Todos los herbicidas actúan sobre algún proceso fisiol6gico de las plantas y hoy en d1a se conoce bastante sobre estos efectos.Como es de esperar, todos los productos dentro de un mismo grupo qulmico funcionan de una manera similar; asl por ejemplo, al entender el efecto de atrazina en una maleza, también se sabe c6mo actúan la aimazina, la ame trina y la prometri.na puesto que todos pertenecen al grupo de las triazinas. Esto facilita bastante el est~ dio de este tema que a simple vista parece diflcil y confuso.A grandes rasgos, se puede catalogar la acci6n de los herbicidas en seis etapas, seg6n el proceso fisio16gico que afecte: l.La fotoslntesis • 2, La slntesis de leidos nuclélcos.La respiración y la formaci6n de AIP.La germinac16n y la formaci6n de ralees.Las membranas.•6. Las protelnas.* Especialista en control de malezas Slntomas de dafto Todos los herbicidas aplicados en cultivos tienen selectivl. dad relativa, es.decir que son selectivos a ciertas dosis y bajo ciertas condiciones ambientales. La aplicaci6n de una sobredosis del producto, por ejemplo, ocasionarla dafto al cultivo y éste se presea• ta de acuerdo al modo de acci6n del producto. Es asl que una sobreda sis del linuron en 80ya causa clorosis en las hojas del cultivo debl do a que este producto inhibe la fotolintes!1 dentro de la planta. Por lo tanto, un conocimiento de los modos de acci6n capacita al agt6 nomo para poder identificar danos ocasionados por los herbicidas.Se debe destacar que son muchas las posibles causas que oca• sionan extraftos slntomas en los cultivos y casi nunca se dificulta separar los 8lntomaa de deficiencias nutricionales, enfermedades, i~ ssctos, temperatura alta o baja, herbicidas, incompatibilidad entre pesticidas u otros factores. En el presente estudio se pretende ayu• dar al reconocimiento de los síntomas más t1picos de loa herbicidas, segOn las categor1as ya presentadas. ,Es importante tener en cuenta porque a veces se observa dafto por herbicidas. Las causas más comunes de fitotoxicidad de herbicidas en los cultivos son : l. 7. 8. 9. 10.Residuos de aplicaciones anteriores.Lixiviación por mucha lluvia o riego.Acarreo del producto por viento.Aplicaci6n dirigida mal hecha.Herbicida muy soluble aplicado en el suelo arenoso. Contaminación de la aspersora por otro producto.Muchas veces se encuentra que hay un complejo de estos fact~ res y no es ficil echar la culpa a uno solo.Herbicidas que afectan la fotosintesis. La fotos1ntesis es el proceso mágico en el cual las plantas transforman la energia solar en formassprovechables para el hombr~ Existen tres grupos de herbicidas capaces de interrumpir este proceso causando la muerte de las malezas.Las triazinss, üreas sustituidas y uracilos. Los herbicidas de estos grupos bloquean la reacci6n Hill e impiden la pr~ ducciOn de energia. Todos tienen actividad en preemergencia; son ~ nos tOxicos y menos selectivos al aplicarlos en postemergencia. Se ha observado que despuls de aplicar estos productos muchas malezas no logran emerger. indicando que adamAs actúa sobre otros procesos fisiol6gicos de las plantas. En el caso de dafto causado por estos he~ bicidas. aparece primero una clorosis en las mlrgenes de las hojas ia feriores. Si el dano es fuerte, la clorosis se vuelve necrosis y puede afectar el rendimiento del cultivo.b)Los bipiridilios. El paraquat es el herbicida más cono cido en este grupo químico. Su' aeci6n es violenta y no selectiva : mata cualquier tejido verde. Dentro de la planta se transforma en un radical el cual reacciona con una molleula de oxígeno para producir agua oxigenada CHa02). Este nltimo es capaz de destruir los cloroplastos en poco tiempo, explicando porqu6 se pueden observar los efectos del paraquat en la planta pocas horas después de la apl1 caci6n. No tienen ninguna actividad en preemergencia debido a que la molécula'es un ion con cargas positivas, las cuales reaccionan inmediatamente con la fracci6n orgAnica y mineral del suelo inactivando totalmente el herbicida. Los síntomas de dafto conllevan a una necrosis en yo 'periodo de 24 bores posterior a ln aplicaci6n. No afecta los troncos de 108 árboles ni ningún otro material vegetal que no tengan cloroplastos. Es un producto de contacto que no se translocaa tejidos no tratados.e) Los triazoles. Este grupo de herbicidas también afecta la fotos1ntesis pero de una menera indirecta. Act4a sobre el proceso de formaci6n de cloroplastoa y BU acci6n es lenta. Lo'primero que se observa después de la aplicac16n es que el nuevo material que produce la planta en los puntos de crecimiento brotan totalmente blancos debido a la ausencia de cloroplastos. Estos productos son más efectivos contra gram1neas y ciper4ceas que contra malezas de hoja ancha. Mata las plantas por la falta de alimentos, resultado de la ausencia de cloroplastos; es sistémico y capaz de moverse por los estolones y rizomas de malezas perennes.Herbicidas gue afeptan la sintesie de 'cidos nucléicos.Aqu1 se encuentran los productos conocidos coma herbicidas , hormonales. Se refiere a los que en bajas concentraciones producenefectos similares a la hormona natural de las plantas, al Acido ind~ lacético (AIA).En el caso de 108 herbicidas, se aplican a dosis mucho mayores que la concentraci6n normal de AIA, y por ser hot:mÓnas sintétiesa, la planta no es capaz de controlar la trenslocaci6n ni los efe~ tos fisiol6gicos de estas sustancias. Este grupo incluye al 2,4-D; 2,4,5-T, MCPA; dicamba y picloram. A pesar de ser uno de los primeros herbicidas selectivos encontrados en el mundo, se sabe relativamente poco sobre su sitio de acci6n. Investigaciones realizadas en los 6ltimos anos indican que es sobre la sintesis de Acidos nuc1éicos. Adamas, afecta la respiraci6n, transpiraci6n. toma de nutrimentos, divlsi6n celular y otros procesos dentro de la planta. El efecto esde estimulaci6n del crecimiento, por eao se dice que la planta trat~ da \"crece hasta la muerte\". indicando que trata de crecer tanto que se agotan las reservaa de energ1a y la planta se muere.Los herbicidas hormonales casi siempre se aplican en posteme~ gencia. Su acci6n es sIgo lenta, segOn el estado que desarrolle la planta en el momento de la aplicaci6n; las plantas pequeftas mueren m4s pronto que las más grandes. En gramíneas los s1ntomas de dafto pu~ den ser torcimiento del tallo y \"encebollamiento\" de las hojas j6venes, retraso en el desarrollo de las raíces y la parte aérea y defor-maci6n de la hoja bandera y de la espiga. Puede aumentar la presión celular en el meristema, haciendo que la planta sea mis susceptible al volcamiento durante vientos fuertes 6 por contacto f1s1co con cultivadores 6 azadones. Este 6ltlmo efecto es común en ma1z y sorgo; generalmente desaparece después de 10 a 14 dlas.• Los s1ntomas en especies de hoja ancha son distintas. Las h~ jas pueden responder en dos formas. Una se llama hiponastia y se refiere a mayor crecimiento por el envez que por el haz de la hoja. El picloram frecuentemente produce este s1ntoma. El otro se denomina epinastta y corresponde al efecto opuesto: mayor crecimiento por el haz que por el envez de la hoja. El 2,4-D Y 2,4,5-T pueden ocasionar• este efecto en muchas especies de hoja ancha. Normalmente los puntos de crecimiento y hojas j6venes se ven mas afectadas que los tejidos ya maduros. Puede provocar el torcimiento de los tallos, espec1alme~ te en especies herbáceas.En algunos cultivos (algodón y uva por ejemplo) las hojas j~ venes salen deformadas en forma de \"pata de rana\". Muchos de es tos productos se formulan como esteres y por lo tanto son muy volátiles.Cultivos como tabaco, uva y tomate son altamente susceptibles a es -Cos herbicidas y aún a los vapores. Normalmente los cultivos de gramineaa son resistentes a los herbicidas hormonales pero todos los cultivos son susceptibles en el estado de floración.Herbicidaa gue afectan la formaci6n de AIP y la respiración. La respiraci6n es simplemente la combustión de azúcares con la formaci6n de C02, agua y energia. Ciertos herbicidas actOan de tal forma que no interfieren con la combustión pero no deja que la energia se conserve en una forma utilizable por la planta, sino que se pierde como calor. Los productos DNBP, ioxinil. propanil y nitro fen han sido reportados a ejercer su efecto t6xico de esta manera.En este caso, no se puede describir slntomas tlpicos puesto que cada producto mencionado pereenece a un grupo qulm1co diferente y no existen slntomBs comunes a todos estos.Herbicidas gue afectan la! membranas.Estas estructuras controlan el flujo de iones, agua, nutrimentos y otras sustancias de una c'lula a otra. Al daftarlas, la plá~ ta pierde control sobre este flujo y se puede morir. As1 act6a el aceite aromático, el propanil y el MSMA en las plantas.El caso del propani1 merce ser mencionado debido a que es uno de los pocos productos en que se conoce el mecanismo de selectividad. En cuanto al arroz, act6a una enzima hidrolltica capaz de degradar la mol~ula de la siguiente manera: La 3,4-dicloroanalida no posee ninguna actividad tÓxica para el arroz, Tampoco afectar1a las malezas pero afortunadamente estas no son capaces de hacer la misma transformaci6n de la molécula original del propanil, permitiendo que ejerza su acci6n t6xica. Se puede observar que algunas insecticidas presentan incompatibilidad con el propanil en el cultivo de arroz; la enzima previene la degra-daci6n de1propani1, 10 que rasulta t6xico para el arroz y de al11 la recomendaci6n de no aplicar estos tipos de insecticidas siete dias antes ni 15 d1as despu6s de la aplicaci6n del propanil.Herbicidas gue afectan la germinaci6n y crecimiento de las ra1ces.Principalmente son los herbicidas de tres grupos qu1micos que obran de esta forma: los tiolcarbamatos, dinitroanalinas (bencenaminas) y acetanalidas •. easi tod08 los herbicidas son preemorgentes 6 de presiembra incorporados, aunque algunos car~matos se pueden ap11 car en postemergencia, lo mismo el propanil que es acetamida.Ás1 mismo 108 tres grupos son particularmente efectivos contra malezas gram1neas y 108 tiolcarbamatos incorporados también dan excelente control de ciperAceas. En cultivos de gram1neas 108 daftos se presentan como torcimiento de las hpjas y arrugamiento de estos, más inhibiciÓn en el desarrollo de las ratees en las• dlcotiled6neas. Los tiolcarbamatos tienden a inhibir más el crecimiento del coleópt1 lo de las plAntulas más que de las ra1ces. Estos efectos probablemea te se deben a la inhibici6n de la divisi6n celular, y en el caso de los tiolcarbamatos, a. los trastornos causados en el metabolismo de ácidos nuc1éicos 6 protetáas.Es interesante notar que a pesar de que el efecto principal del producto puede manlfestarseen las ra1ces, el sitio de absorci6n para muchos de estos herbicidas es el cole6ptilo (parte aérea 6 \"shoot\") • Herbicidas guu afectan las prote1nas.Las protelnaa son indispensables para todos los seres vivos; algunos herbicidas pueden afectar la s1ntesis de protelnas o'destruir las ya formadas de tal manera que se produzca la muerte de las malezas. El grupo más estudiado es el de los herbicidas alifáticos (dala pon y TCA) y aparentemente el ¡lifosato ( un producto orgánico nitr~ genado no c1c1ioo) actúa sobre la sintesis de un aminoácido.El TCA se emplea en los laboratorios para precipitar las pr~ teinas solubles debido a que este compuesto destruye la estructura tercia de la prote1na igual a lo que sucede cuando se calienta la clara de huevo. Qu1micamente el dalapon es muy parecido al TCÁ y pr~ bablemente actúa en forma similar dentro de las plantas.El TeA posee actividad l'reemergente y postemergente mientras que el dala pon y glifosato son netamente de uso postemergente. Todos controlan en forma especial las gremineas; son sistémicos, que se mu~ ven rápidamente a los sitios de nuevo crecimiento. El glifosato tra• baja en forma excelente en especies perennes que tiene estolones 6 rizomas debido a su gran movilidad dentro de la planta. AdemAs eontr~ lan muchas malezas de hoja ancha.Los slntomas aparecen lentamente, seg6n la dosis aplicada y las condiciones ambientales. Las plantas se vuelven clor6ticas. lu~ go necr6ticas y fiDalmente mueren. El dalapon deforma las yemas j~ venes en gram1neas y a veces produce torcimiento en los tallos. Las plantas tratadas con una dosis subletal de glifosato pueden quedar enanas para sieaq>re.En res(imen se puede decir que el modo de acci6n de los he!;. bicidas es muy variable pero dentro de un mismo grupo qulmico exiL te gran similitud. Al entender estos modos de acci6n resulta m4s f4cl1 identificar s1ntomss extraftos que se pueden presentar en los cultivos. Es de enfatizar que un herbicida, empleando las indica ciones del marbete al pie de la letra, casi nunca ocasiona dafto, Igualmente se ha relacionado el s1ntoma de dafto con el modo de acci6n debido a que ambos aspectos est4n 1ntimamente relaci~ nados. Al entender c6mo actúa el herbicida fisio16gicamente. se sL br4 que tipo de sintomas de dano es el m4s probable a presentarse. Se refiere a las fallas que concretamente se•presentan con los equipos de aspersi6n en los que es necesario tener en cuenta todas y cada una de las partes que los componen; entender su funcionamiento y tener claro que al fallar un accesorio por pequefto que sea produce un desequilibrio general en el equipo. Se debe hacer énfasis en que las personas responsables deben c~ noc:er muy bien el funcionam!.entoy el uso prActico de todos y cada uno de los accesorios de los 4iferentes equipos de asper si6n.Puesto que el agua es el principal diluyente la efectividad de una aplicaci6n es afectada por el agua utilizada. Los varios aspectos por los cuales puede fallar el agua son: a. Calidad l. Aguas sucias. Aguas muy turbias pueden anular totalmente la efe~ tividad de los pro!iuctos COlllO en el caso del Gramoxone (paraquat).Igualmente ocasiona un mayor desgaste de algunas patteJI de la .. petsora, 2. Aguas duras. Aguas calcAreas o ferragill8sas pueden afectar la solubilidad del herbicida causando su Sedimentaci6n. Esta si~ tuaci6n se presenta pr~ncipálmente con aquellos productos cu ya parte activa contiene tadicales 4cldos.b, Cantidad Volúmenes de agua menores o mayores de los necesarios. pueden cau~ sar desuniform!dad en la aplicac16n o dlsminuci6n en la retenci6n de la soluci6n pot las hojas. La cantidad necesaria de agua estA influenciada por la época de aplicaci6n :1) Suelo :2) Follaje :Incluye laa aplicaciones de productos preemergea tes y presiembra. incorporados para los cuales se recomienda en general, un volamen entre 150 y 300 litros por hect4rea.Se refiere a las aplicaciones efectuadas como 109 Es necesario tener precauciones con el uso de mezclas de herbicidas e insecticidas. fertilizantes. funglcidas y compuestos adi tivos ya que aunque se' pueden obtener efectos sinerg1sticos. tam bien puede presentarae serios problemas de incompatibilidad. Un ejemplo de incompatibilidad ocurre con el Stam• F-34 (pfOpanil) y los insecticidas orgánicos fosoforados y carbamatos. Igual cuidado se debe tener con los surfactantes pues si bien aumentan la efectividad de ciertos herbicidas, también causan serios problemas de to-Xicidad.Al mezclar herbicidas, principalmente-polvos mojables y aceites es muy importante la forma de preparar la soluci6n. Drimero debe disol verse bien el producto en agua y luego agregar el aceite pues si el polvo mojable entra en contacto primero con el aceite se formarán grumos insolubles.Cuando se trate de mezclas entre herbicidas debe verificarse su co~ patibilidad para evitar problemas de sedimentaci6n. El principal problema ae presenta cuando se mezclan polvos mojables con emulsiones o herbicidas de diferante formulaci6n. En general, los herbicidas con. igual formulaci6n son compatLblea.Los factores ambientales tienen marcada influencia en la efe~ tivldad y aplicaci6n de los herbicidas y aunque hasta el momento algunos de 61los no son controla bies por el hombre. si deben tenerae en cuenta para. realizar las aplicaciones en loa momentos en los cuales su efecto sea 6ptimo y no perjudicial. La distribución de la aspersi6n es afectada por un exceso de viento. El efecto del viento aumenta con la volatilidad del producto y puede ocasionar perjuicios en cultivos susceptibles cercanos, es preferible no efectuar aplicaciones cuando la vel~ cidad del viento sea mayor de 10 kil6Metros por hora.P~a contrarrestar el acarreo causado por el aumento en la velocidad del viento ae le puede dar cierta elasticidad al patrón de aspersión disminuyendo la presión, aUlllentando el tamaflO de las boquillas y/o . la altura del aguilón.Temperatura.Temperaturas elevadas pueden a. Aumentar la toxicidad del producto hacia el cultivo. b. Interferir la translocaci6n del herbicida por marchitez de malezas. c. Inactivar los herbicidas por volatilización o degradación en el suelo. d. AUlllentar la actividad de algunos herbicidas postemergentes permitiendo disminuir 8US dosi8. Ej. DNBP 2.4-D. Temperatur.bsjas pueden disminuir la actividad de los herbicidas debido a una menor rata de crecimiento de las malezas. Ej. el 2.4-D en cUma fdo. Se recomienda efectuar las aplicaciones cuando la temperatura esté entre lSoC y 32°C.Las pérdidas en la efectividad de los herbicidas en relación con la textura del suelo pueden 'resumirse de la siguiente manera: en suelos livianos se puede presentar mayor pérdida por lixiviación y en suelos pesados por degradación microbiana relacionada dire~ tamente con el contenido de materia orgánica. 'También es afecta da por excesos de acidez, alcalinidad y presencia de sales cal cAreas o ferraginosaa. En general se recomiendan las dosis bajas para suelos livianos y las dosis altas para los suelos ps sados.IV.Con frecuencia se presentan problemas respecto a la selectividad de los herbicidas a cultivos. Dicha selectividad puede ser parcial para algunas variedades de un miamo cultivo: Ej. el G~ saprim (atrazlna) causa fitotoxicidad en ciertas variedades de ma1z y sorgo.También pueden presentarse fallss cuando se realizan aplicacio nes en épocas o estados de crecimiento no adecuados. La mayoria de los herbicidas se aplican en una época determinada o en un estado de crecimiento definido.En el caso de Vern4n y de Treflln que se aplican unicamente en presiembra; Herban ( norea) y Lazo (alaclor) s610 en preemergencia; Stam F.34 y Gramoxone en postemergencia; DSMA aplicado en postemergencla dirigido cuando el cultivo tiene determinada altura. Son muy escasos los matamalezas que pueden aplicarse en momentos diferentes a los recomendados, por ejemplo, los pr~ duetos antes mencionados aplicados en época diferente present~ rAn resultados de menor efectividad y selectividad.Respecto a los surfactantes, aunque pueden aumentar la efectiV!.. dad de ciertos herbicidas no quiere decir que el uso del surfaa tante siempre.es necesario y ventajoso. El empleo inapropiado del aurfactanllil puede destruir la acciÓn selectiva de un herbic! da causando fitotoxicidad al cultivo o un control deficiente de las malezas. Esta 6ltima situaci6n puede deberse a que una ráP! da penetración inicial del surfactante mataria los tejidos con los cuales entra en contacto impidiendo la posterior transloca• ci6n del herbicida.En las recomendaciones de herbicidas es importante tener en cuea ta la poblaci6n de maleaas existentes ya que ningún herbicida selectivo controla todo tipo de malezas. Comu~nte ocurre que al eliminar la competencia de las malezas predominantes toman importancia las malas hierbas sec1,lndarias. Este problema se agudiza cuando no se realiza un control inicial de una de las especies de malezas predominantes. Un ejemplo de esta situación es la siguiente : en determinadas regiones de la Costa AtlAntica, la maleza predominante en el cultivo de malz es el coquito (Cyperus rotundua) pero al controlarla se desarrolla una série de malezas de hoja ancha que pueden llegar a ser mAs perjudici~ les que el coquito. Otro aspecto importante es el de que a medi da que aumenta el crecimiento de las malezas disminuye la suace~ tibilidad al herbicida, por lo tanto el estado ideal de control postemergente es cuando las malezas tienen de 2 a 3 hojas. Es importante anotar. que las malezas perennes son mAs resistentes a los herbicidas que las anuales. Otra interferencia por las ~ lezas es el caso de aplicaciones pos teflll!rgentes cuando la dens!, dad de cobertura impide una eficaz distribuci6n del herbicida. VI.Frecuentemente se presentan casos en los cuales la calidad delos herbicidas se ha afectado en forma tal que su poca efectlv1 dad trae consecuencias antiecon6m1cas para los usuarios. Generalmente esta situaci6n estA bastonte relacionada con dos aspe~ tos principales: tiempo y lugar de almacenamiento.En cuanto al tiempo de almacenamiento se recomienda no usar prj2 duetos que hayan permanecido almacenados por mAs de un ano pue¡ to que, al caeo de un tiempo determinado, lentamente empiezan a degradarse o .edimentarse lo cual anula su actividad.Respecto al sitio de almacenamiento, un producto al aire libre expuesto a la humedad, luz y temperatura inicia rápidamente la degradación.Debe preferirse comprar el herbicida sólo durante el ano en que se utilizará. Si los matamalezas se tiene.n en 81macenamie~ to procucar tenerlos en un lugar seco, a temperatura no mayores de 25°C, en envase sellado y separados de los demás pesticidas. Una vez que se ha seleccionado el herbicida apropiado a las condiciones de suelo, tipo de malezas y cultivo, el pr6xtmo paao es la selecc16n de una formulaci6n apropiada. Esto Gltimo muchas veces representa la diferencia entre éxito y fracaso. AdemAs, la aplicaci6n y el manejo del producto depende del tipo de formula ~ ci6n y por 10 tanto el conocimiento de aspectos básicos sobre fo~ mulaciones es necesario para un uso apropiado.En general, por formulación entendemos la preparaci6n de productos qulmicos para su uso práctico. El tipo de formulación pu~ de influenciar la precisión de la apUcaci6.n. la efectividad del con. trol, la selectividad de ciertos herbicidas, la facilidad de manejo y lo que es mas importante aún, el costo del tratamiento.Los herbicidas son aplicados oasi siempl\"e en forma l1quida ,( pulverizaciones ) 6 s61ida, tal Como gránulos. Algunos fumigantes como ei bl\"DmUl\"O de metilo son apltcados en forma gaseosa. Las formu laciones liquidas compl\"enden soluciones acuosas, liquidas solubles an aceites, polvos mojables, polvos solubles. concentrados emulsionables, suspensiones ( flotables), emulsiones invertidas y encapsul~ dos. Los sOlidos son formulados como granulal\"es 6 como gdnulos solubles en agua. En muy pocos casos ae usan fOl\"mUlaclones en polvo.Se deben considerar val:'ios factores en la decisi6n de oómo formulal:' un determinado ingl:'ediente activo, ellos son : a)Las pl:'opiedades flsicas y qu1micas del hel:'bicida. La solubilidad del compuesto en val:'ios solventes es de mayal:' importancia y la volatilidad puede también in-fIuil:' (' ) determinal:' el tipo de formulaciOn a emplear. Grandea aumentos en el costo de solventea y emulsificantes en loa IUtimos aflos ha cambisdo el panorama con reapecto a los co!!. centrados emulsionables. El costo relativo de la formulaci6n talvez no sea muy importante en cultivos de alto valor. pero para cul tivos que producen bajos beneficios. esto puede ser muy importante en cuanto a la aceptaci6n por parte del agricultor.En este tipo de formulaci6n el ingrediente activo puede ser fécilmente disuelto en aaua 6 aceite (solventes 6rgauicos). forman. dq una verdadeFa soluci6n. Una 801uci6n es una mezcla homOgénea for~ mada al disolver una 6'''s sustancias (s61tdo, liquido 6 gas) en otra sustancia. El compuesto que se disuelve es llamado soluto y la sus~ tancia en la cual se disuelve se denomina solvente.En el caso de herbicidas solubles en agua el fabricante pu~ de proceder a disolver el compuesto en agua y venderlo como caneentrado para ser diluido luego por el usuario. En general, el herbicida debe ser soluble por lo menos en un 25 por ciento 6 sea aproxi~ damente 1/4 de kilo por litro de agua para que pueda ser vendido ca mo concentrado. Hay muchos ejemplos de este tipo de formulaci6n incl~ yendo el 2,4-D amina, Banvel (dicamba) y Tardan (picloram).Los herbicidas solubles en agua también Í'uede¡;¡ser vendidos como s61idos en polvo para luego ser mezclados con agua •. Aditivos pueden ser agregados a lqsproductos solubles en agua para mejorar su aplicaci6n y efectividad.C0m6nmente se agregan humectantes y se cuestrantes para impedir la precipitac16n en aguas duras.Generalmente la\"proporci6n de ingrediente activo oscila ent!'e 50 y 80 por ciento y el resto corresponde a los aditivos y diluyentes.La mayor ventaja de los herbicidas solubles en agua es que son relat! vamente baratos y no requieren agitaci6n en el tanque una vez que se han disuelto. Los siguientes problemas pueden presentarse, sin embar~ go, al usar este tipo de formulaciones: a)Pueden reaccionar contra sguas duras, tapando los canos y mangueras del equipo 6 reduciendo la fitotoxicidad del herbicida.El ingrediente activo a veces no penetra en el follaje en forma adecuada. Esto puede ser debido a la excesiva tensi6n superficial propia del agua, lo cual aumenta la posibilidad de formaci6n de cristales en la superf1 cié de las hojas. Esta caracter1stica puede ser deseable cuando la selectividad del compuesto se basa en un remojo diferencial; resulta inefectivo cuando se busca que el tratamiento controle todas las especies 6 si las malezas que se desean controlar tienen considerable c~ bierta de cera. e)El producto puede ser fácilmente perdido por lixivia -ci6n en el suelo. Esto puede ser ventajoso cuando se apl1 ca para controlar malezas perennes con raiees profundas, sinembargo, cuando se pretende una aplicaci6n pre~merge~ te selectiva esto no es deseable. pues puede ser lixivi~ do por el agua de lluvia 6 rieso, causando una pérdida del compuesto 6 dano al cultivo. Las formulaciones de herbicidas solubles en aceite u otros sol ventes orgánicos para los cuales el aceite es usado como portador y no el agua, son poco. comunes. Su uso estA restringido al controlno selectivo de malezas arbustivas, ó al control no selectivo en áreas no agr1colas.Algunos herbicidas no pueden ser disueltos directamente en agua. Sin embargo, pueden ser solubles en solventes orgánicos no p~ lares tales como xilol y luego mezclados con agua para formar una emulsi6n. Una emulsi6n es una mezcla en la cual un liquido es suspendido en pequeftos gl6bulos en otro liquido. El tipo de emulsi6n mAs com6n es tarta representado por gotas de aceite suspendidas en agua. Generalmente cuando mezclamos agua y aceite, las dos fases se 121 ) separan rápidamente. Si alregamos el equlsificante (surfactante) ad~ cuado se formarA una equlsi6n mucho mas estable que la previamente citada. La raz6n de esto es que las moléculas del emulsificante se orientan alrededor de las gotas de aceite como se indica en la si luiente figura. Gota de aceite suspendida en agua para formar una emul-si6n. Las moléculas del surfactante actOan como un emul sificador ayudando a mantener la gota suspendida (impide la coalescencia de las gotas). La porci6n lipof1lica del emulsificante se introduce en la gota de aceite y la hidrof1lica es atralda por el agua, mientras que las gotas que permanecen pequeftas son suspendidas en el agua. Cuando se juntan (c081escencia), forman gotaa más grandes que tienden a separarse del agua. El agente emulslficante evita la coalescencia. La fracci6n bidrofl1ica de la molécula r,pele a las otras de la misma . caracter1stica. por lo tanto mantiene las gotas separadas. \\ Un concentrado emulslonable consiste de un solvente no polar, el herbicida disuelto en dicho solvente y un agente emulsificante. Cuando el concenilNldo emulsionable (CE) se agrega al agna dentro del tanque, se fo~ una emulsi6n estable de pequeftas gotas con el herbicida disuelto en el solvente y dispersas en el agua. El herbicida no ha sido disuelto en el agua, sino que simplemente está sus9endido en agua por estar disuelto en el solvente orgánico.El emulsiflcante actQa pata mantener las gotas dispersas del sol vea , te tal como se present6 en la Figura 1. Se encuentran cientos de concentrados emulalonables en el mercado y se incluyen entre ellos productos tales como el 2.4-D ester, Sutan, Treflan. Lazo y muchos otros.Supongamos que se le entrega a usted una muestra de un coa centrado l1quldo conteniendo un herbicida: c6mo puede usted deter-Minar si es un concentrado emulsionable 6 una soluci6n verdadera? La respuesta es simple. S6lo vierta el contenido en un recipiente con agua' y agite ligeramente. Si se trata de una soluci6n verdadera formará una mezcla clara auncuando pueda ser ligeramente coloreada. El concentrado emulsionable. por otro lado. siempre fo~rá una mezcla lechosa. A prop6sito, leche ss un buen ejemplo de emul-si6n natural donde los g16bulos de grasa son suspendidos en un medio acuoso siendo la case1na el emulsificante. Una de las condiciones para poder formular un compuesto co mo concentrado emulsionable es que sea soluble en solventes no-po-, lares. Una solubilidad de por lo menos 12 por ciento es necesaria para prodUCir econ6Micamente un concentrado emulsionable. La mayor parte de ellos contiene alrededor de 25 por ciento de solubilidad y algunos llegan hÍlsta un 80 por ciento. 123 Los concentrados emulsionables postemergentes penetran la porcibn de cera de la cut1cula de las hojas mejor que las otras formulaciones. Esto implica mas efectividad contra malezas dificiles de controlar, pero también menos selectividad que otras formulsciones.Pueden ser aplicados con aguas duras sin reacciones adversas. Es menos probable que sean lavados del follaje por la lluvia o por riego de aspers16n. Son menos abrasivos para las bombas y otras partes del pulverizador comparados con 108 polvos mojables y permanecen suspendidos en el tanque por periodos cas largos que estos. Sinembargo,debe tenerse en cuenta que la emuls16n es una suspensi6n y como tal re -q~iere alguna agitaci6n para mantenerse liquida.Algunas veces un nuevo herbicida no es suficientemente sol~ ble en agua ni en solventes orgAnicos y en tales casos puede ser finamente molido para formularse COIllO polvo mojable. Se define como polvo mojable, aquel que forma una adecuada suspensi6n en agua.La formulaci6n se obtiene al vertir el producto técnico en un material inerte como arcilla y se agrega un humectante y un dispersante a la formulaci6n. El humectante ayuda a mojar el producto t~cnico cuando se agrega al agua, de manera que no flote en ella. El dispersante hace que las particulaa ae dispersen en la fase acuosa. El tlpico polvo IIIOjable de 50 por ciento de ingrediente activo puede contener 42 por ciento de arcilla, + 2 por ciento de humectante, +2 por ciento de disperssnte, +4 por ciento de impurezas, +SO por ciento de ingrediente activo.Los polvos mojables no son soluciones sino suspensiones y por lo tento se necesita considerable agitaci6n para evitar precipitacibn. Por ejemplo, t.&ginemos limo suspendido en el agua de un rio. Mientras se mantenga la turbulencia, los s6lidos permanecerán en 8uspensi6n, pero al parar la agitaci6n el s6lido se precipitarA.Los polvos mojables generalmente tienen menor actividad f~ liar. Cuando se aplican al suelo requieren activaci6n por medio de lluvia 6 de riego. Tienden a ser abrasivos para la8 bombas y boqu1 llas. Debido a que por lo general continen alto porcentaje de ingrediente activo y no' se necesitan ni solventes ni envases metAli cos, logrando as1 que el conto por unidad de ingrediente activo tiea da a ser mas bajo que muchas otras formulaciones.Los polvos mojables deberAn ser mezclados con una pequena cantidad de agua para formar una pasta antes de mezclarlos con el . agua de tanque. Esto favorece la dispersi6n en el agua as1 como as~ gurar el mlximo de producto técnico en suspensi6n.Esta formulaci6n consiste en concentrados de s6lid08 6 11 quidos suspendidos en un l1quido. Los mas comunes contienen el herbicida finamente molido y suspendido en agua. Puede ser considerado como una pasta preparada de antemano y envassda para ser agreGada al tanque. Puesto que es una auspensi6n, ea necesario agitar bien el recipiente antea de medirlo.-En este caso la fase discontinua es el agua y la continua es el aceite, obteniéndose un producto .imilar a mayonesa. La ventajade este tipo de formulaci6n es la reducci6n del rastre del productofrecuente en aplicaciones atreas 6 otro tipo de aplicaciones que pu~ den resultar en excesivo desplazamiento del producto fuera de la zona deseada.En este caso, pequeftas cantidades de herbicida son contenidos en cápsulas, los cuales posteriormente se suspenden en liquidos. Este concentrado puede sed mezclado con agua y aplicado con una aspersora cOllllin.El objetivo de esta formulaci6n es obtener una liberaci6n con trolada y lenta del herbicida por un cierto perlodo de tiempo para prevenir una excesiva p6rdida por evaporaci6n, lixiviaci6n 6 degrad~ ci6n ..Formulaciones granulares contienen de 2 a 20 por ciento del herbicida en~forma de gránulos para ser aplicados. Se los prepara impregnando el herbicida de materiales inertes tales como arcilla, residuos vegetales (marlos 6 cáscaras de nueces, etc.h Las part1cu-las son cernidas de tal forma que la mayor parte está entre un talll:! Ha de malla de 15 y 40*. El equipo necesario para aplicar granulados es mas barato que el utilizado para pulverizaciones.Los gránulos pueden pasar sin adherir a la cubierta vegetal en aplicaciones postemergentes y llegar fácilmente al suelo. Pueden liberar herbicidas durante cierto perlado lo cual en ciertas circu~ tancias puede ser deseable. El desplazamiento fuera del área deseada es mlnimo.y el herbicida no tiene que ser soluble en agua 6 otros sol ventes.El costo, sinembargo, tiende a Ber mayor cuando se compara con otras formulaciones. La uniformidad de distribuci6n es generalmente inferior a la obtenida con otras formulaciones puesto que los grAnulas pueden rodar 6 ser llevados por el viento hacia el centro de los surcos, lo cual aumenta la concentraci6n en esta zona.Los herbicidas que requieren relativamente mas agua para su activaci6n en el suelo, pueden ser menos efectivos cuando s. los apll ca como granulados.En esta formulaci6n las particulas son mas grandes que los * Cuadrados por pulgada linear, la que los diferencia de los polvos mojables cuyo tamafto también esta alrededor de una malla 300 (40 m). grAnulas y se los emplea < para tNtamientos de manchones. Muchos pell!, ts son formulados en materiales solubles en agua tales como boratos que en lugar de tmpregnar'el herbicida en materiales inertes e insolubles, tales como en los granulares, tienen ademAs las mismas ventajas y desventajas de loa granulares.Es el término aplicado a la parte del producto que es responsable del efecto herbicida. En formulaciones s61idas se expresa Como porcentaje. Un polvo mojable puede contener 80 por ciento de ingre diente activo, en cambio un granulado contiene un cuatro por ciento, La concentraci6n de herbicidas cuya forma activa es un ácido, se expresa generalmente como .equivalente ácido. Equivalente ácido se aplica al rendimiento te6rico en 4cido, de un ingrediente. activo.Tomando como ejemplo el 2,4-0, este puede ser activo en forma del ácido, sin embargo, por varios razones la forma ácida puede ser cambiada a salo estero En este caso. la sal 6 el ester se consideran como el ingrediente activo de la formulaci6n, sin embargo las recomen daciones .se basan en el número de moléculas de Acido por hectárea en lugar del número de mbléculas de sal 6 estero Se recomienda entonces la dosis en kilogramos de 2,4-0 ácido por hectArea en lugar de kilogramos de 2,4-0 éster. Una molécula de 2,4-0 ester. puede ser considerablemente mas pesada que una molécula del Acido. Por 10 tanto, si recomendamos •un kilo de ingrediente activo por hectAres aplicar1amos considerablemente menos moléculas que si la recomendArámos en eguiva S.Al calibrar SU aspersora, descubre que hay una descarga •de 600 L/ba a una velocidad de 6 Kl'K Y una presi6n de 40 lb/pulg 2 • Qúé deberá hacer para reducir la descarga? a ) _ 500 l/ha 6.Un agricultor viene a su oficina con una muestra de una maleza nueva en su regi6n. El dice que hay bastante en su campo de ceb~ da y quisiera controlarla pronto. Qué le preguntar!a y qué le r~ comendarla ?Usted tiene un campo de 12 hect4reas de yuca y piensa aplicar una mezcla de Lazo l1li.8 Karmex (1.5+ 1.0 kgia/ha). Tiene una as persora con un tanque de 300.L de capacidad. La aspersora está calibrada para descargar 240 l/ha. Usted es extensionista y un yuquero viene a su oficina a consul tarle lo siguiente: piensa sembrar S ha de yuca y las malezasprincipales son Amaranthus dubius (bledo), Buphorbia hirta (leche leche), Digitaria ,anguinalis(guardaroc10) Calaia ~ (bicho) y Eleusine indics ( pata de gallina). AdemAs 2 ha estAn infestadas de Cyperus rotunduft (coquito). Qué progrsma de con trol de malezas le recomendarla? 10. Se debe hacer una aplicaci6n dirigida del Gramoxone al 0.5X (v/v) en un lote de yuca de 80 dlas para combatir una invasi6n de gramlneaa en las partes bajas del lote. La aspersora diaponible esuna de espalda de 16 litros de capacidsd. ","tokenCount":"21768"} \ No newline at end of file diff --git a/data/part_3/5955347748.json b/data/part_3/5955347748.json new file mode 100644 index 0000000000000000000000000000000000000000..9e45457241e05a6a520275ea7d96999935d66d3a --- /dev/null +++ b/data/part_3/5955347748.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"557960ebc90776173f8e901496ee30ae","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/cee71721-6090-40da-9f19-eee31b233a8c/retrieve","id":"1944036922"},"keywords":[],"sieverID":"8ecf98be-7a13-480b-b80b-c192dec5f4da","pagecount":"10","content":"The successful completion of this work was made possible through the generous financial support of the CGIAR Research Initiative on Transforming Agri-Food Systems in West and Central Africa (TAFS-WCA) and the Clim-ARM project. Additionally, we wish to express our sincere appreciation for the technical support extended by the Alliance of Bioversity International and CIAT. Their expertise proved instrumental in guiding and shaping the trajectory of this work, ultimately leading to its successful realization.At the 16 th National Agriculture show that was held at Mulindi show ground in Kigali city from 20 th to 29 th July 2023, farmers, agribusinesses, and stakeholders were excited about the CGIAR booth that was showcasing practices and technologies from research to enhance livelihoods at the household level. The National Agriculture Show is a yearly event organized by the Ministry of Agriculture and Animal Resources for farmers, agribusinesses, research institutions, agroindustry, finance institutions and other stakeholders to showcase technologies, innovations, solutions to challenges and best practices in the agriculture sector. The theme of this year's Agrishow was: \"Transforming Agriculture into a Resilient and Competitive Sector through Technology, Innovation and Investment\". The event was a great platform that brought together exhibitors and visitors to exchange information and experiences to fast track agriculture modernization.CGIAR, the Consultative Group for International Agricultural Research, is a worldwide collaboration that brings together international organizations engaged in research about food security. The primary focus of CGIAR's research is to reduce rural poverty, enhance food security, improve human health and nutrition, and foster the sustainable management of natural resources.CGIAR centers invest in technological and institutional innovations, partnerships, capacity development, and policy engagement to contribute to Rwanda's agricultural transformation. These efforts are aimed at not only addressing existing agricultural challenges but also fostering sustainable development and enhancing food security within the country. CGIAR centers showcased research products, projects, programs and technologies. The Clim-ARM project employs a multidimensional approach that combines all experts in the agriculture sector to leverage data insights from various sources to gain a deeper understanding of the complexities and vulnerabilities of the agricultural sector in each district. One of the key outputs of the Clim-ARM project is the development of blueprints specific to each district. The blueprint will serve as practical roadmaps for addressing climate risks and implement risk management tools tailored to the unique characteristics and challenges faced by farmers and agribusiness in those districts.The district-specific blueprints will serve as essential tools to guide policymakers, investors, and agribusinesses in making informed decisions to build climate-resilient agricultural systems. With the potential to transform the agricultural landscape, the Clim-ARM project stands as a radar of hope for sustainable and climate-resilient agriculture, fostering a more secure future for smallholder farmers and the entire country's agricultural sector. Developing digital tools in agriculture in Rwanda is a promising endeavor that can significantly improve agricultural practices, increase productivity, and enhance resilience to climate change.The Digital Agroclimate Advisory mobile application (DACA) and the Agro-cares soil scanner are set to provide farmers with both knowledge and information necessary to adapt their farming practices to changing climatic conditions, reduce climate-related risks, and improve agricultural productivity and livelihoods. These technologies play a crucial role in providing accurate soil, crop and climate related information needed for informed decision making.For example a farmer can choose the best crop for a specific location and the climate smart agriculture practices to use in a given season by simply relating climate information (for example, the onset, seasonal rainfall amounts and seasonal length) with crop characteristics like how much water a crop needs and how long it takes to grow through the DACA app. Additionally, to maximize crop productivity, the status of soil nutrients is provided, including soil PH, organic carbon, total nitrogen, total phosphorus, potassium, and Cation Exchange Capacity (CEC). An Agro-cares soil scanner device is used to assess the soil parameters since it can instantly identify/determine the nutrients present in the soil. These soil parameters are converted into advisories for crop management using the mobile-app.During Agri-show 2023, the functionalities of these technologies coupled with informative pullup posters were showcased to both visitors and interested exhibitors from other stands. Individuals and groups of attendees had the opportunity to spend around 10 to 15 minutes exploring and conversing with the exhibitors to gain insights into the uses and applications of these innovations.Following explanations, visitors took the initiative to share their newfound knowledge with others, bringing them to the booth and encouraging them to also learn about these technologies. As visitors left the booth, they expressed intentions to apply the acquired knowledge to improve their agricultural activities. The provided images display the interactions between visitors and CGIAR representatives engaging in discussions related to the application and use of the DACA app and the Agro-cares soil scanner device.CIAT staff explaining how efficient Digital Agroclimate Advisory (DACA) mobile apps works.CIAT staff explaining how bundling of climate, crop and soil information through the use DACA app and soil scanner can enhance agricultural resilience against extreme weather events and their related risks. Photo: N. Ntwari (CIAT)In the closing ceremony of the exhibition, the minister of agriculture and animal resource thanked everyone who contributed to the Agri-show in one way or another. He particularly commended the 16 th Agri-show 2023 for providing an opportunity to showcase the latest advancements in agricultural practices, technology, and research. The Agri-show has provided a platform for farmers to learn from one another, exchange knowledge, and embrace modern techniques that promote sustainability and productivity. Furthermore, he emphasized the importance of encouraging youths to actively participate in agriculture sector. Young farmers and Agrientrepreneurs have demonstrated the potential to shape the future of agriculture in Rwanda. With their innovative ideas, it is possible to achieve both food security and the preservation of our environment for the benefit of future generations.","tokenCount":"960"} \ No newline at end of file diff --git a/data/part_3/6002537415.json b/data/part_3/6002537415.json new file mode 100644 index 0000000000000000000000000000000000000000..733eeed70316fe44590d99f685e2005590b15483 --- /dev/null +++ b/data/part_3/6002537415.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"b3f4165c3c19a61aadd65002a75cdf78","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/2b64ba17-f07e-4bac-8936-90b9414e5a8d/retrieve","id":"1450535492"},"keywords":[],"sieverID":"89443e6b-cecf-4c96-b2a0-e87b7ba3562f","pagecount":"1","content":"Rice production in Africa has been steadily increasing over the years driven by a growing population, changing dietary preferences, and continuous efforts to enhance food security on the continent. However, local production covers only 60% of the current demand, resulting to ~ 14-15 MT rice importation. Recently, the Remote-sensing based Information and Insurance for Crops in emerging Economies (RIICE, http://www.riice.org/) is being introduced across Africa to enhance the rice monitoring system. RIICE technology is a public-private partnership aimed at strengthening food security and reducing the vulnerability of small rice farmers, by providing timely and accurate information on rice crops and supporting the design of crop insurance schemes to protect farmers against potential crop losses due to natural disasters.❑ The pre-processing steps which convert the multitemporal SAR data into terrain-geocoded backscattering (σ 0 ) values and optical data into normalized difference vegetation index (NDVI) are fully automated in MAPscape-RICE software.❑ The stack of multi-temporal backscatter (σ 0 ) and NDVI images are then analyzed together with calibration dataset and then used as input into a rule-based rice classification [1].❑ The accuracies are assessed by comparing the ground observation (validation data) and the classification on the maps using a standard confusion matrix.❑ A combination of Synthetic Aperture Radar (SAR, Sentinel-1A) and Optical (Landsat 8/9, Sentinel-2) images are being used to derive rice area, start of season (SoS), and leaf area index (LAI) maps.❑ The rice mapping process involved three main steps: pre-processing, classification using a ruled-based detection algorithm, and accuracy assessment (Figure 1). ❏ The output SoS map and LAI derived from SAR are used as one of the inputs to yield estimation.❏ Rice-YES assimilates RS products (particularly LAI and SoS) into ORYZA model while coordinating non-remote sensing data according to target spatial location to generate pre-harvest and endof-season yield maps [2].❏ ORYZA crop growth model estimates yield using processed-based approach accounting for variety, weather and soil parameters and agronomic management practices [3].❏ The rice area and yield estimate outputs are aggregated at specific administrative level and agreements with official statistics are obtained. ","tokenCount":"341"} \ No newline at end of file diff --git a/data/part_3/6020855582.json b/data/part_3/6020855582.json new file mode 100644 index 0000000000000000000000000000000000000000..4b01b7c321bdc154e1629d30220d568f20b1f688 --- /dev/null +++ b/data/part_3/6020855582.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"e7ad6a1781ef138b0708096eb73188b2","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/bb6aba8a-87f0-42c7-b58a-daf38e61edf8/retrieve","id":"658828540"},"keywords":[],"sieverID":"d54b1c7d-62be-40b1-9c0d-7ee283a1e225","pagecount":"2","content":"C ommon bean (Phaseolus vulgaris L.) is the most important pulse crop in western Kenya, second only to maize as a food crop. The farming system is characteristically subsistence with a mixture of crops, livestock and trees. Low yields and small farm sizes mean that farmers in this region are not self-sufficient in food and also rely on off-farm employment, remittances, and the export of male labour. Hence, many households are female-headed.In the late 1980s and early 1990s, the western Kenya districts of Kakamega and Vihiga experienced an increase in incidence and severity of bean root rot disease resulting in recurrent crop failures. As a result many of the farmers stopped growing beans. The outbreak was caused primarily by a complex of fungal pathogens whose increasing damage of beans was associated with the evolution of farming systems under high human population pressure. Reducing household land area led to intensified land use, continuous cropping, low use of agricultural inputs, declining soil fertility and a build-up of the soil-borne pathogens. In response to the root rot crisis, the Kenya Agricultural Research Institute (KARI) at Kakamega, the Centro Internacional de Agricultura Tropical (CIAT), and the Extension Department of the Ministry of Agriculture collaborated on an accelerated programme to identify suitable root rot-resistant bean varieties.Using farmer participatory evaluation approaches five bush bean varieties (KK8, KK14, KK15, KK20, and KK22) and five climbing bean varieties (Umubano, Gisenyi 2-Bis, Flora, Puebla, and Ngwinurare) were selected from germplasm introduced from Rwanda. The climbing beans were introduced as a new technology to intensify bean production, together with complementary soil management options (such using organic and inorganic inputs for integrated root rot control). The 10 varieties were multiplied and their seed disseminated through farmers, especially women groups with the facilitation of Organic Matter Management Network (an NGO), KARI and the extension services of the Ministry of Agriculture. Growing of the root rot resistant varieties subsequently achieved widespread adoption.The main objective was to conduct people-focused impact assessments that would show how introducing root-rot-resistant bean varieties improved poor people's well-being in a sustainable way. Information was collected on the rate and extent of the adoption and the effects of these improved varieties on farmers' livelihoods.A formal survey of 225 households was carried out in 2001 and data was collected by several methods, including participatory rural appraisal (PRA), formal surveys of farm households and bean traders, group discussions, impact diagramming (a farmer participatory tool) and a structured questionnaire. Descriptive statistics were used to assess proportions and magnitudes of socio-economic variables, while partial budget analysis provided a relative indication of profitability and the contribution of the new bean varieties to farm incomes. At the aggregate level, the economic surplus model was adapted to assess ex post net economic benefits accruing from the adoption of the improved bean varieties. The intensity of adoption was used to provide insights on the factors affecting technology adoption and the resulting impact. A stakeholder feedback meeting was held in 2004 to validate the study's results.Of the 10 varieties, three bush bean varieties (KK22, KK15, and KK8) were adopted by 35%-80% of the farmers. Only 8%-18% of farmers adopted climbing beans, because they were considered too labour-intensive, requiring staggered harvesting and staking. Other factors that discouraged the adoption of climbing beans were a shortage of stakes, bird damage, and difficulties in intercropping with maize.No one bean variety, whether introduced or local, had all the attributes farmers preferred. Hence, to compensate, most farmers grew more than one variety. The study also showed that when farmer participatory approaches were used to evaluate and disseminate the improved bean varieties, their adoption and the proportion of area planted to them were enhanced. Farmers use a complex set of criteria to select the bean varieties they grow so they should also be more closely involved in variety development. Examples of criteria used are maturity, yield, labour intensity, suitability for intercropping with maize, culinary qualities and taste, shelf life, market demand and prices, as well as disease resistance.Farmer characteristics also influenced the adoption and intensity of adoption of improved bean varieties. For example, most (76%) households that had adopted the new varieties were male-headed (probably because men are better able to obtain information and access the inputs needed to adopt the technology). Likewise, poorer households tended to adopt the technology, because it was simple and could be tailored to available resources, with results observable within a short period of time.The new bean varieties had impact on five areas: food security, household income, varietal diversity, firewood use and commercialisation. For example,We gratefully acknowledge financial support from CIDA, SDC, the Rockefeller Foundation and USAID through PABRA. The views expressed are not necessarily those of these agencies.the varieties improved food security in both districts for almost all the surveyed farmers, that is, one third of the farmers in both districts had more beans to eat throughout the year and, consequently, their health and income improved.While local varieties are expected to continue being displaced by the introduced ones, many of the surveyed farmers plan to continue planting local root rot-susceptible varieties. So, far from eroding varietal diversity, the introduction of root rot-resistant bean varieties appear to have increased varietal diversity, giving farmers the option of growing a combination of new and local varieties to meet their farming constraints and objectives.Economic models tend to emphasise only those benefits that can be valued in monetary terms, ignoring such major non-financial gains as reduced labour in searching for food, firewood savings, health benefits and advancements in farmer knowledge. These gains cannot usually be traded in the market and thus, cannot be easily captured by an economic surplus model.Changing from sole maize cropping to maize-bean intercropping, using the most preferred local bean variety (Alulu) resulted in a marginal rate of return (MRR) of 370%. For the most widely adopted improved bean variety (KK 22), MRR was 697%. These results confirmed that growing maize in association with improved beans is overwhelmingly advantageous, compared with planting maize as a sole crop. The survey of local markets showed that the farmers were commercialising the farming of introduced bean varieties, using the extra income for short-term consumption and investments such as food, household items and schoolrelated expenses.For 10 years, research and development agencies (AHI, CIAT, ECABREN, FARMESA and the government of Kenya) had invested KSh26 million (US$325,000) to identify and disseminate root-rot-resistant bean varieties suitable for western Kenya. The total benefits from the improved varieties to society will amount to about KSh 4400 million(US$55 million) projected over 20 years from dissemination in 1993. The average annual return to society for the investment is thus KSh 69 to every shilling invested in R&D, with an internal rate of return of 113%!","tokenCount":"1113"} \ No newline at end of file diff --git a/data/part_3/6023140986.json b/data/part_3/6023140986.json new file mode 100644 index 0000000000000000000000000000000000000000..7913bf270ef559aad179caea181e6f5492c18f3e --- /dev/null +++ b/data/part_3/6023140986.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"8078059cc32419ccc129dffac2b736d9","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/07bbe08b-f922-4073-b46d-67a01fd31e15/content","id":"-363611314"},"keywords":["Wheats","biodiversity","germplasm","interspecific hybridization","intergeneric hybridization","hybrids","triticales","plant br eeding. AGRIS category codes: F30; A50. Dewey decimal classification: 631.523 PCR-Polymerase chain reaction. PGM-Phosphoglucomutase. pI-Isoelectric point. PMS-Phenazine-methosulfate. RAPD-Randomly amplified polymorphic DNA sequence. RFLP-Restriction fragment length polymorphism. SDS-Sodium dodecyl sulfate. SKDH-Shikimate dehydrogenase. SOD-Superoxide dismutase. TCCP-Tissue Culture for Crops Project. TEMED-Tetramethylenediamine. 2","4-D-2","4-dichlorophenoxyacetic acid Abdul Mujeeb-Kazi","Head","Wide Crosses Section","Genetic Resources Subprogram","Wheat Program","CIMMYT","Mexico Gene P. Hettel","Science Writer/Editor","Information Services","CIMMYT","Mexico Table 2.2. A synonym list of annual Aegilops /Triticum species (Kimber and Feldman 1987). T. carthlicum = T. turgidum T. columnare = Ae. columnaris T. comosum = Ae. comosa","Ae. heldreichii T. crassum = Ae. crassa","Ae. vavilovi T. cylindricum = Ae. cylindrica T. dichasians = Ae. caudata","Ae. markgrafii T. dicoccoides = T. turgidum T. dicoccum = T. turgidum T. durum = T. turgidum T. juvenale = Ae. juvenalis","Ae. turcomanica T. kotschyi = Ae. kotschyi T. longissimum = Ae. longissima T. macrochaetum = Ae. biuncialis","Ae. lorentii T. monococcum = T. aegilopoides","T. boeoticum","T. urartu T. neglecta = Ae. neglecta","Ae. triaristata (4x) T. ovatum = Ae. ovata","Ae. geniculata T. peregrinum = Ae. peregrina","Ae. variabilis T. persicum = T. turgidum T. polonicum = T. turgidum T. recta = Ae. triaristata (6x) T. searsii = Ae. searsii T. sharonense = Ae. sharonensis","= Ae. longissima var. sharonensis T. speltoides (aucheri) = Ae. aucheri T. speltoides (lingustica) = Ae. speltoides","Ae. ligustica T. syriacum = Ae. vavilovi","Ae. crassa var. vavilovi or var. palaestina T. tauschii = Ae. squarrosa T. timopheevii = T. timopheevii","T. araraticum = T. timopheevii var. zhukovskyi T. timopheevii var. zhukovskyi = T. timopheevii T. triaristatum = Ae. triaristata","Ae. recta","Ae. neglecta","T. rectum T. tripsacoides = Ae. mutica T. triunciale = Ae. triuncialis T. turgidum = T. carthlicum","T. dicoccoides","T. dicoccum","T. durum","T. persicum","T. polonicum T. umbellulatum = Ae. umbellulata T. uniaristatum = Ae. uniaristata T. urartu = T. monococcum T. ventricosum = T. ventricosa Genome Species Optimum technique","difficulty","and availability A T. monococcum Recombination","possible partially unreduced gametes","some genome repatterning b","good availability T. turgidum Recombination","some genome repatterning","good availability T. timopheevi Recombination","genome repatterning","meiotic difficulty c","available T. aestivum Recombination from landraces","some genome repatterning","very good availability C T. dichasians Pairing modification","meiotic difficulty","considerable genome repatterning","poor availability T. cylindricum Pairing modification","meiotic difficulty","considerable genome repatterning","poor availability D T. tauschii Recombination","possible partially unreduced gametes","good availability T. cylindricum Recombination","meiotic difficulty","genome T. ventricosum repatterning","available T. crassum Recombination","meiotic difficulty","considerable T. juvenale genomic repatterning","poor availability T. syriacum G T. timopheevi Recombination","meiotic difficulty","genome repatterning","poor availability M T. comosum Pairing modification or ionizing radiation","meiotic difficulty","T. columnare considerable genome repatterning","poor availability T. crassum T. juvenale T. macrochaetum T. ovatum T. syriacum T. triaristatum N T. uniaristatum Pairing modification or ionizing radiation","meiotic difficulty","T. ventricosum considerable genome repatterning","poor availability"],"sieverID":"262431fd-4869-4816-9317-afa36ee90c7b","pagecount":"165","content":"CIMMYT is an internationally funded, nonprofit scientific research and training organization. Headquartered in Mexico, the Center is engaged in a worldwide research program for maize, wheat, and triticale, with emphasis on improving the productivity of agricultural resources in developing countries. It is one of 16 nonprofit international agricultural research and training centers supported by the Consultative Group on International Agricultural Research (CGIAR), which is sponsored by the Food and Agriculture Organization (FAO) of the United Nations, the International Bank for Reconstruction and Development (World Bank), and the United Nations Development Programme (UNDP). The CGIAR consists of a combination of 40 donor countries, international and regional organizations, and private foundations.CIMMYT receives core support through the CGIAR from a number of sources, including the international aid agencies of Australia,onto wheat chromosomes 5AS and 1BL, respectively, detected with filter 9 and rye DNA as a probe. b) A homozygous 6BS/6RL translocation wheat with 42 chromosomes showing the two rye (6RL) segments as detected under filter 9 with rye DNA as a probe. c) Double labeling on an aneuploid trigeneric hybrid of T. aestivum / Th. bessarabicum//S. cereale with 40 chromosomes. Wheat DNA was unlabeled; Th. bessarabicum and S. cereale were labeled with biotin and digoxigenin, respectively. d) A homozygous rye DNA insert associated with the leaf rust Lr25 gene.viii TABLES Genome designations of polyploid Triticum/Aegilops species. Table 2.5.The genomes of Triticum/Aegilops and their variability for alien gene transfer. Table 3.1.Five synthetic hexaploids selected as resistant to Helminthosporium sativum compared with their durum wheat parents. Table 3.2.Five synthetic hexaploids selected as resistant to Fusarium graminearum compared with their durum wheat parents. Table 3.3.Five synthetic hexaploids that have tested positive for the Na:K discrimination trait associated with salinity tolerance in hydroculture testing compared with their durum wheat parents. Table 3.4.Five synthetic hexaploids selected as resistant to Karnal bunt under the greenhouse screening test. Table 4.1.Some backcross derivatives (BCI) from Triticum aestivum/Thinopyrum elongatum (2n=10x=70)//T. aestivum with aneuploid chromosome numbers and some N-banded chromosome compositions. Triticeae relatives with a promise for salinity tolerance based upon literature reports and collaborative research findings. Table 4.4.Dry weight (g) and Na and K cell sap values (mol/m 3 ) in some wheat cultivars and their alien derivatives under hydr oculture at 50 mol/m 3 , then at 200 mol/m 3 NaCl. Table 4.5.Thinopyrum bessarabicum (2n=2x=14, JJ) disomic addition lines identified on the basis of cytological, morphological, and biochemical markers and tentatively assigned to the seven homoeologous groups of Triticum aestivum L. Table 4.6.Salinity hydroculture screening of some promising wheat/Thinopyrum bessarabicum addition lines with 44 chromosomes and multiple disomics at 150 mol/m 3 NaCl measured after 50 days of full stress. Table 4.7.Triticeae germplasm screened for aluminum tolerance under laboratory conditions in hydroculture with tolerance response (%). Table 5.1.Number of florets pollinated, embryos rescued, and wheat polyhaploid plants regenerated from wheat x maize crosses using three 2,4-D treatment techniques. Table 5.2.Wheat polyhaploid embryo recovery frequencies (%) from Triticum aestivum L.x Zea mays L. crosses under three 2,4-D treatment techniques. Mean chromosome pairing with ranges in parentheses at metaphase I in some polyhaploids of Triticum aestivum L. and T. turgidum x T. tauschii synthetic hexaploids. Table 5.8.Spontaneous doubling in polyhaploids of T. turgidum cv. Ruff'S' x T. tauschii; spikes, seed number, and somatic chromosome counts of three seeds per doubled plant. Table 5.9.Polyhaploid embryo production of three F1 DNA polymorphic crosses between Triticum aestivum (cvs. Buckbuck, Opata M 85, Ciano T 79) and a synthetic hexaploid (T. tur gidum/T. tauschii) using the maize polyhaploid induction system. Table 5.10. Disomic Thinopyrum elongatum additions to wheat variety Goshawk'S' developed by doubled haploidy and identified by isozyme analysis for homoeology. Table 6.1.Data from regenerated Triticum aestivum and T. turgidum plants from callus maintained up to seven months. Table 6.2.Partial data for plants regenerated from Triticum aestivum x Aegilops variabilis callus during different passages (T). Table 6.3.Meiotic associations in hybrids of Chinese Spring (CS) Ph x Aegilops variabilis (13E) with low pairing; of CS ph1b x Ae. variabilis (13E) with high pairing; in a CS Ph x Ae. variabilis (13E) callus-regenerated F 1 with modified increased pairing. Table 6.4.Regenerated plants of F1 hybrid with Ae. variabilis (13E) of Triticum aestivum and T. turgidum showing cytologically doubled progeny. Table 6.5.Some Triticum aestivum x alien species combinations where embryos were excised but could not be differentiated into hybrid plants. Table 7.1.Some isozyme markers identified with isoelectric focusing for alien species with potential of being applied to wide hybridization in the Triticeae. Table 7.2.Biochemical markers that have been identified at CIMMYT using Chinese Spring/Imperial rye addition lines. Table 8.1.Germplasm used for FISH analyses with cytological and origin details. xii PREFACE T he CIMMYT Research Report Series documents specific CIMMYT research efforts and is directed toward technical audiences. Each publication synthesizes the results of research that has usually occurred over an extended period. This report, the second installment in the series, relates the accomplishments of 15 years of wheat wide cross research at CIMMYT. This body of work has been conducted and accumulated by Dr. Abdul Mujeeb-Kazi, head of the Wheat Wide Crosses Section, in conjunction with specialists, who have spent time at CIMMYT or who have collaborated in various ways through their respective centers of excellence in developed and developing countries.The CIMMYT Wheat Wide Crosses Section assists our cereal breeding programs in adding new variability to the wheat gene pool by making crosses between: 1) wheat and the annual grasses within the genus Triticum (interspecific) and 2) wheat and more distant relatives in other genera of the Triticeae tribe (intergeneric). CIMMYT has achieved an international reputation for the production and characterization of these two types of wide hybrids through basic and applied research and by significant scientific reporting in peerreviewed publications and at international symposia. Although relying on established plant breeding techniques, the Section makes use of emerging technologies to better understand genetic relationships and to introgress genetic variability.The research has shown that an alien grass species can be screened for a specific resistance or tolerance to a disease or abiotic stress and then be hybridized with wheat to introgress the desired trait. Alternatively, an alien species can be first hybridized to wheat and then the derivative plants can be screened for the trait.The key to either strategy is wide hybrid production, which normally involves embryo rescue and chemical treatment to double the chromosome number of the resulting hybrid plants. These plants are the critical base from which alien genetic material can be utilized by CIMMYT breeders and others in cereal improvement programs. This report details the outstanding contributions-to-date of new knowledge and techniques emanating from our wide crossing efforts. These include unique approaches to production of wheat polyhaploids involving crosses with maize and Tripsacum, application of tissue culture to demonstrate the potential of inducing genetic variability or alien introgressions, and the use of biochemical and molecular markers to confirm the introgression of alien chromosomes. As explained in the report, we are using isozyme analyses, randomly amplified polymorphic DNA sequences (RAPDs), and in situ hybridization techniques to detect the presence in wheat of inserted chromosome segments and entire alien chromosomes.At the onset of our wide crosses effort in 1979, we did not anticipate producing on-the-farm products as rapidly as we have. Recent releases in Pakistan of salt-and drought-tolerant wheat varieties, derived from CIMMYT's alien genetic material, are products already in the hands of farmers. Wheat lines-arising from our wide crosses work to obtain resistance to spot blotch, xiii a devastating disease of wheat in warmer areas-are being field-tested in a number of countries and will soon be available to farmers. These lines, together with accessions of goat grass (Triticum tauschii) and advanced derivatives of wheat with immune responses to Karnal bunt disease, have been registered as genetic stocks with the Crop Science Society of America. Over the last four years, we have also produced an impressive number (nearly 525) of synthetic bread wheats (durum wheat x Triticum tauschii), which represent another major contribution toward increasing variability in the wheat gene pool. I believe that this Research Report is a major document that provides relevant information in a very challenging area of research and trust that it will stimulate discussion among researchers in the related disciplines.n their effort to meet the increasing worldwide demand for food, plant breeders are finding less and less appropriate germplasm with desired traits among cultivated crops themselves with which to make needed improvements. Fortunately, useful genetic resources (i.e., important traits for use in crop improvement) are being found among uncultivated plants in the wild. As stated in Chapter 1, the challenge is to be able to incorporate this \"new\" germplasm routinely into existing food crops through a technique called wide crossing.Most efforts to transfer alien germplasm from wild plants into cultivated crops have involved the Triticum grass species-with the greatest emphasis being placed on improving bread wheat (T. aestivum L.). Over the past 15 years, CIMMYT has been a part of this endeavor as it has vigorously pursued bread wheat improvement not only with interspecific hybridization (crosses made among annual grasses within the Triticum/Aegilops group), but also with intergeneric hybridization (crosses with wheat using some of the 250 perennial grasses in the Triticeae tribe). The perennials are important because their natural habitats provide the possibility that they could be potent sources of resistance for several biotic and abiotic stresses. Chapter 2 sets the stage for our wide cross efforts by describing the complex genome make-up of the perennials and annuals in the Triticeae. As described in Chapter 2, some perennial species have recently undergone taxonomic readjustments based on new knowledge about their genomes.When utilizing the varied gene pools within other Triticum species for improving bread wheat, a high priority for breeders is to utilize the many alien accessions among these species that have genomes similar to the A, B, or D genomes of bread wheat. This not only makes accomplishing alien gene introgression easier because of genomic similarities, but it is also compatible with field research and sets the stage for a high success rate in accomplishing multiple-gene (polygenic) transfers. Thus, our interspecific work for bread wheat improvement focuses on using these closely related genomes.CIMMYT has been concentrating on exploiting accessions of a wild relative of wheat called goat grass (Triticum tauschii syn. Aegilops squarrosa). We believe this wild relative's diversity and distribution across Eurasia provide a unique opportunity for exploiting novel genetic variability for bread wheat improvement. In addition, T. tauschii, unequivocally accepted as being the grass that contributed the D genome to bread wheat, is attributed to have a wide range of resistances and tolerances to diseases and abiotic stresses.As described in Chapter 3, the best way to exploit T. tauschii variability is to first reliably screen the accessions for desired resistances or tolerances. The selected accessions can then be crossed directly with bread wheat (T. aestivum)-if a program has embryo rescue and chromosome doubling capabilities-or crossed with durum wheat (T. turgidum)-to produce what are called synthetic hexaploids, which can in turn be easily crossed with bread wheat by any conventional breeding program. We have made successful EXECUTIVE SUMMARY xvi crosses between Karnal bunt (Tilletia indica)susceptible bread wheats and several KBresistant T. tauschii accessions. We have identified synthetics that are resistant to spot blotch (Helminthosporium sativum), Septoria tritici, and scab (Fusarium graminearum), which can then be crossed to bread wheat. Several synthetics have shown tolerance to salt stress in initial field screening at La Paz, Baja California Sur, Mexico.To date, we have produced nearly 525 synthetic hexaploids-most involving a unique T. tauschii accession (see Appendix 2)-for use in crosses with bread wheat.The different gene pools within the annual and perennial species of the Triticeae can provide tremendous genetic variability for wheat improvement. However, in contrast to the Triticum/Aegilops group, the species we deal with in our intergeneric crosses are quite diverse genomically and rather difficult to cross with wheat. Even when successfully combined, the resulting hybrids exhibit little or no intergenomic chromosome association. Despite these limitations, significant successes and advancements have been made by centers of excellence over the past 20 years. CIMMYT's principal objectives in intergeneric crosses have been to obtain tolerances to toxic levels of aluminum and salt; copper uptake efficiency; and resistances to H. sativum, F. graminearum, and T. indica. We also anticipate the eventual transfer of other traits such as resistance to barley yellow dwarf virus (BYDV), S. tritici, and Russian wheat aphid (Diuraphis noxia).Hybrids and, in most cases, amphiploids have been produced in crosses between species of the genera Hordeum, Agropyron, Elymus, Secale, Taeniantherum, Eremopyrum, and Haynaldia. The range of new hybrids with more distantly related species is constantly increasing and it is expected that a greater range of genotypes will become available for introgressing novel genetic variability into wheat.Although the CIMMYT Wheat Wide Crosses Section's primary thrust has been to assist CIMMYT breeders in adding new variability to the wheat gene pool through interspecific and intergeneric crosses, it has also contributed a significant body of knowledge on new techniques and applications in plant biotechnology.Over the last four years, we have been able to produce high frequencies of polyhaploid wheat plants using either maize or Tripsacum pollen. Polyhaploid plants are important in our efforts to reduce the number of generations it takes to fix the homozygosity of wheat and other cereal plants. Homozygosity is required in basic research projects, such as our collaborative work with Cornell University to produce RFLP maps of the wheat and barley genomes.CIMMYT has obtained a high recovery of polyhaploid wheat plants from crosses between the wheat cultivar 'Morocco' and CIMMYT maize population 'Pool 9A'. The taxonomic proximity of Tripsacum dactyloides (L.) to maize has encouraged us to evaluate cross combinations involving Tripsacum and wheat (T. aestivum and T. turgidum) and T. turgidum x T. tauschii amphiploids. We felt that Tripsacum could serve as a novel and alternate sexual route for the production of cereal polyhaploids and, indeed, wheat x Tripsacum crosses have resulted in the production of polyhaploid wheat plants of various genotypes.Unlike wheat anther culture or sexual hybridization of wheat with H. bulbosum, genotypic specificity and aneuploidy are absent in maize-and Tripsacum-mediated polyhaploid production, which makes them both superior systems. The potential of stored maize and Tripsacum pollen needs to be explored because it could be a significant factor in extending the use of the methodology to countries where cropping cycles are separated or where adequate facilities are lacking for growing plants under controlled conditions.Tissue culture applications have been essential to the production of complex hybrids within the Triticeae. These techniques will presumably even widen the existing range of hybridization possibilities. CIMMYT has exploited long-term callus culture and regeneration to demonstrate the potential of inducing variability within various groups of the Triticeae for morphological, biochemical, and cytological characteristics. Two operational constraints in intergeneric hybridization are associated with alien gene introgression and amphiploid induction. Callus culture methodology has significantly helped us to overcome these constraints by enhancing chromosome pairing analogous to that characteristic of the Ph locus on chromosome 5B and by inducing amphiploidy in two intergeneric hybrid combinations.Callus culture also: 1) provides advantages in inducing variability in euploid wheat cultivars, 2) facilitates in vitro screening for stress-or toxinproducing pathogens, and 3) furnishes the capacity to alter chromosomes structurally. In addition, callus culture might be used to modify recombination frequencies in otherwise low-pairing complex hybrids as well as facilitate recovery of hybrid derivatives with double the number of chromosomes.Although in some cases we have been using a radical methodology that purposely deemphasizes the confirmation of alien gene introgressions and chromosomal interchanges, the Wide Crosses Section has been somewhat involved in looking at biochemical and molecular markers as means to accomplish such confirmation when it is feasible and/or desirable to do so. Initial identification and characterization of alien introgressions can be done by using relatively inexpensive, less complicated cytological techniques and biochemical markers. Once the material is characterized, molecular markers could be established and subsequently used to detect the presence of minute and harder to detect chromosomal interchanges.Biochemical markers-These marker techniques, which utilize isozymes and seed storage proteins, are applicable in distinguishing alien chromosomes in wheat for both intergeneric and interspecific hybridizations. More than 100 structural genes for isozyme markers have been identified and located on different chromosomal segments in wheat. The major advantage to using isozymes is the speed with which material can be screened because there is adequate polymorphism. Information regarding the homoeology of the alien chromosomes in the addition lines can be ascertained by identifying the genes they possess that are orthologous to sets of T. aestivum genes of which the chromosomal locations are known.This can also be done by studying the ability of the alien chromosomes to substitute for and pair with specific wheat chromosomes.When biochemical markers are first identified, it is necessary to study the banding profiles for a particular enzyme system in the two parental species. When using these markers, analysis of the two parental species and the amphiploid is important in characterizing the alien genetic material. Sometimes the alien species may show a certain degree of polymorphism for a particular enzyme system that results from allelic differences and/or the mutually incompatible nature of the alien species. We can identify markers when the two parental species show remarkably different banding profiles.Molecular markers-Molecular markers are becoming increasingly important in detecting alien introgressions and chromosomal interchanges-especially those involving small segments of alien chromatin in wheat backgrounds. The molecular techniques that CIMMYT uses in the wheat wide crosses laboratory currently include in situ hybridization and Randomly Amplified Polymorphic DNA sequences (RAPDs), which are based on polymerase chain reactions (PCRs). Wide adaptability of in situ hybridization procedures was made possible by the development of nonradioactive labeling techniques.Since it is an important source of salinity tolerance, CIMMYT has used Thinopyrum bessarabicum to produce disomic addition lines. Its combination with bread wheat has allowed us to characterize quite a few biochemical markers. With the objective to develop molecular markers for tracking Th. bessarabicum chromatin in wheat backgrounds and subsequently detect subtle introgressions, we have conducted genomic in situ hybridizations using the amphiploids of T. aestivum cv. Chinese Spring (CS) x Th. bessarabicum. More recently, we have begun successfully exploiting the fluorescent in situ hybridization technique (FISH) to detect alien DNA.We believe that our radical approach of advancing wide hybrids is serving as an important rapid mechanism to get needed germplasm to CIMMYT breeders. With this strategy of leaving scientific questions unanswered-at least for the time being-we have been able to distribute germplasm with needed attributes that had not been obtained by breeders in their conventional programs. To a considerable extent, slower basic research will address questions that we leave unanswered. However, over the last four or five years, we have embarked on a more meticulous methodology with our intergeneric hybridizations that may allow for more basic research later.The structure of the CIMMYT Wide Crosses Section is designed to link plant-level manipulation with cellular and molecular approaches-two aspects that are essential to the program's function and effectiveness. We anticipate that a number of very desirable approaches will subsequently emerge to aid cereal crop improvement. When these research breakthroughs are refined and made applicable, they will find complementary use in wheat improvement and may even have the potential to replace several conventional stages of genetic manipulation.We anticipate that the successful use of wheat polyhaploids will receive greater application in our program as well as in the breeding/ molecular areas. Viable stored pollen may provide an additional boost to the application of the wheat x maize or wheat x Tripsacum techniques for producing polyhaploids. We also expect to obtain wheat polyhaploids-as well as desirable diversification-from sexual crosses with sorghum. And we may be able to extend the procedure to range grasses where analysis of the resulting polyhaploids could help clarify some complicated genomic relationships in the Triticeae.In our 15 years of investigations, we have progressed to a stage that allows us to project a prosperous future. Historically, wide crosses at CIMMYT were not anticipated to yield on-thefarm products in a short time frame nor to provide answers for each and every aspect of development. However, we have had notable achievements in these areas. So, we are optimistic about additional achievements over the next five years. xx se ha reajustado con base en nuevos conocimientos de su configuración genómica.Cuando los mejoradores utilizan los variados complejos genéticos de otras especies Triticum para mejorar el trigo harinero, una de sus prioridades es utilizar en cruzas interespecíficas las innumerables accesiones extrañas cuyos genomios son muy semejantes a los genomios A, B o D del trigo harinero. Esto no sólo facilita la transferencia de genes extraños debido a las similitudes genómicas, sino que también resulta compatible con la investigación en campo y, además, permite alcanzar un alto grado de éxito en las transferencias de genes múltiples (poligénicas). Así pues, en los trabajos interespecíficos orientados al mejoramiento de trigo harinero nos centramos en utilizar genomios muy afines.En el CIMMYT nos hemos concentrado en la explotación de las accesiones de Triticum tauschii, sin. Aegilops squarrosa, pariente silvestre del trigo, porque creemos que su gran diversidad y distribución en Europa y Asia. nos brindan una oportunidad única de utilizar variabilidad genética nueva en el mejoramiento del trigo. Por otra parte, se le atribuye a T. tauschii (que se acepta sin lugar a dudas como la especie que donó el genomio D al trigo harinero) una gran diversidad de resistencias y tolerancias a factores adversos, tanto bióticos como abióticos, que podrían contribuir a mejorar el trigo harinero.Como se describe en el Capítulo 3, la técnica ideal para explotar la variabilidad de T. tauschii en el mejoramiento del trigo harinero requiere que se haga una selección eficaz para encontrar E n el esfuerzo por satisfacer la creciente demanda de alimentos, los fitomejoradores encuentran que entre las especies cultivadas hay cada vez menos germoplasma adecuado con las características que requieren para mejorar los cultivos. Afortunadamente, en la actualidad se están encontrando recursos genéticos (es decir, características útiles en el fitomejoramiento) entre las plantas no cultivadas. Como se menciona en el Capítulo 1, el reto es elaborar, mediante una técnica denominada cruzas amplias, un procedimiento sistemático que permita incorporar este germoplasma \"nuevo\" en los cultivos alimentarios existentes.Las especies del género Triticum han formado parte de la mayoría de los trabajos orientados a transferir genes de otras especies, particularmente, al trigo harinero (T. aestivum L.). En los últimos 15 años, el CIMMYT ha participado en ese esfuerzo, tratando vigorosamente de mejorar el trigo harinero no sólo mediante la hibridización interespecífica (cruzas entre gramíneas anuales del grupo Triticum/Aegilops), sino también la intergenérica (cruzas con trigo en las que han participado algunas de las 250 gramíneas perennes de la tribu Triticeae). Las gramíneas perennes son de crítica importancia debido a que, gracias a los hábitats donde se originaron, podrían ser fuentes de fuerte resistencia a varios factores bióticos y abióticos adversos. El Capítulo 2 establece el contexto de nuestro trabajo con cruzas amplias al describir la compleja configuración genómica de las especies perennes y anuales de las Triticeae. Como se indica en ese capítulo, la clasificación taxonómica de algunas de las especies perennes RESUMEN xxi accesiones con distintas resistencias o tolerancias deseables. Las accesiones seleccionadas entonces se pueden cruzar directamente con trigo harinero (T. aestivum) -siempre que el programa tenga la capacidad de efectuar rescate de embriones y duplicar cromosomas-o con trigo durum (T. turgidum) a fin de producir lo que denominamos haploides sintéticos, que a su vez pueden ser fácilmente cruzados con trigo harinero utilizando un programa fitotécnico convencional. Hemos efectuado cruzas entre trigos harineros susceptibles al carbón parcial (Tilletia indica) y varias accesiones de T. tauschii resistentes a ese hongo. Hemos identificado trigos sintéticos que son resistentes al tizón foliar (Helminthosporium sativum), Septoria tritici y roña de la espiga (Fusarium graminearum) y que posteriormente se podrán cruzar con trigo harinero. Varios de ellos mostraron tolerancia a la sal en la selección inicial en campo realizada en La Paz, Baja California Sur, México. Hasta la fecha, hemos producido casi 525 hexaploides sintéticos, la mayoría de ellos a partir de una accesión única de T. tauschii (véase el Apéndice 2), para usarlos en cruzas con trigo harinero.Los distintos complejos genéticos de las gramíneas anuales o perennes de la tribu Triticeae pueden aportar una enorme variabilidad genética al mejoramiento de trigo. Sin embargo, en contraste con lo que ocurre en el grupo Triticum/Aegilops, las especies que participan en las cruzas intergenéricas son genómicamente muy diversas y bastante difíciles de cruzar con el trigo. Incluso cuando se logra combinarlas, los híbridos que producen muestran poca o ninguna asociación cromosómica intergenómica. A pesar de estas limitaciones, algunos centros de excelencia han logrado avances significativos en los últimos 20 años. Los principales objetivos del CIMMYT en los trabajos intergenéricos han sido obtener tolerancia a niveles tóxicos de aluminio y sal; captación eficiente del cobre, y resistencia a H. sativum, F. graminearum y Tilletia indica. Asimismo, a la larga esperamos poder transferir otras características como la resistencia al virus del enanismo amarillo de la cebada (BYDV), a Septoria tritici y al pulgón ruso del trigo (Diuraphis noxia).Se han producido híbridos y, en la mayoría de los casos, anfiploides entre especies de los géneros Hordeum, Agropyron, Elymus, Secale, Taeniatherum, Eremopyrum y Haynaldia. Va en aumento la cantidad de híbridos nuevos que son producto de cruzas con parientes más lejanos y se espera que pronto habrá un número mayor de genotipos que podrán utilizarse para introducir variabilidad genética nueva en el trigo.Aunque el trabajo primordial de la Sección de Cruzas Amplias de Trigo del CIMMYT ha sido ayudar a los mejoradores del mismo Centro agregando nueva variabilidad al complejo genético del trigo mediante cruzas interespecíficas e intergenéricas, también ha contribuido un acervo considerable de nuevas técnicas y aplicaciones en el área de la biotecnología vegetal.En los últimos cuatro años, hemos podido lograr altas frecuencias de plantas polihaploides utilizando polen de maíz o de Tripsacum. Las plantas polihaploides son útiles en nuestros esfuerzos por reducir el número de generaciones necesarias para fijar la homocigocidad del trigo y otros cereales. Se requiere homocigocidad en proyectos de investigación básica, como nuestro xxii trabajo conjunto con la Universidad de Cornell, cuyo objeto es elaborar mapas de los RFLPs de los genomios del trigo y de la cebada.El CIMMYT ha logrado un alto grado de recuperación de trigos polihaploides en las cruzas entre la variedad de trigo Morocco y el Pool 9A, una población de maíz del CIMMYT. La proximidad taxonómica de Tripsacum dactyloides (L.) al maíz nos ha llevado a evaluar distintas combinaciones de cruzas entre Tripsacum y el trigo (T. aestivum y T. turgidum) y anfiploides de T. turgidum x T. tauschii. Pensábamos que Tripsacum podría proporcionar una forma sexual novedosa de producir polihaploides de cereales y así ha sido, pues las cruzas entre el trigo y Tripsacum han conducido a la producción de trigos polihaploides de distintos genotipos.A diferencia de lo que sucede en el cultivo de anteras de trigo o la hibridización sexual del trigo con H. bulbosum, no hay especificidad genotípica ni aneuploidía en la producción de polihaploides mediada por el maíz y el Tripsacum, lo cual los hace sistemas superiores. Es necesario explorar el potencial del polen de maíz y de Tripsacum que ha estado almacenado porque podría ser un factor significativo para extender el uso de la metodología a países donde los ciclos de cultivo no son sucesivos o donde no existen instalaciones adecuadas para el cultivo de plantas bajo condiciones controladas.Las aplicaciones del cultivo de tejido han sido de vital importancia para la producción de híbridos complejos de las especies Triticeae. Su manipulación presumiblemente ampliará las hibridizaciones posibles actualmente. El CIMMYT ha explotado el cultivo y regeneración de callos a largo plazo a fin de demostrar las posibilidades de inducir variabilidad para características morfológicas, bioquímicas y citológicas en varios grupos de las especies Triticeae. Existen dos limitaciones operacionales en la hibridización intergenérica que están relacionadas con la introgresión de genes ajenos y la inducción de anfiploides. La metodología del cultivo de callos nos ha ayudado grandemente a superar ambas limitaciones gracias a que ha aumentado el apareamiento cromosómico análogo a aquel que es característico del locus Ph en el cromosoma 5B e inducido anfiploidía en dos combinaciones híbridas intergenéricas.Asimismo, el cultivo de callos: 1) nos proporciona ventajas en la inducción de variabilidad en variedades de trigo euploides, 2) facilita la selección in vitro para factores de estrés o patógenos que producen toxinas, y 3) nos da la capacidad de alterar la estructura de los cromosomas. Por otra parte, es posible que el procedimiento modifique las frecuencias de recombinación en híbridos complejos que de otra forma tienen bajas frecuencias de apareamiento y facilite también la recuperación de derivados híbridos con el doble de cromosomas.Si bien en algunos casos hemos utilizado metodologías radicales que deliberadamente no dan importancia a la confirmación de la introgresión de genes de otras especies y los intercambios cromosómicos, la Sección de Cruzas Amplias hasta cierto punto ha estado explorando los marcadores bioquímicos y moleculares como medios de efectuar tal confirmación cuando resulte factible y/o conveniente hacerlo. La identificación y caracterización iniciales de introgresiones extrañas pueden realizarse con técnicas citológicas y marcadores bioquímicos que son menos complicados y relativamente baratos. Una vez que se ha caracterizado el material, los xxiii marcadores moleculares pueden establecerse y después usarse para detectar la presencia de pequeñísimos intercambios de cromosomas con otras especies que son más difíciles se detectar.Los marcadores bioquímicos. Estos marcadores, que utilizan isoenzimas y proteínas almacenadas en la semilla que le permiten a ésta germinar, pueden usarse para distinguir cromosomas extraños en el trigo en hibridizaciones tanto intergenéricas como interespecíficas. Más de 100 genes estructurales para los marcadores isoenzimáticos han sido identificados y localizados en distintos segmentos cromosómicos del trigo. La mayor ventaja de utilizar los isoenzimas es la rapidez con la que el material puede ser seleccionado debido a que hay polimorfismo adecuado. La información sobre la homoeología de los cromosomas extraños en las líneas de adición puede confirmarse identificando los genes que poseen y que son ortólogos a conjuntos de genes de T. aestivum cuyas ubicaciones en los cromosomas se conocen. Esto también puede hacerse estudiando la capacidad de los cromosomas extraños de remplazar cromosomas específicos del trigo.Cuando los marcadores bioquímicos son identificados por primera vez, es necesario estudiar los perfiles de las bandas correspondientes a un sistema enzimático determinado utilizando las dos especies progenitoras. El análisis de las dos especies progenitoras y del anfiploide es importante cuando se utilizan estos marcadores para caracterizar materiales genéticos extraños. A veces las especies extrañas muestran cierto grado de polimorfismo para un determinado sistema enzimático como resultado de diferencias alélicas y/o porque no son compatibles entre sí. Podemos identificar marcadores cuando las dos especies progenitoras muestran perfiles de bandas notablemente distintos.Marcadores moleculares. Los marcadores moleculares se están volviendo cada vez más importantes en detectar introgresiones de genes extraños e intercambios cromosómicos, especialmente cuando se trata de pequeños segmentos de cromatina extraña en una configuración de trigo. Las técnicas moleculares que actualmente se utilizan en el laboratorio de cruzas amplias de trigo del CIMMYT incluyen la hibridización in situ y las secuencias de ADN polimórfico amplificado al azar (RAPD) basadas en las reacciones en cadena de polimerasa (PCR). La amplia adaptabilidad de los procedimientos de hibridización in situ es posible gracias a la generación de técnicas no radiactivas de marcado.Debido a que constituye una fuente importante de tolerancia a la salinidad, Thinopyrum bessarabicum se ha utilizado en el CIMMYT para producir líneas de adición disómicas. Su combinación con trigo harinero nos ha permitido caracterizar un gran número de marcadores bioquímicos. Con el objeto de desarrollar marcadores moleculares que rastreen cromatina de Th. bessarabicum en configuraciones de trigo y, posteriormente, detectar introgresiones sutiles, hemos realizado hibridizaciones genómicas in situ utilizando anfiploides de T. aestivum cv. Chinese Spring x Th. bessarabicum. Más recientemente, hemos comenzado a emplear la técnica fluorescente de hibridización in situ (FISH) para detectar ADN extraño, con excelentes resultados.Estamos convencidos de que nuestro enfoque radical para avanzar en la producción de híbridos mediante cruzas amplias, es un mecanismo rápido importante que permite entregar a los mejoradores del CIMMYT el germoplasma que necesitan. Siguiendo nuestra xxiv estrategia de dejar interrogantes científicos sin responder (al menos por el momento), hemos podido distribuir germoplasma con determinados atributos que los mejoradores no habían podido obtener con los programas fitotécnicos tradicionales. Las investigaciones básicas realizadas a un ritmo menos acelerado responderán en gran medida a los interrogantes que hemos dejado pendientes. No obstante, cabe mencionar que en los últimos cuatro o cinco años hemos adoptado una metodología más meticulosa para realizar nuestras hibridizaciones intergenéricas que quizá permita que posteriormente efectuemos investigaciones más básicas.La sección de cruzas amplias de trigo del CIMMYT está estructurada de tal manera que vincula la experimentación con plantas con métodos moleculares y celulares -dos aspectos que son esenciales para el buen funcionamiento y efectividad del programa. Confiamos en que más adelante también surgirán métodos muy eficaces que ayudarán a mejorar los cereales. Cuando esos avances científicos se perfeccionen y sean aplicables, tendrán usos complementarios en el mejoramiento de trigo y quizá hasta lleguen a remplazar por completo algunas etapas convencionales de la manipulación genética.Creemos que se encontrarán otras formas de aplicar los trigos polihaploides tanto en nuestro programa como en las áreas fitotécnica y molecular. Es posible que el uso de polen que ha estado almacenado y que sigue siendo viable dé un impulso adicional a la aplicación de las técnicas trigo x maíz o trigo x Tripsacum que inducen polihaploidía. Esperamos producir polihaploides de trigo-así como lograr diversificación-a partir de cruzas sexuales con sorgo. También es posible que podamos utilizar el procedimiento de los polihaploides con pastos naturales y esclarecer, mediante el análisis de los polihaploides resultantes, las complejas relaciones genómicas entre las especies Triticeae.En los 15 años que llevamos en la investigación, hemos progresado hasta un punto en que podemos predecir un futuro próspero para nuestra sección. Cabe mencionar que no se esperaba que la sección de cruzas amplias del CIMMYT fuera a generar productos para el campo en un corto plazo ni proporcionar las soluciones requeridas en cada aspecto de su generación. No obstante, hemos logrado avances notables en esas áreas y, por tanto, somos optimistas respecto a lo que lograremos en los próximos cinco años.has pursued vigorously over the past 15 years. Our research efforts and active collaborations involving wide crosses are detailed in this research report.Of the approximately 325 perennial and annual grasses within the Triticeae tribe, relatively few have been hybridized with wheat. Perennials used have been predominantly among Thinopyrum spp. Among the 75 or so annuals, particular successes have been achieved with Aegilops, Hordeum, and Secale spp. Over the last decade and a half, noteworthy successes at CIMMYT and various other laboratories have been achieved in the production of complex hybrids among species in the Triticeae, which now provide a potential stock of invaluable alien germplasm. CIMMYT is continually adding to this stock with its growing number of A genome hexaploids and D genome synthetic hexaploids, which are being developed through crosses between durum wheat and a number of diploid grass species (see Chapter 3 and Appendices 2 and 3), and other hybrid combinations produced by crossing wheat with various perennial species in the Triticeae (See Chapter 4 and Appendices 4-6 ).There are different methodologies for transferring desired resistances or tolerances from the alien species to wheat (Chapters 3 and 4). Irrespective of the procedure adopted, production of hybrids (intergeneric orxperts predict today's worldwide population of 5.5 billion people will grow by 1 billion over the next decade, and double to 11 billion in 40 years (Beamish 1994). By 2050, 12 billion people will crowd the planet, with more than 90% of the growth occurring in developing nations. These ominous circumstances are placing a formidable task before agricultural scientists and the food management sector. On one front where plant breeders are involved in crop improvement efforts to meet the ever-increasing demand for food, they are finding less and less appropriate germplasm with desired traits among cultivated crops themselves with which to make the needed improvements (Harlan and deWet 1971). Fortunately, new and useful genetic resources are being found in wild, uncultivated plants. The challenge is to incorporate this germplasm into existing food crops.Because cereal crops provide the structural base for world food production, it is fortuitous that most alien genetic transfers, to date, have involved the Triticum grass species within the tribe Triticeae-where the greatest emphasis has been placed on using these introgressions to improve bread wheat (T. aestivum L.). Wheat has received the most attention because of its global importance and because genetic manipulation techniques have become well established for wheat and its relatives. Using wide crosses to improve bread wheat is an area that CIMMYTWheat Wide Crosses at CIMMYT Abdul Mujeeb-KaziAs major problems that limit the use of wide hybrids, i.e., crossability and embryo development, continue to be solved, it has encouraged researchers to examine the possibilities of yet even wider hybrids, e.g., crossing wheat with maize, millet, sorghum, teosinte, and Tripsacum (see Chapter 5).In the late 1970s, the research mandate for wheat wide crossing at CIMMYT was highly specific in its emphasis to refrain from activities that emulated those of other established centers of excellence. We were not to set our investigations towards highly specific cytogenetic research.Our efforts were to focus upon exploiting the applied advantages for CIMMYT's mandate of wheat crop improvement. Presumably, we would lose some precise scientific explanations, but, through opening up collaborative linkages with basic research centers of excellence, it would be their job to unravel the \"hows\" and \"whys\" of the new germplasm we were developing. This was essentially \"CIMMYT's look toward year 2000\"-a wheat wide crosses investigative framework to span two decades .It was unlikely that there would be speedy payoffs from such a risky endeavor. Further, instead of handling a restrictively narrow objective through one hybrid combination (wheat x one alien source), the two-decade span would allow us the time to exploit a wide array of alien germplasm. It would also permit us to adapt readily to new situations that would most likely emerge with significant scientific discoveries, a changing research environment, budgetary decreases or increases, and client needs.interspecific) is the key to accomplishing useful genetic transfers. There are two ways to accomplish this: 1) alien species can be screened for specific resistances or tolerances and then be hybridized with wheat or 2) the alien species are first hybridized with wheat and then the advanced derivatives can be screened.Wide hybrids provide cytological data and evolutionary information about the parental species, as well as the practical motivation to improve wheat by transferring significant characteristics from alien species. Alien transfers can diversify variability for both dynamic biotic situations and static abiotic circumstances. Alien sources of variability are normally inaccessible to breeders who work in conventional crop improvement programs and hence wide hybridization is considered additive to traditional plant breeding efforts.Actual successes of incorporating usable alien genetic variation have been relatively few (Sharma andGill 1983a, Mujeeb-Kazi andKimber 1985) and for the most part have involved simply inherited genetic traits. So, in order to ensure faster practical returns to agriculture, we believe that simply inherited traits should be the major emphasis when making intergeneric crosses (see Chapter 4), while traits with complex heritability (involving the introgression of several genes simultaneously) and ill-defined genetic information should be limited to less complex interspecific crosses (see Chapter 3). Some of the complex traits receiving our attention are associated with resistances or tolerances to Helminthosporium sativum, Fusarium graminearum, Tilletia indica (syn. Neovossia indica), and salinity.At the onset of the current wide crosses program in 1979, the goals were to:• Produce classical intergeneric hybrids with cytological validation over a three-year duration.• Design a breeding methodology that permitted advance of the hybrids for field evaluations with elite plant types that dispensed with or minimized chromosome analysis to confirm actual introgression.• Emphasize complex genes and polygenically controlled traits instead of simply inherited traits.• Select and stabilize the advanced hybrid derivatives by transferring improved germplasm to CIMMYT base and national breeding programs.• Proceed with advances of F1 hybrids and basic research activities along classical cytogenetical lines, preferably through collaborative research, which would require scientific communication through various media.Subsequently, a changing research environment after 1987 placed considerable emphasis upon basic and strategic research-a new stage that the wide crosses program needed to assess accordingly. Hence, there emerged a slight reduction in the original research structure and some additional modifications that involved:• Initiating an interspecific hybridization program based upon genomic proximity of the closely related Triticeae species with the three genomes (A, B, and D) of wheat. This offered an avenue for relatively rapid, shortterm returns.• Transferring targeted traits from distant wheat relatives via intergeneric crosses.• Producing polyhaploids in wheat using a sexual cross system (wheat x maize) in efforts to generate doubled haploids for the wheat RFLP (restriction fragment length polymorphism) mapping project (see Chapter 5). These techniques would have subsequent ramifications for future cytogenetics and breeding activities.• Using tissue culture to facilitate alien introductions (see Chapter 6).• Exploring the application of biochemical and molecular markers to enhance the detection of alien introgressions (see Chapters 7 and 8).• Publishing results in refereed scientific journals.Two major prerequisites for success in wide cross research are long-term commitment and collaboration among specialists and institutions.Over the years, certain advances in wide cross research have set the stage for current support. Some of these well-recognized global endeavors include:• Nearly a century of accomplishments with wheat x rye (triticale) and wheat x barley crosses.• Nearly 50 years of astounding successes (by the late E.R. Sears) with wheat cytogenetic stocks.• Some 20 years of successes (by the late E. Sebesta) in the pr oduction of wheat/alien translocations such as 1AL/1RS. This translocation and the spontaneous 1BL/1RS translocation are undoubtedly the most significant examples of successful alien introgressions in wheat breeding; the 1BL/1RS contribution (more than 5 million hectares planted to such wheat varieties) is believed-by some-to be the most important natural genetic manipulation made to date. We recognize that non-CIMMYT workers with basic research strengths are located in other laboratories and we do not pretend to compete. With diversified mandates, some are most likely more ideally suited than CIMMYT's applied program to conduct specific sophisticated aspects of wide cross work aimed at global crop improvement. We acknowledge-but do not identify-these researchers in this particular forum.Perennial and Annual Wheat Relatives in the T riticeae 1984). Relatively few perennials have been intergenerically crossed with wheat because of the complexity of doing so and embryo rescue/regeneration constraints. The perennials, which include many important forage grasses, have the potential to serve as a vital genetic reservoir for the improvement of the annual grasses, which include the major cereals (bread wheat, durum wheat, triticale, barley, and rye). Perennials that have been successfully utilized for improving wheat are predominantly in the Thinopyrum group.Wide hybrids in the Triticeae have been attempted and studied for more than 100 years. The first such hybrid was between wheat and rye (Wilson 1876). Rimpau (1891) described 12 plants recovered from seed of a wheat-rye hybrid that represented the first triticale. Farrer (1904) made similar early studies of wheatbarley hybridization; however, Shepherd and Islam (1981) concluded that it is improbable that these were true hybrids. Several perennial grasses were hybridized with wheat as early as the 1930s with the objectives of transferring disease resistance and perenniality into annual crops (Tsitsin 1960(Tsitsin , 1975)). Many hybrids involving Triticum and several Aegilops species were made during the 1920s and 1930s (Kihara 1937) from which the genomic relationships of the two genera were derived (Lilienfeld 1951). The large-scale practical use of the hybrids, however, was delayed until the advent of colchicine treatment (Eigsti and Dustin 1955) in the late 1930s. The ability to double the chromosome number of hybrids using colchicine had both practical and theoretical consequences. The production of fertile amphiploids provided the way to develop triticale as a new cereal crop (Gupta and Priyadarshan 1982) and also advanced evolutionary studies when McFadden and Sears (1946) resynthesized T. aestivum and thus discovered T. tauschii to be the D genome donor to bread wheat.With the advancement of hybridization techniques (Kruse 1973) and embryo culture (Murashige 1974), wide hybridization became a more common practice and involved more perennial species. In reviews of the progress of wide hybridization, Dewey (1984) and Wang (1989) clearly showed intense interest among breeding programs in utilizing the genetic resources available in the perennial Triticeae for cereal improvement.Since 1980, CIMMYT has been conducting a vigorous gene transfer program in which species of the perennial Triticeae are utilized for wheat improvement. We have emphasized the perennials over the annuals because of greater biotic/abiotic resistances that the perennials most likely possess because of their habitats. In the quest to acquire genetic diversity, we have found that obtaining usable alien characters requires precise transfer of the controlling genes of a desirable character that comes from a donor As new genomic compositions were found in the Triticeae species (Wang et al. 1986;Liu and Wang 1989;Jensen 1990a,b;Torabinajad and Mueller 1993;Assadi and Runemark 1994), the genomic classifications were modified. The closeness between the J and E genomes also necessitated a genome symbol change from E to J e (Wang and Hsiao 1989). With these changes, a more detailed system became warranted. Table 2.1 lists the perennial genera under the new genomic system where specific genome combinations are assigned to known species.Agropyron remains a small genus consisting of P-genome species at three ploidy levels. Psathyrostachys is comprised of N-genome diploids, although autotetraploid cytotypes have been both discovered and synthesized. Pending new information, the genome make-ups of the genera Pascopyrum, Australopyrum, and Secale presently remain unchanged. See the Chapter 7 discussion of the genomic status of tetraploid Leymus racemosus.With the discovery of natural species having the SSPP genomes, i.e., Pseudoroegneria tauri (Wang et al. 1986) and P. deweyi (Jensen et al. 1992), Pseudoroegneria now has a section named Pseudopyron to accommodate these SSPP species. These species exemplify the inadequacy of morphology alone and the added importance of genome analysis when studying species relationships. Similarly, only genome analysis can separate species within the genus Elymus into the SH, SHY, SY, and SYP groups with any certainty. Chinese taxonomists (Keng 1965, Yen andYang 1990) have given genus names to the SSYY and SSYYPP species (i.e., Roegneria and Kengyilia, respectively). However, we have kept them at the sectional level to avoid massive name changes since Elymus is the largest genus species with different genomes. An ideal gene transfer involves normal introgression of the alien material without negative background effects on grain yield and quality. To utilize effectively the Triticeae gene reservoir, we need to know:• The genome constitutions of the donor species;• The genomic relationships between the donor and recipient species;• The chromosomal location(s) of the desirable gene(s);• The number of the gene(s) conferring the desirable trait and the mode of inheritance;• Whether the donor 's gene(s) can be expressed in the recipient species; and• Whether any negative effects ensue from the transfer.CIMMYT is meeting the above prerequisites with regard to various desirable characteristics, including disease resistances and abiotic stress tolerances.In the genomic system of classification of the perennial Triticeae (Dewey 1984), 13 genera with defined genomes or genome combinations are recognized. Due to a lack of sufficient information, we do not consider two of these: Hordelymus and Festucopsis. However, the remaining 11 genera with their type species and genome compositions are: Agropyron (A. cristatum ; P), Australopyrum (A. pectinatum; W), Pseudoroegneria (P. strigosa; S), Psathyrostachys (Ps. lanuginosa; N), Critesion (C. jubatum; H; also Hordeum), Thinopyrum (Th. junceum; J-E), Elytrigia (E. repens; SX), Elymus (E. sibiricus; SHY) Leymus (L. arenarius; XN), Pascopyrum (Pa. smithii; SHXN), and Secale (S. montanum; R). in the Triticeae consisting of approximately 150 species. Only a small number of these species has been genomically analyzed (Lu and von Bothmer 1993).Although the diploid species in Australopyrum contain the W genome (Hsiao et al. 1986), the polyploid species in some Australian Elymus species appear to be allopolyploids that contain other genomes in combination with W. Therefore, Elymus may include some other genomic combinations presently unknown to us. For example, E. rectisetus and E. scabrus both appear to have the genome composition SSYYWW (Torabinajad and Mueller 1993).Critesion is now recognized as a section of Hordeum (Bothmer et al. 1986). Genetic regulators (promoters and suppressors) of chromosome pairing might have confused the make-up and earlier classification of the Hordeum genus, which contains both perennial and annual species (Dewey 1984). For example, a gene has been shown to be responsible for the low pairing between H. violaceum and H. bogdanii (Wang et al. 1991). It may also have led to misinterpretation of some cytogenetic data since the number of hybrid plants obtained from certain combinations has been very low. The bivalentization mechanism may also cause an autopolyploid to behave like an allopolyploid (Wang and Hsiao 1989). Further research being pursued by Bothmer and his colleagues should lead to a better understanding of the genomic relationships of the perennials in Hordeum.The genus Thinopyrum is embroiled in the most recent controversy. The two diploid species, Th. bessarabicum and Th. elongatum, were originally given the genome symbols J and E, respectively (Löve 1984). Lately, cytogenetic data have demonstrated the closeness between the two genomes. Thus, they have been merged into a single, basic genome symbol as proposed by Dvorak (1981), Dewey (1984), McGuire (1984), Wang (1985), Pienaar et al. (1988), and Wang and Hsiao (1989). See the discussion on Th. bessarabicum in Chapter 7. Different opinions do exist (Jauhar 1988(Jauhar , 1990)). Liu and Wang 1993a) suggest that Th. junceum, the type species (J b J b J e ), possesses two J b genomes and a modified J e genome, which is also present in Th. sartorii.On the other hand, Th. junceiforme (J b J e2 ) and Th. scirpeum (J e J e2 ) share another modified genome (J e2 ), differing from the respective second genomes, which are J b and J e . The two modified J e genomes probably arose from recombination between J b and J e through the pivotal-differential evolution of the polyploid species. As a result, J e1 is closer to J e while J e2 is closer to J b . Therefore, all the triploid and tetraploid hybrids involving Thinopyrum species have meiotic pairing patterns closer to those for autoploid plants than those for strict alloploids. The fertility in the hybrids of Th. scirpeum/ 2*Th. bessarabicum /Th. elongatum, which have the genome constitution J e J e2 J b J e (Wang 1992), further supports the pivotal-differential hypothesis. Liu and Wang (1989) have shown the presence of an S genome in Th. caespitosum and the J e J e SS genome composition has since been found in Th. nodosum and Th. scythicum (Liu and Wang 1993b). Depending on the accessions, Th. intermedium can be represented by the genome formula J e J e J x J x SS, where J x can be any version of the J genome.The annual plants of the Triticeae are confined largely to the Triticum and Aegilops species; some notable exceptions include species from Hordeum, Secale, Haynaldia, Eremopyrum, Chapter 2 Heteraunthelium, Taeniantherum, and Henrardia. The large number of generic and specific names of the interrelated Triticum and Aegilops groups has led to considerable confusion over the years. The multitude of names not only expresses the whims of various taxonomists, but also represents the diversity of the species themselves. To r educe some of the confusion, Kimber and Feldman (1987) have compiled a synonym list of the most commonly used names among the Triticum/Aegilops groups (Table 2.Despite its limitations, analysis of chromosome pairing, which has evolved from the \"analyzer method\" of H. Kihara (Lilienfeld 1951), can provide an insight into genomic relationships among the annuals. Although universal acceptance on usage may not exist, those interested in in-depth treatment of this topic are referred to Morris and Sears (1967), Bowden (1959Bowden ( , 1966)), and proceedings of recent International Wheat Genetics Symposia (Sakamoto 1983, Miller and Koebner 1988, IWGS 1993).In general, hybrids, in which the alien parent is the diploid genome donor, exhibit approximately seven bivalents because the Triticeae tribe has a basic chromosome number of seven. All hybrids involving nondonor diploid \"analyzers\" should have 21 or more univalents at meiotic metaphase I. This approach has worked quite well in enabling cytogenetists to assign genome designations to the annuals (Tables 2.3 and 2.4). Only a few cytogenetic studies have resulted in any significant changes to the genome designations made using the analyzer method. Ohta (1990) proposed that the genome Mt be changed to S m .between any of the genomes (P, S, N, H, J, W, X, and Y) in the perennials and some of the genomes (A, B, D, G, M, T, and U) in the annuals.Most early alien gene transfers to wheat involved species of Thinopyrum. This suggests a closer homoeologous relationship between the Thinopyrum genomes and the wheat genomes than that present in the other perennial genomes. However, the chromosome pairing between these two genomic groups in the absence of the Ph1 gene is still much lower than the pairing among the A, B, and D genomes of wheat alone. Therefore, gene transfer attempts require complex, long-term genetic manipulations to facilitate recombination and alien introgression.Since Wang (1989) and ABDNN;Plourde et al. 1990).The wide array of genetic variability residing in the above Triticeae relatives supplies a superb arsenal of new defenses against biotic and abiotic stresses in cereals. Inevitably, the use of this variation has its constraints since genomic homoeology does not offer a satisfactory level of chromosomal association in the F1 hybrids to promote alien gene transfers. Use of the ph1 locus may provide a way to overcome the recombination constraint, but the ensuing complexities to obtain backcross derivatives and stable advanced progenies are going to be fairly long-term. Other genetic manipulations exist that progressively revolve around production of alien disomic chromosome additions or substitutions, which could lead to translocations or subtle exchanges through cytogenetic and novel manipulative procedures. Although the process will be slow, the benefits of incorporating these diverse genetic resources into wheat will be extremely high. A number of accessions of diploid wild relatives, which have either the A, B, or D genomes, are potential candidates for use in interspecific crosses. We maintain working collections of wild grass accessions with these genomes. For the D genome, ther e is T. tauschii (Appendix 2); for the A genome, there is T. monococcum (= T. urartu and T. boeoticum; Appendix 3); and for the B (S) genome, there are the T. speltoides and related accessions. Kimber and Feldman (1987) discuss other potential sources. The procedures used to incorporate such alien variability and the choice of genome to work with differ among researchers.CIMMYT has been concentrating on exploiting accessions of the annual wild relative T. tauschii (goat grass) because we believe the wide diversity and distribution of this species across Eurasia (see Kimber and Feldman 1987) provide a unique opportunity for exploiting new genetic variability. T. tauschii has a wide range of resistances or tolerances to biotic or abiotic stresses (Valkoun et al. 1990), such as Karnal bunt (Tilletia indica), scab (Fusarium graminearum), spot blotch (Helminthosporium sativum syn. Bipolaris sorokiniana), leaf rust (Puccinia recondita), stripe rust (P. striiformis), salinity, and drought. The wild grass also appears to be a potent source of new variability for important yield components such as 1000-grain weight and increased photosynthetic rate not to mention improved bread making quality.In addition, T. tauschii (also called Aegilops squarrosa) is unequivocally accepted as being the donor of the D genome to bread wheat (Kimber and Feldman 1987). We consider crosses with T. tauschii to be interspecific instead of intergeneric because of T. tauschii's diploid nature and its D genome status, i.e., 2n=2x=14, DD. Note that we consider most crosses with diploid Triticum/Aegilops spp. (see Seeds of selected T. tauschii accessions are planted in jiffy-7 peat pots and vernalized at 8 o C with eight hours light for eight weeks. The seedlings are transplanted in pots containing a steam-sterilized mixture of soil, sand, and peat moss. Controlled greenhouse conditions involve 22/14 o C day/night temperatures, approximately 60% relative humidity, and 14 hours of natural light. We vernalize the winter habit T. tauschii seedlings and transplant them during CIMMYT's normal wheat crop cycles at four Mexican locations:• Ciudad Obregon (November to May) for crossing with T. turgidum;• El Batan (May to October) for crossing with T. tur gidum;• Toluca (May to October) for F. graminearum screening; and We are using the T. tauschii accessions in the following ways:• Producing synthetic hexaploids by crossing T. tur gidum cultivars with T. tauschii accessions.• Crossing elite, but susceptible T. aestivum cultivars with resistant T. tauschii accessions and backcrossing the ABDD F1 hybrids with the elite T. aestivum cultivar used in the initial cr oss.• Extracting the AABB genomes from commercial T. aestivum cultivars and then developing hexaploids by crossing with desired T. tauschii accessions.For any of the above techniques, it is important that the desired traits in the D genome from T. tauschii be identified since genetic factors in the A and B genomes may mask or modify its expression. However, this may not be a general rule. For example, Multani et al. (1988) observed that synthetic hexaploids, which were produced with a KB-susceptible durum parent, expressed the KB resistance of the T. tauschii parent.We can screen the T. tauschii accessions for their many desired attributes and then cross selected ones to T. aestivum. However, when screening the T. tauschii accessions is sometimes a major constraint, we can hybridize them with T. tur gidum and then screen the resulting synthetic hexaploids.Resistance screening of the T. tauschii accessions for H. sativum at Poza Rica and F. graminearum at Toluca have been inconclusive. Growing conditions at these two Mexican locations can adversely affect the alien species, but logistically the sites are ideal for disease resistance screening. Because of the screening constraints, winter habit, and the tendency for shattering (which could cause a weed problem at the stations) of the T. tauschii accessions themselves, we decided to indiscriminately cross T. turgidum with T. tauschii accessions. This has allowed us to screen the resulting synthetic hexaploids more adequately for our objectives without having to deal with vernalization. In addition, when we find a positive attribute (the durum parent being susceptible), the breeding program can immediately use the synthetic hexaploid. Even if the synthetic expresses diluted resistance, the end-product resistance is far superior to that encountered in the best wheat germplasm available.See Chapter 7 for discussions on: 1) evaluation of the variability for seed storage proteins and isozymes associated with some T. tauschii accessions and 2) comparison of the wide variability of T. tauschii accessions with the variability of the synthetic hexaploids.The hybridization process is quite simple when using any of several manipulative crossing procedures (durums as the female parent; Appendix 1) described by Kruse (1973), Sharma and Gill (1983a), Mujeeb-Kazi and Asiedu (1990), or Riera-Lizarazu and Mujeeb-Kazi (1990). For the crossing cycles, we always plant the durum cultivars obtained from CIMMYT's durum section over at least three planting intervals so that T. turgidum flowering coincides with flowering of the T. tauschii accessions. Procedures for embryo rescue, embryo culture, and plantlet management are similar to those described by Mujeeb-Kazi et al. (1987). We transplant plantlets to a potted soil mix and maintain them in the greenhouse at El Batan.The 21 chromosomes of the F1 hybrids are doubled (induced with colchicine or spontaneous) to produce 42-chromosome synthetic hexaploids (2n=6x=42, AABBDD; screening, the synthetic hexaploids can be crossed conventionally with other bread wheat cultivars.To analyze the chromosomes in resulting hybrids, root tips are collected from young growing plants and processed according to the schedule of Mujeeb-Kazi and Miranda (1985). F1 hybrids with 2n=3x=21 chromosomes are treated with 0.1% colchicine + 2.0% dimethyl-sulfoxide for six hours via aerated root-treatment. We grow the colchicine-treated seedlings in the greenhouse and place a glassine bag over each spike after emergence from the boot. The seeds that set on such plants after this treatment are planted; after germination, they are analyzed for chromosome number. Resulting plants are maintained in the greenhouse and a glassine bag is placed over each spike. For each doubled fertile plant, we increase seed to a reserve of 50 g. W e use surplus seed supplies for testing resistance and tolerance to biotic and abiotic stresses.We have produced, to date, nearly 525 synthetic hexaploids-most involving a unique T. tauschii accession-over several crossing cycles (Appendix 2). Whenever possible, we have screened them for selected resistances to diseases and abiotic stresses. We have identified synthetics resistant to H. sativum and F. graminearum . Several have shown tolerance to salt stress in initial field screening at La Paz, Baja California Sur, Mexico. When screening shows the synthetics to have these positive attributes, we must be cognizant of the interaction of the A and B genomes with the D genome as well as the dilution effect of the resistance or tolerance of the D genome in the hexaploid plant. Villareal et al. (1990) have studied agronomic and taxonomic traits of a few synthetics, such as days to anthesis, plant growth, maturity, biomass, harvest index, yield, pigmentation, and pubescence.With the development of synthetic hexaploids in mind, all genuine F1 hybrids are stable for 2n=3x=21 chromosomes. After colchicine doubling, the seeds generally possess 42 chromosomes. Although there are some hypoploids and hyperploids among the resulting synthetics (Figure 3.2), they can be subsequently eliminated through additional chromosome analysis (cytology) and seed increase. We have identified synthetics that are resistant to H. sativum and T. indica. Synthetics resistant to F. graminearum and tolerant to salt await additional testing before we turn them over to the breeders.Scientists involved in the collaboration of CIMMYT, Cornell University, and the International Triticeae Mapping Initiative (ITMI) have found that some synthetic hexaploids resulting from the T. turgidum x T. tauschii crosses are highly polymorphic (M. Sorrells, pers. comm.). This is aiding molecular laboratories in the development of the RFLP linkage map for the D genome. The CIMMYT/Cornell collaboration has produced synthetics that have ultimately led to the development of doubled polyhaploid plants (see Chapter 5 for the significance of this). Other synthetics with desirable agricultural attributes can be subjected to molecular analysis.We are producing new synthetics using additional T. tauschii accessions maintained in the CIMMYT wide crosses working collection. The CIMMYT Wide Crosses Laboratory has also produced about 155 A genome hexaploids by crossing durum wheat with A genome diploid species (Appendix 3). It is anticipated that these approaches will contribute to the availability of additional genetic variability for wheat breeding efforts, germplasm conservation, and global germplasm distribution. There is merit for international distribution of the synthetic and A genome hexaploids, which would enable national agricultural research programs with specific objectives to do their own screening of these accessions.The most ideal, efficient technique for exploiting T. tauschii variability for bread wheat improvement is to achieve direct transfers from resistant/tolerant T. tauschii accessions to bread wheat. This methodology rapidly produces improved BCI derivatives with the six genomes (AABBDD), five of which (AABBD) resemble the elite wheat cultivar used in the cross (Figure 3.With this methodology, we may have to contend with the ensuing aneuploidy in the BC derivatives and hence it may have lesser value in mapping programs for recognized quantitative traits. Cox et al. (1990) report on the numerous advantages. Before crossing with bread wheat, reliable screening of the T. tauschii accessions for resistances and tolerances to diseases and abiotic stresses is critical. Alonso and Kimber (1984), Cox et al. (1990Cox et al. ( , 1991)), and Gill and Raupp (1987) unequivocally placed priority on direct T. tauschii crossing with bread wheat cultivars.Based on the transfer of stem rust resistance from T. tauschii to the bread wheat cultivar Chinese Spring, Alonso and Kimber (1984) determined that one backcross onto the F1 hybrids re-instated 92% of the genotype of the recurrent parent.When there are constraints to direct screening of T. tauschii accessions, such as less than reliable identification of resistance or tolerance to H. sativum , F. graminearum, T. indica, and salinity, we believe that screening of the synthetic hexaploids, resulting from T. turgidum x T. tauschii crosses, is an alternative (Tables 3.1-3.4) especially where the durums are susceptible. The information obtained from screening the synthetics allows us to target specific T. tauschii accessions for direct crossing with susceptible elite bread wheat cultivars, e.g., 'Ciano T 79' and 'Bacanora T 88' for H. sativum resistance, 'Seri M 82' and 'Opata M 85' for F. graminearum resistance, and 'Oasis F 86' for salt tolerance. Using these cultivars, we have duplicated the crossing successes that Alonso and Kimber (1984) had with the cultivar Chinese Spring. Several other options are also available for achieving additional crossing successes (Gill andRaupp 1987, Riera-Lizarazu andMujeeb-Kazi 1990).We have satisfactorily screened T. tauschii accessions for KB resistance (Warham et al. 1986, and unpublished data) and identified several 0% infection types. Successful crosses have been made between KB-susceptible bread wheat cultivars Seri M 82 and Bacanora T 88 and several of these T. tauschii accessions. The above procedure is highly efficient and, from about 270 F1 hybrids, 99% are normal with 2n=4x=28 chromosomes.Extracting the AABB genomes from commercial T. aestivum cultivars and then developing hexaploids by crossing with desired T. tauschii accessions allow for very clear analysis of the genetic contribution of the alien D genome.There is negligible interference from recombinant segregation of the A and B genomes that is rampant in the first hybridization procedure (Figure 3.4). However, transmission of paternal chr omosomes and aneuploidy in the backcross generations can complicate the process. b Two-digit scoring system: first digit = height of infection; i.e., five = up to center of plant, 9 = upto the flag leaf; second digit = disease severity on infected leaves, 1 = low and 9 = total leaf destroyed. c Grain infection scored as: 1 = low and 5 = high seed blemish at embryo points. (Dewey 1984) for improving wheat. However, in contrast to the Triticum/Aegilops spp. discussed in the previous chapter, the species we deal with in our intergeneric crosses are quite diverse genomically and rather difficult to cross with wheat. Even when successfully combined, the resulting hybrids exhibit little or no intergenomic chromosome association. Hence, accomplishing beneficial alien transfers through intergeneric hybridization is quite timeconsuming. Despite these limitations, significant successes and advancements have been made over the past 20 years (Kruse 1973;Islam et al. 1981;Sharma and Gill 1983a,b,c;Mujeeb-Kazi and Kimber 1985;Mujeeb-Kazi et al. 1987, 1989;Mujeeb-Kazi andAsiedu 1989, 1990;Gill 1989). The CIMMYT Wide Crosses Section now has a significant number of hybrids derived from intergeneric crosses among its genetic stocks (Appendices 4-6).This chapter describes the methodologies currently available for accomplishing successful intergeneric crosses within the Triticeae and using the resulting hybrids for wheat improvement-particularly in the areas of abiotic stress tolerance (e.g., aluminum, salt, and copper uptake efficiency). We also anticipate that greater emphasis will soon be attached to biotic traits such as resistances to spot blotch (Helminthosporium sativum syn. Bipolaris sorokiniana), scab (Fusarium graminearum), Karnal bunt (Tilletia indica), barley yellow dwarf virus (BYDV), Septoria spp., and Russian wheat aphid (Diuraphis noxia).The germplasm we utilize in our intergeneric hybridization program includes accessions of Triticum turgidum, T. aestivum, Hordeum vulgare, Secale cereale cv. Prolific, and numerous perennials mentioned in the sections below.Mujeeb-Kazi and Rodríguez (1984) described the procedures involving growth, hybridization, embryo culturing, somatic analyses, meiosis, backcross seed production, and amphiploid induction. The cytological techniques are similar to those employed by Mujeeb-Kazi and Miranda (1985). The chromosomal variations reported extend over investigations that have been in progress for more than a decade. Mujeeb-Kazi et al. (1984, 1987) describe the methodology for situations where the hybrids are produced under field conditions. Application of the simplest techniques of emasculation and pollination used in conventional wheat breeding accomplished production of the earliest intergeneric hybrids. Many important hybrids are still produced with these techniques. The extensive series of crosses made by Kihara (1937), his colleagues, andAbdul Mujeeb-Kazi others can be cited as examples. Kimber and Abu Bakar (1979) pr ovided a tabulation of hybrids involving wheat and its relatives. These contributions coupled with the pioneering work of Kruse (1967Kruse ( , 1969Kruse ( , 1973) ) led to an increased momentum in the area of intergeneric hybridization that extended the range of combinations among the Triticeae (Sharma and Gill 1983a,b,c;Mujeeb-Kazi and Bernard 1985a,b;Mujeeb-Kazi et al. 1987, 1989). Some intergeneric hybrids, e.g., T. aestivum x Aegilops cylindrica, are quite easy to produce; while others, e.g., Hordeum vulgare x T. aestivum, are much more difficult. Some other difficult intergeneric combinations involve wheat crosses with Psathyrostachys juncea, all Agropyron species, and the small-anthered Elymus species. Regular production of intergeneric hybrids between Hordeum and Triticum, which may have been made as early as 1904 by Farrer, had to await the discovery by Kruse (1973) that embryos could be rescued by applying gibberellic acid to the developing ovule with subsequent culturing of the embryo on an artificial medium.With the intergeneric combinations that have already been made, choice of parents and cross direction become the paramount considerations in producing newer complex hybrids. The low frequency of the production of viable embryos in some hybrid combinations indicates the significance of placing together pollen and ovules that are genetically compatible. Presently, the only way to determine compatibility of the parents is actually to make a cross. Therefore, if difficulty is experienced with a particular hybrid combination, the only practical solution is to increase the range of parental genotypes involved and to attempt making reciprocal crosses (i.e., the alien species as the female parent). Brink and Cooper (1940) described and discussed the effects of particular genotypes, ploidy level, and the species choice for the female parent in hybridization. In both interspecific and intergeneric crosses, it has been the general practice to use the higher ploidy species as the female parent because there appears to be less imbalance between the chromosome numbers of the embryo and endosperm and it is generally easier to emasculate the hexaploid T. aestivum than the tightly invested florets of most alien species. However, the early production of hybrids from wheat x barley crosses was accomplished with barley (lower chromosome number) as the female parent. Similarly, Sharma and Gill (1983a,b,c) used Agropyron ciliare and A. yezoense as the female parents in crosses with T. aestivum; and in the following crosses, the alien species was used as the female parent: A. trachycaulum x T. aestivum (Mujeeb-Kazi 1980), A. fibrosum x T. aestivum (Mujeeb-Kazi and Bernard 1982), and Elymus canadensis x T. aestivum (Mujeeb-Kazi and Bernard 1985a,b). So, it would appear that other hybrids, which have not been possible to date, may be recovered if we make the reciprocal combination. Fertility restoration in such combinations will vary.Emasculation procedures can also affect hybrid production. At CIMMYT, we clip the tops of the glumes of the female parent and extract the anthers with forceps (Mujeeb-Kazi and Bernard 1985a,b). Other workers prefer not to clip the glume tops. At very high temperatures, there may be some advantage in not clipping, as it reduces the chance of drying the stigma, which can be a major problem in some of the wild species. It is almost always advantageous to remove the awns.The development of cytoplasmic male sterility in T. aestivum eliminates the need for mechanical emasculation of the female parent. However, it is possible that the system producing the male sterility may also cause sterility in the hybrid or its derivatives. Male sterility has been induced in many species by cold treatment of the developing spike prior to microsporogenesis. The availability of chemicals that can induce male sterility without affecting ovule or embryo development may greatly enhance hybrid production.Researchers have used pre-pollination chemical treatments with varying success to overcome fertilization barriers. These treatments likely induce pollen-tube growth, gynoecium longevity, micropylar barriers, and the delivery of the male gametes through the pollen tube. Treatments with immuno-suppressants (Bates et al. 1976); 2,4-dichlorophenoxyacetic acid (2,4-D) (Kruse 1974a,b); and gibberellic acid (GA3) (Larter and Chaubey 1965) have been reported. GA3 has emerged as the most popular treatment.Characteristically, a rapid elongation of cells that produces a fluffy appearance in the stigmata of Triticeae species indicates receptiveness to pollination. In addition, the glumes of some species tend to gape at this time or slightly later. Pollination is usually done at this time; however, Mujeeb-Kazi et al. (1984, 1987, 1989) made previously unattainable hybrids by pollinating before the stigmata showed the visible receptivity indicator. It would seem that early pollination circumvents fertilization barriers that develop as the stigma matures (Sitch 1984). In addition, Kruse (pers. comm.) found that the first pollination with inactivated pollen followed by normal pollen enhanced the recovery frequency of hybrids of T. aestivum x H. vulgare. Kruse (1973) demonstrated the significance of a post-pollination treatment, which consisted of one application of a 75-ppm GA3 solution to the stigma and ovule walls to assist the developing embryo. Although up to 10 daily post-pollination applications have been tried, the single GA3 application has been equally effective and, at the same time, it decreases labor and reduces the risk of the invasion of accidental out-pollination. In the divergent crosses of wheat with maize or Tripsacum for polyhaploid production (see Chapter 5), a 2,4-D postpollination treatment is considered to be essential. We suggest a 2,4-D post-pollination treatment be tried in other wide hybrids. It is, however, unlikely that 2,4-D would modify the effect of crossability genes in such crosses.Embryo excision and culture on artificial media are the developments that have advanced the production and utilization of wide hybrids more than any other techniques. Although various media are employed in different laboratories, we use those developed by Murashige and Skoog (1962) and Taira and Larter (1978).Embryo rescue and culture are aimed at removing the embryo aseptically as late as possible in its development, yet still early enough to allow its continued development on artificial media. Endosperm degeneration may start earlier and seems to be closely related to the cessation of embryo growth. Characteristically, embryo development in wide hybrids tends to slow down about eight days after pollination and, in 10 to 14 days, the embryo often ceases development. Embryos of the hybrid derived from Hordeum vulgare x Secale cereale (Fedak 1977a,b) were rescued and successfully cultured only 12 to 14 days after pollination; however, most embryo rescues are accomplished 16 to 18 days after pollination under field conditions and around 20 days under growth chamber or greenhouse conditions.Recently developed media (A. Comeau, per. comm.) will undoubtedly allow the recovery of even younger, less developed embryos. This area of study currently seems to attract little attention, yet the potential of increasing the range of producible wide hybrids is substantial. The difficulty of producing mature plants from hybrids of only a few cells is probably considerably less than that from artificially fused somatic cells because some level of compatibility has already been demonstrated by the fact that sexual fusion has taken place. Therefore, it would seem that the improvement of embryo-rescue techniques would present a greater potential for utilizing the alien genetic material found in distant, but related species.We have also obtained wide hybrids through the use of bridge crosses and the contribution of polyploidy (Mujeeb-Kazi and Asiedu 1990). Examples of the former are possible hybridization of T. aestivum with Heteranthelium by using the F1 hybrid of the Heteranthelium x Thinopyrum elongatum cross and combining T. aestivum x Agropyron desertorum by crossing the amphiploid of the A. desertorum x Th. repens with T. aestivum. We have demonstrated the utility of polyploidy by obtaining the wheat combination with the Psathyrostachys juncea combination. With this, the alien-induced tetraploid source not only facilitates hybrid production, but also simplifies obtaining the amphiploid when the self-sterile F1 hybrid (2n=5x=35, ABDNN or 2n=4x=28, ABNN) is backcrossed to T. aestivum or T. turgidum, respectively.Production of an F1 plant does not necessarily mean a successful intergeneric cross has been made. Morphological recognition that a wide hybrid has actually been produced is usually very unreliable because important characters may be completely suppressed (Kimber 1983). Cytological verification is more convincing, but this too can result in erroneous conclusions due to:• Technical problems in the collection and preparation of material;• Unreliability of the chosen cytological technique;• Somatic chromosome elimination or chimeras; and• Misinterpretation of meiotic data.Root tip preparations from plants in plant pots can provide the first indication of hybridity. We usually delay root tip collection from a suspected hybrid for cytological analysis until it is growing in a pot because of the small number (often only one) of roots produced in culture. After taking roots from the pots, the number of dividing cells is usually less than that found in normal seedlings that have germinated in a petri dish. Further, silica particles adhering to the roots can spoil the preparation of good squashes. Feulgen or carmine/orcein staining of prefixed cells validates that a genuine hybrid plant has been produced. A technique we developed (Mujeeb-Kazi and Miranda 1985) can result in very clear preparations from which we can determine chromosome number, arm ratios, secondary constrictions, and intergeneric differences in chromatid thickness (e.g., Thinopyrum/Secale). If both parents of a hybrid have the same chromosome number, somatic chromosome counts, at best, can only give an indication of hybridity if there are large and characteristic karyotypic differences between chromosomes of the two parents.The reliability of a particular cytological technique must also be considered. If the parents differ in chromosome number, simple counting of somatic chromosome number can be reliable. If the somatic chromosome numbers are the same, the parents might still differ in their ability to show C or N bands. The reliability of hybrid recognition on the basis of chromosome banding is directly proportional to the number, intensity, and chromosomal distribution of the bands. If the arm ratio of the chromosomes of the parents is sufficiently different, this too may be used as an indication of hybridity. Again, the reliability of the arm ratio as an indicator of hybridity depends on the number of easily recognized differences between the parents. The presence or absence of secondary constrictions is not a good method of recognizing hybrids since amphiplasty does contribute to suppression. Resolution of secondary constrictions requires that superior somatic preparations be made and that no nucleolar organizer competition prevails. The length of somatic chromosomes generally provides a very poor method for the identification of hybridity. Low reliability can be attributed to: 1) the general absence of large differences in relative chromosome length in the Triticeae and 2) the inaccuracies involved in measuring chromosome length (Kimber 1970).Even if the zygote of an intergeneric cross is recovered, it is still possible that the seedling may not be a hybrid due to chromosome elimination in the early zygotic divisions. Haploid barleys and polyhaploid wheats, produced by pollination of wheat by Hordeum bulbosum and Zea mays, are examples of this type (Kasha andKao 1970, Barclay 1975; see upcoming section on genome elimination and Chapter 5). The spontaneous production of chimeras (cells with different chromosome numbers) may also hinder the recognition of hybrids or make their utilization more difficult. Several authors have recognized chimeras. For example, Kasha and Sadasivaiah (1971) recorded the expected chromosome number in only 40% of the somatic cells of a diploid hybrid of Hordeum vulgare x H. bulbosum.Clearly, when such difficulties abound, any claim of hybridity must be accompanied by rigid chromosome analysis. The interpretation of such analysis is quite important because both species relationships and the choice of the most suitable method for the introduction of alien variation depend on the ability of the chromosomes to pair. In the earliest work, although judgments were largely subjective, correct conclusions were still often reached (Lilienfeld 1951). More recently, numerical methods for the analysis of meiosis in hybrids have provided some objectivity in determining genomic relationships (Kimber et al. 1981, Alonso and Kimber 1981, Kimber and Alonso 1981, Espinasse and Kimber 1981, Kimber and Pignone 1982).Ideally, genomic analysis is conducted using a triploid hybrid that results from a cross between a tetraploid plant and a diploid analyzer; however, analyses are often made at other polyploid levels. In general, diploid hybrids can provide little if any genomic information, for there must be competition for chromosome pairing partners in order to recognize differences in the genomes present. The pairing patterns at higher levels of polyploidy can be very confusing because of the large number of pairing possibilities between both the homologous (if present) and homoeologous chromosomes Chapter 4 within any homoeologous group. These practical limitations result in a useful range of triploid to pentaploid hybrids from which we can reliably obtain information. If telocentric chromosomes are available, they can provide unequivocal information about the frequency with which particular chromosomes are pairing, but their usefulness is usually limited to measurements of relationships with the A, B, and D genomes of T. aestivum .Clear proof of hybridity can only come from chromosome analysis of the supposed hybrids. The investigation of species relationships from backcrossed hybrids can, in some cases, be accomplished; however, complications introduced by the production of unreduced gametes or the random elimination of chromosomes can give rise to incorrect interpretations.Chromosomal variations in intergeneric hybrids among the Triticeae occur fairly consistently and at various phases in the formation and the development of the hybrid. To a certain extent, the events are fortuitous, but in other situations the variation effects may pose a serious constraint in systematic wide crossing programs. Stable amphiploids are a prerequisite for the development of alien chromosome addition lines. The production of these lines could be hindered greatly if amphiploids cannot be produced. This forces researchers to adopt the F1 self-sterile based route to generate F1 backcross I (BCI) progeny that has the potential to induce alien structural chromosomal modifications. In the \"shot-gun\" approach, chromosomal variations have a decided breeding advantage, more so for complex polygenically controlled characters. The occurrence of these variations augments those associated with callus culture and mutagenesis. During the cytological analyses of some intergeneric hybrids or of their advanced derivatives, we have observed unique chromosomal variations.A normal F1 hybrid resulting from an intergeneric cross possesses half the chromosome number of each parent involved in the combination. In some situations, however, the alien genome may be totally or partially eliminated, which results in the production of polyhaploid or aneuploid F1 hybrids. This phenomenon has been observed in a number of hybrids resulting from intergeneric crosses using species within the T riticeae as both parents and in crosses where one parent is outside of the T riticeae.Crosses within the Triticeae include: Hordeum x T riticum (Kruse 1974a,b;Mujeeb-Kazi et al. 1978), Triticum x Hordeum (Fedak 1980, Finch and Bennett 1980, Islam et al. 1981), Hordeum x Secale (Kruse 1967, Fedak 1977a) (Barclay et al. 1972, Ho 1972, Ho and Kasha 1974). In addition, the H. bulbosum genotype (Pickering 1979, Simpson et al. 1980, Fukuyama and Hosoya 1983), the H. vulgare genotype (Simpson et al. 1980), and the balance between the parental genomes appear to be involved.H. bulbosum has also resulted in polyhaploids of T. ventricosum because the H. bulbosum genomes were eliminated (Fedak 1983). Genome elimination and the consequent production of wheat polyhaploids have also been observed in the reciprocal hybridization, H. vulgar e x T. aestivum (Kruse 1974a,b), in our own studies, and in the cross between H. vulgare x T. turgidum (Mujeeb-Kazi et al. 1978).Hybridizations between H. vulgare and S. cereale have also produced a low frequency of polyhaploid H. vulgare progeny, following the elimination of the rye genome. Kruse (1967) reported the production of one polyhaploid and two hybrid progenies from this intergeneric hybridization. Later, Fedak (1977a) Reports of the occurrence of aneuploid F1 progeny from intergeneric hybridizations involving the Triticeae are restricted to crosses between T. aestivum and H. vulgare (Islam et al. 1981). Meiotic instability within complete F1 hybrids has, however, been more widely reported, namely within Triticum x Hordeum reciprocal hybrids (Fedak 1977b(Fedak , 1980;;Islam et al. 1981;Mujeeb-Kazi and Rodríguez 1983a,b) and within Hordeum x Secale hybrids (Finch and Bennett 1980). (Fedak and Nakamura 1982).F1 hybrids produced from a cross between CS and the hybrid resulting from the intergeneric cross of Thinopyrum repens/A. desertorum also showed a high degree of aneuploidy. We found that chromosome numbers of the F1 progeny ranged from 2n=35 to 2n=57 where the expected complete chromosome complement was 2n=8x=56. In the 35-chromosome hybrids, the elimination of three genomes had presumably occurred (Mujeeb-Kazi et al. 1989).Although rare, we found chromosome irregularities in F1 hybrids of H. vulgare x E. canadensis where meiocytes at metaphase I possessed chromosomal compositions exceeding the normal 2n=3x=21 complement (Mujeeb-Kazi and Rodríguez 1982).Aneuploid BCI progeny-In wide crosses, the self-sterile F1 hybrids, upon colchicine treatment, classically result in fertile amphiploids that may then have practical utility. Triticale (X Triticosecale Wittmack) is a noteworthy result of such a process-both at the hexaploid and octoploid polyploidy levels. In other cases, the fertile amphiploids are sources of BCI derivatives (amphiploid/Triticum source), from which the eventual production of alien disomic addition lines-after cytogenetic manipulations-can lead to subtle alien genetic transfers. The BCI derivatives are generally expected to have normal wheat and normal alien chromosome complements-the former in a double dosage and the latter in a single dosage.Alternatively, the F1 hybrid can be pollinated by wheat to produce the BCI derivatives in a low frequency. This occurs via fusion of the wheat pollen with an unreduced egg cell of the F1 hybrid. This common procedure is a rapid way of meeting applied research goals, although it is beset with considerable aneuploidy that is maternally contributed. The unreduced egg cell could be an assemblage of wheat/wheat, wheat/ alien, or alien/alien translocations and may have drastic aneuploid changes to be expressed as hyperploid or hypoploid progeny in the BCI derivatives.Hybridization of T. aestivum with decaploid (2n=10x=70) Th. elongatum (Elytrigia pontica) produced F1 hybrids with 56 chromosomes. Subsequent pollination of these F1s with T. aestivum was expected to produce BCI progeny with 77 chromosomes. The chromosome numbers in 143 BCI plants ranged from 42 to 62 chromosomes and N-band analyses indicated a random variation for the presence of specific maternal chromosomes. As expected, we obtained plants that were disomic for chromosome 5B, but several plants were mono-5B which, upon selfing or further backcrossing, may lead to selfed nulli-5B derivatives (Table 4.1 ). These derivatives may enhance recombination events between wheat and alien species. We found a similar trend in BCI derivatives of the hybrid of T. aestivum/Aegilops variabilis (Jewell and Mujeeb-Kazi 1982). (Asiedu et al. 1989) and extremely valuable-an example of exploitation of aneuploidy.The BCI variations are often a constraint to producing alien addition lines. We believe that producing amphiploids prior to BCI formation can alleviate this problem (ter Kuile et al. 1988). However, disomic addition lines of H. vulgare to wheat have been produced (Islam et al. 1975(Islam et al. , 1978(Islam et al. , 1981) ) through the BCI approach when amphiploids of T. aestivum/H. vulgare could not be produced. Thus, each hybrid should be regarded as a unique entity, but we feel that socalled normal BCI derivatives will be obtained if a large BCI population is produced. H. vulgare/T. aestivum (Table 4.2). In our initial BCI crosses, we used the same wheat variety as was used in the production of the F1 hybrid, so we were not able to categorically state that the progenies were apomictic. There was a possibility that all the maternal wheat chromosomes were eliminated, then the socalled 'apomictic progeny' could have resulted from the fertilization of the egg-cell (with seven barley chromosomes) by wheat pollen. In subsequent BCI crosses, we used different wheat varieties and utilized awn markers to unequivocally demonstrate that apomixis was indeed occurring (Mujeeb-Kazi 1994b). We also used a trigeneric system to further document the findings in the -Kazi et al. 1987-Kazi et al. , 1989)).Asymmetric synthetic genomes-In segmental allohexaploids (Th. junceum; 2n=6x=42) or segmental autoallohexaploids (Th. intermedium and synonymous species), there are two related genomes (E 1 E 2 ) and a distinctly different third genome (X or Z). Taking Th. intermedium and its relatives as an example, the genomic constitution of a hybrid resulting from a cross with wheat would be ABDE 1 E 2 X or ABDE 1 E 2 Z. When such self-sterile F1 hybrids are pollinated with wheat, the BCI derivatives usually possess 63 chromosomes and have a genomic make-up of AABBDDE 1 E 2 X. These are partially self-fertile and the BCIF1 progenies as well as progenies of additional selfings usually possess derivatives with 56 chromosomes. We believe that an asymmetric genome loss occurs in the BCI octoploid (2n=8x=56) yielding BCIF1 progeny.This prevalent phenomenon has advantages and disadvantages. It has been described as a mechanism known as \"genome splitting\" or \"asymmetric genome reduction\" by Gottschalk (1971), Cauderon (1977), Ladizinsky and Fainstein (1978), and Dewey (1980). These workers provided information concerning the extraction of different genomes of the complex polyploid Agropyron species, which facilitated Chapter 4 cytogenetic analysis as conventionally done for a diploid alien species. The data presented by the above workers show a range of variation that is explained by the genome splitting phenomenon, which we do not deal with here.In analyses of BC progeny of T. aestivum/ L. racemosus //n*T. aestivum, unusual chromosome number variants were observed. In one instance, wheat polyhaploids originated as twin seedlings in the selfed progeny of a 44-chromosome double monosomic addition line. N-banding revealed 16 typical wheat chromosomes in the polyhaploids. Other variants in the backcross progeny included mixoploids with 43 and 86 chromosomes.After selfing of the BC derivatives (with 49 chromosomes) of T. aestivum/Th. junceiforme// 2*T. aestivum, 56-chromosome derivatives were recovered. One explanation implies fertilization of a 28-chromosome egg cell with pollen that maintained a high number of Th. junceiforme chromosomes in the transmission. Such events have also been observed in BCIIF1 derivatives of wheat crossed with Th. rechingeri, Th. curvifolium, and Th. scirpeum. In a similar way, Cauderon (1963Cauderon ( , 1977) ) replaced chromosome 6D6D of wheat (Figure 4.4). We are critically analyzing these replacements using ditelocentric wheat stocks of chromosomes 6DS or 6DL. In another derivative, chromosome M disomically replaced 6A6A-this was verified by electrophoretic analysis (unpublished data).Upon further backcrossing, the preferentially substituted chromosomes enable the development of two univalents in the derivative progeny (M+6A or M+6D) that could, via centric break and fusion, form new derivatives through translocation of the alien chromosomes to wheat.It was presumably such a univalent misdivision and its selfing that formed the natural Chapter 4homozygous 1BL/1RS translocation in T. aestivum varieties that has proven to be so valuable (Merker 1982, Mujeeb-Kazi 1982, Rajaram et al. 1983, Jahan et al. 1990).There are not too many examples of fertile amphiploids in diverse wide crosses presumably because few researchers have an interest in pursuing their production. Also, there are some genetic constraints despite the availability of an efficient technique. Fertile amphiploids have been obtained in the following diverse crosses: T. aestivum /Th. bessarabicum (2x) (Forster andMiller 1985, Kimber andSallee 1980), T. aestivum /Hordeum chilense (Chapman and Miller 1978), H. bogdanii/T. timopheevii (Kimber and Sallee 1976), T. aestivum/Thinopyrum distichum (Pienaar 1980), H. pubiflorum/Secale africanum (Fedak 1985), and H. californicum/ T. aestivum (Fedak, unpublished). Although numerous efforts failed to produce fertile amphiploids from the T. aestivum/H. vulgare cross (Fedak 1977b;Islam et al. 1975Islam et al. , 1978Islam et al. , 1981;;Mujeeb-Kazi and Rodríguez 1983b), success was finally achieved (Molnar-Lang and Sutka 1993). Mujeeb-Kazi et al. (1987) successfully produced fertile amphiploids from the T. aestivum/ Th. r echingeri cross and earlier from T. aestivum/ Th. junceum cross (Mujeeb-Kazi and Bernard 1985a). These amphiploids usually possessed 70 and 84 chromosomes, respectively, but in both amphiploids, aneuploidy was observed. Five amphiploid plants derived from the T. aestivum/ Th. junceum cross had from 72 to 84 chromosomes. Despite a high degree of asynapsis (up to six univalents) in the H. californicum /T. aestivum-derived amphiploids, progenies studied so far have had the expected chromosome number of 2n=8x=56 (Fedak, unpublished). Recently, several primary triticale hexaploids have been produced that express a high degree of normal chromosome counts over three generations of selfing (unpublished data) and, contrastingly, we have reported several amphiploids derived from intergeneric crosses that show variable extents of aneuploidy (Mujeeb-Kazi et al. 1994c). We found a rare example of an amphiploid derived from Elymus fibrosus/T. turgidum where the alien species was the maternal parent (Mujeeb-Kazi 1994a). E. trachycaulum, E. ciliare, and E. caninus have also been used as the female parents in intergeneric crosses with wheat, but no amphiploids have resulted after colchicine treatment (Sharma andGill 1981, 1983a,b,c;Mujeeb-Kazi and Bernard 1985a;Sharma and Baenzinger 1986). The same is true for hybrids of Hordeum vulgare/T. turgidum and H. vulgare/ T. aestivum .In essence, each hybrid combination must be treated individually and generalities should be avoided as illustrated above. The aneuploidy referred to above is for limited individual chromosomes (Figures 4.5a-d), but complete genome(s) may be lost in the advance to amphiploids. There are several examples in the range grasses (Dewey 1980) where 10-to 12ploid amphiploids have spontaneously stabilized at the octoploid level of 56 chromosomes. A T. turgidum/Leymus mollisderived amphiploid was stabilized at 42 chromosomes (N.V. Tsitsin; information to A. Mujeeb-Kazi via D. Dewey, Logan, Utah, USA, and A. Merker, Svalov, Sweden).Although, as mentioned earlier, there are numerous traits to be utilized from intergeneric crosses in the areas of biotic and abiotic stresses, we are particularly enthusiastic about introgressing tolerance to various abiotic stresses and emphasize this aspect in our discussion of the utilization of intergeneric hybrids. We briefy discuss some of our successes involving biotic (disease) stress resistances in the conclusion of this chapter and in the section on the radical approach in Chapter 9.Substantial information is available on the contribution of alien species to stress tolerance in wheat (Mujeeb-Kazi et al. 1991a, Manyowa and Miller 1991, Paull et al. 1991). Many of these attributes require situation-specific improvement strategies. We have been specifically working with the transfer of traits related to salt tolerance, copper efficiency, and aluminum tolerance. and the advance procedures involved. We closely follow the hydroculture salinity screening methodology for advanced derivatives adopted in the Bangor Laboratory (Gorham et al. 1987, Gorham 1990).Tolerance in conventional germplasm-CIMMYT has established a tester set that contains wheat cultivars that are either salttolerant (CS, Kharchia 65, Shorawaki, and Lu26S) or salt-susceptible (Yecora 70, Oasis F86, and PBW 34). Some of these entries like CS have a long history of being classified as salt-tolerant and have been extensively studied in several laboratories. Tolerant Shorawaki has had little publicity; some cultivars (Sakha 8, SNH-9, WH-157, and Candeal) still require rigid evaluations. Through a collaborative research program involving CIMMYT; the Institute of Plant Science Research, Norwich, UK; and the laboratory at Bangor, Wales, we have been able to identify several salt-tolerant alien genera and conventional sources, further substantiated by other literature reports (Table 4.3). This cumulative information has led to the formulation of a comprehensive list of alien variability. Targeted alien species with salt tolerance include Thinopyrum bessarabicum and Th. elongatum; both are diploids (2n=2x=14). An additional source of salt tolerance includes selected accessions of Triticum tauschii. Mujeeb-Kazi et al. (1987, 1989) and Mujeeb-Kazi and Asiedu (1990) We plan to study a new Indian release (KRL 1-4)-a derivative fr om a cross involving Kharchia 65, considered an elite cultivar for saline-sodic soils-reported to have superb growth and high yield even at pH 9.6 (K.N. Singh, pers. comm.).Tolerance in alien germplasm-With such a limited source of salt tolerance in conventional germplasm, it is prudent to search for additional genetic diversity in the alien species. There has been a flurry of reports (especially over the past five years) about alien germplasm possessing salt tolerance. How close we might be in receiving benefits from use of such alien species is still an open question. However, we believe the prognosis is quite encouraging. As mentioned above, Th. elongatum (2n=2x=14) and Th. bessarabicum (2n=2x=14) are particular standouts (Gorham et al. 1985, Dvorak et al. 1988).In hydroculture tests, we re-evaluated some salttolerant characteristics of these species and our observations support their potential as assessed through their amphiploids derived from crosses with T. aestivum cultivars (Table 4.4). Even though diploid alien sources are a priority, weIntergeneric Crosses recognize that, where diverse genomic distance prevails, the salt-tolerant trait may not be simply inherited. This is clear from the observations of Dvorak et al. (1988), who found three (3E, 4E, 7E) of seven disomic addition lines derived from T. aestivum (CS)/Th. elongatum to give positive salt tolerance responses. This poses several constraints for introgressing genes from these three addition lines into wheat and a further constraint in transferring from CS the tolerance into a commercial cultivar that will contribute to agricultural productivity in salt-prone areas. This will take time to accomplish. W e anticipate more success in exploiting the alien cytoplasm by working with the reciprocal cross (Th. elongatum /T. aestivum). This may also facilitate obtaining derivatives in agronomically superior plant types. Because multiple alien chromosomes are involved, we will also produce multiple disomics, incorporate the maizemediated polyhaploid system (see Chapter 5), and then attempt the alien introgression by Ph locus manipulation.The disomic 5J addition of Th. bessarabicum (2n=2x=14) to CS imparts salt tolerance; its 2J addition is salt-susceptible while the amphiploid (2n=8x=56) is tolerant (Forster et al. 1987(Forster et al. , 1988)). Further verification of 5J's reported positive effect is warranted since our results have been varied (Mujeeb-Kazi et al. 1991a). We are skeptical as to whether just one alien chromosome, such as 5J, can contribute to acquiring a sufficient level of salt tolerance. So, we have proceeded to produce the complete addition set (seven chromosomes in total) in a background that is superior to CS.Th. bessarabicum is also believed to be a source of tolerance to copper, aluminum, and manganese toxicities (Mujeeb-Kazi et al. 1992) and the complete additive line set may contribute significantly to gaining more abiotic stress tolerance in wheat.By backcrossing a commercial bread wheat cultivar (Genaro T 81) onto the F1 hybrid of CS/Th. bessarabicum and then selfing, we have selected several 44-chromosome derivatives.Chapter 4 the alien chromosomes are paternally transmitted in a high enough frequency to obtain BCIF1 derivatives with chromosomal complements of more than one disomic alien addition (e.g., 23 bivalents). Subsequent genetic manipulation procedures using desirable single chromosome disomic additions or multiple disomic additions are underway.The role of the CS ph1b genetic stock seems very crucial to acquiring complex characters like salt tolerance. Even though difficulties have been encountered in exploiting its full potential (Sharma and Gill 1986), the merits warrant additional effort. Since the report of Sharma and Gill (1986), we have advanced ph1b x alien species-although it has been difficult (Rosas and Mujeeb-Kazi 1990). We are looking at an alternate route involving the CS (Ph) x Th. bessarabicum hybrid (Figure 4.6), which we believe offers more promise. Results from the backcross to the ph1b source and subsequent manipulation promise to prove quite effective in handling alien transfers for salt tolerance. After establishing a methodology for genomic in situ hybridization with Th. bessarabicum (Rayburn et al. 1993), the exploitation of the ph1b locus should be a logical extension for its application aimed at detecting subtle wheat/alien homoeologous exchanges.It appears that copper (Cu) deficiency affects the wheat plant's reproductive stage more than its vegetative (Graham 1975). Graham (1978) studied the symptomology of copper (Cu) deficiency on triticale, wheat, and rye by evaluating the effects on grain yield of various Cu levels ranging from 0 to 4.0 mg/pot. This screening led him to identify Secale cereale cv. Imperial as a rye variety that can efficiently use Chapter 4available Cu. Chromosome 5R from S. cereale, disomically added to CS, was further identified as being responsive and subsequently the 5RL rye arm of this chromosome addition was positively associated with Cu use efficiency.We obtained the 5AS/5RL translocation line from the Plant Breeding Institute in Cambridge and used it as the male parent in crosses onto some CIMMYT spring wheat cultivars for generating the 5A,5AS/5RL heterozygote F1 combinations. Subsequent backcrosses of these F1s with their respective recurrent parents, up to BCVIII followed by an eventual selfing of the best heterozygote BC derivative, should result in elite T. aestivum materials that are near-isogenic substitution lines with the 5AS/5RL chromosome disomic. The 5AS/5RL heterozygote is identified at each BC through the morphological presence of the hairy peduncle (hp) marker mapped on 5RL, controlled by a dominant gene and also effective in the hemizygous stage. Differential C-banding checks on the heterozygote BC derivatives were integrated to ensure adequate accuracy in the generation advance procedures. We have delayed screening for Cu efficiency until the BC program, currently at BCIV, is completed.Since Cu is bound strongly to soil particles, Cu toxicity is rare, but over-fertilization with Cu in acid soils and the element's use in fungicide applications can sometimes create a toxicity problem. Although alternative remedial solutions exist, their integration with genetic tolerance does provide an advantage. Manyowa and Miller (1991) have identified Th. bessarabicum as a potent alien source to contribute tolerance genes. S. cereale is another identified sourcespecifically chromosome 2R. The partial availability of disomic addition lines allowed Manyowa and Miller (1991) to associate chromosomes 2J and 5J (also 2E b and 5E b ) as disomics that contribute to tolerance. The potent 5J/6J translocation (5E b L/6E b L) may be a positive contributor because of 5E b L. Th. repens has also been identified as a potential source, however, its hexaploid status may complicate its use. We are now focusing on Th. bessarabicum, then we will move on to S. cereale as a secondary source of tolerance.Screening- Polle et al. (1978) and Takagi (1983) developed selection systems involving direct observation of wheat seedling roots under aluminum (Al) stress. López-Cesati et al. ( 1986) described a modified screening methodology employed at CIMMYT. The process, based on the fact that Al tolerance in wheat is largely a function of Al exclusion from the roots, involves:• Immersing the roots in a nutrient solution containing 46 ppm Al;• Staining the roots with a 0.2% aqueous hematoxylin solution;• Observing any continued root growth; and• Scoring on a 1-to-3 scale the corresponding Al tolerance based continued root growth.Based upon the above screening schedule, we conducted experiments using: 1) conventional germplasm, 2) alien species with their wheat amphiploids, and 3) some S. cereale cultivars (Table 4.7). The Al test levels were 0 and 46 ppm for the conventional germplasm and alien species and 0, 46, 70, and 95 ppm for the S. cereale cultivars. Gustafson and Ross (1990) It is now over 38 years since Sears (1956) introgressed the Lr9 gene for leaf rust resistance from Ae. umbellulata into bread wheat by irradiation. Since then, the range and potential of the techniques available for this type of manipulation have increased dramatically. This improvement has been both in the production of wide hybrids and in the cytogenetic manipulations possible on the derivatives of the hybrids.Most of the species of the Triticum/Aegilops group can now be easily hybridized with the cultivated wheats. Their genomic relationships are well understood (Kimber 1984b). Once desirable variation has been recognized in the wild species and its expression in a hybrid is established, then the choice of methodology for the introduction of the alien variation follows (Kimber 1984a), logically from measurements of the relative affinity of the chromosomes involved. This ability can only greatly increase the range of variation upon which plant breeders can exercise selection.Hybrids and, in most cases, amphiploids have been produced in crosses between species of the genera Hordeum, Agropyron, Elymus, Secale, Taeniatherum, Eremopyrum, and Haynaldia and various species of the Triticum/Aegilops group as defined by Morris and Sears (1967), Sakamoto (1973), Mujeeb-Kazi (1982), Sharma and Gill (1983a,b,c). The range of new hybrids with more distantly related species is constantly increasing and it is to be expected that a greater range of genotypes will become available for introgressing novel genetic variability into wheat.It is not possible to predict the future genetic demands that may be placed on wheat as new races of pathogens appear or as cultivation is extended into new areas. Consequently, a stock of alien genetic material introgressed from wide hybrids may prove to be of great value.The The practical potential of wide hybridization in the Triticeae is probably greater than in most other tribes of the Grass Family, partly because of the ease of hybridization, partly because of the clear understanding of the cytogenetical relationships, and partly because of the immense importance of wheat. Consequently, there may not be as much need to utilize techniques such as gene splicing or somatic cell fusion within the Triticeae as in other crops. Further, such techniques may have limitations in that the introgressed material may not integrate well with the wheat genotype. The introgression of genetic material from species with relatively close evolutionary ties to wheat would be expected to have the most potential. In addition, the ability to induce recombination between homoeologous chromosomes in the Triticeae would tend to place introgressed segments of the grass species in the best location within the recipient wheat chromosomes. Successful fertilizations have also been accomplished in crosses between wheat and Sorghum bicolor L. Moench, sorghum (Laurie and Bennett 1988a,b); Pennisetum glaucum R. Br., pearl millet (Laurie 1989); Z. mays ssp. mexicana, teosinte (Ushiyama et al. 1991); Hordeum vulgare L., barley (Laurie and Bennett 1988c); and Secale cereale L., rye (Laurie et al. 1990).Crosses between wheat and the above species (as the pollen parent) provide an alternative means of producing polyhaploid (haploid if the species is a diploid) wheat plants through the natural elimination of the pollen parent's chromosomes in the early stages of embryo development (see Chapter 4). Also, there is the possibility of exploiting the genetic variability of the diverse gene pools within these alien species for wheat improvement if, for instance, maize or Tripsacum chromosomes could actually be retained in a wheat background.Abdul Mujeeb-Kazi, Oscar Riera-Lizarazu, and Manilal D.H.M. WilliamOver the last four years, we have been producing high frequencies of polyhaploid wheat plants in crosses using either maize or Tripsacum pollen. We believe that both of these polyhaploid production procedures for wheat are better than anther culture or wheat x Hordeum bulbosum crosses.Polyhaploid plants are important in our efforts to reduce the number of generations it takes to fix the homozygosity of wheat and other cereal plants. A homozygous plant is obtained when a polyhaploid's chromosomes are doubled. This homozygosity is required in basic research projects such as our collaborative work with Cornell University and the International Triticeae Mapping Initiative (ITMI) to produce RFLP maps of the wheat and barley genomes.After successful fertilization occurs in any of the above crosses, chromosomes of the male parent are eliminated very early, thus producing a polyhaploid embryo with the chromosomes of the female parent. Normally, the embryo soon aborts; however, exogenous treatment with the synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) promotes seed and embryo development until the embryo can be excised and plated onto a synthetic medium for continued growth and plantlet regeneration (Laurie et al. 1990).Using this methodology, polyhaploid cereal plants have been recovered from crosses of bread wheat (T. aestivum) x maize (Comeau et al. 1988, 1989, Inagaki and Tahir 1990). This makes it superior to the H. bulbosum system. In addition, gametoclonal variation induced in doubled polyhaploid lines using the maize system was similar to that found in doubled polyhaploids obtained from wheat x H. bulbosum crosses (Laurie and Snape 1990).The use of 2,4-D appears to be critical in promoting seed set and embryo formation in wheat x maize crosses (Laurie andBennett 1988c, Inagaki andTahir 1990). Techniques using 2,4-D treatment include: floret culture (Laurie and Bennett 1988c), tiller injection (Suenaga andNakajima 1989, Inagaki andTahir 1990), spike spraying (Rines et al. 1990), and floret treatment (Riera-Lizarazu and Mujeeb-Kazi 1990). Detached tillers (Riera-Lizarazu and Mujeeb-Kazi 1990) and detached spikelets (Laurie and Bennett 1988c) offer more flexibility because experimental material can be transferred to locations where conditions can be more easily controlled and monitored.We first obtained a high recovery of wheat polyhaploids from crosses between the wheat cultivar 'Morocco' and CIMMYT maize population 'Pool 9A'. Subsequently, we achieved successful polyhaploid embryo production for additional T. aestivum and T. turgidum cultivars and for the T. turgidum x T. tauschii synthetic hexaploids, using a detached tiller culture method.We used two sets of plants that were field-grown at El Batan, CIMMYT, Mexico:• T. aestivum cv. \"Morocco\" and Z. mays population \"Pool 9A\". 1993).Until recently, polyhaploid production in the Triticeae had relied mostly on anther culture and sexual crossings with the perennial barley relative Hordeum bulbosum L. The occurrence of somaclonal variation, aneuploidy, and genotypic specificity (Picard 1989) are major limitations of anther culture in polyhaploid production. The homoeologous group 5 crossability loci (Kr1, Kr2, Kr3) are the major limiting factors of the H. bulbosum sexual crossings (Snape et al. 1979;Falk andKasha 1981, 1983;Sitch andSnape 1986, 1987;Mujeeb-Kazi and Asiedu 1990). In order to avoid tissue culture-associated somaclonal variation, the sexual route to polyhaploid production seemed to be more desirable; however, we needed a substitute for the troublesome H. bulbosum technique. So, we have been exploring Zea mays L. (Laurie andBennett 1986, 1988a,c;O'Donoughue and Bennett 1988;Laurie et al. 1990) and Tripsacum dactyloides (Riera-Lizarazu and Mujeeb-Kazi 1993) as alternative sexual routes for polyhaploid production in the Triticeae.Since maize pollen growth and fertilization activity appear to be insensitive to the Kr crossability alleles of wheat (Laurie and Bennett 1987), polyhaploids can be recovered across different genotypes (Suenaga and NakajimaWe hand-emasculated spikes before anthesis and covered them with glassine bags. When the stigmatic surface was receptive (three to four days after emasculation), the spikes were pollinated with fresh maize pollen. The tillers of pollinated spikes were detached 5 cm below the peduncular node and placed in a beaker with an aqueous solution of 100 mg 2,4-D/L. For each of the three crossing techniques, we collected seeds 14 days after pollination and sterilized them in a chlorine bleach solution (20% v/v) for 15 min. Embryos were excised under a stereomicroscope (2x) in a laminar flow hood decontaminated with 75% ethanol. Excised embryos were transferred to vials containing half strength MS basal medium supplemented with 20 g sucrose/L, 0.4 mg indole-3-acetic acid (IAA)/L, 0.1 mg 6-benzylaminopurine (BAP)/L, and 2 g Gelrite (Scott Laboratories, Inc., West Warwick, RI, USA)/L. Vials with embryos were kept in the dark at room temperature for 1 to 2 weeks. After germination, we transferred the regenerated plantlets to peat pots and eventually to soil in pots kept in the greenhouse.Somatic chromosome analysis of all regenerated plants was conducted according to the method of Mujeeb-Kazi and Miranda (1985). For meiotic analysis, the young spikes were fixed in 6:3:1 [ethanol (99%): chloroform: glacial acetic acid] for 48 hours and stored in 70% ethanol solution in the freezer (-10 o C) until needed. Anthers at metaphase I were stained in alcoholic carmine (Snow 1963), then processed according to the modified procedure of Mujeeb-Kazi et al. (1994a) for high contrast, intense staining, and reduced stickiness. Mean metaphase I pairing associations were calculated from 25 meiocytes for some bread wheat and synthetic hexaploid polyhaploids.We treated cytologically identified polyhaploid plants with colchicine (Mujeeb-Kazi et al. 1987) in order to induce chromosome doubling. We presumed successful doubling had occurred if we observed seed set.Some female wheat parents and their doubled polyhaploid progenies were analyzed by studying the banding profiles of their seed storage proteins (glutenin) and isozymes (Esterase, E.C. 3.1; and ß-Amylase, α-1,4-glucan maltohydrolase E.C. 3.2.1.2). The endosperm halves of mature kernels were used to analyze protein separation and the isozymes.The high molecular weight glutenin subunits were separated by using a slight modification of the SDS-Polyacrylamide gel electrophoresis procedure of Ng et al. (1988). Stacking gels of 2 cm and 10% separation gels of 15.5 cm were used. Thickness and width of the gels were 0.15 and 16 cm, respectively. Each gel was run at 20 mA constant current for 1 hour followed by 30 mA constant current for 4 hours on a Bio-rad protean II electrophoresis unit. The temperature was maintained at 15 o C during electrophoresis.Esterase and ß-Amylase isozymes were separated by isoelectric focusing using precast Pharmacia PAG plates with pH gradients of 3.5-9.5 for Esterase and 4-6.5 for ß-Amylase. The running conditions and the staining protocols were similar to those of William and Mujeeb-Kazi (1992). Cytological analysis confirmed that the wheat plants possessed the expected polyhaploid complement of n=3x=21 chromosomes. Chromosomes 1B and 6B were consistently identified because of their secondary constriction; occasionally, a 5D chromosome with its secondary constriction was also identified. Laurie and Bennett (1988c) reported that embryos in caryopses, allowed to develop on the plants without growth regulator treatments, had poor viability, whereas spikelets cultured in solid MS medium with 2,4-D two days after pollination resulted in increased embryo recovery from 0.17 to 26.5%. Suenaga and Nakajima (1989) reported equal to better embryo recovery frequencies (18.0 to 31.9%) by injecting the uppermost stem internode with 100 mg 2,4-D/L. Exogenous treatments with 2,4-D appear to enhance embryo viability, although the mechanisms are not clear.In our study, embryo recovery was unexpectedly low when we applied 2,4-D in the field with the tiller injection and floret spraying methods.Recovery was consistently high when we applied 2,4-D in the greenhouse with the detached tiller method (Table 5.1). The field environment was exceedingly wet and cold during the experiment, which might have negatively affected cross fertilization and seed development in the injected or sprayed spikes. Spraying of the florets was particularly ineffective, probably due to the exposure of unfertilized ovaries to 2,4-D 24 hours prior to pollination. Effective embryo recovery has been reported when 2,4-D spray applications were made 24 hours post pollination (Rines et al. 1990). Also, reasonably good frequencies of embryos were recovered (0.6 to 26.8%) when the spray procedure was used 24 hours post-pollination in wheat x Tripsacum crosses described later.Suenaga and Nakajima (1989) also observed a reduction in embryo recovery when tillers were injected one to two days before pollination. They speculated that 2,4-D treatments prior to pollination induced morphological and physiological changes in unfertilized florets that were detrimental to cross fertilization (see Marshall et al. 1983). On the other hand, 2,4-D treatments prior to pollination in wide crosses have been shown to improve embryo recovery frequencies (Kruse 1974a, Riera-Lizarazu andDewey 1988). Thus, other factors besides 2,4-D applications prior to pollination may have affected the differences in embryo recovery.In the greenhouse, detached tillers were drier and the caryopses larger than those obtained from the field material. Translocation and seed development were probably better under the greenhouse conditions as well. In another controlled experiment, we found the detached tiller technique to be significantly better than tiller injection across several wheat genotypes (unpublished data). So, we conclude that the use of detached tillers offers the most practical and versatile alternative for wheat polyhaploid production when crossing wheat x maize. However, as we point out later in this chapter, some modifications may be in order to improve the detached tiller system, especially when crossing other Triticum and Triticeae species with maize.Production of Polyhaploid Wheat Plants Although plant production frequencies from recovered embryos did not dramatically vary among the different treatments (frequencies ranged from 67 to 81%), we found embryo germination could be increased with improved embryo culture procedures or by enhancing embryo development on the crossed spikes. We rescued embryos 14 days after pollination. Allowing embryos to remain on the spikes longer might be appropriate if differentiated embryos are desired. Although polyhaploid frequency using detached tillers averaged about 23% (average embryo recovery frequency of 28.70% x average plant regeneration frequency of 81%), it could potentially be as high as 42% if we consistently obtained 100% differentiation and high embryo recovery.In summary, the embryo excision/plantlet regeneration/polyhaploid production frequencies (all percentages) obtained so far are:• 28.7/81.3/23.3 with detached tillers; • 12.8/76.6/9.8 with tiller injection. The recent success rates of two other laboratories not using the detached tiller procedure have been:• 25.1/83.6/20.9 (Suenaga and Nakajima 1989); • 21.7/43.7/9.5 (Inagaki and Tahir 1990).As reported by Inagaki and Tahir (1990) and Laurie and Reymondie (1991), we have also recovered polyhaploid embryos using an assortment of wheat genotypes (Table 5.3). In addition, our results suggest that using detached tillers in the maize system (as described above) can be extended to recover polyhaploids in durum wheats and T. turgidum x T. tauschii derived amphiploids (Table 5.3).In this study, we obtained a wide range of embryo recovery frequencies among hexaploid wheats, tetraploid wheats, and the synthetic hexaploids, averaging 15.6, 16.9, and 19.8%, respectively (Table 5.3). We recovered no embryos from S. cereale x maize crosses although Laurie et al. (1990) have reported embryo initiation in such crosses. Mean plant regeneration frequencies for bread wheats, durum wheats, and the synthetic hexaploids were 68.5, 73.9, and 74.5%, respectively. Successful chromosome doubling (Figure 5.1) with colchicine averaged 60.7% for T. aestivum cultivars, 69.5% for T. turgidum cultivars, and 63.6% for the synthetic hexaploids (Table 5.3).Production frequencies of 1 to 4% have been considered to be acceptable for the economic production of polyhaploids (Comeau et al. 1988). In our study, the average doubled polyhaploid recovery for T. aestivum, T. turgidum, and the synthetic hexaploids (based on florets pollinated) ranged from 6.5 to 9.4%, with average embryo recovery frequencies of 14.7 to 19.4%, mean plant regeneration frequencies of 68.5 to 74.5%, and successful doubling frequencies of 60.7 to 69.5% (Table 5.3). Although the polyhaploid plant frequencies we obtained for wheat in this study more than adequately meet economic threshold levels, Suenaga and Nakajima (1989), Inagaki and Tahir (1990), and Riera-Lizarazu and Mujeeb-Kazi (1990) have reported higher frequencies across genotypes.We attribute our lower recovery-compared to earlier results of Riera-Lizarazu and Mujeeb-Kazi (1990)-to continuous rainfall during tiller collection in the field. This led to a lack of complete tiller sterilization, which resulted in progressive decay of the spike culm base in the culture medium, in turn affecting normal nutrient translocation and seed development.Chapter 5For such situations in the future, it may be best to use intact spikes (Suenaga and Nakajima 1989) or to modify the detached tiller process. The detached tiller system was specifically designed to study nutrient translocation and seed development physiology in wheat spikes (Jenner 1970, Donovan and Lee 1977, Singh and Jenner 1983), hence modifications may be needed before we can apply the procedure to other Triticum and Triticeae species. One modification involves the use of sulfurous acid to suppress contamination in the culture solution and culm decay as reported by Kato et al. (1990). Also, we can avoid humid/wet environments by making crosses in environmentally controlled greenhouses. In another example, we observed severely reduced tiller viability when detached tillers of Secale cereale cv. \"Prolific\" and \"Sardev\" were used. No embryos were recovered in this rye x maize combination. It appears that, in this particular case, an in vivo approach may hold more promise. If the detached tiller method prevails, then the constitution of the nutrient solution and the place of tiller detachment plus the constraints expressed earlier will have to be addressed.In this study, seeds produced from crosses between the Triticeae species and maize lacked normal endosperm. In addition, the embryos were found floating in a watery solution inside the seeds. Generally, any embryo recovered from seed lacking normal solid endosperm is a polyhaploid. This could serve as a morphological diagnostic tool for screening selfed versus cross-pollinated products. used had the dominant Ph locus (one that remains intact over the polyhaploid induction process), which restricts homoeologous pairing.Genes for high molecular weight glutenins have been located on the long arms of homoeologous group 1 chromosomes (Payne and Lawrence 1983); grain Esterase genes are on the long arms of homoeologous group 3 chromosomes (Ainsworth et al. 1984); and those for ß-Amylase are on group 4 and 5 chromosomes (Ainsworth et al. 1983). Extensive allelic variations have also been reported for all three systems. Figures 5.5-5.7 show banding profiles of high molecular weight glutenins, isozymes of seed esterase, and isozymes of ß-Amylase. We observed extensive variations in the banding profiles for all the above three systems among different cultivar families-probably as a consequence of allelic variation. Parental banding profiles of HMW glutenin and esterase were identical to those present in the doubled polyhaploid progenies. For ß-Amylase, there were some minor differences in the banding profiles within some families (Figure 5.7). This isozyme variation mayChapter 5Polyhaploids of T. aestivum cultivars and the synthetic hexaploids showed very low A, B, and D genome association, i.e., allosyndetic pairing (Table 5. 4 and Figure 5.4). Ring bivalents were rare; the chiasmata ranged from 0.44 to 1.72/ meiocyte (Table 5.4). Riley and Chapman (1958) reported chromosome associations of wheat polyhaploids (n=3x=21) to be 18.05 univalents + 1.38 bivalents + 0.07 trivalents. Subsequently, Kimber and Riley (1963) be partially attributed to post translational modifications (Ainsworth et al. 1983), whereas some of the band intensity differences may also be accounted for by variation in endosperm protein concentration. The close similarity in the banding profiles of the doubled polyhaploid progenies and their parents suggests stable transmission of genetic information by this procedure. It also indicates that the parental genetic information for the evaluated enzyme systems is fixed in the doubled polyhaploid progeny without alteration. Cultivars of T. aestivum, T. turgidum, and amphiploids derived from T. turgidum/T. tauschii were grown in outdoor pots at El Batan, CIMMYT, Mexico, and used as female parents in crosses with Tripsacum dactyloides also grown outdoors (Table 5.5).Spikes were hand-emasculated before anthesis and covered with glassine bags. When the stigmatic surface was receptive (three to four days after emasculation), the spikes were pollinated with fresh Tripsacum pollen. One day after pollination, the emasculated floral cups were flooded with an aqueous solution of 50 mg The use of the maize system for polyhaploid production in the Triticeae is very encouraging since genotype specificity does not exist.Reaching homozygosity in earlier generations will certainly accelerate work in cereal breeding programs. Despite the current, presumably sitespecific, contamination problem we encountered with the detached tiller method, the potential for its application in polyhaploid production research in cereals looks promising. Laurie and Reymondie (1991) corroborate this contention where high frequency polyhaploid production has been reported in spring and winter wheat x maize crosses. More durum wheat and rye genotypes need to be tested to further evaluate the detached tiller method.The taxonomic proximity of eastern gamagrass (Tripsacum dactyloides L.) to maize (Doebley 1983) has encouraged us to evaluate cross combinations involving wheat (T. aestivum and2,4-D/L and 150 mg gibberellic acid (GA 3 )/L. To evaluate the effect of 2,4-D on embryo recovery, crosses involving the hexaploid wheat cultivar Ciano T 79 and the tetraploid wheat cultivar Altar 84 were given three treatments:• Some spikes did not receive 2,4-D;• Some spikes received 2,4-D, but were not pollinated;• Other spikes were pollinated and treated with 2,4-D (Table 5.6).Embryo rescue, plantlet regeneration, and transplanting procedures were similar to those reported in the section on wheat x maize hybrids. The cytological processes for mitosis and meiosis were also identical to those earlier reported with the exception that we integrated a modified procedure (Mujeeb-Kazi et al. 1994a).As mentioned earlier, Suenaga and Nakajima (1989) and Inagaki and Tahir (1990) found that 2,4-D treatment of the spikes is critical to recovering seeds and embryos from wheat x maize crosses. Our preliminary trials show that 2,4-D is also important for embryo recovery in wheat x Tripsacum crosses (Table 5 In all crosses receiving 2,4-D and GA 3 treatments 24 hours after pollination, we obtained a wide range of embryo recovery frequencies. The mean frequencies were 20.6% for T. aestivum, 26.8% for T. turgidum, and 23.5% for the synthetic hexaploids (Table 5.5). There was no apparent genotype specificity, implying that Tripsacum, like maize and other species of the Panicoideae, is also insensitive to the Kr crossability alleles of wheat. A more detailed study is needed to reveal the extent of this insensitivity in different Tripsacum accessions because Suenaga and Nakajima (1989) observed variation among maize cultivars.Embryo recovery frequencies were slightly low in this experiment-perhaps due to variations in technique (Comeau et al. 1992). Embryos were smaller (averaging 0.5 mm long) than those resulting from wheat x maize crosses (averaging 1 mm). In order to reduce the number of daily applications, we doubled the GA 3 concentration-to 150 mg/L (Suenaga andNakajima 1989, Furusho et al. 1991). This doubling might have been detrimental to normal embryo development. The GA 3 variable needs further evaluation to determine whether embryo size could be improved by using a lower GA 3 concentration or by omitting it altogether. We anticipate that with normal embryo development better germination frequencies will result.As with the wheat x maize crosses, seeds produced from wheat x Tripsacum lacked a normal endosperm. Embryos were lodged at the micropylar end of shriveled seeds or were floating in a watery solution (probably translocated solutes) in well-developed seeds. In spikes treated with 2,4-D after pollination, the ovary tissues were enlarged as happens in normal seed development, turgid but filled with liquid (Suenaga and Nakajima 1989, Inagaki and Tahir 1990, Riera-Lizarazu and Mujeeb-Kazi 1990). Sometimes embryos were found, other times not.Cytological analyses showed the T. aestivum polyhaploids to possess 21 chromosomes (Figure 5.8a), the T. turgidum polyhaploids to possess 14 chromosomes, and polyhaploids from the synthetic hexaploids to possess 21 chromosomes.The secondary constriction site resolution readily identified the 1B and 6B chromosomes (Figure 5.8a) in all samples.Meiotic analyses of some ABD polyhaploids (n=3x=21) demonstrated negligible allosyndetic chromosome pairing at metaphase I (Table 5.7, Figures 5.8b-d). Riley and Chapman (1958) and Kimber and Riley (1963) reported similar low chromosome pairing relationships-data fairly consistent with our observations (Table 5.7). We detected no chromosome abnormalities.Plant regeneration frequencies from recovered embryos were 66.7% for durum wheats, 78.5% for bread wheats, and 75.5% for the synthetic hexaploids-similar to the earlier regeneration frequencies of 73.9, 68.5, and 74.5%, respectively, of polyhaploids from maize crosses (Riera-Lizarazu et al. 1992). In the maize studies, we found colchicine doubling ranged between 63.6 and 69.5%-an aspect we did not incorporate into the Tripsacum investigation.Because of our diversified research interests in the synthetic hexaploids, we placed their polyhaploids in a glasshouse where we bagged each spike in an operational maintenance procedure. We obtained spontaneous seed set on seven T. turgidum cv. Ruff 'S' x T. tauschii polyhaploids (Table 5.8) and somatic analyses supported the anticipated chromosome count of 2n=6x=42, AABBDD. As mentioned earlier, each polyhaploid possessed n=3x=21 chromosomes, hence a meiotic restitution-related process seems to have produced the doubled seed progeny-an event of frequent occurrence in intergeneric and interspecific hybrids.Crosses between wheat and Tripsacum resulted in the production of wheat polyhaploids of various genotypes. Unlike wheat anther culture or sexual Finally, a long-term utility of Triticum x Tripsacum hybridizations is the possibility of transferring to wheat some of Tripsacum's desirable traits, such as drought tolerance and insect resistance. Earlier, Laurie and Bennett (1986) theorized a similar concept for transferring the more efficient C-4 photosynthetic pathway from maize to wheat. Retention of the alien chromosomes in wheat will be a crucial step if such introgressions are ever to materialize.hybridization of wheat with H. bulbosum, troublesome genotypic specificity and aneuploidy were absent. As with maize, this makes Tripsacum-mediated polyhaploid production a superior system for producing polyhaploids.The merits of using Tripsacum instead of maize or a combination of both are worthy of consideration and further evaluation. In the field at El Batan, Mexico, Tripsacum dactyloides flowers six to eight weeks earlier than maize, which would allow a prolonged crossing cycle if both maize and Tripsacum are used as pollen donors.Regardless of which of these are used as male parents, polyhaploid production through such hybridizations will aid in accelerating progress in cereal breeding programs; other cytogenetic applications will be enhanced as well (Mujeeb-Kazi et al. 1991b). Easier production of doubled polyhaploid populations of different genotypes will facilitate genetic and genome mapping studies in cereals.Production of Polyhaploid Wheat Plants F1 recombinants of inbred doubled polyhaploids can shorten the time it takes to obtain valuable homozygous lines. In the process commonly known as haplo-diploidization, a homozygous line is instantly obtained when the chromosomes of a polyhaploid plant are doubled. In wheat, where polymorphisms at the DNA level are relatively low, this system can be used to obtain polyhaploid plants from a cross that shows polymorphisms. Upon doubling the chromosomes of these polyhaploids using colchicine treatment, we can produce a population of homozygous plants that represents the variation in the initial cross. These progeny can then be used for RFLP mapping of the cereal genomes.Since polymorphic loci in hexaploid wheat appear to be rare, RFLP linkage mapping can be achieved by using populations of wild progenitors where polymorphisms are more prevalent. Of these wheat relatives, Triticum tauschii accessions, which share complete homology with the D genome of hexaploid bread wheat, have been found to be highly polymorphic at the DNA level. RFLP mapping of hexaploid wheat is now feasible with the use of these synthetic hexaploids-the result of crossing T. turgidum (AABB) with T. tauschii (DD)-see Chapter 3. When the chromosomes are doubled, a reconstituted hexaploid wheat is produced (AABBDD). Our procedure is the following. First, we cross the durum cultivar Ruff with T. tauschii to produce a highly DNA-polymorphic synthetic hexaploid. We then cross this synthetic with hexaploid bread wheat cultivars such as Buckbuck, Opata M 85, and Ciano T 79. We cross the resulting F1 derivatives with maize to produce the polyhaploids. We then double the chromosomes of these polyhaploid plants to produce homozygous lines.Our polyhaploid production procedure has been routinely effective, so we have not emphasized recording the number of embryos excised from pollinated florets. Typically, enough embryos can be excised to allow a regeneration frequency of between 70 and 80% and a doubling frequency of between 60 and 70% (Table 5.9). To date, we have pr oduced at least 300 doubled polyhaploid plants for our collaborators at Cornell University, who are involved in the genome mapping project.In wheat wide crosses, polyhaploidy can be further exploited for the production of alien chromosome addition lines from populations that have varying chromosome numbers. Preferably, plants with 22 chromosomes (21 chromosomes of wheat plus 1 alien chromosome) are recovered. The final product after colchicine treatment is a plant with 44 chromosomes (42 wheat plus an alien pair). This pr ocess not only simplifies our production of disomic addition lines, but also resolves the constraints of paternal transmission of alien We are also applying the maize procedure to BCI-selfed derivatives of T. aestivum x Th. bessarabicum where more than one alien chromosome is present in a derivative. We anticipate this will allow us to fix multiple disomic additions. The procedure will simplify the introgression of complex genes (for traits such as salt tolerance) located on different Th. bessarabicum chromosomes.• The potential of stored maize and Tripsacum pollen is being explored because it could be a significant factor in extending the use of the methodologies discussed in this chapter to countries where cropping cycles are separated or where adequate facilities are lacking for growing plants under controlled conditions.• Simplification of genetic studies, pyramiding of simple genes (e.g., for leaf rust resistance), and applications in wide crosses to homozygosity and molecular mapping populations are just a few avenues that could be further exploited and diversified.• Equally promising is the development of doubled polyhaploids from F1 combinations for traits like salt tolerance where the soil heterogeneity makes genetic studies almost prohibitive.• Just as 2,4-D is unequivocally recognized as being an essential exogenous regulator in this methodology, we argue that the quality and quantity of maize or Tripsacum pollen are equally critical.• Can maize and Tripsacum chromosomes be retained in a wheat background? If so, will any characters be expressed? Only future research will provide the answer.Production of Polyhaploid Wheat Plants T he use of tissue culture technologies to grow wheat plants from somatic or polyhaploid cells has significant potential to aid plant breeders in their efforts to develop improved wheat cultivars. Callus induction from immature embryos-including its maintenance and eventual plantlet regeneration-is a way to tap into the heritable variability of Triticum aestivum for desired traits that are either simply inherited or under more complex polygenic control. Tissue culture applications in the Triticeae associated with embryo culture and hybrid plantlet differentiation have become routine in producing hybrids from intergeneric and interspecific crosses. X Triticosecale Wittmack (triticale) is a notable example.In the 1980s, the United States Agency for International Development (USAID) provided funding that supported a tissue culture program at Colorado State University. This evolved into a larger internationally recognized effort known as the Tissue Culture for Crops Project (TCCP). In a five-year collaboration between CIMMYT and the Colorado effort, a TCCP researcher was stationed in our wheat wide crosses laboratory. The TCCP researcher in our laboratory focussed on long-term callusing and regeneration of certain wheat cultivars and their utility in facilitating alien genetic transfers from wild grasses to wheat. The collaboration terminated at the conclusion of USAID's long-term grant to the TCCP, but the impacts of the association are still being realized through the development of cytogenetic stocks and germplasm that is resistant or tolerant to Tilletia indica (Karnal bunt, KB), salt, and other stresses.We have used long-term tissue (callus and embryo) culture and regeneration to demonstrate the potentials of inducing variability within various groups of the Triticeae for morphological, biochemical, and cytological characteristics.Operational constraints in intergeneric hybridization are associated with alien gene introgression and obtaining hybrid plants with a doubled chromosome number (amphiploid). Callus culture has significantly helped us overcome these constraints by:• Promoting chromosome pairing in wheat/ alien species hybrids similar to the chromosome associations in wheats possessing the recessive ph locus on chromosome 5B.• Inducing amphiploidy in two intergeneric hybrid combinations mediated by altered chromosome division in the regenerated plants.Abdul Mujeeb-Kazi, Nitschka ter Kuile, Reagan Waskom, and Murray W. NaborsThe test systems we used for callus culture were T. aestivum or T. turgidum x Aegilops variabilis. In the following, we discuss the cytogenetical and practical implications of our observations.Ae. variabilis?-An Ae. variabilis accession (no. 13E in the CIMMYT Wheat Wide Crosses Working Collection) was reported to possess a remarkable level of resistance to KB-a quarantinable seedborne disease that can seriously restrict international movement of wheat seed. The accession showed 0% infection under the boot inoculation procedure (Warham et al. 1986). Several cytogeneticists (Sears 1977, Jewell 1983, Jewell and Mujeeb-Kazi 1982) concluded that the F1 hybrid-resulting from the cross T. aestivum cultivar Chinese Spring (CS) x Ae. variabilis-exhibits a low wheat/alien chromosome association frequency. This shows that there is a limitation in the genetic exchange between wheat and Ae. variabilis through normal chromosomal recombination. Conventional cytogenetic procedures provide some opportunity for homoeologous chromosome exchange by enhancing chromosomal pairing through chromosome 5B manipulation; like using the ph locus. As an alternative, we decided to apply the callus culture procedure in an attempt to induce random chromosomal exchanges in the crosses of wheat/Ae. variabilis (Vahidy et al. 1989).Cultivars of T. aestivum and T. turgidum (Table 6.1 ) were grown in pots in a 2:1:1 sterilized mixture of soil:sand:peat moss. We maintained the plants under greenhouse conditions of 24 o C day/14 o C night, 15 hours natural light, and approximately 65% relative humidity. Immature embryos excised at 15 days post-anthesis were cultured on LS medium (Linsmaeier and Skoog 1965) with 2,4-D for both callus induction and maintenance. The calli from both species were maintained until the seventh one-month passage. At each monthly passage, we regenerated some embryogenic (E) callus intoApplications of Tissue Culture plants. We placed the plants in pots and maintained them under the above greenhouse conditions. These regenerated plants were phenotypically observed, cytologically analyzed, and individually harvested to obtain R1 seed.F1 hybrids of Triticum spp. x Ae. variabilis-Additional plantings of T. aestivum (including CS), T. turgidum, and Ae. variabilis (CIMMYT accession 13E) were maintained in the greenhouse. The Triticum spp. were crossed with Ae. variabilis (as the pollen parent); immature embryos were excised 15 days after pollination. We plated the embryos on MS medium (Murashige and Skoog 1962) for plantlet differentiation-these plantlets served as the cytogenetic control. We plated the remaining immature embryos on LS medium for up to 22 months with monthly transfers (or passages) of E callus/calli. At each monthly passage, a portion of the callus was regenerated into plants. The plants were transferred to greenhouse growing conditions, cytologically analyzed, and advanced by backcrossing with appropriate wheat cultivars. The procedures for hybridization, mitotic cytology, and meiotic analysis were similar to those described by Mujeeb-Kazi and Miranda (1985) and Mujeeb-Kazi et al. (1987, 1989).Ae. variabilis-The callusmediated approach to introgress alien genes into Triticum spp. seems workable for crosses with Ae. variabilis. This alien accession crosses easily with T. aestivum and T. turgidum, is positive for N-banding, and has several characteristic biochemical markers. It is now unequivocally accepted as a cytogenetic standard where resulting hybrids derived from the Ae. variabilis cross with CS have 35 chromosomes and express a mean chromosomal association frequency of less than one open bivalent per meiocyte.Chapter 6Additionally, no fertile amphiploid derivatives have been obtained, whereas BCI derivatives obtained by pollinating the F1 hybrids with T. aestivum were highly aneuploid (Jewell 1980(Jewell , 1983;;Jewell and Mujeeb-Kazi 1982;Mujeeb-Kazi and Asiedu 1989) and a negligible number of normal 56-chromosome BCI derivatives were produced.Intergeneric hybrids derived from CS and Ae. variabilis (13E) were produced at a high frequency. The homozygous kr1, kr2, and kr3 genes on homoeologous group 5 promoted hybrid formation. The endosperm was well formed, but despite this all embryos were excised for direct regeneration (control) or plated in LS media for callus induction and maintenance for up to 22 months. Callus portions were being regenerated at each monthly passage (T 2 to Tn; Figure 6.1 and Table 6.2). All control F1 hybrids possessed the normal 35-chromosome characteristic of the hybrid combination and had low pairing. The associations, which suggests that control mechanisms of chromosomal pairing have been influenced (Table 6.3)-some even up to the level of multivalency that prevails in CS ph1b hybrids with Ae. variabilis (Asiedu et al. 1989). Although the dominant Ph gene in chromosome 5B suppresses homoeologous chromosome pairing, there are other suppressors like those onApplications of Tissue Culture regenerated F1 hybrids expressed a certain degree of aneuploidy (hyperploid or hypoploid coupled with inclusion of telocentric chromosomes), which could not be correlated with the length of time in callus. In the 35chromosome regenerated plants, aneuploidy involving structural chromosomal changes was prevalent-and in one plant it influenced the 5B chromosome. When N-banded, both short and long arms of chromosome 5B had characteristic banding sites that were stable across different cells and had varied chromosome contraction stages (Figure 6.2). The regenerated plant with the 5B structural change indicates total absence of bands on the 5B short arm and serves as an ideal cytological marker for this critical chromosome where, by backcrossing and selection, it should be possible to obtain derivatives homozygous for the 5B chromosome marker. This then could be easily exploited in transfers of the CS ph1b mutant stock. So far, we have not obtained backcross derivatives from this 5B modified F1 hybrid.Chromosome analysis of the regenerated plants revealed interesting variation from the standard low pairing characteristic (Table 6.3). Several plants had highly paired multivalent Driscoll 1973). Since the callus-induced influence is random, genetic changes in the suppressors could be similarly influenced-not discounting the fact that pairing promoter genes may also contribute positively to the observed meiotic associations of some regenerated plants (Table 6.3). These modifier gene(s) may also be present in the 13E accession-an aspect that we would have to critically analyze under optimum environmental conditions.Amphiploids have significant advantages in germplasm distribution, maintenance, and cytogenetic manipulation. However, efforts over the last 30 years to produce an amphiploid from the CS x Ae. variabilis combination have not been successful. In our studies, this seems important to achieve because of the practical significance of Ae. variabilis' important traits for KB resistance and aluminum tolerance and also because the BCI progeny-produced by pollinating with wheat the F1 derived from CS x Ae. variabiliswas highly aneuploid (Jewell and Mujeeb-Kazi 1982). As a consequence, it was probable that all 14 alien disomic additions would not be obtained, thus decreasing our chances to transfer the alien chromosome(s), which confer KB resistance or aluminum tolerance. Jewell (1980Jewell ( , 1983)), who used F1-based backcrossing, did manage to create an incomplete set of alien disomic chromosome addition lines. This accomplishment encouraged us to attempt:• Obtaining an amphiploid from CS xAe. variabilis with 70 chromosomes; and then• Deriving the alien additions by making backcrosses onto the amphiploid, which may complete the set of alien disomic addition lines.We were unsuccessful at inducing chromosome doubling via direct colchicine treatment of the F1 hybrids. However, we observed occasional seed set on a few plants in advanced growth stages of the callus-regenerated F1 hybrids of CS x Ae. variabilis and T. turgidum x Ae. variabilis (Table 6.4). Apparently, seed set is a random event. After germination, cytological analysis revealed these seeds to possess the anticipated 70 or 56 chromosomes with meiotic regularity; they were also self-fertile as evident from the C-1 plus C-2 derivatives pr oduced (Table 6.4). We attribute the initial seed set on F1 regenerants to meiotic restitution since the plants that set seeds possessed either 35 chromosomes (T. aestivum x Ae. variabilis ) or 28 chromosomes (T. tur gidum x Ae. variabilis). One meiotic divisionChapter 6 progenies from each cultivar for morphological, cytological, and biochemical responses.As shown in Table 6.1, bread wheats were more prolific in producing E callus (Figure 6.3a) and possessed a higher number of regenerated plants (370) than durum wheats (82). 4a-d) that at the R-0 stage may be transient changes. Any heritable changes remain to be determined from study of the advanced generations.Somatic root tip cytology was done on 255 bread wheats and 46 dur um wheats. We also performed meiotic analyses on a random sample of spikes. Somatic root-tip count data predominantly expressed counts of 42 for T. aestivum and 28 for T. turgidum (FiguresThe chromosome numbers for T. aestivum ranged from 39 to 45 and for T. tur gidum from 28 to 56; there were one or two telocentric chromosomes in the T. turgidum-based germplasm. There was a single T. turgidum plant with 56 chromosomes (Figure 6.3d), attributed to spontaneous doubling, which was male-sterile but female-fertile; it set seed after backcrossing to T. turgidum. The meiotic analyses of a few 42and 28-chromosome plants provided evidence of would lead to chromatid separation in the 35-or 28-chromosome hybrids. This, if coupled with meiotic restitution, would subsequently produce male and female gametes of 35 or 28 chromosomes that, upon fusion, are capable of forming progeny with 70 or 56 chromosomes. A chimerically doubled sector (shoot tip) may be another explanation. The 70-chromosome progenies of the T. aestivum x Ae. variabilis combination should serve as the base for developing normal BCI derivatives, which should lead to a more complete set of alien disomic addition lines.Applications of callus culture-In callus culture, the variation that emanates from longterm callusing and regeneration can have significance for wheat breeding programs. However, we are not exactly sure how callusinduced variability (Scowcroft 1989) differs in quality and quantity from that obtained through applications of ionizing, non-ionizing, and chemical mutagenic sources. Nevertheless, the findings of Larkin and Scowcroft (1981), Lorz et al. (1988), andScowcroft (1989) demonstrated callus culture-induced variation, which has been called \"somaclonal variation\". This aspect was exploited in the first phase of our study with several tetraploid and hexaploid wheat cultivars where we measured callusing and regeneration responses (Table 6.1). We observed the resultingApplications of Tissue Culture cytological variations where-apart from the normal bivalent formation-meiocytes possessed several univalents, trivalents, and quadrivalents. We advanced all R-0 derivatives since the intrinsic R-0 meiotic changes implied a great potential for selecting stable variants in advanced generations. So far, we have partially selected in advanced generations for plant height, days to anthesis, maturity, solid stem, and isozymic electrophoretic banding differences. These materials are being evaluated further in yield trials by the respective CIMMYT wheat breeding sections.In addition to inducing variability, we are exploiting callus induction procedures to achieve alien gene transfers in intergeneric hybridization. Generally, these divergent hybrids express low chromosome recombination frequencies (Sharma and Gill 1983a, Mujeeb-Kazi et al. 1987, 1989); several hybrids did not respond positively to amphiploid induction procedures (Islam et al. 1981). Although there are cytogenetic means to facilitate wheat/alien genetic recombinations, callus culture offers a convenient alternative, as demonstrated with wheat x rye combinations (Lapitan et al. 1984(Lapitan et al. , 1986(Lapitan et al. , 1988)).We routinely use embryo culture to speed up seed increase. We also use it to aid in producing distant hybrids derived from interspecific and intergeneric crosses where the hybrids require nutrient support because their interploid endosperm is either absent or rudimentary. Embryo culture's utility in the production of primary hexaploid and octoploid triticales has ultimately led to its use in obtaining more diverse hybrid combinations.Although there is a wide array of media available, Taira and Larter (1978) and MS media appear to be the most promising. This can be gauged by the successful range of complex intergeneric hybrids we have produced so far (Mujeeb-Kazi and Bernard 1985b, Mujeeb-Kazi et al. 1987, 1989). Other media should also be considered because embryos have been excised from some crosses of wheat and alien species that did not differentiate into hybrid plants (Table 6.5). We recommend critical analyses to determine if we should explore the use of other media or novel methods.There have been numerous successes in wide crosses in recent years:• Polyhaploid plants derived from T. aestivum x Zea mays crosses (See Chapter 5 and Laurie and Bennett 1986Bennett , 1987Bennett , 1988c;;Laurie and Reymondie 1991;Suenaga and Nakajima 1989;Inagaki and Tahir 1990; Riera-Lizarazu and Mujeeb-Kazi 1990);• The high frequency of fertilization in • Other successful crosses between T. aestivum and Pennisetum americanum (Ahmad and Comeau 1990), Z. mays ssp. mexicana (Ushiyama et al. 1991), and Tripsacum dactyloides (Riera-Lizarazu and Mujeeb-Kazi 1993, Chapter 5);• Recovery of hybrid plants (Ahmad and Comeau 1991) from the unique cross T. aestivum x Elymus scabrus (source of accessions with apomictic genes).These various successes may change future applications of embryo culture quite dramatically from its present simplistic form. However, we must be aware that hybridization successes can vary greatly across diverse locations for a multitude of ill-defined reasons.For example, a simple cross in one location (CS br ead wheat x A. intermedium) yielded hybrid progeny at a frequency level of 60% under field crossing without embryo culture (Mujeeb-Kazi et al. 1987); however, special inputs were necessary when the cross was made elsewhere and the success rate was still less than 1% (Gu et al. 1984).Tissue culture applications have been important in the production of complex hybrids within the Triticeae. Their use will even widen the existing range of hybridization possibilities. Embodied in such research applications is the callus culture methodology. This not only provides us with advantages in inducing variability in euploid wheat cultivars or in facilitating in vitro screening for resistance or tolerance to stress-or toxin-producing pathogens, but also provides us with the capacity to structurally alter chromosomes. Additionally, the process may modify recombination frequencies in otherwise low-pairing, complex hybrids as well as facilitate recovery of hybrid derivatives with double the number of chromosomes that could be significant in cytogenetic inputs for practical crop improvement (Mujeeb-Kazi et al. 1993b).CHAPTER 7 T he introduction of alien genetic material into bread wheat (Triticum aestivum) can be greatly facilitated by developing efficient techniques that rapidly identify this material in a wheat background. At CIMMYT, we are gaining experience in the use of biochemical markers, involving seed storage proteins and isozymes, and molecular markers involving DNA/in situ hybridization and assays based on polyerase chain reactions (PCRs). This chapter details our work with biochemical markers. Chapter 8 describes our use of molecular markers, which show great potential in tracking alien chromatin (Mujeeb-Kazi et al. 1993a).Storage proteins-components of which are glutenins and gliadins-provide the energy source that enables a seed to germinate. They are commonly used in characterizing and identifying alien genetic material. Highmolecular-weight (HMW) glutenins are composed of HMW protein aggregates formed by the association of a number of constituent polypeptide chains referred to as glutenin subunits. The HMW glutenin aggregates can be reduced to their component subunits with a reducing agent such as 2-mercaptoethanol, which breaks the disulfide bonds, and an ionic detergent such as sodium dodecyl sulfate (BeitzManilal D.H.M. William andAbdul Mujeeb-Kazi andWall 1972, Hamazu et al. 1972). The technique using SDS-PAGE can then separate the component subunits. The allelic nature of different banding patterns of HMW glutenins has also been well established (Payne et al. 1981a,b). Gliadins, the other component of seed storage proteins, are coded by genes on the short arms of homoeolgous group 1 and group 6 chromosomes (Wrigley andShepherd 1973, Payne et al. 1982). Knowledge of seed storage proteins has provided a basis for studies relating different allelic combinations to flour quality as well as being used as a tool in cytogenetics since storage protein genes can serve as effective markers for identifying the presence or absence of particular chromosomes or chromosome arms.Isozymes are different forms of proteins that have the same basic functions involving plant metabolism. More than 100 structural genes for isozyme markers have been identified and located on different chromosomal segments in wheat (Asiedu et al. 1989). The main advantage in using isozyme markers to detect alien genetic material is the speed with which the material can be screened because they have adequate polymorphisms resulting from their codominant and nonepistatic inheritances (Tanksley 1983). Information regarding the homoeology of the alien chromosomes in the addition lines can be ascertained by identifying determine the chromosomal and chromosome arm location of genes for isozymes in the Triticeae relatives of T. aestivum (Hart 1979, Brown 1983).Analysis of the two parental species and the amphiploid is important in characterizing alien genetic material when using isozymes as diagnostic markers. For most monomeric enzyme systems, the first step is to observe a combination of banding profiles in the amphiploid and/or the addition line carrying the homoeologous alien chromosome (Hart and Tuleen 1983). Sometimes, the alien species may show a certain degree of polymorphism for a particular enzyme system resulting from allelic differences and/or the mutually incompatible nature of the alien species. In such cases, it is necessary to study the polymorphism within and among different accessions of the alien species. We can identify markers when the two parental species show remarkably different banding profiles. In the cases of multimeric (oligomeric) enzyme systems, the procedure is more complicated since it is possible that the protomers from the two parental species can randomly combine to give rise to active oligomeric proteins. In such cases, evaluation of multiple bands as well as their staining intensities becomes necessary (Hart and Tuleen 1983). Table 7.1 lists some isozyme markers and the alien species that we currently use at CIMMYT.Activity bands on a gel after enzyme-specific staining represent enzyme phenotypes and do not necessarily explain all underlying allelic the genes they possess that are orthologous to sets of T. aestivum genes of which the chromosomal locations are known (McIntosh 1983). This can also be done by studying the ability of the alien chromosomes to substitute for and pair with specific wheat chromosomes.Electrophoresis is a method in which an electric field is used to cause the migration of charged molecules, mainly proteins and nucleic acids in solution or gel matrices. The rate of migration of the proteins depends on the strength of the electric field, the net charge, the size and shape of the protein molecules. It also depends on the ionic strength and the viscosity of the medium in which the molecules are moving. Enzymespecific stains are used to develop banding profiles for the different enzyme systems. Most stains contain a substrate specific to the enzyme that allows the catalytic reactions of the enzyme to take place. A dye, used to visualize the enzyme reactions, allows identification of proteins with the same substrate specificity from a tissue extract that may contain hundreds of different enzymes. Vallejos (1983) provides basic recipes for commonly analyzed enzymes.The availability of compensating nullisomictetrasomic stocks has greatly facilitated finding the chromosomal locations of genes that control the isozymes in T. aestivum. Once the gene location for a particular enzyme is assigned to a particular homoeologous group, ditelosomics for that particular group have been used to localize the genes to specific chromosome arms (Hart 1979). Alien disomic addition lines and ditelosomic addition lines have been used to variation. The resolving power of the electrophoretic procedures may not be sufficient to separate the total allelic variation associated with a particular enzyme. Hence, this aspect of hidden heterogeneity cannot be exclusively resolved by any single method of protein separation.Although isozymes are said to be codominantly inherited, there are occasions when deviations may occur as a consequence of codominant expression. The phenomenon of null alleles thus gains importance. A null allele under a homozygous condition may result in complete absence of enzyme activity. It then becomes necessary to conduct genetic studies to confirm or deny the involvement of null alleles. Polypeptide synthesis is the result of several independent events such as: 1) transcription, 2) translation, 3) pr ocessing, and 4) transport of the translated protein product. The first two steps involve the actual coding of the nucleotide sequences into a primary protein structure and the last agglomerated step is post-translational in nature, which may also be important in giving the final structure to a protein product. In addition, degradation of proteins by proteolytic action, repeated freezing, thawing, and aging of samples may also result in modifying the nature of the native enzyme product. These modifications are classified as post-translational modifications and adequate attention to this aspect must be given when biochemical markers are used in genetic studies.Psathyrostachys is a genus of the Eurasian interior where its species grow on rocky open slopes from the Middle East and European Russia across Central Asia to North China (Tzvelev 1976). The genus contains about 10 species, all of which contain the basic N genome (Jensen et al. 1990; Table 2.1). The potential importance of this grass includes its tolerance to salinity and drought (Dewey 1984) and its resistance to barley yellow dwarf virus (Plourde et al. 1990). These biotic and abiotic attributes of Ps. juncea (2n=2x=14, NN) make the species an invaluable germplasm source for these important traits. We used eight different accessions from geographically diverse regions to develop isozyme markers for tracking Ps. juncea chromosomes in a wheat background.We evaluated eight individual seeds and a composite of 15 seeds from each accession for the following isozymes: malate dehydrogenase (MDH), seed esterase (EST-5), shikimate dehydrogenase (SKDH), phosphoglucomutase (PGM), ß-amylase (ß-AMY), and glucosephosphate isomerase (GPI). We then compared the banding profiles of Ps. juncea with those of the hexaploid wheat varieties T. aestivum cv.Chinese Spring (CS) and Seri M 82, used as the bread wheats in the intergeneric crosses of T. aestivum /Ps. juncea (William and Mujeeb-Kazi 1992). We selected five of the isozymes to determine their usefulness as markers for tracking the Ps. juncea chromosomes in a wheat background. GPI was not a positive marker.The MDH genes were first located on the long arms of homoeologous group 1 chromosomes using starch and polyacrylamide gel electrophoresis (Benito and Salinas 1983).Using isoelectric focusing (IEF), Liu and Gale (1989) located another set of MDH genes on the short arms of homoeologous group 5 chromosomes. The MDH banding profiles are in the range of isoelectric points (pI) between pH 3.99 to 6.89. CS and Seri M 82 have identical banding patterns with 13 bands. The banding resolution is better at the basic side of the gel. Individual Ps. juncea accessions give slightly polymorphic banding profiles, but the composite seed samples of these accessions contain all the bands that each of the individual seeds analyzed possess. CS and Seri M 82 have two bands, with pIs 6.21 and 5.06, which are not present in any of the Ps. juncea accessions. Ps. juncea has a unique band with a pI of 6.89 that is not present in the two wheat cultivars. This can serve as a biochemical marker to identify the Ps. juncea chromosome(s) homoeologous to group 1 or group 5 of wheat in a wheat background.EST-5-CS and Seri M 82 have banding profiles with an array of EST-5 bands with pI values between 4.18 and 7.34. The smear of bands at the acidic end has been previously excluded in analyzing EST-5 isozymes in bread wheat (Ainsworth et al. 1984). There are differences in the banding profiles of CS and Seri M 82, with the two most basic bands of CS encoded by chromosome 3A (Ainsworth et al. 1984) being absent in Seri M 82.All eight Ps. juncea accessions show a certain degree of polymorphism in the banding profiles for esterases, a likely consequence of its selfincompatibility nature. The polymorphism may be due further to allelic variation present in Ps. juncea as the material evaluated was not sufficient for conforming to the allelic nature as earlier reported for hexaploid wheat (Ainsworth et al. 1984). The induced autotetraploid accession (PI 531828) with improved self-fertility also shows some polymorphism. The Ps. juncea accessions analyzed have two bands in the acidic range with pI values of 4.18 and 4.29, bands that are not present in CS and Seri M 82. Consequently, these bands can be effectively used as markers to track the presence of Ps. juncea chromosomes that are homoeologous to group 3.SKDH- Koebner and Shepherd (1983) investigated SKDH-1 of T. aestivum using polyacrylamide gel electrophoresis and found genes located on the short arms of homoeologous group 5 wheat chromosomes. Benedettelli and Hart (1988) ß-AMY-Gene loci controlling ß-AMY are located on two sets of homoeologous chromosomes. Ainsworth et al. (1983) suggested that the genetic control of ß-AMY is on both group 4 and group 5 chromosomes, i.e., 4A, 5A (possible translocation from 4B), and 4D. In addition, another set of genes is located on group 2 chromosomes, designated as ß-Amy-2 (Sharp et al. 1988). In wheat, on the basis of IEF, 33 activity bands were identified (Ainsworth et al. 1983) Thinopyrum, a genus of Europe, the Middle East, and Central Asia, consists of diploids 2n=14 (Th. bessarabicum ); segmental allotetraploids, 2n=28 (Th. junceiforme), segmental allohexaploids, 2n=42 (Th. junceum), and decaploids, 2n=70 (Th. ponticum). The genus Thinopyrum was initially erected with only six species (Löve 1980) of the J genome composition. Due to the similarities of the J and E genomes, Dvorak (1981), Dewey (1984), McGuire (1984), Wang (1985), Pienaar et al. (1988), and Wang and Hsiao (1989) suggested combining the J genome of Thinopyrum and the E genome of Lophopyrum into one genus while retaining the J genome designation (see Chapter 2, Table 2.1). We are looking at Th. bessarabicum (2n=2x=14, JJ), a selffertilizing maritime grass, as a possible source of salinity tolerance for transferring to wheat.The biochemical characterization of Th. bessarabicum involved procedures similar to those adopted for Ps. juncea except that we also evaluated the amphiploid of CS xTh. bessarabicum (2n=8x=56, AABBDDJJ) and disomic addition lines with 44 chromosomes. We evaluated HMW glutenins and five isozymes for their potential as markers.HMW glutenins-There was no polymorphism within different seeds of a given accession of Th. bessarabicum or between accessions.Th. bessarabicum has a single unique band with an HMW glutenin region and faster mobility compared to the banding profile of CS. This marker band is also present in the amphiploid.The HMW glutenins are located in the long arms of homoeologous chromosomes of group 1 in wheat (Beitz et al. 1975, Lawrence andShepherd 1980). Using this marker band, we have been able to identify the addition lines carrying Th. bessarabicum chromosomes that are homoeologous to group 1 (i.e., 1JJ).Superoxide dismutase (SOD)-Genes for SOD are located in wheat chromosomes that are homoeologous to group 2 (Neuman and Hart 1986). CS has a banding pattern with three bands. Th. bessarabicum has a sharp band cathodal to the banding pattern of bread wheat, which can serve as a marker to identify the presence of Th. bessarabicum chromosomes that are homoeologous to group 2. The amphiploid also shows the marker band clearly, which can serve as a marker to identify the 2J alien disomic chromosome addition.EST-5-Numerous bands were observed for CS, with slight polymorphism prevalent in the banding patterns of different accessions of Th. bessarabicum . All individual seeds analyzed in different accessions of Th. bessarabicum had one band in the acidic region of the gel that did not show much polymorphism. This band was not present in bread wheat, but was clearly expressed in the amphiploid. Genes for EST-5 in of individual seeds of Th. bessarabicum -whether they had two or four bands-had distinctly faster mobilities compared to the banding patterns of CS. Figure 7.1 shows the banding patterns of the amphiploid together with that of CS and a composite sample of Th. bessarabicum.In addition to the bands present in CS, the amphiploid possessed two faster moving bands-a characteristic of the banding pattern expressed by some individual Th. bessarabicum seeds. Since genes controlling ß-AMY are located on 4Aß, 4DL, and 5AL (Ainsworth et al. 1984), it has been possible to identify the 5J addition line using this marker.wheat are located in the long arms of chromosomes that are homoeologous to group 3 (Ainsworth et al. 1984), so, using this marker, we have been able to identify the addition lines of Th. bessarabicum that have chromosomes homoeologous to this group. Glutamate oxaloacetate transaminase (GOT)-There are three zones of enzyme activity where GOT isozymes are separated on native-PAGE (Hart 1975). In the region of GOT-2, three activity bands have been observed (Hart 1975). Genetic analysis of GOT-2 isozymes has established that genes responsible for band 1 are located on chromosome 6DL; band 2 on 6AL, 6BL, and 6DL; and band 3 on 6AL and 6BL (Hart 1975).Th. bessarabicum accessions showed no polymorphism for the GOT-2 banding pattern. Th. bessarabicum expressed a simple band in the GOT-2 zone that coincided with that of band 1 in the GOT-2 of CS. The amphiploid showed a clear increase in staining intensity of band 1 in GOT-2 with no change in intensities in the other two bands. This band with increased activity has been used as a marker for the tracking of Th. bessarabicum chromosomes that are homoeologous to group 6.Alpha-Amylase (α α α α α-AMY)-α-AMY isozymes have two activity zones when separated on IEFpolyacylamide gels-the genes of which are located on the long arm of chromosomes that are homoeologous to group 6 (α-AMY1) and group 7 (α-AMY2) in wheat (Gale et al. 1983). α-AMY2 isozymes, which have acidic isoelectric points (pIs), are controlled by genes located on group 7 chromosomes in wheat (Gale et al. 1983). Individual seeds of different accessions showed the presence of one strong band and two more of lesser activity in α-AMY2 regions. The most acidic band of Th. bessarabicum was not present in CS. The amphiploid, in addition to having the banding profile of CS, clearly expresses the marker band specific to Th. bessarabicum. Using this marker band, we have been able to identify the addition lines with chromosomes that are homoeologous to group 7.Results-Using the above markers, we have identified six disomic chromosome additions of Th. bessarabicum in bread wheat (William and Mujeeb-Kazi 1993b).Leymus Hochst., a genus naturally occurring in Eurasia and North America, contains about 30 polyploid species. The genus has been based on variations of two basic genomes, the N genome of Psathyrostachys and the J genome of Thinopyrum (Dewey 1984). Based on genome analysis, the Leymus genome was designated JJNN by Dewey (1984); but since has also been designated NNXX (Chapter 2, Table 2.1).Psathyrostachys spp. include more than one spikelet per spike node, a large number of florets per spike, and a perennial nature.Leymus spp., which can grow on saline or alkaline soils, may owe their salinity tolerance to the J genome of Thinopyrum (Dewey 1984). Their tolerance to drought (and perhaps salinity as well) may come from the N genome of Psathyrostachys (Dewey 1984).On the basis of molecular markers, Zhang and Dvorak (1991) We are looking to develop isozyme markers for both arms of Secale cereale chromosomes using CS/Imperial rye disomic chromosome addition lines (source: late E.R. Sears, Missouri, USA).There are several projects underway in the CIMMYT Wide Crosses Section that would directly benefit by establishing rye markers. These include:• Introduction of 1AL/1RS, 1BL/1RS, and 5AS/5RL into CIMMYT wheats;• Characterization and classification of backcross derivatives from crosses involving the 1BL/1RS chromosome translocation with the ph1b mutant to determine the translocation points;• The amount of rye introgressions;• Development of rye addition lines in the background of Pavon F 76 and Altar 84 and production of rye telocentric stocks.Table 7.2 lists biochemical markers that we have identified using CS/Imperial rye addition lines.Chapter 7As discussed in Chapter 3, Triticum tauschii (Aegilops squarrosa; 2n=2x=14, DD) has been generally accepted as the D genome donor to Triticum aestivum (2n=6x=42) (Kimber and Feldman 1987). The importance of the D genome for quality parameters has also been well established (Orth et al. 1973, Kerber andTipples 1969). Lagudah et al. (1991) reported that the evolutionary origin of hexaploid wheat (AABBDD) occurred with a small number of T. tauschii genotypes of restricted geographic origin, implying a narrow genetic diversity for the D genome. If primitive or wild forms have played a role in the evolution of a species, other diverse wild form accessions may be of further use in crop improvement. Thus, T. tauschii accessions can serve as a source of new genes for bread wheat improvement (Appels and Lagudah 1990). The wide ecological adaptability of T. tauschii would help not only to introgress genetic material from T. tauschii into T. aestivum, but may also enhance the adaptability of the cultivated bread wheats into areas considered marginal or currently unprofitable for wheat cultivation.We conducted a study to evaluate the variability associated with some T. tauschii accessions for seed storage proteins (HMW subunits of glutenins and gliadins) and three isozymes (EST-5, ß-Amy, and GPI). We have utilized these T. tauschii accessions in producing numerous synthetic hexaploids at CIMMYT (Chapter 3, Mujeeb-Kazi et al. 1994b). A sample of synthetic hexaploids also helped us determine that the variability for seed proteins and isozymes observed in T. tauschii could be incorporated into the synthetics.We further compared the wide variability of T. tauschii accessions with the variability of the synthetic hexaploids. This variability, if expressed in the synthetics, could provide new genetic diversity for incorporation into bread wheats and also serve as additional evidence of the phylogenetic relationship between T. tauschii and hexaploid wheat. In 60 different accessions, we observed polymorphisms for the storage proteins and isozymes mentioned above. Due to the importance of HMW glutenins for quality parameters, we identified the allelic combinations present for the Glu-D1 locus by comparing T. tauschii accessions with bread wheat cultivars of known allelic combinations.We also evaluated a sample of synthetic hexaploids together with the T. turgidum and T. tauschii accessions used in producing the synthetics to show that the polymorphisms associated with T. tauschii are present in the synthetic hexaploids. HMW glutenin subunits-A wide variation of HMW subunit combinations exists among the different T. tauschii accessions (Figure 7.2). Each subunit was assigned a number (Payne et al. 1984) by running bread wheat standards with known allelic combinations along with the T. tauschii accessions in the same gel. The Glu-D1 locus is characterized by the presence of a pair of subunits, one with faster mobility (Payne et al. 1981a). To maintain consistency with previous work on HMW glutenins (Lagudah and Halloran 1988), we use the superscript \"t\" when Chapter 7assigning gene symbols to the D genome of T. tauschii to distinguish them from their analogous gene loci in the D genome of hexaploid wheat. We identified 15 Glu-D t 1 subunit combinations among the different T. tauschii accessions (Figure 7.2) (William et al. 1993).Our research indicates the presence of more variability for HMW glutenin subunits among different T. tauschii accessions in the Glu-D t 1 locus than previously described (Lagudah and Halloran 1988). The bread making qualities of our synthetic hexaploids with different subunit combinations from T. tauschii have been briefly examined (Peña et al. 1991). Identification of some desirable allelic combinations in the synthetic wheats shall inevitably lead to their introduction into T. aestivum by conventional breeding programs. Gliadins-In bread wheat all ωgliadins, most γ-gliadins, and some ß-gliadins are coded by genes on short arms of chromosomes that are homoeologous to group 1 (Wrigley andShepherd 1973, Payne et al. 1982). Some gliadins are also coded by genes on chromosomes that are homoeologous to group 6 (Zehatschek et al. 1981). Similar to the situation of Glu-D1, recombination among allelic forms has not been frequently observed (Sozinove and Poperelya 1980). Kasarda (1980) suggested a prevalence of tightly linked genes in the gliadin coding loci causing them to be inherited as blocks (Mecham et al. 1978). Multiple allelism of gliadin coding loci in homoeologous group 1 and group 6 chromosomes of wheat has been established (Sozinove andPoperelya 1980, Metakovsky et al. 1984). We have observed at least 56 different gliadin patterns among the different accessions of T. tauschii. The polymorphisms for Gli-D t 1 appear to be greater than those for the Glu-D t 1 locus. Quality parameters associated with gliadins are not as well defined as for glutenins, yet their possible impact on quality aspects should not be discounted.EST-5-We found a total of five phenotypic classes in the T. tauschii accessions and these results indicate that the D genome of T. tauschii possesses more variability for EST-5 than does the D genome of bread wheat. The different phenotypic classes we observed in T. tauschii accessions are also expressed in the synthetic hexaploids derived from their combinations with T. turgidum cultivars.ß-AMY-Mainly, we found two different phenotypic classes of ß-Amy among the different accessions of T. tauschii. The more prevalent phenotype has a profile of 14 bands while the other possesses 12 bands with two more acidic bands of high intensity. Both phenotypes of T. tauschii readily express in the synthetic hexaploids.GPI-There are no polymorphisms among different accessions of T. tauschii for GPI banding phenotypes, which is indicative of GPI's molecular nature. Chojecki and Gale (1982) also reported very little polymorphism among different bread wheats in seed GPI. Since GPI is important in the glucose metabolic pathway, it is possible that a selection against mutations has occurred. Durum wheat has a banding profile with four or five bands. When GPI from the D genome of T. tauschii was added to the durums to form synthetic hexaploids, we observed a banding profile with 10 or 11 bands-similar to the banding profiles of cultivated bread wheats, which is probably a consequence of the formation of active GPI dimers due to the interaction of Gpi-D t 1 subunits with A and B genome subunits.Although bread wheats may have naturally evolved from a small number of T. tauschii accessions (Lagudah et al. 1991), Gpi-D t 1 subunits of any T. tauschii accession can interact with the A and B genome subunits to give rise to the bread wheat banding profile. The possibility of interaction of subunits from Gpi-D t 1 with the subunits of A and B genomes further indicates close homoeology between the GPI subunits of different genomes. A synthetic hexaploid's expression of the same banding pattern present in bread wheat is compatible with the already established phylogenetic relationship between the ancestral D genome donor and T. tauschii accessions.Use of isozyme markers in the development of 1BL/1RS isolines Bread wheat-The short arm of chromosome 1R of Secale cereale L. carries genes for resistance to leaf rust (Lr19), stem rust (Sr26), stripe rust (Yr9),Chapter 7and powdery mildew (Pm8). The highly successful Veery'S' lines, developed at CIMMYT (Rajaram et al. 1983) in crosses involving the winter wheat cultivar Kavkaz, possess the 1RS chromosome arm in the form of a 1BL/1RS translocation (Zeller 1973). These 1BL/1RS wheats have demonstrated high yield and stability (Rajaram et al. 1983). Despite the desirable agronomic traits, the 1BL/1RS wheats generally produce flour with inferior dough quality (Dhaliwal et al. 1987), although recent findings do not confine this deleterious quality defect (Peña et al. 1990) exclusively to the 1BL/ 1RS translocation. To evaluate critically these effects of the 1BL/1RS translocation, we plan to produce and analyze substitution lines of such translocation stocks.Developing a 1B,1B isoline of a 1BL/1RS,1BL/ 1RS wheat cultivar involves crossing the 1BL/ 1RS wheat with a 1B donor, thus generating the F1 translocation heterozygote 1BL/1RS,1B. The F1 is advanced by backcrossing (BC) to the 1BL/ 1RS,1BL/1RS female parent for eight generations (until BCVIII). In each BC generation, it is necessary to identify the 1BL/1RS,1B translocation heterozygote for subsequent backcrossing, culminating at BCVIII when the heterozygote 1BL/1RS,1B is selfed and the 1B,1B substitution homozygous derivative is selected. The homozygous 1BL/1RS recovered at the BCVIII selfing stage is the extracted control. We follow a similar procedure to develop 1BL/ 1RS,1BL/1RS isolines from a 1B,1B parent except that the female parent in the original cross and subsequent backcrosses will be of the 1B homozygous type.Identification of the translocation heterozygote 1B,1BL/1RS is possible by applying the diagnostic C and/or N banding techniques (Jahan et al. 1990;ter Kuile et al. 1990ter Kuile et al. , 1991)) The same endosperm halves first used for GPI analysis were subsequently utilized for gliadin extraction. Our gliadin extraction procedures, gel composition, and running conditions were similar to those of Ng et al. (1988).We could readily differentiate the F1 hybrid cross combinations heterozygous for the 1B,1BL/ 1RS chromosomal constitution from their homozygous parents (1B,1B or 1BL/1RS,1BL/ 1RS) by using a combination of GPI-IEF and gliadin A-PAGE. The most cathodal band of GPI zymograms of wheat seed extracts is the product of the Gpi-B1 gene located on the short arm of chromosome 1B (Chojecki and Gale 1982). We distinguished 9 or 10 bands in the GPI banding patterns of 1B homozygous or 1B,1BL/1RS heterozygous wheats. Homozygous 1BL/1RS wheat lines expressed six to eight bands with the most cathodal band being absent (Figure 7.4), serving as a distinct marker in the differentiation of the homozygous 1BL/1RS types from the homozygous 1B or the 1B,1BL/1RS heterozygote genotypes. This initial screening has the advantage of rapidly eliminating the 1BL/1RS homozygotes, and then we only have to do a subsequent A-PAGE analysis on those endosperm halves that exhibit the 1B banding characteristic. The GPI banding profiles of CS and the 1R disomic addition line were similar (Figure 7.4). This may be due to cofocusing of the rye GPI bands with those of CS as suggested earlier (Chojecki and Gale 1982). A single GPI IEF gel enables rapid screening of at least 48 cut endosperms.The ω-gliadin region in the banding patterns resolved by A-PAGE electrophoresis is characterized by two distinct gliadin marker bands specific for Imperial rye (Figure 7.5).Genes for these two distinct marker bands are located in the short arm of S. cereale chromosome 1R (Friebe et al. 1989) and have been diagnosed as products of the rye Sec-1 locus (Lawrence and Shepherd 1980). These rye-specific bands are clearly present in the CS+1R disomic addition line as well as in the 1BL/1RS homozygous parents (Figure 7.5). Homozygous 1B wheats (e.g., CS and Yaco) show some bands in the ω-gliadin region, controlling genes that apparently belong to the short arm of 1B, but these bands are distinctly different from the two bands of rye (Figure 7.5). The translocation heterozygote 1B,1BL/1RS shows the two ryespecific bands but, in addition, it also has the bands specific to the homozygous 1B parent. This group of bands resulting from the genes located in 1RS + 1BS unequivocally diagnoses the translocation heterozygotes (Figure 7.5), hence enhancing the efficiency of substitution line development in homozygous 1BL/1RS or 1B T. aestivum cultivars (William et al. 1992).Both techniques are nondestructive so their embryos can still germinate after their endosperms are analyzed. The procedures also allow us to analyze a large number of samples with a high degree of accuracy. As a consequence, we can extend the development of the 1B or 1BL/1RS substitution lines in Other techniques we have used to detect alien chromosomes in wheat, but not described here, include chromosome morphology as shown by differential banding techniques, chromosome pairing relationships, and plant phenotypic differences. Differential C and N bandings can be reliable and useful techniques for alien chromosome characterization and identification.Other available cytological markers include chromosomal size/arm ratios and secondary constrictions (Mujeeb-Kazi and Kimber 1985, Mujeeb-Kazi andMiranda 1985). Some of the most commonly used phenotypic features include spike morphology, presence of anthocyanin pigmentation, grain color, grain surface texture, and stem morphology. These morphological traits are subject to modification upon introgression of alien genetic material and therefore can be used in the characterization of alien chromatin. However, there are difficulties in efficient use of these traits due to their modification because of environmental conditions (e.g., moisture availability, fertility), dominant/recessive inheritance, and the low amount of polymorphism involved.T. tur gidum banding profile (Figure 7.6).T. tur gidum cv. Cando/Veery and T. aestivum cv. Seri M 82, both 1BL/1RS homozygous, exhibited 8 bands whereas the F1 of the Aconchi//Cando/ Veery 1B,1BL/1RS heterozygote showed 9-10 bands similar to T. aestivum cv. CS (Figure 7.6). This was expected since Gpi-A1 and Gpi-B1 gene products exhibited a banding profile specific to durums homozygous for 1B with 4 bands. However, with the introduction of the GPI-R1 subunit from rye, the F1 heterozygote produced Gpi-A1, GPI-B1, and GPI-R1 subunits. Upon recombining the GPI-R1 subunits with those of GPI-A1 and GPI-B1, the durum heterozygous for the translocation gave a GPI banding pattern essentially similar to CS. Comparison of GPI banding patterns among the Altar 84 (homozygous for 1B), Cando/Veery (homozygous for 1BL/1RS), the F1 heterozygote of Altar//Cando/Veery, and CS reconfirms that the GPI-R1 subunits behaved and interacted with GPI-A1 and GPI-B1 subunits in a similar manner to the GPI-D1 subunits. This comparison also enables positive identification of durum wheats that are heterozygous (1B,1BL/1RS) for the 1BL/1RS translocation (William and Mujeeb-Kazi 1993a).Chapter 7etecting alien introgressions and chromosomal interchanges is becoming increasingly dependent on the use of molecular markers. Initial work of this kind depended on the presence of repetitive DNA sequences that make up between 70 and 80% of the cereal genomes. About 75% of the three wheat genomes are made up of repeated DNA sequences; about 20-25% of the genomes are made up of nonrepeated sequences (Flavell and Smith 1976). Most of the nonrepeated sequences of the wheat genomes are about 1000 nucleotides long and interspersed between the repeated sequences (Moore et al. 1993).Repeated sequences undergo changes such as amplification, deletion, and divergence (Flavell 1982)-changes that have resulted in their use as probes with genome-or chromosome-specificity. In this regard, heterochromatic rye sequences were among the first to be used as DNA probes to identify rye addition lines and translocation lines in wheat through southern hybridizations (Appels and Moran 1984). The molecular techniques we use in the CIMMYT Wheat Wide Crosses Laboratory currently include in situ hybridization and randomly amplified polymorphic DNA sequences (RAPDs) based on polymerase chain reaction (PCR). We also plan to explore restriction fragment length polymorphism (RFLP) techniques through linkages with CIMMYT's Applied Molecular Genetics Laboratory and other molecular laboratories that may have use for our germplasm.The in situ hybridization technique involves hybridization of labeled DNA and subsequent detection on a cytological chromosomal preparation on a microscope slide. Radioactive labeling and autoradiographic detection techniques were used earlier (Gall andPardue 1969, Gerlach andPeacock 1980). The major limitations with radioactive labeling are poor resolution due to increased background dispersion because of radioactivity and the longer exposure time required-not to mention the safety hazards of handling radioactive material. Wide adaptability of in situ hybridization procedures was made possible by the development of nonradioactive labeling techniques. Generally, these techniques depend on labeling DNA with a hapten-like biotin or digoxigenin-for which a strong ligand, such as streptavidin or another specific antibody, is well characterized. The ligands are conjugated to an enzyme such as peroxidase or acid phosphatase, which converts an enzyme-specific substrate into a colored precipitate. More recent modifications of the technique involve using fluorochromes either as the haptens or instead of enzymes to enable detection. Besides being safer and quicker, the biotin labeling technique, which was first used in animal systems (Singer and Ward 1982) and later applied to plant material involving wheat (Rayburn and Gill 1985b), increases the resolution of in situ hybridizations.When in situ hybridization techniques are used to detect alien introgressions, the use of total genomic DNA as a probe is sometimes more advantageous than a cloned repetitive DNA sequence. With probes, hybridizations usually occur in limited areas of chromosomes unless the probe used is dispersed and highly repetitive. When using a repeated sequence probe from rye in in situ hybridizations, Lapitan et al. (1986) observed unequal hybridizations in different regions of the rye chromosome segments. Bedrook et al. (1980) and Jones and Flavell (1982) reported major interstitial sites and the presence of some cross hybridization to wheat when they used a repeated rye sequence as a probe. Rayburn and Gill (1985b) observed 24 hybridization sites in 11 chromosomes of wheat when they used a rye sequence probe, pSc 119. Schwarzacher et al. (1989) developed a technique in which they used a labeled total genomic DNA as a probe, which resulted in uniform labeling along the whole chromosome length. This allowed tracking of the chromosome at interphase and prophase and enabled the identification of chromosomal interchanges involving small chromosomal segments. This technique was later refined by using labeled genomic DNA from one species in a cross as a probe and higher quantities of sheared total genomic DNA from the other species of the same cross as a blocking agent to avoid cross hybridization between homoeologous sequences of the two species. It has been used in the identification of 1BL/1RS wheats (Le et al. 1989, Heslop-Harrison et al. 1990), triticale (Le et al. 1989), and other alien chromosomes in wheat backgrounds (Anamthawat-Jonsson et al. 1990;Schwarzacher et al. 1992;Friebe et al. 1992Friebe et al. , 1993;;Anamthawat-Jonsson and Heslop-Harrison 1993;Mukai et al. 1993).In situ hybridization techniques have been further used in genomic studies (Lapitan et al. 1987), evolutionary relationships (Rayburn and Gill 1985a), and physical mapping of plant chromosomes (Leitch et al. 1991). Mouras et al. (1989) have used the technique to identify singlecopy DNA sequences in tobacco.PCR is an in vitro method of synthesizing nucleic acid by which a particular DNA segment can be specifically replicated (Mullis and Faloona 1987).It involves two oligonucleotide primers that flank the DNA fragment to be amplified, repeated cycles of heat denaturation of the DNA, annealing of the primers to their complementary sequence, and extending the annealed primers with thermo-stable Taq DNA polymerase. In a typical PCR amplification, two oligonucleotide primers hybridize to specific sequences in opposite strands of duplex DNA. The orientation of the primers is such that elongation occurs inward when the DNA is amplified using Taq polymerase. Therefore, typical PCR amplifications result in an exponential increase in the target sequence of DNA flanked by the two primers.Another potential set of molecular markers involves use of randomly amplified polymorphic DNA sequences (RAPDs), based on the PCR. In utilization of RAPDs, randomly synthesized short sequences of oligonucleotide primers are used to generate amplified DNA sequences. The polymorphisms generated using PCR are based upon the distance between the two sequences in the genomic DNA complementary to the oligonucleotide primers. These have the potential to diagnose alien chromatin presence in a wheat background.RFLP methodology depends on the use of DNA probes for detecting alien introduction sources at the molecular level. Most work in this regard has centered on cloning of repetitive DNA sequences for developing species-specific probes and ascertaining the presence or absence of polymorphisms between species (Appels andMoran 1984, Metzlaff et al. 1986). Although there are advantages, such as the availability of a multitude of repeated sequences in the cereal genomes and presence of adequate species divergence correlated with the formation of new repeat families, large homoeologies also exist among the repetitive DNA fractions of most Triticeae species, which requires screening of a large number of clones. Another possible disadvantage (e.g., rye heterochromatic sequences) is that repeated DNA sequences isolated as probes may be localized to specific regions of the chromosome (Bedrook et al. 1980). This makes it difficult to detect introgressions involving small chromosome segments. However, with rye, dispersed repeated sequences have also been identified that can detect each rye chromosome in a wheat background (Appels et al. 1986). RFLP-based methods have also been used to characterize wheat-rye recombinant lines (Koebner et al. 1986), wheat-barley addition lines (Heun et al. 1991), and studies of genome relationships (Zhang and Dvorak 1991).Since Thinopyrum bessarabicum is an important source of salinity tolerance (see Chapters 4 and 7), we have crossed it with bread wheat at CIMMYT to produce disomic addition lines. Using this cytogenetically advanced combination has allowed us to characterize a large number of biochemical markers (see Chapter 7). With the objective to develop molecular markers for tracking Th. bessarabicum chromatin in wheat backgrounds and subsequently detect subtle introgressions, we have conducted genomic in situ hybridizations using the amphiploids of T. aestivum cv. Chinese Spring (CS) x Th. bessarabicum as well as disomic addition lines of Th. bessarabicum in wheat. Total genomic DNA from Th. bessarabicum was used as the probe. We have also developed RAPD-based markers for the same hybrid combination to enhance diagnostic capabilities.Genomic applications-For chromosome preparations, we germinated and treated seeds of the amphiploid and the wheat parent as described by Rayburn and Gill (1985b). The seeds were placed on wet blotting paper and allowed to imbibe at room temperature for the first 24 hours, then the temperature was decreased to 4 o C for the next 24-48 hours, followed by another 24-48 hours at room temperature. Seedling root tips were harvested and pretreated for 24 hours in ice water in a refrigerator. After fixation in a 3:1 solution of ethanol:acetic acid for two-four days, the root tips were stained in 1% acetocarmine for 15-30 minutes and squashes on slides were made. Slides were stored in a freezer at -70 o C to await hybridization.We used the procedure of Hoisington at al. (1992) to isolate total genomic DNA from CS and Th. bessarabicum. The CS DNA that was used as the blocking DNA was sheared to 500-2000 bp by passing it several times through a 1-ml tuberculin needle with a 24G needle attached. The Th. bessarabicum DNA was nick-translated with biotinylated-11dUTP using a kit obtained from Enzo Diagnostics, Inc.For in situ hybridization, slides were taken from the freezer and their coverslips were removed. The chromosomes were denatured using 70% Formamide at 70 o C and rapidly dehydrated (Rayburn and Gill 1985b). The genomic in situ hybridization and detection procedures were similar to those of Mukai and Gill (1991). We used the Detek-Hrp kit (Enzo Diagnostics, Inc.) to detect the biotinylated probe using the substrate diaminobenzidine tetrahydrochloride (DAB) from Sigma.After genomic in situ hybridization of the CS/ Th. bessarabicum amphiploid, 14 of the 56 chromosomes were brown in color. The remaining 42 chromosomes were all light blue (Plate 1). The unlabeled CS DNA effectively kept the labeled Th. bessarabicum DNA from hybridizing to the 42 wheat chromosomes. When CS DNA was not used as a block, all 56 chromosomes of the amphiploid appeared brown.We believe these results indicate that enough homoeology exists between Th. bessarabicum and wheat so that, unless wheat DNA is used as a blocking agent, Th. bessarabicum DNA can crosshybridize with wheat DNA. Another indication of this residual homoeology is the stringency of the post-hybridization washing. When posthybridization washes were performed at 37 o C (Mukai and Gill 1991), the 42 wheat chromosomes did not appear blue, but were slightly brown. Differentiation between the light brown wheat and dark brown Th. bessarabicum chromosomes was still possible, but it was not easy. Upon raising the post-hybridization washing temperature to 45 o C, the 42 wheat chromosomes appeared blue with very little, if any, brown color. These results also show that there was enough homoeology between wheat and Th. bessarabicum to warrant more rigid washing conditions. The conditions we used were more rigorous than those of Heslop-Harrison et al. (1990); however, they used 20 to 30 times more blocking DNA than we did. This difference in blocking DNA concentration could be a factor in obtaining cross hybridization between alien and wheat DNA. Obtaining optimum differentiation between wheat and alien chromosomes with genomic in situ hybridization may be the function of a proper balance between blocking DNA amount and the rigor of post-hybridization washing conditions.We found the genomic in situ hybridization to be a rapid method to detect Th. bessarabicum chromosomes in a wheat background. The rye translocations have characteristics that contribute to resistances or tolerances to biotic or abiotic stresses. These are specifically:• 1BL/1RS: resistance genes for leaf, stem, and stripe rusts and mildew.• 1AL/1RS: greenbug resistance.• 5AS/5RL: copper up-take efficiency. We developed PCR-based RAPD markers to identify the amphiploid of T. aestivum x Th. bessarabicum (2n=8x=56; AABBDDJJ). These markers will be used on disomic addition lines of Th. bessarabicum to evaluate their chromosome specificities.We evaluated 26 short oligonucleotide primers (Operon, Inc., California, USA Genomic DNA can be amplified and polymorphisms detected with single primers of arbitrary sequences using PCR (Williams et al. 1990, Welsh andMcClelland 1990). Chromosome-specific RAPD markers have also been developed in tomato (Klein-Lankhorst et al. 1991). Our results indicate that genomic DNA in complex hexaploid wheats can be amplified using arbitrary primers of 10 nucleotides in length. Of the 26 primers we evaluated using CS, Th. bessarabicum, and their amphiploid, seven primers showed easily detectable polymorphisms among these three species. These seven primers and their sequences are:• L 5-'5ACGCAGGCAC3';• L 16-'5AGGTTGCAGG3';• L 18-'5ACCACCCACC3';• L 20-'5TGGTGGACCA3';• N 1-'5CTCACGTTGG3';• N 3-'5GGTACTCCCC3';• N 5-'5ACTGAACGCC3'.The use of PCR-based RAPD markers is still a novel technique for identifying alien genetic material compared to morphological and biochemical markers. Therefore, it may not yet be feasible to allocate marker bands to specific chromosomes or chromosome arms unless the materials used for PCR have already been characterized using the conventional techniques. However, if a given addition or a substitution line is identified with the conventional techniques-and since polymorphisms generated by PCR are most probably based on short repetitive DNA sequences-it may be possible to track the minute chromosomal alien introgressions more effectively using the PCR technique, provided that it is capable of detecting and amplifying the alien-specific sequences in the introgressed material.D 'Ovidio et al. (1990) reported amplification of wheat genomic DNA using primers specific to the gamma gliadin gene. Wheat genomic DNA has also been amplified by using random primers coupled with intron-specific primers (Weining and Langridge 1991).The results of our study show that genomic DNA can also be amplified using random primers (Devos and Gale 1992). In an initial study using different concentrations of DNA and Taq polymerase, we found that under our conditions optimum results can be obtained with 20 ng DNA and 0.75 units of Taq polymerase in the 25-µl reaction.Since sequence information in wheat is limited and not available in Th. bessarabicum, we propose the use of random primers in tracking alien chromatin in the wheat background. Figure 8.1 shows the patterns of amplification products when different random primers were used to amplify the genomic DNA. For all seven primers, there were some amplification products in the amphiploid that were common to wheat and Th. bessarabicum. The marker amplification products present in the amphiploid specific to Th. bessarabicum are marked in Figure 8.1. To establish the repeatability of the patterns of amplification products, the same primer was used at least three times with no observed differences in the patterns of the repeated runs. Further, to evaluate whether there was polymorphism in the patterns of amplification products among different plants, DNA was isolated from individual seedlings of CS and amplified using two different primers, i.e., primers N 1 and N3 (Figure 8.2). This demonstrates a lack of polymorphism in the DNA extracts from individual CS seedlings for the products that are amplified at high intensity.Although the DNA of the amphiploid contains the genomic DNA of both CS and Th. bessarabicum , in some cases the amphiploid did not show the complete profiles of the two parents. However, the amphiploid showed no additional amplification products not present in the two parents.In RAPDs, primer binding to a complementary sequence is a random process. Due to the genome size increase in the case of the amphiploid, the availability of a particular sequence in 20-ng DNA is less compared to that of the two parents. Further, in RAPDs, primers may bind when there is incomplete homoeology.It is also possible that greater similarity between a primer and the template of one of the parental genomes results in preferential amplification of this sequence in the amphiploid. This may explain why the amphiploid did not have all the bands that wer e present in CS and Th. bessarabicum . However, the consistency in the patterns of amplification products for a given primer indicates that the markers common to the alien species could be effectively used, although the amphiploid does not contain all the amplification products specific to the alien species. The CIMMYT Wide Crosses Section has produced several disomic addition lines of Th. bessarabicum (2n=6x=42+2), which are in agronomically superior plant types, possess high fertility, and are cytologically stable with a high frequency of 22 bivalents at meiosis. We are now cytological, andRAPD markers (Mujeeb-Kazi 1993, William et al. 1994).Although the use of biochemical and cytological markers may be convenient in identifying disomic addition lines, they have a limited use in tracking small segments of alien chromatin in a wheat background. We propose that, once a disomic addition line has been characterized by other means, PCR-based RAPD markers may be used to identify these and subsequently extended to detect alien introgressions involving small segments of alien chromatin in wheat backgrounds. Our initial study shows the presence of the marker amplification products of Th. bessarabicum in the amphiploid. Locating the chromosomes of these markers would be subsequently undertaken using disomic addition lines.RFLP markers are another tool that could be applied in wheat wide crosses. Although wehave not yet done any work with these, we anticipate that CIMMYT's Applied Molecular Genetics Laboratory will play a key role in applying RFLP methodology to wheat wide cross derivatives.The molecular techniques discussed in this chapter may be useful in tracking introgressions involving small segments of alien chromatin in wheat backgrounds. Although it is important to develop molecular markers using less advanced material such as amphiploids and addition lines, initial identification and characterization can be done using the relatively inexpensive, more universal, and less complicated cytological techniques or biochemical markers (Chapter 7).Once the material is characterized, molecular markers could be established and subsequently used to detect the presence of minute chromosomal alien introgressions. It seems to us that researchers now attach emphasis to germplasm development suited to exploit the full diagnostic power of these molecular techniques, which apparently are far beyond identification of complete alien chromosomes that, at this stage, is receiving more attention. Now is the time to design effective applied studies that are based upon homoeologous exchanges where the use of the chromosome 5B ph1b system is one aspect.Applications of Molecular Markers (Rimpau 1891) and nearly 90 years since Farrer (1904) described the first wheat x barley cross. Over the decades of the 20th century, interspecific hybridizations have progressed rather quickly, but intergeneric hybridizations-due to their complex naturehave taken a slower and more involved route.It is doubtful if there is a group within the Triticeae that cannot be hybridized with wheat, although we have not made serious efforts to utilize some annuals like Eremopyrum, Henrardia, Heteranthelium, and Taeniantherum. For practically oriented intergeneric hybrid programs, we believe that once a hybrid plant is produced, there are relatively few limitations to restrict development of the advanced derivatives. Manipulation procedures for hybrid production can enable any competent laboratory to produce viable plants. Enough information now exists to permit technicians to have success in terms of frequencies and novel combinations.We are optimistic that most restrictions on crossability in the grass family can be overcome. As evidence, we cite some of the successful crosses between wheat and alien species outside the Triticeae including:• Zea mays (Inagaki and Tahir 1990, Laurie and Bennett 1988c, Suenaga and Nakajima 1989, Riera-Lizarazu and Mujeeb-Kazi 1990, Riera-Lizarazu et al. 1992);• Pennisetum glaucum (Ahmad and Comeau 1990);• Sorghum bicolor (Laurie andBennett 1988b, Ohkawa et al. 1992);• Z. mays ssp. mexicana (Ushiyama et al. 1991);• Tripsacum dactyloides (Riera-Lizarazu and Mujeeb-Kazi 1993).Additionally, there have been successes with some difficult crosses between wheat and alien species within the Triticeae including:• Psathyrostachys juncea (Mujeeb-Kazi and Asiedu 1990, Plourde et al. 1990);• Elymus scabrus (Ahmad and Comeau 1991); • Agropyron cristatum (Chen et al. 1989;Limin and Fowler 1990).More recently, in our efforts to make alien variability available for T. turgidum improvement, several hybrids and amphiploids derived from crosses of durum x alien species (Appendix 5) have been produced (Mujeeb-Kazi 1992).Beyond actual hybrid production, successful use of alien variability in wheat impr ovement is a slow pr ocess. We have attempted to hasten this aspect in our inter generic program at CIMMYT in a somewhat radical approach that de-emphasizes confirmation of the presence of alien introgression. For example, elite germplasm developed from derivatives of Thinopyrum distichum has been: 1) used in CIMMYT's wheatAbdul Mujeeb-Kazi CHAPTER 9 breeding programs; 2) distributed to national programs; and 3) released as varieties, such as Pasban-90 for irrigated and saline sodic soils and Rohtas-90 for rainfed areas in Pakistan's Punjab.Most recently, the derivatives of a cross involving Th. curvifolium have led to selections that exhibit superb resistance to spot blotch caused by Helminthosporium sativum (Villareal et al. 1993;Mujeeb-Kazi et al. 1994d). These selections are superior to the material previously available to wheat breeders (e.g., cultivar BH 1146 and some T. aestivum cultivars of Chinese origin). The Th. curvifolium derivatives have also shown promise for resistance to serious wheat diseases caused by H. tritici-repentis, Fusarium graminearum, and Septoria tritici. We have widely distributed this germplasm and it is being extensively utilized by CIMMYT's wheat breeding program in Mexico.We have yet to confirm conclusively the alien introgression(s) in these derivatives of Th. distichum and Th. curvifolium. However, initial investigations using the A600 Th. elongatum probe (courtesy R. Appels, CSIRO, Australia), applied to Th. curvifolium derivatives, do show the presence of an alien insert band. Further repetitious and elaborate testing is forthcoming. Unless unequivocal data emerge to confirm alien introgression, we hypothesize these significant salt tolerance and spot blotch resistances to be a consequence of transgressive segregation, involving Inia/Genaro and Chinese Spring//Glennson 81/3/Alondra/Pavon, respectively. In any event, we are pleased with our fortuitous success because our ultimate goal is to contribute to wheat improvement. Perhaps forthcoming diagnostic techniques (e.g., the A600 probe) will further unravel the presence of alien introgressions. In the mean time, the stable status of the derivatives permits their exploitation by breeding programs. Since little is known about the genetics of H. sativum resistance, we plan to conduct simultaneous genetic analyses on the Th. curvifolium-resistant material. Since the susceptible cultivar Ciano T 79 is highly polymorphic (RFLP), the mapping protocols are available for us and others to pursue this avenue of research.We consider this radical approach to be a rapid mechanism to get needed germplasm to CIMMYT breeders. Since most of our F1 hybrids were derived from crosses between alien species and the bread wheat Chinese Spring (a poor agronomic variety that is highly crossable), we were compelled to topcross these hybrids to bread wheat varieties with good agronomic backgrounds (Mujeeb-Kazi et al. 1987, 1989). We screened the agronomically superior derivatives and selected resistant/tolerant materials for increase and distribution. With this reverse strategy of leaving scientific questions unanswered, at least for the time being, we were able to distribute germplasm with needed attributes that had not been obtained by breeders in their conventional programs that used similar cultivar combinations.To a considerable extent, basic research will resolve questions that we leave unanswered. However, over the last four or five years, we have embarked on a more meticulous methodology with our intergeneric hybridizations that provides an opportunity for more basic research. These basic activities involve: 1) systematically producing disomic alien chromosome additions, 2) screening these materials, 3) developing substitution lines from desirable selections, 4) inducing translocations, and 5) integrating, at appropriate stages, genetic manipulation methodology based around the Ph locus of chr omosome 5B. Cytological markers assist the pr ocess; morphological and biochemical markers aid in establishing wheat/ alien chromosomal homoeology. Reciprocal crosses and production of amphiploids are also contributing to success in this area. This high precision program is likely to narrow the range of r esearch investigations we undertake in the future.As explained in Chapter 3, interspecific hybridization offers short-term payoffs in our quest to introgress alien variability into wheat. Our priority has been to exploit variability in the D genome of Triticum tauschii through production of synthetic hexaploid wheats (T. turgidum x T. tauschii ) and via direct crosses of T. aestivum x T. tauschii; in the latter crosses, the T. aestivum cultivars are susceptible to such diseases as helminthosporium, fusarium, septoria, and Karnal bunt (see Chapter 3). Questions linger about the interactions of the A, B, and D genomes in synthetic hexaploids derived from crosses between T. turgidum and T. tauschii. However, it is an ar ea that we have given attention to-fully realizing that, in the past, simple resistance traits of T. tauschii accessions were suppressed or diluted in the synthetics derived from them. Despite this dilution aspect, if a synthetic hexaploid expresses resistance or tolerance when its durum parent expresses susceptibility, crossing the resistant or tolerant synthetic hexaploid onto susceptible T. aestivum cultivars seems to be a valid approach. Additional merits of using synthetic hexaploids in wheat improvement (i.e., contributions to wheat breeding, germplasm conservation, global distribution, and molecular mapping) are left to other researchers to study.With nearly 525 synthetics already produced from T. turgidum x T. tauschii crosses at CIMMYT (see Appendix 2), we have now turned our attention to crossing T. aestivum directly with T. tauschii as described in Chapter 3 and will be intensively pursuing this avenue over the next five to seven years. We anticipate obtaining more genetically diverse germplasm that is resistant or tolerant to Karnal bunt, Helminthosporium sativum, Fusarium graminearum, and salt toxicity. A new objective is to transfer Russian wheat aphid resistance from T. tauschii and T. dicoccum accessions to T. aestivum by developing their amphiploid (T. dicoccum x T. tauschii). Enriching wheat with A genome variability will surely follow; we already have 155 AA genome hexaploids (2n=6x=42; AAAABB) among our genetic stocks (see Appendix 3). Exploiting T. tauschii 's D genome variation for durum wheat improvement through A/D homoeologous exchange will be another challenge.There seems to be no major impediment in wheat wide crosses to restrict genetic advances at the plant level. The germplasm derived from cytogenetic manipulation forms the backbone of our diagnostic applications, comprising of diagnostic markers involving RAPDs, isozymes, and in situ hybridization. However, use of this germplasm enables breeders to continue their work without critical time lapses as we advance from one developmental phase to the next in our wide crosses program. Collaborative research in areas of novel system applications and diagnostic procedures is, and will continue to be, a major avenue towards accomplishing effective alien transfers. Such collaboration will enable us to reach new scientific understandings and at the same enable the distribution of new germplasm to farmers in an efficient manner. We anticipate Chapter 9 our short-term efforts (interspecific hybridization) and long-term efforts (intergeneric hybridization, stretched over 7 to 12 years) will provide quality returns for CIMMYT's crop improvement mandate.The structure of the CIMMYT wide crosses section is designed to link plant level manipulation with cellular and molecular approaches-two aspects that are essential to the section's function and effectiveness. We anticipate that a number of very advantageous approaches will subsequently emerge to aid in cereal crop improvement. When these breakthroughs are refined and applied, they will find complementary use in wheat improvement and may even have the potential to replace several conventional stages of genetic manipulation. Although we are receptive to and cognizant of these futuristic applications, we have not discussed them in any detail in this research report because progress has been limited to date.We anticipate that the successful use of wheat polyhaploids will receive greater application in our program as well as in the breeding/ molecular areas. Viable stored pollen may provide an additional boost to the application of the wheat x maize or wheat x Tripsacum techniques of polyhaploid induction described in Chapter 5. Additional diversification is expected from sexual crosses with sorghum to produce wheat polyhaploids since wheat x sorghum fertilization frequencies are the highest so far recorded (Laurie and Bennett 1988b). In conjunction with colleagues in the USDA/ARS laboratory in Logan, Utah, USA, we also anticipate extending the polyhaploid procedure to range grasses where analysis of such polyhaploids should help us to clarify further genomic relationships within the perennial Triticeae.In 1992, we began using molecular marker techniques (Chapter 8) for enhancing our program's efficiency (Rayburn et al. 1993, William et al. 1993a). We cannot predict how soon these techniques (e.g., PCRs and FISH) will become routine for reaching our goals and assisting breeders. However, applications anticipated from these techniques should be somewhat similar to our effective use of biochemical markers (Chapter 7).In our 15 years of investigations, we have progressed to a stage that allows us to project a prosperous future-not too distantly placed early in the next century. Historically, wide crosses were never anticipated to yield on-thefarm products in a short time frame and provide answers for each and every aspect of development. However, we have concentrated on doing just that and are optimistic about upcoming varietal releases and registration of new genetic stocks (see Appendices 2-6 for some genetic stocks currently available).Uncategorized resistances to helminthosporium and fusarium are already in elite plant types for interested breeders to exploit. T. tauschii-derived resistances to helminthosporium, fusarium, Septoria tritici, and Karnal bunt and tolerance to salt have been identified and are available to breeders. The polyhaploid systems for wheat, which utilize crosses of wheat x maize and wheat x Tripsacum, are superior to anther culture and to crossing wheat with H. bulbosum. Although the above stand as our major technical accomplishments, we also want to include as our contributions: service to programs, maintenance of alien species, routine use of tissue culture, and the incorporation of molecular techniques (particularly FISH) that may increase the scope of the overall program.Through the germplasm we have developed, we have been directly or indirectly linked to other CIMMYT base programs (i.e., breeding, pathology, soils, physiology, agronomy, baking quality, and training) and national agricultural research programs. In the future, these linkages will inevitably develop further and place a heavy demand on our wide crosses staff. With the existing personnel, we are operating with a modest budget. If alien germplasm is to continue playing a role in reaching objectives within the CIMMYT Wheat Program's current agenda, it will soon have to pass the test of making practical gains measured through advances in wheat crop productivity. To achieve this, we require prudent financial support to maintain a critical mass of personnel and a balanced vision. This is critically needed now at a time that we view as being a \"watershed\" juncture of the Wide Crosses Program.Amphiploids resulting from combinations of Triticum aestivum and T. turgidum with some Triticeae species and their expected chromosome status.Chromosome status a Anther culture-Part of a stamen (anther) placed on an artificial medium for eventual regeneration into haploid plants. Anthocyanin pigmentation-Reddish/purple pigment distributed/localized in plant parts that can serve as a morphological marker. Apomictic-The replacement of sexual reproduction by an asexual process that does not result in gametic fusion. Autopolyploid-The presence of more than two chromosome sets that are characteristic of the species. Autotetraploid-A species that possesses four homologous chromosome sets per cell. Bivalent-Chromosome pairing configuration during the first meiotic division, which consists of two completely or partially homologous chromosomes associated in the form of a ring or a rod. Bivalentization-Phenomenon of bivalent formation brought about in systems where reduced multivalents occur as a consequence of cytological and genetic control mechanisms. Boot inoculation test-Disease screening test in which the pathogen inoculum is injected into the young wheat spike prior to its complete emergence. The void space is comprised of the foliage plus the embedded spike, which is called the boot. Bridge cross-An indirect means of combining two incompatible species (A and C) by using a compatible third species (B) that hybridizes with both A and C. Callus-A disorganized mass of undifferentiated plant cells that grow out from plant tissue placed in an artificial medium. Cathodal-The negative electrode, abbreviated \"-\". Chiasmata-Term used in association with possible exchange of homologous parts between nonsister chromatids in prophase I of the meiotic cell cycle.Addition line-A line with an extra alien chromosome either in one (monosomic) or in two (disomic) doses to the euploid chromosome complement, e.g., in wheat as 2n=6x=42+1 or 2n=6x=42+2. Allele-One, two, or more alternate forms of a gene occupying the same locus on a particular chromosome. Allopolyploid-Individual plant arising from the crossing of two or more species/genera, each with different chromosome sets that are represented at least once or in a greater number, i.e., three (ABD) in bread wheat. Allosyndetic-Term used to describe the chromosome association (pairing) at meiosis between complete or partially homologous chromosomes of the parental gametes. Allozyme-Any of the multiple forms of a multimeric enzyme, the subunits of which are coded by alleles of the same gene. Amino acid-The building block of a protein.There are 20 common amino acids that occur naturally. They all have the same basic structure. Amphiplasty-A morphological change in chromosomes during wide hybridization where the secondary constrictions of one parent do not express in the hybrid. Amphiploid-A plant derivative with the doubled chromosome composition of an F1 hybrid resulting from a wide cross. It either originates spontaneously or is induced by colchicine treatment of the F1 plant. Aneuploidy-Cells having one or more whole chromosomes of a euploid complement absent from or in addition to that complement. Anneal-The incubation of a mixture of DNAs in single-stranded form to make doublestranded DNA. Annual-A plant requiring annual replanting, such as the major food crops: wheat, maize, rice, beans, etc. Anodal-The positive electrode, abbreviated \"+\". ","tokenCount":"35095"} \ No newline at end of file diff --git a/data/part_3/6052551244.json b/data/part_3/6052551244.json new file mode 100644 index 0000000000000000000000000000000000000000..6fb5e644881ba3bc4ff44b787c2ee11b4cbed70e --- /dev/null +++ b/data/part_3/6052551244.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"393b1c4406a879118570a1a7e713fec6","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/d1ddac7b-4aed-41a0-8109-d5dda085086b/retrieve","id":"-827732810"},"keywords":[],"sieverID":"34190e83-0476-419f-8ff5-4466737f2ee7","pagecount":"21","content":"On 24-25 April 2023, the CGIAR Initiative on One Health held its annual planning meeting at the Addis Ababa campus of the International Livestock Research Institute (ILRI), with some participants joining online via Microsoft Teams. The list of participants is in Annex 1.The goal of the meeting was to bring together the work package leaders and core team to review the initiative's achievements of 2022 and plan the research activities and deliverables for 2023. The agenda of the meeting is in Annex 2.The specific objectives of the meeting were to:• review achievements of 2022 and discuss activities and deliverables planned for 2023 by each work package;• coordinate cross-work package activities including study locations, joint projects and collaboration with other initiatives;• discuss and reflect on communication, monitoring and evaluation, gender, scaling, staffing and budget; and• build the team and engage with partners in Ethiopia and the region at large.This report presents a summary of the presentations and discussions at the meeting. The presentations may be accessed from Google Drive.Day One: 24 April 2023Integration of multiple disciplines in One Health efforts in East Africa Presenter: Eric Fèvre The presentation drew on lessons from the Urban Zoo project (Epidemiology, ecology and socioeconomics of disease emergence in Nairobi) which used a One Health approach in its implementation. It was noted that livestock production systems are central to the ecology of some zoonoses. Humans and livestock live in intimate contact and exist in complex environments with complex habitat interactions. Animals produced on farm reach increasingly distant populations as livestock systems emerge to greater integration with commercial markets. These changes have an impact on disease reach. There is a need to understand the costs of disease surveillance and the economic burden of different pathogens. It is therefore essential to understand livestock systems in an integrated way as ecological complexes.The presentation began with an overview of the initiative's objective, work packages, target countries, research partners, theory of change, end-of-initiative outcomes, impact forecast, linkages with other CGIAR initiatives, and team members. Work Package 1: Zoonoses Assessing wildlife value chains and interspecies transmission risk of zoonotic diseases using a One Health approach in Vietnam Presenter: Ha Nguyen The objectives of this study are to (1) review the interspecies transmission risk of zoonotic diseases in wildlife value chains in Vietnam and Southeast Asia, (2) assess the prevalence of selected zoonotic pathogens, identify associated risk factors in selected wildlife value chains and test a syndromic surveillance scheme and (3) estimate interspecies transmission risks of zoonotic diseases using a risk assessment framework along wildlife value chains. The study is being carried out in Lao Cai and Dong Nai provinces. Lao Cai province borders China and falls in a route that is commonly used for illegal trade of wildlife. It also has a high number of wildlife farms. Dong Nai province in the Mekong River Delta has high numbers of wildlife farms compared to the other southern provinces. One of the initial activities was a literature review on zoonoses in wildlife to identify key wildlife species and related pathogens. Preliminary results from the review show that mammals host majority of the pathogens (mostly viruses) reported in terrestrial wildlife. Initial consultations with partners and site visits took place in December 2022 and early 2023.The objective of this work is to create a digital reporting application for animal disease surveillance at slaughter in Kenya. To this end, consultative meetings will be held with the Directorate of Veterinary Services and officers in the selected counties to develop an appropriate tool for meat inspection which will be digitized and embedded within the Kenya Animal Biosurveillance System. The study will be piloted in Busia, Kajiado and Kiambu counties. Meat inspectors will be trained and provided with mobile phones. From this study, it is anticipated to have meat inspection reports and disease trends in animals at slaughter for the three counties, as well as a real-time reporting interface that can be accessed by all partners. The study on antimicrobial resistance in aquaculture farms in Bangladesh is being implemented in five sub-districts of Mymensingh district. Mymensingh is one of the main hubs of commercial aquaculture production in Bangladesh and is the top-ranked district for pangas production and second top-ranked district for tilapia production. In 2022, the team was able to complete a crosssectional study in 120 tilapia-dominated polyculture farms. Preliminary data analysis (basic descriptive statistics for key parameters) is complete. A follow-up longitudinal study is ongoing until the end of April 2023. Preliminary results on antimicrobial use are available from the retrospective cross-sectional study and from the analysis of biological samples (fish skin, gills, muscle, gut and liver; water effluent; organic fertilizer; and sediment). A scoping review titled Aquatic food systems and antimicrobial use in Bangladesh aquaculture: A One Health perspective is in the final stages of production.Water and One Health Presenter: Javier Mateo-SagastaThe main study sites for the watershed monitoring and modelling are Ethiopia (Akaki River) and India (Song River). Thus far, partners and consultants have been engaged, staff recruited, a monitoring plan and stakeholder analysis developed in Ethiopia, while in India, the modelling approach is being developed. Preliminary site visits have been made to 18 sites in Song River Basin.Water monitoring and modelling will be used to quantify the relative contribution of livestock to water pollution by Escherichia coli and Salmonella, test ex ante the effectiveness of pollution control measures, and assess the health risks downstream. On business models for livestock waste reuse, an online survey was carried out to identify and pre-characterize cases of resource recovery and reuse in low-and middle-income countries. A long list of resource recovery and reuse cases is being developed for Ethiopia and a short list of resource recovery and reuse cases has been characterized in detail for India. Business models from successful cases will be synthesized and promoted for adoption and replication in selected sites. On the link between poor water quality and foodborne illness, discussions to collaborate with the food safety work package have been initiated.Understanding food safety risks associated with the use of microbiologically contaminated water in slaughterhouses Presenter: Oluwadara Alegbeleye Due to climate change and related factors, access to safe, affordable water is becoming increasingly difficult and processors of animal food may turn to alternative (probably sub-optimal quality) water sources, potentially increasing associated food safety risks. A proposed framework to characterize risks of foodborne illness associated with the use of microbiologically contaminated abattoir process water was presented. The framework entails (1) identifying foodborne pathogens in water used to wash carcasses in slaughterhouses, (2) characterizing the potential for and dynamics of pathogen transfer from wash-water onto carcasses, (3) tracing the fate of the pathogens on carcasses through the processing and distribution chain and (4) assessing the ways that human behaviour (including food handling, storage, cooking and consumption patterns) may influence the risk of human infection.Overview of the economics, governance and behaviour work package Presenter: Vivian Hoffmann This work package will test impacts of capacity building, incentives and monitoring on behaviours relevant to zoonoses transmission, food safety, antimicrobial resistance of food value chain actors and government personnel. A behavioural microeconomic approach will be used, noting the influence of gender on goals and constraints. The work package will also assess the costeffectiveness of innovations and the private and public case for investments. Most of the research of this work package is integrated into that of the other work packages: slaughterhouse hygiene intervention (zoonoses work package), business impacts of food safety interventions in Ethiopia and Vietnam (food safety work package) and farmer perceptions of benefits and costs of antimicrobial use (antimicrobial resistance work package). However, this work package also has some stand-alone studies such as the impact of food safety information on consumer choice (completed in 2022 and a research note published), analysis of data collected through the CGIAR Research Program on Agriculture for Nutrition and Health (to be carried out in 2023), microbial contamination of processed vegetables at purchase vs. post-cooking at households, and heavy metal contamination of kale vs. indigenous leafy green vegetables.The research questions are: How do farmers understand the benefits of antimicrobial use? How much are they currently spending on these antimicrobials? The questions were included in observational studies carried out in 2022 with the antimicrobial resistance work package. The findings will inform interventions to be developed and tested. Preliminary results are available on perceived benefits of antimicrobial use, reasons for using antimicrobials and farmers' expenditures on antimicrobials.Presenter: Lilian Otoigo This study will develop and test a slaughterhouse hygiene intervention that aims to reduce microbial contamination of meat and reduce the occupational hazard of zoonoses transmission to slaughterhouse workers. The formative qualitative study is complete. Key informant interviews and focus group discussions in the study counties were carried out to understand the main barriers to the use of recommended hygienic practices, solicit feedback on ideas for the intervention, and explore the feasibility of zoonoses surveillance via slaughter facilities. The next steps will be to confirm with county officials the details of interventions to be piloted, pilot the interventions in six slaughter facilities and begin the randomized controlled trial in the second half of 2023.Day Two: 25 April 2023There is need to clarify what we mean by 'integration' and what areas are needed for integration. Integration could refer to collaboration between work packages, sharing of tools and knowledge across work packages, cross-country collaboration, or integration among the livestock-based CGIAR initiatives (One Health, Livestock and Climate, and Sustainable Animal Productivity).Resilient cities through sustainable urban and peri-urban agrifood systems Presenter: Silvia Alonso The CGIAR Initiative on Resilient Cities is focused on agrifood systems in urban areas. By 2050, more than two-thirds of people globally will live in urban environments, including more than 5.5 billion people in low-and middle-income countries. Further, over 80% of food will be consumed in urban environments. Urbanization is therefore an important driver of food system transformation.Partnerships have been developed with city authorities and municipalities and the private sector, among others. There is potential for collaboration with other CGIAR initiatives such as Sustainable Health Diets, Sustainable Animal Productivity, Rethinking Food Markets, and One Health. In principle, the Resilient Cities and One Health initiatives have agreed to work together in Ethiopia on food safety in informal markets, although there have been some initial challenges on alignment of work plans and combining of resources. There is need for more clarity on what the two initiatives want to achieve.The main challenge experienced with expanding the One Health Initiative food safety activities to Sustainable Animal Productivity (SAPLING) study sites in Vietnam is that cross-initiative partnership was not budgeted for. Partners include national partners, universities, international organizations, other CGIAR initiatives (Sustainable Healthy Diets, Sustainable Animal Productivity, Plant Health) and the Vietnam Food Safety Working Group.Sustainable Animal Productivity Initiative (SAPLING) linkages and partnership with the One Health Initiative Presenter: Michel Dione SAPLING collaborates with other CGIAR initiatives (Livestock and Climate, One Health, Mixed Farming Systems). Potential areas for collaboration with the One Health Initiative are on incentivizing uptake of herd health packages, incentivizing improved water, sanitation and hygiene (including livestock waste) through improved productivity, animal welfare, and approaches for influencing behaviour on diets and food safety practices.Integration at work package level With regard to methods, there are potential synergies between the zoonoses, food safety and water work packages on water and food safety surveillance in slaughterhouses. Between the zoonoses and antimicrobial resistance work packages, we could examine antimicrobial use in wildlife. We need to include water questions in the food safety baseline assessments being carried out in Ethiopia, India and Vietnam. The watershed monitoring and modelling activity under the water work package has the potential to integrate inputs from the antimicrobial resistance work package and others.Integration with other initiatives • Sustainable Animal Productivity: Genetics linked to poultry farms with the Tropical Poultry Genetics Solutions project.• Resilient Cities: Food safety in informal markets in urban and peri-urban settings.The planned deliverables for 2023 by each work package (publications, capacity building and innovation development) are summarized below.• One Health platform impact case for Kajiado, Narok and Isiolo Work to be done:• Delineated watershed along with all features in thematic form • Preliminary sampling and data collection and analysis• Inventory of all secondary data procured relevant to the project • Calibrated and validated model for selected pathogens and antimicrobial resistance module • Journal articles • Protocol for stakeholder analysis and engagement (stakeholder workshop)CGSpace is the platform that all initiatives are using to manage knowledge products and it feeds into the Performance and Results Management System. The main communications channels targeted at external audiences are the One Health Initiative microsite on the CGIAR website, the events tool and the initiative brochure. For internal communications, the channels used are Teams/SharePoint (for document sharing and collaboration), the One Health Initiative message grid (a foundational set of approved messages and talking points), The Feed weekly newsletter (within CGIAR) and Initiative Fast Facts (to share brief talking points with relevant global groups looking for quick facts on what is happening in the initiatives).Beyond the products developed to communicate the science (journal articles, briefs, research reports etc.), we support the development of strategic communication products to enhance the reach of research; these include think pieces, op-eds, news articles, infographics, videos, podcasts and social media.Monitoring and evaluation, innovations, scaling, and genderPresenter: Steve Lam The presentation revisited monitoring and evaluation (M&E) for the Performance and Results Management System (PRMS) and introduced M&E for research. M&E is concerned with uncovering our results, and how these are achieved, at different levels. This information is important to capture achievements, understand progress and support research and adaptations. While we have the PRMS to report research outputs from the initiatives, we need a system to effectively track activities and outcomes.In the Initiative Annual Technical Report for 2022, we committed to better tracking of research activities according to a detailed work plan with specific intermediate outputs and deliverable dates. This will ensure that we remain on track to achieve the targeted impacts. The PRMS spreadsheet will be adapted to include a brief description about the research activities or projects alongside their respective outputs.Outcome Mapping is proposed as the method for tracking progress towards outcomes and details on how they are achieved. Outcome Mapping consists of 12 steps divided across three phases. Given that the One Health Initiative was already intentionally designed at the proposal stage, we will start at phase 2 (outcome and performance monitoring). Work package leads will suggest focal points to support M&E data collection on outcomes, actions and contextual factors through journaling of significant observations that demonstrate change in partner behaviour, policies, relationships etc. (the desired outcomes). The data will then be inputted into an online system through a nine-question survey that takes around five minutes to complete. The system will provide timely information on incremental changes in knowledge and practices toward intended impact.Presenter: Ijudai Jasada The innovation packages and scaling readiness framework involves three stages: profiling all CGIAR innovations, developing innovation packages for scaling ready innovations, and developing scaling strategies. Under innovation profiling, we design profiles for CGIAR innovations that have been","tokenCount":"2503"} \ No newline at end of file diff --git a/data/part_3/6069540390.json b/data/part_3/6069540390.json new file mode 100644 index 0000000000000000000000000000000000000000..4a995cfdbbb120ef647a584cdf7d1700fda9d927 --- /dev/null +++ b/data/part_3/6069540390.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"df5cd5f51ab5b6b1e59d4594863b6ed6","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/0de7c382-30cd-4263-8a70-b5933bb83bb0/retrieve","id":"356875173"},"keywords":[],"sieverID":"9b465b59-191d-465a-88e3-55d465aec9e3","pagecount":"64","content":"Dar a la población rural pobre la oportunidad de salir de la pobreza Las designaciones geográficas empleadas en esta publicación al igual que la presentación del material no expresan en modo alguno opinión de Bioversity International o del Consorcio CGIAR sobre el estatus legal de ningún país, territorio, ciudad o área, ni acerca de sus autoridades o de la delimitación de sus fronteras. Asimismo, las opiniones expresadas son las de los autores y no necesariamente reflejan los puntos de vista de estas organizaciones.Bioversity International es una organización dedicada a la investigación para el desarrollo, que trabaja de manera colaborativa, con socios de todo el mundo, en la conservación y el uso de la biodiversidad agrícola y forestal para mejorar los medios de vida y la nutrición de los pueblos, y la sostenibilidad, productividad y resiliencia de los ecosistemas. Bioversity International es miembro del Consorcio CGIAR, una alianza mundial de investigación agrícola para un futuro sin hambre. www.bioversityinternational.org La lista de descriptores para quinua (Chenopodium quinoa Willd.) y sus parientes silvestres es una revisión de la publicación original del CIRF (actualmente Bioversity International), titulada \"Descriptores de quinua\" (AGP:IBPGR/81/104) y se basa en el trabajo de un equipo de expertos de Bolivia, quienes al caracterizar y evaluar la amplia variabilidad genética que se conserva en la colección boliviana de germoplasma de quinua han identificado características fenotípicas y de interés para el cultivo. El trabajo ha sido coordinado por Wilfredo Rojas de PROINPA y fue validado en un Taller Regional del proyecto IPGRI (actualmente Bioversity)-FIDA \"Elevar la contribución que hacen las especies olvidadas y subutilizadas a la seguridad alimentaria y a los ingresos de la población rural de escasos recursos\", financiado por el FIDA (Fondo Internacional de Desarrollo Agrícola) donde participaron socios de Ecuador (INIAP, UCODEP), Perú (CIRNMA, INIA-Puno, INIA-Cuzco, UNA, PIWANDES) y Bolivia (PROINPA, UMSA, UACT-UCB, CIFP) en el 2003. Posteriormente se preparó un borrador en el formato internacional de Bioversity, y se envió a expertos internacionales para que comentaran y/o mejoraran esta lista. Los nombres y direcciones de los expertos que intervinieron durante el proceso figuran en la sección \"Colaboradores\".El presente trabajo de actualización de los descriptores de la quinua, ha sido financiado por el Proyecto Semillas Andinas de la FAO (GCP/RLA/183/SPA), que se ejecuta con recursos de la Cooperación Española.Bioversity promueve la recolección de datos sobre las cinco categorias de descriptores (véase Definiciones y uso de los descriptores). Sin embargo, el número de descriptores escogidos de cada una de las categorías dependerá del cultivo, de la importancia que tenga para la descripción, así como para la utilización del mismo. Los descriptores que se encuentran en la categoría de Evaluación permiten una descripción más detallada de los caracteres de la accesión, y generalmente requieren ensayos repetidos durante un periodo de tiempo.Si bien este sistema de codificación no debe considerarse definitivo, este formato representa un importante instrumento para un sistema de caracterización normalizado que Bioversity promueve a nivel mundial. Esta lista de descriptores se presenta en un formato internacional y por ello proporciona un \"lenguaje\" comprensible universalmente para los datos sobre los recursos fitogenéticos. La adopción de este sistema para la codificación de los datos o, por lo menos, la producción de un método de transformación para convertir otros sistemas al formato de Bioversity, permitirá disponer de un medio rápido, fidedigno y eficaz para almacenar, recuperar y comunicar la información, y ayudará en la utilización del germoplasma. Por lo tanto, se recomienda el uso de los descriptores especificados, tomando en cuenta el orden y número de los descriptores y utilizando los especificados, así como los estados recomendados.Esta lista de descriptores tiene la finalidad de ser general para los descriptores que contiene. Este enfoque ayuda a la normalización de las definiciones de los descriptores. No obstante, Bioversity no pretende que cada responsable realice la caracterización de las accesiones de su colección utilizando todos los descriptores listados. Estos se deben utilizar cuando sean útiles para el responsable del manejo y la conservación de la colección y/o para los usuarios de los recursos fitogenéticos. La lista mínima de descriptores para describir y sobre todo utilizar la quinua, se encuentra al inicio de Caracterización y además los descriptores se resaltan en el texto para facilitar la selección de los mismos.Los descriptores de pasaporte para cultivos múltiples (Alercia et al., MCPD V.2, 2012) se incluyen con el fin de suministrar sistemas uniformes de codificación para los datos de pasaporte comunes de los distintos cultivos y se indican en el texto como [DPCM]. Nótese que, debido a la naturaleza genérica de los descriptores de pasaporte para cultivos múltiples, no todos los estados de expresión de los descriptores para un descriptor en particular serán relevantes para un cultivo específico.En el Anexo I, el lector encontrará una ficha de recolección para la quinua que ayudará para la recolección de datos.Cualquier sugerencia o modificación para mejorar los descriptores de quinua será muy apreciada por Bioversity 1 .La región de los Andes, cuna de grandes civilizaciones como la Tiahuanacota y la Incaica, es considerada centro de origen de numerosas especies nativas como la quinua (Chenopodium quinoa Willd.). El cultivo fue durante miles de años el principal alimento de las culturas antiguas de los Andes y está distribuido en diferentes zonas agroecológicas de la región. En la actualidad la quinua se encuentra en franco proceso de expansión porque representa un gran potencial para mejorar las condiciones de vida de la población de los Andes y del mundo moderno.La quinua es un grano que posee características intrínsecas sobresalientes, entre ellas: su amplia variabilidad genética cuyo acervo genético es extraordinariamente estratégico para desarrollar variedades superiores (precocidad, color y tamaño de grano, resistencia y/o tolerancia a factores bióticos y abióticos, rendimiento de grano y subproductos). Se adapta a climas desde el desértico hasta climas calurosos y secos, el cultivo puede crecer con humedades relativas desde 40% hasta 88%, soportar temperaturas desde -4°C hasta 38°C. Es una planta eficiente al uso de agua, es tolerante y resistente a la falta de humedad del suelo, obteniéndose producciones aceptables con precipitaciones de 100 a 200 mm. Su capacidad de adaptabilidad a condiciones adversas de clima y suelo donde otros cultivos no pueden desarrollarse, se pueden obtener cosechas desde el nivel del mar hasta los 4000 metros de altitud (altiplano, salares, puna, valles interandinos, yungas, nivel del mar); su calidad nutritiva representada por su composición de aminoácidos esenciales tanto en calidad como en cantidad, le convierte en un alimento funcional e ideal para el organismo y su diversidad de formas de utilización tradicional, no tradicional y en innovaciones industriales.Frente a la necesidad global de identificar alternativas productivas que tengan el potencial de producir alimentos de calidad, la quinua es un cultivo con alto potencial tanto desde sus bondades nutritivas como de su versatilidad agronómica para contribuir a la seguridad alimentaria de diversas regiones del planeta, especialmente de aquellos países, donde la población no tiene acceso a fuentes de proteína y/o donde tienen limitaciones en la producción de alimentos, y por lo tanto se ven obligados a importarlos o recibir ayuda alimentaria. La quinua es una alternativa para que estos países tengan la oportunidad de producir su propio alimento. La quinua resulta altamente atractiva en distintas regiones del globo, por la extraordinaria capacidad adaptativa que tiene esta planta a condiciones ecológicamente extremas.En 1996 la quinua fue catalogada por la FAO como uno de los cultivos promisorios de la humanidad no sólo por sus grandes propiedades benéficas y por sus múltiples usos, sino también por considerarla como una alternativa para solucionar los graves problemas de nutrición humana (FAO, 2011). La NASA también la incluyó dentro del sistema CELLS (en español: Sistema Ecológico Controlado para mantener la Vida) para equipar sus cohetes en los viajes espaciales de larga duración por ser un alimento de composición nutritiva excelente lo que nos muestra que este cultivo es una alternativa para solucionar los problemas de insuficiente ingesta de proteínas. Existen varios productos derivados de la quinua como los insuflados, harinas, fideos, hojuelas, granolas, barras energéticas, etc.; sin embargo productos más elaborados o cuya producción requiere del uso de tecnologías más avanzadas están en proceso de ser explotados, como es caso de la extracción de aceite de quinua, del almidón, la saponina, concentrados proteicos, leche de quinua, extracción de colorantes de las hojas y semillas, etc.Estos productos son considerados el potencial económico de la quinua por darle uso a características no solo nutritivas sino fisicoquímicas que abarcan más allá de la industria alimentaria y ofrece productos a la industria química, farmacéutica y cosmética. Descriptores de pasaporte: proporcionan la información básica que se utiliza para el manejo general de la accesión (incluido el registro en el banco de germoplasma y cualquier otra información de identificación) y describen los parámetros que se deberían observar cuando se recolecta originalmente la accesión, incluyendo información etnobotánica.Descriptores de manejo: proporcionan las bases para el manejo de las accesiones en el banco de germoplasma y ayudan durante su multiplicación y regeneración.Descriptores del sitio y el ambiente: describen los parámetros específicos del sitio y del ambiente que son importantes cuando se realizan pruebas de caracterización y evaluación.Pueden ser importantes para la interpretación de los resultados de esos procesos. Se incluyen también en esta categoría los descriptores del sitio de recolección del germoplasma.Descriptores de caracterización: permiten una discriminación fácil y rápida entre fenotipos. Generalmente son caracteres altamente heredables, pueden ser fácilmente detectados a simple vista y se expresan igualmente en todos los ambientes. Además, pueden incluir un número limitado de caracteres adicionales considerados deseables por consenso de los usuarios de un cultivo en particular.Descriptores de evaluación: la expresión de muchos de los descriptores de esta categoría depende del ambiente y, en consecuencia, se necesitan métodos experimentales especiales para evaluarlos. Su evaluación puede también involucrar métodos complejos de caracterización molecular o bioquímica. Este tipo de descriptores incluye caracteres tales como rendimiento, productividad agronómica, susceptibilidad al estrés y caracteres bioquímicos y citológicos. Generalmente, éstas son las características más interesantes en la mejora de cultivos.La caracterización estará bajo la responsabilidad de los curadores de un banco de germoplasma, mientras que cualquier evaluación más completa, que a menudo requiere programar experimentos, deberá ser realizada por los fitomejoradores u otros expertos que vayan a utilizar el material. La información procedente de estas evaluaciones más completas deberá ser puesta a disposición de los responsables del banco de germoplasma para que la incluyan en la documentación de las muestras.Los descriptores mínimos para describir y utilizar la quinua se resaltan en el texto.Las normas aceptadas internacionalmente para la recolección de datos, codificación y registro de los estados de los descriptores son las siguientes: a) se utiliza el sistema internacional de unidades (Systeme es la expresión de un carácter. Los autores de esta lista a veces han descrito sólo una selección de los estados, por ejemplo 3, 5 y 7, para dichos descriptores. Cuando ha ocurrido esto, la gama completa de códigos está disponible para su uso, utilizando la ampliación de los códigos dados o mediante la interpolación entre ellos, por ejemplo, en la Sección 10 (Susceptibilidad al estrés biológico), 1 = susceptibilidad muy baja y 9 = susceptibilidad muy alta; e) cuando se registra un descriptor utilizando una escala del 1 al 9, como en e), se registrará \"0\" cuando: i) el carácter no esté expresado; ii) no sea aplicable un descriptor. En el ejemplo siguiente, se registrará \"0\" si una accesión no tiene el lóbulo central de la hoja:Forma del lóbulo central de la hoja 1 Oval 2 Elíptico 3 Redondo f) la presencia o ausencia de caracteres se registra de la siguiente forma: 0 Ausente 1 Presente g) se reservan espacios en blanco para información aún no disponible; h) en las accesiones que no son generalmente uniformes para un descriptor (por ej. colección mezclas, segregación genética) se registrará la media y la desviación estándar cuando la variación sea continua, o varios códigos en orden de frecuencia si el descriptor es de variación discontinua. Se pueden utilizar otros métodos publicados, tales como el de Rana et. al. (1991) 1975 ----, 19750000, 197506--, 19750600).Pasaporte 9 PASAPORTE Todos los descriptores de Pasaporte que pertenecen a la Lista de descriptores de pasaporte para cultivos múltiples, están indicados en el texto como [DPCM] y los descriptores de la lista publicada en 1985, entre paréntesis al lado del descriptor.Código FAO WIEWS del instituto en donde se conserva la accesión. Este está formado por el código ISO 3166 de tres letras correspondientes al país en el que está situado el instituto más un número. La lista actual de códigos está disponible en la página WEB de la FAO (http://apps3.fao.org/wiews/wiews.jsp).Nombre del instituto en donde se conserva la accesión. Este descriptor se debe usar si no se dispone del código FAO WIEWS.Dirección del instituto en donde se conserva la accesión. Este descriptor se debe usar si no se dispone del código FAO WIEWS.Este es el identificador único para cada accesión en el banco de germoplasma y se asigna cuando la muestra se incorpora a la colección. Una vez asignado este número, nunca se debe reasignar a otra accesión en la colección, ni aún cuando se pierda una accesión. Antes del número de la accesión se utilizarán letras para identificar el banco de germoplasma o sistema nacional (por ejemplo 'PI 113869'indica una accesión del sistema estadounidense).Código FAO WIEWS de la institución responsable de la donación del germoplasma. (Véanse instrucciones en Código del instituto, 1.1).Nombre del donanteNombre del instituto (o persona) donante. Este descriptor se debe usar si el 'código' del instituto donante (ver 1.3) no está disponible.Número de accesión del donante (1.6) [DPCM] Identificador asignado por el donante a una accesión. (Véanse instrucciones en Número de la accesión, 1.2).Otra identificación relacionada con la accesión (1.7) [DPCM] Cualquier otro identificador utilizado en otras colecciones para identificar la accesión en cuestión. El código del instituto y el identificador se separan con dos puntos (:) sin espacio. Las parejas del código del instituto e identificador se separan con punto y coma (;) sin espacio. Cuando no se conoce el instituto, el identificador tiene que estar precedido por los dos puntos (:).Código del instituto de mejoramiento [DPCM] Código FAO WIEWS del instituto en el que se mejoró (genéticamente) el material. Si la institución que conserva el material ha hecho los cruzamientos, el código del instituto de mejoramiento debe ser el mismo que el código del instituto conservador del material. (Véanse instrucciones en Código del Instituto, 1.1). Si hay varios códigos, se separan con punto y coma sin dejar espacio entre ellos.Nombre del instituto de mejoramiento [DPCM] Nombre del instituto (o persona) que mejoró el material. Este descriptor se debe usar sólo si no se dispone del código FAO WIEWS. Si hay varios nombres, se separan con punto y coma sin dejar espacio entre ellos.Género (1.2.1) [DPCM] Nombre del género dado al taxón. Letra inicial mayúscula, por ejemplo Chenopodium.Especie (1.2.2)[DPCM] La parte específica del nombre científico se debe escribir con minúsculas (por ejemplo quinoa). Se permite la abreviatura \"sp.\".Autoridad de la especie [DPCM] Indicar el nombre del autor del nombre específico.[DPCM] Indicar aquí cualquier identificador taxonómico adicional. Se permiten las siguientes abreviaturas: \"subsp.\" (para subespecies); \"convar.\" (para convariedad); \"var.\" (para variedad); \"f.\" (para forma); 'Group' (para \"grupo de cultivares\").Autoridad del subtaxón [DPCM] Indicar el autor del nombre del subtaxón al nivel taxonómico más detallado.Pasaporte 11 1.10 Accesión 1.10.1 Nombre de la accesión [DPCM] Designación registrada u otra designación oficial que se da a la accesión que no sea el número de accessión del donante (1.4) o el número de recolección (2.3). Letra inicial con mayúscula. Si hay varios nombres, se separan con punto y coma sin dejar espacio entre ellos. Ejemplo: Nombre de la accessión: Bogatyr;Symphony;Emma.Incluya aquí cualquier identificación previa distinta del nombre corriente.El nombre coloquial de la especie cultivada, por ejemplo 'quinua', barley', 'macadamia'.Información sobre el pedigrí (genealogía) o sobre otra descripción que contenga información de los ancestros (por ejemplo, variedad del progenitor cuando se trata de un mutante o de una selección). Por ejemplo. Un pedigrí \"Hanna/7*Atlas/Turk/8*Atlas\"; o \"mutación que se encontró en Hanna\"; o \"cruzamiento que involucra Hanna o Irene entre otros\".[DPCM] Fecha en la que la accesión entró en la colección donde AAAA es el año, MM el mes y DD el día. Los datos que falten (MM o DD) tienen que indicarse con guiones o ceros.Especificar aquí cualquier información adicional.Código de la expedición [DPCM] Identificador de la misión de colección asignado por la institución o persona(s) recolectora(s) (e.g. 'CIATFOR-052', 'CN426').Código del instituto recolector [DPCM] Código FAO WIEWS del instituto que recolecta la muestra. Si el instituto que conserva la muestra es el mismo que ha recolectado el material, entonces el código del instituto recolector deberá ser igual al código del instituto que lo conserva. Si hay varios códigos, se separan con punto y coma sin dejar espacio entre ellos. (Véanse instrucciones en Código del Instituto, 1.1).Nombre del instituto(s) recolector(es) (2.1) [DPCM] Nombre del instituto(s) y/o personas que efectuaron la recolección de la muestra original o la patrocinaron. Este descriptor se debe usar si el 'código' del instituto recolector (ver 2.2) no está disponible. Identificador original asignado por los recolectores de la muestra, normalmente compuesto por el nombre o iniciales del colector seguido por un número (por ej. 'FM9909'). Este número es esencial para identificar los duplicados que se encuentren en colecciones diferentes.Fecha de recolección de la muestra [AAAAMMDD] (2.3) [DPCM] Fecha de recolección de la muestra, en la que AAAA es el año, MM el mes y DD el día. Los datos que falten (MM o DD) tienen que indicarse con guiones o ceros.País de origen (2.4) [DPCM] Código ISO 3166 de tres letras del país donde se recolectó, la muestra original (raza local, parientes silvestres de cultivos, variedad del agricultor), o se mejoró o seleccionó (línea del mejorador, OGMs, poblaciones segregadas, híbridos, cultivares modernos, etc.).Ubicación del sitio de recolección (2.8) [DPCM] Información sobre la ubicación dentro del país, en la que se describe donde se recolectó la muestra (si es posible en inglés). Puede incluir la dirección y la distancia en kilómetros desde la ciudad, aldea o el punto de referencia cartográfica más cercano (por ej., 7 Km. al sur de Chucuito en el departamento de Puno).Coordenadas geográficas q Para los descriptores de latitud y longitud se proponen dos formatos, pero se debe utilizar solamente el registrado por la expedición de recolección.q Latitud y longitud en grados decimales con una precisión de cuatro decimales corresponde aproximadamente a 10 metros del Ecuador y describe el punto de radio del sitio junto con la referencia geodésica y la incertidumbre de la coordenada en metros.Latitud del sitio de recolección (grados decimales) (2.6) [DPCM] Latitud expresada en grados decimales. Los valores positivos estan al norte del Ecuador, los negativos al sur del Ecuador, (por ejemplo, -44.6975).[DPCM] El sistema de codificación propuesto abajo respeta los códigos globales del DPCM (como 10,12,etc.) 2.17 Número de plantas muestreadas 2.18 Descriptores etnobotánicos Información sobre atributos tradicionales de la muestra en el lugar de recolección (comunidad): usos, formas de preparación, nombres nativos, propiedades curativas, creencias socioculturales y otros.Nombre asignado por el agricultor al cultivar/variedad local/clon/forma silvestre. Nombre vernacular de la muestra, con la que se la conoce en el lugar de procedencia.Nombre del grupo social al que pertenecen los pobladores de la región donde se realiza la colecta. Ej. Quechuas, Aymaras, Chipayas u otro.Información del uso de la muestra (planta entera) o de partes de ella (grano, hoja, tallo y/o raíz). Identificación de la población Número de recolección, pedigrí, nombre del cultivar, etc., dependiendo del tipo de población.Dirección de almacenamiento Ubicación de los depósitos y ubicación del edificio, habitación, número de los estantes en almacenamiento a mediano y/o largo plazo.3.5 Germinación de semillas en almacenamiento (inicial) [%]3.6 Fecha de la última prueba de germinación de semillas [AAAAMMDD]3.7 Germinación de semillas de la última prueba [%]3.8 Fecha de la próxima prueba de germinación de semillas [AAAAMMDD]3.9 Contenido de humedad de la semilla a la cosecha [%]3.11 Tipo de almacenamiento del germoplasma [DPCM] Cuando el germoplasma se conserva en almacenamiento de distinto tipo, se presentan varias opciones, que se separa con punto y coma, sin espacio (por ejemplo, 20;30 [DPCM] Código FAO WIEWS del instituto donde se conserva un duplicado de seguridad de la accesión. Valores múltiples se separan con punto y coma sin espacio. (Véanse instrucciones en 1.1).Nombre del instituto que conserva duplicados de seguridad [DPCM] Nombre del instituto que conserva duplicados de seguridad. Este descriptor se debe usar si el 'código' del instituto que conserva duplicados (ver 3.12) no está disponible.El estado de la accesión con respecto al Sistema Multilateral (SML) del Tratado Internacional de los Recusos Fitogenéticos para la Alimentación y la Agricultura. Si no se conoce el estado, dejar vacío el valor.0 No (no está incluído) 1 Sí (está incluído) 99 Otro (especificar en el descriptor Notas 3.14)Se puede especificar aquí cualquier información adicional.4.1 Número de accesión (Véanse las instrucciones en el descriptor 1.2).Identificación de la población Número de recolección, pedigrí, nombre del cultivar, etc., dependiendo del tipo de población.Número Indicar aquí cualquier información adicional.5. Descriptores del sitio de caracterización y/o evaluación 5.1 País donde se hizo la caracterización y/o evaluación (Véanse las instrucciones en el descriptor 2.5).Sitio donde se realizó la caracterización y/o evaluación 5.2.1 Latitud (Véanse las instrucciones en el descriptor 2.7/2.7a).(Véanse las instrucciones en el descriptor 2.8/2.8a).Metros sobre el nivel del mar. Sitio de siembra/plantación en el campo Indicar el número de bloque, franja y/o parcela / hilera correspondiente, plantas / parcela, duplicaciones.Fertilizantes Especificar el tipo, dosis frecuencia de cada uno y el método de aplicación.Protección de plantas Especificar el tipo de plaguicida y herbicida utilizados, dosis, frecuencia de cada uno y el método de aplicación.Utilice los descriptores de la sección 6 desde el 6.1.1 al 6.2.Indicar aquí cualquier otra información específica del sitio. Pendiente estimada del sitio.Dirección en la que está orientada la pendiente donde se recolectó la muestra. Describa la dirección con los símbolos N,S,E,W (por ejemplo, una pendiente orientada en la dirección sudoeste tiene un aspecto SW). A continuación se presentan dos listas de ejemplos de material y rocas de procedencia. La fiabilidad de la información geológica y el conocimiento de la litología local determinarán si se puede dar una definición general o específica del material de procedencia. Se utiliza saprolita si el material meteorizado in situ está completamente descompuesto, rico en arcilla pero aún mostrando estructura de roca. Los depósitos aluviales y coluviales derivados de un mismo tipo de roca se pueden especificar según el tipo de roca (Adaptado de FAO, 1990). 1 No (como en zonas áridas) 2 Bajo (como en un cultivo prolongado en un ambiente tropical) 3 Medio (como en zonas recientemente cultivadas pero aún no muy agotadas) 4 Alto (como en zonas nunca cultivadas, o en tierras de bosques recién talados 5 TurbosoClasificación taxonómica del sueloSe debe dar una clasificación lo más detallada posible. Se puede tomar de un mapa de estudio de suelos. Indique la clase de suelo (por ejemplo, Alfisoles, Spodosoles, Vertisoles, etc.). Para las medidas cuantitativas registrar la media de las plantas tomadas al azar en competencia completa (evitando plantas de bordura) y en las cualitativas en función al 50% de plantas de la población. Esta categoría contiene una lista mínima de descriptores importantes para discriminar y utilizar quinua que se resaltan en el texto y están indicados con un asterisco (*).Lista mínima de descriptores para discriminar y utilizar quinua Este es un conjunto clave inicial de descriptores que inmediatamente ayudarán a investigadores a utilizar más fácilmente quinua conservada en bancos de germoplasma. Esta es una lista mínima de descriptores que son relevantes para describir, discriminar y especialmente para incrementar la utilización de germoplasma:Nombre del descriptor 7.8.2 Color de la panoja en la floración 7.8.3Color de la panoja en la madurez fisiológica 7.8.4Forma de la panoja 7.8.5Longitud de la panoja [cm] 7.8.6Diámetro de la panoja [cm] 7.8.7Densidad de la panoja 7.9.1 Grado de dehiscencia 7.9.4 Diámetro del grano [mm] 7.9.6 Peso de 1000 granos [g] 7.9.8 Rendimiento de semilla por planta [g] 7.9.10Color del pericarpio 7.9.12 Color del episperma Medido en la parte media del tercio inferior de la planta en la madurez fisiológica. Promedio de al menos 10 plantas.Registro del color predominante en el tallo principal en la madurez fisiológica. Observado en la intersección entre el tallo principal y las ramas primarias, en la floración de la planta. 0 Ausentes 1 Presentes 2 No determinadas (por ej. aquellas plantas de tallo y ramas de color rojo, donde no se puede apreciar la presencia de axilas pigmentadas.) Registrado mediante la relación número de plantas acamadas sobre el número total de plantas de la accesión.Indicar la fase fenológica en la que ha ocurrido.Ramificación (4.4) Número de ramas desde la base hasta el segundo tercio de la planta, en la madurez fisiológica.7.6.3 Posición de las ramas primarias (4.4.3)1 Salen oblicuamente del tallo principal 2 Salen de la base con una cierta curvatura 7.7 Hoja (4.5) Descripción de hojas del tercio medio del tallo principal de la planta, seleccionadas en plena floración de al menos 10 plantas. Número total de dientes por hoja, media de al menos 10 hojas basales (una hoja por planta). Véase la Fig. 6. 1 Glomerulada (glomérulos están insertos en los ejes glomerulares y presentan una forma globosa) 2 Intermedia (apariencia de ambas formas) 3 Amarantiforme (glomérulos están insertados directamente en el eje secundario y presentan una forma alargada)1 Glomerulada 2 Intermedia 3 Amarantiforme Registrar en la madurez fisiológica, medir desde la base hasta el ápice de la panoja principal. Media de al menos 10 plantas. Promedio de 20 granos sin considerar el perigonio.Promedio de 20 granos sin considerar el perigonio.*7.9.6 Peso de 1000 granos [g] (5.5)Registro del peso sin considerar el perigonio.7.9.7 Peso hectolítrico [g/cm³] Peso de semilla en un volumen conocido. Número de días hasta el 50% de floración [d] Desde la siembra hasta que el 50% de las plantas hayan alcanzado el 50% de la floración.Número de días hasta el final de floración [d] Desde la siembra hasta que el 100% de las plantas presenten flores abiertas.Número de días hasta grano lechoso [d] Desde la siembra hasta que el 50% de las plantas presenten granos que liberen liquido blanquecino cuando se someten a presión.Número de días hasta grano pastoso [d] Desde la siembra hasta que el 50% de las plantas hayan alcanzado una apariencia de grano pastoso.*8.9Número de días hasta el 50% de la madurez fisiológica [d] (5.2) *8.10 Presencia de saponina (7.1) 0 Ausente 1 Presente 8.11 Eflusión de saponina Espuma producida en tubos de ensayo luego de agitar 0.5 g de muestra en 5 ml de agua destilada.0 Especificar el método que utliza y cite la referencia. Consulte la lista de Descriptores para tecnologías de marcadores genéticos que se encuentra disponible en formato PDF en la página WEB de Bioversity International (http://www.bioversityinternational.org/), o se puede solicitar a: bioversityinternational-publications@cgiar.org.Especificar el método que utliza y cite la referencia. Consulte la lista de Descriptores para tecnologías de marcadores genéticos que se encuentra disponible en formato PDF en la página WEB de Bioversity International (http://www.bioversityinternational.org/), o se puede solicitar a: bioversityinternational-publications@cgiar.org.Bioversity International, FAO, la Fundación PROINPA, INIAF y el FIDA desean manifestar su agradecimiento a las personas que trabajan con la quinua, a los agricultores y agricultoras de los centros de diversidad del cultivo, en especial a los agricultores y agricultoras del área circunlacustre al Lago Titicaca por ser custodios de la mayor diversidad y perdurar el patrimonio genético de la quinua, y que han colaborado directa e indirectamente en el desarrollo de estos Descriptores para quinua (Chenopodium quinoa Willd.) y sus parientes silvestres.Adriana Alercia supervisó y coordinó la producción en general y la fase de publicación y proporcionó asesoramiento técnico bajo la dirección científica de Wilfredo Rojas de PROINPA y de Stefano Padulosi de Bioversity International. Milton Pinto Porcel preparó los dibujos de Caracterización. Ana Laura Cerutti preparó la composición de esta publicación y Nora Capozio preparó la portada.Se agradece el asesoramiento científico de los expertos de PROINPA, INIAF, INIA, INIAP, INTA, CIRAD, USDA, Rutgers University, Universidad Nacional del Altiplano (Peru), ANPE y FAO-RLC, así como también al valioso aporte de los expertos que han participado durante el desarrollo y la revisión.Anexo I: FICHA DE RECOLECCION de quinua y sus parientes silvestres ============================================================================ IDENTIFICACION DE LA MUESTRA ---------------------------------------------------------------------------------------------------------------------MISION/EXPEDICION (2.1): ---------------------------------------------------------------------------------------------------------------------INSTITUTO(S) RECOLECTOR(ES) (2.2): ---------------------------------------------------------------------------------------------------------------------No. DE RECOLECCION (2.3):FOTOGRAFIA No. (2.19): ---------------------------------------------------------------------------------------------------------------------FECHA DE RECOLECCION DE LA MUESTRA [AAAAMMDD] (2.3): ---------------------------------------------------------------------------------------------------------------------GENERO (1.7):ESPECIE (1.8): ============================================================================ SITIO DE RECOLECCION ---------------------------------------------------------------------------------------------------------------------PAIS DE ORIGEN (2.5): -------------------------------------------------------------------------------------------------------------------- -------------------------------------------------------------------------------------------------------------------- --------------------------------------------------------------------------------------------------------------------ELEVACION DEL SITIO DE RECOLECCION (2.12): m snm ============================================================================ AMBIENTE DEL SITIO DE RECOLECCION (o procedencia) ---------------------------------------------------------------------------------------------------------------------FUENTE (o procedencia) DE RECOLECCION /ADQUISICION (2.13): 10. Hábitat silvestre 50. Compañía de semillas 20. Finca, comunidad o parcela cultivada 60. Hábitat de arvenses, de plantas 30. Mercado, tienda o ferias ruderales o disturbado 40. Instituto/Est. experimental/Org. de investigación/ 99. Otro (especificar, por ej. desconocido): Banco de germoplasma ---------------------------------------------------------------------------------------------------------------------ADAPTACION AGROECOLOGICA (zona de cultivo) (2.13.12): 1. Valle interandino 2. Altiplano 3. Salares 4. Nivel del mar 5. Yungas 6. Puna 99. Otro (especificar): ---------------------------------------------------------------------------------------------------------------------PENDIENTE [°] (6.1.4):ASPECTO DE LA PENDIENTE (6.1.5): (código N,S,E,W) ---------------------------------------------------------------------------------------------------------------------CLASES DE TEXTURA DEL SUELO (6.1.16): Indicar la clase (por ej. arcilla, limo, arena franca) ---------------------------------------------------------------------------------------------------------------------CLASIFICACION TAXONOMICA DEL SUELO (6.1.18): Indicar la clase (por ej. Alfisoles, Spodosoles, Vertisoles) -------------------------------------------------------------------------------------------------------------------- ---------------------------------------------------------------------------------------------------------------------LLUVIAS (6.1.20. ","tokenCount":"4846"} \ No newline at end of file diff --git a/data/part_3/6084076950.json b/data/part_3/6084076950.json new file mode 100644 index 0000000000000000000000000000000000000000..a319765ca35a2ed413c25c8fe6eb15d601d7800e --- /dev/null +++ b/data/part_3/6084076950.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"491fa624264aec9f3ae007b3556ced4c","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/11722830-6921-407d-8135-9bf0f6e122c0/retrieve","id":"-1157050183"},"keywords":[],"sieverID":"4623a66a-07f1-46c6-a0d9-3e4c08cecd0a","pagecount":"12","content":"Character cards (printed or handwritten): cut pieces of paper (can use index cards or sticky notes) with descriptions of each character are needed for the activity (see suggested characters list below). The character cards should be tailored to the country or region where the activity is taking place to make it as relevant as possible.Open space: ensure there is an open space for participants to stand side-by-side in a line, and to walk forward and backward freely. The activity can take place indoors or outdoors. Time allocation: ideally, 1 hour should be allotted for this activity to ensure sufficient time for discussion and reflection. Participants lined up and being briefed about the Power Walk activity during a training workshop in Islamabad, Pakistan. Photo: IWMI Pakistan.Gender equality and social inclusion (GESI) refers to the promotion of equal opportunities and rights for all individuals and the inclusion of disadvantaged groups in decision-making processes and access to resources, services, and opportunities. This approach analyzes unequal power relations and inequalities different individuals experience based on their social identity, and actions that can be taken to address these inequities. A GESI approach is a process which requires changing systems of oppression and discrimination and challenging harmful norms (FHI360 n.d.; UN Women 2020).In the water sector, a GESI approach is crucial because it addresses inequities faced by various groups, such as women, children, ethnic minorities, and persons with disabilities, who often bear the brunt of water-related challenges. By integrating GESI considerations in the planning and decision-making of water resources, the water sector can improve water resources management and governance, thereby improving water access for all.The 'Power Walk' is a group role-play activity that encourages reflection about power, privilege, and inequities in society. It helps participants identify marginalized groups by clearly showing the power structure of a community or society. The activity is a simulation of a community/society in which everyone starts off on equal footing but ends up in different places or circumstances based on their social position. The debriefing after the power walk activity allows for a deeper conversation on existing disparities in society and how we might address these in our professional and personal lives.This activity has been used in various training manuals to promote deeper conversations around power (BC 2017, 134-136;CRS 2021, 22;IDMC 2015;Plan UK 2015, 50-73;OHCHR 2014).In this tool, we adapted this activity to explore the intersectionality of gender equality and social inclusion (GESI) within the context of the water sector.The 'Power Walk' promotes critical thinking on how different dimensions of identity (such as gender, age, income, and social status) as well as larger structural inequalities impact access to and benefits from, and the costs of managing water resources and services. The activity aims to create awareness of and initiate discussion on disparities that exist within the water sector and the need for more inclusive practices.The objectives of this activity are as follows:1. Explore the intersection between gender, social inclusion and access to water resources and services.2. Foster a deeper understanding of how intersectionality influences individuals' experiences within the water sector.3. Promote dialogue and reflection on the challenges faced by marginalized groups and the need for inclusive practices within the water sector.This activity can be used during trainings, workshops, community awareness sessions or similar gatherings with relevant stakeholders from the water sector such as government officials, policymakers, academics, civil society, and community representatives. The activity can be tailored according to the audience and purpose of the gathering.1. Ask participants to stand side-byside in a row. Distribute character cards randomly to each participant (see list of suggested characters below). Ask participants to keep their character identity a secret until the end of the activity.2. Explain that a series of statements will be read out aloud (see list of statements below). Participants will be instructed to take one step forward if the statement applies to their character. If the statement does not apply to their character or they are unsure, they should remain in place. In some cases, participants will be instructed to take one step backward if the statement applies to them.3. Reminder: participants should respond to the statements as the character assigned to them and not as themselves. Encourage participants to really put themselves in the shoes of their assigned character and interpret how that character may feel or behave.4. Once all the statements are read out, assess where each participant is standing. Ask participants to share who their character is.5. Conclude with a debrief and discussion.Note: Characters and statements may be adjusted depending on the specific context. The list of characters provided below was originally developed for Pakistan and will need to be adapted according to the relevant context. The number of characters and statements can be adjusted depending on how large the group is. The activity works best with a group of at least 15-20 people. If there are more participants than the number of listed characters, characters can be duplicated or complete the activity in two rounds.Participants line up at a starting line and will take steps forward or backward depending on their character. 3. I drive a car or motorcycle and can quickly and easily go to collect or purchase water for my household.4. A recent flood in your community has caused many male family members to migrate to another city in search of work. In their absence, if you can still support yourself financially and make decisions in your household, take one step forward.5. The government has launched a livelihood scheme to benefit farmers and boost their livelihoods. If you are a farmer and think you would benefit from this scheme, take one step forward.6. If you are fully responsible for all household duties, such as cooking, cleaning, and taking care of children, which leaves you less time for other activities, take one step backward.7. I have a laptop or computer with internet access, giving me access to a variety of information.8. I am a member of a Water User Association in my community, and I actively contribute to decision-making. 9. I have 100 acres of land for agriculture purposes. The land is registered in my name, or I will inherit it in the future from my family.10. I am knowledgeable about water issues in my community and how to contact relevant authorities to share concerns or complaints.11. There has been a drought, affecting all farming-based livelihoods. Take two steps backward if you and your family's livelihood is directly affected.12. I am encouraged by my parents to attend school and I do not miss any days due to household chores or other responsibilities.13. There has been a dramatic increase in inflation, leading to higher food and petrol prices across the country. If you have to cut back on expenses in order to meet daily household requirements, take two steps backward.14 21. I am a recent graduate and I could easily find a job in my area or out of the city.22. There was a nationwide power outage which lasted for 2 days. Everyone should take one step backward.23. If you have power backup in your home, such as solar panels or generators, then take two steps forward.24. If you have to travel far on foot to collect water for your household, take one step backward.25. I live in an area where clean water is available year-round and is easily accessible.The following questions may be used to spark discussion and reflection from participants:o Note: These are suggested questions to guide discussion and facilitators can add or amend questions. The focus of discussion should not solely be about gender inequalities, but how gender intersects with other social identities to create unique positions of power or marginalization. Participants should be encouraged to think critically about each character's movement during the activity.o Water is not gender neutral -different gender groups have different levels of access to and control over water (and other) resources. It is important to understand these differences in order to design and implement sustainable and equitable policies and programs.o In many cultural contexts, gender biases and social norms can exacerbate water-related inequalities, often limiting women's (and other underrepresented or marginalized groups') decision-making power in water-related matters. Inequalities in the water sector also impact other domains, such as food security, livelihoods, and public health.o Gender intersects with other social factors such as geographic location, age, ethnicity, disability, education, and socioeconomic status. Therefore, it is vital to address gender and multiple dimensions of inequality when developing inclusive water sector interventions.o Understanding water access and decision-making requires going beyond technical solutions and examining the social and power relations within society that shape water allocation and governance.","tokenCount":"1435"} \ No newline at end of file diff --git a/data/part_3/6087661399.json b/data/part_3/6087661399.json new file mode 100644 index 0000000000000000000000000000000000000000..8da6eafa2432b78080b20faea34223dc77fd4d41 --- /dev/null +++ b/data/part_3/6087661399.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"35da7c53b9d3aad02989566ba5d5897a","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/56f1d695-a2b4-4687-9c3f-2e4ab18a8016/retrieve","id":"-760949009"},"keywords":[],"sieverID":"e8f67b32-f228-462d-a454-731d7c6cbc80","pagecount":"5","content":"CGIAR welcomes the outcomes from COP28 regarding Decision 8/CMA.5 on the New Collective Quantified Goal on Climate Finance and extends its support to the facilitation of science-based evidence to aspects in supporting the definition of the goal, including the structure, timeframe, scope, sources of funding in respect to food, land, and water systems.o As much as possible and as soon as made available, the goal should assess the trends in the development of the third-generation national climate plans, or Nationally Determined Contributions 3.0, as a consideration for understanding needs and costs from Developing country Parties, to align the goal with the updated low emissions and Climate resilient development needs.o CGIAR supports that the establishment of explicit standards for how developed nations share responsibilities should be considered in the discussions. This approach would facilitate predictability, transparency, and accountability.o It is important to establish regular tracking processes and making data and information on climate finance provided and mobilized more transparent, including reconciling methodological approaches to avoid double counting, including by developing a common definition of climate finance, before setting the goal to enable effective tracking of financial flows.Climate Impact Platform UNFCC SubmissionsFollowing review of various assessments of the needs to implement article 2.1c of the Paris agreement and based on the current state of NDCs and NAPs, CGIAR concurs with the assessed needs from the NDR report of the SCF accounting for overall needs of up to USD 5.9 trillion up to 2030. However, attention must be given to the higher proportion of uncosted needs, which will a large increase of this figure with improved costing in the 2 nd generation NDCs as well as in NAPs. Various reports including by CPI, UNEP, UNFSS, and the SCF show that the needs including those which can be costed within NDCs and NAPs are significantly higher than the climate finance flows currently available, with an urgent need to meet at minimum these costed requirements.o It is therefore important to consider equity between mitigation (low emissions) and adaptation, guaranteeing an increase in current levels of finance, including for food security and the food sector between at least USD 300-400 billion per year with a consideration of an increase or adjustment based on the progress made in the global stocktake.o As much as possible and as soon as made available, the goal should assess the trends in the development of the 2nd generation NDCs as a consideration for understanding needs and costs from Developing country Parties, to align the goal with the updated low emissions and Climate resilient development needs.Parties' submissions have emphasized the critical importance of structuring the NCQG, with many highlighting diverse options and insights crucial for decision making. CGIAR requests due consideration be given to all concerns raised by parties' especially on defining climate finance as it provides clarity and transparency about the objectives, scope, and targets of the goal. Moreover, it aligns with the principle of equity, common but differentiated responsibilities, respective capabilities and national circumstances enshrined in the legal framework of the United Nations Framework Convention on Climate Change (UNFCCC).o CGIAR supports that the establishment of explicit standards for how developed nations share responsibilities should be considered in the discussions. This approach would facilitate predictability, transparency, and accountability.The timeframe of the NCQG requires careful consideration to ensure effectiveness, accountability, and alignment with the long-term goals of the Paris Agreement.o CGIAR proposes a model that combines both short-term and long-term perspectives. For instance, establishing a 10-year time frame composed of five-year operational periods, with a comprehensive review process between these periods, offers a balanced approach. Such a model would allow for adjustments based on evolving scientific evidence, technological advancements, GST progress, and changing developing country circumstances.o Embedding a continuous review mechanism for the NCQG can also ensure ongoing accountability and adaptation to emerging challenges.o Considerations should also be made in relation to alignment to the GST cycle to support adjustment of the goal to achieve the Paris agreement and the Global Goal on Adaptation. o Transparency arrangements for the NCQG should contribute to global assessments of progress towards climate finance sub goals. This involves providing comprehensive and reliable data on financial flows, the effectiveness, and gaps in financing, which can inform decision-making and adjustments to the goal.o It is important to establish regular tracking processes and making data and information on climate finance provided and mobilized more transparent, including reconciling methodological approaches to avoid double counting, including by developing a common definition of climate finance, before setting the goal to enable effective tracking of financial flows.o Modalities, procedures, and guidelines for the transparency framework for action and support referred to in Article 13 of the Paris Agreement present valuable insights and best practices that can inform the development of transparency arrangements for the NCQG.o The Enhanced Transparency Framework (ETF) under the Paris Agreement should play a crucial role in the transparency arrangements for the NCQG by establishing common reporting standards, increasing transparency, supporting capacity building, facilitating review and assessment processes, and aligning with global goals and objectives.o In conclusion, CGIAR, as the largest public sector-funded organization in food and agriculture, presents to Parties for this 9th TED a comprehensive recommendation informed by its vast experience and deep understanding of the complexities of climate change, especially in developing nations. This recommendation advocates for an integrated approach that combines adaptation and mitigation, underpinned by sector-specific and regional analyses, to craft tailored responses to climate change for the agriculture and food sector. Central to this is the enhancement of project bankability through substantial concessional finance, aiming to catalyse private sector engagement. CGIAR's expertise in devising and informing actionable investment plans across agriculture, forestry, land, and water use sectors underscores this submission. ","tokenCount":"946"} \ No newline at end of file diff --git a/data/part_3/6118485211.json b/data/part_3/6118485211.json new file mode 100644 index 0000000000000000000000000000000000000000..4e6fd1552aebdbfd9fc06554b067d9045bf752cb --- /dev/null +++ b/data/part_3/6118485211.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"972e2047c19d57c79be93d1df91cec4a","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/450cfbf3-f160-4175-af3d-d48c188669c6/retrieve","id":"-265660116"},"keywords":[],"sieverID":"0c354767-bf10-48ee-90a0-b5c5058306fc","pagecount":"14","content":"MRV has been defined by the United Nations Framework Convention on Climate Change (UNFCCC) at the Conference of the Parties (COP13) in Bali (2007) No MRV framework has been developed for rice production in Vietnam • Single aeration: The field surface was dry (with no standing water) 1 time for at least 3 days from crop establishment to 2 weeks before harvest• Multiple aerations: The field surface was dry (with no standing water) 2 times or more for at least 3 days from crop establishment to 2 weeks before harvestQuestion: What was the irrigation method that you applied in the largest field?Water management practices by rice season and district ❑ This study is designed to validate adoption of low emission practices in MRD of Vietnam ❑ Reported N rate was higher than the actual rate ❑ Observed and reported data of water management is rather similar with the difference <10% ❑ Significant different between observed and reported rate of straw management. This may result from incorrect estimation of straw and stubble ratio.❑ More studies need to be done to select ground-truthing method for rice residue management ❑ Depending accepted marginal error and combination of the interested low emission practices, sample size for ground-truth range from 16 (d=10%) or 259 (d=5%) per province per season❑ For validation at regional scale, accuracy of reported data is acceptable ❑ For smaller scale, need to apply multiple-levels of ground truth (including HH survey and field measurement)","tokenCount":"242"} \ No newline at end of file diff --git a/data/part_3/6142940191.json b/data/part_3/6142940191.json new file mode 100644 index 0000000000000000000000000000000000000000..a85450e4d8522eb13e62a86a2c5b1baff93ff632 --- /dev/null +++ b/data/part_3/6142940191.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"94120acb78a349745ab28d8a42ea31cc","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/de36394f-4785-4b7e-8286-8e9cb82415c0/content","id":"-534318239"},"keywords":[],"sieverID":"f73a913e-e4e4-4210-a3db-0caa036e9648","pagecount":"15","content":"Key message Genome-wide association study (GWAS) on 923 maize lines and validation in bi-parental populations identified significant genomic regions for kernel-Zinc and-Iron in maize. Abstract Bio-fortification of maize with elevated Zinc (Zn) and Iron (Fe) holds considerable promise for alleviating undernutrition among the world's poor. Bio-fortification through molecular breeding could be an economical strategy for developing nutritious maize, and hence in this study, we adopted GWAS to identify markers associated with high kernel-Zn and Fe in maize and subsequently validated marker-trait associations in independent bi-parental populations. For GWAS, we evaluated a diverse maize association mapping panel of 923 inbred lines across three environments and detected trait associations using high-density Single nucleotide polymorphism (SNPs) obtained through genotyping-by-sequencing. Phenotyping trials of the GWAS panel showed high heritability and moderate correlation between kernel-Zn and Fe concentrations. GWAS revealed a total of 46 SNPs (Zn-20 and Fe-26) significantly associated (P ≤ 5.03 × 10 −05 ) with kernel-Zn and Fe concentrations with some of these associated SNPs located within previously reported QTL intervals for these traits. Three double-haploid (DH) populations were developed using lines identified from the panel that were contrasting for these micronutrients. The DH populations were phenotyped at two environments and were used for validating significant SNPs (P ≤ 1 × 10 −03 ) based on single marker QTL analysis. Based on this analysis, 11 (Zn) and 11 (Fe) SNPs were found to have significant effect on the trait variance (P ≤ 0.01, R 2 ≥ 0.05) in at least one bi-parental population. These findings are being pursued in the kernel-Zn and Fe breeding program, and could hold great value in functional analysis and possible cloning of high-value genes for these traits in maize.Communicated by Jianbing Yan.Advances in agricultural research and technology have resulted in the increase of food grain production to meet the needs of an increasing human population. Though the increase in food grain production helped to meet the calorie requirement, low levels of micronutrients, zinc (Zn), iron (Fe), and pro-vitamin A among others, are a global cause for malnutrition related health impairments which could lead to socio-economic losses, reduced work performance and productivity (Diepenbrock and Gore 2015;Tiwari et al. 2016). Micronutrient malnutrition, known as \"hidden hunger\", is more prevalent among pregnant women and infants dwelling in the developing world, where people mostly rely on cerealbased diets (Diepenbrock and Gore 2015). In a specific mention about Zimbabwe, Banziger and Long (2000) reported that there was approximately 30% of pregnant and lactating women who are Fe-deficient. Although micronutrients are required in a relatively small quantity for humans, they play a vital role to stimulate cellular growth, signaling, function and metabolism (Guerrant et al. 2000;Kapil and Bhavna 2002). Micronutrients are not synthesized by humans and must be acquired through the diet. Several strategies have been used to enrich human diet with micronutrients, including supplementation, dietary diversity and commercial food fortification. However, implementing such interventions on a large scale in resource-poor communities incur substantial recurring expenditure and are frequently found to be economically unsustainable in the long term (Bouis and Welch 2010). Therefore, 'bio-fortification' which refers to micronutrient enrichment of major staple food crops like maize, rice, and wheat through classical and modern plant breeding strategies assume considerable significance (Graham and Welch 1996;Bouis 2000;Welch and Graham 2002;Babu et al. 2013).Maize alone contributes over 20% of total calories in human diets in 21 countries and over 30% in 12 countries that are home to more than 310 million people (Smale et al. 2013). Bio-fortification of maize is, therefore, expected to improve the health and welfare of many disadvantaged populations across the globe. Significant progress has been made in developing, testing, and deploying bio-fortified maize, especially quality protein maize (QPM) (Atlin et al. 2010) and pro-vitamin A-enriched maize (Pixley 2013) worldwide. Studies have demonstrated that high-Zn maize will be impactful in rural areas with limited access to dietary supplements and fortified foods (Chomba et al. 2015). Recently, a Zn-biofortified maize variety BIO-MZN01 with 36% increased Zn on average than other maize varieties was released in Colombia in 2018. This variety was developed by International Maize and Wheat Improvement Center (CIM-MYT) with the support of HarvestPlus in collaboration with the Agriculture for Nutrition Health (A4NH) and International Center for Tropical Agriculture (CIAT) (http://www. Harve stPlu s.org).Based on estimated average requirement (EAR) of 1860 µg/day of Zn and 1460 µg/day of Fe, the target level of Zn and Fe was established as 33 and 52 µg/g, respectively, in maize kernels (Bouis and Welch 2010). The baseline content for Zn in maize is about 20 µg/g, therefore, an increase of 13 µg/g is feasible by conventional breeding, especially because a wide range of Zn concentration is available in the germplasm. However, for Fe, such natural diversity has not been found and an increase of about 30 µg/g might be more attainable using alternate methods such as gene editing or transgenics (Ortiz-Monasterio et al. 2007).Understanding the extent of genetic variability for kernel micronutrients in elite maize germplasm along with the genetics of accumulation mechanisms will be critical for the development of nutrient-enriched varieties. Kernel micronutrient concentration depends upon a number of factors such as micronutrient availability, environmental conditions, mobilization of nutrients from soil, uptake by roots, translocation, redistribution within the plant, and deposition in the seeds. Each of these processes is likely governed by many genes (Bashir et al. 2012;Kobayashi and Nishizawa 2012). Several genes related to metal transport, phytosiderophore biosynthesis, mineral ion sequestration and grain portioning have been identified in Arabidopsis, rice, wheat, barley, maize, tomato and soybean (Eide et al. 1996;Zhao and Eide 1996;Grotz et al. 1998;Eckardt 2000;Vert et al. 2001;Waters 2002). Sharma and Chauhan (2008) predicted a total of 48 candidate genes to be involved in the Fe and Zn transport in maize based on putative candidate genes, viz., 13 genes from ZIP (zinc-regulated transporter/iron-regulated transporter proteins) family, 16 from NRAMP (natural resistance associated macrophage protein) family, 17 from YS (yellow stripe) family and one each from CE (cation efflux) family and ferritin family. This makes the accumulation of minerals in seeds a complex polygenic phenomenon.A large number of maize germplasm accessions with high levels of kernel-Zn (3.81-95.62 mg/kg) and Fe (9.6-159.43 mg/kg) have been identified in temperate (Ahmadi et al. 1993;Brkic et al. 2004) and tropical collections (Banziger et al. 2000;Menkir 2008;Chakraborti et al. 2011;Prasanna et al. 2011), in mid-altitude and low-land agro-ecologies including landraces, inbreds, hybrids and open pollinated varieties. Genome analysis tools provide access to thousands of genomic polymorphisms, thus considerably broadening our capacity to monitor and effectively utilize genetic diversity (Glaszmann et al. 2010). Genomewide association studies (GWAS) based on linkage disequilibrium (LD) is a robust approach for mapping biologically valuable traits in germplasm and has been successfully applied in a range of plant species (Huang and Han 2014;Yang et al. 2014). LD is the non-random association of alleles at different loci, measured as r 2 and D′ (Flint-Garcia et al. 2003). Genotyping-by-sequencing (GBS) methodology (Elshire et al. 2011) offers a less expensive method for genotyping large number of samples, and provides around a million SNPs, and hence is extremely relevant to LD-based mapping in a crop like maize which has reported faster LD decay. Validated marker-trait associations from GWAS will be of great value in developing bio-fortified maize with high kernel-Zn and Fe. Objectives of the current study were (1) to assess the genetic variation for kernel-Zn and Fe concentrations in a wide array of maize germplasm; (2) to identify the genomic regions that influence kernel-Zn and Fe concentrations through GWAS and develop high throughput and easy to use SNP assays; and (3) to validate GWAS-identified genomic regions in bi-parental populations.A set of 923 inbred lines representing CIMMYT and partners' germplasm was used as an association mapping panel. The panel included 432 tropical, 402 subtropical and 89 temperate germplasm. In addition to elite breeding lines, a number of lines from improved pools and populations formed to serve as sources for drought and Low N tolerance were included, as well as lines that were developed for QPM.This panel was grown in three different environments at CIMMYT research stations in Mexico: at Agua Fria in 2012 (AF12A) and 2013 (AF13A) and at Celaya in 2012 (CE12B). Agua Fria is located at 20°32′N, 97°28′W, 110 m above sea level (masl), and has average annual temperature of 22 °C with average annual precipitation of 1200 mm. Celaya is located at 20°26′N, 103°19′W; 1750 masl; average annual temperature 19 °C; average annual precipitation 700 mm. The trials at AF12A and CE12B were laid out in a randomized complete block design (RCBD) with two replications, whereas at AF13A, in alpha lattice design with two replications. The rows were of 2.5 m length and 75 cm apart and each entry was grown in a single row plot. Two to six plants from each plot were self-pollinated, hand-harvested and hand-shelled to avoid any metal contamination. Kernels were bulked for subsequent micronutrient analyses. Soil samples were also taken in at least five distal points in the field trials and at 0-30 cm deep. Samples were dried and sent for analysis at Fertilab commercial laboratory in Mexico.From the association mapping panel, three lines with high Zn and three lines with moderate or low Zn lines were selected based on the micronutrient analysis to form the bi-parental populations. Three double-haploid (DH) populations were derived from the crosses between high Zn lines with low or moderate Zn lines (Table 2). The three DH populations (DHP1, DHP2 and DHP3) had population sizes of 96, 112 and 143, respectively. These populations were planted in single replication trials in two environments at Celaya in 2014 and in Tlatizapan, Morelos, Mexico in 2015. Planting conditions and micronutrient analysis methods were the same as described above.Random samples of 6 g were used for analysis. Only six kernels were ground into fine powder (< 0.5 µm), using a Retsch™ miller (model MM400) and 35 mL grinding milling jar of zirconium. Milling time was 90 s at 30 Hz. Flour was collected in 15 mL plastic tubes and analyzed by X-ray fluorescence using X-ray fluorometer (XRF) Oxford instru-ments™, model X-Supreme 8000 ® . Five grams of flour was placed in the polypropylene capsules and closed with a Poly-4 ® Oxford Instruments™, and readings were recorded. About 10% of the samples were also analyzed by inductive coupled plasma (ICP) as described by Galicia et al. (2012) to confirm accuracy of values obtained by XRF. In ICP analysis, aluminum and titanium were also monitored as indicators of contamination.DNA was extracted from leaf samples of 3-4-week-old seedlings using the standard CIMMYT laboratory protocol (Cimmyt 2005). The association mapping panel and three DH populations under study were genotyped for single nucleotide polymorphism (SNP) using genotyping-by-sequencing (GBS) method at the Institute for Genomic Diversity, Cornell University, Ithaca, NY, USA. Physical coordinates of all SNPs were derived from the maize reference genome version B73 AGPV2. The genotypic data consisted of 955,690 SNPs across all the chromosomes, in the imputed GBS SNP dataset of approximately 22,000 maize samples publicly available through Panzea (http://www.panze a.org). From this, a smaller dataset of 347,765 SNPs which met the filtering criteria of call rate (CR) ≥ 0.7 and minor allele frequency (MAF) ≥ 0.03 was used for GWAS. For principal component and kinship analyses, 69,830 SNPs with filtration criteria of CR ≥ 0.9 and MAF ≥ 0.1 were used.Variance components, σ 2 G, σ 2 GE and σ 2 e, for the multienvironmental phenotypic data were estimated from analysis of variance (ANOVA) using multi environment trial analysis with R (METAR) (Alvarado et al. 2015). Broad-sense heritability (H 2 ) of the trails was estimated as:where σ 2 G is the genotypic variance, σ 2 GE is the genotype × environment variance, σ 2 e is the error variance, l is the number of environments, and r is the number of replications. Correlation coefficients between environments and traits, summary statistics (mean, SE, range, LSD, CV) were also generated using standard procedures implemented in METAR. Best linear unbiased estimators (BLUEs) used for GWAS was estimated as where Y ijkl is the response value of observed trait, µ the overall mean, Gen i is the treatment fixed effect (i = 1, 2,…, n), Rep j is the replicate effect (j = 1, 2,…, n), Block k is the block effect, Loc l is the location effect and ε ijkl is the error term.The principal component analysis (PCA) method as described by Price et al. (2006), implemented in SNP and Variation Suite (SVS) V_8.6.0 (SVS, Golden Helix, Inc., Bozeman, MT, USA, http://www.golde nheli x.com) was used for the analysis. A three-dimensional plot of the first three principal components was drawn to visualize the possible population stratification among the samples. A kinship matrix was also computed from identity-by-state (IBS) distance matrix as executed in SVS V_8.6.0:where IBS1 and IBS2 are the states in which the two inbred lines share one or two alleles, respectively, at a marker (Bishop and Williamson 1990). Linkage disequilibrium (LD) was quantified as adjacentpairwise r 2 values (the squared allele frequency correlations, among alleles at two adjacent SNP markers) (Hill and Robertson 1968) and was estimated for 34,420 SNPs using SVS V_8.6.0. To investigate the extent of linkage disequilibrium (LD) decay across the genome, r 2 values were plotted against the physical distance within the SNPs (Remington et al. 2001). The 'nlin' function in the statistical programming language R (R Core Team 2017) was used to obtain LD decay plot as non-linear model.For each trait, three different association analyses were carried out: uncorrected (U), corrected for population structure (Q), and corrected for population structure and kinship (Q + K) using SVS V_8.6.0. In the uncorrected analysis, associations were tested in an additive model without correcting for any of the confounding variables. In the Q model (GLM-general linear model, or fixed-effect linear model), the associations were corrected using population structure through principal component analysis, in which ten principal components (PC) were included. In the Q + K model (MLM-mixed linear model), associations were corrected using both PCs and kinship matrix. All the three models (U, Q and Q + K) involved testing one variant at a time. Manhattan plots were plotted using the − log 10 P values of all SNPs used in analysis. The appropriateness of the different models was evaluated through Q-Q plots that were obtained by plotting 'expected − log10 P values' on the x-axis and 'observed − log10 P values' on the y-axis. Multiple testing correction was performed to determine the significance threshold, where instead of 345,767 independent tests, the totalNo. of non-missing markers , number of tests were estimated based on the average extent of LD at r 2 = 0.1 (Cui et al. 2016). Based on this, significant associations were declared when the P values in independent tests are less than 5.03 × 10 −05 or − log10 (P values) are greater than 4.3. The variance component based on the kinship analysis employing 347,765 SNPs was computed using the efficient mixed model analysis (EMMA) (Kang et al. 2008) as implemented in SVS V_8.6.0. Narrow sense heritability (pseudo-heritability) was estimated aswhere ̂ 2 g is the estimated genetic variance, Var(y) is variance of observed phenotypes, ̂ 2 e is the estimated residual variance, δ isGenes co-localized with associated SNPs were identified from the maize GDB genome browser (http://www. maize gdb.org) annotations were obtained from http://ensem bl.grame ne.org/Zea_mays.SNPs found to be significantly associated with kernel-Zn and Fe were selected for single marker QTL analysis in three DH bi-parental populations. In addition, SNPs within the bottom 0.1 percentile of the distribution in the GWAS (Sehgal et al. 2017) were also tested independently for possible linkage to kernel-Zn and Fe concentrations in the DH populations phenotyped at two environments. Single-marker QTL analysis was carried out on single location data, from both the locations obtained from each DH population separately using Gen Stat 14.0.Soil characteristic and composition were slightly different between samples from Agua Fria (AF) and Celaya (CE). Soil from CE was of clay type with a pH of 8.03, Zn content of 2.32 µg/g dry weight (DW), Fe 7.84 µg/g DW and N 6.15 µg/g DW. AF soil was of clay loam type with pH of 8.28, Zn content of 1.24 µg/g DW, Fe 17.2 µg/g DW and N 7.57 µg/g DW. ANOVA and other descriptive statistics for both the traits showed significant variability for kernel-Zn and-Fe concentrations among the genotypes of the association mapping panel (Table 1). The average kernel-Zn in the panel was 27.04 µg/g DW, with a range of 17.11-43.69 µg/g DW. The average Fe concentration was 14.65 µg/g DW witha range of 8.19-25.65 µg/g DW. None of the lines in the association mapping panel met the target kernel-Fe concentration of 52 µg/g. Correlations between environments were highly significant for both kernel-Zn and Fe (Table S1). Highly significant, but moderate positive correlation was found between the two traits across the environments (r = 0.49, P value ≤ 0.001). In the GWAS panel, there were 57 lines (Table S2) which had Zn concentration of 33 µg/g DW or more, the current breeding target for HarvestPlus. Among those 57, there are several elite CIMMYT maize lines (CMLs), 4 QPM lines, several lines susceptible or tolerant to drought, heat or a combination of drought and heat as well as lines susceptible or tolerant to low nitrogen (low N).Principal component analysis using genome-wide markers revealed only a moderate population structure with the first three principal components (Fig. S1). The temperate lines and the drought tolerant donor germplasm including both La Posta Sequia and drought tolerant population (DTP) groups clearly separated in different axes from the rest of the CIMMYT tropical and sub-tropical lines. The first three principal components explained 41.86% of the total variance. The genome-wide LD decay was plotted as LD (r 2 ) between adjacent pairs of markers versus distance in kb between adjacent pairs, and showed that the average LD decay was 17.5 kb at r 2 = 0.1 and 5.99 kb at r 2 = 0.2 (Fig. S2). Chromosome-wise LD analyses showed the slowest LD decay on chromosome 8 (26.54 kb, r 2 = 0.1), followed by chromosome 1 (21.88 kb, r 2 = 0.1).GWAS was carried out with a subset of SNPs with call rate (CR) more than 0.7 and minor allele frequency (MAF) more than 0.03. 347,765 SNPs which formed this subset were tested against kernel-Zn and Fe concentrations from 923 inbred lines across environments. In the three models used for GWAS, SNPs were tested independently against the phenotypes for Zn and Fe. The uncorrected method (U) and the method corrected only for population structure (Q) showed significant genomic inflation as observed in the Q-Q plots (Fig. 1). The Q + K MLM, where individual SNPs were tested independently correcting for both population structure and kinship, showed the least genomic inflation for both Zn and Fe, and hence significant associations were finalized based on this analysis (Fig. 1). The narrow sense heritability for kernel-Zn was estimated as 0.72 based on the IBS kinship matrix employing all SNPs used in GWAS, with a standard error of 0.16. A total of 20 SNPs were found to have a significant association with kernel-Zn with the P value range from 4.93 × 10 −06 to 5.03 × 10 −05 (Fig. 2; Table S3) and S4_843764 and S4_843777 on chromosome 4 were found to be the most significantly associated SNPs to kernel-Zn in the panel. Among the 20 SNPs identified for kernel-Zn, 14 were located within predicted gene models, of which 5 were within models with functional domains generally related to metal ion binding or transport or specifically to Zn ion binding (Table S3). Four SNPs identified from the GWAS were found to be located within previously reported QTL for kernel-Zn in maize (Table 4).For kernel-Fe, a narrow sense heritability of 0.70 was estimated with a standard error of 0.27. 26 SNPs were found to be significantly associated with kernel-Fe with P values ranging between 2.43 × 10 −06 and 5.03 × 10 −05 (Fig. 2; Table S3), with the maximum number of SNPs found on chromosome 1 (eight SNPs). S1_64238426 on chromosome 1 and S9_136390177 on chromosome 9 were found to be the most significantly associated SNPs with kernel-Fe in this panel. The proportion of variance explained by individual SNPs ranged from 1.8 to 2.41%. Among the 26 SNPs, 20 SNPs were located within predicted gene models. Seven of the GWAS SNPs were located within QTLs reported for kernel-Fe in maize (Table 4).A set of 57 lines with the highest kernel-Zn content of > 33 µg/g were compared against the same number of lines which had the least kernel-Zn content in the panel. There was a clear enrichment of the favorable allele in all the Znassociated SNPs in the 57 lines with high kernel-Zn ranging from 51.02 (S10_54119964) to 90.91% (S2_225529232). Similar analysis with high and low kernel-Fe lines showed an allele enrichment of favorable alleles in the high kernel-Fe lines ranging from 52.31% (S10_136070835) to 93.33% (S1_64238509).Three DH populations that were phenotyped for kernel-Zn and Fe showed considerable range for the two traits in the two environments studied (Table 2). The kernel-Zn ranged from 15.6 and 48.0 µg/g DW across the two environments and three populations, similarly kernel-Fe ranged between 6.3 and 24.5 µg/g DW. DHP2 showed wider range of concentrations for both kernel-Zn and Fe. Other than the 20 SNPs for kernel-Zn and 26 SNPs for kernel-Fe identified based on GWAS P values lower than the panel-determined threshold, 381 SNPs were selected for kernel-Zn and 345 SNPs for kernel-Fe under a reduced threshold limit of P value ≤ 1.0 × 10 −03 , for single marker QTL analysis. From these, the polymorphism between the respective parents of each DH population reduced the number of SNPs tested to 232 and 231 SNPs for Zn and Fe, respectively. These SNPs were tested for linkage to kernel-Zn and Fe concentration independently in the three bi-parental populations by analysis of variance due to each allele class in the DH populations. This analysis identified 11 SNPs each for kernel-Zn and Fe that had significant effect on the trait variance (P ≤ 0.01, R 2 ≥ 0.05), in one or more populations in one or more environments (Table 3; Fig. 3). Among the 11 SNPs validated for kernel-Zn, six genomic regions could be identified. These were represented by one SNP each on chromosomes 3, 8 and 9, two SNPs each on chromosomes 1 (4 Mb interval) and 7 (adjacent SNPs) and four SNPs on chromosome 5. Among the 11 SNPs validated for kernel-Fe, five broad genomic regions could be identified, with one SNP each from chromosomes 2, 3, 4 and 7, and seven SNPs from chromosome 8, spread in a physical interval of 8 Mb in DHP1 and DHP2. Notable among these were adjacent markers, S7_173181688 (Chr 7: 173,181,688) and S7_173181689 (Chr 7: 173,181,689) that explained 29% (LOD: 9.58) and 28% (LOD: 9.58) of the phenotypic variance for kernel-Zn in DHP3 (Table 3; Fig. 3). Similarly, S8_167013673 (chr 8: 167,013,673) explained 34% phenotypic variance (LOD: 7.72) for kernel-Fe in DHP2, along with two SNPs, S8_164741044 (chr 8: 164,741,044) and S8_164741133 (Chr 8: 164, 74, 1133) which explained about 27% variance (LOD: 7.47) in DHP2 (Table 3; Fig. 3).In most parts of the maize-growing areas, soils may have different chemical and physical characteristics that can significantly reduce the availability of Zn to plant roots (Cakmak 2008). Hence, the objective of the bio-fortification breeding programs is to develop cultivars that express maximum possible genetic potential to absorb sufficient Zn from the soil and accumulate it in the grain. Zinc availability is highly dependent on pH. Both the soils at CE and AF were slightly alkaline which usually leads to very low Zn availability. Nevertheless, there were lines with Zn concentration as high as 43.7 µg/g DW identified in the mapping panel, and 57 lines had kernel-Zn concentration above the required target. The genotypic variability was also high for the traits making this an ideal population set to study these traits. Among the 57 lines that have higher concentration of Zn compared to the current breeding target, 6 are CMLs (elite CIMMYT maize lines) including CML166, CML192, CML264, CML323, CML361, CML421, which have already been used in hybrid varieties, and no information was previously known about their nutrition content. Interestingly, two of the lines including an elite CML (CML361) are also acid tolerant lines. Among the mechanisms of alleviating aluminum (Al) toxicity, chemical exudates including organic acids, phenolic compounds and phosphates prevent Al from entering to the roots and accumulating in cells (Panda et al. 2009). Some of these mechanisms are common to mineral uptake processes, and could affect Zn uptake from soil. Four lines identified with high kernel-Zn concentration are QPM (Table S2). An above-average concentration of 1 3kernel-Zn was reported in the QPM germplasm as compared to non-QPM/normal maize germplasm (Chakraborti et al. 2009(Chakraborti et al. , 2011)). In QPM, the presence of opaque-2 allele partially inhibits zein synthesis, with proportional increase in other protein fractions like glutelins, albumins, globulins, proteins known to bind Zn in the endosperm of maize (Diez-Altares and Bornemisza 1967). In addition, Zn plays an important role in tryptophan biosynthesis, which is increased in QPM. In fact, as a part of the breeding program for high Zn at CIMMYT, most of the high zinc germplasm identified so far is QPM, although not all QPM germplasm is high in Zn (Palacios-Rojas, unpublished). Out of the 923 lines used in this study, only 31 were QPM or had QPM background and 33.3% had Zn values higher than 30 µg/g DW. In contrast, out of the 892 non-QPM used in the panel, 19.9% had values higher than 30 µg/g DW, and about 6% of them had values higher than the breeding target (33 µg/g DW). Taken together, these results indicate great potential to develop high Zn maize alone or in combination with better protein quality in bio-fortification programs. Genetic control for abiotic stresses like drought, heat and a combination of these stresses are largely independent (Cairns et al. 2013) and metabolite responses have highlighted the importance of photorespiration and raffinose family oligosaccharide metabolism (Obata et al. 2015). Under drought and combined drought and heat stress, tryptophan accumulation in maize leaves has been reported in the susceptible genotypes (Obata et al. 2015;Witt et al. 2012). Among the lines with higher Zn concentration, ten genotypes were susceptible to drought or to combined drought and heat stress (Table S2), which is in accordance to the role that Zn plays during tryptophan biosynthesis. However, one genotype tolerant for drought and two tolerant for combined drought and heat stress also had high values of Zn, which underlines the involvement of Zn in other pathways and provides opportunities to develop high Zn germplasm that could be tolerant to such abiotic stresses. Interestingly, four genotypes with high Zn values have been previously reported as susceptible to low-N. It will be important to screen the kernel-Zn accumulation in germplasm exposed to abiotic conditions like drought, heat, low-N, low phosphorous and combined stresses. There is a need to assess if there has been selection against traits like Zn, or if stress tolerance and kernel-Zn can be combined-this is particularly important as drought, heat and combination of stresses are going to become increasingly prevalent under climate change in many countries where mineral deficiency in the diet is prevalent. Equally important is to understand kernel-Zn accumulation in acid-soil tolerant germplasm. This could open the possibility to develop germplasm tolerant to acid soil and capable to accumulate high Zn, which could be ideal products for HarvestPlus target countries like Colombia.The kernel-Zn and Fe showed significant, but moderate positive correlation in the association mapping panel (r = 0.49, P ≤ 0.001), which was similar to some earlier reports (Maziya-Dixon et al. 2000;Lung'aho et al. 2011;Baxter et al. 2013) in maize. A significant correlation between grain Zn and Fe concentrations was also reported in wheat (Velu et al. 2011), rice (Kabir et al. 2003), pearl millet (Velu et al. 2008;Gupta et al. 2009) and sorghum (Kumar et al. 2009). This suggests that these traits might have some common genetic mechanisms leading to their accumulation in grains. For instance, some common members of the ZIP family, which is involved in the transport of Zn and Fe as well as of other varieties of divalent cations have been reported (Lee et al. 2010). In addition, several genes responsible for metal chelation, phytosiderophore biosynthesis, uptake, transport, loading and storage of these minerals have been identified in rice, barley, wheat and maize (Gross et al. 2003;Anuradha et al. 2012;Bashir et al. 2012;Sharma and Chauhan 2008).The panel with 923 inbred lines showed moderate population structure within it, based on the principal component analysis. This panel, as discussed before, had germplasm from other breeding programs apart from CIMMYT's subtropical and tropical germplasm. CIMMYT's elite germplasm showed less spread along the axes, and this has been observed in other studies also, where association mapping panels were constituted only with CIMMYT sub-tropical and tropical lines. In some studies, the first three PCs, explained only about 20% of the total variation (Rashid et al. 2018). Warburton et al. (2002) also observed that the CIM-MYT populations, from which most of the sub-tropical and tropical lines have been derived, had a large amount of diversity within, rather than between source populations. Due to the heterogeneous nature of CIMMYT populations, they suggested that it would be difficult to find well-defined structure within CIMMYT lines. The moderate structure that was observed in the present study panel may be due to the inclusion of multiple sources of germplasm, whether from the temperate breeding pools from South Africa or the drought tolerant donor lines from CIMMYT, like LaPosta Sequia and DTP lines. The macro-structure relationship within the panel and the cryptic relatedness due to kinship could confound association mapping (Yu et al. 2009), and hence the need to be using appropriate models to control spurious associations while conducting GWAS. Linkage disequilibrium (LD) is a measure of non-random association of alleles at two or more loci; faster the LD decay, better is the mapping resolution. We found an average LD decay (r 2 = 0.2) across the whole genome close to 6 kb in the panel. This is in accordance with several previous studies (Yan et al. 2009;Lu et al. 2011;Romay et al. 2013;Zhang et al. 2016) employing tropical and sub-tropical maize. This rapid LD decay in the panel is reflective of the genetic diversity of the tropical/subtropical maize germplasm used in this study. Among the ten chromosomes, chromosome 8 was found to have the slowest LD decay (26.54 kb), and this was observed in several previous studies (Suwarno et al. 2014;Rashid et al. 2018).Unlike linkage mapping, association mapping can explore all the recombination events and mutations in a given population and with a higher resolution (Yu and Buckler 2006). Population structure and cryptic relatedness in the form of kinship can create unexpected LD between unlinked loci across the genome. Many statistical procedures using mixed models that correct for these confounding factors have been developed and used in GWAS to minimize the detection of false positives (Yu et al. 2006;Kang et al. 2008). Similarly, some of the real associations fail to be detected due to lack of statistical power. For this reason, GWAS is widely considered as hypothesis generation step, and the marker-trait associations detected are validated through replication in independent association studies or linkage studies in biparental populations, to be considered for further applications. Considering this fact, our study was designed to detect SNPs that are significantly associated with kernel-Zn and Fe through GWAS, and these leads were validated in three independent bi-parental populations.GWAS was performed using multiple statistical models, and the MLM correction for population structure and kinship was found to control the genomic inflation to the minimum level. Marker-trait associations were declared significant based on significance threshold corrected for multiple testing corrections taking average extent of genome-wide LD into consideration. For validation of SNPs, three DH populations were developed and phenotyped at two environments. We selected a higher number of SNPs for testing in the bi-parental populations by including the bottom 0.1 percentile of the distribution to test if SNPs had a significant effect on the phenotype in specific bi-parental populations.In total 11 SNPs each for kernel-Zn and Fe (P ≤ 0.01 and R 2 ≥ 5%) were found to have a significant effect on these traits in at least one population. However, it should be noted that about one-third of the SNPs that were selected for testing were not polymorphic in any of the parental combinations, limiting the ability of them being tested or validated in the present study. Some of the SNPs that were tested explained large proportion of phenotypic variance in individual bi-parental populations, though these could have been slightly over-estimated in single-marker QTL analysis. SNPs S7_173181688 and S7_173181689, located at physical coordinates chr 7: 173,181,688 and chr 7: 173181689, respectively, were shown to have the largest proportion of variance explained for kernel-Zn in the biparental populations studied. These will be further tested in breeding populations for their usefulness in selecting lines with high Zn. Similarly, SNPs on chromosome 8, around 164 and 167 Mb were found to explain a large proportion of variance for kernel-Fe. Considering the SNPs that were tested to be significant in trait expression, approximately five genomic regions, represented by one to many SNPs were identified. A region on chromosome 7 within 1 Mb between 173 and 174 Mb was found to be having significant effect for both kernel-Zn and Fe, and will be closely followed in later studies towards using them as breeding targets in Zn and Fe improvement.Previous studies have reported QTL mapping and meta-QTL analysis for kernel-Zn and Fe in maize (Lung'aho et al. 2011;Qin et al. 2012;Ŝimić et al. 2012;Baxter et al. 2013;Jin et al. 2013). We compared the genomic positions of these QTLs against the ones detected in this study to determine if any of these fall within reported QTL intervals (Table 4). For kernel-Zn, reported chromosomal bins 3.04 (Qin et al. 2012), 4.06, 5.04, (Jin et al. 2013) and 9.06-07 (Qin et al. 2012;Jin et al. 2013) were found to have significant SNPs for kernel-Zn in this study. Similarly, for kernel-Fe, chromosomal bins, 2.04-07 (Qin et al. 2012;Jin et al. 2013), 3.04-06, 4.06 (Jin et al. 2013), 5.01 (Lung'aho et al. 2011;Baxter et al. 2013) and 8.06 (Ŝimić et al. 2012) were found to have significant SNPs for kernel-Fe detected in this study. There has been conflicting reports on identifying co-localized QTLs for the two traits in accordance to the phenotypic correlation between kernel-Zn and Fe (Qin et al. 2012;Ŝimić et al. 2012;Jin et al. 2013Jin et al. , 2015)). In our study, we have observed only limited co-localization of the genomic regions controlling these two traits, like the ones on chromosome 4 (161-167 Mb), 7 (173-174 Mb) and 9 (136 Mb).Some of the marker-trait associations identified in this study were co-located within genes which were previously reported to be linked to Zn and Fe uptake, transport or localization in plants. Among the significant associations detected, only one gene (different SNPs from gene GRMZM2G489070 on chromosome 9) was found to be common for both kernel-Zn and Fe. The Zn-associated SNP S8_80619983 near GRMZM2G311974 gene model possesses No Apical Meristem (NAC) domain transcriptional regulator super family protein. Molecular studies have shown that NAC family transcription factors regulates Fe and Zn remobilization from source organs to developing seeds associated with senescence (Ricachenevsky et al. 2013). A NAC transcription factor was also found to increase grain Fe and Zn content in wheat (Uauy et al. 2006). One of the SNPs associated with kernel-Fe (S5_5104719) was located within the gene model GRMZM2G016756, which has active domains of the transcription factor, phytochrome-interacting factor-4, known to regulate auxin biosynthesis (Franklin et al. 2011). Auxin plays a role in the root morphology in response to Fe availability (Chen et al. 2010;Shen et al. 2015). A recent study has also demonstrated evidence of cross-talk between Zn homeostasis and auxin in Arabidopsis (Rai et al. 2015). Within the gene model GRMZM2G147698, two Fe associated SNPs, S1_64238426 and S1_64238509 were located, and this gene has a myb-like DNA-binding domain that is associated with Fe and Zn transport during nutrient deficiency (Shen et al. 2008). On Chromosome 1, SNPs S1_81549746 and S1_81549744 associated with kernel-Fe are within the gene model GRMZM2G302373, which had glutamine-s transferase activity that is involved in stress responses including heavy-metal toxicity and synthesis of phenolic compounds including cinnamic acid (Dixon et al. 2002). S4_167189737 associated with kernel-Fe was within the GRMZM2G168369 gene model related to zinc finger C3HC4 TYPE (RING FINGER) family protein. This gene encodes a cysteine-rich domain of 40-60 residues that coordinates two Zn ions and play a key role in the ubiquitination pathway (Lorick et al. 1999). This family of proteins are weakly up-regulated by Fe deficiency in Arabidopsis, giving an indication that they are linked with Fe homeostasis (Buckhout et al. 2009).In conclusion, the present study is the first report of a Genome-wide association study (GWAS) using high-density genomic data conducted for detecting marker-trait associations for kernel-Zn and Fe in maize. The study identified about 20 and 26 SNPs, respectively, for kernel-Zn and Fe, respectively. A subset of the marker-trait associations was validated using single marker QTL analysis in three biparental populations. Whereas some of the genomic regions identified in this study were novel, others were located in already reported QTL intervals. Some of the identified SNPs were located within many known genes involved in uptake, transport and localization of Fe and Zn in plants. More studies are being carried out to validate the utility of the markers identified in this study in the breeding lines and populations, as a precursor to marker-based breeding for bio-fortification of tropical maize for increased kernel-Zn and Fe contents.","tokenCount":"6315"} \ No newline at end of file diff --git a/data/part_3/6174359062.json b/data/part_3/6174359062.json new file mode 100644 index 0000000000000000000000000000000000000000..b9b9447165618c6f7f343572932bd5f6100cef97 --- /dev/null +++ b/data/part_3/6174359062.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"2fcbe3e42cd43e79d71bfde403845cef","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/c2e97620-8733-4660-a555-b5abfc67f8eb/content","id":"-2036225781"},"keywords":[],"sieverID":"363a5fa2-7fbb-4ef7-bc8c-a00085251f84","pagecount":"1","content":"Global wheat production is facing great challenges such as much higher frequency of extreme weather events, increasing occurrence of various pests and diseases, shortage of water and other resources and growing demand for more nutritional products, as indicated by the guest editors of this special issue. It is expected that development and integration of new technology into established breeding schemes, as well as international collaboration, can contribute significantly to wheat improvement. This special issue on wheat genetics and breeding presents a broad range of topics on the subject, such as wheat genomics, high throughput phenotyping platform for abiotic stress and yield estimation, breeding for resistance to Ug99 and scab, quality improvement, and history of wheat utilization in China. The authors are from International Maize and Wheat Improvement Center (CIMMYT) in Mexico as well as from Australia, China, Turkey and the USA. All articles in this issue indicate the great importance of utilizing new technology in the context of international collaboration.We have seen the routine utilization of new technology, such as molecular marker assisted selection, in the breeding of cultivars with better quality and improved disease resistance, but less so in improving yield potential and enhancing resistance or tolerance to biotic stress, such as drought and heat, as indicated by the various authors in this special issue. Progress in wheat genome and transformation over the last 5 years has made it possible to rapidly fine map and clone as well as to understand the function of agronomical important genes greatly reducing costs incurred just a few years ago. However, it is important to realize that up to now less than 200 gene-specific markers are globally available in public breeding programs, so many more validated molecular markers as well as better genomic selection methods are urgently needed in breeding climateresilient wheat. High throughput phenotyping platforms have been established in CIMMYT and other advanced institutions, and spectroradiometry techniques have provided unprecedented improvement in the efficiency of screening physiological traits that have been typically laborious and time-consuming. However, adoption of this technology in breeding programs targeting for cultivar release rather than breeding research will take time and concerted effort is needed to transfer these scientific findings into improved breeding practices and to find ways to delivery this technology affordably.Wheat production is facing great challenges from climate change, and international collaboration is becoming increasingly important for all countries including China. Significant progress in wheat improvement has been achieved in China over the last 40 years, and the China-CIMMYT collaboration has been highly significant in strengthening of China's research capacity during this period. For example, CIMMYT germplasm has successfully contributed to Chinese wheat, improving processing quality, yield potential and disease resistance. CIMMYT also provides the unique opportunity in training scientists and developing international network. Chinese wheat germplasm, such as Sumai 3, has also made significant contributions to global wheat improvement through CIMMYT's network. However, greater support from China and the wider international donor community is needed to strengthen CIMMYT's capacity in research and service. We also acknowledge the collaborations in wheat improvement with Australia, the UK and the USA, among many other countries. We are pleased to see that the Chinese Government gives high priority to international collaboration in agricultural research and development.","tokenCount":"537"} \ No newline at end of file diff --git a/data/part_3/6182337835.json b/data/part_3/6182337835.json new file mode 100644 index 0000000000000000000000000000000000000000..a5626287b347ee7ffa8f33f0af5f75fd160e8318 --- /dev/null +++ b/data/part_3/6182337835.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"2fbf350c231f4e7cec731402007f52fb","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/32937db9-3ee5-40a3-b074-d16be765dece/retrieve","id":"178168180"},"keywords":[],"sieverID":"60d3049b-7549-43a5-b520-8d23df62dd94","pagecount":"72","content":"http://isa.ciat.cgiar.org/urg/main.do?language=enThe global, regional, and scientific context in which CIAT operates today is rapidly changing. Revolutions in molecular biology, information technology, and nanotechnology are creating new challenges and opportunities for the Center to achieve its mission.At the same time, global institutional and development policy agendas are increasingly driven by the Millennium Development Goals, the Paris Declaration, and soon by the 2008 World Development Report and the International Assessment of Agricultural Science and Technology for Development (IAASTD) Report. These are refocusing attention on agriculture and its importance for achieving a world free of hunger and absolute poverty.The entry of the Bill and Melinda Gates Foundation into agricultural development in the tropics is also creating a new dynamic in agricultural R&D, especially in Africa. We hope it opens the way for other large foundations to become involved.In the CGIAR itself, the Science Council and the Secretariat have come under new leadership. A \"third pillar\" of the CGIAR, known as the Alliance of the 15 centers of the CGIAR, has emerged as a major tool to foster collective actions. These changes are creating conditions for more productive working relationships between the main parts of the system. They also provide a unique opportunity for a new covenant with our donors that may help stabilize the core funding base that the centers require to achieve their mission.To effectively meet the new challenges, CIAT has changed its working approach from that of a multiproject organization into one based on targeted outcomes. An outcome is the adoption of a new research output, often an improved technology, that satisfies a current or anticipated want or need of poor people while sustaining the environments in which they live.Outcome lines, developed by outcome development teams, are grouped under three overlapping programs. These are Sharing the Benefits of Agrobiodiversity, People and Agroecosystems, and the Tropical Soil Biology and Fertility (TSBF) Institute. The essential feature of this new approach is the focus on CIAT's major strengths in research: its interdisciplinary capacity and ability to develop strong partnerships.Over the last year, CIAT has made significant progress in at least three areas:1. Integrated land, soil fertility, and water management from a landscape-and-livelihood perspective, particularly in eastern and southern Africa. The TSBF Institute is leading this activity.2. The deployment of genetic resources of beans, cassava, tropical forages, and rice together with analyses of their interactions with markets and the natural resource base of tropical agriculture.Introductory Message from the Board Chairman EDITH HESSE Joachim Voss 3. Market and social institutional research, which helps small producers benefit from new markets and new technologies.The outputs resulting from these three areas are developed and disseminated with the collaboration of partners in Latin America, sub-Saharan Africa, and Southeast Asia.Some of these activities and their outputs are described in this report under Research Highlights.During 2007, the Center also underwent its Sixth External Program and Management Review. The Review Panel especially recognized the high quality and relevance of science at CIAT, and lauded the progress the Center has made over the last seven years to strengthen and build excellent regional programs in Africa and Asia. It also praised the high quality of partnerships built with the Challenge Programs and other entities.The Panel furthermore noted CIAT's special strengths and capacity to put science at the service of people by integrating high quality social and spatial analyses with advances in life sciences. It also recommended that CIAT concentrates more on focusing and integrating its priority agendas, and rebuilding excellence in several disciplines that were affected by recent downsizing. This will be achieved in part by the Center developing, with its major partners, a new strategy for Latin America.The past year has also been challenging in several other ways. For the second time in two years, the Center underwent a significant downsizing-a response to the lasting financial crisis due to a combination of highly unfavorable local currency conditions, further significant reductions in core income, and the Center's failure to implement in due time, full-cost, special-project budgeting. Within this context, the Panel's quest for solutions to reinvigorate the Center was much appreciated.On behalf of the Center, the Board thanks the outgoing Director General, Dr Joachim Voss, for seven years of service as head of CIAT and welcomes Dr Geoff Hawtin as the Center's Interim Director General. Dr Hawtin is a former Director General of IPGRI (now Bioversity International) and former chair of the Global Crop Diversity Trust. Board and staff feel confident that Dr Hawtin is the right person to take up the challenge of providing leadership for the Center during this phase of transition.Yves Savidan Board Chair CIAT Yves Savidan CIAT Annual Report 2006-2007 Research HighlightsCIAT's research was lauded as \"excellent\" by the recent External Program and Management Review. In this section, we intend to give the reader a flavor of the exciting research currently being carried out at the Center by selecting highlights from each research area.The Genetic Resources Unit (GRU) works to safeguard the genetic diversity of beans, cassava, forages, and their wild relatives through a mix of conservation methods. About 60,000 samples of seeds and other reproductive plant materials of 720 species are kept in collections that are either in situ (i.e., in a natural outdoor habitat) or ex situ (i.e., within the controlled environment of gene bank facilities). The Unit's work is essential to global agriculture, food security, and the R&D efforts that support them.The Unit is one of 11 gene banks belonging to the CGIAR system of gene banks. This system has recently upgraded itself through an initiative called Rehabilitation of Global Public Goods in the CGIAR Genetic Resources System-Phase 1. Progress was made according to prefixed milestonesindeed, most have been exceeded-and completed in 2006.Genetic and social relevance of conservation For the reporting period, progress was made in several activities:• Seed conservation protocols for Carica papaya, tree tomato, and some of their wild relatives continued to be defined.• Seed physiology studies determined the best time for harvesting seed for long-term conservation in terms of fruit development on the mother plant. • The use of SDS-PAGE electrophoresis has so far revealed 62 unique banding patterns for phaseolin, a protein found in bean seeds that provides resistance to storage pests, especially weevils. The reference bean materials are now being maintained and distributed as genetic stocks by GRU.• GRU also distributed 5046 samples of accessions that were registered in the Multilateral System of FAO's International Treaty on Plant Genetic Resources for Food and Agriculture. In vitro conservation of cassava. CIAT Annual Report 2006-2007 Drought and yield potential Drought has long been a priority for the CIAT bean-breeding program. Recently, we reported that levels of drought resistance have increased significantly in improved lines. However, drought is seldom a yearly event and the question becomes whether drought-resistant varieties yield well in well-watered years.To answer this question, yield trials of selected drought-resistant lines were established in three different environments under well-watered and fertile conditions. The lines, and the standard commercial checks used for comparison, belonged to the small-red, small-black, and cream-striped (carioca) classes.Although most lines yielded neither significantly less nor more than the respective checks, some lines performed much better than cv. Carioca (G 4017), a check that is also resistant to phosphorus stress. Moreover, the lines were earlier maturing and often presented a significantly greater daily yield than did the checks.We suggest that selection for drought resistance has also favored genes for plant efficiency, probably manifesting as improved photosynthate mobilization, which thus benefited yield across different environments.Wider use of marker-assisted selection in Africa Marker-assisted selection (MAS) has been employed in CIAT headquarters for several years to obtain resistance to viruses, first BGYMV and then BCMV. This activity was transferred to Africa, and was expanded significantly to include selection for genes for resistance to other diseases. More than 1000 plants were assayed in Uganda for resistance genes (both recessive and dominant) against BCMV and BCMNV. Markers developed at CIAT headquarters to detect the gene for resistance to Pythium found in RWR 719 (a Rwandan bred line) were also tested in Uganda on 111 backcrossed progeny and 54 families derived from double crosses. Meanwhile, at headquarters, 282 F 2 -derived families were tested for Outcome Lines: Improved Germplasm for the Developing World Beans www.ciat.cgiar.org/beans/index.htmTo increase bean productivity through enhanced access and use of improved cultivars and management practices in partnership with NARS and regional networks, and through them, with farmers.We suggest that selection for drought resistance has also favored genes for plant efficiency, probably manifesting as improved photosynthate mobilization, which thus benefited yield across different environments.Part of the bean seed collection held at the Genetic Resources Unit.the presence of anthracnose-resistance genes derived from G 2333.This sort of targeted selective use of markers at specific points in the breeding program will make breeding more efficient. It will become more directed towards the deployment of recognized, highly useful resistance genes. CIAT's decentralized strategy in Africa aims to carry out this work in the laboratory facilities of NARS, thus exposing the Center's partners to routine application of these techniques.The study of non-coding regions in chloroplast DNA of wild common bean led to the discovery of 14 haplotypes distributed throughout the plant's range in the Americas. This meant we could then locate where some of the domestication events of common bean occurred in Central and South America. We could also organize wild common bean into three major lineages, linking them to their sister taxa in the Phaseoli section. The haplotypes' organization could be explained through isolation by distance and two major migrations, one of which was from Mesoamerica into the Andes, and the other from northern South America into Mesoamerica.A penalized likelihood analysis had been applied to previously published data on many legumes to estimate when P. vulgaris and its sister taxa diverged from each other. The use of this same tool indicated that P. vulgaris diverged from its sister taxa in the Mesoamerican Phaseoli section about or before 1.3 Ma. That is, migrations and isolation events during early Pleistocene are the reasons why current gene pools could have existed in the wild before domestication (which then led to subsequent separation into the cultivated gene pools).The section Acutifolii of the genus Phaseolus, which includes the tepary bean, has been shown to include a species, Phaseolus parvifolius Freytag, other than the cultigen and its immediate wild relative, thus establishing a secondary gene pool for that crop. This finding was significant, as breeders are always happy to know that they can explore a wider genetic diversity to improve a crop, particularly, as in this case, for superior tolerance of drought. Recent work conducted elsewhere has confirmed the close degree of relatedness of this section vis-à-vis the Phaseoli (which includes the common bean), thus strengthening further the relevance of this research. To develop germplasm methods and tools for increased productivity and add value to the cassava crop, thus leading to increased income and development for rural communities involved in the crop's cultivation and processing.ARI-Mickocheni (Tanzania), 60,000 seeds were produced from 300 families derived from crosses between AR or CR germplasm and local clones. The clones were either farmer-preferred and/or resistant to the cassava brown streak virus disease, another prevalent disease in eastern Africa. The large population is now being screened for resistance to CMD, using the three markers identified at CIAT. This is the first example of successful MAS in cassava.New starch quality mutants For many years, to help small cassava farmers link with markets, the cassavabreeding project at CIAT has gradually, but consistently, shifted its attention to the production and identification of cassava clones with high-value industrial uses. For the feed industry, the identification of clones with increased nutritional value is a key target, and has led to the discovery of a group of clones with protein levels that are 2 to 3 times higher than normal. To conserve and exploit the genetic diversity of tropical grasses and legumes through either breeding or natural variation, and thereby attain the following objectives:• The improvement of livelihoods of poor farmers producing crops and livestock.• The development of links between farmers and traditional and emerging markets.• Increased access to high-quality wholesome animal products by poor urban consumers. • The exploitation of the forages' potential to enhance the natural resource base and provide environmental services. Volumes of seed sales and planted areas in major Brachiaria-growing countries of Central America. Most of this grass seed is probably allocated to renovate pastures or improve naturalized pastures with low productivity.A field of Brachiaria grass (cv. Mulato).Brachiaria grasses accounted for much of the milk and beef production.Blast, caused by the fungus Pyricularia grisea, is the most destructive disease of rice in the world. It is found in all rice production systems in both temperate and tropical climates, destroying every year enough rice to feed more than 60 million people. Controlling the disease is difficult because of the pathogen's broad genetic diversity and the wide range of mechanisms it has evolved to break down genetic resistance of rice varieties. Current interdisciplinary and multi-institutional research on the pathogen and host plant is taking advantage of recent advances in science. The successes so far achieved are paving the way to developing sound breeding strategies towards the creation of more durable resistance. Farmers will then be able to increase rice yields to cope with increasing demand.Identifying molecular markers linked to blast resistance We made progress in identifying molecular markers that are highly linked to genes for blast resistance in rice. We did this by combining near-isogenic progeny analysis with the rice genome information available in public databases. Although only a few polymorphic markers can be expected when near-isogenic lines are used as Rice for Latin America and the Caribbean www.ciat.cgiar.org/riceweb/index1.htmTo contribute to food security and employment through rice production, emphasizing the improvement of health, nutrition, and economic options for small farmers.progenitors, we nevertheless found six polymorphic markers in a region of only 13 cM that surrounds the blast resistance gene Pi-1(t). Moreover, two of these markers (RM1233*I and RM224) were closely linked to the gene.Our results show the usefulness of these DNA markers in MAS and gene pyramiding for those rice-breeding programs aiming to improve blast resistance in rice cultivars. Eventually, these markers will lead to the mapping and cloning of the gene. The speed, simplicity, and reliability of PCR-based approaches make microsatellite analysis on agarose gels an attractive tool for MAS in rice-breeding programs aiming to develop rice cultivars with durable blast resistance.We also demonstrated that polymorphic markers, linked to resistance genes in near-isogenic populations, can be expected to detect polymorphism and presence of linked genes in those commercial rice cultivars that have some degree of inbreeding.Blast resistance in Oryzica Llanos 5The study of inheritance of blast resistance is essential for understanding how such resistance Apomixis: a process in which a botanical seed of a plant repeats exactly the genotype of that plant. That is, the plant is cloned through botanical seed because no sexual reproduction actually occurs.Broad-spectrum resistance: resistance that is effective against a wide array of races, isolates, or biotypes of an insect pest or pathogen.Durable resistance: resistance that is not eroded by the emergence of new races of an insect pest or pathogen attacking the plant.Gene pyramiding: the accumulation of desirable genes by following a structured strategy.Haplotype: a combination of alleles (or forms of a gene) of closely linked loci found in a single chromosome; sometimes, a combination of particular nucleotide variants within a given DNA sequence.selection that is based on a molecular marker rather than on how the plant looks.Evaluating for blast resistance: rice plants being injected with inocula of the fungus.Microsatellite: pieces of small DNA sequences that are repeated (or appear repeatedly in sequence within the DNA molecule) next to a specific gene within the DNA molecule.Microsatellites are aligned with that specific gene.Molecular marker: particular DNA sequences and/or segments that are closely linked to a gene locus and/or a morphological or other character of a plant. Those segments can be detected and visualized by molecular techniques.Multiple genes: when a desired trait depends on the simultaneous occurrence of two or more genes located in different loci in the genome.Mutagenized populations: populations that have been exposed to different kinds of mutagenic agents to generate new genetic variability. Mutations comprise one of the natural sources of variation.Near-isogenic progeny: progenies that are almost identical, differing in only a few genes, and carefully selected to fulfill a particular purpose.Non-coding regions: life depends on proteins, themselves made up of chains of amino acids. The acids' functions are strongly determined by the order in which they are found in a protein chain. This order, in its turn, is determined by the genes located in a chromosome (a type of protein chain). However, many regions within the chromosome do not codify for any particular amino acid. Indeed, within the sequence of a gene, portions have frequently been found to have information that is irrelevant to the building of a protein, being ignored during de-codification. These regions are known as non-coding regions.a technique for the continuous amplification of DNA and/or DNA fragments in vitro. The DNA sequence must be known so that oligonucleotides can be synthesized that complement each extreme of the fragment to be amplified. Thus, certain regions of the DNA can be specifically targeted for amplification.QTL (quantitative trait locus): a DNA segment that carries more genes which code for an agronomic or other trait gene.Recessive/dominant genes: generally speaking, a plant has two copies for each gene: one from the mother, and the other from the father. The two copies interact with each other. In some cases, the result of this interaction is that the plant has a characteristic that is intermediate between those observed in the parents. In other cases, however, the result of the interaction would be that one copy of the genes suppresses or masks the information provided by the other gene. The copy of the gene that manages to prevail is known as dominant, and the one that fails to express is known as recessive.Recurrent selection: a gradual process by which a population is improved through repeated cycles of evaluation, selection, and recombination of the best genotypes.SSR markers (simple sequence repeat markers): a genetic mapping technique that uses the fact that microsatellite sequences repeat (i.e., appear repeatedly in sequence within the DNA molecule) in such a way that they can be used as markers.We thank Dr Hernán Ceballos for his valuable assistance in compiling these terms. CIAT Annual Report 2006-2007 With support from the Generation Challenge Programme (GCP), CIAT has conducted three commissioned research projects. One project deals with DREB, a gene technology that is believed to act as a master switch (transcription factor) that regulates many downstream genes related to abiotic stress responses. DREB genes have been cloned in common bean and their expression patterns are being evaluated under various abiotic stresses with the expectation of developing genetic markers to test the concept of MAS for drought tolerance.We also developed a mutagenized population of common beans that is amenable to genetic analysis through an approach called TILLING. This approach identifies gene function by analyzing mutants of specific genes.When conducting drought screening for rice in the field we learned important lessons in establishing droughtGeneration Challenge Programme To reduce micronutrient malnutrition by harnessing the powers of agriculture and nutrition research to develop staple foods with high nutrient contents.To be healthy, we need to eat not only enough food, but also enough nutritious food. Food should contain nutrients such as vitamins, zinc, iron, and calcium. Yet, billions of poor people in developing countries suffer from a lack of these nutrients in their diets. The CGIAR's HarvestPlus Challenge Program seeks to improve the nutrition of these people by breeding \"biofortified\" varieties of food staples. To successfully achieve this goal, HarvestPlus needs to confront four major challenges:• The germplasm of the crops used must have sufficient genetic variation to permit breeding higher levels of nutrients into them,• These biofortified crops must improve human nutrition when consumed,• Farmers must be willing to grow these biofortified crops, and• The malnourished populations being targeted must want to consume the biofortified crops.HarvestPlus scientists have already demonstrated that the first challenge of sufficient genetic variation can be met. A project operating with the support of HarvestPlus and funded by CIDA is the AgroSalud Project. This consortium of partners from 13 countries also includes international and regional institutions such as CIAT, CIMMYT, CIP, CLAYUCA, and EMBRAPA. All the partners collaborate to develop, evaluate, and disseminate biofortified crops and food products in Latin America and the Caribbean (LAC), that is, to improve, in a sustainable way, the nutritional content of crops important to vulnerable populations living in LAC, particularly beans, cassava, maize, rice, and sweet potato. Specifically, it aims to increase the contents of iron and zinc in rice, beans, sweet potato, and maize; tryptophan and lysine in maize; and beta-carotene in sweet potato and maize.The planned employment of a human nutritionist in 2007 will add a significant component to the regional team's work. This year, AgroSalud intensified its work on seed production of biofortified crops especially maize. Two new quality proteins maize (QPM) varieties were released in April 2007 in Nicaragua. AgroSalud's decentralized seed production approach brought together a large group of partners from different regions and countries in Central America, thereby providing not only sufficient seed for farmers but also adding an interesting case study to These results show that effective progress can be achieved and that the crop is responsive to gradual but consistent gains. We are now conducting research to better understand the inheritance of carotenoid content in cassava roots, identify molecular markers, and harness the power of genetic engineering as an alternative for increasing carotenoid content in cassava roots. We are also studying the influence of soil iron and zinc, and soil pH on the concentration of these two elements in cassava roots.The HarvestPlus Challenge Program distributed biofortified bean lines among 16 countries in Africa. These lines have increased levels of iron and/or zinc.AgroSalud's decentralized seed production approach brought together a large group of partners from different regions and countries in Central America, thereby providing not only sufficient seed for farmers but also adding an interesting case study to CIAT's work on seed systems within and across regions.CIAT's work on seed systems within and across regions.We also built a clean facility for polishing and milling rice with minimal mineral contamination. This will improve the throughput of rice samples that can be tested for iron and zinc levels. A researcher from CIP visited CIAT to install calibration curves on a Near-InfraRed Spectroscopy (NIRS) machine. This machine will now run protein, iron, zinc, calcium, potassium, phosphorus, and sulfur analyses for beans. We will also use it to run protein, total carotenoids, and beta-carotene analyses in the best cassava lines taken from the HarvestPlus cassava breeding program for use in developing biofortified food products. The NIRS and the calibration curves will also substantially increase throughput for analyzing samples of beans and cassava for the above-mentioned nutrients.Plant breeders made significant advances in identifying lines with high nutrient levels, crossing them with lines containing superior agronomic characteristics, and testing these crosses under different environmental conditions. For example, at CIAT, rice researchers have identified a commercial rice variety with double the amount of iron than rice usually sold to consumers. Bean researchers have identified black bean lines that, not only have 20% more iron, but are also resistant to drought and golden yellow mosaic virus. Furthermore, the Nicaraguan NARS released a maize hybrid 'Mazorca de Oro' and an open-pollinated variety 'Nutrader'. These materials, with double the levels of tryptophan and lysine than conventional maize, were developed, tested, and released with support from CIMMYT and AgroSalud.To develop food products from biofortified crops, postharvest specialists have progressed in selecting, adapting, and validating different processing technologies, including extrusion and bakery processes to produce foods such as pastas and breads. Further details are given on pages 21-22.Impact specialists have refined cartographic models to identify suitable sites in LAC for agricultural and human nutrition trials. They have also collected data for use in applying an economic model known as disability-adjusted life years (DALYs). It will be used to predict the potential economic impact of consuming biofortified crops in LAC. Assessments have already begun in Brazil, Colombia, and Nicaragua to identify food-distribution programs into which biofortified crops could be incorporated.Plant breeders made significant advances in identifying lines with high nutrient levels, crossing them with lines containing superior agronomic characteristics, and testing these crosses under different environmental conditions. CIAT Annual Report 2006-2007 Innovative, decentralized approach to enhance the participation of small farmers in cassava ethanol production Cassava is increasingly gaining attention in developing countries as an attractive feedstock for biofuel processing. The crop's popularity is based on familiar reasons: the plant thrives under rainfed conditions on marginal lands not suitable for most other crops, it grows with few inputs, and its production technology is easily mastered by small farmers. The cassava crop's recent wave of popularity is based on its potential to contribute to agroindustrial and small-farmer development in the tropics, with one alternative being its use as feedstock for fuel alcohol production.During 2006-2007, CLAYUCA, in close collaboration with CIAT, CORPOICA, and Diligent Energy Systems (a Dutch NGO), began implementing a pilot project financed by the Colombian Ministry of Agriculture and Rural Development. The goal was to establish a small-scale, low-capital-cost, pilot plant to process ethanol from cassava, sweet potato, and other sources of biomass. The plant's processing capacity would be about 800 liters per day.The approach proposed by CLAYUCA and its partners is based on a decentralized process that can, at a local level, transform cassava roots into ethanol at 50% concentration. This preliminary processing of roots into a liquid biomass for biofuel processing facilitates small-farmer participation in the crop-to-fuel value chain. The 50% alcohol is later taken to a central distillery to produce fuel alcohol at 99.55% concentration. A major constraint to producing biofuel efficiently from plant biomass is the high cost of transporting bulky materials over long distances. This approach, however,Latin American and Caribbean Consortium to Support Cassava Research and Development (CLAYUCA) The varieties of cassava and sweet potato used in the project were selected according to their contents of betacarotene, iron, zinc, and protein; good agronomic yields; high dry matter content; and resistance to pests and diseases.We also test and promote those processing technologies that have been selected for their adaptation and efficiency in producing food products likely to become dietary items. Latin American Fund for Irrigated Rice (FLAR)www.flar.orgTo meet partners' needs for continuous innovations in irrigated rice production to make it more competitive, profitable, and efficient, while employing environmentally friendly crop-management practices and lowering prices for rice consumers. Markets, Institutions, and Livelihoods www.ciat.cgiar.org/agroempresas/ingles/index.htmTo address key research questions on the approaches to use in R&D, particularly systems approaches (i.e., \"where to do what\"), organizational models, and learning approaches.Farmers selecting bean seed.To improve the capacity of poor people and communities to innovate for food security, economic productivity, and improved agroecosystem health and human welfare in the tropics, while ensuring the provision of global environmental goods and services.Objective: To contribute with technical, institutional, and policy innovations for the improved management of tropical agroecosystems that benefit poor communities and the local and global environment by linking market-based approaches with natural resources management.In Tanzania, the chickpea crop is undergoing similar support processes so that farmers can become more competitive and thereby increase demand for their new Kabuli chickpea varieties.In both cases, as a recent output from the Learning Alliance, a research paper and guide for developing multi-skilled farmer groups is being used as a \"best practice\" to help increase economies of scale and empower farmers to engage more effectively with dynamic markets.A comparative analysis of approaches to link small farmers with markets, and implications for gender equity, intrahousehold dynamics, and investments A growing body of research, development, and private-sector organizations are linking small farmers with markets, using various approaches.One approach was developed by IPRA. Termed Enabling Rural Innovation (ERI), it seeks to strengthen the capacity of small farmers, especially women and the poor, to link with and benefit from markets. A comparative analysis was carried out of this and other approaches in terms of their effectiveness in promoting pro-poor market linkages, achieving gender equity in the distribution of benefits, and promoting reinvestments in natural resource management.Results showed that ERI, compared with the other approaches, is effective in reaching women and the poor, and building their skills to analyze and engage in markets. The approach is changing gender decision-making patterns at household level towards more gender equity. Households also benefit significantly from linkages with markets through the ERI approach.Although women have benefited, results also showed that significant income disparities continue to exist between women and men household members. Women increased their skills in analyzing and understanding markets, in conducting experimentation, and in taking on leadership positions in project activities.Analyses of farmers' investment priorities revealed interesting results with significant differences between sites, countries, wealth categories, and gender groups. For example, households in Malawi invest most of their income in food security and NRM, whereas households in Uganda invest in household items. CARLOS ARTURO QUIRÓS ERI project leader, Susan Kaaria (in foreground), working with farmers in Uganda. CIAT Annual Report 2006-2007 CIAT project scientists and their partners developed (i) a method to fill voids by using a variety of interpolators;(ii) a method to determine the most appropriate void-filling algorithms, using a classification of voids based on their size and a typology of their surrounding terrain; and (iii) the classification of the most appropriate algorithm for each of the 3,339,913 voids in the SRTM data. The scientists used a sample of 1304 artificial but realistic voids across six terrain types and eight void size classes. They found that the choice of void-filling algorithm depends on both the size and terrain type of the void.The best methods were either the Kriging or the Inverse Distance Weighting interpolation for small and medium-sized voids in relatively flat lowlying areas; spline interpolation for small and medium-sized voids in high-altitude and dissected terrain; Triangular Irregular Network or Inverse Distance Weighting interpolation for large voids in very flat areas; and an advanced spline method for large voids in other terrains.The relationship between water and poverty was assessed in two watersheds in the Colombian Andes. The methodology included both a participatory assessment of current poverty and an analysis of how household poverty status has changed over the last 25 years. Taken together, the results of the two techniques captured both direct and indirect linkages between water and poverty. They identified situations where win-win solutions may be possible, and also where trade-offs were most likely needed, not only between environmental, economic growth, and equity objectives at the watershed scale, but also between household welfare objectives and the strategies used to achieve them.The results of this research suggested that, in the two watersheds studied, the indirect relationships between poverty and water via employment and income linkages may be more important than the direct linkages via domestic supply. This is consistent with the diversification of rural livelihoods and the importance of off-farm income in poverty reduction. Interventions to enhance domestic supply may have big impact in certain specific communities, but would not generally contribute much to poverty alleviation. Interventions that provide employment in industries like dairying or mining in one watershed or profitability in small-scale agriculture in the other could have significant impact on poverty, as these have been important pathways out of poverty over the past 25 years.The results of this research suggested that, in the two watersheds studied, the indirect relationships between poverty and water via employment and income linkages may be more important than the direct linkages via domestic supply.Beans preference testing.The Sub-Saharan Challenge Program (SSA CP), one of the programs under the Forum for Agricultural Research in Africa (FARA), was designed to address issues that have constrained the translation of research outputs into developmental impacts at significant scale. This was intended to be done through novel partnerships and integrated agricultural research for development (IAR4D) approaches. Last year, we reported efforts to establish the partnerships in the Lake Kivu pilot learning site (LKPLS) around three competitive projects that focused on enhancing productivity, maintaining natural resource management, and wealth creation through markets, thus enhancing institutional alliances and enabling policy.In the course of the year, the three task forces further consolidated their projects into a LKPLS-wide integrated research program. They redefined their focus to address questions at the interfaces between productivity, markets, natural resource management, and related policies. The LKPLS program was therefore envisaged to test a set of impact-driven, prototype, stakeholderinnovation platforms. These platforms would accomplish the following: facilitate multi-stakeholder partnerships; and promote market access, community empowerment, technology adaptation and/or adoption, and investments in beneficial conservation. One good result of this process is an agreement on a central concept of the innovation platform. The platform is to be considered as a flexible alliance framework that would allow a diversity of stakeholders and organizations from both the supply and demand side of value chains to actively and dynamically contribute to an agreed research agenda. Two external reviews were carried out during the year. One was commissioned by the CGIAR Science Council to review the inception phase of the SSA CP. The Councilwww.e-fara.org/networking-support-projects/ssa-cpTo devise solutions, derived from agricultural research, that will have positive impact on sustainable development, and enhance the productivity and profitability of agricultural and other enterprises based on natural resources in Africa.One good result is an agreement on a central concept of the innovation platform.A task force member locates the program's target areas on a map. It looked closely at the SSA CP's research design and the type of international public goods (IPGs) that were likely to be generated.The analysis led to a suggestion that the SSA CP should first focus on the \"proof of concept\" of IAR4D as it moves into the implementation (research) phase. It should therefore address three sets of fundamental questions:1. Does the IAR4D concept work? Can it generate deliverable international and regional public goods for end users?2. Does the IAR4D framework deliver more benefits to end users than conventional approaches? Did the conventional R&D and extension approach have access to the same resources?3. How sustainable and usable is the IAR4D approach outside the test environment? That is, can it deal with issues of scaling out for broader impact?This recommendation led to a consultative process to transform and refine the research program. The program was now expected not only to demonstrate that IAR4D works, but also to include (i) a comparative evaluation component, and (ii) a process that evaluates the replicability, efficiency, and effectiveness of IAR4D as it moves from a pilot scale to wider implementation. We expect to learn lessons and develop generalizable principles from pilot learning sites experiences for (i) conducting and implementing IAR4D, and (ii) documenting the overall efficacy and impact of the approach. As a result, efforts have so far been made to: To create research-based knowledge and methods for growing more food with less water, and develop a transparent framework for setting targets and monitoring progress, recognizing that most food demand will be met by improving the productivity of rainfed systems.Africa (AfNet/TSBF), Southeast Asia (MSEC), and Central America (MIS).Outputs included a review paper, seven case studies and, in Africa, three training courses on tools and methods to quantify and value soil and waterrelated environmental services. Theme 2 is also working with the CPWF capacity-building officer and the University of Florida to develop a course curriculum based on Theme 2 concepts and drawing on the experience of Theme 2 research projects.Research Support Team\" model to backup research at the PLS level and across the PLS (program-wide).The implementation phase of the SSA CP is expected to start in 2007.Further postponement would put at risk the partnerships assembled for this program.In 2006, Theme 2 launched an initiative to assess the potential of payment for environmental services (PES) to enhance the adoption and impact of soil and water management practices in upland farming communities.Fish farming on the Mekong River, Lao PDR. CIAT led a project to carry out an ex ante impact assessment and provide a basis for monitoring and evaluating CPWF projects. A component of the approach-the use of problem and objective trees to clarify and communicate the logic of a projectwas adopted by the CPWF Secretariat in the CP's 2007-2009 MTP. The Science Council commented:The CPWF has introduced the use of 'objective trees' at the MTP project and CP level, a useful and innovative complement to the MTP logframe. In addition to providing a useful overview, the process of preparing these flow charts has clearly helped the CP provide the necessary focus, clarity, and cohesion that now exists in the research plans at all levels.WorldFish Center, CIMMYT, and ICRISAT have also used aspects of PIPA in their planning processes, including the formulation of their MTPs for 2008-2010. Three projects led by CIP/CIAT, University of Wageningen, and IWMI (Cambio Andino, EULACIAS, and the ICT-KM Project, respectively) are using PIPA as part of their monitoring, evaluation, and impact assessment One direct result of work on innovation histories (2003)(2004)(2005) was the Participatory Impact Pathways Analysis (PIPA), developed by the Impact Assessment Project of the Challenge Program on Water and Food (CPWF). This analytical method is designed to help project participants to construct likely pathways by which their project will have impact. • PIPA helped a peri-urban wastewater project identify the Ministry of Food and Agriculture (MOFA) and the Accra Metropolitan Assembly (AMA)as key stakeholders. The project subsequently lobbied both organizations to change a crucial bylaw.• A third project attributed their success in organizing a Capacity-Building Needs Consultation Workshop with Primary Stakeholders to clarify and crystallize project outputs as derived from the problem and objective trees taught to them in the workshop.• The workshop motivated projects working in the basin to meet to identify synergies and share impact pathways methodology with colleagues who had not attended the workshop.Tropical Whitefly IPM Project www.ciat.cgiar.org/ipm/highlights_whitefly.htmTo improve the livelihoods of resource-poor rural and urban communities in the tropics through the effective management of whiteflies and whitefly-transmitted viruses, using integrated pest management strategies to protect traditional and non-traditional (high-value) food crops. To improve the competencies of the CGIAR System and collaborating institutions to mainstream the use of gender-sensitive participatory approaches in plant breeding and natural resources research.The participants also agreed to develop an edited book on the experiences and lessons of the project, as little literature on gender mainstreaming in African NARS currently exists.The goal of a learning alliance is to promote institutional innovation that will lead to more effective development practices and policies. These, in turn, would contribute to the generation of sustainable rural livelihoods. To promote effective and sustainable processes of change, the participating organizations of a learning alliance need to identify, systematize, share, adapt, develop, and been delivered to agricultural professionals and farmers on how to manage whitefly-related food production problems associated with significant yield losses and excessive pesticide use. Additionally, the project promotes the release of virus-resistant cassava, sweet potato, common bean, and tomato varieties in the three targeted continents. The IPM package distributed to small farmers with the improved germplasm emphasizes the use of minimum chemical inputs. The strategy for pursuing the approach described above is based on three outcome lines: Livelihoods and Resilient Systems, Sustainable Land Management, and Capacity Building. Research highlights for these three lines are described below.The TSBF Institute and its partners helped improve rural livelihoods in East Africa (Kenya, Uganda, and Tanzania) by enhancing income, improving health, and encouraging moreTo improve the livelihoods of people reliant on agriculture by developing sustainable, profitable, socially just, and resilient agricultural production systems based on integrated soil fertility management (ISFM). sustainable agriculture. Cropping with dual-purpose soybean increased, and links between production and demand were fostered. In less than two cropping seasons, the number of farmer groups (with 15-130 individual members each) growing soybean increased from 3 to 16 in three districts of western Kenya in 2005.The TSBF Institute's R4D approach is based on an integrated soil fertility management (ISFM) paradigm. This holistic approach to soil fertility research embraces the full range of driving factors and consequences of soil degradation, whether of a biological, physical, chemical, social, cultural, economic, or political nature. That is, this approach attempts to address the full chain of interactions from resources to production systems to markets, and includes sociocultural forces and policies. Investment in soil fertility management is seen as a key entry point to the sustainable growth of agricultural productivity, and as a necessary condition for obtaining positive net returns to other types of farm investments.Legume demonstration trial in Umutara, Murambi, Rwanda.To conduct research on the role that biological and organic resources play in tropical soil biology and fertility, and on the relationships of these resources with the natural and social environment to better provide farmers with improved soil management practices that sustainably improve their livelihoods.www.ciat.cgiar.org/ tsbf_institute/index.htmThe corresponding areas planted to soybean by the groups increased from 4.1 to 16.3 ha in Migori District, and 1.6 to 6.2 ha in Butere-Mumias District. The 2006 results showed that more than 300 networks of farmer groups and 4000 individual farmers from more than 10 districts are currently participating in soybean promotion in Kenya, that is, up from the 9 farmer groups and 180 individual farmers at project inception. The area cultivated to soybean has increased by more than 10-fold, with yields improving from 0.6 to about 1.5 t/ha. The network of farmer groups is already supplying large-scale feed or food-processing companies with increasing quantities of top quality soybeans with market desired traits. By bulking their produce, the farmers are generating tangible results, with some farmer groups already delivering grains with market-preferred traits to processing companies at agreed market-clearing prices. Many poor farmers testified to being better able to pay their children's school fees and purchase inputs (e.g., mineral fertilizers). Some farmers are beginning to scrub out sugarcane, replacing it with soybean. The market for sugarcane, an erstwhile cash crop, has collapsed under globalization, making it unprofitable.The 2006 results showed that more than 300 networks of farmer groups and 4000 individual farmers from more than 10 districts are currently participating in soybean promotion in Kenya, that is, up from the 9 farmer groups and 180 individual farmers at project inception.Farmers multiplying soybean in Kabamba, South Kivu, Democratic Republic of the Congo.PIETER PYPERS CIAT Annual Report 2006-2007 Advances in defining key principles behind the social acceptance and biophysical resilience of the Quesungual slash-and-mulch agroforestry system (QSMAS) The knowledge generated by the QSMAS Project, funded by CPWF, confirms that food security can be achieved in drought-prone areas of the subhumid tropics without compromising the quality of soil, water, and vegetation resources. Collaborative research by the TSBF Institute and the MIS consortium in Central America for the past 2 years found that (i) QSMAS is a production system that is inserted into the landscape to improve livelihoods, yet conserves the natural resource base; (ii) local biodiversity is favored through the conservation of about 14 species (from 12 families) of trees and shrubs; (iii) losses of soil to erosion are dramatically reduced when permanent soil cover is combined with stones in soil, leading to improved water productivity and quality; (iv) pools of soil nutrients (N and P) are maintained and even increased as soil biodiversity and biological activity are enhancedthese improvements in resource quality were related to the spatial distribution of trees and organic resources; and (v) the system is an important source of firewood for domestic consumption and has no significant negative effects on greenhouse gas emissions.Validation of QSMAS in Nicaragua has advanced further than expected, with participating farmers extending the system to other regions. The capacity of local farmers and technicians is being enhanced through field days, and that of graduate and undergraduate students from the region through degree training.To develop sustainable land management (SLM) practices in tropical areas while reversing land degradation.Validation of the Quesungual slash-andmulch agroforestry system (QSMAS) in Nicaragua has advanced further than expected, with participating farmers extending the system to other regions.The Quesungual slash-and-mulch agroforestry system (QSMAS). Africa remains a highly distinctive area of operation for CIAT, requiring particularly decentralized approaches. African agriculture is characterized by the predominance of small farming, highly heterogeneous biophysical environments, and great diversity of sociocultural settings-often over short distances. These issues partly explain why an Asian-style \"Green Revolution\" could not be replicated on this continent.Farm sizes are declining even as populations grow. Land is lost to burgeoning cities. Soil is eroded away as farming methods, still predominantly focused on food crops, struggle to adapt fast enough to population change. Migration from rural to urban areas is occurring almost everywhere, creating new demand for food products and regional trade, and therefore opportunities for income generation for small producers.For the first time in 40 years, many African countries are registering good levels of economic growth, not only in urban but also in rural areas. These trends have also created some myths about agricultural development. For example, one myth is that the main emphasis of agricultural R&D should shift significantly away from food crop production. Instead, specialties should be developed to supply growing (local) supermarket businesses and exports. In reality, however, these opportunities are so specialized that small producers have difficulty competing with well-organized large commercial producers (albeit small in number). The tiny scale of small producers in terms of total production and sales potential is too small to lift them out of poverty. Instead, they depend much more on better links with urban food markets across Africa. Awareness of this factor has grown over the past year or two, and is helping to broaden once again the farm-incomegenerating strategies followed by national research organizations, subregional research organizations such as ASARECA, and the CGIAR Centers.Farmers selling different bean varieties at the local market.ROBIN BURUCHARA CIAT regional programs pursue progressive research on technologies and processes that are important for the type of development that helps rural communities build sustainable livelihoods through competitive agriculture, healthy agroecosystems, and rural innovation. In pursuit of these goals, they work closely with national institutions, NGOs, and the private sector, and use participatory methods that offer rural people an active role in devising better ways to improve crops, build rural agroenterprises, and manage soil fertility, pests, and plant diseases. It is in the regions where CIAT's inter-and multidisciplinary work is carried out.Across eastern and southern Africa, other increasingly important and crosscutting factors shape the research environment. These include the negative impact of HIV/AIDS on agricultural and household productivity, and climate change, especially in terms of climate variability and risk. Africa Coordination is encouraging strategic research on these themes. It also supports the notion that many more of our research proposals should include elements of these research themes because they interact with other issues. We are now collaborating with CIAT scientists who work in farmer participatory research and decision-support projects based in Africa.A complex array of institutions is responsible for agricultural research at continental, subregional, national, and rural levels in Africa. The relative weakness of many of these institutions leads to continuing emphasis on capacity development. The Science Council is now recognizing this situation. Indeed, the reality is such that our partners, potential partners, collaborators, and donors are often reluctant to work with the Centers, unless they include capacity strengthening as an explicit objective of project proposals. Capacity strengthening is supported by our strategy of bringing in local and regional partners at early stages of proposal planning. We also encourage and support local partners to take leadership, especially in country-specific proposals.Reputation for such behavior is also important for maintaining strong research partnerships in those cases where a significant capacity-building element cannot be easily included in a proposal. Even so, increasing national and donor concern to include capacity building in aid portfolios has led to a growing number of national ministries of agriculture receiving direct budget support, instead of being offered project funding for agricultural research.A notable area where CIAT has contributed considerably to capacity development is at the level of rural institutions. In collaboration with PABRA partners, CIAT has catalyzed partnerships among national and regional organizations to improve the adoption rate, and hence impact, of new bean varieties. In response to the May 2006 CCER, we have refocused our research on enabling rural innovation work from the farmer group and community level to higher level farmer associations, their linkages within broader innovation platforms, and questions of accountability ofCapacity strengthening is supported by our strategy of bringing in local and regional partners at early stages of proposal planning. We also encourage and support local partners to take leadership, especially in countryspecific proposals. Eastern and Southern Africa, which will function as a \"network cluster with a hub unit\". AARESA's strategic framework responds to several international and regional studies-the Kofi Annan Initiative, NEPAD-CAADP, FARA, SADC, ASARECA, the Terveuren Consensus, and the CGIAR Science Council-as well as the institutions' own self-assessment in those areas of comparative advantage that would most benefit from an integrated approach. Four flagship research proposals were developed, and endorsed by the Science Council, in the areas of iNRM, exploitation of genetic diversity, information and knowledge, and postconflict rehabilitation of capacity for research-for-development.ASARECA is the subregion's coordinating body for agricultural research and our key partner. It has developed both a strategic and operational plan. Driven by concern over the region's mounting volume of food imports, and seeing the opportunities for regional trade in food products, CIAT finds most of its own research focus reflected within the region's new set of priorities and is reassured of continuing partnership. However, as ASARECA moves from organizing around networks to research programs, there are, as yet, unanswered questions about the form this support will take for beans and other long-term CGIAR research interests.The countries of Southeast and East Asia where CIAT is active continue to experience rapid economic growth.Although most major changes are seen in industrial development and urban growth, particularly in China, significant impact continues to be seen in the agricultural sector. Some of these changes provide pathways out of Asia poverty for the marginalized poor who also continue to exist, and in significant numbers, in the region.The risk that the region's marginalized poor may be left behind during these periods of rapid growth emphasizes the importance of linking small farmers with markets. Last year was a difficult Again this year, CIAT actively helped coordinate and integrate activities of institutions working in Africa.ROBIN BURUCHARA Woman farmer tending her bean plants, southern highlands, Tanzania.operational year for SADU, the SDCfunded project that focuses on agroenterprise development for small producers in Vietnam and Lao PDR. Nevertheless, it was also a period during which the project's successes are being recognized more widely by governments and many other development partners.The approach to agroenterprise development focuses on fostering development within a range of value chains in a particular area, thus avoiding a broad subsector approach.The value-chain approach involves activities in many value chains, including annual crops, perennial crops, nontimber forest products, and the livestock sector. Manuals were developed and a range of stakeholders trained in the whole agroenterprise development process and in critical components such as rapid market appraisal and market extension. For some areas and value chains, the creation and promotion of business development services were seen as an important part of the process, with significant direct impact on those involved in these services and indirect impact on a broader group of people as a result of the embedded extension impact of such services. In several cases, this approach of linking farmers with markets has built on CIAT's other research for development activities, particularly livestock feeding and production systems and improved cassava production. The importance of this approach of market linkages is such that it is being increasingly used in other CIAT activities, even those that had not been developed with a specific market focus.The demand for cassava products continues to expand. Several CIAT activities, particularly in fairly remote areas of Laos and Cambodia, emphasized on-farm use of improved cassava production systems. In these cases, cassava can be used as food and is increasingly being used in animal feed systems in various forms: fresh, dried, and ensiled roots and leaves. Such improved cassava production systems will, in time, benefit from increased market demand for cassava for animal feed, starch production, and bioethanol production. These markets, particularly the burgeoning market in China, but also in Thailand, Vietnam, and Indonesia, are already providing significant options to farmers throughout the region. More and more, marginalized poor farmers in the more remote areas are realizing the possibilities of market linkages.Research CIAT activities in the livestock sector continue in several specific livestockrelated projects, as well as in cassava, agroenterprise, and IFAD-supported projects. One research area focuses on improved village-based pig-feeding systems. This ACIAR-funded project evolved from data collected towards the end of an earlier AusAID-funded livestock project that expanded the use of forage-based feeding systems in Laos. These results showed that changing from feeding village pigs with traditional rations to using feeding systems based on Stylosanthes guianensis would halve daily labor inputs, made mostly by women, while doubling the pigs' average growth rate.That is, the change results in a four-fold saving in labor over a complete production cycle.The current research projects aims to study the specific reasons for growth rate changes, assess other legumes that may have a larger impact, develop specific recommendations for complete animal rations based on village production systems, and interact with NGOs and other development partners to ensure that these benefits reach a broad community of small farmers. Our relationships with other advanced research organizations continue. An economist from JIRCAS was seconded to our Regional Office in Laos. Our links with universities and research institutions in other countries, especially Australia, remain strong. We continue to host students from several universities, including, for the second year in a row, three graduates from Zamorano in Honduras. These students were funded by the Nippon Foundation on a research exchange with CIAT projects. Other key partners are also donors. That is, in addition to working in the specific projects that the donors fund, CIAT-Asia interacts with and provides support for other activities of these donor partners, specifically ACIAR, SDC, ADB, and IFAD.CIAT-Asia will consolidate its current activities in Cambodia, China, East Timor, Indonesia, Laos, Thailand, and Vietnam, and will aim to gradually expand the range of activities in these countries and expand to other countries in Southeast, South, and East Asia.A major factor in all of CIAT's activities in Asia comprises the partnerships that were developed and maintained.Woman preparing cassava chips. CIAT Annual Report 2006-2007 In Central America, CIAT's research for development program is confronted with three major challenges: the unresolved issue of food security for parts of the rural population; the lack of opportunities for small farmers to participate in value chains and access markets; and the increasing deterioration of the natural resource base on which small farmers rely.Increasing water shortages and energy costs has had considerable impact on production and income generation in the region. In large parts of Central America, the second rainy This year, a new member was welcomed: the Latin American Fund for Oil Palm Innovation (FLIPA), which was established in March, along the lines of its sister member alliances, CLAYUCA and FLAR. Its mission is to contribute towards attaining sustainability of the oil-palm agroindustry in tropical Latin America. It conducts R&D activities such that the palm-growing sector remains competitive, profitable, and efficient according to parameters for protecting the environment. It thereby captures potential economic and social benefits arising from effective participation in national and international markets with products for both consumption by humans and other uses. In August, the Fund held its first technical meeting to prioritize initial areas of work, which are genetic resources, plant health, improved cultural practices, and technology transfer. The CGIAR implemented a Performance Measurement System in 2004 on a pilot scale, executing it in full in 2005. The idea is to measure and compare the CGIAR Centers in terms of results, potential for future accomplishments, and performance as perceived by stakeholders. Measurement is therefore based on these three \"dimensions\", which can be further subdivided into six performance elements, as follows:Potential (2) publications in top journals, thus considering quality as well as quantity of published output; and (3) total citations, which indicates quality and impact of scientific output. Articles that are frequently cited are influential in furthering science, and often-cited authors are recognized as leaders in their profession. All three measures rank CIAT as a top CGIAR Center in terms of quantity and quality of science. In terms of institutional health, good governance, supported by an effective policy framework, is critical to CIAT's performance, together with a positive culture of learning and change. This culture should be monitored to understand staff needs, levels of satisfaction, and opportunities for advancement. According to the EPMR report, more work is needed in these areas.Information on financial health over the CGIAR's reporting period indicates that, of the 15 Centers, CIAT has:• The lowest short-term solvency or liquidity (36 days;target is 90-120 days).• The least long-term financial stability or reserves (18 days; target is 75-90 days). • An average level of efficiency of operations (20%, measured as an indirect cost ratio, with a range of 13% to 28%). • Its index for cash management of restricted operations is 0.35 (range is 0.13 to 2.03).The • CIAT-Outstanding Principal Staff Achievement Award (OPSA), granted to Segenet Kelemu.• CIAT-Outstanding Young Scientist-of-the-Year Award (OYSYA), granted to Marcela Quintero.• CIAT-Outstanding Research Publication Award (ORPA), granted to Elizabeth Balyejusa Kizito, Linley Chiwona-Karltun, Thomas Egwang, Martin Fregene, and Anna Westerbergh.• CIAT-Outstanding Employee of the Year Award (OEYA), granted to Girlena Aricapa.• CIAT-Outstanding Support Staff Contribution Award (OSSCA), granted to Paula Ximena Hurtado.• CIAT-Outstanding Team of the Year Award (OTYA), granted to the Motor Pool team.• Recognition for scientific contribution in rice, Award granted by \"General Saavedra\" Municipal Council, Bolivia, to the CIAT Rice Project (Lee Calvert and Marc Châtel).• First Prize at the GFAR-2006 Poster Competition, Award granted by the Global Forum on Agricultural Research (GFAR) to Jonas Chianu, Peter Okoth, Omo Ohiokpehai, Kristina Roing, Bernard Vanlauwe, Nteranya Sanginga, Pat Naido, Akin Adesina, and Joyce Opondo.• Third Innovation Marketplace Award, high-level recognition, granted by the CGIAR at AGM 2006 to CIAT-FLAR.• Humber Prize, granted by the University of Nottingham, UK, to Jean-Claude Rubyogo.• The CGIAR Science Award for Outstanding Partnership at AGM 2006, granted to the CGIAR Genebank Community.","tokenCount":"9729"} \ No newline at end of file diff --git a/data/part_3/6183778387.json b/data/part_3/6183778387.json new file mode 100644 index 0000000000000000000000000000000000000000..c67e5afc135ffad0f93586e16009eb89fbec2e44 --- /dev/null +++ b/data/part_3/6183778387.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"420d7b6daa4bb08f87b6cce4450f7759","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/32388fbf-beb6-4b1f-ac1a-e5d1d01cc014/retrieve","id":"320154756"},"keywords":["u ! \\","\"","¡I\"","Ut"],"sieverID":"de1c0ecd-bb9e-4903-8e53-9f65e3c5a118","pagecount":"64","content":"En el pr~mer tomo del presente manual se ha descr~to un modelo para un Slstema de Mon~toreo y Evaluac16n a ut~llzar dentro Proyectos Integrados de Yuca La formac16n de un Banco de Datos es el parte central de tal s~stema En base de la lnformac16n almacenada en el Banco de Datos se puede hacer un segulmlento comparando los resultados del proyecto con metas preestablecldas utl1~zando algunos parámetros de control En la mayor parte de los casos se rep1taria este anál1S1S var1as veces durante el desarrollo del proyecto y para var1as organ1zac~ones Este Just1f1ca la ut~1~zac16n de mlcro-computadores en el maneJo de la ~nformac16nEXlsten var~as programas de maneJo de datos que pueden ser ut1llzadas para tal fin entre lo cual el más conocldo es el DBASEIII La ut~1~zac16n de este programas requlere un c~erto grado de capacltac~6n y exper~enc~a Sln embargo, tanto DBASEIII c6mo su clon meJorado MFOXPLUS ofrecen la pos~b~lldad de desarrollar apllcac10nes especiflcas fac~lltando el maneJo de lnformac~6n a usuar10S ~nexpertos Para tal fin se ha desarrollado el s~stema SYSYUCA que permlte maneJar la lnformac~6n de Proyectos de Secado de Yuca Además, algunos partes del programa tamb~én tlene val~dez para otros clases de proyectos de yuca Este segundo tomo del manual s~rve como guia para el usuarlO de este slstema El slstema SYSYUCA se ha desarrollado dentro el proyecto para el \"Desarrollo Agrolndustrlal del Cult~vo de la Yuca en la Costa Atlánt~ca de Colomb~a\" en lo cual se pus6 en practlca la metodologia de los Proyectos Integrados de Yuca, y espec1ficamente, se ~mpuls6 el desarrollo del secado de yuca dentro cooperatlvas de campes~nos El slstema permlte de hacer un sagulmlento de proyectos slmllares basado en la deflnlc16n de parámetros de carácter técnlco, econ6mlco y soc1al El slstema es acceslble para personas que no han obtenldo experlencla prevla con la utlllzac16n de mlcro-computadores a través de 1nformes pre-estandarlzados Al otro lado para el usuarlO mAs experlmentado el s~stema guarda la lnformac16n en arch~vos de datos del formato DBASE que puede ser utlllzados dentro programas como DBASEIII, Lotus 123, SAS etc El programa fué desarrollado como apllcac~6n del s~stema MFOXPLUS Para el usuarlO con experlencla en la programac~6n se lncluye los Archlvos Fuentes en los d~skettes or~glnales asi que se permlte de hacer camblos en el programa seg~n las necesldades de cada proyecto La ~nformac~6n que debe ser al~mentada al slstema se recoge a nivel de las organ1zaclones eJecutoras del proyecto Los formatos que se utll~zan en la recolecc16n de lnformac16n Slrven un doble prop6s~to, a un lado son ~tl1es para la admlnlstrac16n de estas organlzacl0nes y al otro lado forman el base de lnformac16n para el segulmlento Dentro la organlzac16n lnst~tuclonal del proyecto se debe asegurar la oportuna recopll~ac16n de esos datos, qulncenal-o mensualmente, para su posterlor procesamlento con SYSYUCA Utlllzando SYSYUCA se debe segulr algunos pasos en su deb~do orden Cada paso se descr~be al fondo en este manual Cuando se emp~eza a trabaJar por pr~mera vez con SYSYUCA se puede pract~car con alg~n ~nformac~6n f~ct~va, leyendo el manual y eJecutando los d~st~ntos pasos descr~tos Al f~nal se puede borrar esta ~nformac~6n f~ct~va seg~n las ~nstrucc~ones en el párrafo 8 4 En la ut~1~zac~6n del SYSYUCA se debe segu~r los s~gu~entes pasos a Recop~1~ac~6n de Informac~6n (Vease Capitulo 11) b Instalac~6n de SYSYUCA ( 3 1 ) c In~c~al~zar SYSYUCA ( 3 2 1 ) d Def~n~c~6n Valores de Calculo ( 3 2 2 ) e Def~n~c~6n Palabras Claves ( 3 2 3 ) f Reg~stro de Informac~6n (Capitulo IV) 9 Control de Informac~6n ( 5 1 -5 2 ) h Mod~f~cac~6n de Informac16n ( 5 3 ) ~ Sacar Copias de Segurldad ( 8 1 ) J Compactac~6n de Informac~6n (Capitulo VI) k Sacar Copias de Segur~dad ( 8 1 ) 1 Producc~6n Informes de EvaluaC16n (Capitulo 8) 11 Recop~1~acL6n de InformacL6n SYSYUCA se base en Lnformac1ón a recopLlar a nivel de las organ1zac10nes campes1nas que eJecutan los proyectos de secado de yuca y las ent1dades 1nvolucradas en lo m1smo Para este fin se ha dLse~ado algunos formatos de recop111ac1ón de 1nformacLón que S1rven tanto para la admlnlstrac1ón de las organ1zac10nes de secado de yuca como fuente prLmord1al de datos para ser allmentados al sLstema La mayor parte de los formatos pueden ser llevados a nivel de las organ1zaClones por el Gerente o Jefe de Producclón, m1entras algunos otros, especif1camente los relac1onados con la entrega y repago de créd1tos se lleva a nivel de las entLdades créd1t1c1ar1as La lnformac1ón de los formatos se puede al1mentar d1rectamente al s1stema después un control por parte de los encargados de la coord1naclón del seguLmLento del proyecto En ese párrafo se descr1be como se debe dLl1genCLar los formatos cuales se presentan en el Apénd1ce A 2 1 Formato de Informac1ón de la Organ1zac1ón El formato para la 'Informac1Ón de la Organ1zacLón ' se debe d111gencLar para cada organLzacLón de secado de yuca al prLncLp10 de la campana La pr1mera vez al lnclu1r la organLzac16n en el s1stema se debe allmentar la lnformac1Ón por medlo del Reglstro de Informac16n Al ya eXLstLr la organ1zacL6n dentro el S1stema se puede actual1zar la 1nformac1ón por med10 de la opc1ón de ModLfLcac16n de Informac1ón Razon socLal y SLgla Llene el Nombre de la Organ1zacL6n Pers Juridlca Llene el ndmero de la Resoluc1ón con que fué otorgado la Personerla Jurid1ca a la Organ1zac1ón, la fecha en que fué otorgado y el nombre de la ent1dad que entregó la Personeria JuridLca Fecha Acta de Const1tucLón Fecha en que se fund6 la organ1zac16n Ndmero de Reg1stro Llene un número de reg1stro comerc1al p e el NIT Dom1cLl10 IndlqUe dónde está ub1cada la organ1zac1ón Representante Legal Nombre de la persona que representa la organlzac16n p e el nombre del Gerente Ndmero de SOC10S Número de af111ados a la organlzac16n Tamano de la P1sta Superf1cLe de la p1sta de secado en metros cuadrados ut1l1zaclón de la p15ta por lote Llene el parte de la plsta que se ut111za para cada pLcada S1 se trata de llenar la p1sta en cada p1cada se pone 1, 51 se llena la m1tad de la plsta por lote para poder plcar d1ar1mente se llena O 5 etc Inverslón Total Llene el monto de cap1tal que se ha 1nvertldo en las lnstalaClones de la Organlzac1ón Cap1tal de TrabaJo Cap1tal de TrabaJo utlllzado por la Organ1zac1ón en el secado de Yuca Deuda Total de CrédLtos a Repagar por la Organlzac1ón al fLnal de la campana ( Créd1to de Invers10nes más Cap1tal de TrabaJo ) 2 2 Formato de Factura de Compra de Yuca Fresca La Factura de Compra de Yuca Fresca se llene cada Ve4 cuando un agrLcultor vende yuca la organLzaclón Utlllzando papel de carbon se puede sacar dos cop~as a la factura asi que el or~g~nal se da al vendedor, la pr~mera cop~a se recop~la para el mon~toreo y la segunda cop~a queda en la organ~zac~on como soporte a su contab~l~dad En la factura se llene tanto ~nformac~ón sobre la venta como ~nformac~ón senc~lla del vendedor Se puede aprovechar el momento de la venta, cuando se está pesando la yuca, para recoger la ~nformac~ón En el caso de un agr~cultor que ya ha vend~do yuca en ocas~ones anter~ores durante la m~sma campaRa no es necesar~o de llenar otra vez la 'Informac~6n del Vendedor' El d~seRo de la factura perm~te que la organ~zac~6n la ut~l~za tamb~én para reg~strar sus compras de otros productosEn este lugar se puede poner el sello de la Nombre de VarIedad de la Yuca Mes y ARO de SIembra Epoca en que fué sembrada la yuca vendIda UsuarIO Cr édItO Marque s~ el vendedor ha ut~l~zado un credlto para su producc~6n de yuca TenenCIa de TIerra Llene la forma de tenenCIa de tIerra baJO 10 cual trabaJa el agrIcultor (p e propIedad, arrIenda etc ) Hectáreas Total Llene el nñmero de hectáreas que tIene el agrIcultor baJO cualqUIer forma de tenenCIa Hectáreas en Yuca Llene el area que sembró el agrIcultor en yuca en el ñltlmo clclo agricola Vereda del CUltlvo Nombre del vereda d6nde el agricultor tlene su cultlVO de yuca Dlstancla a la Cooperatlva D~stanc~a del CUltlVO de yuca hasta la Planta de Procesam~ento de Yuca Intermedlarlo Marque Sl el agrlcultor es lntermedlarlO o está vendlendo yuca propla 2 3 Formato de Lotes de Yuca Seca El reglstro de lotes de yuca seca puede llevar la persona encargada del proceso de plcada y secado de yuca en la organIzacI6n p e el gerente o Jefe de producc16n Se debe actuallzar el formato cada vez que se plca un CIerta cantIdad de yuca fresca y/o se recoge yuca seca Es necesar10 de pesar la yuca antes de ser p1cada y después de ser recog1da cuando entra a la bodega No todo la 1nformac16n del reg1stro se a11menta al s1stema El d1seRo se ha hecho en base de las eX1genc1as de las organ1zac10nes de secado de yuca Cada lote de yuca procesada ocupa un renglon en el Reg1stro Es aconseJable de recoger la 1nformac16n de este reg1stro qU1ncenalmente en las organ1zac10nes para poder ser a11mentada al s1stema oportunamente Número del Lote Este cas111a se puede ut111zar para la numerac16n de los lotes procesados El dato no se a11menta al s1stema Yuca Fresca P1cada Se reg1stra la fecha de P1cado, la hora en que se empezó el p1cado, los bultos de yuca fresca p1cados y la cant1dad en K110gram p1cada Los datos de la Hora y Bultos p1cados no se a11menta al s1stema Yuca Seca Se reglstra la fecha en que se recoge la yuca seca, la hora en que se emp1eza a recogerla, los bultos recogldos y la cantldad en kllogram recogldo Los datos de la Hora y Bultos Recog1dos no se allmenta al slstema Factor de Convers16n Se puede reglstrar el factor de convers16n del proceso de secado (Yuca Fresca Plcada/Yuca Seca Recoglda) Este dato no se allmenta al slstema V1StO que SYSYUCA ya lo calcula en base de la cantldad plcada y recoglda Observaclones Este casllla se puede utl11zar para anotar pecularldades con respeto al procesamlento del lote p e razones de demorra en el secado como mal tlempo, yuca de mala calldad etc Esta lnformaC16n no se allmenta al slstema 2 4 Formato de Despachos de Yuca Seca El reglstro de los despachos de yuca seca puede llevar la persona encargada de la comerc1allzac16n de la yuca seca en la organlzac16n p e el gerente o Jefe de producc16n Se debe actuallzar el formato cada vez que se manda un Vla)e de yuca seca, que llegue una lnformac16n del comprador sobre el peso de un despacho reclbldo o que llegue un pago de un despacho No todo la lnformac16n del reglstro se allmenta al slstema El dlseHo se ha hecho en base de las eX1genclas de las organ1zaclones de secado de yuca Cada despacho de yuca seca ocupa un renglon en el Reglstro, cual se va llenando en la medlda en que se está cumpllendo el c1clo del despacho (despacho-peso en empresa-rec1bo del plata) Sólo se debe allmentar la lnformaclón de un despacho al slstema cuando haya llenado el renglon por completo Es aconseJable de recoger la lnformaC16n de este reglstro qulncenalo mensualmente en las organ1zaclones para poder ser allmentada al s1stema oportunamente Número de Rem1s16n Se puede utll1zar para reglstrar el número del Orden de Rem1s16n baJO lo cual fué transportado la yuca seca Este dato no se al1menta al slstema Fecha Despacho Llene la fecha en que sal16 el transporte con la yuca seca desde la planta de secado de yuca Peso en Planta Llene la cant1dad de yuca seca que fué despachado según el peso en la planta de secado Es necesarlO que se pesa toda la yuca seca que se carga al cam16nPrec~o por Kg Llene el prec~o por k~logram de yuca seca acordado con el comprador Ant~c~p~o Transp Llene el ant~c~plO dado al chofer del cam~6n por parte de la organ~zac16n cual va a ser reembolsado por la empresa comprador Entonces, s610 llene este dato en el caso que el transporte corre por cuenta de la empresa comprador PreClO a Pagar Se puede ut~l~zar para llenar el valor del pago que se debe reclblr Se calcula como (peso en planta*prec~o por kg)+antlclplO transporte Este dato no se al~menta al slstema SYSYUCA calcula el preClO a pagar en base del peso en la empresa comprador Empresa Comprador Llene el razon soclal del comprador Peso en Empresa Reglstre la cantldad de yuca seca rec~b~da por el comprador Fecha Glro Reglstre la fecha en lo cual se reclbe el pago del despacho correspond~ente Valor Glro Reglstre el valor del pago reclbldo correspondlente al despacho 2 5 Formato de Movlmlento de Empaques El reglstro del mov~mlento de empaques puede llevar la persona encargada del proceso de plcada y secado de yuca en la organlzac16n p e el gerente o Jefe de producc16n Se debe actual1zar el formato cada vez que llegan empaques de una empresa comprador o cuando hay un despacho de yuca seca 81 se lo cree necesar10 se puede ut111zar el formato tamb1én para reg1strar el mov1m1ento de empaques entre las organ1zac1ones y los agr1cultores qu1enes sum1nlstran la yuca fresca a las plantas No todo la 1nformac~6n del reg1stro se al1menta al slstema El d1seHo se ha hecho en base de las eX1genc1as de las organ1zaclones de secado de yuca Es aconseJable de recoger la lnformac16n de este reg1stro qu~ncenal o mensualmente en las organ1zaclones para poder ser al~mentada al slstema oportunamente Empresa Comprador Llene el Razon Soc1al de la empresa de qU1en se rec1be o a qU1en se enVla empaques Mes Llene el mes en que se present6 el movlmlento Para facllltar la al1mentac16n de la ~nformac16n al slstema se puede llenar en vez del nombre del mes, el n~mero del periodo en que se presenta el mov1m1ento cerca de lo cual el 1 corresponde al pr1mer mes de la campaRa, el 2 al segundo etc Empaques rec1b1dos Se puede llenar el nómero de empaques rec1b1dos de la empresa menc10nada Empaques despachados En caso de un despacho de yuca seca se anota el nómero de bultos despachados Sl se env~a empaques vaClOS se los suma al total Total en planta Se puede utl11zar para reg1strar el total de empaques dlspon1bles en la planta después cada mov1m1ento La lnformac16n de este cas111a no se al~menta al s~stema, s~no se calcula en el l~stado de empaques 2 6 Formato de Costos de Producc16n El reg~stro de Costos de Producc16n por Mes puede llevar la persona encargada de la adm1n1strac16n flnanC1era de la organ~zac~6n como es el tesorero recop~lando la ~nformac~6n mensualmente en base de su contab~l~dad En este caso el segu~m~ento depende de la ex~stenc~a de una buena contab~l~dad senc~lla y func~onando dentro las organ~zac~ones En el formato se puede recop~lar la ~nformac~6n del m1smo mes de var1as organ1zac10nes Un renglon se llena con los costos de producc~6n del proceso de procesam1ento de yuca del mes ~nd1cado de la organ1zac16n espec1f1cada con la cod~f~cac16n Se debe recoger la 1nformac~6n de este formato al pr~nc1p10 de cada mes, recop11ando la ~nformac16n del mes anter~or COd1g0 planta Se llene el cod~go de la organ~zac~6n a que se ref~eren los datos del renglon Los cod1gos de la organ~zac~ones se da en el l~stado de organ~zac~onesCostos como sueldos del gerente, Jefe de Costos de Compra de Empaques Transporte Costos del transporte de la yuca seca S610 se llene en el caso que los costos del transporte corren por cuenta de la organ1zac16n No se sume ant1c1p~OS dados a los choferes de los cam~ones s~ estos son reembolsados después por la(s) empresa (s) compradora (s) Descargue Costos para el descargue de los cam~ones en la(s) empresa (s) compradore(s) S610 cuando corren por cuenta de la organ~zac~6nCostos relac10nados al maneJo de G1ros, Cuentas bancar~as etc 2 7 Formato de Créd~tos Entregados El reg~stro de Créd1tos Entregados se puede llevar dentro las ent~dades que otorgan créd~tos a las organ~zac~ones de secado de yuca Se debe reg~strar todo los créd~tos, no s610 los créd~tos relac~onados al procesam~ento de yuca, s~no tamb~én créd~tos otorgados para el desarrollo de otras act~v~dades por parte de las organ~zac~ones El formato se debe actual~zar cada vez que hay un desembolso de créd~to Un renglon se llena con los datos de un desembolso de créd~to a una organ~zac~6n en especif1ca Cod~go planta\" Se llene el cod~go de la organ~zac16n a que se ref~eren los datos del renglon El cod~go de cada organ~zac~6n se da en el 11stado de organ1zac1ones Ent1dad F1nanc1era Nombre de la ent1dad créd1t~c~ar1a Dest1no Créd1to Descr1be la ut111zac~6n del créd1to por parte de Se puede escoger la opc~6n deseada por med~o de llevar la barra ~llum~nada hacia la opc~6n utlllzando las teclas de flechas Se observa que al mover la barra de una opc16n a otra se da en el parte abaJo de la pantalla una expllcac~6n breve de cada opc16n Cuando se ha ublcado la barra en la pos~c~6n deseada se pulse la tecla denom~nada Enter o Return, que a veces se ~dent~f~ca con el s~mbolo Tamb~én se puede escoger la opc~6n teclando d~rectamente el nómero o letra de la m~sma Antes de poder entrar a la al~mentac~6n de ~nformac~6n se debe preparar el s~stema def~n~endo algunos var~ables espec!f~cas del proyecto Por lo tanto al entrar al trabaJar por pr~mera vez con el slstema se neces~ta de escoger desde el Menó Pr~nc~pal de Opclones la opc~ón nómero 8 denomlnado 'Operac~ones del S~stema' Al proceder as! se notarA que el acceso a este parte del s~stema está proteg~da por med~o de una Palabra Clave Poster~ormente se expl~carA como se puede escoger una Palabra Clave para su proplo uso Al entrar por pr~mera vez al slstema al Palabra Clave para tener acceso a las Operaclones de Slstema es 'APROYUCA' lo cual se entre desde el teclado al ped~do del slstema Al term~nar de teclar la Palabra Clave se pulse Enter lo cual da acceso al Menó de Operac~ones de Slstema (Apénd~ce B, F~gura 2) slempre y cuando la Palabra Clave ha s~do la correcta OJO. por razones de segur1dad no aparezoa la Palabra clave en la pantalla Antes de entrar a entrar ~nformac~ón al s~stema se neces~ta de ~n~c~al~zar el slstema, hacer la deflnlc~ón de valores de evaluaclón y palabras claves desde este menñ 3 2 1 In~c~al~zac~6n del S~stema Entre a la ln~c~al~zac~ón del s~stema por medlo de escoger la opclón 2 desde el mená de Operaclones del Slstema En la lnlclallzac16n se puede def~nlr el mes en que empleza la campaRa de secado de yuca y las reglones dónde estA o va a trabaJar el proyecto Este perm~te al slstema de sacar los lnformes segñn areas dónde trabaJa el proyecto y segñn los meses OJO A camb1ar esta 1nformac1ón se borrara toda la 1nformac1ón que fue prev1amente grabado en los arch1vos de datos. Entonces, sólo escoge este opc1ón al entrar a trabaJar por pr1mera vez con el s1stema En pr~mer lugar el s~stema pregunta en que mes arranque el proceso de secado de yuca, que normalmente seria el pr~mer mes de la época seca en la reglón del proyecto Sl se estA secando yuca durante todo el aRO se debe escoger el mes de Enero como el prlmer mes Como segundo paso de la ~nlc~al~zac~6n se debe entrar los nombres de las reglones geograflcas dónde trabaJa el proyecto p e nombres de departamentos, provlnclas etc Se entra el nombre de la reg16n y se pulse Enter Cuando haya termlnado se Pulse la tecla de func16n marcada F2 OJO: Las pr1meras tres letras de los nombres de las reg10nes deben ser d1st1ntas y exclus1vas v1sta que se las ut1l1zara para 1dent1f1car organ1zac10nes en la m1sma req1ón. 81 eX1sten 2 req10nes cuyas nombres emp1ezan con las m1smas tres letras se debe camb1ar uno de los nombre. P.e.:Entrar como Cordoba CORDOBA Corlntle CRNTIE OJO' Es sumamente 1mportante de entrar las reg10nes en orden geograf1co, p e de Norte a sur, para poder sacar 1nformes sobre algunas reg10nes Juntas que 11m1tan una a la otra. Al termlnar de deflnlr las reglones del proyecto el slstema muestra el mes de prlnc~plo de campana escogldo y los nombres de las reglones Sl todo estA correcta se entra 'SI' después 10 cual el slstema acepta la lnformaclón y emp~eza a borrar la lnformac~ón grabada en los arch~vos de datos 3 2 2 Def~n~clón Valores de Calculo En la preparac~ón de los lnformes para la evaluac~6n del secado de yuca el s~stema ut~l~zarA algunos valores de calculo que varlan de acuerdo a las Clrcumstanclas especif~cas de cada proyecto Estos valores de calculo se puede camblar escog~endo la opclón 3 del mená de Operacl0nes del S~stema Después de haya escog~do esta opclón el s~stema muestra los valores como estAn deflnldas y pregunta Sl el usuarlO los qUlere camb~ar (Apéndlce B, flgura 3) Camblar los valores de calculo no afectarA a la ~nformac16n ya grabada, Slno s610 a los calculos que se hace en base de esta lnformaclón, y por lo tanto se lo puede Camblar tantos veces como se parece convenlente El slstema utlllza los slgulentes valores N~mero de lotes de yuca seca que se planlflca de produclr en un mes, La cantldad de yuca fresca gue se puede cargar en la plsta de secado por cada metro cuadrado, La durac16n en n~mero de meses durante 10 cual se puede secar yuca, Los costos de producc16n para yuca seca que se contempla en el proyecto, El rendlmlento promedlo obtenldo en la producc16n de yuca fresca y los costos de producc16n promedlo por hectarea 3 2 3 Deflnlclón de palabras claves La entrada a algunas partes de SYSYUCA está restrlngulda por medlo de la utlllzac16n de Palabras Claves, espec!flcamente las partes dónde se puede camblar, entrar o borrar lnformac16n El SYSYUCA Vlene con tres palabras claves predeflnldas as! Para tener acceso a Reglstro o ModlflCaC16n de Informac16n REGlON Compactac16n de Inforroac16n YUCASECA Operaclones del Slstema APROYUCA Es sumamente 1mportante de camblar dlrectamente estas Palabras Claves para que el acceso sea realmente restrlngu1do a los personas autor1zados A la compactac16n de Inforroac16n s6lo debe tener acceso el coordlnador del segulmlento, mlentras al reglstro y modlflcac16n de lnformac16n s610 debe entrar las personas autorlzadas para estas actlvldades Se puede camblar las palabras claves escoglendo la opclón 4 desde el menó de operaclones del slstema y después escoger la Palabra Clave deseada Haclendo en este manera el slstema procede a pedlr la Palabra Clave actual, a entrar este correctamente se puede entrar la nueva Palabra Clave Para la Palabra Clave de reglstro o modlflcac16n de lnformac16n escoge una palabra de 6 letras y para las otras de 8 letras Al termlnar de escrlblr la palabra pulse EnterPor razones de segurldad el slstema Plde de repetlr la entrada de la Palabra Clave nueva y Sl compruebe que dos veces se escrlb16 la mlsma palabra acepta la def1nlc16n Sl no se escrlb16 dos veces la mlsma palabra el slstema rechazará la nueva palabra y la Palabra Clave vleJa slgue slendo vlgente OJO: por razones de segurldad al entrar una Palabra Clave no se lo muestra en la pantalla y slempre se debe termlnar la entrada de una Palabra Clave pulsando la tecla Enter.IV Captac~ón de Informac~6n La correcta entrada de ~nformac~ón es el parte mAs ~mportante de cualqu~er s~stema de maneJo de datos Errores en ~nformes y resultados ~nconf~ables se presentan cuando se haya al~mentado la ~nformac~ón al s~stema en forma ~ncorrecta Por lo tanto es ~mportante que se ded~ca suf~c~ente t~empo a este act~v~dad que en lo meJor de los casos puede ser eJecutado por personal capac~tado en la captac~6n de ~nformac~6n Este no sólo ~ncrementarA la rap~dez del procesam~ento de ~nformac~6n, pero tamb1én d~sm~nu~rA los errores que se pueden presentar en este aspecto Además es sumamente 1mportanto que se presenta la ~nformac~6n que se va a al~mentar al s~stema en los formatos correspond~entes, cuales se ~ncluyen en el Apénd~ce A de este manual Para tener acceso al reg~stro de ~nformac~6n se debe escoger la opc~6n 3 del Men~ Pr~nc~pal de Opc~ones, después de entrar correctamente su Palabra Clave, este se llevarA al Men~ de Reg~stro de Informac~6n (Apénd~ce B, f~gura 4) 4 1 Presentac~6n de las Organ~zac~ones Como se observa en el f~gura 4 del Apénd~ce B desde el Men~ de Reg1stro de Informac~ón se t~ene acceso a 9 pr~nc~pales arch~vos de datos en los cuales se guarda la ~nformac~ón Cada arch~vo corresponde a un formato de recop~1~ac~6n de ~nformac~6n como se presenta en el Apénd~ce A Al entrar a trabaJar por pr~mera vez se debe 'presentar' en pr~mer lugar las organ~zac~ones eJecutoras del proyecto de secado de yuca (p e organ~zac~ones campeSInas) a SYSYUCA Tamb~én cuando entra una nueva organ~zac~6n en el proyecto se lo debe presentar al s~stema antes que se puede proceder a entrar la otra ~nformac~6n La presentac~6n de las organ~zac~ones de secado de yuca a SYSYUCA se real~za escog~endo la opc~6n 9 (Informac~6n de las organ~zac10nes) del men~ de reg1stro de lnformac~6n A hacer este el s~stema pregunta la regl6n en lo cual se encuentra la organ~zac~ón, lo cual se debe marcar ut~l~zando la barra ~lumInada PosterIormente se muestra una pantalla de entrada de datos Identlc6 al Formato de Reg~stro de Informaclón de la organIzacI6n Se entra la ~nformac~6n y a llegar al flnal de la pantalla se espere hasta que el s~stema regrese al Men~ de Reglstro de Informac~6n As! se presenta cada organIzacI6n a SYSYUCA Observa que el slstema adJud~ca un cod~go a cada organIzacl6n eJecutora que aparece en el parte arr~ba de la pantalla de entrada de ~nformac~6n, cons~st~endo de las prImeras tres letras de la reg~6n d6nde se encuentra y un n~mero de dos d~gltoS 4 2 Otra Informacl6n Después de haber presentado las organlzac~ones al slstema se puede entrar la otra ~nformac~6n segnn los formatos de recop~lac~ón de ~nformac~6n Por lo tanto se escoge desde el Menn de Reg~stro de Informac~6n el archlvo deseado después de lo cual el slstema entra al proced~m~ento de captac~6n de ~nformac~6n conslstlendo de cuatro fases 1 Oef~n~Cl6n de la organlzac~6n a trabaJar ( 421 ), 2 Mostrar Informaclón ya reglstrada ( 422 ), 3 Captaclón de lnformac16n ( 4 2 3 ), 4 Control de la lnformaclón reglstrada ( 4 2 4 ) OJO. M1entras aparece en la alt1ma 11nea de la pantalla el mensaJe 'Para 1nterrump1r pulse Ese •• ' se puede regresar al Mena de Reg1stro de InformaC1en pulsando la tecla marcada ESe. 4 2 1 Deflnlc16n de organlzaclón a trabaJar Cuando se estA entrando la lnformaclón SYSYUCA debe saber al cual organ1zaclón corresponde los datos Por lo tanto en prlmer lugar el slstema pregunta en cual reglón se encuentra la organlzaclón a trabaJar y posterlormente da la pos1b1l1dad de escoger entre las organ1zac1ones presentadas al slstema en este reglón OJO. No se debe entrar 1nformac1en correspond1ente a otra organ1zac1en que de la escog1da. Para tal efecto se debe regresar pr1mero al Mena de Reg1stro de Informac1en term1nanda el proced1m1ento de captac1en de 1nformaClen completamente. 4 2 2 Mostrar Informaclón ya reglstrada Entrando la mlsma lnformac1ón dos veces o deJando de entrar algunos datos puede ser un 1mportante causa de lnconf1ab1l1dad de los resultados del procesamlento de lnformaclón Para eV1tar estos clase de errores SYSYUCA muestra al usuarlO la lnformac16n correspond1ente a la organ1zac16n escoglda ya reglstrada en el arch1vo a trabaJar Se lo muestra hasta que no se encuentra mas lnformac16n Cuando se term1na la lnformac1ón o se llena la pantalla se debe pulsar cualquler tecla para que el slstema pasa al slgu1ente paso Se puede volver a ver la 1nformaC16n contestando 'SI' al la pregunta que le hace el slstema Sl se qUlere ver la 1nformac16n otra vez Sl se lo ha observado b1én se puede proceder a la captac16n de lnformaclón contestando 'NO' a este pregunta OJO S1 se observa errores en la lnformac1en ya grabada se debe termlnar la captaclen de 1nformaClen y 1r al modlf1caClen de lnformaClen (OpClen 4, Mena Prlnclpal de Opclones) para hacer los CamblOS necesarlOS. Desde el Men~ de Reg1stro de Informaclón selo se puede entrar nuevos datos, es lmposlble de camblar datos ya captados anterlormente desde allí. 4 2 3 Captac16n de Informac16n La captac1ón de lnformac16n se hace por med10 de pantallas de entrada de datos donde se entra la lnformac16n de los formatos de recopl1lac16n de lnformac16n (Apéndlce A), en el caso de las facturas de compra de yuca fresca cada pantalla corresponde a la lnformaC16n de una factura, para los demás formatos una pantalla corresponde a la lnformac16n recopllado en un reglon del formato Para la entrada de 1nformac16n eXlsten las slgu1entes normasSe entra en el orden mes¡dla¡afio Se marca los deC1males te cIando unTodos los preclos se entra en el valor monetarlo por Kllogram Borrar Campo Unda la tecla marcada CTRL y pulse tecla y (no para campos numérLcos) A llenar un campo de entrada de Lnformac16n el cursor sLgue automátLcamente al pr6x1mo campo, en algunos casos es 1mpos1ble de sub1r al campo anter10r para poder correg1rlos En caso que sea necesarLO se debe term1nar la pantalla y después volver al pr1nc1p1o de la pantalla, algo que se expllca poster1ormente 51 se llega a un punto donde falta la lnformaC16n se pulse la tecla marcada F3 a 10 cual el slstema asume un valor por defecto OJO En las Pantallas de entrada de datos se puede lnvocar una Ayuda pulsando la tecla marcada Fl, a lo cual se muestra una explloaol~n de oomo de entrar la lnformao16n Para sallr de la Ayuda se pulse cualquler teola después de lo oual el slstema reestableoe la pantalla de oaptacl~n de lnformaOl~n. Para d1smlnu1r los errores en la captac16n de 1nformac16n SYSYUCA hace una valldac16n de los datos al momento de ser entrado Sl se detecta un error el slstema se pare y s610 se puede segu1r teclando la barra espac1adora de su teclado después de lo cual se debe correglr error Sln lo cual no se puede pasar a entrar más lnformac16n En algunos casos s610 se puede entrar Clerta LnformaC16n que se haya deflnlda prevlamente, p e Clertas varledades de yuca En este caso al entrar una nueva varledad SYSYUCA muestra los nombres de las varledades que ya fueron regLstradas anterLormente y pregunta Sl se qU1ere aceptar la nueva var1edad o cambLar10 para una ya reglstrada (Apéndlce B, fLgura 5) Ese proced1IDlento eVlta errores por dlferencla en mecanografLa de nombres Este procedLmLento se lnvoca en los casos de Varledad, Vereda del CUltlVO y Forma de Tenencla de Tlerra en el archlVO de Compra de Yuca Fresca y Empresa Compradora en los archlvos de Empaques y Despachos de Yuca Seca Al llegar al flna1 de la pantalla de entrada de datos se puede hacer tres cosas (1) 5egulr a entrar el pr6xlmo caso, (2) Regresar a correglr el mLsmo caso o un caso anterl0r, (3i TerrnLnar la entrada de datos ad (1) Para segulr a entrar un pr6xlmo caso s~mplemente se pulse la tecla marcada 'Enter' cuando el SLstema muestra \"Ir a 11 El slstema pasa a la pr6xlma pantalla que se nota por el lncremento del nñmero que estA en el parte poster1or de la mlsma Para mayor comodldad se muestra la lnformac16n como fué entrado en el anterl0r caso, que permlte un mayor agllldad en la captac16n vlSto que s6lo es necesarlO de camblar la lnformac16n d~stlnta al caso anterlor ad (2) Para regresar a correglr un caso se debe entrar el número del caso cuando el slstema muestra 'Ir a I El nñmero del caso actual se muestra en el parte superlor de la pantalla ad (3) Para termLnar la entrada de datos se debe pulsar la tecla marcada F2 al momento que el slstema muestra 'Ir a ' a lo cual SYSYUCA plde de conflrmar la termlnac16n de la captac16n de lnformac16n Se debe termlnar la captac16n de lnformac16n slempre cuando se agota la lnformac16n de una organlzac16n NUNCA slgue a meter lnformac16n de otra organlzac16n Sln que haya sallda de la captac16n de lnformac16n Ademas es aconseJable de termlnar la captac16n cada 20 mlnutos para eVltar pérdlda de grandes cantldades de lnformac16n en el caso de una falla en el flUJO eléctrlco Para mayor segurldad en caso de un apagon se guarda la lnformac16n que se entra durante la captac16n en un archlvo temporal S610 cuando se termlna la captac16n se lo pasa a un archlvo PrlnClpal En caso de un apagan durante la captac16n de lnformac16n se puede perder la lnformac16n en el archlvo temporal, pero no la lnformac16n en el archlvo prlnclpal Cuando se haya pérdlda lnformac16n se nota que el n~mero en la pantalla de entrada de lnformaC16n esta de nuevo en 1 cuando se empleza a trabaJar de nuevo En este caso hay que captar de nuevo la lnformac16n entrada desde la ultlma vez que se sal16 en manera correcta de la captac16n de lnformac16n 4 2 4 Control de la Informac16n Captada A contestar 'SI' a la pregunta Sl se qUlere termlnar la entrada de datos se pasa al altlmo paso del proceso de captac16n de Informac16n que es el control de la mlsma En la pantalla aparezca la lnformac16n entrada en forma tabular que permlte de hacer un control a los datos entrada comparandolos con los datos en los formatos de recopllac16n de lnformac16n En el caso que el ancho de la pantalla no permlte de mostrar todos los campos se pueden mlrar los demás campos undlendo la tecla marcada CTRL y pulsando las teclas con las flechas derecha o lzqulerda OJO: Para borrar un caso se debe segulr el slgulente procedlmlenta. Lleva la barra llumlnada hacia el caso a borrar, cuando esta parado alli unde la tecla marcada CTRL y mlentras la deJa undldo pulse la tecla U En la barra en la parte baJa de la pantalla aparezca a la derecha la palabra 'DEL' que lndlca que se ha marcado el caso para ser borrado posterlormente por el slstema Para recuperarlo otra vez hace de nuevo CTRL-U Nota que la palabra 'DEL' desaparece. Al termlnar el control de los datos el slstema borrara todos los casos que han sldo marcados con 'DEL' La numeraclon de los meses se empleza con el mes que se haya deflnlda como prlmer mes de la campaBa de secado de yuca as! que cuando la campaBa arranca p.e en el mes de Junlo, este mes tendra el nnmero 1, JUll0 el nnmero 2, Agosto el nnmero 3 etc En la pantalla aparece un mensaJe que lndlca cual de los meses se ha deflnlda como prlmer mes de la campaBa Después de haber deflnldo los meses a lnclulr en los llstados el slstema da la posslbllldad de marcar un rango de reglones En los 11stados se lncluyeran todas la reglones desde la reg16n marcada como 'REGION INICIAL' hasta la reglón marcada como 'REGION FINAL' Para lnclulr sólo una reglón se debe marcar la mlsma reg16n como 'REGION INICIAL' y como 'REGION FINAL' Después que se haya marcada las reglones el slstema regresa al Mend Prlnclpal de Opclones OJO: La deflnlclon del perl0do y reglones slgue vlgente para todos los 11stados y/o lnformes de evaluaClon hasta que se vuelve a entrar a la deflnlCl0n de perl0do y reglon o hasta la termlnaCl0n de la seSl0n de SYSYUCA 5 2 Preparac16n de Llstados Haya termlnada la deflnlc16n de perlodo y reglones se puede segulr a hacer los 11stados escoglendo la opc16n 6 desde el Menó Prlnclpal El slstema preguntarA Sl se qUlere lmprlmlr los lnformes Sl se contesta Sl todos los llstados se envlarA hacia la sallda de lmpresora de su computador Para la lmpreslón de los llstados se neceslta 126 columnas, que slgnlflca que se debe lmprlmlrlas en papel ancha Cuando se lmprlme en papel de 8 5 cm de ancho se debe colocar la lmpresora en 'Impreslón Compremlda' (vea el manual de su lmpresora)La lmpreslón de los llstados s6lo se puede deshabllltar volvlendo al Menó Prlnclpal y volver a escoger la opc16n 6 Contestando 'NO' a la pregunta de lmpreslón hace que los llstados no salen a la lmpresora Slno en pantalla Desde el Menó de Llstados se puede pedlr los dlferentes llstados de la ~nformac~6n arch~vado en los arch~vos de datos La ~nformac~6n se presenta grupado por Organ~zac~6n EJecutora Recuerda que s610 se ~ncluyera las organ~zac~ones ub~cadas en las reg~ones que se haya marcada para ser ~nclu~das en los l~stados y de estas s6lo la ~nformac~6n correspond~ente al per~odo ~dent~f~cado Cuando el s~stema está preparando un l~stado se puede ~nterrump1r este proceso pulsando la tecla marcada 'ESC' a lo cual se regresa al Menñ de Informes Depend~endo del momento en que se pulse la tecla 'ESC' se puede demorrar algunos momentos la ~nterrupc~6n del proceso 5 3 Mod~f1cac~6n de Informac~6n 81 se detecta en los llstados unos errores se debe proceder a hacer las mod1f1cac~ones necesar~as para lo cual se debe escoger la opc~6n 4 desde el Menñ Pr~nc~pal de Opc~ones OJO Desde el Menn de Mod1f1cac10n de Informac10n solo se puede camb1ar o borrar 1nformac1ón ya grabada anter10rmente. Sl se ha detectada que no ha sldo req1strada toda la 1nformac1ón se debe entrar estos datos por med10 del reg1stro de 1nformac1ón ( opC10n3) Después de haber entrado su Palabra Clave correctamente se pasa al Menñ de Mod~f~caC16n de Informac~6n que es s~m~lar al Menñ de Reglstro de Informac16n y desde lo cual se puede escoger el arch~vo donde se qUlere hacer las mod~f1cac~ones Después de escoger tal arch~vo el s~stema le da la poss~b~lldad de escoger la organ1zac16n de lo cual se qU1ere mod1f~car la 1nformac16n arch1vado 81 no se encuentra ~nformaC16n de este organ~zac~6n en el arch1vo selecc~onado SYSYUCA emlte un mensaJe y regresa al Menñ de Mod1f1caC16n de InformaC16n S~ se haya encontrado ~nformaC16n el slstema hace una copla de este 1nformac16n a un archlvo temporal y lo muestra en forma tabular para que el usuarlO puede hacer las modlf1caclones necesarlas En caso de un fallo en el fluJo eléctrlco se plerde la lnformac16n en el archlvo temporal, que no trae concecuenClas graves VlstO que la lnformac16n todavla eXlste en el archlVO prlnclpal A reestablecerse el fluJo eléctrlco de nuevo se puede entrar de nuevo a la modlflcac16n En el caso que se escoge de hacer cambl0s al archlvo de compra de yuca fresca el slstema preguntarA Sl se qu1eren ver la lnformac16n en orden alfabetlco segñn el nombre del vendedor Este se neceslta para hacer el control a estos nombres para eVltar que la mlsma persona se reglstra baJo dlstlntos nombres 81 se contesta 'NO' se muestra la lnformac16n en el orden en que fué captada La ~nformac16n en los otros arch1vos slempre se muestra en el orden en que fué captada Para la modlflcac16n de lnformac16n aparece en la pantalla la lnformaC16n en forma tabular que permlte de hacer un control a los datos entrada comparandolos con los datos en los formatos de recopl1ac16n de ~nformac16n En el caso que el ancho de la pantalla no permlte de mostrar todos los campos se pueden mlrar los demAs campos undlendo la tecla marcada CTRL y pulsando las teclas con las flechas derecha o lzqulerda OJO: Para borrar un caso se debe segu~r el s~gu~ente proced1m~enta. Lleva la barra 11um1nada hacia el caso a borrar, cuando esta parado alll unde la tecla marcada CTRL y mlentras la deJa undldo pulse la tecla U En la barra en la parte baJa de la pantalla aparezca a la derecha la palabra 'DEL' que lndlca se ha marcado el caso bara ser borrado. Para recuperarlo otra vez hace CTRL-U Nota que la palabra 'DEL' desaparece. Al termlnar la modlflcaCl0n de 1nformaC10n el slstema borrara todos los casos que han sldo marcados con 'DEL' Después que se haya hecho las modlflcaCl0nes necesarlas se puede termlnar la modlflcac16n undlendo la tecla CTRL y pulsar la tecla 'W' o la tecla marcada 'END' El slstema procederá a pasar la lnformac16n del archlvo temporal al archlVO Prlnclpal y regrese al Men~ de Reglstro de Informac16n De all! se puede volver a entrar a la ModlflcaC16n de Informaclón o volver al Menó Prlnclpal de Opclones VI Compactack6n de Informack6n El más kmportante archlvo donde se guarda lnformac16n es el archkvo relaclonado con los datos referente a la compra de yuca fresca y sus vendedores cual lnformac16n se recoplla por medlo de la Factura de Compra de las Organlzaclones EJecutores del proyecto Normalmente se da el caso que un agrlcultor vende más que una vez yuca fresca a una organlzack6n de secado de yuca durante la mlsma campaHa Sln embargo puede ser que no se reglstra todos los datos del vendedor cada vez que vende S610 hay necesldad de reglstrar una vez en la campaHa los datos referente a su forma y area de tenencla de tlerra, vereda y dlstancla del cultlvo a la planta de secado de yuca En el procedlmlento de compactac16n de lnformaC16n SYSYUCA cruza las ventas del mlsmo agrlcultor con el fin de obtener una lnformac16n completa Ademas el procedlmlento suma las ventas de un agrlcultor en un mes en un caso aSl dlsmlnuyendo conslderablemente el espaclo ocupado en dlSCO por el archlvo de compra de yuca Se recomlenda de sacar unas Coplas de Segurldad a las archlVOS de datos antes de pasar a la compactac16n para eVltar la pérd1da de lnformaclón en caso de un fallo en el fluJo eléctrlco durante la compactac16n En este caso se debe relnstalar las coplas de los arhlvos y repetlr la compactac1ón (Vease el capitulo VIII otras FunClones del Slstema para sacar copias de segur1dad y la re1nstalac1ón de ellas) Para hacer la compactac1ón se neceslta de escoger la opc16n 5 desde el Mená Prlnc1pal de Opc10nes Después de haber entrado correctamente su Palabra Clave para la compactac16n el slstema muestra un mensaJe expl1cando el fin de la compactac16n Sl se declde de segulr se contesta 'SI' a la pregunta pertlnente En pr1mer lugar el slstema controlará Sl eXlste suflclente espaclo en el d1SCO para poder eJecutar el proced1m1ento, Sl no es asi el slstema emlte un mensaJe y regresa al Menó PrlnC1pal Sl hay suflClente espaclo d1sponlble en el D1SCO Duro el slstema procede a eJecutar la compactaclón, lndlcando en la pantalla los avances en el proceso Al termlnar la compactaclón se regrese al Menó Pr1nc1pal Se puede 1nterrumplr la compactac16n a cualquler momento pulsando la tecla marcada 'ESC' slempre y cuando aparece el mensaJe 'Para lnterrumplr pulse la tecla ESC' en la óltlma llnea de la pantalla En este caso el proceso se 1nterrumpe después algunos momentos y el slstema vuelve el control al usuar10 por med10 del Menó Pr1nc1pal OJO: La compactacl~n de lnformacl~n de las compras de yuca fresca slempre se debe eJecutar antes de sacar el lnforme de evaluaclen sobre 'Compras y Abasteclmlento' para obtener resultados de mayor conflabllldad S~lo no hay necesldad de hacer la compactac16n cuando no se haya entrada nueva lnformacl~n de compra de yuca fresca desde la ~ltlma vez que Sl hlZ~ la compactacl~n.VII Evaluac~6n de Proyectos de Secado de Yuca Después de haber al~mentada la ~nformac~6n, sacada los l~stados pert~nentes, haya hecho el control de la ~nformac~6n captada, mod~f~cado los errores encontrados y eJecutada la compactac~6n de ~nformac~6n se puede segu~r a sacar los ~nformes de evaluac~6n para los meses, reg~ones y organ~zac~ones de los cuales se han reg~strada toda la ~nformac~6n Var~os de los ~nformes neces~ta ~nformac~6n de d~st~ntos arch~vos, por lo tanto es ~mportante de haber entrada la ~nformac~6n de todos los formatos de re-cop~1~ac~6n de ~nformac~6n En el Apénd~ce B se da un eJemplo de cada ~nforme, se ~nd~carA cuales arch~vos de datos está ut~l~zando el s~stema en la preparac~6n del ~nforme y se da las f6rmulas con los cuales se llega a los resultados OJO: 81 no se ha reg1strada toda la 1nformac1ón necesar1a para un 1nforme los resultados no son conf1ables Para produc1r los 1nformes de evaluac16n se debe escoger la opc~6n 7 desde el Mend Pr~nc~pal de Opc~ones S~n embargo hac~endo eso d~rectamente se notará que SYSYUCA no da acceso a este parte del programa hasta que no se hayan def1n1da el per~odo y las reg~ones que se deben ~nclu~r en los ~nformes Por lo tanto se debe escoger pr1mero la opc16n 2 para hacer estas def1n1c~ones Escog~endo la opc~6n 2 desde el Mend Pr1nc1pal de Opc10nes el s1stema pregunta por el pr1mer y el dlt1mo mes a 1nclu1r en los l~stados Se entra los ndmeros de los meses (1-12) cerca de lo cual el ndmero del dlt1mo mes debe ser 19ual a o mAs grande que el ndmero del pr~mer mes OJO . La numerac1ón de los meses se emp1eza con el mes que se haya def1n1da como pr1mer mes de la campaBa de secado de yuca as! que cuando la campaBa arranca p.e. en el mes de JUn10, este mes tendra el numero 1, Ju110 el numero 2, Agosto el numero 3 etc. En la pantalla aparece un mensaJe que 1nd1ca cual de los meses se ha def1n1da como pr1mer mes de la campaBa Después de haber def1n1do los meses a ~nclu~r en los ~nformes el s~stema da la poss~b~l~dad de marcar un rango de reg~ones En los ~nformes se 1ncluyeran todas la reg~ones desde la reg~6n marcada como 'REGION INICIAL' hasta la reg16n marcada como 'REGION FINAL' Para 1nclu~r s610 una reg16n se debe marcar la m~sma reg~6n como 'REGION INICIAL' y como 'REGION FINAL' Después que se haya marcada las reg~ones el s1stema regresa al Mend Pr~nc~pal de Opc10nesOJO La def1n1c1ón del per10do y reg10nes s1gue v1gente para todos los 11stados y/o 1nformes de evaluac1ón hasta que se vuelve a entrar a la def1n1c1ón de per10do y reg1ón o hasta la term1nac1ón de la seSS1ón. Ahora, al escoger la opc~6n 7 el s~stema hace dos preguntas En pr~mer lugar s~ se qu~ere sacar los 1nformes para una organ~zac~6n especif~ca Cuando contesta 'SI' el s1stema da la pos~b~l~dad de def~n1r de cual organ1zac~6n se preparará los ~nformes Este s1gue v~gente hasta que se regresa al Mend Pr~nc1pal de Opc~ones En segunda lugar el s~stema pregunta s~ se qu~ere ~mpr~m1r los 1nformes S1 se contesta 'SI' todos los 1nformes se env1ará hacia la sa11da de 1mpresora de su computador Para la 1mpres16n de los 1nformes de evaluac16n se neces1ta 80 columnas, que s1gn1f1ca que se puede 1mpr1m1rlos en papel de 8 5 cm de anchura ut111zando el tamaHo estandar de letras La 1mpres16n de los 1nformes de evaluac16n s610 se puede deshab111tar volv1endo al Men~ Pr1nc1pal y volver a escoger la opc16n 7 Contestando 'NO' a la pregunta de 1mpres16n hace que los 1nformes no salen a la 1mpresora S1no en pantalla Después de haber contestado las dos preguntas se llega al Men~ de Informes de Evaluac16n Se puede escoger d1st1ntas clase de 1nformes En el encabezam1ento de cada 1nforme se 1nd1cará de cual reg16n o organ1zac16n se trata el 1nforme y cual meses han s1do 1nclu1dos La ~lt1ma opc16n del mend da la pos1b111dad de sacar todos los 1nformes para la reg16n o organ1zac16n escog1da S1 se escoge esta opc16n m1entras haya def1n1da anter10rmente una reg16n el s1stema le pregunta S1 se qu1ere sacar los 1nformes para cada organ1zac16n aparte En el caso de contestar S1 SYSYUCA producerá los 1nformes de evaluac16n de todas las organ1zac10nes ub1cadas en la reg16n selec10nada y term1ne de sacar los 1nformes para la reg16n en total En el cabezam1ento de cada 1nforme de evaluaC16n s1empre se 1nd1ca de que reg16n y/o organ1zac1ón se trata y de que meses La producc1ón de 1nformes s1empre se puede suspender pulsando la tecla marcada 'ESC' a lo cual el s1stema regresa al Mend de Informes de Evaluac1ón OJO Un fallo en el fluJo eléotr1oo durante la alaborao1on de los 1nformes puede oausar graves perd1das de 1nforma01on ouando estan ab1ertos aroh1vos de datos. Por lo tanto se reoom1enda de saoar oopias de sequr1dad por med10 del Mena de Operac10nes de S1stema a los arch1v08 de datos y de re1nstalarl08 81 se haya presentado este fallo en el flUJO eleotr10o.VIII otras Func~ones del S~stema 8 1 Hacer Cop~as de Segur~dad En el capitulo 3 ya se expl~c6 la ut~1~zac~6n de algunas func~ones a cual se t~ene acceso por med~o del Mend de Operac~ones del S~stema o sea la ~n~c~allzacl6n del slstema, la deflnlcl6n de valores de calculo y la deflnlcl6n de Palabras Claves Sln embargo por medlO de este menu se tlene tamblén acceso a algunos funclones adlclonales que son de gran lmportancla para el maneJo correcto de SYSYUCA sacar copias de segurldad, relnstalar Coplas de Segurldad, borrar contenldo de archlvos de datos y lmprlmlr la documentacl6n Entonces regresa al Mend de Operaclones del Slstema escoglendo la opcl6n 8 desde el Menñ prlnclpal y teclanda su Palabra Clave Toda el trabaJO hecha con SYSYUCA se puede perder en un momento por razones aJenas al slstema Un daHo en su computador, un fallo en el fluJo eléctrlco, algulen borr6 sus archlvos Sln su permlso son algunos de las razones que pueden slgnlflcar la pérdlda de grandes cantldades de lnformac16n Sacando oportunamente Coplas de Segurldad a sus Archlvos de Datos es su seguro más efectlvo contra estos hechos Para hacer coplas de Segurldad escoge la opcl6n 5 del Mend de Operaclones del S~stema S~n embargo, pr~mero asegurase que se t~ene suf~c~ente d~skettes l~stos para hacer las copias El ndmero de d~skettes que se va neces~tar depende de la cantldad de ~nformacl6n almacenada, pero normalmente entre 3-5 d~skettes debe alcanzar Entre el pr~mer dlskette en en el drlve A y empleza el proceso Cuando est á llen6 el dlskette su slstema DOS le p~de de entrar el pr6x~mo dlskette, hasta que se haya coplado todos los archlvos de datos OJO. Numere sus dlskettes de segurldad en el orden en que los entro y guardalos en un lugar seguro d~stlnta a dOnde esta su computador OJO A sacar copias de segurldad SYSYUCA reglstra la fecha del Slstema Operatlvo. Es lmportante que se haya deflnldo la fecha correota al prender su computadora OJO: Se reoomlanda de saoar oopias de segurldad al flnal de oada seSSlon de SYSYUCA en que se reglstro o modlflcO lnformaclon. Ademas slempre saque Coplas de segurldad antes de pasar a la compactacl0n del arohlvo de Compra de Yuca Fresoa 8 2 Relnstalar Coplas de Segurldad En el caso que se haya da Hado por cualquler razon un archlvo de dato se puede re~nstalar las copias de segurldad utl11zando la opc16n 6 del Menú de Operaclones del Slstema Escoglendo esa opc16n SYSYUCA le muestra la fecha cuando se sacaron las ñltlmas copias de segurldad y le pregunta Sl qulere segulr Entre el prlmer dlskette en el drlve a y pulse cualquler tecla Cuando se termlna de relnstalar toda la lnformac16n del dlskette se debe entrar el segundo dlskette Asi se debe entrar todos los dlskettes de segurldad hasta que se haya relnstalada todo En caso que se falla el proceso se debe empezar toda la relnstalac16n desde el prlnclplo Al termlnar la relnstalac16n SYSYUCA le pedlrá de esperar hasta que termIne algunos procesos de reordenacIón de archIvos después de 10 cual regrese al Mend de OperacIones OJO: Al re1nstalar arch1vos de datos se perdera toda la 1nformac1&n reg1strada y todas las mod1f1cac10nes hechas desde la alt1ma vez que se sac& copias de sequr1dad. Relndexar ArchIvos SYSYUCA ut1l1za algunos denom1nados archIvos de INDEX para la rap1da busqueda de lnformac16n y durante la producc16n de los 11stados En algunos casos se puede daRar estos arch1vos y se hace necesar10 de eJecutar un Relndexado Tamb1én se debe hacer un re1ndexado cuando se camb1a los arch1vos de datos por afuera del SYSYUCA, p e 1nteract1vamente ut1l1zando DBASEIII o MFOXPLUS, SIn que se t1ene act1vos los archIVO de Indexes correspond1entes En el caso que se haya borrado archIvos de lndex, todos los archIvos que tIene la extens16n IDX, se puede recuperarlos eJecutando la re1ndexac16n La re1ndexac16n se eJecuta escogIendo la opc16n 7 desde el Mend de Operac10nes del S1stema M1entras estA en funcIonamIento SYSYUCA muestra un mensaJe de espera Espere hasta que se haya regresada al Mend de Operac10nes Se puede lnterrump1r el re Indexado pulsando la tecla marcada 'ESC' después de lo cual SYSYUCA regrese al Mend de Operac10nes después un momento 8 4 Borrar la InformacIón de ArchIVOS de Datos En algunos casos se puede tener neces1dad de borrar toda la lnformac16n regIstrado en los archIvos de datos En este caso se debe escoger la opc16n 8 del Mend de OperacIones del SIstema A escoger este opclon SYSYUCA le p1de de conf1rmar de que archIVOS se qu1ere borrar 1nformac16n En el caso que se quelre re1n1c1a11zar la ut111zac16n del s1stema se puede borrar la 1nformaC16n de todos los arch1VOS Cuando emp1eza una nueva campaRa de pronto se qu1ere guardar la 1nformac16n de los arch1vos de SOCIOS y la INFORMACION DE LAS ORGANIZACIONES (Arclvo Planta dbf) Se puede actua11zar la lnformac16n (p e amp11ac16n de p1sta de secado, entrada de nuevos SOCIOS etc estos arch1vos por medIo de la mod1f1cac16n de lnformac16n OJO: Es de gran 1mportanc1a de guardar el secreto sobre su Palabra Clave para operac10nes de s1stema para eV1tar que personas no-autor1zados pueden borrar toda la 1nformaC1&n req1strada en el s1stema. 8 5Cuando se qU1ere sacar otra copla de este manual la opc16n 9 del Mend de OperaCIones del SIstema suf1clente papel dIsponIble, preferIblemente del 9 5*11 cm se debe escoger Se debe tener tamaRo 8 5*11 o IX Errores Durante la eJecucc16n de SYSYUCA pueden ocurrlr clrcumstanclas que lmplde la correcta eJecucc16n del programa SYSYUCA es capaz de atrapar la mayor parte de estos errores y de dar al usuar10 la 1nformac16n necesar1a para poder Soluc10nar la sltuac16n En caso que SYSYUCA se enfrenta con un error se pare 1nmed1atamente la eJecucc16n del programa, se mande un mensaJe a la pantalla lnformando que clase de error ocurr1ó y proponlendo al usuarlO una pos1ble SolUC1ón Después SYSYUCA puede segulr tres rutas depend1endo del clase de error encontrado Pr1mero, regresar al Men~ Pr1nclpal de Opc10nes Segundo, regresar al Slstema Operat1vo DOS Tercero, volver a eJecutar desde el ~lt1mo comando dónde se presentó el error Este ~lt1ma ruta sólo se toma en el caso que SYSYUCA mande algo a la lmpresora y encuentra que la lmpresora, por una o otra razon, no está llsta para lmprlmlr Se puede al1star la lmpresora y volver a empezar la 1mpres1ón pulsando cualquler tecla OJO 81 un error se s1gue presentando cada vez en el m1sma parte del s1stema se debe anotar la 1nformaclon del error que aparece al p1e de la pantalla y recurr1r a aS1stencla profes10nal. La mayor parte de los errores ocurren cuando se haya daHado o borrado arch1VOS que neces1ta SYSYUCA En el caso que son arch1vos de lndexado se debe eJecutar la Relndexaclón desde el Men~ de Operaclones del Slstema Sl se trata de archlvos de datos se debe relnstalarlos desde el dlskette con las copias de segurldad En caso que faltan archlVOS de lnformes (extenslón daRO o borró un archlvo de memorla se debe coplarlo desde el dlskette or1g1nal En este dltlmo caso no se debe 01v1dar de repet1r la deflnlc1ón de los valores de calculo desde el Men~ de Operaclones del Slstema En el caso que se haya daHado o borrado los archlvos de comando del slstema se debe recomp1lar de nuevo los archlvos de extenslón PRG con la ut1l1dad MFOXCOMP En el Apénd1ce C se 1nd1ca de la mayor parte de los arch1vos como de recuperarlo en el caso que se hayan pérd1da o daHada otro clase de errores que puede ocurr1r t1ene que ver con el equ1po que se está ut111zando Por eJemplo, se llenó eld1sco de trabaJO o no hay suflclente memor1a para poder eJecutar c1ertos proced1m1entos En este caso se debe Soluc10nar el error desde el Slstema Operat1va DOS p e creando espac10 en el d1SCO o en la memor1a de trabaJO No se espera que se encuentran errores en el SYSYUCA m1smo Sl se presentan SYSYUCA mande el mensaJe que no sabe a que se debe el error En este caso se debe anotar la 'Informaclón del Error' y recorrer a la ayuda de un profes10nal con conOClm1entos de programac1ón en MFOXPLUS OJO SOlo hay un error que no puede ser atrapado por SYSYUCA Este se presenta cuando el aroh1vo de DOS llamado CONFIG SYS no cont1ene las l1neas FILES=20 y BUFFERS=15. En este caso el s1stema se oanoele env1ando el mensaJe 'Too many f11es are open •• '. En este oaso se debe sallr del MFOXPLUS con el comando 'QUIT' y despUéS ed1tar su arch1vo CONFIG.SYS para aaadlr las l1neas menc10nadas por flnal, apague y prende su computador para que lea la nueva conf1gurac1~n y ya no aparecera el error 29 ApéndLce ªlos formatos de recopLlacLon de LnformacLon L-d-a-d------------------ --------------------------------1---------------------------------- ------------------------------------------------------- -------------------------------------------------------------- ------------------------------------------------------------------- --------------------------------------------------------- ","tokenCount":"9438"} \ No newline at end of file diff --git a/data/part_3/6189677129.json b/data/part_3/6189677129.json new file mode 100644 index 0000000000000000000000000000000000000000..f1e7503a9ed041354df2011b39c237a7e27501dc --- /dev/null +++ b/data/part_3/6189677129.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"662b12519d20a7526a067a7573b37e00","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/bfb2e655-1121-4875-9670-cd51909def92/retrieve","id":"1386569556"},"keywords":[],"sieverID":"93670ca6-9f0d-494b-b764-4ea2c25ebfb9","pagecount":"40","content":"On behalf of the committee of organizers, we would like to welcome our distinguished guests from Vietnam, Southeast Asia countries and elsewhere to take part in the \"One Health antimicrobial resistance (AMR) research coordinating workshop\" that is co-organized by International Livestock Research Institute (ILRI), London School of Hygiene and Tropical Medicine (LSHTM) and National Institute of Veterinary Research (NIVR) in Hanoi. We wish good health and happiness to all distinguished guests and participants and wish our workshop a success.The rise of AMR is a global crisis recognized as one of the greatest threats to human beings today. We are losing our first-line antibiotics. This makes the treatment of a broad range of common infections much more difficult. In fact, AMR is on the rise in every part of the world, especially in low-and middle-income countries where antibiotics are not managed in an effective manner in public health, animal health and environment management.It is great to see that governments and development partners have put important efforts and resources to combat AMR. However, it is necessary to coordinate these efforts to better synergize and achieve desired impact.This workshop provides a platform, regionally and locally, to share existing and upcoming initiatives in AMR in Vietnam and Asia and to discuss challenges and opportunities in this area. This will allow us to identify gaps, synergies and overlapping work on AMR research among programs and partners, and discuss collaboration modalities and priorities on AMR research.We hope you will have two productive days of interesting discussions. We sincerely wish that this workshop will be a great success not only as a chance to share knowledge and experience in AMR but also as the beginning of a long and fruitful cooperation among partners.We would like to thank all of you for your participation, in particular those of you who have travelled from far to come to Vietnam. We would like to thank the support of all partners in Vietnam in particular the Ministries, research institutes and universities and donors for the great partnership and support.Antibiotics and other antimicrobial drugs are among the most important tools available to medical and veterinary professionals for curing human and animal diseases and improving their welfare, yet these drugs are increasingly failing. To tackle antimicrobial resistance (AMR) challenges in low-and middle-income countries and ensure the sustainability of global food and health systems, several initiatives have been developed. At international level, CGIAR Antimicrobial Resistance Hub (CGIAR AMR Hub) and the International Centre for Antimicrobial Resistance Solutions (ICARS) have recently been launched. Fleming Fund has been funding various facilities regionally and nationally to help countries cope with AMR. In addition, AMR is at highlevel agenda of development partners such as the United States Agency for International Development (USAID), the World Bank, and United Nations agencies including the Food and Agriculture Organization of the United Nations (FAO), the World Organisation for Animal Health (OIE), and the World Health Organization (WHO).The workshop aims to:• Share the key international initiatives on AMR research and related programs, and their AMR strategies for Vietnam and Asia; • Share the AMR national strategy of Vietnam and national programs on addressing AMR in Vietnam and conduct a stakeholder mapping of AMR works; • Identify gaps, synergies and overlapping works on AMR research among programs and partners, and to discuss collaboration modalities and priorities for collaboration on AMR research;Date and location Despite recent global efforts to mitigate the impact of antimicrobial resistance (AMR), information and evidence on the effects of AMR on health and the economy have so far failed to be translated into actions in many parts of the world, especially in low and middle-income countries (LMICs). The International Centre for Antimicrobial Resistance Solutions-ICARS-is a new partnership that aims to conduct policy relevant applied research at international, national and local level to identify knowledge and evidence-based solutions in close collaboration with countries and key stakeholders. ICARS will support LMICs to conduct applied research relevant to their local challenges and therefore implementing aspects of their AMR National Action Plans (NAPs). It will aim to bridge the gap between science and policy translating national action plans into evidence based practices on the ground. Projects and activities will aim to build local capacity and capability to sustain and scale up the evidence-based solutions identified. Output will be made accessible and where appropriate in open repositories. ICARS will work internationally as a solution development partnership with projects and activities in various locations around the world. Through its work, ICARS will aim to partner with governmental bodies, policymaker and civil society foundations to support the delivery of the United Nations (UN) General Assembly AMR Resolution agreed in September 2016 and fill some of the gaps in the global response highlighted by the recent recommendations of the UN Inter Agency Co-ordination Group (IACG) on AMR in April 2019. ICARS will operate as partnership, coordinated through, and anchored by, hubs in Denmark, the International Livestock Research Institute (ILRI) based in Kenya, and elsewhere as ICARS expands over time. The partnerships will include research, policy, and technical participation from collaborating countries, academic institutions, and national and international organisations. The Royal Veterinary College conducts addresses the AMR challenge adopting an interdisciplinary One Health research approach. RVC leads the GCRF One Health Poultry Hub project, implemented in Vietnam in collaboration with LSHTM and national partners, to address the need to meet rising demand for poultry products while minimising risk to international public health from challenges such as AMR. RVC also leads the AMFORA consortium in collaboration with ILRI, WorldFish, RIA1 and other national partners, aiming to develop a smart approach to investigate human exposure to antibiotic resistance through aquaculture in Vietnam, and to develop a decision-making tool that simulates intervention scenarios to reduce antimicrobial use.Addressing antimicrobial resistance in agriculture in Asia: an overview of the Food and Agriculture Organization activities Katinka de Balogh 1 , Agnes Agunos 1 , Mary Joy Gordoncillo 1 , Domingo Caro III 1 , and Pawin Padungtod 2 1 FAO, Regional Office for Asia and the Pacific 39 Phra Athit Road, Bangkok, Thailand, 10200 (AA: agnes.agunos@fao.org; KDB Katinka.debalogh@fao.org; MJG: mary.gordoncillo@fao.org; DC: domingo.caro@fao.org). 2 FAO Vietnam, Emergency Center for Transboundary Animal Diseases Green One UN House Building,No. 304,Kim Ma Street,Hanoi,Viet Nam Countries in Asia have developed their national action plans (NAP) on AMR, based on the Global Action Plan (GAP) on Antimicrobial Resistance (AMR)-the blueprint for tackling AMR developed in 2015 by the World Health Organization (WHO) in coordination with the Food and Agriculture Organization of the United Nations (FAO) and the World Organisation for Animal Health (OIE). Countries pledged to strengthen regulation of antimicrobials, improve knowledge and awareness, and promote best practicesas well as foster innovative approaches using alternatives to antimicrobials and new technologies for diagnosis and vaccine development. The collaborative support of UK Fleming Fund (FF) and the United States Agency for International Development (USAID) has been critical in the region and select countries in achieving FAO AMR Action Plan's 4 focus areas which aligns with the WHO's GAP. Activities under each of the thematic areas implemented: 1) Awarenessvarious AMR awareness campaigns, in partnership with WHO and OIE and government stakeholders from different ministries were implemented and visibility materials produced promoting the prudent use of antimicrobials to preserve their efficacy; 2) Governance -development of multi-sectoral One Health strategies to contain AMR and supported the review of laws and regulations relevant for AMR mitigation through national legal assessments and by identifying areas to be addressed such as regulations on veterinary medicinal products, animal health and production, feed, food safety, pesticides, plant protection, environment, soil and waste, water quality, and institutional coordination, 3) Evidencein select countries, AMR laboratory capacities were strengthened and pilot projects to generate baseline level data on AMR from bacteria in healthy animals as well reviews on antimicrobial use (livestock, crops, and aquaculture) conducted. Capacity for veterinary drug residues were assessed and harmonized national veterinary drug residue monitoring framework developed and 4) Good practices: a study of producer/veterinarian's knowledge, attitudes and practices on AMU was conducted from which interventions to enhance producer/veterinarian's knowledge through effective communication and practices/support to curb AMU in the countries are enhanced.Overall, the activities strengthened One Health networks within the country and within the region to collaboratively address AMR. Baseline and preliminary data generated from surveillance, scoping reviews and KAP studies will be used to further improve stewardship of AMU in the animal sector. Data generated, and gaps identified so far could also be used to further inform research to understand the epidemiology of AMR in the region.Action research in CIRAD: how to promote collective action for antimicrobial use mitigation in South East Asia Antibiotic resistance is now a major public health issue, which requires global actions from the international community on governance (states, economic community and international organizations) and from research actors. The Cirad is very well positioned to develop work at the interface between research and surveillance in a typical cross-sectoral approach such as One Health (animal health, human and environment). The Cirad is actually organizing itself through the development of innovative projects in South-east Asia where this problem has become critical.The major challenge is to rationalize the use of antibiotics in animal husbandry, aquaculture and agriculture to reduce the risk of resistance and the impact on public health. Reducing the use of antibiotics will not systematically result in the reversion of existing resistances because some of them do not entail fitness costs. But on the other hand, this approach is essential to decrease the risk of persistence of certain resistances or the emergence of new ones, and in order to stop the situation worsening.Objectives are to promote a drastic reduction in the use of antibiotics and, at the same time, to support the implementation of regulatory measures and policies while mitigating the impact of these actions on animal health, farmers' livelihood, public health and biodiversity conservation. This requires the establishment of monitoring and surveillance systems able to assess the effectiveness of these measures from changing practices and emergence of resistance perspectives. Cirad's ambitions are to structure an interdisciplinary research offer at Animal-Environment-Human interfaces -strengthening collaborations with the public health sector -and to propose innovative approaches to support the measures taken by the health authorities.The support of the different stakeholders will be carried out through research-action projects in collaboration with our partners and, through awareness-raising and training actions on public health issues in the field of antibiotic resistance and reduction of AMU in livestock and agriculture. Methods such as participatory modelling or role-playing approaches will be applied in order to analyze the posture and role of the various players involved in the antibiotic sector (decision makers, agribusiness, salespeople, practitioners, breeders). The aim will be to propose a precise structural analysis of the actors involved, as well as a characterization of the interactions between different sectors and decision-making levels (collaboration mechanisms, communication and decision-making), and to finally identify and the co-develop mutually accepted solutions that can lead to collective action plans.Quantification of antimicrobial use and its impact on flock health among small-scale chicken flocks in the Mekong Delta of Vietnam Nguyen Van Cuong 1 , Marc Choisy 1,2 , Juan Carrique-Mas Background: The Mekong Delta of Vietnam is a hotspot of AMU Small chicken flocks are raised with large quantities of antimicrobials. However, there is a considerable diversity of AMU metrics, and it is not clear how these relate to each other. Furthermore, antimicrobials are often use prophylactically. We performed a longitudinal study on a large cohort of small-scale in the Mekong Delta (Vietnam).The aims were: (1) to describe the types and quantities of antimicrobial active ingredients (AAIs) used on flocks; (2) to describe critical time points of AMU; and (3) to compare AMU using different metrics; (3) to investigate the potential impact of prophylactic and therapeutic use of antimicrobials on flock health.Methods: Data on AMU (qualitative and quantitative), number of chickens in the flock, and clinical signs were weekly collected by chicken farmers using purposefully-designed diaries. A 'prophylactic use' event was defined corresponding with weeks when antimicrobials were used (but not in preceding weeks) and where no clinical signs observed reported in that week or in preceding weeks. A 'therapeutic use' event was defined for weeks when antimicrobials were used (but not in preceding weeks) following the onset of clinical signs. We used regression models and/or ANOVA to estimate of prophylactic/therapeutic use on the outcomes (onset of disease or mortality). We considered the effect of potential confounders including chicken age and AMU during the initial phase (brooding phase) and observation time of clinical signs.Results: A total of 236 products were used in 102 farms over 203 cycles of production. These contained 42 different antimicrobial active ingredients (AAIs), and 76.2% contained at least one AAI of 'critical importance' according to the World Health Organization. On average, chickens consumed 791.8 (SEM ±16.7) mg/kg at treatment, 323.4 (SEM ±11.3) mg/kg sold, and the treatment incidence was 382.6 (SEM ±5.5) per 1,000 days. AMU was more common early in the production cycle and was highly skewed, with the upper 25% quantile of flocks accounting for 60.7% of total AMU. There was no evidence that prophylactic AMU contributed to a reduction in the subsequent probability of disease in flocks. The impact on therapeutic use on mortality outcomes is under investigation. Results highlight the high magnitude of AMU in small-scale flocks, and suggest that in these systems AMU reduction efforts should preferentially target the early (brooding) period for prophylactic purposes.Session 3: AMR projects here and there (poster presentations) Antimicrobial use in shrimp and marine fish farming in Vietnam and concerns about the development of antimicrobial resistance Tran Thi Kim Chi Research Institute for Aquaculture No1, Vietnam Email: tkchi@ria1.org Aquaculture productions are increasing in Vietnam and are important sources of income, employment and food supply in Vietnam. However, diseases problems are hindering sustainable development of the fishery sector and are responsible for overuse of antimicrobials. Antimicrobials are used in aquaculture for both prevention and treatment purposes. Various antimicrobials including human products are used in fish and shrimp culture even for nontherapeutic purposes. The use of antimicrobials in health management of aquaculture farming is of great concern due to possible residues in aquatic products and emergence of antibiotic resistance in pathogenic bacteria. We conducted studies on the use of antimicrobials in shrimp and fish farming and analyzed the quality antimicrobial products. Farmers' knowledge on the use of antimicrobials for their fish and shrimp was also assessed.Results showed that 20 different antimicrobial products were used for disease prevention and treatment in shrimp and marine fish culture in Northern of Vietnam. Cage fish farmers said they purchased antimicrobial tablets readily available at a local pharmacy and sold for human use. A total of 25 antimicrobial products were obtained from 20 chemical shops to evaluate the quality of antimicrobial products commonly used in white leg shrimp (Litopenaeus vannamei) aquaculture in Northern Vietnam. Results revealed that only 1/12 products with a single antimicrobial contained an active substance within ± 10% (accepted level of variation) of the concentration declared on the product label. More than half of the products contained antimicrobial concentrations within < 1.0% to 90% of the declared concentration. The majority of the products provided inadequate or incorrect information on specific diseases to be treated, withdrawal time. The documented poor quality of antimicrobial products and inadequate labeling has negative impacts on effective disease treatment; contribute to development of antimicrobial resistance, and the use of such products is associated with food safety and occupational health hazards. There is an urgent need to strengthen diagnostic services, legislation and control of antimicrobial products in shrimp aquaculture and educate farmers on prudent antimicrobial use practices.Tran Minh Phu 1 , Nguyen Thanh Phuong 1 , Anders Dalsgaard 2 1 College of Aquaculture and Fisheries, Can Tho University, Vietnam, 2 Faculty of Health and Medical Sciences, University of Copenhagen, Denmark Email: tmphu@ctu.edu.vn Striped Pangasius catfish (Pangasianodon hypophthalmus) dominates finfish aquaculture production in Vietnam. Farmed mainly in the provinces of Dong Thap, Can Tho and An Giang in the Mekong Delta, this export oriented industry grew rapidly from 93 thousand tons in 2000 to 1.2 million tons in 2012; a level of production that was maintained in 2018. The combination of intensive production in open farming systems, i.e. influent and effluent water sources are frequently shared and directly used by several adjacent grow-out farms has been linked to frequent disease outbreaks and high mortality rates, mainly of bacterial aetiology. Bacillary Necrosis of Pangasius (BNP) and Motile Aeromonad Septicaemia (MAS) were the most common and economically the most serious diseases experienced by nearly all catfish farmers. Smallscale grow-out farmers reported 1 to 10 episodes per crop whilst large-scale farmers reported 1-5 episodes per crop (mean 3.04). Antimicrobial treatments for 5-7 days are common practice. Amoxicillin, doxycycline, florfenicol and mixture of sulfamethoxazole and trimethoprim are used to treat BNP and MAS.Thus, innovative approaches include investigating the effectiveness of the mode of application of the vaccine (i.e. immersion instead of manual injection), the alternative replacement of antimicrobials with immune stimulants and the development of fish health management approaches at a regional level (a zonal approach) are needed. In order to enhance the effectiveness of antimicrobials used in disease treatment, antimicrobial therapy for striped catfish should be rationalized. This should be done by evaluating and building up an antimicrobial susceptibility database, and by investigating the pharmacokinetics and pharmacodynamics of common antimicrobials used in striped catfish, e.g. by experimentation and/or by developing modelling approaches that allow extrapolations between different production practices and treatment regimes.Vo Thi Tra An Nong Lam University, Ho Chi Minh City, Vietnam Email: an.vothitra@hcmuaf.edu.vnThe impact of AMR on our life is real and very important. Let's have a look at the estimated figure that O'Neill has reported. At present, AMR cause 700,000 deaths per year, more than half of the deaths attributed to traffic accidents. In about the next 30 years, the deaths caused by AMR may increase more than 10-fold at meet the figure of 10 million, even higher than death due to cancer. AMR research contribute to the action plan to provide evidence and raise the awareness for the community to address AMR.Studies of antimicrobial resistance mainly focus on commensal bacteria and environmental bacteria such as E. coli, Acinetobacter, Aeromonas, Pseudomonas and Stenotrophomonas. Antimicrobial susceptibility testing was performed from pathogenic bacteria such as E. coli, Salmonella spp, Staphylococcus aureus, Pasteurella multocida, Actinobacillus pleuropneumonia, Haemophilus, Ornithobacterium, and Clostridium perfringens isolated from pigs, cows, dogs, chicken or raw material of animal origin (meat, milk).These studies assess the phenotypic and genotypic resistance, the potential of gene transfer from donor to recipient, the relationship between antibiotic use and level/ risk of resistance. Multiresistance and mobile elements in spread of resistance genes have also been studied. Factors such as species of animal, type of production were found to influence the level of resistance.The finance support for research relating to antimicrobial resistance in NLU come from PhD Projects. International organizations from UK, Sweden, USA, The Netherlands also contributed grants for AMR research. National and institutional collaborations also contribute to this issue. Budget from government and institute supported frequently to the researchers but in a limitation.The research on AMR in Vietnam not only provide information for the proper use of antibiotic in treatment and prevention diseases for animals but also participate to the change in the legislations of the country to meet the regional and international standards.Antimicrobial use and colistin-resistant E. coli in pigs and pig farm workers in Bac Ninh province, Vietnam Son TTD, Duong 1 , TQT 1 , Nhat TT 1 , Giang THT 1 , Hue TKV 1 , Olsen JE 2 , and Dalsgaard A 2 1 National Institute of Veterinary Research, Hanoi, Vietnam 2 Faculty of Health and Medical Sciences, University of Copenhagen, Denmark Antimicrobials seem widely used in Vietnamese pig production and resistance have been reported to a number of antimicrobials. The contribution of antimicrobial resistance (AMR) in pigs and pork to the resistance problems in the human sector is unknown in Vietnam and most other countries. The emergence of colistin resistance in indicator bacteria and bacterial pathogens have been documented in humans and studies have also reported colistin resistance in Vietnamese livestock. The emergence of colistin resistance in Vietnam is of concern because colistin is now a critical antimicrobial used in human medicine, but also because colistin resistance is associated with plasmids which may then transfer to other bacteria, e.g. with other plasmid-associated resistances like ESBL resistance. This study was carried out at 110 pig farms in four districts in Bac Ninh province, Northern Vietnam to understand the current situation of AMU and occurrence of colistin-resistant E. coli in pigs and farm workers. About 60% of the 110 interviewed farm workers had inadequate knowledge on AMU, ex. did not recognize AMU and AMR as a potential public health problem. The AMU practices of the farmers were based on their own experiences (56%), advise from local veteterinarians (51%) and veterinary drug sellers (50%). Probably because of experiences with low quality drugs, about a third of the farmers increased the dose of antimicrobials 0.5 to 2 times when treating diseased pigs. A total of 116 pig manure samples and 94 excreta samples from farm workers were collected to determine antimicrobial resistance in E. coli. Resistance levels were high for ampicillin (farm workers (72.3%); pig manure (86.2%)); tetracycline (farm workers (72.3%); pig manure (84.5%)); sulfonamides (farm workers (67%); pig manure (82.8%); and trimethoprim (farm workers (64.9%); pig manure (72.4%). Resistance to five or more antimicrobials were seen among 44.7% and 62.1% of the E. coli isolates form farm workers and pig manure, respectively. Colistinresistant E. coli was found in 20.2% of farm workers and 45.7% of pig manure samples. Using PCR, the mcr-1 colistin resistance gene was found in farm workers (20.6%) and pigs (45.7%). Only one E. coli isolated from pig manure carried the mcr-3 gene. The mcr-2, mcr-4 and mcr-5 genes were not found. Further molecular studies including whole genome sequencing is needed to determine to what extent pigs and pig farm workers share the same population(s) of colistinresistant E. coli. Studies should also assess how termination of the use of colistin in Vietnamese livestock will impact pig health, farm economy and colistin resistance levels in both the livestock and human sector.Evaluating antimicrobial stewardship policy from a One Health perspective: a conceptual framework for quantitative evaluation N. Naylor*, J. Lines, J. Waage, G. Knight London School of Hygiene & Tropical Medicine, London, United Kingdom *Nichola.naylor@lshtm.ac.uk Background: Antimicrobial resistance is an issue that requires urgent cross-disciplinary action. Evaluating the full impact of new control measures, such as antimicrobial stewardship (AMS), requires a One Health perspective with multiple angles to account for interacting complexities. To inform the design of future evaluations we performed a literature review to determine what quantitative evaluations for interventions related to cross-sectoral issues, such as climate change, have been utilised previously. Using this evidence, we propose a new framework for the quantitative evaluation of AMS interventions.Methods: WebofScience, EconLit and Google were searched with combinations of \"one health\", \"economic\", \"evaluation\", \"health\", \"agriculture\" and \"climate change\", to collate previous evaluations (date of last search March 2019). Additionally, PubMed was searched with (\"one health surveillance economic evaluation\" in March 2019), as co-authors were aware of relevant literature in this field. Reference lists were also searched. Literature reviews on AMS impact within human health and agriculture, respectively, were consulted to extract relevant outcomes needed from future AMS evaluations.Results: 1479 unique abstracts were retrieved from the structured literature search. After two rounds of review (title/abstract and full text), 82 previous evaluations were included directly, alongside 15 previous literature reviews that were included narratively. The most commonly utilised methods included general equilibrium or systems approaches. Proposed outcomes that are useful for AMS-related decision makers include; incidence measures, human morbidity (e.g. disability adjusted life years) and mortality measures, intervention cost to individual sectors and productivity measures (such as impact on Gross Domestic Product). The proposed framework proposes a multi-level-compartmental-model; linking together mathematical epidemiological, microeconomic and macroeconomic impact modelling. This framework allows for the estimation of AMS intervention impact on the aforementioned outcomes.Quantitative evaluations of AMS policy, utilising the proposed framework, will help stakeholders across the One Health system have the information needed to efficiently tackle the issue of antimicrobial resistance Systems-thinking approach to identify hotspots for antibiotic resistance emergence and selection, and elucidate pathways of human exposure in selected aquaculture systems in Vietnam Aquaculture systems are highly complex, dynamic and interconnected systems influenced by environmental, biological, cultural, socio-economic and human behavioural factors. Intensification of aquaculture production is likely to drive indiscriminate use of antibiotics to treat or prevent disease and increase productivity, often to compensate for management and husbandry deficiencies. Surveillance or monitoring of antibiotic usage (ABU) and antibiotic resistance (ABR) is often lacking or absent. Consequently, there are knowledge gaps for the risk of ABR emergence and human exposure to ABR in these systems and the wider environment. The main aim of this study was to apply participatory systems-thinking approach to map two distinct aquaculture systems in Vietnamstriped catfish and white-leg shrimp -, in order to identify hotspots for emergence and selection of resistance, and human exposure to antibiotics and antibiotic-resistant bacteria, and to compare potential routes of human exposure to antibiotics in these systems. System mapping was conducted by stakeholders at an interdisciplinary workshop in Hanoi, Vietnam during January 2018, and the maps generated were refined until consensus. Subsequently, literature was reviewed to complement and cross-reference information and to validate the final maps. The maps and component interactions with the environment revealed the grow-out phase, where juveniles are cultured to harvest size, to be a key hotspot for emergence of ABR in both systems due to direct and indirect ABU, exposure to water contaminated with antibiotics and antibiotic-resistant bacteria, and duration of this stage. The pathways for human exposure to antibiotics and ABR were characterised as: occupational (at the farm and at different handling points along the value chain), through consumption (of food and water contaminated with residues and bacteria) and by environmental routes. Further, the participatory mapping process allowed the identification of potential drivers of ABU and interventions associated and of knowledge gaps. By using systems thinking and mapping by stakeholders to identify hotspots we demonstrate the applicability of an integrated, interdisciplinary approach to characterising ABU in aquaculture in order to understand fully the consequences, the relation to emergence and spread of ABR and the public health impact. This work provides a foundation to quantify risks at different points, understand interactions between components, and identify stakeholders who can lead and implement change.M. Garza 1 , B. Häsler 1 , L.A. Brunton 1 , C.V. Mohan 2 , B. Wieland 3 1 Royal Veterinary College, University of London, London, United Kingdom 2 WorldFish, Jalan Batu Maung, Penang, Malaysia 3 International Livestock Research Institute, Addis Ababa, Ethiopia Aquaculture is the fastest growing food sector in low-and middle-income countries (LMICs). Increased production has been achieved through intensification of aquaculture systems while neglecting aquatic health management. As a consequence, indiscriminate antimicrobial use (AMU) to treat or prevent disease and increase productivity is common, and often compensates for management and husbandry deficiencies. Regulation and enforcement for the responsible use of antimicrobials is often inefficient or absent. Further, there is a lack of a comprehensive framework to understand existing interventions to reduce AMU in the sector. The objectives of this study were to conduct a typology analysis of past, current, and planned strategies and interventions to tackle AMU in selected study countries and to provide an overview of the policy landscape in regard to AMU, focusing on aquaculture systems in LMICs. Initially, scoping discussions with stakeholders informed the selection of countries based on the aquaculture development stage, role of the sector, perceived AMU, initiatives against AMR and access of information, to obtain a good spectrum of representation and representation of aquaculture systems. Individuals with knowledge and/or experience in the design and implementation of interventions in LMICs, in Asia and Africa, were interviewed to (a) gather documentation on the policy and strategy landscape, (b) obtain information to identify suitable elements that inform grouping and categories for the typology analysis, and (c) obtain specific data on strategies to inform the analysis. The typology was framed according to the main purposes of the interventions, namely, (i) reducing AMU, (ii) providing alternatives to AM, and (iii) removing the original cause of the problem, e.g., addressing animal health management. Further, the specific objectives of the strategy or intervention were associated to different drivers of AMU. Additional elements for the analysis included the nature of the intervention (policy, capacity development, behaviour change, market incentives, etc.), key implementers and designers, time frame, geographic and production system scope, strength of intervention, etc. Analysis of the policy landscape revealed differences in policies across the different countries while poor enforcement seems to be common in the cases studied, restricted to market oriented commodities.In this study, we characterise existing strategies and interventions in aquaculture systems in LMICs to provide preliminary evidence on the effectiveness of strategies and interventions applied in aquaculture. Further, we propose an assessment framework to inform the design and implementation of future interventions, including definition of indicators to monitor impact of interventions.Engaging with complexity for improved veterinary antimicrobial stewardship in Thai Nguyen, Vietnam Cooper T 1,2,3 , Grace D 2 , van de Fliert E 3 , Nguyen-Viet H 2 , Nguyen-Thanh B 4 , Bui-Thi B 4 , Le-Thi-Hang N 5 , Tran-Thi N 6 , Pham-Duc P 6 , Phan-Thi-Hong P 4 , Pham Thi Trang 4 , Soares Magalhães R 1 1 School of Veterinary Science, The University of Queensland, Australia Objective: Towards finding context-appropriate solutions for antimicrobial stewardship (AMS) in Vietnam, this research aimed firstly, to identify the ways in which livelihood capitals influence AMS in smallholder livestock systems in Vietnam. Secondly, using a participatory approach, it aimed to identify leverage points for intervention for improved AMS.Materials and methods: Firstly, participatory group interviews identified stakeholders involved in AMS in cases of smallholder pig disease. These findings were used to develop and implement a cross-sectional survey of 82 animal healthcare workers and 210 smallholder farmers in Phu Binh District, Thai Nguyen Province, where smallholders comprise approximately 86% of households. This study aimed to describe how livelihood capitals influence AMS behaviours related to examination, diagnosis, treatment, prophylaxis and animal husbandry. Subsequently, a longitudinal survey followed pig and chicken disease case management on 110 farms for five months. Finally, in September 2018 these data were presented in a series of participatory stakeholder workshops aiming to, first as individual groups and then in a multi-stakeholder workshop, identify leverage points for intervention.Results: Throughout the research farmers and animal healthcare workers (AHWs) emphasized the significant roles smallholders played in disease management, largely attributed to their human capital and variably, to barriers in engaging with veterinary services. Farmer motivations for using antimicrobials in healthy animals overwhelmingly pertained to disease prevention. Knowledge of stewardship principles was lacking in all stakeholder groups. Over 5 months, 66 cases of chicken disease and 50 pig cases were recorded (individual cases included single or multiple animals with the same signs). Animals were examined by an AHW in fewer than one percent of cases. In cases where antimicrobials were sought, farmers' descriptions of clinical signs were most commonly used by an AHW to make a presumptive diagnosis and recommend treatment. From the final workshops, suggested leverage points spanned disease prevention, diagnosis and treatment and involved different scales and stakeholders. Participants in the workshops were encouraged and surprised at some suggestions of other stakeholder groups (farmers, AHWs and AHWs with a government role) for improving AMS, due to their synergy and at times, replication.This iterative approach aided a more nuanced, multi-perspective understanding of local constraints and opportunities for AMS. While the ultimate goal may be for all animal healthcare systems to adhere to global AMS standards, our research addresses the question of how we might support smallholder farmers and animal healthcare workers to make better stewardship decisions within their current livelihoods context. Key words: Antimicrobial stewardship, livestock, Vietnam, context-appropriate solutions, mixed methods Food and Agriculture Organization antimicrobial resistance action plan: an overview of completed projects under the four thematic areas (awareness, governance, evidence and good practices) Katinka de Balogh 1,* , Agnes Agunos 1 , Mary Joy Gordoncillo 1 , Domingo Caro III 1 , Hang Nguyen Thuy 2 , Pawin Padungtod 2 1 Food and Agriculture Organization of the United Nations, Regional Office for Asia and the Pacific, 39 Phra Athit Road, Bangkok, Thailand, 10200 (AA: agnes.agunos@fao.org; KDB Katinka.debalogh@fao.org; MJG: mary.gordoncillo@fao.org; DC: domingo.caro@fao.org). 2 FAO Vietnam, Emergency Center for Transboundary Animal Diseases, Green One UN House Building, No. 304, Kim Ma Street, Hanoi, Viet Nam (HN Hang.nguyenthuy@fao.org, PP: pawin.padungtod@fao.org).The objective of this poster is to describe the activities (research and projects) in Viet Nam relevant to the four thematic areas of the Food and Agriculture Organization's (FAO) Antimicrobial Resistance (AMR) Action Plan (2016-2020), the project objectives and key findings in Viet Nam and in other countries in South East Asia.Awareness: The FAO Regional Office for Asia and the Pacific developed a toolkit for AMR awareness campaigns. This is updated each year for the World Antibiotic Awareness Week celebrations and ongoing country and regional awareness and advocacy campaigns.Evidence: AMR surveillance, Antimicrobial Usage (AMU) survey, veterinary drug quality and residue monitoring were piloted in Viet Nam. In brief, antimicrobial susceptibility testing of Escherichia coli isolates detected high levels of resistance to aminoglycosides, macrolides, penicillins quinolones/fluoroquinolones, and sulfonamides but relatively lower levels of resistance to cephalosporins, carbapenems and polymixins. These findings appear to coincide with the AMU data collected (same classes), but the top ranking antimicrobial classes reportedly sold for use in livestock were: penicillins, tetracyclines, polypeptides and lincosamides. For the detection of residues (from 720 samples, 6 provinces), depending on the antimicrobial tested, there were inter-provincial and inter-species variations in the proportion of samples that tested positive on ELISA. However, the spectrum of chemical residues tested was limited (3 classes). In chickens tetracycline was the most frequently detected residue, whereas in pork, sulfonamide was the most frequently detected. Quantitative analysis of antibiotics collected from veterinary drug stores shown that 14 out of 144 samples (9.7%) did not have the quantity of active ingredients shown on the labels.Governance: Viet Nam has completed the review of legislation relevant to AMU and AMR. Specifically, for veterinary medicinal products, the review found that regulations are required to enhance veterinary oversight on AMU (require prescription) and reporting of importation data.Good practices: A study of the knowledge, attitudes and practices (KAP) indicated that more than half of the producers reportedly use antimicrobials primarily for the treatment of infections. However, there were also preventative uses when the farmers observed clinical signs, changes in environmental conditions and disease situations in adjacent farms. Only one-fifth of producers demonstrated favorable attitudes towards antibiotic use, preventing antibiotic resistance and administering antibiotics remained the preferred countermeasure directly applied by farmers at the first indication of disease.In other low-and middle-income countries that conducted similar studies, findings on AMU and AMR were relatively similar and gaps in the regulation of VMPs and key drivers of AMU and AMR, likewise, needed to be addressed. These studies serve as a baseline for further work on AMR mitigation in Viet Nam, inform further research to better understand the epidemiology of AMR in the human-animal-environment interface, provide a basis for the necessary regulatory changes in AMU and to further strengthen surveillance and monitoring capacities for AMR, AMU and veterinary drug residues. Introduction: In Vietnam the use of antimicrobials in livestock general and in pig production in particular has been perceived as not well regulated and practiced. This leads to the over-use of antimicrobials and would contribute to the antimicrobial resistance (AMR) in animals, human and the environment. While many studies have focused on quantification of antimicrobial use (AMU) and AMR profiles resistance in livestock production, much less has been known on how farmers and other actors on the social aspect of the AMU, meaning the drivers and decision leading to the AMU.Objectives: Our aimed to understand how and why antimicrobials are used in pig production and identify factors that influence the AMU in raising pigs in Vietnam. This study is part of the \"Health and Antibiotics in Vietnamese Pig Production\" (VIDA-PIG Project), funded by the Danish International Development Agency (DANIDA that addresses the major health issues affecting Vietnamese pig farms.The research was conducted in Bac Ninh province, located in the Red River Delta of Vietnam, about 30 kilometers from Ha Noi during the year of 2018 and 2019. The research team conducted 74 in-depth interviews with pig producers, local veterinarians, local authorities, leaders of department of health, veterinarian drug shops, feed shops, veterinarian drug companies, feed companies, organic food stores; 9 focus group discussions with farmers in different farm scale sizes namely small (<20 pigs), medium (<200 pigs), and large farm sizes (>200 pigs). Researchers also had 7 farm stay observations where they stayed 5-7 days in each farm to observe daily pig production activities and pig disease treatments.Our research shows that feeds used in medium and large farms were mainly industrial bran whereas small farms used a mixed feed of leftover food from restaurants and households, proceed feeds by farmer and industrial feeds. Farmers in small farms treated (injection) sick pigs themselves but also used local veterinarians' services when their pigs had serious illnesses. Farmers from medium farms treated sick pigs themselves only. Large farms had their own veterinarians who took care of the herd health. AMU in pig production was driven by multiple and complex factors such as profits of farmers, profits of veterinary drug shops and companies, meat market price, mass media and policy regulations. Veterinarian played important roles in AMU. The decision over whether or not to prescribe an antimicrobial was influenced by numerous factors relating to the veterinarians' experience, the clinical situation presented, and the profit they may earn from selling veterinary drugs.This study described the practices of feeding and pig health management in different size farms and examined the factors that influenced the AMU practices and decision of AMU of multiple actors in pig production. The profits of different actors along the value chain is key to AMU. Key words: AMU, factors influencing AMU, pig production, anthropological research, decision making, Bac Ninh, Viet Nam.In Vietnam antimicrobial use (AMU) in livestock production is not well managed. 80% of pork is produced by smallholder farmers where antibiotics used for disease prevention and growth promotion is popular due to its low cost of antimicrobials and lack of farmer's knowledge on the AMU. It was estimated that the AMU for overall consumption of in-feed antimicrobials (for pigs and chicken) was 1,024 tons per year. To reduce the AMU and move forward to a long-term goal of reducing AMU in livestock, an appropriate approach with a clear identification on benefit for farmers when reducing AMU is essential. The objective of this study was to test an intervention at farm level to reduce the AMU and AMR by replacing antimicrobials by nanosilver that is an antimicrobial chemical.Methods: Six small pig farms from Lap Thach and Tam Duong district, Vinh Phuc province were selected. Sixty 35 days old piglets from Vinh Phuc pig breeding center were obtained for this study. In each farm, 10 piglets randomly divided into two groups of five were raised in two pig housing plots. Both groups were fed with the same quantity of pig feed produced by Tan Viet company. In the control group, feed was added with Amoxicillin at 300ppm which reflected the business as usual of pig production in Vietnam. In the intervention group, feed was antibiotic-free but added with nanosilver (Sinavet 01 (Nano-san plus) commercialised product in the market) at 0.3% per kg of feed. Pigs were raised for 4 months from August to December 2018. We measured the pig weight at the experiment start (T0), after 1 month (T1), 2 months (T2) and 4 months (T4) to calculate the Average Daily Gain (ADG). 124 pooled pig fecal and floor samples (from 3 individual samples each) were taken from 6 farms monthly to analyse the resistance profile of E. coli. Antibiotic residues in 12 pork carcasses at sale were analysed. Quantity of feed use, price and body weight of pigs at sale were recorded. Farmers were asked to manage and record pig health (sickness, treatment) as they practice normally without any influence of research team.The pig weight varied from 11.3 to 11.8, 22.8 to 28.6, 43 to 59, 84 to 111.6 kg/pig at T0, T1, T2 and T4. No significant difference in ADG was observed between the control and intervention group at all times of measurement (p>0.05). Prevalence of E. coli in both fecal and floor samples was 100%. Testing susceptibility with 10 commonly used antibiotics in Vietnam revealed high resistance rates of 100% to Vancomycin and Penicillin G, followed by Colistin (97.6%), Ampicillin (97.4%), Trimethoprim (93.0%), Tetracycline (92.1%), Florfenicol (88.9%) Doxycycline (86.0%) and Neomycin (75.4%). There was no significant difference in AMR profile of E. coli between the control and intervention group. No antibiotic residue was found in pork from the intervention group. One (out of six) pork sample of the control group was detected to have Amoxicillin at 26.3 µg/kg (vs. 50 µg/kg as MRL for Amoxicillin in pork) for a withholding period of seven days. In conclusion, the use of nanosilver as replacement of antibiotic added to the feed showed no difference in ADG, nor in AMR profile of E. coli in a small-scale pig production. These trial results are encouraging to potentially offer an alternative to antibiotic use in pig production to reduce AMU and AMR. An environmental impact assessment of nanosilver is needed before scaling up this use Key words: AMU, AMR, alternative, pig production, nanosilver, trial The use of antibiotics for therapeutic purposes in pig production in Bac Ninh province, Vietnam Dinh Thi Phuong Hoa1, Dang Thi Thanh Son2, Nguyen Tran Kim Hue2,Nhat TT2,Bui Mai Huong4,Kieu Duc4,Hu Suk Introduction: Antibiotics (AB) are currently threatened by the emergence of antibiotic resistance (ABR), leading to a lack of options to treat infectious diseases in people, livestock and aquaculture. Thus, it jeopardizes human health, animal health as well as food and nutrition security. In Vietnam, the pig sector contributes a considerable part to the overall amount of AB used (ABU) in food animal productions, leading to AB residue in pork and an increased risk of ABR. This study aimed at understanding the practices of using antibiotics in pig farms for disease treatment in Vietnam.The research was conducted in Bac Ninh province in 2018 and 2019. We selected 110 pig farms from different farm scale sizes namely small (<20 pigs), medium (<200 pigs), and large farm (>200 pigs). Data on household socioeconomics, pig production system, farm management and the use of antibiotic, knowledge, attitude and practice of ABR and ABU and were collected by questionnaire to the owner or worker of these pig farms. Farmers were also interviewed on pig health management (diagnose and treatment) with antibiotic. A record system was set up with 110 record books on ABU for therapeutic use at pig farms where farmers are trained and asked to record the quantity, purpose, duration of the use and the type of antibiotics during 4 months from September to December 2018.The survey shows that the majority (82%) of farmers did not know about the banned antibiotics. 50.9 % of them did not know the overuse of antibiotics in pig production can affect human health. 34.5 % of farmers said they followed the instruction of the drug use, 34.5% did not while 30.9% of farmers followed the veterinarian advices. When using antibiotics to treat sick pigs, 30.9% indicated that they increased the dose while 3.4% decreased the dose. 80% of farmers bought antibiotics at vet drug stores; 38.2% took antibiotics from local veterinarians or para-vets whereas 8.2% purchased antibiotics from marketing staff of vet drug companies. Educational level, working experiences were identified as factors to be significantly associated with knowledge of farmers while influencing factors of practices were gender and knowledge (P<0.05). The findings from the records book revealed that antibiotics were used for therapeutic purpose at 77 farms (70%). Of those 77 farms, 53.2% were shown to have correct practices and 46.8% incorrect practices in using antibiotics for treating sick pigs. During the observation, antibiotics were used 97 times, including 45 different types of antibiotics divided into 9 groups of antibiotics. Of those 97 times, increased the doses were recorded 43 times (44.3%) and decreased the doses were seen 2 times (2.6%). However, we did not know whether the use of AB of pig farmers for therapeutic purpose were necessary or not.Our study shows that the use of antibiotics for therapeutic purpose in pig production was common in Bac Ninh. Most of the use was not appropriate as farmers increased the doses, treated sick pig themselves without diagnose or without seeking help from a veterinarian. These results would be useful to plan trainings and interventions to improve farmers' KAP on AB use in pig production.Key words: Antibiotic use, Bac Ninh province, pig farms, therapeutic purpose, Vietnam.","tokenCount":"7516"} \ No newline at end of file diff --git a/data/part_3/6194997333.json b/data/part_3/6194997333.json new file mode 100644 index 0000000000000000000000000000000000000000..d806dcddf22f5158612f5e4bdf320b0299d9bbc9 --- /dev/null +++ b/data/part_3/6194997333.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"6eed0752ded5c6dcd4e65f686c8814e2","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/e56b71b5-b6c0-4e2f-b06e-dbe209d704d1/retrieve","id":"-666015721"},"keywords":[],"sieverID":"901da8f5-42e3-4446-9d66-99b68c5257f5","pagecount":"74","content":"El Centro Internacional de Agricultura Tropical (CiAt) agradece a la Universidad Nacional de Colombia, sede Palmira, por habernos permitido liderar este proceso de zonificación de cultivos de relevancia socioeconómica en el departamento. Del mismo modo, expresamos nuestra gratitud con la Gobernación del Valle del Cauca y el Sistema General de Regalías como financiadores del proyecto. Asimismo, a la Sociedad de Agricultores y Ganaderos del Valle del Cauca (SAg) y a la Unidad de Planificación Rural Agropecuaria (UPrA) por las contribuciones de información que, como fuente de consulta secundaria, sirvieron como cimiento para la construcción de nuevos conocimientos.Por último, extendemos un especial agradecimiento al equipo de trabajo de la UNAL y del CiAt por su compromiso y apoyo con esta investigación, y de forma particular a: Alejandra Galvez, Lizette Diaz, Natalia Gutierrez y Mark Lundy (CiAt) Carlos Germán Muñoz, Eyder Daniel Gómez, Herney Darío Vasquez y Raúl Saavedra (UNAL) Mónica Cifuentes (joven investigadora, UNAL).En Colombia, es necesario que los productores adquieran conocimientos y desarrollen capacidades en temáticas concernientes a las cadenas de valor y, de este modo, bajo propuestas de carácter incluyente accedan a los mercados. Así, a partir de esta base, se ha desarrollado el proyecto de regalías: \"Incremento de la competitividad sostenible en la agricultura de ladera en todo el departamento, Valle del Cauca, Occidente\", el cual, mediante un enfoque participativo de aprendizaje en dichas temáticas, ha fomentado la circulación de conocimiento y el intercambio de información.Elaborar la zonificación agrícola del cultivo de aguacate Hass en el marco del proyecto \"Incremento de la competitividad sostenible en la agricultura de ladera en todo el departamento, Valle del Cauca, Occidente\", del Fondo de Ciencia, Tecnología e Innovación (FtCEL) del Sistema General de Regalías (Sgr).• Identificar los requerimientos ambientales para el desarrollo eficiente del cultivo de aguacate Hass. • Identificar las variables (suelos, clima, terreno) existentes para las zonas de ladera en el departamento. • Identificar las variables requeridas del componente físico, socioecosistémico y socioeconómico adyacentes e involucradas con el cultivo de aguacate Hass en ladera. • Determinar (indicar) las diferentes aptitudes de las zonas de ladera del Valle del Cauca respecto a las proyecciones de cambio climático para el año 2050.Fortalecer las iniciativas de competitividad del sector hortofrutícola es un componente necesario para apuntalar estrategias vinculadas a la seguridad alimentaria y el desarrollo socioeconómico del país y de la región. Las iniciativas de zonificación como herramientas de conocimiento dirigidas al mejoramiento de la toma de decisiones en este campo tienen, a nivel nacional, una serie de aproximaciones que dan cuenta del panorama y las condiciones del sector, en este caso del aguacate Hass. A continuación, se hace una reseña de estas iniciativas.En el año 2015, Bancoldex y la Ut Crece -Federación Nacional de Cafeteros de Colombia presentaron un ejercicio de zonificación a nivel nacional, el cual arrojó como resultado que el 3 % de la superficie del país tenía condiciones aptas para el cultivo del aguacate Hass. A su vez, se destacó que los departamentos con mayor superficie con aptitud alta eran Antioquia, Cauca, Valle del Cauca, Santander y Huila.Por su parte, en el 2017 la Unidad de Planificación Rural Agropecuaria (UPrA) presentó su ejercicio de zonificación del aguacate Hass a nivel nacional. Los resultados de este estudio mostraron que un 3,5% de la superficie del país poseía tierra apta para el desarrollo del cultivo, pero solo un 0,6 % de esta área tenía el potencial más alto. Así, los departamentos que más destacaban por su potencial eran los siguientes: Antioquia, Cauca, Santander, Boyacá y Huila.Otro trabajo de zonificación fue llevado a cabo por Ramírez-Gil et al. (2018) mediante la aplicación de modelamiento de nicho ecológico. En este estudio, se tomó como referente unidades productivas mayores a una hectárea y, como insumos, variables ambientales y otras derivadas de modelos digitales de elevación. Los resultados arrojaron zonas con rangos de porcentaje de aptitud diferentes, ubicadas en particular en las tres vertientes montañosas y en los valles interandinos de ríos como el Magdalena y Cauca. Todas estas áreas tienen un rango altitudinal entre los 1.400 y 2.500 m s.n.m. A nivel regional, Bernal (2011) realizó un estudio en Antioquia, en el cual tomó como referente el manejo agronómico, los rendimientos y la calidad del fruto, para determinar las zonas más aptas para el cultivo del aguacate Hass en este departamento. Como resultado, se halló que factores como la temperatura, las precipitaciones y la radiación solar son de gran influencia. Sin embargo, también se evidenció una gran correlación entre los entornos ambientales a altitudes bajas y los climas cálidos, los cuales provocaban baja calidad del fruto. Así, en altitudes menores a 1.770 m s.n.m, los frutos presentaron bajos contenidos de pulpa, pero en lugares por encima de esta altitud, los frutos alcanzaron calidades extra con altos gramajes.Con respecto al aguacate, este es un frutal del género Persea, originario de las cordilleras de México y las serranías de Guatemala. Se caracteriza por su variabilidad y número, con 92 géneros registrados y unas 2800 a 3300 especies no registradas, que se distribuyen a lo largo de las regiones tropicales y subtropicales (Renner, 1999). El aguacate Hass es un cultivar derivado del cruce espontáneo de cultivares guatemaltecos y mexicanos.Por lo general, la primera cosecha plena sucede al término de los primeros cuatro años del cultivo. Una de las características principales de este árbol es su capacidad de producción sin la necesidad de gran diversidad de polinizadores. El aguacate Hass es una variedad \"de comportamiento en zonas medias, fruto oval y piriforme, cáscara rugosa de tamaño mediano, de color verde que se oscurece al madurar, y se torna negro, de pedúnculo corto y resistente a la manipulación y al transporte\" (Bancoldex y UtCF, 2015). A pesar de su pequeño tamaño, otra de sus características fundamentales es su alto contenido de aceite; y, si bien el factor genético determina algunas de estas características, se debe tener en cuenta que los medios de producción también determinan la mejora de algunos de estos caracteres (Ortega, 2015).En cuanto a las condiciones ambientales, estas inciden de forma significativa en el desarrollo y producción del cultivo. En especial, aquellos factores como la temperatura, las precipitaciones y el viento; así como otros incidentales, como la calidad del aire, la morfología del árbol y la ubicación espacial de la plantación. Con respecto a los factores principales que impactan la cadena del aguacate Hass durante la poscosecha, están los fuertes vientos, que ocasionan laceraciones en los frutos, lo cual conlleva a procesos de deterioro. Por otra parte, los factores fitosanitarios también son frecuentes, dependiendo del impacto de las precipitaciones sobre el cultivo, especialmente en la época de floración, lo que deriva en la aparición de patógenos y plagas (DANE, 2016).En la actualidad, la variedad Hass corresponde al 80 % de los aguacates que se consumen a nivel mundial (Bernal et al., 2014) y en Latinoamérica están sus principales productores, en orden descendente: México, Chile, Brasil, Perú y República Dominicana. En el caso de Colombia, al poseer una gran variedad de pisos térmicos, esto abre la posibilidad de su producción en muchas áreas geográficas y, a su vez, muestra una amplia variabilidad en los rendimientos y comportamientos del cultivo. Con respecto a los principales departamentos productores de esta variedad en el país están Tolima, Antioquia, Caldas, Bolívar, Santander, Cesar y Valle del Cauca.Con relación a la realización de la zonificación para el cultivo del aguacate Hass en la zona de ladera del Valle del Cauca, esta apunta al entendimiento -por parte de las organizaciones y cultivadores de las zonas de ladera en el departamento-de la forma en que los aspectos físicos, climáticos y geomorfológicos, articulados con los socioeconómicos y socioecosistémicos, impactan ahora y en el futuro (proyecciones al año 2050) el sector agrícola focalizado en el aguacate Hass. Con esto, se espera que puedan llevarse a cabo estudios más específicos, en lo concerniente a las medidas de adaptabilidad que los agricultores deben aplicar y al apoyo institucional o sectorial que debe implementarse. Otro alcance de la zonificación es la posibilidad que se le presenta a las distintas empresas que promueven el cultivo, prestan asistencia y llevan a cabo programas de extensión para la cadena del aguacate Hass, ya que, al tener referentes de aptitud por zonas y referentes climáticos presentes y futuros, pueden llevar a cabo una planeación estratégica mucho más concreta.Por otra parte, el estudio de zonificación presenta tres limitaciones principales:1) La zonificación en esencia es una herramienta que señala, de forma general, la aptitud de un cultivo, en este caso bajo ciertas restricciones, sujeta a escala y a la resolución de los datos utilizados. Es relevante entender que, para mejorar la predicción de la aptitud y ser más concretos al determinar localmente las condiciones para llevar a cabo proyectos productivos, se debe acudir a análisis más específicos, tal como la agricultura especifica por sitio, que respondan a las especificidades de cada lugar, en especial, en el aspecto edafológico. 2) Otra limitante de la zonificación está definida por la coincidencia con las zonas de aptitud de otros cultivos. No se puede definir a través de la zonificación si debe priorizar un cultivo por encima de otro. Esto debe definirse a través de otras herramientas que incluyan elementos de la cadena de valor del aguacate Hass, tales como la competitividad, la variación de los precios internacionales -o de los precios de cultivos sustitutos o complementarios-, la inversión, la tradición y los arraigos culturares; los cuales también pueden definir finalmente la opción a tomar. 3) La zonificación se ve limitada a la hora de responder concreta y específicamente a la preocupación de algunos productores que ven cómo sus tierras quedan fuera de las zonas de aptitud.Este hecho puede llegar a restringir el acceso a medios de financiación, programas de extensión, inversión, contratación de seguros, entre otros.De acuerdo con los planteamientos generales de la FAO, esta clase de estudios se ha enfocado en la identificación de áreas semejantes en cuanto a potencial y limitantes. Por otra parte, un enfoque de la zonificación vinculado al ámbito agrícola ayuda a una mejor planificación y gestión de los sistemas productivos, al mejorar el aprovechamiento de los recursos y los esfuerzos de los diversos programas encaminados a formar enclaves de desarrollo en las zonas con potencial.Al incorporarse elementos de los suelos, la fisiografía y el clima a los procesos de análisis, se obtiene una aproximación denominada zonificación agroecológica (ZAE). De acuerdo con la FAO,En lo que concierne a los componentes físicos, estos son fundamentales en la que medida que ayudan a determinar el potencial de aptitud que podría tener una zona o región para, así, sustentar un sistema productivo determinado, de lo cual dependen los rendimientos y calidad final de los productos agrícolas. En cuanto a la definición de los criterios y variables de clima, suelos y geomorfología, estos se basaron en los expuestos en las zonificaciones llevadas a cabo por Bancoldex y UtCF (2015) y UPrA (2017).De acuerdo con el Instituto de Hidrología, Meteorología y Estudios Ambientales (Ideam), el clima se agrupa en un conjunto de condiciones que predominan en la atmósfera o, dicho de otro modo, en las condiciones meteorológicas correspondientes a un espacio geográfico específico. Estas se expresan a partir de variables como la temperatura, la humedad relativa y las precipitaciones.• Temperatura: en términos ambientales, esta variable se define como el estado térmico del aire respecto a su capacidad de transmitir calor en el entorno. En las zonas tropicales, esta capacidad de transmisión está determinada por la altura sobre el nivel del mar (m m. s. n), tomando como referencia la localización de un punto geográfico determinado. • Precipitación: es la media de la cantidad de lluvia que puede caer en un lugar, área o región específicos. • Humedad relativa: es la cantidad de vapor de agua que se encuentra presente en el aire.Para llevar a cabo el análisis del cambio climático, las variables utilizadas fueron temperatura y precipitación, que son las únicas vinculadas a las Trayectorias de Concentración Representativas (rCP, por sus siglas en inglés).En cuanto a las rCP, estas son escenarios que se enfocan esencialmente en las emisiones antropogénicas y no incluyen cambios en impulsores naturales. Estas pueden representar una variedad de políticas climáticas; es decir, cada rCP puede ser resultado de diferentes combinaciones de futuros económicos, tecnológicos, demográficos, políticos e institucionales. Así, las diferentes rCP representan varios escenarios de emisiones a futuro. Consecuentemente, el 2,6 representa un escenario de mitigación, el 4,5 y 6,0 son escenarios de estabilización de emisiones, y el 8,5 corresponde a un escenario con un nivel muy alto de emisiones de gases de efecto invernadero continuo hasta el año 2100 (ver figura 1). A pesar de las diferencias, las variaciones más notables se pueden empezar a apreciar a partir del año 2050, razón por la cual se tomó esta fecha como referente para el análisis. En lo que respecta a las dos rCP utilizadas para el análisis, estas presentan las siguientes características:Esta rCP fue desarrollada por el Laboratorio Nacional del Pacífico Noroeste en los Estados Unidos. Aquí, el forzamiento radiativo se estabiliza poco después del año 2100 y es consistente con un futuro en el que la reducción de emisiones es relativamente ambiciosa.Este futuro está fundado en los siguientes aspectos:• Menor intensidad de energía.• Programas de reforestación fuertes.• Disminución del uso de tierras de cultivo y pastizales debido a los incrementos de rendimiento y los cambios en la dieta. • Políticas climáticas estrictas.• Emisiones estables de metano.• Las emisiones de CO 2 aumentan solo ligeramente antes de que comience el declive alrededor del año 2040.Esta rCP es consistente con un futuro sin cambios de política para reducir las emisiones. Fue desarrollada por el Instituto Internacional de Análisis de Sistemas Aplicados en Austria y se caracteriza por el aumento de emisiones de gases de efecto invernadero, que conducen a alcanzar altas concentraciones de estos gases a lo largo del tiempo.Este futuro está fundado en los siguientes aspectos:• Tres veces las emisiones actuales de CO 2 en el año 2100.• Rápido aumento en las emisiones de metano.• Mayor uso de las tierras de cultivo y los pastizales impulsado por un aumento de la población.• Una población mundial de 12 mil millones de personas para el año 2100.• Menor tasa de desarrollo de tecnología.• Gran dependencia de los combustibles fósiles.• Alta intensidad energética.• No se han implementado políticas climáticas.En cuanto al componente edáfico, se caracteriza como un ecosistema en el cual intervienen elementos de entrada al sistema, por ejemplo: la materia orgánica, los microorganismos, los minerales, el agua, el aire, y otra cantidad de nutrientes; y procesos de salida, en particular, los que intervienen durante la absorción de los nutrientes por parte de las plantas, en la escorrentía natural de estos materiales o mediante procesos erosivos. En el análisis de este componente se utilizaron las siguientes variables:• Textura: variable que indica el contenido referente a las partículas de arena, limo y arcilla de diferente tamaño contenidas en una porción del suelo. La textura determina la posibilidad de labranza del suelo, así como el flujo de aire y de agua que se transportan o retienen a través del mismo. • pH: es la concentración de iones de hidrógeno en una solución de agua. Suscitantemente, se puede describir como la tendencia a que un suelo sea más ácido o más alcalino. La variación del pH puede llegar a alterar el grado de solubilidad de los minerales en los suelos. Por lo que, teniendo en cuenta que las plantas dependen de la disolución de estos para poder ser absorbidos, esta variable se vuelve fundamental para la buena respuesta por parte de las plantas con relación a los nutrientes presentes en el suelo. En general, se espera que los suelos tengan un pH entre 5,5 y 6,5 para permitir el correcto proceso de absorción de nutrientes. • Profundidad efectiva: esta variable está relacionada directamente con la capacidad de desarrollo radicular de la planta sin encontrar ningún obstáculo. En suelos más profundos, las plantas pueden sobrellevar mejor los eventos de sequía, pues en este contexto se presenta una mayor retención de humedad. • Fertilidad del suelo: es una variable que se compone, a su vez, de otras, a saber: los nutrientes, la saturación de sales y el carbono orgánico. Esta variable alterará su composición según el enfoque de estudio o de la fuente de la cual provenga esta variable.• Pendiente: variable mediante la cual se mide la inclinación del terreno. Es fundamental a la hora de determinar el uso o la vocación de un terreno. Es una variable restrictiva en el momento de evaluar las posibilidades agronómicas. Su medición se hace por medio del cálculo de la tangente del terreno y, a partir de esta, se pueden obtener valores en porcentajes o grados de pendiente. La pendiente se puede clasificar de la siguiente manera:-Fuertemente escarpada o inclinada ( >75 %) -Moderadamente escarpada o empinada (50-75 %) -Ligeramente escarpada o empinada (25-50 %) -Fuertemente inclinada (12-25 %) -Moderadamente inclinada (7-12 %) -Ligeramente inclinada (3-7 %) -Ligeramente plana (0-3 %) • Erosión: entendida como el proceso mediante el cual hay alteración y perdida física y mecánica del suelo a causa de procesos naturales. El factor que ocasiona la erosión es, entre otros, el hídrico, ya sea por efectos de la lluvia o por procesos de estancamiento que provocan infiltración en los terrenos y posterior desplazamiento. Este tipo de procesos alteran la composición de los suelos, los despoja de nutrientes y provoca la pérdida de fertilidad que, en definitiva, acabará afectando la producción agrícola.En cuanto a dichos criterios, estos vinculan estrechamente el entorno social y cultural de los individuos y las comunidades con los bienes naturales, los servicios ecosistémicos y la bioriqueza de un entorno. Su intención es determinar un aprovechamiento de estos recursos, dentro de una dinámica de sostenibilidad. Al mismo tiempo, con la inclusión de esta variable, se espera identificar las potencialidades del entorno y los límites de ese aprovechamiento. Esto significa, a su vez, la inserción de los ecosistemas generadores de servicios para el desenvolvimiento del quehacer de la cultura en sus múltiples facetas. Se espera que, con la vinculación de variables como el uso de suelo, la vocación de uso y la vulnerabilidad ambiental, se pueda entender mejor la situación de los entornos potenciales de una zonificación, de modo que las limitaciones y potencialidades puedan comprenderse mejor a la hora de tomar decisiones para el desarrollo de programas de fomento agrícola. De esta manera, se protege el patrimonio cultural material e inmaterial del país y el derecho a la autodeterminación de los territorios colectivos de las comunidades étnicas y campesinas.Estos criterios están centrados en develar el entorno social y económico, ya sea de una localidad, región, país, de uno o varios individuos. A través de estos criterios se pretende mostrar la situación económica, las relaciones sociales, las formas de vida, los medios de trabajo, la tenencia de la propiedad, el acceso a servicios públicos, la educación, entre otros factores, puesto que permiten la descripción del ambiente en el cual está inmerso el objeto de estudio. En el caso particular de una zonificación que esté enfocada en la productividad de un sector específico del agro, se espera que el componente socioeconómico muestre, por medio del análisis de las variables, las condiciones de acceso a sistemas de riego, la existencia de maquinaria agrícola, el acceso a la asistencia o asesoría, y las fuentes de crédito y financiamiento. De este modo, es posible determinar si existen las bases necesarias u óptimas para enfrentar la producción y los retos de competitividad de la región frente a los mercados, ya sea a nivel nacional o internacional.Así, a partir del punto de vista socioeconómico y de la identificación de los patrones geográficos aptos para el desarrollo del cultivo del aguacate Hass, es posible vincular, de forma pragmática, los estudios de competitividad y zonificación, y ofrecer derroteros para el desarrollo económico de la región.El cambio climático global sin duda está operando cambios de profundo impacto que difieren con el espíritu de desarrollo de la sociedad, en especial, de aquellas que se hallan en contextos geográficos específicos, lo que determina, en mayor o menor medida, la severidad de los retos a afrontar según los cambios del clima.De acuerdo con los modelos predictivos planteados por el Intergovernmental Panel on Climate Change (iPCC, por sus siglas en inglés), las temperaturas podrían subir entre 0,15 y 0,3 grados por década. Como resultado, se presentarán grandes impactos en los regímenes de lluvias, captación de recursos hídricos y altos niveles de evapotranspiración, lo cual provocará un incremento del estrés en los organismos, tanto en plantas como en animales. A esto se suma el aumento del nivel del mar por efecto del deshielo de los casquetes polares y, por supuesto, el cambio en la presión del aire y el aumento de las temperaturas del mar. Estas últimas harán que cada vez sean más frecuentes las tormentas de mayor intensidad, lo cual afectará los asentamientos humanos costeros.En esta medida, se hace necesario acudir a los análisis de cambio climático para establecer los cambios que pueden suceder en una región de interés que, en este caso, es la zona de ladera en el departamento del Valle del Cauca. De esta forma, con la determinación de los cambios y grados de aptitud, se puede plantear procesos de adaptabilidad y mitigación, que permitan, por una parte, sugerir estrategias para hacer frente a la inminencia de estos cambios climáticos y, por otra, diseñar estrategias que coadyuven a aminorar el impacto de las actividades que inciden en el incremento del problema. Para la asociación de los componentes socioeconómicos presentes en cada municipio en particular se llevó a cabo un proceso de intersección entre las bases de datos de la zonificación edafoclimática con las bases de datos de la información correspondientes a los datos del Censo Nacional Agropecuario de 2014 (DANE, 2015). Por otra parte, para vincular los componentes socioecosistémicos presentes en la región, se realizó la intersección de los datos espaciales de la zonificación edafoclimática con los datos obtenidos del Instituto Geográfico Agustín Codazzi (igAC) y de la Corporación Autónoma Regional del Valle del Cauca (CVC), referentes a los conflictos del uso de suelos, vocación de uso y vulnerabilidad ambiental (ver figura 3).Intersección con datos del CENSO NACIONAL AGROPECUARIO En paralelo al proceso de la zonificación edafoclimática, se llevó a cabo un análisis de aptitud exclusivamente con factores climáticos (temperatura y precipitación) para el escenario presente y para las proyecciones a futuro en el año 2050. Este tiene como fundamento la necesidad de observar los cambios que pueden suceder, a nivel climático, en las áreas de aptitud determinadas en el estudio de zonificación, solo con las variables de temperatura y precipitación que son la base de las proyecciones de los escenarios a futuro. En este caso, con relación a los escenarios de cambio derivados de las proyecciones climáticas de los modelos globales, ofrecidos por el Intergovernmental Panel on Climate Change (iPCC), estos sirven como soporte para mostrar la situación presente y los cambios a futuro (2050). Cabe destacar que no se realizaron mapas de aptitud de suelos, ya que los factores edáficos para el análisis no están disponibles en escenarios con proyecciones futuras.Para lograr este análisis, se usó la herramienta Targeting Tools, desarrollada en Python para el entorno de ArcgiS. Esta herramienta considera los rangos de los requerimientos climáticos de los cultivos y se enfoca, en especial, en la intersección de temperatura y precipitación dentro de unos rangos absolutos (0 % hasta el 100 %), y un rango óptimo en el cual se desarrollará el cultivo (ver figura 4). En esta sección se hace una descripción de la zona de estudio, así como también de las fuentes de donde se obtuvieron los datos de clima, suelos, geomorfología, socioeconómicos y socioecosistémicos. Por último, se cierra con el cuadro final de requerimientos edafoclimáticos para el cultivo del aguacate Hass.Para delimitar dicha zona, se tomó como límite inferior los 1100 m s.n.m. y se tuvo como referencia la ciudad de Cali, ubicada a una altitud promedio de 1020 m s.n.m. Para obtener los datos de elevación se acudió a la plataforma del Cgiar-CSi (2017). Se obtuvieron de ella los datos digitales de elevación mundial, a partir de los cuales se extrajeron los correspondientes al Valle del Cauca. En la figura 5, se presenta la zona de estudio (departamento del Valle del Cauca) demarcada.Figura 5. Mapa de zonas de ladera en el departamento del Valle del Cauca Fuente: elaboracion propia.Para dar continuidad al esquema propuesto y con el objetivo final de identificar zonas de aptitud edafoclimáticas para el aguacate Hass, el proceso de zonificación comenzó con la producción y obtención de los conjuntos de datos climáticos.Frente a la necesidad de incorporar datos climáticos acordes y ajustados al resto de las variables relativas al estudio de zonificación del aguacate Hass en el Valle del Cauca, fue necesario producir y obtener datos climáticos proyectados al presente que tuvieran como base estaciones climatológicas ubicadas en la geografía departamental.Para este fin, se obtuvo una base de datos de las estaciones climatológicas desde el portal catalogador de información geográfica del Instituto Alexander Von Humboldt (2017). En este conjunto de datos, se incluye la información mes a mes de la precipitación y de la temperatura hasta el año 2012. Con esta información, se procedió a realizar la interpolación con el uso del algoritmo para el suavizado de interpolación llamado Thin plate splines (tPS) (Columbia University, 2018). Este último se incorpora en el paquete Anusplin (Australian National University, 2018) y, a su vez, es utilizado en la construcción de datos climáticos de Worldclim (Hijmans et al., 2005). Por su parte, los datos de humedad relativa se obtuvieron desde la geodatabase construida en el marco del convenio n. o 256 de 2009 con el fin de aunar esfuerzos técnicos y económicos para realizar el análisis preliminar de la representatividad ecosistémica, a través de la recopilación, clasificación y ajuste de información primaria y secundaria con rectificaciones de campo del mapa de ecosistemas de Colombia, para la jurisdicción del Valle del Cauca [de la CVC y la Fundación Agua Viva].Para ello, se tomaron como fuente las variables climáticas de Worldclim para los escenarios presente y futuros. En el primero de los casos, los datos climáticos para el presente derivan del uso del procedimiento Thin plate splines, mientras que, para el segundo grupo, los datos climáticos provienen de la aplicación del downscaling: procedimiento que toma los datos climáticos de gran resolución y los lleva a una mucho menor, para hacer predicciones locales a futuro (ver figura 6). Con respecto a los procedimientos, para realizar el downscaling de los datos climáticos, existen dos principales: el dinámico y el estadístico. El primero utiliza principios físicos resueltos mediante el uso de ecuaciones diferenciales a partir de los datos observables o los resultados de modelos climáticos globales, los cuales aportan unas condiciones iniciales de entorno con una limitante de resolución (Guanuchi, 2015). Los modelos estadísticos se componen de dos procesos base:El desarrollo de las relaciones estadísticas entre variables climáticas locales (p. ej., temperatura del aire de la superficie y precipitación) y predictores de gran escala (p. ej., campos de presión).La aplicación de tales relaciones al resultado de los experimentos de los modelos de clima global se utiliza para simular las características del clima local en el futuro (NCAr giS Program, 2018).Extracción de series regionales para hacer un downscaling a estaciones locales.Modelo climático global Modelo climático regional Con respecto a los resultados del downscaling, estos tienen una resolución de 30 arcsec, lo que equivale a un conjunto de datos raster, con una resolución de 1 km por 1 km para cada pixel.Luego, el procedimiento consistió en realizar la identificación de las variables más significativas para los componentes de suelos y terreno existentes en las zonas de ladera en el departamento del Valle del Cauca.• 4.1.3. Obtención de variables de suelo• Textura del terreno: variable derivada del inventario de suelos del Valle del Cauca (igAC y CVC, 2004). Esta capa puede tener una desventaja, pues las texturas están supeditadas al porcentaje de probabilidad de que un perfil de suelo sea el más predominante según la zona. Otro factor que determina la textura del terreno es la profundidad del suelo antes del horizonte rocoso que, de acuerdo con los datos, varía en función de la profundidad a la cual se halla dicho horizonte. • Profundidad efectiva del suelo: variable derivada igualmente del inventario de suelos del Valle del Cauca y altamente relacionada con la morfología determinada para cada perfil en este estudio (igAC y CVC, 2004). • pH del suelo: variable adquirida en la plataforma SoilGrids (2018). Al igual que la variable de textura del terreno, el pH presenta diferentes valores según el horizonte del suelo y, por lo tanto, también presenta una gran variabilidad en zonas de montaña donde los perfiles son altamente cambiantes. • Fertilidad del suelo: variable adquirida en los geoservicios de la Corporación Autónoma Regional del Valle del Cauca (CVC, 2017). En términos de la FAO, \"Un suelo es fértil cuando tiene los nutrientes necesarios, es decir, las sustancias indispensables para que las plantas se desarrollen bien\" (FAO Montes, 1996). Además de esta base conceptual sobre la fertilidad, se asume que las áreas determinadas, según su grado de fertilidad, están dadas en términos de unas características básicas como las siguientes: profundidades aptas para el desarrollo y fijación de raíces, nutrientes básicos necesarios, óptima absorción y retención de agua, y buena capacidad de oxigenación.• Erosión: capa adquirida en los geoservicios de la CVC. Con esta capa se puede determinar el desgaste que se presenta a nivel regional, ya sea por causas naturales o antrópicas (CVC, 2017). • Pendiente: esta capa deriva del modelo de elevación digital adquirido en el sitio web del Cgiar Consortium for Spatial Information (Cgiar-CSi, 2017).Junto con las fuentes de información bibliográficas, el uso de fuentes secundarias, la realización de entrevistas a profesionales de campo y la asistencia a reuniones de comité, en las que se tuvo contacto directo con los productores, se realizó el acopio de información para los requerimientos del cultivo, en función de todas las variables tenidas en cuenta para la zonificación. Estos requerimientos se usaron para la reclasificación de las variables en categorías de aptitud (ver tabla 1). En la consecución de esta información se puso un énfasis especial, pues permite determinar de manera global las posibilidades de las zonas de aptitud para el aguacate Hass, de acuerdo con el escenario de la vocación y usos principales del suelo. De este modo, esta variable permite analizar la viabilidad de las áreas resultantes de la zonificación edafoclimática. De acuerdo con el igAC, la vocación de uso del suelo se define como \"las tierras que, por sus características de suelos, permiten el establecimiento de sistemas de producción agrícola, con plantas cultivadas de diferentes ciclos de vida y productos\" (igAC, 2017). Así, el objetivo principal de esta variable es determinar el uso más óptimo y apropiado que puedan tener los suelos en el territorio colombiano. Esto último se inscribe en un contexto de producción sostenible y con un respeto total por los recursos naturales.En cuanto a la información vectorial sobre la vocación de uso del suelo, esta se adquirió en los geoservicios del Instituto Geográfico Agustín Codazzi (igAC, 2017).Esta información socioecosistémica es relevante en la medida que permite visualizar con perspectiva la problemática subyacente entre los usos que la sociedad hace de los medios naturales y los usos \"que debería tener de acuerdo con sus potencialidades y restricciones ambientales, ecológicas, culturales, sociales y económicas, y por el grado de armonía que existe entre la conservación de la oferta ambiental y el desarrollo sostenible del territorio\" (igAC, 2017).Se incorpora esta información como componente en la sección socioecosistémica, pues en su construcción se articularon variables climáticas, ecosistémicas, de suelos y socioeconómicas.Esta capa contiene, en su base, información de los multimodelos de precipitación generados para el período 2011-2040. Estos modelos fueron generados mediante el índice de sensibilidad (iSA), variable surgida a partir de la caracterización de los suelos, la cobertura vegetal, los ecosistemas transformados, el índice de aridez y la erosión en las zonas secas. Tal índice es definido, como el grado en que un sistema puede ser afectado positiva o negativamente por los estímulos relacionados con el clima. (Ideam, 2010) Así como mediante el índice relativo de afectación (IRA), variable que surge a partir del consenso con diferentes profesionales de diferentes áreas y especialidades que se enfocaron en \"identificar cada una de las coberturas, ecosistemas o territorios que podrían resultar impactados por los eventos adversos de cambio climático en su peor escenario\" (Ideam, 2010). Dentro de los elementos socioeconómicos que se integraron al análisis se pueden destacar los siguientes: la capacidad de adaptación que deriva de la integración de las condiciones socioeconómicas e institucionales (base Sisben) y las capacidades técnicas de las regiones.• 4.1.7. Información socioeconómica departamental derivada del Tercer Censo Nacional Agropecuario de 2014Para complementar el análisis de zonificación era necesario identificar algunas variables socioeconómicas que permitieran llevar a cabo una visualización general del estado de la base productiva agropecuaria en el Valle del Cauca. Para tal fin, se procedió a la obtención de los microdatos del Tercer Censo Nacional Agropecuario de 2014 1 del catálogo general de datos (DANE, 2018).Una vez ubicados los microdatos específicos para el Valle del Cauca, se procedió a la selección de las variables a representar. En particular, se tomaron cuatro variables principales: sistema de riego, existencia de maquinaria agrícola, acceso a asistencia o asesoría, y fuentes de crédito y financiamiento. Para la elección de estas cuatro variables principales, se tomaron en cuenta los datos generales para Colombia del Censo Nacional Agropecuario de 2014, en el que se destacan, entre las dificultades propias del sector agrario: la precariedad de los agricultores en temas cruciales como la falta de asistencia técnica, la cual llegó al 83,5 % de las Unidades Productoras Agropecuarias (UPA) sin acceso a esta. Por otro lado, un 66,7 % de las UPA no registraron acceso a riego y un 89,3 % no han tenido acceso a crédito para inversión agrícola.Una vez identificadas las variables, se procedió al arreglo de los datos y se tuvo en cuenta hacerlo con relación a las UPA. Así, mediante el uso de software estadístico R, se seleccionaron los subconjuntos de información de la base de datos principal que, en este caso, era la Unidad Productora.Nota: para el Valle del Cauca, el número total de Unidades Productoras censadas en este departamento fue de 102.704, de las cuales 75.874 eran Unidades Productoras Agropecuarias y 45.830 eran Unidades Productoras no Agropecuarias. Para la obtención de los porcentajes presentados en las tablas, gráficos o mapas, se tomaron en cuenta solamente las UPA que presentaban respuestas afirmativas, negativas o que se registraban en alguna categoría de las variables socioeconómicas consideradas. Así, en cada caso, estos números serán susceptibles a variación con respecto al total de las UPA que fueron censadas.1 Datos entregados a noviembre de 2014 y actualizaciones a 2017.A continuación, se hace descripción de las condiciones generales en el departamento de cada una de las variables del Censo Nacional Agropecuario (2014) incluidas en el presente estudio.La tenencia, o no, de uno o más sistemas de riego determina el grado de vulnerabilidad de las regiones y sus productores ante las eventualidades del cambio climático o fenómenos como El Niño. En este escenario de riesgo, es posible que los cultivos requieran en momentos determinados la asistencia en el suministro del preciado líquido, de lo contrario, se corre el riesgo de devenir en pérdidas o disminución de rendimientos.• Existencia de medios como maquinaria para el desarrollo de las actividades agropecuariasPara llevar a cabo de forma eficiente algunas actividades agrícolas se ha hecho necesaria la mecanización de los procesos. Si bien es importante tener en cuenta tanto la labranza, que es uno de los dos factores de mayor impacto sobre los suelos, como las proyecciones hacia una agricultura de conservación, también es significativo observar la necesidad de incorporar cada vez más maquinaria especializada que coadyuve al sostenimiento de los procesos del suelo y a la conservación de los espacios agroecológicos (FAO, 2014).En este aspecto, se ha demostrado que los procesos de asistencia y asesoría se configuran como una oportunidad para enfocar la gestión del saber local en pos de acompasarlo con el conocimiento exógeno a los territorios. Esto se traduce en la integración y construcción de alianzas con instituciones académicas y de investigación que, en muchos casos, se hallan inconexas con las realidades rurales (FAO, 2016).En cuanto al acceso al crédito enfocado al sector agrícola, este se ha redefinido por las dislocaciones de la economía y los mercados nacionales y globales. De esta forma, las intervenciones estatales derivaron en grandes sobrecostos y cargas fiscales, y muchas entidades captadoras de recursos de donantes internacionales se vieron afectadas por los contrapesos de las crisis financieras. Así, la búsqueda de crédito y servicios financieros en el sector agrario ha abierto una variopinta gama de fuentes que va desde los aún supervivientes bancos agrarios y las entidades de microcrédito hasta los préstamos particulares de altos intereses. En este contexto, es necesario identificar qué fuentes predominan mayoritariamente en los territorios nacionales, para así conectarlas con las posibilidades de producción de los sistemas alimentarios futuros.El proceso siguiente conduce a la reclasificación de cada una de las variables de acuerdo con los requerimientos básicos del cultivo. De acuerdo con la herramienta de ArcgiS para reclasificación de archivos raster,Al reclasificar por rangos de valores, las herramientas de reclasificación requieren límites inferiores y superiores de los valores existentes en el raster de entrada y el valor alternativo que se va a asignar al rango de valores. Todos los valores del raster original, que caen en el rango especificado de valores, recibirán el valor alternativo asignado a ese rango. (ArcgiS Pro, 2019) (ver figura 7) Se procedió a aplicar la herramienta de superposición ponderada (ver figura 8) que ubica los rangos predefinidos en la reclasificación de los raster (en este caso, la escala es de 1 a 4) y realiza un proceso de ponderación de acuerdo con los pesos asignados a dichas clasificaciones, según los grupos de variables (clima, suelo y terreno). De este modo, en la herramienta de ArcgiS, Las capas se multiplican por el multiplicador correcto y, para cada celda, se agrupan los valores resultantes. La superposición ponderada presupone que los factores más favorables tienen como resultado los valores más altos en el raster de salida; por lo tanto, identifica estas ubicaciones como las mejores. (ArcgiS Desktop, 2017) (ver figura 8). A continuación, se muestra el modelo general de ponderación de datos aplicado para generar la zonificación edafoclimática (ver figura 9): La clasificación de la zonificación consiste en reasignar los valores producidos en la reclasificación de los datos espaciales a una escala de aptitudes que se vincula posteriormente a las áreas finales de la zonificación (ver tabla 2):Tabla 2. Escala de aptitud según los valores de reclasificación 1 No apto Áreas donde no existen las condiciones mínimas que permitan el cultivo. Las inversiones realizadas pueden no derivar en resultados (mínimos).2 Bajo Áreas donde existen limitantes y se requiere de grandes inversiones adicionales que permitan la producción del cultivo, el retorno de la inversión puede no cubrir lo invertido.3 Moderado Áreas donde se presentan restricciones moderadas, se pueden requerir de algunas inversiones, pero menores. Estas áreas se aproximan a lo óptimo.Áreas donde no existen limitantes y se encuentran las condiciones óptimas para el desarrollo del cultivo.Fuente: elaboración propia.Al finalizar el proceso de superposición ponderada, y según las áreas de zonificación final, se restaron las capas de exclusión o restrictivas, como las siguientes: recursos hídricos, áreas protegidas, infraestructura y sustracciones de ley (ver figura 10). En el mapa de la figura 11, se ilustra el mapa de la capa de áreas de exclusión.Figura 10. Esquema de las capas de exclusión y restricción por gruposFuente: elaboracion propia.Figura 11. Mapa de las capas de exclusión y restricción (limitantes) en el departamento del Valle del Cauca Fuente: elaboracion propia.Para asociar la información socioecosistémica a las áreas de la zonificación edafoclimática, se realizó un proceso de intersección de datos espaciales con ayuda del software especializado (ArcgiS). El objetivo de este proceso era extraer la información de uso del suelo, la vocación de uso y la vulnerabilidad ambiental, con circunscripción exclusiva a las áreas finales de la zonificación (ver figura 12).Intersección de capas especiales con ArcGis infromación socioecosistémica adscrita a las áreas de zonificaciónConflicto por el uso de suelo Figura 12. Flujograma para la información socioecosistémica adscrita a las áreas de zonificaciónFuente: elaboracion propia.Para vincular la información socioeconómica con la zonificación edafoclimática, se filtraron los microdatos del Censo Nacional Agropecuario (2014). Como se mencionó en la parte metodológica, los resultados de este cruce de bases de datos se limitan al orden municipal, es decir, que al final se muestra el comportamiento de las variables socioeconómicas elegidas con relación al orden de importancia de los municipios, según las áreas de aptitud final de la zonificación (ver figura 13). Finalmente, para llevar a cabo el análisis de cambio climático, se procedió al uso de Targeting Tools con el fin de producir capas de probabilidad de aptitud climática para el escenario presente y para el escenario futuro en 2050, según las rCP 4.5 y 8.5 definidas por el Intergovernmental Panel on Climate Change (iPCC, 2018). En la figura 14, se muestra de manera sucinta el flujo del proceso para este análisis. Fuente: elaboracion propia.En términos generales, es posible determinar la existencia de una zona de alto potencial en la intersección de los municipios de El Dovio, La Unión y Versalles. Seguida por otras tres zonas de alta potencialidad para el cultivo del aguacate Hass en los municipios de Caicedonia, Tuluá y Dagua. Así mismo, se puede apreciar el predominio de grandes zonas de aptitud moderada, tanto en las laderas centrales como en las occidentales, y muy pocas zonas de aptitud baja, en especial en los municipios de Bolívar y Trujillo, en la ladera occidental, y más al norte del departamento, en los municipios de El Cairo, Argelia y El Águila (ver figura 15). Al observar la distribución de las áreas totales de aptitud por municipio (ver figura 17), se puede observar que al menos los primeros diez municipios tienen un área de aptitud total que oscila entre las 10.000 y 33.000 ha y, a su vez, presentan altos porcentajes de área con aptitud moderada. Los municipios que se destacan por tener áreas mayores con aptitud alta son los siguientes: Tuluá, Dagua, Sevilla, El Dovio y Versalles y, en menor proporción, Palmira y Bugalagrande. Entre los municipios que se destacan por presentar áreas por debajo de las 10.000 ha y, asimismo, áreas de aptitud alta están Santiago de Cali con 1000 ha y La Unión con 877 ha (ver figura 17 y tabla 4).- Fuente: elaboracion propia.Para realizar la validación correspondiente a los resultados obtenidos en la zonificación, se recurrió a una muestra de datos secundarios obtenidos gracias a la colaboración de la Sociedad de Agricultores y Ganaderos (SAg). Se debe aclarar que los puntos de producción georreferenciados con base en estos datos son solo una muestra de la totalidad de los agricultores de aguacate Hass en el Valle del Cauca, pero, a través de este mapa, se pueden validar y contrastar los datos obtenidos en la zonificación con los lugares donde se lleva a cabo el cultivo de hecho.Específicamente, los resultados dejan ver una intersección de datos significativa entre los puntos de finca y las áreas potenciales en los municipios de El Cairo, Argelia, Versalles, Roldanillo, Bolívar, Caicedonia y Sevilla (ver figura 18). La totalidad de los puntos de producción de aguacate Hass observados está dentro de las áreas de zonificación proyectadas. De un total de 84 puntos, 61 de ellos quedan ubicados en zonas de aptitud moderada, 14 en aptitud alta y 9 en aptitud baja. A rasgos generales, en las zonas de ladera donde se han identificado áreas de aptitud (alta, moderada y baja) para el cultivo del aguacate Hass, los usos del suelo en la categoría de adecuados o sin conflicto equivalen a 82.816 ha del total y tienden a encontrarse en la vertiente occidental del sistema de cordilleras. Categorías como sobreutilización, que equivalen a 119.185 ha (39,7 %), y demanda no disponible, que representan 94.754 ha (31, 6 %), se muestran distribuidas de manera equilibrada entre los dos sistemas montañosos que flanquean al valle del río Cauca. En este contexto, es notable que la categoría de subutilización solo llega a un 1,1 % (es decir, a 3.290 ha) (ver figura 19 y tabla 5). Con respecto a los diez municipios con áreas de aptitud mayores a 10.000 ha, son Bolívar (13.655 ha), Calima-El Darién (15.421 ha) y Dagua (11.494 ha) los que presentan áreas mayores de usos adecuados o sin conflicto. En el mapa de los conflictos por el uso del suelo, se puede observar que la categoría de usos adecuados o sin conflicto predomina mucho más en zonas con más altitud de la Cordillera Occidental (ver figura 20). Por otra parte, los municipios con mayores porcentajes de áreas con conflicto por el uso de suelo, en especial en la categoría de sobreutilización, son los siguientes: Bolívar (12.831 ha), Tuluá (12.228 ha), El Cairo (9.055 ha) y Palmira (6.927 ha), los cuales también figuran dentro de los siete municipios con más potencial en área total de aptitud para el cultivo del aguacate Hass (ver figura 20 y tabla 5). Figura 20. Conflictos por uso del suelo según las áreas de zonificación, en su orden de importancia por municipio, en el departamento del Valle del CaucaFuente: elaboracion propia.A continuación, en la figura 21, se puede apreciar cómo se encuentran distribuidos los conflictos por el uso del suelo a lo largo de las áreas de aptitud de la zonificación, lo que potencialmente puede afectar o permitir el desarrollo del cultivo del aguacate Hass.Departamento del Valle del Cauca Figura 21. Mapa de conflicto por el uso del suelo según las áreas de zonificación en el departamento del Valle del CaucaFuente: elaboracion propia. La asociación de esta variable con las áreas de zonificación evidencia que dentro de la zona de estudio se presenta un gran predominio del uso forestal, el cual llega a un 94,7 % del total del área (ver figura 22). Esto también se aprecia en el mapa de vocación de uso del suelo según las áreas de zonificación (ver figura 23). En particular, la vocación agrícola en las áreas delimitadas por la zonificación solo llega a un 3,8 %, porcentaje que equivale a 11.310 ha (ver tabla 6). Cabe destacar que, de los municipios con áreas de aptitud total mayores a 10.000 ha, estos solo sobresalen por tener áreas de vocación altas. Sin embargo, no son mayores a las 4000 ha en los municipios de Bolívar (4170 ha), Calima-El Darién (2423 ha) y Dagua (1368 ha) (ver figura 24). En el caso del municipio de El Cairo, se evidencia la ausencia total de áreas con vocación de uso de suelo agrícola (ver tabla 6). Figura 24. Mapa vocación de uso del suelo según las áreas de zonificación en el departamento del Valle del CaucaFuente: elaboracion propia.Con relación a la vulnerabilidad al cambio climático, esta se distribuye en términos de área de forma equitativa en las zonas determinadas como aptas en la zonificación. En cuanto al porcentaje de áreas con vulnerabilidad alta (50,9 %), este es apenas superior a las de vulnerabilidad media (47,8 %) (ver figura 25), mientras que las áreas que pueden estar asociadas a una vulnerabilidad baja no superan el 1,25 % del total. En este contexto, las zonas de ladera en el departamento presentan una vulnerabilidad alta/moderada que, en conjunto, representa el 98,7 %. Este dato puede inducir a considerar la posibilidad de incrementar los programas de adaptación al cambio climático, en función de mitigar los impactos sobre los proyectos productivos del aguacate Hass que se proyectan actualmente para las zonas de ladera. Según la importancia de los municipios y de acuerdo con las áreas determinadas en la zonificación, se hizo el cruce de información con las bases de datos del Censo Nacional Agropecuario (2014).A partir de estas, se obtuvo la información del número de UPA que dieron respuestas afirmativas o negativas para determinar, con ello, la tenencia, o no, de maquinaria, sistema de riego agrícola, y acceso, o no, a servicios financieros, crediticios, asistencia y asesoría. A través de esta síntesis de datos se brinda una mirada general de las cuatro variables priorizadas en función de la situación particular de los municipios que, a su vez, se han priorizado a través de los resultados de la zonificación según el área total de aptitud.En cuanto a los datos generales de las UPA en el departamento (N=76.874), solo el 44,6 % registraron respuesta. Así mismo, un 33 % de estas tiene algún sistema de riego y -del total de municipios que tiene áreas de aptitud para el cultivo del aguacate Hass-el 46 % cuenta con un mayor número de UPA con, al menos, un sistema de riego.Según la zonificación, los municipios con mayor potencial de área con aptitud total y número de UPA con ausencia de sistema de riego son los siguientes: Bolívar, Tuluá, Dagua, Sevilla, El Cairo, el Dovio y Versalles. Proporcionalmente, municipios como Calima-El Darién, Sevilla, Guadalajara de Buga, el Dovio, Versalles y El Águila poseen menos UPA con algún sistema de riego (ver figura 28) Sin embargo, destaca dentro del grupo de municipios con mayor potencial de área con aptitud total Palmira, que supera las 600 UPA que poseen al menos un sistema de riego. De modo general, se puede inferir que hay una tendencia marcada a que las UPA carezcan de algún tipo de riego para sus actividades en el campo. El caso más acentuado es el de Buenaventura, con más de 8.991 UPA que no tienen sistema de riego alguno. Es seguida, en menor proporción, están los municipios de Tuluá (más de 1400), Dagua (casi 1200), Sevilla, Florida y Jamundí (cerca de 1000). No obstante, este último municipio también tiene un gran número de UPA con al menos un sistema de riego.- Con respecto a esta variable, los datos más generales determinan que las UPA registradas con algún tipo de respuesta representan el 90,6 % del total de las 76.874 UPA en el departamento; a su vez, se evidencia que solo un 26,8 % de estas muestran tenencia de maquinaria y equipo agrícola. Por otra parte, del total de municipios que tienen áreas de aptitud para el cultivo del aguacate Hass, el 86,5 % presenta un mayor número de UPA que cuenta con maquinaria agrícola.Cabe destacar que la tenencia de maquinaria no se presenta como un factor determinante para el desarrollo del cultivo del aguacate Hass, aunque sí podría serlo el factor de acceso a algún tipo de riego, pues las áreas de ladera donde el cultivo generalmente se realiza no permite la mecanización compleja. No obstante, tener una perspectiva del acceso a maquinaria o equipo agrícola es determinante para saber si otros tipos de tecnologías pueden ser aplicadas o deben ser promovidas. Al analizar el grupo de municipios con mayores áreas potenciales según la zonificación, se evidencia una clara tendencia a la ausencia de algún tipo de maquinaria. Los municipios con más UPA que carecen de este tipo de bien, en relación con los que sí lo poseen, son Dagua y Tuluá (ver figura 29). En cuanto al grupo de municipios con áreas de aptitud menores a 10.000 ha, los ejemplos más acentuados con tendencia negativa son Santiago de Cali y Jamundí. Con relación al grupo de municipios con menos de 5000 ha de aptitud potencial, Buenaventura y La Cumbre presentan un mayor número de UPA sin tenencia de maquinaria. Con relación a los datos más generales, estos muestran que las UPA con respuesta para esta variable representan el 95,2 % del total de 76.874 UPA que hay en el departamento. De igual forma, se evidencia que solo un 29,8 % de estas ha tenido acceso a algún tipo de asistencia o asesoría. Por su parte, del total de municipios que tienen áreas de aptitud para el cultivo del aguacate Hass, el 81,1 % presentan un mayor número de UPA que han tenido acceso, al menos, a uno de estos servicios. Como se muestra en la figura 30, la tendencia al no acceso a algún tipo de asistencia o asesoría es negativa. En la mayoría de municipios, las UPA que registraron respuesta a esta variable no tienen acceso a estos servicios.En lo concerniente al grupo de municipios con mayor potencial de área de aptitud total, solo el municipio de Sevilla muestra una leve tendencia a presentar un comportamiento positivo. En 23 municipios, el número de UPA con acceso a asistencia y asesoría no supera las 500. En casos como el de Dagua, Cali, Jamundí, La Cumbre y Buenaventura, la disparidad es muy alta. Así, en este contexto, se debe prestar gran atención al fomento de programas de asesoramiento, pues se ha detectado también que el acceso a asistencia y asesoría, junto con el riego, son factores definitorios para el desarrollo agrícola en sus diversas escalas en el territorio nacional. Los datos muestran que del número total de UPA (76.874 en el departamento) solo el 14,2 % registra respuesta y el 90,7 % ha accedido a algún tipo de servicio de crédito o financiamiento. A nivel nacional, para el desarrollo del campo agrícola, otra de las variables detectadas como críticas es el acceso a fuentes de crédito y financiamiento. Si bien se observa un panorama positivo a nivel general en los municipios con áreas de aptitud en ladera para el cultivo del aguacate Hass (ver figura 31), la tendencia es que el número de UPA con acceso a estos servicios es mayor a las que no lo poseen, a pesar de que el número de UPA es bastante bajo para este ítem.Por último, los siguientes municipios: Tuluá, Jamundí, Palmira, Florida, Pradera, Bugalagrande, Sevilla, Bolívar y Trujillo se destacan por el número de UPA con mayor acceso a fuentes de financiamiento. A continuación, se presentan los resultados correspondientes al análisis: a) Mapas de aptitud climática, escenario presente y futuro (rCP 4.5 y rCP 8.5) dados en rangos de aptitud. b) Indicador gráfico del porcentaje de aptitud climática general para el escenario presente y futuro (rCP 4.5 y rCP 8.5) en todo el departamento, dados en cuatro rangos de porcentajes de aptitud. c) Indicador presentado en gráfico de barras sobre la aptitud climática, para el escenario presente y futuro (rCP 4.5 y rCP 8.5) por municipios, según los rangos de porcentaje de aptitud. d) Mapas de ganancia, no cambio y pérdida de áreas de aptitud climática de acuerdo con la diferencia entre el escenario presente (menos rCP 4.5) y el presente (menos rCP 8.5). e) Indicadores gráficos de ganancia, no cambio y pérdida de áreas de aptitud climática dados en rangos de porcentaje de aptitud.Con respecto a los análisis finales, estos muestran que entre el escenario presente y el escenario futuro rCP 4.5 hay una disminución del tamaño de las áreas con porcentajes de aptitud, en especial, en el rango de >80 a 100 (ver figura 33). Sin embargo, estos porcentajes aumentan en algunos municipios, en particular: Bolívar, El Dovio y Roldanillo en la cordillera Occidental; igualmente, en la cordillera Central sucede lo mismo con los municipios de Sevilla y Caicedonia. En relación con los porcentajes de aptitud en el rango de >60 a 80, se nota un aumento sustancial en el tamaño de las áreas que se distribuyen relativamente a lo largo del departamento.En el escenario rCP 8.5 se puede apreciar un considerable aumento de proporción del área correspondiente a los porcentajes de aptitud en los rangos >60-80 y >40-60 %. Las áreas relacionadas con estos cambios se distribuyen de forma relativa a lo largo de todos los municipios del departamento.Por otra parte, se puede ver que los porcentajes de áreas de aptitud que corresponden a los rangos >20-40 y 0-20 no varían mucho entre el escenario presente y los dos escenarios futuros. También, es notable que las dos zonas donde persisten estas proporciones de área y rango son las mismas y están ubicadas al norte del departamento en los municipios de El Cairo, El Águila, Versalles y Ansermanuevo, y al sur, en el municipio de Jamundí (ver figura 32).Figura 32. Zonas de aptitud climática para el escenario presente, RCP 4.5 (2050) y RCP 8.5 (2050) Fuente: elaboracion propia.Para ver en detalle los mapas de la distribución de áreas por rangos de aptitud según los municipios, consultar las figuras 43, 44 y 45 del anexo 1. En lo concerniente al análisis particular de los municipios, se puede observar que, en el escenario presente, los municipios con mayor potencial climático para el cultivo del aguacate Hass son Bolívar, Tuluá, Calima-El Darién, Dagua y Sevilla, con áreas totales de aptitud superiores a 10.000 ha y porcentaje de rango de aptitud >80-100 (ver tabla 8). Otros municipios que no tienen grandes áreas totales de aptitud, pero que pueden tener alto potencial (al tener más áreas con alta aptitud) son los siguientes: el Dovio, Trujillo, Riofrío y Roldanillo. Otros municipios como El Cairo, El Águila y Jamundí presentan porcentajes de aptitud bajos en sus áreas.Otro detalle general es la evidente distribución por porcentajes de área según rangos de aptitud climática por municipios. Esto muestra que la mayoría de los municipios, con aptitud para el cultivo del aguacate Hass, tiene áreas totales de participación por debajo de 4 % (ver figura 34). En el escenario de cambio climático rCP 4.5 para el año 2050, se puede apreciar un pequeño aumento de las áreas de aptitud para el cultivo del aguacate Hass en el rango de >60-80 % en casi todos los municipios (ver figura 35). El aumento de áreas con más bajo potencial persiste y aumenta para los municipios de El Cairo, Jamundí y, en el caso de El Águila, ocurre la pérdida casi total de las áreas de aptitud más altas, las cuales llegan a representar tan solo 127,8 ha. En la tabla 9 se puede ver en detalle el número de áreas por rangos y municipios. En la figura 41, anexo 1, se puede apreciar cómo en las zonas de aptitud ubicadas en la cordillera Central se destaca el aumento en el rango de >80-100, en tanto que en la cordillera Occidental se presenta un aumento de áreas en el rango de aptitud de >60-80. Si se observa la figura 36, en el escenario de cambio climático rCP 8.5 para el año 2050, se evidencia un aumento general pronunciado en las áreas con aptitudes superiores a 40 % hasta el 80 %. Entre los municipios con mayor área de aptitud total, Dagua presenta en este escenario una disminución alta de sus áreas de más alta aptitud (>80-100). En ambas cordilleras se puede apreciar que el cambio de rango de aptitud es equilibrado. Sin embargo, los cambios son más acentuados hacia los rangos de aptitud mayores a 40 % y hasta el 80 % en el norte del valle (cordillera Occidental), entre los municipios de El Dovio, La Unión, Versalles, Toro, Argelia, El Cairo, Ansermanuevo y El Águila (mapa del gráfico 42, anexo 1). En el caso de la Cordillera Central, para este mismo rango, los cambios más acentuados suceden en Caicedonia y Sevilla, y la zona nororiental del municipio de Tuluá. En el centro-sur de la cordillera Occidental, estos cambios pronunciados de rango ocurren en los municipios de Yotoco, Restrepo, Vijes, La Cumbre, Yumbo y Dagua. Una vez determinadas las zonas de aptitud en el presente y los escenarios de cambio climático a futuro (2050), fue necesario establecer el porcentaje de cambio de aptitud climática entre los escenarios climáticos. A continuación, se aclaran las convenciones que están relacionadas con los límites de porcentajes de aptitud de cambio entre escenarios, es decir, presente respecto a rCP 4.5 y presente respecto a rCP 8.5. En cuanto al resultado de este análisis, entre el escenario presente y el escenario futuro RCP 4.5 a 2050, se observa que el tamaño del área con cambio más acentuado en el porcentaje de aptitud para el cultivo del aguacate Hass se presenta en el porcentaje de rango de pérdida de aptitud (entre -1 y -25 %) (ver figura 37). En especial, estas zonas se concentran a lo largo de la cordillera Occidental (ver figura 38). Con respecto a los municipios que presentan los mayores tamaños de área, en este rango de porcentaje de pérdida de aptitud, se cuentan: Bolívar, Dagua, Calima-El Darién, el Dovio y Versalles (ver figura 38 y tabla 12).Figura 37. Tamaño del área a nivel en el departamento del Valle del Cauca de acuerdo con el cambio de porcentaje de aptitud climática entre el escenario presente y el escenario futuro RCP 4.5 (2050) Fuente: elaboracion propia.De acuerdo con la figura 38, la mayoría de municipios presentarán más áreas de pérdida de porcentaje de aptitud en comparación con las áreas de ganancia. A su vez, se puede observar que municipios relevantes según el tamaño de área total de aptitud, tales como Bolívar, Calima-El Darién, Dagua, el Dovio y Versalles, presentarán áreas mayores de pérdidas de porcentaje de aptitud para el cultivo del aguacate Hass. Por su parte, Bolívar, Tuluá, Sevilla, Palmira, Guadalajara de Buga y Ginebra mostrarán ganancia en los porcentajes de aptitud más altos, y municipios como El Cairo y Jamundí, entre otros, conservarán áreas considerables con el mismo porcentaje de aptitud climática. Para comprobar el tamaño de áreas relativas a estos cambios en los porcentajes de aptitud climática, ver la tabla 12. Al realizar una observación general sobre el mapa de zonas de cambio del porcentaje de aptitud climática (ver figura 39), se puede percibir que las zonas que conservarán sus porcentajes de aptitud climática se ubican al norte del departamento, en especial, en los municipios de Versalles, El Cairo, Ansermanuevo y El Águila. En menor proporción, otras zonas de no cambio se distribuyen en los municipios ubicados especialmente a lo largo de la cordillera Occidental. En cuanto a la mayor proporción de zonas con considerables áreas de ganancia de porcentaje de aptitud climática (entre el 25 % y el 50 %), estas se ubican, especialmente, en las estribaciones de las zonas de aptitud en la cordillera Central, donde se destacan los municipios de Sevilla, Tuluá y Guadalajara de Buga. En general, para el escenario de cambio a futuro rCP 8.5, las gráficas muestran un predominio de zonas de pérdida de porcentajes de aptitud, en las que el rango de porcentaje de pérdida es más persistente entre > -25 % y <= -50 %. Solo algunos municipios como Tuluá, Sevilla, Palmira y Guadalajara de Buga presentan más áreas con porcentajes de ganancia de aptitud en el rango entre el 1 % al 25 %, y menor al 25 % y menor o igual al 50 %. Para observar con mayor detalle el tamaño de las áreas asociadas a estos cambios de porcentaje de aptitud en cada municipio del departamento del Valle del Cauca, ver la tabla 13 y la figura 41. Con relación al mapa de las zonas de cambio de porcentaje de aptitud climática entre el presente y el escenario futuro rCP 8.5 (ver figura 42), este muestra que la cordillera Occidental albergará más zonas de ganancia de porcentaje de aptitud al cambio climático, mientras que los municipios del norte como Versalles, El Cairo, Ansermanuevo y El Águila presentarán zonas de no cambio de porcentaje de aptitud, junto a zonas de pérdidas de porcentaje de aptitud muy altas. En general, el panorama de las zonas de aptitud para el cultivo del aguacate Hass en el escenario rCP 8.5 muestra grandes pérdidas de porcentaje de aptitud en los municipios de la cordillera Occidental, aún más que en la coordillera Central. Inclusive, en esta última, se revela una distribución de altos rangos a lo largo de sus municipios. • A través de la zonificación edafoclimática se pudieron identificar 20.998 ha con aptitud alta, 244.440 ha de aptitud moderada y 34.703 ha de aptitud baja para el cultivo del aguacate Hass en la zona de ladera en el departamento del Valle del Cauca. • Desde el punto de vista edafoclimático, los municipios con mayor área total de aptitud (alta, moderada y baja) son, en su orden: Bolívar, Tuluá, Calima-El Darién, Dagua, Sevilla, El Cairo, Palmira, Guadalajara de Buga, El Dovio y Versalles. A su vez, estos municipios se destacan por tener zonas potenciales de alta aptitud, en su orden: Dagua, Tuluá, Sevilla, El Dovio y Versalles. • Se pudo establecer que, en la zona de ladera, los usos de suelo adecuados o sin conflicto no superan el 30 % del terreno, lo cual equivale a 82.816 ha. Sin embargo, se pueden identificar municipios que cuentan con zonas considerables en esta categoría (Bolívar, Calima-El Darién y Dagua). Por su parte, para la vocación de uso de suelo se determinó que solo un 3,8 % de las zonas de ladera están bajo la categoría de uso agrícola, esto equivale a 11.311 ha. A su vez, se destaca que, para este uso, los municipios con más áreas de participación son Bolívar, Calima-El Darién, Dagua y Riofrío. Por último, la vulnerabilidad al cambio climático es un factor de alto impacto en la zona de ladera, pues al menos un 50,95 % tiene un índice alto, como ya se anotaba en los resultados. Esto conduce a la necesidad de proyectar programas de adaptabilidad para enfrentar los impactos del cambio climático. • Durante el proceso de obtención de datos se logró identificar como factores sensibles la tenencia de sistemas de riego, el acceso a la asistencia y al asesoramiento. Dichos factores requieren ser atendidos para mejorar los índices socioeconómicos, pues de ellos depende el buen desempeño de cualquier proyecto productivo, en este caso, el cultivo del aguacate Hass. • En lo concerniente al análisis del cambio climático, con el fin de determinar las zonas de aptitud para el cultivo del aguacate Hass, este permitió identificar que, a pesar de presentarse una disminución de las áreas con altos porcentaje de aptitud en los escenarios futuros, estas mermas se logran distribuir en los rangos de porcentaje de aptitud moderados y medios. No obstante, para el escenario de mayor impacto (que es el rCP 8.5) se espera que las zonas de cambio negativo más alto solo representen entre el -1 % y el -25 % de disminución en el porcentaje de aptitud climática. • La recomendación más relevante es considerar que la zonificación corresponde a una guía general de las áreas de aptitud potencial, a nivel edafoclimático, y de porcentaje de aptitud al cambio climático, a escala municipal y también a escala general para el departamento del Valle del Cauca. Sin embargo, si se quiere determinar potencialidades locales, esto requiere estudios más focales y específicos. Igualmente, si se menciona la necesidad de implementar programas de adaptabilidad al cambio climático y el fomento de ciertas variables socioeconómicas, esto no indica que sean recomendaciones directas, puesto que para ello deben llevarse a cabo estudios más específicos que indaguen profundamente en las especificidades de los sitios de interés.ArcgiS Desktop (2017). Análisis de superposición. http://desktop.arcgis.com/es/arcmap/10. ","tokenCount":"11173"} \ No newline at end of file diff --git a/data/part_3/6199478530.json b/data/part_3/6199478530.json new file mode 100644 index 0000000000000000000000000000000000000000..288f82db9d55a4a0fe535e9be7ee837b6055081b --- /dev/null +++ b/data/part_3/6199478530.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"55a43cdf910876e464d32eb767c8d9fd","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/5d4097e7-f188-4b07-ae76-6b0b63087edd/retrieve","id":"952154380"},"keywords":[],"sieverID":"44f884d9-2d37-48f0-9fbd-783776505b9b","pagecount":"1","content":"Desmodium is a legume commonly used as a protein supplement in dairy cattle. Many Kenyan farmers grow it to cut animal production costs.Seeds: Drill seeds into shallow furrows (10 mm) spaced a foot apart (30 cm) then cover with little soil and press lightly. For broadcasting, spread the seeds evenly over the finely prepared seedbed. In both cases, they require adequate rain to germinate well.Cuttings: Desmodium can also be established cheaply using cuttings. Cuttings should be from mature freshly harvested vines at least 2 feet long with soil still attached to their tillers. Make furrows a foot apart (30 cm) and 10 cm deep; and plant a foot (30 cm) apart with two internodes under the ground. Press lightly to increase contact with the soil.• Less bulk to transport to the farm.• A small amount of seeds can cover a bigger planting area.• Helps to overcome soil-borne diseases.• Land must be prepared to fine tilt which requires more labour.• Seeds are relatively expensive.• Planting with seeds requires skills because the seeds are small and require more dedication and time to grow.• Desmodium commonly takes longer to establish than other tropical legumes.Desmodium to livestock• When grown alone, harvesting is done 4 months after planting and subsequent cutting is recommended after every 3 months intervals, cutting at 10 cm or higher above soil level.• When intercropped with other grasses e.g. Napier grass, cut the first harvest at least four 4 months after the Desmodium is established, or when the Napier grass is 6-8 weeks old after first establishment (it should be 1-1.5 m high). Thereafter, cut the Desmodium and Napier together at an interval of 4-10 weeks.• The common wisdom and practice among farmers in the region is to wilt Desmodium for a few hours before feeding animals.• Desmodium can be fed directly to the dairy animals either alone or mixed with other feeds such as maize stover or Napier grass. Excess Desmodium may be cut, dried, and baled into hay, and used as a protein supplement. It can also be mixed with grass when making hay.Desmodium can be established using seeds or cuttings. Desmodium establish well with the addition of Rhizobia bacteria, which live in their roots and fix nitrogen from the air and make it available to growing plants. If farmers cannot find the bacteria, they mix a handful of soil from another Desmodium plot. Apply phosphate fertilizer (TSP) or DAP before planting and mix well with the soil. Farmyard manure or bio-slurry can also be used as an alternative.Benefits of using seeds Hindrance of using seeds Benefits of using cuttings Hindrances of using cuttings• They are easy to establish.• They can be shared between farmers hence cheaper.• A large amount is required to cover an acre of land.• They are bulky to transport to the planting plots. ","tokenCount":"468"} \ No newline at end of file diff --git a/data/part_3/6206614610.json b/data/part_3/6206614610.json new file mode 100644 index 0000000000000000000000000000000000000000..e6b23c221158de55b755d58f8ae3a4db728ef184 --- /dev/null +++ b/data/part_3/6206614610.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"0b34a903af98dbce5af7d99f69558841","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/815d0887-41c8-4e4c-b01c-70918eed90be/retrieve","id":"-1584609493"},"keywords":[],"sieverID":"64250888-6024-4eb9-901d-ab7a504cd687","pagecount":"10","content":"Genebanks increasingly use molecular markers for routine characterization of ex-situ collections and farmer managed diversity. The International Potato Center presently uses a SSR marker-kit to create molecular profiles for potato accessions. We identified a need for a compact graphical representation that allows comparative presentation of molecular diversity and accession characteristics -thereby permitting biologists and collection curators to have a simple means to interpret molecular data. Inspired by the ancient Andean qipus we devised a graph that standardizes representation while leaving room for updates of the marker kit and the collection of accessions. The molecular khipu permits combining and annotating a set of SSR loci with allele frequency and allele size distribution information. The design is flexible to incorporate updates on genetic diversity information.Graphical means facilitate reading of allele diversity information. As a compact graphical view it facilitates information storage and exchange. The SSR khipu will be useful to other genebanks and breeders. Software to create graphics in single or batch mode is available as R package 'khipu'.Genebanks increasingly use molecular markers for routine characterization of ex-situ collections and farmer managed diversity. CIPs genebank presently uses a SSR marker-kit [8] to assist cultivar or genotype identification through molecular profiling. Applications include the comparison of ex-situ and in-situ collections to assess effectiveness and orient conservation strategies [7] or to document provenance and attribution as in an in-situ catalog [6]. A primary motivation came from Andean potato growing communities that are in a working relationship with CIP: farmers called for support to aid in registry and identification of landraces and protect native varieties against 'biopiracy'. As a visual aid to compare SSR marker profiles between accessions in these contexts we identified the need for a compact graphical presentation similar to a 'bar-code'.A first set of criteria included:• Amenable to standardization using bioinformatics tools• compact presentation (e.g. a chart of maximum 2.5cm x 2cm width by height)• all SSR marker information for a given land-race• Convey the individuality of a genotype in comparison to diversity in a groupTo our knowledge no tool exists that would have allowed us to produce such compact graphs based on a set of informative SSR marker. In the context of the production of the first in-situ catalog ( [6] and [9]) of Andean potato landraces it seemed worthwhile to consider the use or adaptation of the traditional Andean information communication tool -the khipu (see Figure 1). Khipus consisted of a set of chords organized as a set of pendants hanging from a backbone chord. They used colors and knots to store a wide variety of information from tribute statistics (see Figure 2) to state history [2] to sins [4]. Numbers apparently were represented as groups of knots and in a top-down order from 1000s to 100s to 10s and ones [16]. Currently, khipus are not any more read by local people but some are still used for ceremonial purposes [17]. The interpretation and usage of khipus is still not fully understood [16], so we did not aim to replicate a historically accurate way of coding SSR marker information. We rather used the khipu as an inspiration to design our own version. In this paper we summarize the process, design elements and evolution, implementation, use and reception. Details on usage can be obtained from the tutorial [13] available together with the software.The first idea of using the khipu concept was refined by matching the properties of a set of molecular markers against the generic properties of a khipu (see details below). Then, in a first round, design criteria were consolidated and several draft designs tested on real data. Subsequently, the molecular khipu idea was presented to the general public through posters at CIP's genebank foyer, to scientists and breeders through journals [14], at conferences ( [10] and [12]), and through web sites ( [5]) as well as to farmers ( [6] and [9]) to solicit feedback over the course of several years. Recently, the molecular khipu idea was consolidated in a publicly available open source software ( [11] and [13]). The basic design principle is described in more detail in the legend of Figure 3. In summary, SSR marker data are generated in a molecular laboratory applying each marker separately to a batch of genotypyes. In the case of the molecular marker kit for potato [8] also the set of SSR markers is defined. Therefore, the SSR data can be simply re-organized to form a molecular profile or molecular khipu. The principal equivalencies used in Figure 3 to turn the profile into a khipu are listed in Table 1. An important assumption is that only single-copy SSR markers are used. A first prototype using real data is shown in Figure 4. The next principal idea was to include comparative elements into each molecular khipu: how does this genotype compare to a reference genepool? To this end, we used in the second prototype the size of an elliptic dot or 'node'. Color was used to indicate to which chromosome a marker belongs as well as to indicate the range of allele sizes for each marker. See Figure 5. This prototype also tried to more closely visualize the string structure of a physical original khipu.However, eventually some of these latter elements were removed following general design principles of favoring simplicity and avoiding to depend only on color to convey meaning [15].A first version was implemented using the programming language PHP; subsequently, the algorithm was transferred to the language R and ultimately organized as a reusable package along with a tutorial. The package can be found at: http://cran.r-project.org/web/packages/quipu/index.html. The current version of the molecular khipu or SSR marker graph is displayed and described in detail in Figure 6. In short, the standard graph has been enriched in terms of annotation and interpretation while the more playful graphical elements were removed. Many features can be customized as described in more detail in [13].The more compact version is shown and described in Figure 7. Briefly, it remains close to prototype I in Figure 4 with a few enhancements regarding allele frequencies.Perhaps a similar graph could be constructed based on a set of boxplots each showing a summary of a molecular marker with superimposed dots for each allele of an individual genotype. This would have the advantage of showing more statistical information. However, for compact figures in a catalog setting it would probably appear overly congested. Another related graph is the 'graphical genotype' chart as proposed by [18]. This latter chart also shows the molecular marker pattern across a set of genotypes but with an emphasis on explicitly comparing genotypes side-by-side whereas the molecular khipu puts an emphasis on an individual genotype. Both charts can complement each other.The tool has been useful for registry of molecular passports and as a communication tool for genebanks both in-situ [6] and ex-situ as well as for breeding materials [5]: particularly, it added value to local Peruvian potato landraces, served as an example of participatory knowledge generation, and assisted in the creation of printed community potato inventories or catalogs. It was also conceived as a tool to orient conservation efforts and as an educational tool for local farmers communities and schools. However, as documented in [9] this has only been partially fulfilled: while the scientists interviewed were overall comfortable with the molecular chart, farmers in general did not 'understand' it. A different strategy would be required if the molecular khipu were to be used in dialogue on diversity with the diverse communities originally targeted.An example of a khipucamayoc (khipu keepers) managing apparently statistical information. Source: [3].. In the lower left corner apparently a simple counting system is shown based on pebbles or seeds to collect data. The cumulative results are summarized in a khipu. For each genotype there may be more than one allele per lane up to the number of chromosome copies (ploidy number); only single-copy SSR markers are considered. Typically, for each gel a set of genotypes is characterized with the same SSR marker. Therefore, in order to compile data for a profile of a genotpye we will need to simply extract the lane or SSR marker information from the original gel. E.g. for genotype number 3 (marked in dark gray) we can virtually re-assemble the lanes from each original as indicated. With three simple graphical means this is transformed into a 'molecular khipu': a) the reduction of the lane to a symbolic lane, b) the addition of a top line to indicate that these markers comprise part of a set (now each lane represents a distinct gel or marker), and c) the representation of dyed fragments as dots. As a technical note: In a gel the fragments would separate according to an inverse logarithmic relationship. A direct linear scale is used in the molecuarl khipu for simplicity.Figure 4. A first prototype of the molecular khipu. Each pendant or vertical line represents a SSR marker locus. Superimposed dots represent alleles of a given size. The concept of a set is symbolized by the top horizontal backbone line. Annotations, scales, and legend are omitted to enable more minute images for display in a catalog. However, close by alleles overlap and may not be easily noticed. ","tokenCount":"1526"} \ No newline at end of file diff --git a/data/part_3/6219069006.json b/data/part_3/6219069006.json new file mode 100644 index 0000000000000000000000000000000000000000..39da89743e7d629ed63285895e849596e6c247e7 --- /dev/null +++ b/data/part_3/6219069006.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"44df37110f94346a59c1e5e345f81e9a","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/5c33a94b-1aa3-465e-8b90-e47ed9b3a0e8/retrieve","id":"-1092513129"},"keywords":[],"sieverID":"0a2a185e-25a5-4bd8-a487-6d010b52eb28","pagecount":"30","content":"CGIAR is a global partnership that unites organizations engaged in research for a food-secure future. The CGIAR Research Program on Livestock provides research-based solutions to help smallholder farmers, pastoralists and agro-pastoralists transition to sustainable, resilient livelihoods and to productive enterprises that will help feed future generations. It aims to increase the productivity and profitability of livestock agri-food systems in sustainable ways, making meat, milk and eggs more available and affordable across the developing world. The Program brings together five core partners: the International Livestock Research Institute (ILRI) with a mandate on livestock; the International Center for Tropical Agriculture (CIAT), which works on forages; the International Center for Agriculture Research in the Dry Areas (ICARDA), which works on small ruminants and dryland systems; the Swedish University of Agricultural Sciences (SLU) with expertise particularly in animal health and genetics and the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) which connects research into development and innovation and scaling processes.Figure 2: Total feed area required for Cattle and Pig Systems - -----------------------------------------------------------5 Figure 3: Soil nutrient balance and erosion across the systems - ---------------------------------------------------------6 Figure 4: Total water use in the systems - ----------------------------------------------------------------------------------------6 Figure 5: Water required to produce one kilogram of meat and protein in the systems --------------------------7Figure 6: Sources of Greenhouse gas emissions - -----------------------------------------------------------------------------7 Figure 7: Greenhouse gas emission intensity per kg of livestock product - --------------------------------------------8 vi Tables Table 1: CLEANED Vietnam Internal Validation Participants - --------------------------------------------------------------- ------------------------------------------------------------------------------------------3 Table 3: Intervention Packages in Li-chăn study sites - ----------------------------------------------------------------------9 1Li-chăn is a project under the CGIAR Research Program on Livestock (Livestock CRP) that aims to provide research-based solutions to transition smallholder farmers to sustainable and resilient livelihoods and to more productive small-scale enterprises that will help feed future generations. The project area is Mai Son district, Son La province. One-hundred and nine households were interviewed using the Gendered Feed Assessment (G-FEAST) tool in Son La, North-West Vietnam between April and November 2021. The G-FEAST tool was designed to identify opportunities and constraints in animal feeding practices for different household types by assessing the availability and use of local feed resources, identify challenges and constraints affecting livestock production through the gender lens, opportunities for improved animal nutrition and propose context-specific interventions on livestock feed for improved animal nutrition (Lukuyu et al., 2019a;Lukuyu et al., 2019b). When surveying representative farming systems, households that did not have cattle or pigs were removed, resulting in a total of one-hundred and four households. The interview responses were grouped into a farm typology with households close to roads and markets, in the valley bottoms with the best soil and most commercialized and intensified classified as farm Type A; those on the valley edges and slopes, who practice more mixed agriculture and are less specialized classified as farm Type B; and those high on the slopes who have poor road access, poorer quality land, and are generally more extensive and subsistence-oriented than the others classified as farm Type C (Hammond et al., 2020). Six villages are selected for project implementation in 2020-2021: Khoa and Xam Ta in Chieng Chung commune; Mon 1, Mon 2, Oi, Buom Khoang in Chieng Luong commune. Five case study model farms were selected (One from each village except Mon 2) from the household list for the CLEANED environmental assessments to represent mixed systems with cows and pigs which formed the majority in the region. The systems were then named as A, B1, B2, C1 and C2. The differences within type B arose from the feeding diets being different in the two villages (Khoa and Oi), while the differences within type C arose from management system and herd composition.In the framework of this project, the Alliance of Biodiversity International and the International Center for Tropical Agriculture (CIAT) and the International Livestock Research Institute (ILRI), together with their partners, are jointly working on Comprehensive Livestock Environmental Assessment for Improved Nutrition, a Secured Environment and Sustainable Development (CLEANED) of cattle and pigs systems in Son La province, Vietnam. This report presents the discussions and outputs of the virtual CLEANED internal expert validation workshop that took place on MS Teams on 15 th July 2021. Due to the COVID-19 situation in Vietnam, this was an internal validation workshop, bringing together with experts from CIAT, the International Livestock Research Institute (ILRI) and local partners.The workshop aimed to validate the environmental footprint quantified by CLEANED for cattle and pigs' systems in Mai Son, Vietnam. CLEANED runs were carried out for Son La in Chieng Chung and Chieng Luong communes with key input data including farm inputs, herd composition and animal whereabouts. Based on these data, the model quantifies land use and water requirements, nutrient balances and greenhouse gas emissions (GHGe). This is a first step in understanding environmental trade-offs in the modeled systems and forms the basis for designing systems with a reduced environmental footprint that enhance ecosystem services.1. Share and discuss preliminary model results• Representation of types (production systems/animal numbers) 2. To develop future scenarios for model implementation that reflect best-bet integrated intervention packages per system.• Which combination of interventions makes sense for the different types?The event was facilitated by Ms. Jessica Mukiri. Table 1 gives an overview of the participants and their expertise.2 \"Cattle like to eat elephant grass most of all and its yield is also high. The grass looks like sugarcane, and it is grown like sugarcane too.\" -Lò Văn Thương a farmer from Thailand.\" Lý A Trống Some villages especially those in high altitudes graze their cattle in the forest, a few households have built cattle sheds, though with no foundations and no roof and a temporary trough for feeding. This negatively affects the health of the cows. Lý A Nủ 3The cattle and pigs' systems as seen in Table 2 were identified, characterized and verified by the team before the assessment began. This was based on G-FEAST 1 reports, farmer follow ups together with expert opinion.1 Rapid survey of livestock feed resource availability and use in Mai Son district, Son La province, Vietnam, using the Gendered Feed Assessment Tool (G-FEAST). https://hdl.handle.net/10568/111524 » C1 is the most water efficient system; most water is used per kg of meat or kg of protein in B2 » The emission intensity of producing a kilogram of meat and protein is higher in Xam Ta (C2) than other systems » Mon 1 exhibits the lowest carbon footprint when producing a kilogram of meat and protein.It was observed that feed area/TLU varies significantly in relation to feed crop yields and feed quality across the systems.Cattle and pig systems in Xam Ta (C2) are highly dependent on natural pasture and maize cracked grains that have low yielding per unit area, and this results in an increase in area required to produce feeds for animals in the system. The heavy reliance on grazing natural pastures contributes to low productivity of the cattle and leads to higher methane emissions from the ruminants. It was also noted that Pig systems rely mostly on crop residues such as banana trunks and taro leaves as well as collected forage obtained mainly from the road sides or in the forest and field banks. Although maize cracked grain is important feed for the pigs, it has shortcomings on land and water use requirements. Only few systems are under planted forages i.e. Napier grass. Use of improved forages is therefore recommended in all systems to boost productivity and increase land use efficiency.CLEANED results illustrated a high nitrogen (N) use in all systems due to high crop production activities. However, most nitrogen is recycled for type A and B systems through importation of mineral fertilizers, mulching and recycling of organic manure. However, this is not the case with type C systems as the farms reported low fertilizer flows, burning of crop residues that could otherwise provide the vital nutrients to the soils and poor recycling of livestock manure. Most soil is lost per hectare in systems B2 and C1 through erosion and it is mainly due to topography, relatively more rain, less soil conservation practices and continuous cultivation activities along the slopes.Examination of water impacts showed that water use corresponds well with rainfall and type of feed crops grown within the region. System C1 was the most water efficient system while most water was required to produce a kilogram of meat or protein in B2 production system. Production of high-yielding crops and forages can minimize water lost through evapotranspiration.Greenhouse gas emissions varied relatively across the production systems with emissions from enteric fermentation being predominant followed by manure use and N20-N emissions produced from managed soil, grazing and rice fields. These emissions can be attributed to high intake of low-quality feeds, poor manure management mainly from Pigs, volatilization from manure, high rate of inorganic fertilizer flows and crop residue burning. Proper manure management, 10These interventions are being tested and the main productivity gains include:• Reduced mortality• Increased productivity as a result of better animal health and genetics, and improved animal nutritionFor the interventions, the team agreed to test one package for each farm type:• Animal Health and Genetics, Livestock and Environment, Feeds and Forages interventions ( an integrated package).The objectives of workshop were met. The next steps included the genetics team to provide livestock data changes after a successful genetic improvement exercise and the Feed and Forages team to specify the feeds and forage interventions to be included in more detail.\"By the beginning of August, the elephant grass is very tall, two months after planting. Two varieties of grass are grown on this farm: the pilot green elephant grass and the traditional elephant grass. They were planted on the same day, but the green elephant grass is much taller. ","tokenCount":"1609"} \ No newline at end of file diff --git a/data/part_3/6227418268.json b/data/part_3/6227418268.json new file mode 100644 index 0000000000000000000000000000000000000000..dbffec105f20efc7af5adde12102913fe99f7f9c --- /dev/null +++ b/data/part_3/6227418268.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"4bceeed46d8a49536dfb6ea489c7e4c2","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/e3509f60-dd0d-4070-a737-81ee18f86d36/retrieve","id":"-1647380059"},"keywords":["Dindo Campilan (CIP","Los Baños","Philippines)"],"sieverID":"0ef5f527-f37d-48b6-89b5-85ecd7014fc6","pagecount":"56","content":"CIAT encourages wide dissemination of its printed and electronic publications for maximum public benefit. Thus, in most cases colleagues working in research and development should feel free to use CIAT materials for noncommercial purposes. However, the Center prohibits modification of these materials without written consent, and we expect to receive due credit when they are reproduced in other publications. Though CIAT prepares its publications with considerable care, the Center does not guarantee their accuracy and completeness.The practice of farmers and researchers working together to develop new agricultural technologies has been termed 'farmer participatory research' (FPR) or 'participatory technology development' (PTD). According to its advocates, the benefits of this approach are substantial: \"The outcome of PTD is twofold: locally-adapted improved technologies and improved experimental capacities of farmers. Practical field experiences reveal that impressive results can be achieved when farmers and outsiders 'join hands'\" (Haverkort 1991:6).On the other hand, some of those with experience in the area maintain that \"farmer participatory research (the collaboration of farmers and scientists in agricultural research and development) is a promising idea that has not lived up to its promise\" (Bentley 1994:140). The basis for this view is that \"there are still few reports in the literature of technology invented by formal scientist-farmer interaction. Most papers on FPR include no data, no description of technologies generated with farmers and no description of the method used or which scientists participated and how. Some even fail to mention which crop was under study\" (Bentley 1994:142).The issue is not whether conventional research (e.g. plant breeding) can generate the basis of improved farm technologies -it clearly can (Anderson 1994). Nor is it any longer a question of whether farmers conduct their own experiments and develop technologies onfarm (Sumberg and Okali 1997). The issue is whether farmers and scientists formally working together on research problems can develop technologies more effectively than farmers and scientists working separately (Okali et al. 1994). According to Bentley, \"we cannot judge farmer participatory research by any other standard than its ability to generate useful new techniques for rural people \" (1994:143). This highlights the need for careful monitoring and evaluation of participatory research projects and programs, both to ensure 'quality control' (Jiggins 1994) and to document and evaluate the impacts of this kind of research activity.The Forages for Smallholders Project (FSP) is a participatory research program in Southeast Asia that commenced in 1995. The focus of the project is to develop forage technologies in partnership with smallholder farmers in upland areas where forages have potential to improve livestock feeding and management of natural resources. The FSP is funded by AusAID (Australian Agency for International Development) and managed by CIAT (Centro Internacional de Agricultura Tropical) and CSIRO (Commonwealth Scientific and Industrial Research Organisation of Australia). It involves a network of smallholder farmers, development workers and researchers in Indonesia, Lao PDR, Malaysia, Philippines, Thailand, Vietnam and Southern China.Faced with a need to develop procedures to monitor and evaluate the impacts of the FSP, in 1999-2000 CIAT collaborated with the University of Queensland (UQ) in a project funded by ACIAR (Australian Centre for International Agricultural Research). The project was titled 'Participatory Monitoring and Evaluation of New Technologies Developed with Smallholders' and its objectives were to:• Develop a framework to monitor and assess the on-going and ex-post impacts of new forage technologies developed through farmer participatory research.• Study the process of farmer technology testing, adaptation, and adoption using participatory monitoring and evaluation methods and taking into account gender and wealth differences among potential adopters.• Compare participatory and conventional approaches to and impacts of forage technology development.The project proceeded by conducting fieldwork at two contrasting FSP sites -Malitbog in the Philippines, and M'Drak in Vietnam. Malitbog is located in Bukidnon Province in Mindanao at 8° N latitude, 124° E longitude, and 250-1,000 masl, with average annual precipitation of 2,000 mm and 2-4 months of <50 mm rainfall. There is an extensive upland farming system with soils of pH 5.9 and low-medium soil fertility. The FSP is working with farmer groups to develop forage technologies for intensively managed plots and contour hedgerows. Farmers commenced planting forages on their own land for evaluation in 1997 from species selected from a regional evaluation site established in the area in 1995-96. M'Drak is located in Daclac Province in the central highlands of Vietnam at 12° N latitude, 109° E longitude, and around 500 masl, with average annual rainfall of 1,400 mm and 4 months of <50 mm rainfall. An extensive upland farming system has been developed in the last 15 years to replace Imperata cylindrica grassland on soils of pH 4.5-5.5 and of lowmedium fertility. On-farm evaluation of forages was commenced by 30 farmers in 1997 from species selected from a regional evaluation site established in 1996. The main interest of farmers is in forages to supplement local feed for cattle.The ACIAR project worked with FSP farmers, development workers, and researchers at the two sites, experimenting with a range of 'conventional' and 'participatory' techniques, to:• Characterise the farmers' situation (thus establishing a 'baseline')• Decide what were the 'issues' requiring monitoring and evaluation• Select key indicators• Test methods for obtaining information• Test methods for analysing and presenting information• Assess the usefulness of the information for decisions.The project presented preliminary findings at a five-day workshop at Cagayan de Oro in the Philippines in August 2000 in which FSP staff and others participated.This report addresses the first of the three project objectives listed above. That is, it seeks to develop a framework and assess a range of methods and techniques for participatory monitoring and evaluation of the FSP and similar projects. It draws on the site-specific experience gained from the fieldwork in the Philippines and Vietnam and the pooled insights and experience of practitioners at the August workshop, as well as selected literature from the now extensive body of writing on participatory monitoring and evaluation.The report is organised in two parts. In Part A, we consider some of the conceptual and practical issues involved in developing a framework for monitoring and evaluation in the FSP. In Part B, we review our experience with a range of techniques for implementing monitoring and evaluation, grouped into mapping, diagramming and other visualisation techniques; preference ranking and matrix scoring techniques; and structured and semistructured interviewing techniques.• There are many possible effects of the project, some of them immediate (e.g. formation of forage groups), some intermediate (e.g. adoption of forage technologies), and some longer term (e.g. improvement in livestock production and farm income). These effects not only appear over different time-frames but form part of a complex causal sequence (e.g. the formation of groups may contribute in part to the adoption of forage technologies which in turn may contribute to improvement in the output of the farming system).• At any one time there are many different processes underway -adoption and adaptation of forage technologies, formation and growth of forage groups, development of local capacities for adaptive research -all of which are impacts or potential impacts of the project.• There are many different actors or 'stakeholders' -farmers, development workers, local supervisory staff, project leaders, CIAT, CSIRO, AusAID -each with their own information needs and perspectives. The current emphasis on 'participation' encourages us to involve everyone in M&E activities.• There are many tools and methodologies available -'conventional' and 'participatory' -including structured and semi-structured interviews, community resource mapping, wealth ranking, storytelling, and so on.However, our time and resources are limited. Somehow we have to be selective in what we try to measure, how we measure it, and whom we involve in the process.Participatory approaches to M&E (or PM&E) entail the active involvement of local people (farmers, field staff, and other local stakeholders) in the design, elicitation, analysis, and utilisation of M&E information. PM&E has been motivated by functional concerns, i.e. to improve the effectiveness of M&E, as well as by concerns for the empowerment of disadvantaged groups. Table 1, adapted from Mikkelsen (1995:170-1), summarises the differences between conventional and participatory evaluation. In practice, the distinctions are not always so sharp and a blending of the two approaches often occurs. PM&E is now widely advocated for all forms of development activity (Schonhuth and Kievelitz, 1994;Pretty, Guijt, Scoones and Thompson, 1995;Van Veldhuizen, Waters-Bayer and de Zeeuw, 1997). Estrella and Gaventa (1998) list five general purposes for which PM&E is being used in practice:• Impact assessment• Project management and planning• Organisational strengthening or institutional learning• Understanding and negotiating stakeholder perspectives• Public accountability.As indicated above, the primary emphasis in this report is on impact assessment, though PM&E conducted for this purpose can clearly contribute to one or more of the other functions. PM&E for impact assessment can be characterised as '… a process of evaluation of the impacts of development interventions which is carried out under the full or joint control of local communities in partnership with professional practitioners … [C]ommunity representatives participate in the definition of impact indicators, the collection of data, the analysis of data, the communication of assessment findings, and, especially, in post-assessment actions designed to improve the impact of development interventions in the locality (Jackson 1995:6).' Estrella and Gaventa (1998) identify four general principles or characteristics of PM&E:• Participation . There are two main ways to characterise participation in M&E -by whom it is initiated and conducted (externally led, internally led or jointly led); and whose perspectives are particularly emphasised (all major stakeholders, beneficiaries, or marginalised groups).• Learning . The emphasis is on practical or action-oriented learning. PM&E is also seen as a means of local capacity-building.• Negotiation . PM&E is a social process for negotiating between people's different needs, expectations and world-views. It is also a political process which can empower and disempower different stakeholders. Negotiation results in the selective involvement of stakeholders in the design, implementation, reporting, and use of M&E.• Flexibility . PM&E emphasises flexibility and experimentation; there is no blueprint. Who are the 'participants' in participatory M&E? Farmers, field workers, local project managers, international project managers, donors, and other actors outside the immediate project frame (departmental heads, mayors, businessmen) are all potential stakeholders in the project and its activities. A participatory approach can be seen as one which involves all these actors as partners. However, each actor will have his or her own view regarding the benefits and costs of participation. Participation is a form of investment (Johnston and Clark 1982), hence prospective participants will ask:• What are the benefits of participation?• What are the (opportunity) costs of committing scarce resources (money, time, energy, freedom from obligations)?• What are the risks?• What other means are available?We cannot assume that everyone will have the time or motivation to be involved in all the PM&E activities we can identify.There are many aspects or effects of a participatory technology development project, such as the FSP, which we may need to monitor and evaluate -some of them immediate, some intermediate, and some longer term. Following Bennett and Rockwell (1995), the more immediate effects are to do with the process we are involved in (Figure 1):• Resources (e.g. time and money expended to raise farmers' awareness of forages)• Activities (e.g. awareness-raising activities such as field days and cross-farm visits)• Participation (e.g. involvement of farmers in these activities)• Reactions (e.g. what farmers thought about their involvement in these activities).Then there are the impacts of the project, that is, the intermediate and longer-term things that happen as a result of the above process:• Knowledge, attitudes, skills, aspirations (e.g. farmers' knowledge about new forage varieties, their attitude to experimenting with these varieties, their skills in establishing and managing forage plots, their aspirations to expand their forage and livestock activities)• Practices (e.g. farmers' adoption and adaptation of forages and forage systems, such as hedgerows of napier grass)• Social, economic, and environmental outcomes (e.g. adoption of napier grass hedgerows may result in more work for men to cut and carry the grass (social outcome), more income from the sale of fatter livestock (economic outcome), and less erosion from the field in which the hedgerows are planted (environmental outcome)). As Bennett and Rockwell (1995) point out, the further down this list we move the longer it takes for the change to occur, the harder it is to measure the change, and the harder it is to attribute the change to the project. We may have to be content to monitor something higher on the list and use this as indirect evidence of producing a change further down the list.For example, soil erosion and its off-site impacts (such as sedimentation in streams) are very difficult to measure and it may take some time for these impacts to become noticeable. However, we know that hedgerows (even one grass strip) can significantly reduce soil erosion. Hence we may use farmers' knowledge and skills regarding hedgerows and the extent to which they actually adopt hedgerows (an observable farming practice ) as a way of assessing the reduction in soil erosion (a longer-term environmental outcome ).Another, complementary way of looking at the different effects or 'products' of a participatory technology development project is as follows (McAllister 1999;McAllister and Vernooy 1999):• Process -the participatory research approaches used or developed in the project, such as farmer focus groups to identify and rank research needs.• Outputs -the immediate outputs of project activities, such as the number of people trained in forage technologies or participatory research, the number of research reports produced, or the range of new forage technologies developed.• Outcomes -the short-term or intermediate effects of the participatory research process, such as farmers planting forage plots and acquiring more animals (a positive outcome), or reduced food crop production due to the use of land for forages (possibly but not necessarily a negative outcome). Some outcomes (both positive and negative) may have been unexpected when the project began, such as using forages to feed fish in Vietnam, or forage plots harbouring rats and snakes in the Philippines.• Impacts -the overall, long-term changes in the project area (positive or negative) which result, at least in part, from the participatory research project, such as reduced poverty, greater gender equity, and improved natural resource management. These are very difficult to measure and attribute to the research process, so to evaluate the project we generally have to focus on the outcomes as intermediate measures of impact.• Reach -the wider, 'ripple' effects induced by the project, such as on the capacity of farmers and local researchers to initiate and implement their own activities and projects to deal with new problems and needs. For example, field workers may use or modify the participatory appraisal methods learned during a forages project to help another group of farmers tackle a completely different problem, e.g. a village water supply problem.Whichever way we categorise the project effects, there is a fundamental issue in M&E regarding the basis for comparison . If we are measuring changes over time (e.g. in livestock productivity) and attributing these changes to the project, we need to be able to answer two questions:• What was the situation before the project started (i.e. the 'before-after' comparison)?• What would the situation be now if the project had not intervened (i.e. the 'withwithout' comparison)?Without these comparisons we cannot be sure to what extent the changes we are monitoring are actually effects of the project. For example, we might find that livestock productivity is high. But was it already high before the project started? If not, would it have been higher anyway in the current year because of other factors (e.g. good rainfall resulting in an abundant supply of native grasses)? These questions are relevant whether we are talking about a farmer group monitoring its own progress or a donor agency evaluating the effectiveness of a large research program. Figure 2 gives a hypothetical example of how an indicator of impact might vary before, during, and after a project, as well as with and without a project, illustrating the need for a comparative perspective. The conventional way of making these comparisons is to conduct a baseline study at the beginning of a project (to permit the before-after comparison) and to monitor change in a non-project or 'control' area (to permit the with-without comparison). However, this need not require an elaborate and time-consuming questionnaire survey; more participatory techniques can be used. For example, as part of project planning, focus groups can be organised during which techniques such as community mapping, time lines, problem ranking, semi-structured interviews, etc., are used to establish the current and recent status of key variables, thus establishing a baseline. Even if this has not been done at the outset of a project it is possible to construct a 'retrospective baseline' in which participants recall their situation immediately before the project commenced.Moreover, it may not be necessary or desirable to include a 'control' area to obtain a with-without comparison. It is always difficult to find an area which is sufficiently similar to the project area yet unaffected by the changes the project is engaged in. In any case, it is somewhat contrary to the participatory research approach to be monitoring a group of farmers purely to evaluate impacts elsewhere. If the aim is to establish whether a change is due to the project's activities, it may be better to use participatory techniques which draw on the detailed local knowledge and experience of farmers and field workers within the project area. For example, farmer focus groups could identify and weight the factors (project and extra-project) which have led to changes in livestock productivity, using flow-charting and ranking-and-scoring techniques. Farmer case studies using semi-structured interviews might also be used to give an in-depth understanding of the reasons for observed impacts.Such approaches not only give answers to the question: \"To what extent are the observed changes attributable to the project?\", they also enhance the understanding and research capability of the project participants.M&E is a complex process in its own right with several distinct aspects. Estrella and Gaventa (1998) outline four major steps in applying participatory M&E:• Planning or establishing the framework for a PM&E process, including identification of objectives and indicators• Gathering data• Data analysis• Documentation, reporting, and sharing of information.The first of these steps is clearly critical -to be effective, M&E needs to be carefully planned. Ideally, this planning should take place at the start of the project as part of the whole process of problem diagnosis and development of project activities. In practice, the M&E plan will need to be re-visited several times as the project evolves and as participants become clearer about the key indicators to measure and the feasibility of measuring them. The steps involved in developing a PM&E plan are indicated by the following list of questions -an adapted and expanded version of those used by the International Potato Centre (CIP) in their participatory research and extension activities:• What are the project objectives?• What are the M&E questions that follow from these objectives?• Who needs answers to these questions?• What are the best indicators to help us answer these questions?• What are the units in which these indicators are measured?• What are the best methods/tools to obtain this information?• What/who is the source of this information?• When does this information need to be collected and at what scale?• How will the information be analysed?• How will the information be utilised?• Who is responsible for collecting, analysing, and utilising the information?These questions can form the column headings in a M&E matrix, which can be a convenient way to develop and record the plan. Table 2 shows a matrix based on these questions. The two completed rows in the matrix give hypothetical (and fairly simple) examples of how a M&E plan might proceed. In practice, as found in workshops to develop M&E plans for the FSP and other projects, it becomes more difficult to develop measurable indicators for less tangible impacts such as 'group self-mobilisation'.Participatory M&E requires that the development of a M&E plan be itself conducted in a participatory manner. Developing such a plan requires facilitation, using many of the methods and tools described in later sections of this report. It is not simply a question of putting up a blank matrix and asking participants to fill in the cells. For example, to determine the important M&E questions, it may be necessary to form a focus group (or groups) of the key stakeholders and use participatory appraisal techniques to elicit and rank the questions. Then, for a given M&E question, the group could develop a list of potential indicators using flow-charting, and rank these indicators according to agreed criteria, such as those discussed below. The completed matrix is the end-product of these various activities.The context for many of these M&E activities may be regular farmer, village and project meetings, i.e. they need not be special exercises. As far as possible they should be woven into the normal activities of farmers and project staff.Central to the development of a M&E plan is the identification of appropriate indicators and of procedures to measure them. A good indicator is determined by its usefulness, ease of collection, and the number of stakeholders benefiting from the information it provides. In Figure 3, good indicators are those which fall in the space enclosed by the triangle and the three axes (note that the three dimensions are depicted as increasing towards the 'origin'). The figure implies that there are trade-offs between the three criteria. For example, an indicator which is considered very useful by scientists in the project (such as manure production and composition) might be difficult to measure and of no interest or value to other participants. Compromises will have to be made to ensure appropriate indicators are selected. Indicators (whether of farm productivity, sustainability, or research capacity) are useful to the extent that they improve farmers' and researchers' state of knowledge (i.e. reduce their uncertainty) and thus improve decision-making in such a way as to affect production and resource management. decisions or outcomes, or which are excessively costly to monitor, are of little value (Pannell and Glenn 2000). The managerial relevance of indicators is related to the question of scale and planning horizon. Short-term indicators at the field or enterprise scale may show negative trends, whereas the activity in question may be contributing to the productivity and sustainability of the whole farm as a management unit (Cramb 1993).Where off-site effects are important, the village or catchment scale may be of more managerial significance (Pachico et al. 1998), assuming of course there is institutional capacity to manage at that scale. • Specific• Action-oriented• Realistic• Time-framed.For example, a good indicator of the FSP's impact on natural resources in an area of sloping land (such as in the upper parts of Malitbog) may be the number of hectares on which contour hedgerows have been appropriately established, estimated by farmer groups at a given time each year, and collated by the local development worker. This is a specific, measurable indicator; it relates well to the actions undertaken in the project; it is realistic in that it does not take much time to estimate or record, yet we know from research that it is well correlated with reduced soil erosion; and it is time-framed, relating to progress over the preceding 12-month period.An example of a poor indicator of the impact on natural resources would be improved water quality in rivers downstream from the project area. This is not a very specific or measurable indicator (water quality has many dimensions), nor is it very realistic in that measurement would be time-consuming and costly and would have to be undertaken by others. In any case, changes in downstream water quality will be caused by many factors over a long period -not just last year's conservation efforts in part of one upstream subcatchment. Hence this information will be difficult to relate to specific actions undertaken or planned.In a participatory process, many good ideas for indicators may emerge (e.g. Table 3), but not all should be selected for the M&E plan. It is the role of project leaders and facilitators to help stakeholders agree on a minimal set of SMART indicators. In particular, as Pachico et al. (1998) remark, \"indicators need to be theoretically and logically linked, preferably inEase of implementationIndicators need to be useful, easy to collect and important to many of the stakeholders.some causal relationship, with the behaviour of the complex system of interest\". Simply positing a list of indicators, whether or not the list is developed participatively, is unlikely to provide any coherent guide to the desirability of the technological changes taking place.One indicator (e.g. area of forages planted) may be causally related to others (e.g. livestock growth, labour requirements) which in turn affect some larger management objectives (e.g. net farm income, maintenance of resource base). Hence these indicators may be 'intermediate' in two related senses: (1) they reflect changes in intermediate products of the system in question;(2) they give an early indication of outcomes which necessarily take time to emerge. To be useful and credible, therefore, indicators need to be developed within an integrated framework which reflects the structure and dynamics of the management system for which the technology is being developed (e.g. the farm-household system).Source : Kerridge and Fujisaka (1998).Flow-charting is a useful technique for identifying these connections and zeroing in on suitable intermediate indicators. Having developed a flow chart of impacts, a focus group can be asked to rank the impacts in the flow chart in terms of their suitability as indicators. This may require some skilful facilitation. For example, participants could be encouraged to look for impacts which capture or encompass the effects of a sequence of prior impacts (e.g. number and liveweight of cattle in a village might be considered to capture the effect of increased forage area, increased forage production, and changed feeding practices). At the same time, it may be necessary to include combinations of indicators which help to separate out the multiple factors or causes giving rise to an impact. For example, an improvement in the number and liveweight of cattle in a given year may be due to increased availability of planted forages as well as increased productivity of natural forages, both of which might be due to a better than average season. A decision would have to be made as to which combination of these variables needs to be monitored in order to assess correctly the effect of new forage technologies -area and yield of planted forages? area and yield of natural forages? rainfall? Participatory techniques could be used to economise on data collection. For example, rather than measuring rainfall directly farmers could develop a scale for rating seasons; rather than measuring natural and planted forage production, farmers could estimate their relative contribution to livestock feed intake using a matrix scoring technique (e.g. Table 4).Many of the indicators used to measure productivity effects are simple ratios, e.g. forage yield, livestock growth rate, gross margin per hectare or per head. Yet, taken in isolation, such partial productivity measures may be misleading as indicators of the overall profitability of an activity (Dillon and Hardaker 1993). For example, a high forage yield may be obtained with expensive fertiliser or excessive use of family labour. There is a need to capture all the benefits and costs of a new technology to assess its impact on economic productivity. Partial budget analysis, if extended to include non-monetary benefits and costs, can do this for a small change in the annual production cycle, such as augmenting feed supply with a small forage plot. The productivity indicator in this case is the net benefit of the change in question. Farm development budgeting extends the same principle to larger and longer term changes, such as investment in an intensive forage management system 1 6involving expansion of livestock activities. Here the standard indicator is net present value, derived from the summation of discounted benefits and costs occurring over a specified planning period.There are many different methods and tools which can be used in M&E, described in numerous manuals and monographs (Bernard 1995;Casley and Kumar 1988;Dillon and Hardaker 1993;Dixon, Hall, Hardaker and Vyas, 1994;Fowler 1993;Norman, Worman, Siebert and Modiakgotla 1995;Poate and Daplyn 1993;Yin 1994;Mikkelsen 1995). These can help the project's stakeholders to:• Establish and clarify project objectives• Identify and rank M&E questions• Develop measurable indicators• Obtain and communicate the information needed.It is not very helpful to label these methods and tools as either 'participatory' or 'conventional'. They are merely techniques which may or may not be used in a participatory way. For example, a community mapping exercise may be used to extract population or land-use information for a national planning agency, with no feedback or immediate benefit to the community concerned. Alternatively, a map may be developed as a community resource, retained in a community meeting room, to help local farmers plan and monitor their own progress in forage and livestock development. Both these uses may have their justification.It is useful to distinguish between methods , that is the overall context or setting in which information is elicited and tools , that is the specific means of eliciting information within that setting (Figure 4). The main methods used in M&E of the FSP have been:• Focus groups -small groups of farmers sharing a common experience (e.g. farmers in the same location, women farmers, members of a forage work group) who meet together with a facilitator to pool their knowledge and perceptions.• Farmer case studies -detailed investigation and observation of an individual farmhousehold system, including all livelihood activities, not only those relating to forages.• Surveys -systematic elicitation of information from a sample of farmers in a specified region, the sample being obtained by one of a number of methods (e.g. farmers may be randomly selected from a list or those encountered along a transect). Improved Forages (cut & carry): 10 14As shown in Figure 4, these methods form a logical sequence -focus groups (or key informants) can provide an overview of farming circumstances in a particular location, case studies can provide an in-depth understanding of the processes underlying these circumstances, and surveys can be used to verify these impressions and assess the range of circumstances existing within and beyond a project area. This is not to say, however, that all three methods are necessary in a M&E process -for many purposes routine reporting by farm leaders and field staff and occasional focus group meetings may suffice.The main tools used within these methods can be grouped as follows:• Mapping and diagramming tools (e.g. community maps, time lines, seasonal calendars, flow charts, crop histories)• Ranking and scoring tools, including techniques for wealth ranking• Interviews (structured and semi-structured).These methods and tools can be combined in various ways, depending on the task at hand (Figure 4). For example, mapping is a tool which can be used in a variety of settings:• Mapping can be used in a focus group meeting (e.g. a forage farmers' group) to elicit and record information about the location, extent, and species composition of members' forage plots.• Mapping can also be used in a case study to depict the layout of the case study farm and record various attributes of the farm.• Similarly, asking respondents in a survey to draw a simple diagram of their farm layout and to record information about each plot (e.g. area, tenure status, crops grown, etc) can be a more 'user-friendly' and reliable way to obtain this information than simply asking questions and recording answers in a questionnaire table. Mapping may also be combined with other tools in a given setting, say a focus group meeting. For example, having constructed a community map, showing the location of households, farms, and community facilities, a wealth-ranking exercise might be conducted in which participants agree on wealth categories and collectively assign each household to a category, the resultant rank then being recorded on the community map. This could help the group and the project worker to monitor whether certain conservation technologies are only being adopted by better-off farmers or by all farmers uniformly. The use of each of the methods and tools listed above involves three phases:• An elicitation phase, in which information and opinions are expressed and recorded; for example, farmers' knowledge about their local landscape is expressed in the form of a community resource map.• An analysis phase, in which the information is summarised, aggregated, correlated, or otherwise analysed to make it more useful for monitoring and evaluation; for example, the forage plots recorded on the community map may be counted and the number in each sub-village written on the map or in a table or chart, to indicate the extent of forage adoption by location.• A utilisation phase, in which the information is communicated to those who need it to make decisions; for example, a local project team may use the information about number of forage plots by location to evaluate the suitability of the forage species being offered to farmers.Methods vary according to whether these phases:• Are conducted at one time (e.g. a single meeting of a farmer group) or at separate times (e.g. analysis and utilisation of the information involves some delay).• Are conducted in one place (e.g. a community meeting place) or several places (e.g. analysis is conducted in the researcher's office and the information communicated to headquarters).• Involve the same people (e.g. farmers and project workers) or several groups (e.g. analysis is conducted by specialist staff and the information is utilised by project managers).The process of M&E will be more participatory the more the three phases come together.Nevertheless, a given method may serve several purposes at once, e.g. a farmer planning meeting may generate information upon which farmers are able to act but which can also be communicated to project staff at various levels and (if the expertise is on hand) incorporated in a database at the project headquarters. As far as possible, we should be aiming to develop M&E procedures which simultaneously satisfy various stakeholders in this way (Figure 3).Regardless of the methods used, or the degree to which they can be considered participatory, the information generated is inevitably woven into a story of some sort (e.g. in a written report or when reporting during a project meeting or review). It is the stories we tell which place indicators and other data in context and communicate this information in order to make some point, whether to urge fellow project participants to take corrective action or to persuade donors to continue providing support . Indicators are the bare bones of M&E; it is the stories which put flesh on these bones and bring them to life . More explicit and systematic attention in M&E needs to be given to the processes by which stories emerge from participants' experiences and observations (e.g. Davies 1996, Dart 1999).Hence in the FSP and similar projects it is important not only to report on the various quantitative and qualitative indicators that have been developed and measured. There will be much that occurs which is not captured by these indicators alone. In fact, it is likely that some of the most important outcomes of the FSP will not have been anticipated when setting up the M&E system, or will not be fully reflected in the data that system provides (Cramb 2000). Annual meetings, mid-term reviews, and project workshops should be used to bring out the stories behind the M&E data. To some extent this will happen naturally during the life of a project, but it should be planned for explicitly so that the full richness of various local experiences can be drawn out, shared, and reflected upon. It is in this way that participants can get behind the questions about 'what happened' to an understanding of 'why things happened the way they did'. Our ability to address the larger questions regarding the effectiveness or otherwise of participatory research will depend on this kind of systematic 'story-telling'.context of the project.Participatory technology development projects, such as the Forages for Smallholders Project and related projects in Southeast Asia, are giving increasing attention to monitoring and evaluation (M&E). In particular, the adaptive nature of technology development requires effective procedures for impact monitoring or on-going evaluation to assess intermediate impacts and make appropriate adjustments in project activities. This M&E is not just for external stakeholders such as donor organisations and project managers -it can and should be of benefit to all stakeholders, including farmers and field-level development workers. A more inclusive or participatory approach to M&E is both more effective in providing reliable information about project impacts and, if conducted well, can enhance the understanding and capabilities of all participants. A major benefit is that farmers and field workers gain a greater voice in determining the direction of technology development processes of which they are the prime beneficiaries. In participatory M&E the emphasis is on participation, learning, negotiation, and flexibility, rather than the standardised and summative approach of more conventional M&E.A participatory technology development project is a complex activity with effects at many levels. These include the process of technology development itself and a range of impacts arising from that process -immediate, intermediate, and long-term. Measures of intermediate impact frequently have to be used as indicators of long-term development outcomes (such as poverty alleviation). To ascertain the extent to which these effects are actually impacts of the project it is necessary to have a basis for comparison , including a comparison of the situation before and after the project and of the situation with and without the project (given that changes also occur in the absence of project interventions).Participatory M&E looks first to the perceptions and experience of project participants themselves to establish this comparative perspective, rather than formal statistical comparisons using baseline surveys and non-project control groups.M&E needs to be seen as an integral part of the entire project cycle . Planning for M&E should be part of the initial problem diagnosis and project planning phase, though as with other aspects of the project, the M&E plan should be flexible and capable of modification as experience accumulates. Planning M&E should involve all stakeholders (though not necessarily all together in the same workshop). Planning M&E requires specific answers to the following questions:• What are the project objectives?• What are the M&E questions that follow from these objectives?• Who needs answers to these questions?• What are the best indicators to help us answer these questions?• What are the units in which these indicators are measured?• What are the best methods/tools to obtain this information?• What/who is the source of this information?• When does this information need to be collected and at what scale?• How will the information be analysed?• How will the information be utilised?• Who is responsible for collecting, analysing, and utilising the information?A M&E matrix (such as Table 2) can be a useful guide to keep track of the answers to these questions, but there may be many separate steps and elicitation techniques involved in completing the matrix.At the centre of the M&E plan is a series of indicators which are selected to reflect key intermediate impacts. A minimal set of indicators is needed based on their usefulness (especially in terms of their relevance to management choices), their ease and cost of 2 0implementation, and the number of different stakeholders benefiting from the information they provide. This implies a need for careful and logical selection of cost-effective indicators, not merely brainstorming to come up with an unedited wish-list. Attention needs also to be given to the way in which various quantitative and qualitative M&E data are woven together into coherent narratives or stories which describe and explain project impacts.Participatory M&E draws eclectically on a range of methods and techniques , both to develop and to implement the M&E plan. In this respect the distinction between 'conventional' and 'participatory' methods and techniques has been overdrawn. For example, questionnaire surveys have been strongly criticised by advocates of participatory methods, but they can be designed and implemented in a 'participatory' (inclusive and responsive) way and have an important place in the repertoire of techniques available for M&E. Having said that, we have found that working with focus groups and using a range of less conventional techniques (mapping, diagramming, ranking, and scoring) can yield accurate and useful information quickly and easily, with considerable benefits to all concerned. The success of these techniques, however, depends crucially on skilful facilitation. This requires not just skill in the particular techniques, but a clear understanding of the background to and purpose of the activity and a sense of 'ownership' of the outcomes. The participatory nature of M&E is enhanced when the techniques used are such that the elicitation, analysis, and utilisation of information can be carried out locally and within a relatively short time-frame.Mapping, diagramming, and other visualisation tools can play a valuable role in the whole participatory research process, from problem diagnosis and planning to monitoring and evaluation (Schonhuth and Kievelitz, 1994;Pretty, Guijt, Scoones and Thompson, 1995;Van Veldhuizen, Waters-Bayer and de Zeeuw, 1997). Some examples of such tools are:1. Maps 2. Time lines and historical paths 3. Seasonal calendars, daily routines 4. Flow and impact diagrams 5. Crop and activity histories.Diagramming and visualisation tools allow complex information and processes to be represented in a simple, easily understood format. Their use helps to reverse the conventional roles of development workers and farmers in community meetings and enables both literate and non-literate people to contribute meaningfully to the discussion. These tools not only provide an efficient means of eliciting information but enhance the capacity of farmers to organise and communicate their knowledge, and contribute to the building of a 'collegial' relationship between farmers and researchers.While these tools are typically used in the context of a focus group, many of them can also be used effectively in farm case studies and household surveys. In deciding which diagramming tool to use, the development worker needs to consider the type of information needed and the specific circumstances of the farmer group.Maps in this context are hand-drawn representations of key spatial variables in a farming community. They include resource maps (showing land resources, land tenure, land use, etc), social maps (showing residences, community facilities, wealth-rank of households, etc), and farm transects (showing variation in resource characteristics and use along a crosssection of the community landscape).Resource and social maps are important tools used in identifying, characterising, and classifying farming systems and communities. On a basic level they enable a quick identification of land use patterns and the location of households within the village or community. When combined with tools such as wealth and well-being ranking (to be discussed later) they become valuable sources of information for development workers and project staff. When used in such a context, maps enable groups within communities to be identified and stratified (e.g. according to wealth, gender, or ethnicity) and interventions modified to suit particular target groups.Before starting a mapping exercise in the field, it is important for the development worker or team to be fully prepared with materials, to have an agreed understanding of the role each member of the team will play, and to have an appreciation of the context in which the exercise will take place (e.g. regarding what kinds of social or political groupings exist or whether land disputes are an issue).There are various materials which can be used in mapping exercises, depending on the local situation, availability of materials, and budget. Many practitioners/manuals suggest that local materials (sticks, stones, dirt floor) be used in preference to pens and paper brought in by the development worker. However, an alternative view is that a dirt floor drawing is only temporary, whereas farmers may be quite proud of their achievement and prefer to keep their map in the community for presentation and updating. Whichever method is used will depend on the participants' purpose in constructing the map.If it is decided to use paper to draw the map then the development worker must bring a large enough sheet (or several sheets stuck together). The size of paper will depend on• the area of land to be drawn and the level of detail sought• the number of farmers expected (so that most can comfortably stand around the sheet of paper and not crowd out others)• the area of flat, or reasonably flat, surface on which the drawing will take place.In practice, most mapping exercises result in farmers reaching the edge of the paper with still more detail to be added. A tip is to start the exercise by detailing the boundaries and moving inwards.Drawing materials such as pens will depend on local availability and budget. Broad-tip marker pens or whiteboard markers are ideal but usually expensive, while ball-point pens or pencils leave only faint lines and can easily tear the paper. Whichever option is chosen, the development worker or team will need to bring sufficient pens to enable active participation by farmers. In addition, a recurring problem where mapping exercises are being conducted with different groups in the same field site is the gradual reduction in the number of pens over the course of the exercises. Avoid using rulers as these imply a need for precision and exactness and can cause long arguments about whether one farmer's house or field should be two centimetres to the left or three centimetres to the right.Before conducting the mapping exercise it is important, first, to arrange a place, time and duration for the meeting with the farmers and, second, to ensure that a broad cross-section of the group or community is represented at the exercise.At the start of the exercise, explain to the farmers the purpose of the exercise and what they are being asked to do (e.g. to draw a village map showing roads, rivers, residences, and major land uses). However, it is important not to 'over-explain' what is wanted or how the mapping should be done. Rather, allow the farmers to express themselves in their own way.In other words, just get started.During the exercise the development worker has to balance the requirement of not interfering more than is necessary (it is the farmers' diagram) and ensuring that the symbols of power (pens, stick) are handed around equally. Pay particular attention to those who are reluctant (women, poorer farmers). Be aware of people who dominate and those who are on the margins.Where households are being indicated on a map it is important to note the potential variability in names and their role as unique identifiers of households. For example, in Vietnam wives do not take on the husband's family name and in Indonesia occasionally only one name is used. Also, sometimes shortened names or nicknames are used and this can lead to confusion in subsequently trying to identify households from the map.The analysis of the map depends on the amount of information that has been included by the farmers and the questions of interest to the development worker. Maps can show the location of households, fields, and resources, and the pattern of land use. This information may require no further analysis -the map may be kept in the community in a prominent place to be used by farmers and development workers for on-going planning and monitoring. Alternatively, if project staff have the necessary skills and resources, the map may be used as input for a Geographical Information System (GIS) database, permitting the information to be stored, updated and manipulated in a variety of ways.Combined with other information, notably equity ranking, one use of maps is to stratify households according to their location, resource base, and status (e.g. gender of household head, relative wealth status). This enables farmers and development workers to direct project resources towards specific groups and to monitor the extent to which these target groups are in fact benefiting from the project. Using maps enables such information to be presented in a visual and easily interpreted way.However, getting farmers to draw their fields or in other ways to identify tenure boundaries may raise ethical questions. For instance, if a farmer claims one plot of land as his or her own, in what context is this claim made? Is the claim recognised as valid by the government or is it an ancestral claim? If one farmer claims the plot viewed by another as theirs, does the map help legitimise the first farmer's claim? Alternatively, mapping can be viewed as the first step towards resolution of such conflicting claims. In sum, the development worker must appreciate the context in which such maps are drawn.We arrived at the village at 9am and went to the house of a local forage adopter who had volunteered to hold the meeting. The actual meeting did not start until 10am, as the farmers trickled in slowly from their outlying farms. About 20-25 farmers (including husbands and wives) were present, most of whom were involved in growing forages.After a brief introduction explaining why we were there and the information we wanted from the maps (household location, household name, gender of head of household, what types of livestock they had, and whether they grew forages), the farmers started to draw their village. The exercise started off slowly with much discussion about the boundaries of the village and what should be included on the map and what shouldn't.After about ten minutes of discussion and when pen had just been put to paper, there was a late arrival -the datu (traditional headman) and his wife. He strode into the area under the house where we were all gathered, asked what the task was, and was told that 'we are mapping' or words to that effect. This was enough explanation for him, in contrast to the others who had needed quite a long time to discuss the matter. Taking the marker pen from the hand of the male farmer who had just started drawing the road (and seemingly oblivious to the five spare marker pens on the table waiting to be used), the datu immediately started sketching the village map. From his arrival outside the house to commencement of sketching took less than ten seconds.The datu had complete control and was the only one actually drawing anything on the map. It took a great deal of effort to get a few other people to contribute, at least verbally, to the map's construction. Towards the end of the mapping exercise, which took about two hours, there were five to seven people at any one time making a contribution to the drawingnaming the households and providing information about them.After the map was constructed we wanted to identify different groups within the village according to wealth status and well-being. The translator was explaining to the farmers that we wanted them to rank the households into three categories, upper (ta'as), middle (centro) and lower (ubos). The datu, who spoke English, wanted a personal explanation on the side, which was duly given. The datu objected to ranking everyone into three groups, saying 'we are all ubos here'. It was suggested that he knew there were some farmers in the community who were more ubos than him and some who were more ta'as than him. What was wanted was a relative ranking of people, not an absolute one, and that even though everyone was poor he could look around the community and see that there were differences between people.This explanation appeared to satisfy him and the farmers proceeded to classify the households in the village. At the end of the ranking the datu was asked how he had been classified. He said that he had been classified as centro. When asked why, since he was a datu (and obviously regarded highly in the village), he said that he was only centro despite being a datu because he was poor.One of the difficulties we initially had with the mapping exercises was getting an accurate picture of the wealth ranking, as invariably only 3-4 people decided the ranking for a particular sub-area in the village. Eventually we tried a system where one person read out the names of the households one at a time and everyone to give a ranking by 'open outcry'. This was very successful, and enjoyed by everyone, as people shouted out what they thought each other should be. This helped defuse the occasional tension, as people objected to being classed in certain categories -especially if they were classed as ta'as.After the ranking of the households we then elicited their criteria for ranking, asking them the reasons why they classified people as being ta'as, centro, or ubos.The map shown below in the photograph was drawn by members of the forage group at Sitio Kaluluwayan in Barangay San Luis, Malitbog, Philippines. The information was then entered into a GIS database enabling it to be reproduced as shown in Figure 5. Overview Time lines and historical pathways are powerful tools to condense and present complex information about important changes in a farming community or environment. They visually present a sequence of key events and trends in key variables which, taken together, help to account for the current farming conditions. Local knowledge about long-term processes and interactions is pooled and made explicit for immediate analysis and decision-making.Time lines are usually completed in the context of a focus group discussion or case study interview. In a group discussion, the use of a large sheet of paper and marker pens to sketch out the process is a valuable aid to enable all participants to view the time line and make comments. Such a process could also be done on the ground using locally available materials such as sticks and stones to mark important events.It is important not to insist on consensus regarding the timing and circumstances of major events but to accept divergent views and probe for the reasons behind them. Different people have different perceptions of the same event and each point of view has its own validity. Often interesting insights can be derived from a divergence of views.In any case, the time line or historical path must have a story attached to it to make it meaningful, hence a member of the team needs to be assigned to make notes of the discussion surrounding the construction of each part of the diagram.There is no need for further analysis of a time line or historical path. The diagram itself summarises a complex process of change and enables farmers, project staff and others to understand the context in which change has occurred and to appreciate the range of different factors that have given rise to the current situation. However, as indicated above, a narrative version of the time line may be a useful adjunct, particularly for those not present when the time line was constructed.The following time line depicts the spread and adoption of forages in Malitbog (Figure 6). Unless otherwise stated, forage species planted at new sites came from FSP seed stocks and/ or planting material from the Sitio Kaluluwayan multiplication plots. To KalingkingAverage ( 21) Rich ( 6) Poor ( 14) The initial demonstration/multiplication plot was established in 1995 in Sitio Kaluluwayan, Barangay San Luis. After a year of growing forages in the demonstration plot, farmers within Kaluluwayan began to experiment on their own land and expand their areas of forage plots from 1996 through 1999.In 1996, an attempt was made by the local extension officer to expand demonstration plots to nearby Barangay Kalingking. The establishment of a forage group and demonstration plot was successful but due to some problems within the group the forage group disbanded and the demonstration plot was no longer maintained. After several years of inactivity the arrival in Kalingking of the M&E team in mid-1999 prompted renewed interest in forage technologies and the establishment of a new forage group.In 1997, demonstration and multiplication plots were established in three new areas: Barangays Silo-o and Santa Inez; and Sitio San Migara, Barangay San Luis. All three of these establishments were successful and farmers in these areas moved from demonstration plots to growing and expanding forages in their own farm over subsequent years. other, a former forage group member from Kalingking, decided to establish and expand forages on their own farm plots in the absence of any concerted group effort in those locations. Both of these farmers, acting as individuals rather than in a group, continued expanding forage production through 1998 and into 1999. At the Tagmaray site, farmers established and expanded forages on their own farm plots but the story was different for the forage groups at Bilayong, Kiabo and Mindagat. A motorbike accident in late 1998 meant that the local development worker was unable to visit and support forage activities at these three sites. The subsequent abandonment of the demonstration and multiplication plots demonstrates the fragility of the adoption process at crucial moments in time. The resumption of extension activities in 1999 led to a resurgence of interest at these sites and the recommencement of forage activities.With the resumption of extension activities in 1999 another three forage groups were started: Barangays Sampiano and Sumalsag; and Sitio Omagling, Barangay Kalingking. Apart from seed stocks provided by the FSP and planting material from Kaluluwayan, the farmer at Pat-Pat provided planting material for the establishment of a demonstration and multiplication plot at Sitio Omagling and for some farmers from Barangay Santa Inez who were expanding their forage plots. It became necessary to obtain planting material from Pat-Pat for the establishment of forages in Omagling after the initial planting of seeds was washed away by heavy rain.Seasonal calendars provide an outline of the timing of critical events in the annual cropping cycle as well as other seasonal events and circumstances that impinge on farming activities (e.g. timing of onset of rains, periods when roads are impassable, etc). A seasonal calendar is a good tool to use in describing how farmers use their household labour resources for various activities, giving an immediate appreciation for periods of labour surplus and deficit without resorting to time-consuming and expensive work diaries. Similarly, a description of daily routines can be used to make a quick assessment of how time is spent at different times of the year and between different household members.Seasonal calendars can be constructed either as a group exercise or on an individual basis. A calendar matrix is drawn up either on the ground or on a large sheet of paper (Table 5). If several farmers are going to be asked to develop a calendar, either as case studies or as part of a survey, then covering the matrix with plastic and using water-based markers is one way of preserving the matrix. The number of columns (time periods or seasons) needs to be decided first. This depends on the development worker's assessment of the degree of detail needed and the ability of the farmers accurately to partition their labour between blocks of time. Local concepts and definitions of time need to be taken into account. For example, in the Philippines we had arranged the labour-use schedule for household activities into twomonthly blocks: Jan-Feb … Nov-Dec. When we started constructing a similar labour schedule with farmers in Vietnam, the translator wrote down the months as 1-2 … 11-12. We asked if 1-2 meant Jan-Feb, to confirm that we were dealing with a calendar year rather than starting from harvest or planting time. However, the translator indicated that 1-2 represented Feb-March -as the Vietnamese follow a lunar calendar, not a solar calendar.The number and type of activities carried out by the household needs to be elicited by probing questions. Usually the farmer will only mention the most important activities and it may be necessary for the development worker to continue to ask what other activities are undertaken by the household. Care must also be taken to elicit activities undertaken by other members of the household, not just the person being interviewed. This is especially so for activities undertaken by women, children, and older family members.Stones or seeds can be used for counters (maize seeds, which are flat, work quite well; but mung-bean seeds, which are round and roll off, do not). The farmer allocates a fixed number of counters between the activities and over time. This allocation should be done simultaneously (that is, over both activities and time). The number of counters can vary between farmers and will depend on the number of activities undertaken by the household. The general principle is that the number of counters should be just sufficient for the farmer to distinguish between each cell of the matrix. As a rough guide, between 50 to 100 stones or seeds should be used.After the farmer has finished weighting, the facilitator reviews the results with the farmer. Using pair-wise comparisons between the cells, the farmer is asked to verify that the relative weightings are correct.The analysis of seasonal calendars depends on what is required and the level of expertise of the analyst. The farmer and development worker can use the calendar to identify periods of surplus and constrained labour and to work out a budget of seasonal labour requirements compared with availability. In periods of labour constraint, the farmer and development worker can determine to what extent outside labour can be hired to make good the shortfall or what farming activities can be changed to reduce labour requirements -for example, using early or late maturing varieties of crops to spread out labour requirements for harvesting or using herbicides to reduce labour for weeding. In addition, the calendar can identify potential 'slack' periods in which the farm household can undertake additional income generating projects. Care must be taken to elicit the reasons for such 'slack' periods.On a more advanced level, project staff can utilise statistical analysis to identify commonalities and differences between different types of farm household. Multivariate Analysis of Variance (MANOVA), using each household as a repeated measure within blocks of household types, is one such method. Before embarking on such analysis, project staff would need to consult a statistician. (For example, the matrix weighting results in a relative weighting with a grand total equal to 100% for each respondent; hence there is no total variation between respondents, only within respondents' activities. This means that a standard ANOVA/MANOVA analysis will not be correct.)The following example is from a female smallholder farmer in the Philippines. The farmer grows bananas (saging), maize, taro (gabi), sweet potato (camote), summer squashes and cattle (baka). At first glance you can see that the farmer spends most of her time tending her banana crop. Her periods of high labour demand are between July to October when she also plants and harvests maize and plants sweet potato. During the early part of the year she grows squash which is in rotation with her maize crop. Her one cow places a constant and relatively heavy demand for labour on herself, and there is probably a place for labourreducing, cut-and-carry forages in her feeding system. A similar approach can be used in identifying the flow of impacts from a particular intervention, such as the introduction of forage plots to the farming system. Throughout, the development worker must ask probing questions to elicit farmers' perceptions of underlying causes and ultimate consequences. It is important to elicit negative as well as positive effects in order to identify problems and their potential solutions.As a first step the diagrams serve as a basis for discussion among farmers, and between farmers, the development worker and project staff in identifying key linkages, underlying problems, points of intervention, and positive and negative impacts. The diagrams can becombined with ranking and weighting (see below) to prioritise linkages and problems, and to identify key variables which should be monitored. The developed diagrams can be kept and used by farmers and development workers to monitor changes in farming and livelihood systems.Flow and impact diagrams capture a farming system or program impact at a particular time (even though elicited impacts may be seen by stakeholders as potential or future impacts). Perceptions of impact change over time as farmers and others become more experienced with the changes occurring in the farming system. Thus the development worker needs periodically to revisit the diagrams with the farmers in order to update them. Typically this means an elaboration of the linkages and flows initially identified.The following example is taken from a livestock system problem diagnosis conducted in M'Drak, Vietnam. The diagnosis was conducted with each of the six villages in the commune in community focus groups. The group size ranged from 30-60 farmers depending on the village size. The entire exercise took about 10-15 minutes for each village including the ranking exercise. With the help of the development worker asking probing questions, the farmers developed a flowchart of livestock problems and showed how the problems were interrelated (Figure 7). For example, a lack of capital meant that adequate shelter for their livestock could not be built and, combined with bad weather during the wet season, this led to animals getting sick, resulting in poor growth in liveweight. In summary, farmers came up with the following problems with their livestock system: After the diagnosis was carried out, the sheet with the flowchart was placed on a table and farmers were handed out a set of cards numbered 1 to 10. They were asked to place the cards in order of importance on each of the problems and the results were then collated and analysed (Figure 8).The results showed no significant variation between villages. Farmers saw capital constraints as the major problem for livestock production. Feed constraints and housing were seen as the second most important problems, with feed availability and quality in both the wet and dry seasons seen as major constraints to animal productivity. Crop and activity histories use a diagram to elicit the sequence and timing of operations within a given cropping period as well as the sequence and timing of crops in a long-term rotation. They can be used to establish the actual land-use dynamics on a farm and as a basis for land-use planning.Crop histories are easier to derive on a plot-by-plot basis. Hence development workers might like to compile them in conjunction with farm maps detailing the location and characteristics individual plots within the farm boundaries. Most farmers can remember plot histories reaching back four or five years but individual circumstances must be taken into account when deciding how far back the plot history should go.The history is constructed by dividing the crop year into appropriate seasons and then developing the cropping sequence showing the crops grown, their order in rotation, and the period of time each occupies the plot of land. As a first step, major milestones should be sketched out for each plot -i.e. the planting and harvesting of each crop in rotationbefore the detail is filled in (fallow, land preparation, weeding, fertilising, etc).Incorporation of intercropping and mixed crops into the farm plan complicates the crop history. Intercropping with perennial crops such as fruit trees, coconuts, or bananas allows cash or subsistence crops to be grown in the establishment phase of the perennials. However, as the canopy closes, the area available for intercropping reduces as well as the potential yield. Constant modification of land area and crop yields under intercropping needs to be incorporated into the crop history. Mixed crops cannot realistically be treated as two separate crops for planning purposes; rather a new 'mixed crop' activity should be defined and operations for this combined activity specified.Crop and activity histories, once elicited, require no further analysis as such (other than collation and comparison across project sites). Apart from using the crop and activity histories to gain an appreciation of the farming system and land use patterns in the project area, crop histories can be used by the farmer and development worker to plan sustainable land use. Crop histories can help establish whether the actual or proposed land-use pattern is consistent with the land resources available and the long-term sustainability of the farm plot (fertility, disease, pests, soil structure). Crop rotations and intercropping are important factors in maintaining or depleting soil fertility and so a land-use plan must take into consideration the incorporation of legumes, pasture or fallow. Any land-use plan involves establishing the areas of each crop to be planted each year, the planting dates and durations of these crops, and the sequence in which these crops are to be grown.The following example comes from a smallholder farmer in Maltibog, Philippines (Figure 9). The farmer has 2 ha of land divided into three plots -1 ha of lowland rice, 0.5 ha of maize/tomatoes in rotation, and 0.5 ha of sweet potato/vegetables in rotation. Preference ranking and matrix scoring are tools that are used primarily to explore people's perceptions, elicit criteria, and understand their choices and decision-making. They enable development workers and project staff to obtain information on farmers' preferences, priorities, and criteria for evaluating changes to their farming system. These tools can be also used to obtain qualitative information about resource use or income which would otherwise have been collected using more conventional, data-intensive means -for example, data on labour use for different activities can be collected either by asking the farmer to record or recall the number of hours or days spent on each activity, or by asking him or her to allocate weights (e.g. seeds) to each activity to reflect labour use. Ranking and scoring tools also provide a means of assessing relative wealth and well-being.Preference ranking and matrix scoring have distinct advantages over more conventional data collection techniques when used in a participatory framework. Compared with verbal responses to interviewer questions, these physical activities, carried out by the farmers themselves, shift attention away from the traditional roles of 'outside' interviewers and 'local' respondents towards the activity itself. Since the activity does not rely on quantitative data which may be sensitive (especially in the case of income derived from farming activities), this defuses the situation and allows people to express their perceptions. In addition, the discussion associated with ranking and matrix scoring results in deeper understanding of the farming system. Preference ranking is simply a tool by which farmers can indicate the relative importance they attach to an array of items. It can be used to identify, list and prioritise problems and possible solutions to problems. As a tool it helps development workers and project staff understand farmers' criteria and decision-making. Preference ranking has been used to identify desired characteristics of new and existing technologies and to establish criteria for evaluating results of experiments and programs. When carried out with a range of farmers it can be used to compare the priorities of different groups (men and women, young and old, rich and poor).The process of preference ranking is relatively simple but needs a skilled and experienced development worker to implement properly. While the actual preference ranking itself takes a short time, there is substantial time involved in preparation of the ranking cards and in the subsequent analysis.First, the question of interest needs to be identified. This should be a single, well-defined topic so that only criteria relevant to that topic are obtained. Second, the identification of options or criteria by the farmer or group under investigation needs to be carried out. How this is done depends on the specific situation -preferences can either be elicited individually within a semi-structured interview or within a focus group. For purposes of illustration the following discussion concentrates on the focus group method.Within the focus group the participants are asked a question relating to the topic of interest -for example, \" What are the problems you are having with your livestock? \" As participants detail their problems (or criteria, or impacts, etc) these can be written on cards and the cards stuck to a wall or on a large sheet of paper, perhaps as a flow chart showing the linkages between problems (see section on Flow and Impact Diagrams above). Whichever way is chosen, it is important to ensure that all participants get an opportunity to express their opinions and that the views of women and other groups are represented.The number of items elicited will depend on the situation and the topic, but as a general rule-of-thumb the development worker should be aiming to get 10-15 different items.People have difficulty in ranking too many items, so they should be grouped into larger categories if there are too many.Once the items have been elicited they can be ranked in order of preference. The flow chart or card-and-chart is placed on the ground and the participants place ranking cards on each item in order of importance. Strips of detachable ranking cards need to be prepared by the workshop facilitator before the exercise (Figure 10). These strips are numbered 1-10 and may contain a unique identifying number underneath. This identifying number is used in advanced forms of analysis to keep individual responses together without actually identifying people. This must be emphasised to the participants, particularly for topics of a sensitive nature. One reason why the development worker may wish to keep individual responses together is that demographic and resource data collected at another time can be used to identify groupings of participants who are more likely to have particular preference rankings. For example, the participants in a workshop may be asked to fill in a short questionnaire anonymously at the beginning of the workshop and to write their ranking card's unique identifying number on that questionnaire.Workshop facilitators need to ensure that farmers understand what weighting system is being used, that is, whether '1' or '10' signifies the highest preference. When using ranking cards it is important to remember that a '6' and a '9' look identical upside down. This problem can be solved by placing a line under the numbers '6' and '9'.Once all the ranking cards have been placed on the sheet where the problems (or other items) have been recorded, the ranking cards are collated for each item and analysed. The analysis of the preference ranking can be done in various ways. A simple analysis can be done immediately, to get feedback from the participants, or later by the development worker. More complex analysis can be done by project staff with access to computers.An immediate analysis only takes a few minutes and enables validation and discussion with the workshop participants. The responses for each item can be grouped into High (scores 1-3), Medium (scores 4-6), and Low (scores 7-10) and the frequency of each response counted. It is important to account for the non-responses (when there are more items than ranking cards) by ensuring that the total responses for each item add up to the total number of participants. The non-responses are included in the 'Low' category. For example, in a group of 14 farmers the problem 'pasture far from house' was ranked as shown in Figure 11, with two non-responses included in the category 'Low'. The resultant ranking can be checked with the participants to see if it meets with their expectations, and then discussed. The discussion could focus on why particular problems are considered more important than others and what solutions can be identified.The development worker can carry out a more detailed analysis later by constructing bar charts of the frequencies and ranking the items in order of high-medium-low importance.Combined with a comparative display of ranking from different groups of participants, this display of results enables the development worker and project staff readily to identify which criteria are important for particular groups of farmers.Project staff can carry out a more advanced level of analysis with access to computers and basic statistical programs. (As an example, Luis Hernández Romero at CIAT has developed a Preference Ranking software program for Excel spreadsheets based on logistic regression. A more general functional form such as the Generalised Linear Model (GLM) Procedure in SAS can also be used.) By combining the ranking responses with demographic and other data, project staff can identify groups with particular preferences.The following example is taken from a forage adoption impact assessment exercise carried out with smallholder farmers in M'Drak, Vietnam. The workshops were conducted with each of six villages in the commune in community focus groups, which ranged from 30-60 farmers depending on village size. The impact elicitation and ranking exercise took about 10 minutes.A typical exercise in one of the focus groups started with a discussion about how planting forages led to farmers 'being happy'. As the farmers came up with a list of actual and potential immediate, intermediate and long-term impacts, these were written up on a large sheet of paper with arrows linking impacts that had a cause and effect (Figure 12). Questions such as \"How does this make you happy?\" or \"What follows on from this impact?\" prompted farmers to think about how each problem was related to the others.Pasture Far From HouseFarmers Ranking Forage Impacts, M'Drak, Vietnam In all, the workshop participants identified 24 different impacts that forages had or were expected to have on their farming system (Table 6). After the impacts had been written down the farmers were each given a set of ranking cards and were asked to rank the impacts according to importance. After the ranking exercise the cards were collated and taken away for analysis. A generalised linear model (GLM) was estimated. The results, summarised in Figure 13, showed that the ability of forages to provide good quality feed and to fatten different types of animal were considered to be the most important impacts. At the other end of the scale, the potential of forages to increase the sale price of livestock or the reduction in adult male labour in the household were considered not important (or not achievable). Pairwise ranking is similar to preference ranking in that people are asked to choose between items. The difference is that in pairwise ranking the items are presented as paired comparisons, rather than ranking all items simultaneously. The advantage in conducting pairwise ranking compared with complete preference ranking is that people are forced to make a very careful decision between the items. In preference ranking there is a real danger that people may become overwhelmed with the number of items and will not make a carefully considered choice. As with preference ranking, the topic to be discussed needs to be identified beforehand. The participant or participants are asked to choose a number of items or options to rank. Whereas the preference-ranking tool is ideal for collecting information rapidly from large groups of people, the pairwise ranking tool is more suited to individual interviews or small groups of people. A matrix is drawn up with the items written along two sides, as shown in Table 7 for a set of six criteria for a good forage species.The participant is then asked for each pair which alternative they prefer. It is important for the development worker to probe the informant to find out why the choices were made -\" Why is A better than B? \" and \" Why is B worse than A? \"The analysis of pairwise ranking involves counting up the number of times each item is chosen as the preferred option in order to arrive at an overall ranking of all the items considered. The item with the highest numerical score is ranked highest, that with the second highest frequency is ranked second, and so on. The data collected from multiple informants can then be pooled and analysed in the same way as for the preference ranking tool.The reason why an informant made a choice is often just as important as the choice itself.Much can be learned about farmers' perceptions an˙d decision-making behaviour by asking why items are ranked in a particular way. The ensuing discussion can be enlightening for both development workers and the farmers themselves. These reasons or explanations should also be included in the tables reporting the ranking exercise.This example is taken from a participatory breeding evaluation of tropical forage species conducted with a group of smallholder farmers in Malitbog. Farmers were asked to list the species of forages they were growing, rank them via pair wise comparisons, and detail some positive or negative characteristics about each species. Table 8 shows the results. The forage species grown are listed down and across the matrix, thus each cell shows the preferred species resulting from a particular pair wise comparison. The third-bottom row showing the overall rank of each species is derived from a simple count of the number of times a species is listed as 'preferred' in the body of the matrix. For example, Panicum maximum 'Si Muang' (TD58; Tanzania), identified in the table as TD58, wins every pair wise comparison and is thus ranked first. The last two rows show the positive and negative characteristics mentioned by the farmers. Matrix scoring and weighting techniques have advantages over preference ranking in that not only the rank or order of preferences is obtained but also a measure of the strength of preference, i.e. 'how much more' one item is preferred over another. Not only can matrix scoring and weighting show the magnitude of differences between a set of preferences, but the technique also enables the identification of criteria and of the trade-offs involved in choosing between alternatives.The basic procedures involved in matrix scoring are the same as for constructing seasonal calendars, described in Section 3.3, except that here, instead of weighting activities over time, the aim of the exercise is to weight activities (or some other dimension) according to one or more criterion or objective, such as household cash income and subsistence income (or income in kind). For example, in the matrix shown in Table 9, the farm household's activities are listed as column headings, and the rows record different criteria (such as type of income). The cells in the matrix can then be used to indicate the relative importance of each activity in terms of the criteria listed.The number and type of activities and criteria need to be elicited by probing questions.Usually the farmer will only mention the most important activities or criteria and it may be necessary to continue to ask what other activities or criteria the farmer uses. Care must be taken to elicit activities and criteria of other members of the household, not just the person being interviewed. This is especially so for activities undertaken by women, children, and older family members.The matrix is constructed either as a group exercise or on an individual basis. The matrix can be constructed either on the ground or on a sheet of paper. If several farmers are going to be asked in turn to develop a matrix, either as case studies or as part of a survey, then covering the matrix with plastic and using water-based markers is one way of preserving the underlying matrix.Stones or seeds can be used for weighting. The farmer is asked to allocate a fixed number of tokens between the activities and the criteria. This allocation should be done simultaneously, i.e. over both activities and criteria. The number of tokens can vary between farmers and will depend on the number of activities and criteria. The general principle is that the number should be just sufficient for the farmer to distinguish between each cell of the matrix. As a rough guide, 50 to 100 stones or seeds should be used. After the farmer has finished weighting, the results are reviewed, using pair wise comparisons between the cells and asking the farmer to verify that the relative weightings are correct.The analysis of the matrix depends on what is required and the level of expertise of the analyst. At the simplest level the farmer and development worker can use the matrix to identify activities that meet certain criteria -for example, the activity which generates the most cash income for the household. On a more advanced level project staff can utilise statistical analysis to identify commonalities and differences between different types of farm household. Multivariate Analysis of Variance (MANOVA) using each household as a repeated measure within blocks of household types is one such method. Before embarking on such analysis, project staff should consult with a statistician.The following example comes from work carried out in Malitbog. As part of our case studies and surveys we wanted to identify the relative importance of farm activities in terms of both subsistence income (or home consumption) and cash income. Income and Livelihood Matrix Analysis was conducted. Table 10 shows how one farmer allocated 100 tokens between a range of livelihood activities and between cash income and home consumption.How accurately does the Income and Livelihood Matrix reflect actual farmer income and consumption patterns? To address this question, we compared the matrix approach with conventional activity budgeting to obtain a quantitative base point for household activities.Activity budgets for the above smallholder's maize and banana crops were obtained and total revenues calculated. On a yearly basis her returns were approximately P70,000 and P69,000 respectively. This was sufficiently close to the matrix weighting of 12% for each of maize and bananas to lend some credence to the matrix weights as an accurate measure of household income and consumption -at least for this farmer.Wealth and well-being ranking is an integral part of the monitoring and evaluation of rural development projects in that it enables a characterisation of the distribution of wealth and well-being within the community in which the project is operating. The need for such characterisation is directly tied to the primary objective of rural development -alleviation of poverty. If the character and determinants of poverty are known then it is easier to formulate poverty alleviation strategies. In communities, where subsistence and semisubsistence livelihoods are prevalent, monetary income is a poor proxy measure of poverty and wealth. In such communities, alternative, locally based indicators are needed to describe adequately the dimensions to wealth, well-being and equity. Wealth ranking has been widely used to monitor the impact of projects, identify and target specific groups within the community, and understand local criteria of wealth and well-being. Wealth and well-being ranking has commonly been conducted using two broad techniques -card sorting by key informants and social mapping by community focus groups. Whichever method is used, the informants should be representative of the community and should have knowledge of everyone in the community.Card Sorting. In card sorting, a list of households is obtained (either from official lists, key informants, or a mapping exercise) and the household names are written on cards (one card for each household). The informant is asked to sort the households into groups according to their wealth or well-being status; the number of groups depends on the informant and will usually be from three to five. This exercise is carried out with several informants -the usual recommendation is that there should be at least three informants for every 100 households. Figure 14 gives a hypothetical example in which three informants sort fifteen households into (respectively) four, five, and four wealth categories, arranged in descending order from left to right.In card sorting, the results for each key informant are tabulated and a score for each household is given depending on its grouping. For instance, if the first key informant divided the community into four wealth groups and placed household 15 in Group I (the highest group), then household 15 is given a score of 4/4 = 1.00 (Table 11). Similarly, if household 12 is placed in Group IV (the lowest group), it is given a score of 1/4 = 0.25. This is carried out for each household for each informant and the results totalled. Households are then ranked according to the total scores received and divided into overall wealth groupings (e.g. Groups I to IV in Table 11). The divisions between these groupings are essentially arbitrary but it may be possible to identify discontinuities in the household scores. It is important to realise that although the derived ranking of households appears to be continuous it is in fact derived from discrete groups. Hence the resultant number of wealth categories should not be more than the smallest number of categories used by any of the key informants (four in the above example).The card sorting technique has a number of drawbacks:• It depends on a limited number of informants.• It relies on the tedious and complex derivation of ranks from group scores which are thus prone to error.• It does not handle biases very well in that equal weight is given to informants' ranking of households. This is a problem if an informant wrongly places a household in a particular group. This can be seen in the example above where Informant 3 has placed Household 15 in the lowest group but the other two informants have placed Household 15 in the highest or second-highest groups (Figure 14). 8, 5, 10, 15 2, 9, 11, 12 1, 4, 6, 7 3, 13, 14 8, 10 1, 2, 7 3, 4, 6, 14 5, 13, 15 8, 10, 13 2, 9, 11, 12, 15 1, 3, 4, 6, 7 5, 14 9, 11, 12 Informant 1Social Mapping. Wealth and well-being ranking can be conducted in association with resource and social mapping exercises. Once the households of a community have been identified on a map, a group consensus can be reached as to what category a particular household falls into. This circumvents a potential problem in the card sorting procedure where one informant may not be as familiar with the circumstances of a given household as another informant. The grouping of households results from a consensus of opinion amongst the participants in the social mapping exercise. This provides a shortcut to the ranking and scoring procedure in the card sorting exercise. However, in social mapping exercises care must be taken to get a group consensus on rankings since, as with any group exercise, power relations within the group may inhibit participation.It is useful to determine the criteria by which informants categorise households. This can be done before or after ranking has taken place. However, local perceptions of household status are usually much more complex than can be explained by a simple list of criteria. As such, the elicitation of criteria before ranking has taken place has the potential to bias the ranking itself. That is, the ranking may be conducted solely in terms of the explicitly stated criteria, rather than being based on a more general and intuitive consideration of wealth and well-being. Hence it is better to conduct the ranking first and then simply ask the informants their reasons for ranking households as they did.The wealth and well-being rankings, once derived, require no further analysis, but they can be utilised in various ways. For example, they can be used to identify groups within the community to be targeted for specific development programs. They can be used for stratification purposes for survey work. If handled carefully, they can be used by the development worker to keep track of changes in the distribution of households among wealth categories over time. A statistical analysis was carried out on the data collected from the social mapping exercise, including data on wealth ranking, gender, adoption of forage technology, and household resources (number of children, livestock possession). The results indicated that adoption of forage technology differed between villages and that female-headed households were less likely to adopt forage technology. In addition, while those households with livestock (cattle, buffalo, goats, and horses) were more likely to adopt forage technologies, due to the obvious livestock benefits, there was no indication that adoption differed between households of different socio-economic status (rich, average, poor).Interviewing is one of the main techniques used in M&E (Schonhuth and Kievelitz, 1994;Pretty, Guijt, Scoones and Thompson, 1995;Van Veldhuizen, Waters-Bayer and de Zeeuw, 1997). It complements other approaches (mapping, ranking, etc) by providing in-depth information, both qualitative and quantitative (Bernard 1995, Krueger 1994). There are several types of interview ranging from the very informal to the very formal. Participatory tools have helped make interviewing less formal, more conversational, and more responsive to a given situation, while still focused and structured (Mikkelsen 1995). Patton (1990) describes four different types of interview:• Informal conversational interviews, in which questions emerge from the immediate context and are asked in the natural course of conversation; there is no predetermination of question topics or wording.• The interview-guide approach, in which topics and issues to be covered are specified in advance in outline form; the interviewer decides the sequence and wording of questions in the course of the interview.• Standardised, open-ended interviews, in which the exact wording and sequence of questions are determined in advance. All interviewees are asked the same basic questions in the same order. However, questions are worded in a completely openended format.• Closed, quantitative interviews, in which questions and response categories are determined in advance, responses are fixed, and the interviewee chooses from among these fixed responses or responds in terms of a number.These types of interview fall broadly into two categories, each with its own advantages and disadvantages, as discussed below:1. semi-structured interviews (types one and two), and 2. structured interviews (types three and four).While semi-structured interviewing appears to be informal and conversational, in fact it is a well-defined and systematic activity that has clearly defined goals and guidelines. The advantage of this technique is its flexibility and responsiveness -the interview can be matched to individuals and circumstances. At the same time, the use of an outline or guide can make data collection reasonably systematic. The disadvantages are that it requires some skill and is therefore difficult to delegate to an assistant; different information may be gathered from different people, depending on which topics arise; and data organisation and analysis can be quite difficult (Mikkelsen 1995).Semi-structured interviews can be carried out with individuals or with groups. Individuals can be selected respondents who give information about themselves (case studies), or key informants whose special knowledge can give insights on a particular topic. Group interviews can be conducted with a community group comprising diverse members with access to a broad range of information, or with a small select group of like-minded individuals (a focus group) who are able to discuss a particular topic in detail.While there are different ways to conduct semi-structured interviews the most important aspect is the manner and context in which the interviews are conducted. Who carries out the interview (and with whom), how it is conducted and where and when it is conducted are integral factors to a successful interview. Interviewing is a skill which is acquired through practice. Most pitfalls can be overcome by having empathy and rapport with the people being interviewed and a good technical knowledge of the farming system in question. Some common mistakes include asking leading questions, or asking questions which are ambiguous. Mikkelsen (1995:110-111) lists some general guidelines for semistructured interviews:• Begin with a greeting and state that the interview team is here to learn.• Begin the questioning by referring to someone or something visible.• Conduct the interview informally and mix questions with discussion.• Be open-minded and objective but judge everything you hear -there are many reasons why people give the information that they do, not necessarily because it is accurate or truthful.• Carefully lead up to sensitive questions -put these near the end of the interview so that if the respondent decides not to answer these you do not lose their willingness to answer earlier questions.• Be aware of non-verbal signals.• Avoid leading questions and value judgements -such questions can cause bias in the answer.• Avoid making assumptions -for example, asking people how many grades of school they completed assumes that they went to school in the first place.• Avoid questions that can be answered with 'yes' or 'no'.• Be aware of both direct and indirect questioning -for example asking a male farmer about farming activities carried out by his wife may lead to different answers than if you asked the wife directly.• Individual interviews should be no longer than 45 minutes and group ones no longer than two hours.• The interviewer should have a list of topics and key questions written down in a notebook.• The interviewer or a member of the interviewing team should make detailed and systematic notes, as these are the primary output of the interview.When the collection of information is delegated to someone who has a lack of ownership of the process or who will not benefit from the outputs, the quality and reliability of the information declines. In such a situation, what is intended to be a semi-structured interview with open-ended and probing questions becomes more like a structured, closed-question survey without any desire on the part of the interviewer to find out the reasons why people give the answers they do. Hence it is important for semi-structured interviews to be conducted by experienced workers with a genuine interest in the outcomes.There is no strict framework for analysis of semi-structured interviews as there is for structured interviews. The primary purpose of the interviews is not to collect quantitative data from which to draw inferences -a purpose best left to structured interviews in a survey framework -but to tell a story. The qualitative information gathered from semistructured interviews enables researchers to describe patterns among the data and to build explanations of processes, such as farmers' adoption decisions.In fact, there is no clear demarcation between the elicitation and analysis phases in semistructured interviewing. The technique is essentially iterative, hence analysis is occurring concurrently with data collection. The interviewer follows a process of 'observe, think, test, and revise' as the interview proceeds, in order to develop robust conclusions in a participatory manner. Triangulation -the comparison of multiple, independent sources of evidence -is also used to strengthen the validity of the findings. GAO (1990) suggests developing alternative interpretations of findings and testing these through a search for confirming and disconfirming evidence, until one hypothesis is confirmed and others are ruled out. The reproducibility of findings is established through analysis of multiple sites and data over time. These can be analysed by developing a matrix of categories, using graphic data displays, tabulating the frequency of different events, developing complex tabulations to check for relationships, and ordering information chronologically for time series analysis. Data analysis ends when a plausible description or explanation has been developed, having considered all the evidence (GAO 1990:59).An example of how semi-structured interviews are carried out is given by a series of casestudy interviews of smallholder farmers in Maltibog and M'Drak. First, a list of households was obtained from a series of social mapping exercises carried out with each of the six villages within each project site. The households had been stratified according to wealth and well-being ('rich', 'average' and 'poor'), gender (female-headed households, maleheaded households), and whether they were adopters or non-adopters of forage technologies. It was decided that the primary basis for stratification was wealth, hence three smallholders from each village were randomly selected according to wealth, resulting in 21 case studies from each project site. At a second level of stratification, constraints were placed on the selection so that at least one female-headed household per village and at least one non-adopter were selected in the sample. An example of stratification from M'Drak is shown in Table 13.The interviews were carried out over a period of several weeks, with each interview lasting about one to two hours. The total interview time per farmer was strongly correlated with the experience of the interviewer/translator. In one memorable interview with an inexperienced translator it took 20 minutes to ask a single question -much useful information was obtained about numbers of livestock and different types of crops grown, but nothing relevant to the actual question! It was found to be difficult for outsiders without knowledge of the local language to carry out interviews, as they had to rely on translators to interpret questions and answers. Meanings and distinctions between similar words in one language may not have been translated correctly into another. For example, the word 'livestock' is translated (correctly) into Cebuano (the language spoken in Malitbog in the Philippines) as 'hayop'. However, 'hayop' is invariably interpreted by farmers as referring only to cattle or buffalo. Translators who understood the process and knew what questions were being asked and (more importantly) why, were able to elicit the information quite quickly. As an example, interviews that took 8 hours with the first farmer were soon being completed in one hour. Devolving responsibility for interviewing to well-trained and motivated development workers under a mentoring scheme resulted in better quality information. The development worker felt 'ownership' of the process, hence was more motivated to achieve an accurate result.A selection of notes taken during a case-study interview is given below. The selection concentrates on livestock. Labour: Three people in the household (herself, her son and his wife). She has four sons and two daughters of her own and they also live in the commune. The daughter-in-law works full-time on the farm whereas the son only works part-time because of ill-health. Farmer herself only works part-time as well because she is old and also in ill-health. She does not have any hired labour but her two daughters and one of her sons-in-law come and help when she needs them. She also has a few neighbours who come during busy periods (e.g. harvest and planting) to help on an exchange labour basis.Farm: Her farm consists of 1,500 sq m of wetland for paddy rice and 2,500 sq m of upland. This is situated around the house so she does not have to travel far to work on her farm. The crops she is growing are rice, maize, peanuts ('yield very low, bad soil, cattle come and eat, has to fertilize'), vegetables including cabbage, sweet potato (variety in which just the leaves are used), green beans, and black beans (planted at the same time).Animals: She has one bull she just got from her son two days ago on a share basis. She is raising the animal to collect the manure and for draught purposes. In 1997, she did have one other animal (cow) but it died of foot and mouth disease (did die and was not slaughtered). She sold the meat for VND500,000 but she bought the animal in 1995 for VND2million.She had one sow which she bought in April 1999 for VND150,000 and sold it in July 1999 for VND300,000 (see table below). She sold it because of disease problems in the pig. She usually raises between one and thee pigs a year during the harvest time because the price for feed is low. How many and when she buys and sells depends on the price of feed and the availability of ready cash to buy the pigs. The time to sell depends on when she needs the money. Last year and this year the price was VND18,000/kg to buy a suckling piglet and VND12,000/kg to sell an adult pig (Table 14).Feeding system for cattle (based on previous cow): She mainly tethers on native grass and sometimes cuts and carries. If the animal is not working then she will tether from 7-8am to 5-6pm and some cut and carry if she is ill. Usually 5-10 kg at night if she is ill and maybe up to 20-30 kg at night if she is healthy. If the animal is working then it is mainly fed cut and carry at night 20-30 kg and when the animal stops working it is also tethered. She also supplements with rice bran when working (don't know how much). It takes her one hour to cut 20-30 kg of feed but might take 2-3 hours depending on the availability of feed and if she has to search for good grass. There is good grass early in the wet season and also late in the wet season. There is no problem with the feed since she has only one cow.She usually grazes cow around the house but if the weather is good she goes elsewhere because the grass around the house is poor. She does not have any grazing land of her own but since she only has a crop for six months she grazes the animal in the fallow area for the other six months. At the end of the wet season and in the dry season the animal grazes the upland area. When there is a crop in the ground she has to go elsewhere for grazing. In these times she grazes the animal around the garden and along the road and when the grass along the road becomes low she grazes the animal 0.5 to 1 km away.She takes the animal grazing herself and has to stay with the animal. She grazes it from 8am to 4pm. In the dry season when the animal is in the upland area she spends around 3 hrs/day tending the animal and moving the tethering peg around.She collects 1 tonne of manure/year (she also collects the manure when the animal is grazing away from the house). The manure is used on her rice and maize crops.Feeding system for pigs: Feeds the pig maize and rice bran and sweet potato leaves. She usually feeds the pig for six months and can feed around four months of bran from her own crop and two months worth purchased feed. The mixture is around 50:50 maize:rice bran and she needs to buy around 60 kg of bran -that is the pig eats 180 kg of bran over the six month period. The bran costs VND800-1000/kg for the rice and VND1800/kg for the maize bran. She feeds 5 kg of sweet potato leaves/pig/day when the animal is big, usually for the last two months. The market price for the leaves is around VND500/kg but she uses her own leaves.Structured interviews are mainly used for comparative purposes and to obtain quantitative data (GAO 1991). Typically structured interviews are combined with a sampling scheme and are used to generate data for statistical inference. For example, sample surveys (using a structured interview technique) can generate information which can be generalised to the population from which the sample was drawn, whereas case-studies (using a semistructured interview technique) are specific to the person being interviewed and the information cannot be generalised to the population. However, inferential analysis is not restricted to the use of structured interviews in a sample survey format.Structured interviews allow a consistency between interviews so that every respondent is asked the same question. This is what allows the comparison between respondents. It also makes it possible to delegate the interviewing task to enumerators, provided they are thoroughly trained and well supervised. However, unlike semi-structured interviews, structured interviews limit the ability of the interviewer to ask questions outside the format of the questionnaire and thus are prone to omission of information that may be of interest. Structured interviews can be of an open-ended or closed-question type and can be conducted face-to-face or by a written questionnaire filled in by the respondent. However, in situations such as Malitbog and M'Drak, face-to-face interviewing is the only feasible technique.There are many good references on structured interviews and survey design (e.g. Bernard 1995;Casley and Kumar 1988;Fowler 1993;GAO 1991GAO , 1992;;Poate and Daplyn 1993;Pannell and Pannell 1999). It is not the purpose of this report to reproduce that material. However, it is worth emphasising that structured interviews need to be carefully planned in order to be successful. The planning of a structured interview needs to take into consideration not only the design of the appropriate questions but also the selection of the sample to be interviewed. There are many problems with structured interviews, in particular sample surveys, which can be avoided by careful planning and pre-testing. However, one particular pitfall that appears prevalent in most surveys is the lack of forethought for data analysis. This falls into two categories -the collection of data without consideration of the statistical and sampling context, and the inclusion of questions in a structured interview which are not going to be analysed. In the second instance the collection and coding of that information is a waste of valuable time and resources. In general, it is far easier to expand a questionnaire and increase the number of respondents than it is to manage and utilise the data which results from this activity. As far as possible the aim should be to minimise the number of questions asked and the size of the survey sample, while maximising the reliability and utilisation of the data generated.The analysis and utilisation of data collected from structured interviews depends on whether the data are derived from open-ended or closed questions and whether the responses can be quantified or not. Closed questions usually mean (a) that the responses are exhaustive and mutually exclusive (all possible responses are covered and they do not overlap) and (b) that the questions are asked of all respondents. For open-ended questions, however, responses may range from no response, through a few words, to several sentences. Respondents usually only detail factors which come to mind immediately, not necessarily the most important factors. Quantifiable responses enable higher order analysis to be carried out whereas non-quantifiable data restrict the analysis to description of the situation.Analysis of structured interview data can be carried out at several levels. At the first level of analysis a description of the data collected needs to be given. This can be done in the form of frequency tables that can show the number of respondents in each particular category. At the second level of analysis a description and analysis of the data is carried out. Each question can be analysed and associations between responses examined. This can be done in the form of correlation and chi-squared analysis to check the statistical significance of differences between groups. The third level of analysis takes into account the interaction of many different variables on the responses for particular interview questions, and addresses more complex analytical questions. Such analysis can be carried out using analysis of variance, multiple regression analysis, and discriminant function analysis.An example of a structured interview survey instrument is the Adoption Tree Survey conducted by the Forages for Smallholders Project (FSP) at its project sites in Southeast Asia. The FSP philosophy is to encourage farmers to evaluate forage varieties and to develop innovative ways of integrating and using these forages in their farming system. The information collected in the 'adoption tree' was needed for the project to understand the process of participatory forage technology development and to measure milestones for the project and donor. The key objective of the survey was to find out how forage technologies were being developed by farmers and to document the process of adoption within andbetween farms. Additionally, the FSP wanted to document farmers' experiences with forages, for example, their criteria for selection of forage species and varieties. The Adoption Tree Survey was designed as a semi-structured interview with participatory components but in practice was conducted in the field as a structured interview in a survey format. Table 15 shows some of the quantitative results for two FSP sites in Indonesia.While the Adoption Tree Survey provided useful data for M&E, a subsequent assessment revealed the following problems. First, there were several design issues with the survey:• Too much information was collected from all farmers involved in the FSP whereas surveying a sample of farmers would have been more efficient.• Information was collected primarily to satisfy project and donor needs, not the needs of the farmers or development workers in the field.• Some of the forms were too complex and tried to collect too much information.• The survey focused the time and attention of the development workers on farmers who were included in the survey, diverting attention from other farmers who were starting to innovate.In addition, there were problems with the interviewing process:• Semi-structured interviews tended to become structured and open-ended questions became closed questions.• Information was recorded without cross-checking; more probing questions were needed, asking for clarification.• Interviewers sometimes failed to consider whether answers conformed to what they saw or heard around them; they had difficulty with the concept of the degree of accuracy needed, e.g. in relation to the initial area of forages and the area of subsequent expansion.• Visiting individual farmers in their homes took a long time. There were also major problems with encoding, data entry and analysis:• The information was entered too slowly to provide immediate feedback to help with planning.• It was difficult to enter data because not every interviewer encoded the data as required.• Qualitative data had to be encoded subsequent to the survey to be used in the analysis; it would have been better if encoding of information, ready for data input, was done in the field by the interviewer.• Using local languages was essential but slowed the analysis because it required subsequent translation of responses.Several potential solutions to these problems were identified. The Adoption Tree Survey needs to use open-ended, informal questions with data encoded by the interviewer in the field. How can this be achieved? First, the interviewer needs to feel ownership of the survey and to see value in the information generated; the survey must not be a chore but bring practical benefits to the development worker. Second, there needs to be more training for all people involved in the survey. Third, the survey instrument has to be flexible enough to be adapted to changing needs.The survey needs to collect a small set of 'good-quality' information rather than a large set of 'poor-quality' data. A better approach would be to collect a small amount of basic information from all farmers and more detailed information from a representative subsample.","tokenCount":"18866"} \ No newline at end of file diff --git a/data/part_3/6250298791.json b/data/part_3/6250298791.json new file mode 100644 index 0000000000000000000000000000000000000000..e620fb8436b47acab95abab8e3283dc4671603d6 --- /dev/null +++ b/data/part_3/6250298791.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"7cdc149a73e1bd05a8b8e70f81ae7237","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/f51eaac1-2da2-4df2-b3f7-a5300758a889/retrieve","id":"-1163633980"},"keywords":[],"sieverID":"a95f7897-34fd-4d0a-b959-0dbd77267faa","pagecount":"13","content":"Addis Ababa, with an estimated human population of over 3 million, has a high demand for cereals, pulses, fresh vegetables, fruits, milk and milk products and meat and eggs. The Ada'a Woreda is one of the important areas that supply the well known 'maja' teff, chickpeas, fresh vegetables, eggs and chicken, meat and milk. The Woreda capital, Debre Zeit town, is only 45 km southeast of Addis Ababa and has a very good road and railway connection. The Ada'a Dairy Cooperative was established in 1998 in Debre Zeit based on its comparative market advantage, the conducive agro-ecological conditions for dairy production and the available support services. The cooperative was established with 34 members and an initial capital of 3,400 Birr. The main objectives are to minimize transaction costs, reduce price fluctuations over seasons, increase production efficiency, improve incomes and create job opportunities. Milk collection and marketing started in January 2000, with a daily total of 308 liters. The association has made significant progress so far and currently has over 850 members (about 50% female) who individually own over 3000 dairy cows. The current capital of the association has increased to USD 138,029. The number of milk collection sites has increased to 10 and job opportunity has been created for 62 staff. Daily milk collection has increased to over 8,000 liters and is mainly sold to the Dairy Development Enterprise (DDE) in Addis Ababa. The cooperative has established a small processing unit for the production of butter, yoghurt and cottage cheese during periods of excess supply. Members use mainly crossbred animals and the management level is relatively intensive with limited land area. Most animals are stall fed. The cooperative supplies inputs such as grass hay, concentrate feeds, veterinary drugs and services, and artificial insemination service to members at reasonable prices. Rural dairy farmers are joining the cooperative, taking advantage of market access for their milk. Inputs required in dairy production include feeds and water, labour, veterinary drugs and services, artificial insemination and equipment and utensils. The largest input in terms of volume and financial requirements is feed. These involve roughages and concentrate feeds. The main rural areas that provide roughage feeds (grass hay and crop residues) include Selale, Ada'a and adjacent Woredas, and Arsi. Concentrate feeds such as bran, middlings, oil seed cakes, molasses are supplied by ago-industries around Addis Ababa, Debre Zeit and Nazareth, but the row materials come from various parts of the country. Molasses is supplied from Wonji and Shoa Sugar Estates. Another major input is water which is used for animal consumption, washing and cleaning purposes. Most dairy farmers use expensive municipal water supply. Most of the milk collected is supplied to DDE. Pasteurized and processed products are mainly sold in Addis. Some fresh milk is also sold directly to hotels and restaurants in Addis Ababa, Debre Zeit, Dukem and Nazareth towns. In addition, milk collected from Ada'a by the Sebeta agro-industry is processed and supplied to urban centres as far as Bahir Dar. Manure produced from dairy farms is also supplied to a limited extent to rural areas, particularly to horticultural crops producing farms. A strong and organized rural-urban linkage is evolving informally at the moment and this should be recognized and strengthened to benefit both rural and urban dwellers in taking advantage of the value chain. Although urban and peri-urban dairy production system plays important role in the national economy, the system has been marginalized and there is limited research and institutional support addressing this issue. This paper presents the activities and achievements of the Ada'a dairy cooperative and also highlights the rural and urban linkages through the value chain of milk production, processing and marketing.Urban populations are growing in many developing countries. According to FAO (2004), by the year 2030, the current percentage of urban population will swell from 75% to 83% in Latin America and Caribbean, from 37% to 53% in Asia and Pacific and from 38% to 55% in Africa. In 2000, 1.9 billion people lived in cities of the developing countries and this is projected to grow to 3.9 billion in 2030. Globally, at the moment there are over 20 cities that have human population of over 10 million.Currently, urban and sub-urban farmers are the major suppliers of food to over 700 million city dwellers.Ethiopia has an estimated human population of 77 million and is projected to increase to 140 million in the coming 25 years. Similarly, the current urban population of 6 million is projected to reach 36 million by 2025, an increase of 350%. The major urban centers in the country include Addis Ababa, Dire Dawa, Harar, Bahir Dar, Mekelle, Awassa, Nazareth (Adama), Gondar, Dessie, Jimma, Asella, Debre Markos, Debre Berhan and Jigjiga, The highlands of the country, dominated by crop livestock production system, cover about 40% of the total land area, and house 88 % of the human and 73% of the cattle populations. Addis Ababa, the capital city, has an estimated population of about 3 million with an annual growth rate of well over 5%. This population constitutes 4% of the country's total and about 28% the urban population. The daily food requirements of the city will increase substantially in the coming years. The projected human population and requirements for cereals and meat and milk up to the year 2030 are presented in Table 1. One of the major food requirements in Addis Ababa is milk and milk products. In Ethiopia, dairy production is mainly of subsistent type largely based on indigenous breeds of cattle. Milk production from this system is low to support the demand for the continuously increasing human population, particularly in urban centers (Azage and Alemu, 1997). Market oriented urban and peri-urban dairy production systems, based on up-graded dairy stock and purchased conserved feeds (Staal and Shapiro, 1996) are emerging and dominating most urban centers. The systems involve the production, processing and marketing of milk and milk products that are channelled to consumers in urban centres (Rey et al., 1993;Staal and Shapiro, 1996), with a number of beneficiaries along the value chain.There is a large demand supply variance for milk and milk products in Addis Ababa indicating the untapped potential for development of urban and peri-urban dairy production systems. Market-oriented urban and peri-urban dairy production systems have tremendous potential for development and play a significant role in minimising the acute shortage of milk and dairy products in urban centres. There is also a strong rural-urban linkage in these systems in terms of supply of labour, feeds and water and also manure. Currently, due to increases in economic pressure, competition for limited resource, and market forces the level of intensification is increasing in these production systems. These urban and peri-urban dairy farms are currently facing new challenges associated with intensive production systems. Availability of land, management skills, labor force, feeding resources, genetic improvement, control of diseases and parasites, reproductive problems, waste management, quality control, processing and marketing and other socio-economic considerations are becoming important factors influencing and determining the survival of these production systems. Although these systems are critical in terms of milk supply to Addis Ababa, the attention given to them is not often adequate. These systems are not also homogenous and have different requirements and needs. Azage et al. (2000) identified about seven sub-systems which are briefly described below.Traditional crop/livestock farms in rural areas: These farms are located between 25 and 130 km of Addis Ababa. They are small farms with an average of four dairy cows, and provide very little or no specialized inputs to their dairy enterprise. They sell fresh milk on a daily basis to the government owned Dairy Development Enterprise (DDE). Excess milk is processed into butter and a local cottage cheese, ayib and sold in local markets.Intensified dairy/crop livestock farms: These are smallholder farms located around Addis Ababa and exercise some form of intensive dairy production system. These farms have had experiences with dairy development projects under the Ministry of Agriculture. Projects such as the Selale dairy development project and the smallholder dairy development project have been operational in these areas and have influenced the production system. Improved genotypes, artificial insemination, improved forages, concentrate feeding, housing, calf bucket feeding and early weaning are common practices by farmers.Compared to those traditional crop/livestock farmers, land holding is about half the size and milk production is about 15% higher, but the number of cows per household is the similar.Crop/livestock farms with intensive cropping: These farms are located relatively closer to Addis Ababa city, between 25 and 60 km. The farms and herds are 25% larger than the traditional crop/livestock farmers. The cropping system is more intensive and often use fertilizers. They provide supplementary feeds to their animals. Fresh milk is sold to the DDE and they seldom practice making dairy products.Specialized dairy farms: These are large farms located within 15 and 60 km from Addis Ababa. Their average holding is 8.9 ha and 17 cows and use specialized inputs such as improved genotypes, AI, forage production, improved housing, concentrate feeding, veterinary care, etc. They sell fresh milk in relatively large quantities of over 30 liters per day primarily to local informal markets or to the DDE. Most farm owners have additional off-farm activities often generating more income than livestock.Peri-urban farms in secondary towns: These farms are located in and around secondary towns within 25 to 50 km from Addis Ababa. Cattle are grazed on owned or rented land. Special inputs are linked to the type of genotype and involve artificial insemination and supplementary feeds to grazing and stallfed roughages. These farmers, on average, own five dairy cows. The primary outlet for milk is either the DDE or local informal markets.Intra-urban dairy farms in Addis Ababa: These dairy farms are specialized and intensive production units based on zero grazing of crossbred and high grade cows. There is no or little grazing within the city and stall-feeding is based on purchased hay and concentrates. The level of exotic blood in the herd is highest and annual milk production per cows is high and milk is directly sold to the local market.Urban dairy in secondary towns: These are specialized dairy farms found in most secondary towns within the milk shed. In these small towns, farmers have more access to grazing; stall-feeding is therefore less intensive. The level of exotic blood in the herd is high, but herd size is the smallest and averages about two cows per farm. Milk is sold fresh to local markets or the DDE, or processed into butter and ayib and sold. Most farm owners have off-farm activities representing about two-third.A recent study by Teferra Abreha (2006) from the Addis Ababa Urban Agriculture Department indicates that in the Addis Ababa milk shade there are about 66,766 cattle and 31,062 (46.5%) are estimated to be crossbred dairy animals. The main milk suppliers are urban dairy farmers in Addis Ababa and peri-urban dairy producers located around the city in Oromia and Amhara Regions. The estimated annual milk production from these two sources is 49,505 tons and 5,005 tons, respectively, totaling 54,510 tons. However, milk is supplied from various other sources in addition to the above two major suppliers. The total estimated milk supplied to Addis Ababa annually is presented in Table 2. Considering the total population of 3 million in Addis Ababa, the estimated per capita consumption has increased from about 16 liters in 1998 (Azage and Alemu, 1997) to about 22 liters. However, assuming an average consumption of 250 ml of milk per person per day, the total annual requirement will be 273,750,000 L, indicating a short-fall of 208,247,000 liters. The current supply therefore only fulfils about 24% of this assumed demand. The Ada'a dairy cooperative was established to respond to this huge demand-supply variance in milk and milk products in Addis Ababa is one of the major suppliers of milk and milk products to Addis Ababa city and represents two of the production sub-systems described above. These are composed of both the urban dairies in secondary towns and peri-urban dairy farms in secondary towns. The cooperative was established in September 1998 with 34 founding members who purchased a single share of 100 Birr each and an additional Birr 10 for registration fee. The initial capital of the cooperative was only 3,400 Birr (US400). The first two years were devoted to making organizational arrangements for the cooperative to be effectively operational. The main objectives of the cooperative during its formation were to minimize the high transaction cost for the sale of milk and reduce price fluctuations over season, particularly during fasting, reduce wastage of products due to poor handling procedures and lack of processing facilities, increase production and productivity of dairy farms and improve the overall incomes of member farmers, supply inputs such as feed, health services, etc. to member farmers at reasonable prices, provide training in dairy cattle management, milk hygiene and milk handling and milk processing to member farmers, ensure urban-rural linkage for dairy development in the Woreda, assist farmers to form milk units and establish milk union at Woreda level, introduce saving and credit system to member farmers, and collaborate with other dairy cooperatives (nationally, regionally and internationally) to enhance dairy development. With the above objectives, milk collection and marketing activity started in January 2000. The cooperative, although informally established in 1998, got its legal certificate of Registration from the Oromia Regional State in September 2000. Some activities of the cooperative are presented in Figures 1 to 5.Figures 1 and 2. Founders having the first meeting under a tree and the first meeting of the Executive Committee Over the last few years, the cooperative has made a significant progress (Table 3). Currently there are a total of over 813 full members composed of 422 male and 391 (48%) female. The current milk collection has increased to about 8,000 liters per day and the cooperative has purchased 3 cooling tanks. A small processing plant has been established and production of butter, ayib and cheese is underway. The cooperative supplies grass hay and concentrate feed mix to members at reasonable prices. It has expanded activities and established rural-urban linkage and this will enhance the participation of subsistence farmers in market-oriented production system through formation of farmers' group. Project team, staff in Bureau of Agriculture and other stakeholders are studying the feasibility of formation of milk groups and the possibility of establishing low cost milk collection centers at village levels in rural communities. The cooperative has recently received about 800 square meters of land in Debre Zeit town and has completed the construction of an office, conference hall and a milk processing plant (Figure 6). Figure 6. The new cooperative office and milk processing plant under constructionMajor inputsThe key technical options to improve dairy production system are feeds, breeds, and disease control and prevention. In addition, policy and institutional support services are key issues that determine the success of dairy production systems. The major input in any dairy production system is feeds. They are purchased as complete ration, formulated by mixing two or more ingredients at home or using a single ingredient per se (Yoseph Mekasha et al., 1999). Non-conventional feed resources do play an important role in peri-urban dairy production system. These resources include hulls of pulse and other crops, traditional brewery and alcohol residues, poultry waste, vegetable and fruit wastes (Yoseph Mekasha et al., 1999). These feeds are cheap and have a far reaching impact in complementing the daily dietary needs of animals in urban dairy farms. Traditional brewery and liquor residues and pulse hull particularly are available throughout the year.According to Yoseph Mekasha et al. (1999), the estimated total daily dry matter intake is 10.20 kg and the supplement contributes about 6.48 kg. Mean total crude protein intake is 1.42±0.46 kg. The estimated total energy intake is 81.62± 25.94 MJ. The ratio of the mean supplement to basal dry matter intake is 60:40. The overall mean daily milk yield was 8.63±2.3 kg and the average lactation and 305days milk yields are 2,612.1 ±869 kg and 2,365.6±734 kg, respectively. Fat and protein contents are 3.95±0.87 g/kg and 2.91±0.33 g/kg. Mean annual dry matter (kg), protein (kg) and energy (Mcal) intakes per cow are 3,467±256 kg, 518±62 kg and 29,794±711 MJ, respectively, while the estimated mean annual dry matter, protein and energy requirements are 3,220±210 kg, 506±50 kg and 40,584±3928 MJ, respectively. The mean annual dry matter intake is higher by 7% of the requirement and the mean annual protein intake is according to annual requirement, while the annual energy intake had a shortfall of 26.5% of the requirement. Based on the above estimates of feed intake and milk yield, the key question is how much feed does it take to produce milk. The background physiological assumptions in calculating life-cycle needs of metabolizable energy for milk production is depicted in Figure 7 and the life cycle ME and feed needs for milk production is presented in Table 4.Based on the above calculations for ME and feed requirements, the total annual feed requirements for members of the Ada'a dairy cooperative, currently collects about 8,000 liter of milk per day, can be estimated. The total number of registered dairy cows owned by members of the cooperative is about 3,500. There are also young calves, bulls, growing heifers and bred heifers that also require additional feed. Considering the above estimate of feed requirements for production of 8,000 liters of milk, the estimated amount would be:Daily requirement:Forages -2.9 x 8,000 = 23,200 kg Concentrate -0.1 x 8,000 = 800 kg Total -3.1 x 8,000 = 24,800 kg Annual requirement would be:Forages -2.92 million kg Concentrate -292,000 kgWater is a major input into any dairy production system. In Ada'a dairy cooperative, most farmers use expensive municipal water to water their dairy animals and for other utilities. From the literature, generally large Western dairy breeds have higher water intake ((60 to 90 liters/day) than Zebu cows weighing on average 350 kg (25 liters/day) (King, 1983). For example, in Australia a lactating grazed cow consumes about 40 to 100 liters per day (Table 5), while in New Zealand average daily water consumption for a lactating dairy cow is estimated at 70 liters per day. FAO (1986) reported voluntary daily water intake of 14 to 39 liters per day for a 180 kg zebu cow in tropical environments depending on the season.A rough estimate of average daily water intake of about 40 liters for high grade lactating dairy cow under Debre Zeit condition, a total of 3,000 cows would require about 43,800,000 liters of water per year. This estimate is excluding follower herds.Figure 7. Life-cycle needs of metabolizable energy for milk production. The mean annual dry matter intake is higher by 7% of the requirement and the mean annual protein intake was according to their annual requirement, while the annual energy intake had a shortfall of 26.5% of the requirement. Estimated requirements per cows and per annum based on calculated values below are presented in Table 6.Annual requirement would be:• Forages -2.92 million kg • Concentrate -292,000 kg • Total daily dry matter intake per cow = 10.20 kg .• Total daily crude protein intake per cow = is 1.42±0.46 kg.• Total daily energy intake = 81.62± 25.94 MJ. Assuming that members of the cooperative own crossbred or high grade dairy animals, the total amount of fresh feaces and urine production could be computed. Tesfaye et al. (2006) estimated fresh cow dung and urine production of Boran and Boran x Friesian cows kept under indoor feeding conditions in Hoeltta. He also estimated dry matter and organic matter contents and also contents of nitrogen, phosphorus and potassium in both cow dung and urine. The results presented in Table 7 show significant breed difference in fresh dung and urine production and composition.Based on the estimated fresh dung and urine output for Boran x Friesian crossbred cows, the annual manure and urine output from cows owned by cooperative members is estimated at 18.8 million kg and 9.96 million liters, respectively. It is also interesting to note that the total contents of nitrogen, phosphorous and potassium contained in the manure and urine amount to about 34,000, 29,000 and 32,000 kg, respectively (Table 8) 395,284.05 3,190,063.5 33,981.5 29,141.6 31,974.0The socio-economic benefits of the establishment and development of the Ada'a dairy cooperative is difficult to quantify in economic terms. Currently, the direct beneficiaries are about 800 households, with 45% women headed households and non-members who supply milk to the cooperative. The current members of the dairy cooperative include poor women, farmers, retired civil servants, retired military personnel, elderly people, young girls that are vulnerable to food insecurity and economic pressure. These households totally or mostly depend on their small-scale dairy production owning about 1 to 3 cows and solely depending on income generated from the sell of milk. Considering average members of a household to be five, this totals to over 4,250 people. A household with two improved milking cows generates an average gross income of about 200 USD per month and members are paid twice a month; ensuring continued cash flow. Employment opportunities have been also provided to 65 young (50% women) people. The rural--urban linkage is also stimulating a relatively large number of rural dairy farmers, particularly women, to participate in milk production and marketing. The cooperative is expanding its activities to reach more rural communities to stimulate and enhance dairy development and marketing in over 155,000 rural communities in the Ada'a Woreda alone. Moreover, efforts are being made for rural farmers to produce high value feeds such as alfalfa and Napier grass for direct supply to cooperative members.In addition, the consumer community, particularly women and children, have benefited greatly from the availability of safe, hygienic and quality milk and dairy products in all seasons at reasonable prices.The market pull and income generation from dairy farming has also impacted on the environments in terms of improved animal management, product quality and waste management. The input services provided will also strengthen the benefits to members in terms of cost effectiveness and in efficiency of farm operation. The cooperative will contribute to training and developing the dairy sector among smallholder farmers and will impact on the livelihoods of smallholder farmers through contributions to securing assets, technology adoption, participation of the poor (both men and women) in markets and hence ensuring food security and economic development. In so doing, it will bring attitudinal and behavioural changes among the community. It will also serve as an example in transforming subsistence mode of production into market-oriented system and will vividly demonstrate the implementing the agriculture-led industrialization process. An example of how the value chain of milk production and marketing generates productive employment and economic benefit that could be accrued from organized milk production, processing and marketing is depicted in Table 9. The nonmonetary benefits and contributions of the existence and development of the association in the development of livestock agriculture are difficult to quantify in economic terms.Urban and peri-urban dairy production system is an important type of dairy production system buffering the large milk supply-demand variance in Ethiopia and in many other tropical and subtropical developing countries. Most of the producers have limited access to land and practice intensive production system using improved genotypes and purchased feed. The system uses diverse types of feed resources which basically are supplied from rural areas in forms of roughages (mainly grass hay and crop residues) and concentrate feeds including household by-products (such as brewers grain) and wastes of vegetables and fruits. Water is a key resource in any dairy production systems and most often urban and peri-urban dairy producers depend on rather expensive municipal water resources. The production system is a major supplier of fluid milk to major urban centres. The production system produces large quantities of manure and urine which may have significant environmental and public health implications unless otherwise utilized properly. Rural communities around major urban centres also benefit from the high demand for milk and milk products in cities. In most cases in Ethiopia, the market opportunity for rural farmers is in the form of butter. Through linkages with dairy marketing cooperative, however, they can benefit from marketing fluid milk through organized collection centres. Rural communities also get job opportunities to work in urban and peri-urban dairy farms.Although there is an existing strong rural-urban linkage in dairy production in Ethiopia, it has not been well recognized and is currently very much disorganized. Apart from some isolated and incomplete studies, there is no adequate knowledge on this subject. Despite their important role, dairy producers have been marginalized and isolated from support by the public sector. Research and education and recognition of the production system are important key concerns that need to be addressed in order to be able to develop intervention strategies to strengthen rural-urban linkage in dairy production to benefit producers and city dwellers that have high demand for safe and superior quality of milk and milk products. This will create a win-win situation benefiting all involved in the value chain and in developing the sector as a strong economic force for sustainable agricultural development with a significant contribution to the realization of agriculture-led industrialization in Ethiopia, in other developing countries.","tokenCount":"4194"} \ No newline at end of file diff --git a/data/part_3/6275816113.json b/data/part_3/6275816113.json new file mode 100644 index 0000000000000000000000000000000000000000..0f6a329b159f2ff571fd2169e00f7db5482d39a4 --- /dev/null +++ b/data/part_3/6275816113.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"e9ff2b9732434f05676297cf7a4bd4f9","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/ca4235c3-8264-4c86-9645-7d3cbec367ec/retrieve","id":"406455467"},"keywords":[],"sieverID":"f05c68b7-3d10-4793-842c-83446237e195","pagecount":"49","content":"ILRI's strategy is based on strong partnerships as an essential way of operafig and ensuring that the outputs of our research lead to development impacts.It gives us pleasure to acknowledge the donor countries and organisations that supported ILRl research in 2006 listed in exhibit 1 through 3. We could not have helped reduce world poverty through animal agriculture research without their 'intellectual as well as financial support. Many thanks.The International Livestock Research Institute (ILRl) works at the crossroads of livestock and poverty, bringing high-quality science and capacity building .to, bear on poverty reduction and sustainable development for poor livestock keepers and their communfties, LRI works in all tropical developing regions: Afiica, Asia, Latin America and the Caribbean.Worldwide the roles of livestock, and the external economic and institutional context in which the livestock sector is operating is changing rapidly with important implication for the poor. By 2020, the livestock sector is projected to become the most important agricultural sub-sector worldwide, producing about 30 percent of the value of global agricultural output and directly or indirectly accounting for 80 percent of land use. Livestock in developing countries contributes about 1 1% .of total GDP. The 'livestock revolution' will double demand for animal food products in developing countries over the next 20 years. However, efforts by the poor to take advantage of this demand are hampered by inappropriate policies, scarce livestock feeds, devastating diseases, degraded land and water resources, and poor access to markets. Research by ILRI and its partners is helping.to alleviate these problems by providing livestock-based options that transform livelihoods of the poor through more environment-fiendly and market-oriented livestock enterprises. Based in Africa but working worldwide, ILRI positions its work at the dynamic interface of poverty alleviation and sustainable livestock-derived livelihoods.The Institute's long-term strategy provides a goal and a set of research themes and outlines ways in which ILRI will seek to enhance its responsiveness to a dynamic global environment.With diverse partners, ILRI conducts livestock-based research and builds livestock research capacity in focussing on three major pathways out of poverty:. Securing assets of the poor Improving production efficiencies in smallholder livestock systems Improving marlcet opportunities for the poor ILRI's agenda comprises five strategic research themes. The following questions are at the centre of our planning and research:1. Targeting opportunities: How can livestock contribute to pathways out of poverty? 2. Enabling innovation: How can adoption of livestock and agriculturally related innovations be accelerated? 3. Market opportunities: How can the poor access the benefits of emerging livestock markets? 4. Biotechnology: How can livestock biotechnology best be used for development? 5. People, livestock and the environment: How can livestock livelihoods make a larger contribution to human and environmental well being?The organizational structure is built around those five themes. At the end of 2006, the first and second themes were merged as the \"Targeting and Innovation Theme\". Ethiopia. An increasing number of scientists who work at ILRI are jointly appointed by a partner organization and ILRI.The Board of Trustees is composed of 12 outstanding professionals with particular expertise in the field of livestock science, agricultural research, development and corporate management. The key role of the Board is to determine ILRI's mission, to oversee the adequacy of the Institute's strategy, strategic planning and programme review processes, and to provide appropriate input iqto it. The Board ensures that plans and programmes are appropriate for carrying out ILRI's mandate, that they -are in line with CGIAR priorities and that they have high probability for impact on poverty reduction and sustainable natural resource use. LRI is one of the 15 international agricultural research centres supported by the Consultative Group on International Agricultural Research (CGIAR) which is an association of m o r e than 60 governments and public-and private-sector institutions working to reduce poverty, hunger and environmental degradation in developing countries. The co-sponsors of the CGIAR are the World Bank, the United Nations Development Programme, the Food and Agriculture Organization of the United Nations and the International Fund for Agricultural Development FUNDING ILRI is funded by more than 50 private, public and government organizations of the North and South. Some donors support ILFU with core and programme funds whereas others finance individual research projects. In-kind support fiom national partners, particularly Kenya and Ethiopia as well as that from international collaborators is substantial and vital. This mix of generic, specific and in-kind resources is essential for the partnership research we conduct. and Asia. The Panel reviewed ILRI's performance in four areas: 1) mission, strategy and priorities; 2) quality and relevance of the science; 3) effectiveness and efficiency of management (including governance and finance); and 4) accomplishments and impacts.The Panel found ILRl to be a strong research institute that has during the period under review developed a systems-oriented holistic research approach to better address livestock related problems that are relevant to the poor. The Panel reported that ILRI's research structure as revised in its latest Medium-Term Plan is likely to allow the Institute to effectively respond to the challenges that the highly dynamic livestock sector in developing countries poses on poor people and the environment. The Panel also found lLRl to be a well-governed institute with responsive leadership and management.The Panel noted that: \"ILRI continues to be a unique Centre that deserves specific recognition for addressing an orphan component of international agricultural research.\" The designated net assets represent that part of net assets that has been set aside by the Board of Trustees for specific purposes, such as a reserve for the future acquisition and replacement of property and equipments, while undesignated net assets represent that part of net assets that is not set aside for any specific purpose. ILRl operates under agreements entered into with the govemments of the respective host countries (Kenya and Ethiopia). Under these agreements, ILRI and its assets are not subject to any direct or indirect taxation.The accounting policies applied in the preparation of these financial statements are consistent with the Consultative Group on International Agricultural Research (CGIAR) financial guideline series No. 2 -Accounting Policies & Reporting Practices Manual (March 2004). These policies are summarised below.. Accounting conventionThe financial statements are prepared under the historical cost convention and on accrual basis.Revenue recognition i) Grants represent support with donor-imposed conditions and could be restricted or unrestricted. Unrestricted grants are grants received which the institute may Ereely use for its mandated activities. Restricted grants are received in support of specified projects or activities mutually agreed upon between the centre and the donors. ii) Restricted grants are recognised as revenue upon the fulfilment of donor-imposed conditions.iii) Unrestricted grants are recognized upon receipt of confirmed commitment.iv) Program funds are funds provided by donors that need to be used on a certain research theme,activity or region. They are treated as restricted grants. v) Other revenues and gains are recognised as they are earned. Non US dollar denominated expenditures are recorded at the prevailing rates of exchange for the month in which they are incurredandare accumulated in US dollars.Assets and liabilities that are denominated in currencies other than the US dollar are restated into US dollars at the rates of exchange prevailing at the year-end.Gains and losses arising fiom changes in exchange rates are charged or credited to the statement.of activities in the year in which they arise.Cash equivalents are short term, highly liquid investments that are both (a) readily convertible to known amounts of cash and (b) so near maturity date that they present insignificant risk of changes in value.Accounts receivable from donors, employees and other entities are carried at anticipated realisable .value. An allowance is made for doubtful receivables based on a review of all outstanding amounts at the year-end. Bad debts are written off during the year in which they are identified. The write off of receivables is done after all.efforts to collect have been exhausted.Property and equipment whose full cost exceed $1,000 and which ILRl can. use in the production or supply of goods or services or for administrative services for more than one year are capitalized and stated at acquisition cost less accumulated depreciation and accumulated impairment losses. Acquisition cost includes the direct purchase price and incidental costs such as fireight, insurance, installation and handling charges. Subsequent materia1 expenditure that extends the useful life or enhances the operating efficiency of an item of property and equipment is capitalised. The cost of normal repairs and maintenance of existing property and equipment is treated as operating expenses.Construction work-in-progress is capitalised as work progresses but depreciation starts only when the work is completed and the facility is put into use.All immovable assets canied on leasehold land donated by host countries constructed have been capitalised as assets of the Institute. ILRJ has the right to negotiate for extension of leases under the host country agreements upon the expiry of the current leases. In accordance with the host country agreements, in the event that the host country agreement is terminated or the host country does not renew a lease upon expiry, all immovable assets will be disposed of by the CGIAR (in consultation with Government of Ethiopia in Ethiopia).Gains and losses on disposal of property and equipment are determined by reference to their carrying amount and are accounted for in the Statement of Activities. Depreciation of acquired assets start in the month the assets are placed in operation and continue until the assets has been fully depreciated or its use discontinued.Risperty and equipment acquired using project-restricted funds are fully depreciated when they are'placed in operation under the specific benefiting projects.Depreciation charge is time-apportioned in the year of disposal of items of property and equipment.Intangible assets of the Institute comprise acquired computer software. The cost of acquisition and installation of computer software is capitalised and amortised over the estimated useful life of the software, usually three years.The carrying values of property and equipment, including intangible assets, are reviewed annually and adjusted for impairment losses where it is considered necessary.The investment in Kapiti Plains Estate Limited, a wholly owned subsidiary, is stated at cost. Consolidated financial statements are not prepared as, in the opinion of the Institute's management; consolidated financial statements would be of no real value to the Board of Trustees in view of the insignificance of the subsidiary's income and expenses.SIGNIFICANT ACCOUNTING POLICIES (continued)Cost is calculated on the weighted average basis &d indudes purchase price, fieight and other incidental costs.The determination of obsolescence or expiration is based on the lower of the manufacturer's recommendations and documented experience and knowledge of management. Excess inventory is written down wholly as soon as it is identified and the exact level of excess is determined.The Institute's contributions are maintained as a defined contribution plan for all categories of staff.Net assets represent the residual interest in the Institute's assets remaining after liabilities have been deducted. US$ 631,413), which were acquired using project-restricted funds, have been fully depreciated upon purchase in conformity with the CGIAR Financial Guidelines. These assets were still in the Institute's use as at that date.The high depreciation charge in 2006 is due to an adjustment of $1,108,675 to rectify a difference between the assets register and the general ledger. This difference arose at the point of installation of the fixed assets register.10.This represents the cost of investment in Kapiti Plains Estate Limited, a ranch that was acquired for the purposes of securing adequate supplies of disease-he livestock to the Institute. The average number of staff during the year was 740 (2005 -73 1 ) .PRIOR YEAR ADJUSTMENTThe prior year adjustment relates to provision for severance benefits for Nationally Recruited Staff. During the year, the institute adopted a new policy for accruing severance benefits in line with the requirements of the 'The deduction of the overhead recovery does not result in a NET amount but rather it results in the correct gross amount of the direct costs. This is because the project costs (nomially reported as direct project costs) include an amount of indirect costs that a donor of restricted projects allows a Center to recover. As this is not a real direct cost it should be removed. This is always the amount shown as recovery in the Statement of Activity (SOA).","tokenCount":"2017"} \ No newline at end of file diff --git a/data/part_3/6329982813.json b/data/part_3/6329982813.json new file mode 100644 index 0000000000000000000000000000000000000000..d6a844cd6064687ca0fbdf3c43ced301d5b2a289 --- /dev/null +++ b/data/part_3/6329982813.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"1e70bbae6c727d17ef1ad06b8d430789","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/6290310b-8efc-4ae8-ab9a-2f47f1453cb9/content","id":"2021233659"},"keywords":[],"sieverID":"0e46c03f-a969-48d2-9341-f111c6137578","pagecount":"6","content":"Cereal flour blending can reduce food insecurity risks, as well as contribute to economic and nutrition goals. Yet, the potential for blending has not been realized, and new products have not become scalable commercial propositions. Numerous experiments have shown the potential to produce acceptable foods derived from blended flours of diverse crops including wheat. An important question is whether the incentives, capacities and needs of farmers, processors and consumers have been considered. We argue that technical solutions must be developed within a specific agroecological, commercial, economic, and political environment. Innovations must address the clearly defined objectives of a wheat flour blending policy, if the potential benefits of blending for addressing food insecurity and economic stress are to be achieved.The risks of global food insecurity are acute in the short-, mediumand long-term. Resource-stresses, accelerating agro-climatic changes and demographic shifts are raising the stakes for vulnerable populations. Political instability exacerbates these tensions. Global agricultural input and product markets have been hit by the ongoing Ukraine-Russia crisis and reductions in food production and trade. Commodity markets continue to be volatile and food price inflation remains high in most low-, middle-, and high-income countries, with trade restrictions imposed by some countries affecting global grain markets (World Bank 2024). The international community is faltering in the face of these global challenges. However, there are grounds for optimism that the incentives, knowledge, and innovative capacities within the global agri-food sector can have positive local and regional impacts. Innovation and coordinated initiatives among sectoral organizations can serve to deconstruct the global challenges and help to identify technical solutions and policies at national and regional scale to mitigate the food insecurity of vulnerable populations and the economic stresses faced by affected countries.The focus of this Perspective article is staple foods and associated policies in Africa. We review the knowledge of flour blending technologies and processes that have potential to boost agriculture and rural economies, ameliorate food price pressures and attenuate the wider political, social and economic instability.Food security is one element driving the Kenyan Government's efforts to realise its 'Vision 2030' (Vision 2030Delivery Board, 2022). Melesse et al. (2023) recently published an analysis of Kenya's maize flour blending policy linked to food security. Since 2018 the Ministry of Agriculture and Livestock Development have coordinated a Flour Blending Secretariat. Reflecting the desire for greater food sovereignty, the proposal is to incorporate sorghum and millet into maize flour at a substitution level of at least 10%, in order to take advantage of the agronomically robust 'minor' grains and to produce a flour that is more nutritionally dense than the 100% maize flour used for the staple food ugali.Many of the issues regarding Kenya's maize policy are relevant to the opportunities for wheat flour blending. We note that addressing food insecurity by boosting domestic agricultural production in order to reduce reliance on sourcing food supplies from global markets-that is, a shift towards 'food sovereignty' (Stella et al. 2019)-is not the preferred policy approach according to conventional economics. But Kenya, like other countries, is facing significant increases in the cost of imports of wheat flour, driven by elevated global prices and increasing consumer demand for wheat-based foods such as white bread and chapati. Low levels of wheat self-sufficiency have alerted industry, NGOs and policy makers to the risks of dependence on imported foods (Farm Concern International 2018;Food Crops Directorate, 2019). Political instability in Kenya during 2023 resulting from the high cost of living was traced to food prices, drought and currency depreciation (Singh 2023), emphasising the intersectionality of food security challenges. Other wheat import-dependent developing countries and regions such as the North Africa, the Middle East, and West and Central Asia are facing similar challenges (Behnassi and El Haiba 2022).Here we explore wheat flour blending as one measure to attenuate supply, demand, and price pressures in African staple foods markets. For decades, blending flours has interested policy makers and researchers looking to reduce imports and promote agricultural development for locally produced crops in different parts of Africa (Dendy 1993). Notwithstanding, flour blending remains uncommon in practice in most developing countries (Melesse et al. 2023). Here we argue that blending wheat flour with locally adapted, nutrient-rich and/or climate resilient crops such as legumes, cassava, sorghum, and millet can enhance food security in Kenya and other vulnerable countries. We take stock of experience and suggest commercially practicable opportunities for blending wheat with other flours to boost agricultural development, enhance food security and improve the macroeconomic conditions of import-dependent countries.Agricultural and food prices have always been a focus of political attention. Conventional economics explains how, in a world of free and smoothly operating markets, economies of scale, and low-cost logistics, it makes sense for individual countries to import products: 'free trade' is optimal. However, current global agricultural production and trade, particularly for cereals, are governed by conflict, sanctions, and regulations. A food security study funded by the United States Agency for International Development (USAID) and the CGIAR Research Program on Policies, Institutions, and Markets (Ragasa et al. 2020) recognized a desire among African countries to improve domestic agricultural competitiveness for enhancing food security, rather than pursuing uncritical dependence on markets. Other studies have highlighted the dangers of market-dependence for meeting food security needs in developing regions (African Development Bank Group 2019;Christoforidou et al. 2023;Silva et al. 2023). Even countries of the global North are reassessing the policy conflicts between alternative approaches to food sovereignty, food security and environmental sustainability (Morales et al. 2022).Rising consumption of bread and wheat-derived food products has been reported around the globe for decades and has been linked to increasing urbanization of the population, changing lifestyles, and population growth per se (Kennedy and Reardon 1994;Sibanda et al. 2015;Tadesse et al. 2019). Recent grain price rises pose major challenges to businesses, governments, and consumers in Africa, with increasing reliance on uncertain imports. In East Africa, the 'Grain and Feed Annual Report' for Kenya has highlighted these trends for successive years (USDA 2022; USDA 2023)-at the same time indicating that farmers have registered a measurable domestic supply response owing to higher prices. Climate-induced changes in production conditions in Africa will reduce domestic cereal supplies further unless constraints are addressed by adequate support policies, including innovations in resilient seed technologies. The East African highlands and rain-fed production in southern Africa are particularly vulnerable. The climate-related hunger crisis in the Horn of Africa illustrates the current concerns (WFP 2023b). In the Nile region, climate shocks and conflict are causing acute hunger in Sudan and South Sudan, with consequences spreading around the region (International Rescue Committee 2023; WFP 2023a; WFP 2024). Fig. 1 summarizes the food security challenges.Composite flours are derived from blending cereal products, often wheat flour, with flours from other agricultural crops. Blending is not a new solution to food insecurity, but laboratory and scoping experiments have led to little action. Finding innovative processes and acceptable functional formulations that can be scaled up to industrial levels needs more work (Jiménez-Munoz et al. 2021). But science, business and policy must merge: we do not yet know how technical innovations and public initiatives, incentives, and interventions in agrifood markets can be made logistically feasible, commercially operational and economically viable, and-not forgetting the important 'bottom line'--acceptable to consumers at affordable prices.Flours from substitute products may derive from other major or minor cereals such as maize or sorghum; from pseudocereals like quinoa and buckwheat; from root vegetables such as cassava, potato, and sweet potato; and from diverse legumes. Laboratory-based experiments have been conducted with flours from minor crops that have an attraction for their nutritional qualities, resilience and local availability: e.g. Bambara groundnut (Tan et al. 2020 (Brassesco et al. 2021); various fruit and vegetable by-products (Santos et al. 2022). Of these, many are likely to be of local interest for niche product innovations but will not be scalable commercial propositions. Among the obstacles to making effective and economic use of minor crops are supply limitations, lack of knowledge of the crop and its agrifood potential, social stigma, and a lack of policy incentives (Tan et al. 2020). Flours from maize, barley, cassava and chickpea are among the most studied crops for making composite flour breads (Noorfarahzilah et al. 2014). The ranges of blends have different properties and implications for different food products and processes. Here we summarize knowledge on likely candidate crops.The potential of millets and sorghums has long been recognized. Millets are receiving increasing attention for their hardiness under conditions of climate change and global warming. They are prized in dry, semi-arid and subtropical zones for their ecological adaptability and short growing season. In Kenya they are a minor crop. Blends of up to 30% millet flour have been shown to produce acceptable bread loaves and chapatis (Aprodu and Banu 2014;Sharma et al. 2017).Globally, sorghum is another minor cereal and predominantly a subsistence crop, which is little grown in Kenya. However, for many tens of millions of people in other developing countries, sorghum is a major source of micro-and macronutrients with significant drought-resistance properties (Rizk et al. 2015). The health attributes of sorghum make it an attractive substitute flour for both gluten-free and functional food markets (Ari Akin et al. 2022). Products baked from sorghum-wheat flour at substitution rates up to 20% have been found to be of 'acceptable quality', comparable to products using 100% wheat flour (Adebowale et al. 2012;Sibanda et al. 2015).Food scientists have experimented with legumes in breadmaking and there is renewed interest in increasing the proportion of plant-based protein foods in global diets (Hoehnel et al. 2019;Willett et al. 2019;Semba et al. 2021). Sharma et al. (2022) also endorsed the adoption of wheat composites using legume flours, not least for public health and nutrition. Nevertheless, analysis of global food industry data suggests that introducing legumes in innovative products is a challenge, partly due to path-dependency in product formulation (Magrini et al. 2023). Broadly, the manufacture of high-protein quality bread is considered technically feasible and further work should focus on legume formulations of 10%-15%.The use of potato flour in baking has been studied for decades. Incorporating potato flour in baked bread at a level of 15% has been found to produce loaves acceptable to consumers, with promising impacts on reducing staling (Liu et al. 2016;Lingling et al. 2018;Whitney and Simsek 2020). Liu et al. also found nutritional enhancements by incorporating potato flour in steamed bread through increasing the levels of dietary fibre, ash content and antioxidant activity, and reducing the estimated glycemic index compared with 100% wheat steamed bread (Liu et al. 2016).Sweet potato blending is relatively under-researched but is an option due to its appreciable production in Kenya. Processing methods and plant variety are important but can give a bread product with acceptable technological and functional properties (Dereje et al. 2020). Even the flour of the aerial parts of the plant has been incorporated successfully in bread at rates of 5% and 10% (Mau et al. 2020). Recipes are easily discoverable on the internet, and evidently, sweet potato bread is increasing in popularity in different African regions as wheat prices have escalated (see, for example (Africanews 2022),).Finally, cassava has been a promising substitute for wheat in breadmaking for decades (Defloor et al. 1993;Eddy et al. 2007). Research in developing acceptable composite products has accelerated recently (Parmar et al. 2018;Chisenga et al. 2019) and its use could boost local growers and agrifood industries. The processing to which cassava is subjected, and varietal characteristics, determine the textural properties of the doughs (Chisenga et al. 2019;Cazzaniga et al. 2021). Sensory evaluation has demonstrated that wheat breads with 10% and 20% cassava flour were equally acceptable to consumers compared with a control bread with 100% wheat flour (Eddy et al. 2007). At lower levels of inclusion, Eddy et al. even identified 'a tendency for bread baked with 10 and 20% composite flour to be rated higher than the control especially in aroma, colour, flavour, general acceptability and preference to buy' (p.2418). For cassava, as for most other crops, there are value chain issues associated with the quality, variability, and perishability of the purchased crop, which is often sourced from many small-scale producers, and requires timely handling and careful assembly.When reviewing the maize flour blending policy in Kenya, Melesse et al. (2023) cited supply constraints and consumer acceptance as major challenges to be overcome. They also detailed the issues of food science, market development and coordination, and communication challenges throughout the supply chain from farmers through processors to consumers. In the end, they argued, it is the interaction of political will with the complex economy of Kenya that will determine the success of the policy. As noted above, many of the issues regarding the maize policy are relevant to wheat flour blending.Wheat flour blending presents technical challenges for cereal and food scientists. But there are other important considerations: technical solutions must be developed within given agroecological, commercial, consumer, economic and political environments; and they must address clearly defined objectives of blending policies. These may be agroecological sustainability, regional agricultural development, public health, private profitability, national food security and macroeconomic stability. There are important challenges in relation to consumer awareness and confidence: industrial enterprises and public authorities concerned with food regulation, standards, labelling and advertising must ensure dissemination of transparent information and procedures in respect of product specifications, notably nutritional composition and food preparation. Effective blending policies require effective public-private partnerships built on intersectoral political skills. In addition, transmitting the blending policy incentives and product specifications through the industrial sector to agricultural suppliers needs considerable market coordination skills. The value chain challenges and potential impacts are summarized in Fig. 2.No single policy approach will address all objectives, which must be clarified and prioritized. The likely trade-offs must be calculated with care. Impacts on the private sector must be identified, and benefits to consumers must be marketed with integrity. Lack of clear public policy and failures in the volume and quality of alternative crops have previously frustrated blending initiatives (Aristizábal Galvis et al. 2017:29;Manano et al. 2021). Among the issues to consider are a) negative experiences of blending initiatives; b) debate about the strength of the political will and policy framework; and c) the technical supply chain challenges.For example, in Nigeria, where both bread and cassava are important foods, there has been considerable research interest in composite flours. In 2003, a presidential initiative was launched advocating the incorporation of cassava flour at a level of 10% in breadmaking. This was unsuccessful due to the risk perceived by industry of apparently poor storage characteristics of composite breads caused by moistness and high microbial loads, and by crop supply shortages. Increased taxation by the Nigerian government of wheat imports in 2012 led to a new mandate to use a composite flour blend incorporating 20% cassava flour. However, again the uptake of cassava as an ingredient of composite flours was not successful (Nwanekezi 2013). Several value chain constraints limiting the obvious technical possibilities in Nigerian agro-industry have been cited: 'insufficient policy incentives; lack of favorable policies; low wheat flour prices relative to those of cassava flour; unreliable supply of and low demand for cassava flour; lack of market access; poor logistics; high cost of transportation and poor condition of roads; dependence on weather for drying; lack of working capital' (Aristizábal Galvis et al. 2017:29).Food governance in the interest of public health is inherently multisectoral, involving markets, governments and consumers (Kaldor 2018). However, voluntary industry-regulated initiatives have often been marked by a lack of substantive achievement (Scrinis 2016), and industry involvement in formulation of voluntary measures is said to be undesirable. It is argued that mandatory measures should be favored (Erzse et al. 2022). Mandating requirements is more likely to create a commercial 'level playing field'. At the same time, there are reservations about the capacity and willingness of commercial firms to contribute to voluntary industry-government partnerships for public health (Poole et al. 2020). More overt criticisms of the conflicts of interest of transnational corporations in relation to public health have been made, because firms' primary responsibility is not to the public but to shareholders. Hence, multisectoral collaboration is essential, but within a strong regulatory framework (Monteiro and Cannon 2019).Sourcing from diverse local markets for the baking industry, variability in the multiple and complex qualities of raw materials, and incomplete knowledge of the optimal genetic characteristics of crops for composite flours are major issues for processing and ultimate consumer acceptance (Atlin et al. 2017;Chivasa et al. 2022). Last but not least, among these variables, soil types, optimal agronomic practices, and water availability need to be considered in the delivery of the necessary consistent quality and functionality of the crops to be blended.It is evident from the range of laboratory experiments, the diversity of candidate crops for producing substitute flours, and the heterogeneous conditions impacting value chains, that there is no single ideal crop for blending with wheat flour, either in Kenya or more widely.Yet, there are grounds for optimism. The new market opportunities for cereal-based products are exemplified by the recent dramatic expansion of gluten-free foods, demonstrating how food science and technological innovation can respond to market incentives for novel products (Xu et al. 2020;Mir et al. 2022). Public policies take time to be formulated and implemented, especially if stakeholder consultations are to be undertaken in the interests of both policy refinement and amelioration of political and business suspicion. Multistakeholder platforms and agricultural public-private partnerships (APPPs) can bring together interested parties such as farmers, food industry firms, advocacy organizations and public sector bodies such ministries of agriculture, food and nutrition, and finance with carefully targeted and bundled interventions that benefit farmers and increase output-even if there are limitations to the effectiveness of APPPs (Aseete et al. 2023).Here we propose four areas for further work by the public and private sectors, and researchers. 1. A sound understanding is needed of three major stages in the value chain: a) costs of supply of optimal crop varieties; b) additional demands on private food processors and manufacturers of quality specifications; and c) the public and business implications of the provision of information, marketing, consumer acceptance and willingness to pay for newly formulated products in multiple market segments. A fourth issue is d) to assess the balance of public costs and benefits for the macroeconomy of reducing imports, of any extra expenditure on incentives such as production subsidies, and alterations in taxation regimes to promote flour blending. 2. Economics is fundamental and yet, to our knowledge, there are no business feasibility analyses to accompany many of the technical studies of blended products. Industry informants in Kenya have cited the need for better data on production and costs of potential crops, and the impacts of a blending policy on the costs of sourcing and processing. Ultimately, the expected level of consumer product prices is a critical factor to identify impacts on poverty and wellbeing. 3. Standardization of experimental methods will help to ensure comparability in feasibility studies. However, this may be challenging in a commercial environment in which knowledge of input, product formulations and standards, optimal techniques and technologies, and the use of additives, can confer an exclusive business advantage. We advocate for the availability of a systematic and open system for testing and refining experimental methods for blending to create common protocols and interoperable results. 4. Finally, regulatory approaches and technical innovations are not scale-neutral. It is not only large-scale enterprises whose performance matters. The interests of smallholder farmer producers and the informal economy of small-scale street retail enterprises and their customers must be considered. Likewise, most people in Kenya and other developing nations depend on home cooking. Households need access to clearly labelled blended flours at a reasonable price.There will be concerns ranging from ease of preparation of doughs, cooking time and energy use, to the preferences of market segments of consumers who eat cereal products of a different kind and who in other ways are different from those who buy commercial products such as white bread and biscuits. These market characteristics and consumer preferences need to be assessed, giving due attention to the gendered impacts of blending policies.","tokenCount":"3342"} \ No newline at end of file diff --git a/data/part_3/6361178517.json b/data/part_3/6361178517.json new file mode 100644 index 0000000000000000000000000000000000000000..3bfe4e6846b2647e813bcb4bd561ad0d255930d8 --- /dev/null +++ b/data/part_3/6361178517.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"6a02fa4974bc39cd90487a426e3f107c","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/281fe262-20a0-49b6-9d60-33f178844d12/retrieve","id":"-1447393125"},"keywords":[],"sieverID":"c1c76827-2624-47d2-8185-d14af1bfab75","pagecount":"35","content":"Agriculture remains the mainstay of the national economy and rural livelihoods in Kenya and provides the basis for the development of the other sectors. By offering employment to the majority of working population as well as contributing raw materials to the industrial sector, the agricultural sector therefore has a definite role to play in the progress of country towards becoming food secure and industrialised. Kenya just like any other Sub-Saharan Africa country needs to produce more food, feed, and fibre to support its growing population and urbanization, thus, intensification of agriculture is a crucial component of any strategy towards this goal, but must be done sustainably. Appropriate sustainable intensification (SI) of agriculture is required to meet this rising demand for food and protect resources. Increasing agricultural production in Kenya is likely going to be the result of intensification in mid to high potential areas rather than area expansion which demands huge investments as a way to simultaneously address the need for more food and for environmental security.In the recent past, agricultural productivity in Kenya has been negatively impacted because of the significant impact of climate variability and land degradation. Agricultural output and productivity is on decline due to high soil quality degradation rates, loss of agro-biodiversity, poor regulatory framework and overreliance on rain-fed agriculture (GoK 2007;GoK 2009). This worrying situation results from unsustainable land use practices and the low adoption of appropriate natural resource management technologies. The form of agriculture promoted over the years in Kenya has been intensive tillage-based farming which is now considered unsustainable economically and environmentally. Tillage-based farming, reduces soil organic matter, destroys soil structure and debilitates soil biodiversity, all of which are important elements in ecosystem functions that creates healthy productive soils and delivers ecosystem services. Healthy soils underpin healthy food, and agricultural yields (Amundsen et al., 2015). This state of Kenya agriculture calls for redoubling of efforts to meet the growing food demands; respond to impacts of demographic change in rural and urban areas; use natural resources in a more sustainable manner; increase energy efficiency; innovate to enhance resilience; and implement post-harvest loss reduction strategies among others. This current form of agriculture calls for serious change of focus towards sustainable agricultural production systems that maintain optimal production without jeopardizing the natural resource base and the environment. These trends have awakened the need for embracing conservation agriculture among both policy makers and implementers in the agriculture sector.Conservation Agriculture is one of the transformational technologies currently being widely promoted as sustainable intensification in Kenya, this is because of the high pressure on agricultural land, decline soil fertility and low yields. To sustainably achieve the required agricultural transformation with multiplicative and additive effects, sustainable intensification strategy adopted must be (i) productivity innovative (e.g. improved varieties, fertilizer, new crop management practices, livestock integration), (ii) Natural Resource Management (NRM) innovative (e.g. agroforestry, reforestation and erosion control), and (iii) institutional innovative (e.g. social infrastructure, policy, partnerships, access to finance, services, inputs and markets).The focus is to have farmers produce more from the same area of land and use fewer inputs while producing greater yields in an enhanced environment and protected natural resources. CA is about planting quality seed without ploughing, and reducing weeding labour by leaving the soil permanently covered with mulch or cover crops. It brings together the principles of soil and water management, knowledge of crop rotations, agro-forestry and pest management. CA is an approach that reduces operational and input costs, including labour, while increasing yields and protecting our farm-land and its water resources. It is a proven win-win alternative Climate Smart Agriculture (CSA) approach that can contribute to the building of resilience of farmers and assure them sustainable food and nutrition security and decent livelihoods. Despite its importance, CA practice by smallholders in the country is still low, leaving an untapped potential that could positively transform local farming systems. As part of the project implementation activities, ACT was task to profile CA and CA-based mechanization in the project sites to ascertain the status of adoption and practice and establish possible challenges that hinder massive and widespread adoption of the technologies. ACT is a pan-African nonprofit organization that aims at bringing together stakeholders and players who are dedicated to improving agricultural productivity through sustainable utilization of natural resources of land and water in Africa's farming systems. ACT is committed to the principal of mutual collaboration, partnership and sharing of information/knowledge on sustainable natural resources management and drawing on synergies and complementarities. Therefore, this report provides major findings of the scoping exercise and recommendations for the project interventions and further actions.The extensive land degradation processes are part of many environmental problems caused by continuous conventional tillage and unsustainable agricultural practices. These practices are continuing unabated under many agrifood systems in Kenya and poses a major threat to the sustainability of the country's agriculture, food production and national security. Impacts can be severe, not only through soil erosion and fertility loss, but through other linked effects such as sedimentation, siltation and eutrophication of water ways or enhanced flooding. In addition, the impact of bare (fallow) soil on climate through the loss of soil carbon and erosion induced changes in soil carbon cycling remains an increasing threat.Many organizations have realized that continuous promotion of conventional tillage-based agriculture will not remedy the current farmers' situations but rather exacerbate it and compound it with expensive agriculture production limiting its profitability and sector contributions to economic growth. Therefore, there is need for a broader approach that encompasses building resilient farming systems by adoption and practice of improved land management practices that have potential to improve soil and water productivity, key factors in agricultural production. The focus should be to address soil degradation challenges that has resulted from prolonged agricultural practices that has depleted the organic matter and nutrient content of the soil. The aim is higher crop productivity with lower production costs and building systems' resilience amid the changing climate.The main purpose of this scoping study was to prepare a profile report that will present to the project the current overview and profile of conservation agriculture and CA based mechanization adoption and practice in the project sites. It is also purpose to trigger the critical though process among the many stakeholders involve in project implementation and other actors to customized their actions towards providing best bet solutions to hindrances of scaling up of these technologies. This is with the view to support rural farming communities to achieve selfsufficiency and have opportunities to thrive through adoption and practice of sustainable agricultural practices capable of enhancing productivity and building resilience.The study provided overview of CA practice status, actions by various stakeholders in the targeted Counties, recommend the best bet practices and scaling up of CA innovations for massive and greatest impact.The main objective of the study was to analyse the current overview of conservation agriculture and CA mechanization adoption and practice in Kenya UU project sites. This will help to identify the status of the adoption and practice of the technology in the region, highlighting key barriers to scaling up and recommend how best the technology can be out scaled for massive adoption and practice.It was basically to profile CA practices, CA mechanization and its potential in the project sites with a view to identify capacity requirements, programmed appropriate capacity building activities and later develop a CA mechanization delivery model for the sites.The expected deliverable of the study was a successful scoping exercise and detailed report on CA practices overview in the project sites in Kenya and probably specific recommendations for further actions by the project implementers and other sector actors.The overall scope of work undertaken to deliver the required final study assignment product was organized into three main interlinked phases that include (i) Analysis of the scope/overview of conservation agriculture in the project sites in Kenya; (ii) Targeting conservation agriculture areas of investment for impact and scaling; and (iii) Recommendations and proposed call for action.The study assignment was conducted with close reference to innovations that creates efficient agrifood production systems with resilience to climate change and natural hazards while responding to market demandsand, importantly, producing more food with less environmental footprints. Special measures were also made to harness synergistic partnerships for scaling up and impact. Mechanization in conservation agriculture is essential and must be recognized as a component of the broader agrifood systems and will definitely contribute significantly in promotion, adoption and practice of the technology. Without mechanization, the effort to promote massive adoption and practice of CA will remain a mirage and limited.The process for carrying out of this assignment was guided by the scoping outline defined in the project workplan to profile overview and status of Conservation Agriculture and CA basedmechanization practices in Kenya's project sites. The data and information required to deliver this study assignment included primary and secondary data collected either quantitatively or qualitatively from different sources using different techniques and methods depending on the aspects and issues under consideration and the stakeholders involved. The participatory and inclusive process included interviews and consultations with key stakeholders, using different instruments and tools, to provide a deeper understanding of critical issues from the perspectives of these stakeholders.The selection of the instruments used in the collection of the required data and information depended on the available time and the resources allocated for the assignment. Some of the instruments that were used together with the specific tools are briefly discussed below.This involved the identification, collection, review and analysis of the relevant documents and reports as well as the relevant national (Kenya) documents and reports. Some of the reviewed documents are listed in the Bibliography (Section 6).Consultative meetings as well as emails and telephone/Zoom/Teams' calls were undertaken with project implementers to hear their views, experiences and to seek their perspectives on the study assignment. The conduct of these consultative meetings was geared towards getting project implementers views on critical insight and unique perspectives on the issues facing Conservation Agriculture in project sites.A field visit to some project sites was effected by the ACT staff to obtain first hand impressions and clarify perceptions and the landscape of conservation agriculture in the region. These covered interviews using a questionnaire guided with project staff, other CA promoters and farmers in the region.In-person focused group discussions were held with CA farmer groups in Kakamega, Nakuru and Narok as a rapid assessment, semi-structured data and information gathering tool for eliciting their views and opinions. The congregations were semi-structured discussions where targeted questions were discussed to identify lessons, constraints, opportunities and issues that limit adoption and spread of CA in their regions.In-person in-depth interviews were carried out with purposely selected key informants using comprehensive semi-structured checklists. The key informants were identified through the ACT Network databases including the CA Hub Kenya1 membership, suggestions from project implementers and other organizations. Key informants included non-governmental and not-forprofit organizations, national and international agricultural research organizations, academia, mechanization services providers, equipment fabricators and private sector associations.Key informant interviews and surveys were also carried out using online email surveys as well as telephone and Zoom/Teams interviews so as to increase the number of respondents, where necessary, as a cost-effective elicitation of responses.The study mainly generated qualitative data collected from the various actors through prepared check lists. The data collected was consolidated, collated and processed using simple Excel analysis and results of the analysis were summarized into tables and graphs for presentation and report preparation.In carrying out the assignment the major difficulties included effective use of some of the standard methods of collecting data and information due to the limited resources and time available for the study. In particular, utilizing face-to-face approaches to accomplish the assignment.In Kenya, particularly in the UU project sites, some elements of Conservation Agriculture have been practiced by farmers since long ago even before independence using indigenous technologies which reflect some elements of CA such as accumulation of residues on soil surface, minimum soil disturbance, crop rotation, seeding on mulch. Conservation Agriculture as defined today incorporates three principles that is minimum disturbance of the soil, permanent soil cover and crop rotations has mainly been promoted in the country through various projects supported by different development partners and implemented mostly by NGOs and government since early 2000.In Africa CA accounts for about 2.7 million hectares which is less than 1% of the total global CA area of 205 million hectares. According to Kassam and Mkomwa (2022), South Africa has 1,176,200 ha (43%), Zambia 552,667 ha (20%), Mozambique 289,000 ha (10%) while Kenya has about 33,000 ha (1.2%), majorly in large commercial farms as well as smallholder farms (Table 1). The smallholder farmers usually manage an average of 0.25 -0.5 ha using hand tools such as hand hoes, dibble sticks, swallow weeders, jab planter and animal drawn implements. Large scale commercial farmers handle over 400-1,600 ha using highly sophisticated GPS controlled traffic tractor drawn seeders and others precision equipment (Mkomwa et al., 2017).The spread of CA has been expanding in Asia, Africa, and Europe in recent years because farmers are becoming better organized in working together and networking. More attention and resources are being allocated by stakeholders towards supporting farmers to adopt CA and in generating new knowledge to improve their performance. Globally, expansion of CA remains largely farmer-driven and has become a multi-stakeholder movement comprising formal and informal CA networks at national and international levels involving individuals and institutions in the public, private, and civil sectors. With over 2.7 million hectares of cropland in Africa (Mkomwa & Kassam, 2022), CA has been growing exponentially (Figure 1). However, a more accelerated growth is needed for attainment of the Malabo Declaration and the Agenda 2063, including the 25 million households practicing CSA by 2025.The major drivers for CA adoption globally continue to be the need to increase input factor productivity, yield and total farm output, reducing cost of production and improving profitability, greater resilience to biotic and abiotic stresses, improved sustainability of production and farm land, better incomes, timeliness of cropping practices, ease of farming and reduction in drudgery, and improved ecosystem services such as clean water, control of erosion and land degradation, carbon sequestration, cleaner atmosphere and the rehabilitation of degraded agricultural lands and adapting to and mitigating climate change. [Kassam et al., 2017a;Kassam et al., 2013;Kassam et al., 2018].-increasing at exponential rates: 2.7M ha of cropland area under CA with nearly 1M smallholder farmers reached directly and indirectly through partnerships. Source: Mkomwa & Kassam (2022) Source: Mkomwa & Kassam (2022) Whereas in 1973/74, CA was applied on only 2.8 M ha worldwide, the area had grown to 6.2 M ha in 1983/84 and to 38 M ha in 1996/97 [Derpsch, R.1998;Kassam et al., 2018]. In 1999, worldwide adoption was 45 M ha, and by 2003, the area had grown to 72 M ha. During the period from 1999 to 2013, CA cropland area had expanded at an average rate of about 8.3 M ha per year, from 72 to 157 M ha (Kassam et al., 2015;Kassam et al., 2018). Since 2008/09, the rate of change has increased to about 10.5 M ha, from 106 to 180 M ha, showing the increased interest of farmers in the CA farming system approach to sustainable production and agricultural land management. In 2013/14, it was about 157 M ha (11% of global cropland), representing a difference of some 51 M ha (some 47%) over the 5-year period. In 2015/16, CA cropland was about 180 M ha (12.5% of global cropland), representing a difference of some 74 M ha (69%) over the 7-year period since 2008/09 or about 23 M ha (some 15%) over the 2 years since 2013/14 (Kassam et al., 2018).In 2018/2019, the total cropland area was 205.4 M ha, corresponding to 14.7% of global cropland area (Kassam et. Al, 2022). The spread of CA has been expanding in Asia, Africa, and Europe in recent years because farmers are becoming better organized in working together and networking. More attention and resources are being allocated by stakeholders towards supporting farmers to adopt CA and in generating new knowledge to improve their performance.Globally, expansion of CA remains largely farmer-driven and has become a multi-stakeholder movement comprising formal and informal CA networks at national and international levels involving individuals and institutions in the public, private, and civil sectors.Initially, this expansion was mainly in North and South America and in Australia and New Zealand. More recently, it is also occurring in Asia, particularly in Kazakhstan and China with large farms, and in India and Pakistan with small farms (Kassam et al., 2018).NB: Globally 205 Million ha (~14.7% of arable cropland). Source: Kassam et al., 2022 In many countries such as the USA, Canada, Australia, New Zealand, Brazil, Argentina, Paraguay, Uruguay, South Africa, Zambia, Zimbabwe, Malawi, Mozambique, Namibia, Kazakhstan, India and China, CA is being 'mainstreamed' in national agricultural development programmes or backed by suitable policies and institutional support (Kassam et al., 2018).Notably as regard to CA adoption, Brazil has 30 million hectares of land under CA after 30 years of pioneering work that has indeed proved CA can advance to no-till levels with great benefits to all, and the environment. Under CA, Brazil has maize yields averaging 9 tonnes per hectare. Farmers who do not weed any more have more time for other activities such as poultry and pigs (Kassam et al., 2018).Specific to Africa, CA is spreading in sub-Saharan Africa using indigenous and scientific knowledge, and equipment largely design from Latin America (Table 1). There is now additional collaboration with China, Bangladesh and Australia, and CIMMYT, ICARDA, ICRISAT, ICRAF, CIRAD, ACT, FAO, IFAD, AfDB and NGOs. These have all stimulated the trend to have local practices and local equipment, with advantages in maintenance and repair. Farmers in at least 25 African countries are promoting CA. CA has also been incorporated into the regional agricultural policies by NEPAD, and it is recognized as a core element of climate-smart agriculture (Kassam et al., 2017a;Kassam et al., 2018). (Source Kassam and Mkomwa, 2022).CA systems help Africa's resource-poor farmers to maintain subsistence with sustainability, so as to meet the challenges of climate change, high-energy costs, environmental degradation and labour shortages. The CA area is still relatively small, mainly because of the small land holdings as well as greater attention being paid to the promotion of conventional tillage agriculture, without much success. But there is a developing trend, a CA movement of some two million small-scale farmers on the continent. These farmers cover, along with medium-and large-scale farmers, a total CA area of some 1.5 M ha in 2015/16. Since 2008/09, CA has spread further in countries such as Kenya, Madagascar, Malawi, Mozambique, Tanzania, Zambia and Zimbabwe.The journey to transform agriculture in Kenya towards more sustainable and productive started with the Technical Cooperation Projects (TCP) developed by FAO and were implemented in partnership with National Governments in Kenya, Tanzania and Uganda in the mid-1990s. This was later changed to the more comprehensive Soil Fertility Initiative launched by FAO and the World Bank in 1996 in Kenya, Tanzania, Uganda and Rwanda which was however short lived. The majority of the early projects were of short-term interventions, running on average from 1 ½ to 3 years duration and focused on CA research and development initiatives meant to assess the performance of different technologies and in the overall, the proof of concept. Findings were generally very positive, with some inconsistencies in assessed performance. These did arise due to differences of technologies, methodologies, and definitions of conservation agriculture systems. The next batch of projects (e.g. ABACO, FACASI and the AGRA/ACT) dwelt not only on validating the proof of concept but also developing impact pathways, along value chains, to facilitate upscaling of the technologies. With clear barriers to mainstreaming of CA in national programmes, the latest and current projects (e.g. CFGB) have strong emphasis on policy aspects, to ensure that the short-lived project interventions have a lasting impact, not through technology superiority alone, but also policy support.There are several stakeholders who are promoting conservation agriculture in the project sites. These include Government Ministries, County Governments; Research Institutions; Universities and Colleges; International Organizations; Non-Governmental Organizations; Church based organizations; Farmer Organizations; and private companies including agro processors, commercial farms, traders, agricultural machinery dealers and manufacturers. The list and range of stakeholders involved in CA is dynamic in nature and needs to be continually updated (Figure 3). The organizations influencing promotion of CA in the region/Kenya have been classified into four categories of non-governmental organizations, public institutions, development partners and private sector (companies, associations, commercial farmers). Their influence and power are further presented by how far on the diagram they are from the CA centre as well as the size of the representative circle. The larger the circle the larger the perceived resource influence.Stakeholders with a glowing colour are assessed as having perceived as being potential to collaboration with others in promotion of CA in Kenya.The thematic areas of focus for most organizations in visited in the project sites, as reflected by the 21 organizations which responded shows prioritisation of extension and training (38% each).Research on CA is being undertaken by 14% of the sampled organizations while marketing and advocacy were of focus to only 5% of the responded (Figure 4). The study found out that from the respondents, 21% are practicing reduce tillage, while 40% uses soil cover (cover crops, mulch & Crop residue). Crop rotations is practiced by 17% of the respondents (Figure 5). Agroecology practices, implying organic conservation agriculture, is the least practiced (only 2% of the respondents). The reduced tillage practices were hand hoe dug planting basins, tractor ripping and subsoiling (chisel) or zai pits. According to the study, different approaches are used for promotion of the CA technology, the findings shows that farm or on-station field days and field demonstrations were the dominant approaches (19% each) followed closely by exhibitions/trade fairs (15%) and then workshops/meetings and media (including social media) at 13% each. Farmer exchange visits, and field study tours were also acknowledged as significantly important. Publications was the least popular, with only 4% of the respondents (Figure 6). The majority (81%) of the respondents, access CA mechanization services from hire service providers in regions with more than 0.5 ha. Only 25% of the responded owned machinery for use in their CA field operations. This is case majorly in Narok, Kakamega, Nakuru among other counties with large smallholder land holdings. The CA mechanization services in question here refers to the reduced tillage operations of jab planting, ripping, sub-soiling (chiselling) or direct/no-till seeding (Figure 7). From the findings, 23% identified maize as the main priority value chain under CA system, followed by beans (19%), vegetables/horticulture (13%) and livestock (10%). Millet, soya bean, sunflower, sweet potatoes and canola were the least prioritised (3%) (Figure 8).A probing question on the value chain support level by organizations, showed that 62% of the respondents support their priority value chains all the way from farm to markets. The major challenges identified (in order of importance) from the scoping study were unavailability or inaccessibility of CA appropriate machinery (19%) and rigidity of farmers to adopt new technologies/changes due to fixed mind sets (19%) (Figure 9), Limited resources for both technology promoters and farmers; Limited knowledge on the technology among the farmers and stakeholders; and Inadequate government support for CA/RA research and extension -government priorities were second at 14%.Other challenges identified were high farmers' expectations and the handouts-dependentsyndrome (12%), while land tenure systems (difficulty to practice CA in hired lands) was identified by 7%. A probe to establish what are the possible changes required by the organizations to enhance promotion an adoption of the technology captured the following suggestions:  Most of the organization need to adjust their programming to prioritize CA based programs that will deliver and enhance CA adoption  Organizations should design and implement more elaborate capacity building framework to support skilled workforce development on CA for both extension agents, farmers and organization's staff  Establish well-coordinated partnership on CA promotion to maximize service delivery by public and private sector in the sector  Dedicate more resources to promotion and practice of CA/RA technologies and practices by both public and private sector  Encourage long term research trials and adaptive research with on-farm demonstrations to enhance learning and experiences by all the stakeholders  Organizations to enhance their outreach or extension program to reach out to more beneficiaries Challenges/ Hindrances to adoption and scaling up of CA  Revise the strategic direction of the organizations to include and give CA more prominence  Set organization's achievable strategic goal, targets and promotion model that will collectively contribute to the country's set vision on CSA/CA  Enhance information packaging and dissemination through various channels to different stakeholders  Design and implement appropriate model to promote CA mechanization  Support supply chain system of CA machinery and equipment with evaluation aspects incorporated to adapt the machinery as required.  Carry out promotional events more frequently and provide feedback mechanisms to have beneficiaries' experiences shared.During the study, many farmers were interacted with (interviewed) and the general observation shows that most of these farmers in the different region practice some elements of conservation/ conservation agriculture and only a few have adopted the full package of practices consisting of the three principals: minimum soil disturbance, complete soil cover and crop rotations; and other good agronomics practices. Similarly, different stakeholders as illustrated in section 4.1 above promotes different technologies with some, leaning to one or two components of conservation agriculture only. Farmers usually adopt the most doable technology first and with time, others follow as more tangible benefits unfold. Sometimes depending on focus of the promoting organization. At some instance, if the promoting organization is lean towards minimum tillage technologies, you will find farmers only adopting such technologies and quantifying them as CA, which not the case and full benefits of CA will not be realized.Key entry points differ from one farmer to the other; to someone it might be increase soil moisture to curb moisture stress (drought), improved crop yields, to the others it might be improved soil fertility and reduced soil erosion, reduced labour and improved family food and incomes from diversification to cover crops (Figure 10).Notably, during the study, and particularly in Nakuru County, successful cases of smallholder farmers practicing CA technologies were experienced with significant improvement in their farm productivity and profitability. This demonstrate that with massive adoption of the technology by such smallholder farmers can lead to improved food and nutritional security in the region, enhanced income and national growth. Generally, the CA farmer admits that there was an increased crop yields (by practicing CA) as compared with conventional farmers which decrease with time. Besides, there was reduction on cost of production which enabled profitable farming system. For instance, Conventional farming in the region per hectare requires an estimated cost of production of about 220 USD and the yield is about 1.0 -1.8 tonnes per hectare with estimated value 180 USD. Thus, this is a negative enterprise. While the CA farm of the same size have an estimate cost of production of 181 USD and yields of 12.6 tonnes per hectare with estimate value of 720 USD hence CA farming can be a business venture. With the improvement of yields and farm productivity the farmer diversified to incorporate dairy cows, poultry and goats which later necessitated the establishment of biogas plant as a source of energy for cooking and lighting. This has greatly cut down on the firewood consumption and eliminated the expenses incurred in purchasing the firewood estimated to be 1.80 USD annually. With such significant improvement in her farm productivity and profitability, other neighbouring farmers have been influenced to adopt the CA technology.The farmer, together with other 5 women acquired jab planters and become service providers, providing jab planting services to CA farmers within their locality and beyond. They charged 38.25 USD/Ha within the neighbourhood, but the amount increased when outside the neighbourhood based on the distance. This has seen them get more than 200 USD in 3 weeks during the planting season. The working rate being one person planting 0.4 Ha per day.Through adoption of CA, the farmer's livelihood has improved. She attests that she is now able to pay school fees for her children, sufficiently feed the family, and have managed to acquire new family assets. The unique innovation in her farm is the intercropping of Boma Rhodes with Garden Peas and both the crops performed perfectly. Boma Rhodes supplements livestock feed and helps soil health while the peas supplements household nutrition and act as soil cover.As regard to challenges the farmer acknowledge that weeds become problematic at the initial stage of CA adoption and thus demand more labour. This however, changes with time. Cover crops taking time to establish and getting enough mulch or residues to cover the soil poses some challenges with the adoption of the technology. Other farmers' rigid mindset is a challenge for mass adoption and often discourages farmers adopting the technology.During the study it was observed that most of the interviewed farmers had some knowledge of RA/CA and majority adopting it partially. Several reasons were given for partial adoption and practice which majority (33%) indicating the unavailability of appropriate CA machinery, 17% is due to small land holdings, 8% citing lack of cover crops and inappropriate soil condition respectively. Out of 33% with no apparent reason, some were not aware of the technologies and thus could not practice (Figure 11).Notably, from the study, most common CA practices familiar to farmers were crop rotation which was practiced by over 42 % for various reasons beyond CA, and soil cover majorly mulching and crop residue retention practiced by over 62% including those who were not aware of CA technologies. Notably 15% of the interviewed farmers did not practice any soil cover, while 31% uses cover crops and 23% retained their crop residues in their plots (Figure 12). Besides, the minimum tillage practices applied by interviewed farmers included use of herbicides (27%) to control weeds pre-planting and post-planting and 20% practiced sub-soiling (commonly called chiseling) and ripping respectively. 13% use shallow weeding to control weeds in their crop farms (Figure 13). The majority of farmers obtained information on CA mainly from technical backstopping from private sector, NGOs and Government Extension Officers. About 28% of the respondents in the survey indicated that the main source of information on CA was from technical extension form private sector and NGOs with few acknowledging government extensions; 20% obtained the information from trainings and field days; with 20% getting information from farmer to farmer interactions; 12% receive CA information from media and 12% obtained information from farmer exchange visits (Figure 14).It was observed that hand hoe (33% for land preparation and 50% for planting) was the most commonly used tool in the surveyed area due to small land holding with about 25% of the respondents practicing tractor sub-soiling and tractor ripping respectively especially in areas with better land holdings for various reasons and 17% using hand ripper to prepare ripe lines (furrows). 30% used jab planter in planting and 20% used tractor planters.Knapsack sprayers were also mostly used for the application of herbicides by 27% of the respondents while 33% using hand hoe for weeding control. 7% only used tractor boom sprayer for herbicides and other chemical application. The rate of uptake of CA in Kenya just like with other countries in Africa, has been low due to a number of challenges such as fixed mindset among farmers and other stakeholders; inaccessibility of scale appropriate mechanical equipment and cover crop seeds; crop residue uses for livestock feed competing with soil cover needs; lack of capital investment; the difficulty of weed control particularly during the first two years; and land tenure issues. During the survey, the main challenges in adopting and practicing CA highlighted by farmers include inaccessibility of CA machinery, limited access to techniques of crop diversification (crop rotation and intercropping), shortage of soil cover materials and inadequate knowledge on the same, limited access to techniques of minim tillage and diverse understanding from the family members. Other constraints include free grazing of livestock in CA fields in some other areas, poor marketing systems for agricultural produce and lack of bylaws to restrict free grazing of livestock.Notably, about 33% of the respondents reported that the major constraint to adoption was limited access to CA implements, 17% reported limited access to techniques of crop diversification and lack of adequate soil cover materials respectively as their major constraint to adoption and practice of CA.Hand Ripper, 17%Tractor Ripper, 25%Tractor Sub-soiler, 25%Hand hoe, 50% Jabplanter, 30%Tractor Planter, 20% CA brings in a new concept which may be difficult to be comprehended easily by farmers and actors who have been practicing conventional tillage for many years as it contradicts much of conventional farming knowledge and farming traditions. Thus, more time is needed on the learning curve including trying and observing for tangible benefits in farmers' small plot before adoption. There are many actors who are promoting CA in the regions who sometimes act on individual basis with little interaction amongst them. The fragmented project approach in the promotion of conservation agriculture as practiced by many actors has little impact in its adoption in the region hence the move by some organization to established Kenya CA-Hub will significantly bring the needed coordination and synergies to promoted and scale up the technology. Significantly though, many organizations and farmers who are promoting and practice conservation agriculture have knowledge and acknowledge the benefits of the three pillars of CA when implemented concurrently.Accumulated positive experiences and scientific knowledge about Conservation Agriculture (CA) are leading to its rapid adoption world-wide. Farmers now apply CA on over 205 million hectares (15% of the word's annual cropland area) in over 100 countries across a diverse range of agro-ecological zones and farm sizes, in all continents but particularly in Africa, Asia and Europe. It has enhanced farm production and reduced costs while conserving and enhancing the natural resources of land, water, biodiversity and climate. This value proposition aligns well in the context of increasing input costs prices (fertiliser, energy/fuel and labour), and climate change challenges. Kenya records some 33,100 hectares under CA, the majority of which (63%) is under large scale commercial farming by an estimate 10 farmers. Smallholder cultivate an average of 0.5 ha while the large-scale commercial farmers have 400-1,600 ha. The CA landscape has a multitude of stakeholders comprised mainly of NGOs, not-for-profit organizations, national and international research organizations, national and county government programmes, farmers and farmer organizations. In the absence of a national strategy/programme for CA, the majority of the stakeholders are promoting CA, on project modes, intermittently depending on availability of funding, and usually allocating between 0.5% to 10% of annual budgets for CA. The exceptions are PAFID and ACT, which are allocating 60% and 100% of their (relatively smaller) funding to CA respectively.With 12 priority value chains identified, it is clear there are no systemic priorities in the target value chains. This is fundamental to ensure dedicated services (research, capacity building, marketing) are all infused to ensure there are no weak links in the value chain that can fail the forward or backward linkages. This is compounded by the statistic that 37% of the value chains are only supported at the production segment.Restrained access to mechanization has been identified as one of the critical constraints to adoption and scaling of CA. Furthermore, 75% of the respondents, depending on access to RA mechanization services from hire service providers. In a market situation where 95% of the land is cultivated using conventional tillage systems, getting CA machinery and equipment for hire is unconventional and a big challenge.The prioritized challenges of resistance of farmers to adopt new technologies/changes due to fixed mind sets and limited knowledge on the technology among the farmers and stakeholders point to the larger underlying problem of inadequate capacity, not only at the farmers' level, but at all levels, including extension, machinery suppliers, policy makers, etc. It is also a reflection of the weaknesses of approaches which need to change from training to co-innovation and harnessing marketing opportunities.A holistic programme approach (Value Chain) rather than fragmented projects approach as practiced by many actors is needed in combination with entrepreneurial CA service provision in agro-inputs and machinery services. Collaborative activities among the various actors promoting CA should be emphasized as more tangible results may be obtained through pooling of resources and expertise while avoiding duplication of efforts and sending different messages which sometimes may be conflicting. Hence the establishment of Kenya CA-Hub Network is important to enable the creation of common platforms for actors for sharing of information and knowledge on CA and partnering in delivering CA services to farmers.However, the Kenya CA Hub-Partnership needs to be established on the basis of public-private sector-civil societies partnerships (PPPP) model (Quadruple Helix Model) (Figure 17) which will ensure that collaborative activities that surround the promotion, implementation and practice of CA is fully and holistically addressed. Critical though the need to have CA hand tools, powered hand equipment, as well as conventional tractors and associated equipment, available for hire to individual farmers for all operations along the Agrifood value chain.In order to attain desired transformation of the agriculture sectors, the Counties in Kenya must adopt and mainstream CA AVC approach supported by wide spread adoption of SAM. The combination of the AVC approach and CA of the entire AVC can lead to accelerated attainment of inclusive agricultural transformation and sustained market responsive agricultural productivity, commercialization and competitiveness leading to the achievement of food and nutrition security, improved livelihoods, and other SDGs in Kenya.CA impacts targeted value chains differently. While field crops have been the largest beneficiary of CA, it must be noted that there is a unique role for CA in all value chains. The livestock or aquaculture value chains, for example, might look unobvious, however poised to benefit greatly from RA by producing dedicated commodities (feeds) sustainably while adding value to farmers' produce, and eventual effective utilization of by-products. Given the above considerations as well as the challenges outlined above there is an urgent need to increase investment to support mainstreaming and adoption of CA along entire AVCs. The increased and diversified investment by different actors should support, through CA, resilience, productivity and sustainability along AVCs.Research and development focusing on affordable and smaller agricultural machinery suitable for Kenya's local conditions should be an important component of agricultural technological innovation programs for the government and development partners. The R&D activities that aim to generate knowledge of the benefits of different types of mechanized technologies can be jointly conducted with researchers from other countries. Capacity building should be carried out at all levels of the value chain and strong linkages should be built among the various actors to ensure that they deliver better quality services in their respective specialty areas. Awareness creation and training on conservation agriculture and increased accessibility to financial resources for all value chain actors should be given special attention. As farmers become aware and knowledgeable and see tangible benefits, demand for conservation agriculture technologies and services will be created attracting the various actors in the value chain to provide the services. ","tokenCount":"6526"} \ No newline at end of file diff --git a/data/part_3/6391123914.json b/data/part_3/6391123914.json new file mode 100644 index 0000000000000000000000000000000000000000..e00034069c3e6028e572b79bfdb087a41fbbf1fe --- /dev/null +++ b/data/part_3/6391123914.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"96bd2ac0c194ce4229bdad90bd973e69","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/a4448d9f-b0c3-40e7-acdf-2ae080b82567/retrieve","id":"1995406139"},"keywords":[],"sieverID":"9c0626ca-4c8b-4f2f-8665-7d79189d8a02","pagecount":"99","content":"Para poder dar inicio con el acto de sustentación, se da lectura al expediente presentado por la interesada, encontrándose en orden, el Sr. Decano da la autorización para que pueda iniciar con la sustentación lo cual es hecho por la sustentante, debiendo regirse por el tiempo no mayor a cuarenta y cinco minutos, la sustentación inicia con el agradecimiento a la universidad, profesores, familiares y compañeros de estudio. Concluida con la sustentación de la tesis el Sr. Decano invita a los miembros del jurado con la finalidad de que puedan realizar sus preguntas o solicitar las aclaraciones que crean conveniente, la señorita sustentante da respuesta en forma clara. Terminada esta sección de preguntas, el Sr. Decano invita a la sustentante y público asistente para que puedan desocupar el ambiente con la finalidad de realizar las discusiones y efectuar la calificación respectiva, obteniendo el siguiente resultado:Caracterización molecular y análisis de la diversidad genética mediante el marcador molecular AFLP La provincia de Vilcashuamán por constituir un centro arqueológico inca posee diversidad de papas nativas que hasta la actualidad no fueron estudiadas, muchas de ellas corren riesgo de erosión genética por muchos factores pero principalmente por el desplazamiento por otros cultivos económicamente rentables; por lo tanto, es necesario realizar estudios de diversidad con la finalidad de preservar el germoplasma nativo y obtener un registro de la diversidad genética. Con el objetivo de evaluar la diversidad genética de 30 morfotipos de papas nativas de la provincia de Vilcashuamán; se colectó, seleccionó y sembró en invernadero. La extracción de ADN se realizó con la técnica CTAB modificado del CIP, 2001 (Centro Internacional de la Papa); la diversidad genética se evaluó mediante la técnica del marcador molecular AFLP (polimorfismo en la longitud de fragmentos amplificados) y el análisis estadístico se realizó mediante el programa NTSYS 2.1 O usando el coeficiente de Simple Matching. De 200 mg de tejido vegetal se obtuvo una concentración de ADN entre 300 a 500 ng/uL. Para la técnica del AFLP se probó 12 combinaciones de iniciadores, de las cuales se eligió dos combinaciones por ser más polimórficas e informativas (E13-M48 y E38-M49); los valores de PIC (índice de contenido polimórfico) fueron 0.45 y 0.40 para las combinaciones E38-M49 y E13-M48 respectivamente, recomendando el uso de la combinación que posee el valor más alto. En total se obtuvieron 68 bandas amplificadas de las cuales el 55.8% representan bandas polimórficas. La similitud genética entre los morfotipos de papas nativas, a un coeficiente de similitud de 0.6 se determinó 8 grupos, a un coeficiente de 1 no se detectó morfotipos duplicadas, lo que indica la alta variabilidad de los morfotipos estudiados en Vilcashuamán. Palabras clave: AFLP, papas nativas, polimorfismo, So/anum spp., Vilcashuamán.XV l.El Perú tiene más de 3,000 variedades de papa nativa, considerándose el país con mayor diversidad genética. En la región Ayacucho, la provincia de Vilcashuamán, posee una gran diversidad hasta ahora poco estudiada; Las comunidades alto andinas de esta provincia y en cualquier otra donde se cultivan las papas nativas, basan su seguridad alimentaria en este tubérculo, por tanto; constituyen un invaluable recurso que es conservado y mantenido por los campesinos andinos de generación en generación.Las papas nativas están adaptadas a condiciones ambientales especiales, encontrándolas entre 3300 a 4200 m.s.n.m., gran parte de las variedades no pueden ser sembradas en otros lugares fuera de los Andes peruanos debido a que requieren de particulares condiciones climáticas y agroecológicas. 4 A esta altitud muchas variedades de papas comerciales no prosperan, la fuerte radiación solar y los suelos orgánicos brindan condiciones naturales especiales para que las variedades se cultiven sin usar fertilizantes químicos; sin embargo, la biodiversidad de papas nativas se está perdiendo debido a la amenaza de muchos factores, tales como: La presencia de variedades mejoradas, el uso excesivo de agroquímicos y en general el cambio en los ecosistemas. No obstante, muchas de la variedades de papas nativas se han adaptado al estrés abiótico y han desarrollado resistencias a un gran número de plagas y enfermedades; por tanto, es indispensable su estudio y posteriormente la conservación de los morfotipos en la provincia de Vilcashuamán.El estudio de la diversidad de papas nativas usando caracterizaciones fenotípicas es mínimo, no todas las formas o caracteres pueden describir consistentemente las plantas; hay que elegir caracteres conocidos como descriptores, codificadores o marcadores morfológicos, muchos de estos caracteres morfológicos varían con las condiciones ambientales. El uso de técnicas moleculares como Polimorfismo en la Longitud de Fragmentos Amplificados (AFLP), fue elegido para este trabajo, debido a que no son influenciadas por el ambiente y da una información genotípica más completa, permitiéndonos obtener la identidad molecular del ADN de cada morfotipo de papa nativa; así mismo, nos permite evaluar el grado de diversidad genética, la existencia o no de morfotipos duplicados, la distancia o similitud genética, entre otros. Se decidió usar uso de este marcador molecular (AFLP) por su carácter codominante, permite el uso de pequeñas cantidades de ADN, proporcionan el más elevado contenido de información polimórfica y es una técnica sencilla y práctica, la cual presenta ventajas sobre otros marcadores como los RFLP's, RAPD's, SSR's o microsatélites, debido a que esta técnica permite evaluar un gran número de /oci a la vez, permitiendo un alta cobertura del genoma, sin requerir el conocimiento previo de la secuencia del ADN.a. Objetivo general:Evaluar la diversidad genética de So/anum sp \"papas nativas\" de la provincia de Vilcashuamán del Departamento de Ayacucho. b. Objetivos específicos:Estandarizar la técnica del AFLP en el laboratorio de Biología Celular y Molecular de la UNSCH.• Determinar la combinación de iniciadores más informativos para el análisis de la diversidad genética de papas nativas.• Determinar los grupos genéticos de papas nativas.Gonzales analizó la diversidad genética mediante la técnica del AFLP de 25 morfotipos de papas nativas del distrito de Chungui (provincia La Mar, Ayacucho-Perú) utilizando 3 combinaciones de iniciadores E38-M49, E35-M49 y E37-M50, con el cual obtuvo un total de 85 bandas de las tres combinaciones de iniciadores, de las cuales el 73.8% fueron polimórficas y siendo la E38-M50 con el mayor porcentaje de polimorfismo (79.4% ). Los valores de PIC fueron 0.30, 0.38 y 0.43 para las combinaciones respectivamente, de las que E37-M50 presenta el PIC más alto representándose como el más informativo para detectar la variabilidad genética. El coeficiente de similitud ••r•• para el análisis de agrupamiento, empleando el coeficiente de similitud Simple Matching, fue de 0.64 obteniéndose así 4 grupos los cuales son independientes de sus características morfológicas. El autor sugiere usar la combinación de iniciador E37 -M 50 para futuras investigaciones en papas nativas a nivel de análisis con AFLP. 1 Kim estudió la estimación de la diversidad genética de papas cultivadas ( Solanum tuberosum L.) usando marcadores moleculares AFLP, empleando 7 combinaciones de iniciadores para un total de 12 muestras, obtuvo 409 bandas polimórficas que representa el 88% del total de bandas, el número de bandas polimórficas fueron de 32 a 84 por combinación de iniciador, también en este trabajo el autor resalta que la técnica molecular AFLP puede tener un gran valor en la identificación y medida de la variación genética, pero debe usarse con cautela para estimar medidas reales de similitud genética entre dos genomas. La papa nativa es una planta alimenticia que procede de las culturas Pre -Incas e Incas, fruto del proceso de domesticación, selección y conservación realizada por estos antiguos habitantes, las cuales han llegado hasta nuestros días con las mismas formas y colores que conocieron los Incas y sus predecesores ya que la vienen cuidando hace 8000 años los agricultores alto andinos. Oriundas del altiplano andino; éstas crecen en los andes, las zonas de mayor biodiversidad y producción de papas nativas se ubican entre 3000-4200 msnm en los departamentos de la sierra: Junín, Huancavelica, Apurímac, Huánuco, Puno, Cusco, Ayacucho, Ancash y Cajamarca. Su buena tolerancia al frío se relaciona con la formación del doble parénquima empalizado y con la producción de hormonas como el ácido absícico (ABA) 6 • 7 Considerándose el 25% del área total del cultivo de papas. Sus requerimientos de suelos son muy específicos y son menos susceptibles a enfermedades como la roña, carbón, verruga, rancha y a insectos como la polilla y el gorgojo. andígena) introducidos por los españoles, por lo que tenían una base genética muy reducida. 9 De acuerdo a la investigación realizada en la Universidad de Wisconsin, y cuyos resultados fueron publicados en la revista de la Academia Estadounidense de Ciencia, la conclusión es que la papa es oriunda de Perú, analizando la composición genética de 365 variedades locales, sus supuestos progenitores y grupos asociados usando la técnica molecular AFLP, demostró que hubo un punto de origen único de las papas al norte del lago Titicaca, en el sur peruano, desafiando de esa menare teorías previas sobre orígenes múltiples. 9 • 10 Hoy se sabe que durante el Pleistoceno (Edad del Hielo), solo había extensos glaciares por encima de los 3 000 m.s.n.m. La planta de la •papa es una herbácea, dicotiledónea, provista de un sistema aéreo y otro subterráneo de naturaleza rizomatosa del cual se originan los tubérculos. Son compuestas, imparpinnadas y con foliolos primarios, secundarios y hasta terciarios; las hojas constan de nueve o más foliolos cuyo tamaño aumenta conforme se van alejando del nudo de inserción. 11 La nerviación de las hojas es reticulada, con una densidad mayor en los nervios y en los bordes del limbo. Las hojas están compuestas por pequeños pelos de diversas tipos los cuales también se encuentran presenten en las demás partes de la planta. Son fibrosas, muy ramificadas, finas y largas. Las raíces tienen un débil poder de penetración y sólo adquieren un buen desarrollo en un suelo mullido. 11Son los órganos comestibles de la patata. Están formados por tejido parenquimático, donde se acumulan las reservas de almidón. En las axilas del tubérculo se sitúan las yemas de crecimiento llamadas \"ojos\", dispuestas en espiral sobre la superficie del tubérculo. 11Es una baya pequeña, oval y carnosa de color verde de 1 a 3 cm de diámetro, en cuyo interior se encuentran las semillas sexuales. En unos casos el color de la vaya varia, presentándose de colores verde, amarillo, café e incluso violeta. El promedio de semillas por fruto es de 200 a 300. Las semillas son planas ovaladas y pequeñas. La conservación de esta diversidad se debe principalmente a la tradición cultural de quienes la cultivan y a una estrategia de sobrevivencia de las propias familias. 6 No obstante a lo anterior, existen riesgos que atentan contra su permanencia, uno de ellos, la erosión genética provocada por la introducción de variedades mejoradas de papa a partir de la década de 1950. Este hecho ha modificado la variedad existente en las zonas medias y bajas de los valles andinos, dado el interés del mercado por homogenizar la producción actual. A pesar de que estas variedades modernas han sido desarrolladas como una estrategia de adaptación genética a los nuevos escenarios de la relación producción -mercado, y con la finalidad de resistir a factores bióticos y abióticos, algunos autores afirman que estas no sólo incrementan la vulnerabilidad de las familias ante los cambios climáticos, plagas y enfermedades sino también el alto potencial adaptativo. La diversidad genética se define como: \"la variedad de diferentes genes en una población reproductiva, dentro de una especie o dentro de todas las especies encontradas en un área dada\". El término diversidad genética es el número total de características genéticas dentro de cada especie, se refiere a la variación en la composición de los genes que posee una especie (poo/). 17 Esta diversidad se reduce cuando hay \"cuellos de botella\", es decir, cuando una población disminuye substancialmente y quedan pocos individuos. A mayor diversidad genética, las especies tienen mayores probabilidades de sobrevivir a cambios en el ambiente. 18 Las especies con poca diversidad genética tienen mayor riesgo frente a esos cambios. En general, cuando el tamaño de las poblaciones se reduce, aumenta la reproducción entre organismos emparentados (consanguinidad) y hay una reducción de la diversidad genética. 20 • 21El gen es la unidad de almacenamiento de información genética y de herencia.Son secuencias de nucleótidos en un segmento específico, también llamado locus, de la molécula de ADN (o ARN en el caso de algunos virus). Esta secuencia de nucleótidos (gen) codifica una proteína, caracterizada por su secuencia de aminoácidos, que puede expresarse en diferentes propiedades bioquímicas, que pueden provocar diferencias morfológicas, fisiológicas o de conducta de lo11 s individuos. La constitución genética o genoma presente en el locus del cromosoma es lo que se llama genotipo, y está representado por el conjunto o por la totalidad de la información genética que posee un individuo. 20El polimorfismo genético hace referencia a la existencia en una población de múltiples alelas de un gen. Es decir es una variación en la secuencia de un lugar determinado del ADN entre los individuos de una población. Aquellos polimorfismos que afectan a la secuencia codificante o reguladora y que producen cambios importantes en la estructura de la proteína o en el mecanismo de regulación de la expresión, pueden traducirse en diferentes fenotipos (por ejemplo, el color de tubérculo). Un polimorfismo puede consistir en la sustitución de una simple base nitrogenada o puede ser más complicado (por ejemplo, la repetición de una secuencia determinada de ADN). Para que verdaderamente pueda considerarse un polimorfismo, la variación debe aparecer en al menos el 1% de la población. 21 • 22 Un uso importante de los polimorfismos es la creación de perfiles genéticos. El análisis de los polimorfismos genéticos presentes en los individuos de una población permite establecer un patrón genético individual para cada uno de ellos, una huella genética individual, que los caracteriza. Un perfil genético muestra el genotipo (polimorfismo) presente en un individuo para un determinado número de marcadores genéticos (diferentes zonas del genoma en las que están presentes estos polimorfismos). Cuanto mayor sea el número de marcadores utilizados, menor será la probabilidad de encontrar dos individuos con el mismo patrón de polimorfismos para dichos marcadores. • Adición: cuando se añade un nucleótido a la información.• Sustitución: cuando se sustituyen nucleótidos por otros b) Mutaciones cromosómicas; son aquellas que ocurren en los cromosomas y se dan en el proceso de división celular. Estas mutaciones pueden ser por:• Delección o pérdida de más de un segmento del cromosoma.• Traslocación; intercambio del material genético de un segmento del cromosoma a otro.• Inversión; alteración de la secuencia de los genes de los cromosomas.• Duplicación, es cuando se repite una parte del cromosoma.Es el proceso que ocurre cuando los genes de cada locus del cromosoma se entrecruza para dar origen a nuevas combinaciones genéticas proceso que ocurre durante la reproducción de gametos. cada cromosoma de un par homologo se mueve independiente durante la meiosis. Por ellos, en el caso de los humanos los 23 pares de cromosomas que tienen pueden reproducir 8.4 millones de combinaciones de genes, todas diferentes. También durante la meiosis ocurre otro proceso, el cruzamiento. El cruzamiento aumenta aún más la cantidad de genotipos distintos que pueden aparecer en la descendencia. Cuando los alelos se recombinan durante la reproducción sexual, pueden reproducir fenotipos muy diferentes. Por ellos, la reproducción sexual es una fuente importante de variación en muchas poblaciones. 20Existen varios factores que producen efectos en la recombinación que son:Condiciones ambientales • factores génicosEste fenómeno origina cambios en la población porque permite la introducción de nuevos genes. 22 Algunas poblaciones han visto alterada su frecuencia genética debido al entrecruzamiento de genes entre una población cercana a otra, porque la población puede recibir alelos de una población inmigrante que presente alelos diferentes. La variación en la composición de los genes que posee una especie que finalmente culminará en particulares caracteres fenotípicos, tanto dentro de una población como entre sus poblaciones constituye la diversidad genética o variabilidad genética y son dos los procesos que afectan la variabilidad genética: las mutaciones y combinación de genes que resulta de la reproducción sexual, esto nos permite explicar por qué los organismos aunque sean de la misma especie, no son iguales entre sí. 21 La variabilidad es la materia prima de la evolución, que en términos genéticos es cualquier cambio en la frecuencia relativa de los aleles de una población, por ejemplo si la frecuencia relativa del alelo N en la población de ratones cambiara con el tiempo al 30 por ciento, diríamos que la población está evolucionando; he allí su importancia. Para que la selección natural pueda actuar sobre un carácter, debe haber algo que seleccionar, es decir, varios aleles para el gen que codifica ese carácter. En general, cuando el tamaño de las poblaciones se reduce, aumenta la reproducción entre organismos emparentados (consanguinidad) y hay una reducción de la variabilidad genética. Además, cuanta más variación haya, más evolución hay. Esto implica que cuanta más variabilidad genética exista en una población, mayor será el ritmo de la evolución; por tanto las especies tienen mayores probabilidades de sobrevivir a cambios en el ambiente. 20 • 21 La diversidad genética se puede medir utilizando la diversidad de genes, la heterocigocidad, o el número de aleles por locus (polimorfismo) 21Las enzimas de restricción (también llamadas endonucleasas de restricción) reconocen y efectúan cortes en secuencias específicas de nucleótidos en el ADN; es decir, en los sitios de restricción. En un cromosoma, una enzima de restricción puede producir un gran número de cortes en los lugares donde reconozca la secuencia específica para hacerlo. Los patrones de distancia, longitud y disposición de los sitios de restricción son diferentes en cada individuo de una población debido a las diferencias en el ADN, por lo que se dice que la población es polimórfica para estos fragmentos de restricción. 23 • 24 Es imposible examinar cada gen en cada individuo de una especie para determinar la variabilidad genética de la especie. 17 Estos sitios de restricción son utilizados como puntos de marca o anclaje (marcadores), al identificar estos sitios de restricción o \"marcas\" en los individuos de una misma especie es posible estimar su variabilidad genética. Es una técnica que permite producir in vitre muchas copias de uno o más fragmentos específicos de un ADN de una manera fácil y rápida. 28 En 1983 Kary Mullis de Cetus Corporation concibió una nueva técnica que ahora se emplea mucho para amplificar fragmentos específicos de ADN sin la necesidad de células bacterianas. La técnica emplea una polimerasa de ADN termoestable llamada polimerasa Taq, que al principio se aisló de Thermus aquaticus, una bacteria que vive en manantiales calientes a temperaturas mayores de 90°C. 33 Esta técnica consiste en lo siguiente:• La mezcla de reacción contiene la secuencia de ADN que se quiere amplificar, dos oligonucleótidos sintéticos (P1 y P2) que servirán como cebadores o iniciadores, una ADN polimerasa termoestable (Taq) y los cuatro desoxirribonucleótidos trifosfato dATP, dGTP, dCTP y dTTP. 33 • La mezcla de reacción se somete a ciclos sucesivos, cada uno correspondiente a una fase de desnaturalización, una de hibridación y una de elongación. Durante la desnaturalización, que se realiza por calentamiento de la mezcla a 95 °C, se separan las dos cadenas del ADN molde. 33 • Durante •la hibridación, la temperatura de incubación se reduce para permitir el apareamiento de las bases de ambos cebadores en el sitio donde encuentran una secuencia complementaria. 33 BIBLIOTECA E INFORMACtON CUlTURAL lU.N.S.200 nm. 35 • Existen diferentes tipos de agarosa que se clasifican en función de la temperatura a la que se disuelven y solidifican. Las agarosas estándar se disuelven en el buffer a una temperatura de 90-95°C y solidifican a 35-45°C. Las agarosas de bajo punto de fusión se disuelven a unos 65°C y solidifican a 30-350C. Existen además otros tipos, como agarosas de alta fuerza de gel o las de baja viscosidad, que permiten una mejor separación y un rango inferior del tamaño de las moléculas a separar. La concentración (p/v) de la agarosa es un parámetro de gran importancia pues determina el rango de tamaños en los que obtenemos una buena separación de los fragmentos de ADN. Es por eso que para correr ADN genómico se usa una concentración del 1% ideal para 250pb -12kb y al 0.5% 700pb-25kb. 34 -36Los geles de poliacrilamida actúan al igual que la agarosa a modo de tamiz molecular retardando el movimiento de macromoléculas grandes mientras que permiten a moléculas más pequeñas moverse libremente, potenciando de esta forma la separación. El entramado de los geles de poliacrilamida se genera mediante la polimerización, a través de radicales libres, de monómeros de acrilamida en presencia de pequeñas cantidades de bis-acrilamida (N,N,N',N'metilen-bis-acrilamida). Se forman enlaces cruzados entre los dos polímeros de acrilamida, de manera que se generan geles con tamaño de poro determinado tanto por la concentración total (% T) como por la concentración relativa de acrilamida, y de bisacrilamida. El tamaño del poro puede ser ajustado para optimizar la separación de la muestra de interés. La reacción de polimerización se inicia por un sistema redox de catálisis, depende de la concentración de APS y TEMED. El TEMED cataliza la formación de radicales libres que dirigen la reacción a partir del ión persulfato que se añade en forma de APS y que actúa como iniciador .. Aumentando su contenido se disminuye la longitud media de la cadena de polímero y se incrementa la turbidez del gel, al tiempo que disminuye su elasticidad. Por contra, disminuyendo la cantidad de iniciadores se obtiene el efecto inverso. Se debe, por tanto, utilizar la menor concentración posible de catalizadores que permita la polimerización en un tiempo óptimo. Se utiliza APS y TEMED en concentraciones equimolares del orden de 1 a 1 O mM. 26 Los geles de poliacrilamida no desnaturalizante se usan para separar fragmentos de ADN monocatenario, y se utilizan en técnicas como la secuenciación, o extensión de primer, mientras que los no desnaturalizantes se usan para separar ADN bicatenario. 35 • 36 La principal ventaja de los geles de acrilamida sobre los de agarosa es su mayor capacidad de resolución, y además, la posibilidad de cargar una mayor cantidad de ADN, mientras que una de las desventajas es la limitación en el tamaño de ADN a separar, alrededor de 500-600 pb. proteínas pueden inhibir la entrada de ADN en el gel de electroforesis. 37 Un procedimiento que presenta algunas modificaciones para resolver problemas específicos de especies con gran contenido de metabolitos secundarios es el método que utiliza un detergente catiónico CTAB (cetyl trimethyl ammonium bomide) de carga positiva, muy adecuado para el aislamiento de ADN de alto peso molecular, el cual se une fuertemente al ADN. 37 a) Lisis de membranas La primera etapa de la extracción del ADN es la lisis de la membrana celular y nuclear, las células vegetales poseen una membrana plasmática y pared celular seguida de una membrana nuclear que tienen que ser removidos, el principal constituyente son los lípidos y proteínas unidas por interacciones no covalentes Una vez que se han roto las membranas de la célula y de los orgánulos (como los que se encuentran alrededor de las mitocondrias y los cloroplastos), se purifica el ADN. 39 A continuación se muestra detalladamente el mecanismo de la lisis de membranas en las figuras: Figura 4. Representación simplificada de la estructura de las membranas celulares. 4 Tal como muestra la figura 4, las moléculas lipídicas están ordenadas en una doble capa continua, las moléculas proteínicas están \"disueltas\". Las moléculas lipídicas están formadas por extremos hidrófilos, denominados \"cabezas\" y extremos hidrófobos, denominados \"colas\". Con este método el tejido vegetal se tritura con el tampón de extracción, que contiene EDTA, Tris-HCI Ph 8.0 y CTAB, provocando la lisis de la membrana. Dado que la composición de los lípidos y del detergente es similar, el componente de CT AB del tampón de extracción captura los lípidos que integran la membrana celular y nuclear. 39 42 DeterQente Figura 5: Ilustración del mecanismo de solubilización de los lípidos con un detergente. El cálculo de la concentración de ADN se realiza mediante la observación de la fotografía del gel en presencia de luz UV o de la imagen digitalizada comparada con la primera banda del marcador de peso molecular conocido (ADN del fago Lambda \"A cortado con la enzima Pst 1) cuyo tamaño es de 14 800pb., cargando 1 O uL de muestra, la intensidad corresponde a una concentración de 280 ng/1JL.43Esta técnica fue desarrollada en 1993 por la compañía privada Keygene, poseedora de la patente. 23 El desarrollo de la biología molecular ha permitido obtener mejores estimaciones de la diversidad genética de una población determinada, debido a que el factor de error generado por el ambiente no existe ya que la información está tomada directamente del genoma de las plantas. 60 Además , se reconocen las diferencias genéticas entre individuos, al obtener un \"perfil molecular\" o \"fingerprinting\" característico para cada variedad e independientemente de las condiciones de crecimiento de las plantas. 61 Este marcador molecular combina los métodos de PCR y análisis de fragmentos de restricción (RFLP) 23 • 28 ; con el fin de detectar polimorfismos debidos a modificaciones en la secuencia de ADN que comprende los sitios de corte de las enzimas de restricción, creando un patrón diferente en número y tamaño de bandas generadas; sin embargo, sólo detecta presencia o ausencia de los fragmentos de restricción entre individuos de una misma especie determinando así la diversidad genética. 23 • 44 Las bandas observadas en los geles de AFLP son clasificadas como presencia o usencia de cada individuo y el análisis se desarrolla como un sistema dominante recesivo. Esta técnica detecta múltiples loci polimórficos y es útil para generar huellas genéticas y mapeo; también se ha utilizado para la caracterización de germoplasma, estudios filogenéticos en plantas, bacterias, hongos y en estudios de genética de poblaciones. 32 El análisis de marcadores AFLP consta principalmente de cuatro etapas (Figura• Digestión: El ADN genómico es digerido con dos enzimas de restricción;EcoRI y Msel, la primera corta secuencias precisas de 6 pb (corte raro: G/ATIC)) y la segunda corta secuencias de 4 pb (corte frecuente: T/TAA) 23 •• Ligación: Los extremos de los fragmentos de ADN digeridos no son adecuados para actuar como iniciadores 21 ; por lo que, se tienen que adherir adaptadores específicos (secuencia conocida) de doble cadena a los fragmentos de restricción y de esta manera, se provee una secuencia conocida para poder ser amplificada mediante PCR; para ello, se requiere el uso de ligasas que facilitan la unión de los estremos de los fragmentos y las secuencias de los adaptadores. • Amplificación selectiva: Se diseñan iniciadores selectivos para discriminar entre todos los fragmentos amplificados y restringir el nivel de polimorfismo, de tal manera que incorporen el adaptador de secuencia conocida más tres pares de bases (dejando por fuera alguna de las cuatro posibles bases: A, G, C o T). La amplificación mediante PCR, denominada selectiva, sólo ocurrirá en aquellos fragmentos en donde los iniciadores encuentren las secuencias complementarias, tanto para el adaptador como para los pares de bases adicionales. En este caso, los pares de bases adicionados actúan como nucleótidos selectivos. 23 • 27 Los AFLP pueden producir patrones de complejidad variable de acuerdo al tipo de enzimas de restricción y a la longitud de los cebadores utilizados en la PCR, y segregan de forma mendeliana. El polimorfismo que se observa resulta de mutaciones puntuales, inversiones, dilecciones o inserciones, las cuales pueden llevar a la pérdida o creación de un sitio de restricción y/o a una alteración de la secuencia reconocida por los nucleótidos arbitrarios en los extremos 3' de los iniciadores; sin embargo, la dominancia de los AFLP no permite la identificación de heterocigotes. 23 El análisis de fragmentos amplificados, la cual revelará los polimorfismos, se realiza corriendo los productos amplificados en geles denaturantes de poliacrilamida seguida de una tinción con nitrato de plata; este proceso de tinción es de suma importancia; por tanto, es indispensable la correcta aplicación y adaptación a las condiciones de laboratorio. Adaptador ecoRICort.e de Msel Corte de EcoRIAdaptador EcoRI 1 1 1 1 11 1 1 11AA TTG e l t i ! J ! i i i i l i i GAATTG CTTAAC . t l t l l l ! l l l (e} Amplificacion selectiva (una de las combinaciones de cebadores se muestra) Iniciador 1 Msele t. T r .:!L.LA. El este estudio el carácter puede definirse como cualquier propiedad que varía en las OTUs (morfotipos) en estudio. Los posibles valores que ese carácter pueda presentar se los considera sus estados. 46 Cuando se incluyen marcadores moleculares como el AFLP que identifican porciones del ADN de los individuos, las bandas observadas constituyen los caracteres y son clasificadas como presencia o ausencia (estados) que son registradas en una matriz para ser analizados con programas estadísticos. 49 • 51 Para las relaciones genealógicas la similitud en el ADN es la mejor evidencia de semejanza filogenético; por tanto, la clasificación biológica es más real. 5 1Los caracteres taxonómicos forman parte del universo denominado \"datos científicos\" y responden a las exigencias de éste. El científico observa hechos y los registra en datos. Los datos son representaciones simbólicas de los eventos y/o estados y se obtienen por la observación. 49 Para tratar estadísticamente los resultados de un estudio de caracterización molecular, los caracteres deben ser correctamente codificados desde el punto de vista numérico. Cuanto mayor sea la similitud entre los OTUs menor será la distancia genética.Existen diferentes tipos de coeficientes basados en fundamentos matemáticos Para considerar algunos criterios en la selección de los coeficientes de similitud se tienen que tener en cuenta la concepción del mismo. Dos morfotipos se consideran más asociadas cuando comparten tantos \"unos\" como \"ceros\". Puede usarse con datos de marcadores dominantes (RAPO y AFLP), por tanto las ausencias podrían corresponder a recesivos homocigóticosY 2.7.5.8.Con los valores de similitud calculados en el paso anterior se contruye una matriz simétrica OTU por OTU (es de tipo diagonal). En ocasiones en vez de matrices de similitud se calculan las matrices de distancia entre todos los pares posibles de OTUs. 45 • 47 2.7.5.9.La conformación de grupos se obtienen a partir de la matriz de similitud por medio de agrupamiento de pares no pesados usando medias aritméticas (UPGMA) se obtiene la estructura taxonómica de grupos, representado por medio de un fenograma. El método más utilizado para el cálculo de la similitud entre la OTU candidato a incorporarse y el grupo o núcleo al que se incorpora es el UPGMA \"Unweigthed Pair-Group Methed Using Aritmetic Averages\" o media aritmética no ponderada 43 • Según este método las OTUs se incorporan a grupos o núcleos ya formados, teniendo en cuenta que el valor de similitud será el promedio de los valores de similitud entre los pares posibles de OTUs provenientes una de cada grupo o núcleo. 45 • 49 El procedimiento a seguir en un análisis de agrupamiento es el siguiente:• Examen de la matriz de similitud para localizar el valor de similitud más alto, lo conduce a la formación del primer núcleo (conjunto formado por dos O TUs). 49 • Se busca el próximo valor de mayor similitud, lo que puede suponer la formación de nuevos núcleos, incorporación de nueva OTU a un núcleo, con lo que se originaría un grupo (conjunto formado por más de dos OTU), fusión de núcleos existentes. 49 • Se repite la segunda etapa hasta agotar las OTUs. El resultado final es la obtención de un dendrograma. 49La estructura taxonómica obtenida dé la matriz de similitud con las técnicas de análisis de agrupamientos puede representarse gráficamente de varias formas, pero la más utilizada es el dendrograma. 49 El dendrograma es un diagrama arborescente que muestra la relación en grado de similitud entre dos o más OTUs. 49Mide la concordancia entre dos matrices, la de los valores de similitud mostrados en el fenograma y la de la similitud original. 54 Si se examina con atención las técnicas de construcción de un dendrograma, se comprobará que es imposible que el dendrograma sea un reflejo exacto de la matriz de similitud. Algunas de las relaciones de similitud serán necesariamente distorsionadas al realizar una representación bidimensional. 5 3 • 54 Se han propuesto varias técnicas para medir el grado en el que el dendrograma representa los valores de la matriz de similitud. La técnica más conocida es la del coeficiente de correlación cofenética (r) establecido por Sokal y Rohlf (1962).El cual consiste en construir una nueva matriz de similitud denominada \"matriz cofenética\" 26 • El coeficiente de correlación cofenética es una medida de la distorsión interna de la técnica, pero no una evaluación de la clasificación que se construirá a partir de la clasificación que se construirá a partir del dendograma. 53 -55Los valores de la correlación cofenética pueden interpretarse de la siguiente manera:0.9 S r : muy buena correspondencia 0.8 S r > 0.9 : buena correspondencia 0.7 S r > 0. (Protocolo descrito en el anexo 5)La técnica de AFLP se realizó según el protocolo adaptado por Julio Solis y usado en el CIP (manual de protocolos de biología molecular del Instituto de Biotecnología: IBT) como se describe en el anexo 6.Esta metodología constó de 4 pasos importantes según el procedimiento desarrollado por Vos (1995): Digestión, ligación, pre-amplificación y amplificación selectiva. 23Para la digestión se preparó una solución conteniendo ADN genómico, agua libre de nucleasas, buffer de reacción 1 OX, albumina de suero bovino (BSA}, enzimas Mse 1 y Eco Rl (ver anexo 6)Posteriormente la reacción se incubó a 37oc toda la noche; luego, las muestras se incubaron a 65°C por 15 minutos obteniéndose ADN digerido, con el fin de detener la reacción, las muestras fueron colocadas en hielo. Se verificó el proceso de digestión tomando 5 !JI de la muestra en un gel de agarosa al 1 %, donde se observó un arrastre electroforético de color tenue a lo largo de la corrida.A los fragmentos producidos después de la digestión del ADN se agregaron componentes del master mix (MMX) para llevar a cabo la ligación de los adaptadores complementarios a los cortes de cada de las enzimas de restricción. Para la cual se preparó una solución conteniendo ADN digerido, T 4ADN ligasa, buffer de reacción, adaptador Mse 1, adaptador Eco Rl, y agua destilada libre de nucleasas, posteriormente la solución se incubo a temperatura ambiente (20°C} over night. El ADN digerido y ligado se almacenó a -20°C, para posteriormente realizar la pre-amplificación. Finalizado este procedimiento, se realizó una dilución 1:5 de la mezcla digestión/ligación con agua mili Q, tomando 5 !JI y 25 !JI respectivamente (ver anexo 6)Se preparó el master mix (MMx) en tubos eppendorf de 1 ml con los componentes mencionados en el anexo 6 (ver página 88), manteniendo cada componente sobre hielo para mantener la estabilidad de los mismos. A 20 1-11 del MMx dispensados en placas de policarbonato PCR de 96 pocillos, se adicionó 5 IJI de ADN ligado/diluido. La reacción de pre-amplificación de PCR se realizó en el termociclador, el cual se programó bajo las condiciones de temperatura y tiempo que se muestra a continuación. La PCR se realizó en el termociclador el cual se programó con las condiciones de temperatura y tiempo que se muestra a continuación. Se agregó a 1 O IJL de producto amplificado 5 IJL de tampón de carga OyE para luego desnaturalizarla a 95°C por 5 min, una vez denaturadas se guardó en la congeladora hasta su uso. Se preparó los vidrios con las soluciones adherente (vidrio grande) y repelente (vidrio pequeño); una vez seca se procedió a armar el sistema y se sujetó con ganchos de metal que ejercen la misma presión en los laterales. Se realizó la mezcla de poliacrilamida al 6% con TEMED y persulfato de amonio para su polimerización, de inmediato se vertió en el sistema, se colocó el peine adecuado y se dejó polimerizar por 40 m in. Se colocó el sistema con el gel polimerizado en la cámara de electroforesis vertical y se pre -corrió por dos horas a 280 V y 120 mA. Transcurrido el tiempo se limpió los pocillos del exceso de urea y se cargó 5 IJL de cada muestra y 3 IJL de /adder 1 O pb en el pocillo del centro y se corrió a 280 V y 100 mA por toda la noche (18 h).La visualización de los fragmentos de ADN amplificados se realizó a través de la tinción y revelado de los geles de poliacrilamida en nitrato de plata. Realizando la fijación, tinción, lavado, revelado y secado del gel (ver anexo 8).Se leyeron las bandas con mejor resolución y se enumeraron consecutivamente empezando desde el primer individuo del primer carril. Una vez hecha la lectura de las bandas, cada gel fue fotografiado para almacenar su patrón de bandas.IV.Figura 8. Electroforesis en gel de agarosa al 1 %, mostrando la calidad y concentración de ADN extraído de 30 morfotipos de papas nativas de la provincia de Vilcashuamán, Ayacucho. Imagen obtenida en el Laboratorio del Centro de Investigación de Biología Molecular y Bioinformática-UNSCH. Ayacucho, 2014 Figura 9. Diluciones de las muestras de ADN a una concentración de 50 ng/ul digerido con la enzima Pst l. Imagen obtenida del fotodocumentador Chemi Doc (810-RAD), Laboratorio de Biología Molecular UNALM-Lima-Perú, 2014Figura 10. Digestión de las 30 muestras de ADN en una corrida electroforética en gel de agarosa al 1% comparado con el marcador Lambda (A) digerido con la enzima Pst1, fragmentos correspondientes a un tamaño de 240 pb aproximadamente. Imagen obtenida en el Laboratorio del Centro de Investigación de Biología Molecular y Bioinformática-UNSCH-Ayacucho, 2014. La técnica del AFLP es sencilla pero es indispensable adecuarlas a las condiciones de laboratorio. Es conveniente que el ADN se encuentre lo más limpio y puro posible, libre de ARN para que no interfiera en Jos tratamientos queEn la figura 8 se muestra la optimización de la dilución a una concentración de 50 ng/IJL, seguidamente se realizó la digestión del ADN incubándose 1 O !JL de ADN (500 ng ADN genómico) con enzimas de restricción durante 12 horas a 3rC y se corroboró mediante un corrido electroforético obteniendo un barrido equivalente a la primera banda del marcador lambda, cuyo peso molecular es aproximadamente 280 pb, como se muestra en la figura 9, resultados que coinciden con los trabajos realizados por Gonzales 1 y Gamboa Para evaluar la pre -amplificación y amplificación selectiva mediante la PCR, los estudios anteriores descritos por Gonzales 1 y Gamboa 3 no incluyeron durante su preparación del MMx la bovina seroalbumina (BSA). Para el correcto funcionamiento de la enzima Taq Polimerasa, la solución amortiguadora se emplea en una concentración de diez veces, y por lo general incluye Tris-HCI (pH=8.4 a temperatura ambiente), KCI y gelatina, componentes que se encuentra en el Buffer 1 OX, pero para un buen PCR también es recomendable el uso de adyuvantes, los cuales en la práctica aumentan la especificidad y fidelidad de la reacción; tales como, bovina seroalbumina (BSA), añadido para disminuir la estructura secundaria del ADN, entre otros. 67 Para obtener mejores resultados en determinación del polimorfismo, es necesario considerar dos pasos imprescindibles: Dilución de digestión-ligación en una proporción 1 : 5 y dilución del producto de la pre amplificación en una proporción de 1 :3, aunque otros autores señalan la dilución 1:1 O como lo describe Fory4; discrepando en este paso no considerado por Gonzales 1 y Gamboa 3 , pues no consideran este procedimiento por lo que no se logró ver bandas claras en un principio siguiendo sus protocolos; sin embargo, Hernando 5 considera una dilución de la pre amplificación de 1:1 O y Fory 4 una dilución de 1 :50, determinando que eso influyó para obtener un buen número de bandas. El ajuste en la dilución del producto de la pre -amplificación puede realizarse de 1 a 50 veces, dependiendo de la intensidad de las bandas, lo que permite obtener mejor resolución en los geles 23 • En el ADN polimerasa se produce la unión simultánea de la enzima con dos sustratos, es capaz de incorporar un nucleótido so (sustrato 1) a una hebra de ADN (sustrato 2}, razón por la cual suelen presentar una etapa limitante que determina la velocidad final de la reacción. El usar altas concentraciones de pre -amplificación, interfieren en el polimorfismo resultante, ya que algunas bandas observadas podrían no ser fragmentos de ADN amplificados selectivamente; sino, las resultantes de la pre -amplificación.La polimerización del poliacrilamida ocurre por reacción de la acrilamida y bisacrilamida con el APS (Persulfato de amonio) al 1 O % y el TEMED Gonzales 1 y Gamboa 3 , la combinación de iniciador más polimórfica es E13-M49por la que se recomienda su uso; se probaron doce combinaciones de iniciadores, incluyendo las que fueron usadas por Gonzales1, Gamboa 3 , Kim 2 y el CIP (Centro Internacional de la Papa) y cuyas secuencias de bases nitrogenadas se describen en la tabla 9. La combinación E37-M50 (Gonzales1, Fory4 y Kim 2 ) no es polimórfica para este estudio, en contraste con la combinación E38-M49 (Gamboa 3 ) que sí es polimórfica; sin embargo, la combinación E13-M48 presenta mayor grado de polimorfismo que el resto y por tanto más informativa que la combinación de iniciadores E38-M49. En un estudio para establecer el número óptimo de cebadores en los marcadores AFLP, una sola combinación de cebadores reveló suficiente información para caracterizar cinco genotipos de papa y puntualizaron que el número de marcadores monomórficos aumentó al incrementar las combinaciones y el número de genotipos analizados. 4 Sin embargo, en nuestro estudio se usó las dos combinaciones antes mencionadas generando 68 bandas polimórficas.Otros estudios con especies vegetales, mencionan la existencia de una relación entre el contenido de las bases GC en los iniciadores selectivos y el polimorfismo generado por dichas combinaciones. 57 En este estudio no se observó dicha correlación a pesar que el contenido de GC variaba. En genomas de gran tamaño como la soya por ejemplo, se justifica esta relación dado que contienen gran cantidad de secuencias repetidas con un alto contenido de bases AT. • Repetir los pasos 4 y 5 .• Agregar 400 -500 !JL de isopropanol frío a cada tubo. Invertir los tubos varias veces y dejarlos en refrigeración a 4°C por 30 m in ó 15 min a -20°C. • Incubar los tubos a 16°C toda la noche.• Diluir una pequeña cantidad de la reacción de ligación (RL) en una proporción de (1 :5) con agua bidestilada o buffer TE: 5 ¡JL RL con 20 ¡JL H20dd. • Almacenar las muestras a -20°C hasta realizar la pre -amplificación. • Añadir 20 IJL de MMx, a los tubos PCR que contienen la muestra D/L, (evitar producir burbujas al dispensar).• Sacar y descongelar la muestra D/L a temperatura ambiente, hasta descongelar y agregar 5 IJL de ADN digerido-ligado diluido.• Ahora dar un sping dow de 1 O segundos y amplificar según el programa de temperatura y tiempo correspondiente en el Termociclador.• Diluir la reacción de Pre amplificación en una proporción de 1 :3.• Almacenar las muestras a -20°C. hasta el siguiente PCR.Amplificación selectiva (+3/+3 ó +2/+2) • Añadir 8 1JL de MMx, a los tubos PCR que contienen la muestra D/L, (evitar producir burbujas al dispensar).• Ahora dar un sping dow de 1 O segundos y amplificar según el programa de temperatura y tiempo correspondiente en el Termociclador.• Almacenar las muestras si no son utilizadas para electroforesis a -20°C.Anexo 9. Protocolo de la electroforesis de los fragmentos amplificados (Manual de protocolos de biología molecular del Instituto de Biotecnología, UNALM)1. Preparación de la solución de poliacrilamida al 6% (geles desnaturalizantes)• En un vaso de precipitado o Becker se prepara la siguiente mezcla de poliacrilamida al6% (cámara de extracción).• Filtrar la solución con ayuda de la bomba de vacío empleando un filtro desechable. Hasta 1000 ml• Conservar la solución a 4°C en la oscuridad. (envase de color oscuro, rotulado).2. Preparación de las placas de vidrio y del gel de secuenciamiento.• Limpiar muy bien los vidrios (grande y pequeño) con etanol al 70 ó 96% y dejarlas secar durante 30 m in a temperatura ambiente. • Luego se procede al tratamiento independiente de cada placa de vidrio en la cámara de extracción.• En un eppendorf preparar la solución adherente.• Una vez realizada esparcir la solución de adhesión sobre toda la superficie uniformemente con la ayuda de un papel tissue o papel Kim Wipes.• Dejar secar a temperatura ambiente por 1 O minutos.• Después de transcurrido el tiempo remover las partículas de polvo usando el mismo tipo de papel. Esta limpieza debe ser hecha en una dirección perpendicular, aplicando una ligera presión. Mucha presión podría remover el Bind Silane y el gel podría no adherirse (esto es importante para evitar que la solución adherente contamine la placa grande, lo cual podría ocasionar que el gel se rasgue al momento de separar los soportes de la corrida electroforética ). Nota. Es recomendable cambiar de guantes para evitar la contaminación de la solución de adhesión.Preparación del vidrio grande con la solución repelente (Repelente Silane : Dimetilclorosilano)• Usando un papel tissue o Kim Wipes esparcir 1 ml de solución repelente (Dimetilclorosilano) sobre la superficie del vidrio en una misma dirección• Dejar secar por 5 min a temperatura ambiente• Momentos antes del ensamblaje de los vidrios, remover las partículas de polvo usando el mismo papel en dirección perpendicular a la esparcida.Para el ensamblaje del sistema (sándwich) se siguen los siguientes pasos:• Limpiar los separadores y peines con etanol al 96%, y colocar en los bordes laterales del vidrio grande (lado tratado) • Sobre ella colocar el vidrio pequeño (cara tratada con la solución adherente) de manera que los lados tratados estén frente a frente. • Asegurara las esquinas y los puntos medios del sistema con ganchos metálicos que ejerzan igual presión en ambos lados. • Probamos los peines adecuados (del grosor preciso) en la parte superior del sistema.• Prepara la mezcla de la solución de poliacrilamida. • La mezcla debe hacerse rápidamente y con suavidad, para evitar la formación de burbujas.• Verter suavemente la solución de poliacrilamida en el centro de manera continua para evitar la formación de burbujas, de la misma forma con la ayuda de pequeños golpes con la yema del dedo índice evitar que se formen las burbujas.• Introducir el peine probado anteriormente entre el vidrio pequeño y grande para formar los pocillos donde se verterán las muestras.• Dejar polimerizar al ambiente por 40 min o toda la noche sin ningún problema.3. Pre -corrida del gel de poliacrilamida• Retira el peine cuidadosamente agregando agua de caño para evitar dañar los pocillos.• Llevar a la cámara de elctroforesis vertical y llenar la cubeta superior (ánodo) con tampón de corrida TBE 0.5X hasta que cubra dos centímetros el vidrio pequeño, de la misma forma llenar la cubeta inferior con TBE 1X (cátodo)• Conectar la cámara a la fuente de poder (280 V, 120 mA) y pre correr por 2 horas.• Simultáneamente cuando el gel está pre -corriendo, a cada una de las reacciones de amplificación agregar el 50% (del volumen amplificado) de tampón de carga (OyE); es decir, a 1 O !JL de ADN amplificado se agrega 5 !JL de OyE• Desnaturalizar las muestras a 95°C durante 5 minutos.• Detener la reacción colocando las muestras en hielo hasta el momento de servir la muestra en el gel.• Una vez terminada el pre -corrido, detener la fuente de poder y con la ayuda de una jeringa limpiar los pocillos (frente de corrida) de restos de urea, poliacrilamida y burbujas ya que interfieren en la carga de muestras.• Cargar con una micropipeta 5 IJL de cada muestra de ADN (amplicones) en cada uno de los pocillos del gel de poliacrilamida.• De la misma forma, cargar en los pocillos del medio y extremos 3 IJL del ADN Ladder 1 O pb (patrón de peso molecular) para identificar el tamaño de los productos de PCR, que tiene un rango de lectura de 50 a 330 pb• Realizar la electroforesis durante toda la noche (18 h) a 280 V y 100 mA aproximadamente hasta que el tampón de carga esté 1 O centímetros antes del borde inferior de la base del vidrio (altura de las perillas de la cámara). • Posteriormente se observaron los productos de PCR en la solución de revelado, manteniendo en agitación hasta la visualización de las bandas.• Para detener la reacción de la solución reveladora se colocó el gel en la solución de fijación durante 1 O a 15 minutos finalmente se hace la parada con ácido acético, puede ser la solución de la fijación rehusada. Luego enjuagar por 3 minutos aproximadamente con agua corriente y dejar secar. ","tokenCount":"8286"} \ No newline at end of file diff --git a/data/part_3/6391953630.json b/data/part_3/6391953630.json new file mode 100644 index 0000000000000000000000000000000000000000..55061eb54281b6d30a53b268584ae9ce466f3026 --- /dev/null +++ b/data/part_3/6391953630.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"4d6dcab3a78f0f04ea5318a9407d4c24","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/70953516-d28d-4a94-b379-a78fb70aef64/content","id":"746854977"},"keywords":["660 K SNP array","90 K SNP array","Enzymatic browning","Favorable and unfavorable allele","GWAS"],"sieverID":"10184d94-07cb-4116-ad3a-fcb0d7802005","pagecount":"12","content":"Background: Black point is a serious threat to wheat production and can be managed by host resistance. Marker-assisted selection (MAS) has the potential to accelerate genetic improvement of black point resistance in wheat breeding. We performed a genome-wide association study (GWAS) using the high-density wheat 90 K and 660 K single nucleotide polymorphism (SNP) assays to better understand the genetic basis of black point resistance and identify associated molecular markers. Results: Black point reactions were evaluated in 166 elite wheat cultivars in five environments. Twenty-five unique loci were identified on chromosomes 2A, 2B, 3A, 3B (2), 3D, 4B (2), 5A (3), 5B (3), 6A, 6B, 6D, 7A (5), 7B and 7D (2), respectively, explaining phenotypic variation ranging from 7.9 to 18.0%. The highest number of loci was detected in the A genome (11), followed by the B (10) and D (4) genomes. Among these, 13 were identified in two or more environments. Seven loci coincided with known genes or quantitative trait locus (QTL), whereas the other 18 were potentially novel loci. Linear regression showed a clear dependence of black point scores on the number of favorable alleles, suggesting that QTL pyramiding will be an effective approach to increase resistance. In silico analysis of sequences of resistance-associated SNPs identified 6 genes possibly involved in oxidase, signal transduction and stress resistance as candidate genes involved in black point reaction. Conclusion: SNP markers significantly associated with black point resistance and accessions with a larger number of resistance alleles can be used to further enhance black point resistance in breeding. This study provides new insights into the genetic architecture of black point reaction.Black point, characterized by dark discoloration at the embryo end of kernels, occurs in most wheat growing regions of the world including China, USA, Australia, Canada and Serbia [1,2]. It can downgrade end-use quality of the grain due to seed discoloration [3]. Many marketing authorities have regulations on the incidence of black point, such as ≤4% in the USA, ≤ 5% in Australia, and ≤10% in Canada [4], indicating that grain with black point symptoms is more difficult to market with consequent economic losses to producers. In addition, black point can decrease the germination percentage and cause impaired seedling development [4]. It can also lead to the presence of toxic secondary metabolites, such as Alternaria mycotoxin and Alternariol monomethyl ether [5][6][7] that may cause oesophageal cancer [8].Many studies indicate that black point is enhanced by abiotic stresses, as symptoms more likely occur after exposure to high humidity and extreme temperatures during grain filling [9,10]. However, the causes of black point remain unclear and contradictory. Fungi are considered as the causal agents of black point [1]; these include Alternaria alternata [5,11], Bipolaris sorokiniana [12] and Fusarium proliferatum [6]. However, direct association between the presence of fungi and black point development has been discounted by some workers [13][14][15], who pointed out that it may be caused by enzymatic browning following stress. Oxidases, such as peroxidases (POD) [15,16], polyphenol oxidase (PPO) [17,18] and lipoxygenase (LOX) [19], that catalyze oxidation of phenolic compounds to brown or black pigments (melanins and quinines) [18,20], may be triggered by high humidity during the later stages of grain filling. Susceptible varieties have higher POD [15,21] and phenylalanine ammonia-lyase (PAL) (an enzyme involved in phenolic acid biosynthesis) [21] activities.Although several cultural, biological and chemical control strategies have been used to control black point, breeding resistant cultivars remains the most effective, economic and environmentally sustainable approach to control this disease [4,22,23]. Previous studies on the known genetic basis of black point resistance involved classical linkage-mapping methods using bi-parental populations [22][23][24], in which only two allelic effects can be evaluated for any single locus. Recent advances in genomics, particularly development of the wheat 90 K [25], 660 K (JZ Jia, pers. comm.) and 820 K SNP arrays [26] have made it feasible to genotype large germplasm collections with high-density SNP markers. As a result, the GWAS based on linkage disequilibrium (LD) has been widely adopted to investigate existing allelic diversity for important and complex agronomic traits. Compared with classical linkage-mapping, GWAS permits a more representative gene pool and a higher mapping resolution, because all historical meiotic events that have occurred in the ancestors of a diverse germplasm panel can be used [27]. Moreover, GWAS bypasses the expense and time of developing mapping populations, and enables the mapping of many traits in one set of genotypes, making the method more efficient and less expensive than linkage mapping [28]. Thus, GWAS has become a powerful alternative approach for linkage mapping [29]. GWAS has been applied to investigate a range of traits, including disease resistance [30,31], end-use quality [32], and yield components [33][34][35].The Yellow and Huai River Valleys Facultative Wheat Region is one of the most important agricultural regions of wheat production in China with an area of 15.3 million hectares. Black point has become one of the important diseases in this region due to increased water management and fertilizer use. Breeding for black point resistance could be greatly improved by the identification and use of closely associated molecular markers. Although GWAS has become a powerful approach to dissect the genetic architecture for many traits, it has not been used to analyze traits related to black point. In the present study, we used a diverse panel of 166 elite wheat cultivars in GWAS to (1) dissect the genetic architecture of black point resistance, (2) identify SNPs significantly associated with black point resistance, and (3) search for candidate black point resistance genes for further study.A total of 18,920 SNPs from the 90 K and 283,652 from the 660 K SNP array based on the consensus genetic maps and physical map (IWGSC, http://www.wheatgenome.org/) were chosen for GWAS of black point reaction in 166 wheat cultivars (Additional file 1: Table S1). After removing the SNPs with minor allele frequency (MAF) < 5% (28,935 SNPs) and missing data >20% (13,715 SNPs), 259,922 SNPs were employed for subsequent analysis (Additional file 2: Table S2). These markers spanned a physical distance of 14,063.9 Mb, with an average density of 0.054 Mb per marker. Total of 89,519 (34.4%), 146,270 (56.3%) and 24,133 (9.3%) markers were from the A, B and D genomes, respectively, with corresponding map lengths of 4934.5, 5179.0 and 3950.4 Mb. The marker density for the D genome (0.202 Mb per marker) was lower than that for the A (0.099 Mb per marker) and B (0.042 Mb per marker) genomes. The average genetic diversity and polymorphism information content (PIC) for the whole genome were 0.356 (0.009-0.500) and 0.285 (0.009-0.380), respectively. Both the genetic diversity and PIC of the A (0.365 and 0.291) and B (0.363 and 0.289) genomes were higher than the D (0.340 and 0.265) genome. The number of markers, map length, genetic diversity and PIC for each chromosome are shown in Additional file 2: Table S2.In the plot of K against ΔK, a break in the slope was observed at K = 3 followed by flattening of the curve, indicating that this panel consists of three subgroups, which was consistent with the results of principal components analysis (PCA) and neighbor-joining (NJ) tree analysis (Fig. 1). Subgroup I, the largest group with 62 accessions, was dominated by Shandong and foreign cultivars; Subgroup II consisted of 54 accessions, mainly comprising varieties from Henan, Anhui and Shaanxi provinces; Subgroup III had 50 accessions, most of which were from Henan province (Additional file 1: Table S1).In total, 12,324 markers from the 90 K and 660 K SNP arrays were used to evaluate LD decay for the whole genome as well as the A, B and D genomes separately. Around 14.3% of all pairs of loci were in significant LD (P < 0.001) with average r 2 of 0.174 on a genome-wide level by the 90 K and 660 K SNP assays. The B genome contained the highest percentage of significant markers (44.2%), followed by the A (33.6%) and D (22.2%) genomes. The scatter plots of r 2 against physical distance (Mb) indicated a clear LD decay with increasing physical distance (Additional file 3: Figure S1). According to [28], the critical value for significance of r 2 was evaluated at 0.079, 0.083, 0.095 and 0.082 for the A, B, D and whole genomes, respectively. The point at which the LOESS curve intercepts the critical r 2 was determined as the average LD decay of the panel [28]. Based on this criterion, LD decay distance was about 8 Mb for the whole genome. The highest LD decay was observed in the D genome (11 Mb), followed by the A (6 Mb) and B (4 Mb) genomes (Additional file 3: Figure S1).Continuous variation was observed across five environments (Additional file 4: Figure S2; Additional file 5: Table S3). The resulting best linear unbiased predictors (BLUPs) for black point scores across all environments ranged from 1.6 to 80.6% with an average of 23.3% (Additional file 4: Figure S2; Additional file 6: Figure S3), presenting a wide range of reactions for black point and indicating that this diversity panel was ideal for conducting GWAS. Analysis of variance (ANOVA) for black point scores revealed significant differences (P ≤ 0.001) among genotypes (G), environments, and genotype × environment (G × E) interactions (Table 1). The broad sense heritability (h 2 ) estimate for black point scores across all five environments was 0.62, indicating that much of the phenotypic variation was derived from genetic factors and therefore suitable for further association mapping.The MTAs analyzed by the mixed linear model (MLM) in Tassel v5.0 [36] and the FarmCPU [37] were shown in Additional file 7: Table S4 and Additional file 8: Table S5, respectively. Twenty-five loci (221 MTAs) identified by both the Tassel v5.0 and FarmCPU were considered to be more reliable (Table 2, Additional file 9: Table S6); these were distributed on chromosomes 2A, 2B, 3A, 3B (2), 3D, 4B (2), 5A (3), 5B (3), 6A, 6B, 6D, 7A (5), 7B and 7D (2), respectively (Table 2, Additional file 9: Table S6), explaining phenotypic variation ranging from 7.9 to 18.0%. Among these loci, 13 on chromosomes 2A, 2B, 3A, 3B (2), 3D, 4B, 5A (2), 5B, 7A, 7B and 7D were detected in two or more environments (Table 2, Additional file 9: Table S6). The maximum number of loci were found in the A genome (11), followed by the B genome (10), whereas only four loci were identified in the D genome (Table 2; Additional file 9: Table S6). Kinship-adjusted Manhattan plot summarizing the analysis of black point scores by Tassel v5.0 and FarmCPU are shown in Fig. 2 and Fig. 3, respectively. The quantilequantile (Q-Q) plot representing expected and observed probabilities of getting associations of SNPs by Tassel v5.0 and FarmCPU are presented in Additional file 10: Figure S4 and Additional file 11: Figure S5, respectively. The LD patterns along 2A, 2B, 3A, 3B, 4B, 5A, 5B, 6A, 6B, 6D, 7A, 7B and 7D can be visualized as heatmaps in Additional file 12: Figure S6.To further understand the combined effects of alleles on reaction to black point, we examined the number of favorable alleles in each accession. The numbers of favorable alleles in single accessions ranged from 5 to 21, compared to 4 to 20 unfavorable alleles (Additional file 1: Table S1). The relationships between black point BLUP values and numbers of favorable and unfavorable alleles estimated by linear regression showed a dependence of black point BLUP values on the number of favorable alleles with r 2 = 0.85 (Fig. 4a), and number of unfavorable alleles with r 2 = 0.85 (Fig. 4b). Thus, accessions with more The diversity panel, including released cultivars, advanced lines and landraces from different ecological regions, thus had a high genetic diversity with a wide range of reaction to black point. Our data showed that 86.1% (143) of the 166 accessions were susceptible to black point (black point score > 10%), indicating that black point is a considerable threat to wheat production throughout the world. However, most of the previous studies for black point were mainly conducted on pathogen identification, biological characteristics, disease cycle and control [7,13,38]. Thus, it is necessary to select cultivars highly resistant to black point and to identify markers significantly associated with resistance to facilitate breeding for resistance by MAS.The mean genetic diversity and PIC of 0.356 and 0.285, respectively, indicated higher polymorphism than in previous reports [39,40]. Our diversity panel thus has high genetic diversity and approximately reflected the genetic diversity in winter wheat from the Yellow and Huai River Valleys Facultative Wheat Region. More than 56% of SNPs had PIC of 0.20-0.40, which is deemed as a suitable range for GWAS [41]. Furthermore, the A and B genomes had higher genetic diversity and PIC than the D genome, consistent with previous reports [30,40] (Additional file 2: Table S2). All results indicated that our diversity panel has high genetic diversity and was suitable for GWAS.The diversity panel could be divided into three subgroups (Fig. 1), and the characterization of the subgroups was largely consistent with geographic origins and pedigrees. For example, Zhongmai 871, Zhongmai 875 and Zhongmai 895, which were derived from Zhoumai 16, clustered with Zhoumai 16 in group 3 (Additional file 1: Table S1). Numerous studies have shown that the lack of appropriate correction for population structure can lead to spurious MTAs [42][43][44][45]. Consequently, to eliminate spurious MTAs resulting from population structure, subpopulation data (Q matrix) were considered as fixed-effect factors, whereas the kinship matrix was considered as a random-effect factor, and a MLM implemented in Tassel v5.0 and FarmCPU were adopted for association analysis in the current study [36].The LD decay affects the precision of GWAS and this is influenced by many factors like population structure, allele frequency, recombination rate and selection [44,46,47]. Previous studies reported that LD decay in common wheat ranged between 1.5-15 cM using SSR [28,46,48], DArT [33] or SNP [30,47] markers. In this panel, the LD decay was about 8 Mb for the whole genome (Additional file 3: Figure S1), consistent with previous reports. The LD decay of the D genome (11 Mb) was higher than the A (6 Mb) and B (4 Mb) genomes (Additional file 3: Figure S1), also consistent with previous studies [47][48][49], suggesting that fewer markers are needed for GWAS in the D genome than the A and B genomes. The marker densities for the A, B and D genomes were 0.099, 0.042 and 0.202 Mb/marker, and thus highly reliable for detecting MTAs with respect to LD decay in the diversity panel according to Breseghello and Sorrells [28]. The reason for the high LD of the D genome is mainly due to limited infusion of Aegilops tauschii in the evolutionary history of common wheat [38,49]. The average r 2 (0.174) values observed between linked loci pairs were higher than in previous studies [46,50]. Reif et al. [51] reported that LD (r 2 ) is expected to be higher in released cultivars than landraces. Moreover, Würschum et al. [52] indicated that QTL with small effect can be detected at higher LD (r 2 ), whereas only QTL with large effects can be detected at lower LD (r 2 ). Our results thus suggested a high mapping resolution and strong QTL detection power for black point resistance.One of the key factors for GWAS is high marker density in whole genomes because sparse coverage reduces the power of marker identification [53]. Although the 90 K SNP array has emerged as a promising choice for highdensity, low cost genotyping [34,54], the presence of large gaps, particularly low coverage for the D genome, reduces the power of marker identification and decreases the precision of QTL mapping. To resolve the problem, the GWAS for black point resistance was performed using 259,922 markers from the 90 K and 660 K SNP arrays, providing a greater coverage of the genome. Only 8 loci were identified by the SNPs from 90 K array, whereas 23 were detected by the 660 K SNP, indicating that the 660 K SNP array with its much higher marker density had a significant advantage in GWAS.Some black point resistance QTL were previously identified by bi-parental linkage mapping [22,23], allowing for a comparison between loci identified in the present study S6), indicating that GWAS and linkage mapping are complementary in identifying genes. Lehmensiek et al. [22] detected eight black point resistance QTL explaining 4 to 18% of the phenotypic variation on chromosomes 1D, 2A, 2B, 2D, 3D, 4A, 5A and 7A in Sunco/Tasman and Cascades/AUS1408 doubled haploid (DH) populations by SSR markers. We also identified 11 unique loci in 2A, 2B, 3D, 5A (3) and 7A (5). The loci on chromosomes 2AL (IWB22408, bin C-2AL1-0.85) and 2BL (AX-108951749, bin 2BL6-0.89-1.00) coincided with the QTL detected by Lehmensiek et al. [22] in chromosomes 2A (Xgwm312, bin C-2AL1-0.85) and 2B (Xgwm319, bin 2BL6-0.89-1.00) (Table 2, Additional file 9: Table S6). However, not all of the QTL detected in linkage analysis were found in GWAS, such as QBp.caas-3AL and QBp.caas-7BS [23]. The reasons for this could be that (a) some QTL may have segregated at low frequency, or not at all in our association panel, and (b) results from the different marker platforms are difficult to align in the absence of complete genome sequences of diverse wheat cultivars.Oxidases, such as PPO [15] and POD [17], could have enhanced the development of black point. The PPO gene (Ppo-A1) mapped to the long arm of chromosome 2AL in the interval IWB59334-IWB5777 (706.2-715.3 Mb) [55], overlapped with the loci on chromosome 2AL (IWB22408, 709.8 Mb) in our study. In addition, the Ppo-A1-specific marker PPO18 [56] was also significantly associated with black point resistance (Table 2). Furthermore, the SNP marker IWA5214 (302.2 Mb) on chromosome 5BL was significantly associated with both black point resistance and PPO activity (Zhai et al. unpublished data). Wei et al. [57] identified a QTL for POD activity on chromosome 5AS (15.9-36.9 Mb) using a RIL population derived from Doumai/Shi 4185, corresponding to the major loci detected on chromosome 5AS (IWB8705, 32.8 Mb) in this study (Additional file 9: Table S6). Shi et al. (unpublished data) identified a locus for POD activity on chromosome 2AL (IWB59334, 715.3 Mb) by GWAS, which overlapped with the locus on chromosome 2AL (IWB22408, 709.8 Mb). Thus, the GWAS results confirmed previous reports implicating phenol metabolism enzymes like PPO and POD in development of black point [15,17,18].As the genetics of black point reaction are still poorly understood, the remaining 18 loci identified on chromosomes 3A, 3B, 3D, 4B (2), 5A (2), 5B (2), 6B, 6D, 7A (4), 7B and 7D (2) represent potentially new resistance QTL (Table 2); these may contribute to better understand of the architecture of black point reaction and provide more opportunities for resistance breeding. The above results demonstrated that GWAS was a powerful and reliable tool for identification of black point resistance genes.To identify candidate genes for black point resistance, the flanking sequences of SNP markers significantly associated with black point reaction were imported to Blast2Go software, and used as queries to BLAST against the National Center for Biotechnology Information (NCBI) and European Nucleotide Archive (ENA) databases; six candidate genes were identified (Table 3). Bioinformatics analysis indicated that SNP marker AX-111518195 on chromosome 2AL corresponded to peroxisomal biogenesis factor 2, an important gene for biosynthesis of peroxidase, which can accelerate oxidation of phenolic compounds to quinones and is crucial for phenolic metabolism and melanin synthesis [18,58]. In addition, the gene-specific marker PPO18 for Ppo-A1 [56] overlapping with the SNP loci on chromosome 2AL was also significantly associated with black point reaction. Fuerst et al. [18] reported that PPO catalyzes oxidation of phenolic compounds to melanins and quinines that may contribute to black point development. Thus, Ppo-A1 is a candidate gene for this locus. Marker AX-95684401 on chromosome 5A corresponded to a gibberellin (GA) biosynthetic process protein. GA plays an important role in modulating disease reaction throughout plant development and affects black point development by influencing seed germination [59]. Marker IWA5463 on chromosome 2AL corresponds to an F-box repeat protein, which may affect black point development by regulating signal transduction of gibberellin [59,60]. F-box proteins have also been implicated in response to various pathogens through targeting substrates in the degradation machinery [61]. Two SNP markers (AX-108951749 on 2B and IWA2223 on 5AL) encode serine/threonine-protein kinases, which trigger multiple physiological and biochemical reactions in response to abiotic and biotic stresses by mediating perception and transduction of external environmental signals [62,63]. We also identified a candidate gene encoding a disease resistance RPP8-like protein (AX-111053669 on chromosome 3A), which had been proposed to play an essential role in regulation of responses to a variety of external stimuli, including stress [64]. Bioinformatics analysis of trait-associated SNPs was proven to be an effective tool to find candidate genes for complex agronomic traits [34]. However, black point is a consequence of complicated biological processes and the mechanism of black point formation remains unclear; more detailed experimental analyses are needed to confirm the roles of candidate genes in black point resistance.It is difficult to select highly resistant lines at the early stages of a breeding program in the field due to the fact that black point symptoms can be assessed only on mature seed after harvest and are highly affected by environment. A significant additive effect was identified from the linear regression between black point resistance and the number of favorable alleles, indicating that pyramiding of favorable alleles will enhance resistance. Markers significantly associated with complex traits identified by GWAS or QTL mapping can be converted into kompetitive allele-specific PCR (KASP) markers for SNP validation, MAS and QTL fine mapping [65,66]. Semi-thermal asymmetric reverse PCR (STARP) also provides a new scalable, flexible and cost-effective approach for using SNP markers in MAS [67]. QTL with consistent effects across multiple environments should be useful for MAS [68]. Thirteen of the 25 loci identified in this study were detected in two or more environments and should be suitable for MAS. Some accessions with higher black point resistance and relatively high number of resistance alleles and excellent agronomic traits, such as Kitanokaori, Norin 67, Yumai 21, Yannong 19, Zhoumai 19, and Zhongmai 871 (Additional file 13: Table S7), should be good parental lines for breeding. Our follow-up studies will focus on validating the effects of these QTL and developing friendly, tightly linked markers that can be used in resistance breeding.In the present study, a GWAS for black point resistance in a diversity panel was conducted with the 90 K and 660 K SNP arrays. Twenty-five resistance loci explained 7.9-18.0% of the phenotypic variations, demonstrating that GWAS can be used as a powerful and reliable tool for dissecting genes in wheat. The markers significantly associated with black point resistance and the accessions with a higher number of resistance alleles can be used as valuable markers and excellent parent material for resistance breeding. This study improves our understanding of the genetic architecture of black point resistance in common wheat.The association panel used in the present study contained 166 diverse cultivars, comprising 144 accessions from the Yellow and Huai River Valley Facultative Wheat Region of China, and 22 accessions from five other countries, including Italy (9), Argentina (7), Japan (4), Australia (1) and Turkey (1) (Additional file 1: Table S1 Field trials were conducted in randomized complete blocks with three replicates at all locations. Each plot contained three 2 m rows spaced 20 cm apart. Agronomic management followed local practices. All wheat accessions are deposited in the National Genebank of China, Chinese Academy of Agricultural Sciences, and available after approval.After harvest and threshing three samples of 200 grains were selected from each of the three replicates of each accession, and the percentages of kernels with black point symptoms were determined and averaged. BLUPs across five environments were used as the phenotypic values for association mapping to eliminate environmental effects. BLUP estimation was calculated using the MIXED procedure (PROCMIXED) in SAS v9.3 (SAS Institute, http://www.sas.com).ANOVA was performed using SAS v9. [71] was used to predict the real number of subpopulations. PCA and NJ trees were also used to validate population stratification with the software Tassel v5.0 [44] and PowerMarker v3.25 [70] (http://www.maizegenetics.net).LD among markers was calculated using the full matrix and sliding window options in Tassel v5.0 with 12,324 evenly distributed SNP markers. The positions of these markers were based on the physical map mentioned above. Pairwise LD was measured using squared allelefrequency correlations r 2 , and significance of pair-wise LD (P-values) was measured by Tassel v5.0 with 1000 permutations. The r 2 values were plotted against physical distance and a LOESS curve was fitted to the plot to show the association between LD decay and physical map distance. The critical value of r 2 beyond which the LD was likely to be caused by genetic linkage was determined by taking the 95th percentile in the distribution of r 2 of the selected loci [28]. The intersection of the fitted curve of r 2 values with this threshold was considered as the estimate of LD range.Associations between genotypic and phenotypic data were analyzed using the kinship matrix in a MLM by Tassel v5.0 to control background variation and eliminate the spurious MTAs. In MLM analysis, the kinship matrix (K matrix) was considered a random-effect factor, whereas the subpopulation data (Q matrix) was considered a fixed-effect factor [43]. The K matrix was calculated by the software Tassel v5.0 and the Q matrix was inferred by the program Structure v2.3.4. The P value determining whether a SNP marker was associated with the trait and the R 2 indicating the variation explained by the marker was recorded. The GWAS was also analyzed using the FarmCPU software [37] by R Language (https://www.r-project.org/). Bonferroni-Holm correction [72] for multiple testing (α = 0.05) was too conserved and no significant MTAs were detected with this criterion. Therefore, markers with an adjusted -log 10 (P-value) ≥ 3.0 were regarded as significant markers for black point reaction [73][74][75], as shown in Manhattan plots using the ggplot2 code in R Language. Important P value distributions (observed P values plotted against expected P values) were shown in Q-Q plots. We checked the LD (r 2 ) among markers significantly associated with black point reaction on the same chromosomes to compare the resistance loci. LD block on the same were computed and visualized by Haploview v4.2 [76] (www.broadinstitute.org/haploview/ haploview). To compare resistance loci identified in the present study with known genes/QTL, deletion bin information for SSR and SNP markers was obtained following [23].The effect of favorable alleles on black point resistance Each locus comprises two alleles based on SNP marker a single base substitution, transition or transversion. Alleles with positive effects leading to higher black point resistance are referred to as \"favorable alleles\", and those leading to lower resistance are \"unfavorable alleles\". The representative SNPs at the resistance loci were used to count the frequencies of favorable and unfavorable alleles and their allelic effects were determined (Table 2). Regression analysis between favorable, unfavorable alleles and black point scores were conducted using the line chart function in Microsoft Excel 2016.To identify candidate genes or putative protein functions of SNP flanking-regions, the flanking sequences corresponding to the SNP markers significantly associated with black point resistance were used in BLASTn and BLASTx searches against ENA (http://www.ebi.ac.uk/ena) and NCBI (http://www.ncbi.nlm.nih.gov/) databases. Sequences were imported to Blast2Go software (https://www.blast2go.com/) in fasta formats that were blasted, mapped and annotated using standard parameters embedded in the software.","tokenCount":"4565"} \ No newline at end of file diff --git a/data/part_3/6392248269.json b/data/part_3/6392248269.json new file mode 100644 index 0000000000000000000000000000000000000000..22e1c41e80be9b8bd185ccd11654ed9bc31eecff --- /dev/null +++ b/data/part_3/6392248269.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"fdc826f27c612b8978f05848520520ad","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/3f2a0b52-eb14-4d7f-ab3c-3ff14f851c00/retrieve","id":"-255702463"},"keywords":["extension services","wealth index","women's empowerment in agriculture index","farm income","Bangladesh"],"sieverID":"42fccf19-2cc3-42b5-8a4b-763b3b0eeda5","pagecount":"1","content":"Agricultural extension programs have long been argued to be an effective way to increase farm income. The extension provided to farmers is broad in scope and has been well documented within the literature (Christopolos & Kidd, 2000;Hossain et al., 2020).Women can play an important role in decision-making in agricultural production activities. However, they have less access to agricultural information and resources in most developing countries, compared to men, which limits their participation in decision-making on crops, technology adoption, and farming practices. Several empirical studies have used the women's empowerment in agriculture index (WEAI) to investigate the impact of women's empowerment on food security and nutrition-related outcomes (Diiro et al., 2018;Malapit & Quisumbing, 2015) and have generally found that women's empowerment has the potential to improve both such outcomes.Agricultural extension services aimed specifically at the inclusion of women can bridge the gender gap and help to increase women's empowerment (Abebe et al., 2016), but specific initiatives of this form are rare in the field. Women's role in multiple decisions has significant implications for labor, farm income, food, nutrition, health, and many other aspects of households' livelihood strategies when taken together. However, very few studies (Lecoutere et al., 2019) have been conducted regarding how extension services influence women's empowerment and farm income. To fill this gap, the present study aims to examine the association among agricultural extension services, women's empowerment, and farm income.To examine the nexus among agricultural extension services, women's empowerment, and farm income.This study explored the nexus among agricultural extension services, the WEAI, and TFI. The study confirmed that agricultural extension services are significantly and positively associated with TFI and the WEAI.Agricultural extension services are important arbitrators in improving both the WEAI and TFI. Therefore, improved agricultural extension advisory services could improve the performance of the sector significantly, and this could be a useful policy tool to achieve the targets as set out in the SDGs.The economic empowerment of women is a requirement for sustainable development and growth, and there is evidence from this study that investments in agricultural extension services can deliver in this context. Access to extension services: This is a binary indicator of whether farmers had access to agricultural extension services during the farming season. A value of 1 denotes the farmer had access to the services, and 0 if not. WEAI was calculated by using Alkire-Foster methodology focusing on five multidimensional interrelated dimensions. The five dimensions of empowerment with ten indicators were used and weighted (Alkire et al., 2012) the 5DE contributed to 90% of the measurement. According to (Alkire et al., 2012), to be empowered one has to achieve adequacy in more than 80% of the indicators. A cut-off point for analysis is any combination of numbers between 0 and 100%; following the international standard set by Alkire et al., 2012 cutoff point of 20% was used.Total income from rice farming (TFI): TFI is considered as the income in BDT from rice farming in the last 12 months.The HWI is a composite index calculated by using principal component analysis (PCA), where wealth refers to the value of all household assets and agricultural productive assets owned by a household, which are converted into a monetary value (Karigi, 2014). PCA is used to generate the HWI because PCA allows to use an orthogonal transformation to convert a set of observations of possible interrelated variables into a set of values of linearly uncorrelated variables. ","tokenCount":"566"} \ No newline at end of file diff --git a/data/part_3/6405211511.json b/data/part_3/6405211511.json new file mode 100644 index 0000000000000000000000000000000000000000..3b349730183355df0661704a30a904ccebc63ed0 --- /dev/null +++ b/data/part_3/6405211511.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"70f9dd25a03304cf50318a1345f603d7","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/64ed57c2-d2f0-4cbf-b926-b3053421a56c/retrieve","id":"-1233593958"},"keywords":["environmental science","ecology N 2 O","processes","environmental controls","modelling"],"sieverID":"bf8b335a-ab72-4e19-b9df-773eb2b06db2","pagecount":"14","content":"Although it is well established that soils are the dominating source for atmospheric nitrous oxide (N 2 O), we are still struggling to fully understand the complexity of the underlying microbial production and consumption processes and the links to biotic (e.g. inter-and intraspecies competition, food webs, plant -microbe interaction) and abiotic (e.g. soil climate, physics and chemistry) factors. Recent work shows that a better understanding of the composition and diversity of the microbial community across a variety of soils in different climates and under different land use, as well as plant -microbe interactions in the rhizosphere, may provide a key to better understand the variability of N 2 O fluxes at the soil -atmosphere interface. Moreover, recent insights into the regulation of the reduction of N 2 O to dinitrogen (N 2 ) have increased our understanding of N 2 O exchange. This improved process understanding, building on the increased use of isotope tracing techniques and metagenomics, needs to go along with improvements in measurement techniques for N 2 O (and N 2 ) emission in order to obtain robust field and laboratory datasets for different ecosystem types. Advances in both fields are currently used to improve process descriptions in biogeochemical models, which may eventually be used not only to test our current process understanding from the microsite to the field level, but also used as tools for up-scaling emissions to landscapes and regions and to explore feedbacks of soil N 2 O emissions to changes in environmental conditions, land management and land use.Nitrous oxide (N 2 O) is a long-lived trace gas in the atmosphere, with an average mixing ratio of 322.5 ppbv in the year 2009. Atmospheric N 2 O concentrations have increased by 19 per cent since pre-industrial times, with an average increase of 0.77 ppbv yr 21 for the period 2000-2009 [1]. There are mainly two reasons why the so-called laughing gas has been attracting a considerable interest of scientists. First, it is a potent greenhouse gas (GHG), with a 100-year global warming potential 298 times that of carbon dioxide (CO 2 ; molecule for molecule) contributing 6.24 per cent to the overall global radiative forcing [1,2]. Second, it is the single most important depleting substance of stratospheric ozone [3]. The dominant sources of N 2 O are closely related to microbial production processes in soils, sediments and water bodies. Agricultural emissions owing to N fertilizer use and manure management & 2013 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original author and source are credited.(4. 3-5.8 Tg N 2 O-N yr 21 ) and emissions from natural soils (6-7 Tg N 2 O-N yr 21 ) represent 56-70% of all global N 2 O sources [4].Field measurements of N 2 O exchange between soils and the atmosphere across a wide variety of terrestrial ecosystems as well as laboratory incubation studies under controlled conditionsboth with soils and with pure cultures of micro-organismsprovide an extensive set of measured emission fluxes. These measurements provide empirical estimates of emission over a range of scales spatially and temporally (figure 1).However, up-scaling N 2 O budgets to national and regional scales remain an unresolved challenge with current national estimates still highly uncertain. This is mainly due to the very dynamic and variable character of N 2 O soil losses caused by a multitude of interacting controls [5]. As a result, soil N 2 O emissions are characterized by 'hot spots' and 'hot moments', i.e. by an enormous spatio-temporal variability [6][7][8]. Because the availability of reactive nitrogen (N r : here defined as organic bound N and inorganic N compounds except N 2 ) is the major driver of N 2 O soil emissions, fertilizer use is a key factor controlling soil N 2 O fluxes [4,9]. However, elevated N 2 O soil fluxes are not only restricted to sites were N fertilizers are applied (the so-called direct emissions), but owing to volatilization, leaching and erosion processes, N r is cascading from application sites to downwind and downstream ecosystems. This might result in natural ecosystem N enrichments, thereby creating new hot spots of N 2 O emissions (i.e. indirect emissions [10,11]). For a better understanding of N 2 O soil emissions, it is, on the one hand, necessary to understand nitrogen cycling from ecosystem to regional and global scales and on the other hand, to improve our understanding of key processes involved in N 2 O formation, consumption and emission. The challenge is to integrate the two.Here, we summarize the current understanding of processes involved in N 2 O emissions, outlining advances and remaining challenges to characterize and quantify relevant soil processes and soil surface fluxes of N 2 O and describe the state of development of models used to simulate N 2 O soil fluxes from site to regional scale.Microbial nitrification and denitrification in managed and natural soils contribute approximately 70 per cent of global N 2 O emissions [4,12]. The description of microbial nitrification and denitrification as source of N 2 O is a simplification, because microbial metabolic pathways provide a wealth of processes that form or consume N 2 O. Furthermore, there are other abiotic processes producing N 2 O. To our current knowledge, the following processes contribute to N 2 O formation in soils (figure 2):-chemical decomposition of hydroxylamine during autotrophic and heterotrophic nitrification, -chemodenitrification of soil nitrite and abiotic decomposition of ammonium nitrate in the presence of light, humidity and reacting surfaces, -nitrifier-denitrification within the same nitrifying microorganism, -coupled nitrification-denitrification by distinct microorganisms ( production of nitrate by nitrite oxidizers, which is immediately denitrified in situ by denitrifiers), For a detailed overview on the processes and references to relevant literature, see appendix, electronic supplementary material.soil processes: tools, challenges and future perspectivesThe main inhibitor used to distinguish between nitrifier and denitrifier N 2 O production, which has been used in the past to quantify [19][20][21]. Traditionally, these have been synthetic, but biological nitrification inhibition (BNI), such as mediated through plant exudates, is now attracting interest [22]. Inhibition can arise from competition between plants and microbes for available NH 4þ , but the exudation of nitrification suppressing compounds by plants (e.g. Brachiaria humidicola [23]) has recently been proposed as a mode of inhibition. Identified inhibitory compounds include free fatty acids, their methyl esters and a cyclic diterpene brachialoctone [24,25] which block both the ammonia monooxygenase and hydroxylamine oxydoreductase enzymes. The production of BNI compounds by crop species and their effectiveness in lowering N 2 O emission in situ has yet to be proved before BNI can be used in breeding programmes targeted towards environmentally sustainable food production.Recent advances in stable isotope techniques have highlighted the contributions of various microbial groups to N 2 O emission from soil, and the influence of interactions between C and N cycle processes involved in the GHG production. These include both enrichment and natural abundance ( 18 O, 15 N) approaches [26]. N 2 O produced during nitrification is more depleted (more negative d) in 15 N and 18 O relative to substrates than that produced during denitrification. This is partly due to N 2 O reduction in denitrification [27], which provides the opportunity for estimating the relative contributions of these two microbial processes. A natural abundance approach to source partitioning N 2 O production has been demonstrated to be of the greatest advantage in natural or unfertilized systems [28]. Natural abundance approaches have recently been used to identify the site preference (isotopomer) of 15 N in N 2 O. This is the difference in d 15 N between the central and outer N atoms in N 2 O, with different microbial processes and functional groups thought to exhibit distinct 15 N-site preferences [29,30]. However, this approach is unable to distinguish denitrification by conventional denitrifiers from nitrate ammonification or ammonia oxidizer denitrification, so on its own is limited in the extent to which it will enable us to attribute N 2 O emission to different microbial sources.Enrichment approaches have been used in fertilized systems, allowing the quantification of N 2 O produced during different processes. These have mostly focused on distinguishing between nitrification and denitrification following addition of 15 N-NH 4 þ and/or 15 N-NO 3 2 to soil [31,32]. Distinguishing between denitrification by conventionally defined denitrifiers and ammonia oxidizers remains problematic. A 15 N/ 18 O enrichment approach has recently been used by Wrage et al. [33], but there is still the risk of exchange of applied 18 O in H 2 O with that of soil water and nitrate pools [34,35]. It may be possible for ammonia oxidizer denitrification (nitrifier denitrification) to be better constrained by coupling isotopic and molecular approaches (see below). While these isotope approaches offer us the potential to determine the contribution of different microbial processes, they have not yet been applied to distinguish between all known microbial sources of N 2 O simultaneously. For example, the fractionation during nitrate ammonification has yet to be determined, and it may be that a combination of enrichment, natural abundance and isotopomer approaches coupled with molecular approaches may be required to estimate the contributions of all known N 2 O-genic processes.It is only recently that molecular-based analyses of microbial diversity have been combined with measurements of N 2 O production and process rates. There have only been a few studies that offer a rigorous assessment of the microbial community coupled to a rigorous measurement of N 2 O production rates, or different microbial sources of N 2 O, but these provide conflicting results on the relationship between diversity and emissions. For example, Philippot et al. [36] demonstrate a significant correlation between the distribution of N 2 O-reducing bacteria and potential N 2 O emissions that appeared to be driven by soil pH, whereas in another study [37], no relationship between N 2 O : N 2 ratio and denitrifier community size or composition after addition of C compounds to soil was found. Gene copy number analysis may provide a closer relationship with measured process, as a recent report showed significant relationships between nirS, napA and narG denitrification genes and the N 2 O/(N 2 O þ N 2 ) ratio from grassland soil [38]. Fewer studies have related ammonia oxidizer diversity or gene copy number to a quantification of ammonia oxidizer N 2 O production. Avrahami & Bohanann [39] report a significant relationship between ammonia oxidizer diversity and N 2 O emission rates and attribute spatial variation in N 2 O emissions to the composition of the ammonia-oxidizing community. However, there are other studies [40] that conclude that any change in ammonia oxidizer N 2 O production is the result of physiological responses rather than a change in the community composition. This highlights the need for further studies combining analysis of microbial ecology and quantification of N 2 O : N 2 production and partitioning between the different microbial sources of N 2 O (see also appendix, the electronic supplementary material). A better insight into the regulation of these processes can be used to modify management practices to lower emissions.(d) Nitrification, denitrification, the N 2 : N 2 O emission ratio and N 2 : nitrification ratio at field scales Our understanding of underlying processes, pathways and controls of N 2 O formation is still mainly based on studies with pure cultures of micro-organisms and soils under controlled conditions. However, a thorough understanding of N 2 O fluxes at various spatio-temporal scales requires an understanding of N cycling and loss rates of N 2 O during key microbial N transformation processes. Even though there is an increasing wealth of data on actual rates of nitrification and denitrification in soils, still little is known about N 2 O production and consumption as well as N 2 emissions at field to landscape scales ( [15]; figure 1). This deficiency is mainly due to methodological problems of measuring N 2 production by denitrification [41] and to disentangling N 2 O production processes at field scale [15]. It is very well established that the acetylene inhibition method creates systematic and irreproducible underestimation of N 2 production by denitrification under aerobic incubation conditions [16,41,42,43]. However, most likely owing to its simplicity, the acetylene inhibition method is still used in studies and reported in literature. Besides the acetylene inhibition method, few methods remain that allow insights rstb.royalsocietypublishing.org Phil Trans R Soc B 368: 20130122 into N 2 and N 2 O production by denitrification: mainly the gas-flow helium incubation method [44,45] (see appendix, the electronic supplementary material) or the determination of labelled N 2 following the application of 15 N-labelled substrates [46].The electronic supplementary material, table S1, summarizes all available datasets where N 2 emissions have been either measured by 15 N-labelling approaches or with the gas-flow helium incubation method and which do provide estimates for annual or seasonal N 2 as well as N 2 O emissions. Compared with the work by Schlesinger [47]-who also considered estimates of denitrification and N 2 formation as obtained by the acetylene inhibition method-it is obvious from the electronic supplementary material, table S1, that for all soils from different ecosystems (forest, agricultural and wetland) N 2 O: (N 2 O þ N 2 ) ratios obtained are significantly lower if measurements with the acetylene inhibition method are ignored. For example, Schlesinger [47] estimated that the mean N 2 O yield of denitrification from soils under natural or recovering vegetation is approximately 49.2 per cent, whereas, in our analysis, this value is 20.7 per cent (see the electronic supplementary material, table S1). This significantly changes the estimate of the human impact on terrestrial denitrification. Schlesinger [47] calculated that the total rate of denitrification is at present 17 Tg N yr 21 greater than in pre-industrial times. Excluding data from acetylene inhibition methods and using the data provided in the electronic supplementary material the estimate changes to 46 Tg N yr 21 if the Schlesinger calculation approach is used. This new estimate of changes in terrestrial denitrification is much more in-line with estimates by other studies [48,49], showing that methodological problems and a lack of understanding at the process level is still hampering the assessment of the consequences of perturbation of N cycling at regional to global scales. Although soil moisture has a predominant effect on N 2 O emission, it was found that denitrification is extremely sensitive to rising temperatures. The Q 10 of denitrification, i.e. the stimulation of denitrification following an increase in temperature by 108C, exceeds the Q 10 of soil CO 2 emissions [52,53]. This fact can be attributed to a tight coupling between the microbial C and N cycle. Hence, N 2 O emissions are not only directly affected by temperature effects on enzymatic processes involved in N 2 O production. Furthermore, temperature-induced increases in soil respiration lead to a depletion of soil oxygen concentrations and to increases in soil anaerobiosis, with the latter being a precursor and a major driver. Also, the succession of several temperaturesensitive microbial processes within the nitrogen cycle, which cascade reactive N compounds through its different oxidation states (N-mineralization, nitrification; figure 2) providing the substrate for denitrification, leads to a multiplying effect of temperature increase on N 2 O fluxes from soil. In terms of global environmental change, this means that a positive feedback effect of warming on soil GHG emissions can be expected to be greater for N 2 O than for CO 2 . However, substrate and moisture limitations of microbial N cycling processes under climate-change conditions may dampen the stimulating effect of temperature [5]. Nevertheless, an implementation of these findings into global climate-change models may considerably alter predictions of future atmospheric composition and expected severity of climate change.The impact of global change drivers such as temperature and moisture on ecosystem processes is well studied when acting in isolation or with, at most, one interacting variable [54]. While it can be argued that we understand how both drivers interact mechanistically, we fail to predict how emissions may change if a third or fourth driver comes into play (such as enhanced CO 2 , ozone or nitrogen). This is due to the nonlinearity of involved processes and synergistic or antagonistic rather than simple additive effects of combined drivers, so that an understanding of the underlying mechanisms becomes much more difficult [55]. There might be a general trend for the magnitude of the responses to decline with higher-order interactions, longer time periods and larger spatial scales [54]. However, while effects of dampening with scale and treatment complexity might be part of intrinsic system behaviour, threshold effects and tipping points which are so far not understood have to be taken into consideration when predicting global change effects.Moreover, seasonal or spatial dynamics of soil moisture or temperature can affect N 2 O emission rates. Temporary waterlogging, seasonal passing from drought to rewetting (similar to the 'Birch effect' for soil respiration [56,57]) as well as transient zones between upland and wetland soils can constitute the so-called hot moments and hot spots for N 2 O emissions as they present ideal conditions for the transition from microbial oxygen to NO 3 respiration [7]. Nitrous oxide reaction to changes in temperature will not always be the same depending on the state (e.g. substrate availability) of the soil system, which may result in hysteresis curves as also observed for soil CO 2 respiration [58]: N 2 O release during rising temperatures can follow a different curve from falling temperatures owing to faster depletion of substrates (carbon compounds as well as nitrate). This is a phenomenon that needs to be better understood and accounted for in modelling.Temperatures around 08C are of special interest as many soil microbes are still active and freeze/thaw processes lead to pulses of N 2 O emissions with significant or dominant contributions to the annual N 2 O budget [7,8]. This may be driven by release of stored C during the thaw. It is these transition rstb.royalsocietypublishing.org Phil Trans R Soc B 368: 20130122 effects that still hold many secrets in the understanding of environmental controls of N 2 O release.Often changes in soil moisture and soil temperature can explain up to 95 per cent of the temporal variations of field N 2 O emissions [59] constituting the main drivers of denitrification. The remaining unexplained gas fluxes are related to proximal drivers of oxygen supply, for example, substrate concentration, available energy and distal drivers of plant nitrate uptake, for example, litter/soil organic matter quality, root/microbial respiration, soil texture, predation, pH and pollution by heavy metals or organic chemicals [60].(b) How important is microbial diversity for soil nitrous oxide emissions?The denitrifiers are a phylogenetic heterogeneous group of microbes. Mostly known are bacterial strains from the phyla Firmicutes, Actinomycetes, Bacteroides, Aquifaceae and a-, b-, g-and 1-Proteobacteria [61,62]. They are also physiologically heterogeneous comprising nitrifiers, N 2 -fixers (symbiotic as well as non-symbiotic), thiosulfate oxidizers, methylotrophs, aerobic and anaerobic taxa, heterotrophs and autotrophs and even photosynthetic bacteria and extremophiles [63]. As highlighted earlier, denitrification can be classified as a microbiologically 'broad process' which can be conducted by a wide array of microbes in contrast to the comparatively 'narrow process' of autotrophic nitrification. Denitrifying bacterial communities tracked, for example, by their nirK genes encoding the nitrite reductase are therefore more diverse than their nitrifying counterparts detected by the ammonium monooxygenase-encoding (amoA) genes [64].Although most knowledge on the denitrification process relates to bacterial denitrification, 20 years ago, some fungi [65,66] had already been reported to produce N 2 O. For example, N 2 O formation was observed in Trichoderma harzianum at anaerobic incubation with NO 2 as N source. Fungal denitrification physiologically acts as anaerobic (NO 3 ) respiration. Fusarium oxysporum and Aspergillus nidulans use dissimilatory ammonia fermentation-reducing nitrate to ammonium and simultaneously oxidizing ethanol to acetate. Ammonia fermentation and denitrification are alternatively expressed depending on the extent of the oxygen supply. Several fungal species belonging to the Ascomycetes and Deuteromycetes can form N 2 O from nitrite, and some can reduce nitrate under anaerobic as well as micro-aerobic conditions.Although these fungi frequently occur in soils, and are especially abundant in the litter layers of forests, there is very little experimental evidence on their overall contribution to N 2 O emissions. Field studies about the role of fungi in denitrification are rare and methodologically hazardous as biocides are used to distinguish fungal from bacterial activity. The applied inhibitors, usually cycloheximide and streptomycin, can have multiple side-effects on the nitrogen cycle. It has been suggested that consideration of the position of 15 N within the N 2 O molecule could help distinguish bacterial and fungal denitrification [67]. So, although there are reports on the importance of fungi for N 2 O formation in temperate, semiarid grasslands, woodland and tropical arable peat [68 -70], new technologies are required to clarify the fundamental question-'what really is the ecological role of fungi in denitrification?'Within the domain of archaea the nitrite reductase encoding the nirK gene has been identified among extreme halophiles [71], however, N 2 O emission by soil archaea has so far never been proved. By now, it is known that archaea are numerous and widely distributed in soils around the world [72] and they even dominate microbial communities in boreal areas (C. Schleper 2011, personal communication). A reason for the lack of knowledge on archaeal physiology is the fact that they are extremely difficult to culture. It was reported that marine archaeal ammonia oxidizers may release N 2 O. These measurements were based on two archaeal enrichment (not pure) cultures [73]. Comparing 15 N and 18 O signatures, the authors suggested that ammonia-oxidizing archaea may be largely responsible for the global oceanic N 2 O source. Nitrososphaera viennensis is the first ammoniaoxidizing archaeon from soil to be grown in pure culture and its carbon and nitrogen metabolism were recently characterized [74]. It remains to be shown whether soil-inhabiting archaea produce N 2 O, which might have large implications for our current understanding of N 2 O soil emissions.Although the ability to denitrify, as determined by the analysis of genes involved in denitrification, is widespread, the process is facultative and induced only under particular conditions [75]. One of the most outstanding questions microbial ecologists face is whether microbial communities that differ in composition also differ in function [75]. Although differences of denitrifier abundance may relate to varying denitrification enzyme activities [76,77], there is rare evidence for a correlation between denitrifier abundance and soil N 2 O emission. This suggests that the relative activity of the enzymes involved in denitrification may sometimes be affected by denitrifier composition but in other cases environmental factors may be the dominant determinants of activity.In contrast to denitrification activity, bacterial denitrifier communities as represented by the total gene pool seem to be highly resistant to changes. Major modifications of the community structure were observed in long-term experiments by which the soil's physical and chemical parameters were also modified [78], whereas many laboratory experiments resulted in minor modifications [13]. The studies conducted so far suggest a redundancy of bacterial functional genes involved in denitrification. So even if community changes are observed, we do not know if a change in the diversity or composition of the denitrifier community will change denitrification activity or N 2 O fluxes [61].The above-mentioned caveats might be overcome by further methodological developments. Most studies on denitrifying communities use methods to fingerprint the potentially involved microbes by using terminal restriction fragment length polymorphism analysis or denaturating gradient gel electrophoresis of PCR-amplified functional genes such as nirS, nirK and (less frequently) nosZ, owing to the availability of suitable primers. However, although the enzymes encoded by these genes are involved in the denitrification process, they do not release N 2 O, but either its precursor NO or its successor N 2 , which might be one of the reasons for missing relationships between results of molecular studies and in situ N 2 O fluxes (see the electronic supplementary material, figure S2). Only minuscule amounts of soil are generally used for DNA extraction thereby making it difficult to capture soil heterogeneity. It is important to be able to up-scale the results from 1 g of soil to the field or landscape; therefore, sampling strategies for DNA analysis have to be optimized in order to be representative at the landscape scale. The impact of increasing N deposition on natural ecosystems and their GHG emissions is still poorly understood [15]. Nitrogen saturation as reviewed by Aber et al. [79] may be defined as the availability of ammonium and nitrate in excess of total combined plant and microbial nutritional demand. The process leading to nitrogen saturation does not proceed linearly, but in different stages of which the last stage is postulated to be characterized by increased losses of N to the atmosphere (NO, N 2 O, N 2 ) and the hydrosphere (NO 3 ). It depends on the vegetation, the soil type, bedrock and climate how much nitrogen can be retained by the system before it reaches N saturation. For example, a N-limited boreal forest may take longer to become nitrogen saturated than a forest that is well supplied with nitrogen. Ambient N inputs into natural forests vary from 2 to 60 kg ha 21 yr 21 in Europe [80]. Elevated N inputs into natural ecosystems could be expected to raise N 2 O emission rates. Indeed, it has been found that increasing NH 4 þ wet deposition led to increases in N 2 O emission at forest sites [81,82]. Similarly, increased N 2 O emissions were found on transect plots close to a poultry farm receiving elevated N deposition [83]. These dose -response relationships were observed at site scales characterized by homogeneous conditions. It is more difficult to detect significant relationships between N deposition and N 2 O emissions across forests at larger scales with higher heterogeneity. On a regional level (40 km distance), higher soil N 2 O and NO emissions occurred in a beech forest with higher N deposition [59]. Here, between 3.5 and 4.7 per cent of deposited N was re-emitted in the form of N 2 O. There was a strong correlation between N deposition and N emission over time, which shows that low N-input sites are especially responsive to increasing N inputs. As deciduous forests, and especially beech forests, are the forest types emitting most N 2 O, these relationships have to be considered carefully. On a global level (for Europe, see the electronic supplementary material), a meta-analysis of ambient N 2 O emission reports from 23 studies revealed no clear doseresponse effect for N deposition and N 2 O emission [84]. However, N fertilization (ranging from 10 to 562 kg N ha 21 yr 21 ) significantly increased N 2 O emission by an average 216 per cent across all ecosystems (agriculture aerobic/anaerobic, coniferous, deciduous, tropical forest, wetland, grassland, heathland). Furthermore, the meta-analysis revealed a higher N-induced emission factor of 1.43-1.90 across all terrestrial ecosystems compared with the factors calculated for agriculture, which was ranging from 1.0 to 1.2 [85,86]. For non-agricultural ecosystems (n ¼ 42), Liu & Greaver's [84] study approximated an enhancement of N 2 O emissions of 0.0087 + 0.0025 kg N 2 O-N ha 21 yr 21 per 1 kg N ha 21 yr 21 added to the ecosystem. Compared with other ecosystem types, tropical forests emitted more N 2 O under N enrichment (on average þ739%) [84] which points towards unexpected strong feedbacks of soil N 2 O emissions to increasing atmospheric N deposition in the tropics, a currently observed phenomenon [87]. Among the five chemical forms of N fertilizer assessed [84], NO 3 2 showed the strongest stimulation (an average of þ493%) of N 2 O emission. The mean response ratio from short-term studies was significantly higher than that of long-term studies.It should be noted that N 2 O emissions are influenced by multiple interactions of soil, climate and vegetation, which may obscure the nitrogen effect, e.g. the N 2 O-to-N 2 ratio may differ between sites and N saturation on sandy soils may promote NO 3 leaching rather than N 2 O emission. These obscuring effects have to be dissected in order to better understand the true mechanisms behind the impacts of N input.Owing to the dependency of microbial N 2 O production and consumption processes on environmental controls such as substrate availability, redox potential and temperature, N 2 O fluxes from soils are notoriously variable across various temporal and spatial scales. However, understanding spatial variability of N 2 O fluxes is essential to better constrain the magnitude of soil-atmosphere exchange of N 2 O and to design statistically valid measurement programmes to determine flux rates from plot to regional levels.To date, the most widely used measuring technique for quantifying soil N 2 O fluxes is the closed chamber technique. This is simple to use, inexpensive and allows us to study treatment effects as well as to carry out specific process studies. However, it also has severe shortcomings owing to effects on environmental conditions (e.g. temperature effects, soil compaction, plant damage, disturbance of diffusion gradients; [88,89]), limited coverage of soil surfaces (usually less than 1 m 2 ) so that the spatial heterogeneity is often not sufficiently addressed, collar insertion in the soil and cutting of roots or with regard to the temporal coverage of measurements [90]. Owing to manpower constraints, the latter is often limited to weekly-to-monthly measurement intervals, so that estimates of the contribution of fluxes during peak emission periods, for example, following fertilizer application or during spring-thaw periods, are often associated with high uncertainties. Although the problem of the temporal coverage of flux measurements is increasingly addressed by using automated chamber systems, the problem of the spatial representativeness of chamber-based measurements cannot be easily solved. Spatial variability occurs not only in agricultural but also in natural systems [91,92] and is often driven by small-scale changes in soil properties (texture, soil organic carbon, gas diffusivity or water availability), plant cover or nutrient availability.One upcoming new method for investigating spatial variability of trace gas fluxes is the use of the fast-box method [93]. Here, a chamber is linked to a fast and precisely operating N 2 O analyser (e.g. tunable diode laser, TDL). This allows a significant reduction in closure times, so that chamber positions can be changed in minutes, and spatial variability can be explored. By contrast, with standard gas chromatograph (GC) techniques, closure times of 30-60 min are common.Following recent advances in measuring techniques, specifically owing to the commercial availability of laser instruments allowing high precision, accuracy and sensitivity as well as high temporal resolution (less than 1 Hz), the number of studies where micrometeorological methods (e.g. eddy covariance (EC) or gradient techniques) in conjunction rstb.royalsocietypublishing.org Phil Trans R Soc B 368: 20130122 with TDL or quantum cascade laser spectrometers are used to derive N 2 O fluxes for areas more than 0.5 -1 ha is steadily increasing [94,95]. N 2 O flux measurements by micrometeorological methods allow small-scale variability of fluxes to be averaged and provide continuous observations of fluxes. The obtained flux estimate for a much larger area when compared with chamber techniques is fundamental for developing and testing up-scaling approaches. However, the technique is not appropriate in hilly terrain. Nevertheless, a combination of chamber and EC measurements provides both the landscape fluxes required for up-scaling and the fine spatial data needed to study processes.To deepen the understanding of landscape-scale N 2 O fluxes, it will be necessary to further consider topographic effects on soil environmental conditions [96] and, thus, on microbial production and consumption processes involved in N 2 O emissions. Furthermore, an explicit approach is needed to deal with the effects of the dispersion of nitrogen downwind and downstream of its application area, i.e. to quantify not only direct N 2 O emissions owing to fertilizer application at a given site, but also indirect emissions from soils at landscape and catchment scales owing to the cascading of nitrogen [10,11]. A way forward to get a better understanding of the importance of indirect emissions and a quantification of the split of indirect versus direct N 2 O emissions at landscapes is the application of 15 N isotopes in the scope of a medium-size catchment study (0.3 -1 km 2 ), with a catchment comprising different land-use and landmanagement types. This has so far not been done owing to costs for 15 N fertilizers and the limited ability to measure specific N 2 O isotopes to the required precision. Nevertheless, having in mind the dynamic development of laser spectroscopy of N 2 O, which already allows a high accuracy of measurements of N 2 O isotopomers, a sufficient measuring precision is fast becoming feasible.Modelling approaches are needed to estimate N 2 O emissions at various temporal and spatial scales, to assess different mitigation options and to understand and predict feedbacks of global changes (here climate, land-use and land-management changes). These can be simple empirical relationships as emission factor approaches or process-based biogeochemical modelling. Emission factor approaches such as the Intergovernmental Panel on Climate Change approach [97] are a valuable and, at national to continental scales, robust tool to estimate annual N 2 O emissions associated with agricultural practices and land-use change [98]. However, such approaches become inaccurate or fail at finer spatial or temporal scales. Moreover, available emission factor approaches do not account for all management practices that may be implemented to reduce N 2 O emissions from agriculture (different fertilizers types, intercropping, etc.) and are not able to describe the consequences of changing environmental conditions (e.g. prolonged drought periods) on N 2 O fluxes. This failure is a consequence of the highly complex interplay of numerous microbial processes at various spatial and temporal scales such as mineralization, nitrification, denitrification, immobilization, plant N uptake and plant litter production as well as physico-chemical processes such as volatilization, leaching and chemodenitrification (figures 1 and 2) that cannot be described by simplistic empirical emission factor approaches. Within the past decades, a large number of process models have been developed for simulating soil N 2 O emissions applicable either only to one or to several specific ecosystem types (e.g. arable, grassland, forest; [99]). Models can be classified depending on their degree of complexity of descriptions of the main biogeochemical N turnover (mineralization, nitrification, denitrification) and trace gas production, consumption and emission processes into (i) simplified, (ii) conceptual and (iii) complex ecosystem models (figure 3).Simple models follow the concept of calculating a potential denitrification rate which is subsequently modified to an actual denitrification rate by applying reduction factors that depend on actual environmental conditions such as soil temperature, moisture, pH and substrate availability (figure 3a). The reduction functions have to be parametrized independently for different model approaches and are mostly site or ecosystem specific. Moreover, they are semi-empirical, derived from field and laboratory experiments, thereby lumping together different driving factors for microbial processes (e.g. temperature and anaerobiosis). Therefore, these models may be used to reasonably predict the seasonal pattern of N trace gas emissions from soils for a given site, whereas their capability for higher time resolution (e.g. daily) and other sites is generally poor. The well-documented, high short-term dynamics of nitrogen transformation and associated N 2 O emission are driven by complex interactions between microbiological, plant and physico-chemical processes such as gas diffusion or solution-dissolution processes. Therefore, for a more realistic simulation of N 2 O emission patterns, such interactions need to be represented in the respective models in more detail [109].One approach is the adaptation of the conceptual 'hole in the pipe' model ( [110]; figure 3b). This concept describes emissions of N 2 O and NO from soils as a consequence of nitrogen transformations by denitrification and nitrification, with environmental conditions driving process-specific loss rates. Among environmental drivers, soil moisture is often regarded as the most important one. Soil water content in combination with soil physical properties (bulk density, texture)-the latter determining total porosity and pore size distributionis so important because it controls the diffusion of oxygen into the soil. The availability of oxygen is of decisive importance not only for the oxidative process of nitrification, but also for the reductive process of denitrification where oxidized N compounds are serving as alternative electron acceptors. However, oxidative and reductive processes may occur simultaneously in different soil micro-aggregates [106,111], making it complex to numerically describe N 2 O production/consumption processes in soils.The central role of soil oxygen status for controlling N turnover via nitrification and/or denitrification has been acknowledged and has led to a more explicit description of soil hydrology and soil gas transport mechanisms in complex ecosystem N cycling models ( [106,[112][113][114]; figure 3c). The more detailed description of oxygen diffusion and consumption processes in soils allows the estimation of the oxygen concentration in a given soil layer and its use as a proxy to divide the soil into aerobic and anaerobic areas. This allows simultaneous simulation of nitrification and denitrification in a given soil layer [106]. Furthermore, the explicit consideration of oxygen diffusion as well as of concentrations of rstb.royalsocietypublishing.org Phil Trans R Soc B 368: 20130122 gaseous N compounds in the soil atmosphere is a prerequisite to simulate N 2 O and NO consumption processes. For example, NO or N 2 O produced by nitrification and being released to the soil atmosphere can in the next time step either be consumed by denitrification or diffuse to the next soil layer before gases are finally emitted to the atmosphere. Thus, most advanced models mimic the complex interplay of production, consumption and diffusion processes involved in soil N 2 O emissions. In recent years, continuous measurements with high temporal resolution revealed the importance of pulse emission events such as frost-thaw and re-wetting events for the annual N 2 O source strength of a given terrestrial ecosystem [7,115]. To simulate such events, more complex, diffusion-based models can be used to describe microbial biomass and activity dynamics by simulating the sequential biochemical reactions of nitrification and denitrification, for example, the stepwise activation of enzyme chains in dependence of substrate and oxygen availabilities [106,108,109].The increasing complexity of models introduces additional uncertainties where model parameters cannot be clearly constrained. Therefore, to assure and improve the applicability of complex process models, parametric (as well as structural) uncertainties need to be quantified [116][117][118][119]. However, estimation of parameter optimization and uncertainty quantification for parameter-rich complex ecosystem models is still constrained by the high computational demand and the often insufficient structure of existing model codes ( [120,121]; see also electronic supplementary material).Increasing the model complexity is also required, because analysis of global change feedbacks on ecosystems and development of mitigation and adaptation strategies requires a multitarget view. The focus is not just N 2 O soil fluxes but also emissions and losses of other environmentally harmful Nr compounds (NO 3 2 , NH 3 , NO x ), ecosystem eutrophication and its effect on ecosystem biodiversity or changes in ecosystem C and N stocks. With regard to N cycle models, the view should be broadened, because the ecosystem view is often too narrow to represent a specific site. Ecosystem N inputs often depend on external inputs of reactive nitrogen by, for example, atmospheric deposition to a forest ecosystem or lateral water and nitrate influx in riparian areas. This takes the 'simulation problem' from plot or site (one-dimensional) to landscape scale (two-, three-dimensional) and results in a most challenging research topic, i.e. to describe nutrient fluxes and the various transport, emission and deposition pathways in a numerical model to finally mimic biosphere-hydrosphereatmosphere exchange processes for a given landscape [11]. So far, all ecosystem models used for simulating N 2 O emissions are one-dimensional, thus, are neglecting topographical effects on soil hydrology, and in particular, the lateral hydrological transport of nutrients, for example, to riparian zones. Coupling of water and nutrient cycles for simulation of N transport and [103] e.g. ECOSYS [104] DNDC [105,106] COUPMODEL [107] MicNit [108] see list in Heinen [99] scheme : Complex process models calculate N turnover via nitrification and denitrification considering the dynamics of microbes. Nitrification and denitrification N turnover is weighted by calculation of anaerobic-aerobic volume fractions as function of soil oxygen concentrations. For this complex process models take into account diffusion processes which also determine the N 2 O flux at the soil -atmosphere interface, thus in contrast to simplified and conceptual models emission is not equal to production. rstb.royalsocietypublishing.org Phil Trans R Soc B 368: 20130122 losses at catchment or landscape scale have so far mostly been based on one-directional exchange of data [122]. Alternatively, existing hydrological models have been supplemented with simple biogeochemical process descriptions to allow a more detailed simulation of nutrient turnover and associated losses [123][124][125]. Recent developments and awareness of model coupling software enable the linking of different models, even written in different programming languages, which allows for bi-directional exchange of states and parameters between the coupled models [126][127][128]. This approach was recently followed by the newly developed Nitroscape model framework which lumps together atmospheric, farm, agro-ecosystem and hydrological models and allows the simulation of spatial and temporal nitrogen dynamics at the landscape scale. First simulation results illustrated the effect of spatial interactions between landscape elements such as arable land and forests for N fluxes and losses to the environment, thereby highlighting the importance of indirect N 2 O emissions following N deposition and N leaching. Also, these authors [129] highlight the importance of landscapes because they represent both the scale at which land-management decisions are taken and the scale at which environmental impacts occur.It is apparent that quantifying the biosphere-atmosphere exchange of nitrogen is extremely complex, both owing to the wide variety of nitrogen forms and microbial processes that need to be considered (figure 2) and to the challenging problem to overcome spatial and temporal variabilities. Analysing and understanding N fluxes at site but in particular at landscape scale is thus a major emerging challenge that requires a close cooperation of modelling and measuring research communities [11]. This cooperation may deliver more comprehensive datasets guiding further improvement and testing of complex site and landscape model systems that may be the only tool allowing sufficient integration and testing of our increased scientific knowledge [11].In recent years, knowledge on processes and fluxes of N r and N 2 O has advanced tremendously. New tools and techniques (e.g. isotopes, metagenomics) allowed the study and identification of processes and microbial communities involved in N 2 O production and consumption. Translation of this knowledge into models has begun, with models being increasingly used as powerful tools in global change studies. However, it is also obvious that our understanding of soil N cycling processes and the importance of microbial diversity, for example, with regard to the magnitude and spatio-temporal dynamics of soil N 2 O fluxes, is still limited. New approaches for up-scaling processes and fluxes from microbial scale to soil micro-sites, fields, entire landscapes and regions are still required, despite the recent progress. To overcome these shortcomings, there is an urgent need for interdisciplinary cooperation and knowledge transfer, because, for example, communities working on soil microbial processes and microbial diversity, biosphere-atmosphere exchange or modelling are still rather separated and wider perspectives such as C and N interactions or links of the N cycle with hydrology at landscape to global scales often attract little attention.","tokenCount":"7220"} \ No newline at end of file diff --git a/data/part_3/6408170130.json b/data/part_3/6408170130.json new file mode 100644 index 0000000000000000000000000000000000000000..9da6ba23a84c8fd91f1aa008946829c054f5fbde --- /dev/null +++ b/data/part_3/6408170130.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"420b8b4fc6eda901c7eb81893b509eb7","source":"gardian_index","url":"http://ciat-library.ciat.cgiar.org/Articulos_CIAT/socolen_04_melo.pdf","id":"-277892932"},"keywords":[],"sieverID":"45f709a2-a40f-4021-9b6a-ef3bca0404b9","pagecount":"1","content":"En las muestras de Panamá, se identifican nematodos que por sus características morfológicas resultan ser saprófitos, estos se murieron en la solución de almacenamiento de formaldehído, imposibilitando su multiplicación por otros métodos. Las muestras de Colombia se procesan con la metodología propuesta, manteniéndose unas en solución fijadora TAF (Formol + Trietanolamina + agua destilada) y otras vivas en solución de formaldehido al 0.05 %. Todo este material es enviado a Alemania para su identificación por un especialista en técnicas moleculares.Durante la evaluación se encontraron en las larvas de G. mellonella organismos que al parecer se estaban alimentando de ellas, identificando entre éstos a ácaros pertenecientes a las familias Acaridae e Histiomidae, que son conocidos por ser saprófagos y fungívoros.Según el análisis de suelo de estas regiones, donde se identificó la especie, presentan un pH entre 6,4 (Cauca) y 5,2 (Caldas), con una textura entre franco-arcillosa y franco-arcillosa-limosa, respectivamente.Adicionalmente se toman muestras de suelo (500 g), para su análisis fisicoquímico.El proceso para la búsqueda, reactivación y almacenamiento de NEP's en laboratorio se explica en la Figura 3. ","tokenCount":"176"} \ No newline at end of file diff --git a/data/part_3/6416028277.json b/data/part_3/6416028277.json new file mode 100644 index 0000000000000000000000000000000000000000..1eb5ac0c3148b77ed1454d9a9e8527e3031facf6 --- /dev/null +++ b/data/part_3/6416028277.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"ed93f947c6de5a629e2c4b0e8d182336","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/7de30054-a344-4864-a3da-2f7a823a969c/retrieve","id":"-1832712681"},"keywords":[],"sieverID":"739062fe-348c-4ce1-be6f-c773d4980101","pagecount":"4","content":"A well-drained land with a stocking density of 15 animals per hectare.To start a herd, get male animals of above a year of age with wide deep chest, well-sprung ribs, and strong hindquarters. A buck can serve 20 does. A doe should have at least two pairs of teats.• Build a house with either bamboo or mud with thatched roof. Space required is about 2 sq. m. per animal. House should be open on one side. up to 1.2 m on the other three, with a gap of 0.5 m to 0.8 m between the walls and roof, to provide sufficient ventilation without drought. • Housing could be on raised floor made of bamboo with the thatched roof covering mid-way into the pens on both sides. Space could be as above. • Fencing: Leguminous fodder trees like Gliricidia sepium and Leucaena leucocephala should be planted around the edges of the paddock to form a solid fencing and browse plants for the animals. Slatted bamboo or barbed wires can be used to complete the fencing.A quarantine period of 30 days should be observed in bringing freshly purchased animals into a flock. This gives ample time for observation and attack by any disease. Animals of about 15 months of age or 12 kg (about half weight of bag of livestock feed) should be purchased. They should be bought from the villages rather than the market. The incidence of pestes des petitis ruminants (PPR) or \"Kata\" a rinderpest-like viral disease is rampant whenever goats from different sources are gathered in the local markets for sale. Animals are dipped in gammatex or supona solution twice in two weekly intervals. From the first day and for a period of 4 days, the animals should be administered with triple sulphonamide, like theracazan. On the first day of arrival in the farm, they should be immunized with rinderpest hyper-immune serum followed by vaccination with tissue culture rinderpest vaccine (TCRV) on the 11 th day. On the 3 rd and 24 th days of arrival, they should be treated with broad-spectrum anthelmintic e.g., thiabendazole. In the absence of veterinary drugs, newly purchased animals should be watched closely. If there are signs of disease, such animals should be temporarily culled. If the disease persists the animals should be disposed off.Feed adult animals with hay or crop residue free choice plus legume hay at 1-2 kg/animal/day. Maize, soyabean, cowpea, millet or sorghum straws obtained after harvesting can be collected, treated and given to the animals free choice. Dissolve about 0.5 of ash made from cocoa pod husk or 1kg ash from palm bunch into a bucket of water to make a lye solution. Soak as much of the straw as possible into the solution and leave it overnight. Feed it straight the next morning or dry for some few hours before feeding, to increase intake. Animals can then be allowed to graze or browse afterwards.For pregnant does, and freshly weaned animals, it may be necessary to feed some concentrate consisting of 40% wheat offals, 25% brewers' dried grains, 25% palm kernel mean, and 10% cassava peels or cowpea husk, 1% vitamin and 1% salt or supplement with 200g DM of legume fodder per day in the last 2 months of pregnancy and up to weaning at 3 months post partum.Leguminous fodder trees (as under fencing) could be planted in rows on arable land, with food crops planted between the rows. Trees often established by direct seeding may be sown about 2 weeks after food crops like maize, cassava, melon, yam etc. Spacing between trees should be about 25 cm (distance from head to the toe on a foot) with four rows of food crops or 4 strides between two rows of trees. Browsing or cutting could start 1 year after planting. Advantages include provision of high protein fodder for livestock and manure and mulch from the fodder maintain and improve soil fertility for food crops while the trees limit erosion on sloping land.It is better to start a livestock farm during the dry season, as many of the diseases prevalent among small ruminants are commonest during the wet season. In case of outbreak of PPR (Kata), the affected animals should be isolated. Mouth lesions should be treated with dilute solution of potassium permanganate. The animals should be dewormed to control diarrhoea and treated with a potent antibacterial agent for 3 days. Always consult your veterinarian.","tokenCount":"735"} \ No newline at end of file diff --git a/data/part_3/6446158733.json b/data/part_3/6446158733.json new file mode 100644 index 0000000000000000000000000000000000000000..06e64656868e23f446b010fdb63379a75ca416ca --- /dev/null +++ b/data/part_3/6446158733.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"f63a9d12b5be791d920e3c7a238fcaf4","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/3db03005-e023-4fbf-9f53-395356a23d84/content","id":"-753011932"},"keywords":[],"sieverID":"37d1f202-1cac-4b96-9a57-700d616fe6e1","pagecount":"12","content":"CC poses a significant risk to crop production across sub-Saharan Africa (SSA), with ESA particularly vulnerable to the projected changes. Temperature increases are estimated to rise at a rate above the global average during the twenty-first century and it is predicted that by 2050 will significantly change the cropping duration for key staple crops (Cairns et al. 2013;Schlenker and Lobell 2010;Niang et al. 2014;James and Washington 2013;Challinor et al. 2016). Meanwhile, precipitation is projected to increase in parts of eastern Africa but decrease significantly in southern Africa. The combined heat and drought stress in parts of ESA is projected to reduce yields of staple cereals by as much as 30% within two decades (Niang et al. 2014;Lobell et al. 2008).Smallholder, subsistence farmers constitute over 70% of the population in ESA and account for over 75% of agricultural output (AGRA 2017). They are the group most vulnerable to CC and require urgent, scalable access to CS crop varieties with adaptive characteristics that can tolerate future climes. These include; tolerance to combined heat and drought stress, waterlogging and lodging stress, post-harvest storability, maintenance of nutritive value in warmer climes, and adaptation to new and shifting incidences of pests and diseases. To deliver CS crop varieties in CC affected areas of ESA will largely depend on increasing the rate of genetic gain (genetic improvement through artificial selection) for CS traits and the establishment of scalable, competitive seed delivery systems that ensure improved varieties reach smallholder farmers in the shortest time (Atlin et al. 2017).Smallholder farmers' adoption of improved crop varieties in SSA is amongst the lowest in the world (estimated to be 20% by the Alliance for a Green Revolution in Africa (AGRA) 2017), yet the formal seed sector has grown significantly following deregulation of the seed industry regionally in the early 1990s. The emerging private seed sector provides a unique and timely opportunity to promote the development and dissemination of improved, CS crop varieties through certified, scalable seed systems that can potentially impact millions of livelihoods in SSA. In this chapter, the specific roles and constraints for the private sector in ESA in developing and disseminating improved, CS crop varieties are discussed, with particular emphasis on maize (Zeae maydis), the staple food crop and primary source of daily calorie intake in the region.In most of ESA, the plant breeding and seed industries were dominated by public institutions until the mid-1990s, when the seed sector was deregulated. Since then, dozens of private, local seed companies have been established, and several global multinational seed corporations have entered the ESA seed market. The primary focus of seed companies in ESA is maize, the driver of the global seed industry by virtue of acreage and potential for hybridization. The effect of deregulating the seed sector in ESA is highlighted in Fig. 6.1a, b, which show maize variety releases in Zambia and Kenya respectively. Both countries have emerged as leading centers for the seed industry in SSA and serve as important bellwethers of regional trends. In both cases, deregulation of the seed industry has led to a marked increase in the total number of seed companies and, subsequently, maize variety releases. However, the majority of these variety releases have been licensed from existing public breeding pipelines, and it is estimated that less than 25% of seed companies in the region (estimated to be 80 in total) have invested in proprietary germplasm improvement (Langyintuo et al. 2008).Variety releases of other important staple crops in ESA have not emulated maize, in large part due to low commercialisation opportunities for the private sector. Total variety releases for maize, sorghum (Sorghum bicolour), common bean (Phaseolus vulgaris L.) and cassava (Manihot esculentum) are shown in Fig. 6.2a, b for Zambia and Kenya respectively. Even though variety releases of these crops have doubled since deregulation, the cumulative number of releases (for sorghum, common bean and cassava) is still less than 30% that of maize, and dominated by the public sector (over 80% of releases). In Zambia, cassava is an important secondary staple crop, yet only seven varieties (all publically bred) have been released since 1970, the latest in 2001. These crops are important components of food and nutritional security in ESA, where they will play a critical role in diversified, CS agricultural systems. Market incentives are urgently required to better integrate these open pollinated and vegetatively propagated crops into scalable, certified seed systems in the region. Despite the growth of the seed industry in ESA since the 1990s, rates of variety turnover remain slow, and investment into agricultural research and development is extremely low. A handful of established varieties also continue to dominate markets in most countries (Abate et al. 2017). In Kenya, H614D (a variety released in 1986 by the state parastatal) accounts for over 40% of area cultivated to improved maize varieties while in Zambia, the three most widely grown maize varieties were released almost two decades ago, shortly after the deregulation of the seed sector (Smale and Olwande 2014;Smale et al. 2015). The average age of commercial maize varieties in ESA is estimated to be 13 years. South Africa is an exception; with the most competitive seed industry in the region, the life of the typical maize variety here spans 3-4 years, similar to the United States. Most smallholder farmers in ESA are therefore not cultivating the best available varieties for their environment, and in many cases are persevering with obsolete cultivars that were developed under climatic, agronomic and pest conditions distinct from current and future climes. This has contributed to modest yield gains for maize in many countries in ESA (Fig. 6.3). Reasons for slow rates of maize variety turnover in ESA are several and complex. The majority of smallholder farmers in the region grow maize in unpredictable, rain-fed conditions, and are risk averse to investing in inputs and new technologies. Average yields throughout the region are low and genetic gains in yield through crop improvement (usually 1% per year in well managed breeding programmes) are frequently overshadowed by seasonal variations in on-farm climatic conditions and crop management. The incentive for smallholder farmers to invest in new agricultural technologies is further reduced by limited access to grain markets, poor storage and transport infrastructure, as well as counterfeit seed and fertilizer. Without strong demand for new varieties, seed companies are reluctant to withdraw established, well-known varieties and invest in launching and marketing new products.In addition to low rates of variety turnover, investment in agricultural research and development is very limited in ESA. Low income countries (including most of those in ESA) account for less than 3% of global agricultural research and development expenditure, despite being some of the most vulnerable to CC (Pardey et al. 2016). Of this expenditure in ESA, 90% is by the public sector, which continues to Increasing rates of genetic gain will be fundamental to ensuring plant breeders are able to react quickly to changing dynamics caused by CC, many of which are difficult to predict (e.g., shifting incidence and severity of pests and disease). Driving genetic gain for CS traits will require access to appropriate germplasm, reliable phenotyping platforms for traits of interest, and adoption of modern breeding methods that reduce breeding cycle time. Given the current levels of investment in agricultural research and development in ESA, driving genetic gains for CS traits is unlikely to be achieved in the near term without the combined efforts of PPPs. Effective PPPs will utilize the public sector's experience and capacity in the region whilst exploiting the emerging private sectors access to regional markets and expertise in commercial plant breeding, particularly in the case of regional or international companies. Public research institutions in ESA, for example, have developed germplasm adapted to local conditions and are strategically positioned to establish long term regional phenotyping networks for key CS traits, such as drought or emerging disease tolerance (e.g., the maize lethal necrosis (MLN) screening facility in Kenya, developed by the Kenya Agricultural and Livestock Research Organization (KALRO) and the International Maize and Wheat Improvement Center (CIMMYT)).Conversely, the emerging private sector offers a sustainable route to market whilst assuming the costs and responsibility for seed production, quality, purity and distribution. Currently, most small and medium scale enterprise (SME) seed companies in ESA rely on this model to license and commercialise publically developed varieties, although significant bottlenecks persist in accessing foundation seed and legal services to enter mutually beneficial licensing agreements (Cramer, this volume).The entry of multinational corporation (MNC) seed companies into the ESA seed market provides an additional opportunity to develop PPPs around technology transfer and optimisation of breeding pipelines. MNCs have led the global development of applied breeding technology in genomics, phenomics and mechanisation, and can therefore complement ongoing public breeding efforts with modern technology to drive genetic gain. Technologies such as doubled haploids, 1 marker assisted selection, 2 precision phenotyping tools and data management platforms have transformed plant breeding in mature seed markets to develop products quickly in response to customer requirements. MNCs also have access to global sources of elite germplasm for a range of traits that will become more important in ESA as a result of CC (in terms of tolerance to drought, new pests and diseases). PPPs between public institutions and MNCs are likely to focus on germplasm exchange, the creation and release of joint products, the provision of technological services, and shared phenotyping platforms. The relative strengths of MNCs and public breeding pipelines in ESA in terms of driving genetic gain are shown in Table 6.1.1 Artificial doubling of haploids to develop homozygous lines in one generation rather than six generations as required by conventional breeding 2 Use of genetic markers to drive selection for a trait of interest In addition to increasing the rate of genetic gain for CS varieties, regional bottlenecks in releasing, disseminating and adopting new varieties in ESA must be addressed in order to incentivise the private sector to invest in crop improvement, to reduce product life cycles, and to ensure certified seed of CS varieties reach smallholder farmers. ESA presents an attractive maize seed market (currently 20% that of North America) and many countries share common agro-ecologies which eases regional scaling of competitive varieties (Fig. 6.4). The reality, however, is nearly twenty individual nation states with distinct laws, regulations and trade agreements, making ESA a fractured and challenging seed market.For over 20 years regional, intergovernmental bodies such as the Common Market for Eastern and Southern Africa (COMESA) and the Southern African Development Community (SADC) have strongly recommended the harmonisation of seed laws governing variety release, the protection of plant breeder rights and cross border movement and sale of certified seed in ESA (personal communication). For example COMESA's Seed Trade Harmonization Regulations Programme (COMSHIP) calls for the harmonization of release processes across member countries and the development of a regional variety list, where varieties that have been released in two countries can be sold in similar agro-ecologies in all other COMESA member nations (COMESA 2014). However, actual adoption of these recommendations has been slow and most nations maintain separate release processes and laws. As a result, of the hundreds of improved maize varieties that have been released in ESA since the 1990s, less than 5% have been successfully released and marketed in more than one country (Abate et al. 2017).A formal variety release process remains essential in emerging seed markets such as ESA, to protect both farmers and the nascent seed industry from the entry of substandard products on to the market. However, the current regulatory environment in ESA is widely acknowledged to be costly and cumbersome for the seed industry (Bett 2017). Table 6.2 shows the current status of variety release processes in six ESA countries; the intercountry variations that exist throughout the variety release process are limiting market opportunities for seed companies and complicating both stock inventory and the consolidation of production bases.Currently, very few variety release committees (VRCs) in ESA explicitly consider CS traits for variety release (Table 6.2). Given the extra investment and effort required to develop CS varieties, it is necessary to prioritise the release of varieties with these traits to secure private sector interest and commitment. The recent decision by the Kenya Plant Health Inspectorate Service (KEPHIS) to fast track the release of varieties tolerant to maize lethal necrosis (MLN) in Kenya is an example of engaging seed sector support to address an urgent challenge for smallholder farmers. The current outbreak of fall armyworm (Spodoptera frugiperda) throughout Africa provides another opportunity to prioritise a trait that is likely to become more relevant as temperatures increase in ESA as a result of CC.Developing a brand around a CS trait such as drought tolerance represents a major commitment by a seed company to accept a certain degree of responsibility for varietal performance. To support the private sector to assume these risks, regulatory bodies in ESA need to provide a solid framework to protect intellectual property and clamp down on counterfeit seed that can damage farmer confidence in improved varieties. In recent years, there has been growing concern about the prevalence of counterfeit seed on sale in ESA and inadequate efforts by governments and regulatory authorities to address the problem (Mabaya et al. 2017;Bold et al. 2015). In Uganda for example, it is estimated that up to 50% of seed sold as certified seed is either fake or of substandard quality (AGRA 2011;Bold et al. 2015). Joining the International Union for the Protection of New Varieties of Plants (UPOV) and adopting global plant variety protection standards will increase private sector confidence in intellectual property protection and seed quality in ESA, though only Kenya, Tanzania and South Africa are currently members in ESA (Table 6.2).Replacing old varieties with new, improved varieties will be a key pillar to driving agricultural productivity in ESA in the coming years, as it has in other parts of the world (Atlin et al. 2017). The benefits of cultivating improved, CS varieties need to be promoted (via extension services) to smallholder farmers who are operating in rain-fed, suboptimal environments at risk from CC. To drive uptake, the withdrawal of obsolete mega varieties should be encouraged and varieties with CS traits should be prioritised in farmer demonstrations and seed distribution programmes.The emerging private seed sector in ESA provides a significant opportunity to develop partnerships with established public plant breeding programmes, to accelerate the development of improved varieties with CS traits and their subsequent distribution through scalable, certified seed systems. Some 50% of yield gains in most global regions are commonly attributed to genetic gains made through plant breeding. Providing smallholder farmers in ESA with access to the latest, improved germplasm can therefore play a major role in adapting agricultural systems in ESA to CC. The promotion of an enabling regulatory environment for the release and adoption of improved varieties with CS traits will further stimulate private sector interest and investment. This is particularly applicable to the smallholder maize seed market, which is the primary basis for the growth of the emerging seed industry and the foundation of regional food security in ESA.","tokenCount":"2506"} \ No newline at end of file diff --git a/data/part_3/6461854402.json b/data/part_3/6461854402.json new file mode 100644 index 0000000000000000000000000000000000000000..3d57d7e275f25117f8aa7580f824bf03875f27c6 --- /dev/null +++ b/data/part_3/6461854402.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"244f636e636c9e8546b66ee8b1a45d59","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/26a20689-5025-44ed-be41-305ac6cc3b3b/retrieve","id":"-38234712"},"keywords":[],"sieverID":"c75c235b-853c-46b5-ab47-116be727e770","pagecount":"1","content":"b) Revisions of the draft Dairy Industry Act, stalled since 1997, to explicitly recognize and formalize the role of smallscale raw milk traders, as well as increasing the number of groups representing poor farmers.These outcomes resulted from a multi-pronged communication strategy aimed at bringing about policy reform supporting poverty reduction, based on sound SDP research-based policy analysis, and key partnerships with civil society organizations. This communications strategy led to the 2004 CGIAR Communication Award.SDP has also created greater regional awareness among policy-makers in Uganda, Tanzania and Ethiopia of pro-poor policy implications, particularly related to small-scale milk markets. Working with ILRI, ECAPAPA/ASARECA are building on SDP/ILRI policy recommendations to seek harmonized pro-poor dairy policies in the region.SDP extension materials and market agent training materials and methods, have been taken up by several other Kenyan NARS, Ministry, and NGO led studies and projects in Kenya and by ILRI and local partners in India.www.smallholderdairy.org","tokenCount":"151"} \ No newline at end of file diff --git a/data/part_3/6470551435.json b/data/part_3/6470551435.json new file mode 100644 index 0000000000000000000000000000000000000000..8a18b65259aa5f9d609e5e35ef28339fab82448e --- /dev/null +++ b/data/part_3/6470551435.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c27225faeb3413a369539053acbcf9aa","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/53dbbe48-2a62-469e-80a3-040236f232a4/retrieve","id":"-576151364"},"keywords":[],"sieverID":"455480ec-b080-44b0-9dd6-e1cdfeb5a37f","pagecount":"12","content":"Le Centre technique de coopération agricole et rurale (CTA) est une institution internationale conjointe des États du Groupe ACP (Afrique, Caraïbes, Pacifique) et de l'Union européenne (UE). Il intervient dans les pays ACP pour améliorer la sécurité alimentaire et nutritionnelle, accroître la prospérité dans les zones rurales et garantir une bonne gestion des ressources naturelles. Il facilite l'accès à l'information et aux connaissances, favorise l'élaboration des politiques agricoles dans la concertation et renforce les capacités des institutions et communautés concernées.Le CTA opère dans le cadre de l'Accord de Cotonou et est financé par l'UE.Pour plus d'informations sur le CTA, visitez www.cta.int.TCHAOU Donald est le promoteur de TIC-Agribusiness Center, une entreprise basée au Bénin spécialisée dans des questions de l'utilisation des TIC en milieu rural pour améliorer la production agricole. Il propose aux partenaires techniques et financiers, aux ONG, aux fédérations des groupements de producteurs et aux services déconcentrés du ministère de l'agriculture de nouvelles approches basées sur les TIC (les vidéos expliquant des pratiques innovantes pour l'amélioration du rendement agricole des producteurs, les applications et d'autres outils qui favorisent le renforcement des connaissances des producteurs). Nous avons aussi conçu des outils de formation et d'évaluation des producteurs basés sur les jeux de carte. Nous développons des applications jeux pour la formation des jeunes producteurs. Nous avons aussi créé une bibliothèque agricole qui rend accessibles les actions des acteurs du monde agricole.Les documents de travail du CTA présentent des travaux en cours et des conclusions préliminaires, et n'ont pas été officiellement revus par des pairs. Ils sont publiés pour susciter des commentaires et favoriser les discussions. Les opinions exprimées sont celles de l'auteur/des auteurs et ne reflètent pas nécessairement les opinions ou les politiques du CTA, des bailleurs de fonds ou des partenaires. Toutes les images demeurent la propriété exclusive de leurs auteurs et ne peuvent être utilisées à aucune fin sans l'autorisation écrite de la source.Ce travail est autorisé en vertu d'une licence internationale Creative Commons paternitépas d'utilisation commerciale -ShareAlike 4.0. Cette licence s'applique uniquement à la partie du texte de la publication.Veuillez adresser vos commentaires sur ce document de travail à Benjamin K. Addom (addom@cta.int), Coordinateur de programme, TIC, au CTA. Des petits producteurs, il en existe des centaines, voire des milliers dans la région de l'ATACORA (département du Bénin situé au nord-ouest). Ils sont pour la plupart des producteurs de produits maraîchers, de fruits ou de petites quantités de céréales. Leurs productions sont généralement de faible quantité pour plusieurs raisons, telles que le manque d'encadrement, le manque de soutien, les problèmes liés à la terre. La majorité de ces petits producteurs sont des femmes et des jeunes. Leur désorganisation ne leur permet pas de bénéficier de l'aide de l'État, ni du soutien des partenaires au développement. Ils sont laissés pour compte. Cette situation nous a amené à réfléchir afin de trouver un mécanisme pouvant leur faire comprendre qu'ils doivent se mettre ensemble, et exploiter tous les moyens qui s'offrent à eux. Ceci n'a pas été une tâche facile, car ils ne voulaient pas comprendre ce qu'on leur disait. Ils se sont montrés très réticents. Alors, la meilleure solution qui s'est présentée à nous a été de réinventer la roue : simplement trouver des modèles de petits producteurs qui se sont regroupés pour mieux réussir. Nous avons également décidé d'utiliser ces mêmes moyens pour leur encadrement afin de régler cette inégalité. Cela a permis de garantir à tous ces petits producteurs en particulier, et aux couches vulnérables en général, une forte productivité avec le peu de surface de terre qu'ils possèdent, tout en la protégeant pour bénéficier de ses services pendant longtemps.Pour commencer, il a d'abord fallu les réunir en coopérative pour mieux les aider. Pour y parvenir, nous avons cherché sur des sites des expériences de petits producteurs, pour les leur exposer. Nous avons trouvé sur des plateformes d'échange et sur des sites Internet plusieurs informations telles que des vidéos pré-enregistrées, et plusieurs autres illustrations très convaincantes. Grâce à ces informations, et après plusieurs séances de projection vidéo et des appels à des regroupements lancés sur la chaine de radio communautaire, une vingtaine de groupements de petits producteurs a été créé. Grâce à ces regroupements, les problèmes ont été identifiés. On peut citer entre autre comment trouver de la semence de qualité, des engrais à moindre coût (vu qu'ils ne sont pas dans la politique de distribution et de subvention des engrais de l'État), la conservation de leurs produits… L'utilisation des TIC pour améliorer leurs rendements était devenue la seule alternative, la plus facile, et la plus efficace. Nous avons adopté des stratégies pour travailler en commun accord avec ces producteurs, ce qui nous a permis de faire beaucoup de progrès. Vous trouverez ci-dessous deux exemples de l'utilisation des TIC au profit des petits producteurs.Trouver de nouvelles semences de qualité à fort taux de rendement, ainsi que de nouvelles techniques culturales sur Internet pouvant être utilisées facilement par le paysan le moins lettré est l'un de nos objectifs. Nous recherchons sur le Web de nouvelles cultures, des semences, et de nouvelles techniques pouvant permettre aux paysans de s'adapter aux exigences de la nature et du marché. Au cours de nos recherches, nous avons rencontré des sociétés de vente de produits agricoles, des organisations travaillant dans le domaine, ou des distributeurs de produits agricoles. Ce fut le cas de la société qui commercialise des engrais biologiques du nom de HERBAGREEN et de plusieurs autres cultures telles que la tomate, les carottes… Nous avons été séduits par la qualité de leurs produits et les avantages que peuvent en tirer les paysans grâce à leur utilisation. Nous sommes entrés en contact avec les fournisseurs via email, lesquels nous ont mis en relation avec leurs distributeurs en Afrique de l'ouest. Grâce à des documents qui nous ont été envoyés et des échanges que nous avons eu avec les distributeurs par vidéoconférences, nous avons choisi d'adopter leurs produits, car ils permettent de protéger le sol, augmentent le rendement de 20 à 40 pour cent, engendrent une réduction d'engrais conventionnel, démontrent une tolérance par rapport au gel et à la sécheresse… Au vu de tout cela, nous avons décidé de proposer les produits aux organisations paysannes de jeunes et de femmes avec lesquelles nous sommes de plus en partenariat. Outre l'engrais, plusieurs types de semence nous ont été proposés.Avant de confier le produit à nos braves paysans, nous avons procédé à trois types d'expériences : la première a consisté à maîtriser le produit (connaître ses exigences, et vérifier l'hypothèse des fournisseurs). La deuxième expérience est survenue une fois les hypothèses vérifiées par nos jeunes agronomes au cours de la première. Elle a consisté à tester le produit en présence des représentants des groupements de paysans, et sur des superficies plus larges. La troisième phase de notre démarche ne fut pas une expérience en soi, mais une phase de sensibilisation de masse dans le but de mieux faire connaitre les produits à tous les agents des secteurs. Elle s'est appuyée sur la radio communautaire, les expositions, des tournées dans les villages, et bien d'autres actions encore.Pour mieux comprendre, prenons l'exemple de l'engrais biologique et de la semence de tomate proposés par le même fournisseur, et l'engrais biologique du premier fournisseur et une semence de tomate proposée par un autre fournisseur.Première expérience : il s'agit de vérifier de façon pratique tout ce qui nous a été rapporté par le fournisseur avant de proposer les produits aux bénéficiaires. Dans cette phase, nous restons de façon permanente avec le fournisseur afin de suivre ses instructions dans l'utilisation de son produit. Nous travaillons par vidéoconférence afin de poser toutes les questions possibles et recevoir la formation nécessaire pour obtenir le rendement promis. L'email nous permet d'envoyer les photos de nos expériences et de recevoir tous les documents nécessaires. L'expérience consistait à utiliser l'engrais avec des cultures traditionnelles auxquelles nos cultivateurs sont habitués et d'utiliser le même produit pour les nouvelles semences. Les résultats de ladite expérience sont inscrits dans le tableau cidessous : Cette stratégie nous a permis de retrouver plusieurs centaines de semences et des techniques de culture ou engrais tant biologiques que chimiques. Car nous recherchons toujours toute information et tout produit pouvant nous permettre d'améliorer la productivité de nos petits exploitants. Plusieurs semences ou techniques nous ont permis d'avoir une augmentation notable du rendement (20 à 40 pour cent) ; une durée de maturité très courte, permettant de cultiver plusieurs fois sur une même terre au cours de la même saison ; une réduction d'engrais conventionnel atteignant jusqu'à 50 pour cent ; une semence de qualité pour la saison suivante ; une réduction des problèmes liés aux insectes indésirables, en augmentation. Tous ces avantages ont permis à la plupart des petits exploitants de quitter le rang de petit producteur pour devenir des producteurs de masse, grâce à une qualité de produits qui répond aux exigences du marché.La plupart des produits de nos petits exploitants sont vendus sur le marché local pour la consommation. Mais avec le temps, nous avons constaté que le besoin en formation devenait de plus en plus récurrent car les commerçants se plaignent de la qualité des produits, surtout ceux vendant des fruits tels que l'ananas, la papaye, et bien d'autres fruits dont la durée de conservation est très limitée à cause de l'utilisation d'engrais chimiques. Nous avons ainsi décidé de nous rapprocher de ces jeunes paysans pour identifier les causes réelles de leurs problèmes. ","tokenCount":"1572"} \ No newline at end of file diff --git a/data/part_3/6477581571.json b/data/part_3/6477581571.json new file mode 100644 index 0000000000000000000000000000000000000000..19b73a33a1965c79fb32bde48e6a1fc2b6a94387 --- /dev/null +++ b/data/part_3/6477581571.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"3f1d0696e3fb66e7e49c9f9db545faa8","source":"gardian_index","url":"https://www.cifor.org/publications/pdf_files/OccPapers/CIFOR-ICRAF-OP-13.pdf","id":"1548333582"},"keywords":[],"sieverID":"1b6f7d47-144f-4683-ad57-61b73e8abff7","pagecount":"51","content":"The designations employed and the presentation of material in this publication do not imply the expression of any opinion on the part of CIFOR-ICRAF, its partners and donor agencies concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.iiiTables 1 Emissions reduction strategies for key agricultural, forestry and fishery industries in Vietnam 2 Macro-level policies with significant influence on the implementation of low-emission food production systems 3 Province-level policies for socioeconomic development, environment and food security in the Mekong Delta 4 Main functions and tasks of relevant stakeholders in the formulation, implementation and monitoring of economic, social and environmental policies in the Mekong Delta 5 Guidelines and recommendations for a low-emission food system in the Mekong Delta 6 The potential risks of implementing socioeconomic development policies for coastal ecosystems and food system emissions reduction in the Mekong Delta 7 Challenges for specific types of foodThe Mekong Delta is the southernmost region of Vietnam, and is made up of 13 provinces and centrally-run cities. These include Can Tho, An Giang, Kien Giang, Ca Mau, Dong Thap, Long An, Tien Giang, Vinh Long, Ben Tre, Tra Vinh, Hau Giang, Soc Trang and Bac Lieu. According to Resolution 81/2023/QH15, which provides socioeconomic zones based on a national master plan, the area holds an important political, economic and military position in Vietnam, as well as being an agricultural production and export centre, and the country's largest marine economic region (Vietnam National Assembly 2023). The Mekong Delta region produces 50% of Vietnam's rice, 95% of its rice exports, 65% of its aquaculture output, 60% of its fish exports, and 70% of its fruits (VNA 2022). Can Tho, An Giang, Kien Giang and Ca Mau are the region's four key cities economically; they are Vietnam's leading centres for rice production, farming, fishing and seafood processing (Truong 2022;VUSTA 2010). Total export turnover for agricultural, forestry and fishery products from the region reached USD 29.13 billion in the first seven months of 2023, a 9.1% decrease from the same period in 2022. Businesses in some industries are capitalizing on market opportunities. Exports of vegetables (USD 3.2 billion, up 68.1%), rice (USD 2.58 billion, up 29.6%), coffee (USD 2.76 billion, up 6%) and cashew nuts (USD 1.95 billion, up 9.8%) have increased (Anh Phuong 2023). Although the agricultural sector is critical to Vietnam's economic development and social security, it is also a significant emitter of greenhouse gases (World Bank 2022). In Vietnam, three sectors lead on emissions: rice farming, livestock farming and land use. Livestock farming and land use contribute at least 20% of greenhouse gas emissions, while rice farming accounts for just half of that (Nguyen and Minh 2023). According to the Ministry of Agriculture and Rural Development (MARD), the livestock industry in Vietnam contributes 25% towards the agricultural sector's GDP. One of the fastest-growing agricultural subsectors, this industry emits more than 15 million metric tons of CO 2 equivalent annually (Nguyen 2023b).The Mekong Delta is the first region in Vietnam to have provinces sign a commitment with the Ministry of Agriculture and Rural Development to reduce greenhouse gas emissions in agriculture and develop an action plan for achieving the emissions reduction commitments mentioned in the National Voluntary Commitments (Van Khuong 2022). However, in order to achieve the goal of reducing emissions and ensuring food security for the entire country, the Mekong Delta faces numerous challenges. These include increasing population pressure and climate change; market requirements that are becoming increasingly stringent; fluctuations in product prices having an impact on people's lives; and a lack of uniformity in policy mechanisms and intersectoral coordination to reduce emissions across the product supply chain as a whole, rather than focusing on single agricultural products. There is also a lack of clarity on food systems definitions, as well as a scarcity of databases and scientific evidence on low-emission food system solutions in Vietnam and the Mekong Delta. This makes it difficult for policymakers and other stakeholders to implement effective policies and operations.This report details some of the opportunities and challenges for reducing emissions in the Mekong Delta food production system. It also provides recommendations on how to improve this system in future, based on review and analysis of existing policies, analysis of secondary documents, and the results of national consultation workshops with relevant stakeholders 1 . The report also discusses the Vietnamese government's conceptualisations of the food systems, as well as the direction Vietnam is taking to achieve the dual goals of food security and greenhouse gas reduction. The report is divided into six sections. Section 2 follows this introduction with a definition of food systems as they are currently practiced around the world. Section 3 delves into Vietnam's approach to and definition of food systems. Section 4 presents opportunities and benefits for the Mekong Delta in implementing a low-emission food system, while Section 5 explores challenges for this region when reducing food system emissions. The final section of the report provides recommendations to help the Mekong Delta achieve its dual goals of lowering emissions and developing agriculture to ensure food security.• Natural and environmental conditions and the impacts of climate change • Regulations and legal systems around land-use management, urban planning, benefit sharing, food security, taxes and gender equality, economic and social development and national defence • Science and technology application in the agricultural sector for sustainable development and reduced emissions • Global politics and trade ii. Activities relating to the production, harvesting, storage, transportation, purchasing, processing, packaging, distribution, preparation, use (e.g., cooking methods and serving), buying and selling of food. Even activities and behaviours that lead to food loss and waste need to be considered. iii. Food system stakeholders, including households, companies, businesses, researchers, policymakers, investors and financiers, media and press, buyers and intermediaries, women and vulnerable groups, and civil society organizations. iv. Objectives and expected output. A sustainable food system is one that provides food security and nutrition in a way that is sustainable in terms of the environment, economy and society, without negatively impacting future generations (HLPE 2014). A low-emission food system does not mean prioritizing emissions reduction, but rather a system that ensures food security, poverty reduction, and economic and social development while reducing emissions as much as possible.There is global debate around definitions and concepts related to food systems in general, and low-emission food systems in particular. With no unified concept, each country defines food systems and low-emission food systems differently. This report incorporates the definition proposed by the High Level Panel of Experts on Food Security and Nutrition in 2014, as well as the perspective of the Low-Emission Food Systems project (MITIGATE+ Low-Emission Food Systems, CGIAR 2 ).By this definition, a food system is a system that encompasses \"all elements and factors (environment, people, inputs, processing, infrastructure, institutions, etc.), activities related to the production, processing, distribution, preparation, use, and sale of food, and the outputs of these activities, including socioeconomic and environment\" (HLPE 2014), see also Figure 1.The following must be considered when designing and implementing policies and interventions aimed at improving food systems in a sustainable way that results in lower emissions: i. Causes and factors affecting the food system, including:• Demographic-related factors (e.g., population growth, urbanization) • Socioeconomic factors (e.g., market demand and forecast, labour structure, financial income between regions) • Social and cultural factors (e.g., social values, stakeholder perspectives and preferences, knowledge and literacy, gender equality, stakeholder engagement)2The CGIAR Initiative on Low Emission Food Systems, also known as Mitigate+, collaborates with stakeholders in a variety of countries to provide them with the knowledge, information and tools they need to make decisions and overcome challenges in developing and implementing policies to reduce food system emissions based on scientific evidence. The review of secondary documents revealed there is no clear definition of the food system in legal documents issued by Vietnam. Instead, Vietnam focuses its policies around food security, and reducing emissions for socioeconomic development and environmental protection.The Vietnamese government views food security from many angles and considers it a problem that requires a multisectoral, coordinated approach at both the international and national levels, as well as across regions and provinces (Government of Vietnam 2021), as seen in Figure 2.Resolution 34 NQ-CP (Government of Vietnam 2021) on ensuring national food security by 2030 also specifies the direction of policy and specific solutions to achieve this goal (Figure 3 and Figure 4).Vietnam's national food security programme focuses on developing key agricultural sectors including rice, livestock and fisheries, fruit trees and crops with the goal of improving rural people's income and ensuring the nutritional needs of all people, especially young children.The secondary document review shows that reducing emissions in agricultural production is of concern to the Vietnamese government, and there are many policies guiding provinces on how to carry out this important task.Without directly mentioning a low-emission food system, Vietnam's policies and directions do consider the four elements that compose the food system: • Producing more rice is not necessarily a solution for food security it help s farmers get rich, but requires a multisectoral, multidimensional approach • More production does not mean higher profits • There needs to be a clear distinction between meeting political social and public goals and economic and commercial goals, creating reasonable and sustainable profits for agricultural workers, rice farmers in particular• Focus on one key region the Mekong Delta to focus on public investment in agriculture and food with different incentive policies. This is intended to attract private investment• For other regions and regions, fields and sectors other than agriculture are prioritized.• The province implements development plans as set at the central level• Build a development model based on specific regional characteristics C D• Prioritize the development of low emission agriculture that is resilient to the impacts of climate change with the goal to make Vietnam a centr e of food innovation in the region• Vietnam is committed to continuing to actively contribute to global food security through maintaining stable exports of rice and other agricultural products, and is ready to work with the international community to resolve food insecurity arising from the impact of conflict• Food security contributes to helping Vietnam promote economic diplomacy, focusing on people and businesses• Ensuring Vietnamese rice exports support international food security• Promote cooperation between Vietnam China Africa and the European Union• Ensuring food security is not just about focusing on Vietnam but also includes support and relief for other food insecure countries• Food security is both a goal and a solution for Vietnam's socioeconomic development• Food security is not only ensuring enough rice and food crops, but also ensuring people's nutritional needs and livelihoods• Switch from a focus on general food until full to clean and nutritious food• Ensuring food security is not just about enough rice, but also includes meat, fish, vegetables and other food crops• Shifting from food production to food business ', improving the added value of cleaner food products and creating enrichment opportunities for farmers• National food production processing and trad e ensures two goals ensuring food security and meeting commercial and profit needs to survive, develop and increase investment in capacity development.• Remove subsidy policies that can lead to deforestation • Contributing to the process of modernization and industrialization, eliminating hunger and reducing poverty, improving people's lives Note: Food safety is defined in the Law on Food Safety 2010 as the assurance that food does not cause harm to human health and life. Being central to food production and security in Vietnam, the Mekong Delta is considered a model for implementing the vision of a sustainable food system and reducing emissions, as described in Section 3. The secondary document review and national workshop discussions both highlight many opportunities for the Mekong Delta in implementing a low-emission food system.The World Bank estimates that mitigating climate change for Vietnam in general and the Mekong Delta region in particular requires reducing emissions and increasing economic resilience, necessitating at least USD 114 million initially and USD 254 million by 2040 (Tran 2023).During 2016-2020, across the Mekong Delta the average annual budget allocated to 28 provinces and cities for ensuring food security and responding to climate change increased by 53%. This effectively amounted to an increase from 16% to 21% of the total allocated budget (VNS 2022a). As well as state budget allocations, foreign sources of capital relating to emission reduction and food security also generated conditions for policy and practice actions to be implemented more quickly. The World Bank, for example, has provided USD 40 million of funding support for the 1 million hectares of rice emission reduction project, along with USD 60 million for a project to develop the future carbon credit market. USD 20 million of support has also been granted by the World Bank on a nonrefundable basis to support the project 'Developing 1 million hectares of high-quality rice cultivation to reduce emissions associated with green growth in the Mekong Delta to reduce emissions' . This project is also expected to receive VND 12,000 billion of state investment and VND 8,400 billion is from the private sector, and the remainder is from other sources (Do 2023). Nationwide projects that combine rice with aquatic products (like shrimp and rice, or catfish and rice) to reduce emissions, improve economic efficiency, and meet the specific conditions of each locality, are also receiving total funding support of about VND 9,500 billion from the state budget ( Cao and Hoang 2018;MARD 2023). The formation of a Vietnamese carbon market, coupled with international carbon market needs, has also created additional incentives, in the form of reducing emissions from the agriculture, forestry and fishery sectors to be able to sell credits and increase income. The project's goal is to form a specialized high-quality rice production area with a production system organized according to the value chain, applying sustainability standards to adapt to climate change and reduce greenhouse gas emissions, improve the efficiency of production and business systems, increase rice growers' income, ensure national food security and social stability, and improve the quality and reputation of Vietnamese rice products on the global market. The aim is for greenhouse gas emissions to decrease by more than 10%, Vietnamese branded rice exports to account for more than 30% of the total rice exports of the entire specialized farming region; and the average profit of rice farmers to be stable and reach more than 40% of total revenue. This strategy aims to:• create a favourable environment for livestock enterprises to improve breeding, nutritional feed, livestock processing, science and technology and reduce environmental pollution.• support the livestock industry to promote implementation of measures to ensure disease prevention through biosecure livestock farming and strengthen trade promotion to expand Vietnam's market share in other countries.• reorganize the livestock industry towards industrial and semi-industrial farming (associated with traditional and organic livestock), gradually reducing small-scale farming; at the same time as building a centralized industrial slaughtering and processing system.to develop a livestock value chain that links farmers into cooperative groups to facilitate capital support and investment into feed, breeding, animal welfare and consumption of animals. Through cooperatives, it is necessary to promote the role of businesses and associations to control epidemics, cut down intermediaries, and ensure the safety of food; at the same time as regulating market supply and demand.This also specifies emission reduction directions for the livestock industry, including:(i) Improving food rations for dairy cows, beef cattle, buffaloes, and goats:• use silage forage in the diet to minimize methane emissions• use food mixing analysis software• use preparations that inhibit methane synthesis or absorption (3NOP, activated carbon, Zeolite) and roughage with high tannin content in the diet (ii) Improving technology to reuse livestock waste as organic fertilizer: applying microbial technology in composting, and faeces and urine separation technology in pig farming to improve the efficiency of livestock waste treatment and organic fertilizer production.This identifies development goals for the fisheries industry as developing circular economy and green economic models for environmental protection and sustainable development.To reduce emissions, the fisheries industry is striving to develop a circular economy model, in which design, production, consumption and service activities aim to reduce the exploitation of raw materials, extend product life cycles, limit waste generated and minimize negative environmental impacts. The circular economy model will encourage the application of technical advances in processing, preserving and transporting seafood, reducing postharvest losses to utilize and save input materials, encourage research and development, and produce economically valuable products from by-products to reduce emissions and utilize resources.A sustainable approach is also important for international markets; the EU imposed a 'yellow card' on Vietnamese seafood exports in 2017 in relation to illegal, unreported, and unregulated (IUU) fishing. Sustainability must be guaranteed if the EU are to lift this yellow card status (VnExpress International 2023).Table 1. continuedThe ultimate goal is to preserve biodiversity and resources in the sea. The shrimp industry in particular needs to convert to a circular economy production model. The goal is to encourage 'green' inputs, and the reuse of all waste sources for other production processes.Shrimp farming households and farms should therefore convert to closed circulation, multi-species farming in one pond and combined production farms (that produce shrimp alongside other species), as well as use 'green' inputs like solar power, stop using chemical fertilizers, increase organic absorbing species (suspended matter), and increase inorganic absorbing species (nitrogen, phosphorus) (Chu Khoi 2023).The Department of Fisheries is also tasked with investigating, evaluating, cataloguing, monitoring and producing statistical data on substances that deplete the ozone layer, as well as energy use in fisheries, to identify activities to reduce GHG emissions in the fisheries sector after 2030 (MARD 2023).Scaling up agroforestry models to improve carbon stocks and conserve soil; evaluating and selecting successful agroforestry models in diverse ecological regions; investment into replicating selected agroforestry farming models; training and coaching for households, individuals and communities; investment and preliminary processing of agricultural and forestry products; and market access. These goals are supported with a budget of about VND 704 billion, of which 50% of the budget is from international sources.The state has a mechanism to provide capital support to households participating in forest protection and development, to develop agroforestry, non-timber forest products, livestock raising, and growing agricultural crops. This financial support is given as alternative income to farmers who have not generated income from forest-related activities, thereby reducing the clearing of forests.The state also has objectives for land area intended for production forest development: 0.62 million hectares of depleted natural forest land will be used for forest restoration and agroforestry production. Various forest garden, agroforestry and forestry extension models will be used to implement this project. These have proven highly effective, with the result that many agroforestry models yield an average harvest of VND 8-10 million/ha/yearImprove economic efficiency by converting ineffective rice land to upland crops suited to the specific conditions of each locality.• Expand application of technical cultivation and management measures for upland crops (e.g., fertilizer application, pest and disease management, economical water management).• Replace urea nitrogen fertilizers with slow-release fertilizers, controlled-release fertilizers and high-quality complex fertilizers, improve fertilizer use efficiency, and reduce GHG emissions.• Collection, management and reuse of crop residues; apply centralized collection, treatment and reuse processes and technologies to improve economic efficiency and reduce emissions.Source: MARD (2021, 2023), Hai Anh (2022), Anh Quang and Ngoc Son (2023), Prime Minister (2022a), Pham Hai (2023), Phung (2023).continued to next page • Develop the Mekong Delta in the direction of sustainable development, green growth and climate change adaptation; focus on protecting, improving and developing natural, social and economic capital; take a people-centred approach; consider water resources as key; integrated management of water resources throughout the basin to ensure environmental resources are maintained for both environment and people; transforming livelihood models in subregions towards proactive climate change adaptation.• Transform from a growth model towards increased efficiency and value, focusing on effectively promoting human resources, science and technology, innovation, promoting urban and industrial development, and digital transformation in natural resources development.• Transforming the development model from distributed and small to centralized; developing agricultural economic clusters associated with urbanized and industrialized areas to catalyse development.• Strengthen links between localities within the Mekong Delta, with Ho Chi Minh City and across the southeast region; expand trade with countries in the ASEAN region, particularly countries in the Mekong subregion.• Streamline socioeconomic development with ensuring national defence and security, maintaining political stability and social order and safety; focus on ensuring food security, and protecting water resources, borders, seas and islands.Improvements and reforms that, if actioned, could ensure a better food production system in the Mekong Delta include:• Promote scientific research in new fields like circular economy and payments for ecosystem services, and improve the application of science and technology to increase the added value of products.• Comprehensive development of the product chain according to the competitive advantages of each segment.• Innovation in land management to encourage concentration and accumulation of land to serve large-scale, highly competitive and effective agricultural commodity production. Although encouraging large-scale production and land accumulation will reduce the costs of export reduction, land accumulation often has a disproportionately large impact on vulnerable groups. If there is no social safety policy to support this group, it can lead to negative consequences.continued to next page• Focus on a regional approach based on the Mekong Delta Coordination Council model, and strengthen cooperation with Mekong subregion countries.Resolving cross-border issues through alliances and the Coordination Council not only helps Vietnam enhance its position in the region, but also solves macro issues of institutions and policies. Awareness raising in the agricultural, forestry and fisheries sectors using a mechanism to encourage businesses, organizations, communities and people to participate in the value chain through production, processing and consumption of key products, and develop agricultural economic clusters in the region.• Mobilize sustainable financial resources from foreign organizations and businesses, and build a market to pay for environmental and ecosystem services to ensure investment in ecosystem restoration. • mprove institutions and development policies and promote regional connectivity.• Develop development plans for each locality in the region on the basis of the Mekong Delta Regional Plan for 2021-2030 with a vision to 2050, ensuring a connected, streamlined, unified approach that is efficient and effective in the long term.• Accelerate the pace of urbanization and improve the quality of life of people living in urban areas in response to climate change; develop economic zones in key urban areas, as well as industrial parks and industrial clusters.• Develop agricultural hubs associated with specific agricultural produce areas, connecting with urban centres, including: a generalized hub in the city of Can Tho connected to logistics and services development in Hau Giang; hubs in An Giang and Dong Thap connected to areas producing fruit, freshwater aquatic products and rice; hubs in Kien Giang, Ca Mau, Soc Trang connected to coastal aquatic raw produce areas; and a hub in Tien Giang and Ben Tre for fruit and vegetable growing areas.• Invest in new construction and modernization of irrigation systems to upgrade and ensure sustainable agricultural development in diverse ecological subregions; integrate irrigation works and basic infrastructure in areas needing immigration; implement a project to prevent and control riverbank and coastal erosion by 2030.• Prioritize the development of socioeconomic infrastructure systems, especially transportation infrastructure, and improve the transportation network; rapidly develop infrastructure to respond to climate change; develop modern, efficient information technology infrastructure; promote links between, and integration of, urban economic corridors.• Promote regional economic restructuring, moving from a growth model to enhanced application of scientific and technological innovations so as to develop a digital, green and circular economy that considers the ecosystem, respecting the biodiversity, culture and people of the Mekong Delta.• Developing a green industry using clean, renewable energy associated with forest and coastal protection; develop industry by focusing on processing and information technology.• IDevelop sustainable, ecological agricultural commodities focusing on key products, including seafood, fruit and rice, associated with agricultural, forestry and fisheries clusters and hubs; focus on improving agricultural production efficiency, and developing high-tech clean, organic agriculture in new rural areas.Table 2. continued• Develop the marine economy, with a focus on tourism, marine services, maritime economy, oil and gas exploitation, renewable energy, offshore aquaculture, economic zones, coastal industrial zones, regenerating aquatic resources and protecting marine biodiversity, developing Kien Giang into a national marine economic centre.• Strengthen the management and effective use of resources, especially land and water resources; protect the environment, respond to natural disasters and proactively adapt to climate change. Use a zoning system to extract, use and protect water sources; control and limit use of underground water sources and pilot flow regulation; put in place policies and financial mechanisms specific to the region's water sector; promote international cooperation to protect and effectively use Mekong River water resources. Proactively control floods, prevent and combat riverbank erosion; invest in irrigation systems to control water sources; increase the region's capacity to proactively extract, store and drain water and regulate floods; establish a biodiversity corridor connecting Ca Mau Cape National Park, Dam Doi Bird Sanctuary, and Can Gio Biosphere Reserve; form a biodiversity research centre in Phu Quoc.• Develop science and technology, using innovation and digital transformation to drive regional economic growth. Develop and apply biotechnology and environmental technology to develop circular economic models.• Focus on investing and developing digital infrastructure to support a digital government and economy. Improve operational efficiency in hightech and information technology parks; develop a Regional Centre for Entrepreneurship and Innovation in the city of Can Tho; and ensure Can Tho High-Tech Park becomes a national example which can be learnt from. Project aims are to:• Enhance capacity to proactively apply adaptation measures, limit negative impacts, and take advantage of any opportunities brought on by climate change to support sustainable economic development.• By 2025:− 100% of agricultural cooperatives in the Mekong Delta will receive capacity building and training to increase their awareness of climate change and potential adaptation measures in business, production, processing and preservation within agriculture, forestry and fisheries;− Each province will have 3-5 agricultural cooperatives using effective climate change adaptation measures, as well as circular economy models that based on research, education and replication;− 100% of agricultural cooperatives in the Cai Lon-Cai Be watershed will be applying effective climate change adaptation measures;− Basin cooperatives will increase economic efficiency per unit of agricultural land area by an average of 10% or more;− Collective economic forums, information sharing on climate change, and application of science and technology initiatives will all support agricultural cooperatives to adapt to climate change in the Mekong Delta.Sources: Prime Minister 2022a, 2022b In addition to developing more streamlined macro-level policies, the Vietnamese government is also implementing domestic price stabilization policies. For example, to stabilize domestic rice prices, the Ministry of Industry and Trade has a policy to limit and manage the amount of rice exported, while MARD has a policy to limit the number of seeds exported (Ha and Ha 2023).In parallel with macro policies, institutional and financial solutions (Figure 5 and Figure 6), Vietnam is also developing region-specific policies for the Mekong Delta (Table 2).Alongside these central policies, sectors and provinces in the Mekong Delta also have their own development policies (Table 3).Agricultural and forestry products from the Mekong Delta have dominated various international markets.Rice. Vietnam is the second largest rice exporter in the world after India. Most of Vietnam's rice exports come from the Mekong Delta.Vietnamese rice is high quality and competitively priced, so is favoured by many markets around the world, especially Asian markets like those of China, Japan and Korea (Song Ha 2022). Market demand for Vietnamese rice products increased sharply after India, United Arab Emirates and Russia banned food exports to ensure food security for their countries. China, the Philippines, Indonesia, Turkey and Chile have since competed to buy 40% more rice from Vietnam, and are willing to pay a higher price (USD 20-40/ton) than prices before these bans were issued (Ha and Ha 2023) Fruit. This has been a rapidly growing agricultural export product in the Mekong Delta in recent years. The area of fruit trees has been steadily increasing across the region, from 287,000 hectares in 2010 to 377,000 hectares in 2020 (Cao Phong 2021). In 2020, across Vietnam, the export value of fruit reached USD 3.36 billion, with major markets being China, the United States, Thailand and Korea. In 2021, many specialty fruits from the Mekong Delta increased production, including: grapefruit reaching 143,300 tons, up 2.4%; dragon fruit reaching 326,300 tons, up 4.3%; mango 236,700 tons, up 1.3%; pineapple 134,300 tons, up 7%; and bananas 653,400 tons, up 2.5% compared to the same period in 2020 (Gia Bao 2021).According to the participants of the consultation workshop, international trade agreements relating to the traceability of agricultural products, environmental requirements and reducing emissions will be a positive lever for the Mekong Delta to develop its food production system in a comprehensive manner, particularly since Vietnam is the only country in the Ca Mau• Applying science and technology to further improve rice productivity; the province is changing varieties in areas with suitable conditions to improve rice quality, focusing on ecological rice production to produce organic rice that meets international standards, and enhancing the value chain in these areas.• Over the last two years, Ca Mau has scoped for areas with suitable conditions for the expansion of specialized shrimp-rice production areas, to increase the sources of export food. As a result, shrimp-rice production area has increased from around 35,000 hectares to around 37,000 hectares. In areas where it is not possible to increase production area, Ca Mau is promoting scientific and technological advances to help farmers increase productivity by about 0.3 tons/ha/ crop. If successful, this venture will continue in future. So far, this has resulted in an additional rice output of around 20,000 tons.• Ca Mau has deployed shrimp-rice production since October 2009, for the purposes of sustainable production and climate change adaptation. Thanks to the application of scientific and technical advances in production, this model has contributed to improving productivity, rice output and aquaculture. This is an example of a fairly sustainable livelihood model for rice-growing areas previously affected by salinity (Tuyet Minh 2021).• Starting with a review of the area of land affected by salinity and ineffective production of two rice crops, Ca Mau switched to producing one shrimp crop and one rice crop simultaneously. At the same time, the province has focused on investing in irrigation infrastructure to create conditions for this shrimp-rice production model to be deployed and replicated in places with favourable conditions. Since 2012, this has successfully produced large rice-shrimp rotation fields. Implementation of this model has gradually increased people's awareness and shifted individual and small-scale production practices, resulted in community links and created a stable and favourable environment for more sustainable and environmentally-friendly production practices. Prior to implementation, Ca Mau undertook capacity building and implemented activities to improve production related facilities and technology (Tuyet Minh 2021).• Until now, the shrimp-rice model has been implemented over an area of nearly 40,000 hectares across the province (mainly in the districts of Thoi Binh, U Minh, Tran Van Thoi, Cai Nuoc and Ca Mau City). This has seen positive results, with positive impacts in farmers' awareness and production practices; and improvements in the management capacity of specialized and government agencies at all levels. Average rice yield has increased from 3.65 tons/ha to 4.33 tons/ha, an increase of 19%, while average shrimp yield has increased from 356 kg/ha to 531 kg/ ha, an increase of 48.91%. The shrimp-rice model is considered sustainable for areas affected by saltwater intrusion (Tuyet Minh 2021).• In addition to the shrimp-rice model, Ca Mau is also implementing numerous other models, like integrated pest management (IPM), large-scale and value chain-wide cooperation models for rice production.• To ensure food security, Ca Mau is implementing rice land planning. By 2020, it had stabilized the land area for specialized freshwater rice production to around 51,000 hectares, as well as formed two high-tech agricultural production zones, each with an area of about 200 to 500 hectares. Alongside this the province has implemented irrigation and intensive farming measures to increase crops and increase productivity; these areas grow two rice crops or one rice crop in rotation with one cash crop; some low-lying areas have also developed the fish-rice model. For shrimp-farming areas, especially in northern Ca Mau, the province has encouraged continuous production of one rice crop on shrimp-farming land in places with favourable conditions; land area being used like this increased from 43,000 to 45,000 hectares between the periods of 2010-2015 and 2016-2020, with a stable area of about 45,000 hectares now being maintained.• The province has developed a context-specific policy to ensure food security, and taken advantage of globalization opportunities to implement breakthrough policies that specifically support production-related businesses, cooperatives and farmers.A low-emission food system in the Mekong Delta | 21• The province is strengthening links between farmers, cooperatives and businesses to ensure food security and organize production processes along the entire value chain, from seeding to harvesting, processing and consumption. Businesses play an important role, contributing to increased competitive advantage, added value and sustainable agricultural development.• The province aims to appropriately resolve issues arising during the process of ensuring food safety. It aims to promote the application of scientific and technological advances in production to reduce costs and prices, improve the quality of agricultural products, protect the agricultural environment and public health. Pilot projects are considered key in the transfer of scientific knowledge and technological advances in production so as to implement and replicate effective agricultural production models.• The aims of restructuring the agricultural sector are to provide practical benefits for farmers, increase the added value per unit of agricultural product, protect the ecological environment, and modernize agriculture in a safe, sustainable and efficient way.• To ensure food safety through this restructuring of the agricultural sector and the building of new rural areas, Ca Mau Province plans to implement the following solutions: o build a food security information system o improve access to food for all people, developing resources to serve food security goals o strengthen international cooperation on food safety and continue to integrate more into the international agricultural and food markets o raise public and farmers' awareness around food security.• Stabilize the area of land dedicated to wet rice cultivation to 58,600 hectares in the freshwater subregion north of National Highway 1A.• Expand rice production on shrimp-rice land with an area of 45,000-60,000 hectares in the subregion north of National Highway 1A. At the same time, invest in completing infrastructure, especially the irrigation system that separates salt and fresh water, and the dredging of canal systems that are silted up. Develop high-quality commodity rice production areas, with both specialty rice and salt-resistant rice coming under the Bac Lieu brand.• Focus on building large-scale rice approaches, striving to improve the value-added chain and develop sustainably; building links between businesses and farmers; producing high-quality rice products under the Bac Lieu brand; and ensuring high-quality, disease-free rice seed production areas to meet the demand for production rice seed.• Recommend farmers apply intensive yet sustainable farming methods and comply with environmental regulations in the use of materials and agricultural waste treatment; apply economical irrigation technology and use new high quality, high-yielding rice varieties that are pest resistant and adaptable to climate change, being drought and salt tolerant.• Effectively implement credit policies to serve agriculture and rural areas; these policies should encourage the development of cooperations and associations associated with the production and consumption of agricultural products. Create favourable conditions for farmers to access credit policies to invest in agricultural development and expand production scale business.• Take advantage of central government support to invest in development, particularly investing in infrastructure to serve production.• Promote investment by building high-tech agricultural zones linked with processing, consumption and eco-tourism.continued to next page Table 3. continued• Promote research, application and transfer of new scientific and technological advances in production, aligned with each subregion's advantages. Strengthen relationships with domestic and foreign organizations and universities around scientific and technological research cooperation and the transfer of scientific and technological advances so that new technologies are applied to real production.• Encourage the participation of businesses, especially non-state enterprises in research and the transfer of scientific and technological advances.• Promote the development of links associated with agricultural product consumption, build largescale farming approaches, and create conditions for household economic development by linking in and collaborating with businesses and cooperatives around the production and consumption of farming households' products. Invest in building a warning forecasting natural disasters, hydrometeorology, closely monitoring the processes of climate change, sea-level rise, saltwater intrusion and crop diseases, developing timely response plans to each threat.• Develop specialty rice production across the province during 2022-2025, contribute to the creation of concentrated production areas, and apply scientific and technical advances for high quality, uniform production with low production costs.• Mechanize harvesting and create large raw material areas, promoting links between the production and consumption of products through contracts. Resolve challenges with seed, maintaining seed quality without degeneration to ensure rice quality.• The province has implemented solutions to develop the rice industry into a key export industry in a sustainable manner, focusing on the following: encouraging farmers to improve rice quality, increasing the area used for certified, high quality and specialty varieties of rice; strictly manage areas that produce for export; improve the capacity to monitor, predict and effectively prevent harmful organisms.• Advise farmers to focus on improving production efficiency through reducing the cost of fertilizers, pesticides and seeds, widely applying advanced, sustainable rice production processes (IPM, 3G3T, 1P5G, SRP) and good agricultural practices, efficient rice cultivation adapted to climate change, organic rice production combined with traceability, and harvesting at the right time.• Operate the Emission Reduction Initiative Alliance. Dong Thap Provincial People's Committee and key industry associations have also committed to strengthen public-private cooperation, coordinate resources and step up efforts, particularly through innovative solutions and creative startups, to reduce emissions in the region from 2023.• Pilot at least one innovative 'emission reduction/low emission generation' solution in a key agricultural field (fruit, rice, seafood) within the province and evaluate the pilot in 2024 to see if it can be replicated. During 2023-2025, encourage an ecosystem of innovation and creative startups associated with 'low emission agriculture'. Dong Thap Province Emission Reduction Initiative Alliance aims to effectively promote the efforts of all stakeholders; contributing to forming an ecosystem of innovation and creative startups associated with the theme and goal of reducing agricultural emissions for the province and the region. • Organize the implementation of planning within their field of management, in accordance with authority.• Coordinate with the Ministry of Planning and Investment to review, formulate, and submit to the Prime Minister for approval, plans, policies, solutions and resource allocation for the implementation of plans; review and submit proposals to competent state agencies on mechanisms and policies that effectively implement the objectives and development goals set out in planning.• Coordinate with the Ministry of Planning and Investment in implementing, monitoring and evaluating plan implementation, monitoring key investment programmes and projects at regional scale in priority order (in their respective field of management) to promote socioeconomic development in the region.People's Committees of provinces and cities in the Mekong Delta region• Organize the preparation of provincial plans that ensure linkages and consistency with the Mekong Delta region plan (2021-2030, vision to 2050).• Coordinate with the Ministry of Planning and Investment and relevant ministries and agencies to develop and submit to the Prime Minister for approval plans, policies, solutions and state budget allocation for plan implementation; review and propose to competent state agencies specific mechanisms and policies to effectively implement the objectives and development goals set out in the plan.• Coordinate with relevant ministries and agencies to ensure investment promotion and solicitation activities are coordinated interprovincially to improve investment efficiency; promote and advertise so as to attract domestic and foreign investors and economic sectors to participate in implementing the plan.• Review, evaluate, adjust or prepare new plans, programmes and investment projects in accordance with the Mekong Delta region plan (2021-2030, vision to 2050).• Organize supervision and inspection of development project implementation in the locality, according to the assigned functions, and report to the Prime Minister.• The Mekong Delta Region Coordinating Council is an intersectoral organization established to assist the Prime Minister in reviewing, directing, coordinating and resolving important intersectoral issues related to regional connectivity and sustainable development in the Mekong Delta region. • The advisory and support mechanism for the Coordinating Council, ministries and provincial People's Committees consists of: the Coordinating Council Office, the Ministerial Coordination Team, the Provincial Coordination Team, and the Expert Advisory Team. In addition to central and local government policies, there have been many cases of farmers and local communities in the Mekong Delta taking the initiative to cooperate with businesses for more streamlined production along the chain.In In Soc Trang Province, businesses or production companies participate in most stages of the rice value chain, which uses high-quality ST20 rice, bringing high value and profit. Farmers participating in the chain also benefit from high prices. Comparatively, with other groups of rice farmers production is not streamlined across the value chain; there are many actors involved, bringing lower value and income (Vu 2018).While policies are being formulated to shape the development of a low-emission food system in the Mekong Delta, many studies have pointed to the low-emission production models that already exist in the Mekong Delta (e.g., Le et al. (2020) for livestock, Le and Umestu (2022) and Tran et al. (2019) for rice cultivation, and Tra et al. (2021) for catfish farming).Table 5 lists examples of specific guidelines for emissions reduction in some sectors.Delegates from 13 Mekong Delta provinces attending the workshop also shared their experiences on the progress and implementation of green growth and low-emissions initiatives at the provincial level. These experiences can provide lessons for other provinces to follow. For example, Long An Province has had a special programme and policy since 2016 called the 'High-tech Agricultural Development Programme for Agricultural Restructuring' . To implement this programme, Long An Province has developed models to reduce farmers' use of inorganic fertilizers and replace them with organic fertilizers. The province has also applied mechanization to help farmers increase their profits and protect the environment. These activities have been fully funded by the government, which demonstrates the positive role of government support programmes for the Mekong Delta.Table 5. Guidelines and recommendations for a low-emission food system in the Mekong DeltaRice Determine the carbon footprint of the rice value chain IRRI 2023aInvestment guidelines for low-emission rice in the Mekong Delta Nelson et al. 2023Cost-benefit analysis for emission reduction projects IRRI 2023bMapping of suitable areas for alternate wetting and drying practices in rice production IRRI 2023cGeographic reference system for rice monitoring and MRV for GHG (RiceMoRe) IRRI 2023dTool for calculating greenhouse gas emissions from cultivated land adjusted for sourceProposal for a monitoring, evaluation and assessment system for the rice sector IRRI 2023fImprovement of straw management for farmers in the Mekong Delta IRRI 2023gInvestment plan for low-emission rice production in the Mekong Delta in support of Vietnam's implementation of the Paris Agreement A review of annual reports from 13 provinces in the Mekong Delta on the norms and challenges of food production, ensuring social security, and environmental protection also point to common challenges that these provinces are facing (Figure 8).The following sections provide more in-depth analysis of the challenges faced by the Mekong Delta.Development of a low-emission food system in the Mekong Delta is not only affected by direct factors related to individual industries, but is also greatly influenced by political, cultural, economic and environmental factors at the macro level. Figures 7 and 8 provide an overview of the challenges that the Mekong Delta is facing. If these challenges are not addressed, it will be difficult to achieve emissions reduction in food production in the Mekong Delta. • Agriculture accounts for a large proportion • Low added value which has not yet made the most of the region's advantages Agriculture has always been a mainstay during economic difficulties; however, the agricultural sector has been, is and will be facing three 'changes': climate change, market fluctuations and changes in global consumption trends towards green and sustainable (BB 2023).Located at the end of the Mekong River, Vietnam -and the Mekong Delta region in particular -are feeling the most severe impacts of climate change.The flow of the Mekong River, both upstream to downstream and around the delta, has been severely reduced. The delta now often faces severe droughts, and saltwater intrusion tends to appear 1-1.5 months earlier with a wider range and intensity than before. In 2020, the amount of sediment deposited in the Mekong Delta was reduced to just a third of what it was 15 years ago. This directly affects the livelihoods of over 20 million people in the Mekong Delta region, as well as efforts to ensure water security and food security for all countries in the basin (VGP 2023).Climate change causes sea levels to rise and rainfall patterns to change, which has led to saltwater intrusion in rice fields and water scarcity across the Mekong Delta. As a result, 70% of rice-growing areas are contaminated with salt, and rice production has decreased by up to 30%, causing thousands of farmers to lose their income (Thu Phuong 2023a). In 2020, water levels in the Mekong River fell to a record low, prompting Vietnam to declare a state of emergency for five provinces in the region (Kim Long 2020). Droughts and saltwater intrusion also lead to reduced crop yields and increased production costs; people have had to migrate to cities to find work as a result of reduced income. With current food security and emissions policies, Vietnam and the Mekong Delta have not comprehensively and systematically addressed the various components of the food system. In particular, the issue of waste and food loss has not been taken into account and researched thoroughly. The absence of a system to monitor, track and report emissions -as well as political, economic, social and environmental impacts on the entire food system -also makes it challenging to implement policy effectively. The lack of specific instructions for different sectors also makes it difficult for Mekong Delta localities to implement policies set at central government level.The central goal for the Mekong Delta is to shift the agricultural structure from a predominant focus on rice, followed by aquatic products then fruits, to a predominant focus on aquatic products, followed by fruits and then rice; however this goal comes without a clear approach for taking into account emissions reduction mechanisms within the relevant industries in the food system.The majority of relevant actors believe food security in Vietnam is inherently synonymous with food production, of which the key product is rice; as a result, it is considered necessary to resolutely maintain rice land area (Thu However, current policy documents on the food system do not fully focus on the potential of meeting these goals in the agriculture and forestry sectors.The food industry in Vietnam is predominantly focused on rice, with little attention being paid to other food industries and the ecosystem as a whole. Vietnamese policies ensure both domestic food security as well as exports to the international market, but streamlining these policies to ensure these two goals remain feasible requires accurate determination of land area. Until now, diverse ministries and localities have been using different monitoring data and collection methods as well as different ways of classifying land types, leading to implementation challenges (CDKN 2014). One of the current policy focuses is therefore to complete and operate a regional information system and database, to better inform decisions on natural resources, the environment, climate change, and response activities in the region's localities.Although Vietnam is gradually shifting from a focus on rice production to a more comprehensive and sustainable food system that is climate adaptive, accomplishing this goal requires streamlining with other policies, especially in the context of natural disaster management and prevention strategies. In particular, the policy of encouraging farming households to flood their rice fields every three years has made many households hesitate because their livelihoods are unstable (Tran et al. 2021).Another major challenge is to streamline policies and objectives that could negatively impact environmental protection, climate change mitigation and adaptation, and food system emissions reduction (Table 6). The fact that the Mekong Delta is considered the agricultural centre of Vietnam has led to most of the region's provinces focusing on long-term intensive rice farming. Localities are therefore mostly focusing on boosting productivity and rice yield to achieve rapid GDP growth and other economic goals, as well as to guarantee national food security.They are not able to combine these food security, economic development and social security goals with emissions reduction goals; particularly since low-carbon rice production is still expensive, making farmers reluctant to adopt this method (VNA 2021b).Land policy is also a prominent issue. Owning fragmented parcels of land has an impact on rice production and food security for many • The economy grows at an average of around 6.5%/year. The scale of the economy (GRDP) in 2030 will be 2-2.5 times larger than in 2021.• Economic structure: In 2030, agriculture, forestry and fishery will account for around 20% of GRDP; industry and construction will account for around 32%; services around 46%; taxes and subsidies around 2%.• Effectively promote natural resources, as well as rich and diverse cultural identities, for sustainable socioeconomic development.• Concentrate on infrastructure development, with a particular focus on transport, energy, clean water supply, irrigation and social infrastructure.• Currently, assessment and evaluation of efficiency is based only on income and short-term financial indicators.The lack of studies to fully calculate the value of coastal ecosystems in the region has led to prioritization of economic development models, at the expense of sustainability and marine biodiversity.• While infrastructure development is a condition to develop agriculture, this is also the cause of deforestation as well as degradation of forests and coastal mangrove ecosystems.Economic restructuring towards industrialization and modernization; gradually shift from a labour-intensive to capitalintensive industry structure, moving from low to medium and high technology and efficiency. By 2030, the proportion of labour-intensive industries, rough processing, and low-tech industries will decrease to less than 50%.Economic restructuring towards largescale modernization will be a massive change for the Mekong Delta economy. This will have a significant impact on small-scale households (e.g., loss of jobs, loss of land, migration).Resolution No. 13-NQ/TW of the direction of socioeconomic development as well as ensuring national defence and security in the Mekong Delta until 2030, with a vision to 2045• Average growth during 2021-2030 will reach about 6.5-7%/year. The scale of the economy by 2030 will be 2-2.5 times higher than in 2021. The proportion of agriculture, forestry and fishery in total regional income (GRDP) will be around 20%; industry and construction will be around 32%; services around 46%; taxes and subsidies are around 2%. GRDP per capita will reach around VND 146 million/year. The urbanization rate will be 42-48%; 80% of communes will meet new rural standards, of which 30% of communes meet advanced standards.• The forest coverage rate will reach 7.5%.Prioritizing economic development to achieve annual growth, reducing the proportion of agriculture, forestry and fishery, and promoting urbanization, all put significant pressure on existing forest areas.Source: Prime Minister 2022a, 2022b.households. If the land fragmentation index increases by 1%, the likelihood of all households being exposed to food insecurity increases by 4.79% (Nguyen et al. 2022). Meanwhile, although the Vietnamese government focuses on maintaining the area of food production, conflicting urban expansion goals cause challenges for implementation (Pulliat 2015).Another challenge is the monitoring of emissions related to food systems. According to representatives at the workshop, nationallevel inventory of greenhouse gas emissions is being conducted in the sectors of energy, industry and agriculture; however as each sector uses different calculations for greenhouse gas emissions, the method and calculations used for the energy sector cannot be easily compared with those of agriculture or land-use change. While agricultural emissions calculations cover landbased farming, accounting of greenhouse gases or reduction in food system emissions needs to cover a wide range of interrelated sectors, ranging from energy, farming and waste. The challenge with calculating and approaching the inventory of greenhouse gas emissions is collecting sufficient data, for example relating to processes like transportation during construction, procurement, post-harvesting transportation to the cooperatives and warehouses, as well as the consumption of energy during transportation.It is necessary to find appropriate solutions that separate out different emissions so they can be calculated. The Ministry of Natural Resources and Environment has issued various documents related to greenhouse gas emissions, including categories for reducing emissions and inventorying these reductions.Regarding the database system, there is a currently a national-level website, but there is not yet a value chain-level approach to food system emissions reduction monitoring. Only a few studies have been conducted on the carbon footprint of rice that have used global methodologies; and from the perspective of workshop delegates, the degree of certainty among these studies is not high. Combining multiple sectors into a unified whole to calculate Vietnam's food system emissions requires discussion between experts in each sector to enable a unified methodology. At present, numerous data collection agencies exist at commune and district level; while these can still function, the national system requires specific research and detailed surveys in each individual region to properly assess the current situation.While central agencies focus on making new policies and perfecting the legal system, representatives from the 13 Mekong Delta provinces participating in the workshop shared that there are too many policies, and the challenge at provincial level is that limited resources mean they have to prioritize certain policies over others; when policies overlap or conflict, they also need to work out how to resolve this.Development policies currently focus only on increasing production, while a major risk for Vietnam's food chain is the issue of food hygiene and safety (Ha and Ha 2023); agricultural production in Vietnam uses a lot of chemicals, pesticides and chemical fertilizers, and inputs have unclear origins (World Bank 2016; Le and Umetsu 2022; Nguyen and Minh 2023). Although food and agricultural businesses play an important role in influencing agricultural production in the Mekong Delta, their long-term sustainability in the production chain is not guaranteed (Hutton et al. 2021). Participants also pointed out that awareness of sustainable production among Vietnamese small and medium-sized enterprises remains low. They were unaware of concepts like climate change adaptation and mitigation, for example. These enterprises' willingness to participate in reducing emissions is also very limited. Businesses were concerned about the cost implications of changing production models to reduce emissions, and are therefore only likely to take steps towards environmental sustainability if this was a government requirement. Current policy also remains too complex for them to understand; they are unaware what specific actions they need to take to reduce emissions. Equally lacking is a clear policy explanation of new concepts like carbon markets and taxes that small and medium enterprises can easily make sense of. Delegates from 13 Mekong Delta provinces shared their difficulties conveying technical terms and international concepts related to emissions systems to local people, because these concepts are often vague and lack practical economic implications for local people.Vietnam's guiding documents supporting food access have so far only looked at helping people improve their livelihoods and increase their income, thereby enabling them to buy more and better food. However, food access in Vietnam and the Mekong Delta hinges upon many other socioeconomic aspects that also require consideration.Access to food differs between rural and urban areas. In urban areas within the Mekong Delta, working class immigrants often experience more difficulty accessing nutritious food due to unstable income (Nguyen et al. 2022). Even when these groups access social food assistance programmes, the food they receive is not balanced and nutritionally adequate (Nguyen et al. 2022). Immigrants also tend to receive food from family members, and in turn send money for family members to buy food. Nguyen et al. 2021;Vu et al. 2022). A specific focus on ethnic minority communities in policies aiming to eliminate malnutrition and food shortages is particularly needed for the Mekong Delta (Nguyen and Minh 2023).Current policies and solutions implemented in the Mekong Delta focus on supporting the poor, with national goals aiming at hunger eradication and poverty reduction. However, addressing gender equality and providing specific support for vulnerable groups -including women and ethnic minorities -requires further efforts and consideration.Although the Mekong Delta has impressive poverty reduction and economic growth rates, the issue of gender equality still needs to be emphasized in this region; wages paid to men and women for the same labour activities are not equal, and men often have higher income (GTZ and AusAID 2010). In some livelihood activities, like industrial shrimp farming, participants are mainly men. Mechanized rice farming, which provides technical jobs for men, also limits employment opportunities for women (GTZ and AusAID 2010).The poor, especially poor and landless women, depend on natural resources for their livelihoods, but policies like forest contracting and natural forest protection create many obstacles for them to continue to generate income from these resources. Traditional gender roles and limited education levels among women in the Mekong Delta also make it difficult for them to escape the vicious cycle of vulnerability and uncertainty (VNS 2023).Although the Vietnamese government has many policies addressing gender equality in climate change adaptation and mitigation, the integration of these policies into local policy and practice has not been effectively implemented (USAID 2023). Gender integration into climate change and natural resource protection policies is overlooked, and often remains on paper rather than realized in the provinces (Pham and Brockhaus 2016;Pham et al. 2016).The There is significant potential to reduce emissions in the agricultural sector in Vietnam. However, investing in scientific and technical solutions requires quite substantial funding (Thu Phuong 2023c). While the Vietnamese government has made efforts to increase financial resources to support climate change adaptation and emissions reduction, supplied resources currently fall short of meeting actual demand. Household income in the Mekong Delta is also limited, so speedy transition towards a more climate change adapted emissions reduction model is unlikely. Many studies suggest that instead of wide disbursement of funding, investment in climate change mitigation and adaptation should be prioritized, and food security policy should focus on highrisk areas (Vu et al. 2022).The types of agricultural products that the Mekong Delta produces and trades are significantly impacted from market fluctuations (Government News 2023). Even when product prices of some key commodities such as rice for the international market increased sharply, the domestic price of rice also increased; therefore, many businesses having to sell at a loss to maintain their reputation in trading, causing market turmoil when supply exceeded demand at the same time (Nguyen 2023a).Vietnam ranks fourth in Southeast Asia and 54th in the world according to the Food Security Index developed by the Economist Intelligence Unit (EIU). With a score of over 75, Vietnam rates highly on the index regarding the presence and quality of food safety net programmes, access to finance for farmers, average food costs, the proportion of population below the global poverty line, food safety, agricultural production fluctuations, urban absorption capacity and food loss. However, Vietnam still needs to make further efforts; regarding the index of public spending on agricultural research and development and the index of food affordability, Vietnam ranks lower than the world average of 5.0 and 17.8 points respectively (VNA 2019).The Vietnamese government prioritizes resources for climate change adaptation rather than mitigation. More than 70% of ministries' and 90% of provincial climate change budgets are for adaptation. Meanwhile, reducing emissions is mainly considered to be the responsibility of businesses and foreign organizations (Vietnam News 2022). According to a report by VCCI and Fulbright (2022), the Mekong Delta is facing three spirals relating to budget, labour and economic structure. The 'budget spiral' reflects a serious lack of investment in the Mekong Delta. Due to lack of government investment, the region's infrastructure -especially transportation -is lacking, weak and degraded, leading to the region's inability to attract effective investment projects. Here begins the second spiral of labour, which stems from a lack of job opportunities, meaning young workers migrate from the Mekong Delta to urban and industrial areas in the Southeast, reducing both the quantity and quality workforce of the region. This exacerbates the downward spiral in investment, because there is no longer abundant labour to fuel cheaper prices.The Mekong Delta lacks resources, with a workforce that continues to migrate away due to low living standards and lack of job opportunities. Weak transport infrastructure is the biggest bottleneck here, particularly since the region does not have a deep-water seaport, reducing the opportunity for exports, competitive advantage, the attraction of investments, and human resource development in the region (VNA 2023b).| 35Table 7. Challenges for specific types of foodRice • Shifting the model of rice production is not easy; implementing such changes is even more difficult.• Planning around planted area is not streamlined. Farmers' income remains low as does the export value of rice, and the rate of sustainable production. Meanwhile post-harvest loss rates and logistics costs remain high. There are not many brands, and rice trade support services develop slowly.• Rice production has negative impacts on the environment and climate change, and a system to control and reduce greenhouse gas emissions is lacking.• One of the difficulties in implementing an action plan to reduce emissions is the lack of data. Data collection is also a challenge due to lack of human and financial resources.• Lack of knowledge and awareness of food loss in the catfish value chain in the Mekong River basin.• Ineffective process of seafood exploitation, protection and development and illegal fishing leading to an EU \"yellow card\", restricting the export of seafood to the European Union, one of Vietnam's largest exported seafood markets.• Particular challenges for the Vietnamese shrimp industry include: environmental degradation and disease; difficulty controlling the quality of inputs (seeds, feed, chemicals); limited organization and technical capacity in production; low application levels of science and technology; fluctuations in water environmental indicators and poor environmental quality; and potential pollution from agricultural production (chemicals and pesticides).Due to lack of market information, farmers pursue large-scale cultivation of high-priced agricultural products. This leads many farmers to quickly increase land area used for 'trendy' agricultural products, with the consequence that upon harvesting, the market is oversupplied and prices fall dramatically. Many agricultural product types are falling in price, resulting in further challenges for farmers; as well as shrinking export markets, the shutdown of wholesale markets in Ho Chi Minh City -the largest consumer of agricultural products in the Mekong Delta -has caused a backlog of agricultural products. Obstacles in transporting goods out of quarantined areas also make it difficult for agricultural products to be consumed.Small-scale livestock farming still accounts for a high proportion of agriculture in the region. However, public awareness of biosafe farming techniques, as well as proactive disease prevention and control for livestock and poultry, remains limited. The price of animal feed and raw materials has increased due to dependence on imports from other countries (billions of dollars each year), causing production costs to increase as feed costs account for 60% to 75% of the cost of livestock products. Livestock farming still exhibits many limitations, shortcomings and slow transformation. Prices have dropped, especially following disease spread in pig herds, forcing many herds to be destroyed.Agroforestry models remain fragmentary, with no agency or management unit streamlining a systematic database on agroforestry. There also lacks a specific policy mechanism for this issue. This is because all guidelines and strategic policies on agricultural development are oriented toward specialized farming, creating concentrated large-scale production areas associated with processing, while forestry policies are separately more focused on protecting forests and limiting access to forest resources.Although Vietnam has a policy of paying for forest environmental services, some provinces like Long An are still unable to pay for forest owners because they do not know how to pay, and the norms have not been clarified. As well as playing a critical role in ensuring food security for the entire country, the Mekong Delta can also support Vietnam to reduce emissions by implementing a low-emission food system. As policy gradually improves at both central and local levels, along with private and public financial resources for climate change and adaptation in the region's provinces, local changes will be seen in households and businesses linking into large-scale production and applying scientific models to reduce emissions. This means Mekong Delta provinces can promote the competitive advantages of their agricultural products, and take advantage of trade agreements with other nations to develop more sustainable agricultural production systems.However, Vietnam must also overcome numerous challenges in developing a low-emission food system. These include increasing population pressure, market insecurity, environmental degradation and climate change, insufficient institutional and policy arrangements, limited human and financial resources, and restricted food access particularly in rural areas and among vulnerable groups like women and ethnic minorities. The lack of an emissions tracking, monitoring and reporting system that encompasses the entire food system, policy overlaps and inconsistencies, and ineffective coordination between sectors all contribute to the challenge of implementing green growth policies locally.To achieve a low-emission food system in the Mekong Delta, macro-level policy changes are required; both to ensure integrated multisectoral management, and to promote economic, social and environmental goals, as well as shifts towards environmentally-friendly behaviours.It is also necessary to increase capacity and research support so it becomes possible to create a comprehensive and transparent information system on the food system. The participation of relevant stakeholders -particularly women and disadvantaged groups -in all future decisions and policy making relating to sustainable food systems is also critical.","tokenCount":"10943"} \ No newline at end of file diff --git a/data/part_3/6512868285.json b/data/part_3/6512868285.json new file mode 100644 index 0000000000000000000000000000000000000000..78b9cb7496364e372ff22d2fed8d5256f1010ae1 --- /dev/null +++ b/data/part_3/6512868285.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"3c397d4b019be269825676e013e777ae","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/182a4d46-7cf9-4fa4-baa4-d2fac61104ab/retrieve","id":"1978176962"},"keywords":[],"sieverID":"161df200-2426-479a-b34a-3ec921e488ba","pagecount":"16","content":"Les TIC créent du lien entre des petites entreprises forestières de 12 pays Les ordiphones et le code libre rentabilisent le recueil des données forestières Des ordinateurs et des GPS pour cartographier la progression des plantations d'arbres Foresterie communautaire Numéro 59 Avril 2011 Un bulletin d'alerte pour l'agriculture ACP http://ictupdate.cta.int ICT Update Ce permis s'applique seulement à la partie des textes de cette publication. 2 Éditorial À porter au crédit des paysans Foresterie communautaire 3 Perspectives Conserver les forêts et en vivre Michael Hailu 4 Petits groupes, grandes plantationsL es TIC permettent aux communautés rurales des pays ACP de préserver et de reconstituer les ressources forestières. Le portable, la radio et le web ouvrent de nouveaux marchés aux produits non ligneux : semences, noix et fruits. Ce revenu additionnel incite les paysans à protéger davantage les arbres qui les entourent et à investir dans l'extension des ressources forestières locales. Les systèmes d'information géographique (SIG) s'avèrent particulièrement utiles pour ouvrir les programmes internationaux de crédit carbone aux petits paysans.C'est le Protocole de Kyoto de 1997 qui a mis en place des programmes comme le Mécanisme pour un développement propre. Grâce à eux, des projets menés dans les PED reçoivent des crédits carbone qu'ils peuvent revendre aux pays industrialisés qui souhaitent compenser leurs émissions de gaz à effet de serre. Le principe veut que les arbres supplémentaires plantés par ces projets absorbent le carbone émis par des industries situées ailleurs dans le monde.Pour prétendre à des crédits carbone, les projets doivent néanmoins répondre à des critères rigoureux prouvant que ces arbres ont effectivement été plantés, continuent de croître et qu'ils ne sont pas le fruit d'un processus naturel, mais d'un effort supplémentaire.Pour participer à ces programmes, les communautés doivent collecter énormément de données et les tenir à jour durant des années. Depuis plus de dix ans, le programme International Small Group and Tree Planting recueille les données de millions d'arbres dans six pays. Des équipes d'agriculteurs de subsistance tanzaniens, kényans, ougandais, honduriens, nicaraguayens et indiens consignent l'emplacement des arbres et toutes les mesures nécessaires à l'aide d'ordinateurs et de récepteurs GPS de poche.Pour leur part, des communautés forestières de Papouasie-Nouvelle-Guinée, de Tanzanie, du Sénégal, du Mali et de Guinée-Bissau utilisent des ordiphones équipés du programme CyberTracker pour documenter leurs plantations d'arbres dans le cadre du projet Kyoto: Think Global, Act Local. Ces petites communautés utilisent du matériel et des logiciels très répandus, donc financièrement accessibles, pour participer à des programmes internationaux de crédit carbone.Forest Connect, une initiative de l'IIED (International Institute for Environment and Development) et de la FAO, recourt à Internet et aux applications de socialisation pour diffuser les idées et les connaissances auprès de petites entreprises forestières de 12 pays, notamment au Burkina Faso, en Éthiopie, au Ghana, au Guyana, au Liberia, au Malawi, au Mali et au Mozambique.Ce numéro, dont le thème coïncide avec l'année des forêts des Nations unies, revient plus en détail sur tous ces projets qui voient des communautés locales utiliser des TIC pour protéger et développer leurs ressources forestières. Notre magazine new-look, qui compte désormais 16 pages, s'est enrichi de L es arbres et les forêts ont occupé une place importante dans ma carrière professionnelle puisque j'ai travaillé plusieurs années pour le Centre for Forestry Research en Indonésie et le World Agroforestry Centre au Kenya. D'après la Banque mondiale, les forêts procurent un moyen de subsistance à plus de 1,6 milliard d'habitants, dont la majorité vit en milieu rural.Les forêts sont une source d'alimentation de remplacement, qui peut être vitale en cas de mauvaises récoltes. Elles fournissent aussi du bois de chauffage, du bois de construction, du fourrage pour le bétail et des matériaux pour les meubles et négociations portant sur la gestion des forêts.Les paysans et autres personnes associées aux projets de plantation d'arbres utilisent aussi des SIG pour enregistrer des données précises dans le cadre de programmes de crédit carbone [voir l'éditorial]. Les communautés rurales qui participent à ces programmes y trouvent un complément de revenus, mais les gouvernements doivent élaborer des politiques adaptées pour veiller à ce que ces fonds profitent aux paysans pauvres qui plantent des arbres et ne soient pas absorbés par les budgets nationaux d'échange de droits d'émission de carbone.Comme dans d'autres systèmes d'information commerciale destinés aux paysans, les TIC peuvent aider les communautés forestières à développer des contacts et des relations avec d'autres entreprises de la filière. Les paysans recevront les prix détaillés du marché de même que des conseils agricoles sur leurs portables, tandis que les ONG et les bureaux de vulgarisation gouvernementaux utiliseront la radio et le web pour promouvoir une gestion durable des forêts.En déclarant 2011 année des forêts, les Nations unies soulignent l'importance de cette ressource pour la planète et ses habitants. Une campagne internationale de cette ampleur ne peut que profiter aux nombreuses communautés rurales des pays ACP qui vivent de la forêt. Pour sa part, le CTA continuera de soutenir les efforts déployés au plan local et régional afin de préserver et de développer les ressources forestières de demain. ◀ Michael Hailu (hailu@cta.int) est directeur du Centre technique de coopération agricole et rurale, CTA (www.cta.int) l'artisanat. La vente de fruits, de baies, de semences, de produits médicinaux et d'autres produits non ligneux constitue en outre un pan essentiel de l'économie de nombreuses communautés vivant dans ou aux alentours des forêts.N'oublions pas non plus l'importance écologique des forêts, en ces temps où le changement climatique nous préoccupe tant. D'après les Nations unies, les forêts absorbent environ 15 % des gaz à effet de serre et sont des réservoirs de biodiversité. Leur aptitude à protéger le sol de l'érosion, à empêcher la désertification, à préserver les sources d'eau et à prévenir la dégradation du sol en fait des éléments incontournables d'une agriculture durable.Et pourtant, les forêts sont gravement menacées de toutes parts, chaque tropique affrontant ses propres problèmes. L'abattage pour la pulpe et le papier est une préoccupation majeure en Asie, tandis qu'on rase des milliers d'hectares de forêts en Amérique du Sud pour laisser la place à une agriculture à grande échelle. En Afrique, la démographie et la concurrence d'autres usagers conduisent certains petits paysans à déboiser pour cultiver.Le secteur privé, les gouvernements, les protecteurs de l'environnement et tous ceux qui veulent avoir le contrôle des forêts exercent une pression constante. La plupart d'entre eux commettent sans doute l'immense erreur de ne pas associer les communautés locales à leurs desseins. Celles-ci sont généralement écartées des terres, y compris lors de manoeuvres de conservation bien intentionnées. Diverses études ont toutefois montré que l'implication des communautés locales qui vivent et se servent des ressources forestières engendre des pratiques de gestion plus durables.Vu les divergences des intérêts, il importe d'associer tous ceux qui tiennent à la forêt aux efforts déployés pour protéger celle-ci. Grâce à la technologie, les communautés locales peuvent négocier leur rôle dans les projets de conservation et de développement. Les méthodes SIG participatives, par exemple, leur permettent de consigner leurs savoirs, de repérer les ressources vivrières clé et les lieux patrimoniaux et de s'affirmer en tant que gardiens de la forêt. Cette approche est très utile compte tenu des problèmes de possession des terres qui reviennent souvent dans lesWorld Agroforestry Centre Ce centre, qui fait partie du Groupe consultatif pour la recherche agricole internationale, encourage l'utilisation des arbres dans l'agriculture afin d'améliorer la santé, les revenus et la durabilité écologique. ➜ www.worldagroforestrycentre.org Le programme forêt de l'IUCN Le programme de conservation de la forêt de l'IUCN incite les communautés du monde entier à préserver la biodiversité et à assurer la durabilité écologique des forêts. ➜ http://goo.gl/5WktX Foresterie communautaire C es douze dernières années, des paysans du district de Mpwapwa en Tanzanie ont planté des arbres pour convertir leurs terres souvent arides en zones de cultures ombragées. Il y a cent ans, la région était couverte de forêts denses ; mais les arbres ont été abattus pour céder la place à des terres agricoles et fournir du bois de chauffage et de construction. Le sol typiquement riche mais fragile des régions forestières s'est rapidement érodé sous l'effet d'un climat aride. La population locale parvient à se nourrir les bonnes années, mais dépend de l'aide alimentaire en temps de crise.En 1999, les communautés ont participé pour la première fois à un projet pilote de plantation d'arbres et de génération de revenus grâce au mécanisme de crédit carbone inscrit dans le Protocole de Kyoto. Le programme International Small Group and Tree Planting (TIST) a aidé les paysans à replanter des arbres sur leurs terres. Le couvert arboré supplémentaire évite la dégradation du sol, favorise la croissance des pâturages, fournit de l'ombre aux cultures, les protège du vent et, en fonction de l'essence choisie, apporte du fourrage au bétail.Les paysans ont rapidement constaté une amélioration des terres, mais en sachant qu'il faudrait beaucoup de temps avant de voir les crédits carbone leur procurer un retour sur investissement significatif. Depuis 1999, des paysans d'International Small Group and Tree Planting utilisent des ordinateurs et des récepteurs GPS de poche pour collecter des données liées au crédit carbone. Ce programme a permis de planter plus de 20 millions d'arbres dans 6 pays.Ben Henneke (benhenneke@cleanairaction.com) est co-fondateur du programme International Small Group and Tree Planting (www.tist.org), et président de Clean Air Action Corporation (www.cleanairaction.com) Foresterie communautaire Vérification Depuis 1999, TIST s'est associé le concours de plus de 60 000 paysans tanzaniens, ougandais, kényans, honduriens, nicaraguayens et indiens. Sans les ordinateurs de poche et les GPS sur batterie, ce programme n'aurait jamais pu exister. « Un tel volume de données et un tel niveau de précision sont ingérables sans moyens techniques », dit Henneke. « Nous n'aurions pas pu consigner la progression de dizaines de milliers de petites exploitations sur papier. On peut enquêter sur une grande forêt avec un crayon et du papier, mais nous n'avons pas les moyens de nous payer des enquêteurs professionnels chaque fois que nous voulons recueillir des données. » La plantation d'arbres rapporte un minimum aux paysans de TIST. Ils poursuivent donc leur activité de subsistance et ont moins de temps à consacrer au recueil des données quand vient la pluie, par exemple, ou lorsqu'ils doivent préparer leurs terrains. Alors ils recueillent les données quand ils en ont l'occasion, ce qui correspond totalement à la philosophie du programme.« La technologie nous permet de mener des centaines d'enquêtes précises par semaine sans devoir payer de coûteux professionnels, » dit Henneke. « Nous n'avons même pas besoin d'enquêteur pour expliquer aux paysans comment recueillir les données. » Le recueil d'informations précises et détaillées est vital pour participer à des programmes de crédit carbone. Aussi, dans chaque groupe, TIST forme plusieurs membres à cette mission. Ces « collecteurs » sont souvent des jeunes. Ils assistent à des séminaires organisés dans leur pays pour garantir une méthode commune. Les normes sont standardisées grâce à une formation entre pairs. Les collecteurs tanzaniens, par exemple, ont participé à la formation de leurs homologues kényans lorsque le projet s'est étendu à ce pays.TIST forme également des vérificateurs qui procèdent régulièrement à des audits par sondage. Les collecteurs dont les données s'avèrent précises, c.-à-d. avec une marge d'erreur de 5 %, perçoivent un bonus. Ceux dont la marge d'erreur dépasse 10 % sont suspendus. Cela peut paraître sévère, mais Henneke explique que toute l'opération repose sur la qualité des données. Il se rend souvent sur les plantations pour revérifier les constatations des vérificateurs, dont le travail est ensuite validé par une tierce partie.Le travail par petits groupes est un élément crucial de l'efficacité, de la rentabilité et du fonctionnement du projet TIST. C'est grâce à la technologie, et surtout aux appareils de poche, que TIST a pu garder une structure organisationnelle simple, limiter ses frais de gestion et d'administration et réduire la bureaucratie. La formation est si réduite que d'autres petits exploitantsLes groupes actualisent régulièrement les données de plantation d'arbres sur le site de TIST. Les investisseurs peuvent également suivre les développements sur Google Earth.peuvent facilement reproduire ce système pour créer et faire fonctionner leur propre groupe de plantation d'arbres.Une fois par mois, les groupes d'une même zone sont conviés à se retrouver pour discuter de pratiques agricoles durables. C'est l'occasion de réactualiser ses connaissances. Certains vont dans d'autres groupes pour s'instruire ou confronter leurs idées. C'est aussi l'occasion d'échanger des informations sur d'autres problèmes qui affectent la communauté, et de donner des conseils de santé. Des moustiquaires ont ainsi été distribuées pour prévenir le paludisme.TIST invite souvent les paysans les plus dynamiques à des séminaires pour apprendre de nouvelles techniques et y rencontrer des paysans d'autres régions ou pays. « Nous partons du principe qu'il y a suffisamment de connaissances dans la salle pour résoudre la quasi-totalité des problèmes rencontrés. De plus en plus, les paysans profitent de ces occasions pour chercher des informations complémentaires sur Internet. » Lors des séminaires de prise de contact, l'équipe de TIST ne fournit pas beaucoup d'informations aux communautés. Elle cherche plutôt à susciter la discussion autour de la déforestation, de l'agriculture, de la dégradation et de l'érosion des sols. Henneke reconnaît que le surcroît de travail demandé aux paysans les laisse généralement sceptiques, d'autant qu'il ne leur rapportera pas grand-chose. Mais en confrontant leurs expériences, les paysans s'aperçoivent vite que les dégâts environnementaux et les baisses de rendement agricole sont essentiellement dus à l'abattage des arbres.« Les paysans évoquent les problèmes que cela engendre pour leurs terres, et s'aperçoivent que le problème est général », dit Henneke. « Ils se rendent compte que les pratiques qu'ils ont apprises de leurs parents et grandsparents ne sont pas durables car elles mettent les terres sous pression. C'est là qu'ils demandent en quoi TIST peut les aider. À l'issue de ces discussions en petits groupes, ce sont des paysansécologistes convaincus qui quittent le séminaire. » Chaque communauté choisit ensuite la façon dont elle organise le programme dans sa région. Les conditions varient tellement d'un endroit à l'autre que TIST ne peut fournir une liste précise de qui fait quoi et quand. La seule consigne est d'avoir des petits groupes de 6 à 12 personnes qui se réunissent régulièrement et envoient des données exactes.« Beaucoup d'autres projets s'appuient sur des petits groupes d'une cinquantaine de personnes », dit Henneke, « et ils ont souvent des structures de pouvoir permanentes, ou de longue durée. Duncan Macqueen (duncan.macqueen@iied.org) dirige l'équipe forêts de l'International Institute for Environment and Development (www.iied.org) et Sophie Grouwels (sophie.grouwels@fao.org) est chargée de mission au sein de l'équipe politique et économie forestières à la FAO (www.fao.org) Michael McCall (mccall@itc.nl) est professeur associé à l'ITC Faculty of Geo-Information Science and Earth Observation de l'université de Twente (www.itc.nl), et chercheur émérite au CIGA, Université nationale autonome du Mexique (UNAM) (mccall@ciga.unam.mx) Graciela Peters-Guarin (graciela.peters-guarin@Vanderbilt.Edu) est actuellement chercheuse post-doctorante à l'université de Vanderbilt, Nashville, USA (www.vanderbilt.edu) Comme les communautés ne retirent pratiquement aucun bénéfice économique de la forêt, la collaboration à un projet institutionnel de cette nature, avec toutes les tâches administratives que cela suppose, correspond souvent à une motivation personnelle. Mais il est probable que le niveau de participation augmentera dès que les communautés percevront les premiers dividendes des crédits carbone. Le fait d'avoir un ou deux de ses membres déjà formés à la mesure du carbone permettra à ces communautés d'accéder plus rapidement à ce marché.Cette approche a permis à des personnes peu accoutumées aux ordinateurs de recueillir des données de base plus efficacement, en combinant un logiciel adaptable et à bas coût à la connaissance locale de la zone forestière. Les informations spatiales et non spatiales ainsi collectées pourront également servir à d'autres projets communautaires, pour la planification de l'affectation des sols, le paiement de programmes de services environnementaux, l'écotourisme ou des projets socio-économiques communautaires.L'étude de K:TGAL a montré que le recueil de données pour des programmes de séquestration du carbone était relativement simple et que le maniement des équipements (PDA / ordiphone et un logiciel comme CyberTracker) exigeait peu de formation. Elle a aussi montré que les nouvelles technologies et les nouveaux logiciels permettaient d'impliquer plus fortement les communautés locales. ◀ Au mali, des paysans de la région de Tominian font la pub de leurs produits non ligneux à la radio et sur les téléphones portables pour compléter leurs revenus agricoles.L es paysans des alentours de Tominian, à l'est du Mali, sont otages d'un climat imprévisible. Les périodes de sécheresse sont si longuesjusqu'à 9 mois -qu'ils doivent se dépêcher de cultiver quand vient la pluie. Et s'il ne pleut pas assez, ils n'ont pas de quoi tenir jusqu'à la saison suivante. Ils doivent donc sans cesse trouver d'autres sources de revenus.Certains paysans se font bien un peu d'argent en vendant du bois de chauffage prélevé sur la forêt, mais les produits non ligneux comme les semences, les noix et les fruits, voire le miel sont plus faciles à récolter et à gérer sur le long terme. La disponibilité de ces produits dépend toutefois de la météo, alors que les arbres résistent mieux à la sécheresse et présentent un cycle de croissance différent des variétés cultivées. Les produits de la forêt sont par conséquent disponibles à d'autres moments de l'année. Une bonne cueillette de noix et de fruits, par exemple, peut compenser une piètre récolte.Parmi les produits de la forêt les plus importants pour les communautés figure la noix de karité (Vitellaria paradoxa). Cet arbre est commun dans tout le Sahel, du Sénégal au Soudan. Ce sont surtout les femmes qui ramassent les noix et les transforment Tony Hill (tony.hill@treeaid.org.uk) dirige l'appui de programme chez Tree Aid, une ONG britannique (www.treeaid.org.uk) Sur ces cartes, on peut voir les routes, les lignes de chemin de fer, les fleuves, les rivières et les villages, mais aussi les zones protégées, les concessions forestières et le type de végétation. L'utilisateur peut sélectionner n'importe quel élément pour n'afficher que les données qu'il souhaite voir à un endroit précis.Les forestiers, les protecteurs de l'environnement et les communautés peuvent utiliser cet outil pour, par exemple, évaluer la qualité d'une zone tampon autour d'une réserve forestière. Les zones tampons sont des bandes de terre qui entourent une zone protégée, sans jouir du même niveau de protection. Une gestion efficace de ces zones tampons peut atténuer la pression exercée par l'activité humaine en lisière d'un parc et limiter les torts causés à l'écosystème forestier.Les cartes de GFW donnent une idée du défrichement provoqué par l'homme en montrant la densité de la population et l'affectation des sols en bordure de zone protégée. La plupart des cartes s'appuient sur des données collectées en 1997 ou 2000. Comparées à des données plus récentes, ces cartes montrent bien les dégâts subis par les zones en bordure de forêt ou le succès des efforts de conservation.Pour créer une carte et analyser une zone tampon entourant une zone protégée, allez sur le site de Global Forest Watch (http://www.globalforestwatch.org) et cliquez sur « Interactive Maps » dans le menu à gauche. Cliquez sur « Central Africa » pour créer, par exemple, une carte montrant la zone tampon autour du parc national de Virunga en RDC.Pour afficher les données sur la carte interactive, cochez les cases « Protected areas », « Major roads », « African country boundaries », « Major cities and towns ». Puis cliquez sur le bouton « Start Map ».L'application a besoin de quelques minutes pour restituer la carte et l'afficher dans une nouvelle fenêtre ou onglet de votre navigateur web. La légende s'affiche à gauche.Toujours à gauche, mais un peu plus haut, cliquez sur « Change visible or active layers ». Cette option vous permet de choisir les couches à afficher ou à masquer et de sélectionner la couche active. Un encadré reprend toutes les données disponibles. Vous pouvez ajouter de nouvelles couches de données en cochant les cases de la colonne « Visible ». Elles s'afficheront dès que vous rafraîchirez la carte. En l'occurrence, vérifiez que seules les quatre couches précitées sont sélectionnées.Comme on ne peut activer qu'une seule couche à la fois, assurez-vous que la couche « Protected areas » est active en cochant la case correspondante dans la colonne « Active ». Cette concertation entre communautés forestières et services de l'État est à envisager dans le cadre d'une approche participative, incluant souvent l'utilisation des TIC. Le principal objectif est d'associer étroitement les populations au diagnostic, à l'identification, à la programmation, à la mise en oeuvre et au suivi des actions de gestion des ressources naturelles à mener au niveau du terroir et de définir les responsabilités des différents partenaires à chaque étape du processus.Divers outils permettent de mieux partager l'information et de réfléchir ensemble aux diverses manières de gérer les ressources. C'est le cas des ordiphones qui permettent aux acteurs associés à un processus participatif non seulement d'échanger des informations, mais aussi de collecter des données géoréférencées permettant de produire des cartes qui constituent des supports de réflexion et de discussion en vue d'une prise de décision concertée.Les communautés forestières sont souvent reculées et isolées. Comment les TIC les ont-elles aidées à se reconnecter avec l'extérieur ? ➜ La baisse des prix des équipements a permis aux communautés des régions éloignées de communiquer de plus en plus avec l'extérieur. Elles utilisent les portables pour s'échanger des informations sur les affaires familiales, la disponibilité des ressources, les prix des denrées alimentaires. Elles se servent aussi d'unités GPS, de SIG et de maquettes 3D pour produire des cartes et d'autres produits géoréférencés. Autant d'outils de communication puissants pour la gestion des terres, des ressources, voire la résolution des conflits.Les maquettes 3D sont des SIG en miniature qui font appel aux données topographiques officielles. Elles peuvent servir à renouer des liens de communication entre les organismes et les personnes qui s'occupent de la planification forestière, de la conservation de la biodiversité, de la protection des sites sacrés, ou encore à résoudre les conflits entre des communautés, des entreprises, etc Ce processus crée un environnement où les collectivités, le gouvernement local et d'autres parties prenantes peuvent s'entendre sur la façon de préserver les ressources naturelles et de réhabiliter ou restaurer les zones dégradées. Pour la plupart de ces démarches, les communautés bénéficient aussi du soutien d'organisations extérieures. ","tokenCount":"3684"} \ No newline at end of file diff --git a/data/part_3/6534995215.json b/data/part_3/6534995215.json new file mode 100644 index 0000000000000000000000000000000000000000..ef6c9ee9a5bf7439ab1972a51a9cc5e3f5f1bde1 --- /dev/null +++ b/data/part_3/6534995215.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"7f70efcd7a62df096082ad33b0e0129e","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/d1ce4a13-4b9b-44e4-8922-a64ea04d28a0/retrieve","id":"-1938159216"},"keywords":["{WGIII SPM B.2","WGIII SPM B.2.1","WGIII SPM B.2.2","WGIII TS 5.6.1} 2","WGIII SPM B.2.3","WGIII SPM B.3.4","WGIII SPM D.1.1}"],"sieverID":"c8421807-f8b5-4eea-b12e-03dece4a8acc","pagecount":"81","content":"The three Special Reports are : Global Warming of 1.5°C (2018): an IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (SR1.5); Climate Change and Land (2019): an IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems (SRCCL); and The Ocean and Cryosphere in a Changing Climate (2019) (SROCC). The Special Reports cover scientific literatureSection 1This Synthesis Report (SYR) of the IPCC Sixth Assessment Report (AR6) summarises the state of knowledge of climate change, its widespread impacts and risks, and climate change mitigation and adaptation, based on the peer-reviewed scientific, technical and socio-economic literature since the publication of the IPCC's Fifth Assessment Report (AR5) in 2014.The assessment is undertaken within the context of the evolving international landscape, in particular, developments in the UN Framework Convention on Climate Change (UNFCCC) process, including the outcomes of the Kyoto Protocol and the adoption of the Paris Agreement. It reflects the increasing diversity of those involved in climate action.This report integrates the main findings of the AR6 Working Group reports 58 and the three AR6 Special Reports 59 . It recognizes the interdependence of climate, ecosystems and biodiversity, and human societies; the value of diverse forms of knowledge; and the close linkages between climate change adaptation, mitigation, ecosystem health, human well-being and sustainable development. Building on multiple analytical frameworks, including those from the physical and social sciences, this report identifies opportunities for transformative action which are effective, feasible, just and equitable using concepts of systems transitions and resilient development pathways 60 . Different regional classification schemes 61 are used for physical, social and economic aspects, reflecting the underlying literature.After this introduction, Section 2, 'Current Status and Trends', opens with the assessment of observational evidence for our changing climate, historical and current drivers of human-induced climate change, and its impacts. It assesses the current implementation of adaptation and mitigation response options. Section 3, 'Long-Term Climate and Development Futures', provides a long-term assessment of climate change to 2100 and beyond in a broad range of socio-economic 63In this report, the term 'losses and damages' refers to adverse observed impacts and/or projected risks and can be economic and/or non-economic. (See Annex I: Glossary)Section 2: Current Status and Trends For 2021 (the most recent year for which final numbers are available) concentrations using the same observational products and methods as in AR6 WGI are: 415 ppm CO 2 ; 1896 ppb CH 4 ; and 335 ppb N 2 O. Note that the CO 2 is reported here using the WMO-CO 2 -X2007 scale to be consistent with WGI. Operational CO 2 reporting has since been updated to use the WMO-CO 2 -X2019 scale.the past six decades, with regional differences (high confidence). In 2019, atmospheric CO 2 concentrations reached 410 parts per million (ppm), CH 4 reached 1866 parts per billion (ppb) and nitrous oxide (N 2 O) reached 332 ppb 68 . Other major contributors to warming are tropospheric ozone (O 3 ) and halogenated gases. Concentrations of CH 4 and N 2 O have increased to levels unprecedented in at least 800,000 years (very high confidence), and there is high confidence that current CO 2 concentrations are higher than at any time over at least the past two million years. Since 1750, increases in CO 2 (47%) and CH 4 (156%) concentrations far exceed -and increases in N 2 O (23%) are similar to -the natural multi-millennial changes between glacial and interglacial periods over at least the past 800,000 years (very high confidence). The net cooling effect which arises from anthropogenic aerosols peaked in the late 20th century (high confidence). {WGI SPM A1.1, WGI SPM A1.3, WGI SPM A. Section 1 Section 2Figure 2.2: Regional GHG emissions, and the regional proportion of total cumulative production-based CO2 emissions from 1850 to 2019. Panel (a) shows the share of historical cumulative net anthropogenic CO2 emissions per region from 1850 to 2019 in GtCO2. This includes CO2-FFI and CO2-LULUCF. Other GHG emissions are not included. CO2-LULUCF emissions are subject to high uncertainties, reflected by a global uncertainty estimate of ±70% (90% confidence interval). Panel (b) shows the distribution of regional GHG emissions in tonnes CO2-eq per capita by region in 2019. GHG emissions are categorised into: CO2-FFI; net CO2-LULUCF; and other GHG emissions (CH4, N2O, fluorinated gases, expressed in CO2-eq using GWP100-AR6). The height of each rectangle shows per capita emissions, the width shows the population of the region, so that the area of the rectangles refers to the total emissions for each region. Emissions from international aviation and shipping are not included. In the case of two regions, the area for CO2-LULUCF is below the axis, indicating net CO2 removals rather than emissions. Panel (c) shows global net anthropogenic GHG emissions by region (in GtCO2-eq yr -1 (GWP100-AR6)) for the time period 1990-2019. Percentage values refer to the contribution of each region to total GHG emissions in each respective time period. The single-year peak of emissions in 1997 was due to higher CO2-LULUCF emissions from a forest and peat fire event in South East Asia. Regions are as grouped in Annex II of WGIII. Panel (d) shows population, gross domestic product (GDP) per person, emission indicators by region in 2019 for total GHG per person, and total GHG emissions intensity, together with production-based and consumption-based CO2-FFI data, which is assessed in this report up to 2018. Consumption-based emissions are emissions released to the atmosphere in order to generate the goods and services consumed by a certain entity (e.g., region). Emissions from international aviation and shipping are not included. {WGIII Figure SPM.2}It is unequivocal that human influence has warmed the atmosphere, ocean and land. Widespread and rapid changes in the atmosphere, ocean, cryosphere and biosphere have occurred (Table 2.1). The scale of recent changes across the climate system as a whole and the present state of many aspects of the climate system are unprecedented over many centuries to many thousands of years. It is very likely that GHG emissions were the main driver 74 of tropospheric warming and extremely likely that human-caused stratospheric ozone depletion was the main driver of stratospheric cooling between 1979 and the mid-1990s. It is virtually certain that the global upper ocean (0-700m) has warmed since the 1970s and extremely likely that human influence is the main driver. Ocean warming accounted for 91% of the heating in the climate system, with land warming, ice loss and atmospheric warming accounting for about 5%, 3% and 1%, respectively (high confidence). Global mean sea level increased by 0.20 [0.15 to 0.25] m between 1901 and 2018. The average rate of sea level rise was 1.3 [0.6 to 2.1]mm yr -1 between 1901 and 1971, increasing to 1.9 [0.8 to 2.9] mm yr -1 between 1971 and 2006, and further increasing to 3.7 [3.2 to -4.2] mm yr -1 between 2006 and 2018 (high confidence).Human influence was very likely the main driver of these increases since at least 1971 (Figure 3.4). Human influence is very likely the main driver of the global retreat of glaciers since the 1990s and the decrease in Arctic sea ice area between 1979-1988 and 2010-2019. Human influence has also very likely contributed to decreased Northern Hemisphere spring snow cover and surface melting of the Greenland ice sheet. It is virtually certain that human-caused CO 2 emissions are the main driver of current global acidification of the surface open ocean. {WGI SPM A.1, WGI SPM A.1.3, WGI SPM A.1.5, WGI SPM A.1.6, WG1 SPM A1.7, WGI SPM A.2, WG1.SPM A.4.2; SROCC SPM.A.1, SROCC SPM A.2}Human-caused climate change is already affecting many weather and climate extremes in every region across the globe. Evidence of observed changes in extremes such as heatwaves, heavy precipitation, droughts, and tropical cyclones, and, in particular, their attribution to human influence, has strengthened since AR5 (Figure 2.3). It is virtually certain that hot extremes (including heatwaves) have become more frequent and more intense across most land regions since the 1950s (Figure 2.3), while cold extremes (including cold waves) have become less frequent and less severe, with high confidence that human-caused climate change is the main driver of these changes. Marine heatwaves have approximately doubled in frequency since the 1980s (high confidence), and human influence has very likely contributed to most of them since at least 2006. The frequency and intensity of heavy precipitation events have increased since the 1950s over most land areas for which observational data are sufficient for trend analysis (high confidence), and human-caused climate change is likely the main driver (Figure 2.3). Human-caused climate change has contributed to increases in agricultural and ecological droughts in some regions due to increased land evapotranspiration (medium confidence) (Figure 2.3). It is likely that the global proportion of major (Category 3-5) tropical cyclone occurrence has increased over the last four decades. {WGI SPM A.3, WGI SPM A3.1, WGI SPM A3.2; WGI SPM A3.4; SRCCL SPM.A.2.2; SROCC SPM. A.2}Climate change has caused substantial damages, and increasingly irreversible 75 losses, in terrestrial, freshwater, cryospheric and coastal and open ocean ecosystems (high confidence). The extent and magnitude of climate change impacts are larger than estimated in previous assessments (high confidence). Approximately half of the species assessed globally have shifted polewards or, on land, also to higher elevations (very high confidence). Biological responses including changes in geographic placement and shifting seasonal timing are often not sufficient to cope with recent climate change (very high confidence).Hundreds of local losses of species have been driven by increases in the magnitude of heat extremes (high confidence) and mass mortality events on land and in the ocean (very high confidence). Impacts on some ecosystems are approaching irreversibility such as the impacts of hydrological changes resulting from the retreat of glaciers, or the changes in some mountain (medium confidence) and Arctic ecosystems driven by permafrost thaw (high confidence). Impacts in ecosystems from slow-onset processes such as ocean acidification, sea level rise or regional decreases in precipitation have also been attributed to human-caused climate change (high confidence). Climate change has contributed to desertification and exacerbated land degradation, particularly in low lying coastal areas, river deltas, drylands and in permafrost areas (high confidence). Nearly 50% of coastal wetlands have been lost over the last 100 years, as a result of the combined effects of localised human pressures, sea level rise, warming and extreme climate events (high confidence). Based on scientific understanding, key findings can be formulated as statements of fact or associated with an assessed level of confidence indicated using the IPCC calibrated language.likely range of human contribution ([0.8-1.3°C]) encompasses the very likely range of observed warming ([0.9-1.2°C]) Vulnerability assessed on national data. Vulnerability differs between and within countries and is exacerbated by inequity and marginalisation.indices INFORM and WRI (2019) Section 1 Section 2Climate change has reduced food security and affected water security due to warming, changing precipitation patterns, reduction and loss of cryospheric elements, and greater frequency and intensity of climatic extremes, thereby hindering efforts to meet Sustainable Development Goals (high confidence). Although overall agricultural productivity has increased, climate change has slowed this growth in agricultural productivity over the past 50 years globally (medium confidence), with related negative crop yield impacts mainly recorded in mid-and low latitude regions, and some positive impacts in some high latitude regions (high confidence). Ocean warming in the 20th century and beyond has contributed to an overall decrease in maximum catch potential (medium confidence), compounding the impacts from overfishing for some fish stocks (high confidence). Ocean warming and ocean acidification have adversely affected food production from shellfish aquaculture and fisheries in some oceanic regions (high confidence). Current levels of global warming are associated with moderate risks from increased dryland water scarcity (high confidence).Roughly half of the world's population currently experiences severe water scarcity for at least some part of the year due to a combination of climatic and non-climatic drivers (medium confidence) (Figure 2.3). Unsustainable agricultural expansion, driven in part by unbalanced diets 77 , increases ecosystem and human vulnerability and leads to competition for land and/or water resources (high confidence). Increasing weather and climate extreme events have exposed millions of people to acute food insecurity 78 and reduced water security, with the largest impacts observed in many locations and/or communities in Africa, Asia, Central and South America, LDCs, Small Islands and the Arctic, and for small-scale food producers, low-income households and Indigenous Peoples globally (high confidence). Slow-onset events are described among the climatic-impact drivers of the AR6 WGI and refer to the risks and impacts associated with e.g., increasing temperature means, desertification, decreasing precipitation, loss of biodiversity, land and forest degradation, glacial retreat and related impacts, ocean acidification, sea level rise and salinization.In urban settings, climate change has caused adverse impacts on human health, livelihoods and key infrastructure (high confidence).Hot extremes including heatwaves have intensified in cities (high confidence), where they have also worsened air pollution events (medium confidence) and limited functioning of key infrastructure (high confidence). Urban infrastructure, including transportation, water, sanitation and energy systems have been compromised by extreme and slow-onset events 79 , with resulting economic losses, disruptions of services and impacts to well-being (high confidence). Observed impacts are concentrated amongst economically and socially marginalised urban residents, e.g., those living in informal settlements (high confidence).Cities intensify human-caused warming locally (very high confidence), while urbanisation also increases mean and heavy precipitation over and/or downwind of cities (medium confidence) and resulting runoff intensity (high confidence). {WGI SPM C.2.6; WGII SPM B.1.5, WGII Figure TS.9, WGII 6 ES} Climate change has adversely affected human physical health globally and mental health in assessed regions (very high confidence), and is contributing to humanitarian crises where climate hazards interact with high vulnerability (high confidence). In all regions increases in extreme heat events have resulted in human mortality and morbidity (very high confidence). The occurrence of climate-related food-borne and water-borne diseases has increased (very high confidence). The incidence of vector-borne diseases has increased from range expansion and/or increased reproduction of disease vectors (high confidence). Animal and human diseases, including zoonoses, are emerging in new areas (high confidence). In assessed regions, some mental health challenges are associated with increasing temperatures (high confidence), trauma from extreme events (very high confidence), and loss of livelihoods and culture The IPCC AR6 WGI inhabited regions are displayed as hexagons with identical size in their approximate geographical location (see legend for regional acronyms). All assessments are made for each region as a whole and for the 1950s to the present. Assessments made on different time scales or more local spatial scales might differ from what is shown in the figure. The colours in each panel represent the four outcomes of the assessment on observed changes. Striped hexagons (white and light-grey) are used where there is low agreement in the type of change for the region as a whole, and grey hexagons are used when there is limited data and/or literature that prevents an assessment of the region as a whole. Other colours indicate at least medium confidence in the observed change. The confidence level for the human influence on these observed changes is based on assessing trend detection and attribution and event attribution literature, and it is indicated by the number of dots: three dots for high confidence, two dots for medium confidence and one dot for low confidence (single, filled dot: limited agreement; single, empty dot: limited evidence). For hot extremes, the evidence is mostly drawn from changes in metrics based on daily maximum temperatures; regional studies using other indices (heatwave duration, frequency and intensity) are used in addition. For heavy precipitation, the evidence is mostly drawn from changes in indices based on one-day or five-day precipitation amounts using global and regional studies. Agricultural and ecological droughts are assessed based on observed and simulated changes in total column soil moisture, complemented by evidence on changes in surface soil moisture, water balance (precipitation minus evapotranspiration) and indices driven by precipitation and atmospheric evaporative demand. Panel (b) shows the average level of vulnerability amongst a country's population against 2019 CO2-FFI emissions per-capita per country for the 180 countries for which both sets of metrics are available. Vulnerability information is based on two global indicator systems, namely INFORM and World Risk Index. Countries with a relatively low average vulnerability often have groups with high vulnerability within their population and vice versa. The underlying data includes, for example, information on poverty, inequality, health care infrastructure or insurance coverage. Panel (c) Observed impacts on ecosystems and human systems attributed to climate change at global and regional scales. Global assessments focus on large studies, multi-species, meta-analyses and large reviews. Regional assessments consider evidence on impacts across an entire region and do not focus on any country in particular. For human systems, the direction of impacts is assessed and both adverse and positive impacts have been observed e. Section 2(high confidence) (Figure 2.3). Climate change impacts on health are mediated through natural and human systems, including economic and social conditions and disruptions (high confidence). Climate and weather extremes are increasingly driving displacement in Africa, Asia, North America (high confidence), and Central and South America (medium confidence) (Figure 2.3), with small island states in the Caribbean and South Pacific being disproportionately affected relative to their small population size (high confidence). Economic damages from climate change have been detected in climate-exposed sectors, with regional effects to agriculture, forestry, fishery, energy, and tourism, and through outdoor labour productivity (high confidence) with some exceptions of positive impacts in regions with low energy demand and comparative advantages in agricultural markets and tourism (high confidence). Individual livelihoods have been affected through changes in agricultural productivity, impacts on human health and food security, destruction of homes and infrastructure, and loss of property and income, with adverse effects on gender and social equity (high confidence). Tropical cyclones have reduced economic growth in the short-term (high confidence). Event attribution studies and physical understanding indicate that human-caused climate change increases heavy precipitation associated with tropical cyclones (high confidence).Wildfires in many regions have affected built assets, economic activity, and health (medium to high confidence). In cities and settlements, climate impacts to key infrastructure are leading to losses and damages across water and food systems, and affect economic activity, with impacts extending beyond the area directly impacted by the climate hazard (high confidence). to tangible and intangible heritage, threaten adaptive capacity and may result in irrevocable losses of sense of belonging, valued cultural practices, identity and home, particularly for Indigenous Peoples and those more directly reliant on the environment for subsistence (medium confidence).For example, changes in snow cover, lake and river ice, and permafrost in many Arctic regions, are harming the livelihoods and cultural identity of Arctic residents including Indigenous populations (high confidence).Infrastructure, including transportation, water, sanitation and energy systems have been compromised by extreme and slow-onset events, with resulting economic losses, disruptions of services and impacts to well-being (high confidence). Across sectors and regions, the most vulnerable people and systems have been disproportionately affected by the impacts of climate change (high confidence). LDCs and SIDS who have much lower per capita emissions (1.7 tCO 2 -eq, 4.6 tCO 2 -eq, respectively) than the global average (6.9 tCO 2 -eq) excluding CO 2 -LULUCF, also have high vulnerability to climatic hazards, with global hotspots of high human vulnerability observed in West-, Central-and East Africa, South Asia, Central and South America, SIDS and the Arctic (high confidence).Regions and people with considerable development constraints have high vulnerability to climatic hazards (high confidence). Vulnerability is higher in locations with poverty, governance challenges and limited access to basic services and resources, violent conflict and high levels of climate-sensitive livelihoods (e.g., smallholder farmers, pastoralists, fishing communities) (high confidence). Vulnerability at different spatial levels is exacerbated by inequity and marginalisation linked to gender, ethnicity, low income or combinations thereof (high confidence), especially for many Indigenous Peoples and local communities (high confidence). Approximately 3.3 to 3.6 billion people live in contexts that are highly vulnerable to climate change (high confidence). Between 2010 and 2020, human mortality from floods, droughts and storms was 15 times higher in highly vulnerable regions, compared to regions with very low vulnerability (high confidence). In the Arctic and in some high mountain regions, negative impacts of cryosphere change have been especially felt among Indigenous Peoples (high confidence). Human and ecosystem vulnerability are interdependent (high confidence). There has been a consistent expansion of policies and laws addressing mitigation since AR5 (high confidence). Climate governance supports mitigation by providing frameworks through which diverse actors interact, and a basis for policy development and implementation (medium confidence). Many regulatory and economic instruments have already been deployed successfully (high confidence). By 2020, laws primarily focussed on reducing GHG emissions existed in 56 countries covering 53% of global emissions (medium confidence).The application of diverse policy instruments for mitigation at the national and sub-national levels has grown consistently across a range of sectors (high confidence). Policy coverage is uneven across sectors and remains limited for emissions from agriculture, and from industrial materials and feedstocks (high confidence). decreased by 2% yr -1 between 2010 and 2019. Global carbon intensity (CO 2 -FFI per unit primary energy) also decreased by 0.3% yr -1 , mainly due to fuel switching from coal to gas, reduced expansion of coal capacity, and increased use of renewables, and with large regional variations over the same period. In many countries, policies have enhanced energy efficiency, reduced rates of deforestation and accelerated technology deployment, leading to avoided and in some cases reduced or removed emissions (high confidence). At least 18 countries have sustained production-based CO 2 and GHG and consumption-based CO 2 absolute emission reductions for longer than 10 years since 2005 through energy supply decarbonization, energy efficiency gains, and energy demand reduction, which resulted from both policies and changes in economic structure (high confidence). Some countries have reduced production-based GHG emissions by a third or more since peaking, and some have achieved reduction rates of around 4% yr -1 for several years consecutively (high confidence).Multiple lines of evidence suggest that mitigation policies have led to avoided global emissions of several GtCO 2 -eq yr -1 (medium confidence). Renewable electricity generation is increasingly price-competitive and some sectors are electrifying Since AR5, the unit costs of some forms of renewable energy and of batteries for passenger EVs have fallen.Since AR5, the installed capacity of renewable energies has increased multiple times. At least 1.8 GtCO 2 -eq yr -1 of avoided emissions can be accounted for by aggregating separate estimates for the effects of economic and regulatory instruments (medium confidence). Growing numbers of laws and executive orders have impacted global emissions and are estimated to have resulted in 5.9 GtCO 2 -eq yr -1 of avoided emissions in 2016 (medium confidence). *Emissions projections for 2030 and gross differences in emissions are based on emissions of 52-56 GtCO2-eq/yr in 2019 as assumed in underlying model studies. (medium confidence) -Trend from implemented policies: Pathways with projected near-term GHG emissions in line with policies implemented until the end of 2020 and extended with comparable ambition levels beyond 2030 (29 scenarios across categories C5-C7, WGIII Table SPM.2). -Limit to 2°C (>67%) or return warming to 1.5°C (>50%) after a high overshoot, NDCs until 2030: Pathways with GHG emissions until 2030 associated with the implementation of NDCs announced prior to COP26, followed by accelerated emissions reductions likely to limit warming to 2°C (C3b, WGIII Table SPM.2) or to return warming to 1.5°C with a probability of 50% or greater after high overshoot (subset of 42 scenarios from C2, WGIII Table SPM.2). -Limit to 2°C (>67%) with immediate action: Pathways that limit warming to 2°C (>67%) with immediate action after 2020 (C3a, WGIII Table SPM.2).-Limit to 1.5°C (>50%) with no or limited overshoot: Pathways limiting warming to 1.5°C with no or limited overshoot (C1, WGIII Table SPM Global net zero CO 2 or GHG emissions can be achieved even if some sectors and regions are net emitters, provided that others reach net negative emissions (see Figure 4.1). The potential and cost of achieving net zero or even net negative emissions vary by sector and region. If and when net zero emissions for a given sector or region are reached depends on multiple factors, including the potential to reduce GHG emissions and undertake carbon dioxide removal, the associated costs, and the availability of policy mechanisms to balance emissions and removals between sectors and countries. (high confidence) {WGIII Box TS.6, WGIII Cross-Chapter Box 3}The adoption and implementation of net zero emission targets by countries and regions also depend on equity and capacity considerations (high confidence). The formulation of net zero pathways by countries will benefit from clarity on scope, plans-of-action, and fairness. Achieving net zero emission targets relies on policies, institutions, and milestones against which to track progress. Least-cost global modelled pathways have been shown to distribute the mitigation effort unevenly, and the incorporation of equity principles could change the country-level timing of net zero (high confidence). The Paris Agreement also recognizes that peaking of emissions will occur later in developing countries than developed countries (Article 4.1). {WGIII Box TS.6, WGIII Cross-Chapter Box 3, WGIII 14.3}More information on country-level net zero pledges is provided in Section 2.3.1, on the timing of global net zero emissions in Section 3.3.2, and on sectoral aspects of net zero in Section 4.1.Many countries have signalled an intention to achieve net zero GHG or net zero CO 2 emissions by around mid-century (Cross-Section Box.1). More than 100 countries have either adopted, announced or are discussing net zero GHG or net zero CO 2 emissions commitments, covering more than two-thirds of global GHG emissions.A growing number of cities are setting climate targets, including net zero GHG targets. Many companies and institutions have also announced net zero emissions targets in recent years. The various net zero emission pledges differ across countries in terms of scope and specificity, and limited policies are to date in place to deliver on them. {WGIII SPM C.6.4, WGIII TS.4.1, WGIII Table TS.1, WGIII 13.9, WGIII 14.3, WGIII 14.5}Almost all mitigation options also face institutional barriers that need to be addressed to enable their application at scale (medium confidence). Current development pathways may create behavioural, spatial, economic and social barriers to accelerated mitigation at all scales (high confidence). Choices made by policymakers, citizens, the private sector and other stakeholders influence societies' development pathways (high confidence). Structural factors of national circumstances and capabilities (e.g., economic and natural endowments, political systems and cultural factors and gender considerations) affect the breadth and depth of climate governance (medium confidence). The extent to which civil society actors, political actors, businesses, youth, labour, media, Indigenous Peoples, and local communities are engaged influences political support for climate change mitigation and eventual policy outcomes (medium confidence).The adoption of low-emission technologies lags in most developing countries, particularly least developed ones, due in part to weaker enabling conditions, including limited finance, technology development and transfer, and capacity (medium confidence). In many countries, especially those with limited institutional capacity, several adverse side-effects have been observed as a result of diffusion of low-emission technology, e.g., low-value employment, and dependency on foreign knowledge and suppliers (medium confidence). Low-emission innovation along with strengthened enabling conditions can reinforce development benefits, which can, in turn, create feedbacks towards greater public support for policy (medium confidence). Persistent and region-specific barriers also continue to hamper the economic and political feasibility of deploying AFOLU mitigation options (medium confidence). Barriers to implementation of AFOLU mitigation include insufficient institutional and financial support, uncertainty over long-term additionality and trade-offs, weak governance, insecure land ownership, low incomes and the lack of access to alternative sources of income, and the risk of reversal (high confidence). {WGIII SPM B.4.2, WGIII SPM C.9.1, WGIII SPM C.9.3} 99 See Annex I: Glossary. 100 Adaptation limit: The point at which an actor's objectives (or system needs) cannot be secured from intolerable risks through adaptive actions. Hard adaptation limit -No adaptive actions are possible to avoid intolerable risks. Soft adaptation limit -Options are currently not available to avoid intolerable risks through adaptive action.101Maladaptation refers to actions that may lead to increased risk of adverse climate-related outcomes, including via increased greenhouse gas emissions, increased or shifted vulnerability to climate change, more inequitable outcomes, or diminished welfare, now or in the future. Most often, maladaptation is an unintended consequence. See Annex I: Glossary.Despite progress, adaptation gaps exist between current levels of adaptation and levels needed to respond to impacts and reduce climate risks (high confidence). While progress in adaptation implementation is observed across all sectors and regions (very high confidence), many adaptation initiatives prioritise immediate and near-term climate risk reduction, e.g., through hard flood protection, which reduces the opportunity for transformational adaptation 99 (high confidence). Most observed adaptation is fragmented, small in scale, incremental, sector-specific, and focused more on planning rather than implementation (high confidence). Further, observed adaptation is unequally distributed across regions and the largest adaptation gaps exist among lower population income groups (high confidence). In the urban context, the largest adaptation gaps exist in projects that manage complex risks, for example in the food-energy-water-health nexus or the inter-relationships of air quality and climate risk (high confidence).Many funding, knowledge and practice gaps remain for effective implementation, monitoring and evaluation and current adaptation efforts are not expected to meet existing goals (high confidence).At current rates of adaptation planning and implementation the adaptation gap will continue to grow (high confidence).Soft and hard adaptation limits 100 have already been reached in some sectors and regions, in spite of adaptation having buffered some climate impacts (high confidence). Ecosystems already reaching hard adaptation limits include some warm water coral reefs, some coastal wetlands, some rainforests, and some polar and mountain ecosystems (high confidence). Individuals and households in low lying coastal areas in Australasia and Small Islands and smallholder farmers in Central and South America, Africa, Europe and Asia have reached soft limits (medium confidence), resulting from financial, governance, institutional and policy constraints and can be overcome by addressing these constraints (high confidence). Insufficient financing, and a lack of political frameworks and incentives for finance, are key causes of the implementation gaps for both mitigation and adaptation (high confidence).Financial flows remained heavily focused on mitigation, are uneven, and have developed heterogeneously across regions and sectors (high confidence). In 2018, public and publicly mobilised private climate finance flows from developed to developing countries were below the collective goal under the UNFCCC and Paris Agreement to mobilise USD 100 billion per year by 2020 in the context of meaningful mitigation action and transparency on implementation (medium confidence). Public and private finance flows for fossil fuels are still greater than those for climate adaptation and mitigation (high confidence). The overwhelming majority of tracked climate finance is directed towards mitigation (very high confidence). Nevertheless, average annual modelled investment requirements for 2020 to 2030 in scenarios that limit warming to 2°C or 1.5°C are a factor of three to six greater than current levels, and total mitigation investments (public, private, domestic and international) would need to increase across all sectors and regions (medium confidence). Challenges remain for green bonds and similar products, in particular around integrity and additionality, as well as the limited applicability of these markets to many developing countries (high confidence). {WGII SPM C.3.2, WGII SPM C.5.4; WGIII SPM B.5.4, WGIII SPM E.5.1}Current global financial flows for adaptation including from public and private finance sources, are insufficient for and constrain implementation of adaptation options, especially in developing countries (high confidence). There are widening disparities between the estimated costs of adaptation and the documented finance allocated to adaptation (high confidence). Adaptation finance needs are estimated to be higher than those assessed in AR5, and the enhanced mobilisation of and access to financial resources are essential for implementation of adaptation and to reduce adaptation gaps (high confidence). Annual finance flows targeting adaptation for Africa, for example, are billions of USD less than the lowest adaptation cost estimates for near-term climate change (high confidence). Adverse climate impacts can further reduce the availability of financial resources by causing losses and damages and impeding national economic growth, thereby further increasing financial constraints for adaptation particularly for developing countries and LDCs (medium confidence). There are barriers to redirecting capital towards climate action both within and outside the global financial sector. These barriers include: the inadequate assessment of climate-related risks and investment opportunities, regional mismatch between available capital and investment needs, home bias factors, country indebtedness levels, economic vulnerability, and limited institutional capacities. Challenges from outside the financial sector include: limited local capital markets; unattractive risk-return profiles, in particular due to missing or weak regulatory environments that are inconsistent with ambition levels; limited institutional capacity to ensure safeguards; standardisation, aggregation, scalability and replicability of investment opportunities and financing models; and, a pipeline ready for commercial investments.(high confidence) {WGII SPM C.5.4; WGIII SPM E.5.2; SR1.5 SPM D.5.2}Cross-Section Box.2: Scenarios, Global Warming Levels, and RisksModelled scenarios and pathways 102 are used to explore future emissions, climate change, related impacts and risks, and possible mitigation and adaptation strategies and are based on a range of assumptions, including socio-economic variables and mitigation options. These are quantitative projections and are neither predictions nor forecasts. Global modelled emission pathways, including those based on cost effective approaches contain regionally differentiated assumptions and outcomes, and have to be assessed with the careful recognition of these assumptions. Most do not make explicit assumptions about global equity, environmental justice or intra-regional income distribution. IPCC is neutral with regard to the assumptions underlying the scenarios in the literature assessed in this report, which do not cover all possible futures 103 . {WGI WGI assessed the climate response to five illustrative scenarios based on SSPs 105 that cover the range of possible future development of anthropogenic drivers of climate change found in the literature. These scenarios combine socio-economic assumptions, levels of climate mitigation, land use and air pollution controls for aerosols and non-CH 4 ozone precursors. The high and very high GHG emissions scenarios (SSP3-7.0 and SSP5-8.5) have CO 2 emissions that roughly double from current levels by 2100 and 2050, respectively 106 . The intermediate GHG emissions scenario (SSP2-4.5) has CO 2 emissions remaining around current levels until the middle of the century. The very low and low GHG emissions scenarios (SSP1-1.9 and SSP1-2.6) have CO 2 emissions declining to net zero around 2050 and 2070, respectively, followed by varying levels of net negative CO 2 emissions. In addition, Representative Concentration Pathways (RCPs) 107 were used by WGI and WGII to assess regional climate changes, impacts and risks. {WGI Box SPM.1} (Cross-Section Box.2 Figure 1)In WGIII, a large number of global modelled emissions pathways were assessed, of which 1202 pathways were categorised based on their projected global warming over the 21st century, with categories ranging from pathways that limit warming to 1.5°C with more than 50% likelihood 108 with no or limited overshoot (C1) to pathways that exceed 4°C (C8). Methods to project global warming associated with the modelled pathways were updated to ensure consistency with the AR6 WGI assessment of the climate system response 109 . {WGIII Box SPM.1,WGIII Table 3.1} (Table 3.1, Cross-Section Box.2 Figure 1)In the literature, the terms pathways and scenarios are used interchangeably, with the former more frequently used in relation to climate goals. WGI primarily used the term scenarios and WGIII mostly used the term modelled emissions and mitigation pathways. The SYR primarily uses scenarios when referring to WGI and modelled emissions and mitigation pathways when referring to WGIII. {WGI Box SPM.1; WGIII footnote 44}Around half of all modelled global emissions pathways assume cost-effective approaches that rely on least-cost mitigation/abatement options globally. The other half look at existing policies and regionally and sectorally differentiated actions. The underlying population assumptions range from 8.5 to 9.7 billion in 2050 and 7.4 to 10.9 billion in 2100 (5-95th percentile) starting from 7.6 billion in 2019. The underlying assumptions on global GDP growth range from 2.5 to 3.5% per year in the 2019-2050 period and 1.3 to 2.1% per year in the 2050-2100 (5-95th percentile). {WGIII Box SPM.1}High mitigation challenges, for example, due to assumptions of slow technological change, high levels of global population growth, and high fragmentation as in the Shared Socio-economic Pathway SSP3, may render modelled pathways that limit warming to 2°C (> 67%) or lower infeasible (medium confidence). {WGIII SPM C.1.4; SRCCL Box SPM.1}SSP-based scenarios are referred to as SSPx-y, where 'SSPx' refers to the Shared Socio-economic Pathway describing the socioeconomic trends underlying the scenarios, and 'y' refers to the level of radiative forcing (in watts per square metre, or Wm -2 ) resulting from the scenario in the year 2100. {WGI SPM footnote 22}Very high emission scenarios have become less likely but cannot be ruled out. Temperature levels > 4°C may result from very high emission scenarios, but can also occur from lower emission scenarios if climate sensitivity or carbon cycle feedbacks are higher than the best estimate. {WGIII SPM C.1.3}RCP-based scenarios are referred to as RCPy, where 'y' refers to the approximate level of radiative forcing (in watts per square metre, or Wm -2 ) resulting from the scenario in the year 2100. {WGII SPM footnote 21}Denoted '>50%' in this report.The climate response to emissions is investigated with climate models, paleoclimatic insights and other lines of evidence. The assessment outcomes are used to categorise thousands of scenarios via simple physically-based climate models (emulators). {WGI TS.1.2.2}For many climate and risk variables, the geographical patterns of changes in climatic impact-drivers 110 and climate impacts for a level of global warming 111 are common to all scenarios considered and independent of timing when that level is reached. This motivates the use of GWLs as a dimension of integration. {WGI Box SPM.1.4, WGI TS.1.3.2; WGII Box SPM.1} (Figure 3 * The terminology SSPx-y is used, where 'SSPx' refers to the Shared Socio-economic Pathway or 'SSP' describing the socio-economic trends underlying the scenario, and 'y' refers to the approximate level of radiative forcing (in watts per square metre, or Wm -2 ) resulting from the scenario in the year 2100. ** The AR5 scenarios (RCPy), which partly inform the AR6 WGI and WGII assessments, are indexed to a similar set of approximate 2100 radiative forcing levels (in W m -2 ). The SSP scenarios cover a broader range of GHG and air pollutant futures than the RCPs. They are similar but not identical, with differences in concentration trajectories for different GHGs. The overall radiative forcing tends to be higher for the SSPs compared to the RCPs with the same label (medium confidence). {WGI TS.1.3.1} *** Limited overshoot refers to exceeding 1.5°C global warming by up to about 0.1°C, high overshoot by 0.1°C-0.3°C, in both cases for up to several decades.Cross-Section Box.2 Figure 1 In the near term (2021-2040), the 1.5°C global warming level is very likely to be exceeded under the very high GHG emissions scenario (SSP5-8.5), likely to be exceeded under the intermediate and high GHG emissions scenarios (SSP2-4.5, SSP3-7.0), more likely than not to be exceeded under the low GHG emissions scenario (SSP1-2.6) and more likely than not to be reached under the very low GHG emissions scenario (SSP1-1.9). In all scenarios considered by WGI except the very high emissions scenario, the midpoint of the first 20-year running average period during which the assessed global warming reaches 1.5°C lies in the first half of the 2030s. In the very high GHG emissions scenario, this mid-point is in the late 2020s. With further global warming, every region is projected to increasingly experience concurrent and multiple changes in climatic impact-drivers. Increases in hot and decreases in cold climatic impact-drivers, such as temperature extremes, are projected in all regions (high confidence). At 1.5°C global warming, heavy precipitation and flooding events are projected to intensify and become more frequent in most regions in Africa, Asia (high confidence), North America (medium to high confidence) and Europe (medium confidence). At 2°C or above, these changes expand to more regions and/or become more significant (high confidence), and more frequent and/or severe agricultural and ecological droughts are projected in Europe, Africa, Australasia and North, Central and South America (medium to high confidence). Other projected regional changes include The world atThe world atThe world atThe world at small absolute changes may appear large as % or σ changes in dry regions Annual hottest day temperature is projected to increase most (1.5-2 times the GWL) in some mid-latitude and semi-arid regions, and in the South American Monsoon region.Projections of annual mean soil moisture largely follow projections in annual mean precipitation but also show some differences due to the influence of evapotranspiration. With every increment of global warming, regional changes in mean climate and extremes become more widespread and pronounced Projected adverse impacts and related losses and damages from climate change escalate with every increment of global warming (very high confidence), but they will also strongly depend on socio-economic development trajectories and adaptation actions to reduce vulnerability and exposure (high confidence). For example, development pathways with higher demand for food, animal feed, and water, more resource-intensive consumption and production, and limited technological improvements result in higher risks from water scarcity in drylands, land degradation and food insecurity (high confidence). Changes in, for example, demography or investments in health systems have effect on a variety of health-related outcomes including heat-related morbidity and mortality (Figure 3 Future climate change is projected to increase the severity of impacts across natural and human systems and will increase regional differencesAreas with little or no production, or not assessed low-likelihood, high impact storyline, including ice-sheet instability processes Risks are assessed with medium confidenceLimited adaptation (failure to proactively adapt; low investment in health systems); incomplete adaptation (incomplete adaptation planning; moderate investment in health systems); proactive adaptation (proactive adaptation management; higher investment in health systems) -Loss of terrestrial, marine and coastal biodiversity and ecosystem services -Loss of lives and assets, risk to food security and economic disruption due to destruction of settlements and infrastructure -Economic decline and livelihood failure of fisheries, agriculture, tourism and from biodiversity loss from traditional agroecosystems -Reduced habitability of reef and non-reef islands leading to increased displacement -Risk to water security in almost every small island Africa -Species extinction and reduction or irreversible loss of ecosystems and their services, including freshwater, land and ocean ecosystems -Risk to food security, risk of malnutrition (micronutrient deficiency), and loss of livelihood due to reduced food production from crops, livestock and fisheries -Risks to marine ecosystem health and to livelihoods in coastal communities -Increased human mortality and morbidity due to increased heat and infectious diseases (including vector-borne and diarrhoeal diseases) -Reduced economic output and growth, and increased inequality and poverty rates -Increased risk to water and energy security due to drought and heat-Degradation of tropical shallow coral reefs and associated biodiversity and ecosystem service values -Loss of human and natural systems in low-lying coastal areas due to sea level rise -Impact on livelihoods and incomes due to decline in agricultural production -Increase in heat-related mortality and morbidity for people and wildlife -Loss of alpine biodiversity in Australia due to less snow Asia -Urban infrastructure damage and impacts on human well-being and health due to flooding, especially in coastal cities and settlements -Biodiversity loss and habitat shifts as well as associated disruptions in dependent human systems across freshwater, land, and ocean ecosystems -More frequent, extensive coral bleaching and subsequent coral mortality induced by ocean warming and acidification, sea level rise, marine heat waves and resource extraction -Decline in coastal fishery resources due to sea level rise, decrease in precipitation in some parts and increase in temperature -Risk to food and water security due to increased temperature extremes, rainfall variability and drought-Risk to water security -Severe health effects due to increasing epidemics, in particular vector-borne diseases -Coral reef ecosystems degradation due to coral bleaching -Risk to food security due to frequent/extreme droughts -Damages to life and infrastructure due to floods, landslides, sea level rise, storm surges and coastal erosion North America Absence of risk diagrams does not imply absence of risks within a region. The development of synthetic diagrams for Small Islands, Asia and Central and South America was limited due to the paucity of adequately downscaled climate projections, with uncertainty in the direction of change, the diversity of climatologies and socioeconomic contexts across countries within a region, and the resulting few numbers of impact and risk projections for different warming levels.The risks listed are of at least medium confidence level: The future changes to 2100 (coloured lines and shading) are assessed consistently with observational constraints based on emulation of CMIP, ice-sheet, and glacier models, and likely ranges are shown for SSP1-2.6 and SSP3-7.0. Right -Assessment of the combined risk of coastal flooding, erosion and salinization for four illustrative coastal geographies in 2100, due to changing mean and extreme sea levels, under two response scenarios, with respect to the SROCC baseline period (1986)(1987)(1988)(1989)(1990)(1991)(1992)(1993)(1994)(1995)(1996)(1997)(1998)(1999)(2000)(2001)(2002)(2003)(2004)(2005) and indicating the IPCC AR6 baseline period (1995)(1996)(1997)(1998)(1999)(2000)(2001)(2002)(2003)(2004)(2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012)(2013)(2014). The assessment does not account for changes in extreme sea level beyond those directly induced by mean sea level rise; risk levels could increase if other changes in extreme sea levels were considered (e.g., due to changes in cyclone intensity). \"No-to-moderate response\" describes efforts as of today (i.e., no further significant action or new types of actions). \"Maximum potential response\" represents a combination of responses implemented to their full extent and thus significant additional efforts compared to today, assuming minimal financial, social and political barriers. The assessment criteria include exposure and vulnerability (density of assets, level of degradation of terrestrial and marine buffer ecosystems), coastal hazards (flooding, shoreline erosion, salinization), in-situ responses (hard engineered coastal defences, ecosystem restoration or creation of new natural buffers areas, and subsidence management) and planned relocation. Planned relocation refers to managed retreat or resettlement. Forced displacement is not considered in this assessment. The term response is used here instead of adaptation because some responses, such as retreat, may or may not be considered to be adaptation. The likelihood of abrupt and irreversible changes and their impacts increase with higher global warming levels (high confidence).As warming levels increase, so do the risks of species extinction or irreversible loss of biodiversity in ecosystems such as forests (medium confidence), coral reefs (very high confidence) and in Arctic regions (high confidence). Risks associated with large-scale singular events or tipping points, such as ice sheet instability or ecosystem loss from tropical forests, transition to high risk between 1.5°C to 2.5°C (medium confidence) and to very high risk between 2.5°C to 4°C (low confidence).The response of biogeochemical cycles to anthropogenic perturbations can be abrupt at regional scales and irreversible on decadal to century time scales (high confidence). The probability of crossing uncertain regional thresholds increases with further warming (high confidence). Sea level rise is unavoidable for centuries to millennia due to continuing deep ocean warming and ice sheet melt, and sea levels will remain elevated for thousands of years (high confidence). Global mean sea level rise will continue in the 21st century (virtually certain), with projected regional relative sea level rise within 20% of the global mean along two-thirds of the global coastline (medium confidence). The magnitude, the rate, the timing of threshold exceedances, and the long-term commitment of sea level rise depend on emissions, with higher emissions leading to greater and faster rates of sea level rise. Due to relative sea level rise, extreme sea level events that occurred once per century in the recent past are projected to occur at least annually at more than half of all tide gauge locations by 2100This outcome is characterised by deep uncertainty: Its likelihood defies quantitative assessment but is considered due to its high potential impact. {WGI Box TS.1; WGII Cross-Chapter Box DEEP} and risks for coastal ecosystems, people and infrastructure will continue to increase beyond 2100 (high confidence). At sustained warming levels between 2°C and 3°C, the Greenland and West Antarctic ice sheets will be lost almost completely and irreversibly over multiple millennia (limited evidence). The probability and rate of ice mass loss increase with higher global surface temperatures (high confidence).Over the next 2000 years, global mean sea level will rise by about 2 to 3 m if warming is limited to 1.5°C and 2 to 6 m if limited to 2°C (low confidence). Projections of multi-millennial global mean sea level rise are consistent with reconstructed levels during past warm climate periods: global mean sea level was very likely 5 to 25 m higher than today roughly 3 million years ago, when global temperatures were 2.5°C to 4°C higher than 1850-1900 (medium confidence). Further examples of unavoidable changes in the climate system due to multi-decadal or longer response timescales include continued glacier melt (very high confidence) and permafrost carbon loss (high confidence). {WGI SPM B. The probability of low-likelihood outcomes associated with potentially very large impacts increases with higher global warming levels (high confidence). Warming substantially above the assessed very likely range for a given scenario cannot be ruled out, and there is high confidence this would lead to regional changes greater than assessed in many aspects of the climate system. Low-likelihood, high-impact outcomes could occur at regional scales even for global warming within the very likely assessed range for a given GHG emissions scenario. Global mean sea level rise above the likely range -approaching 2 m by 2100 and in excess of 15 m by 2300 under a very high GHG emissions scenario (SSP5-8.5) (low confidence) -cannot be ruled out due to deep uncertainty in ice-sheet processes 123 and would have severe Section 1 Section 3impacts on populations in low elevation coastal zones. If global warming increases, some compound extreme events 124 will become more frequent, with higher likelihood of unprecedented intensities, durations or spatial extent (high confidence). The Atlantic Meridional Overturning Circulation is very likely to weaken over the 21st century for all considered scenarios (high confidence), however an abrupt collapse is not expected before 2100 (medium confidence). If such a low probability event were to occur, it would very likely cause abrupt shifts in regional weather patterns and water cycle, such as a southward shift in the tropical rain belt, and large impacts on ecosystems and human activities. A sequence of large explosive volcanic eruptions within decades, as have occurred in the past, is a low-likelihood high-impact event that would lead to substantial cooling globally and regional climate perturbations over several decades. With increasing warming, adaptation options will become more constrained and less effective. At higher levels of warming, losses and damages will increase, and additional human and natural systems will reach adaptation limits. Integrated, cross-cutting multi-sectoral solutions increase the effectiveness of adaptation. Maladaptation can create lock-ins of vulnerability, exposure and risks but can be avoided by long-term planning and the implementation of adaptation actions that are flexible, multi-sectoral and inclusive. (high confidence)The effectiveness of adaptation to reduce climate risk is documented for specific contexts, sectors and regions and will decrease with increasing warming (high confidence) 125 . For example, common adaptation responses in agriculture -adopting improved cultivars and agronomic practices, and changes in cropping patterns and crop systems -will become less effective from 2°C to higher levels of warming (high confidence). The effectiveness of most water-related adaptation options to reduce projected risks declines with increasing warming (high confidence). Adaptations for hydropower and thermo-electric power generation are effective in most regions up to 1.5°C to 2°C, with decreasing effectiveness at higher levels of warming (medium confidence). Ecosystem-based Adaptation is vulnerable to climate change impacts, with effectiveness declining with increasing global warming (high confidence). Globally, adaptation options related to agroforestry and forestry have a sharp decline in effectiveness at 3°C, with a substantial increase in residual risk (medium confidence). With increasing global warming, more limits to adaptation will be reached and losses and damages, strongly concentrated among the poorest vulnerable populations, will increase (high confidence).Already below 1.5°C, autonomous and evolutionary adaptation responses by terrestrial and aquatic ecosystems will increasingly face hard limits (high confidence) (Section 2.1.2). Above 1.5°C, some ecosystem-based adaptation measures will lose their effectiveness in providing benefits to people as these ecosystems will reach hard adaptation limits (high confidence). Adaptation to address the risks of heat stress, heat mortality and reduced capacities for outdoor work for humans face soft and hard limits across regions that become significantly more severe at 1.5°C, and are particularly relevant for regions with warm climates (high confidence). Above 1.5°C global warming level, limited freshwater resources pose potential hard limits for small islands and for regions dependent on glacier and snow melt Sea level rise poses a distinctive and severe adaptation challenge as it implies both dealing with slow onset changes and increases in the frequency and magnitude of extreme sea level events (high confidence). Such adaptation challenges would occur much earlier under high rates of sea level rise (high confidence). Responses to ongoing sea level rise and land subsidence include protection, accommodation, advance and planned relocation (high confidence). These responses are more effective if combined and/or sequenced, planned well ahead, aligned with sociocultural values and underpinned by inclusive community engagement processes (high confidence). Ecosystem-based solutions such as wetlands provide co-benefits for the environment and climate mitigation, and reduce costs for flood defences (medium confidence), but have site-specific physical limits, at least above 1.5ºC of global warming (high confidence) and lose effectiveness at high rates of sea level rise beyond 0.5 to 1 cm yr -1 (medium confidence).Seawalls can be maladaptive as they effectively reduce impacts in the short term but can also result in lock-ins and increase exposure to climate risks in the long term unless they are integrated into a long-term adaptive plan (high confidence). {WGI SPM C. Sea level rise greater than 15m cannot be ruled out with very high emissionsLow-likelihood, high-impact storyline, including ice sheet instability processes under the very high emissions scenarioUnavoidable sea level rise will cause:These cascade into risks to: livelihoods, settlements, health, well-being, food and water security and cultural values. Relative to 1995-2014, the likely global mean sea level rise by 2050 is between 0.15 to 0.23 m in the very low GHG emissions scenario (SSP1-1.9) and 0.20 to 0.29 m in the very high GHG emissions scenario (SSP5-8.5); by 2100 between 0.28 to 0.55 m under SSP1-1.9 and 0.63 to 1.01 m under SSP5-8.5; and by 2150 between 0.37 to 0.86 m under SSP1-1.9 and 0.98 to 1.88 m under SSP5-8.5 (medium confidence). Changes relative to 1900 are calculated by adding 0.158 m (observed global mean sea level rise from 1900 to 1995-2014) to simulated changes relative to 1995-2014. The future changes to 2300 (bars) are based on literature assessment, representing the 17th-83rd percentile range for SSP1-2.6 (0.3 to 3.1 m) and SSP5-8.5 (1.7 to 6.8 m). Red dashed lines: Low-likelihood, high-impact storyline, including ice sheet instability processes. These indicate the potential impact of deeply uncertain processes, and show the 83rd percentile of SSP5-8.5 projections that include low-likelihood, highimpact processes that cannot be ruled out; because of low confidence in projections of these processes, this is not part of a likely range. IPCC AR6 global and regional sea level projections are hosted at https://sealevel.nasa.gov/ipcc-ar6-sea-level-projection-tool. The low-lying coastal zone is currently home to around 896 million people (nearly 11% of the 2020 global population), projected to reach more than one billion by 2050 across all five SSPs. Panel (b): Typical time scales for the planning, implementation (dashed bars) and operational lifetime of current coastal risk-management measures (blue bars). Higher rates of sea level rise demand earlier and stronger responses and reduce the lifetime of measures (inset).As the scale and pace of sea level rise accelerates beyond 2050, long-term adjustments may in some locations be beyond the limits of current adaptation options and for some small islands and low-lying coasts could be an existential risk. Limiting global temperature increase to a specific level requires limiting cumulative net CO 2 emissions to within a finite carbon budget 126 , along with strong reductions in other GHGs. For every 1000 GtCO 2 emitted by human activity, global mean temperature rises by likely 0.27°C to 0.63°C (best estimate of 0.45°C). This relationship implies that there is a finite carbon budget that cannot be exceeded in order to limit warming to any given level. {WGI SPM D.1, WGI SPM D.1.1; SR1.5 SPM C.1.3} (Figure 3.5)The best estimates of the remaining carbon budget (RCB) from the beginning of 2020 for limiting warming to 1.5°C with a 50% likelihood 127 is estimated to be 500 GtCO 2 ; for 2°C (67% likelihood) this is 1150 GtCO 2 . 128 Remaining carbon budgets have been quantified based on the assessed value of TCRE and its uncertainty, estimates of historical warming, climate system feedbacks such as emissions from thawing permafrost, and the global surface temperature change after global anthropogenic CO 2 emissions reach net zero, as well as variations in projected warming from non-CO 2 emissions due in part to mitigation action. The stronger the reductions in non-CO 2 emissions the lower the resulting temperatures are for a given RCB or the larger RCB for the same level of temperature change. For instance, the RCB for limiting warming to 1.5°C with a 50% likelihood could vary between 300 to 600 GtCO 2 depending on non-CO 2 warming 129 . Limiting warming to 2°C with a 67% (or 83%) likelihood would imply a RCB of 1150 (900) GtCO 2 from the beginning of 2020. To stay below 2°C with a 50% likelihood, the RCB is higher, i.e., 1350 GtCO 2 130 . {WGI SPM D.1.2, WGI Table SPM In scenarios with increasing CO 2 emissions, the land and ocean carbon sinks are projected to be less effective at slowing the accumulation of CO 2 in the atmosphere (high confidence). While natural land and ocean carbon sinks are projected to take up, in absolute terms, a progressively larger amount of CO 2 under higher compared to lower CO 2 emissions scenarios, they become less effective, that is, the proportion of emissions taken up by land and ocean decreases with increasing cumulative net CO 2 emissions (high confidence). Additional ecosystem responses to warming not yet fully included in climate models, such as GHG fluxes from wetlands, permafrost thaw, and wildfires, would further increase concentrations of these gases in the atmosphere (high confidence). In scenarios where CO 2 concentrations peak and decline during the 21st century, the land and ocean begin to take up less carbon in response to declining atmospheric CO 2 concentrations (high confidence) and turn into a weak net source by 2100 in the very low GHG emissions scenario (medium confidence) di erent emissions scenarios and their ranges of warmingRemaining carbon budgets to limit warming to 1.5°C could soon be exhausted, and those for 2°C largely depletedRemaining carbon budgets are similar to emissions from use of existing and planned fossil fuel infrastructure, without additional abatement 4 Emissions milestones are provided for 5-year intervals in order to be consistent with the underlying 5-year time-step data of the modelled pathways. Ranges in square brackets underneath refer to the range across the pathways, comprising the lower bound of the 5th percentile 5-year interval and the upper bound of the 95th percentile 5-year interval. Numbers in round brackets signify the fraction of pathways that reach specific milestones over the 21st century. Percentiles reported across all pathways in that category include those that do not reach net zero before 2100. 5 For cases where models do not report all GHGs, missing GHG species are infilled and aggregated into a Kyoto basket of GHG emissions in CO2-eq defined by the 100-year global warming potential. For each pathway, reporting of CO2, CH4, and N2O emissions was the minimum required for the assessment of the climate response and the assignment to a climate category. Emissions pathways without climate assessment are not included in the ranges presented here. See WGIII Annex III.II. GHGs reach net zero later than CO 2 not all scenarios reach net zero GHG by 2100Global modelled pathways that limit warming to 1.5°C (>50%) with no or limited overshoot reach net zero CO 2 emissions around 2050Total greenhouse gases (GHG) reach net zero later All global modelled pathways that limit warming to 2°C (>67%) or lower by 2100 involve rapid and deep and in most cases immediate GHG emissions reductions in all sectors (see also 4.1, 4.5). Reductions in GHG emissions in industry, transport, buildings, and urban areas can be achieved through a combination of energy efficiency and conservation and a transition to low-GHG technologies and energy carriers (see also 4.5, Figure 4.4). Socio-cultural options and behavioural change can reduce global GHG emissions of end-use sectors, with most of the potential in developed countries, if combined with improved 136 CCS is an option to reduce emissions from large-scale fossil-based energy and industry sources provided geological storage is available. When CO 2 is captured directly from the atmosphere (DACCS), or from biomass (BECCS), CCS provides the storage component of these CDR methods. CO 2 capture and subsurface injection is a mature technology for gas processing and enhanced oil recovery. In contrast to the oil and gas sector, CCS is less mature in the power sector, as well as in cement and chemicals production, where it is a critical mitigation option. The technical geological storage capacity is estimated to be on the order of 1000 GtCO 2 , which is more than the CO 2 storage requirements through 2100 to limit global warming to 1.5°C, although the regional availability of geological storage could be a limiting factor. If the geological storage site is appropriately selected and managed, it is estimated that the CO 2 can be permanently isolated from the atmosphere. . CDR methods vary in terms of their maturity, removal process, time scale of carbon storage, storage medium, mitigation potential, cost, co-benefits, impacts and risks, and governance requirements (high confidence). Specifically, maturity ranges from lower maturity (e.g., ocean alkalinisation) to higher maturity (e.g., reforestation); removal and storage potential ranges from lower potential (<1 Gt CO 2 yr -1 , e.g., blue carbon management) to higher potential (>3 Gt CO 2 yr -1 , e.g., agroforestry); costs range from lower cost (e.g., -45 to 100 USD tCO 2 -1 for soil carbon sequestration) to higher cost (e.g., 100 to 300 USD tCO 2 -1 for direct air carbon dioxide capture and storage) (medium confidence). Estimated storage timescales vary from decades to centuries for methods that store carbon in vegetation and through soil carbon management, to ten thousand years or more for methods that store carbon in geological formations (high confidence). The impacts, risks, and co-benefits of CDR deployment for ecosystems, biodiversity and people will be highly variable depending on the method, site-specific context, implementation and scale (high confidence). {WGIII SPM C.11.2} 140The evidence is too limited to make a similar robust conclusion for limiting warming to 1.5°C. {WGIII SPM footnote 68} Cost-benefit analysis remains limited in its ability to represent all damages from climate change, including non-monetary damages, or to capture the heterogeneous nature of damages and the risk of catastrophic damages (high confidence). Even without accounting for these factors or for the co-benefits of mitigation, the global benefits of limiting warming to 2°C exceed the cost of mitigation (medium confidence). This finding is robust against a wide range of assumptions about social preferences on inequalities and discounting over time (medium confidence). Limiting global warming to 1.5°C instead of 2°C would increase the costs of mitigation, but also increase the benefits in terms of reduced impacts and related risks (see 3. Considering other sustainable development dimensions, such as the potentially strong economic benefits on human health from air quality improvement, may enhance the estimated benefits of mitigation (medium confidence). The economic effects of strengthened mitigation action vary across regions and countries, depending notably on economic structure, regional emissions reductions, policy design and level of international cooperation (high confidence). Ambitious mitigation pathways imply large and sometimes disruptive changes in economic structure, with implications for near-term actions (Section 4.2), equity (Section 4.4), sustainability (Section 4.6), and finance (Section 4.8) (high confidence). {WGIII SPM C.12.2, WGIII SPM D.3.2, WGIII TS.4.2}3.4 Long-Term Interactions Between Adaptation, Mitigation and Sustainable DevelopmentThere is a rapidly closing window of opportunity to secure a liveable and sustainable future for all (very high confidence).138 See Annex I: Glossary.The impacts, risks, and co-benefits of CDR deployment for ecosystems, biodiversity and people will be highly variable depending on the method, site-specific context, implementation and scale (high confidence). {WGIII SPM C.11.2}140The evidence is too limited to make a similar robust conclusion for limiting warming to 1.5°C. {WGIII SPM footnote 68} The magnitude and rate of climate change and associated risks depend strongly on near-term mitigation and adaptation actions (very high confidence). Global warming is more likely than not to reach 1.5°C between 2021 and 2040 even under the very low GHG emission scenarios (SSP1-1.9), and likely or very likely to exceed 1.5°C under higher emissions scenarios 141 . Many adaptation options have medium or high feasibility up to 1.5°C (medium to high confidence, depending on option), but hard limits to adaptation have already been reached in some ecosystems and the effectiveness of adaptation to reduce climate risk will decrease with increasing warming (high confidence).Societal choices and actions implemented in this decade determine the extent to which medium-and long-term pathways will deliver higher or lower climate resilient development (high confidence). Climate resilient development prospects are increasingly limited if current greenhouse gas emissions do not rapidly decline, especially if 1.5°C global warming is exceeded in the near term (high confidence). Without urgent, effective and equitable adaptation and mitigation actions, climate change increasingly threatens the health and livelihoods of people around the globe, ecosystem health, and biodiversity, with severe adverse consequences for current and future generations (high confidence). In the near term (2021-2040), the 1.5°C global warming level is very likely to be exceeded under the very high GHG emissions scenario (SSP5-8.5), likely to be exceeded under the intermediate and high GHG emissions scenarios (SSP2-4.5, SSP3-7.0), more likely than not to be exceeded under the low GHG emissions scenario (SSP1-2.6) and more likely than not to be reached under the very low GHG emissions scenario (SSP1-1.9). The best estimates [and very likely ranges] of global warming for the different scenarios in the near term are: 1.5 [1.2 to 1.7]°C (SSP1-1.9); 1.5 [1.2 to 1.8]°C (SSP1-2.6); 1.5 [1.2 to 1.8]°C (SSP2-4.5); 1.5 [1.2 to 1.8]°C (SSP3-7.0); and 1.6[1.3 to 1.9]°C (SSP5-8.5). In this context, 'unabated fossil fuels' refers to fossil fuels produced and used without interventions that substantially reduce the amount of GHG emitted throughout the life cycle; for example, capturing 90% or more CO 2 from power plants, or 50 to 80% of fugitive methane emissions from energy supply. {WGIII SPM footnote 54}In modelled pathways that limit warming to 1.5°C (>50%) with no or limited overshoot and in those that limit warming to 2°C (>67%), assuming immediate actions, global GHG emissions are projected to peak in the early 2020s followed by rapid and deep GHG emissions reductions (high confidence) 142 . In pathways that limit warming to 1.5°C Deep, rapid, and sustained mitigation and accelerated implementation of adaptation reduces the risks of climate change for humans and ecosystems. In modelled pathways that limit warming to 1.5°C (>50%) with no or limited overshoot and in those that limit warming to 2°C (>67%) and assume immediate action, global GHG emissions are projected to peak in the early 2020s followed by rapid and deep reductions. As adaptation options often have long implementation times, accelerated implementation of adaptation, particularly in this decade, is important to close adaptation gaps. (high confidence)All global modelled pathways that limit warming to 2°C (>67%) or lower by 2100 involve reductions in both net CO 2 emissions and non-CO 2 emissions (see Figure 3.6) (high confidence). For example, in pathways that limit warming to 1.5°C shows sectoral CO 2 and non-CO 2 emissions in global modelled pathways that limit warming to 1.5°C (>50%) with no or limited overshoot. The horizontal lines illustrate halving 2015 emissions (base year of the pathways) (dashed) and reaching net zero emissions (solid line). The range shows the 5-95th percentile of the emissions across the pathways. The timing strongly differs by sector, with the CO 2 emissions from the electricity/fossil fuel industries sector and land-use change generally reaching net zero earlier. Non-CO 2 emissions from agriculture are also substantially reduced compared to pathways without climate policy but do not typically reach zero. Panel (b) Although all pathways include strongly reduced emissions, there are different pathways as indicated by the illustrative mitigation pathways used in IPCC WGIII. The pathways emphasise routes consistent with limiting warming to 1.5°C with a high reliance on net negative emissions (IMP-Neg), high resource efficiency (IMP-LD), a focus on sustainable development (IMP-SP) or renewables (IMP-Ren) and consistent with 2°C based on a less rapid introduction of mitigation measures followed by a subsequent gradual strengthening (IMP-GS). Positive (solid filled bars) and negative emissions (hatched bars) for different illustrative mitigation pathways are compared to GHG emissions from the year 2019. The category \"energy supply (including electricity)\" includes bioenergy with carbon capture and storage and direct air carbon capture and storage. {WGIII Box TS.5, WGIII 3.3, WGIII 3.4, WGIII 6.6, WGIII 10. In this context, 'unabated fossil fuels' refers to fossil fuels produced and used without interventions that substantially reduce the amount of GHG emitted throughout the life cycle; for example, capturing 90% or more CO 2 from power plants, or 50 to 80% of fugitive methane emissions from energy supply. {WGIII SPM footnote 54} co-emitted by GHG emitting sectors and because methane emissions leads to surface ozone formation (high confidence). The benefits from air quality improvement include prevention of air pollution-related premature deaths, chronic diseases and damages to ecosystems and crops. The economic benefits for human health from air quality improvement arising from mitigation action can be of the same order of magnitude as mitigation costs, and potentially even larger (medium confidence). As methane has a short lifetime but is a potent GHG, strong, rapid and sustained reductions in methane emissions can limit near-term warming and improve air quality by reducing global surface ozone (high confidence). Challenges from delayed adaptation and mitigation actions include the risk of cost escalation, lock-in of infrastructure, stranded assets, and reduced feasibility and effectiveness of adaptation and mitigation options (high confidence). The continued installation of unabated fossil fuel 148 infrastructure will 'lock-in' GHG emissions (high confidence). Limiting global warming to 2°C or below will leave a substantial amount of fossil fuels unburned and could strand considerable fossil fuel infrastructure (high confidence), with globally discounted value projected to be around USD 1 to 4 trillion from 2015 to 2050 (medium confidence).Early actions would limit the size of these stranded assets, whereas delayed actions with continued investments in unabated high-emitting infrastructure and limited development and deployment of low-emitting alternatives prior to 2030 would raise future stranded assets to the higher end of the range -thereby acting as barriers and increasing political economy feasibility risks that may jeopardise efforts to limit global warming. (high confidence). Enabling conditions would need to be strengthened in the nearterm and barriers reduced or removed to realise opportunities for deep and rapid adaptation and mitigation actions and climate resilient development (high confidence) (Figure 4.2). These enabling conditions are differentiated by national, regional and local circumstances and geographies, according to capabilities, and include: equity and inclusion in climate action (see Section 4.4), rapid and far-reaching transitions in sectors and system (see Section 4.5), measures to achieve synergies and reduce tradeoffs with sustainable development goals (see Section 4.6), governance and policy improvements (see Section 4.7), access to finance, improved international cooperation and technology improvements (see Section 4.8), and integration of near-term actions across sectors, systems and regions (see Section 4.9). {WGII SPM D.2; WGIII SPM E.1, WGIII SPM E.2}Barriers to feasibility would need to be reduced or removed to deploy mitigation and adaptation options at scale. Many limits to feasibility and effectiveness of responses can be overcome by addressing a range of barriers, including economic, technological, institutional, social, environmental and geophysical barriers. The feasibility and effectiveness of options increase with integrated, multi-sectoral solutions that differentiate responses based on climate risk, cut across systems and address social inequities. Strengthened near-term actions in modelled cost-effective pathways that limit global warming to 2°C or lower, reduce the overall risk to the feasibility of the system transitions, compared to modelled pathways with delayed or uncoordinated action. Integrating ambitious climate actions with macroeconomic policies under global uncertainty would provide benefits (high confidence). This encompasses three main directions:(a) economy-wide mainstreaming packages supporting options to improved sustainable low-emission economic recovery, development and job creation programs (Sections 4.4,4.5,4.6,4.8,4 Global warming will continue to increase in the near term (2021-2040) mainly due to increased cumulative CO 2 emissions in nearly all considered scenarios and pathways. In the near term, every region in the world is projected to face further increases in climate hazards (medium to high confidence, depending on region and hazard), increasing multiple risks to ecosystems and humans (very high confidence). In the near term, natural variability 149 will modulate human-caused changes, either attenuating or amplifying projected changes, especially at regional scales, with little effect on centennial global warming. Those modulations are important to consider in adaptation planning. Global surface temperature in any single year can vary above or below the long-term human-induced trend, due to natural variability. By 2030, global surface temperature in any individual year could exceed 1.5°C relative to 1850-1900 with a probability between 40% and 60%, across the five scenarios assessed in WGI (medium confidence). The level of risk for humans and ecosystems will depend on near-term trends in vulnerability, exposure, level of socio-economic development and adaptation (high confidence). In the near term, many climate-associated risks to natural and human systems depend more strongly on changes in these systems' vulnerability and exposure than on differences in climate hazards between emissions scenarios (high confidence). Future exposure to climatic hazards is increasing globally due to socio-economic development trends including growing inequality, and when urbanisation or migration increase exposure (high confidence). Urbanisation increases hot extremes (very high confidence) and precipitation runoff intensity (high confidence).Increasing urbanisation in low-lying and coastal zones will be a major driver of increasing exposure to extreme riverflow events and sea level rise hazards, increasing risks (high confidence) (Figure 4.3). Vulnerability will also rise rapidly in low-lying Small Island Developing States and atolls in the context of sea level rise (high confidence) (see Figure 3.4 and Figure 4.3). Human vulnerability will concentrate in informal settlements and rapidly growing smaller settlements; and vulnerability in rural areas will be heightened by reduced habitability and high reliance on climate-sensitive livelihoods (high confidence). Human and ecosystem vulnerability are interdependent (high confidence). Vulnerability to climate change for ecosystems will be strongly influenced by past, present, and future patterns of human development, including from unsustainable consumption and production, increasing demographic pressures, and persistent unsustainable use and management of 149 See Annex I: Glossary. The main internal variability phenomena include El Niño-Southern Oscillation, Pacific Decadal Variability and Atlantic Multi-decadal Variability through their regional influence. The internal variability of global surface temperature in any single year is estimated to be about ±0.25°C (5 to 95% range, high confidence).{WGI SPM footnote 29, WGI SPM footnote 37} 150 Based on 2500-year reconstructions, eruptions with a radiative forcing more negative than -1 Wm -2 , related to the radiative effect of volcanic stratospheric aerosols in the literature assessed in this report, occur on average twice per century. {WGI SPM footnote 38} • Climate change will significantly increase ill health and premature deaths from the near to long term (high confidence). Further warming will increase climate-sensitive food-borne, water-borne, and vector-borne disease risks (high confidence), and mental health challenges including anxiety and stress (very high confidence). {WGII SPM B.4.4}• Cryosphere-related changes in floods, landslides, and water availability have the potential to lead to severe consequences for people, infrastructure and the economy in most mountain regions (high confidence). {WGII TS C.4.2}• The projected increase in frequency and intensity of heavy precipitation (high confidence) will increase rain-generated local flooding (medium confidence). {WGI Multiple climate change risks will increasingly compound and cascade in the near term (high confidence). Many regions are projected to experience an increase in the probability of compound events with higher global warming (high confidence) including concurrent heatwaves and drought. Risks to health and food production will be made more severe from the interaction of sudden food production losses from heat and drought, exacerbated by heatinduced labour productivity losses (high confidence) (Figure 4.3). These interacting impacts will increase food prices, reduce household incomes, and lead to health risks of malnutrition and climate-related mortality with no or low levels of adaptation, especially in tropical regions (high confidence). Concurrent and cascading risks from climate change to food systems, human settlements, infrastructure and health will make these risks more severe and more difficult to manage, including when interacting with non-climatic risk drivers such as competition for land between urban expansion and food production, and pandemics (high confidence). Loss of ecosystems and their services has cascading and long-term impacts on people globally, especially for Indigenous Peoples and local communities who are directly dependent on ecosystems, to meet basic needs (high confidence). Increasing transboundary risks are projected across the food, energy and water sectors as impacts from weather and climate extremes propagate through supply-chains, markets, and natural resource flows (high confidence) and may interact with impacts from other crises such as pandemics. Risks also arise from some responses intended to reduce the risks of climate change, including risks from maladaptation and adverse side effects of some emissions reduction and carbon dioxide removal measures, such as afforestation of naturally unforested land or poorly implemented bioenergy compounding climate-related risks to biodiversity, food and water security, and livelihoods (high confidence) (see Section 3. Changes in risk result from changes in the degree of the hazard, the population exposed, and the degree of vulnerability of people, assets, or ecosystems. Panel (a) Coastal flooding events affect many of the highly populated regions of the world where large percentages of the population are exposed. The panel shows near-term projected increase of population exposed to 100-year flooding events depicted as the increase from the year 2020 to 2040 (due to sea level rise and population change), based on the intermediate GHG emissions scenario (SSP2-4.5) and current adaptation measures. Out-migration from coastal areas due to future sea level rise is not considered in the scenario. Panel (b) projected median probability in the year 2040 for extreme water levels resulting from a combination of mean sea level rise, tides and storm surges, which have a historical 1% average annual probability. A peak-over-threshold (99.7%) method was applied to the historical tide gauge observations available in the Global Extreme Sea Level Analysis version 2 database, which is the same information as WGI Figure 9.32, except here the panel uses relative sea level projections under SSP2-4.5 for the year 2040 instead of 2050 The absence of a circle indicates an inability to perform an assessment due to a lack of data, but does not indicate absence of increasing frequencies. Panel (c) Climate hazards can initiate risk cascades that affect multiple sectors and propagate across regions following complex natural and societal connections. This example of a compound heat wave and a drought event striking an agricultural region shows how multiple risks are interconnected and lead to cascading biophysical, economic, and societal impacts even in distant regions, with vulnerable groups such as smallholder farmers, children and pregnant women particularly impacted. {WGI Rapid and far-reaching transitions across all sectors and systems are necessary to achieve deep emissions reductions and secure a liveable and sustainable future for all (high confidence). System transitions 151 consistent with pathways that limit warming to 1.5°C (>50%) with no or limited overshoot are more rapid and pronounced in the near-term than in those that limit warming to 2°C (>67%) (high confidence). Such a systemic change is unprecedented in terms of scale, but not necessarily in terms of speed (medium confidence).The system transitions make possible the transformative adaptation required for high levels of human health and well-being, economic and social resilience, ecosystem health, and planetary health. As literature above 1.5°C is limited, feasibility at higher levels of warming may change, which is currently not possible to assess robustly. The term response is used here in addition to adaptation because some responses, such as migration, relocation and resettlement may or may not be considered to be adaptation. Migration, when voluntary, safe and orderly, allows reduction of risks to climatic and non-climatic stressors. Forest based adaptation includes sustainable forest management, forest conservation and restoration, reforestation and afforestation. WASH refers to water, sanitation and hygiene. Six feasibility dimensions (economic, technological, institutional, social, environmental and geophysical) were used to calculate the potential feasibility of climate responses and adaptation options, along with their synergies with mitigation. For potential feasibility and feasibility dimensions, the figure shows high, medium, or low feasibility. Synergies with mitigation are identified as high, medium, and low. The right-hand side of panel (a) provides an overview of selected mitigation options and their estimated costs and potentials in 2030. Relative potentials and costs will vary by place, context and time and in the longer term compared to 2030. Costs are net lifetime discounted monetary costs of avoided greenhouse gas emissions calculated relative to a reference technology. The potential (horizontal axis) is the quantity of net GHG emission reduction that can be achieved by a given mitigation option relative to a specified emission baseline. Net GHG emission reductions are the sum of reduced emissions and/or enhanced sinks. The baseline used consists of current policy (around 2019) reference scenarios from the AR6 scenarios database (25-75 percentile values). The mitigation potentials are assessed independently for each option and are not necessarily additive. Health system mitigation options are included mostly in settlement and infrastructure (e.g., efficient healthcare buildings) and cannot be identified separately. Fuel switching in industry refers to switching to electricity, hydrogen, bioenergy and natural gas. The length of the solid bars represents the mitigation potential of an option. Potentials are broken down into cost categories, indicated by different colours (see legend). Only discounted lifetime monetary costs are considered. Where a gradual colour transition is shown, the breakdown of the potential into cost categories is not well known or depends heavily on factors such as geographical location, resource availability, and regional circumstances, and the colours indicate the range of estimates. The uncertainty in the total potential is typically 25-50%. Rapid and deep reductions in GHG emissions require major energy system transitions (high confidence). Adaptation options can help reduce climate-related risks to the energy system (very high confidence). Net zero CO 2 energy systems entail: a substantial reduction in overall fossil fuel use, minimal use of unabated fossil fuels 153 , and use of Carbon Capture and Storage in the remaining fossil fuel systems; electricity systems that emit no net CO 2 ; widespread electrification; alternative energy carriers in applications less amenable to electrification; energy conservation and efficiency; and greater integration across the energy system (high confidence). Large contributions to emissions reductions can come from options costing less than USD 20 tCO 2 -eq -1 , including solar and wind energy, energy efficiency improvements, and CH 4 (methane) emissions reductions (from coal mining, oil and gas, and waste) (medium confidence). 154 Many of these response options are technically viable and are supported by the public (high confidence).Maintaining emission-intensive systems may, in some regions and sectors, be more expensive than transitioning to low emission systems (high confidence). The mitigation potentials and mitigation costs of individual technologies in a specific context or region may differ greatly from the provided estimates (medium confidence).{WGIII SPM C.12.1} confidence). The most feasible energy system adaptation options support infrastructure resilience, reliable power systems and efficient water use for existing and new energy generation systems (very high confidence). Adaptations for hydropower and thermo-electric power generation are effective in most regions up to 1.5°C to 2°C, with decreasing effectiveness at higher levels of warming (medium confidence). Energy generation diversification (e.g., wind, solar, smallscale hydroelectric) and demand side management (e.g., storage and energy efficiency improvements) can increase energy reliability and reduce vulnerabilities to climate change, especially in rural populations (high confidence). Climate responsive energy markets, updated design standards on energy assets according to current and projected climate change, smart-grid technologies, robust transmission systems and improved capacity to respond to supply deficits have high feasibility in the medium-to long-term, with mitigation co-benefits (very high confidence). {WGII SPM B.5.3, WGII SPM C.2.10; WGIII TS.5.1}There are several options to reduce industrial emissions that differ by type of industry; many industries are disrupted by climate change, especially from extreme events (high confidence). Reducing industry emissions will entail coordinated action throughout value chains to promote all mitigation options, including demand management, energy and materials efficiency, circular material flows, as well as abatement technologies and Section 4transformational changes in production processes (high confidence).Light industry and manufacturing can be largely decarbonized through available abatement technologies (e.g., material efficiency, circularity), electrification (e.g., electrothermal heating, heat pumps), and switching to low-and zero-GHG emitting fuels (e.g., hydrogen, ammonia, and bio-based and other synthetic fuels) (high confidence), while deep reduction of cement process emissions will rely on cementitious material substitution and the availability of Carbon Capture and Storage (CCS) until new chemistries are mastered (high confidence). Reducing emissions from the production and use of chemicals would need to rely on a life cycle approach, including increased plastics recycling, fuel and feedstock switching, and carbon sourced through biogenic sources, and, depending on availability, Carbon Capture and Utilisation (CCU), direct air CO 2 capture, as well as CCS (high confidence). Action to reduce industry sector emissions may change the location of GHG-intensive industries and the organisation of value chains, with distributional effects on employment and economic structure (medium confidence). {WGII TS.B.9.1, WGII 16.5.2; WGIII SPM C.5, WGIII SPM C.5.2, WGIII SPM C.5.3, WGIII TS.5.5}Many industrial and service sectors are negatively affected by climate change through supply and operational disruptions, especially from extreme events (high confidence), and will require adaptation efforts. Water intensive industries (e.g., mining) can undertake measures to reduce water stress, such as water recycling and reuse, using brackish or saline sources, working to improve water use efficiency. However, residual risks will remain, especially at higher levels of warming (medium confidence). {WGII TS.B.9. A set of measures and daily practices that avoid demand for energy, materials, land and water while delivering human well-being for all within planetary boundaries.{WGIII Annex I} emission construction materials, highly efficient building envelope and the integration of renewable energy solutions; at the use phase, highly efficient appliances/equipment, the optimisation of the use of buildings and their supply with low-emission energy sources; and at the disposal phase, recycling and re-using construction materials. Sufficiency 155 measures can limit the demand for energy and materials over the lifecycle of buildings and appliances. (high confidence) {WGII SPM C.2.5; WGIII SPM C.7.2}Transport-related GHG emissions can be reduced by demand-side options and low-GHG emissions technologies. Changes in urban form, reallocation of street space for cycling and walking, digitalisation (e.g., teleworking) and programs that encourage changes in consumer behaviour (e.g. transport, pricing) can reduce demand for transport services and support the shift to more energy efficient transport modes (high confidence). Electric vehicles powered by low-emissions electricity offer the largest decarbonisation potential for land-based transport, on a life cycle basis (high confidence). Costs of electrified vehicles are decreasing and their adoption is accelerating, but they require continued investments in supporting infrastructure to increase scale of deployment (high confidence). The environmental footprint of battery production and growing concerns about critical minerals can be addressed by material and supply diversification strategies, energy and material efficiency improvements, and circular material flows (medium confidence). Advances in battery technologies could facilitate the electrification of heavy-duty trucks and compliment conventional electric rail systems (medium confidence). Sustainable biofuels can offer additional mitigation benefits in land-based transport in the short and medium term (medium confidence). Sustainable biofuels, low-emissions hydrogen, and derivatives (including synthetic fuels) can support mitigation of CO 2 emissions from shipping, aviation, and heavy-duty land transport but require production process improvements and cost reductions (medium confidence). Key infrastructure systems including sanitation, water, health, transport, communications and energy will be increasingly vulnerable if design standards do not account for changing climate conditions (high confidence). Green/natural and blue infrastructure such as urban forestry, green roofs, ponds and lakes, and river restoration can mitigate climate change through carbon uptake and storage, avoided emissions, and reduced energy use while reducing risk from extreme events such as heatwaves, heavy precipitation and droughts, and advancing co-benefits for health, well-being and livelihoods (medium confidence). Urban greening can provide local cooling (very high confidence). Combining green/natural and grey/physical infrastructure adaptation responses has potential to reduce adaptation costs and contribute to flood control, sanitation, water resources management, landslide prevention and coastal protection (medium confidence). Globally, more financing is directed at grey/physical infrastructure than green/natural infrastructure and social infrastructure (medium confidence), and there is limited evidence of investment in informal settlements (medium to high confidence). The greatest gains in well-being in urban areas can be achieved by prioritising finance to reduce climate risk for low-income Human health will benefit from integrated mitigation and adaptation options that mainstream health into food, infrastructure, social protection, and water policies (very high confidence). Balanced and sustainable healthy diets 156 and reduced food loss and waste present important opportunities for adaptation and mitigation while generating significant co-benefits in terms of biodiversity and human health (high confidence). Public health policies to improve nutrition, such as increasing the diversity of food sources in public procurement, health insurance, financial incentives, and awareness-raising campaigns, can potentially influence food demand, reduce food waste, reduce healthcare costs, contribute to lower GHG emissions and enhance adaptive capacity (high confidence).Improved access to clean energy sources and technologies, and shifts to active mobility (e.g., walking and cycling) and public transport can deliver socioeconomic, air quality and health benefits, especially for women and children (high confidence Improved availability and access to finance 157 will enable accelerated climate action (very high confidence). Addressing needs and gaps and broadening equitable access to domestic and international finance, when combined with other supportive actions, can act as a catalyst for accelerating mitigation and shifting development pathways (high confidence). Climate resilient development is enabled by increased international cooperation including improved access to financial resources, particularly for vulnerable regions, sectors and groups, and inclusive governance and coordinated policies (high confidence). Accelerated international financial cooperation is a critical enabler of low-GHG and just transitions, and can address inequities in access to finance and the costs of, and vulnerability to, the impacts of climate change (high confidence). some related losses and damages, particularly in vulnerable developing countries (high confidence). Enhanced mobilisation of and access to finance, together with building capacity, are essential for implementation of adaptation actions and to reduce adaptation gaps given rising risks and costs, especially for the most vulnerable groups, regions and sectors (high confidence). Public finance is an important enabler of adaptation and mitigation, and can also leverage private finance (high confidence).Adaptation funding predominately comes from public sources, and public mechanisms and finance can leverage private sector finance by addressing real and perceived regulatory, cost and market barriers, for instance via public-private partnerships (high confidence). Financial and technological resources enable effective and ongoing implementation of adaptation, especially when supported by institutions with a strong understanding of adaptation needs and capacity (high confidence).Average annual modelled mitigation investment requirements for 2020 to 2030 in scenarios that limit warming to 2°C or 1.5°C are a factor of three to six greater than current levels, and total mitigation investments (public, private, domestic and international) would need to increase across all sectors and regions (medium confidence). Even if extensive global mitigation efforts are implemented, there will be a large need for financial, technical, and human resources for adaptation (high confidence). Section 1 Section 4There is sufficient global capital and liquidity to close global investment gaps, given the size of the global financial system, but there are barriers to redirect capital to climate action both within and outside the global financial sector and in the context of economic vulnerabilities and indebtedness facing many developing countries (high confidence). For shifts in private finance, options include better assessment of climate-related risks and investment opportunities within the financial system, reducing sectoral and regional mismatches between available capital and investment needs, improving the risk-return profiles of climate investments, and developing institutional capacities and local capital markets. Macroeconomic barriers include, amongst others, indebtedness and economic vulnerability of developing regions. The largest climate finance gaps and opportunities are in developing countries (high confidence). Accelerated support from developed countries and multilateral institutions is a critical enabler to enhance mitigation and adaptation action and can address inequities in finance, including its costs, terms and conditions, and economic vulnerability to climate change. Scaled-up public grants for mitigation and adaptation funding for vulnerable regions, e.g., in Sub-Saharan Africa, would be cost-effective and have high social returns in terms of access to basic energy. Options for scaling up mitigation and adaptation in developing regions include: increased levels of public finance and publicly mobilised private finance flows from developed to developing countries in the context of the USD 100 billion-a-year goal of the Paris Agreement; increase the use of public guarantees to reduce risks and leverage private flows at lower cost; local capital markets development; and building greater trust in international cooperation processes. A coordinated effort to make the postpandemic recovery sustainable over the long term through increased flows of financing over this decade can accelerate climate action, including in developing regions facing high debt costs, debt distress and macroeconomic uncertainty. International cooperation is a critical enabler for achieving ambitious climate change mitigation goals and climate resilient development (high confidence). Climate resilient development is enabled by increased international cooperation including mobilising and enhancing access to finance, particularly for developing countries, vulnerable regions, sectors and groups and aligning finance flows for climate action to be consistent with ambition levels and funding needs (high confidence). While agreed processes and goals, such as those in the UNFCCC, Kyoto Protocol and Paris Agreement, are helping (Section 2.2.1), international financial, technology and capacity building support to developing countries will enable greater implementation and more ambitious actions (medium confidence). By integrating equity and climate justice, national and international policies can help to facilitate shifting development pathways towards sustainability, especially by mobilising and enhancing access to finance for vulnerable regions, sectors and communities (high confidence). International cooperation and coordination, including combined policy packages, may be particularly important for sustainability transitions in emissionsintensive and highly traded basic materials industries that are exposed to international competition (high confidence). The large majority of emission modelling studies assume significant international cooperation to secure financial flows and address inequality and poverty issues in pathways limiting global warming. There are large variations in the modelled effects of mitigation on GDP across regions, depending notably on economic structure, regional emissions reductions, policy design and level of international cooperation (high confidence). Delayed global cooperation increases policy costs across regions (high confidence). {WGII SPM D.2, WGII SPM D.3.1, WGII SPM D.5.2; WGIII SPM D.3.4, WGIII SPM C5.4, WGIII SPM C.12.2, WGIII SPM E.6, WGIII SPM E.6.1, WGIII E.5.4, WGIII TS.4.2, WGIII TS.6.2; SR1.5 SPM D.6.3, SR1.5 SPM D.7, SR1.5 SPM D.7.3}The transboundary nature of many climate change risks (e.g., for supply chains, markets and natural resource flows in food, fisheries, energy and water, and potential for conflict) increases the need for climate-informed transboundary management, cooperation, responses and solutions through multi-national or regional governance processes (high confidence). Multilateral governance efforts can help reconcile contested interests, world views and values about how to address climate change. International environment and sectoral agreements, and initiatives in some cases, may help to stimulate low GHG investment and reduce emissions (such as ozone depletion, transboundary air pollution and atmospheric emissions of mercury). Improvements to national and international governance structures would further enable the decarbonisation of shipping and aviation through deployment of low-emissions fuels, for example through stricter efficiency and carbon intensity standards. International cooperation on innovation works best when tailored to and beneficial for local value chains, when partners collaborate on an equal footing, and when capacity building is an integral part of the effort (medium confidence). {WGIII SPM E.4.4, WGIII SPM E.6.2}Technological innovation can have trade-offs that include externalities such as new and greater environmental impacts and social inequalities; rebound effects leading to lower net emission reductions or even emission increases; and overdependence on foreign knowledge and providers (high confidence). Appropriately designed policies and governance have helped address distributional impacts and rebound effects (high confidence). For example, digital technologies can promote large increases in energy efficiency through coordination and an economic shift to services (high confidence). However, societal digitalization can induce greater consumption of goods and energy and increased electronic waste as well as negatively impacting labour markets and worsening inequalities between and within countries (medium confidence). Digitalisation requires appropriate governance and policies in order to enhance mitigation potential (high confidence). Effective policy packages can help to realise synergies, avoid trade-offs and/or reduce rebound effects: these might include a mix of efficiency targets, performance standards, information provision, carbon pricing, finance and technical assistance (high confidence). {WGIII SPM B. Approaches that align goals and actions across sectors provide opportunities for multiple and large-scale benefits and avoided damages in the near term. Such measures can also achieve greater benefits through cascading effects across sectors (medium confidence). For example, the feasibility of using land for both agriculture and centralised solar production can increase when such options are combined (high confidence). Similarly, integrated transport and energy infrastructure planning and operations can together reduce the environmental, social, and economic impacts of decarbonising the transport and energy sectors (high confidence). The implementation of packages of multiple city-scale mitigation strategies can have cascading effects across sectors and reduce GHG emissions both within and outside a city's administrative boundaries (very high confidence). Integrated design approaches to the construction and retrofit of buildings provide increasing examples of zero energy or zero carbon buildings in several regions. To minimise maladaptation, multi-sectoral, multi-actor and inclusive planning with flexible pathways encourages low-regret and timely actions that keep options open, ensure benefits in multiple sectors and systems and suggest the available solution space for adapting to long-term climate change (very high confidence). Trade-offs in terms of employment, water use, land-use competition and biodiversity, as well as access to, and the affordability of, energy, food, and water can be avoided by well-implemented land-based mitigation options, especially those that do not threaten existing sustainable land uses and land rights, with frameworks for integrated policy implementation (high confidence). ","tokenCount":"16437"} \ No newline at end of file diff --git a/data/part_3/6547151238.json b/data/part_3/6547151238.json new file mode 100644 index 0000000000000000000000000000000000000000..83e78d43410a5ee710983159cf2f9703ba4105b3 --- /dev/null +++ b/data/part_3/6547151238.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"4505567f0a616282fc9340173e4ce107","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/9cc2f422-b16f-442f-8c33-d40e9863ff57/retrieve","id":"-394715797"},"keywords":[],"sieverID":"2d515d3d-d8a5-482b-b19a-af3c1ec18250","pagecount":"52","content":"Africa has complex problems that plague agriculture and people's lives. We develop agricultural solutions with our partners to tackle hunger and poverty. Our award winning research-for-development (R4D) is based on focused, authoritative thinking anchored on the development needs of sub-Saharan Africa. We work with partners in Africa and beyond to reduce producer and consumer risks, enhance crop quality and productivity, and generate wealth from agriculture.IITA is an international non-profit R4D organization since 1967, governed by a Board of Trustees, and supported primarily by the CGIAR (www.cgiar.org).• -Global: Cowpea, Soybean, Bananas, Plantain, and Yams -Sub-Saharan Africa: Cassava and Maize What we do.• Agriculture and health.• Agro-biodiversity • Banana and Plantain • Cereals and Legumes • Horticulture and Tree crop • Opportunities and threats-pests and diseases and draught • Roots and Tubers -Programs aimed to reduce pre &post harvest losses and increase the productivity of root and tuber crops for food securityBanana Production in Sub-Saharan Africa• Bananas are the fourth most important food crop in the tropical and sub-tropical zones of the world. Annual banana production in the world is estimated at 104 million tons of which less than 10% enters the commercial market, suggesting that the crop is more important as food for local consumption than for export (FAOSTAT, 2004).• Most bananas produced in Africa are used as a staple food and a source of cash income for small-holder farmers. In some of the African countries such as Uganda, the daily consumption of banana may exceed 1.6 kg per person (FAOSTAT, 2001), highest in the world. East Africa is the largest banana producing and consuming region in Africa with Uganda being the world's second leading producer with the total production of about 10.5 million tons (FAOSTAT, 2004).Area used fo r Banana production (acres) There are several laboratory techniques using PCR that are available to diagnose plant pathogens based on the analysis of DNA/RNA.Traditionally, tissues from diseased plants are used for this purpose. However, on most occasions the time involved in dispatching samples from the field to the laboratory often results into their disintegration prior to arrival in the laboratory and loss of the integrity of pathogen DNA rendering detection problematic.In addition, when the causal agent of diseased plant samples is suspected to be a bacterium or fungus; the first step on receipt in the laboratory is to recover living micro-organisms onto pure cultures prior to identification, which significantly delays the speed of diagnosis.Also, sending diseased plant material imposes several bureaucratic and real quarantine hurdles in terms of the need for quarantine certificates, material transfer agreements, import and export permits, and avoiding introduction of a new disease variant.However, sending nucleic acid samples poses no phytosanitary risk and thus obviates the need for such bureaucracy and time delay.We are testing a range of methods to capture DNA from the field Three sample collection procedures, i.e., FTA cards, PhytoPASS and 2 minute extraction dip sticks were adopted.There are no reports comparing different methods for collecting plant samples with respect to DNA yield and success in amplification under similar conditions, yet it is vital to know viability, efficiency and reliability of the sample collecting methods.The availability of nucleotide sequences for BBTV and XCM made it possible for the development of PCR assays for detection and diagnosis.PhytoPASS and KAJI extraction buffer. Optimise PCR conditions for detection of Xcm and BBTV genes.Test for the suitability, and efficacy of using these Kits to capture pathogen DNA Test for storage capability of FTA cards, PhytoPASS and 2 minute DNA dip stick DNA capture kits for DNA capture of BXW and BBTV.Test for repeatability of sample results from replicates between and within different DNA capture Kits for BXW and BBTV. PhytoPASS is a case containing a sampling strip carrying a sampling membrane. The sampling strip is rubbed on to the plant tissue, transversely to the fibres while avoiding over-saturating the sample membrane with tissues. They are easy to handle and do not need refrigeration. This kit has been employed in collection of Begomoviruses in cassava and BBTV.Area on the FTA cardPlace the disk in a PCR tube and wash three times with FTA Purification Reagent. Discard used reagent after each wash.1 2 3Wash twice with TE-1 buffer and discard used buffer after each wash. Dry disk in PCR tube.4Direct to PCR Add PCR master mix directly to the disk and amplify.5Whatman FTA Cards.2 MINUTE EXTRACTION KIT.The sampling membrane is removed with tweezers and placed in a 10-ml glass tube containing 1 ml of cold ( -4 0 C) KAJI extraction buffer (DNAlis sprl) and allowed to stand for 10 minute. Vortexing is performed to recover the plant tissue fragments in a suspension which is then kept on ice for about 5 minutes. The obtained suspension constitutes the primary crude extract which is then diluted 100 times with distilled water before PCR analysis.Source of kit : Plant Pathology Unit Passage des Déportés, 2 5030 Gembloux, BelgiumResults: Standardised DNA Extraction Protocols Method 1 (www.ftacard.com):  Two discs are obtained from the imprinted FTA cards using a 2mm punch and placed in a PCR amplification tube.  The discs are washed twice each time adding 50µl of FTA purification reagent and incubated for 5 minutes at room temperature and the washed solution discarded using a pipette.  Discs are then washed once using 100 µl of TE -1 buffer or distilled water and once with 100 µl of absolute ethanol (to get rid of chlorophyll).  The buffer and the ethanol are subsequently discarded using a pipette and the discs dried at 37 0 C for 40 minutes in the oven.Adjustment made to the protocol .•Reduces numbers of washes to 2/3 ( Several washes reduce DNA /RNA content) Xanthomonas campestris pv musacearum (Xcm) detection using varying Xcm concentration input on 2 minute DNA test dipsticks .Lane 1 -3 showed detectable amplification with reducing intensity of band with lane 2 and 3 . Lane 1-10, 2-10 -1 , 3-10 -2 , 4-10 -3 , 5-10 -4 6-10 -5 and 7-10 -6 . L is 1 kb plus DNA Ladder Google: Predict and Prevent","tokenCount":"1009"} \ No newline at end of file diff --git a/data/part_3/6550940134.json b/data/part_3/6550940134.json new file mode 100644 index 0000000000000000000000000000000000000000..ecc92ec48e0c58792fd5acfe9c84179b25c06673 --- /dev/null +++ b/data/part_3/6550940134.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"f3a8713acb71b4d51dc970f8085ca304","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/87f453a5-4d23-4c44-93a4-885b604c5581/retrieve","id":"-733021664"},"keywords":[],"sieverID":"fcd916d2-d2a2-4065-ae89-0b576371d1b7","pagecount":"23","content":"En octubre de 1984, el director del Programa de Desarrollo Rural Integrado (DRI, Oficina del Ministerio de Agricultura) presento ja posibilidad de financiar doscientas plantas de secamiento de yuca para el norte de Colombia, las cuales prodccirlan material para alimentos de animales. Unos factores favorecieron esta propuesta. La Costa Atlantica de Colombia tradicionalmente ha sido un are a de produGclon de yuca (manioc, tapioca, Mahihot). Desde 1981, varias agencias gubernamentales y el Centro Internacienal de Agricultura Tropical (CIAT) han ensayado la tecnologia del secamiento de yuca. Los equipos son sencillos; incluyen una maquina picadora pequena y un patio de cemento, en el cual se extienden los trozos de yuca. El costo de maquinaria de las plantas, previa investigaclon del CIAT (e.g. 1983CIAT (e.g. , 1984) ) no es alto. Ya hay casI 20 plantas en. operaclon en la Costa, y el DRI ha recibido cartas de campesinos de varias localidades sollettalldo la instalaclon de una planta. Los productores de alimento para animales han ofrecido comprar la yuca seca picada.SiQ embargo, los bajoS costos de la ~aquinaria forman solo una parte del costo total del montaje de una planta. Cada planta es operada por una asoclaelon de campesinos a pequena escala trabajando en coordlnaclon con funclonarlos del gobierno! este arreglo ¡aplica t costos substanciales del personal para las agencias gubernamentales.Por otro lado, apoyar el aspecto \"lnte9rado• del progrma significa que ademas de la simple asistencia teeniea, la mayoria de las plantas son el eje del esfuerzo del gobierno para Incrementar la produce Ion de yuca, hacer Investigacion en la agricultura, enseñar algunas tecnlcas y prestar otros servicios. El costo de o~ganizar. entrenar y prestar asistencia a una as~ciacion y su equipo de funcionarios es alto.Hasta el momento, no se podrla valorar el costo que ImplIca poner en funcionamiento úna planta procesadora. Ni el DRI, ni otra agencia han variado la categoria de su presupuesto para costos de equipo de secamiento. La mayoria de los funcionarios que aportan medios para el secamiento de la yuca han combinado esta actividad con otras.En parte, este programa se ha llevado a cabo sin datos de costos ya que muchas instituciones han sostenido el programa de secamiento de la yuca sin' incurrir nuevo flUjO de dinero. Ellos han r~-aslgnado a este programa de secamiento su staff que estaba dedicada a o~os proyectos menos rentables. Algunos instltuciolles tambien hacen uso de estas plantas como sitio para desarrollar otras actividades que no son directamente pertinentes a las plantas d& operacion. As!, en un sentido, la ayuda institucional para plantas de procesamiento de yuca ha sido gratuita (sin gastos mayores en efectivo--pero si ha usado recursos humanos).En el futuro, esto se llevara a cabo solamente en areas donde no hayan plantas instaladas todavia y donde todavia haya funcionarios disponibles para reaslgnar en dichas areas. Mientras no existen tales recursos disponibles, sera esencial cdnocer el costo real para el sostenimiento de una planta, para hacer un presupuesto confiable o para sostener las plantas en una manera diferente a la existente. Y siempre hay que recordar.:;:~ que esos recursos no fueron realmente sin costo: en su mayoría, los fondos fueron pre~tados, y algun día el país tendra que pagar la deuda.La primera meta de este informe es la de senalar la necesidad de conseguir datos con relacion a costos institucionales de promover las plantas de pr~cesamiento de yuca.En segundo termino, estimar los esfuerzos anteriores y el costo en relacion al sost'enimiento de equipos de procesamiento y sus asociaciones campesinas. Puede ser que los planes futuros no tengan el mismo costo 'con las plantas anteriores, las cuales operaban parcialemente al nivel experimental: pero los conocimientos con relacion a costos anteriores proporcionaran una p~uta para futuros planes y evaluaciones.En tercer luga~. explorar en varios topicos. inCluyendo cambios anuales de costos, la distribucion de costo~ sobre instituciones, y la importancia relativa de varios tipos de costos.Se ~iscuten los metodos de costos estimadas en el Apendice 1.Se requeriran algunos notas, antes de que los datas se present~n.a) \"Gastas' refiere al valor de dinero o de recursos.Aparte de gastos directamente ligados al secado de yuca por las asociaciones. se han incluida gastas en apoyo a la formacion en si de asociaciones nuevas y a sus actividades de produccion agrlcola (mayormente de yuca--pero jncluiendo cursos sobre Uso de tractor en un caso, por ejemplo). Se han incluido tamhien gastos de investigaciones economicas y tecnicas cuando se vinculan al mercado y secado de yuca.No se ha incluido el gasto de tiempo por ~ampes¡nos socias de las La octava que no se ha construido Iba a operarse con asistencia del DRI e INCORA conjuntamente.Las asociaciones productoras no se forman en vacio; el programa DRI ya tiene una larga historia de formar grupos para el mercadeo de productos agricolas y la mayorla de grupos secadoras surgen de tales grupos. Aun en la de cada 70, habia formacion de grupos por el Ministerio de Agricultura (el ANUC) y por la reforma agraria.Mas de una docena de Agencias han tenido un papel en la promocion de plantas de secamiento (Tabla 1).Este es ~l resultado de tres factores:1)gubernamentales nacional e el DRI coordina y aporta fondos para muchas agencias existentes en Sucre; por medio de financiamiento internacional, ha tenido fondos suficientes para involuncrar esas agencias; 2) las asociaciones campesinas que operan plantas de secamiento se han orlg!nado por medio de organizaciones agricolas gubernamentales en conecclon con varias agencias; 3) la administracion de cada institucion gubermental es relativamente estrecha. mientras que los tipos de asistencia que se le dan a las plantas son diversos; y 4) en la Costa, ya hay seis instituciones aportando dinero en una forma u otra para las plantas. que multiplica el numero de ejecutoras.Asl J~ programa de secar raices de yuca en la costa tiene rasgos muy especiales. Es producto de un amplio proyecto de desarrollo integrado que tiene multiples fines. no solamente la difusion de una tecnologia aproprlada. El patron del estado es muy pronunciado. Hay una historia (con resultados mixtos) de formar grupos para la produccion o para el mercadeo.- -----------------------------! -------------------------------!!~ --------------------------------- \"Dlas• se refiere a persona/dl,s (jornales) de esfuerzo profesional o tecnlco; las escalas de pagos son altos internacioneles, bajoS internacionales, Colombiano-profesional, Colombian-tccn!co (se refiere a la instituclon. no a la pe~30~a en cuanto hay personas Colombianas en instituciones internaGionales can escala internacional), La inversion en planta-mas-capital-de-trababajo fue registrado con dos tasas para 100 Metros cuadrados de piso, una tasa para Inverslon inicial y la segunda. mas baja. para posteriores adiciones.- ------------------------------I!! --------------------------------- ------------------------------11I --------------------------------- Cada planta recibe mas asistencia a~ sus primeros anos. Sin embargo, el apoyo para todas las plantas ha continuado; el gobierno no ha planeado eliminar el apoyo para ninguna planta. Tamblen se ve el patron de decllnacion usando datos de persona/dias.- ------------------------------y!! --------------------------------- ------------------------------111 ----------------------------------G Ademas, gran parte de la contribución Je perzonal Internacional toma la forma de %olombianos empleados por las instituciones internacionales.- Se ve que hay. una variac!on conslderabl. en el numero de dlas gastado, en las distintas plantas.-------------------------------!I! ---------------------------------- = 120, 1982\" 260, 1983 = 208, 1984 .. 350, 1985 ------------------------------lit --------------------------------- Mi meta era conseguir datos sobre todo clase de apoyo para las asociaciones, sea apoyo directo o apoyo menos ligado al fu~c¡onam¡ento de la planta. Indique que la precision era menos necesaria que cobertura.Lo esencial que busque era el numero de persona/dias usados apoyando a las plantas; despues, trate de cor.seguic datos de costo para 1~84.Las bases para esti~ar esfuerzos eran muy diversas, Incluyendo a) memoria de participantes, b) normas de trabaja, c) archivos, d) documentos p~rsonales, c) informes de gastos, f) informes de progreso, g) estimativos del porcentaje de tiempo de empleados usado para las plantas, y otros. Algunas fuentes permitieron estimativos muy exactos de acciones, otros no. Tambien, pedi estimativos del tiempo programado para noviembre 1984 hasta marzo 1985.Para incluir datos sobre las plantas apenas empezando en 1904, era necesario usar los estimativos l1/e4-3/R5, e sea hasta el fin de su primera estucion de secamiento. Sino, el estima\"\\vo de sus gastos del primer ano hubiera sido sumamente bajo. Decidl incluir los gastos estimativos de todos las instituciones de Sucre entre 11/04 y 3/85. En cuanto esos gastos son muy pequenoA, sigo diciendo que los cuadros tratan del periodo 1981 -1084 (y no hasta marzo de 1985).interpretar los resultados se dan a conccer las siguientes decisiones: a) Esta incluido en los estimativos todo el apoyo asociaciones secadoras, aunque el apoyQ trata mercadeo. b) Los precios usados son del ano 1984. brindado a las de producclon o c) Dividir gastos entre plantas y departamentos ha sido muy dificil, y resulta en aproximaciones no mas. Por ejemplo, se estimo que el gasto de CIAT para investigacion de tecnicas de secamiento era $COL1,OOO,OOO por ano; se atribuyo la mitad (500,000) a Sucre. d) Tuve que adivinar gastas de alguuas instituciones, pero se hizo en una minoria de casos.Los datos se procesaron usando un micro computador Osborne con un programa de base de datos (dBASE-II), el cual permito sortear registros.Se manipularon algunos 1200 cifras estimadas. Oiga Lucia Amaya, Miguel Chaux, Gloria Posada, Sandra , y Marulanda prestaron servicios de manejo de datos o editorial.En diciembre y enero de 1985, despues de escribir borradores del presente informe, mostre a la mayorla de instituciones los datos TABLA 12. Fuentes de Datos, por Ano Nota: \"Intrevlsta\" o de la organlzaclon.\"Int\" quiere decir una reunlan con un funcionario ","tokenCount":"1556"} \ No newline at end of file diff --git a/data/part_3/6599498626.json b/data/part_3/6599498626.json new file mode 100644 index 0000000000000000000000000000000000000000..f178c0a8820215ae93d6d724648a7b3edf1bf423 --- /dev/null +++ b/data/part_3/6599498626.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"4ef042291fa06cf397838d1ff8e33583","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/c9af4610-c81e-47a4-8a14-e7f5a8b2e6d6/retrieve","id":"-1859947113"},"keywords":["Youth","aspirations","agriculture","gender","Southeast Asia"],"sieverID":"88f8b729-6ac4-4404-9528-8fe54a427fe2","pagecount":"28","content":"In the context of commercial agriculture in Vietnam, this study investigates rural youth livelihood aspirations through an analysis of young people's value for family farming and an assessment of whether or not they foresee agriculture as their main occupation. Using an intra-household dataset of cassava farmers in Vietnam, the study shows that the majority of youth aspire to work in agriculture, which is contrary to the popular belief that young people are not interested in agriculture. We employ the framework of opportunity space and embedded aspirations to assess the \"push\" and \"pull\" forces for youth engagement in commercial agriculture. We pay special attention to youth interest in agriculture, social (parental) influences, structural constraints (land, inputs, capital, market, and credit), and the precariousness of agricultural work due to the worsening impact of climate change. The findings of the study reveal that land access is a critical factor for young men's aspirations, although less important for young women's aspirations, and the experiences of negative climatic shocks are strongly and negatively associated with youth aspirations to work in agriculture. We also find that parents' expectation for their children to work in agriculture is positively associated with youth aspirations, more so for young women, pointing to strongly gendered determinants of youth aspirations for agricultural work. Our findings suggest that the policies and programs aiming to encourage youth engagement in agriculture must be rooted in context-specific economic and social constraints and opportunities, while acknowledging the underlying structural gender differences.Across developing countries, as more and more youth exit agriculture, the \"graying\" farmer is increasingly becoming the dominant feature of agriculture (Leavy & Hossain, 2014;Rigg et al., 2020). 1 Over the past two decades, Southeast Asia in particular has seen a rapid decline in youth engagement in agriculture and a large rural exodus of young people looking for better economic opportunities in urban non-farm sectors (Bhandari & Mishra, 2018;Peou, 2016). In Thailand, for instance, the share of young farmers (aged 45 years or less) fell by more than 46% from 2003 to 2013 (Ruiz Salvago et al., 2019). Likewise in Indonesia, youth participation in agriculture fell by about 36% over the same period (Susilowati, 2014). In Vietnam, rural households no longer depend solely on agricultural livelihoods, as evident from the vastly smaller share of workers employed in agriculture (from 48.4% in 2007 to 39.4% in 2016) compared with the proportion of agricultural households (83.5% in 1992 to 62.9% in 2016) (Liu et al., 2020).Youth attitudes toward agricultural work and (dis)interest in farming are linked to a multitude of \"push\" and \"pull\" factors that influence young people's desire to work in agriculture (Njeru, 2017;White, 2019). The key push factors are related to the characteristics of agricultural work and life in rural areas, while the pull factors comprise potential lucrative opportunities in urban non-farm sectors and a modern lifestyle. An often-discussed push factor related to youth's disengagement in agriculture is constrained access to land (Leavy & Hossain, 2014;Zulu et al., 2021). The Duyen et al. (2021) study of Vietnamese rice farmers shows that, compared with youth in Ha Tinh and Thai Binh provinces, a larger share of youth in Bac Lieu Province were interested in agriculture mainly because they have larger landholdings.1 See Bezu & Holden (2014), McMillan &Harttgen (2014), andAGRA (2015) for evidence from sub-Saharan Africa; Ge et al. (2020) for China; Ruiz Salvago et al., (2019 for Thailand;Mulema et al. (2021) and Duyen et al. (2021) for Vietnam; and Manolo and van de Fliert ( 2013) for the Philippines.The inter-generational dynamic in land access also exists, which ties youth aspirations to their parents' expectations and hopes for them. In countries where land markets are thin or non-existent, young people can mainly access land through inheritance or marriage (Wyn and White, 1997;Bezu & Holden, 2014;Mulema et al., 2021;Mwaura, 2017;White, 2012). This dynamic creates power asymmetry between youth and the older generation. Moreover, cultural norms of generational hierarchy put young people in a subordinate position relative to their parents (Whitehead et al., 2007). These dynamics may constrain youth independence to practice agriculture according to their knowledge, skills, and entrepreneurial attitude (Huijsmans, 2014). In cases in which working jointly with parents may lead to disagreements between the older and the younger generation over farming practices, input use, and technology, youth may prefer to move away from the household farm in order to avoid subordination to the older generation (White, 2012). Consequently, for youth without independent access to land, migrating to urban areas in search of non-farm jobs may seem to be the only way to escape familial tensions and conflicts (Glover & Sumberg, 2020;Rietveld et al., 2020).The formation of youth occupational aspirations is of interest not only to young people but also to their families and communities as well. Accordingly, the role of parents' expectations and desires in youth livelihood choices cannot be ignored, particularly in cultures where fulfilling obligations toward parents is seen as a moral responsibility of young people (Leavy & Hossain, 2014;Stuifbergen & Delden, 2011;Huisjmans, 2014). Several studies show that parents' attitudes toward agriculture and expectations for their children's support in old age influence the occupational choices of youth: either pushing them away from a path in agriculture or preparing them to take over the family farm (Leavy & Hossain, 2014;Magagula & Tsvakirai, 2020;Manalo & van de Fliert, 2013;Ruiz Salvago et al., 2019).The livelihood aspirations of youth and their parents' expectations for them aren't always conditional upon land access and farm size. For instance, educated youth from wealthy households may not enter agriculture, irrespective of the size of landholdings, because they wish to capitalize on their relatively higher education and/or vocational skills in non-farm sectors where they could use their acquired knowledge (Leavy & Hossain, 2014). The availability of good non-farm jobs in urban areas acts as a strong pull factor for youth, especially the educated ones, thus decreasing engagement in agriculture (Mulema et al., 2021;Ruiz Salvago et al., 2019).Some studies have highlighted additional push factors such as the low status of or negative attitudes toward farming (Leavy & Hossain, 2014;White, 2012;Zulu et al., 2021); lack of agricultural knowledge and skills (Magagula & Tsvakirai, Trong Chinh / Alliance of Bioversity International and CIAT 2020; White, 2012); the general attitude of downgrading rural life in culture and media (Biriwasha, 2012;White, 2012); and farmers' perception of and the actual lack of government investment and support in the agricultural sector.The precariousness of smallholder agriculture arising from contingent factors such as pests and diseases, natural disasters, and changing climate is likely a major push factor, but it is often overlooked in the literature on youth aspirations in relation to agriculture. In a time of unprecedented threat of climate change, small-scale producers face increased production and income risks in agriculture. Particularly among the households that have directly experienced adverse impacts of climate change, these uncertainties may strongly influence youth aspirations in agriculture.Further, the use of adaptation strategies such as climatesmart agriculture frequently requires greater financial and time investments, thus making agriculture even more unattractive to young farmers.The lack of young, educated, and entrepreneurial people in agriculture is seen as one of the major problems facing Vietnam's agricultural sector (Nguyen Van, 2019).As in many low-and middle-income countries, young people in Vietnam are not thought to aspire to become farmers but to view agriculture as a poor career choice with little monetary and material benefits (Kritzinger, 2002;Leavy & Smith, 2010). In light of this, it is important to understand whether indeed young people, especially those from farming households, aspire to work or continue working in agriculture and what factors shape their aspirations. This will help inform strategies to support young people who are interested in pursuing an agriculture-based livelihood and remove barriers and constraints to achieving their goals.The study contributes to the growing literature on youth aspirations to work in agriculture in several ways. First, we develop a comprehensive conceptual framework that fits less explored factors shaping young people's attitudes to working in agriculture such as parents' self-reported aspirations, parents' and young people's entrepreneurial attitudes, the threat of climate change, and household confidence in dealing with future natural disasters and changing climate. In this study, we examine the factors contributing to the formation of rural youth aspirations in a context in which agriculture is already affected by climate change and is expected to face even worse impacts in the future. Specifically, we look at the rural youth in smallscale agricultural households in Vietnam who are invested in the production of cassava, a commercial crop, among others. We use intra-household survey data and apply econometric analysis to assess the various correlates of young people's aspirations to work in agriculture.Other quantitative studies often focus on a narrow set of socioeconomic factors and most of the research on how parents' perceptions shape youth attitudes toward agricultural work comes from qualitative studies or a focus on occupational choices outside of agriculture.Second, in contrast to the majority of previous work, which has focused on subsistence-oriented agriculture (Leavy & Hossain, 2014), this study provides insights from a highly commercially oriented agricultural production system. In contrast to commercial agriculture dominated by large-scale farmers and estate farms, our focus on cassava-producing households in Vietnam also pays attention to small-scale farmers. Because of cassava's low input requirements and ability to produce an economic return in marginal environments, some of the poorest and most vulnerable farmers in Vietnam grow it for sale in a complex and regionally connected value chain (La et al., 2018;Nam et al., 2018;Sareth et al., 2018). At the same time, it is also grown by some of the largest farmers in highly intensive production systems such as those in the Southeast region of Vietnam. Significant regional heterogeneity exists in value chains. What is a livelihood aspiration?2 The specific questions in the survey were framed as \"How important is it that you or your siblings take over the family farm?\" The possible answers were \"Very important,\" \"Somewhat important,\" and \"Not important at all.\" 3 Do you see yourself working in agriculture in the future, including starting a business related to agriculture? (yes, no, maybe).space, is defined by young people's personal beliefs and experiences, and \"reasonable assessments of what is possible within their geographical, socioeconomic and policy context, given their own qualities and characteristics\" (Bernard & Taffesse, 2014;Leavy & Hossain, 2014).Aspirations are not formed in isolation; rather, they are embedded in one's opportunity space (Kosec et al., 2012). Therefore, to understand the factors that shape youth aspirations and (dis)interest in agriculture, it is important to analyze the wider set of constraints and opportunities, which together form their opportunity space. Based on the approach postulated by Sumberg and Okali (2013), we divide the opportunity space into two broad categories of constraints and opportunities:(1) structural factors relate to economic, physical environment, and agroecological circumstances, and (2) relational factors include social norms that shape one's aspirations directly through what an individual believes he/she can do based on his/her perception of himself/ herself and his/her expected roles (Leavy & Hossain, 2014;Rietveld et al., 2020). For example, a young man may foresee a career in agriculture because of his obligation as the oldest son to take over the family farm and be there for his parents. Norms related to gender, age, social status, etc., influence the perception of one's roles and capabilities. In addition, social and relational specifics affect the structural factors in the person's opportunity space through institutional mechanisms such as gender differences in access to land and local gerontocratic structures that give the older generation control of land and productive resources (Leavy & Hossain, 2014;Rietveld et al., 2020;White, 2012).The first set of structural factors relates to the physical environment, which is critical in farm operations. This includes farmland and productive resources such as seed, fertilizer, mechanization, and other technology. Access to farmland is the primary condition for practicing agriculture. Because of land scarcity across developing countries in Asia and sub-Saharan Africa, often resultingIn the literature, aspirations are typically defined in two ways. The first is what people hope for and their dreams, which may or may not be rooted in reality (Gutman & Akerman, 2008;Quaglia & Cobb, 1996). The second is what people expect they can achieve or become, which embodies their realities (Leavy & Smith, 2010;MacBrayne, 1987). A comprehensive view of aspirations requires combining youth hopes and dreams with their expectations about their future careers (Rietveld et al., 2020). Following this literature, we define aspirations as youth career interests, proxied by their (dis)inclination toward farming, combined with their future prospects to start or continue working in agriculture.Thus, the definition of youth aspirations in this study accounts for both interests and expectations to work in agriculture. In order to gauge youth desire to pursue agriculture as a livelihood, we asked for their opinion on the continuation of family farming. 2 Youth expectations for the future also embody their realities, which we assess by asking whether or not they foresee working in agriculture in the future. 3 Based on youth responses to these questions, we categorize rural Vietnamese youth aspirations according to whether the youth respondent (1) values and expects to work in agriculture; (2) values but is uncertain about a future in farming; (3) values but does not expect to work in agriculture; (4) somewhat values but does not expect to work in agriculture; (5) does not value but still expects to work in agriculture; (6) does not value and does not expect to work in agriculture; and (7) does not value but is uncertain about a future in farming. Categories 3 and 4 represent the proportion of youth with conflicting future livelihood interests and expectations. The aspirants to agricultural livelihood include categories 1, 2, 3, 5 and 7, and those who do not expect to become farmers, irrespective of their occupational interests (categories 4 and 6), are non-aspirants. We thus construct the binary variable capturing youth aspirations, which takes the value 1 for the young people who aspire to work in agriculture and 0 for those who do not aspire to become farmers.Youth livelihood aspirations evolve within their context, which in turn is influenced and shaped by various socioeconomic and agroecological factors (Anyidoho et al., 2012). Youth context, also known as their opportunity from factors such as population growth and corporate land grab for large-scale farming, many young people are pushed away from agriculture (Chinsinga & Chasukwa, 2012;Ruiz Salvago et al., 2019;White, 2012).Youth land access is also affected by inter-generational transfer of land rights (Tadele & Gella, 2012;White, 2012;Zulu et al., 2021). Youth who expect to inherit land may have to work jointly with parents and/or other family members until they gain full control over the family farm. The evidence suggests that young people generally prefer to work independently so they can cultivate new crops and implement modern technology to increase farm profitability. Hence, extended wait times to inherit land may dissuade young people from choosing farming as a livelihood option. Additionally, under the land-inheritance system, land fragmentation is a limiting factor, especially for youth in large families, in which the land would be subdivided among the eligible children. For young people without land of their own and no means of obtaining any, agricultural day labor is the main option if they want to remain in agriculture. Thus, it is not surprising that many youth from landless families do not wish to enter agriculture (Bezu & Holden, 2014;Tadele & Gella, 2014).Besides land, access to productive inputs is another factor limiting youth aspirations to farm. Limited access to and high prices of inputs such as seed, fertilizer, irrigation infrastructure, etc., can be a deterrent. For smallholder agriculture, a lack of inputs likely results in a vicious circle of low-input/low-output agriculture (Zulu et al., 2021). Although young people tend to be more entrepreneurial and risktaking (Zulu et al., 2021), the evidence suggests that youth are often neglected by extension agents and sidelined by adults and agricultural training program managers (Filloux et al., 2019;Fischer et al., 2020;Zulu et al., 2021). There is also evidence showing that agricultural training programs may discriminate between educated and non-educated youth, targeting mainly those with higher education (Anyidoho et al., 2012;Barrientos et al., 2007).The second set of structural factors comprises financial hurdles and market infrastructure. Because of a lack of capital and limited access to credit, many young people are unable to start their farm operations, expand cultivation, or adopt new technologies. For instance, Zulu et al. (2021) found that youth in Malawi were unable to participate in irrigation projects because they lacked the capital to own basic infrastructure, such as treadle pumps. The situation is further exacerbated by the lack of access to finance and credit. For example, young people are less likely to meet the stringent eligibility requirements for loans such as ownership of land or property for collateral (Barzola et al., 2019;Njeru & Gichimu, 2014;White, 2012;Zulu et al., 2021).Rural youth, especially smallholders, are more likely to face challenges of finding a consistent lucrative market. Neven et al. (2009) and Noorani (2015) show that, because of the lack of information and capital, smallholders struggle to meet the standards of large local and international buyers such as supermarkets and exporters. Thus, they are left to rely on traditional markets and middlemen, resulting in lower profit margins.Trong Chinh / Alliance of Bioversity International and CIATThe natural environment such as climate and extreme weather events forms the third set of structural factors in young people's opportunity space. Climate and agricultural livelihoods are inextricably linked. Hence, natural hazards and extreme weather events related to climate change are expected to affect agricultural production and livelihoods in many regions around the world (IPCC, 2018), particularly in developing nations, where a large share of the population relies heavily on agricultural production as the primary source of income (Pham et al., 2021;Porter et al., 2014). Subsistence and small-scale farmers are highly vulnerable due to low adaptive capacity and high exposure to disasters related to climate change (Kates, 2000). Studies from the developing world show that farmers are facing greater income uncertainty because of decreased output, higher cost of production, increased incidence of disease in livestock, and loss of arable land (FAO, 2015;Pham et al., 2021;Raleigh et al., 2008). Climate change and natural hazards have also created harder working conditions in agriculture. For instance, in the Northern Mountainous region of Vietnam, because of landslides and a lack of finances to hire machines, farmers often have to clear rocks and stones all by themselves (Pham et al., 2021). In Latin America, Arora (2019) showed that rainfall variability and droughts caused herders to walk longer distances to find water for the livestock.The extent to which agricultural households have been affected by climate-related shocks in the past and their perception of the frequency and intensity of such events in the future are likely to help shape youth desires and expectations to work in agriculture. This is because households incorporate environmental risks into their livelihood pathways. Natural hazards and environmental degradation may force some to diversify their household income sources by participating in non-farm activities (Raleigh et al., 2008). Increasing uncertainty in weather patterns and a warming climate have been linked to increased outmigration of young men in rural Nepal (Aslihan et al., 2021). Farmers who have witnessed climate variations and their adverse impacts and expect worsening farming conditions in the future are more likely to push their children away from agriculture, especially among smallholders (Duyen et al., 2021).Following from the work of Kosec et al. (2012) on the links between aspirations and psycho-social factors such as locus of control, self-esteem, etc., we consider the potential role of youth entrepreneurial attitudes in shaping their occupational aspirations. Youth entrepreneurial attitudes form the fourth set of structural factors.The literature suggests various ways to measure entrepreneurial orientation or attitudes (Barzola Iza et al., 2019;Krauss et al., 2005;Lai et al., 2017;Lumpkin & Dess, 1996). Nearly all measures try to capture some aspects of risk-taking, proactiveness or opportunity-seeking, and innovativeness, but some include additional domains such as autonomy and competitive aggressiveness (Lumpkin & Dess, 1996) as well as learning orientation (Lai et al., 2017). In their investigation of the role of farmers' entrepreneurial orientation on agricultural innovations among Ugandan farmers, Barzola Iza et al. (2019) focus on four dimensions -innovativeness, risk-taking, proactiveness/opportunity-seeking, and entrepreneurial intentions. We focus on the same four dimensions, but modified the questions so that they are not referring necessarily to agriculture as not all youth respondents were expected to work or have worked in agriculture at the time of the survey. The questions were based on the work of Bolton et al. (2012), Çolakoğlu & Gözükara (2016), and Tang et al. (2012).Although we collected information on multiple domains of entrepreneurship, in this study we focus on two domains -opportunity-seeking and risk attitudeswhich are hypothesized to be most closely linked to aspirations about agriculture-based livelihoods.Aspirations are not formed in isolation; rather, they are embedded in the social and cultural environment (Appadurai, 2004;Kosec et al., 2012;Ray, 2003). Both implicit and explicit expectations of family and kinship influence youth livelihood aspirations (Leavy & Smith, 2010). Therefore, parents' perceptions and experiences of farming as a livelihood option shape their expectations for their children and their actions to encourage or discourage them regarding farming (Palis, 2020).Parents' aspirations for their daughters and sons may differ. Fulfilling different expectations as daughters, sisters, and wives helps explain young women's decisions whether to stay or move away for work (Somaiah et al., 2020).In many developing countries, household and farm decision-making powers are often vested in household heads (and their spouses). When youth are not involved in household decisions related to farm management, yet expected to provide labor on family farms, they may feel unappreciated and may be discouraged from working as farmers (Amsler et al., 2017;Zulu et al., 2020). Zulu et al. (2021) argue that the relative exclusion of youth from household decision-making also limits the opportunities for learning and empowerment, and undermines their sense of ownership.The data for this study come from a primary household survey conducted in 2020 with 552 cassava-growing households from four regions in Vietnam (the Southeast region, South Central, Central Highlands, and North Mountainous region). 4 While the broader objective of the survey was to understand cassava growing practices and outcomes among rural households, we also implemented a youth module at the individual level to understand the aspirations of young people. This module was administered only to the families with young people from 18 to 35 years old. About 50% of the 552 surveyed households did not have any young adults aged 18 to 35 years in their household. In 17% of the sampled households, the eligible young people could not be reached for an interview -neither in person nor via a phone. The enumerators successfully interviewed young adults from 177 households, which represents about 32% of all the surveyed cassava producers. After excluding problematic and incomplete responses, we were left with a sample of 170 households in which both a parent and the eldest son or daughter were interviewed.The interview with the youth focused on their demographic characteristics, questions about their current occupations, livelihood aspirations and expectations, and an assessment of their entrepreneurship attitude. Despite the relatively small sample, we are able to analyze youth aspirations to work in agriculture separately for men and women.Table 1 provides basic statistics of the full youth sample as well as the sub-samples of men and women. We have more male youth respondents in our sample than female respondents. The average age of the youth in our sample is 26 years. The women respondents are on average a year younger than the male respondents. The primary occupation of the majority of youth in our sample is non-farm wage or self-employment work. Agriculture is a close second, forming the main occupation of 38% of the youth in the cassava-growing households. About 14% are students and 5% are out of the labor force and/ or unemployed. More young girls are currently in school than young boys.In terms of land and other productive assets, the households in the youth sample tend to have relatively large holdings. The average landholding, which includes owned land as well as land that is rented in or borrowed (without payment), is 4.35 hectares. In our sample, compared with young men, young women come from households with slightly larger landholdings. This is likely because a larger share of young women than their counterpart is in the Southeast region, which boasts on average significantly larger landholdings. On the other hand, a large majority of male youth respondents come from the North Mountainous region, where the landholdings are relatively smaller than in the other regions. Interestingly, although the majority of female youth in our sample come from the Southeast region, the most commercial and wealthiest region, they are indeed relatively poor. Compared to young men, a larger share of female youth belongs to the households in the bottom two wealth quintiles. That said, in general, significant differences exist in wealth across regions (not reported in the table). The households in the Central Highlands are the poorest while those in the Southeast region are the wealthiest. In fact, there are no households in the bottom wealth quintile in the Southeast region and more than two-thirds are in the top wealth quintile. The South Central is also relatively well off, while the North Mountainous region exhibits more heterogeneity -with a quarter of the households in that region in the bottom two wealth quintiles and at the same time 24% of the households in the top wealth quintile. The share of households officially certified as poor is also the highest in the Central Highlands and the North Mountainous region -about 21% of the population in both regions.The total expenditure on inputs is actually higher in the households of male youth respondents than in the households with female youth respondents. There are no noticeable differences in other structural factors such as access to transportation and market infrastructure between the young men and young women in our sample.While the majority of the households in our sample expect that climate uncertainty will be worsening in the coming years, about a quarter of the households reported having already experienced the adverse effects of climate change, specifically the experience of a natural disaster. This number is significantly higher for the households of the male youth sample compared with those of the female youth sample.Finally, the majority of the households in our youth sample are Kinh Vietnamese, which is the majority ethnic group in the country. There were some noticeable variations across regions -both the Central Highlands and North Mountainous region are homes to a great number of ethnic minorities, and in the Southeast and South Central regions nearly all households are of Kinh ethnicity.The rest of the analyses are restricted to the sample of 170 cassava-growing households in order to examine how the richer set of structural factors, including access to technology, correlates with young men's and women's aspirations to work in agriculture.( The definition of aspirations in this study accounts for youth ambitions, proxied by the value placed in agriculture as a livelihood (\"How important is it that you or your siblings take over the family farm\") and their expectations for a future career (\"Do you see yourself working in agriculture in the future, including starting a business related to agriculture?\").The results show that about 71% of the youth in cassava-growing households value agriculture as a livelihood option. Of these youth, about 55% definitely foresee agriculture as their future livelihood, about 31% are uncertain, and the remaining 14% certainly do not expect to work as a farmer. Among the youth with the perception that it is not important at all to take over the family farm, the majority (about 61%) do not expect to work as a farmer, about 22% are uncertain, and a mere 16% expect to work in agriculture in the future.As mentioned earlier, the youth aspiring to start or continue working in agriculture include those who value agricultural work and expect to become farmers as well as those who may not necessarily value a future in agriculture, yet certainly foresee taking over the family farm. Overall, they are 76% of the youth sample. More boys (79%) than girls (71%) have aspirations to work in agriculture, which could also be because girls are slightly younger and more likely to be currently in school or the university. The canonical view that young people do not want to work in agriculture is not visible in our data. At the same time, our case study is focused on smallholders engaged in producing cassava, a commercial crop, whereas most of the previous literature has examined youth aspirations in the context of subsistence or food crop production. The findings of Anyidoho et al. (2012) in the context of cocoa production in Ghana also suggest that youth do not have disdain for farming and, in times of need, many young people return to cocoa farming.As shown in Table 2, about half of the youth aspiring for a career in agriculture are already working in it. The share of agricultural aspirants currently working in non-farm occupations is relatively high at 33%. For those still in school, agricultural life may appear as strenuous and less valuable. Among the non-aspirants, more than 85% are either students or in non-farm occupations. Finally, most of the young aspirants to agricultural livelihood (about 71%) had some previous experience in farming: working as an independent farmer or cultivating jointly with parents or as an agricultural laborer.The farming systems in the four regions in Vietnam are quite heterogeneous. Agricultural production, including cassava, is highly intensive, with strong linkages to processing facilities and export markets. Landholdings in the Southeast region are also significantly larger than in other regions (Table 3). Across all regions, the households of aspirants to agricultural livelihoods, on average, have larger landholdings than those of non-aspirant households.However, the difference is not significant.Because of its very long coastline, high dependence on agriculture, and poor rural infrastructure, Vietnam is likely to be one of the most significantly affected nations in the world from sea-level rises caused by climate change. CARE (2020) reports that, with global warming, the country will likely face more frequent temperature extremes, below-average rainfall during the dry season, and increased incidences of flooding. Many farming households are already confronting the impact of changing climate. More than 20% of all households in our sample reported having experienced adverse impacts of natural shocks and more than 80% expect worsening impacts of climate change in the future.Central to youth aspirations to work in agriculture is how climate change may affect agricultural output and profitability.Our findings show that, among the youth who do not want to work in agriculture, about 27% have seen the adverse impacts of natural shocks such as droughts, floods, storms, and others on farm output and income, compared with 21% of the youth who aspire to work in agriculture.Our data do not allow for the analysis of youth access to credit, their financial situation, and market experience in selling agricultural produce. Using household demand for loans, we determine the overall constraints to credit access (Table 4). Similarly, the indicator of farm capital is proxied by household use of irrigation and/or heavy machinery for land preparation. Last, to assess the difficulty in accessing markets, we employ whether or not the household paid for transportation to sell cassava output. Except for market access, the difference between aspirants' and non-aspirants' household access to credit and capital is not significant. Youth opportunity-seeking attitude was measured using items such as \"I always keep an eye out for new business ideas when looking for information\" and \"I read news, magazines, or trade publications regularly to acquire new information\" based on the study of Bernard and Taffesse (2014). Youth risk-taking was measured through three items based on the study of Bolton et al. (2012): \"I like to take bold action by venturing into the unknown,\" \"I am willing to invest a lot of time and/or money on something that might yield a high return,\" and \"I tend to act boldly in situations where risk is involved.\" These are used to construct a measure of youth entrepreneurial attitudes. Those that aspire to work in agriculture on average score lower on the entrepreneurial index and the difference is significant at the 10 percent level.We measure parents' expectations through the value they place on their children taking over the family farm and their actions to discourage or encourage them regarding agriculture. Parents expect their children to take over family farming if they think it is important for one of their children to continue to farm the family land in the future and/or they encourage them to pursue agriculture as the primary occupation. Those who do not want their children to follow in their footsteps think that it is not at all important for one of their children to take over family farming and/or they discourage them from working in agriculture.We compare youth aspirations and their parents' expectations for them in order to understand whether there are any similarities between them. Table 5 presents how the two groups compare with each other. Overall, we see that the aspirations of the majority of youth are in line with the expectations of their parents, especially among the non-aspirants.Parents' expectations for their children's future livelihoods (%) Table 6. Youth participating in farming decisions of the household by their aspirations.Source: Authors' calculations.Source: Authors' calculations.Table 6 presents the proportion of youth participating in agricultural decision-making. Almost all of the non-aspirants, except one, do not play any role in household decisions related to farming, whereas, among the aspirants' households, 53% of the youth are active in farm decision-making.To analyze the correlates of youth livelihood aspirations, we estimate the following discrete choice model:where y i is the dependent variable equal to 1 if youth respondents self-report aspirations to work in agriculture (and 0 if they do not aspire to work in agriculture), α is the constant, and β is the coefficient on relational factors, specifically parents' expectations (Parent) for their children to pursue or not pursue a livelihood in agriculture. We measure parents' expectations through the value they place on their children taking over the family farm and their actions to discourage or encourage them regarding agriculture. The indicator variable Parent is equal to 1 if the parents think it is important for one of their children to continue to farm the family land in the future and/or they encourage them to pursue agriculture as the primary occupation.Unique to this study is being able to explore the association between youth entrepreneurial attitudes and their aspirations to work in agriculture. Youth entrepreneurial attitudes are proxied by an index (0-4) based on their risktaking behavior and opportunity-seeking. The higher the score, the higher the youth respondent's entrepreneurial attitudes (higher risk-taking and opportunity-seeking characteristics).We also control for a set of structural factors (as described in the conceptual framework). These include land size and expenditure on the size of the farm, total expenditure on inputs (per ha), and access to infrastructure, markets, and credit. As mentioned earlier, the model also includes controls for the experiences of climate change as these are also likely to influence youth aspirations to work in agriculture.In all the models, we control for youth individual-level characteristics such as age and sex as well as whether they are currently working in agriculture or studying (the base category comprises all non-farm occupations and agricultural laborers). 5 Rural youth in the higher age groups, especially those already in the labor force, may have begun their career trajectory. Thus, we expect that youth current occupation may be an indication of their future occupational aspirations. However, this may not always be the case. This follows from the concept of livelihood pathways, which are defined as different livelihood decisions made on the basis of one's hopes and planned actions to reach one's dreams, and unexpected and exogenous influences (Scoones, 1998). Young people's prior experience and current engagement with farming and their current and expected educational attainment are likely to play a major role in shaping their aspirations. Education is frequently considered the most effective route to escape a poor agricultural existence (Young Lives, 2013).Household-level socioeconomic characteristics are captured by parents' age, sex, education, and whether the parents are from an ethnic majority group (Kinh). A household wealth index is used as a proxy for household economic status. Households are separated into five wealth quintiles based on the index (the bottom wealth quintile forms the base). 6Finally, given the heterogeneity of agricultural production systems, with their unique agroecological conditions, we also control for spatial differences by including regional dummies. The Southeast region, the most farming-intensive area, is the base category. (Tadele & Gella, 2012).Among the main explanatory variables of interest is parents' aspirations for their children working in agriculture. Parents' aspirations for their children are positively associated with their children aspiring to engage in agriculture-related work. The coefficient is significant for both young women and young men, but it seems larger for young women. This highlights that parents' aspirations are important determinants of all children's outcomes, especially when it comes to agricultural work, and parents' favorable attitudes toward agricultural work seem to have a particularly important influence on girls.As expected, youth in households with larger landholdings are significantly more likely to aspire to work in agriculture. Land access is an important determinant for male youth but not for female youth, which could be because young women are more likely to access land through the husband. Another study from Vietnam also suggests that young people are interested in agriculture but access to sufficient land is often a key constraint that does not allow them to pursue agricultural work (Duyen et al., 2021). The intensity of agricultural production, proxied by expenditure on inputs, is correlated with men's aspirations but not women's aspirations, suggesting that more intensive (and potentially more profitable) agriculture is still not appealing to women. Drawing on qualitative data from India, Mali, Malawi, Morocco, Mexico, Nigeria, and the Philippines, Elias et al. (2018) also find that, while young men aspire to engage in \"modern\" agriculture, young women did not have a similar interest in \"modern\" agriculture as discriminate gender norms against women in agriculture discourage young women from aspiring to agriculture-related work. Social networks and connections outside one's community, especially in urban areas, are also thought to influence youth to aspire to and pursue non-farm jobs (Ray, 2006). For instance, Barratt et al. (2012) show that success stories of migrations may paint a picture of urban superiority in the mind of youth. And, when confronted by a choice between a potential comfortable urban lifestyle and rural life, agriculture may not appear attractive to some youth. Yet, this study does not find the hypothesized negative link between the number of household members working in the non-farm sector and youth aspirations to work in agriculture. In fact, a higher number of family members working outside of agriculture is positively associated with youth aspirations to work in agriculture, but the coefficient is not statistically significant at conventional levels.It could be that having more family members working outside of agriculture decreases the appeal of non-farm work and increases the need or desire for someone to stay to take over the family farm (as part of a household livelihood diversification strategy or even to preserve the household rights over the land, which could be threatened if land is left uncultivated). The number of family members already working in agriculture is positively associated with youth aspirations to work in agriculture, but only for the female sample. If more family members (including the husband) are engaged in agriculture, likely on the family farm, young women are more likely to value agriculture and to anticipate having to contribute labor to the farm.We also notice that youth in the South Central region and the Central Highlands are significantly less likely to see themselves working in agriculture than youth in the Southeast region. The Southeast region is where cassava is most intensively grown. Its production is characterized by large landholdings, high use of inputs, and strong linkages to processing factories and export markets. Cassava is less intensively grown in the other regions; landholdings are also significantly smaller in the other regions.Pooled sample (1) Marg eff.(2) Marg eff.(3) Marg eff. Understanding young people's attitudes and aspirations to work in agriculture or agri-business has gained traction in the international development agenda as rural outmigration to urban centers and abroad has increased steadily, raising a serious concern over the \"graying of the farm sector.\" Implicit in the call for the Sustainable Development Goals to make migration a choice is the idea that livelihoods in rural areas need to improve. In many developing countries, young people's attitudes toward agricultural work are generally not favorable, seeing the sector as backward, less productive, and backbreaking (Barratt et al., 2012;Sumberg & Okali, 2013;Elias et al., 2018;Yami et al., 2019). These reports are largely based on African youth and agriculture and they may not be shared by youth in other regions, especially where agriculture is highly commercially oriented, such as Southeast Asia.Our study explores the determinants of aspirations to work in agriculture among young men and young women using the case of cassava-producing households in Vietnam. The study develops a conceptual framework and empirically examines key factors from the framework, including relational factors (parents' aspirations for their children), structural factors (access to land, technology, markets, inputs, etc.), entrepreneurial attitudes, and the role of climate change. The study finds that parents' aspirations for their children to continue farming are positively and significantly associated with youths' own aspirations to work in agriculture. As shown in the literature, access to land is a serious constraint to youth engagement in agriculture (Elias et al., 2018;Bezu & Holden, 2014;Leavy & Hossain, 2014). Our results confirm the association between access to land and youth aspirations to work in agriculture, particularly for young men. The findings also point to the essential role of the characteristics of agricultural production in terms of access to and intensity of input application and access to infrastructure, machinery, and markets in positively influencing male youth aspirations to work in agriculture; we don't find a strong link between the type of agriculture and female youth aspirations to work in agriculture.Not surprising but critical to recognize is the strong negative association between climate change and youth aspirations to work in agriculture. Previous experiences of a climate change-related shock are negatively associated with young people's aspirations about agriculture. The fact that more entrepreneurial youth are less likely to aspire to work in agriculture is concerning, particularly in a time of unprecedented threat of climate change, overcoming which requires innovation, adaptability, and increased take-up of new technologies (Leavy & Hossain, 2014).Young women are significantly less likely to aspire to work in agriculture. They are more likely to aspire to work in agriculture if several family members are already engaged in it, and perhaps if the husband is engaged in agriculture, particularly in highly intensive and profitable farming.Young people's overall positive attitudes toward agricultural work may also be influenced by the quality of jobs available outside of agriculture, including in large cities. Wages in the non-farm sector may outstrip those in the farm sector but, overall, there is little evidence that these are secure jobs (Rigg, 2015). The study points to the need for a strong policy focus on the main structural issues in agriculture such as land scarcity and access to agricultural inputs and credit, which play an important role in influencing youth attitudes toward agricultural work, specifically young men's attitudes. Also, these may be important deterrents for women to aspire to work in agriculture, but more research, particularly from deep qualitative studies, is needed to understand to what extent underlying gender-biased constraints influence women's livelihood aspirations.Favorable social norms, captured by parents' aspirations about their children and more family members working in agriculture, appear to be stronger determinants of women's aspirations to work in agriculture, compared to structural factors, but high-quality quantitative and qualitative analysis around the interplay between structural factors and social norms could significantly enrich the current findings and help draw concrete policy and programming recommendations for strengthening agricultural livelihood options for men and women.","tokenCount":"7360"} \ No newline at end of file diff --git a/data/part_3/6614416545.json b/data/part_3/6614416545.json new file mode 100644 index 0000000000000000000000000000000000000000..552751e9e3066dfd09b9870d6022502b4138968b --- /dev/null +++ b/data/part_3/6614416545.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"7f2954834f85e28be5a2bc2d53d27a18","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/1df7d77e-03e6-41ac-b2bd-7f68bb36147e/retrieve","id":"-667728580"},"keywords":[],"sieverID":"6ef5339d-60f1-4808-a3d5-ff36d767f0ff","pagecount":"39","content":"Mantle Labs is a leading remote sensing and AI technology company dedicated to advancing environmental monitoring and data analytics using an industry-leading combination of satellite-based Earth Observation (EO), ecosystem process modelling and machine learning/AI. With a focus on innovation and precision, Mantle Labs' platform Geotree offers state-of-the-art solutions for assessing and improving the quality of environmental projects. Its global analytics spans nature-based solution project types including ARR, regenerative agriculture, grassland management, sustainable rice cultivation and REDD+. Services range from pre-feasibility analysis to continuous MRV and ex-post analysis of ongoing NBS projects.Rice, while a staple food for billions worldwide, is also a significant contributor to global methane emissions due to traditional cultivation practices such as continuous flooding. To mitigate these emissions, transitioning to more sustainable irrigation practices is essential. However, scaling these low-emission techniques in projects typified by smallholder farmers is challenging due to several barriers, including the need for extensive farmer engagement, costly and resource-consuming monitoring, reporting, and verification (MRV) requirements, and a necessarily complex project documentation process. Existing manual methods for MRV are often too labour-intensive, open to human error or manipulation, and lack scientific robustness, undermining project credibility within the voluntary carbon market. These challenges can deter project developers and investors from engaging in rice-related carbon projects, limiting the expansion of better irrigation practices.Improving project integrity and simplifying monitoring processes are essential for advancing large-scale projects supporting more sustainable rice farming practices. With progress in Artificial Intelligences (AI) and other modern forms of Machine Learning (ML), it is possible to mitigate key impediments that have hampered the wide-spread implementation of climate smart rice projects. This report will lay out some of these key applications that have the potential to revolutionise the development of rice projects in the voluntary carbon market, with a focus on the Gold Standard rice methodology launched in 2023.Possible applications identified with huge potential include for example:• For project origination and feasibility assessments, AI tools can analyse long-term climate trends, water availability, and land use patterns, providing valuable insights for project developers.• By using AI algorithms to map suitable regions for sustainable rice projects based on Earth observation (satellite) data, developers can more effectively identify highpotential areas for intervention, reducing the uncertainty and cost associated with traditional methods.• AI-based rice mapping far improves the efficiency and accuracy in estimating rice acreages, providing a foundational layer for verification of MRV of practice changes in the area.• Drainage pattern analysis, using a combination of satellite imagery and AI allows project developers to verify both the baseline and the implementation of sustainable water management practices such as Alternate Wetting and Drying (AWD) and Direct Seeded Rice (DSR) without the need for a physical presence, on a field-byfield basis.• Large Language Models (LLMs) can also be trained on relevant project documentation, to provide chatbots to answer specific queries from project developers and stakeholders, as well as to develop smart drafting assistants that provide real time feedback and suggestions for developers drafting project documentation.• AI can provide customised financial models that simulate various financial scenarios and assess risks, allowing evaluation of a project's economic feasibility under varying conditions. This helps project developers and investors better understand the potential returns and challenges, fostering greater confidence and encouraging investment in carbon projects.To showcase the use of AI for an application of relevance to project stakeholders, Mantle Labs used its proprietary AI algorithm to identify, mask and delineate rice paddies in a 17,110 ha area in Vietnam without any ground presence, as described in Acreage Verification. This work was done completely remotely to demonstrate the potential of AI for cost saving, while increasing accuracy and transparency of project acreage estimation at the same time. To validate the quality of the output, Mantle's AI rice maps were compared against independently verified ground truth data on land use for the area, with the results indicating a very high agreement between the two. The AI rice map estimated the acreage of rice in the study area with an accuracy of 98.5%. This approach significantly improved the accuracy and efficiency of mapping and verifying rice fields compared to manual delineation methods, demonstrating the potential of AI to support large-scale implementation of sustainable practices.The AI tools identified above collectively can enhance the efficiency, accuracy, and scalability of sustainable rice projects, reducing barriers to entry and increasing access to carbon finance for smallholder farmers and project developers. Of course, AI's benefits extend beyond just rice projects, with potential applications in other project types (forestry, agriculture, blue carbon), contributing to wider climate change mitigation and sustainable development efforts.Based on these findings, we have outlined a few key recommendations for Gold Standard and other voluntary carbon registries:• Create specific guidelines and best practices for the integration of AI and machine learning tools in rice project development, including data collection, processing, and analysis protocols. This would ensure consistency, transparency and reliability across projects which may have different approaches.• Introduce the use of AI-driven remote sensing tools for MRV processes to automate data collection and improve accuracy. These tools can provide high-resolution, realtime data on rice field acreages, water management practices, and crop growth patterns. This would reduce reliance on costly and labour-intensive manual verification methods, enhance the credibility of reported data, and lower the overall costs of MRV for project developers.• Allow the use of properly calibrated and validated process-based models in the estimation of emission reductions. Process models can simulate a wide range of environmental and management scenarios, providing more precise and nuanced emission estimates. This approach would enhance the robustness of emission reduction calculations and provide more reliable data for project validation and certification, in particular, if fed with high fidelity remote sensing inputs.• Implement AI chatbots to assist project developers and stakeholders with methodology-related queries and compliance questions. This provides instant answers to questions, reducing the effort on the registry's side as well as information barriers for new developers.In conclusion, the integration of AI into sustainable rice projects offers a powerful tool for overcoming traditional barriers to scaling low-emission techniques. By reducing costs, improving data accuracy, and enhancing project credibility, AI can facilitate broader access to carbon finance and support the global transition to more sustainable agricultural practices.The findings suggest that AI's benefits extend beyond rice projects, with potential applications in other agricultural carbon initiatives, contributing to wider climate change mitigation and sustainable development efforts. While AI can significantly streamline data processing and decision-making, the report also emphasises the continued importance of on-the-ground engagement and farmer education to ensure the successful adoption of new practices. A carbon project involves more than just data and algorithms; it requires fostering relationships, trust, and understanding among local communities. The success of such projects depends on a balanced approach that leverages advanced technologies for data-driven insights while maintaining a strong commitment to on-the-ground activities that build trust, capacity, and ensure community buy-in.Processes large volumes of satellite data to permit identification and classification of land use patterns, including rice paddies, without extensive labelled training data. These models use advanced self-supervised learning techniques to handle diverse and irregular data inputs, which can be used to improve the accuracy with which rice paddies can be identified in EO data.Divides project areas into distinct strata based on soil characteristics and landscape features, using remote sensing data and AI algorithms. Improves the stratification of the project area and hence the representativeness of (e.g.) in-situ methane measurements.Emulates complex process-based models that simulate environmental and biological processes affecting GHG emissions. Improves the value of in-situ methane measurements by providing simulated fluxes for large areas, while speeding up model execution over large areas.Dashboard summarizes all analysis and information, while the co-pilot can reply to project-specific questions. Enhances data management and analysis efficiency, supports informed decision-making, and reduces the time required for data interpretation. For each application, there is a qualitative assessment of its impact ('Significant', 'Moderate', or \"Minor') on the efficiency, cost, and integrity of a rice project. Additionally, there are also columns indicating the level of expertise required to develop the application (a one-time cost that need not be undertaken by the project developer themselves) and the relevance of the application to other project types ('Forestry', 'Agriculture', 'Blue Carbon', or 'All Project Types'). Each application name is linked to the section of text explaining it in detail.Rice is integral to food security and nutrition on a global scale, particularly in low and middleincome regions. It is the primary staple food for over half of the world's population, notably in Asia, and holds significant dietary importance in Latin America, the Caribbean, and increasingly in Africa. However, current production practices, including intensive monocropping, heavy agrochemical use, extensive irrigation throughout the crop season, and other forms of unsustainable land management, result in considerable negative environmental impacts. Rice cultivation is also a major contributor to global greenhouse gas (GHG) emissions, with 11% of global methane emissions attributed to rice production. These occur when organic matter is decomposed by methane-producing bacteria (methanogens) in continuously flooded rice fields without access to oxygen (Runkle et al, 2018).The issue of rice production is therefore complex and sits at the intersection of food security and climate security. Balancing the urgent need for increased rice supply driven by population growth, with the imperative to reduce environmental impact, it is crucial to adopt more sustainable practices to mitigate these adverse impacts and ensure long-term food security.There are several technologies that can be applied by farmers to reduce GHG emissions. Foremost among these is Alternate Wetting and Drying (AWD), which involves moving from a system of continuous flooding to one of cycles of flooding and drying rice fields. Adopting AWD has been shown to reduce water consumption by 30% and reduce methane emissions by 30-70%, without negatively impacting the yield (Runkle et al, 2018;Setyanto et al, 2018;Yang et al, 2017). Continuous flooding creates anaerobic (oxygen-free) conditions in the soil, which are ideal for methanogens. By periodically draining the fields, anaerobic (i.e., oxygen-free) conditions are interrupted, and the soil is re-aerated. The presence of oxygen during the dry periods inhibits the activity of methanogens, thereby reducing methane production (Begum et al, 2019, Kraus et al, 2022).Carbon finance is one way through which uptake of these technologies and techniques can be incentivised. Activities that reduce GHG emissions by changing rice cultivation practices have been recognised under carbon crediting standards for more than a decade, with the first methodology approved under the Clean Development Mechanism in 2011. In July 2023, Gold Standard released a new methodology for low-emissions rice projects. It recognises rice cultivation techniques which reduce the anaerobic digestion of organic matter, thereby reducing methane emissions. The eligible practices include shifting from irrigated continuous flooding to AWD and moving from transplanted to direct seeded rice.The uptake of new cultivation practices is challenged by the very nature of rice production.The sector is characterised in many countries by smallholder farmers and a longstanding tradition of continuous flooding. In Vietnam, for example, more than 65% of rice farmers have farms of less than one hectare (World Bank, 2022). Achieving change at a significant scale therefore involves coordination with thousands of individual actors. Adopting AWD or other lower-emission techniques involves changing cultivation practices that have been followed for generations. This is naturally seen by many farmers as a high-risk endeavour.These same factors also prove barriers to implementing low-emissions rice techniques through carbon projects, especially at scale. Doing so requires extensive farmer engagement and enrolment, with costly and labour-intensive MRV requirements to ensure that new practices have been adopted and emission reduction calculations are robust. These challenges can deter developers and investors alike, who may be wary of the high costs, complex logistics, and the underlying integrity of such carbon credits, thereby limiting the availability of funding necessary to drive widespread adoption.The purpose of this report is to explore where and how applications of Artificial Intelligence (AI) and Machine Learning (ML) could lower barriers to access for low-emission rice projects, reducing transaction costs and improving accuracy.AI and ML applications have transformed industries by enhancing efficiency, accuracy, and scalability generally across different sectors. This can include streamlining operations, improving decision-making processes, and enabling advanced predictive analytics. The principal advantage of AI/ML is that it can easily handle, and optimally leverage, the everincreasing amount of digitally available data. This data comes from a wide variety of sources, and can be in text, numerical or visual form.Using AI, it is possible to analyse and determine trends and relationships in massive and diverse datasets. Humans struggle to fully comprehend such data as a result of its inherent high dimensionality, combined with its often unstructured nature, redundancy, incompleteness and associated uncertainty. AI/ML excels in this context as it encompasses techniques that analyse digitally available data, extracting its inherent structure as well as linkages between datasets. While certain current methodologies have incorporated AI to an extent, uptake of AI/ML within carbon markets is currently limited. It holds promise in three main areas: increasing automation (with associated cost reductions while providing robustness, transparency, objectivity and reduced error rates); improving data-driven (and hence informed) decisionmaking; and the integration of various analytics in other activities a project developer must perform.The first part of this report provides an initial mapping of where AI/ML applications could be relevant during different steps in the development process of a sustainable rice project. The report explains how it can address current challenges by automating complex tasks, ensuring more precise data collection, and providing robust, transparent, and cost-effective solutions for several critical elements of Gold Standard's rice methodology. It should be noted that while the applications discussed in this report will be focussed on sustainable rice, many of the concepts will be applicable for other projects types. The second part of the report gives an overview of a demonstration of one of the identified AI applications for a study area in Vietnam.Project OriginationProject origination begins with project developers identifying states/districts of interest within their country of choice, which have large rice paddy acreages with traditional cultivation practices. In essence, this means that project developers will conduct a high-level scoping of land use in the area.But before project developers proceed with potential opportunities, it is also essential to determine the long-term viability in terms of yield and performance of rice cultivation on a regional scale to ensure business sustainability and long-term access to carbon finance. Key factors to consider include analysing weather patterns and climate trends, government support, and historical agricultural trends to predict future conditions and whether rice cultivation is viable in the long term. Additionally, evaluating the availability and quality of irrigation facilities and water level control systems is critical, as these are vital for successful rice carbon projects, and it is a requirement of the methodology to be able to actively control water levels.A key barrier for project developers is a lack of ready access to this information. Currently, a lot of this information is obtained from government statistics, peer-reviewed research, or by deploying staff on the ground. This represents not only a cost to the project before any decision on its feasibility can ever be made, but also entails a high level of uncertainty.Resources such as IRRI's 'MapAWD' tool can be invaluable for project developers scoping regions for high potential and suitability for projects. This decision support system (DSS), currently available only for Vietnam and Bangladesh, evaluates the bio-physical suitability of the AWD for different geographies across a country at any scale. Earth Observation (EO) data from satellite imagery can also have great value in identifying and delineating rice paddies over large areas when combined with AI-based rice mapping algorithms. Using AI, this knowledge-based scoping tool can not only be adopted for any rice-growing country but also fed with additional input layers. Using a crowd sourcing functionality, even people with only low-level knowledge in photo interpretation can provide useful data points for improving any automatically derived rice paddy mask (Salk et al., 2022). Through this, local knowledge can be integrated by presenting participants (e.g., staff from project developers or volunteers) with edge cases (where the algorithm might have some uncertainty) for visual photointerpretation, specifically identified and sampled by AI. The participants would have to click to confirm/reject the proposed land class (i.e., rice, urban, forest, water body, etc.). This will then be used by the AI-based rice mapping algorithms to further adapt to local conditions with much more specific training datasets.As will be detailed in the section Initial Baseline Assessment, AI-based drainage pattern analysis can be used to determine the percentage of AWD implementation across an entire region. These results can be condensed into a standardised regional benchmark which can be referred to by project developers to identify areas with low AWD adoption rates. This analysis can be provided either by carbon registries themselves or by independent service providers which are certified by such bodies. These benchmarks could provide valuable insights for project developers, helping them to screen and identify areas where carbon projects would meet the additionality criteria, and not be implementing activities that are already common practice in the region and/or to be expected as a result of increasing water scarcity.The initial baseline assessment is a crucial first step in assessing the feasibility of rice carbon projects. This phase involves a comprehensive evaluation of the current environmental and agricultural conditions and practices within the rice paddies of the project area and whether these conditions meet the applicability requirements and stringent additionality testing of the selected methodology.Mandatorily, project developers must understand whether the area has been continuously growing rice historically, a key component of the applicability conditions. Data on current management practices, soil texture, weather, and agro-ecological zone (AEZ) are currently taken from a variety of public databases, government portals, expert testimony, and farmer logbooks. The project developer must have access to this information in order to understand whether the potential area is suitable for the chosen methodology. Baseline practices are surveyed and are required to be understood to determine whether the project fulfils the additionality and applicability requirements of all rice carbon methodologiesthat the intervention is not already common practice in the region. Furthermore, the cropping intensity (single/double/triple cropped), the irrigation management, as well as any organic amendment inputs are required to be understood on a coarse level to be able to estimate the potential GHG emission reductions for the area in question. Under the Gold Standard rice methodology, calculation of emission reductions through applying low-emissions cultivation techniques varies according to whether the project is micro-, small-, or large-scale. The estimation of emission reductions will play a significant role in determining the financial viability of the project.The underlying challenge facing project developers when conducting the initial baseline assessment is the nature of the data required. Most sources of data from public databases will have a coarse spatial resolution, lack meta-data providing descriptive information about the data, and/or provide data at a regional scale much larger than specific project fields. Furthermore, government data is not always readily accessible, often requiring several administrative procedures to obtain. These data are also collected irregularly by government agencies and might be outdated. Most significantly for project developers, all these datasets that are required are siloed, available but in multiple different repositories. Once they have been retrieved, a technical expert is required to analyse the non-standardized aggregated data and come to a decision on project feasibility. Some data sources may also be prone to error, for instance those relying on self-reporting through farmer logbooks as evidence of historical baseline and project practices.To address these challenges, various possible applications of AI can be integrated into project developer workflows. For example, an AI-driven integrated platform could aggregate information from various soil, climate, and crop databases. All major required metrics would be available on a single platform, which would output a standardised metric score on the potential for a carbon project in the target region. As AI excels in detecting patterns between datasets, the platform can also help to fill in potential data gaps using data mining and imputation techniques.The platform could be further enhanced by integrating an associated Large Language Model (LLM) to answer questions on the analysis provided. LLMs such as ChatGPT analyse the large body of openly available text corpus and learn/detect data inherent structures that allows them to be queried to generate text. In the context of rice methodologies, LLMs can be fine-tuned by providing documents related to rice project methodologies. In using LLMs, care must be taken to avoid so-called hallucinations, where the production of text outputs by LLM look reasonable but are factually incorrect.Large language models are powered by AI, which enables them to comprehend inputs and generate human-like text. AI systems use complex algorithms to learn from vast amounts of written content, identifying patterns and relationships within the data. This training allows the models to predict and generate text that is coherent and contextually relevant. A common issue with LLMs is 'hallucination', referring to instances where the model generates information that is incorrect or fabricated. Therefore, refining of training data and human verification and oversight is key for such systems.To customise an LLM for a specific subject matter, such as Gold Standard's rice methodology, the model is made to undergo specialised training using focussed data related to that field such as the documentation for this methodology. This targeted training helps the AI model become proficient in the terminology, concepts, and nuances of the subject, enabling it to provide accurate and detailed information relevant to sustainable rice farming and carbon reduction practices. The customisation process enhances the model's ability to support specific applications, ensuring it meets the unique needs of the project or industry it is tailored for.patterns, confirming or rejecting the applicability condition that 100% of the project fields need to have been implementing continuous flooding through the baseline period. This innovative approach offers an objective and low-effort method of assessing the baseline drainage practices at the scale of thousands of hectares, streamlining the data collection process while providing objective and transparent documentation. This is explained further in Practice Verification.Today, researchers have access to extremely large amounts of remotely sensed temporal sequences of images from optical and microwave satellite sensors, yet it is difficult to capture relevant trends in such a volume of data. This multitude of data from different satellites can, for example, be fused and compressed using modern Self-Supervised Learning (SSL) techniques (within AI Foundational Models) (Lisaius et al., 2024). Essentially, the derived representation from this model captures the information of hundreds of bands of satellite data and compresses it into a few bands that are much easier to work with without any information loss. Such AI engines transform the raw data (irregular, partly corrupted and/or coming from different sensors) into analysis-ready-data (ARD). These can provide the necessary inputs for a model trained to exploit the difference of the unique temporal behaviours of flooded versus drained rice fields. Such a model could work at either an individual pixel level, showing a detailed regional extent of the baseline, or at the field level which would grant an overview of which fields meet the 100% continuous flooding applicability.It is important to note that this solution focuses on establishing baseline practices before launching a project and does not extend to other aspects of baseline assessment, such as measuring methane emissions to determine emission factors (see section Data Monitoring).Once farmers enrol in the programme, the delineation of project polygons is currently performed manually using Geographic Information System (GIS) software, with field teams visiting farmers and utilising GPS devices to map the land. Depending on the size of the individual rice paddies, the geo-location error of many GPS devices might be insufficient for a precise registration of field boundaries. In compliance with the Gold Standard Agriculture Land Use and Forestry (GS AR LUF) Activity Requirements, detailed land use GIS layers need to be created either from existing databases or through remote sensing analysis.Resources like IRRI's Spatial Data Maps can be utilised to provide GIS layers on administrative units, rice areas, soil, climate, and AWD suitability. However, these GIS layers are usually too coarse to precisely indicate the locations of individual rice paddies.Therefore, a major barrier for potential projects is the requirement to accurately delineate project areas, which is currently done manually over tens of thousands of hectares in some cases. The manual delineation is not only time-demanding but can be prone to significant errors. Accurately assessing the rice acreage of a project is critical, as it directly impacts the carbon credits that the project can generate.The scientific literature describes approaches using optical as well as microwave EO data to identify and map rice paddies over large areas under various environmental conditions (Kuenzer & Knauer, 2013;Boschetti et al., 2017;Mosleh et al., 2015). Specialised EO companies in the field, including Mantle Labs, have implemented such remote sensing and AI-based rice mapping algorithms -these approaches have been validated across all major rice-producing geographies. EO-based mappings are possible, as rice paddies follow characteristic growth and irrigation cycles, resulting in unique spectro-temporal signatures compared to other row crops and land uses (Fig. 3. Marti-Cardona et al., in preparation). AI time series analysis algorithms can thus be developed that exploit the characteristic growth curves in rice paddies' biomass evolution and flooding regime in both the optical and radar domains to create paddy masks using freely/publicly available satellite data with up to 10m spatial resolution. This permits an accurate estimate of project acreages without the need for extensive manual effort. These systems can be designed to also integrate a crowd sourcing functionality as described in Project Origination. A real-world example will be shown in the section on the AI Demonstration. AI-based approaches to rice field identification as described above have the potential to accurately delineate/verify thousands of hectares of project rice paddies with little to no need for manual ground truthing, reducing the effort and costs associated with this usually labourintensive process. The same information can also be used to confirm the cropping intensity (single/double/triple cropping cycles) and to confirm that the area has continuously cultivated rice over the past five years (an applicability requirement for the methodology).The mask could be further developed to distinguish between irrigated and rainfed rice. This is possible because the EO data has been regularly acquired for more than 10 years. Data continuity is guaranteed for the next two to three decades for key satellite missions such as the European Copernicus (including Sentinel-1 and Sentinel-2) and the United States's Landsat mission. Additional satellites are deployed every year with an accelerating trend. This ensures reliable data sources on which VCM standards can be built upon.AI engines such as SSLs also greatly facilitate the rice paddy identification but also water status detection (see section Initial Baseline Assessment), project area stratification, and yield assessments (see section Data Monitoring) (Lisaius et al., 2024;Dumeur et al., 2024). These AI-driven SSL approaches can learn data inherent structures and trends without human intervention. This leads to a compressed set of 'representations', which hold in a condensed way all the original information, so that rice paddies can be easily distinguished from other land cover classes.Assessing the financial feasibility of a project is done via financial modelling. Here, the project developer will estimate the project costs (both initial capital expenditure and operating costs). An estimated total yearly emission reduction will be used to calculate the annual amount of carbon credits the project will generate. Assuming multiple scenarios of price per credit, project developers will then compare the carbon revenue against the costs of the project to determine whether the project is financially viable or not. Experience with financial modelling under different scenarios is required to conduct this analysis thoroughly as there has been volatility in the price of credits as well as demand for offtake in the market.There are certain solutions to these barriers implemented in the market already. For example, companies such as Viridios AI use AI models trained on comprehensive historic transaction data to allow project developers to simulate carbon credit prices based on the relevant standard, project type, geography, and contributions to the United Nations (UN) Sustainable Development Goals (SDGs).AI has the potential to lower barriers for those without experience of financially modelling. Similar to services that companies such as Openbox AI offer, service providers could train AI-driven financial applications to input commands and data from project developers and generate a customised financial model given the project specifications. Such a tool can allow project developers to change certain parameters (acreage, costs, GHG reduction potentials, price scenarios, etc.) to understand how this changes the project's financial feasibility. Compared to spreadsheet-based tools, such AI solutions can also include uncertainty propagation to inform the user about the expected range of outputs. Uncertainty propagation can for example be implemented using Monte Carlo simulation techniques (Coleman et al., 2006).Once the project developer has deemed the project feasible and wishes to proceed, one of the first steps is to engage with the relevant stakeholders in the project region. Stakeholder consultation and engagement are essential to ensure that all stakeholders know and consent to the project and its significance to their community and environment. Consultation with stakeholders is initiated before the project begins, with at least one in-person meeting to educate them about carbon markets and to discuss potential environmental, social and economic impacts (both positive contributions and potential risks) that projects may have during the planning, implementation and operational stages of the project. Following this, a feedback mechanism is established for ongoing consultation. Key stakeholders include local communities, policymakers, government officials, NGOs, and marginalised groups with landtenure rights. All these actions must be documented as part of a stakeholder consultation report.Although the role of AI is limited at this stage, one potential application could be AI-driven mobile apps to support and facilitate communication between the project developer and farmers. These could provide AI-tailored specific agronomic advice to farmers based on photos taken from the field and/or the rice plants, as well as from remote sensing data to identify health issues. During project execution, this communication channel could therefore offer valuable decision support to farmers as well as feedback to project developers. Securing active participation from farmers and local communities is essential for the success of the project and educating farmers on the implementation of sustainable practices and their benefits is vital for their support.While stakeholder confirmation and project implementation are ongoing, project developers must also begin the process completing the necessary documentation. In the initial stage, the developer must submit key project information, the stakeholder consultation report, as well as draft the Project Design Document (PDD).The PDD is a comprehensive document that outlines all the essential details and plans for implementing a carbon project.This includes detailed information on the project's geographical location along with informative maps, the proposed sustainable practices, and the project start date and duration. The PDD must declare the project's governance structure, including any local implementation partners, and provide a step-by-step implementation plan with timelines and milestones.Project developers must identify a credible baseline scenario, detailing existing cultivation and irrigation practices from historical records, government statistics, and peer-Once the VVB has conducted its evaluation and any corrective actions have been addressed, it issues the final validation report. This report, together with the other project documents, will then be reviewed by Gold Standard. If this review is successful, the project is then listed as a 'Certified Design' on the Gold Standard registry.The documentation process is rigorous in order to ensure clear, transparent reporting to stakeholders and investors and instil confidence in the integrity of all projects registered under Gold Standard. However, completing the documentation to the required standard and understanding how to apply technically complex methodologies in the correct way requires expertise and experience in project development. Furthermore, as the new Gold Standard rice methodology has only recently been published, there are also fewer successful PDDs for developers to look to as examples. Once the project planning and stakeholder engagement has occurred, developers need to sign up farmers willing to be a part of the project. Interested farmers are provided with a contract detailing the specific practices they need to adopt, monitoring and reporting obligations, and the compensation structure, typically linked to the verified carbon emission reductions achieved. To foster trust and transparency, project developers often work with local agricultural cooperatives or farmer associations to facilitate the contracting process and ensure that all legal and procedural aspects are properly addressed.Commercial contracts typically include arrangements with investors who provide the necessary funding for the project. Emission reduction purchase agreements are set up with carbon credit offtakers, specifying the terms for buying the carbon credits generated. Additionally, contracts with Validation/Verification Bodies (VVBs) are established to provide third-party assurance that the project meets all necessary standards. Navigating this stage requires developers to meet any national or international legal and regulatory requirements. These regulatory requirements can pose significant challenges, potentially delaying project timelines and increasing costs.No additional AI applications were identified to assist at this stage of the development cycle.Effective legal support and strategic planning are crucial to overcoming these obstacles and ensuring the smooth execution of the project, as these contracts form a robust legal framework, securing financial, operational, and regulatory support for the project.During implementation, the project must follow the data monitoring approach set out in the PDD. This involves systematically gathering information on various aspects of the project, including farming practices, water management techniques, fertiliser application rates, crop yields, and methane emissions during the project implementation period.Measuring methane emissions in the project and baseline scenario is necessary to calculate the emission reductions. How this is done depends on the scale of the project. Where possible, direct measurement via gas chambers is encouraged. Here, the project area must be stratified with all areas having the same cultivation pattern forming a stratum. Each stratum will have a set of baseline and project reference fields for which methane fluxes will be measured every week over a season to determine the baseline and project emission factors. Gas collection chambers, specifically designed to capture methane emissions from the soil surface, are installed on the selected plots, with guidance on how to accurately sample available.The baseline emission factor is calculated by averaging the methane fluxes measured from the control plots over the monitoring period. This factor represents the typical methane emissions per unit area (e.g., kg CH4 per hectare) under business-as-usual (BAU)conditions. This step is crucial for establishing a benchmark against which the emission reductions from sustainable practices can be measured. The same is done for the project plots to establish the project emission factors. The difference between the baseline emissions and the project emissions represents the emission reductions achieved by the project.Collection of methane emissions data using the chamber method can be costly and requires experts in a lab to handle and analyse the samples taken from the paddy fields. The costs and efforts associated with field work create incentives to minimise in-situ data collection or use as high a proportion of self-reported data as possible. Furthermore, the stratification of projects using soil databanks with coarse spatial resolutions leads to non-optimum stratification of the project area.To overcome this, AI-powered digital soil mapping and landscape segmentation can use inputs from EO and other geodata to divide farmer cohorts into sub-sections, ensuring representative reference fields for each stratum within the respective cohort. Project developers can use AI tools for remote sensing data analysis to streamline data collection and improve analytics. For example, developers could use a project data dashboard that allows for data input and stores all analysis and estimates for the project and has an AI co-pilot that can be asked project-specific questions about the analysis and results presented on the platform. Companies such as Maya Climate provide similar services.Process-based models have the potential to predict reliable GHG estimates across large project areas, along with the corresponding uncertainties, using actual emissions measurements as calibration data. Process-based models are based on scientific equations that model environmental and biological processes. An AI emulator can be trained on the model inputs, and following outputs, using machine learning techniques to learn those rules by supervising and observing the results from the training data. Once trained, it can act as a surrogate model. Once correctly calibrated, process-based models have several advantages over using only a limited number of direct measurements (see Box 4).• Models can incorporate a variety of factors affecting methane emissions, such as soil properties, water management practices, climate conditions, and crop types/biomass profiles in a mechanistic and scientific-based way. Models can simultaneously simulate a number of GHGs besides methane and also alleviate any concerns about yield reductions. • Process models allow for the simulation of different management practices and climate scenarios to predict the management change impact on methane emissions. Using a large number of scenarios, the \"delta\" between business-as-usual (BAU) and the implemented activity change can be quantified for a large number of parameter settings. • Process models can also be used to estimate past emissions based on historical climate and management data. • Uncertainties of baseline emissions are calculated by propagating parameter-related uncertainties in a Monte Carlo approach through appropriate process models. AI can be used to generate emulators of process models which -together with geodata and observations from the reference fields -calculate the uncertainties associated with model, measurement and sampling errors.• Relevant input information can be provided using satellite-based remote sensing and corresponding AI tools for EO time series analysis.It must be noted that process-based models do have some limitations, as they have many variables with associated uncertainties. One approach to address this is using Monte Carlo simulations to account for these uncertainties and select a conservative estimate within the confidence interval. Additionally, the expenses associated with gathering data for calibration and validation are often substantial and must be considered in the project costs.By using AI-derived satellite products (e.g., above-ground biomass, phenology, number/timing and duration of drainage events) the process models can be parameterized in a spatially explicit manner, on a field-by-field basis while accounting for different phenologies, management practices, and soil conditions between them. By providing information about important soil, vegetation and management practices at a fine spatial resolution, the robustness and accuracy of the resulting emulator-based GHG simulations improve. Information about above-ground biomass, for example, can be obtained from satellite imagery using AI/ML models that were trained on physical-based radiative transfer models (Kooistra et al., 2024). The phenological plant development is readily accessible using time series analysis of spectral indices (Huang et al., 2019). Crop stress is equally well presented in EO data, as it usually leads to significant changes in the reflection and absorption behaviour of plants (Berger et al., 2024). Drainage events, on the other hand, are often detected best in the microwave region, where surface water leads to a strong reduction in the backscattering coefficient (de Lima et al., 2021).Project developers currently employ a combination of field checks and farmer self-reporting to verify AWD practices. Self-reporting via farmer-maintained logbooks and the use of customised mobile applications are often used to record the implementation of AWD techniques. To ensure compliance, VVBs will conduct spot checks on a sample of farms during the validation and verification periods. These spot checks by VVBs provide an additional layer of assurance of the project's reporting.The manual verification of AWD practices involves significant costs and effort, as it requires frequent field visits and water level monitoring to guarantee a high level of accuracy. Usually, this is possible only for a small sample of the overall project area, leaving the majority of the verification done through self-reporting. Self-reporting by farmers, while convenient, can be prone to error. Farmers may be unaware of the information relevant to the project or may unintentionally misreport data, leading to inaccuracies in the verification process. Furthermore, when asked to provide information on historic practices, farmers may be unsure of the exact management schedules and practices they implemented in previous seasons. Consequently, these traditional approaches can undermine the reliability and efficiency of AWD practice verification in rice carbon projects.AI and remote sensing-based detection of drainage events, as described in the Initial Baseline Assessment section, allows developers to monitor irrigation practices over large project areas remotely, reducing the requirements for costly field checks. Freely available remote sensing data provides a spatially explicit documentation of land use and water management practices in the participating rice paddies, which is publicly verifiable.The presence of standing water in rice paddies is detected using freely available optical and radar satellite data during the crop vegetative stage at a spatial resolution of 10m.ESA's Sentinel-1A radar satellite images any area of the Earth at least once every 12 days regardless of weather conditions. The observation interval for any rice area will be reduced to 6 days when Sentinel-1A's twin satellite is launched at the end of 2024. Water presence can be detected on these images by relatively low pixel values (backscattering coefficients) in both radar polarizations (Fig. 5, top panel), or by increased polarimetric differences due to the double bounce phenomenon.Irrigation practices can also be monitored using optical Sentinel-2 or Landsat satellite data, at 10 m and 30 m spatial resolution, respectively. These sensors pass over any area on Earth at least every 5 days, but their images can be impaired by cloud cover. The presence of water can be detected using the shortwave infrared reflectance or spectral water indices (Fig. 5, bottom panel) in combination with vegetation indices.If the duration of paddy drainages is shorter than 6 days, satellite observations may miss some of them due to insufficient revisit frequency. However, for large project areas, where numerous drainages occur independently (i.e. not synchronised in time), probabilistic methods allow to estimate the degree of drainage practice adoption based on the evidence collected at the satellite overpass dates, helping overcome this limitation.At advanced developmental stages of rice, the vegetation canopy inhibits the sensitivity of the above-mentioned satellite sensors to the flooding status. However, radar satellites operating at lower frequencies (e.g., longer wavelengths) can still penetrate the canopy and detect the presence of water. The NASA-ISRO NISAR satellite, with launch planned at the end of 2024, for example, will provide this capability with spatial resolution of 10 m and observation frequency of 12 days. There will be an annual collection of data into a monitoring report, which once independently verified by a VVB, enables carbon credits to be issued and the project can be listed as 'Certified Project' status on the Gold Standard Registry. These verifications occur at least twice per crediting period. Once the project has reached the end of its crediting period, it can apply for renewal, by providing updated documentation on the project.To showcase the use of AI for an application of relevance to project stakeholders, Mantle Labs used its AI algorithm to identify, mask and delineate a paddy area in Vietnam without the need for ground presence, as described in Acreage Verification. The new Gold Standard rice methodology, however, allows for the use of \"Remote Sensing images of appropriate resolution to ascertain the project boundary and area\", which has the potential to significantly reduce the time, cost, and labour involved in project planning and monitoring. This work was done completely remotely, without the use of ground truth data. To validate the quality of the output, it was compared with independently verified truth data on land use for the area. The validation data was provided by MONRE (Ministry of Natural Resources and Environment for Vietnam), 2020 for the Hong Ngu district located in the Dong Thap Province, Mekong River Delta.For an area as large as the validation data (17,110 ha) it would take a team of dedicated ground staff many weeks/months to manually delineate each rice field as is currently practiced by developers, with a high degree of uncertainty associated with the accuracy of the acreage estimation. Mantle Labs' remote workflow was completed within 3 working days and had an error that was an order of magnitude lower than manually delineated fields.All Sentinel-1 and Sentinel-2 images of the target area collected over a 5-year period (2019 to 2023) were obtained from ESA. Sentinel-1 images were pre-processed and calibrated to backscattering coefficient, following the procedures recommended by ESA. Sentinel-2 images were acquired already calibrated to bottom of the atmosphere (BoA) reflectance. This means that the data was corrected for any atmospheric interference.For each 10m x 10m pixel, the monthly median vegetation index (Normalised Difference Vegetation Index, NDVI), water index (modified Normalised Difference Water Index, mNDWI) and VH backscattering values were calculated. This yielded 12-band rasters (one raster per month) for each of the parameters as follows: vegetation and water index, and VH backscattering. The twelve bands capture the monthly median values of these magnitudes at each pixel.The NDVI layers quantify the above ground green biomass of a pixel (unitless) and their temporal evolution and spatial distribution, whereas the mNDWI layers quantify the amount of standing water (unitless). A high value in the NDVI thus indicates the presence of green vegetation while a high value in the mNDWI suggests the presence of standing water.The VH layers are useful in detecting open water and therefore rice fields when they are flooded with low vegetation cover. A low value indicates the presence of standing water while a higher value is generally associated with rough soil or denser vegetation cover. The VH has the benefit of not being affected by cloud cover meaning that no pixels need to be masked out during the compositing step.To extract the maximum amount of information from large, unlabelled datasets, several SSL algorithms have been developed over the past decade by the AI research community (Balestriero et al., 2023). To deal specifically with dense, optical time series, Mantle Labs has developed and implemented an innovative SSL approach based on the Barlow Twins (BT) concept (Zbontar et al., 2021). The innovation was specifically designed to handle irregular, and partly cloud-corrupted imagery (Lisaius et al., 2024). The SSL approach ensures that location-specific spectral-temporal signatures are well captured independent from cloud cover and revisit frequency. The representations compress all the available Sentinel-2 data across all image acquisitions in the selected date range (between 2023-01-01 and 2023-12-31) and all 10 spectral bands, into 32 latent variables. The representations thus encapsulate all the The pixels from the labelling step, generated using the composite stacks, are transferred to the Barlow Twin representations and used to train a CatBoost (CatBoost, 2022) AI algorithm to classify the entire project area. The resulting map has a spatial resolution of 10m and covers the entire region of interest in a homogenous and objective manner. Fig. 8 shows the evolution of the labels to the AI prediction (aggregated to rice and non-rice classes).For the accuracy assessment, the data provided by MONRE (2020) which consisted of dozens of land cover classes was resampled to 10m, clipped to the region of interest and thematically reduced to 'rice' and 'non-rice' labels. The study area chosen had a wide variety of land-cover classes neighbouring rice paddies -the latter class included other crop types, small woody patches and man-made surfaces such as irrigation canals, settlements, etc. Fig. 10 shows the total extent of the validation data and the prediction mask for the same area after canals were masked out and an additional post-processing step was conducted to remove areas of no vegetation. A very good overall agreement was noted between the validation map and the AI-prediction.Overall, the results of the paddy mask were excellent as can be seen visually in Fig. 10 when compared to the validation data, with only a few misclassifications noted, together with a few errors in the validation data. Some of these cases are shown in Fig. 11, where several smaller areas of interest (AOIs) are shown at higher resolutions. Examples of disagreements between the AI rice map and the validation data are showcased. Some cases are due to errors in the validation data, which falsely labels reservoirs and edges of forests as 'rice'. Other examples showcase certain locations where the AI map fell short, misclassifying edges of rivers (areas with high water index and varying biomass) as rice. In future iterations of this map, rivers will be identified and buffered so that this misclassification won't be possible.There were significant inconsistencies identified in some of the regions of the overall validation dataset provided by MONRE (2020), as shown above, with reservoirs and other crop areas being included. To analyse the accuracy of the rice map that was generated, as well as to ascertain whether there was any systemic bias in the predictions, the AOI was then split into 242 1 x 1 km 2 cells and the reported and predicted rice acreages were extracted from the map shown in Fig. 10. The data are regressed and plotted against each other and are shown in Fig. 12 together with some quality indicators. Importantly, the difference between the predicted and the reported rice acreage is less than 170 ha, a small amount relative to the total area. Indeed, the total rice extent of the validation data for the AOI is 10,800 ha, while the total predicted rice extent amounts to 10,967 ha, meaning an overprediction of only 167 ha (1.5% relative error). For the 242 cells, the RMSE (a measure of error) is only 7.15 ha with a R 2 of 0.97 for the regression line.A visual inspection of the scatter plot also indicates a very good mapping accuracy. Most points cluster nicely around the 1-to-1 line with only a few significant outliers. The scatter plot indicates that true and estimated acreages are very close to each other, even for potentially very small assessment areas (here 1 km 2 ). The fit of predicted and actual rice extent indicates the absence of any systematic bias of over-or underfitting. The major outliers indicating underprediction from the AI mask were found to be the result of a mislabelling in the validation data, in this case a large group of ponds were mislabelled in the MONRE (2020) dataset as 'rice' as shown in Fig. 11. One weakness of the AI map which needs to be improved on were the several points along the x-axis, which contributed to the overestimation of rice areas, due to mixed pixels along the banks of rivers confounding the algorithm. Pixels along rivers can easily be buffered/removed from the analysis to the required extent to prevent any such results for future projects.Nonetheless, a manually delineated covering this large an area would require weeks or months of effort from a dedicated ground team to complete and would usually have between 10-20% error in the acreage estimation. Mantle Labs completed the rice map for this 17,110 ha area within 3 working days completely remotely and achieved an accuracy of 98.5%, representing a truly ground-breaking step forward in this space.The results of this demonstration showcase the potential of AI-based rice paddy identification and delineation to be used by project developers to validate any manual field delineation, or used as a stand-alone mask, which ground teams could use to identify potential project areas. This would cement the integrity of the project acreage identification for any standard, as well as for investors. Of course, the rice paddy mask would also provide the basis layer used to implement the tracking of the water management practices in the rice fields (e.g., AWD vs continuous flooding). This current AI application can also be further developed:• The AI-algorithm can be used to create paddy masks for entire districts on behalf of carbon registries, helping project developers to screen areas for projects. This would supplement tools such as IRRI's Spatial Data dataset, while providing data on a much higher spatial resolution (10 x 10 m 2 pixel vs the 9 x 9 km 2 provided by IRRI).• As the tool employs EO data reaching back to 2014 the historical trends in rice acreages can be identified, which are not only informative from the perspective of eligibility (all project rice paddies must have been continuously cultivating rice for a particular period prior to project implementation), but likewise for the simulation of the financial viability of the intended project (e.g., if the cultivated rice area decreases over time due to policy changes or market forces).• While the paddy mask itself provides a great scope verification/delineation of rice areas in a project, once it has been derived and implemented for an area, additional algorithms can be deployed to identify irrigated fields specifically. This can provide an invaluable tool for PDs screening for rice areas applicable under the methodology.• Additionally, the analysis of the biomass trends required for the mapping approach can be used to provide information on cropping intensity. On a per field basis the cropping phenology (sowing, harvest date) and cultivation pattern (single/double/triple cropping) can be identified and inform the stratification of the project area in line with the requirements under the Gold Standard methodology.","tokenCount":"8782"} \ No newline at end of file diff --git a/data/part_3/6615718804.json b/data/part_3/6615718804.json new file mode 100644 index 0000000000000000000000000000000000000000..afe6a124c5d56d8f586b030d488b8ff27e247d2b --- /dev/null +++ b/data/part_3/6615718804.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"2fd36dfe85b3fa05edddda98f8be6d1c","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/ad1d9ee2-f699-4f58-838d-5d3da0ee15ce/retrieve","id":"1391615773"},"keywords":[],"sieverID":"f2d36134-6a14-482e-9107-4443d0a7bd9c","pagecount":"2","content":"The performance of boreholes, wells and small dams for multiple use in Insiza district has been evaluated. The performance was assessed in terms of its availability, capacity and end user preferences.The objectives of the study were to investigate the performance of SWI in Insiza District through assessing the significance, benefits and socio-economic factors that have an impact on the optimum utilization of the SWI. Out of a total of 162 SWI in the four wards of Insiza District that have been studied, four types of SWI were identified, namely boreholes, wells, windmills and small dams and 30 were selected for performance assessment.Questionnaires were administered on SWI users and key informants. Indicators used for assessing performance were availability, capacity, continuity and condition indices. The availability index in Insiza District ranges from 0.60 to 0.99; capacity index from 0.19 to 0.39; continuity index was between 0.25 and 0.88; and condition index ranged from 0.44 to 0.81.The importance of SWI to users was found to be related to the perceived benefits from SWI; and differed from one SWI type to the other. The more the benefits derived from SWI the more the communities are willing to maintain the SWI, and the benefits vary among SWI types. Water availability is threatened mainly by reduced quantity available per capita due to dysfunctional SWI in the communities. Capacity is not sufficient to cater for all water needs in which case communities are forced to forfeit some of the water uses and/or resort to unsafe alternative water sources. Continuity of water supply is hindered by lack of appropriate management structures and financial arrangements for maintenance. SWI condition is good where there is NGO intervention in maintenance.It was concluded that the overall performance of SWI in Insiza District is poor with capacity as a major setback. It is recommended that water availability for specific areas must be established before multiple use projects are implemented and appropriate technologies for multiple use systems should be installed in conformity with the needs and preferences of the communities. An in-depth comparative study focusing on investigation of factors affecting performance of rural water supply is recommended so that the necessary mechanisms can be developed and implemented.","tokenCount":"363"} \ No newline at end of file diff --git a/data/part_3/6626731969.json b/data/part_3/6626731969.json new file mode 100644 index 0000000000000000000000000000000000000000..97e3a875fe1b90c1a7fa2ea758cfd91286e10385 --- /dev/null +++ b/data/part_3/6626731969.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"6fa4d662d1dd1b6554fbc018ab860f37","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/8ac478ee-1810-4afc-82f7-c44d97c4b5f9/retrieve","id":"-908821643"},"keywords":["Root zone depth Rootability Soil water Digital soil map Soil data Sub-Saharan Africa Maize AfSP, Africa Soil Profiles database","AfSS, Africa Sentinel Sites database","BD, bulk density","CEC, cation exchange capacity","DSM, digital soil mapping","EC, electrical conductivity","FC, field capacity","ISFM, Integrated Soil Fertility Management","PAWHC, plant-available water holding capacity","pF, logarithm of the negative hydrostatic head or matrix potential","PWP, permanent wilting point","PTF, pedotransfer function","RI, rootability index","RZD, root zone depth (rootable depth)","RZ-PAWHC, root zone plant-available water holding capacity","SFEF, soil fine earth fraction","SSA, sub-Saharan Africa","VMC, volumetric moisture content"],"sieverID":"b42305d3-0092-482a-a3fe-ec65c09940db","pagecount":"19","content":"In rainfed crop production, root zone plant-available water holding capacity (RZ-PAWHC) of the soil has a large influence on crop growth and the yield response to management inputs such as improved seeds and fertilisers. However, data are lacking for this parameter in sub-Saharan Africa (SSA). This study produced the first spatially explicit, coherent and complete maps of the rootable depth and RZ-PAWHC of soil in SSA. We compiled georeferenced data from 28,000 soil profiles from SSA, which were used as input for digital soil mapping (DSM) techniques to produce soil property maps of SSA. Based on these soil properties, we developed and parameterised (pedotransfer) functions, rules and criteria to evaluate soil water retention at field capacity and wilting point, the soil fine earth fraction from coarse fragments content and, for maize, the soil rootability (relative to threshold values) and rootable depth. Maps of these secondary soil properties were derived using the primary soil property maps as input for the evaluation rules and the results were aggregated over the rootable depth to obtain a map of RZ-PAWHC, with a spatial resolution of 1 km 2 . The mean RZ-PAWHC for SSA is 74 mm and the associated average root zone depth is 96 cm. Pearson correlation between the two is 0.95. RZ-PAWHC proves most limited by the rootable depth but is also highly sensitive to the definition of field capacity. The total soil volume of SSA potentially rootable by maize is reduced by one third (over 10,500 km 3 ) due to soil conditions restricting root zone depth. Of these, 4800 km 3 are due to limited depth of aeration, which is the factor most severely limiting in terms of extent (km 2 ), and 2500 km 3 due to sodicity which is most severely limiting in terms of degree (depth in cm). Depth of soil to bedrock reduces the rootable soil volume by 2500 km 3 , aluminium toxicity by 600 km 3 , porosity by 120 km 3 and alkalinity by 20 km 3 . The accuracy of the map of rootable depth and thus of RZ-PAWHC could not be validated quantitatively due to absent data on rootability and rootable depth but is limited by the accuracy of the primary soil property maps. The methodological framework is robust and has been operationalised such that the maps can easily be updated as additional data become available.Substantial and sustainable increases in crop yields are needed in sub-Saharan Africa (SSA) to help meet food demand due to population and income growth (Jayne et al., 2010;Pretty et al., 2011;Garnett and Godfray, 2012;van Ittersum et al., 2016). Yield increases require improved crop and soil management practices, including improved seeds and cost-effective application of nutrients in the form of organic and/or inorganic fertilisers according to the principles of Integrated Soil Fertility Management (ISFM) (Vanlauwe et al., 2010). However, ISFM will only be adopted by smallholder farmers, which make up 65-80% of the population in SSA, if the return on investment is appreciable and without too much risk. Indeed, farmer's motivation and decision making relies heavily on the perceived likeliness of obtaining a profitable return at minimized risk. This likeliness largely depends on the yield response to inputs, both in terms of magnitude and stability (i.e. temporal variation), which depends to a large extent on site-specific soil properties and year-to-year variation in weather. Hence quantitative estimates of the yield response to inputs at a given location, and especially its temporal variation, are essential for estimating the risks associated with these investments and such information may well be key to achieving higher rates of adoption of ISFM practices and especially fertiliser application (Marenya and Barrett, 2007;Dercon and Christiaensen, 2007;Rötter and van Keulen, 1997;Hiebert, 1974).Rainfed crop production is practiced on > 95% of existing farmland in SSA (Alexandratos and Bruinsma, 2012) where current average farm yields for the major cereal crops are only about 20% of the potential rainfed yields without limitations from nutrients or pests and diseases (van Ittersum et al., 2016). This potential yield represents the crop demand for nutrients and sets a reference for determining the degree that soil supply of nutrients is deficient. The amount of water available to support crop growth in these rainfed systems is largely determined by rainfall amount and timing, and the amount of water that can be stored in the soil profile and that is available for uptake by crop roots -hereafter called the root zone plant-available water holding capacity (RZ-PAWHC). The RZ-PAWHC represents a reservoir from which crops can take up water and which buffers against water deficits in periods when rainfall does not meet crop water demand and also determines the length of the growing period at the end of the rainy season in monsoonal tropical climates, and thus the appropriate cultivar to use (e.g. FAO, 1978;Zingore et al., 2007). Therefore a larger RZ-PAWHC reduces risk of drought stress and contributes to higher yields and yield stability, and thus increases the resource use efficiency (de Wit, 1992) and the probability of obtaining a profitable response to ISFM.Data on RZ-PAWHC are thus key input to soil moisture models such as GLEAMS (Martens et al., 2017), crop growth models such as WO-FOST (van Diepen et al., 1989), LINTUL (Spitters and Schapendonk, 1990), DSSAT (Jones et al., 2003), Hybrid-Maize (Yang et al., 2004) and data mining (Jeong et al., 2016;You et al., 2017) and therewith to yield gap analysis for performing ex ante assessments of yield responses to inputs across a wide range of environmental conditions (Grassini et al., 2015;van Ittersum et al., 2013). While recent initiatives, e.g. the Africa Soil Information Service (AfSIS) project (http://africasoils.net), have improved the availability, accuracy and resolution of spatially explicit and coherent data on soil fertility parameters in SSA (ISRIC, 2013;Hengl et al., 2015bHengl et al., , 2017b)), there are few data on RZ-PAWHC or root zone depth. This study, which is a collaborative initiative of the Global Yield Gap and water productivity Atlas (GYGA) project (www. yieldgap.org) and the AfSIS project, attempts to fill this \"data gap\" by developing the first spatially explicit soil maps for SSA of root zone depth and RZ-PAWHC. In this study we derive maps for maize as a reference crop because maize is an important cereal in SSA and to a large extent representative for other major cereals.The RZ-PAWHC reflects the adequacy (capacity) of soil to store water and support crop growth when rainfall is insufficient to meet crop water requirements. RZ-PAWHC (expressed by an absolute value (mm)) is composed of three components which are aggregated to a single parameter. The first component is the plant-available water holding capacity (PAWHC) of the soil fine earth and is defined as the amount of soil moisture retained over the range in which the soil is neither too wet nor too dry for crop roots to take up soil water. The PAWHC is assessed per depth interval and expressed as a volumetric fraction. The second component is the soil fine earth fraction (SFEF) which is the volume of soil fine earth (particle size < 2 mm) as a fraction of the volume of soil whole earth. The SFEF determines the net volume of soil, per depth interval, that can retain soil moisture and that crop roots can effectively exploit. The third component is the total depth interval from which the crop can extract water, which is the rootable soil depth or root zone depth (RZD). This study derives maps of the RZ-PAWHC for maize which has a genetically defined potential root zone depth, attained near anthesis, between 100 and 170 cm (van Keulen and Wolf, 1986). In this study, a maximum potential root zone depth of 150 cm is used.There are three main ways to map each of the three components defining RZ-PAWHC. The first is to collect sufficient direct observations of the three soil properties, and use these primary soil profile data for producing interpolated maps, either representing individual soil profile layers or the soil profile as a whole. This direct approach can make use of digital soil mapping (DSM) techniques such as regression kriging and machine-learning (McBratney et al., 2003;Hengl et al., 2004Hengl et al., , 2015b;;Lagacherie et al., 2006) and requires sufficient data well distributed over geographic-and feature space. The second way is to infer secondary soil profile data for the three targeted soil properties from primary soil profile data readily available for other soil properties, e.g. by existing or yet to be established pedotransfer functions (PTF; Bouma, 1989), and to use the derived data and DSM techniques to produce interpolated maps of each of the three target soil properties (first calculate, then interpolate; Heuvelink and Pebesma, 1999). This approach requires the available soil profile data to be sufficiently coherent in terms of scope, homogeneity and completeness, without important data gaps, to consistently derive the secondary data. The third way is to first create interpolated soil property maps, using DSM and primary soil profile data which are available in sufficient quantities and of sufficient coherence, and then use these interpolated coherent maps as input for (pedotransfer) functions, rules and criteria to calculate derived, inferred, maps of the targeted secondary soil properties (first interpolate, then calculate). For each of the three ways, the results for different depth intervals for water retention and the soil fine earth fraction can be aggregated into a single value over the rootable soil depth to produce the RZ-PAWHC map. Because the soil profile data available for this study were not complete for all required variables, and the soil depths sampled were not consistent and often did not include soil layers below 50 cm depth, this third approach was used in this study. Basically, this approach is a digital soil assessment (Minasny et al., 2012). An overview of the methodological framework to map RZ-PAWHC is given in Fig. 1. The steps in the workflow are explained in detail in the next sections.Soil profiles data used for mapping and validation, and for the development and testing of pedotransfer functions and rules to produce derived data and maps, came from two soil profile datasets generated by the AfSIS project. First, the Africa Soil Profiles database (AfSP) which is a compilation of georeferenced and standardised legacy soil profile data for SSA (Leenaars et al., 2014a) and is available at www. isric.org/projects/africa-soil-profiles-database-afsp. The AfSP version 1.2 consists of soil data taken at 18500 profile point locations which are described and sampled on average at 4.1 ( ± 1.6) depth intervals to an average soil depth of 125 ( ± 65) cm. The second soil dataset was collected more recently from 60 sentinel sites of 10 × 10 km (AfSS) and is available at afsisdb.qed.ai with data for 9600 point locations sampled at the 0-20 and 20-50 cm depth intervals. Ten percent of the AfSS data is the result of direct measurements and the other 90% is inferred from spectroscopic data (Sila et al., 2014). Adding to these two datasets were data on depth of soil to an iron pan (3660 virtual profiles) as interpreted from legacy soil maps (Boulet and Leprun, 1969) and georeferenced from polygon centroids.Compiling soil datasets from different sources enhances the data availability but also causes some degree of heterogeneity (Leenaars et al., 2014b;Hendriks et al., 2016). This can cause incompatibilities in producing soil maps or estimating pedotransfer functions but also adds value in other ways. The datasets show overlap in terms of recorded soil properties, such as particle size fractions, pH, electric conductivity, exchangeable cations and the contents of organic carbon, nitrogen and available phosphorus, but the field and laboratory procedures used to assess these properties differ. These differences required careful querying of the recorded procedures to compile the data under a common standard. Besides overlap, the datasets also show important differences in terms of recorded soil properties, for details see Leenaars et al. (2015) or Hengl et al. (2015b). Measured and inferred data on the contents of extractable elements, including micro-nutrients, were predominantly available from the AfSS dataset while measured data on bulk density, cation exchange capacity, water retention, coarse fragments content and, though few, root presence as well as data on depth and drainage of the soil profile were available only from the AfSP database. Added value was created by combining the recent AfSS data, explaining short distance variability of some soil properties at shallow depth, with the generally older AfSP data, explaining large distance variability of, both similar and other, soil properties at larger depth.AfSoilGrids250m (Hengl et al., 2015b) was used for this study. Af-SoilGrids250m is a coherent collection of gridded soil property maps of SSA which were produced in the context of the AfSIS project, available at www.isric.org/projects/soil-property-maps-africa-250-m-resolution. The maps were created in 3D from soil profiles data and maps of explanatory variables (\"covariates\"), including depth covariates, by using machine learning (random forests) as the DSM technique to model the trends and ordinary kriging to interpolate the residuals. For details of the function, implemented in the GSIF package for R (Global Soil Information Facilities), see Hengl et al. (2015a). The maps have a spatial resolution of 250 m and report estimated soil property values at six standard depth intervals (i.e. 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm and 100-200 cm), matching the GlobalSoilMap specifications (Arrouays et al., 2014), for sand, silt and clay fractions, bulk density of the soil fine earth, organic carbon content, cation-exchange capacity, sum of exchangeable bases, exchangeable acidity (aluminium) and pH-H 2 O. AfSoilGrids250m does not include maps of the uncertainties associated with the maps of soil property estimates and it was beyond the scope of this study to produce such maps.Additional soil property maps were produced and cross-validated following the methodology of SoilGrids250m. Maps were created of the coarse fragments content, exchangeable sodium content and electric conductivity, at six depth intervals, and of the soil profile drainage class and depth to bedrock. These additional properties were difficult to predict accurately because of inadequately queried input data of sometimes subjective imprecise nature (coarse fragments class, drainage class) and high degree of skewness and the maps showed few obvious errors at first sight. This was also true for the map of bulk density, for which relatively few data were available. A second iteration was made to create maps of the additional soil properties as well as of bulk density using newly queried soil profiles data and additional covariates. Newly queried from the soil profile data were data on bulk density measured from the oven-dry soil fine earth excluding data measured from the soil whole earth thus excluding coarse fragments (e.g. DRC, 1967) and data on electric conductivity measured in the unsaturated extract (EC) excluding data measured in the saturation extract (ECe). Added to the data for the top 50 cm on sodium, inferred from spectroscopic data with the inference being particularly poor for sodium, were data on exchangeable sodium from the AfSP database measured over full profile depths. Added covariates, expected to enhance model performance, were the soil atlas of Africa (Jones et al., 2013) and maps of surficial lithology and land surface forms (USGS Rocky Mountain Geographic Science Center, 2009), groundwater table depth (Fan et al., 2013) and the annual water balance which was calculated from annual precipitation (Africa Soil Information Service (AfSIS), 2013) and annual potential evapotranspiration (Trabucco and Zomer, 2009). Maps of soil pH-H 2 O, sum of exchangeable bases and clay content were added as covariates to support the predictions of exchangeable sodium, for details see Leenaars et al. (2015). The resulting maps were validated according to the procedures described by Hengl et al. (2015b) using 5-fold cross-validation where each model was re-fitted five times using 80% of the profiles data and then applied to predict at the remaining 20% of profiles. Predictions were then compared with the put-aside observations (including observations inferred from spectroscopic data which will affect the cross-validation). Calculated were the Root Mean Squared Error (RMSE) and the amount of variation explained by the model, derived as ∑ % = 100 * [1 − (SSE/SST)], where SSE is the sum of squared errors at the cross-validation points (i.e. RMSE 2 • n), and SST is the total sum of squares of the original observations.From these primary soil property maps, resampled from 250 m to 1 km, maps of the three components defining RZ-PAWHC were derived. This will be explained in the next sections.The PAWHC is defined, for a given soil depth interval, as the difference between the volumetric moisture content (VMC) of the soil fine earth at field capacity (VMC-FC) and at permanent wilting point (VMC-PWP). Note that this definition excludes the volume of soil occupied by gravel, stones and other coarse fragments. While the PWP is crop-specific, it is commonly defined and valid for maize as the moisture potential of the soil equal to pF 4.2, which is equivalent to a suction of 15,000 cm. FC is the situation when wet soil is freely drained but the corresponding soil moisture potential is not strictly defined and commonly varies between pF 1.7 to pF 2.5, i.e. a moisture potential of 50 to 300 cm, due to differences in soil matrix configuration. Gijsman et al. (2007) define FC for coarse, medium and fine textured soils at respectively pF 2.0, 2. 3, 2.5 (i.e., 100, 200, 300 cm). For the purpose of producing maps of PAWHC, it was decided not to define FC differently for different textures because the results in a 3D configuration (with textures varying across different positions and depth intervals), would become highly inconsistent as concluded from tests applied to the soil profiles data. Instead, each of the three definitions for FC has been applied, irrespective of texture, to calculate the corresponding PAWHC and the significance of the definition of FC on PAWHC was evaluated.Data on soil water retention, measured at various water potentials including FC and PWP, and also saturation, were available from the AfSP database for approximately 2500 soil profiles (8000 layers). This amount was considered insufficient to support the production of directly interpolated maps of VMC and of PAWHC for SSA. Data on soil water retention as recorded in the AfSS dataset had been calculated from primary data using a pedotransfer function (PTF) based on Brooks and Corey (1966). Instead we used a PTF specifically developed for tropical soils (Hodnett and Tomasella, 2002) which parameterises the van Genuchten (1980) equations and which was validated by Wösten et al. (2013) on the basis of the measured soil profile data from the first version of the AfSP database (Leenaars, 2012). This PTF requires data on sand, silt and clay contents, organic carbon content, bulk density, cation exchange capacity and pH-H 2 O, with the latter two included as proxies to account for the mineralogy (kaolinite) of highly leached tropical soils.Maps were available for each of these soil properties and were used as input to the PTF to compute water retention maps for each of the six standard depth intervals, including maps of the VMC at PWP (pF 4.2) and at FC (pF 2.0, 2.3 and 2.5) and corresponding maps of the PAWHC. Using the newly produced maps for bulk density as new input, water retention maps were computed again, of VMC at PWP and at FC (defined at pF 2.3), and PAWHC was calculated applying this single specification of FC. Also computed were maps of VMC at saturation (pF 0.0). The resulting maps were validated by comparing the mapped values with the observed values, per depth interval, and reported are the amount of variation explained (R 2 ) and the Mean Error (ME), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) and Root Median Squared Error (RmdSE). We computed Pearson correlation coefficients to assess the sensitivity of PAWHC for each of the soil properties mapped and included in the PTF.The volume of soil fine earth (particle size < 2 mm) is a fraction of the volume of the soil whole earth excluding the volume of coarse fragments. Maps of the soil fine earth volume were derived for each of the six standard depth intervals from the maps of the volumetric coarse fragments content (v%) deducted from 100%. The maps of coarse fragments content were produced by DSM using data from > 40,000 soil layers of approximately 10,000 soil profiles. Note that the majority of these data were derived from descriptive class values as collected from field observations and consequently these data are not very precise and neither can be the interpolated maps (which are validated as previously described).2.5. Mapping the rootable soil depth (RZD)The depth interval defining the soil volume accessible to plants (and determining the RZ-PAWHC) is determined by root zone depth (RZD), also commonly referred to as the rootable soil depth, the effective (plant exploitable) soil depth (GlobalSoilMap, 2015;Arrouays et al., 2014) or the root restricting (i.e. plant accessible) soil depth (Soil Survey Division Staff, 1993). The latter is defined as the depth at which root penetration is strongly inhibited with the restriction defined as the inability to support more than very few fine or few very fine roots. We defined RZD from a gradual scalable phenomenon to an abrupt and unscaled one by assuming rootability as fully unrestricted (adequate, suitable) within rootable depth and fully restricted (inadequate, unsuitable) beyond rootable depth. This assumption is justified as diffusivity, in soil nearly as dry as wilting point, is generally so high that small gradients in water content suffice to transport water to the -few fineroots at required rate (de Willigen and van Noordwijk, 1987). Rootability and rootable depth are not directly reflected by any soil property which can be observed during soil field studies if not by obvious properties such as a laterite pan or by actual root density and depth itself. From the AfSP database, observed data on presence or absence of roots in about 2500 soil profiles (8500 layers) are available. Rooted depth, not rootable depth, was recorded for some 4000 profiles. These data represent momentary observations of roots of a wide variety of vegetation types (not of maize at anthesis specifically) and were considered too heterogeneous to produce interpolated maps from using DSM. Instead, rootability was derived and mapped from a number of relevant soil factors which could be robustly parameterised and inferred from mapped or map-able soil properties and which are soil-intrinsic and thus not easily altered through management or dynamically varying conditions (thus excluding factors such as penetration resistance). Two types of soil factors were defined based on these considerations, including factors to evaluate the individual soil layers separately (adequacy of porosity, volume, textural configuration, cementation, acidity, alkalinity, sodicity, salinity, toxicity and morphology) and factors to evaluate the soil profile as a whole (depth of aerated soil and depth to bedrock). Rules to infer rootability were established and parameterised purely from literature sources due to the absence of data needed to newly develop and calibrate such rules. This evaluation framework is basically a land evaluation procedure (FAO, 1976) in which soil factors, corresponding with so called land qualities inferred from land characteristics, are compared with land use requirements and expressed as adequacies (suitability) of the soil relative to the requirements of the crop.Rootability of each soil depth interval (soil layer) was evaluated by soil factors parameterised by a rootability index (RI). The RI expresses the adequacy (0-100%) of each soil factor to support root growth relative to optimal root growth. This scalable approach was adapted from Driessen and Konijn (1992), based on Kiniry et al. (1983) and Rijsberman and Wolman (1985). Its scalability (0-100%) was made unscaled (0 or 100%) by defining a threshold index for each soil factor, which assumes rootability as fully restricted (inadequate) at RI below the threshold index and fully unrestricted (adequate) at RI above the threshold index. This threshold index was set at 20% for all identified soil factors, based on Jones (1983), and a soil layer is assumed to be inadequate for rooting if one or more of the soil factors are evaluated beyond this threshold index (< 20%).Based on literature review, rules were developed to enable evaluation of ten selected soil factors (porosity, volume, textural adequacy, cementation, acidity, alkalinity, salinity, sodicity, toxicity and morphology). This included the identification and parameterisation of soil properties (e.g. pH-H 2 O) relative to the RI for each of the soil factors (e.g. acidity) and definition of the property values at the threshold index value of 20%. Fig. 2 illustrates the rules developed for evaluating the adequacy of soil factors, expressed by RI's (rootability indices), depending on soil property values and also illustrates the scalable approach made unscaled by a threshold index and associated threshold property value.Details about the process used to identify and parameterise soil properties, relative to the rootability index, for each of the soil factors are described in Leenaars et al. (2015), and a brief description of the major considerations is provided below. The outcomes are given in the Results section.1. Porosity determines the space available for roots to elongate.Reduced pore volume causes physical resistance to root penetration. Measured data or maps of pore volume, or of -moisture dependent-penetration resistance, were not available and instead two parameters that serve as a proxy were used, namely, the volumetric moisture content at saturation (VMC-Sat) and the bulk density as a function of clay content (f.BD). VMC-Sat was considered equal to pore volume, and it was calculated and mapped using the PTF for assessing water retention. Bulk density (BD) reflects the combined volumes and weights of both air and fine particles in the soil. At a given bulk density, pore volume is large if the soil is sandy and low if clayey because of the particle density (PD) of sand exceeding that of clay (assumed 2.65 and 2.10 kg/dm 3 , respectively). With PD specified as a function of clay content, pore volume (PV) depends on BD, as PV = 100 × (1 − (BD / PD)). This we simplified into a single variable (f.BD) which evaluates BD relative to a critical, texture-dependent, BD. The parameterisation to assess RI's from VMC-Sat and f.BD was derived from Kiniry et al. (1983), GlobalSoilMap (2015), Hazelton and Murphy (2007), Rijsberman and Wolman (1985), FAO (2006) and Jones (1983). Suboptimal conditions for rooting (RI < 100%) occur when porosity is < 40 v % (Landon, 1991) and the rootability threshold (RI = 20%) is when porosity is 30 v%. 2. Soil volume is insufficient for roots to proliferate and establish optimally if soil is dominated by coarse fragments (Rijsberman and Wolman, 1985;Sanchez et al., 1982Sanchez et al., , 2003) ) which corresponds to a volumetric content of coarse fragments exceeding 80% (FAO, 2006). Maps of the coarse fragments content were produced as previously described. 3. Textural adequacy for rooting was derived from two soil properties, i.e. sand content and the abruptness of textural change over depth. Near pure, clean sand is inhibitive to root development (Arrouays et al., 2014;GlobalSoilMap, 2015). An abrupt textural change over depth is restrictive for root elongation, and is a diagnostic property defined in the World Reference Base (IUSS Working Group WRB, 2015) as a sharp increase of clay content within a depth-distance of 5 cm. The sharpness of changes over depth could not be assessed from the soil texture maps, because the size of the depth intervals increases with depth and gets too large at depth. Instead we defined an absolute increase from one interval to another, of the content of either clay (f.Clay) or sand (f.Sand), as indicative for the abruptness of textural change and set a mild, root permissive, threshold value which is valid over an assumed minimal distance of 15 cm. 4. Cementation (induration) of the soil is restrictive to root elongation when soil pores are filled by minerals that accumulate, either relatively or absolutely, and then precipitate and harden upon drying. Oxides of iron, aluminium and silica may cause induration in the form of a (petro-) plinthic, gibbsic or duric horizon. Associated data, required for mapping, were not available from the soil profiles datasets and rules were therefore not developed. Excessive contents in the soil of carbonates and sulphates, most commonly associated with calcium or magnesium, also causes soil to cement and the associated data were available. A content of CaCO3 exceeding 150 g/kg is a criterion to identify a calcic horizon which becomes petrocalcic when hardened, while a CaSO4 content exceeding 50 g/ kg becomes petrogypsic when hardened (IUSS Working Group WRB, 2015). Further parameterisation was based on Landon (1991) and Sys et al. (1993). 5. Acidity restricts root development due to the acidity itself but also due to associated toxicities and nutrient deficiencies. A rule was parameterised through soil pH as measured in a soil-water suspension (pH-H 2 O), and as mapped by Hengl et al. (2015b), on the basis of Landon (1991), Hazelton and Murphy (2007), Sys et al. (1993), Sanchez et al. (1982Sanchez et al. ( , 2003)), Brenes and Pearson (1973) and Kiniry et al. (1983). Little disagreement exists about 5.5 as the critical value for pH-H 2 O below which rootability is suboptimal (RI < 100%) but the lower limit (RI = 0%) is less well documented. 6. Alkalinity restricts rooting for several reasons and a rule was parameterised through pH-H 2 O based on the same literature consulted for acidity. Here again there is little disagreement about the critical value below which rootability is suboptimal, but there is little information about the lower limit. Hence, the thresholds as reported by Mulders et al. (2001) were used. 7. Salinity hinders root and crop growth, not only by toxicity effects or unbalanced nutrient uptake but also by increasing the osmotic pressure with negative impact on soil water availability and root turgor. A rule was parameterised based on FAO (1988), Sys et al.(1993), Sanchez et al. (2003), Kiniry et al. (1983) and Landon (1991) who report the impact of salinity on maize yield potential, with salinity expressed by electric conductivity as measured in a saturated paste (ECe) and water (ECw). However, because only scarce soil profile data were available on ECe, and none on ECw, maps of EC (electrical conductivity measured in an unsaturated extract) were produced using soil data (for over 17,000 profiles and 47,000 layers) queried for EC and excluding those for ECe. Only limited information was available on the effect of EC on root performance and consequently the parameters for evaluating ECe were adapted based on the relationship between ECe and EC as elaborated by Landon (1991) and Hazelton and Murphy (2007). 8. Sodicity strongly affects the physical conditions of soil and particularly of clayey soil which tends to disperse, resulting in low porosity which impedes rooting. As for salinity and alkalinity, it also causes nutritional imbalances and toxicity. Rules for sodicity were parameterised referring to FAO (1988), Landon (1991), Sanchez et al. (2003), Sys et al. (1993) and were based on the exchangeable sodium content and the exchangeable sodium percentage (ESP) relative to CEC. 9. Toxicity is commonly induced by very high acidity or alkalinity which leads to increased contents (ppm) of aluminium, iron, manganese, zinc, copper, boron, sulphur and other elements (including micro-nutrients). Because we did not have data for all of these elements from a majority of the profiles in the soil datasets, beyond a depth of 50 cm, rules were developed only related to exchangeable aluminium (cmolc/kg), which is assumed equal to exchangeable acidity at pH-H 2 O below 5.5, and the exchangeable aluminium percentage relative to CEC, based on Sanchez et al. (2003), Landon (1991), Brenes and Pearson (1973) and Hazelton and Murphy (2007). 10. Soil morphology determines rootability to a large extent and in various ways including ways similar to above described soil factors. Soil rooting conditions can be evaluated from descriptive data and qualitative information on soil morphology as shown by Driessen et al. (1997). We tried to interpret soil observations on soil structure, consistency, porosity, compaction, cementation, mottling (aeration) and specific features such as slickensides and information such as horizon designation, diagnostic criteria for soil classification and the type of soil (Baruth et al., 2006).For six depth intervals, using the soil property maps as input for the rules developed and parameterised, maps were produced of the RI's associated with each of the soil factors. These RI's were splined through the six depth intervals and for each soil factor evaluated relative to the threshold indices to provide a continuous estimate of the depths, and the corresponding soil layers, at which rootability is restricted beyond the threshold indices.The rootable depth is assumed to be the shallowest of the depths evaluated from the individual soil layers (in which rootability was restricted beyond the threshold index for one of the soil factors considered) compared with the shallowest of the depths evaluated from the soil profiles as a whole (depth to bedrock and depth of aeration) and the depth of soil maximally attainable by the crop under unconstrained adequate conditions. The process involves:1. Mapping the depth of soil to a soil layer inadequate for rooting, with rootability restricted beyond a threshold. This depth is evaluated from the ten soil factors as described in the previous section. 2. Mapping the depth of soil to bedrock. The depth of soil, potentially accessible for rooting, is limited by the depth of soil to bedrock (R) or to an indurated metal hard pan (Cms). A map of the depth of soil to bedrock was produced by DSM interpolating legacy soil data, for the soil profile as a whole, available for approximately 4700 profiles only (including 3660 virtual profiles interpreted and georeferenced from legacy soil maps depicting presence of an iron pan at shallow depth). Soil layers, not designated as an R horizon, with a coarse fragments content exceeding 90 v% were also considered as bedrock which added data for another 770 profiles. The depth of observation, which was reported for all soil profiles including the AfSS profiles which only consider the upper 50 cm of soil, is not indicative of the depth to bedrock but of the minimum depth of soil at which bedrock does not occur. These so-called censored observations (26,277) were also used for mapping depth of soil according to as described by Shangguan et al. (2017). The map was produced and cross-validated, using the same procedures as described in Hengl et al. (2015b), with a maximum depth on the map fixed at 175 cm. 3. Mapping the depth of aerated soil. Soil rootability is limited by oxygen shortage or poor aeration in the soil profile (Bengough et al., 2005;de Willigen and van Noordwijk, 1987). The depth of aeration is determined by the rate of water being drained from the soil and by the associated depth and duration, during rainy periods, of the soil being wet or saturated. We derived this depth of aeration from the drainage class, a soil profile property commonly reported during soil survey and recorded for 13,700 profiles from the AfSP database. The drainage classes range from very poorly drained (1) to excessively drained (7) as defined by Soil Survey Division Staff (1993). The field observations are subjective but quite easy to make correctly except for intermediate situations where the soil is imperfectly to moderately well drained. The qualitative nature of the definitions required additional literature review to define rules to interpret the ordinal (1-7) drainage classes as a quantitative depth (cm) of aerated soil or 'depth to oxygen shortage during a large part of the cropping season' (FAO, 1976;Landon, 1991;Sys et al., 1993;Cornell University, 2010). This interpretation was largely based on expert judgement and therefor it felt justified to define a mild rule to avoid disproportional impact on the final result. For details and rationale behind this rule, see Leenaars et al. (2015). A map of the depth of aerated soil was derived from the map of drainage classes. This map was produced and cross-validated, as ordinal-rather than categorical classes, using similar procedures as used in Hengl et al. (2015b) and additional covariates including the groundwater table depth (Fan et al., 2013). 4. Depth of soil maximally attainable by the crop under unconstrained adequate conditions (150 cm for maize).The depths evaluated adequate for rooting were compared and the shallowest of those depths was assessed to produce the map of rootable depth or RZD (in cm). We also produced a map of the soil factor which is restricting RZD and assessed, for each soil factor, the extent (area in km 2 ), degree (depth in cm) and severity (volume in km 3 ) that RZD is restricted.The map of RZD could not be validated quantitatively because (proxy-) data on rootable depth were not made available. Instead, we validated the map by expert judgements involving a team of soil scientists and agronomists. Errors, inconsistencies and odd patterns obvious at coarse scale were verified by comparison with reference soil maps and by proofing of the associated input data, both soil profiles data and the primary soil property maps, and of the rules for evaluation. Where necessary and possible, an improved version of the primary soil property maps was produced and validated and a new version of the RZD map was derived. See Leenaars et al. (2015) for details. As a sensitivity analysis, we computed Pearson correlations to assess the degree to which each of the soil properties, defining the soil factors, contributes to the variance of RZD.Maps for each depth interval for PAWHC (v%) of the soil fine earth were combined with the depth interval specific maps of the SFEF (v%) and aggregated over RZD into a weighted average single value for RZ-PAWHC (mm). The map of RZ-PAWHC could not be validated quantitatively due to the lack of adequate data on RZD. Instead, the map was validated by expert judgements similarly as how the map of RZD was validated. See Leenaars et al. (2015) for specific details. The sensitivity of RZ-PAWHC for each of its three components, and each of the underlying primary soil properties, was assessed by Pearson correlation.The workflow to produce the maps of RZ-PAWHC was implemented within the overarching methodological framework as provided by the Global Soil Information Facility which is accessible at cran.r-project. org/web/packages/GSIF/. The procedures used for this study are publicly available online as implemented in the GSIF package for R software (Hengl et al., 2015a). All soil data are publicly available according to the data policy of ISRIC as the World Data Centre for Soils, including input data (soil profiles data, except the AfSS dataset, and primary soil property maps), intermediate results (maps derived per depth interval) and final results (maps aggregated over rootable depth), all at 1 km resolution. These data are available at the ISRIC ftp-server (username = public; password = public) which is accessible from www. isric.org/projects/afsis-gyga-functional-soil-information-sub-saharanafrica-rz-pawhc-ssa.Of the variables used to evaluate PAWHC, SFEF and RZD, bulk density has poorest coverage of the data for the individual soil profile layers and depth to bedrock of the data for the soil profiles as a whole (Table 1). Data distribution seems normal for bulk density, pH-H 2 O, sand, silt, clay and drainage class. These data show similar mean and median values and are situated more or less in the middle of the range between minimum and maximum values. Data distribution is somewhat skewed for exchangeable acidity, CEC and organic carbon and is highly skewed for coarse fragments, electric conductivity and exchangeable sodium.The soil property maps produced, including those reported by Hengl et al. (2015b), have an accuracy and statistics as summarised in Table 2. The summary statistics apply to the weighted averages of the depth intervals over the top 150 cm of soil, except for drainage class and depth to bedrock which apply to the soil profile as a whole. Not produced and not included in Table 2 are maps of calcium carbonate and gypsum content due to limited data availability and maps of soil morphologic properties due to the insufficiently consistent nature of the corresponding soil profile observation data.The variance explained at the considered resolution is reasonable to good for most soil properties but is critically low for coarse fragments content and drainage class which is surprising given the amount of available soil data. The variance explained is not assessed for depth to bedrock. Root mean square errors (RMSE) are high, exceeding mean and median of predicted values, for electric conductivity, exchangeable sodium, exchangeable acidity and organic carbon content and, to a lesser extent, for coarse fragments content. High RMSE seem to correspond with large standard deviations in most cases and with skewness (shift) in the predictions. The skewness is large for exchangeable sodium and exchangeable acidity and very large for electric conductivity, though less than the skewness of the input soil profile data. The maps of coarse fragments do not reflect the skewness which was associated with the soil profile data.The statistics of Tables 1 and 2 are described in more detail for selected soil properties (drainage, bulk density, coarse fragments content and electric conductivity) as illustrated in Fig. 3 by scaled probability distributions. The predicted drainage classes, aggregated from interpolated ordinal class values, are more or less normally distributed, spanning the full min-max range, comparable to the observations. The RMSE is fairly low but R 2 is only 0.28, which could be particularly due to challenges associated with the intermediate classes (imperfect to moderately well drained). Predicted values for bulk density have a similar distribution as the observed values, except for an average value which overestimates bulk density by 0.07 kg/dm 3 and a much narrower min-max range. Modelling had an important smoothing effect which resulted in a loss of values at the higher and especially lower end which were observed but not predicted.Observed values for coarse fragments content show a very skewed distribution with the average value exceeding the median by a factor of 1870%. (The peaks in Fig. 3c represent observed class values). The predicted average is near similar to the observed average but the median changed importantly from near nil to a value near similar to the much higher mean, which indicates a less skewed, more normal, distribution of the predicted values. At issue is whether this \"smearing effect\" is an improvement. 99% of the predictions is below 50 v%, which is a far too low maximum and requires improvement.Reported data for electric conductivity are also distributed in a very skewed manner. The distribution of predicted values is less skewed.Predicted values are generally 10 times greater than measured values but the contrary occurs in relatively small, salty areas (of sizes not visible in Fig. 3d) where very high observed values (100's dS/m) have been underestimated. 99% of the predictions is below 40 dS/m. Again, modelling had an important smoothing effect, not only by narrowing the range of values but especially by \"smearing\" the values from a skewed to a more normal distribution. For exchangeable sodium and exchangeable aluminium similar remarks can be made as for electric conductivity although to a lesser extent.For all soil properties, the range of predicted values is narrow compared to the range of measured values irrespective of the degree of skewness. This smoothing effect, caused by the applied DSM technique, is inherent to soil mapping, but is less at more local extents. A \"smearing effect\" occurs on very skewed data for properties with measured values which are generally very low but occasionally, in relatively small localised areas, very to excessively high. Results for these properties show large RMSE and a strong overrepresentation of midrange values. See Leenaars et al. (2015) for more detailed statistics.Results of the PTF, tested on the soil profile data and applied to the soil property maps, are summarised in Table 3 by measured and calculated VMC's, at saturation, field capacity (FC) and permanent wilting VMC calculated from the soil profiles data at pF 0, 2.0, 2.3, 2.5 and 4.2 overestimates measured VMC, in relative terms especially at higher tensions. The PTF underestimates PAWHC, with FC defined at pF 2.3, by one-ninth. PAWHC calculated for fine, medium and coarse textured soil profile layers, each with FC defined at pF 2.3, is on average 10.7, 11.1 and 8.6 v%, respectively, and this pattern corresponds with the measurements. Texture specific definition of FC results in a tendency of calculated PAWHC's contrary to what was anticipated and not conform the measurements. The definition of FC has very significant impact on PAWHC, both measured and calculated. PAWHC with FC defined at pF 2.0 exceeds PAWHC with FC defined at pF 2.5 with 9.9 v% measured and 6.1 v% calculated. The impact of the definition of FC on calculated PAWHC largely exceeds that of texture. The tabulated results of the PTF applied to the soil property maps represent the predictions for the six depth intervals aggregated over 150 cm of depth. The weighted mean VMC predicted at saturation is equivalent to the corresponding average of measured VMC, whereas the mean VMC predicted at FC (pF 2.3) and PWP overestimates the measured average with one-tenth and one-third, respectively. The min-max range of predicted VMC's is considerable but the range of measured VMC is nearly twice as large. The calculated and measured VMC's are normally distributed but the calculation of the maps had an important smoothing effect with underestimated high end values and especially overestimated low end values. This is to a certain extent due to the PTF and comparable to as tested on the soil profile data (which though mainly overestimated throughout the different tensions) and the fact that the underlying soil property maps do not depict any low and high end values either. The accuracy of the PTF combined with that of the soil property maps used as input data is reflected in Fig. 4 which shows, for six depth intervals, mapped (predicted = calculated) versus observed VMC (at saturation, FC and PWP). With n = 13,300, the variance explained (R 2 ) is 0.72 and the ME, MAE, RMSE and RMdSE are 0.049 cm 3 /cm 3 , 0.084 cm 3 /cm 3 , 0.102 cm 3 /cm 3 and 0.080 cm 3 /cm 3 , respectively. The accuracy of applying the PTF to the grids is comparable though slightly less than the accuracy reported by Wösten et al. (2013) who applied the PTF to the AfSP data with an R 2 of 0.81 and a RMSE of 0.064 (cm 3 /cm 3 ).Derived and mapped PAWHC, in the soil fine earth, decreases from the first to the sixth depth interval from 9.6 to 9 v%. The weighted mean value mapped for PAWHC, with a similar median, is one-tenth below the mean value calculated from the profiles data which again is one-ninth below the mean measured value. The mapped predictions are normally distributed over a min-max range, which is very narrow compared to the range of measurements. In absolute terms, PAWHC derived for 150 cm deep soil is on average 137 mm and varies between 0 and 300 mm (mainly 45-210 mm). PAWHC is particularly sensitive to bulk density and silt content as suggested by Pearson correlations of −0.61 and 0.43, respectively (Table 6).Fig. 5 visualises the scaled probability distributions of the observed and mapped (derived) VMC, at PWP, and PAWHC. PAWHC is reduced due to the overestimation of VMC at PWP.Maps of VMC at PWP and of PAWHC are given in Fig. 6. Overall, the spatial patterns of predicted VMC show a large degree of variation, but the spatial variation of predicted PAWHC is limited. PAWHC is remarkably small in the Blue Nile in-land delta (Gezira), an area reputed for its extensive vertisols (smectite clays). PAWHC is also small throughout areas with arenosols (sandy soils) in west Southern and Western Africa. Surprisingly, relatively high PAWHC is predicted over the entire Guinean savannah zone stretching over west and central Africa. These larger PAWHC values are still only about half those of major grain-producing areas in temperate regions like the US Corn Belt and Argentine Pampas (www.yieldgap.org).SFEF decreases from the 1st to 6th depth interval with about onetenth from on average 90 to 80 v%. The mean weighted average over 150 cm of depth is 83 v% ( ± 10) and varies between 15 and 100 v% of which 99% is between 50 and 100 v%. The effective PAWHC is reduced by the SFEF with one-sixth from on average 9.1 v% of the soil fine earth to 7.5 v% of the soil whole earth, which equals a reduction in absolute terms from 137 to 113 mm in 150 cm deep soil. See Fig. 7 for the map of SFEF. 3.5. Map of the rootable soil depth (RZD)The rules, parameters and criteria (thresholds), developed as part of the framework to evaluate and map rootability and rootable depth, are included as results in the next sections.The rules developed for evaluating rootability from the adequacy of soil factors, as parameterised by soil properties, are given in Table 4. The rootability index (RI) expresses the scalable adequacy for rooting at the corresponding soil property values. The four intervals between the five columns for RI represent the soil property ranges where rootability is either 100%, 100-20%, 20-0% or 0%. The unscaled rootability of either 100 or 0% is evaluated from the soil property threshold value at the threshold index of 20%. Four soil properties are expressed and evaluated as a function of another property as specified in the table footnote. Explained here is f.BD which evaluates bulk density relative to a critical, texture dependent, bulk density of 1.25 kg/dm 3 for a pure clay soil and 1.60 kg/dm 3 for a pure sand soil.Rootability of the soil depth intervals, considering each of the soil factors except for induration, is on average indexed at 71% ( ± 17). Porosity is most frequently indexed as most limiting for rooting in any of the depth intervals, not necessarily beyond the threshold index, followed by sodicity, acidity and toxicity. Volume (coarse fragments) and salinity are never, and textural adequacy near never, indexed as most limiting to rootability. Sodicity, for those depth intervals where sodicity is evaluated most limiting, shows an average RI of 47% ( ± 34), which is the lowest of all soil factors (except for sand content which is most limiting on only 1000 km 2 ), and is the only factor for which the lower standard deviation goes beyond the threshold index.The rules developed to assess the depth to a soil layer with a rootrestrictive soil factor, by evaluating the rootability indices for each soil layer separately, apparently have little impact, in terms of spatial extent, on the estimated RZD. This is not necessarily due to the rules being too mild (root permissive) but more likely due to the mild threshold indices (at 20%). More stringent threshold indices, for e.g. acidity set at 30%, would result in more soil layers evaluated as root restrictive. It is also likely that the underlying soil property maps lack values that fall beyond the threshold values due to the smoothing effect of mapping which narrows the range of predictions relative to the range of values provided by the actual soil profiles data.The depth of soil to a soil layer inadequate for rooting is mapped from the results of the former section. The depth of soil to bedrock is mapped as described in section 3.1 and the map of the depth of aeration is derived from the drainage class map. The depth of aerated soil associated with drainage class 1 to 7 is 10, 40, 75, 115, 160, 210 and 265 cm, respectively. This corresponds with 2.5 x 2 + 22.5 x − 15, with x = the ordinal drainage class (1-7).Fig. 8 shows a map of the soil factors, with underlying soil properties, which are limiting RZD and which are either the depth of soil to a soil layer inadequate for rooting (with rootability restricted beyond a threshold), the depth of soil (to bedrock), the depth of aerated soil (to oxygen shortage) or the maximum rooting depth of maize (150 cm).RZD is mapped as not restricted by soil conditions in 25% of SSA, especially in the humid tropics but also in semi-arid southern Africa (Angola, Botswana) and patches in the Sahel (Niger). In contrast, there are large regions where RZD is restricted by limited depth of aeration (36%); severely in much of the depression areas and wetlands with associated heavy clay soils as from lake Chad to South Sudan and, less severely but over very large extents, in areas occupying intermediate landscape positions where soils are imperfectly-to moderately well drained, often associated with pseudo-gley and plinthite, like in the savannahs stretching from Senegal to Nigeria and in Mozambique and also in the sandy gley soils along the Congo river. RZD is restricted by depth of soil to bedrock in 26% of SSA in large parts of the highlands of eastern and southern Africa, the petro-plinthite areas in western Africa and the areas with calcium-cemented soils in the far south-west and far north-east of Africa. In a relatively smaller area (13% of SSA) RZD is restricted due to other soil factors, including sodicity, toxicity, porosity, and alkalinity. Sodicity restricting RZD occurs in depression areas in arid zones such as along the border of the Sahara, the inland deltas in Mali, Namibia and Botswana and especially in the arid lowlands in-and bordering Ethiopia including the solonetz areas of Somalia and northern Kenya, the vertisol area of the Gezira in Sudan and the Ethiopian Danakil. Toxicity related to exchangeable aluminium (acidity) restricts RZD in the south of the Democratic Republic of Congo and the north of Angola, Gabon and the wetter parts of Cameroon, Ghana, Ivory Coast and Ethiopia. Porosity restricts RZD in parts of the Sahel over a narrow stretch from Senegal to Burkina Faso. RZD is restricted by alkalinity and by texture (excessive sandiness) in extremely small areas only. The other soil factors evaluated for their adequacy to support rooting are not identified as root restrictive beyond the rootability threshold based on the dataset used in this assessment.RZD is mapped for SSA as shown in Fig. 9 and is on average 96 cm ( ± 49) with a range between 1 and 150 cm. The median is 20 cm deeper with a value of 115 cm. These figures are comparable with observed rooting depths as recorded in the AfSP database (n = 3970) with an average and median of 94 cm ( ± 45) and 100 cm, respectively, in a range between 0 and 400 cm. This comparison is only a casual observation because the AfSP data reported for rooting depth are not specific for maize and not at a given moment in the growing period. The RZD map was not validated quantitatively because RZD data were not available.An overview of both the extent (area in 1000 km 2 ) and the degree (depth in cm) to which each soil factor is limiting RZD is given in Table 5. In terms of extent, RZD is generally more limited by soil factors evaluated for the soil profile as a whole, such as depth of aeration and depth to bedrock, than by soil factors evaluated for the individual soil profile layers separately, such as sodicity and toxicity. In terms of degree, or the magnitude of decrease in rootable depth, the contrary is true.The evaluated area of a size of 20.4 M km 2 represents a soil volume potentially rootable by maize of 30,600 km 3 (i.e. RZD not restricted by soil conditions). The rootable soil volume (of the SFEF, not considering coarse fragments content) is reduced by 10,527 km 3 (one third) due to root-restrictive soil conditions, of which 4785 km 3 are due to limited depth of aeration and 2517 km 3 due to sodicity. Depth to bedrock reduces the rootable soil volume by 2478 km 3 , aluminium toxicity by 606 km 3 , porosity by 118 km 3 , alkalinity by 23 km 3 and the other factors by practically 0 km 3 . Some of the soil property maps underpinning the soil factors found to be most restrictive to RZD, either in extent or degree, are of critically low accuracy. The accuracy of the drainage class map, which underlies the evaluation of depth of aeration, seems to be particularly limited due to the challenges associated with predicting intermediate situations (imperfectly to moderately well drained, restricting RZD to 75 and 115 cm, respectively), which are relatively difficult to correctly describe in de field and generally located at intermediate landscape positions occupying very large areas. The accuracy of the exchangeable sodium map, which underlies the evaluation of sodicity and which restricts rootability at relatively shallow depth in some large lowland areas, seems to be compromised due to the skewed soil profiles data of which, moreover, a large portion is poorly inferred from spectroscopic data. The sensitivity of RZD for particularly these two soil properties is confirmed by the Pearson correlations (see Table 6). RZD proves also sensitive to pH-H 2 O and in a lesser extent to CEC which is particularly due to the covariance with sodium content. Aggregated over RZD, and expressed in relative terms, average PAWHC of the soil fine earth fraction is 8.9 v% ( ± 1.6), in a range between 0 and 19 v%. The average soil fine earth fraction is 86 v% ( ± 9), ranging between 17 and 100 v%. The effective PAWHC in the RZD is on average 7.7 v% ( ± 1.4) and ranges between 0 and 16 v% (mainly 3-11 v%). The spatial pattern of the effective PAWHC in the RZD corresponds to a certain extent with that of the soil water holding capacity suggested by Jones et al. (2013). Important differences occur as well though. The capacity depicted by Jones et al. (2013) ranges more widely from below 1.5 v% in Guinea to above 15 v% in large parts of Central and East Africa and is relatively low (5 v%) for the Guinea/ Sudan savannah zone stretching over west and north-central Africa where we derived relatively high effective PAWHC.Fig. 10 shows the map of RZ-PAWHC expressed in absolute terms (in mm). Derived values for RZ-PAWHC range between 0 and 235 mm of which 99% is between 0 and 145 mm. The mean value is 74 mm ( ± 39) with an almost similar median value. The spatial pattern of RZ-PAWHC is very comparable to that of RZD. As a general statement, RZ-PAWHC is in terms of extent (km 2 ) more limited due to RZD limited by soil J.G.B. Leenaars et al. Geoderma 324 (2018) 18-36 factors evaluated for the soil profile as a whole, such as depth of aeration and depth to bedrock (12.6 M km 2 ), than by soil factors evaluated for the individual soil profile layers, such as sodicity and toxicity (2.6 M km 2 ). In terms of degree (mm), or the magnitude of decrease in RZ-PAWHC, the contrary is true with RZ-PAWHC limited to on average 68 mm ( ± 30) due to RZD limited by a restriction evaluated for the soil profile as a whole (depth of aeration and depth to bedrock) and to on average 15 mm ( ± 16) due to RZD limited by a restriction evaluated for the individual soil profile layers (sodicity, toxicity). Summarising, RZ-PAWHC would be 150 mm in soil without any limitations (with a default PAWHC set at 10 v%), 137 mm when limited by PAWHC, 125 mm when limited by SFEF and 96 mm when limited by RZD. RZ-PAWHC is thus limited by PAWHC with, in relative terms, 9% ( ± 16), by SFEF with 17% ( ± 39) and by RZD with 35% ( ± 26), which suggests that RZ-PAWHC is most limited due to restricted rootability. Accumulatively, RZ-PAWHC is limited with 9% from 150 to 137 mm due to limited PAWHC, with 25% to 113 mm due to both limited PAWHC and SFEF and with 51% to 74 mm due to limited PAWHC, SFEF and RZD.Table 6 gives the Pearson correlation coefficients between the map of RZ-PAWHC and the maps of PAWHC, SFEF and RZD and between each of these with the maps of the underlying soil properties. The correlations confirm that RZ-PAWHC is predominantly defined by RZD and most sensitive to those soil properties for which RZD is most sensitive (sodium content, drainage class and pH-H 2 O).This work resulted in spatially explicit and quantitative maps of the rootable depth and the RZ-PAWHC of the sub-Saharan African soil. While the accuracy of these maps could not be validated due to absent data on rootability or rooting, and is likely limited by the accuracy of the primary soil property maps, the framework used to create the maps is robust and the maps, either for SSA or specific areas of interest, can be updated as additional soil data become available.The maps of RZD and RZ-PAWHC were derived from soil property maps which were produced by interpolation of soil profiles data using high resolution covariates. Value was added by combining legacy soil data (AfSP) with newly collected soil data (AfSS) to produce the soil property maps (Leenaars et al., 2014b;Hengl et al., 2015bHengl et al., , 2017a)). Particularly relevant are the differences in recorded soil properties and covered depths of soil. The AfSS dataset lacks depth to bedrock, drainage class and water retention, coarse fragments content and bulk density while other properties are recorded to a depth of 50 cm only. The AfSP dataset includes these properties and data are recorded for a depth to on average 125 cm, allowing to produce maps beyond 50 cm, which was needed for estimating and mapping RZD and RZ-PAWHC.The accuracy of the primary soil property maps, which was assessed by cross-validation, is for most properties satisfactory but needs to be further improved for drainage class and coarse fragments content and preferably also for electric conductivity and exchangeable sodium. In all cases, high-and low end values measured and recorded in the soil profiles datasets appear to be not sufficiently well captured and represented by the spatial predictions. This \"regression to the mean\" or smoothing effect is quite common in any prediction method and deserves attention in future updates. The solution would be to use stochastic simulations (Webster and Oliver, 2007) avoiding smoothing and reproducing the statistics of the conditioning data. However, this would increase computing time dramatically and was beyond the scope of this study. Particularly difficult to map accurately were soil properties with limited data availability (depth to bedrock, bulk density), with low accuracy of source data (drainage and coarse fragments content derived from class values observed in the field and sodium and electric conductivity poorly inferred from spectroscopic data) and with skewed data distribution (coarse fragments, sodium, electric conductivity). To enhance model performance, particular attention is to be paid to obtain spatial covariates that are likely relevant for predicting these soil properties based on pedologic knowledge about soil forming processes.Uncertainties in these maps will propagate through the subsequent analysis that computes the maps of PAWHC, SFEF and RZD and therewith of RZ-PAWHC. In addition each step of the analysis introduces additional uncertainties resulting from the uncertainties associated with the rules used for the inferences, including the assumptions, parameterisations and criteria. Thus, it is highly desirable to quantify these uncertainties and trace the propagation into the final product. However, analysing the propagation of uncertainties is computationally very intensive and requires that all sources of uncertainty are quantified by probability distributions, including spatial and crosscorrelations of uncertain inputs (Heuvelink, 1998(Heuvelink, , 2014)). Such analysis was beyond the scope of this work but we intend to include mapping of the uncertainties and propagated errors in a next round of map updating. That work may benefit from the possibilities offered by the soil inference system as put forward by McBratney et al. (2002) and implemented by Morris et al. (2012).The estimation of water retention, by applying a PTF to the profiles data and the soil property maps, appeared to be reasonably accurate, also when related to different texture classes. A slight overestimate was obtained, especially at higher tensions and PAWHC is therefore slightly underestimated generally. This can be corrected, for instance by adjusting the PTF parameters (Hodnett and Tomasella, 2002). PAWHC proved very sensitive the definition of FC and would had been approximately four-tenth higher with FC defined at pF 2.0 and two-tenth lower with FC defined according to the GlobalSoilMap specifications (Arrouays et al., 2014) at pF 2.5 The forms of the predicted retention curves vary to a limited extent only and thus lead to values for PAWHC with little variation. The little variation is also due to the narrow range predicted in the underlying soil property maps, lacking low-and/or high end values. While Heuvelink and Pebesma (1999) recommend to first interpolate and then calculate, rather than vice versa, it may be worthwhile trying to first apply the PTF to the profiles data, which we did, and then interpolate the calculated data on water retention. This may result in a wider range of PAWHC. The feasibility of such approach is currently limited by the availability of sufficient data on bulk density and it required additional PTF's to generate those data. Pearson correlation showed that bulk density is key to estimate PAWHC and errors in the first round map of bulk density contributed to strange patterns, as detected by Han et al. (2015), in the first round map of PAWHC.We estimated the RZD as determined by four major depth parameters, i.e. (a) depth of soil to the shallowest layer with a soil factor restricting rootability beyond the established threshold index, (b) depth of soil to bedrock, (c) depth of aerated soil, and (d) genetic root depth potential of maize. The last three depth parameters, and especially depth of aerated soil, appear to dominate the outcomes in terms of extent (area in km 2 ), whereas the first, and especially depth to excessive sodicity, dominates in terms of degree (depth in cm). This makes the procedure rather sensitive to possible errors in the underlying maps of drainage class and exchangeable sodium content and the associated rules. The sensitivity of RZD for particularly these two soil properties is confirmed by Pearson correlations. However, the accuracy of the drainage class map is critically low and the sodium maps suffered from important smoothing. The low amount of variance explained by the drainage class map, despite the amount of data, could be due to challenges with the observation and prediction of intermediate classes on intermediate landscape positions, but also with the aggregation of 71 interpolated ordinal classes (1.0-7.0) into seven classes (1-7). The latter should be avoided in a next update. Further, it would be worthwhile trying to interpolate aerated depth of soil from depths of aerated soil as inferred directly from the soil profile data (first calculate, then interpolate). It would be most direct to use a map of the depth to groundwater (Fan et al., 2013) as the map of aerated depth of soil, if sufficiently accurate and precise. (It should be mentioned here that a limited depth of aeration, while limiting RZ-PAWHC, may well have positive effect on the supply of water into the root zone, due to possible capillary rise). The sodium maps generally overestimate the, skewed, measurements. Root restrictive sodium contents were predicted for all lowlands throughout SSA and we introduced additional covariates to \"force\" sodium out of the lowlands of the humid tropics, where measurements show low sodium contents, but this caused an increase of in the arid regions at the other side of the spectrum. This black box effect seems a disadvantage relative to conventional soil type mapping which permits to allocate measured, possibly extreme, values to delineated soils. For a next update of the sodium map, it may be worthwhile to use covariates deducted from soil type maps and simplified into either presence or absence of sodic or natric characteristics.The four major depth parameters in the framework are evaluated from twelve soil factors, identified to evaluate the adequacy of soil to support root growth, for which rules have been developed and parameterised based on sixteen soil properties. These rules are consistent and reliable, whereas a few, particularly the rule to evaluate the abruptness of textural change, deserve additional attention. The abruptness of textural change could be evaluated more consistently from textures given by a continuous depth function rather than by depth intervals which increase with depth. For the majority of rules, parameterisation also appears to be quite reliable. Parameterisation was mild in those cases that literature was too ambiguous. However, many of the, unscaled, thresholds that evaluate the rootability of soil depth intervals are relevant only for quite extreme soil property values, which do occur in the soil profiles datasets but, except for sodium, rarely or not on the maps. Consequently, several of such soil factors, e.g. acidity (pH-H 2 O), are nowhere on the map identified as root-restrictive. This is partly the result of, again, the smoothing effect that is inherent to mapping. Using stochastic simulation mentioned above, thresholds would be exceeded in some of the simulations, thus quantifying the probability of threshold exceedance and hence giving a measure of risk (Vann et al., 2002;Webster and Oliver, 2007). Not meeting the thresholds is also the result of the mildness, or root permissiveness, of the thresholds set for the various rootability indices. More stringent threshold indices, i.e. for acidity raised from 20 to 30%, would imply more stringent threshold values at which rootability is evaluated as restricted, i.e. at pH-H 2 O of 4.2 instead of 4.0. Instead of using thresholds, a scalable approach could be used in line with what was suggested by Driessen and Konijn (1992) or Kaufmann et al. (2009). Such would require the soil factors to be independent though.RZD determines RZ-PAWHC to a much larger extent than PAWHC and SFEF. However, data availability did not permit to adequately validate rootability and RZD, and therefore RZ-PAWHC. Field observations on restricted auger depths, collected according to the land degradation surveillance network procedures (Vågen et al., 2010(Vågen et al., , 2016)), could serve as proxy for restricted rootable depths but data have not become available. In general, the accuracy of the RZ-PAWHC map is limited by the accuracy of the soil property maps from which the RZD map was derived. Besides, by using another DSM technique, these maps might be improved with additional soil profile data, either from existing data sources or newly collected from the field. Such data, in support to updating the current maps, should include the depth of soil (up to bedrock) and the depth of aeration in the soil (up to groundwater or inferred from drainage class) to preferably at least 100 cm depth and, for each of the soil profile horizons, the volumetric fraction of soil fine earth (coarse fragments), porosity (bulk density), texture (sand, silt, clay), cementation (CaCO3 and CaSO4), acidity and alkalinity (pH-H 2 O), salinity (EC), sodicity (exchangeable sodium and CEC) and toxicity (aluminium and others). Also relevant and sufficiently robust to map and parameterise, but not used in this study because of insufficient standardised data, are morphologic observations expressed simply as presence or absence of diagnostics like slickensides, abrupt textural change and highly compacted and/or cemented layers (e.g. duripan, iron pan). Much value would be added, also for local assessments, by indeed collecting these soil data together with data, per soil layer, on the actual presence or absence of roots (while specifying the species) which enables validation and fine-tuning of the rules to evaluate RZD.The impact of the estimated RZD, and RZ-PAWHC, on crop yield potentials (Guilpart et al., 2017) and therewith the prognosis of whether SSA can feed itself is significant and leads to the conclusion that agricultural intensification alone may not be sufficient for reaching food security (van Ittersum et al., 2016). This conclusion has farreaching consequences and justifies increasing efforts to better assess and map soil rootability and RZ-PAWHC in SSA to better target agronomic R&D interventions and better inform agricultural policy-and decision making.This study produced the first map of rootable depth and RZ-PAWHC of the soil of SSA. The mean rootable depth (for maize as a reference crop) is 96 cm ( ± 49 cm) and RZ-PAWHC is on average 74 mm ( ± 39 mm) ranging from 0 to 235 mm (99% from 0 to 145 mm). RZD is by far the most important of the three components defining RZ-PAWHC (Pearson correlations with PAWHC, SFEF and RZD of 0.21, 0.27 and 0.95, respectively). RZD in its turn is from all soil properties most sensitive to drainage class and sodium content. Rootability is restricted at a depth of less than the genetically defined maximum RZD (150 cm) on three quarters of the total area of SSA and the total soil volume which is potentially rootable by maize is reduced by one third, due to root constraining factors as aeration, sodicity, bedrock, aluminium toxicity, and others. The accuracy of the RZD map could not be validated quantitatively, due to absent data on rootability and RZD, but is limited by the accuracy of the soil property maps from which the map was derived. Most of these soil property maps are smoothed compared to the observations (regression to the mean), especially for properties with skewed data. New, improved maps can be produced, within the operational framework here developed, upon the availability of additional soil data relevant to evaluate RZ-PAWHC over at least 100 cm depth and possibly using different DSM techniques such as stochastic simulation. Key in such update is to map the uncertainties associated with the soil property maps and to assess how the errors propagate into the RZ-PAWHC map. Adequate data on rootability, or rooting, are solicited to better validate the current assessment as a key step towards an increasingly accurate consolidated product, which is critically important for better targeting agronomic R&D interventions in SSA.support from the CGIAR research program on Climate Change, Agriculture and Food Security (CCAFS).","tokenCount":"12305"} \ No newline at end of file diff --git a/data/part_3/6627256378.json b/data/part_3/6627256378.json new file mode 100644 index 0000000000000000000000000000000000000000..f45b51b72e5be599812decf51bd9d4926030bef1 --- /dev/null +++ b/data/part_3/6627256378.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"0475175e022bf3eeb6a8abcce9f30da7","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/96bc724e-50b1-4ce1-9e38-8d3b39e8d8e4/retrieve","id":"1322927006"},"keywords":["Potato","late blight","insect pests","leafminer fly","potato tuber moth","seed","parasitoids","cultural control"],"sieverID":"924a032d-828e-4a36-9b68-f874a5f5ecdb","pagecount":"144","content":"Potato is an important food and cash crop in the mid-and highlands of Kenya. The actual yidd however is far below its potential. The aim of the study was to assess the importance of potato production and its major constraints as perceived by the farmers. Further, the status of insect pests related to potato cultivation, and in particular leafminer fly and potato tuber moth were to be assessed. The study was carried out from September to December 2009 in five potatogrowing regions in Kenya. Beside household surveys, abundant insect pests were detected through trapping. The flight activity of leafminer fly, using yellow sticky traps, and of potato tuber moth, using pheromone traps, was regularly monitored. Regular field observations were carried out in two-weekly intervals to estimate the field infestation caused by both insect pests. Furthermore, the impact of potato tuber moth in storage was assessed. Through regular sampling of larvae, parasitoids associated with both leafminer fly and potato tuber moth were detected and their parasitisation estimated. Generally, potatoes are highly important for income generation and can be cultivated throughout the year. However, high costs of fertilizer and pesticides limit the potential outcome. Insect pests are not widely perceived as major constraint and are rarely controlled through chemicals. Insect diversity during the observation period was found to be relatively low. Aside from the low awareness of farmers , insect pests can cause considerable damage. Leafminer fly causes significant damage to potato crops in Abothuguci West, but is only either moderately or I negligibly abundant in the other regions. All of the assessed regions showed field infestation by potato tuber moth. However, the situation is most serious in Naromoru. High infestation levels on seed tubers after storage were observed in Naromoru and Sagana. Aphids are widely distributed; however, bear the risk of virus transmission. A high variety of parasitoids for leafminer fly and potato tuber moth were found. The most important species for leafminer fly are Diglyphus spp., Gronotoma micromorpha and Opius spp., even though most of the spe<;ies require further identification. Highest parasitisation rates of potato tuber moth were realized by Copidosoma koehleri and the indigenous Diadegma mollipla.Major characteristics of the potato producing regions included in the present study .... 34 Naromoru (N), Sagana (S), Abothuguci West (A) and Malo (M) .................... ..................... , .66 n=3 , 18.9.09, n=4, 30.9.09; n= 6, 14.10.09; n=4, 28.10.09; n=5, 11.11.09; n=7, 25.11.09) and Sagana (number of fields: n=l,18.9. 09, n=4, 30.9.09; n=4, 14.10.09; n=2, 28.10.09; n=4, 11.11.09; n=3 , 25.11.09). Samples were taken from potato at growth stages 55-70 . Potatoes are cultivated in no less than 140 countries, mainly for human consumption (van der Zaag 1994). In the 1990s, potatoes were cultivated on 18 million hectares of land worldwide, with a total annual production of 293 million tons (CIP 2010). While the consumption of potatoes has continuously decreased in the temperate regions, it is of growing importance in tropical and sub-tropical countries. The stable growth of the potato production, which has increased by an average of 4.5% per year since the 1990s, and which is still expanding, has so far been able to satisfy the increasing market demand. Algeria, Egypt, Morocco and South Africa range among the major potato producing countries in Africa with more than 80% of the total production (CIP 2010).According to estimations of the Ministry of Agriculture, in 2007 Kenya produced 800,000 MT potatoes cultivated on 120,000 ha, with an estimated value of 4 billion Kenyan shilling, which equals approximately 42,570,000 Euro) (Kaguongo et al. 2009, unpublished data), which is far beyond the potential yield of potato. Moreover, in the past few years, the potato production has declined by 11 % annually. However, potato is among the most important food crops in Kenya, contributing to food security and nutrition, and to an increasing degree to the income generation of rural farming families (Kaguongo et al. 2009, unpublished data).One of the main reasons for the declining yield is the high number of potato pests and diseases, which, due to the vegetative propagation of potatoes, have been introduced together with their host into new countries. Some pests and diseases are distributed across the world (Johnson 2008). Potato tuber moth, (Phthorimaea operculella Zeller) (Kfir 2003) and leafminer fly (Liriomyza spp.) (Spencer 1973) are two invasive pests of worldwide importance. The risk of pests and diseases reducing yield and quality of potatoes is further enhanced through inappropriate cropping practices, such as missing or too short crop rotations in regions where land is scarce and potato is intensively cultivated as a cash crop (van der Zaag 1994).The aim of this study was to understand the importance and distribution of pest problems in potato production systems and associated beneficial insects in Kenya in order to develop future management strategies. The following report will review potato production and its constraints in Kenya, with special emphasis on cropping systems and insect pests, and will present the results of the research that was carried out in various agroecosystems in Kenya in 2009, including socioeconomic data obtained from household surveys. Further, the report will give recommendations as to how the potato cropping systems may be improved and losses caused by pests and diseases may be reduced. Potatoes rank among the most important crops for the income generation of small scale farmers in the potato producing areas of Kenya; however the potential optimal income is not yet reached due to the underdevelopment of potato markets and lack of good seed.Agricultural practises of crop and pest management have an impact on infestation levels by potato tuber moth and leafminer fly. The lack of advisory systems and capital, and thus the mismanagement of potato fields, as well as lack of adequate amount and quality of resources are limiting an increased production of potatoes in small-scale farming systems.Disease and insect pest problems are perceived as a big threat by potato producing farmers. Plant protection measures are largely based on chemical pesticides.Studies on horticultural crops in Kenya showed that species of the leafminer fly, Liriomyza spp., can cause high yield and quality losses. Therefore it can be expected that leafminer fly has also become an important insect pest in potato cropping systems.Control of leafminer fly through the use of insecticides has widely be shown to be ineffective, thus information on existing parasitoids would be crucial to develop biological control methods.Since potato tuber moth, Phthorimaeae operculella, is among the major field and storage pests in potato production systems worldwide and is as well reported from Kenya, information on the actual abundance, distribution and damage is important to support farmers adequately with new control strategies.Regarding earlier releases of the parasitoid Copidosoma koehleri for potato tuber moth control in Kenya, and the abundance of the indigenous parasitoid Diadegma mollipla information on the efficacy of both parasitoids is missing although it is expected that both parasitoids suppress the pest population substantially.The abundance of the insect pests and associated parasitoids depends on climatic conditions. It is expected that the potato tuber moth and the leafminer fly show different levels of field infestations in the different study regions.The overall goal of this study was to contribute to generate new knowledge and information on the current status of insect pest problems in major potato agroecosystems of Kenya. This was realized through regular field surveys and studies to assess especially the importance of the leafminer fly and the potato tuber moth. Moreover, through the use and implementation of a fq:rm questionnaire the potato production constraints and farmers ' views and awareness about pests and disease control, as well as farmers' practices in potato cropping and handling of seed were studied to provide important information for the development and implementation of a sound pest management program. The specific objectives of this study were:1.To conduct a farm survey (questionnaire) to understand farmers ' practices and pest ~md disease management.To assess and monitor the leafrniner fly and potato tuber moth infestation and flight activity in the field and storage (potato tuber moth only) through regular field observations, the use of trapping devices and tuber examinations.To assess the abundance and diversity of parasitoids of the leafminer fly and potato tuber moth through regular samplings of potato tuber moth and leafminer fly larvae.To assess the general arthropod diversity in potato agroecosystems through regular field I sampling.To develop recommendations for an integrated pest management strategy for the potato production in Kenya.Demographic and agricultural development in Kenya has among other reasons been influenced by land use change after colonization. The implementation of the adjudication program in the 1960s to 1980s aimed to individualise land rights, thereby creating incentives to improve soil management and to increase agricultural productivity through tenure security (Smucker 2002, Olson et al. 2004). The newly distributed areas were cleared and fenced by the owners to protect the property. Thereby, the traditional shifting cultivation and also pastoral systems ended and the small areas that were created for agricultural activities soon experienced a decrease of soil fertility (Olson et al. 2004).The green revolution in the 1960s has not benefited African agriculture similarly as other parts of the developing world and the continent has fallen behind in food production. Agricultural production is not growing in the same pace as the population, leading to a decrease in production per capita. Reasons for the slow growth are climatic incidences as droughts, low cost foodstuff from other countries, disregarded importance of agricultural research, and migration of rural population to the cities to search for income opportunities especially due to low generation of income through farm products (Karugia 2003). However, between the years 1958 and 2001 the cultivated area in Kenya has increased by 70% (Olson 2004). Today, expansion of agricultural land is mainly left to the less fertile soils in the lowland regions, as scarcity of land and population pressure in the up-and midlands hardly allows further expansion (Maitima et al. 2004).In the middle of the 1980s, economic reforms were implemented by the Kenyan government. This led to a liberalization of agricultural markets with the consequence that the stock flow was not any longer controlled by the government. The reforms aimed for to the withdrawal of the state and the upcoming private involvement of traders. The improvement of infrastructure during this time and the resulting improved road conditions now allowed private middlemen to access remote areas and to purchase agricultural products from the farmers. Before the economic reforms, the government marketed agricultural commodities via government-owned enterprises. This ensured stable markets and standardised prices to the farmers. In the course of the economic reforms, the governmental subsidisation of input factors was removed; they were from now available from private enterprises solely. This fact and reduced control by the government resulted in increased prices and poor quality of input factors. Decreased prices for agricultural produce in contrast, reduced overall earning power of the farmers, which therefore did not benefit from the increased availability of fertilizers and pesticides (Karugia 2003).Still today, agriculture is the main branch of economy in Kenya. From the 32.4 million inhabitants (2004) about 59% live in rural regions. From the 53 % of the population being actively working, 73% do so in agriculture. 80% of them are producing in small-holder systems (FAO 2006). The population working in agriculture contribute with 50% to the GDP (Crissmann 1989).Increasing reduction of agricultural land is especially a problem in the highlands. Major causes for small land sizes have to a big extent been the change in land tenure and privatization, and further more intensive production is applied, which is among other reason a major cause for reduced soil fertility (Maitima et al. 2004). The authors have found an outstanding loss of soil fertility in arable land, which negatively impacts crop production and results in low yields. The degradation of soil is mainly due to soil erosion, reduced organic matter and thus carbon content in the soil, decline of input of major nutrients, such as nitrogen, phosphorous and potassium, and of micro nutrients, deterioration of the structure of the soil and the influence of increasing acidity and salinisation. The latter is mainly occurring in areas were irrigation agriculture is practised. Acidity of soils is mainly observed in the higher zones. This was shown in a soil survey in the highlands of Embu District; located at the south-eastern slopes of Mt. Kenya (Gachimbi 2002a).Besides soil fertility, lack of irrigation is inhibiting agricultural production. Karugia (2003) stated that irrigation could be used to exploit the potential for horticulture in the areas of the divisions Kieni East and Kieni West.The decrease in agricultural extension provided by the Kenyan government began with the liberalization process in the 1980s. However, a high number of extension offices operating privately are prevalent in Kenyan villages; still they are costly and the quality of advices is not guaranteed. Private traders and contract farming are commonly available in many villages, providing inputs and advice for the producing farmers (Karugia 2003).The above described constraints of agricultural production in Kenya also have an influence on the potato production and its potential outcome.Potatoes have been cultivated in small scale farming systems since the 1920s. Attempts to establish a system for certification of potatoes were started in the late 1950s with the introduction and testing of new varieties. During this time a programme to control bacterial wilt (Ralstonia solanacearum Smith) has been implemented by the government. Shortly after this, in 1960, a ''New Potato Development Programme\" was introduced by the government. The main objectives were to breed varieties adapted to Kenya's agroecosystems with resistances against diseases like late blight (Phytophthora infestans Mont. De Bary), bacterial wilt and leaf roll virus. With the independence in 1963, many of the professional foreign experts (staff) working in the national programme went back to their home countries, leaving a gap which was only slowly filled with experts from Kenya. In 1967 the potato development project was introduced by the government to evaluate local varieties for disease resistance, establish a breeding and multiplication scheme for these varieties and to evaluate farming practices (Durr and Lorenzl 1980).From an initial export crop, potato has developed into a major stable food in the production areas and domestic markets. However, its importance has been neglected by the Ministry of Agriculture over a long period and has only been included in the Integrated Agricultural Development Program in the late 1970s, which provided inputs for horticultural crops. In 1978/79 funds have been provided to build an air ventilated potato store in Kibirichia (Meru Central District) with a storage capacity of 100 to 150 tons (Durr and Lorenzi 1980).Main potato production areas in Kenya have since then been the high elevation regions in the Rift Valley, Central and Eastern District, the ranges of the Mau and the foot-ridges of Mount Tanzania, farmers have lately discovered the economic potential of growing potatoes Today, following maize, potato is the most important food crop in Kenya (Kaguongo et al. 2009, unpublished data). In the districts, representing the study regions, total cultivated area of 12,193 ha in Meru,18,322 ha in Nakuru,4,246 ha in Bomet and 14,809 ha in Nyeri District yielded 9.9, 9.2, 11.0 t/ha and 6.7t/ha, respectively (Kaguongo et al. 2009, unpublished data). Average yields for Kenya were found to differ, and accounted for 9.1 t/ha (Gildemacher 2009b) and 6.7 t/ha (Nyankanga et al. 2004), but under experimental conditions yields up to 30 t/ha are achieved.Problems of potato production in KenyaYields in potato production have continued declining (Kaguongo et al. 2009, unpublished data). Many factors are held responsible for the yield decline but the continuous cultivation of crops without adequate application of nutrients and organic matter has reduced to a great extent the soil fertility and important soil properties.Further, Kaguongo et al. (2008) mentioned the low potential and quality of seeds and varieties as one of the major factors for reduced productivity in potato production. Only 6% of the farmers use other sources of seed potatoes than from the informal seed sector, deriving from own or other farmers harvest; farmers are not yet educated in the production of clean seed. Clean seeds are non-certified seeds, which deriving from basic or certified seeds, have been multiplied by trained farmers according to regulations implemented by the Ministry of Agriculture, the Kenyan Agricultural Research Institute (KARI), the German Technical Cooperation (GTZ) and farmer training groups (TOT). This type of seed can be traded. Besides clean seeds, the role of seeds deriving from positive selection by the potato growers is almost negligible (Kaguongo et al. 2009, unpublished data). Positive selection is the process of observing the healthiest looking plants during the vegetation period and using medium-sized tubers from those plants for seed (Gildemacher et al. 2007). Together, only about 2.9% of the farmers use one of the measures to improve the seed quality; and just about 1 % use certified seeds. The situation is not astonishing, as only few seed producing institutions and seed multipliers are existent, and cost for the seeds, distances and transaction costs are mostly too high for the farmers to afford (Kaguongo et al. 2009, unpublished data).The selection process and repeatedly use of mainly small seed potatoes applied by the majority of the farmers led to the degeneration of seeds, the accumulation of pests and diseases and as a consequence to increasing yield losses. The process of seed degeneration is caused by the accumulation of seed-borne diseases in the tubers; in particular viruses and bacterial wilt (Gildemacher et al. 2007). Bacterial wilt and viruses are recognised as major problems arising from seeds in East Africa (Gildemacher 2009b), contributing to an estimated low yield level of approximately 8 ton/ha, what approximates half of the worldwide average (F AO 2008).As described above, a further problem of potato production in Kenya is the weak advisory system provided by the Ministry of Agriculture (Kaguongo et al. 2009, unpublished data).Late blight is transmitted either by spores in the air or by infested tubers and is a serious threat to potato cultivation worldwide; especially it is a problem in regions with high rainfall and lbw temperature (CIP 2007). Spores sprout only until a maximum temperature of 25°C (Franke 1994). CIP (2007) estimated the costs, which arise yearly in developing countries from yield losses and costs for late blight control to approximate 3 billion US dollars. The disease is estimated to account for yield losses of 30-75% in Sub-Saharan Africa, when susceptible varieties are grown (Olanya et al. 2001 );and of 30% in Kenya (Nyakanga et al. 2004).Major control measures are the application of fungicides and the use of resistant varieties (CIP 2007). In surveyed areas in Kenya control measures applied by the farmers were in most of the cases fungicides (Kaguongo et al. 2009, unpublished data). A survey in main potato product;ion regions of Kenya, i.e. Mount Elgon, Njabini Division and Meru Central, showed that 98% of farmers questioned applied five fungicide sprays to control late blight. The products used for control where mainly metalaxyl, with the brand name Ridomil and mancozeb, namely Dithane M45 (Nyankanga et al. 2004).Varieties resistant to late blight result in a reduced usage of fungicides, which reduces the production costs for potatoes. Further, the positive impact on the human health has to be considered (Kaguongo et al. 2008).The bacteria of the disease are either prevalent in the soil or already in the potato tubers. They penetrate the root of the potato plant. Infestation levels can vary from dying of the whole plant to symptomless infestation. In case the plants are still producing tubers, the tubers are automatically infested. These tubers, when planted out in the next season are likely to produce sick plants. The symptoms of the disease, when infestation is not latent, cause wilting of the plant, oozing and rotting of the tubers. The symptoms are caused by the multiplication of the bacteria, which is taking place in the plant's vascular system. As a result the water suction from the soil to the leaves is blocked leading to the wilting of the plant (Gildemacher et al. 2007).Bacterial wilt is the most serious disease in potato production besides potato late blight.According to Kaguongo et al. (2009, unpublished data) bacterial wilt is causing highest losses and problems in the potato production in Kenya and was mentioned by 77% of potato farmers as a main constraint in potato, followed by late blight (67%).For farmers , bacterial wilt is a more problematic disease than late blight as no chemical cure exists. Management practises such as crop rotation and positive selection of seeds are not widely practised by farmers (Kaguongo et al. 2008) that could reduce the problem. However, the authors also found that farmers ' statements are likely over-estimated, as in another study 91.2 % of farmers agreed to have bacterial wilt in their fields but only an actual occurrence of about 1.5% was found (Kaguongo et al. 2008).Management practises to defeat the disease are based on the use of healthy seed potatoes and to plant potatoes on bacteria-free soils. A crop rotation of about four seasons is advisable, but is mostly not applicable due to small portions of agricultural land. Positive selection of potato seeds in the field is another way to prevent bacterial wilt (Gildemacher et al. 2007).The major viruses, which were found to be prevalent in potato cropping systems in Kenya, are the potato leaf roll virus (PLRV), the potato virus A (PVA), the potato virus X (PVX) and the potato virus Y (PVY) (Gildemacher 2009a) with PLRV and PVY as the most important ones. Generally, very low levels of only 2. 7% of tubers selected and examined on local potato markets were found to be virus free. Infestation levels above 90% were found on the markets of Murang'a, Nanyuki, Kagio and Karatina; on the Meru market 84%, in Molo 66% and in Elburgon 50% of the tubers showed virus infestation. Incidence of bacterial wilt was assessed in the districts Nyandarua, Kiambu and Bomet, whereas highest prevalence could be observed in Bomet on 90% of the farms (Gildemacher 2009a). Were et al. (2003) surveyed the distribution of the PLRV among the most important potato growing areas of Kenya. Highest incidence of PLRV was found in Kisima location and in Timau, a division located in Meru Central District. Contrarily, in the location Githongo, in Abothuguci West Division in the same district, no infestation of potato plants with PLRV could be found. In Kisii district the pressure of the virus was lowest. As the virus is transmitted by aphids (species) only after a latent period it can be controlled by reducing the aphid population through the application of insecticides. The incidence of the virus was found to depend on the source of seed potatoes and the variety grown. Furthermore, agronomic factors, such as irrigation and weeding are assumed to have a reducing effect on the infestation levels. Dry and warm climates in a region increased the incidence of PLRV (Were et al. 2003).Leafminer fly (Liriomyza spp.)Liriomyza spp. (Diptera: Agromyzidae) are generally a threat to horticultural crops in more temperate parts of the world; for Africa 19 species are described. The three nearctic, neotropical leaf mining species Liriomyza huidobrensis Blanchard, L. sativae Blanchard, and L. trifolii Burgess, have been identified being highly polyphagous; thus causing serious damage to a wide range of host plants when occurring in high numbers. Adults of L. huidobrensis are medium sized, and generally slightly bigger and darker than L. sativae, and L. trifolii. The same is true with the pupae, which are yellowish-or reddish brown of L. huidobrensis, while pupae of the other two species are yellowish-orange. Larvae of all three species leave their host plant for pupation (Spencer 1973).The abundance and distribution of the three leafminer species have experienced a tremendous change since the last 20 years (Kang et al. 2009). Reports from many countries indicate the increasing importance of L. huidobrensis which in many parts of the world has overtaken L. sativae and L. trifolii. Within the last decade L. huidobrensis has become established in several countries including Israel (Weintraub and Horowitz 1995) and Indonesia (Shepard et al. 1998).In Indonesia losses caused by L. huidobrensis ranged between 60 and 70%. In Africa the pest has been reported from Kenya, South Africa, Zimbabwe, Mauritius, Morocco, and the islands Reunion, Seychelles, Comoros (CABI 2002).Not all species attack the same hosts. L. trifolii was found on ten families, inter alia Solanaceae, Chenopodiaceae, Cucurbitaceae, Leguminosae, L. sativae on Cucurbitaceae, Leguminosae, Solanaceae. L. huidobrensis attacks the plant species of nine families: Solanaceae (potato (Solanum tuberosum Linnaeus (L.)), pepper (Capsicum annuum L.), tomato (Solanum lycopersicum L.), Cucurbitaceae (cucumber (Cucumis sativum L.), melon (Cucumis melo L.), squ_ ash (Cucurbita spp.)), Leguminosae (peas (Pisum sativum L.), beans (Vicia faba L.), Compositae (salad), Tropaeolaceae, Umbelliferae, Violaceae, Chenopodiaceae (spinach (Spinacia oleracea L.), chard (Beta vulgaris var. cicla (L.) Koch)), Liliaceae (onions (Allium cepa L.), flax (Linum usitatissimum L.)) and Linaceae (celery (Apium graveolens L.). Beside horticultural plants, many ornamentals are attacked. All three species attack potatoes (Spencer 1973). Potatoes were found to be strongly susceptible to L. huidobrensis; while sweet potatoes are not a major food source (Rauf et al. 2000).As the name indicates larvae of the leafminer fly mine the leaves and stems of the plants, however feeding behaviours differ between the species. The mines caused by the different species are different. While L. huidobrensis mainly causes mines, which are along the veins and midrib and only occasionally are meandering, L. sativae causes uneven lines. At side of the lines, frass appearing as black lines can be observed. The mines of L. trifolii are more linear and if foliage is spacious the mines widen, too (Spencer 1973). While L. sativae and L. trifolii feed on the paiisade mesophyll, L. huidobrensis mines in the spongy mesophyll, the location of the chloroplasts (Parrella et al. 1985). If a plant is strongly infested by larvae mining in the mesophyll, the photosynthetic ability of the foliage can be influenced. Contrarily to Trumble (1985), who found reduction of photosynthesis rates in the foliage of celery after damage caused by Liriomyza trifolii, De Freitas Bueno (2007) found that 13% loss of potato foliage area did not, as supposed, reduce the photosynthetic rates of the healthy surface; however the efficiency of photosynthesis was reduced, which was suspected to cause premature senescence of the leaves. He further assessed that the major damage caused by the larvae through mining is done during the first 7 days. Alteration of photosynthesis rate is likely to occur after longer periods of observation, compared to 14 days in the described study. Severe plant damage can result in stunting of the plant, wilting and drying of the leaves. Beside the mines of the larvae, also the feeding punctures made by the females can damage the leaves and cause desiccation (Spencer 1973) and act as an entry point for fungal and viral plant pathogens (Civelek and Onder 1997).The development of the leafrniner fly was found to be positively influence by rising temperatures; however temperatures above 20°C were shown to have a negative effect on the longevity and oviposition rate of female adults (Braun and Shepard 1997). Parrella (1984) assessed the impact of constant temperatures on oviposition, feeding behaviour and longevity on L. trifolii on chrysanthemum (Chrysanthemum indicum L.). Oviposition and total feeding was reduced at 15.6°C and 37.8°C, but did not differ significantly at 21.1 °C, 26.7°C and 32.2°C.Daily analysis of average numbers however showed significantly higher feeding at 32.2°C and egg deposition at 26. 7°C. For oviposition an estimated minimum temperature of 12.2°C was found and 90% of total egg deposition within 550°D of the life of the female leafminer. Altering temperatures showed to increase egg deposition at higher prevailing temperatures of 26. 7C and 32.2°C. The longevity of L. trifolii, between 12-16 days, was the same at 15.6°C, 21.1°C, 26.7°C and 32.2°C. At 37.8°C however it decreased to approximately three days. A reduction of larvae survival at temperatures higher than 35°C was observed in a study by de Freitas Bueno (2007).In a comparison study the life history of European strains of L. huidobrensis and L. trifolii on beans (Phaseolus vulgaris L) was assessed at constant temperatures between 15 and 30°C increasing in 5°C steps. Results showed differences in the development and survival between both species. At temperatures of 15°C and 20°C the overall development of L. huidobrensis from egg to pupae was comparative faster and at 25°C similar to the development time of L. trifolii.The time needed for the larval stage was comparatively longer and the pupal stage shorter than of L. trifolii. The influence of temperature on the survival rate of the species also differed. Survival for L. huidobrensis was highest at a temperature of 15°C, while most of the preimagines of L. trifolii survived at 25°C. (Lanzoni et al. 2002).In experiments where females of L. trifolii were opposed to the bottom, middle and upper levels of potato plants, a clear preference of the older leaves at the lower part of the plant could be observed. The small and thin top leaves are not favourable for egg deposition and survival of the larvae. Young leaves have a high concentrate of leaf hairs, the trichomes, inhibiting the adults' behaviour in the leave surface (Facknath 2005). The choice of tomato varieties was negatively related to the density and length of trichomes on the foliage surface (Li et al. 2003), and Khan et al. (2000) found reduced numbers of the melon-cotton aphid, Aphis gossypii (Glover) on the young leaves of ash gourds (Benincasa hispida Savi), what reduces the risk of virus infections. Furthermore CIP found that extrusion of eggsoccurs on foliage of young plants, leading to an infestation in older crop stages only (J. Kroschel, personal communication Contrarily to the young leaves, the bigger middle and upper foliage is thicker and has less trichomes. Middle leaves were assumed to provide the best conditions for larval survival and development, as less larvae mortality could be observed compared to bottom leaves. However, highest rates of oviposition and most mines were found on the lowest leaves. The observed differences between the middle and bottom foliage contrast the theory of the \"oviposition preference-offspring performance hypothesis\" (Facknath 2005), which assumes preference of host tissue for egg deposition most suitable for the development of the larvae. Contrarily, fitness of adult and longevity was found to be positively correlated with feeding and egg deposition of adults on older leaves.About 40 species of parasitic wasps (Braun and Shepard 1997) et al. 1987).Unfortunately, biological control agents have been reduced through intensive pesticides applications in potato fields. Contrarily the sole use of parasitoids to control leafminer populations was found to be inefficient as this control measure would require repetitive releases of large numbers (Sher et al. 2000). Adequate use of insecticides with reduced effects on nontarget organisms is necessary to control the leafminer populations and simultaneously pres~rve the natural enemies in the system. Abamectin was found to have a no significant impact on leafminers parasitoids of the Eulophidae family, while reducing the pest population itself. A combination of applying 583ml*ha-' of abamectin and parasitisation of the pest in the field was stated to be most effective in controlling leafminer flies (de Freitas Bueno 2007). Head et al. (2003) found no significant differences between abamectin, dimethoate, heptenophos and trichlorfon in their potential to reduce the larval survival of D. isaea and L. huidobrensis . Irnidacloprid, a systemic insecticide, did not reduce the number of D. isaea larvae significantly compared to the untreated control. However, in reducing leafminer fly survival the combination of pesticides and parasitisation with Dacnusa sibirica showed high efficiency, with more than 90% of leafminer fly larvae dying; when abamectin was used 100% mortality could be achieved.The examples conclude that species specific levels of insecticide tolerance have to be considered, as on species level the effective insecticide level differs (Trumble 1985). Trumble (1985) tested three insecticides (avermectin, cyromazine and methomyl) on their potential to reduce L. trifolii (Burgess) populations in celery (Apium graveolens L.). The insecticides were applied every week once. Further, the impact of the insecticides on the parasitoids Diglyphus intermedius (Girault), D. begini (Ashmead), Chrysonotomyia (Achrysocharella) punctiventris (Crawford), Chrysocharis parksi Crawford and C. ainsliei Crawford, all belonging to the family Eulophidae, and Halticoptera circulus (Walker) of the family Pteromalidae was assessed. Results showed that avermectin had the best potential to reduce population of leafminer, without reducing the parasitisation rate over the season and the mortality rate of adult parasitoids. Further, no impact on the viability and rate of emergence of pre-imagines of the parasitoids was observed. Cyromazine showed good potential to lower the leafminer numbers, and was also recommended by Braun and Shepard (1997). Cyromazine regulates the growth of insects by interrupting the life cycle. In Panama farmers tend to apply 1 OOcc per hectare in 20 to 25 days intervals. Precaution to overdosage has to be taken due to the risk of defoliation (Braun and Shepard 1997). However, affecting particularly the immature stages it lowered the survival oflarvae of parasitoids and the parasitisation rate. The reduction of the parasitoids population was highest compared to avermectin and methomyl. Methomyl is commonly used to control larvae from the family Lepidoptera. The negative effects of Methomyl were displayed by an increasing population of leafminers and the deterioration of adults of the parasitoids. Overall the composition of the above cited parasitoids was best preserved when methomyl and avermectin were applied, while cyromazine had a great diminishing effect on Chrysocharis parksi Crawford. The results suggested that avermectin had a good potential for usage in integrated management of leafminer (Trumble 1985).The suitability of Steinernema feltiae, an entomopathogenic nematode, and parasitoids of leafminer have been repeatedly tested for their effectiveness to control Liriomyza spp. Head et al. (2003) tested the effect of S. feltiae on the survival of Diglyphus isaea and Diglyphus sibirica. S. feltiae was found to cause high mortality both of leafminer but also of the parasitoid larvae. Diglyphus isaea were found to be directly infested; and the reduced number of leafminer larvae by the nematode effected the survival of D. isaea. D. sibirica depends on the pupal development of the host for feeding; killing the host also D. sibirica cannot survive (Head et al. 2003).A further effect by infestation of leafminer larvae was observed on feeding and oviposition behaviour in the same study, even if no significant results could be achieved. While for feeding purpose D. isaea uses nematode infested leafminer larvae, the parasitoid was found to lay its eggs in 98% of the cases into uninfected larvae. Another study however found no differences in oviposition behaviour of D. begini when comparing larvae infested or non-infested with the nematode (Sher et al. 2000). He found that the combination of nematodes and D. begini results in higher mortality of leafminer larvae than when applied separated. The more effective sequence to reduce the leafminer fly was found to be the application of the nematode prior to the release of the parasitoid (Sher et al. 2000). However, most recent glasshouse trials on leafy salad crops have shown that the levels of leafminer larval mortality attainable by S. feltiae was very high (Head et al. 2000) and therefore the introduction ofparasitoids alone would be uneconomical.Potato tuber moth (Phthorimaea operculella (Zeller))The potato tuber moth is a cosmopolitan pest, which shows high adaptability to different climates and has been distributed throughout the American continent, Asia, the Middle East, Mediterranean countries and Africa (Kroschel and Koch 1994). In developing countries, the moth ranks among the most detrimental insect pests concerning the production of potatoes (Radcliffe 1982). Aside from its wide distribution, the habitat of the potato tuber moth is further expanding. In 1987/88, extensive trapping of potato tuber moth in East Africa revealed a wide distribution of the pest from North Africa down to the central region of Africa. Especially Kenya, Burundi and Zaire are heavily threatened by the pest (Parker and Hunt 1989). In 2QOO and 2001, initial evidence of the pest was determined on potato tubers in Oregon, USA. These findings led to the implementation of a pheromone based trapping network in the Columbia Basin of Oregon and Washington in 2004, in order to assess the distribution and the risk of spreading of the potato tuber moth (Rondon et al. 2008).The insect pest feeds on 60 different plant species, mostly from the Solanaceae family. But plants from the Amaranthaceae, Boraginaceae, Chenopodiaceae, Compositae, Rosaceae, Scrophulariaceae, and Typhaceae families can also be attacked (Das and Raman 1994). In potato fields, female moths deposit their eggs on leaves and exposed tubers, in the soil and on plant residues. With natural senescence or desiccation of the plant, tubers are increasingly sought for these purposes, especially under dry conditions, when the soil surface cracks, or when tuqers close to the surface are easily accessible by female adults (Rondon et al. 2007). While few mining activities of larvae in the foliage usually have little negative impact on the potato yield, infested tubers are not marketable and hence reduce total production and farm income. However, direct yield losses caused by the feeding of larvae on vegetative plant parts have also been reported under high potato tuber moth population (Kroschel, 1995). As the population builds up on the potato foliage and infests tubers at a later stage in the cropping period, a strong relation between leaf and tuber infestation occurs.The biology of the potato tuber moth was recently summarized by Rondon (2009). The moth passes through three life stages, egg, larva and pupa, until the small moths (9.94 mm) emerge. Suitable sites for egg deposition in the field can be soil, plant debris and bare tubers, although plant foliage is the preferred substrate. If eggs are laid in the soil, then close to the plant. Eggs are either laid singly or accumulated in groups, numbers indicated in literature are varying between 2-20 eggs. Total oviposition rate, depends on the temperature, as well as the time needed for hatching. Above 35°C no oviposition occurs. Besides temperature, the nutrition of the eggs influences their longevity and the amount laid.Larvae do not change their behaviour when the temperature ranges between 11.1 to 39.4 °C. Larvae, which were feeding in the leaves drop to the soil for pupation, which usually takes place in the soil or under organic matter by spinning a silk cocoon.high flight activity occurs between 14.4 and 15.5°C. The influence of lower temperatures is conversely discussed. Oviposition, which usually takes place at night, can first occur 16 to 20 hours after emergence of the adults. Kroschel (1995) found that female moths prefer potato tubers for oviposition, which however is restricted during the vegetation period. The development of potato tuber moth is strongly dependant on temperature (Keller 2003;Kroschel 1995;Sporleder at al. 2004)). However, the influence of abiotic factors strongly depends on the specific location. Temperature has the highest effect on the life cycle of the potato tuber moth, but the population dynamics can also be influenced and reduced precipitation (Keller 2003). In tropical regions six to eight, and even up to 12 generations in Iraq and up to 13 generations in India have been observed. All stages are present at the same time. Temperatures between 10 to 35°C enhance population growth, highest development rates are realized between 28-30°C (Sporleder et al. 2004). Keller (2003) found differences in the development of 25.5 days at mean temperature of 26.8°C in June in Egypt compared to 110. 7 days at a temperature of 1 l .2°C in Huancayo in Peru.Consideration of the temperature on the development time of potato tuber moth is important when seeking to establish critical threshold levels for the implementation of control strategies.Cultivation measures, which reduce the accessibility of tubers to potato tuber moth, are important to prevent infestation in the field. The prevention of tuber infestation is especially important, as damage to tubers has a direct economic impact. Shelton and Wyman (1979) found that furrow irrigation leads to a significantly higher and earlier tuber infestation in the field compared to sprinkler irrigation. Furthermore, in the absence of irrigation, tuber infestation was lower in fields which were hilled-up.Tubers and plant residues left in the field after harvest and the resulting volunteer plants act as food sources and propagation niches, during times when no potatoes are cultivated in the field. When potatoes are replanted in the field, they are easily infested by the larvae from the remaining sources (Shelton andWyman 1980, Kroschel 1995). Beyond that further cultural practises have been shown to reduce field and tuber infestation. Rondon et al. (2007) summarized some of the most important practises. The soil should be kept especially moist around the time of vine-killing, when foliage for oviposition is not suitable or available and females search for tubers. Overhead irrigation prevents drying and, as a consequence, cracking of the soil. After harvest, the risk of tuber infestation increases with the length of dry conditions. Chandel et al. (2008) found lower tuber infestation in at a planting depth of 10 cm (1.0-1.3%) than at 5cm (5.3-8.0%), and in moist soils (1.2-1.7%) compared to dry soils (3.5-5.0%). Kroschel (1995) found that ridging-up twice can substantially reduce tuber infestation in the field by covering tubers which were formerly exposed.Cultivars can furthermore influence the susceptibility to infestation by potato tuber moth, due to behaviour of larvae feeding and preferences of egg-deposition. Also, varieties, which develop tubers deeper in soil are less infested (Rondon et al. 2007). Intercropping of potatoes with onion, maize and garlic was shown to have a positive effect in reducing foliage infestation due to disturbance of the flight activity. In the case of maize and garlic the planting time has to be set earlier than potato to reach a sufficient height and efficacy (Kroschel 1995).Control measures against potato tuber moth mainly rely on insecticide applications. However, the effectiveness to prevent tuber infestation has been contradictory discussed in literature. The right timing of application was found to influence the effectiveness of control. Insecticide application after flowering (Kroschel 1995) and about three weeks before harvesting (Keller 2003) has been found to reduce tuber infestation. Also, timing of pesticide applications before and after vine-killing was found effective in preventing tuber damage (Clough et al. 2008).Sumicidin, a synthetic pyrethroid fenvalerate, showed good result in controlling potato tuber moth in the Republic of Yemen (Kroschel 1995). The Washington State Potato Commission has published a monitoring program for Oregon and Washington where the distribution of the potato tuber moth can be observed (Rondon et al. 2008). Additionally, the University of Oregon provides regularly up-dated information about effective insecticides (PNW 2010).Pheromone traps have been used to monitor the distribution of potato tuber moth (Krosqhel 1995, Keller 2003), and for mass trapping. The use of pheromone traps in high densities (45 traps per hectare) has successfully been proven to reduce field infestation. For regular control, however, this measure would be costly and time-consuming (Raman 1988). In the Colombia Basin pheromone traps are used to establish a threshold level for control measures, which is 15-20 moths trapped per night in the field (Rondon et al. 2008). The threshold levels for potato mber moth populations depend on the conditions in the field and the potato varieties planted (Patker and Hunt 1989). Raman (1988) assessed different trap designs on their potential to manipulate the trap catches. He found that the combination oftrans-4, cis-7-tridecadien-1-ol-acetate (PTMl) and trans-4, cis-7, cis-10 tridecatrien-1-ol-acetate (PTM2) attracted more mail moths than solely PTMl. He further assumed a high potential of using pheromone traps in stores; where they are safe from theft.The use of both sex pheromones was tested as an attract-and-kill composition with the contact insecticide Baythroid TM 525 SL with the active ingredient Cyfluthrin 25g/l. In a concentration of0.5%, Cyfluthrin was most effective in killing male potato tuber moth (60.2% in 24hrs, 81.2% in 48hrs). The formulation remains stable at 20°C for a period of 36 days. All male potato tuber moths were killed after a total of 4 days (Kroschel and Zegarra 2008).In a review by Lacey and Kroschel (2009) a good overview about the possibilities of microbial control of potato tuber moth is given,. These include granulovirus (PoGV), which by now has been limited in field applications, Bacillus thuringiensis subspecies kurstaki (Bt), entomopathogenic nematodes and fungi. The potential of microbial control to reduce potato ' tuber moth populations has further been discussed by (Lacey and Arthurs 2008), Sporleder and Kroschel (2008) discussed the applicability and efficiency of the granulovirus (PoGV) in potato 28 fields. Besides several limitations, e.g. fast UV-degradation in the field, the virus is a promising agent especially for potato tuber moth control and its integration in IPM programs. The efficiency of the virus is controversy discussed. Strains of the granulovirus have been found in Kenya (Sporleder 2003).Spinosad, a new bio-pesticide, derived from Sacchropolyspora spinosa (Mertz and Yao), was found to be more effective in preventing tuber infestation (5%) in improved non-refrigerated stores compared to the insecticide Deltamethrine (80%) after a storage time of 3 months, irrespective the variety (Nouri and Arfoui 2008).Bacillus thuringiensis subspecies kurstaki (Bt) was found to be effective in controlling tuber moth in storage. This is mainly due to the impairment of the development of freshly hatched larvae, thus avoiding infestation. To prevent mining is an important factor of control measures in storage (Kroschel 1995).Parasitoids of the potato tuber moth are widely distributed in potato cropping systems around the world. Rondon (2009) reviewed the abundance of parasitoids and predators of potato tuber moth in Israel, South America, Australia, and the Pacific Northwestof the USA. She found more than 60 species of the genus Hymenoptera described in literature, which belong to the families Braconidae, Encyrtidae, Eulophidae, Ichneumonidae, Mymaridae, Perilampidae, Pteromalidae, Scelionidae, and Trichogrammatidae. In the Transvaal region of South Africa some of the most important species found were Diadegma mollipla (holmgren), Che/onus curvimaculatus Cameron, the braconidae Orgilus parcus Turner and Temelucha picta Holmgren (Watmough et al. 1973).In particular, the species Copidosoma koehleri Blanchard and Apanteles subandinus Blanchard proved to be efficient in controlling potato tuber moth throughout the world (Watmough et al. 1973). C. koehleri was first introduced in Kenya in 1968 by CBIC (today CABI); introductions to other African countries took place in Tanzania (1965), South Africa (1965), Zambia (1968) and Zimbabwe (1965). Reports about the establishment of the species were available for the latter three countries. In Zambia and Zimbabwe C. koehleri is identified as an important parasitoid. No further documentation on the establishment of C. koehleri is given for Kenya and Tanzania (CIBC 1980). In the late 1980's KARI (Mugoga) released C. koehleri in the Tigoni area of Kiambu (Central Province) and in the area of Njoro (Rift Valley Province) (G. Oduor (CABI-Africa), personal communication).Before 2000 a variable number of Diadegma species have been recorded for Africa. In 2000 all Diadegma species deriving from Africa were classified as D. mollipla (Azidah et al., 2000). In a study of Wagener et al. (2004), using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analyses, two African populations of Diadegma mollipla from East and South Africa could be identified. In 2001, D. semiclausum, deriving from Taiwan, was released in Kenya by icipe for the control of Plutella xylostella (Linnaeus). In the study of Wagener et al. (2004) a new Diadegma species, Diadegma indet. , from Ethiopia was identified.All parasitoids deriving from potato tuber moths were identified as D. mollipla. Rondon et al. 2009 emphasized that breeding of resistant varieties, which then can be used in combination with cultural and biological measures and the use of insecticides is a promising management strategy in controlling potato tuber moth. However, as the pest is irregularly abundant in the fields and population densities differ strongly between regions; recommendations must be site-specific (Rondon et al. 2007).The study was carried out in four different potato producing regions along the foot-ridges of Mount Kenya and the highlands of the Mau forest (Fig. 1)., which were selected based on following criteria:1) Major potato production areas and agroecologies in Kenya;2) Known or expected problem by the leafminer fly and/or potato tuber moth;3) On-going research activities of the international agricultural research centres icipe and CIP in the area.The importance of potato as a cash crop differed in the study regions and was not a decision factor for selecting the sites. Initially, the region Bomet Central was also considered as a study region; however, after initial studies, hardly any pest abundance in the field and storage could be experienced and therefore investigations were not continued in this area. Naromoru and Sagana have been subject to icipe research activities particularly on horticultural crops over several years and therefore were of particular interest of the present study. In the present study potato was included as a new component. In the areas Mo lo, Abothuguci West and Bomet Central research and farmer training is presently being implemented by CIP. Connections and first contacts with the Divisional Agricultural Offices in the respective areas were established through the staff of CIP office in Nairobi.The study areas Naromoru, Sagana, and Abothuguci West were located at the ranges of the Mount Kenya forest (Jaetzold and Schmidt 1983b). Naromoru and Sagana were located on the south-western and Abothuguci West at the north-eastern side of Mount Kenya. Major characteristics of all study areas are displayed in Table 1. In Kenya, several administrative units exist in hierarchical order from province, district, division, location and sub-location to villages (Karugia 2003).Naromoru Location (Kieni East Division, Nyeri North District, Central Province) is located at the south-western, leeward side of Mount Kenya (Karugia 2003). The soils of the three observed areas, which are all located at the foot ridges of Mount Kenya, are from volcanic base material (Sombroek et al. 1982) with moderate to high soil fertility (Jaetzold andSchmidt 1983b, Jaetzold andSchmidt 1983c). The first and second rainy season, starting in March and October respectively, usually begin earlier in Naromoru than in Sagana. The two planting seasons in Naromoru are rather of medium to short duration while the first one is extended in Sagana. During the first rainy season wheat and barley, and a wide variety of vegetables and potatoes have a high yield potential. In the second growing season yields are lower, especially for peas, beans and potatoes but still, fair yields can be achieved (Jaetzold and Schmidt 1983b). Irrigated agriculture is widely practised in both regions and during dry periods rain-fed agriculture is substituted by irrigation (Jaetzold and Schmidt 1983b). In Sagana coffee planting was occasionally observed during the study. The adjacent location Kabaru belongs to the major production areas for both cash and food crops (Karugia 2003).In Abothuguci West the first rainy period starts in the first half of March and is of intermediate duration. The second rainy season is medium-long lasting and commences in the beginning of October. The cropping periods are both medium to long. Crops with best yield potentials in both rainy seasons are peas and cabbages followed by potatoes and different sorts of vegetables. Tea is the prevailing cash crop. Average potato yields range between 12.4 kg/ha and 8.1 kg/ha in the first and second rainy season respectively (Jaetzold and Schmidt 1983c). A small part of the region is located in the Wheat/Maize-Pyrethrum zone which shows a similar distribution of rains, but with a slightly postponed second season to the middle of October. Good yield potentials are given for cereal crops, sunflower, and a wide range of vegetables. Potatoes produce high yields in the first rainy season and still fair yields in the second one (Jaetzold and Schmidt 1983c ). The whole region is most suitable for fodder production and pasture of dairy cows (Jaetzold and Schmidt 1983c ).All three locations are well accessible from the main roads but roads are underdeveloped when leaving the major routes, which is constricting a reliable transfer of agricultural products to the markets; especially during rainy periods (Karugia 2003).The closeness of the towns Karatina, Nanyuki and the capital Nairobi to Naromoru and Sagana provides good market access. The area is characterized by a comparable high density of roads and agricultural development. Tourism further plays an important role in these regions, especially due to the Mount Kenya National park, but the potential is not fully utilized, mainly due to bad conditions of the roads during rainy seasons (Karugia 2003).The main roads of Abothuguci West Division are well accessible. Access is given to the B6 which connects Meru Town with Embu or Nanyuki. The distance to Nairobi is about 260 km. Mean temperature n/a 14.5-16.6 I) 14.9-17.0 2 ) 10.0-15.0 I) (oC)** Mean annual rainfall 800-900 I) 900-1000 I) 800-1200 3 l 1000-1200 2). Actual weather data for Molo region were only available from Nakuru Meteorological Station (1880 m a.s.l.). Compared to the figures presented in the table, temperature data for Nakuru (5 years) showed annual mean temperatures of 17.2°C and rainfall (9 years) averaged 936 mm per year (Jaetzold and Schmidt 1983b). For Bomet Central no weather data could be provided from the Meteorological Station in Nairobi. The clayey soils in Molo generally show a high fertility (Jaetzold and Schmidt 1983b) with good drainage (Sombroek et al. 1982). In Bomet Central the soils are loamy to clayey and the soil fertility ranges from low to high; showing high variability within small areas. Low fertility is often linked to shallow soil. Were the soils are deep they are humic Acrisols, often accompanied by humid acid topsoil, a luvic Arenosol (Jaetzold and Schmidt 1983b).The Molo region has a good yield potential and is characterized by two extended rainy seasons. The first season usually starts in late March. The transition to and out of the second rainy season is smooth; the latter lasts from beginning of July until November. The climatic conditions are suitable for all sorts of grains and vegetables and high yields for potato. Strawberries and pyrethrum can be grown throughout the year. Besides vegetable and crop production the area shows fair potential for the growing of fodder grass and livestock keeping, in particular sheep (Jaetzold and Schmidt 1983b ).In Bomet Central crop production is possible the whole year around with two main planting seasons. The first rainy season begins late in February, while the second season ~egins indistinctly by the end of July. For most of crops the first rainy season is very suitable. The yield potential for potatoes is characterized as being fair; however, the risk of fungal diseases is high from end of April to August. Further, a high suitability for forage production and livestock keeping is given (Jaetzold and Schmidt 1983b ).Focus group discussions were carried out at the beginning of the study in Bomet Centt al, Naromoru and Sagana (Table 3) to introduce the objectives of the study to farmers and to gain an overview about growing seasons and major constraints in potato cropping systems. A semi-qualitative questionnaire was designed to assess the current situation of potato cropping systems and the problems farmers perceive in the different study areas. The main topics of the questionnaire covered general aspects about the respondent and its household, activities in po~ato cultivation, input and output of potato cropping, potato marketing and economic importance of potato production, main production constraints, conventional and alternative disease and pest management, post harvest and storage, extension and training (App. 1 ).The interviews were carried out during September and October 2009. The farmers were randomly selected. For Sagana, a list of inhabitants of the sub-location was available and every tenth household was selected for the interview. If no potatoes were grown in the respective household, another farm household was selected. From the other study regions no list of inhabitants was available. Farmers were selected when passing by car and potatoes were recognized in the fields . It was aimed to cover at most the entire study region.In total 53 interviews took place: 11 in Naromoru, 5 in Sagana, 12 in Abothuguci West and 2$ in Molo respectively. The interviews were carried out in or in front of the farmers ' houses. One interview lasted between one to one and a half hours.In the results, Naromoru and Sagana are treated as a single region due to their geographic closeness and the similarities of the cropping systems and infrastructure. Investigations into insect pest problemsTo make a general inventory of arthropods (insects and mites) of the functional groups of pests, predators and parasitoids apart of direct observations a sweeping net sampling and pit fall traps were employed. These investigations were carried out in 3 potato fields at a growth stage between 40-60 (end of extension growth until flowering) in Sagana, Naromoru, Molo and Bomet. The sweeping net was used to collect flying insects by making 10 strokes above the potato plants by walking through the field. Depending on the size of the field 3-4 replications of sampling were made in different rows; after 4 weeks a second sampling was carried out. To catch ground dwelling insects, five pit fall traps were placed for a period of one week in 3 fields in Sagana using empty yoghurt containers with 500gr volumetric capacity (height: 12 cm, diameter: 9 cm). One trap was placed 2 meters in distance from each comer of the field and one trap in the middle of field. The pit fall traps were filled with 70% ethanol. To protect the traps from rainfall and evaporation of the alcohol the opening was covered with an adequate plastic board and leaves. The traps were changed three times per week. After changing the pit fall traps insects were taken to the laboratory. After cleaning them from soil the insects were grouped according to orders and conserved in 70% ethanol.The flight activity of the leafminer fly was monitored using yellow sticky traps, three of which were placed in one field in each of the three study regions Abothuguci West, Sagana and Naromoru. The sticky traps had a size of 20x20 cm and were made from yellow plastic foil covered with common grease. They were fixed on wooden sticks and placed at a height of 50 to 70 cm (Fig. 2).The traps were changed weekly and the number of trapped leafminer fly adults as well as aphids recorded. Apart from ladybirds, no other insects were found and recorded. For the evaluation the sticky traps were wrapped with transparent plastic foil and the total area was subdivided into 25 squares of 4x4 cm. The number of leafminer fly adults and aphids was counted on five diagonal arranged squares on both sides and the number was multiplied with five. The average of the three traps and the standard error (SE) were calculated The flight activity of the potato tuber moth was monitored using pheromone-baited water trqps. The pheromones consisted of a 1:1.5 mixture of the active ingredients trans-4, cis-7-tridecadien-1-ol acetate and trans-4-cis-7, cis-10-tridecatrien (Kroschel 1995). One to two traps were placed in the study areas Abothuguci West, Sagana, Molo and Bomet Central throughout the mortths September to December 2009.The traps were built from 2 litre plastic bottles (Fig. 3), which were cut open in the upper part. Five cuttings of about 2x7 cm served as entrances for the male moths. The lower 10 cm of the bottle were filled with a mixture of water and any kind of detergent available (e.g. dishwashing liquid, soap) to lower the tension of the water surface. The pheromone capsules were fixed with a wire at the lid of the bottles, and hung slightly above the water surface. These self-made pheromone traps were placed close to potato fields on trees or fences. The male potato tuber moths caught in the trap were counted weekly and the water in the traps exchanged. the pheromone capsules were replaced every eight weeks. To estimate the field infestation of leafrniner fly, potato tuber moth and aphids from September to December 2009 two different field assessments were carried out.Between 8 to 10 potato fields (the number changed per sampling date) were randomly selected in Sagana, Naromoru, Abothuguci West, and Malo (including Kamara District) and 20 randomly selected plants per field were examined in four-week intervals per field.In Sagana and Malo each four fixed fields and in Naromoru five fixed fields were selected and 20 randomly selected plants per field were examined in two-week intervals per field.At the day of evaluation, the potato growth stages were defined according to Batz et al. (19.SO). During the observation period the fields were not treated with insecticides.In order to assess the damage caused by leafminer fly larvae a rating scale was used which allowed estimating the percentage of leaf damage at the lower, middle and upper part of the plants. The rating scale consisted of six levels estimating the foliar area damage (Table 4).For the assessment of the leaf damage caused by the potato tuber moth, the number of potato tuber moth-infested plants (infestation rate) and the number of mines/plant (infestation intensity) were recorded. Using a modified version from Wetzel (1984) (after Kroschel 1995) the average intensity of infestation of potato plants by the potato tuber moth was noted; frequency classes were not considered.Rating scale for the estimation of foliage infestation by leafminer fly. Damage was scored on bottom, middle and upper level of potato plants.Foliage damage (%) To identify parasitoids of the leafminer fly, infested potato leaves were collected in two-week intervals throughout the vegetation period in Naromoru, Sagana, Abothuguci West and Molo. Samples were taken from ten randomly selected potato fields of different growth stages. From each field a varying number of 10 to 30 leafminer fly infested leaves were randomly collected and immediately stored in plastic boxes (21x15x7 cm) closed with lids containing net windows (16x10 cm) for ventilation. To avoid condense water and rotting of the leaves dry paper towels were placed on the bottom of the boxes. The boxes were kept at room temperature and were regularly evaluated for developed pupae. After four to seven days pupae were collected from the plastic boxes and transferred individually into plastic tubes until either leafminer fly adults or endoparasitoids hatched. The tubes and the leaves were kept in transparent cages of different sizes for another three weeks and further observed for emerging ecto-and endoparasitoids.Identifications were taken out as described in 3.4. The number of pupae and of emerged leafminer fly adults and parasitoids were counted. Unhatched pupae were examined under the microscope for parasitoids; the numbers of unhatched parasitoids was added to the number of hatched parasitoids.To evaluate the abundance of potato tuber moth parasitoids approximately 50 potato leaves infested with living potato tuber moth larvae were collected in two-week intervals in four to six fields in the study regions Naromoru, Sagana, Abothuguci West and Molo. The leaves were kept in plastic boxes (21x15x7 cm), firmly closed with lids containing ventilation windows (16x10 cm), until they were brought to the laboratory. In the laboratory the larvae were transferred onto potato tubers, which were punctured with a fine needle to allow easy penetration for larvae into tubers. One small to medium-sized tuber (70-120 g) was used for 30-40 larvae. The potatoes were kept in transparent containers closed with a muslin window containing lid for ventilation.At emergence the adults of either the potato tuber moth or parasitoids were immediately repla(;ed from the container to avoid re-infestation. Identifications were taken out as described in 2.1 .9.In order to estimate the infestation of seed potatoes as well as of potatoes at harvest by larvae of the potato tuber moth one hundred randomly selected tubers were examined in farmers ' stores or at harvest in Naromoru, Sagana and Bomet Central. The number of infested tubers and the number of holes per tuber were recorded to determine the infestation frequency and intensity, respectively. The examined lot of seed potatoes where further classified according to their average size. The classification was only obtained visually and by personal estimations.The insects which were collected during the field samples and which emerged in the laboratory were killed in order to be conserved in 70% ethanol until taxonomic identification. For the taxonomic identification of the parasitoids taxonomic identification keys were used; or, if necessary, the specimens were sent to taxonomists experienced in different insect orders and families.The leafrniner fly adults were identified according to differences in morphological characteristics of the species Liriomyza huidobrensis, L. sativae and L. trifolii prevalent in Kenya. To be able to differentiate the leafminer adults a comparison with identified specimens stored and reared at icipe was carried out. Adults as well as pupae of L. huidobrensis are medium sized, and generally slightly bigger and darker than L. sativae and L. trifolii. Pupae of L. huidobrensis are yellowish-or reddish brown, while pupae of the other two species are yellowish-orange (Spencer 1973). The endo-and ectoparasitoids of the leafminer fly as well as the endoparasitoids of potato tuber moth were sent to the International Potato Center (CIP) for final identification.Weather data for the different study regions were obtained from the Kenyan Meteorological Institute in Nairobi (App. 3). Data for daily minimum and maximum temperature (App. 4,A.pp. 5,App. 6,App. 7) were obtained from different stations, as well as data for rainfall and humidity. No complete data sets could be obtained for Abothuguci West and Bomet.40For the major part of data analysis the statistical programs SPSS and PASW Statistics 18 were used. ANOV A using the program JMP 7.0.2 was applied to test the relationship of field infestation by the potato tuber moth with abiotic factors. Before analysis data were checked for normal distribution. If data was not normally distributed non-parametric tests were used.For analysis of the questionnaires solely descriptive statistics were applied.Multiple comparisons between the study areas (Bomet, Naromoru and Sagana) for the frequency and intensity of infestation of seed potatoes were carried out using the post-hoc LSD (least significant difference) test. To compare results of the frequency of infestation of harvested tubers a one-way ANOV A was applied. For the infestation intensity the non-parametric Mann-Whitney-U-test was used.Obtained data from the monitoring of the flight activity of leafminer fly, potato tuber moth and the catches of aphids were analysed using descriptive statistics. For the data of leafminer fly and aphids respective standard errors were calculated.Data from the observations of the field infestations for potato tuber moth and aphids were checked for normal distribution; requirements for normal distribution could not be achieved after transformations. For analysis of non-parametric data the Mann-Whitney-U-Test was used.Field samples Data of total and species-specific percentage parasitisation of both leafminer fly and potato tuber moth were found to be normal distributed. The data were processed for analysis of variance using the ANOV A. For comparison of the parasitisation of leafminer fly in the study regions Sagana and Abothuguci West a one-way ANOVA was used. For multiple comparisons of the parasitisation of potato tuber moth in the single regions (Sagana, Naromoru, Abothuguci West and Mo lo) the LSD test was used.Data of mortality of leafminer fly pupae and potato tuber moth larvae were tested for outliners using descriptive statistics for explorative data analysis (Buhl 2008).The age of the interviewed farmers ranged between 25 and 75 years, the majority of lhe respondents being between 30 and 50 years. Still, about one quarter of the interviewees was older than 60 years.About 50% of the farmers questioned had at least finished primary school and an almost equal number had finished secondary school. Only a negligible number of farmers had received higher education at a college or vocational training at a polytechnic school.Almost 90% of the respondents were male. In many cases, even when women were approached for the interviews, they called for their husbands to answer the questions. Furthermore, the :men were often responsible for the application of fertilizer and pesticides and seemed to have a better overview about the required agricultural input and the yield of potato crops. However, hardly any farmer kept records about planting and harvesting dates, the amount of fertilizer, application of pesticides and yield. This is important to be considered in the analysis of the questionnaire.Regarding the size of families, only the actual number of family members was considered, not the number of people living additionally in a household, as single families have their own agricultural areas and houses. In Naromoru and Sagana 75% of the families have one to four family members, followed by around 20% with five to seven members. In Abothuguci West families show a tendency towards being smaller, too, with the majority having between one to four members, but more than a quarter having five to seven members. In Molo however, the families are generally bigger, exceeding five members or more in 77% of the househ6lds interviewed (Table 5).Most of the families in the study areas rely solely upon agricultural production as a sourc¢ of income, having no additional income from non-agricultural activities. Still there are noticeable differences between the areas. While in Naromoru and Sagana more than 43% have an additional source of income, in Abothuguci West it applies to 25% and in Mo lo to only 8.3 % of the families. Farmers were not specifically asked to mention which type of profession was additionally carried out, or by whom.Most of the farming families employ temporary labour during peak times to help with planting, weeding, fertilization, pesticide application and harvesting. Permanent occupation is not common. One third of all the interviewees stated to never employ anyone.The total agricultural area of over 80% of the farms in Abothuguci West is less than one acre, which equals 0.4 ha. In Naromoru and in Sagana more than half of the interviewed farrtlers quoted to cultivate between one and two acres of land while still one quarter is smaller than one acre; less than 0.4 ha. In Molo the prevailing farm size also lies between one and two ac;res, equalling to 0.4 and 0.8 ha, respectively, but with the tendency of bigger farm sizes. bne exception was one farm with a farm size of 61 acre, approximating 24. 7 ha, mainly cropped with cereals.The majority of the area cultivated is owned by the farmers. In Naromoru and Sagana, about one-third of the interviewees rent additional land. The same distribution of land ownership was found in Mo lo. In Abothuguci West, only 9% stated to have additional land rented. The region where potato has the highest importance for income generation is Molo (Table 6). 72% of the interviewed farmers rank potatoes as the number one cash crop, followed by peas and cabbages. For home consumption maize plays a superior role. In Abothuguci West, contrarily, potatoes are the second most important crop for 75% of the responding growers, cabbage being the most important mentioned by about 67%. In Naromoru and Sagana almost 56% of the respondents rank potatoes as the most important cash crop followed by peas with 25%. Flowers have a comparatively high importance for 12.5% of the farmers. 27% of the farmers regard cabbages as the second most important crop. Potatoes, peas and maize follow with equal shares.For growers in Naromoru and Sagana as well as in Molo potatoes are of high financial importance for more than 60% of the farmers who realize more than 50% of their total income through potato sales. Further, potato is of medium (26-50% of the total income is realized through selling potatoes) importance for 18% and 28% of the interviewees in Naromoru and Sagana, and Mo lo respectively. In Abothuguci West medium importance is expressed by one quarter of the growers; but the majority ranks potatoes as a low income source with only 1-25% of the total income realized through potato sales (Table 7). The ranking gives a rough idea about the importance of crops m income generation.Nevertheless, other factors have to be considered or are interesting to be mentioned. Maize is hardly marketed, but is very important for home consumption as emphasized by farmers. Farmers in Abothuguci West pointed out the low work intensity and high income of cabbage compared to potato cropping. The comparative advantage of peas depends strongly on the respective market prices for peas and potatoes as the prices for both products fluctuate strongly. Besides seasonal crops, income generated from perennial crops, such as tea or coffee, or from dairy products was mentioned to play an important role too. Respective products were not included in the ranking.Several farmers mentioned that potatoes are not an ideal crop for the generation of income but that the demand for potatoes is constant and marketing assured. In general, potatoes have good qualities to be grown as a market crop. They have a short vegetation period, can be planted two or three times per year, use less space and beside of the positive effects for the market and income, they also have a high value for food security and nutrition. Hence, farmers gave a high emphasis on the importance of potatoes for home consumption. One farmer specifically explained his preference for potatoes compared to maize because of the reduced cooking time and accordingly the reduced amount of necessary fire-wood; further potato do not need to use fat and do not cause stomach-ache.Besides the positive effects of potato growing there are many difficulties concerning the marketing of the produce. Of the total number of interviewed farmers, only four farmers cultivated potatoes solely for home consumption. Usually farmers sell their potatoes to brokers, which collect the potatoes directly after harvest. Before harvesting they already distribute bags for the farmers for filling the potatoes in. The brokers extend the bags with the help of further bags or nets (Fig. 4). The estimated weight of one extended bag is 180kg; in contrast to the governmental weight limit of 115 kg per bag. This is usually the farmers ' only possibility to sell potatoes in large quantities. Small amounts are sold bucket-or tin-wise by women and children on the roadside. The brokers determine the price for potatoes, which is fixed per bag. The prices for 180 kg usually range between 1800 to 2300 KSH. Of those farmers stating to successfully negotiate the selling price, over 80% could increase the price by up to 200 KSH and only 15% by up to 500 KSH per bag. The major constraints of the existing potato market system mentioned by the potato growers were the perishability of the produce linked with the lack of adequate storage facilities, insufficient market structures, high fluctuation of market prices, dependence on middlemen, lack of knowledge about the market price, extension of bags beyond the governmental upper weight limit, insufficient price control by the government and high transaction costs (Table 8). In Naromoru and Sagana as well as in Abothuguci West, the agricultural extension officers (AEO) of the divisional agricultural offices (DAO) organize seminars and field days. Apart from specific events farmers stated to be consulted by an agricultural extension officer once in one or two years. In Molo the agricultural college \"Baraka\" plays an important role in teaching and training of farmers (Table 9). However, for many farmers advice by neighbouring farmers or searching for information about potato cropping and pest management is most important and hereby consulting pesticide dealers is very common (Table 10). In Naromoru and Sagana, farmers involved in the production of horticultural export crops, obtain regular advice and information about pest management from the extension services of the export companies, which knowledge they then apply and use for the production of potatoes. For the first potato growing season farmers in Naromoru and Sagana start to prepare their soil and the seed bed in the middle of February. The first planting usually follows mid of March with the on-set of the first, the so-called \"long\" rains. Harvesting is done 3-4 month later in June to July. The second potato growing period is initiated with the land preparation in the second half of September with planting until the first half of October; accordingly harvesting is from January to February.In Bomet the first planting season is similar to the one in Naromoru and Sagana. Land preparation starts in February, planting in March and the first harvest follows in July. The preparation of the seed bed for the second season starts in August. The planting period is stretched from September to October and the harvest is between February to mid March.In Abothuguci West, first planting occurs in March, followed by harvests between June and July.The second growing seasons starts in the second half of August, ending in the months of December and January.The first planting in Molo usually is between March and April. This results in the harves~ of potatoes between June and July. The second growing period starts from August to end of October even until November. Respectively, the harvest period is prolonged from December until February.About 60 to 80% of the growers in the three regions plant potatoes twice per year; about 40% of the interviewees in Naromoru, Sagana and Molo plant potato three times (Table 11). Usually, in one planting season not all available seeds are planted at once; a common practise is a stepwise planting. An advantage of stepwise planting is a constant harvest, income and food source (Fig. 5). The preparation of the seed bed is usually done manually, using hoe and fork to loosen the soil and a machete to create wholes for the placement of the seed potatoes. Mechanization is very rare and only common on large-scale farms. From the 53 interviewees only one farmer was operating on large-scale. Two small-scale farmers nevertheless mentioned to rent a tractor with a plough when they cultivate more than five acres of land with potatoes, but which was not the case in the present season. Besides of hand hoes the use of oxen ploughs can be also observed.About 90% of the interviewed farmers in all three study regions stated to practice crop rotation, either frequently or occasionally, with at least one to two vegetation seasons between two potato plantings. When vegetables or legumes are cultivated, the period between two potato crops is four to eight months. After this time, still many tubers left from the previous harvest can be observed on the fields. Only about 20% of the interviewed potato growers in Mo lo apply a wider crop rotation of more than one year (Table 12). A usual crop rotation with vegetables would be: potatoes -peas -potatoes -beans -potatoes. Important criteria mentioned by farmers to extend the period between two potato crops is the occurrence of bacterial wilt and the availability of land. A very common structure of intercropping observed is single lines of maize grown in between or around the potato fields (Fig. 6). Beside its usage for home consumption the main reason for intercropping with maize are shade and wind break. The most usual intercropping combinations are 2-5 rows of potatoes and 1 row of peas, beans or cabbage. Sometimes beans are planted between the potato plants.Crop maintaining measures as hilling-up and weeding are applied by all interviewees at least once per growing season, using hoe and fork. In Naromoru and Sagana over 73% and in Abothuguci West almost 92% of the farmers ridge-up the potatoes once per season while in Molo 84% of farmers ridge-up twice (Table 13). Potato growers who are ridging-up only once per growing season ridge-up around 5-6 weeks after planting, or more commonly 7-8 weeks after planting. Farmers hilling-up twice in a season start with the first hilling 2-4 weeks and with the second hilling 5-8 weeks after planting.Weeding is often carried out together with hilling-up, thus the frequency of weeding per planting season is similar to the hilling-process. Many farmers mentioned that the weather conditilons mainly influence the frequency of weeding, stating that they would remove weeds at least once and realize a second weeding dependant on the rainfall during the growth period (Table 14). The frequency and amount of cow manure applied could not be assessed. 90% use own manµre , some farmers also buy from neighbours.Potato varieties and types are manifold and farmers grow at least two varieties each season. About 40% of the interviewed farmers even grow three potato varieties. The name for one variety often differs between the potato growing regions. Further, not all mentioned names are likely to be varieties but can only be clones or local varieties. The variety Tigoni is mostly planted in all regions (Table 17). It is a common practice in the surveyed potato cropping regions that farmers re-plant a part of the harvest as seed for the following planting season. In Naromoru and Sagana 80%, in Molo 90% and in Abothuguci West only 16.7% of the interviewed farmers follow this practice. Re-planting can be done up to 10 years as in the case of Molo. Overall the formal seed sector plays a minor role (Table 18). The re-planting of farm-saved seed, as well as the purchase of seed from farmers of the same community, is the most common practice in Molo, applied by about 80% of the interviewed farmers. Although the purchase frequency was not assessable, about 40% of the interviewed farmers stated to buy seed from the Agricultural Development Corporation (ADC) in Molo. The high cost of seed at ADC was mentioned to restrict regular use (Table 19). The price for 50 kg of seed ranged from 2000 to 3000 KSH, according to farmers' statements. 75% of the farmers in N aromoru and Sagana, and 100% of the farmers in Abothuguci West confirmed that the access to certified seed is highly restricted. At harvest tubers are sorted in the field according to size and purpose: medium and large tubers for selling, smaller tubers for usage as seed and home consumption. Tubers which are diseased, rotten or attacked by insects are sorted out. The smallest tubers as well as those attacked by insects are used for home consumption. Some tubers are left on the field coincidentally or due to lack of labour force; other small or infested tubers are consciously left in the fields after initial sorting. Nevertheless, most of the farmers stated sorting out infested tubers and removing them from the fields to deposit the tubers in pits, on the road side, to bum them or to use the tubers as livestock feed. The farmers described three criteria that are important for seed selection. The main criterion was the size of seeds; all interviewees supported this statement. The preferdble size is medium, which can be described as egg-sized. However, the observed seed tubers were smaller in many cases. The eyes of potatoes play a less important role in the selection process but usually farmers considered a high number of eyes to contribute to a higher yield. Health was only sporadically mentioned to be a decisive factor for seed selection (Table 20). Seed potatoes are usually stored in storage rooms on the farms where the tubers are either spread on the floor and covered with grass or plastic, or are stored in bags (Fig. 8). According to farmers germination is accelerated in bags. The way the tubers are stored is strongly dependant on the availability of adequate storage facilities and bags. From personal observations it can be noted that a small amount of seed is usually kept in bags. Another common practise is to keep the tubers in a hole in the ground, which is covered with grass and soil. The farmers' houses and I bedrooms also serve as storage facilities. After storage tubers are sorted out again by 75% to 87% of the interviewees to remove infested or inadequate tubers. The main problems that occur are diseased and rotten potatoes. In Naromoru and Sagana, especially, the infestation with potato tuber moths is recognised by 20% of the farmers. The percentage of discarded tubers after sorting could not be assessed. Farmers were not able to tell the quantities, but stated them to be very small.Farm storage facilities are very simple and are built from either clay or wood. In the latter case, the buildings are usually elevated from the surface. The stores show temperatures favouring the rotting of damaged and diseased tubers, the development of insect pests and sprouting of potatoes. Therefore, the possible storage time is limited. In the observed areas cold stores are not available for the storage of potatoes. Lack of adequate storage facilities, thus, is one reason for farmers to sell their potatoes directly after harvesting.The duration farmers store potatoes is further influenced by the market price and was mentioned as the major reason by all of the farmers who store potatoes at least occasionally. In Molo around one-third of the farmers interviewed store their harvest when the selling prices at harvest time are too low. In Naromoru and Sagana around 56% and in Abothuguci West more than 40% of the interviewees sell the potatoes directly after harvest.Also the current financial situation of the farmers and need for liquidity is an important factor influencing the storage period. With the exception of three interviewees, no interviewed farmer stores potatoes for longer than 2 months in order to avoid the development of insect pests and the rotting of potatoes in store.The number 1 and number 2 constraintsFarmers in all three study regions perceived the high costs for inputs such as fertilizer, pesticides and labour to be the major constraint in potato production. This problem is mainly caused by the farmers' lack of finances. The farmers know very well the importance of fertilizers and only grow potatoes with adequate fertilizer applications as no reasonable yields could be achieved without.In Molo, 48% of the interviewed farmers stated the high costs of fertilizers and pesticides to be the biggest constraint in potato cropping. While bacterial wilt seems not to be very severe in Mo lo, it is considered the biggest problem for more than 40% of farmers in Abothuguci West, followed by leafrniner fly with 33%. In Naromoru and Sagana problems are more distributed among several factors. Beside bacterial wilt (25%), potato blight and potato tuber moth rank among the problems with the highest impact on potato production, each quoted by about 20% of the potato growers. As the second major constraint potato blight is mentioned by 38% of the farmers (Table 21 ). In contrast to Abothuguci West, leafininer fly is not a problem to farmers in Molo, but more than half of them perceive aphids to be the most detrimental insect. Many growers stated that aphids could lead to a total loss of the harvest when they attack potatoes at flowering stage. Even though aphids appear to be the major insect problem in Molo, a high number of interviewed farmers were not able to identify the insect by name. Apart from aphids, potato tuber moths and cutworms were defined each as the major insect pest by 20% of the interviewed farmers in Molo. Three diseases are common threats to potato production in the observed areas: bacterial wilt, and the two fungal diseases early blight (Alternaria solani Ellis and Martin) and late blight. The symptoms of late and early blight are hard to differentiate for the farmers. Even if some farmers specifically mentioned one of them, the information is not very reliable due to the farmers' lack of knowledge about the various diseases. Therefore, to avoid misinterpretation, both diseases are simply treated and described as potato blight without any differentiation.Many farmers mentioned that potato blight was not a problem to them. They regard the disease as a normal occurrence, which is present in every growing season and which can be treated; unlike bacterial wilt, which has no chemical cure and can destroy large parts of a potato plantation. This is the main explanation why farmers ranked bacterial wilt before potato blig.ht, I even if the occurrence of bacterial wilt was less prevalent than the occurrence of potato blight.Usually farmers knew about the importance of crop rotation to prevent and reduce the impact of bacterial wilt, but they also pointed out that the lack of land was a restricting factor, allow~ng only short crop rotations.The highest number of farmers perceiving bacterial wilt to be the most severe biotic factor affecting the production of potatoes was found in Abothuguci West where over 90% of the interviewees ranked the disease either as highest or second highest problem. In Sagana and Naromoru bacterial wilt is also perceived as the more severe problem. In Molo 60% of the interviewed farmers mentioned blight to affect potato yields the most (Table 24). About 30% of all the interviewees in all regions regarded pest problems in their potato storage facilities as insignificant. However, apart from one farmer who mentioned aphids to be present in his storage facility, most farmers mentioned the occurrence of worms in their stored potatoes.After discussions with the farmers, giving information on the insect pests, and demonstrating the problem, the worms could be identified as potato tuber moth larvae.Concerning bacterial wilt, the symptoms used to describe the disease were \"rotting of the potatoes\" and \"white fluid leaking from the eyes of the potato tubers\"; this symptom was also commonly described as \"wet eyes\". Naromoru and Sagana showed highest occurrence of rotten potatoes in storage facilities with almost 40%, 33% in Abothuguci West and only 12% in Molo.During own observations of seed potatoes hardly any evidence of rotten potatoes could be detected.In Naromoru and Sagana most of the farmers mentioned high costs of input factors and insufficient irrigation to be additional constraints to potato cultivation. In Abothuguci West potato growers mainly complained about the lack of high quality seed. Farmers in Molo perceive the low financial return after selling potatoes as being an additional constraint (Table 25). The use of chemical pesticides in potato fields is very common in the three regions surveyed; while pesticide usage in storage was not observed. Pesticides are usually well accessible and sold in small and large quantities at agro-vet shops. Pesticides are applied using knapsack sprayers of 15 or 20 litre volume. In many cases, the farmers could name the products they use only after looking at the package.Fungicides are used widely either preventive or curative against blight. The major products are Dithane, a protecting fungicide, and Ridomil, which is a combination of systemic and protecting active components. The protective substance ofDithane is mancozeb, which inhibits the entrance of the fungus into the plant tissue. Ridomil is a mixture of mancozeb and the systemic fungicide metalaxyl, which cures the plants when it is already infested with the fungus.Ridomil was described to be the most costly but also most effective used fungicides by 60% of the interviewees in Molo. In Naromoru, Sagana and Abothuguci West Dithane is the first choice for more than 50% of the potato growers, followed by Ridomil (Table 26). In Mo lo about three quarters of the potato growers spray their potato fields two or three times per growing season. In Naromoru, Sagana and Abothuguci West one third of the farmers tend to spray three times, but the trend is to apply chemicals even more often (Table 27).Systemic fungicides, such as Ridomil and Victory are applied with fewer repetitions than protective agents such as Dithane and Oshothane. Antracol, Karate and Milraz play a minor role.The frequency of application is highest for Oshothane with more than 50% of farmers spraying more than 6 times and 25% at least 5 times per vegetation period. Dithane is sprayed generally more than four times, while about 68% of the farmers apply Ridomil two or three times. The application distribution is very similar for Victory, a purely systemic fungicide, which probably explains that it is more frequently applied than Ridomil.The interval of application is between every seven and 14 days as mentioned by most farmers. The majority of farmers using Ridomil believe the product is very effective. About two thirds of the farmers using Dithane regard the product as very effective. Contrarily to the use of pesticides, insecticides are applied less frequently and less regularly in potato fields. The insect pests against which potato growers most commonly spray are leafminer fly, aphids, cutworms and potato tuber moth. From the 72% of the farmers in Molo applying insecticides more than 33% stated to spray specifically against aphids. Cutworms are treated by most of them, by spraying insecticides either before planting of the potatoes or shortly after planting to avoid the young plants being cut. In Abothuguci West all responding farmers spray against leafminer. In Naromoru and Sagana insecticides are most commonly used to control leafminer fly. Aphids, potato tuber moth, cutworm and white flies are treated by one-fifth of the potato growers (Table 28). In Naromoru, Sagana and Abothuguci West insecticides are commonly applied 4 times. Most farmers in Molo spray 3 times and 2 times, probably the first time against cutworms and the second against aphids. In Abothuguci West a relatively high frequency of applications is attributed to leafminer flies, in seven to 21 day intervals (Table 29). The products most commonly used for the control of aphids are Danadim, a systemic insecticide and the non-systemic product TataAlpha (Table 30). Cutworms are most often treated with TataAlpha and Alpha-Cyper applications on the soil and small plants; Alpha-Cyper is equally a contact insecticide. Against leafminer fly the contact insecticide Romectin is used by 40% of the farmers while Cyclone, also non-systemic, and Danadim are both used by 20% of the farmers.Only TataAlpha was identified for the control of potato tuber moth. Most commonly farmers know about the pesticide application from the instructions, which are either written on the product or on the product package, and from the pesticide sellers. In all regions almost all interviewed farmers confirmed to read the pesticide label. Understanding the label was not stated to be a problem to them as the pesticide labels are written in English and Swahili. Farmers which denied reading the label argued that they trust the trader or already know how to apply the pesticide.From the interviewees about 85% stated to wear protective clothing or to follow one of the application guidelines provided by the pesticide producers (Table 31). The most applied measures were boots (100%), body or hand wash after the application (84.5%) and wearing long trousers and shirts (62.2%). Measures preventing the respiration of the pesticides were less seldom stated to be applied by the farmers. Eye or face mask and spraying according to the wind direction were mentioned by 44% and 40% of the farmers, respectively. Drinking milk after the usage was mentioned to be a regular procedure by one-fifth of the respondents, stating that the milk would reduce the negative impact of the pesticides. Wearing a hat and drinking tea or water was mentioned by 17.8% and 2.2%, respectively. Almost half of the interviewees quoted to have experienced health problems after the application of pesticides. The most common consequences are headache and problems with the respiratory tract, e.g. sneezing, hard breathing. Further, skin irritation, vomiting and giddiness have been experienced.Between the study areas noticeable differences concerning the farmers ' knowledge about IPM and natural enemies are recognisable. In Naromoru and Sagana, 43.8% and 81.4% of the farmers stated to have heard about IPM and natural enemies. In Abothuguci West, 8.3% and in Molo 20.0% of the interviewees had some knowledge about IPM, and 33.3% and 20.0% respectively about natural enemies (Table 32). Alternative control measures play a negligible role compared to the application of chemical pesticides. Indeed many farmers apply crop rotation but only 17% could connect it to a measure to prevent insect pests and diseases. A measure mentioned in some cases was the application of ashes and sugar in the fields against bacterial wilt.Farmers mentioned several natural enemies of potato insect pests (Table 33). Safari ants, ladybirds and Diadegma spp. are the most well known in Naromoru and Sagana. In Abothuguci West and Mo lo only about 20% of the farmers were able to mention natural enemies. In Abothuguci West most of farmers could not mention a name while in Molo ladybirds were the most known natural enemies. In potato storage two of the questioned farmers stated to add ashes and one farmer is changing the stores to prevent potato tuber moth infestation.Arthropods associated with potato agroecosystemsThe potato pests collected in the four study regions belong to eight 8 insect orders and about 14 families (Table 34). The most important pests observed were the leafminer fly L. huidobrensis, the potato tuber moth and three species of aphids. The other phytophagous insects had not achieved pest in the four different regions during the present study. fucidence of red spider mites (Prostigmata, Tetranychidae) was only found in two potato fields in Naromoru, which was the driest potato growing regions within this study (Fig. 9). In Sagana feeding of ladybirds (concrete stage unknown) on potato plants could regularly be observed. Due to this in many occasions farmers defined ladybirds as pests. Generally, low numbers of weevils could be observed in the fields. The encountered endo-and ectoparasitoids could all be identified as belonging to the ortder Hymenoptera (Table 35); two belong to the genus Opius and Diglyphus. Gronotoma micromorpha (Fig. 10) shows high similarity with Nordlanderia plowa, also a parasitoid of the leafminer fly and belonging to the family Figitidae. Two parasitoids -'unidentified 1' and 'unidentified 2' -could only be identified on family level. A high diversity of 13 endoparasitoids of P. operculella emerged from field samples in the four study areas (Table 36). The parasitoids could all be classified to the order Hymenoptera. Six species belong to the family Braconidae, one to the family Encyrtidae and five to the family Ichneumonidae. Very likely, the parasitoids belong to the genus Apanteles, Bassus, Chelonus, Diadegma and Temelucha. On species level Che/onus phthorimaeae and Copidosoma koehleri could be identified. All other species need further taxonomical verification. Parasitoids emerged from occasionally collected mummified aphids could not be identified up to species level (Table 37). Two species of Arthropods found in potato fields could not be classified as one of the above listed classes. They status is classified as indifferent (Table 39). The flight activity of L. huidobrensis in Natomoru was low from end of September until mid of October and ranged between 53 to 120 leafminer fly catches weekly per yellow stick trap. Similar as in Sagana, the leafminer fly activity started to rise after 16th of October and reached its peak with 882 fly catches in mid of November. After, it dropped rapidly to 35 and 47 leafminer fly catches per trap in the last two observation dates end of November (Fig. 12).In Abothuguci West, the leafminer fly activity was initially low with leafminer fly catches between 60 to 70 flies per yellow stick trap from end of September to mid of October. After, a very strong increase of 1090 and 1343 leafminer fly catches was observed end of October reaching the highest activity on the 6th of November with 2798 flies per yellow sticky trap. At the last observation date on November 13, the activity dropped again to 2153 flies per trap (Fig. 13)..~ 2500 ;:... .~ ;:... The general outcome of the field examination from randomly sampled fields showed marketable differences between the study areas. Highest leafminer fly infestations were found in Abothuguci West. In this area every field was infested with infestation frequencies, mostly exceeding 90% and very high infestation intensities on the bottom leaves and medium infestation on the middle leaves. An overview about the abundance and the level of infestation by leafminer fly in the observed areas is presented in Fig. 14. In Sagana, infestation frequencies on the leaves were highest mid September with 85% of the plants attacked (see chapter 4.3.3, Fig. 20). One month later 40% and two month later about 77% of plants were infested on the lower leaves. Damage at the middle foliage was visible during the three month of observation; decreasing from 50% to 0% in September and October and 27% in November. Infestation intensities did not exceed 25% in any of the occasions. Infestation of upper foliage was negligible.In Abothuguci West infestation frequencies reached 100% during the whole observation period from mid September to mid November, with intensities of infestation over 75%, leading to defoliation of the lower leaves. 50% of the middle leaves were infested in September and October with an intensity of 1-10% and 11-25% respectively; by November 98% of plants were infested on the middle leaves with up to 25% damage to foliage due to mining of larvae. Even the upper part was infested in 48%, 10% and 43% of the cases from September to November (see chapter 4.3.3, Fig. 20). Besides the mining activity of larvae the density of feeding punctures on the leaves caused desiccation.In Naromoru only single plants were found infested on the bottom leaves with very low infestation intensities.No infestation was found in Molo.In Sagana, a very low leaf miner fly infestation intensity of 1-10% was observed on bottom leaves of potato in the growth stage (GS) 15 to 30 (emergence to extension growth; growth stages according to Batz et al. 1980) from end of September to the first half of October. Thereafter, frequency and intensity of infestation increased simultaneously. The frequency of infestation increased considerably to 68% at GS 50 (bud formation), 80% at GS 60 (flowering) and 85% at GS 65 (late flowering) by end of November, with a intensity of foliar dam:;ige between 11-25% (Fig. 15). In the middle and upper parts of the potato plants intensities of infestation with 11-25% foliage damage reached 33% and 25% at GS 65, respectively (Fig. 16).Field infestation with L. huidobrensis was negligible in Naromoru and was solely recognised in one field on six plants with an infestation of 1-10% on the bottom leaves at GS 65 end of November. However, feeding points could be observed earlier; half of the plants showed m:l.rks from mid of October (GS 30) onwards, increasing up to 100% of plants infested with feeding signs in the last observation. Still, the density of feeding points was very low.In Molo hardly any infestation of potato plants with L. huidobrensis could be observed. Feeding points from leafminer flies were found occasionally on single plants in very low densities. The daily maximum temperatures in Naromoru and Sagana varied more strongly compared to the daily minimum temperatures. Daily minimum temperatures ranged between 10.3°C and 12.8°C in Naromoru and 13°C and 14.8°C in Sagana. Daily maximum temperatures in Naromoru varied between 22.4°C and 27.7°C and in Sagana between 22.4°C and 26.7°C.Precipitation showed a higher variation in Sagana than in Naromoru, having more days without precipitation, but higher total precipitation. After a dry period in Sagana from June to September rain started in the first half of October. From mid of October on leafminer fly population numbers began to rise slowly for two weeks; then increasing rapidly at the end of October after four weeks of rain and a total of 200 mm rainfall; increasing flight activity as well as increasing foliage infestation could be observed. Approximately two weeks after the start of the rainy season the field infestation by the leafminer fly on the bottom leaves started to increase rapidly. They kept rising until the end of November, after three weeks with low precipitation of 44 mm. Both Flight activity and field infestation increased less strongly.In Naromoru the highest number of leafminer flies was trapped between the 6th and 13th of November, after a five week period of weekly 20-30mm precipitation. After one week without precipitation during the eights week of observation the number of leafminer catches decreased strongly from 882 to 35 adults trapped.Due to very low leafminer fly infestation in Molo and Naromoru potato fields were sampled only once, resulting in a total parasitisation of 18.9% and 23.3%, respectively.In Sagana total parasitisation averaged 19.2% over the observation period, ranging between 0 and 62.8%. In Abothuguci West overall parasitisation by both endo-and ectoparasitoids showed an average of 17. 7%, from minimum 1.1 up to maximum of 61.1 % (Fig. 17). Fig. 17: Variation of total parasitisation of leafminer fly samples collected over an observation period from mid of September to end of November in Abothuguci West (number of fields: n=3, 18.9.09, n=4, 30.9.09; n= 6, 14.10.09; n=4, 28.10.09; n=5, 11.11.09; n=7, 25.11.09) and Sagana (number of fields: n=l,18.9.09, n=4, 30.9.09; n=4, 14.10.09; n=2, 28.10.09; n=4, 11.11.09; ri=3, 25.11.09). Samples were taken from potato at growth stages 55-70.Mortality of pupae in the laboratory without considering parasitisation was considerably high and averaged 33.1 % in Sagana and 49.5% in Abothuguci West, respectively. Reasons other than parasitisation were not assessed for pupal mortality. Including parasitisation total percentage mortality averaged 43.1 % in Sagana and 56.9% in Abothuguci West.In Sagana, parasitisation of L. huidobrensis showed large differences between the two-we¢kly sampling dates. Total parasitisation reached up to 34.3% mid-September; Opius spp. was the most prevalent parasitoid with 29% of parasitisation at this sampling date (Fig. 18). Diglyphus spp. only accounted for about 5% of the parasitoids emerged. End of September, ~otal parasitisation dropped to 11.8%, Opius spp. and Diglyphus spp. accounted for 5.2 and 6.6% of parasitisation, respectively.Mid October parasitisation increased to 22.6%; with Diglyphus spp. accounting for 8.3% and Opius spp. for 7.8%. The endoparasitoid Gronotoma micromorpha (4.3%) and the unidentified ectoparasitoids 1 (0.7%) and 2 (1.5%) emerged for the first time. Parasitisation was highest at the end of October with about 43.7%; 33.2% of parasitisation was reached by endoparasitoid 1, an yet unidentified species, followed by Opius spp. (6.2%), Diglyphus spp. (3.1 %), and Gronotoma micromorpha and ectoparasitoid 2, both with 0.6% of parasitisation. In November parasitisation decreased strongly to 10.1 % and 7.2% in the last two samplings. In the first half of November Diglyphus spp. was the main parasitoid with 6.2%, followed by ectoparasitoid 2 with 4%. In the second half of November Opius spp. accounted for 5.7% of the total 7.2%; ectoparasitoid 1 covered the remaining 1.5% of the parasitisation. Total parasitisation in Abothuguci West was lower compared to Sagana; also the importance of parasitoid species differed. In the middle of October total parasitisation reached 19.6% mainly due to the species Gronotoma micromorpha (11.1%) and Diglyphus spp. (8%) (Fig. 19). Numbers of Opius spp. were low with 0.2%. Dead pupae, which were found to be parasitized accounted for 0.4%. While the importance of G. micromorpha declined to 1.8%, numbers of Diglyphus spp. raised up to 11.2% by end of October. Ectoparasitoid 1 was present with 3.6%; dead parasitized pupae counted for 0.7%. Overall parasitisation was found to be 17.2%.In the first half of November, the third sampling date, from 29.4% of total parasitisation, 18.1 % were attributed to Diglyphus spp., 9% to G. micromorpha and 0.1 % to Opius spp.; 2.2% were dead pupae, which had been parasitized. Total parasitisation of 25% was observed at the last sampling date end of November. The percentage of pupae that was found to be parasitized after dissection increased strongly and reached 20.3%. Appearance of Diglyphus spp. decreased to 2.1 % and of G. micromorpha 2.4%. Opius spp., ectoparasitoid 1 and 2 all were present in very low numbers and accounted for 0.1 % each; ectoparasitoid 2 emerged for the first time.- Total parasitisation and parasitisation by G. micromorpha, Opius spp. and ectoparasitoid 1 1 showed significant differences between the study areas; but was not significantly different for Diglyphus spp. (Table 40). Parasitisation rates decreased simultaneously as foliage infestation, from 34% in September to 23% in October. By November parasitisation has reached down to 10%, while contrarily foliage infestation increased (Fig. 20). In Abothuguci West parasitisation increased from 2.1 % at the first observation mid September to 11.1 % in October and about 9% in November. The intensities of foliage damage increased from 1-10% in the first two to 11-25% at the last examination point (Fig. 21). Abundance and distribution of P. operculella and associated parasitoidsTwo marked peaks of the potato tuber moth flight activity with weekly moth catches between 151 and 178 occurred in Sagana beginning of October and beginning of November, respectiv¢ly.In the middle of October as well as in the middle of November the number of potato tuber moth catches dropped drastically to 28 and 21 moths per week (Fig. 22).-.c:.2>u:: In Molo the pattern of the flight activity was quite similar, but generally the number of potato tuber moth catches was higher than in Sagana. The first in the end of September and the second peak in the end of October showed 145 moths and 135 moths, respectively. After the second peak the moth catches declined to 2 and 6 moths in the last two observations end of November and beginning of December (Fig. 23).Numbers of moth catches in Bomet were generally low, ranking between 26 and 29 males per week during the first 4 observations dates from 22nd of September to 13th of October. Late October the moth catches declined until mid November. Thereafter, the flight activity increq.sed slightly to 39 on the 24 1 h of November and 43 moth catches on the 2nd December (Fig. 24).The flight activity in Abothuguci West showed smaller fluctuations throughout the observation period. The lowest number of 73 males was counted in the beginning of October, followed by an increase to 131 and a subsequent decline to 97 moths. An increase in flight activity was indicated during the last two weeks of observation. The general outcome of the field examination from randomly sampled fields showed marketable differences between the study areas. Highest potato tuber moth infestations were found in Naromoru. Here, infestation frequencies mostly exceeded 75%. The distribution of potato tuber moth and the level of infestation in potato field of the observed areas are presented in Fig. 25. In Sagana, field infestations reached almost 90% with 3.8 mines per plant by mid September. While intensity of infestation remained the same, percentage of plants infested slightly decreased to 92.5% by October. On the 10th of November 47% plants were found infested with 6.5 mines per plant. However, infestation frequencies varied between 5 and 100% in different fields (see chapter 4.4.4, Fig. 34).In Molo, frequencies of infestation reached 53% with 2.5 mines per plant on the 22nd of September and 55% with an average of 1.8 mines on the 22nd of October. Mid November 75% of the plants were infested with no considerable increase of infestation intensity of 2.1 (see chapter 4.4.4, Fig. 35).Field infestation by the potato tuber moth was generally low in the beginning of the vegetation period but increased after two to four weeks. First observations were carried out approximately three weeks after planting.During the observation period the number of infested plants in Sagana started to increase slowly from 0% to 28% in the first three observation dates, but did not exceed 55% in the first half of November. The infestation intensity was highest with 1.6 mines per plant by end of November (Fig. 26a+b ).In Naromoru, potato development started with high infestation frequencies by the potato tuber moth, exceeding 30-35% infested plants end of September and middle of October. Infestation frequencies reached 85% on 27th of October, 100% on 10th and 95% on 24th of November. Simultaneously, the infestation intensity increased reaching a peak infestation of an average of 19.1 mines per plant in field 3, 4.4 in field 4 and 8.2 mines per plant in field 5 in mid November. End of November the infestation frequency and intensity both decreased (Fig. 27a+b ).).In Kamara and Molo frequencies and intensities of infestation increased strongly after the first two observations. End of November both fields in Kamara showed a frequency of infestation of 90% with an average infestation intensity of 2.9 and 4.1 mines per plant (Fig. 28a+b ). In Mo lo frequencies were lower with 55% of infested plants per field and an average infestation intensity of 2.1 mines per plant. Infestation decreased until beginning of December (Fig. 29a+b ).All four regions show to be significantly different in their frequencies and intensities of field infestations (Table 41 ). A relation between the level of field infestation and the seed source was found. When the seed were farm saved (own) the frequency of infestation (df= 2; F-value=8.05; p<0.0003; r= 0,018) (Fig. 27) and intensity of infestation (df= 2; F=13.68; p<0.0001, r= 0,029) were found to be significantly higher than when the seed was bought from other farmers (f2f) or was certified seed from A.D.C. (Fig. 28). During field survey 2, after an extended dry period in Sagana no field infestation was found end of September. Flight acticty, however, increased from 16th of September and peaked on the 2nd of October. With the start of rainfall in the beginning of October field infestation started to increase slowly, while the flight activity decreased strong of from 117 to 28 and 21 moths trapped per week. But the population activity already began to rise one week after, equally to an increase in precipitation. In the second half of November infestation levels reduced after two weeks of very low rainfall of total 9 mm. The maximum temperatures decreased from 26.8°C end of September to 22.9°C and 23.9°C end of October and in the first half of November. The second peak of flight activity coincided with lower rainfall; and with almost zero rainfall the number of trapped males dropped down to 21 and 28 in the last two weeks of November.End of September precipitation was very low in Naromoru, but increased from 7.4 mm to 24.1 mm and 44.0 mm from 29th of September to 10th of November. In the second half of November precipitation dropped to a total sum of 4 mm, simultaneously, the infestation levels decreased slightly. The daily maximum temperatures decreased strongly during the first three weeks of observation from 27.1°C to 23.0 °C, while daily minimum temperatures hardly changed.In Molo observation started with weekly precipitation of about 30 mm, which decreased to 5 ttun in the next two days. With the decrease of precipitation also the number of trapped male moths declined from 145 to 50 by mid October. A higher flight activity was observed the following week when higher precipitation occurred. While in the last week of October rainfall was spatse, the number of males found in the trap rose further to a second peak before it dropped down in the next two weeks.Potato growers of the different regions have different strategies to obtain seed potatoes. In Bomet eight out of ten questioned farmers bought seed from another farmer. Some growers stated to buy seed always from the neighboring location Merigi where the soil is considered to be m:ore healthy and fertile and thus the seed potatoes are expected to be more productive (Table 42). In Naromoru and Sagana, farmers mainly use own farm seed. From other farmers 80 20 0In the process of tuber selection the size of tubers plays an important role. In Bomet the examined seed tubers were medium sized (Table 43). In Naromoru and Sagana seeds were mainly classified being rather small or small to medium. The infestation rates and infestation intensity of seed tubers differ strongly among the surveyed potato growing regions. In Bomet seed potatoes are less infested with the larvae of the potato tuber moth compared to Naromoru or Sagana (Table 44). Only 30% of households had infested seed tubers with a slight average infestation rate of 0.6% and a negligible infestation intensity of 0.2 holes per tuber. Contrary, in all ten households in Sagana and Naromoru seed tubers were infested by potato tuber moth with an average frequency of infestation between 34.5-50.9% and average infestation intensity between 2.4-3.3 holes per tuber, respectively. Freshly harvested potato tubers m Sagana and Naromoru showed in almost all fields an infestation by the potato tuber moth. In Sagana, 90% of harvested potato fields were infested with an average infestation frequency of 8.3% and an average number of holes per tuber of 2.52. All ten fields in Naromoru were infested with an average of 14.4 % infested tubers per field. The intensity of infestation averaged 1.96 holes per tuber (Table 45).Table 45: Average frequency (%) and intensity of infestation (wholes/tuber) of tubers at harvest by potato tuber moth (in each household 100 tubers were investigated) Mortality of collected larvae was high, ranging between 0-50%.The parasitoids Copidosoma koehleri and Diadegma spp. (very likely D. mollipla) showed highest rates of parasitisation in all study regions; Che/onus spp., Bassus spp., Temelucha nivalis and the unidentified species were found in insignificant numbers.In Sagana Copidosoma koehleri was found more frequently than Diadegma spp. Total parasitisation rates ranged between 21-44% with high fluctuations throughout the season (Fig. 30). In Naromoru highest rates of parasitisation of over 40% were found mid-September and end of November. While Copidosoma koehleri was prevalent in the first half of the observation peri,od, numbers of Diadegma spp. increased strongly end of October (Fig. 31). Overall parasitisation was found to be lowest in Molo, rising from 13-18% in the first two samplings end of September to 23-30% until mid of November; Diadegma spp. was the most predominant species in this region (Fig. 33). Total parasitisation between the regions throughout the sampling period showed signific<: mt differences between Sagana and Naromoru and Sagana and Molo. Parasitisation with C. koehleri was significantly higher in Sagana than in the other regions. For Diadegrna spp. no signific~nt differences between the individual regions were found (Table 46). The development of the total parasitisation of potato tuber moth Sagana was slightly converse to the field observations. While the frequency of infestation slightly increased from 16th of September to 14th of October, parasitisation rates strongly decreased from 75% to 35 %. Duting the next month from mid October until mid November the field infestation decreased strongly, while parasitisation of potato tuber moth ceased to decrease further (Fig. 34). Parasitisation in Abothuguci West increased from 17% observed on the 22nd of September to 26% on the 22nd of October; during this time field infestation increased slightly from 53% to 55%. Until 17th of November parasitisation did not increase considerably, reaching 28%, while field infestation reached 75% (Fig. 35). In Sagana, infestation of potato plants with aphids was hardly noticeable from end of Septemli>er to end of October. However, in the first and second half of November 50% to 57.5% of the plants became infested (Table 47).Aphid appearance was similar in Naromoru, but notable infestation of 46.7% of potato plants only occurred end of November.Beginning of October only few plants were infested in Kamara. Infestation increased during the second half of October and the beginning of November, with more than 22% of plants infested.In mid November infestation frequency reached 67.5% but dropped to 30% in the beginning: of December.Highest infestation of aphids was found in the Molo Division. After a slow increase in October, number of infested plants increased to 40% end of October and by 65% and 82.5% by mid and end of November. Potatoes have been cultivated in small-scale agricultural production systems in Kenya for several decades. The Kenyan government has put efforts into improving the extension-service for potato growing, and also in the improvement of varieties and storage, as well as the marketing of potatoes. Still, many weaknesses can be found both in the agricultural production system and the knowledge of farmers; especially the lack of knowledge concerning appropriate agricultural measures and the use of agricultural products such as pesticides and fertilisers. A big step towards improving potato production could be realized through the use of clean and healthy seed. Recent CIP activities aim at training farmers in positive seed selection (Gildemacher 2007). Still many constraints have to be tackled to improve the potato production systems. Besides the agronomic factors , also the socio-economic situations in the different study areas have to be considered.The agricultural structure in the study area around Mount Kenya is characterised mainly by the small size of the plots, which is generally less than one hectare. From the privatisation of agricultural land during the 1960' s and 80 ' s until now, the land has been passed on to the second or third generation, resulting in very small plots, as the children need to split the inherited atea. , In Embu, the average area per adult man was found to be 0.7 ha. The cultivation of food to meet the households ' basic needs is the first aim. Many husbands are employed in off-farm activities, either moving to other places or still living at home. In Embu it was found that 66% of interviewed families have at least one son working outside of agriculture. In the case of outmigration of husbands, women are left alone on the farms to cultivate the land and nourish the family (Olson et al. 2004). From the presently interviewed families the husbands had not migrated to other areas. However, many families had at least one family member earning additional income; especially in Sagana and Naromoru it was observed in over 40% of the families. This could be influenced by two main factors. Firstly, as described above, small areas lead to the need for young people to find other employment, or for husbands to earn additional money. Secondly, the study sites show good access to off-farm employment with their closeness to larger towns and agricultural industries.In contrast, additional income from off-farm occupation in Molo is low. Climatic conditions show good opportunities for two prolonged cropping seasons with fair yields (Jaetzold and Schmidt 1983b) and compared to the other study areas, there is a high percentage of larger farms. However, in Abothuguci West, additional off-farm employment is comparatively low compared to the other study areas, even though farmers have the smallest cultivated areas. Lack of off-farm sources of income can influence the low share of farmers renting additional land in Abothuguci West. To rent additional land the families must have extra money available. Olson et al. (2004) showed in their study that off-farm income is often invested in renting or buying new areas of agricultural land.The generally small portions of land in the study areas and the lack of capital lead to improper soil management. Olson et al. (2004) showed that soil fertility depends on several factors. One factor is the availability of labour from family members and hired helpers. Farms, which are 94 u capable to pay workers, tend to have higher soil fertility. The interviewed families stated that it is common to employ temporary labour; however, the impact on the soil fertility could not be assessed as part of this study. Labourers are involved in different kinds of work. How regularly labourers are employed depends on the area and the availability of family labour; and on the availability of cash to pay for workers. Furthermore, farm size, number of livestock and other resources, e.g. from off-farm income, have an influence on soil fertility. Bigger farm sizes and more available agricultural land leave space for fallow periods, manure from livestock contributes to organic matter and nutrient content in the soil, and extra income enables families to buy fertilizer and manure from other farmers (Olson et al. 2004).Besides access to input factors and finances, the educational status of a farmer can be decisive whether a farmer adapts to a new management strategy or not. The results in the present study comply with Kaguongo et al. (2008) who showed that compared to other East-African countries, like Uganda and Ethiopia, the educational level, both for men and women is comparatively high; in his study he found that the majority of farmers in Kenya have finished primary school; women showing a slightly lower share. In the present study half of the farmers even completed secondary school. Women are often disadvantaged regarding advanced training and seminars, contradicting the fact that women are mostly responsible for the cultivation of food crops alone, and to the bigger extent for the cultivation of cash crops. Women are generally more knowledgeable in the cultivation of potatoes and the use of varieties (Crissmann 1989).In contrast to Karugia (2003), who stated that maize is the most important produce in terms of income generation from the few crops that are sold, it was found that potatoes are an important cash crop in the studied areas, while maize is more important for household consumption. The importance of potatoes is lower in the old Nyeri District, to which Naromoru and Sagana formerly belonged. Especially in Sagana, cash crops of importance are horticultural crops, and to some extent tea and coffee. These kinds of cash crops are sold directly to the companies processing the produce. The farmers either have formal contracts with the companies or have even established cooperatives. Latter could be observed in Sagana, where farmers' cooperatives produce horticultural crops, like sugarsnap peas (Pisum sativum L. var. macrocarpon ), French beans (Phaseolus vulgaris) and snow peas (Pisum sativum var. saccharatum). The production of horticultural crops has partially replaced the importance of potatoes in these villages (Paul Giitui, personal communication) (Table 6). The cultivation of flowers also plays an important role in Sagana. However, the potential of this region has by far not been exploited, mainly due to bad road conditions during the rainy seasons, which severely restricts the transportation of products. In Mathira Division for example, where Sagana is located, there is a large road network, even though major parts of the roads are in bad condition. The weather conditions as well as the access to markets are better when compared to Naromoru. The latter can be explained by Sagana's relative proximity to Karatina, which is the major market in the region (Karugia 2003).Although the overall importance of selling potatoes in Sagana and Naromoru has declined due to enhanced diversification of cash crops, the actual output is still considered to be very important as an income source for the majority of the farmers (Table 7). In Mo lo, potatoes are the definite number 1 cash crop. Horticultural crops, especially peas, are sold on the local markets and at the roadside. Connections to horticultural companies, as in Naromoru and Sagana, are not given. As market orientation is positively related to the intensification of crop production (Karugia 2003) the income importance of potatoes explains the higher application rate of fertilizer in Molo compared to the farmers in Naromoru and Sagana, and Abothuguci West.Regarding Abothuguci West, the situation changes a bit. Here, potatoes are the second most important crop, behind cabbages (Brassica oleracea), as they require less labour input. But also the small agricultural areas available lead to competition between crops and to short crop rotations, thereby increasing the pressure of bacterial wilt and limiting potato cultivation to one time per year in most of the cases.Potatoes, despite the importance as a cash crop, contribute to the nutrition of the farm families (Crissmann 1989), as usually a part of the harvest is kept for home consumption, or in some cases small plants are exclusively planted for the purpose of home consumption. The seven times higher yield per unit area, the four times faster growth and the crude protein being twice as high as in maize, give potato an advantage (Ballestrem and Holler 1977). Another important factor is that the potato seed can be farm-saved. In contrast, whether maize can be used again depends strongly on the region and if local or hybrid varieties are grown (Karugia 2003). Farmers indicated that the use of hybrid varieties is mainly prevalent in the region of Molo.The marketing system of potatoes is underdeveloped, and governmental initiatives to support farmers effectively have failed so far. The main constraints with the marketing of the potatoes are the low prices in combination with the extension of the bags beyond the governmental weight limit of 115kg. One big bag approximately equals 110-120 kg. The usual measure applied by the brokers is to put a net over the bag, which increases the estimated weight up to 180kg. The price per bag does not increase after this measure. The main problem of this practice is that the produce is not weighed, but only accounted for in numerical units, which results in a decreased income for the farmers. Regulations of the government to prohibit the extension of bags have not successfully been implemented (J. Mucheru, personal communication). Some advantages of this system are that long and inappropriate storage can be avoided and that farmers are spared the efforts of selling their produce; e.g. at the roadside or bringing small quantities to the market. They also can achieve a high amount of cash at once, which in tum can be invested (Gildemacher et al. 2009b). Small-scale farmers, characterized by low cash availability, can sell their produce directly after harvest. However, prices given to the farmers are kept low by the middlemen to increase the span between the buying prices given to the fanrters and the selling prices given by the potato traders in the cities. The buying price can only be influenced minimally by negotiations. Low prices restrict farmers to invest in potato production in terms of fertilizer, pesticides and quality seeds, which would guarantee a better outcome (Gildemacher 2009b ). Better information and extension about potato planting could provide the farmers with low-cost strategies and measures to produce healthy potatoes and seed and to achieve a better yield.LAgricultural advice is in the responsibility of the Ministry of Agriculture and service is provided by the agricultural offices (DAO), on divisional level. The actual work is taken out by the agricultural extension officers (AEO). Under current regulations, officials have to account for services given and the progress achieved. This has led to a recent improvement in the efficiency of the DAO (Joseph Mucheru, personal communication). But still, farm visits or field days are seldom and the distances for farmers to personally visit extension offices are often too long.Farmers in Naromoru and Sagana have benefited to a certain extent from the research activities oficipe. The high numbers of farmers who have heard of the terms IPM and natural enemies and were also able to mention some by name proved this assumption. How the knowledge is distributed among the community has not been assessed and it is likely that the information stays in the circle of the families of the farmers working with icipe, as was also indicated by Gildemacher et al. (2009b ). Furthermore, farmers participating in research activities are likely to remain the same; due to the required close cooperation with farmers. The mistrust of several farmers in Sagana community towards icipe activities, blaming them to have introduced a harmful insect, indicated the gap of information and acceptance. On the other hand it also demonstrates how important the dissemination of knowledge among the community is.Especially in Naromoru and Sagana farmers stated to gain information about potato cultivation and pest management from neighbours and friends, a fact also found by Gildemacher et al. (2009b).The importance or the influence of the DAO could not be assessed. The message that came across was that the AEO are rarely seen and people were resigned about their duties. Information about pest management is mainly acquired from sources like pesticide dealers, and other advice giving institutions, less by own experience. Generally, a low share of farmers obtains information through radio or television, corresponding to the situation in the mid 1980s (Crissman 1989). With the distribution of radios and means to charge batteries, farmers could more easily and more cheaply receive valuable information.In Molo, the agricultural college Baraka is an important institution to disseminate information about crop production and important components, as well as for livestock keeping.Cultivation measures can differ between the study areas according to climatic conditions, availability of input, land and labour, financial resources, knowledge of the farmer and importance of the potato. As most of the farmers have limited resources the management is mainly based on short-term decisions and the prevention of high losses.In the study region two main rainy seasons exist, showing slight differences between the study sites. The first rainy season usually starts beginning of April, ending mid of July. The second rainy season starts in the first half of September and ends beginning of January (Gildemacher 2009b). No noticeable difference in the number of potato planting seasons could be observed between areas where solely rain-fed agriculture is practised and where additional irrigation is applied. In Naromoru and Sagana the planting seasons are equal to Mola, where farmers do hot irrigate their crops. In Abothuguci West, where irrigation is very common, some farmers practise only one planting season. Compared to the other regions the seasonality of plantings is more distinct in Abothuguci West and most of the potatoes are planted in February and in August and September while in the other regions potatoes are cultivated the whole year around (Durr and Lorenzl 1980).During one growing season several potato plantings are carried out in one to three week intervals. This kind of sequential planting of potato is common practice and allows for almost constant planting, growing and harvesting of potatoes by an individual household and thus a constant production of potatoes in a region. The planting frequency depends strongly on the availability of land and seed. However, most commonly the crucial factor is the availability of finances to buy fertilizer and pesticides. Farmers knew well about the importance of fertilization.As the price of fertiliser is very high, the planting of potatoes in intervals is beneficial as the costs can be allocated in smaller amounts across the growing season. Furthermore, ~he availability of land influences the amount of seed planted. If labour is scarce, partial planting has the advantage of dispersing the family labour and of saving money for temporary employees. Sequential planting, besides allocation of resources, such as input, area and labour can be regarded as a certain kind of risk prevention. Planting during the rainy season promises highest yields, which in tum are endangered by fungal diseases. A certain part of the potatoes is planted before and after the rainy seasons, which limits the pressure of potato blight and thus reduces the expenses for fungicides. Planting out potatoes long before the start of the rainy season is only practicable if irrigation of the plantations is possible. Further, a part of harvesting falls into the off-season, promising higher prices for potatoes. Kaguongo et al. (2008) found that in Meru Central District, to which Abothuguci Division belongs, many farmers practise irrigated offseason planting of potatoes in order to achieve higher prices.Mechanization and the use of oxen-plough are not common in the study areas, thus agricultliJ.ral productivity solely depends on man power. It would be interesting to assess the profitability of renting a tractor or an oxen-plough when bigger areas of land are cultivated. However, cultivation of bigger areas often is not profitable, as economic outcome is too low compared to the high costs of input and labour (Olson et al. 2004).Potatoes are self-compatible and could be grown in sequence in the same field without rotation, if this would not result in the accumulation of diseases and pests (Franke 1994 ). Crop rotation is widely applied in the study areas, often with beans and peas, which are regarded as suitable ]j>recrops (Franke 1994). The farming systems around Mount Kenya have been intensively cultivated for many years, and the importance of maintaining soil fertility has been recognized by farr¢ers who plant potatoes once or twice in four possible cropping seasons (Durr and Lorenzl 1980). The small agricultural areas available per farming family, however, are restricting the regularity and fertility and preventing the accumulation of soil-borne diseases (Kaguongo et al. 2008). Only half of the farmers questioned stated to regularly apply crop rotation every second season. Tubers left in the field from the previous harvest, which were regularly observed, can act as carriers of potato diseases (Gildemacher et al. 2007) and insect pests. Certainly the farmers' intention is to collect as many potato tubers as possible, but lack of labour and time can influence the thoroughness. Volunteer plants growing from the left tubers are often not removed from the field but tubers are used as early potatoes for consumption; they further can serve as a host for pathogens (Kaguongo et al. 2008). Females of the potato tuber moth use left tubers for oviposition; which further act as feeding source for the larvae. By this, the moth hibernates and develops throughout the year and causes a fast population built up and early infestation of potato plants in the growing season. Farmers in regions with high levels of infestation by potato tuber moth were not aware about this interrelationship.On the other hand, farmers knew about the importance of crop rotation to prevent bacterial wilt.The bacteria of the disease can overstay in the soil for a long time. Durr and Lorenzl (1980) recommended to plant potatoes in the same field only once in four planting seasons. Bacterial wilt was observed to be a common occurrence in potato fields in the study areas. Only when bacterial wilt is already a problem, wider crop rotations are applied by the farmers . But even then, the total area available remains a restricting factor. The farmers' knowledge about the prevention of the disease is mainly limited to crop rotation, which is hardly feasible to them.Other measures concerning the hygiene of the field and clean seed, as well as clean tools, clothing and hands are mostly unknown to them. Field hygiene mainly applies to the removal of infested tubers from the field. Often infested tubers are left on the side of the fields where the transmission of pathogens can occur, for example through run-off water or mechanical transmission. It was often observed that small tubers, which could be neither sold nor used as seeds, and furthermore are easy to overlook, were left on the fields . These small tubers, especially, are likely to be infested with viral diseases (Gildemacher et al. 2007), as was a common occurrence in potato fields in the study areas.The integration of intercropping was found to be relatively low and hardly applied in Molo. In Naromoru and Sagana, and Abothuguci West it was applied by two-third and half of the farmers respectively (Table 12). In Molo, most of the farmers stated to never apply intercropping; the majority from those who do apply intercropping do so only occasionally; this was similar to previous findings (Durr and Lorenzl 1980). Kaguongo et al. (2008) found that intercropping of potato in Kenya was generally rare.The most common form of intercropping observed in potato production was relay cropping with maize; maize being planted prior to potatoes. In this combination potato is the main crop while maize is placed around the field or in a few single or double lines in between the potatoes. However, single lines are usually planted in a wide row distance. The effects of shading and windbreak are thus likely to be minimal. On the other hand, if the lines stand too close it could have a positive effect on the humidity and create improved conditions for fungal diseases. Midmore et al. (1988) found that the yield of potatoes shaded by maize was positively correlated to intensity of shading mainly due to a higher survival and thus a higher total number of the plants remaining at harvest. The authors suggested that potatoes should be planted in such a way that shade was prevalent during the afternoon. On the other hand constant shading can result in a decreased yield per tuber by weight losses up to 40% (Sale 1973(Sale , 1976). In the present study, situations of constant shading were only observed when potatoes were planted under large trees.Normally the maize rows were not densely planted and thus, depending on the position of the maize plants, the potato plants would only be shaded during a restricted time of the day ~nd irregularly on the field.Ridging-up and weeding of the potato fields is usually carried out once every growing season in the study areas; mainly 5-6 weeks after planting (Table 13). Weeding is often taken out simultaneously with the hilling process. In Mola, the majority of the farmers ridge and weed their potato fields twice, usually in one process; two to four, and five to eight weeks after planting, respectively (Table 14). Howeler et al. (1992) recommended ridging-up about one month after planting to increase the growth and thus the yield of potatoes and to reduce the weed pressure. However, single hilling at emergence of the potato plants is insufficient to control weeds during the whole growing season (Vangessel and Renner 1990).The purpose of ridging may however change in the farmers ' perspective; whether the farmer is weeding while he is hilling-up the potatoes, or if contrarily he is hilling-up because there is a need for a second weeding. Humid conditions favour the growth of weeds and thus can lead to additional weed control measures. As climatic conditions during the observation period showed suitable conditions for the growth of weeds in Malo it can be assumed that a second hilling is basically related to a second weeding. Contrarily to Malo, in Sagana, where high occurrence of weeds was also observed, farmers ' attendance to weeding was lower. Presumably, these differences can be traced back to a different level of knowledge about the importance of hilling or potato cultivation in general.However, especially under dry conditions hilling-up of the potatoes is important to loosen the I soil and to prevent the soil from building cracks and exposing the tubers. Aside from stimulating the increase of potato yield, covering the exposed tubers or filling up the soil cracks restricts the potato tuber moth reaching the tubers and to laying their eggs on them.Besides hilling, irrigation is an effective measure to prevent potato tuber moth from infesting the tubers in the soil. Regular irrigation keeps the soil moist and can prevent the soil from cracking (Stylianou and Orphanos 1981 ). The most common type of irrigation in the study areas was sprinkler irrigation; even though often tubes are used for the irrigation of potatoes. the advantage of sprinkler irrigation over tube irrigation is that it keeps the whole soil surface moist, preventing the development of cracks further from the plant, as may occur with drip irrigation.As indicated in a study by (Stylianou and Orphanos (1981 ), soil under drip irrigation cracked under the extension of tubers, making them easily accessible to potato tuber moth. In the present case, irrigation with tubes might have a similar effect as drip irrigation, as water is mainly applied locally at the plant.During the dry period in the second half of 2009 irrigation in the areas on the south-western side of Mount Kenya was restricted to once a week. This measure has been implemented after a long period of drought-like conditions. In these regions irrigation is very common, as streams from Mount Kenya provide the farmers with good access to water (Gildemacher 2009b ). Especially in Naromoru high levels of potato tuber moth infestations could be observed, both in field and storage. The situation is presumably different in years with normal rainfall. However, this area showed to be prone to drought and will be disadvantaged in the future if dry weather conditions will increase. In Molo, rainfall is generally higher compared to the other areas. The cropping periods are extended, favouring rain-fed agriculture; no irrigation is applied. Even if the need for irrigation is not urgent, farmers demand better access to irrigation structures.According to Franke (1994), intensive production of potatoes requires 200kg N/ha, 150kg P/ha and 250 kg K/ha, which equals 1: 1.5-2:0.5. Brouwer (1976, in Keller 2003) considered a relation of NPK of 1: 1.25: 1.5 to favour tuber health. Potassium should be applied in the form of K 2 S0 4 , as the sulphate anion benefits the starch content and increases the quality of tubers. Nitrogen applications of 80 to 120kg N/ha in tropical regions were recommended by De Geus (1973, in Keller 2003 ). The main type of fertilizer applied throughout the study regions was Diammonium phosphate (DAP); additional application of compound fertiliser (NPK (17: 17: 17) was only significant in Naromoru and Sagana (Table 16). The majority of the farmers in Molo supplement DAP fertilization with foliar feed. The average amount of fertilizer applied was stated to be relatively high: 260 kg DAP/ha, 228 kg NPK/ha and 3800 ml foliar feed per hectare.Unfortunately the kind of foliar fed could not be specified. It could be possible that the farmers certainly apply these high amounts of fertilizers, irrespective to the high costs of fertilizers, as the portions of land are considerably small and the immediate costs are therefore low. Furthermore, the importance of fertilization is well recognized by the farmers. Especially as a high proportion of the crop is sold on the market and serves as an important source of income, the aim is to achieve high yields. In Abothuguci West potato plants were often found to be tall, with week stems and reduced stability, due to too high fertilizer applications as also observed by Keller (2003) in Mantaro Valley in Peru, leading to lodging of potato plants in the field.The use of manure could not be well assessed in this study, as the amount and frequency of application could not be quantified by the farmers. About 60% of the potato growers in Naromoru and Sagana, and Abothuguci West, and 50% in Molo irregularly apply manure; mainly from their own cattle. Sufficient supply is presumably restricted due to the low number of cattle on farms; which is mainly a cause of small land sizes which do not hold the capacity to nourish high numbers of livestock (Smucker 2002).Handling of seed potatoes and selection of the bestThe varieties named in this study (Table 17)could either be local varieties or formerly released varieties which have local names (Crissman 1989). Names can be given according to regions, descriptions of a variety or the person who introduced the variety into a certain area (Crissman 1989), only to name some possible ways how variety names can develop.Farmers choices for certain varieties depends on the visual evaluation of the performance of the variety; either on the own or the neighbours farm. The choice of a variety regarding the input I requirements and blight-resistance is mainly influenced by the economic status of the farmer; and if the purpose of potato production is marketing or self-sufficiency. The discrepancy between certified varieties cultivated and aimed for by ADC, and the ones preferred by the farmers was shown to be high (Crissman 1989). Besides the economic effects farmers ' preferences and criteria for the choice of variety adoption have to be taken in account in the breeding of new varieties.Seed source and re-useThe informal seed sector plays a major role in potato production, whereas the use of own seed showed to be of higher importance in Naromoru, Sagana and Molo than in Abothuguci West and Bomet Central, where farmers tend to buy seed originating from other locations (Table 19). Less than 1 % of potato growers buy seed from qualified seed producers (Gildemacher et al. 2009a).The re-use of farm saved seed over several growing periods, results in the accumulation of v~ral and bacterial diseases in the tubers and consequently leads to the degeneration of seed and Yield losses. The tubers act as transmitters of the seed born diseases from the store to the field. For prevention, it is important that the whole lot of seeds is regularly renewed after a certain time of replanting (Gildemacher et al. 2007). In Naromoru and Sagana farmers stated to re-use their seed less then five times, while in Abothuguci West the majority of the growers even buy seed every growing season and the remaining farmers only re-use seed twice before renewing them (Table 18). In a study by Gildemacher et al. (2009a) in Kenya it was found that own seeds are used for approximately 6 seasons.In Kenya less than half of the farmers renew their seed lot with material purchased from out$ide or from reliable sources (Gildemacher et al. 2009a). Farmers in Molo showed to renew their seed lot less regularly than ~arm~rs in the other study areas; in fa~t, only when .the yield has already I decreased or a new vanety 1s released to the market. Farmers m Abothuguc1 West buy seed from Kibirichia Division (Meru Central), which lies in 20 km distance from Meru town. The major I reason for farmers in Abothuguci West to buy seed from Kibirichia is the perception of the farmers that in this location bacterial wilt is either absent or that the pressure is very low. The same frequencies of renewing seed and buying them in Kibirichia Division were observed in former studies. Kibirichia Division is located higher than Abothuguci West, thus having a lower disease pressure and farmers are allowed to use forest land for a temporally determined time to plant potatoes on virgin soil (Kaguongo et al. 2008). This so.:.called \"shamba system\" signmes that parts of the forest is logged and new tree seedlings are immediately planted. Around the small trees potato production is allowed. When the trees have a certain age, farmers have to abandon the area. Due to misuse of this system, it was apparently prohibited in 2000, but is still practised, as could be observed in Naromoru and Sagana and other locations south-west of Mount Kenya (Olson 2004). Kaguongo et al. (2008) further assumed that due to the high intensity of the production systems in Abothuguci West and the short rotation cycles the risk ofl 102 u bacterial wilt is higher and thus was the importance to re-new the seed regularly. In the present study most farmers in Abothuguci West stated to apply crop rotation, some only occasionally. Mostly rotations were between four and eight months in all regions. Abothuguci West moreover showed smallest areas of agricultural land; the major restricting factor for adequate crop rotations.However, purchasing seed from other farmers can hold the same risks of seed degeneration. It is not known how often the seed-producing farmers re-use their seed and how wide their crop rotations are. Especially with increasing seed demand due to increased potato production the rotation periods are likely to have decreased. If farmers purchasing seed from other farmers have no chance to see the plants in the fields, they cannot be sure about the quality of the tubers. However, the purchased tubers were found to be mostly bigger in size than seed from own harvest. Selection of seed is usually done from the whole seed lot of newly harvested tubers, either directly in the field or after bringing all tubers to the farm. Even if potato growers put a high emphasis on the \"egg\" -size of the tubers opposite cases could mostly be observed throughout the study area. An exception was Barnet Central where seed tubers, usually purchased from farmers in the neighbouring locations, were very big. Small tubers are more likely to be infested with viruses than big or medium sized tubers (Gildemacher et al. 2007).Exact reasons for the farmers' preference of seed from other location could no be assessed.In Naromoru and Sagana, no close access to seed from certified sources is given; the closest possibility being KARI Embu. Farmers have to travel long distances to buy certified seed, which then are very costly. The incentive to buy improved varieties, as long as a fair yield from own or neighbours' seed can be achieved, remains low. The farmers living around Molo probably have the best access to certified seed, as the ADC Potato Project is based in Molo Town. ADC is specialized in the production, storage and distribution of seed potatoes. However, high costs remain the restricting factor. The number of farmers who occasionally purchase seed from ADC (43% in Molo) seems to be relatively high. But concerning the fact that a high percentage of the farmers re-use their seed for an unspecified time, in addition to high costs, the frequency is expected to be very low.The use of tubers infested with potato tuber moth was regularly observed in Naromoru and Sagana. As could be shown in several studies field infestation with potato tuber moth is positively correlated to tuber infestation (Kroschel 1995, Keller 2003). Hardly any seed infestation by potato tuber moth could be observed when the seed was bought. This can also be influenced by the missing or short storage time, as most of the observed purchased seed potatoes, have only recently be harvested. And still big tubers can be infested with viruses and bacterial wilt.The storage period of seed ranks between 1-2 months in the present study; consisting with findings of Gildemacher et al. (2009a). To stimulate sprouting, seeds are often kept in a whole in the soil or in plastic bags; yet one third of the farmers do not take any measures to enhance sprouting. The stores can be ventilated from the bottom when they are elevated, but lack of windows and openings reduces ventilation. When the walls of the stores are continuous (e.g. made from loam or brick) high temperatures can be measured in the stores during the day. When the temperatures show high fluctuations between day and night dormancy is broken faster than at constant high temperatures (Beukema and Zaak van der 1990). Diffuse light during storage is important for potatoes to built strong sprouts, which do not break at planting (Franke 1994) and lead to more vigorous plants. Diffuse light can also be used as an alternative to cool temperatures (Beukema and Zaag van der 1990); but diffuse light is a condition which is hardly provided by the storage measures applied in Kenya (Gildemacher et al. 2009a). To prevent inadequate strong sprouting and high losses due to evaporation, the potatoes should be spread on the floor in thin layers. When seed tubers are stored under warm conditions the physiological age is increased and the yield reduced due to an increased number of premature tubers, and reduction of foliage (Franke 1994).Despite all the constraints of the seed systems in Kenya, and contrarily to the study of Gildemacher (2009b ), farmers in the present study did not consider the existing seed system as a major restricting factor of potato cultivation. This may be a result of the design of the questionnaire; farmers were not explicitly asked for problems in potato storage but were requested to mention and to rank their problems. Most likely the interviewees connected the question more to their problems with pests and diseases and its control.Healthy seedAs the high costs for certified seed is the main restriction for their use by small-scale potato growers it is important to transfer the knowledge of clean seed production to the farmers. \"Positive selection\" or \"Selection of the best\" (Gildemacher et al. 2007) is a measure, which can be learned by the farmers and provides them with the ability to produce healthy seeds without spending money. Positive selection requires regular observation of vigorous potato plants in the fields to appoint the best looking plants as source for seed tubers. A peg is used to distinguish the chosen plants, which are harvested separately. Yield improvements of 30% compared to the usual practise have been realized in trials managed by farmers. In fields with a high level of plants infected with bacterial wilt no positive selection should be applied as also healthy looking plants can be infested without showing symptoms (Gildemacher et al. 2007).Besides selection of plants in the field, proper seed selection at harvest is important to prevent any disease accumulation in the seed lot. Direct selection at harvest has the advantage that farmers can judge the tubers from one plant and if some tubers show irregularities he can reject all tubers from one plant as seeds. As observed in many cases and stated by the farmers, small tubers are widely used as seed, even though they are likely to be virus infested. After selection, careful handling of the tubers to avoid damage and thus entry points for diseases has to be considered (Gildemacher et al. 2007).Adequate cold storage facilities for farmers to keep their produce and to sell at better matket price would be important. Provision of storage facilities in higher elevated areas, such as Molo, could be a possible solution. Areas above 2300 m a.s.1. experience temperatures around 10°C in the night and have a high humidity. These conditions can be used for stores with air forced 104 ventilation using wet charcoal to provide moisture (Ballestrem and Holler). In the areas around Mount Kenya where streams from the mountain provides good access to water, stores built over the streams could be cooled by the stream water (Gildemacher 2009b).Potato stores could be managed community-based, perhaps even in combination with the transportation of the produce to the urban markets by the farmers to avoid dependency and price fluctuation created by the middlemen. This could increase the outcome of potato production considerably and price stability would make potatoes more attractive as a cash crop.Problems arising from the shortage of clean seed and the lack of adequate storage facilities have already been discussed. Unfortunately these are not the sole factors impairing potato production (Table 21 ). Shortage of fertilizers and pesticides, which is mainly caused by the farmers' lack of finances, can have a strong impact on the planting time, frequency of planting (sequential panting) and the outcome of potato production. As costs for fertilizers are high and the prices for selling potatoes are low and strongly fluctuating between growing seasons, the amount of fertilizer applied relies on the importance of potatoes for income generation. In Mo lo, Naromoru and Sagana, where the importance of potato as a cash crop is higher compared to Abothuguci West, the rate of fertilizer application per planting season is increased. The expenses for input factors in potato production are highest in Molo where potatoes have the highest importance for the income generation.The use of insecticides is also highest in Molo (Table 28). The total share of farmers applying fungicides is slightly lower in Molo compared to the other regions (Table 26). Farmers in Molo tend to apply the more expensive Ridomil, rather than Dithane. Ridomil is more effective as it combines protective and curative substances (Gildemacher 2007), thus reducing the total number of applications to effectively control late blight. However, in Molo the total expenses for pesticides are expected to be higher due to the more humid and cool climate, which favours the occurrence and severeness of fungal diseases, and due to the prolonged cropping seasons. In general, if farmers were to use late blight resistant varieties, the necessity of fungicides could be reduced, thereby reducing the economic impact of disease control (Kaguongo 2008).Molo is the only region where farmers ranked the problem of potato blight over bacterial wilt, indicating high disease pressure. Bacterial wilt is influenced by the size of the arable land available per farming family, which was shown to be slightly higher in Molo than for Naromoru and Sagana (Table 24); eventually allowing for wider crop rotations. However, potatoes are intensively grown in Mo lo region and the cropping of potatoes occurs successively in the same fields. Potatoes left in the fields from the previous harvest could often be observed. As the actual incidence of bacterial wilt was not assessed, the fact that farmers in Mo lo, contrarily to the other regions see potato blight as a bigger problem must result from the higher incidence of the disease.As mentioned above a comparatively high share of farmers in Molo apply insecticides in their potato fields, which raises the expenses for input factors. However, the number of applications per planting season is lower than in other study regions (Table 29). Farmers in Molo mainly spray against cutworms and aphids, whereas aphids were considered as the most problematic and dangerous insect pest in potatoes. Potatoes are treated against cutworms at the beginning of the growing period when the plants are still young. Farmers mainly feared the aphids attacking potato plants during flowering, when they would usually spray insecticides once or twice (Table 23).Farmers in Sagana and Abothuguci West consider bacterial wilt as their major problem in potato production followed by potato blight and potato tuber moth in the second place. Unlike late blight there is no cure for bacterial wilt. Potato blight was not a major problem to farmers as it can be treated; unlike bacterial wilt, which has no chemical cure and can destroy large parts of a potato plantation. This is the main explanation why farmers ranked bacterial wilt before potato blight, even if the occurrence of bacterial wilt was less prevalent than the occurrence of potato blight. Usually farmers knew about the importance of crop rotation to prevent and reduce the impact of bacterial wilt, but they also pointed out that the lack of land was a restricting factor, allowing only short crop rotations. In terms of pest management farmers in these areas mainly control leafminer flies. As leafminer flies are hard to control farmers spray repeatedly for effective control. However, most of the farmers spray when they already see the mines; by then the infestation of the plant is already advanced. The most commonly used insecticide is Romectin which contains the active ingredient abamectin. Abamectin was shown to be very effective in the control of leafminer fly, while in the same time preserving best its natural enemies (Head 2003;de Freitas Bueno 2007).Potato tuber moth was solely mentioned to be a major insect pest in field and storage in Naromoru and Sagana. According to field observations this mainly relates to Naromoru where almost every field was found to be infested by potato tuber moth. Still, only one-fifth of the farmers controlled the pest using solely TataAlpha, which consists of the active agent alphamethrin. Also products containing dimethoate (Hill 2008), e.g. Danadim (systemic), and cypermethrin (Jiirgen Kroschel, personal communication), e.g. Alpha-Cyper (non-systemic), are adequate for the control of potato tuber moth. For prevention, insecticides should be applied in 14-days interval after detection of the first mines (Hill 2008).In Abothuguci West leafminer fly ranks second after bacterial wilt, which had been described to be influenced by the intensive use of the small areas of land. Despite the fact that almost all questioned farmers consider leafminer fly the most important insect pest a relatively small proportion actively tries to control them. This complies with the low expenses for input factors. Due to the small areas overall usage of fertilizer remains low.Concerning aphids the major problem that arises is the transmission of viruses (Were et al. 2003). Viruses were not mentioned by the farmers , indicating unawareness about the disease.Accumulation of viral diseases is mainly contributed to the low rate of seed renewal in the study areas (Gildemacher 2009b ).It can be concluded that insect pests are less serious than diseases. One reason might be that insects are not recognized to be a problem in potatoes. The lack of knowledge about insect pests can play a substantial role. Especially in the case of potato tuber moth farmers often have not recognized the presence of the insects in their potato fields before. In some occasions, when 106showing the symptoms of leave infestation of potato tuber moth to the farmers, they stated to have mistaken the symptoms with blight and mentioned that they usually spray fungicides when recognising the symptoms. On the other hand some farmers explained to spray against any insect when they see it. This again indicates how little knowledge farmers have regarding insect pests. The importance of diseases and pests is summarized and ranked in table (Table 48). The active ingredients of fungicides and insecticides used by the farmers are all either moderately hazardous (Class II), slightly hazardous (Class III) or not likely to cause serious hazard when used adequately, regarding the instructions for protection (WHO 2005). Pesticide labels are provided in two languages, English and Swahili, thus complying with the recommendations for labelling of the WHO (2005). The application frequencies of the pesticide, as mentioned by the farmers, in most of the cases were equal to those given in the respective application instructions. It can be criticized at this point that farmers only mentioned the given frequencies, but in reality spray less. It certainly depends on the cash available and the necessity regarding infestation severity. Nevertheless, if farmers would carefully read the instructions they might be more aware about the risks of chemical applications and would more likely wear and apply more effective protection measures. The clothes worn during application were mainly stated to be boots; followed by long trousers and shirts (Table 31). These pieces of clothing are generally available at home and do not have to be purchased. However, in many occasions people applying pesticides while wearing flip-flops were observed. Bathing and washing hands after spraying was also regularly stated to be applied. Whereby, most probably the procedure is reduced to washing of the hands, as facilities for showering are rare. Protection of the respiratory tract through the wearing of face masks and spraying according to the direction of the wind were relatively often mentioned; but in particular the former measure was not once observed throughout the study period, indicating that the usage is rare. Problems with the respiration and sneezing as well as headache after the application are major health problems occurring after spraying. Often farmers stated that the masks would be too expensive. Another reason might be that pesticide application is a duty, which is often left to temporary labourers and the farmers would not provide the mask for them. A widespread practice is the drinking of milk or tea with milk after the application of pesticides, as niilk is believed to reduce the negative effects of the pesticides.Farmers do not seem to be aware about the necessity of self-protection during pesticide applications and the negative effects of pesticides on health. Assuming that a higher percentage than half of the farmers actually use a face mask, the share of farmers who stated to have experienced health problems is quite low. One reason can be that those farmers spray seldom and in low quantities. Another one can be that the person questioned was not the person who in I reality applies the pesticide but is either carried out by an employer or another family member. Furthermore, farmers might not see the relation between the application of pesticides and health problems which occur later.Alternative control measures to pesticides are rarely applied and are restricted to crop rotation and the use of ashes in the store against potato tuber moth and in the field against bacterial wilt; albeit only in some cases. Latter is advised after removal of infected plants from the field (Gildemacher 2007). Best knowledge about IPM and natural enemies has been found in Naromoru and Sagana, where icipe research activities have been based for many years. In 2001 and 2001 Diadegma semiclausum Hellen a parasitoid of the Diamondback Moth (Plutella xylostella L.) (Wagener et al. 2004) has been released within these areas (icipe 2010). Before the release of the parasitoids farmers were trained and educated about the subject. It could be shown that the farmers ' awareness about natural enemies is relatively high in these areas. In contrast, farmers in Abothuguci West, another area of release shows a relatively small number of far:rrj.ers knowing about natural enemies. The same situation was found in Molo (Table 32 and 33).As described above it can be determined that leafminer fly and potato tuber moth are the most damaging insect pest in the surveyed areas. It is necessary, however, to draw the attention to the necessity of aphid-control, in order to avoid the transmission of viruses; the green peach aphid Myzus persicae (Sulzer) and the potato aphid Macrosiphum euphorbiae (Thomas) in particular due to their ability to transmit the virus Y (Kroschel 1995), but also white flies can transmit viral diseases to potato crops (Gildemacher 2007). Aphids were a particularly severe problem in Kamara and Molo (Table 47) where farmers take efforts to control the pest through the application of pesticides.A wide range of beneficial insects was identified in the potato cropping systems. Five different parasitoids of the leafminer fly (Table 35), twelve parasitoids of the potato tuber moth (Table 36), an abundance of parasitoids of aphids (Table 37), as well as various predatory ladybird species (Table 38) were found during the course of the study. The wide distribution of parasitoids can be attributed to the infrequent and moderate use of insecticides. As the majority of the parasitic wasps that were collected are yet to be identified, statements about the origin or areas of release of these parasitoids can rarely be made.It is possible that the population and diversity of arthropods was affected by the severe drought conditions that occurred in Kenya in 2009, as the arthropod diversity was generally low.Flight activity, field infestations and parasitisation of L. huidobrensisIn some regions of Kenya, L. huidobrensis is reportedly a significant insect pest in potato production. In Molo and Naromoru, the importance of L. huidobrensis was almost negligible; in Sagana field infestations were higher, although no serious damage to the potato crop could be observed. In Abothuguci West the impact is considerable and presumably leads to yield reductions. However, due to the short observation period and the exceptionally dry weather conditions in Kenya in 2009, the obtained results may not fully reflect the extent of L. huidobrensis impact under more normal weather conditions. It should be accepted that infestation levels and intensities during the first planting season and different weather conditions could be significantly higher.According to Weintraub and Horowitz (1996), the placement of the yellow sticky traps at a height of 30-60 cm, as was realized in the present study, was shown to be most suitable for the trapping of leafminer flies. In another study, carried out by Musgrave et al. (1975) it became apparent that the counting of mines and rearing of adults from samples is a more precise method for the estimation of leafminer fly population, compared to the use of yellow sticky traps, even though the rearing of leafminer flies and parasitoids from infested foliage is more time consuming. In contrast to the rearing of leafminer samples, the effectiveness of yellow sticky traps is strongly influenced by weather conditions, mostly rainfall and wind, which has a strong effect on the estimation of the actual population density at a given point of time. The authors further stated that the assessment of threshold levels in IPM programs could therefore be misleading. Further, the subsequent identification of the leafminer species trapped is hinder~d.However, in this study the qualitative assessment of leafminer flies aimed at assessing the abundance of leafminer flies in the study areas and showed good results in displaying the population activity.Due to the incomplete weather data provided by the Meteorological Department in Nairobi, it was difficult to make a founded statement about the influence of temperature and precipitation on the development of the leafminer fly population.For the interpretation of field infestation levels, special emphasis must be drawn the compari~on of infestation developments during 'field observation 1' (4-weekly observation of randomly selected fields, growth stages between 50 and 60) and 'field observation 2' (2-wee)dy observation of fixed fields, with increasing growth stage). The fields in which the flight activity of leafminer flies was observed with the help of yellow sticky traps approximately in the same growth stage as the fixed fields for regular observation. Placing the traps in young fields provided a reasonably long observation period without the need to replace the traps after harvest of the crop.Flight activity and foliage infestation both follow a similar development in fields at simHar growth stages, indicating a strong relationship between flight activity and field infestation. The leafminer fly population can only develop when a suitable host plant provides the necessary food source. The temperature, both daily minimum and maximum, and thus average temperatures, hardly changed during the observation period. In Sagana, daily minimum temperatures were quite constant (13°C-14.8°C) over the observation period, while maximum temperatures varied more (22.4°C-26.7°C). In Naromoru minimum temperatures hardly differed from Sag6.0). In moderately acidic soils, it established only when the soil was very fertile (e.g. at the Guba site). In this case, L. leucocephala has shown signs of poor persistence with plants dying in the first dry season. Moreover, it did not do very well under shade and was infested with psyllids. • Cut-and-carry as hedgerows, fence lines or blocks A major observation with shrub and tree legumes was their relatively slow establishment. This was aggravated by dry spells during the establishment period. Once established, shrub and tree legumes find good potential as cut-and-carry feed especially in the dry season when grasses and shallow-rooted herbaceous legumes dry up. They have potential for integration in smallholder farms as hedgerows or fences. Experience in the Philippines has shown that uncontrolled grazing is a common problem, thus using tree legumes as fences warrants considerable attention.The results of the evaluation yielded considerable information on what species have good chances of performing well in farmers' fields. It also gave insights on the attributes and weaknesses of potential species. This has led to identification of areas and issues for further development.The evaluation activity was able to point out the need of high yielding grass species (e.g. Pennisetum and Panicum) for nutrients to sustain production. It has also highlighted the sustained production of stoloniferous Brachiaria species despite low nutrient availability. Stylosanthes guianensis CIAT 184 was also notable in terms of performance in poor soils while A. gayanus performed relatively better than did other erect species in very acid soils.Another interesting finding was the potential of Paspalum atratum BRA 9610 and Setaria sphacelata var. splendida ex. Indonesia. These species are very leafy and have succulent stems as well as high yields. Farmers commented that these species were not itchy and were more convenient to cut, providing a good amount of feed from a small area.Another attribute shown by some species is good performance during dry periods. This is very important since feed availability in the dry season is a major problem of smallholder farmers. Varieties with good dry season performance were Andropogon gayanus CIAT 621, Brachiaria brizantha CIAT 26110, Calopogonium caeruleum and C. macrocarpum (CIAT 25522 and CIAT 5713). Finding a way to integrate these species in farmers' fields to provide feed during the dry season will be the next challenge. For example, establishing these species in mixtures with other species that do well in the wet season may be a good option.Another issue related to forage delivery system is the production of seed and planting material. Some grass species were difficult to establish from seed and vegetative material. An example is A. gayanus, which had low seed germination (primarily because the seeds are difficult to clean) and, at the same time had poor vegetative establishment. The species has a very strong root system and preparing rootstocks for planting was rather difficult. In other grasses propagated by rootstock, it was observed that those taken from old tillers had low survival. This therefore warrants development of simple and practical techniques of vegetative propagation. Seed production and seed collection were difficult especially for grasses. Lack of uniformity in seed ripening was a major constraint and, some species just did not produce enough good seed. This problem has to be addressed to enhance adoption and use of forages by a larger number of farmers. Some species tested mainly at IRRI showed good potential for seed production. These include Brachiaria ruziziensis and B. brizantha CIAT 6387. The former have been proven elsewhere to be a good seed producer, with uniform seed ripening and little shedding of ripe seeds. Brachiaria brizantha CIAT 6387 was observed to produce seed more than once a year. This is a considerable trait especially with Brachiaria species because they produce seed in the Philippines early in the wet season. With B. brizantha CIAT 6387, it is possible to harvest seed in the later part of the wet season, when rainfall is lower making harvesting easier. Another Brachiaria brizantha accession that was observed to produce seed late in the dry season was CIAT 26110.The issue of seed production can also be tackled by improving the methods of seed collection. This is important because aside from seed shedding, there are problems with birds and rats that feed on the seeds even before they are harvestable.Appendix 1. Results of soil analysis results at regional evaluation sites. Rating scale: 0=did not emerge, 1=poor, 2=moderate, 3=good, 4=excellent.Appendix 5. Yield of forages at regional evaluation sites in the Philippines. Appendix 6. Persistence of forages at regional evaluation sites in the Philippines. Farmer evaluation of forages in the Philippines: Progress, experiences, and future plans Most of the sites are upland, except for M'lang, Cotabato, which is rainfed lowland. The site in Davao is mainly under coconuts, while the others are planted mainly to annual crops. Soils are generally of the clay loam type, with pH varying from acidic to slightly acidic, and moderate to good fertility. Cagayan de Oro and Matalom have soils with pH higher than 7. All the upland sites vary in topography, from slightly undulating to steep. Altitude varies from less than 100 m to more than 500 m above sea level. Erosion is a problem at all upland sites. Matalom and, to a lesser extent, Cebu are prone to typhoons during the rainy season.All sites have farms that are crop-based, but livestock play a vital role as source of draft power and cash income. Often, maize is the major food and rice is cultivated in valleys or flat areas. Farmers in M'lang and Carmen plant fruit tree, crops, rubber and sugarcane. Fruit crops, vegetables, and ornamentals are cultivated in Cebu and Davao. Farmers in Cagayan de Oro and Malitbog plant banana as a cash crop. Farmers in all sites (except those in Matalom) use fertiliser.The sale of crops and livestock is a major source of cash income in most sites, except in Matalom where food crops are mostly for subsistence and farmers gain income from sale of other products like toddy, bamboo, etc., as well as remittances received from household members working off-farm. All the sites experience an increase in area devoted to crop production, thereby reducing the grazing areas available for ruminants.All farmers raise carabao, cattle, and goats. Carabao and cattle (only in Cagayan de Oro and Malitbog) are used as draft animals except in Davao where farmers rely more on tractors. Goats are popularly raised for cash only in M'lang. In all sites, except Cebu and Davao (dairy animals), ruminants are tethered in vacant areas to graze on native vegetation with basically minimal or no supplementation.Farmers in Davao raise dairy cattle. These animals are stall-fed and are provided with commercial feeds and cut herbage. Some farmers in Davao also practice semicommercial poultry production. Farmers in Cebu also practice stall-feeding with forage but not commercial concentrates. Table 4 shows a summary of the problems identified by farmers and those addressed by on-farm activities in the respective sites. Insufficiency of feed was a problem cited in all sites. This was the result of increased animal population and more area being devoted to crops. Unavailability of feed was a problem especially in the dry season in most sites.In M'lang, lack of feed persists during the cropping season, when most areas are planted to crops. Soil erosion, despite being evident in all upland sites, was recognized as a problem only in Malitbog and Davao.In most sites, farmers considered the feed unavailability problem to have just started. Consequently, most farmers (except in Cebu) still have access to other farmers' grazing area and restrictions have not been implemented. Thus, in most sites, uncontrolled grazing becomes a big problem for farmers who have tried to establish forages. In addition, farmers in Cagayan de Oro, Malitbog, Davao, and Carmen reported an increase in unpalatable weeds in the grazing areas, pointing out that some degree of overgrazing has occurred.Farmers in Davao expressed a need for adapted forages. These farmers have tried establishing plots of Napier grass for their dairy cattle. They observed that this species was not able to persist under their management system (cut-and-carry with some degree of uncontrolled grazing).Farmers in the sites have evolved some coping mechanisms in times of feed unavailability. These include taking the animals to far-away areas to graze and gathering tree leaves, banana trunks, and green forage as feed for animals.More details on the results of the PDs are included in Appendix 2.Activities vary in terms of nature and time (Table 5). The basic procedure involves consulting the farmers (PD and planning), followed by the establishment of initial testing and multiplication area, and then individual testing by farmers. In between these stages, field days, trainings, and cross-visits are done. Regular meetings with farmers provide a venue for sharing experiences (participatory evaluation) and are a means for maintaining the initial testing area. Likewise, visits to farmers were done to gather feedback. Communal -formalField daysGrasses for cut-and-carry -in hedgerowsTechnicians and farmers together decide on what species and what option to test. 2 Farmers chose the species and option by themselves. 3 To be started.The initial testing and multiplication areas were established and managed by farmer groups. The decision on which species to try is made after consultation between collaborators and farmers. These areas were very useful for conducting field days and trainings. Farmers look at the species and decide for themselves which ones they would like to try individually. There were some cases when farmers and collaborators agreed to collaboratively set up more formal forage experiments, testing them for a certain option. This usually involves key farmers who test a range of species for a specific purpose. These experiments are used not only for the purpose of demonstration but also as basis of comparison among species. These farmers live far from the initial testing area and are requested to join when farmers in nearby areas choose only a limited range of species. The major criteria for selecting farmer-cooperators were their interest and the availability of their areas to try out the forages. Whenever possible, innovative farmers who possess leadership skills and good communication abilities were chosen.Planting materials were distributed either during field days or upon individual requests. The latter seems to lead to better establishment, since the farmer is usually ready at the time he makes the request for planting materials. This was done in cases when farmers wanted a large amount of planting materials.On the other hand, farmers always ask for planting materials during field days. In such cases farmers are advised to prepare an area before the field day. Otherwise, they request the farmers to plant a few hills near their house, later to serve as source of planting materials if farmers want to expand forages on their farm.More details on the activities at each site are shown in Appendix 3.The pace and progress of on-farm work varied between sites because of the different starting times of the activities. Sites that started early are already into individual farmer testing and into trainings and field days as well as participatory evaluation of most forages except legume trees (still in nursery). On the other hand, sites that commenced on-farm work more recently are still in the initial testing and multiplication stage. Sites that began work between these two periods are in the process of maintaining their initial testing areas as well as finding more farmers to test the forages.In sites that started early, a major proportion of the work consists of informal testing with individual farmers since the more formal initial testing and multiplication areas (Matalom, Cagayan de Oro and Malitbog) have already been established. The other sites are still in the more formal stage of initial evaluation and multiplication.Collaborators observed that it takes time for establishing forages with farmers. Factors like farmer availability and occurrence of dry periods often slow down the process despite frequent visits and careful scheduling.Farmers, who have a strong need for forages, are the ones who establish forages , first; they even approach the technicians and get their planting materials ahead of their scheduled date. On the other hand, there are farmers who get planting materials only because of peer pressure. And then there are also the 'wait-and-see' types of farmers. Farmer visits, field days, trainings, and cross-visits were very useful in sustaining the interest of farmers. During these activities, farmers and technicians share ideas, learn from each other, and plan activities.It was also observed that more farmers who obtained planting materials come from places where livestock dispersal programs exist. This implies that forage technology development would be facilitated if implemented with a livestock improvement program. Moreover, successful forage establishment was facilitated in cases where strong farmer organizations exist. The existence of alayon (mutual help groups) was a big factor in the rapid establishment of forages in individual farmers' fields. The same factor was instrumental in the establishment and maintenance of the initial testing and multiplication plots.Farmers reacted well to the participatory approach. They felt involved and free to choose whatever species, options, and establishment method they wanted. Involving these farmers in field days and in training other farmers has been beneficial for both trainees and trainers as well.In establishing a structured forage set-up farmers thought that establishment of forage mixtures as designed by technicians was complicated. This aspect has to be considered when establishing species mixtures on-farm.In terms of individual forage species, farmer preferences varied with sites. At the early stages (initial testing and multiplication), farmers tended to prefer species which grew well and showed good yield potential. Their major criteria were adaptability to local conditions and ability to provide an adequate amount of herbage.When farmers tested forages on their own farms and started to feed them to their animals, new criteria surfaced. For grazing species, farmers realized the value of grazing tolerance, ability to spread and produce ground cover, and palatability to animals. For instance, Matalom farmers found B. humidicola to spread fast, to tolerate close grazing, and to be palatable.Arachis pintoi was found to thrive well under shade, making it useful as a cover crop (in Cagayan de Oro and Cebu) and was palatable to rabbits (in Davao). A farmer in Malitbog observed improved egg production when his ducks started feeding on A. pintoi.Farmers favoured tall and upright grasses like Napier (King, cv. Mott and Florida), P. maximum, Setaria sphacelata var. splendida, Brachiaria brizantha and B. decumbens as cut-and-carry species because of their good yield and palatability. In addition S. sphacelata var. splendida was found to have good regrowth/tillering ability and good tolerance for occasional flooding and did not cause itchiness when cut.Two farmers in Malitbog (P. maximum CIAT 6299) and the farmer group in Cagayan de Oro (Napier grass) evaluated the effect of fertilisation on the cut-and-carry species. They observed that yield was increased and they were able to take cuttings as frequently as every 2 weeks.Brachiaria brizantha CIAT 6780 was observed to be affected by Rhizoctonia (or Cercospera?) in some sites. A rare case of bacterial and fungal infection occurred in upright grasses like Napier, B. brizantha and P. maximum CIAT 6299 at the initial testing and multiplication area of Matalom. The case occurred in the dry season with the species left uncut for a long time. The symptoms were alleviated and did not recur at the start of the wet season and thereafter.Farmers have also observed that legumes like Centrosema pubescens and Stylosanthes guianensis 184 were not as palatable to animals as grasses. These cases were noted when these species were planted side by side with grasses. Moreover, these legumes were found to have low persistence under heavy grazing. In addition, farmers observed that Desmodium heterophyllum CIAT 349 and Arachis pintoi did not persist when weeds dominated them.Farmers favoured legumes like Stylo 184, Desmanthus virgatus, and Desmodium cinerea because of their good growth, palatability, and yield. These species have been tried and found suitable as hedgerows in some sites.As of this stage, most individual farmers are still planting the species in small plots (either in blocks or short hedgerow lines) either near their houses or in portions of their farms. The species are either grazed or cut and fed to animals from time to time.A farmer in Carmen planted Napier near a spring that supports the community's water needs. He observed that since the forages were planted, the well did not dry up as quickly during dry season and it did not become flooded with muddy water in the wet season.Other upright grasses (Napier grass) and shrub legumes (D. virgatus) were also planted as live fence. Arachis pintoi was established by a farmer in Cagayan de Oro in her yard and became a good lawn material. A farmer in Cebu also planted this species as a cover crop for his grapes. Both are now expanding their planted area.Many farmers have started expanding the areas planted to forages. These are mostly cut-and-carry species.Participatory evaluation (PE) has been done in most sites especially in the initial testing and multiplication area. Farmers observed the species and commented on their performance.In some sites where individual testing has been done, farmers' observations of the forages that they established were also taken. An open-ended evaluation method was used.Farmers' comments varied, depending on whether they have planted and used the species in their own farms. Most comments of farmers who have not used the species were just perceptions on how good and useful the species are. The perceptions are usually related to their previous experiences with native species and what they have heard during training. For instance, it is not unusual to hear comments about the usefulness of a species (Leucaena diversifolia) in providing firewood and improving soil fertility even at the seedling stage.In evaluations at this stage, the most useful information is the farmers' criteria for choosing the species that they want to adopt. These are 'high herbage yield that gives plenty of feed even from a small area' or 'the good adaptation of the species because of its good growth'. Similarly, insights on how farmers could integrate forages in their farms are also obtained. Comments like 'this species can be used for hedgerow/fence' provide ideas on how farmers may utilise different species.On the other hand, evaluation of farmers who have established the species themselves can give information on the characteristics related to the utilization of a particular species. This includes information on regrowth ability, itchiness when cutting, persistence, reaction to utilization, as well as palatability and effect of forages when fed to animals.There is still a need to gain more experience and skills in evaluation techniques such as probing and asking questions as well as getting farmers' criteria in selecting a certain species. In the process of evaluation, many things can happen and the person handling the evaluation must know how to deal with the situation. These skills can only be obtained by practice, reflection, and training. Every evaluation session is different from another.In working with forages on-farm, a major issue is the production and handling of seeds. At this stage, most forage establishment is done using vegetative planting materials. The problem is exacerbated by the fact that there is no existing commercial market for forage seeds in the Philippines. Moreover, seed production attempts at the farmers' level have not been successful. Greater attention must be given to seed production research to induce rapid adoption of forages.Appendix 1. Detailed Description of FSP Sites in the Philippines.General description of the area • Guba is located in the uplands of Cebu, central Philippines ( 10o 25' N). • Average annual rainfall is about 1495 mm, with peak rainfall from June to December.Considerable rains (>50 mm) are experienced throughout the year. • Soils are sandy clay and moderately fertile with pH varying from 4.8 to 6.5.• It is an upland area consisting of slightly rolling to steep hills.• About 50% of the area (slightly rolling to moderately steep) is used for cropping (maize, vegetables, and flowers) and agroforestry while steeper areas are either used as tree farms (mangoes, fruit trees, and forest species). There are few areas with native vegetation which are used as pasture land.• Farmers in Guba have been cultivating their areas since 1945 when the area was forested. These farmers were traditional suppliers of vegetables and flowers for Cebu City. • There are two dominant upland farming systems: purely cropping and agroforestry (contour hedgerows and trees inter-planted with crops). Livestock are also kept to support cropping as well as a source of income and food. • They grow maize (basically for home consumption) as well as cash crops like flowers, vegetables, and fruits like mangoes. Forest tree species like Gmelina are likewise grown in small tree farms. Commercial and organic fertiliser application is a common practice. • Almost all of the farmers (90%) keep livestock for draft (carabao), cash income, and food for special occasions. These animals are either owned or availed of from dispersal programs. The predominant production system is breeding or reproduction. Few farmers attempt to fatten cattle for slaughter. These animals are marketed through middlemen who purchase them on a per head basis. • Ruminants are mainly stall-fed with cut-and-carry herbage from hedgerows and vegetation around the farm with some grazing within the farm area. Due to limitations in area, farmers do not allow other animals to graze in their own farm. Inputs like de-wormers and veterinary medicine are used. Commercial feed supplements are not used. • Farmers in the area are either owners or tenants in the farms.• Cropping system shifts from monocropping to intensive farming (agroforestry integrating livestock). Livestock management is gradually changing from purely grazing/tethering to stallfeeding.General description of the area • Matalom is located on the southwest coast of Leyte island, Central Philippines (10o17' N).• Average annual rainfall is about 1972 mm, with peak rainfall from June to December. Considerable rains (>50 mm) are experienced throughout the year. The area is prone to typhoons that occur between June and December. • Soils are clay loam and moderately fertile. Two types of soil exist in the area: a) acid soils (pH 4.5-5.5, low P, and high Al saturation) and b) calcareous soils (pH >7). • It is an upland area consisting of rolling to steep hills. Slightly rolling areas have acid soils and form the dominant landscape (47% of total area), covering the coastal portion and lower elevations (up to around 100 m asl) while calcareous soils are in the steeper and higher altitude areas (up to 300 m asl) inland. • The flat areas near the coast are used mainly for rice production. Most of the sloping areas are used for upland cropping under a crop-fallow rotation system. The system involves cropping for a few seasons before the area is left fallow to regenerate soil fertility. During the fallow period, these areas become dominated by native vegetation and are used as common grazing areas for livestock. In the steeper slopes which are not suitable to grazing, fallow areas are often dominated by trees (predominantly Leucaena leucocephala) which are used for firewood. Sloping areas are planted to upland crops during the cropping period while valleys, where water catchment is possible, are planted to rainfed lowland rice. There is a recent increase in irrigated areas in the slightly sloping portions where irrigation is possible.• Farmers in Matalom have been cultivating their areas since 1910 when the area was forested.Upland crops are planted. • The dominant farming system in the sloping areas is upland cropping with livestock being kept to support cropping as well as a source of income and food. Valleys and water catchment areas are used for rainfed lowland rice. • The slightly sloping and undulating acid soil areas are planted to upland rice, sweet potato and peanut. The higher calcareous areas are planted to maize and root crops such as sweet potato, yam, and gabi. Rainfed rice is planted in valleys both in the acid soil and calcareous areas. Most of the produce is used for home consumption with little surplus sold. • Almost all farmers keep livestock for draft (carabao), cash income and food for special occasions. These animals are either owned or availed of under local sharing arrangement (alima). The predominant production system is breeding or reproduction; fattening for slaughter is not practiced except for swine. These animals are marketed through middlemen who purchase them on a per head basis. A farm household usually raises 1-2 heads of carabao or cattle. Commercial de-wormers and veterinary drugs are sometimes used. • There is a recent move toward agroforestry in the upland areas. The area being irrigated is also increased with the initiative of the local government. • Sale of products from bamboo, coconut toddy, small stores, abaca and remittances from household members working in Manila or abroad are primary sources of income. Sale of livestock, especially cattle, is the secondary source of income.General description of the area • Pagalungan is located in Misamis Oriental Province in the Mindanao Region. Farms are generally hilly (up to 50% slope) with reasonable soil fertility. Upland management includes cultivation of coconut, abaca, and upland rice. The plain valley, on the other hand, is cultivated for coconut, rice, and banana. • Soil pH ranges from 5.1 to 8.8; the lower limit of the range is more common while the upper limit occurs in eroded areas. Soil type is clay loam. Altitude is 185 m asl.• The area has two types of climate: type 2 = no dry season with a pronounced maximum rainfall from Nov to Jan and type 3 = relatively dry from Nov to Apr and wet for the rest of the year. Average annual rainfall is 1500.87 mm.• Pagalungan is 19 km from the capital of Misamis Oriental which is Cagayan de Oro. The area is hilly with vast expanses of uncultivated bushlands and grasslands (cogon). About 80% of the people belong to the Higaonon tribe, native to the place but assimilated to lowland culture. • There are more than 850 ha of public timber and only 192 ha of alienable and disposable land.• Maize constitutes the main product of 90% of the farm families. Only 7% rely on coconut as a major source of income. Root crops and bananas are regular crops. Patches of flat and lightly rolling country are suitable for a variety of crops such as pineapple with pasture intercropped.There are only a few work animals. • Livestock ownership varies among species: carabao and horse are 100% owned; cattle is 75% owned, 15% on loan coming from the Cattle Breeding Program funded by PPAEP, and 10% from the Cattle Dispersal Program funded by the City Vet; and pigs and goats are 90% owned. • Animals are tethered among native vegetation in vacant areas; some are left to graze along the road, river, or under coconut trees with minimal or no supplements at all (farmers use corn bran). Only a few farmers practice cut-and-carry. • Farmers are now integrating forage into their farming system. Others increased the number of their livestock due to the good performance of their animals.General description of the area • Malitbog is located in Bukidnon which is a landlocked province in the central part of northern Mindanao. • It is predominantly an agricultural province with about 38% of the total land area devoted to agricultural crops, livestock/poultry, and vegetables. With rich fertile soil, big processing/manufacturing firms put up large-scale plantation-type farms in the area. • Wet season occurs from June to October with an average annual rainfall of 1826.15 mm. • Soil has a pH range of 5.6 -6.5 and has three major soil types: clay loam, sandy loam, and loam.• Brgy. San Luis ,Malitbog, Bukidnon, located at 700 m asl, was formerly inhabited by natives (Bukidnons). With an estimated land area of 38,867.75 ha., farming (90.2%) is the major source of income. This is followed by employment in government (2.5%), private firms, (2.2%), and self-employed (1.9%). • Maize, rice, banana, coffee, coconut, a variety of root crops, and vegetables are the major crops planted by farmers while cows, carabao, chickens, pigs, horse, ducks, and goats are being raised in the municipality as draft animals (carabao), for market (cattle, chicken) and for home consumption (chicken). • 95% of the farmers are keeping livestock. Ruminants are usually tethered. But now, it can be observed that cut-and-carry is being done specially in pilot areas. There are still farmers though with large areas who are still not concerned with forage cropping. Corn bran feeding is done during the bumper harvest of corn in the months of August-September and November-December.General description of the area • Riverside is located in Calinan District (7o05' N), Davao City in the island of Mindanao.• Average annual rainfall is 2215 mm with peak rainfall from May to October. Considerable rains (>50 mm) are experienced throughout the year. • Soils vary from silty loam in the flat areas to clay loam in the higher areas. In the upland areas, soil pH is around 5.1-5.6. Drainage and fertility are good. • The barangay is located at an elevation around 175 m asl. Topography is generally rolling in the upper portions and flat in the valleys and lower portions. • Most of the area is used for agricultural purposes (97%). Only a small portion (3%) is used for residential and other purposes.• Farmers in Riverside settled in the area from as early as 1965. Majority were settlers from the Visayas while the rest were from Luzon. The area was originally forested. As early as 1940s, the natives and the Japanese were already practicing agriculture in the area. The Japanese introduced abaca cultivation while the natives were cultivating food crops. The abaca was later wiped out with a disease. This paved the way for cultivation of other crops. In 1965, the area was offered to settlers who then settled and cultivated the land. • Upland farming with high-value cash crops is the dominant system. Small flat areas have irrigation and are planted to lowland rice. Vacant lands are used as common grazing areas. • Most of the flat portions in the area are planted to rice or vegetables. Areas near the house are used for flower production. The sloping areas are often planted to coconut and other fruit trees.Maize is planted either as intercrop to coconut or in the open. Fertilisation and use of chemical inputs are widely practiced.• Livestock raised include carabao, cattle (both beef and dairy), goats, swine, chickens and ducks. Almost all farmers keep livestock for draft (carabao to a little extent due to presence of tractors), cash income, and food for special occasions and domestic consumption. These animals are mostly owned except for dairy and Brahman beef cattle, which are obtained as loan from a government program. The predominant production system is breeding or reproduction fattening for slaughter is not practiced except for swine and broiler poultry. These animals are marketed through middlemen who purchase them on a per head basis. There are fewer carabao than cattle in the area because of availability of tractors for ploughing. Dairy cattle are intensively managed for milk production (complete with commercial and homemixed concentrates, supplements, and biologics). Beef cattle and carabao are managed to a lesser extent, with minimal supplementation; however, veterinary medicines and de-wormers are also used.• Ruminants except dairy cattle are mainly tethered in vacant areas to graze on native vegetation. Supplementation is seldom practiced. No commercial feed supplements are used; only cut forage and other available crop residues. On the other hand, dairy cattle are stall-fed with cut forages and provided with commercial supplements and concentrate (either homemixed or purchased as premix). • Almost all of the farms are owned by the farmers themselves.• Tractors replaced carabao for draft. With the expansion of dairy production and the use of vacant areas for high-value crops, availability of grazing space has decreased. Commercial poultry and swine operations as well as conversion of some areas for commercial or industrial purposes are also evident. • Sale of agricultural products (coconut, milk, and other farm products) is the primary source of income. Working in the city as well as in other farms is the next major source of income.General description of area • Malagos is located in Bagio District (7o05' N), Davao City in the island of Mindanao.• Average annual rainfall is 2215 mm with peak rainfall from May to October. Considerable rains (>50 mm) are experienced throughout the year. • The soil is clay loam, generally fertile, and well drained with good texture. Soil pH is around 5.2-5.6. • The barangay is located at an elevation around 354 m asl. Topography is generally rolling to steep in the upper portions and flat in the valleys and lower portions. • Most of the area is used for agricultural purposes (82%). Only a small portion (18%) is used for residential, resort, and government reserve purposes (basically the highest part which is a forest and watershed of Davao City).• The present farmers in Riverside settled in the area as early as 1970. Majority came from Visayas while the rest were from Luzon. The area was originally forested. Since the early 1940s, the natives and Japanese were already practicing agriculture in the area. The Japanese introduced abaca cultivation while the natives were cultivating food crops. Abaca was later wiped out with a disease (1950s). This paved the way for cultivation of other crops. In 1970, the area was offered to settlers who then settled and cultivated the land. From the late 1970s to the 1980s, most of the area was abandoned due to unstable peace and order situation. However, when the situation stabilized, a greater number of farmers came and settled in the area.• Upland farming with high-value cash crops is the dominant system. Commercial poultry and swine production is likewise practiced. Small flat areas have irrigation and are planted to lowland rice. Vacant lands are used as common grazing areas. • Most of the flat portions in the area are planted to rice or vegetables. Areas near residences are used for flower production. The sloping areas are often planted to coconut and other fruit trees. Maize is planted either as intercrop to coconut or in the open. Fertilisation and use of chemical inputs are widely practiced.• Almost all of the farmers (96%) raise livestock --these include carabao, cattle (both beef and dairy), goats, swine, chickens, and ducks. Almost all of the farmers keep livestock for draft (carabao to a little extent due to presence of tractors), cash income, and food for special occasions and domestic consumption. These animals are mostly owned except for dairy and Brahman beef cattle, which were loaned from a government program. The predominant production system is breeding or reproduction fattening for slaughter is not practiced except for swine and broiler poultry. These animals are marketed through middlemen who make purchases on a per head basis. There are fewer carabao than cattle in the area because availability of tractors for ploughing. Dairy cattle are intensively managed for milk production (complete with commercial and home-mixed concentrates, supplements, and biologics). Beef cattle and carabao are managed to a lesser extent, with minimal supplementation; however, veterinary medicines and de-wormers are also used. • Ruminants except dairy cattle are mainly tethered in vacant areas to graze on native vegetation. Supplementation is seldom practiced. No commercial feed supplements are used; only cut forage and other available crop residues. On the other hand, dairy cattle are stall-fed with cut forages and provided with commercial supplements and concentrate (either homemixed or purchased as premix). • Majority of the farms (70%) are owned by the farmers. The rest are either tenanted or under lease. • There is a recent change from carabao to tractors as source of draft power. With expansion of dairy production and use of vacant areas for high-value crops, grazing space availability has decreased. Commercial poultry and swine operations as well as conversion of some areas for commercial or industrial purposes also occur. • Sale of agricultural products (coconut, milk, and other farm products) is the primary source of income.General description of area • Carmen is located in the north-western part of Cotabato province (7o17' N) in the island of Mindanao.• Average annual rainfall is 1593 mm with peak rainfall from May to November. Considerable rains (>50 mm) are experienced throughout the year. • Soils are clay loam with pH around 6.5 and of good fertility.• The southern portion is somewhat flat, and gradually becomes rolling, then steep, as one goes to the north. • Most of the area is used for agriculture. There is still a small forest in the municipality. Only a small portion is used for residential and commercial purposes. The flat areas are planted to rice (especially irrigated) and maize. Rolling areas are planted to maize and upland rice.Steeper areas are used for rubber and other plantation crops.• Farmers in Carmen settled in the area as early as 1940. Majority were settlers from Visayas while the rest were from Luzon. There are also some natives in the area. The area was originally forested. The settlers and loggers started clearing the area and paved the way for settled cultivation. • Upland farming is the dominant system. Small flat areas have irrigation and are planted to lowland rice. Vacant lands are used as common grazing areas. • Maize and upland rice are the dominant food crops in the upland area. Rubber, cotton, mungbean, peanut, coffee, banana, coconut, and mangoes are also cultivated. Rice is the sole crop in irrigated areas. Fertiliser and chemicals are applied to all these crops. • Majority of the farmers (75%) raise livestock. These include carabao, cattle, goats, swine, chickens, and ducks. Almost all farmers keep livestock for draft (carabao), cash income, and food for special occasions and domestic consumption. These animals are either owned or availed of under a local sharing arrangement. The predominant production system is breeding or reproduction. Fattening for slaughter is not practiced except for swine. These animals are marketed through middlemen who purchase them on a per head basis. A farm household usually raises 1-2 heads of carabao or cattle and a few heads of goat. Commercial dewormers and veterinary drugs are sometimes used. • Ruminants are mainly tethered in vacant areas to graze on native vegetation during the day and then they are kept near the house at night. Supplementation is seldom practiced (usually only done for draft animals during periods of peak utilization). No commercial feed supplements are used, only cut forage and other available crop residues. • Presently, some areas which were once vacant or planted to maize have been converted for planting of sugarcane and other high-valued crops (e.g. durian, mangoes, rambutan, and others). This change has also caused a decrease in grazing/tethering area for livestock. • Sale of agricultural products (both crops and livestock) is the main source of income. Running small businesses like stores and acting as middlemen in the sale of agricultural products are secondary sources of income (15 % of households).General description of area • M'lang is located in the south-eastern part of Cotabato province (7o10' N) in the island of Mindanao. • Average annual rainfall is 1593 mm with peak rainfall from May to November. Considerable rains (>50 mm) are experienced throughout the year. • Soils are clay loam pH ranging from 6.5 to 7.0 and of good fertility.• The town has the widest flatlands in the Philippines (38,900 ha).• Most of the area is used for agricultural purposes (77%). The rest are either used as fishponds (15.57%), institutional areas, residential, commercial, and road areas.• Farmers in M'lang settled in the area in the early 1930s. Majority came from the Visayas (Panay Island) while the rest came from Northern and Central Luzon (Ilocos, Pampanga).There are also some ethnic groups/natives in the area. The area was originally forested. The settlers themselves started clearing the area and paved the way for settled cultivation. • Rainfed farming is the dominant system, representing two-thirds of the total agricultural area.The rest is irrigated rice area which is located near two major rivers. Freshwater fishponds are also common. • Rice is the dominant crop in both irrigated and rainfed ecosystems. In the rainfed area, the other crops planted include rubber, sugarcane, coconut, banana, fruit trees, and coffee. All crops are fertilised and food crops are raised both for commercial and household consumption. • Livestock raised include carabao, cattle, goats, swine, chickens, ducks and turkeys. Almost all farmers keep livestock for draft (carabao), cash income, and food for special occasions and domestic consumption. These animals are either owned or availed of under a local sharing arrangement. The predominant production system is breeding or reproduction fattening for slaughter is not practiced except for swine. These animals are marketed through middlemen who purchase them on a per head basis. A farm household usually raises 1-2 heads of carabao or cattle and a few heads of goat. Commercial de-wormers and veterinary drugs are sometimes used. • Ruminants are mainly tethered in vacant areas to graze on native vegetation. Supplementation is minimal (usually only done for draft animals during periods of peak utilization). No commercial feed supplements are used; only cut forage and other available crop residues.During the dry season, when native vegetation for grazing becomes scarce, farmers cut and carry native grasses and tree leaves for feeding. A similar practice is done while the rice crop is growing due to limitations in grazing area. • Sale of agricultural products (both crops and livestock, especially goats), working as hired labourers (both agricultural and non-agricultural) and remittances from household members working in Manila or abroad are primary sources of income.Appendix 2. Results of Participatory Diagnoses at FSP sites in the Philippines.• Attendance : The 24 farmers participating in the PD were members of alayon groups coming from Barangay San Salvador, Matalom, Leyte. • Problems identified by farmers :1) Lack of feed during dry season caused by the limited grazing area and insufficient knowledge of new technologies; 2) poor animal nutrition and performance leading to low productivity (parasite/disease susceptibility especially in carabao; underweight and overworked animals) 3) uncontrolled grazing.• Coping mechanisms:1) Bringing animals to faraway places for grazing 2) Using tree leaves and banana trunks for feed when all the native vegetation dries out 3) Consulting livestock experts regarding animal diseases and giving supplementary inputs to animals; 4) Getting exchange/hired labour to help in land preparation • Decision: The farmer group agreed to work with FSP to evaluate forages for cut-and-carry and for grazing on their own land. First, they will try the species as a group. The results of the group activity will be used to decide which species the farmers will try individually. The species they plan to test will include those that can be used as hedgerows and fence lines.• Attendance: The 26 farmers participating in the PD were members of existing farmer associations (Tribal and Settlers Association, Women's Association) in the barangay. Some barangay officials likewise attended the meeting. • Problems identified by farmers :1) Lack of feed especially during the dry season 2) Increase in unpalatable weeds (especially Chromolaena odorata) in existing grazing areas 3) Insufficient feed due to increase in number of animals and areas devoted to cropping 4) Uncontrolled grazing • Coping mechanisms:1) Use of cut-and-carry native forages existing near rivers and waterways as well as using banana trunks and rice bran for feeding during the dry season 2) Grazing in vacant areas owned by other farmers 3) Establishing their own forage areas -only a few; problem of illegal grazing and decline of forage productivity • Decision: The farmer groups agreed to test the species for cut-and-carry and for grazing. The plan was to try out as a group first. The results of the initial trial will be the basis for selecting species for individual farmer testing. The species for testing also include those which could be used as fence lines, cover crops/weed control, and contour hedgerows.• Attendance: Three participatory diagnoses were done involving members of farmer associations (rural improvement clubs [women's groups] and cooperatives) in sitios within Barangay San Luis, Malitbog, Bukidnon. These farmers were beneficiaries of the animal dispersal programs of the Department of Agriculture (either goat or cattle). • Problems identified by farmers:1) Lack of food for the household due to low production and income 2) Low crop production due to surface runoff 3) Soil erosion 4) Insufficient quality and quantity of feed due to limited area for grazing brought about by an increase in cropping area 5) Increase in unpalatable weeds (especially Imperata cylindrica) in existing grazing areas 6) Uncontrolled grazing • Coping mechanisms:1) Establishment of contour hedgerows using forages and stones 2) Adopting multi-cropping technology (banana-maize-vegetable) 3) Planting of other food crops like banana, ubi, gabi, and sweet potato 4) Tethering animals in faraway areas 5) Establishing forages in marginal areas and small plots near houses 6) Cut-and-carry system for native forages and trees existing near rivers and waterways as well as using banana trunk and rice bran as feed during the dry season 7) Grazing in vacant areas owned by other farmers • Decisions: The farmer groups agreed to test the species for cut-and-carry and for grazing. The plan was to establish forages both in individual and common farms with the help of the whole group (alayon).• Attendance: The 26 farmers who participated in the PD were members of a cooperative coordinated by a non-government organization (Gagmayng Kristohanong Katilingban-Kidapawan Diocesan Federation of Cooperatives). • Problems identified by farmers:1) Lack of feed due to increase in cropped area, number of animals, and number of unpalatable weeds 2) Poor animal performance due to feed scarcity 3) Lack of feed specially during the dry season • Coping mechanisms:1) Planting of forages such as Napier grass, Desmodium cinerea, and Flemingia macrophylla; 2) Using stunted maize plants to feed the animals.• Decisions of the farmers will test different forage species for grazing and cut-and carry. They will at first establish and manage the evaluation in a common farm as a group. The results of the initial evaluation will be the basis for selecting the species that will be tested individually.The area shall therefore serve as initial multiplication and testing site. The species that they plan to test will include those which can be used as hedgerows and fence lines.• Attendance: The 24 farmers who participated in the PD came from different barangays around Pag-asa, M'lang, Cotabato. All were members of cooperatives coordinated by a nongovernment organization (Gagmayng Kristohanong Katilingban-Kidapawan Diocesan Federation of Cooperatives). • Problems identified by farmers:1) Lack of feed due to increase in cropped area and in numbers of animals 2) Lack of feed in the dry season and during the rice cropping period 3) Occurrence of diseases in animals (diarrhoea, respiratory symptoms, liver fluke) • Coping mechanisms:1) Cut-and-carry native forages whenever feed is scarce (especially during rice cropping season)2) Grazing in vacant areas owned by other farmers 3) Uncontrolled grazing • Decision: The farmer groups agreed to test species for cut-and-carry, grazing, as well as those that can be used as relay crops for rice (during dry season). Some of these species were useful as fence lines. The plan was to try out as a group first. The results of the initial trial will be the basis for selecting species for individual farmer testing. One of the cooperatives located in the common testing area was assigned to maintain the plots but all the other cooperatives were to help in the planting and in the evaluation. The initial evaluation area was also intended to serve as source of planting materials for individual testing.• Attendance: The 16 farmers participating in the PD were members of either small coconut farmers' organization (SCFO) or a dairy cooperative or both. Barangay officials likewise attended the meeting. • Problems identified by farmers:1) Diseases and low market price of crops and livestock 2) Decreasing feed supply due to increase in cattle population and cropped areas 3) Increase in cost of concentrate feeds for dairy animals 4) Unavailability of adapted and productive forages 5) Lack of capital for proper establishment of forages 6) Increasing need of fertiliser for crops 7) Uncontrolled grazing • Coping mechanisms:1) Grazing in vacant areas owned by other farmers 2) Maintaining a manageable number of animals by selling and sharing excess animals 3) Establishing their own forage areas -only a few; problem of illegal grazing and decline of forage productivity • Decision: A field day was conducted after the PD. The farmers made a list of species they would try in their area. The plan is to try out as a group first. The results of the initial trial will be the basis for selecting species for individual farmer testing. The species farmers wanted to test include those that were useful for grazing, cut-and-carry, and as cover crops under coconut. The initial testing area shall serve as source of planting materials for individual farmer testing.• Attendance: The 10 farmers who participated in the PD were members of either a small coconut farmer organization (SCFO) or a dairy cooperative or both. Some barangay officials likewise attended the meeting. • Problems identified by farmers:1) Lack of capital for farm inputs (e.g. fertiliser, fencing of forage area, feed supplements) 2) Crops need more fertilisers and time to produce well 3) Increasing cost of commercial supplements for dairy cattle 4) Lack of feed due to increase in cropped areas and in animal number 5) Diseases in crops 6) Lack of adapted forages 7) Uncontrolled grazing 8) Occasional flooding in flat areas 9) Increase in unpalatable weeds in grazing areas 10) Erosion in sloping farms • Coping mechanisms:1) Grazing in vacant areas owned by other farmers 2) Establishing their own forage areas -only a few; problem of illegal grazing and decline of forage productivity • Decision: A field day was conducted after the PD. The farmers made a list of species they would try in their area. The plan is to try out as a group first. The results of the initial trial will be the basis for selecting species for individual farmer testing. The species farmers wanted to test include those that were useful for grazing, cut-and-carry, and as cover crops under coconut. The initial testing area was to serve as source if planting materials for individual farmer testing.• Group evaluation of forages in the initial testing and multiplication areas. • Establishment of forages in common areas and individual farmers' fields. Fourteen farms were able to establish forages. The alayon method was adopted to facilitate the work. Aside from forage establishment, the farmers were also able to establish contour hedgerows. • Distribution of legume tree seeds to seven farmers. The agreement was that farmers will establish the seeds in plastic bags for later transplanting of seedlings. • Cross-visits to other areas and farms in Bukidnon where forages were planted and used.Twenty farmers participated in the activity. • Conduct of farmer training on developing forage technologies with 21 farmers attending.• Regular meetings and visits to exchange experiences and feedback on forage performance. Tatang Ibrahim 1The low annual per capita meat consumption in North Sumatra (Disnak Sumut 1994) is mainly due to the limited supply of meat. Only 45% of North Sumatra's demand for small ruminants is met by local suppliers (Karokaro et al. 1993). This short supply is a reflection of the low animal population and the low productivity in the region where most of the ruminants are raised by smallholders. There is a need to increase both the population and productivity of ruminants within this region.A new settlement at Marenu, South Tapanuli in North Sumatra Province aimed to organise smallholders whose main source of income is sheep production. A flock of 25 ewes and 2 rams were given to each transmigrant by the government in 1996. In addition, a simple woody house, a barn, and 1 ha of upland area were also made available to them. Approximately 0.5 ha of this land was planted to King grass (Pennisetum hybrid), while another 0.5 ha was used to grow cash crops to augment the still meagre income from sheep production. A cost of living allowance and feed supplements were also provided by the government for the first year. Income projections show that each transmigrant family with 40 ewes would earn a monthly income of 350,000 rupiah by selling 6 young rams per month.Field visits in 1996 observed the poor condition of both sheep and forages, resulting in poor sheep production at Marenu. Therefore, this site was selected by the Forages for Smallholders Project as a pilot area for developing forage technology to improve sheep production. The participatory research (PR) method was used with farmers to ensure active and equal participation. Through this approach, their needs and their perceptions of the new technologies would be clear from the beginning (Horne 1996).This paper discusses the impact of the PR approach on the performance of sheep production at Marenu.The site is located at Marenu village, in sub-district Barumun Tengah, Tapanuli Selatan district, North Sumatra Province. This is a new settlement which has been occupied by some 100 families of transmigrants since 1996. These families depend on sheep production for livelihood. The Government provided some facilities to assist them. Soil is classified as a Tropudult; it has low fertility and low organic matter, nitrogen, and phosphorous content. Annual rainfall ranges from 2,500 to 3,000 mm and there are distinct dry and wet seasons. The rainy season can be expected from December to March. The driest months are July to October.Marenu is contrasted with a lowland site, Pulau Gambar, near Medan where a women's group raises goats in pens. Feed is available from rice fields and nearby oil palm and rubber plantations.The farmers were classified into the PR group and the non-PR group. Farmers in the first group were introduced to forage technologies through the PR approach. The non-PR group were farmers who only availed of the facilities offered by the government and whose main source of forages is King grass. A semi-intensive system was used by both groups, including both grazing and cutting forages, to feed their animals.Farmers in the PR group were involved in all stages of the PR approach including participatory diagnosis, planning, experimentation and evaluation. Ibrahim (1997) reported that farmers agreed to try forage species with drought tolerance to improve sheep production. Using their own criteria, the farmers ranked Paspalum atratum BRA 9610 as the best accession among the grasses tested. This was followed by Paspalum guenoarum, Brachiaria humidicola, Brachiaria brizantha, Paspalum atratum cv. Pantaneira, and Brachiaria humidicola CIAT6133. These species were valued higher than King grass and are still being developed and used. Among the legumes, farmers ranked Gliricidia sepium as the most preferred species followed by Leucaena leucocephala, Stylosanthes guianensis, Centrosema pubescens, and Calliandra calothyrsus. However, due to its limited number, these introduced legumes did not develop at the expected pace and were not used as fast as the grasses.The parameters used to evaluate sheep production -present population, time allocated for collecting cutting material and grazing, body weight of sheep and income -were measured in both PR and non-PR groups.The data were obtained from a survey using five farmers per group as respondents. The body weights of sheep were measured monthly but comparison was made only between the two groups at the same age. The present population of sheep owned by a farmer, the time consumed for feeding, and the income generated by the PR and non-PR groups were also obtained.Starting with the same number of animals (2 rams and 25 ewes in 1996), it was shown that the total number of sheep owned by an individual farmer belonging to the PR group was considerably higher than those of the non-PR group after two years (Table 1).- -----------Marenu, Tapsel -------------------------Pulau Gambar ------------ The number of sheep owned by farmers increased by 74% in the PR group; it remained the same in the non-PR group. The difference between the two groups may be due to the higher mortality observed in sheep owned by the non-PR group. Farmers claimed that diarrhoea was the most common cause of death of sheep. However, the real reason for the high mortality must be further investigated, although irregular timing of drenching and lack of feed were thought to be responsible.In general, the PR group used less time for cutting forages and grazing activities than did the non-PR group at Marenu, Tapsel (Table 2). This time reduction was attributed to the shorter distance travelled to get forage. The larger amount and easier to cut forages available in their backyard also reduced the time allocated for grazing. At the Marenu site, the sources of cut forages of the non-PR group farmers where the swampy areas almost 2 km away from their barns. Grazing was done on open native grassland available around the forest. The average body weight of sheep reared at Marenu was observed to be higher in the PR group than in the non-PR group (Table 3). Table 3 shows that differences in body weight between the two groups remained similar (about 4 kg) at any given age. This would indicate that the difference started from birth; the weight might have been related to both quantity and quality of feed given to the pregnant ewes.Since concentrates are expensive, the need for protein may be met by legumes. Therefore, the practice of planting and using legumes (herbaceous, shrubs, trees) is an important component of sheep husbandry of smallholders. Farmers in the PR group had already planted some legumes, using them as animal feed.At Marenu, because of the greater body weight and better physical condition, the sheep owned by the PR group commanded better prices (Table 4). Manure production was also higher in the PR group because of the larger population. Therefore, farmers in the PR group obtained an income which was 31% higher than that earned by the non-PR group. However, the present monthly income of Rp 117,000 at Marenu is only 33% of the target of Rp 350,000. Each farmer has to sell around 6 young rams per month to achieve this target. This number may be produced from a flock of 40 ewes. Each farmer currently owns only 26 ewes on average and they are able to sell only 2 rams per month. Further subsidies from government are needed to achieve the ideal flock size of 40 ewes. A larger flock needs more feed. Because forages (grasses and legumes) are relatively cheap sources of feed further development on this aspect is important.The application of forage technology through the PR approach improved sheep production of smallholders at Marenu. This was closely related to problems faced by farmers. The opinions and criteria used by farmers in selecting the technology were the factors that mattered most in the development and adoption process of the said technology.The livestock sector in Lao PDR is almost exclusively smallholder-based. The livestock practices of smallholders are very traditional, with minimal or no inputs used. Animals are generally left to graze, either on native grass that is available in forests and grassland or on crop residues in harvested fields.Although the livestock production systems of Lao PDR are highly diverse, four broad categories exist:These systems are dominated by intensive rice cultivation and livestock play a vital role in providing draft power and manure and in stubble recycling. The opportunities for forage development in these systems are often limited by lack of land for planting forages.In these areas (predominantly in the northern part of the country), livestock producers often have very low-input systems of livestock management. Frequently, buffalo and cattle are allowed to graze in the mountains and forests year-round. They are only brought back for work or for sale. The opportunities for forage development in these systems appear limited, as farmers perceive few problems with the existing feed resource. However, in some areas, there is growing activity at the farm level and animal raisers plan to sell livestock to neighbouring countries, especially to Thailand, Vietnam, and China. Under these situations, livestock management systems are likely to change rapidly and a demand for forages may emerge.In these areas (principally in the central north area such as Luang Phabang, Xieng Khouang), few forests remain. Agricultural systems are under increasing pressure from shorter fallow cycles and increasing populations. Livestock, especially in the more remote areas, is a major buffer against calamity in the household or community. Only a few other commodities exist that can be produced with little labour and resources, that can be sold at any time, and that are relatively easy to bring to market regardless of distance.In these systems, the opportunities for forage development appear to be very high. Many farm communities are recognising both the value of livestock in maintaining their livelihoods and the need for better livestock management. Interest in managed forages is already high, with farmers in some areas already attempting to manage their feed resources by cultivating grasses.These areas in the southern provinces have very poor soils, long dry seasons, and low population densities. The livestock management systems are based on extensive grazing. The opportunities for improvement with forages appear limited, partly because the existing feed resource (though poor) is extensive and partly because farmers are heavily occupied with trying to support their fragile agricultural livelihood. However, the government is trying to promote livestock production for smallholders in these areas.The Forages for Smallholders Project (FSP) has been working in Lao PDR to develop forage technologies with farmers in these regions. Some common problems are experienced by farmers in raising livestock across these regions:• Disease.• Lack of feed throughout the dry season.• Lack of feed at critical times during the wet season (such as planting and harvesting), when animals must be kept penned to prevent damage to crops but there is not enough labour to care for animals. • Loss of animals (that graze in far villages) to thieves and predators.• Damage to other farmers' fields, causing conflicts in villages.Many of these problems can be addressed by planting forages. Therefore, the FSP began on-farm development of forage technologies in 1997. The sites initially selected were those identified by local agriculture officers or rural development workers as having potential for forage development. These are found in two provinces: Xieng Khouang and Luang Phabang. The characteristics of these two areas are listed in Table 1. Chomphet is located opposite of Luang Phabang township on the other side of the Mekong River. About 80% of the area is mountainous or hilly. Altitude varies from 300 to 1900 m. The upland area has mostly been cleared for shifting cultivation. Rice production is practiced in the lowlands. Annual rainfall ranges from 1100 to 1800 mm. The dry season lasts from November to March, with December to February being particularly dry (about 1-3% of total rainfall). Soil is mostly infertile and moderately acidic (pH 5-6).There are three main ethnic groups in Chomphet: the Lao Lum, Lao Theung and Lao Soung. The latter groups normally live in upland areas. The farming systems common in Chomphet District are subsistence cultivation of rainfed paddy and upland rice integrated with livestock raising. In upland and mountainous areas, farmers cultivate upland rice in swidden fields as the primary crop and staple food. The crops are sometimes inter-planted with additional food and cash crops such as maize, cassava, taro, eggplant, and cucumber. Rice is mostly planted in narrow valleys. Most of the fields in the district are rainfed; only a very small portion is set aside for irrigated dry season rice. In addition to rice, farmers also plant maize, soybean, garlic, spring onion, and other vegetables. The livestock raising system in Chomphet varies from village to village. In the lowland areas where rice is grown, farmers keep buffalo. In some villages, there are no cattle at all. In these areas, villagers do not like to eat cattle meat. Cattle are mostly kept in the upland areas. Animals provide food, income, savings, draft power, transport, and manure. Ruminants in the upland areas can freely graze on native grasslands and forests year-round. They are brought back to the village only when they are sick or if they will be sold. In lowland areas, livestock are released into the forest during the dry season, after which they are taken back to the village to be used for land preparation. The agricultural land for each household ranges from 0.5 to 2 ha, depending on the availability of labour in each household. Family cash income is mostly derived from the sale of animals and occasional crop surpluses (including maize, vegetables, cotton, and rice). Other off-farm activities (such as handicraft, off-farm work) can also be an important source of income for villages that are not too remote.Participatory diagnosis was conducted at Ban Thapho. The problems identified by farmers (in order of priority) were• Animal diseases, especially in pigs and poultry.• Shortage of feed for working animals during the planting season.• Poor-quality forage during the dry season.• Long calving interval (24-30 months).Farmers tried to solve these problems by • Using vaccination (but only against haemorrhagic septicaemia in buffalo).• Storing rice straw to feed their working animals during the planting season.• Establishment of regional evaluation of forages managed by farmers.• Organising field trips to forage evaluation nursery.• Training of farmers on basic forage agronomy. Xieng Ngeun is one of 11 districts within Luang Phabang Province. It is located about 30 km to the south of Luang Phabang City. Mountains and hills dominate the area, with elevation varying from 300 to 1900 m. The area has mostly been cleared for shifting cultivation. Annual rainfall ranges from 1100 to 1800 mm. The dry season lasts from November to March, with December to February being particularly dry (about 1-3% of total rainfall). Soil is mostly infertile and moderately acidic (with soils on the limestone bluffs being more fertile).The farming systems in Xieng Ngeun District are based on various practices of rice production: (1) subsistence swidden farming system, ( 2) subsistence paddy rice, and ( 3) mixed swidden and paddy farming systems. Many similarities exist between the farming systems of Xieng Ngeun and Chomphet districts. In the upland and mountainous areas, farmers cultivate upland rice in swidden fields as the primary crop and staple food and often interplant with additional food and cash crops such as maize, cassava, taro, eggplant, cucumber, squash, kale, etc. Separate upland fields may be also used for maize, ginger, and soybean. Paddy rice is mostly practiced in narrow valley bottoms by the Lao Loum ethnic group. Most of the agriculture in the district is rainfed and only a small portion is reserved for irrigated dry-season paddy rice. Livestock is an integral part of all farming systems. They provide food, income, saving, draft power, means of transport, and manure. The dominant livestock are cattle, buffalo, goat, pigs, and chickens. The cattle usually graze freely on native pastures in high mountain areas or in swidden areas for the whole year and are brought back to the village only for sale. Family cash income is derived from various sources but the main source is livestock (especially cattle). Occasional crop surpluses (including maize, ginger, vegetable, cotton, rice) are sold locally. Off-farm activities include making handicrafts and providing labour (but many villages are too remote for this).Participatory diagnosis was conducted once in this district at Ban Kieuw Taloun Yai (a Hmong village). The problems identified by farmers, in order of priority, were:• Livestock disease.• Feed shortages in both dry and rainy seasons due to competition for land from cropping and shortening fallow periods. • High mortality among young animals (falling from high mountains, starvation during dry season, cold weather).• Animals wandering off and becoming lost or causing damage to other farmers' fields.The interventions the farmers have been able to make to minimise these constraints include:• Vaccination.• Regularly visiting and caring for their animals in the grazing area.• Growing elephant grass be used as feed in the dry season.• Establishing village rules allocating specific areas for grazing and cropping.• A forage evaluation nursery (60 species) was established at Houakhoth. It was managed by provincial and district livestock officers. 1996• Establishment of regional nurseries throughout the province; best species planted and managed by farmers. ). They are beginning to change their opinions on which species they like after seeing the dry season performance. There is substantial interest from other farmers to join the evaluations this year and some farmers already started to expand their areas.Luang Phabang District is located between Chomphet and Xieng Ngeun districts and has similar climate, soils, topography, and land use systems. Mountains and hills dominate the area, but not as much as in the other two districts. The sloping areas have mostly been cleared for shifting cultivation. Annual rainfall ranges from 1100 to 1800 mm. The dry season lasts from November to March, with December to February being particularly dry (about 1-3% of total rainfall). Soil is mostly infertile and moderately acidic (with soils on the limestone bluffs being more fertile).The farming systems in Luang Phabang are similar to those in Chomphet and Xieng Ngeun. In the upland and mountainous areas, farmers cultivate upland rice in swidden fields as the primary crop and staple food and often use additional food and cash crops such as maize, cassava, taro, eggplant, cucumber, squash, kale, etc as interplant.Separate upland fields may be also set aside for maize, ginger, and soybean cultivation. . This maybe attributed to the lack of diagnostic work at the beginning -they were not able to identify problems and farmers who are most motivated to solve these problems.Nong Het is located in the western part of Xieng Khouang Province (about 150 km from the provincial capital Phonsavanh). The area is mountainous with altitudes up to 2000 m. Rainfall data are not available for this district, but it is likely to be in 1800-2000 mm range. The dry season lasts from November to March. Soils are moderately fertile and moderately acidic (soil pH varies from 5.0 to 5.5). For many years, the land has been cleared for shifting cultivation and growing upland rice and other cash crops.The communities in Nong Het District are dominated by the Hmong people who cultivate valley areas for wetland rice and practise shifting cultivation on slopes, growing upland rice and maize. There are also separate upland fields used for maize and soybean production. These crops are normally used to feed pigs but are also reserved for human consumption in case of rice shortages. The district is well known for its pig production. Most communities keep small to moderate-size herd of cattle and buffalo, which graze on abandoned upland rice fields, roadsides, and native pasture. The cleared areas utilised for grazing on the upper hill slopes are dominated by Imperata cylindrica.Livestock provide food, income, slaughter for traditional ceremony, draft power, transport, and manure. Goats, pigs, and chickens are also common. Cattle and buffalo are normally left in the forest, being brought back only when needed. The main source of family cash income is cattle and cash crops. Handicrafts and non-timber forest products are also occasional sources of farmer income.• Participatory diagnosis has not yet been conducted.• On-farm work commenced here without conducting a PD. The provincial livestock officers reported farmers who planted elephant grass to feed their animals at critical times of the year, but who were not satisfied with its performance. The provincial officers decided to begin work as soon as possible with the species they had seen growing in the regional nursery in Lat Sen. On-farm evaluations started with individual farmers from two villages participating. The species evaluated were: Brachiaria brizantha CIAT 6780, B. decumbens cv. Basilisk, B. ruziziensis, Panicum maximum TD58, Stylosanthes guianensis CIAT 184, and Centrosema pubescens cv. Cardillo.Pek District is near the capital of Xieng Khouang Province. The area consists of rolling hills interspersed with lowland paddies, savannah, and large areas of grassland. The upland areas are cleared for planting upland rice and other crops. The lowland areas are used for paddy rice. Average rainfall varies from 1000 to 1500 mm. The rainy season lasts from April to October. Altitude varies from 800 to 1200 mm. Soil in the grasslands is extremely infertile and very acidic (pH 4.0-5.0) but soil in the hills can be neutral and relatively fertile (as a result of the underlying limestone).Members of the communities in Pek District are often of mixed ethnic origin, mostly Lao Loum and Lao Soung with some Lao Theung. Farmers in upland areas cultivate rice through shifting cultivation on slopes. Only very small areas of rice are found in narrow valleys. In addition to rice, many crops, including maize, soybean, cucumber, taro, cassava and peanut are either planted with rice or in separate fields. These crops are mostly for home consumption; occasional surpluses are sold in local markets. Most villagers keep cattle, buffalo, pigs, and chickens. The cattle and buffalo graze on vacant upland rice fields, roadsides, and in large native grassland on mountain tops. The cleared area used for grazing on the upper hill slopes are often dominated by Imperata cylindrica. In some places, livestock is an essential source of manure for maintaining fertility in crop fields. Livestock also provides income, and draft power and is slaughtered for traditional ceremonies. In some places, animals are left in the forest year-round and brought back to the village only when needed (for land preparation or for sale). In other villages, animals are allowed to graze in the high grasslands during the wet season but they return to the village to graze on fallow cropland in the dry season. Family cash income is derived mainly from livestock and crop surpluses (if there are any). Non-timber forest products and hunting are also occasional sources of farmer income.The on-farm work in Pek District is a collaboration between the FSP, the GTZ NAWACOP project (a broad-based rural development project), and the Provincial Agriculture and Forestry Office. In 1995 and 1996, detailed PRAs were conducted by the GTZ project in eight villages. In all the villages, farmers identified livestock feeding as a major concern (after diseases), because of their dependence on livestock for livelihood security and manure. In two villages, farmers had already started to plant forages on their own initiative. The collaboration with FSP was a result of the outcome of these PRAs.On-farm activity 1997• On-farm evaluation of forages began this year with individual farmers in three villages ( Ban Sang, Ban Phousy, and Ban Ta). In all locations, Brachiaria brizantha CIAT6780, Brachiaria decumbens cv. Basilisk, Panicum maximum TD58, and Stylosanthes guianensis CIAT184 have performed well. These trials have generated substantial interest from other farmers (within the same villages and from surrounding villages). The number of farmers evaluating forage technologies will be greatly expanded in 1998.The on-farm work described above involves 71 individual farmers and 7 groups of farmers in 23 villages. In some locations (especially Xieng Ngeun and Pek districts), there is significant and spontaneous demand from farmers for expansion of the evaluations in 1998. In most of the on-farm evaluations, Brachiaria brizantha CIAT6780, B. decumbens cv. Basilisk, Panicum maximum TD58, and Stylosanthes guianensis have performed very well and have been selected as promising by farmers. Before the end of the first wet season five farmers and three farmers groups had already expanded the forage area.We have learned some useful lessons from the first year that should help us make plans for expansion of activities in 1998.We learned that choosing locations and farmer participants very carefully is critical to the success of the program. The FSP is working with district development workers, most of whom have not had any experience with participatory methods. Often, their role is to promote livestock raising rather than try to solve existing problems. For this reason, we find that they are sometimes too keen to nominate some farmers who do not even own livestock yet but who are just trying to get credit to start a livestock business. These are not the farmers who will innovate and expand forage technologies to solve the widespread local problems. More participatory diagnosis activities will help us understand farmers' needs and enable us to select innovative farmers for on-farm evaluation.In some cases, farmers were keen on planting forages in a single village plot controlled by an informal group of farmers. This has not worked well as enthusiasm for maintaining and evaluating the forages disappears when farmers have no feeling of 'ownership'.It is critical that we continue evaluating forages with farmers over several seasons rather than for one season. Their preferences will change as they see how species perform over seasons. For example, in some of our sites, farmers liked the performance of Brachiaria ruziziensis and expanded it to other areas. However, in the current dry season it has not performed well. Most farmers now prefer Brachiaria brizantha CIAT6780 because of its better dry season growth.We have not provided farmers with enough basic information about forages from the beginning of the evaluations. For example, sowing rates have frequently been too high. We need to put more efforts into familiarising farmers with the basic features of forages and answering any of their questions before planning what evaluations they would like to do.A possible trap with the participatory approach is that, early in the process, farmers may reject technologies with broader, long-term benefits. In these cases, we could bargain with farmers to try some technologies that they may not prefer initially but which we think have long-term promise. For example, at initial stages, farmers almost always select species for intensively managed plots. However, we may also see opportunities for forages for gully stabilisation. We should provide the species that the farmers want for cut feed, but we should also encourage them to establish an area for planting forages to be used for gully stabilisation.Last year, at some sites, farmers obtained seed rather late. The start of the wet season varies, depending on the area. Farmers use local indicators to decide when to plant. We need to supply them with seed early enough so they can decide to plant whenever they see fit.Under the project, we have so far focused on formal training (FPR and forage agronomy).However, district officers must be provided informal training opportunities. Participatory evaluation, for example, is an activity that needs to be learned, practiced, and refined. Bringing groups of district officers together to practice and revise these skills on-site is both helpful for the evaluations and also for building their enthusiasm. These are the people who hold the key to the successful development of forage technologies in villages.Simply ranking the species does not tell us how much farmers like one species over the other. We are trying a modified preference-ranking methodology to include 'rating' of species. The change involves asking farmers to rate how much they like each species on a scale of 0-10 (where 0=extremely poor species and 10=excellent species). A rating evaluation might look like the example in Table 2. This will give an indication of the relative performance of the species. It also allows for evaluation of different numbers of species by farmers (which is going to be common at our sites).The farmer participatory research approach requires a substantial commitment of time from researchers and development workers. In Lao PDR, the major activities are being planned for the next year:• Farmer participatory research with forages began at four locations in Vietnam in 1997. A brief description of the four sites is presented in Table 1. The aim of this work was to identify which broadly adapted forage species are preferred by farmers and why.The descriptions of each of the locations where the project has commenced on-farm evaluations are as follows:General description M'Drak District is located in the central highlands of Vietnam. Of 196,600 ha, more than 65,000 ha are Imperata grasslands and 'bare hills.' Rolling hills dominate the landscape with a high degree of sloping land (>70% of land has a slope >10%). Soil is moderately infertile and acidic (pH: 5.0-5.5). The altitude varies from 500 to 900m. Average annual rainfall is 2000 mm, with 8 wet months. There are two main ethnic groups in M'Drak: the Ede and Kinh. The Ede, a local minority group, has been living in the M'Drak area for a long time. Their main farming system is shifting cultivation. Maize and upland rice are grown. After 3-4 crops, when soil fertility is exhausted, they move to another place. Since 1975, there have been attempts by the government to settle the Ede people and discourage shifting cultivation. Consequently, the main farming system consisted of replanting forests, keeping livestock (mainly cattle), and cultivating intensive annual crops (mainly wetland rice, upland rice, maize, and beans). The Kinh people migrated from different areas to M'Drak 10 years ago. This group has experience in agricultural production. Their intensive farming includes industrial crops (coffee, pepper, rubber), intensive upland cropping, lowland rice, and livestock (raising cattle). Most families in the area raise cattle and goats, with income from livestock contributing about 30-40% to total household income. The main feed resource for cattle is Imperata grassland. Agricultural and forest land was allocated to farmers, according to the capability of each family to work that land. Few farmers have private land for grazing. Some are now trying to improve Imperata grassland and to plant forages to maintain a regular feed for their animals.Xuan loc commune is located in Phuloc District, Thua Thien Hue Province at 16 o 15'N. It is an upland area with an altitude ranging from100 to 300 m and a high proportion of sloping land. The original forest vegetation was destroyed by herbicides during the war, slash-and-burn cultivation and timber harvesting. Imperata grassland has rapidly replaced all areas where forests were destroyed. The total land area of the commune is 42,000 ha. Of this, cultivated agricultural land occupies only 120 ha, with 30 ha for wetland rice and 90 ha for cassava and other upland crops. The climate is monsoonal with a short dry season from March to July. Annual rainfall is about 2,600 mm, with 80% falling in September-November. Soils are mainly infertile, well-drained sandy loam, with pH -(H 2 O) ranging from 5.0 to 5.5.There are two ethnic groups in the commune -the dominant lowlanders (Kinh) and the Vankieu. The population of the commune is more than 2,000 people who belong to 450 households. Lowlanders migrated to this district from the coast in 1976. Many were poor fishermen seeking a better future. The Vankieu people migrated from another province in the north in the 1980s. The main agricultural activity of the Kinhs is cultivating irrigated rice and food crops such as cassava, sweet potato, and beans. The Vankieus practice slash-and-burn farming with cassava and upland rice as main crops. With the clearing of the forest in the early 1980s, 4,000 ha of communal grazing land (mainly Imperata) became available. Cattle number increased rapidly, providing a new and reliable source of income, requiring little investment or labour. About 60% of farmers in the commune depended on cattle raising for their livelihood. However, deforestation also created problems.The intensive rainfall in September-November and the steepness of the slopes resulted in erosion problems. In 1993, a reafforestation program was implemented. This included a ban on cattle grazing in the reafforested areas. Suddenly the increased cattle number and reafforestation efforts left farmers with insufficient feed for their animals. Cattle and buffalo are a major source of income for most households. There are more than 1600 cattle and 200 buffaloes. Some families have 10-30 head of cattle. A few farmers have started to raise goats. Most animals graze freely on the Imperata grasslands, with cut native forages provided as additional feed. Some locally available by products (rice straw, sweet potato leaf and root, rice bran) are also used.Ha giang and Tuyen Quang are located in the northern mountain region of Vietnam. Winters are cold with strong winds. Rainfall ranges from 1600-1800 mm (with some mountain areas receive as much as 4800 mm). The wet season begins in April and last 7-8 months. The soils of the mountainous and hilly regions are medium-textured, moderately fertile, and well drained. The land use systems are mainly wetland rice in lowlands, home gardens with fruit trees, forest plots, and shifting cultivation and natural grassland (in a few areas). Cattle and buffalo are kept for sale, meat, and draft power. The demand for meat increases at about 6% per year in this northern region, while the number of animal is increases only 2-3% per year . Animals graze freely on natural grasslands, forest, and fallow cropland during the day and are brought back to the houses at night. Some farmers supply extra feed at night, especially during cold weather or during ploughing. Feed shortages are becoming severe in these communities.A PRA conducted at Xuanloc in 1995 showed that livestock provides a vital source of income for most villagers. But their major problem is year-round feed shortage because of reduced land areas for grazing. In 1996, the College of Agriculture and Forestry in Hue conducted a PD of 50 households within the commune. Problems identified by farmers, in order of priority, were:• Lack of feed for their cattle. Farmers said that their cattle have very low weight gain and are thin. Some die during the cold, wet weather. • Less land available for grazing. Most land was used for replanting forest trees.Animals were forbidden to graze in the new forests.• Poor quality of animal breed. The farmers wanted to try crossbred cattle which have become common in other districts.• Children spend a lot of time taking care of the animals. They do not have enough time for their studies.• Wandering animals destroy crops.• Soil erosion as a result of heavy rain.• Feeding animals with agricultural by products.• Planting elephant grass for use as cattle feed.• Obtaining credit to acquire crossbred cattle.• Make plans for forest land use.A nursery of forage species established in the commune in 1996 became a useful demonstration area. Farmers were able to see what the forage species look like.• Established a forage nursery of 53 species. The nursery was set up on 2,000 m2 of a farmer's field. • Farmer's meetings convened to discuss potential use of forages according to their farming system.• Data collected on growth and development of forage in the nursery every month.• Farmer participation in the nursery evaluation was encouraged to gain initial feedback on what species are liked and why. • Data collection from the nursery continued.• 5000 seedlings of Leucaena leucocephala; Calliandra calothyrsus and Gliricidia sepium were produced and distributed to eight farmers for evaluation.• It was initially planned to begin on-farm evaluation in 1998, but some farmers were so keen in getting started that seeds of Stylosanthes guianensis CIAT184; Brachiaria brizantha, B. decumbens, B. ruziziensis, and Panicum maximum were distributed to eight farmers ahead of schedule. 1998• The number of farmers evaluating the forages will be expanded.• A training course on developing forage technologies with farmers was conducted in February 1998.has not yet been conducted in M'Drak but is planned for April 1998. However, on-farm work began in 1997 because the FSP local partners have considerable experience in the area. Moreover, farmers at the Chu' kroa commune had substantial livestock feeding problems which they were anxious to solve. Chu' kroa commune was established in 1987 by the Kinh migrants from the over-populated areas of north Vietnam. The commune consists of 320 families in six villages situated on 20,000 ha of land. However, the commune has very little rice land (65 ha) and Imperata dominates large areas of the hills. After the commune was established, land was allocated to farmers according to their capacity to use the land. In this way, families with excess labour received more land than families with none. As a result, large differences in land area exist: some households have more than 90 ha and others have less than 1 ha. The primary agricultural activities are upland cropping (cassava, beans, sweet potato), forest plots (government pays farmers for maintaining small plots of Eucalyptus and Acacia), and livestock (cattle, pigs, chickens and fish). Approximately 1500 head of cattle are kept by 90% of the households, with number per household ranging from 1-2 up to 90 animals. Cattle raising is an essential source of livelihood for these farmers, providing income and using land that cannot be used for any other activity (the Imperata grasslands). Usually, the cattle graze during the day and are put in pens at night. The most common problem mentioned by farmers is the very poor quality of grassland. As a result, they have to take the animals over long distances to find green feed each day.During the wettest time of the year (November and December), animals are frightened by the thunderstorms and become lost. They, therefore, need to keep their animals closer to home during this time.On-farm activities 1995/1996 • These species were planted in three other regional sites to confirm their broad adaptation (one in an area near M'Drak, one at Buon Don, and one at Kontum). The broad adaptation of these species was confirmed. The regional evaluations generated interest among the local farmer groups who visited the nurseries and brought home some planting materials. 1997• Farmers from Chu' kroa commune visited the forage nursery and identified forage species that they want to test. 15 farmers in the commune and 5 farmers who have been allocated land by the Daklak Livestock Production Company planted these forages. • The species planted were Andropogon gayanus cv. Kent, Brachiaria brizantha CIAT6780, Brachiaria decumbens cv. Basilisk, Panicum maximum TD58, Brachiaria ruziziensis, and Stylosanthes guianensis CIAT 184.• Regular meetings with farmers were held. Some farmers have already begun to expand the area that they are cultivating. A significant demand exists from other farmers in the commune who have seen these forages growing and who want to become involved in the project.The work in Ha Giang and Tuyen Quang is conducted in collaboration with the Vietnam Sweden Mountain Rural Development Program (MRDP). This program has been going on for 7 years. Detailed PRAs were conducted in the target villages over the first 5 years. A consistent finding was the identification of livestock feed shortage as a major problem. As a result, the MRDP invited FSP to participate in forage technology development in their target areas. The main problems identified by the farmers in raising livestock were:• Lack of good animal breeds.• Disease.• General feed shortages (particularly in the dry season).• Lack of cheap feeds for fish and pigs.To overcome feeding problems, farmers use many agricultural residues and by-products as substitute feed.On-farm activities 1997• Innovative farmers were identified in each location to take part in the evaluation of forages for intensive backyard systems. The species originally offered were those that performed well in a regional nursery established at the Forestry Research Centre in Vinh Phu. These were legumes: Stylosanthes guianensis CIAT 184, Stylosanthes hamata, Centrosema pubescens cv. Cardillo, Centrosema brasilianum; and grasses: Brachiaria brizantha CIAT6780, Brachiaria decumbens cv. Basilisk, Brachiaria ruziziensis, and Panicum maximum TD58. • In Ha Giang, 11 farmers planted forages. However, within the same wet season, 10 other farmers multiplied the species they liked (vegetatively) and planted these on their own land.• In Tuyen Quang, a similar situation occurred. Seven households initially planted forages and 3 others joined spontaneously using vegetative planting material.• Most forages were planted in small backyard plots. Participatory evaluation showed that the most preferred species are Brachiaria, Panicum maximum TD58, and Stylosanthes guianensis CIAT184. The main reason is that these species can also be fed to fish and pigs.Farmer evaluation of forages began in 1997. At four locations, we have started working with a small number of farmers. In the process we have gained a lot of experience in using participatory methodologies. These methodologies, though time-consuming, are an effective way of working with poor farmers. If we really want to help these poor farmers solve their livestock feeding problems, we need to commit ourselves to working closely with them over a number of years, not months.We have learned that, at all sites, there is considerable demand and potential for expanding on-farm work in 1998. The species that proved to be broadly adapted include Brachiaria brizantha CIAT 6780, Brachiaria decumbens cv. Basilisk, Panicum maximum TD58, and Stylosanthes guianensis CIAT 184.The activities planned for 1998 include:1) Getting more farmers involved in each site.2) Expanding to other villages in the target areas. In Ha Giang, we will collaborate with World Neighbours in an area where Hmong farmers have started to manage grasses and Leucaena to feed their livestock. In Daklak, we will begin collaborative work with a GTZ rural development project that has found many farmers who want to eradicate Imperata (a problem similar to that in Chu' Kroa) Also, in Daklak, we will start evaluating cover crop species for erosion control in smallholder coffee plantations with DANIDA. The development of viable forage systems is needed to sustain ruminant production in Malitbog. This can only be achieved by making improved forage species available to smallholder farmers and working with them to integrate these forages into the existing farming system. From the farmers' perspective, their limited landholdings have to be intensively developed for crop production while animal production is usually regarded as a by-product which is less important. In the past little effort was made to integrate improved forage species because of lack of access to planting materials and the perception that livestock has less commercial value than crops. This situation is likely to change as policymakers realise the negative influence of increased beef imports on the domestic economy.As land becomes more and more limiting, the potential for integrating ruminants with cash crops will have to be explored. Successful exploitation of these resources requires that suitable forage species and management strategies are developed. This case study describes how farmers established and evaluated different forage options to select a range of forages suited to their situations in Malitbog.Where time, labour, and capital are substantially limited, smallholders were able to integrate forage species with a standing corn crop. After the hilling-up operations, species, which were erect and perceived as shade-tolerant, were planted in between the corn furrows. Farmers who grew forages this way said that it is practical and economical. The system, they added, can provide them with food and their animals with feed in just one cycle of land preparation. In some sites, a number of farmers were able to establish five or more different grass and legume varieties.To ensure food availability, vegetables such as okra and eggplant, were incorporated in between rows of cut-and-carry forages. Farmers expected competition between lines of Napier, Panicum maximum, Setaria sphacelata and Andropogon gayanus and the food crops. Thus, they applied manure to fertilise food and forage crops to minimize this competition.Almost all farmers involved in the project have expanded their forage area with cutand-carry species grown in rows. Forage grasses and tree legumes were planted separately in rows adjoining each other or alternately in 10 m rows. One farmer said that due to area limitation and personal preferences, cut-and-carry species were wanted more than grazing species. Between the cut-and-carry rows farmers can still grow crops such as vegetables.Several farmers involved in the FSP planted cut-and-carry species in separate plots. Each farmer has 4 -5 plots. These forage species were planted along or under banana and coconut trees and also in open areas. The farmers grew the various species to establish their yield performance and ability to survive. Arachis pintoi, Stylosanthes guianensis and Centrosema pubescens may also be noticed as intercrops in some cases.Arachis pintoi was also planted in blocks, usually in front of the farmer s' house as an ornamental and soil cover. Growing forages in this way not only makes the surroundings clean but also provides a feeding ground for ducks which relish on the protein-rich flowers and leaves. As a result of this better nutrition, egg production doubled.To arrest soil erosion, which is a major agricultural problem in the community, farmers planted Napier as hedgerows. To get more yield, better quality feeds, and reduce surface runoff, Calliandra calothyrsus, Gliricidia sepium and Leucaena leucocephala (K636) were grown as newly established hedgerows.Participatory diagnosis identified problems of soil erosion, low income, and inadequate livestock feed. Instituting an option such as planting forages in hedgerows has positive consequences in terms of reduced water run off. Though the aim of farmers in the earlier stage of FSP is to assure a plentiful supply of livestock feed (almost all have established forages in blocks or home gardens for feed availability) efforts to establish hedgerows still continue after farmers realize its importance in the long run.The participatory process proved to be crucial in finding solutions to major problems in the farming systems. One farmer commented that although the participatory process itself is new to them, the whole system itself is understandable. The information given helps them to make decisions on forage development objectively. The farmers added that the farmer participatory approach faces problems and needs squarely. It also encourages positive outlook and advocacy toward a self-reliant farming community.On-farm evaluation of forages with the Forages for Smallholders Project commenced in East Kalimantan in 1995. Since then farmer evaluation of forages expanded to seven sites in East and Central Kalimantan, Aceh, North Sumatra and North Sulawesi. Collaborators based at these sites are from Provincial and District Livestock Services, and the Agency for Agriculture Technology Assessment, all under the Ministry of Agriculture. These institutions have personnel based in the communities where the FSP is working (Table 1). Table 2 shows the location and brief climatic summary of FSP sites in Indonesia. A brief description of soils and the farming system is presented in Table 3.Most of the sites are upland areas, except for Pulau Gambar and Kanamit which are flat. Kanamit is in an areas which is seasonally flooded and recent efforts to drain the area have resulted in large areas of acid sulphate peat soils with extremely low pH. The site in Gorontalo is dominated by smallholder coconut plantations with farmers growing annual food crops under the plantations. Sepaku is located in Imperata grasslands which have partially been allocated to farmers (1-2 ha per farmer). Wild pigs make upland 1 Bina Produksi, Directorate General of Livestock Services, Jakarta Selatan. 2 Dinas Peternakan TK.l Kaltim, Samarinda, East Kalimantan. 3 BPP Sepaku and Semoi, Balikpapan, East Kalimantan. 4 Dinas Peternakan Samarinda, East Kalimantan. 5 Dinas Peternakan Kuala Kapuas, Central Kalimantan. 6 Assessment Institute for Agriculture Technology North Sumatra, Medan, North Sumatra. 7 BPP Pulau Gambar, North Sumatra. 8 BPP Marenu, Norht Sumatra. 9 Dinas Peternakan Aceh, Aceh, Indonesia. 10 Dinas Peternakan Gorontalo, Limboto, North Sualwesi. cropping difficult at this site and farmers rely more on cattle and pepper for cash income. Generally, soils are of clay type, with pH varying from very acidic to slightly acidic and low to moderate fertility. Topography varies from flat to steep. Altitude ranges from sea level to more than 500 m above sea level in Saree, Aceh and Marenu, North Sumatra.All sites have farms that are crop-based but livestock play an important role as a source of draft, cash income and manure. Often, corn and cassava are the major food and crops; rice is cultivated in valleys or flat areas. Farmers in North Sumatra plant fruit crops, vegetables and oil palm. Fruit crops, vegetables and peppers are cultivated in East Kalimantan. Farmers in Central Kalimantan plant banana, coconut and coffee as cash crop. Most farmers in all sites use fertiliser and manure for their crops, and some also sell manure.Sale of crops is a major source of cash income in all sites. Chicken and goats are used for religious ceremonies, festivals, or provide cash for immediate needs, while cattle or buffalo is sold when the family needs a large amount of cash; like for schooling, weddings, or building a house. In some cases, during dry season, male members of the families, go to adjacent towns, working off-farm. All the sites experience an increase in area devoted to crop production, thereby reducing the grazing areas available for ruminants.In most areas, except in Aceh and Central Kalimantan, cattle and buffalo are tethered or graze freely on native vegetation in vacant areas during the day with basically no or minimal supplementation of salt. Only animals kept in pens or tethered near the house for fattening are supplemented with rice bran and extra cut feed. Farmers cut native grasses from roadsides, rice fields, forest areas, or near plantation crops, for night feeding. In Aceh, large areas of natural grassland are still available, but these are in poor condition. Farmers graze their animals on these grasslands, relying solely on the vegetation available there. Since forages became available through the FSP, farmers grow forage banks near their communal sheds and use this feed for night feeding. In Central Kalimantan most of the cattle are kept near the houses and are supplemented with grasses cut by the farmers. Farmers are coping with the lack of feed by using rice straw and other agricultural by-products, taking their animals to far away areas to graze, gathering tree leaves and banana trunks, gathering native forages from areas along roadsides, rice fields, or near plantation and forest areas, and carrying these to their animals. Some farmers also provide salt supplementation.Activities vary between sites (Table 5). The basic procedure, however, involves consulting with farmers (PD and planning), followed by establishment of initial testing and multiplication areas, followed by individual testing by farmers on their own land. In between these stages, field days, trainings and cross-visits are arranged. Regular meetings with farmers were done to exchange experiences (eg. participatory evaluation) and maintain the initial testing area. Likewise, farmers were visited to gather feedback.The initial testing and multiplication areas were established and managed by farmer groups. The decision on which species to try was made in consultation between site collaborators and farmers. These multiplication areas were very useful for conducting field days and trainings. Farmers could see the species and decide for themselves which ones they would like to try on their farms.The major basis for selecting farmer-co-operators was their interest and availability of land to plant forages. Whenever possible, innovative farmers with leadership and communication skills were chosen.Distribution of planting materials was done either during field days or by individual request. The latter seemed to result in better establishment since the farmers are keen and ready to plant before they gets the planting materials. This was done in cases when farmers wanted large amount of planting materials.On the other hand, farmers always ask and get planting materials during field days. In this case, collaborators ask the farmers to plant just a few plants near their houses to later serve as source of planting materials if farmers want to expand. Grasses for cut-and-carry -in hedgerows -Validation of the result of PD was conducted two to three months after the PD. If the farmers still expressed their needs for forages, the meeting continued to participatory planning. During participatory planing, farmers proposed what they need individually and as a group. Later on, the technicians and the field extension workers, assisted by the chairman of the group, helped the farmers in setting up their forage plots.The pace and progress of on-farm work varied between sites, but most sites are now into individual farmer testing (except Aceh), trainings and farmer field days as well as participatory evaluation, except legume trees in East Kalimantan and Gorontalo (still in early stages of growth) and Central Kalimantan (have not started individual planting).Collaborators at all sites report that it takes time for establishing forages on-farm with the farmers. Factors like farmers' access to other cash crops, income sources other than livestock, the availability of native species often slow down the process despite frequent visits and discussions.It is the farmers with a strong need who are the ones establishing forages, even to a point where they approach the technicians or pay some money to get planting materials.. On the other hand, there are farmers who succumb to peer pressure or to an impulsive, but temporary instinct, to get planting materials. Moreover, there are also 'wait-and-see' types of farmers.Farmer visits, field days, trainings and cross-visits were very useful in sustaining interest of farmers. It is during these activities that farmers and technicians share ideas, learn from each other and plan activities for the next few weeks.It was also observed that there were more farmers who obtained planting materials in sites where livestock dispersal programs exist. This implies that forage technology development would be facilitated if implemented with livestock improvement program.Moreover, successful forage establishment was facilitated in cases where strong farmer organisations existed. The existence of 'kelompok tani ternak' (farmer groups) also was a big factor in rapid establishment of forages in individual farmers' fields.Farmers reacted well to the participatory approach. They felt involved and free to choose whatever species, options and way of establishment they wanted. Involving these farmers in field days and in training other farmers has been beneficial for the trainees and the farmer trainers as well.In terms of individual forage species, farmer preferences varied with sites. At early stages (initial testing and multiplication), farmers tended to prefer species which grew well and showed good yield potential. Later, other major criteria were palatability, easy establishment and management, and persistence during dry season.For grazing species, farmers started to realise the value of grazing tolerance (for grazing species), ability to spread and produce ground cover and palatability. For instance, farmers in East Kalimantan found that Brachiaria humidicola spread fast, tolerate close grazing and possess good palatability. Even for cut and carry species, farmers in Central Kalimantan found it very useful.A farmer in East Kalimantan observed that the meat quality of his cattle improved when his cattle grazing this grass.Centrosema pubescens CIAT 15160 was found to suppress Imperata in Makroman, making it a useful cover crop and was palatable to goats and cattle. They also observed that when they intercropped it with corn and cassava, the taste of the crop did not change while the need for fertiliser and weeding decreased, the yield of corn increased and the yield of cassava was reduced only slightly.Farmers favoured tall and upright grasses like Napier (King and elephant grass), P. maximum, Setaria sphacelata var. splendida, Paspalum atratum, Paspalum guenoarum and Andropogon gayanus for cut-and-carry, especially because of their good yield and palatability. In addition, P. atratum and P. guenoarum were found tolerant to occasional flooding and was not itchy when cut, but P. atratum has sharp leaves which may reduce its spread.Farmers have also observed that legumes like Stylosanthes guianensis 184 were not as palatable as grasses for cattle. These cases occurred when these species were fed with grasses during wet season.Desmodium cinerea (previously called D. rensonii) was found to posses de-worming effects in Saree, while Desmodium heterophyllum CIAT 349 died during dry season, even though it formed a dense ground cover during wet season.As of this stage, many individual farmers in East and Central Kalimantan, and Marenu are planting larger areas, while farmers in Pulau Gambar and Gorontalo are still planting the species in small plots (either in blocks or short hedgerow lines), either near their houses or in portions of their farms. The farmers' group in Aceh has not yet expanded the initial area of the pasture; the species are either grazed or cut and fed to animals from time to time.The farmers' group in Saree also planted Panicum maximum, Paspalum atratum, and Brachiaria brizantha near the communal shed, and they cut them every 2 -3 weeks, even during dry season. They said that if they let them grow more than 3 weeks, leaves are too coarse for the animals. This is also the case with Brachiaria humidicola in Central Kalimantan.Grasses and shrub/tree legumes were also planted in fence lines. A farmer in Makroman started planting Centrosema pubescens CIAT 15160 and Stylosanthes guianensis CIAT 184 between the rows of corn and cassava. He then observed that C. pubescens preserved the moisture of the soil, suppressed the weed, kept the soil friable, reduced the need for fertiliser, as well as providing good feed for his goat. Learning these results, his neighbours were excited to try this 'new technology' to the point that they planted Paspalum atratum between the rows of corn. When they were told that the grass may reduce the yield of the corn, they said it did not matter, since they also needed the forages for their animals.Participatory evaluation (PE) has been carried out at most sites. This was done mostly in the initial testing and multiplication area. Farmers observed the species and gave their comments. In some sites where farmers have planted forages on their own farms, farmers' observations on the forages that they established were also taken. Open-ended evaluation and preference ranking were used for PE.Farmers answered on characteristics related to the utilisation of a particular species. This includes information on yield, palatability, regrowth ability, itchiness, persistence, as well as easy management and time saving effect of forages when planted near the house.There is still a need to gain more experience and skills in evaluation techniques like probing and asking questions as well as obtaining farmers' criteria in selection of a certain species. In the process of evaluation, a lot of things can happen and the person handling the evaluation has to learn how to deal with the situation. These skills only be obtained by practice, reflection and training. Every evaluation session is different from another.A major issue for expanding on-farm evaluation is the production and handling of seeds. At this stage, most of the grasses are established using vegetative planting material. Legume species are usually established from seed. The problem is there is no commercial production of forage seeds in Indonesia. Government stations only produce a small amount of legume seed, due to their location and climatic factors. Moreover, there has been no successful seed production attempt at the farmers' level. With the hot, humid climatic conditions in most of Indonesia, it is difficult to store seeds for any length of time. This problem needs close attention if rapid expansion of forages is to be attained.The northeast region of Thailand, which accounts for approximately one-third of the national land area, has a tropical climate with pronounced dry and rainy seasons. The mean annual rainfall is 1300 mm with 85% falling from mid-April to mid-October (Shelton 1982). The majority of cattle and buffalo in Thailand are concentrated in this region. Feed shortages are a major concern, especially during the 6-months long dry season when livestock are mainly fed rice straw. To ease this problem, Thai research organisations have been developing improved forages and appropriate management guidelines for their use. As a result, Ruzi grass (Brachiaria ruziziensis) has become widespread, primarily because of its high seed yields and ease of establishment. However, although seed production is relatively easy, Ruzi is poorly adapted to areas with long dry seasons.Within the same genus, one species (B. decumbens) has been identified in several agronomic trials as having better dry season growth (Thinnakorn andKreethapon 1993, Phaikaew et al. 1996). However, its use in Thailand is constrained by low seed yield and poor seed quality (Boonpukdee et al. 1996, Gobius et al. 1996).The approach taken in the present study was to screen a larger range of Brachiaria accessions for their seed production potential. Accessions with promising seed yields will be further tested for their environmental adaptation, with particular emphasis on dry season performance.The experiment was conducted at Pakchong Animal Nutrition Research Centre, Nakornratchasima, northeast Thailand (latitude 14 o 42'N, longitude 101 o 25'E, altitude 330 m, mean annual rainfall 1100 mm -see Fig. 1). The soil is a red clay with a pH 5.8. Thirty two accessions of Brachiaria spp., comprising five species (B. brizantha, B. decumbens, B. humidicola, B. jubata and B. ruziziensis,) introduced from CIAT Colombia, were established along with a control (B. ruziziensis). As the quantity of seed available was very limited, seed was pre-germinated in polyethylene bags in May 1996 and transplanted to the field in August 1996.Plots were arranged in a randomised complete block design with three replications. Each plot consisted of nine plants arranged in a 0.4x-0.4m grid pattern. 300 kg/ha compound fertiliser (15-15-15) and 60 kg/ha urea were applied at transplanting. Plants were cut back after seed 1 Division of Animal Nutrition, Department of Livestock Development, Bangkok, Thailand. 2 Pakchong Animal Nutrition Research Centre, Nakornratchasima, Thailand. Dry matter yields during the dry season and at initial flowering were recorded for each plot. Regrowth after cutting and drought tolerance were visually estimated. To measure seed yield, seed heads were tied together into manageable bunches. When seed was almost ripe, the bunches were covered by nylon net bags which remained there for the duration of the harvest. Inflorescence density and number of tillers per plant were recorded in December 1997. Tiller fertility was expressed as the number of inflorescences divided by the total number of tillers.Random samples of 15g seed were used to measure seed purity (in accordance with ISTA rules for seed testing) and one-thousand seed weight. The pure seed component was estimated as the number of caryopses in a sample of 100 spikelets. A germination test will be conducted in March/April 1998, and a tetrazolium test will determine the viability of seed that fails to germinate. Data on dry matter yield and seed yield were recorded only in the second year because of late transplanting in the first year.The experiment was conducted in a year of adverse rainfall conditions. The 1997 total rainfall was 663 mm, which was only 60% of the long-term mean annual rainfall for Pakchong (Fig. 2). This makes the drought tolerance measurements particularly relevant. However, seed production is likely to have been adversely affected by moisture stress.All the accessions established well, but B. humidicola CIAT 16886 and 26149 died during the first year. In 1996, only 20 accessions flowered due to late planting (Table 1). It is likely that some accessions need a long juvenile phase before they reach their critical daylength for flowering.In 1997, all accessions flowered except B. brizantha CIAT 16306 (Table1). Flower initiation varied from June to October (31-161 after closing cut on 22 May 1997). Ten accessions initiated flowers by June, three accessions by July, four by August, five by September and seven by October.There was a large variation in inflorescence density, noted on 12 December 1997 (Table 2). Flowering in most species was adequate, except in B. brizantha CIAT 16288, CIAT 26566, and B. decumbens CIAT 26297. Brachiaria brizanthaThe seed yield components are presented in Table 2. There was wide variation in tiller fertility, from 9% in B. brizantha CIAT 16488 to 68% in B. ruziziensis. The highest inflorescence density occurred in B. decumbens CIAT 16497. Inflorescence density was not always associated with high seed yield because soil moisture was limiting during the flowering period. The number of racemes per inflorescence varied: 2. 2 -9.8 in B. brizantha, 2.4 -7.0 in B. decumbens, 2.6 -3.7 in B. humidicola, 3.9 for B. jubata, and 4.9 for B. ruziziensis. Seed yields are presented in Table 3. Significant differences were observed among the 31 accessions. Pure seed yield ranged between 0 and 601 kg/ha. Brachiaria ruziziensis and B. brizantha CIAT 16835 were the most productive accessions, yielding 601 kg/ha. All other accessions produced significantly lower yields, mostly less than half of these two accessions. The very high seed production potential of B. ruziziensis has been reported earlier (Phaikaew and Pholsen 1993). However, the result for Brachiaria brizantha CIAT was new. From these results, it appears that seed yield was related to flowering time. Accessions that flowered during severe moisture stress (June and July) produced low seed yields. The exception was B. brizantha CIAT 6387, which had a series of flowerings throughout the year. The highest seed yields were obtained from accessions which flowered in August, probably because of the better soil moisture conditions. Continuous soil moisture availability is one of the factors needed for high seed production in grasses (Loch, 1980).Dry matter yields over a period of 114 days (27 Jan-22 May) were measured to assess forage production potential in the dry period. B. decumbens Brazil was the most productive accession, yielding 22.5 t dry matter/ha or 215% of the yield of the control (B. ruziziensis). Brachiaria decumbens CIAT 16497, CIAT 26112, and B. brizantha CIAT 16472 produced yields of about 20 t/ha, or about 200% of the yield of the control. The lowest yield was obtained from B. brizantha CIAT 26566 (3.2 t/ha).Visual scoring for drought tolerance, conducted during the dry period, revealed that B. decumbens cv. Basilisk, CIAT 26112, and CIAT 26297 were the most tolerant, remaining green throughout much of the dry season (Table 4). Visual scoring for regrowth potential was conducted 7 days after cutting in January 1997 (Table 4). B. decumbens CIAT26297, CIAT 26112 and Brazil and B. brizantha CIAT16472 had the highest regrowth scores, with fast, dense regrowth after cutting. The regrowth scores of 22 accessions were superior to that of the control.Based on seed production potential, seven B. brizantha (CIAT 16835, CIAT 6387, CIAT 16827, CIAT 16829, CIAT 16779, CIAT 6780 and CIAT 16830) and two B. decumbens accessions (CIAT 26112 and CIAT 16497) appear promising for northeast Thailand. In particular, B. brizantha CIAT 16835 equalled the seed yield of B. ruziziensis. The other accessions produced half or less of the pure seed yield of these two high-yielding accessions. However, not all of these accessions performed well in the dry season.The highest yielding accession in the dry season was B. decumbens Brazil, but this accession produced almost no seed. The most promising accessions on the basis of both seed yields and dry season performance were: B. brizantha CIAT 6387 (which produced 64% of dry matter of the highest yielding accession and 55% of the pure seed yield of B. brizantha CIAT 16835) B. decumbens CIAT 26112 and CIAT 16497 (which both produced 88% of the dry matter yield of the highest yielding accession but produced only about 30% of the pure seed yield of B. brizantha CIAT 16835).Further monitoring is needed on both seed production and forage production potential in the dry season. This trial will be continued in the 1998 season, with the addition of 19 more accessions. On-farm trials will start in 1998 using promising accessions from this trial, to gain early feedback from farmers about their potential. Stylosanthes species very important legumes in South China which are used for green cover, leaf meal production, and pasture improvement. New accessions of the Stylosanthes species have been introduced from the Centro Internacional de Agricultura Tropical (CIAT, Colombia), Commonwealth Scientific and Industrial Research Organization of Australia (CSIRO, Australia) and CIAT/IRRI (Philippines). Together with four Chinese Academy of Tropical Agriculture Sciences (CATAS) released varieties as controls, these accessions were evaluated in an experiment to determine their resistance to anthracnose and their suitability for leaf meal production.The accessions included in the experiment are listed in Table 1. In the early part and toward the end of the year, the plants showed very low disease severity visual scores (Table 4). In June, July, August, and September very high disease severity scores were noted.Stylosanthes guianensis cv. Semilla negra, S. guianensis CG1581, S. guianensis CIAT 184 (CATAS), S. guianensis cv. Mineirao, S. guianensis CIAT 136, and S. guianensis L8 had very high dry matter yield. Those of S. capitata/S. macrocephala GC 1580, S. guianensis FM05-3, S. guianensis CIAT 10417 and S. capitata Multiline-6 had a very low yield.Stylosanthes guianensis E3, S. guianensis FM03-2, S. guianensis cv. Semilla negra, S. guianensis FM9405 Parcela 3, and S. guianensis FM05-1 showed very high potential for seed production, while S. guianensis FM9405 Parcela-6, S. guianensis cv.Southeast Asia is more typically a region of forests than of grasslands and savannas. The presence of these vegetation types is likely to be due to environmental constraints, or previous management, that has prevented a forest cover from developing. In Lao PDR, environmental constraints include a long dry season and low soil fertility. Management effects include burning, cultivation, and fire. The presence of natural grasslands does not necessarily indicate a rich grazing resource, but may indicate that the soils are too poor to support a forest cover. This is apparently the case on the Plain of Jars, Xieng Khouang, where poor calving percentages and extremely low animal production are attributable to low soil fertility, with very low phosphorus (P) percentages (Gibson 1997), rather a grass flora comprising species which are intrinsically low in quality.Pek savannas occur in Lao PDR south of about latitude 17 o N, and at altitudes up to about 500 m. They have an understorey which is dominated by two species of dwarf bamboo, previously known as Arundinaria ciliata and A. pusilla and since 1990 known as Vietnamosasa ciliata and V. pusilla. This new genus includes a third species, V. darlacensis, restricted to southern Vietnam (Nguyen To Quyen 1990). Vietnamosasa pusilla is known as pek in Thailand and Lao and grows in dry dipterocarp forest from the Korat Plateau in Thailand to Vietnam. Vietnamosasa ciliata, known as 'chote' in Thailand, 'chawd' in Lao, is larger than 'pek', and grows wild in any open place in dipterocarp forest throughout the same range (Sujatmi Dransfield, pers. comm. to J. Veldkamp).Twenty sites where pek was a significant component of the herbaceous vegetation were examined during the survey (November 1995). These ranged from relatively small areas of several hectares to extensive areas of many square kilometres. In general, areas which were more remote from habitation, and hence from grazing, had an understorey which was close to 100% dominated by Vietnamosasa pusilla, growing to heights of 1.6 m tall. Few other species of grass could tolerate this level of competition, together with the shade from the trees. These species were all growing to heights of 2 m or more. In areas which had evidently been subjected to heavier grazing, low shrubs tended to dominate the understorey, together with a few lower growing grasses (Table 1). In tracks and pathways, grasses were annuals or weakly perennials (checks), producing large numbers of seed, thus ensuring success at reestablishment. As defined by Hacker et al. (1998), the Plain of Jars is a plain 1,100 m above sea level and is probably an old lakebed. It is a natural grassland, devoid of trees. Soils are acidic, with a high aluminium saturation, and are low in nitrogen and phosphorus (Table 2). Areas close to the provincial capital of Phonsavanh were too heavily grazed for botanical analysis. In other areas, the flora was dominated by Themeda triandra, which comprised 70-90% of the vegetation, with other grasses as minor components of the vegetation (Table 2). Small valleys and other areas protected from grazing commonly include tall-growing species such as Themeda intermedia and Sorghum nitidum.The Pine Tree Zone is a hilly area to the west, south and east of the Plain of Jars. It includes forested areas dominated by conifers Pinus merkusii and P. kesiya and areas where trees are occasional or absent, which are presumed to have been cleared of forest. Soils are similar to those of the Plain of Jars (Table 2) and, where cleared, support a generally similar grass flora, dominated by Themeda triandra (Table 3). In the one forested area surveyed, Eulalia phaeothrix was the dominant grass, with a range of herbaceous legumes which were absent in nearby cleared areas. The Upland Zone is extremely variable in topography, geology, and soils (Table 2), with some soils as infertile as those on the Plain of Jars and others alkaline and fertile.Altitude is up to 2,450 m; the sites surveyed were restricted to 1,000-1,450 m, owing to difficulty of access to higher altitudes.The only true grasslands seen in the Upland Zone apparently resulted from previous management. These were either grasslands comprising almost pure stands of Imperata cylindrica or small areas of heavily grazed grass in the vicinity of villages. A high proportion of the Upland Zone is subject to slash-and-burn farming for the production of upland rice, maize and other crops. Panicum spp. a swamps b in Xieng Khouang, considered to be palatable when young.While not being actively farmed, this land has varying proportions of native grasses, shrubs, and trees, with shrubby weeds Chromolaena odorata, Tithonia diversifolia, and Artemisia sp. frequently being dominant components of the vegetation. In these situations (and also in Imperata grasslands), large tussocks of the robust grasses Neyraudia arundinacea, Thysanolaena latifolia, Miscanthus floridulus, and Saccharum spontaneum are significant features of the vegetation. Other frequently encountered grasses are listed in Table 4. Some Upland Zone grasses only occur in moderately shaded conditions; these include palatable grasses such as Panicum and Isachne spp., and grasses of forest margins which scramble over vegetation in order to access better lit situations, such as Microstegium spp. and Panicum sarmentosum. Most grasses under shaded conditions are reputedly palatable to livestock, although most do not yield a high biomass.Heavily grazed areas in the Upland Zone tend to be dominated by stoloniferous grasses or low-growing tussock grasses (Table 5). A high proportion of the unpalatable Sporobolus indicus is indicative of serious overgrazing and reduced productivity. Similar grasslands almost certainly occur at lower altitudes, as all the species listed in Table 5 are widespread. A comparison between the grass floras of pek savannas and Xieng KhouangAlthough not geographically widely separated, the grass floras of the Plain of Jars (together with the Pine Tree Zone), the Upland Zone, and the pek savannas were radically different. As the surveys were of short duration, some species present in the three regions would not have been collected. However, although 66 grass species were collected in Xieng Khouang and 41 species (excluding bamboos) in the pek savannas, only 14 species were common to the two regions. The most notable variations were the complete absence of Heteropogon spp. from Xieng Khouang and of Miscanthus, Neyraudia and Saccharum spp. from the pek savannas. These differences reflect variation in climatic and edaphic adaptation of the species, differences which are also likely to occur with introduced forage species.It is frequently possible to obtain information about the environmental conditions of a site and its management history from the species present, and their abundance. Several examples come from the present studies:• Some grass species are indicative of degraded, infertile soils and overgrazing.These include Schizachyrium brevifolium and Aristida cumingiana. • A high proportion of unpalatable grasses, such as Sporobolus indicus, in a pasture is likely to be associated with overgrazing.• A high proportion of low shrubs in pek savannas is likely to be indicative of long periods of heavy grazing. However, Vietnamosasa ciliata appears not to be susceptible to heavy grazing pressure over periods of up to 4 years (Gutteridge 1985).• In Xieng Khouang, dominance of Themeda triandra in grasslands is indicative of extreme infertility (this is not necessarily the case in other regions).Opportunities for improving production from Lao grasslands Opportunities for improving pek savannas without total replacement of the native vegetation appear to be limited. In northern Thailand, Vietnamosasa ciliata provides reasonable forage in the early wet season and after fire, but quality rapidly declines. Attempts to introduce exotic legumes into pek savannas (following tree removal and slashing) were unsuccessful, the legumes failing to persist for more than 2-4 years (Gutteridge 1985). The slashing treatment also failed to result in a long-term increase in the proportion of native grasses other than bamboos. The best opportunity for improving production from pek savannas in Lao PDR is probably to maintain undisturbed areas of pek savanna as a sustainable resource, while fully improving smaller areas around villages with introduced grasses and legumes such as Brachiaria decumbens and Stylosanthes spp. In northern Thailand, liveweight gain per hectare was four times higher from improved pasture than from pek grasslands, whether or not any attempt had been made to improve the pek grasslands (Gutteridge et al. 1983). Also in Thailand, supplementation of cattle grazing pek grasslands with salt doubled liveweight gain, this being an inexpensive treatment which could be recommended in Lao PDR.On the Plain of Jars and in the Pine Tree Zone, the dominant grass is Themeda triandra, a species which is widely accepted as being a high-quality and productive grass for grazing (Bogdan 1977), although not always persistent in grazed pastures (Mannetje and Jones 1992). As the soils are so P-deficient, any improvement will necessitate P input into the system. Improvement in ruminant production will be limited by the low P status of the soils, rather than the intrinsic quality of the grass. Management will need to avoid fertility transfer (through corralling cattle and using manure for cropping), and hence further reduction in soil fertility. However, the tendency in some countries for T. triandra not to persist with moderate to heavy grazing is a matter of concern.In the Upland Zone, many native grasses are used by smallholders as cut-and-carry feeds. Many are locally and widely known to be palatable species. However, these are growing naturally, often at some distance from smallholder farmsteads. For cut-and-carry systems, adequate areas of planted forage close to homesteads would reduce the time and effort required for a smallholder to feed his stock. One farmer was already doing this, of his own initiative, with the annual Coix lacrima-jobi. Productive and leafy exotic forages could be used, but there could also be opportunities for planting local species of grass. The species selected for this purpose should be those which are high-yielding and retain a high percentage of leaf throughout growth. The late-flowering Thysanolaena latifolia is a species which could be considered for this purpose.New forage developments in Bali, Indonesia: Arachis pintoi as a cover crop and Calliandra calothyrsus for cattle fatteningCalliandra Calothyrsus (Calliandra) provides fuel, shade, soil stabilisation, and feed for ruminants in several villages in Bali (Kintamani, Besakih, Petang, Pempatan, Rendang and others). These villages are located in upland areas above 500 m altitude with good rainfall. Calliandra was introduced to Bali some time between 1970 and 1975, after the eruption of Mount Agung in 1963. At the beginning, it was introduced for reforestation in areas in the south and west of Mount Agung. Calliandra grew very well and spread on sloping lands on the foothills of Mount Agung. At present, Calliandra has spread out from the forestry area into the farmers' fields and is planted by farmers, mostly as living fences, for feed for cattle and for firewood.Calliandra can grow on low-fertility soil, grows throughout the year in high rainfall areas and is not attacked by psyllids. For feeding of ruminants, Calliandra is used in the cut-and-carry system. It has now spread from the Besakih area (region of Karangasem) to other areas bordering the Besakih village.Recent research in Australia showed that the digestibility and voluntary feed intake of Calliandra was higher for fresh than for dried or wilted material (Palmer et al. 1994). In Bali, the farmers feed Calliandra fresh to cattle as soon as it is cut. The taxonomy, botanical description, phenology, and breeding system of Calliandra are well covered in the literature (Wiersum and Rika 1992).Arachis pintoi cv. Amarillo, known as Kacang Pinto in Bali, was first evaluated in 1988-89 in small plots (2-m x 2-m) at Pulukan village in Bali, as one of the species from 37 legumes and 35 grasses (Rika et al. 1990). Kacang Pinto was one of the species selected from the evaluation, and this was based on its good growth and ability to grow well in shade (about 50-60 % shading). All selected species were evaluated in a larger area at the same site (Pulukan village) under a coconut plantation. Kacang Pinto was found suitable under shade in plantations (50% light) as well as a cover crop (Rika et al. 1994).Pinto has also shown high potential as a cover crop in coffee, banana, oil palm, macadamia and hearts of palm (Cruz et al. 1994). It was found capable of controlling weeds and fixing large amounts of nitrogen. In Bali, Kacang Pinto has been used as cover crops under orange plantations at Bangli (about 700 m above sea level). It is presently evaluated in Petang (30 km north of Denpasar, about 600 m above sea level with average rainfall of 3000 mm/year) as forage (in cut-and-carry system with dual purpose as forage and cover crop under cassava). The evaluation aims to observe effect on cattle weight, as well as on cassava growth and tuber production. Smallholder farmers are interested to adopt Kacang Pinto both as a cover crop and as a forage. Kacang Pinto is not only eaten by ruminants but also by pigs and kampong chickens. This adds to its potential for adoption by small farmers.After Mount Agung erupted in 1963, most of the villages around it were swept by lava or covered by sandy material. Since 1970, the forest and the farm land bordering the forest area were replanted by trees and forage. For food purposes, smallholder farmers tried to plant cassava. To plant cassava, they had to dig out the sand first (30-40 cm depth) to find the top soil.In the forestry area, the government planted Calliandra in 1980. The Forestry Department contracted smallholders farmers to look after the plantation trees (mainly Pinus trees) which had been planted by government at the border area (just beyond the land belonging to farmers), at the southern and western parts of Mount Agung (mainly around Besakih village). As compensation, the farmers were allowed to plant Calliandra and Pennisetum grass under Pinus trees and to harvest the branches of Calliandra and Pennisetum grass regularly for forage (seeds of Calliandra and planting materials of Pennisetum were provided by the government). This system has been successful up to now and has spread to other villages bordering the forest in the other areas in Bali (Bangli, Gianyar, Badung, and Tabanan at 700 -1,100 m above sea level).Farmers currently plant Calliandra in their land as live fence together with Pennisetum grass planted at about 2 m width from the fence. As a live fence Calliandra produces about 1.8 -3 t dry matter per km of fence in 10 months (Wiersum and Rika 1992). The spread of Calliandra was through the efforts of farmers themselves, upon learning that Calliandra was good forage for cattle. Bali, 1992 Table 1 shows the amount of tree/shrub legumes produced in five areas of Bali. Bangli has the highest production of Calliandra, followed by Gianyar and Tabanan. Calliandra is the second most popularly used tree forage after Gliricidia despite the fact that it was the most recently introduced species.Calliandra is used both as forage and firewood by farmers. Trees of Calliandra planted in 1985 at Besakih were sampled and measured for wood production (Table 2). Fresh weight of young branches and leaves (kg) 5.1 5.9Fresh weight of branches for fire wood (kg) 0.8 5.5Farmers cut Calliandra 3 -4 times a year. If more branches are needed for fuel, they wait until Calliandra produces flowers. Because of lack of knowledge and extension efforts from the government, legumes are not always used as a source of high-protein feed for cattle. Calliandra and Pennisetum grasses are only given in the dry season. During the rainy season, when Pennisetum and other pioneer grasses grow very well, some farmers use these for feed and Calliandra is cut for fuel.Calliandra is eaten by cattle when fed fresh. If wilted, it is not eaten, and the leaflets drop to the ground. In addition to Calliandra, Erythrina leaves are also fed to cattle and farmers around Besakih boil 2 -3 kg sweet potato, mix it with water, and give this mixture to cattle every 2 days. In most cases, feed for fattening cattle in Besakih consists of 70-80% Calliandra and Pennisetum; the remainder being pioneer grass, broadleaf weeds, and sweet potato pulp in drinking water. Farmers who fatten two head of cattle can earn Rp 2,000,000 -2,500,000 per year from cattle sales. In addition, they can earn about Rp 75,000 per year from manure sales.Cattle in the Besakih area command a higher price per kg than cattle from other areas in Bali and often win national competitions for best animals (Table 3). After 6 years of research in Bali, Kacang Pintoi was identified as having good potential as forage and ground cover. As a result, Kacang Pinto has spread to 15-20 villages in northern Denpasar. These villages are located in a relatively dry upland areas, about 600 -800 m above sea level with annual rainfall about 2,500 -3,000 mm.Kacang Pinto has a high degree of shade tolerance (up to 50 % light), and has shown high potential as a cover crop (Rika et al. 1994). It has shown good capacity to control weeds and can fix large amounts of nitrogen. Kacang Pinto has been used as cover crop in orange plantations in demo plot area in Bangli (700 m above sea level). Because of its high degree of shade tolerance, Kacang Pinto finds application not only as a pasture legume in tree plantations but also as a ground cover (cover crop) in plantation (Cook 1992). Release of nutrients (N,P,K and Ca) from the litter of Kacang Pinto is extremely rapid (Thomas, 1994).As a cover crop Kacang Pinto has been used in coffee, banana, and oil palm. Preliminary research on the crop has indicated its general capacity for weed control, as well as nematode control in tomato and coffee. Other uses include soil protection, soil improvement and as ornaments in urban areas, (Cruz et al. 1994).Kacang Pinto therefore has potential to contribute to physical and chemical improvement (as well as protection) of the soil to supply nutrient, and to increase feed availability and organic matter production. Research in Bali, using Kacang Pinto, Stenotaphrum grass (cv. Floratam and ex. Vanuatu) as cover crop in cassava, showed that Kacang Pinto on its own did not reduce cassava tuber yield significantly (Table 4). If grown with grasses, cassava tuber yields were affected. On the other hand, forage production was increased. As a cover crop, Kacang Pinto forms very good stolons and also produces a lot of seed in the soil. At Manado and Bali (Surabrata), Kacang Pinto plots were burned in the dry season without any stolons left behind. At the beginning of the rainy season many young seedlings grew from seeds in the soil.In Bali (Pulukan area), Kacang Pintoi established in mixtures under coconut plantations, were found to be very resistant to heavy grazing (Rika et al. 1994). In vitro digestibility varied from 60 to 76%, N content ranged from 2.5 to 3 %, and P was in the 0.18 -0.37% range (Cook 1992). Kacang Pinto (Arachis pintoi) pasture has resulted in increased live weight gains 20 -200% and milk yields (17 -20%) compared with pasture consisting of grass alone. Highest gains occurred when there was 30% legume in the pasture. Even in heavily grazed pasture and in the dry season, live weight gains are higher in pasture with A. pintoi than in pasture with grass alone (Cruz et al. 1994).Annual liveweight gains in pasture with A. pintoi have ranged from 160 to 200kg/head/year and from 250 to 600 kg/ha depending on the species of the companion grass and the dry season stress existing in the location (Lascano 1994).The use of Leucaena leucocephala in farming systems in Nusa Tenggara, eastern Indonesia Administratively, this province consists of 12 Kabupaten and 1 Kotamadya, with a total area of 47,350 km 2 and a population of about 3.3 million people in 1993. The climate is influenced by its geographic position, which is between the Flores Sea and the Indian Ocean. The southern parts are drier than the northern parts. The dry condition is significantly influenced by the dry wind blowing from the Australia continent. The island of Flores, which lies quite far from Australia, generally, has better rainfall than Timor and Sumba islands. Based on the analysis of Pramudia et. al. (1997) East Nusa Tenggara in general has single rainfall pattern (91%). This indicates a clear difference between total rainfall in the rainy season and that in the dry season. Double rainfall patterns were only found in some places (6%) such as at Bajawa and Weluli (Kabupaten Belu), Lewa (Kabupaten Sumba Timur) and at Palla and Medakalada (Kabupaten Sumba Barat) (Basuki et al. 1997). The double pattern indicates no clear differences between rainy and dry season, although rainfall is not evenly distributed in all years.The province of West Nusa Tenggara consists of two large islands, Lombok and Sumbawa. Total area is around 20,153 km (IPPTP Mataram, 1997).The development and use of Leucaena leucocephala in the farming system are much more pronounced in East Nusa Tenggara, especially in Amarasi on Timor island and Sikka on Flores Island. There are some small areas in West Nusa Tenggara and East Timor through where L. leucocephala can be seen. This paper focuses on the two locations mentioned.Except for those in Lombok island in West Nusa Tenggara and Flores Island in East Nusa Timor, which have better rainfall and where the agricultural sector has been intensively managed, Nusa Tenggara farmers are subsistence farmers. They work to obtain enough food to support their family and only a small amount of production is sold to earn extra income for their daily needs.Nusa Tenggara plays an important role in the supply of beef as well as breeding animals to other areas of Indonesia. Bali cattle are one of the leading ruminant livestock exported from Nusa Tenggara. In Lombok Island, West Nusa Tenggara, the cattle industry is currently engaged in cross breeding with larger size cattle such as Aberdeen Angus and Simmenthal Sumbawa, on the other hand, is the source of pure Bali cattle.East Nusa Tenggara is concentrating on Bali cattle in Timor and Flores islands, while Ongole cattle are produced on Sumba island. In Timor, extensive cattle raising is mainly practiced in the eastern part where more land is available for grazing and only 1 or 2 animals are tethered per farm household for fattening. Animals are sold whenever the farmer needs cash. This region provides breeding cattle for other parts of the island. Meanwhile, at Amarasi, cattle are mainly tethered for fattening. In Sumba Island, cattle are extensively raised and allowed to graze in native grasslands.East Nusa Tenggara exported up to 50,000-70,000 cattle per year for beef and breeding animal. These cattle come mainly from Timor. However, with the increasing occurrence of Brucellosis, fewer breeding cattle are exported now from Timor. East Timor's Bali cattle industry is just developing. It has good potential for raising the breed.Leucaena leucocephala is well known by farmers in Timor, East Nusa Tenggara. This legume/tree shrub was introduced in the 1930s. At that time, under the strong rule of the Amarasi King (Raja Koroh), farmers in Amarasi were obligated to plant L. leucocephala in rows in an effort to get rid of Lantana camara weeds in the region. Farmers practicing shifting cultivation were not allowed to move to another land until they establish Leucaena in the former land. The short variety of common Leucaena (also called shrubby Leucaena) used in this activity had been widely distributed in the west part of Timor by the 1960s, especially around Kupang (the provincial city of East Nusa Tenggara) and was an important source of firewood. Planting was still encouraged through primary school students in Kupang who facilitated seed collection. This practice of Leucaena planting was well undertaken and became a specific system of farming in the Amarasi region. It became known as the Amarasi model. By the 1970s, large areas in Amarasi were covered by L. leucocephala and the Dinas Peternakan (Government Livestock Services) started promoting cattle fattening through the introduction of the PUTP system Panca Usaha Ternak Potong or Five Efforts in Beef Cattle Fattening). By this time, the 'K-number' varieties of L. leucocephala from the University of Hawaii, were starting to be widely used. Planting of the K varieties started in early of 1960s at Flores Island. The district of Sikka used the local variety, while the K varieties were grown at about the same time in Amarasi, Timor. The system of planting is currently known as the Sikka model.A detailed history of Leucaena development in East Nusa Tenggara was described by Piggin and Parera (1984). Planting of Leucaena in West Nusa Tenggara was done mainly through seed production programs started by IFAD at the sub-district of Sekotong in Lombok where L. leucocephala cv. Cunningham from Australia was used. However, in as much as many areas in Lombok, especially the rice fields are intensively cultivated, farmers are more interested in planting Sesbania grandiflora along the rice bunds. This legume provides less shade so beans such as Dolichos lablab may be planted under the trees. On the other hand, a Leucaena stand makes heavy shade, thus preventing any other plant to grown under it.With the arrival of Heteropsylla cubana (psyllid insect) in 1986-87 many L. leucocephala areas have been greatly reduced and alternative legume trees have been planted to support animal production in the region. Recently, however, Leucaena in Nusa Tenggara seems to have made a good recovery and is again being considered an important fodder plant in the region besides Sesbania grandiflora, G. sepium, and Acacia angustissima and lesser species in use such as Calliandra calothyrsus, C. tetragona as well as other fodder sources from non-legume trees such as Macaranga tanarius, Hibiscus tileaceus, and Ficus spp.Initially, planting of L. leucocephala was done by establishing thick rows of Leucaena 2-3 m apart in poor degraded lands (mainly hilly) with contour arrangement. After 3-4 yeas of planting of L. leucocephala, a good cover is achieved, and the land was then used for planting food crops such as maize, peas, and other preferred crops. In the model, the rows of L. leucocephala were cut to the ground level. The materials cut (leaves and wood) were used as animal fodder and firewood or left in the field and burned when dry. Leucaena transformed this degraded land into fields suitable for food crop cultivation. When the soil condition improved, farmers started to grow banana, coconut, and other useful food crops. This turned degraded Lantana camara land to arable land for the Amarasi farmers.As years went by, the area became thick with L. leucocephala but farmers continued to cultivate the land using row plantings of Leucaena or land that was already covered by a thicket of Leucaena where rows could no longer be identified. Such slash-and-burn systems are still practiced in many areas in Amarasi today.In the 1970s, as the 'K varieties' of Leucaena were being introduced, farmers in Amarasi began to use these taller varieties. In the Sikka model, Leucaena was planted in wider rows (5-6 m apart) and the land in the alley was used for planting food crops. No slash-and-burn cultivation was introduced. Livestock was thus of secondary importance to farmers in Sikka, where only a few owned cattle. By the 1980s intensive cattle raising become popular in Sikka, before the arrival of psyllids. The Psyllid forced farmers to use alternative trees such as G. sepium and C. calothyrsus. In some places of Flores (Manggarai), Timor (TTS), and East Sumba (Lewa), farmers are used Leucaena as a shade tree for coffee plantations (Momuat et al. 1990).With the close distance between rows in the Amarasi system, better control of soil erosion was observed. Also, farmers spent less time in weeding their crops because weeds were effectively controlled.In the past, Amarasi farmers used L. leucocephala leaves alone. In some places where water was scarce, banana stems were fed to the animals. This practice is still being followed today.Farmers in Amarasi still practice fallow systems using land grown with local Leucaena. A family with 5-7 members can manage to fallow 2-4 ha of Leucaena land to grow corn and peas and to establish 1.5-3 ha of forage garden grown 2-3 m apart in rows of mixed legumes such as L. leucocephala (K varieties), G. sepium (local) and Sesbania grandiflora. This forage garden is usually established 2-3 km from the farmers' house and is used as source of fodder from the middle to the peak of the dry season when it is difficult to get enough forage for the tethered animals. During the rainy season, many diverse varieties of fodder can be obtained -native grasses (Sorghum timorensis and an annual Pennisetum spp.) or introduced grasses (P. purpureum) or Pennisetum hybrids mixed with Leucaena leaves (local or K varieties). The current practice of forage cultivation may still be improved through the introduction of other grasses into the rows of the legume trees which grow better in shade such as Panicum maximum and Andropogon gayanus (Nulik 1996). At present, only native grasses such as the annual Pennisetum spp. and S. timorensis occupy the rows; they can only produce fodder during the rainy season.The daily weight gain of Bali cattle under the fattening system in Amarasi can reach up to 0.4-0.5 kg/day (Field 1988;Ataupah 1983) which compares with 0.1-0.2 kg/day under natural range conditions in Timor (Field 1988).Although Leucaena in Nusa Tenggara has made a good recovery, farmers, have learned that there is a need to plant a larger variety of species of tree legumes. Varieties of psyllid-resistant Leucaena also have been tried and evaluated in Timor Island (in Besipae) and some promising species/varieties have already been identified for further development (Piggin et al. 1982). However, because of lack of seeds and the scant information given to farmers, these species/varieties are still not adopted by farmers in the region.Research on Leucaena establishment in various types of soils in Timor and possible forage production has been conducted by Field (1988). Thus, a technology exists for growing the legume under Nusa Tenggara conditions.Leucaena planting in other areas of Nusa Tenggara is promising -the legume may be grown in the eastern part of Sumba and eastern part of West Timor in East Nusa Tenggara, in East Timor, and in the eastern part of Lombok and Sumbawa in West Nusa Tenggara.The use of Leucaena in the farming system in Nusa Tenggara has long been practiced for a variety of reasons: to prevent invasion of Lantana camara weeds, to improve the quality of degraded lands, and to prevent erosion. The arrival of H. cubana in 1986-87 has set back Leucaena development, but its recent recovery promises a brighter future in areas of Nusa Tenggara where it fits well into the farming practices. Inadequate technology transfer and unavailability of seed are slowing the adoption of the psyllidresistant Leucaena species/varieties. Farmers are interested to grow other Leucaena varieties and other tree legume species as well as grasses as sources of fodder. There thus is an immediate need to provide seed/seedlings to the farmers and to let them select the type of fodder suited to their system of farming.The Himalayan Kingdom of Bhutan has an area of about 46,500 km 2 and a population of 0.6 million. Its mountainous topography was aptly described by an early visitor (Marakham 1876) as 'a succession of lofty and rugged mountains, separated by gorges and a few valleys somewhat wider than the generality of ravines.' The elevation ranges from about 200 m in the south to almost 8000 m in the north.The climate is dominated by the monsoon with a dry winter season and high precipitation during June-September. Influenced by topography, elevation, and rainfall pattern, Bhutan has a wide variety of climatic conditions and, consequently, a wide diversity in vegetation and farming systems.Agriculture is the main economy of the country. About 85% of the population live in rural areas and depend on agriculture. Due to the mountainous topography, only a very small percentage of the land is suitable for agriculture. Crops cultivated (in order of importance) are maize, rice, millet, wheat, buckwheat, potato, mustard, and barley (Table 1). Rice is cultivated on small terraces made on slopes with gradients up to 80%. Topography and market accessibility favour livestock production, especially in regions with elevations above 2000 m. Livestock production is traditionally an integrated part of the Bhutanese farming system. The Ministry of Agriculture was reorganized during the period 1993-95. Separate divisions were formed: 1) Research, Extension and Irrigation; 2) Crop and Livestock Service Division (mostly input supply); and 3) Forest Service Division (territorial forest management). Under the Research, Extension and Irrigation Division, four national renewable natural resources research centres (RNR-RCs) were established and given specific regional and national mandates (Table 2). Each research centre was assigned to lead one of the national programs that deal with field crops, horticulture, livestock and forestry. Additionally, the farming systems program under each centre also includes socio-economic, cross-sectoral, and other activities not directly associated with a single program. In its respective region, each centre is responsible for the implementation of all research activities. Besides the main task of importing, adapting, or generating technologies to be used in the extension programs, the centres are responsible for building up a pool of expertise and information and for supporting the extension and development programs by way of technical assistance, training, and general backstopping.The National Livestock Research Program, coordinated by the Research Centre in Jakar, has been divided into 3 subprograms: breeding and management, feed and fodder, and health.With the assumption that technologies under the subprograms breeding and management and health can, to a certain extent, be imported from other countries with little or no further adaptation, major emphasis is given to the subprogram feed and fodder with an allocation of 70-80% of the available resources (RNR-RC 1997).Matching the limited resources available with the needs of the tremendously variable production systems and climates has and will always be a challenge. Rigorous priority setting and judicious planning are given due importance. In a recent attempt to prioritise research needs and opportunities, the identification of main nutritional limitations was given the highest priority (Table 3), followed by fodder produced from intensively managed permanent grasslands.The same areas received top ranking when research priorities were set in the late 1980s. Compared with earlier rankings there was a shift toward fodder resources in integrated systems. Similarly, crop residues were given more importance. This is largely attributed to the change in the research system. Through the integration of crop, horticulture, livestock, and forestry research, more emphasis is given to fodder production in crop or horticulture systems.Regional priorities deviate from national priorities. At higher elevations, extensively managed permanent grasslands will have priority, whereas at lower elevations, arable fodders, tree fodders, and crop residues become important. Regional research priorities, needs, and opportunities are currently reviewed by the newly formed research centres.Field work is done on-station and on-farm, with various levels of farmers' participation. Depending on the objectives of the individual activity, attempts are made to include extensionists and farmers or herders at all stages of the technology development and adaptation process. The extreme variations in climate, soils, and topography and the resulting adaptations by farmers and herders result in a huge range in vegetation, fodder sources, and production systems. Documenting fodder resources and existing management practices is thus a tremendous challenge for the small research team. Taking on the challenge, a process was initiated in 1996 to:• Review past fodder research and development efforts.• Document existing and potential fodder resources, farmers' practices, nutritional constraints to livestock production and quality of existing fodder. • Generate information on farmers' practices, effect of management interventions, and productivity of natural grasslands.The information collected and synthesized will provide inputs for planning and policy decisions and will also serve as basis for planning future research activities.With increasing confidence in the accumulated base line information, monitoring trends in the resource base is gradually becoming more important. Considering the fragility of the grassland resources and the potentially harmful effects any management interactions may have on biodiversity, as well as on forest, water, and agricultural resources, it is important to build up mechanisms and develop key indicators which can quantify trends and changes over time.The species selected in the early phase of the fodder development program have many positive properties and have shown good potential over a wide range of prevailing conditions. There is, however, an urgent need to select additional species for• All environments in the subtropical regions (woody and herbaceous).• Temperate legumes with better adaptation to P and moisture stress.• Fodder species providing winter feed for temperate and subtropical regions (woody and herbaceous). • Species, especially legumes, for fodder production in cropping systems with field crops.• Species for soil and moisture conservation (woody and herbaceous), soil cover, green manure, and/or weed suppression.Native and exotic materials are included in the program. Emphasis is laid on the acquisition and testing of plant materials to be used in integrated field crop, horticulture, or forestry systems and for soil conservation.The subproject on production management includes a wide range of activities with emphasis on establishment, soil fertility management, seed production, and winter feed (Table 6).Various silvopastoral studies focusing on fodder and timber production and the interaction of the two are carried out in collaboration with the forestry program.Similarly several studies focus on systems which integrate fodder production in apple or citrus production systems. White clover is the most widely used exotic fodder species in Bhutan. The first recorded introductions were made in 1970 (RNR-RC 1998). Within a relatively short time, white clover has proven to be the most suitable legume for grassland improvement over a wide range of conditions within the altitude belt of 2000-4000 m (Gyamtshso 1996). Its introduction was, however, only successful with inoculation and P application. White clover not only increased dry matter yield but also substantially increased fodder quality and potential milk production (Tables 9 and 10).The exceptionally successful introduction of white clover has alarmed among various parties. While some are mainly concerned by its bloat-inducing property, others have called for caution in future extension programs because they see it as a serious weed, even considering it as a threat to the existing biodiversity (Roder 1997). Although this may be largely an overreaction, there clearly is a need to reassess the status of white clover in future fodder development activities and to identify techniques and species that• have lower P requirements and/or are more efficient in P uptake,• can accumulate good-quality fodder over the entire growing season which will be available for winter feed, and • are less susceptible to water stress. Modest extension activities aimed at increasing fodder production or quality started in the late sixties or early seventies. Early activities were sporadic and generally dependent on projects which are limited in time and space. Most of the development centres initiated in the late 1960s such as the Samchi farm, Lingmethang farm, Gogona farm, and Bondey farm had, at some stage, promoted fodder species (RNR-RC 1998). Although these activities had little impact, the lessons learned from these experiences provided valuable inputs for the later programs.The Animal Husbandry Department begun to build up a network of extension centres in the seventies. These centres located at the Gewog level (subunit of a district comprising 150-800 households) were generally staffed with veterinary compounders. The main objectives are to provide health care and to supervise crossbreeding activities. Extension workers (pasture assistants) for fodder development were trained from 1978 onwards. While some of these fodder specialists were placed at Gewog levels, others were attached to the district headquarters.The • Subsidies: seed were charged a nominal rate of Nu 2.0 kg-1 (approximately 10% of the production cost). Phosphate fertiliser was provided free of cost.• Establishment: undersowing into sweet buckwheat was recommended as the preferred method. Other establishment methods recommended were seeding after cultivation or transplanting white clover without cultivation.• Management: grazing and cut-and-carry were recommended. Scythes were introduced and distributed at subsidized rates.• Preservation: winter feed preservation through hay or silo making was recommended. Simple pit silo systems were introduced. This package of practices became the model for nationwide extension programs promoted by the Department of Animal Husbandry, with the first countrywide activities initiated in 1978. Minor changes introduced over the years included the following:• With more cocksfoot and tall fescue seed available, it became possible to replace some of the Italian rye grass seed by these species. • Seed costs were fully subsidized from 1983 onward.• Fertiliser subsidies were discontinued in 1996.An early assessment after 3 years of field activities mentioned the following problems (Roder 1981):• Extreme variations in climate exist.• Some ambiguity in the rules and regulations regarding grazing land are not resolved. • Farmers are not motivated enough as the idea of cultivating fodder is new to them and no examples are available.• High phosphate inputs are required.• Very expensive inputs in the form of seeds are given to farmers free or at nominal cost, resulting in farmers' complacency not motivated to optimise coverage and establishment success).• Inoculation failures are common due to poor inoculum quality.Because seed and suitable methodologies are lacking the extension activities in subtropical regions were less successful. The species recommended changed with every plan period. The species recommended were (RNR-RC, 1998):• Fifth plan: Kikuyu grass, Guinea grass, Setaria sphacelata, Rhodes grass, and Napier, Silverleaf desmodium, Glycine, and Stylosanthes guianensis. • Sixth and seventh plan: Signal grass, Molasses grass, Guinea grass, Setaria sphacelata, Greenleaf desmodium, Silverleaf desmodium, Glycine, centro (Centrosema pubescens), siratro (Macroptilium atropurpureum), and Stylosanthes guianensis.A review carried out in 1992 (Wangdi 1992) concluded that the main achievement made in subtropical areas was the creation an awareness for fodder development. It was observed that many sites had reverted back to weeds or shrubs. The main constraints listed were wild boar damage, overgrazing by wild animals, fencing problems, weed dominance and failure of establishment.Fodder tree extension activities were launched in 1982, with local fodder tree species (RNR-RC 1998). Farmers were advised to plant the following species: Artocarpus lakoocha, Bauhinia variegata, Bauhinia purpurea, Lytsea polyantha, Ficus roxburghii, Ficus nemoralis, Brassaiopsis hainla, Saurauia napaulensis, Prunus creasoides and willow. During the fifth plan, the farmers were paid US$ 0.012 as subsidy for each tree planted.The only exotic fodder tree species recommended and distributed to farmers were Leucaena (Leucaena leucocephala) and Robina pseudoacaicia (RNR-RC 1998). The acceptance of these exotic species with farmers was, however, marginal at best. Psyllid infestation on Leucaena was observed at various locations.The number of species recommended was reduced for the sixth plan to Artocarpus lakoocha, B. variegata, B. purpurea, F. roxburghii, F. cunia, F. lakoor and Celtis australis. Where suitable, farmers show a strong preference for F. roxburghii. This species is preferred for its wide adaptation, good biomass yield, availability during the dry season, and relatively good fodder quality (Tshering et al. 1997).Urea treatment of paddy straw was an important component of the extension program during the sixth and part of the seventh plan. Farmers were given free urea and training on treatment methods. An extension booklet was issued in 1987 (RNR-RC 1998). The advantages of urea treatment were supposed to include higher palatability and intake, better digestibility, higher N intake (from the urea) and reduction of liver fluke infestations.Following a survey carried out in 1996, the technology was, however, not adapted. This in spite of the fact that almost all rice growers feed paddy straw to their cattle and consider liver fluke as a serious problem. The reasons cited for non-adoption include reduced intake, additional labour required and urea cost.Based on the progress reports the following were achieved through the extension activities during the fifth, sixth and seventh plan period (1982)(1983)(1984)(1985)(1986)(1987)(1988)(1989)(1990)(1991)(1992)(1993)(1994)(1995)(1996)(1997):• Pasture development: 34,000 acres.• Fodder trees planted: 735,819 trees.• Large coverage for paddy straw treatment (>50% of rice-growing households in selected districts.The impact of these activities can be quantified at different levels: dry matter production, fodder quality, livestock production, socio-economic issues, and environment (Table 11). On a national level, the impact of fodder development activities on total dry matter production may be negligible. A recent estimate (RNR-RC 1998) puts additional dry matter production at would be about 15,000 t annually, sufficient to feed 1800 animals or about 0.5% of the total population of large ruminants.The impact of subtropical herbaceous fodder species and tree fodder in general on the nutritional quality of the diet is negligible. In temperate regions, the introduction of white clover, however, has resulted in a substantial increase in fodder quality in the wet and dry season. White clover has spread through the grazing animals over large areas of permanent grazing land. Because of its excellent nutritional qualities (high palatability, high protein content and low crude fibre), small additions of white clover to the native grassland vegetation will substantially increase the quality of the fodder. It is largely through this increased fodder quality that the milk potential of crossbreed animals can be realized (Tables 9 and 10).Tree fodder species are almost exclusively used for winter fodder. Herbaceous fodder species contribute substantially towards improved winter fodder quality and quantity. The traditional winter fodder such as paddy straw, buckwheat straw, native pasture and tree fodder leaves are all of very poor quality. Most of them are insufficient to even maintain the body weight of large ruminants. Small improvements in the quality of winter fodder will have substantial impact on infertility problems, mortality and production over the entire season.The number of animals (yak and cattle) increased from 165,000 in 1976 (review undated) to 335,000 in 1995 (MOA 1995). We can assume that a 100% increase in livestock number resulted in a 100% increase in feed requirement. The increased requirement was largely covered by traditional fodder resources. Improved feed availability and quality in the dry season has, however, contributed substantially to make this tremendous increase in livestock number possible. The impact of fodder development on animal production is mainly realized in terms of change in seasonal draft availability and increased milk production.The use of forages for soil fertility maintenance and erosion control in cassava in Asia Cassava (Manihot esculenta Crantz) has the reputation to extracts large amounts of nutrients from the soil. However, Howeler (1991) and Putthacharoen et al. (1998) have shown that on an area basis, less nitrogen (N) and phosphorus (P) are removed in the harvested cassava roots than in the harvested products of most other crops, while the amount of potassium (K) removed in the harvested roots is similar to that removed by many other crops. Thus, continuous cassava production on the same land without nutrient inputs is likely to result in depletion of soil K, followed by that of N, and finally P. To maintain soil productivity, nutrients lost from the system should be compensated by application of chemical fertilisers and animal manures, by fallowing of natural vegetation, or by 'improved' fallows using mainly forage legumes as green manures and cover crops, or as hedgerows in alley cropping. In the latter case, the legumes add N to the system through biological N-fixation, and recycle P and K by absorbing these nutrients from the lower soil strata and returning them to the soil surface in leaf litter, in leaf pruning, or plant residues. After cutting, burning, mulching or incorporation of the vegetation, the surface soil tends to be enriched with these nutrients, which enhances the production of crops.When crops are grown on slopes, heavy rains may cause dislodging and movement down-slope of soil particles resulting in soil erosion. Over time, this will reduce soil depth and a loss of soil productivity due to the loss of organic matter (OM), nutrients and beneficial soil microorganisms, such as mycorrhiza. Putthacharoen et al. (1998), Wargiono et al. (1998) and Howeler (1995) have shown that production of cassava tends to result in more erosion than that of other crops, mainly because cassava is planted at a wide spacing and has a slow initial growth, resulting in poor protection of the soil from direct rainfall impact during the first three months of the crop cycle. However, it was found (Howeler 1987 and1994;Ruppenthal et al. 1997) that erosion can be markedly reduced by soil/crop management practices, such as minimal tillage, mulching, contour ridging, fertilisation, intercropping, closer plant spacing, or the planting of cover crops or contour hedgerows of grasses or leguminous species.The objective of this paper is to review research conducted in Asia on the use of forage species for improving soil fertility through green manuring, alley cropping and cover cropping, or for reducing erosion by the planting of contour hedgerows in cassava fields. The research summarized in this paper spans a 11-year period, from 1987 to 1998, and was conducted in three locations in Thailand and one location in Indonesia.The principal climatic and soil conditions at the experimental sites are summarized in Table 1. Most experiments were conducted in Thailand, at Rayong Field Crops Research Centre in Huay Pong, Rayong; at the King's Project site, in Pluak Daeng, Rayong; and at Kasetsart University Research Station in Khaw Hin Sorn, Chasoengsao. These sites have similar climatic and soil conditions, characterized by a year-round hot climate, a 6-month dry season, and sandy clay or sandy clay loam soils with low levels of OM, and intermediate levels of soil nutrients. In Indonesia, the experiment was conducted at Jatikerto Experiment Station in Malang district of East Java. The soil is derived from volcanic ash, has a clay texture, a slightly acid pH, and is low in OM and P, but high in Ca, Mg and K.The experimental methods used in each experiment are summarized in Table 2, and will be discussed in more detail below together with the results obtained. The use of forages as green manures for soil fertility improvementGreen manures can be effective only if they are productive and well adapted to the local soil and climatic conditions. To determine their productivity under the conditions in which cassava is grown in Thailand, 32 accessions of grain and forage legumes, including some leguminous tree species, were planted at the Rayong Field Crops Research Centre in Huay Pong, Rayong, Thailand in 1987/88.Table 3 shows some growth parameters as well as the nutrient uptake of the species. 1) At cutting (5 months); soybean, peanut and mungbean at harvest of each species.2) Mimosa sp. (a thornless variant of M. invisa).3) Drought at flowering caused no pod set.From the results obtained the most promising species were separated into four groups according to their specific potential usage:• For green manures: Sesbania speciosa, S. aculeata, S. rostrata, Crotalaria juncea, C. mucronata, C. spectabilis, Indigofera sp., Canavalia ensiformis (sword bean), Mucuna fospeada (velvet bean) and Cajanas cajan (pigeon pea).• For cover crops: Centrosema pubescens, Macroptilium atropurpureum (siratro), Mimosa sp. (a spineless variant of M. invisa), Stylosanthes hamata and Indigofera sp.• For intercropping: peanut, mungbean, cowpea and soybean.• For alley cropping: Sesbania aculeata, S. javanica and perennial pigeon pea.The use of forage legumes as green manures to maintain soil fertility in sandy clay soils was studied by planting 10 green manure species at the beginning of the wet season in Pluak Daeng of Rayong province. After 3-4 months the above-ground parts were cut and incorporated into the soil before planting cassava in the mid to late wet season. Cassava did not receive any fertilisers, except in one of the two treatments without green manure which received 100 kg N and 50 K 2 O/ha. The crop was harvested after about 8 months at the start of the next wet season. The trial was repeated in a similar fashion in 1989/90 and 1990/91, except that green manures were mulched on the soil surface and cassava was planted without land preparation.Table 4 shows the productivity of the green manures and their effect on cassava yield during the three years of testing. There was a significant effect of green manure application on cassava yields in the first two years, but the effect was not significant in the last year. Crotalaria juncea and Canavalia ensiformis were the most productive species, and the most effective in recycling nutrients (Tongglum et al. 1992), while incorporation or mulching of Crotalaria juncea usually resulted in the highest cassava yields; these yields were similar to those obtained with chemical fertilisers. Other promising species were Mucuna fospeada and Canavalia ensiformis. Nevertheless, in the first two years, cassava yields were extremely low because cassava could only be planted late in the rainy season after the green manures had been incorporated or mulched; as such, cassava suffered from drought stress during much of the growth cycle. In the third year, cassava was not harvested until Aug 1991 (11 months), resulting in much higher yields, but no significant response to green manure application. 1) Green manures were planted in May/June, cut in Aug/Sept and cassava planted in Oct, harvested after 8-9 months in the first two years and after 11 months in the third year. 2) 100 N, 0 P, 50 kg/ha K2O.Analyses of soil samples taken before planting and after harvest of cassava indicate that green manures had no significant effect on pH, OM and available P or exchangeable K (CIAT, 1992). In all treatments, soil pH gradually decreased from 6.6 to 5.5, OM decreased slightly from 1.0 to 0.8 %, P was quite variable, while available K decreased from 95 to about 30 ppm during three years of consecutive cropping.A similar experiment was conducted for three years (1991 to 1994) in an adjacent field in Pluak Daeng using six species of green manures. These were again planted in the early wet season (May/June), cut after about 3 months, and (in subplots) either mulched on the soil surface or incorporated into the soil with a hand tractor. In the mulched subplots cassava was planted without further land preparation. Cassava was planted in the mid to late rainy season (Aug/Sept) and harvested after 9-10 months. For comparison, two additional plots without green manures were planted at the more traditional planting time at the start of the rainy season (May/June); these were also harvested after 9-10 months. At both planting times one of the two check plots without green manures received 100 kg N and 50 K 2 O per hectare as fertilisers.Table 5 shows that planting in the early rainy season resulted in much higher cassava yields than planting towards the end of the rainy season. Application of NK fertilisers increased yields but not significantly. Among the six green manures, Crotalaria juncea was consistently the most productive species, while Sesbania rostrata was the least productive. Crotalaria juncea, either when mulched or incorporated, also produced the highest cassava yields. While these yields were higher than those planted in September with fertilisers, they were not significantly different from yields obtained without fertiliser when cassava was planted in the early wet season, and they were considerably lower than those obtained with fertilisers and planted in May/June. Soil analyses again indicate that incorporation or mulching of green manures had no significant effect on soil fertility parameters. This indicates that nutrients leached from the decomposing green manures were directly absorbed by cassava roots without having a long-term effect on soil fertility. From these two experiments conducted in Pluak Daeng it was concluded that among the green manures tested, Crotalaria juncea was the most productive and the most effective in increasing cassava yields; that incorporation resulted in slightly higher yields than mulching (not statistically significant); and that some green manures were as effective or even more effective than chemical fertilisers in increasing yield. However, under the climatic conditions of Thailand, which has a 6-month dry season, the traditional use of green manures is impractical, since the better part of the rainy season is used for production of green manures, while the following cassava crop produces low yields due to drought stress in the dry season.To overcome some of the above-mentioned constraints alternative management practices were tested in a green manure trial conducted at Rayong Research Centre from 1994 to 1998, using Crotalaria juncea, Canavalia ensiformis, pigeon pea and cowpea as the green manures. Three methods of green manure management were tested: a) green manures were intercropped with cassava, pulled out at two months after planting (MAP) and mulched between cassava rows; b) green manures were interplanted into a mature cassava stand at 7 MAP; they were pulled up and mulched at the time of next cassava planting; or 3) green manures were grown as a conventional green manure crop before being pulled up at 3-4 MAP and mulched, after which cassava was planted without further land preparation and left to grow for 18 months. The last method resulted in a two-year crop cycle, while in methods 1 and 2 cassava was harvested at 11 months for a normal one-year crop cycle.The results, shown in Table 6, indicate that Crotalaria juncea usually had the highest dry matter (DM) production, followed by pigeon pea or cowpea. Pigeon pea was particularly productive as a green manure crop when interplanted at 7 MAP, in which case the green manure remained in the field during the dry season. Because of their high DM production, Crotalaria and pigeon pea were the most effective in recycling nutrients.In the first cycle almost all green manure treatments increased cassava yields compared with the check without green manure (T 1 ); however, these yields were still below those obtained with a higher fertilisation rate (T 2 ). In the second cycle, intercropping or interplanting of the green manures had no significant effect on cassava yields, which were again considerably below that obtained with a higher rate of fertilisation (T 2 ). Leaving cassava grow for 18 months after a conventional green manure crop (T 11 -T 14 ) resulted in very high yields while having little effect on root starch content. This may be an effective way for farmers to reduce production costs, since land preparation, weeding and harvesting is done only once in two years, while total production from one 2-year cycle was only slightly lower than that of two 1-year cycles.Again, there were no consistent effects of any of the green manure treatments on soil pH, organic matter (OM), available P or exchangeable K. Thus, while green manuring may have some short-term benefits in terms of crop productivity, the long-term effects on soil fertility are not very clear. Whenever labour is scarce or expensive, such as in Thailand, farmers will probably prefer to maximize their yields through the use of chemical fertilisers instead of green manures.Nevertheless, Paisarncharoen et al. (1990) reported that incorporation of vegetative cowpea (Tita-3) increased significantly the yield of the following cassava crop during five consecutive years in Khon Kaen in Northeast Thailand. Incorporation of Crotalaria juncea also increased yields, but not significantly, while pigeon pea had little beneficial effect (Sittibusaya et al. 1995). Fertiliser applied 13-13-21 fertiliser kg/ha. In T3-T14 cassava received 156 kg/ha 13-13-21 fertiliser (like T1). In T3-T6 cassava was intercropped with 1 row of green manure, which was pulled out and mulched at 2 MAP; cassava was harvested at 11 months for a total crop cycle of 12 months. In T7-T10 the green manures were inter-planted in the cassava stand at 7 MAP; they remain after the cassava harvest and were pulled up and mulched at time of next cassava planting; cassava was harvested at 11 months for a total crop cycle of 12 months. In T11-14 the green manures were planted, pulled out and mulched at 3-4 months, after which cassava was planted and remains in the field for 18 months for a total crop cycle of 24 months. In the first cycle, T6, T10 and T14 had Mucuna pruriens as the green manure, but this species did not germinate well and was replaced by cowpea in the 2nd cycle.2)1st and 2nd refer to the two cropping cycles.3)High yields in T11-14 is mainly due to a longer (18 months) cropping cycle compared with a normal 1-year (11 months) cropping cycle for the other treatments.Erosion losses in cassava fields were found to be high (Puttacharoen et al. 1998) mainly because much of the soil surface remains exposed to the direct impact of raindrops during the first 3-4 months after planting. This problem can be reduced by minimum tillage (Reining, 1992), application of mulch (Evangelio et al. 1995), intercropping (Reining, 1992), or by the use of forage legumes as a cover crop for cassava (Ruppenthal, 1995). These practices can be very effective in controlling erosion (Howeler, 1995) and may also improve soil fertility, but they have negative aspects such as weeding problems, high labour requirements, or competition effects from the cover crops. To determine the potential of several forage legumes for their use as cover crops in cassava, various experiments were conducted in Thailand.After evaluating a large number of forage species for adaptation to soil and climatic conditions in Rayong, Thailand, some species were identified as potential cover crops for use with cassava (Table 3). Nine leguminous forage species were planted in double rows in between rows of cassava, cv. Rayong 1, spaced at 1.80 x 0.55 m. Cassava received 156 kg/ha of 15-15-15 fertiliser.All forage species established well, resulting in complete soil cover in 3-4 months after planting, except for Arachis pintoi and Stylosanthes hamata, which established more slowly. In the first year, cover crops were not cut back, resulting in competition with cassava, both for light and for soil moisture during the dry season. After the first cassava harvest, all cover crops were slashed back and mulched. Plots were subdivided and cassava was replanted at a spacing of 1.10 x 0.90 m in 60-cm wide strips prepared either with hand tractor or by spraying the cover crops with Paraquat. The same methodology was used in the third year. In the second and third year cover crops were regularly slashed back at 20 cm above ground level to reduce competition with cassava.Nevertheless, Table 7 shows that cassava yields were low and severely affected by competition from the cover crops. Most competitive was Stylosanthes guianensis, followed by Centrosema pubescens. Stylosanthes hamata and Arachis pintoi were not very competitive during the first year of establishment, but became very competitive in subsequent years. Least competitive was Centrosema acutifolium, but this was partly due to less vigorous growth resulting in only partial soil cover. A similar experiment was conducted in an adjacent field. In main plots two cassava plant spacings were used, i.e. 1.0 x 1.0 m and 1.50 x 0.67 m, both giving a plant population of 10,000 plants/ha. In subplots various forage species were planted in between cassava rows. Cassava received 156 kg/ha of 15-15-15 fertiliser. After the first cassava harvest, the cover crops were slashed back and cassava was replanted in 60cm wide strips prepared with a hand tractor. In the second year all cover crops were well established and competed strongly with cassava, mainly for soil moisture during cassava establishment. Table 8 shows that there were no significant differences in cassava yields due to plant spacing, but that nearly all cover crops reduced cassava yields, some more than 50%. Most competitive were Indigofera and Mimosa sp. which were also among the most productive forage species tested. Less productive and thus less competitive were Zornia glabra, Alysicarpus vaginales and Arachis pintoi, although the latter still caused a marked yield reduction in the second year.From these two cover crop experiments it can be concluded that cassava is a weak competitor and yields are reduced markedly if the plants have to compete with deep rooted and well established forage legumes used as a cover crop. This competition is particularly strong during cassava plant establishment, especially when this coincides with a period of drought. Thus, cover cropping with most forage legumes would not be practical since it tends to reduce cassava yields and requires considerable additional labour. Ruppenthal (1995) and Ruppenthal et al. (1997) showed that cover crops, once well established, were effective in reducing soil erosion in cassava fields in two locations in Colombia, but that erosion can be controlled more effectively and with less reduction of cassava yield with the use of contour hedgerows of vetiver grass (Vetiveria zizanioides). The use of leguminous tree species in alley cropping to improve soil fertility Growing crops between contour hedgerows of leguminous trees is called alley cropping, and is another alternative to improve soil fertility and reduce erosion. The space between hedgerows can be varied, but is usually around 4-5 meters, so that less than 20% of total land area is occupied by the hedgerows. The hedgerows are pruned before and at regular intervals after planting the crop and the pruning are distributed among crop plants to serve as a mulch, to supply nutrients (especially N), and to control weeds and erosion.Adaptation of leguminous shrubs and tree species to conditions in Rayong, Thailand Various leguminous shrubs were tested in Rayong, Thailand, to determine their general adaptation, ease of establishment, productivity of leaf/stem biomass, resistance to regular pruning and drought tolerance.Table 9 shows that several species of Sesbania were highly productive in the first year, but did not resist regular pruning. Perennial pigeon pea varieties were easy to establish, were highly productive and drought tolerant, but they will last only a few years. Leucaena leucocephala, Gliricidia sepium and Cassia siamea were more difficult and slow to establish, but once established they were highly productive, resistant to pruning and very persistent. Cassia siamea is a non-N-fixing legume tree and serves mainly to produce biomass as mulch, to recycle nutrients and protect the soil from erosion. This species was also found to be particularly tolerant of acid soils (Howeler et al. 1999). Other species like Flemingia macrophylla and Tephrosia candida have been used successfully in other countries. Some farmers in northern Thailand adopt hedgerows consisting of a mixture of fastgrowing pigeon pea with a slower growing but more persistent tree species like Leucaena leucocephala (Boonchee et al. 1997). The use of hedgerows of Flemingia macrophylla and Gliricidia sepium in cassava fields were investigated for four years in Malang, Indonesia. The experiment had eight treatments without replication. Eroded soil was collected in concrete channels below each plot.The two hedgerow species were initially difficult to establish and during the first three years they had no beneficial effect on cassava yield or erosion (Wargiono et al. 1998). However, in the fourth year, when cassava in other plots suffered from severe Ndeficiency after intercropping with maize, the cassava plants in the alley-cropped treatments were tall and had dark green leaves, indicating that the pruning of the hedgerows had supplied considerable amounts of N. Table 10 indicates that during the fourth year the two alley-cropped treatments produced high cassava yields and had the lowest levels of erosion (by enhancing early canopy cover).In a previous experiment in the same site, hedgerows of Leucaena leucocephala and Gliricidia sepium also produced the highest cassava yields and lowest levels of erosion during the fourth year of consecutive planting; these two treatments also resulted in the highest levels of soil organic matter , the lowest bulk density and the highest infiltration rates and soil aggregate stability (Wargiono et al. 1995). Table 10 also shows that cover cropping with Mimosa sp. reduced cassava yields only slightly in the first two years, but markedly in the subsequent two years. Thus, once well established, hedgerows of leguminous shrubs used for mulch significantly enhanced soil fertility and improved the soil's physical characteristics. However, in less fertile soils or in areas with a long dry season, hedgerows can severely compete with neighbouring cassava for water and nutrients (Jantawat et al. 1994); they also require additional labour to keep properly pruned to prevent light competition.Many researchers (Ruppenthal 1995;Ruppenthal et al. 1997;Vongkasem et al. 1998;Nguyen The Dang et al. 1998;Zhang et al. 1998) have shown that planting contour hedgerows of vetiver grass is a very effective way to reduce erosion when cassava is grown on hillsides. In farmer participatory research (FPR) trials in Vietnam and Thailand, farmers have consistently identified this as the most effective way of controlling erosion (Howeler et al. 1998). Nevertheless, few farmers have actually adopted the technology because vetiver grass can only be propagated vegetatively, planting material is often difficult to obtain, and transport and planting costs are high. Moreover, vetiver grass is not a good animal feed, the stems do not provide fuel wood, and the leaves do not add nitrogen to the soil. To overcome some of these problems, other grasses were evaluated for their ability to form a dense hedgerow that is effective in reducing erosion, without competing excessively with neighbouring cassava or spreading by seed or stolons into adjacent cropland.In 1996, cassava cv. Kasetsart 50, was planted along contour lines at a spacing of 1.0 x 1.0 m in plots of 7 x 10 m on a gentle slope (5-6%) in Khaw Hin Sorn. Fifteen grass species were tested as contour hedgerows by planting them between every third cassava row to give three hedgerows per plot. Treatments were not replicated. Eroded soil was trapped in a plastic-covered ditches along the bottom end of each plot. These eroded sediments were collected and weighed to determine soil loss due to erosion. Most grasses were planted vegetatively, but Brachiaria ruziziensis, B. brizantha, Setaria sphacelata, Paspalum atratum and Panicum maximum were planted from seed. Three accessions of vetiver grass were also included. Cassava was fertilised with 312 kg/ha of 15-15-15. All grasses established well in the first year. Hedgerows were cut back at a height of 30 cm 2-3 times a year, and the cut leaves were mulched between cassava plants. After 11 months, cassava plants were harvested row by row. The same plots were replanted with cassava in 1997 and 1998, while hedgerows were maintained by regular pruning.Table 11 shows that in the first and second year cassava in check plots without hedgerows produced 19.6 and 21.5 t/ha of fresh roots, respectively. During the first year of establishment, some plots with grass hedgerows, i.e. Paspalum atratum and Setaria sphacelata, produced higher cassava yields than the check plot, but most other grasses, notably Napier (Pennisetum purpureum), Brachiaria ruziziensis and Panicum maximum CIAT 6299, competed strongly with neighbouring cassava plants, resulting in a marked reduction in yield. In the second year, cassava encountered drought during the establishment phase and suffered from strong competition for water from the neighbouring grass hedgerows of all species. Figure 1 shows that napier grass and King grass Pennisetum were particularly competitive, reducing cassava yields dramatically, not only in the neighbouring rows but also in the centre row, 1.5 meter away from the grass. Most other grasses affected the yield of cassava mainly in the neighbouring rows but not in the centre row. Paspalum atratum was again least competitive, followed by lemon grass (Cymbopogon citratus) and citronella grass (Cymbopogon nardus Rendle); the vetiver grasses were intermediately competitive. Soil erosion losses were relatively low and differences among the plots are probably not related to treatments.During the third year, 1998/99, it was observed that all grasses seriously competed with cassava in neighbouring rows except for lemon and citronella grass and the vetiver grasses; the latter have a vertical root system that does not overlap with the rooting zone of cassava (Tscherning et al. 1995). Paspalum atratum, which did not compete much in the first two years, tended to expand somewhat laterally, causing more competition for light in the neighbouring cassava rows. Thus, while Paspalum atratum seems like an attractive option, as the grass makes an excellent animal feed and can be grown from seed as well as from vegetative planting material, in those areas where animal feed is not important to farmers, the best alternatives probably remain vetiver grass and lemon grass. The latter is an important ingredient in Thai cooking and thus has market value for the farmer. Results from the experiments described above can be summarized as follows:Intercropping and cover cropping -Cassava is a weak competitor and yields were seriously reduced when the crop had to compete with intercropped species, especially vigorously growing perennial species, like Stylosanthes guianensis, S. hamata, Centrosema pubescens, Indigofera hursita, Mimosa sp. and Pueraria phaseoloides or long-duration annuals like Mucuna sp. (velvet bean) pigeon pea or cowpea. However, intercropping with short-duration grain legumes, such as peanut, mungbean, soybean and erect types of cowpea, usually has little effect on cassava yield and provide farmers with additional income (Nguyen Huu Hy et al. 1995), protect the soil from erosion (Tongglum et al. 1992) and may improve fertility if crop residues are incorporated.Intercropping with peanut is commonly practiced in Vietnam, China and Indonesia, while intercropping with soybean or peanut is common on the calcareous soils of southern Java of Indonesia.Green manuring -Growing a green manure crop before cassava and either incorporating or mulching of the crop residues before planting cassava generally improved soil fertility and increased cassava yields, especially in sandy and low fertility soils. In areas with intermediate soil pH, the most productive species were pigeon pea, Indigofera hirsuta and Sesbania speciosa. In soils of higher pH in Pluak Daeng, Crotalaria juncea was consistently the most productive and most effective specie in increasing cassava yields, followed by velvet bean and Canavalia ensiformis. However, in areas with only one relatively short wet season, green manuring may not be practical since the green manure is grown during much of the wet season, resulting in low cassava yields due to drought stress in the following dry season.Alley cropping -Cassava is grown in strips (alleys) between single or double rows of perennial tree legumes; the legumes are cut back regularly and the leaves are mulched between cassava plants. Cassia siamea was found to be very productive, but there is little experience with the use of this species in alley cropping. In high pH soil in Indonesia alley cropping with Leucaena leucocephala, Gliricidia sepium and Flemingia macrophylla was found to be effective in increasing cassava yields and reducing erosion.Grass hedgerows -These are planted along the contour in hilly areas, usually at 1-2 m vertical distance to reduce runoff and trap eroded sediments. The most effective species so far identified are vetiver grass, lemon grass, citronella and Paspalum atratum. The latter has the advantage of being a useful animal feed, while it can be propagated either from seed or from vegetative material, thus reducing the cost of establishment. Napier grass is commonly used as a hedgerow along contours or plot borders in Indonesia (Wargiono et al. 1995;1998), where it does not seem nearly as vigorous and competitive as in Thailand (Jantawat et al. 1994), either due to more frequent cutting or because of a different ecotype used.It may be concluded that forage legumes can play a role in improving soil fertility in cassava, mainly when used as a green manure before planting cassava or as a hedgerow (alley crop) between cassava, but whether or not it is practical depends on the rainfall distribution, availability of land and labour, as well as the cost and availability of alternative nutrient sources, like animal manures and chemical fertilisers.Cover cropping with perennial forage legumes in cassava does not seem practical, as the legumes compete too strongly with cassava, especially for soil moisture during the early cassava establishment phase.The SEAFRAD Newsletter was put up to serve as a medium for exchanging results. Production is done on a rotation basis. Each member country takes charge of producing and distributing the newsletter. There are two issues per year. The Philippines produced the first issue and the succeeding issues were published by Lao PDR, then Malaysia, and Indonesia.The main problem encountered in the production and distribution of the newsletter is not so much the technical difficulties or workload. The responses of member countries reflected some degree of indifference to the newsletter. For coordinators it is an extra task which adds to their already high workload. The responsibility of reporting their R & D activities is relegated to the background. In spite of e-mail facilities provided to ensure greater participation, results have been disappointing. To sustain the SEAFRAD newsletter, some remedial measures need to be taken.Making national coordinators in charge of the newsletter is not a good idea. Many of them hold important positions and are already busy with official matters. They have very little time for the newsletter. To solve this problem, coordinators must be carefully selected. Each member country should nominate its own representative who is dynamic and proactive. Besides, consideration should be given to language proficiency of the staff. In this way, we can ensure more active participation from members within each country.This brings to the fore the question about the purpose of the newsletter. Has the newsletter served its objective? Judging from the renewal forms received, it appears that there is a lot of interest even among people outside the FSP project. There is a demand for it, but on a limited scale. Because it is in English, distribution in Asian countries is not as wide as when it would be in the local languages. The newsletter may have outlived its usefulness. Each country should now develop its own mode of information dissemination. Meanwhile the network should aim to have annual meetings where member countries can share and exchange knowledge and experiences.Peter Kerridge 1 and Sam Fujisaka 2Farmer participatory evaluation of forages in the FSP is usually taking place where farmers have expressed a need for improving feed supply for livestock and expressed an interest in evaluating new forage technologies. At some sites, other farmers have joined in the evaluation. There is now a need to move beyond evaluation and determine the impact of new forage technologies on various aspects of farmers' livelihoods.The FSP on-farm sites represent different farming systems ranging from agroforestry, upland, plantation, and grasslands to lowland. Different forage varieties and uses for grasses and legumes are being tested at each site. There is considerable diversity in systems, in the particular, the needs of individual farmers and the potential uses for improved forages. Can we take this into account and still assess impact at the farm level?We are currently using a three-step framework in evaluating forages in the FSP:Step 1. Identification of potential sites using PRA Method: We use secondary information such as data on livestock numbers and livestock production, look at maps, and make own observations. This includes discussions with our collaborators, the provincial and district officers as to how they perceive a need. Potential sites are visited and we may interview some farmers or groups of farmers. Output: The output of this PRA is a brief description of climate, soils, landscape and land use, a description of the farming system and an assessment as to whether the site has a need and is suitable as an FPR site for evaluation of forages. That is, there needs to be a clear indication that there is a real problem that can be solved with new forage technologies, there are farmers trying to solve the problems and local partners able to support work in the area.Step 2. Diagnosis of problems and possible solutions using PD Method: Participatory diagnosis. Outputs: The outputs are:1. Detailed description of the farming system. 2. Problem diagnosis with farmers individually and as a group.3. Understanding of the causes of problems. 4. Suggestions of possible solutions. 5. Decision to work together (or not). 6. Commitment by farmers and the project.Step 3. Planning and working with farmers Method: Participatory planning with farmers. Output: Agreement on activities and commencement of work.We are suggesting that there should be another step in which there would be an assessment of the impact of forage technologies. This might be done by some form of participatory evaluation, surveys, interviews with individual farmers and some data collection. The outputs would be knowledge of the impact of forage technologies on livelihoods (such increased income, less drudgery in looking after animals and more efficient use of labour. We would also hope that there might be some positive impact of benefits on maintaining natural resources.How can we measure impact?Preferably we would interview individuals or groups of farmers and make our assessment against baseline information using a common set of indicators chosen with farmers and district officers.Which group of farmers do we choose for studying impact? We have four groups of farmers in the communities in which we work:1. Participating farmers who adopt new forages.2. Participating farmers who do not adopt forages 3. Non-participating farmers who adopt forages. 4. Non-participating farmers who do not adopt forages.Let us take a theoretical example: There are 300 families in the village, 40 families have participated in evaluating forages with us and 30 of them are still enthusiastic and are our friends. Surely we can get the story of impact of new forages from them. However, the real impact of the new technology needs to be assessed against the situation that existed before the technology was introduced. Also, it is important for us to know why some farmers adopted and why others did not and what attracted nonparticipating farmers to adopt and why others outside the participating group chose not to do so. A survey for impact needs to include both adopters and non-adopters and those who spontaneously chose to adopt or to reject the technology.How are we going to objectively assess the impact, including the rate of adoption and the magnitude of the impact? It is 1998, and the project has been running 3 years; there have been changes in staff and memories are short. It is obvious that it would help to know what was the situation when the project commenced. Hence we need to have baseline data or a baseline characterisation. And as we need to interview or assess the four groups of farmers we need baseline information of all four groups. When we started we did not know who would participate and who would adopt. Thus the baseline data needs to be collected once a suitable site has been selected and we are conducting the first participatory diagnosis.Step 1. Identification of potential sites using PRA.Step 2. Diagnosis of problems and possible solutions using PD.Step 3. Collect baseline data at villages or sites where we are conducting PD.Step 4. Evaluation of possible solutions and monitoring.Step 5. Follow-up assessment on impact of new forage technologies.What data do we collect for baseline characterisation? This sets us a problem. It takes time to collect data. Is it all going to be useful? Also, why wait until the end of the project to make an assessment of impact.It would help us and the farmers to identify indicators of impact which can be used to monitor the development of new technologies. Farmers innately know or can sense if something is likely to be successful or not. It is more difficult for us to do so. Hence, we need specific data or indicators that will provide us information on the direction of impact; and we need to be selective. When we conduct the initial PRA and then the PD we obtain a good idea of problems facing the farmers.For example, lack of forage to feed animals, the time it takes to collect feed for their animals, money available for purchasing household essentials, equity of income sharing between family members, low yields low due to declining soil fertility. This gives us some idea of choosing a restricted set of data that can be used as indicators in monitoring progress and assessing impact. Table 1 shows indicators which Tatang Ibrahim suggested for the FSP site Pulau Gambar where the project is working with women to improve feed supply for sheep. Some indicators that might be appropriate for the FSP Forage adoption:• Area of new forage grown.• Productivity of forages.• Contribution of forage towards total feed requirements.Animal productivity:• Live weight gain of small ruminants sheep and goats (girth of cattle).• Indirect measurements of productivity of large ruminants, e.g. sale price, body condition, hours can work as a draft animal. • Reproductive performance (calving interval, litter size).• Off-spring (mortality and growth).• Animal health (evidence of internal parasites).• Time spent cutting naturally occurring forages along roads vs. cutting improved forages. • Time spent herding cattle for grazing vs. time spent in tethering.• Time spent in land preparation following legume fallow vs. natural fallow.• Time spent weeding crops following legume fallow vs. natural fallow.For impacts additional to those directly associated with livestock production:• Amount and quality of manure used for crop production.• Crop yield following forage or legume phase.• Earthworm activity (due to changes in soil structure and soil fertility).• Weediness.• Change in land use, e.g. area of land terraced with erosion barriers or proportion of farm using some form of forage integration.• Changes in assets.• Income through sale of animals, forage, planting materials.• Value of manure through sales or used for crop/forage production.• More leisure time or less hours spent in unpleasant tasks.It is likely that only a restricted set of the above would be used for each locality.In summary 1. Conduct PRA, site selection, initial participatory diagnosis and the initial selection of possible problem-solving alternatives. Target communities or sites and problems should be tentatively identified at this stage. 2. Conduct Participatory Diagnosis to define problems and potential technology solutions. 3. Conduct a baseline survey of individual families / groups which focuses on current land use, labour allocation, assets, a measure of productivity output plus disposable income. Remember, the baseline survey is to provide a basis for comparison before and after adoption of forages technologies. Hence, it will be useful to develop specific sets of measurable indicators for each site which relate to the outputs we are trying to achieve. Choose indicators that can be monitored periodically throughout the project. Where there is expertise available, the baseline data can contribute to a reasonable ex-ante analysis of potential problem-solving alternatives. 4. Participatory Technology Development, accompanied by monitoring of impact using indicators selected. 5. Ex-post impact study at the project level. Benefits can be calculated; and characteristics of adopters vs. non-adopters identified. 6. Recommendations that can be used for policy decisions.At this stage projects will usually not have influenced change over large areas. However, analysis of benefits and costs, farmers' assessments, and knowledge about who does and does not adopt can lead to recommendations and actions to facilitate adoption over the larger target area. In a sense, sound ex-post impact analysis at the project level will serve as an ex-ante impact analysis for national or regional efforts to facilitate widespread change.","tokenCount":"47172"} \ No newline at end of file diff --git a/data/part_3/6641575696.json b/data/part_3/6641575696.json new file mode 100644 index 0000000000000000000000000000000000000000..db1e47abeedd1f1cc23737f66785d42e541da676 --- /dev/null +++ b/data/part_3/6641575696.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"ce6adb80f0ca5f7e687631a68c1cd6a3","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/3921ab4e-b3b2-445d-b924-a2895fb9f37f/retrieve","id":"-1261478563"},"keywords":["Assessment","Feed resources","Macro minerals","Micro minerals","Meta-Robi"],"sieverID":"77f4ed7b-ebc8-43f3-8fc1-c229f483eee1","pagecount":"142","content":"The researcher was born in 1979 at Ambo district, West Shewa Zone, Oromia Regional state, Ethiopia. He attended his elementary and secondary school at Ambo Addis Ketema and Ambo senior secondary school, respectively. He earned his honored diploma in general agriculture from the then Ambo College of Agriculture in 2000.Then, he served for 4 years at Jeldu District Agricultural Office as Junior Expert. His initial exposure to scientific research was in 2005 when he joined Holeta Agricultural Research Center as Technical Assistant. He pursued his first degree at Addis Ababa University and graduated in BSc. Degree in Applied Biology in 2008. Following receipt of his BSc, he worked as production supervisor at Assela Malt Factory for a couple of years but realized that a research career was really what he would be most happy with. Eventually, he rejoined his area of keen research interest in 2010 as livestock researcher at Tepi Agricultural Research Center. To quench his thirst forprofessional and personal development, he joined again his initial institution in 2013 where he began his academic journey. His general research interests are in the area of Animal Production especially Animal Feeds and Nutrition. viii ACKNOWLEDGEMENTS Above all my greatest thank goes to the Almighty God who helped me in all directions and time to be strong and patient to handle and finalize this piece of work even in terrible situations I faced during my study period. This thesis would not have been possible without the help and support of many individuals and organizations. First of all, I would like to express my sincere gratitude and heartfelt thanks to my major advisor, Dr. Abule Ebro who is working in ILRI/LIVES at Addis Ababa, for his limitless guidance and encouragement since the early time of proposal development to this time. His support and guidance was not limited to the working days and hour but any time and place Dr. Abule was available for help, I would like to say him God bless you !!! I am also thankful to my co-advisor Dr. Lemma Fita, lecturer at Ambo University, who helped me from the time of proposal development to the time of finalizing my thesis work. I am also thankful to my co-advisor Dr. Getnet Asefa, Director of Livestock Research Process at Ethiopian Institute of Agricultural Research (EIAR). Dr. Getnets' support and guidance was not limited to this thesis work, he also found funds and facilitated all the necessary arrangements for the success of my work. My appreciations and thanks also go to my mother institute \"Ethiopian Institute of Agricultural Research\" for giving me this MSc. study chance and providing me all the necessary supports including the payments of my salary and tuition fees. I appreciate and thank ILRI/LIVES for funding my research work and financial support during my study period. Without the support of ILRI/LIVES, I couldn't finalize this piece of work. ix I am highly thankful to Ambo University, especially Animal Science Department for all the supports and guidance during the study period. Since we were the first batch of MSc. students for the department, the department and all staff members helped and guided us very jealously. Thanks all!!! I wish to express my sincere word of thanks to Meta Robi district Agricultural office, Livestock Development and Health Agency and land management offices for providing all the necessary information and supports that I needed during the study period. I also thank the interviewed farmers for providing me all the necessary information by sacrificing their time. The development agents of the respective peasant associations/kebeles also appreciated for facilitating and conducting the interview. I would also like to express my appreciation and thanks to my families and friends especially, Ato Birhanu Tola, Sister Tigst Mesfin and W/t Abebech Areda for nursing my child all the time of my absence. I thank my father, brothers and sisters for encouraging me to handle and overcome trouble situations in my life. I also appreciate the support of Ato Chala Merera, Ato Addisu Abera, Ato Tolessa Zewudu and Ato Tibe Daba and all Livestock Researchers at Holeta Agricultural Research Center.Lastly, my especial thank goes to my wife, Wubit Mesfin and my daughter Simera Endale for their understanding, encouragement and love during my study.x: Macro mineral status of feed resources in the three altitudinal ranges (%) ............... Table 6: Soil macro-minerals concentration as related to season and location of collection .. Table 7: Household characteristics of the respondents in the study district ............................ Table 8: Livestock production is an integral part of the farming systems in Ethiopia and plays a vital role in the livelihood of the majority of the people (Yeshitila et al., 2008). In Ethiopia, livestock generates more than 85% of the farm cash income. In terms of contribution to the national economy, livestock contribute about 13-16% of total Growth Domestic Product (GDP) and the share to total exports is about 16% (Yayneshet, 2010). In spite of this, the productivity of livestock is low mainly due to poor genetic makeup of local animals, poor nutrition and poor veterinary care among which poor nutrition is the major limiting factor (Yeshitila et al., 2008).The major livestock feed resources in the highland of Ethiopia are natural pasture and crop residues where all ruminants as well as equines depend on them. The use of agro-industrial by products such as oil seed cakes, milling by products, molasses and improved forages is restricted to the emerging private dairy and fattening farms (Yayneshet, 2010).The availability of feed resources and the nutritional quality of the available feeds are the most important factors that determine the productivity of livestock. One of the major problems to low milk production in the country is associated with shortage of livestock feeds both in quantity and quality, especially during the dry season (Zewdie, 2010).The role of natural pasture grazing as a major livestock feed resource is diminishing from time to time due to shrinking grazing land size (Yayneshet, 2010). The use of native hay is limited in coverage and it is better in terms of its feeding value than crop residues if timely cut, proper handling and storage measures are applied. Even during years of good rainy season, forage is not sufficient to feed livestock in the highlands for reasons associated with restricted grazing land and poor management (Melese et al., 2014).A basic shortcoming of the natural grasslands as a source of feed for ruminant livestock is their low production of dry matter due to a combination of the negative effects of inadequate rainfall and soil nutrients. The seasonality of plant growth, which is a reflection of the annual rainfall distribution pattern, further restricts the availability of herbage for the grazing animal to four or five months of the wet season over most of the natural grasslands and the low quality of the herbage is another shortcoming of natural grassland (Ulfina et al., 2013).As a result of increasing crop production, currently crop residues represent the largest amount of livestock feed and it provide 10 to 15% of the national intake of feed by livestock and in some areas the estimate is up to 50% (Alemayehu, 2003). In selected wheat based croplivestock production systems of the Ethiopian highlands, the contribution of crop residues and aftermath grazing account for 70% of the total feed supply, while native pasture accounts for only 30% of the total feed supply (Seyoum et al., 2001).On the other hand, inadequate mineral intake through feed leads to reduced production and productivity of the animals. For example, reproductive disorders associated with copper deficiency in grazing ruminants include: low fertility associated with delayed or depressed oestrus, and long post-partum return to oestrus period; infertility associated with anoestrus and abortion (Corah and Ives, 1991). According to this study, an inverse relationship between serum copper levels and important reproductive parameters such as days to first service (56 vs. 70 days), services per conception (1.1 vs. 4.4) and days to conception (56 vs. 183) in dairy cows with high and low serum copper levels, respectively were observed (Corah and Ives, 1991).Five percent of the body weight of an animal consists of minerals and at least 15 mineral elements have been identified as nutritionally essential for ruminants. These are seven major or macro minerals and eight trace or micro minerals (NRC, 2001). The macro minerals are important structural components of the bones and other tissues and serve as important constituents of body fluids. The trace minerals are present in body tissues in very low concentrations and often serve as components of metalloenzymes and enzyme cofactors or as components of hormones of the endocrine system (Engle, 2001).The mineral status in cattle depend upon the daily mineral intake through feed, apart from non nutritional factors such as season, age, weight, pregnancy and lactation stage (Khan, 1995).But, the mineral composition of forages vary according to different factors such as plant age, soil, fertilization practice, species, variety, seasons and grazing pressure (Aregheore, 2002).The other important factor that determines the mineral contents of feed is storage method on the macro mineral contents of hay (Fekede, 2013).The adequacy of the diet in essential minerals can be determined by chemical analysis of animal body tissue, fluids and forages which are being eaten by the animals (Shakira et al., 2011).Minerals that are mostly deficient in the diet of livestock in most of the regions of the world include, calcium (Ca), Phosphorus (P), Magnesium (Mg), Sodium (Na), Sulfur (S) and the trace elements Cobalt (Co), Cupper (Cu), Iodine (I), Manganese (Mn), Selenium (Se), and Zinc (Zn) (Goswami et al., 2005).Information on the mineral content of feeds of the central and western parts of Ethiopia as influenced by season and altitude are scanty (Aschalew et al., 2006). In addition, the mineral content of grazing pasture is influenced by botanical composition of pastures (Jumba et al., 1995) and season of the year (McDowell, 1997). When dietary concentrations of the feeds are unknown or highly variable due to availability, season, location, forage species and animal potentials, it is important to determine mineral concentrations in animals region-wise, to estimate needs of livestock so as to obtain optimum productivity (Sharma et al., 2003a). For grazing ruminant livestock, which obtain all or most of the nutrients required from pastures and crop residues, knowledge of the mineral content of such feeds is essential.According to Zewdie (2010), assessment of the quantity and quality of available feed resources in relation to livestock requirement has not been yet well addressed in most livestock production areas of the country. In highlands of Ethiopia, the annual DM production could satisfy only two-third of the total DM requirements of the livestock due to this, during the dry season animals lose their condition which is an indicator of feed shortage and suggests that livestock production and productivity are constrained by feed scarcity (Funte et al., 2010). In addition to the above factors, the other major constraints for livestock production include costs of feeds and its marketing systems (Sintayehu et al., 2008). According to Mesfin et al. (2014) among the dominant factors contributing to the feed shortage both in terms of quantity and quality is the poor feed marketing system characterized by poor market information, localized markets and limited premium price for quality. Incentives through profitable market outlets can facilitate technical efficiency of feed production, which could include better agronomic practices, improved genetic resources, and better use and conservation methods. Improving market efficiency will increase demand and margins to producers and other market actors. Hence, feed market development can be considered as an important factor in alleviating the feed shortage problem (Berhanu et al., 2009).To obtain improvement in animal production and productivity, an assessment should be done on the types and sources of livestock feed resources, total DM feed production of the area, livestock feed requirement and mineral nutrition, whether the animal is in a free ranging system or under confinement. Therefore, this study was designed with the following specific objectives:- (Zewdie, 2010) and farmers practiced a cereal dominated cropping system in the highland areas of the country (Belay et al., 2012). Yeshitila (2008) reported that land and livestock holdings showed a direct linear relationship, where farmers with large land holdings have higher livestock holdings and when land holdings became smaller there is a trend of keeping more numbers of small ruminants than cattle. Belay et al. (2012) reported that the overall average landholding per household in Dandi district was 2.5 ha and major proportion (63.2 %) of the land owned per household was used for crop production and hay and pastureland occupied 17.6% of the total land owned.The number of livestock owned varies from location to location depending on several factors, like feed availability, disease condition and resource status of the farmers. In mixed farming system of the highlands and mid-altitudes of Ethiopia where crop production is important; cattle are the most important livestock species for cultivation, threshing and manure production (Getachew et al., 1993). According to Agajie et al. (2001) about 98% of the respondents in west and north Shewa zone owned a total herd size of about 9.0 livestock units ranging from 0.2 -46.3 and 5.4 ranging from 0.2-19.4, respectively. In Jelldu district, livestock holding especially cattle, sheep, goats, donkey, horses and poultry was in the order of 5.35, 0.49, 0.03, 0.22, 1.32 and 0.02 (Bedasa, 2012). Households with larger landholdings keep more animals because they need more draught power to cultivate their land, and this also enables them to produce more straw that helps to support a greater number of animals (Bayush et al., 2008). In mixed production systems where animals are used for draught and transport, the proportion of mature oxen or donkeys in the herds tends to be relatively high (ILCA, 1990).About 73% of the sample farmers in west and north shewa zones indicated that the livestock population has decreased in the past two decades (Agajie et al., 2001). As this author investigated the major factors responsible for the declining of livestock population were feed shortage and diseases. A non-equilibrium event (variable climate) is probably a core environmental variable in regulating cattle herd dynamics in southern Ethiopia (Ayana, 2011). Kelemework (2001) also reported that the average livestock holding was declining over a period of two decades . According to this report the average cattle holding of the household declined from 38 to 13, sheep 37 to 17 and goats 125 to 53. Contrary to this, Samson and Frehiwot (2014) reported that from 1995/96 to 2012/13 the cattle and shoat population grew from 54.5 million to over 103.5 million with average annual increment of 3.4 million. On the same report, in 2024/25 the cattle, sheep and goat population in sedentary areas of Ethiopia are estimated to reach 75, 42.8 and 39.6 million heads, respectively.Crop and livestock production systems are an integral part of one another (Kallah and Adamu, 1988). Crop residues provide fodder for livestock while, occasionally, grain provides supplementary feed for productive animals (Al Hassan et al., 1983). Animals improve soil fertility through manure and urine deposition and animal power for farm operations and transport. Sale of animals sometimes provides cash for farm labor and agricultural inputs (Vinod et al., 2012).Feeding of livestock in different places differs depending on forage availability, climatic variability of a given location or region to mitigate feed shortage problems during worse conditions, season of the year and type of animal the owner prioritize to feed (Beyene et al., 2011).The feeding systems in the country include communal or private natural grazing and browsing, cut and carry feeding, hay and crop residues. At present, in the country stock are fed almost entirely on natural pasture and crop residues. Grazing is on permanent grazing areas, fallow land and cropland after harvest (Tesfaye, 2008). Adane and Berhan (2005) reported that the herbage yield and nutritional quality of natural pasture is generally low. In certain areas where improved forage crops have been introduced, farmers failed to utilize them at its optimum developmental stages, which would ensure an appropriate balance between quality and quantity to satisfy livestock requirements and support reasonable animal production (Taye, 2004). In the mixed crop-livestock systems of the Ethiopian highlands, the total feed resources available for livestock production come from permanent pastures and transient pastures between cropping cycles, crop residues and crop aftermath grazing. Forage obtained from crop thinning and defoliation from annual crops and perennial crops is important for livestock feeding (Fekadu, 1996). However, these feed resources are high in fiber, with low to moderate digestibility and low levels of nitrogen (Tsige, 2000). Such low quality feeds are associated with a low voluntary intake, thus resulting in insufficient nutrient supply, low productivity and even weight loss (Hindrichsen et al., 2004). Without providing common salt, animals in most parts of the country do not get mineral mix in their basal diet.Supplementation with multi-nutrient blocks and local mineral soils in some parts of Ethiopia may provide an adequate or even excess amount of most of the essential minerals except phosphorus (Tolera and Seid, 1994).According to Shitahun (2009) the three types of water sources identified in Bure district were river (58%), spring (32%), and hand dug well (10%). Yeshitila (2008) also reported that the water sources in Alaba district was river and ponds. The surveyed households claim shortages of water and farness of water sources from their vicinity. Problems of water shortages are highly dictated by seasonality where it becomes more pronounced during dry period. During this period, farmers will be obliged to travel distances of a day and normally watering frequency decreases. Zewdie (2010) reported that water shortage is the major constraint during the dry season for peasant associations (PAs) situated far away from Lake Ziway and main rivers. Based on personal observation, herders in CRV traveled long distances with their cattle for 9 to 12 hours in every other day to reach to the watering points. On the other hand about 99% of the respondents around Ginchi area indicated that there was no shortage of water for both domestic and livestock watering and during the dry and small rainy seasons, water is available from permanent water sources particularly rivers (93.5%) and streams (6.5%) which are sufficient in quantity to support the livestock in the area. The watering frequency was positively correlated with number of cattle owned. The interval was larger for large herd size because farmers could not water their animals by fetching water from the ponds as it requires large amount of labor (Funte et al. 2010).Inadequate feed supply, both in terms of quantity and quality, is the major constraint affecting livestock production in Ethiopia. Feed scarcity is indicated as a factor responsible for the lower reproductive and growth performance of animals especially during the dry season (Legesse, 2008). The dry season is characterized by inadequacy of grazing resources as a result of which animals are not able to meet even their maintenance requirements and lose substantial amount of their weight. Animal feeds were classified as natural pasture, crop residue, improved pasture and forage and agro industrial by-products of which the first two contribute the largest share in livestock production (Alemayehu, 2003;Tolera et al., 2012).The use of communal grazing lands, private pastures and forest areas as feed resources have declined while the use of crop residues and purchased feed have generally increased (Benin et al., 2003). Though increased utilization of agro-industrial by-products has been reported (Benin et al., 2004), they are not available, affordable or feasible for most of the farmers in the highlands of Ethiopia. Under smallholder livestock production system, animals are dependent on a variety of feed resources which vary both in quantity and quality. The fibrous agricultural residues contributes a major parts of livestock feed especially in the populated countries where land is prioritized for crop cultivation.In most areas of sub-Saharan Africa, the major even the sole feed source available for large parts of the year in smallholder production systems are natural pastures (Gylswyk, 1995).Despite the continued expansion of croplands into the grasslands and the resultant decline in the size of grazing areas, native pastures remain the major contributors of livestock feed in the densely populated highlands of Ethiopia (Lemma et al., 2002). The total area of grazing and browsing in the country is 62,280 million hectares out of this, 12% is in the farming areas and the rest is around the pastoral areas (Alemayehu, 1985). Alemayehu (1998a) estimated that 80-85% of the livestock feed in Ethiopia comes from natural pasture. Natural pastures mostly suffer from seasonally spells of dry periods during which they drop in quality, which is characterized by high fiber content, low digestibility, low in nitrogen, very low protein and energy content (Topps, 1995;Assefu, 2012). The yield as well as quality of pasture is very low due to poor management and over stocking (Ashagre, 2008). In general, grazing land productivity is declining at a higher rate because of temperature stress and scarcity of rainfall, which is favored by deforestation that denies humid environment to the area. In addition to this, the transfers of grazing lands to cultivation for cropping and poor grazing land management are some of the reasons for dry matter reductions from grazing lands (Yeshitila et al., 2008). Natural pastures would be adequate for live weight maintenance and weight gain during wet seasons, but would not support maintenance for the rest of the year (Zinash et al., 1995). Natural pastures in the highlands of Ethiopia are rich in species composition, particularly indigenous grasses and legumes (Assefu, 2012). Among grass species commonly growing belongs to the genera Andropogon, Digitaria, Panicum, Pennisetum and Trifolium (Yihalem et al., 2006). Moreover, most of this native pastures are generally confined to degraded, shallow upland soils, fallow cropland and to soil that cannot be successfully cropped because of physical constraints such as flooding and water logging (Assefu, 2012).Hay is forage harvested during the growing period and preserved by drying (Assefu, 2012).The aim of hay making is to reduce the moisture contents of green crops to 15-20% to inhibit the action of plant and microbial enzymes (Banerjee, 1998). Hay in central highland of Ethiopia is usually harvested after the crude protein (CP) of the pasture passed peak production and the protein content of hay on DM basis was usually less than 5%, which is below the level of maintenance requirement for ruminants (Solomon et al., 2008a). This level of CP content reduces feed intake and affects digestibility (Kidane, 1993). According to FAO (1997), annual and perennial grass from natural pasture consumed during the dry season and often at late stage of maturity together with the straw and stalk from cereal crops constitutes low quality forages, with high lignified cell wall and poor nitrogen. The quality of hay prepared varies with grass legume proportion, leaf to stem ratio and physiological development of the forage up on harvest (Assefu, 2012). Mature grass, especially those that are weather leached or bleached are low in digestible energy and protein, as well as in soluble carbohydrate, carotene and some of the minerals (Ensminger et al., 1990).Crop residues are the fibrous by-products which result from the cultivation of cereals, pulses, oil plants, roots and tubers and represent an important feed resource (Yayneshet, 2010).They are important in fulfilling feed gaps during periods of acute shortage of other feed resources.A report by Tolera et al. (2012) indicated that crop residues contribute to about 50% of the total feed supplied in Ethiopia. The amount of crop residue produced is closely related to grain production, farming system, the type of crops produced and intensity of cultivation.About 12 million tones of crop residues were produced annually from 6 million hectare of farmland in Ethiopia (Daniel, 1988). A report by CSA (2008) indicted that crop residues production was increased to 31.52 million tones. Zinash and Seyoum (1989) (Lulseged and Alemu, 1985). Improved forages mainly legumes, can improve the productivity of natural pastures by improving the fertility status of the soil. They can also improve the feed value of the native pastures since they have more protein content than naturally occurring grasses (Yeshitila et al., 2008).The major feed resources in the country are crop residues and natural pasture, with agro industrial by-products and manufactured feed contributing much less (Berhanu et al., 2009).Agro-industrial by-products have special value in feeding livestock mainly in urban and periurban livestock production system, as well as in situations where the productive potential of the animals is relatively high and require high nutrient supply. The major agro-industrial by products commonly used are obtained from flour milling industries (wheat bran, wheat short, wheat middling and rice bran), edible oil extracting plants (noug cake, cottonseed cake, peanut cake, linseed cake, sesame cake, sunflower cake etc), breweries and sugar factories (Molasses). The current trends of increasing urban population has a significant effect on the establishment of agro-industries due to the corresponding increasing demand for the edible main products (Yayneshet, 2010).Livestock feed resources are classified as conventional and non-conventional (Alemayehu, 2003), where the non-conventional ones vary according to the feeding habit of the community and others, e.g. vegetable refusals, sugar cane leaves, Enset leaves, fish offal and etc are nonconventional feed types. Yeshitila (2008) also identified non conventional feeds and it includes like residues of local drinks coffee, areke, tela, chat left over called geraba, fruits and vegetables reject. The same source also indicated that during the dry season animals lose their condition which is an indicator of feed shortage and suggests that livestock production and productivity are constrained by feed scarcity. In Belesa district of Amhara region, the existing feed supply on a year round basis satisfies only 72.7 % of the maintenance DM requirement of livestock and this deficit of feed supply could also coupled with low quality of crop residue, over matured and improperly conserved natural pasture and browse leaves (Tessema et al., 2003). Bedasa (2012) also indicated that the dry matter production was below annual livestock requirements in the highlands of the Blue Nile basin. Contrary to these results, Shitahun (2009) reported that the existing feed supply on a year round basis accounted for about 104.79% of the maintenance DM requirement of livestock per household in Bure district.A study conducted by Dawit et al. (2013) (Agajie et al., 2001). The interaction of these constraints affects the performance of the genetic potential of animals leading to subsistence level of livestock production.Gender refers to the socially constructed roles and status of women and men, girls and boys.Gender roles, status and relations vary according to places (countries, regions and villages), groups (class, ethnic, religious), generations and stages of the life cycle of individuals (Shafaq et al., 2010). Livestock management is a gender activity as both men and women are involved in it. Women are responsible for 60 to 80% of the feeding and milking of cattle in other parts of the world (Ali, 2007). Most farmers in Adaa Liben district indicated that females within age groups of 15-64 years were responsible for milking. Livestock herding and watering are the responsibility of male members of the family. Barn cleaning is the responsibility of female member of the family. Feed collection and live animal marketing were a routine work of males (Samuel et al., 2008). Zewdie (2010) Approximately five percent of the body weight of an animal consists of minerals. At least 15 mineral elements have been identified as nutritionally essential for ruminants. These are seven major minerals -calcium (Ca), phosphorus (p), potassium (K), sodium (Na), chlorine (Cl), magnesium (Mg) and sulfur (S) and eight micro minerals -cobalt (Co), copper (Cu), iodine (I), iron (Fe), manganese (Mn), molybdenum (Mo), selenium (Se) and zinc (Zn) (NRC, 2001).The macro minerals are important structural components of bone and other tissues and serve as important constituents of body fluids. The trace minerals are present in body tissues in very low concentrations and often serve as components of metallo enzymes and enzyme cofactors or as components of hormones of the endocrine system. Production, age, level and chemical form of elements in the feed ingredients, interrelationships with other nutrients, supplemental mineral intake, breed and animal adaptation can determine mineral requirements of the animals but there is greater degree of uncertainty in the mineral requirements of animals depending on such factors (Engle et al., 2001).2.12. Natural sources of minerals for grazing livestock 2.12.1. ForagesLivestock normally obtain most of their minerals from the feeds and forages that they consume and their mineral intakes are influenced by the factors that determine the mineral content of plants and their seeds. The concentrations of all minerals in plants depend largely on four factors: plant genotype, soil environment, stage of maturity and climate. The importance of a given factor varies between minerals and is influenced by interactions with the other listed factors and with aspects of crop or pasture husbandry, including the use of fertilizers, soil amendments, irrigation, crop rotation, intercropping and high yielding cultivars (Neville, 2010). Water is not normally a major source of minerals. Although highly variable, all essential mineral elements occur to some extent in water. Animals sometimes consume appreciable amounts of soil but this is also highly variable in its mineral contents (McDowell, 1983).Understanding spatial changes in soil nutrients is important, as they may differ markedly among identical locations subjected to natural and man-made disturbances. Land use patterns and vegetation play important role in soil nutrient transformations and fertility. There are 14 mineral elements defined as essential for plant growth and reproductive success (Marschner, 1995). These are N, S, P, K, Ca, Mg, Cl, Fe, Zn, Mn, Cu, B, Mo, and Ni.Because of their essentiality, all plant contain some level of each of these elements and it should come as no surprise that plants have developed various forms of molecular machinery (i.e., membrane transporters) to acquire these mineral nutrients from their soil environment (Kochian, 1991).Concentrations of mineral elements in forage are dependent upon the interaction of a number of factors, including soil, plant species, stage of maturity, yield, pasture management and climate (Reid and Horvath, 1980). Most naturally occurring mineral deficiencies in herbivores are associated with specific regions and are directly related to soil characteristics. There is a marked leaching of minerals and weathering of soils in tropical regions under conditions of heavy rainfall and high temperature, making them deficient in plant. Poor drainage conditions often increase extractable trace elements (i.e. Mn and Co), thereby resulting in a corresponding increase in plant uptake. As the soil pH increases, the availability and uptake of forage Fe, Mn, Zn, Cu and Co decrease, whereas Mo and Se concentrations increase (NRC, 2001).The concentration of most mineral elements in grasses tends to change with season, with wet season herbage having relatively higher concentration of mineral elements (Lemma et al., 2004). In Western Sudan, forages were adequate in copper during the wet season and deficient during dry season (Abdelrahman et al., 1998).The results of such studies indicated that season of production has impact on the contents of minerals in the pasture. Aschalew et al. (2006) reported that altitude influences the mineral concentrations of feeds. In the higher and mid altitudes, the feeds were found to be deficient in Ca, P, Mg, Na, and K.During the wet and dry seasons from three altitudinal ranges of the central and western parts of Ethiopia, only 4.55% were found to be deficient in Ca. The phosphorus level was found to be sufficient only in 11% of the feeds analyzed. Out of the tested feeds, 31.82 % were found to be deficient in Mg content. In the lower altitudes Na was found to be absolutely deficient in all feeds as opposed to 84.96 and 96.97% of the high and medium altitudes, respectively. The mineral concentrations in soils increase during the dry season because of high temperature and high evaporation that induce high level of air humidity (Mona, 2014). This author also reported that during dry season the concentrations of minerals increased in all tested soil samples. The distribution of exchangeable bases (ca, Mg, K, Na) showed decreased down the depths of the soil andthis might be due to the higher organic matter at the upper depths during the dry and beginning of rains. At these periods, there was little or no leaching of these cations (Fatubarin and Olojugba, 2014). At the peak rains, total exchangeable bases were low and decreased down the depths; this could be attributed to the elements being utilized by the regenerating plants (Hopkins, 1974). Climate may affect the mineral concentration in plant as shown by the deficiency of Zn in cool and wet season which is associated with insufficient solubility of Zn in soil (Reuter, 1975).Understanding spatial changes in soil nutrients is important, as they may differ markedly among identical locations subjected to natural and man-made disturbances. Vertical, horizontal and temporal distribution of nutrients in soils are controlled by a combination of factors viz, parent material, topography, soil management practices and rainfall. Similarly, land use patterns and vegetation play important role in soil nutrient transformations and fertility (Fatubarin and Olojugba, 2014).Mineral deficiencies and imbalances for herbivores were reported from almost all tropical regions of the world. These reports include both confirmed and highly suspected geographical areas of mineral deficiencies and toxicities in cattle. The mineral elements most likely to be lacking under tropical conditions are Ca, P, Na, Co, Cu, I, Se and Zn. In some regions, under specific conditions, Mg, K, Fe, and Mn may be deficient and excesses of F, Mo and Se are extremely detrimental (McDowell, 1997). Certain trace minerals deficiency affect immunity and may affect disease susceptibility in cattle. Selenium, Cu, Zn, Co and Fe have been lshown to alter various components of the immune system. Trace mineral deficiencies may also reduce the effectiveness of vaccination programs by reducing the ability of the animal's immune system to respond following vaccination (Jerry, 1995). Reported reproductive disorders associated with a copper deficiency in grazing ruminants include: low fertility associated with delayed or depressed oestrus, and long post-partum return to oestrus period; infertility associated with anoestrus and abortion (Corah and Ives, 1991). According to this study, an inverse relationship between serum copper levels and important reproductive parameters such as days to first service (56 vs. 70 days), services per conception (1.1 vs. 4.4) and days to conception (56 vs. 183) in dairy cows with high and low serum copper levels, respectively (McDowell, 1996). Calcium and P deficiency causes reduced appetite and milk yield, a decline in reproductive efficiency, poor feed utilization, lowered disease resistance, increased incidence of milk fever, reduce growth rate, osteoporosis and osteomalacia (NRC, 2001). Manganese deficiency in ruminants is associated with impaired reproductive function, skeletal abnormalities, and less than optimal productivity. Cystic ovaries, silent heat, reduced conception rates and abortions are reported reproductive effects. Neonates that are manganese deficient can be weak, small and develop enlarged joints or limb deformities (Jeffery and ZoBell, 2010). Source: Thomas (2011)In an experiment of feed samples collected by Aschalew et al.(2006), during the wet and dry seasons from three altitudinal ranges of the central and western parts of Ethiopia, only 4.55%were found to be deficient in Ca. The phosphorus level was found to be sufficient only in 11% of the feeds analyzed. Out of the tested feeds, 31.82 % were found to be deficient in Mg content.Among all minerals analyzed, Na was found to be the most deficient macro mineral in central and western parts of Ethiopia, the majority of the browse species, cereal straws and by-products being deficient to meet animal requirements. On the contrary, the K concentration was found to be adequate in most of the feeds analyzed (Aschalew et al., 2006). Cereal straws were found to be deficient in P, Na and Mg, while straws of food legumes were highly deficient in P.Comparatively, less percentage of straws of food legume was categorized as Na deficient compared to the other feed types. Pasture grass and other feeds were found to be deficient in Na, P and Mg in relation to dietary requirements. A large proportion of feed samples were deficient in Cu and zinc. There were wide variations in the concentrations of these elements among the soil and feed samples (Khalili et al., 1993). General trend indicated that most of the feeds of the dry season fell in the category of deficient to border line than that of the wet season feeds.Most naturally occurring mineral deficiencies in livestock are associated with specific regions, and they are related to both soil mineral concentration and soil characteristics (McDowell, 1986). Lemma et al. (2002) reported that the levels of soil K, Ca, Mg, Fe, Mn, and Cu did not seem to limit pasture production in the mid-altitude of western Ethiopia. Soils, however, are seriously deficient in P and Zn and their amendment through fertilization may deserve some consideration.Since soils and native pastures in the uplands contained lower mineral levels, cattle that have no access to bottomland grazing areas are most vulnerable to mineral deficiencies. Leaching or translocation of mobile elements by rainwater to the root system, however, does occur with the advance of the season (Lemma et al., 2002).The study was carried out in Meta Robi district, West Showa Zone, Oromia Regional State, Ethiopia. The total human population of the district is 166,472 (male= 82,482 and female= 83,990) (CSA, 2013). The district is located at 101 km west of the capital city of the country.The altitude of the district ranges from 1,376-2,904 meter above sea levels (masl). The total land area of the district is about 93,769 ha (crop land = 51,762.9 ha, grazing land = 11,775.94 ha, forest land = 6,792.75 ha and land used for other purposes= 23,437.4) (Meta Robi district Agricultural Office annual report, 2013/14). The district has 41 rural kebeles and 5 peri-urban towns.The minimum and maximum temperatures of the district are 15 and 31 0 C, respectively. The district receives average annual rainfall ranging from 750-1,300 mm (highland=950-1300, midland=800-950 and lowland=750-800 mm). The main rainy season is from June to end of September. The topography of the district is characterized to be flat land (60%), valley (8%), mountains (9%) and rugged (23%) (Meta Robi district Agricultural office annual report, 2013/14).The soil types of the district are classified in to Humic Nitosols (one of the best and most fertile soil, can suffer acidity and P-fixation, and it becomes very erodible), Eutric Vertisols (soils with 30% or more clay, cracking when dry and swelling when wet, extremely difficult to manage, easily degraded and very high natural chemical fertility if physical problems overcome), Haplic Luvisols (greatly affected by water erosion and loss in fertility, nutrients are concentrated in topsoil and they have low levels of organic matter), Rendzic Leptosols (very shallow soil over hard rock or highly calcareous material, but also deeper soils that are extremely gravelly and/ or stony) and Vertic cambisols (have relatively good structure and chemical properties and not greatly affected by degradation processes) (FAO, 1974).The majority of the population of the district is dependent on agriculture.The farming system is characterized by mixed crop-livestock production system. The district is characterized by rainfed production system of a wide-range of cereals and pulses and livestock husbandry practices.The livelihood of the farmers was depends on the production of cereals, pulses and oil crops along with livestock that is kept on natural pasture and crop residues (FAO, 2011).The district was selected due to the presence of relatively large number of animals, availability of . A total of 90 households from 9 kebeles (10 hh from each kebele) were selected randomly and interviewed independently. A pre-tested questionnaire was used to collect data by interviewing individual farmers at their farm gates. In the prepared questionnaire, there were single and multiple response questions. Single response questions were those questions where the sampled household would have a single response and multiple response questions were questions where the individual household might provide more than one answer for given question. In case of the latter, the percentage of responses (respondents) would be greater than 100%.To determine the availability, sources and types of livestock feed in the district, data were collected both from primary and secondary sources. The quantity of feed DM obtained annually from different land use types was calculated by multiplying the hectare of land under each land use types by its conversion factors. A Conversion factors of 2.0, 0.5 and 0.7 tons DM/ha/year were used for natural pasture, aftermath grazing and forest land, respectively (FAO, 1984). The quantity of available crop residues produced by farmers was estimated by converting crop yield to straw yield (Kossila, 1984;FAO, 1987;Kossila, 1988;De Leeuw et al., 1990). Accordingly, for a ton of wheat, barley and tef straws, a multiplier of 1.5 was used, for faba bean and field pea a multiplier of 1.2 was used (FAO, 1987), for noug seed and linseed a multiplier of 4.0 was used (Kossila, 1984;FAO, 1987). For maize a multiplier of 2.0 (De Leeuw et al., 1990) and for sorghum a multiplier of 2.5 was used (Kossila, 1988). The total quantity of potentially available crop residues for animal consumption was estimated by multiplying the crop residue yield by 90% assuming that 10% wastage of the feed mostly occurs during feeding and/or used for other purposes (Adugna and Said, 1994).The total livestock population of the district and the interviewed households was converted to tropical livestock unit (TLU) as recommended by Jahnke, (1982) for local animals. Therefore, the conversion factors for local oxen and bulls, cows, heifers and calves were 1, 0.7, 0.5 and 0.2, respectively. For sheep and goats conversion factors of 0.1, horses 0.8, donkeys 0.5, mules 0.7 and poultry 0.01 was used. The DM requirement of an animal was calculated based on the daily DM requirement of 250 kg dual purpose tropical cattle (an equivalent of one TLU) for maintenance requirement that needs 6.25kg/day/animal or 2281 kg/year/animal (Jahnke,1982).To determine the annual feed balance; total livestock feed produced from different feed sources, total livestock units in the district and their annual maintenance requirement were estimated. The annual maintenance requirement of the animals was calculated and subtracted from the total livestock feed produced per year. If the amount of feed produced per year is above maintenance requirement of the animals, feed is in excess of maintenance requirement of the animals otherwise there is deficiency of livestock feed in the district.For mineral status determination, feeds and soil samples were collected in two seasons: dry (Mid of March) and wet (End of September) and delivered to Haramaya University central laboratory for the analysis of macro minerals Calcium (Ca), Phosphorus (P), Potassium (K), Sodium (Na), Magnesium (Mg) and Sulfur (S) and micro minerals Copper (Cu), Iron (Fe), Manganese (Mn)and Zink (Zn). The pH of the soil was measured in Ambo University Chemistry laboratory.Natural pasture samples were collected during dry and wet seasons from 3 altitude (upper, mid and lower) zones to represent each altitude zone of the district. Three kebeles from each altitude were selected based on grazing land availability and livestock production potential. From each kebele four privately owned grazing lands were selected in consultation with the owner of the land and development agents of the respective kebeles. The selected grazing land was used for grazing purpose for several years and protected from grazing for few months during wet season to initiate regeneration of pasture and used for hay production.Natural pasture samples from private grazing land were harvested randomly from 10 quadrates per grazing land using a 0.5x0.5 m 2 quadrates at stubble height (5cm) to mimic natural grazing by using sickle. After removing the non-edible plant species, all sub-samples harvested from the same grazing lands were thoroughly mixed to make one composite sample of one kilo gram, leveled and stored in the sample bags. The samples were dried by air in order to prevent spoilage of the samples before being placed in the oven.Soil samples were collected from upper, mid and lower altitude zones of the same kebeles and grazing lands where the sampled feeds were growing and harvested, during dry (Mid of March)and wet (End of September) seasons of the year. Twenty soil sub-samples per grazing land were collected in a zigzag manner at a depth of 20 cm using a soil auger. After thoroughly mixing of sub-samples, one kg composite soil sample was taken from each grazing land. Four composite soil samples for dry and 4 composite soil samples for wet seasons were collected from each kebele and a total of 36 composite soil samples for dry and 36 for wet season were collected from the study areas.A representative sample of 1 kg for each sample was dried in a hot air oven at 65 0 C for 72 hours and ground in a Willey mill to pass through 1-mm sieve and kept in tightly stoppard bottles until the analyses were carried out. The organic matter of the samples was destroyed by burning the samples at a temperature of 450 0 C for 4 hours (Dry ashing method) in the furnace (Bock, 1979).Calcium, Mg, Zn, Mn, Cu and Fe were determined by using Atomic Absorption Spectrophotometer (210VGP Atomic Absorption Spectrophotometer USA, 1992). The concentration of P and S were determined by Ultraviolet (UV) Spectrophotometer (UV-T80+UV/VIS Spectrometer PG Instrument Ltd) and Na and K were determined using flame photometer (ELICO SL 378, India). The macro and micro mineral concentrations of the feeds were categorized into deficient or sufficient based on the mineral requirement of dairy animals (NRC, 1989) and (Suttle, 2010).Soil samples were dried under shade before placed in the oven and then dried at 65 0 C for 72 hours in the oven and ground in a Willey mill to pass through 2 mm sieve. Exchangeable bases (Ca, Mg, K and Na) were extracted by ammonium acetate (1N NH4OAc) at pH 7.0 and micronutrients (Fe, Cu, Zn and Mn) were extracted by Diethylene Triamine Pentaacetic Acid (DTPA) as described by Sahlemedhin and Taye (2000). Calcium, Mg, Zn, Mn, Cu and Fe were determined by using Atomic Absorption Spectrophotometer (210VGP Atomic Absorption Spectrophotometer USA, 1992). Sodium and K were determined using flame photometer (ELICO SL 378, India). The concentration of P and S were determined by Ultraviolet (UV)spectrophotometer (UV-T80 +UV/VIS Spectrometer PG Instrument, Ltd) following extraction by Bray-II and digestion methods, respectively. Concentrations of the minerals in the soil were compared with the critical levels of mineral elements required for plant growth (Mtimuni, 1982;Katyal and Randhawa, 1983;Rhue and Kidder, 1983;McDowell, 1985;Pam and Brian, 2007).The pH of the soil samples collected from each grazing land was measured separately in Ambo University Chemistry laboratory. It was measured in the supernatant suspension of 1:2.5 soils:water ratio (Baruah and Barthakur, 1997). The soil suspension was shaken for half an hour using orbital shaker set at 150 RPM (Revolution Per Minute).The pH of the soil suspension was measured using pH meter (CP-501, Elmetron-with automatic temperature compensation), that was calibrated using buffer pH at 4.0, 7.0 and 9.0 that bracketed the pH of the soil suspension.The survey data was stratified into altitude zones, coded and analyzed using the Statistical Package for Social Sciences (SPSS version 17) for windows. Means, percentages and standard errors of various parameters were calculated for each altitude zones of the study district.The analysis of natural pasture and soil mineral concentration data was conducted with the aid of Statistical Analysis System (SAS, 2002). The mean mineral concentration of soil and natural pasture from upper, mid and lower altitudes were compared statistically using General Liner Model (GLM) procedure of SAS. Mean separation for mineral element concentrations of natural pasture and soil was compared using Tukey's-test and significance level were considered at P<0.05.For determination of the mineral status of the feed and soil samples the following statistical model was used: The household characteristics of the respondents are presented in table 7. Overall, in the present study, about 79% of the respondents were male and 21% female headed households. The percentage of male and female headed households ranged from 73.3 to 83.3 and 16.7 to 26.7%, respectively. The average family size of the respondents in the upper, mid and low altitudes was 5.26, 6.36 and 6.63, respectively. In the mid and low altitudes, the average family size was relatively higher than upper altitude and this might be due to difference in farming systems and family planning program among farmers. The overall average family size in the study district is 6.08 individual ranging from 1-17. Generally, in the study district, the average family size of the respondents is higher than national average family size of rural areas (4.9) per household (CSA, 2011) and this is mainly due to labor demanding agricultural activities in the area contributed for such higher family sizes. The average age of the respondents in the three altitudinal zones is similar ranging from 47 to 50 years. The overall average age of the respondents in the study district is 48.1 years ranging from 25 to 75 years. The total land holding of the respondents was the lowest in low altitude (2.7 ha/HH) as compared to 4.5 ha/hh in the upper and 4.2 ha/hh in mid altitudes (Figure 4) this is mostly due to small amount of total land and large human population in lower altitudes. The size of land allocated for home stead in the district was in the range of 0.37-0.59ha/HH. In the study district, the average total land owned by the households was 3.8 hectares ranging from 0.5 to 12 ha. The average landholding of the respondents in the study district is higher than the average national landholding size (0.96 ha/hh) and Oromia region (1.15 ha/hh) (CSA, 2011). The average land size allocated for crop production varied between 1.66 to 2.27 ha while that of grazing land was 0.77 to 1.45 ha (Figure 4). In general, the households in the study district allocated about 2.05 ha (53.1%) for crop production and 1.22 ha for grazing of livestock (31.60%). The land allocated for crop production and animal grazing in the lower altitudes was small as compared to upper and mid altitudes and this could be due to the availability of smaller size of land per household in the lower altitude. Bedasa (2012) reported that the amount of land size allocated for crop production was 1.7 ha (70%) and grazing land was 0.4 ha (16.6%) in Jeldu district, west shewa zone. The land allocation differences in these neighboring districts might be due to differences in farming system. The total populations of livestock in the district were estimated to be 171,177.88 TLU. As shown in table 8, cattle comprised 82.11% of the total TLU of the livestock population in the district.About 36.32% of the cattle were cows followed by oxen (27.19%), heifers (20.39%) and bulls (16.08%). In agreement to the current study, in highland production system of the country, cattle comprised 92% of total TLU and about 37% of the cattle herd was cows and steers (18%) (Funte et al., 2010). In the same report, the percentage of oxen (19%) and heifers (7%) were contrasting with the current study mainly due to the purpose of the farmers keeping livestock vary according to production system. The overall average TLU of livestock per household in the study district is 7.97, 0.74, 0.46, 0.78, 1.44, 0.8 and 0.07 for cattle, sheep, goats, donkeys, horses, mules and poultry, respectively. Contrary to the current study, the average TLU of cattle (5.35), sheep (0.49), goats (0.03), donkeys (0.22) and poultry (0.02) in Jeldu district were reported (Bedasa, 2012). These differences among neighboring districts might be due to the farming system and/or gazing land availability differences. The large number of sheep (0.74 TLU) than goats (0.46 TLU) owned per HH might indicate the fitness of these animals in that production system as the area is suitable for sheep production.In the study district, about 70% of the respondents indicated that the total number of livestock and herd composition was declining from time to time. Agajie et al. (2001) also reported that 73% of the sample farmers in north and west shoa zones indicated a decline in livestock population in the past two decades. In the current study, the major reasons responsible for declining livestock number are, shortage of grazing land, population growth and expansion of crop land, shortage of feeds and water and animal diseases. Samson and Frehiwot (2014) reported that in the highland production system of Ethiopia where crop production is dominant the farmer requires cattle mainly for tillage and herd size may have to be reduced due to land or feed shortage. The main purpose of cattle rearing in the study district was for draught power and income generation (100%). Livestock generate income for the farmers directly by selling the animal or through the production of milk and milk products and hides and skins. In the study district, equines were used for transportation (86.7%) and income generation purposes (56.7%). In agreement with the current finding, 68% of the respondents in Western Harerghe indicated that they rear cows and heifers for milk and cash generation through sale of milk and live animals, while oxen and bulls for cash generation and draught power (96.8%) (Dereje and Tesfaye, 2008).In the study district, (80%) and (78.9%) of respondents indicated that small ruminants are used for income generation and home consumption (eg. meat), respectively. This finding is in agreement with the report of Dhaba et al. (2012) who indicated that about 93% of the respondents keep small ruminant in Ilu Abba Bora, Ethiopia for income generation. Dereje and Tesfaye (2008) reported that in western Harerghe, farmers rear goats for milk and cash source (57.6%) and meat (41.6%). Sheep was mainly used as a source of cash (66.4%) and as both meat and cash (30.4%) and for home consumption (3.2%).In the current study, chickens are the source of income for the household in upper (56.7%), mid (66.7%) and lower altitudes (89.7%) and used for home consumption in the upper (56.7%), mid (56.7%) and lower altitudes (64.3%). Generally, in the study district, chickens were used for income generation (70%) and home consumption purposes (57.8%). According to Dereje and Tesfaye (2008), almost all the respondents in Western Harerghe kept poultry for egg production and sale which is much higher than the present result. The major feed resources in the district were natural pasture grazing (58.9%), crop residues such as wheat straw (42.4%), barley straw (30%), hay (21.1%), Atella (18.9%) and crop aftermath (7.8%) (Table 11) that are similar to the feed resources in most highlands of Ethiopia (Lemma et al., 2002;Alemayehu, 2003;Tolera et al., 2012). Generally, natural pasture and crop residues were the dominant feed resources in the study district but agro-industrial by products such as noug seed cake, linseed cake, molasses and brewery by products, non-conventional feed and improved forage were uncommon and rarely used. The major feed types in the upper altitudes of the district are natural pasture, wheat straw, teff straw, maize stover and hay whereas in mid altitude natural pasture, teff straw, wheat straw and barley straw in their descending order. In lower altitude teff straw, wheat straw, sorghum and maize stover contributed the most in their descending order.In the study district, during dry season, 90% of the respondents use crop residues as number one feed resource followed by hay (58.8%) and stubble grazing (56.1%) (Table 12). Majority of the respondents in Ganta Afeshum Woreda Eastern zone of Tigray indicated that, crop residues from wheat, Maize, barley, bean, and peas as well as \"atella\" are important feed sources especially during the dry season when availability of pasture is low (Berihu et al., 2014). According to Abate et al. (2010) straw from maize, sorghum and teff was used mainly during the dry season in south eastern parts of the country. Contrary to the current study, Tesfaye (2008) reported that the major dry season feed resources for cattle in Metema district were natural pasture (55.7 %), crop residues (20.7%), stubble (14.3 %) and hay (9.3 %) and this is mostly due to agro-ecological differences between the two districts. In wet seasons, all the respondents (100%) in all altitudes use natural pasture followed by hay and fodder to feed their animals (Table 12). The respondents classified months of the year according to feed availability (Figures 5).According to this study in overall study area, animal feed was available in excess in the months of September (86.7%), October (86.7%) and November (74.4%).This excess availability of feeds during these months was associated with the availability of natural pasture grazing, hay production, crop residues and aftermath grazing. Feed was adequately available in the months of December (52.2%), January (54.4%), June (46.7%), July (52.2%) and August (51.1%). This can be related to the availability of hay, crop residues and aftermath grazing in the months of December and January and natural pasture in the months of June, July and August. Tesfaye (2008) reported the shortage of feed begins from the end of November, and the months of January, February and March are the driest months when the productivity of the natural pasture dwindles. According to his study, during the dry season, 36.43 and 63.57% of the respondents replied that feed was adequate and inadequate, respectively whereas during wet season 50, 7.14 and 42.86% of the respondents responded that feed was adequate, inadequate and abundant, respectively. In the current study, 83.3%, 95.6%, 96.7% and 96.6% of the respondents indicated that February, March, April and May were classified as feed shortage months, respectively. In these months, the availability of natural pasture, hay, crop residues and aftermath grazing is reduced. The same result was reported by Tessema et al. (2003) that the critical feed shortage months in Belesa Woreda were from January to the end of June. Therefore, supplementing the animals with agro-industrial by products or provision of improved forages during dry periods is critical for better livestock production. In the study district, the different sources of feeds for livestock are presented in figure 6. About 46.7% respondents had their own natural pasture land, 42.2% were both rented in and had own pasture land and the rest purchase/rented natural pasture land from other farmers for their livestock feed production. As indicted above, large percentage of respondents rented pasture land for livestock feed production implying that their own pasture land alone cannot support their livestock feed requirement. In the lower altitude, the majority of respondents had their own pasture land than in the two altitude zones but this does not mean that grazing land holding of that area is greater than the two altitudes.Hay was commonly produced by respondents (Figure 6). Fifty eight percent of the farmers in the study district replied that hay is harvested from their own pasture land. In the upper, mid and lower altitudes, most respondents (53.3, 50 and 72.4%) produced hay on their own land whereas 6.7, 20 and 10.3% of the respondents in upper, mid and lower altitudes, purchased hay from local farmers, respectively. The rest 40, 30 and 13.8% of respondents in upper, mid and lower altitudes, produce hay both on their own land and purchased from other farmers, respectively.Fekede et al. (2013) reported that the majority of the respondents in Sululta (66.7%) and Ejere (58.3%) produce hay on their own land. In the current study, 12.2% purchased/rented this feed from others, 27.8% both harvest from their own land and purchased from others. The major reason for low amount of contracting hay in the study areas might be due to the availability of their own lands for hay production and/or poor market access as compared to other areas.About 90, 76.7 and 93.3% of the respondents in the upper, mid and lower altitudes produced crop residues by themselves, respectively (Figure 6). The majority (86.7%) of the respondents in the study district obtained crop residues from their crop land. This indicates that crop residues marketing is not a common practice in the study area because crop residues was produced by the respondents in large quantity as compared to hay.As indicated in figure 6, 56% of the respondents purchased agro-industrial by products for their livestock but 43.9% were not using it due to unavailability and high price of the products. Generally, in the current study, utilization of agro-industrial by products is not common as compared to natural pasture, hay and crop residues.Improved forages were either own produced or not used by the respondents (Figure 6). Of the respondents in the upper, mid and lower altitudes, 70.4, 76.9 and 68% were not using improved forages due to unavailability of this feed type in their areas. This finding indicates that production and utilization of improved forages is very low so that intervention should be made to reverse this situation. Among the interventions, establishment of nursery sites for improved forge multiplication could bring improvements in the dissemination and utilization of this feeds as such practices have brought changes in other areas.The use of \"atella\" (local alcohol waste) in the feed of livestock is significant and therefore, the majority of the respondents in upper (69.9%), mid (60%), lower altitudes (73.1%) and 69.8% of respondents in the study district were producing this feed by themselves (Figure 6). About 74.4% of the sampled households in the district did not have improved forages, shrubs or trees on their farm land as animal feed source (Table 13). Belay et al. (2012) reported that all households (100%) interviewed in Dandi district, west shewa zone did not cultivate improved forage species for their livestock production. In the same report, it was observed that around homesteads of some households, there was Sesbania tree as life fence, but farmers did not feed to their animals because of lack of knowledge. In addition, in the Ethiopian highlands, apart from their use in a limited number of specific situations, farmers have not benefited the advantage of multipurpose fodder trees can offer. In most cases farmers quit growing fodder trees when the projects terminated from the area (Abebe, 2008). In the study district, the major reasons for not planting improved livestock feeds include shortage of land (42.4%), shortage of forage seeds (24.3%), lack of awareness (26.4%), unevenness of rain fall (5.6%) and lack of interest of farmers (1.1%) (Table 13). This shows that farmers do have an interest to grow improved forage crops but other factors were hindering its production. In the upper, mid and lower altitudes, 26.7, 43.3 and 16.7% of the respondents, respectively replied that there was communal grazing land in their area (Table 14). In general, only 28.9% of the respondents in the district reported the presence of communal grazing land in their area and 84.8% of the respondents indicated that communal grazing land was decreasing, 6% increasing and 9.1% said that there was no change on communal grazing land size. Similar to the current study, WOCAT (2012) reported that communal grazing areas were increasingly being converted into cropland due to rapid population growth. This has led to enormous pressure on the little remaining grazing land, through overstocking of animals, and thus overgrazing, resulting in considerably decreased productivity of communal grazing land. Generally, the size of communal grazing land in the study district is decreasing from time to time and this indicates that the quantity of livestock feed obtained from this source was also decreasing. Respondents in the study district reported that, allocation of communal grazing lands for landless youths and expansion of crop lands were the major reasons for decreasing the size of communal grazing land in their respective area. grass land, bush covered, tree covered and swampy land type, respectively (Figure 7). In mid altitude, only open grass land type of communal grazing land was available.Figure 7: Types of communal grazing lands in Meta Robi districtIn the study district, (96.7%) of respondents provided salt for their animals as a mineral source (Table 15). The amount provided and the species of animals that are given this mineral need further investigation for appropriate ration formulation. Similar to this study, Belay et al. (2012) reported that all respondents in Dandi district, west shewa zone supplement their livestock with common salt. In Eastern zone of Tigray the provision of salt was also a recognized practice and significant number of the respondents responded that they provide salt during the wet season for their animals (Berihu et al., 2014). The percentage of respondents supplying other mineral sources other than salt was 46.7, 26.7 and 10% in the upper, mid and lower altitudes, respectively. In the study district, 27.8% of the sampled households were providing natural soils as mineral sources for the animals (Table 15). Several reasons were mentioned by respondents for not providing this mineral for the animals like lack of mineral soil in the area, not knowing the mineral itself and lack of awareness of the respondents. The current result contradict with the findings of Yeshitila et al. (2008) where a higher percent of the respondents use naturally occurring rift valley salt lick mineral as animal feed sources in Alaba Woreda. Generally, in the study district, the percentage of farmers using other mineral sources for livestock feeding in the upper altitude was higher than in the mid and lower altitudes which might be due to the availability of the mineral sources in that particular area. In the study district, utilization of non-conventional feeds other than local alcohol waste (Atella)was very low. Based on the result of this study, these feed types were not common in upper altitude whereas only 3.3 and 6.7% of the respondents in mid and lower altitudes were using non-conventional feeds other than \"Atella\", respectively. In the study district in general, 96.7% of the respondents were not using these feeds types for their livestock. Farmers rarely use these feed types for their animals as feed source and hence, it is difficult to quantify the amount of these feed offered to the animals.Using different irrigation systems in crop production will not only increase crop yield but will also increase crop residue yield and animals can also get water at the nearest distance. In the upper altitude, large percentage (73.3%) of farmers use irrigation as compared to farmers in the mid (36.7%) and lower (33.3%) altitude zones (Table 16) and this is due to the availability of more water sources in the upper altitude. In general, in the study district, of the sampled households, 47.8% are using irrigation for producing food crops and animal feeds. The current finding is higher than the result of Zewdie (2010) who reported that among the respondents around Ziway area, 17% of the farmers produced vegetables with irrigation, while about 7% of the farmers produced both food crops and animal feeds. The higher percentage of respondents using irrigation in the study district indicates that there are greater water sources in the district.Generally, in Ethiopia, 11% of the water is used for livestock production of which water consumed directly by livestock is less than 2% of this figure, with most water being used for feed production (Iain, 2013).Therefore, from the current study it is possible to conclude that those farmers having irrigation facilities can produce animal feeds by irrigation if they get improved forage seeds.Application of fertilizer and manure to the farm land for production of crop was common in the study district. Respondents in the upper and mid altitudes are applying relatively more manure than respondents in the lower altitude (Table 16) and this might be due to the presence of large number of animals in the area and availability of crop lands to the nearest distance. Generally, manure application was insignificant as compared to the number of animals owned by the respondents. This might be due to labor shortage, distance of crop land from home, lack of awareness and lack of transportation systems. The amount of fertilizer applied in the study district is ranging from 93-176.6 kg per hectare per year per household (Table 16). The amount of fertilizer applied per ha/yr/hh in lower altitude is still low as compared to upper and mid altitudes. This low application of fertilizer in lower altitude might be due to lack of capital, lack of awareness of the farmers and lack of infrastructures to transport agricultural inputs in that particular area. Livestock owners follow different feeding systems for efficient utilization of the available feeds.In the study district, 22.2, 37.8, 36.7, and 3.3% of the respondents fed their animals in indoor, group feeding, let to graze and tethering, respectively (Figure 8). Teshager et al. (2013) reported that the feeding system practiced in Ilu Aba Bora Zone was predominantly free-grazing system but for fattening beef cattle, 32.8, 0.6 and 66.7% of the respondents practiced zero, semi and free-grazing systems, respectively. In Jeldu district 94.5, 4.4 and 1.1% of the respondents practiced let to graze, cut and carry and tethering, respectively (Bedasa, 2012). As indicated above, large percentage of farmers practiced group feeding system and in that feeding system all age categories of animals fed together so that it is difficult for younger animals to satisfy their daily dry matter requirement as some of the animals can consume more than others. Similarly, the percentage of farmers allowing their animals to grazing land are also high (36.7%) and in this feeding system, the farmers could not know either the daily dry matter requirement of the animals is fulfilled. In the study district, tethering is practiced by 3.3% of the households and mostly practiced by farmers having small number of animals, labor shortage and practicing fattening of the animals. In the study district, among the grazing systems, continuous grazing, deferred grazing, and zero grazing systems were practiced by 62.2, 36.7 and 1.1%, respectively (Table 17). In the upper and mid altitudes, only continuous and differed grazing were practiced. Generally, in the study district, the percentage of respondents practicing continuous grazing were the highest (62.2%) which indicate that the grazing land could be over grazed and degraded through time unless correction measures (rotational grazing) are taken. The watering systems in the upper, mid and lower altitudes were almost similar where 83.3, 100 and 80% of the respondents practicing group watering system, respectively (Table 18). In the study district, the majority (87.8%) of the respondents practiced group watering system and livestock get water from river (97.8%) and pond (2.2%). In the present study, livestock get water on average distance of 1.4 km. Getting water sources at the nearest distance can save their energy that is otherwise wasted in searching water. In the study district, 52.2% of the respondents water their animals twice a day, 38.9% once a day and 7.8% ad libitum. Similar to this study, Belay et al. (2012) reported that in Ginchi area there are three water sources and these include rivers, streams and springs and majority of the households (98%) water their animals at river. On the same report, during the dry season, when animals are herded, watering takes place almost all at rivers and streams and 80.3% of the respondents water their animals once in a day whereas 19.7% twice a day. In the study district, getting pure water, shortage of water supply, farness of water sources and shortage of labor to fetch water were the problems in their descending order (Table 19). In Allaba district, 66 % of the surveyed households claim shortages of water and farness of water sources from their vicinity as major water related problems (Yeshitila, 2008). Managing grazing land with different management techniques like fertilizer and manure application, weeding or removal of unpalatable plants and over sowing with forage seeds are some of the techniques used to improve the productivity of grazing lands. In the study district, 33.3, 23.3 and 23.3% of the respondents reported that they had grazing land for their animal feed production in the upper, mid and lower altitudes, respectively (Table 20). Grazing land management practices were relatively less common in all areas of the district in which only 30, 20 and 20.68% of the respondents in upper, mid and lower altitudes manage their grazing land for better production, respectively (Table 20). In overall surveyed areas, 76.4% of the respondents did not manage their grazing lands but only 23.6% apply some management techniques on their grazing lands. Among the management techniques, a combination of weeding and manure application (54.54%), manure application alone (31.8%), fertilizer application (9%)and weeding alone (4.5 %) were practiced (Table 21). The current finding is in agreement with the findings of Fekede et al. (2013) who reported that 22.5% and 77.5% of the respondents in central highlands of Ethiopia were managing their pasture land and not managing their pasture lands, respectively. According to this investigator, 14.8% and 51.8% of the sampled households were applying fertilizer and manure, respectively. In the study district, over sowing of forage seed was uncommon. Most respondents indicated that lack of awareness mostly contributed for lack of management of their grazing lands (Table 20). Feed transportation is one of the tasks in livestock production and management. As indicated in table 22, 68.9% of the respondents in the study district, were transporting livestock feeds to their back yard for their livestock feeding. Feed transportation in the lower altitude is very low (20%)as compared to the upper (93.3%) and mid (93.3%) altitudes. This indicates that feed transportation in the lower altitude was not a common practice and might be due to lack of awareness of the farmers, small amount of feeds or lack of transporting facilities. The common means of transportation in the study district are human power (45.07%) and donkey and horse's back (54.17%) (Table 22). In the study district, the problems raised in transporting livestock feeds were absence of transporting facilities (48.31%), lack of road access (47.19%) and bulkiness of the feed (4.4%) (Table 22). Tesfaye and Chairatanayuth (2007) also reported the major problems in collecting and storing crop residues in East shewa zone were transportation problem (35.6%), Small quantity of feeds (10.4%), far from homestead (12.3%), used for mulching (15.8%) and no feed problem (7%). According to the respondents perceptions', feed storage during high production season was one of the coping mechanisms for feed shortage. Feed conservation in upper, mid, lower altitudes and the study district was in the order of 96.7, 96.7, 56.7 and 83.3%, respectively. In the study district, hay and crop residues were conserved by 70 and 84.4% of the respondents, respectively. In the lower altitude, significant percentage (43.3%) of respondents are not conserving feed due to several factors like inadequacy of the feed, labor shortage and lack of awareness. This implies that, in the lower altitude, livestock are more exposed to feed shortage as compared to upper and mid altitudes.In the study district, utilization of hay and crop residue started soon after collection (47.8%), one month after collection (15.6%), two months after collection (17.8%) and stay conserved over two months (18.9%) (Table 23). Fekede et al. (2013) reported a similar result that farmers in the greater Addis milk shade, central highlands of Ethiopia fed stored feed to their animals soon after collection (45.5%), one month after collection (19.2%), two months after collection (24.7%) and over two months (10.3%). Utilization of conserved feed soon after collection was higher in lower altitude (66.7%) than upper (40%) and mid altitudes (36.7%) (Table 23). In the upper altitude, 36.7% of the respondents conserved feeds over two months after collection. This indicates that livestock get relatively abundant feed sources than the other two areas. About 48% of the respondents in the district start providing hay and/or crop residues soon after collection due to shortage of feed in that particular time or the respondents might not have alternative feed sources for their animals. The respondents feed crop residues to their animals in different ways (Table 24) in which, 72.2% of the respondent practiced whole feeding, 16.7% chopped, 3.3% treated the feed and 7.8% of the respondents mix crop residues with other feeds. Similar to the current finding, Zewdie (2010) reported that feeding crop residues in whole (55%) and treated straw (10%) was practiced around central Rift valley. Generally, in the study district, most of the farmers fed crop residues as whole feeding and this increase wastage of the feed and reduce efficient utilization of the available feeds. 24). In other study, the majority (57.8%) of the responding households indicated to store hay under open air, 29.3% under shelter shade, and 12.9% reported to use some plastic covering on the hay stored outside (Fekede et al., 2013). Although, baling the hay is important for efficient utilization of feeds, all the respondents in the study district did not bale the hay and crop residues due to lack of facilities. Almost similar results was obtained by Fekede et al. (2013) as hay was stored in loose form by the majority (77.5%) of the respondents in central highlands of Ethiopia. As this author reported baling hay was totally uncommon in Ejere, while 31.7% of the respondents in Sululta and 35.9% of the respondents in G/Jarso reported to make baled hay.In the district in general, about 12,979.5 ha of grazing lands is available (2013/14 annual report of Agricultural office of the district). Therefore, the total dry matter production from natural pasture equals to (12,979.5 ha*2 tons/ha) 25,959 tons per year. The amount of natural pasture produced by the respondents was estimated from the pasture land holding of the respondents.The pasture land holding of the total respondents in upper, mid and lower altitudes was 37.75, 42.15 and 20.25 ha, respectively. Therefore, the pasture production in the upper, mid and lower altitudes was 75.5, 84.3 and 40.5 tons/year, respectively which sums up to a total of 201 tons dry matter per year (Table 25). Crop residues are one of the dominant feed sources in most parts of Ethiopia especially during the dry season of the year. A total of 180,778.04 tons of crop residues were produced from different crop types in the district (Table 26). According to Tolera (1990), 10% of the crop residue loss is expected due to several factors. Therefore, 162,700.23 tons of dry matter of crop residue was obtained from the total crops produced in the district. The total crop residues produced per year in the upper, mid and lower altitudes was 243.39, 239.95 and 157.33 tons, respectively. The proportion of crop residues as animal feed (76.72%) is higher as compared to other feed types in the district, this result is in agreement with Yeshitila et al. (2008) who reported that of all feed resources produced, crop residues alone accounted 78.72% of livestock feed supply. The contribution of crop aftermath in livestock feeding is significant especially in dry season when feed availability is limited to crop residue, hay and aftermath grazing. In the district, a total of 37,266 ha of land were covered by different crop types (Annual report of 2013/14). The conversion factor of stubble gazing into total dry matter yields is 0.5 (FAO, 1987). Therefore, 18,633 tons of feed was obtained per year from crop aftermath in the district. In the upper = 33.5; mid= 34.2 and lower= 24.91 tons of crop aftermath was produced. As indicated in table 11, these crop aftermath are majorly obtained from wheat, barley, teff and maize stover in the upper and mid altitudes whereas from teff, wheat, maize and sorghum stover in lower altitude.In the district, the total area of land covered by forest was 6,792.75 ha (Annual report of 2013/14 of Agricultural office). The conversion factor used to get total dry matter production from forest land is 0.7 (FAO, 1987). Therefore, a total of 4,754.92 tons of feed dry matter was produced in the district. The total dry matter production from forest land in the upper altitude is (10.29 tons), mid (2.62 tons) and lower altitude is (2.1 tons). This indicates that forest land availability which could be the source of livestock feed in the upper altitude was relatively higher.The DM requirement is calculated based on the daily DM requirement of 250 kg dual purpose tropical cattle (an equivalent of one TLU) for maintenance requirement that needs 6.25kg/day/animal or 2281 kg/year/animal (Jahnke, 1982). Therefore, the total dry matter requirement of 170,477.8 TLU is 388,859.8 tons per year (poultry was excluded because of mono gastric nature of the animal). The annual dry matter requirement of livestock in upper altitude is (710 tons), mid (593.03 tons) and lower altitude (486.08 tons). From this result, the total dry mater requirement in the upper and mid altitudes is higher than lower altitude. This is due to relatively large number of livestock in upper and mid altitudes.The current dry matter production of feed from natural pasture grazing, crop residues, crop aftermath grazing and forest and uncultivated land in the district was 212,047.15 tons per year.The total dry matter requirement for 170,477.80 TLU (poultry is excluded because it is mono gastric) is 388,859.86 tons per year. The total dry matter produced per year in the district, can only supply the animals for 6.54 months. In the rest of the year, animals suffer from feed shortage. In upper, mid and lower altitudes, the total dry matter of feed obtained per year is 362.68, 360.71, and 224.84 tons, respectively whereas the total TLU in upper, mid and lower altitudes were 311.27, 259.99 and 213.1, respectively. Therefore, the total dry matter produced in these areas can only supply the animals for 6.12, 7.29 and 5.55 months in the year in upper, mid and lower altitudes, respectively. In Metema district, the existing feed supply on a year round basis satisfies only 72.7% of the maintenance DM requirement of livestock (Tessemma et al.,2003). In agreement to the current study, Bedasa (2012) also indicated that the annual dry matter production was below annual livestock requirements in the highlands of the Blue Nile basin.In the district, feed marketing along the value chain is a weak practice. Of the total respondents in the upper, mid and lower altitudes and the district in general, 40, 70, 86.7 and 65.5% replied that they did not buy agro-industrial by products and other feed types for their animals from the market. The rest of the sampled households purchase feed from farmers and these feed types were mostly natural pasture and hay but commercial feeds were not available in the area. Natural pasture, hay and local alcohol waste were marketed between farmers. In agreement to this finding, Zewdie (2010) reported that 80 and 55% of the farmers at Jimma and Sebeta, respectively, indicated that agro-industrial by products are not available sufficiently in the market. The use of agro-industrial by products such as oil seed cakes, milling by products and molasses is currently restricted to the emerging private dairy and fattening farms (Yayneshet, 2010). Molasses is supplied by the district agricultural office or the farmers purchase by themselves from Holeta town after traveling a distance of about 70 km. The farmers travel on average 9.7 km to purchase molasses or other agricultural inputs from agricultural office of the district. According to this survey result, feed processers and retailers are not present in the district so that livestock producers could not get agro-industrial by products from the market.Ninety nine percent of the households reported that agro-industrial by-products except local flour milling were not totally found in their area.Major livestock production constraints are presented in table 27. In the study district, livestock feed shortage was the major problem followed by animal diseases, water shortage, shortage of artificial insemination, shortage of veterinary services, shortage of extension services, shortage of market and poor genetic potential of the animals and this is in agreement with other studies (Agajie et al., 2001;Dereje and Tesfaye, 2008;Zewdie, 2010;Dawit et al., 2013;Teshager et al., 2013). The consequences of feed shortage as listed by respondents are presented in table 28. The consequences of feed shortage in the study district are weight loss of the animals (37.8%), low milk yield (23.3%), increased mortality (13.3%), weakness of the animal (24.4%) and anoestrus(1.1%). In the lower altitude, weight loss of the animals (50%) was the highest than in the upper and mid altitudes. This indicates that feed shortage in the lower altitude was greatly affecting animal performances in the areas. In central rift valley, about 92% of the respondents indicated that weight loss and reduced milk yield were the consequences of feed shortages, while mortality due to feed shortage was reported by 43% of the respondents (Zewdie, 2010). The observation of the farmers in the study district towards anoestrus was different from the observation of farmers from Jimma and Sebeta. In the study district, only 1.1% of the respondents observed anoestrus due to feed shortage but 20 and 30% of the farmers in Jimma and Sebeta, respectively indicated absence of behavioral heat standings as the major consequence of feed shortage (Zewdie, 2010) This difference can be attributed to the difference in awareness of the farmers to animal production in different localities. To overcome feed shortage during critical season of the year, livestock producers in all altitude zones use different strategies (Figure 10). Accordingly in the study district, 56.7% of the respondents preserve hay and crop residues during surplus production season, 20% purchase forage from local farmers, 12.2% of the farmers undertake destocking, 4.4% use improved forage,3.3% supplement their animals with different agro-industry by-products and 3.3% use fodder for their animals during feed shortage. In mid altitude most respondents (86.7%) preserve hay as a major strategy. In other district, 94.8 and 21.8% of the farmers practiced feed conservation and reduced the amount of feed offered to the livestock as major strategies to overcome feed shortage (Samuel et al., 2008). In the study district, utilization of improved forages, agro-industrial by-products and fodder was insignificant as compared to other measures taken by the farmers (Figure 10). This might be due to unavailability of these feeds in the district. The current study revealed that only 3.3% of the farmers were utilizing non-conventional feeds such as vegetable refusals and local alcohol waste while about 96.7% were not using these feeds due to small amount of the feeds and lack of attention for its contribution in livestock feeding.Figure 9: Strategies to overcome feed shortage in the study districtIn the study district, grazing land management was carried out by all family members (56.7%), followed by men (41.1%) (Table 29). Among the activities, weeding and fencing are common practices and these activities require high energy and that is why men were engaged mostly in these activities.Feed collection and transportation in the study district is carried out by all family members (53.3%) followed by men alone (18.9%) and men and women (14.4%).The present finding is not in accordance with the report of Samuel et al. (2008) who reported that about 94.8% of the respondents in Ada'a Liben district reported that feed collection was a routine work of male.Milking in the study district is carried out by women (71.1%) and women and girls (28.9%) (Table 29).Milk processing is also commonly carried out by women (64.4%) and women and girls (34.4%). In agreement to this study, Teshager et al. (2013) reported that majority (89.4%) of the respondents indicated that milking is the responsibility of women in Ilu Aba Bora zone.Milk and milk products marketing were carried out by women (74.4%) and girls (25.6%). In agreement to this finding, about 68.3% of farmers indicated that female members were responsible for marketing of animal products than male member of the family (Samuel et al., 2008). Generally, in the study district, milking and related activities are totally left for women and girls and this might be due to social influences.In the study district, animal feeding was mainly carried out by all family members (56.7%) and men (16.7%). Fetching water and watering of livestock was undertaken by all family members (38.9%), women (26.7%) and women, boys and girls (17.8%).Based on farmer's opinion, 50.7% said that watering was done by the age group of 15-64 years of both sexes (Samuel et al., 2008).Livestock marketing is majorly conducted by men (85.6%) and men and women (12.2%). From this result, we understand that women have less power on livestock marketing activity and this fact is well corroborated by Teshager et al. (2013) that 95.6% of respondents indicated that live animal marketing was carried out by the husband. In the study district, livestock herding is mostly carried out by boys (36.7%) and all family members (48.9%). In Ada'a Liben district, it was reported that male members of the family were responsible for herding (Samuel et al., 2008).Barn cleaning in the district was mostly accomplished by women (27.8%) and all family members (24.4%). In other districts, about 90.3% of the farmers indicated that barn cleaning is the responsibility of female members of the family (Samuel et al., 2008). Generally, in the study district, livestock related activities are mostly carried out by female members of the households.Similar to this study, the involvement of women in all cattle management activities was found to be high; however their role in decision making with regard to sale of animals was very low (Teshager et al., 2013). The macro mineral status of soil of the study district is presented in table 30. The effect of altitude on calcium (Ca) concentration of the soil in the study area was significant (P<0.05) during both seasons. This indicates that calcium concentration in the soil is influenced by altitude. Relatively higher value of Ca was found in soil samples collected from lower altitude (dry=18.68 and wet=19.25 mg/kg soil) and this might be due to the high rainfall pattern in the upper and mid altitudes that cause leaching of this nutrient. The seasonal change in soil Ca concentration of the three locations was not-significant (P>0.05). This finding was in accordance with Lemma et al. (2002) who reported a non-significant effect of season on Ca concentration of soils collected from mid altitude of western Ethiopia. In the current study, the Ca concentration in all altitude is below the critical value of plants requirement (<72mg/kg) as recommended by Rhue and Kidder (1983); Pam and Brian (2007).A non-significant effect of altitude and season (P>0.05) on Mg concentration was observed (Table 30). The current study shows that the Mg concentration in all altitudes during both seasons is above the critical level required for normal plant growth (<0.7 mg/kg) (Mtimuni, 1982;McDowell, 1985). This finding is in agreement with Lemma et al. (2002) who reported the Mg levels in soils were above the critical value and soil Mg concentration between seasons did not differ significantly (P>0.05).The concentration of potassium (K) in the sampled soil during the dry season is higher than during the wet season (Table 30). This finding is in line with the earlier study by Tapiwa (2012) who reported that K concentration was higher in the dry season than in the wet season in Southern province of Zambia. This could be due to the leaching or translocation of mobile elements by rainwater to the root system during wet season (Cottenie, 1980).The effect of altitude was significant (P<0.05) on soil K concentration during both seasons. But season has a non-significant effect (P>0.05) on the concentration of K in the soil of the study area. Lemma et al. (2002), reported that K levels in the soils were higher than the critical level (<0.15meq/100g soil) and seasonal K concentration differences were not significant. In the current study, except the concentration of K in mid altitude during wet season, K concentration is above critical level for normal plant growth (<1.5mg/kg) as recommended by Mtimuni (1982) andMcDowell (1985).The concentration of Phosphorus (P) during the dry season was relatively higher than its concentration during the wet season (Table 30). Similar to this study, Tapiwa (2012) reported that P was higher in dry season than in wet season. This is due to leaching or translocation of P by rainwater to the root system during rainy season (Cottenie, 1980).The effect of altitude during dry season was significant (P<0.05) whereas non-significance (P>0.05) during wet season.Season had a significant (P<0.05) effect only in the upper altitude whereas in the mid and lower altitudes, it had non-significant (P>0.05) effect on the concentration of P in the soil. Phosphorus concentration in the upper altitude during wet season and mid altitude during both seasons were below the critical level of plant requirement (<10mg/kg of soil) (Table 30). This low concentration of P in soils of mid altitude (4.93-6.94 mg/kg soil) might be due to the acid nature and soil types (Nitosols) of that area that has the ability to fix P in the soil and makes P unavailable for plants.Altitude and season did not have a significant effect (P>0.05) on Sodium (Na) concentration in soil (Table 30). In agreement to the current study, Lemma (2002) also reported a similar pattern on Na concentration in soils of Ginchi area. The concentration of Na in soil in all locations during both seasons were below the critical level required for plant (<62mg/kg soil) as recommended by Rhue and Kidder (1983) and Pam and Brian (2007).The effect of altitude was significant (P<0.05) on the concentration of Sulphur (S) in soil during the dry season whereas non-significant (P>0.05) during wet season. The concentration of S in the soil in lower altitude was relatively lower (dry=20.59 and wet=18.36 gm/kg) as compared to upper and mid altitude. Season did not have a significant (p<0.05) effect on the concentration of S in the soil in all altitude zones. The macro mineral concentration of natural pasture in the study district is presented in table 32.There was a non-significant (P>0.05) effect of seasons on Calcium (Ca) content of feed in the upper and lower altitudes but a significant (P<0.05) effect at the mid altitude. This might be due to the species diversity and maturity of forages during sampling time differs in the three altitudes. Altitude had significant (P<0.05) effect on the concentration of Ca during both seasons.Almost similar result was obtained in other parts of the world where Ca contents of the pasture ranged from 1.8 to 9.8g/kg (Zafaret al., 2004;Aregheore et al., 2007;Reshiet al., 2013). In this study, the Ca concentrations of natural pasture at the upper and mid altitudes fulfill the Ca requirement of dairy cows whereas in the lower altitude the Ca concentration in the analyzed feed was below the requirement of dairy animals (NRC, 1989). This low concentration of Ca in lower altitude might be correlated with low concentration of Ca in the analyzed soil samples.The effect of season and altitude is non-significant (P>0.05) on magnesium (Mg) concentration of feeds of the study area (Table 32). In agreement to this, Lemma et al. (2002) and Lemma (2002) reported that there was non-significant difference between wet and dry seasons in Mg concentration of native pasture. Other report indicated that forages had a significant variation in the levels of Mg due to month, pasture and interaction between them (Zafaret al., 2007). The variation of Mg concentration in forage of different location might be due to variation in forage species, climatic factors, soil types, seasons and rain fall pattern. In the current study, the Mg concentration of natural pasture in all locations was below the requirement of dairy cows (NRC, 1989).This low concentration of Mg in the feed may cause grass tetany in high yielding dairy cows (NRC, 2001).A non-significant (P>0.05) effect of season and altitude on the concentration of potassium (K) in natural pasture was observed in the analyzed feed samples (Table 32). Contrary to this study, Aregheore et al. (2007) reported a relatively higher (13.2g/kg) K concentration for tropical forages. The concentration of K in the analyzed feeds in all locations can not satisfy K requirements of dairy animals (Table 32).Season had a non-significant effect (P>0.05) on the concentration of Phosphorus (P) in mid and lower altitudes whereas it had a significant effect (P<0.05) at the upper altitude. Lemma (2002) also reported a non-significant effect (P>0.05) of season on the concentration of P in the pasture.Altitude had a significant effect (P<0.05) during the dry season but a non-significant effect (P>0.05) during the wet season. Others reported a higher concentration of P (1.7 to 2.7 g/kg) in forage at different regions of the world (Aregheoreet al. 2007;Reshiet al. 2013). In the current study, the concentration of P in natural pasture was below the requirement of dairy animals (Table 32). In such low concentration of P in livestock feeds, supplementation of this mineral is needed because P deficiency results in reduced growth, decreased appetite, impaired reproduction and weak fragile bone (NRC, 2001).Season had a non-significant (P>0.05) effect on the concentration of Sodium (Na) in natural pasture. Lemma and Smit (2004) also reported a non-significant (P>0.05) effect of season on Na concentration in natural pasture. Altitude had a significant effect (P<0.05) on the concentration of Na during the dry season but it had non-significant effect (P>0.05) during the wet season. The current study shows that in all locations, the concentration of Sodium (Na) in natural pasture were below the requirement of dairy animals (Table 32). To compensate this deficiency, the tradition of common salt supplementation to the feed should be encouraged.A non-significant (P>0.05) effect of season was observed on the concentration of Sulfur (S) in the analyzed feed whereas a significant (P<0.05) effect of altitude was observed during the dry season but a non-significant (P>0.05) effect during the wet season ((Table 32). According to the current study result, the S concentration in natural pasture was above the requirement of dairy animals (Table 32). In the current study, season had a non-significant (P>0.05) effect on the level of Mn in the upper and mid altitudes but a significant (P<0.05) effect in the lower altitude. In agreement to this study, Lemma (2002) reported a non-significant effect of season on the concentration of Mn in natural pasture. In this study, a significant effect (P<0.05) of altitude during both seasons was observed. Almost similar Mn concentration was reported by Shahjalall et al. (2008) in which grasses from highland, medium highland and low land agro ecologies had Mn concentration of 136.1, 108.5 and 97.8ppm, respectively. Generally, the Mn concentrations of natural pasture except in lower altitude, during wet season, were above the requirement of dairy animals (Table 33).The current study showed a significant (P<0.05) effect of altitude on the concentration of Fe in the analyzed feeds during both seasons. Season had a significant effect (P<0.05) on Fe concentration of native pasture in upper (dry season=117.60 and wet season=259.7 mg/kg) and mid altitudes (dry season=299 and wet season=213.3 gm/kg) but a non-significant (P>0.05) effect in lower altitude (dry season=78.4 wet season=130). In other study, it was observed that the concentration of Fe in the native pasture during the dry season far exceeded wet season values, but the difference was not significant (Lemma et al., 2002).Generally, the Fe concentration of natural pasture in this study were above the requirement of dairy animals (Table 33).A non-significant (P>0.05) effect of season on Cu concentration of feed was observed in this study and a significant effects (P<0.05) of altitude on Cu concentration during dry season but non-significant (P>0.05) effect during wet season was observed. In agreement to this study, a non-significant effect of season on the concentration of Cu (dry= 8.18 and wet=19.44 gm/kg) was reported (Lemma et al., 2002). Generally, the Cu concentrations of natural pasture in all locations during both seasons were above the requirement of dairy cattle (10ppm) as recommended by NRC (1989).In this study, a non-significant (P>0.05) effect of altitude and season on the concentration of Zn was observed. In agreement to this study, Lemma et al. (2002) reported that the concentration of Zn in native pasture during the wet and dry seasons was not appreciably different. The concentration of Zn in the analyzed natural pasture samples in all locations during both seasons were above the requirement of dairy animals (Table 33).There was a non-significant (P>0.05) interaction effect between season and altitude for most of the analyzed minerals in feed samples was observed. The interaction of season and altitude was significant (P<0.05) only for calcium, phosphorus, sulfur and iron (Appendix tables 6-15.ANOVA tables: 1-10). The interaction effect of season and altitude was non-significant (P>0.05) for all minerals analyzed in soil samples of the study district (Appendix tables 16-25. ANOVA tables: 11-20). An assessment of feed resources was carried out in three altitudinal zones of Meta Robi district, west shewa zone, Oromia Regional State to identify the types and sources of feeds, constraints in feed production, transportation and utilization, estimate annual feed produced, maintenance requirement, annual feed balance and determine the mineral status of natural pasture and soil samples. Secondary sources of data were collected by reviewing different documents from different district offices such as agricultural, livestock production and health and land management. A group discussion with key informants at each agro-ecology was carried out and semi-structured questionnaire was prepared to elicit information from the sample households.The district was stratified into upper, mid and lower altitudes to collect primary datas. Samples The major feed resources in the district were natural pasture grazing (58.9%), crop residues such as wheat straw (42.4%), barley straw (30%) and hay (21.1%), local alcohol waste (18.9%) and crop aftermath (11.1%). Agro-industrial by products, non-conventional feeds and improved forage utilization is uncommon and rarely used in the study areas.During the dry season, 90% of the respondents use crop residues followed by hay (58.8%) and stubble grazing (56.1%) as livestock feed whereas during the wet season all respondents indicated that natural pasture was the dominant livestock feed in the district. Respondents classified months of the year according to feed availability and therefore, September-November were those months when feeds are relatively available in excess. December, January, June, July and August were those months when feed is adequately available whereas, February-May were classified as months of feed shortage.About 47% of the respondents in the study district had their own pasture land whereas 42.2%had both rented and their own pasture land. Fifty eight percent of the sampled farmers harvest hay from their own farm land, 12.2% purchased hay from others and 27.8% harvested from their own land and purchased from others. The majority (86.7%) of the respondents in the study district produce crop residues from their crop land. Improved forages was not produced by 74.4% of the respondents due to shortage of land (42.4%), shortage of forage seeds (24.3%), lack of awareness (26.4%) and unevenness of rain fall (5.6%). About 56% of the respondents purchased agroindustrial by products for their livestock whereas about 44% were not using it due to unavailability.The availability of communal grazing land was reported by only 28.9% of the respondents in the study district. Based on the size of the land, 84.8% of the respondents indicated that the communal grazing land was decreasing through time. Respondents mentioned that, allocation of communal grazing lands to landless youths and expansion of crop lands are the major reasons for decreasing the size of communal grazing land in their area.In the study district, continuous grazing, deferred grazing, and zero grazing systems were practiced by 62.2%, 36.7% and 1.1% of respondents, respectively. The higher percentage of respondents practicing continuous grazing (62.2%) indicated that the grazing land could be over grazed and degraded through time unless correction measures are taken. The majority (87.8%) of the respondents practiced group watering system and livestock get water from river (97.8%) and pond (2.2%). Livestock get water at an average distance of 1.4 km that can save their energy that is otherwise wasted in searching water.About 68.9% of the respondents transported livestock feeds to their back yard for their animals.Feed transportation in the lower altitude was very low and only 20% of the respondents were transporting feeds. Hay and crop residues were conserved by 70 and 84.4% of the respondents, respectively. The utilization of hay and crop residue started soon after collection (47.8%), one month after collection (15.6%), two months after collection (17.8%) and stay conserved over two months (18.9%).Currently, the total dry mater production from natural pasture grazing, crop residues, crop aftermath grazing and forest and uncultivated land in the district was about 212,047.15 tons per year. The total dry matter produced per year in the district, can only fed the animals for 6.54 months. In upper, mid and lower altitudes, the total dry matter produced in these areas can only feed the animals for 6.12, 7.29 and 5.55 months in the year, respectively. According to the opinion of the sampled households, in the rest of the year, animals suffer from feed shortage which resulted in weight loses, mortality and milk reduction. Even though, the available feed recourses are reported to be adequate only for about half of a year, the contribution of other feed resources like bushes and shrubs should not be ignored as this feed types were not considered during the study period due to lack of information.Feed marketing along the value chain in the district was not practiced. Farmers mostly purchase feeds from local farmers and these feed types were mostly natural pasture and hay but commercial feeds were not available in the area. Farmers travel on average 9.7 km to purchase agricultural inputs from agricultural office of the district, this distance can contribute for low utilization of agricultural inputs including livestock feeds. Feed processers and retailers were not present in the district so that livestock producers could not easily get agro-industrial by products from market. Ninety nine percent of the sampled households observed that agro-industries except local flour milling are not totally found in their area.The major feed production constraints in the study district were shortage of grazing lands in which only 31.6% of the land was left for grazing, absence of feed processors and retailers, absence of technologies in improved feed production and utilization, poor feeding system, poor grazing systems, poor land management and absence of awareness in livestock feed production, transportation, storage and utilization.The concentration of most analyzed macro minerals and all micro minerals in the soil were above critical level of minerals for plant growth. Altitude had a significant effect on most macro minerals but it has non-significant effect on the concentration of micro minerals. Season had non-significance effect on mineral content of soil except for P and Cu in upper altitude. This indicates that altitude has more effect than season on the concentration of minerals in the soil.The concentrations of most macro minerals in the feed sample were below the requirement of dairy animals except for Ca in upper and mid altitude and S in all altitudes during both seasons.Season had a non-significant (P>0.05) effect on the level of most macro minerals except for P in upper altitude and Ca in mid altitude. The effect of altitude was significant for most macro minerals except for Mg and K. Micro mineral concentration in natural pasture samples were above the requirement of dairy animals except for Mn in lower altitude during the wet season.Altitude had a significant (P<0.05) effect on the concentration of Mn and Fe during both season and Cu during dry season. Generally, more attention should be given to macro minerals during ration formulation or when supplementing the animals since season and location affect macro mineral concentration than micro minerals. The livestock population of the district needs a total of 388,859.86. tons of dry matter feed per year for maintenance requirement alone but the current production can only support for 6.54 months therefore, alternative feed production technologies such as development of improved forages, efficient feed utilization technologies (eg. provision of chopper) and natural pasture land improvement measures should be undertaken. Since the production, productivity, transportation, storage and utilization efficiency of the available feed was low, further research and development works should be designed to increase the production, productivity, transportation, storage and utilization efficiency of feeds. The contribution of improved forage in livestock feed was very low due to unavailability of the feed in the area. To alleviate this problem, nursery sites should be established in potential kebeles of the district so that dissemination and utilization of these feeds will be practical. During dry season, most respondents use crop residues, hay and stubble grazing for their livestock feeding but the nutritive value of such feeds in most cases was low and its quality should be assessed in the future. In addition, crop residues accounted for 76.72%of the livestock feed share in the district therefore, efficient utilization of this feed should be designed. To alleviate feed marketing problems that were aggravated due to absence of feed processors and retailers, the local authority should organize interested farmers or landless youths to make an association that aims to supply feeds to local farmers. Credit service should also be facilitated in order to promote those individuals or groups involved in livestock feed marketing. To compensate the mineral deficiency of natural pasture, improved forages with better ","tokenCount":"18035"} \ No newline at end of file diff --git a/data/part_3/6655595674.json b/data/part_3/6655595674.json new file mode 100644 index 0000000000000000000000000000000000000000..ae06acb177494ed73b4886511590a30e7a3adeef --- /dev/null +++ b/data/part_3/6655595674.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"3b7b26e4a05e2421c1b3a9a38f685a33","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/bab01a21-8947-4d1a-ae7d-310b1d729a4e/retrieve","id":"-721311199"},"keywords":[],"sieverID":"470fcc18-85a8-4af9-9d29-27a0a8b52862","pagecount":"95","content":"Project reference n°: 4-7-41-152-3/d Samoa, December 2004The rate of exchange used is 1 euro = 3.4656 Samoan tala (published European Commission exchange rates for August 2004).The work carried out in this report assessed the agricultural information needs in Samoa as part of a wider assessment of needs in Africa, Caribbean and Pacific (ACP) states. The study is an initiative of the Technical Centre for Agricultural and Rural Cooperation (CTA) in an effort to improve the access to agricultural information, generation and management of agricultural information needs in these countries with the view of developing their own information and communication management strategies.Since CTA works mainly through intermediary organisations and partners to promote agriculture and rural development, the identification of appropriate partners is crucial for success. Identification of information needs of potential partners for CTA and their capacity building needs in information and communication management were also important objectives. Development of data for monitoring activities was also part of the study.The study uses three guides, namely, 'a data capture form\", an \"annexes form (s), and a \"report writing guide\".The data capture form contains the list of required information to be captured or obtained from institutions, targeted people and groups. The form is filled during the interviews carried out with appropriate institutions, people, groups involved in the agricultural and related fields e.g. data about institutions (passport data), linkages and collaboration (e.g. CTA and others), information management (e.g. problems, needs, type, etc.). The form was used to obtain information from 20 interviews carried out during the study. The interviews covered academic, research, extension, agricultural and quarantine institutions. A few nongovernment organisations (NGOs), private sector, women's groups as well as people from the development bank, chamber of commerce and industry, and telecommunications and Internet Service Providers (ISPs) were also interviewed. Interviews were also conducted with representatives of libraries and regional organisations.Information for the annexes was obtained from various publications and was used in the report as well. All the information obtained were organised following the format recommended to ensure uniformity of reports from the Pacific team.One main report on the assessment of agricultural information needs in Samoa, according to the table of contents set out in the Terms of Reference. Annexes are also to be produced according to the format set out in the Terms of Reference to form part of the report. In addition, it is expected that the results of this study will lead to identification/update of some priority agricultural information themes which will feed into a possible priority-setting exercise in the Pacific in 2004.The findings indicated that a few institutions know about CTA and its work in the information area. The extent of collaboration with CTA also differs between these v institutions. The Institute of Research, Extension and Training in Agriculture (IRETA) collaborates extensively with CTA, receiving many publications and is involved in seminars, co-seminars, training and seminar support programmes. IRETA has conducted joint seminars and workshops with CTA, all very successful. IRETA also collaborates extensively with other institutions besides CTA. Management of information is good but help is needed in the areas of organic farming, soil taxonomy, fisheries, food security and disaster preparedness. However, capacity building in computer operations for publications, video production and equipment maintenance is required.The University of the South Pacific (USP) School of Agriculture (SOA) is aware of CTA's work in the area of information but obtains publications indirectly from IRETA. It obtains information mostly from overseas organisations by purchasing books and other material recommended by staff and students. Information management is excellent since staff are well trained. However, it could benefit from closer collaboration with CTA. Comments from students state that in general information needs of students are not met adequately, since much needed agricultural information is not available. The cost of obtaining these may be a factor.The Ministry of Agriculture, Forests, Fisheries and Meteorology (MAFFM) does have links with CTA through seminars, training programmes and seminar support programmes mainly and indirectly through IRETA programmes. No publications from CTA have been available to MAFFM. However, MOA collaborates extensively with local and overseas organisations and has strong links with SOA. Information needs include organic farming, marketing information, post-harvest and value adding information. MAFFM also need capacity building in publications' production, videos, and radio and television programmes production. Capacity in information technology is also required.Non-government organisations (NGOs) generally do not know about CTA. Most receive information from IRETA, SOA, Food and Agriculture Organization (FAO), MAFFM and others. Needs range from organic farming, floriculture, vegetable production, food processing and agribusiness. The main problem is the lack of quality information.The private sector needs are more specific: information on organic farming techniques and certification of produce for export is needed by a growing number of organic farmers, including women. Other private sector organisations are interested in the production and processing of root crops (especially cassava) into flour and other products. Information on the production of coffee, cocoa, kava and commercial crops in general is required. The main problem besides lack of reliable information is the lack of finance to develop agribusiness enterprises. The development bank offers loans for selected farmers but a business plan (by farmers) may be required. The chamber of commerce and industry can also assist with agribusiness development.Communication in Samoa is expensive as few companies deal with communication. Internet is also expensive despite the growing number of computers in Samoa. Only those who can afford it reap the benefit of modern technology. The cost of accessing the Internet in Samoa is very high because of local telephone charges, not so much the cost of dial-up access to the Internet. The cost of 10 hours dial-up Internet per month (samoa.ws) is WST 19.50 (EUR 5.63).viFrom the results of this exercise, the following conclusions can be made:• CTA is known only to large institutions; it may be that the interviewee is not able to differentiate between CTA and IRETA, and if asked if they are aware of what IRETA is doing, the response will be positive. • The range of services and products from CTA is generally not known in Samoa • Where this is known, only a few institutions benefit through receipt of products and services • The extent of collaboration with CTA seem dependent on the similarity of work with CTA • Large institutions and organisations seem to benefit more from CTA than the smaller organisations • Private operators and exporters are not benefiting as much as they should from CTA, perhaps because they operate indirectly through larger institutions. • Women organisations have little links with CTA • IRETA and the SOA seem to benefit more from CTA, perhaps due to their size, capability and ability to forge links with organisations working in related areas.There is a great need for agricultural information in Samoa, especially in the smaller organisations, women's groups, private sector and grassroots levels. Agricultural and rural development depends on this unreached sector which forms about 77% of the population (Annex 2.2.1) and contributes significantly to the economy of the country. The necessary information from CTA for example seems only to be available to larger institutions and must be made available to the users for information to translate into development. IRETA is doing well in providing information for agricultural development in Samoa (and the Pacific). But it appears that there is room for improvement since the majority of institutions have significant information needs (and appear unaware of CTA). However, a shortage of manpower, infrastructure and lack of skilled staff, especially in the area of information is a constraint. This may be due to a lack of policy guidelines in the information area. The following is therefore recommended to address the problem of information availability and use.IRETA should be strengthened as a main partner of CTA in the Pacific in terms of capacity building and information acquisition, for example, by study visits (to CTA) to study information technology and information management, but the following need to be carried out to improve the flow and use of information:Staff shortage in pertinent information areas should be addressed in IRETA, and key institutions (listed), for example, trained computer literate publications' editors. This is perhaps an IRETA issue but CTA may provide advice and guidance:• Staff training in the areas of information technology and video production should be strengthened in IRETA and key institutions.A way of targeting the grassroots' operators should be sought, perhaps by IRETA collaborating with MAFFM and other appropriate institutions to target needed areas identified by target groups.• CTA to establish indirect links to other institutions as well in providing information relevant to them through partners (e.g., IRETA and key institutions) • CTA and partners to establish information network with relevant institutions in Samoa through partners. This can only happen through local stakeholder initiative andThe study is the initiative of CTA whose tasks are to develop and provide services that improve access to information for agriculture and rural development, and to strengthen the capacity of ACP countries to produce, acquire, exchange and utilize information in this area.In the case of Samoa, the agricultural and rural sector remain the backbone of the economy and also provide the livelihoods of the people, 77% of which is in the rural areas and practise mainly subsistence agriculture (Ministry of Finance Report, 2004). About 13% are commercial/semi-commercial farmers, and 10% are employed by Government and other organisations. The employed few (10%) provide the pertinent information, but lack the capacity to produce, acquire, exchange and ensure that the information is utilized by the agricultural and rural sector. The result is a stagnant agriculture and rural development. This is where CTA could assist since it is the centre of excellence in its programmes, Information Products and Services, Communication Channels and Services, and Information and Communication Management Skills and Systems. These programmes are supported by the Planning Corporate Services, charged with the methodological underpinning of CTA's work and monitoring the ACP environment in order to identify emerging issues and trends and make proposals for their translation into programmes and activities.Since CTA works mainly through intermediary organisations and partners (non-government organizations, farmers' organizations, regional organizations) to promote agriculture and rural development, it is seeking partners in the Pacific to address the chronic problem of information availability/non-availability and use by the agricultural and rural sector to move the countries out of stagnation and into real development. The identification of appropriate partners is therefore very important. It was also felt that the Pacific and Caribbean regions have not received sufficient attention in CTA's programmes and activities. In addition, various national and regional partners with whom CTA has had a long-standing relationship have requested the current study in order to promote more targeted assistance to their beneficiaries, hence this study for the Pacific and specifically for Samoa with well-defined objectives.• To identify agricultural information needs of key actors/beneficiaries for CTA products and services; • To identify needs of potential actors/beneficiaries of CTA activities and services in terms of building capacity for information and communication management, • To identify potential partners/beneficiaries for CTA activities and services, • To develop some baseline data to facilitate subsequent monitoring activities.The findings will help the three operational departments of CTA and its local representatives to improve and better target interventions and activities aimed at potential partners and beneficiaries (including women, youth, private sector and civil society organizations); to have a more informed picture of their needs and aid in the elaboration of a strategy and framework of action. The study should also highlight where there are specific needs for CTA products and services, thereby enabling improvement in the delivery of the same. The study should also help Samoa improve its information services capacity and skills so that pertinent information for agriculture and rural development reaches the target groups to ensure progressive development. The terms of reference for this study are in Annex 1.A combination of qualitative and quantitative rapid appraisal methods was used and included the following:• a desk review of available literature and information sources including the findings of programme evaluations; • the conduct of face-to-face interviews with relevant stakeholders and concerned parties;• the use of questionnaires.The section consists of a summary of the structure and economic characteristics of Samoa with emphasis on the agricultural sector which also include fisheries and forests.The agricultural sector is the backbone of the economy and livelihood of the people, together with fishing. About 80% of the population is in the agricultural sector which is also the biggest employer. Agriculture and fisheries provide the main exports of the country, together with forestry and are grouped together under one ministry, the Ministry of Agriculture, Forests, Fisheries and Meteorology (MAFFM). The Ministry is responsible for the sustained production of agriculture, forests and fisheries activities and to inform the public of climate and weather patterns affecting their activities, including the issuing of cyclone and strong wind warnings. This Ministry is the backbone of agriculture and rural development in Samoa.It carries out research on how best to produce crops and livestock for export and local consumption and makes the results available to producers so that maximum production and quality is maintained. The same applies to fisheries.The Minister, CEO and Assistant CEOs are mainly administrative, while the senior officers, officers and field officers are mainly operational. The Quarantine department ensures that no pests and diseases enter the country. Crops, research and propagation are responsible for the production of important crops and improvement in production and quality. The extension department ensures that the results of research reach the target groups (mostly farmers, women groups and youth). The forestry department ensures that the sustainable use of forest resources, the fisheries, fisheries resources, and the livestock department, the production of meat. The observatory is of course responsible for weather forecasts on which all activities depend.From a survey (Government of Samoa, 2000), 77% of households were classified as agriculturally active (Annex 2.1); 50% of these are males, the other 50% are females. About 80% of the agricultural population is adult male, 10% female and 10% youth, is engaged in agricultural production. Agriculture' The fisheries sector is smaller in size with about 50% of the population active in it, mainly men, since Samoa has a comparatively small exclusive economic fisheries zone. Other Government departments concerned with agriculture and rural development in Samoa are as follows:This Broadcasting Department is responsible for radio and television broadcasts to the nation of important news, advertisements and entertainment items. Education and cultural items, agricultural, environmental issues and concerns are also shared through proper media from this Department. Agricultural programmes on TV include interviews with successful farmers, demonstrations of production techniques of crops, and promotions of potential crops such as nonu and kava. Similar radio programmes are aired. These have contributed significantly to information availability and dissemination which has resulted in the adoption of improved agricultural practices and increased productivity and quality of crops for export and local consumption, thus generating much needed foreign exchange and rural development. The Department comprises a CEO, Assistant CEOs, senior officers, officers, field staff and clerks/typists.The Customs Department ensures that imported items are properly documented and taxed on arrival and vice versa for exported goods which include agricultural produce. The Department ensures that taxes on agricultural exports are reduced to encourage increased export and tax on imports are such that the country is able to protect its agricultural sector from competition.The Education Department is responsible for the education of the public of Samoa to ensure that it is of high standard and well resourced. There is a university, a polytechnic and many secondary schools, primary schools and kindergartens. There are also a few vocational centres. Agricultural training is offered at Samoa Polytechnic and secondary schools (the USP School of Agriculture is located in Samoa and is a centre of excellence in agricultural education, research and related activities). In Samoa, secondary schools teach agriculture to prepare students for higher studies at tertiary level. Whilst Samoa Polytechnic is more of an engineering/carpentry institution, it does offer a certificate in horticulture. Graduates normally establish agricultural businesses, for example, vegetable production and animal production, thus contributing to the economy and rural development in the country. Others may study for diploma and degree qualifications and work in the Agricultural Department also contributing to agricultural and rural development.The Health Department ensures that the population is healthy and that the environment is conducive to good health and hygiene. There is a central hospital and a few smaller health centres and clinics. There is also a nursing school and a few private practitioners. There is a nutrition section which has a vegetable garden where nutritious vegetables are grown and made available to the public. The Department grows a range of crops, mainly vegetables, both indigenous and introduced which have high nutritional value. The Department distributes these to the community along with instructions on growing them. It also gives out recipes using the vegetables. The Department thus contributes significantly to agriculture and rural development.This Department looks after the interest of landowners and matai (chiefly) titles which often go with land ownership, which includes agricultural land. It ensures that landowners are registered properly to avoid land disputes which often affect agricultural production. Farmers have been known to farm land successfully, only to find that others own the land and thus have to abandon the farm. This affects agricultural productivity and rural development.The Department is responsible for making sure that land and land boundaries are correctly surveyed and documented. It also ensures that the environment is conserved and clean, and Samoa has indeed a clean environment. Disputes over land boundaries have also affected agriculture and rural development, since successful agricultural projects have been established on adjacent land and have to be removed if owned by someone else. The Department also ensures that contamination of the environment with chemicals is minimised to ensure sustainability of agricultural production.The ministry deals with problems or issues affecting women and ways to improve women's lives and employment and other opportunities, taking into account gender balance. Women are contributing significantly to agriculture in Samoa, since many have established agricultural businesses assisted by this Ministry. Projects range from vegetable production, egg production, chicken farms, floriculture and so on. Many of these are very successful and have contributed to economy of the country as well as the standard of living.The Ministry is responsible for the welfare of the country's youth, the promotion of sports and the maintenance and promotion of culture in the country. The Government of Samoa gives priority to its youth. Youth are being encouraged to take up agriculture and the Ministry has provided support in terms of training and finance. Successful young farmers' clubs are now contributing significantly to agricultural production and rural development and thereby preventing rural-urban drift.This Department deals with trustees of land mainly. These lands include agricultural lands so that agricultural activities on these lands are recognised and safe to use. Some lands have absentee landlords and may have squatter settlements on them preventing agricultural development by the owner. It is the responsibility of this Department to help that this does not happen.The Statistics Department is responsible for all sorts of Government statistics, e.g. population, agricultural, export and other vital statistics. It is very important for agricultural development since it provides pertinent information to producers allowing them to make informed decisions and be more successful. Information on prices of agricultural produce help growers grow crops fetching higher prices in the market and so on. In Samoa, kava, vanilla, noni and coconuts are now encouraged and supported as valuable cropsResponsible for trade and commerce issues and development of industries in the country, including agricultural industries or businesses which provide agricultural goods for local consumption and export or trade. The Department provides information on markets, exports, imports and so on to traders and exporters. It also provides support and information on agricultural businesses favoured or required by Government so that balanced development is achieved.The Agricultural Store obtains and sells agricultural products to clients. It sells a range of agricultural merchandise essential for the development and operation of any agricultural enterprise to achieve high productivity. In Samoa, the Store sells seeds, agricultural tools, machinery, chemicals and many more, all very useful for agriculture and rural development.The main responsibility of the Development Bank of Samoa is to provide loans for development projects useful for the country. The Bank is a popular financing source for agricultural projects, both large and small. It makes loans available for a range of agricultural ventures, example, vegetable production, animal production and floriculture.The National Provident Fund ensures that members' savings are available to them at retirement and other times according to regulations. It also finances agricultural businesses by being a shareholder in joint ventures, for example, the coconut cream enterprise in Samoa is partly owned by NPF which provide finance and loans. Members can secure loans for any agricultural project from this source but agricultural land is popular.This is concerned mainly with education at tertiary level in Samoa. It provides a background in the sciences necessary for embarking on agricultural studies at USP School of Agriculture.Many students have proceeded to study agriculture at degree level thus contributing to agriculture and rural development in Samoa.Samoa Polytechnic serves the country's need for technical and middle level manpower. The Polytechnic offers a certificate in horticulture, and many graduates have established agricultural businesses. It also offers engineering programmes and graduates work in agricultural institutions as machinery operators. It is contributing significantly to agricultural and rural development in Samoa.The Corporation deals with the use and sale of government land and related property (e.g. butchery shop). It owns large plantations of coconuts, cattle, bananas and other crops, the produce from which are either exported or sold locally. Being large, it produces significant amounts and thus contributes significantly to agriculture and rural development in Samoa.Responsible for the television service as the medium for communication, entertainment and education. Televise Samoa broadcasts agricultural programmes two one-hour shows twice a week. Much agricultural information is disseminated this way on a range of topics (e.g. crop production, crop protection, animal production, demonstration of farming and composting techniques). The current interest in the country now is on noni, kava, vanilla and coconuts. These broadcasts have resulted in the dissemination of agricultural information and adoption of techniques, which has improved agriculture in Samoa.The following sections examine institutions working with the agricultural information and communication sector in Samoa. These are described and discussed with respect to their information and communication management (ICM) capacity.The The main problems relate to inadequate and outdated computing equipment which need replacement. There is a need to purchase a CD-ROM server; at present the section uses single CD drives. The section is connected to the Internet and anticipates accessing the main USP campus library in Fiji as well as the rest of the USP region.The ARDIN Centre is part of IRETA and under the supervision of the Director of IRETA who has over 10 years experience as the Director and over 20 years in information management and in organising agricultural workshops and meetings at both local and international levels. The Director has a masters' degree in agricultural extension/education. There are two other staff assisting the Director in the organisation of workshops and meetings, both with diploma qualifications. IRETA is a very efficient organisation, well staffed and resourced to carry out work in the area of agriculture and related areas including information management. It has carried out many very successful projects with many institutions both local and international including CTA.The objective/mission statement of the information and extension arm of MAFFM is to \"establish a strong, growing and sustainable primary production sector leading to higher standards of living and better health for the Samoan people in a dynamic faa Samoa\". Dissemination of agricultural information forms part of their tasks, which involves going out to villages to advise, train and disseminate information and technologies, in order to improve agricultural production for export and local consumption.There Information on pest and diseases and identification is from the Commonwealth Scientific and Industrial Research Organisation (CSIRO) in Australia. Information on organic farming and integrated pest management (IPM) is needed badly. Information management capacity is weak since there is no IT specialist. The Quarantine Section ensures that pests and diseases are prevented from entering the country through strict quarantine measures and Livestock Section ensures that research is targeted at livestock important to the country. For example, sheep have recently been introduced.The School of Agriculture (SOA) Library provides information on mainly agricultural subjects for staff, students and, to a lesser extent, the public. The staff consists of a librarian, an assistant librarian and two helpers (shelving, etc). The librarian holds a degree and the assistant librarian a diploma and others, certificates. The annual budget is WST 500,000 (144,275 euro), for operations only. The equipment consists of three computers (for students use) and three for staff, a photocopier and several printers. The library information sources range from those from interlibrary loans (very expensive) to a large range of publications, journals, periodicals, newsletters etc. Most materials are those recommended by staff, students, readers and the library committee. The library receives CTA publications indirectly through IRETA. It has good access to the Internet. The ARDIN Centre described earlier is housed in the Library.The Nelson Memorial Public Library, the de facto national library, provides a wide range of information compared with the SOA Library. It has a similar setup to the SOA library but a larger budget and better equipment. It does not receive CTA publications directly. It has good access to Internet. The target audience is diverse and includes students and the public. It has a principal librarian with a diploma in librarianship, and nine other staff, only two of whom are currently pursuing library courses; the other staff have no qualifications in librarianship. The Library is well-patronised but has limited funds.The FAO Sub-Regional Office for the Pacific (FAO-SAPA) serves the Pacific region mainly in the area of agriculture and food, offering a range of services which include information dissemination and management. It is a regional organisation or network which is also global. Its role includes information services, policy and planning, research and development and trade and marketing (including development). FAO's objective is to alleviate poverty and hunger around the world by promoting agricultural development, improved nutrition as well as the pursuit of food security. There are 28 staff members. Qualifications range from PhD to Bachelors degrees in the areas of agriculture, forestry, fisheries and marine sciences. The resources available include a budget of about WST 5 million (1.4 million euro), a well equipped library and about 20 computers and state-of-the-art scientific equipment. Main source of funding is FAO, Rome. Projects undertaken include fisheries, forestry, plant protection, farming systems, marketing and nutrition. Target audience include farmers, fishermen, government departments, agricultural sectors, students, NGOs and the private sector. Staff members have attended CTA seminars including the sub-regional representative in Samoa. FAO collaborates with IRETA, SOA, ministries of agriculture, and the regional organisations and global organisations.The FAO library provides mainly agricultural information but the material is mostly from overseas (e.g. Africa, India, Europe) which is not of direct relevance to the South Pacific. It also has limited access to material from the South Pacific. FAO is an international organisation and has access to Internet and more. The target is mainly government and related institutions. It has a librarian who has no formal librarian training, a budget of WST 150,000 (43,283 euro) and the latest equipment and technology. The librarian worked previously as IRETA information assistant.L. Keil Holdings belongs to a private businessman. Staff number about 10. The company produces noni juice under the brand name Samoa Nonu. The company is interested to work with women's organisations to produce organically-grown nonu (noni) and juice since these fetch higher prices. However growing and exporting organic produce needs control and certification, which is a major constraint. The company produces 50,000 tonnes of noni juice each month. The volume of production depends on the fruit collected from growers. The company hopes to develop its own plantation. Staff qualifications range from diploma to secondary level. Resources include a new factory and equipment for extraction of noni juice and containers for bottling the product. The company buys fruit from contracted farmers but other farmers also sell fruit to the company. The company offers competitive prices to growers to retain customers since there are other companies operating also; the fruit is received any time of the day and cash is given straight away depending on weight. Customers include women and children. The company use local information on noni juice extraction and modify this to suit commercial standards. Information is also obtained through research and the Internet.Samoa Natural Foods International Ltd was started 50 years ago as an agro-based manufacturing company. The company started with breadfruit chips, also taro, banana and cassava chips. In the 1990s, a spate of cyclones reduced raw materials for snacks, however the business has since recovered and now produces 5 tonnes of manufactured foods a week. Their products are popular in Samoa and are also exported to New Zealand and Australia. The company is looking at high quality packaging for the exported products. The capacity is such that it will produce cereals, juice-based ice pops, and convert or process some crops into powder and flour. The company has about 15 staff and a budget of over one million tala (288,550 euro). Qualifications of staff range from degrees to certificates. Equipment includes factories and related machines and modern technology. The capacity is good enough to produce quality produce. Target groups include farmers, women and the unemployed who are contracted to grow crops which are sold to the company any time of the day. They are expected to produce certain quantities to keep the company in business. The company buys produce as well as produce its own. Information related to its operations come from own research, collaborative research with institutions and through the internet. IRETA also provides information to this company.The Taro Breeders Club (TBC) consists of about 20 taro growers, 15 students and five USP staff members. TBC was started five years ago to encourage the distribution of taro planting material resistant to taro leaf blight (TLB), in order to revive taro production in Samoa. They are also involved in the breeding programme of SOA/SPC/MAFFM to improve the resistance of taro to TLB. The staff and students of SOA carry out most of the breeding work, while the taro growers provide land to evaluate the material on their farms. This way, the best varieties suited to the different sites/locations are released to the growers. To date, about 10 varieties have been evaluated and released for commercial production in Samoa, and taro production is recovering fast. Exports have recommenced to NZ, Australia and elsewhere, and taro is again plentiful in the market. This is a success story.The Club uses SOA/SPC/MAFF facilities: adequate land for research on station and adequate land for on farm evaluation, provided by farmers. The Club also has access to laboratory facilities of SOA and tissue culture material of taro kept at the SOA if they need it. Other facilities include greenhouses, a quarantine area and some research equipment. Expertise on taro production is also available to the Club.The current source of agricultural information and services for IRETA include the following:• CTA. Most information from CTA is available to IRETA on request. These include agricultural and related publications, question and answer information, seminar and other proceedings and so on. • SOA. Provides research information, and provide manpower to conduct workshops, meetings, consultancy etc which generate targetted information. Information is published internationally and locally. • ALO Network. The Agricultural Liaison Officers (ALOs) provide IRETA with agricultural and related information from 12 member countries of the USP region. Most information is published in the IRETA newsletter with a local and overseas circulation.• In-house information. This is information generated from IRETA's own work such as workshops, meetings, training, consultancies, study visits etc. Information is also generated in work with partners, e.g. CTA, FAO, SPC. • FAO. A range of publications from FAO are available to IRETA. Some of these are general information on FAO work, work on biodiversity, conservation farming etc. • SPC. IRETA also receives information (publications etc.) from SPC. These include newsletters, agricultural manuals, workshop proceedings etc. • Libraries. IRETA obtains information from libraries(interlibrary loans etc) with libraries in NZ, Hawaii, Australia, Hong Kong and so on, and local libraries such as NUS (National University of Samoa), Nelson Memorial Public Library, FAO library and so on. • Agricultural Development in the American Pacific programme (ADAP). IRETA also receives material from ADAP. • APSA (Asia Pacific Seed Association). Information on seed and seed technology is obtained from APSA and used to supply information to users.SOA obtains information for its students, staff and other users through various sources. These are as follows:• CTA. SOA accesses CTA material through IRETA. The most common material is the Spore newsletter which contains useful information. • Publishing companies. Textbooks for students and reference materials are ordered from a variety of publishing companies in England, United States, Netherlands, Australia, NZ, and so on. • SPC. Much information is also received from SPC, mainly on plant protection and genetic conservation. • FAO. SOA also obtains information from the FAO Sub-regional Office in Samoa, though much is not directly relevant to the South Pacific.The Extension and Information Section of MAFFM obtains information from the following sources:• Own research. The section conducts its own research to find out the needs of farmers and other clients through workshops, PRA exercises, seminars, meetings etc. It also depends on the research outputs of other sections of MAFFM, e.g. Crops, Quarantine, Livestock, Research. These generate mainly technical material on how to produce crops/animals, improve them and so on. • USP/SOA research. This research generates mainly technical information published in scientific journals, newsletters, AgroFacts and those recorded on videos. A range of topics is covered from crop production, animal production, soil science and fertility, agricultural engineering, plant protection, plant breeding, tissue culture and much more. Taro breeding information is also obtained from the SOA research.• Internet. Much useful information is obtained from the Internet also with ease. • IRETA. IRETA produces a lot of information through workshops and meetings which are published and made available to users, especially those from the South Pacific including MAFFM in Samoa. Useful videos on crop production, livestock production and other agricultural topics are also available to MAFFM. • Secretariat of the Pacific Regional Environment Programme (SPREP). MAFFM also obtain useful information from SPREP, e.g. climate change and agriculture, global warming and rising sea levels and environment conservation. Some useful information on the role of livestock production on global warming was generated through collaborative research with the SOA. • FAO. Information on a range of agricultural areas (e.g. biodiversity, conservation agriculture) are also available from FAO. Financial assistance to generate information is also available. provides information on the identification of pests and diseases. • FAO Library. MAFFM has access to agricultural information from FAO. However, information is obtained from all over the world and is generally not very relevant to the South Pacific or Samoa.FAO-SAPA obtains information from the following sources:• Results of own research and database.• Other United Nations agencies.• Ministry of Agriculture, Forests, Fisheries and Meteorology.• USP School of Agriculture.• FAO in Rome (David Lubin Library).• Regional organisations.• Global organisations.• Internet.The company obtains information from the following sources:• Japan (importer) on standards and quality.• Own research on processing, etc.• IRETA (publications and workshops).• SOA (publications, research, etc.).• MAFFM (research, publications, visits).• Internet.• Other non-CTA sources.The company obtains information from the following sources:• Ministry of Agriculture, Forests, Fisheries and MeteorologyThe club obtains information from the following sources mainly:• FAO publications • Direct information from SOA staff, MAFFM, FAO and SPC.This section draws on the findings presented in section 2, 3.1 and 3.2 and leads to conclusions and recommendations. There are two aspects and those are needs in terms of information and capacity building. These are discussed separately below.The following needs were articulated during discussions and interactions with selected institutions. Some were obtained from publications from institutions or individuals.• Information on cultivar evaluations of staple crops (taro, cassava, taamu, breadfruit, yams), fruit crops (papaya, citrus, rambutan, pineapple, mangosteen, avocado, noni), tree crops (cocoa, coconut, coffee), nuts (cashew, lama, galip), vegetables (leafy greens, cucurbits, eggplants, peppers, tomatoes), field crops (peanuts, mungbean), alternative cash crops (spices, vanilla, chilli, pepper, essential oils, honeybees, medicinal plants) is expressed needs. Information on new crops/varieties, cultivar improvement will be very useful. • Information on agronomic improvement of the crops mentioned above will also be useful and needed. Important aspects are propagation, establishment, weeding, pruning , shade, cultivation, crop loading• Information on crop nutrition of the crops mentioned is also a need. The useful areas are suitable soils, fertiliser requirements, fertiliser types, organic fertilisers, mulches. • Information on farming systems is also needed to correctly produce crops/livestock.Useful areas are organic farming, village level systems, agroforestry, intercropping etc. Comprehensive information on organic farming is a must since organic farming is on the increase. • Information on traditional agricultural technologies is a must for the South Pacific including Samoa. There is a wealth of traditional agricultural technologies in the South Pacific, including Samoa, which are still used but may disappear if not documented, e.g. taro planting stick, coconut scraper etc. These need to be documented so that the information on how to use and make them is available to potential users, who may wish to improve them. These technologies also cover fisheries, livestock and of course agriculture and related areas, e.g. food processing. • Noni and other medicinal plants are becoming important in Samoa and information on their production methods are needed by many people. Information on these are generally not available, and need to be collected and documented. • Vegetable backyard gardening is now part of many households in Samoa. They are now part of the modern lifestyle of women in both urban and rural areas. The planting and management of a vegetable garden is for household consumption and to supplement income. These are normally mixed cropping of vegetable types. Information on complementary combinations, production and management methods are needed. • Information on reforestation is badly needed, e.g. best varieties, practices, management.Information on pests and disease management is also an expressed need. Pests and diseases are a major problem in Samoa. Important areas are chemical, physical, biological, integrated pest management, pest surveillance). Specific diseases include corm rot, taro leaf blight, bacterial wilt, etc. Pests include giant African snails, diamondback moth, mealy bugs etc. Control measures which reduce the use of pesticides are needed in Samoa. Taro leaf blight work is crucial for the recovery of the economy of Samoa. The work needs to focus on improving quality and taste. Information on breeding techniques along with genetic engineering is needed.Harvest and postharvest management information is also an expressed need. This is to ensure good quality of export crops. The useful areas are harvesting, drying, quality management, storage, transport.• Information on processing, adding value, is also an important need. This is to improve the value of exports. Needed areas are quality standards, sorting/grading, processing, value added product development, use of by-products. • Information on market facilitation is also a need. There is a lack of knowledge of markets which affected export. Areas needed are, market information and requirements, market access and pathways, linkages with exporters, procurement and so on. • Information on economic evaluation is also an expressed need. This is needed to make informed decisions. Areas needed are, gross margins, financial impact, benefit cost analysis etc.• Resource management information is also an important need. The useful areas are, soil and water management, invasive species management, watershed management and environmental conservation, reforestation. • Disaster preparedness information is high priority in Samoa since it is frequented by cyclones and strong winds. Information on how to prepare for natural disasters such as cyclones, earthquakes, landslides is needed in Samoa. Information on suitable crops during times of disasters is required. Compilation of information on indigenous crops used during natural disasters is needed so that these can be preserved and grown. • Information on individual island nations/countries of the South Pacific in agriculture and environment is also needed.• Food security information is perhaps high priority in terms of need. Food insecurity is now a problem in the South Pacific, due mainly to the growing population and lack of opportunities in employment. Information on ways of improving food security is crucial for Samoa. Much food wastage occur during fruiting seasons of breadfruit, mangoes and so on. • Information on governance and rural development is also needed in Samoa so that channels of communication between the government (extension officers) are followed to facilitate rural development. Information on this, needs to be collected and documented. • Gender issues information is badly needed, especially on projects that can be carried out by women. Some examples are information on vegetable production, floriculture, organic farming, small-scale food processing and preservation.• Information on agricultural research results are very much in demand. For a variety of reasons these are not readily available to extension officers. The information should be presented in language understood by the users. Areas identified are organic farming, marketing, postharvest and value adding. Information on simple food processing techniques are also in demand, especially by women groups. • Information on soil fertility management and quality is also needed. Soil studies in Samoa were undertaken about 40 years ago and need updating. Information on soil taxonomy and development is required as well as land use studies, so that crops/livestock can be raised in the correct places. • Information on crop production, protection, and tissue culture is also needed. There is a need to compile information on organic farming from South Pacific countries since there is a wealth of knowledge in this area. Information on certification of organic produce is also required. In the plant protection area, there is also a need to compile information on indigenous knowledge in plant protection. Recent information on tissue culture techniques is also needed since the duplicate tissue culture germplasm of taro for the South Pacific is in Samoa (USP/SOA). • Livestock production information is also needed, especially in the bigger islands. Needs include feed formulated from local resources for chicken and pigs and to a lesser extent, ruminants, e.g. cattle, sheep, goats. Information on improved pastures (e.g. mixtures of legumes and grasses, browse) is also an expressed need. Livestock is not as important as crops since land area in Samoa is relatively small. • Fisheries information in Samoa is scant and much needed. There is a general lack of information on all aspects of fisheries in the South Pacific including Samoa. Information on shellfish, pearls, seaweed, freshwater fish production and aquaculture are needed. Information on managing fisheries resources is badly needed since resources are limited.In relation to capacity building, the following needs were identified during interviews.Much agricultural information needs to be published to reach the users. However, for this to happen, there is a need for training but the greatest need is for increased awareness of the need to manage an institution's information resources. In other words, development of an appropriate policy for information and communication management, and an implementable strategy is also needed in the following areas:• computer operations for publications, computer applications such as PageMaker and their installation and operation There is a need to train and upgrade the skills of the present ALO for Samoa in the management of agricultural information and communication activities. The training can be in the form of a study visit or attendance at a CTA-organised workshop aimed at capacity building. MAFFM is beginning to support information management but needs to build capacity in this area. The ALO also provides information for the region, not only Samoa. However, others think the time has come when the ALO ntework needs to be cancelled, or radically overhauled. Both Kern (1996) and Sisifa (2000) questioned the efficiency of the ALO network. Every year, CTA funds a workshop for ALOs and if the ALOs were going to make a difference, it should have been discernible by now.There is also lack of information resources such as locally produced information on indigenous agricultural technologies, mixed cropping and agroforestry, reforestation, honey production, food processing and value adding etc. An assessment of information resources in libraries and information centres should be undertaken. Problems include outdated journals, security problems and according to students interviewed, 'most information needs are not met, most articles are not in the library, on shelves or in reference collections'. These is mostly information regarding agriculture in general needed for assignments and research write-ups. Librarians need to be trained in the procedures of interlibrary loans or other methods of acquiring information since interlibrary loans fees are too high for students. Witht he exception of SOA Library, there are no trained, qualified librarians. The continuing reliance on unqualified staff leads to undesirable outcomes. If there was a policy for information management, it would surely state that qualified staff are needed.Lack of clear policies and guidelines (strategies) on how to carry out communication activities is also a problem. A number of methods have been developed and used. There is a need to use the traditional methods with a few changes to improve its effectiveness. An understanding of governance and rural development will be useful.Training on the use of standard and advanced equipment for information and communication management is essential, e.g. printing/binding machines, computers, and video machines and so on.An inventory of equipment/facilities used by institutions concerned with information dissemination and management need to be undertaken to identify areas of need. The deficiencies can then be prioritised and rectified.In libraries, training to improve security is required since many books, published material and so on, go missing every year. Training in library work, procedures and ethics should also be undertaken to improve services and how to improve information security will be useful. However reliable sources stated that library workshops have been held in Samoa in 1991, 1993, 1996 and later. Perhaps the focus should be on security and ethics and other important values.This is a real need for all the institutions to engage in partnerships, best expressed by the FAO-SAPA librarian who said 'CTA contact is not available; if available, it would be good contact in future for training and especially information resources'.The conclusions will be made first, followed by recommendations. The conclusions cover the two main areas of interest: the current information needs, and the needs in terms of capacity building across institutions in general or specifically.The study identified the current information needs from interviews with institutions and individuals and from relevant publications. The conclusions are made from the information gathered and are presented in order of priority.Food security is the top priority for Samoa as expressed by the Minister of Agriculture himself in an interview in USP Beat. There is food insecurity in Samoa due to many factors, most important of which are limited employment opportunities, land tenure and ownership, population increase, natural disasters and poor agricultural production methods and extension techniques, i.e. information acquisition, dissemination and management is poor. Wastage of food during times of plenty (e.g. fruiting seasons) is a contributing factor to food insecurity.There is stagnation in agriculture and in the volume of exports to overseas markets. This again is due to a number of reasons but of prime importance is that quality standards of importing countries are not met adequately. Contamination in consignments of breadfruit and other fruits have resulted in stoppage of exports in the past. Fruit flies and rot are major problems. Natural disasters such as cyclones and taro leaf blight disease devastated the taro industry as well as exports of other commodities. Poor market information and fluctuating prices also contribute to stagnation.Production and protection:• Poor crop/animal production techniques are still used. As a result, crop yields are generally lower than countries with similar climatic and edaphic conditions (e.g. coconuts). This situation is again due to many factors, viz, poor variety/breed evaluation techniques, poor agronomic research methods and procedures and underdeveloped plant breeding techniques/policies. There are no clear policies and guidelines on research. Lack of knowledge on crop nutrition/ animal nutrition and soils fertility and nutrient management/applications. Economic evaluation is also lacking. Use of local feeds is generally poor and imported feed is mainly used. • Poor harvest/post-harvest handling and management is generally evident. Lack of knowledge on good harvesting techniques and post harvest handling contribute to crop yield loss and generally poor quality produce. This affects yields and quality in local markets and more importantly, in export markets. • Organic farming is increasingly becoming important in Samoa, contributing significantly to the economy. However, information on production techniques and certification procedures are underdeveloped. • Fisheries development is slow due to a number of reasons such as lack of information and expertise and poor extension of technology. • Poor linkage between researcher and extension personnel and thus extension of research results to users is a problem in Samoa.Marketing and resource management:• Most export commodities are unprocessed, bulky raw materials (e.g. kava) and have low economic value. This is due mainly to lack of facilities for further processing of the produce to increase its value. Lack of expertise is also a contributing factor. • Market intelligence is weak and the search for markets is not high priority. Generally, producers are left to look for markets for their produce. Inadequate produce to fulfil contract quotas contribute to market loss. • Resource management (e.g. soils, watersheds) is generally poor in Samoa. This has resulted in some pollution of watershed areas and the environment. • Poor disaster preparedness is also a problem area in Samoa. The dependence on noncyclone crops is a contributing factor and lack of knowledge on cyclone crops is also an important factor.Governance and rural development:• Good governance and appropriate rural development will foster peace and good economic growth. Confusion in procedures of culture based governance and democracy must be cleared, i.e. policy guidelines are necessary. • Self reliance is not strong in Samoa and projects which attempt to meet most, if not, all the needs of families in rural areas are rare.The following conclusions are made with regards to capacity building for Samoa.• There is very limited skilled personnel in the area of information management, agricultural extension. This is mainly due to lack of scholarships (funds) for training in these important areas, due to lack of priority to have people skilled in these two areas. Scholarships are available but are disbursed based on priority. • There is generally a dearth of equipment in institutions dealing with information acquisition/management, e.g. in libraries. • There is also a general lack of agricultural information in institutions in Samoa, especially on traditional agriculture, fisheries and related technology. This is because it needs funding to collect and compile the information. However, if there are staff willing to collect and document information, and if they have been shown how to do this and technical support is provided whilst they do this, then it does not take a lot of funding. But it does require commitment from the managers and the operators. • In general, library personnel are not well trained and lack the qualifications and experience needed to efficiently run the libraries. • Problems of the security of information is serious in all libraries and there is a need to address this problem. In the SOA library, security guards ensure books and published material are not lost. • There is a lack of trained technicians who can fix equipment when broken and much equipment is lost this way. • In fisheries, there is a general lack of skilled personnel in information and extension areas.• There is a general lack of guidelines in relation to training in the information management area.The following recommendations are proposed for possible action of CTA in assisting Samoa in the improvement of access to information needed for its development. Where appropriate, reference is made to CTA's programmes, products and services, grouped under broad headings.IRETA as main partner (for CTA's Planning Division): That IRETA, under a memorandum of understanding, becomes a Pacific partner with CTA with IRETA being the extension arm of CTA responsible for the following: However, there is a limit to how much partnering IRETA and CTA can accomplish. As The CTA regional branch office, IRETA is well placed to benefit from and provide access to CTA products and services. As the main partner, IRETA can then reach out to other partners, similar to post office operations.forming formal links with the 'agricultural sectors' in Samoa by way of a memorandum of understanding (MOU) with the sectors which may include FAO and appropriate regional organizations; that the ' agricultural sectors' in Samoa, including the ALO network make known, their information needs to IRETA on a regular basis (monthly) by way of requests; that IRETA contacts CTA to submit the requests; that CTA sends to IRETA the requested material; that IRETA delivers the material requested to the recipient; that the recipient acknowledges the receipt of the material; that IRETA contact CTA to notify the receipt of the material, and submit further requests.Information Management Committee That an 'information management' committee be set up for Samoa to advise CTA, through IRETA, of its information and capacity building needs, or contact CTA directly since a viable committee should have direct access to resources from CTA, but will need to prove they are needed.That CTA, IRETA and partners (USP, MAFFM, FAO, etc) provide information on food security in general, the causes of food insecurity and ways of achieving food security. CTA and partners may help by providing pertinent information and sponsorship for workshops on food security and related areas, e.g. food processing/technology. A workshop on food processing/technology of root and tuber crops will be useful.That CTA, IRETA and partners be requested to provide the MAFFM and private sector, relevant information to improve agricultural productivity and export. Some of these are, information on requirements of importing countries, particularly trade partners of Samoa, especially New Zealand and Australia.That CTA and partners is requested to provide up-to-date information on crop/animal production techniques and resource management used in countries similar to Samoa and make these available to the MAFFM and IRETA Information on soil fertility management will be useful. Assistance with workshops/training on soil fertility and crop production will be useful.In addition, information on use of locally produced or available feeds for livestock will be useful.Post-harvest handling That CTA and partners be requested to provide information to MAFFM and IRETA on all aspects of good post-harvest handling to produce high quality crops for export, and to women and youth groups as well.That CTA and partners is requested to make information available to the MAFFM and IRETA on value adding techniques, especially on export crops (e.g. fruits, nuts, spices).That CTA and partners assist in providing information on potential markets and their requirements and how to tap them.That CTA and partners is requested to provide information on all aspects of organic farming and in particular, the techniques and 'certification systems' for organic produce.That CTA and partners be requested to assist Samoa in providing information on managing fragile and limited resources, e.g. soil, crops, animals, forests, watersheds, fish resources. This is high priority.That CTA and partners be requested to provide information on various models or types of extension methods which foster good linkage between researcher, extensionist and users, which can be used by agriculturalists, fisheries officers and foresters to efficiently extend information and technologies. In addition, a training workshop be carried out using these methods for fitness to purpose.That CTA and partners provide information on the successful application of good governance on rural development and follow up with an appropriate workshop/training. The concept of self reliance should be an integral part of rural development.It is strongly recommended that CTA, in collaboration with IRETA, MAFFM, SPC and SOA, and regional organisations fund a regional workshop on the assessment of agricultural needs and policy issues in the Pacific islands as a basis for effective management of information and a guide for future activities in this important area.That IRETA liaise with information sectors in Samoa (including itself) to identify areas where there is a deficiency of skilled workers and inform CTA of its findings so that CTA and partners can suggest training activities to address the problems. Areas already identified are listed under capacity building, under targeted training, in the needs analysis section.Workshops or study visits are recommended to build capacity in areas identified. A workshop on information production, dissemination and management is recommended, funded jointly by partners.That CTA and partners be requested to help in the assessment of information equipment needs and provide information on equipment types, prices, sources and ordering/purchasing procedures.That CTA along with IRETA and partners conduct a training/workshop for librarians targeted at addressing the lack of agricultural information, assessment of information resources for need and relevance, security problems and solutions, interlibrary loans and work ethics.That CTA along with partners and interested regional organisations, conduct a regional workshop/meeting to identify capacity building needs of Pacific islands as a basis for more effective management. CTA's tasks are to develop and provide services that improve access to information for agricultural and rural development, and to strengthen the capacity of ACP countries to produce, acquire, exchange and utilise information in this area. CTA's programmes are organised around three principal activities: providing an increasing range and quantity of information products and services and enhancing awareness of relevant information sources; supporting the integrated use of appropriate communication channels and intensifying contacts and information exchange (particularly intra-ACP); and developing ACP capacity to generate and manage agricultural information and to formulate information and communication management (ICM) strategies, including those relevant to science and technology. These activities take account of methodological developments in cross-cutting issues (gender, youth, information & communication technologies -ICTs, and social capital), findings from impact assessments and evaluations of ongoing programmes as well as priority information themes for ACP agriculture 1 .In These operational departments are supported by Planning Corporate Services (P&CS) which is charged with the methodological underpinning of their work and monitoring the ACP environment in order to identify emerging issues and trends and make proposals for their translation into programmes and activities. This current exercise, therefore, falls within the mandate of P&CS.CTA works primarily through intermediary organisations and partners (non-governmental organisations, farmers' organisations, regional organisations, …) to promote agriculture and rural development. Through partnerships, CTA hopes to increase the number of ACP organisations capable of generating and managing information and developing their own information and communication management strategies. The identification of appropriate partners is therefore of primordial importance.The \"Evaluation of the Implementation of the Mid-Term Plan (1997 -2000)\" emphasised the need for CTA to develop a more pro-active approach and elaborate criteria for decision-making with regard to the choice of partner organisations and beneficiaries. Based on this evaluation, the \"Strategic Plan and Framework for Action -2001 -2005\" identifies strategic issues for CTA being: improved targeting (including partnerships and beneficiaries), geographical coverage, decentralisation, regionalisation and thematic orientation. The Plan also expresses concern about: the extent to which CTA's activities are relevant to and reach the poor, gender awareness and how to identify potential partners especially in the independent sectors.Besides partner identification and selection issues, the observation has also been made that, traditionally, the Pacific and Caribbean regions have not received sufficient attention in CTA's programme and activities. This is, for example, highlighted in the statistics on the number of individuals and organisations which receiving CTA publications or participating in workshops and training courses. Furthermore, the admission of 6 new Pacific member states under the Cotonou Agreement means not much known about them, hence the need to develop CTA intervention strategy and provide more targeted assistance.Finally, various national and regional partners with whom CTA has had a long-standing relationship have requested the current study in order to provide more targeted assistance to their beneficiaries.The objectives of the study are as follows:to identify agricultural information needs of key actors / beneficiaries for CTA products and services; to identify needs of potential actors / beneficiaries of CTA activities and services in terms of building capacity for information and communication management; to identify potential partners / beneficiaries for CTA activities and services; to develop some baseline data to facilitate subsequent monitoring activities.The study should assist the three operational departments of the CTA as well as its local representatives to improve and better target interventions and activities aimed at potential partners and beneficiaries (including women, youth, private sector and civil society organisations); to have a more informed picture of their needs and aid in the elaboration of a strategy and framework of action. The study should also highlight where there are specific needs for CTA's products and services thereby enabling improvement in the delivery of the same.The consultant will use a combination of qualitative and quantitative rapid appraisal methods including: the desk review of available literature and information sources including the findings of programme evaluations; the conduct of face-to-face interviews with relevant stakeholders / concerned parties; the limited use of questionnaires.The rapid appraisal approach will allow a general overview of the key issues and company / organisational profiles on a per country 2 basis and may give rise to more in-depth studies as and when needed in the future. List of all institutions involved in agriculture and rural development activities, including private sector and civil society organisations, with name, contact details, type and role of institution Select list of key institutions involved in agriculture and rural development, with extensive data and information on the institution, the problems faced and why it is considered a key actor It is also expected that the results of this study will lead to identification / update of some priority agricultural information themes which will feed into a possible priority-setting exercise in the Pacific in 2004.The country reports will not exceed 20 pages (excluding annexes). The annexes should include a list of acronyms, of persons/institutions interviewed with addresses, phone, fax numbers, e-mail addresses (if any) as well as bibliography.Draft final report is to be submitted within two months after contract signature by CTA Final report due two weeks after receipt of comments from CTA.The overall coordination will be carried out by Ms Christine Webster, Deputy Head, Planning and Corporate Services CTA, assisted by Mrs Lola Visser-Mabogunje, Project Assistant.Mr. Peter Walton will ensure the regional coordination and lead a team of local consultants to be identified per country In consultation with the Regional Coordinator, draft questionnaires Provide relevant background documents to the Team Draft budget and discuss contractual obligations with the Team Overall responsibility for the supervision and implementation of the studies Appoint the Regional Coordinator and the ACP Local Consultants Bear the agreed costs of expenditure in respect of the evaluation (economy class tickets for approved visits to CTA's Headquarters, hotel accommodation and subsistence allowances during briefing meeting, or during agreed and specified field visits) In conjunction with the Regional Coordinator, prepare the overall report taking into account the findings and recommendations of all the Pacific country reports ( Samoa is a member to a number of regional and international trade agreements. These include: SPARTECA South Pacific Regional Trade and Economic Corporation Agreement, provides access to New Zealand and Australian markets at reduced duty.The provisions for market under LOME IV still apply for a transitional period of up to 2008. This agreement permits products 'originating' in the ACP states to be exported to the EU free of customs duty and other similar charges. Pacific Agreement on Closer Economic Relations provides a framework for strengthening trade and economic cooperation among all Forum members at an appropriate 'pace', reflecting the differing developments status of the Members.Samoa is currently an observer in the World Trade Organisation and is in the process of accession in to the organisation. These agreements all have conditions attached by the donor countries and reference should be directed to the Department of Trade, Commerce and Industry for current details.Source: Fairbairn, T (1994). The Western Samoa Economy, Paving the Way for Sustainable Growth and Stability. National Capital Printing, Canberra.The following policies related to agriculture, fisheries and forests are being pursued by the government of Samoa (Fairbair, 1993).Government priority must be to develop Samoa's growth potential and ensure sustainable growth (Western Samoa, Government of 1992).A vigorous effort to promote high-value, non-traditional export products is to be pursued.A key \"policy\" is to raise the level of productivity in the large traditional small-holder sector.Industrialisation must be pursued with caution to avoid the establishment of high-cost non-competitive industries.Sectoral policy must, at all times, embrace the environmental aspects of development to ensure that natural resources are used in a sustainable manner.Forestry policy is now aimed at fostering resource regeneration, pursuing sustainable yield practices, and establishing a forestry sector that can once again provide significant yield practices, and establishing a forestry sector that once again provide significant value added from timber and other by-products.Current development policies focus on the need to revive this sector and to reduce the present heavy dependence on imported products.Source: Fairbairn, T (1994 The ratio for the primary school enrolments could exceed 100 per cent because of the possibility of enrolment by persons outside the age group designated as primary school-age population. a For low income and lower-middle income economies, the most recent estimate refers to 1991. Data covers both the Bank of Western Samoa and the Pacific Commercial Bank Ltd. Up to December 1989, data reported were as of the last Wednesday of the month. This reporting date was changed to the last day of the month thereafter. f.Excludes deposits of the government in the banking system. g.Time deposits exclude deposits of the government. h.Effective 15 September 1986, the rates for term deposits in excess of WS$20,000 and all rates for terms over six months have been opened to negotiation between a customer and his bank. There are about 50,000 internet subscribers in Samoa. The following programmes are offered by the SOA.1. Diploma in Tropical Agriculture ( a two-year programme) 2. Bachelor of Agriculture Programme (a three-year programme) 3. Post-graduate Diploma in Agriculture (a one-year programme) 4. Master of Science programme (a two-year programme) 5. Doctor of Philosophy programme (a three to four-year programme)• Target audience (plus numbers, actual or estimated).The following are the target audience of the SOA:1. Prospective students interested in an agricultural qualification (about 600). 2. Teachers of agriculture at all levels (about 200).3. Farmers and agro-businesses. 4. The rural communities.• How information needs are currently met.The following are the sources of information in various subjects:1. FAO -farming systems, agricultural extension and education, crop and animal production. 2. CTA -spore newsletter (general agriculture), books on soils, crops and livestock. 3. SPC -plant protection, crop production. 4. Overseas libraries -crop science, animal science, crop production, tissue culture. 5. Local libraries -agricultural education and extension. 6. IFOAM -organic farming. 7. Regional agricultural departments -agriculture.• Extent of collaboration with CTA.The SOA receive information from CTA, indirectly through IRETA. However, one staff member has attended several meetings organised by CTA.• Extent of collaboration interaction with other institutions. These are the main partners the SOA collaborate with: ","tokenCount":"11187"} \ No newline at end of file diff --git a/data/part_3/6689180272.json b/data/part_3/6689180272.json new file mode 100644 index 0000000000000000000000000000000000000000..05f9f38ca07ad36777c726e9dd460207f0e0737d --- /dev/null +++ b/data/part_3/6689180272.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"d4bfa32f4e4463627783c568d6b20715","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/5920c8e6-cd21-4eae-aaff-c1416c50753c/retrieve","id":"-703118559"},"keywords":[],"sieverID":"9e2d05ec-0b52-478e-ac7c-637e4d3d6f5a","pagecount":"10","content":"Se realizaron discusiones de grupos focales con productores, productoras y otros actores para definir una caracterización de las diferentes fincas ganaderas. Algunos productores fueron entrevistados individualmente y algunas fincas fueron visitadas.Los impactos climáticos y ambientales se evaluaron con la herramienta CLEANED-X Excel, una herramienta preliminar rápida de evaluación de impacto ambiental que permite a los usuarios explorar múltiples impactos de las intervenciones relacionadas con el ganado (Birnholz et al., 2016;Notenbaert et al.2016). CLEANED modela el componente de empresa ganadera a nivel de finca, utilizando un procedimiento escalonado en el que se evalúan y comparan diferentes escenarios en términos de productividad, rentabilidad, requerimiento de tierra, balance de nutrientes, emisiones de gases de efecto invernadero, acumulación de carbono y requerimientos de agua. La ventaja del enfoque CLEANED son sus demandas relativamente bajas de datos y tiempo, y la generación de resultados que son fáciles de comprender y traducir en recomendaciones para los tomadores de decisiones y las partes interesadas.El marco CLEANED guía a los usuarios a través de un procedimiento paso a paso. En un primer paso, se establece la línea base. El segundo paso conlleva la evaluación preliminar de impacto, comparando impactos potenciales con las líneas base. Para efectos de este análisis, desarrollamos y agregamos un modelo que calcula los cambios en las reservas de carbono para diferentes componentes de los sistemas silvopastoriles en función de los diferentes tipos y densidades de árboles. Desarrollamos tres escenarios diferentes de finca/ganado (tres tamaños de finca (\"micro\", \"pequeña\" y \"mediana\"), cada uno con escenarios convencionales actuales (BAU) y de intensificación (INT). Para los escenarios BAU identificamos tres productores representativos de la encuesta presentada en el informe \"Informe Final Apoyo Forrajes a TeSAC El Tuma-La Dalia\". Estos productores formaron también la base de los escenarios INT, para los cuales se propuso una combinación realista de componentes basada en las visitas de campo, información secundaria y la opinión de expertos. Al utilizar CLEANED, evaluamos para cada escenario los diferentes impactos biofísicos, ambientales y climáticos, así como los ingresos netos de la producción ganadera.La Tabla 1 muestra para los escenarios BAU e INT la composición del ganado, los niveles de producción y los componentes del alimento para micro, pequeños y medianos productores en la región de Tuma -La Dalia. La Tabla 2 muestra el número de árboles en los pastizales (árboles leguminosos, árboles leguminosos en cercas vivas y utilizados como alimento para animales, otros árboles). Más del 90% de los productores y productoras usan su propio toro para servir a sus vacas. Los productores restantes usaron un toro de otro productor, y en muy pocos casos inseminación artificial.El ganado criado son cruces de diferentes tipos de razas. La raza principal de toros rara vez es la misma que la raza principal de vacas pero la mayoría de los animales son cruces Brahman x Brown Swiss. Las fincas con una tendencia más fuerte a criar terneros para la venta a intermediarios o fincas especializadas en la cría de terneros para la producción de carne, tienen una preferencia más fuerte por una mayor proporción de Brahman, mientras que las fincas más orientadas a los lácteos generalmente incluyen una mayor proporción de Brown Swiss y, en menor medida, Jersey y Holstein.La mejora de la productividad es principalmente el resultado de una mejor nutrición y manejo.No se prevén cambios significativos en las razas, pero una mejor calidad y manejo de los alimentos podría proporcionar un margen para aumentar las proporciones de animales de mayor producción como Jersey, Brown Swiss o razas mejoradas de carne. Un crecimiento más rápido y una mejor gestión de los productos lácteos generan carne y leche de calidad superior y conducen a un aumento en los precios de la leche y la carne. El estiércol depositado en el corral durante el ordeño se usa parcialmente para fertilizar forrajes de corte y acarreo.Los pastos son el principal componente alimenticio, e incluyen especies tradicionales (\"Grama\" (Paspalum spp. Y \"Retana\" (Ischaemum ciliare)) y pastos mejorados, principalmente Megathyrsus y Brachiaria.La producción de forraje es baja, causada por un manejo inadecuado de los pastos (ya sea demasiado intensivo que conduce a una disminución de la producción de biomasa o demasiado extenso que conduce a altos contenidos de fibra y lignina), suelos degradados (debido a la baja cobertura) y germoplasma inadecuado (por ejemplo, \"Retana\" con bajo contenido de energía y proteínas), y muy baja disponibilidad de biomasa durante los períodos más secos. El pastoreo ocurre generalmente en pastizales grandes sin divisiones durante largos períodos.El manejo adecuado de los pastos en combinación con una mayor proporción de forrajes mejorados, forrajes de corte y acarreo (en la estación seca) y vainas de árboles en cercas vivas (por ejemplo, Gliricidia) aumentan la disponibilidad de alimento de alta calidad, permiten la restauración del suelo, aumentan la resistencia al extremo eventos climáticos (sequía, exceso de lluvia), proporcionan leña y contribuyen a la seguridad alimentaria de los hogares.Proponemos lo siguiente:• La introducción o aumento de pastos mejorados que tienen un mayor valor nutricional y están mejor adaptados a la sequía y al anegamiento, en combinación con pasturas bien manejadas bajo pastoreo rotativo, que contribuyen a la recuperación de suelos degradados, reducción de la erosión del suelo, conservación del agua y la biodiversidad. • La introducción o aumento de forrajes de corte y acarreo para aumentar la disponibilidad general de alimento, especialmente durante los meses más secos. • Cercas eléctricas para facilitar la rotación del ganado entre pastos, para optimizar el uso de biomasa. • Cercas vivas con leguminosas arbóreas, plantadas alrededor de pastos.Además de mejorar la productividad del ganado, estas medidas también tendrán un impacto positivo en las emisiones de gases de efecto invernadero (una mejor alimentación conduce a menores emisiones por unidad de producto) y el secuestro de carbono (uso óptimo de pasturas mejoradas con raíces más profundas, mayor biomasa leñosa).La Tabla 3 muestra algunos detalles más de las medidas propuestas. Pennisetum spp. (King Grass, Taiwan) Bancos de proteína Leguminous arbustivas (Gliricidia, otras a ser identificadas) Cercas eléctricas Fácil de instalar y usar, para sistemas efectivos de rotación de pasturas. Más barato que el alambre de púas cuando el área es mayor a 5 ha. Costo fijo USD 720 (para un máximo de 15 ha), costo variable por ha USD 50Alrededor de las pasturas, 50 árboles (preferiblemente leguminosas) por 100 m, diámetro a la altura del pecho del primer año de 5 cm.La Figura 1 presenta la producción de leche y carne de las tres categorías de productores en base a los datos de la Tabla 1.Figura 1: Características de producción de micro, pequeños y medianos productores -BAU-INT Los escenarios INT aumentan la producción de leche y carne por finca y por ha, especialmente la producción de leche se duplica para todas las categorías de finca.Una mayor productividad por animal a través de una mejor alimentación y una mejor manipulación del estiércol reducen los niveles de intensidad (emisiones por unidad de producto) de emisiones de GEI (Gases de Efecto Invernadero). Los actuales sistemas de pastoreo donde los animales pastorean libremente en pasturas, en su mayoría tradicionales, conducen rápidamente a la degradación de los pastos, la deforestación y la pérdida de biodiversidad y baja productividad tanto por área como por animal. Estos sistemas también son muy vulnerables al cambio climático, ya que dependen principalmente de pasturas sin mucha alimentación suplementaria en momentos de condiciones climáticas difíciles (por ejemplo, sequías o inundaciones). Solo una pequeña minoría de los productores recicla activamente nutrientes y materia orgánica a través del manejo del estiércol y otros productos de desecho. La degradación de los pastizales debido al pastoreo excesivo en combinación con la preferencia general de invertir en más tierras en lugar de invertir en una producción mejorada de alimentos también ha llevado a la necesidad de expandir los pastizales en áreas boscosas. Esto también influye directamente en las condiciones climáticas locales y regionales. La producción mejorada de alimento basada en múltiples fuentes de alimento, pastos diversos mejorados que contienen material de siembra mejorado adaptado a las condiciones locales, cultivos arbóreos adecuados como alimento y para otros fines, residuos de cultivos alimenticios, etc. podrían aumentar la robustez del sistema agrícola en el país ante los desafíos climáticos. Esto reduciría la necesidad de expansión de los pastos, así como también aumentaría la productividad del animal individual, por lo tanto, reduciría las emisiones de GEI por kg de leche y carne producida.Con base en la tipología de fincas en las Tablas 1 y 2, evaluamos los siguientes indicadores ambientales y climáticos: balance de nutrientes (nitrógeno) por ha, requerimiento de agua por kg de leche y carne, emisiones de gases de efecto invernadero por ha, kg de leche y carne y cambio de existencias de carbono por ha (Tabla 4, Figura 2).Tabla 4: Impactos ambientales y climáticos de fincas micro, pequeñas y medianas -BAU, INT Al comparar las áreas de pastoreo requeridas con las de pasturas reales (BAU), podemos concluir que la micro finca muestra un pastoreo excesivo (1,6 ha de pasturas frente a 2,18 requerido), pero que en las fincas pequeñas y medianas las pasturas parecen estar subutilizadas (áreas de pastos más grandes de lo requerido). Los escenarios INT con una productividad mucho más alta conducen a un aumento en las áreas de pasto requeridas, pero, a excepción de la categoría de micro finca, las áreas requeridas siguen siendo más pequeñas que las actuales. En términos de carga animal, los escenarios INT pequeños y medianos muestran un aumento, en comparación con los escenarios BAU actuales y los escenarios BAU requeridos. El aumento de la productividad en los escenarios de INT potencialmente libera tierra (principalmente pastos) para restauración y / o reforestación, especialmente para fincas pequeñas y medianas donde el área de pasto puede reducirse hasta en un 30% mientras se duplica la producción. Como muestran los datos del equilibrio de nutrientes, las intervenciones INT no proporcionan suficientes nutrientes (en términos de nitrógeno) para sustituir el aumento de la absorción de nutrientes por pastos y otros cultivos, lo que lleva a equilibrios de nitrógeno cada vez más negativos de hasta 100 kg/ha. Para garantizar la sostenibilidad a largo plazo, esto deberá compensarse con el aporte de nutrientes a los sistemas, como aumentar la proporción de árboles leguminosos y asociar leguminosas herbáceas con pastos.El consumo de agua por kg de leche disminuye en un promedio del 50%, en términos de carne, la disminución es menos marcada, pero aún alcanza el 30% para las fincas pequeñas y medianas.Las emisiones por kg de leche y carne pueden reducirse en casi un 50%. La fuerte presencia de árboles en los escenarios BAU e INT conduce a acumulaciones anuales de carbono entre 6 y 9 t CO2e por ha. Combinado con el impacto de los escenarios INT con mayores proporciones de pastos mejorados y cercas vivas con árboles de leguminosas, esto lleva a un secuestro neto (secuestro menos emisiones) en todas las categorías de fincas de hasta 3 t/ha.• Las implicaciones de las medidas (desarrollo de capacidad, inversiones) requeridas para el escenario INT incluirán: • Menores impactos climáticos y ambientales de la producción de carne: reducción de emisiones de GEI por unidad de producto, huella de carbono / agua y erosión del suelo; mayores índices de carga animal liberando pastizales para la reforestación. • Aumento de los ingresos de productores y productoras a través del aumento de la productividad y calidad de la leche y carne, cumpliendo con los requisitos de la industria y los mercados internacionales (UE). • Mayor conocimiento de los productores y productoras sobre la producción mejorada de forraje, el manejo eficiente de la finca y los recursos naturales (cercas vivas, sistemas silvopastoriles, protección de las fuentes de agua). • Mayor y mejor acceso a tecnologías mejoradas de producción ganadera y mercados de alto valor para productoras y jóvenes • Evidencia de la viabilidad biofísica, económica y ambiental de los pequeños y medianos productores y productoras que acceden a mercados de alto valor.","tokenCount":"1974"} \ No newline at end of file diff --git a/data/part_3/6695872773.json b/data/part_3/6695872773.json new file mode 100644 index 0000000000000000000000000000000000000000..89f72e691bb7ee3ce9d64e6af1e7936ce110bb6e --- /dev/null +++ b/data/part_3/6695872773.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"5fb8c5ff3707232d13b1341ddc293f8e","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/9736d0c5-c141-4e9d-9dc5-01ef82ba0fc8/retrieve","id":"1045948070"},"keywords":[],"sieverID":"6a3caff7-fb58-4493-b227-b69582262076","pagecount":"5","content":"◼ Ethiopia has made great efforts to integrate climate change, agriculture, food and nutrition security through different policies, strategies and frameworks, but more deliberate and proactive integration of the existing frameworks and policies is required. ◼ Multi-stakeholder platforms, digital databases and information management systems can help in the generation of baseline data for developing indicators for monitoring and evaluating the integration of policies and frameworks, and as a dynamic innovation hub for the development of decision support tools (DSTs). ◼ Provision of technical support for capacity building, project design, financial mobilization and to build regional cooperation programs for transboundary issues is essential. ◼ Partners from international (CGIAR), regional and national research organizations need to work with the government to create synergy and harmonize various policy activities aimed towards achieving a common goal.Agriculture is the mainstay of Ethiopia's economy, contributing over 50% of the gross domestic product (GDP), accounting for more than 85% of the labor force and over 90% of the foreign exchange earnings (Alemu et al. 2010). Consequently, the sector receives considerable attention from the government, investing 15% of its total budget over the decade and meeting the commitments by Africa's heads of states to the African Union Maputo 2003 Declaration on Agriculture and Food Security (CAADP 2003). On average, crop production makes up 60% of the sector's outputs, livestock accounts for 27%, with other sub-sectors contributing 13% of the total value of agricultural production. The sector is dominated by small-scale farmers, practicing rain-fed mixed farming using traditional technologies, characterized with low levels of input use and low productivity.While agriculture is vital for the growth and development of the local and national economy, there are salient constraints hindering its performance. These include small and diminishing farm sizes due to rapid population growth; soil infertility associated with decreasing yield-per-hectare ratios; higher incidence of on-field and post-harvest crop pests (e.g., desert locust); reduced soil moisture availability; increased evapotranspiration and water stress; lack of inputs and use of traditional technologies leading to low productivity; limited access to capital, credit and markets; inadequate market information; outbreaks of animal diseases and shortages of animal feed; and declining output prices (Rahmeto 2008). The above constraints coupled with land degradation, conflict, food price fluctuations, low non-farm employment, low incomes, and regional fragmentation of markets have further intensified the challenges in agriculture. Extreme weather events such as droughts and floods have further impacted the country's agriculture causing fluctuations in income and agricultural productivity, and resulting in food and nutrition insecurity at national and household levels.Ethiopia is home to Africa's largest livestock population and is the tenth-largest producer of livestock and livestock products globally, contributing about 10% of the country's foreign currency earnings. Frequent and extensive droughts in the country over the past years have had a considerable effect on Ethiopia's livestock sub-sector. Decreased amounts of rainfall reduce available water resources and the productivity of grasslands and rangelands. Increased incidence of pests and diseases, and reduced feed and water sources are associated with increased livestock mortality. In addition, increased temperatures can affect the behavior and metabolism (internal body processes) of livestock, such as reduced feed intake leading to a decline in productivity.Climate variability and change that include increases in temperature, variable and unpredictable seasonal rainfall patterns, and increased incidence of drought and other extreme weather events are increasingly becoming a serious threat to crop and livestock production, and adversely affecting the agriculture sector and the overall economic development of Ethiopia. Ethiopia's agriculture needs to build resilience and adapt to these climate-related emerging challenges to meet increasing demand for nutritious food for the country's growing population while increasing production for export to generate foreign exchange, and where possible reduce greenhouse gas (GHG) emissions from the sector. Recognizing current and future climate-related risks to both crop and livestock, and developing climate-informed policies and frameworks for agriculture, food and nutrition security are important in providing an enabling environment for building farmers resilience and adaptive capacity in Ethiopia.This review is part of a series of studies carried out across five countries in East Africa and aims to understand the current state of policies and frameworks related to climate change, agriculture, food and nutrition security, including their level of integration in Ethiopia. Specific objectives include: i) evaluating the extent to which agriculture, food and nutrition security policies and frameworks integrate climate change adaptation and mitigation, and vice versa; ii) identifying strengths and gaps in the sectoral and national policies and strategies relevant to climate change, agriculture, food and nutrition security; and iii) identifying potential entry points for different actors including international, regional and national research organizations to strengthen their engagement at the district, zonal, regional and national levels to inform bottom-up policy development and implementation for enhanced resilience in agriculture, and improved food and nutrition security.The review applied three complementary approaches: desk review of relevant literature, publications, policy documents and frameworks on climate change, agriculture, food and nutrition security; stakeholder consultations, where eight experts from relevant Ethiopian government ministries and agencies, and research organizations were interviewed based on their engagement and contribution to relevant policies and frameworks on climate change, agriculture, food and nutrition security; and relevance scoring of national and sector-specific policies, frameworks and programs regarding the extent to which they are designed to address climate change adaptation and mitigation, agriculture, food and nutrition security, with five weight-groups (on a scale of 1-5) (see Eshetu et al. (2014)):◼ Very high relevance (5)climate change or agriculture, food and nutrition security are the primary objective;◼ High relevance (4)climate change or agriculture, food and nutrition security are a significant, but not primary objective; Table 1 shows that most of the agriculture, food and nutrition security policies and frameworks reviewed have integrated adaptation, at an average weighted score of 82% compared to mitigation at 38%.The review also examined the extent to which national climate change policies and frameworks integrate agriculture, food and nutrition (Table 2). The weighted scores were relatively high, ranging from 60-80%. The Intended Nationally Determined Contribution (INDC) (80%) had the highest weighted score (80%), followed by the Climate Change Education Strategy of Ethiopia (74%) and the National Framework for Climate Services (60%). Food availability was the most integrated, followed by agricultural productivity and food access, with food utilization being the least integrated. In addition, the review examined the extent to which projects and programs integrate climate change adaptation and mitigation, agriculture, food and nutrition security. Of the 18 projects and programs evaluated, 11% had a high weighted score (>75%), while the majority (89%) had a medium weighted score (Table 3). Ethiopia has made great efforts to integrate climate change, agriculture, food and nutrition security through different policies, strategies and frameworks. These, among other efforts in other sectors of the economy, are making Ethiopia's Paris Agreement target one of the few that the Climate Action Tracker rates as \"2°C compatible\" (https://climateactiontracker.org/countries/ethiopia/). This rating indicates that Ethiopia's climate plans are within the range of what is considered to be a fair share of global efforts. However, there is opportunity for deliberate and proactive integration of the existing frameworks and policies. In addition, most of the policies and frameworks on agriculture, food and nutrition security focus more on agricultural productivity, food access and nutrition; but with less clarity on specific interventions on mitigation and food utilization. Ethiopia's mitigation efforts often focus primarily on the forestry sector. Inadequate mechanisms for coordination between climate change and agriculture, food and nutrition stakeholders has resulted in overlaps and inefficiency in the implementation of programs and projects.There is a need for enhanced institutional collaboration for capacity development to integrate climate change resilience and adaptation strategies with synergies to mitigation opportunities for securing all forms of food security aspects including knowledge and data repository. This will help avoid duplication and fragmentation of activities, budgets, human resources and enhance both efficiency and effectiveness.The CGIAR and other partners can contribute towards establishing methods and indicators to measure the relevance of policy frameworks to agriculture, climate change, food and nutrition security. Currently there is no framework for evaluating progress on the extent to which the different policies, strategies and programs/projects integrate climate change, agriculture, food and nutrition security. This also includes enhanced provision of resources and technical support in developing technical packages for capacity building and knowledge sharing. ","tokenCount":"1373"} \ No newline at end of file diff --git a/data/part_3/6759738419.json b/data/part_3/6759738419.json new file mode 100644 index 0000000000000000000000000000000000000000..32f29ba75c8638557f9762ac267479790a27cf8b --- /dev/null +++ b/data/part_3/6759738419.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"f5295aee3b3f710ebe5474c3ff2b5c78","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/bdc53e61-5bb7-496a-97fc-6769499f37fb/retrieve","id":"1702852437"},"keywords":[],"sieverID":"1f67d4f9-5935-4b3f-a61c-01957361ed60","pagecount":"2","content":"Foodborne diseases (FBD) and associated food safety concerns and associated impose health and economic burdens and indirectly affect the development and flourishment of domestic and export food sectors in Africa. Because these impacts are large, they will compromise the attaining of the Sustainable Development Goals and the commitments of the Malabo declaration unless FBD in Africa are brought under control. Food safety concerns will become of even greater importance as developments advance towards a free trade zone for the continent. Promoting food safety systems becomes necessary.A food safety hazard is anything in food that can harm the consumer's health both through short-term and longterm exposure; hazards may be biological, chemical or physical. FBD are illnesses caused by contaminated or naturally harmful food or beverages. Systematic and comprehensive evidence on the health burden of FBD in developing countries started to become available only recently. The landmark first assessment of the global burden of FBD, conducted by the World Health Organization (WHO), was published in 2015 1 and showed that FBD have a global health burden comparable to malaria, HIV/AIDS or tuberculosis and revealed how the negative health impact of FBD has been grossly overlooked in the past. The report also shows most of the burden (98%) falls on developing countries, with Africa presenting the highest incidence and highest death rates and disability-adjusted life year (DALY) per capita among all ages, including children under five (who bear 43% of the burden in Africa). Moreover, undernutrition and FBD are related -infectious FBD commonly manifest as diarrhoea, which is strongly associated with stunting 2,3,4 . In Africa, around 70% of the burden of FBD results from non-gastrointestinal manifestations that can also cause undernutrition through reduced appetite and increased nutrient requirements due to inflammation, infection or other catabolic conditions 5 . This is much higher than in other regions. Moreover, there are some hazards which are especially problematic in Africa: these include cassava cyanide, aflatoxins and cysticercosis caused by pig tapeworm. Overall, the WHO estimates that the three most important hazards in Africa in terms of human health burden are non-typhoidal Salmonella, pig tapeworm and toxigenic Escherichia coli. Together, these account for half the known burden of foodborne disease.In addition, foodborne illness is also associated with a wide range of economic costs. These include a) the harm caused by the disease (e.g. lost productivity from illness), b) the cost of response (e.g. treatment and food recalls) and c) the cost of prevention (e.g. food safety governance and risk reducing practices). As well as these costs due to FBD in domestic markets, additional losses are associated with trade: the cost of compliance with requirements; losses from rejected exports; and, foregone opportunities as the result of exclusion from highly demanding markets. A recent study from the World Bank gives the first global estimate of the economic burden of FBD 7 . The study measured the productivity cost of FBD in terms of lost human capital from sickness and death in Africa (USD 17 billion), treating foodborne illnesses (USD 2.5 billion) and rejection of exported food because of failure to comply with trading regulations (approx. USD 1 billion). Three countries in sub-Saharan Africa have costs exceeding USD 1 billion a year (Nigeria, South Africa and Angola). The World Bank analyses suggested that the public health and domestic economic costs of unsafe food may be 50 times the trade-related costs for sub-Saharan Africa. However, regional and international trade can catalyse economic growth, and numerous studies have shown that, with proper support, African countries can export relatively high-risk food to demanding but remunerative markets.Setting up legislation and enforcement of food safety practices and standards requires economic investments by the public sector. Compliance with food safety requirements, both in national and international markets, represents a direct cost for private industries. These costs are normally higher for small enterprises than for middle and large companies. Accessing international markets poses additional economic costs for businesses to address and manage food safety and comply with highly stringent international standards. Major food safety incidents can raise alarms in trade partner countries, affect export markets and result in large economic impacts for the country. Similarly, consumer response to food safety scares can have enormous economic impacts on domestic markets and erode trust in government and food safety authorities if not appropriately managed.Foodborne disease also has implications for equity and culture. In many African countries, women predominate in food processing and retail: in nearly all African countries, women have primary responsibility for food preparation within the household. (However, modernising food systems have a tendency to exclude women.) Hence, addressing gender issues is essential to assuring safe food. Other studies show that unsafe and lowquality food may be channelled towards the poorest, putting them most at risk. From a more positive perspective, food has an important role in cultures, and several African cuisines such as Ethiopian tibs or South African biltong are world famous. Ensuring traditional African foods are safe and nutritious can therefore help maintain important while supporting tourism and export.Past and current food safety efforts in Africa have substantially focused on access to regional and overseas export markets, with emphasis on oversight by national control systems to facilitate trade. Relatively little is being done to reduce foodborne illnesses and upscale food safety in national markets. This current focus reflects the economic importance of food exports to African governments, the role of African governments in overseeing exports and the focus of European and other donors on the safety of food they import from sub-Saharan Africa. These efforts should continue as exports are important for vibrant and diversified economies. At the same time, recent analysis from WHO and the World Bank underscores the importance of focusing on food safety as an African health challenge, especially in the subsistence and informal market sectors where millions of Africans get most of their food. This new evidence implies a new strategic direction for food safety efforts in Africa is warranted, which should include the following recommendations:• Elevate food safety in sub-Saharan Africa on the international health agenda, increasing government and donor investments in food safety to investigate hazards and increase research and development of strategies to reduce health risks in both formal and informal markets.• Establish goals, priorities and strategies that consider the health and development impacts of foodborne illnesses. Africa's national governments and regional institutions, in dialogue with the donor community, should establish evidence-based goals, priorities and strategies that consider the health burden and development impacts of foodborne illnesses, especially in domestic markets.• Apply Codex food safety principles and risk-based prevention, as appropriate to local conditions and ensure that every project makes a sustainable contribution to improving food safety.• Harness today's marketplace drivers of progress on food safety. Donors and national governments should use their position and resources to recognize, catalyze and support consumer and marketplace drivers of progress on food safety.","tokenCount":"1142"} \ No newline at end of file diff --git a/data/part_3/6772080058.json b/data/part_3/6772080058.json new file mode 100644 index 0000000000000000000000000000000000000000..201d68c8d3254f35eafa58d6e1377dc23708026d --- /dev/null +++ b/data/part_3/6772080058.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"4e77357fbb0bae6372aa22994535909b","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/006debc6-bd20-4b75-8337-5949783730be/retrieve","id":"2126506982"},"keywords":[],"sieverID":"3fda4e98-0943-4dec-9180-2d526997fb03","pagecount":"11","content":"Human Nutritional Status As a Measure of the Impact of Livestock Disease Control Assessing the nutritional impact of animal disease control Better diagnosis of trypanosomiasis Novel vaccination strategies against protozoan parasites East Coast fever Trypanosomiasis Both diseases Developing nucleic acidbased methods for typing class II MHC in cattle Ph. D. Theses Human nutritional status as a measure of the impact of livestock disease control Improving the health of livestock raised by smallscale farmers ameliorates nutritional as well as economic hardships in developing countries. By implementing measures to control cattle diseases such as East Coast fever, farmers earn muchneeded cash income, most of it from sales of surplus milk produced by increasing livestock survival and productivity. Just as important, however, is an expected improvement in the nutritional status of farm households that invest in livestock disease control. The results of a collaborative study conducted by scientists from ILRAD, the International Livestock Centre for Africa, based in Addis Ababa, and the Kenya Agricultural Research Institute indicate that changes in household nutritional status are reliable indicators of the effects on communities of improving control of animal diseases. Staff of ILRAD's Socioeconomics and Environmental Impact Program are determining and quantifying the effects of parasitic livestock diseases and their control on animal productivity, rural communities, the environment, and general agricultural and economic development in Third World countries. Computerbased, analytical tools are being developed, for assessing the impacts of the application of more efficacious diseasecontrol methods, such as innovative 'subunit' vaccines against protozoan parasites or the animal diseases they cause. These advanced diseasecontrol methods are under research at ILRAD, which works in collaboration with research institutes in developed countries and with national agricultural research systems in Africa and other developing regions.The more accurate assessments ILRAD staff are making of the impacts of animal diseases and their improved control are urgently needed. Without such information, policymakers are unable to determine optimal disease control strategies for different areas or to set judicious priorities in agricultural research.Enhancing decisionmaking in animal disease research and control is important. In the last decade, the industrialized nations steadily reduced their support for longterm research on agricultural problems of developing countries. This decline in funding is expected to continuethroughout the 1990s and beyond. With fewer resources to support it, livestock disease research and control work must be targeted to topics and methods that hold the greatest potential for generating broadscale, equitable, costeffective and sustainable production increases. Better information is needed to pinpoint these highestpotential areas.To increase agricultural production and enhance standards of living in the developing world, smallholder production systems will have to be intensified. This will occur largely by applying technical innovations and increasing mixed crop and livestock farming. Success of the latter will depend on an ability to control parasitic diseases of ruminant livestock endemic in Africa and much of the developing world. Two of the most important of these are trypanosomiasis, known as sleeping sickness when it occurs in people, and theileriosis, commonly known as East Coast fever.Farm households must make nutritional as well as economic progress to unlock the rural potential of developing countries. A productive countryside-able to strengthen livelihoods and to spur economic development-rests largely on access to sufficient quantities and qualities of food.Keeping livestock is a common way for smallscale farmers to secure reliable access to food. It often is also a catalyst to a better life: livestock rearing augments not only the nutritional status and productivity of rural households, but also the productivity of their crop farming.The conventional way to measure the impact of an animal disease or its control on the wellbeing of a community is to estimate the economic costs of the disease-for example, the numbers of animals killed and calves lost in abortions, losses in milk and meat production, and the costs of implementing disease control measures-as well as the benefits of controlling the disease, such as increases in production of milk, meat, draught power and manure.Economic measures, however,-which are often expressed in benefit: cost ratios, rates of return or net profit and income-tell only part of the story regarding the wellbeing of small holders. With colleagues from the Kenya Agricultural Research Institute (KARI), ILRAD and ILCA scientists carried out studies one conducted in the high rainfall region of the Kenya coast and the other in the temperate highlands of Kenya's Uasin Gishu Plateau-which suggest that improved control of livestock diseases leads to improvement in farm household diet and nutrition. The studies also show that such links may be used in estimating the effects of implementing alternative methods of livestock disease control. The addition of such noneconomic indicators to the conventional economic ones will greatly enhance impact assessments.At the Kenya coast, where commercial cattlekeeping is a relatively recent enterprise, farm incomes are small. Most of the cattle are of lowproducing indigenous zebu breeds, although more productive exoticzebu crossbred animals are being kept in zerograzing units as part of a National Dairy Development Project (NDDP). The study found that livestock keepers, particularly members of the NDDP, had higher incomes and were better nourished than the general population. All households in this study area reported that animal disease is a major constraint to increasing both dairy production and dairy product consumption.In the highland study site, dairying is a major farm enterprise. The cattle kept in this coolclimate area are predominantly crossbred. Dairy production in the area is practised by large, medium and smallscale farmers alike. The study results indicate that smallholders are the group likely to benefit most, both economically and nutritionally, from improved animal health and consequent animal survival. (Smallscale farmers withhold a larger proportion of the milk produced on the farm for household consumption than largerscale farmers.) Support for research on Third World agricultural problems is eroding as food production per capita continues to decline in 75 developing countries. More than 700 million people have access to insufficient food to lead healthy, productive lives. More than 180 million children are underweight; as many as 500,000 go blind each year due to vita min A deficiency. Besides causing suffering and death, lack of micronutrients cuts deeply into the productivity of poor nations.The outlook for Africa and Asia, economically the most vulnerable regions of the world, is particularly, bleak. One in every four Africans and Asians is too poor to meet his or her basic dietary needs reliably. In subSaharan Africa, where the population is expected to grow at three per cent a year and food production at less than two per cent, a food shortage of 250 million tons is expected by the year 2020.(Figures taken from the February 1994 IFPRI Report andMarch 1994 Food Policy Statement, International Food Policy Research Institute, Washington; D.C.) In other studies carried out in collaboration with KARI in Kaloleni Division, at the Kenya coast, ILRAD and ILCA staff obtained comprehensive data on the current livestock production and welfare of farm households. Information collected in the future will be compared with these baseline data to assess the impacts of different kinds of interventions made to better control livestock diseases such as East Coast fever.The results of the KARI/ILRAD/ILCA studies highlight the importance of including nutritional status when assessing the impacts of disease control on rural communities. ILRAD is applying this knowledge in its research. Nutritional parameters, for example, have been included in a farmlevel simulation model developed to compare the probable impacts of using alternative diseasecontrol interventions.This article is based on research by Rebecca HussAshmore, a Visiting Scientist at ILRAD now at the University of Pennsylvania; William Thorpe and Gary Mullins, animal scientist and agricultural economist, respectively, working for ILCA at the Kenya coast in a collaborative project with KARI; John Curry, a former ILRAD anthropologist; and Adrian Mukhebl, an ILRAD economist.Effective management of an animal disease problem depends on accurate diagnosis at both the individual and the herd level. Parasitological detection methods are usually employed to diagnose African animal trypanosomiasis. Most of these conventional diagnostic methods involve examination of peripheral blood for the presence of trypanosome parasites. The sensitivity of these techniques is too low to identify all infected animals. Inability to detect parasites, even in animals suffering acute disease, makes diagnoses inaccurate.Knowledge of the morbidity of animal trypanosomiasis has been poor because of these diagnostic difficulties. Moreover, veterinarians and disease control workers often institute chemotherapeutic intervention on the basis of clinical signs rather than parasite detection. Thus, infected animals exhibiting no clinical signs of disease act as reservoirs of infection for clean animals in a herd.Trypanosomes that are undetectable in peripheral blood may be sequestered in several organs of an infected host, such as the spleen, lymph nodes, bone marrow and liver. Successive variable antigen types (VATs) in these parasite populations are released in the tissue fluids as the immune system of the animal host eliminates one trypanosome population after another, each population being distinguished by a different VAT. Some of the antigens released occur in a single trypanosome species. Detection of these speciesspecific antigens provides evidence of infection with a particular parasite species. Several antigentrapping ELISAs (enzymelinked immunosorbent assays) developed at ILRAD work in this way to diagnose trypanosomiasis.The assays are known as 'sandwich ELISAs': trypanosome speciesspecific monoclonal antibodies are used to capture circulating trypanosome antigens in the serum of infected hosts. The captured antigen is revealed by introduction of the same monoclonal antibody labelled with horseradish peroxidase (HRPO), which binds to free antigenic epitopes of the immobilized antigen. The labelled antibody is subsequently revealed by the activity of the HRPO on its substrate, which causes the colour of the introduced chromogen to change. ILRAD has developed three such assays to detect antigens of the Trypanosoma congolense and Trypanosoma vivax species and the Trypanozoon subgenus.Introduction of the antigentrapping ELISA, which distinguishes infections with Trypanosoma brucei, T. congolense and T. vivax in mammalian blood, has greatly improved the ability of diagnosticians to identify trypanosomeinfected animals. An early experiment conducted to compare the efficacy of the conventional and new diagnostic techniques indicated that the antigentrapping ELISA was at least four times more sensitive than the buffy coat technique in detecting T. congolense infections in animals.The diagnostic utility of ILRAD's ELISAs has been independently tested in laboratories in ten African countries: The Gambia, Ghana, Kenya, Mali, Senegal, Sudan, Tanzania, Uganda, Zambia and Zimbabwe. This validation exercise was sponsored by the Netherlands Government and directed by staff of the Joint Food and Agriculture Organization/International Atomic Energy Agency Division of Nuclear Techniques in Food and Agriculture, in Vienna. The validation demonstrated that ILRAD's antigentrapping ELISAs are both sensitive and reliable in most circumstances. Results produced using the tests have a sensitivity and specificity greater than those generated by routine parasitological techniques.The African laboratories that participated in the validation are now using the antigentrapping ELISAs to monitor the effectiveness of their national and regional tsetse and trypanosomiasis control programs. To increase expertise in use of the ELISAs in Africa's national agricultural research systems, ILRAD has conducted two courses, one in 1992 and one in 1994, to train 35 trypanosomiasis research and control staff from 23 African countries. Most of the trainees are technicians and research working in university or central veterinary laboratories where the diagnostic test is being evaluated.After a final FAO/IAEA meeting was held, in 1992, to review results of the field validation of ILRAD's antigentrapping ELISAs, a scientist from IAEA's Seibersdorf Laboratory (Vienna) spent two months at ILRAD learning procedures used to raise the monoclonal antibodies that are the bases of the assays. With this transfer of technology, staff at IAEA are now able to generate all the reagents employed in the ELISAs.Following the planned establishment of a hybridoma production system in the Vienna laboratory, IAEA will begin to supply these reagents to the African laboratories using this technology so that they can monitor their trypanosomiasis control programs. ILRAD scientists will continue to help staff of Africa' national agricultural research system to overcome problems that may arise in applying the ELISAs in the field.This article is based on work and report by Rachel Masake, an ILRAD scientist.In November 1993, ten international scientists at the forefront of research on vaccines for parasitic diseases joined ILRAD scientists in a fourday workshop. The participants examined current and potential applications of recent advances in immunological research to vaccine strategies for protozoan organisms. The latter include two parasites studied at ILRAD that debilitate and kill livestock in tropical countries: Theileria parva, the cause of theileriosis (East Coast fever), and trypanosomes, the cause of African animal trypanosomiasis. Among the topics under review were a new understanding of the events that induce parasitespecific cytotoxic T lymphocytes (CTL) to poliferate in an infection, perturbatious of the immune system related trypanosome infections, the role of Tcell subpopulations in development of host immunity to trypanosomiasis, and the role cytokines play in both the control and the pathology of parasitic infections.Much discussion centred on the potential of a novel East Coast fever vaccine under development at ILRAD, which is considered very promising. This vaccine is based on the dominant antigen of the T parva sporozoite surface. The antigen, designated p67 and produced by expression of the gene in Escherichia coli, has been used successfully to immunise cattle against experimental challenge. Further research into the p67antigen vaccine and continuing immunisation trials are being vigorously pursued.Participants discussed the merits of working towards development of a multipleantigen vaccine. ILRAD experiments have provided direct evidence that CTL play a major role in clearing T. parva from immune cattle under challenge. A successful vaccine that will safeguard against disease caused by breakthrough infections will thus most likely require antigens from both the sporozoite and the schizont lifecycle stages of T. parva. Much effort at the Laboratory is focussed on identifying parasitespecific CTL and defining the requirements for inducing CTL responses in cattle.The workshop participants reviewed recent results in research on bovine MHC (major histocompatibility) molecules and compared two methods developed for identifying antigens recognized by CTL: peptide stripping and random screening of complementary DNA. It was agreed that tumour cells were better models for the search for CTL epitopes than the relatively crude techniques used to isolate viral antigens.Although these new technologies have to date yielded only a few antigens with vaccine potential, ILRAD is in an excellent position to use these methods to advantage. As stated, CTL have been shown to protect animals against T. parva; furthermore, ILRAD has already established technologies for isolating peptides and screening complementary DNA and the institute has on going collaborations with leading laboratories in this research area. Use of these techniques is also attractive because there are estimated to be fewer than 4,000 schizont transcripts and because new developments in bovine MHC studies are expected to facilitate the antigen search.ILRAD will explore development of a vaccine based on the p67 antigen of T. parva with a commercial partner. In general, ILRAD's role in animal vaccine development is to conduct research leading to identification of parasite antigens with promising vaccine potential and subsequently to present the candidate antigens successfully in the animal host. Producing a new vaccine in large quantities and maintaining its quality will be the responsibility of the commercial partner. Molecular modeling could be used to ensure quality control. This is expensive work, however, and some participants believed that unless there were a reasonable threedimensional structure of a candidate antigen, modeling would be unwarranted.If a single mechanism controls trypanosome numbers in an infection, an intervention to stop the development of disease might usefully complement an antiparasite vaccine. Differences in responses to infection made by trypanosusceptible Boran and trypanotolerant N'Dama cattle were discussed. Of factors likely to be responsible for inducing pathology in infected trypano susceptible Boran animals, parasite load and a failure of the Boran antibody response to mature through isotype switching were considered productive areas for further research.It was noted that an endocrinological failure in trypanosomiasis resembles that in malaria, where Plasmodium antigens disturb the insulin signalling pathway. Trypanosome antigens may induce a similar perturbation, resulting in pituitary dysfunction. In collaboration with laboratories employing reliable in vitro assays of endocrine function, ILRAD will continue to investigate the possibility that cytokines or hormones are responsible for the metabolic and physiological disturbances in trypanosomiasis.Massive disturbances of the immune system occur in both trypanosomiasis and East Coast fever. Few if any investigations are being conducted on the role cytokines may play in causing such large disturbances. ILRAD is in an excellent position to resolve this question. Investigations of cytokine activity would help differentiate harmful affects that may be induced in the host by cytokines, particularly tumour necrosis factor, gammainterferon and interleukin1.The cause of the striking differences between Boran and N'Dama cattle in immunoglobulin responses to trypanosome infection may lie in differential immunological memory as well as isotype switching. The differences may be due to the kinds and amounts of cytokines produced by T lymphocytes and other regulatory cells of the host. Participants discussed the potential of exploiting the trypanosome cysteine protease ILRAD scientists have identified and isolated as a tool to investigate disturbances in the immune response. It is possible that the presence of this molecule in the blood of the host is responsible for the development of disease in susceptible infected animals.Participants reviewed the experimental advantages of using cattle versus mice in research on vaccines against livestock diseases. Mice-particularly 'knockout' mice, which have been depleted of a given gene, and thus the product of that gene-have proved excellent models for identifying protective immune responses to parasite infection, and for that reason will continue to be used, especially in trypanosomiasis research. Although eliminating all cells of a given type in cattle is also desirable, this remains difficult to accomplish. In spite of this, cattle experiments are particularly informative at ILRAD due to the Laboratory's access to large numbers of good quality cattle of defined genotypes, including monozygotic and chimaeric twins produced on the Laboratory's cattle ranch. ILRAD will thus continue to exploit this comparative research advantage to the full.A preliminary understanding of the role played by gamma/delta T cells in trypanosome and T. parva infections is being obtained by research conducted at ILRAD and elsewhere. A thorough understanding of the function of these immune cells is needed because they occur in significantly large numbers in calf spleens, and it is young animals that will be the main target for vaccination. It was speculated that gamma/ delta T cells play a role in enabling young cattle to tolerate or control parasite infection and to develop immunity without developing disease. Low numbers of natural killer cells are also present in cattle blood and are readily activated by cytokines.A brief discussion was held on the plastic nature of immune responses-that is, that different animals employ different immune cells and mechanisms to protect themselves against T. parva and trypanosome infections. In outbred populations, this phenomenon (detected in cell transfer experiments) may be due to the occurrence of parasite epitopes that differ slightly in quantity or quality from one infected animal to another. It was agreed, however, that little merit existed in ILRAD's complicating its investigations of protective immune responses with concerns about plasticity. Rather, ILRAD's approaches to vaccine development will focus on major immune responses in target animal populations and the parasite antigens that elicit them.Finally, the workshop participants emphasized that a search for protective antigens requires a better under standing of the cell biology of the parasites. This research produces additional information about the parasites and their interactions with the host. Analyses of data obtained from cell biology research help reduce the number of antigens that must be screened for biological characters and may help reveal antigens likely to elicit protective immune responses.The protozoan parasite Theileria parva causes theileriosis, an acute and usually fatal lymphoproliferative disease of cattle in Africa, where it is commonly known as East Coast fever.A major goal of ILRAD's research program is development of an improved vaccine that will protect cattle from this parasite.Significant progress has been made towards achieving this goal (see the July 1992 issue of this newsletter). Administration of a recombinant form of a major surface antigen of the sporozoite stage of the parasite has been shown in experiments to protect cattle against subsequent challenge with normally lethal doses of T. parva. ILRAD is developing his antigen for delivery in a firstgeneration 'subunit' vaccine, which is based on one or more antigenic parasite molecules rather than the whole parasite.It is well known that the quality of an immune response to infection with an intracellular parasite depends greatly on molecules encoded by genes located in an area of the mammalian genome known as the major histocompatibility complex (MHC). T lymphocytes of the host animal recognize antigens only when these are wedged in the binding clefts of 'self' MHC molecules located on the surface of antigenpresenting cells. The ability of a given parasite antigen to elicit an immune response is likely to be related to the antigen's ability to bind to the MHC molecules expressed by an individual animal.Two classes of MHC exist and both classes are polymorphic, that is, molecules of each class vary from one individual animal to another. It is possible that MHC polymorphisms within outbred populations of cattle will influence the efficacy of a subunit vaccine in the field. This possibility has led ILRAD scientists to search for reliable techniques with which to type the MHC of cattle.The typing of bovine class I MHC molecules is in an advanced state. This work has greatly facilitated the characterization of T. parvaspecific cytotoxic Tcell responses in cattle. In contrast, available methods for characterizing bovine class II MHC molecules-the MHC class that will influence the efficacy of a p67based vaccine-have been tedious to use and unsuitable for non specialized laboratories and field conditions. Recently developed DNA based typing methods have many advantages over the older methods. The availability of these new methods has made development of a simple nucleicacidbased system for bovine class II MHC typing and characterization a priority for scientists in ILRAD's vaccine development program.Since 1991, ILRAD has collaborated with the Roslin Institute, in Edinburgh, on a project funded by the Overseas Development Administration (UK) to develop methods for bovine class II MHC typing based on characterization of genes that encode expressed class II products. Scientists at Roslin examined a number of typing techniques based on use of the polymerase chain reaction (PCR) to amplify defined stretches of DNA. Two complementary methods applicable to a range of class II genes were chosen. Types are assigned by analysis of restriction fragment length polymorphism (RFLP) in PCRamplified segments of the class II gene; the presence or absence of a series of restriction enzyme sites is determined from the sizes of the restriction fragments.The PCRRFLP assignments are then checked and confirmed by assessment of singlestrand conformation polymorphism (SSCP), in which sequencedependent variation in the migration of the denatured PCR products is used to distinguish different class II genes. Both the PCRRFLP and SSCP methods for typing have been transferred to ILRAD, where they are being used to evaluate MHCrelated effects on the efficacy of ILRAD's experimental vaccine when applied in field trials. Another important aspect of the project has been cloning and characterizing full length complementary DNA for a number of bovine class II genes. More specifically, the ILRADRoslin project has established, among many other facts, that class II products from both the DR and DQ loci are expressed by bovine immune cells.All vaccine development research programs need some way of typing class II MHC molecules. The development of rapid DNAbased methods to define the number and variety of expressed bovine class II MHC genes will provide the basis for rigorous studies of antigen presentation by the products of these genes and an assessment of their consequences in the immune responses of cattle populations to improved vaccines.The technologies developed in this collaborative research have provided an ideal opportunity to acquire enhanced knowledge of antigen presentation. This, in turn, will improve ILRAD's capacity to evolve improved antigen delivery strategies for the East Coast fever vaccine under development at the Laboratory. A Trypanosoma congolensespecific antigen released in the course of an infection is identified as a thiol protease precursor Standardized reagents, including trypanosome antigens, are needed to support research in the epidemiology of trypanosomiasis. A peptide doublet of Trypanosoma congolense with a molecular weight of 38/40 kiloDaltons (kDa) and recognized by diagnostic monoclonal antibodies was used to raise polyclonal antibodies. One of these antibodies was used to screen a complementary DNA (cDNA) library from which 14 positive clones were identified. Antibody subpopulations selected by 10 of the 14 clones specifically recognized the 30/40kDa polypeptides in lysates of different isolates of T. congolense. These recombinant antigen selected antibody subpopulations appeared to have retained the speciesspecificity of the original polyclonal.A clone with a cDNA insert of 1.6 kilobases, which had hybridized with all the other positive clones, was further characterized and sequenced. Results of a timecourse digestion of T.congolense DNA with restriction enzymes revealed that the gene encoding the T. congolense speciesspecific antigen occurs as an imperfect tandem repeat in the genomes of these parasites, with an estimated copy number of between 20 and 30.The gene appears to be polymorphic among three isolates of T. congolense. A complete nucleotide sequence of the cDNA was obtained. Analysis of the whole of the deduced amino acid sequence revealed a number of domains identified as potential signal sequences. A homology search in databases revealed a high degree of identity of the deduced protein sequence to cysteine proteases from both animal and plant sources.The gene is one of two studied that encode antigens secreted by trypanosomes or released by the parasites on dying into the blood and other tissues of mammalian hosts. Characterizing these antigens and making them available will offer scientists standardized reagents for use in studies of trypanosome epidemiology.Assan ILRAD was founded in 1973 to conduct research into better ways of controlling livestock diseases. The current primary goal of the Laboratory is to develop safe, sustainable and costeffective methods of controlling the most important parasitic animal diseases in Africa and other developing regions: trypanosomiasis, transmitted to animals by tsetse flies, and tickborne diseases, particularly East Coast fever. An international staff of about 50 scientists conducts basic research, much of it aimed at the development of vaccines, in biochemistry, cell biology, epidemiology, genetics, immunology, molecular biology, pathology, parasitology and the socioeconomics and environmental impacts of livestock disease control.ILRAD is one of 18 international agricultural research centres sponsored by the Consultative Group on International Agricultural Research (CGIAR). The secretariat of the CGIAR is located in the World Bank headquarters, in Washington D C. The CGIAR is an informal umbrella organization of 40 national governments, international organizations and private foundations that together provide about US$230 million annually to the 18 centres for research, training and advisory services. The CGIAR aims to help farmers in developing countries increase their production of staple food crops, livestock, fish and trees in ways that improve the nutrition and wellbeing of lowincome peoples and the management of natural resources.","tokenCount":"4486"} \ No newline at end of file diff --git a/data/part_3/6791280696.json b/data/part_3/6791280696.json new file mode 100644 index 0000000000000000000000000000000000000000..17ce394f40fa348fb3921ff0ae319e43903827ab --- /dev/null +++ b/data/part_3/6791280696.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"d23736de0755803dad1dd8440301c668","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/5df7ce31-7070-4533-9186-f1f8b41e4839/retrieve","id":"847498873"},"keywords":[],"sieverID":"204ec26f-ce8f-456d-a6ac-0479bc766ea9","pagecount":"2","content":"The Global Strategy to Improve Agriculture and Rural Statistic represents a major effort towards assisting developing countries to improve their agricultural statistical systems. It is structured around three pillars, of which the first is the establishment of a minimum set of core data that governments should collect. Between January and February 2012 the Livestock Data Innovation Project administered a global online survey among livestock stakeholders, of which the primary objective was to identify and rank core livestock domains/areas for which livestock data / indicators are demanded.The survey targeted livestock-related data and indicators along the value chain. Essentially, these include information on livestock inventories, inputs and husbandry practices, production, and consumption of livestock products, i.e. data and indicators that measure, provide information on livestock market opportunities, and production and marketingrelated constraints.A brief summary of the results of the survey is presented here, while a detailed analysis is available at: http://www.africalivestockdata. org/afrlivestock/content/papersreportsA total of 641 respondents filled in the survey questionnaire, with the majority coming from Africa (29%) and OECD countries (36%). Approximately 12 percent of respondents reside in East or Southeast Asia, 11 percent in Latin America and 9 percent in South Asia. The sample somewhat reflects the focus of the Livestock Data Innovation Project, which is on Africa.As to affiliation, nearly 47 percent of the 641 respondents, i.e. 300 stakeholders, classified themselves as researchers or from a university, followed by 13.3 percent (or 84 respondents) from Livestock Ministries or Departments, 12 percent from private companies and about 10 percent from Non-Governmental Organizations (NGOs) as well as from Donors and International Organizations. Few respondents (from 0.3 to 1.3 percent) come from non-Livestock Ministries, Local Governments and the National Bureaus of Statistics.Respondents were asked to rank in the importance data/indicators in 15 livestock domains. Ranking is based on a 5 level rating scale (most important; important; useful; partly useful; marginally useful), while the livestock domains are: However, given the relevance of price information to formulate economically sustainable investments, a specific question on the importance of getting price information was added. In fact, over 83 percent stakeholders consider getting price data as most important or important.Respondents identified six core livestock domains, which are considered as most important or important by at least 80 percent of the sample. Beyond prices, these include data/indicators on animal health and disease; meat production; livestock population; feed; milk production; and consumption of animal foods. Ranking in domains is similar across all groups of stakeholders.The survey asked questions about the preferred time-frequency and the preferred unit of reference for livestock data and indicators. For all domains, respondents largely look for annual data and indicators, followed by quarterly and monthly information. No major differences in preferences were found between the various categories of respondents. However, information on animal health/disease is demanded on a monthly basis, which is possibly due to the public good dimension of epidemic and zoonotic diseases. Given that only 0.3 percent of the respondents come from the National Bureau of Statistics, the results possibly underestimate the need for quarterly data, which are needed in most countries to produce quarterly estimates of livestock value added and GDP (see brief 1/2012).As to the preferred unit of reference, respondents primarily require national level data/indicators, but also look for regional (within country) data and, to some extent, for district and household level data. In particular, stakeholders prefer national, region and district level data/indicators for the core livestock domains, and household level data/indicators for the other domains, such as for the production and use of animal dung, livestock housing and animal power. These results could overlook the demand for district level data as less than 1 percent of the respondents come from local governments. Indeed, the latter are increasingly responsible for the design and implementation of district level programmes and projects, including for animal health and disease control.Finally, respondents were asked to identify and rank (from 1 to 4) four livestock domains for which they would like additional data/indicators and of better quality. The majority of stakeholders (51%) demand better data / indicators on animal health / disease, and a good share would also prioritize investments to improve data / indicators in the domains of livestock population (43%), livestock feed (41%) and meat production (34%). Very few respondents (<10%) prioritize investment of scarce resources to improve the quantity and quality of livestock data and indicators on hides & skins production, animal power, housing for livestock, labour, production and use of dung, and production of eggs. ","tokenCount":"743"} \ No newline at end of file diff --git a/data/part_3/6799944755.json b/data/part_3/6799944755.json new file mode 100644 index 0000000000000000000000000000000000000000..5a49eae3bb29a3d3153a602ed4f31e8d6b11ba81 --- /dev/null +++ b/data/part_3/6799944755.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"59065873296058166a6da5437c56cf5f","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/2c43df12-38e2-4e2b-ad82-af0d78670171/retrieve","id":"1929925508"},"keywords":[],"sieverID":"7979f764-698a-4dba-9c03-b03413b3a12d","pagecount":"49","content":"Note: a This number likely only reflects the enumerated population of the Census survey rather than the total population. DoP ( 2015) note that an estimated 69,753 persons in Kayin State, 46,600 persons in Kachin State and 1,090,000 persons in Rakhine State were not counted during enumeration. Source: 1 Census 2014 (DoP, 2015), and Authors. Actual sample size Gap from target (%) Target sample size Actual sample size Gap from target (%) Target sample size Actual sample size Gap from target (%) Target sample size Actual sample size Gap from target (%)The first round of the Myanmar Household Welfare Survey (MHWS)-a nationwide phone panel consisting of 12,100 households-was implemented between December 2021 and February 2022. The objective of the survey was to collect data on a wide range of household and individual welfare indicators-including wealth, livelihoods, unemployment, food insecurity, diet quality, health shocks, and coping strategies-in a country exceptionally hard hit by conflict, severe economic collapse, and several damaging waves of COVID-19. The respondents interviewed in the MHWS were purposely selected from a large phone database aimed at being representative at the region/state level and urban/rural level in Myanmar.In this paper, we discuss two key steps taken to ensure that the MHWS is nationally and subnationally representative at the state/region and urban/rural level. First, we used a quota-based sampling strategy by setting survey quotas for respondents' geography, education, farming status, gender, and rural/urban residence. This sampling strategy is used to address the well-known drawbacks of phone survey samples (e.g., the over-sampling of more educated respondents) and the survey's particular interest in over-sampling farm households and equally sampling men and women. Second, we constructed household, population, and individual level weighting factors to further ensure that the survey generates nationally and subnationally representative statistics.To assess the effectiveness of these two strategies on achieving representativeness and consistency with previous surveys, we compare results from the MHWS to earlier nationally representative datasets, focusing on sample sizes of interviewed households for each state/region, and on education levels, farm/non-farm occupation, urban/rural residence, as well as respondents' housing characteristics, which are unlikely to change substantially over short periods of time. We show that the phone-based MHWS has broader geographical coverage than previous national surveys, reaching 310 of Myanmar's 330 townships. Moreover, our sampling approach was generally effective in reducing the education bias of phone surveys, except for a handful of states/regions. The MHWS is also unique in providing equal representation of male and female respondents. Additionally, the MHWS sampling and weighting strategies produce statistics on key indicators that closely mirror results from the two most recent national surveys in Myanmar. Overall, the results suggest that these strategies are successful in generating a subnationally representative phone survey that collected data on a rich array of household welfare indicators in exceptionally difficult political and economic circumstances.Myanmar is experiencing a wide range of shocks due to COVID-19, political instability, armed conflict, weather events, pests, and various related economic disruptions, all at a time when information is scarce due to the collapse of cooperative data collection efforts between the present military government and most bilateral and international agencies. Yet in this difficult environment, accurate and frequent monitoring and evaluation is crucial for targeting scarce resources for maximum impact and benefit to Myanmar's very vulnerable population. Considering these knowledge gaps, the Myanmar Agricultural Policy Support Activity (MAPSA) began implementing the Myanmar Household Welfare Survey (MHWS).MHWS is a large-scale high frequency phone survey intended to be representative at the national level (except for Wa Special Administered Zone -SAZ), the urban/rural level, and the state/region level. The same respondents are intended to be interviewed in each round. Respondents dropping out of the sample will be replaced to achieve the same number of respondents in total and by quota. The MHWS, as its name suggests, is primarily designed to track household and individual welfare (assets, incomes, wealth, food security, diet diversity, food expenditures, coping strategies and access to services), farm and non-farm economic activities (including migration and remittances), and household demographic composition and migration status (see Appendix B for the Round 1 questionnaire of the MHWS). Moreover, the MHWS forms the basis for the Myanmar Agricultural Performance Survey (MAPS), which will be conducted as a high frequency survey of farm households timed to Myanmar's cropping calendar. This paper discusses the sampling strategy for the first round of MHWS, conducted between December 17, 2021 and February 13, 2022. Herein, we describe considerations made in the sample design, challenges in implementing the first round of data collection in relation to the sample, and calculations of the weights to reduce bias resulting from the composition of the final sample, such as the inability to interview the target number of respondents with low education levels. We also report sample characteristics of the survey and compare MHWS sample characteristics to the 2017 Myanmar Living Conditions Survey (MLCS), implemented by the Myanmar Central Statistical Organization (CSO), UNDP, and The World Bank (CSO, UNDP & World Bank 2019a, 2019b), which was the last nationally representative socioeconomic survey conducted in Myanmar, as well as to the 2019 Inter-Censal Survey (ICS) (DOP, UNFPA 2020). This paper should be used as a reference for understanding and analyzing MHWS in a nationally representative fashion. Yet, this paper may also serve as a guide for implementing nationally and subnationally representative phone surveys in other countries. Prior to COVID-19, the uptake of national phone surveys was limited despite their cost-effectiveness and ability to access hard-toreach places (Dillon 2011, Demombynes et al. 2013, Dabalen et al. 2016). COVID-19 saw an explosion in the number of phone surveys through necessity rather than desire. However, several concerns remain.The main concern is representativeness. Those without working mobile phones cannot answer to the survey. Urban residents and those living in well-connected and wealthier areas are more likely to own phones. Mobile phone owners are also typically better off than non-owners, which leads to systematic under-representation of the very poor. Non-response rates, too, are higher in phone surveys and may under-represent particular livelihoods, such as farmers who own phones but are less likely to answer them at certain times of the day (Gourlay et al. 2021). Moreover, many COVID-19 phone surveys were not nationally representative because -in a rush -they opportunistically drew on existing program-based surveys. Those that were nationally representative either drew their sample from pre-COVID in-person surveys (see Brubaker, Kilic and Wollburg 2021) or only set out to achieve representativeness at the national level, perhaps because subnational representativeness would involve exorbitant costs due to screening out surplus non-representative participants. 1 However, in developing countries that are highly diverse in multiple dimensions (ethnicity, economic status, geography, and livelihoods), subnationally representative surveys are critically important for monitoring and evaluation, for program design and targeting, and for generating a more rigorous body of evidence for a wide range of policies and programs. Other issues of phone surveys relate to respondent's trust in the enumerator, accuracy of data collection and shorter survey duration (Lamanna et al. 2019;Gourlay et al. 2021).While there are obvious challenges with achieving representativeness of phone surveys, there are also under-appreciated advantages of phone surveys in countries beset by remoteness, conflict, and pandemic conditions (Maffioli 2020). Indeed, while previous socioeconomic surveys in Myanmar failed to reach large parts of the country due to conflict (and thus were not truly representative), the present phone-based MHWS managed to survey the majority of Myanmar's townships, many of which have not been surveyed in recent times (e.g. northern Rakhine), and many of which are currently characterized by acute conflict and significant COVID-19 restrictions. These challenges are obviously not unique to Myanmar (Hoogeveen and Pape, 2020). In this paper, we show that the preand post-survey methods for minimizing some of the biases that affect phone surveys could be used as a template for implementing subnationally representative surveys from scratch in other countries characterized by complex governance and logistical challenges.The aim of MHWS is to represent the population living in conventional households, similar to the usual target population of nationally representative datasets that collect data through face-to-face interviews. However, as data collection was conducted by phone rather than through face-to-face interactions, the sample design deviates from a traditional sample design based on a random selection of enumeration areas and households therein.The MHWS has a sample size of 12,100 households. The MHWS originally intended to interview 12,500 respondents, with a distribution proportional to the population size in each State and Region based on the population data of the 2014 Census (DoP, 2015). However, at state/region level, a deviation of the proportional allocation of the sample was decided for the two states with the lowest population size (i.e., Kayah and Chin State), in favor of a minimum sample size of 240 respondents to allow for more accurate estimates of state/region level indicators. It was decided to keep the target number of observations in the other states and regions, resulting in the final intended sample size of 12,790 respondents (Table 1; Figure 1). In doing so, the MHWS sample design and number of observations in each state and region was similar to the 2015-2016 Myanmar Demographic Health Survey (MDHS) and the 2017 Myanmar Living Conditions Survey (MLCS), both of which aimed to be representative of each state/region and of rural and urban areas of Myanmar as a whole.1 Specifically, if the population of mobile phone owners is biased heavily towards somewhat wealthier and more urban respondents, then random digit dialing would require a large number of phone calls to find the kinds of target households laid out in this study, thereby raising the cost of the survey quite substantially (we estimate a doubling of costs). The implementation of MHWS occurred in collaboration with Myanmar Survey Research (MSR), a private survey research company based in Myanmar. MSR owns a database of 280,274 phone numbers of adults who consented to be contacted for future participation in phone survey data collection, including geographical information of the township of residence of the respondent. MHWS respondents could be any household member aged 18-74 years old. The lower limit of 18 years old was purposively chosen as childhood legally ends at 18 years old in Myanmar.The first step in selecting phone numbers for interview was the development of a master phone number database. This master database was constructed as a \"long list\" for final survey sample selection and contained four times the actual number of target interviews (to account for nonresponse). To create the master database, all phone numbers were stratified at the township level and then randomly within each strata such that the final amount of phone numbers in the master database were proportional to the population size in each township. Given that no public information at township level was available from the recent ICS data collected in late 2019-early 2020, the proportional distribution of the population by township is based on the information in the 2014 Census data. Phone numbers from telecommunication providers as well as phone numbers in townships of Wa SAZ -subject to sanctions by a number of donor governments -were excluded from the sample.The intention of randomly sampling within each township was to minimize the risk of oversampling respondents who live predominantly in well-connected and wealthier townships only. Without a deliberate attempt to achieve such a spatial spread, a random selection of phone numbers risks reaching respondents who are clustered in urban and suburban areas, in areas with better infrastructure and with higher levels of asset ownership, in certain geographical areas in a state, and in townships that are not under control of ethnic armed organizations (which are often either less connected or use phone numbers of neighboring countries). While we did not insist on having an exact proportional balance of interviews at township level in the final sample, the survey company did strive to achieve such balance to the extent possible.Another concern we tried to attenuate is that poorer people, farmers, or women may be less likely to answer a phone and could therefore be under-represented when randomly selecting phone survey respondents (Gourlay et al. 2021). We therefore set minimum survey targets for gender of the respondent (female), location of the respondent's residence (rural), respondent's education (lowereducated) and household livelihood (farming) to be met at each state/region level. The target ratios were set to reflect the ratios reported from the official census as well as our own estimates of these ratios from the 2017 MLCS in each state/region (Table 2). 4. Household livelihood (farming): Respondents living in a household where crops were harvested in the past 12 months. The share of farmer households was calculated based on the same question in the MLCS 2017 plus an additional 5 percent buffer. This oversampling of households with farm livelihoods was because they are a key group of interest with planned follow-up surveys specifically directed to farm households.In practice, the approach adopted to achieve these quotas was as follows. After explaining the purpose of the study and obtaining informed consent, the respondent first answered survey screening questions related to the quota (age, gender, location, education level and household livelihood). Based on this information, it was assessed whether the interview quota for respondents with these characteristics were already met, and if so, the respondent was explained that s/he would not be interviewed at this time but may be contacted again in the future.There was no instruction to the interviewers that the owner of the phone number him or herself should respond to the interview questions. In some cases, another person answered the call and agreed to be interviewed, while in other cases, the person who answered the call handed over the phone to another household member to be interviewed. Additionally, enumerators were clearly instructed that any household member between 18 and 74 years old was eligible to be interviewed (i.e., they did not need to target the household head for the interview). If the respondent's age was too low or high to be interviewed, s/he was asked to hand over to another household member.The final sample does not fully achieve the attempted sample targets and sizes (Table 3), though some sample deviations were expected given that a large share of the population was directly or indirectly affected by conflict, including disruptions to telecommunication services, frequent power outages, economic distress, and displacement during the period of data collection. In states and regions where targets could not be achieved after reaching out to all phone numbers in the master dataset, the survey company attempted to reach respondents from the respective townships in their panel database who were not selected in the master dataset. Even so, attempted targets could not always be met.The most severe problems of falling short of pre-determined targets were related to two issues. First, target gaps occurred in areas highly affected by conflict, the most extreme cases being Kayah, Chin and Shan State. Second, it proved difficult to reach the quota of respondents with low levels of education in Kayah and Chin, as well as Tanintharyi and Shan, and to a lesser extent Mandalay and Mon.Out of a total of 330 townships nationwide, 20 townships do not appear in our sample (Figure 2, Table A.1). Most of these non-surveyed townships have very small populations (1.6 percent of the total population of Myanmar), and therefore do not substantially undermine representativeness (further discussion follows). Because of the sample design, it is necessary to use sampling weights to improve the representativeness of estimates of national and regional level statistics for the following four reasons. First, the suggested survey respondent targets included oversampling of respondents in States with a low population size, particularly Chin and Kayah State, and of farm households. Respondents in these States were oversampled to improve the robustness of cross state comparisons, whereas farm households were oversampled due to programmatic interest. Yet their weights must be reduced such that they are not overrepresented in national statistics. Second, quota targets were not always met due to difficulties in reaching respondents, as explained above. Third, to improve subnational representativeness there was an opportunity to use the number of households in each State and Region and by urban and rural location that were made public in the report from the 2019 ICS data. Finally, in a number of cases, respondents' indication of rural or urban location deviated from the officially assigned designation of their village tract or ward and we adjusted this accordingly.For sample estimates to be representative of the population and subpopulations we developed household-level, population-level, and adult-level weights, with the household-level weights being the basis of the other two. Four main steps are followed in calculating the household-level sampling weights:1. Apply an expansion factor: We weight households for their probability of occurring in the sample, based on the 2019 ICS information of the number of households in each urban or rural location of each state and region. This step takes care of representativeness at state/region level and the share of households in rural (urban) locations in each of these States and Regions. Note that townships in Wa SAZ (Shan State) are dropped entirely from the sample. 42. Adjust for oversampling of farm households: In rural areas of each state and region we proportionally adjust the household weight of farm and non-farm households to have the same percentage of farm households as found based on MLCS estimates. No further correction for livelihoods was made at the urban level given the low number of farmers in that category.3. Weight for education level of the respondent: We proportionally re-weight households based on the level of education of their respondent (i.e., to adjust for oversampling of more educated respondents).4. Apply the maximum entropy approach to further adjust for wealth (based on land owned and housing type) and household composition (women-adult-only households).Step ( 1) is a conventional adjustment to ensure representativeness, while Step ( 2) is a correction specific to a programmatic interest in oversampling farm households for MAPS.Step (3) is an adjustment for the aforementioned problem of phone surveys generally oversampling more educated populations, and warrants more elaboration. Although we anticipated this well-known problem by setting a target in our sample design, it proved difficult to find a sufficient number of low-education respondents in several states/regions. Analysis of the 2017 MLCS data, as well as data from the 2014 Census and 2019 ICS reports, reveals sizeable differences in educational attainment between urban and rural populations and different generations (with MLCS suggesting that household heads and their spouses typically have lower education levels compared to younger household members). Yet, we noted that in our sample the respondents are more likely to be household heads or spouses compared to the general distribution of adults.Hence to reduce this residual education bias, we adjust weights for educational attainment at the state/region level, urban/rural level, by farm household status, and we consider the status of the person in the household (i.e., whether the respondent is considered the household head or spouse as compared to any other household member). Weighting factors for step (3) were thus calculated based on the share of adults with low education aged 13-69 years old in 2017 (i.e., who would be 18-74 years old in 2022), by relation to the household head (head and spouse, versus other household members), by urban/rural location, and household livelihood within each State or Region. 5 Analyses of MLCS data show no significant difference between the share of men and women who have low educational attainment, so weighting based on gender of the respondent does not seem warranted.The three weighting steps described above result in 180 different weighting factors; i.e. twelve categories (urban/rural, farm/non-farm, head/non-head, farm/non-farm) in each of the 15 states or regions. 6 Step ( 4) is a further adjustment to correct for remaining bias in characteristics that are orthogonal to characteristics already stratified and weighted for. For this, we rely on the maximum entropy approach (Wittenberg, 2010;Hainmueller, 2021). This method is increasingly being used to calibrate survey data to various population totals, including to calibrate survey weights of several of the World Bank's high frequency phone surveys initiated during the COVID-19 pandemic (The World Bank, 2021).Calibration of the survey weights should only be based on characteristics that are time-invariant or slowly changing over time. The most recent nationally representative dataset (partially) available to these authors was the 2017 MLCS data, collected five years prior to the current MHWS. In a country that was transforming extremely rapidly prior to 2020 (including for example a massive surge in mobile phone ownership), and then was set back by major and extreme shocks (i.e. a pandemic and conflict), many characteristics have likely changed. Moreover, a phone survey is typically short in nature and thus also limited in terms of available indicators to match between datasets. While the 2018 Intercensal Survey (ICS) data was collected right before the onset of the pandemic, we can only access its reports but not the raw data itself.The maximum entropy procedure is applied using the basis weights calculated in step a and included constraints to maintain the total number of households in each State or Region and by Urban and Rural location (based on 2020 estimate). Two additional sets of constraints were added related to wealth: (i) agricultural land owned (in five categories), based on the distribution of the 2017 MLCS data; and (ii) and housing type (apartment, bungalow/house, semi-pucca house, or other) among urban households, based on the reported 2020 ICS information. Finally, we set constraints for household composition. More specifically, it adjusts for households where all adults are women (women-adult-only households, WAH) in rural and urban areas separately, based on the 2017 MLCS data. Overall, we want our estimates of household and individual characteristics to relate closely to the population at large. We therefore develop population weights in addition to household weights. These weights are calculated as the household weights multiplied by the number of household members reported by each respondent. We also calculate individual weights because several MHWS modules are directed at individual-level information of the respondent rather than at household-level information (e.g., diet diversity). Thus, it is relevant to also develop weights that can approximate individual-level data to be representative for the adult population (aged 18-74 years old). Adult weights are therefore also calculated as household weights multiplied by the number of adults in the household.To assess how effective the sample is in reflecting the spatial and socio-economic diversity of the country, we assess its geographical spread and compare key demographic indicators with the most recent available large-scale and representative dataset (the 2017 MLCS) or the most recent ICS (referred to as 2019, though most data was collected early 2020).As noted above, respondents were reached in 310 of the 330 townships in Myanmar (or 324 when excluding townships in Wa SAZs we did not intend to survey) (Figure 2). The list of nonsurveyed townships consists mainly of townships with very low population sizes (see Appendix Figure A3) or townships that are highly inaccessible-even by phone. An overview of these townships is shown in Appendix Table A.1. In total the population of these townships consists of about 1.6 percent of the total 2019 population in conventional households of Myanmar, but about half of the non-enumerated population is from Wa SAZ (Shan State). The remaining six non-enumerated townships in Shan State have long been affected by conflict (Kim, 2014), complicating efforts to collect phone numbers from residents of these areas as well as effectively connecting to these numbers. The six townships missed in Kachin State are extremely remote and mountainous, and therefore very thinly populated; only 10 respondents were expected to be interviewed in these six townships combined, and proportional to its size, nobody was expected to be interviewed in one of these townships in Kachin State. Similarly, nobody was expected to be interviewed in one township in Yangon Region given the small number of people residing in this township (an island, with a population of under 2000 residents in 2014).The MHWS geographical spread of 310 townships (96%) is better than face-to-face national-level survey efforts of similar sample sizes, such as the 2015-16 DHS (12,500 households in 250 out of then 413 townships) (see Figure 4 and Appendix Figure A.1) (DoP, 2020) and the 2017 MLCS (13,824 households in 296 townships; see Figure A.2). This is in part due to the complex two-stage survey design setup of face-to-face surveys, which cluster typically 12 to 30 survey households within enumeration areas to reduce on transport and other logistical costs. These cost savings are necessary for face-to-face surveys but not for phone survey interviews. Moreover, face-to-face survey efforts can be hampered by inaccessibility, insecurity, and travel restrictions. The 2019 ICS, which intended to reach all townships in Myanmar, excluded eight townships in Shan State from the sample frame due to expected inaccessibility (this includes the six townships in Wa SAZ that we also excluded, one in Kokang SAZ that we also did not reach, and one other township that we did reach in MHWS). Out of the remaining ICS enumeration areas, only 92 percent were enumerated due to operational difficulties. These figures clearly demonstrate the extreme challenges of implementing face-to-face surveys in Myanmar, and points to a significant advantage of phonebased surveys.Especially notable in the MHWS is its success in reaching respondents in all 17 townships of Rakhine State. In the past decade, especially, Rakhine State has suffered from extreme insecurity due to the Rohingya crisis as well as conflict between the Arakan Army and the Myanmar military, resulting in survey enumeration efforts in the state being severely hampered. It is estimated that during the 2014 Census about 31 percent of the population of Rakhine State could not be enumerated (DoP, 2015). 7 In 2017 the MLCS team was unable to collect data in two townships of Rakhine State, while the 2019-2020 ICS was unable to reach about 74 percent of the selected enumeration areas in Rakhine State.COVID-19 saw an explosion in socioeconomic phone surveys, many of which aimed for national representativeness. However, a recent review on individual level representativeness of phone survey data questioned whether \"national\" phone surveys were truly representative: \"phone survey respondents are most often household heads or their spouses, and on average, are older, better educated and more likely to own a non-farm enterprise vis-a-vis the general adult population\" (Brubaker et al. 2021). That review, however, focused on country examples in which respondents were drawn from pre-COVID face-to-face household survey datasets, and, in three of the four phone surveys analyzed, enumerators implicitly or explicitly targeted household heads as the main respondent. Others have used a random digit dialing approach and find that there is substantial coverage bias towards men, urban, more educated and younger residents (L' Engle et al. 2018;Lau et al. 2019).In our study, concerns pertaining to representativeness at the individual and household level were moderated by our sample design. Particularly relevant at the individual level are the aforementioned gender and education quotas, mandating that half of all respondents should be female and setting targets for respondents with low educational attainment.Table 4 compares weighted estimates from our sample with to the 2017 MLCS survey data in relation to the education level of adults and farm livelihoods of households. Given that our weights are calculated based on MLCS survey data, a close approximation of weighted estimates is expected, and indeed is mostly confirmed, although our sample data for rural Chin State clearly under-samples low-education households. Appendix table A.2 also compares the unweighted (sample) and weighted (household or individual-level) key characteristics and shows that these estimates change after applying household and individual weights. Whereas the changes in estimates after weighting are substantial and sizeable, it is still limited, largely thanks to the sampling targets. Notes: Authors' estimates from 2017 MLCS and 2022 MHWS using survey weights described in MLCS documentation and in this note (for MHWS).Table 5 shows comparisons of gender, relation to household head, education level and age of the adult population between the MLCS and MHWS before and after weighting to further explore issues of representativeness at the individual level. We assume that using the information captured in the household roster in a well-conducted national phone survey, such as the MLCS, allows to confidently estimate key characteristics of all individuals living in conventional households (provided also that the correct weights are applied). We find that the suggested weighting based on the household weights and number of adults of the MHWS achieves a reasonable approximation of basic respondent characteristics as compared to characteristics of adults in the MLCS national household survey data. Our dataset does not suffer the same shortcomings as noted by Gourlay et al. (2021) and Brubaker et al. (2021), where respondents are disproportionally male and household heads. Moreover, differences between the MLCS and MHWS further reduce after weighting rather than aggravate as in Brubaker et al. (2021). Notable from Table 5 are the deviations of representation of age groups in the sample. The share of youth in our sample is a good approximation of the share of youth in the general population, contrary to findings from other phone survey studies who either find an overrepresentation (Henderson and Rosenbaum 2020) or underrepresentation of youth (Brubaker et al. 2021). However, we find a higher share of middle-aged people (25-49 years old) and a lower share of older people (age category 50-74 years old). This bias is particularly present among urban respondents and to a lesser extent among rural respondents. Note that even though older people are less represented among the survey respondents, the households they reside in are under-represented only to a minor extent -if any. Weighted estimates from MHWS show that 23% of households have household members aged 65 or older, which is a relatively good approximation of the weighted estimate using the MLCS data which shows that 25% of households have household members in that age category. 8Officially, 85 percent of households had at least one mobile phone in the 2019 ICS (DOP, UNFPA 2020). In our phone survey, non-response on the part of households without any mobile phone is expected to lead to underrepresentation of poor households. We explore concerns related to the representativeness of the MHWS in terms of household characteristics, particularly whether there is any evidence of MHWS having a lower (or higher) share of poor households. We use the 2019 ICS as the main comparison dataset given that this is the most recent national-level survey effort (December 2019 -February 2020) conducting in-person interviews at a large scale, and we compare housing characteristics, which one would assume do not change rapidly even in the face of severe shocks.Table 6 compares weighted estimates from MHWS to ICS data on housing characteristics at national and urban and rural levels. Some differences across the two surveys could be explained by subtle differences in phrasing of survey questions, but this caveat aside, the set of indicators in Table 6 are broadly comparable. The MHWS estimates approximate those for ICS in most characteristics, and certainly shows no signs of a bias towards better-off households. In terms of number of rooms, our survey reports a higher prevalence of households with one room, which is likely an indicator of poverty. In rural areas, in particular, we report larger shares of households with one room (26 percent versus 15 percent) and fewer who have more rooms. In this paper, we described a relatively novel approach to implementing a nationally and subnationally representative phone survey from scratch, rather than from a pre-existing survey. The ingredients in this approach were:1. A large and geographically dispersed database of phone numbers, in this case independently generated by the collaborating survey firm;2. A target-based sampling strategy designed to reduce common phone survey biases (such as geographical bias, over-sampling of more educated and urban respondents) and to achieve gender parity as well as an over-sampling of sub-samples of interest (in this case, farm households); and 3. A multi-step construction of survey weights at the household, population and individual (adult) level designed to further ensure national and subnational representativeness.4. A further correction of weights related to wealth and household composition.In our case, these steps have proven to be relatively cost-effective and to ensure a sufficiently high degree of precision compared to other available methods. For example, random digit dialing in step (1) -instead of a phone database with geographical location already known -would require a very large number of phone numbers to be called to achieve the quotas outlined in step (2). Indeed, we roughly estimate that random digit dialing is around twice as expensive as the approach used here. That target system has proven relatively effective in reducing bias towards respondents from more geographically accessible locations, and well educated and urban-based respondents, further leading to systematic under-sampling of the poor. Indeed, in most developing countries it is unlikely that even the construction of survey weights in step (3) would be sufficient to satisfactorily reduce these biases, or at best unlikely to generate sufficiently accurate statistics (i.e., accuracy would be reduced by a smaller number of less educated and rural respondents relative to their true population size). Finally, while the quotas set in step (2) clearly reduce bias, they were difficult to achieve in practice in several remote and conflict-affected states/regions, and therefore not sufficient to eliminate phone survey biases, so the construction of survey weights in step (3) and step ( 4) is also necessary.Overall, the approach outlined in this study appears to be remarkably successful in generating a new nationally and subnationally representative phone survey with excellent geographical coverage of a country severely affected by conflict, economic turmoil, travel restrictions, extreme ethnic diversity, and remoteness. Indeed, MHWS covers more townships than any previous nationally representative survey, including many townships currently affected by conflict. Weighted statistics for key variables that are roughly time-invariant also closely match other recent nationally representative surveys, including key demographic indicators, but also indicators of housing quality that are often used in measures of household wealth or asset-based poverty status. Older people, however, seem to be underrepresented in our sample -both prior to and after weighting -compared to the age distribution of adults in the regular population, perhaps because of lower phone ownership among this demographic.Given that the survey was also designed and implemented in a very short period of time (the space of a few months) and for much lower cost than in-person surveys (approximately one quarter of the cost of an in-person survey), it is clear that phone surveys have major advantages in countries like Myanmar, where mobile phone ownership is high (85 percent), but where much of the country is adversely affected by conflict, remoteness and the unusual logistical challenges of the COVID-19 pandemic.Although the approach outlined in this survey has attractive sample properties and allows for the construction of a high frequency panel, phone surveys are short-duration interviews with a limited number of questions relative to in-person interviews. There is also some evidence that responses in phone surveys can be systematically different to those of in-person surveys (Lamanna et al. 2019), and that response fatigue may be at least as problematic in shorter phone surveys as it is in longer in-person surveys (Abay et al 2021). That said, more research is needed to assess whether these are widespread problems or particular to the studied populations and survey modules.Bearing these caveats in mind, collecting nationally and subnationally representative highfrequency data on key welfare indicators-such as incomes, poverty, food security, diet quality and exposure to disease, conflict and other shocks-is critically important in fragile states such as Myanmar, where reliable data and rigorous research are increasingly scarce, yet also vitally important for targeting more resources to a growing population of vulnerable people.Moreover, the cost-effectiveness of phone surveys for welfare monitoring suggests that they should be much more widely used for high frequency surveillance systems capable of monitoring poverty dynamics, food systems and food security, and coping strategies and resilience (Barrett and Headey 2014;Headey and Barrett 2015). Phone-based welfare surveillance systems have obvious advantages in conflict-affected states but monitoring individual and household welfare on a more frequent basis is important in almost any lower and middle income country context. Agricultural economies are volatile at the best of times -Myanmar's farm sector, for example, perennially faces very volatile weather but also highly unpredictable trading partners (Boughton et al. 2021) -but even urban economies in less developed countries are clearly highly vulnerable to the threats of further pandemics (GPMB 2019) and are affected by more frequent severe weather events induced by climate change (Seneviratne, et al. 2021). High frequency phone surveys can gauge many of the key impacts of these shocks and identify vulnerable households, the effectiveness of their coping mechanisms as well as external interventions, and potentially identify key trends-especially in agriculture-to inform early warning systems. The contribution of this study is to identify a method for implementing high-frequency phone surveys that are nationally and subnationally representative, to provide a spatial granularity and statistical precision critical for effectively targeting resources in times of crisis. As a token of appreciation, upon completion of the interview, we will send 4,000-kyat phone credit. Together with the responses of 12,750 people from all different States and Regions of Myanmar, they can help us to assess the socioeconomic situation of the households in the country. Your responses will be kept completely confidential and will be combined with responses from others all over the country. Your name and any other private information will not be disclosed to and shared with anyone outside of the primary research team.Your participation is voluntary. You can stop participating at any time. During the interview, you may also refuse to answer any questions at any time without fear of losing any rights to which you are entitled. The interview will take approximately 25 minutes. There is no risk in your participation and we do not intend to ask any controversial questions. ","tokenCount":"6297"} \ No newline at end of file diff --git a/data/part_3/6812793118.json b/data/part_3/6812793118.json new file mode 100644 index 0000000000000000000000000000000000000000..f7ef2d2db0f5970f1ebf07d0211ea6ff4bcc9349 --- /dev/null +++ b/data/part_3/6812793118.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"3e6e6d872d7654c9c8fffec2c5633aba","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/9c0a9844-1fd3-469e-bf47-7cab8ee6b866/retrieve","id":"359570977"},"keywords":[],"sieverID":"19539075-a8c5-4428-ad98-00760f6637bf","pagecount":"58","content":". Analyse participative de la disponibilité alimentaire saisonnière au Niger. Agence italienne pour la coopération au développement (AICS), Niamey (Niger) & Centre international de hautes études agronomiques méditerranéennes (CIHEAM-Bari), Valenzano (Bari, Italie).Photo en couverture : Collecte de données sur la disponibilité alimentaire saisonnière au Niger Credit : Abdel Kader NAINO JIKA Cette publication a été produite avec le soutien financier de l'Union européenne. Son contenu relève de la seule responsabilité des auteurs et ne reflète pas nécessairement les opinions de l'Union européenne.Ce rapport présente les résultats de la collecte de données sur la disponibilité alimentaire saisonnière au Niger. La collecte de données a eu lieu dans 9 villages au Niger à travers des séances de discussions de groupe et une méthodologie de recherche participative connue sous le nom de « calendrier de disponibilité alimentaire saisonnière » a été utilisée. Cette méthodologie permet la collecte d'une multitude d'informations sur la disponibilité, l'abondance et la diversité des produits alimentaires dans l'environnement alimentaire local. Les connaissances enregistrées peuvent guider dans l'orientation de projets et d'interventions visant à améliorer la sécurité alimentaire et nutritionnelle, les sources de revenus, ainsi que la résilience au changement climatique.La collecte des données a eu lieu en septembre 2022 et en mars 2023 dans neuf villages au Niger. Parmi celles-ci, sept sont rurales ; Harikanasou, Kiota, Boulal Gaouri Zarma, Koran Kassa Zarma, Kankandi, Sadoré (tous dans le Département du Boboye), Falwel (Département de Loga) ; tandis que Liboré et Goudel sont urbaines, situées dans les limites de la ville ou à la périphérie de Niamey.Chaque mois de l'année a fait l'objet d'une évaluation de la disponibilité des espèces locales par les participants aux séances de discussions de groupe, au moyen d'une échelle graduée de 0 à 3. La valeur 0 désigne une absence totale de disponibilité, tandis que la valeur 3 indique une disponibilité importante. Au cours de cette analyse, des données saisonnières ont été méthodiquement assemblées pour un total de 78 types d'aliments. Ces aliments se rapportent à 47 espèces distinctes, englobant 29 variétés et appartenant à 22 familles botaniques différentes. Ces ressources alimentaires sont rendues accessibles aux communautés examinées par le biais de divers mécanismes tels que l'autoproduction, les transactions sur les marchés locaux ou leur collecte directe dans la nature environnante.Le rapport a également examiné la différence, au niveau des 9 villages étudiés, entre la disponibilité incluant le marché, l'autoproduction et le prélèvement dans la nature et la disponibilité sans le marché. La différence du nombre d'espèces est minime : 70 contre 78, avec donc seulement 8 espèces exclusivement disponibles sur le marché à n'importe quel mois de l'année. Lorsque l'on considère seulement la disponibilité saisonnière de l'autoproduction et des sources sauvages, les tendances et les modèles saisonniers sont immédiatement perceptibles : le nombre total d'espèces disponibles allant de 42 en août à 61 en janvier, sur les 70 aliments totaux enregistrés. Les mois d'été ont une disponibilité moyenne plus faible.En conclusion, ce rapport présente les résultats préliminaires d'une étude approfondie sur la disponibilité alimentaire saisonnière au Niger. La méthodologie novatrice de collecte de données, basée sur des discussions de groupe et le « calendrier de disponibilité alimentaire saisonnière », a permis d'obtenir des informations riches et variées sur la disponibilité, l'abondance et la diversité des produits alimentaires consommés dans les communautés étudiées. Ces données revêtent une importance cruciale en éclairant la voie vers des projets et des interventions ciblées visant à renforcer la sécurité alimentaire, la nutrition, les moyens de subsistance et la résilience face aux défis environnementaux.La portée de cette étude va au-delà de la simple collecte de données, car elle offre des bases solides pour l'orientation des politiques de prise de décision. Les résultats présentés ici fournissent un aperçu essentiel pour guider les décideurs dans la formulation de stratégies visant à améliorer la sécurité alimentaire et la qualité de vie des communautés locales. En mettant l'accent sur la disponibilité saisonnière des aliments et les variations observées dans différentes périodes de l'année, ce rapport offre un éclairage précieux pour développer des solutions durables et résilientes.Projet SUSTLIVES Cette étude met en lumière l'importance de comprendre les habitudes alimentaires locales et les facteurs saisonniers qui influencent la disponibilité des produits alimentaires. En se basant sur ces connaissances, des actions peuvent être entreprises pour atténuer les effets des fluctuations saisonnières sur la sécurité alimentaire et nutritionnelle. En somme, les résultats présentés dans ce rapport fournissent une base solide pour des efforts continus visant à améliorer la vie des communautés locales grâce à des interventions éclairées et des politiques avisées en matière de sécurité alimentaire et de développement durable. Projet SUSTLIVESCe rapport, un des livrables du projet SUSTLIVES (SUStaining and enhancement local crop heritage in Burkina Faso and Niger for better LIVes and EcoSystems), met en évidence les principaux résultats de la collecte de données qualitatives sur la disponibilité alimentaire saisonnière au Niger, et les principales tendances observées.SUSTLIVES est un projet financé par l'Union européenne dont l'objectif est de favoriser la transition vers des systèmes agricoles et alimentaires durables et résilients au changement climatique au Burkina Faso et au Niger à travers la valorisation du patrimoine des cultures locales et de leurs chaînes de valeur. SUSTLIVES est basé sur une analyse approfondie des caractéristiques socio-économiques et agro-environnementales du Niger et du Burkina Faso, où une approche globale est proposée pour protéger et renforcer l'agro-biodiversité ainsi qu'une approche participative et inclusive, sensible au genre et à l'âge. L'objectif spécifique de SUSTLIVES est de renforcer les capacités de recherche et d'innovation des acteurs sur les chaînes de valeur des cultures négligées et sous-exploitées (NUS -Espèces Négligées et Sous-exploitées) au Burkina Faso et au Niger 1 .Des statistiques récentes montrent que la malnutrition reste un problème mondial, avec entre 702 et 828 millions de personnes touchées par la faim en 2021, et 30 % de la population mondiale en situation d'insécurité alimentaire la même année (FAO et al., 2022). L'apport d'une alimentation diversifiée et saine dépend du bon fonctionnement des systèmes alimentaires. Il est donc crucial de comprendre leur dynamique et leurs interactions pour améliorer la qualité de l'alimentation et la sécurité alimentaire et nutritionnelle. La disponibilité alimentaire est un aspect qui englobe plusieurs aspects des systèmes alimentaires et est l'une des quatre dimensions de la sécurité alimentaire 2 . La disponibilité alimentaire saisonnière et la sécurité alimentaire et nutritionnelle sont étroitement liées, et les changements dans la qualité et la diversité du régime alimentaire sont souvent dus à la variation saisonnière de la disponibilité alimentaire. Comprendre les modèles de disponibilité alimentaire et les variations saisonnières au fil du temps peut être un point d'entrée fondamental pour parvenir à des régimes alimentaires plus diversifiés, sains et nutritifs, améliorant ainsi la sécurité alimentaire (Lochetti et al., 2020).Les calendriers saisonniers de disponibilité alimentaire sont un outil participatif de collecte de données qui répond à cet objectif. Cette méthodologie permet la collecte d'une multitude d'informations sur la disponibilité, l'abondance et la diversité des aliments dans l'environnement alimentaire local, et les connaissances enregistrées peuvent être utilisées pour guider des projets et des interventions visant à améliorer la sécurité alimentaire et nutritionnelle, les moyens de subsistance et la résilience au changement climatique. De plus, cet outil est un exemple de stratégie ascendante qui peut également améliorer la souveraineté alimentaire des communautés (Lochetti, 2021). Projet SUSTLIVESLa collecte des données a eu lieu en début d'année 2023 dans neuf villages du Niger (SUSTLIVES, 2022). Parmi celles-ci, sept sont rurales ; Harikanasou, Kiota, Boulal Gaouri Zarma, Koran Kassa Zarma, Kankandi, Sadoré (tous dans le Département du Boboye) et Falwel (Département de Loga) ; tandis que Liboré et Goudel sont urbaines, situées dans les limites de la ville ou à la périphérie de Niamey. 17 groupes de discussion (FGD -Focus group discussion) ont été organisés. À l'exception de Goudel, où seulement 1 FGD a été organisé, deux discussions de groupe, une avec des femmes et une avec des hommes, ont été menées dans chacune des 8 communautés (voir annexe 1).Les participants aux séances de discussions de groupe ont procédé à une évaluation mensuelle de la disponibilité des espèces autochtones. Cette évaluation s'est opérée selon une échelle graduée de 0 à 3, où le score 0 signifie une absence totale de disponibilité, tandis que le score 3 témoigne d'une disponibilité considérée comme substantielle.Pour ce rapport, les analyses ont été faites à la fois au niveau communautaire et à l'échelle globale. Pour l'analyse à l'échelle globale, la disponibilité mensuelle des mêmes espèces dans les neuf communautés a été agrégée en prenant en compte la disponibilité dans les jardins familiaux et les fermes, sur les marchés locaux et dans la nature. Aux fins des rapports, la classification suivante a été utilisée :Pour chaque communauté, le même processus a été suivi pour obtenir la saisonnalité moyenne identifiée par les hommes et par les femmes, si les mêmes espèces étaient mentionnées. De plus, une autre analyse a été effectuée afin de mieux comprendre la diversité et la disponibilité au niveau du village : seules les espèces cultivées localement ou issues des espèces sauvages ont été prises en compte, ignorant ainsi la contribution du marché à la disponibilité saisonnière.Les résultats sont présentés ci-dessous. Le nettoyage et l'analyse des données ont été effectués dans Excel. Projet SUSTLIVESDes données de saisonnalité ont été recueillies pour 78 aliments, correspondant à 47 espèces, dont 1 espèce non identifiée 3 , 29 variétés et 22 familles botaniques, qui sont disponibles pour les communautés étudiées par le biais de l'autoproduction, des marchés locaux ou qui proviennent de la nature (voir annexe 2).En termes de diversité variétale, 14 espèces ont plus d'une variété, avec une moyenne de 3,3 variétés pour chaque espèce. Le piment (Capsicum annuum) et le gombo (Abelmoschus esculentus) sont les cultures vivrières les plus diverses, chacune avec 5 variétés cultivées localement ou disponibles sur le marché. Le mil (Pennisetum glaucum) et le niébé (Vigna unguiculata) n'ont que deux variétés chacun (Tableau 1). 2 1,7 1,7 1,8 1,5 1,3 1,3 1,3 1,5 2,3 2,5 2,5 1,8 0 10,0 7 2,6 2,1 1,8 1,6 1,3 1,2 1,3 1,4 1,4 1,9 2,3 2,4 2,6 2,3 1,8 1,3 1,1 1,0 0,9 1,3 1,4 1,7 1,9 1,6 2 9,0 Piment 2,7 2,3 1,8 1,8 1,7 1,5 1,3 1,3 1,0 1,0 1,8 2,7 1,8 2 7 2,7 2,3 1,9 1,6 1,6 1,5 1,6 1,5 1,5 1,9 2,0 1,9 0 10,0Daucus carota Carotte 2,2 2,5 2,4 1,7 1,5 0,9 0,9 1,0 0,8 0,9 1,4 2,4 2,3 2,1 2,0 1,7 1,7 1,3 1,3 1,7 2,7 2,9 2,7 2,1 0 9,0 Arachis hypogaea Haricot 2,9 2,6 2,0 1,7 1,6 1,6 1,3 1,3 1,7 2,9 2,9 2,9 2 2 1,9 1,8 1,8 1,6 1,5 1,4 1,2 1,5 2,5 2,8 2,8 1,9 0 9,0 Vigna subterranea Vouandzou 2,3 2,1 1,8 1,8 1,9 1,6 1,6 1,5 2,3 2,6 2,6 2,6 2,0 0 9,0 2,8 2,6 2,5 2,0 1,9 1,4 1,5 1,5 1,4 1,5 2,2 2,5 2 5 1,5 1,5 1,5 3 1,5 1,5 1,5 1,5 1,5 1,5 1,5 4 2,1 2,0 1,8 1,6 1,4 1,3 1,3 1,9 2,8 3,0 2,9 2,0 0 9,0 Pennisetum glaucum 7 2,2 2,1 1,3 1,0 0,7 0,6 0,6 0,6 0,6 1,0 1,3 1,1 7 5,0 Sorgho 1,9 1,8 1,7 1,6 1,5 1,5 1,4 1,3 1,5 2,4 2,4 2,2 1 Amaranthus spp. Amarante 1,0 0,0 0,0 0,0 0,0 1,0 2,0 2,0 0,0 0,0 2,0 2,0 0,8 8 4Hibiscus sabdariffa Oseille Guissima 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,5 1,0 1,0 1,0 0,4 11 1Lactuca sativa Salade 2,5 1,5 0,8 0,7 0,5 0,2 0,3 0,3 0,3 0,8 2,1 2,5 1,0 8 3Salade Noire 3,0 3,0 3,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,8 9 0Moringa oleifera Moringa 1,9 1,7 1,7 1,7 1,9 1,9 2,4 2,2 1,7 1,7 1,7 1,8 1,9 0 12Moringa oleifera Moringa Large 2,0 2,0 2,0 2,0 1,5 1,5 3,0 3,0 3,0 2,5 2,5 2,5 2,3 0 6Moringa oleifera Moringa Petite 2,0 2,0 2,0 2,0 1,5 1,5 3,0 3,0 3,0 2,5 2,5 2,5 2,3 0 6Cassia tora Oula 0,3 0,3 0,0 0,0 0,0 0,4 1,0 2,3 2,3 2,5 1,1 0,8 0,9 8 3Leptadenia arborea Doulé 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 3,0 3,0 3,0 1,0 0,8 9 0 Unknown Yawey foy 3,0 3,0 3,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,8 9 0Citrullus lanatus Pastèque 1,9 1,6 1,6 1,7 1,3 0,7 0,7 0,8 1,1 1,2 1,6 1,9 1,4 3 9Cucumis melo Melon 1,0 1,0 0,8 0,8 0,8 1,3 1,3 1,3 1,3 0,8 0,8 0,8 1,0 8 4Musa sp. Banane 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,0 0,1 12 0 Saccharum officinarum Canne à sucre 1,0 0,6 0,6 0,6 0,6 0,4 0,0 0,0 0,6 Pomme du Sahel 2,5 2,5 2,5 2,5 2,0 2,0 2,0 2,0 2,0 3,0 3,0 3,0 2,4 0 5 Gombo 1,1 0,6 0,1 0,2 0,4 0,4 0,4 0,6 2,0 2,5 2,1 2,0 1,0 7 4 Abelmoschus esculentus Gombo Locale 0,0 0,0 0,0 0,0 0,0 0,0 3,0 3,0 3,0 2,0 2,0 2,0 1,3 6 3Gombo Moyenne 0,0 0,0 0,0 0,0 0,0 0,0 3,0 3,0 3,0 2,0 2,0 2,0 1,3 6 3Gombo Courte 3,0 3,0 2,0 2,0 2,0 1,0 1,0 1,0 1,0 3,0 3,0 3,0 2,1 4 3Gombo Longue 3,0 3,0 2,5 2,5 2,5 2,0 2,0 2,0 2,0 3,0 3,0 3,0 2,5 0 4Allium cepa Oignon 1,5 1,4 1,7 1,5 1,5 1,1 0,8 0,8 0,9 0,7 1,5 1,8 1,3 4 8Oignon De Galmi 0,0 0,0 3,0 3,0 3,0 2,0 2,0 2,0 0,0 0,0 0,0 0,0 1,3 6 3Allium cepa Oignon Noire 0,0 0,0 3,0 3,0 3,0 2,0 2,0 2,0 0,0 0,0 0,0 0,0 1,3 6 3Allium sativum Ail 3,0 3,0 3,0 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,9 0 9Brassica oleracea Choux 2,3 1,6 1,1 1,0 0,7 0,4 0,3 0,1 0,1 0,3 1,4 1,9 0,9 7 5Brassica oleracea Choux Grande 3,0 3,0 3,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,8 9 0Brassica oleracea Choux Petite 3,0 3,0 3,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,8 9 0Cucumis sativus Concombre 1,0 1,0 0,7 0,7 0,7 0,7 0,7 1,0 1,0 0,7 1,7 1,7 0,9 10 2 Cucurbita pepo subsp. Pepo Courgette 1,5 1,5 1,8 1,3 1,3 1,3 1,3 1,5 2,3 2,0 2,0 2,0 1,6 0 12Hibiscus sabdariffa Oseille Blanche 2,2 1,2 1,4 0,4 0,2 0,0 0,0 0,0 0,4 2,4 2,6 2,6 1,1 6 4Hibiscus sabdariffa Oseille Rouge 2,4 1,0 0,6 0,4 0,2 0,0 0,0 0,0 0,6 2,6 2,8 2,8 1,1 8 1Lactuca sativa Salade Jaune 3,0 3,0 3,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,8 9 0Solanum aethiopicum Yalo 3,0 3,0 3,0 2,0 2,0 3,0 3,0 3,0 0,0 0,0 0,0 0,0 1,8 4 2Solanum lycopersicum Tomate 2,2 1,9 1,1 0,8 0,6 0,4 0,4 0,4 0,6 0,6 1,3 1,7 1,0 7 5Solanum melongena Aubergine 1,7 1,6 1,3 0,9 0,8 0,6 0,6 0,4 0,8 0,8 1,3 1,4 1,0 7 5Capsicum annuum Piment 2,5 1,8 0,8 0,8 0,8 0,5 0,5 0,5 0,7 0,7 2,2 2,5 1,2 8 2Piment Grosse 3,0 3,0 3,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,8 9 0Capsicum annuum Piment Longue 3,0 3,0 3,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,8 9 0Capsicum annuum Piment Verte 1,5 1,3 1,0 0,8 0,8 0,8 0,8 1,0 1,0 0,8 1,2 1,3 1,0 8 4Capsicum spp. Poivron 2,2 2,1 1,6 1,3 0,9 0,8 0,8 0,8 0,7 0,6 1,2 1,4 1,2 6 6Carica papaya Papaye 3,0 3,0 3,0 0,0 0,0 3,0 3,0 3,0 0,0 0,0 0,0 0,0 1,5 6 0 Projet SUSTLIVES Courge 1,4 1,1 0,9 1,0 1,0 0,8 0,8 0,6 1,9 2,3 2,4 2,0 1,3 6 6Cucurbita spp. Courge Blanche 3,0 3,0 2,0 2,0 2,0 0,0 0,0 0,0 0,0 3,0 3,0 3,0 1,8 4 3 0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 0 12 Cucurbita spp. Courge Multicolore 3,0 3,0 2,0 2,0 2,0 0,0 0,0 0,0 0,0 3,0 3,0 3,0 1,8 4 3 Carotte 1,6 2,0 1,7 1,1 0,8 0,5 0,5 0,5 0,3 0,2 1,0 1,0 0,9 8 4 Arachis hypogaea Arachide 1,3 0,9 0,3 0,1 0,1 0,1 0,0 0,0 0,9 2,5 2,1 1,9 0,8 8 4Arachis hypogaea Arachide Courte 3,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 3,0 3,0 3,0 1,0 8 0Arachis hypogaea Arachide Longue 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,0 1,0 1,0 0,3 12 0Haricot 2,4 1,3 0,9 0,6 0,4 0,4 0,3 0,4 1,6 2,9 2,9 2,9 1,4 6 3Sesamum indicum Sésame 1,6 0,6 0,4 0,2 0,1 0,2 0,1 0,1 0,8 2,2 2,7 2,7 1,0 8 2Vigna subterranea Vouandzou 1,3 0,8 0,5 0,4 0,3 0,1 0,1 0,1 1,6 2,4 1,9 1,9 0,9 7 5Vigna subterranea Vouandzou Blanche 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,0 1,0 1,0 0,3 12 0Vigna subterranea Vouandzou Noire 3,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 3,0 3,0 3,0 1,0 8 0Vigna unguiculata Niébé 1,8 1,4 1,1 0,6 0,5 0,0 0,0 0,0 1,5 2,1 2,6 2,3 1,2 5 6Vigna unguiculata Niébé Rouge 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 3,0 3,0 0,0 0,5 10 0Patate douce 1,7 1,5 1,0 1,0 1,0 0,3 0,3 0,4 0,4 0,4 1,2 1,5 0,9 8 4Manihot esculenta Manioc 1,7 1,5 1,1 1,5 1,4 1,1 1,2 1,0 1,1 1,3 1,7 1,9 1,4 1 11Manioc Blanche 1,5 1,5 1,5 1,5 3,0 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,6 0 11Manihot esculenta Manioc Rouge 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 12 0 0Oryza sativa Riz 1,1 0,9 0,6 0,9 0,8 0,3 0,3 0,3 0,7 0,8 2,0 1,9 0,9 9 3Pennisetum glaucum Mil 1,8 1,1 0,6 0,4 0,3 0,1 0,0 0,0 1,4 2,6 2,8 2,6 1,1 6 3Mil Blanche 3,0 3,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 3,0 0,8 9 0Solanum tuberosum Pomme de terre 1,8 1,8 1,7 1,0 0,8 0,3 0,3 0,3 0,3 0,3 1,0 1,3 0,9 8 4Sorghum bicolor Sorgho 1,1 0,4 0,3 0,3 0,1 0,1 0,1 0,1 1,1 2,3 2,4 1,8 0,8 7 5Sorghum bicolor Sorgho Blanche 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 3,0 3,0 2,0 2,0 0,9 8 2Sorgho Rouge 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 3,0 3,0 2,0 2,0 0,9 8 2Zea mays Maïs 0,7 0,3 0,2 0,1 0,1 0,1 0,1 0,0 1,2 1,4 1,5 1,5 0,6 8 4Hibiscus sabdariffa Oseille de Guinée 1,5 0,6 0,2 0,0 0,0 0,1 0,0 0,0 1,1 Les deux graphiques ci-dessous mettent en évidence les modèles de saisonnalité dans les 9 communautés lorsque la disponibilité du marché est prise en compte (Figure 1) et lorsque seules l'autoproduction et les sources d'aliments sauvages sont prises en compte (Figure 2). Les groupes de discussion sexospécifiques sur la saisonnalité peuvent être utiles lorsque le contexte socioculturel dans lequel la collecte de données a lieu ne permet pas aux participants aux groupes de discussion de parler librement, et ils peuvent permettre la création d'un espace où chacun se sent en sécurité et en confiance pour partager son point de vue. Lorsqu'elles sont culturellement acceptables, les FGD mixtes sont préférées pour la disponibilité alimentaire saisonnière, car elles peuvent donner d es résultats intéressants et saisir les ensembles de connaissances distincts. Il n'est pas rare, en effet, que les hommes et les femmes rapportent avec plus de précision et de détails les espèces les plus importantes pour leur vie quotidienne : les femmes vont privilégier les espèces qui poussent dans les jardins familiaux, et qui sont normalement utilisées dans la préparation des aliments. Les hommes se concentreront probablement davantage sur les cultures de rente ou les cultures qui poussent dans les champs.Dans les neuf villages, les différences d'espèces mentionnées entre les hommes et les femmes sont minimes. Dans l'ensemble, sur les 81 espèces/variétés mentionnées, 43 ont été mentionnées par les deux sexes dans au moins deux des neuf communautés, et seule une poignée d'espèces et de variétés ont été mentionnées dans un seul cas.Le village de Kiota représente une exception frappante, car la FGD des femmes a signalé une richesse de diversité variétale pour de nombreuses cultures inégalée dans d'autres villages. A l'exception de l'arachide et du vouandzou, toutes les espèces citées se retrouvent couramment dans les jardins familiaux.En ce qui concerne les espèces uniquement citées par les hommes, Liboré se distingue des autres villages par une plus grande diversité disponible. En général, les hommes semblent citer plus de variétés de cultures de Goudel est un quartier de Niamey. Il a été utilisé comme site de formation pour les enquêteurs, et cela se reflète dans la quantité et la qualité globale des données collectées par rapport aux autres sites. Les données ont été collectées uniquement pour le calendrier de disponibilité alimentaire saisonnière et pour l'ou til de notation des NUS, dans un groupe de discussion unique, non désagrégées par sexe. Aucune information sur la transformation des aliments n'est disponible.A Goudel, 8 espèces sont cultivées et parmi celles-ci, 4 (gombo, moringa, oseille et manioc) ont des variétés multiples, pour un total de 13 entrées sur la saisonnalité.Les données sont fortement concentrées sur les aliments de base (3 espèces, 4 variétés), avec seulement trois espèces de légumes (moringa, oseille et gombo, avec plusieurs variétés).La disponibilité alimentaire de Goudel n'est pas particulièrement diversifiée, mais est stable toute l'année, avec des légumineuses et des légumes assez abondants pendant la majeure partie de l'année, soit par le marché, soit par l'autoproduction (Tableau 7). Vigna unguiculataOseille de Guinée Hibiscus sabdariffaCependant, lorsque seule la disponibilité provenant de l'autoproduction est prise en compte, les écarts de saisonnalité sont importants, seul le manioc, le moringa et le gombo étant cultivés par les participants à l'étude (4 variétés au total) tout au long de l'année (Tableau 8). Sur les 4 groupes d'aliments disponibles à Goudel, les DGLV et une variété de gombo sont disponibles toute l'année. Pour les légumes, le premier semestre présente des disponibilités très faibles. Les légumineuses ne sont disponibles que deux mois par an dans les champs locaux, au moment de la récolte. La saisonnalité des céréales, des racines et des tubercules est plus irrégulière, avec une disponibilité plus élevée pendant les mois les plus froids. 2,5 1,5 1,5 1,5 1,5 2 1,5 1,5 1,5 Mangue Mangifera indica Dans le village de Kankandi, 29 espèces ont été signalées lors des deux FGD. Le groupe d'aliments le plus diversifié est celui des céréales, racines et tubercules, avec 7 espèces, tandis que le moins diversifié, avec 3 espèces, est celui des fruits et légumes riches en vitamine A. L'oseille de Guinée (Hibiscus sabdariffa) est la seule espèce de cette localité pour laquelle plus d'une variété a été signalée.Si l'on considère la disponibilité saisonnière globale, la situation est similaire à celle des autres villages. Ici, cependant, il est immédiatement évident que les mois de juillet à novembre sont ceux où le nombre d'espèces disponibles est le plus faible (Tableau 11). Une fois la disponibilité du marché retirée de l'analyse, la situation semble assez différente, mettant en évidence des mois de graves lacunes alimentaires et une insécurité alimentaire potentielle de mars à août. En mars, seuls 7 aliments sont disponibles, 6 en avril. Mai et juin sont les mois où la disponibilité alimentaire est la plus faible : seules 4 espèces sont disponibles, et aucune n'est hautement disponible. La situation change légèrement en juillet et août, avec 5 espèces disponibles et une, oula (Cassia tora), très disponible Projet SUSTLIVES durant ces mois. À partir de septembre, la disponibilité augmente fortement et en décembre 26 espèces alimentaires sont disponibles à partir de la production locale (Tableau 12).En termes de groupes d'aliments, le groupe d'aliments le moins disponible est celui des autres fruits : seule 1 espèce sur les 4 disponibles (banane) est disponible de la production locale, et seulement un mois par an. Ce rapport présente les résultats de la collecte de données sur la disponibilité alimentaire saisonnière dans neuf communautés/villages au Niger.L'étude a mis en évidence qu'il existe 78 aliments, correspondant à 47 espèces et 29 variétés, disponibles toute l'année pour les communautés locales par le biais de l'autoproduction, des marchés locaux ou qui sont présent dans l'écosystème sauvage. Les informations sur les espèces sauvages étaient limitées dans l'ensemble de l'échantillon : seuls deux espèces ont été signalées. Si possible, veuillez demander aux agriculteurs de fournir des échantillons des cultures et de prendre des photos (les photos seront utiles pour préparer les catalogues NUS et/ou les images du calendrier saisonnier)3. Outil 3 : Analyse à quatre cellules (peut être effectuée pour toutes les cultures ou pour des variétés de cultures)Évaluer l'état de la diversité et surveiller la diversité au niveau local. L'analyse à quatre cellules est effectuée de manière participative avec les agriculteurs et peut être effectuée pour toute la diversité de la communauté (c'est-à-dire toutes les cultures) ou pour une seule culture s'il existe un large éventail de diversité au sein de la communauté.","tokenCount":"4118"} \ No newline at end of file diff --git a/data/part_3/6846852039.json b/data/part_3/6846852039.json new file mode 100644 index 0000000000000000000000000000000000000000..1c098ae07c08b41b47d3b2e311daf8e7ab8d04de --- /dev/null +++ b/data/part_3/6846852039.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"d1626fa322ce291256aa537505bfecc3","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/e7e559b9-d1de-4f23-b80f-e3f5e447f0e7/content","id":"1568224162"},"keywords":["COVID-19","Food system disruption","South Asia","Monitoring","Resilience"],"sieverID":"ea81349b-104c-46e0-be12-44af40e1a8a3","pagecount":"8","content":"In the context of developing countries, early evidence suggests that the impacts of the COVID-19 pandemic on food production systems is complex, heterogenous, and dynamic. As such, robust monitoring of the impact of the health crisis and containment measures across agricultural value chains will likely prove vitally important. With Bangladesh as a case study, we discuss the building blocks of a comprehensive monitoring system for prioritizing and designing interventions that respond to food system disruptions from COVID-19 and preemptively avoid further cascading negative effects. We also highlight the need for parallel research that identifies pathways for enhancing information flow, analysis, and action to improve the efficiency and reliability of input and output value chains. In aggregate, this preliminary work highlights the building blocks of resilient food systems to external shocks such as COVID-19 pandemic in the context of developing nations. In doing so, we call attention to the importance of 'infection safe' agricultural input and output distribution logistics, extended social safety nets, adequate credit facilities, and innovative labor management tools alongside, appropriate farm mechanization. In addition, digital extension services, circular nutrient flows, enhanced storage facilities, as well as innovative and robust marketing mechanisms are required. These should be considered in parallel with effective international trade management policies and institutions as crucial supportive measures.The COVID-19 crisis has affected the world in an unprecedented way (Loayza and Pennings 2020). In addition to the public health effects of the disease, measures to contain the spread of COVID-19 pose significant risks to food and nutrition security through disruptions to food production, distribution, and access. Few previous shocks have had such a significant range of effects on food systems in such a short period (CCAFS 2020). The World Health Organization (2020) reported the first COVID-19 cluster of cases on December 31, 2019. Since then, researchers have grappled to understand the complexity of the pandemic on food and nutritionespecially in developing nations (Galanakis 2020). In this viewpoint, we use Bangladesh as a case study region to propose indicators to systematically monitor the health of food production systems in the developing country context. Following discussion of the monitoring system, response mechanisms for rapid recovery from shocks and potential mechanisms to pre-emptively avoid further cascading negative effects are proposed.Our synthesis of media reports and rapid field assessments suggests that South Asia's food production systemsand particularly those reliant on external inputs and human labor are being disrupted by the COVID-19 crisis through multiple pathways. International and domestic supply chains for fertilizers, agro-chemicals, machinery, and seeds have been impeded by import and movement restrictions. Logistical constraints (international shipping and domestic transport interruptions), and partial closures of input dealerships appear to be common problems. Similar disruptions to hatchery operations and feed supplies (FAO 2020a) affect aquaculture, poultry, and livestock production. 'Stay in place' orders and limitations imposed on migration have created pockets of labor shortages (FAO 2020b), particularly for the harvest of South Asia's winter 'rabi' season crops including rice, wheat, and horticultural crops (ICRISAT 2020). Even where farmers have been able to hire sufficient farm labor, social distancing measures have slowed operations. Where farming systems are more mechanized, transport restrictions have inhibited the movement of agricultural machinery, although efforts taken by regional governments to permit unfettered movement of agricultural equipment and goods has resulted in some degree of success (USAID 2020; FAO 2020c). Concerns have emerged that there could be planting delaysmainly for rice in the subsequent 'kharif' (monsoon) season. In addition to labor, shortages in seed availability may also complicate planting. In India, farmers across 43 districts have indicated insufficient seed availability for the kharif crop (PRADAN 2020). Crop establishment delays in the monsoon season c a n h a v e ' k n o c k -o n ' e f f e c t s ( e x p o s u r e t o l a t e season terminal heat stress) on the following 'rabi' (winter) season crop by delaying its establishment (Dubey et al. 2020;Arshad et al. 2017). Similarly, aquaculture and livestock activites have also faced delays in stocking, feeding, and other operations, reducing potential production and complicating timely marketing. Disruption of hatchery operations and processing facilities due to logistic, labour and input related constraints have also become concerns (FAO 2020c). In addition to production disruptions, farmers also face output market challenges, with fewer buyers willing to purchase products, particularly for perishables. Commodities with high income elasticities such as fruits and vegetables, meat, fish, milk, and eggs are facing significant declines in demand due to contraction in incomes of non-salaried informal workers and price spikes, especially in urban areas (Abhishek et al. 2020). In addition, closures of restaurants and food catering businesses have also affected demand, especially of fish and livestock products (FAO 2020a). For individual farmers, lower sales revenues that result from price and sales volume changes for winter season produce have led to capital shortages. These in turn could impact input purchasing decisions, especially for the 2020 monsoon kharif cropping season that commenses in July. The aggregate economic impacts of these developments are likely to be transferred along agricultural value chains (Saghaian et al. 2008;Hassouneh et al. 2012). In addition, a reduction in sales of agricultural inputs is likely to translate into reduced cash flows for retailers and wholesalers, which may lead to a liquidity crunch that can impact dealers' ability to maintain stocks of critical inputs (iDE 2020). In sum, these interactive effects could cascade throughout the food system (Fig. 1).3 Monitoring the health of food production systems Because food production systems are complex, the assessment of COVID-19's impact on their functioning and 'health' requires monitoring and data at each step of the value chainfrom inputs to processing and distribution, and to sales. To our knowledge, there are relatively few examples of efforts to regularly 'take the pulse' of the functioning of food production systems from a value chain perspective, and the shock caused by the COVID-19 crisis has underscored the importance of regular diagnostics along the value chain using key indicators. Monitoring is also crucial for efforts to accelerate recovery and ensure resilience of the food system (Peterson et al. 2018). Table 1 describes some of the major constituents of a comprehensive monitoring regime to permit a systematic assessment of food production systems. Such monitoring will not only signal problems, but also help guide the design of interventions aimed at faster recovery, and ultimately to improve food systems resilience.To provide insight into a potential portfolio of response mechanisms against the disruption in food production systems caused by the COVID-19 pandemic, we use Bangladesh -a country of 164.7 million people with considerable food and nutrition security concerns (WFP 2016) -as a case study. Initial estimates show that COVID-19 impacts have pushed an additional 20% of people below poverty line in Bangladesh (PPRC-BIGD 2020). In April of 2020, four CGIAR institutions working in Bangladesh (CIMMYT, IFPRI, IRRI and WorldFish) submitted a formal letter to the Secretary of the Ministry of Agriculture outlining the scale of the COVID-19 impact on food systems, while also presenting potential avenues for corrective actions (CSISA 2020). The potential solutions presented here are based on the suggestions presented in in this letter.First and foremost, there is an immediate need to strengthen social safety nets programs that can assist in assuring basic income and food access (Gilligan 2020). This includes support to smallholder and resource-poor farmers and producers in rural areas, but also to urban poor and rural landless consumers who are experiencing elevated prices for food products (NAWG 2020, PPRC-BIGD 2020). The government of Bangladesh has expanded social safety net programmes, and possibilities exist to further modify existing models to enhance demand for agricultural products, a step that will aid both food producers and consumers. The safety net schemes that provide cash in exchange for labor can be modified to a food and cash for work programme that could be linked to initiatives to increase demand for domestically and locallysourced farm produce while protecting food security for the poor. Here, manual work for a willing section of the population could be compensated in part by cash and also by food (fresh produce purchased from farmers by government and resupplied to workers), potentially leading to synergies in development and recovery objectives (increased farm income and food security). This can lead to triple wins if manual labour can be used to create durable 'public goods' such as food storage or market facilities, or infrastructure improving climatic resilience (e.g. shelters from extreme weather events, water harvesting and storage, or flood protection structures) that can enhance agricultural productivity and societal resilience the longer-term. Given the current slump in demand for income elastic farm commodities, food for work safety net interventions need to include a diverse range of products including vegetables, fruits, milk, and eggs to protect farm incomes and enhance nutritional security.This model could, however, be more complex to operate than cash for work programmes due to the logistics involved. Measures to stimulate demand (e.g., mobile farm goods markets using open-air flatbed trucks that reduce the potential for crowding, COVID-19 safe 'contactless' home delivery systems in urban areas) and dispel myths around the consumption of animal-sourced foods and disease infection (Islam et al. 2020) could aid in recovery while stimulating markets. Modified market handling procedures and COVID-19 safe farm market operation guidelines (e.g., protocols for safe handling and cleaning of agricultural machinery, storage infrastructure, transport equipment, and sanitary wet-markets) may be of help, especially in urban areas. Given the current urban population exceeding 60 million in Bangladesh and growing at 3% per year, these measures could help in revitalizing market demand (World Bank 2020). Campaigns to develop science-based perceptions of food safety will also likely be important. • Cost and service type data from agricultural machinery service providers, dealers, manufacturers, and importers indicating the availability and prices for four-wheel and two-wheel tractors, transplanters, seed drills, irrigation pumps, harvesters and reapers, and post-harvest equipment • Diagnostic surveys providing time-series data on the prevailing cost and payment modality for services from these machineries to farmer-clients • In the case of irrigation and harvesting services, remotely sensed data on areas with localized water deficits and area of mature and harvested crop fields (to target services delivery) Extension• Comprehensive databases of governmental, NGO and private sector extension agents with contact information including telephone number, email, social media identification • Inventory of extension agent specializations• Panel data on cost and vehicle availably data from courier services, trucking and shipping companies • Agricultural goods and equipment import and export records, including the rate at which imports clear for distribution after arrival in ports Credit and capital• Credit disbursal data from commercial and agricultural banks, micro finance institutions, and informal banking sources • Farm level data related to cash liquidity and credit availability for purchasing inputsProcessing and mills • Time series data on the volume, costs of processing, and sales of processed goods • Studies to assess the degree to which imports of processed goods and feed can be substituted • Data on milk purchases by processing companies and prices• Data from wholesale traders and middlemen, data from feed and grain mills • Monthly international price data published by USDA and/or FAO, in addition to other sources • Consumer level price data on cereals, vegetables, milk, meat, fish and poultrySecondly, in systems where production depends on external inputs, market systems must be maintained. In Bangladesh and other countries in South Asia, agricultural inputs and produce are widely transported through informal courier services, on animal carts, and uncovered vehicles (FAO 2009). To our knowledge, none of the countries of South Asia including Bangladesh have made sufficiently clear exemptions during lock-down periods for these diverse forms of transportation to move agricultural goods. Such exemptions would also require assurances for improved safety, ideally through formal protocols to reduce risks of disease spread. These suggestions also require supporting the private sector in its crucial role to provide affordable inputs to farmers when and where they are needed. Supportive measures can include exemptions for permitted working hours for input retailors or creating alternative contactless models of farm input deliveries that ensure social distancing and prevent disease spread. Similarly, the flow of food products from rural to urban areas needs to be facilitated.Guaranteeing the supply of horticultural, fish and livestock productsin addition to staples such as rice and wheatis required to ensure diverse, nutritious and safe diets.Farmers in South Asia and Bangladesh are widely dependent on rural migratory laborers or agricultural machinery owners who offer land preparation, planting, irrigation, harvesting and post-harvesting services to farmers on a fee-for-service basis (Mottaleb et al. 2016). Many of these operations are crucial for agricultural productivity. Social distancing measures and the shortage of manual labor and machinery services have already been shown to disrupt harvesting (FAO 2020c, NAWG 2020).Governmental support and potential cost-offsets for the provision of scale-appropriate farm machinery transportation, machine purchases, and services may provide substantial benefits in this period. As an example, the government of Bangladesh recently allocated 0.37 billion USD to support appropriate farm mechanization as a part of COVID-19 mitigation response (Dhaka Tribune 2020). Creation of labour banks (a pool of willing and healthy workers who can be readily contacted, assembled, and deployed) can also act as an intermediary measure to tackle labour shortages, so long as proper operating protocols for social distancing and other diesease preventative measures are understood and enforced.Increasing storage for perishables through increased cold and hermetic storage represents an additional action that could help to avoid wastage of agricultural products. To address reductions in farmers' ability to access extension services, strengthening digital and telephonic extension services could prove beneficial. Examples include use of tele-networks and interactive voice message services (CIMMYT 2019), early warning and agricultural advisory systems (eg: https://www. agvisely.com/), and smartphone apps (Faruq 2017). Many of these tools are already available and can be strengthened in Bangladesh and South Asia.Ensuring financial liquidity and the purchasing power of farmers is crucial for maintaining healthy food production systems. For capital-intensive systems like aquaculture, credit availability largely determines productivity (Mitra et al. 2019). Revenue declines due to lower sale prices, reduced production, or harvest losses, or difficulties accessing output markets, can erode liquidity and constrain capital availability for the next cycle of farming operations. Temporary measures like diverting productive capital for consumption purposes and reduced flow of remittances to rural areas can increase capital shortages (Gurenko and Mahul 2004) This can in turn increase demand for credit. Expanding access to affordable finance options (like low interest credit with less stringent terms) including digital finance services for farmers may prove useful to ensure sufficient use of critical inputs to stabilize production -both during and after the pandemic.In addition to domestic actions, internationally oriented interventions are also crucial. For example, 60% of the urea and more than 90% of the Muriate of Potash (MOP), Triple Super Phosphate (TSP), Diammonium Phosphate (DAP) fertilizers used by farmers in Bangladesh are imported (BFA 2020). Bangladesh is also dependent on the regular import of commodities like wheat (6 million tonnes year -1 ), soy (1 million tonnes year -1 ), and maize (2 million tonnes year -1 ) for both human food and animal feed (USDA 2019). Hybrid seeds (e.g. for maize and vegetables) are also commonly imported. This indicates the vulnerability of food production and consumption to international supply disruptions, partially underscoring the need for domestically robust seed supply and circular economy interventions that prioritize nutrient recycling. That said, transition to more circular and selfreliant systems will not happen quickly and is likely to be only a partial solution. More importantly, the current crisis requires steps that ensure resilience and diversification in international supply chains. Efforts to prioritize the continued functioning of port operations to facilitate the flow of agricultural trade will be required. In Bangladesh, even partial closure of ports may result in high prices and limited stocks of grains, pulses, edible oils as well as crucial feed supplies (particularly maize and soybean). Similarly, although current national input stocks appear to be sufficient for the near future, prolonged suspension of international trade could undermine the post monsoon season supply of key inputs (particularly fertilizers, vaccinations, medicines used in aquaculture, hybrid seeds and potentially fuel for machinery and irrigation equipment) at reasonable prices.These factors also highlight the need for additional research that investigates methods to build value chain resilience of farm, fish, and livestock systems. Alternate import arrangements, circular flow of nutrients from urban bio-and foodwastes (Therond et al. 2017;Sengupta et al. 2015), and a renewed focus on input resource use efficiency (Darnhofer 2020) could provide a buffer from external shocks. To address risks to the continued use of appropriate agricultural machinery, emphasis should be given on the development of shortterm (e.g., potential use of 3D printers to assist in fabrication of spare parts for agricultural machinery) alongside mediumto long-term solutions (e.g., formal mass production of spare parts followed by industrial development of the domestic light engineering sector).Well-designed monitoring systems can assist in the development of early warning systems to alert when food production systems and associated agricultural value chains are nearing vulnerability thresholds. Monitoring of indicators can assist in facilitating proactive engagement, while also providing a datastream to inform corrective interventions for speedy recovery. This viewpoint provides the outlines of a monitoring and early warning system for food system disruptions in Bangladesh, with ramifications for other developing nations. A COVID-19 resilient food system to is likely to be one that has stable supply chains, infection safe logistics, extended social safety nets, adequate credit facilities, and innovative labour management tools, alongside appropriate farm mechanization efforts. In addition, COVID-19 safe farm operation protocols, digital extension services, circular nutrient flows, enhanced storage facilities, and innovative marketing mechanisms are needed, along with effective international trade management policies and institutions. Given that the actions required to implement monitoring of food systems health and undertake corrective measures are complex and interconnected, creation of an adequately funded institutional mechanism to coordinate monitoring and mitigation measures could be beneficial. The anticipated longer-term nature of the COVID-19 crisiswhich is still unfolding in South Asia and globallyis another compelling reason. In addition, increased coordination with different government, private, and non-governmental agencies, as well as development partners, multilateral institutions, and international agencies are needed for successful mitigation and the creation of more resilient food systems.Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. Dr. T.S Amjath-Babu currently work as Agricultural Economist (Modelling and Targeting) at CIMMYT, Dhaka, Bangladesh. Before joining CIMMYT, he was engaged in international consultancies for CIMMYT, CCAFS, ICIMOD etc. and worked as senior scientist at the Institute of Socio-Economics, Leibniz C e n t r e f o r A g r i c u l t u r a l Landscape Research, Germany. Amjath does research in the fields of food security assessments, technology scaling, economics of climate change, climate services, sustainability studies, resilience assessment, land use policy, invasive pest management, choice modelling, etc., in South Asia, Africa and Global scales. His long-term interest is in developing a research portfolio of \"economics of sustainability transitions ensuring food, environment and livelihood security. ","tokenCount":"3300"} \ No newline at end of file diff --git a/data/part_3/6867043642.json b/data/part_3/6867043642.json new file mode 100644 index 0000000000000000000000000000000000000000..a9ea25402fbb9f53680cc9107ae7cdf2b75a1744 --- /dev/null +++ b/data/part_3/6867043642.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"051ae0d2ddf9a13bf2acb9d1f7e7f3eb","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/984bd304-f8a3-41ca-b094-acf45efb2d43/retrieve","id":"1450489060"},"keywords":[],"sieverID":"41647517-b5ce-4bf1-8d1b-a0828eaa17e7","pagecount":"36","content":"The research described in this document is part of the FVN project: \"Fruits and Vegetables intake in Vietnam and Nigeria'. This project addresses the problem of the triple burden of malnutrition among lowincome urban populations in Nigeria and Vietnam by increasing intake of fruits and vegetables through food system innovations that improve access through the diversification of retail outlets, enhance affordability through a client-specific coupon system, and boost acceptability of fruits and vegetables through promotional campaigns involving public and private stakeholders and civil society organizations.The project is implemented in one central and one peripheral urban area in Hanoi, Vietnam and Ibadan, Nigeria offering insights into different contexts related to the level of urbanization, percentage of urban poor, stunting of under-fives, minimum dietary diversity, and availability of fruits and vegetables per day per person. The project intervention consists of three interrelated demand-side interventions addressing accessibility, affordability and acceptability of fruits and vegetables.The research described in this document is the market level assessment (MLA) of Work package 1 that was conducted as part of the information gathering exercise within the baseline of the FVN research project in March, April 2019.The research focuses on direct actors (formal and informal vendors who buy and sell the targeted foodstuffs), using structured market surveys to map the physical location of markets within the selected communities, define the market actor (retailer) typology, including four main characteristics of the retailer:-General characteristics of the retailer, -How do retailers buy/source ingredients to be processed/traded? -How do retailers add value to their products? -How do retailers sell/market their products?This component will inform the project on the behavior of the retail market sector where our study population source their fruits and vegetables and therefore allow for understanding marketing practices on fruit and vegetable distribution that affects the target households. Data was gathered by RIKOLTO (formerly known as VECO) in Vietnam. The analysis contained in this document is instrumental in informing Work package 2 retailer level interventions.Hanoi, July 2020, Ricardo Hernandez My Lan Hoang Hieu TranThis study is based in the same urban and peri-urban areas where the household study was conducted, the main difference is that instead of targeting consumers, this study focuses on different types of retailers within the same areas. This study was conducted in the city of Hanoi, Vietnam. Within Hanoi, the districts of Ha Dong and Dong Da were selected (figure 1,2). These districts were selected to represent an urban (Dong Da) and peri-urban (Han Dong) setting with a high density of people living in lower socio-economic status. The selected wards were Biên Giang and Đồng Mai in Ha Dong district (figure 3, 4) and Hàng Bột and Văn Chương in Dong Da (figure 5, 6). A rapid enumeration (census) of different types of retailers was done in the four selected wards, the objective of this census was to identify the \"universe\" of retailers that traded 32 pre-selected fruits and vegetables 1 within the study area. Once, the census was completed, two products were dropped from the study (Kumquat and Gac Fruit), because we did not find enough retailers selling these products in the four selected wards. 1 shows the main characteristics and distribution of retailers in the study area. We found 255 retailers, and the main results from the census is that the vast majority (76%) of retailers present in the study area are informal wet/street market retailers, selling on average 12 target products per retailer, very few act as both retailer-wholesaler, and around 60% of retailers have \"own production\", as part of their selling inventory, implying that they do not only rely on buying from suppliers.The randomization process was performed in a two-stage approach. First, a random selection of 100 retailers per district, and second, once retailers were selected, each retailer would be asked about five target products in the questionnaire, hence there was a need to randomize the target products that retailers were going to be interviewed for.The second stage procedure was challenging due to a limited number of observations (retailers) for a small number of target products. Hence, we could not do a complete random sampling of products per 1 We collected information about fruits and vegetables that are consumed by Hanoi residents from different sources of information, starting with our project's 24-hour recall, and other recent 24-hour recall and consumption studies. Once we collected a long list of fruits of vegetables, we identified products that are nutritious, are widely available through the year, that do not have adverse perceptions (for example, no excess use of pesticide in farm production), and that are relatively affordable. After applying this selection criteria, we ended up with 32 pre-selected target products. A more detailed record of product selection is included in APPENDIX 1 retailer because we did not want to run the risk of not being able to collect enough (30 or 35) observations per product in the final sample. In order to overcome this challenge, we randomly sampled retailers starting from the product that has the fewest number of retailers, in this case passion fruit. Then, we moved to randomly select products for the second product that has the fewest number of retailers (Chinese Leek), and so on. Once a given retailer has been randomly assigned five products, the retailer is excluded from the sampling procedure for the subsequent products. Table 2 shows the number of products available by the random selection of retailers (first stage), and the random selection of products (second stage)The random sample procedure yielded 200 retailers and 1,000 target product observations. After fielding the questionnaire, we ended up with 192 retailers, and 956 products.The retailer questionnaire included modules to inquire about four main aspects and characteristics of the retailer: 1) the general characteristics and assets of the retailer, including socio-demographic, location data, and perceptions about food safety, 2) information about how retailers source/buy their raw ingredients, 3) information about how retailers add value to their raw or semi-processed ingredients, and 4) information about how retailers sell/market their products.The questionnaire was originally created in English, translated to Vietnamese by RIKOLTO and CIAT, and then programmed into Android-based tablets using CS Pro. Data collection was performed by one team of ten local enumerators selected by RIKOLTO and trained for data collection.The collected data were downloaded from CS Pro and imported to Stata 14.0 software. The cleaning was performed jointly by CIAT and RIKOLTO and the final dataset was shared into the project OneDrive space. Collected data was analyzed by CIAT, and Stata 14.0 software was used to perform the descriptive analysis of this report. Table 4 shows the distribution of the sample by product type. Following the product distribution (Table 2) of the sample, the original plan was to segregate the statistical analysis in three categories of products;DGLV, other vegetables, and fruits. However, this was not possible as the data collected showed significant challenges. First, there is no group of retailers who only trade \"other vegetables\", as the vast majority also trade DGLV (97%), and a small share also trade fruits (3%). Second, fruits were the only category where a defined group of retailers trading only fruits (90%) existed, and third, the vast majority of retailers trading DGLV also market other vegetables. Taking into consideration this situation, we opted to carry out the statistical analysis segregated by type of product considering only two categories;\"vegetables\" that include traders who only market DGLV and retailers who trade DGLV and other vegetables (20 + 101 = 121), and the category of \"fruits\" which include traders who only market fruits (64 observations), and retailers who market fruits and DGLV (4 observations), and retailers trading fruits, DGLV and other vegetables (3 observations).This section discusses the asset characteristics of the retailers sampled. The results are presented segregating retailers by retailer type (mom & pop's, formal wet market, and informal wet market) as well as segregating by the type of target product that they sell (fruits, and vegetables). The following points stand out.First, retailers are nearly all middle-aged women, around 27% have completed high school or above high school, and have roughly 15 years of experience since they started their trading business (Tables 5 and 6). There is no major difference on these retailer characteristics segregated by retailer or product type. First, as expected, virtually all retailers, regardless of retailer or product type take possession of the products that they sell. However, roughly 1/6 th of wet market retailers (formal and informal) also take commission for some of their transactions, yet this is not a widespread practice among retailers. The analysis yields similar results when segregating retailers by target product, hence confirming that taking commission is not common among retailers.Second, around 30% of informal wet market and \"mom and pop\" retailers sell their own production of target products within the array of produce that they sell, this again is a less common practice among formal wet market retailers, perhaps showing their dedication to \"ONLY\" trading activities. Furthermore, the analysis by product type shows similar results, as 30% of retailers sell their own farm production. Waste volume (Kgs) in LS 6.9 9.8 3.6 4.5Third, the vast majority of retailers trade lower weekly volume now than five years ago. Only mom and pop retailers have modestly increased their sales (13%) over the past five years, formal (-40%) and informal (-16%) wet market retailers have decreased weekly volumes, which signals the increased competition that is occurring given a growing number of markets (both formal and informal), traditional retailers, and other retail formats (supermarkets and online shopping).Fourth, all retailers tend to sell three times more volume in high season compared to low season now and also five years ago. Formal wet market retailers have a higher difference between high and low season as they sell 3.5 to 4.2 times higher volumes now and five years ago respectively. Furthermore, formal wet market retailers trade higher volumes compared to mom and pop and informal wet market retailers, they tend to have 1.8 to 2.5 times higher weekly volumes compared to informal wet market and mom and pop retailers respectively. Similar trends are evident when analyzing weekly volumes by product type, as all retailers trade lower weekly volumes than five years ago, they tend to trade roughly three times more volume in high compared to low season, and the only high difference between retailers with different product types is that retailers trading fruits sell roughly two to three times more volume than retailers trading vegetables. This is expected as many of the target vegetables in this study are DGLV, which have lower density than fruits.Fifth, waste is not a major concern for all retailers, it represents roughly 2.5 to 4.4 percent of weekly volumes in high and low seasons respectively, with only mom and pop retailers having a slightly higher percentage of waste (around 6%). Retailers selling fruits tend to have higher waste (4.9% in high season, 2.8% in low season) compared to retailers selling vegetables (3.5% in high season, 2.4% in low season), however, waste is still a minor concern among all retailers regardless of retailer and/or product type.Tables 9 and 10 show the physical assets of retailers segregated by retailer and product type. Several points stand out. First, all retailers regardless of type of product that they sell have a stall/shop. The main difference found is that roughly one of every five formal wet market retailers also have stalls in a different location, while this is not as common for informal wet market retailers (one of every twenty retailers) and mom and pop shops. There is no difference about owning a stall in a different location when segregating this by product type.Second, all retailers regardless of product and retailer types have similar asset profiles, with a few exceptions. One third of mom-and-pop shops have a computer, which is not common among formal and informal wet market retailers, three times more formal wet market retailers own trucks compared to other types of retailers, and 22% more informal wet market retailers have motorbikes compared to the other types of retailers.Third, mom-and-pop and formal wet market retailers have 25% more business assets (assessed by the total value of business assets), this difference is exacerbated when analyzing this by product type, as retailers who sell vegetables have twice as much assets compared to retailers who sell fruits, implying that vegetable vendors are wealthier (asset-wise) than fruit vendors, this is a surprising result, as fruits are generally more expensive products than vegetables, and have higher volumes than vegetable sellers.It is important to emphasize that these results reflect the status of retailers that trade the target products and are located in low-income areas of Hanoi, hence the \"fruits\" that are considered as part of this study are not particularly more expensive than the target vegetables. Tables 11 and 12 show employment and labor cost of retailers segregated by retailer and product type.Several points emerge.First, overall, retailers do not generate much employment beyond their own labor, and a bit of family labor working in their stall/shop, this is the same result for all types of retailers, as well as for retailers selling fruits or vegetables. This is expected, as previous results on functional status and retailer assets imply that overall, most retailers have small operations. Second, surprisingly informal wet market retailers have significantly higher monthly business costs than mom-and-pop, and formal wet market retailers. A deeper analysis into the cost structure revealed that informal wet market retailers have higher rent (as they are not part of a government subsidized market facility), and lacking public services, they incur extra costs (such as electricity generation via electric generator fuel). Retailers who sell vegetables have higher monthly business costs, but this is rather anecdotal as a higher share of vegetable retailers are informal wet market retailers, hence the higher operating costs.Third, we asked retailers about the perceived \"profit\" they are earning per kg, as well as the amount of money they would need to receive to be willing to abandon their stall/shop for a week, and the results are interesting. The profit does not change much across retailer type, roughly four thousand VND per kg of traded product, yet retailers who sell fruits expect a slightly higher profit (5.1 thousand VND) over retailers who sell vegetables. This is expected as fruits are usually more expensive than the vegetables in Vietnam.Moreover, on the willingness to abandon the stall/shop, formal wet market retailers expect a 20% higher amount of money compared to the other two types of retailers. This is expected, as previous resultsshow that formal wet market retailers have a higher weekly volume traded, hence higher gross earnings.Retailers who sell fruits expect twice as much money to be willing to abandon the stall for a week compared with retailers who sell vegetables. This is also expected, as discussed before, fruits are a more expensive food item than vegetables. Fourth, regardless of type of retailer or type of product that is traded, there are not many retailers trading organic (2% of retailers) or safe/clean (3% of traders) fruits and vegetables, and for the few who sell, the markups compared to the traditional price are minimal (4 to 5% markup), hence signaling that these products are not purchased in low-income districts of Hanoi, and a general lack of trust by consumers about organic/safe claims by retailers.This section discusses the conduct of retailers, including general transaction characteristics, a description of their suppliers and clients, origin of supply, services provided and received, and complaints. Similar to the previous section, results are presented by segregating retailers into retailer type as well as by the type of target product that they sell (fruits, and vegetables).In the analysis of the conduct of retailers and suppliers (Tables 13 and 14), several points stand out.First, formal wet market retailers source roughly 2.5 times more products from suppliers than the other two categories of retailers, while retailers selling fruits source three times more product than retailers selling vegetables. Both results are expected, as formal wet market retailers tend to have more stalls than the other two types of retailers, and as discussed before, fruits have a higher density than vegetables.Second, retailers source ¾ of their products from wholesalers and directly from farmers as their main two sources of supply. Roughly half of the sourced product comes from wholesalers and then product is sourced via direct purchase from farmers (31%). The main difference regarding supply sources is that 1/5 th and 1/7 th of the weekly volume sourced by informal retailers and mom-and-pop retailers respectively comes from their own production. Furthermore, the segregation by product shows that retailers who produce vegetables have a slightly higher share of selling their own produce compared to retailers who sell fruits. The latter result is expected, as especially DGLV are mainly consumed fresh, and therefore are produced in small areas near Hanoi, while the production of tropical fruits is distributed across the country.Third, roughly 2/3 of retailers buy products that have been sorted, this share is slightly higher for momand-pop (74%) and fruit retailers (72%). This is expected as retailers buy mainly from wholesalers, and this is one of the main services that wholesalers usually provide. Furthermore, there is little evidence of retailers keeping written records of supplied produce. Only formal wet market retailers have a slightly higher share of record-keeping (31%), signaling that this is not a widespread practice in the target districts. In addition, retailers virtually do not have written agreements with their suppliers regardless of retailer or product type. Roughly 70% of retailers have verbal agreements only and this is the only common practice among retailers. Fourth, the main service provided by retailers to suppliers is transportation, whether the retailers provide their own transportation, or hire a third-party provider for delivery. This is a common practice among all retailers, and it is expected as it guarantees product delivery. Retailers receive many different types of services from suppliers, with sorting, cleaning, packaging, and sales on credit constituting the main services.Fifth, even if retailers receive different types of services from suppliers which are meant to assure product quality, it is not uncommon for retailers to issue complaints about the produce that they sourced. 2/3 of retailers have issued complaints within the last 12 months. This is higher among formal wet market retailers, where the vast majority (91%) have complained about the supplied produce. This is also expected, as formal wet market retailers trade higher volumes, which leads to higher probability of receiving lower-quality produce at some point in time over the past 12 months. The reasons for complaints are varied, but mainly related to physical attributes of the sourced products. In the analysis of the conduct of retailers and clients (Tables 15 and 16), several points emerge.First, formal wet market retailers sell roughly two to three times more products to clients than informal wet market and mom-and-pop retailers respectively. Similarly, retailers trading fruits sell roughly three times more in weekly volumes than retailers selling vegetables. Both results are expected, as discussed before, formal wet market retailers tend to have more stalls in several locations, and source more product than the other two types of retailers, and fruits have a higher density than vegetables. It is interesting to note that the average selling price of target fruits is roughly twice as expensive as target vegetables, hence signaling the affordability differences among target products.Second, as expected most retailers sell directly to consumers as their main clients. Only formal wet market retailers have a more diverse clientele, as roughly 40% of their clients are not direct consumers but rather traditional retailers, restaurants, street/sidewalk eateries, and other types of clients. The analysis by product shows no difference in the client portfolio.Third, interestingly there is a wide variation about selling \"sorted\" products to clients. The vast majority of mom-and-pop retailers (78%) sell sorted products, while a bit over half of informal wet market retailers and less than 40% of formal wet market retailers follow this practice. This can be attributed to the fact that formal wet market retailers sell produce to non-direct consumers (traditional retailers, sidewalk/street eateries, restaurants, and others), that might do the sorting themselves or the nature of their business do not require to have sorted product (for example, the products are processed to be delivered to the final consumer). There is a slightly higher share of fruit sellers sorting their products compared to vegetable sellers, yet roughly 40% of retailers still sell unsorted products. Fourth, there is little evidence of retailers keeping written records of sales regardless of retailer or product type. Furthermore, the vast majority of retailers do not have any type of agreements (verbal or written) with their clients implying that both practices (keeping written records of sales, and implicit or explicit agreements) are not widespread practices in urban and peri-urban Hanoi.Fifth, formal wet market retailers have more clients than the other types of retailers, they have between 25 to 40 percent more weekly clients than mom-and-pop and informal wet market retailers respectively. This is expected, as through this study we have seen that formal market retailers tend to have more stalls, are located in several markets, and trade higher volumes than the other categories of vendors.The analysis by product type yields no difference in term of number of weekly clients between fruit and vegetable sellers.Sixth, all types of retailers provide a wide variety of services to their clients (discounts over prices/volumes, credits, packing, special sorting, etc.), but the results show that a lower share of momand-pop retailers provide services to clients compared to formal and informal wet market retailers. Only on the service of \"special sorting\" a slightly lower share of formal wet market retailers offer this service, this is expected given the nature of the clientele of this type of retailer. Once again, there are no significant differences regarding services provided to clients by fruits and vegetable retailers.Seventh, it is highly common for all retailers to receive complaints from clients regardless of category of retailer or the product that they sell. There is a wide variety of reasons why clients complain, but the main reasons are related to: size, firmness of product, color, and variety of product. Good morning/afternoon, Mr/Mrs _______. My name is ______ and I am here to administer a survey on behalf of______. Your business is one of the few selected. The purpose of this survey is to gather information about fruit and vegetable consumption. The interview will take about ____. All the information we obtain will remain strictly confidential and your answers and name will never be revealed. Also you are not obliged to answer question you do not want to, and you may stop the interview at any time. The objective of this study is to assess the dynamics related to fruit and vegetable markets and its consumption. This is not to evaluate or criticize you, so please do not feel pressured to give a specific response and do not feel shy if you do not know the answer to a question. I am not expecting you give a specific answer; I would like you to answer questions honestly, telling me about what you know, how you feel, the way you live and how you eat and prepare food. Feel free to answer questions at your own pace. ","tokenCount":"3874"} \ No newline at end of file diff --git a/data/part_3/6872437131.json b/data/part_3/6872437131.json new file mode 100644 index 0000000000000000000000000000000000000000..fff4445166eaf9e8e086fc6c18f8b7fa39b1ae94 --- /dev/null +++ b/data/part_3/6872437131.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"90462df0c209f581a175741b6166bc3d","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/5cff2bad-4a02-41d0-a59c-ec70a599e896/retrieve","id":"-1823132761"},"keywords":[],"sieverID":"0c69600d-f300-416c-a86a-2f8937e1a006","pagecount":"6","content":"CGIAR is a global research partnership for a food-secure future. CGIAR science is dedicated to transforming food, land, and water systems in a climate crisis. Its research is carried out by 13 CGIAR Centers/Alliances in close collaboration with hundreds of partners, including national and regional research institutes, civil society organizations, academia, development organizations, and the private sector. www.cgiar.orgThe CGIAR Initiative on NEXUS Gains works at the critical intersection of food, energy, and water security while preserving the ecosystems underlying food systems in selected transboundary river basins. cgiar.org/initiative/nexus-gains Disclaimer: This publication has been prepared as an output of the CGIAR Initiative on NEXUS Gains and has not been independently peer reviewed. Responsibility for editing, proofreading, and layout, opinions expressed and any possible errors lies with the authors and not the institutions involved.We would like to thank all funders who support this research through their contributions to the CGIAR Trust Fund: www.cgiar.org/funders.The contextThe Ganges Basin, one of the most densely populated river basins in the world, faces a myriad of hydrological crises associated with groundwater depletion, seasonal flooding, and drought. These challenges are driven by the combined pressures of population growth, urbanization, agriculture, and the worsening impacts of climate change. At the same time, the fertile, intensively cultivated Indo-Gangetic Plain is critical for India's food security and that of the wider region (Taneja et al., 2014).The highly productive alluvial aquifers of the Indo-Gangetic Plain play a central role, with more than two-thirds of the total crop area reliant on groundwater for irrigation. Additionally, up to 90 percent of the rural population and more than half of the urban population are solely reliant on groundwater for drinking and household uses. This heavy dependence has led to widespread groundwater overexploitation, especially in the north-western region. Demand for groundwater is expected to increase, driven by irrigation requirements for food production and rapid urbanization.There is a growing urgency for solutions to address these water-related challenges, notably groundwater depletion, floods, and droughts, in an integrated way. One such intervention, known as Underground Transfer of Floods for Irrigation (UTFI), involves recharging aquifers that have depleted groundwater storage capacity with monsoonal excess waters, which pose potential flood risks downstream, to protect lives and assets, and to boost agricultural productivity within the targeted basin by increasing water availability during dry periods (UNWWDR, 2018). To operationalize UTFI at the basin scale in the context of the Ganges Basin, thousands of UTFI recharge structures are needed. To date, the development of such infrastructure has largely focused on rural areas only where most of the irrigation is concentrated. This shows a disconnect between rural and urban areas, especially given that the benefits from UTFI are distributed across the entire basin, including urban areas. At the same time, in an intensively cultivated Indo-Gangetic Plain, the availability of land for constructing recharge infrastructure may present a challenge. This brief presents the case of incorporating groundwater recharge interventions such as UTFI into landuse planning which is needed to address water management on a landscape scale and thereby address a clear policy gap.Working at a landscape scale As part of the study, an approximately 1,400 km 2 meso-scale watershed (Figure 1) within the Ramganga River Basin, covering the city of Moradabad and several surrounding rural administrative blocks (district sub-units), was investigated (Angou, 2023). The Ramganga Basin (19,000 km 2 ) is a major upstream basin of the Ganges River. The location of the watershed in the western part of Uttar Pradesh was selected based on groundwater risk, historic flooding events, population density, level of urbanization, and the UTFI suitability mapping previously carried out by the International Water Management Institute (IWMI) (Brindha and Pavelic, 2016).It was important to study an emerging city such as Moradabad to understand the impacts of its urbanization on groundwater to address issues earlier on in its growth trajectory. The four blocks surrounding Moradabad -Chhajlet, Dilari, Deengarpur, and Bilari -experience critical groundwater issues while concurrently being important for supporting agrarian livelihoods. Analysis of groundwater supply gaps reveals that groundwater demand exceeds recharge by 17-73 percent across the four blocks, and that by the year 2035 this may increase to 45-115 percent without intervention. For Moradabad, the deficit is far more severe at 287 percent and is forecast to increase to 618 percent. Groundwater levels have been declining throughout the area in recent years at rates of around 0.2 m per year (Angou, 2023).This study adopted mixed methods combining literature and policy review, quantitative data processing, and fieldwork for stakeholder engagement and ethnographic observations (Figure 2). Rural and urban areas are closely linked through biophysical features such as river floodplains, as well as the movement of people and trade of goods. However, the perceptions of risk associated with floods and groundwater depletion differ between upstream and downstream areas of Moradabad. Because communities experience these risks differently, interventions need to be context specific. For instance, some downstream communities in Deengarpur experience more intense flooding and therefore recharge-based interventions are perceived as secondary to flood embankments, whereas some upstream communities favor pond recharge as flooding is not as extreme.There is a common understanding and increasing awareness of groundwater issues among government officials and rural farmers, as both the agricultural sector and urban centers like Moradabad are heavily reliant on groundwater. This is visible in concerted efforts by district and block officers toward government programs such as the Amrit Sarovar program (water ponds and lakes) to provide multiple benefits that include addressing groundwater issues and creating much-needed public space for communities. Local villagers appreciate the program for enhancing public space amenities in the village and understand its importance against the backdrop of their reliance on groundwater for crop irrigation. There are also some examples of the emergence of community governance of Amrit Sarovar ponds. One such example is a women's Self-Help Group in Bilari block involved in the construction and maintenance of recent ponds and earning income through fisheries and sale of food in the public space created.Whereas rural groups have an intrinsic connection to their land and water resources due to the day-to-day interaction with these resources and dependence on them for livelihoods, city populations rely on institutionalized water planning. In urban areas, centralized utilities managed by the local municipality rely on groundwater, but in general the urban population is disconnected from groundwater management issues. This is also associated with the dense development of urban areas and notable lack of water bodies within the city limits, which are abundant in the rural areas. These differences show the need for context-specific interventions for recharge implementation in public spaces and government-owned land.Upstream communities were more receptive to pond recharge modalities because they perceive ponds close to rivers as the 'pockets' of the catchment that could absorb and dampen mild floods, thereby avoiding overflows into the village. For such communities, scaling up through rejuvenating ponds has the highest prospects.Downstream communities consider ponds secondary and more urgently require riverbank protection works. Here a combination of measures can be adopted. Engineered river control measures including caged stone gabions or flood control embankments to mitigate floodings would be complimentary to UTFI. This may be coupled with nature-based options like restoring wetlands and reconnecting rivers to floodplains. In this way, groundwater recharge can be directly improved along with flood protection.IWMI has recently begun working with district authorities in downstream parts of the study area (Deengarpur and Bilari blocks) to restore flows within the Aril catchment using mixed methods that include UTFI and wetland restoration.Fieldwork showed that floodplains right outside the city offer interesting zones for recharge since these areas are not yet completely exploited for agriculture or urban encroachment. Nature-based solutions (NbS) will also be applicable in these areas, but special consideration for stormwater runoff and water quality will be needed. One secondary benefit to developing ponds and NbS along peri-urban zones could be their role in reducing rapid urban sprawl and encroachment, which in the region leads to increased litter and pollution, industrial waste disposal issues, and sewage mismanagement.Within city limits, land availability is already constrained, so recharge interventions need to better use existing space rather than demand new space. This could include using existing government land like the Indian Railways corridor, which could be repurposed for recharge. Additionally, urban ponds, permeable pavements, rooftop rainwater harvesting, urban catchments and uplands, and bioretention could also be harnessed for increasing recharge within city limits (Figure 3 Applying these recommendations across the rural-urban continuum with its complex governance landscape requires the convergence of multiple institutions (Figure 4). The decision-making processes of the region are characterized by multifaceted structures involving both appointed administrative officials and elected representatives, operating across district, rural, and urban divides. At each level, there is horizontal distribution of power and responsibilities across different government departments. For example, several entities preside over urban planning and its implementation, including the Moradabad Development Authority, the city municipality (Nagar Nigam), the Smart City Office, as well as other departments associated with water supply and sewage, disaster management, and more. This complexity can be a barrier to implementation in general. District officials often set agendas that align with national and state priorities, such as the recent Amrit Sarovar program of the Central Government. National programs like this require district officials to meet specific targets, which then cascade down to the field level for implementation. However, this vertical flow of decision-making from national to district, and then to local levels, must be complemented by horizontal convergence between various departments to ensure coherent execution. At the same time, there exists a parallel ecosystem of international research organizations, non-governmental organizations, and multilateral coalitions, such as IWMI and others, all contributing demand-driven empirical research to influence policy. These entities can help introduce crucial innovations such as UTFI. Also, having a broad set of recharge interventions rather than one type (e.g., focusing alone on pond recharge) will likely get more traction across the board. However, such interventions would likely have higher success when integrated into broader basin masterplans rather than being implemented in isolation. Collaboration with urban and rural planning entities -such as those behind the Ramganga River Masterplan or the Urban River Management Plan -would ensure that these recharge-focused interventions are included in future updates. Also, successful implementation of recharge structures would require not only inter-departmental cooperation but also active community engagement, as residents and property owners play critical roles in shaping and maintaining urban spaces.","tokenCount":"1724"} \ No newline at end of file diff --git a/data/part_3/6891249696.json b/data/part_3/6891249696.json new file mode 100644 index 0000000000000000000000000000000000000000..810eab1b634af2f92352a40e42f7284f3d0ba79c --- /dev/null +++ b/data/part_3/6891249696.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"a21e5d0467506ef0abb1be4062f76b6b","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/9e3234f4-5c93-4ef8-bb4e-b8d9e0a8b4e1/content","id":"-1477881680"},"keywords":[],"sieverID":"0fbf5f5f-0517-4abf-9c47-61a71e488f39","pagecount":"14","content":"The paradigm called genomic selection (GS) is a revolutionary way of developing new plants and animals. This is a predictive methodology, since it uses learning methods to perform its task. Unfortunately, there is no universal model that can be used for all types of predictions; for this reason, specific methodologies are required for each type of output (response variables). Since there is a lack of efficient methodologies for multivariate count data outcomes, in this paper, a multivariate Poisson deep neural network (MPDN) model is proposed for the genomic prediction of various count outcomes simultaneously. The MPDN model uses the minus log-likelihood of a Poisson distribution as a loss function, in hidden layers for capturing nonlinear patterns using the rectified linear unit (RELU) activation function and, in the output layer, the exponential activation function was used for producing outputs on the same scale of counts. The proposed MPDN model was compared to conventional generalized Poisson regression models and univariate Poisson deep learning models in two experimental data sets of count data. We found that the proposed MPDL outperformed univariate Poisson deep neural network models, but did not outperform, in terms of prediction, the univariate generalized Poisson regression models. All deep learning models were implemented in Tensorflow as back-end and Keras as front-end, which allows implementing these models on moderate and large data sets, which is a significant advantage over previous GS models for multivariate count data.The selection of the best candidate genotypes is done by observing the phenotype of traits of interest in conventional breeding programs, which is very expensive since all the candidate genotypes have to be planted in the field. For these reasons, phenotypic selection (PS) is being replaced by genomic selection (GS) in many crops around the world, since it makes it possible to select the best candidate genotypes early in time using a statistical learning model that is able to learn the relationship between the genotyped (marker data) and phenotyped information of the training set (Meuwissen et al., 2001). GS is a technology that is transforming the conventional breeding process since we select the genotypes of interest early in time and we need only the genotypic information for the genotypes we want to select. However, since there is no universal statistical machine learning model that always performs the best for all types of data, we need specific algorithms for some types of data (Wolpert and Macready 1997). For example, it is very well documented that for each type of response variable there are specific predictive machines that are more appropriate for each circumstance. For example, multiple regression performs well for continuous data with linear patterns in the data, while logistic regression is a good option for binary data with linear patterns, and multinomial regression is a reasonable option for categorical response variable with linear patterns. However, there is evidence that deep learning (DL) models are good candidates for nonlinear patterns in the data (Chollet and Allaire 2017;Patterson and Gibson 2017). But to implement DL models we also need to be careful since it is very well documented that for continuous outcomes, the mean square error (mse) loss function is one of the best options, although it is not a reasonable option for binary and categorical outcomes (Chollet and Allaire 2017;Patterson and Gibson 2017). For binary and categorical response variables, the best options are the binary-cross-entropy and categorical-cross-entropy loss functions, respectively (Chollet and Allaire 2017;Patterson and Gibson 2017). These examples illustrate that unfortunately there is no universal statistical machine learning model that works well for all types of data (Wolpert and Macready 1997).In addition to the appropriate selection of the statistical machine learning model, there are other issues that need to be considered to successfully implement GS. Some of these issues are: (a) to select a representative (training) set (Guo et al., 2019), (b) to guarantee the quality of genotypic and phenotypic data in the training set (Edwards et al., 2019), and (c) to have a representative sample (good coverage) of the markers in the complete genome. The empirical evidence of the usefulness of GS continues to grow, showing that it is a power tool that can revolutionize the way plant breeders perform the selection of candidate genotypes (Crossa et al., 2013;Meuwissen et al., 2013;Crossa, et al., 2017;Vivek et al., 2017;Smallwood et al., 2019;Môro et al., 2019;Salam and Smith 2016). Some research studies showing that the GS methodology works as well as PS are given next: Vivek et al. (2017), Smallwood et al. (2019), Môro et al. (2019), and Salam and Smith (2016). However, it is important to point out that the empirical evidence supports that GS is not better than PS, since no relevant differences are observed between GS and PS, but GS has the advantage over PS because it requires fewer resources, reduces the cost per cycle and shortens the generation interval (Crossa et al., 2017;Farah et al., 2016). GS could become a key selection methodology in plant science, since more highquality data are becoming available, and predictive algorithms will be able to combine different types of data more efficiently and thereby improve the prediction accuracy. Although GS is not yet the main tool for plant breeders, it has been implemented in many crops like maize, wheat, chickpea, cassava and rice, among others (Crossa et al., 2017;Roorkiwal et al., 2016;Wolfe et al., 2017;Huang et al., 2019), and the number of breeding programs that are moving from conventional breeding to GS continues to grow. As mentioned above, one important aspect of the successful implementation of GS is correctly selecting the algorithm for prediction. However, for multivariate count data, only univariate models are available, such as the Poisson deep neural network (PDNN) model proposed by Montesinos-López, unpublished results), which can be implemented very efficiently for moderate [at least ten of thousands of observations (rows)] or large data sets (more than twenty-five thousand observations; Emmert-Streib et al., 2020).Count data are common in many domains since they reflect the number of occurrences of an outcome variable measured in a fixed period of time (for example, per hour or day), area (for example, per square meter) or volume (for example, per cubic meter). Some examples in particular domains are in information technology (number of visits per day to a web site; number of spam emails received per day), demography (number of families in poverty in a city or region; number of accidents per day in a city), animal science (number of sick animals per herd; number of offspring per sow), social science (number of religious families per region or area), chemistry (number of red blood cells per millimeter), physics (number of alpha particles emitted from a source in a given time interval), etcetera. Count data are also common in plant breeding since they allow, for example, measuring the number of panicles per plant, number of seeds per plant, number of infected spikelets per plant, days to heading, days to maturity, and days to germination, among others (Montesinos-López et al., 2016;Montesinos-López et al., 2017). Count data take on values of 0, 1, 2,... with an unrestricted upper limit. Usually, count data are analyzed incorrectly with ordinal least square regression or models for continuous outcomes, even though there is a lot of evidence that the Poisson or negative binomial family of regressions are better alternatives for modeling count data. The Poisson family has the inconvenience that it assumes that the variance is equal to the mean, that is, many times it is unable to capture over-dispersion efficiently, but the negative binomial family allows modeling this problem of over-dispersion appropriately most of the time.For multivariate data under Poisson distribution, it is not possible to implement closed form Bayesian estimation; only approximate Bayesian estimation is available, but it is inefficient (Montesinos-López et al., 2015, 2016, and 2017) since there is no analytical Gibbs sampler available to draw samples of the posterior distribution of the parameters of interest. However, these observations are also valid for classic estimations of multivariate Poisson and negative binomial distribution. For this reason, Montesinos-López, unpublished results) proposed the univariate PDNN model for count data using Tensorflow as back-end and Keras in R as front-end (Chollet and Allaire 2017); this framework is useful for large data sets. Deep learning (DL) models are generalized artificial neural networks, but with more than one hidden layer. Hidden layers consist of non-linear transformations applied to the input information with the goal of filtering the data and removing the noise in a way that helps to increase the prediction performance in the testing set. For complex input data, usually more hidden layers are required to improve the prediction performance. DL models try to mimic the functioning of our brain when performing complex tasks.Successful applications of DL models are applied for tasks like: face recognition, voice recognition (Chollet and Allaire 2017), self-driving cars that are capable of sensing their environment and moving safely with little or no human input (Chollet and Allaire 2017), cancer and skin predictions using images as information (Kadampur and Al Riyaee 2020), human resource selection in companies, genomic selection (Montesinos-López et al., 2018a, b;Montesinos-López et al., 2019a, b), etcetera. Empirical evidence shows that DL models are competitive (with at least the same performance) with conventional statistical machine learning models, mostly for larger data sets. However, until now there is no flexible framework that allows researchers without a strong background in computer science and statistics to implement univariate and multivariate models for modeling multivariate count data in DL; for this reason, we propose a deep neural network framework for implementing multivariate count models. This framework captures nonlinearity in a better way than conventional statistical machine learning models since it is able to use many hidden layers that apply no linear transformations. The proposed multivariate Poisson deep neural network (MPDN) model for count data uses the negative log-likelihood of a Poisson distribution as the loss function and the exponential activation function for each trait in the output layer, to ensure that all predictions are positive.The Poisson distribution with parameter m belongs to the exponential family and its probability function is equal to:where y i =0,1,2,3,. . . is the value of the counting variable associated with unit i; given a set of explanatory variables. The mean and variance of a Poisson random variable are equal toThis Poisson distribution is often used to model responses that are \"counts.\" Given that our training set is composed of pairs of inputs (y i , x T i ) with x T i ¼ ½x i1 ; . . . ; x ip , for i ¼ 1; 2; . . . ; n, the logarithm of the likelihood is given by:According to Stroup (2012), the specification of a generalized Poisson regression model is given as: Predictor:x ij b j Distribution: y i Poissonðm i Þ Link function: log where h is the intercept, x ij is the jth independent variable measured in observation i, where j ¼ 1; 2; ::; p, b j is the beta coefficient corresponding to the independent variable j. Thus, the expected value isx ij b j Þ. Since the link function is the log function, this means that the inverse link function is the exponential function, which is called the activation function in the specification of the multivariate Poisson deep neural network model. The optimization process can be performed by minimizing the negative loglikelihood (called loss function=LL). However, when the number of independent variables (p) is larger than the number of observations, it is better to use a penalized version of the negative loglikelihood (LL), which is equal to:where l is the tuning hyper-parameter that can be chosen by crossvalidation and a is a parameter that causes Ridge penalization, Lasso penalization or a mixture of both. For example, when a ¼ 0; the LL corresponds to a univariate Generalized Poisson Ridge Regression (GPRR); when a ¼ 1, the LL corresponds to a univariate Generalized Poisson Lasso Regression (GPLR), and when 0 , a , 1; the LL corresponds to a univariate Generalized Poisson elastic net regression (GPER). The optimization of this loss function (LLÞ was done using the R package glmnent (Lasso and Elastic-Net Regularized Generalized Linear Models) (Friedman et al., 2010). The selection of the tuning hyper-parameter (l) was performed with 10 fold cross-validations created with each training set.The topology of the multi-trait Poisson deep neural network (MPDN) consists of a feedforward neural network with an input layer (8 inputs, as shown in Figure 1), at least one hidden layer (3, as shown in Figure 1) and an output layer (with at least two outputs). The input layer receives all the independent variables that are supposed to be related to the output (in our case, environments and lines taking into account the marker data). Each neuron of the first hidden layer receives as input a net input that is a weighted sum of those independent variables with their corresponding weights, plus an intercept ( P p i¼1 w ð1Þ ji x i þ b ðjÞ for j ¼ 1; . . . ; M 1 Þ to which a nonlinear transformation is applied to capture complex patterns (in our case, for all neurons in all hidden layers we applied the ReLU nonlinear transformation, also called activation function). Then the output of the neurons of the first hidden layers (V 1j ¼ g 1 ð P p i¼1 w ð1Þ ji x i þ b ðjÞ Þ for j ¼ 1; . . . ; M 1 ) were used as input for the neurons of the second hidden layer, and again a net input was created from the output of the neurons of the first hidden layers (, which was transformed with a nonlinear transformation, g 2 (also ReLU) to produce the output of each neuron. Then the output of each of the neurons in the second hidden layer (was used as input for the neurons of the third hidden layer, for which its corresponding net input was equal to ( P M2 k¼1 w ð3Þ lk V 2k þ b ðlÞ for l ¼ 1; . . . ; M 3 Þ, after applying the nonlinear transformation (also ReLU) produced as output of each neuron). Since we are assuming only three hidden layers, finally the net input of each of the outputs is created with the output of all neurons in the third hidden layer ( P M3 l¼1 w ð4Þ tl V 3l þ b ðtÞ for t ¼ 1; . . . T) to which we apply an exponential activation function (transformation) for each output to guarantee positive outcomes (y t ¼ expð. . .T) on the same scale of the count data.All model equations for a MPDN with p inputs, M 1 hidden neurons (units) in hidden layer 1, M 2 hidden units in hidden layer 2, M 3 hidden units in hidden layer 3, and T outputs, are given by the following equations (1-4):where equation (1) produces the output of each of the neurons in the first hidden layer, equation (2) produces the output of each of the neurons in the second hidden layer, equation (3) produces the output of each of the neurons in the third hidden layer and finally, equation ( 4) produces the output of the T count response variables. The learning process is achieved with the weights (wlk and w ð4Þ tl Þ and biases (b ðjÞ ; b ðkÞ ; b ðlÞ and b ðtÞ Þ that correspond to the first hidden layer, second hidden layer, third hidden layer and the output layer, respectively. To obtain the outputs of each of the neurons in the three hidden layers (g 1 ; g 2 and g 3 Þ; we used the rectified linear activation unit (ReLU) activation function. However, for the output layer, we used the exponential activation functions (g 4 Þ ½see equation ( 4), since the response variables we wanted to predict are counts. However, the ReLU activation function can also be used for count data because it guarantees positive predicted values (Chollet and Allaire 2017;Patterson and Gibson 2017). In theory, a neural network with enough hidden units can approximate any arbitrary functional relationships (Cybenko 1989;Hornik 1991). The proposed MPDN model was implemented in the Keras library as front-end and in Tensorflow as back-end (Chollet and Allaire 2017). It is important to point out that when the MPDN model (described in equations 1-4) has only one output (only one response variable), this model is reduced to the univariate Poisson deep neural (UPDN) model.To select the hyper-parameters, we used a different grid search for each data set. For data set 1, the grid search method contained 10 combinations of hyper-parameters with five neurons (120,160,200,240,280) and two lambda parameters for the Lasso penalization (0.001, 0.01); the remaining hyper-parameters were fixed (batch_size = 273, learning_rate = 0.001, 0% of dropout, ReLU activation function for hidden layers, Poisson loss function, validation split was 20% of the outer training set, number of epochs used was 1000 in the outer training set, and an adam optimizer). By epoch we mean the number of times the learning algorithm will work across the entire training data set. For data set 2, we used 16 combinations of hyper-parameters: four values of neurons (400, 600, 800, 1000), two values of percent dropout (0, 0.05), and two values of the lambda parameter for Lasso penalization (0.001, 0.01). The remaining hyper-parameters were fixed as for data set 1, except for the batch size, which now was set at 500. It is important to point out that each of the 10 (data set 1) and 16 (data set 2) combinations were run with these fixed hyperparameters under 1, 2, 3 and 4 hidden layers, using the early stopping approach that allows selecting the optimal number of epochs. From combinations 10 and 16, we selected the best combination for each hidden layer (1, 2, 3 and 4) in terms of the lower mean square error of prediction inside each outer training set since this metric is one of the default metrics in Keras. Then, with this optimal combination of hyper-parameters, the model was refitted using all the information of the outer training set. Finally, predictions were made for the corresponding outer testing set using the estimated model with the refitted model. This process was done in each of the five folds. The optimal hyper-parameters for each hidden layer (1, 2, 3, 4) were selected using the grids given above; therefore, all these models belong to the MPDN and UPDN (same as the MPDN, except that it only contains one output) even though when only one hidden layer is used, these models are only a conventional artificial neural network.Furthermore, the generalized Poisson regression model depends on the value of alpha (a), and with different alphas we get a different model. For this reason, 5 models were built using different values of a.Table 1 shows the 13 models generated, 4 belonging to the MPDN, 4 to the UPDN and 5 to generalized Poisson regression.Phenotypic data set 1: The phenotypic data set used included 182 spring wheat lines developed by the International Maize and Wheat Improvement Center (CIMMYT) that were assembled and evaluated for resistance to Fusarium graminearum in three experiments conducted at El Batan experiment station in Mexico in 2011. For the application, we call these three experiments Env1, Env2, and Env3. In all the experiments (environments), the genotypes were arranged in a randomized complete block design, in which each plot comprised two 1-m double rows separated by a 0.25-m space. Fusarium head blight (FHB) severity data were collected 20 and 30 days (d) before maturity by counting symptomatic spikelets on five randomly selected spikes in each plot. We used the counts collected at 20 d as trait 1 and the counts collected at 30 d as trait 2.Figure 1 A feedforward deep neural network with one input layer, three hidden layers and one output layer. There are eight neurons in the input layer that correspond to the input information, three neurons in each of three hidden layers, with two neurons in the output layers that correspond to the traits that will be predicted.Genotypic data set 1: DNA samples were extracted from young leaves 2-3 weeks old, taken from each line, using Wizard Genomic DNA purification (Promega) and following the manufacturer's protocol. DNA samples were genotyped using an Illumina 9K SNP chip with 8632 single nucleotide polymorphisms (SNPs) (Cavanagh et al., 2013). For a given marker, the genotype for the ith line was coded as the number of copies of a designated marker-specific allele carried by the ith line (absence = zero and presence = one). SNP markers with unexpected AB (heterozygous) genotype were recoded as either AA or BB, based on the graphical interface visualization tool of GenomeStudio (Illumina) software. SNP markers that did not show clear clustering patterns were excluded. In addition, 66 simple sequence repeat markers were screened. After filtering the markers for 0.05 minor allele frequency and deleting markers with 0.10% of no calls, the final set of SNPs included 1635 SNPs.1. Phenotypic data set 2: This data set contains 438 lines for which three diseases were recorded. Pyrenophora tritici-repentis (PTR) that causes a disease originally named yellow spot but also known as tan spot, yellow leaf spot, yellow leaf blotch or helminthosporiosis. Parastagonospora nodorum (SN) is a major fungal pathogen of wheat fungal taxon that includes several plant pathogens affecting the leaves and other parts of the plants.Bipolaris sorokiniana (SB) is of economic importance as the cause of seedling diseases, common root rot and spot blotch of several crops like barley and wheat. The 438 wheat lines were evaluated in the greenhouse for several replicates during a long period of time. The replicates were considered as different environments (Env1, Env2, Env3, Env4, Env5, and Env6). The total number of observations were 438•6=2628 observations for which the three traits were measured.Genotypic data set 2: DNA samples were extracted from each line, following the manufacturer's protocol. DNA samples were genotyped using 67,436 single nucleotide polymorphisms (SNPs). For a given marker, the genotype for the ith line was coded as the number of copies of a designated marker-specific allele carried by the ith line (absence = zero and presence = one). SNP markers with unexpected heterozygous genotype were recoded as either AA or BB. We kept those markers that had less than 15% missing values. After that, we imputed the markers using observed allelic frequencies. We also removed markers with MAF , 0.05. After Quality Control and imputation, a total of 11,617 SNPs were still available for analysis.Cross-validation is a strategy for model selection and is also used to evaluate the prediction performance in unseen data. For this reason, we used cross-validation to evaluate the prediction performance in unseen data. Since our data contain the same lines in I environments, we used a type of cross-validation that mimics a situation where lines were evaluated in some environments for all traits but where some lines were missing in other environments. We implemented a fivefold cross-validation, where four folds were used for training and one fold for testing. We reported the average prediction performance for the test data in terms of mean square error of prediction (MSE), mean arctangent absolute percentage error (MAAPE) for each environment and average Pearson correlation (APC) for each environment. It is important to point out that the process for tuning the hyper-parameter (l) in the generalized Poisson regression (GPR_0.75, GPR_0.5, GPR_0.25, GPR_Lasso and GPR_Ridge) was done with ten-fold cross-validation, while the tuning process for the Poisson deep neural network models (MPDN and UPDN) was done in each of the five folds of the fivefold cross-validation (see Figure 2) strategy; in each fold, 20% of the data were used for testing (TST), 64% of the information for training (TRN) and 16% for tuning (TUN) (see Figure 2). Each of the 10 (data_set_1) and 16 (data_set_2) combinations of the grid search was trained with the training set in each fold and its prediction performance was evaluated in the tuning (TUN) set. After selecting in terms of MSE the best combination of hyper-parameters, the model was refitted but using the whole training set (80% of data, since the TRN+TUN sets were joined) in each fold. Finally, for each testing set, we computed each of the three metrics (MSE, MAAPE and APC) with its corresponding standard error (SE) which were computed using 500 bootstrap samples (of observed and predicted values of the testing set); then the average of the 5 folds and its SE was reported as a measure of prediction performance and variability in each metric. It is important to point out that the five fold crossvalidation strategy was implemented with only 1 replication.The phenotypic and genotypic data used in this study are contained in the following R files Data_set 1.RData and Data_set 2.RData, available at the following link: http://hdl.handle.net/11529/10548438. The results are given in three sections. The first section provides the distribution of the phenotypic information of both data sets. The second provides the results of the 13 models for data_set_1 and data_set_2.Table 2 shows the distribution of each of the two count traits (y1, y2) of data set 1 and the three count traits (SN, TPR and SB) of data set 2. Figure 2A and Figure 2B indicate that for the two traits of data set 1, the closer to zero the counts are, the larger the frequency; this is clearly an asymmetric distribution and the counts are between zero and less than 70. For the three traits (Figure 2C, 2D and 2E) of data set 2, the distribution of the three traits is also asymmetric, but now the counts with larger frequencies are above zero and under 5, and the counts are between zero and 20. Figure 2F gives a box plot of the five traits that shows the minimum, maximum, mean, median, quantile 25% and quantile 75% for each trait (Figure 3).First, we compared the prediction performance of the 13 models across environments and traits without taking into account the genotype by environment interaction. Table 2 shows that the best predictions for data set 1 under MSE were under model GPR_Ridge with an MSE= 33.6, while the worst prediction was under model UPDN_1 with an MSE= 50.556. This means that the best models (GPR_Ridge) outperformed the worst model in terms of MSE by =((50.556-33.6)•100/33.6)= 50.464%. Under MAAPE, the best predictions were obtained under models GPR_Ridge and MPDN_1 with a MAAPE = 0.582, while the worst model was UPDN_3 with a MAAPE = 0.652. Thus, the GPR_Ridge and MPDN_1 models outperformed the UPDN_3 model by ((0.652-0.582) • 100/0.582)= 12.0274%. In terms of Pearson's correlation, the best performance was also observed under model GPR_Ridge, with an APC = 0.897, while the worst performance was observed under model UPDN_1 with an APC = 0.5350, proving the superiority of GPR_Ridge over UPDN_1, which was equal to ((0.897-0.5350) • 100/0.5350)= 67.66355% (Table 2). Now we present the results for data set 1 taking into account genotype by environment interaction. Under MSE, the GPR_L1_0.25 (MSE = 54.10) model was the best in terms of prediction performance, while the worst was UPDN_1 (MSE = 116.154). The superiority of the GPR_L1_0.25 over UPDN_1, was equal to ((116.154-54.10) • 100/ 54.10)= 114.7024%. In terms of MAAPE, the best model was also 2).Figure 4 provides a summary of the five generalized regression models (GPR_L1_0.75, GPR_L1_0.5, GPR_L1_0.25, GPR_Lasso, GPR_Ridge), the four multivariate Poisson deep learning models (MPDN_1, MPDN_2, MPDN_3, MPDN_4) and the four univariate Poisson deep learning models (UPDN_1, UPDN_2, UPDN_3, UPDN_4). Figure 4A shows that in terms of MSE, the best predictions were observed when the genotype by environment interaction was ignored. For example, under the generalized Poisson regression models (GPR), we can observe in Figure 4A, that without interaction in terms of MSE, they outperformed by ((65.6-37.5) • 100/37.5)= 74.933% those models with the interaction term, while under the MPDN models when the interaction term was ignored, the performance was better by ((96.2-43.1) • 100/43.1)= 123.202%. Also, under the UPDN, the prediction performance was better without the interaction term than when it was taken into account, by ((93.8-47.8) • 100/47.8)= 96.23%. This provides empirical evidence that for this data set, taking into account the genotype by environment interaction did not help improve the prediction performance. In general, we did not find statistical differences between the prediction performances of the univariate generalized Poisson regression and MPDNN models; however, when the genotype by environment interaction was taken into account, the GPR model outperformed the MPDN by ((96.2-65.61) • 100/65.61)= 46.631%, while when the interaction term was ignored, the GPR was better than the MPDN models by ((43.1-37.5) • 100/37.5)= 14.933%. It is very important to point out that without the interaction term, the best and worst performance was under the GPR models and the worst under the UPDN model. When the interaction term was taken into account, the GPR was also the best, but now the worst performance was observed under the MPDN (Figure 4A).In terms of MAAPE, we found no statistical differences between taking into account genotype by environment interaction and ignoring it in the three models (GPR, MPDN and UPDN). But results showed a gain of ((0.654-0.586) • 100/0.586)= 11.604% under the GPR when the genotype by environment interaction was ignored, Figure 2 Strategy of fivefold cross-validation. In each fold, 20% of the data were used for testing (TST), 64% for training (TRN) and 16% for the tuning process (TUN). This strategy was used only for deep learning (MPDN and UPDN) models.n■ Table 2 compared to when it was taken into account. However, this gain was of ((0.651-0.598) • 100/0.598)= 8.863% and ((0.691-0.642) • 100/ 0.642)= 7.632% under MPDN and UPDN, respectively. Also, in general in terms of MAAPE, between the three types of models, GPR, MPDN and UPDN, we found no statistical differences since the performance of the three models was very similar (Figure 4B); however, in general terms, the UPDN was the worst. In terms of Pearson's correlation, we found the three models performed better when ignoring genotype by environment interaction. For example, the GPR that ignored genotype by environment interaction outperformed the models with the interaction term by ((0.879-0.811) • 100/0.811)= 8.385%, while the MPDN and UPDN outperformed the models with genotype by environment interaction by ((0.854-0.771) • 100/0.771)=10.765% and ((0.538-0.383) • 100/0.383)= 40.469%, respectively. However, in terms of Pearson's correlation, we found no statistical differences in prediction performance between the GPR and MPDN models (Figure 4C). Also, under Pearson's correlation, the worst performance was under the UPDN and the best under the GPR and MPDN models (Figure 4C).We compared the prediction performance of the 13 models across environments and traits, first without taking into account the genotype•environment (WI) interaction term and then taking into account the interaction term (I). First, under the MSE, the best model was GPR_L1_0.25 with a MSE= 8.56, while the worst was UPDN_1 with a MSE= 12.429, which means that GPR_L1_0.25 outperformed the UPDN_1 model by ((12.429-8.56)•100/8.56)= 45.198% (Table 3). Under the MAAPE, the best model was MPDN_4 with a MAAPE = 0.357, while the worst was UPDN_1 with a MAAPE = 0.420; for this reason, MPDN_4 outperformed UPDN_1 by ((0.420-0.357)•100/ 0.357)=17.647%. Under the APC, the best and worst models were MPDN_2 (APC= 0.556) and UPDN_1 (APC= 0.444), respectively, which means that the best model (MPDN_2) outperformed the worst model by ((0.556-0.444)•100/0.444)= 25.225%. Now when the genotype•environment interaction was taken into account under MSE, the best and worst models were UPDN_4 (MSE = 9.922) and UPDN_1 (MSE = 12.87), respectively. This means that the best model outperformed the worst by ((12.87-9.922)•100/ 9.922)=29.711%. Under the MAAPE, the best model was MPDN_4 (MAAPE = 0.363), while the worst was UPDN_1 (MAAPE = 0.402), and the best model outperformed the worst model by ((0.402-0.363)• 100/0.363)= 10.743%. In terms of APC, the best model GPR_Ridge (APC = 0.522) outperformed the worst model UPDN_1 (APC = 0.394) by ((0.522-0.394)•100/0.394)= 32.487%.Figure 5 summarizes the five generalized regression models (GPR_L1_0.75, GPR_L1_0.5, GPR_L1_0.25, GPR_Lasso, GPR_ Ridge), the 4 multivariate Poisson deep neural networks (MPDN_1, MPDN_2, MPDN_3, MPDN_4) and the 4 univariate Poisson deep neural networks (UPDN_1, UPDN_2, UPDN_3, UPDN_4). In Figure 5A we can see that the generalized Poisson regression models (GPR) without interaction in terms of MSE statistically outperformed by ((10.3-8.57) • 100/ 8.57)= 20.186% those models with the interaction term. However, under the MPDN models when the interaction term was ignored, the performance was statistically better by ((10.9-8.89) • 100/ 8.89)= 22.609%, while the UPDN models, also under MSE, without the interaction term outperformed by ((11.2-10.1) • 100/10.1)= 10.891% those models with the interaction term. This provides empirical evidence that for data set 2, taking into account genotype by environment interaction did not help improve the prediction performance. Also, in this data set we found no statistical differences between the prediction performance of the generalized Poisson regression and MPDN and UPDN models; however, when the genotype by environment interaction was taken into account, the GPR model outperformed the MPDN and UPDN by ((10.9-10.3) • 100/ 10.3)= 5.825% and ((11.2-10.3) • 100/ 10.3) =8.737%, respectively; while when the interaction term was ignored, the GPR was better than the MPDN and UPDN models by ((8.89-8.57) • 100/ 8.57)= 3.734% and ((10.1-8.57) • 100/ 8.57)= 17.852%, respectively.In terms of MAAPE, we only found statistical differences between taking into account the genotype by environment interaction and ignoring it in the GPR models; without genotype by environment interaction, they outperformed by ((0.401-0.361) • 100/ 0.361)= 11.080% those models with genotype by environment interaction. Also, under MPDN and UPDN models without the interaction term outperformed by ((0.380-0.365) • 100/ 0.365)= 4.109% and ((0.391-0.386) • 100/ 0.386)=1.29%, respectively, those models with the interaction term. However, no statistical differences were observed between GPR and MPDN and UPDN models in both scenarios with and without genotype by environment interaction (Figure 5B), but in general the worst prediction performance was observed under the UPDN model. Finally, in terms of Pearson's correlation under the GPR models, we also found statistical differences between models taking into account genotype by environment interaction and models ignoring it; those models without genotype by environment interaction outperformed by ((0.547-0.460) • 100/ 0.460)= 18.913% (under GPR), by ((0.549-0.479) • 100/ 0.479)= 14.613% (MPDN) and by ((0.503-0.456) • 100/ 0.456)= 10.307% (under UPDN) those models with the interaction term. However, no statistical differences were found between the three models (GPR, MPDN and UPDN) in terms of APC with and without the interaction term (Figure 5C).Due to the lack of multi-trait prediction models for count data, in this study we propose a multi-trait deep neural network for count data. Our proposed model is useful for the following reasons: (a) it is a multi-trait approach for count data, (b) it is powerful enough to capture linear and nonlinear patterns since it was built under the umbrella of deep learning models, (c) it is powerful when used with moderate or large data sets since the training process is performed using batches of the whole training set, thus avoiding memory problems; its implementation is possible using Tensorflow as back-end and Keras as front-end, and (d) it works with raw inputs like images, or other non pre-preprocessed inputs since this model is under the umbrella of deep neural networks (Pound et al., 2017). For these reasons, since the proposed MPDN can be implemented in Keras, it is a very friendly and powerful framework for moderate or large data sets. Also, the ability of the proposed MPDN to capture nonlinear patterns is due to the fact that it belongs to models called \"artificial deep neural networks\" that are inspired in the biological functioning of the brain, and that work by stacking many layers with hundreds or thousands of neurons in each layer. The larger the number of stacked layers, the more powerful the model for capturing non-linear patterns due to the fact that in each layer, a specific nonlinear transformation is applied to its inputs (Haykin 2009). The power of the proposed MPDN is theoretically supported by the approximation theorem that states that under artificial deep neural networks we can approximate any function to the desired degree with a large enough number of neurons (Cybenko 1989;Hornik 1991). However, it is important to point out that Keras/Tensorflow is a very flexible framework for implementing deep neural networks since without a strong background in mathematics and computer science, the user can implement univariate models for continuous, binary, categorical, count data, and multivariate models with any type of response variable including mixed response variables (Chollet and Allaire 2017).The proposed MPDN model also has its disadvantages; some of them are: (a) we need to tune many hyper-parameters, which is still a very time-consuming process in all deep neural networks models, since there are no well-established methods and most of them are more art than science, (b) in the proposed MPDN, a covariance (correlation) matrix is not estimated to more efficiently capture the degree of similarity between traits; for this reason, many times multivariate deep learning models do not outperform univariate deep neural networks since the clear advantage of multivariate deep neural networks over the univariate deep neural network model is the amount of data used for training the model, and (c) there is a lot of empirical evidence that, in general, deep neural networks outperform conventional statistical machine learning methods when the number of observations used to train the model is very large, and the larger the better (Patterson and Gibson 2017), which is not easy in the context of genomic selection since most of the time in data sets collected in the field, there are few observations and a very large number of independent variables (markers). Also, the proposed MPDN cannot be used to estimate breeding values since breeding values, as pointed out by one reviewer, are additive effects and the proposed MPDN incorporates non-additive effects (Varona et al., 2018). Also, the proposed MPDN is not able to decompose the genetic variance orthogonally into additive, dominance, additive-•additive, dominance•additive, etc., variance components, since this orthogonal decomposition is valid only under restricted assumptions such as linkage equilibrium, random mating and no inbreeding (Gianola et al., 2006). Despite these limitations, the proposed MPDN is attractive and fills the lack of multi-trait models for count data that can be implemented for moderate and large data sets. Also, its implementation is very friendly since it can be implemented using Keras as front-end and Tensorflow as backend.Another important matter that needs to be taken into account in the implementation of deep neural networks is the choice of the network architecture (topology). In this application, we used a fully connected network (feedforward network), where the information always flows in one direction. However, there are other topology options like the convolutional neural networks that are very efficient for images as inputs that are the state of the art for deep learning We found that, in terms of prediction performance, the MPDN outperformed its univariate Poisson deep neural network counterpart in both data sets, which can be attributed in part to the fact that for the training process it used more data, which makes the training process more efficient in capturing better complex patterns in in the data. However, our results also provide evidence that, in terms of prediction performance, the proposed multi-trait Poisson deep neural network model does not outperform the conventional univariate generalized Poisson regression, since in most cases, we found no statistical differences between the GPR and MPDN models. This can be attributed in part to the fact that the data may not have strong nonlinear patterns and thus it is enough with linear models like generalized Poisson regression models, and also that our data sets are small with regard to the number of observations. However, although the MPDN was not better in terms of prediction performance than the GPR models, its performance is competitive and has the advantage that it can be implemented for moderate-to-large data sets and is able to capture nonlinear patterns in the data when they are present. For these reasons, the proposed MPDN model is an attractive tool for breeders for performing genomic selection with count multi-traits, and it can enrich the analytical tools available for genomic prediction for multi-trait count data with complex nonlinearities. However, as one of the reviewers pointed out, a good model not only has good generalization performance, but it gives some insight into the workings of the system. For this reason, the current state-ofthe-art of deep learning models are not really useful for inference and association studies, since their parameters (weights) many times cannot be interpreted as in many statistical models; also, since neither feature selection nor feature importance are obvious, for this reason, the DL methodology inhibits testing hypotheses about the biological meaning with parameter estimates. But there are nowadays current research in this direction for implementing appropriate DL models, that in addition to doing good prediction performance, allow an understanding of the biological significance of the outputs. This research is of paramount importance since there are still large difficulties in understanding the biological background and genetic architecture of many traits. Particularly for traits that are difficult or expensive to measure in (poorly defined) phenotypes, where the relationship between genome and phenome is far from being understood.It is important to point out that the proposed MPDN model is very flexible since it allows using raw inputs as images and other non-preprocessed inputs that cannot be applied directly with most conventional statistical machine learning methods used in genomic selection. For these reasons, the proposed MPDN can be used in other domains like biomedical informatics (Du et al., 2011) finance, health science, marketing, etc., where there is a great need for predicting multivariate counts as a function of complex inputs.Finally, although the proposed model was evaluated with only two data sets, the results provide evidence that it is competitive with univariate deep learning tools and conventional statistical learning tools and has the advantage that it can capture nonlinear patterns better than generalized Poisson regression and can be implemented in existing software (such as Keras as front-end and Tensorflow as back-end) that is very user friendly. Also, like all deep neural networks, the proposed MPDN will perform better than conventional statistical learning models in the context of large data sets, complex input information like images and very complex nonlinear patterns. However, more applications are needed in the context of genomic selection to gain more insight into the power of these models.A model for count multi-trait data were proposed under a multivariate deep neural framework. The proposed MPDN model can be implemented using Tensorflow as back-end and Keras as front-end, and for this reason, it can be implemented for moderate and large data sets in a very user friendly environment. Also, due to the fact that the proposed MPDN model is an artificial deep neural network model, it is able to capture nonlinear patterns by including in the specification of the network more than one hidden layer, which applies nonlinear transformation to the data to be able to capture these complex patterns. We found that the proposed MPDN outperformed the univariate Poisson deep neural network model, but it was not better than the generalized univariate Poisson regression models using two real data sets; thus more research is needed to prove the power of the MPDN model in the context of genomic selection. Although we obtained evidence that the proposed MPDN is competitive with regard to univariate deep learning models and conventional generalized Poisson regression models and is able to fill the lack of multi-trait predictions for count data in genomic selection, it also allows using raw inputs like images (which is not straightforward in conventional genomic prediction models) and its implementation does not require a lot of knowledge of statistics, machine learning and computer science since the libraries that currently exist for implementing these models are very user friendly. ","tokenCount":"7313"} \ No newline at end of file diff --git a/data/part_3/6905363742.json b/data/part_3/6905363742.json new file mode 100644 index 0000000000000000000000000000000000000000..34574c4dc1fa92d8bfddcaf07dd2a486e072654b --- /dev/null +++ b/data/part_3/6905363742.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"71f43a2285fe75ab4b390ee1a3091265","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/709e8f41-a881-4185-8145-7ea67dd4eb1f/retrieve","id":"418424685"},"keywords":[],"sieverID":"1ec7f6f4-97b9-4a1e-8ed8-8c571f2fe762","pagecount":"3","content":"How can we ensure that drought is no longer an outright disaster to smallholder farmers in Africa, but instead a manageable risk? With low-cost satellite-based index insurance products that monitor climatic conditions in near real-time and automatically trigger a pay-out when conditions are below normal. This helps farmers secure necessary credit for inputs, recover faster from bad seasons and sustainably improve their livelihoods.T housands of satellites are orbiting our planet and constantly measuring the earth's surface and atmosphere with a wide range of sensors. Satellites have been around for a good while, but in recent years new applications are being developed and combined with other technologies at an unprecedented rate. For example, it is now possible for African farmers to receive satellite data-based farming advice and early warning messages in combination with insurance, via SMS and paid for with mobile money on legacy phones.Capitalising on this technological revolution, EARS, a satellite remote sensing company based in Delft, The Netherlands, uses satellite data to provide micro insurance for smallholder farmers. EARS is specialised in using meteorological satellites for continuous monitoring of climatic conditions of the African continent and around the globe. With hourly observations available since 1982, EARS has built a large database of daily climatic parameters including cloudiness, global and net radiation, rainfall, and actual and potential evapotranspiration.These parameters are very relevant to agricultural production and can be used, amongst other applications, to develop agricultural index insurance products. Index insurance is a low-cost alternative to 'traditional'Joost van der Woerd, project manager at EARS Earth Environment BV, is a dedicated remote sensing specialist with years of experience using satellite data for climate and agriculture related applications. joost@ears.nl indemnity-based insurance. Index insurance is particularly suited to developing countries that lack mature agricultural insurance markets. With index insurance, the crop is not directly insured, as it is with indemnity-based insurance, but instead a proxy is used that is closely related to yield loss. This eliminates the need for local insurance experts and expensive loss assessment exercises, required for indemnity-based insurance.In Uganda, this proxy is evapotranspiration. Evapotranspiration, the loss of water from soil and plants through evaporation and transpiration, is an indicator for crop growth. Drought affects the ability of plants to capture CO 2 and release H 2 0. As such, by measuring evapotranspiration levels in insured areas, drought-related crop yield loss can be estimated. If in a given area the seasonal evapotranspiration falls below a certain threshold insured farmers in this area are automatically and rapidly compensated, without the need to put forward a claim to the insurance companies.To develop index insurance products, EARS' long historical data series is used to create risk profiles of every location in Uganda at a 3 km resolution. These are then used to price the insurance products. This is done at a sub-county level to help farmers obtain insurance without the need for detailed location data about their farms, but based on the sub-county they live in. Near real-time satellite reception ensures continuous monitoring of conditions and rapid loss assessment after the end of the growing season. When the drought index indicates the insured area falls below the index threshold, crops loss is imminent and insurance is paid out.From aggregated data to bundled services However, insurance is only part of the solution. It is necessary to support smallholder farmers in stabilising their financial situation to increase their investment and production capacity and professionalise their business. For this reason EARS has joined the MUIIS initiative in 2015.The MUIIS project design is based on the need for timely, accurate and actionable information regarding crop management and climate risks to inform smallholders' management decisions. The MUIIS platform offers subscribers a bundle of services: actionable agronomic advice via SMS to help farmers maximise production in a good year, and a safety net in the form of insurance that comes into effect in case of a bad year. MUIIS uses mobile money transact with its clients, to collect the subscription fees that include the insurance premium prior to the season, and to disburse pay-outs at the end of the season to subscribers that experience drought-related losses.The project is executed by an international consortium of organisations. Local partners with farmer networks, outreach capacity and essential agronomic expertise are supported by a local state of the art fintech-firm. Several complementary satellite and weather data providers from Europa and the United States, including EARS, provide satellite data derived weather and agronomic information as input to the MUIIS platform to be distributed to subscribers via SMS during the growing seasons.The MUIIS project is one of the 23 projects of Geo data for Agriculture and Water (G4AW), a program run by the Netherlands Space Office (NSO) -the Dutch national space agency. With programs such as MUIIS, G4AW focuses on making food security more sustainable in developing countries by using satellite data. \"Its goal is to reach thousands of people with that data, and the new technological applications that are possible with it. ","tokenCount":"826"} \ No newline at end of file diff --git a/data/part_3/6928038304.json b/data/part_3/6928038304.json new file mode 100644 index 0000000000000000000000000000000000000000..36a648737c41cf61d9d4ce5e948e6aa82c1fd806 --- /dev/null +++ b/data/part_3/6928038304.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"a0798ac06e8d4827fc92ae81a67e3c65","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/46ba49e5-3a52-4d4f-92dc-bded0b683771/retrieve","id":"794364951"},"keywords":[],"sieverID":"3fd66200-0a53-459a-8117-cfe390f0b4dd","pagecount":"39","content":"This paper describes a partícip.tol)' maize breeding program that is a coll.boratíve project between BiTS, Agricultural Universíty and the KRlBHCO Indo-British Rainfed Farming Project (Enst). At the beginning ofthe project, a base population was produced in Ihe rainy season of 1997 by making nine crosses between tbree yellow-endospermed flinl varieties (Suwan, Birsa Makka 1, and Chandan 3) and three white-endospermed flint varieties (GDRM 187, Shweta, .nd Rudarpur local). The parental varielies were selected either because farmers in the project area had accepted Ihem or because they contributed complemental)' trails to the.population. The population has becn randomly m.ted for tive cycles by hiJI-planting seed derived from the original nino erosses .nd det.sseling 50% ofthe plants. After the initial random mating, eaeh eyele was planted from pale yellQw grains that sbould be heterozygous at the locos controlling endosperm color. Three composite varieties have been extracted from cyeles !bree and fOUT by nmdom mating of early-maturing plants (75 to 80 days) with eitheryellow or white grains. Preliminal)' resolts show !hat these populations are superior to local checks for multiple traits. lnterv.rietal hybrids were also made from farmer-preferred vaneties. Farmer-managed partí.ipatol)' researeh (FAMPAR) trials conducted in the rainy season.of 1998 showed that farmers preferred the BM 1 x Suwan intervarietal hybrid lO the local varieties. Further evaluations ofhybrids in on-farro and station trials are being condocted.After rice, maize is the most important cereal crop in the rainy season for the largely tribal farmers of the Chhotanagpur plateau region of eastem India. However, maíze ís in decline and yields vary greatly from year to year. The Birsa Agricultural University (BAU), Ranchi has released severa! varieties, but tribal farmers have not adopted them because of theír late maturity, which results in the common end-of-season droughts severely limiting yields. Therefore, a participatory maíze breeding program was initiated ín a collaborative project between Birsa Agricultural University, Ranchi, and the KlBHCO Indo-British Rainfed Farming Project (KRlBP) managed by KRlBHCO (K.rishak Bharati Co-operative).The major objective was to breed and test early-maturing and high-yielding open-pol!inated varieties and intervarietal hybrids of maize in participation with farmers. An analysís of farmers' constraints showed that farm holdings are very smal! in the area and that shallow, infertile soils on sloping lands give poor yields. The crop is large1y rainfed, and iITÍgation to mitigate the effects of drought is rarely available.Participatory rural appraísals were used lo solidt farmers' preferences in maize varieties. Farmers wanted the following:• early maturity • long cobs with high placement on the stem • prolificacy (two to tmee ears per plant)• resistance to lodging, disease, and insect pests • nonhybrid varieties because ofthe cost and difficulties ofpurchasing hybrid seed every yearTo develop new varieties of malze, two strategies were adopted:• breeding open-pollinated composite varictiesTo breed new open-pollinated composite varieties a base population was initiated in the main season of 1997 by making nine crosses between three yellow-endospermed flint varieties (BM 1, Suwan, and Chandan 3) and three white-endospermed flint varieties (GDRM 187 from Gujarat AgriculturaJ University and KRlBP west, Gujarat [see Goyal, Joshi, and Witcombe, this volume]; Shweta, from Uttar Pradesh; and Rudarpur local, from Uttar Pradesh). The parental varieties were either farmer-preferred varieties or had complementary traits. The three yellow varieties are medium-to late-rnaturing and have a higher yield potential when water 1S not limiting than the three earlier-maturing white varieties. By 1999, the population had been randomly rnated for five cycles by using a pseudo-random hill planting plan. In each cycle, 50% ofthe plants were detasseled, and paJe yellow grains were harvested from lhe detasseled plants (Goyal, Joshi, and Witcombe, this volurne). At lhe C 3 and C 4 cyc1es, two open-pollinated (C3/98-99 and C4/99) varieties were extracted frorn the base population.The yellow-grained variety C3/98-99 was formed from deep yellow seed harvested from about 200 early-maturing, detasseled plants of lhe C 3 cycle of lhe base population in the post-rainy season of 1998-99. In the rainy season of 1999, lhe random-mating population was grown frorn these seeds. In the post-rainy season of I 999--{)0, farmers were invited lo visit the research station at Ranchi lo select desirable plants. Farmers graded them inlo three categories and the third preferences were rejected. In the rainy season of2000, lhe seIection will be repeated and the population will be tested in research station triaIs. Similar procedures were followed for variety C4/99. A white-endospermed population was also developed by bulking white grains frorn three sources: frorn selected p1ants ofthe C 4 cycle ofthe base population, frorn the C3/98-99 population grown in the rainy season of 1999, and from plants selected for rnaking the C4/99 population. The first random rnating will be carried out in the rainy season of2000, and farmers will be involved in selection before and after flowering.Intervarietal hybrids offer a faster approach to creating new varieties for farmers than generating new cornposites, but they require more complex seed rnultiplication than open-pollinated varieties. However, the seed of intervarietal hybrids is cheaper and sornewhat easier to produce than that of single-cross hybrids based on inbred lines. If intervarietal hybrids were greatly preferred, then KRIBP would attempt to produce seed within project villages, In singIe-cross hybrids, advanced generations from farrner-saved seed are considerably lower yielding tban tbe original F I generation. However, tbe advanced generations of intervarietal hybrids may still yield welL How much hybrid vigor is los! if farmers retain the seed ofhybrids is being evaluated in tbe rainy season of 2000 by using advanced open-pollinated generations from tbe F I intervarietal hybrid, Sorne farrners have preferred tbe open-pollinated varieties Suwan, BM 1, and Chandan 3 to their local varieties. These varieties, along witb Megha, a drought-tolerant and early-maturing variety from Punjab, were used as parents to produce three intervarietal hybrids in the rainy season of 1997: BM I x Suwan, BM I x Chandan 3, and Megha x Suwan.The new open-pollínated varieties developed have not yet been tested for yield on farmers' fields. However, intervarietal hybrids were tested in farmer-managed participatory-research (F AMP AR) trials in !he rainy season of 1998 as well as in research-station trials in tbe pre-rainy season of 1998-99 and the rainy season of 1999.Ofthe three hybrids tested, BM 1 x Suwan yielded tbe mos! in trials conducted in !he pre-rainy season of 1998-99 (rabIe 1). The advantage of!he intervarietal-hybrid approach is clear: the hybrid yields more !han either parent and is earlier tban tbe later, highest-yielding parent (Suwan).F AMP AR trials in tbe rainy season of 1998 showed tbe following: • Farmers preferred BMI x Suwan and Chandan x Suwan because oftbeir yellow flint grains, higher yield, medium maturity, and higher fodder yield .• Hybrid Megha x Suwan was rejected because of a high proportion ofpoorly developed and diseased plants.The two farmer-preferred hybrids were further tesled in the raíny season of 1999 al the BAu-KRlBP farm (figure 1). Hybrid BM l x Suwan, the highesl-yielding entry, yielded more Ihan both parents and was earlier Ihan the highest-yielding parent. The intervarietal hybrids themselves are certainly promising. What now needs to be done is to look at the feasibility of their seed production-.either with village-based organizations in the development project area or, on a more commerciallevel, wíth the publicor prívate-sector organizations.How important this will be will depend, in par!, on how well the íntervarietal hybríds compete with open-pollinated varieties derived from the composite.Bíhar, a typical eastem Indian state, has 5,4 million ha planted to rice, with yields of, on average, onIy 1.2 t ha-1 of grain. More than half ofthe rice area is rainfed, inc1uding the drought-prone, upland ecosystem. In tbis ecosystem, most farmers grow traditional varieties and productivity is very low. Most farmers prefer to grow traditional varieties. Many of the varieties bred and released by the formal system, both nationalIy and at the state level, have no! been adopted by farmers because they lack traits important to farmers (Virk and Bhasker Raj 1996). However, variety Kalinga I1I, which was promoted by the project in its target area covering mne districts ofBihar, West Bengal, and Orissa, has severa! advantages-excellent grain quality and extreme earliness, which allows it to escape end-of-season droughts. However, because it has weak straw, a major objective of the participatory plant-breeding (PPB) program was to breed varieties to replace Kalinga I1I that díd not have this wealrness.The breeding strategy was to cross a popular, locally adapted cultivar (in this case, Kalínga ill) with exotic, high-yielding cultivars from a centralized breeding program (Witcombe et al. 1996). Varieties IR64 and IR36 were chosen as the high-yielding cultivars since both are grown in large areas in eastem India. A strategy of a few crosses with large populations was used (Witcombe and Virk, in press).At the request ofthe Centre for Arid Zone Studies (CAZS), crosses were made at the Intemational Rice Research Institute (IRRI), in the Philippines. Because only a few crosses were used, more resources could be devoted to each cross, so large population sizes and many progeny rows were employed in lhe breeding programo A large F 2 population was raised al Ranchi in lhe main season of 1997 and the F3 was grown in the off-season at the Central Rice Research Instítute (CRRI), Cuttack, in 1997-98. In the main season of 1998, the crop was grown at lhe collaboratíve research farm of Birsa Agricultural University (BAU) and the KRIBHCO Indo-British Raínfed Farmíng Projeet (KRIBP), Ranehi. Each year since then, two crops have been grown. We describe lhe breeding strategy for the Kalinga 1II x IR64 cross. Two participatory methods were used; they varied according to the main type of particípation employed, Le., consultative or collaboratíve (Joshi and Witcombe 1998).In the consultatíve approach, breeders grew all of the tríals on a research farm wíth moderate applícatíon ofpurch125 days). The bulks were named as fol!ows: ED = early dwarf; ET = early tal!; MD = medium dwarf; MT = medium tal!; LD = late dwarf and L T = late tal!. Of these, the performance of the early dwarf proved to be unsatisfactory and it was dropped. Ihe performance of the MI bulk was good but highly variable, so it was further divided into four: MIl = earlier shorter; MI2 = earlier taller; MI3 = later shorter; and MI4 = later tal!er (figure 2).After dropping lhe ED bulk and dividing the MI bulk into four, there were eight bulks. Ihree were then advanced without further division (the two dwarfbulks and the late bulk). However, in five of the bulks, further division was made among the F s seed into grain type, i.e., long, intermediate or short in length. In the F 6 generation, the resultant bulks were grown by researchers and evaluated by farmers (consultative participation). Combinations of maturity and grain types were selected and rejected. For example, in later-maturing bulks that more or less matched the maturity ofCH45, only nonslender types were acceptable. For rice ofthis maturity, the harvest ofwhich coincides with the rains, it is only economic to produce roasted, flattened rice, for which only less-slender-grained varieties are suitable. In contrast, in the earlier groups, al! grain types were acceptable.By the F6 generation the bulks were recognizable by farmers, because most of the plants shared cornmon traits, but the bulks still had significant genetic heterogeneity within them for farmers to be able to make selections. In the chaite season of2000, farmers were given the bulks at the F7 stage and lhe results ofthis farmers' selection wil! be evaluated.As wel! as the modified bulk populations breeding approach, we are al so trying variants of single-seed descent (SSD) such as equal-seed deseen!. In classical breeding programs, SSD is increasingly employed to rapidly and cost-effectively produce homozygous lines. It concentrates Figure 2. An example of rice suh-hulks at the F s stage in the cross Kalinga III x IR64, Chitwan, Octoher 1999. Note the large population sizes (the people in the background are working in the same bulk as the one seen in the foreground) and the two bulks-earlier-maturing bulk MT2 (right) and a later-maturing bulk MT3 (Ieft).seleclion in advaneed generations that are highly homozygous and where selection is more efrcetive thanin earlier, more heterozygous generations (e,g., Delzer, Busch, and Hare1and [1995] and Van Oeveren [1992] in wheat; Fahim et al, [1998J in rice), We have modified SSD to retain even more variation by using equal-rather than single-seed deseent in the earlier selfing generations, It also aUows multiplieation so lhat by the F 5 or F 6 generation, large quantities of seed of each bulk (or sub-bulk) can be supplied lo many fanners, The probability of se1ecling desirable segregants is increased when the entire selection process is replicated across fanners, Participatory techniques mus! complement and caunot replace classical breeding. Somc low-heritabilíty traÍts can only be selected under controlled environments, and modero techniques that facilitate wide crossing, such as embryo reseue, are confined to the laboratory. No single participatory plant breedíng program can hope to screen more than an ínsignificant proportíon ofthe germplasm available in collections of genetic reSOllrces or, for example, attempt to create poplllations with novel resistance traits. Classical breeding is a strategic approach that creates improved parents for Ihe cost-effectíve, adaptive approach of participatory plant breeding.Maíze (Zea mays L.) is the most important crop grown in association with finger núllet (Eleusine coracana Gaertn) and fodder trees in Nepal. About 80% of maize is grown in the hills, which constitutes 20% ofthe total cereal production of the country with producíÍvity of slightly more than 1.5 t ha-l (CBS 1997). There hasbeen a decline of 20% in maize productivity in the hills since the mid-1970s (palikhe 1996;Adhikari 1998;NMRP 1997). This is proof ofthe inefficiency ofthe traditional approach to maíze improvement. The problem with the present approach is that it has assumed that biophysical and socioeconomic factors are common1y shared. The nature and importance of farmers' knowledge is poorly understood, and farmers' involvement in the research process has not been realized. The complex system of growing maize/millet with trees has been overlooked and fanners have nol been recognlzed as research partners in lhe process of maize technology generation. Consequently, the ímpact of seven newly released maíze varietíes has been ínsígnificant.It is not surprising lhat most ofthe maize-growing areas in the middle hills ofNepal are covered by the traditional varieties. Either new varielies are no! reachíng a majority offarmers or those farmers with access lO them are not continuing lo use Ihem (Khadka et al. 1993). Pham, Waddington, and Crossa (1989), in lheu review report on the ímpact of germplasm from the Intematíonal Inslitule for Wheat and Maize Improvement (CIMMYT), mentíoned that in most developíng countries, maíze farmers are, by and large, growing the old established landraces.It was Iherefore realízed that it is necessary 10 develop a more efficient and effective approach where researchers, maize breeders, and farmers can work together for a common goal. The need lO bridge Ihe gap between local and scientific knowledge is a necessary prerequisite lo developing an effective maize-improvement strategy. A farmer-participatory approach would involve developing a community-basedadaptive research capacity, achieved by working with groups of farmers, maximizing Ihe use ofrural resources, and utilizing farmers' knowledge in parallel. This approach can bríng farmers' knowledge -(farmers' perspectives) and scienlific ideas (researchers' perspectives) logether (Walker et al. 1997;Sinclair and Walker 1998;Wagner 1993;Joshi 1997). Besides lhe acquisitioo oflocal knowledge, a fuller understandiog oflhe maize-growing environment and how farmers manage scarce resources are major prerequisites for investigation.During the early 1970s, wheo research 00 maize started, Ihere were high expectalions that the development of maize in Nepal would offer better varieties lo farmer •. However it has been realized that Ihe adoption of new varieties by farmers was not as simple as lhe researchers and developmenl workers had thought. The farmer-participatory approach began in response lo lhe inefficient, traditional, top-down approach, where more focus was paid 10 a few researchers' traits of interest ralher Ihan to lhe needs of farmers managing complex and heterogeneous systems.There are many good reasons lo encourage farmers' participation in the process of agricultural research and development (Farrington and Martín 1988;Farrington 1998;Witcombe et al. 1996;Joshi and Witcombe 1996;Witcombe and Joshi 1996;Witcombe and Virk 1997;Sperling and Scheidegger 1995;Sthapit, Joshi, and Witcombe 1996;Subedi, Rana, and Joshí 1997). The complexity of the system i8 only understood by lhe farmers. The traditional approach is deficient both in understanding such systems and in using farmers' talents. The participatory approach will help empower local groups of farmers by enhancing production (through the acceptance of preferred varieties), genetic diversity, and \"togethemess\" (Sperling and Scheidegger 1995;Eyzaguirre and Iwanaga 1996;Chambers and Mascarenhas 1990).As part offarmer-participatory maize improvement, bolh participatory varietal selection (PVS) and participatory planl breeding (PPB) were carried out side-by-side, although the latter is usually initíated when PVS faíls lo identify farmers' preferred genotypes (Witcombe et al. 1996;Joshi and Witcombe 1996). The two activities were carried out al lhe same time in order lO create broad, genelic-based populations simultaneous1y with PVS aclivities so as to offer choices to Ihe farmers as quickly as possible.Fanners' criteria fOf selecting maize genotypes were based on local knowledge. Suítable varietíes were sough! to meet the importan! rraits that were identified as preferred by farmers, particularly those rela!ing to grain size, color and type, plan! height, suitability for agroecologícal niches, and compatibility with the ウ ケ ウ エ ・ ュ セ @ Varie!ies were selec!ed as suggested by Witcombe et al. (1996) from the releases fOf the same domain (Manakamana-I), for one o!her domain (Arun-l fOf lower hills bu! forthe middle hills a new introduction), and from pre-releases (Population-22 and BA-93-2126#2).Sites were chosen where maize is the important crop fOf household income, in farming systems Ihat were representative in terms of agroenvíronrnental and socioeconomíc conditions, and where ¡here were no political or social obstacles 10 effective researcher-farmer interactions. Marga, Patle and Fakchamara were selected for the farmer-managed, participatory-research (F AMPAR) trials.A total of60 packets (15 of each variety) containing 500 g ofseed were distribuled randomly to 20 farrners at each site to compare with theír local varieties. Therefore, F AMP AR trials of one variety were replicated over five particípating farmers al each site. Farmers were asked lo grow the new varieties alongside their local variety in the same field and under the same management conditions. However, fields for the F AMP AR trials were to be selected mutually by farmers and researchers for their representativeness (not too sloping, not too marginal or too fertile, and with sorne degree of tree shade, if possíble). Periodic farm visits and interactions wíth farmers were made so as to observe performance of varieties at different stages. Assessments of the pre-harvest traits of test varieties were made by joint visits between researchers and farmers to each participating farmer's fields. A wide range of issues, covering field management and performance ofvarieties in the complex and heterogeneous environrnent, were discussed. F arrners' observations of experimental varietíes and their own local varieties were discussed at greater length and were recorded using household•level questionnaires (HLQs). Farmers were asked to harvest both new and local varieties separately and to measure grain yield using their local measurement uruts. They were also requested to store the harvests separately usíng existing practices and to assessievaluate other postharvest characteristics, such as grit-to-flour ratio, graín type and color, cooking quality, taste, and market value. They were also asked to assess fodder quality. AIso as part of the PVS program, demonstration trials were conducted in five different sites (Marga, Patle, Fakchamara, Murtidhunga, and Parewadin). The same four FAMPAR varieties were given to one farmer at each site to grow together with hislher local variety for comparison; 500 g of seed of each variety was given to mrmers to grow on their own farms.Group visits were organized to see F AMP AR trials in the field grown by indívidual farmers in various growing conditíons. The performance ofthe FAMPAR varieties was assessedjointly, and final!y, farmers were brought to see varietal demonstrations to compare al! varieties at one site. At the end of the session, focus-group discussions were organized and views were collected as per questionnaires developed for the discussions. Male and female farrners were grouped separately and discussions were initiated accordingly. Based on the performance ofF AMP AR varieties, farmers were asked to rank the varieties. Note: Two years on-fann testing to satisfY yariety release cornmittee is to be condueted befare proposing yariety to be released. Preharvest traits. Farmers observed that the germinative ability of the new varieties was better than thal ofthe local varieties since better quality seed was given lo thero. During the group discussion, one of the participating farmers said that if the quality of seed of the new varieties was as poor as the usual inferior (ínsect attacked) quality of the the local varieties, Ihen the germiuation percent of the local varieties would be higher under stressed sítuations (drought and soil capping). Additionally, the farmers said that when the maize was sown, Ihere was sufficient moisture in the soil, and as a result, there were no germination problems this year.Farmers a1so perceived that the new varieties had stronger stems and shorter pIant height than the local varieties, resulting in reduced lodging. The test entries were better with respect to foliar diseases, particulatly turcicum blight, but they had problems with ear rol. Within the new varietíes, Population-22 was preferred. This was mainly because it had larger ears and lower rates of infection with turcicum blighl. Farmers thoughl this was because it was less affected by tree shade. New varieties roatured earlier than local varieties except for Population-22 (figure la). The new varietíes had similar requirements for fertilizer and water as the local varieties; however, theír drought tolerance was less. There were míxed responses from fanners on ear size, production estimates, shelling percent, and graín size, Despite the desirable thinner stems of the local varietíes for livestock TP. Tiwari, D,S. Virk, and FL Sine/air stover, farrners preferred the new varieties for this purpose because Ihey had improved stay-green characteristics. Except for Population-22, the new varieties were not shade-tolerant.Postharvest traits. Assessment of postharvest trai!s revealed tha! the local varieties were better with respect lo grain color and type, taste, grit-to-flour ratio, stored-grain pest infestations, and cooking quality. The farrners who were able to comment on taste reported that Manakamana-l was good but still inferior to the local varieties. The taste ofPopulation-22 was inferior to local varieties and to Manakamana-I. However, these varieties all fetch good market prices compared with yellow types (figure lb).The overall ranking of the tested varieties trom different sites with different groups of farrners reveaIed that despite its Iateness, farmers liked Population-22 in field conditions (table 2). The traits farmers Iiked were higher yielding potentiaI, taller plants with multiple ears, stay-green characteristics, freedom trom foliar diseases, and tolerance to lodging, Because of the taller plant height, there was less shading of millet when tbe Iower leaves are stripped by farrners to harvest fodder and reduce competition with the millet. However, at tbe Murtidhunga and Parewadin sites, farmers saíd it affects mílIet because of its larger leaves and late maturity.Table 2. Overall Rank ofVarieties froID Different Sites with Different Groups ofFarmers (1999) There was little distinction between tbe preferences of maJe and female farmers. It was rather surprising lbat the late variety Population-22 scored the highest (40), followed by . The seore ofMana-l, local varieties, and BA-93 was similar (21). This was supported by the observed grain yield trom FAMPAR trials, where Population-22 was found to be significantly superior (p<.05) to local varieties (figure 2). Other entries were on par with local varieties fOf grain yield.As in the F AMP AR trials, Population-22 was found to be the highest yielder in tbe multilocational varietal display trials, although this result was not statistically significant (V=.38). The mean graín yield, irrespective of site, ranged trom 2294 kg ha-I to 2949 kg ha• l . Arun-I was tbe lowest yielder. Most of the farmers who grew Arun-l commented lbat because of its early maturity, birds and rodents were attracted to it. A further problem was tbe theft of ears. Thus, there was no seed to keep for the folIowing year or 10 assess for postharvest traíts. However, because of its earliness and otber desirable traíts, farmers were willing to contÍnue to use it. Sorne farrners also expressed the opinion lbat it provided early food and that demand for it would inerease in the future when green ears were marketed locally for roasting.The impaet of any variety is assessed by looking al the area covered by that variety in a particular Ioeation and how confidently farmers have taken to that variety. Although it is too earIy lo assess Mm.k.mana-I; VJ=BA-93; V4=loc.l v.rielies; VS=Arun-l, Figure 2. Summary results of grain yield of F AMP AR varieties impact, most of the participating farmers stated that they had saved seeds from sorne of the F AMP AR varieties that they grew last year, thus confirming the potential of PVS lo increase biodiversity. The amount ofseed saved for Ihis year's sowing was 31 kg ofPopulation-22, 29 kg of Manakamana-I, 24.5 kg ofBA-93, and 13.5 kg of Arun-I across aH sÍles. Most farmers stated lhat one or two years' experimentalion was not sufficient lo fuHy understand the performance of a variety, so a few more years would be needed to have a more complete picture. Aecording to the farmers, the seed demand from olher farmers for F AMP AR varieties was limited except in a few cases (there was sorne demand for Population-22, Manakamana-l, and Arun-I) because ofless exposure, A participatory seed-multiplication program for Manakamana-l and Population-22 has been launched. F armers were briefed about the seleclion of maize seeds in the fie1d and the relative advantages ofthe field selectÍon techniques 2The basis for farmers' decisions lo either accept or reject a variety is eomplex.• Farmers' interest in growing new maize varietíes without replaeing existing local varielies eonfirmed Ihat partícipatory erop improvement is a means ofincreasing genetic diversity.• No ideal variety lhat satisfies all Ihe eriteria set by farmers has been developed so far by research. VarietÍes generated by following the top-down approaeh provide only a few traits that farmers required, but the partícipatory approach is more satisfaetory beeause it offers more ehoices and gives the new varieties more exposure.In India, finger millet occupies an area of around 2 million ha, and annual production is about 2.6 millíon tonnes. lt is grown as a rainfed crop on marginal sloping lands, where rnoi5ture and plant nutrients are lirnited. The crop withstands a variety ofbiotic and abiotic stresses, and traditionaIly, it has been an indispensable component ofthe dryland farming system. 1t i5 a staple food in southem Karnataka and in Tarnil Nadu, Andhra Pradesh, South Biliar, Maharastra, Orissa, and Uttar Pradesh.In Karnataka, a dozen high-yielding varietíes were bred and released for cultivation during the 1970s, '80s, and '90s. These varieties were developed through hybridization between exotic (Afrícan) and native Indian gennplasrn. F anners, particularly in areas where rainfall is more evenly distributed, have accepted sorne of these varieties, but their adoption is uneven iñ the major finger-millet-growing be1ts ofKarnataka, Adoption is higher in districts and areas where annual raínfall is more evenly distributed than where rainfall is seanty and erratie. For exarnple, in Chitradurga and Bellary, fanners still grow old varieties because oftheir specific adaptation to the local environments. The reasons for nonacceptance of new varieties in these districts could be a lack of traits fanners consider important in the new varieties, or a lack of location-specific adaptation, or both. variety, to provide a basket of choiees of recommended and nonrecommended varieties (the nonrecommended selected from those in advanced stages of formal varietal testing) to farmers for testing and selection, and to identify farmer-preferred varieties for dissemination.The study was carried out in tbree major finger-millet-growing subdistricts (taluks): Chitradurga, Holalkere, and Hosadurga of Chitradurga dístriet, Kamataka, India. The mean annual raínfall in Holalkere is 602 mm, in Chitradurga 590 mm, and in Hosadurga 463 mm.A household baseline survey for varietal preferences was conducted, involving 150 finger-milletgrowing farmees eategorized mto upper, medium, and lower socioeconomic classes. The survey was made in 1999 in seven villages: Katihalli, Jalikatte, and Erajjanahatti ofChitradurga taluk. surveyed in May; Maddheru and Kumminagarta ofHola1kere taluk, surveyed in June; and S. Roppa and Bansihalli of Hosadurga taluk. surveyed in July.Disregarding tbose farmers who did not respond, all farmers preferred a variety with higher grain and fodder yíelds. Among other traits, 67% farmers preferred varieties with compact eaes, 65% wanted plants of medium heíght of around 100 cm, and 38% considered early maturity an important trail. Farmers did not express a specífic preference for characteristics such as ear size, number of liUers per plant, or quality of fodder or grain (table 1). The farmers' ideal variety would be high-yielding, maturing in about 105 days, witb a plan! height of 100 cm, medium-sized compact eaes, and moderate tillering ability (table 1). Farmers also required a suitable variety for late sowing (in tbe middle of August) as a second erop followíng sesame or cowpea in tbe rainy (kharif) season.The baseline survey also showed that tbere was a varieta! monoculture ofPR 202, a selection from local eultivars from Andbra Pradesh. PR 202 is an old variety !hat was released for Andbra Pradesh in 1976 as a pure-line selection from a Mertachodi landrace of the Vishakapatnam area. lts plants are medium taIl (110 to 120 cm) and ears are ín-curved with six to eight fingers per ear. PR 202 has a good threshing ratio, and its orange-brown grains are medium bold (1000 graíns weigh 2.8 g). However, PR 202 is highly susceptible lo blast-a major disease of finger millet, and farmers wanted an altemative lO this variety.Following the baseline survey, a search was undertaken to find varieties thal would best match the farrners' selection eriteria. Six varieties were choscn for Icsting by farrners in a participatory varietal selection programo Tbree of the selected varielÍes were released varieties, or identified for future release, Le., GPU 28 and GPU 26 (released for Kamataka in 1998and 1999, respeclÍvely), and VL 149 (nationally released in 1994). The other three varieties, VL 305, GPU 46, and 9002, were promising enlríes in advanced AH-India co-ordinated finger-mi!let iríaIs.AH the ISO farrners sampled in the baseline survey were involved in the conduc! of farmer-managed participatory-research (FAMPAR) trials during the raíny season of 1999. There were two types of trials.The 150 farrners were divided into six groups of 25 each across the seven selected viHages; the number of participating farrners varied across vil!ages. Each group was given one cultivar to grow side by side with their local variety in the sarue field under farrner-managed conditions, so there were 25 replicate-farmers for each variety. Each participatíng farmer was supplíed with 1 kg of seed ofthe new variety (table 2). Two farrners in each village were given seed of all six varieties for growing together with the local variety in the sarue field in a single-replicate lríal. These iríaIs served two purposes: to compare the performance of al! varieties and to serve as foci for demonstration and focus-group discussions. A two-way analysís of variance with varieties as one factor and locations (villages) as the ofuer provided significance of differences among loeation, varieties, and interaction of varieties with locations.F armers took a great ¡nterest in experimentation since only four F AMP AR Iríais out of 150 were unsuccessful. The variety GPU 28 yielded more than al! othervarieties in all c1usters (table 3). Only variety GPU 46, in clusters l and 5, and variety GPU 26, in clusters 2 and 5, yielded on a par with GPU 28. Al! other varieties yielded less lhan GPU 28 in al! five clusters. Farrners' perceptions were recorded in pre-and postharvest focus-group discussions (FGDs). Nine trails were scored in fue FGDs: grain yield, stover yield, grain size, grain density, grain color, ear type, cooking quality, days te flowering, and disease resistance. The cultivar GPU 28 closely matched farmers' eriteria for a variety lo grow under normal sowing in tbe second week of July.Early-maturing GPU 26 was the most preferred variety for late sowing. A nonrecomrnended variety, VL 305, was preferred by farmers for its 9% higher yield fuan fue control and its extra-early maturity in 85 days, which allows it 10 fil in a double-cropping sequence. It can be sown in September after a crop of sesame or cowpea.In fue presenl study, farmers of Chitradnrga district did not prefer fue national!y recomrnended variety, VL 149. On fue olher hand, varieties GPU 26 and GPU 28, re/eased by Kamataka state were accepted by farrners, although they stilllacked the earcharacteristics preferred by farmers. An important resul! offarrner-participatory varietal selection was ¡he identificatíon ofvariety VL 305 for growing in very specific niches as a second crop after sesame or cowpea. Farmers preferred fuis varíety beca use of its earlíness even though this results in lower productívity compared lo later-maturing varíeties.Participatory varíelal selection in finger millet has been successful in identifYing varieties for specific agroecosystems, which are difficult lo reproduce on research stations. Our results confirm those ofvarious workers in other crops and agroecological systems: farmers prefer lo adopt varíeties trom a basket of choices irrespective of their recornmendation domains (Sthapit, Joshi, and Witcombe 1996;Joshi andWitcombe 1996, 1998;Virk, Bhasker Raj, and Witcombe 1996;Thiele et aL 1997). The participatory approach is more effeetive than conventional on-farm adaptive research (Gowda et al. 2000) because it provides farmers multiple choices from among varietíes that are selected for farmer-preferred traits.The PVS approach in finger millet was a use fui tool for the following reasons:• understanding farmers' erítería for selecting a variety A survey oC nearly 1500 households in the high-polential productíon system (HPPSs) ofthe Chítwan and N.walparasi districts ofNepal showed gre.t physical and socíoeconomÍc diversíty. Vanetal diversity was low in all Ihe craps studied and vaned according lo loealion in main-season nce. Masuli was the predominanl main-season nce vanety, occupying over 65% of the area in Ihe surveyed vilJages. Seventeen modem vanelies ofmain-season nce were introduced to farmers lo test in collaboratíve tnals. Farmers identified 10 ofthe new nce vaneties as having useful teaits, and seven were adopted to a significant extent within three .easons. The new varietíes occupied abou! 13% of over 800 ha of main-season rice in eight study vilIages and increased on-mrm vanetal diversity by partly replacing predominant varieties.The accepted vaneties offered, on average, an 18% yield advantage without any requirement lo change agronomy or increase inputs. Other advantages of Ihe new varieties were their early maturity, drought tolerance, disease and inseet tolerance, and better adaptation to dífferent ecologieal niches such as areas of shallow water. Despite Ihe cornrnonly assumed uniformíty of hígh-potential production systems, the new vaneties oecupied specific niches in the farrning system from irrigated land witb varying duration of retained standing water, and from partially irrigated to rainfed lowland conditions. Farmem preferred specífic vatietíes Cor different níches, which snould help lo inerease and maintain biodíversity on Ibe farm. Overal! production is expected to increase as cach nicho becomes occupied increasingly by Ihe best-adapted vanety. Participatory approaches are simple, powerful method. for identífying superior vaneties and deploying them in specific niches for increasing food production in high-potential producti on systems.Favorable agricultural environments, known as high-potentíal production systems (HPPS), produce most ofthe world's grain. In the developing world, HPPS are ofien intensively cultivated irrigated areas. The terai ofNepal (the alluvial, low-altitude flat land on the southem borders ofNepal at about 150 m altitude) has seasonal or perennial irrigatíon, high crop yields, and produces 57% of the total cereal production ofthe country (AMDD 1994/95). For Nepal to feed its ever-increasing population without increased reliance on imports, higher production is required in the terai.The study area is located in the south ofNepal at a latitude of 27° N. The climate is subtropical to tropical, with warm, humid summers (max. 40°C) and cool, dry winters (min. 8°C). About 90% of the annual total rainfall of about 2000 mm falls between June and September. The research was carried out in 18 víllages comprising 3000 households. The víllages were located in parts of two districts, Chítwan and Nawalparasi, and grouped into three c1usters of six villages in East Chitwan, ","tokenCount":"9656"} \ No newline at end of file diff --git a/data/part_3/6950557445.json b/data/part_3/6950557445.json new file mode 100644 index 0000000000000000000000000000000000000000..0b188f6120354bf025309d3e5ab859ac22284b89 --- /dev/null +++ b/data/part_3/6950557445.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"9951f1ea325db945d1f352f9673bbc37","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/736ed0f7-9bf2-47cf-b6fc-2109a8ab983e/retrieve","id":"1240775942"},"keywords":["G2 Productive","profitable","and resilient agriculture and aquaculture systems Project Lead Organization: IRRI Consortium partners (who receive budget): WFC","BRRI","BFRI","BRAC","CSSRI","CIBA"],"sieverID":"ef4522b6-ac79-48d3-8e29-00ec62982355","pagecount":"14","content":"Any matching funds offered (provide brief explanation): US$93,706 IRRI's Project STRASA works in the same area and will provide matching fund 10% of time of Dr. Ismail and Tao Li in 3 years. Some amount will be designated to the attendance of IFWF.The goal of the Ganges BDC is to reduce poverty, improve food security, and strengthen livelihood resilience in coastal areas through improved water governance and management, and more productive and diversified farm systems.The project will contribute to this goal through developing and introducing more productive, diversified, and resilient agriculture/aquaculture production systems in the fresh-/brackish-water coastal zones of the Ganges delta in Bangladesh and India, for the benefit of poor rural households.The project has five specific objectives: 1. Validate new germplasm suitable for various agricultural cropping systems and establish seed distribution networks in target zones Numerous salt-tolerant and submergence-tolerant varieties of rice are now available but have not been sufficiently tested for adaptation and suitability to replace the low-yielding rice landraces currently being used by farmers in coastal areas. Besides being tolerant of prevailing stresses, these varieties have higher yields, are short-maturing, and are more responsive to inputs, which will facilitate cropping intensification and further improve and stabilize the overall productivity of the region. These varieties will be widely evaluated with farmers in participatory varietal selection (PVS) trial settings and seeds of suitable varieties will be made available to farmers. 2. Develop and disseminate more productive, profitable, resilient, and diversified rice-based cropping systems (including rice-aquaculture) The productivity of many coastal areas with low to medium salinity is very low and dominated by monocrops of rice during the wet season. There is potential to double or, in most cases, triple cropping, and increase current system productivity, farmers' income, and food production. Rice varieties selected in activity 1 and water management will be used as the entry points to design more productive and sustainable rice-based systems.Homestead farming provides opportunities for integrated aquaculture, agriculture, horticulture, and livestock activities, which could be profitable if managed scientifically. Women normally play major roles in homestead activities, including input supply and marketing. However, for most farmers in coastal areas, homestead farming has low productivity, but with enormous potential to enhance food diversity and economic conditions of farmers because of the sustainable production of various food sources that have a good market price. Farmers' ponds can effectively be used for producing high-quality fish, and this can be integrated with other agricultural and horticultural activities to enhance the nutritional value of homestead products. 4. Develop novel brackish-water aquatic production systems for zones too saline for agricultural crops These systems will be developed in areas with scarce freshwater resources during the dry season. Environmentally friendly low-input poly-culture aquaculture with improved and specially adapted fish/shrimp species will be developed. Increasing productivity in the dry season also helps alleviate farmers' vulnerability to typhoons. Farmers thus have more stable and improved livelihood.Efforts will be made to ensure ownership and support of policymakers and decision-makers to support the transfer of knowledge and technology. Government policy-enforcing agencies will be included during various stages of the project, and policy briefs, extension material, and interaction with local media will be extensively used as a means for further dissemination. We hope the outcome will be the recognition of the importance of suitable policies to strengthen the largescale adaptation of new varieties, new technologies, and cropping systems in fields and in homesteads.Research Questions Methodologies For output 1 (new germplasm validated and seed distribution network established)  Which varieties will be adapted to the coastal area and under which conditions, and how they will be made available to farmers?The project will match modern germplasm (crop varieties, newly available or in the pipeline) to the resource profile (rainfall, salinity, and flood risks) of targeted areas. Though new upland crop varieties will also be tested, the project will focus on rice as this is the most important crop in the coastal zones. Because of their shorter duration and tolerance of most of the prevailing stresses, new rice varieties provide considerable opportunities for enhancing system productivity through adjusting cropping patterns and resource management to reduce the level and duration of stress. Breeder seeds of stress-tolerant rice varieties will be provided through BRRI and further multiplied using current networks established through STRASA and CSISA for distribution to farmers at target sites. Farmers' participatory varietal selection trials (PVS) will be used for validation and demonstration of existing and new varieties and breeding lines. Rice-based cropping systems will be tailored to local environmental (especially salinity and risk of flooding) and socioeconomic conditions. The systems will be designed to increase \"crop\" diversification and land-use intensity in a sustainable manner. Currently, small poor landholders grow only one crop per year using low-yielding rice varieties in the rainy season or they have lowyielding aquaculture ponds. This will be increased to two or three \"crops\" per year, where \"crop\" refers to whatever is harvested (rice; upland crops such as legumes, oilseeds, or cereals, e.g., wheat, maize; and aquatic organisms such as prawns, shrimp, fish, crabs).The new systems will involve rice-based cropping systems (in areas with salinity < 4 ppt more than 7 months/year), using either (i) two crops per year (rice-rice or rice-upland, e.g., aus-aman, amanboro, aman-upland) or (ii) three crops per year (rice-rice-upland, e.g., aus-aman-upland, aman-boro-upland). In areas with higher salinity, the project will increase the productivity of the rice phase of rice-shrimp systems with new rice varieties with enhanced tolerance of salinity and submergence and with mixed culture of rice and prawn or fish. In all tested cropping systems, modern varieties with short duration and enhanced tolerance identified in activity 1 will be incorporated.We will carry out participatory experiments/demonstrations in farmers' fields as well as process studies in the BRRI research stations in the target areas. In both types of studies, we will utilize an inter-disciplinary approach, as required by cropping systems analyses. This will require integrative inputs from all partner institutions, capitalizing on their unique skills and specialization. Financial analyses of inputs/outputs and cost/benefit will be carried out to assess the capital requirements of the technologies and farmers' potential income increase brought about by the new cropping systems. In the process studies, on-station experiments will be carried out to evaluate the effects of crop varieties/species, nutrient and water management, and cropping calendar on agronomic and economic performance of different rice-based cropping systems. These systems are designed according to the resource profile of the study sites. Experimental parameters (weather, soil, water, crops) will be monitored. These will be used to evaluate existing models such as ORYZA2000 and APSIM, which will be used to explore the potential in areas outside of the tested sites, in years with different climate conditions, and with varying cropping calendars. Project G2 will limit in calibration, evaluation of the models and use them in analysis of different present and future (from Project G4) scenarios of climatic and hydrological condition. The Project will collaborate with the ACIAR -SAARC project \"Developing capacity in cropping systems modeling to promote food security and the sustainable use of water resources in South Asia\"in the model development.The Project will build on and enhance the success of CPWF Phase 1 project PN 10 in Bangladesh (www.waterandfood.org/page/PN10, Alam et al 2008). It will work closely with Project G3 to explore the possibilities for intensification and diversification that can take advantage of better water governance at polder level. Collaboration with G3 is important at the start of the experiment, to ensure water management at landscape level will be compatible with the field level requirements of the tested cropping systems For output 3 (Improved homestead production systems)  What are the homestead options that provide efficient use of resources, diverse food sources, and additional income and nutrition to households, especially women?In both southern Bangladesh and West Bengal of India, seasonal hunger and malnutrition are common among landless and nearlandless rural people. These groups are particularly vulnerable because of low and irregular cash income. Many use the small area around their houses to grow food to supplement field crops. Homestead farming also contributes to improved nutrition (Hellen Keller International/AVRDC 1993, Talukder et al 2000). This activity will involve the evaluation of the input efficiencies, productivity, and nutritional value of different models of homestead farming in selected villages, representing different salinity and flooding risks. The project will pay special attention to the role of female farmers. What are the trade-offs for women and men between investments in homesteads and in fields?In this activity, we will undertake an extensive literature review to understand the present knowledge on homestead economy and farming systems in the coastal zones of Bangladesh and India. Depending on the outcome of the literature review, a participatory rural appraisal (PRA) or household survey will be carried out to quantify the productivity of homestead farming systems in different target zones. The literature review and PRA/survey outcome will lead to the identification of model systems that are more likely suitable for particular target areas. Selected models will then be evaluated in selected villages for participatory validation. Experiences from the successful homestead model VAC (V for horticulture, A for fishpond, and C for household animal husbandry) in Vietnam can also be tested for improving crop combinations suited to the environmental, social, and economic conditions in the brackish-water deltaic regions of the Ganges in both countries. Nutrition and market values of product will be important parameters in the selection of systems to be tested. For output 4 (Brackishwater aquatic production systems) How can effective and sustainable aquaculture systems be developed in areas that are too saline for agricultural crops?In areas too saline for agricultural crops (with salinity < 4 ppt for less than 4 months per year), farmers typically produce one crop of shrimp with low yield and low economic income. Present knowledge and improved aquatic organisms will permit poly-culture of diversified aquaculture systems with improved cultural practices. The system of shrimp (outside) + fish (cage-GIFT/Red tilapia/seabass nursing) will be validated. The project will develop and disseminate the raising of small indigenous brackish-water fish species (e.g., Mystus, Etroplus suratensis) and promote low-input low cost shrimp aquaculture (LILCSA)-2 crops/year and shrimp production based on organic principles. Besides monitoring the bio-parameters to quantify growth and yield of aquaculture organisms, the project will also monitor water quality in the pond to ensure that the technologies developed are environmentally friendly. Financial analyses of inputs/outputs and cost/benefit will be carried out to assess the capital requirements of the technologies and farmers' potential income increase brought about by the new cropping systems. For output 5 (on technology and policy recommendations)  How can the technologies and production systems generated through the project be supported by suitable policies and effectively out-scaled to reach men, women, and poor households?Various strategies will be employed to ensure ownership and support of policymakers and decision-makers and for the transfer of knowledge and technology. Government policy-enforcing agencies will be included during various stages of the project, in field visits and meetings. In collaboration with Project G5, the project will organize dialogues with decision-makers and policymakers to timely inform them of the project findings and to \"lobby\" for policies inducive to the large-scale adaptation of the varieties, technologies, and cropping systems generated by the project. Knowledge generated through the project will also be made available through different means, including extension material, news releases, policy briefs, and scientific publications.With full knowledge of other ongoing or completed initiatives in the Ganges, Project G2 will ensure the complementarity and add value to them. It will build on the successes of CPWF Phase 1 projects, especially from PN 10 (www.waterandfood.org/page/PN10) and PN 7 (Ismail andTuong 2009, Ismail et al 2010), in using short-duration stress-tolerant varieties and on-farm water management for increasing opportunities for cropping intensification. The new varieties with short duration and enhanced tolerance of abiotic stresses (salinity, submergence) developed by BRRI, BINA, IRRI, CIMMYT, BARI, and ICRISAT provide further opportunities for crop intensification and diversification. The project will leverage on the BWDB's work on Integrated Planning for Sustainable Water Management (IPSWAM, BWDB 2011) in improving polder infrastructure and management. In addition, G2 will select BWDB-rehabilitated polders as study sites to test varieties and cropping systems. It will revisit land use policies and land zonation proposed by the Integrated Coastal Zone Management Project (Islam, 2006). Experiences learned from CP10 in stocking of prawn and fish with rice in the rice phase of the shrimp-rice system will contribute to enhancing productivity (Alam et al 2008).In addition, G2 will link with the following projects:STRASA is funded by the Bill & Melinda Gates Foundation. Its first phase ended in January 2010 and a new phase started in February 2011. This project focuses on developing stress-tolerant rice varieties for South Asia and sub-Saharan Africa, together with proper packages of management.Numerous varieties were developed in recent years that are adapted to local conditions of Bangladesh but with high tolerance of persisting abiotic stresses, particularly drought, submergence, and salt stress. Four of these varieties were recently released in Bangladesh. These varieties are also short-maturing and more responsive to inputs, offering great opportunities for better cropping systems. Seeds of these varieties will be provided through the existing STRASA network operating throughout Bangladesh. Considerable efforts are needed to demonstrate the advantages of these varieties in target areas of Bangladesh and to provide sufficient seeds, together with knowledge on their proper management. This will be carried out in activity 1 of this project. The link of G2 with STRASA is direct through common staff in both IRRI and Bangladesh/India NARES and also through common sites in both countries.Bangladesh\" G2 will have strong links with the CSISA Bangladesh expansion project. CSISA will establish three hubs in southern Bangladesh in 2011 (Khulna, Noakhali, Jessore) and another in Barisal in 2012, with the primary aims of large-scale validation, adaptation, and deployment of improved varieties and crop and aquaculture technologies. The technologies being developed in G2 will feed directly into CSISA for further validation and dissemination. The link is direct through common staff across both projects-within IRRI and within WorldFish Center.G2 will use crop models to explore management options for individual crops (especially rice), and explore options for more intensive cropping systems (rice-rice-upland, rice-rice-rice), with the guidance of cropping system modelers. This will be possible through a direct link with the ACIAR-SAARC cropping systems project, which will include sites in Bangladesh, and a common staff member across the CPWF-G2 and ACIAR projects within IRRI.This project will complement the CPWF project though studies and modeling of salinity dynamics in polder areas. IRRI will be a partner in this project. The target area of the project is the brackish-water coastal zones in the Ganges Basin with maximum salinity greater than 5 ppt in the dry season, and with lower salinity during the wet season. In Bangladesh, the area will cover approximately seven districts: Patuakhali, Barguna, Jhalakati, and Pirojpur of Barisal Division and Bagerhat, Khulna, and Satkhira of Khulna Division. It will also include East Medinipur, Haora, North 24 Parganas, and South 24 Parganas districts of the coastal zone of West Bengal, India. Within the target area, sites are selected to carry out experiments according to the following criteria: -Representing a range of different salinity conditions (high, medium, and low) -Accessible, for ease in transporting experimental supplies and making field visits -Near experiment stations of one of the partner institutes -In Bangladesh, priority is given to polders  With water management already improved by IPSWAM work (www.ipswam-bwdb.org.bd/).  There are ongoing activities by projects to which G2 can link.  Historical long-term household survey data exist.The following three polders were selected: 1. Polder 3 (Kaligonj, Shatkira): This polder is characterized by high salinity, especially during the dry season. Mostly only one crop of rice is grown during the dry season, but, in a few areas, a riceshrimp system is practiced. Good potential exists for increasing productivity of the rice-shrimp system and for enhancing aquacultural production in the dry season by introducing modern technology of mixed farming of shrimp, fish, etc. Rice yield during the aman (wet) season could also be increased considerably by replacing the current local varieties with improved salt-tolerant varieties with shorter maturity to escape the periods of higher salinity and increase duration for the shrimp season, as well as the period required for land preparation between seasons. Historical long-term household survey data are also available for this polder for use as baseline information.The polder is also moderately accessible. Despite the enormous potential for improving annual productivity in this polder, not much has been done so far with regard to adaptive research to enhance rice and/or shrimp productivity or in formulating proper community-based water management groups for proper water management.2. Polder 30 (Batiaghata, Khulna): This polder covers about 4,500 ha, mostly affected by medium to high salinity during the dry season and in the wet season (Mondal et al 2010). Cropping intensity is low, about 140%, despite the potential for two to three crops per year. Possibilities also exist for incorporating fish culture with rice during the wet season and cage culture in canals in aman and part of the boro season. This polder is more accessible and long-term historical household survey data are available as a baseline. The research team is familiar with this polder as it was used for some of the initial studies of both PN 10 and PN 7 during Phase I (Mondal et al 2010), and also a water management group is in place.3. Polder 43/2/F (Patuakhali, Barisal): This polder has low to medium salinity intrusion and low cropping intensity but potential for a substantial increase, and potential for triple cropping. Rice productivity can also be further increased by replacing the current local varieties with more productive salt-tolerant modern varieties. Baseline socioeconomic data are also available for this polder. Not much research has been done so far in this polder. In addition, the polder is accessible and has good potential for organizing water management groups.The activities in India will be conducted in West Bengal, with two institutions: 1. Central Soil Salinity Research Institute-Regional Research Station (CSSRI-RRS) at Canning Town: research will be conducted in North 24 Parganas District in areas under Sandeshkhali (police station). 2. Central Institute for Brackish water Aquaculture (CIBA) covering South 24 Parganas District in areas under the Kakdwip Research Centre, CIBA, Kakdwip (police station).At both sites, research activities will explore different options of crop intensification based on available resources, including rice-fish and rice-shrimp in brackish-water areas, poly-farming with selected stocking (including potential for establishing a small-scale feed mill), and homestead farming, which will integrate aquaculture, agriculture, horticulture, and livestock farming.Please refer to Annex A Project workbook, worksheet PNX-OLM.Please refer to Annex A Project workbook, worksheet PNX-Gantt Chart.IRRI has long played a leading role in rice research and development and in capacity strengthening of NARES partners, with a history of 50 years of collaboration with national research institutions, including many in Bangladesh and India. IRRI also led numerous projects funded by the CPWF during Phase 1; two of them involved partners in the same geographic locations where Project G2 will be implemented (CN 7 and CN 10). IRRI is well equipped with needed facilities and expertise to lead this project, and will build on accomplishments made during Phase 1 as well as through projects supported by other donors. This project will complement our current activities in germplasm development and dissemination (through the Stress-Tolerant Rice for Africa and South Asia, STRASA, project) and in cropping systems/resource management (through the Cereal Systems Initiative for South Asia, CSISA). IRRI also maintains a strong reputation in the management of research projects over many decades. In this project, IRRI is responsible for the over whole research management of the project, for the integration of partners to ensure high quality scientific as well as technological outputs.Partner 1. The WorldFish Center (WFC) was involved in both CN 34 and 35 of Phase 1. WFC brings considerable experience, with a South Asia regional headquarters in Dhaka active for many years with wide experience in implementing research and development projects in the Ganges-Brahmaputra-Megna system, and excellent relations with government, NGOs, and other development partners in Bangladesh and India. WFC will work closely with research institutes in Bangladesh and India and will be in charge of aquaculture systems (output 4), and the aquaculture activities in rice-aquaculture systems (output 2) and homestead farming (output 3). It will give due guidance to the Bangladesh Fishery Research Institute (BFRI) and Central Institute for Brackish-Water Aquaculture (CIBA), Indian Council of Agricultural Research, of India in the above activities.Partner 2. The Bangladesh Rice Research Institute (BRRI) has been involved in both PN 7 and PN 10 of Phase 1. BRRI is the prime institute in Bangladesh with the mandate for rice research. Many rice varieties and technologies produced by BRRI are now widely adapted by farmers and have contributed greatly to increasing rice production and alleviating poverty in the country. In this project, BRRI will provide certified seeds of rice varieties to be used in rice-based cropping patterns. It will be involved (together with IRRI, BRAC, other partners in planning, execution, and monitoring of different trials and in linkages with farmers, ensuring outputs 1, 2, and 5. BRRI maintains three regional stations in the project area of southern Bangladesh, and at least two of them, Shatkhira and Barisal, will be involved in the project activities.Partner 3. BRAC is an international NGO with nine regional research stations and more than 60 seed production farms scattered in Bangladesh. BRAC has a strong network with farmers in the south and is handling a project for crop intensification in some polders in the saline areas of southern Bangladesh. BRAC will be involved in on-farm adaptive research and dissemination, seed increase, and demonstration trials, using mostly their own resources, with minimal needs from the project. Partner 4. The Bangladesh Fishery Research Institute (BFRI) is the prime research institute in fisheries research in Bangladesh. BFRI has established an excellent reputation in being involved in many international projects and networks. BFRI maintains a brackish-water regional research station in the coastal zone of Bangladesh and has actively contributed to PN 10 during Phase I. In this project, BFRI will work closely with IRRI, BRAC, BRRI in outputs 1, 2; with IRRI, BRAC and WFC in output 3 and with WFC in output 4.Partner 5. The Central Soil Salinity Research Institute-Regional Research Station (CSSRI-RRS), Regional Station, Canning City, West Bengal, India, is well staffed, with expertise working on improving the productivity of the coastal areas of India. It also has a long history of collaboration with IRRI in numerous projects focusing on developing salt-tolerant varieties, alternative cropping systems, and management practices for salt-affected areas. CSSRI-RRS, in collaboration with IRRI, will be involved in conducting experiments of outputs 1 and 2 in farmers' fields in North 24 Parganas District of West Bengal. It will collaborate with the Central Institute for Brackish-Water Aquaculture in output 3. Partner 6. The Central Institute for Brackish-Water Aquaculture (CIBA) research center in Kakdwip, West Bengal, has collaborated successfully in many projects with WFC in developing aquaculture systems in brackish-water as well as freshwater environments. In this project, CIBA will work closely with WFC on aquaculture systems (output 4) and with IRRI, CSSRI-RRS on homestead systems (output 3) and more productive, profitable, resilient, and diversified rice-based cropping systems (output 2) in the coastal zones of India, and will conduct trials with farmers in South 24 Parganas of West Bengal.Other partners. These partners will be involved based on needs and capabilities as the project progresses. Potential partners will include the regional universities, Khulna and Barisal universities in Bangladesh, and Calcutta University in India. In addition, NGOs (such as Shushilan, Uttaran) working at the project sites in both Bangladesh and India will be involved, particularly in on-farm research activities. We will work with small seed (for agriculture) and feed (for aquaculture) companies, example are Kapotakkha Enterprise (at Tala, Satkhira) and Urban Agro Seed (at Fultola, Khulna). In India, some small NGOs also produce seeds for West Bangal, such as Tagore Society, Gotra, Cooperative.Please refer to Annex A Project workbook, worksheets PNX $ Summary, PNX $ Comments, PNX $ Time Allocation, PNX $ By Outputs, and PNX $ By Institution.Alam MJ, Islam ML, Tuong TP, Joffre O. 2008. Improved rice-aquaculture integration in coastal rice-shrimp system in Bangladesh. In: Humphreys E, Bayot RS, van Brakel M, Gichuki F, Svendsen M, Wester P, Huber-Lee A, Cook S, Douthwaite B, Hoanh CT, Johnson ","tokenCount":"4066"} \ No newline at end of file diff --git a/data/part_3/6960409021.json b/data/part_3/6960409021.json new file mode 100644 index 0000000000000000000000000000000000000000..10ea7ae45278e529addda95974ad9dd4e072d6d3 --- /dev/null +++ b/data/part_3/6960409021.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"01b9066352baeb5116cf46ce7feeed84","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/19fcba7d-27e8-4e69-84c1-e1406dfb62de/retrieve","id":"1111228109"},"keywords":[],"sieverID":"9c2719db-30b2-4079-8f89-7593b85d6e95","pagecount":"29","content":"Potato production is a major economic activity in the tropical highlands of sub Saharan Africa (SSA). It is considered the hidden treasure of Africa due to its contribution to: i) food and income security (Muthoni et al, 2009), ii) direct and indirect employment (Blanken et al. 1994;Kabungo 2008;de Graaff, 2011). The direct employment results from on-farm employment of both producers and non-producers who work as permanent and temporary workers in potato farmers while indirect employment arise from the opportunities created by backward and forward linkage effects (Okello et al, 2014). The backward linkages include the manufacture and supply of inputs, the production of seed potato, the transportation of inputs to production areas and the retailing of agro-inputs. The forward linkage effects include the transportation of potato from the farm to destination markets (e.g., packaging, loading and hauling), peeling, chipping and packaging fresh tubers for use in urban food industry, among others.Potato production in the tropical highlands of SSA does not, however, occur in isolation. It is part of a complex farming system that encompasses the production of other crops as well as livestock, forestry, bee-keeping and myriad other off-farm activities that are expected to influence and are, in turn, to influenced by potato production (Murage et al, 2000;Briggs et al, 2002;Nyankanga et al, 2004;Gildemacher et al, 2009).Potato production also occurs in a complex and dynamic human and physical ecology influenced by complex intra-household decision-making processes relating to labor, financial and natural resource allocations. The labor resource allocation relates to intra-household decisions on the roles of different household members in the farm activities, while financial resource allocations are related to how household income is allocated to the farm activities and enterprises. Moreover, households have to decide how much labor should be allocated to non-agricultural activities, e.g., non-farm employment, household maintenance, and leisure (Fischer and Qaim, 2012). The non-agricultural activities create competition for labor, and affect the kinds of agricultural/farming practices that households use. For instance, the migration of labor from farm to non-farm sector in search of better opportunities (Hitayezu et al, 2014), leads to loss of household members that are more likely to adopt improved farming practices (Reardon and Vosti, 1992;White et al, 2005).Farm households also interact with their physical ecology and this interaction affects their livelihood outcomes (Plummer and Armitage, 2007;Armitage et al, 2008;Toa and Wall, 2009). Specifically, household's choices and decisions affect its natural, physical, and financial capital endowments which, in turn, affect the physical environment and the sustainability of agricultural production. For instance, the repeated cultivation of land without sufficient fallow can result in the depletion of natural stock of fertile soil, which can be accelerated by uncontrolled soil erosion (Ulrich and Volk, 2009). The failure to practice soil fertility management by, among others, applying fertilizer and manure in one's farm can result in the same effect (Shiferaw et al, 2009;Ayuke et al, 2012). The decision to abandon crop rotation or increase length of rotation cycles can result in the build-up of pests and diseases, which can in turn, reduce yields, and hence crop incomes, and deplete the financial capital based of households that heavily depend on agriculture as a major source of income and livelihood. At the same time, pest and disease build up is likely to encourage the use of pesticide, resulting in environmental and health effects, and ultimate negative consequences on biodiversity (Okello and Okello, 2010). Thus the interactions between the households and their physical environment have mutual and reinforcing effects which are circular and dynamic in nature. So how do these interactions affect and are affected by potato farming?This study used Urie Brofenbrenner's ecological systems' theory to examine the major microand meso-level issues that affect potato production in the tropical highlands of Sub-Sahara Africa (SSA). It specifically investigates how the decisions and activities undertaken by households interact with the micro and meso-level factors and the effects those interactions have on the physical environment. The study focuses on potato farmers in the southern highlands region of Tanzania. Tanzania is one of the major potato producing countries in the SSA and has a wide marketing network with many countries in eastern and southern Africa. It is also one of the SSA countries that have recently embarked on major efforts to improve potato industry through investment in state-of-the art quality seed multiplication technique, known as the 3G technique.The technique reduces the number of generations of seed multiplication from the tradition six years to just three years, hence expediting farmer access to higher yielding seed. Potato production is one of the leading economic activities in the Southern highlands (Mpogole and Kadigi, 2012) making potato production and interesting case to study.The rest of this paper is organized as follows. Section 2 presents the conceptual framework of the study while Section 3 discusses the empirical methods used. Section 4 presents and discusses the study findings, and lastly Section 5 concludes and presents study implications.Brufenbrehner's ecological systems theory, as the name suggests, examines how an individual is influenced by his/her ecology factors. In the context of agriculture, the theory posits that a farmer's decisions and actions are conditioned by his or her idiosyncratic/personal, the microsystemic and macrosystematic factors. Figure 1 presents these factors. The farmer specific factors conditioning decisions and actions include age, gender and health status.Figure 1: Micro and macro systematic drivers farm production and marketing A farmer's age is often used as a proxy for experience in farming. Older farmers may be more predisposed to use farming practices that improve yields while conserving the agroecology, because they are likely to have learned the benefits of sustainable food and cash crop production over time. Yet, increasing age is often posited to reduce the probability of use of improved farming practices, because of factors inherent in aging process or the lowered likelihood of payoff from a shortened planning horizon over which expected benefits can accrue would be deterrent to adoption (Batte and Johnson 1993;Barry et al. 1995, Shiferaw et al, 2009). At the same time, male farmers and headed households are more likely to use improved and sustainable farming practices because they tend to have greater access to a wide range of resources, including working capital from off-farm employment (Matshe and Young 2004), that may be useful in adopting such practices than their female counterparts. Indeed, Quisumbing (1995) argues that female farmers or heads of households often have limited access to working capital since they are, in most cases, widowed and/or poorly educated. Gender differences may also arise from male bias in the ownership and access to productive resources (e.g., land, credit and agricultural information) in most patriarchal societies such those in Africa (Quisumbing 1995;Doss and Morris 2000;Doss 2001;Quisumbing and Pandolfelli 2010).Other farmer-specific factors likely to influence farmer behavior and decision-making regarding sustainable farming are capacity endowments of the household. These include natural, financial and physical capital endowments that bestow the capacity, for instance, to adopt production and/or marketing technology or practice. Endowment with more land, a form of natural capital, is directly associated with the decision to adopt improved practices (Marenya and Barret 2007;Oduol et al. 2011). Studies further indicate that differences in quality of land (including topography, fertility) significantly affect household's decision to adopt farming practices (Feder and Umali 1993;Baidu-Forson, 1999;Fuglie and Kascak, 2001). Endowment with financial capital is, on the other hand, associated with ability to adopt soil fertility amendment technologies including manure and organic fertilizers (Shiferaw et al, 2009). In addition, Barrett (2008) and Burke et al (2015) argue that farmer endowment with physical assets (such as farm equipment) affects both the decision to adopt agricultural practices and the extent to which they do so. A household's behavior and decision to adopt agricultural practices can also be affected by household/farm level factors. These include religion, health, and family network. These factors affect spiritual and physical wellbeing of the farmer or an individual. Past studies, have for instance, found direct links between individual's health status and productivity (Okello and Swinton, 2007;Asfaw et al, 2010). A farmer's health, hence productivity, could be affected by the diseases one is exposed to (Chapoto, 2006;Mazhangara, 2007) or by exposure to some of the agricultural chemicals used in the farm, especially pesticides (Okello and Swinton, 2010). Lagerkvist et al (2012) and Okello et al (2014), on the other hand, find that spiritual wellbeing (i.e., goodliness) is a life goal that drives farmer decision regarding input use and crop management practices, respectively, in agriculture.Apart from individual-specific and household level factors, a farmer's behavior can also be affected by a number of meso-level factors. These include institutional factors that a farmer has to interact with, namely credit and agricultural information access, local political economy that influence provision of basic production and trade-enabling infrastructure (e.g., roads, irrigation, etc) as well (Carter and Barrett, 2006;Barrett, 2008;Naschold, 2012). The importance of institutional factors in the adoption of farm practices and agricultural technology is widely acknowledged in the development literature (Shiferaw et al, 2007;Okello andSwinton, 2007 Shiferaw et al, 2009;Shiferaw et al, 2011). The institutional factors provide an enabling environment for the uptake of improved agricultural practices by lowering transaction costs associated with the search for information on credit, input and output markets and new technologies. Transaction costs increase input prices, on the one hand, and lower output prices, on the other, thereby reducing farmers' profit margins and hence act as barriers to adoption of improved/sustainable agricultural practices (Zeller et al. 1998;Hiroyuki et al. 2010;Jack 2011;Zanello et al. 2012). A farmer's behavior and actions can also be affected by macro-level institutional factors. While not considered in this paper, macro-level issues relating to policies on land use, both at regional and national level, affect farmer's decision to adopt agricultural practices and soil and water management technologies (Shiferaw and Bantilan, 2004;Cooper et al, 2008). Regional and/or local government could for instance legislate against deforestation or cultivation of fragile margins without conservation measures, thus affecting land use practices. A good example was the \"fanya juu\" terracing policy in Kenya that required all farmers on hill slopes to construct terraces to conserve soil (Shiferaw et al, 2009;Ayuke et al, 2012).This study used the recently developed Household Food Insecurity Access Scale (HFIAS) to measure food insecurity. HFIAS was developed by Food and Nutrition Technical Assistance project of the United States International Development Agency. It focuses on the food access component of food insecurity (Swindale and Bilinsky, 2006;Kabunga et al 2014).Following Coates et al. (2007), HFIAS score usually used as the index for measuring the impact of an intervention on food security, were computed. The HFIAS score is a continuous measure of the degree of food insecurity in a household and is usually based on the last 30 days from the date of data collection. It is a snapshot measure of a household's food insecurity status. The score is a measure of how the household food supply status has been in the last 30 days and how concerned or otherwise the respondent (usually the person who prepares meals for the family) is concerned about the food situation in the households. The score ranges from 0 to 27, and the higher the score, the more the household is food insecure.Pesticide exposure was measured following Okello and Swinton (2010). The respondents were asked whether they applied any pesticides on potato during the 2013/2014 short and longrain seasons. When the answer was positive, they asked if the experienced any of the acute illnesses associated with pesticide exposure during or immediately following the mixing or application pesticides in potato. For every illness experienced, the respondent was asked to report the frequency of its occurrence in a scale given as: 1= 0-25% of the time; 2= 26-50% of the time; 3= 51-75 of the time and 4= 76-100% of the time. The illnesses considered included: eye, skin and stomach irritation, common colds, nausea, vomiting, nose-bleeding and blurred vision.The data and information used in this study were collected in May 2014 using both qualitative and quantitative methods. The quantitative data were collected through personal interviews with 165 potato growers using pre-tested questionnaire. The data collected included household demographic factors (e.g., age, gender, education and farming experience), environment factors (in particular pesticide usage and illness incidences and the use of soil fertility management practices), household experience and response to climate change effects, incidence of major chronic and acute diseases (including HIV-AIDS, cancer, diarrhea and malaria), and household food security status.The qualitative methods used were focus group discussions (FGD), key informant interviews (KII) and direct observations. These qualitative methods were used to collect information that can explain some of the findings/trends that emerge from the quantitative data. Descriptive and econometric analyses were used to examine the micro and meso-level issues affecting potato producing households interact with the physical environment and evidence from FGD and KII triangulated to help understand how and why these factors affect potato producers and the environment. The qualitative studies were conducted by the lead author assisted by two trained enumerators from the region.Data were collected from smallholder potato farmers in the southern region of Tanzania (see Map 1) and targeted five districts, namely Mbeya Rural, Njombe, Waging'ombe, Mufindi and Kilolo. Sampling was done in a number steps. First, in each district, all the villages were listed and study villages selected using probability proportionate to size sampling. This resulted in selection of four villages in Mbeya Rural, two in Kilolo and Mufindi, one in Njombe and three in Waging'ombe. Second, in each village, two sub-villages were randomly sampled from a complete list of sub-villages. Third, in each sampled sub-village, a list of all potato farmers was generated with the help of village leaders and village extension staff. Fourth, seven farmers were randomly selected from each sub-village list, resulting in a total of 14 farmers in each village and 168 farmers in the four project districts. However, three farmers did not adequately complete their questionnaires and were been dropped from the analysis, leaving a total of complete 165 responses. The data was collected in May 2014 through personal interviews by the lead author assisted by two trained enumerators.Map 1: Map of Tanzania showing the study areasTable 1 presents the characteristics of the respondents. It shows that 58.8% of the respondents were males. The average age of the respondents was 41 years, with male farmers having higher mean age than the females. Children below 15 years of age accounted for 43% of the household membership while only 1.8% of the members were above 65 years, which, indicates a high dependency burden.Almost all households engage in farming (i.e., crop and/or livestock production) as the main occupation. 93% of the respondents and 84% of their spouses are farmers. These results are in line with findings of the FGD which revealed that both men and women depend on crop and Study area livestock farming as the main source of income, and livelihood in general. The crops grown vary by district but included both cash (tea, wheat, potato, pyrethrum and forestry) and food (maize, beans, peas and potato) crops. Most households also grow a number of horticultural crops including cabbage, tomatoes and indigenous leafy vegetables (especially amaranth, cowpea, African nightshade and pumpkin).Households also keep various types of livestock including dairy animals, poultry, rabbits and sheep. The livestock are a source food, income and also act as a stock of wealth, hence play a significant role in the wealth-ranking of the households. The size and type of flock determines whether the household is considered very wealthy, of average wealth or poor. Large animals (e.g., cattle and donkeys) are associated with wealthier households while small animals such as rabbits and poultry (e.g., chicken, ducks and pigeons) are associated with poorer households.Potato is grown primarily for cash. As Table 1 shows, majority of the survey respondents had grown potato for an average of 5 years, with little variation across the study districts. The analysis of variance (ANOVA) multi-comparison test of difference in mean years of potato growing yielded a p-value of 0.428 indicating that there are no statistically significant differences in mean years of potato growing experience among the study districts. Table 1 further shows that male farmers are, on average, older and have more years of experience in growing potato, and also received more extension visits in 2014 than their female counterparts. Results further show that only 23% of study respondents are members of farmer groups, with participation in groups being higher in Mufindi and Kilolo districts. More than 40% of the respondents belonged to farmer groups in these districts. Table 2 presents study households' access to some of the key amenities (i.e., markets, main roads, and agricultural office). The first three columns compare access to the amenities by male and female respondents. They show that both male and female respondents are located, on average, less than 32 minutes walking distance from these amenities. The results also show that, the distance to agricultural offices, there are no statistically significant differences between male and female respondents in access to the amenities.The last 5 columns of Table 2 present the distances to the same amenities by district and the ANOVA test of differences in means across the districts. There are major, and statistically significant, differences in access to the key amenities in the four districts. The respondents in Kilolo are, on average, located closer to the main roads, agricultural offices and to the health centers than their counterparts in other districts. Results also show that farmers in Mbeya Rural re located much closer to market centers than their counterparts in the other districts. These differences can affect the livelihood strategies pursued and development outcomes. For instance, easy access to markets and to the main road is expected to reduce marketing and transaction costs thus increase incomes from crop and livestock sales (Fafchamps and Hill, 2005). Table 3 shows the distribution of potato production activities among the various members of the farm household. While majority of the activities are undertaken jointly by men and women, men are almost exclusively responsible for pesticide (fungicide and insecticide) application in potato.Indeed, more than 80% of the respondents indicated that the men were responsible for spraying.However, the FGD revealed that women also participate in the preparation of the sprays by fetching the water used and, in some cases, mixing the pesticides. Results also indicate that more men than women are involved in the irrigation of potato. Approximately 40% of the respondents indicated that men were responsible for the irrigation of potato while 32% reported that irrigation was the responsibility of both the man and woman. Contrary to expectations, results do not indicate that women were exclusively responsible for planting and weeding as often believed. This is probably because of the way these activities are undertaken. The FGD revealed that men and women usually work together during most of potato production activities. For instance, land preparation and ridging are usually done the same time as the application of fertilizer and manure. The men usually dig and ridge, while the women apply fertilizer/manure. This joint performance of potato production activities extends to weeding and harvesting. During harvesting, men dig up the tubers while women shake off the soil, and gather them into a heap. In some cases, both men and women dig up the roots, and then gather and heap them together afterwards. These findings of the FGD are corroborated by the quantitative survey results above which show that more than 50% of the survey respondents work jointly with their spouses during the planting, weeding and harvesting.The FGD and quantitative data reveal that significant changes with major implications on potato production and the environment are occurring in all the study districts. These include the rapidly declining land sizes, buildup of pests and diseases, and rising costs of fertilizers.The FGD revealed that land sizes have significantly decreased over the last one decade in all the study areas. Most households currently own, on average, only 3 acres of land compared to more than 5 acres just 10 years ago, with the exception of households in Mufindi district where land sizes are still larger. The scarcity of land has led to continuous cultivation of farmlands or significant reduction in fallow periods, which has, in turn, resulted into rapid decrease in soil fertility. Survey results indicate that only 33% of the households still practice fallowing (see Table 4). The findings of the FGD corroborate these results, and further indicate that households that still practice fallowing have reduced fallow periods significantly, (i.e., from about six seasons about 10 years ago to just one season in 2014).Some of the strategies farmers are using to respond to the decline in the fertility of their soils are also presented in Table 4, namely, the use of organic manure (including mulch and compost) and the use of inorganic fertilizers. The table shows that nearly 80% of the respondents use fertilizers in their potato plots. Results (Figure 2) further show that approximately 43% of the survey respondents have recently increased the use of fertilizers in their farms. These finding is in line with the results of FGD and the key informant interviews which revealed that fertilizer use in potato production has increased significantly in the last 10 years. Indeed, most FGD participants indicated that it is no longer possible to get good potato harvest without the use of fertilizers.While the use of fertilizers is important for maintaining the fertility of the soil, it can create major environmental challenges. Fertilizers emanating from farmlands are a major form of nonpoint-source pollutants, and can contribute to pollution of water bodies especially in areas where there is uncontrolled erosion of cultivated soils. This is indeed the case in study areas.Observations and key informant interviews revealed that potato farming is migrating up the hills and that plots are cultivated without any soil erosion control measures, thus posing the threat of the pollution of the very water bodies with soil sediments and fertilizers. The FGD revealed that water bodies provide water to the households and livestock. Further, some of affected water bodies and swamps serve as fishing grounds for the local communities and hence a source of fish for households living around them. Thus increased use of fertilizers, if not accompanied by measures to check the cultivation of steep hills and/or reduce soil erosion poses a serious threat to the environment and to household food and livelihood security. from fallowing and crop rotation, which aim to break pest and disease cycles, the use of other pest and disease management practices is relatively low. For instance, only 19% of the survey respondents used field sanitation practices such as uprooting and burning infected plants. Instead, majority of the survey respondents use pesticides to control potato pests and diseases. This finding was corroborated by the evidence from the FGD. Depending on the village, between 60-90% of the FGD participants reported that they used of pesticides in the control of potato pests and diseases in 2013.Figure 5 presents the average area covered by pesticides, quantities used and the pesticide application rate among the survey respondents. The average land area (acres) covered by fungicides and pesticides are similar. This finding is not surprising. Key informant interviews revealed that majority of the farmers follow calendar spray regime in the management of pests and diseases. Hence the areas sprayed with fungicides usually are sprayed with insecticides also. The two most problematic diseases in the study districts were late blight and bacterial wilt.Approximately 55% and 41% of the survey respondents used pesticides in the control of late blight and bacterial wilt, respectively. In both cases, majority (49.5%, N=77) of the farmers who used pesticides followed calendar spray regime.The proportion of survey respondents who used fungicides in each of the study districts varied greatly (Figure 3). Njombe district had the highest proportion (80%) of fungicide users while Mbeya Rural had the lowest. On the other hand, the highest usage of insecticides was in MbeyaRural whiles none of the survey respondents interviewed in Mufindi, and only about 4% in Kilolo, used insecticides on potato in 2013.Figure 3: Proportion of survey respondents using fungicides and insecticides on potato in the Southern highlands region of Tanzania, 2014Pesticides can be detrimental to the environment, and human health, in particular, if used indiscriminately (Okello & Swinton, 2010). Non-judicious use of pesticides can result in the pesticide-induced poisoning of both the applicants and/or farm household members. Table 5 presents the incidence of pesticide-induced illnesses among the survey respondents. The results presented in the table are the reported illnesses the respondents experienced following the application of pesticides on potato during the 2013/2014 cropping seasons. The most common types of pesticide-induced illnesses were common colds (associated with blocked nose), skin irritation, chest pains and cough, nausea and dizziness. More female respondents reported that they experienced dizziness, skin irritation, blurred vision, and colds soon after applying pesticides, while more male respondents reported that they experienced incidences of eye irritation, nausea, and chest pains and cough. The finding that more women experienced skin irritation following the application of pesticides than men is surprising, but may be due to the fact that some women mix the pesticides thus exposing themselves. Results (Table 4) further show that only 13% of the survey respondents did not experience any of the symptoms of pesticide-induced illnesses, indicating that there is high incidence of pesticide-induced illnesses among the respondents.Table 5 presents the proportion respondents exposed to pesticides and the frequency with which respondents experience pesticides induced illness. It shows that more than one-half of the survey respondents in all the study districts experienced illnesses associated with pesticide poisoning quite often. The highest incidence of pesticide poisoning was in Mufindi where approximately 61% of the survey respondents experienced pesticide-induced illnesses approximately more 50% of the time. Table 5 also shows that the frequency of occurrence of pesticide-induced illnesses was significantly higher in Kilolo than the rest of the districts. Respondents in Kilolo experienced illnesses induced by exposure to pesticides approximately 75% of the time they applied pesticides on potato. Pesticide poisoning can be significantly reduced by use of protective clothing/gear including rubber boots, nose mask, overcoat, gloves, and goggles (Okello and Swinton, 2010). However, results indicate that majority of the survey respondents did not use protective clothing when applying pesticides, while those who do so often use only some of the items of the protective gear. The most frequently used item of the protective gear was gumboots (52%) while the least used was the goggles (1.8%). Approximately 27% and 12% of the survey respondents used old clothes and old shoes, respectively, when applying pesticides.The usage of protective clothing among study respondents in the respective study districts isshown in Table 6. The table also presents the ANOVA tests of differences in mean usage of protective clothing across the districts. The use of gumboots, nose masks, and gloves was highest in Njombe district while Mufindi had the lowest proportion of farmers using gumboots and nose masks. Indeed, the results of the ANOVA test indicate that use of gumboots is statistically significantly lower in Mufindi than in the rest of the districts. Results also show that there is higher and statistically significant usage of gloves in Kilolo and Njombe than in Mbeya Rural and Mufindi. Some potato farmers, in all the study districts, are using extensive farming as a strategy to cope with the problem of declining yields and increased pest and disease pressure. Survey results indicate that more than 40% of the respondents have shifted the potato plots from where they used to be three years ago to new locations. The left panel of Figure 5 presents the reasons for shifting to new locations and indicates that the main drivers of this practice is the desire to increase potato harvest (output), which farmers are not currently able to do because of declining yields and lack of land in original potato growing farmlands. The limited supply of land has resulted in continuous cultivation of the same piece of land which results in declining fertility, and hence, yields. That is, the factors that are driving the shifting of potato plots to new areas are self-reinforcing, and are likely to increase in the future since farmers may see them as a strategy to increase household incomes and hence food security (Kaushal and Kala, 2004).The right hand panel of Figure 5 shows the locations farmers are shifting the potato plots to.More than 40% of the respondents are hiring plots elsewhere while approximately 30% have, in the last three years shifted to the land where they used to plant trees (i.e., own forest lands).Others have moved to government road reserves and hillsides, as earlier observed. These survey results corroborate the findings of the FGD and key informant interviews that indicated that farmers are responding to diminishing land sizes, declining yields and increased incidence of potato pests and diseases by shifting to new areas. The areas enumerated by the FGD include adjacent communities where potato was not, hitherto, traditionally grown; own forest lands; and valley bottoms that are either virgin or were used for growing horticultural crops, especially vegetables. The FGD participants further indicated that they prefer moving to these new areas to avoid pest and disease problems and to take advantage of the more fertile soils to increase output. However, the shift to forest lands and marginal hillsides is likely to have adverse effects on local climate and sustainability of agriculture in the affected areas. Cultivation of hillsides can exacerbate soil erosion and affect water bodies through pollution as discussed above, while deforestation affects climate (especially temperatures and rainfall).Past studies have demonstrated that there is link between household food security and environmental degradation (Frakenberger & Golsdtein, 1990;Lal, 2004;Gregory et al, 2005).Hence this study investigated the food security status of the study households. Results of this analysis are presented in Figures 6 and 7. The analysis takes into consideration both the quantity and quality of the food available to households. Overall, more than 52% of the male survey respondents were food secure as compared to 33% of their female counterparts (Figure 5). Indeed, the test of difference in the means of food insecurity index/scale between male and female respondents yielded a p-value of 0.0294, indicating that more male respondents were food secure than for their female counterparts. Figure 5 further shows that less than 10% of male and female survey respondents were severely food insecure, while 30% were moderately food insecure.Results further show that there is greater incidence of food insecurity in some districts (e.g., Mbeya Rural and Mufindi) than in others (e.g., Njombe district) (Figure 6). The figure shows that more than 46% of the study respondents in Mbeya Rural and Mufindi districts are moderately to highly food insecure compared to less than 25% in Njombe district. Table 7 presents the three components of food insecurity access scale (HFIAS). Results show that male and female respondents differ statistically with respect to component one of HFIAS, namely, anxiety and uncertainty about food supply situation in the household. There are, however, no differences between female and male study respondents with respect to the other two components which focus on the quality (i.e., variety) and quantity of food eaten by the household. Further, the results of the analysis of the three components of HFIAS by study district reveal that more than 40% of the respondents' households consumed food of insufficient quality during the 30 days preceding the survey (Table 12) with the problem being most prevalent in Mbeya Rural (67%, N=165) and Mufindi (68%, N=165) districts.The ANOVA tests confirm that households in Mufindi, Kilolo and Njombe districts differ statistically from those in Mbeya Rural district with respect to all the HFIAS components. Specifically, the proportion of respondents who reported that their households either had less supply of food, had to miss at least one meal in a day or take less amount of food over the 30 days preceding the survey was much higher in Mbeya Rural district than in the rest of the districts. These findings are in line with the results of the FDG which generally found that most households in Njombe had sufficient quantities of food although of less diversity. This study used the ecological systems theory to examine the major micro and meso-level ecological issues that affect and are affected by potato production in the southern highlands region of Tanzania, and how these factors are interacting with environmental factors that are likely to affect the sustainability of potato production and of the environment in general. It specifically focused on how gendered division of labor, environmental issues, and food security affect and are affected by the physical environment.The study finds that: i) contrary to beliefs, female farmers are involved in most of farm operations, including pesticide application; ii) continuous cropping and the generally diminishing land sizes is resulting in declining yields and hence increased reliance on fertilizers to maintain soil fertility; iii) there is an increasing trend of potato production shifting to fragile/marginal areas such as the forest lands, road side and hillside; iv) Disease and pest pressure resulting from continuous cropping and reductions in fallow periods, and the changes in weather is encouraging farmers to increase their dependence on pesticides; v) increased reliance in pesticides to control pest and diseases is resulting in increased incidence of pesticide poisoning; vi) majority of the households are food secure to mildly food insecure, with Njombe leading in terms of foods security while Mbeya Rural has the highest cases of food insecurity.Several conclusions emerge from this study: a) There is limited gender difference in the majority of the potato production activities, especially in own farms, as majority of the activities are mostly undertaken jointly by women and men. In addition, the increased incidence of pesticide poisoning among women may be because of the increased numbers who are participating in pesticide application through mixing; b) The decline in potato yields is being cause by a combination of many factors, including the declining soil fertility and land sizes and also pest and disease pressure; c) The diminishing land sizes and reduced fallow periods are major drivers of the migration of potato plots to the hilly slopes and the valley bottoms/wetlands, both of which can have serious environmental effects in terms of pollution and loss of biodiversity; c) farmers are largely food secure in terms of adequacy (i.e., availability) of staples, but less so in terms of the quality/variety of the foods eaten by the households.The implications of this study are: i) arresting the declining potato yields will require that greater effort is directed towards strategies that promote intensive agriculture characterized by use of quality seed and fertilizers rather than expanding production into the fragile margins. It implies the need to strengthen farmer education on the use of strategies that improve soil fertility while simultaneously limiting damage to the environment; ii) the non-judicious use of pesticides resulting in many pesticide-induced illnesses reported in this study suggests the urgent need to train farmers on safe use of pesticides. In particular, farmers need to be trained on the importance of pest scouting and the use of pesticide protective clothing; iii) The finding that farmers are shifting potato production to the hilly areas implies the need to enact and/or enforce sustainable land use regulations including mandatory soil conservation in such areas to protect the soil and water bodies from pollution/sedimentation. Such regulations should include the use of conservation measures such as terracing, contouring farming, use of stone bunds that prevent or reduce runoff and hence loss of soil nutrients; iv) It is unlikely that improvement in potato yields (and hence harvests) alone will change the quality of diets consumed by the households in the study areas without active nutritional education programs. Thus, the poor household diet diversity among the potato growers need to be tackled through independent programs that educate the households about the need to eat a diverse range of diets.","tokenCount":"5968"} \ No newline at end of file diff --git a/data/part_3/6997285904.json b/data/part_3/6997285904.json new file mode 100644 index 0000000000000000000000000000000000000000..d0026649252fd224692db26dc1bce411aa9f395d --- /dev/null +++ b/data/part_3/6997285904.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"d8550e158021463b05ad42be7d4e30a1","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/cefd58ab-21ca-414c-8849-af0111111dac/retrieve","id":"532079286"},"keywords":[],"sieverID":"4ce82956-5dd0-41c6-948d-5e4c49da9de1","pagecount":"6","content":"Los datos del vivero son para uso de los programas nacionales en la seleccibn de lineas para ensayos avanzados.Como conclusibn se destaca la importancia de basar seleccibn entre lineas uniformes sobre el conocimiento de las lineas:tienen mejor potencial de rendimiento,son resistentes a los factores limitantes mas importantes, cuales tienen las mejores caracterfsticas agronómicas y para consumo.Para tener la posibilidad de conocer las lineas, los viveros y ensayos deben ser sembrados y manejados para asegurar un buen ambiente de selecci bn para la identificacibn de las caracteristicas buscadas.cotv>l.EMENTACIDIIII POR: RDDOLFO ARAYA.Logran captar los materiales promisorios de los proyectos específicos, nacional.seleccionados como prioritarios por el programa Esto evita que los investigadores "],"sieverID":"3b7db15a-f89a-466c-b6cd-c6ae7b97c221","pagecount":"16","content":"Guía práctica para el control de malezas en potreros. ([l' ,~ r--71IT'.,En este ca:O-,8 el pasto nO tendrá suficiente vigor para recuperarse y c()rnnet!r con 10.5 nlalezas que sr están bien adaptadas a la ¿'_l'l(-l, (j)n1,) consecuencia el pasto va desapareciendo progresivamente y (~1 ('3DaCIO l ibr-'e va siendo ocupado (ur especies indeseables de bajr,) pcl!enc!al oroductivo, Doca piJ.liJ.tabilidad, bajo contenido de nutr-!1j\\0ntc-L'\" y n~l solar'i'\"'ente ,\",,8 pierde el potrero por invasi6n de malezas :~ln'') qUé'! té'lrnhién d\\sminuye la producC::i6n por animal. Además, es neCF.'--;or\\o tW1Pr ,en cuenta los cambios ar\"bientales dentro de 1a rn!~rÍ'V reglón. el mejor na sto p.-'l.ra lJn terrenO plano no sertl. recorr'¡'f',(j,blc: rJar-a :=¡tr') ¡¡r'du1o.do. aun en la misma finca.CO'ltrol de~iciente de malezcts 1\\ rn¡~rludo se cuenta con buenos pastos y un buen sistema de pastoreo pero cuando se trata de el ¡minar las maleztlS no se tldCC en una rnrrllél eficiente y opartlJna. Controlar las malezas cuando é,,;tas ya han scmillado o est6.n finalizando su períOdO vegetativo no reor'e,<;r~nti'l rllucho beneftcio par80 el potret'o y s iernpr'e se corre el rie,:-;go ele' una re¡nfe~--;taci6n en el pr6xirno ciclo de lluvias por medio de las é.,emillas producidas. Los mismo_s animales incluso 6 ~ v ~ 105 caballo\" y burros ayudan a disernin2lr las malezas. /.>.1 consumir l80s semiHas, éstas paSiJ.n por p.l sislerno. dig(~,=;tiv() y f'ucdE:1l caer donde antes no se encontraban dichas rnalezas.Muchas vecer. el control se real iz,\"!. en épocas adeclJadas oe crecirnicnto pero en una rorrna deficiente. Si se trata de nlf~d\\n'3 rr]ec5nic.o'~ corno el uso de rni'l.chcte o guadaña, ('1 corte se hZlce él tJrJ;) alt,ur-a ino.decuiJ.da, especialmente en aquel I as áreas donde '-;C f'é1go. el trabajo por contrato. Por otra rarte, al emplear el control qldnlico, frec.uenterncnte se usan dOsis ir,ladecuada\" o se falla en la <'lpllCaci61l o en la selecci6n del prOducto piJ.ra las rnillezas presentes. Todo esto trae come con~,ecuencia la presencia permanente de rnalezas en los pott'Cros. En cuanto a la época de control, los mejore.' rcslJltados c:;iernpre se logran desou6s de un paf:;toreo del potrero. puesto que las müle:<:'::Is son más evidentes y más ftlciles de encontrélr y el pasto está en franca rccuperaci6n.El m2'J d'¡.r-,dJe en las pr-ader3s, la deficiencia de nutrirnentos en el suelo y lus cortes frecuentes cuando se trata de pastor~ de corte, tambif:._n ravorecen ¡nva~,lunes de malpzas. Todos w;to~~ ractores deb\\lltan el ['asto, reduciendü é'lsí S'-I c3flacidad con1petitiva. El exceso de ;:,gua en los potreros Dar per(ados prolongados favorece el desvrrollo dF' rrlalezas que se ad,3pliJ.n a condiciones húmedas, tales corno corta{kra (C:yperus srp.). bocachica (Thalia geniculata) y alguna~, ')rLtmfnea~c; cl;nlO el gramalate (Paspalum~Ziculatum).METCDOS DE CONTROI_ DE MALEZ!'>.S lEN PRADERAS 1;Jlnq'.Jnn (1e ll):; ¡Ylr',todo\" que ,;P. lJSan para elin)in.:1r las rn¿¡l(lza~; en las [)rilderas e.s deflnitivar-nente meJor' (J mtls efici.ent(' que otro. Los mej0re'; rcsult:as comunes en potrero;, tropicales\" (Morales, et al. 1974); sin embargo se encontrarán otras especip,!\",; en los ratl\"eros que no 5e pueden idontificar y en estos casos 50 deberán enviar muestras con las Rores a un p.xtensionlsta. a un ingeniero agrónomo o a un tax6nomo para su identificación exacta.2. La selección La susceptibH ida.d de las especies a los diferentes herbicidas cambia mucho de un producto a otro. Por lo tanto, hay que conocer las clases de herbicidas y sus caracter(sticas • Los productos que se emplean para controlar malezas de hoja ancha so'\"' sistémicos (se mueven dentro de la planta) y selectivos (matan las malezas Sin afectar el pasto). El 2,4-0, 2,4,5-T Y picloram sirven de ejemplo; éstos se venden bajo varios nombre\", comerciales y en diferentes mezclas de ingrediente activo (por ejemplo, 2,4-0 +-2.4,5-T Y 2,4-0 1 + pic1oram).Es lmportiJ.nte tener en cuenta la formulaci6n del producto a selecCionar. Se c0nsiguen formulaciones de estos productos con 1 biJ.se en aminas o ésteres. Las aminas forr\"nan una verdadera solución en agua y no son volátiles. Los 6steres forman una 5uspens\\6n (emulsión) al mezclarse con aguo y el lfquido toma un aspectn lechoso. Como los ~steres son volátiles se debe tener en cuenta si el potrero donde se está aplicando !'?~ encuentra ccrCiJ.no a cultivos su~;c('.ptibles a dicho3 vapores. Lo,; cultivos df~ hojfl vncha son susceptibles e incluyen el tabaco, tomate, uva, algod6n, plátvno, yuca, ñame, ajonjolí, banano, hortalizas, soya, fr'fjol, -::auPl y leguminosas forrajeras. Se puede reducir el riesgo de daño haciendo la'o aplicaciones por la mi'l-ñaniJ., cuando \\ü terrperat'_'ra ~s rnás b21Ja y hay meno,s viento; reduciendo la presi6n uo. la aspersorél. para obtener goUIs rnás granrles que ;,e ('vv[)oran m~l....S lentamente; y no apl icando p.l herbicida a uniJ. franja de 25 a 100 mt~tros al borde del potrero que 1 inda con el cultivo susceptible. En todos los casos se debe tener en cuenta el. sisterna. de aplicación usado. Otra c!aó;e de herbicidas empleados en potreros son los matagrarn(neas. Dos de los más efectlvos son dalapon y g1 ifosato; ambos ~;()n solubles en 0')'Ja y sistémicos y, Dor Ir) tanto. de gran efectividad pariJ. gramrn8 como cornprirnidos, 00-la~\" y gránulos.El sistema de apl icaClón Entre los sístema_s de apHcac\\.6n en arbustos se encuentran lo=\" sIguientes (Figura \\).a) Tratamiento foli.ar Esta apl icaci6n se ha.ce u.sui'llrncnte con lFl: a,_,pc:rsora dc espalda, de mula o de tractor. 1 a.mblén se pueden realizar a-pI icaciones con avIoneta o hel ic6ptero. pero se aumenta. tremend.3.rnente el peligro de ocas tonar dar\"\\C 1) cUltivos sl-!scepti-12 -. --, j tanta capacidad de COir':lf..?t\"\"nCl,:J. con loé', p21StO~3 e.statJlecldoO',. La cortadera tresfilos se adClpta muy bien a los .sitio,\" bajo.'\"\" en sL;elos rnal dr0nados. La presencia de estrellit2t es sfnton,a de sobrepil,stori..'o y no es problema con pastos agresivos.Control de oaj6n {) maciega (F'aspalum vlrgatum)Esta granl(nea invade prAderas tanto de 2un¡-)s é..'r1du1adaé~ cor(\\,) de zonas pl<:tnas. Su falta. de palatabil ¡dad hZice que el gzulC1do nu 1 i:'t consun¡a, a ,menf)!~ de que en la f'radera. no 11ay;-, ot.rB tC',pecit' 1\"0-rrajel~a qLH:; ~)frec:er. En I2st.e Ca,30 los anirnaleE; prefiere\" los ~''3'bt>\\¡ tes tiernos> razón por la cual en algunHs gani3derras con n1ta \\nfe>,,tac'Í6n de la n,alez8, se guadar\"l<'l. pcri6dicamente con el fin de ofre~ ceda t¡p~'n¿) a 10.s anin'ales. Aunque esta e.s (.ma forma de aprovechor' la maleza, 10,_, fndiccs de pl'od\\Jcc:i.6n n,á\" altos s6ln se obtlc'nen con las especies de pastos rneJornctO$. Su pl\"i'pagAci6n SI) ¡?fectua por semi.nas, las cuale.s tienen gran poder fJerrninatívo, Cwda panfcula pr'oduce alrededor' de 800 ::;p,¡YliHas viableH y cada planta\"¡ entre 4 Y 8 panículas. Se ha encontrado un máximo ele 50 ror CIento dE' germlnaci6n seis meses después de la madur-acitín de l¿J.s seminas. Esto da una i.dea de la importancia que tIene el nO dejar semillar esta maleza lo mismo que no permitir que anim,;>lcS como cabal10s Q mulas consuman la panícula pues se. COnvierten en diseminadores del paj6n en la misma finca.El control más genE'_l\"alizado es 81 mecánico. En la época seca se emplea el machete o el azad6n; este último es econ6mico para infestaciones no muy altas. Cuando se presentan altas infü$t8Cioncs se puede usar' el arado y el rastrillo en 10$ sitios acce.'ó;jbles al uso de maquinaria, con el consigui\",nte establecimiento de un huen pasto.por inforrna,ciones de ganaderos se sabe que un fuerte sobrepi'sto reo en la época seca el irntna ml,.lcha parte de la maleza. lo que d¡:\\ bue-riQS resultados si se complementa con una buena siembra de pastos al comienzo de la época 1\\uvlosa.El contt\"Jl qufmico también es posible JI se puede integrar con 1,),S métodos anteriOres para mayor eficienCIa, Se pu,<;,de usar Karn¡ex C:)n 80 por (:;e'nt(l de tngredie.nte activo, al 3 por cierlto de producto ;::ornet'cial (t\";'JO gramos en 20 litros de \"gua) más un surfactante 81 0)5 por dente>, vOlumcn/volun,en (O. r litros en 20 litros de agua)-La aplicaci6n debe ser dirigida a t<:t b¡,L',8 de la planta. l-amb¡é-n h¡:1 dado buen resultado el Oowpon o Basfapon, que es un polvo soluble con 85 por ci('nto de Ingrediente <:l.ctlvo. La dosis más recot'nen(j¿'-b1e 0.S 1.~} + j . 5 por c;,ento; es decir dos z>.pl icaClon'Ó's fracciQnad~9 con un inte.rvalo rje 15 d(as. Estos productos tatnb¡én requier~n el u.',(l de li\"'1 $urfactante para obten8r rneJores re.su1tildo.s. Otro herbl-cida que ha dado buenos resultado::; es el RO\\.llídur; es un líquido :~ue tiene 360 gro.mos de equi.valelíte ácido por 1 i.tro d~ produc::tc co-,1 e ¡¡Jl. ~';1.: r'L'LU\" d~noa la oo::üs 0.\\ 1 por' ~iel'lto de prOducto comerci;;¡l (:=>00 ce en 20 litros de agua). El RCJundup no nt'cesita e1 uso d' ,;urfactdnt<..\" p\"i!~•sro que yc lo tiene tr.cluido en •SI...I forrnulaci6n, Con todo_s estos productos se debe tener prccau¿¡6n porque no son selecti vos , o sea que hay que efectuar la aplícaci6n lo rn,ás dirigida q~le :'ca pOSIble haci0. ta planta de paJ6n. O')ntrol de grar,r'lo.lote (Ptlspal'...lm !.a.scicul~)Es una grarnfne¿\\ pr'opia de suelos fértiles y mal drenocJos, por eso 1\":' \\~)m(ín encof'trarla en ootreros adya.centes a la vega d\" reos y \\'1) 20n0.:-; ideL\\lf's para \\¡)s pa.stoé; purá o admi.t~able (t3rnchiarlc3 ~), at1g1eton (ºichanthium aristatum) y pangola (Digitariu decumbcns). Se propaga prí.nc.ipalrnente por estolones. o sea en furr¡j2! 'Jegetativa; al parecel~ la propagaci6n pOr semilla sexual es eSCi'\\SC1 pues no se \"1. .f ~ logr6 hacer germinar su ~.:¡emilla bajo condiciones dQ lal)()r'atorio du-rYlnte ríos unos de rruehil. Sin crnb8.rgo. se ~at)e qun Ii)~; pr<1.dN'v.F; irriqad.=ts por corrientes de agua que FlnLcs cruzaban por lot('~_, dE\" grilrYlalote sufren la c;onstante proéc;encia de estas planta~;, lo que oh! iga. a uniJ vigilancia permanente para evita,' que en corto tiempo se pre'~ente 10. inv8~_;i!)n totül dE¡ los potreros.Esta rn;31eza tiene Ji'! particularidad de crecer fOrmando parches en loe; putrcro~,,; nin'lUrl0 de los ra\"tos mcncionado~, (pilrfÍ., po.ngol;) o nngleton) 83 capaz de. competir por s( ~,o10, i'lunquC'. el angleton comptte mejor que los otros, Por eso cuo.ndo '-'o elimintl la m<31eza O'S necesarIo proceder \" una Y'p.sietYlbra, y~, de qucrnorlo y luego proceder a ~la labOr de ar~lda y rastrill<'lda. Lo importontc de e.'\";ta prl3.ctica es _sembrar vn pvsto a comienzDS de rO. épocfI Iluvin~,a. La reinfestoc:i6n posterior de ia r\"(¡aleza C',e puede el irninar con desyerbas manuales, las cuo.les se rac:itttan de.spués de un pastoreo.El control qufmico también es posible e integrado con el rnec.inico ha reportado siempre los mejores re\"ultados. De los herbícidas comerciales~ el Dowpon o Basfapon ha dado buenos resultados a las dosis de 1~ kg/ha de pl'oducto comercial aplicado en la época seca y de 8 I . PreSl'nta la .sigLJient(~ sitllA.ción.Ma.le;;:a:. • \"\". Resistente a toda apl i.cad6n al follaje Recornendaci6n: una mezcla de 2,4-0 + 2.4,5-T para la malva y raíz de 1a chi.na, (103 mezcla es más barata que 2,4,5-T solo) y 2,4,5-T en aceite diese1 aplicado al toc6n para la fruta de pavo. Se sugi.ere h¡;,cer una preparaci6n mecánica. de las áreas infestadas con bthao o una aplicaci6n repetida de piclorarn + 2,4-0 amina o 2,4,5-T al 2,0 por ciento en la ¿poca lluviosa, donde sea posible. Rastrillando cada m es durante el per(odo !;eco y sernbr<:tndo un buen pasto a.l comienzo de las lluvias, se reduce bastante \\03 infestac't6n.SELECCION DEL PRODUCTO A APLICAR Los herbicidas com(mmcnte uplicados en ¡lotreros. para Al control tizas, y al rni.srno ttBmpn Sf-\" • -... traen semillas de rY\\alezas a la superficie donde podt\"\"(an germinar fácilmente. Con este sistema no se recomienda el uso de herbicidas.Para las ~reas no mecanizables o en fincas sin maquinaria se pueden emplear herbi.cidas po~emergentes no selectivos que no dejen residuos en el suelo tales como glifosato o paraquat. E1 procedimiento consiste en aplicar el herbicida en bandas de 15 a 20 centrmetros de aflcho, con una distanci.a de 1 a 1,5 metros entre cada banda. De dos a siete d(as más tarde se alcanzan a distinguir las zonas tratadas; en este momento se riega la semilla de la leguminosa que se va a establecer en la franja del pasto que est~ muriendo. Esta sirve a su vez como capa protectora para la semilla. Una variación de este método es apl(car el herbicida al a-z~v' en manchas' o parches en lugar de en bandas. De esta forma se economiza herbicida pero se dificulta la siembra por no haber una distr¡bución si.stemática en las áreüs tratadas. Con cualql,Jicra de estos métodos de establecimiento, se debe mantener el ganado f\\,.Jcrü del potrero hasta que la legumi.nosa e!';té firmemer'1te establecida.PRECAUCJONES CON LOS HERBICIDAS Una de 1as preocupaciones de los go.naderos y t€!cnicos es la toxicidad c¡ue pueden tener los herbicidas para. los animales en pastoreo. En realidad, el peligro de intoxicaci6n por el consumo de forraje o rni'llezas recién tratados con herbicldas es mínimo. lnclu!jjve. es cornún observar como los burros que llevan 1\",-,-, aspersora'i de mul3. resultan mojadOs con el herbicicia y además comen follaje recién tra:lado, sin que se hayü registro.do ningún prob\\ernu ha.sta la redliJ.. S¡ 1\" aplicación se hace i.l.l tocón o basalrnente, E'l riesgo de consumo del producto por los animale-s es ca.<:;Í nulo. Sin embargo, se recomienda alejar los anirnale,s del potrero que se VD. a tratD.r antes de iniciar la apl icaci6n y rnantenerlos fuera del rnismo durante las tres semanas sir;uientes. Esta recome.n-d News New CEO for ACIAR (p.2) ACIAR supports Son La Province in agriculture development (p.4) Tree planting at the Australian Embassy's pavilion (p.6) Impact assessment of ACIAR projects: capacity building (p.8) Farewell to Australian Ambassador Hugh Borrowman (p.10) Project updates Agroforestry expands across Northwest Vietnam (p.12) Mid-term review: An opportunity for reflection (p16) Applying Value Network Analysis method to map the knowledge resource of smallholder beef cattle production (p.20) PigRisk -Food Safety along the Pig Value Chain (p.24) Midterm review of giant grouper project (p.28) Training corner Australia and experiences (p.32) John Dillon Fellowship Memory (p.34) Farm to fork From North West garden to gourmet (p.36) Tin tức ACIAR có Tổng giám đốc điều hành mới (p.3) ACIAR cam kết hỗ trợ tỉnh Sơn La trong phát triển nông nghiệp (p.5) Trồng cây tại khuôn viên Đại sứ quán Úc (p.7) Đánh giá tác động của dự án ACIAR: bồi dưỡng nguồn nhân lực (p.9) Chia tay đại sứ Úc Hugh Borrowman (p.11) Cập nhật từ dự án Nông Lâm kết hợp từng bước được mở rộng tại Tây Bắc Việt Nam (p.13) Đánh giá giữa kỳ: Cơ hội để rút kinh nghiệm và lập kế hoạch tốt hơn (p.17) Áp dụng phương pháp Phân tích mạng lưới giá trị để sơ đồ hoá nguồn lực kiến thức của nông hộ chăn nuôi bò thịt quy mô nhỏ (p.21) PigRisk -An toàn thực phẩm trong chuỗi giá trị thịt lợn (p.25) Đánh giá giữa kỳ dự án cá song vua (p.29) Tin đào tạo Úc và những trải nghiệm (p.33) Kí ức học bổng John Dillon (p.35) Món ngon từ nông trại Từ vườn rau Tây Bắc đến món ăn thượng hạng (p.37)More Vietnamese families can have safe, fresh vegetables and fruits. Fresh vegetables, fruits and processed produce with standard quality from agriculture cooperatives in Northwest Vietnam may be expanded and have more chances to approach markets in Hanoi and other neighbouring localities.That is the objective that all parties desire to achieve through the collaboration effort between development organisations, private enterprises and provincial authority following a workshop organised by the Ministry of Agriculture and Rural Development (MARD)'s Programme on New Rural Development to promote farmer organisations and market linkage along the value chain of safe vegetable and fruits. The workshop took place on 7 July in Moc Chau District, Son La Province. During the workshop, the Australian Government via Australian Centre for International Agricultural Research (ACIAR), The Food and Agriculture Organization (FAO), The United Nations Industrial Development Organization (UNIDO), and Son La Province People's Committee signed a Memorandum of Understanding (MoU) in agriculture and rural development cooperation.Along with other partners, the Australian Government via ACIAR pledges to support Son La Province with the development of local vegetable and fruit production and other highly competitive agricultural value chains; and to seek opportunities for joint resources to enable women to be equitably engaged in and benefit from agriculture and rural development in the province.Son La is one of the provinces where ACIAR's Northwest Program has been implemented. 9 out of 11 projects under the program have field trials and technical interventions in Son La. Since 2001, ACIAR Vietnam has actively supported the Northwest with an estimated budget of approximately A$20 million (VND 338 billion), focusing on safe vegetable and fruit varieties, beef cattle, and pig value chains; and sustainable cultivation on sloping land. In addition, gender equality is considered a priority in the current and future program.As part of the workshop, Mrs Luyen, leader of Luu Luyen Cooperative and other farmers proudly received MARD Deputy Minister Tran Thanh Nam, Son La Province People's Committee Chairman Cam Ngoc Minh and other participants at their booth displaying safe vegetables. The produce is the result of a five-year research project funded by ACIAR 'Improved market engagement for counter-seasonal vegetable producers in Northwest Vietnam' (AGB/2009/053), which enables farmers to produce safe vegetables, successfully maintains the 'Rau an toan Moc Chau' (Moc Chau safe vegetable) brand, connects to supermarkets in Hanoi, and increases farmers' income. MoU details are available at the Australian Embassy's website . Cùng với các đối tác khác, Chính phủ Australia thông qua ACIAR cam kết hỗ trợ tỉnh Sơn La phát triển rau, quả và các chuỗi giá trị nông nghiệp có tính cạnh tranh cao của địa phương, đồng thời tìm kiếm các cơ hội để huy động nguồn lực chung nhằm giúp phụ nữ tham gia và nhận được lợi ích một cách bình đẳng từ nông nghiệp và phát triển nông thôn.Sơn La thuộc một trong các tỉnh nơi ACIAR đang triển khai Chương trình Tây Bắc. 9 trong tổng số 11 dự án tại Tây Bắc đang và sẽ được ACIAR đầu tư có các thử nghiệm thực địa và can thiệp kỹ thuật tại Sơn La. Từ năm 2001, ACIAR Việt Nam đã tích cực hỗ trợ vùng Tây Bắc với ngân sách khoảng 20 triệu đô Úc (tương đương 338 tỷ đồng), tập trung vào rau, quả an toàn, bò thịt và chuỗi giá trị lợn thịt; Canh tác bền vững trên đất dốc. Ngoài ra, vấn đề bình đẳng giới được coi là một ưu tiên trong chương trình hiện tại và tương lai. 6 6 6 6 6 6 6 6 6 6 6 6 6 The Australian Embassy's pavilion is now home to a number of Australian plum and peach trees received as a gift from the Plant Protection Research Institute (PPRI), a long-term partner of Australian Centre for International Agricultural Research (ACIAR). The tree planting event represents the friendship and successful cooperation between Australia and Vietnam in agriculture.Attendees to the event on 19 April 2016 included the Ambassador Hugh Borrowman; PRRI Deputy Director, Trinh Xuan Hoat; ACIAR Vietnam Country Manager, Nguyen Thi Thanh An; ACIAR Policy Advisory Council (PAC) member, Dr Nguyen Van Bo; and representatives from the agencies.The five fruit trees: three peach and two plum, are the outcome of a project in which buds from Australian mother trees were grafted into locally grown native varieties and tended in Moc Chau District, Son La Province by PPRI. Moc Chau is one of the four nurseries in Vietnam developed under the ACIAR-funded project CP/2001/027 'Adaptation of low-chill temperate Tree planting at the Australian Embassy's pavilion fruits to Australia, Thailand, Laos and Vietnam'. This project ran from 2001 to 2007 to establish and develop sustainable low-chill temperate fruit industries through identification of appropriate sites and through best orchard management for stone fruits, pomegranate and persimmon in the three countries.The project results set premises for a series of follow-up projects that have been worth more than A$4,6 million in the past 15 years, including the projects AGB/2002/086 'Improving postharvest quality of temperate fruits in Vietnam and Australia'; AGB/2008/002 'Improved market engagement for sustainable upland production systems in the northwestern highlands of Vietnam'; and AGB/2012/060 'Improving smallholder incomes in the north-western highlands of Vietnam by increasing access and competitiveness in regional temperate and subtropical fruit markets'.PPRI is one of the main partners in these projects.Đại diện các cơ quan trồng cây tại vườn. Ảnh: ACIAR Việt Nam Impact assessment of ACIAR project is an independent program, usually taking place 5 years or more after a project has finished. They are typically focused on the total gains in economic welfare for farmers. There has been little emphasis on capacity building and the value of research activities that add to human scientific capacity.Capacity building encompasses informal individual on-the-job training, including mentoring and 'learning by doing' during projects, discrete short term training programs, and formal individual qualifications (M.Sc and PhD) from Australian and partner country institutions.In February 2016, a team of reviewers from Australia (Geoff Morris, Dr John Mullen and Douglas Gray) came to Vietnam to assess ACIAR projects' impact, especially with respect to capacity building for Vietnamese researchers. The chosen projects are from forestry and fishery sectors.The objectives of the study were to:1. To improve ACIAR projects through better planning, design and allocation of funds for Capacity Building and Research activities 2. To better describe and understand the impact of ACIAR projects on Individual and Institutional Capacity Building 3. To review previous Impact Assessment Studies (principally economic impacts) of three completed ACIAR projects with high economic returns on investment, and assess their impacts in terms of capacity buildingRegarding forestry projects, our reviewers visited Vietnamese Academy of Forest Sciences (VAFS), which is an important partner of ACIAR in many of its forestry projects. Here, the reviewer team had a presentation about some results of previous studies with VAFS's staff. In addition, the team also visited VAFS's research station in Ba Vi and met VAFS researchers working there. Moreover, our team also had the chance to interview several retired researchers, such as Prof Le Dinh Kha, current leaders and young researchers that had returned to Vietnam to continue their work after studying in Australia under John Allwright and John Dillon Fellowship, such as Dr Nghiem Quynh Chi, Dr Dao Ngoc Quang and Dr Tran Lam Dong.Regarding fishery projects, in addition to reviewing all projects, the team focused on one of the recent more successful projects FIS/2005/114 'Bivalve hatchery production capacity in Vietnam and Australia'. This project, implemented by Research Institute for Aquaculture No1 (RIA1), is one of the very first projects in Vietnam that worked with oystera seafood with great potential. Our reviewers conducted an interview with Dr Le Xan, Vietnamese project leader. During the interview, Dr La Xan expressed his opinion on how ACIAR oyster project had helped to enhance RIA 1 researchers' capacity, not only through scholarships but also through a process of interaction between Vietnamese and Australian researchers. After that, Dr John Mullen, one of the reviewers, also visited RIA1's research station in Cat Ba, where they studied and produced algae, larvae and oyster seeds and talked with staff and researchers that are based in Cat Ba. They shared their experience here with him, regarding what they had learned from the project and about the challenges and difficulties that they had encountered.The interviews provided a rich story on the careers of many Vietnamese scientists, and positive experiences through participating in ACIAR projects. The capacity building from ACIAR projects was often considered more significant for Vietnamese researchers than the project research outputs. The study will be finalised in the coming months. Information and data collected from this trip will be used to improve project design and in the development of new and more accurate approach to investing and measuring capacity building. The project started on a small scale with experimental agroforestry systems on individual farmers' land. But as the benefits of the project began to be realised, with tangible impact on income and land degradation, the methods of the project and its agroforestry models are now being expanded to the entire landscape.The Northwest region of Vietnam is plagued with hardship. Deforestation and forest degradation have left the steeply sloping hills vulnerable to serious soil erosion and wiped out much of the area's biodiversity. The populations living in these uplands, largely ethnic minority groups, suffer from the highest rates of poverty in the country. While many farmer remain subsistent and dependent on land for their livelihoods, years of monocultural cultivation of maize have exacerbated degradation of their land, leading to further soil and water loss and nutrient depletion. Yields have declined, lowering farmers' already meagre incomes. Harsh weather worsens these conditions, in some cases causing crop loss in the monocultural systems that have little protection from the elements, leaving farmers with few alternatives.Recognising that agroforestry could alleviate these issues and have many benefits for both farmers and the environment, the World Agroforestry Centre (ICRAF) began the 14 PROJECT UPDATES not involved in the experiments to visit the AFLI sites. After witnessing the benefits of agroforestry, over 30 households voluntarily participated in AFLI's next phase. Together with these households and the Government's agricultural advisory centres, ICRAF established an agroforestry model on a 50 hectare area in Mai Son, Son La. Approximately 50,000m of forage have been planted along contour lines on sloping land using a buffalo-led technique taught by experts from ICRAF Philippines. Across the landscape, 22,000 trees of different fruit varieties-including longan, mango, plum, pomelo and lime-are being planted. AFLI is also replicating this landscape model on 50 hectares in Tram Tau, Yen Bai Province.These successes are based on the initial experimental plots on farmers' land, which tested systems such as one that mixed late-fruiting longan trees with maize and forage. This system proved capable of maintaining maize yields compared to monocultural practices, while also providing additional production of forage for use on farm or for sale as livestock feed. One smallholder in the experiment found that with the additional forage he was able to increase his livestock from just one buffalo to three in a few years. The longan trees are expected to begin fruiting in their fourth year and bring in considerable income. More importantly, the experimental system has already reduced soil erosion by 40-45% compared to monocultural maize cultivation.In addition to such on-farm experiments, group nurseries were established to provide seedlings for the experimental plots and ICRAF researchers trained farmers in techniques such as grafting and marcotting, a plant-propagation technique. The nurseries are now successfully managed by the farmers themselves. Additional agricultural advisory material was published in several formats, providing information on other management techniques, such as top-working and pruning.While the positive effects of the AFLI project were clear to farmers, they didn't go unnoticed by local authorities either. In witnessing the real impact agroforestry has had on both smallholders' livelihoods and the environment, the People's Council of Yen Bai Province incorporated the scientific innovations into development-support policies for sustainable cultivation practices on sloping land in poor areas. Incentives include a subsidy of VND 1 million per hectare for farmers to grow grass strips to prevent soil erosion, which will also increase maize yields and provide feed for livestock, and a subsidy of VND 6 million for every hectare of 'son tra' (Docynia indica) trees planted in Tram Tau and Mu Cang Chai Districts.The heavily degraded land and poverty of the region may soon be of the past thanks to the willingness of smallholders in taking the risk of testing new agroforestry systems, the support of the local governments, and ACIAR in understanding the benefits of trees on farms that have been proven by the World Agroforestry Centre. Từ những thử nghiệm thành công ban đầu tại Sơn La, dự án đang tiếp tục mở rộng các mô hình với quy mô lớn hơn. Với mục tiêu quảng bá rộng rãi hiệu quả Nông Lâm kết hợp thông qua tập huấn và tham quan, ICRAF đã tổ chức để đưa một số nông hộ không thuộc dự án đi tham quan và học hỏi kinh nghiệm từ các mô hình thử nghiệm. Sau khi chứng kiến lợi ích từ các mô hình, hơn 30 hộ đã tình nguyện thiết lập hệ thống Nông Lâm kết hợp trên diện tích 50 héc-ta tại Mai Sơn, Sơn La. Khoảng 22.000 cây lâu năm các loại gồm nhãn, xoài, mận, bưởi, chanh đã được trồng. Cỏ chăn nuôi cũng được trồng theo đường đồng mức, bên cạnh các hàng cây trên diện tích đang canh tác ngô nhằm cung cấp thức ăn cho chăn nuôi và chống xói mòn đất. Ngoài ra, mô hình Nông Lâm kết hợp mở rộng cũng đang được tiến hành tại Trạm Tấu, tỉnh Yên Bái.Những thành công này đều dựa trên các thử nghiệm ô thửa nhỏ ban đầu. Thử nghiệm nhãn chín muộn -ngô -cỏ chăn nuôi được minh chứng bởi khả năng duy trì năng suất ổn định khi so sánh với ngô trồng thuần, trong khi cỏ chăn nuôi trong Để biết thêm thông tin, vui lòng liên hệ TS La Nguyễn hệ thống đảm bảo cung ứng nguồn thức ăn ổn định cho gia súc. Một trong những nông hộ thuộc dự án cho biết, từ nguồn cỏ chăn nuôi dồi dào, gia đình đã nuôi thêm ba con trâu thay vì một con như trước. Nhãn đã bắt đầu cho quả từ năm thứ tư và được mong đợi là sẽ mang lại thu nhập cao cho nông hộ. Một phần quan trọng không thể thiếu đó là lợi ích về môi trường trong các thử nghiệm. Hệ thống nhãn chín muộn -ngô -cỏ chăn nuôi đã giúp giảm lượng đất bị rửa trôi từ 40-45% khi so sánh với trồng ngô thuần.Ngoài các thử nghiệm ô thửa tiến hành tại các nông hộ, vườn ươm nhóm nông hộ cũng được thiết lập nhằm cung cấp cây giống cho các mô hình. Những vườn ươm này cũng được chăm sóc và quản lý bởi chính các nông hộ. Các nhà nghiên cứu từ ICRAF cũng đã tổ chức rất nhiều các buổi tập huấn cũng như xuất bản các ấn phẩm nhằm phổ cập các kỹ năng như thiết lập và quản lý vườn ươm, kỹ thuật ghép các loại cây chủ lực tại địa phương hay ghép cải tạo vườn cây hiện có.Rõ ràng, dự án AFLI không chỉ mang lại lợi ích cho các nông hộ nhỏ mà còn gây tiếng vang tốt đến các cấp lãnh đạo tại địa phương. Từ thực tế này, Hội đồng nhân dân tỉnh Yên Bái đã trực tiếp tiếp nhận những tiến bộ khoa học từ dự án, đồng thời ban hành một chính sách hỗ trợ phát triển Nông Lâm kết hợp trên diện rộng tại kỳ họp lần thứ 15 vào ngày 15 tháng 12 năm 2015. Theo đó, nông hộ thuộc thuộc các xã đặc biệt khó khăn 135 sẽ được hỗ trợ 1 triệu đồng trên 1 héc-ta để trồng băng cỏ chống xói mòn trên diện tích cây trồng và hỗ trợ 6 triệu đồng cho 1 héc-ta trồng cây sơn tra tại khu vực Trạm Tấu, Mù Căng Chải.Vấn đề suy thoái đất và đói nghèo tại Tây Bắc có thể sẽ trở thành quá khứ nhờ vào sự tình nguyện hợp tác và phát triển các mô hình Nông Lâm kết hợp của các nông hộ, sự hỗ trợ của chính quyền địa phương cũng như tầm nhìn của Trung tâm Nghiên cứu Nông nghiệp quốc tế Úc (ACIAR) trong việc hiểu rõ hiệu quả của giải pháp Nông Lâm kết hợp được chứng minh bởi Trung tâm Nghiên cứu Nông Lâm Thế giới (ICRAF). Project 'Towards more profitable and sustainable vegetable farming systems in north western Vietnam' (AGB/2012/059) aims to enhance the profitability and sustainability of smallholder vegetable farmers in Northwest Vietnam through improved market engagement and integrated resource and disease management practices. The project focuses on women and ethnic minorities engaged in horticultural value chains in Sa Pa and Bac Ha in Lao Cai province. In the five-day period, from 16 to 20 May, the project held a Mid-term review (MTR) in Hanoi and Lao Cai.The MTR was attended by ACIAR representatives, institute partners, project team and reviewers who are experienced researchers in the field. In the first two days in Hanoi, 14 presentations and posters were delivered to bring an overview of activities that the project has done to date including market analysis, market development, farming systems, capacity building and gender analysis. Panel sessions were also held for the reviewers to interact with project team and get more insights into the project. The MTR then headed to the field to visit trial sites in Sa Pa and Bac Ha, where they were able to see firsthand project trial work underway and meet with collaborating farmers and collectors.After 2 years of implementation, the project has achieved some considerable results including:• A comprehensive market analysis for 10 conventional and 5 indigenous vegetables implemented in Hanoi, Lao Cai, Son La, Yen Bai and Dien Bien to identify the main supplier of vegetables, supply issues (e.g. quantity, quality, availability) and consumer's demand through key wholesale and retail markets and shops in above areas. Collection of information on varieties, prices, quality and origin of relevant vegetables in a selection of retail and wholesale markets where interviews were conducted in and around Hanoi; as well as development of a consumer survey instrument and sampling methods in order to assess vegetable consumption patterns and purchase locations, Hội thảo đánh giá giữa kỳ có sự tham dự của đại diện ACIAR, các đối tác dự án, cán bộ dự án và các chuyên gia đánh giá giàu kinh nghiệm trong lĩnh vực. Trong hai ngày đầu Hội thảo tại Hà Nội, 14 bài trình bày và poster đã giới thiệu tổng quan các kết quả đạt được của dự án bao gồm các kết quả về phân tích thị trường, phát triển thị trường, phát triển các hệ thống canh tác, xây dựng năng lực và phân tích giới. Hội thảo cũng bố trí các phần giao lưu hỏi-đáp để các chuyên gia đánh giá có thêm cơ hội thảo luận với các cán bộ, hiểu sâu thêm về các hoạt động của dự án. Kết thúc 2 ngày hội thảo tại Hà Nội, đoàn đánh giá bắt đầu chuyến thực địa tại hai huyện Sa Pa và Bắc Hà. Tại đây, đoàn được tham quan các mô hình thí nghiệm của dự án, gặp gỡ với bà con nông dân và các đối tác thu gom tham gia dự án.Sau hai năm thực hiện, dự án đã được một số kết quả đáng ghi nhận, bao gồm:• Tiến hành phân tích thị trường tổng thể đối với 10 loại rau thông thường và 5 loại rau bản địa tại 5 thị trường: Hà Nội, Lào Cai, Sơn La, Yên Bái và Điện Biên, xác định được các kênh cung cấp chính, các vấn đề trong chuỗi tiêu thụ như số lượng, chất lượng, khả năng cung cấp, đồng thời xác định được nhu cầu của người tiêu dung thông qua các kênh phân phối chính là các chợ bán buôn, bán lẻ, các cửa hàng rau tại các thị trường trên. Dự án cũng đã thu thập được các thông tin về chủng loại, giá bán, chất lượng và nguồn gốc các loại rau tại một số chợ bán buôn, bán lẻ thông qua phỏng vấn các tác nhân địa bàn nội thành Hà Nội và khu vực lân cận; Xây dựng bộ công cụ khảo sát, phương pháp • Two annual stakeholder workshops have been held to report findings from market and consumer research component, facilitate networking between stakeholders, determine action plan including marketing interventions to be tested. Many connections have been created between producers and distributors in Hanoi and Lao Cai through promotion activities such as tasting event and agricultural product fair. 14 production protocols were identified to be developed in order to support producers in project areas to improve production techniques. Market and production information were collected and developed as calendars to guide producers to understand production and market windows, then meet the market's needs. In terms of postharvest activities, 10 consignments across 3 seasons from Sa Pa and Bac Ha to Hanoi have been tracked in collaboration with Di Thang, Hoa Dao cooperatives and other private sector partners in Hanoi to identify where losses are occurring and determine appropriate interventions.• A transdisciplinary approach has been followed by the project farming system team to identify best practices that can help smallholders sustainably engage with the market. Diagnostic research including baseline study, nutrient budgeting for single vegetables and farming systems and pest and disease surveys have been conducted to provide understanding of the current situation and constraints to production. Applied research through the implementation of N response trial for H'Mong mustard, cabbages and broccoli and cabbage club root control trials provided good recommendations that feed into the farming system adaptive trials. Five farming system groups including 31 farmers have been working together with the project team to implement the adaptive trials in three systems: vegetable only, vegetable -rice and vegetable -temperate fruits. Successful practices will then be adopted by the farmers to improve their vegetable production effectively.• The capacity building impact was reviewed in many aspects such as capacity building for researchers in laboratory, project staffs from institute partners and village researchers through frequent mentoring scheme and short term training initiatives. By referring Farmer Business School (FBS) models in Southeast Asia countries, analyzing and adapting to Vietnam context, a strategy for sustainably upscaling FBS was developed.• Gender effects were also reviewed from baseline and market surveys of the project. Gender mainstreaming is going to be integrated into rural survey and a small research of a master student of the project.The review process was a great opportunity for the team to reflect on achievements and identify priorities for the remainder of the project. Value Network Analysis (VNA) is a social research method used to map social networks that assist the intangible (e.g. knowledge, skill, influence) and tangible (e.g. material, labor, finance) exchanges to create economic and/or social value. These exchanges, the value of the exchanges, and the roles (actors) between which the exchanges take place are mapped out to allow visualization, discussion, understanding and management of the value network. Using the VNA tool, researchers can analyze actors involved and how they are related in a given network; the relative influence of the actors and the possible outcomes (i.e. tangible and intangible values). Furthermore, it can facilitate the process of building relationships and sharing value among actors in the network; identify the key missing links in some parts of the network (support adoption and practice changes); and create more value (speed up scale-out).ACIAR project LPS/2012/062 'Developing productive and profitable smallholder beef enterprises in Central Vietnam' deployed the VNA method across project farmer groups in Binh Dinh, Phu Yen and Dak Lak provinces to better understand the patterns of knowledge exchange in these communities. Understanding these patterns and the tangible and intangible values of existing interactions will increase the effectiveness of project interventions that aim to further support practice change. In the VNA process, participants were led through 10 steps under the facilitation of researchers to address four key issues:1. Identify important resources in beef cattle production 2. Identify the role of individuals/organizations in carrying out and promoting beef cattle production 3. Analyze transactions of tangible and intangible assets between individuals/organizations that provide knowledge and beef farmers and 4. Analyze the conversion of both tangible and intangible assets into other forms of value.In the context of beef cattle smallholders, farmers need several resources including land, finance, market access andMore on page 22 >> breed for their cattle production and farming business. During the VNA application, farmers emphasize the importance of gaining new knowledge of beef cattle production, because the use of the new knowledge helps improve livelihood (Figure 1).Value Network Analysis participants identified four types of new knowledge, based on:1. New forage species 2. Management and use of existing feed sources Farmer to farmer exchange (neighbour, relative, and friend) is identified as the most common and effective pathway to transfer knowledge in the communities of the VNA participants (Table 1). The extensive interactions make them especially Đối với sản xuất bò thịt quy mô nông hộ, người nông dân cần nhiều nguồn lực như đất đai, tài chính, tiếp cận thị trường, bò giống để phát triển chăn nuôi. Trong quá trình thực hiện VNA, nông dân nhấn mạnh vai trò quan trọng của các kiến thức mới bởi khi áp dụng các kiến thức này, nó sẽ giúp họ cải thiện sinh kế (Sơ đồ 1).Người tham gia VNA phân chia các kiến thức mới thành 4 nhóm dựa trên: important sources of knowledge for others. Farmers often give their advice through informal social interaction between farmers: visits to well-performing farmers to learn from their experience; or through visits from well-performing farmers to give advice. The significant advantage of this method is its convenience as farmers can exchange knowledge whenever they have free time and need information.Farmers also acknowledge the significance of experiences and knowledge accumulated through their own production process. Each household has different socio-economic conditions, so it is essential for them to fully understand their own farming systems and incorporate their own problem solving skills in farm development. >> Continued from page 20When farmers receive new knowledge from stakeholders, they exchange strengthened relationships in return (intangible assets) and sometimes show their appreciation in tangible ways through inviting knowledge providers to social parties or returning help when they were in need. Acquiring new knowledge has provided significant benefits to farmers, especially women and girls (Table 2). There has been a conversion of knowledge (intangible resource) into increased household income (tangible value) and into reduced labor time for cattle production, enhanced social capital among farmers, and improved household wellbeing (intangible benefits).In conclusion, VNA is a tool used by researchers to better understand the knowledge exchange patterns in smallholder beef cattle production systems. In the example mentioned above, we have learned about the most important individuals and organizations in providing knowledge, and what knowledge is most significant to farmers. This understanding can enable appropriate interventions in the future and aid the process of introducing complimentary knowledge exchange roles and pathways.For more information, please contact: Nguyen Huu Van Nguyen Thi Da Thao • Disease risk in the pork value chain, and at the farm level, piglets are most susceptible. E.g. diseases can cause loss of some 13-17% of total income from pig production.• High contamination of hazards along the pork value chain (farm, slaughterhouse, market). E.g. 44% Salmonella contamination in market pork. The project uses a multi-disciplinary and risk-based approach to conduct an assessment of the smallholder pork value chain in Vietnam and identity disease risks in the value chain. Each PigRisk team works on a component of the value chain; the Hanoi School of Public Health (HSPH) team focuses on food safety and health risk assessment, whilst the Vietnam National University of Agriculture (VNUA) concentrates on economic assessment and pig health.PigRisk has achieved several outputs to date, including: maps and descriptive analysis of the pork value chain; assessmentPiglets on a smallholder farm. Piglets face the greatest disease exposure risk and experience the greatest mortality compared to other age classes of stock. Photo: Tran Thi Ngan Lợn con ở trang trại nông hộ nhỏ, đối tượng dễ nhiễm bệnh nhất. Ảnh: Trần Thị Ngân of economic and production constraints for pig farmers; and chemical and biological risk assessment along the pork value chain. The project has also developed models that provide quantitative risk assessment and estimate the burden of disease associated with pathogens in the pork value chain. This was the first time that these models had been used for food safety in Vietnam.CẬP NHẬT TỪ DỰ ÁN Vấn đề đặt ra -liệu thực phẩm của chúng ta có an toàn? Challenges exist in the unique nature and characteristics of the smallholder pork value chain. The value chain is more dynamic than static, e.g. changes in consumer preference and supply particularly around occasions such as Lunar New Year (Tet) can leave these value chain actors exposed to market fluctuations and make consistent food safety interventions difficult. Furthermore, consumer trust in branding and certification for safe food in Vietnam is often low while engaging these consumers to place trust in safer pork is essential. This is one of the key areas identified to consider the feasibility of applying sustainable incentive-based interventions for food safety.The PigRisk project held its mid-term review from 8 -11 March 2016, which was also attended by ACIAR representatives.During the course of the review, field visits were made to Hung Yen and Nghe An provinces, the PigRisk project's study sites.The visits gave the project team and attendants an opportunity to engage in discussion with various stakeholders in the pork value chain, including farmers, retailers and slaughterhouse owners.Along with the research and social impact, PigRisk has provided a significant opportunity for the facilitation of a multidisciplinary approach towards food safety and value chain Song song với việc mang lại các tác động về xã hội và nghiên cứu, PigRisk cũng mở ra cơ hội lớn để tạo điều kiện thuận lợi cho việc áp dụng hướng tiếp cận đa ngành vào đánh giá an toàn thực phẩm và chuỗi giá trị. Đội ngũ PigRisk hội tụ các chuyên gia về kinh tế, y tế công cộng và thú y, cho ra hướng tiếp cận hợp nhất 'một sức khỏe' để giải quyết các vấn đề về an toàn thực phẩm và nguy cơ bệnh tật. Ngoài các khóa đào tạo khác nhau, dự án góp phần giúp nhóm kinh tế VNUA được công nhận là 'chuyên gia về chuỗi giá trị'. Dự án cũng tạo cơ hội cho các nghiên cứu viên của HSPH và VNUA được tiếp xúc với quá trình phát triển và sử dụng các mô hình Động lực học hệ thống và Đánh giá định lượng nguy cơ vi sinh vật (QMRA).Khi dự án tiến tới hoàn thành vào năm 2017, các hợp tác chéo vẫn tiếp tục được thực hiện, một số nghiên cứu và phương pháp được tập hợp lại để tạo khuôn khổ cho những thông điệp quan trọng mang tính chính sách của dự án. Trong quan hệ đối tác với các nhà hoạch định chính sách địa phương và các bên liên quan, PigRisk cũng theo dõi chặt chẽ việc phát triển và thực hiện các biện pháp can thiệp an toàn thực phẩm và giảm thiểu dịch bệnh cho các chuỗi giá trị thịt lợn. Sex reversal of the broodstock (from female to male) is carried out through the administration of slow-release methyl testosterone (MT) implanted into the fish. One of the MT trials on the giant grouper broodstock of 9-26 kg/fish done at SEAFDEC from December 2015 to April 2016 resulted in a decreased level of mucus vitellogenin, which suggested that the sex of treated fish changed towards males. In addition, research at USC on inhibition of the aromatase enzyme was also implemented to hasten the transition from female to male. In the coming time, the USC will cooperate with Prof Ming-Wei Lu -National Taiwan Ocean University (NTOU) to develop the RNAi for silencing aromatase enzyme in sex reversal process. There were some difficulties in applying germ cell transplantation on giant grouper: unavailability of male donors, and the morphology and 'sensitive' nature of grouper larvae hosts and their stress response. The important points that determine germ cell transplantation success are: (1) to determine the proper age of host larvae, and (2) to optimize the germ cell transplantation protocol. At SEAFDEC, two germ cell transplantation trials were conducted on E. fuscoguttatus, in which germ cell of E. fuscoguttatus was the donor while E. coioides was the host larvae. The hybrid groupers are considered as an excellent host if they are sterilized. The sterility of hybrid groupers still needs to be confirmed.This is one of the most important purposes of the project because further steps, such as the genetic program, will mainly depend on the availability of giant grouper seeds. RIA3 and SEAFDEC will conduct experiments to apply feeding regime of copepods or combine copepods and rotifer in the coming time. Furthermore, it is necessary to identify genes expression in the digestive systems of giant grouper larvae throughout their developmental stages, and the feeding habits of giant grouper larvae will be done by Prof Abigail Elizur (USC). During the meeting at RIA3, Mr Feng-Jie Su (NTOU) presented the success on seed reproduction of giant grouper in Taiwan. He emphasized the importance of quality of broodfish and eggs, live food (rotifers, copepods and Artemia) and environmental condition management for reproducing seed of giant grouper. Development of nursing technology is a key point in the project and it will be conducted on the giant grouper broodstock of RIA3, RIA1 and SEAFDEC.Dr Wayne Knibb (USC) succeeded in developing genetic marker for parentage assignment and pedigree analysis of giant grouper, which provides scientific grounds for the seed production of giant grouper and their hybrid of good quality and without inbreeding.The Viral nervous necrosis (VNN) has been noted in marine finfish in Vietnam over past decades but no effective treatment method has been found. The research at USC showed that VNN isolated from Vietnam and Taiwan was a single stranded RNA virus. A new strategy for grouper industry in VNN prevention was presented by Prof Ming-Wei Lu (NTOU, Taiwan). He developed a RNA interference (RNAi) technology that specifically inhibits VNN replication, thus the technique is effective in preventing as well as treating VNN disease outbreaks. This RNAi technology is now utilized by grouper farmers in Taiwan.-Applying a specific protocol for biosecurity in the hatchery.-Frequently monitoring environmental parameters and producing a monthly report.-Developing stable technology for spawning and larval nursing.-Conducting more transplantation trials and successfully rearing the transplanted larvae.-Testing the biological activity of recombinant follicle stimulating hormone in an in vitro cell assay and in vivo in giant grouper.-Cooperating with the National Taiwan Ocean University to share sterilized egg protocol and larval rearing protocol by adding fresh water.-Producing hybrid grouper between tiger grouper and giant grouper.-Training and experience exchange between partners: Australia, the Philippines, Taiwan and Vietnam. Trong năm tới, nhóm nghiên cứu dự kiến triển khai các hoạt động cụ thể sau:-Thực hiện quy trình an toàn sinh học trong các khu vực sản xuất giống.-Đo đạc các thông số môi trường hàng ngày và báo cáo hàng tháng.-Xây dựng quy trình công nghệ ổn định trong việc cho đẻ và ương nuôi ấu trùng.-Tiến hành nhiều thử nghiệm cấy ghép tế bào mầm và ương nuôi thành công ấu trùng sau khi cấy.-Thử nghiệm hoạt động sinh học của hormon kích thích nang trứng tái tổ hợp ở cấp độ tế bào và trong cơ thể cá Song vua. Tiến hành các thử nghiệm về copepods trong ương nuôi ấu trùng cá Song vua.-Hợp tác với Đại học Quốc gia Hải Dương Đài Loan để chia sẻ các phương thức làm sạch trứng và các kỹ thuật nuôi ấu trùng bằng cách thêm nước ngọt trong quá trình ương nuôi.-Sản xuất cá Song lai giữa cá bố mẹ cá Song hổ và cá Song vua.-Đào tạo và trao đổi kinh nghiệm cán bộ giữa các đối tác: Úc, Philippine, Đài Loan, Việt Nam.The John Allwright Fellowships (JAF), established in 1986 by Australian Centre for International Agricultural Research (ACIAR), is a scholarship for young scientists with outstanding achievements in the field of agriculture and economics from countries involved in ACIAR-supported collaborative research projects.The dream of studying in Australia came true when I was honoured to be awarded this scholarship to undertake a PhD course (2014)(2015)(2016)(2017)(2018) at the University of Melbourne, Victoria, Australia.Australia, from my first impression, is a peaceful, warm and beautiful country. People living here are very friendly; they have a peaceful life, which is desired by many from other countries. Their hospitality makes me feel like I am being in my country, Vietnam. Especially, Melbourne, where I am studying and living, is a dynamic and beautiful city with a great diversity in culture, cuisine and entertainment aspect. That is why Melbourne has been named the world's most liveable city for the fifth year in a row (EIU, 2015).JAF Scheme gave me a wonderful and invaluable opportunity to experience the innovation in scientific research. What particularly impressed me is that we, students, are considered as the core and the heart of this university. We are encouraged to take the initiative and apply them into our studies. Apart from study, we also have great life experience with mates from all walks of life. Australia is a multicultural country and we can have the opportunity to explore and learn new things from different cultures.However, studying in an unfamiliar environment always poses several challenges for international students who live in a foreign country for the first time. One of the challenges that I want to mention first is the language barrier. The very first days I arrived in Australia, my English was limited for daily communication and especially for academic purpose. There were many times when I did not understand or misunderstood information when I read papers or discussed with professors and colleagues in our field. It took me a lot of effort and time to overcome this difficulty. The second challenge is the difference in study approach. Australian's study approach requires students to develop independent and creative thinking, which many Vietnamese students lack of due to the influence of the bureaucratic education in Vietnam.Continuing on my study path in Australia, I understand that I have to make effort to broaden my personal experience, knowledge and abilities. I am confident that the knowledge learnt here will help me contribute more effectively to the development of scientific research in Vietnam as well as to the cooperation between Vietnam and Australia. Sincere thanks to ACIAR and Australian Government for giving us exciting opportunities to study and experience lifestyle in this beautiful country. The third week of the program was a practical training course in beautiful Tasmania island. Our team of six candidates visited Tasmania University, its research institutes and a couple of farm models. Tasmania is like a small Australia with pleasant weather, large stunning plain farms, diverse conservation areas, and most of all, its people's warm kindness and hospitality. The most interesting part is the enterprises' involvement in researches along with universities and institutes (in terms of both financial and human resources), not only in industrial sector but also in agriculture, which can hardly be seen in Vietnam.For the fourth week we returned to the capital Canberra. We reunited with ACIAR staff, many of whom I had met in Vietnam before, which brought me the feeling of being at home. During that time, we were allowed to visit the Australian Parliament House and attend a meeting of the Parliament, which I had never dreamt of. On that day, we had a meeting and discussion with Cắt đôi lá bắp cải, bỏ phần gân cứng. Luộc bắp cải 2 phút bằng nước có chút muối, sau đó vớt ra.Đem nước dùng hải sản đun nhỏ lửa.Trong thời gian đó, chuẩn bị nhân tôm. Nhúng 2 thìa canh vào dầu mè tránh bị dính. Lấy ½ thìa hỗn hợp nhân, dùng 2 thìa canh viên lại, thả vào nồi nước dùng nấu trong 1 phút hoặc đến khi nổi lên, vớt ra.Cắt lá bắp cải theo kích thước 10cmx15cm, trải phẳng. Đặt nhân tôm cách mép lá 2cm, gấp hai bên lá lại rồi cuộn chặt từ dưới lên.Buộc cuộn bắp cải bằng hành lá. Tiếp tục đun nhỏ lửa trong nước dùng thêm 8 phút.Vớt ra và đặt vào mỗi bát 2 cuộn bắp cải. Thêm súp kem tôm vào bát cho ngập một nửa cuộn.Thêm vài giọt dầu mè và trang trí với rau thơm. ","tokenCount":"7148"} \ No newline at end of file diff --git a/data/part_3/7047057717.json b/data/part_3/7047057717.json new file mode 100644 index 0000000000000000000000000000000000000000..0fca005b0b3e08a288a1af3b950f202b56eb2b0b --- /dev/null +++ b/data/part_3/7047057717.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"7a70308351c821e93a9425248f4a4808","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/1a308d4b-42a3-4e5f-b4ff-5e793cca7dd9/retrieve","id":"1597561142"},"keywords":[],"sieverID":"3bc48c3e-4628-4c1a-8d2b-72a1c7613f03","pagecount":"56","content":"Comparison of temporary and permanent immersion systems for the in vitro culture of bananaBooks etc.The mission of the International Network for the Improvement of Banana and Plantain is to sustainably increase the productivity of banana and plantain grown on smallholdings for domestic consumption and for local and export markets.The Programme has four specific objectives: • To organize and coordinate a global research effort on banana and plantain, aimed at the development, evaluation and dissemination of improved cultivars and at the conservation and use of Musa diversity • To promote and strengthen collaboration and partnerships in banana-related research activities at the national, regional and global levels • To strengthen the ability of NARS to conduct research and development activities on bananas and plantains • To coordinate, facilitate and support the production, collection and exchange of F or the first time in its history INFOMUSA is undergoing a makeover in response to the growing number of submissions we receive every year. Starting with the next issue, the layout will be different to accommodate a greater number of shorter articles.Our goal is to give you, the readers, a better magazine, nicer to look at, but also more informative for everybody. Clearly and simply written manuscripts would help make the articles published in INFOMUSA accessible to the greatest number of readers, whether they are geneticists or economists. We, in turn, will provide short summaries for non specialists on noteworthy topics and open up some of our pages to editorials and debates. Some sections will disappear from the magazine but the audience they target will still be kept abreast of the latest developments, only in another form. And just as INFOMUSA is undergoing changes, PROMUSA will no longer be inserted in the magazine and will only be available in electronic form.Having more articles in the same space will put pressure on future authors to be brief and to the point. An article, illustrations included, should fit within 2 1 /2 pages of the magazine. Authors should aim for 2500 words, including references. The length of the text will vary depending on the number and size of tables and figures.This adjustment can be done without jeopardizing the quality of articles. As you most certainly noticed, many articles begin with an introduction on bananas. Leaving them in the past probably encouraged emulation, but if there is a public that does need not to be educated on the importance of bananas as a staple food or a traded commodity, it is the readership of INFOMUSA. From now on, the introduction should only be used to provide the rationale for the research and any relevant background information.'Materials and methods' is another section that could often be shorter. The authors should provide enough details of their experimental design to allow the reader to gauge the validity of the research. Similarly, only the tables and figures necessary for the comprehension of the article should be included. The information contained in small tables and histograms, for example, can generally be stated briefly in the text instead.If possible, unpublished reports and not widely circulated documents, such as annual reports, should be avoided in the reference section. Our 'Instructions to authors', at the end of the magazine, explains how references should be cited. We are aware of being somewhat unorthodox on that front, so we ask future authors to pay attention to our guidelines and follow them when preparing a manuscript for INFOMUSA.Just as idiosyncratic is the nomenclature of banana cultivars. Everybody is aware of the need to standardize the numerous ways of writing a cultivar's name. Until such a reference list becomes available, we ask authors to use single quotation marks, to capitalize the first letter of the name, but not the second part if there is one, and to avoid as much as possible local variations or translations, such as 'Gran Enano' instead of 'Grande naine'.Vernacular names for parts of the banana plant should also be avoided. INIBAP has produced a small booklet, 'Descriptors for bananas' which can be consulted. It is available on INIBAP's website, like the thesaurus which is also trilingual.We hope you will enjoy the new INFOMUSA we are preparing for you and keep sending the articles that are its 'raison d'être'. Feel free to write to us, whether it is in the form of a short letter or a commentary. We are always eager to hear from you and will do our best to publish your views, and to do it on schedule. You probably also noticed a discrepancy between the date on the cover of INFOMUSA and the date you received it. We apologize for our lateness and for any delays we have taken in communicating with the authors about the fate of their articles or other matters. From now on we will try to be more responsive to your needs and requests, and to keep you informed in a timely manner.L. R. Garcia, P.J. Pérez, I.C. Bermúdez, P.P. Orellana, N.R. Veitía, Y.M. Padrón and C.Q. Romeroecause the majority of plantain and banana clones are triploid, sterile and produce parthenocarpic fruits, improvement by crossing is extremely difficult. Therefore improvement by mutation and biotechnology is increasingly used for this crop (Donini andSonnino 1998, Nichterlein 2000).When Larkin and Scowcroft (1981) postulated the principle of somaclonal variation it raised considerable expectations and many laboratories started improvement programmes using tissue culture. Several years of work later, however, expectations have yet to be fulfilled since this technique is not very efficient at improving specific characters (Vuylsteke 2001).Systems of improvement that use induced mutation based on mutagenic agents produce changes similar to natural mutations, but in a relatively shorter time and in greater quantity (Donini and Sonnino 1998). In Musa, chimaeras result from mutagenic treatment of multicellular structures and diplontic selection is a major obstacle to the isolation of induced somatic mutants.Several researchers suggest that mutations produced by somaclonal variation are similar to those produced spontaneously or by mutagens (Pérez 1998b). There are no reports of studies with the cultivar 'Grande naine' that relate the variability in plants obtained during tissue culture to the variability obtained from a combination of nuclear techniques and tissue culture.The purpose of this study was to compare the phenotypic variation of plants regenerated from adventitious buds which had been treated with 60 Co gamma radiation, with plants regenerated from adventitious buds which had not been exposed to radiation.The starting materials were shoot tips of 'Grande naine' obtained from sword suckers approximately 50-100 cm in height that were established in vitro in accordance with the methodology proposed by Orellana (1994). Adventitious buds were induced in accordance with the protocol proposed by García (2001).Explants of 1 mm 2 derived from adventitious buds were treated with 25 Gy gamma radiation from a 60 Co source of 1.98 Gy/min. Immediately after treatment, the explants were transferred to fresh culture medium to avoid any toxicity that may have been produced by the action of the radiation on the constituents of the culture medium. Six thousand plants were regenerated from tissues treated with the mutagenic agent and 5000 from adventitious buds not exposed to radiation with both sets being manipulated the same way in vitro and ex vitro. As a control, 100 suckers obtained from corms were planted at random.Rooting was induced using the methods proposed by Orellana (1994). Acclimatization was according to the technical instructions for the micropropagation of plantain (MINAGRI 1992).Several characters such as plant height (cm), circumference (cm) and colour of the pseudostem, leaf and vein colour, colour of petiole, leaf habit and texture, appearance of bunch, type of rachis, form and colour of male buds were evaluated with reference to 'Descriptors for banana' (INIBAP 1996).The proportion of variants, the percentage of each variation in relation to the total phenotypic variations observed, and the frequency of occurrence with respect to the total plants were determined. The data were analysed statistically by the chisquare test using the software package STATGRAFICS ver. 4.1 for Windows.Knowing the importance of black leaf streak disease in banana and the resultant damage, the reaction of the plants to the disease was studied, treating each plant as an experimental unit and evaluating the disease at harvest.The plantation was established in an area of the Estación Experimental de Remedios 'Pedro Lantigua' which has a red ferrolytic soil (Jiménez et al. 1994). The distance between plants was 3.0 x 1.0 m and cultivation was in accordance with the instructions for the cultivation of plantain published by MINAGRI (1994).Assessments of the two plant populations showed that phenotypic variations differed quantitatively and qualitatively, with a larger proportion of variants in tissue cultures with irradiation treatment (16.5%) in comparison with plants regenerated from non-radiated adventitious buds (6.6%). Amongst the phenotypic variations found in plants obtained without mutagen treatment, the majority of variations were of reduced plant height (80.2% of total phenotypic variation), while variation in colour was 0.9% (Figure 1). In this population (no irradiation) there were other types of variation such as erect leaf habit,Comparative study of variability produced by induced mutation and tissue culture in banana (Musa sp.) cv. 'Grande naine' thin pseudostems, plants of 'Valery' type, and changes in the inflorescence and bunch, which accounted for 0.6, 0.6, 13.8 and 3.8% of the total observed phenotypic variation respectively. The majority (61.2%) of variations in the population obtained by induced mutation were about colour, with variations causing reduced height accounting for only 18.5% of the total variations observed (Figure 1). In this population (with irradiation) there was a wide range of phenotypic variation as shown in figures 2, 3 and 4. Some sorts of phenotypic variations were not observed in plants obtained without mutagen treatment, e.g. distortions in the form and texture of the leaves (coriaceous or leathery), and early flowering (Table 1). Changes in pseudostem colour, a dark greyish brown colour of the edge of the petiole, and whitish stripes on the leaves and pseudostem were also not seen in plants regenerated from buds which had not been irradiated, where the only variations were in the shade of the reddish colouration.In the assessments of the inflorescences and bunches, some variations that were observed in plants obtained with mutagen treatment, such as reversion of the bunch from 'French' to 'Horn' types, naked rachis and changes in coloration of the male bud from purple to yellow, were also not found in the population obtained from adventitious buds without radiation (Figure 4). In the plantation originating from irradiated buds one plant showed a difference in reaction to black leaf streak disease, and was selected. All the plants obtained from adventitious buds without irradiation proved to be highly susceptible. Studies are continuing to determine the stability of the differential reaction to the disease.Table 1 shows the main phenotypic variations found in each population. It is clear that changes in plant colour and leaf habit were dependent on the source of variability used, there being a much higher frequency of these characteristics in the population obtained by irradiation. According to the chi-square test, the frequency of plants with reduced height was more dependent on the source of variability than that of the 'Valery' type variation. In contrast, the frequency of occurrence of changes in the inflorescence and bunch were not dependent on the source of variability.Somaclonal variation has been reported in the banana subgroup 'Cavendish' produced by micropropagation (Israeli et al. 1991) but the variation was always associated with problems in the size and quality Table 1. Frequency of occurrence of phenotypic variation in populations with or without mutagen treatment (gamma radiation) in cv. 'Grande naine'. of the fruit (Vuylsteke et al. 1996). Vuylsteke (2001) indicated that somaclonal variation should not be overestimated as a source of variation for the genetic improvement of banana.The majority of cultivars of plantain and banana originated by spontaneous mutation. According to the FAO/IAEA database, two banana cultivars obtained by induced mutation have been released (Nichterlein 2000).The results of the present study are in agreement with those proposed by Ahloowalia (1998) who observed that variations in plants of potato (Solanum tuberosum L.) regenerated by tissue culture, and those obtained from treatment with a mutagen, differed completely with respect to the frequency and range of variation. Similar results were obtained by Schum and Preil (1998) in Chrysanthemum.In a comparison of somaclonal variations and induced mutations in sugar cane, Pérez (1998b) found that the variability produced only by cultivation in vitro did not give the results that were hoped and it was the use of mutagenesis in vitro that was very effective.All that has been shown above demonstrates that the highest rate and range of phenotypic variation was obtained when the adventitious buds were treated with gamma radiation, resulting in variations of interest to agriculture such as plants with early flowering and with a differential response to black Sigatoka. In the irradiated population, 68% of variations were distinct and not produced in plants regenerated from adventitious buds which had not been irradiated. Estimation of the vari-ation is able to provide a measure of the possibilities of selection in populations (Pérez 1998a). The results obtained indicate that these possibilities would be more numerous in a population regenerated from irradiated buds, than in a population obtained by tissue culture alone. The variability of the character under improvement and the frequency of mutation of the gene(s) involved in this character will determine the size of the population needed for a successful outcome. ■The authors work in the Instituto de Biotecnología de Las Plantas, Universidad Central de las Villas, Carretera a Camajuaní km 5,Santa Clara,Cuba. Fax: 53 (42) 281329; e-mail: lougarcia@uclv.edu.cuA BI. Bermúdez, L. Herrera I.*, P. Orellana, N. Veitía, C. Romero, J. Clavelo, L. García, M. Acosta, L. García and Y. Padrón T he oldest reports of Fusarium wilt, also known as Panama disease and caused by Fusarium oxysporum f.sp. cubense E. F. Smith (Foc), come from Cuba, Puerto Rico and Jamaica. According to Stover (1962), in Cuba the disease mostly affected the clones 'Gros Michel' and 'Manzano' (subgroup Silk). Since then, 'Gros Michel' and 'Manzano' have been increasingly affected by the disease and have disappeared from the market. Together with Sigatoka disease, also known as yellow Sigatoka, Fusarium wilt is responsible for the collapse of the banana industry in the 1940s (Battle and Pérez 1999). It is for this reason that in recent years the search for different sources of resistance to this devastating disease has intensified.The combination of improvement by mutation and in vitro culture has made the induction and selection of somatic mutations more efficient. In vitro culture has been used as a system for the induction of mutations in various Musa genotypes with different ploidy levels and combinations of the genomes of Musa acuminata (A) and M. balbisiana (B) (Novak et al. 1986).Following this approach of using biotechnological methods for genetic improvement, this report describes the results of investigations into the application of a selection methodology by means of inoculation with the pathogen, established by the authors, in order to evaluate the agronomic characters of potentially resistant or tolerant to Fusarium wilt variants obtained by exposing two susceptible cultivars to physical mutagens.The general procedures for obtaining vegetative material were as described by Orellana et al. (1991). The explants for the induction of adventitious buds were transferred to Murashige and Skoog medium supplemented with 20 mg/L of 6-benzylaminopurine and 0.65 mg/L indoleacetic acid (IAA). Adventitious buds were irradiated with 25 Gy gamma radiation from a 60 Co source. The resultant 5000 in vitro plantlets of each cultivar were inoculated for 30 minutes with a suspension of 3 x 10 5 spores/mL of strain INIFAT-1, a strain previously shown to have the highest pathogenicity. The plants were then transferred to earthenware pots containing an organic soil amended with the remains of plants with Foc disease. After 60 days, plants that were free of yellow foliage were re-inoculated with 1 mL of a suspension of spores of the same strain by puncturing the base of the pseudostem. Six months later, plants without symptoms were transferred to a field contaminated with the pathogen, for evaluation of disease incidence. Forty-two clonal lines were selected and multiplied in vitro to obtain 100 individuals of each. Each clonal line was then processed in the previously described manner until the pot stage. For further selection, the level of resistance was evaluated in pots and in the field according the following scale as proposed by Hwang (1991) and modified by the authors:Of the plants in pots that ranked 3 or less, 60 healthy plants were transferred to an experimental area of a typical red ferrolytic soil under natural conditions of infection, in order to evaluate agronomic characteristics in the presence of the disease at the field stage.Data were subjected to a one-way analysis of variance. Duncan's multiple range test was used to determine homogeneous and/or significantly different groups, at P<0.05, previously checking the data for homogeneity of variance and normal distribution. Data that did not fulfil these conditions were subjected to Dunnet's non-parametric test of comparisons of means using the statistical package SPSS/PC v. 9.00 for Windows.The study resulted in 11 486 in vitro plants of both cultivars. These were subjected to rigorous selection procedures against the pathogen and showed different responses both in pots and in the field in the first and second cycles of selection. When inoculated and re-inoculated, 42 plants that were selected in the field gave different responses in the presence of the pathogen, expressed as percentage survival. The evaluation of 32 selected lines in a field with a natural infestation, resulted in a final selection of nine somaclones (Table 1).As can be seen in Table 1, after the different evaluation procedures, clonal lines derived from 'Manzano' were discarded because they reached a level of infection over 30%, grade 4 of the evaluation scale proposed by Hwang (1991) and modified by the authors.Of the plants in pots ranked 3 and under, 60 healthy plants were transplanted under conditions of natural infestation in order to evaluate their agronomic characteristics and their reaction to the disease.The percentage of infected plants for the nine selected variants (0.17% of the original 5314 plants) of the cultivar 'Gros Michel' are shown in Table 2. The plants had levels of infection less than 30%; eight variants were at level 1 (HR) and one was at level 2 (R). The controls had levels of infection greater than 40%, which confirms the presence of the pathogen in the soil and the resistance of the selected variants.In the last few years, the use of techniques to induce mutations in banana and plantain, has given rise to various variants resistant to Fusarium wilt (Hwang 1991, De Beer andVisser 1995), with increased bunch weight (Smith et al. 1994), reduced plant height (Bermúdez 2000) and early flowering (Roux et al. 1994).Some variants of 'Gros Michel' (Tables 2, 3) stand out for their superior agronomic characters in comparison with the control: • IBP 5-61 had a vegetative cycle that was shorter (15 months) than that of the donor cultivar (17 months). Other characteristics e.g. bunch weight and numbers of hands and fingers per bunch remained similar to 'Gros Michel' but this variant had a very uniform maturation of the bunch, and was highly resistant (3% infection). • IBP 5-B had a vegetative cycle similar to that of the control 'Gros Michel', a good bunch weight, and increased numbers of fingers per bunch, which were also bigger. Of more importance, resistance was maintained in field conditions, with only 3.2% infection by the pathogen. • IBP 12 had similar characteristics to the control in terms of bunch weight and numbers of hands per bunch, but developed larger numbers of fingers per bunch, which were also larger. As with IBP 5-B, infection by the pathogen in field conditions was 3.2%. • The other variants had low levels of infection but yield and development cycle were not favourable. In particular, IBP 5-42 and IBP 5-6 had the lowest infection rates (Table 2) but also had two of the lowest bunch weights (Table 3). • IBP 5-66, IBP 13-A, IBP 13-B and IBP 5-5 had premature shedding of the fingers during maturation, which is undesirable for production. It is important to emphasize that plants with high resistance do not necessarily have good agricultural characteristics or yield. Similar results were obtained by Hwang and Ko (1988) who obtained variants that were highly resistant to F. oxysporum, but all were morphological variants with combinations of agronomic characters that were inferior to the original cultivar.With this work, we showed the possibility of using biotechnological methods such as mutations to improve plantain and banana. At present, three variants derived from 'Gros Michel' have shown resistance to F. oxysporum and have good agricultural characteristics, a result that is of great practical value. ■ Control is by means of cultural practices and powerful fumigation with chemical products that not only damage the environment and human health, but also increase production costs. Application of traditional methods of improvement have not given the expected results, because of the limited knowledge on the diversity and genetics of the pathogens, and the problems posed by the triploidy, low fertility and long generation times of bananas. Genetic engineering offers an alternative for overcoming these limitations, because of the possibility of introducing specific genetic changes in a short period of time (Sági et al. 1994).There is a variety of methods for gene transformation of plant cells. Infection with the natural vector Agrobacterium tumefaciens is up to now the most promising, and better than particle bombardment and other gene transfer techniques, because of its simplicity and high efficiency of transformation, the possibility of transferring relatively large segments of DNA with defined ends and little rearrangement, and incorporation of a low number of copies in the plant chromosome (Gelvin and Liu 1994, Komari et al. 1996). Transformation methods with Agrobacterium are being applied successfully to dicotyledons and monocotyledons, and have been reported, for example, with cultivars of rice, maize, yucca and banana (Ganapathi 2001, Sagi et al. 2000). Agrobacterium-mediated transformation of meristems of Musa spp. var. 'Grande naine' has also been described (May et al. 1995).This work determines the efficiency of transformation with A. tumefaciens of embryogenic cell suspensions of the plantain 'Dominico hartón' (AAB), based on the transient expression of the gene for ß-glucuronidase (GUS) and considers three factors: 1) concentration of Agrobacterium, 2) concentration of acetosyringone (AS) and 3) infection period. The results confirmed the potential of the method for transforming embryogenic cell suspensions with A. tumefaciens for the incorporation of foreign genes of interest in commercial varieties of plantain.Embryogenic cell suspensions (ECS) of 'Dominico hartón' were established in the Laboratory for Tropical Crops at the Katholieke Universiteit Leuven (KULeuven), Belgium, with material derived from the in vitro Musa collection of INIBAP. ECS were maintained in MS liquid medium with half the macronutrients and with iron, 5 µM dichlorophenoxyacetic acid (2,4-D) and 1 µM zeatin as growth regulators (Dhed'a et al. 1991, Sági et al. 1995), at 26 ± 2°C, with continual shaking at 85 rpm, an illumination of 1000 lux and a photoperiod of 14/10 hours light/darkness. The ECS were homogenized, passed though a series of sieves of 1.0, 0.5, and 0.25 mm in diameter, and subcultured on the same medium for 4 days (Sági et al. 1995) at 80 rpm and 26 ± 2°C under fluorescent light.The ECS were infected with A. tumefaciens strain AT650, which contains the binary plasmid pLIGH, supplied by the Centro Internacional de Agricultura Tropical (CIAT). The vector is 9.5 kb, and is derived from pSG-ManI, which contains two chimeric genes: 1) the gene for the enzyme ß-glucuronidase of 2.5 kb with the gusAintron, the 35S promoter of cauliflower mosaic virus (CaMV) and the CaMV 35S terminator; 2) the gene hph (hygromycin phosphotransferase) (31), of 1.7 kb that confers resistance to hygromycin with the CaMV 35S promoter and the tml (tumour morphology large gen) terminator.A. tumefaciens strain AT650/pLIGh was grown in semisolid AB medium (Gelvin and Liu 1994) with 300 mg/L streptomycin, 100 mg/L spectinomycin, and 50 mg/L hygromycin for 2 to 3 days at 28 ± 2 o C. Inoculum was prepared from cells of a recent culture in liquid AB medium with the same concentration of antibiotics, and was incubated for 12 to 16 h, with shaking at 28 ± 2 o C, until it reached a concentration of 1 to 2x10 9 cells/mL. The culture was washed in sterile saline solution, and resuspended in two volumes of induction medium (Gelvin and Liu 1994) containing 2 mM sodium phosphate, 30 mM MES buffer at pH 5.6, sales solution AB 1X, 0.5% glucose, with 50, 100, 200 or 400 µM AS. The suspension was incubated at 25 ± 2 o C for 12 to 16 hours, and 100 rpm. The concentration of bacteria was adjusted to 1x10 8 and 1x10 9 cells/mL, by diluting with induction medium containing 50, 100, 200 or 400 µM AS. Culture medium for the ECS was replaced by the suspension of Agrobacterium at the appropriate concentration of 1x10 8 or 1x10 9 cells/mL. Infection was at 25 ± 2 o C, 140 rpm in darkness for 1, 4, 8, 12, 16, 20 or 24 hours. After infection, the ECS were washed in MS medium to remove excess bacteria. During the days following co-cultivation in the dark, MS liquid medium was used at half strength with 5 µM 2,4-D and 1 µM zeatin at pH 5.8 (Sági et al. 1995) with 50, 100, 200 or 400 µM AS. Finally, the medium was replaced by an equal volume without AS, and containing 250 g/L cefotaxime and 20 mg/L hygromycin.Histochemical colorimetric analysis was according to the method of Jefferson et al. 1987. Tissue was fixed in a 0.27% formaldehyde solution, 0.01 mM MES and 5.46% manitol, submitted to a vacuum, washed three times with sodium phosphate (50 mM, pH 5.0) solution, and incubated overnight at 37°C in sodium phosphate buffer (50 mM, pH 7.0) containing 1 mM 5-bromo-4-chloro-3-indolyl-b-D-glucuronide (X-Gluc-GibcoBRL). After incubation, the tissue (ECS) was bleached with 2.5% sodium hypochlorite and examined under the stereomicroscope. The presence of aggregates of embryogenic cells with GUS activity (blue spots) was evaluated every 24 hours for 7 consecutive days after infection with Agrobacterium, and finally on the tenth day, for each treatment and replicate; data were expressed as percentages.The ECS of 'Dominico hartón' were infected with Agrobacterium in different conditions. Treatments corresponded to combinations of the factors that were analyzed, Agrobacterium concentration, AS concentration and infection period, as described in Table 1. The factorial arrangement was 2x4x7, with three replicates.Transient expression of gusA is presented as the percentage of cell aggregates with GUS activity for the first seven days, and for the tenth day after infection. The experimental data were subjected to an analysis of variance and Tukey's multiple comparison test for the main factors and interactions. The components of variance were estimated by means of the statistical package SAS, version 6.3. Means and confidence limits of the main factors and interactions were prepared graphically with the programme Stat Graphics.GUS activity in ECS of 'Dominico hartón' infected with At650/pLIGh was shown by histochemical analysis (Figure 1). Since the gusA gene in the LIGH plasmid contains an intron that blocks its expression in bacterial cells, it is expressed only in transformed plant cells. As non-trans-formed plant tissue has no endogenous expression, it was concluded that the GUS activity observed in the ECS was due to expression of the reporter gene in the transformed embryogenic cells (Figure 1).Statistical analysis of the interactions axb, axc, bxc and axbxc show their importance to the transformation process (P<0001), and that the largest average efficiency of transient expression was produced by the interactions a1xb3 (34.96%), a1xc7 (32.76%), b3xc7 (41.21%) and a1xb3xc7 (61.10%).Estimation of the components of variance suggests that the interaction Agrobacterium x AS is the most important, with a contribution of 12.97% of total variance (Figure 2). In Figure 3-A, it can be seen that for both concentrations of Agrobacterium, the highest efficiency of transformation was with 200 µM AS, and that 1x10 8 cells/mL At650/pLIGh gave the highest number of cell aggregates having GUS activity in comparison with the other concentration, at the four levels of AS tested.The interaction AS x infection period confirmed that 200 µM AS was the concentration that showed the highest efficiency for the interval 12-24 h of infection (Figure 3-B).The interaction infection period x Agrobacterium contributed the least to the total variance (6.39%) (Figure 2). Figure 3-C confirmed the superiority of 1x10 8 cells/mL as regards the efficiency of transient expression for all periods of infection.For the interaction between the three factors, the contribution of the average variance to the total variance was 8.2% (Figure 2), which shows that although important it is not the most important of the interactions analyzed.Although the infection period was not considered to be a factor of major importance in the transformation process, because the results did not depend on the main factors studied, the interaction of infection period with the time of evaluation provided information on the variation in the levels of efficiency for transient expression during the 10 day evaluation. Figure 4 shows that the highest frequency of transformation was observed after three days for a 24 h infection period (37.62%), but by the tenth day it had fallen to 10.57%. Also, it was observed that for the 1, 4, and 8 h infection periods, GUS activity became evident from the second day of co-cultivation (0.44 to 2.12%), but was zero by the tenth day. The opposite occurred for the 12, 16, 20 and 24 h infection periods, where the action of the enzymes was observed from the first day of co-cultivation (6.92 to 20.62%), and remained until the tenth day (3.88 to 15.35%). The highest efficiency of transformation by the tenth day was observed for the 20 h infection period (15.35%) (Figure 4).In this study we obtained transient expression of the gusA gene in ECS of 'Dominico hartón' after Agrobacteriummediated transformation, as shown by GUS activity in cell aggregates when evaluated by histochemical analysis. The use of the gusA-intron, confirmed that the GUS activity was due to the transfer of T-DNA in the plant cell and not to expression in the cells of Agrobacterium.Before starting the transformation experiments, the sensitivity of 'Dominico hartón' ECS to the antibiotics used after infection was tested. A dose of 250 mg/L cefotaxime, selected to inhibit growth of Agrobacterium, had no effect on the regeneration of embryogenic cells. Strain AT650 was effective for the transient transfer of T-DNA to 'Dominico hartón' ECS probably because it contained an inactivated Ti plasmid of a hypervirulent agropine type pTiBo542, which has proved effective with difficult plant species (Gelvin and Liu 1994, Hiei et al. 1994, Narasimhulu et al. 1996). The characteristics of the binary vector that was used is also very important when one is trying to achieve high transformation efficiency. The plasmid pLIGh used here has the gusA gene under the regulation of the CaMV 35S promoter which is efficient in other monocotyledons and has nopaline-type borders, which are more effective than octopine-type borders in monocotyledons such as maize (Shen et al. 1993).The most efficient concentration of A. tumefaciens [1x10 8 cells/mL (15.04%)] coincides with the concentration used for maize (Ishida et al. 1996), but differs from other reports where the concentration was up to 1-2x10 10 cells/mL (Shen et al. 1993). This may be explained by the type of tissue and the species of plant being infected. It is possible that the tissue was rapidly wounded at bacterial concentrations higher than 1x10 9 cells/mL, or that the tissue was more susceptible to infection. Therefore a concentration of 1x10 8 cells/mL should be sufficient for transfer of T-DNA and create less competition between cells for the nutrients in the culture medium.It is known that AS increases transformation efficiency in dicotyledons as well as in wounded monocotyledons (Shen et al. 1993, Stachel et al. 1985, Sheikholesman and Weeks 1987, Delmotte et al. 1991, Hansen et al. 1994). The absence of GUS activity in treatments without AS demonstrates that the presence of this phenolic com-pound is essential for transformation. The absence may have been because the plant tissue had not been wounded, and by an inherent inability of monocotyledons to activate virulence genes. Although phenolic compounds induce vir genes in wounded monocotyledon tissues (Usami et al. 1988), they may not be sufficient for activation (Schäfer et al. 1987), therefore it may be necessary to add synthetic AS to the medium for induction, infection and co-cultivation. AS: 1= 50 µM 2= 100 µM 3= 200 µM 4=400 µMAgrobacterium: 1= 1x10 8 2= 1x10 9 Analysis of the independent factors shows that the best efficiency of transient expression was obtained with 24 h (23.24%). The infection periods that were studied did not yield the most efficient, but it is possible to say that for ECS the infection period must be between 16 and 24 h. It remains to determine whether a period of more than 24 h increases the rate of transformation or whether, on the contrary, the viability of plant tissue is reduced. These results show that transformation efficiency depends mainly on the infection period. The use of such a wide range (1-24 h) is because this factor is one of the most variable and depends on the type of plant tissue.The study of the interaction between the three factors studied shows the importance of the combination of these factors for improving transformation efficiency.Expression of the reporter gene was studied for the first days after infection. The interaction of infection period with the time of evaluation showed that the maximum peak of GUS activity occurred on the third day, and from then on declined. Possibly this is because of the action of the selective antibiotic on the ECS, added on the fourth day, indicating that the initial expression of the gusA gene was in most cases transient. The detection of GUS activity on the tenth day shows the possibility of obtaining stable transformants for several reasons: 1) transient expression of a gene is only seen in the first 4 to 6 days of transformation, returning to zero by the 10 th day (Castle and Morris 1994); 2) from the 4 th day, the selective antibiotic was active, and the GUS activity would only be detected in the transformed ECS (resistant to antibiotic) (Zheng et al. 1991); 3) Agrobacterium-mediated transformation offers a greater probability of incorporation of heterologous DNA within the plant genome, with the incorporation of small numbers of copies of the introduced genes (Hiei et al. 1994), and for the transfer of relatively large segments of DNA, with defined ends and with few rearrangements (Gelvin and Liu 1994, Hiei et al. 1994, Pineda and Orozco 1996, Ishida et al. 1996, Komari et al. 1996).The possibility of obtaining stable transformants is supported by the stable expression obtained following infection with A. tumefaciens achieved in meristematic cells of banana 'Grande naine' (May et al. 1995). The efficiency of this methodology to achieve stable transformation is even more likely with embryogenic cell suspensions of Musa (Ganapathi 2001). Embryogenic cultures are an advantage because plants can be regenerated from a single cell, avoiding the formation of chimeric transformants. Also, the rate of multiplication is at least five times greater in comparison with the proliferation of cultured meristems (Dhed'a et al. 1991, Escalant and Teisson 1989, Panis et al. 1993). Furthermore, the use of actively dividing cells, such as embryogenic cells, favours the incorporation of T-DNA in the nuclear genome, by ensur-ing the presence of the enzymatic machinery needed for incorporation (Shen et al. 1993).Using the present method for transformation of plantain 'Dominico hartón', based on the use of embryonic cell suspensions in their growth phase at a size of 0.25-0.5 mm, it is possible to achieve a transient expression of up to 37.5%, and it is probable that transgenic plants with a stable expression of the incorporated gene can be obtained. Soil salinity reduces crop growth and productivity because of the reduced osmotic pressure in the soil and the increase in certain ions to concentrations that are toxic to plants. These factors interfere in physiological processes such as transpiration, photosynthesis, translocation and respiration as well as causing imbalances in the water and/or ionic equilibrium of the plant (Richards 1992, Bohra et al. 1993).Methods to restore saline soils are generally slow and expensive. The use of cultivars of banana which tolerate saline stress may provide a solution which is technically and economically viable. The selection of banana genotypes in soils that are naturally saline is difficult because of the large spatial and temporal fluctuations in the ionic concentration of soil. In order to avoid such natural variation at the first stage of selection, it is possible to use nutrient solutions with added salinity to control ionic concentration (Rawson et al. 1998).The objectives of this work were: to evaluate the saline tolerance of five banana genotypes under greenhouse conditions, to study the effects of saline stress on physiological parameters, and to characterize the genetic diversity of the five genotypes by means of isoenzyme markers.Experiments were carried out in a greenhouse at the Universidade Federal Rural de Pernambuco, Recife, Brazil. The banana genotypes under evaluation were: 'Calcutta 4' (AA); 'Pacovan' (AAB, subgroup Prata), a mutant of the common Prata (Pome); 'Nanicão' (AAA, subgroup Cavendish); 'Caipira' ('Yangambi km 5', AAA) and 'FHIA-18' (AAAB).Plants were produced by micropropagation and were approximately 15 cm in length. Cultivation was in black polythene bags (55 cm deep x 33 cm in diameter) that each contained 10 kg of sand. The surface of the substrate was covered with a 3 cm layer of gravel to reduce evaporation and to facilitate the control of salinity. Plants were drip irrigated daily for 15 min, at a rate of 0.6 L plant -1 day -1 . The irrigation solution contained 742.86 mg/L soluble fertiliser (Kristalon ®) with the following composition: 3% N, 11% P 2 O 5 , 38% K 2 O, 4% MgO, 11% S plus micronutrients. In addition, 840 mg/L calcium nitrate (Barco Viking ®), equivalent to 15.5% N and 19% Ca, was applied. There were three treatments, prepared by the addition of NaCl to the nutrient solution and corresponding to 0, 50 and 100 M NaCl. The electrical conductivities of the solutions were 1.3, 6.5 and 11.7 dS/m respectively. Electrical conductivity was recorded every two days and adjusted as necessary.The experiment was in the form of a completely randomized design, with three levels of salt and five cultivars (2 x 3 x 5), making a total of 30 subplots. Each subplot contained 4 plants of each genotype, with a total of 120 plants. Data were analyzed statistically by means of analysis of variance and comparison of means by the Tukey test at 5% probability. The parameters for evaluation were: leaf area, dry matter production, and salt concentrations of the vegetative tissue: sodium (Na + ), potassium (K + ), calcium (Ca 2+ ) and chloride (Cl -). In addition, five isoenzyme systems were analyzed: peroxidase (PO), shikimic dehydrogenase (SKDH), malate dehydrogenase (MDH), glutamic oxaloacetic transaminase (GOT) and acid phosphatase (ACP).At the end of the experiment, 21 days after the start of treatments, leaf area was estimated by multiplying the product of leaf width and length (cm) by a factor of 0.7 (adapted from Moreira 1987). Three types of plant part were selected: leaf lamina, pseudostem and root + rhizome. Dry matter content was determined by oven drying at 65ºC to constant weight. Each of the plant parts was analyzed for Na + , K + , Ca + and Clconcentrations.After drying, vegetative material was ground and a sample digested in nitroperchlorate for sodium, potassium and calcium analysis. Na + and K + concentrations were determined by flame spectrophotometry, and calcium concentration was determined by spectrophotometry and atomic absorption (Malavolta et al. 1989). Chloride was analyzed by titration with silver nitrate previously extracted in aqueous solution (Malavolta et al. 1989).Isoenzymes were analysed using 350 mg of fresh material from the lamina of the third leaf of each plant. Samples were ground in a cooled pestle and mortar with 1 mL buffer (Scandalios 1969), 300 mg saccharose and 300 mg polyvinylpyrrolidone (PVP). Homogenates were centrifuged at 14 000 rpm and 4 o C for 10 min and 10 mL aliquots of supernatant transferred to gels. Migration was at 4 o C and a potential of 9.0 v/cm, until the leading edge reached 9 cm in the direction of the positive pole (anode). Immediately afterwards, the gels were stained and photographed. For the ACP, MDH and SKDH isoenzyme systems, gels were prepared with 8 mL lithium borate buffer at 0.2 M and pH 8.3, and 72 mL citrate buffer at 0.2 M and pH 8.3; for the wells, lithium borate buffer was used at 0.2 M and pH 8.3. Gels of the GOT isoenzyme system were prepared with sodium acetate buffer at 0.2 M and pH 5.0; gels of the PO system were prepared with Poulik buffer for gels, pH 8.0 (9.2 g Tris, 0.96 g citric acid plus distilled water made up to 1000 mL). Wells for the GOT and PO isoenzyme systems contained Poulik buffer for wells (18.54 g boric acid and 2 g sodium hydroxide and distilled water made up to 1000 mL). All gels were prepared at a concentration of 7% (0.28 g bisacrylamide, 5.32 g acrylamide, 0.08 mL temed (tetramethylethylenediamine), 0.8 mL 10% ammonium persulphate and specific buffer 80 mL). Gels were fixed in a solution of AYALA (methyl alcohol, glacial acetic acid and distilled water in proportions of 1:1:1 v/v) for 20 min.Data obtained from isoenzyme analyses and band colouration were tabulated in binary form with presence (1) or absence (0) of bands. Genetic similarities between the genotypes were estimated according to Dice's coefficient (equivalent to the index of Nei and Li 1979) in the NTSYS pc-programme (Numerical Taxonomy and Multivariate Analysis System, version 1.70, Exeter software, NY, USA). Dendrograms were constructed by the method of UPGMA (Unweighted Pair-Group Method Arithmetic Average) in the NTSYS pc-programme.Increasing NaCl concentrations in the nutrient solution resulted in a reduction in leaf area (Figure 1) and dry weight (Figure 2) for most genotypes. The effect, common in glycophytes (salt sensitive plants), had been previously recorded for different banana genotypes (Borges andCintra 1988, Araújo Filho et al. 1995). The reduction in leaf growth was due partly to a reduction in the net assimilation rate of CO 2 (Akita and Cabuslay 1990) as a result of the closure of the stomata which was in response to the low potential of water in the soil or substrate, itself the result of an increase in salt concentration. There is a metabolic cost to adaptation to salinity as a result of the diversion of part of the metabolic energy to the compartmentalization of ions and synthesis of organic solutes (Binzel et al. 1985). With treatment at 100 mol/m 3 NaCl, the biggest reduction in leaf area occurred with 'FHIA-18' (51.34% reduction) followed by 'Calcutta 4' (49.64%) and 'Nanicão' (45.70%). In contrast, leaf area in 'Caipira' and 'Pacovan' was reduced only by 25.14% and 28.91% respectively (Figure 1). With 'Caipira', the reduction occurred on a leaf whose area was already small in the control (without NaCl) treatments.Stress symptoms such as chlorosis and necrosis of the margin of the leaf lamina were more severe in the diploid 'Calcutta 4' up to the time of leaf death. The symptoms reduced the photosynthetically active area and markedly reduced growth.In non-saline conditions, 'Nanicão' and 'Pacovan' had the highest dry weight (50.76 g/plant and 49.80 g/plant respectively) as shown in Figure 2. Furthermore, at the highest salinity (100 mol/m 3 NaCl) 'Pacovan' stood out with the lowest reduction in dry matter production (40.01%), whereas for 'Nanicão' and 'Calcutta 4' the reduction was 58.95% and 69.32% respectively. 'Pacovan' maintained a high production of biomass at the highest level of NaCl (100 mol/m 3 ), a characteristic that is important for the selection of stress-tolerant genotypes. In 'Pacovan', maintaining 60% of the biomass coincided with a small reduction in leaf area in comparison with other genotypes.There were no significant differences between genotypes as regards the concentration of sodium in the roots and rhizome (Table 1). However, 'Pacovan' and 'FHIA-18' accumulated less sodium in the pseudostem when subjected to 100 mol/m 3 NaCl in comparison with the other genotypes studied (Table 1). 'Pacovan' and 'FHIA-18' also stood out by having, together with 'Caipira', the lowest concentrations of sodium in the leaf lamina when grown at the highest saline conentration (Table 1). In comparison, 'Calcutta 4' accumulated more sodium in the leaf lamina than the other cultivars, with concentrations up to eight times higher than the untreated control. These results show a genetic difference in the capacity to exclude sodium from the aerial parts, a process which avoids the increase of sodium concentration in the leaves and hence minimizes the toxic effects on leaf metabolism, particularly photosynthesis (Boursier et al. 1987). Considering that excess sodium in the medium induced passive accumulation of the ion in the root and that the root has a finite capacity to act as a site for accumulation (sink), there is probably a mechanism to exclude sodium that operates at root level and avoids the translocation of sodium to aerial parts. Similarly, the mechanism for the translocation of sodium to the leaves, and the mechanism for absorption at the level of the root appear to be regulated separately. The lack of ability to control sodium concentrations in metabolically active tissue, such as leaves, induces serious physiological and biochemical disturbance (Boursier andLauchli 1990, Botella et al. 1997).Of the various ions, chloride accumulated the most in vegetative tissues. 'Calcutta 4' showed the highest concentration of chloride in the leaf lamina when treated with 100 mol/m 3 of NaCL. With the same treatment, 'Pacovan' and 'FHIA-18' maintained the lowest levels of chloride in the leaf lamina (Table 1). Ionic compartmentalization at the level of the organ is a mechanism for tolerating sodium stress, however the physiological basis is still unclear (Shanon and Noble 1995). Ions accumulate in the leaves as a result of the quantity of lost water through transpiration. In leaves, however, concentrations of ions that exceed the tolerance of the plant induce characteristic symptoms such as necrosis and scorch. Symptoms of saline stress in the leaf lamina were more severe in 'Calcutta 4' than in the other genotypes studied and, furthermore, coincided with the highest concentrations of Na + and Clin this cultivar. 'Calcutta 4' showed a significant reduction in K + in the aerial parts (leaf lamina and pseudostem) with increased salinity (Table 1). The reduction was accompanied by an increase in Na + in the tissue. Tolerance to saline stress was associated with the exclusion of toxic ions and the selectivity of the membrane, mainly discrimination between Na + and K + (Botella et al. 1997), a mechanism that was absent in 'Calcutta 4'. As regards the distribution of K + in different parts of the plant, the highest K + content was always found in the pseudostem in all the genotypes studied (Table 1).The increase in salinity coincided with a reduction in Ca 2+ in the leaf lamina in all genotypes studied, except for the diploid 'Calcutta 4', which showed an accumulation of Ca 2+ in the pseudostem, with both salt treatments (Table 1).The different results between the genotypes studied were related to the capacity for adaptation and growth in a saline medium, which is controlled by genetic factors. Nevertheless, the cultivar 'Nanicão', showed an initial vigour simi-lar to the cultivar 'Pacovan', but the latter showed more productivity and tolerance under conditions of imposed saline stress. High biomass production in 'Pacovan' was attributed to a capacity to restrict the movement of Na + and Clions to the leaves, ensuring a reduced symptom expression and reduced damage to the leaf lamina. In comparison, when subjected to saline stress, the diploid 'Calcutta 4' showed higher Na + and Clcontents in the leaf lamina that were associated with the severest symptoms of toxicity to these ions and the lowest biomass production.The esterase isoenzyme profile did not produce consistent bands for any treatment of the genotypes studied. In contrast, Reyes et al. (1998) detected a total of 14 bands, distributed in 5 zones of enzymatic activity, when they analyzed leaves of 15 clones, originating from in vitro cultivation, of the genus Musa. This suggests that the bands could be activated at other stages of plant development.The highest amount of polymorphism occurred with the peroxidase profile (PO), with a total of 15 bands (Figure 3). Of these, three were revealed in all the individuals analyzed, independently of treatment. Only in the treatment with salt were the following bands seen: Po-4 and Po-7 in 'Pacovan', Po-6 and Po-7 in 'Nanicão' and Po-14 in 'Calcutta 4'. The presence of salt probably inactivated the action of these enzymes. In contrast, a concentration of 100 mol/m 3 of NaCl activated the Po-2, Po-8, Po-13 and Po-14 bands in 'FHIA 18', and the Po-5 band in 'Pacovan'. In spite of the increased degree of polymorphism shown in the system, bands were not detected simultaneously in both saline treatments. Other researchers (Jarret andLitz 1986, Bhat et al. 1992a) working with other genotypes recorded various very polymorphic zones of activity in banana.Four bands appeared in the shikimic dehydrogenase profile (SKDH). The Skdh-3 and Skdh-4 bands showed in all the individuals analyzed (Figure 3). The activity of this system has also been described in other work with different banana genotypes (Jarret and Litz 1986, Horry 1989, Espino and Pimentel, 1990, Bhat et al. 1992b, Reyes et al. 1998). The Skdh-1 band showed only in the genotype 'Calcutta 4' when it was subjected to salt. In the 'FHIA-18' and 'Calcutta 4' genotypes, the presence of salt activated the Skdh-2 and Skdh-1 bands, respectively, which suggests that activation of these enzymes, in these genotypes, may be related to saline stress.The malate dehydrogenase profile (MDH) showed three bands of activity (Mdh-1, Mdh-2 and Mdh-3) in all individuals, demonstrating that the system was monomorphic (Figure 4).Two regions of bands were observed in the glutamatic oxaloacetic transaminase profile (GOT). Band Got-2 occurred in all individuals (Figure 4). Band Got-1 showed no activity in 'FHIA-18' with the no-salt treatment nor in 'FHIA-18' and 'Calcutta 4' treated with 100 mol/m 3 NaCl. The low degree of polymorphism shown in this system was insufficient to interpret the relationship to saline stress.The acid phosphatase profile (ACP) showed five bands, the most anodic, Acp-5, showing in all the individuals analyzed (Figure 4). Bands Acp-4 and Acp-3 were present only in 'Pacovan' when not subjected to saline stress. With this treat-Column 1: treatment without salt, column 2: treatment with 50 mol/m 3 NaCl, and column 3 treatment with 100 mol/m 3 NaCl. ment, 'Pacovan' did not show band Acp-2, which appeared in all other individuals, or Acp-1, which also was not detected in 'FHIA-18' with treatment at 100 mol/m 3 NaCl. This isoenzyme system can be used as a molecular maker for 'Pacovan', since, in the presence of salt (50 and 100 mol/m 3 ), two bands did not show activity (Acp-3 and Acp-4) and the salt activated the expression of bands Acp-1 and Acp-2. With genotypes that possess only genome group A ('Nanicão', 'Caipira' and 'Calcutta 4'), the same pattern of bands was observed independently of the presence or absence of salt.Genotypes with distinct levels of ploidy (diploid, triploid and tetraploid) were evaluated, therefore the failure to identify a marker for sensitivity to salt probably resulted from the wide range of genetic variability, as well as from the numbers of genes involved in the activation of enzymes related to metabolic pathways activated by saline stress.Of the five isoenzyme systems that showed activity, four showed bands that were polymorphic (ACP, GOT, PO and SKDH). A total of 244 bands were observed, 150 of which were monomorphic and 94 polymorphic. According to the analyses of genetic diversity, the most closely related genotypes were 'Nanicão' (AA) and 'FHIA-18' (AAAB) with a similarity grade of 0.969 (96.9%); the most distant genotypes were 'Pacovan' (AAB) and 'Calcutta 4' (AA), with a similarity grade of 0.606 (60.6%).Physiological and biochemical analysis showed that 'Calcutta 4' was the most sensitive to salt and 'Pacovan' the most tolerant. The dendrogram (Figure 5) clearly showed that genotypes can be divided into two groups: one group formed by the genotype 'Calcutta 4', which is diploid and sensitive to salt and, the other group comprising the remainder of the genotypes, which were triploids (AAA and AAB) and tetraploids (AAAB). ■ ' (1,2,3),'Nanicão' (4,5,6), 'Caipira' (7,8,9), 11,12) and 'Calcutta 4' (13,14,15), obtained with the programme NTSYS-pc (option UPGMA). database 2002). Cultivars belonging to the Cavendish subgroup (AAA) account for 41% of world production, of which onethird (or 13% of world production) is exported (INIBAP 1999).The Cavendish cultivars have dominated the export trade since the demise of 'Gros Michel' over 50 years ago thanks to their high yields, long transport life and widely accepted flavour. Their main drawback is their susceptibility to a wide range of pests and diseases, in particular black leaf streak disease(Mycosphaerella fijiensis). As a result, they require regular applications of pesticides. Efforts by research organizations have been underway for several years to find a replacement that would have equivalent features as the Cavendish cultivars but would be less dependent on pesticides.Several Cavendish cultivars, like 'Grande naine', 'Williams', 'Valery', 'Poyo', 'Robusta' and 'Giant Cavendish', are grown all over the world, each having its own advantages and disadvantages. For example, the 'Grande naine' cultivar tends to be less prone to wind damage but does not fare as well as taller cultivars, such as 'Robusta' and 'Valery', in poorer soils and drier conditions. The main cultivar grown in Australia is 'Williams', which occupies over 10 000 hectares.In 1988, the Queensland Department of Primary Industries (QDPI) came up with a variety, 'J.D. Dwarf', which may be of interest to smallholders around the world. 'J.D. Dwarf' was collected as an offtype in 1988 in a tissue culture planting of the 'Williams' cultivar. Data were collected on a few plants grown at the South Johnstone Research Station and trials were established on growers' properties in 1990. The cultivar was released to the industry in 1998 for more widespread on-farm evaluation (Daniells and Bryde 1998). It is now grown on about 100 ha in northern Queensland.The original selection was very dwarf in habit and had unusually upright leaves but in subsequent plantings, the dwarf habit was much less pronounced. Compared to 'Williams', 'J.D. Dwarf' is not dramatically different in height. As shown by our limited trial results, 'J.D. Dwarf' tends to be marginally taller in mother plant crops and slightly shorter in ratoon crops (Table 1).The fruit of 'J.D. Dwarf' tends to be about 5% shorter than 'Williams'. This could impede the adoption of 'J.D. Dwarf' by wholesalers and retailers who tend to pay premium prices for longer fruits, even if consumer surveys indicate a preference for fruits of intermediate length. This difference in length would be of lesser consequence for smallholders producing for home consumption and domestic sales.When harvested at the same finger diameter, bunches of 'J.D. Dwarf' weighed less than 'Williams', although the difference was not significant. However, 'J.D. Dwarf' bunches can be allowed to fill out more so an extra week of fruit filling can make up for the otherwise reduced bunch weight.On-farm observations 'J.D. Dwarf' has a sturdier pseudostem than 'Williams' (Figure 1), a feature which makes it more resistant to wind damage, the single most important cause of yield loss in banana plantations (Stover and Simmonds 1987).The greater wind resistance of 'J.D. Dwarf' should reduce some of these losses. This should translate into economic benefits for commercial growers and enhanced food security for subsistence farmers. 'J.D. Dwarf' can also often be grown without any form of bunch support such as twine or wooden/bamboo props. Another contributing factor to its stability is its relatively upright pseudostem which seldom leans. However, special care needs to be taken during harvest. When the pseudostem of 'J.D. Dwarf' is cut with a cane knife or machete, the pseudostem can collapse as the bunch is lowered onto the shoulders of the person harvesting.Maturity staining is a physiological disorder of the fruit which is characterized by bronze-red blemishes on the peel. It causes major production losses in northern Queensland (Daniells 1985) and in some places like Costa Rica (Lahav et al. 2000). Growers' observations indicate that 'J.D. Dwarf' is less prone to maturity staining. The fruit of 'J.D. Dwarf' can be allowed to fill out more with much less maturity staining compared to 'Williams'.During the cooler winter months of northern Queensland, fruit chilling in the field is a significant problem (Daniells 1997). The same is true of other marginal production areas located away from the equator. Fruits of 'J.D. Dwarf' tend to be less sensitive to chilling than 'Williams'. Consequently, it has a good bloom and a nice yellow colour during ripening, provided temperatures do not plunge too low. The growers in our trials consistently received better prices for 'J.D. Dwarf' because of its better 'bloom'.The upright leaves of 'J.D. Dwarf' (Figure 1) may explain the better fruit bloom and lesser maturity staining because of the resulting better light regime in the canopy. 'J.D. Dwarf' may have a higher optimum plant density, but this requires investigation. Some growers have found that 'J.D. Dwarf' is easier to pack in the existing 13 kg fibreboard cartons. This is because the fruit of 'J.D. Dwarf' fills out right to the tip -there is no pinching on the flower end. Thus there is more weight for a given length of fruit, and even more so if bunches are allowed to fill out. J.D. Dwarf also has well shaped hands, which further facilitates packing.In northern Queensland, emerging bunches, when still upright, are routinely injected with insecticide for the control of the banana scab moth (Nacoleia octasema), and incidentally for the control of flower thrips (Thrips hawaiiensis). But because the leaves of 'J.D. Dwarf' are so upright, it is more difficult to detect and easily inject the emerging bunch. Ground application of fungicides can also be hampered by its upright leaf habit.Bacterial corm rot caused by Erwinia spp. is a growing problem in northern Queensland (Daniells 1995). Losses from plant fallouts have been as great as 20-30% in some first ratoon crops. Indications so far from growers are that 'J.D. Dwarf' is more susceptible than 'Williams' to corm and heart rots. 'J.D. Dwarf' may be more sensitive to environmental stresses making it more vulnerable to invasion by this opportunistic pathogen (Buddenhagen 1994). Ongoing studies may identify antagonistic microorganisms to inoculate tissue culture plantlets.So far, field plantings of 'J.D. Dwarf' established from tissue culture have been reasonably true-to-type, with less than 3% offtypes on average. Interestingly, most of these offtypes are a throw back to 'Williams' from which the cultivar is derived. If other clones produced as few offtypes as 'J.D. Dwarf', growers would be more appreciative of tissue culture.The origins of 'J.D. Dwarf' highlight the value of collecting and conserving germplasm variants of tissue culture plantings. It also highlights the need for the scientific community and growers to be on the lookout for any variation which might have potential benefits (Daniells and Smith 1993). Now, more than ever, banana growers need to exploit variations for the benefits they may bring.As to whether 'J.D. Dwarf' is a superior Cavendish cultivar, the answer will depend on local circumstances. Daniells (2000) has argued that there is no perfect variety, that each has its own set of advantages and disadvantages. Growers must find out what is best for them. Those wishing to evaluate 'J.D. Dwarf' should contact INIBAP. ■ T. Moens, J.A. Sandoval, J.V. Escalant and D. De Waele T he breeding process to obtain resistant cultivars can be accelerated if the presence of the desired plant characteristic, such as resistance to a fungal disease or nematodes, can be demonstrated at an early plant stage. This is possible when a link can be found between the presence of certain DNA sequences, the socalled molecular markers, and the desired plant characteristics. These DNA bands can be identified in segregating populations, i.e. when segregation has occurred among the progeny derived from a cross between two unlike parents, in this case a resistant and a non-resistant one.This study is part of a project to find molecular markers linked to resistance to black leaf streak disease (commonly known as black Sigatoka) and nematodes. 'Pisang Berlin', the male parent, was chosen because of its susceptibility to black leaf streak disease while 'Calcutta 4' was chosen because its hypersensitive reaction to black leaf streak disease made it resistant to the pathogen.Pollen from 'Pisang Berlin' was crossed on female flowers of Musa acuminata spp. burmannicoides 'Calcutta 4'. The resulting 155 seeds were put in water during 12 hours and the floating seeds, indicating non-functionality, were eliminated. The 150 viable seeds were disinfected during 10 minutes in a 3% calcium hypochlorite solution and washed with sterile water. The embryo of each seed was extracted under aseptic conditions and placed in Murashige and Skoog medium. In the following 45 days, 120 of the 150 extracted embryos germinated in a growth chamber (27 ± 1°C, 12 hours light, relative humidity of 80%). From the germinated plantlets, 10 were randomly selected and micropropagated. Seven clones of each plantlet (line) were grown in plastic bags in the greenhouse to serve as planting material.The experiment was established at the CORBANA research station in 28 Millas, canton Matina, in the Atlantic coastal plain of the province of Limón, Costa Rica. Accumulated rainfall between June 2000 and September 2001 reached 5089 mm. June 2001 was the wettest month (548 mm of rain) and March 2001 the driest (76 mm of rain). Average maximum/minimum temperatures over this period were 29.5°C/20.2°C. The soil was a sandy clay (52% sand, 42% clay and 6% lime), with a pH of 5.9, an organic matter content of 1.3%, and a bases content 25.7 cmol/L of Ca, 10.1 cmol/L of Mg, 0.24 cmol/L of K, 7.2 mg/L of P, 269 mg/L of Fe, 5 mg/L of Cu, 1.1 mg/L of Zn and 54 mg/L of Mn.Before starting the experiment, a site 20 x 40 m was planted with Musa AAA cv. 'Grande naine' to assure a high presence of plant parasitic nematodes, especially Radopholus similis. Distance was 2.5 m between rows, and 2.7 m between plants. East-west oriented small ridges about 0.5 m wide and 0.2 m high were made. They ended in a central channel to evacuate surface water. The 70 plants (10 lines x 7 repetitions/line) were planted in groups of 1 or 2 plants per line at 4 different dates over a period of 5 weeks, to ensure the availability of male and female flowers for the pollination of F2 within each line.Fertilizer (Nutrex 3%) was applied weekly to the leaves for three weeks and to the soil (DAP and a mixture of N-P 2 O 5 -K 2 O-S at 16.3-3.6-28.9-3.7), ranging between 30 and 180 g per month. Weeds were cut manually every four weeks. Plants were desuckered at flowering, to observe the number of suckers produced. No fungicides or nematocides were applied.Before planting, and every six weeks after planting, mixed roots from the mother plant and the suckers of three randomly selected plants of all lines were sampled to determine the numbers of nematodes present. Sampling per line was not possible because of the small amount of plants. At the time of flowering and at harvest, morphological parameters like plant height, third leaf width, circumference at 1 m, bunch weight and following sucker height were measured. Also a series of banana descriptors (IPGRI 1996) were noted at flowering and at harvest for the plants of each F1 line.Disease severity, or the amount of leaf area affected by black leaf streak disease was evaluated in all plants. Disease severity was expressed as a grade using Gauhl's modification of Stover's scale (Gauhl 1989). The following parameters were also calculated: total functional leaves, youngest streaked leaf, youngest spotted leaf and infection index. This index was obtained by adding the results of multiplying the number of leaves in each grade of the modified Stover scale with their respective grade of infection, and dividing this sum by the number of evaluated leaves in the plant in question.At least 30 plantlets of each of the 10 selected F1 lines from the previously mentioned cross were multiplied in vitro. After hardening, plantlets were put in 1.8 L pots with sterilized local banana soil as substrate. The soil was a sandy clay (54% sand, 39% clay and 7% lime), with a pH of 6.2, an organic matter content of 5.6%, and a bases content of 7.2 cmol/L of Ca, 1.7 cmol/L of Mg, 0.8 cmol/L of K, 4 mg/L of P, 54 mg/L of Fe, 5 mg/L of Cu, 1.4 mg/L of Zn and 30 mg/L of Mn. Plantlets received a complete nutrition solution (Hoagland and Arnon 1950) every 2-3 days, and the same solution was sprayed daily on the leaves. After 3 weeks of adaptation in pots, plantlets of each line were divided in 2 groups of 12 replications, one group for future inoculation and the other for use as non-inoculated control.R. similis was reared in the dark on surface-sterilized carrot disks in petri dishes in a growth chamber at 28°C (Speijer and De Waele 1997). Once the numbers observed on the inner surface of Evaluation of the progeny from a cross between 'Pisang Berlin' and M. acuminata spp. burmannicoides 'Calcutta 4' for evidence of segregation with respect to resistance to black leaf streak disease and nematodesSegregating populations the dishes was high, the nematodes were washed into a beaker, water was added up to a volume of 200 ml, and the number present in a volume of 2 ml was counted under a microscope. Based on the number of females, the volume needed to obtain 500 female R. similis was calculated. The suspension was applied in 5 holes, 0.5 cm in diameter by 1.5 cm in depth, made at about 1 cm from the base of the pseudostem. A small quantity of water was applied afterwards. Eight weeks later, plants were removed from the pots, roots were washed gently and fresh shoot and root weight was measured. Roots were cut in 2 to 3 cm pieces and liquefied in a kitchen blender at low and high speed for 10 sec each. The root suspension was washed over a set of nested sieves (0.25, 0.106 and 0.025 mm), and the material recovered from the last sieve was put into a 200 ml beaker. The suspension was homogenized with an air bubble injector and the number of nematodes counted was expressed per 100 g of roots.In both field and pot trials, the experimental layout was a complete randomized design. The variables measured in the different F1 lines were compared, using analysis of variance, with PC-SAS (SAS Version 6.12 for Windows, SAS Institute Inc., Cary, USA). Before statistical analysis, nematode numbers were log 10 (x+1) transformed, and means were evaluated by Waller-Duncan's K-ratio T test.When measuring plant characteristics, only the width of the third leaf (P< 0.001), the circumference at 1 m at flowering (P= 0.0001) and bunch weight in the first generation (P= 0.0002) differed between tested lines. Only little variation was observed for flower and bunch parameters. In the evaluation of the susceptibility of these lines to black leaf streak disease, differences in the infection index between tested lines were recorded (Table 1). Differences in the index between the progeny lines suggest segregation in the first and second generations. However, in the absence of data on the parents, segregation with respect to resistance/susceptibility cannot be confirmed.As for resistance to nematodes, although the number of R. similis was high before the start of the experiment (7600 per 100 g of roots), no nematodes were found in the root system one year later, suggesting a certain level of resistance of the F1 lines to R. similis.In the pot experiment, the number of R. similis per 100 g of roots differed significantly (P= 0.0001) among some of the F1 lines (Table 2). The number of nematodes in plants from line I is significantly lower than lines C, F, H and J especially, indicating segregation, but in the absence of data on the parents, segregation with respect to resistance/susceptibility cannot be confirmed. The male parent of the F1 crosses, 'Pisang Berlin', is not generally known to possess resistance to R. similis, although Fogain et al. (1996) found this variety less susceptible than 'French sombre' (Musa AAB). There are also mixed reports from the female parent, Musa acuminata ssp. burmannicoides 'Calcutta 4'. According to Binks and Gowen (1997), Fogain et al. (1996) and Viaene et al. (in press), this diploid cultivar showed resistance to R. similis. Similarly, the tetraploid TMHx 660K-1, resulting from the crossing of susceptible 'Enzirabahima' (Musa AAA-EA) with 'Calcutta 4', was less susceptible to R. similis than 'Valery' (Musa AAA) (Dochez et al. 2000), using the single root inoculation method. As 'Enzirabahima' is susceptible to R. similis, the partial resistance of TMHx 660K-1 most likely originated from 'Calcutta 4'. However, when evaluating the roots of sword suckers of established mats of various Musa varieties in Uganda, 'Calcutta 4' and 'Valery' were found to be equally susceptible to R. similis by Speijer et al. (1999). Also Price and McLaren (1996), using roots of fully-grown plants in a field trial in Cameroon, observed no difference in susceptibility to R. similis between 'Calcutta 4' and 'Grande naine'.The existence of lines where inoculation with nematodes led to a decrease in root weight and of others which showed no difference in root weight between inoculated and non-inoculated plants, suggest that segregation has occurred. The high number of nematodes in the inoculated plants of lines E and H suggest a certain level of tolerance towards R. similis.To confirm these data, F2 plantlets, obtained by self pollination of three F1 lines, will be compared for susceptibility to R. similis with the parents 'Pisang Berlin' and 'Calcutta 4' and the reference varieties 'Grand naine' and 'Yangambi km 5' in a future pot experiment. inger drop is a physiological disorder due to the softening and weakening of the pedicel, which makes the finger separate or fall off during maturation (Semple and Thompson 1988). Finger drop is believed to be associated with fast maturation, precipitated by high temperatures in the maturation chamber (New and Marriot 1974). Tetraploid hybrids are more susceptible to the fall of fingers than triploid cultivars (New andMarriot 1974, Dadzie andOrchard 1997).The methods used so far to evaluate finger drop in bananas were not reliable, the usual method consisting in shaking the hand and counting the number of fallen fruits. To overcome this problem, researchers at the Embrapa Cassava and Tropical Fruit Crops developed an instrument to evaluate resistance to finger drop in bananas.Since breeding programmes use diploid bananas as a starting point and great variability exists with regard to resistance to finger drop in this group, we evaluated this character in 21 diploid varieties and synthetic hybrids (AA), seeking to identify the most resistant ones for subsequent transfer of that character to the commercial varieties and hybrids being developed.The bunches from 21 genotypes (Table 1) were harvested when the fruits of the first bunch showed ripening signs. Five fingers from each of the first five hands were removed with the pedicel. The fruits were placed on a table, allowing the latex to be drained, then dipped in a solution of Ethephon (2 mg/L) for five minutes to provide uniform maturation. They were then acclimatized in a refrigeration chamber to 21ºC and 95% relative humidity.Based on the methodology proposed by Silva et al. (1999), the following characteristics were analyzed: number of fingers per hand, pollen and seed production, length and diameter of the fingers and the pedicel. Resistance to finger drop, expressed in kgf, was estimated, using the methodology proposed by Cerqueira et al. (2000). The mechanized detacher, developed at Embrapa Cassava and Tropical Fruit Crops, is composed of a penetrometer mounted on a wood chassis in which the pedicel is inserted and held by a cleat coupled to a traction train (Figure 1). As the banana is pulled, the cleat moves the train and pressures a piston. Pressure on the penetrometer ceases when the pedicel breaks. The force at the moment of rupture is noted from the penetrometer gauge.The experimental design was randomized, 19 replications per treatment for measuring the resistance to finger drop, 25 replications per treatment for the finger characteristics and five replications per treatment to evaluate pollen and seed production, and the number of fingers. Scott and Knott's test was used to compare the means.In general, the hybrids had more fingers than the other genotypes (Table 1), given that the selection process to obtain new hybrids eliminated those with low number of fingers (Silva et al. 1997). All the genotypes produced pollen (albeit in small amounts), whereas the hybrids tended to produce more seeds than the varieties, making it possible to use these genotypes in breeding programmes. Only one hybrid and four varieties did not produce seeds.Resistance to finger drop varied from 0.26 to 4.65 kgf (Table 2). The TH03-01 hybrid had the greatest mean resistance to the finger drop and the second longest fingers (Table 2). However, the mean diameter of its fingers, and the mean length and diameter of its pedicels were below the overall average.The second best diploid in terms of resistance to finger drop was the 'Khai nai on' accession, ex-aequo with the hybrid 4223-06. The mean diameter of the fingers of 'Khai nai on' and the mean length and diameter of its pedicels were above average but the mean length of its fingers was below average, whereas the mean length of the fingers of 4223-06, and the mean diameter of its fingers and pedicels were above average but the length of its pedicels was below average.The only genotypes which had above average values for all the measured characteristics were the hybrids 0337-02 and 1318-01, and the varieties 'Raja uter' and 'Pipit'. In general, resistance to finger drop was not correlated with finger characteristics. ■ (Li Hsi-wen 1978). Later, Cheesman (1947), in his monumental series Classification of the Bananas, reclassified it as Ensete lasiocarpum, perhaps due to its slightly swollen pseudostem base and persistent flower bracts. But Simmonds (1962) reverted its classification back to Musa, arguing that being rhizomatic and polycarpic, Musella does not rightfully belong to the genus Ensete. Finally, Wu (1976), working with an indigenous specimen in its natural environment in China, realized that the plant cannot indeed be classified either under Musa or Ensete and adapted the name Musella lasiocarpa, a new genus under the family Musaceae (Li Hsi-wen 1978).Musella lasiocarpa was described by Franchet (Li Hsiwen 1978) as early as 1889. Ornamental nurseries in Western Europe and the USA have extolled its beauty, its hardiness and resistance to cold temperatures, and its adaptability in the home garden due to its small size. But until today, Musella are mostly found only in arboreta and botanical gardens. So far, only one species has been named to the genus. It can be considered, therefore, as the world's rarest banana.Musella lasiocarpa is indigenous to Yunnan province in South China, primarily at elevations from 1500 m to 2500 m. Botanists in Yunnan are concerned that it may be extinct in the wild because it is now found only as an ornamental in courtyards and under cultiva-tion by farmers in Yunnan and neighbouring Guizhou and Szichuan provinces in China. The pseudostem is fed to animals as fodder, while the flowers have medicinal value. Recently, Musella was discovered growing in the forest of Ha Giang province in neighboring northern Vietnam (Danh et al. 1998).\"Small plant, less than 60 cm tall. Leaf sheaths persistent, pseudostem base only about 15 cm in diameter. Leaf blade elliptical, up to 50 cm long and 20 cm wide with pointed tip and waxy. Inflorescence is erect, densely arranged, 20 to 25 cm long. Bracts are yellow, each subtending 4 to 5 flowers. Female flowers are borne at the base of the inflorescence and male flowers at the top. Fruits are round-ovate with 3 ridges, hairy, 3 cm long and 2.5 cm wide. Inside are 6 seeds, round in shape and dark brown in color\" (Figure 1). English translation of original Chinese description from Wu (1976).The genus Musa is indigenous to Southeast Asia. Several banana prospection and conservation missions have explored and collected Musa germplasm in Indonesia, Malaysia, Thailand and the Philippines. Banana explorers in Papua New Guinea and India, particularly in the northeastern region of Assam and its neighboring states, have discovered very interesting germplasm, resulting in revisions of the present theory on the origin and evolution of bananas.The Musa genetic resources of Vietnam have never been thoroughly explored and classified due to the country's extended struggle for freedom. In General appearance of plant. Herbaceous and succulent with erect pseudostem formed by bases of clasping and persistent leafsheaths. Plants attain a height of 1.0 to 1.2 m at reproductive maturity. The primary inflorescence is terminal and erect. Suckers sprout from leaf bases at ground level (Figure 2). Old plants produce lateral inflorescences arising from leaf axils above ground.Pseudostem and suckers. Pseudostem color green, shiny in young plants but turning dull at maturity with the appearance of waxy bloom. The plant is free suckering, many suckers sprout from the broad pseudostem base. As the mother plant grows older and the terminal inflorescence has set fruits, 2 to 5 lateral inflorescences branch out from the upper leaf bases clasping the pseudostem (Figure 3).Petiole, midrib and leaf. Petiole solid green, no blotches but with few reddish purple dots close to the margins. Petiole margins curved inward and lined with red purple stripe (Figure 4). Midrib light green. Leaves large, elliptical and held upright on immature plants but droop after flowering. Color of leaves darker green than that of the midrib, slightly glaucous with marked lateral veins. Leaf blade base symmetrical and pointed, apex acute. Leaf base-width ratio > 3.Inflorescence and fruit bunch. Terminal inflorescence less than 30 cm long, peduncle short and massive, rachis obscure, completely covered by persistent dried bracts. Each bract subtends 2 to 6 flowers, hermaphrodite flowers are borne at the base of the inflores- cence, male flowers at the top. Arrangement of flowers and fruits uniseriate. Male bud ovate, bracts glaucous, elongated tips loosely attached to the bud. Several bracts open at the same time forming a magnificent crown of the mature plant (Figure 5). Fruit bunch very compact, bracts bright yellow but upper margins lined with red stripe (Figure 6).Flowers and fruits. Compound tepal and lobes of male flowers yellow. Free tepal opaque white, oval with folding tip. Free tepal same length as compound tepal. Anther color beige with pinkish tinge, filaments cream. Anthers are exserted at same level as compound tepal. Stigma same color as anthers (Figure 7). Ovary opaque white with 3 locules, each containing 2 rows of ovules. Fruits ovate, densely packed in single rows numbering 2 to 4 fruits per cluster. Dark green and pubescent at immature stage, turning yellow upon ripening. Fruits held perpendicular to the stalk by very short pedicel. Peel thick, adherent to the white, inedible pulp. Fruit seedless and parthenocarpic (Figure 8).Original accession collected from the forest of northern Ha Giang province, Vietnam, on May 5, 1994 Musella specimens that appear distinct from the type species, M. lasiocarpa, and from the newly described species, M. splendida, show variability in Musella (Figure 9). It is possible that with improved accessibility to and communication with China and Myanmar, additional species will be discovered.Holotypus: Herbarium specimen held at Phu Ho Fruit Research Center, Phu Ninh, Phu Tho, Vietnam. Living accessions now growing in the National Banana Germplasm Collection at Phu Ho Fruit Research Center. O riginally from Southeast Asia (Simmonds 1966, Valmayor et al. 1981), bananas are believed to have entered the East African highland region through multiple introductions between the first and sixth century AD (Price 1995). A wide range of unique varieties belonging to the East African Highland bananas (AAA-EA) now exist in the region, having evolved locally. The East African Highland region has been called a secondary centre of Musa diversity (Stover andSimmonds 1987, Swennen andVuylsteke 1988), with Uganda showing the highest level of diversity of AAA-EA genotypes (Kyobe 1981, Rubaihayo andMukasa 1993).Knowing the degree of genetic relatedness between clones and the range of diversity present in Musa germplasm is important for conservation and the selection of parents for breeding programmes (Garwel and Jarret 1992, Ortiz et al. 1995, Lagoda et al. 1999). Morphological traits have been widely used in clone identification and taxonomic studies (Brewbaker and Umali 1956, Allen 1965, Stover and Simmonds 1987, Sebasigari 1990). Karamura (1998) used 73 morphological traits to classify the East African Highland bananas of Uganda into five clone sets: Mbidde (Beer), Musakala, Nakabululu, Nfuuka and Nakitembe. However, the complexity of interactions between genes and the environment (Shanmugavelu et al. 1992) creates problems as elaborate field-testing is required for a classification to be effective (De Langhe 1990, Bhat et al. 1997, Oliviera et al. 2000, Valmayor et al. 2000). The narrower the genetic base, the less discriminating morphotaxonomy becomes (Jarret and Garwel 1995).Molecular techniques have the potential of revealing stable genetic information on which to base classification. Amplified Fragment Length Polymorphism (AFLP) has been shown to be a powerful molecular tool (Donini et al. 1997) capable of detecting genetic differences between related Musa accessions (Engelborghs et al. 1998) and closely related individuals (Jones et al. 1998). This paper reports the results of studies undertaken to assess the genetic relationships among East African Highland bananas using the AFLP technique.Young cigar leaf tissues from 115 East African Highland bananas were collected from the Uganda banana germplasm resource center at Kawanda Agricultural Research Institute, and Makerere University Agricultural Research Institute in Kabanyolo. The accessions were chosen on the basis of their expected low levels of polyphenols (Maliyakale 1992, Pich andSchubert 1993).DNA was isolated from fresh leaf material (0.7 g) according to the protocol described by Vroh et al. (1996) but with some modifications. After the first chloroform extraction, a second extraction using 10% N-Cetyl-N,N,N-trimethylammonium bromide (CTAB), followed by repeated chloroform extractions, was added to ensure effective precipitation and elimination of proteins and carbohydrates (Rowland and Nguyen 1993). The composition of the CTAB buffer was modified by increasing polyvinylpyrrolidone (PVP-40) from 2% to 4%, and ß-Mercaptoethanol from 5% to 8%. The problem of polyphenols (Maliyakale 1992, Pich andSchubert 1993) was counteracted by raising the concentrations of PVP-40 (polyvinylpyrrolidone) and ß-Mercaptoethanol in the original CTAB buffer. The DNA yield was estimated by spectrophotometry in a SmartSpect TM 3000 Version 1.00.39 (BIORAD), as described by Linacero et al. (1998). Spectrophotometry and electrophoresis (Linacero et al. 1998) were used to assess the quality of DNA.The molecular biology grade reagents for AFLP analysis were AFLP analysis system I kits (AFLP Core reagent kit and AFLP Starter primer kit) from Life Technologies (GIBCO BRL ® ). This system which has been designed for use in plants having genomes raging in size from 0.5 X 10 9 -6 X 10 9 bp was used under license by Keygene N.V. Restriction digestion was carried out using 2.5 U of EcoR I and 2.5 U of Mse I restriction enzymes on 500 ng DNA as described in the AFLP Analysis system I manual. Assessment of the efficiency of digestion was carried out as recommended by Scott et al. (1998). Ligation of oligonucleotide adapters (EcoR I and Mse I adapters) was performed according to AFLP Analysis system I manual, and the adapters used (Table 1) were those described by Vos et al. (1995) for the restriction enzymes EcoR I and Mse I and were not phosphorylated.Pre-selective PCR (Polymerase chain reaction) amplification of target sequences in DNA was performed as described by Vos et al. (1995) in a PerKin Elmer ® Model 2400 Thermocycler using 2 preamplification primers without selective nucleotides: 1. EcoR I+0: 5'-GACTGCGTACCAATTC-3' and 2. Mse I+0: 5'-GATGAGTCCTGAGTAA-3'Selective PCR amplification was performed using 2 ologinucleotide primers, one correspoding to EcoR I ends and the other to Mse I ends, each with 3 selective nucleotides (EcoR I+3 and Mse I+3).Four selective primer pairs were used: EcoRI+3 E1 5'-GACTGCGTACCAATTCaac-3' E2 5'-GACTGCGTACCAATTCacc-3' E3 5'-GACTGCGTACCAATTCact-3' E4 5'-GACTGCGTACCAATTCagc-3 Mse I+3 M1 5'-ATGAGTCCTGAGTAActt-3' M2 5'-GATGAGTCCTGAGTAAcaa-3' M3 5'-GATGAGTCCTGAGTAActg-3' M4 5'-GATGAGTCCTGAGTAAcag-3' One of the primers in each pair (EcoR I+3 primer) was radio-labelled with 2000 Ci/mmol [γ 33 P]ATP (Amersham Pharmacia Biotech) using T 4 Polynucleotide Kinase by phosphorylating at the 5' end using the protocol of the AFLP Analysis system I instruction manual. The preselective PCR amplification products were diluted 100X with 1XTE buffer (10 mM Tris-HCl pH 8.0, 0.1 mM EDTA [Ethylene diamine tetrachloro acetic acid]) to be used for selective PCR amplification, and the reaction was a 36-cycle event performed in an iCycler (BIO-RAD), according to Vos et al. (1995).Following selective PCR, reaction products were mixed with equal volumes (20 µl) of formamide loading dye (98% Formamide, 10 mM EDTA pH 8.0; 0.1% Bromophenol and 0.1% Xylene cyanol FFas tracking dyes). The resulting mixtures were heated for 4 minutes at 95 o C and then quickly chilled on ice. Four microlitres of each sample were loaded on 0.4 mm 6% denaturing (sequencing) polyacrylamide gels. The gel matrix was prepared using 6% Acrylamide, 0.3% N,N'-Methylene bisacrylamide, 7.5 M Urea in 1XTBE buffer pH 8.0 (100 mM Tris, 90mM Boric acid, 1 mM EDTA). To 75 ml of the gel solution, 250 µl of freshly prepared 10% APS (ammonium persulphate) and 50 µl of TEMED (N,N,N'N'-Tetramethylene diamine) were added and the solution was mixed gently but quickly with a syringe. Electrophoresed was performed at 1800 V (constant), 37 mA, 65 W for 1 hour and 10 min, using 1XTBE buffer pH 8.0 as a running buffer. The gels were later fixed for 30 minutes in a fixing solution (5% glacial acetic acid, 4.8% ethanol) to drain off the urea and the blue dyes, dried and exposed to an X-ray film 35 X 43 cm (Biomax MR Kodak) for 48 hours at room temperature.Selective PCR amplification products (amplified fragments) on the X-ray film were scored: '1' for presence and '0' for absence of a homologous fragment (band). Genetic distance data matrices were constructed using the method of Nei and Li (1979) and group average clustering were performed by the un-weighted pair-group method using arithmetic averages (UPGMA) (Sneath and Sokal 1973). The entire analysis and drawing of the phenogram were performed using TREECON Version 1.3b phylogenetic program for Window-based environment (Van de Peer and De Wachter 1994).The AFLP technique produced amplified fragments in the range of 20-350bp. The variation noted in the fragment size was attributed to the variation in the selective sequence of the EcoR I and Mse I primers (van Treuren 2001).The results of UPGMA clustering of the 115 AAA-EA genotypes tested are shown in Figure 1. Low bootstrap values (0 -85%) suggested absence of clusters and close genetic relationships among the cultivars. The majority of accessions were in the range of 0.1 -0.4 Nei's genetic distance from each other, which also shows close genetic relatedness.The majority of the AAA-EA accessions tested ended up in the same clone set identified by Karamura (1998) (Musakala, Nfuuka, Nakitembe, and Nakabululu) but some AAA-EA accessions fell into a different group (Table 1). With the exception of the beer clone set, which did not show up as a distinct group in our analy-sis, the clone sets proposed by Karamura (1998) were subclusters under the AFLP method. The unrooted analysis (Figure 2) further showed that each subcluster was subdivided into sub-subclusters.Musakala, which the unrooted data analysis classified as the most distinct subcluster, was grouped into 4 sub-subclusters and separated from the other subclusters at 0.72 Nei's genetic distance (Figure 2). Karamura (1998) also reported Musakala to be the most distinct cluster and indicated that its accessions are characterized by uniquely giant, lax and long bunches and fingers.Results also showed that Nfuuka was very closely related to Nakitembe and Nakabululu, as was also reported by Karamura (1998). Although Nfuuka was reported to be the most heterogeneous and largest cluster by Karamura (1998), it was the smallest subcluster in our analysis. The most distinguishing feature of Nfuuka subcluster is the ability of its accessions to alter phenotypes over time (Karamura 1998), hence its name, Nfuuka; which literally means \"I am changing\", \"I am going to change\", or \" I keep changing\". The natural structural rearrangements that frequently occur within and between banana chromosomes may make any attempts to develop realistic classification difficult (Faure et al. 1993). The accessions in the Nfuuka subcluster could be undergoing such a process that makes it able to alter phenotypes over time. The central topological position of Nfuuka subcluster on the unrooted phenogram (Figure 2) and the \"keep changing\" nature of Nfuuka reported by Karamura (1998), from which Musakala, Nakitembe and Nakabululu subclusters branch off (Figure 1) suggests that it could be responsible for the generation of other subcluster accessions.Nakabululu and Nakitembe very closely related, according to our analysis. Karamura (1998) also reported that Nakabululu and Nakitembe were closely related, a closeness reflected by the early maturation of their accessions. Results showed that Nakabululu and Nakitembe were separated by negligible bootstrap support at the branch point and majority of accessions separated by less than 0.5 Nei's genetic distance from each other (Figure 1) indicating close genetic relationship. Although Karamura (1998) reported that Musakala and Beer were the two most distinct clusters, our analysis put Nakabululu and Musakala as the most distinct subclusters, grouping them at the opposite ends of the phenogram (Figure 1). This is further reflected by the extreme bunch compactness and short fingers of the Nakabululu accessions versus the large luxuriant bunches with long fingers of the Musakala accessions (Karamura 1998).Our analysis did not put the beer bananas in a distinct cluster but mixed them with the cooking types. The beer bananas were found to be versions of the cooking bananas but different at a locus (loci) responsible for astringent sap (synthesis of tannins and anthocyanins).The obligate vegetative reproduction of bananas have led them to maintain the features which accompanied their ancestors when introduced in the region (Simmonds 1966). Somatic mutations, with preferential cultivation of mutants by man, has resulted in the low levels of genetic diversity seen in the germplasm. According to Karamura (1998), a wide diversity of the physical features, climates and social backgrounds of the East African region have played a significant role in the diversification of different clones. It is possible that the high frequency of translocations and (retro)transposons and irregularities in meiosis and methylation (Lagoda et al. 1999) have been responsible for the narrow genetic diversity observed in East African Highland bananas in Uganda.The low levels of DNA diversity in this study contrasts with the high level of morphological diversity present in these genotypes reported by Karamura (1998), probably due to the influence of genotype X environment interaction on morphotaxonomic techniques (Shanmugavelu et al. 1992). The discordance between the AFLP classification and the morphological classification could also be explained by the primers used in our analysis.The selective sequence of a primer is one of the determining factors of the multiplex ratio (the number of different loci that can be simultaneously analyzed per experiment) (Bryene et al. 1997). Results indicated (data not shown) that individual primer combinations could not reveal enough polymorphism upon which to draw conclusions, because some parts of the genome were left unscreened for polymorphism (van Treuren 2001). n Colombia, about 400 000 hectares are planted with plantain and have a production of about 2 970 000 tonnes of which 96% is consumed locally and the remainder exported (Merchán 1996, Arcila andTorres 1998). Plantain is a basic foodstuff in the country and consumption is the third most important after potato and milk (Grisales-López and Lescot 1999), making it essential to the family shopping basket because of the nutritional qualities. Its cultivation is also a source of work and of important economic resources (Cruz et al. 1990).The most important pests and diseases of plantain are leaf spot diseases (Mycosphaerella spp.), the banana borer weevil (Cosmopolites sordidus) that affects the corm, and plant parasitic nematodes that affect the roots and corm. The latter have necessitated the development of genetic, chemical, biological and cultural control strategies to reduce damage (Montiel et al. 1997).Parasitic nematodes damage the roots and corm of plantain directly, and reduce yield, result in fewer and smaller leaves, reduce fruit weight, and induce plant toppling and rotting of the root system (Montiel et al. 1997). Yield loss is estimated at 20% (Saser and Freckman 1987 cited by Marín 1997) but may be up to 80% (Sarah 1989 cited by Marín 1997).In the Musaceae, 146 species of nematode, distributed in 43 genera, are parasitic on or associated with the genus Musa. The most damaging and widely distributed of the plant nematodes are the migratory endoparasitic nematodes Radopholus similis and Pratylenchus coffeae, and the semiendoparasite Helicotylenchus multicinctus (Araya 1995). The sedentary endoparasitic nematode Meloidogyne and the semiendoparasitic sedentary nematode Rotylenchus reniformis are of less importance (Gowen andQuénéhervé 1990, Araya 1995).R. similis (borer nematode) is the most economically important in most regions where banana and plantain are cultivated. Root symptoms comprise lesions, approximately 10 cm in length, reddish brown at first then black. Later the lesion becomes larger and forms cavities in the cortex, and the vascular tissue becomes exposed to invasion by secondary microorganisms, resulting in death of the root in the part behind the lesion. When infection is severe, the rhizome becomes necrotic hence the name \"black head\" (Ashby 1915 cited by Román 1978). Therefore the vegetative cycle is prolonged, and the size and numbers of leaves, and plant development are reduced. This reduces bunch weight and the productive life of the plantation, and increases plant toppling (Gowen and Quénéhervé 1990).Eight species of the genus Pratylenchus are reported to attack Musaceae although only two are widely distributed and recognized as damaging: P. coffeae and P. goodeyi (Thorne 1961, Gowen andQuénéhervé 1990). P. coffeae (lesion nematode) was reported in roots of plantain in Granada and described as Tylenchus musicola by Cobb in 1919 and, unlike P. goodeyi, appears to be widely distributed throughout the world (Gowen and Quénéhervé 1990). Root symptoms comprise extensive black or purple necrosis of the epidermal and cortical tissues, often accompanied by secondary decay and splitting of the root (Gowen and Quénéhervé 1990).H. multicinctus (spiral nematode) is, after R. similis, probably the most common and widely distributed of the nematodes in banana and plantain plantations throughout the world. Symptoms comprise superficial red lesions in the root epidermis and cortex (Román 1978, Gowen andQuénéhervé 1990).Meloidogyne spp. (root knot nematodes) are found in the roots of banana and plantain wherever these crops are grown (De Waele andDavide 1998, Figueroa 1990). The first symptoms are the presence of swelling and galls in the primary roots and, to a lesser extent, in secondary and tertiary roots resulting in secondary symptoms such as yellowing of the aerial plant parts, narrowing of leaves, slowing of plant growth and reduced productivity, with losses up to 57%. These nematodes have a wide host range, especially the dicotyledonous plants that are often found in areas where Musaceae are cultivated (De Waele and Davide 1998).The plantain 'Dominico hartón' belongs to the group Musa (AAB) subgroup plantain type 'Horn'. Elsewhere in Latin America it is known as 'Macho x Hembra', 'Maricongo' or 'Bastard'. It is relatively unstable which, in agreement with the planting altitude, shows the effect of genotype-environment interaction on the physiology of the plant and bunch. The cultivar is susceptible to R. similis and is considered as intermediate between 'Dominico' and 'Hartón' (Belalcázar 1991).The cultivar 'Africa' is a selection of the African clone 'Mbouroukou' of 'Hartón' type, that adapts well from sea level to 1700 m, and a bunch weight of up to 26 kg and a fruit quality similar to that of 'Dominico hartón'; the cycle is about 10 months depending on fertilization, which allows maintenance of one or two functional leaves until harvest (www.corpoica.org.co 2000).The hybrid 'FHIA-20' (AAAB) is resistant to Fusarium wilt (Panama disease), black leaf streak disease and Sigatoka disease, but is highly susceptible to R. similis; this hybrid is an alternative to the plantain 'Cuerno'. The high yield (20-30 kg without rachis) and excellent quality makes it preferred for consumption fresh, or cooked unripe or mature. Productivity can be two to three times higher than in 'Cuerno' (www.fhia.hn/banano.htm 1998).The hybrid 'FHIA-21' (AAAB) is resistant to Fusarium wilt, black leaf streak disease and Sigatoka disease, is high yielding (22-27 kg without rachis) and of excellent quality. Hence this cultivar is also preferentially placed for fresh consumption, or cooked unripe or mature. The material is susceptible to R. similis and is cultivated by small-scale farmers and co-operatives in Honduras, Nicaragua and Ecuador, with excellent results. Given similar conditions, productivity can be two to three times greater than in 'Cuerno' plantain (www.fhia.hn/banano.htm 1998).Because of the damage caused by nematodes to the roots and corm, and the lack of information available on their incidence in the municipality of PalestinaNematology Sampling (Caldas, Colombia) the aim of the present study was to identify the genera and populations of parasitic nematodes that interfere with the development and function of the root system of plantain 'Dominico hartón', 'Africa', 'FHIA-20' and 'FHIA-21' at the Montelindo farm.The Montelindo farm, Universidad de Caldas, is situated in Santagueda, municipality of Palestina, department of Caldas. The farm is at an altitude of 1010 meters above sea level, and has a mean annual temperature of 22.8ºC and a rainfall of 2200 mm per year. The soil originates from fine-grained volcanic andesitic ash, classified as typic dystrandept, with good natural fertility and francosandy texture (Salazar and Duque 1994).Plants of 'Africa', 'FHIA-20' and 'FHIA-21' were micropropagated in a tissue culture laboratory, of the Departamento de Fitotecnía de la Universidad de Caldas. 'Dominico hartón' was obtained as corms of about 1 kg in weight, from the Chagualito farm, municipality of Chinchiná, Caldas. Plants were 12 months old at the time of sampling and were planted 25 (5 x 5) per plot, spaced 3 x 2 m apart and surrounded with plantain 'Dominico hartón' at an equal spacing. Plots were arranged at random. Prior to planting, each plot was amended with 1 kg of ash-based mixture, 13 g of Furadan 3 GR (carbofuran), 10 g of MgO and 15 g of borax. Fertilizer was applied every four months making a total of three applications (200 g per plant), the first with NH 4 NO 3 + KCl (1:1), the second with 15-4-23-4 'cumba' fertilizer and the third with NH 4 SO 4 + KCl (1:1). Fungicides and nematicides were not applied. Suckers were thinned to two per plant, leaves were stripped (folded, dry leaves removed by cutting upwards at the leaf base) and weeded every 4 months with a scythe in the pathways and manually at each planting site.Soil and root samples (200 g) were removed from the sucker less than 2 m in height from plants that had flowered not more than 8 days previously (Araya et al. 1995, Araya andChaves 1997). Samples were removed with a rectangular shovel (13 x 50 cm width x length,) at a distance of 25 cm from the plant base from a 13 x 13 cm-hole and 30 cm-deep, in front of the sucker (Araya et al. 1995, Cabrales 1995). Soil and roots were collected in plastic bags, labelled and transferred to the plant pathology laboratory, Departamento de Fitotecnía de la Universidad de Caldas, Colombia for analysis.Roots were washed in tap water for 3 min, the surfaces squeezed dry, and separated into functional (live) or non-functional (necrotic and dead) roots. Then, 25 g of functional roots were weighed (Scale: Analytical Plus, Ohaus, model AP210S), cut transversely with scissors into 1 cm pieces and homogenized (Araya et al. 1995). Extraction was by the blender, sugar centrifugal-flotation procedure (Castaño-Zapata et al. 1997, Araya et al. 1995) as follows: roots were placed in a blender (Osterizer; model 565-15) which was filled up to 1000 mL with tap water and set, first at low speed then at high speed, both for 30 seconds. The liquid was passed through No. 35, 100 and 400 (0.5, 0.150, 0.038 mm) sieves. The No. 35 and 100 sieves were washed for 2 min, and the contents transferred to a beaker and filled up to 100 mL with tap water.Next, the root-water mixture was homogenized with a glass rod for 30 seconds and emptied into centrifuge tubes balanced separately (3800 rpm for 5 min). The supernatant was discarded and the tubes filled with a sugar solution (500 g of sugar in 1 L of water) and centrifuged at 3800 rpm for 5 min; the supernatant was transferred to a N°400 sieve, washed with distilled water to remove the sugar solution, transferred to a 100 ml beaker and made up to 20 mL with tap water. The suspension was homogenized with a glass rod for 10 seconds and 5 mL aliquots transferred to a reading chamber (Petri dish divided into 8 squares) and counted with the aid of a stereomicroscope (Nikon). The 5 mL sample was returned to the beaker, the contents shaken and counting repeated three times. The mean population of nematodes/mL and the total nematode population per sample were calculated. Twenty nematodes were transferred with a dissecting needle to a slide with a drop of water, covered and examined under a compound microscope (Nikon) with a 40X objective for identification using taxonomic keys (Luc et al. 1990, Thorne 1961, Taylor 1968, Román 1978, Castaño-Zapata and Salazar 1998). Population means were subjected to analysis of variance and differences between plant materials evaluated using the MSTAT -C statistical programme University of Michigan (Bricker 1993).Two genera and two species of plant parasitic nematode were identified: Pratylenchus spp. Meloidogyne spp., H. multicinctus and R. similis (Figures 1 and 2). With the exception of R. similis for 'Africa' and 'FHIA-20' plantain, the remaining nematodes affected the plantain materials that were studied. Populations were in the order: Meloidogyne spp., R. similis, H. multicinctus and Pratylenchus spp. (Table 1), substantiating the habitat of these species and the conditions for obligate parasites (Thorne 1968, Román 1978).The largest R. similis populations were recorded in the roots of 'FHIA-21' and 'Dominico hartón' (Table 1), which explains the high percentage of toppling of these genotypes on the experimental site, thus greatly reducing their productivity.The low populations of Pratylenchus spp. in the Santágueda region substantiated the observations of Araya et al. (1993) that this nematode is more frequent in cool climates. R. similis was not recorded in 'Africa' and 'FHIA-20' whereas Meloidogyne populations were relatively high (Table 1). The absence of R. similis, the species that most limits production of banana and plantain throughout the world, in these two genotypes is a factor implicated in the high yield of these materials under the conditions at the Montelindo farm. It should be noted that 'FHIA-20' is susceptible to this nematode. Its absence in soil and root samples can be attributed to the absence of inoculum, probably because the plots were previously established with Bermuda grass [Cynodon dactylon (L.) Pers.], or to inherited resistance from 'SH-3437' which is resistant to plant nematodes (Binks and Gowen 1996).In the coffee producing zones of the Colombian Andes, 231 000 ha of plantain are cultivated, with a production of 1 650 000 tonnes per year, equivalent to 67% of the national production (Rodríguez and Rodríguez 2001). R. similis is a serious threat to the exploitation of plantain, and also predisposes plants to the effects of other pathogens such as fungi, bacteria and viruses. Therefore it is necessary to monitor populations and implement integrated management in commercial plantations. ■ Immersion systemsM icropropagated plantlets are increasingly used for the commercial cultivation of bananas because the plant material is clean, easy to manipulate and makes it possible to synchronize harvest. However, the existing micropropagation techniques using banana meristem and shoot tips (Cronauer and Krikorian 1984, Gupta 1986, Wong 1986, Vuylsteke 1989) are labour-intensive and require large laboratory space. Consequently, the production cost of micropropagated plantlets is very high, making small-scale farmers reluctant to use these superior plantlets.The production cost can be reduced by resorting to large-scale in vitro cultures using bioreactors. Various types of bioreactors have been adapted for plant micropropagation (Levin et al. 1988, Akita et al. 1994, Lim et al. 1998, Lorenzo et al. 1998). Temporary immersion systems were successfully used in the micropropagation of bananas of the AAA (Alvard et al. 1993, Lemos et al. 2000) and AAAB groups (Daquinta et al. 2000). The objective of this study was to compare a temporary immersion system with a permanent immersion system and a conventional culture system using a Brazilian AAB group cultivar.In vitro plantlets of the cultivar 'Maçã' (AAB) induced from shoot tips were maintained on Murashige and Skoog (MS) medium supplemented with 2 µM indole-3-acetic acid (IAA), 2 µM 6-benzylaminopurine (BA) and 2 g/L Phytagel (Sigma Co.) in 300 mL flasks. The cultures were maintained in a controlled environment room at 27 ± 2°C and 16 hr photoperiod with light intensity of 33 µmol m -2 s -1 , using cool white fluorescent tubes. Each 10 mm long in vitro explant, including meristem, was longitudinally cut in two and transferred to the bioreactors. The temporary immersion system was set up as reported by Escalona et al. (1999). Ten-litre flasks were used to keep the explants and five litre flasks the culture medium (Figure 1). One hundred and thirty explants (65 meristems) were transferred to each bioreactor with 2000 mL of medium (one meristem per 30 mL of medium). The explants were immersed in medium for four minutes every four hours. The culture medium was composed of MS medium with 22 µM BA and 100 mg/L of Claforam for microbial control.In the permanent immersion system, the same volume of medium and size of flasks as the ones in the temporary immersion system were used. Sterilized filtered air provided by an air pump (600 mL/s) was injected every hour for five seconds. Thirty meristems were put in the bioreactor (one meristem per 66 mL of medium).In the conventional culture system, the explants were cultured on semisolid MS medium solidified by 0.2 g/L Phytagel (Sigma Co.). In each 300 mL flask, four explants were inoculated to 50 mL of medium (Magenta Box®, Sigma Co.) (one meristem per 25 mL of medium). Ten flasks were used, for a total of 40 explants.The cultures were maintained in a controlled environment room (27 ± 2°C, under cool white fluorescent light of 33 µmol m -2 s -1 , 16 hr photoperiod). After four weeks, the number of shoots, their height, and the fresh weight of the shoots and buds were noted. The data were analysed using a one-way analysis of variance (ANOVA) followed Duncan's multiple range tests at p=0.05.Using 10 litre flasks increases the risk of microbial contamination but they allow for the explants to be maintained in the same flask until the plantlets have roots long enough for acclimatization (Figure 2). We are still not sure of the effectiveness of the antibiotic (Claforam) used here to reduce the risk of contamination, but we recommend such a precautionary treatment.The temporary immersion system and permanent immersion system respectively produced 3.7 and 12 times more plant material than the conventional culture system (Table 1). The shoots produced in the conventional culture system were also significantly shorter than the shoots produced in the other two systems. However, the number of shoots produced in the conventional culture system was not significantly different than the one in the temporary immersion system. This is because we only counted the shoots that were at least 5 mm long. Had the threshold been 10 mm, the number of shoots in the conventional culture system would have been lower.The permanent immersion system produced the tallest shoots but fewer of them. The permanent immersion system is also simpler and easier to install than the temporary immersion system, but it produces high levels of vitrification and meristematic rhizome growth that are not favourable for micropropagation (Vuylsteke 1989).In banana tissue culture, the goal is to produce a maximum number of shoots long enough for rooting. In this respect, the temporary immersion system gave the best overall results among the systems tested, a finding which is consistent with previous studies (Daquinta et al. 2000, Lemos et al. 2000). Table 1. Fresh weight of shoots and buds, number of shoots and shoot height of explants after four weeks of culture (mean ± standard error).Fresh weight Number of shoots Shoot height of shoots and buds* (g) per explant** (mm) (Kasperbauer 1990, McMichael 1990, Klepper 1992, Zobel, 1992), they are also affected by the environment (Jung 1978, Kasperbauer 1990). Soil structure, availability of nutrients and water, temperature and drainage can interact with the genetic make-up of the plant (Hamblin 1985, Box 1996, Aguilar et al. 2000). For example, mechanical impedance was shown to reduce the root elongation rate which was related to an increase in soil bulk density or penetrometer pressure (Voorhees et al. 1975, Babalola and Lal 1977, Maurya and Lal 1979, Panayiotopoulos et al. 1994).Tillage reduces the mechanical impedance and the bulk density of the soil (Russell 1977). For dessert bananas, Robinson (1996) found that soils which had been ploughed below 50 cm had more roots and healthier ones. The effect of reducing the bulk density of the soil has not been studied in a wide range of Musa spp. genotypes. The objective of this study was to assess the effect of tilling on the root and shoot characteristics of several Musa spp. genotypes.This study was carried out at the IITA High Rainfall station at Onne (4°42' N, 7°10' E, 5 masl), in southeastern Nigeria, where the soil is derived from coastal sediments and is a deep and freely drained Typic Paleudult/Haplic Acrisol (FAO/ISRIC/ISSS 1998). It belongs to the coarse-loamy, siliceous isohyperthermic family. The chemical and physical properties of the topsoil in the experimental fields were assessed (Table 1). The average annual rainfall is 2400 mm distributed monomodally from February until November (Ortiz et al. 1997). Six genotypes belonging to four Musa spp. groups were assessed: the dessert banana 'Valery' (AAA), the plantains 'Agbagba' and 'Obino l'ewai' (AAB), the cooking banana 'Fougamou' (ABB) and the tetraploid plantain hybrids 'TMPx 548-9' and 'TMPx 1658-4'. These hybrids were obtained by crossing 'Obino l'ewai' with 'Calcutta 4' (M. acuminata ssp. burmannicoides) and 'Pisang lilin' (M. acuminata ssp. malaccensis), respectively. The planting material consisted of sword suckers (i.e. lateral shoots with lanceolated leaves) which were pared and planted according to Swennen (1990).Two experiments were carried out. In the first experiment, land preparation was done manually, using hoes, to avoid soil disturbance. In the second experiment, on the contrary, the soil was harrowed and ploughed to a depth of 30 cm, using a tractor, one week prior to planting. Both experimental fields had been under grass fallow for more than five years prior to planting. The first experiment was planted in June 1996 and the second one in August 1998. Despite the two-year interval in planting dates, the soils' physical and chemical characteristics were similar at the time of planting (Table 1), the two fields being only three meters apart. In addition, the rainfall was abundant during both trial periods: 805 mm during the period June to August 1996 and 960 mm during the period August to October 1998.The field layout in each trial was a randomized complete block design with two replications of two plants per genotype. Plant spacing was 2 m x 2 m. The plants were grown under monocropping system and no mulch was applied. The experimental area was treated with the nematicide Nemacur (a.i. fenamiphos) at a rate of 15 g/plant (three treatments per year) to reduce nematode infestation. Fertilizer was applied in the form of muriate of potassium (60% K) at a rate of 600 g/plant annually, and urea (47% N) at a rate of 300 g/plant annually, spread equally over six applications during the rainy season. The fungicide Bayfidan (a.i. triadimenol) was applied three times per year at a rate of 3.6 mL/plant to control black leaf streak disease caused by Mycosphaerella fijiensis Morelet.Plants in both experiments were excavated 12 weeks after planting, and shoot and root characteristics were assessed. Aerial growth data measured on each plant included plant height and leaf area. Leaf area was calculated according to Obiefuna and Ndubizu (1979). Corm fresh weight was also measured. Root characteristics included the number of adventi-tious roots, or cord roots, and root dry weight. The cord root length was measured using the line intersect method (Newman 1966, Tennant 1975). This method consists in scattering cord roots on a 3 cm by 3 cm grid and counting the number of interaction points. The number of interaction points were multiplied by a conversion factor of 2.3571, appropriate for the grid size used.There was a significant effect of tillage on all root and shoot characteristics (Table 2). Plants in the tilled field grew better than those in the non-tilled field (Figures 1 and 2). Tillage reduced the bulk density of the soil by 26% (from 1.64±0.06 g/cm 3 to 1.21±0.02 g/cm 3 ) at a depth of 5 cm, and by 27% (from 1.62±0.07 g/cm 3 to 1.18±0.12 g/cm 3 ) at a depth of 20 cm.The positive effect of a reduced soil bulk density on root growth had been demonstrated under mulched conditions. Avnimelech (1986) reported that there was a clear change in the soil structure due to the application of organic matter. Soil aggregates change from compacted dense to friable porous aggregates allowing root penetration, water and solute diffusion in and out of the aggregates and thus improving the properties of the soil as a growing medium.For Musa spp., Swennen (1984) reported an increased root ramification under mulched conditions. In addition, under shifting cultivation, plantain is established during the first year after land clearing when soil organic matter content is maximal and soil bulk density low. Similarly, the vigorous growth of plantains and bananas in backyard systems (Nweke et al. 1988) may be partially attributed to a high organic matter content and an associated low soil bulk density.For the East African Highland banana cv. 'Mbwazirume' (AAA), McIntyre et al. (2000) reported that mulched treatments were more productive in terms of both above and below ground biomass than bare soil treatments. Lower soil bulk density and faster water recharge at depth in mulched treatments indicated that mulching increased soil porosity and improved infiltration. Salau et al. (1992) attributed the enhanced vegetative growth and bunch yield of a mulched crop of plantain to increased soil porosity and soil infiltration capacity, among others. The positive effect of increased soil porosity on root growth and development has also been demonstrated for dessert bananas (Sioussaram 1968, Champion and Sioussaram 1970, Delvaux and Guyot 1989, Robinson 1996) and for the highland banana cv. Mbwazirume (McIntyre et al. 2000).Our study showed that reducing the bulk density of the soil by tilling increased shoot growth, which was associated with enhanced root development. This stresses the importance for bananas of adopting cultural practices that reduce the bulk density of the soil. T he presence of Mycosphaerella fijiensis Morelet in the main Musa producing regions has lead to a decline in yields. The development of methods for early selection requires that symptoms be expressed in controlled conditions to ensure the greatest chances of success in genetic improvement programmes. The purpose of the present work was to evaluate the behaviour of two cultivars of banana with different levels of resistance to M. fijiensis, and to select the best type of inoculum for selection in greenhouse conditions.Vitroplants which had been acclimatized for eight weeks, and had an average size of 20 cm and four active leaves, were evaluated in a greenhouse. The plants represented the cultivars 'Grande naine' and 'FHIA-18', which show different levels of resistance to M. fijiensis.A pathogenic isolate of M. fijiensis, CC-ibp-1, was used to prepare an inoculum of 10 6 cfu/mL, which was mixed with 1% gelatin and applied by means of a small brush to the tissue of the lower surface of the first three open leaves.For comparison, fragments of diseased leaves at stage 6 on Fouré's scale (1982) were collected in natural conditions, cut into pieces 4x4 cm and placed at the base of each plant as a source of infection.Incubation for the first 72 hours was at 95-100% relative humidity (RH). From the fourth day RH was maintained above 50% during the day, and at saturation (100%) during the night.The time to the appearance of the first symptoms (incubation period) and the severity of symptoms were evaluated for each cultivar with the respective level of resistance, according to the scale proposed by Alvarado et al. (2002).The results showed that it was possible to observe disease symptoms on both cultivars of banana in greenhouse conditions using different types of M. fijiensis inoculum. Symptoms comprised elliptical or circular spots and were similar to those seen on \"orejones\" (cabbage-like) suckers in natural conditions.The presence of these symptoms can be explained by the limited differentiation of foliar tissue of the vitroplants. Differentiation of the leaf veins acted as barriers to the spread of M. fijiensis hyphae (Mourichon et al. 2000).The incubation period was very similar in both cultivars irrespective of the type of inoculum (Table 1).The mycelial homogenate gave the best results: preparation was simple and inoculum concentration could be calculated and adjusted before use. Mycelial homogenates also avoided the presence of saprophytic microorganisms or other pathogens, and they could be used for isolates that did not produce conidia, and at any time of the year. In contrast, fragments of diseased leaves could only be collected in dry periods or when there was little rainfall (Jones 1995, Balint-Kurti et al. 2001).From the fourth week of incubation, the severity of attack was greater in 'Grande naine' than in 'FHIA-18' irrespective of inoculum type. From the sixth week, the difference became more marked because symptom development was slower in 'FHIA-18' (Table 1).Similar results were obtained by Romero and Sutton (1997) who studied the response of 'FHIA-01' and 'FHIA-02' to an inoculum comprising suspensions of conidia. The authors indicated that, although the mechanism of resistance of these genotypes was still not known, a low density of stomata, an increase in extracuticular deposits of leaf wax and the production of phytoalexins, suberin or lignin have been suggested as possible mechanisms associated with the partial resistance in these hybrids.The susceptibility of 'Grande naine' with respect to the partial resistance shown by 'FHIA-18' in greenhouse conditions was found to coincide with the response of both cultivars in natural conditions. These results confirm the possibility of evaluating the early response of different cultivars of Musa at an early stage against the causal agent of black leaf streak disease. ■Measurement of leaf area N. Kumar, V. Krishnamoorthy, L. Nalina and K. Soorianathasundharam L eaf area is one of the parameters used to determine a plant's photosynthesis potential. Watson (1947) applied the concept of leaf area to mea-sure the productive potential of field crops. He defined a leaf area index as the area of green leaf per unit area of land.Leaf area can be measured by destructive methods, but the non-destructive method of linear measurement was found to be simple, inexpensive and accurate (Yeboach et al. 1984). For bananas, Murray (1960) suggested a 'K' factor of 0.80 to be multiplied by the length and breadth of the leaf. This method gives the area of the leaf in question but not the total leaf area of the plant, which is of more interest to researchers. One way to obtain the latter is to estimate the area of each leaf, using Murray's method, and to Twenty-five plants of banana comprising 15 'Robusta' (AAA), 5 'Rasthali' (AAB) and 5 'Karpooravalli' (ABB) were removed at various stages of growth: 3 months after planting, 5 months after planting and at shooting. The number of leaves were counted and the area of the third leaf was estimated using the formula A=L x B x K, where A= estimated leaf area, L= leaf length, B= leaf breadth and K= 0.8. The estimated area of the third leaf was multiplied by the number of leaves to obtain the estimated total leaf area. The actual total leaf area of each plant was measured in a conveyer belt leaf area meter LICOR Model 3001. An individual K 2 value for each plant was obtained by dividing the actual total area by the estimated total area. Then the mean of all individual K 2 values was calculated to obtain the value of 0.662 for the constant K 2 . This value was used to calculate the predicted total leaf area which was then compared to the actual total leaf area. A ttest was carried out and the difference between actual leaf area and predicted area was worked out.The difference between the estimated total area using the third leaf method and the actual and predicted total areas was large for all 25 plants (Table 1). A t-test performed on the estimated and predicted leaf area showed that they were significantly different.A positive and significant correlation was obtained between actual and predicted leaf area (r=0.999), suggesting that a value of 0.662 for K 2 is a good way to estimate in situ the total leaf area of a banana plant.Based on this result, we propose to measure the total leaf area of a banana plant by counting the total number of leaves (N), measuring the length (L) and breadth (B) of the third leaf from the top and calculating the total leaf area (TLA) as follows: TLA=L x B x 0.80 x N x 0.662. ■The authors work at the Department of Fruit Crops, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore-641003, Tamil Nadu, India.K.A. Shanmugasundaram and R.S. Azhakia Manavalan I n the tropics and sub-tropics, bunch covers are commonly used to protect bananas from rust thrips (Smith 1947, Simmonds 1969, Sivakumar and Mohanasundaram 1971, Wardlaw 1972). We tested transparent and non-transparent polyethylene covers to compare their effectiveness in eliminating blemishes and to examine their effect on the post-harvest characteristics of the 'Rasthali' banana.Five 100 cm x 60 cm polyethylene materials were tested: Bunches of 'Rasthali' bananas were covered when the first hand opened and 0.4% ventilation was provided (Stover and Simmonds 1987). Control bunches were not covered. Three of the five plants per treatment were maintained separately to record the number of days to maturity. The covered bunches were harvested when the angularity of the fruits was about to disappear. The bunches were dehanded with a curved knife to minimize damage during transport. The hands were brought to the laboratory and kept under ambient atmosphere for observation. The second hand was used for quality analysis (Dadzie and Orchard 1997). Fruit characteristics, quality, mechanical damage and thrip damage were statistically analysed using a randomized block design.The results show that covers reduced thrip damage (rusty spots) by preventing thrips from reaching the flowers (Table 1). These results agree with the findings of Bhaktavatsalam et al. (1968), Hinz et al. (1999) and Jager and Daneel (1997).Hard lump formation was nearly absent on the fruits kept under a transparent cover (Table 1). This is attributed to the increase in temperature caused by the polyethylene cover as higher temperatures increase the conversion of starch into sugar (Ganry 1975, Reddy 1989). Interestingly, hard lump formation was higher in bunches grown under non-transparent covers than in the control ones because light is necessary for normal fruit development and ripening. Stover and Simmonds (1987) also reported that the use of pigmented bags had not improved quality.At harvest, the skin colour of the covered fruits was exceptionally uniform: attractive and clear, without any patches or blemishes (Figure 1). The fruits grown under transparent covers were more attractive, with a uniform dark green, than the fruits covered with non-transparent polyethylene. This is because the filtered sunlight allowed the skin to synthesise chlorophyll (Choudhury et al. 1996, Heenan 1973, Stover and Simmonds 1987).The fruits covered with reprocessed non-transparent black polyethylene were glossy white when unripe, as a result of the almost complete filtration of sunlight (98.3%). Devoid of chlorophyll, the fruits remained glossy white. The ripe fruits exhibited a dull white colour and the skin was more vulnerable to handling, contrary to the findings of Pandey (1994) and Nayak (1999). Though non-transparent covers reduced blemishes, they cannot be recommended because they aggravated hard lump formation, whereas transparent covers reduced both.Although bunch covers tend to reduce mechanical damage (Parmar and Chundawat 1984), in our tests, the fruits grown under the reprocessed non-transparent black covers recorded the highest mechanical damage (Table 1). This is probably due to the fragility of the resulting white skin.The green life of the covered bunches was one or two days longer than the one of the control fruits. This is probably because the decision to harvest was based on the disappearance of the angles. Since the fruits under the covers were not exposed to the environment, they lost less water (Johns and Scott 1989) and being filled with water, the fruits gave the appearance of being fully mature. The covered fruits indeed had a higher moisture content than the uncovered fruits which hardened well, but filled up later and ripened earlier than the covered fruits. Others also reported a longer green life for covered fruits (Johns and Scott 1989, Choudhury et al. 1996, Nayak 1999), whereas Parmar and Chundawat (1984) reported a reduction in green life using a blue polyethylene cover over 'Basarai' banana.The fruits grown under a cover lost more weight after being harvested than the control ones (Table 2), probably as a consequence of going from a higher to a lower humidity environment. Parmar and Chundawat (1984), on the contrary, recorded a lower weight loss in covered fruits.With regard to quality, the covered fruits, except for those under nontransparent covers, had more total soluble solids than the control ones, probably because the higher temperature under the cover favoured the conversion of starch into sugars. Parmar and Chundawat (1984) also reported similar findings. The reduction in the content of total soluble solids in fruits grown under non-transparent covers might be due to the higher moisture content of these fruits and the presence of hard lumps (lack of conversion of starch into sugars). The sugar to acid ratio of the covered fruits was also higher than the one of the control fruits.Though the covers effectively prevented thrip damage, their use adds to the production cost. Among the polyethylene covers used, the high-density transparent white polyethylene was the least expensive, followed by the reprocessed transparent blue polyethylene and the low-density transparent white polyethylene. However, the bunches covered with the high-density transparent white polyethylene were vulnerable to wind damage because of the thinness of the material, making it unsuitable in wind prone areas. Jean-Michel Risède F ilamentous fungi of the genus Cylindrocladium have been known for many years to be partly responsible for root necrotic lesions that induce root breakage and toppling in banana cropping systems. Until now the implicated taxa have never been typed probably because species are difficult to identify in this genus. Consequently a multicriteria diversity study aimed at characterizing these species and developing a molecular diagnostic tool of Cylindrocladium species was undertaken.Phenotypic and biological analysis of Cylindrocladium isolates from the banana rhizosphere yielded a structure based on fives morphotypes with different geographical distribution. Isolates from MT1, MT3, MT4 and MT5 morphotypes could not be clearly identified by their phenotypic traits because of their similarity with different complexes of morphologically similar species. MT2 isolates seemed to be conspecific with the species C. spathiphylli.Analysis of ribosomal spacer DNA polymorphism pointed out the conserved nature of the ITS region in the genus Cylindrocladium whereas the IGS region displayed polymorphism that can be used for discrimination of species. CAPS on the amplified intergenic spacer represents a rapid and reliable molecular diagnostic tool of Cylindrocladium species that can easily be transferred in banana producing zones. It revealed that MT2 and MT5 isolates are respectively conspecific with C. spathiphylli and C. gracile while MT3 and MT4 are related to the species C. scoparium and C. floridanum sensu lato. Despite their atypical phenotype, MT1 isolates were shown to be closely related to C. gracile. RAPD markers revealed that they only have 60% genetic similarity with this species. Taking into account their overall characteristics, they were recognized as a related undescribed species called C. macrogracile.Pathogenicity evaluation of these five taxa towards banana yielded that C. spathiphylli and C. macrogracile as respectively highly and moderately aggressive on the variety 'Grande naine' (AAA). The three other species showed weak to no pathogenicity. Inoculation of six different banana genotypes revealed significant differences in susceptibility, but no true differential interactions between isolates and banana genotypes.RAPD markers also indicated a low genetic variation within the species C. spathiphylli and C. macrogracile, suggesting their possible clonal propa-gation in banana cropping systems. Within C. spathiphylli a partition according to host separated isolates originating from bananas to those collected on heliconias. This partition was illus-trated at different levels by spacer rDNA polymorphism, RAPD markers and pathogenicity on bananas.This study offers many challenging research perspectives among which the pos-sibility to develop from the IGS region species-specific PCR primers that could further simplify identification of these fungi and favour the development of detection tests using plant or soil samples. ■ The study of the two F1 progeny showed Mendelian segregation of the disease with half of the hybrids containing virus. The observation of BSV strain Ol EPRV segregation occurs in a homozygous state in the Musa balbisiana genome only. Ten AFLP markers were selected in female M. balbisiana parents. The segregation analysis resulted in a genetic map of the locus responsible for disease expression, banana streak virus expressed locus (BEL), to be proposed. These data indicate that a genetic mechanism is involved in BSV expression and suggest that a monogenic allelic system confers the role of carrier to the M. balbisiana parent.Two previously unidentified BSV strains in addition to BSV-Ol, have been detected in diseased hybrids: BSV-Imové (BSV-Im) and BSV-Gold Finger (BSV-GF) strains. The BSV-Ol and BSV-Im strains appeared in almost all diseased hybrids. In contrast, the BSV-GF strain was detected in only 49 percent of the diseased hybrids tested. The presence of BSV-GF and BSV-Im EPRVs among parental and progeny lines, shows that the M. balbisiana genome contains at least two other pathogenic BSV EPRVs. Genetic analysis resulting from AFLP results showed that the expression of BSV-O1 and BSV-Im EPRVs depends on the same genetic factor, the BEL locus. Although BSV-GF is not genetically linked to the BEL locus, it seems to be subordinated to it. So, the discovery of new BSV EPRVs linked to the BEL locus suggests that BEL differs in nature from BSV EPRVs.Finally, we have investigated the regulation of EPRVs by investigating the \"healthy\" behaviour of M. balbisiana parents. A resistance to EPRVs expression has been demonstrated even when these parents are inoculated with BSV. Propositions as for the origin of the integration mechanism of BSV are discussed. ■ Bounmanh Khamsouk I ntensively practised in the French West Indies, banana growing requires a large quantity of fertilisers and pes-ticides. Localized near watercourses and inhabited areas, this intensive monoculture could therefore have repercussions on the environment since the island environment provides conditions, such as high annual rainfall and hilly topography, which favour the degradation of cultivated land (by water erosion) and chemical pollution of the runoff or drainage water leaving the banana plantations. In view of the demand for soil conservation measures and respect of the environ-PhD thesis submitted in June 2001 to the Ecole nationale supérieure d'agronomie de Montpellier, France ment, the setting up of a field study would enable the evaluation of this intensive monoculture on the environment whilst satisfying the objectives of 1) studying runoff and erosion on a volcanic soil in a tropical island climate and 2) estimating chemical losses by erosion and drainage.With this aim we set up ten experimental plots (100-200 m 2 ) to test some of the banana growing systems recommended by CIRAD-FLHOR (rotation with pineapple or sugar cane using cultural techniques of varying intensity) on slopes of 10%, 25% and 40% and subjected to risks of runoff and erosion. We also placed five lysimeters under banana plants to establish the water balance and to estimate the chemical losses due to leaching. In 1999 and 2000, the ten plots received different treatments: \"bare soil\", \"mulched sugar cane\", \"established banana plantation\", \"mulched pineapple grown on a flat surface\", and \"mechanised, ridged, pineapple\". At the same time we carried out laboratory tests for stability and structure, and field tests, with simulated rainfall, to assess the behaviour of the soil and to gain a better understanding of runoff and erosion.The results obtained in 1999 and 2000 were very similar, despite the difference in annual rainfall, and they show the effect of treatments. On \"bare soil\" the loss of soil (85 to 165 t/ha/yr) increases with the slope (11% to 40%) whereas runoff decreases (184 to 87 mm). These results show that non-selective erosion changes as the slope increases, notably with an increase in the transport capacity of the runoff despite good soil resistance to erosion (erodibility index K = 0.12-0.02) and a high stability of the aggregates to water (1.6 to 2.7 mm). On the mulched treatments, runoff and erosion were negligible, even on a steep slope (LR<31mm and E<0.2 t/ha/yr). The very high proportion of covered ground (residues + plant cover + stones) on these plots (80 to 100% of plot area) proved to be very effective for infiltration and soil protection: there was no runoff with simulated cyclonic rainfall (100 mm/h for 180 minutes). On the other hand, runoff was common in the pineapple plots and soil loss was more important in the first year than in the second due to the increase in plant cover (LR=152 to 361 mm and E=29-5t/ha/yr). Simulated rainfall demonstrated the effect of ridging, which channelled the water, possibly explaining why this plot was particularly susceptible to runoff and erosion. The established banana plantations gave comparable results (Kram=2 to 4% and E=0.4 to 0.6t/ha/yr). The low level of erosion observed is the result of regular mulching with crop residues placed in windrows (S.C.=40 to 80% of plot area), an effective method of erosion control tested in African banana plantations. After the statistical analysis of the monthly results from the ten plots, two groups of factors (the R index, S.C., Dapp) and (LR and S.C.) appeared to explain the amounts of runoff and erosion respectively. It is therefore a case of Hortonian flow, involving erosion of aggregates with little dispersion.The estimation of chemical losses on these plots shows that the more sensitive are the treatments to erosion, the greater is the loss of nutrients, which are mainly contained in the eroded sediment. Under a banana plantation, deep drainage is very active in the wet season, 32 to 37% of the seasonal rainfall. The drainage, calculated and observed by lysimetry are in fair agreement: the estimation of chemical losses by conical lysimeters seems to be correct. Moreover, this estimate indicates that in established plantation the majority of nutrients is lost by leaching and that the proportions lost are similar to those observed on an irrigated banana plantation in Côte d'Ivoire (99% of losses of Ca or of total N by drainage). ■Alexandra Jullien T he production of bananas for export is subject to constraints of size and quality of the fruit. To be exportable from the West Indies to mainland France a fruit must have minimum values for diameter (30 mm), length (17 cm) and maturity at harvest (estimated as the duration of green life, which should exceed 20 days). Consequently, the large variability in weight and quality of fruit observed in the field results in considerable yield losses for the growers. This variability in weight depends on growing conditions but also on the position of the fruit on the bunch: the fruit on the distal part of the bunch (lower hands) are 30-40% smaller than those on the basal part (upper hands). The simultaneous study of the determination of the weight and the quality (maturity) of the fruit at harvest, described here, is therefore necessary to optimise the yield and quality of the crop.Firstly, we determined the causes of the variation in weight of the fruit within the bunch (inflorescence). For this purpose a histological study of development was carried out to determine the chronology of the phases of cell division and of cell filling in the fruit and in the bunch. In the fruit, the phase of rapid accumulation of dry matter (filling) occurs after the end of cell division. Within the bunch, there is a lag in development between the basal hands (i.e. the upper hands which are initiated first) and the distal hands (the lower hands which are initiated last). This lag has the consequence that the basal hands have a larger number of cells. From histological data, a conceptual scheme of development of the inflorescence was proposed.Secondly, the source/sink ratio was modified by shading leaves (reducing the source) or by adapting cultural techniques currently used such as bagging bunches to increase the activity of the sink and removing hands to reduce the size of the sink. It appeared that the number of cells in fruits is a determining factor of the variability of weight within the bunch. On the other hand, the rate of filling of the cells is identical for all the fruit of a bunch and is determined by the source/sink ratio. A Michaelis-Menten relationship was used to relate the mean filling rate of the cells of a bunch to the mean source/sink ratio during the filling period.Thirdly, this knowledge was introduced into a model of the distribution of assimilates within the bunch that simulates the weight of the fruit and the bunches at harvest. A relation capable of calculating the green life of fruits as a function of their age expressed as a temperature sum was added to the model, giving it a predictive value for the quality at harvest. The model thus created has a two-fold value -cognitive and predictive. First it allows us to understand and simulate plant function, using new histological knowledge and validated rules for the distribution of assimilates. It also constitutes a tool useful for diagnosing yield and as a decision aid for choosing between various cultural treatments such as bagging of bunches and removal of hands, or the determination of optimal harvest dates. ■PhD thesis submitted to the Faculty of Biological, Agronomic and Environmental Sciences, Katholieke Universiteit Leuven, Leuven, Belgium Marc Dorel M ost of the banana plantations in Guadeloupe are situated on soils derived from recent pyroclastic rocks forming terraces on an andosol/nitisol toposequence. The practice of intensive banana growing using heavy machinery seems to be the cause of serious degradation in the structure of these soils, even though their physical properties are considered favourable for the crop. The consequences of this degradation on rooting and growth of the bananas are, however, not clearly established. An evaluation of the effect of cultural practices on the physical properties of the different soils of the toposequence is needed to propose new cultural practices which will guarantee the maintenance of soil fertility.Firstly we have found a relationship between the porosity and water retention of the soils and their allophane and organic matter content. The effect of mechanisation of the crop on the form of the cultivated soil profile, the porosity and the hydraulic conductivity of the soil was then studied on experimental plots. Mechanisation led to the formation within the profile of contrasting structural conditions: either compact structures with low macroporosity and reduced hydraulic conductivity, or fragmented structures with high conductivity.From the results of a survey carried out on a sample of fields under production we have tried to establish a classification of the state of the cultivated soil profile and of the rooting of the bananas. The practice of unmechanised perennial culture leads to profiles without clear structural discontinuities which allow lateral extension of the root system. The mechanisation of operations taking place during growth leads to the formation of compacted zones between the crop rows which limit the lateral extension of the root system.We also studied the effect of the soil structure on the rooting of banana under controlled conditions. Compaction of the soil greatly reduces root biomass, rooting density and the length of the primary roots. It also causes modifications to the form and size of the cells of the root cortex.A field experiment aimed at comparing two depths of soil cultivation showed the effect of soil tillage on root distribution and on the exploitation of soil water reserves. A crop simulation model which evaluates the effect of the soil's physical state on the functioning of the banana crop was parametrized from all the results previously mentioned.The choice of criteria to be taken into account when planning soil preparation is then discussed. A scheme for planning soil preparation which guarantees optimal functioning of the root system and long-term conservation of soil fertility which takes into account the variability in the soil and climatic conditions of Guadeloupan banana plantations is proposed. ■A description of the banana streak virus (BSV), prepared for Description of Plant Viruses Online, maintained by the Association of Applied Biologists, is now available on the PROMUSA website under Virology working group.Written by Andrew D.W. Geering and John E. Thomas of the Queensland Department of Primary Industries, the wide-ranging text covers topics such as transmission, serology, virus purification, particle and genome properties, relations with cells and tissues, and ecology and control. It also offers a comprehensive review of the literature on BSV, up to 2001, and contains some photographs of the symptoms.Other descriptions of viruses are available on the websites of Description of Plant Viruses Online, http://www.dpvweb.net/, and Plant Viruses Online http://image.fs.uidaho.edu/vide/.The natural resin, called latex, which is exuded when the bunch is dehanded adversely affects production and fruit quality as follows: 1. Latex is insoluble in water and adheres to the fruit surface causing spots. 2. Latex supports the growth of bacteria and fungi that cause banana crown rot, one of the diseases associated with an incomplete removal of latex. Currently, large volumes of water are needed to ensure removal of the latex from the skin and crown of the fruit.The results of an extensive study demonstrate that the use of solvent and coagulant makes it possible to remove the latex from water. When mixed with an organic solvent, the latex is broken down and particles of polymer are released; the coagulant then attracts the material in suspension causing the latex to flocculate and settle on the bottom of the laminar flow tank. The solution comprising a mixture of natural biodegradable reagents dissolves and coagulates the latex that exudes from the hands' cut surface, which is then removed from the water. This removes the medium that supports the growth of fungi and bacteria that cause crown rot and spotting when latex adheres to the skin of the fruit.The use of coagulant reduces considerably the volume of water needed to wash the fruit making it possible to use drinking water. Using water of better quality improves fruit quality, reduces the risk of post harvest disease, improves hygiene in the packing plant and results in substantial savings in the banana packing process. The coagulant can be sprayed or introduced drop by drop at ambient temperature, a period of 5 minutes being sufficient to remove the latex. The hands are then placed on conveyor belts and the cuts are sealed by applying a coagulating and healing solution.Further information can be obtained from Ariatne Avila Valdes, email ariathneavila@hotmail.comIn Indonesia, blood disease caused by the bacteria Pseudomonas celebensis is the number one disease attacking bananas. The disease first appeared in the Selayar islands (South Sulawesi) in 1907. The bacteria has since spread to almost all the banana producing areas in Indonesia (Figure 1). Humans seem to be responsible in large part for dispersal between regions. The disease spread to Jakarta and West Java before other provinces on the island of Java, probably because of the movement of fruits to the capital. A similar pattern was observed in Maluku province. Soon after Seram island (the closest island to the provincial capital) was infected, Ambon island (where the capital is situated) was infected, but not nearby Buru island. In Solok (West Sumatra), the disease spread from the Sungai Pagu district (an infected area), from where merchants took the fruits, to the Gunung Talang district (formerly disease-free), where the fruits were graded and sorted before being transported to Jakarta, skipping the Alahan Panjang district. Because most of Indonesia's bananas are produced in backyard systems, quarantine regulations are difficult to enforce. Moreover, the normal appearance of infected plants and fruits increases the likelihood of introducing the disease to non-endemic area.For more information, please contact Catur Hermanto and Tutik Setyawati at the Research Institute for Fruit. Jl. Raya Solok -Aripan Km 08, Solok 27301. West Sumatera -Indonesia. E-mail: rif@padang.wasantara.net.idTwo new banana species from Sarawak were found by Markku Häkkinen, a research fellow from the University of Helsinki in Finland, following a collecting mission in Borneo a few months ago.The first species was discovered in the Bau limestone area, with field-assistant Stephen James Jossel of the Sarawak Biodiversity Centre, while the second is abundant in the Lawas area. Both species belong to the section Callimusa.Häkkinen, a sea captain before turning his attention to bananas, has made seven expeditions to the Southeast region. He travelled all over Sarawak, Sabah and Kalimantan to study the wild banana species of Borneo on which he intends to write a monograph.More studies are needed before deciding on a name for the new species and to find out whether they are resistant to the pests and diseases affecting bananas. Following Phase II of the International Musa Testing Programme (IMTP II), the Sri Lanka Department of Agriculture has identified two promising banana varieties from the germplasm collection which was transferred to the Sri Lankan Government in 1999. Thanks to the efforts of Dr Sujatha Weerasinghe of the Horticultural Research and Development Institute, SH-3640 and FHIA-03 were recommended to the Variety Release Committee after a series of field evaluations in various locations. These accessions were given the local names of 'Kandula' and 'Pulathesi', respectively.FHIA-03 was also released for cultivation in Bangladesh after a series of field evaluations. FHIA-03 was found to be tolerant to Fusarium wilt and to have a higher yield potential than local plantain cultivars. 'Nendran' and 'Poovan' are AAB cultivars that produce a low number of suckers, thus limiting the availability of suckers from elite clones and necessitating the use of in vitro techniques for micropropagation. Since shoot tip culture gives poor results, researchers from St. Thomas College in Pala, India, have developed a modified MS medium for the inflorescence tip culture of these varieties. In both cases, the shoots were elongated in medium containing 3 mg/L IBA and 1.5 mg/L BAP and rooted in medium with 3 mg/L IBA and 0.5 mg/L BAP (Figure 2). The shoots produced were morphologically identical to those originating from vegetative apices. The Middle Eastern region is somewhat peripheral to the banana cultivation zone in the Old World. Nevertheless, some banana cultivars have apparently been grown in this region for many centuries and questions are frequently raised regarding the extent of genetic diversity present in this region and how bananas are cultivated under such environmental conditions. In order to address these questions, INIBAP, with the financial support of FAO, organized a banana survey of Egypt, Oman and Jordan, which took place in 2002.The survey confirmed the existence of two types of banana farmers in the region. Those who can afford the necessary investments to ensure high productivity, and those smaller scale farmers who are not faring as well and cannot rely on bananas for a regular income. The major constraints to banana production vary from country to country: water shortage in Jordan, high levels of salt in water in Oman and high labour costs in Egypt, where the presence of the banana bunchy top virus calls for a higher level of management.This report provides an overview of banana production in each country visited, with a particular focus on the genetic diversity to be found in each country. A number of recommendations are made for each country relating to the conservation of local diversity. It was noted that the germplasm collection of the Agricultural Research Station at Salalah in Oman contains accessions that are representative of banana varieties grown in the Indian Ocean region. This is the only collection of its type, and in order to ensure the long-term conservation of this material, it is recommended that efforts be made to duplicate the accessions with INIBAP.The report also provides information on the historical background of bananas in the Middle East region and includes a useful key to the identification of ABB cultivars.The report is available on request at INIBAP Headquarters. You may also download it from http://www.inibap.org/publications/Middle-east.pdfIn July 2001, an expedition was organized to explore Musa diversity in the highland areas of Tanzania. The exploration team consisted of Dr E. De Langhe, Dr D. Karamura and Dr A. Mbwana. The team limited their prospecting to the slopes of Kilimanjaro, the Usambara hills and the South Pare hills. This zone occupies a central position for banana production in East Africa, with all the other highland areas where bananas are grown, e.g. Taita hills and Gikuyu area of Kenya, the Great Lakes region, Mbeya and Morogoro in Tanzania, being located on the periphery of this zone. It was considered that the likelihood of finding new germplasm was greatest in this area. The mission was motivated by two major factors:• the lack of knowledge about banana cultivars in the East African Highlands, other than the Great Lakes region • and the growing risk that unexplored, yet potentially important material for genetic improvement would be lost due to changing farm management practices.The expedition proved to be most successful, with 21 interesting cultivars being collected. Of these, it is likely that two may already exist as duplicates in germplasm collections. Of these 21 accessions, 10 are most probably newly acquired diploids of great potential interest for the genetic improvement of East African Highland bananas. In addition, an entirely new group of AAAtriploid bananas was identified, called the 'Ilalyi' group by the collecting team. No wild, seedy diploids were found, and the chances that such diploids exist on the continent is now considered remote. All collected accessions were planted in a field collection at the Tengeru Horticultural research Station at Arusha, Tanzania where full characterization data will be collected.This report provides details of all accessions collected during the mission. In addition, the report provides some clarification of the hitherto rather obscure nomenclature /synonymy of cultivars in this zone, and a broad picture of how African Highland bananas in general may have been generated, is proposed.The report is available in printed form at INIBAP Headquarters or downloadable from http://www.inibap.org/publications/Tanzania.pdfThe Third International Symposium on Molecular and cellular biology of bananas was held on September 9-11 at KULeuven, in Belgium. The symposium was attended by 127 delegates from 33 countries. In total, 76 papers were presented during the conference, 43 as oral presentations and 33 as posters. The fields covered include genomics, gene expression and transformation, molecular pathology and disease/pest resistance, characterization and conservation of biodiversity, and biochemistry and physiology. The invited lecturer, Dr Takuji Sasaki of the National Institute of Agrobiological Sciences and leader of the Rice Genome Research Program, gave a presentation on the sequencing of the rice genome, and a workshop on intellectual property and genetically modified organisms, chaired by Victoria Henson-Apollonio, manager of the CGIAR Central Advisory Service (CAS) on Intellectual Property, was held. The abstracts of most of the papers presented at the symposium are posted on the PROMUSA website. A few copies are available from INIBAP for those who have difficulties accessing the Web. The minutes of the PROMUSA meetings held during the symposium are published in PROMUSA.This year, the CGIAR held its Annual General Meeting (AGM) in the Philippines instead of the World Bank headquarters in Washington DC. The AGM, which started on 28 October and ended on 1 November, was At the joint press conference of the Philippines' Secretary of the Department of Agriculture, the Hon. Sec. Leonardo Montemayor, and CGIAR's Chair, Dr Ian Johnson, IPGRI's Director General, Dr Geoffrey Hawtin, made a ceremonial hand over of IMTP improved germplasm to Sec. Montemayor, followed by the signing of a material transfer agreement.The banana varieties provided to the Philippine Government represent an important step in the continuing fight against pests and diseases which are ravaging the country's banana industry. They are part of BAPNET's National Repository, Multiplication and Dissemination Programme for the promotion and ready availability of improved varieties.The Food and Fertilizer Technology Center, the Taiwan Banana Research Institute and the National Taiwan University, in collaboration with INIBAP's Asia-Pacific Regional Office, sponsored a training programme on tissue culture and maintenance of foundation stocks and virus indexing held on 9-20 December in Taipei.The training was an opportunity to improve the capability to multiply and produce disease-free planting materials for those involved in the maintenance, multiplication and distribution of improved Musa varieties in BAPNET member countries par-ticipating in the national repository and distribution programme.INIBAP's Asia-Pacific Regional Office has found a partner in the Lapanday Agricultural and Development Corporation (LADECO or simply Lapanday), a private corporation specializing in food exportations based in Davao, in the Philippines.The partnership started when INIBAP's Asia-Pacific Regional Coordinator, Dr Agustin Molina was looking for private sector partners to do banana research for Phase III of the International Musa Testing Programme (IMTP III). Lapanday has an efficient tissue culture laboratory and is now supplying the national program with tissue culture of improved varieties at cost. Not only that, but Lapanday has also provided training for new partners in the field of tissue culture, nursery and field operations and maintenance. Lapanday has also supported leaf spot studies conducted by the Philippine NARS.The Association for the Improvement in Production and Utilization of Banana (AIPUB) organized, in collaboration with INIBAP and FAO, the Global Conference on Banana and Plantain held in Bangalore on 28-31 October.The conference was attended by some 500 delegates comprising research and development experts, farmers and industry representatives from 17 countries. The theme of the conference was \"Banana Production for Nutrition and Livelihood Security.\" Conference deliberations focused on genetic resource management and crop improvement, biotechnological advances, strategies in production technology, organic produc-tion of banana, integrated disease and pest management, postharvest management, product diversification and value addition, policy support and programmes, national and international trade and international cooperation. Two INIBAP regional coordinators presented papers: Dr Agustin B. Molina talked about R&D needs in the Asia-Pacific region and the importance in Asia of INIBAP's International Musa Testing Programme (IMTP) while Dr Franklin Rosales did a presentation on banana and plantain in Latin America and Caribbean countries. Dr Dirk De Waele of KULeuven presented a paper on \"Nematode problems in bananas and approaches for resistance breeding.\"Workshops on biotechnology applications in banana, organic banana production and banana value-added products were held concurrently with the conferences. An exhibition showcased the technological advances in the vibrant banana industry of India and the world.During the conference, Kadali awards were given to Dr Emile Frison, Director of INIBAP in Montpellier, France, and Dr S. Uma, a senior scientist at the National Research Centre for Banana at Tiruchirapalli, India. This award is conferred once every two years by AIPUB in recognition of outstanding contributions to the promotion of banana research, development and utilization.Dr Frison has provided dynamic leadership to banana research and development, improving the livelihood of millions in the Asia-Pacific region. He has been instrumental in initiating research networks and launching the Global Programme for Musa Improvement (PROMUSA) and the Global Consortium in Musa Genomics.Dr Uma has participated in the built up of the largest collection of wild, exotic and cultivated varieties of banana in Asia. She identified four new species, including the first natural tetraploid of Indian origin (Bhat Manohar) and an array of wild balbisiana (BB) genomes unique to the Indian subcontinent. She also contributed significantly to the taxonomy of Indian bananas.Dr H.P. Singh, the founding Director of the National Research Centre for Banana (NRCB), and presently the Indian Government's Horticulture Commissioner, and Dr S. Sathiamoorthy, Director of NRCB, were awarded fellowships in recognition of their lifetime contributions to banana research and development. ","tokenCount":"26142"} \ No newline at end of file diff --git a/data/part_3/7056736730.json b/data/part_3/7056736730.json new file mode 100644 index 0000000000000000000000000000000000000000..8de6f2fb2f8ef58652727789a681915c6e0e7911 --- /dev/null +++ b/data/part_3/7056736730.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"5c156d88caf982f9276671880526406d","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/e02d6997-e833-4a19-8fe7-bbb50c30d70e/retrieve","id":"-906618604"},"keywords":[],"sieverID":"3496947b-0619-489a-a9da-7e58ca1bab5f","pagecount":"72","content":"Fair dealing and other rights are in no way affected by the above. The parts used must not misrepresent the meaning of the publication. ILRI would appreciate being sent a copy of any materials in which text, photos etc. have been used.Key issues addressed and the tools employed In degraded areas in East Africa, termites pose a major threat to agricultural crops, forestry seedlings, rangelands and wooden structures. In Ethiopia, the problem is most severe in the western parts of the country including Wollega area (Abdulahi et al. 2010). In the past, several attempts were made to reduce damage caused by termites, including extensive termite mound poisoning campaigns. But as termite species also have beneficial effects in sustaining functionality and provision of ecosystem services (Mugerwa 2011), attempts to control termite species should therefore be conducted with care.Termites are usually symptom of human induced degradation of land and biomass resources. Land rehabilitation is necessary for securing increasingly threatened feed and water resources for livestock. Based on a research project in Nakasongola, Uganda, severe land degradation of rangelands linked to overgrazing and termite damage to pastures can be reduced through night corralling 1 of cattle followed by reseeding of degraded pastures (Mugerwa 2007;Mugerwa et al. 2011;Peden et al. 2011).Cognizant of this finding, a Research Into Use (RIU) project was designed to identify appropriate combinations of technical and institutional options for Integrated Termite Management (ITM) 2 through a process of shared learning and innovation. The project is being implemented in Nakasongola, Uganda, and in Diga, Ethiopia. Strategies to engage development, extension and private sector partners through action-research will facilitate longer term solutions, even beyond the project lifetime and taking results to scale.In addition to a literature review on the relation between termites and land degradation, the project also envisaged a baseline study to collect relevant information on the problem in the focal sites and potential termite and land management options that can help to rehabilitate land productivity. Special attention was paid to farmers' ethno-ecological knowledge, a rich resource of information which is often neglected (Altieri 1993;Morse and Buhler 1997).This report refers to the study in Ethiopia. The second section gives an overview of the research design and the action sites in Diga, Ethiopia. The third section presents and discusses the major findings of the study and their implications. The last section summarizes the major conclusions of the study and provides recommendation for future action.2 Research frameworkThe overall objective of this study is to understand the termite problem along with the prevailing socio-economic, biophysical and ecological contexts that can buttress the effort to develop integrated termite management strategies in the study area. Specifically, it attempts to explore and understand termite related knowledge, attitudes and practices of key actors (farmers, extension officers, local researchers etc.) in the action-research sites, and to understand the degree to which termite damage is a constraint to farmland productivity and peoples' livelihoods, and potential mechanisms (policies, investment strategies, and extension) to foster uptake of ITM.The following research questions are addressed by the baseline study.• How severe is the termite problem in the project areas and what are the implications?• What is the state of land degradation in the project areas and how is it related to termite damage? • To what extent is termite damage a constraint to improving farmland productivity and peoples' livelihoods? • What is the level of knowledge, attitude and practice of key actors related to termites and their management? • What are the coping and controlling strategies employed by farmers and other actors of the termite problem? • What are the existing and potential institutional structures and mechanisms to foster uptake of ITM?For the baseline study, both primary and secondary data were collected. For the primary data, participatory, rapid, and mixed-method tools were employed to capture the data required. A Household Survey (HS), Focus Group Discussions (FGDs), and Key Informant Interviews (KII) were used at woreda and kebele level (see respectively Annex 1, II, and III).The study was conducted in two project kebeles. These are Bikila and Lelisa Dimtu.Table 1 presents the tools used to address each research question along with the type of data collected. The study woreda, Diga, is located in East Wollega Zone of Oromia Regional State to the west of Addis Ababa (Figure 1). Elevation varies from 1380 to 2300 masl. The total population of the woreda is about 68 906 with an average household size of seven persons. On average each household holds two ha; 68.2% of the woreda is arable land, 12.2% grazing land and 16.9% forest land. In terms of agro-ecology, lowland covers 60% of the woreda and the other 40% falls under mid-highland areas. In case of rainfall pattern, the woreda is predominantly mono modal and it receives rain from mid-March through November. The dry season extends from January to mid-March. 3 According to woreda experts, termites are a problem in 13 of the 21 kebeles in the woreda including the research sites. This study was conducted in two kebeles of the woreda, i.e. Bikila representing the midhighland and upper stream of Didesa watershed, and Lelisa Dimtu representing the lowland and downstream of the watershed. These kebeles are selected for the project due to termite infestation and the difference in agro-ecologies and landscapes. The assumption is that such diversity will give an opportunity to develop solutions applicable to varied agroecologies and landscapes.Review of secondary information: Secondary data were collected from NBDC reports, woreda sector office documents etc. Besides, polices, strategies, interventions, institutional structures related to land/termite management etc., were reviewed from woreda, regional and national government policy documents and plans. b)Key Informant Interview (KII): For this purpose, explorative interviews using a semi-structured checklist were conducted with key informants from woreda and kebele level (Annex III). Key informants are knowledgeable individuals who know the area and the problem well. At woreda level, experts working in the area of soil and water, crop production and protection and livestock production were interviewed.At kebele level, the DA, kebele chairman and elders were interviewed on trends and seasonal aspects of the termite problem, social, political, economic and biophysical dynamics and history of village/kebele etc. For the KIIs, purposive sampling was used to select the informants who are knowledgeable about the issues and the area. Hence, woreda agricultural office experts, concerned Wollega University staff, kebele chairman, development agent and elders were interviewed. c)Focus Group Discussions (FGDs): FGDs were conducted with 8-12 farmers in a group and the farmers were selected based on their vulnerability to termite infestation and land degradation problems. The major data collected included information about the termite problem, its consequences, coping strategies, control mechanisms used to date etc. In each kebele, one FGD (men and women mixed) was conducted using a semi-structured checklist (Annex II). Purposive sampling was used to select women and men farmers' representatives who had experience and knowledge about termites and soil degradation problems and related issues. d)Household Survey (HS): A structured questionnaire with close-ended questions was designed to collect household level quantitative data such as the number of livestock and their kinds, type of crops produced, size of land, level of use of agricultural inputs, damages from termites, type of coping and controlling strategies applied, food security situation and involvement in local institutions etc. (Annex I).The questionnaire was pretested for consistency, clarity and timing as well as revised on the basis of feedbacks from enumerators.For the household survey, cluster sampling 4 was used to randomly select respondent households. First, villages were clustered according to level of termite infestation (high, medium and low) by the DA and kebele administration. Then villages were randomly selected from clusters of villages representing different termite infestation levels. Hence, four villages from Lelisa Dimtu and three from Bikila were selected. Households were selected randomly from each village in proportion to the number of households in each village. From each kebele, 28 households, i.e. 56 households from the two kebeles, were selected for the household survey.No wealth classification was conducted in the project sites previously. Hence, wealth status classification was done post survey using asset data collected in the household survey. Major asset used by the community for classifying households into various wealth groups is number of livestock. Hence, after taking the number of livestock for each wealth group (poor <2, medium >2 and < = 8 and better off >8) from the community, wealth status classification was done for each sample household using household survey data.For an overview of data collection methods and participants, see Table 2. In the baseline study, both qualitative and quantitative data were collected. The qualitative data were analysed through categorization, summarization and interpretation in line with the research questions while the quantitative data was analysed using SPSS. Simple descriptive statistics, using percentages and means, were employed to summarize the quantitative data.To ensure the quality and validity of data, triangulation was conducted by collecting data using various data collection tools and data sources. The data collection tools were designed through extensive discussions and consultations with local stakeholders after which it was pilot tested. Moreover, the findings were extensively discussed by the project team and presented to local stakeholders to improve validity.The study team comprised of staff from ILRI, Wollega University (WU) and Woreda Office of Agriculture (WOA). WU staff included a soil and water management specialist, crop production expert, crop protection expert and socio-economist. Besides, two experts from WOA were part of the team to support community mobilization and data collection.This section presents the main findings of the research. First, a brief overview is provided of the two kebeles and people's livelihoods where the baseline study was conducted. Subsequently, people's land use practices are discussed by focusing on livestock and crop production, soil fertility and land management, and agricultural water management. Finally, findings are presented on termite related knowledge, attitudes and practices among key actors, and the potential and scope of existing institutions and mechanisms in terms of termite management.Data are collected based on the discussion with development agents and information obtained from woreda office of agriculture. Accordingly, Bikila is a kebele with mid-highland agro-ecology characterized by rugged and undulated topographies, having high soil erosion problems. There is relatively high vegetation and forest cover. There is shortage of grazing land in the area, but potential for irrigation is relatively good. It is reported that 83 hectare (out of the potential irrigable 140 ha) is already under cultivation. Crop and livestock production are the main sources of livelihoods for people in the kebele. In terms of population, currently (2012) there are 2161 people living the kebele vs. 1940 5 in the year 2000. Farmers and elders also reported that the population is increasing.Also in Lelisa Dimtu, the main livelihoods of the kebele are crop and livestock farming. From the total area of the kebele, 1750 ha are already cultivated. The kebele is dominated by lowland area where significant portion of the arable land was cultivated under state farm. It is reported that there is high population growth over the last decades and that the land holdings are becoming smaller and smaller. Unlike Bikila, there are lands in Lelisa Dimtu that have been abandoned for the last 20 years due to severe soil degradation. This is mainly because of mechanized farming and blanket application of chemical fertilizers, herbicides and pesticides when the area was under state farm. Thus, there is poor vegetation and forest cover in the area. Use of modern soil and water conservation structures such as bunds, cut of drains, terraces etc. have started recently. Irrigation is limited. For instance, there is a potential irrigable land of 50 ha of which 36 ha is already irrigated. Based on data obtained from the Development Agents, the population has slightly increased over the last ten years from 4381 6 in the year 2000 to 4473 in 2012.It seems that intensification is high in Lelisa Dimtu in terms of area under cultivation (both using rainfall and irrigated) and historical use of inputs for long time. Percentages of cultivated land from the total area were respectively 58 and 67% for Bikila and Lelisa Dimtu.In Bikila, 5% of the cultivated land is irrigated while this figure is 2% for Lelisa Dimtu.5. http://www.oromiyaa.com/english/images/Diga%20Leka%20Woreda.pdf 6. http://www.oromiyaa.com/english/images/Diga%20Leka%20Woreda.pdf Similarly, forest cover is higher in Bikila as 7% of the total area is covered by forest while that of Lelisa Dimtu is only less than 1%.See Table 3 for the main characteristics of the Bikila and Lelisa Dimtu kebeles. Crop production is the main source of food and income for farmers in the study area. In the lowlands (Lelisa Dimtu) annual crops such as maize, sorghum, finger millet, sesame, groundnut and common bean are cultivated. In the mid-highland areas (Bikila), maize, sorghum, finger millet, common bean, teff, faba beans and barely, sesame, and common bean are produced. Perennial crops such as coffee, sugarcane, mango, avocado, and banana are also cultivated in both kebeles. Similarly, farmers in both kebeles cultivate vegetables such as tomato, onion, shallot, hot pepper, local cabbage, root and tuber crops yam, taro, sweet potato and potato. Crop production and productivity is low due to various reasons.FGD participants in both kebeles mentioned that productivity has decreased over time along with a decrease in rainfall intensity and soil fertility. They also mentioned that termite infestation and land degradation have increased in the last decade. Still, farmers in FGDs and KIIs reported that farmland in Bikila has increased over the years, along with increased level of deforestation. In Lelisa Dimtu, however, farmland seems to have decreased over the last decades as more land has come out of production. Farmers also indicated that use of inorganic fertilizer has increased. Although it was reported that farmers are increasingly diversifying crops as a coping strategy to various risks such as drought and low soil fertility, the total area under cultivation in East Wollega Zone is still largely dominated by cereals (Figure 2). According to woreda experts, use of improved crop technologies and practices is at infant stage in the area. This is mainly due to poor credit and input services, lack of appropriate and relevant technologies and limited awareness. Compared to other crops, farmers used more chemical fertilizers and improved seed for maize plantation in the 2011/12 cropping season (see Table 4). But, even for this crop only 23% and 25% of farmers that cultivated maize reported that they used chemical fertilizer and improved variety, respectively. Organic fertilizer use was relatively high and 60% of farmers that cultivated maize reported that they applied organic fertilizer on their maize farm in 2011/12 cropping season. In general, relatively more farmers in Bikila used improved seeds and chemical fertilizer as compared to farmers in Lelisa Dimtu. This could be due to the proximity and accessibility of Bikila kebele to the main asphalt road and the woreda capital, Diga. On the other hand, from sample households interviewed more farmers in Lelisa Dimtu used organic fertilizer than in Bikila. This could be due to the larger livestock population in Lelisa Dimtu (Table 5). There is significant difference in use of agricultural inputs by wealth status (Figure 3).The poor did not use improved seed and chemical fertilizer for maize in 2011/12. The very high price of chemical fertilizer and improved seed seemed to hamper poor farmers from using these inputs (Figures 4 and 5). The trend is different for organic fertilizer use. All the 13 farmers that reported using maize improved seed and the 12 farmers that used chemical fertilizer were from medium and better-off categories. Besides their incapacity to buy inorganic fertilizers, applying organic fertilizer is cumbersome and requires labour.Reasonable numbers of poor farmers used organic fertilizer for maize plantation in 2011/12. Poor farmers opt for organic fertilizer as inorganic fertilizer is expensive and crop residues and animal dung can be accessed freely from their agricultural practices.There are different cropping systems in the study area among which row planting (maize), mixed cropping (maize with common bean, finger millet with sesame, and local cabbages with finger millet) and crop rotation are the major ones. Almost all farmers in the area practise crop rotation every year. But, crop rotation is not common for maize (monocropping) as it is planted on backyard plot with better fertility management. Besides, maize should be planted around the homestead to protect the crop from wild animal damage, while shortage of land around the homestead hinders use of crop rotation.Major constraints of crop production identified by farmers in Lelisa Dimtu include termite infestation, poor soil fertility, weed, vertebrate pests, and lack of irrigated land. Based on farmers' perceptions, termite infestation and poor soil fertility are the two most important factors affecting farmers' livelihoods. On the other hand, the major crop production constraints in Bikila as perceived by farmers include termite infestation, poor soil fertility, poor input supply, weed, vertebrate pests, shortage of irrigated land, unseasonal rainfall and lack of oxen. Termite infestation, poor soil fertility and vertebrate pests (especially monkey and baboons) are termed as the most important constraints by farmers.The major livestock species in the area include cattle, goat, sheep, donkey and poultry. On average, each household had four cattle in Bikila and four to five in Lelisa Dimtu (Table 5). In FGDs, grazing land and livestock population are reportedly decreasing in both kebeles over the last decades. Supporting evidence was provided from annual sample surveys conducted in East Wollega Zone where the study woreda is located. The number of cattle has shown a decreasing trend over the last 15 years in the zone (Figure 6). Permanent Rivers and temporary rivers (during rainy season) are the main water sources for the animals. The major feed sources for animals in the study area are grasses on grazing lands, crop residues (maize, sorghum and finger millet) and fodder trees during the dry season. The main feed sources in the kebeles are grazing land (both individual and communal) and crop residues. Farmers reported that there is feed shortage in both kebeles and their animals do not get enough feed especially in the dry seasons. For instance, 82% of households said that they faced feed shortage. Even though 57% of households interviewed which reported having individual grazing land, it covered only four months of their feed demand on average. They have to rely on crop residues as feed for the rest of the year. Various reasons were given but termites (35%) and shortage or lack of grazing land (30%) were the most frequently mentioned by farmers for not having enough feed for their animals. Only 10% reported that they get enough feed for their animals and about 8% reported that they do not have any livestock. They need to ration the available feed to cover the feed demand of their livestock. Specially, they had to conserve some of the crop residues for the dry season.Source: CSA (2012). In general, farmers use cattle dung for improving soil fertility for producing crops. Cereals are predominantly cultivated in the area. There is limited cultivation of legumes, which could Year improve soil fertility. Moreover, crop residues are used for livestock feed. Despite this, there is feed shortage for livestock, which limits their productivity and number. With smaller numbers of livestock, the amount of animal manure integrated into the soil will also be smaller which in turn affects soil fertility.During the Haile Selassie regime before 1974, land was owned by landlords (Ambaye 2012).During that period, natural forest cover in the area and the amount and distribution of rainfall were relatively good (NBDC 2011). The soil was fertile and farmers were able to produce crops without using fertilizer inputs. In the Derg era, starting from 1974, land was distributed to peasants (Ambaye 2012). Furthermore, there were state farms in different parts of the country including Wollega. For instance, a cooperative association was formed in Lelisa Dimtu in 1979/80 (NBDC 2011). Under the state farm system, there were no private land holdings. All farmers were expected to work for the farm. This kind of state ownership hindered farmers from carrying out land management and tree planting. Attempts to introduce mechanized farming led to destruction of dense forests (ibid).In the current regime farmers can transfer the land use rights to their children, except selling the land (Ambaye 2012).There are communally owned lands which are mostly grazing lands. There are also abandoned lands (especially in Lelisa Dimtu kebele) which are not productive due to poor soil and land management practices over the years. These lands are now de jure holdings owned individually but are de facto communal grazing lands.In upstream Bikila, FGD participants reported high soil and land degradation. The main causes of land degradation included undulated topography, lack of soil conservation practices, termite infestation, leaching of basic cations due to high rainfall, deforestation, and shortage of organic manure. In Lelisa Dimtu, farmers in the FGD also mentioned high soil and land degradation. They estimated that more than half of the kebele land has been out of production for more than 20 years due to soil degradation. Inappropriate cultivation practices, termite infestation, leaching of basic cations due to high rainfall and deforestation were reported to be the main causes of land degradation in the kebele. Besides, high application of inorganic fertilizers and other chemicals by the state farm during the Derg Regime contributed negatively. Farmers reported that termites aggravate land degradation especially during the dry season by eating what is left on the rangelands.Households were also asked to rate the fertility status of their lands. Most farmers (73%) rated their farmland medium in soil fertility status, as it is productive without fertilizer but with lower yield (Table 6). About 25% said that their land was either infertile or very infertile. Percentage of households with medium and fertile land increased with increase in wealth status. For instance, respectively 70%, 75% and 83% of the poor, medium and better off households reported that fertility of their land was medium and above (Table 6). As discussed later, use of soil fertility inputs also increases when famers have better wealth status. Hence, better soil fertility of medium and better-off farmers could be due to their capacity to apply various soil fertility management practices. They can also access relatively better fertile land through various land sharing arrangements such as sharing and contacting. As far as reasons for poor soil fertility is concerned, more than half of respondents (51%) believe that it is a combination of factors rather than a single factor which is responsible, showing the importance of an eco-system approach to address land degradation. About 26% of the interviewed households reported that soil erosion and termites combined are the main reason for the poor soil fertility of their farm land. Respectively 21%, 16%, and 12% of the farmers mentioned respectively soil erosion, mono-cropping, and termites as the main (single) reason for poor soil fertility (Table 7). There is observable difference in terms of application of soil improvement mechanisms showing that wealth status has some impact on households' ability to improve soil fertility. About 70, 87 and 92% of the poor, medium and better-off sample farmers used various mechanisms to improve the soil fertility status of their farmland. Coping strategies employed for addressing the challenges of poor agricultural productivity varies by wealth status. Offfarm work is employed as coping strategy by 25% and 8% of the poor and medium wealth groups, respectively. Besides, out migration for seasonal labour work is used as copping strategy by 5% of the poor sample households. Both strategies were not used by the betteroff farmers. Sharing 7 in fertile land has been used as a strategy by significant number of farmers from all wealth groups.Currently, there are a number of soil fertility and land management practices in the area. Organic and inorganic fertilizer application, crop rotation, intercropping and fallowing (in the lowlands) are practised by farmers to improve soil fertility on individual farmlands. Terraces, planting grasses in strip, tree plantation and area closure are practised on degraded communal lands by the community. It was reported by farmers that inorganic and organic fertilizers application and crop rotation are the most effective in terms of improving soil fertility. Terraces, plantation of grass and trees on communal lands were reported to be effective by farmers to prevent land degradation. In both kebeles, it is reported by FGD participants that soil and water conservation activities have increased in recent years due to high government attention.In the household survey, 80% of the total households interviewed tried to improve the soil fertility of their farmland using various soil fertility improvement mechanisms. The most frequently used mechanisms include the use of manure, fallowing (in the lowlands), crop rotation, and application of inorganic fertilizers in ranking order. Farmers in the FGDs reported that corralling, application of compost and manure are the most effective practices that improve the fertility of the soil and decrease termites' infestation. Farmers observed that the higher the fertility of the soil, the lower the termite problem. They added that the intensity of termite is lower on crop lands with high cattle manure and compost than soils with low organic manure and compost. They explained that termites will eat the manure and the compost which will divert their attention from the crops. They believe that improving the fertility of the soil decreases the infestation of termite damage on the crop.Following the downfall of the Derg regime, more soil fertility management practices were used by farmers as the state farmland was redistributed to individual farmers. Corralling is being practised in Bikila kebele, where the animals stay three to four days in one place.There is limited practice of corralling in Lelisa Dimtu as manure is mainly used from a permanent livestock shed. Corralling is mainly practised for the purpose of soil fertility improvement. The practice is mostly used around homesteads for maize cultivation.Farmers reported that corralling also helps to reduce the problem of termites.In the study areas, crop residues are used for various purposes. The available crop residue in the study area includes maize, sorghum and sesame in the lowland areas and additionally teff, finger millet, and faba beans in the mid highlands. Some farmers leave the crop residue on the field for soil fertility improvement. Some farmers practice burning left over crop residue during land preparation for the next season. There are general preferences in use of crop residues. For instance, maize and sorghum are preferred for fuel, beans and sesame for soil fertility and millets and teff for livestock feed. The household survey also depicted that farmers use crop residues for feed, soil fertility, cooking, lightening and house construction purposes. From 2011/12 cropping season harvest, based on sample farmers' estimation, an average of more than half of millet crop residue was used for feed. Similarly, more than 60% of sesame crop residue used for soil fertility (62%) while sorghum was used mainly for cooking (49%).Maize is being used both for feed (32%) and cooking (37%). More than half of the teff straw was used for animal feed (53%) and it was also used for soil fertility (37%) and house construction mixed with mud (Figure 7). Generally, in both study kebeles, there are limited agricultural water management activities (NBDC 2011). For instance, in terms of water management, farmers in the area are practising traditional irrigation at small-scale level by traditionally diverting some rivers and using water pump in some cases. Farmers mainly cultivate maize and some vegetables using traditional irrigation. There is no modern irrigation in the kebeles although there is some potential for it. Similarly, there is limited effort to conserve rain water using ponds or any other structures. Recently, interventions have been initiated by the government to conserve soil and water using various physical and biological conservation systems.In Bikila, development agents reported that except irrigation, there are few practices for collection and use of rain and ground water. Construction of ponds, water wells and other water conservation and management practices are at early stage. In this kebele, there are two rivers. Farmers use traditional irrigation and water pump to divert the water and use it for irrigation. It is reported that about 83 ha is currently irrigated. Consequently, about 45% of the households interviewed reported that they have irrigated land. However, almost all of them reported that there is termite infestation on the irrigated land in the harvesting season. There are also about nine farmers who have wet land (Bone land) and most of them (7) reported that there is termite infestation on the wet land (Table 8). Similarly, in Lelisa Dimtu there are limited water management practices. There are five rivers used by farmers for traditional irrigation. It is reported that only 33 ha of land is being irrigated in this kebele. From the household heads interviewed, only a quarter reported that they have irrigated land, while half of them own some wet lands. In terms of termite infestation, both the irrigated and wet lands were reported to be infested by termites specially when the lands are dry and the crops are matured.The problem and its causesTermite is a major problem in the study area on crop land, rangelands and around homesteads threatening the livelihood of farmers. Irrespective of their wealth status, almost all (93%) of the households interviewed in the baseline survey reported that there is termite attack on their farmlands. Farmers reported that the problem of termite was there since long time ago, but its severity has been increasing in the last 15-20 years in the area. About 20 years ago, some control measures were conducted by the government especially in the state farms. Every year, chemicals were applied by the government on the state farms to control the termites. But, after the state farms were closed and transferred to individual farmers, there was limited use of chemicals for termite control because farmers have no access and capacity to buy and apply chemicals. Currently, chemicals are available at Nekemte Market but it is expensive.Farmers gave different reasons for increased termite infestation in the area (Table 9). From the 56 household heads interviewed, seven out of ten (71%) believed that they knew the reasons for increased termite infestation. The remaining third (29%) reported that they did not know. The most frequently mentioned reasons as perceived by interviewed farmers in the mid-highland Bikila kebele include deforestation (26%), soil degradation (24%), and overgrazing (16%) while in the low land kebele of Lelisa Dimtu, soil degradation (33%), overgrazing (25%) and deforestation (22%) were listed. There is no significant difference among the different wealth groups in terms of perception on the reasons for termite infestation. Farmers reported that termite infestation has increased with deforestation because some termite eating rodents have migrated to other areas. Similarly, ants living under the grasses that eat termites have decreased due to overgrazing. Soil degradation does not only affect the crop cover, but it also leads to less decaying materials on which termites can feed.There are two types of termite species in the study area. Farmers differentiate the two types of termites based on body size, head colour, feeding habit and mound formation. The local names given to the two types of termites are Werrartu (meaning 'invaders' in Afan Oromo) and Marimartu (meaning 'common to the area' in Afan Oromo). The Marimartu have mounds and stay in some places whereas, the Werrartu are non-mound forming and migratory type. Table 10 indicates the detail characteristics of the two types of termites as described by farmers. These classifications need to be scientifically verified. Most of the household heads interviewed did not know that there are various types of termites (Table 11). Only about a third (29%) of them knew that there are different types of termites. Major criteria used by farmers to identify the termites include body size (27%) type of mound (20%) and colour (20%). Farmers' perception on the benefit of termite varies. About 39% of interviewed household heads believe that termites have benefits. About 32%of farmers believe that termites improve soil fertility as the mounds help decompose crop residues. Some farmers also reported that the queen can be used for livestock fattening purposes. In general, there was clear difference between the two kebeles in terms of knowledge and perception on termites' species and benefits. This could be related to the knowledge and information diffused in Lelisa Dimtu kebele during the Derg time as the area was a state farm.Farmers reported that termites cause damages on crops, trees, grazing lands and houses. According to FGD participants, termites attack almost all crops and trees. But, the level of damage and tolerance of the crops and trees varies. The most susceptible crops to termite attack include maize, sugarcane, teff and sorghum in the mid highlands. Tuber crops and vegetables have higher tolerance to termite attack. On the other hand, it was reported that sorghum, finger millet, sesame, groundnut and common bean, are more tolerant to termite attack, while maize was the most susceptible crop in the lowlands. Improved maize varieties were reported to be more affected than local ones.To assess the rate of termite damage, households were asked in the household survey to rate the severity of termite damage on their houses, grazing lands, trees, fruits and annual crops using a rating scale of five. These are: no termite (no visible termite), not severe (termites are observed but there was no serious damage), seasonal severity (damage happens in some seasons), severe (termite damage was visible), and very severe (termite damage was visible and very high). This scaling was also used for the annual crops farmers cultivated in the previous cropping season (2011/12). Based on the analysis, maize, teff, wheat and barley are the most susceptible even if all crops are attacked by termite. It seems that sorghum and sesame are relatively tolerant (Table 12). Based on farmers' response, it seems that almost all trees are attacked by termites. Eucalyptus (96.3%) and Acacia abyssinica (53.8%) seem to be more susceptible trees to termite attack. Likewise, coffee (75%) and sugarcane (100%) were rated as most susceptible to termites (Table 13).From the total households interviewed, 85% reported that termites were damaging their houses and 87% of them believe that the damages caused by termites were severe and highly severe. The remaining farmers rated the damage as seasonally severe. Similarly, about 80% of interviewed households have reported termite infestation on their back yard of which 67% believe that the level of damage was severe and highly severe. From 41 households that have reported to have individual grazing land, 36 (88%) reported termite infestation on their grazing land. In terms of severity, 31 (86%) reported that it was severe or highly severe. According to farmers in FGDs, there were different strategies used to reduce the infestation of termites. Cultural practices such as queen removal, smoking and flooding were largely practised on farmlands. Mostly, these cultural practices were effective when done in combination. In addition to these cultural control measures, chemicals were used by the agricultural office of the woreda where the severity was very high. But farmers have limited access and capacity to use chemical to reduce the problem of termites. In Lelisa Dimtu, there was blanket and wide application of chemicals when the land was owned by state farms 20 years ago. The household survey also confirmed the findings of the FGDs. From the total household heads that reported their farm was infested by termites, 93% have tried to control termites using various mechanisms. The major mechanisms employed include chemical, fumigation, digging mound and removal of the queen and flooding. Use of chemicals, and digging mound and queen removal were mentioned as the most effective mechanisms, but even in those cases almost half of the people classified their effectiveness as moderate (Figure 8). Similarly, 90% of farmers with termite infestation on their trees and fruits have employed control mechanisms. The mechanisms tried on trees and fruits include salt, animal dung and boiled water in addition to the mechanisms used for farms.As far as grazing land controlling mechanisms are concerned, about half (47%) of the farmers that reported termite infestation on their individual grazing land, said they tried at least one control mechanism. The main control mechanisms used were chemicals, digging mound and removing the queen and flooding. The remaining farmers have not employed any controlling mechanisms whatsoever. The main reasons mentioned for not applying control mechanisms on grazing lands include lack of effective control mechanisms, shortage of labour for applying the mechanisms and inaccessibility of chemicals.From the interviewed sample households, only one out of seven (15%) of the poor have applied chemicals. On the other hand, half (46%) and a third (33%) of the middle and betteroff wealth groups used chemicals, respectively. However, it is important to note that even if there are farmers that use chemicals from markets, the government has also distributed chemicals freely. Hence, this is not only related to purchasing power but also the ability to seek government services. In terms of applying digging mound and flooding for termite control, there is no remarkable difference (Table 14). Farmers underlined that the control mechanisms work only for those termite species that are sedentary. There was no control measure practice for those termites which did not have mound or queen in one place except chemicals. The main coping strategies employed by farmers to reduce the damage caused by termites are use of tolerant crops such as sorghum and finger millet. In addition, farmers cultivate local maize variety instead of the improved ones due to its relatively better tolerance to lodging and termite attack. Farmers harvest trees attacked by termites for home consumption before they are totally damaged.Farmers reported that termites have affected their livelihoods directly by damaging the crops and their houses and indirectly by decreasing the soil fertility of farmlands. Termites cause poor soil fertility due to land degradation and decrease the size of cultivated land by making the land non-productive. These have decreased crop production and productivity thereby constraining the livelihood of the community. Farmers reported that due to these effects of termites, the land was becoming less productive over the years and cost of production was also increasing due to increased demand for inorganic fertilizers to improve the soil fertility caused by the termites. Decreases in crop production and productivity due to land degradation added up with the direct damages caused by termites on crops to decrease farm income and household food security. For instance, from the households interviewed, almost all (96%) believed that termites have decreased their farm income, twothird (66%) thought that their household food security was threatened because of termites and a quarter (28%) indicated that it made them vulnerable to poverty.It is also reported by farmers that there is increasing outmigration due to poor soil fertility, shortage of land and poor agricultural productivity for which termites have contributed a lot. FGD participants said that in the last decade or so, there has been increasing termite infestation and decrease in crop productivity and livestock population; hence household food security has been increasingly under threat over those years.From the total households interviewed, 75% reported that they faced food shortages, mostly in the rainy season in the months of June, July and August. Households in all wealth categories faced food shortages (respectively 85%, 79% and 50% for poor, medium and better-off households).The frequently mentioned reasons for facing food shortage in ranking order were poor soil fertility (22%), termite damage (21%), land shortage (12%), oxen shortage (10%) and wild animal damage on crops (7%). Farmers have employed various coping strategies to cope the food shortage including reduced quantity of food per day and per meal, selling of animals and productive assets (Figure 9). At woreda level, there are government organizations involved in land, soil and termite management activities directly or indirectly. These are woreda office of agriculture, office of land administration, office of cooperatives and livestock agency which are under woreda administration (Figure 10). The office of agriculture has natural resource and extension teams. The natural resources (NR) team is responsible for coordinating activities related to soils fertility improvement and soil and water conservation and directly works with the NR DA at kebele level. The extension team is also responsible for carrying out activities in the area of crop production and protection which includes termite management. At kebele level, this team works with the crop DA. The woreda office of land administration is responsible for land management in the woreda and work closely with the natural resource (NR) team in the agricultural office and the NR DA at kebele level. The woreda livestock development agency is responsible for coordinating livestock development activity and works directly with the livestock. The cooperatives office provides technical support in organizing farmers in cooperatives and get various credit and input provision services including that of soil fertility and weed and pest management inputs. At kebele level there are agents that support farmers to be organized into groups and cooperatives.At community level, various formal and informal local institutions have a direct and indirect role in land, soil and termite management (Table 15). The kebele is the biggest formal government structure for managing development and administration activities at the local level. There are zones under the kebele followed by gares. The final formal structure is shene which comprises five households. Among others, these formal structures are being used to mobilize the community for development activities. There are also other formal institutions such as cooperatives, and farmer and women associations which are not part of government formal structure. Informal institutions include 'edir', 'equb', 'debo', 'wonfel' etc. These support various collective actions and resource sharing and provision arrangements such as finance, labour and information. Can be used to apply queen removal and flooding and also for land preparationThere is one NGO in the woreda, Mekaneyesus, working on termite and land management and livelihoods improvement. Ghibe Didesa union provides agriculture inputs to cooperatives. There is no strong private sector in the woreda. Wollega University and Bako Agricultural Research Center conduct research on agricultural problems in the woreda.In the household survey, households were asked for their involvement and frequency of participation in these institutions. From the interviewed households respectively 80%, 61% and 52% reported that they have participated in edir, debo and farmer groups. Their frequency of involvement also varies by type of local institution (Figure11). In general, however, farmers perceive these institutions are important for collective action including soil and water conservation, soil fertility and termite management. Some institutions have indirect roles in improving soil fertility through mobilizing cash resources for buying or coordinating provision of inputs such as inorganic fertilizers. Others have direct role in soil fertility through labour contribution to cultivation practices or constructing soil and water conservation activities. Some local institutions have a role to play in termite management by mobilizing labour for digging mounds while others could have role in mobilizing cash or provision of chemicals for termite control.In terms of role in termite management, farmers reported that local institutions such as debo, wonfel, gare and shene can be used to mobilize labour and are helpful for applying labour based control mechanisms such as queen removal and flooding. Likewise, institutions that help to mobilize cash or facilitate credit services such as equb and saving credit organizations can help farmers to get money for buying chemicals. On the other hand, institutions such as cooperatives can facilitate provision of various inputs. Other local institutions such as edir can be helpful in disseminating information and technologies on various issues including land, soil and termite management. But, currently, the role of these institutions is limited despite their potential.Involvement of households in local institutions has some variation by wealth groups (Figure 12). For instance, a higher number of better-off farmers were members of a cooperative, followed by medium wealth group farmers. This may be due to involvement in the work of cooperatives that requires money and capacity to buy and use inputs. On the other hand, a higher number of poor farmers has engaged in Debo which requires only contribution of labour. There is no significant difference in involvement in edir by wealth group as it is culturally important institution for all segments of the society. It was reported that women have a substantial role in soil fertility and land management activities, despite their limited decision-making power in application of soil, land, and termite management techniques.Women have a major role to play in managing manure and crop residues. They are mostly responsible for collecting and storing animal dung for the purpose of firewood and soil fertility. Besides, as the manure is mostly used around homestead, women are responsible for applying it on the backyard. Women also collect the crop residues from the field for animal feed and firewood. It is a common practice for farmers to leave the crop residue on the farm and allow the cattle to feed. Some farmers collect and conserve it for seasons when there is feed shortage. In terms of decision-making, women can decide by themselves on use of crop residues whether it should be used for animal feed or fuel. However, in terms of manure, the decision is made jointly by the husband and wife. In the use of organic fertilizer, both males and females have roles. But the decision on how much and when to use is decided by the man.In terms of termite management, women have a limited role in selecting and applying control mechanisms in farm and grazing lands. Similarly, the decision on what type of mechanisms to be used is made solely by men. However, at homesteads especially when termite is attacking the house women apply various control mechanisms such as boiled water, gasoline, salt, fumigations and various spices. It is reported that in these cases, women do not need to consult their husbands. In soil and land management, women have roles in applying various mechanisms. It is reported that they contribute labour or prepare food and drinks for mobilizing labour. The men play pivotal role both in terms of deciding and applying the type of land and soil management practices (Table 16). In summary, women have access to the use of crop residues and manure for animal feed and fuel. However, they need to discuss this with their husbands especially in terms of the manure which has major role in soil fertility management. Similarly, women play a role in the application of inorganic fertilizer, but the decision for using it belongs to men. In terms of termite management, women's access and control seems to be limited for farmland and grazing land, but they have better access and control over termite management around the homestead (mainly related to women who stay around homestead and manage household chores). Women also have a role to play in soil and land management practices even if they do not have decision-making-power on the type of practices for the household to adopt.4 Conclusions and recommendationsThe study areas are predominantly mixed crop-livestock farming systems where crop production is the main source of livelihood followed by livestock production. Cereals, especially maize and sorghum, are largely cultivated. There are limited leguminous crops mainly common beans followed by groundnut and sesame in the lowland areas. Perennial crops such as coffee, sugarcane, and fruit trees such as mango, avocado, and banana are also cultivated. In general, use of improved agricultural technologies and practices is limited, but has shown an increasing trend in recent years. Agricultural input use is highly affected by wealth status of farmers due to the skyrocketing prices. In terms of application of agricultural inputs such as improved seed and inorganic fertilizer, farmers give priority to maize. Likewise, use of organic fertilizer is widely practised though it is mainly applied for maize crop around the homestead. Farmers in the study areas practice various cropping systems such as row planting, mixed cropping and crop rotation. Major constraints of crop production identified by farmers include termite infestation, poor soil fertility, weed, vertebrate pests, and lack of irrigated land.Livestock production is the second most important source of livelihood in the study area. Farmers mostly reared cattle, goat, sheep, donkey and poultry. Crop residues and grazing land are the main source of animal feed. But farmers reported that there is feed shortage in dry seasons due to termites and shortage of grazing land. Over the years, there has been decrease in the size of the grazing land and livestock population. In general, farmers use cattle manure for improving soil fertility. However, due to decrease in the number of livestock population, the amount of manure incorporated into the soil is decreasing thereby affecting the soil fertility in the area.There is high soil and land degradation in the study area due to undulated topography and lack of appropriate soil and water conservation practices. Furthermore, termite infestation, deforestation, and limited use of organic manure and blanket application of inorganic fertilizers and other chemicals have exacerbated the land and soil degradation problems. Farmers in the study area have tried to apply a number of soil fertility management practices. Organic and inorganic fertilizer application, crop rotation, intercropping and fallowing were practised by farmers to improve soil fertility on individual farmlands. Farmers reported that corralling, compost, and manure were the most effective soil fertility management practices not only for improving soil fertility but also for reducing termite infestation.Crop residues are used for various purposes such as feed, soil fertility, cooking, lighting and house construction. In the study area, farmers are using crop residues of maize, sorghum and sesame in the lowland areas and teff, finger millet, and beans in the mid highlands. There are general preferences in the use of crop residues. For instance, maize and sorghum are preferred for firewood for cooking, beans and sesame for soil fertility and millets and teff residues for livestock feed. However, in practice there are no such demarcations and farmers are using the crop residues in multiple ways.Agricultural water management activities are mostly restricted to using rivers for irrigation through traditional ways. There are few farmers using underground and above ground water for agricultural development by other mechanisms except river water. Similarly, there have been limited efforts to conserve water for agricultural purposes despite current initiation to start soil and water conservation activities.Termites are a major problem affecting crop lands, rangelands and homestead. The problem of termite was there for long time; but it has been especially severe in the area for the last 15-20 years. According to farmers' perceptions, the reason termite becomes a serious problem is mainly soil degradation, overgrazing and deforestation. Based on farmers' classification of using body size, head colour, feeding habit and mound formation, there are two types of termite's species in the study area. Termites damage almost all crops and trees. However, there is difference in terms of tolerance to termite attack. For instance, maize, teff, coffee, sugarcane and eucalyptus are reported to be most susceptible. On the other hand, sorghum, finger millet, sesame, and common bean, are relatively more tolerant. It is reported that tuber and vegetables have higher tolerance to termite attack and improved crop varieties are more susceptible than the local ones.The most frequently used termite control mechanisms in the study areas are cultural practices such as queen removal, smoking and flooding. Mostly, these cultural practices were reported to be more effective when done in combination specifically for sedentary termites.In addition to these control measures, chemicals were used by the agricultural office of the woreda in areas where the severity was very high. But farmers reported that they have limited access and capacity to use chemicals.Termites have affected farmers' livelihoods directly through damaging the crops and their houses and indirectly by decreasing the soil fertility of farmlands. In terms of the latter, termites have led to poor soil fertility due to land degradation and decreased the size of cultivable land by making the land non-productive. These have decreased crop production and productivity thereby affecting the livelihood of the community. Farmers reported that due to these effects of termites, the land was becoming less productive over the years and cost of production was also increasing due to more demand for inorganic fertilizers to improve the poor soil fertility. The decrease in crop production and productivity due to land degradation added up with the direct damages caused by termites on crops has affected farm income and household food security.Both formal and informal institutions play a role in soil, land and termite management. The formal structure of woreda government has various departments dealing with soil and water conservation, land administration and pest management. There are also development agents at kebele level who are part of this formal structure and organize the implementation of these activities. At community level, there are formal institutions such as cooperatives and local institutions such as edir, equb, debo, wonfel etc. These institutions support various collective actions and resource sharing and provision arrangements such as finance, labour and information etc.Although termite management is mainly seen as a male activity, in general women have a substantial role in termite related activities, such as soil fertility and land management activities. Especially, in terms of the use of manure and crop residues, it is often women who play a key role in decision making. Moreover, many of these practices are applied directly near the homestead, which is often the domain of the woman; hence it is important to keep these gender aspects into account when designing interventions.1. Termites are symptoms of land degradation and poor soil fertility caused by a variety of factors (overgrazing, deforestation, soil erosion). To address this, we need to address the underlying factors.2. The issue of cause and effect is not clear to people and extension agents; this requires capacity building in terms of the underlying factors and how they are related.3. Single bullet solutions are not effective (for reasons mentioned above); we need an integrated approach that takes into account the system aspects of the problem. In general, this may mean a combination of cultural methods, soil and water conservation, soil fertility measures, protection etc.4. People need incentives to work on land degradation/termite infestation; we need to make clear what the costs are and what they can gain by working on these issues (and we need to measure this).Increased income resulting from higher production for feed or markets/food can work as a 'pull' factor that makes other things happen.5. In case of communal grazing area, the added value of 'feed' to cattle through better management of grazing areas may be an incentive, which lead to more cattle, manure, which in turn can be applied to crop field etc.; for crop farming, improved production can lead to higher income/food (e.g. maize), more residues etc. From these strategies, which ones were successful (put the number) 1) Highly successful --------------------2) Moderately successful ------------------------- Thank you for your time!","tokenCount":"9115"} \ No newline at end of file diff --git a/data/part_3/7080257088.json b/data/part_3/7080257088.json new file mode 100644 index 0000000000000000000000000000000000000000..5b1166729dbda3aa94ceb723b5e3dfc1217868b7 --- /dev/null +++ b/data/part_3/7080257088.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"022224fd61689f762b685c6b5e9725f9","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/00fcc5c1-3e8a-4173-bdb7-cbe3f68cc8d9/retrieve","id":"1973117161"},"keywords":[],"sieverID":"206d66af-6c30-4b4b-9d9b-f75f21e282a1","pagecount":"108","content":"In Bure, West Gojjam zone, Amhara region red pepper is a major cash crop which is mainly produced by smallholder farmers. The basic objective of this study was to analyze profitability of red pepper production, determinants of household's marketable surplus and the degree of market integration in major regional intermediate markets using primary data collected from households through semi structured questionnaire. The producers' survey result revealed that all farmers supply the product to the market and 85.3% of red pepper produced by the sampled farmers in the production year was supplied to the market. Farmers in the Woreda do not have any standard measure to identify the quality of pepper. They usually identify quality of red pepper by its color, pest damage, size, shape, odor and foreign matter. In the Woreda, the four largest traders handled 30.2% of the total volume of purchased pepper. Hence the structure of the pepper market in the study area was some what competitive. The profitability analysis also indicates that red pepper production was profitable. The average amount of red pepper supplied to the market by producers was 5.24 quintal with minimum amount of 0.5 quintals and maximum of 19 quintals. The variables that influenced the marketable supply positively were agricultural experience, access to credit, yield, land size, current year and lagged prices. Among the significant variables yield and access to credit were highly significant at less than 1% significant level. The result of market integration analysis also shows that pepper markets in the western part of the region were integrated. The major problems identified are low access to improved inputs, collateral problem to get credit, poor storage facilities and low price of produce. To solve these problems increased access to improved inputs, strengthening credit institutions, strengthening of cooperatives, education and training, price information and establishment of storage and processing facilities are recommended.First I would like to thank my major advisor Dr.Moti Jaleta for his constructive comments, assistance and guidance starting from the inception of the research idea up to the completion of the thesis. Without exaggeration, had it not been for his support and cooperative assistance the finalization of this thesis would have not been possible. Equal appreciation goes to my co-advisor Dr.Berhanu Gebremedhin for his advice, critical comments and for his fast response for all my requests starting from the proposal preparation up to the completion of the research.I am highly indebted to Dr.Yigzaew Dessalegn and Teshome Derso (IPMS project coordinators at Bure pilot learning Woreda) for their cooperative assistance, facilitation during data collection and other periods. I equally thank other members of IPMS-ILRI namely Muluhiwot Getachew and Birkie Enyew for their facilitation to all logistics and timely response for all my requests. I also acknowledge the Amhara National Regional State Investment Promotion Agency to sponsor me for post graduate studies to cover the tuition fee and IPMS for granting me to undertake the research work.I would like to extend my thank also to the Ethiopian Export Promotion Agency, Amhara The origin of garden culture can be traced as far back as 3000 B.C or beyond in Egypt.Historical evidence shows that by this time crops such as grapes, olives and onions had been brought under cultivation by the Egyptians and the technology ensuring their production such as land preparation, pruning, irrigation and others had also been used Mathew and Karikari, (1990). Production of fruit and vegetable crops has grown faster than that of cereal crops world wide Lumpkin et al., (2005). In addition to the contribution of valuable nutrients, vegetables add variety, taste, color, and texture to diets Rubatzky and Yamaguchi (1997).Pepper has its origin in Mexico and Central America regions. Nevertheless, the name stuck and he introduced the crop to Europe, and it was subsequently spread into Africa and Asia (Bosland and Votava, 2000).The marketing of agricultural commodities differs according to the commodity, the system of production, the culture and traditions of the producers and traders, and the level of development of both the particular country and the particular sector with in the country Georgy (1997). Therefore, studying agricultural marketing system with respect to the commodity calls for an understanding of the commodity peculiar marketing system and to make some measures in the way that improves its efficiency.A well developed market for food crops in developing countries like Ethiopia provides access to consumers who depend on the market for their food supplies and to farmers, who needs to shift from subsistence to market oriented production Lutez (1994). The transformation of the production system for domestic and export agricultural commodities requires the existence of efficient marketing system that can transfer the produced agricultural commodities from the point of production to the required market at the least possible cost. According to FAO (2003) the quantity of pepper consumed by an Ethiopian living in urban areas estimated to be 15 grams per day and the annual demand of pepper in urban areas amounts to be 56,431 tons.The two spice factories found in the country demand annually 7,722 tons of pepper when they work at full capacity. However, due to lack of supply of quality pepper in the market they operate below 50 percent of their full capacity Mulugeta (2004). In addition to having major role in Ethiopians daily dish pepper plays an important role in the national economy.The performance of the agricultural commodity marketing system in the region and in the country strongly influences the profitability of agricultural input use Mulat and Tadele (1998). Consequently, producers were not in a position to improve the level of production and productivity to the required level. Weak coordination of input, output, and credit markets affected the performance of agricultural marketing in the region too. In the region there are a number of spices that are mainly used in every kitchen for flavoring food.Red pepper is an important cash crop in the Amhara region. On average 68% of pepper production is for market in ANRS (CSA, 2009). It is a crop of high value in both domestic and export markets. Since it is a commercial and industrial crop, it generates employment to urban and rural workers. The main processed product, oleoresin, is exported to different countries and the spiced ground is supplied to local market. Oleoresin that is used for food coloring is extracted from red pepper for export purpose. The deep red colored cultivars have a very high processing demand in the country.The share of the region in the total production of red pepper in the country constitutes 25%, next to SNNPRS, which produces about 64% of the total production in the country CSA (2001/2002). In 2008/2009 production year the total cultivated land and production in the region was 41,069 hectare and 530,466 quintal respectively (CSA, 2009). The total amount of crop produced in 2008/2009 production year was 1,769,219 quintals in the study Woreda of which vegetables and red pepper accounts for 364,953 and 21,600 quintals respectively RDoA (2009).Recognition of critical role of markets in economic development led to sweeping market reforms across a number of developing countries. In spite of these reforms, symptoms of poorly functioning markets in much of Sub-Saharan Africa are evident in the segmentation of markets, low investment in the market infrastructure, the persistence of high margins and the limited progression towards more complex arrangements (Eleni, 2001).In developing country farmers are not getting the right share of consumer price because of excessive margin mainly because of inefficient and costly transport Colman (1995). Besides transport problems, majorities of agricultural products in Amhara region are small holders, and are not producing and selling their produce and agricultural inputs in an organized manner so that some of their benefit may transfer to the middlemen.Despite the ecological advantage, horticultural production in the country is very much limited.According to Dawit and Hailemariam (2004), vegetable crops are produced in the country through commercial and small farmers. However, the per capita consumption of horticultural products is probably the lowest in Africa.According to Wolday (1994), in Ethiopia the performance of agricultural marketing system is constrained by many factors such as: poor quality of agricultural produce, lack of market facilities, weak extension services which ignored marketing development, poor linkage of research and extension, absence of marketing information and intelligent services, excessive price and supply fluctuations, limited access to credit, inefficient handling including, storage, packaging and transportation problems. Farmers in Ethiopia in general and in Amhara region in particular are affected by low producer's price, on one hand, and high consumer's price, on the other hand. One of the reasons for this according to Wolday and Eleni (2003) is lack of proper transport facilities and other infrastructure services.The Ethiopian agricultural output markets are characterized by inadequate transport network, limited number of traders, inadequate capital facilities, high handling costs, inadequate market information system, weak bargaining power of farmers and underdeveloped industrial sectors (Jema, 2008). Farmers in Ethiopia are more focused on the production part without having adequate market information about their products.Agricultural marketing has become highly complex and difficult involving very large and long marketing channels, a large number of middlemen, many types of physical, social, economic and facilitating marketing functions and services. The majority of farmers are marginal, small, scattered, illiterate and unorganized. They do not have sufficient time, knowledge and skills for the scientific marketing of their produce. In the absence of well developed markets, marketing facilities, and marketing efficiency, farmers are at disadvantage by selling their increased marketable surplus to traders in the market as they get low prices (Thakur et al., 1997).Red pepper in Amhara region is produced for consumption and market. In rural areas red pepper is highly consumed not only in regular dishes but in other ceremonial events. In the region storage facilities, transportation, linkages with traders, quality controlling mechanisms, market information and price settings are weak and need to be further investigated (BoA,2004). Hence, to benefit producers and other marketing agents involved in the production and marketing of red pepper there is a need to have a well developed infrastructure to keep the product until it reaches the final consumer.According to IPMS (2007) farmers in the lowland area of the Woreda devote on the average about 0.5 to 1 hectare of land for pepper production annually. But, producers face so many interlinked problems such as poor market information and infrastructural problems (storage, transport and processing). Therefore, to solve production and marketing problems and increase the contribution of red pepper to generate additional income for producers and traders it was important to undertake this study.The major objective of the study was to conduct pepper marketing chain analysis in BureWoreda with the following specific objectives: To analyze the degree of market integration in major regional intermediate marketsThe study has focused on the overall market chain analysis of red pepper in Bure Woreda and major regional intermediate markets. The area coverage was limited to Bure Woreda with additional study in Bahir Dar and Debre-Markos to investigate the market integration between the spatially separated markets in the region. The study concentrated on the lowland areas of Bure with some inclusion of the mid altitude kebeles where pepper is produced. The major market participants (producers, intermediaries and consumers) supporting institutions were assessed thoroughly in relation to the different marketing mix in the production and marketing of red pepper (marketing channels, market direction, price formulation and, buying and selling strategies, storage, transport, information and finance). The limitation of the study was that the data collected to analyze market integration in the Western part of the region was restricted to Bure, Bahir Dar and Debre-Markos due to shortage of data on lagged monthly retail price of red pepper. Hence the study didn't incorporate all markets in the Western part of the region and Bure is considered as the source of supply.Analyzing the challenges in pepper marketing would indicate the gaps to improve pepper production and marketing and benefit policy makers and implementers in the area to fill the gaps. In addition to this it will also help to make appropriate marketing decisions by the producers, consumers, traders, investors, and others. The study also suggested strategies for smooth integration among production and marketing by referring to root causes for supply and marketing problems starting from production till the consumption of the product. The other benefit that could be anticipated is that its significance as a source material for further studies, which could be a major input to formulate appropriate marketing policies.This thesis contains five chapters. The first chapter deals with the introductory part. The second chapter deals with review of literature where the basic marketing concepts and relevant empirical studies are discussed. The third chapter of the thesis deals with a brief description of the study area and methodology of the research (data collection and analysis method) and the fourth chapter deals with results and discussion. The final chapter summarizes the findings of the study with some recommendation and policy implications.In this part of the study the basic concepts and definitions (market, marketing, marketing system, agricultural marketing, market channels, marketing margin, market integration, marketable surplus and supply, supply chain and market chain), fundamental approaches to marketing, and related empirical studies are discussed.Market: Originally the term market stood for the place where buyers and sellers are gathered to exchange their goods, such as village square. Market is an area in which one or more sellers of a given products/services and their close substitutes exchange with and compete for the patronage of a group of buyers. The term market mean the place where buying and selling takes place, an area in which a good is sold, a group of people carrying on buying or selling, or the commodity traded (Larson,1957).According to Kilingo and Kariuki (2001) market is defined as an institution within which the forces of demand and supply operate; sellers, and consumers are in constant communication, and there is change of title to goods and/or services. Potential consumers make up a market, which is people with the desire and with the ability to buy a specific product (Eric and Kerin, 2000). Kotler (1998) also defined market as a place that consists of all potential customers sharing a particular need or want who might be willing and able to engage in exchange to satisfy that need/want.Marketing is the process of bringing sellers and buyers together for the purpose of exchanging title to goods and services (Kilingo and Kariuki, 2001). According to Kotler (2003) marketing is defined as a social and a managerial process where by individuals and groups obtain what they need and want through creating and exchanging products and value with others.Marketing has basic productive value, in that it adds time, form, place and possession utilities to products and commodities. Through the technical functions of storage, processing and transportation, and through exchange, marketing increases consumer satisfaction from any given quantity of output (Mendoza, 1995).The American Marketing Association representing marketing professionals in the US and Canada states that marketing is the process of planning and executing the conception, pricing, promotion, and distribution of ideas, goods, and services to create exchanges that satisfy individual and organizational objectives (Eric and Kerin, 2000).Marketing system: Is defined as the sequential set of kinds or types of business firms through which a product passes during the marketing process (Branson and Norvell, 1983).Also they define marketing system as the totality of product channels, market participants and business activities involved in the physical and economic transfer of goods and services from producers to consumers. It is usually seen as a \"system\" because it comprises several, usually stable, interrelated structures that, along with production, distribution, and consumption, underpin the economic process (Mendoza, 1995).Agricultural marketing: Consumers spend a large amount of income on basic foods hence with the growth of urbanization the agricultural marketing system is expected to play a great role in linking the rural and the urban population. Agricultural marketing covers all the activities associated with the agricultural production and food, feed, and fiber assembly, processing, and distribution to final consumers, including analysis of consumers' needs, motivations, and purchasing and consumption behavior (Branson and Norvell, 1983).Marketing channels: Formally, a marketing channel is a business structure of interdependent organizations that reach from the point of product origin to the consumer with the purpose of moving products to their final consumption destination (Kotler and Armstrong, 2003). The channel system creates time, place, possession and form utilities. However the benefits of the channel system can not be enjoyed without an element of cost.A product may take many routes on its journey from a producer to buyers and marketers search for the most efficient route from the many alternatives available. The channel may be direct or indirect. In the direct channel a producer and ultimate consumer deal directly with each other. In the indirect channel intermediaries are involved between the producers and final consumers and perform numerous channel functions. To choose appropriate channel environmental factors, consumer characteristics, product type and the firm financial, human and technological capabilities determine (Eric and Kerin, 2000).Marketing margin: According to William and Robinson (1990) a marketing margin is defined alternatively as (1) the difference between the price paid by consumers and that obtained by producers (2) the price of a collection of marketing services that is the outcome of the demand for and the supply of such services.The most common methodology used in the past for testing market integration involves estimation of bivariate correlation coefficient between price changes in different markets. Despite its simplicity to test market integration the method fails to recognize the possibility of spurious integration in the presence of common exogenous trends like general inflation, common periodicity (agricultural seasonality or auto correlated and heteroscedastic residuals in the regression) with non stationary price data Baulch (1997)..In the mid 1980s several attempts were made to improve the earlier methods. The most important contribution to market integration analysis came from Ravalion (1986). Ravalion (1986) proposed a dynamic model of spatial price differentials. This method also has limitation in that it still involves serious problems that results in inefficient estimators, which are used for testing alternative hypothesis of market integration. To avoid these problems a new method called co-integration test was proposed for evaluating market integration (Engle and Granger, 1987). To study market integration Augmented Dickey Fuller (ADF) test and Engle Granger two step procedure of co-integration test are used (Kinde, 2007;Rehima, 2007) to analyze sesame and red pepper market integration, respectively in selected markets.In general, if there exists a stationary linear combination of non-stationary random variables, the variables combined are said to be co-integrated (Tsigas, 1991).Therefore, before testing for co-integration, it is important to test first individual time series for their order of integration. In this case, all individual variables should be stationary after first differences and non-stationary in levels.Many developing economies have been implementing structural adjustment and market reform programs. It has also been argued that food market integration is a pre-condition for the success of such liberalization. Producer marketing decisions are based on market price information, and poorly integrated markets may convey inaccurate price information, leading to inefficient product movements (Goodwin and Schroeder, 1991). Market integration indicates the co-movement and long run relationship among prices in different localities. Data on price, transaction cost, and trade flows across spatially separated markets are needed to measure the degree of integration between these markets. However, data on trade flows are not readily available; hence market integration is studied using prices. One of the structural problems observed in underdeveloped countries is poor market integration, the difficulty with which information and trade flows among spatially separated markets. Infrastructure, government policy, dissimilarities in production and supply shocks are the most important factors for market integration.In Ethiopia, since there are no or limited roads beyond the Woreda, to transport inputs and outputs from market to the farm and from the point of production to the market producers face a great problem. The communication network is also limited to urban areas and it is traditional to communicate with the change in the market situation especially to the side of producers that is why price decreases are easily transmitted but the increase in price are not fast to be disseminated. In addition to this storage facilities and processing industries are not well developed to preserve and add value to perishable raw materials and supply to the market consistently (Eleni, 2001).Supply and marketable surplus: According to Wolday (1994), market supply refers to the amount actually taken to the markets irrespective of the need for home consumption and other requirements whereas the market surplus is the residual with the producer after meeting the requirement for seed, payment in kind and consumption by peasant at source.Agricultural products differ from manufactured goods in terms of supply and demand. Supply is peculiar because of the seasonal biological nature while demand is relatively stable throughout the year.Empirical studies of supply relationships for farm products indicate that changes in product prices typically (but not always) explain a relatively small proportion of the total variation in output that has occurred over a period of years. The weather and pest influence short run changes in output, while the long run changes in supply are attributable to factors like improvement in technology, which results in higher yieldsMarket chain and supply chain: Agricultural commodities are produced by large numbers of farmers and consumed by large numbers of households. With the exception of food stuffs consumed on-farm or sold locally, they are bought and sold a number of times between the farm gate and the final consumer. While moving between these two points, the commodity is transported, stored, cleaned, graded and processed. Market chain is the path one good follow from their source of original production to ultimate destination for final use. According to Kotler (2003) supply chain is a longer channel stretching from raw materials to final products that are carried to final buyers. He shortly put as value-delivery network. Under a free market, supply chains for a commodity develop to reflect its production, marketing and processing characteristics. It is the overall group of economic agents (producer, trader, consumer, institutions or development organizations) that contribute directly in the determination of the final product (FAO, 2005). Supply chain is a sequence of firms that perform activities required to create and deliver a good or service to consumers or industrial users. It differs from a marketing channel in terms of membership.The most important characteristics of a marketing function is that its physical process or facilitating service which must be performed one or more times within the marketing system.The main marketing physical functions are assembling, grading, storing, processing, packaging, distributing and transporting.There are also facilitating functions (market research, product research and development, demand development, exchange services, finance and risk bearing and market information).The main approaches to study marketing are:In functional approach we look for the basic activities (functions) that have to be performed in marketing of agricultural commodities and the marketing of inputs for agricultural production.Functional approach studies marketing in terms of the various activities that are performed in getting farm product from the producer to the consumer. This approach helps to compare cost and benefits of different functions. The widely accepted functions are: a) exchange (buying and selling), b) physical (processing, storage, and transportation), and c) facilitating (standardization, financing, risk bearing, and market information). Most of these functions are performed in the marketing of nearly all commodities. Marketing of agricultural products consists primarily moving products from production sites to points of final consumption. In this regard, the market performs exchange functions as well as physical and facilitating functions.Institutional approach is concerned with the number and kinds of business firms, various institutions that perform the marketing activities. These organizations or people are middlemen who perform the operations necessary to transfer goods from the producer to consumer and inputs to the product. It covers all market participants (producer, assembler, transporter, wholesaler, retailer and consumer).Entails analysis of marketing functions, system and structure from the view point of an individual product. The approach follows the commodity along the path between producer and consumer and is concerned with describing what is done and how the commodity could be handled more efficiently. In a commodity approach, a specific commodity or groups of commodities are taken and the functions and institutions involved in the marketing process are analyzed.A process where by management systematically identifies the needs of customers and then creates a marketing program that will satisfy those needs. The approach was developed in school of business and has become the accepted methodology for studying the marketing of consumer products.Among the above mentioned approaches, since the study focus on a specific product, commodity approach has been used and the functions and institutions involved in the production and marketing of the commodity were analyzed.Pepper is an annual crop which grows at altitude ranging from 1400 up to 2100 meter above sea level (m.a.s.l.). Growing pepper requires soil that is well drained and rich in organic matter, as well as 600-650 mm rainfall. Depending on the area, harvesting starts 5 to 6 months from transplanting. Planting is carried out in the beginning of the main rain season. The red pepper is harvested when it is fully red and starts to dry. After harvesting, pepper is dried.Shade drying is recommended for high quality oleoresin. Red pepper and chill are the leading vegetable and spices grown in the country. The central Eastern and Southern Shoa, Western, North western Wollega, Gojjam and the Southern part of the country are the potential pepper producing areas.The total production of pepper in the country for the year 2008/09 Ethiopian main cropping season was estimated to be 1,834,026 quintals. In addition in Amhara region the total production was 530.466 quintal for the same year. Therefore the contribution of the Amhara region for the country production was 29%. The production of pepper in the region is dominantly by smallholder farmers using rain by traditional farming practice. Very small amount of pepper is being produced using irrigation and modern inputs such as fertilizer and improved seeds. Pepper is sold in all markets in the region in its whole form and in some towns it is sold grounded manually by petty traders in small groceries (Mulugeta, 2004).Virtually every country in the world produces pepper and it is highly demanded for domestic consumption in rural and urban areas. Accordingly, pepper alone accounts for 20 percent in the world spices trade (EEPA, 2007). Pepper is the world second important vegetable ranking after tomatoes and it is the most produced type of spice flavoring and color to food while providing essential vitamins and minerals. Peppers are common all over the world as dried, pickled or otherwise processed products. Pepper in Ethiopia is used for flavoring food and for production of oleoresin that used to color foods in the factories. Horticultural crop production in Ethiopia is supplementary to the main crops grown by small farmers in every small plots of land at a subsistence level, often managed by family labor. In Ethiopia there are a number of spices that are mainly used in every kitchen for flavoring food.More than 14 types of spices are grown in Ethiopia namely pepper, paprika, turmeric, fenugreek, garlic, korarima, coriander, capsicum, ginger, cardamom, blackcumin, whitecumn, and basil (Endosa, 1998). Among these spices ginger, fenugreek, red pepper, black cumin, and white cumin are found in the region. There are various kinds of pepper such as red pepper, black pepper, green pepper, white pepper, and chilly pepper. In Amhara region red pepper is mainly produced in15 Woredas of seven administrative zones BoA (2004). The major producing Woredas are Fogera, Dera and Libokemkem (South Gondar), Jabitehnan and Bure(WestGojjam), Alefa and Denbya (North Gondar), Gangway(Awi) and Kobo(North Wollo).The increasing populations of many tropical countries have led to a new awareness of the importance of vegetable crops as source of food, accompanied by the realization that many vegetables can supply essential nutritional materials which may not be readily available from other sources (Tindall, 1983). In his study entitled vegetables in the tropics on selected vegetables including various pepper species traditional and labor intensive practices are still of primary importance elsewhere in the tropics, where new and desirable technological developments can only be adopted if other resources become available.A case study in the highlands of Central Kenya revealed that the higher awareness of issues related to marketing of horticultural produce in Kenya is probably due to the existence of farmers groups. Farmers are aware of the existence of markets in major towns such as Nairobi and Mombassa. They are also aware of the major marketing companies who buy their produce for export (Muturi, 2001). The study identified inadequate irrigation, low rainfall, high input price and pests and disease as the major production problems. The marketing problems were low produce price, lack of market and transport constraints.The Ethiopian Institute of Agricultural Research (EIAR) has released five pepper varieties namely Marakofana, Bakolocale, Melkazala, Melkadema and Eshete. Among these species Marakofana and Bakolocale are widely used by farmers. Marakofana is about 19 cm height, it has a thick cover and irritating nature. This variety is highly demanded by spice factories like Ethiopian Spice Factory. Bakolocale variety has also red color and thin cover it is highly irritating and it has a total height of about 13 cm. In the ANRS a team of experts had been organized to study the Agricultural Commodity Marketing System of selected crops in 2004.Among the crops selected for the study, red pepper marketing system study was one of them.The study was conducted in 9 potential peppers producing Woredas among these; Bure was one of the target Woredas. The study results revealed that farmers produce pepper using local seeds with fertilizer, few farmers use compost with local seed.The research extension linkage is weak and despite the efforts made both at the Federal and Regional levels to promote the production and marketing of red pepper. As a result agroecology based research centers are opened. Generally, the research extension system is supposed to be reoriented till it is able to play a role towards creating market oriented agricultural production. Accordingly ten commodity zones were identified for about 18 commodities which have high commercial value in the international and domestic market including red pepper.The Ethiopian Export Promotion Agency (EEPA, 2003) also carried out a spice potential market study in Amhara, Oromia and SNNPRS, and identified that the land coverage for pepper in the three regions. According to the study results pepper production accounts for 34% of the total spices production in the three regions.A number of studies pointed out factors that centrally affect marketable supply of agricultural commodities. For example, Wolday (1994) identified major factors that affect teff, maize and wheat at Alaba Siraro District. He studied the relationship of farm level marketable supply of the cereals using cross-sectional data. To capture the influence of the independent variables on the marketable supply of food grain, he adopted multiple regression analysis with both dummy and continuous variables as independent variables. He found out that the size of output, access to market and family size had affected marketable supply of food grain.In related studies, Rehima (2007) identified that the major factors that affect marketable supply of pepper at Alaba and Siltie of SNNPRS using cross-sectional data with both dummy and continuous independent variables. To identify the variables, Rehima (2007) study revealed that market distance, quantity of pepper produced, frequency of contacts with extension agents and access to market information influenced marketable supply of red pepper.Kindie ( 2007) identified major factors that affect marketable supply of sesame in Metema woreda using cross-sectional data. His study revealed that the amount of productivity of sesame, number of oxen owned, number of languages spoken by the head of the household, modern inputs used, sesame area, and time of selling of sesame influenced marketable supply positively. Similarly, Wolelaw (2005) identified the major factors that affect the supply of rice at Fogera Woreda using multiple linear regressions as a model to study the relationship between the determining factors of supply and the marketable supply of rice. His study revealed that the current price, lagged price, total amount of rice production in the farm, consumption in the household and weather had affected marketable supply of rice. Hence, difference in the marketing system of these commodities, type of commodities, and location of the study area can result in differences in factors affecting marketable supply of the commodities.Agriculture in Ethiopia constitutes the larger proportion in GDP (50%). The contribution of spices in the total foreign exchange earnings is extremely low. Among the spices pepper, ginger, black and white Cummins accounts 81% out of the total spices foreign exchange earnings. Out of the 81% red pepper accounts 28% in the spice trade (EEPA, 2003).The detail import and export of uncrushed and grounded pepper is indicated in Table 1 and Table 2. East Wollega Zone of the Oromia Regional State and Metekel Zone of the Benishangul-Gumuz Regional State. Therefore, Bure has a good opportunity to sell its agricultural products to different regional states.The topography of the Woreda is 76% plain, 10% mountain, 7% undulating and 7% valley.The climatic condition is 1% highland, 77.23% mid altitude and 21.77% lowland. The total area of the Woreda is 72,739 ha and 46.6% of the Woreda is cultivated. The average household cultivated land holding is about 1.6 ha. At present the Woreda is divided into 19 rural peasant associations (PAs) and 5 town associations. Among the 138 Woredas found in the region, Bure is one of the consistently surplus producing Woredas including production of red pepper. Bure is also one of the pilot learning Woredas of Improving Productivity and Market Success (IPMS) of Ethiopian Farmers Project which is currently working in improving the productivity and marketing success of Ethiopian farmers through value chain development and knowledge management approaches. The diversified agro-ecology of the area creates an opportunity for the production of different crops such as cereals, pulses, oil crops, vegetables, spices and perennial crops.From the total area of the Woreda, 33,865 hectare of land was used for annual crop production in 2008/2009 production year; from the total arable land 1,800 hectare cultivated land was allocated for pepper production (BoA, 2009). From the total land allocated for red pepper production 21,600 quintal red pepper has been produced in the production year. The sources of data were both primary and secondary sources. The whole situations of the marketing system from the producing farmer up to the end consumer were assessed thoroughly through rapid market appraisal and formal survey.Data were collected on production, buying and selling, pricing, input delivery and distribution, market participation, problem and opportunities and characteristics of the market.The detail data collection methods were:Primary data collection method: The Primary data was collected at all levels of the marketing chain that includes producers, traders (wholesalers, retailers, rural assemblers and brokers), cooperatives and supporting institutions such as rural development office, trade and industry office and SMES through structured and semi-structured questionnaire individually and through focus group discussion using a checklist to guide the discussion in each samplePAs and in Bure and Kuche towns.Secondary data collection method: Secondary data were also collected on the number of wholesalers and retailers, monthly lagged retail price of pepper, total land used and production, input used, annual volumes of sales, purchases and storage time. The secondary data sources were Regional BoA (West Gojjam Zone Agricultural Development Department and Bure Woreda office of agriculture), research centers, Bureau of Finance and Economic Development, primary and secondary cooperatives, cooperative promotion team, Trade and Industry offices and Small and Micro Enterprises (SMES).In addition to the questionnaire survey, an informal survey in the form of Rapid Market Appraisal (RMA) technique was employed using checklists for both farmers and traders to obtain additional supporting information for the study.To choose an appropriate sample size mainly four factors are taken into consideration these are: level of confidence (Z), margin of error (E), variability of the population(s) and the number of groups within the samples (David and George, 1983). In addition to this the degree of precision desired, method of analysis, objective of research, cost, and time determine the type and size of the sample to be adopted. The sampling methods that were adopted for the study are presented below.To select producers a multi-stage sampling technique was used. In the first stage a stratified sampling method has been used and pepper producing PAs were categorized as lowland and mid altitude agro-ecology. In the second stage among pepper producing PAs, five PAs were selected randomly (3 PAs from low land and 2 PAs from mid altitude) because the number of producers in low land areas was higher than the mid-altitude areas. In the third stage among the households that exist in the five PAs 120 producers were selected using proportionate random sampling technique and interviewed. For focus group discussion 6-10 farmers were selected with the DAs and Kebele leaders in each PAs to supplement the individual interview.Traders (wholesalers, retailers, brokers and rural assemblers) were selected randomly from the total list of traders in Kuche 1 and Bure town. The total number of traders interviewed was 30 (6 wholesalers, 17 retailers, 5 rural assemblers and 2 brokers). To interview traders an independent questioner has been prepared and used.Kuche 1 is a small town found about 28 km from Bure towards Eastern Wollega Source: Own computation from traders list, 2009The data analysis method was both descriptive statistics and econometric model. The descriptive statistics includes percentages, ratios, means, variances and standard deviations in the process of examining and describing marketing functions, farm household characteristics, resource ownership, role of intermediaries, market and traders characteristics and profitability of pepper production. In the econometric model determinants of marketable supply of red pepper and market integration are analyzed using OLS and Augmented Dickey Fuller (ADF) test respectively.The (S-C-P) model is an analytical approach used to study how the structure of the market and the behavior of sellers of different commodities and services affect the performance of market, and consequently the welfare of the country as a whole (Kizito, 2008). The model examines the causal relationships between market structure, conduct, and performance, and is usually referred to as the structure, conduct, performance (S-C-P) model.The Harvard School, also known as Bain's group, established the industrial organization framework based on a paradigm known as Structure -Conduct -Performance (S-C-P) in the early 1950s. The Harvard School framework is sometimes called Traditional Industrial Organization. It is based on the theory that the structure of a market (S) determines market conduct (C), which then determines market performance (P), and that higher concentration ratios generate welfare losses by competition restricting activities.Market structure includes the characteristics of the organization of a market that appear to exercise a strategic influence on the nature of competition and pricing within the market.Market concentration refers to the number and relative size distribution of buyers/sellers in a market. It is generally believed that higher market concentration implies non-competitive behavior and thus inefficiency.Concentration ratio is a numerical index widely used by industrial organizations for measuring the size of firms in market (Shughart, 1990). Kohl and Uhl (1985) suggested that as rule of thumb, a four largest enterprises concentration ratio of 50 percent or more is an indication of a strong oligopolistic industry, 33-50 percent, a weak oligopoly, and less than that, indicates non-concentrated industry. The problem associated with this index is the arbitrary selection of the number of firms that are taken to calculate the ratio and the ratio does not indicate the size difference of the firms.The greater degree of concentration is the greater the possibility of non-competitive behavior existing in the market. For an efficient market, there should be sufficient number of firms (buyers and sellers). The method used to study the structure of the market was as follows:Where S i = market share of buyer i V i =amount of product handled by buyer iWhere C-concentration ratio S i -percentage share of the i th firm m-Number of largest firmsMarket conduct refers to the patterns of behavior that enterprises followed in adopting to the markets in which they sell or buy. The principal dimensions of market conduct according to Raid (1987) include price setting, the manner in which the value and quality ranges of products are determined, advertising and marketing strategy, research, development planning, implementation, and legal tactics.To study market conduct there are no agreed upon procedures for analyzing the elements. The existence of formal and informal producing and marketing groups; the availability of price information and its impact on prevailing prices; and the feasibility of utilizing alternative market outlets pricing, buying and selling practices were assessed.Scott (1995) argued that performance as well as the integration of markets is the result of the actions of traders and of the operating environment determined by the infrastructure available for trading and policies affecting the price transmission from one market to another. To analyze the performance of the market, marketing margin and co-integration were used.Market performance refers to the composite of end results which firms in the market arrive at by pursuing whatever lines of conduct they use that results in the dimensions of price, output, production and selling cost, product design, and so forth (Wolday, 1994).As Mendoza (1995) argued, when there are several participants in the marketing chain, the margin is calculated by finding the price variations at different segments and then comparing them with the final price to the consumer. The consumer price is then the base or the common denominator for all marketing margins. Computing the total gross marketing margin (TGMM) is always related to the final price or the price paid by the end consumer and expressed as a percentage. Net Marketing Margin (NMM) is the percentage over the final price earned by the intermediary as his net income once the marketing costs are deducted.A marketing margin is the percentage of the final weighted average selling price taken by each stage of the marketing chain. The total marketing margin is the difference between what the consumer pays and what the producer/farmer receives for his product. In other words it is the difference between retail price and farm price (Cramers and Jensen, 1982). A wide margin means usually high prices to consumers and low prices to producers. The total marketing margin may be subdivided into different components: all the costs of marketing services and the profit margins or net returns. The cost and price information obtained from the survey were used to evaluate the gross marketing margin. The method of analysis of marketing margin was as follows: The TGMM is useful to calculate 'producer's gross margin' (GMMp) which is the portion of the price paid by the consumer that goes to the producer. The producer's margin is calculated as: (5)To estimate profitability of red pepper production all variable costs for red pepper production were considered. Dejene (2008) studied the profitability of extension package inputs for wheat and barley in Ethiopia. He employed simple calculation of value-cost-ratio (VCR).The unit of analysis is hectare of land. Hence, for this study the gross margin/gross profit was calculated by deducting the total variable cost (VC) from the total revenue as follows:Where P = price of produce Q= Total production per hectareV= Value of production (price times Quantity)C= Total cost of productionIn this part of the analysis factors affecting marketable supply was analyzed. In this study, multiple linear regression model is used to analyze factors affecting red pepper market supply in Bure Woreda. The model used for the analysis is specified as:β α (7) Where: Y = quantity of red pepper supplied to market The parameter estimates of the above model may not be Best Linear Unbiased Estimator (BLUE) when some of the assumptions of the Classical Linear Regression (CLR) models are violated, thus, it is important to check the presence multicollinearity among the variables that affect supply of red pepper in the area.There are two measures that are often suggested to test the existence of multicollinearity.These are: Variance Inflation Factor (VIF) for association among the continuous explanatory variables and Contingency Coefficients (CC) for dummy variables. To detect multicollinearity problem for continuous variables, variance inflation factor (VIF) defined as:As a rule of thumb, Gujarati (2004) states that if the VIF value of a variable exceeds 10, which will happen if 2 j R (explained variation) exceeds 0.90, then, that variable is said to be highly collinear. Therefore, for this study, variance inflation factor ( ) VIF is used to detect multicollinearity problem for continuous variables. On the other hand, contingency coefficient is used to check multicollinearity of discrete (dummy) variables. It measures the relationship between the raw and column variables of a cross tabulation. The formula for contingency coefficient is as follows:Where, CC is contingency coefficient, 2 χ is chi-square value and N is total sample size. The decision criterion with the contingency coefficient is that if the value of CC is greater than 0.75, the variables are said to be collinear (CC > 0.75).The most important factor which increases marketed surplus significantly is the increased production or output followed by consumption and payments in kind which should be reduced to keep up the quantity of marketed surplus of food grains (Thakur et al., 1997).Quantity Supplied (QUA SUPP): It is a continuous variable which represents the amount of red pepper supplied by the household to the market measured in quintals in 2008/2009.1. Yield (YIELD): Farmers who produce higher output are assumed to supply more to the market than those with lower product. It is a continuous variable measured in quintals per household and assumed to affect the marketable supply of red pepper positively. According to Butler and DNIVA (2005), yield can have serious and unpredictable consequences on the supply.The total land used for red pepper production was measured in terms of number of hectares the household owns and it was expected to affect the household level of red pepper marketable supply positively because, a producer who owns a large area of land for red pepper production than a producer who own less area of land and under the same input utilization condition can produce more.Current year price was expected to affect the marketable supply of red pepper positively because prices stimulate marketable supply. If the current market prices are low producers store the produce until the price rises after meeting their immediate needs.Lagged market prices at all levels (rural and urban markets) were also expected to affect supply positively because of their incentive and disincentive effect in production. This variable is also measured in birr per quintal. Positive relation of lagged prices is expected with marketable supply of red pepper. In general, if prices were relatively high in the previous years, there is a possibility of increasing land for pepper production and hence the amount produced.Distance to the market is a continuous variable measured in kilometers from the household residence to the market centers. The closer the residence of the household to the rural market center, the more is the quantity of marketable supply. The assumption here is that the closer a household is to the market, the more the household is motivated to produce red pepper and supply it to the market. Therefore, this variable was expected to have an inverse relationship with marketable supply.Access to credit is measured as a dummy variable taking value of 1 if the farmer had access to credit and 0 otherwise. This variable was expected to influence the marketable supply of red pepper positively on the assumption that producers use the credit for production purpose.This variable was measured as a dummy variable taking a value of 1 if the farmer had access to market information and 0 otherwise. It has been hypothesized to affect marketable supply of red pepper positively. Producers that have access to market information are likely to supply more pepper to the market than informed producers.It is a continuous variable measured in years. A farmer with longer period of experience in production was assumed to have a better knowledge than who has a lower experience in agriculture because through time producers acquire skill about marketing and supply better than those who are less experienced. It was also assumed that as age increases the production capacity will decrease and amount produced and marketed supply decrease.Hence, both inverse and direct relation was assumed to the amount supplied.A household with more number of family members is assumed to supply less amount of red pepper to market than those households with relatively less number of family members because of the increase in consumption. Households with large family size may produce more and supply more. Hence, in this study either positive or negative relation between family size and marketable supply of red pepper was expected.This variable is a dummy variable taking a value 1 if the household head has a formal education and 0 if a farmer has no formal education at all. Education increases farmers' ability to get and use information. Since households who have better knowledge are assumed to adopt better production practices, this variable was assumed to have positive relation with marketable supply of red pepper.This variable was measured as a dummy taking a value of 1 if the household head has contact with a development agent and 0 otherwise. Extension service was expected to have positive effect for market participation through its stimulation of production and productivity. Farmers that have frequent contact with DAs will have better knowledge to produce and market their product.12 Agricultural experiences (EXP): This continuous variable measured by number of years stayed in red pepper production which is different from age influence market participation positively. Household with better experience in red pepper production was expected to produce more amount of red pepper than those with only less experience and, as a result, it is expected to supply more amounts to market. Therefore, experience in red pepper production was expected to have a positive relation with marketable supply.13 Number of oxen owned (OXEN NO): It is a continuous variable which is expected to influence production participation then by supply positively. It was expected that participation probability of farmers to supply pepper would increase as farmers increased their number of oxen because even if there is a limited land there will be proper and timely land preparation then by increase in productivity. Kindie (2007) found that the number of oxen owned by the household affected the marketable supply of sesame in Metema woreda.It is a dummy variable that shows income obtained from non-farm activities by the household head. Income from non farm activities was assumed to have inverse relation with market supply because farmers will have alternative sources of income to cover tax, loan and other social requirements and then decrease the supply.To analyze market integration Augmented Dickey Fuller (ADF) for unit root test for each price series and residuals and Error Correction Model (ECM) were used to analyze the short run relationship and speed of price adjustment.Before we conduct co-integration test, we need to examine the univarate time series properties of the data and confirm that all the price series are non-stationary and integrated of the same order. It is performed by ADF test developed by Dickey andFuller (1979, 1981). The test of market integration is forward if Y t are stationary variables. Often, however, economic variables are non-stationary in which case the conventional tests are biased towards rejecting the null hypothesis. A stationary series is defined as one whose parameters that describe the series (namely the mean and autocorrelation) are independent of time or rather exhibits constant mean and variance and has autocorrelations that are invariant through time. The null hypothesis is that there is a unit root in the process {(p-1) = 0, implies p = 1}. Hence the modified DF test will be used. The general form of this test's regression is as follows: The null hypothesis in the ADF test is also unit root (ρ =1). The number of lagged values (n) is chosen so as to ensure that the residuals are white noise. The null hypothesis is that the series Y t is integrated of order one, I (1) and the alternative hypothesis is that the series is of order zero, I(0).Due to non-stationary nature of many economic time series, the concept of co-integration becomes widely used in econometric analysis. Co-integration is an econometric technique that allows the identification of both the degree of integration and its direction between two markets. After we conduct stationary test on each price series, co-integration test will be conducted between the price series which are stationary at their first difference and nonstationary at their level using OLS by taking one market price dependent on the other. The residuals are also obtained from the co-integration regression and tested for stationary in order to see the long run relation using ECM as follows:Where:Y t = the price at market Y during period t X t = the price at market X during period t ∆V t = ordinary least squares residual that can be interpreted as the deviation of Y t from its long run path.k= the lag lengthThe fact that two series are co-integrated implies that the integrated series move together in the long run. Hence, price in different markets have co-movements if the markets are integrated. Therefore, testing co-integration of two price series is sometimes believed to be equivalent to detecting long run market integration. Engle and Granger (1987) The socioeconomic characteristics of farmers considered so far are type of houses, land use pattern, cropping pattern, livestock holding and off-farm income as shown in Table 6. Land use pattern and farmer's sources of non-farm income are indicated in the Appendix Table 1 and 6 The survey result indicates that the sampled traders were on average 33 years old and 4 years of average experience (minimum 1 and maximum 10 years). Religious of traders were 90% w Orthodox Christians while the remaining were Muslims. Table 7 summarizes the demographic characteristics of traders. In Amhara region red pepper is mainly produced in 15 Woredas of the seven administrative zones (BoA, 2008(BoA, /2009)). The proportion of pepper being produced by irrigation is less than one percent as compared to the total production (BoA, 2002). Irrigation is best practiced in North and South Wollo and Oromia zone. Eighty five percent of the sampled farmers practice intercropping. The main crops used for intercropping were onion (35%), onion and black cumin (16%) and 14% with soybean.All the sampled farmers in Bure Woreda produce red pepper using rain fed agriculture. The trend of production over the 2004/2005-2008/2009 period is presented in Table 8. As indicated in the table there was a variation in productivity at national, regional and woreda level productivity due to the change in climatic condition over the periods. Productivity was the highest in 2005/2006 production year for both national and regional data and 2007/2008 was the highest period for the Woreda productivity. The main concern here is about the red pepper post harvest handling, when pepper is harvested when dried and its post harvest handling methods. Without checking whether it is uniformly dried or not, farmer's stored red pepper in sack or traditional container called \"gotera\" which is highly vulnerable to insects and rodents.According to the survey, the storage materials that 82% of the farmers used were by filling in sack and put in Kot 1 the rest use gotera 2 . Farmers on the average store red pepper for 222 days with a minimum of 30 days and maximum of a year. Different factors initiate farmers to store red pepper as indicated in Table 11. Farmers dry red pepper in a floor which is liable to dust and other foreign matters. In addition to this, some farmers dry red pepper at the top of their house that leads to over drying and decrease its pungency. According to the scientific researches conducted harvested red pepper should be dried uniformly until its moisture content reaches 11%. Access to services such as credit, agricultural extension, market information and transport are the most important factors that promote production and productivity thereby increasing marketable surplus and ultimately farm income.___________________________________________________________________________ Kot 1 a wooden made long height table gotera 2 an oval shaped storage material made from mudFinance is the crucial element starting from land preparation up to the marketing of the product. The study result revealed that only 16% of producers had access to credit at an annual interest rate of 12.5%. The main objectives of the credit were to purchase fertilizer (63%) and improved seed (25%). The amount of credit ranges from 1500-3000 birr for a production year and 93% of the respondents mentioned that the credit was not sufficient for pepper production. The only source for credit was Amhara Credit and Saving Institution.The study result indicates that 95% of sampled households had contact with development agents in relation to pepper production. The extension services provided were about production, input use, seedling raising and post harvest handling. In addition to the development agents, 80% of the sampled farmers have got extension services from office of agriculture and innovative farmers.Each sampled PAs has at least one development agent. Among the sampled PAs two PAs have two development agents graduated from different disciplines (Plant science, animal science and natural resource). The frequency of extension services provided for producing farmers is indicated in Table 12. The distance from the producing farmers up to the extension agent was on average 1.74 km. The availability of well functioning transport network is very important because it creates place utilities of the product. It there by allows farmers in surplus areas to profit from better prices from other markets and also consumers in deficit areas benefit from lower prices by transporting from surplus areas. According to the survey result, the sampled farmers use pack animals, animal pulled carts, and car to transport the product as indicated in Table 13.In the study area, the average distance farmers traveled to transport the product to market was 6 km because of the existence of markets other than Bure. The major markets farmers used to supply the product to the market were Bure and Kuche. From Table 14 it is possible to generalize that there is a significant difference in between producers with access to credit services and with no credit services at 10% significance level to supply the product. But since almost all producers had got market information there is no significant difference in this variable to supply the product. In addition to this access to transport had no significant effect whether producers were found in the near by market or far they supply the product being the main marketable commodity for producers in the woreda.Production of perishable crops like vegetables requires efficient marketing system. The efficiency of the market could be in the speed with which the product reaches the ultimate consumer, prices and quality. The number and sizes of enterprises within the system, how the market behaves and the overall performance of the market are analyzed as follows:The salient features of market structure are: the degree of sellers and buyers' concentration, the degree of product differentiation among the outputs of the various sellers in the market, and barriers to entry or freedom to entry and exit from the market. Market structure is analyzed based on the numbers and sizes of enterprises within the system, and the potential access of additional participants to it (licensing procedure, lack of capital and know how, and policy barriers) and the degree of transparency (Pender et al., 2004). In this study, the structure of the pepper market is characterized by pepper market participants, marketing channels, market concentration, and degree of transparency and entry conditions.The main actors involved in red pepper marketing were producers, wholesalers, retailers, brokers, rural assemblers, cooperatives and consumers. Producers supply the product mainly in two markets, Bure and Kuche. The main role played by producers was the consistent supply of red pepper in terms of amount and quality. However producers face a great problem in 2008/2009 due to a price fall. As mentioned by producers and key informants, expecting the previous year high price which was up to 50 birr/kg for retail price they produce more but the price has fallen unexpectedly.Producers: Producers are the first link in the marketing chain. Producers have linkage with input suppliers (Ethiopian Improved Seed Agency, Office of Agriculture, cooperative and traders to by inputs), financial institutions such as ACSI to get a credit, Trade and IndustryOffice to get market information, Woreda and kebele administration to secure land and solve administrative problems in their localities. The buyers of the product were mainly retailers and wholesalers. The linkage with cooperatives was low because the nearby primary and secondary cooperatives focus on non perishable products like teff, maize and soybean to store products incase of price fall.The average amount of red pepper supplied by producers in 2008/2009 was 5.24 quintal (with a minimum 0.5 and maximum amount of 19 quintal). The survey result indicates that 60% of the sampled households use plastic sacks to transport the product to the market using pack animals, animal cart and car. The buyer and sellers have no any quality measurement rather they develop experience to do this. They measure quality by its color, odor, shape, absence of foreign matter and origin. As soon as they agreed, weighing and loading would start.The wholesale buyers were found in Bure and Kuche. They purchased on average 275 quintals of red pepper of which 89% of the product had been sold in the same year. The average capital of wholesalers was 43,000 birr and the source of their capital was totally own capital. They were also serving as retailers in their local area and to a large extent also supply pepper to other retailers in Bure and other areas. All wholesalers were literate; their educational level ranges from grade four up to grade nine. The experience of wholesalers in the business ranges from three to ten years.Retailers: These are the final link in the marketing chain who delivers red pepper to end users or consumers. All retailers have mobile telephone to exchange current information. The working capital of retailers ranges from 3,000 up to 35,000 birr. The source of capital was 88% own and 12% ACSI with an interest rate of 12.5%. The group lending procedure followed by ACSI was the major challenge retailers faced to use the credit. Retailers use rented and their own store because some traders store is not found in front of the main road to attract sellers.They are very numerous as compared to wholesalers and rural assemblers and their function was to sell to consumer in pieces after receiving larger volumes from wholesalers, rural assemblers or producers.Brokers: These are marketing agents that exist between producers and the final consumers.They facilitated the buying and selling activities between farmers and other marketing agents.Brokers were mainly involved in between retailers and wholesalers, retailers and other retailers, wholesalers and consumers and retailers and consumers. All brokers use mobile telephone to exchange market information to link the marketing agents involved in between producers and consumers.Brokers disseminate price and other information to the market participants and influence pepper trade and price formation mainly in between wholesalers in the district and wholesalers out of the district such as Bahir Dar, Debre-Markos and Gondar. The main problem respondent's mentioned was licensed wholesalers and retailers in addition to their permanent business activities act as brokers. The main activity brokers usually did was negotiating and informing buyers and sellers. The average amount of money brokers had got was thirteen cents per kg.Assemblers: They mainly used to buy small lots of red pepper directly from farmers and sell it to wholesalers and retailers in Bure and Kuche market based on the agreement made prior.These are farmers or part time traders in the assembly markets who collect pepper from farmers in village markets for the purpose of reselling. Their sources of money and market information are mainly their clients (retailers and wholesalers).Cooperatives: Are autonomous and independent organizations that render services to members and non-members to meet their social and economic benefits. There were about 5 A marketing channel is a business structure of interdependent organizations that reach from the point of product origin to the consumer with the purpose of moving products to their final consumption destination (Kotler and Armstrong, 2003). The analysis of marketing channels is intended to know the alternative routes the product follow from the point of origin to final destination. 7 main alternative channels were identified for red pepper marketing. The main marketing channels identified from the point of production until the product reaches the final consumer through different intermediaries were:Market Concentration Ratio(C), as noted by Shughart (1990) is the numerical index most widely used by industrial organizations for measuring the size distribution of firms in a market. Due to the limited number of traders in their respective locality, Woreda level market concentration ratio is used to analyze the type of markets prevailed in the district.Concentration ratio was calculated by taking annual volume of red pepper purchased in 2008/09.Table 15 indicates that the four large firms handled 30.15 % of the total volume of red pepper purchased over the year. Kohls and Uhl (1985) suggest that, as a rule of thumb, a four enterprise concentration ratios of 50 percent or more is indicative of strongly oligopolistic industry, 33-50 percent a weak oligopoly, and less than that, an un-concentrated industry. There is no well established system of dissemination of market information in the Woreda, the trade and industry office disseminate market information, but, it is not consistent and uniform to all pepper traders. However, there is a clear licensing and renewal procedure which is uniform to all traders. In the sample markets, all traders had information through different sources (other merchants and using telephone). The results of the study indicated that the source of market information was 73% from other traders and using mobile telephone with the central market. Information among the sample traders on price about the near by markets was not also uniform.According to the focus group discussion made with trade and industry and small and micro enterprise office there are no restrictions to enter in the pepper markets with respect to license.There were 51 traders (8 wholesalers and 43 retailers) registered based on their capital who reside in Bure and Kuche town. Even though pepper trade does not require huge investment capital the price of the commodity is highly volatile to be engaged in the business confidentially which is an entry barrier because only those who can take such risks will join the business.The regulatory action to control unlicensed traders was minimal in the Woreda. Since these unlicensed traders do not pay tax they have the opportunity to charge competitive price and discourage the licensed traders. Traders do not blame about the payment for licensing and renewal. But, they claim that the tax rate is unfair and high and very subjective. The survey result indicated that 67% of traders pay tax based on the volume of the product handled but there was no continuous and proper counting. Non accessibility of accurate and timely market information mechanisms was also the other barrier to join in pepper trade. Hence, it is possible to generalize that except capital, price fluctuation and market information there were no entry barriers and there are no exit barrier rules and regulations in pepper trade in the area.To study market conduct there are no agreed upon procedures. The conduct of the pepper market is analyzed in terms of the availability of price information, price setting, purchasing and selling strategies of producers and traders.Red pepper is the most important cash crop in Bure Woreda as well as in Amhara region. It is among the 18 strategic agricultural commodities selected and studied at regional level by a team of experts organized from different sectors. Red pepper supply starts in November and reaches its peak in January and sharply decline after February. The main market information farmers' used were input and output prices. According to the survey result, all producers supply the product to the market and almost all the sampled farmers had market information before sale. The sources of information were from friends, neighbors and through telephone.The price setting strategy producers used to sale the product were 33.4% through negotiation and by the current market demand and supply and 27% based on the market. The detail price setting strategy is indicated in Table 16. There was no any contractual based marketing system in the area to minimize marketing risks.During the marketing of the product both traders and farmers cheat each other. Traders minimize the volume of the product during weighing, which was the major activity they usually did taking the advantage of the knowledge of farmers. On the other hand, farmers cheat traders by watering red pepper and adding other foreign matters so as to increase weight that had a great impact on the quality of the product. Price information: Market information plays a great role for traders because it affects the volume of the product to be purchased, price of purchasing and selling, and time of sales. The market information was not transparent between the different categories of traders that created high price variability and difference among traders. Wholesalers, either with the help of their commission agents or partners, have got quick and readily information relative to retailers. As indicated in Table17. Trader's sources of information were 73.3% from other traders in their residence and through telephone from other traders out of Bure. Trade associations that act as a bridge to connect traders with the government institutions are very important for traders. However, traders during the focus group discussion mentioned that the absence of trade association had made the market to be disordered that is some traders purchase at a low price that exploit producers and some purchase at high price.Storage losses were lower in secondary cooperatives due to a well established and cemented store constructed by the Regional Cooperative Promotion Agency where as it was higher in urban wholesalers because expecting higher prices wholesalers store the product for long period and their store was poor. The transaction costs were higher for urban wholesalers and lower for primary cooperatives. * This is with the assumption that average pepper productivity is 12 quintal per hectare.Red pepper is produced mainly for market and it is the main cash crop for producers in BureWoreda. The survey result revealed that all farmers supply the product to the market after meeting their household requirement and 85.3% of red pepper produced by the sampled farmers in 2008/2009 production year has been supplied to the market.The average amount of red pepper sold by producers was 5.24 quintal with a minimum amount of 0.5 quintal and maximum amount of 19 quintal.Definition of variables: 14 variables (9 continuous and 5 dummy) were hypothesized and tested using OLS. The variables used are presented in Table 22. The degree of multicollinearity among the explanatory variables has been tested using VIF for continuous variables and CC for dummy variables. The results for all VIF were ranging between 1.15 and 3.40. The result of the contingency coefficient was also less than 0.75.Therefore, Since VIF is less than 10 and CC is less than 0.75 multicollinearity can not be suspected and would not be a problem. For details see (Appendix Table 3 and 4). The variables that influenced the marketable supply positively as expected were experience in pepper production, access to credit, yield, land size, current year and previous year prices.Yield (Quantity produced): Total pepper production influenced the amount of marketed supply of pepper positively showing that farmers who produce more also supply more as expected. Wolday (1994) identified major factors that affect teff, maize and wheat at Alaba Siraro Woreda. He studied the relationship of farm level marketable supply of the cereals using cross-sectional data. He found that size of output has a significant effect on the marketable supply of food grain. Rehima ( 2007) also identified that the major factors that affect marketable supply of pepper at Alaba and Siltie of SNNPRS using cross-sectional data and found that quantity of pepper produced significantly affect the amount supplied. In this study too, the variable was highly significant at 1% significant level as indicated in Table 23.Total size of land owned: Total land a respondent owned for red pepper production, is a continuous variable measured in hectare influence participation decision. The sign was as expected. This variable affect the amount supplied significantly. Kinde (2007) in his study to analyze factors affecting sesame marketable surplus found that total land owned has a significant effect to the amount supplied.Access to credit: This variable was also expected to influence the marketable supply of red pepper positively on the assumption that producers use the credit for production purpose. As farmers have access to credit services the amount of red pepper supplied to the market has increased due to the increase in production. Credit is expected to increase farm efficiency, the flexibility of farmers' decisions, and then helps attain economies of scale in production, and consumption smoothing (Edilegnaw, 2000).Following the Engle Granger two-step procedure of co-integration test, the individual monthly retail prices were tested for their order of integration and then co-integration test was made. The test for the order of integration using ADF unit root test is summarized in Table 24. The results of the unit root test shows that all price series were non-stationary at level and stationary at first difference. This shows that the order of integration of Bure, Bahirdar and Debre-Markos monthly prices is one I( 1) and the calculated t-statistic of DF and ADF tests exceeds the critical values of Dickey Fuller in absolute value. Hence we can test market integration between Bure, Bahir Dar and Debre-Markos markets. Error correction model (ECM) is a method to test whether the co-integrating markets have short run relation and are integrated or not. To examine the short run relation and causality, the study tests the joint hypothesis using F statistics. If δ  < 0 it shows the adjustment process will be towards the equilibrium. The negative sign showed that the speed of price adjustment was towards the equilibrium. The result when using Bure as dependant variable shows that a 1 % increase in price of pepper in Bure market the previous month results a 0.32 % and 0.24 % price increase Bahir Dar and Debre-Markos the current month respectively. 14% and 45% of changes in Bahir Dar and Debre-Markos market prices were resulted due to the current change in Bure market respectively.In addition to this about 26% of change in Bahir Dar price was due to the current change in price of Debre-Markos. The time required for one market to rich in equilibrium with the other market price, as suggested by Admasu (1998), approximately (1-δ /δ ) units of time, where δ is the positive coefficient of the lagged error term. The time required for Bure market to rich in equilibrium with Bahir Dar market was 2 months whereas the time required to rich in equilibrium with Debre Markos market was 1.5 months. A critical value of F statistic for sample size of 60 is 3.74 at 5% significant level.Source: own calculation, 2009Based on frequent rapid field survey and group discussion and key informant survey red pepper production and marketing in Bure Woreda is constrained by so many factors. The major production and marketing problems and opportunities are discussed below.Marketing constraints: The imperfect pricing system of traders was a major problem to producers. Traders charge low price at peak supply periods which is not based on the real demand and supply interaction but they use the information gap of producers. Traders also influence producers in setting price and do not pay reasonable price either by decreasing the price or by reducing the amount during exchange.On the other hand, producers influence traders through deliberate adulteration by adding water and other foreign matters to increase weight. The survey result indicates that 60% of producers supply the product during harvest to pay tax, loan, purchase industrial gods and to meet other requirements. The price of red pepper was also highly fluctuating and unstable that creates uncertainty among producers to produce more. Hence, producers were not confident to produce red pepper constantly due to the fear of the decrease in price Bure woreda is relatively good in terms of road condition, availability and transport rates.90% of producers have access to transport services but it was not evenly distributed to all PAs. Some producers are constrained with lack of all weather roads to transport outputs to the market. Cooperatives participation in red pepper marketing was very minimal because cooperatives focus on non-perishable products like maize, teff, wheat, soybean and others.Cooperatives purchased only 4% of the product of the sampled farmers. Hence, there was no any marketing institution to safeguard farmer's interest and rights over their marketable produces. The absence of standards in measurement especially in rural areas has an adverse effect to provide market information about the price and quality of produce and hence leads to market inefficiency. There were no identified and applied quality standards but traders and producers traditionally identify quality from their experience. Most farmers obtained market information on the local market from their neighbors, friends and Development Agents.However, the information was not uniformly distributed because there is no well organized institution that provides information to producers consistently.Existence of unlicensed traders that do not pay tax charge competitive price and discourage licensed traders. Some licensed traders were forced to return their license due to unfair and prohibited trade practices by the unlicensed traders that purchase relatively at a higher price and sale at a lower price than licensed traders because they do not pay tax. Shortage of capital was also a critical problem for traders. Retailers 70% source of capital was own capital while others use credit and share capital. The average capital of traders was 18,933 Birr ranging from 3,000-60,000 Birr.The major problem for low credit access as mentioned by traders was the group lending procedure followed by ACSI and collateral problem to borrow from other financial institutions. Absence of trade associations that serve as a bridge to link traders with government institutions was also a problem for traders. Through trade association traders could stabilize price by providing market information, solve disputes and promote products.However, the government support to establish trade association was very low. During the rainy season many of the villages and rural markets were not accessible with the town markets. Increased cost of transportation due to the increased in oil price is also the other problem traders mentioned.The storage capacity and quality of stores was also very poor. Almost all traders don't use modern storage facilities in terms of appropriate design, pest prevention and building materials. Few wholesalers even don't have store they simply use retailers store and act as brokers and sell products with out handling the product. Price fluctuation of the produce was also a serious problem for traders. Expecting the previous year price traders had bought large volume of the product but the price has decreased unexpectedly. Brokers also create price instability so as to benefit themselves by misinforming traders about the central market price.The other problem traders mentioned was the subjective tax rate levied by the government. It was only 66.7% of traders pay tax based on the volume of transaction handled during the year others pay subjectively.The existence of Agricultural Development Led Industrialization Policy of the country (ADLI) creates good opportunity for producers through input and output supply and extension services provided by the DAs and woreda expertise. The favorable agro-ecology of the area to produce pepper is also a good opportunity to boost production and increase demand in the area. Even though cooperatives involvement in red pepper marketing was low at present cooperatives could benefit producers by decreasing the transportation cost and purchase the product at fair price.Red pepper is among the 18 strategic commodities selected at the regional level and incorporated in the agricultural commodity marketing system study project due to its domestic and international importance. The Woreda is near-by to East Wollega Zone of the Oromia Regional State and Metekel Zone of the Benishangul Gumez Regional State and connected by all weather roads. Therefore, Bure has a good opportunity to sell its agricultural products for different regional states.The trend in the growth of production and increase in the number of investors in the area is also a good opportunity to increase supply and introduce new technologies due to their positive externalities effect. The infrastructural development such as mobile telephone and wireless telephone are also the other advantages to improve the production and marketing system in the area. The existence of NGOs like IPMS is another opportunity to increase productivity and benefit producers and traders to produce and market the product. In addition to this the capacity building program of IPMS benefited different stakeholders' expertise to upgrade their technical capacity then by improve performance in the Woreda.The other opportunity is access to foreign markets; Ethiopia export as well as import grounded pepper in the year 1993-2003(Mulugeta, 2004) hence if we increase production there will be the opportunity to export after meeting domestic demand. The major world pepper buyers are U.S America, Netherlands, Singapore, Germany, India, France, Japan, Canada, Spain, Britain, Ukraine and others (EEPA, 2008).This thesis has analyzed red pepper market chain in Bure Woreda, West Gojjam. For this study, a total of 150 respondents (120 producers and 30 traders) were interviewed using structured and semi-structured questionnaires. Rapid market appraisal with focus group discussion and key informant interview was also conducted. Secondary data on basic agricultural activities and population was also collected from different stakeholders and CSA.Descriptive and econometric methods of data analysis were used to analyze the data by deploying SPSS software.The study has focused on the structure, conduct, and performance of red pepper market participants and market integration in the Western part of the region. In addition, determinants of red pepper supply to market were also analyzed. Farmers in Bure Woreda use modern agricultural inputs such as fertilizer (DAP and urea), improved seed (Marakofana variety) and chemicals. Except Marakofana variety, other improved varieties released by the EIAR were not used. From the total respondents, 95% and 89% use DAP and urea fertilizer respectively.Farmers use fertilizer below the recommended rate but they use improved and local seed above the recommended rate per hectare although there is a shortage of improved seed. The major suppliers of inputs were office of agriculture and Bure town traders.Farmers in the Woreda do not have any distinct/unique standard characteristics to identify the quality of pepper. They usually identify quality of red pepper using a mix of attributes like color, pest damage, size and shape, odor and foreign matter. 97% of sampled farmers store red pepper for different purpose such as expecting future increase in price (55%), low demand during harvest, and for consumption. The storage mechanism used by most farmers is by filling in sack and put on Kot. Other farmers store in gotera. Farmers on the average store red pepper for 222 days with a minimum of 30 days and maximum of 365 days.Only 16% of producers had access to credit at an interest rate of 12.5% from ACSI. The main objectives of the credit were to purchase fertilizer (63%) and improved seed (25%). The amount of credit ranges from 1500-3000 birr for a production year. 95% of sampled households had extension contact with development agents in relation to pepper production.In addition to the development agents, 80% of the sampled farmers have got extension services from office of agriculture and innovative farmers. Almost all sampled farmers had access to market information from different sources but it was not uniform and continuous.According to the survey result, 40% of the sampled farmers use pack animals and animal carts Producers selling price was determined through negotiation and the market (33%) with traders based on the current market demand and supply and 17% based on brokers and buyers interest. During buying all traders make a price difference for quality based on their experience to identify the quality of the product. The survey result indicates that 73% of the respondent's sources of information were from other traders and through telephone.The total gross marketing margin (TGMM) is highest in the channel that involves producers, wholesalers, retailers and consumers which is about 18.23 and lowest (12.87) in channel where producer, wholesalers and consumers were participating. Retailers and wholesalers have got the highest gross marketing margin where as rural assemblers have got the lowest margin. The profitability of red pepper production was calculated by taking the average total income and expenses of all the sample producers' in the production year. Of all costs fertilizer cost was the highest and transportation cost was the lowest.The results of the study indicate that increase in production has a significant effect to the amount supplied. Hence, it is important to provide modern inputs at the right time and the required amount at reasonable price to increase production.The co-integration results of the study also revealed that Bure and Bahirdar markets were not integrated as Debre-Markos due to inadequate market information in the short run. Hence, market information services have to be established or strengthened to provide farmers and traders consistently and timely.Access to credit for both production and marketing has considerably affected marketable supply. Hence, it is important to strengthen credit institutions in terms of spatial coverage, amount of credit and timely provision for both farmers and traders. Solving the group collateral procedure and collateral problems of farmers and traders to get a credit from different financial institutions is very important.Both current and lagged year prices were significant to the amount supplied. Hence, to solve the low prices received by producers, cooperatives have to be involved in red pepper marketing significantly because cooperatives are service rendering organizations that do not strive for profit so that they will relatively purchase at a fair price from producers.The increase in red pepper production technique has a significant effect to increase production then by marketed surplus. Hence, continuous education and training that would change the production skill of producers is very important to change the attitude of farmers. Hence, concerned stakeholders need to provide continuous education and training in production and marketing of red pepper. ","tokenCount":"14381"} \ No newline at end of file diff --git a/data/part_3/7087324636.json b/data/part_3/7087324636.json new file mode 100644 index 0000000000000000000000000000000000000000..3fef5e9715829fa7500e0af5bc07a0f5c261f963 --- /dev/null +++ b/data/part_3/7087324636.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"a18f349c0ef467238d7ab99ebf87fefe","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/0aabf06b-dac0-4051-99ec-386b7770e036/retrieve","id":"1191492431"},"keywords":[],"sieverID":"87fc5fa6-e3d6-4844-8647-e8a61b286009","pagecount":"13","content":"Biological control is one of the recommended methods for aflatoxin mitigation. Biocontrol products must be developed, and their efficacy demonstrated before widespread use. Efficacy of two aflatoxin biocontrol products, Aflasafe GH01 and Aflasafe GH02, were evaluated in 800 maize and groundnut farmers' fields during 2015 and 2016 in the Ashanti, Brong Ahafo, Northern, Upper East, and Upper West regions of Ghana. Both products were developed after an extensive examination of fungi associated with maize and groundnut in Ghana. Each product contains as active ingredient fungi four Aspergillus flavus isolates belonging to atoxigenic African Aspergillus Vegetative Compatibility Groups (AAVs) widely distributed across Ghana. An untreated field was maintained for each treated field to determine product efficacy. Proportions of atoxigenic AAVs composing each product were assessed in soils before product application, and soils and grains at harvest. Significant (P < 0.05) displacement of toxigenic fungi occurred in both crops during both years, in all five regions. Biocontrol-treated crops consistently had significantly (P < 0.05) less aflatoxins (range = 76% to 100% less; average = 99% less) than untreated crops. Results indicate that both biocontrol products are highly efficient, cost-effective, environmentally safe tools for aflatoxin mitigation. Most crops from treated fields could have been sold in both local and international food and feed premium markets. Adoption and use of biocontrol products have the potential to improve the health of Ghanaians, and both income and trade opportunities of farmers, aggregators, distributors, and traders.Contamination of key staple and/or cash crops by toxic fungal metabolites, particularly aflatoxins, is an issue of significant public health and economic concern (Wu, 2015;JECFA, 2018). Although aflatoxins are produced by several Aspergillus species, Aspergillus flavus is the major aflatoxin producer (Klich, 2007). A wide range of crops including maize (Zea mays L.), groundnut (Arachis hypogaea L.), cottonseed (Gossypium spp.), pistachio (Pistacia vera L.), and almond (Prunus dulcis Mill.) are susceptible to infection by aflatoxin-producing fungi and subsequent aflatoxin contamination both in the field and after harvest (Cotty and Jaime-Garcia, 2007). Prevalence of aflatoxins is often high in crops grown in warm areas and exacerbated under conditions of drought and elevated temperatures (Cotty and Jaime-Garcia, 2007;Hamidou et al., 2014). With current climate change trends, the scope and prevalence of crop aflatoxin contamination is expected to increase worldwide (Battilani et al., 2016).Efforts to protect consumers from adverse health effects of aflatoxins have resulted in several nations promulgating and enforcing standards to limit aflatoxin levels in foods and feeds (GSA, 2001(GSA, , 2013;;van Egmond et al., 2007;JECFA, 2018). However, lack of global harmonization of these standards have become a barrier to trade and restricts the competitiveness of commodities from countries with more relaxed standards to those with more stringent regulatory limits (Rios and Jaffee, 2008). Consequently, several exporting nations, including Ghana, have lost both access to premium European markets and huge https://doi.org/10.1016/j.biocontrol.2020.104351 Received 4 May 2020; Received in revised form 13 June 2020; Accepted 15 June 2020 trade revenues annually as a result of non-conformance to strictly monitored aflatoxin standards set by importing nations (Wu, 2004;Rios and Jaffee, 2008;Dzirasah, 2015). Similarly, losses in production revenue are incurred by poultry and livestock industries because of reduced productivity and increased mortality when animals are fed with aflatoxin contaminated feeds (Atherstone et al., 2016).In Ghana, where crop aflatoxin contamination is perennial and dietary staples rely primarily on single cereals such as maize, chronic aflatoxin exposure and its consequent adverse health effects are rampant (Shuaib et al., 2012;Jolly et al., 2013;Afum et al., 2016;Kumi et al., 2016). Public health and economic consequences of crop aflatoxin contamination and human/animal exposure are numerous (Coulibaly et al., 2009;Wu, 2015;JECFA, 2018). Unfortunately, due to the stealthy nature of aflatoxins, many stakeholders in crop value chains, including producers and consumers, are not aware of the potential health and economic impacts posed by crop contamination (Awuah et al., 2009).Aflatoxins are produced by diverse assemblages of fungi belonging to Aspergillus section Flavi (Frisvad et al., 2019). The most frequently implicated aflatoxin-producing species, A. flavus (Klich, 2007), is composed of the L and S morphotypes (Cotty, 1989). The L morphotype produces fewer, larger sclerotia (avg. dia > 400 μm), numerous conidia, and variable levels of B aflatoxins (Cotty, 1989). Some L morphotype genotypes lack the ability to produce aflatoxins (i.e., are atoxigenic) due to deletions, inversions, or genetic defects in one or more of the aflatoxin biosynthesis genes (Adhikari et al., 2016). The S morphotype, on the other hand, produces numerous small sclerotia (avg. dia < 400 μm), few conidia, and consistently high B aflatoxin levels. Worldwide, several morphologically similar but phylogenetically distinct fungi resembling the A. flavus S morphotype have been detected with some of them producing copious amounts of both B and G aflatoxins (Probst et al., 2014;Singh and Cotty, 2019). In West Africa, fungi with S morphotype producing both B and G aflatoxins are relatively common and have been known as unnamed taxon S BG (Cardwell and Cotty, 2002;Atehnkeng et al., 2008;Probst et al., 2014). The unknown taxon S BG fungi may be any of the recently described species A. aflatoxiformans, A. austwickii, A. cerealis, or A. minisclerotigenes (Pildain et al., 2008;Frisvad et al., 2019). Here we refer as S BG strains to all fungi with S morphotype producing both B and G aflatoxins. Aspergillus species and morphotypes can be further subdivided into vegetative compatibility groups (VCGs). Members of a VCG descend from the same clonal lineage and therefore are isolated subpopulations (Grubisha andCotty, 2010, 2015).Crop infection by toxigenic fungi can be prevented but once crops become contaminated, the toxin cannot be completely removed (Grenier et al., 2014). Consequently, several technologies that limit fungal infection of susceptible crops and prevent further accumulation of toxins in both on-farm and during pre-and postharvest stages have been recommended (Seetha et al., 2017;Ojiambo et al., 2018;Mahuku et al., 2019;Pandey et al., 2019). An effective innovation is biocontrol through the use of native atoxigenic A. flavus VCGs to displace toxigenic fungi from the crop environment. Biocontrol reduces preharvest crop aflatoxin contamination generally to safe levels with a carry-over effect that provides protection in storage (Bandyopadhyay et al., 2019;Ezekiel et al., 2019;Senghor et al., 2020). By lowering aflatoxin in food, biocontrol susbstantially reduces human/animal exposure to these noxious toxins.Use of atoxigenic fungi aims to reshape the resident fungal community structure, typically dominated by aflatoxin producers, in favour of one with less aflatoxin-producing ability. Atoxigenic isolates of A. flavus endemic to specific regions have been identified and/or evaluated for their potential deployment in aflatoxin biocontrol programs on target crops in the same region (Cotty, 1989;Atehnkeng et al., 2008;Abbas et al., 2011;Probst et al., 2011;Alaniz Zanon et al., 2013;Wei et al., 2014;Mauro et al., 2015;Weaver et al., 2015;Ortega-Beltran et al., 2016;Molo et al., 2019;Savi et al., 2020). Similarly, eight native A. flavus isolates belonging to diverse atoxigenic African Aspergillus flavus VCGs (AAVs) with superior abilities to displace aflatoxin producers and move to crops were selected among 847 atoxigenic A. flavus isolates recovered from maize and groundnut grown in Ghana (Agbetiameh et al., 2019). Those selected atoxigenic isolates are potential agents for aflatoxin biocontrol in maize and groundnut in Ghana. However, their efficacies as active ingredient fungi in biocontrol formulations under multiple field conditions, during multiple years require further evaluation and validation.In this study, the efficacy of two biocontrol products, named Aflasafe GH01 and Aflasafe GH02, each formulated with a combination of four atoxigenic AAVs native to Ghana as active ingredient fungi were simultaneously but independently evaluated for their efficacy in preventing aflatoxin contamination. Evaluations were conducted over a two-year period under farmer-field conditions on hundreds of maize and groundnut fields across three agroecozones (AEZs) in Ghana. Results from the efficacy studies indicate that both biocontrol products are highly effective in reducing pre-harvest aflatoxin contamination in maize and groundnut across all three AEZs. This is the first report of two aflatoxin biocontrol products evaluated simultaneosly during two years, in multiple fields of multiple AEZ, in two crops.Based on a previous study on the relative adaptation to maize and groundnut cropping systems, frequency of occurrence, and competitive potential to move to crops and limit crop aflatoxin content in three AEZs in Ghana (Agbetiameh et al., 2019), eight superior atoxigenic AAVs were selected as active ingredient fungi for the formulation of two aflatoxin biocontrol products: Aflasafe GH01 and Aflasafe GH02. Each biocontrol product was composed of a blend of four AAVs, each represented by respective type isolates, as active ingredient fungi. The atoxigenic AAVs in Aflasafe GH01 were also found to be widely distributed in several African nations and therefore formulated as West Africa-specific (regional) product (Islam et al., 2015). Those AAVs composing Aflasafe GH02 have been detected to be native only to Ghana as of now. The AAVs of the two biocontrol products developed for use in Ghana are maintained in the fungal culture collection of the Pathology and Mycotoxin laboratory of the International Institute of Tropical Agriculture (IITA), Ibadan-Nigeria (Table 1).Each biocontrol product was composed of roasted, sterile sorghum grains as delivery carrier coated with a conidial suspension of a mixture of the type isolates of the four atoxigenic AAV active ingredients with the aid of a polymer. A blue food colorant was added to differentiate the product from regular sorghum (Atehnkeng et al., 2014). Conidia of the atoxigenic AAVs were obtained from 5-day-old cultures grown on 5-2 agar [(5% V-8 juice (Campbell Soup Company, Camden, NJ), 2% Bactoagar (Difco Laboratories Inc., Detroit, MI), pH 6.0)] at 31 °C in the dark (Cotty, 1989). Spores were dislodged and suspended in 0.1% TWEEN 80®. Suspensions were adjusted to 10 6 conidia/ml using a turbidimeter using a nephelometric turbidity Unit (NTU) vs colony-forming unit (CFU) standard curve (y = 49,937x; x = NTU, y = spores/ml) (Atehnkeng et al., 2014). The products were formulated using a seed coater (Model AT500, USC™ LLC, Sabetha, KS, US) calibrated to coat 1 kg sterile sorghum grains with a suspension containing 10 ml of 10 6 conidia/ml, 10 ml sterile distilled water, 1.5 ml of polymer (Sentry™, Precision Laboratories, Waukegan, IL, US) and 2 ml of blue food colorant (Prism™, Milliken and Company, Spartanburg, SC, US). Following phytosanitary certification by the Nigeria Agricultural Quarantine Service (NAQS) and the issuance of import permit by Ghana's Environmental Protection Agency (EPA), the products were transported to Ghana for evaluation of their potential to reduce aflatoxin contamination in farmer-field trials.For each product, a 100 g sample of formulated product was taken from every batch of 100 kg of product as described by Senghor et al. (2020). Briefly, from each 100 g sample, 24 grains of formulated product were randomly selected and placed in a 24-well plate, one grain per well. Spaces outside and between wells were filled with 12 ml sterile distilled water. Plates were placed inside a polyethylene bag containing a damp sterile paper towel. Subsequently, the bags were closed and incubated at 31 °C for 7 d. Microbial growth on grains were visually inspected and numbers of grains i) germinating, ii) with A. flavus growth, iii) with other fungal or bacterial growth, and iv) with fluffy mycelial growth causing reduced sporulation were recorded. The number of spores produced per g of product were calculated in three arbitrarily selected pairs of grains and were quantified with a turbidimeter as above.The number of spores on the formulated product were calculated in each batch by mixing 1 g of product with 10 ml sterile distilled water in 40 ml vials and allowing to sit in a benchtop for 10 min. Vials were then vortexed for 30 sec. The spore washes were diluted up to 10 -4 and aliquots of 100 µl were plated on 2% Bacto-agar plates. Plates were incubated at 31 °C and at the end of the incubation period (3 d) the number of CFU was recorded. In addition, the identity of the active ingredient fungi on each formulated product was verified using vegetative compatibility analysis (VCA) (Agbetiameh et al., 2019;Senghor et al., 2020). Nitrate non-utilizing (nit) auxotrophs were generated for 25 recovered A. flavus isolates from the spore washings from each batch (Grubisha and Cotty, 2010). Briefly, 20 µl spore suspension of each isolate was seeded into a well at the center of a plate containing Selection medium (Czapek-dox broth, 25 g/l KClO 3 , 10 ml rose Bengal, 2% Bacto-agar, pH 7.0). Seeded plates were incubated at 31 °C for 7 to 30 d. Spontaneous auxotrophic sectors were transferred to a purification medium (Czapek-dox broth, 15 g/l KClO 3 , 2% Bacto-agar, pH 6.5) for 3 d to clean up and nit mutant stabilization. A mutant sector was subsequently transferred onto 5-2 agar for 5 d at 31 °C. Agar plugs of sporulating mutants (3 mm dia) were stored in 4 ml glass vials containing 2 ml sterile distilled water for use in complementation assays. Assignment of mutants of isolates to an AAV was based on pairing the isolate auxotroph with complementary tester auxotrophs of each atoxigenic AAV (Grubisha and Cotty, 2010). A single complementation test was performed on a starch agar plate (36 g dextrose, 3 g NaNO 3 , 2% Bacto-agar, 2% soluble starch, pH 6.0) (Cotty and Taylor, 2003) where three wells (3 mm dia, 1 cm apart) were made in a triangular pattern at the center of the plate. Two wells were each seeded with 10 µl of either of the tester pair while the third well was seeded with the isolate auxotroph being characterized. Plates were incubated for up to 10 d at 31 °C. Auxotrophs forming a stable heterokaryon with one or both tester auxotrophs of an atoxigenic AAV were assigned to that AAV.Two districts each from five major maize and/or groundnut producing areas in Ghana known for high aflatoxin contamination events (MoFA, 2011;Sugri et al., 2015;Agbetiameh et al., 2018) were selected (Fig. 1). Stakeholders in the maize and groundnut value chains composed mainly of farmers and Agricultural Extension Agents (AEAs) of the Ministry of Food and Agriculture (MoFA) were sensitized and trained on the basics of crop aflatoxin contamination and its management including use of biocontrol products. Farmer and farmer-field selection was done in collaboration with respective District Department of Agriculture officials of MoFA. Each biocontrol product was evaluated in 200 maize and 200 groundnut farmer-fields in each of the 2015 and 2016 cropping seasons. The crops were grown by farmers following prevalent field and crop management practices in their respective areas without any other special intervention. An untreated field of the same crop, separated by 25 m to 200 m from treated fields, served as paired field for each treated field. Field size ranged from 0.5 to 2 ha. In the Middle Belt (Ashanti and Brong Ahafo regions), where two cropping seasons (major and minor) occur (Agbetiameh et al., 2018), field evaluations were conducted during the minor season in 2015 and the major season in 2016.Products were broadcasted by hand on the soil surface 35 to 40 d after planting at a rate of 10 kg/ha as described by Agbetiameh et al. (2019) (Fig. 2). This time corresponded with 2-3 weeks before crop flowering. Farmers were advised to finalize agronomic operations before treatment and reduce movement in the field for about 7 to 10 d after treatment so that the product remained on the soil surface. Prior to product application, sub-samples of topsoil (~2 cm depth) were taken randomly from 50 different spots to compose a sample of about 150 g for each treated and corresponding untreated field. Similarly, soil samples were collected at harvest. Grains, comprising 30 maize ears and approximately 1 kg of groundnut (in-shell), were randomly collected at harvest from both treated and untreated fields. All crop and soil samples were sent to IITA-Ibadan under appropriate export/import permits for aflatoxin and microbiological analyses. Aflatoxin content in maize and groundnut collected at harvest from treated and untreated fields was determined using thin layer chromatography and quantified with a scanning densitometer as described by Agbetiameh et al. (2018). Grains were manually shelled and a half portion (500 g) was milled using a laboratory blender (Waring Commercial, Springfield, MO) for 1 min in a 1 L stainless steel blending jar (MC-2). Milled samples were stored at 4 °C prior to aflatoxin and microbial analyses. The blending jar was washed between samples with 80% ethanol to prevent microbial and aflatoxin cross contamination. Briefly, aflatoxins were extracted from maize by combining 20 g ground sample with 100 ml 70% methanol (Atehnkeng et al., 2008). For groundnut, 20 g ground sample were combined with 100 ml 80% methanol (Cole and Dorner, 1993). Suspensions were shaken on a Roto-Shake Genie (Scientific Industries, Bohemia, NY) for 30 min at 400 rpm and filtered through Whatman No. 1 filter paper (Whatman International ltd., Maidstone, England). Filtrates were collected in 250 ml separatory funnels, combined with 100 ml distilled water, and extracted twice with 25 ml methylene chloride. The methylene chloride phase was filtered through a bed of 25 g anhydrous sodium sulphate contained in fluted Whatman No. 4 filter paper, combined, and evaporated to dryness in a fume hood (Cotty and Cardwell, 1999). Residues were dissolved in 1 ml methylene chloride and subjected to scanning densitometry as described by Agbetiameh et al. (2018). The limit of quantification was 1 ppb.Densities and composition of communities of Aspergillus section Flavi were determined in soil prior to application of the biocontrol products, soil at harvest, and grains at harvest. Briefly, soil samples were dried in a forced air oven (50 °C, 48 h), aseptically pulverized and sieved through 2 mm wire mesh to remove gravels and large particles. Aspergillus section Flavi fungi in soils and grains were isolated using dilution plate technique on modified rose Bengal Agar (MRBA) as described by Atehnkeng et al. (2014). Plates were incubated at 31 °C in the dark for 3 d. Incidences of Aspergillus spp. in soils and grains were calculated as CFU per g of sample. From each sample, 16 discrete Aspergillus colonies were sub-cultured on 5-2 agar at 31 °C for 7 d and subsequently assigned to their corresponding species based on macroscopic and microscopic characteristics (Pitt and Hocking, 2009). Sporulating cultures of each isolate were saved as agar plugs in 4 ml vials containing 2 ml sterile distilled water until further characterization.Proportions of isolates composing atoxigenic AAV active ingredients of each biocontrol product were determined within A. flavus populations recovered from all substrates, using VCA as described above. On an average, 12 isolates from each sample were used for VCA. A total of 57,400 VCA were conducted during both years. Auxotrophs forming stable heterokaryons with one or both tester auxotrophs of an atoxigenic AAV were assigned to that AAV and were considered to be the applied atoxigenic AAV.Data for all response variables, including aflatoxin levels in grains, CFU/g, incidence of species and strains of Aspergillus section Flavi, and frequencies of atoxigenic AAVs, were log-transformed, using the equation [y = log 10 (response variable + 1)] to normalize the variance prior to analysis. All data was analyzed separately using the TTEST procedure of SAS (version 9.4, SAS Institute Inc., Cary, NC) by regions. Differences in means in all response variables between treated and untreated fields were separated, using Student's t-test (α = 0.05).All 30 batches of each product were sampled and assayed, and each grain of both products was colonized only by A. flavus. Other microorganisms were not detected. All isolates recovered from the product were identified as belonging to the VCG of one constituent active ingredient AAV of the respective biocontrol product. Other VCGs of A. flavus were not detected in any batch. In each biocontrol product, each of the four active ingredient AAVs was found on 25% ± 3 carrier grains of the examined batches. The spore yield per gram of product following incubation in 24-well plates for 7 d ranged from 560 × 10 9 to 650 × 10 9 conidia. The washings from each gram of the products contained on an average, 3,500 ± 300 CFU coated on the surface of the sorghum grains.In both years across all regions aflatoxin concentrations were below the limit of detection (1 ppb) at harvest in most groundnut and maize treated with either Aflasafe GH01 or Aflasafe GH02 (Table 2 and 3). On an average, aflatoxin concentration compared to untreated fields was less in treated fields by 98.6% for Aflasafe GH01 and 99.5% for Aflasafe GH02. Aflatoxins were not detected in > 95% of the maize treated with Aflasafe GH02 during the two successive years with only few maize samples from Upper West in 2016 containing even low aflatoxin content (avg. = 6 ppb total aflatoxins). Aflatoxins were only detected (avg. range = 0.1 to 14.0 ppb total aflatoxins; Table 2) in groundnut treated with Aflasafe GH01 in two regions each year. On the other hand, aflatoxin levels in maize and groundnut from untreated fields varied markedly in both years. Average total aflatoxin content of Aflasafe GH01 untreated crops ranged from 2.1 to 301 ppb in maize and from 2.8 to 939 ppb in groundnut (Table 2). In general, higher aflatoxin content was detected in untreated crops during 2016 compared to 2015, particularly in groundnut in Brong Ahafo (DS), Ashanti (HF) and Upper West (SGS) (Table 2). Untreated maize in Brong Ahafo (DS) and Ashanti (HF) was relatively less contaminated during the two years (avg. range = 2.4 to 8.3 ppb).Treatment of crops with Aflasafe GH02 resulted in significantly (P < 0.05) less (80% to 100%) aflatoxins compared to untreated crops across all three AEZs (Table 3). In any given region, total aflatoxin concentration in Aflasafe GH02-treated crops did not exceed 2.5 ppb. Average total aflatoxin content of Aflasafe GH02 untreated crops ranged from 1.6 to 325 ppb in maize and from 0.8 to 722 ppb in groundnut (Table 3).In both years and across AEZs, fungal communities in soils prior to application of both biocontrol products were dominated (62.5 to 100%) by the A. flavus L morphotype. Incidences of S BG strains, A. parasiticus, and A. tamarii were minor in both untreated and treated fields prior to treatment (Tables 4 and 5; Supplementary Tables 1 and 2).In soils collected at harvest from both maize and groundnut fields across all AEZs, the application of the biocontrol products generally resulted in increased proportions of A. flavus L morphotype and reduced incidences of S BG strains, A. parasiticus, and A. tamarii (Tables 4 and 5). For instance, incidences of L morphotype in maize field soils from Brong Ahafo (HF) increased from 71% before biocontrol application to 98% at harvest while A. parasiticus drastically decreased from 28% to 1% in the same time frame (Supplementary Table 2). Fungi from soils at harvest of untreated fields were, in most cases, composed of two or more Aspergillus section Flavi species/strains.In grains, communities from treated fields were dominated by the L morphotype with 98% to 100% incidence (Tables 4 and 5; Supplementary Tables 1 and 2). Low proportions (up to 2%) of S BG strains and/or A. tamarii constituted the remaining portion of the population. Compared to grains from untreated fields, significantly (P < 0.05) lower L morphotype incidences were observed in a few cases. In 2015 for instance, the mean incidence of L morphotype in grains from untreated fields in Ashanti (HF) (76.1%) was significantly (P < 0.05) lower than the mean incidence (100%) from corresponding treated fields (Supplementary Table 2). Conversely, higher proportions of S BG strains, A. parasiticus, and A. tamarii were generally recovered from untreated grains in comparison to treated grains (Tables 4 and 5).In both years, fungal densities varied in soils and grains across AEZs, regions, and treatments irrespective of biocontrol treatments (Table 6). Fungal densities were generally lower in soils prior to treatment and highest in grains at harvest. Densities of Aspergillus section Flavi ranged from 9 to 2,877 CFU/g in soils prior to application of either biocontrol product in both years and no significant (P > 0.05) differences were observed within treatments in any of the comparisons (Table 6). In soils at harvest, however, densities were generally higher in treated soils and b Treated refers to fields to which Aflasafe GH02 was applied at the rate of 10 kg/ha. Untreated were nearby fields separated by at least 25 m from corresponding treated field in which no biocontrol product was applied. c Indicates total number of maize and groundnut fields treated with Aflasafe GH01 and their corresponding untreated fields in each year.d Mean aflatoxin values correspond to total aflatoxin concentrations. An asterisk (*) indicates significant (P < 0.05) differences in aflatoxin levels between treated and untreated grains in each crop/region (Student's t-test; α = 0.05).e % reduction = {(mean of untreated fields -mean of treated fields) / mean of untreated fields} *100.ranged from 12 to 4,542 CFU/g across regions and years. Higher fungal densities were detected in grains at harvest, but these varied between treatments. In certain regions, fungal densities in grains from untreated fields were higher than in the corresponding treated fields while in others the opposite occurred. In 2015 for instance, grains treated with Aflasafe GH01 in Brong Ahafo (DS) had 84,671 CFU/g compared to 1,755 CFU/g in grains from corresponding untreated fields. In contrast, fungal densities in grains from treated fields were lower (180 CFU/g) than that from corresponding untreated fields (16,209 CFU/g) in the Northern region during 2015. Overall, densities in grains treated with Aflasafe GH01 ranged from 47 to 167,030 CFU/g while that from untreated fields ranged from 61 to 10 6 CFU/g. In comparison to grains treated with Aflasafe GH01, fungal densities in Aflasafe GH02-treated grains were relatively higher and ranged from 119 to 861,243 CFU/g while those from paired untreated fields ranged from 129 to 1.4 × 10 6 CFU/g (Table 6).Atoxigenic AAV active ingredients in biocontrol products were relatively common in soils across AEZs in both years prior to application of either biocontrol product (Tables 7 and 8). For instance, out of 720 LCombined frequencies and distribution of Aspergillus section Flavi in soils and grains from Aflasafe GH01-treated and untreated fields across three agroecological zones (AEZs) in Ghana. morphotype isolates recovered from maize soil prior to biocontrol application in 2015, 2% belonged to AAV active ingredients composing Aflasafe GH02 (Table 8). Following the application of both biocontrol products, frequencies of atoxigenic AAV active ingredients in most instances increased in soil and grains collected at harvest compared to the levels detected prior to application. Also, in most instances, the frequencies of AAV active ingredients in treated soils and grains at harvest were significantly (P < 0.05) higher than in corresponding untreated substrates in both years and across AEZs (Tables 7 and 8). In 2015 for example, frequencies of Aflasafe GH01 AAVs in maize grains from treated fields ranged from 54.2% in Ashanti (HF) to 80.6% in Brong Ahafo (HF) (Table 7). Those frequencies were significantly (P < 0.01) higher than in grains from corresponding untreated fields which ranged from 0% in Brong Ahafo (DS) to 13.9% in Northern region (DS) (Table 7). Similarly, significantly (P < 0.05 or P < 0.01) higher frequencies of atoxigenic biocontrol AAVs compared to untreated samples were recovered from groundnut soils and groundnut kernels from treated fields at harvest in most regions and across AEZs, in both years (Tables 7 and 8). However, in 4% and 23% of the soil at harvest and grain comparisons, respectively, there were no significant Significance levels, * (P < 0.05) and ** (P < 0.01) for testing the differences between treatment means within regions based on Student's t-test (α = 0.05). a DS, Derived Savanna; HF, Humid Forest; SGS, Southern Guinea Savanna.b Treated refers to fields to which Aflasafe GH01 was applied at the rate of 10 kg/ha. Untreated were nearby fields separated by at least 25 m from corresponding treated field in which no biocontrol product was applied. c SB = Soil collected from fields prior to application of Aflasafe GH01. d SH = Soil collected at harvest. e Grain = Maize or groundnut kernels at harvest. differences (P > 0.05) in frequencies of atoxigenic AAVs between treated and untreated samples (Tables 7 and 8). In untreated samples, incidences of AAV active ingredients reached up to 44% and 53% in soil at harvest and grains, respectively.In the current study, efficacies of two aflatoxin biocontrol products were evaluated in maize and groundnut across three AEZs of Ghana for two successive years. The active ingredient fungi in both biocontrol products clearly established themselves in the soil and displaced aflatoxin producers which resulted in undetectable or substantially reduced aflatoxin levels in crops from treated fields, compared to those from untreated fields. The two products were equally effective at displacing aflatoxin producers and reducing aflatoxin in crops (less than untreated by 98.6% for Aflasafe GH01 and 99.5% for Aflasafe GH02) even though the products contain different active ingredient AAVs. This demonstrates the robustness of atoxigenic strain-based biocontrol. The lowest observed aflatoxin reduction was 76% in the Ashanti Region in groundnut and even then, mean aflatoxin content was reduced to 14 ppb. In most cases, treated crops did not contain detectable aflatoxins, regardless of product used, area, and year. Aflatoxin reductions through use of atoxigenic fungi have been reported worldwide in research efforts aiming at improving health and wealth outcomes (Dorner, 2004(Dorner, , 2010;;Atehnkeng et al., 2014;Doster et al., 2014;Weaver et al., 2015;Alaniz Zanon et al., 2016;Mauro et al., 2018;Bandyopadhyay et al., 2019;Ezekiel et al., 2019;Savi et al., 2020;Senghor et al., 2020). However, results from the current study provide, to our knowledge, the most consistent and highest aflatoxin reductions of any biocontrol product tested to date with results based on a comprehensive 400 treated fields per product. Furthermore, in the cases where mean crop aflatoxin concentrations exceeded 200 ppb, at least 98% reductions in contamination were observed (Tables 2 and 3).Active ingredients for the two Aflasafe biocontrol products tested herein were selected from initial field evaluations of three experimental products with a total of 12 distinct atoxigenic AAVs (Agbetiameh et al., 2019). Although all three experimental products were effective in reducing contamination, active ingredients of Aflasafe GH01 and GH02 were selected based on both extent of aflatoxin reductions and incidence from the treated crops in that previous study. This rigorous selection process allowed identification of AAV active ingredients that are competitive and adapted to Ghana's agricultural environments. Results from the current study validate the former study and indicate that products utilizing the selected mixtures of atoxigenic AAVs are highly effective and potentially sustainable tools for reducing aflatoxin contamination of maize and groundnut throughout Ghana.Incidences of specific members of Aspergillus section Flavi present in soils and grains varied across regions and AEZs in both years. This is consistent with previous observations which indicate that Aspergillus communities in agricultural fields consist of individuals with diverse morphological and phenotypic characteristics (Cotty et al., 1994;Cardwell and Cotty, 2002). Prior to application of biocontrol products, A. flavus L morphotype dominated section Flavi communities (incidence > 62%). High incidences of L morphotype in both maize and groundnut soils before biocontrol application was expected as this fungus is recognized as the most common colonizer of crop substrates (Dorner and Horn, 2007;Atehnkeng et al., 2014) and the L morphotype the dominant (93% incidence) section Flavi member associated with maize and groundnut in Ghana (Agbetiameh et al., 2018). Proportions of S BG strains and A. parasiticus ranged from 0 to 5% and 0 to 34%, respectively, while that of A. tamarii ranged from 0 to 17% (Tables 4 and 5). Tools used in the current study could not differentiate among the S BG species resident in West Africa, because placement of these fungi into species requires DNA based phylogenetic analyses (Singh and Cotty, 2019;Probst, et al., 2014). However, all the S BG species fungi resident in West Africa produce very high concentrations of aflatoxins in crops (Singh and Cotty, 2019;Cardwell and Cotty, 2002). Similarly, A. parasiticus is among the most consistently aflatoxigenic species of Aspergillus section Flavi (Probst et al., 2014;Kachapulula et al., 2017). The grain samples with highest proportions of A. parasiticus (i.e., the untreated for Aflasafe GH01 in the Upper West Region in 2016, Suppl. Table 1) were the most contaminated with aflatoxins for both crops across years.Members of the atoxigenic AAVs composing either biocontrol product were relatively common in soils across AEZs prior to application. Indeed, natural widespread occurrence of these competitive atoxigenic AAVs in soils across Ghana was a criterion for their selection as potential active ingredients. These observations suggest that these atoxigenic AAVs of A. flavus have coexisted with aflatoxin producers in diverse AEZ in Ghana for long periods of time (Agbetiameh et al., 2018). However, natural frequencies of these AAVs are insufficient to reliably result in aflatoxin safe food and feeds. As a result of treatment early in the season, prior to formation of large Aspergillus section Flavi communities on the crops, the applied atoxigenic AAVs were able to multiply on the carrier sorghum grains and established as a founding population on the treated crop in lieu of other, potentially toxigenic, Aspergilli (Cotty and Mellon, 2006;Ortega-Beltran et al., 2019). Establishment of the AAVs was observed as increased frequencies of the atoxigenic AAVs on crops at harvest in treated fields. Similar reductions in frequencies of aflatoxin-producers and increases in AAV active ingredients of multi-AAV biocontrol products has been reported for AAVs selected either for use on maize, groundnut, and chili pepper in Nigeria (Atehnkeng et al., 2014;Bandyopadhyay et al., 2019;Ezekiel et al., 2019) or for use in Senegal (Senghor et al., 2020).Tracking of the AAVs examined in the current study was a resource intensive and time-consuming activity that required completion of 57,400 vegetative compatibility analyses (VCA). The demonstrated movement of applied AAVs to grains of treated crops supports that the observed aflatoxin reductions (76 to 100% less; Tables 2 and 3) are attributable to alterations in the composition of crop associated Aspergillus communities. Aflatoxin content of crops was reduced by shifting the Aspergillus community composition so that aflatoxin-producers are far less common and the active ingredient atoxigenic AAVs are dominant. The results support that a primary mechanism of atoxigenic-strain based biocontrol is the reshaping the Aspergillus community structure in favor of the applied atoxigenic active ingredient fungi (Cotty et al., 1994;Cotty, 1994;Bandyopadhyay et al., 2016;Bandyopadhyay et al., 2019;Senghor et al., 2020).Applications of atoxigenic biocontrol products can be made without increasing the combined densities of A. flavus and A. parasiticus on treated crops in the US and West Africa (Cotty, 1994;Mehl et al., 2012;Doster et al., 2014;Ezekiel et al., 2019). Overall, results from the current study agree with those previous studies. Fungal densities in soil and grains at harvest did not vary between treated and untreated fields in both years irrespective of biocontrol product. However, there were a few instances where this was not the case. For example, 48 times higher fungal densities were detected on grains from treated fields compared to untreated fields from Brong Ahafo in 2015 (Table 6), and in 2016, fungal densities on grains from treated fields were, in most instances, lower than those from untreated fields from the same region irrespective of product. Similar findings were recently reported from Nigeria (Bandyopadhyay et al., 2019) and Senegal (Senghor et al., 2020) where in most cases, fungal densities in grains from fields treated with biocontrol did not differ significantly from untreated grains. In a previous study, Atehnkeng et al. (2014) consistently detected higher fungal densities in grains from treated compared to untreated fields with an application rate of 40 kg/ha. In the current study, although products used were similar to those used in the Atehnkeng et al. study, both biocontrol products were applied at a 10 kg/ha and this resulted in the production of grains with both significantly less aflatoxin and similar quantities of fungal propagules compared to grains from untreated fields.Spores of A. flavus are dispersed by wind, rain, and insects (Bock et al., 2004;Stephenson and Russell, 1974;Horn, 2003). Movement of atoxigenic biocontrol products into untreated areas can be significant (Bock et al., 2004;Cotty et al., 2008) and, as a result, in biocontrol studies significant distance is often maintained between treated and untreated fields to reduce inter-plot dispersal of atoxigenic AAVs (Agbetiameh et al., 2019;Bandyopadhyay et al., 2019;Senghor et al., 2020). Treated and untreated fields were separated by at least 25 m in the current study. However, this distance was insufficient to prevent relatively high frequencies of the biocontrol AAVs in soils and grains from some untreated fields in both years (Tables 7 and 8). For example, in 2015, natural occurrence of Aflasafe GH02 AAVs in untreated maize fields in Ashanti was 4%, which increased to 26% and 32% in untreated soil and grains at harvest, respectively (Table 8). This contributed to the low aflatoxin concentrations (avg. = 5 ppb) detected in samples from untreated fields in that region. Similar observations on movement of inoculum from treated plots to adjoining (20 m distance) untreated plots have been made in the US (Weaver and Abbas, 2019). This should be a particular concern for researchers using strip plots to compare aflatoxin reductions by atoxigenic biocontrol products. Untreated plots must be sufficiently separated from treated plots to avoid underestimation of efficacy. These observations also suggest AAVs will have positive influences not only on treated fields but also nearby untreated fields and supports the concept of area-wide application for effective management of aflatoxin contamination (Cotty et al., 2007). On the other hand, determining the appropriate maximum and minimum distance to conduct field efficacy trials of aflatoxin biocontrol products (and biocontrol products in general) deserves further investigation.Newspaper headlines on poisonous aflatoxins in the maize-based staple Kenkey have repeatedly scared the populations of Ghana's large cities (Awuah et al., 2009). Application of the biocontrol products examined in the current study across AEZ and years frequently (94%, n = 800) resulted in production of crops containing undetectable aflatoxin levels providing practical relief for this fear. The results from the field efficacy trials reported in the current study were used to prepare dossiers for registration of Aflasafe GH01 and Aflasafe GH02 with EPA-Ghana, the regulatory agency responsible for registering biological control agents. In June 2018, EPA-Ghana approved the unrestricted use of both products for aflatoxin mitigation in groundnut and maize throughout Ghana. In addition, EPA-Ghana allowed the use of both products in sorghum crops.Ghana is the first nation for which a large array of atoxigenic germplasm (12 atoxigenic AAVs) has been tested extensively over multiple years, in multiple crops, and across multiple AEZ. Apart from area-wide applications for effectively reducing risks of aflatoxin contamination (Cotty et al., 2007), a potential strategy to further reduce the risk of contamination is to rotate mixtures of atoxigenic AAVs between seasons and crops to promote a more diverse, stable atoxigenic community with a large repertoire of adaptive traits (e.g., host adaptation, climate change resilience, prevalence under changing soil and cropping systems, increased sporulation) for long-term persistence in a target area (Mehl et al., 2012). Communities dominated by one or a few VCGs may not be stable over the long-term (Ortega-Beltran and Cotty, 2018) and therefore rotation of multi-genotype biocontrol products/ AAVs could be beneficial. Rotating Aflasafe GH01 and Aflasafe GH02 in Ghana could serve to test if a more robust aflatoxin control strategy is achieved with more complex atoxigenic AAV communities.The atoxigenic VCGs used in the current study are native to and widely-distributed in Ghana. Large-scale use of either Aflasafe GH01 or Aflasafe GH02 throughout Ghana can help farmers produce crops with greatly reduced aflatoxin content, thereby reducing dietary exposure and concomitant health effects while improving trade opportunities and income of the Ghanaian people. Current activities in Ghana include characterization of obstacles to large-scale adoption of biocontrol use and development of protocols to circumvent those obstacles. Ultimately, large-scale use of these biocontrol products, which solve an invisible problem, will result when appropriate technological, social, and institutional approaches converge into a holistic approach to address the frequent detriment of crop aflatoxin contamination in Ghana.","tokenCount":"6641"} \ No newline at end of file diff --git a/data/part_3/7099533811.json b/data/part_3/7099533811.json new file mode 100644 index 0000000000000000000000000000000000000000..301b62b37d6f634b7541c976a7206f6094bd963b --- /dev/null +++ b/data/part_3/7099533811.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c54f27f5686980149bf42a4c6ce5be3f","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/82f4391f-f80d-4c2c-8a6b-cb518a51c0a1/retrieve","id":"1156835130"},"keywords":[],"sieverID":"9b39eaf2-1f9a-4fbc-a340-34c509778ff7","pagecount":"21","content":"Fair dealing and other rights are in no way affected by the above.The parts used must not misrepresent the meaning of the publication. ILRI would appreciate being sent a copy of any materials in which text, photos etc. have been used.Editing, design and layout-Bahir Dar Zuria District in the Amhara Region has emerged as a potential milkshed with flourishing market-oriented dairy farms. However, there are several herd health and animal welfare issues affecting milk production and productivity in the district. To address these challenges, a community-based participatory dairy herd health and welfare management training was conducted by ILRI, SAPLING herd health, and HEARD project from 25 July 2023 to 02 Aug 2023 in Bahir Dar Zuria District.The main objective of the training was to enhance milk production and productivity by equipping female and male dairy farmers with knowledge and skills in improved dairy herd health and welfare management practices. A total of 30 dairy producer farmers from three dairy clusters, consisting of six administrative kebeles, participated in the training. The training was conducted over six days, with two days dedicated to each cluster, on a sequential half-day basis.To ensure convenience and a conducive learning environment, the training sessions were held at the community centers/FTCs. An experiential and collaborative learning approach was adopted to identify gaps in farmers' knowledge and attitudes and introduce new knowledge and improved practices to address these gaps. The training covered seven topics related to herd health and welfare management, including infectious and non-infectious diseases, parasitic diseases, calf mortality, reproductive disorders, hoof disorders, and dairy cattle welfare management.Various training tools such as checklists, flipcharts, and group discussions were used to facilitate information flow and progressive learning. Visual aids such as pictures, storytelling, and discussion questions were employed to encourage participation and interaction among the participants.During the training, several major diseases affecting dairy cattle production were identified, including foot-and-mouth disease (FMD), lumpy skin disease (LSD), mastitis, bloating, calf mortality, fasciolosis, schistosomiasis, ticks, and lice. Additionally, limited access to quality animal health services, land shortage for dairy production, and inhumane handling during herding, transportation, and slaughtering were recognized as significant animal welfare problems in the district.To mitigate the identified herd health and welfare problems, the implementation of prioritized intervention packages is crucial. The successful execution of these interventions can significantly improve the herd health and productivity of dairy farms in Bahir Dar Zuria District.Urban peri-urban dairy farming is playing an increasingly important role in milk production in Ethiopia. This sector not only contributes to employment, asset generation, and poverty alleviation, but also supports market-oriented small to medium-sized dairy farms in Bahir Dar Zuria District.Efforts have been made by the regional government and NGOs, such as the African Dairy Genetic Gains (ADGG) project, to improve the blood level of dairy animals to boost milk production and productivity.However, with the improvement of exotic blood levels in dairy animals, several herd health and welfare problems have emerged. Reports have shown that dairy farm owners in these areas lack the necessary knowledge and have gaps in implementing improved herd health and welfare practices.For example, a significant number of urban and peri-urban dairy producers in Bahir Dar milkshed do not allow their calves to ingest maternal colostrum immediately after birth due to misconceptions about colostrum causing calf diarrhea and retention of fetal membrane (Alemu et al., 2021). Additionally, substandard farm management practices, including excessive confinement, poor ventilation and barn hygiene, and inadequate nutritional and health management, contribute to major animal welfare issues in the area.Therefore, it is essential to develop the knowledge, skills, and attitudes of farmers regarding improved dairy herd health and welfare management practices. Based on this background, the Suitable Animal Productivity, Livelihood, Nutrition and Gender Inclusion (SAPLING) initiative of One CGIAR has identified Bahir Dar Zuria District as a potential site for dairy herd health interventions.The project has designed practical and context-specific intervention packages for dairy herd health. Furthermore, to ensure sustainable and quality animal health services in the area, the project will introduce and test a mobile private veterinary service delivery system through a public-private partnership (PPP) model.As part of the broader SAPLING innovation work, this pilot study will be implemented in coordination with ADGG project. One of the prioritized interventions is the training on herd health and welfare management, which aims to achieve the following general and specific objectives.• To increase milk production and productivity by developing the knowledge and skills of female and male dairy farmers in improved dairy herd health and welfare management practices.• Specific objectives• To develop the knowledge and skills of farmers on improved herd health and welfare management practices• To change farmers' attitudes and perceptions about improved herd health and welfare management practicesBecause of its commercial dairy potential, Bahir Dar Zuria District was selected to implement the dairy herd health pilot intervention. Particularly, three dairy clusters consisting of six administrative kebeles, having a total of 60 farmers having small to medium sized dairy farms were selected for the herd health intervention. Of which, 30 farmers were randomly selected as intervention, and 30 farmers as non-intervention/control groups. The training targets small-to-medium dairy farms that primarily keep cattle for selling dairy products-market oriented dairy farms. This training was given only to intervention farmers.Before the execution of the herd health and welfare management training, a comprehensive training and mentoring manual was developed by ILRI herd health team in collaboration with dairy herd health and welfare intervention implementer. Besides, the training facilitators were virtually coached how to facilitate the training and mentoring of the farmers by ILRI herd health staff. Based on the training and mentoring manual, and agreements made during the virtual coach, training objectives and key messages were addressed through a participatory training approach. Moreover, major herd health problems identified during the dairy cattle health intervention validation workshop were considered during the training (Dinede et al., 2022) The training process adopted an experiential and collaborative learning approach as described by Lemma et al. (2016). This training approach allows farmers to reflect on what they have learned, relate it to their experience, and think about how they can apply it. This would enable them to draw their pre-existing knowledge, experience, and attitude, identify knowledge, skill and attitude gaps and introduce new knowledge and improved practice to address these gaps. To effectively deliver the message, checklists, flipchart, and group discussions were used as training tools to ensure convenient information flow and progression of learning. Pictures, storytelling, and discussion questions were used to facilitate discussion and interactive training. Methods and materials used during the training include:• Flipchart and checklist• Experience sharing among dairy farmers• Dairy farm visits• Picture analysis.Besides, during the training and model farm visit, pictures and video were taken to document evidence, collect farmers opinion, knowledge, and experience (see Photos section). This will help us to assess the effect of the training on their knowledge improvement during the follow-up period.The training date and venue were arranged in consultation with the respective District livestock office, kebele extension agents and ADGG focal person. The training was conducted at farmer's community centers/farmers training center (FTC). This creates an easy access to dairy farmers, create a safe/comfortable learning environment for farmers and facilitate practical/peer-learning using farm visits. The training was implemented between 25 July and 2 Aug/2023 (Annex 1). A total of six days (2 days per cluster) on a half day sequential basis were taken to finalize the training.By the end of each training round, dairy farmers were allowed to mention key messages and action points. By the next day, before the beginning of successive training sessions, a recap of the previous session was made to ensure a logical progression between sessions and training rounds.The training was facilitated by Yeshwas Ferede, Bahir Dar University.Before the beginning of the actual training, following trainees' arrival, they were warmly welcomed by the district officials and, followed by self-introduction by the trainers. Then, farmers were briefed about the overall SAPLING's herd health and welfare management training objective. Farmers were asked to share their expectations from the training and what they hope to change due to the training.A total of 30 farmers who enrolled as intervention farmers attended the herd health and welfare management training. Female-headed household participants constituted about 13.3% (4/30).Although the training was supposed to use a mixed/or couple's training approach, due to the main crop cultivation season, bringing couples (both husband and wife) to the training session was challenging. This led a very small (16.6%, 5/30) proportion of women participants in the herd health training. These participant couples were only from Sebatamit-Yigoma dairy cluster.The training covered seven dairy herd health and welfare management topics. These include, i) prevention and control of major infectious diseases affecting dairy cattle, ii) prevention and control of major non-infectious diseases affecting dairy cattle, iii) control and prevention of major parasitic diseases affecting dairy cattle, iv) prevention and control of calf mortality in dairy farms, v) prevention and control of major reproductive disorders in dairy cows, vi) prevention and control of major hoof disorders in dairy cows, and vii) improving dairy cattle welfare management practices.As part of the brainstorming session, farmers were asked how to identify a sick dairy animal, common clinical signs of a diseased animal, and share their experience on how to manage their diseased animal. They were also asked to describe infectious diseases, their transmission method, source of infection, their impact on dairy cattle production, their control and prevention methods to understand their level of knowledge/awareness. Farmers were allowed to identify major infectious disease affecting their dairy animals through an interactive discussion. This helped us to understand farmers' current problems and accordingly deliver the training towards addressing these issues.Major infectious disease identified by farmers included: FMD, LSD, mastitis, bovine pasteurellosis and Blackleg. However, they mentioned that the prevalence of anthrax and blackleg are decreasing from time to time. Accordingly, much emphasis was given on the control and prevention of prioritized herd health problems (i.e., FMD, LSD, bovine pasteurellosis and bovine mastitis). Nevertheless, considering the dynamic nature of these infectious diseases, the training session covered anthrax, black leg, and bovine tuberculosis (bTB).All farmers have never heard about bovine Tb and didn't know its potential transmission from dairy animals through ingestion of raw milk and meat. We also noted variations among trainees in terms of knowledge and attitude regarding infectious disease prevention and control. For instance, farmers from Robit-Yibab, and Sebatamit-Yigoma have relatively better awareness of how to control infectious diseases (e.g., FMD and LSD) when compared to Yibab-Yinesa cluster dairy producers. Farmers located in the later cluster perceived that these diseases have no prevention measures. These farmers use various ritual and religious activities like the use of Holy water, and serving coffee, and porridge to get rid of these diseases. A list of common diseases affecting their dairy cattle and their local/vernacular names are mentioned in Table 1.Farmers were asked to describe mastitis, estimate the magnitude of the problem in their dairy herds, mention the potential predisposing factors, and source of udder infection, and share their prior knowledge and experiences in managing mastitis in lactating dairy herds. Almost all farmers were familiar with clinical mastitis. The recurrent occurrence of clinical mastitis was a major herd health problem in the intervention areas. However, none of them were aware of sub-clinical mastitis and its huge negative impacts on dairy production (reduced milk yield, teat blindness, reduced productivity).Most farmers wash their hands without drying towels and soap before and after milking. However, the rationale why they wash their hands was poorly understood. Some farmers wash their hands just because of their habitual practices, and some others to keep the cleanness of the milk. They never thought that a cow's udder environment and its dung are major sources of udder infection.After a series of discussions, farmers were convinced to be proactive in implementing mastitis preventative measures (i.e., follow hygienic milking procedures; wash hands before and after milking, udder washing, teat dipping, regular barn hygiene, milk infected cows last), early detection of udder infection through visual inspection of the udder (any swelling and udder asymmetry), loss of milk quality (color and consistency), milk quantity (milk yield reduction; subclinical mastitis). Dry cow therapy was mentioned as an effective means to effectively control mastitis in subsequent lactating periods. They were also advised to avoid self-medication of mastitis as they might encounter treatment failure due to lack of improper drug choice and dosage. Farmers mentioned that the reason why treat their animals by themselves is due to lack of mobile veterinary services in the nearby areas.Farmers from the two clusters (Robit-Gombat and Sebatamit-Yigoma) complained that the quality of milk from high grade cows is deteriorating from time to time. Their pooled milk didn't pass the quality standards (lactometer and alcohol test) set by the dairy cooperatives. They asked the project to support them in examining the root cause of milk quality loss in their farms. Upon examination of their milking practices, most farmers milk their pregnant dairy cows until seven months, and some others milk until eight and half months, this could lead to milk quality loss in subsequent lactation periods. Such late milking practices coupled with the hidden occurrence of sub-clinical mastitis could contribute to milk quality deterioration. Nevertheless, this needs further investigation.Under this training topic, farmers were asked to describe non-infectious diseases, explain the difference between infectious and non-infectious diseases, to mention major nutritional disorders in their herds, their impact on dairy cattle production, their control and prevention methods to understand their level of knowledge/awareness and attitude. Farmers were also asked to identify major non-infectious diseases affecting their dairy animals. Few farmers (10%, 3/30) experienced milk fever/calcium deficiency disease. Most farmers have never experienced milk fever and ketosis, and hence have no awareness about these diseases. However, emphasis was given to these metabolic diseases, as these farmers have a plan to increase the exotic blood level of their dairy cows to boost milk yield.Farmers were informed about the causes and predisposing factors (poor nutritional management during the dry period) and clinical signs of milk fever and ketosis. They noted that these diseases commonly occurred in high grade cross bred dairy cows/high yielding dairy cows in early lactation periods. To ensure a better understanding of milk fever, the role of calcium in milk production during the transition period and fetal bone formation during pregnancy was described. Farmers were also asked to mention their diet/nutritional management practices for lactating and nonlactating dairy animals to associate these problems with their nutritional management practices.Almost all farmers gave concentrate feeds (nug seed cake and wheat bran, pelleted dairy formula feed) as supplement to lactating dairy cows. However, they didn't provide special nutritional attention to pregnant dairy cows. This showed that farmers were not taking the required preventive measures to control potential metabolic disease during the dry periods. They were advised as they can avoid milk fever in dairy cows by providing calcium rich (e.g., green feeds, limestone flour) and energy (e.g., wheat/maize bran, Napier grass) rich diets with another ration during the last trimester.Farmers were asked to mention how simple indigestion and gas bloating are frequently occurring in their farms, including common seasons, affected age group, causes and their control and prevention measures. Farmers were also asked to mention their diet/nutritional management practices for lactating and non-lactating dairy animals to associate these problems with their nutritional management practices.According to farmer's view, simple indigestion and gas bloating were found as common disorders associated with abrupt dietary changes at the beginning of concentrate feeding (for dairy cows), and at the beginning of rainy season (when shifting from a dry to early green pasture in grazing cattle) and during main rainy season (grazing of succulent green pastures, they named it ''Wajima/ዋጅማ ''). Farmers used various homemade techniques by themselves, to manage bloating. These include pasture management (Whitling-for trifolium grasses) drenching of oily substances (paraffin oil), and rumen puncture using knives in severe cases. Farmers were advised to take possible precautionary measures to prevent simple indigestion/bloating and carbohydrate engorgement by avoiding cattle from potential causes of bloating. And consult veterinarians when these diseases occur in their herds.Under this training topic, to better understand the knowledge and attitude level of farmers, they were asked to identify major internal and external parasites of dairy cattle, transmission methods of these parasitic diseases, source of infection, their impact on health and production, and their control and prevention methods. This valuable information was documented through a series of interactive discussions.In all three clusters, internal parasites (especially fasciola and shistosoma) were found major dairy herd health problems, especially in grazing cattle. Almost all farmers knew that these parasites are sourced from grazing/feeding of pasture in waterlogged areas. However, they didn't have awareness about bovine lung worm, including its source. Farmers use deworming chemicals (Albendazole, tetracloza, ticlibendazole and Ivermectin) to control these internal parasites. All farmers perceived that scistosoma can be treated using these drugs.As Bahir Dar Zuria District is located around Lake Tana and the Blue Nile River, there are different wetlands serving as communal grazing land. Besides, irrigation is a common activity in dry seasons. These create a favorable microclimate for the multiplication and maintenance of intermediate hosts (snails) of trematode/fluke parasites. Hence, during the training, much emphasis was given on how to control such internal parasites. Farmers were advised to avoid grazing pasture on waterlogged environment, use cut and carry systems, to feed their animals after wilting of the harvested pasture for at least 2-3 hours. Besides, farmers were encouraged to consult veterinarians before they procure deworming chemicals, the frequency and type of dewormers to be used.In all three clusters, external parasites (especially ticks, lice, and fleas (in young stocks)) were mentioned as major cattle parasites. They knew that these external parasites cause health problems through sucking blood and skin irritation and are sourced from cattle grazing areas. However, they didn't have awareness about the role of ticks in transmitting infectious diseases (e.g., heartwater, babesiosis) from one animal to another animal. When farmers were asked how to control these external parasites, all mentioned using spraying (diazinon) and injection (ivermectin). Some of them use self-treatment, and others bring their animals to a vet clinic for treatment. They explained that tick infestation begins at the onset of the rainy season and continues until the dry season begins.From their experience, we noted that some farmers have been using authorized spray chemicals (herbicides) against tick infestation. These farmers encountered cattle deaths following the spraying of these herbicides. In earlier periods, some farmers explained that they used herbal medications (''Endod'') to control lice and fleas in dairy calves. Farmers were advised to avoid the use of selfspraying acaricides and authorized chemicals for veterinary use. Besides, farmers were encouraged to consult veterinarians about which acaricides to procure, how to use PPEs, and how to prepare and spray acaricides.The objective of this training topic is to improve the health and productivity performance of dairy calves through improving the knowledge and attitude of farmers about improved dairy calf management practices, create/raise awareness about the cause and impact of major calf diseases and calf mortality.Under this training topic, farmers were asked to describe the unique features of a newly born dairy calf, encouraged to share their experiences in pre-natal and peri-natal calf management practices, major calf diseases, source of infection and transmission methods, the impact of calf morbidity and mortality on the performance of their dairy farm. These questions were forwarded to deliver context-specific training and understand farmers' level of knowledge/awareness and attitude about calves, common diseases, and other improved calf management practices.Farmers were allowed to identify major infectious and non-infectious diseases of calves commonly occurred in their farms, and their existing mitigation strategies. Calf diarrhea was found to be the leading calf health problem in these areas. Septicemia (''Kortim''), Pneumonia (''Anfis''), omphalitis and external parasite infestation (ticks, flea, and lice) were also mentioned as major calf health problems. FMD was reported as the major cause of calf mortality in the area. Adequate emphasis was given to prioritized calf health problems mentioned by farmers. Farmers were advised to implement improved calf management strategies. Besides, farmers were advised to implement better calf milk and non-milk feeding, improved barn hygiene, and early detection when a calf gets sick for better health outcomes.Farmers were asked to share their experiences and attitudes regarding colostrum management and its role in reducing calf morbidity and mortality. These questions were forwarded to understand farmers' level of knowledge/awareness and attitude about colostrum feeding. We observed some notable colostrum management variations, offering colostrum to newly born calves across dairy clusters. Robit-Yibab, and Sebatamit-Yigoma have relatively better awareness and experience in colostrum feeding practices, most of them fed colostrum before six hours of birth. Nevertheless, they didn't know the health benefits (rich with various Immunoglobulins) and measure the amount of colostrum to be fed (as they practice hand feeding).However, farmers from Yibab-Yinesa clusters never thought that colostrum was significant for calves, rather they abstained or allowed them to ingest residual colostrum after the fetal membrane was expelled out. According to these farmers, bloating, diarrhea, and unstrictness later in life, are some of the perceived negative impacts of colostrum. Early colostrum feeding to calves before six hours of birth is critical to ensure better calf health and productivity. An interactive discussion was made to convince farmers about the importance of early colostrum feeding and that it has no side effects.Under this training topic, farmers were asked to mention major reproductive disorders encountered in their farms, impacts of calf reproductive disorders on the performance of their dairy farms. They were encouraged to share their experiences and practice how to manage reproductive disorders. Farmers were not aware of infectious causes of abortion, and their zoonotic potential.Retained Fetal Membrane (RFM), abortion, dystocia and infertility (repeat breeding) were the major reproductive disorders mentioned by farmers. Uterine prolapse was reported by some farmers following the forceful traction of the fetus. We observed some variations in managing RFM among participants. Many farmers considered that the fetal material is retained if it hangs until six hours, and few of them until 12 hours. Farmers were convinced that they needed to be proactive in providing better dietary and breeding management, and early detection of reproductive disorders. They were strongly advised to take care of them while handling aborted fetus, and how to dispose of the aborted fetus to protect themselves from potential zoonotic diseases. Farmers were also taught that the fetal membrane is said to be retained if it fails to be expelled from the uterus between 12-24 hours of birth. They are accordingly advised not to manage the fetal membrane before 12 hours of birth. They are also advised to consult veterinarians when they encounter any reproductive disorders in dairy cows.The association between RFM and colostrum feeding was discussed. Most farmers perceived that early colostrum feeding extends the removal of RFM. However, through interactive discussions, farmers understood their wrong perception, and instead, they were convinced that early colostrum feeding stimulates oxytocin release and milk letdown, which helps quick expulsion of RFM from the uterus. Other reproductive disorders (metritis and endometritis), their clinical signs, and source of infection were also described. Hence, considering the huge impact of reproductive disorders, the role of strict biosecurity measures, and good nutritional, health, and breed management practices in controlling reproductive disorders have been emphasized during the training.Under this training topic, farmers were asked to mention major hoof disorders encountered in their farms, causes/predisposing factors, and impacts of lameness on the performance of dairy cows.They have been encouraged to share their experiences and practice how to manage hoof disorders. Some farmers explained that lameness is a common problem in dairy cattle following FMD and LSD exposure. Tick infestation, mechanical hoof injury, and hoof overgrowth (stall-fed animals) were common causes of lameness in dairy cows.Dairy farmers were taught about the causes and impacts of hoof disorders in dairy cattle. They taught about the importance of maintaining good claw health in the welfare and productivity of their dairy cows. Farmers were advised that early detection and treatment of lameness is critical for minimizing the impact of this condition on the health and productivity of the herd. Claw lesions which include sole ulcers and digital dermatitis are common causes of lameness. Trauma to the hoof or leg, such as from slipping or falling, can cause lameness in dairy cows.Infectious diseases, such as foot rot and interdigital dermatitis, can cause lameness in dairy cows. These diseases are caused by bacteria and can be spread through contaminated environments or equipment. Nutritional deficiencies, such as a lack of trace minerals or vitamins, can lead to lameness in dairy cows by weakening the hoof and bone structure. Environmental factors, such as slippery floors or poor ventilation, can increase the risk of lameness in dairy cows. Regular hoof trimming, providing proper flooring (such as non-slip surfaces), proper nutrition during the pre-and postpartum period, early detection, and treatment of lameness, implementing effective biosecurity measures, proper environmental management, selecting cows with a history of good hoof health can help reduce the incidence of lameness in the herd. We noted that most farmers were not aware of animal welfare, including its role in improving the productivity and health of animals. Accordingly, emphasis was given to changing the farmers' attitudes to animal welfare. During the training, animal welfare was defined as '' the combination of an animal's physical health and psychological wellbeing'' provided by the animal welfare committee. Hence, animals can be used for human purposes, but they should be treated humanely so that discomfort is kept to a minimum.Farmers were asked to mention common welfare unfriendly practices. Limited access to quality animal health services (e.g., vaccination, quality drugs), and shortage of land for dairy production (for barn construction, exercising area) were mentioned as major welfare constraints in the study areas. Abuses (beating) during herding and transportation, mixed herding, cutting and hot iron application (traditional medication), and inhumane handling during transportation and slaughtering were common welfare unfriendly practices. Besides, farmers prohibit calves from getting maternal colostrum, provide insufficient milk to calves, and practice preferential treatment (feeding and attention) for female calves and lactating dairy cows, while male calves and other age classes receive little/no attention in the herd.Based on the identified welfare unfriendly practices, an interactive discussion was made with farmers to avoid such welfare problems. Accordingly, they were introduced with the fivefreedoms/domains of animal welfare with the respective improvement strategies. These include nutrition (freedom from hunger and thirst), health (freedom from pain injury, and disease), environment (freedom from discomfort), behavior (freedom to express normal behavior), and mental (freedom from fear and distress).The awareness of farmers about animal welfare and key welfare improvement strategies (i.e., understanding the five basic welfare domains) was raised/created through a series of interactive discussions. The relationship between animal welfare, productivity, and health was described. The five internationally recognized animal freedoms (welfare domains), which have been used to systematically identify and grade welfare problems worldwide, with their improvement strategy are described below (Table 2). Partners were cleared about the role of the private veterinarian and its service scope, as he is supposed to deliver demand driven selected preventative and curative herd health services. Partners (district officials, kebele extension agents and ADGG focal person) showed their keen interest and commitments to support the SAPLING's heard health program by integrating its herd health interventions into their regular extension activities, and monitoring program. Table 1 shows agreed shared responsibilities among partners. At the end of the training, participant farmers from each cluster were allowed to share their views, reflections and feedback regarding the training content and approach. They appreciated the training delivery methods, which allowed them to freely share their feelings, discuss their problems, and learn new knowledge with clarity and customized simple language. They also added that the training duration and venue arranged at their village helped them to save their time, and create a favorable peer-based-practical learning environment. Some farmers shared their opinions quoted below.A participant farmer from Robit kebele, said that \"I have taken trainings from different projects, but truly speaking, this one is special for me, the training approach was simple and friendly. This helped us to learn new knowledge and avoid wrong perceptions about improved animal health issues. Now, the newly acquired knowledge will enable me to effectively manage the health of my dairy animals. I have never thought that colostrum feeding has such a huge advantage in improving calf health and reducing calf mortality. This training has completely changed my mindset. I will fully offer colostrum to my calves as soon as birth\".A female household-headed participant farmer from Yibab Kebele, explained \"I have learned a lot of things from this training, how to improve the health of my dairy cows. I have been facing mastitis repeatedly in my dairy farms, and I have now learned mastitis is a preventable disease by applying hygienic milking procedures. I will keep washing my hands before and after milking and keep the cow's udder and barn clean!\" A participant farmer from Yigoma Kebele, also added that \"different projects supported us to cultivate improved forages and produce better dairy breeds. We did that! But now animal health is a priority issue for us. I lost two crossbred calves this year to FMD/አፈማዝ disease, because of a lack of access to veterinary services. We are struggling to get vaccination services against FMD and LSD diseases. I heard great news today! We are lucky to hear that this project will introduce a mobile veterinary service for us\".Partners were allowed to share their reflections and feedback regarding the relevance of training. The district livestock representative explained that ''it is a great opportunity to receive such support from ILRI, as they have a huge gap in addressing the knowledge gap of farmers, herd health gaps, and vaccination services in Bahir Dar Zuria District''. They appreciated the training material, which they found clear and well structured, and expressed their interest in using the training material in other areas having a similar production setting.Overall, the herd health and welfare management training were delivered as per the plan and the training manual. All selected intervention farmers attended the training. The content of the training material was clear, and the trainers tried to align well with farmer's real problems. The training methodology was convenient and effective in addressing farmer's real problems. The allocated time (half a day, on a sequential basis) for the training was enough to address key messages and allow farmers to go back home early in the afternoon for farming activities.The training venue was found convenient for accessing participant farmers, effectively managing time, and implementing practical learning sessions (i.e., model farm visits). This helped the trainers to effectively address messages within the provided time frame. The commitment of participants from partnering institutions was encouraging. They have been engaged from planning to implementation of the actual training. This helped us to effectively facilitate the training, have a better understanding of the project's activity, and take shared responsibilities.Despite having those notable strengths, few limitations were observed during the training period. Initially, mixed/couples-based training was planned. However, due to the main crop cultivation season, women were not allowed to attend the training alongside their husbands.It would have been better if the training was delivered in dry/off seasons, where main season farming activities are relatively simple. Due to time limitation and lack of transport arrangements, inter and intra-cluster model farm visit was not implemented as planned. A model farm visit session was arranged only in Robit Kebele. There was no electricity access in most FTCs, which made it difficult to deliver a video-based demonstration.The herd health and welfare management training was carried out between 25 July and 02 Aug 2023 in Bahir Dar Zuria District. The training was successful in meeting its objectives and achieving the desired outcomes. However, those observed gaps, limitations, and feedback identified during the training need to be analyzed and addressed. This would help us to effectively implement the upcoming herd health interventions. Besides, the introduction of subsequent herd health activities, which includes the introduction of the baseline survey, and the introduction of private mediated mobile veterinary health services along with prioritized herd health interventions, scheduled supervisions, and mentoring activities, should be implemented timely. Establishing a strong multidisciplinary monitoring and evaluation team, drawing from ILRI herd health team, ADGG and district livestock officials, would also help to ensure effective implementation of herd health interventions.Participant farmers in dairy herd health training, Sebatamit FTC (photo credit: Yeshwas Ferede/BDU). ","tokenCount":"5403"} \ No newline at end of file diff --git a/data/part_3/7109690180.json b/data/part_3/7109690180.json new file mode 100644 index 0000000000000000000000000000000000000000..0ccce02865f9237d418343ef837d7d2fdd737ed7 --- /dev/null +++ b/data/part_3/7109690180.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"43ef0145db2febf551cce2fa1e379c2a","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/3a373114-4675-4b56-97c3-cea4935b8629/retrieve","id":"-1184716246"},"keywords":[],"sieverID":"e66f87df-bac6-470c-b85b-8f1f1fbbf762","pagecount":"116","content":"Inaugurated in late 2011 and implemented in two phases (to 2023), the purpose of Africa RISING was to provide pathways out of hunger and poverty for smallholder farm families through sustainably intensified farming systems that sufficiently improve food, nutrition, and income security, particularly for women and children, and conserve or enhance the natural resource base.Over a decade ago, USAID had a nearly impossible request. How can we conduct cutting-edge and prioritized research while broadening the complexity of this research to ensure agriculture simultaneously delivers greater productivity, profitability, environmental sustainability, and social and human outcomes. At the time of this request, food production was increasing in our Feed the Future focal countries but there was still rapid expansion of agricultural lands and the very farmers that were producing this food were facing increasing rates of poverty, hunger, and malnutrition. Food production alone was not leading to our developmental goals. The research agenda had to shift from a focus on food production alone, to food productivity for impact on livelihoods. Africa RISING took on this challenge and has delivered -both with impacts during the program and in establishing a foundation for the future of farming systems research for development.Africa RISING simultaneously pioneered the methodologies for conducting systems research and used these new methods to identify keystone technologies and approaches that drove broader systems progress. These keystone innovations included agronomy, soil health, crop genetics, livestock management, mechanization, food storage and safety, and bundles of these practices that were assessed and adapted to maximize system outcomes. Advancements moved beyond the development of the technologies alone, to assessing the systems trade-offs and synergies across both biophysical and socioeconomic indicators that then guided the bundled innovations to optimize system outcomes. This proved to be fundamental to ensuring agricultural gains led to livelihood gains. Essential to this success was Africa RISING's process for bringing transdisciplinary teams together, leveraging the strengths of multiple CGIAR institutions, and ensuring local institutions and farmers were coleads throughout. This process both guided the co-creation of the research agenda and facilitated the bidirectional transfer of innovations and learning into demanddriven pathways to scale. In addition to the research to develop and improve new innovations, Africa RISING made research advancements on the approaches for accelerating and sustaining technology transfer and scaling. This included conducting participatory action research, developing multi-stakeholder innovation platforms, and developing technology park and lead farmer scaling pathways.Perhaps equally as important to the research agenda was Africa RISING's partnerships and the processes for disseminating research outputs. From day one, Africa RISING ensured technology development was demand-driven, codesigned, and locally owned. National scientists co-led the research activities and local institutions owned the outputs. This proved to be a multiplier, supporting the flow of research outputs reaching millions of beneficiaries over the life of the program and sustaining delivery into the future.USAID extends its deepest appreciation and congratulations to the Africa RISING team for charting a new path to ensure agriculture-led growth lifts millions out of hunger, poverty, and malnutrition.Bureau for Resilience, Environment, and Food Security United States Agency for International DevelopmentSustainable agricultural intensification (SAI) remains a key focus topic in Africa. The continent's need to double food production and feed the growing human population without compromising its natural resource base continues to make SAI an imperative. The Africa Research in Sustainable Intensification for the Next Generation (Africa RISING) program was born out of this need in 2011 when the USAID Agricultural Research Division solicited proposals to address this challenge. USAID's concern at the time was about the limited information on specific practices with the most significant potential to contribute to sustainable intensification and thus food security for smallholder farmers in sub-Saharan Africa.The mission of Africa RISING was thus set: to integrate action research and development partnerships to create opportunities for smallholder farm households to move out of hunger and poverty through sustainably intensified farming systems that improve food, nutrition, and income security, particularly for women and children, and conserve or enhance the natural resource base. Over 12 years, through two phases of implementation, the Program focused on this mission and, in the process, made several strides in providing farmers with viable options for sustainable intensification.These strides have been made in terms of practical crop-livestock sustainable intensification (SI) innovations for farmers and how to integrate them successfully in the context of the farming systems in which they were validated. Through Africa RISING, the Sustainable Intensification Assessment Framework (SIAF) was piloted and finetuned by scientists, providing a criterion for evaluating the inherent trade-offs that were hitherto overlooked in assessing innovations -yet another stride highlighted in Chapter 3 of this report.Implementing a program successfully and integrating the rich contributions of a transdisciplinary team of scientists and development practitioners, as Africa RISING has done over the years, presents an excellent learning opportunity shared in Chapter 4 of this report. These lessons cover governance and management, experiences in implementing farming systems research by integrating biophysical and socio-economic sciences in collaborative innovation research and deployment, gender integration into the selection and promotion of technologies, approaches for optimum technology transfer, capacity building, and more.It is important to recognize that Africa RISING did not begin with a welldefined proposal and program design, rather through co-creation by the core team and partners it evolved over time and offered an opportunity to integrate lessons learned through the years. However, a firm commitment to intervention communities was one of the most exciting and relevant characteristics of Africa RISING. Long-term research-in-development in the same communities endows Africa RISING with an institutional memory that is valuable and needed for sustainable intensification. Therefore, we hope this report helps share the nuggets of wisdom from our institutional memory gained from this oneof-a-kind 12-year program.We trust that the lessons learned from the Africa RISING Program and the innovations validated through the Program v Strides in sustainable agricultural intensification: contributions of the Africa RISING Program will be advanced further by the newer CGIAR Initiatives and others involved in farming systems research and sustainable intensification work. As highlighted in Chapter 5 of this report, aptly titled 'Passing the Baton', some of that experience-sharing has actively started with the One CGIAR Initiative on Sustainable Intensification of Mixed Farming Systems. We hope this can continue, and this report will be a facilitative document for that process. The Africa RISING continuum 1 1Based on an interview with Irmgard Hoeschle-Zeledon and Peter Thorne. At that time, the emphasis in agricultural research was on increasing food production to meet growing population needs.USAID was keen to fund an integrated research program to holistically address the multiple challenges faced by smallholder farmers, in contrast to the more narrowly focused crop or livestock projects typical at that time. With USAID support through the United States Government Feed the Future initiative, three regional Africa RISING projects were conceived to fill this niche: East and Southern Africa Project (implemented in Malawi, Tanzania, and latterly Zambia); Ethiopian Highlands Project; and West Africa Project (implemented in Ghana and Mali). Today, the groundwork laid by the Africa RISING Program (a collective of the three regional projects) has advanced the focus of agricultural research toward sustainable food systems perspectives and climate change adaptation.The aim was to sustainably intensify agricultural production systems while considering trade-offs and consequences across components (an integrated systems approach spanning soils, water, livestock, crops, socio-economic, and other factors), rather than compartmentalized ('siloed') interventions. This integrated perspective was novel compared with previous projects tackling issues in isolation.A major contributory factor to the success and longevity of Africa RISING was the donor's -USAID's -flexibility. Their desire was to help smallholder farmers improve their lives in the long term, rather than aiming for short-term results and to approve how every dollar of public funds should be spent. This gave the program an immense degree of flexibility that is extremely rare in donor-funded projects, and meant that the implementing teams within the respective projects could be 'agile' in the face of changing circumstances on the ground.Phase 1 of Africa RISING (2011-2016) concentrated on problem diagnosis, technology testing, and validation through participatory research with farmers across three regions in sub-Saharan Africa.After compiling an initial list of potential key partners for such an integrated multidisciplinary research program, competitive grants were awarded for shortterm 'quick win' projects, with the aim of producing small deliverables within 6-8 months to showcase early outputs in the first year (a donor requirement). Concurrently, the process of developing the overarching research framework was unfolding through an organic process involving articulating core hypotheses and research questions toward the goal of sustainable intensification; this built on the program's theory of change (Fig. 1).A major undertaking was formulating the Sustainable Intensification Assessment Framework (SIAF) to measure and analyze sustainability indicators related to productivity, economic, environmental,The transition to Phase 2 was smooth, helped by retention of core staff and continuity of activities, as well as a natural evolution of the program's theory of change. Phase 2 (2017-2023) prioritized scaling of proven technologies through development partners, while continuing context-specific adaptive research -for example, Phase 2 was expected to benefit 1.1 million farmers (directly and indirectly), while during Phase 1 the program had worked directly only with thousands. A hallmark of Phase 2 was flexibility to pivot in response to emerging issues, without the strict logframes and timelines typical of more rigid projects. When potential program termination arose due to funding uncertainty in mid-2017, efforts rapidly shifted toward wind-down activities such as synthesizing findings, analyzing already collected data, and producing extension materials to share results. When normal funding flows resumed in 2018, the research and scaling work was quickly put back on track.The main highlight of Africa RISING was research translated into action and benefits -a balance between research and groundlevel action resulting in direct benefits for farmers. However, the well-attended program-wide annual meetings -'learning events' -that built camaraderie across countries, projects, and the diversity of partners involved was a highlight for project staff and partners alike. Exchange visits enabling staff from one regional project to spend time with another were also impactful for sharing knowledge, learning from each other, and fostering connections across the program.Strides in sustainable agricultural intensification: contributions of the Africa RISING Program This chapter presents some highlights of the Africa RISING program's achievements, with a focus on overall program reach (Men numbers of beneficiaries) and impacts in relation to the SIAF indicators. Other achievements and lessons are included the subsequent chapters of this report. Direct beneficiaries (Fig. 2) are those involved in participatory testing, validation, and application of Africa RISING sustainable intensification innovations (e.g., in mother-baby trials). Scaling beneficiaries (Figs 3 and 4) are those reached primarily by scaling partners, which for Africa RISING were local development agencies, institutions, and NGOs; these beneficiaries were not directly involved in the research (including research-in-development) activities. Our impact estimates covered all program countries, except Zambia, and are based on two rounds of household panel survey data, except for Ethiopia for which program effect is estimated using one round of survey data. Impact is estimated using statistical, non-experimental methods: Propensity Score Matching (PSM) and difference-indifferences (DiD) 4 for countries with panel data or, for Ethiopia, based on simple comparison of outcomes between program beneficiaries and non-beneficiaries. 4 DiD refers to the average difference in the outcomes of interest between Africa RISING beneficiaries and non-beneficiaries before and after receiving interventions. More formally, in our case, DiD = (Ȳ 1), where B and C represent the beneficiary and control group, respectively; 1 and 0 represent postand pre-treatment periods, respectively; and Ȳ represents sample average. For ease of interpretation, we express the impa.t as percentage change in Y. The RDiD is used to deal with bias in DiD estimates due to systematic time-varying confounding factors, such as the Normalized Difference Vegetation Index, to control for their time-varying effects on Y through regression adjustment. increase in likelihood of being poor in agricultural assets 13 13 Tractors, sprayers, sickles, plows, yokes, harrows, yokes, shovels, etc. To evaluate the innovations highlighted in this chapter, Africa RISING pioneered use of the Sustainable Intensification Assessment Framework (SIAF) 15 indicators to assess their sustainable intensification merits and risks across productivity, economic, environmental, human, and social domains. To achieve sustainable intensification, interventions need to positively impact multiple domains, ideally all five, necessitating mitigation for any negative effects in specific areas.The final section of this chapter looks at one of the overarching themes of Africa RISINGfarming systems research and development, highlighting the importance of innovation bundling and the overall dynamics of adopting this approach.Strides in sustainable agricultural intensification: contributions of the Africa RISING Program16 With input from Baloua Nebie. 16 In the dry Sahelian and Sudan savannahs, rural people typically rely on both crops and livestock for food and livelihoods. However, since the devastating droughts of the 1970s and 1980s and subsequent changes in the climate, natural pasture has become increasingly scarce. Dual-purpose cereals (primarily millet and sorghum) are therefore a lifeline, providing grains for farming families and edible stems (stover) for their livestock, especially during the dry season.Through Africa RISING, the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) validated and promoted three dual-purpose high-yielding sorghum varieties with improved stover palatability for livestock (Peke, Soubatimi, and Tiandougoucoura), in the technology parks of Koutiala (semi-arid with around 600-800 mm annual rainfall) and Bougouni (sub-humid, 900-1,100 mm) in southern Mali. The same trials were implemented by 27 farmers in their own fields (later scaled to 5,844 farmers through demonstration plots).The new sorghum varieties produced over 40% more grain and edible stems than the local varieties, and even more when either mineral or organic fertilizers were applied. They retain green stems and leaves through to grain maturity and harvest, and so are less woody than those of the local varieties. Combined, these attributes make the stover more palatable to livestock and increase its digestibility.The improved dual-purpose sorghum varieties provide benefits across the spectrum of sustainability domains, from increasing crop and livestock productivity, to contributing to improved economic status through either reduced reliance on purchasing staple food and livestock feed or providing surplus grain and livestock feed for sale, and the potential for native pasture to regrow because of the reduced pressure from livestock grazing. The stover used to feed livestock thus contributes to increased availability of milk and meat, which improves population nutrition status and income. However, while farmers in Bougouni overwhelmingly preferred the new varieties -Peke (89%), Tiandougoucoura (80%), and Soubatimi (76%) -those in Koutiala preferred the local variety (80%) for its grain quality despite its low stover quality. Thus, in introducing improved dual-purpose sorghum to new areas, it is important to allow farmers to make their own decisions through processes such as participatory varietal selection.Strides in sustainable agricultural intensification: contributions of the Africa RISING Program Fousseini Samake, farmer, Flola village,Farmer Fousseini Samake said that he preferred 'tô' (thick porridge) made from variety Soubatimi because it looked 'cleaner' than that made from the local varieties. He also suggested that women would also likely select Soubatimi over the local varieties because of the quality of the tô and other local dishes.Upon visiting the technology park in Koutiala in October 2017, Country Director of the Mali Agricultural Market Development Trust (MALIMARK) Aminata Tangara was attracted to the thick green stems and grain yield of Soubatimi. She selected the variety to be included among the crops to be produced by MALIMARK outgrower farmers. \"I was already collaborating [with one of the Africa RISING projects], so through this partnership I acquired 300 kg of Soubatimi foundation seed and distributed 5 kg each to 60 of our outgrower farmers. They will cultivate it and produce certified seed, which we will buy back from them, package, and sell, because this is a very promising variety,\" she said. By the closure of the program, dual-purpose sorghum and millets had been scaled to 5,844 farmers in Mali through Africa RISING demonstration plots.Increasing sorghum productivity has been a major policy goal of the Government of Mali since the 1970s. Africa RISING has made a significant contribution to that with its improved dual-purpose varieties, which are also available for testing and adoption in other sorghum-growing regions that also rely heavily on livestock. Growing vegetables in Tanzania 19 Most vegetables produced in Tanzania come from the smallholder sector, which is characterized by low levels of mechanization, poor infrastructure, limited access to credit, limited technical expertise, and poor access to improved seeds, and is strongly affected by unpredictable weather changes.Through Africa RISING, the World Vegetable Center introduced improved varieties of six vegetable crops along with good agricultural practices (GAPs) to Babati and Karatu districts of northern-central Tanzania. The crops are African eggplant (1 variety), African nightshade (1), amaranth (2), Ethiopian mustard (1), sweet pepper (1), and tomato (3).GAPs include good-quality seed, seed and seedling health, field and nursery management, use of manure and mineral fertilizers, plant spacing, integrated pest management, weeding, and post-harvest management. GAPs in vegetables increased farmers' yields by an average of 12.8%, increased their gross margin by 13%, and enabled a 75% reduction in pesticide use. Traditional vegetable recipes introduced to communities resulted in a 119% increase in per-capita vegetable consumption and a 60% increase in types of vegetables consumed, including greater increases in vegetable consumption among households that previously ate few or no vegetables prior to the project.A group of women farmers carry tomatoes to the market after harvest. Africa RISING introduced farmers in Tanzania to high-performing and farmer-preferred vegetable varieties as a pathway for improved nutrition and income for families. Photo credit: Jonathan Odhong/IITA.Strides in sustainable agricultural intensification: contributions of the Africa RISING ProgramFarmers responded better to a business service approach than to methods focused on production; many showed interest in producing vegetable seeds for market.Women farmers benefited from the use of improved technologies: some are getting better yields than before and have access to their income from vegetable sales.Community members are keen to take up technologies that safeguard their health. Thus, when promoting any technology, it is good to help communities understand the benefits of the technology and the implications of not taking it up.Additional side benefits of the technology in the farm system contribute to its uptake, such as utilizing \"vegetable waste\" as feed for chickens; chicken droppings in turn were used as manure in the gardens.Growing vegetables in rotation or intercropping with other crops benefits from a large, diverse population of soil organisms, producing good yields and improving livelihoods, particularly for women farmers who are a major part of the labor force in crop production.Working with research and development partners increases knowledge and skills within the team and greatly enhances smallholder farmers' access to improved and relevant sustainable agricultural technologies. Such access is necessary to increase productivity, ensure food security, and reduce poverty.Dissemination of technologies to nongroup members has been successful as a result of the active participation of lead farmers and quarterly monitoring of dissemination activities.Community sensitization and mobilization to own the development process, coupled with the well-selected, adaptive basket of options, helped the farmers achieve results.Implementation of the program in step-wise phases was instrumental in achieving focused results, which would have been unlikely had the work started in all regions at the same time.Training the farmer community in vegetable production for improved nutrition through good agricultural practices, and in vegetable use (including recipe preparation) contributed to balanced diets with much-needed micronutrients, and generated income along the vegetable value chain in both urban and rural communities. We used to consume insufficient vegetables because we did not know how important they were and the nutritional benefits of a balanced diet. We also lacked good-quality seeds of traditional vegetables. Thanks to the project, we were trained on the nutritional benefits of vegetables and how to cultivate and consume varieties of vegetables. A living mulch is a plant grown specifically to cover the soil surface, add nutrients, increase soil moisture, and reduce weeds. When intercropped with maize, cowpea acts as a living mulch and provides a protein-rich food for farming families and high-quality feed for their livestock. It also has valuable dietary micronutrients such as iron and folic acid, which are particularly important for the health of pregnant women.A There are some challenges associated with using cowpea living mulch, however. For example, it works best when farmers have access to improved seeds, fertilizers, and even pesticides via agro-input dealers.Additionally, maize and cowpea market prices are subject to fluctuation, depending on the prevailing socio-economic conditions, so farmers need access to markets and market information for cowpea grains and livestock fodder to maximize their incomes from cowpea sales.Compared with a sole maize crop, cowpea living mulch requires more labor for planting (65%), harvesting (221%), Africa RISING scientists look at a contour bunding efficacy monitoring station at the Africa RISING M'pessoba technology park in southern Mali. Photo credit: Jonathan Odhong/IITA.Strides in sustainable agricultural intensification: contributions of the Africa RISING ProgramThe 'doubled-up' legumes system is based on intercropping two grain legumes, as opposed to conventional intercropping systems that often have a cereal crop and a legume crop. The most successful doubled-up legumes system is pigeon pea with groundnut, with both crops planted at their normal monocrop densities (additive) or pigeon pea planted at a lower density (partial substitutive), depending on the level of water stress on the site. The system's success is based on exploiting the complementary growth habits and plant architectures of the two legumes. Groundnut and pigeon pea are planted at the same time. Pigeon pea grows very slowly for the first three months, only starting rapid growth as the groundnut approaches maturity. After the groundnut is harvested, the pigeon pea grows as a sole crop.22 With input from Regis Chikowo.Groundnut is often considered as the main crop within the intercrop, and so is planted at its normal 'sole cropping' density. Pigeon pea is then planted at 50-100% of its sole cropping density. In marginal areas, reduced plant density minimizes competition for nutrients and water between the two crops.The system diversifies and intensifies cropping on smallholder farms. Crop diversification on small farms is strongly constrained by limited land, as farmers allocate a large proportion of the farmland to the staple crop, which is usually a cereal. Doubling up legumes fulfills multiple objectives, including: (i) integrating more grain legumes when land is limiting; (ii) rehabilitating fields with poor soil fertility; and (iii) extending ground cover in cropped lands as pigeon pea can be in the field for six to eight months, depending on the variety used.A farmer's field with doubled-up legume intercrop. Photo credit: Christian Thierfelder/CIMMYT.Strides in sustainable agricultural intensification: contributions of the Africa RISING ProgramOver 9,000 farmers have had the opportunity to trial doubled-up legumes through a seed multiplication scheme that generated 90 tons of 'quality declared' seed of an improved and well-adapted groundnut variety over three years in central Malawi (Dedza and Ntcheu districts). This was combined with a well-adapted local pigeon pea variety (landrace), leading to an increase in cereal-legume rotations and scaling up of the technology. Doubledup legumes was officially 'released' by the Government of Malawi in 2017 as an innovation to improve soil fertility and human nutrition across the whole country.In terms of sustainability, compared with a 'standard' groundnut-maize rotation, doubled-up legumes increases nitrogen cycling by 50%, reducing the need for mineral fertilizer application to the subsequent maize crop by half. It produces 30% more legume grain and increases the grain yield of maize grown in rotation by 20%. The combined legume crop produces 45% more protein than sole-cropped groundnut. The system also increases land and labor productivity, and diversifies income sources for farmers. Doubledup legumes also enhances women's empowerment as women can meaningfully participate in marketing of diverse legume crops.Drawbacks include the need to herd livestock (mostly goats) for an extra two to four months after groundnut harvest to protect the pigeon pea crop; the susceptibility of modern pigeon pea varieties to arthropod pests, which may need to be chemically controlled (two to three applications of, e.g., dimethoate); and pigeon pea's requirement for phosphorus. However, the latter can often be met by residual phosphorus if fertilizer containing it is applied to the preceding maize crop. Price fluctuations may be a concern if a farmer plans to sell the pigeon pea.This technology is so important for us women, as it gives us more room to grow more legume crops on the farms that are now tiny. Mbili-mbili 23 23 With input from Michael Kinyua and Job Kihara.Mbili-mbili (Swahili for 'two by two') is an intercrop of two rows of maize with two species of legume. It has its origin in a combination of two other successful intercropping schemes: 'MBILI' innovation from Kenya and doubled-up legumes from Malawi.Originally devised using maize, pigeon pea, and common bean, other crops may be used as long as the growth patterns for the crops are complementary. Much of the success of Mbili-mbili derives from this combination of the fast-growing bush bean, intermediate growth rate of maize, and slow-growing, intermediate-stature pigeon pea. The three crops are grown at precise spacings (Fig. 5) to maximize synergies in the use of growth resources (light, water, and nutrients). The four lowest maize leaves are removed at silking stage ('stripping'), and the top portion of the maize plant is cut 10 cm above the ear leaf at dough stage ('topping') to improve light penetration to the growing pigeon pea. Moreover, the cut leaves are used as livestock fodder.The technology was validated under research-managed trials run for four years on six farmers' fields in Babati district, Tanzania. Concurrently, a participatory test was conducted by 225 farmers on plots of at least 0.1 hectares for one to three seasons in the same district. Of these, 56% modified the crop mix, including cassava, cowpea, groundnut, lablab, pumpkins, or sunflower; and 84 increased their Mbili-mbili area to over 0.2 hectares (seven of these expanded their areas to >0.8 hectares).Mbili-mbili was preferred by more women than men farmers. One of the reasons for this preference is because it provides room for cultivation of more 'vegetable' crops such as cowpea, which is not commonly planted as an intercrop in cereal systems (legumes are locally referred to as 'vegetables'). Integrated soil fertility management in Babati, Tanzania 24 In 2012, farmers in Babati District, Tanzania typically applied animal manure on their fields, but few (3%) applied fertilizers. Many were surprised to learn (through Africa RISING capacity building and field demonstrations) that there is a lot more to increasing soil fertility -and consequently yields -than the simple question of whether they (can afford to) apply fertilizers to their crops. Soil fertility is affected by everything from land preparation and crop variety choice to what is done with plant residues after harvest.Africa RISING experimented with and promoted integrated soil fertility management among farmers in Babati for over a decade. The 'package' was composed of manure, fertilizers, and other good agricultural practices that improve farmers' yields, food and nutrition security status, incomes, and general well-being, enabling farmers to get the best from their farms, crops, livestock, and soils.Land preparation needs to be timely and not so late that it delays planting. Any tillage should be done when the soil is dry to avoid compaction and hardpan formation, and any tillage on a slope should follow the contours of the land to reduce run-off and erosion. Manure can be applied and incorporated in the soil during plowing to avoid nutrient loss.Improved crop varieties that have high productive potential are key for maximizing resource use. These typically yield more than local commercial varieties and landraces. (See case study examples under 'Genetic intensification'.)Seed quality is also important. For maize, certified seed is far superior to recycled seed from one's own or a neighbor's crop. It has a better germination rate, is more nutrientuse efficient, is more tolerant of or resistant to pests and diseases, and has higher yield 24 With input from Michael Kinyua and Job Kihara. potential. When buying certified seed, it is important to select varieties adapted to the area where they are to be grown. Factors that affect choice include duration of growing season (long or short) and the prevailing climate conditions. For legumes and other non-staple crops, Africa RISING facilitated access to 'quality declared seed' where certified seed was not accessible.Plant spacing is a vital ingredient for crop production. Before the Africa RISING Program started, Babati farmers typically broadcast seeds behind animal or tractor plows, resulting in poor spacing, exposing soil to erosion, and reducing yield. With the Africa RISING Program, farmers learned how to plant in rows. In general, achieving correct plant spacing is easier with a planter.When it comes to planting, it is not only spacing that is important, but also depth (formerly, farmers planted seed so deep it reduced germination), timing, considering the contours of the slope, the (predicted) weather, and crop diversification.Manure should be well composted (for which the project provided advice), and applied at regular frequency at a rate of 1.4 tons per acre (3.5 tons per hectare) in two years out of five.Crop residue retention provides soil cover after crop harvest and contributes to recycling nutrients in agricultural systems. However, Babati farmers typically removed all crop residues from fields distant from their homes to feed livestock kept near their house, but without returning livestock manure to the fields that provided the feed. Africa RISING recommends removal of as little of the crop residues from distant fields as is necessary to feed the livestock, and returning some of the manure to those fields wherever possible.Strides in sustainable agricultural intensification: contributions of the Africa RISING Programthe right application of fertilizers, manure, and soil conservation structures put in place to prevent transfer of applied nutrients to fields located in bottom lands.Soil conservation measures such as contour bunds and tied ridges need to be put in place to reduce run-off and erosion down slopes. Farmers should also not allow livestock into fields to directly graze on crop residues (which should rather be collected and fed to the livestock where they are kept), as they may compact the soil with their feet or expose it to erosion by feeding on residues on the soil surface. In dry areas, water-harvesting in the fieldusing structures such as terraces, retention ditches, tied ridges, and cultivation pits -is recommended to improve soil moisture content for growing crops.Crop choice also influences soil fertility. Legumes directly benefit the soil and any accompanying crop or crops planted in the subsequent season as they fix atmospheric nitrogen into a plant-usable form. Companion crops may be intercropped, relay cropped (the second crop planted some weeks after the first crop), or grown in rotation. If no other option is seemingly available, a fallow crop will help restore soil fertility between main crop seasons.Fertilizer (mineral) is a valuable contributor to soil fertility, but it needs to be accessed from the right source and applied at the right time, in the right amount, and in the right way. Babati field crops benefit from both basal phosphorus and top-dressed (or sprayed) nitrogen fertilizers.Weed, pest, and disease management contribute to proper use of nutrients, and to increased soil moisture and crop yields.Crop arrangements can have a big impact on soil fertility, especially growing multiple legumes such as in doubled-up legumes (section 3.2, p. 27) and Mbili-mbili (section 3.2, p. 29).Stripping and topping of maize enable better light penetration to a companion crop (e.g., pigeon pea in Mbili-mbili), which is then able to fix more nitrogen and give a greater yield. Thus, 14 good agricultural practices were selected by farmers who worked with Africa RISING in Babati. The more of these they adopted in combination, the better their yields were.Albert Edward Shayo, farmer, Gallapo village, Babati District, Tanzania (adopted fertilizer, proper spacing, pest and disease management, and new maize varieties) Data from a recent impact assessment in Malawi, in an area of longer-term conservation agriculture promotion in the Extension Planning Areas (EPAs) of Mwansambo and Zidyana, showed that 57% of the rural farmers in the community had adopted full conservation agriculture systems on parts of their farmland, and that about 90% of farmers had adopted at least one conservation agriculture component. In a non-project EPA, only 7% of farmers adopted a full conservation agriculture system.Conservation agriculture entails no tillage, crop residue retention as mulch, and crop rotations. The increased density can also be adopted for groundnut-cereal (maize, millets, and sorghum) intercrops or crop rotations.The advice is applicable in areas with similar conditions to those of northern Ghana: deep, well-drained, fertile, sandy soil that is slightly acidic (pH 5-7); rainfall of at least 700 mm during the growing season; and a temperature range of 25-35°C.To Compost from cotton plant stems 27 Declining soil fertility is a major problem for farmers in southern Mali. Cotton and sorghum farmers typically apply fertilizers to their crop fields, but many have moved away from retaining crop residues in the field after harvest. While sorghum and maize crop residues are collected mainly for livestock feed (for farmers' own animals or for sale), cotton stems are simply burned as they are considered too difficult to manage.Crops usually grow better when organic fertilizer (manure or compost) is included in the mix of nutrient-adding products. Experiments with farmers from three villages near Koutiala city in the Sikasso Region of southern Mali determined that micro-dosing of composted cotton stems at a rate of 2.5 tons per hectare was effective in improving sorghum yield, as was broadcasting the same compost at 5 tons per hectare.Fifteen volunteer farmers from each of the three villages were trained how to compost cotton stems at M'pessoba technology park prior to conducting the experiments. for appleStrides in sustainable agricultural intensification: contributions of the Africa RISING ProgramFeed and health package for small ruminant production 31 Small ruminants (sheep and goats) are an essential component of livelihood strategies in resource-poor rural areas of West Africa.The animals fulfill various roles in household food security, providing meat and milk, and a source of income to meet food and cash needs. They also serve as food security insurance for most smallholder families in the event of crop failures. Rural women and youth are particularly involved in rearing small ruminants, so they provide an important source of employment and empowerment.The feed and health package has three components. First, a supplemental feed composed of cotton seed cake, maize and wheat bran, and cotton and soybean seed.The ingredients are mixed in prescribed ratios and the supplement addresses common nutrient deficiencies; it is given at the rate of 200-300 g per animal per day. Technologies to reduce post-harvest losses in Tanzania 32 Post-harvest losses can rob Tanzanian maize farmers of up to 40% of their crop yields. Poor harvesting and post-harvest processes can add a further economic burden, as damaged or diseased grains attract lower prices on the market. Moreover, the handling and storage of grain can lead to chemical changes that impact the household's nutritional status (the quality of their diet).Through Africa RISING, IITA has been promoting improved post-harvest practices for a number of years. These include mechanized shelling, using clean surfaces for drying (tarpaulin or collapsible drier case), cleaning prior to storage, and storage in hermetic (airtight) bags or metal silos. more food available when using tarpaulin drying and hermetic storagegreater food accessibility when using tarpaulin drying and hermetic storageIncrease in household incomewhen using tarpaulin drying and hermetic storagewhen using mechanical shelling Reduced household expenditure on food by 11% when using mechanical shellingwhen drying on tarpaulinwhen using hermetic storage Nutritional value added to maize by post-harvest technologiesmore caloriesmore proteinmore minerals Nutritional value added to common bean by post-harvest technologiesmore caloriesmore proteinmore mineralsMy living standards have really improved. Because of the income I make in a day, I can now provide more for my family than I could do before. I am also happy that I have employed other young men to work with me and they can support their families through this work.Strides in sustainable agricultural intensification: contributions of the Africa RISING ProgramImproving household nutrition 33 The nutritional status of resource-poor and subsistence households -particularly those with children under 5 years of age -is a major concern in development because of the huge health and economic impacts of malnutrition. For example, it is estimated that 34% of under-fives in Malawi and 26% in Tanzania are stunted, and that undernutrition costs Malawians 10% of the country's gross domestic product. This is a price that individual families and countries can ill afford.Africa RISING has been promoting handson education on relevant topics, with followup monitoring to tackle this issue across its three regional projects.The 'technology' is primarily intensive learning-by-doing (typically for 21 days) on the topics of breastfeeding, personal hygiene, food safety, nutrition and the different food groups, and nutrition-sensitive food handling, storage, and preparation.33 With input from Yasinta Muzanila.Breastfeeding is well-known as the best form of nourishment for babies as the sole food source for the first six months of life, but this is a message that does not seem to reach all sectors of society. Personal hygiene includes hand-washing after going to the toilet, before preparing food, and before eating. Food safety includes selection of food matter by looking at its physical quality (e.g., the best grains of cereals and legumes for use in infant supplemental feeds). Nutrition includes the different values (in the diet) of the seven groups of foodstuffs and their complementarity.Sensitivity to the nutritional values of food has direct implications for the way foodstuffs are handled, stored, and prepared. Food preparation includes hygiene and nutrition, and the preparation of nutritious meals, including infant supplemental food (porridge) made from locally available food (e.g., cereals, pulses/legumes, and vegetables). children on the continent. Aflatoxin thus has negative impacts on both farming families' health and their income (as crops contaminated above threshold levels cannot be sold locally or exported to aflatoxinconscious markets). Dealing with aflatoxin is, therefore, critical as maize and groundnut are both vital staple foods and valuable livestock feedstuffs.Aflasafe GH01 and Aflasafe GH02 are aflatoxin biocontrol products, each containing as active ingredients four genetically diverse A. flavus fungi strains that do not produce aflatoxin. The products are broadcast in the field at a rate of 10 kg per hectare at two to three weeks before crop flowering. The field is then left undisturbed for 7 to 10 days. The atoxigenic strains of A. flavus in Aflasafe out-compete the native toxigenic strains in the soil by a process known as 'competitive exclusion': the atoxigenic strains become associated with the treated crop, but do not contaminate it. The two products have been registered for use on groundnut, maize, and sorghum in Ghana.A farmer applies the aflatoxin biocontrol to her maize farm. Photo credit: Gloriana Ndibalema/IITA. 36 Apple trees provide food and feed in their fruits, and are also ideal for agro-forestry, with other food, feed, or green-manure crops grown between the trees. 37 Avocado trees produce nutritious fruits that can be eaten raw or prepared, foliage suitable for feeding to livestock, and their productivity means that with just a few trees farmers can have surplus fruits for sale.As highlighted in the case studies presented in section 3. jointly address food security, nutrition, and sustainability. In East Africa, innovative partnerships were brokered with the private sector development partners who provided improved seeds, fertilizers, and small-scale farming implements (forage choppers) to promote productivity and reduce farming drudgery. Cross-regional exchanges and annual learning events went a long way to enable transfer of ideas between countries -for example, the feed troughs innovation being transferred successfully from the Ethiopian Highlands smallholder farming context to the northern Ghana and southern Mali contexts (see 'Feed and health package for small ruminant production', section 3.3, p. 42). Assessing technologies at the whole farming system level provided critical insights, such as Ethiopian farmers weeding their faba bean plots very late, and using the weeds for animal fodder; this revealed the need for faba bean-forage crop intercropping suited to local realities.While integrated farm redesign has potential for future farming systems, barriers to adopting wholescale integrated innovations meant that only some components were implemented initially, allowing a stepwise approach toward implementing full integration. Hence, participatory research was vital to understand constraints, priorities, and desired outcomes from farmers' perspectives. This in turn enabled the agricultural development to be demand driven, and guide farmers appropriately. Technologies that demonstrably address these needs and concerns and are championed by fellow farmers are far more likely to be widely adopted. Continuous adaptation is required rather than seeking fixed end solutions, because no one solution and no single pathway fits every system.Given the complexity of farming systems and consequent complicatedness of promoting multi-component innovations, researchers IFPRI led and coordinated M&E activities across the three regional projects. In Phase 2, monitoring responsibilities were devolved to regional teams through local M&E specialists, while IFPRI continued with centralized evaluation. The M&E team collected the following data. To align M&E methods across the regional projects, IFPRI ensured regular interaction and coordination among regional specialists. Monitoring was mostly conducted through the following activities. The project adopted a multifaceted approach to scale out various technologies developed and/or validated (see section 4.4Approaches to technology transfer). In light of these approaches, various methods of data collection were used as highlighted in Table 1.As the program was winding down its operations, it became important to evaluate its impact in various countries. A quasiexperimental design and two rounds of panel survey data are used to estimate the impact of Africa RISING interventions in Ghana, Malawi, Mali, and Tanzania (Fig. 6).Before conducting the baseline survey, a random sample of households was selected from a list of beneficiaries provided by program implementers (group 1). In addition, samples of non-beneficiary households from program villages (group 2) and non-program (control) villages (group 3) were selected. The Difference-in-differences (DiD) method was used for impact estimation by taking the difference in outcomes of groups 1 and 2 between baseline and follow-up (shown by 'A' in Fig. 7). DiD overcomes biases due to potential differences at baseline between treated and control groups (shown by 'B' in Fig. 7). Under the assumption that the outcomes of the two groups would have evolved similarly in the absence of the Africa RISING interventions, DiD produces unbiased estimates even in case of differences at baseline between the groups, assuming that other factors affect the outcomes of the groups the same way over time.The study design also allowed the measurement of potential spillovers (e.g., due to information exchange across households within program villages), controlling for variables that have varied over time across villages by taking the difference in outcomes of groups 2 and 3 between baseline and follow-up (placebo comparison). Some of the impact results are reported in Chapter 2 Highlights of Africa RISING achievements.In A monitoring system tracked diffusion of promoted technologies, approaches, and beneficiaries; This was pivotal for adoption and impact assessment.Baseline and endline surveys were conducted as planned in five countries, providing foundation data for impact evaluation. The data were widely shared within and outside Africa RISING (Table 2), reflecting a commitment to openness.Capacity building was delivered through regional workshops to enhance partner skills in areas such as use of data collection tools and data analysis.Open access data repositories and management systems were established to promote transparency and wide data sharing among project stakeholders and among the overall international research and practitioner communities.Great interest and outreach was achieved by the data management and sharing platform, demonstrating the value of the data collected, managed, and shared by Africa RISING.Strides in sustainable agricultural intensification: contributions of the Africa RISING ProgramEstablish the M&E framework, indicators, impact evaluation strategy, and data management plan early in consultation with implementing teams.Hire in-country/regional M&E staff from the outset to liaise between field and coordination teams.Foster close M&E team-researcher collaboration starting at project inception through joint planning and capacity building.Directly manage data systems (rather than relying on third party repositories) to minimize communication lags.Enforce contractual data-sharing requirements with partners upfront.Develop a data access policy early on with all stakeholders, including donors.Set realistic targets aligned with resources and capacity.Align communication channels and incentives between researchers and M&E to ensure collaboration and reporting.Simplify data collection tools whenever possible to avoid excessive time burdens on researchers.Strides in sustainable agricultural intensification: contributions of the Africa RISING Programthe Africa RISING experience 40 40 Based on an interview with Irmgard Hoeschle-Zeledon and Peter Thorne.Africa RISING was structured as a program comprising three distinct regional projects led by CGIAR centers chosen for their expertise in those regions. While working toward common goals, this structure aimed to balance investments and leverage CGIAR strengths across diverse contexts.The regional projects had flexibility to tailor activities to local needs, unified under a shared research framework developed early on that provided a 'backbone' for interproject collaboration. In fact, the genesis of Africa RISING was the creation of an umbrella program to maximize synergies across three pre-existing projects that already had the same ethos, rationale, and theory of change.The lean management structure worked well by relying on existing infrastructure to save resources. However, it required dedicated, accessible leaders willing to take on extra responsibilities. The two project managers (one for the Ethiopian Highlands project and one for the projects in East and Southern Africa and West Africa) in particular needed to be multi-functional, including managing administration, finance, and human resources, because the projects did not recruit specialists for these roles. They also needed to be flexible and reachable for spontaneous interactions with project partners and the donor across different time zones. Regular, candid communication with the donor, even about Strides in sustainable agricultural intensification: contributions of the Africa RISING Program challenges such as problematic partner relationships, elicited advice and support.Informally checking in with donor staff regularly and inviting them to participate in key meetings and field trips kept the funder abreast of on-the-ground realities.Africa RISING developed and empowered an apex decision making organ (which included the donor), the Program Coordination Team, which provided critical 'glue' to hold the collaboration together and maintain coherence despite contextual differences across regions. It brought project leaders together to discuss cross-cutting issues.Annual funding cycles posed planning challenges but were managed through careful budgeting and coordination. Holding a reasonable buffer in each year's budget helped bridge delays between funding installments. This contingency buffer also helped overcome shortfalls when they occurred. This mechanism proved invaluable during an unforeseen major budget disruption.Hiring specialized expertise (gender, economics, communications) addressed emerging needs identified over the first two years, balanced against costs. Additional skills could have added even more value, but hiring was constrained by budgets and availability of qualified experts. Smallholder farming in sub-Saharan Africa is considered highly gendered, and various organizations and projects over the past 40 years or so have sought to redress historical bias in development that primarily targeted men.An important initial step was to learn from ongoing and completed project activities and to better tailor gender activities toward needs in target communities. Consequently, Africa RISING commissioned gender evaluations of its work in Ghana, Malawi, and the Ethiopian Highlands on livestock management and women farmers' participation in the agricultural research process. The Ghana evaluation recommended more research on maize (a staple that women are culturally permitted to plant and sell) and small ruminants (Ghanaian women farmers said that rearing small ruminants would help them generate their own incomes). The Malawi research emphasized the importance of taking a household approach, in which several household members are trained jointly in agricultural innovations and equitable production relations. The evaluation team in Malawi determined that gender capacity building for all types of Africa RISING stakeholders would be required to make gender integration sustainable.Abeid Chonya and his wife Sumaiya collaborated with the Africa RISING-NAFAKA project in bean seed multiplication in Mkungugu village, Iringa District of Tanzania. Photo credit: Jonathan Odhong/IITA.Strides in sustainable agricultural intensification: contributions of the Africa RISING ProgramThe recommendations arising from this early research fed into the gender teams' workplans, with activities grouped under two core tasks: (i) integration of gender and intersectional analysis into the projects' interdisciplinary research for development; and (ii) gender capacity development for a diverse range of stakeholders involved in the projects and beyond.Historically, technology transfer has failed when the research and out-scaling have omitted the social science element.Weaving of the framework to help identify where technologies or their contexts would need to be adapted or transformed to improve the livelihoods of women and men farmers. In addition to assessing technology impact, SIAF can also be used as a gendered research planning tool, an aspect highlighted by Feed the Future in a case study on gender integration in USAID agricultural research investments in 2019.The second approach was linked to the fact that gender relations in agriculture must not only be understood and considered, but also transformed to achieve equity in the long term. Africa RISING gendertransformative research included a study on sustainable intensification initiatives in the context of gender-biased land tenure systems in Ghana and Malawi, and a small ruminant value chain analysis in Ghana that explored how gender norms shape men's and women's participation in the value chain and the resulting gains. In the latter stages of the program, extremely valuable insights were gained into the benefits of conducting gender analysis prior to scaling out of technologies.In particular, the studies of social dynamics in the context of sustainable intensification in all three project countries concluded that conducting gender analyses prior to promotion of technologies is essential to mitigate trade-offs, such as significant labor increases among women or men. Using participatory community engagement approaches to develop complementary technology packages can redress trade-offs associated with new technologies and labor requirements -for example, water pumps to meet increased watering requirements of new varieties.Gender-responsive approaches should be used to promote technologies that women choose, prefer, and manage -to improve productivity and, hence, income and nutrition benefits -for example, livestock feed and fodder technologies that increase milk production. Socially inclusive scaling approaches that engage women and men will ensure that gendered preferences are embedded in the selection and promotion of technologies that meet both women's and men's needs, and improve sustainable intensification in diverse households and communities.Application of an inter-and transdisciplinary framework gives gender a fixed place in interdisciplinary cooperation. In the case of Africa RISING, this was the SIAF, which brought together natural sciences, economics, social sciences, and technology assessment, establishing Africa RISING as a pacesetter in this field.The abilities of scaling partners to integrate gender in technology validation and outscaling cannot be assumed. They must first be assessed and, if found inadequate, training must be provided. Africa RISING's training materials and guides for various types of stakeholders and partners are freely available for use by anyone.A farmer and his family in northern Ghana. Photo credit: Michael Dakwa.Strides in sustainable agricultural intensification: contributions of the Africa RISING Program 42 42 Based on an interview with Fred Kizito, Mateete Bekunda, and Kindu Mekonnen.This chapter presents highlights from lessons learned through the technologyscaling approaches applied by the three projects of the Africa RISING program in relation to the research-in-development continuum. It also identifies potential constraints to wide-scale adoption of technologies validated in the Africa RISING project areas and beyond.It will come as no surprise to most technology transfer practitioners that the key to successful technology transfer -or, rather, development in general -is successful partnerships at every level. If there is no rapport with the target audience, development simply will not happen. If there is no engagement and rapport with scaling partners, the dissemination of technologies will likely result in slow and limited uptake.Much of what has been 'learned' about scaling during the implementation of Africa RISING is more confirmation of what has worked in many previous projects and programs, but herein effectively refined into a set of best practices that are grounded by evidence-based research-in-development.In that light, we look at various groups of partners in turn. For Africa RISING, the partnership combinations for technology transfer consisted of various and contextspecific collaborations between CGIAR centers, international research entities, national agricultural research centers, NGOs (both local and international), other public and private research projects and development entities operating at various levels.Nuggets for a successful scaling/technology transfer partnership from the Africa RISING experience include the following.Partner identification. A useful preliminary step to engagement was mapping of potential partners, and consulting with identified potential partners on a shared ethos and approach, and on the modalities of the proposed partnership. These steps help avoid partnering with entities that do not share the project ethos and may later prove a barrier to effective work should they come on board. Complementarity of expertise, connections, and strengths is valuable in any partnership.Champions for regular interactions.Where a scaling partner is a vast organization, reaching all its extension agents directly may be an impossibility for the researchers. It is therefore invaluable to identify, cultivate, and engage 'champions' or focal persons to form a bridge by interacting regularly with the researchers and then championing the technologies among their colleagues. This was the case with the government extension service in Ethiopia, where two champions were identified for each district. These champions received a small allowance from the project to maintain their motivation.Joint planning. This was a major success factor identified in partnerships with NGOs, but is equally valid in all partnerships. Where multiple partners are involved, it is probably best to do joint planning with all partners at one time rather than trying to plan with each partner individually. This helps provide transparency in the process and can avoid duplication of effort and resolve any 'turf wars' at one time.Particularly in the context of planning with NGOs, involvement of local government planning staff in multistakeholder platforms was deemedStrides in sustainable agricultural intensification: contributions of the Africa RISING Program a success criterion. Especially when funding is limited, strict prioritization of activities through joint planning will avoid spreading (financial) resources too thin.Full engagement. Except where a specific partner has a very specific role within a multi-partner initiative, all scaling partners should be closely involved in the whole process from problem diagnosis, through action-research, to scaling, where they are co-creators of the research agenda, co-implementers of field research and scaling activities, and co-evaluators of achievements. This is especially true for the numerically or resource dominant partner.Partner expectations. There is a need to manage partner expectations from the beginning to ensure that one is not committing to more than what can be realistically offered in the partnership. This is especially important in the context of agricultural research where other exogenous drivers -for example, a massive health care crisis such as COVID-19 -could swing the pendulum for donor priorities to another urgent demand, which may invariably affect the funding of a given development.In such cases, legal clauses built into the partnership agreement will allow both parties to anticipate unforeseen circumstances and allow the partnership to adapt accordingly.Open and regular communication. It is valuable for partners to communicate and engage through a diversity of methods. All partners need to be aware of the available technologies being considered, develop an interest in them, and seek support in their own activities. Engagement modes differ according to partner type, but may include one-to-one (organization-wise), especially in early stages when the lead organization is trying to bring partners on board; multistakeholder platforms (involving, e.g., farmers, processors, agro-input dealers, mechanics, other service providers, research, extension, development specialists, NGOs, private sector, finance institutes); field days; exchange visits; capacity building; and use of published online or offline materials.Stepwise engagement. The research side needs to engage with scaling partners in a series of incremental steps. First, providing them with the needed research evidence of technology performance, via a demonstration trial, for example. Then introducing them to the pilot participant farmers and other partners, perhaps through a multi-stakeholder platform. And finally, helping them integrate the scaling work in annual planning that targets many farmers.Cost-sharing. Equitable cost-sharing at some level or another not only promotes joint ownership, but also prevents engaging those who might only be 'in it for the money'. It is important to explore the various modalities where 'cost-sharing' benefits could come into play. Sometimes, partnerships are built on non-monetary in-kind support or contributions. For example, activities that invite a partner to a regional field day or disseminate their technology through a digital platform promote the visibility of that development partner and offer greater dividends and market opportunities with a much wider reach than they would have achieved without the partnership.Unified messaging. Clear messaging on the trade-offs of technologies will communicate a united front to the ultimate beneficiaries and enhance informed decision making for adoption.Market-based identification of entrepreneurs. Creating a cadre of entrepreneurs is a major component of many agricultural development projects.It is important to always bear in mind that these people are being trained to become part of the private sector, so market considerations are essential.Strides in sustainable agricultural intensification: contributions of the Africa RISING ProgramFarmers' or stakeholders' involvement in technology transfer should start as early as problem diagnosis and actionresearch. Successful technologies -that is, those that are adopted by farmers (or other stakeholders) and have the desired impact -are generally those that have been developed in partnership with the ground-level actors, be they farmers or other value chain actors. If the farmer does not recognize the problem that the technology is designed to overcome as something they face on a regular basis, they will not be interested in it. It is equally important for farmers to be involved in the action research that takes tried-and-tested technologies from the shelf and validates them in the context of their fields.In the action-research stage -typically technology testing, adaptation, and validation -principal project participantscum-beneficiaries are often lead farmers. These typically receive almost everything that makes up the technology, from the researchers working with them, to seed and agro-inputs, and full details of how to get the best from the technology, along with training and technical support. They also often receive training in skills for making the most of their increased production, such as leadership, business acumen, marketing, and communication. This applies equally to farmers engaged in onfarm experimentation and those who host technology demonstrations.A second layer of beneficiaries includes those who see the technology in action research or demonstration and decide to try it for themselves. While they are sufficiently motivated to invest in the technology, they will typically receive the training and essential inputs such as seed of new crop varieties.A third layer of beneficiaries also see the technology in action research or demonstration and decide to try it for themselves. Typically, this group may not get formal training, but rather learn from seeing their peers and are sufficiently motivated to invest in the technology by purchasing the essential inputs such as improved seed varieties or fertilizers. This group, which does not get handouts, is likely to continue with the technology and scale it further beyond the lifecycle of the donorfunded project. Especially in the context of scaling, it is common (and productive) for In West Africa (Ghana and Mali), Africa RISING adopted the technology park approach, using a plot of 0. Several important lessons about partner engagement in general and engagement with a powerful public sector in particular were learned (especially in the Ethiopian Highlands context, but also elsewhere). Some of these are included among the common elements for successful partnership (above), while the public sectorspecific ones follow.The research side needs to be aware of the many support connections that local extension is tapping into (e.g., local research systems, academia, input suppliers, formal farmer organizations), which are essential to extension efficiency. The researchers also need to connect with these players, either directly or through multi-actor structures.The project operational calendar should be aligned with that of the extension service as much as possible to maximize the investment in scaling.Africa RISING was able to tap into federal and regional expertise and technology providers to the benefit of local extension..On occasion, local extension was constrained by decisions made at higher levels, be that other government ministries or higher up in the extension service or ministry of agriculture itself. In some of these cases, Africa RISING was able to use its influence at those higher levels to achieve the desired progress. Projects (or project partners) with enough clout may have opportunities to engage national government at higher levels, especially when national policy works against project and sustainable development aims. For example, ad hoc export bans of (certain) agricultural products can be a major disincentive to farmers for increasing production.Where the government extension system receives funding from diverse sources, there are opportunities to align funding proposals with scaling goals.Africa RISING was able to access resources that were otherwise effectively out of reach of the extension services (because of lack of human resources or inability to access); for example, using geographic information systems (GIS) in Tanzania to generate recommendation domains (i.e., maps of where specific technologies would be applicable). In addition to input suppliers and marketing intermediaries, the private sector includes outgrower schemes, in which a farming company supplies seed, agro-inputs, and agronomic advice so that their farmers all grow the same variety of a crop to the same quality, which the company itself is contracted to buy. The inputs supplied by the company are usually given on credit against the final value of the crop supplied at the end of the season.In an effort to address the dual scenarios of a burgeoning youth population and rural-urban migration, many development projects across the continent are targeting youth with agriculture-related training.Africa RISING was also engaged in this approach. In addition to encouraging many young people to take up farming as a livelihood, many others have taken the path of entrepreneurship, in particular agricultural service provision. With the boom in smartphone use, simple text messaging may be expanded into multimedia. Via the Mwanga platform in Tanzania, for example, the Africa RISING project was able to make a series of 'how-to' (step-by-step educational) videos available for streaming or downloading to use offline. While these can be viewed by individual farmers on their smartphones, extension agents promoted community engagement by placing a tablet in each community to be loaned out to small groups to watch the videos together.While not considered by Africa RISING, television is another mass media channel that could provide a route into farmers' homes.There comes a point -ideally before the end of the project -when scaling goes beyond the reach of the original research partner. This may be the first steps outside the target communities through farmer-to-farmer interaction or via open events such as farmer field days. It may be someone casually picking up project material in a 'random' place, being convinced by what they read, and deciding to try it out. Or it may be existing or new scaling partners taking the technology to new areas. Whichever way it happens, it is usually at this point in scaling that the technology becomes impossible to track completely (it may be possible to find many adopters outside the original project scope, but not all of them). If this 'spillover' occurs on a large or wide scale, the technology and the project may well be considered a success.Awareness raising. Lack of awareness of available technologies and their benefits continues to be a primary concern, and is a major reason why awareness-raising is such a critical part of scaling projects. The moreStrides in sustainable agricultural intensification: contributions of the Africa RISING Program means that can be found for such activities, the faster technologies will spread, and the more people will benefit.Projects need to remember the business case for technology adoption, which is otherwise too easily clouded by the handouts provided for project participants.Language must not be a barrier. For example, the Africa RISING-NAFAKA subproject on staple value chains in 44 44 Based on an interview with Fred Kizito, Mateete Bekunda, and Kindu Mekonnen.Capacity building was core to the impact and sustainability goals of the Africa RISING program. Efforts focused on building capacity in the human, institutional, and technical areas. The aim was to strengthen capacities in the countries where work was being implemented, so that achievements could be sustained after the program ended. Farmer field days and demonstrations for practical learning. These were ongoing, rather than one-off events.Exchange visits so stakeholders could see technologies in action elsewhere. For example, researchers and farmers visiting sites in other countries and regions. Developing a learning culture and cohesive implementation of activities for a large program bringing together over 100 partners implementing activities in six countries -as was the case with Africa RISING -is imperative for success. Africa RISING also aimed (as much as possible) to use common research approaches and tools including the Sustainable Intensification Assessment Framework (SIAF), Dataverse (for storing data), CGSpace (for organizing and disseminating research outputs and publications), and farming systems approaches. Scheduling regular exchange visits at various project and program implementation levels ensured that Africa RISING partners had an opportunity to develop a common understanding on the key elements of the program and could begin to build good camaraderie as a foundation for cohesive project implementation, while also learning from the activities and work being implemented by their peers.For its second phase, the Africa RISING program set itself an ambitious scaling target of reaching 1.1 million households in the six implementation countries with sustainable intensification technologies.To reach this target, the project aimed to establish development partnerships that would enable it to bridge the numbers gap as it only directly worked with 24,500 farmers. Different communication approaches were used to support and catalyze the achievement of Africa RISING scaling ambitions. For example, in southern Mali, a series of tailor-made radio programs in the local Bambara dialect were aired on Radio KAFO KAN in 2017 at various points during the farming season to give farmers valuable information on dualpurpose sorghum varieties validated through Africa RISING. Video tutorials on how to repair and maintain maize-shelling machines introduced by Africa RISING to farmer communities in northern Ghana were also developed and shared with the farmers.Other conventional approaches such as the publication of brochures and farmer training materials were also deployed to great effect. Africa RISING produced a series of radio programs in local languages that were aired on national and community radio stations. In Ethiopia, radio programs such as 'ገበታ' ('serving plate' or 'dish' in Amharic) aired on Debre Birhan Fana FM 94.0 featuring interviews with farmers, scientists, and other experts, who discussed the benefits of sustainable intensification practices.Every year, the Africa RISING regional projects held their own review and planning meetings, and there was a program-wide annual learning event that brought together all partners from the regionalStrides in sustainable agricultural intensification: contributions of the Africa RISING Program projects. These marquee events, which were organized and facilitated by the communications team, were critical for ensuring that project implementation was discussed in a well-facilitated and conducive atmosphere, allowing for brainstorming and planning. In designing these meetings, the communications team always aimed to encourage full participation, build mutual understanding as a prerequisite for collaboration, and ensure that discussions ended with inclusive solutions and workplans. As well as giving attention to process, the communications team made sure that key interactions were well documented and shared.Although Africa RISING was exclusively implemented in sub-Saharan Africa, the importance of its outcomes and achievements needed to be communicated to the policymakers (including US Congress) behind the donor at USAID. This meant that the project team had to refine its messaging for the benefit of this group, one that could easily have been overlooked. Developing materials and packaging them in ways that resonate with policymakers therefore became critical to Africa RISING communications. It is also valuable (in addition to regular project channels) to engage in the preferred platforms and media of this group. For example, although Africa RISING had its official repository on CGSpace, the program also archived some information about its technologies on the Agrilinks and Global Innovation Exchange websites, which were primary reference sources for USAID and its key stakeholders. The term 'farming system' has been defined in various ways. While a common denominator of the definitions has been the agricultural system of a population of farmers in the landscape, the plot or individual farm could also be looked at through a 'farming system' lens, especially in the context of research. However, when exploring phenomena such as land and water management, the lens view is naturally zoomed out to the landscape level.A key point of discussion was the juxtaposition of component technology research and integrated systems perspectives. The panelists were keen to point out that it is not a matter of 'either/or' but of 'both/and': that is, systems science is perhaps more of a broad research paradigm. Systems science provides crucial context about the larger farming system setting for evaluating and adapting new component innovations such as improved crop varieties and livestock breeds. For example, a sole focus on increasing faba bean yields by Africa RISING in Ethiopia at the start overlooked existing practices of late weeding of the crop to provide weed biomass for livestock fodder. Once this was understood, the researchers started to look at intercropping beans with forage crops to provide vital livestock fodder and thereby overcame a major barrier to adoption of high-yielding faba bean varieties and improved agronomic practices. Other situations in which systems science was able to provide valuable context were the work in Ghana on living mulch, improved maize and cowpea, row planting and intercropping, introduction of the feed trough, and use of veterinary care (see case studies in sections 3.2 and 3.3).Farming system modeling is a powerful tool facilitating ex-ante impact assessment for proposed new technologies or practices, enabling the identification of synergies and trade-offs between multiple objectives such as productivity, natural resource sustainability, climate resilience, and livelihoods. However, models need input data from the farming system as well as from the proposed technological changes, so it is vital to understand the existing system prior to modeling redesign. Even so, fully redesigning complex diversified farming systems is extremely difficult and risky. Scaling systems science is not about wholesale adoption of an entirely redesigned model system. Rather it is some theoretical bases of systems science that allow such approaches to be used in diverse settings. The systems researchers highlighted the need for realistic expectations, noting that farmers are more likely to adopt suitable components from a basket of options offering a redesigned system, rather than the whole package. ","tokenCount":"11688"} \ No newline at end of file diff --git a/data/part_3/7121139605.json b/data/part_3/7121139605.json new file mode 100644 index 0000000000000000000000000000000000000000..90a65c2a2f0b376de5c337477ec155fe2ecb0d23 --- /dev/null +++ b/data/part_3/7121139605.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"1a202953d0a3fcd6b9f4d00aebe62494","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/1e4abee8-1500-49c3-8a6d-0b5b30bd98f8/content","id":"-903025375"},"keywords":[],"sieverID":"efce2d94-7a25-4246-b854-1f62530710af","pagecount":"13","content":"To improve the grain yield of the lowland-adapted popular rice variety Samba Mahsuri under reproductive-stage drought (RS) and to understand the interactions between drought QTLs, two mapping populations were developed using marker-assisted selection (MAS) and marker-assisted recurrent selection (MARS). The mean grain yield of pyramided lines (PLs) with qDTY 2.2 + qDTY 4.1 in MAS is significantly higher under RS and irrigated control than lines with single QTLs. Among MARS PLs, lines with four qDTYs (qDTY 1.1 + qDTY 2.1 + qDTY 3.1 + qDTY 11.1 ) and two QTLs (qDTY 1.1 + qDTY 11.1 ) yielded higher than PLs with other qDTY combinations. The selected PLs showed a yield advantage of 0.3-2.0 t ha −1 under RS. An allelic profile of MAS PLs having same qDTY combination but with different yields under drought was studied. Hierarchical clustering grouped together the selected lines with high yield under drought. Epistasis test showed the interaction of qDTY 4.1 and qDTY 9.1 loci with qDTY 7.1 significantly increased yield under drought and all the lines with higher yield under drought possessed the conserved region of qDTY 7.1 on chromosome 7. The positive interactions among QTLs, effectiveness of QTLs in different backgrounds, introgression of DTY QTLs together with resistance to biotic stresses shall help enhance grain yield under RS.The increasing population, declining water availability with increasing demand, climate change and abiotic stresses are serious threats to world food security. Global rice consumption is reported to increase 8.8% from 2011 to 2020 and about 32.7% by 2050 1 . Drought is a recurring global, climatically induced calamity that affects rice production in arid, semi-arid, and humid areas as well. Tackling drought can provide excellent returns to rice research and development investments. In India, severe drought in 2002 and 2009 caused a 20% and 16% reduction in food grain, respectively, leading to higher prices and food security concerns 2 . In 2004, severe drought affected the crop on more than 2 million ha in Southeast Asia 2 . An effective breeding approach to develop drought-tolerant rice varieties could lead to food security under situations of accelerating food demand, depleting resources, and predicated climatic variability 3 .Various strategies such as conventional hybridization and selection procedures, ideotype breeding, heterosis breeding, wide hybridization, molecular breeding 3 , and new genomics tools and technologies can be used to increase yield potential. The marker-assisted breeding program at IRRI has led to the identification of 12 major drought yield QTLs (qDTY 1.1have shown large effects across two or more genetic backgrounds and under both transplanted lowland and direct seeded upland environments.The use of different genotyping approaches [6][7][8][9][10][11][12][13][14] , the identification of traits of interest, and major genetic regions associated with the targeted traits have opened new opportunities to successfully introgress/pyramid genes/QTLs in different genetic backgrounds using marker-assisted backcrossing [4][5][6][7][8][9][15][16][17] and marker-assisted recurrent selection 18 . To achieve the desirable phenotypic level of variation for a quantitative trait, pyramiding QTLs may be an effective approach 19 . The effect of identified genetic loci in a pyramiding program is not always as expected because of the complexity of gene networks, epistasis, pleiotropy, and linkage interactions among/between genetic regions as well as haplotype groups with the environment 20,21 . QTL pyramiding will not only help in understanding the interactions among genetic loci but also improve the efficiency of marker-assisted selection for desirable loci in rice breeding programs. Under severe drought stress, a grain yield advantage of 0.8-1.0 t ha −1 was reported in a QTL introgression program involving popular high-yielding variety IR64 through the introgression of two QTLs (qDTY 2.2 and qDTY 4.1 ) 13 . Positive QTL interactions with a significant increase in grain yield under drought stress without a yield penalty under control conditions were reported by Dixit et al. 22 and Shamsudin et al. 23 .Marker-assisted selection can generate an improved version of an existing elite genotype as it involves the transfer of favorable alleles from a donor to a recipient parent. Breeding approaches such as marker-assisted recurrent selection (MARS) involve taking advantage of elite alleles coming from two or more parental lines can be a viable alternative. MARS, a practice of improvement of low heritability traits 24,25 , involves the consideration of selection intensity to increase the frequency of favorable superior genes 21 and genetic drift to maintain diversity to carry on further improvement 26 . MARS has the potential to expand the gene pool of present cultivars and to expedite the development of new varieties. MARS involves selecting genotypes based on their favorable allele combinations and intermating them to produce the next generation [27][28][29][30] . Repeated intermating of heterozygous populations helps in successfully maintaining and escalating the genetic gain and variability [31][32][33][34] resulting from the optimum complement from both parents. Validation of the effects of QTLs that showed large and consistent effects in one background will promote their extensive use across different genetic backgrounds for increasing yield under drought. In the present study, two mapping populations were developed following marker-assisted breeding and marker-assisted recurrent selection using rice variety Samba Mahsuri as the recipient parent. The objectives of the study were to (1) evaluate the effects of qDTY 2.2 and qDTY 4.1 in a Samba Mahsuri background using the MAB approach, which had earlier shown effects in an IR64 background; (2) understand the interactions of drought grain yield QTLs qDTY 1.1 , qDTY 2.1 , qDTY 3.1 , and qDTY 11.1 in a Samba Mahsuri background using the MARS breeding approach; and (3) develop high-yielding blast-and drought-tolerant Samba Mahsuri PLs for cultivation by farmers.Marker-assisted introgression for qDTY 2.2 + qDTY 4.1 in Samba Mahsuri background. The mapping population was developed from crosses of drought-tolerant donor IR 87728-75-B-B possessing qDTY 2.2 and qDTY 4.1 with drought-susceptible Samba Mahsuri in DS 2011 (DS: dry season) to introgress and pyramid QTLs for grain yield under drought. The earlier reported markers for qDTY 2.2 (RM236, RM279, RM109) and qDTY 4.1 (RM335, RM551, RM518) in an IR64 background 13 were used to genotype the population. Foreground and recombinant genotyping was used to identify true F 1 in WS 2011 (WS: wet season). The grain type of the selected marker assisted lines is provided in Supplementary Fig. S1. The complete scheme for the development of Samba Mahsuri pyramided lines and number of plants selected based on genotyping, phenotyping involving plant type, visual yield under drought stress and non-stress, and bacterial blight resistance is provided in Supplementary Fig. S2. A total of 500 BC 1 F 4 lines were selected based on plant type and Samba Mahsuri grain type in WS 2010 and advanced in DS 2011. A total of 686 panicles with Samba Mahsuri grain type were selected and advanced in WS 2011. The lines with different QTL combinations and the highest phenotypic similarity to the recipient parent and good grain yield under drought stress and non-stress were selected in the BC 1 F 6 population and intercrossed in DS 2012. In WS 2012, 15641 F 1 seeds were produced. In each intercross F 2 generation, selection was done based on grain type similar to the recipient type, blast resistance (Magnaporthe oryzae) and bacterial blight (Xanthomonas oryzae pv. Oryzae) resistance, and foreground and recombinant selection were practiced using the peak and other foreground markers RM212 and RM486 (chromosome 1), RM525 and RM221 (chromosome 2), RM16 and RM520 (chromosome 3), and RM287 (chromosome 11) to select plants segregating for the respective introgressed drought QTLs in DS 2013. Plants fixed for different combinations of QTLs, grain type (Supplementary Fig. S1), plant type and visual yield were selected in each generation and advanced to F 8 generations. The scheme for the development of Samba Mahsuri PLs using partial marker-assisted recurrent selection is provided in Supplementary Fig. S3.Phenotypic evaluation of populations. The average days to flowering (DTF) of PLs in the marker-assisted backcross experiment varied from 79 to 88 days in the NS trials and from 82 to 98 days in the reproductive-stage (RS) drought stress trials (Table 1). At maturity, plant height (PHT) varied from 62 to 71 cm in the reproductive-stage drought stress trials and from 81 to 105 cm in the NS trials (Table 1). Plant height and DTF were severely affected by drought stress as reflected by the reduction of 19 to 34 cm in height and delayed flowering by 3 to 10 days. Grain yield (GY) varied from 114 to 1366 kg ha −1 in the RS drought stress experiments and from 2376 to 8133 kg ha −1 in the NS experiments (Table 1). The grain yield reduction of 83% to 95% under drought stress compared with NS (control) indicated the severity of reproductive-stage drought stress faced by PLs. In the marker-assisted recurrent selection experiment, the average DTF of PLs varied from 80 to 97 days in the NS trials and from 85 to 116 days in the RS trials (Table 1). Plant height varied from 99 to 113 cm in the NS trials and from 73 to 85 cm in the RS drought stress trials (Table 1). Plant height decreased by 26 to 28 cm and flowering was delayed by 5 to 19 days. Grain yield ranged from 126 to 1751 kg ha −1 in the RS experiments and from 3131 to 5824 kg ha −1 in the NS experiments (Table 1). The PLs IR 102818-10-266-3-2-2-6, IR 102818-10-276-1-2-2-9, IR 102818-10-227-1-2-1-9, IR 102818-10-227-1-2-1-6, IR 99734:1-33-69-1-39-6, IR 99734:1-33-69-1-12-8, and IR 99734:1-33-69-1-12-9 showed resistance to blast (Magnaporthe oryzae). The PLs IR 99734:1-33-304-1-5-10 and IR 99734:1-33-304-1-5-8 showed resistance to bacterial blight (Xanthomonas oryzae pv. Oryzae) and mild resistance to blast (Magnaporthe oryzae). class -A, B, C, D, E, F, G, H, I, J, K, and L) together with the check (CH) and parents (X, P1, P2) is shown in Table 2, Supplementary Fig. S4 (A,B) and Table 3, Supplementary Fig. S4 (C,D) respectively.The mean grain yield of PLs with qDTY 2.2 + qDTY 4.1 (class C) is significantly higher than in lines with a single QTL in DS 2016 (Table 2). Among the lines with a single qDTY, lines with qDTY 4.1 (class B) outperformed the lines with qDTY 2.2 (class A) under RS and NS conditions (Table 2). In marker-assisted recurrent selection experiments, PLs with four qDTYs (qDTY 1.1 + qDTY 2.1 + qDTY 3.1 + qDTY 11.1 ) + blast resistance (class A) and two qDTYs (qDTY 1.1 + qDTY 11.1 ) + blast resistance (class J) yielded higher under RS and NS conditions than other PLs with two and three qDTYs (Table 3). Among the three qDTY PLs, lines having qDTY 1.1 + qDTY 2.1 + qDT Y 11.1 + blast resistance (class F) performed better under both conditions compared to other QTL combinations (Table 3). Among the Samba Mahsuri PLs with two qDTYs, qDTY 1.1 + qDTY 11.1 + blast resistance (class J) and qDTY 1.1 + qDTY 2.1 + blast resistance (class H) showed better yield advantage under both RS and NS conditions compared to other QTL class with two qDTYs (Table 3).Effect of QTL pyramiding on agronomic traits. The Samba Mahsuri PLs with either single or multiple qDTYs produced higher yield than the recipient parent in both marker-assisted backcross and marker-assisted recurrent selection experiments even under severe drought stress (Supplementary Fig. S5). The severity of drought stress can be assessed by the water table level 8,9 (Supplementary Fig. S6). The performance of the most promising drought-tolerant PLs in the marker-assisted backcross experiments at IRRI (Philippines), Hyderabad (India) and in the marker-assisted recurrent experiment at IRRI (Philippines) is presented in Tables 4 and 5, respectively. These lines were selected after phenotypic selection, genotypic selection, selection based on grain type, and stable performance under RS and NS conditions. DTF of selected promising lines with qDTY 2.2 + qDTY 4.1 varied from 74 to 88 days and from 77 to 94 days under NS and RS conditions, respectively, at IRRI, Philippines (Table 4), and from 87 to 114 days and from 89 to 111 days under NS and RS conditions, respectively, at Hyderabad, India (Table 4). The PHT of selected promising lines with qDTY 2.2 + qDTY 4.1 did not vary much from that of Samba Mahsuri under RS and NS conditions (Table 4). The selected promising PLs in the marker-assisted recurrent selection experiment flowered earlier than the recipient parent but the variability of PLs ranged from 53 to 100 days in NS and from 72 to 119 days under RS (Table 5). The PHT of promising PLs in the marker-assisted recurrent selection experiment ranged from 86 to 122 cm and from 64 to 95 cm under NS and RS, respectively (Table 5). The performance of PLs is dependent on season and level of stress (Tables 4 and 5). The grain yield advantage of selected promising PLs over Samba Mahsuri in MAB and MARS experiments is shown in Supplementary Tables S1 and S2, respectively. The grain yield advantage ranged from 297 to 4232 kg ha −1 and from 127 to 1299 kg ha S3). To study the allelic constitution of PLs with the same QTLs combination but showing variation in yield, background genotyping was carried out on the 65 selected PLs, two parents, and one check (IR 87707-445-B-B-B) in WS 2015 using 99 polymorphic markers well distributed across the genome. Allele statistics for donor, recipient, heterozygous, and recombinant allele frequency were calculated (Supplementary Table S3). Hierarchical clustering based on the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) using DARwin 6.0.013 (Dissimilarity Analysis and Representation win 35 ) divided the PLs into six groups (Fig. 1). These six groups were created with 19, 13, 18, 9, 4, and 5 PLs in groups 1, 2, 3, 4, 5, and 6, respectively. PL 6 (IR 99734:1-33-304-1-5-8) and PL 47 (IR 99734:1-33-304-1-5-10) grouped with donors IR 87728-75-B-B and IR 87707-445-B-B-B (IR64 introgressed line with qDTY 2.2 and DTY 4.1 , released in India, Nepal, and Myanmar). Samba Mahsuri was classified in Group 3. PLs with qDTYs in one group were grouped together and the mean GY of each group class was calculated under RS and NS conditions (Supplementary Table S4). The PLs in Groups 1 and 5 showed a higher grain yield advantage under RS in WS 2015 and DS 2016 (Supplementary Table S4). Visualization analysis of molecular marker scores was done using GGT 2.0 software 36 and colored chromosome bar segments representing allelic distribution are shown in Fig. 2. The PLs in Groups 1 and 5 that had shown better performance across seasons were reported to have a conserved region near RM21510 on chromosome 7. This region is also present in the IR64 introgressed line with qDTY 2.2 and qDTY 4.1 , IR 87707-445-B-B-B (Fig. 2). The PLs with a conserved genetic region on chromosome 7 had shown a yield advantage over PLs without the conserved genetic region under NS and severe reproductive-stage drought stress (Supplementary Table S5). Supplementary Fig. S6 validates the severity of reproductive-stage drought stress in WS 2015 and DS 2016. PLs with the same QTL combinations showing variability for grain yield, grouping of all selected high-yielding promising PLs in one group (Fig. 1) and the GGT map showing a conserved region in all the selected PLs on chromosome 7 (Fig. 2), supports the possibility of interaction among contributing alleles/QTLs. Two dimensional genome scan revealed epistasis interaction of qDTY 7.1 (RM21510-RM320, on chromosome 7) with two loci, qDTY 4.1 (RM518-RM16368, on chromosome 4) and qDTY 9.1 (RM296-RM566, on chromosome 9) with an additive by additive effect of 18.7 (p ≤ 0.01) and 33.5% (p ≤ 0.0001) of the population mean, respectively (Supplementary Table S6, Fig. 3). The heritability of the additive x additive effect ranged from 1.4 (qDTY 7.1 with qDTY 4.1 ) to 6.4 (qDTY 7.1 with qDTY 9.1 ). The PLs with the donor (IR 87728-75-B-B) allele at qDTY 4.1 , qDTY 7.1 and qDTY 9.1 loci showed the higher mean grain yield under stress over the lines not possessing the donor allele for three loci. It is worth mentioning that the qDTY 7.1 and qDTY 9.1 on chromosome 9 were not targeted in the introgression program but detected during epistasis interaction study.In the present study, bacterial blight-/blast-tolerant, lowland-adapted but drought-susceptible, high grain and cooking quality line, Samba Mahsuri was used as a recipient parent to improve its yield under drought. Pre-breeding lines possessing major-effect qDTYs showing high grain yield under drought were used as donor parents. The yield advantage under drought of PLs possessing earlier identified large and consistent-effect qDTYs, qDTY 2.2 and qDTY 4.1 (IR64 background 13 ), qDTY 1.1 (Swarna, IR64, and MTU1010 background 6 ), qDTY 2.1 (Swarna background 5 ), and qDTY 3.1 (Swarna and TDK1 background 5,17 ) in current marker-assisted selection and recurrent selection breeding programs indicates the suitability of these loci in improving drought tolerance in the Samba Mahsuri background. The development of PLs with positive interaction of QTLs has provided yield advantage of 1.0-1.2 t ha −1 under RS as well as stable grain yield under NS. The increase in yield under RS of PLs possessing single or combinations of qDTYs indicate the suitability of the qDTYs in increasing yield under RS. The increase in yield of single and multiple qDTY PLs in different backgrounds reported earlier (Vandana, IR64, Swarna, TDK1, MTU1010 37 , S3. S3. As shown earlier in IR64 background (Swamy et al. 13 ), in the current study also, qDTY 2.2 , qDTY 4.1 combination showed higher yield advantage under drought over single QTLs in Samba Mahsuri background indicating the effectiveness as well as positive interactions between these two QTLs in multiple genetic backgrounds. The release of IR64 PLs with qDTY 2.2 + qDTY 4.1 in India, Nepal, and Myanmar, validate the effect of these QTLs in reducing yield loss under reproductive-stage drought stress in variable environments (Sandhu et al. 38 ). This is the first study in rice comparing the yield advantage under severe reproductive stage drought achieved through MAS and MARS strategies. Severe and cyclic drought stress exposure to the population in the present study assisted in identifying true drought-tolerant lines 39 with different growth duration 40 . The grain yield advantage in selected promising PLs over the recipient parent is high in MARS compared to MAS. The superiority of MARS lines may be because of accumulation of higher proportion of drought tolerant alleles during recurrent selection process as compared to the lines developed through MAS. MARS in sweet corn 41,42 , soybean and sunflower 43 , maize 18,21,[43][44][45][46][47] , wheat 48 , and cucumber 24,25,49 has proven to be effective in increasing the frequency of favorable alleles with improvement in grain yield, grain yield-related traits, and drought tolerance.Drought stress in general occurs together with a high prevalence of biotic stresses such as bacterial blight, blast, and brown spot. The development of high-yielding drought-tolerant rice varieties with tolerance of biotic stress could considerably help to control heavy yield losses. However, very few molecular breeding studies have been undertaken to study the combined effect of abiotic and biotic stress tolerance simultaneously in mapping populations. The present study reports an integrated strategy of QTL pyramiding to develop PLs with high grain yield under reproductive-stage drought stress together with tolerance of biotic stress. We observed that early generation-systematic screening of large F 2 population for biotic stress tolerance may provide opportunity to select lines for the second targeted trait (high grain yield under RS) in reduced time span. The developed PLs having tolerance to both biotic and abiotic stresses may help to identify, exploit and understand the mechanism of potential QTLs/genes providing tolerance to multiple stresses. It may also serve as useful resource for crop improvement program directed toward improving agronomic traits and multiple stress resistance.The GY advantage of the PLs with qDTY 1.1 and qDTY 11.1 either single or in combination with other QTLs under RS and NS indicates the superiority of qDTY 1.1 and qDTY 11.1 in marker-assisted introgression programs over other QTLs. qDTY 1.1 has been reported to be associated with increased yield under multiple conditions (dry direct seeded, drought, non-stress) and multiple backgrounds (Swarna, IR64, MTU1010) 6,12,50 . Dixit et al. 17 reported the performance of qDTY 11.1 in a Swarna background. In this study, across the PLs with two, three, four QTLs combinations, qDTY 1.1 showed positive interaction with qDTY 11.1 as lines possessing these two combinations of QTLs outyielded lines with other QTLs combinations. The study indicates that the breeding programs targeting MAS of qDTY 1.1 should also include qDTY 11.1 for higher yield advantage under both NS and RS.The use of donors having qDTY 9.1 (qDTY 9.1 ; IR 77298-5-6-B-18) 13 supported the presence of qDTY 9.1 in the Samba Mahsuri background in the current MAS QTL introgression program. The presence of qDTY 9.1 in Samba Mahsuri (Fig. 3) and IR64 background 13 under reproductive-stage drought stress conditions indicates the effectiveness of the genetic region in different backgrounds. The stable performance of selected PLs in the Philippines and Hyderabad, India (Supplementary Table S1), indicates the effectiveness of qDTY 9.1 in different backgrounds (Samba Mashuri, IR64) and environments.The presence of the conserved allelic region on chromosome 7 (marker RM21510) in selected promising PLs showed higher yield advantage and its absence showed lower yield advantage under RS even if the other qDTYs were present (Fig. 2, Supplementary Table S3). The introgressed QTLs do not explain the entire phenotypic variation of the PLs for GY, this potentially indicates the importance of capturing the positive digenic interaction of qDTY 7.1 with qDTY 4.1 and qDTY 9.1 (Fig. 3, Supplementary Table S6). The epistasis interactions of these loci suggest their importance in elucidating the genetic basis of GY in high yielding PLs under RS. Understanding the genetic composition of these identified loci and their effect on GY may allow us to use these loci to achieve maximum GY advantage under RS. Earlier, Dixit et al. 22 reported the positive interaction of qDTY 2.3 and qDTY 3.1 with qDTY 12.1 and a significant effect on grain yield increase under RS drought stress. Unlike Dixit et al. 22 where in interactions between two identified QTLs were reported, in the present study, even if no QTLs for grain yield under drought near RM10 on chromosome 7 has been detected, the effect of the interaction of this region with qDTY 4.1 and qDTY 9.1 has significantly enhanced the yield under drought. In an earlier study, genetic loci for grain yield under drought stress, plasticity for root dry weight and total water uptake, and total root length were identified 49 located near qDTY 7.1 and qDTY 9.1 , respectively. The broad understanding of the interactions identified in the present study and introgression of such specific combinations of a few QTLs may be more effective in increasing yield than random combinations of many QTLs. The complexity of effect and interaction among the most favorable alleles or haplotypes controlling the trait of interest, differential expression of expressed regions under variable conditions, and increase in frequency of positive alleles over negative contributing alleles may be responsible for the differential behavior of PLs having the same QTLs. \"Previously identified QTLs and genes in qDTY 4.1, qDTY 7.1 and qDTY 9.1 may provide insights as to why the QTLs identified in the present study contribute to grain yield advantage under RS. The QTLs associated with germination 51 , panicle length (sp2(t)) 52 , tiller number (tp7(b)) 53 , days to flowering (dth7.1) 54 and rice stripe virus resistance (Rurm1) 55 were identified in qDTY 7.1 region. Various genes related to stress-signaling, stress-responses and signaling, growth and development processes, and hormonal regulation and transcription factors were reported within qDTY 4.1 and qDTY 9.1 by Swamy et al. 13 . The upstream region of qDTY 7.1 (15603452-18640879 bp) found to be associated with the gene responsive to phosphate uptake efficiency (Li et 57 ). There could be a probability that the genomic region (15414191-18878266) on chromosome 7 may be involved in providing tolerance to multiple stresses involving increasing nutrient uptake to increase yield under drought and biotic stress resistance. Further detailed studies on targeted genomic region on chromosome 7 may reveal additional information.The results reported in the present study indicate the effectiveness of introgressed QTLs, interaction of QTLs with other loci, to further enhance GY under reproductive-stage drought stress while following MAS and MARS approaches. The GY advantage achieved is more in MARS than in MAS. Drought-tolerant Samba Mahsuri PLs with a grain yield advantage of 0.5-1.0 t ha −1 under reproductive-stage drought stress were developed. The PLs showing similar grain type and plant type as Samba Mahsuri together with the tolerance to biotic and abiotic stress may act as a candidate to replace the variety Samba Mahsuri. The positive interaction of introgressed QTLs with other QTL/genetic region and genetic background as reported in the present study could be one of the possible reason for the variable effect of introgressed QTLs in PLs. Identification of these positive interactions, allele mining and complete sequencing of promising PLs could reduce to a certain extent QTL x genetic background interactions often observed under RS.Plant material, phenotyping, and management. The study was conducted at the International Rice Research Institute (IRRI), Los Baños, Laguna, Philippines. To evaluate the effect of QTLs that had earlier shown an effect in the IR64 background under drought, two approaches were used. The popular rice variety Samba Mahsuri (occupying 3.3% of rice growing area in India), was used as a recipient to develop mapping populations through marker-assisted breeding and marker-assisted recurrent selection approaches. Samba Mahsuri is a medium-tall (90-100 cm) variety with 140-145 days duration, superfine grain with excellent grain and cooking quality, hulling percentage of 70%, head rice recovery of 75%, kernel length of 5.45 mm, kernel breadth of 1.97 mm, L/B ratio of 2.7, elongation ratio of 1.85, alkali spreading value of 5.5, and amylose content of 24.8%. Samba Mahsuri is a very popular variety, preferred for its fine slender premium grain and excellent cooking quality. The drought-tolerant indica rice varieties/pre-breeding lines developed at IRRI, IR 87728-75-B-B possessing qDTY 2.2 and qDTY 4.1 and IR55419-04 possessing qDTY 1.1 , qDTY 2.1 , qDTY 3.1 , and qDTY 11.1 , were used as donors in marker-assisted backcross and marker-assisted recurrent selection approaches, respectively. The scheme of developing the Samba Mahsuri PLs and number of selected plants in each subsequent generation using MAB and partial MARS approaches is shown in Supplementary Figs S2 and S3, respectively. The lines were screened under lowland transplanted control and lowland reproductive-stage drought stress conditions. Screening of PLs was conducted using an α-lattice or randomized complete block design (RCBD) or augmented RCBD along with drought-tolerant and susceptible checks and donor/recipient parents in 1-4-row plots 3-5 m in length, with 0.20-0.25-m row-to-row spacing and 2.0-2.5 g seed per linear meter. For all the trials, the seeds were sown in a raised bed nursery and 21-25-day-old seedlings were transplanted to the main field. Inorganic fertilizers NPK (nitrogen, phosphorus, and potassium) were applied @ 120:30:30 kg ha −1 . Weeds, insect pests, and snails management was done as described by Venuprasad et al. 5 . For non-stress, the trials were conducted under irrigated, transplanted, flooded, puddled, and anaerobic conditions with no drought stress. The reproductive-stage drought stress experiments were carried out in an automated rainout shelter facility at IRRI.For reproductive-stage stress, transplanted experiments were maintained as described by Sandhu et al. 58 . The drought stress was initiated at 32 days after transplanting. After the inception of the stress, the soil water potential was measured using tensiometers (30 cm depth) in DS 2013 and DS 2014 (only). The plots in the reproductive stage drought stress treatments were rewatered when the soil water potential dropped to −50 to −70 kPa (tensiometer). The decline in water table depth was measured on a daily basis with a meter scale inserted into a 1.1-m polyvinyl chloride pipe in the experimental fields at regular intervals in all RS treatments. The pipes were placed at 1.0-m depth with 10 cm of pipe remaining above the soil surface. The plots were rewatered when water table level reached 100 cm below the soil surface and most lines were wilted and exhibited severe leaf drying. This cyclic reproductive stage drought stress allows the effective screening of broad range growth duration PLs 40 .Data on days to 50% flowering (days) were recorded when 50% of the plants in the plot started flowering. At maturity, when 80-85% of the panicles turned golden yellow, plant height (cm) was measured as the mean height of three plants per plot from the base to the tip of the tallest panicle. The grains were harvested from each plot, dried to a moisture content of 14%, and weighed. Grain yield data were normalized as per moisture content for yield computation (kg ha −1 ). Visual observation on grain type similar to that of the recipient parent was made in the field per plot during plot selection and per plant during panicle selection. Blast (caused by Magnaporthe oryzae) and bacterial blight (caused by Xanthomonas oryzae pv. Oryzae) screening was done twice first at F 2 and then at F 8 stage. Mixed inoculum for races present in Philippines was used for blast inoculation. Genes pik-s, pi2, pi5(t), pi9 showed resistance against the mixed inoculum. For bacterial blight inoculation race 1 (PXO61) and race 2 (PXO86) was used. Inoculation and scoring for bacterial blight were done at maximum tillering stage as described by Kauffman et al. 59 . Inoculation for blast screening was done 10 days after seeding in the blast nursery and, after an exposure of 22 days, scoring was done based on the SES scale (0: highly resistant, 1-2: resistant, 3-4: moderately resistant, 5-6: moderately susceptible, 7-8: susceptible, 9: highly susceptible) 60,61 . Phenotypic selection was used for biotic screening. Selection for resistance genes against blast and bacterial blight was not targeted in the present study.Genotyping. Molecular marker work was carried out in the Molecular Marker Application Laboratory of IRRI. Fresh young leaves from all lines were collected, freeze-dried, and the DNA extracted using the modified CTAB protocol 62 . A total of 112 SSR markers linked to two qDTY regions were tested for polymorphism in the marker-assisted breeding experiment. The markers linked to qDTY 2.2 (RM236, RM279, RM109) and qDTY 4.1 (RM335, RM551, RM518) were found to be polymorphic in the Samba Mahsuri background and were used for foreground selection. The lines having the same QTL combination were found to be segregating for yield components. To study the allelic pattern of these lines, a total of 650 SSR markers distributed across the rice genome were tested for polymorphism. A total of 99 polymorphic markers were used for the background study. In the marker-assisted recurrent selection experiment, a total of 200 markers linked to four qDTY regions were tested for polymorphism. Foreground and recombinant selection were carried out using RM212 and RM486 (chromosome 1), RM525 and RM221 (chromosome 2), RM16 and RM520 (chromosome 3), and RM287 (chromosome 11) polymorphic markers. Amplification was carried out using polymerase chain reaction (PCR) and PCR products were resolved in non-denaturing polyacrylamide gel electrophoresis (6% or 8%) depending on product size. Gels were stained with SYBR SafeTM DNA, viewed after 20 min, and DNA profiles were scored based on parent allelic profile. Stepwise selection involving phenotyping and genotyping was used to select and advance the desirable plants in every generation.Mean and standard error of difference of the experiments with alpha lattice were calculated using the linear mixed model of CROPSTAT version 7.2.3 considering replications and blocks within replication as random effects and lines as fixed effects. where μ is the overall mean, g i is the effect of the i th genotype, r j is the effect of the j th replicate, b lj is the effect of the l th block within the j th replicate, and e ijk is the error.For the RCBD, the model used was:where μ is the overall mean, g i is the effect of the i th genotype, r j is the effect of the j th replicate, and e ijk is the error. For the augmented RCBD, the model used was:where μ is the overall mean, g i is the effect of the i th genotype, b l is the effect of the l th block, and e ilk is the error.Class analysis for qDTY PLs. Class analysis for qDTY PLs was performed using SAS v9.2 (SAS Institute Inc. 2009), considering the effects of QTLs and genotypes within the QTL as fixed effects and replicate and blocks within replicate as random effects. The model used to see the performance y ijkl of the j th genotype nested within the i th QTL class in the l th block within the k th replicate is as follows: μ = + + + + + y r b r q g q e ( ) ( )where μ is the population mean, r k is the effect of the k th replicate, b(r) kl + q i is the effect of the l th block within the k th replicate, q i is the effect of the i th QTL, g(q) ij is the effect of the j th genotype nested within the i th QTL, and e ijkl is the error 63 . ANOVA and F test using SAS v9.2 (SAS Institute Inc. 2009) were used to see whether the QTL classes differed significantly from each other.Graphical representation of the genome. Graphical representation of molecular marker data was performed using the software Graphical Genotypes (GGT 2.0) 36 . The homozygous donor allele, homozygous recipient allele, heterozygous allele, and recombinant allele were scored as ' A' , 'B' , 'H' , and 'R' , respectively. The estimated proportion of the A, B, H, and R alleles in each PL was calculated using GGT 2.0.Diversity studies of PLs segregating for grain yield. DARwin 6.0.013 software was used to compute a pairwise distance matrix by calculating a dissimilarity matrix 35 . An Unweighted Pair Group Method with Arithmetic Mean (UPGMA) followed by bootstrap analysis with 1000 permutations was used to construct a neighbor joining tree.Q x Q interactions. Detection of QTL x QTL interactions in the marker-assisted pyramided population was performed in QTL Network 2.1 based on a mapping methodology summarized by Yang et al. 64 . A two-dimensional genome scan with 1000 permutation was performed to identify additive x additive interaction. Determination of the QTLs intervals, detection of Q x Q interactions, and their additive x additive effect were considered as significant at P ≤ 0.01.","tokenCount":"5749"} \ No newline at end of file diff --git a/data/part_3/7139713324.json b/data/part_3/7139713324.json new file mode 100644 index 0000000000000000000000000000000000000000..fb8b6001b12139b6881237647a00f05b265d39a4 --- /dev/null +++ b/data/part_3/7139713324.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"6eed7ec68d7d046ab47ec5be2ee20740","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/da4fd1e8-cd74-4a81-9e25-0592980b06f5/retrieve","id":"251530803"},"keywords":[],"sieverID":"7d3554bc-c380-4f20-99f8-561e42523567","pagecount":"19","content":"The Excellence in Agronomy (EiA) Initiative aims to deliver agronomic gain for millions of smallholder farming households, with emphasis on women and young farmers for measurable impact on food and nutrition security, income, water use, soil health, and climate resilience. This objective will be achieved through:• Facilitating the delivery of agronomic solutions, including co-creation and deployment of gender-and youthresponsive solutions to smallholder farmers via scaling partners.• Enabling the creation of value from big data and advanced analytics, through the assembly and governance of data and tools; application of existing analytics and solutions for specific use cases; supply of information on climate impacts, inclusivity, and sustainability of agronomic solutions; and national agricultural research system (NARS) capacity strengthening.• Driving the next generation of agronomy at scale innovations by addressing key knowledge gaps and facilitating innovation in agronomy research through engagement with partners.• Nurturing internal efficiencies for an agile and demand-driven agronomy research and development community through internal organization and external partnerships for prioritization, demand mapping, and foresight.A survey tool was developed by the EiA add-on teams for administering by Use Case teams within their place of work.The tool was developed to understand farmer segmentation, gender and generational differences in agricultural management practices and technology adoption, yield gap decomposition and key performance indicators of agronomic gains, and current practices in the Use Case population of interest. With this better understanding, along with an understanding of other contextual factors, Use Case teams will have the necessary information to inform the design of their Minimum Viable Products (MVPs) to ensure they meet the needs of women, men, youth, and different farmer types and help increase yields and other agronomic gain outcomes.The sample must represent the primary population who will be targeted by the MVP -within the country or region of the country where the Use Case is implementing its research. Hence, for EiA, these are farm households who grow at least one of the focal crops of the Use Case, in the geographical area where the Use Case intends to reach farmers during the validation and piloting stages of the MVP. The sample strategy will be outlined in a separate document, but we highlight the important components relevant to the enumerators here.Critical to a good household survey is the definition of a household and who would be considered a household member (see Box 1). We propose a standard definition here, though the Use Case teams can propose a modification depending on their context and commonly used definitions in national household surveys for their country.The concept of household is based on the arrangements made by persons, individually or in groups, for providing themselves with food or other essentials for living. A household may be either: a) A one-person household: a person who makes provision for his or her own food or other essentials for living without combining with any other person to form part of a multi-person household, or b) A multi-person household: a group of two or more persons living together who make common provision for food or other essentials for living. The persons in the group may pool their resources and may have a common budget. They may be related or unrelated persons or constitute a combination of persons both related and unrelated. If someone stays in the same household but does not bear any costs for food or does not take food from the same pot, they are not considered household members.Importantly, a person is only considered a household member if s/he was present in the household for at least 6 months in the past 12 months and for at least half of the weeks in these months.-Permanent joiners: people who recently joined the household with the intention of permanently staying in the household, for example, after childbirth, marriage or other. -Permanent leavers: people who recently left the household and who do not intend to rejoin the household in the near future. For example, people who passed away, who left for marriage, etc. -Children who are away more than 6 months of the year for educational purposes.The survey must also represent male and female primary decision makers within farm households (see Box 2). If a household does not consist of an adult male household member, only one female primary decision maker can be interviewed. Likewise, if there is no adult female household member in a household then only one male primary decision maker can be interviewed.The primary respondent should be either the man or woman in the household who is targeted by the Use Case, or in the case of a control group, the \"type\" of man or woman targeted by the Use Case.The other primary respondent is typically the spouse of the primary respondent, or if the spouse is not available, another adult household member of the opposite sex who is primarily responsible for making both social and economic decisions related to agriculture.If multiple eligible adults are present, the main choice should be the person (either male or female) who is cultivating the Use Case focal crop and who is the main decision maker regarding the agronomic practices applied to the Use Case focal crop.The primary and secondary respondents are usually husband and wife in a dual-headed household, however, they can also be another member as long as there is one male and one female aged 18 and over. For instance, a woman could be living with her adult son/daughter or a man could be living with an adult daughter/son. The first choice should be to interview the main decision maker of issues related to the Use Case focal crop and their spouse. Another respondent should only be interviewed if the spouse is not available.It may also be the case that there is only a primary female respondent and there is no adult male present in the household, or that there is only a primary male respondent but no adult female respondent. In this case only one person, the primary decision maker for the Use Case focal crop, will be interviewed.In case the primary decision maker for the Use Case focal Crop is a polygamous male respondent, one wife should be randomly selected to be interviewed.There are two parts to the gender-youth assessment survey, identified as Part 1 and Part 2 (Box 3). Part 1 includes the main household questionnaire; whereas Part 2 consists of the individual questionnaire. The household questionnaire asks general questions regarding the household. This part can be answered by any knowledgeable household member, as well as by multiple household members. The household questionnaire offers information on the households' socio-economic status, including household composition and farm practices.The individual questionnaire should be administered to one male and one female primary decision maker in the household, as identified in the household questionnaire. This questionnaire contains questions pertaining to the individual who responds to the questionnaire. To ensure that the respondent answers freely, the enumerator should ensure the respondent is interviewed separately. No other household members or other should be present or able to overhear the interview, except for small children below two years of age.To ensure privacy, enumerators are not allowed to interview anyone they know. If you are assigned a household where you know someone, you should inform your team leader. The team leader will re-assign that household to another enumeration team, and your team will be assigned a different household.All data collected by you for this survey will be completely confidential. These data should not be discussed with anyone other than with your team leader. You should not share information from the survey --including the names Data from several thousand respondents will be consolidated for reports. Respondents' names will not be reported, and it will not be possible for anyone to deduce the identity of respondents from the reports.The enumerator is pivotal to the success of the survey. Close adherence to procedures for conducting the interviews and entering data will ensure the quality of the survey. The enumerator's responsibilities include:• Participating in the household listing.• Locating the assigned households and completing Module A, Household Information Sheet, for each household.• Explaining the survey to the household and obtaining signed informed consent to participate in the survey, as in Module B.• Identifying all members of the household who are eligible to be interviewed for each of the survey modules.• Interviewing all eligible members for all modules, including returning to the household if eligible members were absent on the first visit.• Entering the respondent's answers onto the tablet accurately.• Submitting the interview data to the team leader and discussing issues with the team leader; and• Tracking and reporting progress in completing assignments.• Documenting challenges encountered during field data collection.Detailed instructions on how to complete these tasks are provided in this manual.The enumerator represents the Excellence in Agronomy Initiative and to the households assigned to the enumeration team. The enumerator needs to make a favorable impression on household members. Enumerators should follow these basic guidelines:• Dress appropriately for fieldwork (according to the culture of the place of assignment).• Address all community and household members encountered politely and with respect.• Visit households during appropriate hours. (Note: enumerators may need to visit a household outside these hours to interview someone who was not available during the initial visit. This will be planned with the household.)• Treat all information that you collect as strictly confidential.As a potential stranger in the house, it is important to observe all the rules and customs governing visits to other people's houses. Please follow these steps at the beginning of each household visit:• Knock first and greet everyone• Introduce yourself politely and say that you are working for • Ask to speak with a head of the household.• Explain that you are there to conduct a survey on farming practices and that local authorities have approved the survey.• Ask permission to enter the house if appropriate.• You should automatically show your in all cases.Be patient with household residents who appear suspicious of the interview. Carefully explain the purpose of the interview, the fact that all information is completely confidential, and the fact that respondents can refuse to respond to any question.Make sure that only household members are present during the administration of the main household questionnaire (Part 1). Friends, neighbors, or other non-household members should not be present during the household interview.For Part 2 especially, which raises many questions about gender, personal opinions, and decision-making that cannot be answered truthfully with other adults around, respondents should be interviewed separately from other household members. Make sure that only the person who is the main respondent to a survey module is present during the enumeration of that module. Although there may be situations where it will be difficult to separate a respondent from his or her family due to different reasons (e.g. care activities, social norms …) you should aim to have only the principal respondent to the module present. If it is unavoidable to have children around, it is okay for them to remain, but other adults should not be present. Further, you should pay special attention to avoiding having other adult household members around. In case local customs and norms mandate that respondents and interviewers are of the same gender, the teams should organize themselves to accommodate these customs.There are many procedures you should follow to ensure a high-quality interview:• Do not rush the interview. Allow the respondent time to think before responding. Let the respondent know that his/her answer is very important.• Read the question exactly as it is written (or as you were taught to translate it during training). Read it slowly and clearly. If the respondent does not understand the question, explain what the question is asking, and then reread the question slowly.• Unless instructed to do so, do not read the list of possible answers to the respondent. Let the respondent answer on his/her own. You then select the survey response that best matches the answer given by the respondent.• Do not suggest responses.• Remain neutral. Do not give the impression that any response is more appropriate than others. Never appear to disapprove of any response.• Respondents may have multiple responses to a given question. If the questions allow only one answer, you should enter the response that the respondent says is true most of the time.• Respondents may provide long answers that include a lot of information not directly relevant to the question. Simply record the relevant response and ignore non-pertinent information. If the respondent has not answered the question at all, steer the respondent politely back to the question.• Do not argue with respondents.• If the respondent is reluctant to answer a question, explain that individual responses will be completely confidential, and that it is normal to not always know the right answer, but that having their best guess will be incredibly helpful. If the respondent still will not answer the question, select 'refused' and proceed to the next question.You will be conducting the interview from a tablet. When reading questions from the tablet, please phrase them as it appears. Pay attention to special instructions that are not to be read to the respondent or questions containing blanks that you will need to fill in as you speak. For example, please do not read \"NAME\" in the following question: \"How old is [NAME]?\" Rather, read the actual name of the relevant household member.For many questions, the enumerator must interpret the respondent's answer. Sometimes this may be difficult. Write down the household ID, respondent, question number, and anything that you want to discuss with your team leader.It will be possible to change a response after discussing it with the team leader following the interview. You should keep such notes organized so that you do not confuse households, respondents, modules, or questions with one another.Please alert your team leader of any problems regarding the tablet survey immediately.Typically, enumeration teams work with a fixed set of enumerators which are responding to one supervisor. Typically, teams consist of about 4-5 enumerators for one supervisor. The exact number however can differ depending on the specific context and logistics. Each enumerator will have his/her tablet for entering data. Each enumeration team member is responsible for his/her tablet. If you must exchange tablets with your enumeration team partner because your tablet's battery is too low or for any other reason, note this on the control sheet. Also, note that the team leader will collect your tablet every evening to review and save data and recharge your tablet. Make sure the team leader always returns the correct tablet to you. Enumerators are expected to stick to this rule because it is very essential for the success of any survey.Members of the enumeration team will be given a control sheet that lists all households assigned to the team in that cluster (see Annex A). The control sheet will provide the household number that will be used on the survey forms.The enumeration team will track progress in completing the survey in all of their assigned households on their control sheet (see Annex A).The survey contains 4 main modules from A through D. The primary enumerator will conduct all modules of a survey. The secondary enumerator will interview one of the individual respondents, while the primary enumerator interviews the other one; or alternatively the primary enumerator interviews each respondent.If there are issues regarding the respondent's willingness to speak with a specific enumerator because of the enumerator's gender or any other reason, the two enumerators may switch responsibilities during the interview. However, this must be recorded on the control sheet and reported to the supervisor. The supervisor must be alerted as soon as possible when such a scenario is anticipated.The enumerator will:• Receive household assignments on the control sheet from the team leader.• Inform the team leader when a household should be re-assigned to another enumerator because:o The enumerator knows someone in the household, or.o The enumerator does not speak the language spoken in the household.• Ask the team leader for advice about how to interpret responses or handle confusing parts of the survey or data entry process.• Report progress in completing assignments to the team leader; and• Provide their tablets each evening to the team leader.The enumerator will meet with the team leader at the end of each day to discuss the above items. Each day, the team leader will review the data from the household interviews conducted by the enumerator that day. The team leader will check to see that each enumerator's tablet has the completed modules listed on the control sheet. The team leader will ensure that enumerators properly upload their data to the server at the end of the day and ensure that batteries are recharged. Enumerators should expect to hear from team leaders if there are any problems or concerns.Eligible household members may not be available during an enumerator's first visit to the household. In these cases, the enumerator will plan a time with the household to return to interview the missing household members.Remember that the household members will have to provide informed consent before being interviewed.The enumerator will return to the house if the missing household member will be available when the enumerator is still in the cluster and can return to the house. If eligible respondents are not expected to be available when the survey team is working in that cluster, it will not be possible to complete the interviews for that household. The enumerator will note this on the household record on the tablet and the control sheet. Every effort should be made to complete all modules with all eligible respondents.Enumerators will provide tablets to the supervisor at the end of the workday. Supervisors will upload data to a server using an automated tool that is installed on their tablets. Enumerators are not entitled to retain access to any records, or to share them with anyone other than supervisors/ team leaders.The enumerator has a key role in ensuring the quality and utility of the survey. To succeed, enumerators must:• Visit all assigned households;• Obtain the cooperation and signed informed consent of household members;• Build rapport with respondents so they complete the interview;• Ask the questions exactly as written while providing helpful explanations when necessary;• Interpret the respondent's answers correctly;• Ensure that individuals are not interviewed in the presence of other adults whenever possible (and especially in Part 2); and• Enter all responses accurately.Enumerator commitment to completing each of these activities per this manual and the training is central to the quality of the survey.In addition to the enumerator's actions, several other measures are in place to ensure survey quality:• Team leaders will observe enumerators as they conduct some of their interviews.• Team leaders and survey supervisors will check with a random sample of interviewed households to confirm that the household members were interviewed. Team leaders also will use other means to verify that interviews were conducted.• Enumeration team members will support each other. For example, enumeration team members can help each other interpret responses, identify eligible household members to be interviewed, and review data.• With the respondents' consent, some interviews may be recorded.• The tablet has some automated edit checks that will notify the enumerator immediately if the entered data is not acceptable (for example, the age of the respondent entered is out of range). The tablet also is programmed to ensure the enumerator enters a response to all required questions.• The enumerator will discuss any responses about which he or she is uncertain with the team leader.• The team leader in conjunction with data managers will review the completed household record to identify missing or problematic information.• The team leader will confirm that there is data for every household assigned to an enumeration team.• Data managers will carefully review all data to see if there are unusual patterns of responses or outliers.• Survey coordinators, including team leaders and data managers, will review timestamps and quality of responses to assess whether an enumerator is conducting the assessment at an appropriate speed.This module should be completed by the enumerator before beginning the survey. It will identify the household and enumeration team administering the survey.The enumerator will complete this module on his/her tablet. This information must be recorded before the commencement of the interview.The informed consent process will be handled on a paper informed consent sheet and not on the tablet. However, enumerators will be required to confirm that consent was obtained on the tablet and will only be allowed to proceed with the interview once consent is obtained.The explanation about who should respond to this module is explained in Box 1 above.Remember that each respondent should listen to the background information on the survey. Any respondent that will provide answers will have to permit the enumerator by signing the form. These may include. If a person has not given written consent to the interview, they may not answer questions at any time. Please make sure that if the primary respondent elects another individual to answer a specific module the selected individual has signed the consent form.If a person has not given written consent to audio recording, the enumerator must proceed to interview them without recording audio. This only applies to the person that refuses. For example, if only one person in the household refuses audio recording, the enumerator should switch off recording only for that person and use it for the others.• Read the statement on top of the informed consent sheet to the household members.• Leave one copy of the consent sheet with the household.• Everyone should sign the main form and household copy.NB: a signed consent is not mandatory if the respondent does not trust giving a signature, but verbal consent is mandatory.Part 1: Household Survey with Household Head or RepresentativesModule 1.1 is used to develop a list of every eligible member of the household and to determine who should be interviewed.The primary male or female respondent should respond to this module unless there is another individual who knows most about the age, education, and other characteristics of the household or household members.• The enumerator should define the eligibility of who counts as a household member.• Please tell the household to include anyone who currently lives in the house and generally eats meals together. • Include anyone who lived in the house recently (within the last 6 months) and plans to return to the household in the future. • Include anyone who has recently moved into the home (less than 6 months, e.g., a newlywed bride) and plans to live with the family permanently. • Do not include anyone who left more than 6 months ago or left recently (less than 6 months) but does not plan to return to the house in the future (e.g., a daughter who married and left to live with her husband's family or a son who has moved to his residence with his family). • Do not include anyone who lived less than 6 months at the house total. 1.1.1• Include anyone who has lived in the household for at least 6 months in the last 12 months including individuals who have permanently joined the household (newborn babies under 6 months old or newlywed) 1.1.2• Start with listing the names of all the people in the household. Then start asking the questions per person, one by one • Include anyone who has lived in the household for at least 6 months in the last 12 months and is 15 years or older. • Indicate the age of household members in years • Skip questions on religion and ethnicity if sensitive 1.2 -1.2.2• Own/Use: These are plots that the household owns and cultivates themselves.• Rent/Borrow: These are plots rented or borrowed from someone else.• Rent out/Lend: These are plots owned by the household but that someone else is cultivating. • It is helpful to make a drawing of all the parcels on paper first, giving each parcel a number and name, then start filling out the information in the survey tool. • The household head or representative is eligible to provide answers to the questions 1.3• These questions refer to crops that are important in terms of quantity, bringing food into the home, or making money. • Note that a maximum of 5 crops is allowed. 1.3.2• For eia_addon_crop_use, crop can be grown partially for household food consumption and partially for sale in the market but record the activity only once based on what the respondent says the crop is primarily grown for. 1.3.3• Respondent's response to Eia_addon_crop_use 1.3.2 will determine the questions to answer in 1.3.3 (For instance, if the response to Eia_addon_crop_use was \"eat\" and \"sell\", only 'crop_consumed_prop' and 'crop_sold_prop' will be answered) 1.3.4• Respondents should only be asked if their answer to 'eia_addon_crop_use\" was 'sell' 1.3.5• Include residues in the field after the main harvest, and after processing crops 1.3.6• Examples of crop products include flour and beer 1.4• Please read examples aloud • For manure and compost, this includes allowing animals to dung in the fields • For pesticides, this includes herbicides, insecticides, fungicides, and similar chemicals • For irrigation, this includes pouring water from a bucket or pipe, or stream. 1.5• Important livestock in terms of bringing food into the home or making money.• Maximum 4 types of livestock allowed. 1.8• In eia_addon_offfarm_income_proportion, consider all off-farm incomes against all incomes from farm produce 1.10• Off-farm work includes both farm and non-farm wage work, off-farm businesses, etc.• For questions eia_addon_reciprocal_farm_workers, eia_addon_hired_workers_fulltime, and eia_addon_hired_workers_parttime, do not include people working on parcels rented out. • For the skipping pattern instructions on the questions eia_addon_reciprocal_farm_workers, eia_addon_hired_workers_fulltime, and eia_addon_hired_workers_parttime, note that farm_labor represents the options for the question 'eia_addon_plot_labour' in 1.2.1 1.4 -1.11• Specific questions on these are straightforward, however, pay attention to the skipping patterns where necessary.This module should be completed twice for each household i.e., an individual interview with the identified primary male and female decision makers.In the case where there is only 1 adult female or male decision maker in the HH, there is no need to administer this questionnaire to another HH member (e.g., a child < 18 years old), and therefore, only the primary adult female or male is asked to respond to the questionnaire. If the respondent is different from the main respondent in the household questionnaire, the respondent must provide informed consent prior to the start of the interview.This questionnaire contains questions pertaining to the individual who responds to the questionnaire. To ensure that the respondent answers freely, the enumerator should ensure the respondent is interviewed separately. No other household members or other should be present or able to overhear the interview, except for children below two years of age. In the exceptional case where an interview in private is impossible due to contextual factors or norms, the number of non-respondent attendants must be limited to the best possible extent. Moreover, any interview not conducted in private must be duly reported to the supervisor and this information must be entered on the questionnaire.Enumerator teams should include male and female enumerators and ideally, they are gender balanced. It is preferable that male enumerators interview male respondents, while female enumerators interview female respondents. However, matching enumerators and respondents based on gender can be burdensome logistically, such that teams might decide to not strictly follow this rule where it is deemed culturally acceptable.Ask both primary male and female decision makers to answer this module (see Box 4). If a household does not include an adult (≥18 years old) male household member, only the female primary decision maker can be interviewed. Likewise, if there is no adult female household member in a household then only the male primary decision maker can be interviewed. The definition of primary male and female decision makers is shown in Box 1.Respondents should be interviewed separately with no other household members or outsiders present (with the possible exception of small children). Remember that each respondent must be asked separately for consent to be interviewed and must fill out the informed consent form.The primary respondent should be either the man or woman in the household who is targeted by the Use Case, or in the case of a control group, the \"type\" of man or woman targeted by the Use Case.The other primary respondent is typically the spouse of the primary respondent, or if the spouse is not available, another adult household member of the opposite sex who is primarily responsible for making both social and economic decisions related to agriculture.If multiple eligible adults are present, the main choice should be the person (either male or female) who is cultivating the Use Case focal crop and who is the main decision maker regarding the agronomic practices applied to the Use Case focal crop.The primary and secondary respondents are usually husband and wife in a dual-headed household; however, they can also be another member as long as there is one male and one female ≥ 18 years old. For instance, a woman could be living with her adult son/daughter, or a man could be living with an adult daughter/son. The first choice should be to interview the main decision maker of issues related to the Use Case focal crop and their spouse.Another respondent should only be interviewed if the spouse is not available.It may also be the case that there is only a primary female respondent and there is no adult male present in the household, or that there is only a primary male respondent but no adult female respondent. In this case only one person, the primary decision maker for the Use Case focal crop, will be interviewed.In case the primary decision maker for the Use Case focal Crop is a polygamous male respondent, one wife should be randomly selected to be interviewed. Alternatively, the survey team could inquire from the husband on which of his wives should participate in the interview or which of his wives is most engaged in agricultural activities.Before starting the interview, please double-check to ensure:• You have noted the household ID and individual's name correctly for the person you are about to interview.Having the correct household ID and individual's name of the respondent (as noted in the household roster) is very important.• You have gained informed consent for the individual to respond to this questionnaire;• You have sought to interview the individual in private or where other members of the household cannot overhear or contribute answers.• Do not attempt to make responses between the primary and secondary respondents the same-it is ok for them to be different.The purpose of the questions in this section is to get an idea about men's and women's access to the market.• Do not attempt to ensure that responses are the same between the male and female respondents. It is okay for them to be different. • Specific questions on these are straightforward, however, pay attention to the skipping patterns where necessary. Normally however, the tablet will take care of the required skipping patterns automatically. eia_addon_market_distance• Distance to market should be recorded in minutes eia_addon_market_prevented_reason• Do not read response options aloud. Listen to the respondent and select the appropriate answerThe purpose of the questions in this section is to get an idea of an individual's sources of information related to agricultural production, marketing, or weather. This module also considers an individual's access to training and skill acquisition for the improvement of livelihood.• Respondents should select a maximum of 3 sources of information eia_addon_receive_info_extension_freq -eia_addon_advice_not_act_reason• Responses should be based on the sources of information selected in eia_addon_extension_source • Repeat questions if more than one source of information is selected eia_addon_training_prevented_reason and eia_addon_training_multiple_prevented_reason• Do not read response options aloud. Listen to the respondent and select the appropriate answer.The objectives of the questions in these modules are to assess individuals' digital access -devices, internet networks, and information sources; and to understand individuals' usage of use case technology.• Specific questions on these are straightforward, however, pay attention to the skipping patterns where necessary. • If a respondent is not familiar with a term or concept, please simply re-read the question slowly, and ask her to use whatever interpretation of that concept she has. • If a respondent says, \"I don't know\", do not immediately enter this response; push the respondent gently to provide an answer, noting how there are no 'right' answers, and you are interested in their reactions at that moment in time. • Note that the term \"Use case technology\" could either narrowly refer to the specific use case technology under consideration, or it could refer to any subcomponent or relevant related technology, tool or innovation.The objective of the questions in this section is to get an idea of farming decisions, as well as an individual's ability to make personal and household decisions about farming practices.• The reference time frame for this question is always 12 months. In some cases, for crop production-related activities, it will be helpful to ask the respondent to think about the last two cropping seasons if the area has a bi-annual crop season. In other cases, the reference period should only be one cropping season depending on the number of cropping seasons per year, the intervention, and the timing between surveys. This should be decided upon and standardized during the training period. • In some languages, there is a singular you and a plural you. This question refers to the singular you (the person being interviewed, not the respondent together with his or her family). If the local language does not distinguish between singular or plural, make sure the respondent understands that this applies to just him/her (This will also apply to all other places where we ask about \"you\" in the individual questionnaire). • The responses should describe who makes the decisions most of the time, even if in reality they may be made on a case-by-case basis.The purpose of this module is to get an idea about men's and women's access to capital or assets and their ability to control the use of the resource. Again, do not attempt to ensure that responses are the same between the male and female respondents. It is okay for them to be different.• Ownership here is based on the respondent's understanding; it is self-defined. The respondent may report owning assets by themselves (solely), or with others (jointly). • If there are multiple items with some owned solely and other items owned jointly, the respondent may answer both, \"solely and jointly\". • Do not double count assets, include each in one category only.• Non-farm business equipment includes any asset used for small businesses such as solar panels (if used for recharging), sewing machines, brewing equipment, equipment used for processing food, bicycle or other transport equipment if used for a business, etc. • Count an asset even if it is broken at the time as long as the asset could be fixed or sold (and therefore has some value to the individual or household).The purpose of this module is to get an idea about men's and women's access to credit.• Do not attempt to ensure that responses are the same between the male and female respondents. It is okay for them to be different. • This is a straightforward module, however, pay attention to the skipping patterns where necessary.The purpose of this module is to get information regarding men's and women's access to social capital. The purpose of this module is to get an idea about work pressure and on how men's and women's time is spent. We are particularly interested in agricultural activities such as farming, non-farm income generating activities, and, domestic works, and personal activities. The total should be equal to 24 hours.• Questions in this module refer only to the respondent himself/herself and not to the family. Please make sure that the respondent understands that the question applies only to the individual, personally. • The number of hours that are reported in this section, including the hours of sleeping time at night, should add up to 24 hours. • If 2 or more tasks are done at the same time, for example, childcare while feeding chickens, put the hours or minutes in the main activity.If there is no clear \"main\" activity, split the time among those activities.• The most important information from this module is the satisfaction with leisure time and the amount of time respondents spent on rest/sleep/leisure/hobby/personal activities. We need to have as accurate estimates as possible.• If an activity lasted for 30 minutes, please record 0.5 hours. time_personal• Please enter the response in hours.• This also includes sleeping time and resting time (i.e. include also nighttime used for sleeping) Include travel time for personal purposes, for example to visit family or friends time_farming• Please enter the response in hours.• This question is about crop farming, not other activities like livestock rearing or fishing. • Include travel time if it is for farming purposes, such as time travelling to and from the farm and time spent to acquire agricultural inputs. time_nonfarm• Please enter the response in hours.• Note that off-farm here can also include livestock rearing or fishing • Include travel time if the travel is for non-farm business purposes. time_domestic• Please enter the response in hours.• Include travel time that is for household purposes, for example to buy groceries for home consumption.The purpose of this module is to get an idea about individuals' different opinions on social norms and perceptions regarding women's and youth's roles in farming, agronomic practices, and agricultural technology adoption.We will have two sets of questions with a contrasting meaning, one is focusing on gender/youth inequality and the other one is focused on gender equality. Each respondent will only have to respond to one set of the questions. The allocation of a set to a respondent will happen automatically. The program will randomly allocate one of these sets to the respondent. The enumerator cannot choose this.• Inform the respondents that there are no correct or wrong answers, we just want to know their perceptions and feelings regarding the questionsThis module aims to understand the capacity and willingness of respondents to adopt new innovations and technologies in agriculture.• New technologies or practices include new crop varieties, watersaving techniques, animal feeds, etc.The objective of these questions is to confirm that the respondent of the individual questionnaire was a male or female decision maker, and to indicate the enumerator's ability to be interviewed with only the male or female decision maker alone.• To be answered only by the enumerator at the completion of the survey","tokenCount":"6414"} \ No newline at end of file diff --git a/data/part_3/7151535247.json b/data/part_3/7151535247.json new file mode 100644 index 0000000000000000000000000000000000000000..26d0fe7dad8b3223fd2c4e08a9552c42da0a0c8b --- /dev/null +++ b/data/part_3/7151535247.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"25134c4874c2dce4be8f28ba4866fca9","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/76da856e-ec77-44c3-87da-99ea262b8bd5/retrieve","id":"495269078"},"keywords":[],"sieverID":"dcb09196-9427-49e4-86ef-81269c0c46c1","pagecount":"90","content":"An actual or nominal place or an arrangement where forces of demand and supply operate, and where buyers and sellers interact (directly or through intermediaries) to trade goods, services, or contracts or instruments, for money or barter. Markets include mechanisms or means for determining price of the traded item, communicating the price information, facilitating deals and transactions, and effecting distribution. The market for a particular item is made up of existing and potential customers who need it and have the ability and willingness to pay for it.Ultimate Business Strategies sub-contracted to support in intervention implementation:• Facilitate linkages and engagement processes between pig aggregators, farmers and ISPs • Support development of feasible business growth strategies for scale within the pig VC • Coach and mentor the value chain actors on the market arrangements • Strengthen capacities of staff and collaborators in MSF approaches in development and growth of the pig VC▪ Learn what a market systems approach is, its rationale and why it is important ▪ How to identify systemic constraints to the development of market systems ▪ The roles of different players -such as governments, the private sector, non-profit -in stimulating more inclusive systems ▪ Appreciate how the MSF intervention links to the other components of the project▪ Interactive and participatory course delivered entirely online, over two weeks, 3 days per week ▪ Delivery through lecture, exercises, plenary discussions and group discussionsThe market successes in the video -Participant resonses Farmers are willing to produce for the market There is a pork market; there are inputs even Presence of market for pigs (demand) There's a market for pigs There always is a ready market for pigsThe market is available for pigs There is demand for pig Farmers are able to reduce on cost of production Ready demand There are input sources though quality is an issue Farmers willing to engage despite difficulties High Market demand Market is available, The farmer had a smart phone and able to use the internet to access information Aggregators -buying low and selling high (good business strategy for them)The farmer is able to adapt to the challengesThere are aggregators the farmer has access to Farmer awareness of the importance of record keeping -however reality is that they are not keeping records Farmers ability to use beer dregs is an innovation to reduce cost Farmers are able to reduce on cost of production The reality that as the pork enterprise becomes lucrative, then it may become more male-dominated. We need to ensure that we have clear strategies to involve women not just in labor provision but benefitting from the income and having a say. An organized, purposeful structure that consists of interrelated and interdependent elements (components, entities, factors, members, parts etc.). These elements continually influence one another (directly or indirectly) to maintain their activity and the existence of the system, in order to achieve the goal of the system. All systems have inputs, outputs and feedback mechanisms, exist in a changing external environment, are not possessed by any of the individual elements and have boundaries that are usually defined by the system observer. With reference to the video we watched yesterday:1. Identify 2 challenges and 2 opportunities in the pig market system. Group exercise 1: Please read this in advance of the workshop as we will use it for the first group exerciseThe fire department of Kampala Metropolitan area has been receiving reports of fire outbreaks around the slums of Kampala in the wee hours of the morning. The first fire broke out in Kasubi but the firefighters arrived late to save any property. The second fire broke out in Kikoni but although the firefighters arrived in time to put out the fire, there was no road for the firefighting truck to reach the house. A few weeks later, another fire broke out in Bwaise but this time it was put out by the firefighters before it could spread to the surrounding houses. More fires have since been reported in Kazo Angola and Kinnawataka. The frequency of the fires has been on an upward trend. The fires are breaking out in homesteads without electricity supply and most of them are female headed households.In order to save lives and safeguard property, the Fire Master has decided to equip the police stations serving all slum areas in Kampala with new firefighting trucks, well trained personnel and world class personal protection gear. This is in a bid to ensure that the police fire brigade can respond quickly should a fire break out at any given time. As a result of this intervention, there is reduced loss of property as the fire personnel are able to respond quickly. The police have also teamed up with the civil society to popularize the toll free lines that people can call. Additionally, the civil society organisations and NGOs are offering relief items to affected households in order to help them recover quickly and Simple Market Systems -Markets where a few well defined and known relationships exist and where it is easy to predict the result of a given event.Relationships are quite linear and occur in a fairly structured way.Defined by many well-defined relationships whose cause and effect can be accurately defined to a great degree. There is a fairly good degree of structure within which relationships exist. The system is in a state of constant transformation. Its balance is altered by the action (s) of each player. Complex systems never really achieve a static equilibrium, rather they are always operating in a dynamic equilibrium. This is the reason why our interventions cannot be linear. We have to target various nodes of the market system in order to address the various failures. We have to disrupt the entire system. This is the only way to achieve large scale change. Facilitator: a development agent/agency seeking to stimulate market system change, tasked with remaining outside of the market system they are intervening in.In developing market systems, facilitators actively avoid distorting those systems and must be conscious not to make market players reliant upon their continued • Market facilitators must constantly observe and analyze a system of interconnected and interdependent actors and firms, identifying key leverage points and creating mutually beneficial opportunities for the actors. To do this, they must be able to think about many priorities and strategies at once, and then act to change this system.• Effective systems analysts must be able to reflect on and operate in dynamic markets, looking at a situation from different angles to assess where the best opportunities lie. This requires them to research the situation ahead of time while responding to new information immediately • Market facilitators use coaching skills to improve the relationships of market actors while keeping ownership of the improvement process in the hands of the actors themselves. The market facilitator must be able to assess the needs of the coachee, give and receive feedback, and help the client reach conclusions and act on those conclusions. .• Good coaches understand that success is about the other person (the coachee) growing and improving in ways that the coachee is comfortable with. They are able to help the coachee (in this context a market actor) identify a knowledge, skill or attitude gap, and work with the coachee to improve these competencies. Being a good coach will enable the market facilitator to provide the right type of support to different value chain actors, ensuring that they are able to carry on after the project leaves-a key factor for sustainability • Innovation is an important driver of market improvement. New ideas (big or small) can pave the way for new opportunities for the market facilitator and actors alike. The ability to try new things and recognize creative ideas is therefore critical for market facilitation.• Thinking outside the box and working with others are essential skills for market facilitators in complex and ambiguous situations.• The innovation can be technological (but within a firm's business model), an attitude that is driving behavior, or a behavior pattern that needs to change to stimulate stronger relationships and businesses.• The market facilitator must be able to test these ideas or innovations with market actors and their co-facilitators. This Who is a role model?A role model a measure of excellence. It refers to an entity that other businesses or individuals aspire to be like, either in the present or in the future. A role model business may be a business or a person (or even a sector) who you know and interact with on a regular basis, or may be one who you've never interacted or traded with, like an international company.In MSD work, many times role models are drawn from sectors different from the intervention sector(In this case Pig value chain). However, the underlying principle is to learn from the positive aspects of the role model business and benchmark to improve the sector in question. This refers to the system actors' ability to effectively innovate, upgrade and add value to their products and services to match market demand and maintain or grow market share.However, markets do not always work well, and uncompetitive markets are often those that matter most for the poor. Our job is to support the pig market system to function effectively (even for the poor people) by facilitating innovation and encouraging provision of goods and services to consumers at the lowest possible prices.Smallholder pig farmers are small entrepreneurs. They will benefit if they can purchase quality inputs as well as the related services at fair prices, and if they are able to sell their pigs on fair terms. ","tokenCount":"1595"} \ No newline at end of file diff --git a/data/part_3/7156823094.json b/data/part_3/7156823094.json new file mode 100644 index 0000000000000000000000000000000000000000..0f34ab2fc70ce71c4d9998f78ba5f46160713a62 --- /dev/null +++ b/data/part_3/7156823094.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"3eb7ab8ff81fbd51786272fc069f2680","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/83d95dcf-1cc0-4497-ba65-ef27c0ab7024/retrieve","id":"-1838700787"},"keywords":[],"sieverID":"c142cfcc-b811-44ae-af61-2367e33cb800","pagecount":"14","content":"While many have extolled the potential impacts of digital advisory services for smallholder agriculture, the evidence for sustained uptake of such tools remains limited. This paper utilizes a survey of tool developers and researchers, as well as a systematic meta-analysis of prior studies, to assess the extent and challenges of scaling decision support tools for site-specific soil nutrient management (SSNM-DST) across smallholder farming systems, where \"scaling\" is defined as a significant increase in tool usage beyond pilot levels. Our evaluation draws on relevant literature, expert opinion and apps available in different repositories. Despite their acclaimed yield benefits, we find that SSNM-DST have struggled to reach scale over the last few decades and, with strong heterogeneity in adoption among intended stakeholders and tools. For example, the log odds of a SSNM-DST reaching 5-10 % of the target farmers compared with reaching none, decreases by ~200% when a technical problem is stated as a reason for the tools' failure to be used at scale. We find a similar decrease in odds ratios when technical, socioeconomic, policy, and R&D constraints were identified as barriers to scaling by national extension and private systems. Meta-regression analysis indicates that the response ratio of using SSNM-DST over Farmer Fertilizer Practice (FFP) varies by non-tool related covariates, such as initial crop yield potential under FFP, current and past crop types, acidity class of the soil, temperature and rainfall regimes, and the amount of input under FFP. In general, the SSNM-DST have moved one step forward compared with the traditional 'blanket' fertilizer recommendation by accounting for in-field heterogeneities in soil and crop characteristics, while remaining undifferentiated in terms of demographic and socioeconomic heterogeneities among users, which potentially constrains adoption at scale. The SSNM-DSTs possess reasonable applicability and can be labeled 'ready' from purely scientific viewpoints, although their readiness for system-level uptake at scale remains limited, especially where socio-technical and institutional constraints are prevalent.Innovations in digital technology have benefited many scientific disciplines and economic sectors, including agriculture. This can be evidenced by the boom of initiatives such as Digital Earth (Guo, 1998), Digital Agriculture (Tang et al., 2002), Precision Agriculture (Cassman, 1999;Gebbers and Adamchuk, 2010;Zhang et al., 2002), Virtue Agriculture (Tang et al., 2002), Information Agriculture (Hornik, 1993), Smart Agriculture/Farming (Janc et al., 2019;Knierim et al., 2019) and Digital Farming (Bronson, 2019) since the 1990s. Digital agriculture, which is the application of digital tools and technologies in agriculture, offers multiple potential benefits to smallholders. First, it can assist in addressing the problem of location-specific yield gaps through the optimum allocation of mineral and organic fertilizers (Jat et al., 2013). Second, it can help to reduce the environmental impacts of agriculturenutrient leaching and greenhouse gas emissionsby matching nutrient inputs to plant nutrient requirements (Deichmann et al., 2016;Liang et al., 2013). Third, it allows the collection of site-specific biophysical and management data (Basso and Antle, 2020), with a potential to enhance consequent data-driven decision-making in smallholder systems (Chandra and Collis, 2021).Globally, digital agriculture has been applied, albeit with varying degrees of success, to guide fertilizer recommendations (MacCarthy et al., 2018), operationalize ecosystem services (MacCarthy et al., 2018), optimize soil nutrient management (Pooniya et al., 2015;Sapkota et al., 2021;Singh, 2019), understand trade-offs in climate-smart agriculture (Capalbo et al., 2018), adjust irrigation management (Wellens et al., 2017) and analyze the effect of climate change on inland fisheries (Lynch et al., 2015). We limit the current analysis to its application in the form of Site-Specific Nutrient Management Decision Support Tools (SSNM-DST). In the smallholder farming systems that are prevalent in developing countries, SSNM-DST have been applied predominantly in soil nutrient management (AfricaRice, 2014;Buresh and Witt, 2007;Johnston et al., 2009;Kaizzi et al., 2013;Prause et al., 2021). The concept of site-specific nutrient management integrates information from different scales to assist field-specific decisions (Chivenge et al., 2022;Pampolino et al., 2012). The greater success of SSNM-DST over farmers' fertilizer practices (FFP) is measured through improved yields (Bhatta et al., 2020;Chuan et al., 2013;Jansen et al., 2013;Pampolino et al., 2012;Rurinda et al., 2020;Saito et al., 2015;Xu et al., 2016), higher returns (Bhatta et al., 2020;Jansen et al., 2013;Pampolino et al., 2012;Saito et al., 2015;Zhang et al., 2018), and better environmental quality (Wang et al., 2020;Zhang et al., 2018) as a result of tailored advice provided by the tools. In Africa alone, nearly 400 different digital agriculture solutions have been on the market (World Bank Group, 2019). Nonetheless, the solutions reached only 6 % of an estimated €2.3 billion potential advisory market in the continent (Tsan et al., 2019).Uptake of SSNM-DST at scale in smallholder farming systems has been limited (Shepherd et al., 2020) despite claims of its numerous cobenefits (Chivenge et al., 2021) and in contrast to the fast rate of expansion of digital technologies in other sectors (Bhavnani et al., 2016;Goggin, 2006;Kaur et al., 2021;Mallat et al., 2004;Topol, 2019). One explanation could be the absence of combined efforts among technology developers, agronomists, socio-economists, behavior experts, tool designers, political economy experts, as well as the lack of involvement of scaling partners as has been found to be the case in other sectors (Woltering et al., 2019). Often times, algorithm developers in SSNM-DST do not have the required data and computational tools needed to convert intricate soil and plant geospatial information into appropriate crop management actions (Capalbo et al., 2018). Consequently, the SSNM-DST appear to suffer from incomplete understanding and misuse by end users, mainly agronomists and extension workers (Andersson et al., 2020), leading to limited chances for adoption at scale (Ayim et al., 2022). Furthermore, SSNM-DST are piloted in controlled project environmentsi.e., in trials, evaluations or pilotsthat do not reflect the realities of smallholders (Woltering et al., 2019). Another mentionable limitation is that SSNM-DST already on the market have been calibrated under data-scarce settings (Shepherd et al., 2020). There have been complaints about the tools being rigid and knowledge intensive (Andersson et al., 2020), making them difficult to be adapted to smallholder conditions. Most tools lack utilities that allow inclusion of site-specific soil and agronomic information while generating advice. Yet, they have been massively promoted in many countries of Sub-Saharan Africa (SSA), South Asia and Southeast Asia, although the level of adoption at scale for these tools has not been well documented.'Blanket' fertilizer advisories remain the main approach of choice in many places (Tefera et al., 2020), regardless of the large inter-and intraplot heterogeneities inherent in smallholder fields (Sida et al., 2021), underscoring the importance of site-specific approaches. Such systems suffer from low fertilizer use efficiency, low factor productivity and persistent food insecurity (Aleminew and Alemayehu, 2020). Digital agriculture has been established rapidly in large-scale, capital intensive agriculture (Kelley et al., 2020;Lindblom et al., 2017;Tang et al., 2002), although the drivers of adoption have not been firmly established, even in those systems (Nowak, 2021;Tey and Brindal, 2022). Although not at a similar rate to developed economies (DeGusta, 2012), accessibility of digital technology is destined to improve in developing countries (DeGusta, 2012;Duncombe, 2016). The recent explosion of mobile phone technologies and smallholders' relative ease of access to smartphone-based applications offer an opportunity to advance digital agronomy in smallholder systems. Nonetheless, drivers of (non)adoption, especially at the regional level, have never been explored.The current work aims to explore the level of scaling of SSNM-DST within smallholder farming systems, where we define \"scaling\" as a significant increase in tool usage beyond pilot levels. We aim to highlight why these tools have failed to be used at scale, regardless of their potential benefits. We combine survey and meta-analysis hybrid methods and seek to answer the following questions regarding the application of digital site-specific nutrient management decisionsupport tools.(1) How prominent are digital advisory tools for site-specific nutrient management and what is their current level of adoption in smallholder farming systems? (2) What are the main drivers of (non)adoption of site-specific nutrient management decision support tools under smallholder contexts?We made an inventory of site-specific nutrient management decision support tools (SSNM-DST) that are available (or under development) within the context of smallholder farming. We conducted two rounds of systematic literature search.In the first round, we searched major academic search engines Google Scholar, Scopus and ISI Web of Science for documents that reported about site-specific nutrient management decision support tools, using the search strings [\"decision support tool*\" AND \"site-specific nutrient management\"]. We limited our search to the period from to 2020. We focused on this period because the concept of site-specific nutrient management started to emerge in the 1990's (Dobermann and White, 1999;Reetz and Fixen, 1995) and use of decision support tools emerged slightly later (Betteridge, 2006). The literature turnout corroborates our assumption, as it shows that trials exploring SSNM-DST started to emerge in the late 1990's and publication of their results started to emerge since the early 2000's. It is important to note that we focused only on peer-reviewed literature, excluding any gray literature on this topic. This is because we were interested in only including manuscripts with robust study designs and that had passed through a rigorous revision process. However, we acknowledge that such parsimonious selections may downwardly bias the number of studies included in our analysis and potentially upwardly bias the types of studies that reject the null hypothesis, which arises from selective publication of positive results. The latter scenario is in line with our objectives since we are interested in understanding the challenges of scaling SSNM-DST, even when they are proven to be profitable (i.e., resulting in positive outcomes). The search at this round returned papers in total, reporting on the results of seven SSNM-DST (Table 1).In round two, we read the abstracts and scanned through each paper to identify the exact name of the SSNM-DST as compiled in Table 1. We then used these names as search terms to undertake more rounds of literature revision. We followed this stage to avoid any potential bias that may have occurred if we only selected studies that included the SSNM-DST by its name (e.g., Nutrient Expert) without explicitly mentioning the search terms 'site-specific nutrient management' or 'decision support tool' used in the earlier round. The tool-based searches identified 1257 documents. It is apparent that some SSNM-DST may not have been fully captured using the initial search. We merged this with results from the previous search, retaining a total of 1556 documents for further screening (Fig. 1). We removed duplicates and documented the papers for further screening using pre-set exclusion criteria. Following the screening workflow summarized in Fig. 1, we first screened the titles and the abstracts of the documents and excluded: (1) documents that were not dealing with any form of decision support system in soil nutrient management and (2) documents that discussed decision support tools, but that were not applied to smallholder systems. We retained 445 documents based on these criteria. Second, we explored the full texts of the retained documents and excluded irrelevant literature. The criteria for eligibility were: (1) the tool served farmers or service providers to assist in soil fertility management; (2) The developer clearly stated that the tool was for site-specific nutrient advisory purposes; (3) the tool serves to either optimize nutrient use efficiency or economic benefits from mineral and organic fertilizers; (4) The tool has been applied at least at performance trial levels; and (5) The study clearly compared the benefit of using SSNM-DST with Farmer Fertilizer Practices that are commonly recommended for the region of interest (FFP). Under conditions where both FFP and local recommendations were included in the studies, we selected the FFP for our analysis. We excluded studies where agronomic management or factors other than nutrient management differed between FFP and SSNM-DST plots. A total of 70 documents with 442 entries were included in our study. We summarize the details of the literature included for analysis in Table S1 (https://doi.org/10.7910/DVN/GRYA0U) and the stages in Table S2 (https://doi.org/10.7910/DVN/I7U8YY).We collected a variety of variables from the studies listed in Table S1, including details about the study location, measurement parameters, and study design. Additionally, we included information about the specific crops grown and the SSNM-DST utilized for soil nutrient management. Measured outcomes such as yield, nutrient use efficiency, and environmental impacts resulting from the tool application were quantified, along with corresponding values reported for FFP. When studies involved multiple treatment levels, locations, and SSNM-DST variations for a particular trial, we recorded data separately for all tools, crops, and sites. In cases where results were not presented in tabular form and were challenging to extract directly, we utilized the metaDigitise package in R to extract values from graph-based summary reports (Pick et al., 2019).In addition to measured values, we compiled data on potential covariates for the experimental plots, encompassing environmental factors (e.g., region, rainfall, temperature regime, soil properties), management practices (e.g., current and past crops, tillage methods), and input variables (such as the type and application rate of fertilizer, fertilizer cost).We acknowledge that identifying the exact stage and level of adoption for a technology is challenging. Consequently, we emphasize that our survey results reflect the views of tool developers, which may not always align with perspectives expressed by tool users. To appraise the current stage of adoption for the tools in Table 1, we compiled the email addresses of corresponding authors and co-authors from the literature identified in Table S1. Additionally, we created mailing lists of institutions, national systems, consortiums, and individuals working with the identified SSNM-DST.We then sent a questionnaire with customized messages to each stakeholder, addressing various aspects of the SSNM-DST, such as its type, application location, proportion of target farmers currently using the tool, uptake by the national extension system and/or the private sector, stage of adoption within the target region, and potential drivers for adoption trends. Approximately 414 customized emails were circulated (exact receiver count unknown due to inclusion of specialist group mailing lists with unidentified list sizes). Following three months of open survey with monthly reminders, we received 81 responses, which were used for analysis. While the response rate was approximately 20%, the survey results remain informative since the respondents were specialists on SSNM-DST. The number of experts per tool ranged from six (RiceAdvice) to 21 (NE), with an average response rate of 16 per tool.To analyze the adoption levels of SSNM-DST among various stakeholders, we employed multinomial logistic regression. We derived the dependent and independent variables for tool adoption from survey responses. The dependent variable in this study represents three adoption categories for farmers: <5% coverage (considered as no adoption, also used as the baseline), 5-10% adoption, and more than 10% adoption. Similarly, three adoption categories were defined for both national extension and private business systems: no adoption, partial adoption, and full adoption. Since all variables are categorical, we applied multinomial logistic regression (MNL) to model them. The variables identified as drivers of adoption level for all stakeholder groups (farmers, extension, and business) were classified into four categories: technical, socioeconomic, policy, and R&D. Technical variables encompassed aspects such as tool complexity, time requirement, required education level, and data needs. Socioeconomic variables included factors like phone access, telecom network coverage, farmer behavior, and extension-to-farmer ratio. Policy variables pertained to government strategy, extension services, advocacy level, and capacity building activities. R&D variables focused on proper calibration, tool consistency, stability, scaling readiness testing, and scaling approach.To estimate the multinomial logistic regression model, we employed the 'multinom' function from the 'nnet' package in R (Ripley et al., 2016). We fitted separate regressions for each stakeholder category using the logistic regression of the form presented in Eq. ( 1). The regression outcome facilitated the identification of the specific contributions of technical, socioeconomic, business model, and policy aspects in constraining the tool's adoption at scale.where, P(χ o )is the probability of choosing the baseline (non-adoption) category, P(χ i ) is the i th probability of choosing an outcome category other than the baseline category, τ i , ϕ i , ρ i , and ψ i are the i th responses in the outcome categories for technical, socioeconomic, policy and R&D variables, respectively, β 0 is the constant term of the regression, β 1 , β 2, β 3 andβ 4 are regression coefficients for the respective variables in the outcome category and ε i is the error term of the regression.We used the probability level of 0.05 to assess the significance of each effect size in the model, unless otherwise stated.Proportions of negative, neutral and positive yield, economic and environmental effects of using a SSNM-DST over the FFP were computed using Eq. ( 2).where δY i denotes the relative change in effect for the i th SSNM-DST, Y i(SSNM− DST) is the yield, economic and environmental values reported under the i th SSNM-DST, and Y i(FFP) is the value of these effects reported for a corresponding FFP. To assess the economic impact, we employed the marginal rate of return (MRR) on fertilizer investment. We evaluated the environmental impact by determining the partial factor productivity (PFP) of nitrogen fertilizer, which measures kilogram of grain yield obtained per kilogram of applied nitrogen. We considered lower values of grain yield per kilogram of nitrogen as a proxy for negative environmental effects. We categorized the values of δY i as negative, neutral, or positive. Relative change values between − 5% and 5% from the corresponding FFP values were labeled as neutral. Values below − 5% were considered negative, and values above 5% were considered positive. For the PFP of nitrogen fertilizer, we used a reversed rating where values lower than − 5% were considered positive, indicating a reduction in negative environmental consequences. Using this approach, we summarized the proportions of negative, neutral, and positive relative changes for each analyzed SSNM-DST in this study.In addition to exploring the drivers of adoption (or lack thereof) through the survey questionnaire, we hypothesize that variables aggregated from the meta-analysis results can reveal some drivers of scaling. Therefore, we utilized a random-effect model to determine the impact of using the tool-assisted strategy on crop yield under SSNM-DST compared with FFP. We calculated the effect size as the natural log of the response ratio (RR) between the two yields (Hedges et al., 1999), representing the effects of using the tools over FFP Eq. (3).where RR is the response ratio, Y T and Y F the crop yield, using SSNM-DST tools and FFP, respectively. A meta-regression was conducted modeling the RR as the dependent variable. The effect of using SSNM-DST in soil nutrient management was explored by controlling for all the other covariates relating to the experimental environment (e.g., region, rainfall, temperature regime, soil properties), management (e.g., current crop and past crops, tillage practices) and inputs (type and rate of fertilizer applied, cost of fertilizer). Due to inevitable experimental heterogeneity, we combined data using a random-effects model applied to sub-grouped covariates and conducted subgroup analyses to unravel the confounding effects of experimental environment, management, input and geographic features on the effect size of the response ratio. We identified the most important covariates using the AIC forward elimination using the 'olsrr' package in R (Hebbali and Hebbali, 2017) and performed meta-analysis using the 'metareg' function of the 'meta' package in R (Schwarzer, 2007) with the selected covariates. We conducted meta-regression analysis following the general model outlined in Eq. ( 4).where θi is the effect size of study i, θ is the fixed term and χ i is a vector of predictors (covariates) with β being a vector of regression coefficients.Unlike the conventional random-effects-model, the meta regression has two error terms (i.e., ε i and ω i ), where ε i is the sampling error through which the effect size of a study deviates from its true effect and ω i is the true effect size of the study that is only sampled from an overarching distribution of effect sizes.In addition, the size of the response ratio as a function of crop yield under FFP was assessed and visualized using quantile regression fitted to the 90th percentile of the pooled data with the 'rq' function of the 'quantreg' package in R (Koenker et al., 2018). The relationship was assumed to take a logistic functional form (y = a -b × x + c × 0.90 x ), where y refers to the natural log of RR, x to the yield under FFP and a, b and c to the instantaneous slopes (first degree derivatives) of the quantile regression curves.The popularity of SSNM-DST has been consistently increasing over the past 20 years, as shown by the growing number of experiments involving these tools (see Fig. 2). However, there has been a clear shift in the focus towards specific types of tools. Until the early 2010s, the dominant tools were Soil Plant Analysis Development (SPAD), Leaf Color Chart (LCC), and Generic tools. These tools were gadgets that helped make on-site decisions based on crop characteristics but were not fully developed into digital applications. Nutrient Expert (NE) appears to be the first tool to apply app-based advisory for site-specific nutrient management, and it became the most popular among SSNM-DST starting from the late 2000s. Other app-based tools like Fertilizer Optimization Tool (FOT), RiceAdvice, and Rice Crop Manager (RCM) emerged in the early to mid 2010s. Currently, the app-based tools are gaining popularity, while the earlier gadget-based tools are declining.Although the majority of the SSNM-DST have positive to neutral effects, there are some negative effects when comparing their application to traditional FFP. In terms of yield, the overall negative effect is only about 5%, with the biggest proportion of negative effect found in SPAD (15%). When considering the economic effect, measured by the marginal rate of return on investment, RiceAdvice shows the largest negative effect at around 14%. Overall, the negative effect for this indicator stands at 3.2%. SSNM-DST generally have few negative effects on environmental outcomes, with an overall negative effect of about 18% and overall positive environmental outcomes of over 70%. RCM has the largest negative environmental consequence, with 50% of the advisory incidences resulting in lower grain yield per kilogram of applied nitrogen (Table 2).Trends in the number of trials with digital SSNM-DST. For the explanation of the abbreviations, refer to Table 1.Proportion of negative, neutral and positive yield, economic and environmental effects for each of the SSNM-DST included in the current analysis. For every effect (yield, economic and environmental), values between − 5 disadvantage and 5 % advantage of using SSNM-DST over FFP were considered neutral, values that are more disadvantageous than − 5 % were considered negative and values with advantages of more than 5 % were considered positive. Economic effects were derived form marginal rate of return on investment for fertilizer, while environmental effects were derived from PFP of N fertilizer. The full description of the outcome variables is presented in Table S1 * Note: Fore the environmental effect, we used kg of Nitrogen from fertilizer per kg of grain produced under the corresponding advisory, also called PFP of Nitrogen; less kg of grain for more kg of N assumed to serve as a proxy for negative environmental effects.Fig. 3. The reported level of adoption for each of the identified SSNM-DS tools by farmers (a), national extension system (b) and the private business (c). For the explanation of the abbreviations of the tools, refer to Table 1.Despite growing interest and an expanding range of tools available (Fig. 2), the adoption of SSNM-DST has been limited (Fig. 3). There is variation in adoption levels among different tools and intended stakeholders. The most commonly adopted tools among farmers, such as generic tools, NE, and RiceAdvice, reached a maximum of only 20-30% of the target farmers (Fig. 3 a). However, <20% of respondents reported this adoption rate. Additionally, around 25% of responses indicated significantly poor adoption levels, with the tools reaching barely 1% of the target population. FOT had the lowest adoption rate, with nearly half of the respondents stating that it reached <1% of the target population.The adoption levels of SSNM-DST by national extension systems (Fig. 3 b) and private businesses (Fig. 3 c) were even lower. RiceAdvice and generic tools were adopted or partially adopted by national extension systems approximately 65% of the time (Fig. 3 b). For the other tools, there was no evidence of adoption by national extension systems in over 75% of the cases (Fig. 3 b). NE was reported to be partially adopted by the extension system in about one-third of the cases. The uptake by private businesses was mostly non-existent for most tools (Fig. 3 c). Only two SSNM-DST (NE at 5% and generic at 20%) were reported to be taken up by the business system. Partial uptake of NE, FOT, and generic tools was indicated about 30% of the time, while partial uptake of RCM by private businesses was reported in about 10% of the cases. RiceAdvice, SPAD, and LCC were completely disregarded by the private system.Attempts to apply SSNM-DST at scale in smallholder systems posed different challenges across stakeholders (Table 3). When a technical problem was cited as the cause of the tools' failure to be used at scale (Table 3 panel I), the likelihood of at least 5% of target farmers adopting SSNM-DST was significantly low. Likewise, reporting a technical problem as a reason for the tools' failure to be used at scale resulted in a 177% decrease in the probability of SSNM-DST reaching more than 10% of the target farmers, compared to reaching none.The chances of the national extension system partially picking up a SSNM-DST decrease significantly when technical, policy, and R&D reasons are cited as the reasons for their lack of adoption (Table 3, panel II). Similarly, the likelihood of the extension system fully embracing the SSNM-DST compared to not adopting it at all decreases significantly when socioeconomic issues are mentioned as a factor hindering widespread tool adoption. Lastly, when technical problems are highlighted as the reason for poor tool adoption at scale, the likelihood of the private business system fully adopting the SSNM-DST compared to its failure to adopt it decreases significantly.Fig. 4 presents the results of quantile regression applied to the natural log of the response ratio (RR) for grain yield (Fig. 4 a) and net marginal returns on fertilizer (Fig. 4 b) across different crops and regions under FFP. The RR tends to be lower when crop yield is high under FFP (Fig. 4 a), indicating that SSNM-DST is more beneficial for farmers with lower yields under their own practices. Both regression lines, one fitted to the data and another to the top 10% of data points, show an exponential decline in RR as the grain yield produced under farmers' own practices increases. For maize, the decline in RR is gradual for lowyielding farmers and steep for high-yielding ones. For rice and wheat, the decline in RR with increasing FFP yield is very steep from the beginning.In Fig. 4 b, we observe that the impact of an increase in RR on net marginal returns (NMR) on fertilizer under SSNM practice varies depending on the crop and is mostly negative. For maize, an increase in RR leads to a linear decrease in NMR, which is surprising as we wouldGeneralized logistic regression model results from the online survey data set. Dependent variables varied with the type of stakeholder (farmer, extension, and business). The question is whether a suggested reason is responsible for lack of uptake with baselines of uptake rate lower than 5% for farmers, no involvement at all for national extension and business systems. Values in the parentheses are the standard errors. usually expect returns to increase with higher response ratios. The trends for rice show no effect on NMR with increasing RR, and for wheat, the trends differ for low, medium, and high RR.The results of a meta-regression analysis in Table 4 (Multiple R 2 = 0.80, Adj. R 2 = 0.77, F-statistic: 46.2 on 31 and 350 DF, p-value < 2.2e− 16) indicate that the response ratio of using SSNM-DST over FFP is influenced by various non-tool related factors. These factors include crop yield under FFP, current and past crop types, soil acidity class, temperature and rainfall regimes, and the amount of input under FFP. For example, fields with higher yields under FFP tend to generate smaller RR when managed using SSNM-DST. A 15% increase in grain yield under FFP results in a statistically significant decline in RR when using SSNM-DST. The odds of a significant increase in the response ratio are approximately 1.5 times higher for maize, rice, and wheat compared to other crops when SSNM-DST is applied.The response ratio is significantly more likely to be higher when SSNM-DST is applied on highly acidic soils, with a 30% increase in RR for such conditions. On the other hand, response ratios are likely to decrease significantly when the tools are applied on slightly alkaline soils. Application of SSNM-DST is also more likely to significantly increase the response ratio under drier conditions (arid and semi-arid) compared to wetter conditions, with odds ratios of 16% and 9%, respectively, for arid and semi-arid conditions. However, the use of SSNM-DST on fields with a legume as the preceding crop significantly reduces the response ratio. The odds that the RR declines significantly under such conditions is 21 %.Interestingly, the application of higher rates of P fertilizer under FFP was found to increase the response ratio of using SSNM-DST significantly. Conversely, an increase of 1% in N fertilizer on FFP was found to reduce the response rate, which is expected as higher rates of fertilizer usually lead to increased yields under FFP, resulting in a reduced RR.In the 21st century, the widespread dominance of digital decisionsupport tools has significantly shaped various sectors across regions. In particular, we have observed a consistent increase in the development and promotion of digital and semi-digital tools in smallholder farming systems over the past three decades (Fig. 2). Previously, attempts were made to address the site-specificity of nutrient advisories through on-site diagnostics of plant characteristics (Thind and Gupta, 2010). It is important to note that soil heterogeneity, resulting from physical, chemical, and biological soil conditions, typically occurs at coarser scales (Goovaerts, 1998), although the applicability of such approaches beyond research settings has been contested due to documented soil heterogeneity over small spatial scales (Schut and Giller, 2020).With the prevalence of mobile phones even in smallholder farming settings (CABI, 2019), digital tools based on PC, web, and app platforms began to emerge in the site-specific nutrient management advisory domain. This development initially took place in south Asia and southeast Asia (Chuan et al., 2013;Pampolino et al., 2012;Pooniya et al., 2015) and later expanding to SSA (Rurinda et al., 2020;Saito et al., 2015). These digital apps rely on observed field-specific variables, plot management history, and available inputs, which serve as proxies for soil fertility or nutrient responses. These factors play a crucial role in defining the application of these digital tools. Additionally, climate/ weather information is an essential element in determining site specificity. Notably, only NE, the most popular SSNM-DST, employs climate information in generalized terms, while the other tools do not utilize such data (Fig. 2 and Table 1). It is worth mentioning that certain apps, such as FOT, make site-specific fertilizer use recommendations based on the concept of economic optimization, focusing on better resource allocation, rather than nutrient optimization for improved agronomic use efficiency.Regardless of the increasing prevalence of SSNM-DST both in type and number (Fig. 2), the dominance of positive yields (Chivenge et al., 2021) and dominantly positive economic and environmental outcomes from application of the tools (Table 2), these tools have not been widely adopted (Fig. 3). The highest reported uptake of SSNM-DST by a target farmer community ranged between 20 % and 30 % (Fig. 3 a), and this was limited to just two advisory tools: NE and RCM. Similar findings were reflected in previous reports where the most adopted SSNM-DST, RCM, provided advise to about 30 % of the target farmers in the Philippines (Chivenge et al., 2021). Most of the expert respondents (65 %) estimated that the reach of these tools was either unknown or reached <5% of the target farming community. Despite minor variations among specific SSNM-DST, the overall scale of adoption has been low, with 54% of respondents indicating that these tools reached <1% of the target population of farmers (Fig. 3). Uptake of SSNM-DST has been minimal both for the private sector and government extension systems, suggesting a lack of interest from key stakeholders involved in scaling these technologies. Only 5-6 % of the experts reported full adoption of SSNM-DST by the private sector and government extension systems, while a substantial majority (72 -76 %) stated that these nutrient management advisory tools have not been integrated into either the private business or government extension systems. Some experts reported partial uptake of these tools by these systems, but overall, the adoption rates for SSNM-DST are remarkably low compared to other digital technologies used by smallholders (Asravor et al., 2021) or similar digital decision support tools in large-scale agriculture (Kelley et al., 2020).One of the main goals of this study was to investigate the factorsResults of meta regression from modelling the effect of selected covariates on the magnitude of the response ratio on a logarithmic scale. Probabilities with significant effects are presented in bold. ε i is the sampling error through which the effect size of a study deviates from its true effect, while ω i is the true effect size of the study that is only sampled from an overarching distribution of effect sizes. influencing scaling in SSNM-DST. The survey of experts revealed that technical issues related to the tools were significant constraints for scaling these tools (Table 3), indicating that the tools are not technically ready for large-scale implementation. As shown in Table 3, technical, socio-economic, and policy constraints have varying effects on different groups within the user-chain of SSNM-DST. Technical challenges were found to be the most limiting factor for farmers and private businesses in adopting SSNM-DST at scale. The lack of involvement from private businesses in SSNM advisory tools suggests that these tools will struggle to reach scale through purely commercial means. Therefore, active public support is necessary as an initial prerequisite for these tools to establish themselves in smallholder systems. Despite the importance of public support for scaling SSNM-DST, our results highlight that the constraints to scale these tools are even more widespread for national extension systems (Table 3). Typically, only extension workers have access to the tools to generate recommendations. Given that extension workers need to cover numerous farmers and fields each season, this poses additional challenges for the widespread adoption of SSNM-DST (Andersson et al., 2020). Our findings align with previous studies that have identified various barriers hindering the large-scale implementation of digital decision support tools in the smallholder context. These barriers include tools being too complex to use (Coggins et al., 2022), low levels of literacy and lack of skills (Chandra and Collis, 2021), limited access to smartphones or other electronic devices (Capalbo et al., 2018), inadequate assimilation of timely and relevant agronomic information (CABI, 2019) and poor integration with financial and input supply services (Vorotnikov et al., 2020). These findings suggest that SSNM-DST have been designed, developed, and deployed without adequately considering the needs and contexts of end users, primarily impoverished rural farming households, in terms of adoption and optimal implementation. It can be argued that these tools are still in their early stages of development and have the potential to mature in the future (Altunok and Cakmak, 2010). However, for such optimistic possibilities to become a reality, the demonstration, implementation, and promotion of these advisory tools should extend beyond experimental sites and selected 'client' farmers, as well as beyond project implementation periods. Complementing our results from the expert survey, detailed metanalysis of reported benefits of SSNM-DST (Table 4) reveal that non-tool-related covariates also determine the magnitude of response ratios. These differential responses arising from uncontrolled field, management, and environmental variations may contribute to the limited adoption of SSNM-DST.The results presented in Fig. 4 demonstrate that the yield advantages claimed for the use of SSNM-DST were not consistent across fields with varying initial productivity potentials. While the average yields may improve with the use of these tools, individual farmers experienced mixed results. Specifically, low-producing farmers benefited more from the tools compared to those who already had higher yields through their existing practices (Fig. 4 a). There could be several reasons for these findings. Firstly, low-producing farmers may have been using suboptimal fertilizer and field management techniques, which the tools help address. In such cases, adopting the tools can lead to significant improvements in both yields and returns. Secondly, high-yielding farmers may already be employing optimal fertilizer rates and effective field management practices, reducing the potential for further gains through the advice provided by the tools. Thirdly, farmers may tend to apply excessive fertilizer rates as a precautionary measure to mitigate the risk of crop losses when expecting high yields. These factors highlight that developing the tool in a site-specific manner alone may not be sufficient for widespread adoption among farmers with varying initial production potentials. Andersson et al. (2020) propose considering an 'investment-based' advisory approach to address such heterogeneities.This could create a situation where high-producing farmers, who gain relatively less from the advice, are less inclined to adopt SSNM-DST. On the other hand, low-producing farmers, who stand to benefit the most, may be constrained by limited resources, reducing their capacity to adopt the tool. This suggests that the farmers who would benefit the most from the advice are least likely to implement the tools due to resource constraints, while those who are more resourceendowed are less likely to adopt them as they stand to gain less from the advisories. Therefore, the context-specificity of SSNM-DST becomes essential in addition to their site-specificity. Advice provision should target farmers and fields based on their production potential, emphasizing the need for SSNM-DST to provide options rather than rigid, onesize-fits-all advice. Balancing the trade-off between resource constraints and the necessity of tool-assisted advice is crucial, at least, until the tools are scaled across the majority of the system.Moreover, SSNM-DST predominantly focuses on tailoring advice to heterogeneous biophysical conditions while neglecting heterogeneities among users. This can potentially leave out the poor and vulnerable farmers living in marginal places, and women farmers, reminiscent of the pitfalls in traditional extension systems (Fabregas et al., 2019). This can also raise the question of \"advice for whom?\" If the advice is primarily intended for extension agents who then convey it to smallholder farmers, we encounter the issue of limited coverage. In many countries where smallholder farming is predominant, the ratio of farmers to extension agents is already high (Davis et al., 2010). Under such circumstances, the use of SSNM-DST becomes more challenging as it stretches the already overburdened extension workers with the task of generating and providing site-specific advisory services. Multiple sitespecific advice is required even for a single farm, further hindering the possibility of scaling up these tools. In essence, the SSNM-DST have moved one step ahead compared with the traditional 'blanket' fertilizer recommendation by attuning to in-field heterogeneities in soil and crop characteristics, while remaining 'blanket' in terms of addressing demographic and socioeconomic heterogeneities among users, which potentially thwart adoption of the tools at scale.Although this work tries to explore the potential and challenges in scaling SSNM-DST, some limitations were inevitable. First, the performance of the SSNM-DST appraised here were taken from the claims reported mainly from tool developers. We did not perform any independent performance analysis. This itself was only done from the user perspective. Second, detailed technical appraisal requires exclusive access to the algorithms behind the tools, which is lacking under the current appraisal. Third, given the heterogeneities in the principles behind each of the tools, specific constraints will also vary. The current analysis focuses on aggregate level constraints, with less emphasis on tool-dependent constraints of scaling. Fourth, we could not include the experiences and viewpoints of stakeholders (e.g., extension, policy makers) who have been implementing these tools because of logistics and practical issues. Fifth, the current appraisal could not allow for caseby-case and country-specific variables potentially constraining the scaling of the SSNM-DST, although Jacobs et al. (2018) identify the majority of the bottlenecks in technology scaling to be institutional by nature. This is important because scaling of SSNM-DST can be constrained by enabling environments (i.e., in addition to technical issues), which are highly influenced by country/regional institutional and governance setups. Future appraisals that include those institutional, socio-economic and governance aspects may improve our outlooks.We have utilized a survey-meta-analysis hybrid methodology and systematically appraised the extent of and challenges to scaling decision support tools used for site-specific soil nutrient management in smallholder farming systems. Numerous such tools have been under promotion, and their application has been consistently rising, which is encouraging evidence that the concept of tool-assisted site-specific nutrient management has moved a long way from concept to practice. There is indication that SSNM-DST can improve crop productivity and economic return in smallholder production systems, although the scalability of these tools still needs extensive improvement. Application of these tools has been limited to 'project life cycles' mainly on experimental stations of research institutions and on farms of select 'client' smallholder farmers.This appraisal has clearly revealed that practical issues, including tool complexity and heterogeneous benefits across users, are important tool-and non-tool-related variables with the potential of limiting scalability. While addressing these challenges can improve the potential scalability of SSNM-DST, future appraisals that include institutional, socio-economic, and governance aspects are needed to fully understand and address their current low scalability.Capabilities that enable the tools to store data from previous advice and link it to subsequent advice, which are lacking in all tools appraised in the current work, can gradually enable the tools to serve as a source of data for the next advice. Although some of the tools (such as NE) can store data, the data are stored in formats that are not accessible by the tool during successive decisions. Such capabilities, where information flow becomes multidirectional between farmers and advice providers, assist easy knowledge exchange, documentation, and feedback. These data could be used for other purposes, especially if they could be stored on cloud-based servers where tool developers and other stakeholders can access them. Additionally, capabilities that allow access to legacy big data sources (such as soil maps, slope, climate, and land use maps) that could potentially be used to make decisions site-specific, are also lacking.While our appraisal primarily focuses on the benefits of SSNM-DST for higher crop yields and greater economic returns, it is important to note that profitability can be improved even with lower yields if the overall profit is higher. Producers may prioritize profitability over higher yields and, therefore, it is essential to consider this aspect in assessing the success and desirability of decision support tools. In addition, our study also underscores the importance of addressing technical challenges, securing public support, and considering the specific needs and contexts of end users in order to successfully scale SSNM-DST. Additionally, the impact of non-tool-related factors on the adoption of these tools should be considered. This holistic approach will provide a comprehensive understanding of the impact and effectiveness of site-specific nutrient management tools in supporting sustainable agricultural practices and improving the livelihoods of smallholder farmers. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.","tokenCount":"7220"} \ No newline at end of file diff --git a/data/part_3/7159580299.json b/data/part_3/7159580299.json new file mode 100644 index 0000000000000000000000000000000000000000..571ae8e442fdac0990b33b4b1890fd665c6afe2d --- /dev/null +++ b/data/part_3/7159580299.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"cf3e24a3e4d20ebc41d272fc71cf3c44","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/1778d9b2-089e-4c8f-9e10-d9fdac66b185/retrieve","id":"238659412"},"keywords":[],"sieverID":"5468ccb6-759c-4e42-87d8-61f5e3f5fea5","pagecount":"4","content":"Almost all cattle raised in Cambodia are produced by small-scale farmers in rural areas. Smallscale farmers commonly use native grasses and crop residues as feed for their animals. Feed resources for cattle have become a constraint as the cattle population and area cultivated with crops have increased; this has resulted in low animal productivity. Suggested alternative: nutrition has been identified as the single most important constraint to cattle production in Cambodia. Increasing demand for red meat has meant that cattle production represents an important opportunity for Cambodian farmers. This study reports a survey which was conducted to identify constraints to cattle production of small-scale farmers in Cambodia. 60 randomly selected households raising cattle in Kang Meas and Tbong Khmum districts in Kampong Cham province were interviewed in late 2008. Most (80 to 90%) household income was derived from the farm (only 10 to 20% of income was from off-farm sources). Cattle production represented 20% of farm income, on average. The mean number of cattle per household was 5. Overall cattle production was assessed as very low, with average inter-calving interval estimated at 18.6 months and mean growth rates of nonlactating animals at less than 100 g/d. Farmers reported that cattle were mainly used for draught, breeding and selling. This is a significant shift from the traditional approach of using cattle for draught and breeding only, indicating that farmers were responding to market demands. Farmers rated feed availability as the most important constraint to cattle production, followed by diseases. In the survey villages cattle production was severely constrained by the lack of feed resources which caused low animal productivity. Providing locally available feed (natural grasses and crop residues) for cattle is a major challenge for farmers, requiring high labour inputs. Planting alternative feeds such as forage grasses is an attractive opportunity for small-scale farmers to improve their cattle production.In Cambodia, livestock plays an important role in poverty reduction in rural areas as approximately 90% of all livestock is produced by small-scale farmers. Cattle are the most important sources of draft and transport in the fields as well as the manure for the low input farming system and income to the household when selling mature offspring. Nearly all cattle are produced by smallholder farmers in rural areas using native grass and crop residue as the common feed for their animal. This habit is becoming a constraint for them when the number of animals and cultivated area is increased as this result in a shortage of feed resources (Stür andHorne, 1999 and2001). Nutrition has been identified the most single problem to reduce the productivity of cattle in smallholder system. Kampong Cham province accounts for 13% of cattle population of Cambodia and has the great potential for cattle development with small-scale farmers. In 2003, the use of forage fodder banks was introduced by CIAT through the Livelihood and Livestock Systems Project in this province. Research to increase cattle productivity of small-holder farmers in Cambodia, is carried out by the project \"Improved Feeding Systems for More Efficient Beef Cattle Production in Cambodia\" (Forage for Beef project) which is funded by the Australian Center for International Agriculture Research from 2008 to 2011 (ACIAR, 2008).This study is a part of the current project with the aim to identify the constraints to cattle production of small-scale farmers in Kampong Cham province. The results of this study will be used to provide a comparison for later impact assessment.Two districts of Kampong Cham province were selected as the research sites for this study: Kang Meas and Tbong Khmum. Thmey Kor village located in Roka Koy commune in Kang Meas district was chosen as research site 1 and Chroy Ko village located in Chiro Pi commune in Tbong Khmum district as research site 2. A list of all households in each survey site has been assembled with the help of the chief of village, showing which households raise cattle and which households have already planted forages. 60 farmers were randomly selected from the list (30 from each village) to be interviewed using semi-structured questionnaires in late 2008.The findings show that more land was available for the farmers in Tbong Khmum district to be owned than the farmers in Kang Meas district. As shown in Table 1, the farmers in Tbong Khmum had on average 2.9 ha of land per household while the farmers in Kang Meas owned only 1.06 ha (P = 0.001). The land is an important resource of the farmers to invest the agriculture in their household. The annual income of the farmers was 1912 and 3296 USD in Kang Meas and Chroy Ko respectively (significantly different at P = 0.008). Most of the household income (more than 80%) of farmers was derived from farm activities. Cattle production represented almost 20% of the household income. The cattle production of small-holder farmers was not found to be different in these two districts (Table 2). The mean number of cattle per household was 4.3 and 5.3 heads in Kang Meas and Tbong Khmum respectively. Many farmers kept not only male cattle, but also 1-3 heads of female cattle per household. Most of cattle were kept as breeding animal, especially female cattle, to produce the calf for selling (Figure 1). Besides this purpose, cattle were also used for draft power and being sold to market. More farmers in Kang Meas used their cattle for draft power while more farmers in Tbong Khmum kept their cattle for sale.Overall, the reproductive performance of cattle was very low in terms of age at first pregnancy and calving interval (Table 2). The heifers of small-holder farmers in the studied villages started the first calving at 3 years of age. Then the average calving interval of the cows was approximately 18.6 months. The reproductive performance is an important trait in cattle production. The farmers in the studied sites rated the lack of feed and disease as the most constraints to cattle production. The lack of feeds occurred almost all year long as the grasses stopped growing in dry season and the land was become cultivated area in rainy season. Moreover, in some area as the case of Kang Meas, most of area was flooded during flooding season which limited the grazing land for animal. As a result, feeding cattle required high labor input, more than 6 hours per day per household on average. As shown in Table 3, member of household including children spent on average 4.5 hours per day far from home for grazing their cattle which was almost available in dry season. During the time which native grasses were available, especially in rainy season, farmers spent on average 2.5 hours per day to collect those native from the field. For farmers who planted forage around or near their house, they spent less than 0.5 hours to cut and carry those forage for their cattle. Besides theses activities, farmers also spent almost 1 hour to clean, give water to animal and manage the manure. The lack of feed and diseases were also the main constraints for cattle production of farmers in others provinces of Cambodia (Windsor, 2008). During the scarcity of feeds, cattle feeding are mainly based on the The cattle production shared almost 20% to the household income of small-scale farmers in rural areas. However, it was severely constrained by the lack of feeds resource. This problem may have a prolonged impact on the reproductive performance of cattle. Providing locally available feeds (natural grasses and crop residues) to cattle is a major challenge for farmers in rural areas, requiring high labor inputs. As a result, farmers had to spend more than 6 hours per day to feed and manage their cattle. Planting alternative feeds such as forage grasses is an attractive opportunity for small-scale farmers to improve their cattle production. The technical departments should provide technical assistance and forage planting materials to farmers to grow the forage on their farm. The researches to improve cattle feeding system should be done to provide recommendations to farmers.","tokenCount":"1330"} \ No newline at end of file diff --git a/data/part_3/7180839314.json b/data/part_3/7180839314.json new file mode 100644 index 0000000000000000000000000000000000000000..a2994e827b483fd79466fe992e2c3c2d77e734cc --- /dev/null +++ b/data/part_3/7180839314.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"426be769177b8e7bc435aec6a2519e05","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/2e11f941-6331-438e-b339-2855a73b14b8/retrieve","id":"1398640606"},"keywords":[],"sieverID":"02291cc7-21ed-477b-9a64-ecb70637d319","pagecount":"1","content":"where people select, acquire, prepare and consume food Turkana County: • Drylands in North-West Kenya, drought prone, high level of food insecurity • Limited knowledge about perceived food environment among young (agro-) pastoralists • High level of illiteracy • Low level of digital inclusion • Learn about perceptions and attitudes of young (agro-) pastoralist in Turkana towards their food environment • Young (agro-) pastoralists are enabled to identify options for change for a sustainable food environment transformation .• Low literacy levels did not hinder to create videos; video making rather allowed participants to tell and document their story• Income opportunities outside of livestock and agriculture are needed to enable communities to purchase foods of their choice Vegtable / kitchen gardens were considered as options to facilitate easy access to fresh vegetablesIn the shops vegetables are rare, \"Ryco\", salt, pasta and flour may be available Income opportunities are very low, trading goats or firewood seems to be the only opportunities but cash is needed to buy food.Restoration of trees as paid ecoystem service was considered as a potential solution but benefits take long 98 % of the participants have had no smart phone in their hands before; learning how to handle a smartphone motivated the participants to explore and reflect on options to improve their food environmentVillage representatives report about change in attitude among project participants after the project ended; knowlege of food preparation enhanced and cattle steeling stopped, job opportunties were soughtLack of water limits capacities to prepare food, to do agriculture and raise livestock; migration area is limitedThe project was financially supported by BMZ commissioned and administered through GIZ (FIA: 81235248) and Fiat Panis Foundation.• 4 women and 4 men groups, aged 18-24 years • Mean Body Mass Index = 18.9 kg/m²• The final videos were transcribed verbatim and translated • Themes were identified throughout the process • Visioning workshop was guided by videos and identified themes from the video making process • Village representative was interviewed on process experiences • Smartphones were handed over to the groups for future projects http://www.visitturkanaland.com/turkana-county/ministry-tourism-trade/ 8 groups from two communities in Loima Subcounty -2 men and 2 women groups, each 5 members, N=40 Left picture 4 th person from left = Angela Natukunda who facilitated the video making process. Pictures show 2 groups presenting their 24h-recall Workshop 1: measuring height and weight for body mass calculations -7 dietary recall and food environment mapping and learning how to take videos and developing story boards Monitoring visits for discussing technical difficulties; Workshop 2 and 3: learning how to edit videos with CapCut App; Final Workshop: visioning food environment in 5 and 10 years, identifying options to change","tokenCount":"443"} \ No newline at end of file diff --git a/data/part_3/7185267904.json b/data/part_3/7185267904.json new file mode 100644 index 0000000000000000000000000000000000000000..020721519fcc3cd4ff7d5259bff1107fc8136152 --- /dev/null +++ b/data/part_3/7185267904.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"070641d089fa142e9002e252a2ddccbf","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/89cd8f39-2d56-4e16-b811-79b768d8520a/retrieve","id":"-383861279"},"keywords":[],"sieverID":"a7436927-1d40-4423-bcb4-5a48a0a6d54f","pagecount":"74","content":"Planes prediales para la adaptación frente a la variabilidad climática en Boyacá, Colombia. CCAFS Working Paper no.419. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).Los títulos de esta serie de documentos de trabajo tienen el propósito de difundir investigación en curso y prácticas en cambio climático, agricultura y seguridad alimentaria, así́ como estimular la retroalimentación de la comunidad científica.Este documento presenta el reporte de la implementación de la metodología de Planes Prediales de Adaptación a la variabilidad climática en los municipios de Betéitiva, Busbanzá, Corrales y Tasco, en el departamento de Boyacá durante los años 2020 y 2021. Se incluye la sistematización del proceso, la metodología, los pasos y actividades realizadas, resultados y proceso de implementación. Se documenta la estructura de la intervención, la cual se basa en el documento \"Manual para la formulación de planes prediales de adaptación a la variabilidad climática\" (Ortega, L, & Paz-B, 2014) La implementación inició con la homologación de lenguaje en conceptos relacionados con el clima, para luego realizar un levantamiento de información inicial sobre cada una de las 70 familias participantes. Se realizó un análisis de la presencia de diferentes coberturas vegetales, recursos hídricos y sistemas productivos, así como de la distribución de roles y funciones al interior de la familia. Luego, se realizó un análisis participativo de vulnerabilidad a la variabilidad climática, mediante la identificación de eventos meteorológicos frecuentes, la realización calendarios agroclimáticos y la valoración subjetiva de la sensibilidad, exposición y capacidad adaptativa, que permitió cuantificar la vulnerabilidad de cada predio ante diferentes eventos. Se realizó la identificación de prácticas pertinentes para hacer frente a las afectaciones por los eventos climáticos adversos, se generó un Plan Predial de Adaptación (PPA) para cada una de las familias y se construyó un portafolio de prácticas de adaptación para los cuatro municipios.Adicionalmente, se presentan los resultados del proceso de implementación en campo de tres prácticas priorizadas en los PPA: Cosecha de agua lluvia, instalación de reservorios y tanques para el almacenamiento de agua lluvia, y las huertas caseras. De igual forma, se presenta el portafolio de medidas de adaptación que surgió de los planes prediales de adaptación que está compuesto por cuatro grupos: Seguridad alimentaria, producción pecuaria, producción agrícola y sostenibilidad ambiental, y contiene las prácticas priorizadas: Reservorios y tanques, cosecha de agua lluvia, sistemas de riego, huertas caseras, abonos orgánicos, cercas vivas, reforestación, mantenimiento de reservorios, diversificación cultivos, producción forrajes, ensilaje, y diversificación pecuaria. Se realiza un análisis sobre la discusión generada con los productores en la reunión de cierre del proyecto y una simulación de la vulnerabilidad después de la implementación de las prácticas priorizadas. Finalmente se presentan las conclusiones.Keywords: Servicios climáticos, adaptación, cambio climático, variabilidad climática, agricultura.La implementación de los Planes Prediales de Adaptación en los municipios de Corrales, Betéitiva, Busbanzá y Tasco es financiada por la empresa Maurel & Prom Colombia B.V. y es apoyada por el programa del CGIAR en Cambio Climático, Agricultura y Seguridad Alimentaria (CCAFS por sus siglas en inglés).Gracias a los facilitadores Magda Yolima Angarita (Betéitiva), Shirley Yomary Albarracín (Busbanzá), Giovany Acero (Corrales) y Nidia Johanna Pava (Tasco) por su labor al convocar a la comunidad, formar los grupos de trabajo e impartir las sesiones y talleres. Los resultados aquí contenidos son fruto de su impecable labor.Finalmente, gracias a los productores de los cuatro municipios quienes recibieron el proyecto con disposición. Sin la comunidad esta investigación no hubiese sido posible. De acuerdo con Ortega y Paz en su manual para la formulación de planes prediales de adaptación a la variabilidad climática (Ortega, L, & Paz-B, 2014), las comunidades rurales de pequeños agricultores se enfrentan a eventos cada vez más adversos debido al cambio climático. Sin embargo, los productores agropecuarios no cuentan con las herramientas para hacer frente a los eventos extremos, pues carecen de información clara y confiable sobre el estado de su territorio, el nivel real de vulnerabilidad al que se enfrentan sus sistemas productos y las medidas de adaptación pertinentes para mitigar el riesgo. En este sentido, es imperativo el desarrollo de iniciativas que brinden a los agricultores las herramientas para mitigar el riesgo y adaptarse al cambio climático.Desde el año 2019, la Alianza Bioversity International -CIAT y la empresa Maurel & Prom han desarrollado acciones para brindar dichas herramientas a pequeños agricultores y productores agropecuarios de los municipios de Betéitiva, Busbanzá, Corrales y Tasco, en el departamento de Boyacá, Colombia. En su primera fase, el proyecto se enfocó en la implementación de la metodología de Servicios Integrados Participativos de Clima para la Agricultura -PICSA-, que tiene como objetivo construir conocimiento de manera participativa, para que los agricultores puedan acceder, comprender y utilizar información agroclimática confiable para la gestión de sus actividades productivas y la mitigación del riesgo climático. En el año 2019, se inició la implementación de la metodología con aproximadamente 120 familias de la zona, con la realización previa de un mapeo de actores en el flujo de la información climática y el establecimiento de la Mesa Técnica Agroclimática de Boyacá con actores públicos y privados del departamento. La implementación de la metodología PICSA finalizó a en el segundo semestre de 2020.Gracias al trabajo previo, la Alianza Bioversity International -CIAT y Maurel & Prom, iniciaron la implementación de la segunda fase del proyecto, que tuvo como objetivo la implementación de medidas para que los productores pudieran adaptarse a la variabilidad climática. Se inició entonces un trabajo conjunto con 70 familias participantes en la primera fase; se realizó un levantamiento previo de información y la georreferenciación de cada uno de los predios. Para implementar medidas de adaptación era necesario, en primer lugar, la realización de un diagnóstico de la vulnerabilidad de cada predio, para luego identificar medidas pertinentes para cada caso. Se siguió entonces la metodología planteada en el manual para la formulación de planes prediales de adaptación a la variabilidad climática (Ortega, L, & Paz-B, 2014). Este documento presenta la sistematización de la metodología, así como los resultados y la implementación de los planes prediales de adaptación.Durante 2019 se realizaron 4 grupos focales con el objetivo de identificar las brechas y obstáculos en la difusión de información agroclimática en la zona de estudio, así como las oportunidades de transmisión y uso de las predicciones como un instrumento de gestión de los riesgos agroclimáticos. Durante los grupos focales se apuntó a 1) identificar los principales productos, cultivos y actividades agropecuarias realizadas por los agricultores de la zona; 2) mapear los actores que proporcionan información, el tipo de información que se recibe y la confianza que representa y 3) las necesidades de información de los productores. A través de estos grupos se logró un mejor entendimiento sobre los eventos climáticos que afectan los cultivos principales de la zona, así como identificar los actores e instituciones clave y conocer las prioridades de los agricultores en términos de información agroclimática.En cuanto a la identificación de eventos relacionados con el clima que afectan a los agricultores, se encontró un patrón relacionado con tres eventos: Sequía, heladas y vientos fuertes para los cuatro municipios. Los agricultores identificaron afectaciones por el fenómeno \"El Niño\" durante los años 2014 y 2015, manifestando que en dicho periodo sufrieron fuertes sequías que no permitieron el correcto desarrollo de sus cultivos.Respecto a las heladas, se identificó que, al ocurrir repentinamente, afecta a todos los cultivos presentes en las fincas de los agricultores participantes de los grupos focales; este tipo evento se presenta todos los años, en diferentes meses, por lo que es difícil tomar medidas para mitigar los efectos de las heladas. El tercer evento corresponde a los vientos fuertes, que generan el volcamiento de los cultivos. Los agricultores identifican que se presentan todos los años, especialmente en los meses de agosto y septiembre, aunque también puede afectarlos en otros meses. Los vientos fuertes afectan principalmente a los cultivos de mayor altura, como el maíz y los frutales.Respecto al ejercicio de mapeo de actores, con el objetivo de identificar a los individuos e instituciones clave que difunden información principalmente agroclimática, se encontró que, en general, las fuentes y acceso a este tipo de información es escaso. Fue posible identificar que algunas de las fuentes referenciadas por los agricultores son estaciones de radio de la región; en otras ocasiones, se obtiene información de Agronet y algunas aplicaciones móviles. Sin embargo, el nodo con mayor centralidad, esto es, la fuente con mayor identificación y conexión con los agricultores es el calendario Bristol (ver figura 1). Finalmente, respecto a la identificación de necesidades de información climática, el 100% de los agricultores manifestó necesitar información localizada de precipitación: inicio de lluvias, intensidad de precipitación, etc. El 80% de los asistentes manifestó estar interesado en recibir información sobre pronóstico y alertas de heladas y el 50% afirmó además necesitar información sobre vientos fuertes.Figura 1. Red de información agroclimática. 2019.Para atender las necesidades y brechas de información agroclimática necesaria para realizar la gestión de riesgos y tomar decisiones de manejo agrícola, se estableció la Mesa Técnica Agroclimática (MTA) de Boyacá en el mes de abril de 2019, con la participación del IDEAM, la Gobernación de Boyacá, La Alianza Bioversity International -CIAT y múltiples actores de la región. Hasta diciembre de 2021 se han realizado más de 20 sesiones de la MTA, generando 18 boletines con el pronóstico climático y recomendaciones de manejo para diferentes cultivos. Los boletines pueden ser consultados en el sitio web de la MTA.La metodología PICSA, cuyas siglas en inglés se refieren a los Servicios Integrados Participativos de Clima para la Agricultura, apunta a generar herramientas participativas para que los agricultores puedan comprender y usar la información agroclimática en la gestión de riesgos y manejo agrícola dentro de sus fincas. En este sentido, se implementó la metodología con aproximadamente 120 familias de la región, siguiendo el manual de campo de la metodología PICSA (Dorward, Clarkson, & Stern, 2017), el cual es una guía detallada para su implementación, donde las actividades necesarias para llevar a cabo el proceso participativo de generación de herramientas para la compresión y uso de la información climática se encuentran divididas en una secuencia lógica de pasos. La primera etapa se ubica en un periodo mucho antes a la época lluviosa, en el cual se desarrollan los primeros 6 pasos relacionados con la identificación de las actividades actuales de los agricultores, información histórica de clima, comparación de opciones disponibles y selección de las posibles medidas a implementar. La segunda etapa se ubica justo antes del inicio de lluvias y contiene los pasos relacionados con la presentación del pronóstico estacional y la toma de decisiones. En tercer lugar, se encuentra la identificación de las alertas y pronósticos a corto plazo y, en último lugar, se presenta la evaluación de lecciones aprendidas al terminar la época de lluvias.Durante los talleres se realizaron las actividades que componen la metodología, partiendo desde el diagnóstico de cada familia y la condición climática de la zona, pasando por los conceptos de información climática y probabilidades, para llegar a la toma de decisiones sobre planificación predial basada en pronósticos climáticos. Se identificaron los principales cultivos y sus calendarios productivos, así como la identificación de los principales eventos climáticos y las posibles medidas de adaptación a implementar para mitigarlos. Para conocer en detalle la implementación de la metodología y los principales resultados, consultar el documento Implementación de Servicios Integrados Participativos de clima para la agricultura (PICSA) en Boyacá, Colombia.Al finalizar la implementación de la metodología, se realizó un monitoreo orientado a comprender la percepción de los asistentes sobre los talleres impartidos, así como los posibles cambios a realizar en sus fincas gracias a los conocimientos y herramientas adquiridas. Un 85% de los agricultores manifestaron estar de acuerdo o muy de acuerdo con que lograron entender el pronóstico del clima, 79% lo encontraron útil para la planeación de actividades en la finca y 84% respondieron que esta actividad los ayudó a entender mejor los riesgos de su cultivo. Por otro lado, 67% de los agricultores consideraron que el pronóstico fue acertado para su zona. Los participantes fueron consultados además por los cambios realizados en el primer ciclo posterior a los talleres PICSA. Un 67% contestaron que habían realizado algún tipo de cambio en al menos un cultivo o actividad pecuaria.Después del monitoreo del primer ciclo, se realizó otra ronda de visitas a los agricultores para consultar sobre los cambios realizados. En cuanto a las modificaciones realizadas en cultivos, se encontró que el 46% sembró un cultivo nuevo o diferente después de la capacitación, 31% incrementó la escala de siembra de algún cultivo y/o cambió el manejo de la tierra. El 61% de los agricultores manifestaron que los beneficios de estos cambios se vieron reflejados directamente en la alimentación del hogar, mientras que un 8% sienten que los cambios favorecieron menores gastos en insumos, ventas a menor precio o menos daños en los cultivos. Otro 8% afirmó que no había tenido resultados aún.Para la elaboración de los Planes Prediales de Adaptación (PPA), se sigue la metodología planteada en el Manual para la Formulación de Planes Prediales de Adaptación a la Variabilidad Climática (Ortega, L, & Paz-B, 2014), el cual tiene como objetivo fomentar el manejo adaptativo del territorio, mediante una herramienta práctica y participativa. Se espera que, al finalizar la metodología, los participantes conozcan los conceptos relevantes relacionados con variabilidad y cambio climático, estén en capacidad de analizar su territorio de manera integral, puedan aplicar el análisis de vulnerabilidad propuesto e identifiquen medidas de adaptación, para logara la construcción de un plan predial de adaptación.Como se ha resaltado, la metodología propuesta en el manual y seguida en este proceso de implementación se caracteriza por utilizar herramientas participativas, que permiten a los participantes interiorizar los conceptos y aplicarlos a su territorio. Para cumplir con el objetivo de brindar las herramientas para que cada una de las familias participantes pudiese construir su propio plan predial de adaptación, se realizaron 3 talleres diferentes, abarcando todos los pasos necesarios y trabajando sobre lo construido en la fase inicial del proyecto. A continuación, se presenta la metodología utilizada en cada uno de los talleres.El primer taller tuvo dos objetivos; el primero fue recordar a los participantes la definición de conceptos básicos relacionados con variabilidad y cambio climático -que ya habían sido abordados durante la implementación de la metodología PICSA-. El segundo objetivo fue el levantamiento de información detallada sobre la finca y las actividades realizadas. El taller tuvo una duración aproximada de entre 2 y 3 horas, por cada familia.En el primer paso del taller, se buscaba recordar a los participantes la definición de los conceptos básicos relacionados con el cambio climático, lo que les permitiría implementar pasos siguientes, para la formulación de los planes prediales de adaptación.Con este fin, se convocó a todos los miembros de la familia participante y se ubicó un papelógrafo delante, con el nombre de varios conceptos relacionados con variabilidad y cambio climático. Se solicitó a cada uno de los participantes que, concepto por concepto, brindaran una definición corta, de lo que para ellos significaba cada uno. A partir de todas las definiciones, el facilitador construyó una definición consensuada, utilizando palabras coloquiales y con ejemplo de la vida cotidiana, incluyendo elementos técnicos de la definición formal. Para finalizar, se realizó una ronda de preguntas y respuestas para comprobar que todos los conceptos eran claros.El segundo paso del primer taller tenía como objetivo caracterizar participativamente los componentes productivo, de cobertura vegetal y recurso hídrico de cada uno de los predios. Con este fin, previamente se realizó la impresión de una imagen aérea -obtenida de satélite por medio de Google Earth-, previa georreferenciación del perímetro de cada uno de los predios. Se entregó marcadores de colores a los participantes y se les solicitó que, sobre la imagen impresa de la finca, identificaran y dibujaran cada uno de los siguientes componentes:• Infraestructura: casa, caminos, establo, galpones, huertas, invernadero, etc.• Cobertura vegetal: distribución de bosques, cultivos, humedales, rastrojos, pastizales. Pida a los participantes que realicen una descripción breve de área aproximada y especies • Cultivos para comercialización: Para cada tipo de cultivo, se describió como mínimo extensión, especies, producción aproximada. • Cultivos para autoabastecimiento: incluidas huertas, nombrando especies y cantidad aproximada de producción • Especies menores y ganado: en caso de contar con ellas, describir especies, manejo, número y producción aproximada Al finalizar el paso, se contó con un mapa detallado de cada finca, con cada uno de sus componentes identificados, como se muestra en la Figura 3.Figura 3. Imagen aérea con componentes identificados.El tercer y último paso del primer taller buscaba identificar la distribución de tareas, uso del tiempo, proceso de toma de decisiones, control y acceso a recursos por parte de los integrantes de la familia. Para esto, se contó con la matriz presentada en la Figura 4; se solicitó a los participantes que, de manera participativa, la diligenciaran identificando cada una de las actividades relacionadas con producción, domésticas, educativas, sociales o culturales y de esparcimiento o tiempo libre, identificando quién era la persona responsable y la cantidad de tiempo dedicado, entre otros factores. Es de resaltar que se buscaba establecer un diálogo con los integrantes de la familia, más que llenar un formato.Figura 4. Matriz de distribución de roles y tareas.El segundo taller tuvo como objetivo identificar y analizar la vulnerabilidad climática de cada finca, mediante el reconocimiento de cada uno de los elementos que la componen. En este sentido, se partió del reconocimiento de los bioindicadores utilizados en la zona y la realización de un calendario agroclimático, para luego identificar los eventos climáticos que golpean la zona y sus posibles afectaciones en cada cultivo, lo que permitió finalmente, cuantificar una medida de vulnerabilidad de la finca.El primer paso del segundo taller tuvo como objetivo la identificación de los bioindicadores utilizados en la zona. Esta actividad permitió relacionarse con los saberes ancestrales, pero también introducir el concepto de variabilidad climática de manera sencilla. Para esto, se trabajó sobre la matriz presentada en la Figura 5; se solicitó a los miembros de la familia que nombraran todos los indicadores usados en la zona, relacionados con el comportamiento de animales y el entorno, para predecir algún evento climático extremo. Luego, se solicitó que se definiera el evento que ayuda a pronosticar cada indicar, indicando su comportamiento de manera precisa y si dichos bioindicadores siguen estando vigentes.¿Qué significa el comportamiento? ¿Siguen funcionando ahora como indicadores? Figura 5. Matriz de bioindicadores.El segundo paso del taller tuvo como objetivo valorar la intensidad de los fenómenos meteorológicos y sus impactos en los componentes: sistema productivo, cobertura vegetal natural, recurso hídrico. Para esto, se realizó de manera inicial un repaso de lo abordado en la homologación de conceptos del taller 1, para recordar a los participantes la definición de evento extremo. Luego, se realizó un conversatorio con los participantes, pidiendo que se identificaran los eventos meteorológicos extremos (anormales) que afectan la zona y los años en que se presentaron. Después, los participantes indicaron cuáles fueron las consecuencias y afectaciones de cada evento sobre los componentes de recursos hídricos, producción, comercialización y los roles familiares.Finalmente, se consultó a los participantes si consideraban que existían algunas acciones que se podían haber tomado previo al evento, para minimizar sus efectos. Adicionalmente, se los consultó sobre las acciones que tomaron en el momento de ocurrencia, para mitigar los daños y si se considera que existen actividades realizadas por personas de la región, que agravan las consecuencias de estos eventos adversos; toda la información fue consignada en la matriz presentada en la Figura 6. Esta actividad permite no solo identificar los eventos extremos que ocurren en la zona, sino también posibles medidas de adaptación para mitigar sus efectos. El tercer paso de este taller tuvo como objetivo determinar la secuencia de las actividades productivas en el año y posibles afectaciones por eventos. Se partió del trabajo realizado en la fase de implementación de la metodología PICSA, donde se construyó un calendario climático para la zona, identificando tendencias en el clima e intensidad de lluvias a través del año. Con esta información, se construyó la matriz presentada en la Figura 7. En primer lugar, se pidió a los participantes indicar en qué meses del año se presentaba mayor ocurrencia de los eventos climáticos extremos identificados en el paso anterior. Después, se solicitó a los participantes la priorización de los dos cultivos o actividades pecuarias más importantes que realizaban en la finca, para los cuales indicaron cada una de las actividades productivas realizadas en cada mes del calendario. Luego de la identificación de las actividades realizadas para cada cultivo, los participantes indicaron cómo se veían afectadas dicho calendario productivo por la ocurrencia de los eventos extremos señalados, indagando profundamente en las afectaciones sobre el cultivo y la economía familiar, y consultando sobre las medidas que se toman para mitigar los efectos de dichos eventos.Figura 7. Calendario agroclimático.El cuarto y último paso del segundo taller tuvo como objetivo estimar el nivel de vulnerabilidad de la finca, a partir de la percepción de la familia. Para lograrlo, de manera previa al taller, los facilitadores elaboraron una matriz de vulnerabilidad como se muestra en la figura 8; de la caracterización de la finca realizada en el taller 1, se extrajo cada uno de los componentes y variables identificados en la finca, agrupados en tipos de cobertura vegetal, recursos hídricos y sistemas productivos. Se realizó una matriz para los dos eventos o fenómenos meteorológicos identificados que más daño generan en la finca, partiendo de la información de pasos anteriores.Se solicitó entonces a los participantes que se realizara una valoración subjetiva de los componentes de exposición, sensibilidad y capacidad de adaptación de cada una de las variables y componentes, para obtener una medida cuantitativa de percepción de vulnerabilidad de la finca, para cada uno de los eventos. La calificación se realizó de la siguiente manera:• Valoración de la exposición En un trabajo colectivo con los asistentes, el facilitador explicó el concepto de exposición utilizando ejemplos cotidianos, recordando que la exposición es la presencia de cultivos o actividades pecuarias en lugares que pueden verse afectados negativamente; es decir, por su ubicación en una zona geográfica pueden sufrir impactos determinados por la variabilidad o el cambio climático.Teniendo en cuenta los fenómenos y eventos extremos identificados en pasos anteriores preguntará qué tan expuesto está cada componente a cada evento. Utilizará una escala donde (1) es una exposición baja, (2) es una exposición media y (3) una exposición alta. Para la medida de exposición por componente, se promedió el puntaje de cada una de las variables que lo componen.De manera análoga a la exposición, el facilitador explicó el concepto de sensibilidad utilizando ejemplos cotidianos, recordando que la sensibilidad es el nivel en que un sistema o especie resulta afectado, ya sea negativa o positivamente, por estímulos relacionados con la variabilidad o el cambio climático.Teniendo en cuenta los fenómenos y eventos extremos identificados en pasos anteriores preguntará qué tan sensible es cada componente a cada evento. Utilizará una escala donde (1) es una sensibilidad baja, (2) es una sensibilidad media y (3) una afectación alta. Para la medida de sensibilidad por componente, se promedió el puntaje de cada una de las variables que lo componen.De manera similar al ítem anterior, el facilitador recordó el concepto de capacidad adaptativa, definido como la capacidad de sistemas, institucionales, humanos y otros organismos para ajustarse al cambio climático (incluida la variabilidad climática y los cambios extremos), a fin de moderar los daños potenciales, aprovechar las consecuencias positivas o soportar las consecuencias negativas. Luego se identificaron las actividades que se realizan dentro de la finca para disminuir los impactos negativos de cada fenómeno meteorológico, utilizando la siguiente escala: -Alto (3): Implementa una o varias actividades de adaptación, las cuales disminuyen los efectos negativos de los fenómenos meteorológicos o eventos y el impacto de ellos es mínimo.-Medio (2): Implementa una o varias actividades de adaptación, pero estas no son suficientes y los efectos negativos son notorios -Bajo (1): No implementa actividades de adaptación para evitar los efectos negativosPara cada variable y componente, se realizó una suma entre exposición y sensibilidad y se restó el puntaje obtenido para la capacidad adaptativa. El puntaje obtenido indica el nivel de vulnerabilidad, que tiene un rango de 1 a 5, donde 1 corresponde a un nivel de vulnerabilidad baja y 5 a vulnerabilidad alta.El tercer y último taller del ciclo tuvo como objetivo la identificación participativa de las medidas de adaptación y la consolidación de los PPA. Para esto, se ejecutaron dos pasos de la siguiente manera.El primer paso tenía como objetivo identificar participativamente las medidas de adaptación autónomas y planificadas con criterios de sostenibilidad ambiental, financiera y equidad de género. En primer lugar, los facilitadores realizaron una revisión rápida de los conceptos relacionados con capacidad de adaptación, vulnerabilidad y planes prediales de adaptación, que ya habían sido abordados previamente. Después, utilizando la matriz de capacidad de adaptación del taller anterior, se identificaron las medidas autónomas que se habían tomado, así como nuevas ideas de prácticas. Dichas prácticas se evaluaron en cuanto a su sostenibilidad, rol de quien implementa, detalle de implementación y posibles alternativas. En la matriz de identificación de medidas de adaptación presentada en la Figura 9, se solicitó a los participantes de cada familia que especificaran prácticas de adaptación ya implementadas o que podrían serlo, a la luz de los resultados de la evaluación de vulnerabilidad en cada componente de la finca. Se pidió, además, identificar el estado de la práctica, una descripción breve, costos y tiempo de implementación aproximados, qué miembros de la familia participarían y si existía otra alternativa que pudiera sustituir los resultados, en caso de que la práctica evaluada no fuera viable. Además, los participantes evaluaron cada opción de práctica de acuerdo con su sostenibilidad, de la siguiente manera: Finalmente, se realizó la consolidación de los planes prediales de adaptación. En primer lugar, se solicitó a los participantes que eligieran de manera concertada las 3 medidas de adaptación más relevantes, de la lista resultante del paso anterior. Esta priorización se realizó utilizando los resultados de talleres previos, teniendo en cuenta las afectaciones que genera cada evento, la calificación de vulnerabilidad y oportunidad de mejora en cuanto a capacidad adaptativa. Luego de la priorización de las prácticas, la familia diligenció una ficha por cada una de las medidas (ver Figura 10), teniendo en cuenta la descripción general, las actividades necesarias y quién las realizaría, los fenómenos meteorológicos a los que responde, el tiempo estimado de implementación y un presupuesto estimado. Cada plan predial de adaptación estaría conformado por el análisis de vulnerabilidad, las fichas de prácticas y el estado de implementación de cada una. La implementación de la ronda de 3 talleres se realizó entre los meses de febrero y agosto de 2021, realizando sesiones individuales para cada una de las 70 familias participantes dentro de los 4 municipios. A continuación, se presentan los principales resultados obtenidos.En el primer paso del primer taller, se realizó de manera participativa la homologación de conceptos como evento extremo, vulnerabilidad, adaptación, capacidad adaptativa, sensibilidad y exposición. Cada integrante de la familia escribió, en sus propias palabras, lo que para ellos significaba cada uno de los conceptos; al finalizar, el facilitador tomó palabras clave de cada uno de los aportes para construir la definición, con componentes técnicos. En general, se observó que los participantes tenían nociones importantes sobre el significado de cada uno de los conceptos; para la diferenciación de palabras como sensibilidad y exposición, si bien la definición técnica no quedaba del todo clara, el apoyo con ejemplos cotidianos fue fundamental. Al finalizar, la ronda de preguntas permitió afianzar los conocimientos adquiridos. La Figura 11 presenta algunas evidencias de la actividad realizada.Figura 11. Actividad de homologación de conceptos.Para el segundo paso del primer taller, se realizó la descripción de cada una de las fincas. Para esto, se utilizó una impresión de gran formato de la imagen aérea de la finca, que permitía reconocer la ubicación y características topográficas. Sobre la impresión, se ubicó un papel translúcido, sobre el cual los participantes ubicaron cada una de las coberturas vegetales, sistemas productivos y componentes de infraestructura (Figura 12). Se identificó, en general, la presencia de cultivos como el maíz, frijol, arveja, cebolla, trigo y cebada, como actividades productivas que soportan la economía familiar.Adicionalmente, se resalta la presencia de actividades pecuarias como la ganadería doble propósito a pequeña escala -principalmente en los municipios de Betéitiva y Busbanzá-; para el municipio de Corrales se observa la importancia de la ganadería ovina, destinada para carne. Además, se encontró la presencia, en menor escala, de huertas caseras, destinadas principalmente para autoconsumo, así como otras actividades pecuarias como porcicultura y avicultura doble propósito. En cuanto a las coberturas, se identificó la presencia de coberturas vegetales como pastos y rastrojos; la presencia de fuentes hídricas no fue representativa.Finalmente, es importante destacar que cada una de las familias conservó la imagen aérea de su finca impresa a gran escala. Se los motivó a ubicarla en un lugar visible, donde constantemente puedan observar la configuración de su territorio, con el fin de que puedan realizar una planificación predial informada.Figura 12. Actividad Describiendo mi finca.Para la identificación de los roles en la familia, se propició una conversación sobre las actividades principales que se realizan en la finca y el tiempo diario que requieren, así como la identificación de qué miembro es el responsable principal de tomar decisiones y de ejecutar cada actividad.Figura 13. Actividad de roles en la familia.Se identificó, en primer lugar, el o los miembros de la familia que toman las decisiones sobre la ejecución de las actividades productivas y no productivas, pero importantes dentro de la dinámica familiar. La Figura 14 muestra que, en general, en el 33% de las familias las decisiones se toman de manera conjunta, mientras en el 50% de los hogares es tomada por la madre y en el 17% solo por el padre. Es de resaltar las diferentes entre municipios: en Betéitiva, el 59% de las familias afirman que se toman decisiones conjuntas entre madre y padre, mientras que para el 41% de las familias, las decisiones las toma únicamente la madre. En Busbanzá, el porcentaje de familias en las que la madre tiene la última palabra aumenta hasta el 58% y en Tasco asciende hasta el 77% de las familias. En contraste, para el municipio de corrales, el 67% de las familias afirman que las decisiones las toma únicamente el padre.Figura 14. Toma de decisiones sobre actividades del hogar.En cuanto al tiempo dedicado a cada actividad, la Figura 15 muestra los resultados para 4 de las actividades principales. En general, la preparación de alimentos toma, en promedio, 3.7 horas al día; el cuidado del ganado requiere 2.6 horas, la alimentación de especies menores 1.2 horas y el trabajo en cultivos aproximadamente 4 horas al día. Sin embargo, esta dedicación de tiempo varía entre cada municipio; se observa entonces que, para el municipio de Betéitiva, el promedio diario de trabajo en cultivos es de 7.1 horas -con un rango de horas que trabajan entre 6 y 8 horas al día-, mientras en Busbanzá el promedio es de 4.7 horas -en un rango mucho más disperso-, y el municipio de Corrales con 4.1 horas de trabajo diario. Se observa entonces que el promedio general está sesgado hacia abajo principalmente por el comportamiento del municipio de Tasco, donde las familias cuentan con extensiones menores de tierra, cultivando principalmente hortalizas, y dedicando solo 1.4 horas de trabajo al día.La actividad que le sigue al trabajo en cultivos es la preparación de alimentos en el hogar, con un promedio entre 5.3 horas en Betéitiva y 3 horas en Tasco. El cuidado del ganado es de aproximadamente 3.2 horas diarias en promedio para el municipio de Corrales, con una vocación ovina importante; para los otros tres municipios, el tiempo de dedicación oscila en el rango de entre 2 y 3 horas al día, consistente con la actividad ganadera doble propósito a pequeña escala. Para identificar específicamente la dedicación y los roles de la familia, se consultó sobre quién ejecuta principalmente cada actividad. Para el trabajo en cultivos, la Figura 16 muestra que en el 44% de las familias es el padre el principal responsable de las actividades relacionadas, mientras que en 42% es la madre quien realiza esta labor; en un menor porcentaje los hijos varones -8%-y las hijas mujeres -3%-son los encargados. Al observar el comportamiento por municipio, se observa que, de manera consistente con la toma decisiones, es el padre -75%-el encargado de las actividades agrícolas, mientras para Betéitiva es el 63% y para Busbanzá el 45%; en el municipio de Tasco, la actividad agrícola es realizada en la mayoría de familias -76%-por la madre de familia. La Figura 17 presenta la distribución de roles en la actividad de cuidado de ganado. Se encuentra que, en general, en el 53% de las familias es la madre la encargada, mientras que el 27% es el padre, en el 9% las hijas mujeres y en el 6% los hijos hombres. Al observar el comportamiento por municipio resalta que, una vez más, es el padre de familia el encargado en la mayoría de familias, con un 62%; este comportamiento contrasta con el resto de municipios, donde es la madre la encargada de la actividad, desde el 55% de familias en Tasco hasta el 71% en Betéitiva.Figura 17. Roles en el cuidado de ganado.En este sentido, la Figura 18 presenta el comportamiento de los roles en el cuidado y alimentación de especies menores. En general, en el 54% de las familias el miembro encargado es la madre, seguida por el padre (20%), hijas (12%) e hijos (9%); en menor medida los nietos también participan y en el 2% de los hogares, esta actividad se encuentra repartida entre varios miembros. El comportamiento, una vez más, es diferente en el municipio de Corrales, donde el principal encargado es el padre de familia; para Busbanzá se observa que, hasta en el 83% de las familias, la madre es la responsable de esta actividad.Finalmente, pero no menos importante, la Figura 19 presenta la distribución de la preparación de alimentos. Se encuentra que, en general, en el 83% de los hogares es la madre la única responsable de esta actividad; en Busbanzá la totalidad de hogares siguen este patrón, mientras que para Corrales el porcentaje es un poco menor (67%) con una participación del padre de familia por encima del promedio.Figura 19. Roles en la preparación de alimentos.Al consultar a las familias por los bioindicadores más utilizados en la zona como herramienta para hacer pronósticos sobre el comportamiento del clima y la posible llegada de eventos climáticos extremos. El 83% de las familias indicó que utiliza el bioindicador de las golondrinas, el cual consiste en observar el comportamiento de dichas aves; cuando se observa una gran parvada volando y cantando en el cielo, se prevé que se aproximan las lluvias. El segundo y tercer indicador más utilizado es el cerquillo al sol Figura 20. Bioindicadores utilizados en la zona.Al realizar la actividad de identificación de eventos meteorológicos extremos sufridos por los participantes, el 87% de las familias manifestó haber sido afectadas por heladas, el 70% han sufrido los eventos adversos de la sequía y el 60% lluvias torrenciales. Al realizar el análisis por municipio, se observa que los municipios más afectados por las heladas son Betéitiva y Busbanzá, con el 100% de las familias reportando este evento, y Tasco, con el 96%; en comparación, sólo un 47% de las familias de Corrales reportaron dicho evento. Por otro lado, las lluvias fuertes han representado eventos adversos en la mayoría de las familias de Tasco, mientras que en Busbanzá ninguna familia reportó este evento adverso. Finalmente, la sequía representa un problema frecuente para el 100% de las familias de Betéitiva y Busbanzá, mientras que, para Tasco y Corrales, el valor asciende a solo el 54% y 40%, respectivamente. Por otro lado, al caracterizar el año de la última ocurrencia de cada evento adverso, se encuentra que 55 familias, que corresponden al 78.5% del total, afirman haber sido afectadas por las heladas en el año 2020. En cuanto a la afectación más reciente por sequía, 28 familias que corresponde al 40% del total afirmaron haberla sufrido en el año 2020. Finalmente, para las lluvias torrenciales, se reconoce el 2001 como el año con la afectación más fuerte y recordad por dicho evento. En cuanto al calendario agroclimático, se pidió a cada familia de agricultores que priorizaran 2 cultivos o actividades pecuarias importantes. Luego de obtener los resultados individuales, estos fueron agregados, obteniendo calendarios para 8 diferentes actividades agropecuarias diferentes.La Figura 23 muestra el calendario agroclimático para el cultivo de maíz, construido a partir de la información brindada por los 41 agricultores que priorizaron el cultivo. En cuando al manejo productivo, se encontró que, en general, la campaña de siembra se extiende desde enero hasta septiembre. En enero, el 100% de las familias reportan realizar la preparación de terreno; para febrero, el 80% de familias reportan que realizan la siembra, mientras que el 20% restante prefiere hacerlo en marzo. En abril, el 80% de las familias realiza aporque y en junio el 80% recurre al riego del cultivo. Para el mes de agosto, todas las familias reportan realizar la cosecha, con un 5% de estas que se extienden hasta las primeras semanas de septiembre.En cuanto a los eventos adversos que pueden afectar al cultivo de maíz, el 88% de las familias reportan sufrir heladas en febrero, aunque tan solo el 20% indica tener afectación por dicho evento, principalmente en pérdida de plántulas, que se trata de mitigar con riego. Para el mes de marzo, el 61% de las familias reporta sufrir también por las heladas, aunque en este mes hasta el 73% reportan daños y pérdida de plántulas, que es mitigado con fertilización por el 61% de las familias y 12% con resiembras. Para el mes de abril, 34% de las familias reportan sufrir afectaciones por lluvias fuertes; para el 29% de las familias esto representa un menor rendimiento por el encharcamiento, recurriendo al drenaje como la medida tomada. Para el mes de junio, la afectación se da por sequía, reportada por el 34% de las familias; para el 44% representa una pérdida de cultivo que se intenta mitigar con riego. Finalmente, para el mes de julio se reportan algunas afectaciones por heladas (39% de las familias) y vientos fuertes, que dejan afectaciones por perdidas de cultivos al 34% de las familias; la medida identificada para mitigar los daños son las cercas vivas.La Figura 24 presenta el calendario productivo agregado para 19 agricultores que priorizaron esta actividad. Se encuentra que, al ser una actividad pecuaria, en general todos los meses se realiza principalmente el pastoreo de los animales. Al identificar los eventos meteorológicos que afectan a esta actividad, se observa que las heladas en enero (26%), febrero (74%), y diciembre (21%) generan problemas principalmente por escases de pastos, que obligan a la compra de suplemento o riego de terreno. La lluvia fuerte también es reportada por familias ganaderas en los meses de abril (58%) y octubre (26%); este evento puede generar afectación por enfermedades, por lo que el 32% de las familias recurren a los drenajes y el 26% a la purga de animales. Finalmente, la sequía, para el 26% de las familias, genera afectaciones en el mes de junio, ocasionando escases de pastos que obligan a la compra de suplemento y riego.La Figura 25 presenta el calendario para 17 agricultores que priorizaron dicho cultivo. Se evidencia que la campaña de siembra se realiza en el primer semestre del año, donde todos los agricultores realizan preparación de terreno en enero; un 41% siembra en el mes de febrero y el 59% espera hasta el mes de marzo. Los primeros realizan deshierbe y aporque durante marzo y abril, obteniendo la cosecha en el mes de mayo; aquellos que siembran en marzo, obtienen la cosecha en junio. En cuanto a los eventos que general afectación, las heladas preocupan al 71% de las familias, presentándose en los meses de febrero y marzo, siendo este último mes el de mayor afectación, generando pérdida de cultivos para 47% del total de las familias; en el mes de abril, las lluvias fuertes generan afectación al 29% de las familias, ocasionando infestaciones por plagas.La Figura 26 presenta el calendario productivo de la papa, agregado para 14 familias agricultoras. Para el 43% de los agricultores, la campaña comienza en el mes de diciembre con la preparación de terreno, siguiendo en enero con la siembra y finalizando en mayo con la cosecha; para el 57% restante, inicia en enero con la preparación de terreno, sembrando en febrero y cosechando en julio y agosto. Para el 43% de los productores adelantados, las heladas de enero generan afectación por daño de plántulas, que es mitigada mediante el riego. En febrero, el 100% de los agricultorestanto los que iniciaron en diciembre, como los que iniciaron en enero-, reportan afectación por heladas. Las lluvias fuertes en abril y sequía en junio, con el 57% del total de agricultores, también genera afectaciones importantes, como plagas en el primer caso y pérdida de cultivos por falta de agua en el segundo.La Figura 27 muestra el calendario para el cultivo de arveja. Se encuentra que los agricultores pueden trabajar en dos diferentes campañas, una iniciando en septiembre y finalizando en enero (43% de las familias) y otra iniciando en enero y finalizando en mayo (57%). De manera similar a la papa y frijol, las principales afectaciones se dan en febrero por heladas (para los que inician de manera tardía), generando pérdida de plántulas y en abril, por lluvias fuertes, generando inundaciones en el 14% de familias, que intenta mitigar con la realización de drenajes.La Figura 28 presenta el calendario para 5 agricultores que priorizaron el trigo. En este caso, se presentan dos diferentes campañas de siembra. La primera (40% de las familias) inicia con la preparación de terreno en agosto y finaliza con la cosecha en abril y la trilla en mayo; la principal afectación por evento climático se da en diciembre, donde la sequía puede generar perdida de cultivo. La segunda campaña (60% de las familias) inicia en el mes de febrero y culmina en septiembre, siendo esta afectada por las lluvias fuertes en abril, sequías en junio, heladas en julio y vientos fuertes en agosto.La Figura 29 presenta que, para el cultivo de cebolla, se sigue en general una campaña que inicia en enero con la preparación de terreno, siembra en febrero y cosecha en julio. La principal afectación se da en abril por las lluvias fuertes, que pueden generar plagas y son combatidas con fumigación del cultivo.Finalmente, la Figura 30 presenta el calendario para las hortalizas. En general, se cuenta con dos campañas de siembra seguidas por todas las familias (4) de agricultores que priorizaron este cultivo. La primera campaña va de febrero a mayo, iniciando con la siembra de semilleros, siguiendo con el deshierbe y la cosecha. La segunda campaña tiene la misma configuración, iniciando en agosto y terminando en diciembre. Las principales afectaciones se generan por lluvias fuertes en abril, generando daños en el cultivo, así como las heladas en diciembre. Siguiendo los pasos presentados en la metodología para la valoración subjetiva de la vulnerabilidad de la finca ante diversos eventos meteorológicos, se solicitó a los participantes que seleccionaran los dos eventos que más los afectaran. En este orden, se identificaron las heladas y sequía como los eventos principales, seguidos en menor medida por inundaciones y vientos fuertes, en zonas localizadas. Para el análisis de los siguientes resultados, se recuerda al lector que la vulnerabilidad toma valores de 1 a 5, siendo 1 un nivel bajo y 5 un nivel alto; los componentes sensibilidad, exposición y capacidad de adaptación, toman valores entre 1 y 3.La Figura 31 presenta el resultado de la vulnerabilidad total de las 65 fincas que priorizaron las heladas. El municipio de Corrales presenta un nivel ligeramente más alto, con un valor promedio de 3.3, aunque presentando un rango muy disperso, con fincas con valoración desde 2.5 hasta 4; se encuentra entonces, un nivel de vulnerabilidad medio-alto, explicado por el alto nivel de exposición (3 para la mayoría) y una capacidad adaptativa de la finca baja, con valores cercanos a 1.5. Para el municipio de Busbanzá se encuentra un nivel de vulnerabilidad de 2.7, en promedio, representado por niveles menores de exposición, aunque la capacidad adaptativa es considerablemente baja. En tercer y cuarto lugar se ubican los municipios de Betéitiva y Tasco, con valores cercanos a los 2.5 puntos, con niveles de exposición cercanos a 3, pero capacidad adaptativa ligeramente más alta que la presentada por los otros dos municipios.Figura 31. Valoración de la vulnerabilidad total de la finca ante heladas.A continuación, se presenta de manera más detallada el análisis de vulnerabilidad, por cada uno de los componentes de la finca. La Figura 32 presenta el análisis para la cobertura vegetal, como pasturas, bosques, rastrojos y humedales. Se encuentra que el nivel de vulnerabilidad más alto (con un promedio de 4 puntos) se presenta en el municipio de Busbanzá, principalmente por la limitada capacidad adaptativa y la alta exposición y sensibilidad. Le sigue el municipio de Corrales, con un puntaje de aproximadamente 3.3, explicado por un nivel de exposición alto, pero una sensibilidad menor. En último lugar le siguen Betéitiva y Tasco, con una vulnerabilidad cercana a los 3 puntos, explicada por niveles de sensibilidad cercanos medios.Figura 32. Valoración de la vulnerabilidad de la cobertura vegetal de la finca ante heladas.La Figura 33 muestra la vulnerabilidad de los recursos hídricos ante heladas. En general, se observan niveles bajos, explicados por la baja sensibilidad que tienen este tipo de componentes ante este evento.Figura 33. Valoración de la vulnerabilidad de recursos hídricos de la finca ante heladas.Finalmente, la figura 34 presenta el nivel de vulnerabilidad de los sistemas productivos ante las heladas. Se encuentra que el mayor puntaje lo obtiene Busbanzá (3.5), seguido por Tasco (3.4) y Corrales (3.4), este último con una dispersión mayor. El nivel de vulnerabilidad medio-alto se encuentra explicado por la alta exposición de los sistemas productivos que, si bien presentan niveles de sensibilidad medios, no son soportados con una capacidad adaptativa alta.Figura 34. Valoración de la vulnerabilidad de los sistemas productivos de la finca ante heladas.A continuación, la figura 35 presenta el nivel de vulnerabilidad total ante sequía para 49 familias, que priorizaron este evento.Figura 35. Valoración de la vulnerabilidad total de la finca ante sequía.Una vez más, el municipio de Corrales es aquel que presenta un puntaje de vulnerabilidad más alto, con un promedio de 3.4 puntos y una dispersión relativamente baja. La exposición ante sequía es alta, con un promedio de 3 puntos, al igual que para el resto de los municipios. En vulnerabilidad, le siguen Busbanzá (3.1), Betéitiva (3.1) y Tasco (3). Todos los municipios se ubican en nivel de vulnerabilidad medio-alto, explicado principalmente por una alta exposición y una muy baja capacidad adaptativa.La Figura 36 muestra el resultado de vulnerabilidad ante sequía específicamente de la cobertura vegetal. Se encuentran niveles altos para los municipios de Corrales y Busbanzá, con valores cercanos a los 4 puntos, explicados por una capacidad adaptativa prácticamente nula.Figura 36. Valoración de la vulnerabilidad cobertura vegetal de la finca ante sequía.La Figura 37 presenta los resultados de la vulnerabilidad ante sequía para los recursos hídricos. En general, para todos los municipios, se encuentran promedios cercanos a los 3 puntos, a excepción de Busbanzá, donde la dispersión es considerable, abarcando el rango de 1 a 4 puntos. Si bien, se considera que la capacidad adaptativa de los recursos hídricos es baja y su exposición alta, los niveles de sensibilidad se mantienen en un nivel medio.Figura 37. Valoración de la vulnerabilidad de los recursos hídricos de la finca ante sequía.Finalmente, la Figura 38 presenta el análisis de vulnerabilidad ante sequía para los sistemas productivos. Se encuentra un nivel alto para el municipio de Busbanzá, con un promedio de capacidad adaptativa por debajo del promedio de los otros municipios. Como se tuvo para los otros componentes, el nivel de exposición es alto, relacionado positivamente con la valoración para la sensibilidad.Figura 38. Valoración de la vulnerabilidad de los sistemas productivos de la finca ante sequía.La Figura 39 presenta los resultados de la vulnerabilidad total ante inundación, evento priorizado por 10 familias del municipio de Tasco. Se encuentra un nivel de vulnerabilidad medio, con un promedio de 2.2 puntos, aunque para algunos predios supera los 2.5 puntos. El nivel de exposición se ubica en un promedio de 2 puntos, al igual que la exposición. La capacidad adaptativa se ubica en valores entre 1.5 y 2.3, con un promedio de 1.7. Dentro del análisis específico por componente -del cual no se presentan gráficas por brevedad y cantidad relativamente baja de agricultores-, se encuentra que el nivel de vulnerabilidad de los recursos hídricos ante inundaciones percibido por los agricultores es nulo, pues consideran que las lluvias fuertes benefician a este componente. Esta valoración lleva a una subestimación de la vulnerabilidad, la cual alcanza un nivel de 3 en la cobertura vegetal y un promedio de 3 -pero con un rango hasta 4-, de vulnerabilidad de los sistemas productivos ante inundaciones.Figura 39. Valoración de la vulnerabilidad total de la finca ante inundación.De manera similar al punto anterior, la Figura 40 presenta de manera resumida la vulnerabilidad para 5 agricultores del municipio de Corrales, que priorizaron los vientos fuertes. El nivel promedio de vulnerabilidad para este evento se encuentra cercano a los 3.1 puntos, aunque su dispersión es considerable, teniendo predios con puntajes mayores a 3.5. Este nivel se encuentra explicado por la baja capacidad adaptativa.Figura 40. Valoración de la vulnerabilidad total de la finca ante vientos fuertes.De manera similar a lo ocurrido con las inundaciones, la afectación a los recursos hídricos lleva a una subestimación del nivel de vulnerabilidad; para los sistemas productivos, el valor promedio es de 3.9 (ver Figura 41).Figura 41. Valoración de la vulnerabilidad de los sistemas productivos de la finca ante vientos fuertesEn el taller 3 los participantes identificaron las medidas de adaptación que más se adaptaban a sus necesidades, teniendo en cuenta los resultados de los eventos que más afectación generaban en su finca y el análisis de vulnerabilidad. De las prácticas priorizadas, realizaron la identificación de tiempo de ejecución y costo.La Figura 42 presenta las prácticas que fueron priorizadas por los agricultores. familias, correspondientes al 99% de los participantes, identificaron la práctica de cosecha de agua con reservorio con una de las medidas a incluir dentro de su plan predial de adaptación; le siguieron cercas vivas, con 46 agricultores que representan el 66% del total y huerta casera, con 41 agricultores (59%). Otras medidas como la elaboración de biopreparados (24), drenajes (15), siembra de otros cultivos (14) también fueron incluidas por los agricultores.La Tabla 1 presenta la priorización de prácticas por municipio. Para el municipio de Betéitiva, 17 familias que corresponden al 100% de la población participante, priorizó la cosecha de agua con reservorio dentro de su PPA. En lo que respecta a cercas vivas familias (82%) la priorizaron, seguida de huerta casera con 11 familias (65%). Para el municipio de Busbanzá, 12 familias (100%) también priorizaron la medida de cosecha de Prácticas priorizadas agua con reservorio, aunque en dicho municipio, le siguió muy de cerca la implementación de huerta casera, con 10 familias. En los municipios de Corrales y Tasco, el comportamiento fue similar, con un alto porcentaje de familias (93% y 100%) interesadas en implementar cosechas de agua con reservorios; las cercas vivas y las huertas caseras también constituyen un ítems importantes. Al finalizar el ciclo de talleres con los agricultores participantes, la información recolectada en cada uno de los pasos fue sistematizada y analizada, como se expuso en los resultados de pasos anteriores. Con todos los insumos necesarios, se realizó la compilación de un Plan Predial de Adaptación a la variabilidad climática para cada una de las 70 familias participantes. La Figura 43 muestra las 2 primeras páginas de la cartilla entregada a cada familia. En la primera parte, se presenta la información general de la familia, con una imagen de los productores participantes; adicionalmente, se presenta una breve introducción con los antecedentes del proyecto, los logros alcanzados y el objetivo del Plan Predial de Adaptación.En la segunda página, se presenta la imagen área de la finca, junto con el trabajo realizado por los participantes en el primer taller, donde identificaron la distribución actual de cada componente de su finca. Adicionalmente, se presenta el mapa de la finca soñada, una actividad realizada durante la primera fase del proyecto, en la implementación de la metodología PICSA, el cual fue retomado en la construcción del PPA.Adicionalmente, la segunda página del PPA presenta el análisis de vulnerabilidad predial para cada uno de los eventos priorizados; se presenta la valoración de la exposición, sensibilidad, capacidad adaptativa y vulnerabilidad para cada uno de los componentes (cobertura vegetal, recurso hídrico y sistemas productivos).La Figura 44 presenta las páginas 3 y 4 del Plan Predial de Adaptación. La página 3 inicia con una breve explicación del análisis de vulnerabilidad, con el objetivo de que el agricultor tenga presente aquellos eventos a los que se encuentra más expuesto y lo necesario para aumentar la capacidad adaptativa. Luego, se presenta cada una de las fichas de las prácticas de adaptación; cada ficha corresponde a una de las prácticas priorizadas por la familia y presenta información sobre qué evento climático adverso busca aumentar la capacidad de adaptación. Además, cada ficha presenta una estimación del tiempo y presupuesto necesario para implementar la práctica. Finalmente, la página 5 presenta un resumen de las prácticas priorizadas, su estado de y la fecha estimada de finalización de la implementación.Al desarrollar la formulación del Plan Predial de Adaptación con cada uno de los agricultores, se evidenció la necesidad de implementar un portafolio particular para disminuir la vulnerabilidad ante eventos climáticas. Dicho portafolio -basado en las prácticas identificadas por cada familia-contiene entre 2 y 3 medidas a corto y mediano plazo, que ayudarían a aumentar la capacidad adaptativa. Algunas de estas prácticas no son complejas de implementar; otras, en cambio, requerían un esfuerzo económico que la mayoría de las familias no podían realizar.Por esto, de manera convenida con Maurel & Prom, La Alianza planteó a los agricultores la posibilidad de cofinanciar la implementación de algunas de las prácticas, como un reconocimiento a su compromiso con la sostenibilidad. Se acordó con ellos la selección de las prácticas priorizadas y la implementación paulatina, con apoyo presupuestal por parte del proyecto, donde cada familia contribuiría con una contrapartida en tiempo de trabajo, alistamiento de espacios, compromiso de mantener en buen estado las prácticas e implementar aquellas visualizadas a largo plazo.Dentro del desarrollo de los talleres para la formulación de los Planes Prediales de Adaptación, se confirmó que el evento climático que genera mayor vulnerabilidad en la totalidad de las fincas es la sequía. El retraso en el inicio de lluvias y las precipitaciones con menor intensidad, ocasionan problemas en el desarrollo de los cultivos y actividades pecuarias, generando pérdidas económicas y restricciones en la seguridad alimentaria de las familias. Un total de 68 familias -de las 70 participantes en esta fase del proyecto, pues se adhirió una familia más en Tasco-identificaron la necesidad de contar con una medida de adaptación que les permita recolectar agua para suplir los déficits hídricos en épocas secas. Por esto, el proyecto acordó cofinanciar la implementación de esta medida para los predios de las 68 familias. Dependiendo de la necesidad de cada familia, la extensión de su finca y las preferencias del participante, se planteó la posibilidad de proveer cada finca con un reservorio tipo Zamorano de 10 mil litros o un juego equivalente en valor de 2 tanques plásticos de 2 mil litros de capacidad cada uno. Se le dio la oportunidad a cada familia de decidir cuál de las opciones se ajustaba mejor. Un número reducido de familias en el municipio de Tasco (4 familias) decidieron dar uso solamente a un tanque de 2 mil litros, por el tamaño de la finca y/o la presencia de otros tanques de menor capacidad. Por esto, la cantidad de insumos entregados fueron. Se mencionó que 68 de las 70 familias recibieron un reservorio tipo Zamorano o tanque para realizar almacenamiento de agua. Las otras 2 familias prefirieron otras opciones. Una familia del municipio de Betéitiva ya contaba con un reservorio en tierra que tenía fisuras y filtraciones; solicitaron al proyecto la provisión de una geomembrana para cobertura del dicho reservorio. Otra familia ya contaba con un trabajo adelantado para la elaboración de pozos para obtención de agua. Se acordó con los participantes cofinanciar estas adecuaciones, que incluyó excavación y revestimiento, por un valor equivalente al costo de los tanques entregados a otras familias. Finalmente, otra agricultora ya contaba con un reservorio en tierra de gran tamaño, con ella se acordó realizar trabajos de adecuación cofinanciados por el proyecto, consistentes en mano de obra y alquiler de retroexcavadora.Como medida complementaria a los reservorios de agua, se estableció que la cosecha de agua utilizando techos y pendientes era la mejor opción para garantizar la sostenibilidad, sin realizar afectaciones a fuentes hídricas o incurrir en faltas ambientales.Para la implementación de las cosechas de agua, algunas familias contaban con elementos como canales y tubos. Sin embargo, la gran mayoría de participantes, por las características comunes de las viviendas en la zona, no contaban con canales en sus techos, que permitieran la canalización del recurso hasta el reservorio. Por esto, se acordó cofinanciar la compra de canales para que los agricultores puedan instalar en sus techos. Para esto, se han elegido canales en zinc galvanizado, los cuales se encuentran dentro del presupuesto y pueden soportar la cosecha de agua de los techos; se entregará a cada agricultor la cantidad equivalente a 12 metros lineales, con los respectivos soportes para instalación.Figura 47. Cosecha de agua.Como medida adicional de adaptación a los eventos climáticos y de apoyo a la seguridad alimentaria, muchos de los agricultores seleccionaron las huertas caseras como una medida óptima, que ahora puede tener mejor desempeño al contar con recurso hídrico almacenado. Se solicitó a los participantes alistar un espacio mínimo de 25 metros cuadrados y se consultó por los cultivos de interés. Predominaron las hortalizas y algunas leguminosas; en este sentido, se enviaron a campo alrededor de 10 kilogramos de semilla certificada de frijol BIO-102, desarrollado por el programa Harvest Plus con sede en CIAT, el cual además de ser bio-fortificado, se adapta a la altura y condiciones de la zona. Adicionalmente, se adquirieron semillas y plántulas de diferentes especies de hortalizas, que fueron entregadas a cada una de las 70 familias participantes del proyecto, a cada productor se le entregaron entre 3 y sobres con las semillas priorizadas. Las semillas entregadas correspondieron a acelga, arveja, avena, brócoli, calabacín, pasto carretón rojo, cilantro, espinaca, lechuga, maíz, pepino cohombro, perejil, remolacha, repollo y zanahoria. En conjunto con las semillas se entregó un rollo de malla a cada familia como parte de la infraestructura de la huerta.Figura 48. Frijol BIO-102 cultivado en Betéitiva.Figura 49. Entrega malla de protección para huertas caseras.De manera global y como resultado de la implementación del TeSAC en los cuatro municipios se identificaron las prácticas de adaptación priorizadas por las familias para hacer frente a la variabilidad y cambio climático. Las prácticas implementadas, que se mencionan en el parágrafo anterior están incluidas aquí en el portafolio global de prácticas. Las prácticas se agruparon en cuatro paquetes de acuerdo con el enfoque u objetivo que abordan:Garantizar el alimento para las familias de los productores es una medida vital para hacer frente a la variabilidad y cambio climático. En la región se han visto alteradas las temporadas de lluvia y uno de los principales efectos es largas temporadas de sequía en las cuales se dificulta la producción de cultivos, huertas y animales. En vista de esto, los productores han preferido comprar los alimentos en vez de producirlos en sus predios, de igual forma han tenido pérdidas en sus cultivos. Frente a esta situación se han planteado varias alternativas de prácticas dentro del portafolio de medidas de adaptación:▪ Cosecha de agua lluvia ▪ Reservorios y tanques ▪ Sistemas de riego ▪ Huertas caseras ▪ Abonos orgánicosEl establecimiento de cultivos es una práctica frecuentemente afectada por condiciones como heladas y sequías en la región, pese a esto los productores y sus familias continúan realizando las siembras que en muchas ocasiones conllevan a pérdidas totales o recuperar solo la semilla invertida. Existe un gran interés de parte de los productores por producir diferentes cultivos y hace parte de sus planes para el futuro, no obstante, la productividad agrícola depende de la disponibilidad de agua. Las prácticas priorizadas para abordar este grupo son:▪ Cosecha de agua lluvia ▪ Reservorios y tanques ▪ Sistemas de riego ▪ Abonos orgánicos ▪ Diversificación de cultivosLa producción pecuaria es una de las principales actividades en la región.Tradicionalmente las familias han tenido ganado bovino y ovino, además cría de conejos, pollos, entre otros. Los efectos del cambio climático repercuten en la producción de animales ya que no se cuenta con pasturas y el agua suficiente para alimentarlos. Entre las estrategias planteadas participativamente se encontró que la producción pecuaria hace parte de un sistema que se beneficia de las prácticas de cosecha y almacenamiento de agua, y riego sino también porque genera los insumos para la elaboración de abonos orgánicos. Entre las prácticas priorizadas para este portafolio se encuentran:▪ Cosecha de agua lluvia ▪ Reservorios y tanques ▪ Abonos orgánicos ▪ Producción de forrajes ▪ Ensilaje ▪ Diversificación pecuariaLa sostenibilidad de los recursos naturales es un tema fundamental para las familias. Todas están de acuerdo con la importancia de conservar los recursos naturales. Entre las prácticas más relevantes en este portafolio se mencionó la reforestación, en algunos municipios como Betéitiva los productores se están involucrando en este tipo de proyectos para iniciar en el corto plazo. De igual forma las cercas vivas tienen múltiples propósitos, entre ellos la conservación de la biodiversidad, el control de animales que buscan alimento en los cultivos y la conservación de humedad del suelo. Algunos productores cuentan con aljibes o reservorios que han sido excavados en el suelo, el mantenimiento de estas prácticas es fundamental para garantizar la protección del agua proveniente de fuentes naturales y garantizar el recurso de manera sostenible. Entre las prácticas priorizadas en este grupo se encuentran:▪ Cosecha de agua lluvia ▪ Reservorios y tanques ▪ Cercas vivas ▪ Reforestación ▪ Mantenimiento de reservorios y aljibesDurante el 14 y 15 de diciembre de 2021 se realizó la reunión de cierre con los productores en cada uno de los municipios con la presencia y liderazgo de los facilitadores. Durante las reuniones se abordó una línea de tiempo a través de la cual se generó discusión sobre cuál era la situación y conocimientos sobre clima y los sistemas productivos en el año de inicio del proyecto, 2019, se indagó sobre qué herramientas tenían los productores para hacer frente a la variabilidad y cambio climático en ese momento. En un siguiente paso de la actividad se confrontaron estas preguntas con el conocimiento que tienen en el presente, que aprendieron durante los 3 años del proyecto, ¿qué han puesto en práctica?, y finalmente, ¿qué medidas de adaptación les gustaría implementar en el futuro?, ¿qué actividades adicionales podrían realizar en el futuro?Figura 50. Línea de tiempo construida con productores de Busbanzá.Figura 51. Línea de tiempo construida con productores de Corrales.Figura 52. Línea de tiempo construida con productores de Betéitiva.Figura 53. Línea de tiempo construida con productores de Tasco.Como resultado de este ejercicio los productores identificaron que en el pasado debían comprar todos los alimentos para el consumo familiar y no tenían la consciencia sobre la importancia de las cosechas de agua lluvia como una medida para hacer frente a la escasez de agua que se presenta en la región. Durante los diferentes talleres analizaron cómo estaban sus fincas y cómo querían tenerlas en el futuro. En el presente tienen mayor interés y conocimiento sobre la información climática, especialmente de variables como precipitación, también comprenden cómo leer la información de precipitaciones con el pluviómetro y de temperaturas con el termómetro, además están en la capacidad de llevar los registros diariamente. Otras herramientas como el calendario agroclimático y el registro de los costos y ganancias en sus sistemas productivos, en general herramientas para una mejor planificación de sus sistemas productivos. Durante el proceso los productores han dedicado más atención a sus cultivos y expresan que se sienten más motivados gracias al acompañamiento que recibieron y la implementación de prácticas como los reservorios, cosecha de agua lluvia y huertas caseras. Una actividad que tiene mucha relevancia para las familias es la huerta casera, las familias afirman que aporta en la reducción de gastos del hogar, de tiempo en compra de alimentos en el pueblo y al mismo tiempo tienen una mejor nutrición y sin agroquímicos.Los productores desean seguir mejorando las prácticas implementadas e implementar nuevas prácticas como la siembra de árboles nativos, sistemas silvopastoriles, compostajes, piscicultura, producción pecuaria, diversificación de sistemas productivos siembra de frutales como gulupa y arándanos y capacitaciones e intercambios entre familias productoras sobre aprendizajes y prácticas de adaptación.De otra parte, durante la reunión también se generó una discusión sobre el portafolio global de prácticas de adaptación identificado en los cuatro municipios. En general, las prácticas fueron comunes para los productores en cada uno de los municipios. A medida que se descubría entre todos cada práctica se hacía mención del grupo al que pertenecía en el portafolio y a la conexión que tenía con las demás prácticas. En primer lugar, la práctica de cosecha de agua lluvia e implementación de reservorios se identificó como una práctica transversal a todos los grupos y como elementos vitales para mantener el sistema. En la discusión abordó la importancia de dimensionar la cantidad de agua con la que se cuenta en los reservorios y qué requerimientos se pueden cubrir con dicha agua, para esto es muy importante contar con sistemas de riego que ayuden a distribuir el agua disponible de la manera más eficiente posible. De las reservas de agua disponibles dependen en gran medida la factibilidad de los diferentes sistemas productivos, tanto en producción pecuaria como agrícola, entre ellos la producción de forrajes, el ensilaje, la diversificación de cultivos y pecuaria, de igual forma las huertas caseras para seguridad alimentaria e intercambio o venta de excedentes. Así mismo, y como parte del sistema, de la producción agrícola depende en gran parte la producción pecuaria, ya que aquí se genera el alimento para los animales y los animales generan materias primas para la elaboración de abonos orgánicos que se reintegran al sistema agrícola. Finalmente, la reforestación y las cercas vivas como prácticas del componente de sostenibilidad ambiental han cobrado mucha relevancia para las familias quienes en su mayoría manifestaron que desean incluir estas prácticas en el futuro cercano.Otras prácticas han sido implementadas por iniciativa propia de los productores como cambios en los sistemas productivos, iniciativas para participar en proyectos de reforestación en Betéitiva, y algunos productores han implementado sistemas de riego artesanales Como se ha expuesto a lo largo del documento, la metodología de los Planes Prediales de Adaptación se aplica para realizar un diagnóstico sobre la vulnerabilidad ante eventos climáticos y posteriormente identificar y priorizar prácticas que permitan a las familias participantes disminuir el riesgo climático. En este sentido, la sección 4 presentó las evidencias de la implementación de prácticas de adaptación priorizadas, las cuales apuntan a disminuir la vulnerabilidad ante eventos como sequías. Este es el caso de la implementación de las cosechas de agua y reservorios, las cuales fueron identificadas y priorizadas por los participantes, con el fin de aumentar su capacidad de adaptación ante los efectos adversos de la sequía, reportada por la mayoría de las familias participantes, con afectaciones importantes en años recientes, generando pérdida parcial o total de cultivos y afectación en actividades pecuarias.En este orden de ideas, la implementación de las prácticas de adaptación -en este caso cosecha de agua y reservorio-contribuye positivamente al aumento de la capacidad adaptativa ante sequía de las familias. De la sección 3 de este documento, se tiene que la valoración de la capacidad adaptativa se daba según los siguientes parámetros:-Alto (3): Implementa una o varias actividades de adaptación, las cuales disminuyen los efectos negativos de los fenómenos meteorológicos o eventos y el impacto de ellos es mínimo.-Medio (2): Implementa una o varias actividades de adaptación, pero estas no son suficientes y los efectos negativos son notorios -Bajo (1): No implementa actividades de adaptación para evitar los efectos negativos En este sentido, las 70 familias que implementaron la cosecha de agua con reservorio con ayuda del proyecto tienen ahora un nivel de capacidad adaptativa alto, pues ahora implementan una o varias actividades adaptación que disminuyen los efectos negativos de la sequía y mitigan su impacto. Por esta razón, se realizó la simulación de la vulnerabilidad ante sequía de cada una de las familias, considerando el aumento del nivel de capacidad adaptativa; se ha resaltado en varias ocasiones que dicho componente en la vulnerabilidad es el susceptible de intervención, pues la exposición y sensibilidad son, en su mayoría, inherentes a la ubicación y condiciones geográficas.La siguiente figura presenta los nuevos resultados de la vulnerabilidad total promedio para cada uno de los municipios. En primer lugar, es necesario aclarar que, para el componente de capacidad adaptativa, no se observa una caja sino la \"x\" que representa el promedio, pues al subir dicho componente de manera uniforme al mismo nivel de 3 puntos para todas las familias, la dispersión es cero y todas se ubican sobre el promedio. Se observa entonces unos niveles generales de vulnerabilidad bajos, cercanos a los dos puntos (vulnerabilidad media/baja). La siguiente tabla presenta la comparación entre los niveles de vulnerabilidad ante sequía antes y después de la implementación de las medidas de adaptación. Para el municipio de Betéitiva se obtiene una vulnerabilidad de 1.95, la cual es, en promedio, un 37% menor que antes de la implementación; para el municipio de Busbanzá se obtiene una disminución promedio de 44% de la vulnerabilidad ante sequía, pasando de 3.6 puntos a solo 2.02. Para el municipio de Corrales se obtiene una disminución del 37% y para Tasco, el menor nivel de vulnerabilidad con 1.67 puntos, representando una caída del 43%. Se encuentra entonces que, a nivel general, la vulnerabilidad ante sequía se contrajo entre 37% y 43%, logrando que, en promedio, la mayoría de hogares se encuentren en niveles bajo o medio/bajo. A continuación, se presentan los resultados obtenidos para el componente de cobertura vegetal; para el municipio de Corrales la vulnerabilidad se ubica entre 2 y 3 puntos, mientras que para Betéitiva la mayoría de los hogares tienen puntajes entre 1 y 2. Para el municipio de Busbanzá se encuentra una mayor dispersión, con hogares desde los 0.5 hasta 3 puntos; para Tasco se encuentran los menores valores en este componente, con la mayoría de los hogares ubicados entre 0.5 y 1.5 puntos. Al comparar la vulnerabilidad ante sequía del componente de cobertura vegetal, se encuentran cambios positivos -disminuciones-de entre 36% para Betéitiva -pasando de un puntaje de 3 a 1.91 -y 58% para Tasco -pasando de 2.54 a 1.07-. Se resalta que todos los municipios, a excepción de Corrales, ahora presentan una vulnerabilidad menor a 2 puntos, siendo Tasco el de menor puntaje. De igual manera, se presentan los resultados obtenidos para el componente de recursos hídricos, el cual se ve fortalecido por medio de la implementación, al contar con nuevas alternativas de provisión; para el municipio de Corrales la vulnerabilidad se ubica entre 1.5 y 2.3 puntos, mientras que para Busbanzá la mayoría de los hogares tienen un puntaje promedio cercano a 1.9. Para el municipio de Betéitiva se encuentra una mayor dispersión, con hogares que ahora no presentan vulnerabilidad hasta otros con 3 puntos; para Tasco la mayoría de los hogares se encuentran entre 1 y 2 puntos. Al comparar la vulnerabilidad ante sequía del componente de recursos hídricos, se encuentran cambios positivos -disminuciones-de entre 36% para Corrales -pasando de un puntaje de 3.05 a 1.95 -y 52% para Busbanzá -pasando de 3.86 a 1.86-. Se resalta que todos los municipios ahora presentan una vulnerabilidad menor a 2 puntos, con valores promedio entre 1.8 y 1.95 puntos. Finalmente, se presentan los resultados obtenidos para el componente de sistemas productivos; para el municipio de Betéitiva el valor promedio es de 2 puntos, con algunas observaciones por debajo y por encima de este valor. Para los municipios de Busbanzá y Tasco, la mayoría de los hogares se ubican entre 2 y 2.5 puntos.Figura 59. Vulnerabilidad sistemas productivos simulada ante sequía.Al comparar la vulnerabilidad ante sequía del componente de sistemas productivos, se encuentran cambios positivos -disminuciones-de entre 23% para Tasco -pasando de un puntaje de 2.8 a 2.15 -y 37% para Busbanzá -pasando de 3.5 a 2.2-. Se resalta que todos los municipios ahora presentan una vulnerabilidad entre 2 y 2.2 puntos. Es importante resaltar que, si bien los cambios porcentuales son relativamente menores en este componente al comparar con sus pares, es necesario tener en cuenta que los sistemas productivos, al estar relacionados directamente con la actividad productiva, eran los percibidos como más susceptibles ante el evento adverso. En este caso, una disminución de un tercio de la vulnerabilidad implica el cambio de un nivel de vulnerabilidad alto a medio. Se encontró que la metodología \"Manual para la formulación de planes prediales de adaptación a la variabilidad climática\" (Ortega, L, & Paz-B, 2014) se ajusta a las condiciones experimentadas por los pequeños productores, brindando herramientas para la gestión del riesgo, análisis de vulnerabilidad climática e implementación de medidas de adaptación ante la variabilidad y el cambio climático.La zona de intervención (Betéitiva, Busbanzá, Corrales y Tasco, en el departamento de Boyacá), se caracteriza por contar con pequeños productores de cultivos como maíz, frijol, arveja, papa y hortalizas, así como con familias dedicadas a la ganadería doble propósito a pequeña escala.En general, las decisiones son tomadas por los jefes de hogar en conjunto o por la madre únicamente, a excepción del municipio de Corrales, donde el padre de familia domina en este aspecto. El tiempo de las familias se dedica principalmente a trabajo en cultivos, preparación de alimentos, cuidado de ganado y alimentación de especies menores. El trabajo agrícola es realizado principalmente por el padre de familia, mientras que las actividades pecuarias y del hogar son responsabilidad principal de la madre.Los bioindicadores aún siguen siendo utilizados para pronosticar cambios en el clima, aunque se reconoce que no funcionan como antes; los más usados son el comportamiento de las aves e insectos, y algunas señales en el cielo como el denominado \"cerquillo\".Los eventos climáticos que mayor afectación generan son las heladas, sequías, inundaciones y vientos fuertes, los principales daños generados por los eventos son la pérdida de cultivos o de pasturas para alimentar el ganado.Los predios cuentan con niveles vulnerabilidad altos frente a heladas y sequías; las inundaciones y vientos fuertes también presentan niveles considerables, aunque afectando solo los sistemas productivos. Los altos niveles de vulnerabilidad se explican por la considerable exposición de la zona ante heladas y sequías, que año a año aumentan en frecuencia e intensidad. A su vez, la baja capacidad adaptativa de los sistemas productivos y predios.Como resultado de los planes prediales de adaptación, se identificó un portafolio con prácticas de adaptación frente a la variabilidad y cambio climático que se agrupa en cuatro paquetes de acuerdo con el enfoque u objetivo que abordan: . Seguridad alimentaria, producción pecuaria, producción agrícola y sostenibilidad ambiental Las practicas priorizadas son: Reservorios y tanques, cosecha de agua lluvia, sistemas de riego, huertas caseras, abonos orgánicos, cercas vivas, reforestación, mantenimiento de reservorios, diversificación cultivos, producción forrajes, ensilaje, y diversificación pecuaria.Las medidas de adaptación implementadas con los productores fueron: Reservorios y tanques, cosecha de agua lluvia y huertas caseras. El proyecto apoyó a las 70 familias que hicieron parte del proyecto con la implementación de 68 reservorios con cosechas de agua y canales para recolección del agua, además de la elaboración de un aljibe y adecuación de reservorios existentes en los predios; adicionalmente, cada familia fue provista con semillas de leguminosas y hortalizas para el establecimiento de las huertas caseras.Los productores identificaron que en el pasado debían comprar todos los alimentos para el consumo familiar y que la huerta casera aporta en la reducción de gastos del hogar, de tiempo en compra de alimentos en el pueblo y al mismo tiempo tienen una mejor nutrición y sin agroquímicos. Hay una mayor consciencia sobre sobre la importancia de las cosechas de agua lluvia como una medida de adaptación y comprenden cómo está su finca y cómo es su finca soñada. Así mismo, hay mayor interés y conocimiento sobre la información climática y están en la capacidad de llevar los registros diariamente. En general herramientas para una mejor planificación de sus sistemas productivos.La implementación de las prácticas identificadas y priorizadas en los planes prediales de adaptación con el objetivo de enfrentar la sequía -siendo uno de los eventos causante de más afectación-tuvo un efecto importante en la disminución de la vulnerabilidad de las fincas. Al implementar cosechas de agua y reservorio, la mayoría de las familias pasaron de no tener ninguna medida de adaptación ante sequía a implementar varias actividades de adaptación, las cuales disminuyen los efectos negativos de los fenómenos meteorológicos o eventos. En este sentido, la capacidad adaptativa promedio se multiplicó, ocasionando que los niveles generales de vulnerabilidad ante sequía disminuyeran entre 30% y 40% de su nivel inicial.Los productores desean seguir mejorando las prácticas implementadas e implementar nuevas prácticas como la siembra de árboles nativos, sistemas silvopastoriles, compostajes, piscicultura, producción pecuaria, diversificación de sistemas productivos siembra de frutales como gulupa y arándanos y capacitaciones e intercambios entre familias productoras sobre aprendizajes y prácticas de adaptación.","tokenCount":"12979"} \ No newline at end of file diff --git a/data/part_3/7192580778.json b/data/part_3/7192580778.json new file mode 100644 index 0000000000000000000000000000000000000000..2c669f84a2d83beb79f329a67794e93239c1729d --- /dev/null +++ b/data/part_3/7192580778.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"740a82de52c8759fb56486afc2b17936","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/b14ecdac-e2b0-46e1-bd66-f90db1c78850/retrieve","id":"-176833594"},"keywords":[],"sieverID":"f3ee3ac0-98b8-4206-b5a3-1d8c4086521f","pagecount":"1","content":"About 4.1 million farmers grow wheat in Ethiopia. Area coverage is 1.7 million ha. Wheat productivity is low due to diseases (rusts), grassy weeds and poor soil fertility, which is happening due to mono-cropping. Diversification of bread wheat production with high yielding and disease resistant durum wheat and barley is critical to improve food security and income of smallholder farmers.• Farmers produced 137 t of seeds through revolving seed scheme from the project in 2018/2019 season. • Seven cultivars of durum wheat, malt barley and food barley selected from Phase I scaled by partners in 2018/2019 season. • The average productivity of durum wheat (3 t ha -1 ) and both barley types (3 t ha -1 ) was higher than the national average (< 2 t ha -1 ). • The spillover effect benefited 18 additional districts other than the four Africa RISING sites (Table1). • Estimated area covered by partner scaling was 7818 ha in the four zones. • To address soil acidity problem, linseed and food oat were selected by farmers. • Over 1800 farmers and other stakeholders visited PVS, seed production and scaling activities in the four Africa RISING sites.• PVS of food barley cultivars.• Demonstration and seed production of selected cereal (bread wheat, durum wheat, barley and food oat). • Comparison of PVS with crowdsourcing approach using food barley.• Limited resources and access to early generation seeds to provide to community growers. • Weak linkage with industries for durum wheat and malt barley. www.africa-rising.netWe thank farmers and local partners in Africa RISING sites and ICARDA for their contributions to this research. We also thank USAID for its financial support through the Feed the Future Initiative. ","tokenCount":"280"} \ No newline at end of file diff --git a/data/part_3/7196368316.json b/data/part_3/7196368316.json new file mode 100644 index 0000000000000000000000000000000000000000..945a7abdd2e2850d402add709f19f11e6526c5da --- /dev/null +++ b/data/part_3/7196368316.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"3f520700e2b437274352e136606437b5","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/d262cfe7-91fd-4deb-bfab-93e0994fff20/retrieve","id":"1751159993"},"keywords":["Pt~O, . . :::",",:","Jf'\\ A SOL1s/lmpr'tct Area SU'vey Agro\"'lo-ny/ro\" ~\"jre De.¡\"\"\" i oom:..nt"],"sieverID":"aecaeb54-7312-4dd4-8e4d-c72d7568decf","pagecount":"106","content":"If 111 • j-,¡(wi C'f é I / PROFILES OF CIAT RESEARG.-l -1178 \"-/ / ---TA'~-L~~~--' ),'4TENT~-o /ER'/TEW Background Purpo3e or ProFlles Allm \"tton of R~ . . L;our(.esThe \"ProJecl Proflle\" lS deslgned as a brlef outlu;e of each sectlOn or project, the bas1e umt of research headed by a sernor-u;ternatlOnalIn one convement source lt provldes skeletal u;formallon on the Ob]ectlVes, strategles, maJor thrusts and structural resources of each sectlon or pro]ect asslgned slgnlflcant research responslbllttles at CIATThe \"Proftles\" does n01: attempt to descrIbe indIVIdual experlments nor the separate research actlvltles WhlCh are now hsted In the \"Reglster of Current Researcn Actlvltles/Experlments\" For thlS reason lt IS lnte\"1ded as a seml-permanent document to be revlsed cind updated perhaps not more frequently than once ayear, whereas the \"Reglster\" 1S lnteded to be relssued each groWIng seasonSUbjectlve eVaLJatlons on allocatlOn of sectlOnal resources and efforts were obtained from the ma]o\"lty of the sClentlsts \\11 the three maJor programs (Table 1 and 2) These suggest a hlgher Input of lotal sectwnal resources on research actlvltles than esnmated prevlously (77% vs 70% In 1977), wlth a compensatory deerease (5%) tn consultatlon/tnternattOnal cooperatlon However, lt lB unltkely there has been any real change m outreach actlvltles but rather, CIAT sClentlsts may have more accurately estlmate thelr allocatlOn of tlme, efforts and resources At least there appeared to be better agreement between pro]ects and programs than m the 1977 exerClseThe 1978 evaluatlOns on researcn strategles was even more mterestmgThe~e was vlrtually a complete cha\"lge from 1977 when more equlValent ratmgs 'vere glVen to each of the three prlmary strategles (1) ldentlfymg a\"d characterlzmg cOnStralnts = 25%, (2) developmg research methdology = 42%, and (3) dlrect problem solvmg actlvltles '\" 33% (Table 2)The more recent al1ocatlOn estlmates of 19, 12 and 63 percent, respectlVely, are bel1evroto more accurately reflect the prevall1ng sltuatlOn Wlth conslderably more stress on problern solvmg actlvlt1es ThlS may be parlly attrlbutable to a better deflmtlOn and understandmg of the categOrlZatlOn of research strategles, and to the programs themselves ach1evmg a h1gher level of maturlty However, lt 15 also understandable that Beef 15 stlll allocatmg about a thlrd of that program' s efforts to To develop a data bank and tnformatlon retrlevai ane! prmt-out system to m-3ke the flndtngs, or any part of the flndmgs of ti\"e survey, readl\\Y accesslbie to SC1EmtlSts and eeonomlsts The system would tncorporate a \"map\" prtnt-out faClltty, and permlt eros .. eorre\\atLon of dataTo make an tmtlal cllmattC survey of the ImpactArea, and eomputerlze tt Ir) such a way tha! any selected data can be aya l\\able lndependently of lts cross ltnkup wlth landscape and SOl! data 2To Qp/e prlOrlty to the !and c\\ilsstflcatlon of the Ultlsol and OX1SO\\ savanna areas In tr.e flrst stage of the pro]ect, to he\\p Wlth the deve\\opment of research prlOrt IleS for beet ca tU e productlOn, partlcularly the development of reasonab\\e Crtlerla and prtOrltles for g,oass and legume spectes selectlon and development, to be followed by land areas orlg mally, or sttll covered by forests To establlsh cr1terlB for applylng the results of the To study the phYSlologlcal constralnts to yleld and adaptatlon of Phaseolus beans ln the troplCS and subtroplcs wlth speclflc reference to the cropplng systems of Latw Ar'lerlca To ald ln the development of new materlals sUltable for these sys tems Strategles I rdentlfy envlronmental and phYS101og1cal coostralnts to yleld and adaptatlon ln the target area, Ir Evaluate Phaseolus spp germplasm wlth resoect to these constralnts through dlrect observatlOn lO expenmeots at CIAT and elsevlhere and through evaluatl0n of data from lnternatlonal nurserles, Irr Pecommend to the plant breeder5 ln CIAT speclflc plant types WhlCh wl11 be the m05t approprlate target for selectlon for the bean cropplng systems ln Latln Amerlca. To provido sn economic input into the design and evaluation of improved caSSnva technology so as to ~ncrease productivity, improve adoption, cspecially among resource-poor farmers, and contribute to an equitable ","tokenCount":"652"} \ No newline at end of file diff --git a/data/part_3/7212737363.json b/data/part_3/7212737363.json new file mode 100644 index 0000000000000000000000000000000000000000..c8d4a53d83b674f128586199e5a4c24ac211f12c --- /dev/null +++ b/data/part_3/7212737363.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"cd45f56984a626fd8e8637476339041a","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/03fd9bd8-3626-4dae-81a7-109975ad7e62/retrieve","id":"1707943801"},"keywords":[],"sieverID":"b6c86d5a-ab42-49b5-ac8b-6445574d3c2c","pagecount":"130","content":"We would also like to thank:-The CPWF secretariat, coordinated by Jonathan Woolley and Alain Vidal , with Sharon Perera, Pamela George, Marene Abeyesekere, Lalith Dassenaike, who have all been very helpful -The BFP central, Simon Cook, Maya Rajasekharan and Tassilo Tiemann, who have developed lots of energy and provided useful ideas, comments and much more to support our work, and Myles Fisher who transformed our BFP special session in the World Water Congress in Montpellier into a journal issue.-Rui Luis Silva, Innocent Ouedraogo and Florence Ardorino in ECOWAS-WRCC -Robert Dessouassi and the Niger Basin Authority -The national institutions and services in the ministries of agriculture and hydrology in the basin countries -Our IRD and G-eau colleagues, in France, Mali, Niger, Benin, Cameroon and Burkina Faso have provided help to many aspects of the project. IRD has contributed in kind to its total cost -Too many other individuals have directly contributed to the project, it is not possible to list them here but they have their share in the completion of the BFP NigerThe Challenge Program on Water and Food (CPWF) contributes to efforts of the international community to ensure global diversions of water to agriculture are maintained at the level of the year 2000. It is a multi-institutional research initiative that aims to increase the resilience of social and ecological systems through better water management for food production. Through its broad partnerships, it conducts research that leads to impact on the poor and to policy change.The CPWF conducts action-oriented research in nine river basins in Africa, Asia and Latin America, focusing on crop water productivity, fisheries and aquatic ecosystems, community arrangements for sharing water, integrated river basin management, and institutions and policies for successful implementation of developments in the water-food-environment nexus.Challenge Program Water and Food: Basin Focal Project NIGER Faced with increasing food and water insecurity as a result of climatic and anthropogenic (demography, land use) changes, the CGIAR Challenge Program for Water and Food commissioned research in 10 river basins to study the links between water, food and poverty. Looking at the Niger river basin, we carry out a diagnosis of the hydrologic and agronomic potential, before attempting to identify how good agricultural water management may reduce vulnerability in the region, and preserve local ecosystems. Major future threats and opportunities, as well as the influence of institutions on water and agricultural development are discussed.The study indicated that while many technical solutions are available and identified, institutional issues as well as generalized poverty undermine their sustained uptake by communities. Further research is required in order to determine how to overcome socio-economic and institutional issues.Each report in the CPWF Project Report series is reviewed by an independent research supervisor and the CPWF Secretariat, under the oversight of the Associate Director. The views expressed in these reports are those of the author(s) and do not necessarily reflect the official views of the CGIAR Challenge Program on Water and Food. Reports may be copied freely and cited with due acknowledgment. Before taking any action based on the information in this publication, readers are advised to seek expert professional, scientific and technical advice.This report is to be cited as: Clanet, J.-C. and Ogilvie, A., 2009 -Basin Focal Project Niger. CPWF Project Report series, Challenge Program on Water and Food, Colombo, Sri Lanka, 130p. Figure 8: Monthly difference between rainfall (P) and potential evapotranspiration (ETP) in 1994, for half degree squares. Light blue: PE>P; dark blue: P>PE. ..... Figure 9: Monthly average volumes (in billion of m 3 ) . ................. Figure 10: Rainfall index over the River Niger basin (Paturel et al., 1997) 33: Amount of rangeland (total area-cultivated area) over total area. .... Figure 34: Livestock water productivity (maximal values using RUE range) ...... Figure 35: Livestock Water Productivity (minimal values using RUE range)....... Figure 36: Influence of legal pluralism on Water productivity (Caron, 2009) ..... Figure 37: Factors affecting Agricultural Water Productivity (Caron 2009) ........ The Basin Focal Project Niger was one of ten projects commissioned by the CGIAR Challenge Program Water and Food to study the links between water, food and poverty at the basin scale. A research for development programme, the CPWF notably aimed to \"to alleviate poverty and enhance food, health and environmental security through improvements in agricultural water management\". Organised in 6 work packages gathering researchers from Europe, Africa and Australia, the BFP covered issues of water availability and access and agricultural water productivity, but also analysed institutions, interventions and water poverty aspects.A selection of the highlights of the project which aimed to identify key research questions and recommendations on ways to reduce rural poverty through improvements in agricultural water management are provided below. The full list is provided in the Conclusions and Recommendations section of the report.• After severe droughts in the 1970s and 1980s, rainfall increased after 1993 but levels are still low. Reduced rainfall affected runoff in the basin differently. In the upper basin, runoff deficit was high and more consequent than rainfall deficit, due to the cumulative effect of reduced rainfall on groundwater levels. In Sahelian parts runoff coefficients increased, partly due to reduced rainfall but mainly to increased agriculture and reduced natural vegetation. These variations in climate and river regime are essential to take into account when designing future dams • Climatic scenarios for the Niger basin predicting increased temperatures, variability, dry spells and extreme events as well as reduced rainfall in western parts of West Africa will increase the strain on already vulnerable agriculture.• Agricultural withdrawals already impact on ecosystems such as the Inner Delta and Niger Delta. Extending dry season irrigation will require additional dams and will impact heavily on wetlands and their biodiversity, notably the environmental services and the livelihoods of a million herders, fisherman and traditional rice growers in the Inner Delta. The construction of the Fomi dam will result in the loss of 3700-4900t of fish per yr.• Small scale irrigation is currently more water efficient and recommendations for its sustainable and equitable expansion should be examined • Fisheries are rarely included in national or pro-poor policies because their importance has not properly been evaluated • Despite possible synergies between farmers and herders (grazing crop residues against manure/fertilizer), conflicts are on the rise and would require the correct implementation of legislation to support pastoralism.• Improvements in rainfed agriculture can significantly reduce poverty thanks to the large population dependant on it. Current farmer strategies to reduce risks (due to rainfall deficit) prevent intensification and solutions to reduce crop failure risk are necessary for farmers to invest in fertiliser and other inputs which are essential to boost yields.• WP provides an indication of water use but interpretation and formulation of recommendations appears complex (especially where water is not scarce or under competition)• WP calculations must be refined due to uncertainties in yield and water use.Return flows and the current other uses of \"wasted\" water must be closely examined to ensure improvements in water efficiency do not negatively affect downstream and other uses• The progressive introduction of new legislation and structures (decentralisation, IWRM, NGO projects) and the continued dominance of customary laws creates a legal pluralism, leading to confusion and conflicts. The change dynamic can however result in positive institutional innovations, notably the increased recognition of women, youth or minority groups often discriminated against under traditional law.• Land tenure is affected by the legal pluralism and reforms favouring individualized tenure and land titles. New participative and communal land titling systems may help protect the tenure rights of the poor• The analysis of spatially referenced child mortality, child morbidity and the wealth index identified three major poverty hotspots in the Niger basin, situated in Southern Mali and the Inner Delta, North East Burkina Faso and North West Nigeria • Education and access to improved water quality are consistently statistically correlated with the poverty indices in these hotspots. These variables are relatively stationary across the study area and can therefore be addressed with whole of catchment scale policies with less attention to regional differences.• Projected dam building will inherently produce negative impacts downstream.Tradeoff analysis must be undertaken in consultation with local stakeholders to ascertain which element must be favoured (hydropower, irrigation, fisheries, ecosystems…) and how to minimize negative impacts.• The increase in basin population from 95 million in 2005 to between 186 and 384 million according to the scenarios will lead to greatly increased demands on natural resources and increase vulnerability of rural poor communities. Future population trends depend essentially on the speed of fertility decrease, which currently exceeds 6-7 children per woman and in countries like Mali is not decreasing, leading to an increase in the population growth rate.The Basin Focal Project Niger was one of ten projects commissioned by the CGIAR Challenge Program Water and Food to study the links between water, food and poverty at the basin scale. A research for development programme, the CPWF notably aimed to \"to alleviate poverty and enhance food, health and environmental security through improvements in agricultural water management\". Faced with increasing food and water insecurity as a result of climatic and anthropogenic (demography, land use) changes, the BFPs were also asked to look specifically at the issues of water productivity in the basin, in order to reduce the strain of agriculture on water resources in the coming years.Organised in 6 work packages gathering researchers from Europe, Africa and Australia, the BFP covered issues of water availability and access and agricultural water productivity, but also analysed institutions, interventions and water poverty aspects. A final 6 th work package was in charge of creating a knowledge base, to compile and manage the data, reports and maps produced by the project.Spanning 9 countries and over 1 200 000 km², the Niger river basin presents a variety of diverse and complex issues. A large transboundary basin supporting over 95 million people, it is characterised by extreme rural poverty. The United Nations Human Development Index, a composite ranking based on national income, life expectancy and adult literacy rate, ranks all of the Niger Basin countries in the lowest quintile of countries. Basin countries suffer from a generalised state of underdevelopment (roads, electricity, health, water supply) as well as insecurity and corruption issues.Often portrayed as water poor notably by the Water Poverty Index, the basin is above all faced with economic water scarcity. Looking at water availability, we see that the basin covers a wide range of agroclimatic zones, from over 4000mm in the Extreme South to less than 400mm (0mm some years) on the fringes of the Sahara desert. While a quarter of the basin is under Sahelian or Semi-arid climate, in the rest of the basin, south of 13°N, rainfall exceeds 700mm and is broadly sufficient for rainfed agriculture.Difficulties arise due to the spatiotemporal variations in rainfall and its effect on flows. The Niger river is highly dependant on rainfall and as a result presents high seasonal and fairly high interannual variations. Rainfall is very concentrated in the year, leaving northern regions of the basin with very short growing seasons (2-4 months) and in the South, short dry spells or excess rainfall can cause crop failures. Decreased rainfall in the 1970s and 1980s caused a shift in isohyets and devastating droughts in the Sahel region. Runoff deficit was highest in the Upper Basin and more consequent than rainfall deficit, due to the cumulative (memory) effect of reduced rainfall on groundwater levels. In Sahelian parts of the basin runoff coefficients increased, partly due to reduced rainfall but mainly to increased agriculture and reduced natural vegetation, leading to higher flood peaks, erosion, sediment transport and dam silting. These variations in climate and river regimes must be borne in mind when dimensioning the projected dams in the basin.Since 1993, rainfall is on the increase again, but future climatic changes cast uncertainties on future water resources. Simulations have been carried out for the horizon 2050 with the HadCM3 model and A2 scenario. According to this GCM/scenario, there would be a slight decrease in rainfall but an increase in runoff over most of the upper Niger river basins in West Africa, but not over the Upper Benue river basins.Agriculture relies predominantly on rainfall (95% is rainfed) and cropping zones have therefore adapted to rainfall and roughly follow isohyets. In the extreme north, land is just sufficient for occasional pasture, heading south we find millet sorghum, then banana, plantain, cassava, yam and finally rice in the south as well as irrigated areas in Inner Delta in Mali, in Niger and Nigeria. Irrigation and blue water use are under developed with only 3% of agricultural land irrigated and river withdrawals representing 1.5% of annual flows. Large perimeters exist in Mali and Nigeria, but traditional systems such as recession flooding, lowland and free flooding dominate in terms of surface area. Farmers and donors now increasingly attempt to control water supply better. A number of small dams exist already in Burkina Faso, Mali, Côte d'Ivoire and are being actively developed as part of NGO and private projects.There is a vast land potential for irrigation, however in terms of water resources, extending dry season agriculture will place strain on water stocks. Without additional dams, it is already not possible to increase dry season irrigation in the Office du Niger in Mali. Dams to support low flows would facilitate this but would also further reduce flows in the Inner Delta, reducing the extent of the flood, affecting livelihoods of a million herders, fisherman and traditional rice growers in the Inner Delta as well as the wetland ecosystems. Current agricultural withdrawals already have an impact on the Inner Delta wetlands of Mali, on the Niger delta in Nigeria and on production of hydroelectricity of the Kainji dam in Nigeria. Nevertheless, faced with food crises and climatic changes, donors are willing to fund the expansion of irrigation and the NBA plans to increase irrigation levels from 265 000 ha to 1,5M ha in 2025, mostly in Nigeria and Mali, increasing withdrawals from 9 billion m3 to nearly 30 billion m3 by 2025.Livestock and fisheries are present across the basin and both provide essential livelihood strategies for millions of farmers/rural poor. 50 000 000 herders breed 138 000 000 livestock units (camels, bovines, small ruminants) across the basin. Production is predominantly extensive and the North-South distribution of livestock is function of their resistance to drought and their aptitude to exploit natural rangelands. There are two major livestock breeding modes: nomadic pastoralism which covers large distances annually and breed large herd of zebus, and the sedentary breeding, typically a few small ruminants and some larger bovines. The former is notably severely impacted by the development of agriculture, which notably restricts access to grazing land and water points.Despite possible synergies between farmers and herders (grazing crop residues against manure/fertilizer), conflicts are on the rise and would require the correct implementation of legislation to support pastoralism.Fishing activity is mainly concentrated around the large floodplains (Inner Delta) or reservoirs (Selingue, Kainji, Jebba, Lagdo). Out of 100 000 professional fishers in the basin supporting roughly 900 000 people, 62,500 are in the Niger Inner Delta and 13,000 in the large reservoirs. Total fish catch in the basin is about 240,000 tonnes per year (estuarine delta not included), with a value of almost 100 million US dollars. It has been estimated that fish represents a significant fraction of the animal protein in Africa, with 40% in Nigeria and 49 % in Cameroon. National or pro-poor policies have not, up to now, taken into account the fisheries sector, partly because their importance has not properly been evaluated. The projected demographic increase as well as the construction of dams and water withdrawals will exert increasing strain on fishers. Fish culture in ponds, around irrigated perimeters, and in cages in reservoirs can constitute a valuable solution to perturbed fisheries, however the communities presently involved in fishing are poorly prepared to manage this new activity.Calculated values of WP in irrigation show that values are low 0.14 and 0.67 kg/m3, partly due to low yields, excessive withdrawals and water wastages. Improvements are possible but will require significant awareness raising as countries currently don't recognise the need to reduce water consumption. Plans to extend the Office du Niger may in part reduce water wastage as the density of plots will increase and therefore transport losses will decrease. However an increase in dry season agriculture which consumes more water due to higher ET will go against WP increases. Market gardening activities in dry season have a much greater WP than rice, thanks to a high value crop and less water wastages. Small scale irrigation where users pay for fuel to pump their water are more water efficient, however its expansion also implies more dry season withdrawals. Recommendations to develop small scale irrigation in a sustainable and equitable way should be examined.Whatever type of irrigation, substantial yield increases are accessible without excessive investments, as farmers gain in experience and the industry becomes more organised. WP calculations should also be refined, as yield statistics should be independently verified, withdrawals data is scarce and return flows poorly quantified. Studies must assess whether return flows contribute to river flow, groundwater recharge, or are harvested by nearby farmers, and similarly the production of grasses and banana plants planted and cropped in drainage canals must be quantified.In fisheries, correlations between flood level and fish production on one hand, and inflow and flood level on the other, allow us to derive a marginal WP in the Inner Delta where a reduction of 1m3/s during the flood period reduces fish catch of the next year by 28 tonnes. Fisheries therefore appear highly vulnerable to changes in rainfall but also impoundments (dams) and abstractions. WP in aquaculture could be calculated but as traditional fishing is a non water consumptive activity, only a marginal FWP can be calculated.The full calculation of LWP requires data which needs refined notably amounts grazed and water evapotranspired by fodder and crop residues. Water productivities were calculated from theoretical average water consumption for animal feed using rain use efficiency. The order of magnitude of LWP is relatively low (0.002 to 0.05 kg per m3 water) which seems logical considering the place of herbivores in the trophic chain. WP should also be calculated using kJ or $ in order to reflect the increased value of meat over certain crops. The best water productivities are situated in the Sahel and the lowest in the zones above 1200 mm rainfall.Similarly to rainfed WP, in extreme zones, the values of LWP are less intuitive and more complex to interpret. Indeed low LWP in southern latitudes does not reflect poor performance, but simply excess water, which when looking at livestock in isolation appears wasted. In northern latitudes, livestock may be the only possible use of the biomass and hence low water productivity values may not necessarily be representative of a poor performance or productivity. Eitherway, to interpret water productivity it is necessary to go back to the maps spatialising the numerator and denominator. Options to improve productivity and water productivity include a better health and vaccination coverage, commercialisation of crop residues and animal by products and better selection of shrubs and trees for use as fodder. Maps of rangeland also reveal that there is everywhere a great availability in natural rangeland, contrary to what the conflicts between livestock and agriculture infer.The order of magnitude of rainfed water productivity is around 0.1 kg/m3, around 10 times lower than under temperate climates. Within a narrow isohyet band, WP varies according to yields, however, in interclimatic zones, interpretation of RWP becomes more complex and leads to paradoxes. High WP could imply that planners should concentrate agriculture in these water efficient areas, when water resources become scarcer. However if high WP occurs only because of the very low rainfall and yields are low, then this does not imply a good investment in agriculture to reduce poverty and food insecurity. Conversely, where yields are high but where rainfall is high, WP will be low implying that water is underused. Interpretation is therefore complex and requires referring to both numerator and denominator, i.e. yield and rainfall maps. WP can provide an additional parameter in the agricultural system but does not constitute a sole indicator by which to measure performance and formulate decisions. Standard definitions and methodologies for WP are also required to enhance the ability of WP to allow comparisons.WP results are of interest to the basin planner who wishes to know where excess water could be harnessed (for other uses potentially) but they don't reveal whether that excess water should or could be better used for agric, or whether it is available for other uses. Issuing recommendations on how to exploit this water requires a complete understanding of the agricultural limitations as well as an assessment of the current uses and value of this drained water. WP must indeed consider the other uses of water, as water not used by agriculture, may already be used by other parts of the system (groundwater recharge, downstream users, local climate regulation, ecosystems) and therefore improving efficiency in agriculture to reduce losses may be reducing available water elsewhere.Overall to improve RWP it is clear though that water is rarely the limiting factor and indeed improvements in nutrients are required. Even to reduce dry spells, SI is shown to have a very limited influence unless coupled with nutrient enrichment. Combining these could provide an interesting solution/investment, as current strategies of west African farmers are to reduce the risk of crop failure and therefore resort to extensive agric with very low or no inputs. Interventions aimed at increasing fertilizer inputs, are rarely sustainable notably due to the fear of crop failure. Therefore SI could help to reduce the risk of crop failure, and in parallel, promote the increase use of fertilizer. Otherwise four main strategies exist: increase the rainfed production area, increase land productivity of the rainfed agriculture (independently of water), develop water efficiency where it is scarce (essentially north of 700 mm for millet and sorghum) and increase plant tolerance to water excess.Partly due to its importance at the regional level (transboundary water dependence, 91% for Niger), the continued authority of traditional chiefs but also the influence of formal colonial powers and development projects, the Niger basin presents a complex institutional and political context. The poor performance of agriculture despite significant hydrologic and agronomic potential appears influenced by the governance of water and land resources, as institutions determine incentive structure of the stakeholders and affect their behaviour (Ostrom 1990, North 1990, Runge 1992). A case study by WP4 around the building of the Talo dam in Mali confirmed the marginalisation of women and young people as well as breeders who lose access to water and land for cattle.Despite efforts to develop IWRM at the basin scale partly through the Niger Basin Authority or ECOWAS, water management in the basin appears fragmented and resources are not yet managed adequately. At the national level, institutional reforms such as decentralization and IWRM notably encouraged by former colonial powers have sometimes only begun and have yet to be fully enacted, partly due to the lack of funds, capacity etc. In some cases, it is also simply from lack of application of the regional policies etc, or that national policies don't cover certain aspects/situations (land and water).While the new legislation is not passed or certainly implemented, customary laws remain dominant but this overlap of new legislation and structures creates a legal pluralism. New structures are created by decentralization reforms and other state interventions and policies but also through participatory governance requirements (IWRM principles) and development projects (grassroots NGO's Developments programs) who create their own authorities and committees (e.g. to manage wells etc). The dynamics between these structures create a change dynamic, which is susceptible to weaken traditional authorities and institutions. It also makes arbitration more complex, and can lead to land and water governance problems and conflicts. Traditional law varies per ethnic group and community and in some cases legal pluralism results in positive institutional innovations, notably the increased recognition of women, youth or minority groups often discriminated against under traditional law.Water rights are greatly embedded in the land rights in most of the customary tenure systems, hence land tenure security also conditions the secure access to water resources and therefore investments in agriculture. The legal pluralism is seen as one of the main cause of agriculture productivity stagnation and rural poverty, due to the insecurity it creates in terms of definition, allocation and enforcement of land rights and consequently for the dependant water rights.Formal land titling is often lacking and land tenure reforms often threaten existing informal land tenure agreements and fail to recognise the communal tenure as viable and economically efficient. New \"bottom up\" and participative land titling systems, in line with the commitment to decentralisation, are required to help to protect the tenure rights of the poor. In general, innovation is needed to design local systems to secure water and land access and property rights, rather than attempting to replace it with systems \"imported\".Institutional indicators analysed for this project notably reveal the extent of this reliance on traditional collectively owned land and the low level of land security (except in Chad, Nigeria and Niger). Further analysis of the institutional characteristics of the basin countries also highlights the lack of homogeneity between the countries, despite tendencies to regroup them as \"informalfragmented\".Water poverty occurs when people are either denied dependable water resources or lack the capacity to use them. The lack of a comprehensive metric that reliably captures the multi factorial characteristics of water poverty has led to a raft of measurement techniques, each with advantages and disadvantages. Just like poverty indicators, these require moving from raw data towards a composite aggregated indicator. Such indicators have become increasingly widespread and favoured by decision makers, as they provide a more legible, though often simplified view of the reality on the ground. The added simplicity facilitates communication and comparison, but reduces objectivity and representativity. Indicators which measure a relatively mono-dimensional and objective situation (e.g. childhood mortality rate) may offer the closest depiction of the situation in these communities.Rather than attempting to develop another poverty index, the aim was to assess and develop methods to detect and analyse a hypothetical relationship between water and poverty through statistical methods and poverty mapping. Significant correlations do not imply causality but point towards water resource factors which may influence poverty. To account for a high proportion of subsistence livelihoods and a large non-market, hybrid economy we used child mortality, child stunting and a composite wealth index as poverty metrics. Data was taken from the Demographic and Health Surveys.The analysis of spatially referenced child mortality, child morbidity and the wealth index identified three major poverty hotspots in the Niger basin, situated in Southern Mali and the inner Delta, North East Burkina Faso and North West Nigeria. When assessing the role of water and non water related determinants in explaining the observed poverty distribution, we found that education and access to improved water quality are the only variables that are consistently significant and relatively stationary. They can therefore be addressed with whole of catchment scale policies with less attention to regional differences. The variables demonstrated to be statistically non-stationary (i.e. their influence varies across the landscape) may be more appropriately addressed using a geographically targeted policy approach. TARWR was only occasionally associated with poverty, suggesting that social or institutional factors of water use are more important than water availability. Increased irrigation development and other variables were occasionally correlated with decreases in poverty but were not systematically reliable or significant determinants.Similar studies evaluating the significance of explanatory variables in poverty mapping have found limited correlations between poverty and agro-ecological or socioeconomic determinants. A statistical relationship between water quality and child health poverty measures seems consistent with the vital role given to water and sanitation in alleviating poverty. Improvements in agricultural water management have the potential too to reduce poverty, but the pathway is more complex and the impact therefore less immediate. Indeed beyond reliable water access, the ability to derive profit from water depends on several additional conditions such as access to land, labour, seeds, fertiliser, pesticides, tools and machinery, fuel, storage, transformation processes, roads, markets and political security.Overall, it is difficult to isolate one contributing factor to poverty. Interactions between environmental, social and institutional factors are complex and an evaluation of poverty and its causes requires analysis at multiple spatial resolutions. One must also consider the capabilities (e.g. level of training, diverse income sources, capital and support networks) of a household or community, as these determine whether they will fall or subsist in a state of poverty, not simply the absence, presence or quality of water.Agriculture in the basin faces an array of problems (access to water, poor soil fertility, pests, crop diseases, lack of inputs, access to markets) and is subject to additional threats and challenges, including deforestation, siltation, water pollution, invasive plants and perhaps most importantly climate change and variability, unregulated water development (dam building) and population increase. Improvements in agricultural water management have the potential to reduce poverty in the basin. Successful interventions have been introduced over the years, however solutions to achieve sustained and widespread impacts on rural poverty are still lacking.Recommended interventions are highly contextual and require rigorous analysis for each watershed in the basin. These include: developing infrastructure (wells, reservoirs), multiple use systems (notably integrating livestock and fisheries with agriculture), adapt crop demand to water supply & vice versa (sowing dates, water harvesting, supplemental irrigation), drought tolerant crops, fertiliser use etc. Improvements in rainfed agriculture can have significant impact on poverty reduction and food security due to the large population dependant on it. Current farmer strategies to reduce risks (due to rainfall deficit) prevent intensification. Solutions to reduce the risk of crop failure such as rainwater harvesting, drought tolerant crops etc are necessary if farmers are to invest in fertiliser and other inputs which are essential to boost yields.Farmers also need to be linked to input and output markets, financial services, have access to training, storage, but also secure access to land and water (possibly through communal land tenure agreements). Mitigation strategies such as early warning systems and storage options are required to help reduce the impact of extreme events. Good clear governance is required to ensure water resources are developed in an equitable, participatory and sustainable way.Results from climate change modelling present many uncertainties and contradictions, however on average there is a trend towards: an increase in T°, in variability and extreme events, a later start to the rainy season, more dry spells, and overall more rain in central part of WA and decrease in the West. To model the effect on yields increases uncertainties as we must account for increased evaporation, possible decreased rainfall and increased CO2 fertilisation, but there is little doubt that climate change risks increasing the strain on already vulnerable agriculture.Under the Niger Basin Authority investment plan, several large dams are due to be built. This will have effects on local people but also on people downstream. Various scenarios have been studied in the literature, and all scenarios will inherently have an impact on one element of the system. Tradeoff analysis must be undertaken in consultation with local stakeholders to ascertain which element must be favoured (hydropower, irrigation, fisheries, ecosystems…) and how to minimize negative impacts. Expansion of the Office du Niger irrigation project for instance will result in a decreased flood in the Inner Delta, affecting traditional rice growers, herders and fisheries. Fish production will notably reduce by 8500t/yr. Projected population increase in the basin could well jeopardise current and future development efforts. The basin population estimated around 95 million in 2005 is expected to double by 2050 in the lowest scenario and could be multiplied by 4 if fertility remains constant. Current fertility rates exceed 6-7 children per woman and as mortality has started decreasing, demographic increase rates now exceed 3% per year. More worryingly, in countries like Mali (contrary to Ghana) fertility is not decreasing, resulting in a progressive rise in demographic increase rate. Future population trends will therefore depend on the speed of fertility decrease and the prevalence of pandemics such as HIV/AIDS. Clearly the additional demand on water and food resources to feed up to 300 million additional people added to the projected change in diets, climate change, and water demand for industry and hydropower, will lead to significant pressure on natural resources and ecosystems and increase vulnerability of rural poor communities.Faced with increasing food and water insecurity as a result of climatic and anthropogenic (demography, land use) changes, the CGIAR Challenge Program for Water and Food commissioned research in 10 river basins to study the links between water, food and poverty. Looking at the Niger River basin, we carry out a diagnosis of the hydrologic and agronomic potential, before attempting to identify how good agricultural water management may reduce vulnerability in the region, and preserve local ecosystems. Major future threats and opportunities, as well as the influence of institutions on water and agricultural development are discussed.Situated in West Africa, the Niger river with a total length of 4200 km is the third longest watercourse in Africa after the Nile and Congo/Zaire. Spread across ten West African countries and spanning from hyper-arid to subequatorial climate, the basin covers a surface area of 2,170,500 km 2 making it the 9 th largest in the world (Showers, 1973). The northern section of the basin, which extends towards the Sahara desert and into Algeria, is considered hydrologically inactive.The Active basin covering 1,272,000 km 2 will be used for the purpose of this project. The nine countries sharing the active basin are members of the Niger Basin Authority (NBA): Benin, Burkina Faso, Cameroon, Chad, Côte d'Ivoire, Guinea, Mali, Nigeria and Niger. 65% of the active basin is situated in Mali and Nigeria (Table 1). Algeria has an important part in the inactive desert basin. The Niger River starts its journey in the mountains of Guinea and Sierra Leone (50km 2 are in Sierra Leone) before travelling North East towards the Sahara, and during the raining season it forms a vast flood plain in Mali known as the inland Delta. After the Inland Delta it eventually buckles back towards the South East and Nigeria, where it is joined by the River Benue and finally reaches the Atlantic Ocean through the Niger Delta in Nigeria.From the stand point of water resources, the Niger Basin can be divided into four zones with more or less homogeneous physical and geographical characteristics (Figure 1). The Upper Niger Basin; it is found in Mali, Guinea, and Ivory Coast. It covers a surface area of 257 000 km 2 out of which 140 000km 2 are situated in Guinea, serving as the watershed and is seen as the portion which can be used to partially regulate water flow through out the length of the river.The Inland Delta; Entirely situated in Mali, it covers a rectangular area facing south west and north east with a length of 420 km and a width of 125 km between Ke-Macina and San in the south and Timbuktu in the north. It has a surface area of 84000 km 2 and comprises four agro-ecological zones: the living delta, the middle Bani-Niger, the dead delta and the lakeside zone between Gao and Timbuktu. It accounts for almost all of the rice cultivation which is the staple food in Mali. This is done thanks to the Markala Dam. The first two sections display an endorheic behaviour; whereas the total annual mean flow entering the Niger Inner Delta is estimated at 46 km 3 , the mean annual flow is only 33 km 3 at Taoussa, immediately after the inner delta, which can reach 30,000 km² in flood season. Within the Middle Niger, the river loop receives 6 tributaries from Benin and Burkina Faso. The mean annual flow entering the Lower Niger is 36 km 3 , but with the contribution of its main tributaries (above all the Benue River), the mean annual flow entering the sea at the mouth is 180 km3.The Atlantic monsoon divides the climate in two seasons: dry season and wet season. Their relative lengths correspond to variations in rainfall and temperature. These values progress following a North South gradient between the Atlantic Coast and the fringes of the Sahara desert. Spatial rainfall distribution over the basin is relatively homogenous on East-West axis but vary from a few mm of rainfall per year (to zero mm some years) in the Northern reaches of Mali and Niger to more than 4000mm in Southern Nigeria/Cameroon. Average values of isohyets enable us to identify six major climatic zones (Figure 2). Apart from the most southern coastal areas, all climates with unimodal rainfall patterns are subject to annual spatiotemporal variations capable of affecting agriculture due to water excess or shortages. The River Niger basin suffered an important rainfall deficit in the 1970s and 1980s, which occurred over the whole basin. Rainfall-runoff graphs over the last century in the Upper Niger basin reflect well the major droughts (Figure 3). Though rainfall is on the increase again since 1993, rainfall patterns are erratic and still affected by more severe drought periods. Short dry spells of a few days provide further difficulties and uncertainties in rainy season agriculture.N ig e r à K o u lik o ro (Mahé et al 2009) From the fringes of the desert to the Atlantic mangroves of the Niger delta, the Niger river flows through a large diversity of biotopes. These can be categorised as follows (Table 2): Through the combined effect of crop growing, nomadic herding, reduction of fallow period, erosion, and repeated droughts north of the 13th parallel, these ecosystems are eroding. In the tree rich fallow zones, subsist a number of large rangelands maintained by village communities (Milleville, 2007). These contain shea butter trees, parkia biglobosa (for soumbala), gum tree, silk-cotton tree, etc and offer substantial and even profitable harvesting opportunities to populations.Population in the Active Niger River Basin is estimated at 94 million people in 2005 (calculated using SEDAC GPWv3). Due to a very high fertility rate, the current population growth rate in the basin is estimated at 3.2% (Bana and Conde, 2008, Bakiono, 2001, Guenguant, 2009) and demographers estimate that the population could double by 2025. Populations of most countries in the basin increased by 50% between 1990and 2005(Tabutin et Schoumaker, 2004.) Like many parts of sub-Saharan Africa, the demographic transition has not been completed and there are concerns that fertility rates will not drop as usual, leading to fears of a population reaching 300 million by 2050 (Figure 4). The weight of this future population could well jeopardise current and future development efforts. Population density in the basin is high compared to national averages (up to 4 to 5 times greater), as populations gather along the Niger River, their lifeline. In Mali 70% of the population is concentrated along the river. Population densities also reproduce the distribution of humans in the past centuries. Desert fringes are lowly populated, less than 1hab/km², but between the 11 and 13th parallel, there is a band of high density, a vestige of the ancient Sahelian empires which controlled the transaharian routes until the contemporary period (Fage and Tordoff, 2002). Along the Niger river the ancient cities of Bamako (Mali) and Niamey (Niger), have become modern capitals and their populations have grown from a few thousand inhabitants to several million over the past fifty years. The second highly populated band stretches between the towns of the coastal states (Port Harcourt, Lagos), important market/export towns since centuries for all central Africa. 71% of the population lives in Nigeria.Population is predominantly rural (64%), however this is changing rapidly and by 2025 the majority may live in the cities. The urbanisation is fuelled by a massive rural exodus, as well as a century old migrations from inland areas to coastal areas (Pourtier, 1998) and sustained by recent political and climatic crises. This urbanisation modifies radically the relation of people to land, creating a land tenure market. Nowadays the largest divide within the basin society is the ruralurban divide. The former lack virtually everything (electricity, water, health, education) forcing them to rely on traditional mutual aid and NGOsPopulation is young (44% are under 15 years of age), largely illiterate (35% literacy rates, only 18% for women) and with an average life expectancy of 50 years. (Aboubakar, 2003;Bana and Conde, 2008). Though mortality rates have reduced, they remain extremely high and up to 25% of children do not reach the age of 5 (Guenguant, 2009). After respiratory diseases, water related diseases such as malaria and diarrhoea are the major causes of mortality (UNICEF, 2008 ;OMS, 2006). Mortality rates in rural areas exceeds those in urban areas, due to lack of health infrastructures (less than one doctor for 100 000 inhabitants, against 1 for 15 000 in towns (OMS, 2006).The ethno-linguistic diversity in the basin is one the richest in the world with other 400 vernacular languages and five official languages. Though half of these could disappear by 2050, the sheer number of these restricts the circulation and dissemination of information and innovations.Traditional customs, influenced by animist culture, continue to define local activities and practices, with customary assessors for instance taking part in the audience at local tribunals (Clanet, 1994;Vatican, 2009). Some continue to exert considerable influence locally, such as the sultans of Chad, of North Cameroon (Rey Bouba), Niger (Zinder), Mali (Mopti) or the animist kingdoms such as the Ngong de Léré (Tchad) or regencies Bamiléké (Cameroun), of Sokoto (Nigéria) or (North Benin). In these societies, where castes and forms of slavery persist (Amnesty International, 2008), rural areas are part of feudal powers, which do not favour innovation. The most vulnerable, such as women and children, will difficultly take initiatives to allow them to escape their condition (Barrière, 2002.).From lack of centralised administrations implementing their directives, village and land chiefs are able to maintain considerable influence and power (Jacob, 2005). Nevertheless reforms and state decentralisation encouraged by exogenous powers from the 1960s are creating new dynamics, such as the formalisation of women's role in local assemblies which may result in modernisation. Change is notably fragilising certain traditional chief hoods which disappear unable to resolve local conflicts over resources (Schönegg and Martel, 2006;Clanet and Ogilvie, 2009), or benefit from national or NGO development programmes.In addition to local powers, state and regional institutions (CEDEAO, UMOA, CILSS, Club du Sahel) now influence the decisional framework in the basin. They are relatively recent, dating back to the 1960s and have kept close links with the former colonising powers in the aim to promote through bilateral agreements agricultural policies. Subject to conditional aid, they cooperate with development programmes, but often remain unable to sustain or impulse them. After a period of relative weakness, the NBA's new orientations, including disseminating the shared vision process, support to local user groups and crucially its role in allocating Niger river resources, make this institution a key player (Zwarts et al., 2005). Furthermore, internal political tensions and peripheral rebellions undermine central powers and development efforts. In 2008 and 2009, the basin countries experienced: Table 3: Social crises in the basin (IRIN 2008(IRIN , 2009)East and SouthGDP of the basin countries, just as the overall HDI indicator are amongst the lowest in the world (Table 7). Agriculture represents a large part of the Niger River basin GDP; crop production forms 25-35% of the basin GDP, livestock 10-15%, and fishery 1-4%.Agriculturally, there are over 2.5 million ha of arable land, of which only 20% are exploited. Though the Niger basin possesses one of the largest humid areas, 27 large dams (ABN, 2008, BRL, 2008) and over 5 000 small dams (Cecchi, 2009) irrigation is poorly developed, while rainfed agriculture is carried out on 70 to 85% of cultivated areas.Subsistence agriculture represents 78% of total agricultural production volume (OCDE, 2008) and dominates all forms of rural activities. It remains an itinerant agriculture with extensive characteristics: low mechanisation, lack of inputs (except Nigeria, which possesses fertiliser factories, thanks to its petrol, (Serpantié, 2009a)), and where much of the labour is carried out by women and children. This extensive agriculture is currently the only solution available to farmers facing climatic uncertainties, inadequate support and the absence of commercialisation strategies (Serpantié and La Machère, 1989). Statistics reveal that agriculture has succeeded in meeting the increased demand in food, as daily per capita production is stable since twenty five years (2000 kcal). However, the projected demographic increase coupled with the increase in diets to 2500kcal/capita/day is likely to cause difficulties (CEDEAO, 2007).Livestock and fisheries are two important livelihood strategies. There are two major livestock breeding modes: nomadic pastoralism which covers large distances annually and breed large herd of zebus, (Diop et al, 2009a) and the sedentary breeding, typically a few small ruminants and some larger bovines. South of the 8 th parallel, the presence of trypanosomiasis reduces the presence of bovines, in favour of taurine and goat breeding resistant to tsetse. In total, the basin holds more than 138 000 000 LU (Diop et al., 2009a).After independence, agricultural policies favoured export cash crops (coffee, cacao, cotton, groundnut…) developed during the colonial era. Development continued in parts, and cotton farmers now produce 2 M t of cotton fibre, grown over 3M ha against 800 000 ha 45 years ago. Yields also rose from 400kg/ha to 1t/ha today. Comparatively, cereal crops (maize, millet, sorghum) are grown on 9, 16 and 14M ha respectively. Cotton production has enabled the growers to improve their livelihoods and also become some of the major cereal growers in the region (CEDEAO, 2007). Conversely, coffee production in Côte d'Ivoire, Cameroon, Nigeria and Guinea has decreased since the 1960s to 240 000 tonnes (CEDEAO, 2008). Côte d'Ivoire is the world's largest cacao producer but production within the basin is low and confined to the southern regions due to the humid climate it requires.The basin countries possess significant amount of mineral resources, including gold, bauxite and uranium. Nigeria is the largest petrol and gas producer in the region, and its reserves are estimated at 36M barrels, mostly situated in the Niger Delta. With Cameroon (0.7 M barrels), Chad (0.9 M barrels) and Côte d'Ivoire (0.1M barrels) they possess in 2007 3 % of the world oil reserves (CEDEAO, 2007) Installed hydroelectric potential is estimated at 6 185 GWh, representing only 20.6% of the basin's potential. As in many parts of Africa, the Niger basin suffers from a huge deficit in transport infrastructure, which undermines economic growth and regional integration. The rail network is very poorly interlinked and countries like Niger, Chad do not have a railroad network. Surfaced roads represent less than 23 % of the total road network (CEA, 2007) Improvements are being made but important efforts remain to simplify transport, remove complicated border crossings. Alternate routes of transport (water, rail) for heavy and bulky loads (minerals, fuel…) are underused and in need of developmentDespite a relative increase in rainfall since 1993, the West African drought has now been lasting for nearly 40 years. It has tragic consequences in the Sahel countries, such as desertification. This drought, which is notably characterized by a decrease of rainfall, global surface-water flows and by a change in the rainy season characteristics, contributes to reduce the water availability in the Niger River Basin. This climate shift must be borne in mind if one wants to understand the present hydrology and water uses in the basin.Inventories of data are available by consulting the data base of the NBA and the SIEREM base from HydroSciences Montpellier Laboratory. Direct observation of surface water flow on the topographic slope of the Niger enables us to realize that some parts are not hydraulically linked to the river. These include the Algerian section of the basin (the Tassir Oua Ahaggar region) and those of Tamesna and Tahoua found in Mali and Niger. Great tributaries of the Niger which used to drain these regions at humid times, at moment can only subsist in dry valleys covered by great thickness of sand. Even the Continental Terminal aquifer found in the Iullemeden Sedimentary Basin is cut off from the hydrological system of the River Niger. It is the same situation with the Gando and the Liptako regions at the boundary between Mali and Burkina Faso.The active hydrological section of the basin (the contributory basin) is formed by two parts linked between Dire and Tossaye by a bay in which the basin only limited to the canal formed by the river bed (Figure 5).Zone where the flows do not reach any more the course of the river Niger The rainfall regime of the Niger River depends on the fluctuations of the Atlantic Monsoon which generally occurs between May and November. The intensity of the phenomenon is relatively homogeneous on the east-west axis but experiences a serious gradient in the north-south axis. There are 530 rainfall stations and 105 climatic stations with at least 20 years of observations. Data from Nigeria and Guinea are difficult to recover. The average annual rainfall rises to 4000 mm in portions further south in the basin, while it decreases to less than 400 mm (0 mm some years) in the north under Sahelian and semi-desertic climate (Figure 6). A great part of the basin experiences a high evaporation due to the vicinity of the Sahara. This has a great influence on the availability of water notably on free water plains (inland drainage and large water reservoirs). Potential evaporation is lower in the southern part of the basin and higher in the North (Figure 7). The difference between rainfall and PE determines the availability of water to infiltrate the soils towards underground layers. This monthly inventory evaluation defines the agricultural calendar (Figure 8). When rainfall is lower than ETP, (p-E.T.P<0), the water reserves in the soil are very low or even absent. In this case there is neither stream flow nor infiltration. This is the state of affairs experienced in the basin between November and April.On the contrary when rainfall is above the ETP (P-E.T.P>0) water reserves in the soil are much more important therefore favouring agriculture. The monthly variations in the differences between rainfall and ETP will define the agricultural calendar as well as the start of stream flow which start in the humid parts of the Basin (Guinea, Cameroon and Nigeria) between May and June .The Sahel regions of the basin are only involved between July and September. The hydrologic times series for the Niger began in 1907 with the installations of stations in Koulikoro (Mali) and Jebba (Nigeria). The present hydrologic observation is estimated at 250 stations including the specific network meant to check the river flow within the framework of the Hydroniger Programme. The volumes discharged are lower in the upper basins, and increase strongly when entering Nigeria where rainfall is heavy over the Niger basin (Figure 9). The hydrological regimes strongly changes for the Upper Niger when passing through the Inland delta, where the flood is delayed by two to three months, and is reduced by 24 to 48% during extremely dry or wet years.The River Niger basin has been submitted to a strong rainfall deficit since 1970, which occurred over the whole basin. All the sub-basins experienced a reduction of runoff. The 80s are the driest decade since the beginning of the 1900's century (Figure 10). The rainfall deficit is less strong in the southern part of the basin, mainly over the Benue river basin. The Niger basin can be divided into three main areas: the Upper basin of the River Niger in Guinea, Mali and Ivory Coast, where the runoff deficit is very strong (Figure 3); the lower River Niger basin, including the Benue river, where the runoff deficit is limited; and the Sahelian tributaries, mainly in Mali, Burkina-Faso and Niger, where the runoff has increased, due to changes in land-use ( Figure 11). -15.00 -10.00 -5.00 0.00 5.00 10.00 15.00 20.00 (Paturel et al., 1997).In Sahelian parts of the basin runoff coefficients have seriously increased, which lead to higher flood peaks, erosion, sediment transport and dam silting ( Figure 11). This is linked partly to the climate change-related rainfall reduction, but mainly to the increase of the cultivated surfaces, and the related disappearance of the natural vegetation. In Soudano-guinean parts of the Niger River basin, the runoff decrease has been much deeper than that of the rainfall, due to the cumulative (memory) effect of the rainfall lasting shortage on the groundwater levels.Figure 11: Rainfall-runoff relationships in Sahelian tributaries of the River Niger.Discontinuous aquifers are mainly found on the right bank in the Niger (Guinea, Mali, Ivory Coast, Burkina Faso and Niger) in the Guineo-sudanese zones and the Sudano-sahelian zone. Pipe borne water projects in these villages make use of On plateau surfaces, superficial aquifers are superimposed to deeper aquifers.The outer aquifers can be partly continuous thereby forming a hydraulic link with the deeper layer or it can be discontinuous. The Figure 12 shows the importance of the baseflow in the annual runoff. This is for the Bani at Douna, but this is representative of most of the River Niger tributaries, from Guinea, Mali, Ivory Coast and Cameroon, under Soudano-guinean climate.3.2.1. Reservoirs 3.2.1.1. The existing dams 260 dams have been identified within the Niger basin catchment (Figure 13). Their distribution is irregular and they are concentrated on some sections of the basin, notably in Burkina-Faso (mainly small dams) and in Nigeria (all sizes including large dams). Carrying capacity varies between 25.10 -3 million m 3 (Camp de chasse, Tapoa, Niger) to 16 billion m 3 (Kainji, Nigeria). Figure 12 shows the class distribution of the carrying capacity of all the identified dams. From this distribution 50 % of them are small dams of less than 1 million m 3 , and there are only 4 \"giant\" dams (more than 1 billion m 3 ): 1 in Mali and Cameroon and 4 in Nigeria. Projected capacities reach 6 billion m 3 (Fomi site on the Niandan in Guinea). The total capacity on the entire basin is about 48 billion m 3 with the projected dams as against 42 billion m 3 currently. More than 80% (39 billion m 3 ) have been previewed to be stored in the Upper Niger and 20% only (9 billion m 3 ) to be kept in the Middle Niger. Considering the existing and projected dams in the Upper Niger, the volume of water stored will be slightly above 41 billion m 3 . If this figure is compared to the discharged volume at the entry point of the Inland Delta (Ke-Macina and Douna) which respectively measure 75 billion m 3 in a humid year and 21 billion m 3 in a dry year, then it means that more than 55% of all flows will be stored in a humid year and flows in the upper basin will be insufficient to fill all the reservoirs. The situation which has been worsened by drought will have drastic consequences of the Lower Delta.Down-stream depletion 3.2.2.1. Depletion for purposes of irrigation 171 retention points for irrigation purposes have been identified along the Niger and its tributaries. Approximately 5412 billion m 3 are withdrawn annually to irrigate a surface area of 264550 per inhabitant, giving an average of 20 000 m 3 per inhabitant. The volume impounded by each country depends on the surface of the catchment of the country concerned (Table 4). The largest volumes kept aside are in Mali, followed by Nigeria and Niger.Various water catchments areas have been set up on the Niger and its tributaries to supply many towns with potable water. These were sized based on 2005 populations and using 20 litres per inhabitant per day for the rural areas and 40 for the urban agglomerations.The estimate of volumes impounded for livestock is difficult due to their diffuse nature. Calculation of water needs associated with livestock is based on a need in 30 units per day. Estimates show that in 2005, about 223.6 million m 3 of water was used for about 2 771 000 LU. The largest reserved volumes are found in those countries with the largest areas of land within the basin (Nigeria, Niger). Mali is noted for its livestock numbering 8 640 000 U.B.T. However, reserved water for livestock is small (14.2 million m 3 ). It should be noted that part of the riparian population gets its water from the water-bearing beds of the river. The results of the many estimates, represents the maximum level of uptake without taking into account other sources of water.Water use account Figure 16 (after Mainuddin et al, 2009) shows the major water uses over the River Niger basin. This approach, combined with the WEAP model, could be useful to determine areas where water can be reallocated to benefit the poor.Figure 16: Summary of major water uses in Niger Basin catchments (Mainuddin et al, 2009) At the whole basin scale, and looking at it very schematically, we can make an estimate of total water evapotranspired. Using the water balance P = E + Q + ∆S and an average rainfall of 690mm over the total basin, this corresponds to 1500 km 3 /year of water across the whole basin. We know that blue water at the outflow equals around 200 km 3 (183 km 3 at the confluence of the Benue and the Niger at Lokodja, Nigeria); consumptive withdrawals for humans, livestock, industry are estimated around 15%, hence 22.5 km3; groundwater infiltration represents 1 to 10% of annual rainfall (Leduc, 2009). These numbers vary from year to year and depend notably on the land cover. As baseflow also contributes to flows, we will consider annual changes in GW storage equal to 0. Green water evapotranspired represents therefore approximately 1200-1300 km 3 .Changes in water availabilitySimulations have been carried out for the horizon 2050 with the HadCM3 model and A2 scenario. Figure 17 shows the changes in runoff in 2050 compared to the 1966-1995 average in West Africa. According to this GCM/scenario, there would be a slight increase in runoff over most of the upper Niger river basins in West Africa, but not over the upper Benue river basins. The situation would worsen in 2080 following a general rainfall reduction over West Africa. This is only one model and one scenario. After a comparison of several GCM outputs for the region, Ardoin et al. (2009) conclude that most of the recent GCM outputs for the region show lower rainfall predictions than the HadCM3 model.Figure 17: Percentage of variation in runoff in West Africa between and 2050, using the IPCC HadCM3 A2 scenario.The case of the Niger River inner delta in Mali For the Niger Inner Delta (a key focus for the BFP Niger), an integrated model of the Niger inner delta called MIDIN has been developed. It integrates several relationships between water, biology and human activities along the different hydrological entities like channels, lakes and floodplains. The Figure 18 shows the correlation between the flooded surfaces, as depicted by NOAA images between 1990 and 2000, and the water heights at the main gauging station of Mopti in the delta. This correlation allows the determination of the flooded area of the upper delta area according to the Mopti water level. This will result for instance in being able to predict one month in advance from the water height at Mopti the water height in the Northern part of the delta (North of the central lakes). Nigeria currently holds the majority of dams, including large dams and there are currently only a few dams in the upstream section of the Niger river in Mali, Guinea and Côte d'Ivoire. There are however plans to build a number of dams (including some very large dams like Fomi in Guinea) in the coming years. It is very important before building them to take into account the past years variability of climate and river regime. It is particularly important to take into account the very deep runoff decrease in the tropical humid sub-basins, and the runoff increase in the Sahelian ones. It is also noticeable that most of the GCM outputs predict a rainfall reduction during the next decades of the 21 st century. Several tools such as WEAP, MIDIN and rainfall/runoff modelling should be implemented by stakeholders such as the NBA to be used as predicting tools.Physical agricultural WP is defined as the ratio of agricultural output (kg, ton) per m3 of water consumed, while economic WP is the value derived per unit of water used (Molden et al 2009, Seckler et al 2003). The Water Productivity concept was popularised by Molden 1997 and evolved from water use efficiency, which De Wit 1958 already expressed as kg of crop per m3 of water transpired. Molden developed WP into a broader indicator, capable of looking at the range of benefits associated with water use (Bessembinder et al 2005, Hussain et al 2007).The reasoning behind Water productivity evolved from the premise that water resources are becoming increasingly scarce due to anthropogenic (demographic increase, rising industry demand, dietary changes, land use changes, ecosystem demand) and climatic influences and therefore it is essential to maximize the value of water consumed. Studies published in the late 1990s estimate that by 2025, one third of the population in developing countries may live in conditions of physical water scarcity (insufficient water to meet agric, domestic, industrial and environmental needs) (Seckler et al 1998;Rijsberman 2006;IWMI, 2000). While actual predictions of water scarcity may be difficult 1 , there is nevertheless little doubt that the strain on water resources will continue to increase as population numbers and water demand rise.In water scarce regions or irrigated systems where water is a rare, valuable input, increasing water productivity or the value per unit water appears as a necessity. Where water is currently not limited, streamlining water productivity considerations into water management policies appears advisable, in light of projected increased strain on water resources. At the basin level, within the context of IWRM, it appears sensible to assess the various uses of the available water resources and maximise the value from each drop. In closed basins, this need becomes greater, as disputes over resources require reasoned allocation of water and reduction of non beneficial losses.However, what are the implications of seeking to improve water productivity? In terms of agriculture, what decisions does privileging WP lead to? Especially in rainfed agriculture, where water may not be limited or disputed, is WP actually relevant? Currently this indicator is only exceptionally questioned and only its actual translation is discussed, but as with all indicators, its use, value and interpretation at various scales must be considered. 1 Water scarcity is complex to define (Noemdoe et al 2006, Rijsberman 2006), as it requires a comprehensive understanding of how much water is needed, how it can be accessed (taking into account spatio temporal variations) and must be combined to predictions of climate change, demographic increase, dietary changes, land use changes, etc. Furthermore predictions of water scarcity do not account for future technological advances that may enable countries to capture, transport or desalinise water efficiently and cheaply; however a growing reliance on technological innovations would inevitably put strain on other resources, such as fuel, labour etc (Zoebl, 2006).There is currently no accepted definition for the numerator or denominator in Water productivity. In terms of production, one may use dry yield, fresh yield or even total dry matter since crop residues are used as animal feed, house building, handicraft weaving etc. Similarly, at the denominator one may use applied water (rain, irrigation inflow etc) or depleted water, typically ET but also water that flows to a location where it can't be readily used or where it becomes heavily polluted (Seckler 1996, Molden et al 2003). Furthermore, with rainfall one could consider annual rainfall, or only sowing to harvest period, or decide to include fallow years. Again with ET, one could calculate ET annually or from emergence to maturity. Molden et al 2003 recognise that the WP concept leads to an infinite number of practical translations of water productivity. The choice of the researcher will be guided by the discipline, the focus of the study, the scale, however the absence of a standard definition reduces the ability of WP to allow comparisons and formulate recommendations (Bessembinder et al 2005), and its value as an indicator for decision makers.Rainfed water productivity 4.3.1. Methodology In this study, we calculate Water productivity using dry yield cereal production over total rainfall and dry yield cereal production over evapotranspirable water. Total rainfall, used in previous research in ecology on Rain Use Efficiency (Le Houérou, 1984, Snyman et Fouché, 1991), provides a measure of total water supplied to rainfed agriculture on a given area. However in strictly rainfed agriculture, the available water resource is not total rainfall. Rain that falls when the plant can not exploit it or in excess of the demand is not an exploitable resource and it could be argued that it should not be taken into account. The available resource is that fraction of rainfall susceptible to be evapotranspired by a plant (\"evapotranspirable rainfall\"). The rest is always drained. This criteria, allows better than total rainfall, a comparison of water productivities under different climates, as only the water useful to rainfed agriculture is taken into account and the resource is defined not simply by the climatic supply but also by the plant demand ETM 2 which is related to climatic demand ET 0 .Evapotranspirable water for a given soil, climate, year can be calculated on monthly aggregated climatic data, using the Cochémé and Franquin (1967) method (intersection method, Figure 19) adapted to semi arid and savannah regions of Africa with one rainy season. The year 1999, a year of above average humidity was taken as reference. Average Penman ET 0 over the 1984-1995(Ardoin-Bardin et al., 2009) period was used. A detailed methodology is provided in BFP report (Serpantié 2009a) and results are presented in Figure 20 and Figure 21. Cereal yields in comparison are provided in Figure 22.Figure 20: « Water productivity of rain intercepted by crops ». Ratio of annual average provincial yield for rainfed cereals in kg/ha over annual average rainfall per province in t/ha for 1999.In 1999, rainfed agriculture (using total rainfall) is globally homogeneous and close to 0.1 kg/m 3 over zones as different as the Sahel, the cotton savannahs, humid parts of Nigeria. The highest WP is found in Kaduna state, Nigeria, where population density and yields are high and rainfall averages 1200mm. Where rainfall is very high such as in South-East Nigeria (delta zone), WP falls despite excellent yields. North of 800mm, the Niger stands out with its low WP due to its low yields.Figure 21: « Available rainwater productivity » Ratio of annual average provincial yield for rainfed cereals over average annual evapotranspirable water for 1999. Using evapotranspirable water, differences are more contrasted. In terms of high WP, Nigeria stands out from other countries, advantaged by its fertilised and more intensive agriculture. The result appears closer to the yield maps, except under extreme climates, very dry or very humid. The most northern region which exploits a minimal quantity of water in extensive millet agriculture produces a high WP, due to the very low denominator. In Nigeria, despite high yields, AWP also decreases in the Niger Delta, where evapotranspirable water is high (long rainy season). Also in this humid zone, cereals are replaced by more adapted crops (taro, yam, cassava).Looking at one year, such as 1999, only allows a limited view and interpretation of WP. This study would need to be developed further over several years (dry, average rainfall etc).Though 1999 was a year with high rainfall, we note that the order of magnitude of WP is around 10 times lower than under temperate climates (winter wheat in Beauce, France: 1kg/m 3 of annual rainfall): one must indeed account for longer cultural cycles, a lower ET 0 which allows us to valorise low rainfall (600 mm in Beauce), longer day length during flowering season, fertile and deep soils, intensive crop systems in terms of inputs and soil labour, and varieties that respond well to fertiliser.We also note the marked difference between the two variants of WP (fig 2a et 2b), and the significant divergence with yields (fig 2c). Within a narrow isohyet band, WP naturally vary accordingly to yields. In interclimatic comparisons, the AWP (available water productivity), which does not take into account dry season evaporation and drainage, provides a more accurate picture of the agricultural performance. It reflects better agric performance as we now only look at the way the plant exploits water during crop growth, but does not consider the water available outside cropping season which could potentially be harnessed differently (rainwater harvesting).Nevertheless, in interclimatic comparisons, interpretation of agricultural WP is complex and leads to paradoxes. From the WP maps, two areas appear to use this water most efficiently. These are North Mali and part of North Nigeria. However does this mean that planners should concentrate agriculture in these water efficient areas, as water resources become scarcer. When one looks at yields, clearly in Northern Nigeria this seems viable, but in Northern Mali yields are very low, and high WP occurs only because of the very low rainfall. Clearly in the latter, high WP does not imply a good investment in agriculture to reduce poverty and food insecurity. Conversely, in southern Nigeria, WP appears low implying that water is underused. However rainfed agriculture performs well and it is the excess of water that is responsible for low WP. In Guinea where WP is low, one could assume we should invest in techniques to improve rainfed WP, however Guinean farmer strategies are to invest in lowland rice, due to the natural benefits of humid zones and the heavy constraints of leached rainfed soils of humid zone in an under industrialised country. Interpretation is therefore highly complex and requires referring to both numerator and denominator, i.e. yield and rainfall maps.In agricultural terms, low WP does not necessarily indicate that agriculture is not exploiting water well. Indeed in many cases, low WP is due to low yields which may be increased only thanks to fertiliser inputs and not better water use, and in other cases, low WP is due to excess water. This difficulty is inherent to the formula, as it considers a certain quantity of water (gross or evapotranspirable) to be a factor of production in all parts of the study zone. Productivity is defined as a production over the means, inputs, resources allocated to the production process. Productivity therefore requires water to be a production factor, but in parts it is not.Rainfall is a specific water input: portion contributes to the maintaining of a hydric condition necessary for production (hence potentially a production portion), another is in excess. Within the latter, a portion is even counterproductive. Furthermore, one can not consider rain water, even limited to its evapotranspirable portion systematically represents a quantitative production factor, as would be labour or fertiliser. In fact, where rainfall is sufficient or in excess, (>800mm for maize, >700mm for sorghum and millet; large parts of the basin), water ceases to become a production factor and improvements in yields result only from better use of other factors than rain. Intensifying agriculture increases the utility of the rainfed area, but not of rainfall. As a result in agricultural terms, WP for rainfed production basin ceases to have much relevance in the wetter parts of the basin. However it may still be useful to water planners, who need to know that there is excess water and how it can/should be used by agriculture or other sectors. Nevertheless in humid zones, low WP may be due to a poor performing agriculture, excessive rainfall or a combination of both and WP does not differentiate this. Low WP does not tell us whether that water can be used to advantage in agriculture.In certain cases, water related problems occur despite sufficient rainfall, due to variations in rainfall. Indeed problems in rainfed agriculture are often due to the large spatiotemporal variations in rainfall rather than low cumulative volumes of rainfall (Mahoo et al in Rockstrom et al 2002). As a result, measures to reduce exposure to drought or dry spells are to be recommended, which require farmers to move away from strictly rainfed agriculture along the rainfed-irrigation continuum. This for instance may mean rainwater harvesting measures and supplementary irrigation. Water harvesting aims to divert and concentrate surface runoff but SSA farmers, due to lack of funds or experience, tend to privilege water conservation measures (SIWI 2000in Rockstrom et al 2002). Experiments show that supplemental irrigation can increase WP but especially \"if combined with soil fertility management\" (Barron, Fox in Rockstrom et al 2002). It is not explicit which between water or soil is more important.Where there is excess water, basin planners could recommend solutions to harvest the excess water either in agriculture (rainwater harvesting to use in dry season) or for other uses (industry, hydropower etc). Moving rainfed agriculture to adopt irrigation techniques requires investment and capacity building, but one also needs to consider the current uses of the supposed excess water. Indeed, excess water implies that the excess is not correctly/sufficiently exploited. In rainfed production, the proportion of rainfall actually transpired and therefore directly used by the plant can be inferior to 10% (Rockstrom et al 2002). Rockstrom considered the rest to be lost from the cropping system. Clearly this water is not used up by the plant, but this water may be crucial for other uses, including GW recharge, downstream users and local climate regulation. Indeed actual ET is an environmental function which controls the moisture and rain parameters (Monteny and Casenave, 1989). This is what Seckler et al 2003 refer to as the water efficiency paradox: \"Indeed while every part of the system may be at low levels of water use efficiency, the system as a whole may be at high levels of efficiency\".Overall, WP does show where water is used/exploited best but interpretation is very complex, notably in interclimatic analysis. Interpretation requires referring to both numerator and denominator, i.e. yield and rainfall maps. In these conditions, the WP indicator even improved as AWP, remains delicate to use.It remains therefore difficult to derive general recommendation directly from the WP map, without making mistakes or without bettering conclusions made from yield maps. While one recommends taking care when interpreting (Molden et al 2009) WP, the actual value of it is rarely questioned. While a m3 of water in an arid zone is 100% evapotranspirable, and therefore a true production factor, another m3 in a sector characterised by excess water, may be in part non productive water or actually counter productive. In agricultural terms, the WP concept seems most applicable where water is scarce and truly a production factor. In wetter parts (>700/800mm), rain ceases to be a production factor (improving water supply doesn't change yield) and therefore it is no longer a water efficiency / WP problem; one should talk of increasing rainwater utility. Low WP implies water is under used in rainfed agric, but in some cases yields are high and using rain more will not improve yields. Solutions such as increased fertiliser, longer grain crops or rainwater harvesting to develop irrigation activities/extend the cropping season may be advocated. For basin planners, WP can still provide interesting insight/diagnostic of the way water is used or more importantly unused in the basin. However, issuing recommendations on how to exploit this water requires a complete understanding of the agricultural limitations as well as an assessment of the current uses and value of this drained water.Currently agric strategies attempt to reduce risk and depend as little as possible on water quantity, hence extensive not intensive. Therefore increased WP goes by improving reliance and strategies such as rainwater harvesting have a role to play. Otherwise four main strategies exist: increase the rainfed production area (by rehabilitating ecosystems where it has disappeared/damaged, increase land productivity of the rainfed agriculture (independently of water), develop water efficiency where it is scarce (essentially north of 700 mm for millet and sorghum), increase plant tolerance to water excess. Research should continue as much on the resistance to drought in all key development phases, than on reducing drainage sensitivity. The too rare references available concerning crop systems as practiced by farmers reveals the need to develop research in this direction.Irrigated surface area represents less than 3% of agric land. There is only one significant hydroelectric dam in the Sahel on the Niger. The number of farmers concerned by the river's water management is difficult to estimate but is much greater than the amount of areas under full control irrigation would imply, once one includes farmers with plots in lowlands, free flooding or controlled flooding. The amount of irrigable land is huge and can not all be irrigated, at least not from surface waters. Certainly without dams, it is not possible to extend agriculture in dry season. With Fomi dam alone, it is possible to develop new perimeters.According to the NBA, the building of Fomi, Taoussa and Kandadji dams offer significant opportunities to triple the irrigated surface area, up to 400 000 hectares in Sahelian countries, essentially in Mali and Niger. Maximal expansion would increase withdrawals from the river to 14%, compared to 1.5% currently.However the investment plan will impact heavily on wetlands and their biodiversity, the environmental services and the livelihoods of a million herders, fisherman and traditional rice growers in the Inner Delta. (ABN and BRL 2007). As a result, irrigated agriculture will need to improve its water efficiency and the economic gain derived from each cubic metre of water used in order to justify the heavy investments it demands. Maintaining reserve flows are important to maintain rare species such as hippos or \"lamantins\" in the river and Inner Delta.The three major irrigation countries in the basin are Mali, Niger and Nigeria. Mali has mostly invested in the development of large perimeters such as the Office du Niger and the \"Operations Riz\" of Mopti and Ségou. Niger has invested in a number of small and medium perimeters along the river, while Nigeria possesses a number of large dams with full control irrigation.Perimeters equipped for partial and especially control irrigation have increased greatly in the last decades but traditional systems such as recession flooding, lowland and free flooding still dominate in terms of surface area. Partial control irrigation, i.e. controlled flooding and lowland development also occupy significant surface areas. However traditional systems, recession and free flooding are dwindling, due to recent droughts, but also because farmers, NGOs and governments attempt to control water supply better. If the NBA development/investment plan favours large scale developments, the CILSS, FAO and WB currently favour small irrigation, preferably individual and private. Small scale irrigation is notably developing in Burkina Faso and Ivory Coast and is on the increase in Mali.Agricultural performance According to official statistics, rice yields in Mali and Niger are increasing while those in Nigeria are falling. In perimeters under full control irrigation, the objective of 7t/ha is feasible. Yield differences are mostly due to fertiliser input. Well off farmers can achieve such yields.Mali is about to realise a small agricultural revolution. Surface areas are increasing fast, and yields are improving. Malian farmers are adapting to the urban demand and rice importations remain limited. In Niger, however the contribution of rice growing to food security in Niger is low because the irrigable areas are very limited and distant from major population centres. Nigeria suffers from the dysfunction of the public sector which has resulted in the near total abandon of perimeters equipped for full control irrigation. Nigerians now privilege the expansion of production into lowland, which does not favour yields but does not mean they are not profitable.Large withdrawals Withdrawals are important in Mali, especially at the Office du Niger and the perimeters under partial control which divert water and don't return much to the river, from lack of drainage. At the ON, part of the water withdrawn is returned to the river by the Macina canal, but the amount returned from the perimeters remains unknown. Withdrawals are lower in Nigeria because the more humid climate requires less water. The Nigerian fadamas systems essentially withdraw water from groundwater, in unknown quantities but probably less than in the large perimeters.Large fluctuations in WP We summarise in the table below the WP results. These were obtained by averaging yields obtained by the APPIA project and dividing by withdrawals found in NBA documents (which consist in a mixture of expert views and field measurements) (Figure 24). WP for rice in full control irrigation is relatively low in the basin. It is typically between 0.2 et 0.3 kilograms per metre cube. A few rare perimeters obtain higher results in NigerThe performance of production zones in the ON are below reference/optimal values. This is due in part to the original dimensioning of the perimeters as well as to the state of the irrigation canals. Initially planned for several hundred thousands hectares, there are actually only around 65 000 ha of perimeters equipped for irrigation. With gravity irrigation as in the ON, it is difficult to confine water volumes withdrawn to the desired equipped areas. The extension of the ON to several hundred thousand hectares by 2025 could improve WP.The data from the APPIA database suggest that WP of rice in the Mali and Niger perimeters are also low. Results vary between 0.14 and 0.67 kg/m3 confirming other studies (0.05 to 0.6 kg/m 3 ) (FAO, 2003). The reasons behind these results are excessive withdrawals, water wastages and low yields. Market gardening activities in dry season have a much greater WP than rice, thanks to a high value crop and less water wastages, to the point that certain perimeters actually don't have sufficient water inflow. WP uncertainties Many experts suspect crop yield statistics to be inflated by statistical services. It is necessary to carry out control surveys by independent organisms. Furthermore, the measurement of withdrawals is rare. Results obtained are very variable and numbers on efficiency, necessary for the calculation are very uncertain. Finally, returns to GW or the river have not been studied extensively, except at the Office du Niger. Scientific studies must be carried out on return flows in the principal types of irrigated perimeters. Water wasted goes to drains or percolates in aquifers under plots. The water which goes to drains can follow different routes. Ideally, it returns to the river. In practice, drainage canals fill up and develop grasses or are cropped. As a result, numbers for WP are variable and doubtful.Furthermore, economic gains of perimeters are poorly estimated. The grass in canals is sometimes harvested by herders and drains are planted with banana plants, which reduces losses. At the Office du Niger, supply is so great that a large part refills GW reserves. This superficial aquifer in turn refills partly deep aquifers which can serve to supply deep well of villages situated outside perimeters. Improvement strategies 4.4.6.1. Reduce water consumption Large perimeters Overall water consumption levels will increase rapidly in the basin, be it from the expansion of formal irrigation perimeters or from informal small scale irrigation. Reducing the efficiency of perimeters appears difficult because it is not a priority for irrigating farmers, agricultural groups or even the states. Instead priority is a better satisfaction of crop water needs to obtain maximum yields, guarantee food security and create jobs. The awareness raising work is in its infancy and measures such as making producers pay for water is difficult to implement in the current context. As the river no longer dry up, thanks to the Selingué dam and a return of the rainfall, the sense of urgency has gone. Large dams which will contribute to low flows, are planned, further reducing the sense of urgency in economising water and promoting dry season production, more water consuming. However, the expansion of the ON could increase WP as the greater density of perimeters will reduce losses due to the distance/dispersion of irrigated areas.As part of awareness raising, withdrawals of large perimeters must be subject to a precise and regular following, as well as an annual reporting. Objectives must be fixed and discussed regularly. Agronomists must then propose production plans including dry periods, respect of \"water turns\" and respect of calendars. The results of these withdrawals must be published regularly and discussed annually at the NBA level. Sanctions against large wasters could be considered.It is also possible to consider finding funds from hydroelectric production to finance actions to reduce wastages in the upstream part of a dam.Large perimeters such as the Office du Niger or the Office Riz in Mali are at the heart of political stakes, but are not efficient in terms of withdrawals and WP. Even though doubts exist on the actual volume returned and reused, such investments remain difficult to manage, notably in terms of water supply. Even public perimeters in Niger which pump water from the river don't seem inclined to reducing their consumption. They benefit from cheap electricity from Nigeria and subsidised by the Niger state. In individual small scale irrigation, farmers have more facility to reduce withdrawals and economise energy from their pumps which reduces water consumption. If the expansion of small scale private irrigation is probably a guarantee of less wastage, it also implies more dry season withdrawals.Rice growing is largely dominant in the basin and will be for a long time. The choice of rice growing is an ancient priority difficult to question for food security reasons. Beyond Senegal and Mauritania which dispose of a limited potential and import more and more Asian rice, Sahelian states have chosen to produce rice to reduce imports and provide jobs. Even elsewhere on the planet, the development of irrigation has rarely been a question of immediate profitability. This is a food security question, sovereignty and risk reduction, reinforced by the actual food crisis and climate change context. West Africa has no interest to depend on Asian rice. Rice is less perishable than the majority of alternatives and production sells easily while the risk of unsold fruit & vegetables is high. Rice production in the basin contributes substantially to local/regional demand, in part thanks to the contribution of the ON in Mali.The increase of WP must also come from the increase in rice yields. Agronomists privilege the concept of intensification, i.e. the increased use of production factors, labour and capital per unit area. However they mostly promote an intelligent intensification which activates synergies between biology and chemistry. Intensive systems have an ambivalent environmental impact. On one hand they tend to pollute the environment with synthetic fertiliser and on the other they consume less surface area than traditional systems, which tends to reduce the pressure on neighbouring ecosystems. Whatever type of irrigation, substantial yield increases are accessible without excessive investments. In certain areas, 2 growing cycles are possible, either 2 of rice or one market gardening or even forage after a rice cycle. Rice and market gardening yields which can increase substantially, should improve as farmers and farmer groups gain in experience.Support to agricultural groups should help improve the functioning of collective perimeters. To increase the performance of outputs, groups can improve transformation, stocking, provision of inputs and seeds. To reduce wastages, groups can play a role in the respect of water allocations, the maintenance of distribution and drainage networks as well as accompanying dry season decisions.Support to farmer groups is important in terms of training & capacity building but results are currently disappointing. The distribution of small plots to farmers that privilege rainfed agriculture raises a problem as to their time investment on irrigated plots. The land tenure uncertainties are another important debate which has led to attempts to secure land tenure. The professionalisation of water professions has not led to the desired improvements of the industry. In any case, the disorganisation of the industry remains one of the principal handicaps in irrigated agriculture.Conclusion According to the NBA, 265 000 ha are irrigated, of which 135 000 ha in Mali, 46 000 in Niger and 84 000 ha in Nigeria. The NBA will reach 1,5M ha in 2025 of which nearly 1M in Nigeria and less than half a million in Mali. Controlled flooding agric will go from 170 000ha to 311 000ha, while free flooding/recession flooding could remain around 100 000ha, all between Mali and Niger. Even in 2025 withdrawals will mostly take place in Mali as Nigeria consumes less per unit surface. Agric withdrawals are actually a little over 9 billion m3, essentially in Mali. In 2025, they could triple to nearly 30 Billion m3. Drinking water supply withdraws actually less than billion cubic metres, essentially in Nigeria. In 2025 it could exceed 2 billion. For now these are supplied from aquifers but it is not unlikely that in the future rural areas are supplied by water from the rivers, which would increase this figure.Even though irrigation performances are below potential, donors seem ready to continue its expansion. The arguments provided are: probable aggravation of climatic variability, repeated food crises, change in diets, the relative competitivity of Sahelian rice, considerations over non durability of rainfed agriculture.WP is relatively low in the basin because yields remain below potential and water wastages are important, notably at the Office du Niger and in the rice operation Mopti. Reducing these wastages will demand important efforts as water is not yet rare and these withdrawals are globally considered minimal. However, the measurement of WP (yield statistics), withdrawals but also return flows must be improved. Of the expression \"More crop per drop\", the basin population will focus mostly on the \"more crop\". The reduction of \"drops\" requires a collective awareness of the importance and an array of measures.Water productivity in FisheriesThe fishers in the basin may be divided between full time fishers, mostly belonging to ethnic groups recognized as fishers, and agrofishers, who spend a part of the year growing crops, and occasional or part-time fishers for whom fishing is a secondary activity. Different sources provide estimates on the number and distribution of fishers in the Niger basin. Although there are some strong different between sources, it appears that the fishing activity is mainly concentrated around the large floodplains (Inner Delta) or reservoirs (Selingue, Kainji, Jebba, Lagdo). A more diffuse activity occurs along the main river stretches, and also along smaller water courses on which no surveys have been implemented. The order of magnitude of the total number of professional fishers in the basin is 100,000, of which 62,500 in the Niger Inner Delta and 13,000 in the large reservoirs. If the activity of one fisher on the water induces one full time job on the ground, and if each active person provides the living for 3.5 other persons, the total population depending directly on the fisheries activity is 900,000, out of a total population in the basin of 95 million people.Living standards Although fishing may in some cases be a last resort activity for the poorest, the standard of living in the fishers population may not be regarded as much different to the rest of the rural population. When they have access to land, the \"full time\" fishers also practice rain fed or flood recession cultivation.According to recent surveys (CP 72 on the Inner Niger Delta and Lake Kainji, surveys on Lagdo and Sélingué), the fishers community share with the rest of the rural populations the same constraints on their living: they rank first food shortage, and second the lack of access to health care, to good quality household water, to school or to credit. The lack of production means (nets, canoes), the variability of the hydrology and the poor strength of their fishers associations come second. Lack of access to land occurs specifically in some regions where the fishers are considered as new settlers.The fisheries production According to Neiland and Béné (2008), the total fish catch in the basin is about 240,000 tonnes per year (estuarine delta not included), with a value of almost 100 million US dollars. It has been estimated that fish represents a significant fraction of the animal protein in Africa, with 40% in Nigeria and 49 % in Cameroon (FAO, 2005). If the mean figure for fish consumption in Africa of 7.7 kg/capita/year is applied to the Niger basin, the total demand for marine and inland fish is 730,000 tonnes.Water productivity in fisheries To our understanding, it is not possible to give figures for Water Productivity (WP) in fisheries, as fishing is a non water consumptive activity.However, a marginal WP can be estimated when a change in the water management, and in the water volume associated with a fishery, can be related to a change in fish catch. This is the case for floodplains in which the fish catch is usually related to the importance of the river discharge or flood. Previous relationships have indicated that a decrease of 1 m3/s or a total of 13 Mm3 in the flood discharge (from July to September) to the Inner Delta would induce a decrease of 27.8 tonnes in the fish catch of the region (Laë, 1992). More recent observations lead to a similar result (Morand et al. in press).Threats and opportunities The main threats and opportunities have been well identified by the fishers communities in their answers to the surveys (Béné et al., 2009). They are very similar to those of the farmers, and in accordance with the global socioeconomic context of the poor countries in the basin.At the basin scale, the main threats are related with the drivers of change now in action:-The demographic increase leads to an increase in the number of fishers, with a number of consequences:o Competition for space and conflicts with the other activities (herders, farmers),o Competition for the resource, with the use of destructive gears and a threat to the sustainability of the fish stock, o Poor enforcement of both traditional and modern (legal) fisheries regulations because of the large number of newcomers, and of the inability of the legal state to enforce the regulations. This also leads to a threat on fish stock sustainability, o Increase of the number of fishers and decrease of their individual income.-Although the demand for fish is sustained, the difficult access to markets in some regions of the basin, and the competition from marine fish trade leads to low prices.-The natural aquatic ecosystems are being modified by the construction of dams, by water abstraction for large and small scale irrigation. These modifications have a large impact on the downstream fish communities that are not always fully compensated for by the increase in production in the newly created reservoirs upstream. Some fishing communities have to migrate to new fishing grounds where they will not have the same rights (especially for access to land).-To these man-made modifications must be added the uncertainty about climate change with a change on the rainfall regime and its amplified impact on the hydrologic regime (IPCC, 2007). If an increase in rainfall would be rather beneficial, a decrease of the rainfall would translate into a large increase of the water demand for irrigation and thus an increased threat on the fish resource.-In their every day's life, the fishers depend on a variable resource, and are thus vulnerable. They face the same constraints as the other rural populations, with the lack of access to drinking water, to health services, to school for the children, to food in some periods, to productions means or to a fair credit. National or propoor policies have not, up to now, taken into account the fisheries sector, partly because their importance has not properly been evaluated. Some policies would benefit from the participation of fishers association to the decision making (ABN, 2007).The data available indicate a high fishery potential in the existing water bodies.The development of new dams may contribute to gather the fishers communities in a reduced number of sites, and thus to a better access to markets and also to a better visibility. As shown above, the construction of dams has also drawbacks for the fishers communities and also on some fish communities. However, by shifting from hydrologically highly variable natural systems to regulated systems the fishers communities may somehow escape the natural variability of the resource.The increase in fish demand (FAO, 2002), the creation of new infrastructures (ice plants) and fishing harbours around new water bodies, may help to a better access to market with better prices, and to better living conditions for the families. This transition should benefit from new policies (NEPAD, 2006).Fish culture in ponds, around irrigated perimeters, along rivers and mostly in cages in reservoirs has been described as a complement or an alternative to the fishing activity when the fishery is perturbed by new developments or water management. Although fish culture is technically a good solution, the communities presently involved in fishing are poorly prepared to manage this new activity. Nigeria is one of the few African countries, with Zimbabwe, Ghana and Egypt where some fish culture has developed, mostly as small and medium scale enterprises. It has been estimated that about 2000 fish farms, covering 60,000 ha, produce 80,000 tons of fish per year, a figure rapidly increasing (Brummett et al., 2008;FAO, 2009). Elsewhere in the basin, fish culture is of much smaller importance.With 138 000 000 livestock unit in 2008, the Niger river basin offers a variety of livestock productions, whose demand will increase with the projected rise of population. Since centuries, countries in the interior (4 out of 9 countries in the basin) supply the demand from coastal countries centred around two large economic basins (Duteurtre, 2004): Nigeria with its large towns (Abuja, Port Harcourt and Lagos) and the Ivorian basin and the towns of Abidjan, Yamassoukro and Bouaké. As in the West part of the Basin, there is only one train line leaving the Bobo Dioulasso refrigerated slaughterhouse, the majority of meat exports is on the hoof. These are poorly controlled by official services but conserve enough flexibility to survive political crises which periodically close borders.There are two major livestock breeding modes: nomadic pastoralism which covers large distances annually and breed large herd of zebus, (Diop et al, 2009a) and the sedentary breeding, typically a few small ruminants and some larger bovines. South of the 8 th parallel, the presence of trypanosomiasis reduces the presence of bovines, in favour of taurine and goat breeding resistant to tsetse. In total, the basin holds more than 138 000 000 LU (Diop et al., 2009a). In West Africa, the Niger Basin plays an important role in livestock productions which will increase with the demand in animal production of the Ivorian and Nigerian economic poles.To this day, animal production remains largely extensive and exploits natural rangelands. As a result, they remain largely dependant on 1) access to water which determines the management of the animals and herd performance; 2) the amount of rainfall and its distribution (water points flow and/or seasonal accessibility of certain regions); 3) developments/dams that influence the volume of agricultural by products; 4) animal losses due to water related diseases (and therefore of the sanitary/health cover) 4.6.2. Background Scattered over more than 1 500 000 km² distributed over nearly 13° latitude, the 50 000 000 herders of the basin breed several animal species. Their North-South distribution is function of their resistance to drought and their aptitude to exploit natural rangelands. Camels constitute the dominant form of breeding/herding north of the 11 th parallel, below which they seldom venture (Figure 25). The area of zebus (bovines) follows and extends to the 7°N (Figure 26), limit of prevalence of trypanosomiases, where only taurines tolerant to this endemic survive. Zebus and taurines are heavily mixed in this intermediary zone. In this zone, farmers attempt to cross breed to privilege the physical aspects of the former and tolerance to epizooties of the latter. Movements specific to these regions supply multiple occasion to cross breed. Beyond daily and seasonal movements which village herds undertake, 5 to 15% of breeders are pastoralists living on Sahelo-Saharan fringes (Diop et al 2009a), whose annual movements can exceed 800km (Figure 28) The detailed methodology required to calculate LWP according to this formula is provided in Diop et al 2009b. Unfortunately, homogeneous data at same spatial scales was not available across the basin. Instead to calculate LWP we used: kg of livestock (not taking into account milk, traction etc) for 1999 over water consumed by livestock and used to produce the annual feed.W applied in m3 = LU * 6, 25 Kg DM/ day / LU* 365 / RUE en kg DM/ m3). There is no average Rain Use efficiency data but it is possible to provide interval of RUE per climatic zones (Serpantié, 2009b). The following RUE data was used.Sahelian Soudanese Guinean Rainfall -500 mm 500 -1000 mm > 1000 mm RUE max 1 1 0.57 RUE min 0.2 0.4 0.25 However RUE is very variable per year (when rainfall is low, RUE is higher) and there will be differences between data in a research station and field data (affected by the type of ecosystem)We also present below the number of LU/ha. Figure 33: Amount of rangeland (total area-cultivated area) over total area.The upper basin (where investments concentrate on lowland rice growing), the Sahelian zones, the Inner Delta (bourgou) and the less populated eastern part of Burkina appear as the regions with most available rangeland. However it reveals the relative rarity of rangeland in central Nigeria due to the high population density, but where 50 to 70% remain available and therefore not cropped. The order of magnitude of LWP is relatively low (0.002 to 0.05 kg per m3 water). This seems logical considering the place of herbivores in the trophic chain. It would be interesting to assess WP using kJ or $ in order to reflect the increased value of meat over certain crops. At northern latitudes, there is often no other uses of the biomass and hence no other use of the available water. The low water productivity values may therefore not necessarily be representative of a poor performance or productivity. At lower latitudes, low WP does infer issues of tradeoffs and wiser uses of water, due to the competition between pastoral, agricultural or forestry (wood, biodiversity) based uses of water.The best productivities are situated in the Sahel. Conversely, the worst LWP are situated in the zones where there is more than 1200 mm rainfall. The differences in LWP between the Inner Delta and North East Burkina Faso and West Niger can be explained by the high productivity of bourgou.There is everywhere a great availability in natural rangeland, contrary to what is often reported. Regions offering the most natural rangelands are either those where agriculture is focused on lowlands (Upper Niger in Guinea or Kwara and Kogi, Nigeria), leaving interfluves free, or areas like the Inner Delta in Mali which provide seasonal pastures, but where herders don't reside.The remarks made over LWP are similar to those made for rainfed agriculture. Above 1500mm rainfall and below 400mm, the values are less intuitive and more complex to interpret. Indeed low LWP in southern latitudes does not reflect poor performance, but simply excess water, which when looking at livestock in isolation appears wasted. In northern latitudes, relation to water is complex as though WP may be low, livestock may be the only organism capable of exploiting this water. Eitherway, to interpret water productivity it is necessary to go back to the maps spatialising the numerator and denominator.Productivity issues in livestock relate to traditional aspects of the industry (vaccination/health coverage, food constraints), and the ability of animals to support local environmental constraints (heat, transform low nutrient, acidic food, ability to move over large distances to get food/water, frugality (low consumption).Recommendations to improve livestock productivity and water productivity include:• A better use of bush and tree browse as fodder for livestock. Applied research is needed to select the plant species and practical methodologies for their use. o Support through adequate legislation and agro-pastoral codes, the respective domains of activities at the three scales (local, national and regional)Background, Object, Scope, why institutions matter? Institutions include policies, laws, regulations, organisational arrangements and structures, norms, values systems, traditions, customs and practices. Increasing competition over water resources and greater water conflict risks largely depend on institutions that determine incentive structure of the stakeholders and affect their behaviour (Ostrom 1990, North 2005, Runge 1992). A better knowledge of the complex Niger Basin institutional context appears as an essential challenge, to provide a better comprehension of the multi-scale interactions and dynamics affecting water availability and productivity, poverty alleviation and gender issues. To reach this objective, we first aim to identify the different scales within the Niger Basin institutional framework; secondly analyse the key role played by local institutional frameworks regarding water availability and productivity, poverty alleviation and gender issues and thirdly undertake statistical analysis of institutional data and indicators mapping.The Niger Basin Authority (NBA) was created in November 1980 and brings together the nine riparian countries of the basin (Burkina Faso, Benin, Cameroon, Chad, Côte d'Ivoire, Guinea, Mali, Niger and Nigeria). It replaced the Niger River Commission formed in 1963. In 1987 several objectives were assigned to the NBA such as harmonizing national policies, promoting development projects, controlling forms of navigation in the river and participating in the formulation of funds' requests. After a crisis period, the NBA engaged in the \"Shared Vision\" process in 2002 -largely funded by the Agence Française de Développement (AFD) -in order to promote a coordinated and equitable development of water resources in the Niger Basin (according to the IWRM requirements). An Action Plan for Sustainable Development (PADD) that is linked to an Investments Program plan (IP) was adopted as well as a project of legal and regulatory framework -Water Charter project 2008.As part of the Shared Vision process, a reflection was initiated on the strengthening of civil society involvement at the regional level. After a diagnostic phase (Bazie, 2006) an initiative to support water users' effective participation in the countries' appropriation of the shared vision process was implemented. This initiative was entrusted by the NBA to a tripartite consortium gathering the NGO Eau Vive, the GWP WAWP (Global Water Partnership -West Africa Water Partnership) and the SIE (Secrétariat International de l'Eau) and national coordinating bodies in six NBA's member countries were created (Benin, Burkina-Faso, Ivory Coast, Guinea, Mali, and Niger;Koné, 2008). However the first meeting of the constitutive assembly of the River Niger Basin's users Regional Coordination held in August 2008 raised protests notably from the ROPPA (Réseau des Organisations Paysannes et de Producteurs d'Afrique de l'Ouest/ Network of West Africa small farmers and producers' organisations), who contested the legitimacy of the composition of the regional coordination. The Eau Vive NGO and the NBA Executive Secretariat were accused of favouring NGOs representatives to the detriment of water users' organisations ones. ROPPA was created in 2000 by local and national organisations of small farmers and producers' in order to enforce their capacity to influence national and regional political reforms in the fields of agriculture and development (Coulibaly, 2007).An involvement of customary authorities in the shared vision process and the implementation of the NBA projects is also seen as a strategic issue (Bazie, 2006). Stakeholders' participation and organisation remains very low in all the NB riparian countries (Bazie, 2006). Despite the ambition to improve their involvement by the NBA, financing intended to improve their capacity building is considered to be insufficient (5% of the IP -ABN, 2008), and adequate ways to institutionalise such an involvement at both the regional and national level remains unclear.ECOWAS which gathers all West African states (and therefore all NBA member countries except Chad and Cameroon) plays a major role in the regional process towards IWRM implementation that was launched in 1998 (Ouagadougou Declaration). It was followed by the adoption of a regional IWRM action plan in 2000 (RAP-IWRM/WA) and the institutional setup of the Permanent Framework for Coordination and Monitoring of IWRM in West Africa (PFCM WA). Activities of the PFCM aim to improve the water management framework at regional and national levels in order to favour the implementation of an IWRM approach guaranteeing the sustainability of water uses. According to such objectives, PFCM directly supports River basin management structures established in all the transboundary Basins (among them the NBA) and states in implementing IWRM at trans-boundary basin and national scales (elaboration of IWRM national plans). A convention has been adopted between NBA and WRCU (the ECOWAS executive body of PFCM) to promote and facilitate the implementing of participation and gender issues principles in the \"Shared Vision\" process.An inventory and analysis of the national legal and political water management frameworks was carried out. The results along with the status of IWRM implementation, protection of customary water or land tenure rights, and gender issues are also presented in Table 6.The role of the states remains essential in the management of natural resources in the Niger Basin. Contrasting with the trend towards private ownership and private rights in the land tenure sector, reforms to water legislation -largely driven by international exogenous forces -have seen the assertion of state control over water resources and the introduction of complex mechanisms for the allocation of administrative water rights (Hodgson 2004). The profound reforms aiming to decentralize and liberalise the economy have consequence on agriculture-related policy. They notably confer to new institutional actors (public: local government and authorities, and private operators: notably village association created and funded through international remittances) a main role in bringing the water debate close to the levels where actual problems have to be addressed. According to IWRM principles, this decentralization process is supposed to bring a greater participation from the civil society and more transparency in public affairs (WRCU, 2007), but such reforms will also introduce changes and potential clashes between customary institutions and the new elected local governments. Stage of implementation: active, underway, lackingPartly due to the slow decentralization process and absence of implementation of modern water law, customary rights continue to play a central role in water management. Traditional law varies per ethnic group and requires case by case analysis but customary rights notably affect water through land issues, as water and land remain closely tied (Ramazzoti, 1996, Caron, 2009). The recognition of customary land tenure rights (Table 6) appears as a critical issue in modern water legislation, though its recognition remains rare (Cotula, 2006). Land tenure reforms of the past 15 years (influenced by the IFI and donors commitment to free and open land markets) have favoured individualized tenure and land titles, thereby affecting the legal formalization of customary rights (McAuslan, 2006).The fact that customary laws remain dominant despite the progressive introduction of new legislation and structures creates a legal pluralism. This \"legal pluralism\" refers to the co-existence of systems of rules based on different or even contradictory principles privileging opportunistic behaviours. New structures are created by decentralization reforms and other state interventions and policies but also through participatory governance requirements (IWRM principles) and development projects (grassroots NGO's Developments programs) who create their own authorities and committees (e.g. to manage wells etc). This plurality of standards also results from economic and social changes (demography and economic ones) that bring about certain stakeholders to contest the legitimacy of local and traditional norms and encourage the emergency of new practices, more legitimate even if not official (Lund, 2000).Figure 36: Influence of legal pluralism on Water productivity (Caron, 2009) The dynamics between these structures create a change dynamic, which is susceptible to weaken traditional authorities and institutions. Such dynamics are not unequivocal. While in some cases customary law regulation systems are resilient in others they have been undermined by these profound changes and/or have lost their legitimacy (Laville Delvigne, 2006). Legal pluralism also makes local systems of authority and arbitration more complex (Figure 36), and can lead to land and water governance problems and conflicts (Lavigne Delville, 2006;Cotula, 2006).Accordingly, the legal pluralism strengthened by currently local institutional changes is seen as one of the main cause of agriculture productivity stagnation and rural poverty in NBA's countries rural areas, due to the insecurity it creates in terms of definition, allocation and enforcement of land rights and consequently for the dependant water rights. (Figure 36)The major factors impacting agricultural water productivity in rural areas that are identified in academic literature are summed up in Figure 37 Figure 37: Factors affecting Agricultural Water Productivity (Caron 2009) The governance of water and land resources has the potential to play an important role on agricultural water productivity and must be considered when analysing the institutional dimension of agriculture water productivity. Water rights are greatly embedded in the land rights in most of the customary tenure systems, hence land tenure security also conditions the secure access to water resources. Indeed land tenure security is presented as a decisive condition to encourage necessary investments for increasing agricultural productivity in the literature.The legal pluralism that results from the duality of the system of land tenure experimented by all the NB states is considered as the main source of land tenure insecurity. Indeed, the enactment of formal land legislation largely influenced by European conception has often created a dual and separate system (Hodgson, 2004;McAuslan, 2006). But, the specificity of the rules and practices of customary tenure has been denied (McAulsan, 2006). The development of a \"common law\" of tenure that fuses the best of the multiple systems remains under consideration in national policy reform agenda. Nevertheless there are signs of growing awareness of this issue, like the introduction of customary tenure in code for pastoral land rights in Francophone countries (McAulsan, 2006).Despite the promotion of individualisation and privatisation of land rights by IFI, most Governments have been reluctant to transfer full property rights to their citizens and the majority of rural land remains as a State domain. However, recent land tenure legislation reforms have introduced procedures to secure land rights and transactions through the creation of registration systems (Table 6). Various ways to register rights to land have been enacted (Toulmin, 2008). The capacity of these registration procedures in effectively improving land rights security, particularly for the poor rural small holders (and women and young people), is largely debated (McAulsan, 2006;Toulmin, 2008). Indeed, in practice, the implementation of these large scale national formal land titling programs have been very weak and source of exclusions because they are too costly (and corrupted) and non-adapted for poor rural population. However, new approach to land registration based on the involvement of the community and local institutions and on local and simple registration systems have been experimented. Such \"bottom up\" and participative land titling systems, in line with the commitment to decentralisation, may help to protect the tenure rights of the poor (McAulsan, 2006;Toulmin, 2008).A strategic analysis of land tenure securing policies has been conducted in Mali, Niger and Nigeria with three priority foci: gender issues, dispute or conflicts resolution procedures, and experimentation or innovation that aim to securing claims based on locally recognized tenure systems.Case study: Talo Dam project (irrigated rice production, on the Bani River, Mali).The expansion of irrigated agriculture constitutes one of the national priorities of the basin countries. Bani valley in the Upper Niger Basin is identified as one of the priority Development Zone of the Niger Basin (ABN et al., 2007). The Talo Dam is part of the \"National Program of middle Bani's Plain Development\", PMB, coordinated by the Malian Ministry of Agriculture within the Strategic framework for growth and the fight against poverty (PRSP-I-2002(PRSP-I- -2006)). The program encompasses 20320 ha of land development (1603 ha to rice culture, 4290 ha for Bourgou grazing, 490 ha for fish-farming).The project was stopped in May 2001 due to protests led by population located downstream of the dam and the NGO Cultural Survival. A mediation process in 2002 resulted in the creation of the \"Comité des Bons Offices\" within which the NGO World Vision was civil society interest representative, complementary impacts studies were undertaken, modifications to the project were made and the \"Comité de Bassin du Bani\" provided for by the Water Act (\"Code de l'eau\" -2002) was set up.Preliminary identification and analysis of the Malian water and land governance institutional framework and the stage of implementation of the decentralization policy were done before the fieldwork. The implemented methodology combined desk review and stakeholders' interviews (both at national, regional and local scale). The analysis of the collected data was done according to the analytical grids created (Socio-ecosystem resilience analysis). As the Dam only came into service one year before the study, results must be cautiously interpreted and the timeframe was too short to assess its impacts in terms of agricultural productivity (an increase in rice productivity was observed for 2007 -3.5 t/ha for irrigated culture from 1t/ha under rainfed agriculture).Fieldwork was carried out during August 2008 in major villages of the 4 communes, in the Woloni plain nearby the dam. The work studied more particularly: (1) the process of developed land allocation (focus on the customary authorities involvement -Bambara is the majority ethnic group-and on women and young people land access) (2) the agricultural technical improvement's support.The main results of the study are:-Limited positive impacts for women and young people from the PMB decentralized land allocation process, despite the enactment of such objectives through recent law reforms -particularly the Malian \"Loi d'Orientation Agricole\" (2005);-Existence of collective women strategies to assert their claims to land and secure women's access to land. Notably involvement of the 8 ASPROFER \"Association pour la promotion des femmes rurales\" in the land allocation process and proposition to claim land collectively and redistributing individual access to plot internally -Breeder marginalization: lack of implementation of actions to secure access to water and land for cattle, notably no lack of compensatory grazing areas, potential source of conflicts with migrants;-Lack of establishment of a PMB dedicated management organization -Women's access to micro-credit via collective organization (CANEF) supported by the PMB;-Risk of negative impacts on ecosystem dynamics and on Human health (water diseases, pollutions …).Clear property rights and management rule for water and water infrastructures are crucial legal and institutional factors to promote efficient equitable and sustainable water use (Cotula, 2006). Interaction between the statutory and customary law is expected to continue in all the NB riparian states. What type of Government action is precisely needed varies from context to context and also depends on the governmental vision of agricultural development -balance between agribusiness and smallholder farming and relative importance of objectives like efficiency and equity. Specific policy recommendations can not be made here, but issues to be taken into account for policy and practices may be formulated:-Legal pluralism should not be univocally viewed as a threats and a problem -it allows rights to adapt to changes in economic and power relations -in some places, multiple institutions find ways to cooperate and coordinate, creating hybrid new regulation frameworks;-Need for land and water legislation built according to local systems rather than attempting to replace it with systems \"imported\" from elsewhere (innovation is needed in terms of design of local systems to secure water and land access and property rights);-Temptation to idealize the \"local\" should be resisted due to the many customary systems inequity as regards social status, age, gender and other aspects. Governmental intervention must raise the challenge of finding ways of recognizing and securing local water and land rights, on the one hand, while avoiding entrenching inequitable power relations and unaccountable local institutions, on the other. There is no universal solution emphasis should be on the process to design and implement context-specific approaches;The NBA organization -according to its prior engagement in promoting stakeholders participation and involvement of traditional authorities (ABN, 2007) -should be used as institutionalized forum for debating these common issues.Recommendations in terms of land tenure and water rights reforms blending the best of customary and Western law in order to give primacy of place to the land and water concerns of the poor should be elaborated and their implementation supported -for example via their explicit introduction in the Niger Basin.Due to the recognition of the main role played by institutions in both development and poverty dynamics (Meisel and Ould Aoudia, 2007), institutional data banks have been developed. This part presents a specific institutional database from the gathering of suitable and comparable indicators for eight of the nine Niger countries (excluding Guinea). A statistical analysis has been carried out in order to (1) give an insight in each national institutional configuration, (2) make a typology of these institutional contexts and eventually, (3) identify major blocking institutional factors regarding BFP Niger issues. Limits due to i) according to the lack of homogenous available data at the subnational scale, this level has been discarded; ii) the IPD data base does not encompass data for Guinea; iii) the qualitative and subjective nature of institutional indicators must be underlined.Institutional profiles of the basin countries Statistical analysis of the gathered institutional data (Component Multiple Analysis) was carried out. It consisted in exploring all the qualitative data gathered to bring out the most significant institutional characteristics of the 8 NB riparian countries covered.The first two axes of variables dispersion revealed by the MCA form the first factorial plane on which all the countries are projected -Figure 38 (two axes capture 37.8% of total variance, that is to say the information contained in the entire database).On the first axis F1 (19.9% of total variance): the principal variables allow to differentiate and to characterize some specificity of the institutional configuration of Nigeria in contrast with a good internal security and strong exogenous pressures (Niger, Benin, Burkina Faso, Cameroon).Figure 38: Individuals Projection on the first factorial plane (F1, F2) -8 countries,The second axis F2 (17.9% of total variance) is strongly correlated with the indicator \"guarantee of Public freedoms and the autonomy of the civil society\". The position of Chad contrasts with others countries.According to the results of a primary illustrative statistical exploitation of the IPD that has been carried out by its authors (51 countries where included, 79 stock variables), the NBA's members belongs to the same institutional profile group of \"informal-fragmented\" (Meiser and al., 2007). Our results put in light that institutional profiles of the NBA's countries are not so homogenous, and would need to go beyond this first classification. Such encouraging first results prove the quality and the pertinence of the IPD sources that provides the main part of institutional indicators.The IPDB data provide complementary, comparable information on land tenure security issues that are summed up in Figure 39. Except in Cameroon and Ivory Coast the scale of traditional collectively owned land (traditional rights, religious rights and others) is high or very high. Agricultural land property rights are mainly traditional and informal in all the eight considered Niger Basin states. The security of traditional land property rights and transaction is low or medium (except in Chad, Nigeria and Niger). The security of formal land property rights and transaction is far from maximal but better assured than for the traditional rights except in Burkina Faso and Chad. In Cameroon, Ivory Coast, Mali, Niger and Nigeria (good security for the two latter) the level of security of formal and traditional property rights and transaction is identical. The security of traditional property rights (that encompass existence and importance of traditional system not only in agricultural matters and its capacity to ensure security of property rights) is high in Burkina Faso, Chad, Cameroon and Nigeria but medium in Niger and Mali. Access to financial services (formal or informal ones) constitutes an important water productivity factor (Figure 37). The data gathered in the IPDB put in light that traditional credit systems are particularly highly developed in Benin, Cameroon and Niger but with important variations in terms of guaranteesreimbursement rate-that are very high in Ivory Coast but low in Niger (Figure 40). The micro-lending (informal or institutional one when it is backed up by NGOs or banks) plays an important role notably in Benin, Cameroon, Niger, Nigeria (with a very low reimbursement rate) and even more important than traditional credit systems in Burkina Faso and Mali. The underdevelopment of both traditional credit system and micro-lending in Chad must be underlined.Figure 40: Role of traditional credit system and micro-lending and quality of guarantees (reimbursement rate) From 0 (no or very low reimbursement rate) to 4 (highly developed or very high reimbursement rate) -Sources : Institutional Profiles DataBase 2006 -http://cepii.fr/ProfilsInstiutionnelsDatabase.htmThe first results of the statistical analyse of our qualitative institutional data originated from various institutional databases are partial -because no variable has been excluded. Another limit of our results lies in the fact that assessment of institutional characteristics are by construction subjective.In spite of such limits, this complementary methodology allows a more rigorous comparative approach that allows identifying some specificity of the national institutional characteristics of each of the NB riparian countries covered. The development of such an institutional water focusing database could become one of the objectives of the Niger Basin Observatory.The WP4 results give first insights into the current functioning of the Niger Basin complex multi scale institutional framework. If the effective assessment of impacts (or performance) of its multi scale interactions in terms of water availability and productivity, poverty alleviation and gender issues, was beyond the objectives and the forces of the WP4, major blocking factors have been identified.According to the BFP Niger issues we focused on poor rural small land holder situation. From this point of view, one of the prior challenges to improve water agricultural productivity, poverty alleviation and gender considerations appears to be the recurrent question of security of land tenure (and women's rights to land). Such a crucial institutional issue is shared by all the French-speaking Niger basin riparian states. The legal pluralism that all these countries experimented is the result of a deeply historically path-dependent process. A colonialism period explains it in major part, current legal reforms are still driven by exogenous norms that do not correspond to the specific needs of the rural poor and fail to recognise the communal tenure as viable and economically efficient.Land governance issues that still encompass water governance in NB rural areas (except in certain large irrigating schemes) is one illustration of our general observation on the major role played by exogenous norms and external pressures -that comes from international institutions requirements -on the formal Niger Basin water institutional framework that is currently set up. As we have underlined, such exogenous norms also impact informal or customary norms and rules, originating harmful competition and conflicts as well as institutional innovations -some time desirable notably in terms of gender concerns -via hybridization processes. Thus, such exogenous driven institutional dynamics that are expected to be reinforced must also be viewed as a source of opportunities. The NBA is a good example of such opportunities. According to the agenda of its \"shared vision\" process, this latter should play a crucial role in favouring the development of innovations in terms of design of pertinent and culturally and context-adapted institutional solutions responding to the needs of rural poor both men and women who are the majority of land holders in all the member countries.The primary research focus of Work Package 1 was the evaluation of methods to quantify the extent, magnitude, location and potential water related causes of poverty in the Niger Basin, West Africa. Water poverty occurs as the combined effect of multiple factors such as increasing and competing water demand, changes in hydrological regimes due in part to climate change and impoundments, increasing population, environmental degradation, reduced water quality, impediments to water access, regional conflict and corruption, and changing levels of water productivity. These relationships are dynamic and likely to vary spatially and temporally. Past policy responses have relied on poverty assessments that are generally not spatially explicit; and hydrological models based on historical flows that may be redundant under changing climate regimes. Hence policy initiatives that are able to account for the different causal relationships of spatially differentiated poverty are likely to be more effective that those that rely solely on hydrologic probabilities.Sustainable water management requires institutional and governance arrangements that can be adapted to dynamic social and biophysical systems, can operate at multiple scales and respond to changing levels of river modification. Effective water policies consist of three key features: generallyagreed and achievable targets; appropriate and adaptive instruments capable of steering towards those targets; and monitoring mechanisms to provide feedback on progress towards targets (Hilborn and Walters 1976). The performance of effective water policy can be measured by the ability to sustain the functioning ecology of the water system, the potential for the efficient allocation of water resources and capacity to meet the conventional tests of equitable distribution and fairness through time.We hypothesise that water policy design, and ultimately performance, are sensitive to spatial scale effects and initiatives to reduce poverty will need to account for spatial variation.Institutional arrangements for poverty alleviation and the unit of analysis where decisions are made and implemented can occur at the Whole of Basin, National, administrative district and community scale. The first research objective was to identify methodologies capable of integrating impact analysis and policy formulation that reliably differentiates poverty at these multiple scales. A second research objective was to map poverty at a unit of analysis that aligns water productivity and water access with poverty data, revealing opportunities for politically feasible water policy formulation. A final objective was to provide evidence based analysis that guides effective policy development in the direction of the causes of poverty at scales that reflect the most exposed communities. Details of the original Niger Basin research including GIS constructs, spatial referencing and spatial regression methods can be found in Ward et al. (2009).There is a general, enduring consensus as to the magnitude and distribution of West Africa's poverty, both acute and chronic. Economic development in West African nations has been either slow or static for the past fifty years. When ranked by gross domestic product (purchasing power parity, per capita), all nine countries of the Niger Basin fall in the bottom quarter of national incomes. The United Nations Human Development Index, a composite ranking based on national income, life expectancy and adult literacy rate, ranks all of the Niger Basin countries in the lowest quintile of countries (Table 7) (UNDP 2007). The proportion of people living below the poverty line (US$1.25 per day) is high throughout the Niger basin countries and especially acute in Burkina Faso (70.3 %), Guinea (70.1%) and Niger (65.9%) (World Bank 2009). This amounts to an estimated 138 million poor in the Basin countries, of which a disproportionate number live in rural areas.Life expectancies are in the bottom 15% of all countries worldwide. Niger Basin childhood mortality rates (death prior to the age of five) of up to 250 per 1000 live births are approximately two to three times higher than those in neighbouring countries in northern and southern Africa (Balk et al. 2003). The region is characterized by a high prevalence of endemic and epidemic communicable diseases. Respiratory diseases, malaria and diarrhoeal diseases are the largest causes of child mortality (ECOWAS-SWAC/OECD 2008). HIV infection rates are considered high (between 1.1 and 7.1%); though less severe than those in southern Africa.Table 7 provides a snapshot of the development status for these countries according to an array of commonly applied poverty metrics. Such indicators have become increasingly widespread and favoured by decision makers, as they provide a more legible, though often simplified view of the reality on the ground (Molle and Mollinga 2003). Reducing complexity facilitates communication and comparison; however these indicators present several limitations, including aggregating data into national or yearly averages which mask spatio-temporal differences. Poverty, traditionally measured as individual or household income, often fails to reflect the many dimensions of poverty, notably when considering the mostly cashless, subsistence farming society of West Africa (inter alia Cook & Gichucki 2007;World Bank 2009). Index measures of poverty attempt to capture the multi-dimensional nature of poverty by aggregating a range of selected social-economic indicators, however they rely on subjective or even arbitrary construction of composite indices and attribution of weights weightings (often assigned by the analyst). Indicators which measure a relatively monodimensional and objective situation (Molle and Mollinga 2003) (e.g. childhood mortality rate) may offer the closest depiction of the situation in these communities.Water poverty occurs when people are either denied dependable water resources or lack the capacity to use them. Water may be insufficient for basic needs, for food production or for wider economic and environmental services. Water scarcity is commonly thought to arise due to physical or economic constraints, though Molle and Mollinga (2003) distinguish three further causes of scarcity: managerial, institutional and political scarcity. This distinction reflects the complex nature of water poverty and points to the need to look beyond technical and financial means alone to reduce water poverty.There exist a number of indicators designed to measure or characterise water poverty (see Table 7). Just like poverty indicators, these require moving from raw data towards a composite aggregated indicator and as a result often gain in simplicity what they lose in accuracy. The widely used Falkenmark \"water stress index\" (Falkenmark et al. 1989) defines a threshold of 1700m 3 of renewable water resources per capita per year, under which a country is deemed to suffer from water scarcity. All countries except Burkina Faso exceed this threshold; however the indicator fails to capture spatio-temporal variations, crucial in a country such as Mali which spans from a sub humid to a hyper arid climate. A more comprehensive measurement of water poverty is the Water Poverty Index, which notably takes into account communities' abilities to access and use water but suffers from the use of arbitrary weights and must ideally be generated at a local rather than national or regional scale (Sullivan and Meigh 2003).Though indices provide an overview of the poverty and water situations faced in the basin, they do not intend to reflect the linkages between water and poverty.Composite indices intrinsically mask the importance of each factor, making interpretation of the potential causes behind water poverty and formulation of subsequent interventions difficult. Furthermore, identifying a state of water poverty (i.e. low level of water resource, access or use) may not necessarily tell us about the associated level of poverty, i.e. reduced livelihood, well being or economic poverty.To address the question of a hypothetical relationship between water and poverty at the national scale, we estimated statistical relationships, using poverty maps and correlation coefficients. Significant correlations do not imply causality but point towards water resource factors which may influence poverty. At the national scale, weak correlations between widely used water and poverty metrics of between 0.02 and 0.47 are characteristic for all African nations (excluding small island states). Table 8 summarises the correlation matrix between the Falkenmark Index of water availability and widely used poverty indices; the Water Poverty Index (WPI), the Headcount Ratio (proportion of people living under US$1 per day, PPP), the Human Development Index (HDI), the Genuine Savings Indicator (GSI) and the Social Vulnerability Index (SVI). Note that data were not available for Libya, Liberia and Somalia and the table does not include small island states. Thus at a national level, there is little evidence for a strong association between a country's water situation and its development performance on the African continent. Note that the TARWR correlation with the WPI is to be expected given that the latter incorporates a form of the total water resources statistic. 4 Hamilton and Clemens (1999); 5 Vincent (2004).In this analysis we hypothesised that variables associated with water access and productivity would significantly affect observed levels of poverty. We therefore decomposed poverty indices as individual variables and an expanded array of water and non water poverty determinants at high resolution spatial scales to detect statistical relationships.For this study we relied on three common poverty variables and assessed the role of water related variables in explaining the observed distribution in each for the countries of the Niger River basin. The basin is socially and economically heterogeneous, has a high proportion of subsistence livelihoods and a relatively large non-market, hybrid economy. A singular monetary measure of poverty (for instance, household income) is unlikely to capture either the full magnitude or distribution of poverty. We therefore used two health variables: child mortality and child stunting (height for age ratios) and a composite relative wealth index.The singular dimension of the first two variables avoids the problem of subjective weighting of composite indices and provides evidence based poverty measures that intersect cultural, economic and policy boundaries (Setboonsarng, 2005). Note that the wealth index is country specific and cannot be compared internationally (Rutstein and Johnson, 2004). Data was taken from the Demographic and Health Surveys (Measure DHS, 2008) and interpolated to estimate values in non-sampled regions. Figure 41, Figure 42 and Figure 43 illustrate the spatial distribution of child mortality, child morbidity and relative wealth respectively, in 630 administrative districts across the basin. The poverty estimates were assessed for statistical correlation with possible poverty determinants, both water and non-water related, and was undertaken in the first instance at a Basin scale using Geographically Weighted Regression (GWR). Explanatory variables employed in the analysis are detailed in Table 10. GWR formally accounts for significant spatial correlations or spatial patterning, which can bias regression results and lead to misinterpretation. This demonstrated that the influence of different poverty determinants (such as geographical isolation, education levels and availability of water for instance) is variable over the Niger Basin; unsurprising given the socio-economic and biophysical diversity of this large study area.Furthermore, considerable disparity between results analysed for child mortality and child stunting was found despite the widely accepted relationship between these variables. This highlights the need for poverty analysis that incorporates a number of alternative poverty metrics for cross validation, as is used here. At the whole of basin scale, we considered robust only those results that were supported by both the mortality and morbidity analyses.The total quantity of available water resources (TARWR, cf. Figure 44 and Figure 45) was significant (p<0.05 for all statistical tests, unless noted otherwise) in North West Nigeria, East Nigeria and central Mali. In Figure 45 (and Figure 47), districts where TARWR (5A=unprotected water) is not significant (at α=0.1) are coloured blue; districts where TARWR is associated with a significant increase in child mortality are coloured yellow and orange, and districts where TARWR is associated with a significant reduction in child mortality are coloured green. TARWR was only occasionally associated with poverty, suggesting that social or institutional factors of water use are more important than water availability. The quality of water used by households appears to be as important, or more so, than the total quantity of water available in the environment. The use of unprotected well or surface water is generally positively correlated with increased child mortality and increased stunting. In North West Nigeria and east Nigeria, a 1% decrease in the number of people using unprotected water is correlated with an up to 2.4% decrease in child mortality. Increased irrigation development is correlated with reductions in child stunting in central Mali, North West Nigeria, central and eastern Nigeria and North Burkina Faso. Increased time spent in education is significantly correlated with a decrease in child mortality and child stunting. In much of the Mali Inner Delta, a one year increase in the average level of education is associated with an approximate 3% decrease in child mortality.The variables demonstrated to be statistically non-stationary (i.e. their influence varies across the landscape) may be more appropriately addressed using a geographically targeted policy approach. The differences in coefficient estimates are likely to be symptomatic of the ways in which a variable influences communities subject to local conditions.Education and access to improved water quality (see Figure 46 and Figure 47) are variables that are significant and relatively stationary across the study area. They can therefore be addressed with whole of catchment scale policies with less attention to regional differences. Certainly, a variable as important as education will require its own nuances due to cultural factors, however its importance is relatively spatially consistent. Policy decisions are often made at the state or national level, and regional perspectives of poverty cannot be presumed to be aligned or concordant with the differentiation of poverty, livelihood vulnerability or institutional diversity across the entire Niger basin (Hyman et al. 2005). A finer resolution of poverty analysis was used as an alternative to a whole of basin analysis, enabling the identification of poverty hotspots at a sub-national scale. Anselin (2005) has developed localized indicators of spatial correlation (LISA) to account for spatial clustering at defined local scales. These clusters represent areas that have significantly elevated poverty levels (P<0.05), referred to as 'hotspots.'There is broad convergence in the hotspots found using different poverty measures. Figure 50 Potential causative factors of each poverty hotspot were explored using spatially explicit regression analysis. As indicated by the 'whole of basin' approach, this sub-basin scale assessment also found considerable differences in the way poverty manifests in different regions. Table 4 details the coefficients and statistics, typical of the spatial lag regressions for child mortality, morbidity and wealth, estimated for North Western Nigeria. Nearest neighbour relationships were used determine the spatial weights matrix to estimate spatial lag regression model according to Anselin (2005).In North West Nigeria, water quality is the primary water-related factor that correlated with poverty. A 1% decrease in the number of people who access their primary drinking water from unprotected well or surface water is associated with a 1.1% decrease in child mortality. Weaker evidence was found linking water access to child mortality: An average reduction of ten minutes taken to access the primary water source is correlated with a 1.7% decrease in child mortality rates. Similarly, a 1% increase in a district's irrigated area corresponds with a 0.04 standard deviation improvement in height-for-age ratios. Education is the strongest non-water correlate: A one year improvement in average schooling attainment is associated with a 0.6% decrease in child mortality rates, all other factors held constant The Central Mali region is an important area of the Niger Basin containing the Ramsar listed Inner Delta -a highly productive flood plain covering an area of over 80 000 km 2 . This region features average child mortality rates of 240 per 1000 live births. The relationship between water and poverty is ambiguous in this region. Non-water variables were more clearly correlated with poverty. For instance, a one year increase in average schooling levels is associated with a 3.1% decrease in child mortality rates.In East Burkina Faso, the use of unprotected water is correlated to poverty suggesting that quality is more important than quantity or access in this region.Environmental degradation, as measured by the World Wildlife Fund's 'Human Footprint' score significantly explained wealth and child mortality. An increase in environmental damage was associated with an increase in child mortality and a decrease in wealth.In East Nigeria and North Cameroon, the use of unprotected water sources is significantly correlated both with reduced wealth and increased child mortality. A 1% decrease in the use of unprotected well and surface waters is associated with a 0.16% decrease in child mortality. Evidence was also found for a positive correlation of dams and irrigation on poverty levels. Education is associated with reduced poverty in the wealth and mortality models, and a 1 year increase in average education levels is associated with a 0.7% decrease in child mortality. Table 3 summarises the water and non-water determinants of poverty, estimated using spatial lag regression at the scale of administrative district. At a national level TARWR is only weakly correlated with widely used development and poverty indicators. Even at district scales, the absolute quantity of water available per capita is only occasionally successful in predicting child mortality, morbidity or the asset index. Water quality, however, was more clearly associated with these measures of poverty. At most poverty hotspots there were significant correlations between the proportion of people drinking from unprotected water sources and the incidence of poverty. The area of irrigated land was associated with decreases in poverty in only two cases, North West Nigeria (by one poverty metric) and in Eastern Nigeria and Northern Cameroon (by two metrics). There was a variety of other variables which we tested for correlations with poverty, such as livestock (sheep, cattle, goats, pigs and chickens), the percentage of human appropriation of net primary productivity and forest cover. Whilst there is evidence that some of these variables play a role in explaining poverty levels in some locations they were not systematically reliable or significant determinants.A statistical relationship between water quality and child health poverty measures seems consistent with the vital role given to water and sanitation in alleviating poverty (UNDP/SEI 2006). Insufficient access to clean water is known to impact on human health, through the development of water-borne diseases (e.g. diarrhoea, cholera) and water washed diseases (e.g. scabies, trachoma) (Bradley 1974). Diarrhoea is the third cause of child mortality in West Africa after malaria and respiratory infections (ECOWAS-SWAC/OECD 2008) and new water borne diseases such as Whipple disease are still emerging (Fenollar et al. 2009).Literature suggests that agricultural water management provides a pathway out of rural poverty (Namara et al in press). In this study, weak correlations were found between agricultural water determinants and poverty variables. TARWR does not account for difficulties in accessing water and therefore only provides a theoretical value of water potentially available for agriculture. The metric also does not translate into annual inflow and recharge variations, crucial in countries that regularly experience drought and flooding in the same year (Rijsberman 2006). Although TARWR is a commonly used indicator, in the Niger basin it does not accurately reflect the water availability situation of a community nor its poverty status. Hussain and Hanjra (2004) argue that increased irrigation and proximity to dams provides a pathway out of poverty, indicating community opportunities and capacity to access and transform water into food. this analysis found such a relationship in only some instances. The spatial regression analyses suggest either that irrigation's contribution to rural welfare is low in the Niger Basin, or that the spatial extent of irrigation is too limited at present to cause any detectable reduction in poverty at this scale of analysis. The literature suggests that irrigation will be crucial for the future economic development of the basin, along with improvements in the productivity of rain-fed agriculture. However, it may be that the benefits of irrigation do not yet accrue to the people engaged in its practice, or that they do so at levels too small to register in these analyses.The relative wealth advantage of the Office du Niger, illustrated in Figure 50(C) and the analysis of Zwarts et al. (2006) suggest that so far the benefits of irrigation are confined to local irrigators and external investors and do not sufficiently accrue to the local poor.The Office du Niger region is one of the oldest and largest irrigation schemes in Sub-Saharan Africa and expansion of irrigated agriculture is cited as a factor in regional poverty reduction. In general terms expansion can be accomplished by either improved water efficiencies reliant on existing impoundments or the construction of new dams (e.g. the proposed Fomi dam in Guinea) associated with maintaining existing water efficiencies.A successful rehabilitation of the area was undertaken between 1983 and 1994 which saw average rice paddy yields tripling to 5t/ha. Previously abandoned lands were cultivated and the settler population grew by 222% (Aw and Dejou, 1996). By 2004, the average paddy yields had increased to 6.5t/ha; water use dropped from 1,500m 3 /t to 250m 3 /t and cultivation intensity has risen from 60% to 115% (Diemer, 2004).As an alternative to engineered solutions, successful rehabilitation was achieved by micro management and institutional reforms, implemented by the Malian government in return for capital investment by donor countries (Zwarts et al. 2005(Zwarts et al. , 2006;;Molden 2007). Institutional reforms included the privatization of non-irrigation activities enabling farmers to sell produce and buy their imports at will. Decision making has gradually shifted from government officials to farmer representatives and formalized by 3 year performance contracts between the government and farmers. The arrangements have improved the effectiveness of incentives, evidenced by increased agricultural outputs and subsequent productivity.In this study, agriculture related indicators including primary productivity, soil quality or livestock numbers, provide little explanatory power over poverty. A similar study in Malawi by Benson et al. (2005) found that a rise in maize yields actually resulted in increased poverty, presumably due to equity issues, with higher yields not benefiting local populations. Despite agricultural productivity growth being expected to reduce poverty in the rural agriculture-dominant economies of West Africa (Thirtle et al. 2003), poverty prevails in areas of good soil quality, high productivity and sufficient water availability.These results point to the complexity involved in transforming available water into adequate food production and a pathway out of poverty. Beyond reliable water access, food production relies on several additional conditions being met such as access to land, labour, seeds, fertiliser, pesticides, tools and machinery, fuel, storage, transformation processes, roads, markets and political security. Hanjra et al. (2009) point to significant correlations between these variables and agricultural productivity, however variable interactions are critical in determining resultant poverty. Some of these factors may be stationary at the regional scale (such as roads and access to markets); others such as access to land may vary widely from one family or ethnic tribe compared to another within the same village and thus require detailed analysis. The latter structural causes of poverty are notably caused by the positioning of individuals in the socioeconomic structure (Mulwafu and Msosa 2005).Overall, it is difficult to isolate one contributing factor to poverty. Instead, one must look at the capabilities (e.g. level of training, diverse income sources, capital and support networks) of a household or community (Chambers 1992), as these determine whether they will fall or subsist in a state of poverty. The absence, presence or quality of water do not in themselves act as determinants of poverty as it's what people can or don't do with it, according to their capabilities that influence poverty. For instance, access to clean water may be seen as an implicit guarantee of improved health, but if wells are not maintained or communities prefer the taste of the water from the nearby pond (Becerra et al, 2009), then no impact on poverty levels may be seen.Policy decisions are often made at state or national level, and regional perspectives or understanding of poverty cannot be presumed to be aligned or concordant with the differentiation of poverty, livelihood vulnerability or institutional diversity across the entire Niger basin (Hyman et al. 2005). More effective policy that influences water access or productivity is likely to be reliant on mixes of sequenced instruments tailored to address temporally and spatially diverse poverty patterns. An important focus of the poverty research was the development and application of methods capable of aligning water management and poverty data at scales that are administratively and politically feasible across the Niger basin countries.The first research objective was to identify methodologies capable of integrating impact analysis and policy formulation that reliably differentiates poverty at these multiple scales. A second research objective was to map poverty at a unit of analysis that aligns water productivity and water access with poverty data, revealing opportunities for water policy formulation. A final objective was to provide evidence based analysis that guides effective policy development in the direction of the causes of poverty at scales that reflect the most exposed communities.The lack of a comprehensive metric that reliably captures the multi factorial characteristics of water poverty has led to a raft of measurement techniques, each with advantages and disadvantages. Attempting to develop another poverty index or measurement criteria was not the aim of this research. Our primary aim was to assess and develop methods to detect and analyse a hypothetical relationship between water and poverty through statistical methods and poverty mapping.To account for a high proportion of subsistence livelihoods and a large nonmarket, hybrid economy we used child mortality, child stunting and a composite wealth index as poverty metrics. The analysis of spatially referenced child mortality, child morbidity and the wealth index identified three major poverty hotspots in the Niger basin. These are situated in Southern Mali and the inner Delta, North East Burkina Faso and North West Nigeria (Figure 51). There is broad convergence in the spatial correlation between poverty measures illustrated in Figure 51. Communities situated in regions of intersecting hotspots for the three poverty metrics are those expected to face the greatest poverty and vulnerability challenges. We found that education and access to improved water quality are the only variables that are consistently significant and relatively stationary across the study area. At all scales, education is the most consistent non-water predictor of poverty while access to protected water sources is the best water related predictor of poverty. They can therefore be addressed with whole of catchment scale policies with less attention to regional differences.The variables demonstrated to be statistically non-stationary (i.e. their influence varies across the landscape) may be more appropriately addressed using a geographically targeted policy approach. The differences in coefficient estimates are likely to be symptomatic of the ways in which a variable influences communities subject to local conditions.Similar studies evaluating the significance of explanatory variables in poverty mapping have found limited correlations between poverty and agro-ecological or socioeconomic determinants (Hyman et al 2005). While established relations between water variables and poverty exist, notably water quality impacts on health and therefore poverty, these vary substantially through space and time. Access to water for agriculture and productive purposes plays a crucial role in poverty alleviation but is not a sufficient condition and much will depend on the capabilities and endowments of a given household or community. The research completed for Work package 1 indicates that landscape and scale matters in water poverty. Interactions between environmental, social and institutional factors are complex and an evaluation of poverty and its causes requires analysis at multiple spatial resolutions.The poverty maps, estimated at a high resolution scale, can be viewed as evidence based, easy to interpret participatory tools, rather than a final product. The cadastral representation of the vectors of poverty enable the community, policy makers and administrators to visually evaluate the relative effectiveness of alternative policy incentives and actions, the relative distribution of resources and investment priorities.Combining the research from the other Challenge Work Packages with the poverty coefficients, is intended to provide a reliable basis for agencies to explore the social dimension that enables adaptive water system management. Agencies are thus able to concentrate on regions and cases that describe incremental but large change and investigate social sources of renewal and re-organization.Estimating the covariance of significant, spatially referenced factors that comprise water related poverty in the Niger basin, combined with GIS mapping would enhance the usefulness of deliberative tools. This would be especially salient to evaluating portfolio approaches to poverty reduction, targeted sequencing of instruments and prioritization of investments across several factors. This is the subject of ongoing research.Faced with these challenges, the Basin countries have developed key goals and objectives. These are formulated in various policy documents such as the Niger basin \"shared vision\" process, poverty reduction strategy papers, United Nations Millennium Development Goals, and the New Economic Partnership for Africa's Development, specifically the Comprehensive Africa Agricultural Development Program, pillars 1, 2, 3 and 4.Many of the basin countries have adopted all of United Nations Millennium Development Goals and this is reflected in their respective Poverty Reduction Strategy Papers. These include: Eradicate extreme poverty and hunger, Achieve universal primary education, Promote gender equality and empower women, Reduce child mortality, Improve maternal health, Combat HIV/AIDS, malaria and other diseases, Ensure environmental sustainability, and develop a Global Partnership for Development.Specifically, basin countries have defined the following broad development objectives:1. Increase income, improve living standards and alleviate poverty, especially among the poorest section of the population 2. Improve access to health, and education services, and increase life expectancy 3. To increase per capita GDP, generate decent jobs and increase wealth and share it equitably while at the same time safeguarding the environment. 4. Sustainable management of the Niger basin's natural resources 5. Political stability, good governance and an appropriate institutional framework to accelerate the decentralization process to improve the functioning of the government and its institutions, to improve the economy's fundamentals and competitiveness, in particular the investment climate for private sector development 6. Economic and sub-regional integration in which water resource development infrastructure plays a decisive part 7. To maintain good macro-economic policies in order to achieve more evenly distributed high and sustainable economic growth 8. Development of infrastructures and the productive sector to ensure better productivity of factors of production and economic growth 9. To contribute to job creation and income generation for the poor, in order to reduce the incidence of rural poverty 10. Agricultural development program that will drastically reduce food imports, boost agricultural exports through stabilization and expansion of rain-fed production, intensification through irrigation and accelerated commercialization through private sector participationImprovements in agricultural water management and in the management of the Niger basin water resources can have significant effects on poverty (Namara et al in press). In order to address some of the development challenges and meet the basin development objectives, the following interventions are recommended:Ensuring right to secure access to water for the poor The rising demand over limited water resources in the Niger basin will lead to prioritised allocation of resources, putting vulnerable populations at greater risk. Legal framework to guarantee acceptable minimal quantities of water and land per person may be required. Enabling collective rights to water and land may also guarantee the access to water by the rural poor 7.2.2.Developing and improving agriculture and water infrastructure Investment in water infrastructure is largely underdeveloped in the basin, due to insufficient levels of investment. This includes wells, small reservoirs, but also non water infrastructure (roads, communication, electricity), which are required to fully develop agriculture. Existing agricultural infrastructure must also be improved. They are currently poorly operated and maintained, due to economic, institutional, managerial failures. Their governance and management must be strengthened. To enhance the productivity of existing infrastructure it is notably important to develop multiple use of water (integrate livestock and small-scale fisheries and aquaculture.Upgrading rain-fed systems The vast majority (95%) of the Niger basin population depends on rain-fed agriculture. Thus, a modest productivity improvement in the rain-fed system can have significant impact on poverty reduction and food security.One of the limiting factors in rain-fed systems is soil moisture stress. Interventions to reduce the effect of drought and increase productivity in rain-fed farming systems of the Niger basin include rainwater harvesting; improving onfarm water management through adopting/adapting soils and water conservation practices such as mulching, ridging, and minimum or zero tillage, etc.; developing moisture stress tolerant crop varieties through both conventional and unconventional crop breeding approaches; and encouraging the adoption of agroforestry practices. The impact on yields of such techniques may be marginal without the addition of fertiliser; however by reducing water stress these techniques may also reduce the risk factor which currently prevents rainfed farmers from investing in fertiliser and other inputs.Otherwise four main strategies exist: increase the rainfed production area (by rehabilitating ecosystems where it has disappeared, increase land productivity of the rainfed agriculture (independently of water), develop water efficiency where it is scarce (essentially north of 700 mm for millet and sorghum), increase plant tolerance to water excess. Research should continue as much on the resistance to drought in all key development phases, than on reducing drainage sensitivity.Improving access to Agricultural Water Management innovations Innovations and technologies allowing farmers to abstract, channel, distribute water effectively (pumps, sprinklers, drip) but also to store, transform, condition products are not within the financial reach of the vast majority of small holder farmers. Economically, agricultural performance can be improved through a better credit system. The organisation of the market chain (stocks) as well as access to input markets can also be improved.Strengthening Niger basin's water governance To develop and support development efforts over the long term, effective cooperation between stakeholders and implementation is required. Good clear governance is required to ensure water resources are developed in an equitable, participatory and sustainable way.The NBA provides an ideal platform to develop integrated water resource management at the basin level, but efforts must be made before it can fully and successfully develop and manage water resources at the basin scale.Reducing the vulnerability of poor people to climate shocks and other hazards Floods, drought, climate change, and climate variability contribute to increased vulnerability. Mitigation strategies such as early warning systems and storage options are required to help reduce the impact of extreme events.Ending terrestrial and aquatic ecosystem degradation: The prevalence of low productivity extensive rain-fed agriculture such as those based on the slash and burn systems are threatening terrestrial ecosystems resulting in significant biodiversity and soil loss. The latter has also an impact on the overall availability of water. To reverse the trend, efforts have to be made in the area of reforestation, land reclamation, development of natural forests and protected areas, as well as development of community forestry and agroforestry. This shall be complemented by improving rural people's access to alternative energy sources such as hydroelectric power.Further recommendations are provided in the concluding section.As part of the CPWF research for development programme, the Basin Focal project aimed to identify a number of outstanding research questions but also recommendations on ways to reduce rural poverty through improvements in agricultural water management. Major insights are provided below.• Reduced rainfall in the 1970s and 1980s affected runoff in the basin differently. In the upper basin, runoff deficit was high and more consequent than rainfall deficit, due to the cumulative effect of reduced rainfall on groundwater levels. In Sahelian parts runoff coefficients increased, partly due to reduced rainfall but mainly to increased agriculture and reduced natural vegetation. These variations in climate and river regime are essential to take into account when designing future dams • Climatic scenarios for the Niger basin predict decrease rainfall in western West Africa and an increase in central parts. Temperatures, variability, dry spells and extreme events are also set to increase.• Available hydrological data allows tools such as WEAP, MIDIN and rainfall/runoff modelling to be implemented by stakeholder. These should be used in participatory manner to predict changes in flow from rainfall, dam building, land use changes etc • A better understanding of the Inner Delta (Ramsar wetland), notably through hydrodynamic modelling of the flood and studying the associated water uses (agriculture, livestock, fisheries, ecosystems) is required.• Agricultural withdrawals already impact on ecosystems such as the Inner Delta and Niger Delta. Extending dry season irrigation will require additional dams and will impact heavily on wetlands and their biodiversity, notably the environmental services and the livelihoods of a million herders, fisherman and traditional rice growers in the Inner Delta.• Small scale irrigation is currently more water efficient and recommendations for its sustainable and equitable expansion should be examined• Fisheries are rarely included in national or pro-poor policies because their importance has not properly been evaluated • Vulnerable to changes in river flow, fisheries in the Inner Delta are estimated to suffer a reduction of fish catch by 28 tonnes for a reduction in 1m3/s during the flood period of the preceding year. The construction of the Fomi dam will result in the loss of 3700-4900t/yr. • Fish culture in ponds, irrigated perimeters or reservoirs may provide opportunities to perturbed fisheries, however the communities presently involved in fishing are poorly prepared to manage this new activity.• To improve the performance of livestock systems, it is recommended to -Research plant and animals requiring low levels of water -Develop services (traction, by products, dairy products) and their commercialisation -Increase available fodder, through better rangeland management, tree and shrub planting, access to crop residues and reduced bushfires -Improve the health and vaccination coverage -Improve protection of agropastoral activities notably by securing transhumance routes and access to pastures and water• Current farmer strategies to reduce risks (due to rainfall deficit) prevent intensification and solutions to reduce crop failure risk are necessary for farmers to invest in fertiliser and other inputs which are essential to boost yields • North of the 13 th parallel, soil and water conservation techniques must be promoted and in the south, maintaining soil fertility is the priority • Research dry cereals and tubercular to improve their yields and drought tolerance. These are crucial to rural families but often neglected by research which favours cash crops • Research and improve integrated systems such as agropastoral, agroforestry as well as post harvest systems, conditioning and commercialisation.• WP calculations must be refined due to uncertainties in yield and water use.Return flows and the current other uses of \"wasted\" water must be closely examined to ensure improvements in water efficiency do not negatively affect downstream and other uses • WP provides an indication of water use but interpretation and formulation of recommendations appears complex (especially where water is not scarce or under competition) • In livestock, research grazing patterns in the field to improve estimations of water consumption and water productivity • Standard definitions and methodologies are required to allow better comparison • Integrated water productivity calculations of the whole system (agriculture, fisheries, livestock, hydropower, ecosystems) may improve the value and interpretation of water productivity• The progressive introduction of new legislation and structures (decentralisation, IWRM, NGO projects) and the continued dominance of customary laws creates a legal pluralism, leading to confusion and conflicts. The change dynamic can however result in positive institutional innovations, notably the increased recognition of women, youth or minority groups often discriminated against under traditional law.• Water rights are greatly embedded in land rights meaning land tenure security conditions the secure access to water resources and investments in agriculture.• Land tenure is affected by the legal pluralism and reforms favouring individualized tenure and land titles. New participative and communal land titling systems may help protect the tenure rights of the poor • Innovation is needed to design local systems to secure water and land access and property rights, rather than attempting to replace it with systems \"imported\".• The analysis of spatially referenced child mortality, child morbidity and the wealth index identified three major poverty hotspots in the Niger basin, situated in Southern Mali and the Inner Delta, North East Burkina Faso and North West Nigeria • Education and access to improved water quality are consistently statistically correlated with the poverty indices in these hotspots. These variables are relatively stationary across the study area and can therefore be addressed with whole of catchment scale policies with less attention to regional differences.• TARWR and irrigation development were only occasionally associated with poverty, but were not systematically reliable or significant determinants.• Though no causal links can be inferred, a relationship between water quality and child health poverty measures seems consistent with the vital role given to water and sanitation in improving health and alleviating poverty. Improving agricultural water management has the potential to reduce poverty, but the pathway is more complex and the impact less immediate. It will notably depend on the whole production to commercialisation chain as well as community capabilities.• Interactions between environmental, social and institutional factors are complex and an evaluation of poverty and its causes requires analysis at multiple spatial resolutions. Estimating the covariance of significant, spatially referenced factors that comprise water related poverty in the Niger basin, combined with GIS mapping would enhance the usefulness of deliberative tools.• Agriculture in the basin which faces problems of soil fertility, pests, crop diseases etc, will be subject to several additional threats and challenges.• Climatic scenarios for the Niger basin predicting increased temperatures, variability, dry spells and extreme events as well as reduced rainfall in western parts of West Africa will increasing the strain on already vulnerable agriculture.• Projected dam building will inherently produce negative impacts downstream.Tradeoff analysis must be undertaken in consultation with local stakeholders to ascertain which element must be favoured (hydropower, irrigation, fisheries, ecosystems…) and how to minimize negative impacts.• The increase in basin population from 95 million in 2005 to between 186 and 384 million according to the scenarios will lead to greatly increased demands on natural resources and increase vulnerability of rural poor communities. Future population trends depend essentially on the speed of fertility decrease, which currently exceeds 6-7 children per woman and in countries like Mali is not decreasing, leading to an increase in the population growth rate.• Successful interventions have been introduced over the years, however solutions to achieve sustained and widespread impacts on rural poverty are still lacking.• Improvements in rainfed agriculture can significantly reduce poverty thanks to the large population dependant on it. Current farmer strategies to reduce risks (due to rainfall deficit) prevent intensification and solutions to reduce crop failure risk are necessary for farmers to invest in fertiliser and other inputs which are essential to boost yields.• Recommended interventions include: water harvesting, drought resistant crops, early maturing crops, micro doses of fertiliser, multiple use systems, seasonal forecasts. Improvements are required in all sectors (markets, financial services, training) and notably governance to secure access to land and water.","tokenCount":"28206"} \ No newline at end of file diff --git a/data/part_3/7219874782.json b/data/part_3/7219874782.json new file mode 100644 index 0000000000000000000000000000000000000000..aa4ccebb165c80088374f270efb980542b9bc325 --- /dev/null +++ b/data/part_3/7219874782.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"a23cdd03155e945fb08b6afda058a6a2","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/a8e6f026-747a-4a5e-8c21-ec4cdc0c5c33/retrieve","id":"703314064"},"keywords":[],"sieverID":"c1816e75-32fa-4efa-9ca9-870ee2adb1e4","pagecount":"2","content":"The anticipated impacts of climate change on cropping systems are well characterized for many regions. Comparatively less attention has been given to the prioritization of strategies that will help communities adapt to these changes at different time-scales for action. There are no adaptation 'silver bullets', and options must be considered in a broad context that often only emerges from participatory appraisal. The PAiCE framework provides a process though which stakeholders can collaboratively learn and collectively prioritise adaptation options that respond to the most pressing contemporary and projected climate challenges while identifying knowledge gaps and key areas of uncertainty.Using expert elicitation through discussion-based stakeholder consultations, PAiCE provides a structured approach to characterize and explore potential adaption solutions for specific crop production regions. Ideally, the approach is not limited to stakeholder workshops. As a first step, characterization data for climate challenges and production system characteristics should be aggregated; this helps ensure that discussions are focused on topics that require the wisdom of groups. It is also important to aggregate experimental evidence of the value of different technologies and management approaches to respond to the climate challenge. Following the workshop, areas of uncertainty and evidence gaps should be addressed to enhance initial results. Thereafter, a provisional set of priorities should be shared with a broader set of stakeholders to cross-validate results. As a last step, it is envisioned that results from the PAiCE tool will provide a strong foundation for climate change adaptation by steering investment and helping to coordinate the efforts of partners through action roadmap development PAiCE aims to generate discussion and is best done in small groups of between 4 and 7 participants. The ideal group will have a diversity of experiences within the focal geography to enable a broad discussion. Brown, B., McDonald, A.J. et al (2022) The PAiCE (Prioritising Agronomy in Changing Environments) Tool for empowering climate adaptation initiatives.Brendan.brown@csiro.au","tokenCount":"311"} \ No newline at end of file diff --git a/data/part_3/7221370448.json b/data/part_3/7221370448.json new file mode 100644 index 0000000000000000000000000000000000000000..98f4420b2cd63eb50efd8855daeb1dce8ab11a2f --- /dev/null +++ b/data/part_3/7221370448.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"b036afe321c815e3a84cd2cd2bbdb09e","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/759fcf01-e011-4da3-9568-3b39fe12f7d9/content","id":"-47595548"},"keywords":[],"sieverID":"b1c51d1c-d725-4b1c-b7a3-5f4a6a775805","pagecount":"8","content":"Agriculture now faces grand challenges, with crucial implications for the global future. These include the need to increase production of nutrient-dense food, to improve agriculture's effects on soil, water, wildlife, and climate, and to enhance equity and justice in food and agricultural systems. We argue that certain politics of constructive collective action-and integral involvement of agricultural scientists in these politics-are essential for meeting grand challenges and other complex problems facing agriculture in the 21st century. To spur reflection and deliberation about the role of politics in the work of agricultural scientists, we outline these politics of constructive collective action. These serve to organize forceful responses to grand challenges through coordinated and cooperative action taken by multiple sectors of society. In essence, these politics entail (1) building bonds of affinity within a heterogenous network, (2) developing a shared roadmap for collective action, and(3) taking sustained action together. These emerging politics differ markedly from more commonly discussed forms of political activity by scientists, e.g., policy advisory, policy advocacy, and protest. We present key premises for our thesis, and then describe and discuss a politics of constructive collective action, the necessary roles of agricultural scientists, and an agenda for exploring and expanding their engagement in these politics.This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.We argue that certain politics of constructive collective action-and the integral involvement of agricultural scientists in these politics-are essential for meeting grand challenges facing agriculture in the 21st century. Broadly, these are to increase production of nutrient-dense food (Willett et al., 2019), to improve agriculture's effects on soil, water, wildlife, and climate (Rockström et al., 2017), and to enhance equity and justice in food and agricultural systems across scales (Loos et al., 2014). Present rates of progress on these challenges are mixed at best (Steiner et al., 2020). All represent urgent and complex (or \"wicked\") problems, defined as (i) multidimensional, (ii) highly uncertain and unpredictable and (iii) involving multiple stakeholder groups that do not have a common understanding of the problem and potential solutions (Levin, Cashore, Bernstein, & Auld, 2012). The politics of constructive collective action, outlined below, organize forceful responses to such problems through coordinated and cooperative action taken by multiple sectors of society. These emerging politics differ markedly from more commonly discussed forms of political activity by scientists, e.g., advising governments on policy, advocacy for policies, and protest. We argue that participation in politics of constructive collective action is necessary to fully engage the power of agricultural science in meeting urgent and complex problems. We first present key premises for our thesis, and then define these politics, the necessary roles of agricultural scientists, and an agenda for expanding the engagement of scientists. Our key message is that agricultural scientists can greatly heighten their contributions to meeting complex problems if they understand and participate-as scientists-in these particular politics. Yet, to be highly effective participants, they must recognize, embrace, and build skills for a new identity and role: scientist as skilled actor in the constructive politics of collective action.In response to these challenges, many relevant innovations are emerging. Some are technological (Herrero et al., 2020), while others are economic, political, or cultural in nature (Leeuwis & Aarts, 2011). Examples include new crops and cropping practices for sustainable intensification of crop production, e.g., perennial crops (Glover et al., 2010), gene editing (Ma, Mau, & Sharbel, 2018), participatory breeding (Weltzien & Christinck, 2017), cooperative and integrated pest management (Evans et al., 2018), and novel coopera-• Meeting agriculture's grand challenges requires coordinated technical and social innovation tive food hub market systems that integrate across small-scale production units (Cleveland, Müller, Tranovich, Mazaroli, & Hinson, 2014). Complementary innovations are also emerging for creating value from these new crops and practices, e.g., novel bio-refining methods for producing products from crops (Chen & Zhang, 2015), agro-informatics (Delgado, Short, Roberts, & Vandenberg, 2019), conservation finance (Whelpton & Ferri, 2017), responsible innovation methods that seek \"social license\" to advance agricultural technologies (Kuzma, 2019), and governance systems that integrate \"top-down\" and \"bottom-up\" strategies for advancing new crops and practices (Dorsch & Flachsland, 2017).To realize the full potential of current innovation, certain forms of collective action-coordinated and strategic actions taken by a broad range of societal sectors, such as farmers, agribusinesses, governments, and advocacy groups-are essential. First, collective action is needed to integrate new technologies with other, complementary innovations to create novel socio-technical systems for agriculture (Leeuwis & Aarts, 2011). Such systems are integrated sets of technical and social innovations that function together to meet a societal need related to agriculture (Meynard et al., 2018). After creation of novel systems, further and sustained collective action is needed to refine, adapt, and scale these novel systems (Wigboldus et al., 2016) in response to the shifting nature of complex problems.Another form of collective action is needed to address institutional \"lock-in\" mechanisms that support incumbent agricultural socio-technical systems, making them highly resistant to change (Oliver et al., 2018). These lock-in mechanisms are manifold, encompassing infrastructure, regulations,public investments such as subsidies and research funding, and cultural attitudes; together, these can strongly inhibit development and scaling of new socio-technical systems (Meynard et al., 2018). Lock-in mechanisms must be circumvented to enable new socio-technical options to emerge. To do so, experience shows that multiple and coordinated interventions must be undertaken at multiple scales (e.g. local, state, national; Meynard et al., 2017). For example, many factors have disincentivized adoption of fallow-season cover crops in row cropping systems in the United States, effectively locking row-cropping systems into undesirable losses of soil, nutrients, and water that result from lack of fallow-season soil cover (Plastina, Liu, Miguez, & Carlson, 2018). Recent gains in adoption of cover crops have occurred because of concerted efforts of many different actors that have begun to transcend this lock-in: efforts by farmers, small seed companies, and advocates of sustainable farming across the US; a change in federal and state policies; subsidies and technical assistance; actions by major food manufacturers; and scientific reports on the many benefits of cover crops. These efforts are increasingly coordinated by multi-stakeholder regional groups, e.g., the Midwest Cover Crop Council (http://mccc.msu.edu/). Growing adoption of fallow-season cover crops shows how collective action can integrate multiple innovations and interventions that overcome lock-in to drive emergence of novel socio-technical systems.Evidence suggests that robust collective action on grand challenges and other complex problems depends on a shared vision for addressing the problem, and strategic, adaptive, and tenacious implementation of that vision (Head, Ross, & Bellamy, 2016), and substantial collective investments of intellectual, financial, social, and political capital (Tàbara et al., 2018). We contend that a certain kind of politics can create and sustain the necessary vision, implementation, and investment. We define politics in general as \"all societal interactions that address public or common matters\" (Levine, 2014). Therefore, the politics of meeting grand challenges are the societal interactions that address these challenges. Because grand challenges are complex problems, these politics are characteristically adversarial (McConnell, 2018), featuring contestation about the nature of the problem, relevant evidence, and potential solutions and allocation of resources thereto (Sumberg, Thompson, & Woodhouse, 2013;Bellwood-Howard & Ripoll, 2020). Moreover, incumbent governments typically have weak incentives to take decisive action on such problems (McConnell, 2018). These polit-ical factors create major barriers to broad collective action on complex problems. Yet, we argue that coherent politics of constructive collective action on such problems are now emerging, and these show much potential to surmount these barriers (Avila, 2017;Boyte, 2011;Dzur, 2018). Certainly, these \"constructive\" politics will not supersede the adversarial politics of complex problems. Rather, we propose that constructive politics can develop broad coalitions that can make progress on complex problems with histories of adversary politics (Box 1). For this reason, these politics merit close attention from agricultural scientists, and we propose that agricultural scientists can greatly heighten their contributions to meeting these challenges if they understand and participate-as scientists-in these politics. Moreover, to be highly effective participants, they must recognize and embrace a new identity and role: scientist as a skilled actor in the constructive politics of collective action on grand challenges, and cultivate certain skills necessary to effective practice of these politics, as highlighted in the model below.We outline a model of constructive politics for broad collective action on grand challenges and other complex problems in agriculture and related systems. These political activities are \"constructive\" insofar as they support construction of new socio-technical systems that address such problems. This model features three core elements: relational, deliberative, and co-creative politics (Levine, 2014). Respectively, these elements describe the tasks of (1) building bonds of affinity within a heterogenous network, (2) developing a roadmap for collective action, and (3) taking sustained action together. Though they are presented individually for sake of clarity, these three elements often operate jointlyin the face of dynamic challenges-as collective action proceeds.Relational politics are the activities needed to build new alliances that enable robust collective action (Dzur, 2018;Levine, 2014). Such alliances are strengthened by interactions that produce mutual understanding and affinity among potential allies. Such understanding and affinity results from inquiry and dialogue to build mutual understanding about the worldviews and capacities of potential partners in collective action (Cooperider & Whitney, 2005). Such relational engagement requires effort, skill, and commitment of time, but is fundamental to effective and sustained collective action. Cognitive flexibility, empathy, and curiosity are needed by all parties. Potential outcomes include discovery of unexpected alignments of interests and underlying values, careful and sympathetic consideration of others' views and motivations, and recognition of opportunities to exert power through collective action.The Mid-Continent of North America is one of the most productive agricultural regions of the world, but cropping systems are dominated by summer annual crops, leaving soil exposed for much of the year and thereby creating a wide range of problems (Asbjornsen et al., 2014). Efforts to address these problems politically have been highly adversarial, pitting environmental interests against mainstream agriculture, with little progress on attaining regional goals, e.g., for water quality. To address this grand challenge, the Forever Green Initiative (https://www.forevergreen.umn.edu/), a public-private partnership housed at the University of Minnesota, is working to develop and commercialize a set of crops that complement summer-annual crops in diversified cropping systems. These include intermediate wheatgrass (Kernza®), pennycress, winter camelina, winter barley, and hybrid hazelnut, among others. Each of these crops can enhance continuous living crop cover in the region's agriculture, providing multiple economic and environmental benefits (Asbjornsen et al., 2014;Schulte et al., 2017). The concept of \"continuous living cover\" by productive crops has proven to be a powerfully unifying concept of \"what should be\", attracting bi-partisan political support, strong private-sector engagement, and approximately $60 million in competitive funding for crop development and commercialization since 2019. The Initiative has developed a multi-level structure (Ostrom, 2010), designed to leverage the strengths of \"bottom-up\" and \"top-down\" strategies for development, via politics of constructive collective action. The structure features a high-level Strategic Steering Council that is supporting deliberative politics, convening public, private, and NGO sectors to define broad strategies for pursuing shared interests in continuous living cover. A set of pilot projects practices co-creative politics, as each project works to improve social, environmental and economic sustainability of regional agriculture by building supply chains for particular Forever Green crops. A third structural element is a mid-level Learning/Experimentation Platform that mediates between the Council and pilot projects. Its activities span deliberative and co-creative politics, devising and testing means for implementation of the Steering Council's strategies, based on results from pilots. Thus, all of these politics are integral to ongoing innovation and intervention, driven by collective action within and across all levels of the Initiative. The current politics of the Initiative's multi-level structure leverages social capital created by previous relational politics and network building by its parent organization, the Center for Integrated Natural Resources and Agricultural Management (https://www.cinram.umn.edu).We argue that scientists must participate in relational politics to gain the trust of potential partners in broad collective action, especially in an era in which science is increasingly mistrusted (Garlick & Levine, 2017) or deliberately marshalled in adversarial politics (Brown et al., 2010;Oreskes & Conway, 2010). For example, agricultural scientists, as providers and developers of many agricultural innovations, must also understand the motivations and outlook of potential partners in the co-innovation needed to develop and implement effective new socio-technical systems for agriculture. Settings for such politics are beginning to emerge that feature agricultural science in integral roles, e.g., multi-stakeholder platforms to address agricultural problems such as the Southern Africa \"Sustainable Agriculture Lab\" (Drimie, Hamann, Manderson, & Mlondobozi, 2018), internet-based coordination (http://globalchangescience.org/eastafricanode/), long-term multi-actor innovation systems and learning hubs in South Asia (https://csisa.org/), or \"Land Labs\" in the Midwest USA (Jordan et al., 2013), among others. Such platforms have inherent costs and challenges, but create institutional settings that enable agricultural scientists to engage in sustained relational politics.Deliberative politics consist of collective learning and deliberation that identifies a shared vision of a desirable future and a feasible pathway to that future (Levine, 2014;Milkoreit, 2017;van Mierlo & Beers, 2018). To build such a shared vision, an alliance formed by relational politics must collectively address the inherent complexity of the grand challenges at hand. This complexity encompasses disparate ideologies, experiences, and stakes among affected people, the histories of the challenge and the places where it is felt, high levels of uncertainty, and institutionalized incentives and other lock-in factors. Applied to agriculture, deliberative politics requires a sincere, patient, and diligent effort by participants to create and advance a shared image of \"what should be\" in the agriculture and food systems of the future. Such deliberative politics can nourish and expand cross-sector alliances that are initially developed by relational politics, by deepening empathy and affinity in the alliance.In deliberative politics, explicit attention must be given to issues of power and inclusion. It is essential to have dominant actors-which both contribute to and benefit from current food and agricultural systems-\"at the table\" during such deliberations. Dominant actors can invest their powerto advance a shared vision (Bergek, Berggren, Magnusson, & Hobday, 2013) but the alliance must establish and enforce standards of equity and justice (Loos et al., 2014) that prevent dominant actors from coopting the alliance. In particular, less powerful actors must also be at the table, including those most directly harmed by inequity and injustice in food and agricultural systems. Such inclusion respects the ethics of democracy, greatly enhances deliberation by increasing the available range of ideas and experience, and reduces the likelihood that oppositional actors will block the pathway to the alliance's desired future. Deliberation at such tables depends critically on the relational politics described above and will need to grapple with difficult issues of power differentials and representation among participants, sharp tradeoffs between certain interests, and historical legacies of conflict and injustice. Institutions and settings for sustained deliberative politics pose significant implementation challenges, and balancing power among groups and including historically excluded stakeholders are particularly difficult. Yet, emerging understanding of governance by heterogenous networks (Atkins, Wilson, & Hayes, 2019;Ostrom, 2010) provides guidance for design and operation of inclusive deliberative alliances that limit such behavior by dominant actors, Agricultural scientists have crucial roles in these deliberative politics. First, these scientists can muster empirical evidence to assess the merits of current agricultural systems, and of alternatives that might achieve \"what should be\". Also, agricultural scientists can apply their intimate knowledge of how biophysical and social systems work in developing shared visions. Importantly, the discourse of deliberative politics can expand scientists' imagination of \"what should be\", potentially leading to new avenues of discovery and innovation in search of new pathways to collectively preferred futures. If successful, deliberative politics can create an actionable, shared vision of a new socio-technical system that can forcefully meet a particular grand challenge. This broadly shared understanding provides a map for sustained collective action.Co-creative politics are the societal interactions that build upon deliberative politics to construct new systems that meet grand challenges. Applied to agriculture's challenges, these politics focus on advancing promising new socio-technical systems through collective action. Co-creative politics begin with ongoing, learning-intensive work to design such action, which is likely to integrate both innovation and interventions, as defined above (Premise II). Of course, defining and implementing coordinated strategies of innovation and intervention is complex and slow. Therefore, ongoing learning is needed so that these strategies are responsive to the dynamic context in which complex problems are understood and framed (Head et al., 2016). Co-creative politics therefore requires tenacious and adaptive cross-sectoral communication, dialogue, deliberation, monitoring, and learning. Emerging participatory approaches for holistic evaluation (Grabowski, Musumba, Palm, & Snapp, 2018) can support and sustain such cocreative processes over time.Of course, agricultural scientists cannot take on the practice of these relational, deliberative, and co-creative politics alone. Other sectors, including private sector, government, and advocacy groups, must also be willing and able to engage and share in the inherent costs and risks. In practice, initiatives that aim to bring these politics to bear on agricultural grand challenges (e.g., Box 1) will need a core organizing group of participants attuned to these politics, and that core group must have skilled strategic, facilitation, and coaching support.We call for exploratory engagement in the constructive politics we outline above. This experiential learning should be coupled to reflective and critical thinking about agricultural science's current modes of engagement with complex problems, potential alternatives to those modes, and the nature and significance of politics in those alternatives.We call on agricultural scientists whose work addresses grand challenges to consider and explore how their work relates to the politics of such challenges. Toward this end, reading, reflection, and conversation with peers can help scientists develop personal conceptions, or \"mental models,\" of their work in relation to those politics. Key questions include: What role(s) do I, as a scientist, have in societal interactions addressing grand challenges and complex problems? What role(s) does my institution have? How does my research and professional activities affect relevant socio-technical systems, and how can I engage with those systems? Scientists who choose engagement in these politics will benefit from developing and refining a self-conception of their politics, including a mental model of their individual and collective political agency (Brown et al., 2010;O'Brien, 2015). Such self-reflection lays the personal groundwork for engagement in the politics of constructive collective action. After building a foundation for such engagement, scientists can extend it in low-risk settings that are nonetheless edifying, such as volunteering with local NGOs or scientific societies. Scientists can also receive training in these politics in a variety of settings (e.g., https://tischcollege. tufts.edu/civic-studies/summer-institute). Undoubtedly, the integration of science and politics is strenuous work, requiring a change of mindset, conviction, and personal growth.We call on positional and thought leaders in agriculturalscience institutions to take stock of how their institutions engage with grand challenges and their associated politics. If these leaders see the need to expand this engagement, then experimentation with institutional incentives, norms, and culture that affect political engagement is called for. For example, building capacity for such engagement in emerging scientists will require investment in learning and practice opportunities for graduate students and early-career scientists. In our experience, significant numbers of emerging scientists are very eager for such opportunities. In the same vein, faculty and students can be supported in research projects or other scholarly work that is intentionally designed to facilitate constructive collective action as outlined above (Bybee-Finley & Ryan, 2018). At present, such projects are difficult, due to high transaction costs and limited recognition for political engagement, but strategic institutional investments and reward structures can enable such foundational work. The field of engaged community scholarship has lessons to offer (Sandmann and Jones, 2019), e.g., the University of Minnesota Extension's Regional Sustainable Development Partnerships (https://extension.umn.edu/ regional-partnerships). These partnerships are networks that facilitate place-based, long-term collective action, providing graduate students and pre-tenure faculty with many opportunities to engage, as scientists, in constructive collective action and its inherent politics. However, at present, graduate students and pre-tenure faculty in many countries participate in such activities at considerable risk to their careers. Pro-active institutional action to reduce that risk is essential.Beyond the academy, many research, enterprise, administration, and advocacy institutions employ scientists to address grand challenges in agriculture. For scientists working in these institutions, the politics of constructive collective action may offer new leverage in their work. Indeed, \"publicly engaged\" participatory research approaches (Acevedo, Harvey, & Palis, 2018) are often key to the work of these scientists. We propose that the efficacy of these research approaches can be greatly enhanced by actively embedding them in constructive collective action. Such embedding will require political intentions and skills, as we have outlined above, and relevant training is essential. For this purpose, institutions that employ significant numbers of scientists working on agricultural grand challenges, such as government agencies, NGOs and private firms, can collaborate with academic institutions and others to offer professional development programs on engagement in the politics of collective action. The curricula of such capacity-building efforts is beyond the scope of this article, but there are many relevant building blocks (Garlick & Levine, 2017).Finally, we reiterate that agricultural science cannot do these politics alone. To realize the potential of constructive collective action, other participants-e.g., from private, public and civil society sectors-must also see their work as inherently and constructively political, and act accordingly. Universities are a social institution capable of building broadbased societal capacities for these politics. Therefore, we propose that academic science units should collaborate with other academic units-e.g., in business and law-to jointly build reward structures, institutional support, and training programs that can create extensive societal capacity for these politics.We close with a conjecture: engagement in constructive politics of collective action on grand challenges is highly important to sustaining societal support for agricultural science. We believe that such constructive political engagement will provide an essential foundation to the societal legitimacy, trust, and resource investments that are the lifeblood of our science. Specifically, we propose that if agricultural science is active in cross-sector innovation and intervention aimed at grand challenges, it will gain increased legitimacy by being seen as working on broadly shared interests, as opposed to those of \"interest groups\". It will gain trust through the relational, deliberative, and co-creative interactions of the politics we have outlined, all of which enable the building of reputation and trust through repeated cycles of dialogue, learning and action (Ostrom, 2003). Robust and sustained investments in agricultural science are more likely if our science is seen as an integral partner in broad-based societal action to address grand challenges by advancing broad collective. Therefore, we urge agricultural scientists, especially institutional leaders, to actively explore and support participation in the politics of constructive collective action on grand challenges.The ideas presented in this paper emerged out of discussions in the Sustainable Intensification Community of the American Society of Agronomy (ASA). We thank USAID and the Bill and Melinda Gates Foundation (BMGF) for the Cereal Systems Initiative for South Asia, which helped to support TJK in contributions to this manuscript, and many colleagues for review and comment. The views expressed in this paper are of the authors and do not necessary reflect USAID or BMGF or ASA. ","tokenCount":"3853"} \ No newline at end of file diff --git a/data/part_3/7224423540.json b/data/part_3/7224423540.json new file mode 100644 index 0000000000000000000000000000000000000000..310f4c63bf273feb09f3a48ed9691050c0bcb381 --- /dev/null +++ b/data/part_3/7224423540.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"923f2fea6a2e37de405953762812b214","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/310be92c-e249-4b0c-ae7a-d5e1208ca11d/retrieve","id":"706371232"},"keywords":[],"sieverID":"4a2ee257-f29b-493f-b991-a38892eb0492","pagecount":"10","content":"Global food, fuel, and fertilizer prices have risen rapidly in recent months, driven in large part by the fallout from the ongoing war in Ukraine and the sanctions imposed on Russia. Other factors, such as export bans, have also contributed to rising prices. Palm oil and wheat prices increased by 56 and 100 percent in real terms, respectively, between June 2021 and April 2022, with most of the increase occurring since February (Figure 1).Source: Authors' calculations using data from World Bank Commodity Price Data (The Pink Sheet, https://www.worldbank.org/en/research/commodity-markets).Note: Nominal prices in US dollars from World Bank Commodity Price Data (The Pink Sheet) are converted to real prices, which account for the overall increase in world prices over this period, deflated by the US consumer price index, which rose by 7.2 percent between June 2021 and April 2022.In the Democratic Republic of the Congo (DRC), the cost of imported wheat and the retail price of palm oil both rose steadily between January 2021 and February 2022 (by 36 and 28 percent, respectively), reflecting increases in international prices in US dollar terms. (The nominal exchange in terms of Congolese francs to the US dollar was almost constant through much of this period.) There were also significant increases in the cost of imported wheat (up 24 percent) and the retail market prices of palm oil (up 25 percent) in local currency terms in March 2022 relative to the previous month, driven by the surge in international commodity prices. Average national retail market prices of maize meal likewise rose substantially in March 2022 (by 40 percent). Domestic market factors likely contributed to much of the price change, however, as most of the DRC's maize is produced and consumed in the southeast of the country and not closely linked to international maize markets.Source: Authors' calculations using data from WFP, IGC, and World Bank Commodity Price Data (The Pink Sheet).Note: Import prices include cost, insurance, and freight (CIF).We use an economywide model of the DRC to estimate the impacts of the global price shocks on all sectors, workers, and households. 2 The model allows us to capture a range of considerations that will determine the overall impact of the crises on the country. For example, the effect of higher world prices on the DRC's economy depends on the importance of the affected products in the total supply of each commodity, and whether local producers and consumers can readily substitute away from higher-priced imports. Maize and rice are important staple foods in the DRC, and supplies of both cereals rely mainly on domestic production (Panel A in Figure 3). While almost all supply of wheat grains is from imports in the DRC, wheat is a much less important food item in the consumption basket compared to maize and rice. Therefore, we do not include it in Figure 3. The DRC also imports edible oils. While imports are only a small share of the total supply of edible oils, these imported products are close substitutes for domestically produced and consumed edible oils.All petroleum and petroleum products in the DRC are imported (Panel A in Figure 3). The country produces and exports a small amount of crude oil but does not have domestic oil refinery capacity 2 Information on the Rural Investment and Policy Analysis (RIAPA) data and modeling system can be found here. (Panel B in Figure 3). The impact of higher oil prices on households cannot be directly assessed by looking at the share of petroleum products in household consumption baskets. This is because oil products are primarily used as inputs into the production of other goods and services, with 67 percent of total demand for crude oil and oil products in the DRC for input use (Panel B in Figure 3). Most petroleum products are used by the transport sector, the cost of which affects the price of all marketed goods and services in the economy. IFPRI's model tracks the flow of domestic and imported inputs between sectors and estimates the net effect on final product prices. Impacts on households also depend on the importance of commodities in their consumption baskets. Cereals and edible oils make up a large share (28 percent) of the total value of household consumption in the DRC, which is about one-third of total food expenditures (Figure 4). The shares of cereals and edible oils in total food expenditures are higher for urban households (40 percent) and poor households (44 percent). 3 IFPRI's model tracks income and expenditures for different population groups and is linked to a survey-based micro-simulation tool that tracks the consumption patterns of individual households.Source: Authors' calculations using social accounting matrix (SAM) data from IFPRI's DRC RIAPA model.Rising prices of fertilizer may cause some farmers to reduce their use of this input, leading to lower agricultural production and higher food prices. The magnitude of this decline depends on: (1) the responsiveness of fertilizer demand to changes in prices; (2) the amount of fertilizer currently used 3 These figures include the imputed value of home consumption, which is also tracked within the RIAPA model. (3) the expected productivity losses for farmers who reduce their use of fertilizers. The fertilizer adoption rate in the DRC varies significantly by crop, with an estimated 70 percent of maize area cultivated using fertilizers versus close to zero for sorghum and millet. Variation also arises in the amount of fertilizer used on different crops. For our initial impact analysis, we adopt a conservative set of assumptions regarding farmers' responses to rising fertilizer prices. We assume an own-price elasticity of fertilizer demand of −0.15, implying that a 100 percent increase in real fertilizer prices leads to a 15 percent decline in fertilizer use. Drawing on a recent survey analysis, we assume that farmers who do not use chemical fertilizers are about 20 percent less productive than farmers who do. 4 Cassava, the DRC's main staple, is harvested throughout the year, with the main harvest in the north occurring from September to March, and the main harvest in the south from March to September. The main maize crop in the north and central parts of the country is harvested from October to January, with a second crop (and the main season crop in the south) harvested from March to July. Thus, the surge in fertilizer and fuel prices related to the Ukraine war supply disruptions have the potential to have moderate effects on production of cassava and maize, but high transport and marketing costs will likely minimize the impacts of changes in international agricultural cereal prices on producer incentives.We simulate the effects of both higher world prices (recall Figure 1) and the potential productivity losses from reduced fertilizer use in the current growing season. Simulation results should be interpreted as \"medium-term\" impacts; that is, after the immediate spillover effects across sectors and households have occurred, but before the government and private sector make significant changes to their investments and policies in response to the crises (see Section 5 for next steps). The world price and fertilizer shocks affect total GDP and employment. Real GDP falls modestly by 0.4 percent due to the combined effects of the negative terms-of-trade shock (that is, the negative effect of higher import prices outweighs the positive effect of higher export prices), and rising import costs that reduce spending on domestically produced goods (Figure 6). Employment declines much more, by 4.1 percent. The percentage declines in agrifood GDP are larger than the decline in total GDP both in primary agriculture and off-farm sectors. In fact, declines in total GDP come entirely from the agrifood system, while GDP gains slightly outside of the agrifood system. However, while GDP is not greatly affected outside of the agrifood system, employment falls significantly in these nonagricultural sectors. This reflects differential impacts across various nonagricultural sectors, with labor-intensive sectors experiencing greater negative impacts on production. Fertilizer shocks drive most of the decline in total GDP. Because all losses in total GDP come from the agrifood system, it is understandable that almost all such losses are due to the fertilizer shocks, including reduced fertilizer use in response to higher prices; these shocks directly affect primary agricultural production and cause disruptions in downstream supply chains. Rising food prices hurt off-farm agrifood system GDP more because higher food prices increase the cost of food processing and food-related services. The slight positive effect of fertilizer shocks on GDP outside of the agrifood system is due to the terms-of-trade shock, which causes domestic trade and transport prices to fall, lowering cost-of-trade margins. This leads to declining export prices faced by domestic producers and increasing exports from the DRC's main export sectors (e.g., mining exports).- Note: About 43 percent of the effect on agricultural GDP under \"fertilizer prices and response\" is directly from rising fertilizer prices, while the remaining 57 percent is from the productivity shock caused by lower fertilizer use.Household consumption falls, with larger losses for poorer and rural households. National consumption spending, including the value of home consumption, falls by 2.6 percent and consumption falls for both rural and urban households (Figure 8). The percentage declines in consumption are much larger than that in GDP because households are hit twice, by rising prices and falling income. More-over, food accounts for a much larger share of household consumption than of GDP. The fall in consumption is larger for rural and poor households, mainly because of a larger negative effect from food price shocks, although the fertilizer shocks are the dominant driver for consumption declines in all households.Source: Simulation results from IFPRI's DRC RIAPA model.Inequality worsens, although all households are adversely affected. The food, fuel, and fertilizer shocks have different implications for (income) inequality in the DRC. The increase in fuel prices leads to slightly larger consumption losses for richer households in the top quintile (Figure 9).- Conversely, the fertilizer shock is more detrimental for poorer households, which rely more heavily on agriculture for their income and spend a larger share of their income on food. Finally, food price shocks affect all households, and hurt the poorer households in the lowest quintile slightly more than others. Overall, the combined effect of the world price shocks is a decline in consumption for all households, with larger declines for households toward the lower end of the income distribution.The result of the global crises is therefore an increase in inequality within the DRC.Source: Simulation results from IFPRI's DRC RIAPA model.Falling household consumption leads to greater poverty, particularly in rural areas. According to the most recent household survey in the DRC, 77 percent of the country's population has an adult equivalent consumption level that falls below the US$1.90 international poverty line. The increase in world prices raises the national poverty headcount rate in the DRC by 1.3 percentage points (Panel A in Figure 10), equivalent to an additional 1.1 million people falling below the poverty line (Panel B). Most of the increase in poverty is caused by the fertilizer shocks. This is consistent with the consumption changes for poor households shown in Figure 8. Impacts on the urban poverty rate are slightly larger, while the largest absolute increase in the poor population is in rural areas, reflecting the DRC's smaller urban population.-3.5%Food prices Fuel pricesCombined food, fuel and fertilizer shocks The cost of a healthy diet rises for DRC households. The model tracks changes in the cost of a \"healthy\" reference diet (CoRD) with six major food groups as defined by the EAT-Lancet Commission. 5 The combined food, fuel, and fertilizer shocks increase the CoRD modestly by 0.4 percent in real terms (the first bar in Panel A in Figure 11). 6 This is mainly driven by the rising cost of dairy foods. Real costs also rise modestly for vegetables. The real cost declines slightly for protein foods (meats and fish) because falling household incomes reduce demand for these foods. The \"staples\" food group includes cereals and root crops, and wheat is only a small component of this group in the DRC. Rising maize and wheat prices are compensated for by the falling cost of other staple foods when households reduce overall food consumption. Staples currently dominate most households' consumption baskets and achieving the diversity of the healthy reference diet requires a relative decline in the share of staples in the average household diet. As such, the increases in maize and wheat prices make a modest contribution to the changing cost structure of a healthy diet. On the other hand, consumption levels of dairy products, vegetables, fruits, meats, and fish are far below the level required for a healthy diet among many households in the DRC. Thus, rising costs of some of these food groups cause households' deteriorating access to these foods. Diet quality worsens for many households. The survey-based micro-simulation tool also measures the change in the number of people who experience a decline in diet quality. People are considered deprived in a food group if they obtain fewer calories from that food group than recommended by the healthy reference diet. Prior to the crisis, few households had the consumption level and diversity needed for a healthy diet in the DRC. Rising food prices are the dominant driver of deteriorated diet quality. With higher food prices, together with other price shocks, 2.2 million people become deprived in at least one additional food group for a healthy diet. The rural population accounts for more of the deterioration in diet quality (1.24 million people), while the number of urban residents affected is alarmingly large, at 1 million.Global food, fuel, and fertilizer prices have risen rapidly in recent months, raising concerns about how this will affect economic stability, food security, and poverty in developing countries. We used IFPRI's economywide model -known as RIAPA -to simulate the impacts of the global crises on the DRC's economy and population. The model allows us to track the direct and indirect effects of rising world prices, taking account of key considerations that will determine the overall impact. These include, for example: the share of imports in total product supply; the importance of different sectors and products for household employment, income, and consumption levels; and farmers' responses to rising fertilizer prices and the knock-on effect this could have on next season's agricultural production.Our analysis indicates that the global crises cause agrifood GDP and employment in the DRC to contract. Most agrifood GDP losses are driven by rising fertilizer prices, while most losses in off- farm agrifood GDP are also driven by higher food prices that increase the cost of food processing and food services. To some extent, rural farmers benefit from higher prices for agricultural products, but the net effect on their welfare is negative once we account for the effects of higher fertilizer prices, reduced fertilizer use, and lower agricultural productivity.All households are adversely affected by the crises, and both rural and urban household consumption fall, led by falling incomes and rising prices. Such impacts are larger for rural and poor households. Falling household consumption also leads to greater poverty in both urban and rural areas.Finally, the gap between household consumption levels and what is required to achieve a healthy diet widens for a large number of rural and urban people. While the global crises will cause a modest slowdown in the DRC's economic growth, their adverse impacts on poverty, food insecurity, and deteriorated diet quality are likely to be more pronounced, especially in rural areas.This study is part of a series of case studies that IFPRI is undertaking using economywide models to capture current world market shocks on developing countries. The analysis presented above is an initial impact assessment designed to gauge the vulnerability of countries and key population groups. Subsequent analyses will simulate the mitigating effects of different policy and investment options, including the potential roles of cash transfers, food aid, and subsidies for food, fuel, and fertilizers. Particular attention will be paid to possible synergies and trade-offs between these policy responses, including their implications for government budgets and longer-term development goals.","tokenCount":"2660"} \ No newline at end of file diff --git a/data/part_3/7238898175.json b/data/part_3/7238898175.json new file mode 100644 index 0000000000000000000000000000000000000000..9c11761a6c4117f32d24660380cac9d1f89738f6 --- /dev/null +++ b/data/part_3/7238898175.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"3d81294910c0166ca98c974ec461e2c6","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/ff7591e3-a4cd-4750-9ff8-a1dc254be35c/retrieve","id":"-111466764"},"keywords":[],"sieverID":"5200a264-8ff5-443e-8050-eda4cfc743e9","pagecount":"9","content":"Implementing Photovoice in Lao's Climate Smart Villages showcase innovative ways in capturing issues brought about by climate change. This particular tool vividly describe impacts that are highly detrimental to the livelihood of farmers and agricultural landscape. The use of photographs taken by farmers in sharing issues and challenges promote elevated interest for a distinct target audience. The magnitude of a particular scenario is then easily understood and can be readily relate upon. Here we expand the importance of Photovoice as an effective communication tool in capturing and sharing climate-related issues and adaptation option that can be use by researchers and development workers to design and implement potential Climate-Smart Agriculture (CSA) practices incorporating grassroot participatory approach in the project design.TRAINING METHOD","tokenCount":"120"} \ No newline at end of file diff --git a/data/part_3/7240064382.json b/data/part_3/7240064382.json new file mode 100644 index 0000000000000000000000000000000000000000..ba3a5bb729aa9559c643b2668be0a7eefe1071a0 --- /dev/null +++ b/data/part_3/7240064382.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"ff6a7ca913ae9652a43088875cbdea60","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/62a7778e-f109-4844-a13d-b89347229003/retrieve","id":"108095204"},"keywords":[],"sieverID":"cea9a5d8-0c24-4e73-81ae-964c6731f134","pagecount":"42","content":"is part of a study series offering insights into the potential of Excellence in Agronomy (EiA) Use Cases to adjust the agronomic solutions offered through the Minimum Viable Products (MVP) to better reach, benefit, and empower women and youths, and to transform norms that cause gender and social inequalities. These efforts are guided appropriately by the Reach-Benefit-Empower-Transform framework that highlights the importance of not only reaching women and young people, but also making sure that they benefit from any interventions, that the interventions further help increase their empowerment, and lead to a transformation of any restrictive attitudes, norms, and power relations that are the root causes of gender and social inequalities.• Both men and women contribute significantly to agricultural production. However, men are more likely to be the main decision-makers than women on the farm. Similarly, non-youths contribute more on the farm than youths. In terms of decision-making, non-youths contribute more towards the decisions on the farm. • Ninety-five percent and 81% of youth and non-youth respondents, respectively, were considered literate. More male nonyouths (86%) are literate than female non-youths (77%), but male youths (94%) and female youths (95%) are equally literate, and the rates are higher than those of the non-youth respondents. • Almost all youths and non-youths indicated that they most often receive agricultural advice from various formal sources. The most common source of agricultural information for all respondent groups was radio programs, followed by government extension. While 79% of men and 73% of women respondents were using cellphones, digital tools were rarely used for agricultural information. • Men (87%) indicated they had more access than women (77%) to mobile devices for accessing information related to crop production, agricultural inputs and prices, and for purchasing agricultural products. • Most youths (72%) and non-youths (73%) reported they owned cellphones or smartphones. However, more men (81%) than women (64%) indicated they owned smartphones or cellphones. • More men (63%) than women (58%) received a training or learned skills in the past year that can help them improve their livelihoods.• There were gender gaps found in the ownership of digital devices and agricultural land. More men (89%) reported owning agricultural land than women (75%). More men reported that they own digital devices (81%) compared to women (62%).No other gender differences in ownership of other such assets were found. • The average productivity of the focal crops (measured in the value of production of harvest per hectare in Rwandan Franc (RWF)/ha) was around 2.0 million RWF/ha, which was equal to 1,660 USD/ha. Productivity was the highest in the Western province (2.7 million RWF/ha) and the lowest in the Eastern province (1.6 million RWF/ha). The productivity of plots in which women were the main decision-makers was slightly higher (~ 2.0 million RWF/ha) than plots in which men were the main decision-makers (1.9 million RWF/ha).• Almost all men (95%) and women (93%) contributed to making decisions on farming activities for the Use Case focal crops.Men reported making most of the contributions on the farming activity decisions compared to women. For example, 82% of men versus 62% of women reported that they had most contributions towards the decisions on which varieties to grow. These percentages were similar across men and women in terms of different farming activities, including agronomic practices, use of labor on the farm, and fertilizer application. • More men (82%) than women (73%) had access to and made decisions on financial services. This result was similar across all four provinces. Youths and non-youths were equally likely to have taken loans in the last 12 months (84% versus 80%, respectively) and had mobile money accounts (71% versus 71%, respectively). On the other hand, more non-youths than youths made the decision to borrow most of the time (87% versus 75%, respectively), on what to do with the money borrowed (90% versus 79%, respectively), and have an account that can be used to save money and receive payments (64% versus 54%, respectively). • Several dimensions of the Women's Empowerment in Agriculture Index (WEAI) were used as a measure of empowerment.There is a generally high level of empowerment among female and male respondents. Most female and male respondents are empowered and achieved adequacy in 5 dimensions of empowerment (input into productive decisions, ownership of land and other assets, control over the use of income, access to and control over financial resources, and group membership). There are subtle differences between women and men and between youths and non-youths. The dimension that shows a significant gender gap is the access to and control over financial resources, in which 73% women versus 82% of men achieved adequacy in this dimension. Slightly more non-youths than youths have achieved adequacy in the 5 dimensions, but both groups achieved high levels of empowerment overall.• Overall, most study respondents had attitudes supporting equal women's and men's engagement in agriculture and related activities. However, a non-negligible share of respondents supported gender-unequal statements: they believe that it is not equally important to improve women's productivity compared to men's (41% of men and 40% of women agreed with it), that women should not primarily be the ones to cultivate crops (25% of men and 27% of women agreed with it), and women should not be the primary income earners for their families (29% of men and 28% of women agreed with it). These indicate lingering unequal gender attitudes in agriculture, despite a generally more egalitarian system in Rwanda.Land pressure in Rwanda is among the most severe in Sub-Saharan Africa, and continued population growth results in further pressure on agricultural land available to smallholder farmers (Holden & Otsuka, 2014). This limits agricultural investment and commercialization opportunities (Ali et al., 2014). Fifty percent of rural households cultivate less than 0.35 ha and 85% cultivate less than 1 ha (MINAGRI, 2018). Yields per unit of land are far below attainable yields due to poor crop and nutrient management. In 2007, the Government of Rwanda launched its Crop Intensification Programme, aiming to increase the productivity of major crops through land use consolidation, improved distribution of seeds and inorganic fertilizers, and use of farmer-to-farmer extension approaches. With the introduction of the Crop Intensification Programme, production levels of six priority crops, namely maize, wheat, rice, Irish potato, beans and cassava, increased significantly (MINAGRI, 2018). However, additional efforts are needed to further close yield gaps and improve the sustainability of agricultural production.The fertilizer subsidy scheme under the Crop Intensification Programme facilitates farmers' access to inorganic fertilizers based on blanket fertilizer recommendations promoted and used across the country. Rwanda is a highly heterogenous country in terms of agro-ecological conditions, and the use of blanket fertilizer recommendations leads to inefficient use of expensive inputs, suboptimal responses to fertilizers, and low-profit margins. Based on experience in other countries, it is expected that site-specific fertilizer advisory could increase yields by at least 30%. Moreover, site-specific fertilizer recommendations would reduce environmental risks through more efficient use of fertilizers and maximize returns on investments in the fertilizer subsidy scheme under the Crop Intensification Program (MINAGRI, 2018).Between 2018 and 2021, CGIAR in partnership with the Rwanda Agriculture and Animal Resources Development Board (RAB) worked on developing and testing site-specific fertilizer recommendations for potato and cassava in selected agro-ecologies in Rwanda. Data on variation in fertilizer response among environments were gathered through multi-location trials, using a digital data collection tool called SAnDMan (Smart Agronomy Data Management). Crop models and machine learning algorithms were calibrated to generate fertilizer recommendations based on digital soil information and farmer-supplied input variables. Innovative approaches to validate site-specific fertilizer recommendations under on-farm conditions were also developed and implemented.More recently, RAB embarked on a large-scale initiative called the Rwanda Soil Information System (RwaSIS) project, funded by the Bill & Melinda Gates Foundation. The RwaSIS project aims to develop a digital soil information system for Rwanda to support decisionmaking by policymakers, private investors, and other stakeholders on soil fertility management and erosion control strategies. Under the RwaSIS project, country-wide fertilizer response trials on six priority crops are rolled out over a period of three cropping seasons (2022A, 2022B, and 2023A, 800+ trials per season). The data gathered in those trials formed the basis for developing improved fertilizer recommendations. To achieve this, additional efforts will be needed to adapt and calibrate crop and spatial models to enable the formulation of site-specific recommendations for all six crops across all agro-ecologies in the country.In the Strategic Plan for Agricultural Transformation (PSTA4, 2018), the Ministry of Agriculture in Rwanda has prioritized the digitalization of the agricultural extension system. Once improved fertilizer recommendations become available, a digital tool could effectively deliver the recommendations to farmers at scale. In 2018, Rwanda's agro-input supply chain and subsidy scheme implemented under the Crop Intensification Programme was digitized through the Smart Nkunganire System (SNS), developed through a private-public partnership between the company BKTechouse and RAB. SNS currently has more than 1.9 million registered users. Because of its large existing user base, RAB envisions the plugging in of advisory services in SNS as an effective way of digitizing the agricultural extension system.The objective of the partnership of EiA Initiative with the Ministry of Agriculture through the SNS-RAB Use Case is to co-create a fertilizer recommendation tool for six priority crops (cassava, maize, wheat, potato, rice, and bean) plugged in the SNS. The tool will provide site-specific fertilizer recommendations tailored to farmers' locations and needs and be maintained and continuously updated by RAB. It will provide a proof-of-concept to pave the way for incorporating other types of agronomic advisories in SNS.In addition to ensuring the technical accuracy of the fertilizer recommendation tool, there is a need to ensure that this tool will be useful for a wide range of smallholder farmers, including women and young farmers. For this reason, a gender and youth diagnostic study was undertaken to support the SNS-RAB Use Case, following the key components of the Reach-Benefit-Empower-Transform framework (Quisumbing et al., 2021) (see more below). This report shares the findings of this diagnostic study to support the design, scaling and dissemination phase of the fertilizer recommendation tool in Rwanda.The remainder of the report is structured as follows. Section 2 describes relevant literature on gender and smallholder farming in Rwanda. Section 3 describes the dataset and key indicators explored within the reach-benefit-empower-transform framework. Section 4 presents the results, while Section 5 offers concluding remarks and recommendations.Rwanda is often highly ranked for gender equality and women's empowerment. It was ranked 6 th in 2022 and 12 th in 2023 out of 146 countries according to the Global Gender Gap Report by the World Economic Forum (2022, 2023). Rwanda's success is attributed to policy efforts targeted at addressing inequalities between women and men, including its National Gender Policy, first launched in 2010 and revised in 2021. The Government of Rwanda has also taken active steps to improve gender equality in land rights. In 1999, the government of Rwanda adopted an inheritance law which aimed at reducing women's disadvantage in land rights. Further efforts at eliminating gender inequality were made in the 2004 national land policy and the 2005 organic land law (Bayisenge et al., 2015;Djurfeldt, 2020). Rwanda's current land tenure regularization program tries to further set a legal framework that encourages gender equality and women's empowerment.Despite Rwanda's success story of gender-equal parliamentary representation and legislative efforts, gender norms concerning socially acceptable masculine and feminine behaviors continue to strongly influence women and men's productive agricultural activities within households (Farnworth et al., 2023) and continue to limit women's access to land (Santos et al., 2014). Men are regarded as the breadwinners, the primary decision-makers with the final say, and the controller of household assets, and those who attempt to adopt gender-equitable behaviors may face scorn in their communities (Farnworth et al, 2023). Gains in gender equality achieved during its first-time land registration have since been eroded through informal land transactions (Ali et al., 2021). Women in rural areas still have less access to financial services and extension services, participate less in the marketing of agricultural commodities, and spend less time on productive work than men (Rosenbach et al., 2023).Nevertheless, spouses will often consider their land to be owned jointly, and decision-making may occur jointly -even though they may not be exactly equal. Bayisenge (2018) found that 84% of the land was jointly owned by men and their wives. According to Okonya et al. (2019), most decisions regarding the production of cash crops and food crops were made jointly by men and women in male-headed households, whereas women reported that men participated more in decision-making for cash crop production. The gender gap in agricultural productivity in Rwanda is estimated at 11.7%, much lower than in Nigeria (>30%) but higher than in Kenya (8%) (Rodgers and Akram-Lodhi, 2019). Similarly, Ingabire et al. (2018) found a large gender gap within dual-headed smallholder households, where women play a major role in providing labor on agricultural farms but have limited decision-making and management power in farming, especially regarding cash crops.Household survey data were collected for this diagnostic study. The questionnaire consisted of one part -the household-level questionnaire -to be answered by any knowledgeable household member(s), and second part -the individual-level questionnaire -to be separately answered by one male adult household member and one female adult household member.The main respondent to the household-level questionnaire was the head of the household or his/her spouse. Under the individuallevel questionnaire, both the household head and his/her spouse answered separately. Where there was only either a male or female in the household, then the individual questionnaire was only answered once. Where the household head had more than one spouse, the spouse present at the time of the interview served as the second respondent to the individual-level questionnaire.Below we describe the sample design for the survey data collection, followed by a description of the key indicators used in our analysis.To determine the number of households to participate in the survey, the sample size was calculated by using the formula:Where N= sample size, Z= level of confidence, P= probability of response distribution, and e= margin of error.Given the estimated risk factors, P= 0.50, Z= 1.96 (at 95% Confidence Interval), e= 2.3%, the estimated sample size was calculated as: n= (1.962) 2 x 0.5(1-0.5)/ (2.3%) 2 = 1819.The target population for the study was rural households growing at least one of six main crops supported by the EiA Use Case implemented in Rwanda, including maize, beans, Irish potato, wheat, rice, and cassava. In practice, this included farm households across the entire country. Therefore, the sampling followed three stages. The first stage involved selecting geographical subpopulations of interest across the country, excluding urban and peri-urban areas. Within each province, two districts were randomly selected to reduce survey costs and duration of implementation. The second stage involved randomly selecting a total of 150 Enumeration Areas (EAs) within the selected districts (Table 1). This was based on the sampling frame of the 2012 Rwanda Census by the National Institute of Statistics Rwanda (NISR), in which each village was considered one EA. In the third stage, households that were eligible to participate in the survey were listed and in each village between 12 and 15 households were randomly selected from this list. Eligible households were those that were growing or have grown in the last 12 months one or more of the study target crops (cassava, beans, maize, wheat and/or potato). Enumerators verified, before starting an interview, whether a selected household had grown one or more of the target crops in the last 12 months. If not, the household was not interviewed and replaced by the next household on the list. Figure 2 shows an overview of the survey locations.A total of 1,822 households took part in the survey and responded to the household-level questionnaire (Table 2). In addition, in most of these households (N=1,734) one male and one female respondent each responded to the individual questionnaire. In the remaining 88 households only one individual interview or interviews of respondents of the same sex took place. In total, 1,778 male respondents and 1,796 female respondents answered to the individual-level part. The recruitment of supervisors and enumerators to carry out the study was based on their experience in conducting agricultural surveys. The supervisors and enumerators were selected from the list of enumerators who participated in different surveys that were conducted by the International Potato Center (CIP) and the International Center for Tropical Agriculture (CIAT) in the past. The training involved the use of a digital questionnaire programmed into Android tablets. The training of enumerators took five days. To make the training coherent and homogenous, the team that translated the questionnaire facilitated the training.A practice run of the questionnaire was also carried out to allow enumerators and supervisors to be familiar with the questionnaire for one day after training. To achieve this a \"fill in questionnaire\" technique was used where one data collector conducted the interview while another acted as the respondent (mock interview). A pretest of the study tools was conducted after the training to ensure aspects of the study protocols were feasible to implement and to test the survey questionnaire. The pretest was carried out in the rural villages of Gasabo and Gicumbi districts close to the training site.The Computer-Assisted Personal Interviewing (CAPI) method was used to collect the data. The approved questionnaire was uploaded on Android devices (tablets) using Open Data Kit (ODK) software where data were directly recorded from the interview. Thereafter, the collected data were sent to the ONA server at the end of the day. The latter helps to collect field data on a mobile device and transmits them to a server from where they are extracted for analysis. The Global Positioning System (GPS) that is already incorporated in the ODK software was used to collect the location, assess the geographic coverage and progress of the interviews.The interviews were conducted in Kinyarwanda or English. Survey materials, including the questionnaire and consent forms, were translated into Kinyarwanda prior to administering them.Quality control measures were employed to ensure accuracy during data collection. Enumerators filled out a maximum of 3 questionnaires per day. Supervisors were responsible for deploying enumerators, collecting the list of households, random sampling households within the village, conducting spot checks, and ensuring that accommodation was available near the community to be visited the following day. Enumerators checked the completeness of collected data and made any necessary edits while still in the presence of respondents. At the end of each day, supervisors reviewed each file for completeness and accuracy. The survey coordinator also randomly visited enumerators and produced daily high-frequency checks to detect discrepancies or outliers, which were immediately reported to the supervisors for quick correction while the team was still near the visited community. Data were also monitored via the ONA Data platform to assess data quality in real time.We classify youth as those people between the ages of 16 and 30 years according to the Republic of Rwanda National Youth Policy (2015) 1 .1 See https://www.miniyouth.gov.rw/index.php?eID=dumpFile&t=f&f=79155&token=2f44650675b1aec39b26b7c89b528990ffc87db3Guided by the Reach-Benefit-Empower-Transform framework (see Figure 2) put forth by Quisumbing et al. (2023), we used the following indicators to especially show how women and youth are being reached, benefiting, and being empowered through agriculture and related institutions. We also assessed gender attitudes to showcase normative thinking about women's involvement in agriculture that can create disadvantages for them, and thus, requiring interventions that transform these attitudes into more equitable ones. Reaching women and youths with agronomic solutions and associated extension approaches requires including them in Use Case activities. In the context of the SNS-RAB Use Case, we looked at the following aspects: (i) participation in agricultural activities, (ii) access to agricultural extension services, (iii) access to livelihood skill trainings, and (iv) access to digital technologies. To understand underlying constraints, we also assessed the preferences and demand for using technologies/solutions. Moreover, we looked at participation in agricultural groups, which are often a main mode of information dissemination (Ainembabazi et al., 2017).Beyond reaching women and youths, Use Cases should aim to benefit women and youths through technologies and efforts. Such benefits could arise if the technology has effectively been adopted, or if the use of technology results in higher agricultural productivity, among other positive outcomes. In terms of benefit indicators used in this study, we explored risk behavior to understand to which extent we may expect gender or generational differences in risk-aversion or risk-taking toward new technologies. To assess the potential of benefitting from new technologies, we compared ownership of different kinds of agricultural assets, especially land, between sex and age groups. We also analyzed productivity levels by sex and age group of the plot contributors.Beyond reaching and benefiting women and youths, Use Cases should aim to help women and youths strengthen their agency or their abilities to make life choices and put them into action, for example, by participating in major decision-making processes in the household and beyond. We therefore rely on indicators related to inputs into making decisions on different farming activities, control over income, and access to and decisions on credit and financial services. We summarized the overall empowerment status of respondents by utilizing A-WEAI.Often, changing individual mindsets is not enough and Use Cases must design and employ social innovations to foster transformative change at a larger scale. Achieving this change requires addressing structural and institutional barriers perpetuating gender and social biases. In terms of indicators, we measured gender attitudes by asking respondents to rate various statements that support gender (in)equality in different agricultural activities and decision-making using a five-point Likert scale.This section is divided into five parts that include the presentation of results on household demographics, and the contributions of women and youths to agricultural production (subsection 4.1), reaching women and youths (subsection 4.2), benefiting women and youths (subsection 4.3), empowering women and youths (subsection 4.4), and lastly, transforming gender and generational norms, attitudes and behaviors (subsection 4.5).Table 3 presents the characteristics of the sampled households. The average household size of the sample was 5 members. The average was highest in Eastern province with 5.5 members and smallest in Northern province with 5.0 members. Almost all the households (~98 percent) consisted of both male and female adults, while <1 percent of the households did not have any female adults (i.e. male adult only household), and <2 percent did not have any male adults (i.e. female adult only household). The average age of the household head was 47 years, of which only 10 percent were classified as youth. The majority of the households (70 percent) included youth members. Half of the households had at least one female youth member, and 49 percent of the households had at least one male youth member.In this study, all the sampled households were farm households. The average number of parcels cultivated by the households was 3.2. The number of parcels was highest in Northern province (3.8) and lowest in Eastern province (2.5). The average parcel size was 1.5 ha. The average total area of land cultivated was highest in Eastern province (2.4 ha) and lowest in Western province (0.4 ha). Table 4 indicates the demographic characteristics of respondents. Of the total respondents, 14 percent were male youths and 18 percent were female youths. The average age of men was 45 years, and women were younger than men with an average age of 42 years. About 4 percent and 2 percent of the men and women were single, respectively. More women than men had no schooling (28 percent and 21 percent, respectively), while more men than women had primary school education (67 percent and 61 percent, respectively). Men were more literate than women, as 87 percent of men and 80 percent of women were literate. The majority of men interviewed (94 percent) were regarded as household heads compared to only 6 percent of the women who were interviewed.Dividing the sample respondents based on their age group, 56 percent of youths and 49 percent of non-youths were female. The average age of the youths was 26 years, while the mean age of the non-youths was 47 years. More youths than non-youths were single (15 percent and 1 percent, respectively), whereas more non-youths were in monogamous marriages than youths (94 percent and 85 percent, respectively). More non-youths (27 percent) than youths (12 percent) had no schooling, and more youths than non-youths had secondary school education (21 percent and 8 percent, respectively). The study had more non-youth respondents than youths who were household heads (54 percent and 31 percent, respectively). Meanwhile, more youths were spouses to the household heads than non-youths (53 percent and 45 percent, respectively). Asterisks indicate significant differences between male and female or youth and non-youth respondents at ***: p < 0.001, **: p < 0.01, *: p < 0.05.Table 5 presents the data collected on all household members. The results presented indicated that both men and women were involved in agricultural activities. However, women were less likely to be the main decision-maker of the farm work than men. For youth inclusion in agriculture, results found that farming decisions were made by non-youths rather than youths in most households. The decisions on agricultural activities were made mostly by men and non-youths. Similar results hold when we analyzed these data at plot-level, as shown in Appendix Table A which household members worked on this plot in the last 12 months', 'When decisions are made regarding the agricultural management of plot, who is it that makes the decision?', 'Among those people, who would you say is the main decision-maker on plot?'. a Limited to households with at least one youth member.That both women and men are involved in farming of the main Use Case crops is also evident from their responses to the individual questionnaire (Table 6). Across all provinces, over 90 percent of male and female respondents participated in farming in general, and in farming of each of the focal crops. A larger proportion of respondents were involved in farming maize, potato, or beans, than rice, wheat, or cassava. Figure 3 summarizes the proportion of respondents receiving agricultural advice from various sources. Almost all male and female respondents (95 percent and 91 percent, respectively) reported having access to agriculture advice or extension services in the past 12 months. The most common source of agricultural advice for women, men, youths, and non-youths was from radio. Men and non-youths, however, were more likely to receive information from radio than women and youths. Similarly, women were also less likely than men to receive agricultural advice from other formal sources such as government extension services, traders, and farmer association. Moreover, there was a similar pattern for skills training: 58 percent of female respondents versus 63 percent of male respondents attended any skills training in the past 12 months. Women were more likely than men to receive agricultural advice through interpersonal connections, such as their relatives and other farmers. In general, men received more agricultural advice from formal sources, whereas women received more agricultural advice from informal sources. Access to agricultural advice through digital apps is currently very low (1.3 percent for men and 1.2 percent for women). The primary sources of agricultural advice by age group are summarized in Figure 4. The most common sources of agricultural advice were radio and government services. These sources were more popular among non-youths than youths. In general, non-youths received more agricultural advice from formal sources, whereas youths received more agricultural advice from informal sources. Figure 5 summarizes the primary sources of agricultural advice by sex and age group. Results indicate that most of the respondents received information from formal sources, the most common ones being radio and government. Almost all male nonyouth respondents received agricultural advice from formal sources. Female non-youth respondents were the most likely to have received agricultural advice from informal sources, including their relatives and other farmers. Digital tools are almost never used to access agricultural advice: social media (0.6% of male respondents and 0.07% of female respondents) and agricultural apps (1.3% of male respondents and 1.2% of female respondents) were less frequently used as information sources and therefore not shown in Figure 5. These patterns are similar across the four provinces (see Appendix Figures A.1 -A.4). When considering a wider range of trainings, we continue to see that women received less training than men, respectively, at 29 percent and 24 percent (Figure 6). In terms of access to digital tools, more men than women owned and used smartphones and cell phones, whereas youths and non-youths own and use digital technologies equally (Figure 7). Sixty percent of female respondents versus 74 percent of male respondents reported owning a cell phone. Ownership of smartphones was much lower (only 8 percent of female respondents and 18 percent of male respondents). Both women's and men's cell phone use were higher than their ownership, but women's use was still lower than that of men (73 percent of female respondents and 79 percent of male respondents used cellphone). Some respondents with such devices used social media. Men were more likely to have used social media than women (33 percent of female respondents and 41 percent of male respondents). However, only few respondents have heard of agriculture-related mobile applications (5 percent of female respondents and 10 percent of male respondents). Youths and non-youths had equal ownership and access to mobile devices (Figure 8). The gender difference in terms of ownership and usage of mobile devices varies across provinces (Table 7). The gap is significant in Northern province. In Southern province, men and women used smartphones equally, but men had more access to cell phones. In Eastern province, access to cell phones was not significantly different between men and men. In Western province, where respondents had higher access to cell phones than other provinces, men and women used cell phones at a similar frequency, but more men owned a cell phone or a smartphone than women. Note: Asterisks indicate significant differences between male and female respondents at ***: p < 0.001, **: p < 0.01, *: p < 0.05.The majority of respondents (72 percent of non-youths and 62 percent of youths) used social media less than a week or never, meaning that it is still difficult to reach all the respondents through mobile messaging services (Figure 9). More youths used social media at least every day than non-youths (19 percent of youth and 13 percent of non-youth). Most respondents were active members of any group, association, organization, committee or network (Figure 10). Male non-youth respondents are the most likely to be part of a group, but the difference across groups was not significant. While around 70 percent of the respondents were part of a group, less than 5 percent of the respondents reported receiving agricultural advice from farmer associations.Figure 11 shows that almost all the respondents in the study are in favor of using different farm inputs and farm management practices, such as quality seeds, inorganic fertilizer, and kitchen compost. Yet, fewer farmers were in favor of using pesticides, herbicides and fungicides. Perhaps, they are aware of potentially harmful effects of these inputs on the environment or on human health. Similarly, fewer farmers were in favor of using water pumps. This might be due to the cost implications of purchasing water pumps. The preferences for different sex or age groups were generally consistent. Absent of direct indicators on the ability and willingness to innovate, we first consider indicators of risk aversion. This can give us an indication of how easily farmers may try out and adopt new technologies -given that adopting new technologies may feel inherently risky. Figure 12 shows the results for women and men respondents on risk aversion and risk taking. The question asked was \"Are you willing to take some risks on your farm?\". Results indicate that about 17 percent reported not willing to take risks while about 22 percent reported that they like taking risks. Most respondents reported that they can accept some risks. Overall, respondents in Eastern province were more willing to take risk, especially the male youth respondents.Survey question asked: \"Are you willing to take some risks on your farm?\"Next, we look at ownership of different types of agricultural assets. Access to land and other agricultural assets are often necessary to apply and hence benefit from a new agricultural technology being introduced. Table 8 shows the percentage of women and men who owned different types of agricultural assets. Results indicate that most of the assets (non-mechanized equipment, mechanized equipment, business equipment, building, leisure items, big items, motorized vehicles, non-motorized vehicles, large livestock, small livestock, poultry, and other land) were owned at the same rate by men and women. This implies that respondents had the feeling that they owned these assets, either solely or jointly. Mainly, this consists of joint ownership of assets (as shown in Appendix Table A.2), and only in a few cases both male and female household members each own their own asset. However, for assets that are more commonly owned individually, such as digital devices (phones, laptops, and tablets), but also regarding ownership of agricultural land, men more often report to be owners compared to women. Female youths reported the least ownership in these assets. Asterisks indicate significant differences between male and female respondents at ***: p < 0.001, **: p < 0.01, *: p < 0.05.A-WEAI cut-off is 1, meaning that the respondent is considered to achieve adequacy in asset ownership if s/he owns at least one major asset (Malapit et al. 2017).The productivity of focal crops in Rwanda measured in value of production was 1.96 million RWF/ha (or 1,660 USD/ha). The mean productivity of the focal crops was the highest in Western province and lowest in Eastern province (Table 9). Very few households did not have women involved in farming, therefore it is not relevant to compare the productivity of households with and without women's involvement. Plots with youth's involvement and those without youth's involvement had the same productivity (Appendix Table A.3). Note: During the time of data collection, the average exchange rate of RWF to USD is 1180.124. Plots where the main decision maker was not a household member were not included in the comparison by gender or age status of the decision maker.This section summarizes the indicators on inputs in decision making, which are commonly used measures for (aspects of) women's empowerment. Among those who participated in farming, only about 1 percent of men and 2 percent of women did not contribute to farming decisions (Table 10) and most respondents reported that decisions were made both by men and women in their households (Appendix Table A .4). When considering the A-WEAI threshold for decision-making on agricultural activities, over 90 percent of men and women would be considered adequate. However, although both men and women make decisions regarding farming activities, the share of men (over 80 percent) reported to make the most contributions to farming decisions was much higher than the share of women who reported this, respectively 80 percent and 60 percent, reported to make the most contributions into the farming decisions. Asterisks indicate significant differences between male and female respondents at ***: p < 0.001, **: p < 0.01, *: p < 0.05.A-WEAI cut-off is 1, meaning that the respondent is considered to achieve adequacy in input in productive decisions by making related decisions or having at least some input into the decisions (Malapit et al. 2017) In terms of access to and control over financial resources (Table 11,Appendix Tables A.6-7 for regional differences), both men and women were able to take loans in the last 12 months. However, a much larger share of men (92 percent) made the decisions of borrowing most of the times compared to women (79 percent). Similarly, the decisions about what to do with the money borrowed most of the time was made by men more than women (95 percent and 81 percent, respectively). Compared to other provinces, this gender gap was lower in Western province (95 percent of men and 89 percent of women made the decisions). As for farming decisions, men and women often jointly participate in financial decision making, though in a non-negligible share of households where these decisions were made solely by male household members (15%) or female household members (8 percent) (Appendix Table A .4). Across the sample, there was a gender gap on having a mobile money account, with a greater percentage of men having an account than women (82 percent and 60 percent, respectively). Aggregating their access to financial services based on A-WEAI, the study found that men were more empowered compared to women (82 percent versus 73 percent). We combined those who answered either \"Yes\" or \"Maybe\"; 2 Abbreviated Women's Empowerment in Agriculture Index (AWEAI) indicator is considered adequate when the respondent 1) belongs to a household that used a source of credit in the past year and participated in at least one sole or joint decision about it, or 2) belongs to a household that did not use credit in the past year but could have if wanted to.A similar proportion of youths and non-youths took loans in the last 12 months (70 percent for non-youths and 69 percent for youths) (Table 12). Youths and non-youths were equally able to take loans in the last 12 months (84 percent and 80 percent, respectively), but youths less often make decisions on borrowing (75 percent and 87 percent, respectively) and on what to do with the money (79 percent and 90 percent, respectively). Results established that youths less often have an account that can be used to save money, or to make or receive payments (54 percent and 64 percent, respectively). In terms of access to decisions on financial services, fewer youths than non-youths had access to financial services and made decisions on financial services (72 percent and 78 percent, respectively). Asterisks indicate significant differences between youth and non-youth respondents at ***: p < 0.001, **: p < 0.01, *: p < 0.05. We combined those who answered either \"Yes\" or \"Maybe\"; 2 Abbreviated Women's Empowerment in Agriculture Index (AWEAI) indicator is considered adequate when the respondent 1) belongs to a household that used a source of credit in the past year and participated in at least one sole or joint decision about it, or 2) belongs to a household that did not use credit in the past year but could have if wanted to.The elements were combined to calculate 5 dimensions of the abbreviated Women's Empowerment in Agriculture Index (A-WEAI) (excluding work balance). Table 13 summarizes this information (Table A.8 shows the regional differences). Most female and male respondents were empowered or have achieved adequacy in various empowerment dimensions. There are subtle differences between women and men and between youths and non-youths. Female respondents were less empowered than men in terms of their input in productive decisions and control over use of income, though the differences were relatively small (2 percentage points). Women were also less empowered with respect to financial services, and this difference is more sizeable (9 percentage points). Women and men were equally empowered in other domains of the A-WEAI. Youths are less empowered than non-youths across most domains -except for group membership. While significant, the differences are generally modest -and do not exceed six percentage points. There are some areas of improvement needed in 2 dimensions (access to and control over financial resources and group membership), in which 18-31 percent of female and male respondents did not achieve adequacy in these dimensions. Asterisks indicate significant differences between male and female respondents, and between youth and non-youth respondents at ***: p < 0.001, **: p < 0.01, *: p < 0.05.This section summarizes respondents' gender norms by exploring answers to whether one agrees or disagrees with some gender equality statements. These questions were framed either in a positive or a negative way. One set of questions was framed as supporting gender equality, and the other was supporting gender inequality. Respondents were randomly assigned to either frame. Answers from the negative frame were recoded, so that they are comparable to answers from the positive frame. All answers from both frames were summarized below in Table 14.Overall, respondents seemed in favor of supporting women as farmers and in managing household-related activities. Most respondents (95 percent and 93 percent of men and women, respectively) agreed with the statement that \"It is ok for women to interact with male extension agents\". Likewise, 91 percent and 88 percent of men and women, respectively, supported the statement that \"husbands should help wives with household chores like cooking and taking care of children\". There was little variation across statements and a large share of respondents agreed with statements that favored gender equality. Note: Agree includes both respondents who indicated agree or strongly agree. Asterisks indicate significant differences between male and female or youth and non-youth respondents at ***: p < 0.001, **: p < 0.01, *: p < 0.05.Patterns less supportive of gender equality emerge when we look at questions that seek to elicit answers on prioritization of men's activities versus women's activities. For example, much fewer respondents (56 percent) agreed that it is equally important to improve productivity on women's plots as it is on men's plots. Similarly, there is less universal support for the statement that women should be primarily the ones to cultivate crops, or be the primary income earners for their households, although disagreement there could also be related to equity -whereby respondents do not only acknowledge the privilege but also the burden of being the primary farmer or income earners in the household. The general pattern of the gender attitudes reported by respondents was consistent across provinces, though with some minor differences (see Appendix Table A.8 and Table A.9).Farmers in Rwanda cultivate small areas of land only and yields per unit of land are far below expected averages due to poor crop and nutrient management. Together with these \"technical\" constraints, social and gender issues can limit agricultural production and productivity and overall participation in and benefits derived from agriculture in Rwanda. This gender and youth diagnostic study was carried out to explore gender and generational differences in agricultural development outcomes, with the aim of informing how the SNS-RAB Use Case can better reach, benefit, and empower women and youths with their agronomic solutions and transform underlying attitudes, norms, and power relations that causes gender and generational inequalities. This objective is especially important given the nature of the minimal viable product (MVP) -a fertilizer recommendation tool for six priority crops (cassava, maize, wheat, potato, rice, and bean) that the SNS-RAB Use Case is developing with the Ministry of Agriculture. The tool will provide site-specific fertilizer recommendations tailored to farmers' locations and needs and be maintained and continuously updated by RAB. It will provide a proof-of-concept to pave the way for incorporating other types of agronomic advisories in SNS.The gender and youth diagnostic study surveyed a total of 1,822 households, and in most cases (N=1,734), two individual interviews were conducted with a male respondent (N=1,778) and a female respondent (N=1,796).Overall, differences between men and women are subtle, and in many cases not as sizeable as in other EiA Use Case settings and countries. These subtle differences found are consistent with other studies that show Rwanda is ranked 6th and 12th in 2022 and 2023, respectively, in terms of gender equality measures based on the Global Gender Gap (WEF 2022(WEF , 2023)). Nevertheless, these subtle differences found in this gender and youth diagnostic study are relatively significant in a few dimensions and should be addressed by the SNS-RAB Use Case and partners or relevant stakeholders to help support the achievement of gender and generational equality in Rwanda.• More women than men had no schooling (28 versus 21 percent, respectively).• Fewer women were literate than men (80 versus 87 percent, respectively).• Both women and men were heavily involved in agricultural activities (over 90 percent).• Almost all female and male respondents (91 and 95 percent, respectively) reported having access to agricultural advice or extension services in the past 12 months. • Women and youths received more agricultural advice from informal sources (e.g., relatives, neighbors), especially female non-youths. Male non-youths received more agricultural advice from formal sources (e.g., government extension agents). • Fewer women than men owned a cell phone (60 versus 74 percent, respectively) or a smartphone (8 versus 17 percent, respectively). No generational gaps were found in phone ownership. • Access to agricultural advice through digital apps is currently very low (< 2% for women and men).• Most respondents, regardless of their age/sex, were active members of a group, association, organization, committee or network.Willingness to take risks on farm • While most respondents reported that they can accept taking some risks, 17 percent indicated they are not willing to take risks.• Women and men own key agricultural (and non-agricultural) assets at similar rates.• More men own agricultural land than women (89 versus 75 percent, respectively) and female youths are less likely to own agricultural land (45 percent) compared to other groups.Empowering women and youths Decision making on farming matters • Majority of men (over 80 percent) reported that they make the most contributions to farming decisions, while around 60 percent of women believed they make most contributions to farming decisions.Access to and making decisions on financial services and products • Both men and women indicated they were able to take loans or borrow money in the past 12 months, and often decisions are made jointly. Yet more men (92 percent) make the decisions to borrow compared to women (79 percent). • More men make decisions about what to do with the money borrowed than women (95 versus 81 percent, respectively).• More men have a mobile money account than women (82 percent and 60 percent, respectively).• Most of these results were equal across age groups, although fewer youths make decisions on borrowing compared to nonyouths (75 versus 87 percent, respectively) and on what to do with the money (79 versus 90 percent, respectively), and fewer youths have a bank account that can be used to save money or make/receive payments than non-youths (54 versus 64 percent, respectively).Transforming unequal gender attitudes/norms Gender (un)equal attitudes • Patterns of gender attitudes concerning women's participation in agriculture and men's support in managing householdrelated activities were relatively equal. • Patterns were less supportive of gender equality concerning: 1) the importance of improving the productivity on women's plots versus on men's plots, 2) women primarily being the ones to cultivate crops, and 3) women being the primary income earners for their households.Area of focus RecommendationEducational levels • Men were more literate than women and more women than men had no formal schooling.To reach and benefit more women with Use Case agronomic solutions and related resources and information, Use Cases need to use/design a variety of communication products to ensure those who lack literacy can engage, understand, and utilize.In addition to developing traditional products such as text brochures or putting information in a digital app that requires literacy, Use Cases should develop videos, radio programs and other non-text formats alongside traditional materials like brochures and apps to guide, train, or communicate with those involved in their Use Case activities. Radio programs are the major source of agricultural advice for both women and men and should be continued in the mix of tools in reaching rural producers.Access to agricultural advice or extension services• Women and men both reported having access to agricultural advice or extension services, but male non-youths received more agricultural advice from formal sources and women and youths received more agricultural advice from informal sources, especially female non-youths. • More men than women currently own a cellphone (74 versus 60 percent, respectively) or a smartphone (17 versus 8 percent, respectively) and access to agricultural advice through digital apps is currently very low.Often, men take up positions as government extension officers and target male farmers given local gender norms that create challenges when women speak with male officers or attend their trainings, which lowers women's access to formal extension services.The Use Case must explicitly engage with or train female extension officers who could support government efforts and sensitize male officers about gender-responsive service provision. Encourage men and women extension agents to collaborate and work together to reach more women.The provision of agricultural advice via formal sources via government and/or Use Casesupported extension services should be gender-and youth-responsive to reach women and young people. This is also important as very few farmers currently use digital apps (and smartphones) to access agricultural advice. Hence, extension agents may remain important intermediaries of bringing agricultural information to the farmers soon. More importantly, radio programs are the major source of agricultural advice for both women and men and should be continued in the mix of tools in reaching rural producers.• Most respondents, regardless of their age/ sex, were active members of a group, association, organization, committee or network.The Use Case should consider working with or mobilizing women, men, and youth farmers through different groups, associations, organizations, etc. given high participation rates in such groups in the Use Case regions of focus. Agricultural and marketing advice and training can be channeled through these groups. In this training and extension provision, consider including household members (e.g., spouses and other adults) in addition to the members of these groups.Ownership of agricultural assets • Women and men own key agricultural (and nonagricultural) assets at similar rates, except that more men own agricultural land than women and even fewer female youths own agricultural land.Many agricultural assets are jointly owned by women and men in the household. However, agricultural land is not always registered in both spouses' names, and youths are less often registered as landowners than non-youths. The Use Case can further investigate female and male youths' access to and ownership of land and whether they are limiting factors in achieving productivity and income improvements. If so, the Use Case teams can explore how to utilize communal lands for more inclusive land use.Alternately, strategies can be explored to engage more women and youths in other nodes of the value chains (e.g., marketing and processing), especially within groups and associations.Decision making on farming matters • Farming decisions are mainly made jointly, but men have more decisionmaking power than women in these decisions.Men and women often -but not always -make farming decisions jointly. However, men are more often accepted as the main decision-makers regarding farm activities in the household.owever The Use Case needs to be aware of and encourage information sharing and joint decision-making within the household. It should avoid unintentionally contributing to sole or unequal power relations by working with the households' 'main agricultural decision-maker' only or by providing gender-biased or gender-stereotyped messages. The Use Case can provide training to build women's confidence and help strengthen their bargaining power to influence farming-related decisions.Access to and making decisions on financial services and products and 3) women being the primary income earners for their households.The Use Case should also use gender transformative approaches to address the negative stereotypes or gender unequal attitudes around women's status as main growers of crops in their household or their contribution to household income generation. Messages should reinforce the importance of maximizing the agricultural productivity at the household level, including men's and women's productivity when they produce crops on their own.The Use Case can showcase successful women farmers and highlight their contributions to household income generation, countering negative stereotypes. These can be done through radio programs, radio or community dramas, videos or text messages, or gender awareness campaigns at household or community levels. which household members worked on this plot in the last 12 months', 'When decisions are made regarding the agricultural management of plot, who is it that makes the decision?', 'Among those people, who would you say is the main decision-maker on plot?' Questions pertaining to youth involvement are analyzed both for the full sample, as well as for the sample that includes youth members only (as indicated in brackets). Note: Joint decision-making is defined as either of the male and female respondent of the same household reporting making decisions with others in the household. ","tokenCount":"8661"} \ No newline at end of file diff --git a/data/part_3/7247217432.json b/data/part_3/7247217432.json new file mode 100644 index 0000000000000000000000000000000000000000..e5bf7be6a6ec81ca2c79c30ebad5e44cb1581acd --- /dev/null +++ b/data/part_3/7247217432.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"a87b0752e65694a7b9f82cbe84a6e452","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/b2cda743-ff04-4f8f-afdb-9d4ea37fbb34/retrieve","id":"574151010"},"keywords":[],"sieverID":"4fca182b-f795-48da-a796-6b274640f31c","pagecount":"34","content":"We also thank the following Alliance of Bioversity International and CIAT staff: Charity Kibooga for contributing to the preparation of the report and Olga Spellman for final technical review, formatting and English editing of this report.The report describes the approach and results of community wealth ranking (CWR) exercises conducted in 2015-2016 to ascertain the wealth groups and their characteristics of selected banana-producing communities in two regions of Uganda and four of Tanzania. This research was conducted as part of a Bill and Melinda Gates Foundation-funded project titled 'Improvement of banana for smallholder farmers in the Great Lakes region of Africa' ('Breeding Better Bananas' for short: http://breedingbetterbananas.org), led by the International Institute of Tropical Agriculture (IITA). The CWR information gathered was aimed at informing current and future banana breeding initiatives in and beyond the study areas.Participatory community wealth ranking exercises were conducted through focus group discussions (FGDs) within six selected districts. Based on their perception of others in their community, the farmers were asked to characterize their community's wealth groups by assets, household and socio-economic characteristics, demographic characteristics, agricultural production practices, access to markets and access to agricultural extension services. They described each group according to similarities in characteristics and their proximity to the community's perceived poverty line.Qualitative data was collected during 28 sexdisaggregated FGDs conducted with a total of 248 participants. Thirteen FGDs consisted of men only, 13 women only and 2 groups contained both men and women. The research was conducted in two districts in Uganda (Luweero in Central Region and Mbarara in Western Region) and four districts in Tanzania -Meru in the Arusha Region, Moshi in Kilimanjaro (North eastern zone), Rungwe in Mbeya region (Southern Highlands zone) and Bukoba in Kagera region (North western zone).Participants in the CWR exercises identified between two and five different categories of households, ranked/grouped into what they termed as either the 'Best-off' (including the 'Very rich' and 'Rich' categories), 'Middle' or 'Worst-off' (including the 'Poor' and 'Very poor'), placed either above or below an agreed community poverty line. Overall, most households were perceived as being in the 'Middle' (48%) or 'Worstoff' (35%) groups. Results indicate some differences in reported proportions of the wealth groups by district, country and sex of participants. The 'Worst-off' group was reported to be the largest in both Ugandan districts Luweero (39%) and Mbarara (43%), as well as the Tanzanian site of Bukoba (Kagera region) (53%). In the other Tanzania districts, farmers perceived that most households were in the 'Middle' group-Meru (85%), Moshi (66%) and Rungwe (61%).The 'Best-off' group was reported to have the highest number of assets such as vehicles, higher-quality housing, diverse sources of income and a diverse diet. This group has access to private healthcare and education, good access to markets, including distant ones and better social connections. Households in the 'Best-off' group have better access to agricultural extension services and knowledge and the opportunity to try new products.The 'Middle' group was reported to have varying amounts of assets, schooling and healthcare opportunities, including ownership of motorcycles or bicycles, although they mainly use bicycles as their means of transportation; sufficient food, but not consistently and never a surplus; access to both private and government healthcare, primarily relying on government health centres; they send their children to government schools. 'Middle' group access to markets was reported as being more limited geographically and often traders come to their homes instead of them going to the market. This group is reported to engage with agricultural extension services and has the highest motivation amongst all groups to implement new ideas and agricultural practices as they cultivate their own farms and therefore have the time and motivation to experiment.The 'Worst-off' group was reported as having the least amount of assets, lower-quality housing, limited access to vehicles (primarily travelling on foot) and limited access to adequate food and nutrition. Their children attend government schools, but frequently drop out to work, in order to supplement household income. Healthcare for this group is either through government health centres or traditional medicine. Members of this group rarely have a production surplus to sell. Those few who sell their produce were reported to sell to nearby local markets exclusively to generate an immediate source of cash. This group had the least access to agricultural extension services.These CWR exercises provide community-/villagespecific information that can be used for the dissemination of new banana cultivars and other research or development initiatives that target the poorest, marginalized and vulnerable members of banana-growing communities in sub-Saharan Africa. Importantly, our findings highlight the persistent intergenerational cycle of poverty, indicating the need to re-evaluate social protection schemes, poverty reduction initiatives and community development programmes that have been and continue to be implemented in these communities for decades.Bananas (Musa spp.) are an essential source of food, nutrition and income to many smallholder farmers and the general population in the Great Lakes region of East Africa (Nyombi, 2013). They are a source of essential nutrients such as carbohydrates, phosphorus, potassium, calcium and vitamins. Cultivated in a wide range of ecological zones in the region, bananas are mostly grown for household consumption and contribute the largest percentage of the food consumed at the subsistence level. Surplus is usually sold in the local (village) markets (Akankwasa et al., 2013). The most widely grown banana types in the region are the East African Highland cooking bananas. Other banana types include plantain (roasting type), dessert types (e.g. Sukali Ndizi) and beer/brewing types (e.g. Kisubi) (Bagamba et al., 2010;Akankwasa et al., 2013). Farmers grow different banana cultivars for their various consumption and production characteristics and uses (Edmeades et al., 2008). Banana plant parts are also used in medicinal preparations, cultural practices, as animal feed, organic manure, food preparation and for creating shelter (Marimo et al., 2019).In Uganda, bananas are the most common food crop, grown by more than 70% of the farming population (Nasirumbi et al., 2017). In 2018, Uganda ranked 10 th worldwide in banana production with 4.3m tonnes harvested over an area of 130,224 ha (FAOSTAT, 2021). The Uganda Bureau of Statistics (UBOS) reported a 28% increase in banana production from 6.5m tonnes in 2018 to 8.3m tonnes in 2019 (UBOS, 2020). In 2003, Uganda ranked highest worldwide in banana consumption with annual per capita consumption of approximately 1.5 kg per day (Kalyebara et al., 2003). In banana-growing regions of Tanzania, such as the Kagera region, banana is a staple food crop grown by more than 70% of farmers (Kalyebara et al., 2003).In 2018, Tanzania ranked 13 th for banana growing worldwide with a production of 4.0m tonnes harvested over 302,758 ha (FAOSTAT, 2021). Produced mainly by smallholder farmers, banana sales contribute approximately 70% to the household income while the rest is consumed as food (Meya et al., 2020;Mgonja et al., 2020).This report presents the results of community wealth ranking (CWR) exercises conducted in 2015-2016 through 28 sex-disaggregated focus group discussions (FGDs) in Tanzania and Uganda, as part of the 'Breeding Better Bananas' 1 project led by the International Institute of Tropical Agriculture (IITA) funded by the Bill and Melinda Gates Foundation. The CWR information gathered was aimed at informing current and future banana breeding initiatives in and beyond the study areas. We used a CWR tool 2 to investigate perceptions of wealth differences in the target communities and to identify and understand the indicators of wealth, thus providing community-/village-specific information that can be used to target households and communities for the dissemination of new banana cultivars and other initiatives such as those targeting the poor, marginalized and vulnerable who are in greatest need of support. The findings presented in this report also complement other quantitative and qualitative methods used in the baseline research for the 'Breeding Better Bananas' project, which include a household-level questionnaire conducted with 1319 participants and other participatory rural appraisal tools that focused on seasonal, weekly and daily calendar exercises (Crichton et al., 2017, 2018a, 2018b, Marimo et al., 2021) and FGDs on banana trait preferences (Marimo et al., 2019). The overall aim of the baseline study was to provide an understanding of the agricultural production systems and the socioeconomic context of these systems in the target sites.Photo: Bioversity International/A. Vezina village or that small groups of participants were able to bias the exercise of wealth ranking \" (2007: 227). For their research in Bangladesh, which used both wealth ranking and a household-level questionnaire, Adams et al. (1997) found that participants were able to \"accurately differentiate households according to a set of culturally relevant wealth criteria \" (1997: 1170). They argue that wealth ranking, as opposed to a survey, is a quick and valid way to stratify a village by socioeconomic status.The CWR method is not comparable with the sampling techniques used in large randomized surveys. In larger villages, where more than one wealth ranking exercise might be conducted, a researcher will generally pool the results of all village-level discussions to create a single village ranking profile that might create problems with weighting (Adams et al., 1997). Due to the way in which CWR ranking elicits information through dialogue-in the form of general statements such as 'very rich' or 'poor' and statements used for sorting characteristics such as 'eat at least three meals a day' or 'rarely eat meat'-it provides an alternative set of knowledge about wealth and socio-economic differences in local communities that complements the statistical analyses derived from questionnaire data, and might broaden knowledge about income and assets that a questionnaire participant might be reluctant to disclose in a one-on-one exchange with an enumerator. However, the fact that the definition of 'poor' differs across context is one example of the weakness of the method (the generalizability across context).During CWR, individuals living in the same community engage in group-level dialogue to rank households in their community based on their perceptions of its income, assets and other indicators of wealth, and place them into groups. Specific individuals or families are not named; rather the discussion leads to consensus-based responses that are categorised at the group-(village) level. Given the participatory and subjective nature of the approach, Hargreaves et al. (2007) noted that experienced practitioners should run the exercise. For example, not everyone in the same group will have the same definition of 'very rich' or agree upon what constitutes group characteristics to apply the 'poverty line' to place groups over and under. Experienced facilitators must lead the group to a consensus. If participants do not know the community well (for example, if it covers a large area or the sense of community is weak), then participants might categorize too many or too few households into the wrong groups (e.g. 'very rich' or 'very poor).Participatory community wealth ranking (CWR) is a participatory rural appraisal method often used to complement quantitative surveys; it helps researchers to \"understand a given issue in its broader local context\" (Souares et al., 2010:364) as it relies on statements made by participants that shed light on their 'outsider' perspectives on other community members' wealth (Souares et al., 2010). Unlike large N-surveys, CWR can be a cheaper and quicker method for collecting income and wealth data, and may provide analogous, if not better, results (Reddy 1999;Souares et al., 2010). In a healthcare insurance study conducted in Burkina Faso, Souares et al. (2010) found that wealth ranking reduced village-level data collection to a day and was rapid, as the data checking and quality-control measures needed for a survey were removed (2010: 366). However, they also found that wealth ranking did not save time in urban areas and larger villages, as participants did not know each other \"well enough to perform the task\" and took up to ten hours (2010: 367).To assess the reliability of the CWR method, Bergeron et al. (1998) conducted a series of ranking exercises in Honduras that asked participants to rank families with respect to 'food security' as a construct rather than an indicator of wealth. They conducted 55 correlation analyses from their sessions and found that 71% of the groups could not agree upon the classification of 'food-security' and that women were 49% more likely to classify a family as 'food insecure' and 24% less likely to classify a family as 'food secure ' (2010: 1896-1897). The authors challenge the reliability of the procedure, given the discrepancy in the correlation between men's and women's perceptions. 3 Nevertheless, the CWR approach continues to be used and refined by scholars and development practitioners. Practitioners argue that CWR information across contexts and regions is subjective and difficult to generalise (Adams et al., 1997;Hargreaves et al., 2007). They used CWR in their analysis and found statistically significant correlations between the ranking of wealth and survey data gathered in the same study (Hargreaves et al. 2007: 226-227). In the same study, similarities between participatory and survey data produce internal consistency led the authors to state that it is \"unlikely that participants in general either did not know the wealth of households in their own Participatory community wealth ranking in banana-producing regions of Uganda and TanzaniaThe study was conducted in Luweero and Mbarara districts in the Central Region and Western Region of Uganda, respectively, and four districts in Tanzania (Meru in the Arusha Region, Moshi in Kilimanjaro, Bukoba in Kagera Region, and Rungwe in Mbeya Region) as part of the Breeding Better Bananas project led by the International Institute of Tropical Agriculture (IITA). The baseline research was conducted between 2015-2016. The project partners purposely selected these banana producing districts for sampling as intended target areas for the introduction of new banana cultivars, given the importance of banana production for food and income 4 in these six areas. In Tanzania, Meru and Moshi districts were sampled as one 'district' as they are related to one on-station trial, but the analysis was carried out separately.Within each district, a four-stage sampling scheme was used to select the CWR participants: a. In a first step, for each district, a list of all subcounties (for Uganda) or divisions (for Tanzania) was compiled; all non-banana-producing subcounties/divisions were removed from the list; the remaining sub-counties/divisions were numbered, and 1-3 banana-growing sub-counties/divisions were selected using a random number generator;b. In a second step, for each selected sub-county/ division, a list of all parishes (for Uganda) or wards (for Tanzania) was compiled; all non-bananaproducing parishes/wards were removed from the list; the remaining parishes/wards were numbered, and 2-5 parishes/wards were selected using a random number generator; c. In a third step, for each selected parish/ward, a list of all villages was compiled; the villages were numbered, and 1-2 villages were selected within the largest parish/ward and 1-2 villages in the smallest parish/ward using a random number generator.d. To select participants for the FGDs, for each selected village, a list of banana farmers was compiled by a village chairman, and a random number generator was used to select participating farmers.Before conducting any research activities, informed consent was sought from all participants in the local language. The local languages of respective localities were used as the medium of communication during the discussions to increase participation and capture detailed information. Notes were handwritten on flip charts and in notebooks. In each community, FGD participants were asked to describe different groups in their village based on wealth. An illustration depicting the community as a ladder with the 'Bestoff' households at the top and the 'Worst-off' at the bottom was introduced at the beginning of the FGDs (see Figure 1). Participants were then asked to describe the characteristics of households at the top and then households at the bottom of the community ladder.Participants then identified one or more intermediate rungs on the ladder until all the wealth groups in the community were identified. After describing these groups, FGD participants identified the point between groups in which people were no longer considered poor (the poverty line). Some FGDs only identified the 'Best-off' and 'Worst-off' groups, while others identified up to five wealth groups. FGDs identified up to two groups above the poverty line and one to three groups below it. Participants determined the poverty line 5 based on the relative wealth for each group in their community and determined by household assets and other characteristics. Participants discussed and defined wealth categories either in terms of the 'Best-off' and 'Worst-off' or the 'Very Rich', 'Rich', 'Poor' and 'Very Poor'. Some groups created a 'Middle' wealth group either just above or below the poverty line. Enumerators were trained beforehand on how to conduct the FGDs, including helping participants to build consensus on aspects such as number and proportion of wealth groups, group characteristics and how the poverty line was defined.After data collection, all the data were translated into English. The translators were native speakers of the local languages of FGD participants, who were familiar with the target areas and ensured that as much detail and nuances were captured. Handwritten notes were transcribed into an electronic format using Microsoft (MS) Word. Data cleaning, coding and analysis followed a series of steps. The transcribed data were systematically and thematically coded in NVivo and sorted based on the main topics of the FGD script/ guideline, while quantitative data (e.g. FGDs reported proportions of wealth groups) was entered and organised in MS Excel. This was an iterative process that involved coding, recoding and sorting. Once all the data were organized, textual data analyses were conducted in NVivo using content analysis while Excel was used for means, frequencies, percentages and graphs. This section of the report presents the results of CWR exercises from 28 sex-disaggregated focus group discussions (FGDs)-13 men-only, 13 women-only and 2 mixed-sex 6 ; 18 in Tanzania and 10 in Ugandaconducted with farmers in the six study sites. Each participant took part in only one FGD. The average number of participants per FGD was nine. The main discussion topics included the perception of wealth, indicators and criteria for stratifying wealth groups in each village including the cultivation of banana cultivars, production practices and access to agricultural extension services.In the following four sections we provide a breakdown of the FGD characteristics and the discussion topics. Section 1 describes the FGD participants' characteristics. Section 2 provides an overview of the reported wealth groups and their characteristics. Section 3 covers differences in agricultural productionTable 1 summarizes the socio-demographic features of 248 CWR participants. The majority of the participants were over 30 years old (86.3%), and more than half were between 31 and 50 years old (56.0%). Men were slightly older than women in both countries. Most participants were married/cohabiting (84%) and a higher percentage of women were widowed (13% vs 2% of men). Most participants had been educated to primary level (78%), although a slightly higher proportion of participants in Tanzania had received secondary or post-secondary education. Uganda also had a higher proportion of participants with no formal education (21% women and 10% men) compared to Tanzania (3% women and 0% men). Agriculture was the most common occupation for participants in both countries (92%).X Some participants did not report their marital status, these were not included in the analysis for that variable hence there were reduced numbers (UG women = 28; UG all =79; ALL women = 108 and OVERALL =237).The FGDs identified local characteristics that distinguished the wealth status of households in their communities. All 28 FGDs identified 'Best-off' and 'Worst-off' groups, while 22 of the FGDs also identified a 'Middle' group. Similarities in characteristics and proximity to the poverty line in these groups were used to synthesize the three wealth groups during analyses. Table 2 outlines the main characteristics of the different wealth groups identified in the FGDs in terms of material assets, income, household characteristics, demographic characteristics, social status and those related to agricultural production. The following subsections describe these characteristics in more detail.Housing made of bricks/cement with indoor toilets, iron sheeting for roofing and cement floor. Often painted, use solar energy for electricity. Some have properties abroad. Houses may be made of bricks or wood, but generally have iron sheeting for roofing. Toilets are typically outside (pit latrines) and floors of houses may be mud or cement.Houses made of mud with thatched roofs, some may have concrete houses with iron sheeting for roofing. Outside toilets, not covered, constructed with bamboo, grasses, banana fronds or banana fibres.Own at least one car and/or motorcycle, may own multiple motorised vehicles (though rare) that may also include lorries. May own bicycle and/or motorcycle. Sometimes walk, use of bicycle and motorcycle reported most frequently.Occasionally has a bicycle, most often walk. Use public transport.Access to necessities and luxuries Access to items such as sugar, meat, solar electricity, mobile phones, televisions, furniture (e.g. beds and mattresses with mosquito nets, sofas), cooking gas, bank accounts and (for the very affluent/ wealthy), hired help such as housemaids.Some access to items like furniture, medium quality clothing, light provided by kerosene lamps and sugar for their tea. Some households have a radio and/or mobile phone, but no television; a few have access to solar electricity.Limited access to items such as furniture (e.g. beds but no mattresses, maybe some chairs), low-quality furniture, no bedsheets, poor quality or cheap clothing; if available, light provided by kerosene lamps and no bank accounts.Access financial services e.g. loans, have multiple income sources. Some have formal employment e.g. government. Have a lot of money. Some own a school or a hospital in the community. Carry out brewing activities (waragi), own petty businesses e.g. shops.Can access microfinance services and/or are members of Savings and Credit Cooperative Societies (SACCOS). Most are/have been employed by the government. No access to financial services (cannot borrow money). Do not save money, use up all they earn. Keep their money in SACCOS/ self-help groups. Most of their children are employed young (housekeeping jobs or are boda-boda riders) and have teenage pregnancies.Have access to tapped water, have tanks and harvest rainwater.Fetch water from the river.Fetch water from the river.Able to eat at least three meals per day and always have enough food. Consume meat more frequently and eat a balanced, varied diet.At least two meals a day; rarely eat meat and often not enough food. Some FGDs reported that they may or may not have malnutrition problems. At least one meal a day, but generally not enough food. Rarely eat meat and sometimes rely on wealthier groups in the village to assist with providing food.May eat better on special occasions (e.g. holidays/festivities).Use private medical facilities and hospitals and can afford treatments and/or health insurance. Often go to government healthcare facilities, although some may be able to go to private facilities. Some may have health insurance.Use a mix of traditional medicine and government health centres. Poor health linked to the limited availability of food, inability to go to health facilities or not being able to afford treatment.Have good/normal health.Have good/normal health.Have bad health and their children may have kwashiorkor (severe malnutrition).Have been affected psychologically. Often depressed, sad or unhappy.Family size 2-6 children. In some areas, this group may have multiple wives/ concubines. 1-10 children. In polygamous areas, this group can often only have one wife 7-10 children.Children attend private and boarding schools, although some may go to government schools. They may also go to university. Individual members may be better educated.Children attend government schools. Children attend government schools; however, attendance may be inconsistent, and they may drop out due to the inability to pay fees, or materials/uniforms. Children mostly attend until primary level, rarely secondary. Sometimes assisted by other community members to educate their children.Table 2. Wealth group characteristics. Based on descriptions from 28 FGDs (13 women only, 13 men only and 2 mixed sex; 18 in Tanzania, 10 in Uganda).(continues...)Participatory community wealth ranking in banana-producing regions of Uganda and TanzaniaLand 7 Own land between 2.5 and 50 acres. Land may not always be contiguous, can own different parcels of land in different locations.Have land with title deeds; can rent out their land. Own plots of land ranging from 0.5 to 10 acres, however, most common farm sizes are 1-2 acres. Do not rent out their farms. Some have no land. May own between 0.25-2 acres of land, but less than 1 acre most common.Livestock Practice zero grazing. Raise a mix of livestock, including cattle, goats and sheep and were reported as having multiples of each animal depending on the district.• Luweero: improved breeds of cattle, goats and chickens • Mbarara: 1-20 cattle, 3 goats • Moshi: 3-10 cattle, 1-10 goats, 10-50 chickens, 1-10 pigs, 4 rabbits • Meru: >10 cattle, 6-200 chickens, 5-50 pigs • Bukoba: 10-20 cattle, 4-15 goats, 5-30 chickens • Rungwe: 3-20 cattle, 3-6 goats, 10-50 chickens, 2-6 pigs.Raise a mix of livestock, including cattle, goats, pigs, chickens, and sheep and were reported as having multiples of each animal but fewer than the wealthier groups depending on the district.• Mbarara: 1-3 cattle, 1-2 goats, 3 chickens • Moshi: 1-4 cattle, 1-5 goats, 1-10 chickens, 2-4 pigs, 3 rabbits Area under banana cultivation (by group and district) Anywhere from 0.5 to 25 acres for bananas (depending on the district).• Bukoba: >2-7 acres • Meru: 0.5-4 acres • Moshi: 0.5-3 acres • Rungwe: 1-4 acres • Luweero: 4-15 acres • Mbarara: 1-25 acres Anywhere from 0.25-10 acres for bananas (depending on the district)*.• Bukoba: 0.5-3 acres • Meru: 0.25-1 acres • Moshi: 0.5-1 acres • Rungwe: 0.5-2 acres • Mbarara: 0.5-10 acres *Luweero district FGDs did not report specific numbers Anywhere from 0-5 acres for bananas (depending on the district).• Bukoba: 0-0.5 acres • Meru: very small with 2-3 banana mats • Moshi: 0.25-1 acre • Rungwe: 0.5-1.5 with few mats • Luweero: 0-2 acres • Mbarara: 0-5 acres Cropping practices Use a tractor for farming. Use fertilizer, mulch, contouring for erosion, irrigation (if available), pesticides and tractors (if available).Depending on the district, may intercrop. Have many coffee plants.Plantations were described as 'clean'. Hire laborers to work on the plantation. Have good access to extension services. Use manure, fertilizer, mulch and irrigation (where available, some differences between districts; see Tables 4 and 5). Have many friends, sometimes contend for political positions, assist other community members, contribute to social and community activities e.g. road repairs; highly regarded within society. Have many friends; mobilize for the well-off during political campaigns;partially or fully contribute to village development projects, highly accepted in the community and can hold political positions.Their friends are also poor, considered of low importance in the society/ families. Have generational poverty. Some FGDs reported they have good relationships with other community members, whist others described them using terms such as 'beggars', 'thieves' and 'drunkards'.7 With respect to land, the discussion focuses on the perceived amount of land that a household in each group has access to. The security of that access and any tenure arrangement (such as long-or short-term lease or if the land has been inherited) was documented in only a few instances.Participants categorised households or persons to each wealth group respective to their village (25 FGDs reported this information). In all FGDs, a higher proportion of households were assigned to the 'Middle' (48%) and 'Worst-off' groups (35%). Women in the Uganda FGDs identified a middle group, while men in the corresponding Ugandan FGDs did not identify a middle group in their village 8 (Figure 2 and Table 3). Generally, women identified a higher proportion of households in the 'Very Poor' category than men, while men identified a higher proportion of households in the 'Poor' category in both Uganda and Tanzania. In Tanzania, Meru district FGDs reported the 'Middle' group as making up 85% of villages, while in Bukoba district the 'Worst-off' was reported as the largest group in the villages (53%). In Uganda, the 'Worst-off' group was reported as the largest in both districts (39% in Luweero and 43% in Mbarara). In Luweero, the 'Middle' group was larger than the 'Best-off', while it was the opposite in Mbarara.Best-Off Middle Worst-Off Participants reported that the 'Very rich' have multiple sources of income and access to loans because they have collateral.The size of land owned by the 'Very Rich' varied from 1 to over 50 acres. Some of the smaller parcels of land reported for this group are located in villages 9 The mode is the value that appeared most frequently in a set of data values.that on average reported smaller land sizes for all groups, or belong to 'Very Rich' who are more likely to be involved in other off-farm businesses. Overall, land sizes for this group were described as 'big' or 'large' in contrast to the other wealth groups. The 'Very Rich' group also could own different parcels of land in different locations. Land can be partitioned and rented out to the landless or share-croppedas such, land ownership results in both more food and higher income. They raise a mix of livestock, including cattle, goats and sheep and are reported as having multiple heads of each animal. Ownership of cattle, farm implements and income result in higher farm output, improved availability of and access to food, and improved housing (Groverman, 1990). Livestock is viewed as a store of wealth because the animals can be sold in the event of production, market related and economic shocks. Hence, the greater the household's capacity to insure against consumption and financial shocks, the higher the chance of it being classified as rich.Those in the 'Rich' group are described as holding similar assets and characteristics to the 'Very Rich' group, especially in terms of transportation, housing, healthcare, schooling and access to necessities and luxury items. Homes are described by participants from several FGDs as 'modern'.Compared to the 'Very rich', this group is reported as not always having surplus crop outputs to sell, as maybe using a bicycle or public transportation in addition to their motorised vehicles and as not hiring domestic help. No information on total family size is reported, however, the number of children per household is provided. FGD participants report 2-6 children in 'Rich' families. Generally, 'Rich' families are reported as being smaller in size than other wealth groups.Participants reported that the 'Rich' are part of and keep their money in microfinance institutions and SACCOs. They also have bank accounts for themselves and sometimes also for their children.The 'Rich' are reported as having from 0.5 to 15 acres of land; plot sizes for this group are described as larger compared to other lower-wealth groups. Similar to the 'Very Rich', the FGD participants note that land for the 'Rich' group is not always in contiguous fields and that members of this group could own different parcels of land in different locations. Like the 'Very Rich', land parcels could be distributed in disparate fields. Participants also characterize the 'Rich' group as raising a mixof livestock, including cattle goats, pigs, chickens, rabbits, sheep and possessing multiple heads of each animal. They were also reported as having \"very good houses\" for their animals (Ugandan men FGD 10 ).Twenty-two of the FGDs mention and characterize this group as households or persons 'Just above' or 'Just below' the community poverty line, implying that two clusters constituted the 'Middle' wealth group. Generally, the characteristics of the two groups were similar, with the main distinction being if FGD participants categorised the 'Middle' group either just above or just below their defined poverty line. The distinction of being just above or just below the poverty line is made clear in the sub-sections below. 17 FGDs said this group was just above and five FGDs described it as just below the poverty line. Of the 22 FGDs that reported a percentage breakdown of households in each wealth group, 15 reported a group just above the poverty line with proportions ranging from 10 to 80 (average 48, mode 60) and 11 FGDs reported the presence of a group just below the poverty line (but above the 'Worst-off' group) with proportions ranging from 20 to 75 (average 42, mode 50).'Middle' groups ranked as living just above the poverty line were described as using bicycles, motorcycles or walking as a means of transport, although bicycle and motorcycle combined were the most frequently mentioned. This group was reported to eat at least two meals a day, but rarely eats meat. Family sizes are larger than for the 'Best-off' group, with reported family sizes of 2-10 children. Several FGDs reported labour provision as one of the reasons for having more children as they contribute to on-farm labour. This group was reported as using government healthcare facilities, although some may be able to afford private facilities. Some families in this group have public health insurance and generally their health was reported as good. Their children were reported as attending government schools, although some may go to private schools, and they usually attend up to secondary level.Houses for those living just above the poverty line may be made of bricks or wood, but generally have iron sheeting for roofing and floors may be made of mud or cement. Toilets are typically outside (pit latrines). This group was reported to have some access to basic necessities and luxury items such as furniture, medium-quality clothing, kerosene lamps for lighting and sugar for tea. Some households 10 LUWZIRNAMCWRM001were reported as owning a radio, but no television. Some families might have a small home solar system to power a few light bulbs, radio and/or television set.The group was reported as having anywhere between 0.5 and 6 acres of land (seven of the 15 FGDs reported land size for this group). They were reported to raise livestock, including cattle, goats, pigs, chickens, birds and sheep and a few of each animal but less than the wealthier groups. For example, this group was described as \"…the person who keeps every kind of livestock but in small numbers…\" (Tanzania Men FGD 11 ). Two FGDs (one men-only from Tanzania and one women-only from Uganda 12 ) indicated that most women-headed households in their communities were in this wealth group.Similar to the category above, those living just below the poverty line were described as using bicycles, motorcycles or walking to their destinations, although bicycles were the most frequently mentioned form of transport. They also were reported as having at least two meals a day, but generally insufficient food intake. Family sizes for the category just below the poverty line ranged from 1 to 5 children. Participants in one group in Tanzania reported that households in this group could only afford to support one wife. In contrast to those just above the poverty line, households did not have health insurance and used government medical facilities. Their children attended government schools at least through primary level.Houses for those living just below the poverty line may be built of bricks or wood, with iron sheet roofs. Toilets were typically outside (pit latrines) and floors made of mud or cement. Households in this group were reported to have limited access to basic necessities and luxury items such as furniture. Members wear medium-quality clothing and use kerosene lamps to light their homes. Some households were reported as having a radio and/or mobile phone.This group was reported as owning approximately one acre of land. Similar to the group ranked as 'not poor and not rich', living just above the poverty line, those in this group were also reported to raise a diversity of livestock, including cows, goats, pigs, chickens, birds and sheep and were reported as having multiple of each animal but fewer than the wealthier groups. Two FGDs (one women-only and 11 BUKBUGRUBCWRM001Participatory community wealth ranking in banana-producing regions of Uganda and Tanzania one men-only from Tanzania 13 ) identified that most woman-headed households in their community were in this wealth group.The 'Worst-off' group is composed of two groups: the 'Poor' and 'Very Poor'. While all 28 FGDs identified a 'Poor' group and/or 'Very Poor' group, 7 FGDs created a 'Very Poor' group, making an extra effort to distinguish between the two least-wealthy groups in their village. Generally, the two groups share similar characteristics, however, the way they are described differs-the distinctions are made clear in the sub-sections below. Of the 25 FGDs that reported a percentage breakdown of households in each of the least wealthy groups, 22 FGDs ranked the 'Poor' between 10 and 85 percent (average 34%, mode 10) and 7 FGDs reported the presence of a 'Very Poor' group with proportions ranging between 5 and 65 percent (average 19%, mode 10).Families in this group were described as sometimes having access to a bicycle (hiring rather than owning the bicycle), but most in this group often walk as a means of transportation. The 'Poor' are able to have at least one meal a day but was generally reported as not having enough food to eat. Households diets rarely contained meat and sometimes relied on wealthier groups in the village to assist with providing food. This group may eat better on special occasions (e.g. holidays/festivities such as Easter). This group's family size was reported as larger than the 'Middle' and 'Best-off' groups on average, with participants reporting families in this category as having between 7 and 10 children. FDG participants stated that larger family size was due to a lack of understanding about or access to information on family planning, as well as a desire for an increased family labour force to increase household income by helping out on farms and assisting them later in life when they are elderly. Some parents in poor households choose to have many children in the hope that some children might become wealthy and assist the rest of the family. The 'Poor' group was described as accessing a mix of traditional medicine and government health care in the event of illness.However, an inability to afford medicine meant that even those going for consultations may not follow through with prescribed treatments. Some groups (seven out of 18) linked this group's poor health to hunger. Their children attend government schools mainly to primary level, rarely secondary; however, this attendance may be inconsistent due to the parents' inability to pay school fees, make contributions for school meals or pay for uniforms, 13 MBARUNNYAKACWRF003 and BUKRUBKABCWRM003or because the children may leave to start working for wages or on the farm.The houses that the 'Poor' reside in were reported as generally being made of mud with thatched roofs (often made from banana fronds, grasses or papyrus reeds), although some may have concrete houses with iron sheeting for roofing.Toilets are outdoors and may not be covered, and are constructed with bamboo, grasses or banana fronds. Households were reported to have limited access to basic necessities and luxury items such as furniture (typically sleeping on beds made from leaves and no mattresses or bed frames, maybe some chairs), no bed sheets, poor quality clothing, light provided by kerosene lamps and no bank accounts. Participants reported that the 'Poor' keep their money in SACCOs.The 'Poor' were reported as having anywhere from 0.5 to 5 acres of land available, however, most FGDs (16 of the 21 who described land size for this wealth group) said this group own land sizes of less than one acre. There was less agreement on what livestock this group owns. Reports ranged from no livestock, or livestock limited to one cow or pig, several goats, chickens or rabbits. Not owning assets can negatively affect/hamper/remove the capacity to buy or rent farm implements or inputs, procure enough food and affect housing quality, among other things (Groverman, 1990). Five FGDs (one men-only and two women-only FGDs from Tanzania 14 and two men-only from Uganda 15 ) identified the 'Poor' group in their community as the most composed of women-headed households.Participants in one of the Uganda FGDs mentioned that widowed women-head households inherited assets from their husbands and hence were not in the poorest category. They were also part of SACCOs, which provided them with a financial cushion and social capital.'Very Poor' 16 The 'Very Poor' group was described as walking or sometimes using public transport. They may eat once per day and often did not have enough food. They may rely on getting fed on the farms where they provide casual labour, on food provided/donated by wealthier families in the village or they may be called when a dead animal is found. Some FGDs in Uganda reported this group as stealing food. Family size for 14 BUKBUGRUBCWRF001 and BUKKATKASCWEM00216 Nine FGDs described this group as 'drunkards', 'beggars' or 'thieves' that occasionally comprised entire families, but more often were referring to single individuals when using these terms to describe this group.the 'Very Poor' was either very small (two Luwero FGDs 17 ; one men-only, one women-only said this group has no children or wife, such as a single person living alone) or very large. Only three FGDs specifically mentioned family size for the 'Very Poor'. This subgroup were reported as relying on more traditional herbal medicines rather than going to health centres. Other FGDs described this group as unhealthy due to malnutrition. Children in these households attend government schools, however, they are unlikely to attend beyond primary level and often drop out earlier to tend livestock or to earn money.Houses for this group are generally made of grass with thatched roofs and mud floors. They may not have access to a latrine, so they use latrines on other people's land. One FGD (Ugandan men, Luweero) said this group did not have homes to sleep in, they slept in other people's kitchens. This group was reported to have limited access to basic necessities and luxury items, such as furniture (e.g. no beds, sleeping on only grass), bed linen, poor quality clothing, no soap, lighting or salt for cooking.This group had no land or had access to very little land, generally limited to what is just around their house to 0.5 acres. They do not cultivate their own banana plantations but may be able to grow a few banana plants and other crops (e.g. coffee) on the edges of their land (as reported by participants in one FGD each in Tanzania and Uganda). The 'Very Poor' were reported as likely to own limited and small livestock due to land restrictions. The 'Very Poor' were reported as working as casual labourers.Participants in each of the FGDs were also asked to report on agricultural practices for the different wealth groups. The following section describes the cropping practices, access to markets, agricultural extension services and information, and types of bananas grown in the three wealth groups and districts in each country.The 'Best-off' were reported as being primarily engaged in farming, however, they typically hired individuals from less wealthy groups to work on their farms. This work included spraying pesticides, cultivationrelated activities and tending livestock. Their income was reported as coming from the sale and trade of agricultural products (e.g. coffee, banana and fruits).The distinction made between the 'Rich' and the 'Very Rich' was that occasionally the 'Rich' would also work17 LUWZIRNAK-WRF 001 and LUWZIRNAM-WRM 001on their own farms, while the 'Very Rich' were reported to exclusively employ others.Both men and women focus groups in Tanzania and Uganda reported the 'Best-off' group as having a high prevalence of pests and disease in their banana fields.The reasons given for this were: applying too much fertiliser (one Ugandan men FGD) or that the casual labourers they hired were less invested in caring for the plants, for example \"Their plantations are more diseased because they use casual labourers who may not care about the plantations like the real owners.\" (Ugandan men FGD 18 from Mbarara). Participants from two FGDs also reported that casual labourers used the same pangas to cut bananas on multiple plantations, which has the potential to spread pests or diseases between plantations (both Ugandan men FGDs from Mbarara). Owners of big plantations often hire large numbers of farm workers who may use numerous farm tools without applying strict plantation management, therefore increasing the chances of disease transmittal.The only specific mention of a pest/disease was yellowing of the leaves reported for Mshare bananas and a disease that causes banana plants to rot at the core and fall over (one Tanzanian men FGD 19 in Meru). These descriptions are consistent with Panama disease/Fusarium wilt fungal disease. In contrast, seven FGDs said that the 'Best-off' group did not experience pests/diseases on their plantations due to their ability to afford and use pesticides. Limited intercropping was reported for the 'Best-off' group and what was reported was selective (e.g. maize, pineapple or cassava planted on the outer perimeters, bananas mixed only with beans or coffee). Generally, the 'Best-off' group was reported as growing a variety of crops, but in separate fields. Inputs and practices included inorganic fertilizers or manure, pesticides and mulching with coffee husks (where available) or grass that they have employed people to cut for them. General farm conditions were described as 'clean' or 'well managed' due to frequent weeding, mulching, de-suckering, taking care of pests/diseases, digging trenches and terracing.Participants from one FGD (Tanzanian men FGD) also reported some of the farmers in the 'Best-off' group as having access to machinery such as tractors and milling/grinding machines. This group used irrigation more than the 'Middle' and 'Worst-off' groups.The 'Best-off' were reported to sell their bananas (and other crops, e.g. coffee) locally or to traders with lorries able to transport them to markets further away (e.g. Kampala in Uganda or Dar es Salaam inTanzania). Participants from some FGDs also reported that those in this group grew bananas for both home consumption and sale. The 'Best-off' group was also reported as producing other products, such as banana beer to be sold. Their market access was often described as 'good' based on personal connections, ability to bargain on price (via selling at market rather than selling on the farm) and the quality (and quantity) of bananas produced.The 'Best-off' group was also described as being able to adopt new crop varieties banana cultivars as they can afford new planting material. \"The best-off will adopt the new varieties since they can afford transport to the centres or the destined towns where the seedlings are being distributed or given out\" (Ugandan women FGD 20 ). In addition, the 'Best-off' were reported to be the ones who hold demonstration plots that others are expected to learn from. This is perhaps because they have the resources required to manage such plots (e.g. enough land). Of the 18 FGDs that reported on 20 MBARUBNYAKACWRWRF003the 'Best-off' and extension services, 13 reported that they access agricultural extension services, either in the village or in areas further away. The 'Best-off' are able to access these other services as they could afford the transportation and use their personal networks to find out about these services. The 'Best-off' can therefore seek out the advice they need compared to the other wealth groups who often have to wait for the extension agents to come to their community or somewhere nearby. Participants from the five FGDs that reported the 'Best-offs' not attending extension services provided reasons that included a lack of time, the ability to hire their own extension workers, and participants from two FGDs reported that no local extension services were available to attend. Most of the discussions did not provide information about the types of extension services received and if these differed by wealth group. This is important information that can help assess what kind of extension services are lacking for the specific wealth groups. For the few that provided this information, the type of training mentioned includes 'better techniques for banana maintenance and coffee growing'.Photo: CGIAR Research Program on Roots, Tubers and Bananas (RTB) Those ranked in the 'Middle' group were reported to work occasionally as casual labourers on the farms of the 'Best-off', but primarily on their own farms tending their own livestock, as well as possibly having other forms of employment (often described as selling vegetables or leafy greens from their plantations and selling bananas). Participants from one FGD (Tanzanian, all-women FGD) described the relationship between the three groups as the 'Middle' group being hired by the 'Best-off' farmers to supervise the 'Worstoff' labourers working on the plantations of the 'Bestoff'. Those in the 'Middle' group were unable to hire extra help.The 'Middle' group's banana plants were reported to have a lower prevalence of pests and diseases. The reasons given for this included this group working on their own farms and therefore being able to promptly notice sick or affected plants (Ugandan women FGD 21 ). This may be because they strictly follow the recommended practices on banana pest and disease management. However, participants from other FGDs said that this group had a high prevalence of pests/ diseases as they were unable to purchase pesticides or fertilizers. The mention of agrochemicals (fertilizers and pesticides) suggests possible problems related to declining soil fertility, nutrient deficiencies/imbalances, and conditions most likely to be associated with pest and disease attacks (in Uganda the general term \"lunyo\" is used to refer to soils with low fertility). Specific pests/ diseases reported for Kabalagala (Kisukari/Kambani) banana cultivars include Bungua (banana weevils), Kibuguru (greyish on banana fingers) and leaf drying 22 . These descriptions can be associated with Black Sigatoka, banana bacterial wilt disease, weevil borer and plant parasitic nematodes.Some reported intercropping on 'Middle' group22 In Moshi and Rungwe districts, MOSKIBOTACWRM002 and RUNUKUNKUCWRM002farms, including such crops as cassava, beans, African eggplant (bitter solanum), maize, pumpkins, Irish potatoes, green leafy vegetables, yams, sweet potatoes and coffee. While fewer pests/diseases were reported than for the 'Best-off' and the 'Worst-off', the farms in the 'Middle' group were also described as 'not well managed' (e.g. weeds, limited input application). However, greater access to livestock (and therefore manure) was also noted as this group was able to use manure as fertiliser rather than purchasing industrial fertiliser. This group was reported to carry out desuckering on a non-regular basis (linked to the 'not well managed farms') and also as using domestic waste for fertiliser in addition to, or instead of, manure (where manure is not available). Participants from some FGDs reported that the group could irrigate (Meru and Moshi district in Tanzania 23 ).The 'Middle' group sold bananas locally-in local or nearby markets or to traders on bicycles-as they were not as able to reach other markets due to lack of transport (unlike the 'Best-off' group). This group may also brew and sell beer from the bananas they produce, in addition to producing beer for home consumption. This group was reported as being the most likely to adopt new agricultural ideas and practices due to their time availability (as they are working on their own farms) and a perception that they \"…have motivation to go further in development.\" (Tanzanian men FGD 24 ). Also, \"…the best-off has already reached their goals, the worst-off are somehow discouraged. The middle group is the only ones that [...] have motivation to go further in development.\" (Tanzanian men FGD 25 ). Of the 17 FGDs that reported on attending extension services, 11 indicated that the 'middle' group attended. The reasons for not attending from the other six FGDs ranged from lack of services in the area to lack of ability to pay for available services. Participants from two 26 (in Rungwe and Bukoba districts, Tanzania) of the six FGDs that indicated not attending extension services reported no extension service in their area.The list of banana cultivars reported for the 'Middle' group in the two countries is the following*: The 'Worst-off' were reported to have limited time to work on their own land, as they were employed as casual labourers on the farms of the 'Best-off' group.As described by a participant from a Tanzanian women FGD, \"They have many weeds [in their own plots] as most of their time is used to work on rich people's plots as labourers.\" 27 This group also has limited access to land (see Table 1 and Section 3.3). Participants from 16 of the 17 FGDs that reported pest and disease infestation on the 'Worst-off' group's crops stated that there was higher pest/disease prevalence in among this group compared to the 'Middle' and 'Best-off' groups. The reasons included poor management practices and growing bananas in the bush (due to limited land availability); however, participants from one Ugandan women FGD reported that this group was able to quickly notice and remove damaged plants. Specific pests and diseases reported in these FGDs include: Bungua (banana weevils) -Rungwe, Kisoli (Fusarium wilt) -Moshi and Fuko (mole rat) -Moshi district.The 'Worst-off' were reported to use bananas leaves or kitchen peelings for mulching, indicating that no additional inputs (e.g. inorganic fertiliser or pesticides) are used. Some members in this group were reported as being unable to afford basic implements such as hoes. Weeding, mulching and time dedicated to tending to plots were reported as infrequent due to time spent working as labourers. Intercropping was reported by participants from almost all FGDs (19 of the 24 FGDs that reported on the 'Worst-off' group's agricultural practices). The following crops were reported as being grown: African eggplant, avocados, banana, beans, cassava, coffee, Irish potatoes, jackfruit, maize, okra, peppers, pumpkins, sweet potato and yams, and a combination of these were reported to be intercropped with bananas (e.g. bananas, beans and maize). Their farms were occasionally described as 'dirty' or 'disorganized' due to lack of or poor management (15 FGDs), and one Ugandan men FGD stated that these farms were the source of inoculum/hosts for pests and diseases. Lack of livestock was also linked to no or limited fertilizer use, hence the low yields. Some FGD participants also reported that people in this group would grow any banana cultivar, yet they would not yield as much as for the 'Middle' and the 'Best-off'.The 'Worst-off' were reported to generally not sell their bananas, as they primarily produce for home consumption. Participants from five FGDs reported the 'Worst-off' group as also selling some bananas,but in small quantities and only in local (same village) markets. Participants from two FGDs reported that this group sometimes harvests and sells their bananas before they are ripe to earn money quickly (both Tanzanian women FGDs).Participants from one FGD reported a willingness to engage in new agricultural practices among the 'Worst-off' group but noted a lack of time, finances and land as barriers to implementing new ideas. This included lack of money for transportation to extension activities, although participants from some FGDs noted that local council centres sometimes provide the extension information. Despite these reported barriers, participants from at least one FGD reported a willingness among the 'Worst-off' group to access extension services, \"It is the Abeineho [the 'Worst-off' group] who will adopt the new innovations because they want to be like the upper categories. Besides, we are the majority in this village\" (Ugandan men FGD 28 ). There were mixed reports on access to agricultural extension services, including participants from FGDs who reported no extension services offered in their villages and others who reported equal access for all wealth groups to extension services.The list of banana cultivars reported for the 'Worstoff' group in the two countries is the following*: During the CWR exercise, participants discussed the farms and practices within their respective wealth groups, comparing banana agricultural practices, the prevalence of pests and diseases, cultivars and market access (results from Tanzania are shown in Table 4 and from Uganda in Table 5).In Tanzania, results were generally similar across the four study districts, although not all FGDs provided detailed information on every aspect, thus the conclusions should be interpreted with caution. Areas of banana cultivation were smallest in Meru, Moshi and Rungwe (ranging from a few mats placed around the house for the 'Worst-off' group, to 4 acres for the 'Best-off' group) and largely similar for wealth groups in the other three districts. Intercropping was reported for all groups in all districts except for the 'Best-off' in Bukoba. There was no reported difference in disease or pest prevalence between any of the wealth groups. In Uganda, agricultural practices across the two districts were generally similar (although the Luweero FGDs did not undertake detailed discussion, making the comparison more difficult). One of the main differences appears to be in the prevalence of pests and diseases for the 'Worst-off' group. In Luweero, FGD participants reported that the plantations of the 'Worst-off' group were a source of pests and disease for the entire community, while in Mbarara pest or disease prevalence among the 'Worst-off' group was reported to be limited. One FGD in Mbarara (Uganda) linked this low prevalence to the limited use of implements like pangas (which are believed to spread diseases between plants), and harvesting done by hand 30 . The limited use of such tools might be due to limited capacity to buy them and that it might not make economic sense to invest in them, given the small size of their plantations. 33 All other FGDs stated sizes between 3 and 10 acres, except MBABUBKANCWRF002, which reported 25 acres.This section summarizes the general characteristics of the three wealth groups, including the assets, household characteristics, demographic characteristics and those related to agricultural production, access to markets and agricultural extension, and draws conclusions in order to better inform banana breeding initiatives.The 'Best-off' group across sites was reported to have the highest number of assets such as vehicles, higher quality housing, enough food, access to private healthcare and education. They were also reported as having better access to markets, especially those further away due to their access to motor transport, as well as better social connections. They were also reported to have better access to agricultural extension services and knowledge, and openness to trying new products.The 'Middle' group had varying amounts of assets, including some households with access to motor vehicles but generally, bicycles are their primary means of transportation. The 'Middle' group are reported as generally have enough food, but not consistently and never a surplus. They are able to access a mix of private and government healthcare, primarily relying on government health centres and also sending their children to government schools. Their access to markets is more limited geographically-instead of transporting their own produce to the market like the 'Best-off' group, traders come to their homes instead. This group was reported as engaging with agricultural extension services and having the highest motivation for engaging in new ideas due to working on their own farms and having the time to test new ideas or techniques.The 'Worst-off' group had the most limited assets, poorer housing quality than the other two groups, very limited access to vehicles (primarily walking to reach their destination) and limited access to adequate food and nutrition. Although their children attend government schools, they drop out of school earlier than the other two groups to help supplement their family income. They have access to government health centres or traditional medicines and can rarely afford medical treatments. Members of this group have limited land to cultivate, so they generally grow for home consumption and rarely sell their produce; their market access is therefore limited. The very few who do sell excess produce do so exclusively within very local (same village) markets and as a means to obtain an immediate source of cash. This group had the least access to agricultural extension services.One of the main and most important differences between the three groups is the amount and type of labour dedicated to tending their farms. The 'Best-off' are able to hire farm labourers (generally sourced from the 'Worst-off' group), while the 'Middle' group tend to work on their own farms, and persons from the 'Worst-off' groups are hired as labourers on the farms of the 'Best-off' (and who may/may not be managed by persons in the 'Middle' group). These labour practices influenced the quality and production of bananas and other crops reported. The poorest crop quality and lowest total production yields were found on the farms of those ranked 'Worst-off', primarily due to their inability to spend time on their own farms, lack of resources to acquire inputs and the smaller sizes of their plots. Almost all the FGD participants reported that this group primarily grew crops for their own subsistence. Photo: R. CrichtonParticipatory community wealth ranking in banana-producing regions of Uganda and Tanzania grazing the cows of the best-offs\" (Tanzanian women FGD 34 ). This indicates that the disadvantages for the poorer members of society start early in life. This also highlights intergenerational poverty traps and the urgent need for deliberate and sustainable efforts to reduce the gaps.Most participants who mentioned how each wealth group was perceived in the community reported that the 'Best-off' and 'Middle' group had good relationships with the community, while the 'Worst-off' group generally did not. There were a few exceptions, for example, one men-only Tanzanian FGD reported tensions between the 'Best-off' and 'Worst-off' group \"The best-off harass the worst-off when it comes to contributions to village development. Because they are authorizing decisions that are hard to be implemented by the worst-off, e.g. amount of village contributions\" 35 . The ability to contribute to village development projects and related differences in power revealed that, generally, the 'Best-off' are perceived as having good relationships with the community, although some of these relationships were referred to as complicated.While the 'Best-off' group was reported as having the largest access to agricultural inputs, knowledge, and tools and markets, there was a perception by many FGD participants that the 'Middle' group had the better farms due to time spent on their own farms and the implication that the personal investment resulted in more care for their plants and a greater willingness and more time available to try newer ideas or techniques. Many middle-group farmers were perceived as working hard because they had aspirations of upward social mobility and of becoming members of the 'Best-off' group. One of the reasons provided for higher disease or pest prevalence in the 'Best-off' farms was the use of casual labourers whose tools cross-contaminate the farms of the 'Best-off', as well as the size of the 'Bestoff' farms mentioned as too large for one person to spot problems early and respond promptly.Some FGDs mentioned that, in general, banana plantations managed by men were well managed, whilst the women's farms were not, due to their many responsibilities \"For a man, the plantation is de-suckered properly and well managed…women have many responsibilities and do not have enough time to attend to bananas\" (Ugandan men FGD 36 ). In another FGD some participants mentioned that some womenheaded households were better-off than men-headed households due to the possessions they owned.There were minimal differences in the types of banana cultivars grown by the different groups. Differences would perhaps occur at the individual plot level regarding the number of mats for a particular cultivar, mainly due to the size of land available. Farmers seem to grow all the banana types (i.e. cooking, dessert, roasting and beverage/brewing) irrespective of the wealth group. The banana types have different uses and varied strengths and weaknesses (see Marimo et al., 2019 for detailed information about cultivar use and preferences in the study areas). Given that the information provided by groups on types of cultivars grown is not exhaustive, it is challenging to reach a conclusion regarding the relationship between banana cultivars grown and wealth groups.The community wealth ranking exercises conducted in the different districts and villages of Tanzania and Uganda aimed to rank the wealth groups based on district socio-economic characteristics, in order to gather important data to inform various initiatives in the study areas in and beyond the Breeding Better Bananas project. Specific to the project, results indicate the need to include different wealth groups in the testing of new hybrid banana cultivars. Often, farmers who are selected for on-farm trials are those who tend to have more resources (i.e. land, labour, access to inputs etc.), excluding households that are characterized as 'middle' or 'poor'. This could be because implementers sometimes have to set up trials quickly and obtain results within the short project lifecycles. This form of exclusion of the other wealth groups was indicated by data gathered in some of the FGDs, reporting that the 'Best-off' households are the ones that have access to and plant new/ newly introduced banana cultivars. On the other hand, some groups reported that the 'Middle' and 'Worst-off' wealth groups were willing to try out new innovations and technologies and had aspirations to be like the 'Best-off' or upper-wealth categories, yet they lacked access to the new technologies, knowledge and extension agents that would support this upward mobility. Hence, development planners and project designers and implementers need to focus on inclusion, making deliberate efforts to incorporate lower-wealth groups into extension efforts. Inclusive community-based initiatives such as grouping farmers during on-farm trial implementation and testing can be used. Allowing all community members to have access to and conduct participatory varietal evaluation in a farm that maybe owned by farmers in the upper wealth categories can also be an option. There are differences in the kinds and prevalence of pests and disease, as well as farm management practices identified by FGDs for the different wealth groups, indicate knowledge gaps in management practices that extension programmes should selectively prioritize. More efforts are required to ensure that all wealth groups have equal access to extension services. Some groups reported that the 'Worst-off' often have no time to attend extension events because they are always working and/or have no means to transport themselves to places where events are taking place. Extension services should therefore be decentralized to the local/community level and take place during times when everyone can attend. In addition, the focus groups did not go into detail about the types of extension services that the various wealth groups have access to and seek. This is important information that can help planners develop context-specific extension packages that consider the needs of the different wealth groups.Social protection programmes should be implemented especially for the less-privileged community members that have little or no wealth. Proven initiatives such as cash transfers, subsidies and social safety nets can do much in helping alleviate poverty. Such programs will need to be sustainable and context-specific to ensure equal, equitable outcomes and help households out of poverty and the intergenerational poverty trap. Malnutrition was mentioned as a characteristic of children in the 'Worst-off' category reiterating the need to implement nutrition-specific interventions and that can include biofortified crops. Specific, bundled interventions that incorporate socio-technical innovations can be used to transform agri-food systems in specific communities (Barrett et al., 2020).There was insufficient information collected across all the FGDs to draw conclusions on some aspects, for example the relationship between the banana cultivars grown and the wealth groups.The subjectiveness of the poverty line, which only applies to the particular village, means there is no consistency between the poverty lines across the study sites/villages. Future studies are needed that combine the qualitative and quantitative definition of poverty to address the limitation of subjectivity. The value attached to different wealth resources also varies by community, therefore results may not be generalized outside the study sites. However, this would also be an important level of detail that could ensure the application and implementation of context-specific ad hoc recommendations within the target communities.The proportions of participants that were of a particular wealth group were not recorded or known during sampling, hence there might be biases in the reported information depending on the composition of the group. Ideally, proportionate representation of the wealth groups in a group could reduce some of these biases.There was a lack of detailed intersectional information on some aspects related to wealth or poverty, for example 'type' of households that typically fall in the mentioned wealth categories e.g. whether they are women-headed, men-headed, widowed, divorced; young, middle-aged, older; migration impacts etc. Such qualifiers are important when discussing the poverty-wealth nexus in rural households with likely implications for socioeconomic characteristics, social relations and support networks for families, among other things. Perhaps enumerators and facilitators could have probed more to extract this information. It is, however, possible that these aspects were not mentioned because they are not obvious indicators of poverty for the FGD participants.There are bound to be group dynamics when eliciting information through FGDs. Although a consensus is reached and used as the 'group opinion', it is possible that in some groups there are members who are more vocal than the others and those who are timid who might not say much. Depending on the group composition, those with more influence (i.e. rich/ well off, leaders etc.) might be the ones who provide the inputs that can lead to biased information. The facilitator needs to ensure that everyone in the group is engaged in a non-biased manner.There may also be gain-bias. When discussing wealth-related aspects, a group may understate the proportions, especially if they anticipate that the community will receive something from the researchers or will be asked to participate in an intervention, from which they all can 'benefit' as a community. Thoroughly explaining the goals of the research before starting and constant reminders throughout participatory research exercises is crucial.One challenge with discussing characteristics of wealth groups is that economic class and identity can often be intertwined. For example, good/bad characteristics may be assigned to certain groups based on stereotypes. Regardless of assets, participants may characterize a group based on past issues or identify them using derogatory terms (e.g. some FGDs referring to the 'Worst-off' groups as beggars, drunkards) based on their ranking.The proportions assigned to each group are made on the assumption that participants selected for the CWR exercise were conversant with the majority of households in their community.","tokenCount":"11555"} \ No newline at end of file diff --git a/data/part_3/7268142624.json b/data/part_3/7268142624.json new file mode 100644 index 0000000000000000000000000000000000000000..71c82cc2aae6dab8de17949847be0665a6dfbaa3 --- /dev/null +++ b/data/part_3/7268142624.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"ebacbe13088f7f6f497a5049a05739c1","source":"gardian_index","url":"https://publications.iwmi.org/pdf/H001714.pdf","id":"1949153281"},"keywords":[],"sieverID":"6392e486-3459-43d0-a3f0-fce605903400","pagecount":"11","content":"In the dry zone areas where rainfall is confined to 3-4 months between October to January in the year, people Ion: survived by devising means for storing water for their daily domestic use as well as for agriculture. It was in this way that wewas (reservoirs) came to exist in village communities. Nearly 40,000 village wewas developed over the years and tt e communities living around them produced paddy for the entire popnlaiion, and even generating surplus for occasional export.Largely due to internal strife and external interference, disease and pestilence and later, the loss of independence and I he consequent emphasis on export oriented crops, the wewas were neglected anti gradually abandoned. Thereafter most farmers eked out an existence by bur,iing the country-side for shifting cultivation. This activity upset the ecological ba1anr.e of the environment and impoverished the land. What were many years ago climax forests, are now becoming unfertile near-desert areas.The Sri Lanka Freedom From Hunger Campaign Board believes that this trend can be reversed by the farmers thernsel1,es with a little guidance, technical training, and financial assistance in matters that are beyond their present capacity. This is the background in which the Boaid is participating as partners with the farmer communities (Ratnatunga 1982).The Board's program to rehabilitate the mall-wewa village communities of the dry zone is therefore designed to help those living mainly on shifting cultivation in the more remote and less accessible parts of Sri Lanka. The Board has excluded from its area of activity the command areas of the major and medium irrigation schemes, since they are looked after by the Irrigation Department or the Agrarian Services Department.The Board does not intend to implement a small wewa renovation programme of its own. Instead it enters into a partilership with the farmers living in and around the abandoned wewas by using the means of storing water as a focal point of rallying them into a wew-sabha (Reservoir Councils) and then helping these wew-sabhas to plan and implement theii own development programmes. The Board set out in January 1979 to ascertain the magnitude of this programme and to build a fact-finding system which would permit people to plan such programmes and to organize the continued manitoring of their progress and achievements. As a first step the Board numliered all the wewas (reservoirs) which had been shown on the one-inch-to-one-inile (1:63,360) scale topographical map of the country.Over 18,000 wewas have been numbered almost all of which are in the dry zone. It was n o h e d that many abandoned wewas had escaped the notice of the topographical surveyor because they were covered in scrub jungle and were located in country infested with wild animals When these are included, the total number of wewas and reservoirs will exceed 30,000. Of this number about 7,000 or nearly a quarter are still in working older and supporting wewa-village communities.The primary objective of the Board's progr:.m is not the mere restoration or renovation of small wewas. It is to improve tlie quality of life of the people living in those parts of the wewa country. Thexe people tend to be undernourished due to difficult living conditions and the inability to produce enough food which results in a severe shortage of fruit and vegetables during the long dry spell. It is futile on our part to preach to them to bestir themselves and strive for a better future. They are far too malnourished to respond to such an exhortation. Even if they do, the effort is bound to b,: short lived. These people have reached a rock-bottom level of contentment.To improve.the lot of these people one has to break this bottom level contentment and establish expectation at a much hgher level. This happened without any planning by the Board at the Tantirimde Wewa Village Rehabilitation Project. Before the Board moved in, the averxge level of family income was about Rs. 2300/per year in 1979. Thus an ai'erage family had an income of about Rs. 200/per month. When the Board started restoring abandoned wewas in partnership with the farmers, paying for only half the value of the earth work done, the family income rose to between Rs. 6001and Rs. 1000/per month.As life in the wewa country is possible only if water is available. we use th( activities associated with building storage for rain water as a means of d y i n g the shifting cultivation farmers into organized communities.Restoration and RevivaLOur strategy is not to plan the improvement and pilot projects ourselves, but to let the weHa village communiiies take the initiative to both plan and implement their piogram. The FFHC will remain their friend and partner with funds for what is beyond the means of the wew-sahha.The project begins with the restoration of the wewa. The presence of stored water in the village will result i n a higher sub-soil water table. This in turn will improve the possibility of sinking shallow open wells for domestic water supply.The water situation can be improved further by developing contour bunded pasture in the lower hill slopes, and by developing forest on the high ground and along the ridges.All this activity will, in time, restore th: wewi-village into the ecologically balanced environment it used to be. The fanners will be cultivating the valley bottoms and using the lower hill slopes to teed their cattle. The forest on the high ground will provide adequate timber and fuel for the wewa-village community.The Board realized that it was working in an area where man had successfully cultivated paddy and other food crops fmx well over 20 centuries by storing rain water for deferred use. The methods evolved by trial and error over this long period milst have suited the soil and the climate, because nearly a quarter of the small wewas are found to be still supporting small wewa village communities despite the neglect over the last 5 centuries.The Board therefore decided to retain and where necessary revive traditional agricultural and other cultural practices of the area before attempting to introduce modern technology. One such prat:iice is the \"three fields\" system. It was the custom for the irrigated paddy land below a village-wewa to be divided into three fields. Each farmer family had a panguwa (allotment) in each of the thrce fields. It was decided, as an experiment, to allot wherever possible, the newly asweddumized (irrigated) paddy land with one lot in an upper field and another lot in a lower field, 149 Innovative action. One important fact that (:merged from our work in the wewa country, was that in the restoration of an ,ibandoned wewa and the settlements there under, in the less remote areas, it W I S necessary to get the cooperation of the inhabitants of the neighbouring villxge, already practicing irrigated agriculture under their own tank.With this in mind, a pilot project is now IBeing tried out in Ihala Digdna village, in Adnuradhapura District. Under the Village Tank, 22 landowners cultivate about 20 acres. The plots are small and rcattered. A land consolidation and reallocation was necessary to increase productivity of these lands and to augment the income of the poorest sections. The poorest farmers, some of whom did not own any land, have to he given econonic holdings. It was found that after improvements, an additional 20 acres could he irrigated.The Board initiated a dialogue with the land owners who agreed to consolidation and redistribution. One absentee owner family who owned the largest extcnt (4 1/2 acres) agreed to donatc their s h x e to the poorer sections. The aged owners agreed tn transfer ownership to th:ir children. They all agreed to the government acquiring the lands and then redi.-ributing them together with thc additional acreages resulting from improvements. This is not a forced acquisition exercise but a voluntary consolidation. The Board is, in fact, effecting a silent land reform, which was a much needed thiig for this village.The organisation. The Board started a progr,irn of assistance for the restoration of village WewdS by participating with tht village level Non-Government Organizations called the Rural Development So,:ieties that were in existence in the area. The membership of these Societies hclonged to all the people in the village which covered a large area. Invariably the office.hearers were the most influential and affluent people in the village, the majority of whom were not generally interested in the upliftrnent of the po'xest of the poor farmers whom they exploited as cheap labour.It was therefore, felt that it was more coilducive for our organisation to participate only with the poorest of the poor fanners directly concerned with the restoration of their wcwa. Accordingly, in 1980, at joint discussions with the farmers it was decided to make the wewa the focal point of activity to harness the resources of all the farmers directly benefitting from the water of the wewa, and to call this set up a \" wew-sabha \" or \"The lleservoir Council.\" This council was similar to what existed from ancient times but it contains modifications to suit a more democratically elected organization.A model draft constitution was also drawn up at this meeting which could be adopted in toto with modifications as decided by the majority of the members. Up to date this constitution has been taken as the model for the near 200 wewoffice bearers to run the affairs of the sabt a. There is provision to hold Annual sabhas established in the country. The constitution provides for the election of General Meetings to elect new office-bearer!;.The Board has spelled out the followinl: implementation guidelines.Restoration with their own hands. The use of restoration work is a feature used by most oi.ganisations but in the case of wewa restoration no machinery of any type is us8:d and no contractors are employed. All earth work is done manually by the wew-sabha members and their families. This is done with a dual purpose. On the one hand, it enables the participating persons to earn a living while doing their own development, and o n the other hand, it helps to motivate the people and to prepare them to be active farmers in the management of their own lands and wena.To repair and maintain the irrigation system. The wew-sabha memhers are expected to repair and maintain the wewa and its irrigation system at all times. shramaduna (donation of free labour). Maintenance of working wewas in the country is the responsibility of the Departnmt of Agrarian Services or the lrrigation Department hut in the case of wewai restored with the assistance of the Board, we expect the farmers to maintain the wewa and its irrigation system by themselves, after it is restored. There are instances where the wew-sabhas have met at dead of night to decide on the course of action to be taken to save the hund after a heavy flood. This is done by using funds from the Wc:wa Maintenance Fund or by using Regulation and control of issue of water. The small village wewas that irrigate about 50 acres will have a membershili of about 25; it is then easily manageable for the small farming families to regulate and control the issue of water.In the small wewa system the use of stored water is only to prevent crop failure during dry spells. Wewa water is not expected to be issued from the land preparation stage to harvest time as happens in major irrigation schemes.Plan and regulate cultivation, The farmers 01' the wew-sabha will meet prior to the main cultivation seascn and monthly thereafter to plan the cultivation under thc wewa, expecting the rains to come a3 usual. They will decide dates for clearing channels and spills and also fix dates for land using the early rains. The variety of paddy woulc he decided as well as the dates for fencing the perimeter.Plan and participate in the agricultural development. The farmers will plan and participate in the of agricultnrzl development in their homestead and market-gardens and also will decide 011 the heads of cattle that each farm family should maintain according to the ectent of the communal pasture available. In this case there would he no conttol by the wew-sabha as to the types and ages of crops grown by the individud farmers. But there would he rigid control on the movement of cattle till all the harvests are gathered and there would bc fencing on the perimeter to prev:nt stray animals from destroying crops.Plan and participate in community developraent and social weyare. People who had lived in dispersed individual units up 1 0 the time of the formation of wew-sahhas depending only on chena cultivation will now decide as a group on their community development needs and plan 2,nd execute such development. These items are village roadways, play grounds, children's parks, literary activities, and social welfare activitics for the common benefit of the families.Organize inputs and marketing facilities. The wew-sabhas are initially provided with interest free loans by the Board to (ibtain their agricultural inputs.All wew-sdbhas cultivating paddy have been supplied with a free sprayer. Already over 40 sprayers have been issued. wew.sahhas in the Waguruwela Project in Moneragala District have been assisted with interest free loans to purchase a pair of buffaloes for each farmer family. Later the wew-sahha is expected to organize the procurement and timely supply of all necessary agricultural inputs with their own funds or with bank loans. The wew-sabha building is provided with a room to store these inputs for the use of the farmers.Initially the produce from the farm would be just sufficient to meet the farmers' requirements of food like rice, cereals, pulses, fruits, vegetables, and dairy produce, hut with proper land developmelit, water facilities and improvement of the environment, production of both piiddy and other agricultural produce would exceed the requirements of a famil) of about six to eight members. Then the wew-sabha can organize marketing lacilities for the benefit of the members. However we are hoping to get all farmers to do on-farm storage in traditional ways for deferred use by the families.The wewa village communities have a very old cultural and religious history. Every encouragement is given to the wew-sabha, to revive this old h8:ritage.fund^. Initially when a wewa-sabha .is formed the members decide on a nominal membership fee which varies from Rs. 3/to Rs. lo/per month. This membership fee is utilized to meet petty expenses like postage, stationery, hooks, registers, etc. When the wewa is developed and irrigated farming begins,it is obligatory on the part of the members to pay two bushels (about 42 kilos) of paddy for every harvested acre under the command of the wewa. It is hoped that the fund will build up over the years and if the farmers build up a fixed deposit account with the contributions, they would he able to do the wewa maintenance with the accruing interest without utilizing the capital which would keep growing yearly. It is felt that if the falmers maintain this fund properly it should be possible for them not only to maintain the wewa hut also to finance soft loans, arrange and supply inputs and even make provision fur payment uf old age pensions to their members.Wew-sabha buildings. In each Project the wew-sabha is provided a grant between Rs. 62,000 to Rs. 65,000/for the construction of a permanent building. The bare-minimum furniture and eqlipment will be supplied. The wewsabha could utilize this building as a meeting hall, pre-school for village children, a community center, cultural center and also as a place for training farmers and their children in agriculture and handicraft. In addition there is a room to store inputs like seed paddy, fertilizer, and agro-chemicals. There is another room for a care-taker who is normally a wew-sahha member nominated by the sahha to regulate water issues, obtain a n i supply inputs on time, supervise credit, recover loans, and look after and miiintain the building, equipment, and the children's park situated in a 2 acre plot of land on which the wew-sabha building stands. Of this number, 39 wewas were from Pbrana (old) villages where they were in a had state of disrepair. The balance of 157 wewas taken up for restoration were abandoncd ones, where farmers had been eking out an existence by shifting ctrltivation. By and large, the Board has beer able to achieve notable success, as confirmed by recent, independent evaluativri!; (Richards 1983; Howes 1984)Some of the problenrs thal were encountered can hest be illustrated by a few case stories. Wagtiruwela was an area well known for growing narcotics. Narcotic dealcrs influenced the poor farmers to grow cannabis for a living. They were not happy about the wew-sabhas as the:, were losing cheap labour. In addition they disliked the movcrriertl of jeeps belonging to the Board in these areas. For similar reasons the illicit timber merchaits were unhappy and attempted to bring disunity and disillusionment among tlie people saying that these sabhas arc doomed to fail sooner or later. Initially tliere were a number of drop-outs on nccount of thcse pressure groups, but by a r d large, with regular participation, the wew~sabhas have become successful and ztrong.In Mergaswewa, near Tanamalwila, the members of the wew-sabhas werc farmers who had heen living in the area for gcnerations. These farmers were heavily indebted to the businessmen w h o exploited the poor farmers by utilizing thcir chcap labour for largp-scale illicit chen3 cultivation and for the extraction of illic.it timber. 'These businessmen too olbjected when the farmers gave up working for them and started working on their own development under the wewas. Here too, the majority of the farmer; stayed on in spite of the pressure brought to bear on them by thc businessmen. On account of their unity, they werc able to surmount and withstand the p r e a u r e of the afflueni peopl6.In Tantirimale, in the Anuradhapura District, almost all the people were interrelated and had migrated from Vavuniya and Medawachchiya areas about 10 to 15 years ago. The setting up or wew-sahhas in this area did not pose much problems except for the fact that their literacy ralc was low.Today in almost all the areas where the B3ard has its projects the wewsabha system has been readily accepted and is working safactorily. At present all wew-sahhas are with the Sri National Freedom From Hunger Campaign Board. I t is felt that State recognition, especially by the Department of Agrarian Services under whose purview the small village tanks come, would provide a still greater incentive to these organisations.The Board was more anxious to ensure thaf any improvement it generates will be sustained and would result in a spiralling ,;rowth of the economy in these communities. The Roard therefore pays more attention to the organisation that would maintain the improvements than to the improvements themselves. In reviving the traditional wow-sahhas, the Board felt that the responsibility for planning and implementing thc plan must remain with the farmers and the wew-sabha.To ensure that this was possible it was necessary to attend to two matters.One was to ensure that the wew-sahha was capable of generating sufficient funds to pay for repair and maintenance of the wewa and its irrigation system, This could be done by cultivators contributing the equivalent of seed paddy at harvest time to the sabha's maintenance fund. Ano:her matter was that the wewsahha should have farmers with sufficient techiiical knowledge to ensure that the repair and maintenance was effectively and economically performed. This could be achieved by farmer training programs a i d on the job training. The last matter was that the farmers should co-operate in the matter of organizing repair and maintenance and in the problems associated with water management. As wew-sabhas are composed of 20 to 30 families who have control of a single wewa, this co-operation has not been difficult to c ~c ' h. ieve.The Board does not seek out wewas to restcre but instead enters into partnership with farmer communities to renovate existing wewas or to restore ahandoned ones. In either case there is no lack of manpower for doing the earth work. Very often men, women, children, and even old people participate in doing earth work. This activity brings the community together, and also generates a feeling that the wewa belongs to them. Tkereafter it becomes natural for these people to assume responsibility for the wewa through their wew-sabha. The Board's program includes, in arcas where abandoned wewas are being restored, the developing of terraced market gardens, contour bunded pastures, forest plantations, and a homestead garden fimr each farmer family, in addition to the irrigated paddy areas.Thus with the assistance, goidance, and the partnership of the Board, through the wew-sahhas in the remote parts of the country, we expect the pourest of the poor to raise their standard of liviiig by wisely utilizing the lands that lie idle, water that went to waste, and human resources that were under-utilized.","tokenCount":"3482"} \ No newline at end of file diff --git a/data/part_3/7277155634.json b/data/part_3/7277155634.json new file mode 100644 index 0000000000000000000000000000000000000000..09997667b4f43c1ad3840446f3edceb2da191c49 --- /dev/null +++ b/data/part_3/7277155634.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"1039f0ea641a902261333bca06c50409","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/b55d233b-093c-4c74-a767-89b4fa867d5e/retrieve","id":"-2007170072"},"keywords":[],"sieverID":"6901b539-a5df-4732-bd3c-c98b4f87d057","pagecount":"17","content":"Country snapshots are a description of the baseline situation of the core market system for coffee or cacao in MOCCA countries at the national level based on rapid appraisals carried out in each country. 1 The level of detail presented is to some degree a reflection of the complexity and maturity of the sector in each country. We would not expect the market system for a new crop, in a small sector, in a small country, to necessarily be as developed as that for a historical crop, in a large sector, in a large country. Country Snapshots are available for coffee and cacao market systems in El Salvador, Guatemala, Honduras, Nicaragua and Peru, and also for the cacao market system in Ecuador. The tables and figures are described below in the order in which they appear in the country snapshots.Map -The country map at the beginning of each snapshot uses shading to show the major cacao or coffee producing areas of the country by department/province.Cacao or Coffee in Country -provides general statistics on the country and on the sector to provide the reader with a basic contextualization of the different cases, for example the size of the sector and relative economic importance for the country. Data sources are described in the Appendix. We used sources for which similar data was available across countries. In some cases, particularly for Guatemala cacao data, we were unable to find consistent data across official sources. The center shows the market chain and its principal competing channels. The market chain is the chain of economic actors (players) who own a product as it moves from primary producers to consumers. The arrows represent the flow of money, from left to right, as the product is purchased from one actor by another. Where possible, we have mapped this for different qualities of coffee/cacao and added numbers of actors or market share where available. This section helps to understand chain structure and to think about systemic efficiency. The top shows the rules and business environment including policies and institutions (influencers) that shape the market system. These are organized from left to right based on the year in which they became an influence on the market system, with the most recent on the left and the oldest on the right. This section helps identify policies or institutions that are influencing how the chain works. The bottom shows the services, for example business and extension services, that support the market chains operation at any point along the chain. These are organized as much as possible based on actors or part of the chain for which they provide a service, with services on the far right most relating to production and those on the far left most relating to exports. This section helps identify key services or missing services and link services with users within the chain.Figures: Key Supporting Market Systems -These market system doughnut diagrams unpack some of the supporting functions for the coffee and cocoa market systems identified as areas for intervention in MOCCAs Theory of Change, including technical assistance, research, genetic material and financial services. The doughnut is a simplified Market Map where the center shows a generic supply and demand function for the support service of interest. The top of the doughnut shows the services that support the provision of the core service and the bottom of the doughnut shows the rules that shape the provision of the core service. Where this service or regulating function is predominantly associated with a single or few actors, and space permits, they are named. Using technical assistance as an example: Technical assistance provided to farmers is at the center of the diagram, and described briefly in the text underneath the diagram in terms of who provides the service, who pays for the service, the nature of the service, and the key supporting functions and regulations. In the top of the diagram we have listed supporting functions identified that enable technical assistance to be provided to farmers including training of extension agents, funding of technical assistance, production of content, research, etc. In the bottom of the diagram we have listed all of the rules, regulations, institutions that influence how technical assistance is provided to farmers, for example an entity that certifies technical assistance providers or dictates content or the methodology used to provide technical assistance to farmers.El Salvador is principally a cacao importing country, importing four times what they produce. Cacao is widely consumed in the country, mostly unfermented cacao, in drinks, and El Salvador also produces cacao-based products produced from imported cacao powder or butter. Before 2014, there were under 300 Ha of cacao in the country, and over 200 were on a single large farm. Since 2014, Alianza Cacao, a $25 million-dollar investment promoted by Howard Buffet, has sought to turn El Salvador into a cacao producing country by establishing new cacao areas with 3,600 new cacao farmers. Alianza Cacao is a consortium led by CRS, along with LWR, CLUSA El Salvador and Caritas. An earlier initiative in 2009 formed Sociedad Cooperativa de Productores de Cacao de El Salvador (ESCACAO), a group of medium sized producers focused on cacao production for fine flavor markets. Externally, El Salvador is not viewed as an exporting country given the low volumes, criteria that was used to deny inclusion of El Salvador in the ICCO Annex C. However, the Buffett initiative has made noise in the sector and generated curiosity on the part of chocolate makers around what kinds of cacaos may be discovered in El Salvador, particularly given its historical importance as the site of cacao domestication (not origin) and the leading producer of cacao during colonial times. Samples of unique cacaos from El Salvador shown at the Salon du Chocolat and the awarding of one of 17 Cocoa of Excellence Awards in a global competition in 2017 have raised the countries profile as a potential origin, though buyers are waiting to see if sufficient volumes can be achieved.2 See Appendix for data sources. From its beginning, the government has supported the initiative, framing it as a celebration of El Salvador's Mayan roots and a climate friendly crop that could be substituted for coffee in low altitude areas. The government has developed a research effort to characterize and release local genetic material through National Agricultural Research Institute (CENTA), have declared a national cacao day, and are in the process of reviewing a proposal for a law to promote the sector that includes the creation of a national cacao institution. The level of support and attention from public sector actors has been great given the overall insignificance of the sector in terms of economic importance and numbers of farmers involved.The private sector actors most involved in cacao are those that produce cacao-based products for sale on the domestic and Central American market, mostly using imported unfermented cacao from Nicaragua and Honduras. A second segment are the large network of small businesses that also buy unfermented cacao to make homemade tablilla, sold to make cacao-based drinks served in typical restaurants across the country. Most of these actors have been at the margin of the current developments in the sector as they demand low quality cacao products at prices competitive with those of imports. ESCACAO, an association of medium sized cacao producers and chocolate makers, along with La Carrera farm are the two actors that have been actively engaged in processing and marketing of the growing Salvadoran fermented cacao sector. Importers are a key actor that should be engaged to support development of the sector and positioning within the region.Alianza Cacao supported the Mesa Nacional de Cacao, a multi-actor working group to discuss issues relevant to the sector. Initially they discussed genetic material and technical assistance proposals of the Alianza Cacao, and more recently were involved in the writing of the proposed legislation to support the sector. The Mesa is an ad hoc working group with voluntary membership. Under the proposed legislation, however, an entity would be created similar to the Consejo Salvadoreño del Café to support development of the sector and dialogue with the government.Current debates in the sector center on genetic material, the viability of cacao areas established under Alianza Cacao, cacao marketing strategy, and the potential contribution of cacao to national reforestation and land restauration targets. There are two camps on genetic material, one that supports exclusive promotion of local materials for their adaptation to local conditions and potentially differentiated quality, and a second that proposes to use international clones with known productivity and quality to ensure profitability of cacao plantations. Related to this is the debate about how El Salvador should position itself in international markets, balancing between productivity and a differentiated quality. Alianza Cacao has established more than 2,500 Ha of new cacao plantations in different areas of the country with unexperienced cacao farmers with limited resources. Many are concerned with the viability of these plantations and on the one hand do not want to abandon farmers, but on the other are concerned that the cacao that has been planted may not turn out to be as profitable as initially promised. Water is a major limiting factor and investing in irrigation increases costs significantly, for example. Most areas have been planted by seed with the expectation of grafting clones in the field, but it is unclear how successful this will be. And finally, there is great interest in cacao for its contributions to environmental and climate priorities, but it is unclear whether the crop will be profitable enough for farmers to maintain the tree cover it could generate.Given how young the sector is (most farmers still waiting for their first harvest), traditional R&R is not a current topic of concern for the sector. There is however a great deal of interest in consolidating recommendations for how new plantations should be established and how pruning should be managed.El Salvador then represents an opportunity to establish crop management practices that ensure optimum productivity as part of the regular routine. For example, MOCCA could focus on newly established areas i.e. replacing missing plants to ensure optimum plant density, grafting appropriate genetic material on new or unproductive plants, managing pruning for optimum health and productivity, management of plant nutrition and propagation of genetic materials in order to incorporate R&R into the crop management cycle from the beginning. Investments made now in ensuring new plantations are well designed and genetic material selection, seedling production and technical assistance are carried out appropriately will be an investment in the future of the sector, particularly as farmers are new and therefore open to suggestion. La Carrera, the largest oldest farm in the country, has renovated approximately 60 Has over the past four years using local materials from their own farm. They have also rehabilitated much of the farm. This experience can serve as inputs to future renovation and rehabilitation practices if well documented.The main market for Salvadoran cacao is the domestic market for tablilla. Tablilla is mostly made by small businesses who procure unfermented cacao in local markets or from intermediaries in wholesale markets that import cacao from Honduras and Nicaragua. Unfermented cacao procured from within El Salvador is purchased through intermediaries from very small farmers. La Carrera is the largest cacao farm in the country with just over 150 Ha. They have invested in processing infrastructure to process and market their own cacao and are also buying cacao from nearby farmers. This constitutes another channel, by which fermented cacao is exported. ESCACAO has also established a large fermentation facility funded through Alianza Cacao and are beginning to process cacao for their members (40-60 medium cacao farmers). Several cooperatives, all very new, have also been equipped with fermentation facilities by Alianza Cacao and are collectively processing cacao for sale to exporters and niche markets within El Salvador. With the increase in production of fermented cacao, Salvadoran higher end chocolate makers are exploring possibilities to source their cacao within the country, though price competitivity and volumes as compared to sourcing in Honduras or Nicaragua remain an issue. As the new production comes on line, and with investments already made with development funds in infrastructure for processing, and marketing, there is an opportunity to have an important impact on the evolution of the sector at least for the next decade in terms of small farmer participation and benefits. Support systems and regulations are in the formation so it is also an interesting time to engage particularly around technical assistance, inputs, and genetic material provision, as well as how the sector becomes connected to international research networks for technical inputs. Investments will also need to be made in the development of financial products for cacao, building on experiences from coffee, positive and negative. CENTA also provides some TA funded by public funds and donors (USDA, IILA), mostly in response to requests from farmers. Most TA providers have just a few years of experience with cacao, and have learned from their peers (also new to the crop), through reading, trial and error, visits from international experts, and for some exchange visits to other countries. The majority rely on prior experience in coffee or fruits and training as agronomists. TA approaches largely use group FFS methodologies, and training is continuous, following the evolution of the new cacao plantations farmers are establishing i.e. year 1 focus on nurseries, year 2 establishment, etc. TA supported by Alianza Cacao has had a strong focus on establishing new areas to meet project targets, and a focus on associated crops, including food crops and vegetables, to support income generation during initial years.Supporting functions for TA include informal and formal training opportunities for TA providers including national and regional cacao events, the internet, and materials such as Cacao Móvil. Technical collaborations and exchange visits are important sources of content, particularly experts from INIAP Mexico, WCF, Colombia and Peru. Research on genetic material, climate and costs inform TA provision.There are no formal regulations of TA but Alianza Cacao has an important influence due to its size and number of TA providers. Coffee is an important reference crop for farmers and extension agents in thinking about TA, and the Mesa Nacional de Cacao has served at times as a filter for technical materials on cacao to be used in the country. Rules or regulations that directly influence research in cacao in El Salvador were not identified, beyond the particular interests of the institutions carrying out the research.Figure 5 Market system for genetic material for cacao in El Salvador Genetic material includes seeds, largely produced by La Carrera or by farmers themselves, and budwood from clonal gardens established by CENTA and Alianza Cacao. Commercial nurseries and municipal nurseries also produce seedlings. La Carrera and ESCACAO sell grafted seedlings with traceable genetic material to farmers and others. The majority of plants are produced in collective nurseries funded by Alianza Cacao and the plants are distributed free of charge to farmers. The majority of seedlings distributed by Alianza Cacao are rootstock from La Carrera and only now is budwood being distributed to graft international clones onto the plants in the field. CEL, the state energy company, also distributes cacao plants to farmers as part of their reforestation mandate. There are no certified seed or budwood producers nor nurseries. Some materials were not introduced legally which complicates registration.Support functions for genetic material production have been ramped up in El Salvador over the past 5 years by Alianza Cacao, driving demand for seed, seedlings and budwood, and investing in TA and infrastructure. A collaborative effort has been made to identify and characterize supertrees, CENTA has begun evaluating materials, and Alianza Cacao, ESCACAO, La Carrera and others are evaluating international clones, all generating valuable information for selection of genetic materials. Finally, CATIE and FHIA collections have been important contributors to the availability of materials in El Salvador.Regulations for the certification, propagation and commercialization of genetic materials in general apply to cacao though they are not yet widely used. The preferences of Alianza Cacao, CENTA and discussions in the Mesa Nacional de Cacao have normative functions that influence decisions at the national and local level about what materials to plant.Figure 6 Market system for financial services for cacao in El SalvadorFinancial services for cacao are rare in El Salvador. The Banco de Fomento Agropecuario (BFA) offers most of its coffee products for cacao as well but has very few cacao clients. CRS was promoting community savings groups to provide credit in cacao but we do not know how much resources were leveraged. With support from CLUSA to complete the application process, just two cacao farmers were able to obtain credit. The coffee sector will be an important reference for farmers and financial service providers as some farmers may have credit histories with coffee and financial institutions may have financial products that can be adapted.Support functions include the work of projects and NGOs to incentivize financial institutions to provide credit to cacao farmers as well as TA for cacao production to ensure plots are well managed. Technical assistance from projects will be a facilitating factor for farmers to access credit. Experience of financial institutions with lines of credit for coffee provide an initial reference for the development of products for cacao, and the proposed legislation also establishes conditions for improving credit for the cacao sector.There are not cacao specific regulations, but rules that govern the sector include experience and especially credit history in the coffee sector which could limit access to credit for some cacao farmers transitioning from coffee. The national policy under development will also likely influence at least public sector investments to provide financial inclusion for farmers in the cacao sector. IILA: This is a regional initiative but with physical presence in El Salvador. The project focuses on supporting farmers to use high quality genetic material, good post-harvest, chocolate making and marketing practices in order to access better prices for small farmers from their cacao.• The domestic market -El Salvador imports four times as much cacao as it currently produces, largely washed cacao from neighboring Honduras and Nicaragua. El Salvador also imports processed cacao for industry. These both represent potential market opportunities for Salvadoran cacao, but price points need to be considered. One opportunity is to link producers to local Tablilla producers which may offer better prices though for possibly smaller volumes. MOCCA should also be able to piggy back on the boom in El Salvador around specialty coffee for the domestic market and explore introducing cacao-based drinks into coffee shops as well as supporting the development of gourmet cacao-based products for the domestic market including drinks and chocolate. Possible partners: CONAMYPE, importers, processing industries i.e. Melher and Shaws, Alianza Cacao, IILA, ESCACAO. • Cacao genetic diversity for the dry corridor -The agroclimatic conditions under which cacao grows in El Salvador are different from the major production zones in the rest of Central America. El Salvador also has potential genetic diversity adapted to those conditions left over from colonial times. There is an important opportunity in El Salvador to study the existing genetic diversity for its potential to produce in drier, hotter climates. Developing these genetics and associated production practices will be important to the future of cacao in El Salvador, but could also make an important contribution to the rest of the region. CENTA and UES have mapped many of these materials and CENTA has already established trial plots with some of the materials. This could include sensorial characterization of these materials. Support from Bioversity and/or CATIE to identify, conserve and explore the potential of these materials may be of global interest and aligns well with GOES priorities on conserving local varieties. Possible partners: CENTA, UES/CENSALUD, Bioversity/CACAONET, Heirloom Cacao Initiative, Guittard Chocolates, CATIE, CIAT/Future Seeds Genebank, WCF. • Getting cacao propagation right -if Alianza Cacao will continue to produce and distribute seedlings in this new phase, there would be an opportunity to consolidate lessons learned and investments in genetic material infrastructure, in collaboration with CENTA, to build out a national seed and budwood system for cacao ensuring traceability of the materials introduced and collected, clarifying recommendations on propagation methods, providing better guidance to support selection of materials for planting, and further strengthening the capacity of nursery operators to produce high quality plants. The focus would also be on getting ready for transition to a market driven seed system by the end of MOCCA. Possible partners: Alianza Cacao, CENTA, Organismo Internacional Regional de Sanidad Agropecuaria (OIRSA), DVSA, CATIE, nurseries, ESCACAO, La Carrera. • National Commodity Institute -given the legislation under discussion that includes the creation of a national entity to coordinate the sector, there is an opportunity for MOCCA to support the emergence of this entity bringing lessons learned from other countries and the coffee sector to ensure the emergence of a structure for the sector that maximizes benefits to small farmers. Possible partners: Alianza Cacao, Mesa Nacional de Cacao, Ministerio de Agricultura y Ganadería (MAG), ESCACAO, CENTA.• Positioning El Salvador with Bean to Bar chocolate makers -Given the relatively higher production costs (i.e. land, labor) in El Salvador as compared to neighboring countries, the low volumes of production, and the need for cacao to generate attractive livelihood options to retain farmers, it will be difficult for El Salvadoran cacao to compete on commercial cacao prices. If we can follow El Salvador's experience with differentiated coffees, combined with the genetic diversity and rich cultural heritage around cacao, there may be a niche that could be opened for Salvadoran cacao at differentiated prices. LWR's Cocoa Flavor Map is a model that can be built upon to achieve this. ","tokenCount":"3600"} \ No newline at end of file diff --git a/data/part_3/7380850762.json b/data/part_3/7380850762.json new file mode 100644 index 0000000000000000000000000000000000000000..605991ada9aa23fd183b4bbee524f5e7064acc5c --- /dev/null +++ b/data/part_3/7380850762.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"0bb63085502cba8ba412469beaf6b3de","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/559297cf-4f0b-41d3-bd0d-5ae0762476a4/retrieve","id":"1829637129"},"keywords":[],"sieverID":"ffcf34b6-2b76-4a43-aa04-f3960a7c1caf","pagecount":"15","content":"• We started with an initial \"long list\" of proposed SAPLING innovations• Tradeoff analysis assesses possible impacts of an innovation along different dimensions, such as productivity, economics, environment, human condition and social impacts• It is conducted before (ex ante) implementing the innovation, to identify possible negative impacts on some dimensions, for some actors, or at different time scales Ten (10) intervention packages were scored in terms of their expected impact on 1. Productivity, 2. Economics, 3. Environment, 4. Human condition, 5. SocialBalance feed ration formulations 2. Digital application to strengthen capacities of veterinary extension staff in herd health packages3.An integrated pig production extension package with herd health, feeds + feeding, and genetics packages + platform for relaying extension informationWell adapted and improved breeds superior/better pig breeds/genetics through decentralized breeding/boar studs at community levelA financial guarantee scheme for pig farmers 6. Business models to enhance value chain linkages and transparency in the value chain through MIS digital platforms 7.Abattoir hub business model with centralized abattoir as the hub 8. \"Jumia pork\" initiative 9.","tokenCount":"172"} \ No newline at end of file diff --git a/data/part_3/7385883990.json b/data/part_3/7385883990.json new file mode 100644 index 0000000000000000000000000000000000000000..312766f23163d97cec29a01ed84b9cbb73a9bc4f --- /dev/null +++ b/data/part_3/7385883990.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"103991a83a711c06b746f00e5847a5cb","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/ed498c1c-0eec-4a13-8033-585332c8751e/retrieve","id":"-966150541"},"keywords":[],"sieverID":"53ae9435-1acb-49ba-ba51-5d321d0a15c5","pagecount":"3","content":"1. Purpose: to evaluate the risk of seed degeneration at a location or set of locations, based on factors such as weather conduciveness, crop disease resistance, and success rates for interventions such as positive selection and roguing. The model also evaluates the best time to access clean seed to maintain acceptable yields 2. Level: from farm to village to continent 3. Users of the tool: scientists and analysts who design, implement or evaluate seed systems. Users with no programming experience can use the online interactive version of the model (link at garrettlab.com/seedhealth) but may need advice on parameter estimation. The model in R may be used by people of different levels of experience with programming. The University of Florida team can provide custom code for particular applications 4. Output of the tool: the model output includes estimates of how rapidly seed degeneration proceeds, as a function of the parameters describing the system. It also evaluates the best timing to acquire high-quality seed to maintain yield within acceptable bounds 5. Audience of the output: The same community of scientists and analysts, as well as extension and outreach personnel, policy makers and donors 6. Minimum sample size: the analysis can be adjusted to the amount of available data, with less data resulting in a more speculative analysis, and more data allowing a more precise analysis 7. Resources a. number of people: at least 2 b. equipment: relevant data, a computer with access to the online app or with the free R programming environment and free seedHealth R package installed c. expertise: at least one team member with R experience, and at least one with experience in the seed system being studied. Expert elicitation might be used to obtain input for the model, drawing on the experience and knowledge of a team of experts 8. Timing: can be applied before, during and after a new study or new seed system implementation 9. Duration: once data are organized, a preliminary analysis might take only a week, while a simple and standard complete analysis would take a couple months. A new custom analysis might take a year to develop for publication, including several rounds of discussion among collaborators 10. Steps a. Gather data describing seed degeneration. When more data are available (e.g. for environmental conduciveness to disease and levels of disease resistance) risk assessment can explore more scenarios b. After estimating model parameters from the data, you can evaluate the risk of seed degeneration and the best time to acquire high-quality seed c. Scenario analysis. You can use this model to evaluate the risk at particular locations and incorporate risk into seed system network analysis, and into management performance mapping studies 11. Which methods can be used in combination with the tool: any tools (quantitative literature review, new experiments, expert elicitation, etc.) can be used to provide data and questions for applying the model. If data available are minimal, the results of analyses will be speculative; when extensive data are available, the analyses will have more precision and will be more likely to provide actionable recommendations for specific locations 12. Gender: seed degeneration risk is partly influenced by social factors such as labor availability for positive selection and roguing, or money for inputs such as high-quality seed. When differences in resource availability are understood as a function of gender or other social aspects, then seed degeneration risk can also be evaluated accordingly (gender responsiveness level 1: gender is a significant factor in this tool, but it is not the main reason for using it) ","tokenCount":"589"} \ No newline at end of file diff --git a/data/part_3/7391051314.json b/data/part_3/7391051314.json new file mode 100644 index 0000000000000000000000000000000000000000..67897af2f5a9ca32de764911d8119a6e858c2b1b --- /dev/null +++ b/data/part_3/7391051314.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"a793a8d56b8e8e38be807026368f1c27","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/66bd9d36-de7d-4fa8-b84f-b8cc91b83b64/retrieve","id":"1692248683"},"keywords":["Low emissions development","Nationally Determined Contribution","Rice","Alternate wetting and drying","Greenhouse gas","Agriculture","Climate change mitigation"],"sieverID":"6128f1aa-39ac-4f88-b59a-4594b5fe4c48","pagecount":"22","content":"This work was implemented as part of the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), which is carried out with support from CGIAR Fund Donors and through bilateral funding agreements. For details, please visit https://ccafs.cgiar.org/donors. The views expressed in this document cannot be taken to reflect the official opinions of these organizations.Following are the authors and their affiliations:• Tran Van The (tranvanthe.iae@gmail.com) -Institute for Agricultural Environment (IAE) lead author One must (used certificated seed), five reductions (sowing seed, pesticide, N-fertilizer, irrigated water and post-harvested losses) 3G3R Three gains (yield, quality and income), three reductions (sowing seed, pesticide and N-fertilizer), Rice production is integral to agriculture and food security in Vietnam and is being negatively affected by the effects of climate change (CC). However, paddy rice production is also responsible for high levels of greenhouse gas (GHG) emissions. In 2010, paddy rice production was directly responsible for 44.61 million tons carbon dioxide equivalents (MtCO2e), or 18% of total national GHG emissions (MONRE 2014). A variety of options to mitigate GHG emissions from paddy rice show promise and could contribute to implementing Vietnam's Nationally Determined Contribution (NDC) and green growth strategies. One of these options is alternate wetting and drying (AWD), a technique in which irrigation water is applied to rice after the field is allowed to dry out to a certain point.In as part of its unconditional mitigation (to be achieved with domestic resources). The NDC states that AWD will be utilized on an additional 500,000 hectares nationwide (an additional reduction of 2.34 MtCO2e), conditional upon international support for NDC implementation.The Mekong River Delta (MRD) region contains 12% of the country's natural area and 19% of its population. It produces 50% of the rice, 65% of the aquaculture, and 70% of the fruits grown in Vietnam. About 95% of rice exported from Vietnam is grown in the MRD (GoVN, 2017). In addition to nationwide goals for AWD, mitigation options specific to rice production in the MRD have been The purpose of this study was to develop an investment plan for AWD in the MRD region of Vietnam. We reviewed literature on GHG emissions from rice production and studied promising GHG mitigation options for the NDC. We then analyzed the cost and benefits of AWD to inform investment needs. With this information and identification of financial sources, we developed investment plans for AWD as a low emission development (LED) practice for rice production in the MRD region.The components of the methodology for this study are shown in Figure 1. Data were collected through rapid rural appraisal (RRA), standardized questionnaires and individual interviews. A strength, weakness, opportunities and threats analysis (SWOT), bottleneck analysis, cost-benefit analysis (CBA) and marginal abatement cost (MAC) analysis were used to process data and report on AWD in rice production in the MRD region. In the field survey, 180 farm households were sampled, of which 120 households utilized AWD practices and 60 others used conventional, continuously flooded production practices (Table 1). The study was also informed by interviews and group discussions with local stakeholders, experts, policymakers and scientists. Three independent domestic reviewers reviewed the final draft of this study. Experts from various management units and scientists under MARD and Ministry of Natural Resources and Environment (MONRE) were consulted for final approval of the study. According to MONRE (2017) A field survey in three provinces (An Giang, Kien Giang and Soc Trang) found that AWD uses fewer inputs than conventional rice cultivation: 21.67% less seed, 18.82% fewer pesticides and 33.34% less irrigated water. Because of these efficiencies, AWD has been given high priority in a variety of These strategies, plans, policies, projects and programs are important policy levers to supporting investment in low-emissions rice production. Amongst these, AWD is an essential climate change mitigation and climate change adaptation option for rice cultivation in the MRD region.Farm household survey results in An Giang, Kien Giang and Soc Trang provinces found that average costs for AWD are an estimated 14.98 million VND ha -1 (USD 651.31 ha -1 ), a savings of 1.01 million VND ha -1 (USD 47.82 ha -1 ) over conventional rice production (Table 3). On average in An Giang, Soc Trang and Kien Giang provinces, total revenues from AWD are estimated to be 42.51 million VND ha -1 (USD 1848.26 ha -1 ), about 3.44 million VND ha -1 (USD 149.56 ha -1 ) more than returns from conventional rice production because AWD provided higher yields than conventional rice (significance at =0.01). The average net benefit realized from AWD is therefore 27.52 million VND ha -1 , a difference of 4.43 million VND ha -1 (USD 193.04 ha -1 ) more than conventional rice cultivation (cognizance at =0.01).In An Giang, rice grown with AWD produced 40.54 million VND ha -1 (USD 1762.61 ha -1 ) in revenue, the lowest among surveyed provinces, although this was greater than conventional rice cultivation by 7.61%. Net income from AWD was estimated at 25.65 million VND ha -1 , 16.48% greater than conventional rice, because farmers in An Giang province saved on costs related to sowing seed, irrigation and labor (at  was less 10%) and farmers benefitted from a significant increase in total revenue of 2.87 million VND ha -1 at =10%). Farmers earned 2.72 times of the total of their costs and investments when employing AWD; this exceeded the 2.41 return on conventional rice. Costs benefit ratio amounted to 36.73% and a rate of return of 63.27%, much higher than conventional rice (Table 3).In Kien Giang, on average, farmers practicing AWD earned 29.72 million VND ha -1 (USD 1292.17 ha -1 ) in net income, which was 25.59% greater than farmers producing rice conventionally. This was the highest net income among surveyed provinces. Related, the average costs of rice production for farmers using AWD in Kien Giang were also the lowest, 13.04 million VND ha -1 (USD 566.95 ha -1 ), which was 13% lower than the other provinces. According to field survey, AWD generated savings on land preparation costs because of active water control (at =1%), sowing seeds because of more flat and thinner sowing density (at =1%), weed control in use because of stronger rice growth (at =5%), and harvesting and labor because of more mechanization (at =1%).In Soc Trang Province, net income for farmers practicing AWD reached 27.22 million VND ha -1 , which is 13.42% greater than conventional rice cultivation. Income was increased (at =1%) partially due to lower land preparation cost (at =1%), pest and disease management because stronger plans and thinner density (at =5% and labor cost (at =5%). AWD yielded 2.6 VND revenue for each VND of cost, while conventional rice cultivation generated only 2.37 VND. Costs amounted to 38.45% of revenues (the highest among provinces surveyed), giving a rate of return of 61.55%, which is higher than conventional rice cultivation. However, cost components of AWD vs. conventional production varied among the provinces.Examples include costs for seed (significant differences in An Giang and Kien Giang but not in Soc Trang), pests and diseases management (significant in Soc Trang, but not in An Giang and Kien Giang), irrigated water (significant in An Giang and Soc Trang but not in Kien Giang ). The differences may be due to the small sample size of the survey (limited due to time and scope of this study). Also, the technical analysis shows that AWD may face more risk from climate change (due to anticipated more irregular seasonal rain and extreme climate events and tides) which may lead to difficulties controlling alternating dry and wet periods and more stress on irrigation management capacity due to the importance of irrigated water in the MRD.The field survey results in An Giang, Kien Giang and Soc Trang indicated that AWD is adapted to alluvial, low-and medium-saline soil in the MRD region. According to MONRE (2016), total arable land for rice in the MRD was 1.91 million hectares, while rice was cultivated on 4.29 million hectares (Table 4), meaning that farmers are cropping 2.22 rice seasons per year. Sources: Land inventory report by Ministry of Natural Resources and Environment (2005, 2010, 2015) According to evaluations undertaken by MARD (2012) in the MRD region, alluvial soils cover about 806.7 thousand hectares, and low-and medium-saline soils cover about 517.3 thousand hectares. The results of the field survey in An Giang, Kien Giang and Soc Trang provinces indicate that AWD could be practiced on all alluvial soil areas and in 30-50% of low-and medium-saline soil areas. Hence, AWD can expand to 961.89 thousand hectares of arable land areas in the survey area and can expand to 1.92 million hectares including An Giang, Soc Trang, Dong Thap, Tien Giang, Tra Vinh and Kien Giang provinces, which are the largest AWD-rice potential areas in the MRD region.Thus, both the unconditional NDC implementation target to develop 200,000 hectares and the conditional NDC implementation target of an additional 500,000 hectares under conditional mitigation options can be met. Additional mitigation in the MRD region is possible by 2030 with investments.The proposed investment plan for AWD development includes four outputs and 15 investment activities (Table 5). 29.92% from the provincial budget, 21.77% from international support and the remaining 11.42% from the private sector (Table 6). The investment plan for AWD in rice production in the MRD region outlined in Table 6 As shown in Table 5, total cultivated area for AWD in the MRD region can reach 1.900 million hectares, with an average net benefit at 27.53 million VND ha -1 , compared to normal rice (none-AWD) at 4.43 million ha -1 . Table 7 shows how AWD will benefit farmers' net earnings from rice production. It is estimated that realization of this investment plan would allow farmers to earn a net Vietnam has actively and responsibly participated in the global forum on climate change. According to international financial experts, Vietnam can pursue financial resources for AWD as follows:• Connect with and seek financial sources from multilateral partnerships under the UNFCCC through the Global Environmental Fund (GEF), Special Climate Change Fund (SCCF) and the Small Grants Program of the Adaptation Fund. These funds could finance numerous projects on GHG mitigation from multiple sectors. Agriculture in developing countries is highly prioritized.• Multilateral and bilateral funds from the UNFCCC such as the Clean Technology Fund (CTF) and the Pilot Auction Facility (PAF) are a potential funding source for an AWD proposal.• Vietnam is advantageously situated to cooperate with IKI partners and the NAMA Facility to pursue international financing for AWD in MRD.• Finally, financial sources for AWD in MRD can be sought from bilateral cooperation with the governments of Australia, Germany, Japan, Korea, the United Kingdom, and the United States.The results and analysis presented in this working paper lead us to the following conclusions:1. AWD is one of the most important technical solutions to achieving the country's NDC to climate change mitigation, and achievement can and should be supported through GHG-reduction policies. AWD offers high potential GHG reduction; it could achieve 14% of GHG reductions in unconditional mitigation options and nearly 18% of GHG reduction of its conditional mitigation goal. In our field survey, it contributed to helping farmers earn increase net income of 3.63 million ha -1 in An Giang province, 6.03 million VND ha -1 in Kien Giang province and 3.65 million ha -1 in Soc Trong province due to significantly increasing farmers' revenue through higher yields and reducing costs of land preparation, sowing seed, irrigated water and labor in comparison with conventional rice.2. The study proposed investment for AWD in MRD with four outputs and 15 investment activities for AWD to be practiced on 900,000 arable hectares in the MRD region. The budget for this plan is USD 721.78 million (81.32% for hard infrastructure, 18.19% for MRV operation, research, performance and planning) in which 36.9% is provided by the state, 29.92% from local provinces, 21.77% from international support and the remaining 11.42% from the private sector. This plan contributes to reducing 10.97 M.tCO2, and results in additional net benefits for farmers of 8,540 billion VND (USD 371.36 million per year) compared to conventional rice cultivation.3. Financial resources are potentially available from national targeted programs of rural development, public investment, rice restructuring, climate change response and green growth, and the policy of production linkages and large field models. The policy of encouraging private investment in agriculture and rural development is a domestic source for AWD, while international financial support can include Global Environmental Fund (GEF), the Special Climate Change Fund (SCCF), the Small Grants Program, Adaptation Fund, the Clean Technology Fund (CTF), the Pilot Auction Fund, International Climate Initiative (IKI), the National NAMA Facility and Green Climate Fund (GCF).It is recommended that the government take the following actions to attract investment in AWD in the MRD:1. The government should indicate to Vietnam's Paris Agreement executive board that they should consider prioritizing AWD combining with 1M5R, 3G3R in the MRD region in the agricultural NDC implementation plan.2. The government should set prior investment in evaluation of existing irrigation works and their efficiency, and determine the potential for AWD in sub-regions within the MRD region.3. The government should integrate the proposed investment plan for AWD in rice production in the MRD region into national programs and the mid-term economic plan as well as provide support to local provinces to mobilize financial sources from international aids and private sector.","tokenCount":"2229"} \ No newline at end of file diff --git a/data/part_3/7392530236.json b/data/part_3/7392530236.json new file mode 100644 index 0000000000000000000000000000000000000000..7b62bd8ef5d9d85543f600d899da90eca24c0d79 --- /dev/null +++ b/data/part_3/7392530236.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"98923524a25f835a2ac8f81a21479c52","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/225e67ee-111d-41d5-8189-817eaee6b927/retrieve","id":"1874149237"},"keywords":[],"sieverID":"b7ee48b5-4f27-4468-9be1-8c7fa2d0c639","pagecount":"98","content":"Esta sección del documento es el resultado de una actualización rápida del estado del arte de la cadena de valor del maíz en Colombia, la cual tiene la finalidad de brindar un panorama amplio de la información disponible a nivel sectorial y facilitar el seguimiento a la dinámica económica de la cadena. Esto ayudará en la toma de decisiones de los actores y organismos representativos del sector maicero colombiano. Para la construcción de todo este informe se revisó y sintetizó literatura y estudios de base realizados previamente a escalas regional y nacional, principales cifras y bases de datos públicas disponibles en sitios web institucionales. Por último, la descripción presentada fue validada y complementada por agentes del sector, mediante entrevistas semiestructuradas y revisiones detalladas del contenido.El cumplimiento de las metas climáticas es un reto que actualmente asumen la mayoría de los países a nivel mundial, incrementando sus exigencias de reducción de emisiones y adaptación para responder ante impactos cada vez más recurrentes en el clima. Colombia se ha comprometido desde hace años con altos objetivos climáticos. Para ello, el programa ProNDC apoya al Gobierno colombiano en la coordinación efectiva de las medidas relevantes de mitigación y adaptación al cambio climático, en cooperación con actores públicos y privados, para la implementación de sus metas de cambio climático (NDC, por sus siglas en inglés).Esta serie de cinco publicaciones es el resultado del trabajo de investigación desarrollado por los especialistas del Centro Internacional de Agricultura Tropical (CIAT) en coordinación con el equipo ProNDC y sus contrapartes (Ministerio de Ambiente y Desarrollo Sostenible, Ministerio de Agricultura y Desarrollo Rural y el Departamento Nacional de Planeación), para reunir la información de base sobre cinco cadenas de valor y su potencial en materia de adaptación al cambio climático y reducción de emisiones de gases efecto invernadero.Las cadenas seleccionadas por ProNDC y sus contrapartes fueron: cacao, maíz, papa y ganadería bovina, tanto para carne como para leche. Para ello, el CIAT reunió y sistematizó la información existente para cada una de las cadenas mencionadas -desde sus eslabones más importantes, los actores involucrados, sus estructuras y experiencias de cooperación existentes-. A partir de ello, analizó tanto el riesgo climático, como la resiliencia y la capacidad adaptativa, así como las emisiones vinculadas y el potencial de reducción en las mismas en la producción, transformación y distribución de cada producto.El resultado ha sido el establecimiento de una línea de base sobre el potencial climático de cada cadena de valor. Esto permitirá a los actores clave abordar las iniciativas de desarrollo productivo de manera sistémica y tomar decisiones en conjunto para lograr potenciar una producción más sostenible en materia climática. Para ser más concretos: con este análisis los actores encuentran las claves para cambiar su manera de producir, de transformar, de perfeccionar y de comercializar los productos con menos emisiones y aumentando la resiliencia de las culturas agrícolas y de las culturas humanas. Esta transformación no solamente permitiría mantener los empleos agropecuarios existentes, sino también darles una perspectiva más amplia frente a un mercado que exige más y más productos sostenibles. Esta es una realidad que se ha hecho más urgente por una economía golpeada por la actual pandemia y que requiere compromisos y acciones conjuntas cada vez más exigentes que permitan acelerar los procesos de recuperación de la economía y una producción inteligente ante un clima cambiante. A partir de este enfoque se ofrece una representación visual y una descripción de cada uno de los eslabones que componen las cadenas, sus actores clave y funciones, flujos de productos e información, pasando desde la producción primaria hasta los consumidores, e incluyendo prestadores de servicios y entidades de apoyo, regulación y control (Lundy et al., 2014).Bajo el esquema metodológico y analítico mencionado, los actores de cada cadena se categorizaron en tres niveles: micro, meso y macro. En el nivel micro encontramos a los actores directos, quienes están inmersos en el proceso de producción primaria, comercialización, distribución y consumo final; es decir, toman posesión del producto en algún momento a lo largo de la cadena, razón por la cual asumen riesgos directos. En el nivel meso están todos aquellos actores encargados de la prestación de servicios y apoyan de manera directa a los actores del primer nivel. Por último, en el nivel macro se incluyen las instituciones gubernamentales encargadas del diseño, planeación e implementación de políticas y de la regulación productiva, territorial, ambiental y comercial, entre otras (Springer-Heinze, 2018).Es común que algunos de los actores participen en diferentes eslabones y niveles de manera simultánea, como es el caso de las asociaciones de productores o empresas agroindustriales quienes, además de realizar acopio, transformación o comercialización del producto y sus derivados, brindan servicios de asistencia técnica rural, capacitación a proveedores, programas de fortalecimiento asociativo y acceso a capital, entre otros. Debido al alcance y los objetivos de la presente revisión, los análisis presentados se enfocan en los actores y actividades del nivel micro.En este sentido, el documento inicia con una presentación de las características generales del cultivo de maíz en el país, continúa con una presentación del mapeo de la cadena y una descripción de sus eslabones y actores. A continuación, se incluye información sobre el contexto y las tendencias actuales del mercado global y se procede presentando una síntesis de los principales cuellos de botella identificados para cada eslabón. La sección finaliza con unas conclusiones y recomendaciones para la cadena. Finalmente, el documento pasa a una sección de análisis de la cadena de valor de maíz ante un clima cambiante en la cual se genera una línea de base tanto de los retos para adaptarse ante los impactos del clima, así como las emisiones generadas y los potenciales de reducción en la cadena de valor del maíz.El maíz es un cultivo transitorio con un ciclo productivo semestral. Posee una amplia capacidad para adaptarse a diferentes condiciones edafoclimáticas, lo que le permite desarrollarse en diferentes regiones geográficas. Para su crecimiento, son fundamentales algunas variables como la luminosidad, la temperatura y la humedad, entre otras. Pueden encontrarse cultivos desde el nivel del mar hasta los 3000 msnm. Además, necesita un rango de temperatura entre los 25 y 30 °C, y por lo menos de 500 a 700 mm de precipitación durante el ciclo productivo. La escasez de agua es uno de los factores más limitantes para su desarrollo, especialmente en la etapa de floración, donde el rendimiento de grano puede afectarse (Deras Flores, 2010).Gran parte del territorio nacional posee condiciones edafoclimáticas aptas para el desarrollo de diferentes variedades de maíz. Producción primaria: hace referencia a las actividades en finca realizadas por los diferentes productores. Se proporcionan cifras de las actividades propias del eslabón. Además, se incluye el comportamiento de las importaciones en volúmenes y precios.Comercialización del grano: incluye a todos los actores que participan en la compra y venta del grano. En este eslabón se destacan las organizaciones de productores, los comerciantes independientes, los agentes de compra y los importadores que acopian el grano para luego venderlo a compradores nacionales.A continuación, se describe la cadena de valor del maíz en la figura 1. Esta ilustra todas las actividades requeridas en torno al cultivo, desde la producción hasta la poscosecha, además de su acopio, transporte, procesamiento y comercialización. La cadena nacional del maíz se puede representar a través de los siguientes eslabones:MAPEO DE LA CADENA DE VALOR En Colombia se reportan 23 razas de maíz que han dado origen a múltiples variedades y ecotipos, y además se encuentran más de 5600 accesiones (muestras) conservadas en bancos de germoplasma. Antes del desarrollo de los maíces mejorados, los agricultores cultivaban variedades criollas, pertenecientes a diferentes razas, como es el caso de la variedad kamuchasaín en la Guajira, caracterizada por su ciclo corto de producción y el tamaño pequeño de la mazorca. Otro ejemplo es la variedad común cultivada en el Viejo Caldas, Cauca y Valle del Cauca, y la variedad sabanero, en el altiplano cundiboyacense (Fenalce, 2010).Contario a lo anterior, el sistema tecnificado hace uso de semillas mejoradas -híbridas y transgénicas-para la producción. La diferencia de las semillas radica en su forma de desarrollo: mientras las primeras son el resultado de un proceso de selección y cruce de la misma especie que permite obtener una planta con un rendimiento de grano superior al de sus padres (CIMMYT & CIAT, 2019), las segundas son desarrolladas artificialmente mediante la ingeniería genética y se producen con la transferencia de genes foráneos (transgenes) de cualquier origen biológico (animal, vegetal, microbiano, viral) al genoma de la especie cultivada; el resultado final es una semilla resistente a plagas (Chaparro, 2011).Se estima que a nivel nacional, en el 2018 el 93 % de la superficie de maíz tecnificado (201,402ha) fue sembrado con semilla de maíz híbrido (Acosemillas, 2018), y en el mismo año alrededor de 76 014 ha fueron sembradas con semillas de maíz transgénico (Agro-Bio, 2019). Cabe señalar que existen 142 registros de semilla nacional certificada y 532 de semilla importada (Dinero, 2018).Colombiano Agropecuario (ICA) mediante la Resolución 3168 de 2015, por medio de la cual se reglamenta y controla la producción, importación y exportación de semillas producto del mejoramiento genético para la comercialización y siembra en el país, así como también el registro de las unidades de evaluación agronómica y las unidades de investigación en fitomejoramiento. La caracterización de los productores de maíz en Colombia está dada por variables como el tamaño de las áreas del cultivo, el uso de tecnologías y el destino de sus cosechas; además, es importante resaltar que esta caracterización puede variar según la zona productora. Por consiguiente, los pequeños productores poseen predios de maíz entre 0 y 5 ha, cultivados bajo un sistema tradicional en el que no se hace uso de paquetes tecnológicos y, en consecuencia, se presentan bajos rendimientos (alrededor de 1,5 a 2 t/ha). Parte de la producción de sus cultivos se destina para el autoconsumo, y los excedentes se comercializan en las plazas de mercado regional.En segundo lugar, se encuentran los medianos productores, quienes para el establecimiento y desarrollo del cultivo cuentan con mayores recursos de inversión y, por ende, logran mayores rendimientos (superior a 4 t/ha). La cosecha es comercializada con mercados específicos (intermediarios y mercados minoristas). Además de la capacidad financiera, este grupo cuenta con capacidades técnicas, adquiridas a través de capacitaciones y formación de competencias constantes.Los grandes productores, por su parte, tienen acceso a semillas híbridas y maquinaria agrícola para las labores del cultivo, como por ejemplo, para la adecuación del terreno, la siembra, la cosecha y la trilla, entre otras. Las áreas de los cultivos son superiores a las 30 hectáreas, y además cuentan con la asesoría constante de profesionales agrónomos y laboratorios que monitorean la nutrición del suelo y la presencia de plagas y enfermedades. Todo lo anterior les permite obtener rendimientos tres veces mayores que en el sistema tradicional y destinar su producción de forma directa a los mercados mayoristas y empresas agroindustriales nacionales.El cultivo de maíz en Colombia se puede clasificar en dos sistemas de producción: el maíz tradicional y el maíz tecnificado. El sistema tradicional se caracteriza principalmente porque el material usado para la propagación son semillas nativas y criollas, seleccionadas y obtenidas de las mismas cosechas de las fincas de los productores. Se da especialmente en minifundios (hasta 5 hectáreas). La práctica de la siembra se realiza a chuzo, en triángulo y de forma manual; además, el control de malezas se realiza de forma deficiente y hay un escaso uso de fertilizantes. La producción se destina mayormente al autoconsumo y los excedentes se comercializan en plazas de mercado o para la elaboración de arepas artesanales y mazamorra para la venta directa.Por otro lado, se encuentra el sistema de producción tecnificado, que se caracteriza por el uso de semillas híbridas o transgénicas para propagación y el empleo de maquinaria agrícola para la adecuación de terrenos, que cuentan con extensiones superiores a 5 ha. Además, las prácticas de control de malezas se realizan químicamente y se realiza fertilización radical. La producción está destinada a atender mercados relacionados con la elaboración de alimentos balanceados para animales (ABA), producción de harinas, molienda y trilla, entre otros.Según la Federación Nacional de Cultivadores de Cereales, Leguminosas y Soya (Fenalce), a nivel nacional en el 2019 se contaba con un área sembrada de 395 919 ha, con una producción aproximada de 1,5 Mt, entre ambos sistemas. El sistema tecnificado representa el 75 % del área, y el 25 % restante corresponde al sistema tradicional (tabla 2 y figura 2). El maíz está presente en distintas regiones del territorio nacional. Se siembra principalmente como un monocultivo y, en un menor porcentaje, en asocio con otros cultivos como fríjol, ñame, café y arveja. Para 2017, el cultivo generó cerca de 126 000 empleos directos y se estima que beneficia a más de 390 000 familias (Portafolio, 2018). El grado de asociatividad en la cadena de valor de maíz es muy bajo. Sin embargo, en algunas zonas productoras es posible encontrar asociaciones, como es el caso de la asociación Asoprocari en Granada (Meta) y la Cooperativa Coagrocor en Córdoba, que agrupa a 2324 productores de maíz del departamento.Como se indica en la tabla 3, los principales departamentos productores de maíz a nivel nacional son: Meta, Tolima, Córdoba, Valle del Cauca y Bolívar. Meta ocupa el primer lugar en esta posición y es uno de los departamentos donde se desarrolla la siembra de maíz tecnificado, representado por un área 51 550 ha para una producción de 283 300 t/ año. En la segunda posición se ubica el departamento del Tolima, con 33 000 ha de cultivo tecnificado y una producción de 186 780 t/año. Finalmente, en una tercera ubicación se encuentra Córdoba, que cuenta con un área de siembra de 16 450 ha y una producción de 140 700 toneladas al año.En cuanto a los costos de producción de maíz tecnificado, se encuentran divididos en costos directos e indirectos relacionados con los costos laborales e insumos, vigilancia y arrendamiento, entre otros. Los costos laborales, a su vez, incluyen tareas como la preparación del terreno (arado y rastreado), la siembra, además de costos relacionados con la aplicación de herbicidas, fungicidas y otras actividades. Finalmente, se tiene en cuenta la recolección del maíz, expresada en jornales, transporte y secamiento (figura 4). Las principales regiones productoras del país comercializan el grano a través de distribuidores y empresas transformadoras locales y trasnacionales. Algunas importan maíz y además trabajan de la mano de proveedores locales (medianos y grandes productores), a través de agricultura por contrato. En este tipo de acuerdo se establecen algunos términos: uso de semillas mejoradas, descuentos por la adquisición de agroinsumos y créditos financieros con tasas bajas para el establecimiento y mantenimiento del cultivo.A nivel nacional, los precios de comercialización varían por departamento y color (figura 5 y 6), siendo el maíz blanco el de mayor precio en el 2018. Cabe señalar que los precios del maíz (amarillo y blanco) en el país se establecen de acuerdo con los precios internacionales que se cotizan en la Bolsa de Chicago. Esto debido a la alta participación del maíz importado en el mercado interno. Un mecanismo que permite que las variaciones del precio internacional no se transmitan en su totalidad al precio doméstico es el Sistema Andino de Franja de Precios (SAFP), que brinda mayor estabilidad a los mercados, protegiendo los intereses de los productores de maíz de la Comunidad Andina de Naciones (CAN) (CAN, 1994). Para el proceso de molienda existen tres métodos: semihúmedo, húmedo y seco, además de llevarse a cabo tres procesos previos a la molienda: limpieza, desgerminación y precocción. La desgerminación consiste en separar completamente el pericarpio, el germen y el endosperma del grano para la producción del endosperma córneo y obtener un producto bajo en grasa y fibra.En Colombia se identifican 12 empresas procesadoras de maíz blanco. Estas procesan alrededor de 250 000 toneladas al año para la producción de masas precocidas y arepas (SIC , 2010). En la tabla 5 se presentan algunas empresas harineras con sus marcas de harinas presentes en el mercado nacional. Su textura es blanda, posee alto contenido de almidón y contenido proteico bajo. Es el maíz de mayor importancia comercial y el tipo preferido para ser procesado por molienda húmeda y también para alimentación animal.Posee mayor resistencia mecánica durante el transporte y ensilado. Contiene mayor contenido de aceite y carotenoides que los híbridos dentados blancos. Además, es el ideal para ser procesado por la molienda seca para la obtención de harinas.Este tipo de maíz posee granos pequeños, su endospermo córneo es muy duro. Cuando el grano es sometido a temperaturas altas, la humedad atrapada en la parte harinosa del endospermo se expande y revienta, creando las palomitas de maíz.El endospermo es casi exclusivamente harinoso. Es altamente susceptible a la pudrición y al ataque de gusanos e insectos, tanto en el campo como en el almacenamiento, debido a su estructura blanda. Se emplea ampliamente para consumo humano.Contiene un endospermo constituido principalmente de azúcar, con bajo contenido en almidón.Por otra parte, otro sector importante en la transformación del maíz es la industria de alimentos balanceados, encargada de convertir materias primas como el maíz amarillo (la mayoría importado) en alimento para especies mayores y menores (figura 13). Cabe señalar que la gran mayoría del grano importado ingresa en buques graneleros por el puerto de Buenaventura. Este posee silos verticales y horizontales con capacidades estáticas de 338 200 t, distribuidos en las tres terminales (Sociedad Portuaria De Buenaventura, Compas Buenaventura y Almagrario Buenaventura) (Martínez, 2017).Para la producción de alimentos balanceados, se realiza una mezcla básica con fuentes de energía (cereales forrajeros), y un porcentaje de proteína (oleaginosas). A dicha mezcla básica se le agregan también medicinas, vitaminas, minerales y colorantes (micromezcla) con una mezcladora tipo concreto (LegisComex, 2016).Finalmente, el maíz es usado para ensilaje y como materia prima para la producción de biocombustibles obtenido por la fermentación de los azúcares del maíz. Particularmente, Estados Unidos destina la tercera parte de la producción de maíz amarillo para este propósito (Fenalce, 2011).Tabla 5. Principales empresas harineras en Colombia. Fuente: elaboración propia basada en información de sitios web de empresas harineras.Marcas harinas de maíz precocida Ubicación de la planta Según Fenalce, entre el 2007 y 2018 se presentó un incremento en la demanda del 25% en ambos tipos de maíz (figura 14). Un factor relacionado a este incremento es el consumo de productos de origen animal, por ejemplo, el consumo per cápita de pollo en Colombia pasó de 2 kg a 27 kg en los últimos 50 años. Igualmente, el consumo de huevos ha incrementado en cuatro veces su volumen (CIMMYT & CIAT, 2019). Esta es una tendencia relacionada principalmente con el crecimiento demográfico, la urbanización y el aumento de los ingresos en los países en desarrollo (FAO, 2019).De acuerdo con la Cámara de la Industria de Alimentos Balanceados de la ANDI, la mayoría del maíz amarillo importado se destina a la fabricación de alimentos balanceados para animales, y se distribuye en seis grandes sectores: aves, con el 64,3 %; porcinos, con el 15,5 %; vacunos, con el 11 %, y comidas para perros, gatos, peces, equinos, conejos y preparaciones especiales, con el 9,2 % restante. (COP 2272 millones) (LegisComex, 2016). En la figura 15 se presentan las principales empresas productoras de alimentos balanceados en el año 2019. Además de comercializar internamente, las anteriores empresas exportan premezclas para alimentación animal, alimentos para perros o gatos, salvados y tortas. Los principales destinos de estas exportaciones son Ecuador, Perú, Chile, Panamá y Venezuela. Finalmente, se observa que este mercado lo conforman un pequeño grupo de empresas, las cuales generan importantes recursos para el país, y además generan empleo y desarrollo en el sector rural. Sin embargo, la deficiencia en la infraestructura del país se ha convertido en unos de los principales retos a superar por parte de la industria (LegisComex, 2016).Por otro lado, un alimento de alto consumo en Colombia es la arepa producida de maíz puro o harina precocida principalmente de maíz blanco. Según un estudio realizado en el año 2016 por Nielsen sobre los hábitos de desayuno de los hogares colombianos, se indicó que el 73 % de los colombianos incluye una arepa en su desayuno. En los últimos 10 años, el valor del gasto en arepas listas para consumir se duplicó, en el año 2009 fue de COP 262 432 millones, y actualmente es de COP 505 000 millones. Este incremento se debe en parte a la inmigración venezolana en el país, los cuales en promedio consumen 40 veces más arepa de maíz al año que un colombiano (El Tiempo, 2019). Entre los organismos de apoyo como primera instancia se resalta a Fenalce, soporte gremial de la cadena de valor de maíz en Colombia. Esta organización tiene como objetivo fomentar la producción y consumo de cereales y leguminosas de grano en el país, con el apoyo de organismos públicos y privados, nacionales y extranjeros. En el 2018, Fenalce contó con un presupuesto proveniente principalmente del recaudo parafiscal, con un valor de COP 1093 millones, que se destinan principalmente a servicios de asistencia técnica, desarrollo y transferencia tecnológica y representación gremial.Otras instituciones que brindan soporte tecnológico y de capacitación son el Servicio Nacional de Aprendizaje (SENA), que ofrece asesorías y capacitaciones en temas técnicos, administrativos y organizacionales a los maiceros; por otra parte, se encuentra el Instituto Colombiano Agropecuario (ICA), máxima autoridad sanitaria y de inocuidad agroalimentaria del país, cuyo objetivo es la prevención, vigilancia y control de los riesgos sanitarios, biológicos y químicos para las especies animales y vegetales, la investigación aplicada y la administración. Finalmente, está la Corporación Colombiana de Investigación Agropecuaria (Agrosavia), entidad pública descentralizada de participación mixta, sin ánimo de lucro, de carácter científico y técnico, que tiene como objeto desarrollar y ejecutar actividades de investigación y desarrollo tecnológico para el sector agropecuario.La cadena reconoce además otros actores claves como la Alianza CIAT -Bioversity, organización no gubernamental de investigación sin fines de lucro que tiene como principio fundamental incrementar la prosperidad y mejorar la nutrición humana en los trópicos con soluciones científicas en agricultura y medio ambiente. Este centro de investigación ha participado de la mano de Fenalce en múltiples iniciativas de investigación, como por ejemplo el proyecto denominado \"Análisis integral de sistemas productivos en Colombia para la adaptación al cambio climático\", diseñado para evaluar y desarrollar estrategias en los cultivos de maíz y fríjol, ejecutando actividades en las regionales de Huila, Santander, Tolima, Antioquia, Valle del Cauca, Zona Cafetera, Cundinamarca y Córdoba.Recientemente, el CIAT fue una de las instituciones que colaboró en la elaboración del plan estratégico (Maíz para Colombia Visión 2030), liderado por el Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT), organización de investigación y capacitación sin fines de lucro, cuyo enfoque sistémico ofrece ciencia para un futuro con seguridad alimentaria. Entre sus principales logros se tiene mejorar nuevas variedades de maíz e híbridos para reemplazar los viejos; desarrollar maíz y trigo biofortificados y más nutritivos; aplicar técnicas modernas de biotecnología, y aumentar el desarrollo de capacidades.Finalmente, se encuentran las entidades que hacen parte del nivel macro. En primer lugar, el Ministerio de Agricultura y Desarrollo Rural (Minagricultura), encargado de formular, coordinar y evaluar las políticas que promuevan el desarrollo competitivo, equitativo y sostenible del sector y los Ministerios de Comercio, Industria y Turismo (MinCIT), y de Ambiente y Desarrollo Sostenible (Minambiente). Minagricultura ha liderado varios programas relacionados con el sector, como el Plan País Maíz desarrollado en el año 2010. Los principales objetivos del proyecto fueron aumentar la oferta nacional de maíz amarillo tecnificado de una forma competitiva y sostenible; disminuir las necesidades de importación de la industria avícola, porcícola y de alimentos balanceados, y fortalecer el sector de maíz amarrillo tecnificado nacional.Alto precio de los insumos Bajo acceso a semillas mejoradas o seleccionadas (en especial pequeños y medianos productores)Bajos rendimientos de producción en ambos sistemas (tradicional y tecnificado) Contaminación de los maíces nativos mediante el polen del maíz transgénico.Falta implementación y certificación de buenas prácticas en la producción agrícola (BPA) y de manufactura (BPM) en las agroindustrias.Falta de relevo generacional y edad avanzada de los productores.Escasa adopción de alternativas en cobertura de suelos que eviten la invasión de malezas y pérdida de la humedad.Uso desmedido de fertilizantes nitrogenados.Los pequeños productores no cuentan con tecnología adaptada para secar y almacenar.Débil adopción de tecnología (ejemplo: mal manejo agronómico de la tecnología de semillas de maíces híbridos y GM).Falta de recursos para inversión en el cultivo.De acuerdo con la revisión de información secundaria y entrevistas con actores de la cadena, a continuación se enlistan los principales cuellos de botella identificados (para una descripción más detallada se sugiere consultar Cadena productiva del maíz (SIC , 2010) y el Acuerdo nacional de Competitividad para la cadena de maíz, sorgo, yuca, soya, alimentos balanceados, avicultura y porcicultura, 2000):Nivel macro Nivel mesoProducción primaria Tabla 6. Cuellos de botella en la cadena de valor nacional del maíz.Falta de alcance en extensión y capacitación a productores.Baja transferencia y adopción de tecnologías.Altos costos de tasas de interés.Necesidad de fortalecer procesos asociativos.Falta de visión empresarial y formalidad en el sector maicero.No hay garantía en el precio y la compra de las cosechas del maíz nacional.Falta de trazabilidad de la calidad del grano nacional.Los alimentos importados con maíz y materias primas entran al país sin etiquetado que indiquen que contiene o son OGM (organismos genéticamente modificados).Entrada de maíces sin mayor control de textura, sanidad y pureza, ocasionan un riesgo inminente para la fitosanidad de la producción nacional de maíz y el consumo humano (micotoxinas)Escasa innovación en subproductos del maíz.Baja transferencia de tecnologías.Red vial secundaria y terciaria en mal estado.Volatilidad de precios.Altos precios de combustible y transporte que inciden en los costos de producción y comercialización.Problemática en legalización y uso del territorio.| Principales cuellos de botella de la cadena de maízEn Colombia, la cadena de valor de maíz y especialmente los productores han experimentado cuellos de botella estructurales los cuales se han venido incrementando a la par del incremento de las importaciones. Fenalce reportó que en los últimos 10 años esta cifra creció en promedio 60 %, posicionándonos como el primer país en Suramérica en la importación del grano. Es importante que el Gobierno continúe incentivando la producción nacional de maíz y de esta manera ir hacia la recuperación del autoabastecimiento, el cual según la FAO es de aproximadamente 26%, cifra que se ubica por debajo de lo sugerido (75%) (CIMMYT & CIAT, 2019).En el 2019 el área sembrada alcanzada fue de 395.919 ha, distribuidas principalmente en los departamentos de Meta, Tolima, Córdoba, Valle del Cauca y Bolívar, mas cabe señalar que Colombia cuenta con área potencial de 19 millones de hectáreas para ampliar la siembra de maíz (UPRA, 2016). En estas zonas productivas se usa principalmente el sistema tecnificado de siembra, que a nivel nacional representa el 75% del área, mientras que el 25% restante corresponde al sistema tradicional (Fenalce, 2019), los cuales presentan una amplia brecha en sus rendimientos con 2.0 t/ ha en el sistema tradicional frente a 5,4 t/ha en el sistema tecnificado (CIMMYT & CIAT, 2019).En los últimos años el gremio, organizaciones de investigación científica y el Estado han centrado esfuerzos en crear estrategias para fortalecer el sector y mejorar las cifras de rendimiento y calidad (p. ej. Plan País Maíz 2011), a través de la evaluación e identificación de semillas mejoradas que permitan alcanzar la competitividad del sector maicero, la implementación de mejores prácticas de cultivo y el fortalecimiento de los procesos productivos. Sin embargo, estos retos continúan siendo críticos y vigentes, especialmente entre los pequeños y medianos productores en donde el acceso a tecnología para la producción y el uso de semillas mejoradas es escaso. A estas brechas productivas, se suman los cuellos de botella del eslabón de acopio y transformación, relacionados con la falta de infraestructura para secamiento y almacenamiento. Superar esta brecha permitiría mantener una oferta estable para los mercados regionales y nacionales, además de la posibilidad de acceder a precios de comercialización más favorables para el productor, teniendo en cuenta el comportamiento del mercado.Los precios en el mercado nacional también representan una dificultad para los productores y comercializadores, especialmente considerando que Colombia tiene uno de los costos de producción más altos de Latinoamérica (CIMMYT & CIAT, 2019). Los precios en el mercado nacional se definen de acuerdo a los precios internacionales cotizados en la Bolsa de Chicago, compitiendo directamente con el maíz importado, principalmente de Estados Unidos. Aunque se reconozca la importancia del libre mercado para mejorar el bienestar de la población nacional, es necesario resaltar varios factores que enfatizan la necesidad de repensar la forma en que se orienta el sector: 1) además de su alta productividad, la producción de maíz de Estados Unidos cuenta con importantes subsidios que disminuyen la competitividad del producto local; 2) en el país existe un déficit de 4,6 Mt, el cual se espera alcance las 5,9 Mt de no cambiar las estrategias actuales (CIMMYT & CIAT, 2019); 3) el maíz es un cultivo clave para la seguridad y soberanía alimentaria del país, no obstante, cada vez la meta de autosuficiencia es más lejana, y 4) las fluctuaciones de precios relacionadas con el mercado internacional incrementan sustancialmente los riesgos a los productores al afectar su capacidad de planeación y rentabilidades esperada.Las brechas mencionadas han sido recogidas en el documento Maíz para Colombia 2030, el plan estratégico para el sector maicero desarrollado por el CIAT y CIMMYT, que tiene como propósito facilitar la toma de decisiones y ayudar a orientar la planeación estratégica de la cadena. Para cerrar las brechas de la cadena y realizar un redireccionamiento encaminado a incrementar la productividad, sostenibilidad y la rentabilidad de la producción de maíz, a la vez de mejorar la seguridad alimentaria nacional, se proponen cinco motores de cambio, los cuales enfatizamos en este documento:• Acceso a semilla mejorada, aspecto determinante en el incremento de la productividad del cultivo.• Seguridad nutricional donde se propone la producción y el consumo de maíz biofortificado para combatir los retos de desnutrición por deficiencia de micronutrientes en algunas poblaciones vulnerables. Se tiene en cuenta que hace parte de la dieta de la gran mayoría de la población colombiana y que además es una materia prima fundamental para la industria avícola y de alimentos de balanceados.• Agricultura sostenible adaptada al clima, factor fundamental para enfrentar la variabilidad y el cambio climático, complementado con prácticas de agricultura de conservación.• Redes de acompañamiento a la innovación, este motor sugiere las redes de innovación como modelo de extensionismo para mejorar el desarrollo rural sostenible.• Vinculación de productores competitivos al mercado, este último motor propone suministrar herramientas que permitan crear una visión empresarial, dado que en la cadena de valor de maíz colombiana existe un bajo nivel de asociatividad. Esto reduce la competitividad del sector e impacta directamente el poder de negociación de los pequeños productores y en su vinculación exitosa con los mercados.Todo lo anterior, requiere la articulación de los productores, comercializadores, sector público y privado para diseñar políticas, gestionar recursos e implementar las acciones planteadas para cada motor de cambio. Además, es necesario fortalecer el encadenamiento productivo, a través de la reactivación del comité de la cadena, clave para conseguir y guiar la dirección planteada en la visión al 2030.Colombia cuenta con un área potencial de 19 millones de hectáreas para ampliar la siembra de maíz (UPRA, 2016).La presente sección busca mejorar el conocimiento y entendimiento de la relevancia climática (reducción de emisiones de GEI, potencial de adaptación y gestión del riesgo), desde un punto de vista de cadenas de valor agrícolas y pecuarias con nexos urbano-rurales. El objetivo original de estos estudios fue recoger la información existente para cinco cadenas de valor: maíz, cacao, papa y ganadería bovina tanto para carne como leche con el fin de tener información que permitiera definir cuáles cadenas tenían mayor potencial de impacto en aspectos tanto técnicos, como de gobernanza y también socio económicos. El resultado de esta información permitió establecer una línea base para la cadena de valor de maíz, a partir de diferentes fuentes de información y tipos de análisis que permitieron caracterizar la cadena de valor respecto a su situación frente al cambio climático, de acuerdo con sus particularidades socioeconómicas y geográficas descritas en la sección anterior.En específico se persigue con la presente sección la consolidación de la información existente relacionada con el nivel de emisiones, el riesgo y el potencial de adaptación y mitigación para los diferentes eslabones de la cadena de valor del maíz. Dicha base de información debe permitir a actores de la cadena conocer los aspectos clave en materia de adaptación, riesgo y mitigación para iniciar avances hacia una cadena de valor del maíz baja en emisiones, adaptada y resiliente al clima.El enfoque conceptual particular de este análisis se basa en la comprensión de las cadenas agropecuarias como nexos urbano-rurales. En esta medida, las cadenas de valor agropecuarias conectan territorios apartados y rurales con zonas urbanas ligadas estrechamente a los procesos globales. Dicho vínculo, entre zonas urbanas, periurbanas y rurales se manifiesta a través de flujos de personas, recursos naturales, servicios ecosistémicos, capital, conocimiento, energía y materiales, y se le denomina nexo urbano-rural (Gómez, 2016). Este marco es ideal para describir y entender las interconexiones territoriales que tienen los actores y procesos que participan en las cadenas de valor agropecuarias. Usualmente, el marco conceptual es utilizado para describir relaciones más generales entre territorios, sin embargo, en este caso en particular puede guiar la forma en cómo se relacionan espacialmente los diferentes eslabones de las cadenas de valor y las diferentes interrelaciones entre los mismos.Las relaciones entre las zonas rurales y urbanas pueden ser sinérgicas o pueden catalizar fenómenos negativos. Cuando la relación es complementaria, las zonas urbanas obtienen de las zonas rurales flujos de materia prima, mano de obra, energía y servicios ambientales. Dichos flujos pueden ser adyacentes o viajar grandes distancias (Gómez, 2016). A su vez, las zonas rurales pueden obtener de las zonas urbanas una diversidad de servicios especializados, recursos financieros, tecnología, conexión cultural entre otros (Berdegué et al., 2015). Sin embargo, la relación también puede ser negativa. Las zonas urbanas pueden afectar el bienestar de las zonas rurales a través de extracción insostenible de recursos, traslado de recursos degradados o sesgo en la inversión pública.Por otro lado, las zonas rurales pueden afectar las urbanas mediante degradación ambiental o disrupciones de la oferta de materiales y energía (Berdegué et al., 2015).Este enfoque analítico permite rastrear y evaluar las conexiones entre lo urbano y lo rural, por consiguiente, es ideal para cadenas de valor agropecuarias que conectan lugares específicos de maneras específicas. Los nexos urbanos-rurales son por definición un enfoque más amplio que un análisis de cadena de valor específica e involucran diferentes problemas ambientales más allá de la perspectiva de cambio climático. Sin embargo, a partir de los resultados encontrados para cada eslabón frente riesgos, medidas adaptación, niveles de emisiones GEI y medidas de mitigación, se sintetizó para cada cadena de valor el nexo urbano-rural de manera conceptual.Cada una de las cinco cadenas de valor fueron evaluadas para determinar los niveles de emisiones, riesgos y potenciales de adaptación y mitigación en cada eslabón. Debido a que no existen valores numéricos para todas las fases de todas las cadenas se optó por una evaluación cualitativa basada en agrupación de criterios binarios. Cada elemento a evaluar (nivel de riesgo, nivel de emisiones, potencial de adaptación y potencial de mitigación) fue desagregado en criterios que se pudieron evaluar binariamente. Cada elemento incorporó cinco criterios y cada criterio puede tomar el valor de si o no, de ser afirmativo dicho criterio tiene un valor de 1. Por ende, cada elemento evaluado puede tener valores de 0 a 5, siendo 0 muy bajo y 5 muy alto. Estas evaluaciones finales son presentadas en los subcapítulos de discusión y conclusiones. A continuación, se desarrollan los criterios para cada uno de los cuatro elementos evaluados.El nivel de riesgo climático es evaluado de acuerdo con los cinco criterios enunciados a continuación:1. Se prevén impactos intensos del clima en el eslabón 1 .2. Se prevén impactos extensos del clima en el eslabón. 2 3. El eslabón tiene una alta importancia económica.4. El eslabón es un importante generador de empleos.5. Se prevén riesgos transicionales relevantes en el eslabón.1 De acuerdo con los estudios sobre el tema, los efectos del cambio climático en la actividad son críticos y pueden impedir el desarrollo de la misma. 2 De acuerdo con los estudios sobre el tema, los efectos del cambio climático en la actividad son generalizados en la geografía de la actividad y/o la geografía nacional. 3 Se asume como significativo si representa más del 1 % de las emisiones del país si existen datos. 4 Se asume como significativo si representa más del 10 % de las emisiones del sector IPCC si existen datos. 5 Se asume como significativo si representa más del 35 % de las emisiones de la cadena de valor si existen datos. 6 Se asume como concentrado cuando el 90 % de las emisiones se concentran en menos de 4 departamentos. 7 Las actividades son difícilmente reemplazables.El nivel de emisiones de gases de efecto invernadero es evaluado de acuerdo a los cinco criterios enunciados a continuación:1. Los niveles de emisiones son significativos a nivel nacional. 3 2. Los niveles de emisiones son significativos a nivel sectorial. 4 3. Los niveles de emisiones son significativos dentro de la cadena de valor. 5 4. Las emisiones se presentan de forma desconcentrada geográficamente 6 .5. Las emisiones son provenientes de actividades fundamentales para el eslabón 7 .El potencial de adaptación del eslabón es evaluado de acuerdo con los cinco criterios enunciados a continuación.1. Existen estudios puntuales que valoren el riesgo climático del eslabón.2. Se han desarrollado medidas de adaptación a través de investigación y participación de las comunidades.3. Se considera que las medidas desarrolladas pueden disminuir sustancialmente los niveles de riesgo.4. Existe la posibilidad de generar medidas de adaptación puntuales para el eslabón.5. Se considera que las instituciones tienen interés en generar medidas de adaptación puntuales para el eslabón.El potencial de mitigación de emisiones de gases de efecto invernadero del eslabón es evaluado de acuerdo con los cinco criterios enunciados a continuación.1. Existen medidas de mitigación desarrolladas para las actividades que generan emisiones dentro del eslabón.2. Se considera que las medidas desarrolladas tienen el potencial de disminuir significativamente las emisiones del eslabón.3. La tendencia de las emisiones es creciente.4. Los instrumentos de política de desarrollo bajo en carbono del país incluyen medidas que disminuirían las emisiones en el eslabón.5. Las medidas de mitigación existentes generan co-beneficios importantes.Estos criterios se desarrollaron debido a que a nivel general se cuenta con suficiente información para resolverlos de forma afirmativa o negativa. A su vez, esto permite realizar comparaciones entre las cadenas de valor y los eslabones, a pesar de existir diferencias sustanciales en el estado de la información y desarrollo de los temas en cada eslabón. Posterior a esta evaluación se agregará también en una tabla estos cuatro criterios para todas las cadenas de valor analizadas. Dichas características serán complementadas con otros elementos que pueden ayudar en el análisis y así permitir una visión comparativa de la cadena de valor (los criterios son expuestos en el Anexo 1):1. Técnicos:• Potencial de reducción de emisiones.• Potencial de adaptación y reducción del riesgo al cambio climático. • Experiencia de la cadena de valor en la recolección.• Nivel de consolidación de la cadena de valor. • Voluntad/interés político de las instituciones relacionadas con la implementación de acciones de cambio climático. • Voluntad de los gremios y sector privado por implementar acciones de cambio climático. • Complementariedad y/o posibilidad de alianzas con otros programas o estrategias presentes en el país. • Articulación con PIGCCT y otras estrategias regionales (Instrumentos de Planificación).• Relevancia económica para el país.• Población vulnerable vinculada con la cadena de valor. • Generación de empleo.• Fortaleza del nexo urbano rural.La producción del maíz se realiza en zonas rurales con diferentes agroecosistemas. Es un cultivo geográficamente desconcentrado y con una amplia difusión en el territorio nacional. Los principales centros de producción son el caribe húmedo (Córdoba y Sucre), los valles interandinos (Tolima y Valle del Cauca) y las llanuras orientales (Meta). Sin embargo, hay cultivos marginales de maíz por todo el país, debido a su relevancia cultural e importancia para la seguridad alimentaria. En dichos lugares las condiciones del suelo y la atmosfera se transforman en biomasa que está disponible para el consumo en forma de mazorcas. El ciclo de producción de biomasa es corto como muchos otros cereales, permitiendo al menos dos cosechas al año.Existen cultivos muy marginales con poco manejo, que no requieren insumos provenientes de lugares lejanos. Sin embargo, el grueso de la producción se realiza de forma tecnificada. Dicho sistema de producción requiere insumos como gasolina, fertilizantes y agroquímicos para el manejo fitosanitario. Estos vienen de centros industriales tanto nacionales como internacionales y usualmente son adquiridos en los centros poblados cercanos a la zona productora. Las emisiones generadas por el uso de estos insumos ocurren en las unidades producto-ras y fluyen hacia la atmosfera. Son la fuente más relevante de emisiones en la fase de producción. También se generan emisiones por el traslado de estos insumos hacia las unidades productoras en automóviles que utilizan combustibles fósiles. Las actividades propias del levantamiento del cultivo consumen tanto agua como nutrientes del suelo. En su mayoría los cultivos tecnificados tienen sistemas de riesgo que requieren ser instalados por servicios técnicos provenientes de centros poblados.El cultivo se cosecha cada semestre. En el caso de los cultivos tecnificados se realiza mecánicamente, permitiendo el desgrane en la unidad productora. En otros casos, el cultivo se cosecha a mano y el proceso de desgrane se realiza también a mano. En los casos de las pequeñas unidades productoras una parte de la producción se consume en casa produciendo harina de forma artesanal a través de proceso de molienda. En el caso de los procesos tecnificados el maíz trillado se ofrece al mercado. En el proceso de cosecha y trilla se generan diferentes desechos orgánicos los cuales usualmente se quedan sobre el campo cultivado de muchas maneras, generando reincorporaciones al suelo y emisiones dependiendo del tipo de suelo y el tipo de manejo de los desechos. La cosecha es acopiada a través de la acción de diferentes agentes comerciales. Lo anterior permite que se centralice la producción de la cosecha que es ocurrida de forma dispersa a través del transporte del grano. El transporte se realiza a través de automóviles y combustible proveniente de centros industriales internacionales y nacionales.El maíz es acopiado en forma de grano el cual es enviado desde los centros de acopio a centros de transformación ubicados en las regiones con altos niveles de consumo y/o producción como Tolima, Valle del Cauca, Cordoba, Cundinamarca, Meta, entre otros. Un gran porcentaje del maíz que es transformado es importado. Más del 60 % del maíz importado llega a través de los puertos en la costa norte. Toda la logística del transporte genera emisiones asociadas y permite que la cosecha producida en zonas rurales se centralice cerca a centros poblados con capacidad industrial. En dichos centros industriales se realiza la molienda y mezcla del maíz amarillo para realizar alimentos para animales, mientras el maíz blanco es procesado en moliendas y en algunos casos precocido para producir una diversidad de productos alimentaciones para el humano como lo son la harina y las arepas. En Colombia no se producen cantidades relevantes de otros derivados industriales del maíz como el etanol y almidones para uso indus-trial. Todos estos procesos usan agua, combustibles y electricidad en contextos de alto nivel de tecnificación y conocimiento.Los productos de los procesos de transformación son posteriormente transportados a los diferentes puntos de consumo, los cuales están por todo el país. Los alimentos para animales en especial vuelven después de ser transformados en centros urbanos a servir como insumo de actividades rurales como es la cría de animales. Los alimentos para humanos son consumidos a lo largo y ancho del territorio nacional con especial énfasis en los grandes centros urbanos, donde el consumo es mayor debido a las grandes poblaciones. Si bien el mayor porcentaje de consumo ocurre en los centros urbanos, a las zonas rurales llegan estos productos terminados para el consumo de los habitantes. El consumo genera desechos tanto asociados a la digestión humana, como empaques de diferentes materiales como plástico y papel. En general se considera que el nexo urbano-rural del maíz es alto, la producción primaria rural es muy dependiente de insumos industriales como lo son los fertilizantes sintéticos y la gasolina, el maíz hace parte fundamental de la dieta urbana colombiana. Este criterio se evalúa y sintetiza en el Anexo 1 en conjunto con otros criterios.El maíz es un cultivo geográficamente desconcentrado y con una amplia difusión en el territorio nacional. Los principales centros de producción son el caribe húmedo (Córdoba y Sucre), los valles interandinos (Tolima y Valle del Cauca) y las llanuras orientales (Meta). Por otro lado, en el caso del maíz tradicional los cambios negativos más representativos pueden observarse en los Departamentos de Cundinamarca, Tolima, Cauca y Nariño. En los municipios de Yacopí, La Palma y Topaipí (Cundinamarca), Planadas y Ataco (Tolima) se proyecta un área extensa afectada de manera negativa para el año 2050. En los municipios de Puracé y Totoró en el Departamento del Cauca se presenta un aumento en nuevas zonas aptas para el 2050, de igual manera en el municipio de Cumbal (Nariño) se evidencia un aumento en algunas áreas de la zona oriental (PNUMA, 2014).Ramírez-Villegas (2012) evaluó los cambios de temperatura y precipitación a nivel nacional y su impacto para 23 cultivos. Utilizó modelos de nicho ecológico para estudiar la respuesta geográfica de los cultivos para el escenario de cambio climático A2 a 2050. Este estudio incluyó dentro de sus cultivos el maíz. Los resultados encontrados en esta investigación apuntan a un incremento de la temperatura entre 2 a 2,5 grados Celsius, en el 80 % de las zonas productivas, mientras que las precipitaciones tienden a incrementar hasta en un 5 % para casi 70 % del territorio de la zona productiva, dicha proyecciones prevén una baja disponibilidad hídrica para maíz causada por el incremento de la evapotranspiración en el cultivo. 2019) proyectaron la aptitud climática de maíz para Colombia a 2030, utilizando ECOCROP para áreas de nicho óptimas para la producción de maíz. Además, utilizaron DSSAT con el propósito de evaluar si dichas condiciones climáticas óptimas, sumado a condiciones edafológicas del suelo y fisiológicas del maíz, tienden a incrementar o disminuir, bajo el escenario RCP 4.5 del IPCC. La proyección de áreas idóneas y no idóneas se extrajeron con respecto a las limitaciones que realizó la UPRA en zonas de alta y media potencialidad productiva. Los resultados mostraron que el departamento de Córdoba tendrá una reducción significativa de la aptitud climática para la siembra de maíz. Por ende, se prevé un descenso en el rendimiento con respecto al promedio de siembra entre el periodo 1980-2013. Para Cereté (Córdoba) se espera un descenso del rendimiento entre 13 % a 28 %, en el Espinal (Tolima) entre 6 % a 8 %, y en la Uribe (Meta) del 1 % a 3 %.Los análisis de idoneidad de Govaerts et al. (2019) muestran importantes afectaciones de la zona productora de la costa caribe, a su vez se presentan cambios negativos relevantes en la altillanura colombiana. Se observan algunas ganancias en zonas de alta montaña en los departamentos de Cauca y Nariño (figura 16). A nivel general los análisis coinciden que el maíz será fuertemente afectado en Colombia. La gravedad del impacto negativo parece ser alta en las zonas de baja altitud como la costa caribe y los llanos orientales. Esto implicaría fuertes complicaciones para departamentos productores como Córdoba, Bolívar y Meta. Las afectaciones negativas pueden profundizar aún más la dependencia por el grano producido en Estados Unidos quien proyecta aumento de rendimientos en el contexto de cambio climático. Dicha situación podría afectar a multiplicidad de poblaciones. Si bien no hay un estudio de vulnerabilidad asociado exactamente a las comunidades que devengan su sustento del maíz, es claro que hay poblaciones más vulnerables que otras. Posiblemente las más vulnerables son los trabajadores agrícolas en las zonas que se proyectan como las más afectadas. A su vez pequeños productores y pequeños comerciantes pueden ser desproporcionadamente afectados. Se estima que el maíz beneficia a más de 390 000 familias de un modo directo. Actualmente la FAO está actualizando los análisis de riesgo y vulnerabilidad lo que aumentará la información disponible de los efectos del cambio climático en el maíz y el sector agrícola colombiano.A continuación, se muestra un análisis de la incidencia de pobreza multidimensional en zonas de presencia de maíz (figura 17). Esto permite establecer que la mayor parte de los impactos proyectados a 2030 serán en la región del caribe húmedo, donde la incidencia de pobreza multidimensional es igual o mayor al 70 % y donde la aptitud climática a futuro tiende a disminuir para la producción de maíz en esta zona. La mayoría de los análisis se basan en determinar la sensibilidad climática del maíz, pero no se cuenta con evaluaciones de la vulnerabilidad que involucren factores sociales y económicos. En el mapa recién presentado se pueden apreciar zonas con altos niveles de pobreza que podrían ser muy afectados en zonas como Córdoba que actualmente presenta zonas con altos niveles de pobreza y altos niveles de afectación en los cultivos maíz.En cuanto a variabilidad climática, el cultivo de maíz es muy sensible a los ENOS 3 pero es muy heterogénea la respuesta, debido a las diferencias que existen en microclima de las diferentes localidades. Las principales zonas productoras de maíz parecen ser las más comprometidas con el cambio climático, ya que son estas zonas las que proyectan mayores pérdidas a futuro. Córdoba, la zona baja de Tolima y los llanos orientales pueden tener pérdidas de rendimiento hasta del 10 % (CIAT-Minagricultura 2015). Las altas temperaturas definitivamente serán un problema para la producción de maíz sumado a déficit hídrico para maíz secano.En cuanto a medidas de adaptación existen varias alternativas promisorias. Una de ellas es el mejoramiento genético que tenga como objetivo mejorar la resistencia/tolerancia a altas temperaturas y el estrés hídrico de la planta. Como medida de adaptación, ya se ha venido trabajando en predicciones agroclimáticas con el fin de entregar información a los productores sobre fechas de siembra y materiales más adecuados para sembrar de acuerdo con la oferta ambiental CIAT-Minagricultura (2015).Por otro lado, también se ha avanzado en el uso de ciencia de datos para analizar los factores climáticos más limitantes de la producción a nivel local, lo que orienta las recomendaciones de los técnicos. Actualmente, Fenalce cuenta con el sistema de chequeo, el cual es una lista de variables a las que, los productores, deben hacer seguimiento de acuerdo a la localidad. Este sistema está validado en un departamento (Córdoba) y sería conveniente hacer la validación en los otros departamentos productores (al menos en Tolima, Valle y Meta).Finalmente, Govaerts et al. ( 2019), en el documento de maíz para Colombia 2030, proponen motores de cambio que permitan afrontar los impactos de cambio climático previstos a 2030 a nivel nacional y que dichas estrategias logren brindar herramientas para mejorar la competitividad regional. El primer motor de cambio es la adopción de semillas mejoradas para toda la superficie sembrada de sistemas tecnificados para el 2030. El segundo motor es la seguridad nutricional, por medio del consumo nacional de al menos del 50 % de maíz blanco biofortificado con alto contenido de zinc. El tercer motor de cambio es la agricultura sostenible adaptada al clima, esto incluye un paquete tecnológico que involucra la generación y uso de pronósticos agroclimáticos que permitan predecir a corto plazo el comportamiento climático en zonas productivas, reducción de brechas productivas con agricultura especifica por sitio, tecnologías bajas en carbono y orientadas a incrementar la resiliencia, un reporte y verificación de huella de carbono del sistema productivo de maíz, y por ultimo una evaluación continua de la huella hídrica. Otro motor de cambio son las redes de acompañamiento a la innovación, el propósito de este ítem es permitir una cobertura de redes de innovación asociadas a la asistencia técnica en al menos 30 % en el entorno rural. Finalmente, y no menos importante, la vinculación de productores competitivos al mercado, con el objetivo de aumentar la vinculación para un comercio de productores competitivos del mercado local, regional y nacional.En el mapa se pueden apreciar zonas con altos niveles de pobreza que podrían ser muy afectados en zonas como Córdoba que actualmente presenta altos niveles de pobreza y altos niveles de afectación en los cultivos maíz.Los riesgos en esta fase del maíz están dados principalmente por disrupciones logísticas en los procesos de distribución catalizados por eventos climáticos tales como deslizamientos. Así mismo, la infraestructura de acopio puede verse afectada por eventos extremos como vendavales, tormentas, entre otros. Riesgos indirectos asociados al cambio climático pueden provenir del encarecimiento del combustible por nuevas regulaciones, lo que podría repercutir el traslado del maíz. A su vez, estas regulaciones podrían afectar el precio de los insumos. A pesar de que existe una variedad de riesgos para esta fase de la cadena de valor, no se encontraron estudios asociados a identificar el riesgo específico de la distribución y acopio del maíz en Colombia.Este eslabón es importante para mantener la cadena de valor y contactar los puntos que la componen, desde los insumos para producir en campo hasta la distribución de los productos finales. Este eslabón puede ser afectado de forma indirecta por los efectos climáticos que tienden a variar la productividad de maíz, disminuyendo la oferta de alimentos en los centros de acopio y acarreando sobrecostos de transporte. Por otro lado, la incidencia directa del clima (altas precipitaciones) en las vías o rutas de comercialización de maíz en grano o derivados es probablemente el riesgo más sobresaliente.Para analizar el riesgo directo del clima en este eslabón es necesario tener la información de la cantidad y tipo de camiones utilizados en el transporte de maíz, capacidad de carga, vías o canales de transporte del grano de maíz desde la finca hasta los centros de acopio, y desde los centros de acopio hasta las empresas transformadoras y procesadoras de maíz. Esto permitiría tener una red de flujo del comercio de maíz y a la vez sobreponer información del estado de vías. En cuanto al acopio, la información requerida para el análisis de riesgo climático es la ubicación de los principales centros de depósito de maíz en grano. Los detalles de la infraestructura podrían dar pistas sobre la capacidad de respuesta de dichas estructuras frente a condiciones adversas climáticas. No se encontró un análisis de esta naturaleza en la búsqueda realizada.Existen análisis en el marco de la tercera comunicación y planes sectoriales de cambio climático sobre riesgos en las vías principales, siendo la amenaza más recurrente los eventos de remoción en masa.En la figura 18 se puede evidenciar el nivel de riesgo de las vías principales, que podrían ser tomadas como proxis de canales de comercialización hacia los principales centros de acopio y principales empresas transformadoras de maíz. Sin embargo, no se cuenta con la información de rutas frecuentadas por los principales transportadores de maíz.A través de la información de las vías se puede inferir que la distribución desde el Valle del Cauca y Tolima hacia centros de transformación como Cali, Medellín y Bogotá no tiene una amenaza importante. Sin embargo, la distribución desde los grandes centros productores de la costa hacia el interior del país puede llegar a ser más afectada por fenómenos climáticos. Así mismo la conexión entre la producción de los llanos y el centro del país pasa por un pequeño tramo con altos niveles de amenaza. Para hacer un análisis más robusto se requieren también las vías secundarias que son usadas en los procesos de distribución del maíz y sus procesados. Los productos finales del maíz son consumidos en lugares remotos, por ende, la información aquí presentada no es suficiente para determinar el riesgo climático de la distribución del maíz con la certidumbre necesaria.En cuanto a medidas de adaptación a nivel de vías, se cuenta con un estado del arte de las vías primarias, llamado plan vías compatibles con el clima, liderado por el Ministerio de Transporte, que tiene la finalidad de identificar amenazas en vías primarias y clasificarlas con base al riesgo climático de eventos recurrentes de precipitación y temperatura a nivel nacional. Sin embargo, hasta el momento no se cuenta con medidas puntuales, dado que dichas propuestas de adaptación deben ser evaluadas como plan piloto para ser implementadas a gran escala. Los riesgos climáticos directos asociados a esta fase están relacionados a los daños que puedan ocurrir en la infraestructura de transformación a causa de eventos climáticos extremos y a los cambios de factores ambientales para la producción ocasionados por los cambios graduales del clima. Los primeros suelen estar asociados a afectaciones físicas de las edificaciones y sistemas de producción. Los segundos están asociados a cambios en la temperatura y humedad relativa que pueden afectar las condiciones para la transformación del producto, ya sea cambiando la calidad de la materia prima o volviendo más ineficientes algunos procesos como el consumo de electricidad. Cualquier riesgo directo en los otros eslabones de la cadena de valor pueden afectar indirectamente los procesos de transformación.Hasta el momento, no se ha encontrado la información precisa de condiciones en infraestructura de las industrias transformadoras de maíz. Tampoco se encontró ningún análisis especializado de riesgos climáticos en la transformación del maíz. Cabe mencionar que se espera una gran diversidad entre los procesadores de maíz, en cuanto a sensibilidad y capacidad adaptativa. Empero, no se han encontrado análisis al respecto. A nivel nacional se siembra maíz blanco y amarillo para molinería con el objetivo de producir harina y sémola. Adicionalmente, se produce para refinería con el objetivo de producir almidón, azúcar, aceite, jarabe, dextrina 4 , gluten y salvado. También para la destilería y fermentación para producción de licores de malta, y finalmente fabricación de alimentos balanceados.Un proxi para determinar el riesgo climático que 4 Grupo de oligosacáridos utilizados en la industria alimentaria para espesamiento. https://www.ecured.cu/Dextrinas podría funcionar para realizar una aproximación inicial es la localización exacta de las principales empresas productoras de dicha lista de derivados de maíz mencionados anteriormente.El riesgo climático en las industrias transformadoras de maíz puede ser bajo, un impacto indirecto podría generarse por el aumento gradual de la temperatura; el requerimiento de aire acondicionado y refrigeración en procesos podría ser mayor que el actual, lo que al final podría acarrear costos operativos que pueden incidir en el incremento del valor del producto terminado. De igual manera, los impactos del cambio climático son regionales, habrá zonas que proyectan incrementos de temperatura más altos que otros, y zonas con incrementos en la precipitación que podrían afectar la infraestructura por el incremento de la humedad. De la misma manera aquellas empresas ubicadas en zonas sensibles a inundaciones u otros eventos extremos podrían ser afectadas por daños en las edificaciones, suministro eléctrico y centros de almacenamiento, entre otros.La agroindustria como proceso de la cadena de valor que ocurre en edificaciones especializadas en ciertos procesos físicos y químicos ha sido un eslabón descuidado en materia de análisis de riesgo climático, de acuerdo a lo poco que se ha encontrado tanto a nivel nacional como internacional. Esto también puede sugerir que los riesgos directos en este eslabón son mínimos y que la preocupación está más asociada asegurar la materia prima (producción primaria y distribución) y la capacidad de acceder a mercados (distribución). Las emisiones en el sector agrícola usualmente se miden con análisis de ciclo vida asociado a la unidad de producto o estudiando las emisiones por un tiempo particular bajo una perspectiva de unidad de área. En los cultivos semestrales las fuentes más importantes de emisiones son la fertilización nitrogenada, la aplicación de enmiendas para el control de la acidez del suelo, manipulación mecánica de los horizontes superficiales del suelo y el combustible de la maquinaria. El proceso de producción y distribución de insumos también genera emisiones por consumo de energía y generación de residuos. En el eslabón de producción primaria es importante considerar que prácticas como la irrigación y la aplicación de fertilizantes puede estimular la producción de emisiones, especialmente de óxido nitroso -N 2 0 (Flessa et al., 2002). En el caso particular de la industria del maíz irrigado se emplean altos niveles de fertilizantes, y dependiendo si la región de cultivo tiene clima estacional, la cosecha ocurre generalmente en periodos donde se favorece la producción natural de N 2 0 en el suelo (Grant & Beer, 2008a).Por consiguiente, para evaluar el aporte neto de emisiones de la producción primaria de maíz, se requieren al menos los datos mencionados en la tabla 4. En la mayoría de los casos la metodología empleada para realizar las mediciones de los factores de emisión consiste en la planificación y establecimiento de parcelas experimentales en las cuales se varía la disposición de la cantidad y distribución de semillas, tipos de labranza, así como cantidad y tipo de fertilizantes.Grant & Beer, (2008b) en Australia, definieron tres parcelas experimentales en las que sólo consideraron los efectos de la variación en el manejo de los residuos. Según las siguientes condiciones: i) no aplicación de fertilizante y quema de los residuos; ii) 300kg de N\\ha y aplicación de quema de residuos; iii) 300kg de N\\ha y biomasa incorporada. Las emisiones fueron medidas con la metodología de cámara estática y cromatografía de gases, metodología expuesta en Edis et al. (2008). Se encontraron emisiones de 6,5 t y 4,5 t de CO 2 eq 1 . Las diferencias se deben al manejo de residuos y al combustible utilizado para irrigación. Cuando se incorpora el carbono en suelos, los sistemas que queman tienen incluso emisiones más altas.De acuerdo con los resultados anteriores, Grant & Beer, (2008b) concluyeron que para la producción de un paquete de pasabocas de maíz de 400g, el aporte de emisiones por las actividades en campo del cultivo de maíz irrigado es de aproximadamente el 36 % del total de emisiones de la unidad funcional. En fase de producción primaria, los autores revelaron que el bombeo de agua para la irrigación requiere un alto consumo de energía, que incluso se equipara con las emisiones provocadas por el uso de fertilizantes nitrogenados; el aporte de estas emisiones se intensifica si el agua se extrae de acuíferos subterráneos. Esto implica que las emi-En China se han realizado también estudios asociados a la huella de carbono del maíz. Se han encontrado valores mayores por unidad de producto que en Estados Unidos debido a productividades inferiores (Snyder et al., 2009). Si bien no se tomaron en cuenta las emisiones de carbono por labranza del suelo, las cuales son muy dependientes de condiciones locales. Zhang et al. (2012) valoró emisiones para el cultivo de maíz asociadas a metano y óxido nitroso para una región en China encontrando valores de alrededor de 0,5 t de CO2/ha al año para las parcelas convencionales. En unidad de producto se encontraron valores de 70kg de CO 2 eq. por tonelada de maíz. No existen referencias en la literatura científica sobre experimentación de estas prácticas de mitigación en Colombia, por ende, su aplicabilidad y potencial es aún desconocido. Se puede inferir que en instrumentos de política tales como el Plan de Ges-tión Integral de Cambio Climático para la Orinoquia, parte de las medidas de fertilización más eficiente pueden ser aplicadas en los cultivos de la región. Sin embargo, su aplicabilidad es limitada. Las medidas de fertilización eficiente en maíz no hicieron parte de las acciones estudiadas para determinar los escenarios de mitigación de la NDC 2 , como lo muestran los documentos técnicos de soporte de dicho compromiso nacional. 2017) estudiaron para predios de maíz en Brasil técnicas de fertilización irrigada e inhibidores de nitrificación encontrando reducciones en las emisiones de óxido nitroso de hasta el 50 %. Las rotaciones con leguminosas de ciclo corto también pueden ayudar a disminuir los requerimientos de nitrógeno, este sistema es ampliamente utilizado en los llanos orientales.Otra técnica estudiada en algunos lugares es la incorporación de enmiendas con alto contenido de carbono como lo es el biochar, el cual es carbón hecho de biomasa a partir de procesos de pirólisis. Enmiendas de este tipo de carbón en el suelo puede disminuir las emisiones de óxido nitroso y catalizar la captura de carbono en suelos (Agegnehu et al Luego de una búsqueda intensiva de casos de estudio asociados a la caracterización de emisiones en el eslabón de transporte de materias prima y productos terminados de maíz, se han encontrado y analizado estudios de índole internacional pero no ha sido posible hallar algún caso específico en el contexto colombiano para el sector productivo de maíz. Esto en parte se debe a que es muy difícil rastrear todos los movimientos. Tanto el consumo como la producción de maíz se realiza de manera generalizada por todo el territorio nacional.En Australia se encontró un ejemplo de análisis para la cadena de valor de un producto procesado derivado del maíz. Grant & Beer (2008b) lograron estimar la cantidad de emisiones liberadas por el transporte de maíz hacia las fábricas de producción de pasabocas hechos a base de maíz, a partir de un análisis de ciclo de vida. Los resultados indican que esta actividad representa un aporte del 4 % del total de las emisiones generadas para producir un paquete de chips de maíz de 400 gr (unidad funcional del estudio), este porcentaje es equivalente a una cantidad de 0,02kg de CO 2 eq. por unidad funcional. Por otra parte, transportar la unidad funcional hacia las tiendas de distribución genera una liberación de 0,04kg de CO 2 eq. por paquete de chips de maíz de 400 gr, lo cual equivale al 8 % del total de emisiones de la cadena de valor productiva. No obstante, los autores no plantean alguna estrategia para reducir las emisiones generadas en este eslabón, dado que es un estudio de caracterización.Para situar dicho ejercicio al contexto colombiano, las variables, condiciones y/o datos requeridos para el cálculo de emisiones de CO 2 eq. por distribución son:• Definir si el cálculo de emisiones de la cadena de valor incluye transporte de materia prima diferente de los granos de maíz, así como el transporte para consumo y disposición final de residuos sólidos y líquidos.• Rutas de transporte de la producción de granos de maíz a los puntos de acopio y/o transformación. En caso de que se evalúe, también se requieren las rutas de transporte de materia prima y rutas de disposición de desechos.• Tipo de camión empleado para el transporte, incluyendo la capacidad de carga de este.• Tipos y cantidad de combustible empleados para los vehículos de carga.• Itinerarios de transporte de los elementos a evaluar.Empleando los datos con los cuales hasta ahora se cuenta, que no son datos específicos de origen y destino, se ha asumido como distancia nominal de transporte de la producción nacional un valor de 300 km. Se asume que el transporte promedio es algo mayor al de cadenas de valor como el cacao debido a que tanto la producción como el consumo están geográficamente más dispersos. Sin embargo, evaluar dicho supuesto es complejo y merece ser validado con mejor información. Bajo esta distancia recorrida, considerando un camión estándar, operado a base de diésel, con una capacidad de carga de 6 t, con un factor de emisión de 1,30 kg CO 2 eq. km -1 , y que toda la producción es transportada a En la Tercera Comunicación Nacional (TCN) 3 , el sector transporte plantea a una reducción de entre el 20 y el 10 %. Este valor no está desagregado por medida priorizada en dicho documento de política. Por ende, no es recomendable tomar directamente estos valores como potencial de mitigación, ya que muchas de esas medidas están asociadas al transporte urbano. Exactamente cuál será la proporción mitigada por las medidas que aplican al transporte de carga, como son la renovación de camiones o cambio de combustible a gas natural, es desconocido. De aplicarse un valor proporcional sectorial, lo cual es una aproximación riesgosa por el grado de incertidumbre, el potencial de mitigación estaría entre 89 000 t de CO 2 eq. y 45 000 t de CO 2 eq. Para el sector residuos en la fase de acopio es todavía más complejo pues no existe un estimativo de emisiones al cual aplicar una meta sectorial de reducción de emisiones. Sin embargo, dado que se infiere emisiones mínimas, el potencial de mitigación se considera insignificante. A nivel internacional el estudio presentado en la sección de distribución es útil para este eslabón también dado que tiene como unidad funcional un paquete de chips de 400 gr (unidad funcional), lo cual es un producto transformado del maíz. Según Grant & Beer, (2008b), en Estados Unidos las emisiones liberadas en las actividades ejecutadas al salir de la finca de producción, representan aproximadamente un 58 % del total de las emisiones para esta cadena de valor de producción. Excluyendo las actividades de distribución, las actividades de transformación y sus respectivas emisiones, según la unidad funcional (paquete de 400gr de pasabocas de maíz), pueden ser segregadas como se muestra en la tabla 005.Pese a lo anterior, los autores no discuten acerca de estrategias que logren la disminución de estos niveles de emisiones, dado que es un estudio de caracterización del nivel de emisiones. Sin embargo, según este estudio, las variables requeridas para el cálculo de las emisiones son:• Localización de los puntos de transformación de maíz.• Energía eléctrica y otros energéticos (combustibles) consumidos por kg de maíz transformado, depende del equipamiento empleado para este propósito y del proceso.• Emisiones liberadas para la elaboración de empaques y/o embalajes.• Cantidad de maíz transformado.• Cantidad de residuos generados• Tipo de manejo de residuos Ahora bien, para estimar las emisiones de CO 2 eq. liberadas por la transformación de maíz y con base en los datos disponibles, se puso en marcha el siguiente ejercicio de cálculo. Dado que el 37 % del maíz blanco se transforma se trilla para diversos usos, sólo se considera esta cantidad para el aporte de este eslabón, es decir, 564 243 t. En este caso, se considera que la maquinaria trilladora, operativa bajo corriente eléctrica, con un factor de emisión de 0,192 kg de CO 2 eq. KW/h -1 , bajo un consumo de 0,21 KW/h por tonelada de maíz transformada. Por lo tanto, dicha actividad genera un total de 22 270 t de CO 2 eq. Cabe mencionar que esto no es una visión exhaustiva de todos los procesos y la cifra no es representativa de todo el procesamiento que se realiza con el maíz. No se encontraron datos de actividad de residuos sólidos y líquidos generados en las diferentes actividades de procesamiento del maíz.En esta fase no existen medidas de mitigación estudiadas específicamente para la industria del maíz. Sin embargo, mejoras en la carbono-intensidad de la electricidad colombiana tenderán a disminuir indirectamente las emisiones de esta fase.Así mismo, mejoras en la eficiencia energética y optimizar el manejo de residuos también pueden reducir las emisiones en la fase de transformación. En general las estrategias sectoriales de los sectores energía, residuos e industria pueden ser catalizadoras de reducción de emisiones en este sector de la agroindustria colombiana.Una síntesis gráfica bajo enfoque de cadena de valor se puede observar en la figura 22, es importante tener en cuenta que los valores de emisión asociados a las fases de distribución y transformación son estimaciones muy generales e incompletas. Estas requieren ser completadas y validadas con información confiable, que represente efectivamente la cantidad de combustible usado en el transporte de todas las mercancías asociadas a la cadena de valor del maíz. A su vez se requiere información actualizada del uso de energía y residuos en la fase de transformación. Pérdida de aptitud geográfica.Pérdida de modos de vida en población vulnerable.Pérdidas de rendimiento.Disrupciones en las vías.Daños en la infraestructura de acopio.Afectación en el almacenamiento por cambios en la humedad.Daños en la infraestructura de transformación.Limitantes para acceder a la materia prima.Mayores consumos de energía por aumento de temperatura.Cambios en la calidad por condiciones ambientales. A continuación, se procederá a evaluar cualitativamente el nivel de emisiones y riesgo climático y el potencial de adaptación y mitigación. Tras el análisis de la información expuesta en esta sección, se considera que el nivel de emisiones del maíz en producción primaria es medio. Los niveles de emisión son insignificantes frente a las emisiones nacionales, incluso incluyendo gastos en combustible y energía. Las emisiones totales de la producción primaria de maíz es el 0,26 % de las emisiones nacionales. Las emisiones de este eslabón también son poco significativas a nivel sectorial, pues son proporcionales al 6 % de las emisiones asociadas exclusivamente con actividades agrícolas 1 . Se considera que las emisiones de este eslabón son las más altas entre los eslabones de la cadena de valor, pero sin la preponderancia que tiene en la cadena de valor del maíz. Las emisiones de maíz están altamente desconcentradas debido a que el cultivo es común en muchas zonas geográficas como se puede notar en la figura 21. Las emisiones asociadas a la producción primaria son producto de actividades fundamentales para el cul-tivo como lo es la fertilización nitrogenada. Por ende, la producción primaria de maíz cumple con tres de los cinco criterios utilizados para calificar los niveles de emisión.En cuanto a las emisiones en el eslabón de transporte se debe mencionar que no existe suficiente información para estimarlas con solidez. Sin embargo, con la información disponible fue posible hacer la estimación con base a un supuesto de distancia. Estas emisiones estimadas en 0,4 Mt de CO 2 eq. son insignificantes a nivel nacional, pero pueden ser un tanto significativas dentro de los 10 Mt de CO 2 eq. asociadas al transporte de carga 2 . Dentro de la cadena de valor se estima que son importantes comparadas a las emisiones de la producción primaria. Se considera que las emisiones están concentradas geográficamente ya que la mayoría de la carga recorre corredores específicos desde los grandes centros importadores hasta los grandes centros de transformación. Sin embargo, estas emisiones son fundamentales para la actividad pues son propias de la energía requerida para mover la carga producida hacia los lugares de agregación de valor. Este eslabón cumple con tres de los cinco criterios para evaluar el nivel de emisiones, por ende, el nivel se considera medio (3).Las emisiones de transformación se estiman poco significativas a nivel nacional. A nivel sectorial se estiman poco importantes comparadas a las misiones de energía eléctrica (7,5 Mt de CO 2 eq. por termoeléctricas) y combustibles en procesos industriales (16,7 Mt de CO2 eq. por combustibles fósiles), sin embargo, se requiere mayor información al respecto. Se considera que son significativas frente al total de la cadena de valor con base a los estudios referenciados en el subcapítulo 5.3.2 y debido a que la mayoría del maíz transformado proviene de importaciones aumentado de esta manera la proporción de estas emisiones frente a las de la producción primaria. Las emisiones por transformación no están muy concentradas geográficamente ya existen industrias de trilla y harina en varias regiones del país. Dichas emisiones por consumo eléctrico y de combustibles son fundamentales para los procesos de transformación del maíz.Por esta razón este eslabón solo cumple con tres de cinco criterios para evaluar niveles de emisión, por ende, el nivel de emisión se estima medio (3).Tras el análisis de la información expuesta en esta sección, se considera que el nivel de emisiones del maíz en producción primaria es medio.Figura 20. Emisiones de GEI para la cadena de valor del maíz. Fuente: elaboración propia. Dentro de los instrumentos de política especialmente el PAS de agricultura y el borrador del plan sectorial de cambio climático para el sector se incluye medidas asociadas al manejo eficiente fertilizantes, sin embargo, se considera el maíz solo tangencialmente. Otras medidas asociadas al manejo del suelo como son la agricultura de conservación pueden aumentar dicho potencial, pero la aplicabilidad es desconocida ya que no ha habido estudios sobre la viabilidad de dichas medidas para toda Colombia. Las emisiones provenientes del maíz son fundamentales para la actividad productiva debido a que están íntimamente relacionadas con la nutrición de la planta.De acuerdo a esto se considera que el potencial de mitigación en la producción primaria en maíz es medio (3).Sobre el potencial de mitigación de la fase de distribución de maíz se desconoce mucha información clave. No existen medidas puntuales desarrolladas para el transporte de maíz, pese a que las tradicionales medidas asociadas al transporte de carga aplican y pese a que las emisiones de este eslabón son significativas. Debido a que no hay medidas desarrolladas no es posible determinar su potencial particular de cara a las emisiones por distribución de maíz, aunque se estima relevante dada la gran cantidad de materia prima que se mueven en dicho eslabón. La tendencia de las emisiones no es clara, debido a que si bien los aumentos de material importado requieren más transporte la incorporación natural de moto-res más eficientes pueden reducir la carbono intensidad del transporte. Sin embargo, instrumentos de política como el PAS de transporte desarrollado en el marco de la ECDBC y los documentos de soporte de la NDC desarrollan medidas que podrían disminuir las emisiones en este eslabón como lo son la modernización de la flota de carga. Estas medidas de estos instrumentos pueden generar co-beneficios importantes como mejor calidad de aire. Bajo estos criterios se considera que el potencial de mitigación es medio (3).El potencial de mitigación en cuanto a transformación no es conocido, debido a que existen muchas dudas sobre el nivel de emisiones. No existen medidas desarrolladas ni estudiadas específicamente para la transformación del maíz, a pesar de que medidas de eficiencia energética puedan aplicar, su pertinencia en las industrias de derivados del maíz es desconocida. Pero se puede inferir que, dada la diversidad de industrias, en algunas de estas puede existir un potencial significativo en medidas de eficiencia energética. La tendencia de las emisiones en este eslabón seguramente es creciente debido a las crecientes demandas de concentrados en el sector de alimentación animal. Las medidas de reducción de la carbono-intensidad de la energía colombiana contempladas en instrumentos como el plan de cambio climático del sector minero-energético puede reducir indirectamente las emisiones de la transformación del maíz. A su vez mejoras de eficiencia en el consumo de combustibles fósiles y reemplazo de ciertos combustibles por otros son opciones que vale la pena evaluar. A partir de esos criterios se considera que el potencial de mitigación es medio (3)Los riesgos climáticos a su vez se concentran en la producción agrícola del producto y en el transporte, fundamentalmente en aquel que transita sobre vías terciarias, es decir la distribución primaria entre zonas productores y los primeros centros de acopio y entre los centros de acopio de productos terminados y las unidades productoras que también consumen. Los riesgos asociados a regulaciones de desarrollo bajo en carbono podrían encarecer las operaciones en campo a través de precios más elevados de combustible y fertilizantes.El riesgo en el que se encuentra es eslabón primario de la cadena de valor es alto (4). El daño previsto es tanto intenso como extenso. Se prevén fuertes pérdidas de rendimientos en casi todos los grandes centros productivos del cultivo. A su vez la relevancia del maíz a nivel económico es alta, muchas familias dependen del cultivo (391 000) siendo la tercera en importancia entre las 5 analizadas. Este cultivo explica el 5 % del PIB agropecuario. Sin embargo, no se prevén riesgos transicionales particularmente altos para el cultivo del maíz, esto podría variar si se da una política de reemplazo de importaciones lo cual implicaría aumentos en el área y productividad del maíz acarreando potenciales impactos negativos en ecosistemas naturales. Por su parte los riesgos climáticos en la fase de distribución son difíciles de estimar, se considera que en ciertos lugares las afectaciones del clima pueden afectar la cadena de valor de distribución como en el caso del transporte desde los centros de importación en el norte de Colombia hacia centros de transformación en el centro. Por ende, se considera que si bien los impactos pueden ser intensos en ciertas partes no son extensos para todas las vías utilizadas por el maíz. La relevancia económica de este eslabón es desconocida, pero se estima importante por la cantidad de materia transportada. En general la cadena de valor genera 126 000 empleos siendo la que menos empleo genera dentro de las analizadas. Los riesgos transicionales de regulaciones bajo en carbono pueden repercutir en aumentos de costos en el transporte por razón del encarecimiento del combustible. De acuerdo a esto el nivel de riesgo se estima medio (3).En cuanto a los riesgos climáticos de la transformación se considera que, si bien no se conoce mucho sobre estos, el nivel de intensidad y extensión del daño previsto es mínimo. Sin embargo, como se ha mencionado la importancia económica es alta debido a sus encadenamientos productivos con la industria pecuaria. Se desconoce los niveles de empleo que existen en la industria transformadora, pero se estiman importantes. No se vislumbran riesgos transicionales para este eslabón, pero se requiere profundizar sobre este tema. Bajo estos criterios se estima bajo (2) el nivel de riesgo del eslabón de transformación.El potencial de adaptación del maíz en producción primaria se estima muy alto (5). Esto debido a que existe una buena valoración del riesgo en este eslabón como se demostró en el análisis de información existente. A su vez, existen trabajos en múltiples zonas del país donde se han desarrollado medidas de adaptación basadas en las particularidades locales. Se considera que las medidas desarrolladas tienen la capacidad de disminuir sustancialmente el riesgo en las zonas más afectadas en especial nuevas variedades resistentes a extremos climáticos y una mejora en la gestión de los suelos. Para este eslabón puntual se pueden desarrollar medidas puntuales que disminuyan la sensibilidad en zonas donde se prevén impactos. Se considera que en los instrumentos de política de cambio climático consideran al maíz, al igual que otros cultivos transitorios como el arroz, como prioridades para la adaptación.En cuanto a la fase de distribución, se considera que no existen estudios puntuales de riesgo sobre el eslabón, así mismo se carece de medidas puntuales desarrolladas para las particularidades de la distribución del maíz. Por ende, se desconoce si las medidas generales pueden realmente disminuir el riesgo del eslabón. Sin embargo, es posible desarrollar medidas puntuales si se realizan levantamientos de información en zonas específicas. Esto se suma a un interés por parte de las instituciones de mejorar los niveles de riesgo del transporte de carretera, lo que se manifiesta en el plan de cambio climático del sector transporte. Por ende, se estima que el potencial de adaptación es bajo (2). El potencial de adaptación en la fase de transformación se estima muy bajo (1). Eso debido a que no existen valoraciones de riesgo para este eslabón y no se han desarrollado medidas puntuales de acuerdo a la búsqueda realizada. Debido a esto se desconoce si las medidas puedan disminuir sustancialmente el riesgo en la fase de transformación. Sin embargo, se considera que es posible desarrollar medidas si se levanta información suficiente acerca de los factores de riesgo a nivel especifico de empresas dedicadas a la transformación del maíz. Ahora bien, es de reconocer que no existen desarrollos importantes a nivel de política pública en materia de adaptación para la fase de transformación la cual se basa en procesos industriales.A continuación, se presenta la tabla 6, donde se sintetizan los valores de la evaluación cualitativa desarrollada.Además de los criterios previamente señalados existen otros elementos que pueden ayudar a interpretar la situación de la cadena de valor respecto al cambio climático como se puede observar en el anexo 1. En el caso del maíz se resalta que la experiencia en recolección de información climática es muy alta, ya que cuenta con más de 7 años de experiencia en la recolección de información climática y el uso de esta para la toma de decisiones. El nivel de consolidación este se considera bajo, el nivel de recaudo es bajo y aunque el sector cuenta con apoyo institucional y un sistema de semillas y provisión de insumos formalizado, hay un alto grado de informalidad en la producción. Esto se suma a una dinámica de mercado decreciente, en riesgo por importaciones. Existe un interés importante por parte de las instituciones para trabajar en cambio climático y maíz debido a la importancia de este cultivo en la seguridad alimentaria del país. A su vez el gremio manifiesta bastante interés que se manifiesta en más de siete años de trabajo en la temática.Los esfuerzos en mitigación y adaptación que se realicen maíz pueden integrarse con otras iniciativas como maíz visión 2030. El cultivo ha sido priorizado en PIGCC del sector agropecuario y dentro de diferentes planes de cambio climático territoriales como el de la Orinoquía. En cuanto a su relevancia socioeconómica se puede concluir que es una cadena de valor priorizada en el Plan Nacional de Desarrollo y el Programa de Transformación Productiva.Producción Primaria ","tokenCount":"14199"} \ No newline at end of file diff --git a/data/part_3/7392942343.json b/data/part_3/7392942343.json new file mode 100644 index 0000000000000000000000000000000000000000..b0daef6c47f4f74b8d0d7093f30a61e6ad91e9ed --- /dev/null +++ b/data/part_3/7392942343.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"3397fe14da1d5ca82ecba7f902dd4531","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/4ea2ed69-9eea-4cb1-8025-12349b6dc750/retrieve","id":"1445825080"},"keywords":[],"sieverID":"538e7477-1771-42d3-a334-262b0ee8942d","pagecount":"10","content":"dium bicarbonate 0.5 M at pH 8.5 also extracts weakly adsorbed P i (Hedley et al., 1982) P hosphorus is an essential nutrient for plants and (1999) showed that most of the fertilizer was recovered often the first limiting element in acid tropical soils.in the Bic-and NaOH-P i fractions, irrespective of the Profound understanding of the P dynamics in the soilland-use system (resin-P i was not measured). In a 4-yr plant system and especially of the short-and long-term field study conducted on a Hawaiian Ultisol, Linquist fate of P fertilizer in relation to different management et al. (1997) recovered, 1 yr after fertilizer application, practices is essential for the sustainable management of almost 40% of the applied triple super phosphate fertiltropical agroecosystems (Friesen et al., 1997). Chemical izer in the hot HCl and H 2 SO 4 fractions. Oberson et al. sequential extraction procedures have been and still are (1999) showed that in an Oxisol managed as a legumewidely used to divide extractable soil P into different grass pasture for 15 yr, resin-P i , Bic-and NaOH-P i , as inorganic and organic fractions (Chang and Jackson, well as NaOH-P o levels were maintained at a higher 1957; Bowman and Cole, 1978;Hedley et al., 1982; Cross level over the whole year in comparison with the same and Schlesinger, 1995). The underlying assumption in soil with the same total P content but managed as a these approaches is that readily available soil P is regrass only pasture. Iyamuremye et al. (1996) found an moved first with mild extractants, while less available or increase in resin-P i , Bic-P i and -P o , as well as NaOH-P i plant-unavailable P can only be extracted with stronger after addition of manure or alfalfa (Medicago sativa L.) acids and alkali. In the fractionation procedure develresidues to acid low-P soils from Rwanda. In the study oped by Hedley et al. (1982) and modified by Tiessen of Guo and Yost (1998), resin-P i , Bic-P i , and NaOH-P i and Moir (1993), the P fractions (in order of extraction)were most depleted by plant uptake on highly weathered are interpreted as follows. Resin-P i represents inorganic soils. NaOH-P i was important in buffering available P P (P i ) either from the soil solution or weakly adsorbed on (oxy)hydroxides or carbonates (Mattingly, 1975). So-replicates with treatment subplots of 0.36-ha size. Soil samples supply while significant depletion of organic fractions used for this study were taken at random in two replicates of could rarely be measured. each treatment and the replicates were mixed for laboratory A possible method of gaining information about the analysis. For our study, the following treatments were inavailability of different P fractions is to label soil P, P cluded.fertilizers, or plant residues before applying the sequen-1. SAV (Native savanna): native grassland annually burned tial fractionation scheme (MacKenzie, 1962;Weir and in February, not grazed; no fertilizer application. Soper, 1962;Dunbar and Baker, 1965). Two studies 2. GL (Grass-legume pasture): rice (cv. Oryzica Sabana 6) followed the movement of labeled P from plant residues in 1993, with undersown pasture, since 1993 grassto soil P fractions applying a modified Hedley (Daroub legume pasture with Brachiaria humidicola (Rendle) et al., 2000) or the Chang and Jackson (1957) fraction-Scheickerdt CIAT 679, Centrosema acutifolium Benation procedures (Friesen and Blair, 1988). They found tham cv. Vichada CIAT 5277, Stylosanthes capitata J.that at 6 or 11 d after plant residue addition, respectively, Vogel CIAT 10280, and Arachis pintoi CIAT 17434. The between 20 and 50% of the label was extractable as P i pasture was partly resown for renovation in June 1996 with resin (Daroub et al., 2000) or with NH 4 Cl and NH 4 F with legumes (the same Arachis pintoi Krapovickas & Gregory, and Centrosema acutifolium and additionally (Friesen and Blair, 1988). For longer incubation periods Stylosanthes guianensis (Aubl.) Sw., CIAT 11833). Grazup to 34 d, Daroub et al. (2000) showed a subsequent ing intensity was on average 2.7 steers ha Ϫ1 during 15 d movement of the label from the resin-P i fraction to the followed by a 15 d pasture regrowth phase.NaOH-P i fraction. The results obtained in all these stud- phosphate). In addition, 99 kg K as KCl, 15 kg Mg and 20 kg S (as MgSO 4 ), and 10 kg Zn ha Ϫ1 were applied at establishmentand at recommended rates thereafter. With cowpea, an additional 20 kg N and 40 kg P ha yr Ϫ1 and 60 kg K, 10 kg Mg, Soils included in the study were sampled during the rainy 13 kg S, and 10 kg Zn ha Ϫ1 were applied at establishment season in September 1997 from a field experiment (Friesen and at recommended rates thereafter. RGM], rare [GL], or no cultivation [SAV]) and in application (1993), with HCO 3 -saturated resin strips (BDH #55164, 9 ϫ 62 mm), followed by 0.5 M NaHCO 3 (referred to as Bic-P), 0.1 of herbicides (frequent [CR and RGM], rare [GL], or no application of herbicides [SAV]). Cultivated soils were tilled M NaOH, (these first three steps each with an extracting time of 16 h) and concentrated hot HCl at 80ЊC for 10 min. The to a maximum of 15-cm depth.Topsoil samples (0-20 cm) were air dried and sieved to step using diluted cold HCl was omitted, as Ca-phosphates are only present at very low levels or are absent in highly pass a 2-mm sieve before chemical analysis in the analytical service laboratory of CIAT or shipped to Switzerland where weathered acidic soils (Agbenin and Tiessen, 1995), as shown for the soils used in this study by Friesen et al. (1997). Residual they were stored in an air-dried condition until use for the fractionation experiment in 2000.P was extracted as described previously for determination of P tot . The amount of soil extracted was doubled from 0.5 to 1 gwith the original volumes of extractants (2 resin strips in 30 Bray-II P (0.03 M NH 4 F, 0.1 M HCl) was extracted from mL H 2 O, 30 mL NaHCO 3 , 30 mL NaOH, 15 mL concentrated 2-g subsamples of soil at a 1:7 soil solution ratio and 40 s HCl, 5 mL conc. H 2 SO 4 ) used to get higher 33 P-concentrations shaking time (Bray and Kurtz, 1945). Total soil P (P tot ) was in the extracts. This was preferred to the alternative of higher determined on subsamples of 0.25 mg soil with the addition of label application as the radiation might affect microbial growth 5 mL concentrated H 2 SO 4 and heating to 360ЊC on a digestion (Halpern and Sto ¨cklin, 1977). After each extraction, the samblock with subsequent stepwise (0.5 mL) additions of H 2 O 2 ples were centrifuged at 25 000 ϫ g for 10 min before filteruntil the solution was clear (Thomas et al., 1967) Phosphorus concentrations in all extracts were measured 1997) or K 2 SO 4 (C Chl and N Chl ) (Vance et al., 1987). No k-facafter neutralization by the Murphy and Riley (1962) method. tors (Brookes et al., 1982;Hedley and Stewart, 1982;Mc-This method was used directly for the P recovered from the Laughlin et al., 1986) were used to calculate the total microbial resin strips and for P i determination in the HCl extracts. Ornutrient pools from measured P Chl , C Chl and N Chl as there exist ganic matter was first precipitated by acidification in the Bicno proper estimates for these in acid tropical soils (Gijsman and the NaOH-extracts prior to P i determination (Tiessen and et al., 1997). P Chl was corrected for sorption of released P Moir, 1993). Total P (P t ) in the Bic-, the NaOH-and the HClaccording to Oberson et al. (1997). Dithionite-citrate-bicarextracts was measured after digestion of P o with potassium bonate extractable and oxalate extractable Fe and Al (Fe d , persulfate (Bowman, 1989). Organic P was calculated as the Fe ox , Al d , Al ox ) were determined according to Mehra and Jackdifference between P t and P i in the Bic-, NaOH-, and hot son (1960) and McKeague and Day (1966). The mineralogy HCl extracts. of the soils was determined on total soil samples, pretreated To partition soluble 33 P i and 33 P o in the Bic-, the NaOH-, with H 2 O 2 to remove organic C, by X-ray diffraction analysis and the hot HCl-extracts into separate solutions before count-(XRD). The samples were ground under acetone in a tungsten ing, 5 mL of the extracts were shaken with acidified ammonium carbide vessel of a vibratory disk mill (Retsch RS1) for 10 molybdate dissolved in isobutanol (Jayachandran et al., 1992). min. Longer grinding times were not applied because of the By this method, P i is extracted into the isobutanol while P o detrimental effect that further grinding can have on the crysremains in the aqueous phase. The complete recovery of P i tallinity of minerals, especially Fe (hydr)oxides (Weidler et in the isobutanol phase was verified with the addition of a al., 1998). For the Cu K␣ radiation, the Bragg-Brentano geomstandard amount of 33 P in 0.5 M HCO 3 , 0.1 M NaOH, and in etry was chosen as an XRD routine setup. The measurements 2.3 M HCl; recovery rates of added 33 P in the isobutanol phase were carried out on a Scintag XDS 2000 (Scintag Inc., Ecu-were between 97 and 103%, which was not significantly difblens, Switzerland) equipped with a solid state detector from ferent from 100%. Counts in the aqueous phase were 1.1% 2 to 52Њ 2 with steps of 0.05Њ 2 and counting times of 16 s.(HCO 3 ), 0.3% (NaOH), and 0.1% (HCl) of the original solutions showing that hardly any P i went into this phase. Determination of total P in the aqueous phase is not possible becausethe presence of the molybdate interferes with the analysis Before starting the sequential P fractionation, the samples (Jayachandran et al., 1992). were preincubated in a climate chamber (24ЊC and 65% rela-The radioactivity in each phase was determined with a liquid tive atmospheric humidity, no light) for 2 wk in portions of scintillation analyzer (Packard 2500 TR) using Packard Ultima 100 g at 50% of their water holding capacity (300 g water Gold scintillation liquid in the ratio (extract to liquid) 1:5. kg Ϫ1 soil dry weight). Soil water content was controlled andThe values were corrected for radioactive decay back to the adjusted every other day by weighing.day of soil labeling. All extracts were tested for possible Subsamples of preincubated soils were labeled in portions quenching effects by adding defined 33 P spikes. Quenching in of 15 g with 120 MBq 33 P (half-life 25.4 d) kg Ϫ1 which were the acid resin eluate could be prevented by dilution of 250 L added with 10 L deionized water per g soil. The mass of P eluate with 750 L deionized water for counting. The quench introduced with the 33 P label can be neglected (Ͻ2.5 ϫ 10 Ϫ3 effect in the hot concentrated HCl extract could be avoided by g P g Ϫ1 soil, Amersham product specification, July 2000).counting solutions separated with acidified isobutanol because Therefore, the term 'P concentration' always refers to 31 P and the separated phases were not affected by quenching. All specific activities (SA) are calculated as: other extracts were not affected by quench effects. The recovery of the label calculated as the sum of all frac-SA (Bq g Ϫ1 P) ϭ 33 P/ 31 P [1]tions, including residual P, was never complete. Therefore, subsamples of the soil residue after final acid digestion were Soil P was fractionated sequentially, after three different dried and weighed into scintillation vials. These subsamples incubation times after labeling (4 h, 1 wk, and 2 wk), with were then counted after addition of 1 mL water and 5 mL of three replicates per treatment following the modified method of Hedley et al. (1982), as described in Tiessen and Moir scintillation cocktail.recovery data were log-transformed to meet the requirementsof analysis of variance. Time and treatment influences on the The procedure of isotopic exchange kinetics was used to SAs of each fraction were tested by a two-way ANOVA and, assess the exchangeability of P i in the soils sampled in the as the interaction time ϫ treatment was significant for all different land-use systems. The method was conducted as defractions, the treatment influence was tested for each repetiscribed by Fardeau (1996). Suspensions of 10 g of soil and 99 tion in time of sequential fractionation, separately. mL deionized water were shaken for 16 h on an overhead shaker to reach a steady state equilibrium for P i . Then, at t ϭ 0, 1 mL of carrier free H 33 3 PO 4 tracer solution containing 1.2MBq was added to each continuously stirred soil water suspen-The mineralogy and Fe and Al (oxy)hydroxides consion. Three subsamples were taken from each suspension after tents of the surface soil from the four treatments were 1, 10, and 100 min, immediately filtered through a 0.2-m pore normal for this type of soil (Gaviria, 1993). On aversize micropore filter, and the radioactivity in solution was measured by liquid scintillation as described previously. To age of all treatments, the soil contained 68% quartz, determine the 31 P concentration in the soil solution (C p , mg P 23% kaolinite, 4% anatase, 3% gibbsite, 2% rutile, and L Ϫ1 ) 10 mL of the solution were filtered through a 0.025-Ͻ1% vermiculite. There were no significant differences m filter (Schleicher & Schuell GmbH, Dassel/Relliehausen, among the different land-use systems (SAV, GL, CR, Germany, NC 03) at the end of the experiment. The smaller RGM). This implies that any difference seen in P dyfilter pore size was used to exclude any influence of suspended namics among land-use systems was mainly due to the soil colloids on C p determination (Sinaj et al., 1998). The P land-use system and not to differences in soil minconcentration in the filtrate was measured in a 1-cm cell by eralogy.the Malachite green method (Ohno and Zibilske, 1991) with a Shimadzu UV-1601 spectrophotometer (Shimadzu Corp., Kyoto, Japan). Phosphorus concentrations in solutions fromTotal Soil P and P Balance Induced the SAV, GL and CR treatments were close to the detection by the Different Treatments limit and they were measured again in samples concentratedThe amounts of total P directly extracted from the by evaporation (5:1). This procedure resulted in C p values that were not significantly different from the non-concentrated so-soil samples (P tot ) were not significantly different from lutions.the total sum of P (P sum ) extracted in the different frac-Assuming that at any given exchange time the specific activtions of the sequential extraction for SAV and CR while ity (SA) of inorganic phosphate in the solution is equal to the direct extraction led to significantly higher values the SA of the total quantity of phosphate which has been (P ϭ 0.05) for GL and RGM (Table 2). To evaluate isotopically exchanged, it is possible to calculate the amount whether differences in total P content were related to of isotopically exchanged P (E t , mg P kg Ϫ1 soil). The amount P fertilization, the increase in P tot (calculated as the of P exchangeable within one minute (E 1 ), indicating the imdifference between P tot extracted from fertilized GL, CR mediately available P, is expressed as (Fardeau, 1996):or RGM and P tot extracted from non fertilized SAV) E 1 ϭ R ϫ 10 ϫ C p /r 1[2] was compared with the estimated P balance of these treatments (significant correlation, r 2 ϭ 0.87; P Ͻ 0.001).where R is the introduced radioactivity and r 1 is the radioactiv-The increases in P tot were of the same order of magnitude ity remaining in solution after 1 minute of isotopic exchange.as the calculated P balance. Given the imprecision ofThe factor 10 results from the soil solution ratio of 1:10.the methods used to determine total P (O' Halloran, 1993) and of the estimations made to calculate the P Statistical Analysis balance, these results suggest that most of the P addedThe effects of land-use systems and incubation time after as fertilizer and not taken up by plants remained in the labeling on P fraction size were tested by SYSTAT (Systat, surface layers of the soils. Except for the CR treatment 1997) by two-way ANOVA and Tukey's multiple range test these results agree well with Oberson et al. (2001). In over all treatments and times of fractionation, with exception their study, for CR only, about half of the calculated of the resin-P i fraction where the interaction between treatpositive P balance was recovered in total P. Their samment and time was highly significant. Therefore, for resin-P i pling depth of 0 to 10 cm might explain this difference:the ANOVA and Tukey's multiple range test for the treatment factor were calculated separately for each time. Percentage soil tillage may have mixed P in the 0-to 10-cm soil The P i concentration in the soil solution (C p ) was the different treatments †.close to the detection limit in the SAV, GL and CRtreatments (Table 3). C p was significantly increased in all fertilized treatments (P Ͻ 0.001). In SAV, GL and The positive P balances of the fertilized GL, CR and RGM treatments resulted in significantly higher P conlayer with soil in the 10-to 20-cm layer, resulting in centrations (P Ͻ 0.001) compared to the savanna soil incomplete recovery of P in the 0-to 10-cm sampling in all fractions except the organic fractions and residual depth.P (Table 4). This agrees with the results of Friesen et al. (1997) and Oberson et al. (2001), who fractionatedP forms according to the same method in the same field experiment, and studies conducted using other tropical The effect of the four land-use systems on P i exsoils (Beck and Sanchez, 1994;Linquist et al., 1997). Our changeability in the surface layer of the Colombian Oxiresults show that resin-P i , Bic-P i , and NaOH-P i increased sol is illustrated in Table 3. The ratio r 1 /R, which is with P fertilizer input, with the NaOH-P i fraction being inversely correlated to the P sorbing capacity of soils the main sink for the applied P. The function of the (Frossard et al., 1993), was below 0.05 for all treatments, NaOH-P i fraction can be explained by the adsorption suggesting that these soils have a high P sorbing capacity of P i through ligand exchange with hydroxyl groups (Frossard et al., 1993). Furthermore, the r 1 /R-values of (Sposito, 1989) located on the surface of Fe and Al the four treatments were positively correlated to P tot (oxy)hydroxides (Ainsworth et al., 1985;Parfitt, 1989; (r 2 ϭ 0.76; P Ͻ 0.001). This suggests that the different Torrent et al., 1992) and by the desorption of P i from land-use systems have resulted, through P fertilization the surface of (oxy)hydroxides in the presence of 0.5 M and cropping, in different sorption rates of P i on soil NaOH (Houmane et al., 1986; Cross and Schlesinger, minerals. Since in Oxisols P sorption is mainly governed 1995). by Al and Fe (oxy)hydroxides (Fontes and Weed, 1996),During the continuous 2-wk incubation of the soil these treatments probably induced different degrees of samples, resin-P i and Bic-P i fractions increased signifi-P i saturation on the (oxy)hydroxides such as gibbsite, which was identified in the soil from these treatments. cantly (P Ͻ 0.05) between the first and second fraction- ation date for all treatments (between 4 and 14 mg tioned in Tiessen and Moir (1993), especially the possibility that P i is precipitated along with the organic matter kg Ϫ1 for the sum of resin-P i and Bic-P i ). There was no significant decrease in any fraction although total upon acidification and erroneously determined as P o (P t ϪP i ). On the other hand, P o compounds could be extractable P o tended to decline (between 8 and 18 mg kg Ϫ1 ) for all soils (Table 4). The absence of a significant hydrolyzed in the acidic solution during the measurement of P during the colorimetric measurement (Con-movement of P out of P o fractions may be due to the high variability of the results, especially for the organic dron et al., 1990;Gerke and Jungk, 1991). Increases in resin-P i and Bic-P i between 4 h and 1 wk fractions where coefficients of variation for Bic-P o ranged from 13 to 70% and for NaOH-P o from 7 to of incubation suggest that mineralization of P o led to the release of labile P i from P o fractions. As the first 45%. Since P o is determined by the difference between P t and P i for a given extract, there are multiple sources fractionation was started 4 h after labeling, the disturbance by mixing the soil with the label and the increased of error. High variability of repeated measuring of Bic-P o and NaOH-P o were reported by Magid and Nielsen humidity may have stimulated microbial activity in spite of the preincubation. A temporary stimulation of the (1992). Problems in the determination of P i are men- microbial activity by mixing when labeling the soil was as observed by Oberson et al. (2001) in the same field indicated in microbial turnover studies conducted on experiment. Microbial biomass in the incubated soils, soils from the same field experiment (Oberson et al., indicated by measured P Chl , C Chl , and N Chl values, was 2001). This assumption seems likely, as there were litsignificantly different between the soils (Table 5), detle changes in fraction sizes between the second and spite the fact that the samples had been stored in an the third fractionation indicating a stabilization of the air-dried condition for more than 3 yr before being used system.in this study. The assumption that recovery of the label in organic fractions was actually due to active processes Distribution of 33 P Among P Fractionsand not to any analytical artifact is supported by the and Dynamics over Time observed increases of NaOH-33 P o and HCl-33 P o for all soils over time. The total recovery of 20% (SAV) or The fraction of 33 P recovered in the resin-P i fraction 14% (GL), respectively, of the label in organic fractions 4 h after labeling varied between 22% in SAV and 60% 2 wk after labeling shows that these compartments have in RGM (Figure 1). The 33 P recovery in this fraction to be taken into account to understand the fate of P in was positively correlated to P tot (r 2 ϭ 0.87; P Ͻ 0.001, these very low-P soils (Tiessen et al., 1984; Beck and 4 h after labeling). The corresponding decrease with Sanchez, 1994;Linquist et al., 1997). Oberson et al. time of 33 P in the resin fraction in RGM and CR coin-(2001) suggested that P o mineralization significantly cided with an increase in label recovery in Bic-P i and contributes to P availability in low input pastoral sys-NaOH-P i , while in SAV and GL the decline in resin 33 P tems on these soils but that methods for quantification was accompanied by an increase in 33 P in NaOH-P o (GL of mineralization remain to be developed. also NaOH-P i ), HCl-P i and residual-P. For SAV andThe proportion of label in the hot HCl and residual GL, the label recovered in resin-P i decreased only P fractions increased significantly with incubation time slightly but significantly between the 1st and the 2nd in all soils. This contradicts the prevailing opinion of wk, and the label recovery in Bic-P i did not change recalcitrance of P in these fractions (Guo and Yost, significantly in this time. The amount of 33 P in NaOH-1998;Neufeldt et al., 2000). While the total P content P i was almost stable over the entire incubation time with in the residual fraction varied significantly with time a small but significant increase between the first and (Table 4), this was not the case for hot HCl extractable the second week for GL. This shows that in SAV and GL P i , while hot HCl extractable P o tended to decrease. the label was rapidly exchanged between these fractions This suggests that the movement of the label to these and that equilibrium with the (labeled) soil solution was fractions was not due to net P movement but to exreached. In contrast, 33 P in the Bic-P i and the NaOH-P i change processes. of CR and RGM was still increasing after 1 wk while resin-33 P i continued to decrease, showing that the exchange between these fractions was incomplete.The data for 33 P o were, because of the determination At all sampling times during the incubation study, in after the separation from P i with the isobutanol method, total between 67 and 94% of the applied 33 P label could not affected by the inherent problems in determination be recovered in the sum of all P fractions (Fig. 1). This of the P o fractions in the Hedley fractionation scheme total of label recovery was generally in the order SAV as described previously. Only small amounts of the label Ͻ GL Ͻ CR Ͻ RGM. Incomplete recoveries can be were found in organic fractions after 4 h, but there were explained by the fact that the method used to assess already significant differences in NaOH-33 P o (P Ͻ 0.001) total P or residual P was not efficient enough to extract in the order: all of the soil P. Comparative studies have shown that SAV (4%) Ϸ GL (2%) Ͼ CR (0.4%) Ϸ RGM (0.1%).total P can only be extracted reliably by alkali fusion (Syers et al., 1967;Bowman, 1988), which could not be This might be due to differences in microbial activity used in this work. The analysis of soil residues after the acid extraction of residual P (Table 6) indicated that ally possible, problems of phase, impurity, self absorp-Schneider and Morel, 2000). The subsequent decrease in SA of resin-P i reflected the process of isotopic exchange tion of scintillations by the soil particles, or color quenching effects (Gibson, 1980) are difficult to correct, as between 33 P and stable P i located on the soil's solid these influences might be highly variable between samphase (Fardeau, 1996). The order of the SAs in the P i ples. However, the recovery of standard additions of 33 P fractions after 4 h of incubation followed the extraction to our soil residues was complete and the correlation sequence (resin-P i Ͼ Bic-P i Ͼ NaOH-P i Ͼ HCl-P i Ͼ of the measured radioactivity in the different soil treatresidual P), showing that the strongest reactants exment residues with the sample weight was linear (data tracted either large quantities of slowly exchangeable P not shown), thus confirming the qualitative information or a large quantity of P in which only a small part was obtained from the counting of the soil residues. rapidly exchangeable. After 2 wk the SAs of resin-P i , Altogether the results suggest that the transfer of 33 P Bic-P i and NaOH-P i became closer, suggesting that equiamong the different fractions determined by the sequenlibrium with respect to P transfer between these fractial extraction was strongly dependent on the degree of tions was being approached. The SAs of resin-P i , Bicsaturation of soil Al and Fe (oxy)hydroxides with P i , P i and NaOH-P i were not significantly different in SAV and therefore on the bonding energy of P i to the soil while the SA of resin-P i was still significantly higher minerals. It is indeed known that a high P i saturation than the SA of Bic-P i in GL and higher than in Bic-P i of metal oxide surfaces causes a more negative charge and NaOH-P i in CR and RGM. These observations on the surface and prevents the specific sorption of show that it is not possible to discuss the exchangeability further P i ions (Ryden et al., 1977;Bowden et al., 1980).of a certain P fraction without reference to a defined In the low P treatments (SAV and GL), most P i would be time of exchange (Fardeau, 1996). sorbed with such a high energy that its exchangeability Although the SAs of the NaOH-P o and HCl-P o fracwould be very limited. Specific sorption of 33 P to the tions were relatively low, they showed that, depending surface of Al and Fe (oxy)hydroxides of these soils, on land use, these fractions were connected through although unlikely (Frossard et al., 1994), cannot be exactive processes with the soil solution, most probably cluded (Barrow, 1991). In contrast, in the P rich soils through microbial activity (Oehl et al., 2001). This indi-(CR and RGM), annual P additions may have resulted cates that the determination of plant available P with in the build up of larger quantities of P i that was exshort-term isotopic exchange experiments might lead to changeable with 33 P.errors since the dynamics of organic P forms are excluded.The highest specific activities observed in the incuba-The effect of contrasting land-use systems on soil P tion experiment were obtained in the resin extract after fractions extracted by a modified Hedley et al. (1982) 4 h of incubation (Table 7). This is consistent with the P sequential fractionation procedure was assessed in an assumption that the amount of P desorbed from the soil Oxisol during a 2-wk incubation on soils labeled with by resin is in very rapid exchange with P i in the soil carrier free 33 P. The quantities of 31 P and 33 P recovered solution, as suggested by other studies (Amer et al., 1955;Bowman and Olsen, 1979;Tran et al., 1992; in the different fractions were strongly dependent on ","tokenCount":"4980"} \ No newline at end of file diff --git a/data/part_3/7396915640.json b/data/part_3/7396915640.json new file mode 100644 index 0000000000000000000000000000000000000000..992e14aaee9b32679cc0eb10a0628de134ee5633 --- /dev/null +++ b/data/part_3/7396915640.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"6b007ee90ee02a27d5e10f8cbe6b8970","source":"gardian_index","url":"https://apps.worldagroforestry.org/downloads/Publications/PDFS/TN21032.pdf","id":"289369091"},"keywords":["Capacity Development Negotiation & brokerage Trade fairs & exhibitions Linkage forums Inputs","e.g. germplasm Business school Stakeholder consultations Data collection & analytics Prioritization Reports Validation","Learning Viability check economic","environmental","technology Scalability"],"sieverID":"38ed9702-dfa4-44ac-afb0-cb9a7c64e2f2","pagecount":"13","content":"Eight steps for developing local tree value chains. A short guide with lessons on starting profitable and sustainable tree product businesses. World Agroforestry (ICRAF).Tree resources can provide a range of economic, social, and environmental benefits to local communities ranging from timber to non-timber products and services. Timber resources are well known for providing diverse wood products used for furniture, construction materials and sources of energy. For instance, sawn wood, poles, wood fuel, woodchips and other wood products offer interesting high-return investments. Non-timber products, such as fruits and nuts, seeds, gums and resins, medicines, honey, and mushrooms, as well as recreational services can also be offered for sale. Products based on locally available tree resources can offer great opportunities for investments by communities, the private sector and development partners to improve livelihoods and the local environment if managed sustainably. This guide provides practical strategies factoring value chain assessments, prioritization, support, and finance elements that need to be in mind in order to develop profitable enterprises that can be scaled (Figure 1). A stepwise approach on selecting and starting local tree-based businesses with local communities while balancing the need to improve supply of tree resources is shown in Figure 2.Eight steps and lessons on how to identify and prioritize local tree value chains for development.To develop profitable and sustainable value chain options, this guide provides information on eight steps to follow to help value chain developers consider crucial elements in their own local environments and circumstances. These steps are illustrated in Figure 1 and further detailed in this guide.Lesson: Before embarking on a value chain establishment or development initiative, it is important to be aware that these are not 'simple' . Value chains exist or do not exist for various reasons, and you may not be able to influence these. In addition, the skills required for implementation are highly specialized and you should be sure to have them in place.Step 2: Consult target communitiesStep 3: Engage tree value chain experts & work with partnersStep 4: Analyse data on potential tree businessesStep 5: Prioritize & reprioritize value chains along sustainability criteriaStep 6: Develop business plans for selected productStep 7: Identify areas for interventionsStep 8: Implement product business plan & build on learnings Conduct literature reviews and relevant expert consultations to clearly understand the environment in which the value chain or business can thrive. This covers:• Geographical characteristics of the area to identify feasible value chain options. • Local population social-economic and demographic characteristics to better target value chain activities and benefits ensuring consideration for women and youth. • Main livelihood options by the community, existing opportunities and challenges, and possible ways to address them. • Available infrastructure to determine if the value chain can be supported.Step 1How to search for information on value chains for tree products from existing literature• Develop a list of keywords and paste each independently into your search engine; these could include, benefits of trees, tree products, tree product market, sources of tree products, uses of different parts of the tree, trees of economic importance. • Evaluate the available materials and narrow down the topic. For illustration purposes, this guide will use the shea product value chain from West Africa. • Organize all the materials that relate to the shea product value chain in one folder. • Critically review the materials, generate relevant subtopics, and document key messages under each topic and subtopic from the review.©AxelBox 1. Example of how to conduct a literature review : Example on the shea value chain.List of sub-topics to search from available knowledge resources.1. Sources of shea nuts (establish the supply chain)• Establish the distribution of shea trees and their abundance.• Identify sources of seedlings/vegetative propagation materials for establishing new sources of the resource (shea resources are finite and overharvesting leads to degradation) • Identify actors that collect/aggregate shea nuts.• Identify what equipment is needed, and the type and quantity of labour input and production volumes.• Identify which individuals/firms are processing shea. Where are they? How far are they from the production site? • Find out if there are any warehouses available where you could store surplus materials.• Calculate the cost of processing and packaging.• Understand the different products that can be obtained from shea trees such as shea nuts, kernel, shea butter and shea oil. • Identify how the different products are used and what consumers prefer.• Find out what volumes are needed to meet demand and give economic returns.• Identify the market systems. Determine the flow of information about the shea value chain and find out who controls the prices of shea products. • Identify the level at which the market will operate -local, regional, national, or international.• Establish the market potential of the shea value chain. Note: Knowledge of the market helps to determine the investment that needs to be made regarding processing, packaging, and product line focus.• Find out what the growth potential of the shea products value chain is.• Identify the government departments that support the shea value chain.• Determine whether any institutions are already working on the shea value chain.• Identify shea parklands, woodlots and other support structures that strengthen the operation of the shea value chain. • Identify any available infrastructure to support the shea value chain.• Ascertain what is limiting the potential of the shea value chain, such as the supply of shea nuts, the lack of processing equipment or a poor marketing system. • Determine who/what is needed to address the barriers and what will be their/its roles.Pertinent information from communities can for instance be gathered through focus group discussions (FGDs) (a maximum of 12 participants per group).• Conduct separate discussions with women, men, youth, people with special needs and other groups. • Prepare guiding questions/checklists to help you gather information of interest.A simple tool for identifying tree product business potential is shown in Table 1. Once information on the preferred tree product value chain is gathered and sources of the resource established, facilitate meetings with communities in the area with the resource to establish the following:• Prioritize tree products that are of interest to the community. • Map existing tree-related business lines, their strengths, and weaknesses. • Identify new business lines that could be developed.• Map actors and their roles for both the existing and new business lines. • Understand gender and youth roles around existing and new business lines. • Come up with a value chain map showing the products and their sources. • Visualize the opportunities and challenges for developing the value chain.Step 2 Consult target communities where tree product value chain(s) or businesses can emerge.• List common tree species in the area • Highlight the most important species and give reasons why they are important.• Establish the social, economic, and environmental benefits of each tree.• List all the products harvested from each tree species.• List all the possible priority product lines that could be generated from available tree resources.• Determine who makes decisions on what trees to plant/regenerate.• Determine what informs the decision (household consumption, sale, or both).• Determine who is involved in the collection, processing, packaging, marketing, and selling of the tree products.• Determine who collects the money on the sale of the products.• Determine who decides on how to spend the money.• Identify what the market situation is like for the products.• Identify all the markets.• Map out the challenges associated with marketing each product (gather information on the entire chain from production to consumption/sale).• Find out whether the community has received any material support or training in production, processing, marketing, and utilization of tree products.• Find out who trained the community.• Find out what support the community received.Table 1. Example of a tool for engaging local communities in identifying tree product business potential.Aside from experts, it is also important to engage with other institutions working on tree-based enterprises to gather more information on investments that can be leveraged. Figure 5 shows an illustration of Shea butter production unit serving several group members in the rural Municipality of M'Pessoba, Cercle de Koutiala, Mali. Use some of these guide questions to learn more from the institutions:• What tree products are harvested in the area?• What products are you working on and where within the value chain do you operate?• What support do you offer the local communities?• What challenges do you experience in the product value chain development?• Who else is involved in the value chain?• What can be done to address the challenges?Lesson: Group-based prioritization and feedback exercises are prone to various biases and the exclusion of sub-populations based on institutional, social, or political customs and regulations. When designing tools, you can mitigate the effects by ensuring that participation and meaningful engagement is achieved through different settings (e.g., separate male and female groups, targeted integration of youth).Involving experts will provide useful opinions on developing economically viable value chains. The experts should provide technical information on:• The stakeholders working on the tree product value chain.• The main tree products and value chains in the area.• Gaps in the value chain nodes where the project can intervene.• Potential approaches to address the gaps in the value chain.Engage knowledgeable experts and partners on setting up tree product value chains.Lesson: Independent experts are less prone to vested interests -however, there might be biases or gaps in their assessments too. Make sure you try to find a broad range of experts from different fields -from business, social science, and biological science, to name a few.Step 3Analyse data/information gathered on potential tree value chains. Data collected in each of the preceding steps should be analysed to gain a deeper understanding of the different issues of interest when developing value chains. From each analysis, establish:• What tree product are prioritized and by which groups?• Who are the main actors e.g. producers, processors, middlemen, transporters, in the prioritized value chain?• What challenges and opportunities exist in the product value chains?• Who are the potential stakeholders e.g. government, financiers, research in each of the product value chains?Step 4Lesson: There are always multiple ways to look at data and your background may make data look more favourable than the same data looks to others. It is typically good to have a look at the evidence from a 'devil's advocate' perspective and to ensure that it stands up to scrutiny. It is also useful to look at data with a diverse group of people from different backgrounds e.g. science, development, markets, finance, extension and others.Lesson: One key issue to be aware of and reflect on is that many stakeholders in the business world have vested interests. These interests could potentially affect your ability to meaningfully integrate rural populations into profitable value chains to a significant extent. Negative unintended consequences can emerge when dependencies are created. In addition, if you are thinking of establishing a totally new value chain, you will face the problem of finding locally relevant information about the functioning of these chains. When using different locations to gain insights, a careful assessment of the applicability of the information to your target location is very important.Having gathered all the information needed to implement value chain development, actors can embark on the following:• Reviewing challenges associated with the product value chain. • Assessing institutional capacity to support the value chain. • Establishing the vertical and horizontal linkages necessary for effective tree-based value chains.Step 7 Identify various areas in which to intervene. Lesson: When assessing where you could intervene/support the value chain, you should also assess if you have the power levers and resources required to make your intervention meaningful.There are strong institutional norms and individual behaviours that often determine how value chains work, and it may not always be possible to change these very easily.After prioritizing a tree product business and mapping value chain actors develop an implementation plan, to start the intervention support. Feedback mechanisms should be promoted at each planning stage to fill needed information gaps and allow for adaptive management.Step 8 Implement the tree-product value chain business plan and build on monitoring and reflection learnings. Lesson: Often, negative consequences only emerge after the initial phase of a project has started as the interventions may trigger a series of changes that are not always easily anticipated. It is therefore important to include potential negative effects into your feedback plan to be able to react to these as early as possible and to ensure they are mitigated.","tokenCount":"2059"} \ No newline at end of file diff --git a/data/part_3/7399512821.json b/data/part_3/7399512821.json new file mode 100644 index 0000000000000000000000000000000000000000..4a3db3708ef5ca3e4d0b0bde9e24f1fd4256aa18 --- /dev/null +++ b/data/part_3/7399512821.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"fe34305c30995ee16fdab098d16c14e1","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/3ee0f1d2-67de-4c27-8b11-fcca7c302dd5/retrieve","id":"-1930846918"},"keywords":[],"sieverID":"e3e715b0-5de9-4aad-8e4d-31246d0aea7e","pagecount":"9","content":"Programme Narrator (Introduction): The objective of this broadcast entitled 'our farming' is to motivate our people to get introduced to new farming techniques of contemporary period, produce improved yield to improve their living standard.Farmer: This avocado I saw at Wondo Genet, a single one sells for birr 4.50. Since they sell by kilo, I have seen it being sold for birr 10-11 per kilo. If it brought here, since the price at Hawassa and Leku will not be the same; the primary need of people here is avocado and milk. We usually don't get avocado and we tell people, no. If it could be reproduced in our area…we know that it is very useful.Programme presenter (female): How are you respected listeners? This is a programme transmitted by Sidama Radio at 954 kilo hertz or 314 metre band mid wave on 'our farming'. Respected listeners, in our last week programme we have presented you about the uses of the new grafted mango and avocado tree from Dalle wereda, Shoye village. For today we present to you about market demand and consumers' need at Shebedino wereda, Leku town juice preparing houses' market flow and consumers' interest. And also present a drama. Until the end of the programme tune with us.Presenter (male): If you could introduce yourself to our listeners.Shimelis Shibiru: Adonay is a house for selling juices and various types of food.Presenter (male): Do you juice at Adonay Juice house here in Leku? Shimelis Shibiru: Yes, I use at Adonay. Presenter (male): Now I am talking to you here. Did you order for it? Shimelis Shibiru: Yes, I have ordered. You are just talking to me while I am preparing to drink it.Presenter (male): Youth Shimelis, do you know anyone who has improved his living by selling avocado juice? Shimelis Shibiru: Yes, I know.Where do you know? Shimelis Shibiru: Here in Leku; there are people who sell on market days too. Owner of Adonay, called a person Elias.Presenter (male): Which Elias? Shimelis Shibiru: Elias Hagirso. He has improved his living by selling it. There are others too in town. Even if I don't exactly remember their names, there are others too.Presenter (male): So, do you mean that if people use these new improved avocado seedlings to plant and use them in various ways would be good? Shimelis Shibiru: Yes, I say it would be good.Presenter (male): Well, for responding to my questions, I thank youth Shimelis Shibiru, resident of Gonowa godo village at Shebedino wereda.Presenter (male): What is your name?Respondent: Mekonnen Ja'elaba.Where is your address? Mekonnen Ja'elaba: Gonowa godo.Mekonnen Ja'elaba: Before we have used to reproduce the traditional non-selected seed avocado. But now the one we reproduced from agriculture office have yielded us with many uses. It doesn't grow tall and occupy wider space. The fruits of the old tree when collected fall down and get broken. But now the fruits of the new can be collected while standing; is better than the old one, the seed is selected, and provides a lot of advantages.Presenter (male): How about the taste? Mekonnen Ja'elaba: It is very good. It is sweet.Presenter (male): Good for being sweet. But is it available in the market?Mekonnen Ja'elaba: For us it is new. We have recently stated planting it. The fruits are now being used just at home. It has recently started to give fruits. When it starts yielding more fruits leave alone market, we expect to get money by selling it.Presenter (male): Well, Youth Mekonnen Ja'elaba, resident of Gonowa Goda village in Shebedino wereda, thanks for responding to my questions.Mekonnen Ja'elaba: Thank you.Following if we pass to the question we raised to Elias Hagirsso.Elias Hagirsso: At Leku town, in Adonay snake house I sell avocado juice.Presenter (male): If you are selling avocado juice, where do you get the fruit?Elias Hagirsso: Earlier I used to get the fruit here in town Leku, but now it is getting reduced and I can't easily get it.Where do you get it to run your business?Elias Hagirsso: From Wendo Genet bigger avocados are brought; but when it is brought here, it gets expensive. Because of this it sometimes is not profitable and I don't buy. Avocado from our area is also getting fewer. People now days are interested to consume avocado. But we don't get enough fruits from the market.Elias Hagirsso: Its amount is getting lesser and lesser. Since I start this job, it is now three years. Its availability is becoming fewer and fewer. The bigger size avocado it occasionally brought to the market. Even if it is fewer, it's becoming expensive. People like to consume milk and avocado. I see that for the two items availability is very limited.Presenter (male): By selling avocado juice, how much beneficiary you are? Elias Hagirsso: If there is avocado I feel I could benefit, because I don't get fruits enough, I can't say I have benefited, because people bring lesser. Now time is summer, there is no avocado in Leku area. For this reason, its shortage is there and the size is smaller.Presenter (male): Being a businessperson, if you get it how do buy it?Elias Hagirsso: Even if it is smaller in size, it is now sold for more than birr 1. If I could get it, I would benefit from it and also people would benefit.The ones from Hawassa, that you said bigger size, for how much is it sold?Elias Hagirsso: In the market place I have observed two three times. The one I saw from Wendo genet at Hawassa is sold for birr 4.50. Sometimes when they sell at retail price, they don't sell single fruits. Instead I have seen them selling between 10 -11 per kilo. If it is brought here, since the price at Hawassa and Leku can't be same, I don't buy it. In our area, however, there is no big size avocado.Presenter (male): It is being said that the new improved and grafted avocado species yields much fruits and bigger in size; generates good income for producers. What do you say, youth Elias about this? Elias Hagirsso: Well, since time is getting better now than before, as I can see, the previous avocado seem didn't yield good product for people. And also its size is getting smaller. If people be beneficiaries of the new type brought by the government, that yields bigger size fruit, I think I can say they will benefit and also we too would benefit.Presenter (male): Well now, when people to the market or to your house to use, what kind of people come? How could they satisfy their desire? Elias Hagirsso: As I said before, since I started here at Adonay it is now more than two years and becoming three years. We prepare mango, avocadno, papaya and pineapple; their first choice is avocado. Because we don't get avocado, usually we say we don't have it. We offer other items. If the new avocado could have been reached to our area, we believe that people would have been benefited a lot. Instead of saying coffee and chat, if people could have been introduced to plant the new avocado seedlings, I would say they will benefit and we too will benefit as well.Presenter (male): When you say, people need avocado more than other items, how do they express their needs? Can you explain it more?Elias Hagirsso: First of all, when waiters serve people, I too serve them and see that many people ask for avocado juice. If there is avocado juice they happily enjoy it. When there is no avocado, they say no to other type of juices. Even some people desire to buy avocado fruits. There is high demand for avocado juice. In this area a quintal of avocado is sold for birr 400 and above. Even though those available are not that much good and we don't find it to buy. I would say and desire that if it could be available in the market we could buy and also people could have been used. In the market avocado fruits are seen according to its quality. For example, when we buy it for making juice, we buy it at a higher price. More or less we buy a quintal for birr 400 -450. Even if it is not available enough, good quality avocado never been cheap in the market up to now.Presenter (male): Well, young man Elias, what messages do you for people who consume avocado juice before concluding this.Elias Hagirsso: My concluding message is, for those consuming avocado juice, it is good for physical health, because as science says avocado and milk are interrelated in containing high protein. And also I say, if our people use the new improved seedlings of avocado instead of the old species, since the weeds are removed once and properly cultivated, they can benefit a lot.Respected listeners to our programme, we now pass to a short drama and let us follow it.Female calling: You! Boy! You! Is that avocado that you are carrying?Boy: Yes, it is.Female: Bring it I will buy.Boy: Here it is.Boy: Each one per birr 2.Female: Are you saying birr 2? Isn't it small in size? Boy: Mom, are you saying it is small, looking the size of pumpkin!? Female: Lower the price and I will buy it.Boy: Mom, it can't be lessen from that.Female: I tell you, if you lessen the price, I will buy the whole amount.Boy: A single coin can't be lessened from that.Female: From birr 2 each? Boy: Yes.Female: I tell you, I will buy it whole sell it to me. Boy: Mom, I don't sell it like that.Female: You little boy, please sell it to me. Isn't it smaller in size? What difference does it have from others? Boy: Mom, are you saying smaller in size. This one is bigger in size than the others. Is the former like this in size? The former ones are smaller in size. But this one is bigger in size. Mom, can't see the size? The flesh is bigger and the seed inside is small. It is big. When eaten it is sweet. Sellers come up to the villages and buy. For I don't know why they didn't come today; it is for this reason that I am taking it to the market.Female: I tell you; now sell it to me for birr 1.25 each.Boy: Mom, didn't I tell you that a single coin can't be deducted from that.Female: Let it be birr 1.50.Boy: Mom, it can't be deducted from that for me.Female: Boy, consider and sell it to me.Female: Sell it for birr 1.75.Boy: Mom, it never be deducted from that.Another Female: I see the mother of Anchamo speak with a boy in louder tone. Isn't it okay? Female: It is okay. But a boy couldn't agree to sell avocado to me. That is the reason. Female: Time now is to create a job. I have seen others doing this selling business. I know people who buy it on trees, collect from trees, load on Lorries and sell it in other places. They now have changed their living. Some of them have bought vehicles, others have improved their living. I too decided not to be idle; the new avocado, this is the new avocado. This avocado is highly needed in the market. If I gather it buying small amounts, sellers will come here and buy it. Otherwise if taken to town it will immediately be sold out. If sold in town it will be made into juice. Didn't you see the one drank with glass?Another Female: Ah! Mother of Anchamo, at this elderly age what are you bringing? Are you going to make it juice and drink or to ask others to prepare juice for you, that you -not any more young woman, standing on the road and bargain with this small boy!? Female: It is not to make juice by my own. Those who buy from me and from others put it together, prepare juice and sell at market. People are now using it as good.Another Female: I see! Mother of Anchamo, you didn't see avocado so far? Or new avocado appeared from heaven or earth, that you being like this spoil names? Female: The old avocado is there. But this one is different from old avocado. There is no small job. Any job can't be discriminated. Therefore, by collecting like this and selling it, have improved my life. I have sent my children to school and they are now attending school in good condition. Purchasing clothes, food for home consumption, stationery for children, and others am now educating them well.Another Female: I now understand all that you are saying. But what makes this avocado different from the old one? Can you explain this to me? Female: Yes, of course. Didn't I tell you it? If business is done with it, it doesn't last longer in market places. Therefore, if you work hard you will get something. There is no small job. I do it.Another Female: Well, Mother of Anchamo, you showed me what you know. I didn't know this. Well, now continue your business, and I spoke to you while I am passing by to reach for mourning there across that village.Boy: Mom, don't keep me here. If you want to buy, buy it.Female: Well, I will buy it, put it all on the ground and count it.Boy: Okay, I will do.Respected listeners to our programme, you were so far listening to the programme on selected mango and avocado seedlings and its market demand. We now conclude our prograqmme here and until we meet in another programme next week, good bye.","tokenCount":"2271"} \ No newline at end of file diff --git a/data/part_3/7399530737.json b/data/part_3/7399530737.json new file mode 100644 index 0000000000000000000000000000000000000000..40d8f4ccc6864651c0b6ca0b8a5e09344a9d6238 --- /dev/null +++ b/data/part_3/7399530737.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"b346ca2349e0696d706474783f2384c5","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/07b7924b-f982-43e4-a3f3-e793349a1023/retrieve","id":"-1066857275"},"keywords":[],"sieverID":"a7f41c32-65e9-4caa-9e2b-2426469426ef","pagecount":"12","content":"1.1. Tình hình thời tiết vụ này năm nay so với vụ này năm ngoái hoặc những năm khác thì khác hoặc giống nhau như thế nào? * Ghi rõ so sánh với năm nào: năm ngoái (năm trước đó) hay so với bình thường (trung bình của nhiều năm) Ví dụ: Năm nay, nhiệt độ trong tháng 5 cao hơn nhiệt độ tháng 5 của vài năm trước (2-3 năm trước). Trời nắng nóng kéo dài trong 7 ngày liên tiếp, khoảng 2 tuần tháng 5 không hề có mưa. Lá cây (lạc, cam) bị héo nhiều, thiếu nước sinh hoạt, giếng cạn hơn so với năm trước. Nhà Bác Thái bơm nước tưới cho cây cam 4 lần thay vì 2 lần như cùng thời điểm năm ngoái. ","tokenCount":"130"} \ No newline at end of file diff --git a/data/part_3/7400070111.json b/data/part_3/7400070111.json new file mode 100644 index 0000000000000000000000000000000000000000..662085aa758163b5bac4b1f750e73a9f3946ee54 --- /dev/null +++ b/data/part_3/7400070111.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"63295177588c7c3e6a5305175fe9c4e1","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/9c11a900-8075-441a-a8cc-45813fbfaec8/retrieve","id":"-260017680"},"keywords":["Photo M-A","Leplaideur © Syfia Photo B","Favre © Louma productions"],"sieverID":"324a7ba2-6fcb-4f25-a55a-b0f6464ebb68","pagecount":"16","content":"Pour les producteurs et les consommateurs, la nourriture est synonyme de goût, d'apparence et de texture. Si vous savez produire les additifs dont ils ont besoin, vous avez gagné.n dit que la musique est la nourriture de l'amour. Que dire de l'agriculture ? La nourriture de la vie puisque source de nourriture ?Imaginons l'agriculture comme un orchestre avec choeur. La production agricole serait, comme une symphonie, le produit des efforts combinés de tous les instruments, chanteurs et musiciens. Dans la section des instruments à corde, nous aurions les cultivateurs, avec leurs faux, leurs semences et leurs entrepôts et dans celle des instruments à vent, les éleveurs avec leurs troupeaux ; les percussions seraient confiées aux négociants, aux chercheurs et aux financiers, tandis que le choeur serait composé des vulgarisateurs, des communicateurs, des institutions politiques, des communautés locales et des représentants de la société civile. Vous voyez le tableau ?Et qui jouerait le rôle de chef d'orchestre et de chefs de section, dans notre analogie agricole ? Eh bien, ce seraient les coordinateurs sectoriels et les responsables de l'orientation politique qui, eux aussi, visent à produire un résultat harmonieux et cohérent.En agriculture, comme en musique, il y a de nombreuses mélodies différentes, même si certains prétendent qu'il n'y a qu'une seule mélodie de base pour le monde. Les intégristes de l'agriculture pourraient sans doute, eux aussi, prétendre qu'il n'y a qu'une seule agriculture : \"la science, l'art et le métier de la culture du sol, de la production de végétaux et d'animaux\", selon la définition consacrée.Mais, tout comme il y a de multiples formes musicales, il y a de multiples approches de l'agriculture : commerciale, émergente, de subsistance, de rente, de plantation, associée à Site Web : spore.cta.intIl n'y a pas que la vue dans la vie : le toucher aussi nous en dit long sur ce qui nous entoure, et ce numéro de Spore va vous en dire long sur le toucher. Les additifs, par exemple, servent à colorer ou à conserver les aliments, mais souvent aussi à améliorer leur texture ; beaucoup d'entre eux viennent des pays ACP, et vous serez touché(e) d'apprendre à quel point cela peut être intéressant pour ceux qui les cultivent. Sans être touche-à-tout, nous rendons hommage à la presse agricole et à ses efforts constants pour parler à ses lecteurs de sujets qui les touchent de près. Nous avons voulu aussi vous faire toucher du doigt les efforts qui sont faits pour concilier l'agriculture et l'écologie, ou pour défendre les intérêts des pays ACP dans les négociations commerciales. Nous espérons enfin que la broderie serrée de nouvelles, de points de vues et d'outils d'information de ce numéro de Spore vous sera agréable. Croyez bien que votre fidélité nous touche.Illustration Terri Andon/Source Betty Press, Panos PicturesAprès une génération de théories agricoles plus ou moins neuves et qui ne sont pas parvenues à relever le défi de la sécurité alimentaire et de la biodiversité, voici une nouvelle approche : l'écoagriculture. Fera-t-elle mieux ? La dernière approche en date est connue sous le nom d'écoagriculture et elle se prête bien à la comparaison entre musique et agriculture, car elle essaie d'orchestrer harmonieusement les besoins de l'agriculture et ceux de l'écologie.On mise énormément sur elle pour relever les défis de la sécurité alimentaire et parvenir à une nutrition adéquate. Ce concept était initialement défini, à la fin des années 1990, comme \"une combinaison de systèmes d'utilisation de la terre pour produire la nourriture humaine en préservant les écosystèmes, y compris les habitats de la diversité biologique sauvage\". Cette définition a évolué avec l'approfondissement de la réflexion sur l'agriculture pour devenir : \"L'écoagriculture est une agriculture durable associée à des systèmes de gestion des ressources naturelles, qui englobe et renforce la productivité, les moyens d'existence du monde rural, la préservation de l'écosystème et la biodiversité.\"Paysan, faune, flore L'écoagriculture est une tentative méritoire pour dépasser le conflit entre, d'une part, la pratique agricole et la demande alimentaire et, d'autre part, la préservation de la riche diversité d'une faune et d'une flore sauvages en constante évolution. Les deux parties campent souvent sur leurs positions. Du côté de l'agriculture, la tendance est à pénétrer de nouvelles zones à la fois vulnérables et sujettes à des dégradations rapides ou des forêts ou d'autres habitats naturels dont la disparition signifie la destruction de la biodiversité. Du côté de la faune et de la flore sauvages, les politiques classiques consistent à créer des parcs et des réserves et à essayer de parvenir à des compromis avec les communautés locales. Mais chaque terre défrichée, chaque rivière endiguée, chaque troupeau mis en clôture résonne avec un bruit sourd.Dans bien des forums internationaux, les deux parties se confrontent régulièrement, comme dans un match de catch interminable. Dans Spore, nous avons longtemps soutenu que quand la pression devient trop forte, c'est le besoin de production alimentaire qui devrait l'emporter sur les questions de biodiver-sité (voir \"D'abord manger\", dans Spore 95). Mais en fin de compte, cet argument n'est plus tenable et il devient clair que la réflexion politique comme les pratiques agricoles ou écologiques doivent radicalement changer. On ne doit plus chercher à prolonger la coexistence boiteuse entre les deux parties, mais viser une vraie cohabitation. Il faut trouver « un terrain commun, un futur commun » -phrase empruntée à un rapport récent de l'UICN, l'Union internationale pour la conservation de la nature.Ce rapport montre que ce qui est en jeu, derrière le concept d'écoagriculture, c'est la nécessité, surtout pour les agriculteurs travaillant dans des systèmes de production intensive, de réaliser un compromis difficile entre production et biodiversité. \"S'ils veulent un peu plus de protection de la biodiversité, ils doivent sacrifier beaucoup de production. S'ils veulent un peu plus de production, ils doivent sacrifier beaucoup de biodiversité.\" Pour les producteurs pauvres des pays en développement, les choix ne sont pas plus faciles : \"Le manque de techniques modernes conduit souvent à des pertes de biodiversité, car on utilise plus de terres et de ressources que n'en demanderaient des techniques durables et productives. Pour les producteurs plus riches, c'est souvent un excès de techniques modernes qui conduit à des pertes de biodiversité, en raison de la pollution ou du compactage de la terre que ce type d'exploitation occasionne.\"En termes politiques, le défi est de gérer l'écosystème comme un tout, avec des zones protégées comme réservoirs de biodiversité sauvage au sein d'une \"matrice\" de terres gérées de façon telle qu'elles produisent de la nourriture et des revenus, tout en préservant leur habitat. Comment l'agriculture peut-elle mieux planifier la biodiversité ? Le rapport souligne que \"lorsque les agriculteurs, les défenseurs de l'environnement et les décideurs politiques gèrent les terroirs en considérant à la fois la production alimentaire et la conservation des espèces comme des valeurs essentielles, des progrès considérables peuvent être accomplis sur les deux fronts\".Comme d'habitude, c'est à l'échelon institutionnel que les décisions doivent être prises. On peut déjà noter des signes encourageants dans les pays ACP, où ces nouvelles approches ont poussé de nouvelles institutions rurales, comme les organisations paysannes, à s'associer aux groupes déjà établis pour s'engager dans des projets pratiques. Plusieurs dispositions importantes et urgentes doivent être prises pour soutenir l'écoagriculture : réduire les pratiques destructives des habitats en améliorant les rendements sur les terres déjà exploitées, maintenir des habitats naturels de la faune et de la flore dans les exploitations agricoles, renforcer la protection des bas-fonds et marais proches des zones agricoles (tels qu'au Zimbabwe et au Sénégal), simuler des habitats naturels en introduisant des plantes pérennes productives (comme en Afrique du Sud) et surtout, insister sur des périodes de jachère améliorée, qui peuvent mieux aider au maintien des espèces sauvages que les cultures annuelles continues (comme en Zambie et au Kenya).L'agriculture biologique, qui est un modèle agricole souvent proposé dans ce type d'approche, ne fait pas nécessairement partie de la panoplie de l'écoagriculture. Longtemps considérée comme une agriculture à faible rendement, elle a certes accompli de gros progrès en termes de hausse durable de rendement et est donc une approche importante. Mais, selon le rapport déjà cité, ce n'est pas la seule. \"Dans de nombreux cas, les exploitations qui utilisent des produits agrochimiques peuvent toujours protéger les habitats précieux par une gestion prudente (en utilisant des filtres pour empêcher les excès de nutriments d'entrer dans les cours d'eau, par exemple), combinée avec d'autres stratégies comme la diversification des productions ou la mise en place de corridors de faune et flore sauvages. Sur les sols appauvris, comme ceux qu'on trouve en Afrique, certains engrais chimiques -combinés avec des engrais biologiques -sont souvent nécessaires pour reconstituer la matière organique du sol en vue d'une production durable. L'utilisation stratégique -et limitée -de pesticides non persistants fait partie de certains systèmes de lutte intégrée.\"L'écoagriculture est-elle en mesure d'ouvrir une nouvelle page dans la production agricole et la gestion de la biodiversité, d'offrir une nouvelle partition à l'orchestre agricole ? Sa volonté de surmonter les conflits au lieu de les entretenir est de bon augure, de même que sa méfiance du purisme. Elle est ouverte, en plaçant des limites bien précises, à des apports chimiques et à un usage, très strictement contrôlé, de cultures génétiquement modifiées. Pour faire progresser cette approche, l'UICN et Future Harvest ont formé un nouveau groupe, les Partenaires de l'écoagriculture. Ce n'est certes pas une initiative de la base, mais la porte est ouverte aux organisations paysannes, aux groupes de producteurs et aux médias agricoles progressistes. Alors, comme dit la chanson : entrez dans la danse… es fours à micro-ondes dans les voitures, une cuisson en quelques secondes par radio-fréquence, des entreprises de transformation alimentaire de plus en plus performantes…, l'alimentation ne se contente plus de nourrir, c'est une nouvelle culture qui nous vient d'un des plus grands pays de la planète. Nous pouvons le regretter, mais c'est la réalité des marchés alimentaires urbains, des marchés qui demandent une qualité constante. Or la plupart des aliments n'ont pas une qualité régulière, c'est pourquoi on y ajoute des additifs, destinés à réguler les variations des caractéristiques alimentaires. Selon le Codex Alimentarius (voir Repères), un additif alimentaire est \"une substance ou ingrédient non présent habituellement dans l'aliment et qui y est inclus pour améliorer sa qualité alimentaire ou sanitaire\". Certains additifs sont synthétiques, obtenus par des mélanges chimiques, comme ceux qui sont extraits des goudrons de houille ; d'autres sont naturels, comme le jus des baies. Quelques-uns sont très courants et familiers, comme le sel ou le sucre, d'autres moins, comme l'éthylène-diaminetétra-acétate de calcium disodium (E385) utilisé pour les fruits de mer en boîte, mais interdit dans certains pays. On classe les additifs en fonction de leur rôle dans la nourriture : accentuer le goût, colorer, émulsifier, conserver ou prolonger.Nous trouvons une dizaine de couleurs synthétiques dans notre nourriture, et de toutes petites quantités suffisent pour obtenir l'effet souhaité. Bien que soumises à de strictes conditions sanitaires définies par la Food and Drug Administration (FDA) -l'organisme américain normatif de facto -, plusieurs d'entre elles sont dérivées de distillats de goudron de houille, dont certains composants préoccupent les toxicologues.De nombreux aliments naturels contiennent des graisses et de l'eau organisées en associations stables -dites émulsions -qui déterminent certaines caractéristiques comme la texture et l'impression en bouche. Les agents de sapidité et exhausteurs de goût ont tendance à être plus solubles dans les lipides (graisses) que dans l'eau et préservent nos arômes favoris dans ce qu'on appelle la phase non aqueuse. Les émulsifiants sont utilisés par les chercheurs en nutrition dans des produits comme le chocolat, les mayonnaises, les saucisses et les crèmes glacées.De nombreuses émulsions sont instables, comme la crème à la surface du lait. On les stabilise en augmentant la viscosité -la nature 'collante' -de la phase aqueuse de l'émulsion, avec des ingrédients comme l'amidon, la résine de guar ou des protéines telles que les gélatines, qui empêchent la coagulation des gouttelettes de graisse. L'adjonction infime d'un épaississant de type carraghénane (ou carragène), dérivé d'une simple algue, peut faire la différence entre deux sauces en bouteille, l'une stable et donc vendable, l'autre pas.Les conservateurs sont les additifs les plus controversés. C'est un groupe de composés antimicrobiens qui retardent la croissance des microbes, mais qui sont suspectés d'interrompre le processus biochimique cellulaire. Leurs détracteurs soulignent que les aliments n'auraient pas besoin de conservateurs s'ils étaient moins dilués. D'autres additifs, comme les arômes, peuvent être d'origine naturelle ou synthétique. Des composés comme les acides et les édulcorants et les exhausteurs de goût tel le glutamate de sodium (très utilisé dans les restaurants chinois) renforcent les arômes naturels. Leur utilisation pour prolonger l'action d'ingrédients coûteux a desservi la réputation des additifs, en faisant suspecter des intentions frauduleuses (pour masquer une qualité insuffisante par exemple).Certains aliments naturels reviennent en force comme substituts, en raison des risques sanitaires liés à l'utilisation de certains additifs synthétiques et de leur coût élevé de production. Le curcuma (ou safran des Indes) et la betterave rouge (Beta vulgaris) ont d'excellentes propriétés colorantes, jaune et rouge foncé, bien qu'elles pâlissent à la lumière. La poudre de carotte séchée donne une coloration brillante rouge-orangé, grâce à la bétacarotène, mais elle pâlit aussi au soleil. L'amarante (Amaranthus sp.) est un colorant rouge foncé plus résistant -une dose pour 4 000 donnera une couleur rouge foncé à la gelée la plus pâle. La théaflavine contenue dans le thé donne une couleur rouille, stable à la lumière, mais sujette au noircissement dans l'obscurité.L'utilisation d'additifs purement chimiques est également en recul par rapport à des produits naturels aussi efficaces. Les farines d'arachide et de soja, par exemple, sont riches en lécithine, un émulsifiant naturel très utilisé en boulangerie, et les émulsions qu'elles permettent peuvent être stabilisées avec des extraits de gombo ou de tamarin. Les dérivés de l'arachide peuvent toutefois rencontrer des problèmes sur certains marchés internationaux, comme celui de l'UE, qui restreignent leur importation.Ce sont les forces du marché et les réglementations commerciales qui décideront de l'avenir des additifs. De nombreux industriels, qui redoutent le développement du \"biologique\", savent que la découverte de substituts naturels signera le déclin de leurs produits synthétiques. La société multinationale Roche, par exemple, est à la recherche permanente d'ingrédients naturels à travers la bio-prospection.Attention, toutefois : \"naturel\" ne signifie pas nécessairement \"sain\". La glycyrrhizine, un édulcorant extrait de la réglisse (Glycyrrhiza glabra), a des effets physiologiques perturbants et le stévioside, un édulcorant extrait du Stevia (Stevia rebaudiana) -qui a fait l'objet d'un article très apprécié, dans Spore 94 -, est reconnu par la FDA, non pas comme supplément alimentaire, mais comme supplément diététique. Le stevia, en tant qu'additif, fait l'objet d'un débat animé sur le détournement des lois sanitaires pour protéger certains intérêts commerciaux.En termes biologiques, les additifs constituent un sujet complexe. Mais, en termes économiques, ils valorisent les aliments en développent leur action, en prolongeant leur durée de vie et en leur donnant plus d'attrait pour les consommateurs. La tendance est à l'utilisation de produits naturels de substitution et c'est une opportunité qui devrait intéresser plus d'un producteur ACP.Voir Repères, page 10 L a fin du mois est toujours une période cruciale pour l'agriculture. C'est le moment de faire le bilan de la campagne de semailles, de vérifier les réserves de fourrage, de planifier le sarclage, d'entretenir les outils et machines. Tout cela dépend de la météo et de la possibilité d'obtenir du carburant, des engrais et de l'argent, toutes choses de moins en moins disponibles -on dit que même le climat a dû se plier à l'ajustement structurel, c'est sans doute pour cela qu'il est si variable ! Selon la nature de l'exploitation agricole, les salaires et les factures doivent être payés, les rapports rédigés, les demandes de financement déposées, les formulaires d'assurance ou d'impôts remplis. La routine, en quelque sorte, façonnée par le bon sens paysan et la bureaucratie et souvent consignée dans ces calendriers paysans appelés almanachs (voir encadré bleu).Cette même régularité, trimestrielle, mensuelle, hebdomadaire ou même quotidienne, rythme la vie d'un éditeur de journal ou de magazine. Cela est vrai, que vous soyez responsable d'une feuille d'information communautaire ou d'un de ces nouveaux journaux qui sont devenus, dans les pays ACP, les portedrapeaux de la pluralité et de la liberté de la presse. Et c'est vrai aussi pour la nouvelle vague de magazines paysans qui ont investi le paysage rural.Prenez le cas de La Voix du Paysan (voir Spore 101), le mensuel camerounais que de nombreux journaux agricoles prennent comme modèle. La dernière semaine de chaque mois, les responsables des éditions française et anglaise se réunissent avec le directeur et le rédacteur en chef dans les petits bureaux bien ordonnés du journal, au centre de Yaoundé, la capitale du pays. Et c'était le cas à la fin de février 2003. Ils ont procédé aux corrections de dernière minute à la mise en page et au contenu du numéro de mars. Puis ils se sont occupés du numéro d'avril pour mettre au point les articles, sélectionner le plus grand nombre possible de lettres de lecteurs, discuter de l'impact d'un récent article de Spore qui parlait de leur site Internet et prendre connaissance du rapport sur la distribution du numéro de février (voir l'encadré jaune). Des scènes identiques se déroulent dans les bureaux des rédactions de centaines de périodiques agricoles à travers le monde, comme les réunions journalières de rédaction du bulletin agricole quotidien de Suva, Fidji, le comité de rédaction bimestriel de Spore (décrit dans Spore 99 et 101) ou les réunions mensuelles du nouveau magazine Farmers' Monthly, qui s'efforce de trouver sa place dans le nouveau secteur de l'agriculture émergente, en Afrique du Sud.Qu'ont-ils en commun, tous ces journaux et magazines ? Certains appartiennent à un secteur particulier, comme CitriNews, le bulletin de l'Association des producteurs de citron de Belize, ou le magazine Horticulture in Malawi, bien doté et tout en couleurs Sans l'engagement passionné de la presse agricole des pays ACP, l'agriculture ne parviendra pas là où nous voulons la mener.en Côte-d'Ivoire, comme Ecoforum, publié par le Centre international de liaison environnementale au Kenya, ont également fait montre de la même constance. Ils sont tous axés sur la notion de service, avec une ferveur quasi évangélique, et quelques soutiens extérieurs. La vague la plus récente de publications provient des omniprésentes fédérations d'organisations paysannes, personnifiées par la Voix des producteurs, produite par la Fédération des unions des producteurs du Bénin (FUPRO) et qui aborde les multiples soucis habituels d'une fédération, avec un mélange d'informations sur les marchés, de conseils sur les cultures et de rapports sur les changements intervenus dans l'organisation. On retrouve la même mixture dans le magazine Ground-Up, qui véhicule les messages de PELUM, une association spécialisée dans la gestion écologique et participative du terroir, qui regroupe quelque 130 fédérations et d'autres organisations de la société civile en Afrique australe.Ces fédérations jouent des rôles multiples vis-à-vis du monde rural, à la fois fournisseurs de services au sein des villages ou des exploitations et représentantes des communautés rurales dans les forums locaux et nationaux. Avec le temps, elles apprendront à faire la distinction, dans leurs publications, entre les questions techniques et les questions institutionnelles. Et ce sera mieux ainsi.Qu'est-ce qui permet à ces publications de tenir ? La foi, et encore la foi. Leur point faible, c'est la viabilité financière, mais la demande est forte, même s'il ne s'agit pas d'un marché rentable. Les revenus proviennent principalement, non pas des ventes, mais de donations, d'emprunts et de publicité payante -seule façon d'obtenir les moyens requis pour l'équipement, la chaîne de distribution, le personnel.L'information, elle, est abondante, notamment grâce aux échanges sur Internet. La transformer en savoir est une compétence qui se développe à mesure que la formation des journalistes agricoles progresse et que les réseaux professionnels grandissent. La puissante Association mondiale de la presse, qui se réunit en juin 2003, en Irlande, sur le thème \"Renforcer l'avenir de la presse\", conclura peut-être que la viabilité de tout journal dépend de sa capacité à développer des services supplémentaires et à utiliser les nouveaux médias. Alors il prospérera.Et c'est ce que devront faire les fragiles périodiques agricoles des pays ACP. Lorsque Spore a interviewé le rédacteur en chef de La Voix du Paysan pour cet article, il n'a pas été question de l'image du journal, ni de son processus éditorial ; nous avons parlé pendant des heures de la façon dont le journal est utilisé par les lecteurs comme un forum pour gérer les tensions occasionnelles, inévitables dans la dynamique des initiatives de développement local. Lorsque les lecteurs utilisent leur journal comme un médiateur, l'éditeur doit veiller à assurer sa pérennité.Dans l'ombre des médias agricoles, on trouve de nombreux héros ignorés. Vital Okomé, de La Voix du Paysan, en est un exemple emblématique : c'est un garçon agile, dans les vingt-cinq ans, ambitieux, consciencieux et un peu rappeur. Dans son petit bureau des expéditions, plein à craquer de piles de journaux bien rangées, il se lance tout à coup dans une psalmodie presque musicale. Description de fonction, dans le style rap : \"Bon, vous voyez, mon boulot, c'est distribuer le journal dans la province du Centre, qui comprend la ville de Yaoundé, mais, en fait, je m'occupe de toute la distribution, quelle que soit la destination.Vers la fin du mois, les gens de la production m'appellent et j'emmène la maquette prête à imprimer à l'imprimerie. Deux jours plus tard, ils m'appellent de nouveau et je pars avec mon copain Bernard dans une des voitures pour récupérer les 16 000 exemplaires du nouveau numéro. Il faut faire deux voyages pour tout ramener au bureau. D'abord, j'emballe les colis destinés aux dix bureaux régionaux comme ceux de Bafoussam et de N'Gaoundéré [environ 500 exemplaires]. Ils font eux-mêmes la distribution locale, y compris pour les responsables gouvernementaux locaux. Une société de transport vient prendre les colis. Avant, nous devions les porter nous-mêmes à la gare et cela fait une sacrée différence, même si les journaux n'arrivent pas plus vite à destination pour autant.Le jour suivant, je m'occupe des kiosques de Yaoundé. Il y en avait 52, mais nous avons réduit la liste à une quinzaine de gros vendeurs ; certains en vendent plus de 100. Environ 1 075 exemplaires sont vendus de cette façon, à 300 FCFA* l'exemplaire, sur lequel nous récupérons 225 FCFA. Puis je pars pour les villages alentour, une cinquantaine en tout ; cela me prend une longue journée pour déposer 10 exemplaires ici, 20 là, à de petits revendeurs. Je fais deux numéros à la fois et je récupère l'argent en même temps.Je passe ensuite aux abonnés postaux -280, y compris nos amis à l'étranger -et il me faut une journée pour plier, étiqueter et coller les enveloppes. Je ne vais à la poste que le jour suivant. Puis je m'occupe des abonnés de Yaoundé, qui ont payé 5 000 FCFA pour un abonnement d'un an. Je les livre moi-même, les uns après les autres, toc, toc, toc. Tout est bien étiqueté et classé par quartier. Ça me prend 4 jours en tout.Ensuite viennent les grosses commandes, comme celles des bureaux des agences de coopération allemande et néerlandaise, qui en prennent 70 et 50, et les commandes institutionnelles. L'Assemblée nationale reçoit 180 exemplaires. Le bureau du Président 19, je les porte personnellement car ils m'attendent. Le Premier ministre 5, le ministre de la Culture 6, la Justice 6, l'Industrie et le Commerce 7, les Affaires étrangères 8, l'Agriculture 6, les Affaires féminines 6… Pour le numéro de février, j'ai tout fini aujourd'hui. Maintenant, je dois faire mes comptes, carburant, emballage, rubans adhésifs, et je dois aussi signer l'inventaire [un grand livre rempli avec soin sur qui reçoit quoi]. Vous voyez, ce mois-ci, rien que pour la province de Yaoundé, j'ai traité 3 303 exemplaires. Et demain, je repars faire le tour des kiosques pour organiser la récupération de la recette.\"* 650 FCFA = 1 euro.• Presse agricole mensuel béninois Agri-Culture, sont délibérément commerciaux et essaient de rester rentables dans un marché fragile.Les magazine agricoles des pays ACP ne se limitent généralement pas aux seules questions agricoles, mais abordent aussi la vie et l'environnement rural en général. Par exemple, Communautés Africaines, publié par l'ONG APICA, à Douala, au Cameroun (encore !) et qui va bientôt célébrer son trentième anniversaire, est une lettre d'information sur les technologies agricoles à petite échelle, avec des conseils pratiques pour améliorer les infrastructures villageoises d'approvisionnement en eau, éclairage ou éducation. Elle ne s'est jamais écartée de ce modèle simple et a longtemps été tapée à la machine, avant d'être, depuis peu, produite avec un simple ordinateur de bureau.Les almanachs, ou calendriers annuels, sont utilisés depuis des milliers d'années par les agriculteurs et tous ceux dont le métier est lié aux cycles naturels. Les premières versions sont apparues dans ce qu'on appelle aujourd'hui le Moyen-Orient, en Égypte et en Éthiopie : ils se présentaient sous la forme de bâtons entaillés qui permettaient de mesurer les changements astrologiques et les saisons.Les versions imprimées sont apparues en Europe vers 1480 et en Amérique en 1639. En 1791 l'Africain-Américain Benjamin Banneker publiait le premier exemplaire de l'Almanac, qui est rapidement devenu le Farmer's Almanac, toujours publié aujourd'hui.Progressivement, les almanachs se sont transformés en calendriers pleins de petits trucs sur le meilleur jour pour semer, pour récolter les fruits, pour contrôler le bétail -une riche combinaison de données scientifiques et de bons sens rural.Un des plus grands almanachs contemporains, jamais égalé dans les pays ACP, est le Tropical Farmers Almanac, qui couvre la région des Caraïbes. Il comporte moins d'astrologie que ses prédécesseurs, mais il est tout autant bourré de truismes (\"les abeilles se noient bien souvent dans leur propre miel\"). Il regorge d'informations sur les marchés, la façon de mesurer les intrants, les données météorologiques, les tableaux des pesticides dangereux, les guides pour l'exportation et ce qu'il faut faire chaque mois pour chaque culture et chaque légume.Marketing and Consulting, AMC Complex, 188 Spanish Town Road, Kingston 11, Jamaica.■ Longtemps accusée de détruire les forêts denses humides, la plantation de cacaoyers est maintenant considérée comme contribuant au reboisement. Selon des recherches menées par l'IITA (Institut international d'agriculture tropicale) au sud du Cameroun, les paysans de ces régions améliorent l'environnement tout en produisant de la nourriture et des cultures de rente. En effet, ils cultivent le cacao dans un milieu biologiquement très varié, proche de la forêt, riche en arbres fruitiers, écorces médicinales et bois d'oeuvre. Ailleurs, des milliers d'hectares ont été défrichés et complètement débarrassés de leurs arbres par défriche-brûlis. Ils sont maintenant exploités dans des systèmes à jachère pour produire du manioc, de l'arachide, du maïs… La demande augmente, et les paysans n'ont d'autre choix que d'abattre toujours plus de forêt. Les scientifiques de l'IITA travaillent avec les paysans à l'intensification de ces cultures, mais aussi à la conversion des jachères en zones de cultures pérennes. Ils cherchent la façon la plus efficace d'installer des forêts à cacaoyers, tout en menant des cultures annuelles fournissant nourriture et argent les premières années. C'est une façon de diversifier les cultures, mais aussi de protéger les sols, de diminuer l'effet de serre, et de préparer des recettes monétaires pour demain, car la demande de cacao augmente. Ces recherches sont soutenues par les consortiums \"Alternatives à l'agriculture itinérante sur brûlis\" et \"Cultures pérennes durables\". Petits planteurs, grandes espérances.L'orge était jusqu'à présent cultivée en Érythrée sur 20 % de la surface agricole, mais seulement pour l'alimentation ou la production de Siwa, une boisson légèrement alcoolisée. Deux ans de recherche ont montré que le pays peut aussi produire de l'orge à bière. Les trois variétés expérimentées peuvent servir de base à de futures améliorations par hybridation et sélection. La culture d'orge à bière apporterait un revenu aux paysans tout en limitant les importations (3 600 t en 2001).-AgriForum■ Les coques des noix de cola constituent un bon aliment pour les volailles. Au Nigeria, de petits éleveurs ont découvert ce moyen pour réserver plus de céréales à la consommation humaine. Des travaux de l'Institut de recherche nigérian sur le cacao (CRIN) ont confirmé que ces coques moulues pouvaient remplacer jusqu'à 60 % de la ration de maïs des poulets. Une politique énergique de vaccination a éradiqué la peste bovine de la plupart des régions de la terre, mais tous les éleveurs ne peuvent pas s'offrir cette vaccination. Une approche alternative a été mise au point par l'Institut indien des sciences, à Bangalore. L'IIS a développé un pois cajan transgénique qui pourrait être fort utile dans les pays où le bétail est nourri avec les feuilles de ce pois. Celles-ci contiennent en effet des protéines de virus. Lorsque ces feuilles sont mangées par l'animal, elles agissent comme un vaccin contre la peste bovine et la réponse immunitaire des animaux montre qu'elles peuvent conférer l'immunité. S'il est jugé suffisamment intéressant, le projet pourrait être poursuivi, pour commercialisation. ■ Un supplément alimentaire pour le bétail, qui augmente de façon significative la production de lait a été mis au point à l'issue d'une recherche de trois ans menée conjointement par l'Organisation australienne de recherche scientifique et industrielle pour le Commonwealth (CSIRO) et l'Office national indien pour le développement laitier (NDDB). Ce supplément protéinique est fabriqué après que l'huile a été extraite de graines comme le tournesol et le colza. Normalement, les vaches laitières ne tirent pas un profit optimum de ces graines, car \"une grande partie de la protéine est détruite dans la panse ou premier estomac\", selon un chercheur du CSIRO, le Dr Suresh Gulati.Avec ce nouveau supplément, de plus grandes quantités de pro-téines contourneront la panse des vaches, permettant à des nutriments aussi essentiels que les acides aminés d'être absorbés par le petit intestin et renforçant ainsi la production de lait. En Inde, onze millions de producteurs laitiers villageois vont en bénéficier.Le responsable de la recherche au NDDB, Dr Manget Ram Garg, précise que \"la productivité en lait a augmenté d'environ 1 litre par vache et par jour, fournissant ainsi un revenu supplémentaire d'environ 9 roupies indiennes (0,33 $US) par animal et par jour\". Une unité de production de ce supplément alimentaire a été implantée dans l'État indien du Gujarat et des expérimentations sont menées pour évaluer la viabilité d'unités similaires dans d'autres zones.■ Mettre en place un réseau politique pour déboucher sur \"une transformation fondamentale du secteur agricole des pays du CA-RICOM/CARIFORUM à travers le renforcement du processus de prise de décision politique agricole\", voilà l'objectif visé par cet atelier régional organisé fin janvier 2003 à Paramaribo, Suriname. Le réseau doit être lancé en octobre 2003 et il entend compléter le travail de la vingtaine de réseaux agricoles déjà existants dans la région, orientés pour la plupart vers la production et la transformation.Il est urgent que la coopération agricole régionale soit plus cohérente, dans les Caraïbes comme dans d'autres régions, pour définir des positions régionales dans les négociations commerciales multilatérales. Le réseau proposé se fixe donc deux objectifs : mettre en place un système d'échanges d'information pour promouvoir des politiques de développement agricole et rural efficaces, en lien avec les objectifs nationaux de développement ; appuyer la formulation de positions de négo-ciation communes qui prennent en compte les accords commerciaux agricoles extra-régionaux et la promotion d'un commerce intra-régional. Le lancement d'un réseau caribéen et de son équivalent dans le Pacifique -qui pourrait voir le jour dans un futur proche -complétera la mise en place de réseaux régionaux de politique agricole dans les six régions ACP.La définition des indicateurs des \"transformations fondamentales\" visées reste à approfondir, mais l'atelier et le réseau ont été renforcés par la publication par le pays hôte d'un document sur le repositionnement de l'agriculture et l'amélioration de la vie rurale. Au total, 32 participants, provenant de 14 pays caribéens, ont participé à la rencontre, co-organisée par le CTA et l'Institut inter-américain pour la coopération agricole (IICA). Même le sourire est bio. Les marchés ont toujours été à l'origine du mouvement vers une nourriture de meilleure qualité, plus sûre et plus saine. Ce sont les lobbies des détaillants, aux États-Unis, au Japon, au Royaume-Uni et ailleurs en Europe, qui sont responsables de l'amélioration des normes de sûreté alimentaire dans les supermarchés depuis les années 1960 et 1970. Et ces normes se sont récemment étendues à l'échelle internationale. Elles font généralement l'objet -notamment pour les risques de quarantaine -de contrôles aux frontières. En conséquence, de nombreux pays ACP ont revu leur législation alimentaire et élaboré des projets de Loi de sûreté alimentaire, qui permettront de mieux protéger les consommateurs locaux, de réduire les pertes économiques liées à des problèmes alimentaires -entraînant de l'absentéisme et des traitements médicaux -, de renforcer la réputation de salubrité touristique du pays et d'améliorer sa position commerciale sur le plan international.Le respect de la qualité alimentaire est un processus continu et les normes évoluent sans cesse. Depuis 1998, les entreprises de transformation alimentaire du monde entier sont tenues de prouver qu'elles se conforment aux normes de qualité, avant acquisition, sur le point de collecte. Cette exigence a été formalisée par une méthodologie de contrôle qualitatif de la chaîne alimentaire, l'Analyse des risques et la maîtrise des points critiques (HACCP). Cette méthodologie permet d'évaluer la qualité du produit à chaque étape de la chaîne, de la récolte à la consommation. Chaque phase fait l'objet d'analyses attentives, dont les résultats sont croisés et doivent se situer dans des limites préétablies. Pour l'horticulture, cela peut commencer dans les champs, avant même la récolte. Même s'il n'est obligatoire que pour un nombre limité de produits, ce système s'avère pratique et son adoption est en progression dans l'industrie des produits frais.Cette nouvelle pratique encouragera tous les agriculteurs qui se donnent du mal pour parvenir à des produits de qualité qui sont ensuite victimes de détériorations en raison de retards, de mauvaises manutentions après récolte, ou d'une transformation de qualité insuffisante. L'HACCP est désor-mais une réalité dans de nombreuses industries horticoles et constituera un élément de plus en plus important pour les producteurs primaires partout dans le monde. Avec cette approche, la production agricole devra être traitée avec plus de soin, non seulement pendant son élaboration, mais aussi -et peut-être surtoutdans les phases postrécolte.Pour les producteurs et transformateurs à plus petite échelle, ces contrôles qualitatifs par la chaîne HACCP ne sont pas encore pris en compte, mais les conséquences de cette ignorance des normes se mesurent en termes d'opportunités de marché. Les petits exportateurs se rendent compte que leurs normes de qualité ne sont pas acceptables quand leur marché s'effondre et qu'ils ne peuvent plus écouler leur production. Comment peuvent-ils le prévoir ? Quels objectifs qualitatifs doivent-ils se donner ? Il n'est pas facile de répondre à ces questions et c'est pourquoi les organisations paysannes et autres structures de soutien doivent se donner comme tâche prioritaire d'aider les groupes de producteurs et de transformateurs à se familiariser avec les normes.Pour cela, ils doivent, en premier lieu, se référer aux organismes nationaux de commerce et de sûreté alimentaire -chaque pays ayant ses propres conditions et procédures -et au Codex Alimentarius, qui est un recueil de normes internationalement reconnues sur l'alimentation. Le but du Codex est de protéger la santé des consommateurs, de garantir l'équité des pratiques commerciales alimentaires et d'assurer la coordination de tous les travaux entrepris par les organisations internationales gouvernementales et non gouvernementales en matière de normes alimentaires. Le Codex spécifie les exigences requises en matière de qualité, non seulement pour les aliments transformés -sous toutes leurs formes -mais désormais aussi pour les produits horticoles frais. Le Codex permet d'avoir une information immédiate sur les normes des pays concurrents et fournit un cadre de référence pour identifier les spécifications requises pour les producteurs et transformateurs, jouant ainsi un rôle essentiel dans l'HACCP. ■ Voilà un livre utile, écrit pour le lecteur \"très pressé\" : dès la page 4, les auteurs lui proposent de se rendre pages 29 et 30 où l'essentiel est résumé ! Bravo aussi pour le titre qui correspond exactement au con-tenu… Les auteurs se prononcent pour des politiques publiques articulant les niveaux \"macro\" et \"micro\", à la fois politiques et pragmatiques, sectorielles et catégorielles, qu'ils appellent \"politiques intermédiaires\".Après le constat que la croissance ne suffit pas à éliminer la pauvreté, ils recommandent d'identifier dans un premier temps les inégalités structurelles auxquelles devront s'attaquer les politiques publiques. Le deuxième temps de la démarche consiste à caractériser la diversité et la complexité des comportements des acteurs sociaux. Il faudra ensuite identifier les groupes d'acteurs qui constituent des leviers de changement et sur lesquels peuvent s'appuyer, en les soutenant, les \"politiques intermédiaires\". Quatrième temps : création d'instances de régulation et de négociation entre pouvoirs publics et groupes d'acteurs, au niveau central et local.Ce livre est issu d'une réflexion collective de quatre années qui a impliqué en France des institutions de recherche, des ONG, et les décideurs et opérateurs publics. Des scientifiques de l'Université de Gembloux (Belgique) sont à l'origine de ce remarquable travail de synthèse destiné aux non-spécialistes.L'amélioration des plantes cultivées est d'abord présentée en général. La génétique moléculaire lui fait actuellement franchir une nouvelle étape, qu'elle soit appliquée ou non à la transgenèse. Tout en reconnaissant le potentiel des biotechnologies, les auteurs soulignent qu'elles ne pourront à elles seules résoudre les problèmes de la faim et de la pauvreté.L'ouvrage fait ensuite le bilan d'un siècle d'amélioration des plantes dans les régions tropicales, dont \"les acquis sont parfois perdus\". Les 400 pages suivantes traitent plus en détail d'une trentaine de plantes, couvrant ainsi l'essentiel des plantes cultivées sous les tropiques.Certains chapitres peuvent aussi être consultés sur le site imagier dynamique www.genagro.org. Dans le cadre du Programme \"Antenne de formation à distance\", Genagro réalise, à partir de son patrimoine d'images, des sites Internet, tels que celui-ci, utiles aux formateurs et aux étudiants.■ Réseau de chercheuses et décideuses du Sud, DAWN milite depuis 1984 pour un développement libéré de toute forme d'oppression. Sous la plume de Viviene Taylor, il brosse ici une critique de l'impact de la globalisation sur les sociétés et les économies du Sud et sur les femmes qui y vivent. Le défi pour les féministes reste de faire des propositions pour l'ensemble de la société, et pas seulement de \"se faire une place à elles\" au sein de l'État. Les institutions internationales d'appui au développement ont pourtant placé la question foncière dans leurs priorités, mais avec \"un tel simplisme que, bien souvent, le remède est pire que le mal\". Car il faut bien un État pour garantir un titre de propriété privée, et quand l'État est faible, la garantie est nulle. Aussi est-il désormais urgent pour les acteurs du développement de ne plus se satisfaire de la simple légalité, c'est-à-dire du droit norma-tif, souvent inapplicable, peu respecté et finalement illégitime. Il est temps de revenir à l'originalité de la question foncière en Afrique et de considérer la légitimité des pratiques de régulation qui structurent les rapports fonciers réels.Les anthropologues-juristes auteurs de l'ouvrage ouvrent cette voie. Plusieurs études de cas sont consacrées à l'Afrique australe (Afrique du Sud, Zimbabwe), à la Côte-d'Ivoire, à la Guinée et à Madagascar. La véritable orthographe est Blighia, avec un \"h\" après le \"g\". Et le mot ackee se prononce comme il s'écrit, tout simplement. Les dénominations sont nombreuses. Certains noms régionaux ressemblent au nom caribéen : akee, akye, akyen (dans plusieurs pays africains), aki (Costa Rica) et akie (Suriname). D'autres langues sont plus descriptives : seso vegetal (ris de veau végétal) ou huevo vegetal (oeuf végétal), en espagnol, ou arbre à fricassée dans le français d'Haïti.L'article sur l'écosystème des zones humides dans Spore 100 a insisté sur leurs multiples usages et la façon de mieux les exploiter et protéger en pensant aux générations futures. Samule Zeleke, de Gambella, Éthiopie, nous écrit que les zones humides sont une ressource inexploitée dans la plupart des pays ACP, peu aménagées ni protégées et \"laissées là comme des piscines. Cette négligence et cette mauvaise utilisation ont transformé les zones humides en espaces de développement et de propagation de maladies graves comme la malaria et la bilharziose\". Il souligne qu'une meilleure exploitation de ces ressources \"permettra aussi de mieux lutter contre l'expansion de ces maladies\".\"J'ai le numéro 100 de Spore en face de moi et j'aimerais adresser mes remerciements à toute l'équipe de Spore\", nous écrit Gaffoh Kpekpassi, ingénieur agricole au Togo et qui se présente comme un lecteur enthousiaste de Spore. Le point de vue sur la jeunesse de Cyprien Essong Zé dans Spore 100 renvoie à l'article \"Partir ou rester ?\", paru dans Spore 90.\"L'exode des jeunes vers les villes pour y trouver du travail est aussi vieux que nos collines, mais y a-t-il une solution ? Les politiciens ne s'occupent que de ce qui se passe dans les villes. Ils ont même honte de visiter les zones rurales et ils restent dans les villes et dans leurs réunions dans des hôtels de luxe pour exhorter les jeunes ruraux à rester au village. Quelques-uns sont eux-mêmes originaires des zones rurales mais, dès qu'ils obtiennent ce genre de poste, ils deviennent inaccessibles.\" L'agriculture africaine a besoin d'une véritable transformation technique. \"Je pense que l'opinion de Cyprien, du Cameroun, soulève des questions importantes pour un technicien agricole. Ici, nous avons un frère qui cultive 5 ha avec des moyens et un équipement modestes (houe, panier, pioche, hache, peut-être une paire de boeufs et une case en paille). Avec des outils si rudimentaires, 5 ha, c'est trop pour une famille si l'on voit tout ce qu'il y a à faire. Pour moi, les raisons de l'exode des jeunes vers la ville sont évidentes. Nous devons nous attaquer en priorité à tous les maux dont l'Afrique souffre et si nous n'avons pas le courage de prendre les mesures civiques et politiques nécessaires -car l'agriculture est à la base du développement de tous les pays -la faillite de l'agriculture provoquera un effondrement total des sociétés pendant des générations.\"Ce n'est pas seulement la jeunesse qui a pris possession de Spore 100. L'article principal, consacré aux médias, a secoué le monde des rédacteurs et des communicateurs, parmi lesquels Chris Cottorone, chargé de l'information au Centre asiatique de recherche et de développement sur les végétaux à Taiwan. \"Spore a récemment abordé un sujet essentiel : médias et agriculture. Je ne sais pas exactement pourquoi l'agriculture a été exclue de l'agenda mondial, mais cet article aidera sûrement à ce qu'elle revienne sur le devant de la scène. Les gens, à travers le monde, ont compris que, pour aborder des questions essentielles comme la sécurité alimentaire, la biotechnologie et l'urbanisation, il faut d'abord comprendre le rôle que l'agriculture joue dans l'existence humaine. Sensibiliser le grand public tout en poursuivant la quête d'améliorations constantes semble une excellente approche pour que l'agriculture et la recherche agricole reviennent au premier plan -et y restent longtemps.\"Nous avons du courrier, vous avez du courrier ! -de nos lecteurs de trois régions ACP -y compris de nos correspondants en Haïti, de plus en plus nombreux. Bienvenue à tous, en particulier à un lecteur \"extérieur\" d'Asie orientale. Peu importe d'où vous venez, si nous savons où vous voulez aller ! @ L es partenaires du CTA connaissent des problèmes de plus en plus complexes et, pour les aider à y répondre, le personnel du CTA doit disposer d'une information optimale sur ces questions et leur incidence sur les programmes du centre.Il s'agit à la fois de la diversité croissante des partenaires du CTA -gouvernements, structures décentralisées, ONG, partenariats en matière de recherche, société civile, organisations paysannes -et de la nature même des questions abordées.Certains agents du CTA, spécialistes du contenu, ont une grande expérience dans des secteurs spécifiques de l'agriculture et du développement rural ; d'autres sont plus impliqués dans la communication ou l'élaboration de partenariats. En tout, ces 38 personnes, qui proviennent de 19 pays, constituent une entité composite et puissante, mais elles doivent régulièrement actualiser leurs connaissances.C'est pour cela que des séminaires internes sont organisés deux ou trois fois par an, pour l'ensemble du personnel. Les séminaires d'une journée sont animés par des animateurs externes. Les thèmes transversaux choisis sont utiles à tous les programmes du CTA, qu'il s'agisse des publications, de la communication ou du développement des capacités. En 2001 et 2002, ils ont porté sur les réseaux, les modifications génétiques et le genre en agriculture. Début 2003, une session a été organisée sur le \"capital social\" -c'est-à-dire la façon dont les communautés gèrent, partagent et exploitent leur savoir.Les thèmes prévus pour les mois à venir sont la jeunesse, le NEPAD, la gestion du savoir, le développement technologique participatif, la biosécurité et les droits de propriété intellectuelle.La stratégie du CTA consiste à se transformer en une 'organisation apprenante' où le débat sur les vrais problèmes fait partie des activités régulières du personnel, dans une sorte de 'recyclage permanent'.Bon vol I l a toujours eu un rapport particulier avec les oiseaux, Alan Jackson. Scientifique méticuleux, bien sûr, il est aussi l'archétype de l'ornithologiste amateur, observateur attentif des oiseaux à qui aucun détail n'échappe : qui d'autre pourrait se tenir dans un champ et repérer d'un coup 27 espèces d'oiseaux à leur chant et en réciter les caractéristiques à quiconque passe par là ?Aujourd'hui, après une longue carrière consacrée à l'agriculture tropicale et au développement, Alan n'est plus au CTA où il avait été engagé, en 1984, comme conseiller technique. Auparavant, après un diplôme de botanique agricole à l'Université de Reading et une maîtrise en phytogénétique à Cambridge, il avait mené des travaux sur la résistance des insectes à l'Institut de recherche sur le coton en Tanzanie, sur le cacao au Ghana et sur la coopération scientifique en Inde, avec le British Council.Son expérience scientifique, sa connaissance du terrain et sa foi dans l'émergence d'une nouvelle génération de chercheurs qualifiés, il les a utilisées à merveille pour sélectionner les personnes, les thèmes et les publications pour les programmes de séminaires, de visites d'étude et d'édition du CTA. Pendant ses dix-huit années de labeur, peu de travaux scientifiquement non fondés ont échappé à sa vigilance. Parmi ses grandes satisfactions : un programme sur le rôle des femmes dans la vulgarisation, à la fin des années 1980.En 1996, il est devenu chef du département des publications et de la diffusion, qui gère Spore -dont il avait rejoint le comité éditorial au milieu des années 1980. Si Spore a pu déployer ses ailes comme il l'a fait ces dernières années, c'est en grande partie grâce à la façon dont Alan a su gérer l'envolée. Il a su conduire l'équipe vers de nouveaux espaces où la réflexion créative, la qualité de l'écriture et la rigueur scientifique et politique (et non le politiquement correct) peuvent mener à l'excellence. Sa direction à la fois souple et ferme au bon moment a fait merveille.Quel que soit le temps, Alan était le vent qui portait nos ailes et, désormais, voler ne sera plus pareil.Comment évaluezvous l'impact ? S i votre travail a un rapport avec la diffusion et le partage de l'information et si vous êtes, par exemple, engagé dans une activité de vulgarisation, une radio rurale, une bibliothèque, un service questions-réponses, un réseau, une lettre d'information, alors vous pourrez être associé à l'élaboration d'un livre qui szera publié par le CTA.Ce livre abordera l'impact des projets, des services et des produits d'information sur le développement. Il posera des questions comme : \"Comment mesurons-nous l'impact ?\", \"Qui mesure l'impact ?\" et \"Pourquoi devons-nous mesurer l'impact ?\". Pour y répondre, nous faisons appel à des témoignages, à des études (uniquement des études terminées) de cas et des expériences personnelles sur l'impact de services ou de produits.Pouvez-vous nous aider à rassembler ces témoignages et études ? Dans Spore 103, Boîte Postale citait une lettre de Martin François Arko, vulgarisateur au Ghana, qui racontait comment Spore l'a aidé à \"avoir un véritable impact dans sa communauté\". Il est clair qu'il a un témoignage à offrir. Et vous, en avez-vous un, ou connaissez-vous un cas qui mérite d'être mis en valeur ? Si oui, merci de nous en adresser un résumé. Ce matin, il n'a pas mâché ses mots pour dire que l'Union européenne n'est pas aussi altruiste qu'elle voudrait le faire croire et que les questions relatives aux pays ACP sont englouties dans des problèmes plus globaux. D'où tient-il son engagement de longue haleine à la cause, quand le terrain de jeux n'est de toute évidence pas au même niveau pour tous ? \"Cela fait partie de la réalité, il est important de s'en souvenir. Je ne m'en plains pas, j'essaie de comprendre. La vie est ainsi, mais je n'y suis pas résigné parce que je pense que nous pouvons changer cela.\"Son visage est calme, mais frémit d'énergie et de concentration intérieure. Tout a un sens précis. \"Je dis qu'ils ne sont pas altruistes, mais en fait j'apprécie beaucoup ce que l'UE a fait. Paradoxalement, le fait d'avoir conclu l'accord de Cotonou est déjà une façon pour l'UE de répondre à des préoccupations légitimes. Et au fond, je crois que l'UE le souhaite vraiment. Il y a de nombreuses difficultés et quelques-unes nous incombent, comme notre insuffisante capacité opérationnelle ou notre manque de clarté et de cohérence. Je n'attribue aucune mauvaise volonté à l'UE car, en réalité, elle fait preuve de beaucoup de bonne volonté. Mais elle a son propre agenda et ses propres objectifs, et ils peuvent ne pas coïncider avec ceux des pays ACP. Il est absolument nécessaire que nous nous concertions -au plus haut niveau -et que nous confrontions nos agendas, sinon c'est la confusion qui s'installe ou, pire, la colère et la colère n'a pas de place dans ces discussions.\"Un peu lisse, peut-être ? En fait, ne pense-t-il pas que les relations ACP-UE sont comme les dernières braises du vieux foyer colonial ? \"Vous savez, que ce soit les dernières braises ou une opportunité de renouveau, il faut choisir son chemin. Nous avons plus de 25 années de ce que j'appelle notre histoire commune. La question est de savoir ce que nous voulons en faire. L'OMC nous offre une excellente occasion de coopérer avec l'UE, qui a consacré beaucoup de temps, d'efforts et de ressources pour construire cet édifice et elle a conscience de la valeur de l'unité et du rassemblement. C'est ce qui éclaire mon argument en face de Lamy [le commissaire européen au commerce] et des autres : ne faisons rien qui mette en péril l'unité du groupe ACP. Vous avez besoin d'un groupe ACP fort. Vous ne pouvez pas vous permettre d'avoir un groupe ACP fragmenté pour négocier les partenariats économiques régionaux (APER) et dans le même temps lui demander d'être solidaire au niveau de l'OMC.Il faut engager un dialogue honnête, plutôt que d'imposer votre loi, en consultant et en travaillant entre partenaires de bonne volonté. À la signature de l'Accord de Cotonou, avant même que l'encre n'ait séché, voilà qu'on nous présente l'initiative TSA [qui autorise toutes les importations des pays les moins avancés vers l'Europe, sans droits d'entrée, sauf pour les armes]. J'ai négocié cela et demandé immédiatement la mise en oeuvre d'une étude d'impact, car nous avons eu l'intuition que l'UE était politiquement intéressée à montrer, dans la perspective de Seattle, qu'elle agissait en faveur des pays les moins avancés. Je leur ai dit c'est bien, mais si vous voulez faire quelque chose, faites quelque chose de concret, pas un nouveau gadget.\"Est-ce que vous pensez que l'UE -en allant vers l'initiative TSA et revenant à un agenda préférentiel -a été sensible aux mauvaises voix, au sein de l'Europe ? Y a-t-il un moment où vous avez pensé : \"Si seulement ils avaient fait les choses autrement ?\" Il reprend. \"Je ne crois pas que ce soit une question de moment. Il y avait des choses qui étaient faites à ce moment -et qui peuvent encore être faites aujourd'hui. Il y a maintenant plus de deux ans que nous avons signé l'Accord de Cotonou ; nous avons un calendrier de négociations et nous avons besoin de ressources indispensables pour construire notre capacité à négocier.\"\"Un dicton dit que les chemins de l'enfer sont pavés de bonnes intentions et même si [certaines positions de l'UE] sont pleines de bonnes intentions, si leur résultat est de me tuer, alors ça m'est égal : je suis déjà mort, ou mourant.\"Le groupe ACP court-il un risque de fragmentation à cause de ces négociations sur l'APER ? \"L'unité est vitale\". Mais peuton additionner la somme des unités ? \"S'unir ne signifie pas ignorer les besoins nationaux ; ce qui est vital, c'est de construire la capacité à conclure les bons accords.\"\"Il serait téméraire de fractionner en petites unités régionales, alors que les compétences requises sont pratiquement inexistantes. Et cela vaut non seulement pour les relations ACP-UE, mais aussi pour la coopération intra-ACP. Il est largement temps de s'engager à cela. Je souhaite que les pays comprennent que les relations ACP-UE représentent un atout, patiemment développé depuis 25 ans. Au moment où la mondialisation s'annonce, pourquoi irions-nous dans la direction opposée ?\" \" si les bonnes intentions peuvent tuer, alors je suis mort \"","tokenCount":"8801"} \ No newline at end of file diff --git a/data/part_3/7421102906.json b/data/part_3/7421102906.json new file mode 100644 index 0000000000000000000000000000000000000000..f4b320f753bb0ff03e35392aaa505605d6edd282 --- /dev/null +++ b/data/part_3/7421102906.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"8d843409cb231a4493c77eb7459a7d89","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/edfba897-8d3e-4d94-9510-557c1acefca5/retrieve","id":"-145708338"},"keywords":[],"sieverID":"719b439b-3b9d-4e94-8424-31b874153d13","pagecount":"24","content":"CGIAR Technical Reporting has been developed in alignment with the CGIAR Technical Reporting Arrangement. This Initiative report is a Type 1 report and constitutes part of the broader CGIAR Technical Report. Each CGIAR Initiative submits an annual Type 1 report, which provides assurance on Initiative-level progress towards End of Initiative outcomes. The CGIAR Technical Report comprises:• Type 1 Initiative and Impact Area Platform reports, with quality assured results reported by Initiatives and Platforms available on the CGIAR Results Dashboard.• The Type 3 Portfolio Performance and Project Coordination Practice Change report, which focuses on internal practice change.• The Portfolio Narrative, which draws on the Type 1 and Type 3 reports, and the CGIAR Results Dashboard, to provide a broader view on portfolio coherence, including results, partnerships, country and regional engagement, and synergies among the portfolio's constituent parts.The CGIAR Technical Report constitutes a key component of the CGIAR Annual Performance Report (APR).OECD DAC Climate marker adaptation score* Score 0: Not targeted: The activity does not target the climate mitigation, adaptation, and climate policy objectives of CGIAR as put forward in its strategy.Score 1: Significant: The activity contributes significantly to any of the three CGIAR climate-related strategy objectives -namely, climate mitigation, climate adaptation, and climate policy, even though it is not the principal focus of the activity.Score 1A: Gender accommodative/aware: Gender equality is an objective, but not the main one. The Initiative/project includes at least two explicit genderspecific outputs and (adequate) funding and resources are available. Data and indicators are disaggregated by gender and analyzed to explain potential gender variations and inequalities.https://www.cgiar.org/initiative/29-rethinking-food-markets-and-value-chains-forinclusion-and-sustainability/ *The Organisation for Economic Co-operation and Development (OECD) Development Assistance Committee (DAC) markers refer to the OECD DAC Rio Markers for Climate and the gender equality policy marker. For climate adaptation and mitigation, scores are: 0 = Not targeted; 1 = Significant; and 2 = Principal. The CGIAR GENDER Impact Platform has adapted the OECD gender marker, splitting the 1 score into 1A and 1B. For gender equality, scores are: 0 = Not targeted; 1A = Gender accommodative/aware; 1B = Gender responsive; and 2 = Principal. These scores are derived from Initiative proposals, and refer to the score given to the Initiative overall based on their proposal.Initiative researchers with coffee producers in Honduras. Photo credit: Jenny WiegelFood systems make up about one-fifth of the global economy and are the world's largest source of employment. Many of the world's poor depend on the food system for their livelihoods, in terms of income and/or employment. However, despite increasing agricultural productivity and technological and institutional innovations, most of the rural and urban workers employed in the agrifood sector and their families remain poor and cannot afford the cost of a nutritious diet. Many women and youth work in the food system but face hurdles in accessing resources and receiving decent pay. The sector's current operations are leaving a major environmental footprint, contributing to climate change and depletion of natural resources. Urbanization and shifting diets are profoundly changing food markets and value chains, which are supplying new types of food and revolutionizing production and distribution systems, including with growing use of digital technologies.To address these major food system challenges, the Rethinking Food Markets Initiative is generating evidence on the innovations, incentives and Section 2 Initiative progress on science and towards End of Initiative outcomes Initiative researchers with coffee producers in Honduras.Photo credit: Jenny Wiegel policies most effective for steering food market functioning toward the creation of equitable income, employment, and business opportunities for smallholders, small businesses (SMEs) and workers, and especially for women and youth among them, along agrifood value chains, while also reducing the food sector's environmental footprint.Initiative researchers are working to provide new knowledge on combinations of innovations and policies to leverage sustainable growth and income opportunities in agrifood supply chains and support services (e.g., logistics and finance). Specifically, during the first year of implementation, the Initiative has made the following progress on its pathway toward achieving those objectives across its four Work Packages, each of which contributes to one End of Initiative (EOI) outcome for the Initiative.• Work Package 1: Making globally integrated value chains inclusive, efficient, and environmentally sustainable. Expanding highvalue markets oriented at international markets present opportunities for smallholders and agrifood SMEs to gain remunerative employment, climb out of poverty, and improve their diets. The Initiative has worked with global and local partners and stakeholders to identify existing constraints in three country and value-chain cases (shrimp in Bangladesh, oil seeds in Ethiopia, and coffee in Central America) and initiated the co-design of bundles of innovations to be tested for effectiveness, viability, and scalability to achieve the mentioned objectives starting in the second year of the Initiative. A further scoping study is underway for the case of the fruits and vegetables value chain in Uzbekistan. Adapted to each specific case, the bundles of product and process innovations consist of: (a) innovations to improve vertical coordination and inclusive market access and value-chain contracting among value-chain actors; (b) certified product quality upgrading, including for food safety and sustainability; and (c) digital applications for product tracing and market information. The pilots that are being fielded in three of these cases (Bangladesh, Ethiopia, and Central America) should provide new evidence and insight into scalable opportunities for strengthening global food value chains in ways that lower barriers for small-scale producers and SMEs, including women and youth, to participate in and benefit from them. Implementation of the fourth case (Uzbekistan) is dependent on additional funding. The pilots implemented in collaboration with local stakeholders are expected to directly benefit 15,000 people in households of self-employed, owners, and workers of participating farms and agrifood businesses by the end of the Initiative. By addressing gender-and age-specific hurdles in access to resources, information, and knowledge as part of the innovation design, the Initiative team is confident it will be able to reach beneficiary shares of 45% for women and 20% for youth. chains in two of three selected cases with high potential for value-added generation and improving diets: dairy in Uganda, and fruits and vegetables in Nigeria. The scoping study for the case of biofortified beans in Honduras and Guatemala is in the process of being completed. Together with global and local partners and stakeholders, Initiative researchers have identified (or, in the case of Central America, are in the process of identifying) bundles of product and process innovations to address those constraints. As relevant to each context, the innovation bundles consist of combinations of: (a) inclusive value chain contracting providing better market access at fair economic conditions to smallholders and SMEs ; (b) better vertical supply-chain integration through improved logistics (including solar-powered cold storage and transport, cooling rooms near markets) to achieve better income opportunities, and reduce food losses and environmental footprint; (c) certified product quality upgrading (improved seeds for fruits and vegetables; biofortified beans; improved, and quality control for, milk); and (d) improved logistics to reduce food losses. The goal is to examine the effectiveness and synergies among these domestic food value chain innovations and lower the barriers for small-scale producers and SMEs to participate in and benefit from them. By the end of the Initiative, the piloted innovations are expected to have benefited 15,000 households of farmers, SME business-owners, and workers across the selected value chains, including a targeted 45% women and 20% youth among them. Income and employment benefits are expected to emerge from expanded market access for improved quality, better-priced products, and more efficient value chain services, while environmental footprint is expected to be reduced through reduce food loss, renewable energy use, and increased productivity. win-win-win outcomes of repurposing existing support for better food system outcomes through poverty reduction, increased accessibility of healthy diets, and lower greenhouse gas emissions. The knowledge platform, database, and global and country-levelmodeling tools will be deployed for assessments of the scalability of the innovations tested under Work Packages 1-3 and to inform policies and public and private investment decisions in support of the creation of inclusive and sustainable food value chains and markets. This way, the Initiative expects to have enabled policymakers and food system actors in the six target geographies to make well-informed policy and regulatory reform decisions facilitating the scaling-up and value-chain adoption of the piloted innovations.The above signals the scientific progress made in identifying bundles of innovations and developing tools for assessing impact and testing of scalability.The actual progress towards EOI outcomes is not yet directly measureable as the pilots of bundled innovations in the selected cases are currently being staged. Yet, the Initiative team has high confidence that the EOI outcomes are well within reach, since the identified bundled innovations are being co-designed with the active engagement of partners and stakeholders, including governments, farmer and other producer organizations, private businesses, financial institutions, local research institutes, and development agencies, as relevant to each of the pilot cases. This should help secure preparedness among food system actors to scale up the piloted innovations. In year two, the Initiative will undertake assessments of the market-and food system-wide expected benefits (and potential tradeoffs) of the innovations once brought to scale in each of the selected country contexts. These assessments will feed into stakeholder dialogues about the need for targeted policy support to fortify incentives for widespread adoption of the bundled innovations and to secure major contributions to the key outcomes of the Systems Transformation Action Areas related to poverty reduction, improved nutrition, better income opportunities for women and youth, and climate change mitigation and adaptation.Work Scoping studies and innovation design for the coffee value chain in Honduras and the sesame seeds and oil value chain in Ethiopia were completed, while those for Bangladesh were completed following a stakeholder consultation in January 2023. The scoping study of the fruit and vegetable sector in Uzbekistan is expected to be completed in mid-2023. The pilots are expected to benefit the livelihoods of at least 5,000 households of farmers and owners and workers of SMEs across each of the three value chains, in particular through improved market access, increased value added from product quality upgrading, and improved access to market information, with special attention to creating opportunities for women and youth. First evidence on innovation performance in all three country contexts will be generated in 2023. Considering a delayed start, the implementation of this work package is on track in terms of identification of key bottlenecks to be addressed, but delayed in terms of the innovation design. In 2022, as planned, Initiative researchers were able to gather, review, and synthesize previous research and secondary data, and carry out stakeholder consultations as part of scoping studies undertaken with the objective of identifying potential innovations for testing in 2023 and 2024. The stakeholder consultations included workshops, as well as focus group discussions and key informant interviews that were held with value chain actors and other stakeholders in Nigeria, Uganda, and Honduras. The resulting scoping studies identified key bottlenecks in the current functioning of the mentioned value chains and the potential for making those more inclusive and sustainable through bundled innovations in Honduras in the form of product upgrading (biofortification and quality certification), more inclusive value chain contracts, and post-harvest handling by producers and traders of beans; in Nigeria through improved seeds, extension services, solar-powered cold chain development and digital tools for improved market information and access in F&V supply chains; and in Uganda through the bundling of quality and value upgrading for fresh milk, inclusive Baseline data has been collected already in Uganda and for two of the innovation bundles in the F&V value chain to be piloted in Nigeria's F&V chain. The pilots are expected to benefit the livelihoods of at least 5,000 households of farmers and owners and workers of SMEs across each of the three value chains through improved market access, increased value added from product upgrading and fewer food losses and more inclusive value-chain contracting arrangements, with special attention to creating opportunities for women and youth. First evidence on innovation performance in all three country contexts will be generated in 2023.Considering the delayed start of the Initiative, the implementation of this work package is considered to be, by and large, on track, having completed the scoping studies and innovation design and begun some of the baseline survey collection for the impact assessments. The goal of Work Package 3 is to provide rigorous evidence around the need for and impact of innovations in logistics and financial services that can create employment and income opportunities in value chains, with a focus on opportunities for women and youth. Work in 2022 included scoping studies in three countries, which evaluated the landscape for possible innovations in these areas and investigated potential partnerships.Researchers have generated knowledge products providing a conceptual framework for evaluating the possibilities of logistics and finance innovations for opening opportunities for income generation, and used secondary data to evaluate price gaps and opportunities for value capture from farm-gate to consumer. All this work contributes to the development of output 1 of Work Package 3 (evidence base on extension of logistics services to increase employment and income) and also informs the design of innovations to be piloted as part of output 2 (evidence base on policies and constraints in logistics service provision for opportunities for women and youth) and output 3 (evidence on increasing access to financial services). The country teams in Bangladesh, Nigeria, and Uganda also conducted partner reviews and built relationships with stakeholders and potential private sector partners. This was done through a series of one-onone meetings in Bangladesh and meetings and multi-stakeholder workshops in Uganda and Nigeria. Design of an evaluation of a livestock sector financing mechanism (with a logistics component) that targets access for women and youth was completed in Bangladesh, and baseline survey and project implementation began and will be ongoing through 2023. The scoping study on options for innovations in logistics and e-finance in Nigeria and for innovations in digital financial services in Uganda were completed. The evaluation design and implementation of the piloted innovations in Nigeria (and possibly Uganda) are expected to be completed in early 2023. This work will all contribute to outputs 2 and 3 and ultimately the EOI outcome. Work toward output 4 of the Work Package (policy tools to help facilitate access to women and youth to digital financial services) will commence during 2023.Work Package 4: Knowledge tools for policy coherence and market reform for inclusive and sustainable food market transformationWork Package 4 aims to enable farmers and agrifood SMEs and policymakers to use evidence about the benefits of value chain innovations and the required policy support through: the establishment of a knowledge platform for inclusive and sustainable food markets and value chains (KISM) for stakeholder dialogue (output 1); research syntheses and guidelines (output 2); food marketwide databases and modeling tools (output 3); and model-based scenario and policy analyses of scalability of value chain innovations and benefits and tradeoffs of smart repurposing of existing agricultural policy support (output 4). In year one, the Initiative managed to develop the KISM platform (it was formally launched on March 7, 2023). It initiated three research syntheses on available evidence about the dynamics of food value chain innovations (and bundled combinations thereof)and their impacts on employment, livelihoods, and environmental sustainability. These studies are developed in close consultation with researchers and stakeholders engaged in the design of innovations and interventions for the case studies undertaken under Work Packages 1-3. These reviews are set to be completed in Q1 of 2023.The analytical frameworks for the global and country-level model-based scenario analyses (MIRAGRODEP, RIAPA) were adapted to fit the purposes of the Initiative (output 3), and one global scenario analysis on repurposing of agricultural support and impacts on employment, poverty, food security, and climate change mitigation was undertaken and published (output 4). In support of this analysis, a policy indicator database (AgIncentives) was updated, while a start was made with the estimation of indicators measuring the degree of inclusivity and sustainability of agrifood systems worldwide but is awaiting completion in Q1 of 2023. The activity/result contributes in significant ways to gender equality, even though it is not the principal focus of the activity.Gender equality is the main objective of the activity/result and is fundamental in its design and expected results. These innovations should contribute to: better vertical integration of the F&V value chain in the country; improved income and employment opportunities in an expanded market activity; better food security and nutrition; and reduction of greenhouse gas emissions (through use of renewable energy and reduced food loss and waste).While not always as dense, this type of partnership network has been (or is being) established for the other selected value chain cases as well. • SHIFT and FRESH Initiatives: Sharing of research approaches and innovation design in supply chains for nutrition-rich and high-value foods (specifically, dairy and F&V)• Digital Transformation Initiative: Collaboration on research design for inclusive business models for digital platforms.• Mitigate+ Initiative: Joint development of emission-intensity database for selected value chains.• HER+ Initiative: Sharing of approaches for inclusive business model design and institutional frameworks to overcome constraints in access to resources and income and employment opportunities for women and youth.Even though the Rethinking Food Markets Initiative does not overlap with these other Initiatives in value chain or country focus, the sharing of research approaches and methodologies, databases, and experience with policy and stakeholder dialogues is of mutual benefit.Agricultural biodiversity in a Peruvian market Photo credit: Bioversity International/A. Camacho","tokenCount":"2895"} \ No newline at end of file diff --git a/data/part_3/7424976498.json b/data/part_3/7424976498.json new file mode 100644 index 0000000000000000000000000000000000000000..7caa86dfe2f7f53498d5b1903a4018e8e41c7aa7 --- /dev/null +++ b/data/part_3/7424976498.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"770af15111f1eb81824044eaeeb7c1ff","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/ecaccd93-555f-43c5-91ac-379b861005ef/retrieve","id":"-2000874514"},"keywords":["Goats","Agro ecology","Reproductive performances","litter size","kidding interval","age at first mating","Parity","Feed resources","crop residue","bushes and shrubs"],"sieverID":"fb703906-4866-453f-9aff-c45a93236da1","pagecount":"178","content":"I would like to express my deepest gratitude and heartfelt thanks to my advisor, Dr Girma Abebe, for his invaluable comments, supports and follow up from the preparation of the proposal up to the end of the research work. His careful follow up and guidance through out the study period has contributed a lot to cover and complete timely the wider area coverage of the study site. I also extend my sincere thanks to my co-advisor, Dr Yosef T/ Georgis, for his support in providing valuable comments through out the study period and his important guidance during data analysis. Also my heart felt thanks extended to my co advisors Dr Azage Tegegne and Dr Berhanu G/ Medhin for their follow up, guidance and support in providing invaluable comments and suggestions throughout my study period. Sidama Zone Agricultural and Rural Development Coordination Office is highly acknowledged for the material and. facility support and follow-up of the study. I would like to express again my deepest and heartfelt thanks to Shebedino Agricultural and Rural Development Coordination Office for their support in providing transport, materials and all rounded support from the very beginning of the study period up to the end. Agricultural and Rural Development Coordination Offices in Dale, Wonsho and Loka Abaya districts, the development agents and experts of the three districts, as well as all participated farmers deserve my deepest appreciation for their unreserved cooperation and collaboration during the study.The study was carried out through the financial support of the IPMS project. I would like to thank the project coordinators who facilitated this opportunity for researchers and graduate fellows. Also my thanks extended to Ato Ketema Yilma and all the IPMS staff in ILRI and at Dale Pilot Learning Woreda for their wholehearted support during field works and office activities.Goats account for about 30% of Africa's ruminant livestock and contribute to about 17 and 12% of the total meat and milk production, respectively. Sub-Saharan Africa (SSA) accounts for over 60% of the total goat population in Africa, with estimated 147 million goats representing about 80 indigenous breeds or strains distributed across all agroecological zones and ruminant livestock production systems (Lebbie, 2004).Goats are highly adapted to a broad range of climatic and geographic conditions and are more widely distributed than any other mammalian livestock. The unique features of goats which include selective feeding behavior that enables them to select the most nutritious part of plant, fast reproduction, consumption of diversity of plant species and low capital requirement makes them very important especially for the poor at densely populated mixed farming areas.Moreover, goats are capable of producing more milk on less feed and are not adversely affected by declining range condition as cattle. They also have a significant socioeconomic role in rural areas and especially in societies where women are among the most resource poor people in Africa.According to the most recent estimates, Ethiopia has 23.4 million goats (MoA, 2004).Contrary to the general assumption that goats in Ethiopia are generally considered associated with arid and semi arid lowlands, about a third of the national goat's population is found in agricultural highlands (Workneh, 2003;Nigatu, 1994). In Southern Nations Nationalities and Peoples Regional State, (SNNPR), about 2.7 million goats are kept by small flock holders at wider range of agro ecological zones (CSA, 2003). In the Sidama zone about 183,462 goats are reared and contribute to 6.7% of the Regional goat's population. Among the woredas (districts) in Sidama Zone, Dale Woreda has about 17,248 goats contributing to 17.1% of the total goat's population in the Zone (CSA, 2003).Dale Woreda is the biggest and densely populated district among the ten districts of the Sidama Zone having suitable climatic diversity for plant growth that favors goat production. The diversity of plant species grown, availability of agricultural and agroindustrial by-products and integration of goats into the farming system makes the area suitable for goat production. In the district, due to rapid population growth and subsequent expansion of farmland, grazing land is shrinking and has reached a stage where it could not support large ruminant production. In such a circumstance, goat production has a role in serving as a source of income through sale of kids and milk production. In recent years, the demand for goat meat is continuously rising presumably due to the growing export market for goat. However, despite the huge number of goats that are reared by smallholders and agro pastoralists in the district, productivity of the goat and their system of production has received little attention in research and development endeavors.In the diagnosis and program design of the project entitled \"Improving Productivity and Market Success (IPMS)of Ethiopian Farmers\" project, goat production and marketing was considered as one of the priority commodities in Dale Woreda. In this regard, assessment on the supply and demand of live animals for both the domestic and export markets was identified to be an important research issue. Proper description of the production and marketing systems and identification of the actual production constraints as well as potential productivity of goats in the woreda is fundamental to any intervention that will be designed and executed for the benefit of smallholders in the area. It was also hypothesized that differences in agro-ecological zones results in different performance levels of goats, their socio economic importance and their management system.The objective of this study was, therefore, to study goat's production and marketing system. Specific objectives were to :-identify and describe goat production systems -determine production potentials -describe marketing systems and identify opportunities and challenges of goats production..Small ruminants in tropical Africa are kept under traditional extensive systems. In the arid and sub humid zones, cattle are reared with sheep and/or goats. In the humid zone, animals generally graze freely, with access to household and kitchen wastes when available (Ademosun, 2003).Production systems are identified on the basis of contribution of the livestock sub sector to the total household revenue. Almost all the goat production systems in southern Ethiopia have been designated as \"traditional\" (Workneh, 1992). These traditional production systems include pastoral, agro-pastoral, agricultural and urban.Production systems are segregated according to the degree of dependency on livestock and livestock products for income or food, type of agriculture practiced in association with livestock and mobility and duration of movement. Accordingly, more than 50% of household income comes from livestock and in arid areas where there are little or no cropping activity, owners travel longer distance year round looking for forage and water along specific orbits are classified as pastoral system. In the semi arid regions, 10-50% of the income comes from livestock and agriculture production is practiced along with livestock management and production. The system is either transhumant or sedentary and is classified as agro-pastoral. The sedentary agricultural system is where income of less than 10% is derived from livestock/livestock products and livestock production is secondary to crop production (Wilson, 1988;Workneh 1992). Urban and peri-urban production system is practiced in town and cities by wage earners who invest cash on goat production for short-term profit (Ibrahim1998).In pastoral system land assumes more importance whereas in agro pastoral, agricultural and urban/peri-urban system labor is more important. As intensification increases, labor becomes more important than land. The urban system is capital intensive since farmers invest cash to buy goats or sheep to fatten for sale during peak demand. In this system the high wage for labor is the main constraint (Ibrahim, 1998). According to the same author, in the pastoral system small ruminants obtain their feed from rangelands. In agro-pastoral systems rangeland is used but crop residues assume more importance. In most agricultural systems, crop residue, household waste and forages are used for feeding small ruminants.Traditional livestock farming is very diverse and is dependent on climate and soil, and is very much linked to the availability of local resources either plant growth or the species and breed of animals reared. Traditionally extensive systems of production share common characteristics such as limited number of animals per unit area relatively limited use of advanced technology low productivity per animal grazing and the use of agriculture-on farm by products (Boyazoglu, 2002)..A study using West African Dwarf (WAD) goats owned by 45 farmers indicated that in the wet season goats had access to either fodder banks or natural pasture, after crop harvest goats roamed freely. The result of these two grazing systems indicated that mean litter size was 1.67 + 0.08 and 1.56 + 0.06, respectively, and was affected by parity (P<0.05). Births accounted for 87% of all entries while multiple births accounted for about 68 % of all the kids (Ikwuegbu et al., 1994).Field performance of goats in the humid southeastern regions of Cote d'Ivoire, reported that the uncorrected litter size was 1.52. Annual kidding rate was 234.1%, and this high reproductive performance was achieved due to the short kidding intervals in three kidding over a period of two years. Number of kids born per year in Djallonke does varied between 2.0 and 2.7 (Armbruster, 1993).In South Africa mean kidding percentage, (number of kids born per doe per year), for maiden does was 76% and that older does 64%. Abortion rate was 29%, and the high incidence of abortion may be indicative of inadequate nutrition during the last stage of pregnancy (Mahanjana, 2000) Kidding rate and litter size of goats kept in southern Ethiopia was reported to be 80% and 1.03, respectively (Girma et al., 2000). According to these authors, low litter size obtained was attributed to the fact that most goats were in their first parity. Kids could attain body weight of up to 20 kg at less than one year of age (Girma et al., 2000) The survey conducted on indigenous goat type in Southern Ethiopia revealed that in pastoral and agro-pastoral systems of Southern Ethiopia; rangelands provided the only source of feed throughout the year. Both Sidama and Borena agro-pastoralists supplement goats with thinning of maize and sorghum and crop residues during the wet and dry seasons In agricultural areas not only crop residue but also chopped fodder, browses and kitchen wastes are supplied to goats.Goats also graze on fallow land in agricultural systems perennial crop growing areas, presumably due to limited pastureland (Workneh, 1992) The potential of crop residues as livestock feed increases with rising population density, while the demand for them depends on the livestock population density and the alternative functions of crop residues in the farming system. At the village level, stocking rates differ greatly between individual farmers. Stock-poor farmers may have excess to feed, while stock-rich farmers, despite having more cropland and higher crop yields, may be short of feed. In mixed cropping systems with long growing seasons, intercropping may restrict the access of livestock to crop residue, such that the residues of early-maturing crops may decompose in situ without being grazed (Leeuw, 2003).Increased livestock holdings will stimulate mono cropping or the intercropping of crops of similar cycle length. In the future, rising demand for locally grown crops and for livestock products may lead to higher use of inputs, resulting in higher crop and crop residue yields, feed budgeting and the allocation of feeds to different classes of stock ranked according to their revenue-earning capacity. New cropping patterns may evolve that allocate larger shares of land to grain legumes and roots/tubers. This will diversify and enhance crop residue quality, a process that can be further promoted through the inclusion of by-products in feeds (Leeuw, 2003).Perennial crops (enset and coffee) are common in areas with a high population density such as Sidama. The system of feeding is predominantly free grazing. Tethered feeding is practiced around perennial crop growing areas in Sidama. Some farmers provide crop residues, thinning of maize or sorghum, kitchen waste and chopped browse. Provision of mineral supplements in the form of natural licks and table salt is common among the Sidama people. Kids are sometimes provided with supplements (Farm Africa, 1998) Livestock feed scarcity is often the major cause of livestock mortality during drought in the Enset (Enset ventricosum)-livestock mixed farming systems in the Kokossa district of the Bale highlands in southeastern Ethiopia (Desta, 2004). Livestock mortality associated with feed scarcity was investigated in the livestock-enset, enset-livestock and enset-livestock-cereals production systems of the Ararso, Jafaro and Bokore sub districts of Kokossa, respectively, using farmers' perceptions during a drought year in 1998, an average rainfall year in 1999 and a wet year in 2000. Livestock mortality was variable between years and between farming systems.Greater livestock mortality occurred during the drought than in an average or wet year.Generally, mortality was greater in the livestock-enset and least in the enset-cereals-livestock production system. Among livestock, cattle experienced greater mortality than small ruminants and equines (Desta, 2004).Total feed demand depends on the overall local stocking rate, but the ratio of supply to demand varies across seasons and years as well as between individual farms. Variability in ratios between farms is greatest where communal grazing land is scarce, as for example in the Ethiopian highlands, Rwanda and Kenya. Where access and use of feed is entirely farmer-controlled, benefits from intensification of the crop subsystem can translate directly into higher livestock, modest increments in input levels can double the output of cereal crop residue, which, having full control, the farmer can manipulate and manage so as to increase feed supplies and effective use by livestock. When farmers perceive the true value of their crop residues they often reassess them as a marketable commodity and start to engage in trade in feeds. This allows stock-poor producers to extract added value when intensifying their own cropping enterprises (Leeuw, 2003).The goats can be left to forage free-range for part of the day but are brought in to be fed the main part of their ration. In the dry season, free-range goats will only find dry vegetation or crop residues in the fields (stubble grazing). These may supply some energy, but the protein content is very low. Even by cutting and carrying such foodstuffs to enclosed animals it will be hard to meet their requirements. Goats can be fed fruits and vegetables like cassava or sweet potatoes, or the leaves of these plants, if available. Banana peelings, and sugar cane tops are also suitable, although not so nutritious. Feed supplements will also have to be given, if goats are enclosed during the rains, fresh grasses, legumes, tree foliage should be cut for them. Fodder trees are useful for this. Crop thinning or cuttings (maize, etc.) can also be fed, as well as weeds. Sweet potato vines are very nutritious (Jansen, 2004).The effect of different feeding systems was conducted using Somali and Arsi Bale goats' It was found that Somali goats managed under semi-intensive system returned a higher profit margin than the goats managed under extensive and intensive systems (Getahun et al., 2005).These authors suggested combining grazing with concentrate supplementation is potentially more profitable than either grazing without concentrate supplementation or pen feeding with no grazing.On the other hand, the marginal rate of return for Arsi-Bale goats was negative in all the three systems. The loss of money encountered in goats managed under the extensive system was relatively lower than the goats under other treatments. The additional income from supplementation of concentrates does not justify the additional cost accompanied with it for these goats. Grazing seems the only viable option for Arsi-Bale goats during the dry season.Repeating this experiment during the wet season to generate data for the whole year would gave more conclusive result since the availability and quality of feeds, cost of variable inputs and prices of the animals varied from season to season (Getahun et al.,, 2005).Forage legumes could be established under maize with out reducing the grain or stover yield.Leaf defoliation up to 50% did not affect the grain or stover yield components or the yield of under sown legume (AFRC, 2004). In the highlands, where common grazing areas have been declining due to population pressure, crop thinning and weeds from the cultivated land provide a large part of supplementary feed available to the goats. Thus, the size of cultivated area has to be considered as a limiting factor. However, there is no evidence to show that land is any more limited to the total flock out put than the total labor at the disposal of the household than the biomass of goats to be maintained (Workneh, 2004)..According to a study conducted in Belessa (Amhara region of Ethiopia) the feed available in Kola agro-ecology is good compared to Dega agro-ecology. The critical feed shortage season in Belessa Woreda is from January to the end of June, depending on the on set of rainfall. If the rain starts early in the season (May), all the private and communal grazing land as well as forest and shrub are a good source of feed so that livestock will not face feed shortage. However, during drought years or delays in the start of rainfall, feed and water shortage are major problems and high livestock mortality is common.The study conducted in Amhara region found that ownership of various types of livestock has declined, and there has been a significant change in utilization of feed resources: while use of communal grazing lands, private pastures, woodlots and forest areas as feed sources has declined, the proportion of households using crop residues and purchased feed has increased. In addition, the proportion of households with better access to woreda towns significantly improved ownership of oxen and goats, while improvement in access to all-weather roads reduced ownership of oxen (Benin et al., 2002).The study conducted at Addilo (SNNPR) and Kofole (Oromia) areas also showed that lack of feed which is directly related to shrinking farm size, was ranked as the major constraint by Addilo respondents, while small ruminant disease was ranked as top most priority problem at Kofole (Getahun, et al., 2006).Animal health problems of various origins are among the numerous factors responsible for poor goat production and productivity. Farmers classify diseases on the bases of clinical sign, severity, onset and duration of the disease and considering species and age it affects. Farmers' indigenous knowledge that was handed down over generations in handling and treating livestock health problems are enormous and are still useful in Ghinchi area Oromia region (Ethiopia) (Yosef, 2002) An integrated multi disciplinary research and development approach with the full participation of the farming community is of paramount importance to improve their livestock husbandry and management practices and to improve and make use of an age-old enormous knowledge in handling and treating different animal health problems (Yoseph, 2002).A study on ectoparasites on small ruminant was carried out in three districts (woredas) of the eastern part of Amhara regional state, Ethiopia, from November 2003 to March 2004. The result indicated that out of 752 goats examined, 56.4% of goats were infested with one or more ectoparasites. The ectoparasites identified in goats were Linognathus spp., 28.3%; ticks, 22.2%; Sarcoptic mite, 6.1%; and Ctenocephalide spp., 8.1%. In goats, the risk of Sarcoptic mange infestation in the low and midland was 4.6 and 5.0 times higher than the highland respectively (?????)Markets are important for agricultural growth and sustainable development. Lack of markets, or poor access to those markets that exist, not only affects farmers and livestock herders locally in rural areas, but is a drain on the potential of the entire country. Creating local and national markets and improved access to them, allows specialization and diversification into new agricultural products that make profits for rural households and decrease poverty and hunger.Marketing channel describes the movement of a product or commodity from the site of production to the place of consumption. It may include transportation, handling and storage, ownership transfers, processing, and distribution (Pinkerton, 2002).The marketing channels that small stock farmers were mostly aware of are butchers, middlemen/traders and individuals. Some farmers still believe that financial assistance policy projects were useable even though they have been phased out. The most used marketing channels individuals ranked as the most favored, then butcheries as the second most favored and middle men as the third favored. The least favored was financial assistance policy projects while the rest were largely seen as unfavored. The usage of other marketing channel is very low. Auction and cooperatives are none existent (Nsoso, 2004) The growing demand for small ruminants in local and international markets, the improving transportation infrastructure, and the experience of farmers in small ruminant keeping are practical opportunities to enhance the contribution of the sector. Furthermore, research on the complex cause-effect relationships is needed to derive policy implications (Getahun, 2006).Efficient and integration of marketing determine the tradability of products and the accessibility of market to farmers. Improving market efficiency contributes to the increased level of food security by reducing consumer prices, increasing returns to producers or both. That is returns to better supply of food. A study conducted in SNNPR State by Million (2003) indicated that inadequate transport network, limited number of large interregional traders with inadequate storage and working capital high handling costs, inadequate market information system weak bargaining power of producers, and lack of processing facilities have contributed to inefficient livestock market in the region.The marketing of goats and goat products in the tropics is very variable, and depends on location and prevailing production conditions. Traditional production trends tend to be associated with local marking conditions. Uncertainty and lack of assessment for reasonable prices are the main marketing problems, which are resulted due to unorganized marketing. In an organized marketing system there is usually assurance of reasonable prices for quality products and these are linked to reliable supply sources. In the traditional marketing system, it is a small enterprise, the overhead cost is low and the products are sold in the simplest possible way. Labor is plentiful in rural area, but the capital investment is small. The market is essentially low income and consumers look for cheapest meat available and buy in small quantity, however, as affluence increases, as the same time standards of living change, people will be prepared to pay higher prices and consume more meat (Devendra, 1982).Demand for meat is largely festival-led, and thus, predictable with well-set patterns for buying reason. Stock movements between markets is unregulated and increasingly disorganized and may add up to 12% to the final sales prices with a corresponding loss of condition on the part of the animals (Peter, 1998).For the period from 1998 to 2020, The International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT) predicts developing countries aggregate consumption growth rates of meat and milk to be 3.0 and 2.9% per year respectively, compared to 0.8 and 0.6%, respectively in developed country. Aggregate meat consumption in developing countries is projected to grow by 72 million metric ton between 2003 and 2020, whereas, the corresponding figure for developed countries is 9 million metric ton (Delgado, 2005). The study also revealed, based on empirical data, that population growth, urbanization and income growth in developing countries are fuelling a massive increase in demand for food of animal origin. These changes in the dietary pattern of billions of people could significantly improve the well being of many poor people in rural areas (Ehui et al., 2003).Henning Seinfeld (2004) indicated that, globally, per caput food consumption continues to increase both in the developing and industrialized countries, as well as in countries in transition, as a result of increasing average per caput real incomes. Changes are also occurring in the type of food consumed. With increasing incomes, demand for greater food variety and for higher value and quality foods such as meat, eggs and milk, increases. Between 1997Between /1999Between and 2030, per , per caput meat consumption in developing countries is projected to increase from 25.5 to 37 kg per person compared with an increase from 88 to 100 kg in the industrialized countries (Seinfeld, 2003). The same author also revealed that wide regional and country differences are also evident in the quantity and type of animal products consumed-reflecting the traditional preferences based on availability, relative prices and religious and taste preferences. Sub-Saharan Africa has had low levels of animal products consumption that have changed little over the last 30 years.While an increase in food consumption is predicted, only minor increases are projected for animal products consumption.The viability of goat's enterprise depends not only on technical and biological efficiency, but also, on a well organized marketing system. At present goats markets are characterized by poorly managed and unrealistic carcass grading, pricing, inadequate promotion of goat meat and inadequate and inefficient transport system. These problems will have to be corrected if goat production is to be improved (Shumba, 2004).Marketing has a significant role in increasing livestock production. Livestock herders can strongly be initiated by increased price and marketing situations. Marketing enhance producers to focus more on their animal productivity. However, there are factors affecting livestock marketing and domestic livestock trade in Ethiopia and other neighboring countries. These problems are particularly pronounced in distant areas away from large cities and urban centers.These are poor infrastructures, high transport costs, taxation, intermediate costs and cartels. It suffices to say that livestock are the most repeatedly taxed agricultural commodity group in the region in route to their final destinations. For example, traders pay as many as 20 types of taxes between points of purchase and destinations/ final exit points in Sudan, traders in Ethiopia are also subjected to paying transit and sales taxes of widely varying nature within the country. Kenya livestock traders may not pay fees and taxes as in many places as in Sudan or Ethiopia (Yakob, 2003). The same author indicated that transport constitute a major cost factor in livestock trade whether in Ethiopia, Kenya or Sudan. In Kenya transport costs constitute between 25-40% of the total price, the same holds true for Sudan and Ethiopia.In addition to problems encountered due to taxation and transport too many middlemen affect the efficiency of the livestock markets. In the Sudan livestock may change hands 2 to 6 times until they reach the terminal market). Even then, the final transaction in the terminal markets is also carried out through middlemen on commission basis. Terminal livestock prices as a result, end up 3 or 4 times higher than the producer's price (Yakob, 2003).The existing livestock markets are loosely integrated due to lack of sufficient market information. Thus, a market information system is required that allows stakeholders to get information on quantity and price, both on the domestic and foreign markets. There is no information as to the extents of competitive marketing prices and farmer-sellers being able to do more than to accept what traders offer. Commercial transactions are dominated by the traders, and largely to their advantages (Peter, 1998). Furthermore, market research is critical to identify problems and constraints in the marketing systems and to know the requirements of the external market, and to design policies and regulations that allow to have effective production and marketing system internally and to match supply with the external demand (Belachew, 2003).A review of structure performance and development initiatives about livestock marketing in Ethiopia by Ayele et al. (2003) indicated that the available research results for livestock marketing in Ethiopia are outdated. Current knowledge on livestock market structure, performance and prices is poor and inadequate for designing policies and institutions to overcome perceived problems in the domestic and export marketing systems. In particular, information is required on the incentive structure, spatial and temporal bottlenecks and price and information structure throughout the marketing chain including the export market.According to Ayele (2003), available time series (livestock number and price) data are valuable because they can be useful to relate and model the effects of external shocks (e.g. policy changes, livestock development projects, climatic variations, regulations and taxes) to the marketing system. Recent information on location specific marketing constraints, livestock sources, prices, margins, stock marketing routes and market information endowments are unknown. How prices and margin volatility are affected by other variables (e.g. season, climate variation, crop prices) is also unknown for any tier of the livestock marketing chain.The formulation of future livestock marketing policy that aims to improve the current system can benefit from historical data, but will also require current market information. If Ethiopia's livestock is to compete successfully in the export market, particularly in its traditional outlets, e.g. the Arabian Peninsula, minimizing inefficiency in the domestic market and understanding the opportunities in the export market will be critical (Ayele, 2003).Increasing the volume of export without considering the production potential of the country affect the total animal production of the country. For example Sudan's ambitious export program is aimed at reaching an export volume of some 10 million shoats a year. Given the chance, Ethiopia and Kenya could also like to increase their export volume to the maximum, the question is; how can each country determine what it can export without significantly affecting its resource base. Available data on the off-take volume of livestock is far from accurate in all the three countries. For example, annual off-take figures for the major terminal markets in the Sudan show too wide variations from year to year to be reliable (Yakab, 2003).One means to create and conserve pastoral wealth is to encourage more timely sales of animals and investment of proceeds in endeavors that enhance human capital and diversify local economies where possible. Such strategies will only be possible if marketing channel can be improved and rural financial services are made more accessible (Getachew, 2003). The same author revealed that the livelihood of the smallholders is highly dependent on the cash income derived from livestock and livestock products. Alleviating constraints to marketing, improving market information and upgrading marketing infrastructures will potentially increase the welfare of smallholder producers and urban consumers and improve the national balance of payments.The more farmers are aware of the market demand and price, the higher will be their bargaining power that could improve their income through getting a larger share of the consumer spending.Market infrastructural and institutional set-ups will improve the access of producers to potential markets whereby they could supply more volumes with higher share of the end market price.These improvement measures will raise the household income and purchasing power of producers and local traders, which in turn will create positive impacts on the local economy. On the other hand, when income of the producers increases through better access to information, market and infrastructure, they could improve production, both in terms of quantity and quality, thereby benefiting consumers.A study conducted in Nigeria, Imo State, indicated that the gender-perceived production constraints; the relative contributions of these ruminants to the farm household net income; and the implications of these contributions to loan repayments if production is assigned on gender basis. Results showed that within the ruminant class of livestock, small ruminants, particularly goats, dominate the others, followed by sheep and then, cattle. Their relative contribution to total farm household net income follows the same order (Oguoma, 2003).The study was conducted in Dale district in the SNNPR State, Ethiopia. Dale district is the biggest district among the ten districts in Sidama Zone. It occupies 1411 km 2 of land area and situated at about 320 km south of Addis Ababa (IPMS, 2005), at 6. 45N and 38.23E (Lemma, 1996). According to the recently available agro climatic zone classifications, the district is found in two different sub zones (SM1-2) and (SH2-7) (MoA, 2002). The first one (SM1-2) is hot to warm sub-moist lakes and the Rift Valley. At the western part of the district around Lake Abaya bordering Humbo district of Wolayita zone, having an altitude of 1170 masl. The second one is Tepid to cool Sub humid Mountains (SH2-7), covering 3200 masl, in the middle and the eastern part of the district.The regional government of SNNPR in 2006 split the former Dale district in to three Woredas, namely: Wonsho, Dale and Loka Abaya districts. in which the first represents moist Dega agroclimate having altitude ranging from 2300 up to3200 masl, while the latter two are under the category of moist weyina Dega from 1500 to 2300 and moist kola from 1170 up to 1500 masl.This study was conducted in the previous Dale district that covers all the three-agro climatic conditions.For the purpose of this study the former Dale districts was classified based on the elevation map of IPMS. Seven Kebele Administrations were categorized under moist Dega (Wonsho) that have an altitude range of >2300 to 3200 masl. (here after referred to as Wonsho district). The moist Weyina Dega<2300 up to 1650 and moist Kola <1500 up to 1170 masl covers 63 and 6 KAs, respectively and (here after referred to as Dale and Loka Abaya districts, respectively) (Figure , 1).Dale district is subdivided in to 76 Kebele administrations. The population is estimated at about 369,548 of which women account to 57.6% (CSA, 2003). The main livestock species in the Woreda are cattle, goats and sheep and estimated to be 225,698, 31443 and 30152, respectively. Also there are 19,233 equines used for draft service. The major crops are coffee, enset, maize, haricot bean and chat (IPMS, 2005).The district has two main farming systems namely, coffee livestock system which is found east of the main high way that transverse Dale from north to south and haricot bean livestock system found at western part of the high way. In the latter system, haricot bean and goats are considered as the priority commodity. Besides, the main system, two systems with minor area coverage are found at two opposite extremes one in the extreme east at high altitude where farmers grow cereals and horticultural crops and herding cattle, sheep and goats while the other at extreme west bordering Lake Abaya, focusing on livestock production mainly goats and cattle.The mean annual rainfall at Awada research sub center in Yirgalem town is 1314 mm. There are two cropping seasons in the area. The first season starts at the mid of February and end up on the late April, locally known as \"Belg\" which is used for pasture production and also for Maize, root and tuber crop cultivation. The second and the big season locally known as \"Meher\", that starts at the beginning of June and end up at the end of November (Abebe, 2000;IPMS, 2005).The study was conducted using formal as well as informal methods. Multistage sampling technique was employed. In the first stage, Kebele Administrations (KAs) that are the lowest administrative unit, involved in the study were selected using stratified sampling technique.Agro-climatic distribution of the Woreda (district) was used in order to stratify the Kebeles in the district.In the Second, stage, proportional allocation techniques was used in order to determine the number of sample Kebele from each stratum. As a result, a total of eight i.e. 1, 6, and 1 Kebeles from moist Dega (Wonsho district), moist Weyina Dega (Dale district) and moist Kola (Loka Abaya district) were selected, respectively. On the third stage, random sampling technique was used to identify Kebeles that were included in the survey study. Finally, households that were participated in the study were selected using simple random selection method after identifying the goat owners from the community using purposive sampling method.Reconnaissance survey was carried out in the selected eight Kebeles in order to identify the existing system of production. Informal interviews were conducted using key informant such as knowledgeable people, elders' popular and experienced farmers. Furthermore, extension staffs from agricultural office and representatives from Kebeles administrations had participated during group discussions.After having conducted group discussions, a questionnaire was developed, pre tested and translated into Amharic. Eight enumerators, one for each Keble, were recruited and trained for two days. There after, diagnostic survey was carried out using local language (Sidamigna). In this cross sectional survey, 15 farmers from each Kebele and a total of 120 participants, from 8 Kebeles were involved and interviewed. The number of households interviewed was, 15, 90 and 15 from moist Dega, moist weyina Dega and Moist Kola areas, respectively. The questionnaire consisted of main parameters like household structure, production system including, breeds and breeding, feeding, animal health situations and disease control, etc. The questionnaire used to get pertinent information in the study is in Appendix Table 5.. Sixty participants were involved in the flock monitoring study on a continuous basis for a period of seven months (September to March). Body weight of animals in the flock was measured and recorded at the beginning of the study period. Data on health and disease situations, production and reproductive performances, disposal of goats (sales, death, transfer, slaughter), labor utilization and other traditional husbandry practices were collected during the monitoring period using six trained enumerators that were assigned to each selected study site. Furthermore, the researcher on a monthly basis supervised data collection. Data collection sheets used for the monitoring study are presented in Appendix Table 6.Data entry and statistical analysis were performed using SPSS computer package. Statistical analysis like Frequency, percentages, mean, range standard deviation and standard errors were used to describe qualitative data. Analysis of variance was used means were compared using Tukeys and Newman's tests. Data were tested for homogeneity of variance using Leven's test (Zar, 1996) in order to ensure that the assumption for the F test was not violated.Out of the 120 respondents, the majority (94.2%) were male and the overall mean age of respondents was 39.31±2.82 years with an average age of 34.2±3.24 years in Moist Dega, 40.1±1.40 in Moist Weyina Dega and 39.4±2.64 years in Moist Kola agro-ecologies. The proportion of respondents above sixty years was very low (6.67%) and most of them (93.33) were between 19 and 60 years(Fig 1 a). There was a slight increase in mean age of respondents from Moist Dega and weyina Dega to Kola. However, the difference is not statistically significant (Annex table 1). The mean age indicated that respondents were adults with experience in goat keeping. Examining the marital status further validates this, in that nearly 95% were all married. The percentage of divorced, widowed and un-married was 3%, 1%, and 1%, respectively. Out of the interviewed male-headed households, 75% were literate, and on the other hand, only 50% of females (spouse) were literate. Considering males who attended school, proportionately, a higher percentage (28%) attended grade 7-10 than elementary grads 1-3(20%) and 4-6(19%). Some 4% were 10 th grade complete or above. The high proportion (7 to 10 th) is recorded at moist weyina Dega (Dale). This area is different from the other two-agro ecologies by having secondary schools and more accessible to urban centers (Yirgalem and Wondo towns). Some of the herders were those who interrupted learning from junior schools and attracted in to farming activities. Where as, Female representation decreases in higher grades by nearly 50% compared to their numbers in elementary grades i.e., 26% in grades 1-3 compared to 13% and 10% in grade 4-6 and 7-10, respectively (Figure,1b). Educated female is by far less than that of males in the community. This is to be expected because families in most developing countries are reluctant to send their female children to school. However, this situation has been improving in recent years.During the time of the survey, all children of the interviewed household that reached school age (>7years) were sent to school and therefore no illiterate children were encountered (Fig, 1b).This indicates that, the communities in the studied area are quite aware of the benefits of sending children (including girls) to school. The availability of schools within a reasonable distance from homestead (a school within Kebele) is the other encouraging factor for children's education.The overall mean family size per household was 7.5±0.247 and was not significantly different (P<0.05) among the three agro-climatic zones. Relatively higher family size per household was recorded in Moist Weyina Dega (7. 9 ±0. 29) followed by moist Kola (6.8±0. 47) and moist Dega (6.4±0. 58). This value was higher than the national, 5.2 person and regional-(SNNPR), person average (CSA, 2003). On the other hand, these values are lower than the findings of Workneh (1992) who reported average family size of 9.1 and 13.1 persons, respectively for agricultural systems mainly growing perennial crops in the highlands of Sidama and for agro-pastoral production systems in SNNPR but comparable with average family size estimate (5.7 persons) of mixed farming area in east Ethiopia, Gursum, (Workneh, 2000). Mother ChildrenAverage land holding per household was significantly different among the three-agro-ecologies (p <0.001). On average, households in moist Dega (Wonsho) possessed significantly large land(2.18 hectare/hh) than those in Weyina Dega (1.27 hectare/hh) (Table 2). The average value for Kola was (1.77 hectare / hh), was intermediate between the two.Due to small land size and large family size per household, the ratio of family size to house hold land holding was significantly high in Moist Weyina Dega than sparsely populated Dega and Kola agro ecologies. The reason for high population in Moist Weyina Dega as expressed during group discussions was mainly related to the conduciveness of the area for cash crop production such as coffee and chat which is quite an attraction to new comers who consider production and trading of coffee and chat as a good source of income. Also once established, migration fromWeyina Dega to other parts is minimal.The overall mean livestock holding per household also varied across the three-agro ecologies, (p <0.005) (Annex Table 2). Average holdings per household in Moist Dega 9.4 animals per household and Weyina Dega 11.9 animals per household were comparable but were less than half of the value for an average household (24.4 animals per household) in moist Kola district (Table 2).On the other hand, livestock to land ratio per household for Dega (4.64 animals per hectare) is significantly lower than the livestock density per hectare per household in the other two agro ecologies (Table 2). Relatively low livestock holdings coupled with large land area per household in Dega may account to the sparse density of animals in Dega. In addition, people from the Dega move their flock to the lowlands around Lake Abaya during the dry season in search of grazing, and this may have also contributed to fairly low livestock density in the Dega ecology. 4.64 a 11.95b b 14.66 b Note that means value that bear the same letters are not significantly different from each other at 5% level of significance All the categories of livestock species shown in the Table 3 are found in all the three agroecologies but species composition varies depending up on the type of climate. Cattle and goats constitute equal proportion to the livestock density in Kola and Weyina Dega. In Dega however, cattle are given first priority and sheep are as important as goats accounting nearly 50% of the livestock density.The importance of sheep in Dega agro ecology is a typical feature of a highland area as sheep are better adapted to cooler climatic conditions than the hot lowlands. Even then, goats in the surveyed uplands moist Dega (Wonsho district) were equally important as sheep indicating that they are quite adaptive to cooler areas. This finding therefore refutes the usual misconceptions that of goats play a very minor role in highland agricultural system. The majority of respondents in the three districts ranked crop as first priority source of income for the family and followed by income generated from animals and animal products. Trading and labor although are less important as source of income, trading appears relatively important in Moist Dega than the other two agro ecologies. In moist Dega (Wonsho) farmers during offseason engaged in part time trading. They bring vegetables from Dega to Moist Weyina Dega (Dale) and take coffee and sugarcane to Moist Dega and make profit to use as a source of income for the family.Among crops, coffee and chat income took the first place in Moist Weyina Dega, Enset and vegetables income in Moist Dega, and maize and haricot bean in Moist Kola. Goats are important source of income in Moist Kola agro-ecology. Although farmers have diversified income sources, 15% of the respondents ranked goats as first, while 63% as second major source of income in the Kola agroecology.On the basis of phenotypic characterization, goats in the studied areas are of two types. The goats in the highland district Wonsho (Moist Dega) that is adjacent to Bale resembled Arsi-Bale goat type and possess hairy coat. The Moist Kola goats that are found around Laka Abaya are similar to the Sidama goat type (Workneh, 1992). These goats are fairly similar to those in Moist Weyina Dega (around Dale district) but they differ markedly from the highland Dega goats. The Sidama goat type are bigger in size than the Arsi-Bale goats found in the Moist Dega (Wonsho), whereas, the midland goats found around Dale district are intermediate in size.The color of goats varied in the three-agro ecologies. The Moist Dega goats are black and grey with some red color, and goats in moist Weyina Dega around Yirgalem town are fawn, grey and white. The Loka Abaya goats are predominantly white in color, with some fawn and black (Figure 3). During group discussion, flock holders indicated that large size; white colored goats with thick and straight horn (such as shown by Fig. , 2) have better market value and are fast marketable than other colored goats. This criterion was verified by about 67.9% of the respondents interviewed during study period. There is a wider range of variations in flock size. 12.5 ±2.186 Goats per household was registered in Moist Kola, which is significantly higher (P<0.05 Annex table 5) than flock size in Moist Dega (2.67±0 .361) and in Moist Weyina Dega (5.46± 0.549). The largest holding registered in Moist Kola, Felka Kebele (31 goats) and the smallest holding (1) was recorded at the Moist Weyina Dega and Dega (Bokasso and Bera Kebeles, respectively). The over all mean flock size for all the study site was 5.98±0.547 (Table 4) of which 53.5% were does, 13.4% castrates, 13.8% bucks, 10.6 doe kids, and 8.8% buck kids of less than six months of age.The overall mean flock size is lower than previously average flock size (7±9) for densely populated perennial crop cultivating farming systems in the highlands as well as in agro pastoral societies in semi arid areas of Sidama, SNNPR (Farm Africa, 1996). It is higher than the average flock size 4.7 and 13.6 goats per household reported for Karapokoto and Tchein agro-pastoral tribe in Kenya and Chad, respectively (Ibrahim, 1998). Where as, it is lower than values reported for most small stockholder farmers holding 1 to 40 goats per household in Kweneng district of Botswana (Nsoso, 2004).The breeding stock consists of 63.4% female (including all age from young kids up to old doe) and 36.6% all age male flocks. This proportion is lower than the over all average of 75.8% female reported by Workneh (1992, Nigatu et al., 2005). The proportion of male goat in the presently investigated areas was low in the flock. Farmers in the studied area mainly retain female goats in the flock for replacement purpose and remove male goats either by directly selling them or castrating and feeding them prior to selling. The ratio of female to male is 4:1 and the proportion of does is smaller when compared to the previous findings of Workneh (1992) who reported a doe to buck ratio of 11:1 and closer to (5:1) ratio of agro-pastoral society in South Ethiopia, which was reported by Nigatu et al., (2005). The reason for the reduction of the doe number was discussed with respective flock holders in each Keble. Accordingly, they said that young farmers (children above 18) when separated from their parents they share livestock mainly female goats to establish their own flock using female does as foundation stock. Hence this may have caused a gradual fell in does per household. So this may have contributed to the present low ratio of does to buck compared to values reported a decade and half ago by previous workers (Workneh 1992). Farmers keep goats for many reasons, the major reasons being that they are the source of food, cash and a form of savings (Ibrahim, 1998). In Moist Kola (Loka Abaya), goats are mainly kept as a means of savings i.e., farmers accumulate money as a hedge against emergency by keeping large flock of goats; the second reason for keeping goats is sales to generate income (Table 5). In addition to these two major reasons, farmers also viewed the uses of goats for milk production (13.3%) meat (10%) or both (1.7%). On the other hand, only (1%) of respondents considered goats as a sign of social status (prestige).Besides these major reasons, in Moist Weyina Dega some respondents (2.5%) used goat's manure for fertilizer. Farmers with no cattle reared goats for the purpose of manure, because, enset particularly at its early stage require high amount of manure. In this coffee and enset growing midland, traditionally farmers decompose manure and kitchen wastes by depositing on the back yards in the form of heap. After a long period of decomposition they used the compost for back yard vegetables, enset and coffee as organic source of fertilizer. With this regard, goats contribute manure for agricultural system, which is returned to the crop production system (nutrient cycling) to benefit vegetable garden, food crop and cash crops enhances the sustainability of the system (Ibrahim, 1998).During group discussion, the community members strongly stressed on that goats can be easily sold in the nearby markets whenever there is an urgent need for cash, hence they protect cattle from being sold for minor problems. The reasons are similar with the result from traditional small stock farmers survey by Nsoso (2004) in Botswana, who indicated that most farmers sell their goats because of urgent cash needs. The present findings on the other hand, is different from the results of a study on rural community farming system in South Africa which indicated meat consumption as major reason for keeping goats (Braker et al., 2002).In Moist Weyina Dega (near Yirgalem town Dale) and in Moist Dega (Wonsho) farmers use goat milk and there were some farmers who had no other alternative source of milk for their children.Furthermore, goats are slaughtered for home consumption occasionally, for example, when there is birth in the family or when a respected guest visits the family. In contrast to the report of Farm Africa, (1996) people in Sidama have no tradition or culture of slaughtering goats during \"Fitche\" (The new year celebrated by Sidama people, based on cultural calendar of Sidama). ). The experience ranged from one year up to 50 years and the mean was 9.7 years (Table 6). Most of respondents in the studied sites had longer time of involvement in goat husbandry, which is quite desirable to improve the goat production center. Aspects of flock dynamics was studied by asking farmers were interviewed about their flock size before two years and these values were compared with current flock size to determine flock dynamics. The results indicated that the over all mean flock size before two years in the three agro ecologies was 6.21 goats/HH and at present is 5.98. This indicated a reduction in flock size by almost 3.71% in two years time. Similarly, the mean number of sheep before two years was 1.53 per household but now the mean holding of sheep per household is 1.06. Compared to the mean number of goats, the reduction in flock size of sheep is higher (Table 7).Although goat flock size reduced when considering the overall mean, but this is not the picture when considering by agro ecology: For example, flock size did show increase in Kola, and even the reduction is not the same in Dega and Weyina Dega. Although the overall mean flock size of goats reduced at present when compared with what it used to be two years ago, flock dynamics differed in the three agro ecologies. For example, in Moist Dega, mean goat number per household reduced from 4.93 to 2.67, which is a 45% reduction in two years time (Table 7). But the reduction in Moist Weyina Dega was only 12%. Contrary to these two agro ecologies, goat flock size has showed increase by 63% in Moist Kola (Table7) Farmers in the three agro ecologies agree with two major breeding seasons of goats, namely September to October and between March and April however, some differences were observed among the three agro ecologies ( (1989) for Togo, Sahil and Maradi goats, which was 15, 13 and 14 months, respectively.The interval between two parturitions is the kidding interval. Kidding interval generally declines with age suggesting the younger kids take longer to regain body condition after kidding. The over all mean of kidding interval (AKI) for the three agro ecologies is 257±0.16 days. The mean kidding interval for Loka Abaya Sidama type goats in Moist Kola was 7.27± 0 .267months, which was significantly lower (P<0.05) than the value of the other two agro ecologies(Table 9). The over all mean Litter size for the three agro ecologies is 2.07±0.13. Mean Liter size of goats in Moist Kola (2.33 ±0.35) and in Moist Weyina Dega (2.21±0.15) were significantly higher (P<0.05) than in Moist Dega, but no significant difference was observed between the two agro ecologies (Table 9). In some areas of Moist Weyina Dega and almost in all parts of the Moist Dega (41.7%), farmers reported single kidding. In these two areas, six respondents (5%) reported triplets and the remaining reported no uniform kidding. Litter size was also found to vary from parity to parity. The result in Moist Kola and Moist Weyina Dega are higher than the average litter size (1.3) reported previously reported for the Sidama goat type (Farm Africa 1996) and for goats in Boricha district Southern Ethiopia (1.03), (Girma et al., 2000). On the other hand, the latter two literature values are comparable with the mean litter size of goats in Moist Dega found in the present study.The pattern of litter size increased as the age of does advanced. At first kidding the litter size in most cases is single, and increases to twins to the middle age, then remains constant after fifth and sixth parity, as confirmed during group discussion. In rare cases some goats produce triplets at their peak reproductive age. The over all mean age of lifetime kidding (parity) is 13.05±. 3 year. The possible lifetime kidding (parity) was estimated to be12.07±0.13 and12.68±0.32 (P<0.05) in Moist Dega and Moist Weyina Dega, which were significantly lower (P<0.05) than the value of Moist Kola, i.e. 16.07±0.93 months (Table 10). There is no significant difference (P<0.05) between Moist Dega and Moist Weyina Dega agro-ecologies. Culling is a common practice in all the three-agro ecologies. Forty nine respondents (40.8%) culled their goats due to poor body condition, 40 respondents (33.3%) reported poor production as the main cause of culling, and 24 respondents (20%) reported older age and the rest 5.9 % indicated the combination of health, reproduction color and bad animal characteristics as the major factors for culling goats from the flock. This being the overall situations, differences were noted among the studied agro-ecologies, which respect to reasons for culling. In Moist Dega and Weyina Dega, the three factors, namely poor body condition, poor productivity and older age were the main reasons for culling goats (Figure 4). On the other hand, in Moist Kola, poor production was the single most important reason for culling as indicated by more than 70% of respondents (Figure 3) There was no significant difference among the three-agro ecologies regarding age at first service for bucks. Bucks reached age for service at the age of 11.13, 12.04 and 10.4 months at Moist Dega, Moist weyina Dega and Moist Kola agro ecologies, respectively (Table 11). These values are generally within the range reported by Workneh (1992) for Sidama goats (7 to 24 months).Overall majority of respondents (51 %) reported that the source of bucks is from neighbors from their own farm (42.5%), but few (6.67%) said they purchased bucks from out side (Table 11). However, differences were observed regarding sources of bucks in the three agro ecologies. In Moist Kola, majority (60%) owned their own bucks for breeding purpose and some 40% said they use neighbors buck. The trend is more or less similar in Moist Weyina Dega (Table 11). On the other hand, in Moist Dega, majority (53%) said the use of neighbors buck and only 2.7 % possessed their own breeding buck. Also considerable numbers (20%) said the use of purchased buck, which is fairly uncommon in the other two agro ecologies (Table 12). Criteria for selecting breeding bucks include size, conformation, color, and horn pattern (Table 4). About 55.8% of the flock holders indicated that they focus on large size, wider body conformation, thick horns and white or red color when selecting breeding bucks. Some 24.2% stated that they mainly consider size alone as the basic criteria, and the remaining (20%) considered horns and body conformation as selection criteria. However, there were variations among agro ecologies investigated in this aspect as well. In Dega size was the most important criteria for selecting breeding buck as viewed by about 80% of the respondents (Figure 5). About 42.5% percent of the respondents said they keep bucks for mating only, but 57.5 % of the respondents keep bucks for additional benefits (Table 13). The latter group said that after using bucks for breeding, they fatten for a short period and sell them for cash. This system was common in Moist Dega and mixed farming Moist Weyina Dega who kept very small flocks of goats.Some of the smallholder farmers in the coffee producing mid lands (Weyina Dega) community purchase bucks and doe kids during the time of coffee harvest (October). The time of coffee harvest is the time when money is available and they usually spend the extra money for purchasing bucks and doe kids. After a certain period of time they retain the kid doe in the farm for breeding and sell out the bucks after a shorter period of intensive feeding. Children and poorer members of the community establish their initial stock through this means in addition to the profit they get from selling fattened male goats. Respondents estimated the age of culling bucks to range from 7 to 12 years. During the survey time, the majority of respondents, 70% had milking doe while 30% said they do not use goat's milk in the family diet (Table 14 ). Goat milk is highly adapted in the midland areas of Dale where cow milk is not sufficiently available for those poor densely populated cash cropped smallholders. Although, the amount of milk produced from goats is very small, there is cultural belief about medicinal value of goat's milk and it is mostly used for infants elderly and sick family members.About (79.8%) of the respondent's uses goat's milk for infants where as some (20.2%) said that all the family members use goat milk although infants and elderly people are given priority (Table 14). A mean amount of milk produced per day from a lactating doe was estimated at 0.33 liters. Where as in Kola agro ecology, goats have relatively better yield and it is not uncommon to find goats that produce up to 0.5 liter per day (Figure 6). During the study period the major route of entries in to the flock is birth, purchase and transfer.According to the collected data, 25.8%, and 5.8% were birth and purchase, respectively and only 0.9% was transfer. Out of the total birth observed (41.5%) were twins, (4.9%) were triplets and (53.6%) were single birth were observed.Mean kid weight at birth is significantly different among the three-agro ecologies (P<0.05) (Table 14). The highest birth weight was recorded in Moist Kola (2.9 Kg) and it is significantly higher (P<0.05) than the other two-agro ecologies. The lowest weight was observed in Moist Dega (2.2Kg) and Moist Weyina Dega has an intermediate birth weight (2.5 Kg). The practice of weaning kids from their does differ according to the system of management in the three agro ecologies. The weaning weight for all the three agro ecologies was recorded after 120 days of birth. So the mean weaning weight at specified period in Moist Kola was (11.5±0.53 Kg), which is significantly higher (P<0.05) than Moist Weyina Dega (9.2±0.26) and Moist Dega (8.25±0.35) (Annex Table 7). It is different from that of the interviewed results, because weaning age is different in all agro ecologies and mainly determined by the herders' management system. But, for the purpose of our study all kids after specified period (120 days) were recorded in all agro ecologies in order to identify the weaning weight.The variation in weaning weight is due to the experience of farmers in using goat milk for household consumption. In moist Kola herders completely allow kids to suckle their does, where as in moist Dega farmers milk their goats and partial allow kids to suckle. But, in Moist Weyina Dega, although the farmers used the milk for home consumption, they provide supplementary feed for goats and their suckling kids prior to milking time. On the other hand, the major exit routes were sales (20%) and death (13.3%). the highest sales were observed in September and October. And the highest death was observed during November. The observed percentage of mortality is also different from reported percentage (10.9%) the reason for the highest death was the diseases know as Sheep/Goat pox occurred in the two Kebeles of Moist Kola (Felka and Foka Bedelicho), the disease out break was observed in the month of October and controlled by isolating and vaccinating the healthy flock. However, it was killed the old and weak goats and kids by affecting the mouthpart and inhibiting browsing, and finally resulted on death. 4.9. Feeding systems 4.9.1. Feed resourcesGoats feeding system differed in the three-agro ecologies. In Loka Abaya, most respondents (86.7%) said goats commonly feed on tree leaves, like Acacia species and Olea Africana (Table17) In addition, some (13 .3%) said crop residues like maize at young stage, haricot bean after harvesting the seed, banana (Musa paradisiaca) and Enset (Enset ventricosum) leaves and stem parts are given for goats during the dry season. This management practice is advantageous because it adds variety to the diet and helps to meet the nutrient requirements for maintenance and production (Devendra, 1982).Regarding the proportions, in moist Weyina Dega (Dale) the majority (66%) of the respondents indicated that, the major feed for goats is crop byproducts from parts of Enset, Banana, chat, sweet potato haricot bean, weeds and tinning of annual crop (Table 15). Due to the declining trend of communal pasture, bush and forestland are less available in cash crop producing midland areas. Thus, with a decline with woodlots and forest areas as feed sources, the proportion of households that use crop residues and purchased feed has increased. As a result, the number of animals reared by smallholder has reduced gradually and the system of management and feed utilization has changed over time from free range extensive management to tethering and cut and carry feeding system.Where as, in Moist Dega (Wonsho) and Moist Kola (Loka Abaya), the majority 46.7% and 86.7% of participants, respectively indicated that shrubs bushes and tree branches are the major sources of feed for goats (Table 15). The browsing supplies some of the goats needs, but manual feeding provides the greater part. In the dry season free-range goats will only find dry vegetation or crop residues in the fields. These may supply some energy, but the protein content is very low (Jansen, 2004). During group discussions herders identified important trees and shrubs that are highly palatable and selected by goats (Table 18). Each agro-ecology has important tree species specific for that area and these palatable trees and shrubs are declining due to overgrazing and bush encroachments. Especially in Moist Kola (Loka Abaya) study site, palatable trees like Balanite aegiptica, Maytenus ovatus, Rhamus prinoides etc. have been declining species and are being replaced by less palatable bushes. Flock holders in the study area of Dale provide feed supplements in the morning before the animal turning out for grazing and in the afternoon when the animal return home. The main feed types supplemented were all parts of Enset from tuber-pseudo stem to tip part of leaves, banana leaves and stem, chat after removing the edible and saleable part. Furthermore, sweet potato vine, haricot been residue, maize from early stage to post harvest are commonly used supplements during harvest time of these crops. Even then, supplemental feeding by cutting and carrying such feed stuff to enclosed animals hardly meets the nutrient requirements of the animals as supplements are often poorly nutritive (Janson, 2004).Some respondents in Moist Dega (13.3%) and in Moist Weyina Dega 20% used wheat bran for lactating does and fattening goats as supplementary feed by purchasing from Yirgalem town.In mixed farming densely populated areas of Dale Weyina Dega, fruit leaves mainly Avocado and Banana (Musa paradisiaca), and Chat (Catha edulis) leftovers are important feed for goats.The latter is also most important cash crop in Eastern Ethiopia as a whole, which appears to have expanded in recent years with the liberalization of the economy. The leftover chat provides a large amount of browse supplement for livestock, especially goats (Workneh, 2000).During group discussions herders indicated that white stem banana is very much preferred by among banana varieties that are locally grown by farmers as well as any other type of crop residue. As a result farmers often integrate white banana in the backyard not only for the purpose of sales but also because of its high palatable nature and selectivity of the plant by goats.There are seasonal variations on feed availability; respondents identified the months with surplus feed production and also months with significant feed shortage (Table19). About 65.5% of the respondents said that feed for goats is available from April to October, while 81.7% respondents indicated January to March as a period of critical feed shortage.Table19. Different periods of the year rated according to availability f surplus feed in the three agro ecologies. Tending goats is the responsibility of the family as a whole however; there is a division of labor among family members and this is based on the management system. The management system is different in the three agro ecologies. According to data collected from respondents, in Moist Weyina Dega (Dale) and Moist Dega (Wonsho) districts, 57% of goat herders tethered their goats near their farmstead using long or short rope based on the size of the land. About 25% of the participant farmers herded their goats around their residence along the farm borders, fence sides, fallow and marginal lands (Table 21). Tethering small around homestead where goats are provided with crop residues is also common and family members who stay at home are usually engaged in looking after the goats while feeding (Figure 7).Goats being looked after by midwife during supplemental feeding of crop residue (Haricot bean). This type of management is common in Weyina Dega (Dale) areas where goats are tethered and looked after by mid wives Information gathered during group discussions indicated that tethering is popular with small holders because of shortage of grazing land in the predominantly cropping area of moist Weyina Dega and Dega agro-ecologies. This system also reduces labor inputs. This is important because labor shortage is common, especially during the rainy season, when most people are engaged in other farming activities. Conversely, farmers with large size animals herd their goats because labor is available and herding large flock of goats is difficult (Davies, 2003).Table21. System of management classification in the three agro-ecologies (% of respondents) Compared to cattle and sheep, goats are efficient in using water. They have a low rate of water turn over per unit of body weight (Devendra, 1982). In the three-agro ecologies of Dale, four types of water sources are available namely: river, pond, hand dug well and streams are commonly used (Table 23). Ponds are the main water sources in the Moist Kola (Loka Abaya)especially during the wet season (April to September). During the rest of the year, most of the flock holders trek their goats to Lake Abaya, and Blatte River (Table 24). In Moist Dega and Weyina Dega, the majority of respondents 53.3% and 56.7%, respectively travel less than a kilometer to water their goats during the dry season (Table 25) said they travel less than a kilometer to water their goats during the dry season. On the other hand 33.1% and 15.6 % of the respondents in Dega and Weyina Dega respectively. Still substantial proportion of households (27.8%) in the Weyina Dega agro-ecology travel up to 10 Km to water their stock.In moist Kola during dry season 86.7% and 13.3% of respondents travel to watering point 6 to 10 km and above 10 km, respectively (Table 25). But, during the wet season only 20% of respondents in Moist Kola travel 6-10 Km to water their goats and can be available within less than 1Km for most of them. Similarly, water is available with in less than a kilometer for most (>75%) of farmers in the other two agro-ecologies (Table 26). The quality of water depends on the source and location of water. During discussion with farmers in Moist Weyina Dega, (around Gidabo and Weima river sides), they said that, the quality of water deteriorates by the mucilage discharged from coffee pulperies which is directly dislodged in to the rivers, thus giving bad odor and off flavor to the water and reduces the water intake of goats. However, there was no evidence and nothing is known about the side effect on goat production.Housing system for goats depends on the size of flock. In the moist Kola (Loka Abaya) district, the system of house is different from that of Dale and Moist Dega (Wonsho). The Moist Kola area herders (Loka Abaya) used separate house for their goats. Suckling kids are separated from their does and used the same house with family. Discussion with key informants and field observation in Felka and Foka Bedelicho (Kebeles in moist Kola study area of Loka Abaya) revealed that some herders use open enclosure, while in Moist Dega and Weyina Dega, goats share the same house with the family.The materials used for housing also vary according to the economic status of the family. Very small numbers of herders (10%) build goat house using corrugated iron sheet for roofs and wood and mud for wall construction. Where as, the majority of flock holders (90%) construct goat houses using grasses for roofs and wood and mud for wall and floor.Animal disease is one of the major problems affecting goat production. Six major diseases attacking goats were identified and reported by flock owners (Table28), of which trypanosomes ranked first accounting 36% of the respondents in the Moist Kola (Loka Abaya) area.Traypanosomosis is classified in-group II diseases constitutes the main disease constraints to ruminant productivity in Sub Saharan Africa (Ibrahim, 2002). According to the Author, the disease is widely distributed and transmitted by vector, strongly influenced by the environment and the production system known to depress productivity and cause mortality. In Moist Kola it is an important disease during wet season and farmers are trying to control by organizing Tsetse controlling group in the four Kebeles of Moist Kola. This group has contributed money and purchase acariside from tsetse eradication program. They are working in collaboration with Agricultural and rural development offices at Woreda level and IPMS Dale coordinating office.Sheep pox is also identified as the major disease of small ruminants affecting goats.During discussions carried out at Felka Kebele Moist Kola (Loka Abaya), the herders of this area reported that they move their goats from Lake Abaya to Moist Weyina Dega before the onset of tsetse infestation (before May) in order to avoid the risk of the disease. Tsetse flies multiply during the wet season (May to June), according to the discussions with the herders in Bokito and Felka, and the disease attacks goats in wet season.The other important diseases were heart water (17%). and sheep and goat pox (12%). goat pox, locally known as \"Fuso\", is highly contagious disease of goats, causing a significant loss of body condition ends up with death. In field observation pox lesions were found on the skin and mouthpart and prevents feeding partially at early stage and gradually the animal stops eating.There is no traditional treatment identified and known by local healers. However, the disease can easily be prevented through mass vaccination. This calls for; strengthening and providing veterinary service. On the other hand, internal parasites were seen to be health problems of goats in Moist Dega and Moist Weyina Dega (Dale Chancho Kebele) and partially at Loka Abaya when herders move to the Lakeside. The disease causes weight loss, emaciation and finally death.There is no as such a strong veterinary service provided particularly for lowland flock holders.As verified during group discussions, there has been no vaccination given during the last five years against any type of goat diseases. There is no veterinary clinic in the Moist Kola area. The district has one main clinic at Yirgalem town serving the Moist Weyina Dega flock holders and another clinic serving more than 12 Kebeles around Moist Dega (Wonsho). The distance to veterinary clinics vary according to agro ecology. Despite having a large flock of goats, Moist Kola (Loka Abaya) area herders have no access to veterinary service. Farmers have to travel more than 20 km in order to get service. Such circumstances force them to buy veterinary medicines from illegal sources.The major diseases reported are presented in Table 20. Problems related to goat's health management were discussed with the respondents and the problems are presented in order of importance. About 35.8% of the respondents reported a lack of veterinary clinic as the major problem, 20.5% the shortage of veterinarians, and 20% showed inaccessibility to the road, and 14.2% high price of drugs. A few respondents (2.5%) showed the shortage of medicine and 6.7%did not have problem of disease (Table 29). According to informants 30% of mortality was attributed to disease, 3.3% was due to predators, and 2.5% due to accident. The majority (63 %) of the respondents encountered no death in the flock during the study period. The highest prevalence of diseases was observed between January and March (Table 30). February, January and May were where high death rate was recorded. The reasons were found to be the disease out break following the small rainy season. In Moist Kola (Loka Abaya), especially in May herders move from the lowland near Abaya Lake to the upper part of Felka Kebele in order to prevent their goats from tsetse attack. During this movement the attacked goats will die due to trypanosomisis. Kids born during dry season (February and January) die due to the shortage of feed.Lack of feed, diseases, shortage of land and marketing are the most important problems in their order of importance. In the three-agro ecologies, the majority (48.3%) of the respondents identified the lack of feed as the first problem and 30.8% of the respondents identified disease as the major problem affecting the expansion and productivity of goats. Some 15.0% of the respondents indicated shortage of land as the main problem and the rest 6% of the respondents identified marketing and money problems as the major drawbacks in the development and expansion of goat production (Fig 8).Major constraints affecting goat's production vary from ecology to ecology in priority. In the Moist Dega, 46.8% of the respondents indicated that shortage of land is the most important problem and 26.7% of the respondents rated feed as the second major problem. The rest like:disease, marketing and capital were identified as miner problems affecting the expansion of goat's husbandry. In the Moist Weyina Dega farmers (56.67%) identified the lack of feed as the major problem of the respondents, followed by disease (24.5%). Shortage of land, market and capital were shared the remaining 14.5 %.In the Moist Kola, 80% of respondents were identified disease as the most important problem followed by the lack of access to market (13.3%). The problems of feed, land and money were miner in affecting expansion of goat's husbandry in this agro ecology. In the three selected primary markets located in three agro ecologies, livestock of all species (cattle, sheep and goats) were sold and purchased in every market days. The first primary market is Bokasso located in Moist Dega agro ecology (Wonsho). It is the smallest market compared to the other two markets (Sasamo Deala and Hantate), the predominant species marketed were sheep and goats. The market also consists of young bull, heifers and calves. The number marketed estimated up to four hundred per week (up to two hundred animals every market day).The area has all season roads with 12 km distance from Yirgalem town crossing Shebedino on the way to Hawasa. No electric and Telecommunication facilities are available; there is no fence, and animals marketed on open area. Local traders after purchasing the animals they trek animals to secondary and terminal markets.The second market was Sasasamo Deala; Moist Weyina Dega (Dale) this market is bigger than Bokasso market here; the predominant livestock species are goats followed by cattle and sheep.The market is situated at 7 km west to Yirgalem town, and has dry season road, which is 6 km apart from the main Addis Ababa to Moyle transversal highway. No market structures except collection yard or fences, feeding and watering troughs are available.Hantate market (Moist Kola) is the third and the biggest primary market that is found at Loka Abaya district (newly established district that was separated from the former Dale). This market is the biggest market accommodating the large number of livestock species predominantly goats and followed by cattle and sheep. The market is located 21 km apart from Yirgalem town and 61 km from Hawasa terminal market. It has fenced market place constructed by Kebele administration of Hantate in order to control the inlet and out let for the purpose of taxation.Market participants in Bokasso (Wonsho market at moist weyina Dega) were producers, retailers and small-scale traders. Here, the sellers are producers, retailers and local traders from surrounding Kebele administrations (KAs) such as Bokasso, Duba, Dagia Haroshifa and Tuticha.The latter two Kebeles are from neighboring districts such as Shebedino and Arbegona, respectively.In the second market at Naramo Deala the market participants were also producers from near by KAs such as: Weininata, , Gane, Kege, Dasse, Bera and Chume the densely populated mixed farming cash cropped Kebele administrations (KAs) of Dale district wholesalers and retailers from nearby community and mainly from Yirgalem town. The sellers are producers and smallscale local traders (selling not more than 2 goats) and the buyers are local butcheries, Restaurants and Hotels of Yirgalem town.In Hantate market (The biggest market at moist kola area or in Dale district accommodating up to 500 animals per week and up to 250 every market day), the number of producers involved was large but the number of traders was small when compared to other adjacent markets and, in relation to the number of marketed goats. The reason was discussed with producers and traders in the market; it was found out that the distance of the market from Hawasa and Yirgalem towns and inaccessibility to transport facilities might have affected the traders to come to the market and participate continuously in buying and selling processes. The price of goats in this market is relatively lower than the other two markets. It was verified by group discussions and by the price estimate data collected from producers during survey time. But, this condition is changing due to some facilities like road and electricity that are recently developing in the new district (Loka Abaya).Among the market players, some of the buyers are producers. Producers' purchase goats for two main reasons. Firstly, for rearing for the purpose of milk or for other multi purposes of goats, farmers who have no other cattle purchased goats as foundation flock, especially those young farmers who recently separated from their family due to marriage. Secondly, farmers purchase goats during the time when money is available (coffee harvesting season) and keep goats for a certain period, resale again during cropping season and used for input purchasing like fertilizer and seeds.The producers were an important market players bringing small size to large flock of goats to the market with different age group including old doe with their lactating kids (Fig 1). The buyers were traders from Tula (near Hawasa town), Derara big market at Boricha district and Hawasa towns. Also, producers buy goats from market for the purpose of rearing, they identify and select by looking at the body conditions, the size color and its litter size (prolificacy) by simple observation and by asking back history about the goats from the owner.Pricing is based on body conditions. Body condition is estimated on assessing muscle and body cover over the loin and chest area. However, there is no standard price for different body condition scores. No weighing scales used for any type of animal. By holding especially the chest part up, they also estimate the weight and condition of the goat. Most farmers in rural areas agree \"the worst pest\" they face nowadays is low price and researches so far have not found adequate measures to help. Many agricultural research and development institutions have realized that, small-scale farmer's key concern is not only agricultural productivity but also better price (Thomas, 2005).It was also observed that price was negotiable by brokers. Market participants also confirmed the presence of this experience during discussions. The middlemen ask the producer about the price and his approximation and maximum expectations, and the minimum possible price. And at the same time he will ask the buyer how much he/she affords. Successful middleman (broker) gets for their service amount of ranging from 2 -4 birr per animal from both the seller and buyer (Fig, 9).The prices of small ruminant's peak during religious festivals and are low during the cropping season. Furthermore, price depends on animal attributes such as weight, sex and followed by the time of religious festivals like Easter, New Year, and Christmas.Therefore, the price for all age of goats in the months between Septembers to December has escalated up and lowers at February and March and again rises up to the end of April. In general, these conditions revealed that, the price determined not only by the attributes and the current status of goats, but also seasonality in association with availability of money, supply and demand has played a significant role in determining prices of goats.The data collected from goat producers at their farm gate (residential area) showed that, the majority (64.2%) respondents have sold their goats during the last 12 months. The main reason to sale goats at house hold level (60.8%) was purchase of input for crop production, for payment School fees, and to utilize for other routine house hold expenses.In moist weyina Dega, Some goat holders (5%) sale their flock in order to de-stock the size that helped to resist the shortage of feed encountered during dry season. Also there were subsistence goat herders in moist Weyina Dega (Dale) that buy goats during the time when feed and money is available (October), and sale it again on the mid of January and February after feeding the subsequent three months, there by getting some amount of profit obtained from feeding margin they fulfill the cash needed by the family.In Felka (one of the moist kola Kebele at Loka Abaya), the main reason for selling goats was disease that forced the respondents (24%) to sale their goats. It was observed during the study period that of flock holders sold their goats due to the out break of sheep and goats fox which was highly contagious disease affecting the whole part of body and immediately pass on to other flocks. Hence, the flock holder's strategy was they isolated and sold the healthy goats in order to minimize the risk of contamination.The other sellers are traders, they buy from primary market and trek to secondary markets and get the difference as a profit.As discussed earlier, the number and type of buyers vary according to the stage; at primary market buyers were farmers (producers) and traders, while at secondary and terminal markets (in Hawasa and Tula) buyers were traders butcheries restaurants/hotels individual consumers and institutional users.In the three primary markets of Dale, producers and traders were asked about the reason of buying goats. Some (34%) of farmers, who involved in buying goats, indicated that, goats are bought not only for rearing or for economic purpose but to use them for saving. Later on they sell them and buy input for crop production. The reason might have to be to reduce unnecessary expenses occurred during money available time, and putting cash at hand in rural area may expose for unexpected expenses and unnecessary entertainments when they go to urban markets.As indicated by interviewed sellers (Producers) during cheapest season purchase goats and kept for shorter period on high plane of feeding and will fetch higher price and thus get good profit i.e. they engaged in trading goats after cropping season The other buyers are also producers who aimed to make money from goat rearing (fig 3). According to the information obtained from the survey of production system who participated on production system survey, out of 120 respondents 94 respondents or (86.1%) sold their goats in the market and (13.82 %) at farm get for local traders (Table 31).Goats of every age category (kids to old does, bucks castrates) age of goats were marketed at the three selected primary markets. In Bokasso Market mainly breeding goats (pregnant does and heifers, bucks) are purchased and sold for producers. Besides, meat goats particularly buck is sold for traders coming from Tula and Yirgalem. In Hantate market, all age categories from kids to old doe and goats with triplet litter size were seen in the market (fig. 15). It indicated that, retaining the younger age, replacement stock prolificacy and the sex compositions of goats was not considered farmers design their goats for sales. flock by retaining outstanding males in the flock and sell the undesirable ones and also they prefer male animals to sale whenever they need cash rather than selling female from the flock. This is due to the possibility of getting breeding bucks from other sources (neighbors or borrowing from other locality), or by taking in-heat doe to the place of bucks they can breed does. Supplies increased few days before religious festivals and increased at increasing rate until the celebration date of Festivals, then, started to decline a day after the date of festival. Similarly, the price increased gradually towards the date of ceremony and then starts to decline after the celebration of the religious holidays.According to the data collected during a week of Ethiopian Christmas on December 26, 1999 E C. (477 goats) entered the market, it was the highest number compared to the data collected on ordinary market days in Hawasa market from November to February, also the market day on the last week of Easter, Hawasa market was monitored again and found that more than 760 matured and more of male castrated goats were counted entering Hawasa market on Thursday. However, an average number of goats entered Hawasa market during this study period were 235 during ordinary market day.According to the information obtained from producers and traders, the cheapest time of the year was May to July and to some extent August. This time is the season for Enset plantation and Moist Kola farmers during this time are at maximum need of money, in order to purchase Enset seedlings from highland farmers and farmers at Moist Dega and Kola require input like fertilizer and improved seeds particularly maize and haricot bean.On the other hand, September is the time for the children to go to school and, farmers need money to purchase necessary items and pay school fee. In Moist weyina Dega, some farmers purchase food items by selling their goats during May and June until the back yard maize matured and reached for consumption.Goats are the major sources of cash that are sold in higher quantity during these months.Accordingly, the supply increased beyond the amount that was ordinarily demanded by consumers and has a direct effect on current price. Thus the price during these months was much lesser than that of other months in contrast the supply was higher than other times.So goats are the most salable animals among livestock species at house hold level, that are used as pocket cash during the time of shortage and no one look for the better price rather than solving urgent problems. Furthermore, a large supply of goats and low number of buyers in the market influence the price of these months when compared to other seasons, Farmers loose bargaining power and sale their goats for the price that is mainly determined by buyers.There was also the time for expensive prices of goats; and is mainly associated with coffee collecting time (October up to December). Money is available at hands of most people in the coffee producing midlands of Dale (moist weyina Dega), except the two extremes (the area around Lake Abaya at western part of the district, and the extreme highlands bordering Bale of Oromia and Arbegona district from Sidama Zone).During this period, producers purchased goats for two main reasons. Firstly, to accumulate wealth obtained from coffee sales and to preserve for the time of deficit. Secondly, it is the harvesting time for the crops like maize, haricot bean and sweet potato in moist weyina Dega and wheat and barley for moist Dega areas. With the intention of some farmers to carry out short term fattening program, goats with poor body condition (emaciated due to the shortage of feed) are purchased from other producers and fattened by high plane of feeding which, in turn benefit from compensatory growth. The feed resources used for this are the post harvest residues or the grain part of maize and haricot bean as a feed supplementation.Respondents identified two market routes. The first one begins from the eastern part from Moist Dega at the border of Sidama and Bale (from Kokosa district of Bale zone). Mainly sheep and some goat come from this area and marketed at Bokasso market (Moist Dega Wonsho). LocalTraders purchase these goats and trek to Tula terminal market through Shebedino and sale for butcheries and hotel owners coming from Hawasa. And some traders trek to Yirgalem, Aleta Wondo and Chuko to sale for butcheries Hotels and restaurants (Table 32). But at terminal level in Hawasa and Sodo, the channel connected with butchery houses selling raw and cocked goat meat to consumers, which are known, by their local name Fiyel tibs house.Some passed through municipality Abattoirs and reached the consumers in legal way or Goats also slaughtered in restaurants at a higher number with out entering the standard abattoirs, and also there are individuals that purchased goats from terminal markets (Hawasa and Sodo towns)and slaughtered in their home.The data collected from Hawasa market from November1st to February 2007 for four months indicated that, A mean number of goats entered in to Hawasa market through the three routes were 275 per market day; it indicated that more than 550 goats per week and a total of 2200 goats per month entered through the three routes, disregarding the number of sheep entering the market per market days. On other hand, the number of butchery houses before five years (2003/2004) were 62 and recent information showed that 154 Restaurants and Hotels are providing goats meat in the form of raw and cooked meat. This butcheries slaughter mainly castrated and fattened steers and goats both castrated and un castrated.The market players mostly known by farmers are local traders and individual consumers. The majority of flock herders (42.5%) of respondents informed about the existing situations of price from market, (48.3%) from neighbors and the rest (9.2%) of the respondents get marketing information from agricultural offices.Discussions with small stock owners and market participants indicated that, they were not aware of current market prices, out of their residential sites, how ever, Farmers in moist Dega (Dale district) have better advantage of getting current information on goats marketing because of being close to Hawasa town.Primary markets at moist Dega (Wonsho) and moist weyina Dega (Dale) have no fence, where as, Loka Abaya (Hantate market) has a fence and it can accommodate more than 500 animals at once. On the other hand, the secondary markets at Yirgalem and Tula have fences with out any other structures. The purpose of fencing is mainly to control animals in order to collect taxes by waiting at the point of out let, taxation is a must, whether the cattle is sold or not the one who come with the cattle should pay one Ethiopian birr per goat.Trends in consuming goat meat in rural areas have long time existence, however there are some people in moist Dega (Wonsho area) in ancient time that traditionally refused consuming goat meat. Most of the people in the study site discussed about the medicinal value of goats meat.They culturally know Goat meat by its medicinal value, however it was not so far verified by research work.In Yirgalem and Hawasa towns before five years commonly large ruminants are used for meat in butchery houses, in recent years butcheries started to provide goat's meat equally with beef as an alternative meat source for their consumers and goat meat became equally preferred by consumers. The number of butcheries and restaurants currently using goat's meat were 25 in Yirgalem town. All butchery men interviewed were using goat's meat in their butcheries and 67% of restaurants and caterers were slaughtering goats and sheep and provide to their customers cooked goat meat and edible offal's in the form of Dullet. According to discussion with the owners and people involving in the activities, goat carcass has more dressing percentage than sheep and also the quality of goat meat is better than sheep having a larger proportion of red meat instead of having more fat. An experienced butchery men at Yirgalem town showed that, the exceptional quality of goat's meat is the distributions of fat through out the body instead of being accumulated in specific areas like cattle and sheep. So that, the overall distribution of fat makes goat meat every parts highly palatable, and no or little amount of refusals (wastes) discarded from the carcass and /or offal's of slaughtered goat.The increasing price of large ruminants in turn increase the price of mea goat t, people accustomed consuming cooked goat meat in the butcheries and restaurants which was not commonly practiced before ten years. The number of goat meat butcheries before five years were excluding the number of restaurants and Hotels preparing food from goat meat. Similarly, the price of goats meat in 2003was 16 birr but now it is 36, an increase by 225% with in 5 years of period. In the same way the price for a medium weight and age of meat goat before five years was estimated by participants to be 80-120 birr, but know the highest price for middle age castrate goat was estimated to be 250, 257 and 212 in Bokasso (moist Dega at Wonsho district), Gane (moist weyina Dega, dale district) and Hantate (Loka Abaya district at moist kola) markets respectively. The price is changed and increased at secondary market (Tula) and terminal market in Hawasa town.The owners of restaurants in Yirgalem town were asked and most of the respondents (88%) indicated that, they purchased goats for slaughter from Gane market and some times sheep from Bokasso primary market. There are seasons for cheapest price (July, June and august) but this time is also not convenient for restaurant owners, because the demand for goat meat is very low due to the shortage of money at the hand of consumers both in urban and mainly in rural. Most of the people in the rural couldn't purchase cooked meat or row meat from butcheries during this season. The shortage remains consistent until the maturity and on set of garden coffee in the backyard.The price for fattened bull and steer is escalating from time to time; this condition gives way for complementary products like mutton, goat and poultry meat. Reasonable price and availability together with its small size makes goats to be slaughtered in the family house or it can be slaughtered in-group by sharing money together.Since the study area especially moist kola (Loka Abaya) is with the highest goat potential, and far from urban centers, it needs strong marketing linkages with buyers other than local traders and local butcheries. Attachments with goat exporters, meat processing factories and related big assemblers, may help the producers to get appropriate price for their production and minimizes the money lost in the middle due to unnecessary involvements of middlemen and local traders.Herders were not market oriented; they didn't consider when to produce goats, even the preferable time of sales was not considered by a majority of the farmers. They clearly discussed that, flock holders sale their goats if and only if they face money problem. No other alternate source of money put aside for emergency cases during money available time especially during coffee harvests. They consider goats as the main source of cash and sale them not by looking for proper market and appropriate time, but they sale as they face money problem.During price determination, the cost of production like feed, water, mineral supplement, housing, veterinary and labor costs provided by the hose hold and his family members did not taken in to account. Feed from farm, family labor and herbal medicine that was provided from traditional hillers was not included as a cost of production. So that, farmers do not consider the price of goats on the basis of costs incurred to grow or fatten the particular animal.During our field assessment, we observed that, some farmers have a great potential and suitable ground to handle goats for commercial purposes. But, they were rearing below the potential of their resource (Feed, house family labor and the proximity to market etc.), they know little about their future goat's buyer, there was no pre hand negotiating system of marketing. Selling and buying process completed in the market between unknown dealers and no pre-hand or post sales agreements (like returning the defective goats back to the owner or re considering the situations before sales once the sales process is over.Lack of adequate and timely information on price, demand and supply of goats was another problem; the main sources of information are market and neighbor to neighbor communications.It is very limited and not adequate to tell the recent information about the current price of goats, the type of market participants and the existing market channels of meat goats that are currently working in domestic as well as export markets. Although the timeliness and consistency is not clearly known, traders get more information than producer's since they are moving from one market to another and they are from the urban centers. So that, producer's sale with out knowing the current price and demand of their goats. Especially herders living in the moist kola (Loka Abaya), are far from the information about the current marketing situations, they know only the part of the local price and accept the price determined by the traders coming from urban centers.Transportation problem and in adequate infrastructure are the major problems identified during discussions with traders. Due to inaccessibility to road and distance from urban centers as well as from big livestock markets, they trek animals over longer distance without adequate water and feed. As a result, goats loose weight , which in turn reduce price as well as profit.There are no private or governmental enterprises or cooperative associations working on livestock marketing or other related livestock sales and purchasing activities. Most of the small holders in the study site were not the members of any small stock associations or any type of marketing institutions except farmers at Moist Weyina Dega and Dega participating in coffee producers cooperatives. So they were fragmented to help each other to overcome the production and marketing problems. Unorganized nature of the markets resulted on the problems of fragmentations, which are believed to be among factors hampering successful small stock marketing and better marketing channel. Average livestock holdings per household in Moist Dega (9.4 animals per household) and weyina Dega 11.87 animals per household were comparable but were less than the value for an average household (24.5 animals per household) in moist Kola district (Table 2). On the other hand, livestock to land ratio per household for Dega is significantly lower than the livestock density per hectare per household in the other two agro ecologies. Relatively low livestock holdings coupled with large land area per household in Dega is due to the movement of flock from the Dega agro ecology to the lowlands around Lake Abaya during the dry season in search of grazing, and this may have also contributed to fairly low livestock density in the Dega ecology.All the four categories of livestock species (cattle, sheep, goats and donkey) are found in all the three agro ecologies but species composition varies depending up on the type of climate. Cattle and goats constitute equal proportion to the livestock density in Kola and Weyina Dega. In the Dega, however, cattle are given first priority and sheep are as important as goats accounting nearly 50% of the livestock density. Keeping goats in the study area is for multi purposes, the Moist Kola (Loka Abaya) herders keep goats mainly as a means of savings, selling goats as a means of household income was, the second important reason of herding goats (figure 5). In addition to these two major reasons, farmers also viewed the uses of goats for milk production (13.3%) meat (10%) or both (1.7%) On the other hand, only (1%) of respondents consider goats as a sign of social status (prestige) Besides these major reasons, in Moist Weyina Dega some respondents (2.5%) used goat's manure for fertilizer. Farmers with no cattle reared goats for the purpose of manure, because, enset, the staple food of the people in the study area, particularly at its early growing stage require high amount of manure.In all the three agro ecologies of Dale district, the breeding season for goats is from March to April (39.4%) and September to October (49.2%). Some of the respondents reported that goat's breed throughout the year (Table 4). The major reasons for seasonal breeding are the availability of feed and the warmer climate that favors goats to on set heat during these months. Goats that are conceived during these months will be expected to kid during September and October.Similarly, on September and October, annual crops (like maize) are on the young stage, the family used the grain part for consumption and the leftover is used as a feed for goats. In addition, sweet potato vine, weeds from haricot bean and coffee are feed supplements for midland cash cropped area of Dale. Thus, goats conceived during these months and deliver between March and April.The over all mean for AFM is 9.76±0.243. There is no significant difference (P< 0.05) among the three agro ecologies regarding age at first mating. Sidama goat types at Loka Abaya reached puberty at 8.3 months which is the lowest estimate among the three agro ecologies as well as the reported estimate of Workneh, (1992) which is below 12 months for the same goat type.Significant variation was shown on age at first kidding between moist kola (13.73±0. 6 and moist Dega Dega16.13±0.7. The over all mean for the three agro ecologies was 257±0. 16 days. The mean kidding interval for Loka Abaya Sidama type goats in Moist Kola was 234± 0 .352 days that is significantly lower (P< 0.05) than the other two agro ecologies. The reason for having the lowest kidding interval in Moist Kola was assumed to be the presence of communal rangeland, the availability of browsing shrubs and the free ranging system of goat feeding.The over all mean age at weaning is 5.19±0.124 months. Similarly, the moist Kola goats weaned at age of 4.3. ±0 .316 months that is significantly lower (P<0.05) than Moist Dega agro ecology.The reason was discussed with key informants and it is feed availability in Kola (Loka Abaya) area, farmers completely allow the kids to suckle their does. Moist Weyina Dega has significantly lower weaning age 5.09±0.129 months (P<0.05) from that of Moist Dega but no significant difference was reported with Moist Kola (Table 6). The highest litter size was reported in Moist Kola 2.33 ±0.347, which is significantly higher than the other two-agro ecologies and also higher than the overall average litter size (1.3) reported for Arsi Bale goat type by Farm Africa, (1996). Mean age of lifetime kidding (Parity) is 13.05±0. 3 year. In Moist Kola, parity is longer than the other two-agro ecologies and it is significantly higher age of lifetime kidding that contributes for high number of kids per doe.Feed resources and the system of feeding vary according to variations in agro ecology. In Moist Kola, browse species are the main sources of feeds for goats. In moist Weyina Dega (Dale) the majority (65.5%) of the respondents indicated that, the major feed for goats is crop residues from parts of Enset, Banana, chat, sweet potato haricot bean, weeds and thinning of annual crops.Because of the shortage of browsing land, tethering system of management by using cut and carry system of feeding became a common system of tending goats in Moist Weyina Dega and Dega agro ecologies. Especially during the rainy season, when most people are engaged in other farming activities tethering is help full in reducing the demand of labor. Extensive system of tending goats is dominant in Moist Kola Loka Abaya where free ranging of goats is popular. The system is advantageous for goats since it gives chance to select and freely forage from the bushes.Diseases like Trypanosomosis, heart water, goat and sheep pox and parasites are the common diseases affecting goat's production in all the three agro ecologies. In moist kolaTrypanosomosis is an important disease, where as heart water and internal parasites are the common diseases in Moist Weyina Dega and Dega agro ecologies. About 35.8% of the respondents reported a lack of veterinary clinic as the major problem, 20.5% the shortage of veterinarians, and 20% showed inaccessibility to the road, and 14.2% high price of drugs. A few respondents (2.5%) showed the shortage of medicine as the main problem.There are four primary goat markets in the district. Bokasso market represents the moist Dega agro ecology, mainly dominated by sheep and followed by goats. Naramo Dela is bigger than Bokasso and dominated by goats mainly marketed for meat purposes. Hantate is the big market for goats. The predominant species is goats entering from agro pastoral societies like Merera Kebele around lake Abaya. The marketing routes are identified in the district are of three origins.The first one start from eastern highlands bordering Oromia (Bale zone), and flow in to BokassoMarket and out flow from Bokasso Market through two directions. Tula, secondary market is the main out flow of goats from Bokasso Market and Yirgalem and Aleta Wondo towns are the second out flows of goats from this market. The main marketing channels are producers to producers, producers to local traders and then reach to consumers, from producers directly sold to consumers and from traders to whole sellers and then to consumers.The price of goats fluctuates according to seasonal variations and religious holydays, during coffee harvesting season the price for goats is relatively high and falls down after coffee season.The time one week before and after religious holydays like Easter, Christmas, Meskel of Christians and Id al Arefa and Ramadan of Moslems and the Ethiopian new year, the price raised up and falls down a few days after the celebration of these holydays.The main marketing problems reported by producers are lake of infrastructures like road, shortage of the means of transportations, lack of information for the producers in Loka Abaya (Merera and Felka) about the current price of goats in Hawasa and in other secondary and terminal markets.In general, the problems identified by respondents as the main factors affecting goats production and marketing system are lack of feed, disease, shortage of land and inaccessibility to big livestock markets are the most important problems in their order of importance. Having high potential for goat's production and suitable environment to develop small scale and subsistence goat farms to market oriented and big goat production sectors is the main opportunities that were identified by participants in the study areas.Considerable differences were seen among the three agro ecologies. Crop livestock integration in Moist Weyina Dega and Dega is an important factor that enables smallholders to obtain benefits from compensatory productions of the two sectors. Goats are important integral parts among livestock in these densely populated crop livestock producing areas, as tethering is the most adapted practice of management. Goats can easily be adapted with crop production since weeds and crop leftovers and residual parts of perennial crops (Enset and Chat) are cut, carried and provided to tethered goats. On the other hand, farmers with no cattle keep goats to utilize their milk for their children and manure for their crops. Thus they are a good substitute for the resource poor smallholder who cannot afford money to buy milking cow.Interdependence between goat and crop production is supportive to overcome the problem of land shortage, and it encourages the involvement of all the family members in providing feed for goats and develops the division of labor among family members in the different sectors of household farm activities.Dale in general, has high potential feed resources for goat's production. Although, goats are more herded by agropastoral society in Moist Kola (Loka Abaya) they are well adapted and serve for all the three agro ecologies. As observed by this study, goats perform better in moist kola on the extensive free foraging system of management. In this agropastoral area, the main problem is bush encroachments that are invading the palatable shrubs and bushes; thus, applying systematic bush control strategies could solve the problem. Moreover, in Moist Weyina Dega the availability of feeds from crop fields and back yards are useful and contribute for the better performance and production of goats in this cash cropped areas. Integrated crop forage production especially under sowing legumes like cowpea with chat and desmodium species under enset crop is important and it helps to utilize the same land for more than one crop with out affecting the yield of the perennial crops. Crop forage integrations were seen in MoistWeyina Dega around Dale district on the backyard crop-forage production experienced by a few farmers and they are using some tree legumes like pigeon pea, sesbania, leuceanea (also used for coffee shade) by integrating with coffee, and some legumes like desmodium and cow pea with enset and chat crops. These strategies are encouraging and should be supported by further research works in order to verify which type of forage makes the best possible integrations with these types of perennial and annual crops. results and feedbacks on the amount and system of applications etc. will encourage to use the indigenous knowledge of the herders and it will be supportive to the herders to solve their problems by themselves using locally available traditional healers.Inaccessibility of some area (Loka Abaya, Felka and Merera agropastoral goat herders) for markets and urban centers is a crucial problem for marketing their goats. Herders of Merera and Felka Kebeles travel more than 82 and 20 kms, respectively to bring their goats to Hantate livestock market; otherwise, they have to sale their goats at farm gate or at Humbo (Semen Omo Zone) market. So that, herders may discourage to engaged in market oriented production and they fell to target market value while rearing goats and they couldn't benefit from the existing market situations. This can be solved by Facilitating market opportunities by connecting the marketing route of this locality with big market players (traders, wholesalers, processors or exporters) and establishing big and standardized livestock market in near by areas of Loka Abaya will encourage the herders to produce more and to emphasize on their goat flocks.In this number was counted in the above Kola Kebeles using vaccine dozens. Therefore, it is essential to conduct a census of goats in regional or zonal level that avoids under or over estimation and it helps to know the trend of goats; to plan for the resources needed like vaccines, treatments, and skilled manpower.Further research investigations regarding the breeding aspects to select and develop positive and most important qualitative and quantitative traits will help the herders of the three agro ecologies as well as the adjacent districts to benefit from their potential resources. The production and the productivity differences as well as management variations among the three agro ecologies were observed by this study. Problems such as feed, disease and market were identified and described according to the differences in agro ecologies. Thus, it is proved that there were differences in goats management system, in reproductive performances of goats, feed resources and feeding system, health status and diseases occurrences, marketing and all aspects of management systems ","tokenCount":"18875"} \ No newline at end of file diff --git a/data/part_3/7436842536.json b/data/part_3/7436842536.json new file mode 100644 index 0000000000000000000000000000000000000000..572ef74dc441ecd9fb4d1449c28e805275feab8f --- /dev/null +++ b/data/part_3/7436842536.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"024a136c56728a3ea409c7906dd40512","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/8530b299-0a38-4f39-9469-91475d1f0bda/retrieve","id":"-196903677"},"keywords":[],"sieverID":"a91517f0-a73b-4394-9158-a4358119f156","pagecount":"1","content":"Sweetpotato offers great potential as an animal feed in sub-Saharan Africa but its potential use as a feed or dual purpose (food and feed) crop has not been fully exploited. The International Potato Centre (CIP) and the International Livestock Research Institute (ILRI) are researching ways that sweetpotato can play a more significant role in livestock production in East Africa, examining the conditions under which it can play such a role, where it could make the most noteworthy contribution, and what research and development activities need to be carried out to realize this potential.Making silage of sweetpotato and reject roots Sweetpotato vines for feed Sweetpotato for food• Integrate enhanced sweetpotato production with improved dairy cattle and pig productivity to benefit smallholders and, ultimately, consumers.• Identify forage or dual-purpose (for both animal feed and human consumption) sweetpotato varieties (vines only).• Investigate how to effectively integrate sweetpotato varieties into existing livestock systems to improve farmers' profits and product quality.1. The Gweri variety is the most promising for forage production. Kemb 23, Kemb 36, NASPOT-1 and Wagabolige varieties are the most promising dual purpose varieties in Kenya. 2. Varieties performed differently across different agro ecological zones showing characteristics for dual-purpose, forage, or root varieties. Farmers in each zone will have various options to choose from. However, they will need to make tradeoffs between forage, dual-purpose, and root varieties depending on their needs. Those facing acute feed shortages will probably opt for forage or dual-purpose varieties. 3. Optimum combinations of silage based on sweetpotato vines, roots and locally available feedstuff have been formulated for livestock feeding and are being applied in the pig value chain work in Uganda.• East African Dairy Development project (EADD), a consortium of partners lead by Heifer International and including:This document is licensed for use under a Creative Commons Attribution -Non commercial -Share Alike 3.0 Unported License, December 2013 feed in smallholder systems in Eastern Africa","tokenCount":"315"} \ No newline at end of file diff --git a/data/part_3/7451480050.json b/data/part_3/7451480050.json new file mode 100644 index 0000000000000000000000000000000000000000..eca7eb6455fee4e51e1ceb6bff20f91ddccad759 --- /dev/null +++ b/data/part_3/7451480050.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"811ce69946773dba9ed11eba7fde6f0f","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/707a0c27-596e-4c2e-b5ff-78205a6ffacd/content","id":"899752143"},"keywords":["structural equation modelling","smallholder farmers","smartphone apps","decision-support systems","unified theory of acceptance and use of technology","innovation hubs","mastery-approach goal Molina-Maturano, J.","Verhulst, N.","Tur-Cardona, J.","Güereña, D.T.","Gardeazábal-Monsalve, A.","Govaerts, B.","Speelman, S. Understanding Smallholder Farmers' Intention to"],"sieverID":"f134582a-8738-4dbe-9cae-49a022a4c006","pagecount":"23","content":"While several studies have focused on the actual adoption of agricultural apps and the relevance of the apps' content, very few studies have focused on drivers of the farmer's intention and initial decision to adopt. Based on a survey of 394 smallholder farmers in 2019, this study investigated willingness to adopt an agricultural advice app in Guanajuato, Mexico. A structural equation modeling approach, based on the unified theory of acceptance and use of technology (UTAUT), was applied. To understand the farmers' adoption decisions, extended constructs were studied (e.g., mastery-approach goals) along with the farmers' age and participation in an innovation hub. Results showed that the intention to adopt the app is predicted by how farmers appraise the technical infrastructure and acquire new knowledge by using an app. The multi-group analysis revealed that performance expectancy is a relevant predictor of the intention to adopt, whereas the mastery-approach goal is relevant only for younger farmers and farmers not connected to the innovation hub. This study provides valuable insights about the innovation hubs' role in the intention to adopt apps, offering precision agriculture advice in developing countries. The findings are useful for practitioners and app developers designing digital-decision support tools.There is an increasing interest in literature that identifies the use of emerging technologies in precision agriculture to efficiently increase production while reducing its environmental impacts [1]. Precision agriculture is a management strategy that uses electronic information and other technologies to gather, process, and analyze spatial and temporal data for the purpose of guiding targeted actions that improve site-specific crop management, productivity, and sustainability of agricultural operations [2,3]. Typically, precision agriculture relies upon new technologies such as smart sensors, drones, artificial intelligence (AI), the Internet of Things (IoT), or blockchain [4]. Smartphone apps also play an increasing role in this [5]. Based on these technologies, it has become possible to process and access real-time data about the conditions of the soil, crops, and weather, along with other relevant services such as crop and fruit supply chains, food safety, and animal grazing. However, precision agriculture has shown an uneven success, with greater adoption in developed countries and among large-scale farms [2,6]. While GIS and remote sensors have been the key transformational driver on large farms, mobile phones and their ubiquity are predicted to bring similar transformational potential to small-scale farmers [7,8].Smartphone applications can provide farmers with easy access to tailor-made relevant information to inform their decisions to increase crop yields, protect their land and water resources, and improve their livelihoods [9,10]. The adoption of mobile-phone technologies by farmers also promises to collect more comprehensive, relevant, and accurate agricultural data [11,12]. Moreover, crowdsourcing and citizen-science applications offer solutions for simultaneous provision of affordable decision support systems (DSS) to smallholder farmers while collecting agricultural data [13,14]. However, uptake by farmers and advisers of DSS and mobile-phone apps are still low [15]. Among others, challenges of low uptake relates to financial barriers, infrastructure, gaps among developers and end-user information needs, and a lack of understanding of farmers' profiles in the local context [15][16][17]. Previous recommendations to effectively promote DSS design and delivery are found in academic literature in the UK [15] or generated by private consortiums such as the GSMA mAgri Design Toolkit for developing countries [18]. However, other geographical regions and realities similar to rural areas in Central and Latin America remain understudied [19].Moreover, where adoption does occur, not all farmers adopt information and communication technologies (ICTs) in the same manner [20], nor are farmers' motivations the same in all settings [14]. While current studies have focused on smartphone adoption by farmers in African countries [21,22] and on advice-delivery tools for smallholder farmers in India [23], only a few have focused on the initial adoption decision. The actual adoption is normally studied at late stages of an app's development, or after an intervention using ICT for development. In contrast, studying the intention to adopt during early stages of an app's development might provide early feedback towards enabling user-centeredness [24]. The drivers of farmers' initial adoption of agricultural information apps are less studied than those of apps offering financing or health services [25]. One exception was a study that looked at the initial adoption of smartphone apps for crop protection in Germany. However, more research is needed in developing and emerging countries [19]. Therefore, we investigated the factors affecting the initial uptake of an agricultural app by Mexican smallholder farmers. This is highly relevant because Mexico is a region with a viable ecosystem of ICT innovations in the agricultural sector due to mobile-phone apps being developed by government agencies to connect farmers with buyers or obtain advice on crop production. In addition, B-corporations such as the Extensio platform (previously Esoko) were launched in 2015 to provide content to Mexican farmers through SMS, a call center, and a smartphone app. Furthermore, reflecting on the extension experience and large datasets of the International Maize and Wheat Improvement Center (CIMMYT), the Agro-Tutor app is a mobile phone app that provides information to smallholder farmers about maize and wheat and related topics, including weather, grain and input prices, benchmarking, agronomic recommendations, and potential yield [26].To gain a better understanding of farmers' initial adoption decision, this study applied the unified theory of acceptance and use of technology (UTAUT) introduced by Venkatesh et al. [27]. The UTAUT considers the behavioral factors of \"performance expectancy\" (PE), \"effort expectancy\" (EE), \"social influence\" (SI), and \"facilitating conditions\" (FC). Based on a fieldwork survey conducted in 2019 of 394 farmers, the model for the UTAUT is estimated using structural equation modeling (SEM). While current studies have focused on farmers' general willingness to pay for smartphone apps (that give, for example, crop-protection advice), none have focused on the intention to adopt such technology in developing countries [11].Therefore, the novelty of this article is twofold. Firstly, this is the first study that explicitly focused on smallholder farmers' initial decision to adopt an agricultural app in Mexico. Specifically, this study adds to the literature by examining if the UTAUT enriched with additional constructs can contribute to the understanding of the underlying behavioral factors influencing the farmers' initial adoption decision. In this way, we are able to explore the effect of smallholder farmers' motivation to learn and explore new technologies and their perception of the app during the initial decision to adopt. Extending the UTAUT constructs offers two interesting notions: (i) a baseline of farmers' intrinsic motivation (why they are motivated to use it); and (ii) behavioral factors influencing the intention to adopt (how the app is being perceived). Second, this is the first study to consider the role of connectedness to an innovation hub in the farmers' intention to adopt a smartphone app developed by a non-profit research-for-development organization (vs. commercial for-profit apps). One important contribution by this study is to increase our understanding of the innovation hubs' effect on the intention to adopt such apps specifically in developing countries. The results are of interest for decision-makers in digitalization, app developers, and project managers. The results provide insights on ways to encourage adoption of non-commercial (free) agricultural apps that provide affordable precision agriculture services (e.g., site-specific advice, weather information, yield forecast) that complement the work of extension agents in the field. Additionally, the results elucidate the smallholders' adoption drivers of apps that provide commodity price forecasts and financial benchmarking, while encouraging them to contribute with in-situ information about soil management and yield data [18].The unified theory of acceptance and use of technology (UTAUT) aims to explain usage behavior, such as the intention to adopt a mobile phone app [27], and has been empirically validated in diverse disciplines [28]. It is the theoretical basis for our study. The model, which is based on eight prominent user-adoption models, was later extended into the UTAUT2 by adding three constructs (hedonic motivation, price value, and habit) [29]. However, UTAUT2 constructs are not included in this work, since the focus is on the initial adoption rather than actual use. The hypotheses concerning the relationships between the proposed factors of the farmers' behavioral intention (BI) are outlined in Figure 1.\"Performance expectancy\" is the degree to which using a technology will provide benefits to the individuals using it [27]. In this study, it refers to the degree to which a farmer believes that accessing agriculture-related information through a mobile-phone app will benefit her/his farming activities. One attractive feature of an agricultural app is the ability it gives farmers to access accurate local information anywhere, at any time, without wasting productive time. Therefore, we hypothesized that:\"Facilitating conditions\" refers to the extent to which farmers believe that technical infrastructure exists to help them to use a technology whenever necessary [29]. Using a mobile-phone app requires certain skills, such as being able to operate a mobile phone, download the app, and navigate the content. A farmer who shares a household with an educated person or has access to facilitating conditions, such financial resources, will have a greater intention to use. Therefore, we hypothesized that:\"Effort expectancy\" is the degree of ease associated with farmers' use of a technology [29]. In the case of an app, some farmers might be more literate than others in ICT-based technologies, and would accordingly be expected to have fewer problems using a mobile phone to access agricultural or crop information. It is expected that farmers who are easily able to obtain and interpret relevant information using a mobile-phone app would be more willing to use it, and therefore we hypothesized that:\"Social influence\" is the extent to which farmers perceive that important people believe they should use a particular technology [29] such as a mobile-phone app. The primary assumption is that individuals tend to consult their social network, especially friends and family, about new technologies, and can be influenced by perceived social pressure of important people. It could be particularly important in explaining an initial adoption [30]. Therefore, we hypothesized that:Additional constructs include personal innovativeness in IT, mastery-approach goals, and trust. In this study, the mastery-approach goal orientation (MAG) and personal innovativeness in information technology (IN) constructs were added to the UTAUT framework. These new constructs are proposed as a pathway to measure the intrinsic motivations based on an existing incentive to learn. Acquiring new skills and knowledge has been shown [11] to act as an incentive to adopt a new technology. The addition of the trust (TR) construct was proposed to explore the role of the extension services (as providers and disseminators of the app technology) and the enabling environment in which an app is being pilot-tested.Researchers have recently suggested \"attitude\" as a mediator of the intention to adopt [31]. However, MAG and IN are specific to IT technologies, and are suitable in the case of an agricultural app aimed at the exchange of information. We will present a detailed description of the theories on which the constructs are based, as well as the rationale to select them in the present model.The diffusion of innovation theory (DIT) is an extensive social and psychological notion that attempts to predict how individuals make decisions to adopt a new innovation [32,33]. The concept was adapted by Agarwal and Prasad [34], who proposed a new construct to measure personal innovativeness as \"the willingness of an individual to try out any new IT.\" Since farmers that participated in this study do not have experience in using precision agriculture tools (e.g., tailored cultivation advice) through mobile-phone apps, we have included the IN construct in our model (Figure 1). Moreover, the DIT has shown that highly innovative individuals actively seek information about new technologies or ideas. They are able to cope with high levels of uncertainty, and are more favorably inclined to accept a technology [32]. This leads to the following hypothesis:Even though trust can be understood as a subjective belief, its effect as a construct on behavioral intention has gained support in the context of UTAUT and mobile payments (m-payments) explored along with risk [35][36][37][38]. In contrast with Beza [39], this work explored trust concerning the app provider (or promoter) rather than trust in the tool or project. Then trust (TR) is defined as the extent to which the mobile-phone app provider(s) is believed to want to do good for the farmer, apart from selfish motives. If a farmer believes the mobile-phone app promoters (e.g., extension agents) care about his/her interests, the mobile phone app provider is seen as displaying benevolence toward the farmer [40]. The probability of farmers sharing their agronomic information is highly dependent on the trustworthiness of the party (i.e., \"trustees\" such as agronomic experts, researchers, and research institutes). Hence, we formulated the following hypothesis:As most farmers do not have experience in the use of these types of mobile-phone apps, experience was not included as a moderator. Instead, we hypothesize that the connection with the innovation hub brokered by CIMMYT in Guanajuato (Section 3.1) moderates the effects of UTAUT constructs and additional constructs due to the development of a conducive environment for innovation and decision-making.Finally, the MAG is based on the goal orientation theory, which articulates that the main goal people can pursue while performing a task is that of mastery [41], and to understand something new or to improve their level of know-how [42]. The MAG has been extensively explored in the context of learning and education [43]. The livelihoods of most smallholder farmers depend on farming, so they will always look for new methods, skills, and knowledge to improve agricultural productivity. Farmers with a mastery goal will be expected to use the mobile-phone app to acquire new skills and knowledge, leading to the following hypothesis: In addition, sociopsychological research relates farmers' intrinsic motivation to the decision to participate in extension/education activities such as motivational orientation [44]. This is an interesting proposition to explore the links between farmers' motivation to learn and explore new technologies and the farmers' perception of the app and its context.We hypothesize that age moderates the effects of UTAUT constructs (PE, EE, SI, FC) on behavioral intention [27,29]. The effects of effort expectancy (EE) and facilitating conditions (FC) on behavioral intention are expected to be stronger for older farmers. The effect of performance expectancy (PE) is expected to be stronger for younger farmers, while the effect of social influence (SI) is expected to be stronger for older and experienced farmers. The added constructs (IN, TR, MAG) could also be influenced by age and connection to an innovation hub, but only MAG was included in the multigroup analysis, as we explain below.The study area of the state of Guanajuato is divided in 46 municipalities, with 5.8 million inhabitants in total Agriculture is important in the Mexican state of Guanajuato, with 31% of its area dedicated to agriculture [45]; areas such as the Bajío region are important for agriculture and livestock. Around 85% of its harvested area is sown to beans and cereal grains, including sorghum, wheat, maize, and barley [46,47]. Guanajuato had the highest agricultural production in the country in 2019, with sorghum yields barely at the national level and the second-highest yields for wheat (6.8 t/ha), following the state of Sonora (6.9 t/ha). At nearly 12 t/ha, the state's average maize yields are among the highest in Mexico [48,49].CIMMYT has been working on innovation in agri-food systems in Mexico for the past decade, funded through partnerships with several actors, of which the Government of Mexico has been the largest funder, both at the federal level through the Ministry of Agriculture and at the state level in Guanajuato. Work takes place through 12 innovation hubs located strategically throughout Mexico; the hubs seek to integrate farmers and local and regional value-chain actors for maize-and wheat-based farming systems [35]. This study builds on the work in the hub in Guanajuato. The hubs comprise research platforms, demonstration modules, and extension and impact areas. The research platforms are carrying out joint research with local institutes, as well as generating and sharing new knowledge, and adapting farming innovations for their specific areas. The demonstration modules are on farmers' land and involve side-by-side fields managed using new technologies or conventional practices for comparison. Module outcomes are often fed back to research platforms and allow for farmer-to-farmer interaction and sharing, with the aim to drive adoption, to have local impacts, and to scale useful innovations. Extension areas are parcels where farmers have applied knowledge from demonstration modules. Impact areas are defined as places where farmers who are not directly connected to the hubs have adopted the program's innovations [45].Created in 2017 by the International Institute of Applied Systems Analysis (IIASA-Austria) and currently in a second phase of development, the AgroTutor mobile-phone application is a pilot project of CIMMYT (Figure 2) that is being tested in Guanajuato, Mexico. The app provides farmers with access to best practices and geo-referenced and timely information about fields and crops, including benchmarking data for crop placement, timely agronomical recommendations (i.e., optimizing use of fertilizers), potential yield and financial benchmarking information (i.e., prices and costs), historical and forecasted weather data, and other expert sources of agricultural information in the region. Farmers can also provide their own information regarding soils, management, and yields for use in crop models and for generating improved recommendations [26]. The intended target group is smallholder farmers who can consult the app during different phases of maize and wheat cultivation, especially farmers in a decision-making process of applying sustainable agriculture practices who are searching for both technical information and yield forecasts. In addition, the app is expected to be used as a complementary tool for extension agents to encourage collection of in-situ data of soils and yield by farmers. In 2019, we conducted a survey through face-to-face interviews with farmers in the El Bajío region of Guanajuato using the GeoODK mobile phone app, an open-source tool. A database (2014-2019) of presumably active farmers in the innovation hub containing their correspondent municipalities was used to select the respondents in two stages. First, respondents that were connected to the hub were randomly selected from the mentioned database. In some cases, we learned that the farmer passed away or could not be reached after several attempts. Then, another farmer who connected to the innovation hub in the same municipality was surveyed. Two municipalities were removed from the sampling frame due to security issues resulting from increased drug-cartel activity in the region. The second stage of the sampling comprised farmers not connected to the innovation hub, in the same municipalities, approached at meeting points (while they were waiting in a queue) or before events in the region (e.g., association, presentation of agricultural products, etc.). Around one out of two non-connected farmers who were approached agreed to take the survey. Therefore, a similar number of non-connected farmers were approached and interviewed in the same municipalities (Figure 3). A total of 394 responses were obtained (205 from MasAgro-connected farmers and 189 from non-connected farmers), with no missing values. We obtained prior informed verbal consent from all respondents, and no personal data were gathered. Farmers were surveyed using standardized questions based on Beza [39] and Venkatesh [27], with sections covering general information and demographic characteristics, their history of use of mobile phones to access agronomic data and recommendations, and questions of the model used. An introductory text made clear that the questions were related to the potential use of a mobile-phone app to access agricultural data (Appendix A). All farmers viewed a short video describing the app and its salient features prior to responding to the measurement items. Each construct was based on three to five items, as recommended by Hair [50]. A total of 30 measurement items adapted from prior studies (Appendix B) were carefully rephrased in the context of an agriculture-related mobilephone app, with response selections on a seven-point Likert scale ranging from \"Totally disagree\" (1) to \"Totally agree\" (7). Appendix B contains all the references from previous studies for each construct. The surveys were pilot-tested with at least 10 farmers, extension agents, and enumerators (Appendix A-Questionnaire).Statistical analyses were performed using the lavaan R package [51] and SPSS. Demographic data were first analyzed using descriptive statistics. Then a structural equation Modeling (SEM) was conducted to test the model presented in Figure 1. A structural equation model is a set of statistical models that seek to explain the relationships between multiple variables; it was used because it allows the simultaneous analysis of all relationships, combining multiple regression with factor analysis, while allowing for both observed and latent variables to be analyzed together [50]. First, a confirmatory factor analysis (CFA) was conducted using a maximum likelihood estimation to examine the reliability and validity of our measurement model. Second, we evaluated the path analysis of the structural model estimates to test the significance of our hypotheses and the predictive items of the proposed model. Prior to assessing the measurement and structural models, common method variance (CMV) and multicollinearity were tested. To check for a common method bias, the Harman [45] single-factor test was employed iteratively in SPSS. The results showed that all factor(s) accounted for <50% of the variance. Hence, no factor was found to account for most of the variance in the variables, confirming that the common method variance was not a concern in the data. To test multicollinearity, variance inflation factors (VIFs) and tolerance were computed in R for the constructs, and they were found to be less than the threshold of 5 and greater than 0.1, respectively, suggesting that multicollinearity was not a major issue in our study [50].The general fit of the measurement and structural models were assessed using a combination of absolute and relative indices: the normed chi-square (CMIN/DF), the adjusted goodness-of-fit index (AGFI), the comparative fit index (CFI) or the Tucker-Lewis index (TLI), and the root mean square error of approximation (RMSEA). For both the measurement and structural models to have a sufficiently good fit, based on the sample size, these measurements needed to be <3, ≥0.8, ≥0.92 or 0.94, and ≤0.7, respectively [50,52]. For the structural model, the strength and significance of the relationship between each of the constructs and the behavioral intention were assessed using standardized regression weights (SRW) and p-value (p < 0.05). Prior to the path analysis (hypotheses-testing), the measurement model was also assessed for (i) construct reliability, (ii) indicator reliability, (iii) convergence validity, and (iv) discriminant validity. Construct reliability is a measure of the internal consistency of the measurement items and was assessed using composite reliability (CR) and Cronbach's alpha values [50]. The indicator reliability was evaluated based on factor loadings. Convergence validity measures whether items can effectively reflect their corresponding construct (i.e., converge on the intended construct), whereas discriminant validity measures whether two constructs are statistically and theoretically different [50]. The average variance extracted (AVE) was used as the criterion to assess convergence validity [53]. To examine discriminant validity, we used the heterotraitmonotrait ratio (HTMT) computed using lavaan in R [51].Finally, we conducted a multi-group analysis to assess the moderation effect of a farmer's age between UTAUT constructs and behavioral intention (Figure 1). For the factor 'age,' respondents were divided into two groups, based on the average age in the sample. Farmers under the median age of 55 years old (n = 201) were grouped as younger farmers and those 55 years or older (n = 193) were designated as older farmers. 'Gender' as moderator variable in the UTAUT model was not further considered because very few female farmers participated in the study. As part of the analysis, measurement model invariance, which includes configural and metric invariance, was assessed following the three-step procedure presented in Steenkamp and Baumgartner [54]. Configural invariance checks if the factor structure is invariant across groups, indicating that participants from the different groups understand the constructs in the same way [55]. Metric invariance tests if different groups respond to the items in the same way. That is, it checks if the strengths of the relationships between specific items and their respective underlying construct (i.e., factor loadings) are the same across groups [55]. A detailed procedure on how to assess configural and metric invariance can be found in Appendix C. Fit indices for the fully constrained measurement model between younger and older farmers (CMIN/DF = 2.169; CFI = 0.932; RMSEA = 0.077), and between connected and non-connected farmers (CMIN/DF = 2.367; CFI = 0.926; RMSEA = 0.083; SRMR = 064) were satisfactory. The results of the partial constrained measurement models were compared to those of the unconstrained multigroup measurement models using a chi-square difference test. The chisquare difference test for the two groups was not significant, suggesting that partial metric invariance for the two groups was also met, following Milfont and Fischer [55]. After assessing the criteria for both configural and partial metric invariance at the measurement model level, an invariance analysis at the structural model level was conducted (Appendix C).The characteristics of the farmers surveyed in this study are presented in Table 1a. Most respondents were male (94%), and 69% of the respondents were between 41 and 70 years old. This age distribution is in line with a national survey by INEGI in 2017 [56]. Most respondents owned a mobile phone (82%), and 37% had started using a smartphone in the past five years (Table 1b). The INEGI survey reported that at a national level, 33% of the production units use information and communication technology for agricultural activities. Of the INEGI-surveyed production units, 90% had a cell phone/mobile phone. For Guanajuato, it was reported that 50% use ICT, and 90% of the production units own a mobile phone [57]. This is comparable with the 82% observed in our sample (Table 1b).The first fit of the measurement model that included all the items of the constructs was sufficient. The model fit indices resulted in a \"good measurement model\" [50] with the following index values: CMIN/DF: 2. 577; AGFI: 0.823; CFI: 0.941; and RMSEA: 0.063 (Table 2). The measurement model assessment of (i) construct reliability, (ii) indicator reliability, (iii) convergence validity, and (iv) discriminant validity is shown in Table 3. All the constructs showed composite reliability (CR) and Cronbach's alpha values greater than 0.7, indicating that the construct's reliability criterion was met [50]. The factor loadings for all items were greater than the threshold value of 0.7, confirming a good indicator reliability of the instrument (Table 3). No items needed to be dropped due to low factor loading. The convergence validity was tested with the average variance extracted (AVE) value [53], and all the constructs had an AVE greater than the minimum acceptable value of 0.5, confirming the convergence validity criterion was achieved. 4, in which the matrix shows the HTMT values between each pair of factors, which were all below 0.9. The overall results indicated that the model had good indicator and construct reliability, and good convergence and discriminant validity, confirming that the constructs were statistically distinct and could be used to test the path analysis of the structural model. After assessing the measurement model, the structural model (path analysis) was assessed. The overall model fit for the structural model was good (Table 2). Values for the indices CMIN/DF, CFI, TLI, RNI, SRMR, RMSEA, and AGFI were nearly the same as the measurement model. The path analysis showed that three hypotheses were supported (Table 5). Significant positive impacts on behavioral intention (BI) were found for performance expectancy (PE) (confirming H1), facilitating conditions (FC) (confirming H3), and mastery-approach goals (MAG) (confirming H6). The two factors from the UTAUT model explained 25%, while adding the construct of mastery-approach goals increased this to 39.5% of the variance in farmers' intention to adopt the app. Among the tested constructs (apart from the UTAUT), the mastery-approach goals (H6) had a significant impact on the intention to adopt the mobile-phone app, indicating that farmers believed that mastering the use of an app might help them to improve their level of competence and knowledge of agriculture [56]. The finding of the relationship between performance expectancy and behavioral intention (H1) is consistent with earlier studies on mobile banking [58,59]. For agriculture, studies also found the importance of performance expectancy on the intentions of farmers to adopt decision-support tools, mobile-based communication technologies for agricultural information [60], and SMS agricultural advice [39]. This implies that farmers' intentions to use apps will be strengthened if they believe that the apps will result in greater performance in their daily agricultural activities. Moreover, 66% of the surveyed farmers selected 'faster way of getting information' from a list of potential benefits of an app.No significant relationships were observed between behavioral intention and the other constructs, implying that hypotheses H2, H4, H5, and H7 could not be supported, and were not found to predict the behavioral intention to use an app significantly. The lack of effect of effort expectancy implies that farmers might not find the effort required to use the mobile-phone app important in their intention to adopt. This can be partially explained by the ubiquitous presence of cell phones, with 46% of the sample owning a smartphone (see Table 1). Hence, the ease of use seems of low importance for farmers already familiar with apps for instant messaging. As 'connected farmers' in the current study are participants in the same program, it was anticipated that social influence would positively affect behavioral intention to adopt the app, but this was not the case, nor was it the case in a previous study on SMS use [39]. This implies that farmers will not simply adopt a technology because important others (e.g., friends or neighbors) are using it. Similarly, an effect of personal innovativeness was expected, as the farmers willing to participate in the hub were innovative or cooperative leaders who have joined the program voluntarily [45]. However, within this group, no effect of personal innovativeness (H7) on the intention to adopt was revealed. In general, this implies that in this context, the willingness of an individual to try out new technologies does not affect the adoption of the mobile-phone app.Unlike in previous studies on SMS services [39] and decision-support tools [15] already being launched and used by farmers, trust in this study was not found to be a significant factor. The low influence of trust on intention might be partially explained because, contrary to those studies, the provision channel (e.g., extension agent) promoting the use of the app was not yet implemented fully in the region. This might change when the last version of the mobile-phone app is launched, and the provision channel begins to promote it with the specific features, recommendations, and data-sharing characteristics.The assumption of full metric variance was tested, but could not be met. Modification indices were calculated to test for any linear constraints that could be relaxed to improve the model fit while accounting for changes in all the parameters. By leaving two item loadings unconstrained for a non-significant path (SI), acceptable model fits were obtained for the partial metric invariance models (all ΔCFI < 0.01). Partial metric invariance is the minimum criterion required [61]. This indicated that the latent variables had the same meaning across groups, and that the SEM analysis could be performed on the pooled sample. Only when configural and partial metric invariance at the measurement model level were established could multigroup analyses be conducted at the structural level. Because no hypotheses were available for the added constructs (IN, TR), the included variables were limited to the ones from UTAUT plus mastery-approach goals (MAG).Results of the moderator effect of age revealed that performance expectancy is more important for older farmers (Table 6), as it shows a significantly higher effect of performance expectancy on behavioral intention. Similarly, the effect of facilitating conditions was significant only for older farmers. On the contrary, the effect of mastery-approach goals on behavioral intention was significant for younger farmers, but not for older farmers. As for the multigroup analysis, performance expectancy was more important for nonconnected farmers (Table 7). The influence of MAG on the intentions of younger and nonconnected farmers to adopt sheds light on the type of utilitarian benefit to reach those farmers who are not connected to the hub yet (Table 6). Utility refers to the usefulness or value that consumers experience from a product or service. Examples of utilitarian benefit might be special access to training and capacity-building in their regions. The MAG seems to have an effect only on non-connected farmers, while facilitating conditions seems to have an effect only on connected farmers (Table 7). Therefore, the different groups might need different stimuli for an initial adoption once the app is rolled out. Finally, for new and non-connected participants' engagement, focusing on performance expectancy might be a suitable strategy for initially adopting the app. The results showed that the effect of performance expectancy on behavioral intention was significantly higher for non-connected farmers (Table 7). The standardized regression weights (SRW) revealed that the mastery-approach goal was significant only for non-connected farmers. Design-thinking principles have been applied and adapted by CIMMIYT when creating innovation hubs [62]. The prototyping phase is crucial to gain early insights before a solution is launched; the sooner a product is put in front of participants to react to, the faster a value-added solution will be reached [55]. In this study, it was proven that using the UTAUT framework and conducting a SEM analysis are suitable to learn more about the farmers' initial adoption decision. Among the factors revealed, performance expectancy was the strongest predictor of farmers' intention to adopt the proposed agriculturalinformation app. This signals that in order to promote this kind of mobile-phone app for decision support in the agricultural domain, focusing on the performance expectancy through different approaches, such as user engagement, is worth exploring further. Development of a digital decision-support tool requires early and ongoing interactions with targeted users to map app performance, objectives, and preferences; ensure reliability of scientific input; and optimize the user experience [17]. The study by Harris and Anchora [63] listed challenges and proposed solutions for ICT-based agriculture implementations, such as provision of offline features, timely and relevant advice, and integration of different appropriate delivery channels (e.g., SMS, or interactive voice response (IVR)). The rapid changes in these technologies also change the way that decision-support systems are designed and used. Therefore, researchers need to adapt and extend current adoption models such as the UTAUT and further integrate socio-psychological approaches. For future phases, the continuous application of farmer-centered design that connects with their needs might tackle observed low user adoption, and can increase the chances of launching a successful decision-support service.Moreover, similar to the \"facilitating conditions\" construct, previous studies had highlighted the importance of interoperability and compatibility with existing infrastructures (i.e., considering the existing information ecosystem of farmers). In this respect, a mobile-phone app can be integrated, for example, with previous efforts such as the SMS service MasAgro Movil, which uses the Extensio platform (previously Esoko) to send text messages to the hub network with information about prices, weather, and general advice on conservation agriculture practices [45]. Other existing information channels that could be integrated are through fertilizer distributors, social media, or instant-messaging apps and groups. Consideration of the existing, mostly informal settings, and further building on them can increase the possibilities for the adoption of solutions [64].Given that performance expectancy and facilitating conditions significantly predicted farmers' behavioral intention to adopt the studied app, project managers might ensure that the app offers utilitarian benefits to the farmers, such as actual payment in phone credits [13], and that the technical infrastructure exists to help them to use it. Examples of this are the offline features being developed by AgroTutor's developers to cope with unreliable Internet connections in rural areas and the potential support of extension agents in early stages of usage. Moreover, the difference in the importance of masteryapproach goals (MAG) between farmers connected and not connected to the hub indicates a heterogeneity level of farmers' profiles, even in the same region. Hence, different utilitarian benefits need to be designed to promote adoption in each group. Another enabling environment element is mutual trust, which is considered a best practice despite not being observed in the present work. This is already the case for the innovation hubs, but special attention needs to be taken when bringing new stakeholders to the initiative by not only working with local institutes that already have been accepted, but also stimulating them to co-design the app, which could be a way to establish initial trust between farmers and the initiative. For example, the co-creation of value has proved insightful to understand bottom-of-the-pyramid market dynamics in countries like Bangladesh [65].Despite its contributions to aspects that are important for farmers to adopt a mobilephone app to provide agricultural-related information about crops, some limitations merit discussion. First, the factors important to technology adoption might differ from location to location, so assessing the validity of this model with farmers across different cultures both in developed and developing countries would be theoretically and practically useful. By the same token, our findings are specific to a certain part of Mexico, and the context can be very different in other areas (e.g., areas with lower literacy and less smartphone adoption). Therefore, care must be taken before generalizing to other geographies with other ICT infrastructures. Moreover, the study does not claim to statistically represent farmers in Mexico (neither in terms of gender, nor geographically). It would be interesting to test the model with more female farmers and in other parts of Mexico. Second, since most of the farmers in this study had not used the mobile-phone app, we did not examine the effect of behavioral intention on the use behavior. Therefore, it is recommended that future research include the examination of the effect of behavioral intention on farmers' actual use behavior. Additional research would also allow an assessment of whether the importance of the constructs would change over time or contexts. For example, the effect of trust on farmers' behavioral intention to use the mobile-phone app might become important when the information is being shared with particular organizations, including companies, along with the perceived risk associated with use [38,66]. Data-sharing perceptions then possibly become a crucial issue that warrants further study.Another potential limitation of this study was its focus on a specific app [18]. However, because the study highlighted the underlying intention to adopt drivers rather than the app content/functionalities; our findings could be applied to other non-commercial apps that provide precision agriculture services to smallholders in developing countries. Studies investigating perceived effectiveness and actual adoption of decision support systems are recommended.Agricultural mobile-phone applications can provide tailor-made agronomic advice to small-scale farmers, who are often excluded from precision agriculture developments, while at the same time can contribute to citizen-science applications that promote sustainable agricultural intensification. Nevertheless, research on the initial adoption decision of agricultural apps in the region of Central and Latin America is limited. In this study, we extended the commonly used UTAUT framework to reveal the main behavioral aspects of Mexican farmers' intention to adopt agricultural apps, including understudied farmers' intrinsic motivations. Performance expectancy was found to be the strongest predictor of farmers' intention to adopt an app to provide agricultural information. This highlights the importance of understanding the benefits perceived by farmers. Thus, managers of agricultural projects aiming to deploy mobile-phone apps need to ensure that their use for data collection offers benefits to farmers, such as mobile credit compensations.Mastery-approach goals (MAG) were found to be significant, and revealed a baseline of farmers' intrinsic motivation (why they are motivated to use it in the first place) independently of the content of the application. This is of special interest in the initial decision to adopt, with their readiness to learn and master the use of an app providing agricultural innovation. These results motivate us to further explore how non-financial incentives, such as access to training during the app's roll-out might promote its uptake. In addition, younger farmers with a mastery goal orientation can also be targeted in early stages of the app's roll-out, as they are expected to use the mobile-phone app to acquire new skills and knowledge. The app then needs to be accompanied by facilitating conditions and basic conditions, such as access to a smartphone and reliable Internet access. It was revealed that performance expectancy was important for farmers connected and non-connected to the innovation hubs, and for both older and younger farmers. According to the results of the study, the 'connectedness to an innovation hub' in the region has a moderator effect on the intention to adopt. Future research should focus on ways to complementarily assess the farmers' perception of the enabling innovation environment relevant to research-anddevelopment efforts. For example, research in the areas of the Agricultural Innovation System can be a way forward. Finally, the study should be validated and extended to other geographical areas in Mexico and Latin America, since the magnitude of factors could differ, and it is important to consider the user engagement of farmers in these regions.Institutional Review Board Statement: Ethical review and approval were waived for this study, because no sensitive, personal data or geo localization were collected from individuals. Best practices to collect, anonymous treatment and process of the data were followed according to Ghent University guidelines concerning ethics in research.Informed Consent Statement: Informed verbal consent was obtained from all participants in this study. The option to withdraw the interview at any time was provided. First, I would like to thank you once again for participating in this interview. The questions I ask you after this point are related to the mobile phone or smartphone, mainly the use of your mobile phone to consult and receive agronomic information. Thank you for your valuable time and we will proceed to the questions. Please indicate the degree to which you agree with each statement by using the scale 1 (Disagree strongly), (4) being neutral, to 7 (Agree strongly).8. Thanks and ask if anything is wanted to be added Appendix BBehavioral Intention (BI)In the future, I intend to use or continue using mobile phone apps that provide me with any agronomic information. I will always try to use mobile phone apps that provide me agronomic information, in my daily life. I plan to use or continue using mobile phone apps frequently that provide agronomic information. To assess configural invariance, unconstrained multi-group measurement models, which allow factor loadings to vary across two groups (i.e., between MasAgro-connected farmers and non-connected farmers and between younger and older farmers) were developed. The model fit for the configural invariance between younger and older farmers was satisfactory (CMIN/DF = 2.198; CFI = 0.933; RMSEA = 0.078), and that between connected and non-connected farmers was also satisfactory (CMIN/DF = 2.403; CFI = 0.927; RMSEA = 0.062) [55]. This implied that the models fit both groups well and configural invariance was met.To assess metric invariance, fully constrained measurement models that constrain the measurement weights (i.e., factor loadings) for each measured variable to be equal for the two groups (i.e., between younger and older farmers and between connected and nonconnected farmers) were developed, but could not be met. Modification indices were estimated to explore for any linear constraints that could be relaxed to improve the model fits while accounting for changes in all the parameters. By leaving two item loadings unconstrained for a non-significant path (SI), acceptable model fits were obtained for the partial metric invariance models (all ΔCFI < 0.01). Partial metric invariance is the minimum criterion required to validate the analysis [61]. This indicated that the latent variables had the same meaning across groups, and that SEM analysis could be performed on the sample.","tokenCount":"7242"} \ No newline at end of file diff --git a/data/part_3/7458630776.json b/data/part_3/7458630776.json new file mode 100644 index 0000000000000000000000000000000000000000..8bf1276a66bdcd366483f4f3048616042dd1a378 --- /dev/null +++ b/data/part_3/7458630776.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"7e19d733c62241133a34c23a7baa0377","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/84c0fa59-8a15-4dda-a4f1-023fa7d598f4/retrieve","id":"-1566630484"},"keywords":["Ananas comosus","Cultivation practices","Farmer's knowledge","Genetic resources","Pineapple"],"sieverID":"09b8b227-e049-42f3-a486-3b019b09b4d7","pagecount":"11","content":"Valuation of farmer knowledge has been seen as a route to promote sustainable use of plant genetic resources. In pineapple production systems in Benin, inadequate knowledge of cultivation practices can lead to a number of inconveniences including abandon of some varieties and cultivars. To understand how farmer's knowledge and cultivation practices impact the sustainable utilization of pineapple genetic resources, we surveyed 177 pineapple farmers in southern Benin. We assessed farmers' knowledge and analyzed the relationship between their knowledge and factors such as age, education, and locality of provenance. Pineapple production system was dominated by men (96% respondents). According to farmers, Smooth cayenne is international market-oriented while Sugarloaf mainly targets domestic and regional markets. All farmers recognized that Smooth cayenne provided more income (USD 5,750/ha) than sugarloaf (USD 3,950/ha) in the production systems of southern Benin. The high value of median scores in comparison with the range of possible score showed that most farmers agreed and shared relatively similar knowledge. Correlation matrix and multiple linear regressions showed a significant relationship between farmers' practices and their knowledge of the plant; their knowledge of pineapple varieties is based on fruits traits. Also, farmer's knowledge was associated with locality of provenance. Constraints and options for genetic resources conservation and utilization in the pineapple production systems in Southern Benin were discussed based on current knowledge.Crop genetic diversity serves to buffer environmental constraints and to sustain traditional farming systems (Gepts 2006;Samberg et al. 2013). However, in intensive production systems sustainable utilization of genetic diversity has frequently been at risk (Clement 1999) when clear conservation strategies (e.g. seed genebanks, field genebanks, on-farm conservation, reserves) are not available. The search for homogenous and high yielding varieties, with their associated bulk of agricultural inputs (e.g. chemicals, farm machinery, irrigation) and the development of markets are still threatening the reliance of farmers upon genetic diversity (Swanson and Goeschl 2000) when elite cultivars are promoted. This debate started some years back and effort has been put to promote the 'conservation through use' approach (Jarvis et al. 2000). Such approach is appropriate when decision makers and researchers have adequate knowledge of the genetic resources available and farmer's criteria for variety selection which are key to promoting effective plant breeding (Temudo 2011) and on-farm conservation. However, a major driver of the 'conservation through use' approach is the value (e.g. social, nutritional, economical, nutraceutical, ecological) farmers assign to crop genetic resources (Brush and Meng 1998), be they modern or traditional varieties. This value is directed by a number of factors including market opportunities, environmental constraints, consumption preferences, socio-cultural background, government policies (Keleman et al. 2013;Lacy et al. 2006;Montes-Hernandez et al. 2005;Teshome et al. 2007). The presence of these resources in the production systems might be deemed the reflection of the value that farmers assign to them. However, while targeting profitability of crop production which greatly depends on yield, farmers may overlook low yielding varieties and not show interest to the conservation of their genetic resources that might be useful today and tomorrow as potential resources for sustaining smallholders' livelihoods or breeding programs. When facing drawbacks such as low inputs, low yield, market uncertainty, environmental heterogeneity, and risk factors (Brush 2000) farmers may not keep modern or local varieties in the production systems if they do not satisfy their needs and wants. This often happens when yield and profit are not achieved, and such varieties go off the system together with their associated local knowledge. If factors triggering the maintenance of these resources in the production systems are not well understood, it may be difficult to apprehend why, how and when these resources are lost. Farmer's knowledge and perception of genetic resources are central to the conservation through use approach whereby the availability of these resources is ensured and increased (Neto et al. 2013). Such knowledge if well understood offers a valid window towards sustainable implementation of conservation and utilization strategies.In pineapple [Ananas comosus (L.) Merr.] production systems of southern Benin the expansion of areas under cultivation exhibits a situation in which the crop genetic diversity is shrinking (authors personal observations after a country-wide pineapple collecting activities). Pineapple is the second tropical fruit in the global trade and contributes to over 20% of the world production of tropical fruits with 17 million tons (FAO 2012). In West Africa, Benin is the second major pineapple producer with 160,000 tons in 2011 after Nigeria (FAO 2013). An estimate of profit per hectare showed that pineapple crop provides higher margin to farmers than food crops (Tidjani Serpos 2004). However, the quantity traded globally is a small fraction of domestic production. Although the volume of pineapple produced increases over the years, the proportion of fresh pineapple exported to international market appears being still less than 2% (Arinloye et al. 2012;Fassinou Hotegni et al. 2012). One of the reasons explaining this situation was related to the heterogeneity in fruit quality and poor compliance with quality standards due to inadequate cultivation practices (Fassinou Hotegni et al. 2012). This situation leads farmers to either deliver their pineapple to the local market (Arinloye et al. 2012) or stop growing some \"non promising\" varieties. Meanwhile, conservation and use of genetic resources have barely been documented.With very dynamic production systems (Adossou 2012) combined with the arising issue of pests and diseases (Fanou and Adekan 2006), the use of genetic resources and the decision to grow a specific cultivar depend on how much knowledge farmers have and how they link their specific constraints to the use of appropriate planting material. In other words farmer's choice of variety might be guided by drivers that need to be scrutinized to recommend adequate conservation strategy. For instance, it is a common knowledge that in the pineapple cultivation system of southern Benin (the main production area) local old cultivars gave way to recently introduced cultivars such as Smooth Cayenne and Sugarloaf although scientific evidences are yet to be provided. Pineapple farmer's knowledge and rational behind the use of genetic resources are rarely assessed. Moreover, the complexity of such knowledge particularly when this is related to the biological material and the production systems calls for thoughtful approach whereby ethnographic studies can help understand farmer's knowledge, priorities and needs in the choice of genetic resources (Temudo 2011). In these dynamic production systems, conservation strategies should be developed to maintain crop diversity. Specifically, answers should be provided to questions such as: what drives farmer choices of pineapple varieties and how this helps conserve genetic resources? Is the choice of variety guided by cultivation practices and how this is affected by farmer's plant knowledge?In this study we assume that farmer's variety choice is guided by criteria such as cultivar traits, cultivar commercial value, and consumer preference while farmer's knowledge of cultivation practices is intrinsically related to factors such as age, education level, location of the pineapple farm, and farmer's knowledge of the plant. Our objectives were to (1) clarify the ongoing trends in varietal choice in the pineapple production systems and (2) understand factors affecting such choice so as to identify adequate conservation strategy to halt the risk of reduction of crop genetic diversity in the pineapple production systems in Benin.The study was carried out from September 2012 to June 2013 in thirty four villages of eleven counties located in five municipalities of Southern Benin namely Allada, Tori, Toffo, Zê and Abomey-Calavi known as the pineapple production areas in the country (Figure 1 and Table 1). South Benin is located in the Guinean phytogeographical region (White 1986) with a semi-deciduous rainforest zone on ferralitic and lateritic soils, vertisols and hydromorphic soils (Azontondé 1991). It covers 17,920 km 2 (Arouna et al. 2011) extending from the Atlantic coast and stretching between 1°45' and 2°24'E and 6°15' and 7°00'N to the west and 6°15' and 7°30'N to the east. The area is characterized by a sub-equatorial climate with two rainy seasons and two dry seasons. The mean annual rainfall varies from 950 to 1400 mm covering 240 days. The mean annual temperature is 26°C (±2.5°C). The local economy is based on agriculture with production systems dominated by maize, cassava, oil palm and pineapple.In total, 177 producers were selected using a snowball approach. We included both members of farmers' association and non-members; and also newly engaged and individuals with long experience of pineapple farming. Respondents underwent surveys in two phases with two questionnaires. The first questionnaire were related to socio-demographic data, production systems (e.g. land tenure, varieties, fertilization, pests and diseases management, market and income, constraints and opportunities); and the second questionnaire used ethnobotanical approaches to assess producers' perceptions in terms of variety preferences, botanical traits, and agronomic practices. The second questionnaire was organized in six constructs, each consisting of 3 to 9 questions (items) related to knowledge on leaves, flowers, fruits, fertilization, irrigation and growing seasons identified through literature search and the first survey phase. Questions in the constructs were reflected as statements, and producers were asked to indicate their level of agreement using a 5-point Likert response scale, ranging from strongly disagree to strongly agree (Fanou-Fogny et al. 2011). The questionnaire was pretested with 10 farmers (who did not participate in the research) to ensure that the questions were understandable. Before each interview, we clarified the response scale using an example to ensure that participants understood the Likert scale. The constructs help assess farmer's knowledge of pineapple using descriptors of leaves, flowers and fruits; and farmer's knowledge of cultivation practices. Farmer's knowledge of plant was deducted as a sum of scores resulting from farmer's knowledge of leaf, flower and fruit traits while farmer's knowledge of practice was obtained by adding the scores resulting from knowledge of practices such as fertilization, irrigation, and seasonality. Preference data were collected using direct scoring matrix with criteria such as fruit size (size), fruit form (ffor), fruit shelf life (cons), fruit commercial value (comv), flesh colour (clri), skin colour at maturity (clrm), fruit aroma (arom), consumer's appreciation (capr), fruit taste (tast), number of propagules (nbrj). Propagules here include suckers and hapas. Preference scores vary from 10 to 1 with 10 being the highest mark.Descriptive statistics were used to examine farmers' sociodemographic characteristics and to compute the median score of the constructs. Multiple item constructs were tested for the reliability of the questions and internal consistency using Cronbach' α and item-total correlation. The items within a construct were regarded as consistent when Cronbrach' α and the item-total correlations were higher than 0.80 and 0.30 respectively. Spearman correlation was used to assess the bivariate association between farmer's knowledge of plant and knowledge of cultivation practices. Multiple linear regressions were performed to determine the contribution of the social attributes (e.g. farmer's age, experience in pineapple production, locality, and education level) or farmer's plant knowledge (independent variables) to farmer's knowledge of cultivation practices (dependent variable). Principal Components Analysis (PCA) was used to group farmers with regards to preference criteria. This was done using preference scores. Data were analysed using R version 2.15.2 (R Developement Core Team 2013).Pineapple farmers were in average 33.8 ± 8.3 years old. About 60% of them aged between 20 and 35 years old, 35% between 36 and 50 while less than 4% aged above 50 (Table 2). On average farmers were involved in pineapple production for the last ten years with 2 years for the least experienced farmer and 20 years for the most experienced one. About 50% of them are illiterate, 23% attended primary school and 18% reached secondary school (Table 2). Most farmers were male (96%). Only six female farmers representing 4% of respondents were surveyed as a reflection of the fact that men dominate the pineapple production system in Benin. Land tenure presented two major features; land was either owned through purchase or heritage (70% of farmers) or rented (97%). Farmers who owned land also rented additional plot for pineapple cultivation. Two pineapple varieties were produced in the study areas, namely Smooth cayenne and Sugarloaf. Local cultivars were rare and cultivated on a very small scale and consequently not visible in the cropping systems although present. In majority farmers only cultivated Sugarloaf (79% of respondents). Those who produced Smooth cayenne only represented 2% while 18% of respondents produced both varieties (Table 2). Moreover, production of Smooth cayenne was restricted to two sites, Toffo and Zê where more farmers allocated substantial land for the production of this variety (Figure 2). Smooth Cayenne was well produced in Toffo, with 60% of respondents allocating between 1 and 5 ha to that cultivar (Figure 2). In Allada and Tori the production was dominated by Sugarloaf. In these two localities more than 50% of respondents allocated between 1 and 5 ha to sugarloaf production. The situation was almost the same in Abomey-Calavi although farmers (less than 5%) produced Smooth Cayenne on a very small scale.The main pineapple cultivation itinerary comprised land ploughing, planting, weeding, fertilization, forcing (hormone application), harvesting, and production of planting material. Cultivation practices varied from one cultivar to the other as described by Fassinou Hotegni et al. (2012). Most of these practices were labour intensive and perceived as difficult by farmers (Figure 3).At harvest, it was noticed that 84% of the farmers sold their pineapple to the local market. About 50% of them targeted regional market while only 15% were involved in international trade. According to farmers, Smooth cayenne is international market-oriented while Sugarloaf mainly targets domestic and regional markets. All farmers recognized that Smooth cayenne generated more income (USD 5,750/ha) than sugarloaf (USD 3,950/ha) in the production systems of southern Benin. However, there are some bottlenecks to compliance with quality standards and market growth. These include heterogeneity in fruit shape and weight due to inappropriate cultivation practices (recognized by 80% of farmers) and the lack of adequate planting material (100% of respondents).Cronbach' α coefficient ranged from 0.65 to 0.83 showing medium to high reliability of the questions (items) of the constructs (Table 3). The median scores for all constructs ranged from 14 to 35. The high value of median scores in comparison with the range of possible score showed that most farmers agreed on the items and shared relatively similar knowledge (Table 3). Spearman correlation test on socio-demographic attributes showed positive correlations between farmer's knowledge of pineapple leaves, flowers, and fruits; and farmer's knowledge of fertilization, season, and climate (Table 4). It was also noticed a positive relationship between farmer's plant knowledge and cultivation practices. Moreover, there were significant correlations between farmer's knowledge of fertilization and farmer's knowledge of plant on the one hand and farmer's knowledge of fruit and farmer's cultivation practices on the other hand.The relative contribution of drivers to farmer's cultivation knowledge is shown in Table 5 which indicates three models. Model 1 and 2 revealed the contribution of socio-demographic features to farmer's plant and cultivation knowledge while model 3 estimated the contribution of farmer's knowledge of plant to farmer's knowledge of cultivation practices. In model 1, locality of origin explained a big part of the variability observed in cultivation knowledge (standardized β = 0.64, p < 0.05). In this model the standardized β of variables such as experience and education level are close to significant (p = 0.06 and p = 0.05 respectively). Likewise in model 2, 27% of the variance in farmer's plant knowledge could be explained by the locality of origin (standardized β = 0521, p < 0.05). In Model 3 farmer's plant knowledge accounted for 33% of the variance in farmer's practice knowledge, but only farmer's knowledge of fruit showed significant β (standardized β = 0.596, p < 0.05). criteria (Table 6). For instance, high significant correlations were observed between variables such as consumer's preference (capr) and taste (tast), consumer's preference and number of propagules produced (nbrj) while significant negative correlation was noticed between fruit weight (yield) and number of propagules. Principal Components Analysis revealed two major components that explained together 60.61% of the total variation of pineapple agromorphological traits (Figure 4). The first axis (explaining 45.5% of total variation) was positively correlated with criteria such as the number of propagules (nbrj), the fruit taste (tast) and the consumer's preference, and negatively correlated with other criteria such as fruit size (size), fruit weight (yield), fruit shelf life (cons), and fruit commercial value (comv). The second axis (with 15.1% variation explained) was rather positively correlated with the fruit flesh colour (clri) and the fruit skin colour at maturity (clrm).The representation of respondents in the factors map showed two groups of farmers (Figure 5). The first group included farmers who preferred pineapple cultivars that bear big fruits, with high commercial value, and high shelf life. These criteria were attributed to Smooth cayenne. The second group comprises farmers who preferred pineapple with high consumer preference value, good taste and high number of propagules. These criteria were attributed to Sugarloaf. All surveyed farmers can easily identify Smooth cayenne and Sugarloaf. According to them leaf traits (e.g. presence of spines, length, and width) and fruit traits (length, size, form and colour) are used to distinguish Smooth Cayenne and Sugarloaf. Production systems and polarization of farmer's knowledge and preferencesOur data showed that the pineapple production was dominated by men. There are two reasons that may explain this situation. First, as argued by Royer and Bijman (2012) and according to farmer's perception, pineapple production is labour intensive and requires a lot of manpower. Second, women are usually restricted from land heritage in many parts of Africa and particularly in Benin (Achigan Dako et al. 2008;Lastarria-Cornhiel 1997). Land tenure system is similar to what is observed elsewhere in the country whereby farmers acquire land through heritage, purchase, and renting. In the pineapple production system, land acquisition is mainly by renting (90% of respondents) even if 70% of the surveyed farmers were owners. The renting of additional land may mean that farmers are seeking higher production. Alternatively, this situation suggests that most farmers are resource limited and cannot acquire their own land for production. It is also probable that some of them are temporarily growing pineapple and might quit at any time when constraints become severe. In fact, the system is dominated by young farmers (30 years old in average) in search for opportunities and might not necessarily invest for the long term. Moreover, the study revealed that the majority of the producers allocated 1 to 5 ha to pineapple production. This points out the issue of economies of scale where farmers individually cover small size of land scattered over different villages, as response to constraints currently faced for land access in southern Benin (Mongbo and Floquet 2006). Although a high level of illiteracy was recorded among farmers, indicating a low-educated community, farmer's knowledge of cultivation practices and plant traits was consistent as revealed by Cronbach' test. This indicates that in general farmers share similar knowledge. However, our study did not specifically assess the content of the knowledge. Finding effective knowledge is not similar to finding commonly held knowledge (Bart 2010). Effective knowledge might be limited to a few farmers who are members of a pineapple growers association and have in general adequate information. They are aware of opportunities and participate in training organized by other institutions. These farmers know the cultivation techniques required to improve the quality of their products. However, some of them may not implement the knowledge acquired because of lack of financial support (Royer and Bijman 2012).Farmers choose which crop varieties to grow taking into account a range of biophysical, social and economical environment over space and time (Lacy et al. 2006). Improved understanding of farmer's varietal choices is paramount to fruitful collaboration between farmers and scientists (Lacy et al. 2006). In Benin, the pineapple cropping system is split in two, based on the varieties grown (Fassinou Hotegni et al. 2012). These varieties (Smooth Cayenne and Sugarloaf) are modern introduction and are well differentiated from local old cultivars that are lesser and lesser visible in the production system. Both varieties present distinctive physical and agronomical traits (Fassinou Hotegni et al. 2012). An incomplete understanding of why farmers choose one variety or the other will continuously generate considerable difficulties when developing viable options to reduce fruits heterogeneity. Our results showed that Sugarloaf was the most cultivated variety (on 405 ha against 90.25 ha for Smooth cayenne according to respondents data only), which was produced by about 80% of farmers. Only 2% of farmers exclusively produced Smooth cayenne and 18% diversify their pineapple production systems by cropping both varieties. This trend also was observed by Arinloye et al. (2012) who related the low Smooth Cayenne production to the low fresh pineapple export by Benin. Moreover, the production of Smooth cayenne has shrunk to two localities (Toffo and Zê) where farmers still have adequate knowledge of cultivation techniques to participate in international market. Farmers of these localities allocate more land to the production of this variety compared to Sugarloaf as found by Arinloye et al. (2012).Here, farmers do not necessarily grow the variety that gives the highest profits per unit area as stipulated by the neoclassical economic model (Small 2002), they take into account a number of other criteria that guide their decision even if they grow just one variety.Results revealed that farmers split in two groups based on variety preference criteria such as fruit size and weight, shelf life, fruit commercial value, consumer preferences, and number of planting material (slips, hapas, suckers) produced. A first group of farmers prefers Smooth cayenne because it produces bigger fruit with high price on the international market and with high shelf life. The second group of farmers prefers Sugarloaf as this variety is sweeter and well appreciated by local consumers. We can speculate that farmer's varietal choice is certainly a measure of insurance against the stringent international market standard albeit this later is more profitable.Farmer's varietal choice explains the zonal polarization of the cropping system and influence farmer's knowledge of cultivation techniques. This knowledge depends on the location of the pineapple farm as revealed by the multiple regression analysis. Incidentally, the localities with more varieties were those with higher production. In these sites, 60% of farmers have more than 15 years experience in pineapple production. They also hosted educational programs in pineapple production. This indicates the role of the farmer's knowledge in agricultural development (Yassin et al. 2002) and justify that high agricultural production is often linked to farmers' access and use of agricultural knowledge (Briggs 2005;Feder and Savastano 2006). Farmer's knowledge of cultivation techniques also correlated with their knowledge of the plant (specifically knowledge of fruit) which confirms the idea that cultivation practices are variety dependent (Fassinou Hotegni et al. 2012). Many farmers mostly grow Sugarloaf because it can easily be sold in local and regional market and requests low investment and without quality control requirement (Arinloye et al. 2012). High yield and high commercial value do not always guide the choice of variety. Other criteria such as consumer preference, market accessibility, handling of cultivation practices guide the choice of farmers. In addition, farmers rely on market diversification as a protective strategy to safeguard their investments (Arinloye et al. 2012;Wilson 1986). Although farmers are aware of the constraints facing them, they cannot do much to change the situation. This shows the need for public sector to support capacity building and provide other incentives (e.g. facilitating the setting up of processing factories, facilitating access to financing) to pineapple farmers.Farmers are the primary creators, users and conservers of crop genetic resources on farm. Their decision making processes influence the level, status and dynamics of inter and intra specific diversity and management practices (Teshome et al. 2007). If international market remains stringent (the contrary is not expected) smallholder farmers will continue shifting from labour intensive varieties (Smooth cayenne) to more easy-to-grow varieties (Sugarloaf). This trend will persist not only because farmers are guided by local consumer's preference but more importantly because farmer's knowledge of cultivation techniques is intrinsically related to their knowledge of the plant. Consequently, as cropping systems are localitydependent and cultivation practices variety-dependent, the level of pineapple intra-specific diversity might be reduced in the absence of adequate measures. Our study clearly flagged out the factors that determine the place of pineapple varieties in the production systems and the interest that farmers have in them. These factors are important to develop a sustainable utilisation strategy (Brush and Meng 1998). In the pineapple production system in southern Benin the conservation through use approach needs to be sustained with a number of strategic actions such as 1) collection of pineapple genetic resources, 2) morphological and genetic characterization of these resources and definition of a core collection, 3) promotion of pineapple diversity with emphasis on production locations where this diversity is high, 4) training and capacity building, particularly on cultivation practices.Establishment of a core collection of pineapple genetic resources including landraces is of paramount importance.Although pineapple was listed in 2007 by the government of Benin as a priority commodity in the country, no collection of genetic resources has been undertaken to secure germplasms. Moreover, there is no single genebank available for breeding programmes. Although pineapple is vegetatively propagated, we cannot only rely on farmers to maintain all the diversity that might be available particularly when this diversity is unknown. That is why in addition to germplasm collection activity the morphological and genetic characterization of pineapple cultivars should be carried out. Conservation of genetic resources both in situ and ex situ needs to be guided by information on the novelty of specific populations at the whole-genome and specific allele levels. To the best of our knowledge the genetic diversity in pineapple cultivated in West Africa has never been evaluated. It is possible that in addition to modern cultivars, such as Smooth cayenne and Sugarloaf, and traditional landraces other introductions might have happened the same way knowledge was imported from neighbouring countries (Royer and Bijman 2012).Another strategic action includes promotion of pineapple diversity with emphasis on production areas where this is high. In developing countries, records reveal that research centres are not the best keepers of genetic resources particularly when it comes to vegetative crops which need to be maintained as live collection. With regards to this situation, pineapple genetic diversity should be promoted at community level. This could be supplemented with training and capacity building particularly on cultivation techniques. A challenge for agriculture and rural development agents will be to develop training and radio programs to help expand pineapple farmers' knowledge and practical skills in order to improve pineapple production in Benin.","tokenCount":"4395"} \ No newline at end of file diff --git a/data/part_3/7479303060.json b/data/part_3/7479303060.json new file mode 100644 index 0000000000000000000000000000000000000000..75f64e0f01480611fac1def358d57850964c9e65 --- /dev/null +++ b/data/part_3/7479303060.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"46e70c5c2cb94207c192629cd11e3ada","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/3b7707ca-8a8c-4f4b-9b1e-e64ef81f444d/retrieve","id":"-1512509501"},"keywords":[],"sieverID":"49be9010-6d3f-45fb-a3cf-81652e06eb3e","pagecount":"170","content":"Por Beneficio de Semillas se entiende el conjunto de operaoiones al que se somete un lote de semillas luego de ser oosechado, con el fin de maximizar la cant¡dad de semilla pura con el m!s alto grado de uniformidad, vigor y germinaci6~Esta actividad se oonoce en diversos paises de Am6rica Latina con otros t6rminos tales como acondicionamiento, procesamiento, beneficiamiento, limpieza o selecci6n se semillas.Con el fin de uniformizar la nomenclatura y atendiendo a las recomendaciones del Tesauro sobre Semillas publicado por la Unidad de Semillas del CIAT. se sugiere utilizar el t6rmino beneficio para indicar las operaciones antes desoritas.Desde haoe muobo tiempo se ha reoonooido que el beneficio de las semillas es•un paso muy importante en el sistema de cualquier programa organizado de prod6~oi6n de semilla~ Como parte integral.de un programa de semillas. el beneficio es el paso que se realiza en un complejo agroindustrial especialmente denominado Unidad de Beneficio de Semilla (UBS) y cuyas operaciones ae inician luego de la oosecba de las semillas y termina con el almacenamiento de las mismas basta Que sean distribuidas oportunamente.Las empresas de semillas realizan un conjunto de esfuerzos basados en una serie de principios para lograr semillas de la mejor calidad posible a un bajo ópsto. A continuaci6n se describen estos principios que son la base de toda empresa Que desee benefioiar adeouadamente SUs lotes de semillas. 1.2.1 Hhimo poroentaje de semilla. pura Para su venta, un lote de semillas debe presentar semillas secas. limpias. uniformes y libres de materiales indeseables.1. 2. 2 Pbrdlda ain1llla de ee!:!.111aaDurante las operaciones que se realizan en el beneficio de las semillas, se debe calibrar adeouadamente la maquinaria '1 el equipo, 1 se debe supervisa~ el manejo de las semillas para evitar o minimizar las pérdidas.Se debe mantener la oalidad de la semilla en oada paso del beneficio para mejorar la calidad final del lote de semilla. eliminando los materiales inertes y aquellas semillas que han perdido su oalidad.Operar en todas las fases del beneficio con la mayor eficienoia. sin disminuir la calidad del produoto.Como toda empresa, y en espeoial la semillera. que puede involucrar muoha mano de obra. debe operarse a niveles 6ptimos de eficiencia para no incrementar exoesivamente los costos directos.El objetivo general del beneficio de semillas es obtener de un lote de semilla ooseohado. el m~imo porcentaje de semilla pura. con el mAs alto grado de uniformidad. vigor y germinaci6n, a un costo razonable (Figura 1). Para lograr este objetivo se debe: a-Remover el exceso de humedad b-Remover oontaminantes 0-Clasificar las semillas d-Proteger las semillas oontra plagas y enfermedades 1.4 Operaciones del Benefioio El proceso de benefioio de las semillas se realiza en varias etapas. tal Qomo se ilustran en la Figura 2. No todas'estas,operaoiohes son neoesarias para benefiaiar laa semillas de todos los cultiVOS; las oircunstanoias 1 las condiciones en las que se reciben las semillas determinan las operaoiones espeoializadas que se neoesitan para el benefioio de un lote de semillas. L __________________ ..Figura 2. Operaciones fundamentales del beneficio de semillas.Es la operaoi6n inioial del beneficio y requiere de une atenci6n especial. La recepci6n pr'ctioamente se inioia desde el momento en que la semilla oosechada se trans~orta a la UBS.2.1 Formaa de Reaepo16n2.1.1 Reoepo16n en sacos 51 la semilla se recibe en sacos. se facilita su recepc16n puesto que se controlan mejor los lotes durante el manejo. e inclusive algunas veces se puede secar la semilla en los mismos saco~ Esta operaci6n en sacos es mis costosa para grandes vo16menes que a granel; los sacos deben estar perfectamente limpios o nuevos para evitar contaminaciones. pero permite mejor identificac16n de los lotes y pueden ser estibados en los almacenes si la semilla esti seca.Los grandes vo16menes de semillas se manejan a granel para hacer menos maniobras. Para que esta forma de recepci6n sea eficiente. se ~equieren tolvas. silos transportadores y elevadores. La semilla h6meda no puede permanecer mucho tiempo sin ventiliaci6n o secado; sin embargo. una operaci6n de este tipo bien planeada y con el equipo necesario. tendri una capacidad y un manejo adecuado para grandes vo16menes de semilla.2.2 AnIlisls de la Muestra de Reoepc16nLa forma en que el operador de la UBS puede determinar las actividades por realizar en un lote de semillas. es mediante un anllisis de las condiciones en las cuales se reclb16 la semilla. Este an!liilis-ae basa -en-un muestrea al azar de los lotes recibidos. En general. el muestreo oonsl~te en to~ar pequeBas oantidades de semillas de var~os v~16menes o.partes. despu6s mezclarlas y uniformizarlas. y luego dividirlas para~btener ~ns Bola muestra (por ejemplo. en el oaso de la soya es de 1 kg).Del análisis de la muestra. el operador ~st! interesado en la evaluao16n de los determinantes de la oalidad de la semilla réc1b1da. tales como:a-Humedad b-Peso volum~trico 0-Pureza d-Oerm1naci6n e-Dafio mec~n1coCon el resultado de este anAli~is se determina si la semilla debe secarse y cuáles son las mAquinas que se deben emplear para eliminar alg6n material indeseable. y sobre todo para determinar el flujo de operaciones que el lote de semillas seguir~ en la planta. evitando causarle daños meclnicos durante su manejo.Para un adecuado control de calidad y conocer la historia de la semilla. es importante caracterizarlas con base en los siguientes datos:1-Origen 2-No. del lote 3-Cantidad 4-Fecha 5-Especie y cultivar 2. 3 Equipo Accesorio Los veh1culos de transporte que aoarrean la semilla a la UBS generalmente son furgones o remolques tirados por tractor. los cuales estln preparados para cargar y descargar rápidamente las semillas en tolvas compensadoras. transportadoras y elevadores de semilla. Las básculas para pesar la semilla que se acarrea en estos veh1culos y un de terminador de humedad. son los equipos accesorios m~s importantes para la recepci6n.Existen diversos tipos de'blsculas que se utilizan durante el beneficio: las de plataforma para pesar camionas .y veh1culos que acarrean la semilla; las de plataforma portAtiles para pesar pequeños lotes'de semillas; y las básculas envasadoras autom §.tioas.Las de plataforma son las usadas para pesar la semilla en bruto. es deoir ñurante la reoepc16n. Las b!soulas de plataforma-para' pesar grandes yol(¡menes de semillas. representan una alta inversi6n para oualquier empresL Requieren una local1zaci6n permanente oeroa de la entrada 1 salida de los vehIoulos a la planta. Las b~aoulas oon capaoidad d~ 20 a '50 toneladas son las m~s comunes. Las port6tiles son muy 6tiles para pesar sacos y pequefioa lotea de semilla. y su oapaoidad varia de O a 500 kilos.Las tolvas para semillas. que son dep6sitos met&lioos o de concreto. son accesorios muy importantes en la reoepo16n de las semillas; aumentan la oapaoidad de la operaoi6n y permiten oompensar el flujo de las operaciones posteriores. las ouales generalmente son de menor capacidad. Las tolvas son de diveraos tamaños y tipos. y su instalaci6n debe bacerse para que la recepci6n sea r6pida. En el caso de tolvas de gran capacidad. es conveniente que tengan la posibilidad de ser aireadas.El cosechar las semillas con altos contenidos de humedad (20-30J) as una prAotioa cada vez m6s com6n entre los productores de semillas. al reconeoer que la deterioraci6n de las semillas se inioia en el propio campo. Entre m!s taréIa sea la coseoha. mayores son los riesgos de daño y deterioraci6n de ,la oalidad. pues una vez que la semilla ha alcanzado su madurez , f1si616gioa. al permanecer en el campo est6 siendo \"almaoenada\" en oondiciones ambientales adversa~ Cuando la semilla se oosecha temprano con oontenidos de humedad altos,es neoesario reducir estos niveles eeoando r6pidamente la semill~ El proceso de secado de las semillas consiste en disminuir su oontenido de humedad al 12 6 13J. para poder almaoenarla durante un perlodo de tiempo determinado. evitando los calentamientos (alto metabolismo) y ataques de hongos e inseotos para as! mantener su oalidad.Las ee\\llillas eon organismos vivos que requieren de un ambiente t'avora.lñe que asegure la prolongaci6n de euexistenoia. Como todoe-los'~rgantBmos vivientes. el medio que los rodea y la oomposioi6n de la propia semilla forman un sistema eoo16gioo donde los faotores flaioos. qulmioos y biol6gioos (temperatura. humedad. gases. oomposio1.6n '1 resptraoi6n de la semilla. microorganismos. roedores. insectos. etc •• ) interaot6an entre s1 e influyen directamente en la deteriorac~6n tte las semillas.La semilla llega a su madurez tiaio16gica auando alcanza BU m!ximo peso ssco y es cuando se dice que la semilla alcanza su m!xima calidad fisiol6g1ca. La deterioraci6n se in10ia pr'otroamente desde este momento cuando la semilla va perdiendo humedad lentamente y permaneoe en el campo hasta que se oosecha.El contenido de humedad de la semilla puede ser el mejor indicador del punto de madurez t1sio16gica. la cual ocurre a niveles de humedad Que varian entre el 30J y 50~ dependiendo de cada cultivo. El contenido de humedad va disminuyendo lentamente ccnforme la semilla permanezca en el campo hasta alcanzar su equilibrio ~on el medio ambiente.Desde el punto de vista prActico es dificil cosechar un lote de semillas con alto contenido de humedad. especialmente si hay partes del lote que aOn pueden estar verdes. pues la ooseohadora oausa daño a las semillas en estado leohoso. Sin embargo. una buena supervisi6n minimiza estos daños y ss recomienda Que se coseche lo mAs aerca posible del punto de madurez fisio16gica para obtener la mejor calidad del lote y evitar almaoenar la semilla en el oampo estando expuesta a condioiones ambientales desfavorables.Otras ventajas de oosechar las semillas oon altos oontenidos de humedad son:a-Posibilidad de planear la coseoha b-Posibilidad de oosechar mAs horas/dia 0-Menor pérdida por desgrane natural d-Preparar antioipadamente el suelo para la pr6xima siembraEl prooeso de respiraci6n de la semilla estA influenciado principalmente por su contenido de humedad 1 temperatura.• •El fen6meno•de la resp1rac16n puede autoaoelerarse ya que. al incrementarse~la temperatura, se aumenta la intensidad de la respirao16n. lo cual genera oalor y humedad. aumentando adn mAs la respiraoi6~ Este aumento en la rata de respirac16n~e laS semillas crea un ambiente propiCiO para el ataque de mioroorganismos e inseotos. adem!s del oalentamiento. todo lo oual causa p~rd1das de calidad. A BU vez, los microorganismos e inseotos en actividad tambi~n incrementan la respiraci6n de la semilla. 9 El proceso de respiraci6n se expresa mediante la siguiente reaoci6n qu1mica que involuora la utilizao16n del oxIgeno. con producc16n de bi6xido de carbono, liberac16n de energla en forma de calor y una disminuoi6n en el peso: Hidratos de carbono + H20 ________ ) 002 + H20 + (energla)Al disminuir el oontenido de humedad de las semillas mediante el secado. se acelera la difusi6n del oxigeno y el bi6xido de carbono en la masa individual de semillas. decreciendo el prooeso de la respiraci6n y permitiendo a la semilla permaneoer en reposo.El nivel de respiraci6n de la semilla se reduce sustancialmente si la temperatura est~ por debajo de 4.5 0 0; es decir. que se puede prolongar la viabilidad de las semillas reduciendo la temperatura del ambiente en que se desea conservar la semilla. Si la temperatura de la semilla est& por encima de 50 0 0. la respiraci6n cesa en la mayorla de las semillas y el embri6n muere. Adem&s. a esta temperatura aún oontinúan aotuando otros prooesos más destructivos. como es el desarrollo de hongos y bacterias.La permeabilidad de las membranas de las semillas al oxigeno y a la luz del medio ambiente. influye tambi~n en el nivel de resplraci6n. Durante el almacenamiento. sin embargo. los et'ectos combinados de la humedad y la temperatura actl1an en el proceso de deteriorac16n de las mismas. tal comó se indica en la Figura 3.El secado es un proceso de vaporizaci6n donde el aire que pasa~a trav~sde la masa de las semillas tiene dos :tUnc:tones: (1) es ls\":fuente de calor pAra evaporar el agua del grano y (2) sirve adem~s como•vehioulo para transportar el agua evaporada fUera de la masa de semillas.El aire transt'iere el calor al interior de la semilla donde se produce la evaporaoi6n; a su vez. la semilla transt'lere el agua evaporada a la corriente de aire para depositarla fuera del ambiente de secad~ Existen diversos m6todos para reduoir el oontenido de humedad de las semillas. Unos se adaptan mejor que otros a las neoesidades espeoifioas. ya sean econ6mioas o t6onioas. El coseohar la semilla y seoarla en patios en los que Sé, esparce en~apas delgadas de mAs o menos 10 cm (Figura 4) y se expone al sol y al aire, es una pr'ctiQs muy antigua que puede resultar econ6mica cuando se seoan peQueBos vol6menee de semilla (programa de mejoramiento. etc.). los cuales pueden oubrirse y manejaree oportunamente en caso de presentarse condiciones ambientales adversas. Cuando las semillas se cubren con pl~stiooB de polivinilo. existen riesgos de calentamiento de la semilla por ls acci6n de los rayos solares, lo cual incrementa r~pidamente la rata de resp1raci6~El secado al sol de grandes vo16menes de semilla resulta oostoso por el tiempo y ls cantidad de maniobras requeridas y por las pbrdldas de semilla debidas a estas maniobras. Eate mbtodo tambi~n presenta el riesgo de que el secado sea dependiente de las condiciones ambientales.El secado natural es un poco demorado; una manera de bacerlo m~s r~pidamente es colocando las semillas en bandejas con piso de malla de pl~stico o alambre, pareo idas a zarandas (Figura 4). Las semillas se esparcen en forma \"ondulada\" sobre las zarandas, las cuales sc colocan luego a una altura de 0.5 a 1.0 m del suelo, permitiendo que el aire pase por encima y por debajo de las semillas, eliminando as1 la hU~edad r!pidamente.A diferenoia del mbtodo anterior. se utilizan dep6sitos abiertos al viento para Que bate pase en forma natural a travbs de las semillas y elimine la humedad. El grosor de la masa de semillas no debe ser mayor de 1.20 ID para que logre pasar el aire libremente. Los dep6s1tos generalmente est!n aoondicionados con techos y tela de alambre o rejillas como muros. para proteger la semilla del mal tiempo y los roedores. Su manejo puede meoanizarse. El tiempo de secado es muy prolongado. dependiendo de la intensidad y ve100idad del viento y de la humedad relativa (BR) ambiental (Figura 5).Algunos seeadores experimentales han inoorporado la utilizaoi6n de la energ1a solar en su estructura para lograr bajar la HR del aire. incrementando su oapaoidad de absorber el agua exoedente en las semillas (Figura 6). Este m6todo puede resultar mAs efectivo para ventilar semillas y mantenerlas temporalmente mientras se logran secar con un sistema de aire induoido. Colector solarFigura 6. Secador con colector solar. El tiempo de seoado es más prolongado que si el quemador se operara oontinuamente; sin embargo. es una buena opci6n para pequeftos agrioultores que no requieren al tes capaoidades de seoaSuperiores 'superiores aja,---:dado que el~aire'esM,_ oontaoto oon lLJilsmilla durante oorto tiempo; ain~mbargo.1;Iu alta capacidad de seoado '1 la uniformidad'de\"lIeaadoque:se-obtiene.c-haoen--Q.ue sea un buen sistema. Deben utilizarsect.emperaturaa bajas--al inicio T al final del secado, para evitar Ohoquest6rmloos-que puedan oausar-fisuras o rompimientos. oomunes en semillas-de--arr&Z--y--ma1zóc:-cft t'inal;:-del--aeoamiento se sugiere utilizar aire ambiente-con--ei -fin -de homogen1zar~lLllumedad 4e1 lote de semillas. 3.7 Consideraciones sobre el Dise50 J Selecoi6n de Sistecaa de de Secado La eleooi6n de un sistema de seoado est6 directamente relaoionada oon la necesidad de mantener individualizado un lote de semilla. Los secadores oontinuos se utilizan para seoar grandes vo16menes y es casi imposible identificar el lote de semillas. Sin embargo. los secadores intermitentes pueden ser utilizados para seoar semillas por lotes.Un sistema de aecado debe disefiarse para que oumpla una aerie de necesidades que deben establecerse bajo las siguientes consideraciones: a-El sistema deber § tener una capacidad igual a la oosecha o a la cantidad programada a aeoar.b-Un ventilador oon capaoidad sufioiente para proporcionar un flujo de aire m1nimo de 4m 3 /min/ton (estaoionario).c-Tener una fuente de calor adeouada.d-Contar oon un buen sistema de oontrol de la temperatura y de la HR. tal que. para el sistema estaoionario. se mantenga la temperatura m §Xima del aire a 43 0 C y la HR del 40-70~.-Para el sistema oontinuo e intermitente. la temperatura m §x1ma es sooe y 70 0 C. respeotivameute. El n6mero y tamaño de los seo adores depende de las oapacidades requeridas y del n6mero de variedades que _se van a manejar. UnB-v~z_determinado el tamaño de los secadores. el paso siguiente es determinar (en el oaso de secador estacionario) el tamaRo del ventilador. la fuente de oalor y el tiempo estimado de seoado.Para un sistema de seoado estaoiolíilri~ -exi-sten-b!sioamente dos -t-ipos-_de ventilsdores: aspas del ventilador. A oontinuaoi6n ee presentan las principales caracteristioas de los tres tipos de ventiladores:1-Ventilador de flujo axial -El motor est! dentro del armaz6n del ventilador.-El armaz6n puede ooneotarse f!oiimente a duo tos redondos.-De menor oosto Que los otros.-Trabaja a baja presi6n est!tioa (O-150 mm oolumna de agua).-Haoe mucho ruido -No se requiere ajustar las bandas del motor.-No puede sobrecargarse de semillas.2-Centrifugo con aspas curveadas bacia atrás -Difioil de conectar a duotos redondos.-M~s costoso Que los otros.-No se puede sobrecargar de semillas.-Las bandas se deben ajustar.-Trabaja a altas presiones est!ticas (0-300 mm columna de agua) -No tiene regiones inestables.-Cuenta con una buena armadura para trabajo rudo.-Es el que haoer menor ruido 3-Centrifugo oon aspas ourveadas~aola~lante.-Dificil de ooneotar a duetos redondos.-No puede sobrecargarse con semilla.-Lae bandae tiene Que ajustarse y remplazarse.-No bace mucbo ruido.-Tiene una cperaci6n inestable.-De fdgll construcoi6n.-Trabaja a presiones est!ticae moderadae (0-150 mm de columna de agua).Una vez seleccionado el tipo, la capacidad o el tamaBo~el'ventiledor, 'es importante considerar: a-El tipo de semilla b-'La altura de la oemada de semillae 0-La bumedad de la semilla d-El flujo de aire e-La-presi6n est!ticaLa capacidad de los ventiladores puede--estimarse con ba:se en la1nformac16n proporoionada por los rabrioantes segdn una-oodirioaoi6n est!ndar establec1da para oada ventilador con su motor. y se sumistra para oada modelo en funo16n del volumen del aire en m 3 /min. oontra m1l1metros oolumna de agua de pres16n estátIca.S1 ee conoce la presI6n estática del sIstema de secado para el peso de las semillas que se van a secar y el flujo de aire. ae puede obtener el ~odelo de ventilador:Asumiendo que se tiene un silo cillndrico de 7 m de dilmetro y se desea secar semilla de trigo con una altura de 1.5 m. con un flujo de aire de 7m 3 /minlton. cull es el ventilador mis adecuado?Para determinar la respuesta. se siguen tres pasos: 1-Determinar la presi6n estática 2-Calcular el flujo de aire 3-Seleccionar el ventilador 1. Presi6n esUtica a-Determinar el peso de semilla por unidad de area (tonlm 2 ):Peso volum~trico de trigo = 0.78 tonlm 3 Altura de la capa de trigo = 1.5 m 0.78 ton 1.5 m = 1.17 tonlm2 Peso por unidad de área = -------x b-Determinar el flujo de aire por unidad de área (m 3 aire/minlm 2 ) Flujo de aire = 7 ~/minlton Peso semilla por unIdad de área = 1.17 tonlm 2 Flujo de aire por unidad de lrea = ------x 1.17 La forma de transferir la energ1a cal6riea por los Quemadores en los secadores puede olasifioarse en dos: directa e indirecta. La directa. como su nombre 10 indioa. transfiere el calor directamente a la semilla. es de menor costo y bace Que la energ1a oalor1fica se use mSs efioientemente (Figura 25).La indirecta consiste en calentar la superficie de un metal Que transfiere el calor al paso del aire en direc016n del producto; el producto de la combusti6n es desalojado fuera de la seoador~Hay dos tipos de quemadores: el tipo vaporizador. en el cual el combustible (gas) es calentado y Quemado; y el tipo atomizador. en el cual el oombuatible (liquido) es atQmizado. utilizando una boquilla.Los combustibles m~s com6nmente utilizados son el gas natural. el butano y el propano. y en forma liquida el propano. el diesel y el petr61eo diStano. Los quemadores el~ctricos son muy usados en pequeños secadores para modelos de laboratorio. dado Que la energ1a eléctrica es muy costosa como fuente de calor en el secado oomeroial de semillas.El cStculo de la capacidad de los quemadores puede baoerse oon la siguiente f6rmula: ~ent1grados, para as! poder obtener la capaoidad del quemador en kilovatios (kv).Ejemplo: Se desea estimar la oapaoidad de un quemador para aumentar la temperatura del aire ambiente en 10 o C; el ventilador proporoiona un flujo da aira de 240 m 3 /min. para seoar un lote de semillas en un ailo seoador.Q .. V T .. 4 m3/aag x 10 0 C Q .. J¡OkwPara los seo adores intermitentes, se oonsidera que es posible ,.soar de 20 a 13J de humedad 3-4 cargas de seoador/24 horas. Asi la oapaoid2d de secado depender! dal tamafio (modelo) del seoador.Para los seoadores estaoionarios, aotualmente se han desarrollado modelos _ matem §tioos para estimar el tiempo de duraci6n del secado; algunos se basan en la teorla del secado y otros han sido obtenidos en forma emplrica. La explicaoi6n de todos ellos llevarla a hacer un libro; sin embargo, la siguiente f6rmula emplrioa pOdrIa ser aplioada en una forma pr §otioa para estimar el tiempo de seoado de una oamada de semillas:TS ::FAx DT donde:TS .. Tiempo de secado en horas AH .. Agua removida en lt/m 3 de semilla FA lO Flujo del aire en m 3 /minlur'i de aemilla DT .. Diferenoia de temperatura en Oc (temperatura del aire al entrar menos la temperatura al salir de la semilla.Ejemplo: Cu §l serIa el tiempo estimado de secado de un lote de semillas de malz de 20 toneladas con 18J de humedad que se desea seoal\" al 12J?El silo-seoadol\" tiene un ventilador que proporoiona un flujo de aire de 11 m 3 /minlton de semilla y la temperatul\"a del aire de secado es de 43 0 C; se estima que el aire se enfrIa a 35°C al pasar por la masa de semillas.Soluoi6n: El peso volum6trioo del msiz se estima en 0.7 tonlm 3 : FA = ----------x -------= 7.7 m3/minl~ de semilla ton de sem. m31 ton (100 -18J)-----------------= Peso final de una tonelada de semilla = 0.932 ton.(100 -12J) AH = 1 ton -0.932 = 0.068 ton de agua = 68 litros de agua AH = 68 litros de agua/ton de semilla x 0.7 tonlm 3 de semilla Para estimar los oostos de la operaci6n del secado. se deben tener en cuenta los mismos elementos que determinan los costos de cualquier producto: materia prima. materiales. mano de obra y dem!s gastos de operaci6n. Sin embargo. el secado involucra mantener la calidad de la semilla y varias otras situaciones que deben tenerse en ouenta y que afectan significativamente los costos de la operaci6n.Durante el secado las semillas pierden peso y volumen y en el almacenamiento puede ganar o perder peso dependiendo del tipo de semilla y de las oondioiones ambientales que la rodean. En el mercado de semillas estos aspectos son muy importantes tanto para el comprador como para el vendedor.La p6rdida de peso se descuenta o ajusta a un est'ndar de recibo establecido por las empresas. Estoa est&ndares generalmente estln determinados para oada tipo de semilla en aproximadamente 131 de humedad.La f6rmula para oaloular la p~rdida de peso en las semillas estA data por: .(1) Peso inioial (100 -, humedad iniolal) = Peso final (100 -J humedad final) • Ejemplo: Un agrioultor ooseoha 10 toneladas de semilla de aorgo al 18J de humedad y el est&ndar de reoibo de la empresa es del 13J. CuAl saria la p6rdida de peso Que le desoontar1an al agrioultor?Soluci6n: Aplicando la f6rmula (1) tenemos:10 ton (100-18) = peso final (100-13) 820 = peso final 87 9.425 ton =.peso final P6rdida de peso = 10.000 -9.425 = 0.575 tonEn lugares con clima c&l1do y bt'lmedo, las semillas tardan más en secarse debido a la alta humedad io1oialy la oapaoidad del aire de secado para absorber este exoedente de bumedad es menor Que en olimas seoos y frescos.Los oostos se elevan en la supervisi6n de la operaci6n. energia e160trica y, en menor grado, en el gasto de combustible. La.inversi5n inioial en estas reg~ones oritioas se eleva sustancialmente por la adQuisIoi5n necesaria.~e m~s dep6sitos y. en algunos oesos. de un sistema de ventilaci5n. para lograr obtener la oapaoidad neoesaria para recibir las semillas oportunamente. Para ser rentables, los seoadores intermitentes requieren de un sistema de tolvas oompensadoras (para semilla hGmeda y seoa) para manejar grandes voHimenes de semilla a un oosto menor.3.9 Factores que Af'eotan la Calidad de las Semillas en el Sooado Si las semillas se oosechan con altos oontenidos de humedad. deben secarse oportunamente; si no es posible, al menos deben ventilarse inmediatamente en algdn almao~n temporal oon sistema de aireaoi6~Los efectos de la alta humedad reperouten negativamente en la calidad de las semillas, como 1a se ha explioado ampliamente; por ello. si la humedad es superior al 18J, se recomienda que las semillas no permanezoan en estos almacenes por m!s de 24 horas sin ser secadas.A estos niveles de humedad ea oonveniente iniciar el secado con aire natural y elevar la temperatura del aire paulatinamente a medida que va disminuyendo la humedad de las semillas. Si el secado se realiza muy r!pido. se corre el riesgo de tisurar las semillas debido al gran gradiente de humedad en la semilla; por otra parte. si se realiza muy lento. las semillas pueden estar muy h6medas y desarrollar un ambiente propicio para los microorganismos y calentamientos en la masa de semillas.El muestreo durante el secado estacionario debe haoerse por lo menos dos veces al dia, y en el intermitente oada 30 minutos. Al final del secado se debe muestrear muy bien el lote en busoa de focos h6medos causados por la mala diatribuoi6n del aire. En el oaso del estacionario. es neoesario tomar muestras de las diferentes camadas de semillas. ya que la inferior por lo general estarA mAs seca; de esta manera, cuando la camada superior est' seca. las otras también lo esterAn.En oaso de que en el lote de semillas que se esté secando se detecte un desoenso en la germinaoi6n. ésto puede deberse a: a-A la demora del aecado b-El flujo. de aire ea insuficiente o desuniforme c-La presi6n estétioa es excesiva d-La temperatura de secado e-Demasiada altura de la camada de semilla t-La humedad relativa es muy alta (mayor de 70J) o baja (menor del ~O~)La pr&ot10a de usar peque50s velamenes de aire para oambiar la temperatura' de las semillas durante su almaoenamiento temporal a granel se oonooe como aireaci6n. La similitud del equipe que se utiliza para secar hace que se oontundan estas operaoiones; por 6ste es importante que los operarios entiendan bien las diferencias que existen entre éstos y asl evitar lo que es muy frecuente: tratar de seoar ouando en realidad se esté ventilando la semilla o vioeversa.Para ventilar laa semillas se requieren flujos de aire de 0.01 a 0.5 m 3 /minlton; es decir, flujos muy pequeftos comparados con los utilizados en el seoado (4-17 m 3 /minlton). los mismos que se logran al seoar a bajas alturas de semilla; para ventilar. los s110s pued~n estar completamente llenos.Varios autores de articulas sobre aireaoi6n coinciden en enumerar las ventajas que ofreoe contar oon una adecuada aireaci6n en los silos para almacenar semillas a granel. especialmente en regiones 0~11das y h6medas.1_ Prevenir la migraci6n de la humedad en la masa de las semillas manteniéndolas a una temperatura uniforme.2-Mantener la semilla fresca y prevenir calentamientos y ataques de hongos e insectos.3-Facilitar la aplicaci6n de fumigantes.4-Almacenar la semilla h6meda por periodos cortos en espera de ser secada inmediatamente.El fen6nemo de la migraci6n de la humedad es tal vez el aspecto m §s importante que se debe analizar en los almacenes a granel. Se presenta principalmente cuando la temperatura ambiente es baja en comparaci6n con la temperatura de la semilla y el aire intersticial. La semilla. por su baja conductividad t6rmica se enfrla m~s ~entamente que el aire. especialmente cerca de las paredes del silo. Este aire fria tiende a descender cuando , , una corriente de convecci6n en forma de columna en el centro del silo. Es deoir que, e~ aire trio en la periferia del silo baja y el aire caliente en el centro de la masa de semillas sube. Cuando este aire caliente entra en contacto con las semillas frias de la parte superior del silo. puede ocurrir condensaai6n si la temperatura de las semillas es inferior a la temperatura del punto de roclo del aire ascendente. Este humedecimiento de las semillas crea condiciones propicias para su deterioro.Se observa el mismo efecto de migraoi6n de humedad cuando la temperatura ambiente es c §lida comparada con la temperatura de la semilla; en este caso se produoe migraci6n de humedad hacia la parte inferior del silo. La aireaci6n debe realizarse en semillas trescas y secas con una HR baja . para evitar que la masa de semillae gane o pierda humedad. Si se presentan diferencias de temperatura superiores a 10°C entre el medio ambiente y la semilla. los ventiladores deben prenderse y funcionar oontinuamente ~ntre 8 y 18 boras. con el fin de uniformiz8r las temperaturas de los granos.Cuando la semilla tiene la temperatura más baja (regiones cálidas) es recomendable que la aireaci6n se baga por la noche. pues durante el dia pueden calentarse mucho las semillae. causando un aumento indeseable en su metabolismo. Pero si bay diferencia superior a 30C entre las semillas. los ventiladores deben funcional\" a cualquier hora. sin importar las condiciones del clima.Para mantener adecuadamente las semillas con un buen sistema de ventilaci6n. es necesario contar con un ventilador(es) y un sistema de duetos con perforaciones o de pisos falsos con perforaciones. para que fluya el aire ¡ibremente a trav~s de la masa de semillas. Se reconocen dos tipos de slmsc~n a granel: los verticales. como son los s110s met~licos. los de concreto y celdas de mamposter1a; y los almacenes planos. que son propiamente las bodegas o edifioios que cuentan oon su equipo de . ventilaci6n. inoluyendo tambi~n en este tipo. las bodegas port!tiles ~ien acondioionadas.El sistema de walberoas\" o almao~n a la intemperie que se practica en algunos paises, a6n contando con ventiladores y duetos. se consideran como respuesta solamente a limitaciones presupuestales que deben irse eliminando en lo posible. sobre todo en el manejo de semillas valiosas que quedan muy expuestas a p~rd1das de calidad.Los flujos de aire para la aeraoi6n de las semillas dependen ~el• tipo de < I almac~n y de la regi6n¡ se reoomiendan flujos m!s altos para almacenes vertioales y regiones oalientes donde es neoesario mantener las semillas !'resoas y seo ss.Otro aspecto muy importante de la aireaci6n y que depende de las condiciones eco16gicas de oada regi6n, es la direooi6n que debe tener el flujo de aire.En t~rminos de energia. es relativamente lo mismo mover el a11'e de abajo haoia arriba que extraerlo (es decir, de arriba haoia abajo). pero se tiene que oonsiderar lo siguiente: el flujo de aire en los almacenes oon piso o ductos perforados se mueve mls uniformemente de abajo hacia arriba. lo oual es muy reoomendable para regiones en las que no cambia mucho la temperatura en el dia y la noche; en oambio es reoomendable extraer el aire. es deoir de arriba haoia abajo, ouando, en algunas regiones, las temperaturas durante lae noohes son bajas y pOdr1an ocurrir oondensaoiones al ohooar el aire oaliente que atraves6 la maea de semillas en el teoho del almao6n. l¡ • O LIHPDlZA. SELECCIOH y CLA8IFICACIOI l¡. 1 Baaes de la Separaoi/ln de los Materiales Indeseables Cuando se ooseohan las semillas. usualmente oontienen un einnfimero de materiales indeseables. Esto haoe que lae semillas sean transportadas a la planta oon pedazos de tallo. vainas. basuras. paja. semillas inmaduras. eto.Para pOder ofreoer semillas librea de estos materiales indeseables. es neoesario tener en ouenta sus oaraoterlsticas flsicas para realizar la separaoi6n.La separaoitln difíoilmente ser' total, ,y entre m!s contaminantes tenga el lote de semillas. m!s diflcil ser! separarlos y lograr las toleranoias que son permisibles para la vent~ Cada operador de UBS deber' familiarizarse oon los principales oontaminantes posibles que hay en los cultivos de la regi6n. para saber si pueden ser separados o no. y estableoer las oondiciones de la reoepción seg6n el tipo de maquinaria y equipo con que se cuenta para realizar una separaoión oompleta. con una p6rdida mlnima de semilla durante el beneficio de la mism~ Las semillas difieren en su longitud. anchura y eapesor CtamaSo). peso espeoifico. forma. textura superfioial. conduotividad e16atrioa.. , modifioaciones en las propiedades flsioas y oolor. Estas oaracterlsitioas f1sioas haoen posible separar los materiales indeseables de un lote de semillas. para mejorar su calidad.Para baoer estas separaoiones. se requiere de máqUinas espeoializadas que haoen una o mAs seperaoiones. baa~ndose en las oaraoterlsticas tlsioas de los materiales. espesor pueden ocurrir entre lss mismas semillas o entre ~stas y los materiales indeseables.Las semillas pueden diferir en SU anchura y tener el mismo espesor. como es el oaso de las .semillas de maíz planas, y que se separan utilizando oribas (zarandas) con perforaciones redondas.Por otra parte, las semillas pueden ser diferentes en su espesor y tener la misma anchura. como en el caso de las semillas da ma1z planas y redondas que se separan utilizando zarandas con perforaciones oblongas. Otro ejemplo podria ser el de separar soya de mitades de soya. Los equipos que utilizan zarandas son: 1) la m!quina de aire y zarandas (HAZ) y 2) el separador de precisi6n con zarandas oi11ndricas.La diferencia en la longitud de las semillas no permite hacer separaciones con zarandas. y tiene que realizarse con separadoras de longitud. Un caso t1pico es la separaci6n de trigo y avena silvestre.Los separadores de longitud son de dos tipos: el separador de discos y el separador de oilindros.Un factor de diferencia muy común en un lote de semillas es la forma. En un lote puede haber semillas redondas junto oon semillas de forma diferente. como por ejemplo. un lado plano o de forma piramidal. y ~stas pueden separarse usando una selcoionadora oonocida oomo separador de espiral. Separar soya de correhuela (Ipomea tUrbinatal o separar soya de caup1 (Vigna uWm1clllata). son ejemplos del uso de bte.El peso espec1~ico de las semillas puede ayudar a di~erenciar entre las semillas maduras e inmaduras. y los terrones o piedras que tenga las mismas dimensiones que las semillas. Esta separaci6n se realiza prinoipalmente en la mesa de gravedad.En ciertos lotes de semillas puede haber mezo las de cemillas con cubiertas de diferente textura, lo cual puede aprovecharse para separarlas. como en el oaao de la soparaci6n de semillas oon testa lisa {Tc1folium 100arnatuml de algunae semillas óe hierbas oomunes oon oubierta rugosa (Cuscut~ spp. y Bumex spp.). Estaa separaciones se pueden realizar en los separadores de rodillo o tambi6n en los de banda; amboa utilizan una cubierta de pafio para Que las aemillas rugoaas ee adhieran a ella y las lisas se deslioe~ ~.1.7 Color Las semillas del mismo tamafio pueden separarse por la diferenoia en el oolor de su oubierta. oomo es el oaso de frijoles manohados que deben separarse de frijoles sin mancba. o tambi6n del manI que ha perdido SU oubierta y que debe separarse por ser susceptible a perder su germinaci6~ Estas separaoiones pueden realizarse mediante la sorteadora eleotr6nica. la cual tiene una celda fotoeléotrioa oalibrada oon un patr6n determinado para un oolor especIfioo.Las propiedades tlsicas de un lote de semillas pueden modificarse si se-le agrega una pequefia oantidad de agua o aceite a la testa de las semillas. Al humedecerlas. algunas cubiertas se volver!n muy pegajosas y al aplicarles un material como el aaerrin. éste se adherir! f!cilmente a la oubierta pegajosa. aumentando el tamafio. También se le puede aplicar limadura de hierro al lote. el cual luego se pasa sobre un imán; la semilla con limadura seré atraida y quedar! adherida al im&n y la semilla buena se deslizarA hacia otra parte. La separadora magnétioa es la que realiza esta operaoi6n y aunque su aplicac16n no ha sido muy extensa. ha dado buenos resultados en la separaoi6n de trebol y o6sout~ 4.1.9 Conductividad elfiótrlca Este método para separar semillas de dimensiones iguales no ha sido muy desarrollado y casi no ha tenido aplioaoi6~ Es difioil enoontrar una diferencia en la conduotividad eléctrioa de las semillas; son pooas las espeoies que pOdr1an separarse. y estas aplicaciones han sido en el &rea de investigaoi6~ Sin embargo, existe la separadora eleotrost!tioa que utiliza este principio para separar las semillas. Después de que el operador de la UBS oonozca las diferencias entre las semillas y el material indeseable. estar! en capacidad de determinar la m~qulna Que pueda haoer la separaoi6n mis efioiente.A continuaci6n se describir'n las principales partes de la operaci6n de la maquinaria m's utilizada en las fases de la prelimpieza. operaciones especiales, limpieza y 01aslf10aoi6n de las semillas.11.2 Equipo para P.rel1z¡pieza '7 Operaoionea Especiales Después de que las semillas son recibidas en la UBS. la operaci6n m'a eficiente que se puede hacer es la de prelimpiar los lotea de semillas para disminuir o eliminar la gran cantidad de basura que contienen. La prelimpiezs es realmente una limpieza burda o desbrozado Que requiere hacerse a gran capacidad para no interrumpir la recepci6n. Generalmente se trata de eliminar los materiales m §s grandes y m §s pequeños Que las semillas deseadas. y de ser posible eliminar el polvo. Esto bar' mejorar la efioiencia del secado, al disminuir el material b6medo indeseable. La masa de semilla fluir~ m §S libremente en las m §quinas y en el equipo, y se lograr' aumentar la oapaoidad de la limpieza.Los prelimpiadores más oomunes son el desborozador. el aspirador, la MAZ y las zarandas ci11ndrioas (Figura 28).En esta categoria se enouentran b §Sicamente las MAZ con una a dos zarandas. Algunos modelos tienen un ventilador y son muy parecidas a la MAZ que se utiliza en la limpie~a, la cual hace una operaci6n de eeparaci6n más refinada basada en el mismo principiO.El principio de separaci6n de materiales no deseados por medio de zarandas as uno de los más importantes en el benefioio de las semillas. El flujo de semillas es regulado por las tolvas de alimentaci6n de la máquina que las baoe llegar a le primera zaranda oonocida como ndesbroll:ado.re\". Esta permite que pase la semilla y loS materiales pequeftos. evitando que los materiales mb grandes (tallos. vainas y bojarasoa) atraviesen la oribe y permitiendo que, oon el movimiento de la prelimpiadora, se transporten hacia una salida espeoifica para su reoolecci6n (Figura 29).La semilla pasa a la segunda lI:aranda \"clasifioadora\", la oual tiene perforaciones mb pequeñas que el tamaño de la semilla. Esto permite que la semilla se mueva por enoima de la zaranda y sea conduoida a la salida de descarga de la prelimpiadora, mientras los materiales ab pequeftoa atraviesan la ~aranda clasificadora y son oonducidos e una salida para ser retirados.Semilla limpia 69 Alimentación Figura 28. Prelimpiadora de zaranda ciUndrlca horizontal. Las prelimp1adoras con ventilador levantan materiales pequefios de poco peso Y. sobre todo. eliminan el polvo.Las pre11mp1adoras conocidas como des brozador. son de construcci6n compscta para facilitar su instalaci6n. Las partes m~s importantes se ilustran en la Figura 30 y son: el \"carrete\" o cilindro. que al girar elimina los materiales m~s grandes que la semilla. y el ventilador que elimina materiales livianos y el polvo.Una de sus caracter1stlcas. es su gran capacidad de operaci6n que va desde 5 hasta 50 ton/hora. Las semillas fluyen en gran volumen por la tolva de alimentaci6n. la cual las hace pasar sobre el carrete (construido en malla de alambre) que levanta los materiales m~ grandes que la semilla y permite pasar la semilla a trav6s de ella. Posteriormente. un flujo de aire atraviesa la masa de las semillas para levantar polvo y materiales ligeros. eliminando gran parte de la basura en grandes volfimenes. sin m~ ajustes que la alimentaci6n y el flujo del aire. lo cual se realiza f&cilmante con la cal1braci6n de llis\"compuertas respectivas.La instaci6n de las prelimpiadoras puede hacerse de la siguiente manera: si es necesario secar las semillas. la prelimpiadora debe instalarse en el ~ea de recpci6n; 6sto evita maniobras y permite. prinoipalmente. almacenar y secar las semillas sin gran parte de los materiales indeseables.Una prelimp~adora puede instalarse antes de una HAZ en las situaciones en que las seml1las'no requieren seoamiento después de ser reoibidas. y tambi6n en el O,aso de las semillas que requieren de una operao16n especial. como el desgranado. deslintado. eto.En algunas especies es necesario realizar un prebenefioio para poder haoer el benefioio propiamente dioho. oomo en el oaso del maiz que se reoibe en mazoroas; o el algod6n que requiere ser deslintado para obtener la semilla; o el manir algunas leguminosas y zaoates que deben desoascararse; o la avena. oebada. ,algunas hortalizas y zacates. entre otras. que requieren Las máquinas desgranadoras ae utilizan para desprender las semillas de malz de la mazorca. operación que se puede realizar en la misma cosechadora; sin embargo. cuando se desea evitar el daño mecAnioo o no se cuenta con el equipo necesario. es muy recomendable en la prOducción de semilas de malz cosechar en mazorca y dejar que la humedad del grano alcance 14-15% para luego desgranar las mazorcas con un mínimo de daño.En la industria semillera se trabaja oon dos tipos de desgranadoras, que se distinguen prinCipalmente por la forma que tiene el molinete interior que desgrana: uno es de forma semicón1ca con dentadura de hierro colado y el otro es ci11ndrico en forma recta con espigas de acero (Figura 31). La operaci6n de desgrane consiste en hacer pasar la mazorca por el molinete cilíndrico; los dientes aprisionan la mazorca contra la pared de la carcasa de la desgranadora y la semilla se desprende por acción de la fricoi6n desarrollada en el interior. La semilla y la mazorca se separan despu~s utilizando zarandas o. en algunos modelos. un flujo de aire producido por un ventilador integrado a la desgranadora levanta la mazorca.La oapacidad de una desgranadora para grano oomercial varla de aproximadamente 20 a 110 ton/hora. pero para semillas estas mAquinas deben ser calibradas para trabajar a menos revoluoiones con el fIn de evitar daños (reduciendo su velocidad a 1100 rpm).'Hay especies que al oosecharlas no quedan bien trilladas, como es el caso de ~aoates y semillas pequeñas. o que presentan aristas. barbas ° glumas que evitan una buena separaoi5~' Por consiguiente. es necesario oompletar la trilla de algunas semillas que atln permanecen en las vainas o remover las protuberancias mencionadas. Para ello se utiliza la desbarbadora. Las partes prinCipales de la desbarbadora son los brazos martilladores rotativos y los estacionarios (Figura 32)., La operao16n consiste en alimentar la m~quina por la tolva alimentadora; al girar los brazos. que tienen una inclinaoi5n de 15°. transportan las semillas a trav~s de la mAquina rompiendo las protuberanoias. removiendo las cubiertas y trillando las espigas. segtln sea el caso.Figura 31. Desgranadora de mafz.A: Martillos rotatorios B: Martillos fijos Figura 32. Diagrama de una máquina desbarbad ora.Una pr6ctica muy utilizada en aemillas es recubrir los brazos martilladores con una cubierta de hule para evitar dafioa. Eata m6quina opera a grandea capacidades y requiere de una tolva alimentadora para que trabaje eficientemente. Algunas variedades de cebada. avena y pastos (ej.. buffel) se desbarban para mejorar au fluidez y uniformidad durante el beneficio.El descascarado es una operac16n que se realiza para remover la clscara (testa) que rodea la semilla y asl mejorar sus caracter1sticas de siembra; el escarificado consiste en raspar la testa de la semilla para permitir ls absorci6n de agua y acelerar su germinaci6~ Los siguientes son algunos ejemplos de semillas que pueden requerir descascarado o escarificaoi6n o ambos: a-Descasoarado: zacates bermuda, búfalo y babla; leapedeza coreana, kote estriada.b-Escarificado: alfalta y trébol.c-Ambos: trébol hubam. lespedeza serieeo. eapica.Estas operaciones pueden realizarse por separado o en forma combinada; eomunmente se fabrican m6quinas que puedan hacer ambas operaciones (Figura 33). Estas m6quinas no son de gran capacidad y generalmente se utilizan para semillas pequefias y para investigaciones en el laboratorio. La HAZ ea muy especial en la industria semillera y se le reoonoce como la m~quina b~sioa en la operación de limpieza. porque es indispensable en cualquier proceao de beneficio de semillas. Toda empresa semillera inicia sus actividades al menos con una MAZ. y poco después va oompletando el equipo.La HAZ aepara semillas y materiales indeseables por diferencias en su tamaño y peso. utilizando zarandas y ventiladores. respectivamente; es decir. el objetivo es eliminar todos los materiales m~s grandes. m~ pequeños y m!s ligeros que la semilla.Si después de esta operación se obtiene una semilla uniforme y sin contaminantes. el proceso pr~ct1camente termina con el envasado del producto. pero si no se logran buenos resultados. como cuando los contaminantes son del mismo tamaño que la semilla. se requiere hacer una separación m~s refinada. utilizando equipos que basen su separación en otras característioas fisicas de los materiales.Existe en el mercado un sinn6mero de HAZ que varian en tamaño y ndmero de zarandas y ventiladores. oaracterísticas que. segán el modelo. determinan su oapacidad de operaoión (rango de 0.5 a 10 ton de semilla/hora} (Figuras 34 y 35}.La selecoión de la HAZ deber~ hacerse en funoión de la oapacidad de trabajo que se requiere y del tipo de semillas y las condiciones en que éstas se reciben; si las semillas vienen oon demasiada basura y contaminantes. los modelos que permiten que las semillas hagan un reoorrido largo sobre sus zarandas har6n un menor trabajo; en oambio. ouando el lote de semillas fue previamente prelimpiado. los modelos de recorrido oorto serln los m~s adecuados.Siendo la m!quina m!s importante en el benefioio de las semillas. es neoesario que los operadores se familiarioen oon el funoionamiento de las partes prinoipales y. sobre todo. oon los ajustes que se deben haoer para que trabaje efioientemente. Ests parte es un dep6sito en forMa de caja, looalizada en la parte superior de la mSquina (Figura 36). que perMite que las seMillas fluyan uniforMeMenté sobre la primera zaranda.El flujo de semillas puede ser regulado oon la oompuerta de la tolva con una manija o contrapeso, que funciona al accionarla ciroularmente y que abre o cierra la compuerta seg!m se requiera.Algunos modelos también tienen un rodillo alimentador en el interior de la tolva que ayuda a distribuir uniformemente las semillas a todo lo ancho de la primera zaranda.El prop6sito de los véntiladores en las MAZ es pasar una corriente de aire a través de la masa de ias semillas para levantar los Materiales m~s livianos. El aire succionado o insulflado levanta polvo. paja, pedazos de vainas, hojarasca y algunas semillas vanas. dañadas ° quebradas.La presi6n del,aire se regula por la rotaci6n del ventilador y poroompuertas localizadas en el interior de los duetos de aire. siendo un indioador del punto de ajuste de la corriente del aire, el que se levante al menos una semilla buena.La MAZ tienen uno. dos y hasta tres ventiladores. dependiendo del modelo seleccionado; los de alta capacidad generalmente tienen tres ventiladores.En el caso de'10s modelos COD dos Y tres ventiladores, la oorriente de aire BIiI haa'Q, PllB4J' por la parte inferior de la tolva alimentadora y se le conoce oQmo •~re 'superior lt y otra de las corrientes pasa par debajo de la zaranda N.1IIi.l y .se le oonoae como Itaire inferior\" {Figura 31}.La MAZ de un solo ventilador generalMente se usa en la prelimpieza.La seeoi6n vibradora en la que se colocan las zarandas se llaman zapatas;estas tienen una ligera inolinaci6n hacia adelante de aproximadamente 10°. que permite a las semillas ir fluyendo bajo la acci6n de la vibraoi6n a trav6s de las zarandaa.Tolva con rodíllo y tornillo sin fín Tolva con rodillo y tornillo con tenedor Compuerta con sistema de contrapesoCompuerta con sistama de tornillo Figura 36. Tipos de tolvas de alimentación. Figura 37. Detalles de la máquina de aire y zarandas.En algunos modelos esta 1no11na016n puede ajustarse segGn el oult1vo de que se trate y requerir menor o mayor 1no11na016n depend1endo de la fluidez de las semillas; la zaranda infer10r usualmente neoesita estar m&e plana para que la sem1lla no fluya muy rApidamente y pueda lograrse una mejor eeparaoi6n de los materiales m&s peQuei'ioe.El exc6ntrioo ea un oojinete fuera de oentro que proporoiona la ao016n vibradora a laa zapatas. Esta ao016n determina la oalidad de la fabrioaoi6n de las MAZ; al la aoci6n de vaiv6n no estA bien balanceada. la vida 6til de la limpiadora serA muy corta.En algunas HAZ la vibraoi6n puede aer regulada para que laa semillas salten rApidamente en las zarandas y rueden sobre sus lados en las aberturas de la zaranda y se aoomoden mejor.La vibraoi6n debe de aer sufioiente para que las semillas aloanoen a viajar sobre toda la zaranda. Algunas HAZ utilizan cepillos (Figura 31) oon oerdas aint6tioas que se mueven a todo lo anoho por la parte inferior de las zarandas. para desatOrar materiales que se atoran en las aberturas. operaci6n que. de no realizarse, haria inútil e ineficientes la limpieza. Los cepillos han probado ser efioientes en realizar esta operaci6n, pero tiene desventajas:exigen mayor supervisi6n por parte de los operadores de la MAZ. quienes deben vigilar el desgaste de las oerdas. remplazar los cepillos cuando sea neoesario y no olvidar subir los cepillos ouando se cambia de zaranda. puesto que la limpieza en ese caso seria inGtil.En otras MAZ esta operaci6n se realiza con un sistema diferente alas cepillos; se utilizan pelotas de gaucho o hule en la parte inferiorntrico en la despedradora produce un movimiento oscilatorio de vaivén. La plataforma es de forma rectangular con bordes de lAmina para retener la semilla. El extremo. inferior est! abierto para descargar gran parte de las semillas; el extremo opuesto. ubicado mla alto. tiene una pequeña descarga para los materiales pesadOS. La semilla es alimentada por la tolva que est~ en el centro de la plataforma; la plataforma oscila hacia adelante y hacia atr~s. y al pasar el aire por la masa de semillas las estratifica. Las oamadas se van separando por el movimiento de vaiv~n; los materiales pesados no logran flobar y se desplazan haoia el extremo m~s alto; la semilla no permanece en contacto con la plataforma y por su gravedad se desplaza haaia el extremo inferior.Son auatro los ajustes que deben hacerse: a-Alimentaci6n. Debe ser uniforme y no debe cubrir m~ de un tercio del ~rea de la plataforma para lograr una buena estratificac16n.b-Flujo de aire. Superficie para estratificar los materiales en forma vertical seg6n su peso especifiCO.c-Declive de la plataforma. Obtener una mayor o menor pendiente para que el.~aterial pesado se desplace libremente hacia arriba y el ligero hacia abajo.d-Velocidad de oscilaoi6n. La velocidad de oscilaci6n de la plataforma podr! regularae una vez Que el declive y la corriente de aire hayan sido ajustados.. La despedrad ora usualmente se instala junto a la mesa de gravedad para Que . ,. la traooi6n de semillas m!s pesadas que aGn va mezclada con terrones y piedras. sea descargada en la despedrad ora. Otra forma de uso es como prelimpiadora en oultivos (frijol) que se reciben oon un alto contenido de terroneS. para posteriormente pasar a la MAZ.4.7 :Jeparadoraa por 'fez:tura Superfioial.Son muy usados en la separaci6n de Semillas de leguminosas forrajeras.Existen varias m!quinas basadas en el principio de separaoi6n por textura superfioial.Este equipo no tiene una alta oapacidad. pero realIza un buen trabajo deEn oaso de requerir mayor capacidad. hay modelos oon varios pares de rodillos en serie. Estos equipos se aCOmodan f §cllmente e'n el proceso y 80n muy oompactos.Las partes m&s importantes de este separador son los rodillos recubiertos de tercIopelo. instalados en pares. Están en contaoto a lo largo de toda su longitud pero giran en dIreociones opuestas. Los rodillos tienen una oubierta de pafio o terciopelo para que las eemillas se mantengan sobre ellos; el número de rodilloe, su longitud y di'metro dependen del tipo y modelo que se trate. Generalmente las m'quinss tienen 5 6 10 pares de rodillos.El lote de semillas fluye Bobre los rodillos al ser alimentados por la tolva en un extremo de la máquina. Al girar los rodillos, las semillas o materiales rugosos se adhieren al paño y \"on descargados o lanzadoa . . . •.haola los extremos (Figura 50) y reooleotados en tolvas oon cuatro grados de Beparaoi6n que van oourriendo a medida que las semillas se van desplazando a lo largo de los rodillos; los grados mezclados pueden ser separados otra vez para recuperar la semilla buen~Son tres los ajustes m~s importantes: a-Velocidad de los rodillos. Los rodillos pueden trabajar á una velocidad variable que va desde O hasta 350 rpm. Esto permite que se regule la velocidad para que no se lanoe semilla lisa hacia los extremos. El punto de ajuste ser4 aquel en el que se adhiera y lanoe un mln1mo de semilla lisa en las tolvas 2 y 3.b-Al1mentac16~ Se ajusta la oompuerta individual de alimentaci6n hasta obtener un flujo uniforme a través de todos los rodillos y que la semilla tenga oportunidad de estar en contaoto con el terciopelo. 0-Cubierta. La oubierta met~lioa que cubre los rodillos debe tener un ajuste que permita levantar o bajar la oubierta dependiendo del tama~o de la aemilla y el grado de aeparaoi6n que se desea. Si el paso estA mUJ separado laa semillas rugosas no gOlpearln la oubierta y oaerAn sobre las lisas repetidamente; al ajustarse oorreotamente el paso. las rugosas abocan y oaen sobre el teroiopelo que las lanzarA bacia la orilla para Quedar separadas.Este equipo compacto, relativamente fAoil de operar. es muy utilizado para separar:-Leguminosa forrajera de Cúscuta y Rumex -Tr6bol alsike de Timothy -Tr6boles de mostaza y zanahoria silvestre -Lespedeza desoascarada de lespedeza oon cAscaraComo se mencion6 antes. las semillas de testa lisa son usualmente las semillas que se desean separar de las semillas o materiales que tienen testa rugosa. Sin embargo, algunas veoos tamb16n se pueden modificar las oaracterísticas de un material indeseable para que su superficie se haga rugosa. agregando alg6n material oomo limadura de hierro; 6sta se adbiere a su testa previamente tratada oon agua y aceite para que sea separada del lote de semillas buenas. Los materiales recubiertos con la limadura de hierro pueden pasarse sobre un campo magn §tico y ser atraídos para su separac16n. El separador oon tambor magn~tico es el mAs oomfin para haoer este tipo de separaoi6n (Figura 51).Las partes m~s importantes son: a-Mezoladora. Es una oámara especial donde se lleva a oabo la mezcla de limadura de hierro. agua o aceite (o ambos) y semilla. Algunos modelos tienen un sistema autom~tioo que regula la dosifioaoi6n de la mezcla.b-Tambor giratorio. Es un tambor metllioo que puede ser un eleotromagneto cuyo magnetismo es reguladO dependiendo de la clase de semilla que se est6 separando. En la o!mara mezoladora. la limadura de hierro se adhiere f!oilmente a la , superficie de las semilllas que han perdido BU oubierta. a las mitades de semillas. a los materiales de forma irregular y a semillas rugosas. debido a lo pegajoso de diohas superfioies por la aooi6n del agua. Al pasar todos estos materiales sobre uno o varios tambores giratorios magnetizados. ss adhieren debido a la atraooi6n que ejerce el campo magnétioo del tambor sobre las limaduras de hierro; las semillas buenas o lisas no son atra1das y se lanzan hacia adelante para ser desoargadas a una tolva. Las semillas rugosas se despegan del tambor por la aoci6n de un cepillo y se depositan en otra tolva.Es muy importante que se dosifiquen muy bien las oantidades de limadura. semillas. agua o aceite. y todo depende de la experiencia que se tenga con el oultivo. La insuficienoia de la mezola no produoir! una separaci6n completa; el exoeso del liquido desprender! f!oilmente la limadura de las semillas. La velooidad de alimentaoi6n y la intensidad de la imantaoi6n deber! ajustarse de tal manera que el tambor quede oubierto con una capa uniforme de semilla y los materiales rogusos se adhieran al tambor.Los principales usos que se le han dado a este separador son muy especificas: tr'bol y edscuta¡ semillas de hierbas oontaminantes en los cultivos de alfalfa. tr6bol y veza.1¡. 7 • 3 Separadora de banda inclinada Este separador también realiza separaoiones con base en la textura superfioial de las semillas y. en algunos casos. la forma de las mismas (Figura 52).La parte m!s importante es el transportador. que tiene una posioi6n inolinada asi oomo una banda de paño que se mueve en d1recoi6n pendiente arriba donde realiza la aeparaci6n. Al alimentar la banda inclinada, las semillas rugosas se adhieren al pafio y se tranaportan haoia ls pendiente més alta; las semillas oon oubierta lisa o de forma redonda ruedan haoia abajo a mayor velooidad que el avance de la banda y se depositan en alguna tolv~Los ajustes m~s importantes son la inolinaoi6n y la velooidad de la banda. lo oual debe haoerse de tal manera que las semillas que rueden no sean llevadas pendiente arriba; la alimentaci6n deber! ajustarse para que las semillas se aoomoden individualmente sobre la band~ Las seperaoiones que se practioan con esta m~quina incluyen la veza de avena; tr~bol carmes! de semillas de pastos; y cualquier mezola de semillas esf~ricas o lisas de las semillas planas o rugosas.Esta separadora consta de una plataforma vibratoria aooionada por un vibrador electromagn~tico de pist6n regulable. La cubierta de la plataforma puede ser lisa o de material rugoso. y se inclina en forma diagonal y baoia adelante. La aoci6n vibratoria hace que las semillas rugosas o planas asciendan por el plano; las mla redondas recorren distancias mla cortas y ruedan hacia el lado inferior de la plataforma. Al estar inolinada bacia adelante. se forman bandas de diferentes fraociones de semillas desde el prinoipio hasta el final de la plataforma. dOnde los divisores apartan las fracciones (Figura 53),,La separadora vibratoria es un equipo de acabado y puede efeotuar muobas separaoiones diflailes. Podr! eliminar semillas de Hume;; spp. del trébol oarmesl; antbemis ootula del thimotby y el olavioeps pupurea; 1 platago del Agostis spp.La mesa de friooi6n se utiliza para separar part!oulas lisas y rugosa~ La separaoi6n se efeotda al poner en oontaoto la mezola oon pares de barras dispuestas en lngulo a trav~s de una banda trasportad ora en movimiento (Figura 54). Cada para consta de una barra separadora seguida por una .,., \"t7...barra retenedora. En una operaoI6n de separaoi6n, ee alimenta la mezola de partlculas rugosas y lisas en la banda enfrente de cada barra aeparadora. Las part10u1as lisas se desplazan diagonalmente a trav~s de la banda frente a la barra separadora y se recogen en un oolector. Las part1culas rugoaas pasan por debajo de la barra separadora y son interoeptadas por la barrs retenedora y llevadss tuers de la bsnda haoia otro colector.El paso de las partloulas por debajo de la barra separadora estA determinado por:1. La rugosidad de las part1oulas; las part10ulas rugosas pasan muoho m!s r'ollmente que las lisas.2. El !ngulo vertioal de la barra. Entre mayor sea f!oilmente se mover!n las part10ulas por debajo. ajustar segGn la rugosidad de las part1oulas.el Angulo, m!s Este Angulo se debe 3. El !ngulo horizontal de la barra. Este es el !ngulo entre la barra y la banda y se ha fijado de manera experimental en 45°.4. La forma de las part1culas. Las partículas redond~das pasan m!s f!ollmente que las aohatadas. Estas Gltimas tiende'n a rotar en un plano horizontal. resistIéndose al paso.5. La oompresibilidad y la fricoi6n entre la banda y las barras. Un ooeficiente de fricci6n alto y un material f!oi1mente comprlmible faoilitan el paso de las part1oulaa.AdemAs de estas oaracter1stioas. otras que también at'ectan la f'acilidad oon la oual una pBrtlo.ula pasa por debajo de las, barras incluyen el tamal'lo de las part1oulas. la distanoia entre las barrasr la banda y la velooidad de 6sta dltima.Desde tiempos anoestralas, el aire ha sido uno de los medios que mAs se ha utilizado para separar impurezas de las semillas; los materiales livianos son arrastrados por el aire ouando se deja oaer un puñado de semillas al suelo. En los procesos de benefioio de semillas se utiliza el mismo prinoipio. al bacer pasar una oorriente de aire por la masa de semillas.Como se mencion6 anteriormente en este oapitulo. son varias las m!quinas que incorporan un sistema de aire a su prinoipio de operaoi6n. oomo por ejemplo las MAZ. la mesa de gravedad. la despedradora. etc. Sin embargo. en este 8eooi6n se desoribir! el funcionamiento de las máquinas que utilizan el aire oomo fuente prinoipal de funcionamiento. Entre las más oom6nmente utilizadas estAn las aspiradoras y la separadora neumátioa.La diferenoia en la velooidad terminal que tienen las semillas y los materiales indeseables es la propiedad que se utiliza en este tipo de máquinas para efeotuar la separao16~La velocidad terminal es aquella que aloanza un material en su oaida. antes que la resistenoia del aire le impida seguir oayendo más aprisa.En este equipo. el prinoipio se aplioa de la siguiente manera: si la velooidad del aire se ajusta a un nivel determinado y la corriente de aire se haoe pasar en forma vertioal sobre una mezola de semillas, oada semilla cuya velooidad terminal sea inferior a la del aire, será levantada y. a la inversa, la semilla de mayor peso tendrá una velooidad terminal superior a la del aire y no será levantad~ Hay otras oaraoterlsticas que pueden influir en la velooidad terminal de los materiales. pero el peso es la más determinante y es la que más se utiliza para separar los materiales pesados de los ligeros.Las separadoras del aire pueden realizar dos fUnciones: a-La limpieza general. .Las separadoras de aire realizan un buen trabajo para retirar polVO. material inerte liviano y mitades y fraooiones de semllas vanas.b-Separaciones especIfioas. Las separadoras de aire pueden usarse para remover alguna impureza espeolfica que no se logr6 eliminar en las operaciones anteriores. RegulandO los niveles de velocidad. se ajusta para algdn material especlfioo que se desea eliminar de la mezcla de semillas.La separadora neumátioa y la separadora fraocionaria son los tipos más comunes de separadoras que utilizan aire exolusivamente.Este tipo de separadora est~ formada por un ventilador y una oolumna separadora (Figura 55). El aire es forzado de abajo hacia arriba por la colu~na. cre&ndose una presi6n mayor a la atmo~f6rioa; esto permite que. al alimentar la oolumna oon semillas. los materiales indeseables de velocidad terminal inferior a la del aire aean levantados y descargados en la parte superior de la oolumna. Las semillas m~ pesadas caen sobre una zaranda o tela de alambre y se desvian hacia la salida de descarga que es~ en la parte casi inferior de la oolumna. Existen modelos que tienen dos columnas en las que se pueden hacer hasta tres ~eparaciones y aumentar su capacidad de operaci6~ ~.8.3.1.1 Ajustes El ajuste m~s importante es el volumen de aire. el cual se hace mediante una oompuerta seg6n la velocidad del aire que ae necesite para hacer m~ eficiente la separaci6~A la aspiradora comdnmente se le conoce como aspiradora fraccionaria; no solo hace separaoiones de materiales ligeros y pesados. sino que hace cuatro fraccionamientos de materiales de diferentes pesos (Figura 55).El ventilador se enouentra en la parte final de la desoarga dentro del interior del armaz6n de la máqUina. Al fUncionar el ventilador induce una oOrriente de aire del exterior (presi6n reduoida) haoia adentro de la separadora.La mezcla de semilla es alimentada por ,la parte superior. la cual tiene un rodillo para que se regule la capaoidad de aiimentaoi6~ Las semillas chocan oontra la corriente de aire y las más pesadas siguen su camino hacia la descarga de salida; los materiales ligeros ascienden en la misma direcci6n del aire hasta que van venciendo su ve10cidad. separándose en las tres descargas siguientes del separador.El ajuste mAs importante es el rlujo de aire el cual debe hacerse con la mayor precisi6n para que los materiales sean fraccionados adecuadamente.Por ello se requiere ajustar la velocidad del ventilador o una compuerta que es~ en el interior de la descarga de alimentaci6n de la m~qu1na para que la semilla se exponga uniformemente a la oorriente de aire. Si la velooidad es alta o demasiado baja, levantarA semilla buena o dejarA impurezas en la mezola de la semilla deaeada.Este tipo de aeparadoras no Bon oomunes en la industria de las semillas, prinoipalmente por su oosto. Estas máquinas pueden clasificar oasi oualquier material granulado, oomo laa semillas; ain embargo, lo que deter~ina su uso es el oosto de la operaci6n y el oosto de la aeleooi6n heoha a mano. Actualmente eatos equipos no han sido desarrollados lo sufioiente como para lograr una amplia aplioac16n en la separa016n de semillas por diferencias en color y oonductividad el~otrioa.11.9.1 Clasifioadora el60trioa por oolor Dentro de estas separadoras, la de color ha tenido mayor aplioaoi6n en operaoiones de acabado. 11.9.1.1 Partes a-Celda fotoeléotrioa. Dispositivo que es muy sensible a cambiar su oaracteristioa e160trioa ante la presenoia de una radioaoi6n oon una oantidad y longitud de onda, determinadas por el oolor de un material espe01fioo. 127 b-Sistema de separaoi6~ Un rasgo de luz produoido por un multiplioador fotoeléotrioo torma el Area de seleooi6n o aoeptaoi6n de materiales de color. Una vUvula de aire con una boquilla erectora aocionada por un eleotromagneto. oomponen el sistema de separaol6~ 4.9.1.2 FuDo1oD8R1entoSu principiO de operac16n se ilustra en la Figura 56. Una tolva de a1imentaoi6n hace que las semillas fluyan una por una para ser expuestos al irea de seleoci6n; sl la rad1ac16n reflejada no corresponde a la longItud de onda del color elegido. la semilla será expulsada por la boquilla eyeotora aocionada por un electromagneto que reoibe la señal de la caja 6ptica.Figura 56. Principio de funcionamiento de una separadora por color.Son pocos los usoa de eetas separadoras en la industria de las semillas. Se utilizan principalmente en la remoci~n de semillas de manI Que han perdido su cutIcula. garbanzos y semillas de hortalizas. En frijoles manchados. los procesadores de semillas preCieren la selecci6n a mano por no ser econ6mioamente Cactible la operaoi6n de separaci6n con estos equipos. Tambi~n se utiliza mucho en la industria de arroz descascarado.La separadora electrost!tica adn es materia de investigaci6n. Su aplicaci6n ha sido muy limitada por su propia inconsistencia. Su principio se basa en separar las semillas de los materiales no deseados por las diCerencias en sus propiedades eléctricas.La parte principal es la unidad de energla Que provee una corriente eléctrica de basta 50.000 voltios por medio de un transformador y un electrodo ensamblado que crea el campo eléctrico. rodar pueden ser caraoterlstio8a aprovechables para mejorar la aeleooi6n . mediante la separadora de espiral (Figura 56).La parte m'a importante es una columna vertical Que est' rodeada de uno a oinco planos espirales de metal. de tal manera Que SU pendiente desoiende hacia la oolumna. El grado de peralte e inclinaci6n lo determina el fabricante.~.9.3.2 Funciooamiento La separadora de espiral es una m'quina que no requiere energla eléctrioa.Usualmente se instala después de la HAZ. La semilla es alimentada por la tolva superior y al empezar a rodar sobre los espirales. las de forma redonda aloanzan una mayor velooidad Que las semillas de forma irregular (planas). Al desoender m'a r'pidamente. la fuerza oentrIfuga hace Que las semillas redondas se salgan de los bordes de los espirales para caer en una tolva Que estA en la parte inferior del espiral. Las semillas de forma plana e irregular van bajando lentamente por la pendiente del espiral. tendiendo hacia el centro de la columna vertical. para desoargar en otra tolva. Estas separadoras son de baja capacidad. pero una instalaci6n en serie puede suplir esta desventaja.Este equipo no requiere ajustes significativos. La alimentaci6n se regula mediante la compuerta de la tolva. haciendo que la semilla pase por el divisor 060100 para que su alimentaoi6n sea uniforme hacia las pendientes del espiral. ..En este equipo se separan ftoilmente granos de soya partidos. semillas de oaupI (fiSna unguiQulata> y de Ipomoea turb1nata. La soya bajarA ftcllmente por su redondez y las •otras lo har'n lentamente por su forma plana e irregular. Otras sepa~Cionea pueden ser semillas de Rumex spp. y Lotus; sin embargo tiene Que ser con espirales internos de 7.5 0111 de ancbo oon 15 cm de paso en vez de las grandes (15-20 cm) uaadas para soya.11.10 Pulidoras Algunas semillas requieren brillo en su textura superficial para eliminar el polvo y su aparienoia opaca. Otras. como algunas variedades de sorgo.Figura 58. Separador de espiral.deben pulirse para elImInar SUB glumas que no se remueven en la trilla. Para realizar estas operaciones de prebeneficio. se puede incluir las pulidoras (Figura 59).4.10.1 Tipos de pulidoras 1.33~,isten dos tipos de pulidoras. Una de ellaa es la que usa un agente pulidor oomo el aserr1n o el salvado solo o en mezcla con harina gruesa para remover las manchas. La semilla se mezcla en una o&mara. que puede ser un tambor giratorio. hasta que la semilla quede pulida. La mezcla pass por una zaranda para separar la semilla del agente pulidor.El otro tipo es el pulidor de cepillos. en el cual las semillas se aometen a un ligero frotamiento oon cepillos para eliminar manchas y glumas. con el fin de que las semillas puedan posteriormente ser beneficiadas o para darle m&s brillo en su presentaci6n de venta.Como se mencion6 anteriormente. se puede dar brillo a semillas de ohloaro. antes de pasar a la sorteadora de color; brillo al malz aplomero y eliminar glumas en algunas variedades de sorgo de grano y sorgo forrajero.La banda de seleooi6n es un equipo que realiza una operaci6n de prebenefloio. prinoipalmente en la seleo016n de mazorcas de malz fuera de tipo. dañadas o oon hongos. y que deben removerse a mano. Una manera eficiente de haoerlo es con una banda transportadora en la que las semillas o material por separar puedan separarse a mano. El frijol manchado. el descascarado del man1. vainas 1 otras impurezas pueden eliminarse de esa manera.Las bandas de selecci6n son iguales a las bandas transportadoras para semillas. excepto que la altura debe ser adecuada a la de uns persona que pueda estar parada o sentada sobre un banco para trabajar c6mol en cualquiera de estos faotores hará que las semillas sean golpeadas y dañadas oon el movimiento de los cangilones.Este tipo de elevadol\" no es muy oomtin. Se recomienda su uao en semillas livianas de pastos que no son fáciles de manejar en los de descarga centr1fu~ En elevadores con este tipo de desoarga. los cangilones son movidos y elevados pOI\" un par de cadenas. de tal manera que al llegar al oabezal de descarga. se invierten y las semillas caen por gravedad sobre el cangi16n preoedente que sirve oomo base para que desoarguen por el tubo de descarga del elevador.En este tipo de tl\"ansportadol\". los cangilones van uno seguido del otro y son movidas por una banda o cadena sinfino Su velooidad es lenta y su oapaoidad es alta. por lo oual el daño a las semillas es menor pero su oosto es un poco más alto oomparado oon el de otl\"OS tipos de elevadores.Aotualmente este tipo de elevadores puede ser uno de los m!s recomendables para manejar semillas. espeoialmente para el manejo de oultivos frágiles oomo la soya y el fl\"ijol. Su movimiento es lento pero su oapaoidad es muy alta debido al gran n6mero y tamaño de los cangilones. Su oarga y desoarga oourl\"e direotamente sobl\"S el oangi16n y tubo de descarga. respeotivamente. Ocupa mb espaoio en la planta y es relativamente m!s oostoso (Figura 63). La eleooi6n de este elevador depende del ouidado y valor de la semilla que se quiere manejar; el daño mec!nioo es m1nimo. tiene una alta oapaoidad y es pr&otioamente autolimpiable. Los transportadores neumSticos no son muy comunes en el manejo de semillas. Su alto oosto y falta de informaci6n sobre el posible dafio que puedan sufrir laa semillas, baoen que su uso a6n Bea muy limitado. Entre los equipos de este tipo que transportan semilas por medio de aire, est!n principalmente los de alta presi6n, que Bon los m!s comunes en el manejo de granos en los molinos. En semillas, se tiene un pooo m!s de experiencia en los de tipo aspirador que transportan semillas en distancias cortas.Este tipo de transportadores es uno de los que causa mSs dafio a las semillas; sin embargo, es uno de los medios de transporte de semilla mb oonocidos y accesibles a los agricultores (Figura 64). Es muy usual ver como se manejan grandes vol6menes de semillas en estos transportadores. Para algunos agricultores el dafio causado a la semilla puede resultar despreoiable oomparado con el costo de mano de obra que implioarla mover el mismo volumen de semilla. Definitivamente no son recomendables para mover semillas en trayectos de m!s de 3 m. No obstante, su flexibilidad y bajo oosto los hacen m!s atractivos para el manejo de grano.E~te transportador consiste en un tubo en forma de \"un que oontiene una barra horizontal con una tira met!lica en forma heliooidal. la cual arrastra los granos para moverlos de un lugar a otro. En el oaso de los transportadores port!tiles tipo bazzoka. la alta velocidad oon que acoionan el heliooidal daEa ~ustanoialmente las semillas y son dif1ciles de limpiar. Siempre que sea posible. se debe evitar el uso de este transportador; pero si es neoesario hacerlo, debe estar lleno de semillas ya que as1 el daño es menor.Este transportador mueve la ~emilla oon un sistema de paletas de una alea016n de aluminio, unidas a una cadena sin.fln (Figura 64). Como todos los transportadores. tienen diferentes medidas 1 capacidades; su movimiento es lento y es un excelente transportador de semillas que no causa daño meo!nioo y que tiene las ventajas de instala016n del tipo be11coidaL Se puede instalar hasta con 45 0 de inclinaci6n y puede tener m61tlples descargas a todo lo largo del transportador.Transportador helicoidal .Figura 64. Transportador helicoidel V transportador de cadena.La banda transportadora es de los equipos m~ utilizados en cualquier industria para mover diversos materiales en forma horizontal e inclinada. En la de semillas no es una excepci6n. Su uso m61tiple va desde alimentar grandes cantidades de semillas a granel hasta la estibaci6n de aacos de semilla en pequefios transportadores inclinados. En principio, el transportador consiste en una base metAlica o rodillos con una banda de varias capas de tipo industrial, accionada por un mecanismo electromotriz que produce el movimiento en una direoci6n hasta alcanzar su m!xima longitud y regresarla a su punto inicial. Su velocidad puede ser variable y su direcci6n reversible. Al multiplicar la cantidad de semilla en 1m de banda por la velooidad de la banda se oonooe la capaoidad de descarga del transportador. La anchura de la banda oom6nmente varia entre 0.2 y 0.6 m, y la longitud se determina por la distanoia que se desee mover la semilla. Normalmente las semillas se descargan en el extremo de la banda. Cuando se desea descargar en varios puntos de la banda, es necesario utilizar un vehiculo especial m6vil ubicado enoima de la banda. Su mayor ventaja es que no daña la semilla durante sU viaje y es casi autolimpiable. Su desventaja es que. cuando se instala a la intemperie, requiere de una cubierta Que la proteja (Figura 65).Los transportadores de bandas se fabrioan en varios modelos, tipos y capacidades, todos con el mismo fin. siendo la de base met!lica la 6nica que se modifica seg6n los requerimientos de una UBS en particular.A este tipo de transportador también se le oonooe oomo \"mata ca1das\" o esoalera amortiguadora. Su funoi6n es detener la oa1da libre de la semilla desde altüras de m!s de 3 m. Generalmente. al llenar grandes tolvas. dep6sitos'ó silbs de semillas desde grandes alturas. las 'semillas pueden dafiarse al caer. El \"mata ca1das\" es un transportador met!lioo vertioal que se inatala en las paredes de los sil08 y SU forma hace que la semilla baje en forma de \"zig zag\", aminorando su velocidad hasta llegar al fondo del silo. Esto permite que el silo se llene paulatinamente de semillas.sin que ocurra daño alguno (Figuras 66 y 67).Los transportadores vibratorios están siendo muy utilizados en las UBS.Pr!oticament~ es un transportador autolimpiable, aspeoto de disefio muy importante en una planta que maneje varias variedades o oultivos en UD mismo periodo de ooeeoh~ El trasportador oonsiste en un oanal de l6mina galvanizada oon sostenes flexibles y un meoanismo automotriz que produoe un efeoto vibratorio que haoe que la semilla avance sobre el transportador (Figura 68).Se fabrioan en varios modelos y oon distintas oapaoidades. Su longitud Dormal es de q m. pero puede instalarse en serie para aloanzar una mayor distancia y desoargar semilla en cualquier punto del oamino.Aotualmente el uso de montaoargas es limitado. Debido a SU alto oosto y para que sea rentable. es neoesario que se utilioe durante gran parte del afio y moviendo grandes vol6menes de semillas. Los montaoargas pueden ofreoer la ventaja de mover r!pidamente la semilla en una linea de alta oapaoidad de beneficio para que la semilla sea adeouadamente almaoenada y aoomodada por lotes. Tambi6n existen modelos de montaoargas hidra61iooB oon un oosto inioial no muy elevado. los ouales permiten que un operario mueva media tonelada de semillas f!oilmente.Otros medios de transporte de semillas a granel pueden ser los remolques tirados por un traotor o oon un sistema hidr!ulioo para levantar BU oaja al desoargar en tolvas. El uso de remolques puede disminuir la inversi6n inicial en la meoanizaci6n del transportador de semillas en un sistema de silos de reoepoi6n o secado.8.0 COImIDER.lCJ:OIBS PARA EL J)IS!RO 1 LA OPBItlCI01I DB UH1 UDS La persona que diseñe una planta de semillas debe apoyarse en otros aspectos que no neoesariamente son de ingenierla del proyecto. Todo diseftador debe oonsiderar la informaci6n m!e importante de la aituao16n aotual de los programas de produooi6n de semillas que estto o aerto establecidos en la zona de influencia del proyecta. La informaci6n adicional mAs importante que se debe tener en ouenta oomo marco de referencia es la siguiente: 1-Cultivos oomeroiales; su oterta y demanda 2-S1tuaci6n de los programas de produo016n de semillas Figura 68. TransPOrtador vibratorio. La elaborac16n de planos que contengan el flujo de la operac16n del proceso y la d1strlbuc16n del equipo son la mejor forma de planificar no solo la operaci6n del beneficio, aino tambi~n analizar si cumple con los supuestos programas de producci6n de semillas que se van a establecer. El an!lisis de varias alternativas siempre llevar! a determinar el mejor disefto de un proyecto y a tomar la decisi6n m!s indicada.Para realizar una buena planeaci6n es importante contar con la siguiente informaoi6n:1-Informaci6n relaoionada con los cultivos. Una vez que se tiene esta informaci6n. el segundo paso es:1-Elaborar un diagrama de flujo que muestre la secuencia de m~quinas para un cultivo en particular.2-Localizar la HAZ y el elevador que la va a alimentar.3-Localizar el sitio del elevador que alimentar! de semilla limpia y la primera separadora.4-Colocar la separadora lo mAs cerca de la HAZ y el elevador que alimentar! a la stguiente separadora o tratadora.5-Continuar localizando el lugar de los siguientes separadores que se requieren en el proceso hasta terminar la operac16n.6-Permitir suficiente espacio entre laa m4quinas para que los operarios puedan oaminar libremente.Las UBS usualmente se localizan en los terrenos agr1colas aleda nos y en las zonas de producci6n y oomercializaci6n de las semillas. Algunas veoes el sitio o terreno agr1001a no ee puede elegir; las restriociones de carAoter ambiental influyen en la deoisi6n de esooger un sitio en particular. Sin em~ es oonveniente enalizar los siguientes tactores y jerarquizarlos en funoi6n de la oeroan1a a las zonas de produoo16n y oomero1alizaoi6n de las semillas:a-Acoeso a laa vIsa de comunioaci6nb-Disponibilidad de mano de obra: costos, espeo1alizao16n y sindioatoB. La experiencia y el conocimiento que se tenga sobre las bases de la separaci6n de materiales indeseables de las semillas, determinarlo m~ efioientemente la secuenoia de operaoiones Que debe seguir el benefioio de un oultivo en particular y el equipo Que se utll1zar~ Es recomendable un diseño Que presente una secuencia vers6til. en el que se puedan manejar varias opciones para que los operadores de la plante puedan determinar la secuencia de las operaoiones, dependiendo del problema en particular que se les presente.nna vez determInada la capaoidad total de operaoi6n de una planta. es importante obtener un flujo contInuo s través de todo este prnoeso. Para lograr 6sto. se deberá conocer la capaoidad de operac16n de cada eq81p26˚C) and high humidity, which is why late-sown wheat in South Asia normally has high SB infection (Gupta et al., 2018;Pandey et al., 2021). If predictions of a rise in mean temperature due to climate change prove accurate, the disease is expected to pose a threat to global wheat production (Gupta et al., 2018).Bipolaris sorokiniana causes blotches on leaves, node canker, and possibly seedling blight (Chand et al., 2021;Singh et al., 2018). Dark brown lesions with a 1-to 2-mm diameter and non-chlorotic edges indicate early infection. The susceptible variety, however, sees these small leaf lesions grow into elongated light to dark brown spots that coalesce and induce necrosis of the leaf tissue (Chand et al., 2010;Duveiller et al., 2005). Just like other wheat diseases caused by hemibiotrophic fungi, host immunity to SB is yet to be discovered, and even resistant lines suffer yield losses under high disease pressure (Chand et al., 2021;Gupta et al., 2022;Singh et al., 2015).Genetic studies suggested a quantitative genetic control for SB resistance in wheat, which is influenced by genotype-byenvironment interaction (Chand et al., 2021;Gupta et al., 2018;Joshi et al., 2004;Juliana et al., 2022). The development of SB resistance wheat cultivars may be accelerated by using molecular markers identified in bi-parental quantita-• Resistant germplasm identification to spot blotch of wheat. • Single-nucleotide polymorphism markers associated with spot blotch resistance. • Genome-wide association studies analysis for spot blotch resistance in Indian spring wheat panel.tive trait loci (QTL) mapping and genome-wide association studies (GWASs) (Singh et al., 2018). Several QTLs associated with resistance to SB have been discovered on different chromosomes (Adhikari et al., 2012;Ahirwar et al., 2018;Bainsla et al., 2020;Gonzalez-Hernandez et al., 2009;Gurung et al., 2014;Jamil et al., 2018;Juliana et al., 2022;Kumar et al., 2015;Lillemo et al., 2013;Lu et al., 2016;Neupane et al., 2007;Sharma et al., 2007;Singh et al., 2018;Tomar et al., 2021;Zhang et al., 2020). So far, four QTLs with major effects have been assigned the designations Sb1 to Sb4. Sb1 was assigned to chromosome 7DS based on the findings of Lillemo et al. (2013). This gene was in close proximity to the cloned leaf rust resistance gene Lr34, which has been shown to exhibit pleiotropic effects on yellow rust (Yr18), stem rust (Sr57), powdery mildew (Pm38), and leaf tip necrosis (Ltn+) (He et al., 2022). The other three Sb genes have been well mapped, that is, Sb2 on 5B (Kumar et al., 2015), Sb3 on 3B (Lu et al., 2016), and Sb4 on 4BL (Zhang et al., 2020), but so far they have not been cloned. The objectives of this research were to identify novel genomic areas linked with SB resistance and resistance donors that could be used in breeding in a panel of 174 genotypes from India, Bangladesh, Nepal, and the International Maize and Wheat Improvement Center (CIMMYT), Mexico. The panel was previously used by Phuke et al. (2020) and He et al. (2021) for studies on tan spot and wheat blast, respectively.A panel of 174 spring wheat genotypes from CIMMYT-Mexico (97), India (30), Bangladesh (19), and Nepal (28) were used (Table S1). These genotypes represent the contemporary elite breeding lines from the respective organizations or countries.The panel was genotyped with Illumina Infinium 20k wheat array (15k + 5k add-on array) at Trait Genetics GmbH, Germany, where samples were analyzed on Infinium ultra-HD chips carrying 24 samples each. The single-nucleotide polymorphism (SNP) markers were filtered according to the following criteria: uncertain position (1695 markers), minor allele frequency less than 5% (2707 markers), and missing data points of more than 10% (222 markers), which resulted in 11,499 markers available for GWAS analysis. Marker locations on the reference whole genome sequence (IWGSC: Chinese Spring RefSeq v1.0, International Wheat Genome Sequencing 2018) were obtained from the following database: https://wheat-urgi.versailles.inra.fr/.Field experiments for SB were conducted in CIMMYT's Agua Fria station, Mexico, during the 2019-2020 (hereafter referred to as 2020) and 2020-2021 (referred to as 2021) cropping seasons. The experiment was conducted in a randomized complete block design with two replications. The experimental unit consisted of 1-m double-row plots, and four checks: Chirya-3 (resistant), Francolin (moderately resistant), Ciano T79, and Sonalika (susceptible) were included.The virulent local isolates of B. sorokiniana previously isolated and kept in freezers at −20˚C were reactivated and cultured on V8 medium for 5-7 days at 22-25˚C for mycelia growth. Subsequently, the isolates were multiplied on sorghum seeds previously soaked and autoclaved. Bipolaris sorokiniana inoculated sorghum grains were placed in flasks and then incubated for 6 weeks at room temperature with frequent shaking to mix the grains and promote better fungus coverage. The sorghum grains were then scattered at the base of the plants in the middle of the double row for field inoculation after 21 days of planting at the 3-to 5-leaf stage. Four to five weeks after inoculation, disease severity was visually scored for each plot using the double-digit scale (00-99) (Saari & Prescott, 1975). The first digit (D1) indicates disease progress in canopy height from the ground level, and the second digit (D2) refers to severity measured based on the diseased leaf area. Both D1 and D2 were scored on a scale of 1-9. The disease evaluation was repeated four times at 7-to 10day intervals. For each evaluation, the percentage of disease severity was estimated based on the following formula:The area under the disease progress curve (AUDPC) was calculated from the four disease evaluations using the following formula:where Y i is the SB severity at time t i , t i + 1 − t i is the time interval (days) between two disease scores, and n is the number of times when SB was recorded.Using all 11,499 SNP markers, a kinship matrix and clusters of individual genotypes were calculated, whereas a heat map was generated using a classical equation (VanRanden, 2008) in R program. TASSEL 5 (http://www.maizegenetics.net) was used to determine the linkage disequilibrium (LD) parameters among the SNP markers, which were then displayed against the physical distances.Numeric transformation of genotypic data was performed using the R package GAPIT3 (Wang & Zhang, 2021) in accordance with the required format of the Structure 2.3.4 software (Pritchard et al., 2000), in which the admixture model was used for structure analysis. The burn-in period was set to 100,000, followed by 500,000 markers chain Monte Carlo (MCMC) replications. The subpopulation test range was retained from K1 to K10, each having five iterations (runs). The real subpopulations were assessed using the K method (Earl & VonHoldt, 2012), which was then validated by the Evanno et al. (2005) method using the STRUCTURE HARVESTER tool (Earl & VonHoldt, 2012). The standard deviation and the average logarithm of the probability of the observed likelihood (LnP[D]) were derived from the output summary. LnP(D) was calculated for each stage of the MCMC for each class (K = 1-10) by computing the log-likelihood for the data.A neighbor-joining tree was created using TASSEL 5.0 (Bradbury et al., 2007) and visualized using the iTOL website (Letunic & Bork, 2021).Principal component analysis (PCA) was performed using 11,499 SNPs and 174 genotypes in fixed and random model circulating probability unification (FarmCPU) (Liu et al., 2016). The first two principal components were drawn to show the clustering among genotypes. The intrachromosomal LD was calculated as the pairwise marker correlations (r 2 ) between the SNP markers plotted against the physical distance for significant marker-trait associations (MTAs). The long-distance LD and spline were fitted to the LD-decay graph using r 2 values of less than 0.99 using ggplot2 v3.30 in R v3.5.2.The combined analysis of variance (ANOVA) was carried out for the 2-year experiment, and three variance components, that is, genotypic variance \uD835\uDF0E 2 , experimental variance \uD835\uDF0E 2 \uD835\uDC38 , and interaction of genotype and experiment variance \uD835\uDF0E 2 \uD835\uDC54\uD835\uDC38 , were estimated for SB using restricted maximum likelihood (Patterson & Thompson, 1971) estimation procedure using software META-R v. R-3.3.1.Broad-sense heritability was estimated using the following formula:where \uD835\uDF0E 2 \uD835\uDC54 and \uD835\uDF0E 2 \uD835\uDC52 are the genotype and error variance, respectively, \uD835\uDF0E 2 \uD835\uDC54\uD835\uDC38 is the genotype-by-environment interaction variance, nEnvs is the number of environments, and nrps is the number of replications.The Bartlet test assessed the homogeneity of error variance before pooling the two-experiment data for GWAS analysis. MTA was performed using a mixed-linear model (MLM) and FarmCPU. The GWAS analysis using the FarmCPU model was performed using the R software package GAPITv.3.5 (Wang et al., 2021). The GWAS study was conducted for the two experiments separately, as well as for pooled experimental data. The markers were declared significant using Bonferroni correction with significant cutoff (p-values, 3.0 E-06) calculated at the alpha level of 0.2 using 11,499 markers to reduce false discovery rate in both MLM and FarmCPU models.In TASSEL v.5 (Bradbury et al., 2007), the MLM (Yu et al., 2006) was fitted, where population structure was used as a fixed effect and kinship was used as a random effect. Two principal components were used to account for population structure (Price et al., 2006), and kinship was obtained by the centered identity-by-state method (Endelman & Jannink, 2012). We ran the MLM using the optimum compression level and the \"population parameters previously determined\" (Zhang et al., 2010) options in TASSEL. The p-values for the significance tests of the marker-trait associations, the marker effects, and the percentage of the SB variation explained by each marker were obtained. The LD between the consistent markers was analyzed using TASSEL version 5, and the standardized disequilibrium coefficients (D0) (Lewontin, 1964), the correlations between alleles at the two marker loci (r 2 ), and the p-values for the existence of LD using the two-sided Fisher's exact test were obtained. Markers with high r 2 values, D' values, and p-values for the test of disequilibrium equal to zero were grouped into LD blocks.GWAS results were further analyzed to test if the identified MTAs fall within the known genomic regions using functional annotation from the reference genome assembly (IWGSC Ref Seq v1.0). From the genome annotations provided by IWGSC, functional annotation of the genes, either containing significant SNPs or close by them, was collected and checked for their possible association with SB resistance. Protein functions were then retrieved from annotated data using literature mining. Only the genes in the exact genomic location were considered, and the number of base pairs added changed for each marker based on how close it was to the genes. The interval was then explored for predicted genes, and annotations from the IWGSC (https://www.wheatgenome. org/) were obtained. For several genes, the IWGSC annotations were not available. Thus, they were evaluated based on orthologous genes in related species with known predicted functions using the comparative genomics tool in Plant Ensembl. The Triticum aestivum gene transcripts and their available domains in Ensembl were also used (using the show transcript table link). Moreover, the JBrowse tool from T3/Wheat (https://wheat.triticeaetoolbox.org/; Blake et al., 2016) and GBrowse from URGI (https://urgi.versailles.inra. fr/gb2/gbrowse/wheat_survey_sequence _annotation) were also used to identify annotation to SNP markers.Resistance alleles were determined by comparing the mean of corrected AUDPC between alleles using the Wilcoxon test implemented in the R package \"ggpubr\" (Kassambara, 2020). Wheat lines were grouped by the number of resistance alleles they contained, and Tukey's honest significant difference test (p < 0.05) implemented in the R/multcomView package was used to compare whether there were significant differences in mean disease severities between groups.One stable SNP marker, 5B_AX-94435238, was selected for haplotype analysis. A pairwise comparison of corrected disease severities between haplotypes was conducted using the Wilcoxon test implemented in the R package \"ggpubr\" (Kassambara, 2020). Corrected AUDPC values were obtained using best linear unbiased prediction analysis for 2020 and 2021 and mean (across the environments) using Meta R (Alvarado et al., 2020).The AUDPC for SB ranged from 433.38 to 1813.43 in 2020 and from 351.77 to 1435.67 in 2021, displaying considerable phenotypic variation with a continuous distri- bution of lines in both years (Figure 1). Among the tested entries, CIM 33 (TEPOCA T 89) was the most susceptible (AUDPC = 1644.76), while CIM 34 (MILAN) was the most resistant (AUDPC = 558.91). The AUDPC for the resistant check Chirya 3 was recorded at 756.06, while it was 1744.69 for the susceptible check Ciano T79 (Table 1). The ANOVA revealed the highest heritability in 2021 (0.94), followed by 2020 (0.93), as well as a high heritability across years (0.86). ANOVA revealed significant effects from genotype, year, and genotype-by-year interaction (p < 0.0001; Table 2).Among polymorphic SNP markers, 40.9% (5754), 50.8% (7142), and 8.3% (1167) were from the A, B, and D genomes, respectively. With a genomic coverage of 13.9 GB and 14,063 markers across the genome, the average marker density was 1.9 Mb between markers. The lowest marker density, 7.03 Mb between markers, was at chromosome 4D, while the highest, 0.54 Mb between markers, was observed at chromosome 2B. The average distance between markers for A, B, and D genomes was 0.89, 0.84, and 3.92 Mb, respectively.Population structure analysis revealed four groups, of which Group 1 (G-I) consisted of 73 lines, majorly belonging to South Asia. Group 2 (G-II) consisted of 41 lines, Group 3 (G-III) consisted of 34 lines, while Group 4 (G-IV) consisted of 26 lines, mostly belonging to the CIMMYT origin (Figure 2). Based on pedigree information, most lines within the group shared descendents from common parents. Principle component analysis of a similar structure was observed, as shown in Figure 3. The heat map showed a high kinship relationship among lines (Figure 3).A total of 20 SNP markers (MLM and FarmCPU models) showed significant association with SB resistance, spreading over 15 chromosomes, namely, 1A, 1B, 2A, 2B, 2D, 3A, 3B, 4B, 4D, 5A, 5B, 6A, 6B, 7A, and 7B. The significant SNP \"5B_AX-94435238\" identified with the FarmCPU model was the most stable and consistent in both years, having high −log 10 (p) values of 12.11 in 2020 and 9.67 in 2021 (Figure 4). This marker was found in proximity to Tsn1. The MLM model identified 19 significant SNP markers at a p-value threshold of 0.001 (Figure 4). Among them, two SNP markers (5A_TA003225-0566 and 5A_TA003225-1427) were significant in both years and mean, two (3B_wsnp_Ex_c2723_5047696 and 7B_AX-94496436) in 2020 and mean, 10 in 2021 and mean, and three (1A_Kukri_c53398_200, 5B_AX-94730987, and 7D_AX-95010121) in 2020 only.The significant SNPs identified from the GWAS analysis were further studied for the known candidate genes relevant to disease resistance using the recently annotated wheat reference sequence (RefSeq V1.0). Numerous plant protein families encoding proteins with diseaseresistance-associated domains, such as LRR, PKS, and the MADS transcription factor, were identified in the genomic regions harboring the significant SNPs. The SNP 3A_BS00023028_51 is located within the genomic region 3A:721341896-721361525 that contains two genes, TraesCS3A02G495300 and TraesCS3A02G495400, which encode for NAD kinase/diacylglycerol kinase-like domain and leucine-rich repeat protein kinase-like domain, respectively.Similarly, 3B_wsnp_Ex_c2723_5047696 is within the genomic region 3B:6637372-6682983 that encompasses transcript IDs, namely, TraesCS3B02G016100, TraesCS3B02G016300, TraesCS3B02G016400, and TraesCS3B02G016500 encoding proteins having domains associated with disease resistance (Table 3). SNPs TA003225-0566 and TA003225-1427 belong to the genomic region 5A:414406049-414414131, harboring TraesCS5A02G204800 that encodes ubiquitin-like domain, UBX domain, and Rad18-type zinc finger. The SNP 6D_AX-94499500 is located on the genomic region 6D:10905028-10947752 having transcript IDs TraesCS6D02G028200 and TraesCS6D02G028300 encoding for disease resistance proteins and associated domains (Table 3).Nineteen significant markers obtained from the model \"MLM\" were selected to investigate the effects of pyramid-T A B L E 3 Single-nucleotide polymorphisms (SNPs) associated with spot blotch (SB) resistance and the candidate genes.No. Haplotype analysis was conducted for three consistently significant SNPs, that is, 5B_AX-94435238 linked to Tsn1, and 5A_TA003225-0566 and 5A_TA003225-1427 linked to a possibly new QTL. For 5B_AX-94435238, the susceptible allele \"T\" was consistently associated with higher disease severity compared to the resistant allele \"C\" in both years and the mean (Figure 6). Similarly, the \"T\" allele of 5A_TA003225-0566 and the \"G\" allele of 5A_TA003225-1427 were consistently associated with SB resistance in the panel (Figure 7).This study screened a panel of bread wheat genotypes from CIMMYT and South Asia for field SB resistance. Based on the results, several resistant and moderately resistant genotypes were identified, primarily from CIMMYT germplasm. This confirms earlier findings that advanced lines from the CIMMYT bread wheat breeding program possess moderate resistance to SB (Singh et al., 2015). The continuous distribution of disease scores across all experiments indicates the quantitative character of resistance driven by the additive action of numerous QTLs and genes (Ayana et al., 2018;Joshi et al., 2004;Kumar et al., 2007Kumar et al., , 2009;;Neupane et al., 2007;Singh et al., 2018;Singh et al., 2023). ANOVA revealed significant effects of year and genotype-by-year, highlighting the need for multiple evaluations for SB across years/locations to identify lines with stable resistance and reliable markers for breeding (Chattopadhyay et al., 2022;Roy et al., 2021;Singh et al., 2015).The genetic architecture of resistance to SB in the GWAS panel was proven to be polygenic, and 20 significant SNP markers related to SB resistance were found on 15 chromosomes. The significant marker on 5BL, AX-94435238, was close to Tsn1 and likely represented the QTL at this gene locus. The role of ToxA-Tsn1 interaction in susceptibility to SB disease has been reported by several researchers (Friesen et al., 2018;McDonald et al., 2018;Navathe et al., 2020), and because the Mexican population of B. sorokiniana also carries ToxA (Wu et al., 2021), no wonder why this locus turned out to be significant. This underlines the importance of deploying genotypes devoid of Tsn1 in geographic areas vulnerable to SB. Additionally, because ToxA is also widely present in pathogen populations of tan spot and Septoria nodorum blotch, eliminating Tsn1 from prevalent wheat varieties is also helpful in controlling these two diseases (Navathe et al., 2020).Apart from AX-94435238, SNPs 5A_TA003225-0566 and 5A_TA003225-1427 were the only consistently detected markers in this study. They were mapped in a chromosomal region 5A:414410915-414411822, where no QTL for SB resistance has been identified and thus likely represents a new QTL. On the same chromosomal arm, the significant marker 5A_Kukri_c6266_260 was in the genomic region 5A:607678848-607685776, not very far (20.23Mb) from Vrn-A1 that has often been associated with field SB resistance (He et al., 2021;Singh et al., 2018;Zhu et al., 2014); thus, it might be involved in disease escape instead of genetic resistance. Earliness is often associated with SB escape, and a strategy for selecting genotypes based on the early-flowing allele of Vrn-A1 and employing Sb2 or other SB resistance QTLs to increase SB resistance has been well documented (He et al., 2020;Roy et al., 2021).The marker Kukri_c59960_211 was located on 2DL at 455333875 bp, with the closest marker for SB resistance being Kukri_c31121_1460 at 607423420 (Ayana et al., 2018), implying that they may represent different QTL. Additionally, the SNP marker 3A_BS00023028_51 in the genomic region 3A:721341896-721361525 is linked to genes encoding the protein kinase-like domain, leucine-rich repeat, and NAD kinase/diacylglycerol kinase superfamily, which is crucial for disease resistance (Tomar et al., 2021).Two significant markers on 3BS, wsnp_Ex_ c2723_5047696 and BS00102646_51, were located in the genomic region 3B: 6532701-6682983, which is different from that reported by Bainsla et al. (2020) at 17.1 Mb but fell into the QTL region for Sb3 at 6.1-7.1 Mb (Lu et al., 2016). Therefore, these two SNPs likely represent the Sb3 gene, which was initially reported in a Chinese genotype and recently identified in CIMMYT germplasm (Juliana et al., 2022), highlighting the important role of this gene in conferring SB resistance. The remaining significant SNPs were located within or close to the reported QTLs for SB resistance, for example, 6D_AX-94499500 was found in the genomic region 6D:10905028-10947752, which is close to the 6DS QTL reported in Tomar et al. (2021). This study identified multiple significant SNPs on different chromosomal regions, confirming the quantitative inheritance of SB resistance in the studied panel of wheat genotypes. Nevertheless, a few QTLs on 3BS (at Sb3), 5AL, and 5BL (at Tsn1) showed relatively big effects and are thus very suitable for marker-assisted selection (MAS). The effects of stacking resistance alleles confirmed the contribution of minor QTLs in reducing the severity of SB. For example, SW8488*2/KURUKU that possessed the most resistance alleles (18) had a SB severity that was 43% less than genotypes with fewer than five resistance alleles, indicating a clear association between increased number of resistance alleles with decreased SB severity. Using the marker-assisted backcross method, these QTLs can be transferred into well-known susceptible varieties or deployed to develop new varieties (He et al., 2022). Genotypes identified in the current study that showed good SB resistance could be utilized in future breeding programmes as resistance donors, and the significant SNP markers could be used to trace their corresponding QTL to speed up the breeding progress. The financial support received by the first and last authors from the Indian Council of Agriculture Research (ICAR), India, is acknowledged.The authors declare no conflicts of interest.All data supporting the findings of this study are available within the paper and within its Supporting Information.Sudhir Navathe https://orcid.org/0000-0002-8040-5563","tokenCount":"3853"} \ No newline at end of file diff --git a/data/part_3/7491562066.json b/data/part_3/7491562066.json new file mode 100644 index 0000000000000000000000000000000000000000..9833c15be3fc121d824631c2f438a934243294f6 --- /dev/null +++ b/data/part_3/7491562066.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"0c78f82bd36c7597d2e73e3bb8613498","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/e01e7188-a14d-44ef-8cc3-ca4e5199640a/retrieve","id":"-795634778"},"keywords":[],"sieverID":"ba8684c8-ac8c-45a7-b10e-e18b7757a2cd","pagecount":"50","content":"Hiện trạng chất lượng nước mặt lưu vực sông Srepok. Sông Sêrêpôk là chi lưu cấp I của sông Mê Kông, do hai nhánh Krông Ana và Krông Knô hợp thành. Dòng chính tương đối dốc, chảy từ cao độ 400m ở nhập lưu xuống cao độ 150m ở biên giới Campuchia. Theo báo cáo hiện trạng môi trường tỉnh Đăk Lắc năm 2010, các điểm quan trắc chất lượng nước sông Srepok được giám sát từ năm 2002 -2009 tại các vị trí sau: Bảng 1: Các vị trí quan trắc trên lưu vực sông Srepok TT Sông Vị trí lấy mẫu Ký hiệuTrên lưu vực sông Srepok thực tế hiện nay do yêu cầu phát triển kinh tế, nhu cầu dùng nước không ngừng gia tăng, đặc biệt vào mùa khô đã và đang trở thành áp lực lớn đối với quá trình công nghiệp hóa, hiện đại hóa của của các địa phương trên lưu vực Srepok, trong điều kiện dân số gia tăng và ảnh hưởng mạnh mẽ của biến đổi khí hậu.Qua các số liệu điều tra cho thấy loại khai nước dưới đất trên lưu vực Srepok là rất đa dạng, hầu như đã có mặt đủ các loại hình khai nước dưới đất hiện có ở Việt Nam. Loại giếng đào là loại hình khai thác nước ngầm chủ yếu trên lưu vực cung cấp nước sinh hoạt, tưới và chăn nuôi. Theo báo cáo hiện trạng môi trường tỉnh Đăk Lắk và Đắk Nông cho thấy chất lượng nước ngầm tại tất cả các vị trí khảo sát đều bị ô nhiễm bởi hàm lượng vi sinh vật trong nước cao. Giá trị tổng Coliform dao động trong khoảng 0-4.600MPN/100ml so với QCVN 09:2009/BTNMT vượt nhiều lần cho phép là 3MPN/100ml. Nguồn gốc ô nhiễm có thể là do các công trình vệ sinh, các công trình xử lý chất thải chăn nuôi, nước thải sinh hoạt không qua xử lý, chủ yếu theo phương án tự thấm nên đã xảy ra hiện tượng thấm nước thải làm ô nhiễm các tầng nước dưới đất.-Chất lượng nước dưới đất tại tỉnh Đắk Lắk: Trên địa bàn tỉnh Đắk Lắk chất lượng nước dưới đất được lựa chọn trên các vùng đại diện cho tỉnh đó là các khu vực huyện Krông Bông (N1), Huyện Ea Soup (N2), Huyện M'Đrăk (N3), huyện Ea Kar (N4), Huyện Lăk (N5), Huyện Ea H'Leo (N6), Krông Buk (N7), huyện Buôn Đôn và Tp. Buôn Ma Thuột (N8).Để biểu thị cụ thể cho một số các thông số ô nhiễm nước dưới đất chúng ta xem các đồ thị sau: -Nước dưới đất trên địa bàn tỉnh Đăk Lăk hầu hết không màu, không mùi, vị nhạt. Nhiệt độ của nước thay đổi 25 đến 26 0 C, thường gặp 26 0 C. Tuy nhiên, một số nơi nước bị ô nhiễm sắt, thường có mùi tanh.-Độ pH của nước dưới đất thay đổi từ 5,52 đến 10,35 trung bình 7,3. Trong tổng số mẫu phân tích chỉ có 7 mẫu (chiếm 1,42%) vượt giá trị giới hạn (GTGH), giá trị lớn nhất vượt không đáng kể so với GTGH (vượt 1,2 lần).-Độ cứng: Kết quả phân tích mẫu nước cho thấy độ cứng của nước dưới đất thay đổi từ 7,5 đến 450,07 mgCaCO3/l, trung bình 101,0 mgCaCO3/l. Như vậy, nước dưới đất tỉnh Đăk Lăk thuộc nước rất mềm đến mềm. Giá trị cao nhất cũng chỉ đạt tới 450,07 mgCaCO3/l (nước giếng khoan gia đình bà Nguyễn Thị Liên, thôn 6, xã Ea Wer, Buôn Đôn), vẫn thấp hơn so với GTGH (Giá trị giới hạn: 500 mgCaCO3/l).Tuy nhiên, theo tiêu chuẩn vệ sinh nước sạch ban hành theo Quyết định số 09/2005/QĐ-BYT của Bộ Y tế thì GTGH cho phép của độ cứng là 350 mg/l. Nếu theo Tiêu chuẩn này thì có một số mẫu nước có độ cứng vượt GTGH, chúng phân bố ở các xã Krông Na, Ea Wer và thị trấn Buôn Đôn của huyện Buôn Đôn. Như vậy, nước dưới đất vùng Buôn Đôn và Ea Súp trong trầm tích Jura có độ cứng cao hơn so với tầng chứa nước khác. Nguyên nhân độ cứng của nước cao là do các lớp cát kết vôi chứa trong trầm tích Jura bị thủy phân, làm tăng hàm lượng bicarbonat và calci trong nước.-Chất rắn tổng số (TDS):Chất rắn tổng số của nước dưới đất (tổng độ khoáng hóa của nước) thay đổi từ 20,0 mg/l đến 840,0 mg/l, trung bình 165,3 mg/l. Trong số mẫu nước đã phân tích cho thấy chưa có mẫu nào có tổng độ khoáng hóa vượt quá 1.000 mg/l. Nước dưới đất tỉnh Đăk lăk thuộc loại siêu nhạt đến nhạt, chủ yếu là nước siêu nhạt.-Hàm lượng Amoni (NH4+):Hàm lượng Amoni thay đổi từ không phát hiện đến 0,3 mg/l, trung bình 0,032 mg/l. Trong số 494 mẫu phân tích có 46 mẫu hàm lượng Amoni vượt GTGH chiếm 9,3%. Mặt khác qua kết quả phân tích hàm lượng Amoni theo thời gian tại lỗ khoan quan trắc LKC8b -Phước An, Krông Pach trong tầng chứa nước bazan, cho thấy chúng tăng khá nhanh. LK23T (Buôn Đôn) LK28T (Ea Súp)Như vậy, nước dưới đất tỉnh Đăk Lăk có mức độ ô nhiễm Amôni tăng nhanh theo thời gian và không gian.-Hàm lượng Nitrit (NO2 -):Hàm lượng Nitrit trong nước dưới đất thay đổi từ không phát hiện thấy đến 3,02 mg/l, trung bình 0,04 mg/l, thấp hơn nhiều so với GTGH (1,0 mg/l). Trong số 494 mẫu phân tích có 3 mẫu có hàm lượng Nitrit vượt GTGH cho phép từ 1,1 lần đến 3,02 lần, đó là các mẫu tại giếng BĐ152 -Buôn Đôn (1,2 mg/l), tại số 55 Hùng Vươngthị trấn Ea Sup (3,02 mg/l) và lỗ khoan quan trắc quốc gia LK28T (1,11 mg/l).Nước dưới đất khu vực lỗ khoan LK28T trong trầm tích Jura có mức độ ô nhiễm Nitrit tăng nhanh theo thời gian. Kết quả phân tích nước năm 2003 có hàm lượng Nitrat là 0,01 mg/l, năm 2007 là 0,08 mg/l và đến năm 2008 tăng lên 1,11 mg/l, lúc này nước đã bị ô nhiễm Nitrit (xem hình 20).Hình 20: Đồ thị dao động hàm lượng Nitrit trong nước dưới đất tăng theo thời gian tại lỗ khoan LK28T. Nitrat trong nước dưới đất thay đổi từ không phát hiện đến 184,4 mg/l, giá trị trung bình 8,0 mg/l. Trong số 494 mẫu phân tích có tới 45 mẫu hàm lượng Nitrat vượt GTGH (chiếm 9,1%). Trong số 45 mẫu vượt GTGH, chúng phân bố: ở Cư M'gar, Krông Pach, Ea Kar, thành phố Buôn Ma Thuột, Cư Kuin, Buôn Đôn. Hàm lượng Nitrat cao trong nước thường gặp ở Ea Kar, có nơi vượt tới 12,2 lần so với GTGH cho phép. Cụ thể, tại khối phố 3, thị trấn Ea Knốp (87,1 mg/l); cụm công nghiệp Ea Đar (21,98 mg/l); tổ An Cư, thị trấn Ea Kar (184,4 mg/l),… Cũng như thông số Amoni, sự ô nhiễm Nitrat nước dưới đất có sự tăng nhanh theo thời gian. Cụ thể, với 277 mẫu phân tích trước năm 2005 thì chỉ có 12 (chiếm 4,3%) mẫu hàm lượng Nitrat vượt GTGH (vượt cao nhất 2,5 lần), trong khi đó với 154 mẫu phân tích của đề tài thì có tới 24 mẫu (chiếm 15,6%) hàm lượng Nitrat vượt GTGH (vượt cao nhất 12,2 lầntổ An Cư, TT Ea Kar).Kết quả mẫu phân tích Nitrat theo thời gian tại lỗ khoan quan trắc LKC8a -Phước An, Krông Pach trong tầng chứa nước bazan, cho thấy mùa khô năm 1998 Nitrat 9,3 mg/l và đến mùa khô năm 2009 nó đã tăng lên tới 70,8 mg/l (xem hình 21). Clorua có hàm lượng thay đổi từ 0,53 đến 186,13 mg/l, giá trị trung bình khoảng 26,5 mg/l. Như vậy, trong số 494 mẫu đã phân tích không có mẫu nào có hàm lượng Clorua vượt quá GTGH cho phép, giá trị lớn nhất là 186,13 mg/l chỉ bằng hơn nửa GTGH cho phép (GTGH: 250 mg/l).-Hàm lượng Sulfat (SO4 2-):Hàm lượng Sulfat trong nước dưới đất thường nhỏ, thay đổi từ không phát hiện thấy đến 196,84 mg/l, thường gặp < 2,0 mg/l, mhỏ hơn nhiều lần so với tiêu chuẩn cho phép (400 mg/l). Tức là nước dưới đất tỉnh Đăk Lăk hoàn toàn chưa có dấu hiệu ô nhiễm Sulfat.-Hàm lượng sắt tổng cộng (Fe 2+ +Fe 3+ ): Tổng hàm lượng ion sắt biến đổi từ không phát hiện đến 8,18 mg/l, thường gặp nhỏ hơn 0,5 mg/l.Trong số 494 mẫu phân tích chỉ có 8 mẫu vượt không nhiều so với GTGH về tiêu chuẩn chất lượng nước dưới đất.Các mẫu vượt được lấy tại LK17 -xã Tân Hòa, Buôn Đôn (6,21 mg/l); giếng đào 715-H đề án Buôn Đôn (5,55 mg/l), Nhà máy thép Đông Nam Á -tp. Buôn Ma Thuột (8,18 mg/l) và Giếng BĐ254 -Buôn Đôn: 5,13 mg/l).Tuy nhiên, nếu theo Tiêu chuẩn nước sạch của Bộ Y tế (Quyết định số 09/2005/QĐ-BYT) thì nước có hàm lượng tổng sắt (Fe 2+ +Fe 3+ ) > 0,5 mg/l, khi sử dụng cho ăn uống sinh hoạt thì cần phải xử lý. Nếu tính theo tiêu chuẩn của Bộ Y tế, thì với 494 mẫu đã phân tích có 74 mẫu (chiếm 13,6%) có hàm lượng sắt vượt quá 0,5 mg/l. Nước dưới đất có hàm lượng tổng sắt >0,5 mg/l thường phân bố ở Buôn Đôn, Ea Súp, Krông Ana, phía tây thành phố Buôn Ma Thuột, Krông Buk, Ea Kar, Cư M'gar và huyện Lăk.Về hàm lượng các hợp chất độc hại, kim loại nặng ở trong nước dưới đất tỉnh Đăk Lăk, theo kết quả phân tích mẫu cho thấy hầu hết chúng đều có giá trị thấp, nằm trong giới hạn cho phép theo tiêu chuẩn hiện hành. Cụ thể như sau:-Hàm lượng Florua (F):Qua kết quả phân tích của 177 mẫu nước cho thấy hàm lượng Florua trong nước dưới đất thay đổi từ 0,001 đến 1,927 mg/l, trung bình 0,122 mg/l, thấp hơn nhiều so với tiêu chuẩn cho phép. Trong số mẫu phân tích có 2 mẫu (1,1%) có hàm lượng Florua vượt GTGH cho phép từ 1,7 đến 1,9 lần. Mẫu thứ nhất lấy tại giếng gia đình ông Nguyễn Huệ, 55 Hùng Vương, thị trấn Ea Sup có hàm lượng Florua 1,927 mg/l; mẫu thứ hai lấy ở giếng nhà ông Thin, Buôn Bàng, xã Đăk Liêng, huyện Lăk, có hàm lượng Florua 1,78 mg/l. Nước dưới đất khi bị ô nhiễm Florua (F > 1,0 mg/l) có thể gây ra các bệnh về răng như đốm răng, mục răng, chết răng (dental Floruaosis), còn khi hàm lượng Florua vượt quá 5 mg/l thì thường xảy ra các bệnh Floruasis ở khung xương như xơ cứng khớp, to khớp, liệt chi, ....Với kết quả phân tích của 177 mẫu nước dưới đất cho thấy hàm lượng Xianua thay đổi từ 0,0001 đến 0,006 mg/l, trung bình khoảng 0,002 mg/l, thấp hơn nhiều so với tiêu chuẩn cho phép (GTGH: 0,01 mg/l).-Hàm lượng Phenol: Hàm lượng Phenol trong nước dưới đất thay đổi từ 0,0001 đến 0,0019 mg/l, trung bình 0,0006 mg/l. Trong tổng số 177 mẫu phân tích có 5 mẫu (chiếm 2,8%) vượt GTGH. Kết quả phân tích của 5 mẫu có hàm lượng Phenol vượt quá GTGH cho phép thuộc đề án Điều tra nguồn nước dưới đất ở một số vùng trọng điểm tỉnh Đăk Lăk: 3 mẫu ở xã Dliê Yang -Ea H'leo (0,0003 -0,0019 mg/l), một mẫu ở xã Cư Pơng -Krông Buk (0,0011 mg/l), một mẫu ở xã Ea H'Đỉng -CưM'gar (0,0019 mg/l). Tuy nhiên, hàm lượng của chúng chỉ vượt chút ít so với GTGH cho phép (0,001 mg/l).Khi sử dụng nước có hàm lượng Phenol vượt quá GTGH cho ăn uống, về lâu dài có thể gây viêm gan, thận,… -Hàm lượng Asen (As):Qua kết quả phân tích của 225 mẫu nước (trong đó có 48 mẫu thu thập được lấy tại các trạm cấp nước tập trung) cho thấy hàm lượng Asen trong nước dưới đất tỉnh Đăk Lăk thay đổi từ <0,001 đến 0,041 mg/l, thường gặp từ 0,001-0,002 mg/l. Như vậy, nước dưới đất không bị ô nhiễm Asen (GTGH: 0,05 mg/l).Tuy nhiên, theo kết quả phân tích mẫu nước của \"Báo cáo đánh giá nguồn nước dưới đất vùng Buôn Đôn\", cho thấy có 4 mẫu nước có hàm lượng Asen lớn hơn 0,01 mg/l (LK2xã Ea Huar có As = 0,0137 mg/l, LK8xã Ea Wer có As = 0,0112 mg/l, LK10xã Ea Wer có As = 0,0144 mg/l và xã Ea M'Năng, Cư M'gar hàm lượng Asen 0,041 mg/l) vẫn thấp hơn GTGH. Tuy nhiên, theo hướng dẫn tiêu chuẩn chất lượng nước uống của WHO (trong Guideline for drinking water, WHO, 1993), hàm lượng Asen trong nước vượt quá 0,01 mg/l có nguy cơ gây ung thư da, nên cần lưu ý nếu sử dụng nước tại các lỗ khoan này.-Hàm lượng Cadimi (Cd): Kết quả phân tích của 177 mẫu nước cho thấy hàm lượng Cadimi dao động từ 0,0002 đến 0,0067 mg/l, trung bình khoảng 0,0019 mg/l. Trong số mẫu phân tích có 2 mẫu tại các lỗ khoan vùng Buôn Đôn (thuộc đề án đánh giá nguồn nước dưới đất vùng Buôn Đôn) có hàm lượng Cadimi vượt GTGH cho phép từ 1,22 đến 1,34 lần. Đó là các mẫu nước lấy tại lỗ khoan LK18 -xã Tân Hoà (0,0061 mg/l) và lỗ khoan LK20xã Ea Bar (0,0067 mg/l).-Hàm lượng Chì (Pb):Hàm lượng Chì trong nước dưới đất thay đổi từ 0,0001 đến 0,082 mg/l. Trong số 177 mẫu phân tích có 5 mẫu (chiếm 2,8%) có hàm lượng Chì vượt GTGH. Trong đó có 3 mẫu ở huyện Ea H'Leo: tại km92 Ea Ral (0,012 mg/l), khu công nghiệp Trường Thành 1 (0,082 mg/l) và Bệnh viện huyện Ea H'Leo (0,012 mg/l); một mẫu ở lỗ khoan quan trắc LKC5 a -Phước An, Krông Pach (0,017 mg/l) và một mẫu được lấy tại giếng đào gia đình ông Nguyễn Văn Bảy, thôn Ea Na, xã Cư Mlanh, huyện Ea Súp.Khi sử dụng nước có hàm lượng Chì vượt quá GTGH cho phép cho ăn uống có thể gây thiếu máu, tác hại đến thần kinh, tổn thương đến thận, đường tiêu hóa, tim mạch.-Hàm lượng Crôm (Cr):Hàm lượng Crôm trong nước dưới đất thay đổi từ 0,001 đến 0,0052 mg/l, trung bình 0,002 mg/l, thấp hơn nhiều so với giá trị giới hạn (GTGH: 0,05 mg/l).-Hàm lượng Đồng (Cu): Kết quả phân tích của 177 mẫu nước dưới đất cho thấy hàm lượng Đồng thay đổi từ 0,0001 đến 0,009 mg/l, trung bình 0,001 mg/l, thấp hơn nhiều so với giá trị cho phép (GTGH: 1,0 mg/l).-Hàm lượng Kẽm (Zn):Hàm lượng Kẽm qua kết quả phân tích của 177 mẫu nước cho thấy chúng thay đổi từ 0,001 đến 0,783 mg/l, trung bình 0,045 mg/l, thấp hơn nhiều so với giá trị giới hạn cho phép (GTGH: 3,0 mg/l).-Hàm lượng Mangan (Mn):Qua kết quả phân tích mẫu nước cho thấy hàm lượng Mangan trong nước dưới đất thay đổi từ 0,008 đến 4,452 mg/l, trung bình 0,191. Trong số 177 mẫu phân tích có 12 mẫu (chiếm 6,7%) vượt GTGH từ từ 1,2 đến 8,9 lần. Các mẫu nước có hàm lượng Mangan vượt GTGH cho phép phân bố như sau:-Huyện Buôn Đôn: tại lỗ khoan LK11 -Buôn Đôn (0,586 mg/l); giếng khoan UBND xã EaHuar (0,604 mg/l); giếng khoan gia đình ông Vũ Văn Cán, thôn Ea Duat, thị trấn Buôn Đôn (0,898 mg/l); trạm cấp nước tập trung xã Krông Na (0,835 mg/l); lỗ khoan LK14, thị trấn Buôn Đôn (0,645 mg/l); lỗ khoan LK21 ở xã Krông Na (0,579 mg/l).-Huyện Ea Sup có 2 mẫu: giếng đào gia đình ông Đinh Văn Hải, thôn 3, xã Ea Jlơi (0,617 mg/l) và giếng khoan gia đình ông Đinh Văn Long, thôn 10, xã Ea Rốc (4,452 mg/l).-Huyện Lăk có 2 mẫu vượt: giếng khoan ông Nguyễn Văn Thành, thôn Đoàn Kết 2, xã Buôn Triết (1,756 mg/l) và giếng khoan gia đình bà Vũ Thị Sáu, thôn 1, xã Đrây Sap (0,636 mg/l).Ngoài ra có một mẫu ở thôn 12, Ea Knut, huyện Ea Kar (0,623 mg/l) và tại thôn 1, Buôn Trấp, huyện Krông Ana (0,578 mg/l).Khi sử dụng nước có hàm lượng Mangan vượt quá GTGH cho phép cho ăn uống có thể gây suy nhược thần kinh, giảm trí nhớ, rối loạn nội tiết, chảy máu cam, các bệnh về phổi.-Hàm lượng Thủy ngân (Hg):Kết quả phân tích 177 mẫu nước cho thấy hàm lượng Thủy ngân trong nước dưới đất tỉnh Đăk Lăk thay đổi từ <0,0001 đến 0,0041 mg/l, trung bình 0,0009 mg/l, hầu hết đều đạt tiêu chuẩn cho phép.Trong số 177 mẫu phân tích có 9 mẫu (chiếm 5,1%) có hàm lượng Thủy ngân vượt GTGH cho phép, phân bố như sau:-Huyện Cư M'gar có 4 mẫu hàm lượng Thủy Ngân vượt GTGH từ 1,7 đến 3,2 lần: lỗ khoan LK4 -xã Ea M'droh (0,0017 mg/l), lỗ khoan LK5 -xã Quảng Hiệp (0,0032 mg/l), lỗ khoan LK11 -xã Quảng Hiệp (0,0021 mg/l) và lỗ khoan LK12 -xã Ea M'năng (0,0023 mg/l).-Huyện Buôn Đôn có 5 mẫu: lỗ khoan LK1 -xã Krông Na (0,0021 mg/l), lỗ khoan LK3 -xã Ea Mdroh (0,0021 mg/l), lỗ khoan LK8 -xã Ea Wer (0,0031 mg/l), lỗ khoan LK14 -thị trấn Buôn Đôn (0,0041 mg/l) và lỗ khoan LK21xã Krông Na (0,0028 mg/l).Khi sử dụng nước cho ăn uống có hàm lượng Phenol vượt quá GTGH cho phép, thì có thể gây rối loạn tiêu hóa, các bệnh về thần kinh thực vật, tiết niệu.-Hàm lượng Selen (Se):Hàm lượng Selen trong nước dưới đất hầu hết rất thấp, kết quả của 177 mẫu phân tích cho thấy hàm lượng thay đổi từ 0,001 mg/l đến 0,17 mg/l. Trong số mẫu phân tích có 10 mẫu (chiếm 5,6%) vượt GTGH từ 1,1 đến 1,7 lần.Đó là các mẫu nước lấy tại khu công nghiệp Trường Thành 1, Ea H'leo (0,011 mg/l); tại km17 Buôn Hồ (0,011 mg/l), tại lỗ khoan quan trắc LKC4 a -Buôn Hồ (0,17 mg/l); ở Phước An, Krông Pach, tại 2 lỗ khoan quan trắc LKC8 0 (0,15 mg/l), LKC5 o (0,15 mg/l); tại lỗ khoan quan trắc LK49T -Hòa Đông, Buôn Ma Thuột (0,17 mg/l); tại lỗ khoan LK18 (0,032 mg/l) và lỗ khoan LK17 (0,055 mg/l) xã Tân Hòa, Buôn Đôn.-Thuốc bảo vệ thực vật: theo kết quả phân tích mẫu nước tại một số lỗ khoan (lỗ khoan 54T -Ea Kar, C4a -Buôn Hồ,…) thuộc đề án quan trắc quốc gia động thái nước dưới đất khu vực Đăk Lăk cho thấy: dư lượng thuốc bảo vệ thực vật (DDT, DDE, Lindan) đều thấp hơn giá trị cho phép.-Hàm lượng vi sinh:Với kết quả phân tích 41 mẫu của đề tài và 43 mẫu thu thập cho thấy tổng E.coli từ thay đổi từ không phát hiện thấy đến 35.000 MPN/100ml, Coliform từ không không phát hiện thấy đến > 180.000 MPN/100ml, vượt nhiều lần so với GTGH cho phép (Coliform: 3 MPN/100ml, tổng E.coli: không có). Trong tổng số 84 mẫu phân tích có tới 51 mẫu vượt về E.Coli (chiếm 60,7%) và 35 mẫu vượt về Coliform (chiếm 41,7%). Nguyên nhân nước dưới đất tỉnh Đăk Lăk bị ô nhiễm vi sinh là do điều kiện vệ sinh một số giếng dân dụng còn kém, mặt khác phía trên các tầng chứa nước là vỏ phong hóa bazan có khả năng thấm nước, nên mức độ tự bảo vệ của tầng chứa nước không cao.Theo báo cáo trên thì một điều cũng đáng lưu ý là ô nhiễm nguồn nước có thể còn gây ra bởi di sản của chiến tranh. Theo tài liệu nghiên cứu công bố gần đây, trong thời kỳ 1961 -4/1975, quân Mỹ và đồng minh đã sử dụng gần 100.000 tấn chất độc hóa học, trong đó có 57.000 tấn là chất da cam/điôxin trên diện tích khoảng 3 triệu ha ở Việt Nam, trong đó có tỉnh Đăk Lăk. Như đã biết, chu kỳ bán hủy của điôxin trong môi trường có thể từ 3 -12 năm. Hơn nữa, phần lớn bị phân huỷ, một phần được rửa trôi do nước mưa làm cho phần lớn hàm lượng chất chất độc trong môi trường giảm. Theo báo cáo tại đề tài nghiên cứu, thì ở tỉnh Đăk Lăk (cũ) với tổng diện tích là 1.980.000 ha sẽ còn chứa không quá 1.030g đioxin.Nếu giả sử toàn bộ lượng chất độc da cam/điôxin này được rửa trôi trong một mùa mưa và đổ toàn bộ vào khu vực sông Srêpok (với lưu lượng trung bình năm là 8,0 tỷ m 3 /năm) thì hàm lượng da cam/điôxin trong nước sông Xrêpok sẽ 0,127 g/l (hay 0,127 ppt), ở dưới xa mức cho phép phát hiện của các kỹ thuật hiện đại (1 ppt), nghĩa là dưới mức gây tác hại đến hệ sinh thái nước và con người. Tính toán ở trên dựa trên giả thuyết là toàn bộ lượng điôxin còn lại được đưa vào lưu vực sông Srepok trong một năm. Trên thực tế lượng điôxin tồn lưu đã bị thất thoát nhiều và rải rác chứ không thể dồn toàn bộ vào thượng nguồn sông Srêpok. Vì vậy, hàm lượng thực tế của điôxin trong nước sông Srêpok có thể thấp hơn tính toán. -Tại 8 vị trí khảo sát trên địa bàn tỉnh trong mùa mưa thì có tới 5 giếng tại các huyện thị như thị xã Gia Nghĩa, huyện Đắk Glong, Đắk Song, Krông Nô, Tuy Đức có độ pH thấp dao động từ 3.57 đến 6.44 không nằm trong giới hạn của QCVN 09: 2008.-Hàm lượng Fe tổng, Cl -, Ca2 + , Mg2 + , SO4 2-,...thấp, nằm trong giới hạn của quy chuẩn.-Hàm lượng các chất ô nhiễm nhóm N thấp, hàm lượng NH4 + , NO2 Nhóm amoni, tổng độ cứng, kim loại nặng vẫn nằm trong giới hạn cho phép. Tuy nhiên hàm lượng chất hữu cơ, vi sinh vật có chiều hướng tăng cao trong thời gian gần đây. Nguồn gốc gây ô nhiễm có thể là do các công trình vệ sinh, các công trình xử lý chất thải chăn nuôi, nước thải sinh hoạt không qua xử lý, chủ yếu là tự thấm nên đã xảy ra hiện tượng thấm nước thải làm ô nhiễm các tầng nước dưới đất.Trên lưu vực sông Srepok chủ yếu là trên địa bàn tỉnh Đăk Lăk hệ thống khai thác điện năng từ bậc thang thủy điện trên dòng chính sông Srepok và hệ thống thủy điện vừa và nhỏ trên các dòng nhánh sông Srepok (xem bảng 9). Trên dòng nhánh và dòng chính có tổng số 30 công trình, tổng công suất lắp máy Nlm = 912.135 MW. Sản lượng điện tăng bình quân hàng năm trên 15%. Để đạt được những kết quả trên ngành năng lượng đã tiến hành xây dựng hàng loạt các công trình thủy điện, về phương diện nào đó đã nhận được sự đồng tình của các nhà quản lý, cũng như khách hàng của EVN. Tuy nhiên việc phát triển thủy điện thiếu kiểm soát đã và đang ảnh hưởng đến môi trường:-Tình trạng cạn kiệt nguồn nước mặt:Sông Srepok là một nhánh lớn của sông Mê Công, hàng năm tổng lượng nước đến toàn lãnh thổ tỉnh Đắk Lắk, Đăk Nông trên các lưu vực chính như Srepok 9 tỷ m 3 , Ea H'Leo 1,98 tỷ m 3 . Tài nguyên nước mặt lớn, nhưng do phân bố không đều, trên lưu vực có mùa mưa kéo dài dễ gây úng lụt và một mùa khô lưu vực sông Srepok hầu như không có mưa, thiếu nước nghiêm trọng. Việc khai thác quá mức dòng chảy của sông Srepok và các chi lưu của nó, cùng với tình trạng phá rừng làm nương rãy đã làm cho tình hình ngày càng nghiêm trọng.Theo báo cáo đánh giá tác động môi trường thủy điện Srepok 4A do công ty Cổ phần Tư vấn Xây dựng Điện 4 thực hiện, công trình thuỷ điện Srêpôk 4A được nghiên cứu xây dựng bổ sung vào hệ thống bậc thang thuỷ điện trên sông Srepok. Thuỷ điện Srepok 4A không xây dựng đập, không có hồ chứa, tận thu nguồn nước từ thuỷ điện Srêpôk 4 để phát điện. Lưu lượng xả qua nhà máy thuỷ điện Srêpôk 4 trả về sông Srêpôk 8,23m 3 /s, phần còn lại chuyển qua kênh dẫn về nhà máy Srêpôk 4A phát điện, nước sẽ theo kênh dẫn dài khoảng 15 km, được đào băng qua 3 xã Ea Wer, Ea Huar và Krông Na, huyện Buôn Đôn. Sau khi phục vụ phát điện cho nhà máy, lượng nước này sẽ được trả về sông Sêrêpốk, cách nơi nhận nước khoảng 20 km đường sông. Như vậy nhìn từ trên cao, sông Srepok như có thêm một nhánh, tuy nhiên nó sẽ sớm cạn kiệt nhánh chính khi thủy điện Sêrêpốk 4A đi vào hoạt động. Theo ước tính, 20km sông Sêrêpốk đi ngang vườn quốc gia không còn nước khi công trình thủy điện Sêrêpốk 4A đi vào hoạt động do lượng nước từ nhà máy Thủy điện Sêrêpốk 4 xả trực tiếp xuống sông Sêrêpốk chỉ còn lại 8,23 m³/giây, trong khi dòng chảy tự nhiên của sông là 220 m³/giây, tức chỉ bằng 1/26 so với dòng chảy tự nhiên khiến cả một đoạn sông dài sẽ cạn kiệt nước.Hình 23: Sông Srepok tại hạ lưu thủy điện Srepok 4 (bên phải là kênh dẫn nước sang thủy điện Srepok 4A) Với mực nước quá thấp quanh năm như vậy sẽ ảnh hưởng lớn đến chế độ dòng chảy, đến hệ sinh thái khu vực sông này và khu du lịch sinh thái Bản Đôn cũng sẽ bị ảnh hưởng nghiêm trọng.-Tình trạng cạn kiệt nguồn nước ngầm:Theo báo cáo của sở Nông nghiệp và PTNT tỉnh Đăk Lắk, tình hình hạn hán vào mùa khô trên địa bàn tỉnh đang diễn ra hết sức nghiêm trọng, nhiều vùng của Tây Nguyên có thể bị sa mạc hóa do không có nguồn nước cấp. Từ năm 1997 trở lại đây, tình trạng chặt phá rừng đầu nguồn làm làm nương rãy, đặc biệt là trồng cây cà phê. Rừng ở Đăk Lăk bị tàn phá với tốc độ chóng mặt, độ che phủ giảm từ 65 phần trăm xuống chỉ còn khoảng 42 phần trăm trong 10 năm qua, nên lượng nước mưa hầu hết trở thành nước lũ, lượng nước có thể thấm xuống được tầng nước ngầm là rất hạn chế.Theo tài liệu nghiên cứu của đoàn Điều tra Quy hoạch Tài nguyên nước 704 đã thực hiện quan trắc tài nguyên môi trường nước dưới đất khu vực Đăk Lăk và Đăk Nông, cho thấy: hiện nay, mực nước ngầm ở Đăk Lăk và Đăk Nông đã thay đổi rất lớn nhiều vùng giảm 20% so 10 năm trước; về mùa khô, mực nước ngầm trung bình thấp hơn những năm đầu thập niên 80 của thế kỷ trước khoảng 1,4 -1,5m, thậm chí có nơi bị tụt giảm từ 4 -5m đặc biệt ở vùng Nam Đông còn không đủ nước ngầm cấp cho sinh hoạt. Đặc biệt, những vùng trồng nhiều càphê, do phải bơm hút nước quá lớn vào mùa khô như ở Buôn Ma Thuột, Krông Buk, Krông Pách, Krông Ana, Cư M'gar (Dăk Lăk), mực nước ngầm giảm từ 4 -5 m so với những năm đầu thập niên 80. Qua khảo sát của Đoàn 704 cho thấy một số vùng như Krông Pak, Lak , Krông Buk và vùng phía Đông Buôn Ma Thuột … mực nước ngầm tiềm năng không còn nhiều như 5 năm trước. Ví dụ vùng Krông Pak, Lak… năm 2004 có thể khai thác tối đa 0,4-0,6 triệu m3/ngày, thì nay còn chưa đầy 400 nghìn m3/ngày. Hiện nay việc khai thác quá mức khiến tầng chứa nước bị kém đi, việc khai thác nước ngầm bừa bãi cũng làm tầng nước ngầm bị suy giảm mạnh. Nhiều gia đình hiện nay do nhu cầu cấp thiết về nước tưới đã thuê máy khoan địa chất (có đường kính 15cm) để khoan xuống lòng đất từ 70-80m, rổi dùng điện ba pha hút nước lên tưới cho cà phê, hồ tiêu…Điều này gây hậu quả khôn lường, làm thủng tầng nước ngầm ở nhiều nơi và là một trong những nguyên nhân trực tiếp đe dọa thêm tình trạng cạn kiệt nghiêm trọng lượng nước ngầm ở Đak Lak nói riêng, Tây Nguyên nói chung.Một yếu tố khác là biến đổi khí hậu cũng có thể làm mực nước ngầm hiện nay bị suy giảm. Tình trạng nước ngầm suy giảm mạnh đã gây ảnh hưởng lớn đến canh tác nông nghiệp, đặc biệt với càphê, cao su. Bên cạnh đó, ảnh hưởng của thuỷ điện, khi mực nước ngầm giảm, thì nước về các hồ thuỷ điện cũng giảm. Hiện nay, tình trạng thiếu nước ở nhiều hồ thuỷ điện trên lưu vực đã thể hiện rất rõ. Nếu cứ tiếp tục khai thác nước ngầm bừa bãi như hiện nay, mức suy giảm mực nước ngầm sẽ còn nghiêm trọng hơn nữa, sẽ tác động trực tiếp đến đời sống của như kinh tế của người dân. Suy giảm dòng chảy bùn cát ở hạ du do các công trình thủy điện không có thiết kế cống xả đáy làm thiếu hụt lượng phù xa bổ sung độ màu cho đất nông nghiệp hạ lưu, cát sạn sỏi, thêm vào đó là hiện tượng khai thác cát đang diễn ra khó kiểm soát làm ảnh hưởng hình thái sông và sinh kế của người dân sống dựa vào tài nguyên này.-Ảnh hưởng đến hệ sinh thái:Việc phá rừng đầu nguồn, trong đó có cả những khu vực vườn quốc gia, khu bảo tồn, để xây các công trình của nhà máy thủy điện trên lưu vực sông Srepok đã làm mất rất nhiều diện tích rừng, mất đi tính đa dạng sinh học trong khu vực, trong khi việc trồng bù rừng lại không được thực hiện đầy đủ vì hầu hết các công trình đã không bố trí được hoặc bố trí không đủ quỹ đất trồng rừng nhằm bù lại diện tích rừng đã mất. -Vỡ kênh dẫn nước thủy điện Srepok 4A.Tận dụng triệt để khả năng thủy điện của sông Srepok, EVN đã xây dựng thủy điện Srepok 4A không xây dựng đập, không có hồ chứa, tận thu nguồn nước từ thuỷ điện Srêpôk 4 để phát điện. Nước sẽ theo kênh dẫn dài khoảng 15 km, được đào băng qua 3 xã Ea Wer, Ea Huar và Krông Na, huyện Buôn Đôn về nhà máy Srêpôk 4A phát điện.Trong quá trình thi công vào khoảng 15g30 ngày 29/9/2013, kênh dẫn dòng thủy điện Sêrêpốk 4A đã bất ngờ vỡ toang 2 bên, cuốn trôi hàng chục ha lúa và hoa màu của người dân. Đoạn kênh bị vỡ dài khoảng 50m mỗi bên khiến hàng chục ha lúa, hoa màu của người dân ở dọc 2 bên kênh là thôn 1, buôn N'Drếch A và buôn Giang Pông (thuộc xã Ea Huar, huyện Buôn Đôn, Đắk Lắk) bị ngập, hư hại.Thiệt hại về hoa màu do vỡ kênh Nguồn: Báo Lao động online ngày 29/9/2013-Sử dụng phân hóa học thuốc bảo vệ thực vật:Theo thống kê đến năm 2010 diện tích cà phê của riêng tỉnh Đăk Lăk là 182,4 ngàn ha, 71,8 ngàn ha lúa. Tỉnh Đăk Nông có Trong những năm gần đây, hoá chất bảo vệ thực vật được sử dụng rộng rãi trong sản xuất nông nghiệp, gia tăng cả về khối lượng và đa dạng về chủng loại. Hóa chất bảo vệ thực vật thường sử dụng là: Thuốc trừ sâu, thuốc trừ bệnh, thuốc diệt cỏ và các loại thuốc khác, khoảng gần 200 loại thuốc trừ sâu, 83 loại thuốc trừ bệnh, 52 loại thuốc diệt cỏ, 8 loại thuốc diệt chuột và 9 loại thuốc kích thích sinh trưởng được sử dụng trên lưu vực. Trong đó nhiều nhất vẫn là nhóm hợp chất lân hữu cơ, clo hữu cơ thuộc nhóm độc từ I đến IV, sau đó là nhóm Cacbonat, Pyrethroid thuộc thế hệ IV.Huyện sử dụng thuốc bảo vệ thực vật nhiều nhất là Krông Ana (2,04kg/ha/năm), tiếp đến là huyện Krông Năng (1,83kg/ha/năm), ít nhất là huyện Buôn Đôn, huyện Krông Bông (0,16kg/ha/năm). Xã sử dụng nhiều nhất là xã Dlie Ya, huyện Krông Năng (13,2 tấn/năm), xã Hòa Hiệp, Ea Tiêu, huyện Krông Ana (8 tấn/năm) (nguồn báo cáo hiện trạng môi trường tỉnh Đăk Lắk -2010). Với liều lượng sử dụng như trên, cộng với quy trình sử dụng chưa đảm bảo yêu cầu kỹ thuật. Phân bón, thuốc bảo vệ thực vật (BVTV) được sử dụng hết phát tán vào nguồn nước mặt, nước ngầm gây ô nhiễm nguồn nước ảnh hưởng tới sức khỏe cộng đồng.-Nước thải, rác thải Theo số liệu thống kê năm 2008, chỉ tính riêng tổng dân số trên địa bàn tỉnh Đăk Lăk là 1,778 triệu người, trong đó có khoảng 22% dân số sống tại vùng đô thị. Tổng lượng rác thải sinh hoạt phát sinh từ vùng đô thị khoảng 260 m 3 /ngày, tăng từ 15-25 % so với những năm trước năm 2005. Tỉnh Đăk Nông với dân số đô thị năm 2010 là 76.329 người, ước tính lượng thải hàng ngày là 6.106 m 3 thải ra môi trường. Tổng lượng nước thải phát sinh từ các nhà máy, khu công nghiệp vào khoảng 11.728 m 3 /ngày đêm. Sự gia tăng khối lượng chất thải rắn đô thị là do sự phát triển nhanh của nền kinh tế, tốc độ đô thị hóa ngày càng cao, mức sống của con người ngày càng tăng. Riêng tại thành phố Buôn Ma Thuột, khu vực nội thành có khoảng 326.892 dân cùng với hoạt động của các cơ sở sản xuất, nhà hàng, bệnh viện,… thải ra lượng rác sinh hoạt trung bình 260 tấn/ngày. Đối với rác thải y tế, là loại rác thải nguy hại bao gồm chất thải lây nhiễm, chất thải hóa chất, dược phẩm và chất thải phóng xạ có chứa các hợp chất có các đặc tính gây hại trực tiếp hoặc tương tác với các chất khác ảnh hưởng xấu tới môi trường và sức khoẻ cộng đồng.Tỉnh Đăk Lăk có 21 Bệnh viện, 15 Trung tâm y tế cấp huyện, 1 Trung tâm Chăm sóc sức khỏe bà mẹtrẻ em và 1 trại phong, ngoài ra còn có 184 trạm Y tế xã phường và các cơ sở khám chữa bệnh tư nhân với tổng số giường bệnh là 3.785 giường. Ước tính với tốc độ thải là 0,5kg/gường bệnh/ngày đêm thì lượng chất thải rắn y tế tại các Bệnh viện và Trung tâm y tế huyện khoảng 1.892 kg/ngày, trong đó có khoảng 757 kg rác thải y tế nguy hại được thu gom riêng. Tại tỉnh Đăk Nông chất thải nguy hại chủ yếu phát sinh từ các bệnh viện, cơ sở y tế, các nhà máy và các KCN. Tổng lượng chất thải phát sinh nguy hại trên địa bản tỉnh theo số liệu thống kê năm 2010 là 0,087 tấn/ ngày. Thành phần rác thải y tế rất đa dạng và nguy hiểm, nếu không phân loại, quản lý và xử lý tốt sẽ là nguồn lây nhiễm của nhiều loại bệnh tật như: HIV, viêm gan, các bệnh nhiễm khuẩn,… đặc biệt trong điều kiện nhiệt đới ẩm gió mùa sẽ là một trong những nguồn tạo ra các ổ dịch bệnh nguy hiểm cho những người làm việc tại bệnh viện, những người làm công tác thu gom, vận chuyển, xử lý và đối với dân cư xung quanh.-Sức ép về tăng dân số và di dân trên lưu vực: Tốc độ gia tăng dân số có kế hoạch và tự do trong thời gian qua đã và đang có những tác động đến tài nguyên rừng, kéo theo nhu cầu ngày càng gia tăng về đất cho canh tác nông nghiệp. Một số diện tích rừng đã bị chuyển đổi không theo quy hoạch sang canh tác nông nghiệp. Vì vậy, đã làm thay đổi diện tích rừng tự nhiên. Theo số liệu thống kê, dân số tỉnh Đắk Lắk năm 2005 là 1.715.000 người, đến năm 2010 dân số tăng lên 1.754.000 người, tỉ lệ tăng dân số khoảng 1,55% (nguồn: Niên giám thống kê 2010). Theo kết quả điều tra cuối năm 2010 của tỉnh Đăk Nông dân số toàn tỉnh là 510.570 người tăng lên đến 28,43% so với năm 2004, lúc mới tách tỉnh, toàn tỉnh có 397.536 người (Niên giám thống kê tỉnh Đăk Nông năm 2010). Điều này cho thấy, ngoài lượng dân số trên địa bàn tỉnh, còn có một lượng lớn dân di cư chủ yếu từ các tỉnh phía Bắc vào Đắk Nông làm cho dân cư trong tỉnh tăng vọt. Hiện nay dân di cư từ các tỉnh phía Bắc vẫn tiếp tục di chuyển vào tỉnh Đắk Nông, từ năm 2004 đến 2009 đã có 1.489 hộ với 4.300 khẩu từ 40 tỉnh thành di cư đến. Phần lớn dân di cư tự do là những hộ nghèo, hoàn cảnh kinh tế khó khăn, người dân di cư chủ yếu phá rừng làm nương rẫy, nhất là rừng già, rừng đầu nguồn, điều này đã tác động xấu đến quy hoạch làm huỷ hoại môi trường sinh thái. Đó là một trong những nguyên nhân chính làm giảm diện tích rừng bị tàn phá với tốc độ chóng mặt, độ che phủ giảm từ 65% xuống chỉ còn khoảng 42% trong 10 năm qua. Hiện nay nhiều lưu vực sông đang bị suy thoái nghiêm trọng và không đảm bảo dòng chảy ở hạ du mà nguyên nhân chính là do việc mất cân đối trong khai thác, sử dụng nước cũng như việc coi nhẹ bảo vệ môi trường. Tình trạng này đã diễn ra các thảm họa như: thiếu nước cho các nhu cầu sử dụng ở hạ du, sự cạn kiệt dòng chảy trong mùa cạn, dẫn đến tình trạng đứt dòng của sông ở vùng hạ du (điển hình là thủy điện Srepok 4 không xả nước xuống hạ du, chỉ xả xuống sông Sêrêpốk 8,23 m³/giây, trong khi dòng chảy tự nhiên của sông là 220 m³/giây, tức chỉ bằng 1/26 so với dòng chảy tự nhiên khiến cả một đoạn sông dài trên 20 km cạn kiệt nước). Sự gia tăng các hiểm hoạ do nước gây ra như lũ lụt và sa bồi thuỷ phá; sự suy giảm chất lượng nước khiến cho nước sông không còn sử dụng được; sự gia tăng xâm nhập mặn ở vùng cửa sông. Do tính cấp thiết về khai thác và sử dụng hợp lý tài nguyên nên trong vài thập kỷ gần đây các nước trên thế giới đã quan tâm đến giới hạn khai thác và duy trì dòng chảy môi trường. Dòng chảy môi trường đã được nghiên cứu và ứng dụng trong quy hoạch và quản lý nguồn nước các lưu vực sông ở hơn 25 nước trên thế giới trong đó có Mỹ , Úc, Nam Phi.... Đối với Việt Nam, dòng chảy môi trường mới được quan tâm trong khoảng 15 năm trở lại đây không phải hoàn toàn do nhận thức mà do trước đây chất lượng nước trên các sông chưa bị ô nhiễm. Trong chiến lược quốc gia về tài nguyên nước đến năm 2020 được chính phủ thông qua tháng 4/2006 đã đưa ra 6 mục tiêu bảo vệ tài nguyên nước trong đó có mục tiêu về dòng chảy môi trường là: \"Bảo đảm dòng chảy tối thiểu duy trì hệ sinh thái thuỷ sinh theo quy hoạch được cấp có thẩm quyền phê duyệt, trọng điểm là các sông có hồ chứa, đập dâng lớn, quan trọng\". Trên lưu vực sông Srepok, đến nay mặc dù đã có một số số liệu về chất lượng nước nhưng vẫn còn khá rời rạc. Chúng ta cũng đã đưa ra các quan điểm về dòng chảy môi trường thông qua việc kế thừa các phương pháp luận và phương pháp của thế giới tuy nhiên cần phải lược giản đi cho phù hợp với thực trạng số liệu và điều kiện của Việt Nam.","tokenCount":"6864"} \ No newline at end of file diff --git a/data/part_3/7512715732.json b/data/part_3/7512715732.json new file mode 100644 index 0000000000000000000000000000000000000000..fb70fc0054882375e9cb18fe4bf47b36f714dcd9 --- /dev/null +++ b/data/part_3/7512715732.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"e0ea983e823238082a567c208ff81961","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/45862a63-01f8-4401-a578-43178c7c549a/retrieve","id":"1607949944"},"keywords":[],"sieverID":"31c04e01-4cf0-4e64-88c0-6606765128ab","pagecount":"2","content":"At least 30 per cent of India's agricultural income comes from livestock, so a similar amount must be spent for research and development in the sector, said John Mellor, vice-president, Abt Associates, Inc, USA.Mellor was delivering the the keynote address on 'Agricultural growth and poverty reduction -the rapidly increasing role of small holders of livestock' at an international workshop on \"Livestock and Livelihoods: Challanges and opportunities for Asia in the emerging market environment\" organised by National Dairy Development Board and the Pro Poor Livestock Policy Facility (PPLPF) of the Food and Agricultural Organisation of the United Nations (FAO) at Anand on Monday.\"Rapidly rising income in low and middle-income countries has resulted in demand for livestock growing at six to eight per cent per year. If the domestic livestock industry meets this demand, it will double in size every 10 years and its share in agricultural GDP will grow rapidly, soon accounting for over half of the agricultural GDP. That will make possible an overall growth rate in agriculture of four to six per cent,\" he said.\"If the growth is in the small-holder livestock sector, it will contribute directly to poverty reduction and employment growth. Moreover, over time, it will provide much of the effective demand for the employment-intensive rural non-farm sector,\" Mellor added. Amrita Patel, chairman NDDB, Anand, in her opening address, said: \"Over 60 per cent of the close to 11 million farmer members in about one lakh village milk cooperatives all over the country are small, marginal, and even landless producers. Dairying has not meant just producing milk. It has provided livelihoods to millions of poorest in our country\". \"In India, the distribution of livestock amongst the poorest is far more equitable than the distribution of land. Livestock therefore plays an extremely critical role in supporting and sustaining livelihoods of a large number of people. Livestock are often the only livelyhood option available to the landless as common property resources are being increasingly captured by individuals for private gain,\" she added.Livestock production in Asia is growing at a much faster rate than any other agriculture commodity and it is expected that in a few years, it would account for nearly half of the agricultural output, in terms of value.In India dairy production accounts for about 70 per cent of the livestock produce. The demand for livestock products in developing countries is predicted to triple in next 20 years, offering opportunities to farmers to improve their incomes.The workshop was also attended by Deepak Tikku, managing director, NDDB, Samuel Jutzi, director, Animal Production and Health Division, FAO, Rome and Daniel Gustafson, FAO representive in India and Bhutan.","tokenCount":"437"} \ No newline at end of file diff --git a/data/part_3/7521747383.json b/data/part_3/7521747383.json new file mode 100644 index 0000000000000000000000000000000000000000..95f12a1ac7963320aeb3cda144b06c2573e97f83 --- /dev/null +++ b/data/part_3/7521747383.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"f826da871cc67f5563e92ea8559efdd4","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/f4f02877-f726-4422-b0cc-fe20b009b0cb/retrieve","id":"1225918659"},"keywords":[],"sieverID":"77051935-17a0-4cde-8956-22c615e3409c","pagecount":"63","content":"is a graduate of Oxford University and a fellow of the Canadian Institute of Chartered Accountants. She is also a fellow of the Canadian Insitute of Management Consultants. She has spent most of her career in financial services. She serves as the Vice President of the International Council on Management Consulting Institutes and a director of the Foundation for Responsible Computing. She is a member of the Canadian Advisory Board of Sybase Corporation and is a director of the Standards Council of Canada National Committee.World Agroforestry Centre is one of 15 centres supported by the Consultative Group on International Agricultural Research (CGIAR). The CGIAR Secretariat has been instrumental in sharing information and promoting best practice among the Centre Boards. World Agroforestry Centre has embraced the principles of corporate governance issued by the CGIAR:focusing on purpose and outcomes • ensuring accountability • understanding stakeholder perspectives • ensuring transparency and timely disclosure •World Agroforestry Centre operates under the authority of a legally constituted Board, charged with overall responsibility for the work of the Centre. The composition of the Board of Trustees is set out on page 3 of this report. The Board is chaired by a non executive chair. All non executive directors are independent of management.The board has diverse skills in the areas of agroforestry science, business management and accountancy.The board meets twice a year, once face-to-face and once by teleconference. In addition, teleconferences are held for various committees as needed. The Director General and Board Chair have weekly teleconferences. The Executive Committee of the board also meets once a year. The Board of Trustees plays a number of crucial roles:Legal: ensuring the best interests of the Centre and its • stakeholders. Functional: participating in policy setting, delegating • responsibility to Centre management and evaluating and overseeing performance. Symbolic: assuring stakeholders and securing their • goodwill.The Board of Trustees has delegated implementation of the Centre's 2008-2015 Strategy and day to day operations to the Director General and Senior Leadership Team.The purpose of the special committees of the Board of Trustees is to expedite its work. The committees have formal, written terms of reference that are approved and periodically reviewed by the board.Currently the board has six standing committees: Executive and Finance Committee The principal function of this committee is to set up general management policies for the centre and overview management and financial practices. The Executive and Finance Committee submits a report and recommendations to the Board of Trustees for endorsement.This committee is mandated to review the current and future work program of the World Agroforestry Centre in consultation with the Director General, director-level staff and other staff members nominated by the Director General. The committee's findings are reported to the Board of Trustees.This committee is tasked with overseeing the financial reporting process, risk management and internal control, the audit process and the Centre's process for monitoring compliance with laws and regulations and the code of conduct.The major responsibility of this committee is to monitor tenure of membership of serving trustees and to develop and maintain a roster of potential Board members.The principle function of this committee is to assist the Board of Trustees in reviewing the efficiency and effectiveness of the Centre's operational functions. This includes matters such as building expansion and safety and security.This committee is responsible for ensuring an active resource mobilization strategy for World Agroforestry to ensure targeted and ongoing fundraising with traditional and non-traditional donors.The World Agroforestry Centre participated in a number of activities during the year to contribute to the local community.The post-elections violence experienced in kenya during 2008 moved Centre staff who were concerned for the plight of innocent kenyans who found themselves displaced from their homes. Staff made donations amounting to kshs 600,000 and donated gifts in kind of a similar amount. These included foodstuffs, bedding and clothing as well as a host of other useful items. Staff also contributed in a blood drive to help save lives of kenyans injured in the bloody clashes.In December 2008, the Centre visited Watoto Wetu Children's home to brighten the Christmas of the orphans who live there. The home caters for nearly 40 children who have lost their parents. World Agroforestry Centre contributed foodstuffs and toiletries and gave a cash donation towards a Christmas party for the children.World Agroforestry Centre's Faith Wambua (left) and Veronica Bosibori (right) present supplies to children of Watoto Wetu, a children's home for HIV orphans. The staff made the visit to mark World AIDS day. The team presented foodstuffs, toiletries and a cash donation.In light of the unprecedented global food prices crisis in 2008, the Centre sought many opportunities to highlight its research results, which demonstrate the potential for agroforestry to achieve greater food security. The incorporation of a diverse variety of trees into agricultural systems can increase crop productivity, increase the incomes of smallholder farmers, and improve nutrition, especially among the rural poor.On climate change, the Centre played an active role at the UN Climate Change Conference COP 14 in Poznan, Poland and was invited to work closely with the Common Market for Eastern and Southern Africa (COMESA) while continuing its involvement with the Indonesia Forest Climate Alliance.We saw the launch of new programs, including the India-Africa Bridge in Agroforestry Science collaboration and the Pro-Poor Research on Environmental Services in Africa (PRESA) as well as expansion of other programs such as the African Landcare Network.Our scientists published vigorously in 2008, increasing peer-reviewed journal publications by over 70 percent in 2008 from that of 2007. Similarly, peer-reviewed non-journal publications rose by 22% in 2008 from the previous year.The Centre continued to pursue programmatic alignment with the Centre for International Forestry Research (CIFOR) and operational alliance with the International Livestock Research Institute (ILRI).The centre began in earnest preparations for the 2 nd World Congress of Agroforestry-a watershed event, to be held in Nairobi, kenya, 23-28 August 2009. The congress is expected to attract over a thousand participants, including very high profile speakers from around the world.Operating results rose by 11% from a surplus of US$ 2.726 million in 2007 to a surplus of US$ 3.034 million in 2008. This was due to increases in unrestricted grant income from some donors, increase in other income from hosting operations and prudent financial management. The Centre's total revenue, however, decreased by 4% to US$ 31.637 million compared to US$ 33.117 million in the preceding year as a result of completion of two major grants.The Centre did not operate an overdraft with any of its bankers during the year. The short-term solvency (liquidity) as at 31 December 2008 was 229 days against a bench mark of 90-120 days set by the CGIAR. The long term financial stability (adequacy of reserves) as at 31 December 2008 was 178 days against the CGIAR benchmark of 75-90 days.Management reviews the internal control environment regularly. The Centre's internal audit and the CGIAR internal audit provide the checks and balances for ongoing evaluation of the adequacy, effectiveness, and adherence to management's established polices and procedures. The Centre's internal audit unit also reviews structures in place for identifying risks and measures taken by Board Chair's statement management to mitigate risks. It makes recommendations to management on improving processes for risk assessment and mitigation. The overall assessment of internal control functions, and the checks and balances in place relating to processing of all financial documents, are regularly enhanced, and are adequate and satisfactory.The full Board and its audit, operations, nominations, resource mobilization and executive committees met in April 2008 in Nairobi. The full Board met via teleconference in August 2008 and the Executive Committee had a two day meeting in Nairobi in November 2008 prior to the CGIAR Annual General Meeting held in Maputo, Mozambique. The Board Chair and Director General held weekly telephone conversations to discuss various aspects of centre management, including CGIAR change management, the centre's financial health, resource mobilization efforts, risk management, and other important aspects of management effectiveness.The CGIAR Change Management Initiative reached a new milestone with the adoption of the proposal for a revitalized CGIAR at the 2008 Annual General Meeting (AGM08) in Maputo, Mozambique. The main elements of the new CGIAR consist of a legal Consortium of Centres, a new fund, a strategy and results framework, an independent science and partnership advisory committee and an independent evaluation unit. The Consortium Planning Team and Transition Management Team have been set up.The World Agroforestry Centre's Board and senior management were actively engaged in the Change Management discussions and interactions in 2008. The Centre supports the change management initiative wholeheartedly and will continue to actively engage in the process. We also recognize a revitalized CGIAR can present new opportunities for the Centre and are closely monitoring the process. We anticipate several elements of the new CGIAR will be in place in 2010, which will require adjustment in our operations.The coming year will bring many and varied challenges for the Centre. As we progress with the implementation of the Centre's new strategy, we will focus our efforts on: reinforcing our global research projects and regional programs; making rational choices in our engagement in new projects and partnerships; being more results-oriented in all our actions; putting more effort into raising the profile of agroforestry as a key contributor to addressing global challenges; and being alert to the global financial downturn and its effects on the Centre.The 2 nd World Congress of Agroforestry will provide us with a unique opportunity to share our research highlights and build stronger networks with a wide range of agroforestry researchers, educators, practitioners and policy makers from around the world.The Board of Trustees expresses its appreciation to the Director General and the staff of the World Agroforestry Centre and congratulates them on a successful year. We also thank all the donors, partners, sister centres and the CGIAR system offices for their continued support to our Centre. The Board of Trustees and Management of World Agroforestry reviewed implementation of the risk management framework during 2008 and the Board is satisfied with the progress that has been made.The Board of Trustees is responsible for ensuring appropriate risk management processes are in place to identify and manage significant current and emerging risks to the achievement of the Centre's business objectives, and to ensure alignment with CGIAR principles and guidelines as adopted by all CGIAR Centres. Such risks include operational, financial and reputation risks inherent in the nature, modus operandi and locations of the Centre's activities. These risks are dynamic owing to the environment in which the Centre operates. There is potential for loss resulting from inadequate or failed internal processes or systems, human factors or external events. Risks include: misallocation of scientific efforts away from agreed priorities; due to inadequate costing of restricted projects. The Board has adopted a risk management policy that includes a framework by which the Centre's management: identifies, evaluates and prioritises risks and opportunities across the organization; develops risk mitigation strategies which balance benefits with costs; monitors the implementation of these strategies; and periodically reports to the Board on results. This process draws on risk assessments and analysis prepared by staff of the Centre's business unit, internal auditors, Centre-commissioned external reviewers and external auditors. The risk assessments also incorporate the results of collaborative risk assessments with other CGIAR Centres, System Office components, and other entities in relation to shared risks arising from jointly managed activities. The risk management framework is aiming for best practice, as documented in the codes and standards of a number of CGIAR member countries. The framework is subject to ongoing review as part of the Centre's continuous improvement efforts.Risk mitigation strategies include implementation of systems of internal controls which, by their nature, are designed to manage rather than eliminate risk. The Centre endeavours to manage risk by ensuring appropriate infrastructure, controls, systems and people are in place throughout the organization. key practices employed in managing risks and opportunities include business environmental scans, clear policies and accountabilities, transaction approval frameworks, financial and management reporting, and the monitoring of metrics designed to highlight positive or negative performance of individuals and business processes across a broad range of key performance areas. The design and effectiveness of the risk management framework and internal controls is subject to ongoing review by the Centre's internal audit service, which is independent of the business units and which reports on the results of its audits to the Director General and the Board through its Audit Committee.The Board also remains very much aware of the impact of external events over which the Centre has no control other than to monitor and, as the occasion arises, to provide mitigation.World Agroforestry Centre's management is pleased to present the financial statements for the year ended 31 December 2008 set out on pages 13 to 29. The financial statements comprise the statement of financial position at 31 December 2008, the statement of activities, the statement of changes in net assets and the statement of cash flows for the year then ended, and the notes to the financial statements which include a summary of significant accounting policies and other explanatory notes, in accordance with CGIAR Accounting Policies and Procedures Manual -Financial Guidelines Series No. 2 (Revised February 2006).Management is responsible for the preparation and presentation of these financial statements on the basis of accounting described in Note 2 in accordance with the guidelines contained in the CGIAR Accounting Policies and Procedures Manual -Financial Guidelines Series No. 2 (Revised February 2006). This responsibility includes: determining that the basis of accounting described in Note 2 is an acceptable basis for preparing and presenting the financial statements in the circumstances; designing, implementing and maintaining internal control relevant to the preparation and presentation of financial statements that are free from material misstatement, whether due to fraud or error; selecting and applying appropriate accounting policies; and making accounting estimates that are reasonable in the circumstances.Management accepts responsibility for the preparation of the above mentioned financial statements, which have been prepared using appropriate accounting policies supported by reasonable and prudent judgments and estimates, in conformity with the CGIAR Accounting Policies and Procedures Manual -Financial Guidelines Series No. 2 (Revised February 2006). Management is of the opinion that the financial statements give a true and fair view of the state of the financial affairs of the Centre and of its operating results.Management further accepts responsibility for the maintenance of accounting records which may be relied upon in the preparation of financial statements, as well as adequate systems of internal financial control.Management's assessment of funding, as per the indicative Programme of Work and Budget for 2009, indicates that the Centre will remain a going concern for at least the next 12 months from the date of this statement.The financial statements, as indicated above, were approved by management on 8 April 2009 and signed on its behalf by: _______________________________ __________________________Director of Finance and Operations Date: 8 April 2009We have audited the financial statements of the World Agroforestry Centre (the Centre) set out on pages 13 to 29 which comprise the statement of financial position as at 31 December 2008, the statement of activities, the statement of changes in net assets and the statement of cash flows for the year then ended, and the notes to the financial statements, which include a summary of significant accounting policies and other explanatory notes. The Centre's Management is responsible for the preparation and presentation of these financial statements on the basis of accounting described in Note 2 in accordance with the guidelines contained in the CGIAR Accounting Policies and Procedures Manual -Financial Guidelines Series No. 2 (Revised February 2006). This responsibility includes: determining that the basis of accounting described in Note 2 is an acceptable basis for preparing and presenting the financial statements in the circumstances; designing, implementing and maintaining internal control relevant to the preparation and presentation of financial statements that are free from material misstatement, whether due to fraud or error; selecting and applying appropriate accounting policies; and making accounting estimates that are reasonable in the circumstances.Our responsibility is to express an opinion on these financial statements based on our audit. We conducted our audit in accordance with International Standards on Auditing. Those standards require that we comply with ethical requirements and plan and perform the audit to obtain reasonable assurance whether the financial statements are free from material misstatement.An audit involves performing procedures to obtain audit evidence about the amounts and disclosures in the financial statements. The procedures selected depend on the auditor's judgment, including the assessment of the risks of material misstatement of the financial statements, whether due to fraud or error. In making those risk assessments, the auditor considers internal control relevant to the entity's preparation and presentation of the financial statements in order to design audit procedures that are appropriate in the circumstances, but not for the purpose of expressing an opinion on the effectiveness of the entity's internal control. An audit also includes evaluating the appropriateness of accounting policies used and the reasonableness of accounting estimates made by management, as well as evaluating the overall presentation of the financial statements. We believe that the audit evidence we have obtained is sufficient and appropriate to provide a basis for our audit opinion.In our opinion, the financial statements present fairly, in all material respects, the financial affairs of the World Agroforestry Centre, established in 1978, is an autonomous, non-profit, international organization, recognized as such by the Government of kenya, whose purpose is to help mitigate tropical deforestation, land depletion and rural poverty, through improved Agroforestry systems. World Agroforestry Centre is a member of the Consultative Group on International Agricultural Research (CGIAR). Established in 1971, the CGIAR is an association of more than 50 countries, international and regional organizations, and private foundations working together to support agricultural and forestry research around the world.The financial statements have been prepared in accordance with the CGIAR financial guidelines contained in the Accounting Policies and Reporting Practices Manual (Revised February 2006). The CGIAR recognizes that in certain respects, the existing International Financial Reporting Standards (IFRSs) do not cover issues unique to not-for-profit organizations. Therefore, the CGIAR has developed an accounting policies and procedures manual (CGIAR Financial Guidelines 2, February 2006) which draws on other widely applied standards to provide guidance on these matters. It is important to note that the Manual's full adoption of IFRS is subject to the following two clarifications:Since existing IFRS do not specifically cover issues unique to not-for-profit organizations, the Manual• has drawn from other widely used standards (such as FAS 117 of US GAAP) to provide guidance on issues of importance that are not yet addressed by existing IFRS; andIAS 1 provides that \"Entities with not-for-profit activities in the private sector, public sector or governmentseeking to apply this standard may need to amend the descriptions used for certain line items in the financial statements and for the financial statements themselves.\" In line with this provision, the Manual has, in places, applied descriptions that more closely reflect the nature of the Centre's activities than those set out in IFRS. The components of the financial statements use descriptions which reflect more clearly the nature of the Centre's activities than those set out in IFRS.The financial statements have been prepared on the historical cost basis except for financial instruments at fair value through statement of activities, which are measured at fair value. The methods used to measure fair values are discussed further in note 3.These financial statements are presented in US dollars (US$), which is the Centre's functional currency. All financial information presented in US dollars has been rounded to the nearest thousand.The preparation of financial statements requires management to make judgments, estimates and assumptions that affect the application of accounting policies and the reported amounts of assets, liabilities, income and expenses. Actual results may differ from these estimates.Estimates and underlying assumptions are reviewed on an ongoing basis. Revisions to accounting estimates are recognized in the period in which the estimates are revised and in any future periods affected.The accounting policies set out below have been applied consistently to all periods presented in these financial statements.Grants are recognized as revenues only when the conditions have been substantially met or the donor has explicitly waived the conditions.Unrestricted grant revenue arises from the unconditional transfer of cash or other assets. Such revenue is recognized in full in the period specified by the donor based on commitments made by the donor.Restricted grant revenue is recognized when there is reasonable assurance that the conditions attaching to them have been complied with, and that the grants will be received.Donations in kind are recognized at the fair value of the goods or services received or in the absence of this, at the amount attributed to them by the donor.Other income is recognized on an accruals basis.Transactions in foreign currencies are translated to the functional currency at exchange rates at the dates of the transactions. Monetary assets and liabilities denominated in foreign currencies at the reporting date are retranslated to the functional currency at the exchange rate at that date. The foreign currency gain or loss arising is recognized in statement of activities.Non-monetary assets and liabilities denominated in foreign currencies that are measured at fair value are retranslated to the functional currency at the exchange rate at the date that the fair value was determined. Foreign currency differences arising on retranslation are recognized in statement of activities.Financial instruments comprise term deposits, receivables, cash and cash equivalents and payables. Cash and cash equivalents comprise cash balances, call deposits and term deposits with tenor less than 90 days from the date of placement. The Centre's financial instruments are designated as financial instruments at fair value through the income statement (statement of activities).Financial instruments are recognized initially at fair value. Subsequent to initial recognition, financial instruments are measured as described below.An instrument is classified at fair value through the statement of activities if it is held for trading or is designated as such upon initial recognition. Financial instruments are designated at fair value through statement of activities if the Centre manages such investments and makes purchase and sale decisions based on their fair value in accordance with the Centre's documented risk management or investment strategy. Upon initial recognition attributable transaction costs are recognised in the statement of activities when incurred. Financial instruments at fair value through statement of activities are measured at fair value, and changes therein are recognised in statement of activities. Where an instrument does not have a quoted market price in an active market and the fair value cannot be reliably measured, the asset is stated at cost, including transaction costs less impairment losses.Other financial instruments are measured at amortized cost using the effective interest method, less any impairment losses.The carrying values of the Centre's assets are reviewed annually and adjusted for impairment losses when there is objective evidence that the asset carrying value is impaired. Impairment loss provisions are raised in respect of such assets.Items of property and equipment are measured at cost less accumulated depreciation and accumulated impairment losses. Cost includes expenditure that is directly attributable to the acquisition of the asset.The cost of self-constructed assets includes the cost of materials and direct labour, any other costs directly attributable to bringing the asset to a working condition for its intended use, and the costs of dismantling and removing the items and restoring the site on which they are located. Purchased software that is integral to the functionality of the related equipment is capitalised as part of that equipment.When parts of an item of property and equipment have different useful lives, they are accounted for as separate items (major components) of property, plant and equipment.Property and equipment acquired from restricted funds are recorded as assets. Such assets are depreciated at a rate of 100% and the depreciation expense charged directly to the appropriate restricted project.Property and equipment previously owned by a project is recognized in the Centre's books at fair or appraised values upon termination of the project if it is expressly provided in the grant agreement that the ownership of item will be transferred to the Centre.Gains and losses on disposal of an item of property and equipment are determined by comparing the proceeds from disposal with the carrying amount of property, plant and equipment and are recognized net within \"other income\" in statement of activities.Depreciation is recognised in the statement of activities on a straight-line basis over the estimated useful lives of each part of an item of property and equipment. Leased assets are depreciated over the shorter of the lease term and their useful lives unless it is reasonably certain that the organization will obtain ownership by the end of the lease term. Land is not depreciated.Depreciation of acquired assets starts in the month the asset was placed in operation and continues until the asset has been fully depreciated or its use discontinued. In addition to charging annual depreciation expense, it is the Centre's policy to provide for the future renewal of fixed assets by way of an appropriation from unrestricted net assets.Inventories are measured at the lower of cost and net realisable value. The cost of inventories is based on the first-in first-out principle, and includes expenditure incurred in acquiring the inventories, production or conversion costs and other costs incurred in bringing them to their existing location and condition.World Agroforestry Centre operates a defined benefit contribution pension scheme for all its regular employees. Obligations for contributions to the defined contribution pension plan are recognised as an employee benefit expense in the statement of activities when they are due. Prepaid contributions are recognised as an asset to the extent that a cash refund or a reduction in future payments is available.Full provision is made for gratuity payable to employees at the end of their contracts. Provisions are also made in respect of outstanding leave days accruing to all staff and all staff repatriation costs.Termination benefits are recognised as an expense when World Agroforestry Centre is demonstrably committed, without realistic possibility of withdrawal, to a formal detailed plan to either terminate employment before the normal retirement date, or to provide termination benefits as a result of an offer made to encourage voluntary redundancy. Termination benefits for voluntary redundancies are recognised as an expense if World Agroforestry Centre has made an offer encouraging voluntary redundancy, it is probable that the offer will be accepted, and the number of acceptances can be estimated reliably.Short-term employee benefit obligations are measured on an undiscounted basis and are expensed as the related service is provided. A liability is recognised for the amount expected to be paid under short-term cash bonus if World Agroforestry Centre has a present legal or constructive obligation to pay this amount as a result of past service provided by the employee and the obligation can be estimated reliably.A provision is recognised if, as a result of a past event, the Centre has a present legal or constructive obligation that can be estimated reliably, and it is probable that an outflow of economic benefits will be required to settle the obligation. Provisions are determined by discounting the expected future cash flows at a rate that reflects current market assessments of the time value of money and the risks specific to the liability.The Government of kenya has exempted the Centre from all local taxes including customs duty on goods and services received by the Centre. Consequently, the Centre does not account for tax in its financial statements.Overhead costs recovery represents the overhead costs recovered from restricted projects based on the ratesagreed and as stated in each project document with donors. The cost ratios presented in Exhibit 3 have been computed on the provisions of CGIAR Financial Guidelines 5.Net assets are those net assets whose use is not restricted by donor-imposed restrictions even though their use may be limited in other respects, such as by contract or by Board designation.Unrestricted net assets are further classified as follows:Undesignated -use of assets is not designated by center management for special purposes; and 1. Designated:-2.Use of assets has been designated by the Centre management for specific purposes such a)as reserve for replacement of property and equipment and net investment in property and equipment. Designation from unrestricted net assets is made on an annual basis based on Board of Trustees' resolution.The Board of Trustees may also designate from undesignated net assets to mitigate or counter b)unforeseen eventualities, funding reductions and currency risks that pose serious risks for business continuity.Where necessary, comparative figures have been restated to conform with changes in presentation in the current year. Net assets include both the designated and undesignated portions.The actual balance in the undesignated portion at 31 December 2008 is US$ 6.595 million (2007 -US$ 6.561 million), which is presented as unrestricted (undesignated) net assets.Each financial year the Centre appropriates from the unrestricted net assets an amount equal to the annual depreciation charge and any other specific allocation into a reserve designated to meet the acquisition and replacement costs for property and equipment items. In 2008, the Centre appropriated US$ 2.5 million from undesignated net assets to cater for any future funding shortfalls and adverse foreign currency effects which could pose a risk the Centre's continuity.A portion of unrestricted net assets has been appropriated by the Board of Trustees to reflect net investment in property and equipment.The balance of US$ 5.285 million at 31 December 2008 comprises the balance brought forward from 2007 and the current year's net decrease in fixed assets of US$ 159,000.Notes to the Financial Statements cont. World Agroforestry Centre operates a defined contribution pension scheme for all its regular nationally recruited employees. The scheme is administered by an insurance company, and is funded by contributions from World Agroforestry Centre and its employees. Contributions of the Centre to the pension scheme are charged to operating expenses in the year to which they relate.There are no contingent liabilities at the year end.The Centre has a formal risk management policy approved by the Board of Trustees. This policy includes a framework by which the Centre's management: identifies, evaluates and prioritizes risks and opportunities across the organization; develops risk mitigation strategies which balance benefits with costs; and monitors implementation of these strategies Annually, the Audit Committee of the Board of Trustees reviews the risk profile of the Centre and risk mitigation measures introduced by the Centre. The Board Chair issues a statement on risk management that identifies key areas of risk and processes in place to identify and mitigate risks. The management of the Centre is responsible for implementing the risk management framework. The Internal Audit Unit supports management in addressing and reporting the Centre's risks. Additional risk management measures are set out in the table below. The Centre has an in-house audit function that supports management in managing the Centre's overall risk profile. Internal Audit provides assurance services by reviewing business units within the Centre at appropriate intervals. These audits determine whether the functions of planning, organizing, directing, and controlling are efficiently and effectively carried out according to management instructions, policies, and procedures, and in a manner consistent with the Centre objectives.The Centre has a Resource Mobilization Committee responsible for fund raising. The Centre also exercises prudent financial planning by setting aside and maintaining adequate reserves to cover any unforeseen funding shortfalls.The Centre maintains a Grants Management Information System that keeps track of donor reporting requirements and facilitates the compliance of the same.The Centre has set up a Protocol Office which collates information on legal matters in all countries where the Centre operates. This information is submitted to senior management for action. Significant exposures are reported regularly to the Board of Trustees.The Centre has put internal controls in place for its day to day operations to mitigate the risk of fraud, and has a formal fraud and error management policy drafted and approved by the Board and circulated to staff.The Centre has a Business Continuity Plan which outlines measures to ensure continuity of the Centre's operations in the event of unforeseen disasters and circumstances.The Centre's is exposed to the following financial risks from its use of financial instruments:The Centre's risk management objectives, policies and processes for measuring and managing its key financial risks are detailed below.Credit risk is the risk of financial loss to the Centre if a counterparty to a financial instrument fails to meet its contractual obligations, and arises from cash and cash equivalents and accounts receivables. The Centre's maximum exposure to credit risk as at 31 December 2008 is presented in the Statement of Financial Position.Cash and cash equivalents are held with reputable financial institutions, while the Centre's formal investment policy stipulates that all investments must be capital protected.Reviews of aging reports are carried out monthly and provisions for doubtful amounts made for anyThe Centre does not incur expenditure on restricted donor grants before funding contracts are signed;• and Advances to partner organizations and hosted organizations are subject to the Centre's internal • requirements so as to limit any losses arising from funds advances by the Centre.Liquidity risk is the risk that the Centre will not be able to meet its financial obligations as they fall due. The Centre has a Treasury Unit responsible for managing payment commitments. The Unit submits to management weekly cash flow forecasting reports showing expected cash inflows and outflows.The table below analyses the liquidity position of the Centre's financial assets and liabilities.Market risk is the risk that changes in market prices, such as foreign exchange rates and interest rates, will affect the Centre's income or the value of its holdings of financial instruments. Where possible, the Centre matches the currency of payment with the currency received from donors, to mitigate the foreign exchange risks. Also, the Centre regularly assesses the impact of interest rate changes on its financial assets. Analysis of sources and applications of restricted project grants cont. Analysis of sources and applications of restricted project grants cont. Analysis of sources and applications of restricted project grants cont.Analysis of sources and applications of restricted project grants cont. Analysis of sources and applications of restricted project grants cont. Analysis of sources and applications of restricted project grants cont.Analysis of sources and applications of restricted project grants cont.","tokenCount":"5681"} \ No newline at end of file diff --git a/data/part_3/7526140313.json b/data/part_3/7526140313.json new file mode 100644 index 0000000000000000000000000000000000000000..4ec12fdd3367ecfa6284d07eaaec74bd013cdced --- /dev/null +++ b/data/part_3/7526140313.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"77369739096f2c73ea3845951dedbad1","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/739ca101-5b09-4362-87cd-feae51881c11/retrieve","id":"1538603954"},"keywords":[],"sieverID":"9c56c3e3-bb5c-4d88-ad9c-1c21f9d51dd0","pagecount":"30","content":"The preparation for this document was led by Lisa Hiwasaki (ICRAF), with significant contributions from participants of a write-shop in July 2016: Christian Culas (CNRS), Thai Thi Minh (University of Copenhagen), and Sonali Senaratna Sellamuttu (IWMI). Text and other inputs were also provided by Marlène Elias (Bioversity International), Nozomi Kawarazuka (CIP/CIAT), Cynthia McDougall (World Fish), and Emmanuel Pannier (EFEO), who also participated in at least one of the two expert workshops held in September and November 2015; as well as Boru Douthwaite. The other participants of these workshops are also acknowledged: Ann Degrande (ICRAF), Luu Thi Thu Giang (CARE Viet Nam), Pham Van Hoi (CARES VNUA), Pham Huong (CIAT), Farhat Naz (ICRAF), Gaetan Reuse, Elisabeth Simelton (ICRAF), Lương Thị Trường (CSDM), and Chusak Wittayapak (CMU).The document benefitted substantially from the following reviewers: Steve Déry (Université Laval), Kyoko Kusakabe (AIT), Ruth Meinzen-Dick (IFPRI), and Marc Schut (IITA/WUR). The authors are grateful for their time and expertise which has improved the Guidelines. The authors would also like to acknowledge the very useful feedback provided by Jayne Curnow (ACIAR) on an earlier draft.We would like to acknowledge Humidtropics, the CGIAR Research Program on Roots, Tubers and Bananas (RTB), and the CGIAR Fund Donors for their provision of core and project-specific funding without which this research could not deliver results that eventually positively impact the lives of millions of smallholder farmers in tropical Americas, Asia and Africa.1 Introduction and background: What is this document and why is it needed?The Greater Mekong region (Cambodia, Laos, southern China, Myanmar, Thailand, and Viet Nam) is characterized by considerable ethnic diversity [1]. Many ethnic minority groups live in remote rural uplands and mountains where the soil is less fertile and the terrain uneven and steeply sloped. Ethnic minorities' social and cultural norms, farming practices, and traditional bodies of agricultural knowledge differ from the lowland ethnic majority peoples who form the political core of Mekong countries [2,3]. State and private sector programs and policies to promote rural development in the agricultural sector focus on intensifying agricultural production using hybrids and chemical fertilizers and pesticides, which replace traditional farming techniques. Monoculture plantations of cash crops grown for regional and global value chains such as rubber, coffee, maize, and cassava replace subsistence oriented, diversified agricultural production. Furthermore, swidden cultivation-often practised by upland ethnic minorities-has generally been considered archaic and environmentally destructive by those with political power [4,5]; therefore, development policies widely promoted cultural integration, economic standardization, and agricultural modernization [6,7].Aim and target audience of these Guidelines:•The target audience of the Guidelines is researchers working on agricultural research for development (R4D) in the Mekong region, particularly those working in (or interested in working in) transdisciplinary research teams for agricultural R4D in the Mekong region. This includes national & international researchers, and social & bio-physical scientists. Local practitioners and development workers who implement research-oriented development projects may also find the Guidelines useful.The aim is to promote, to researchers working on agricultural R4D in the Mekong region, meaningful engagement of groups who are typically marginalized in agricultural R4D, i.e., ethnic minority groups, the poor, and disadvantaged women. Considering the significance of this issue in the Mekong region, the focus is on ethnic minorities. We propose principles, methods and tools that can move agricultural R4D towards transdisciplinary action research that increases the engagement of marginalized groups. Most of these principles, methods and tools are relevant for agricultural R4D in general, but using these is particularly important to help prevent further marginalization of certain groups.The intense social, economic, and political changes the Greater Mekong region is currently undergoing-such as rapidly expanding infrastructure and markets, government policies and programs that promote rural and agricultural development-present many opportunities for improved livelihoods [5,12,13]. At the same time, some of these changes pose threats to sustainable livelihoods of upland smallholder farmers [3,4]. As a result of such developments and in addition to infrastructure and market links, there have been significant changes in the cultures and livelihood strategies of ethnic minorities. These have too often led to loss of decision-making power, resulting in increased marginalization [14]. These changes make ethnic minority farmers more vulnerable to external risks such as changes in market prices, climate change, extreme climatic events, and environmental degradation, and food insecurity [15].Agricultural research or rural development projects in this region further marginalize ethnic minorities because they focus on promoting or enforcing lowland techniques and innovations for agricultural modernization and commercialization. Most agricultural research for development (R4D) projects work only with majority ethnic groups or ethnic minority groups who are accessible in terms of location and language, and are thus better-off than others. 1 This further reinforces the marginalization of certain ethnic groups, especially those who live in remote areas. Even when ethnic minorities are brought into agricultural R4D projects, innovations are often introduced in a top-down manner, and worse, often do not meet their needs.This creates a vicious cycle whereby marginalized ethnic groups continue to be marginalized, and prejudices against them are reinforced [8]. This is an issue because ethnic minority groups in the region tend to constitute the poorest of the poor, with less material wealth, lower school attendance rates, and fewer job opportunities and market access [9,10,11].1For example, out of more than 30 R4D activities implemented in Central Mekong Action Area of Humidtropics CGIAR Research Program in 2015, only two directly contributed to Humidtropics' Intermediate Development Outcome (IDO) related to \"women and other marginalized groups\"; moreover, only one activity specifically mentioned \"ethnic minority\".The overall approach that these Guidelines recommend is transdisciplinary action research.A transdisciplinary action research project that meaningfully engages marginalized ethnic groups must deal with not only technological and institutional challenges and innovations, but must also take into account the various systems embedded in the specific contexts where R4D takes place:• Socio-cultural, economic and political systems (culture, traditions, norms, financial tools, markets, consumption patterns, politics, policies, and development history);• Agro-ecological systems (water, soils, crop/ animal varieties, fertilizers, agricultural techniques, land use systems, farm management knowledge & practices, livelihoods, and markets); and the • Agricultural R4D system (operationalization of agricultural R4D, constraints inherent in conventional approaches and methods).Transdisciplinary research is uniquely suited to analyze where these various systems interact and overlap and can enable a more holistic approach to agricultural R4D in marginalized communities [16,17]. See Annex for a more extensive list of transdisciplinary research resources.Multidisciplinary research involves several disciplines but there is no interaction between them.Interdisciplinary research involves several disciplines, with interaction between them. \"Unidirectional interdisciplinarity\" refers to research where coordination of the disciplines is imposed by a single discipline, whereas \"goal-oriented interdisciplinarity\" refers to research where interactions and coordination of disciplines are determined by the nature of the problem to be solved.Transdisciplinary research involves researchers from a range of scientific and technological disciplines, but also other stakeholders, such as local people and government entities [18].This document is designed to help researchers who want to engage with ethnic groups to ensure agricultural R4D stops contributing to their further marginalization. It can be used by those wanting to design new projects that engage with ethnic minorities from the start or those already implementing projects and wanting to improve their current practice.In transdisciplinary action research, the disciplinary \"silos\" are torn down, as are the barriers between researchers and research subjects. Researchers from multiple scientific disciplines-social, economic, political, and bio-physical scientists, for examplework together with communities who hold local and indigenous knowledge. Scientific knowledge and local and indigenous knowledge are given equal value in order to understand and address the livelihood contexts of marginalized groups in an integrated manner. Such research engages with ethnic minorities in a way that gives them choices about if, when, and how they participate in, shape, and benefit from research. This is based on the understanding that local people may have different trajectories of development, and through their local knowledge and agency, new or alternative pathways could be developed.Implementing transdisciplinary action research calls for a learning paradigm and \"new professionalism\" that brings together different sciences and worldviews, which enables the understanding of the diverse and complex local realities in a participatory manner. This often requires a change in worldview of those implementing agricultural R4D.Transdisciplinary action research uses participatory action research as a core methodology to engage, reflect and learn with farmers, and act as catalysts for innovations and facilitators of farmer-to-farmer learning [19].This document identifies different challenges that maybe faced at different stages in the project cycle. Not all projects will necessarily face all challenges, and not all challenges come at the same time. While there may appear to be many things to get right when reading the guide from cover to cover, doing good transdisciplinary action research is not as complex as it might first appear.The Guidelines are built on the collective experience of 22 researchers and practitioners with experience engaging with ethnic minorities or other marginalized groups in Southeast Asia. This experience, captured during three workshops, was complemented by literature reviews in China and Viet Nam, and indepth field work four villages (in Northwest Viet Nam and Northern Lao PDR).The Guidelines are built on an analysis of the factors that lead to marginalization that agricultural research can affect (Figure 1). These factors bring about three sets of challenges: the agricultural R4D system as a whole; for research teams; and for agricultural R4D projects. The Guidelines are organized around these three sets of challenges, identifying for each challenge strategies that can help prevent further marginalization according to different stages in the project cycle (Figure 2).The marginalization of ethnic minorities in and through agricultural R4D is influenced by two groups of factors (Figure 1): (i) Improved understanding of research context a.1 Break down negative stereotypes about ethnic minorities and combat prejudiceIntegrating ethnic minorities in project conceptualisation c.1Identify the ethnic minorities that are present at a given site, characterize the field sites, and ensure that such information is incorporated into project designReconnaissance field visit with gender-sensitive rapid assessment • Obtain broader, holistic perspectives of the local reality of the various stakeholders in your field sites, i.e., differences in needs and power relations within the community at multiple scales.→ See Challenge c.3 on who the different stakeholders are, how to understand the stakeholders and their local power dynamics.Ensuring that ethnic minorities benefit from agricultural R4D requires a deep understanding of both the research context itself and the needs of diverse stakeholders. Achieving such an understanding requires significant amounts of time, money, and human resources. These resources can be difficult to secure under current financial constraints, which often require researchers to \"cut corners.\" Thus, we recognize that it will be difficult to implement transdisciplinary action agricultural R4D that truly engages with and results in benefits for marginalized ethnic groups unless the agricultural R4D system as a whole changes, or your institution or funding source(s) support the investments and long-term commitment required for such research to bear fruit.Recognize that not all stakeholders' needs can be met with one agricultural R4D project. You can be explicit about which stakeholders' needs the project is targeting, while ensuring that the most disadvantaged groups are not marginalized. One way this can be addressed is by establishing multistakeholder platforms whereby the various stakeholders get together to jointly identify problems, discuss and prioritize challenges, develop and test possible solutions, and build their respective capacities. An acute sensitivity to power structures and dynamics among the stakeholders is necessary to ensure that the process of prioritization does not contribute to further marginalization of disadvantaged groups, e.g., a civil society representative or a scientist can provide support for ethnic minority farmers who may not be able to speak out in multi-stakeholder platforms.→ See also Challenge c.4 below on multistakeholder processes.ChALLENGE a.3: How can we address the fact that the typical R4D project cycle does not allow us have sufficient time and resources to engage with marginalized ethnic groups in a meaningful way? Donors often have requirements about the project cycle and output delivery within a set amount of funding and a constrained timeline. This can make it difficult to meaningfully engage local farmers, especially marginalized ethnic minorities with different worldviews and socio-cultural, economic, and political realities from the ethnic majority group.Local partners-often from the ethnic majority-can also steer the project away from working in sites where ethnic minorities live, or away from working with marginalized ethnic groups who live in the research site. Furthermore, the project timeline is not necessarily aligned with the \"timeline\" of villagers.What to do a.3:• Invest time and money to engage marginalized groups, especially ethnic minority women, from the project conceptualization stage. By definition, transdisciplinary research entails working with a diverse team of researchers and local collaborators: in order to conduct productive transdisciplinary research, such a team must be strengthened (rather than weakened) by its diversity. Fostering a dynamic that allows for this presents several considerable challenges. ChALLENGE b.1: How can we establish and sustain a project team that will enable us to engage effectively with ethnic minorities and meet their research needs? What to do b.1: Establish a transdisciplinary team which consists of scientists representing all disciplines necessary to solve the agro-ecological research problem and development problem.Avoid expanding the team unnecessarily, as this can render the research expensive and cumbersome to manage.• At the beginning of a project, organize stakeholder workshops to identify potential collaborators.→ see Challenge c.2 below for more information on how such workshops can be organized to identify potential co-learners and project participants, and Challenge c.3 for how to implement stakeholder mapping and analysis to identify potential research team members.• Include in the team:o a team leader: a scientist from a relevant discipline with an interdisciplinary or development background with a clear understanding of transdisciplinary approaches, and the ability to communicate with all team members;o researchers who have experience with, or who are already working with, ethnic minorities, including:social scientists with participatory and qualitative research expertise, and with experience working with the particular marginalized groups to be engaged. Social scientists can also work with local or traditional knowledge holders and ensure such knowledge and practices are incorporated in the agricultural R4D;bio-physical scientists from disciplines that can help solve the agro-ecological challenges of the site, with the ability to listen to the real needs of ethnic minorities, instead of imposing on these groups what researchers think is the best \"solution\";o development workers or organizations with experience working in the region, who can engage with the marginalized ethnic groups, and play key roles in scaling out and up agricultural R4D results;o local farmers from the field site(s), especially ethnic minorities who are holders of local and indigenous knowledge, or others who can gain social and cultural, as well as physical, access to such knowledge;o policy-makers and government partners, who are important for scaling out and up. As much as possible, look for people from the relevant ethnic minority group(s).• Carefully select potential team members before finalizing the team by taking the time to check their references; facilitate quality interactions, e.g., by doing activities such as field trips. It is important to keep in mind that \"soft skills\" such as interpersonal skills are extremely important for project success.• Ensure that women are adequately represented in the research team, especially to enable interviews, focus group discussions and other interactions with women to be implemented by women.As much as possible, look for qualified researchers with the same ethnic background as those in the field site you intend to study. If you have difficulties finding such researchers, consider training ethnic minority researchers.• Within the timeframe available, allow adequate time for discussions and reflections on transdisciplinary action research approaches among all team members, and provide training as necessary on participatory and qualitative research tools and methods.What to do b.2: tear down the \"silos\" that result in different scientific disciplines and knowledge systems that typically work separately and do not interact with each other by fostering regular and meaningful interactions among team members. Make sure all members of the team speak a \"common language\", especially when it comes to working with marginalized ethnic groups.• Conduct field visits together and reflect while in the field on key issues, which can bring the different perspectives together.• Organize events for sharing knowledge, experiences, progress, and challenges working with ethnic minorities.• Develop and implement joint-action activities for addressing common challenges that create safe spaces that hold participants together for long enough to understand and appreciate each other's perspective, which is necessary for reaching a durable solution.ChALLENGE b.3: How can we address the negative stereotypes and discriminatory attitudes, including paternalistic attitudes, that may be held by some project team members?What to do b.3: Break down negative stereotypes about ethnic minorities that might make some team members reluctant to engage with them, and combat prejudice by influencing the mindset of researchers through discussions and the dissemination of correct information.• Organize a learning session for all team members to obtain an understanding of how the political and economic system has historically marginalized some ethnic groups.• Showcase some \"good examples\", e.g., success stories of how some ethnic groups have successfully engaged with agricultural R4D projects, and demonstrate how ethnicity or gender can be an asset, not an obstacle, to effective implementation of project.• Organize field activities to learn about local or traditional knowledge and practicesagro-ecological or otherwise-and assist the research team in learning directly from ethnic minorities.• Create opportunities to increase \"positive\" interactions between non-marginalized groups and marginalized ethnic groups, e.g., by engaging graduate students from marginalized groups in the region or working with particularly innovative role models.• Carefully deconstruct who typically participates in the research and who does not, paying particular attention to the reasons why certain groups may have been excluded from, or want to participate in, the research process in the past. This should serve to explain that if project benefits are kept in the hands of leaders and local elites, projects could reinforce the marginalization of certain groups.• Facilitate creation of safe spaces, as mentioned in Challenge b.2 above.Different actions and methods are categorized according to different phases of a research project: (i) project conceptualization, (ii) project start, (iii) project implementation and maintenance, and (iv) scaling out and up. In this section, the approaches, actions, and methodologies that can be adopted are categorized according to challenges or constraints that commonly occur at each stage.ChALLENGE c.1: How do we integrate marginalized ethnic groups in the conceptualization of a project? What to do c.1-1: Identify the ethnic minorities that are present at a given site, characterize the field sites, and ensure that such information is incorporated into project design.If the planned research will take place in upland areas, it's very likely that the farmers will be predominantly from one or more ethnic minorities. To ensure ethnic minorities and their needs are not ignored or subsumed in the proposed research, key social, demographic, historical, cultural and economic information-as well as information about previous projects implemented in the area-should be obtained before field site selection takes place and the research focus is set. However, even after the site has been selected and the research focus has been set, collecting such information is still relevant.In addition, characterization of the field site(s) is important to provide the overall context, including key agricultural, ecological, political, and geographic information. Information gathered can be incorporated into the project design and help conceptualize the overall project with a more in-depth understanding of the key issues.Collect secondary data on key social, geographic, demographic, historical, cultural, political, and economic information; combine these data with information about previous projects implemented Project Challenges: in the area. Ideally, this should be complemented by a reconnaissance field visit to conduct a rapid yet gender-sensitive assessment which includes transect walks, key informant interviews and focus group discussions (FGDs) with key local stakeholders, including women. Stakeholder categories to engage with at the site include farmers (including both female and male ethnic minority farmers), local NGOs, local government agencies, in addition to other formal and informal groups, e.g., village youth groups, women's unions, farmers' groups, and traditional village committees.Key information is listed below that will help identify more disadvantaged ethnic minority groups that should be targeted by the research and/or intervention-or at least not excluded from it-and help understand their specific contexts. Ensure that the below information is obtained from both men and women:Demographic and socio-economic information: Information should be collected on different ethnic groups living in the area, each ethnic group's characterization (income levels, land use patterns, livelihood strategies, ownership/access to land and natural resources, and the historical background as to why and how long they have lived in that area. Be mindful of how these characterizations differ according to gender and income levels). Pay attention to the considerable diversity that usually exists between and within ethnic minority groups and also how those groups may differ along gender lines: demographic and socio-economic information should be disaggregated per ethnic group and by gender.Compile an overview of the historical relationship between the State, which is usually composed of one or more majority ethnic groups, and minority ethnic groups, as well as the relationship between and within different ethnic minority groups. This includes institutional settings that could have led to or reinforced marginalization of some ethnic groups over others: e.g., through laws and policies concerning land tenure, rural development, market incentives, gender, and the environmentincluding delineation of protected areas. Note also that some ethnic groups may intentionally marginalize themselves in the national system. Working with ethnic minorities in the Greater Mekong region entails working with at least three languages: the language used by the ethnic minority(s), the language of local/ national partners (who are usually from the ethnic majority group), and the language of the international researchers (English is usually chosen as the common language, but for many researchers English will not be their first language). How c.1-2: Spend time among key research team members to ensure that the key terms and concepts are agreed upon and are meaningful in all languages involved in the R4D project. This is particularly important when some concepts or terms are based in one (usually foreign) language but are difficult to translate into other languages. If no direct translations exist, then make sure that all research team members are using the same definitions of key concepts and terms when talking about the project, not just among themselves but also in conversations with outside the team members. Making a glossary of key terms and concepts in different languages with the involvement of qualified translators, and referring to this glossary often (especially when hiring interpreters), would be useful.What to do c.1-3: Design research that is focused on marginalized groups and driven by demands of marginalized groups. When possible, have ethnic minority groups represented directly in project conceptualization and increase their capacities to be meaningfully involved in the conceptualization of the project and in R4D activities as part of the transdisciplinary team.Once secondary and primary information is collected to get a better understanding of who the marginalized ethnic groups are, it is necessary to engage them in the design of the proposed research project through a consultative process. This study explored the underlying gender values, norms, and practices that influence the decision making patterns of households in the wake of resettlement. The study took place in an ethnic minority resettlement village in Bolikhamxay Province, Lao PDR, and focused particularly on decisions related to livelihood strategies. The village's main ethnic groups are the Tai Maen (55%) and Tai Yor (37%), with small numbers of Tai Meuy and mixed ethnic households. The qualitative methods used in the study included separate male and female focus group discussions (FGDs) and individual open-ended interviews with men and women from different ethnic minority groups that centered on livelihood trajectories and social network mapping.We found the design of resettlement, compensation, and livelihood packages provided by hydropower companies tend to target a household as a unitary entity: in general, these measures tend to overlook which decisions are made jointly and which are gendered. Ethnicity also influences household decision-making in general, and the extent of male and female influence in particular. Different ethnic groups may show a preference for different livelihood activities, and vary in the degree to which household decisions are made jointly.Hydropower companies typically focus on the material aspects of wellbeing within their livelihood packages-for example, by ensuring joint asset ownership and material equity in capabilities (such as education and health). However, in the context of hydropower resettlement-which often requires resettled groups to change their livelihood or replace it with a new one-it is necessary to disaggregate the costs and benefits in terms of gender and ethnicity. These costs and benefits need to be assessed in relational and subjective terms in addition to the material terms more typically addressed by hydropower companies. For example, our findings revealed that women's control over decisions on riverbank gardening and gathering of non-timber forest products had decreased: resettlement led to newly enforced land use patterns, with resultant material costs for both women and men. At the same time, women's weaving had increased, with material benefits for both women and men and relational and subjective benefits for women. Overall, the study helped provide insights into why some household members may accept (while others reject) livelihood options offered by hydropower development.Weeratunge inclusive participatory planning process, you-as outsiders-can understand the visions and plans of villagers; in turn, the villagers will be empowered to participate meaningfully in research and interventions as part of the transdisciplinary team. Demanddriven research that focuses on the needs of marginalized ethnic minorities is the only way to ensure that the most marginalized people in the targeted community benefits from the agricultural R4D innovations. One of the primary reasons why many agricultural innovations are not adopted, or only adopted by better-off ethnic group(s), is because projects do not meet the needs of marginalized groups. At the same time, expectations-both the participants' and research team members'-of how the marginalized ethnic groups may benefit from the project should be kept realistic from the onset.Organize a local-level project design workshop that includes the identified marginalized ethnic groups and other local stakeholders. Areas of mutual interest to both the marginalized ethnic groups and the project team need to be clearly mapped out, as well as areas beyond the scope of the project that therefore cannot be tackled by the project. When selecting the workshop participants, be particularly mindful of internal marginalization e.g., the head of an ethnic minority village is less marginalized than poorer villagers, and their wives are likely to be even more marginalized. A village head cannot represent or speak for those more marginalized, and a man cannot speak for women, even if they are from the same ethnic group. Keep in mind that the more marginalized someone is, the less likely s/he would be the ones proposed as participants of meetings by village heads and local agricultural extension workers.Inclusive participatory planning and visionsetting at the village scale will enable joint identification of needs and priorities specific to marginalized ethnic groups; in addition, it is crucial for short, medium and long term objectives of the agricultural R4D to be made jointly with all farmers. During such workshops, do not assume that ethnic minorities have high cohesion, avoid viewing a single ethnic minority group as a homogeneous / monolithic entity, and be sensitive to the power relations among and within the different ethnic groups. Through the use of facilitators and interpreters, create an environment that makes it possible for less powerful and marginalized groups to speak out.ChALLENGE c.2: How do we reach ethnic minority groups when implementing a project?What to do c.2: Acknowledge that there are two types of access-physical access, and cultural and social access-and take steps to obtain both through the right project team and participants.Concerning physical access, it is necessary to get official permits, which can be difficult to obtain in some countries in this region whose governments are often politically sensitive, especially when working with ethnic minorities in border areas. It is necessary to identify appropriate local \"gate keepers\" who can act as an intermediary between the project, the State, and ethnic minorities, and permits need to be requested through them.Concerning cultural and social access, the project team needs to include researchers with knowledge, experience and good contacts with ethnic minorities. Having researchers who are members of ethnic minority groups and/or some researchers who speak ethnic minority languages will help build trust between the project team and ethnic minorities. Having a glossary of key terms and concepts (see Challenge c.1-2) would also be helpful. Social scientists familiar with qualitative research methods can help with the collection of social and cultural information necessary to work with minority groups. Challenge c.1-1 includes some information on the kind of information which would be useful.Identify the relevant project participants and stakeholders-the targeted population of the project-and understand the various social relations and power dynamics at work. These will be between different stakeholder groups; between different ethnic groups within a village or a commune or a district; within ethnic groups, including gender groups and the poor; and with outside actors. It is important to understand that there is usually considerable diversity within marginalized groups. Avoid \"token representation\" of ethnic minorities in the research project, and make sure that the people targeted by the project are fully participating throughout the process.Thai ethnic women eating fruit in Son La, Viet Nam (ICRAF/Lisa Hiwasaki)How c.2: Design and plan research in the following ways:• Leave room for adaptability and flexibility about project activities in the project plan. This will allow research to be adaptive and change direction depending on the needs of ethnic minority farmers, research progress, etc.• Schedule some open and unstructured time in the project plan. \"Transect walks\" (a purposeful walk through a village with locals for the purpose of seeing the village through the eyes of a local), \"participant observation\" (accompanying locals on specific parts of their daily routine to develop a firsthand understanding of how local livelihoods fit into daily activities), and \"informal conversational interviews\" are methods that can be used to get acquainted with local people and environments, and are necessary to secure such time in the project plan and be included when submitting requests for research permits.• Secure time and process to obtain the right authorizations and logistical support to work in certain areas, and with ethnic minorities. This necessarily entails collaborating productively with both ethnic minorities What to do c.3: Pay special attention to the changes created outside the activities of the project, and take efforts to understand local systems.Because the project is a new element introduced to the local political, economic, and social system, the project team must be aware of and pay attention to the changes that take place in a site that are not related to the project. For that, it is necessary to understand local power dynamics and the role played by local interest groups, whether formal or informal.Clearly map the stakeholders and the relationships between them. Implement stakeholder analysis, including gender analysis, to understand the local political system, power dynamics (including who has control over resources), and existing conflicts at different scales (within households, within villages, andIn the development of hydropower schemes, displaced local people may be financially compensated for their losses. Despite that compensation, adapting to a new place and finding viable livelihood activities can present significant challenges. This project focused on optimizing reservoir management for local livelihoods by explored cultivation of a short-duration cassava variety. The project took place in the drawdown area of the Yali reservoir in Kon Tum province, Viet Nam, which is populated by both the Kinh (Viet Nam's majority ethnic group) and the Jarai, an ethnic minority group.During the selection of farmers for this particular project, it was apparent that prevailing local circumstances had an effect on the household selection process: local beliefs and norms and the limited availability of seedlings of the new cassava variety both had an impact. Local leaders tended to choose farmers who appeared \"open to innovation and to taking risks, \" and could afford to invest in the necessary inputs. This resulted in a situation where the initial project beneficiaries tended to be farmers who were already at an economic advantage. None of participants were from the Jarai, who were included only in the second year of the trial, following successful results in the first year.Similarly, participants in the training programs conducted in association with the livelihood pilot were mostly Kinh, though some Jarai farmers were included as well. Project representatives strongly felt that the group should have been more representative of the population's ethnic composition, and that the participation of marginalized groups should be encouraged rather than discouraged; however, the local leaders who drove the selection process felt that representatives of ethnic minority households lacked adequate language skills and were not sufficiently open to innovation or inclined to follow technical recommendations. Based on the local administrative and political context, it was difficult for the project to change the selection criteria in a way that prioritized marginalized communities.Several approaches were adopted by the project to overcome some of these constraints and ensure that the Jarai ethnic minority group could also benefit from the cassava livelihood pilot. For example, a staff member of the Department of Agriculture and Rural Development (DARD) of the Jarai ethnic group was appointed to supervise activities under the project, including training and communication between district and provincial levels. During the training program, visual aids were used, which proved to be especially helpful in overcoming language barriers or limited technical knowledge and found particularly useful when engaging with the Jarai. Furthermore, in the case of the Jarai farmers engaged in both the pilot and training sessions, it was found more effective when the younger generations with a better understanding of Vietnamese (spoken by Kinh but not by all Jarai) were involved. This was important to note for future training and for up-scaling of the project.For more information: village-outside). This should be complemented by assessments of the different needs and capacities of specific marginalized groups.Stakeholder analysis-which consists of identifying stakeholders, differentiating between and categorizing stakeholders, and investigating relationships between stakeholders-can be done through mixed methods, consisting of questionnaires complemented by in-depth qualitative research [20,21]. Understanding local beliefs and the customary institutions that govern local social relationships will provide key knowledge that allows the project team to know the best ways to deal with each stakeholder.Research using ethnographic methods to produce first hand in-depth knowledge, and-when it is available-reading ethnographic literature on the ethnic group(s) in question can help the research team to understand and deal with the local social, political and cultural system. Only after this is done, can the project start to define its place and its position in the social, political and economic local system.People to be identified for the project are:• Key stakeholders: Stakeholder categories include farmers (particularly the more marginalized ethnic minority farmers, women, and the poor), researchers (local & international), NGOs (local & international; especially NGOs which focus their work on ethnic minorities), government, policy makers, and formal and informal groups (village youth groups, women's union, farmer groups, traditional village committee).As you determine which stakeholders can be effectively engaged, be aware that many people \"wear multiple hats\": ethnic minorities could be government employees, farmers might be members of NGOs, and so on. Over the past two decades, Dao ethnic minority farmers in Northern Viet Nam have adopted some new technologies such as high yielding industrial cassava varieties and tree crops. To investigate how this worked along gender lines, this study asked: how do gendered social values and practices influence the ways Dao men and women engage in modern agriculture? To explore this question, we conducted in-depth interviews with 15 women and 13 men at different life stages and of different economic statuses in a single-ethnic village of \"White-Trousers Dao\" in Yen Bai.Dao men and women continue to use their own knowledge-sharing systems, even after modernization of their agricultural practices. They tend to trust information from their family and relatives and to adopt new practices only after confirming positive outcomes with their own eyes: new technologies are slow to spread across the entire village. On top of this, there are strong social stigmas attached to debt, so Dao farmers-men in particular-tend to be reluctant to borrow money. In the case of cassava, however, Dao men are willing to go into a small amount of debt related to cassava production since they have seen how cassava is a viable crop in this particular context.Current farming practices require intensive male labour work, making it difficult for poor families with a shortage of male labour to invest in new crops and technologies. This is because Dao women access resources through the family as a collective institution and must depend heavily on manual labour. Family relations are very important in the extent to which they can invest in agricultural resources. Hence, without considering such social contexts, mainstream agricultural development may contribute to internal marginalization within the marginalized community.This case study thus shows that exploring social dimensions of agriculture helps develop context-specific approaches to facilitating uptake of new technologies in ways that fit well with the social context of the ethnic minorities.For more information: Soil erosion is one of the major issues impacting sustainable agriculture in the sloping lands of Northern Laos. This problem is currently magnified by the spread of commercial tree plantations-e.g., teak trees-replacing traditional rice-based shifting cultivation systems. Soil erosion has led to negative impacts both on and off the research site.In collaboration with farmers and agricultural extension services, research conducted under the Humidtropics CGIAR Research Program was implemented to test and develop innovative on-farm land management practices that improve stream water quality while sustaining the fertility and productivity of erosion-prone soils in the mountains of Northern Lao PDR. Ten different types of land use in the Houay Dou catchment were monitored for runoff and soil erosion rates.Farmers working in the Houay Dou catchment belong to Lao-Tai ethnic majority group and Hmong and Khmu ethnic minority groups. Using qualitative, participatory approaches, we investigated the different perceptions and preferences the farmers have in terms of the different land uses and agricultural practices adopted in the catchment. The findings were disaggregated based on gender, ethnicity and wealth rank. Data was collected from three villages (Park Thor, Houy Khong and Na Kha).It appears that men and women had different views on the importance of different land use practices and their preference rankings therefore differed. For example, in Pak Thor village, men ranked the most important land use as banana cultivation (as there was a good market to sell their product and this contributed to their household income and they could also use the produce they did not sell for home consumption), whereas women ranked fallow land as their priority because it was the main area used to collect non-timber forest products (NTFPs) as part of their livelihoods and this was considered particularly important by women as they are the primary collectors of NTFPs. There were also differences in preference ranking of land use practices depending on the village and the key land uses available to local people. In Na Kha village for example where approximately 85% of the 47 households were found to be engaged in teak plantations, as expected this land use type was ranked high by both men and women. It was ranked the first preference by men (because of the current high demand for teak and the villagers can earn high income from teak plantation as a good source for household saving) and second by the women (one reason given is that it takes time to obtain benefits as one needs to wait until the teak trees mature).Furthermore, it appeared that better-off households have preference for teak plantation with larger areas and are not interested in upland rice, while poor households who have limited land prefer upland rice cultivation and NTFPs for home consumption. In relation to ethnicity, the Hmong gave preference to land use practices involved in the cultivation of maize, broom grass, rubber and banana, Khamu appeared to prefer upland rice cultivation, while Lao-Tai appeared more interested in teak plantations.It was noted that soil erosion was not an issue that was specifically brought up by the farmers. However it was encouraging to note that the production of broom grass was ranked relatively high by both men and women since this land use practice has been demonstrated to have the lowest erosion rates from the biophysical studies. In Na Kha village, for example, broom grass was ranked second by men and first by women while in Pak Thor village, broom grass was ranked second by men and third by women in the focus group discussions.This case study demonstrates that gender, wealth and ethnic grouping influences agricultural decision-making. Overall, it is clear that a nuanced approach will be required when informing farmers how to select land use types that can limit erosion and preserve soil fertility.appropriate technological innovations. These innovations can be built on information collected at the project conceptualization stage (see Challenge c.1-1).o Scale out innovations (technological or institutional) tested elsewhere only after:giving farmers full information of pros and cons;obtaining the willingness of local people to accept and then adopt innovations, and if necessary, building their capacities to adopt them;ensuring that the innovation is based on local culture, knowledge, aspirations, capacities;carefully considering what kind of impacts the new innovation may have on the local culture and social relations within the village;considering the existence and/or distribution of assets (e.g., economic, natural (water, access to farming land, etc.), social and political (power, prestige, networks), etc.) that enable adoption of the innovation;assessing the relevance of the new innovation in the local economic, socio-cultural and ecological contexts; andconsidering the role of researcher as facilitator of technological and/or social innovations that can help them meet their needs.• Throughout the project cycle:o Establish multi-stakeholder processese.g., through multi-stakeholder innovation platforms-through which systemic problems and opportunities supported by systems analysis are prioritized; project entry points that require social and technical innovationsAgricultural interventions in ethnic minority communities in Viet Nam have often shown that the introduction of new technologies can partially close the agricultural \"technology gap.\" However, men tend to accept the use of new technologies more readily than women, as purchasing seeds and other agricultural inputs are often closely associated with men's existing gender roles. If agricultural interventions are to support women and men equally, it is important to understand gendered social mechanisms of innovation instead of looking solely at overall production levels.This study asked how gender relations shape agricultural innovation, and how subsequent changes in production reconfigure gender roles and relations within the family and the village. To address this question, fieldwork was conducted in a black Thai ethnic minority village in Dien Bien Province. We carried out in-depth interviews with 12 men and 17 women from 29 households.Most black Thai women perceive themselves to be in a lower position of power than their husbands and in-laws. They believe this arrangement was desirable for Thai families. Social expectations of wives have been increasingly associated with earning incomes through innovation in livestock, from which women eventually gain their status in the family. To achieve this, women start new activities on a very small scale to ensure that potential failures do not have any serious repercussions for their livelihoods. This is to avoid risk: success or failure in agriculture can influence their position in the family, and affects their family's reputation. Women also depend on their own family networks and support instead of their husbands', so that success can be more clearly attributed to women's capacities and efforts, thereby improving their social and familial position.Agricultural interventions for supporting women need to take account of the underlying power relations that shape women's strategies and opportunities. Agricultural research and interventions conducted without a gender lens run the risk of continuing to support wealthy men whose concepts of innovation fit well with scientists' notions of and interests in innovation instead of equitably supporting all parts of a village. This case study shows that taking a gender lens is also important when engaging with ethnic minorities.For more information: The project entitled \"Enhancing the contribution of home gardens to on-farm management of plant genetic resources and to improve the livelihoods of Nepalese farmers\" was led by Bioversity International and implemented by Nepalese NGO LI-BIRD between 2002 and 2013. An evaluation using primarily quantitative methods concluded that the project had made a substantial contribution to biodiversity conservation and livelihoods. A subsequent qualitative study deepened understanding of how and why the project also improved gender equality and social inclusion; illuminating the value of combining qualitative and quantitative methods in project evaluations based on four considerations.First, the qualitative analysis helped contextualize the project within the larger system in which it was embedded, pointing to a confluence of factors external to the project (e.g., the acquisition of electricity, water pumps and mills) that facilitated the livelihood changes that had been attributed to the project. Second, while quantitative data excels at identifying trends, qualitative research is crucial for identifying those trends. Qualitative data revealed the non-linear process of change, including the fact that transformations in gender and social relations often occur when the various parties involved in research-e.g., women and men, members of different ethno-religious or socio-economic groupsare encouraged to interact with one another. Third, the qualitative analysis illuminated unanticipated project outcomes, which participants themselves perceived as meaningful. For instance, both male and female Dalits (considered a low caste) expressed that some of the biggest changes they experienced were associated with relations across castes, which had not been anticipated and hence not measured using pre-defined indicators. Using open-ended qualitative methods helped capture the importance of the project in participants' own terms. In this light, the project's intellectual and emotional benefits emerged as even more significant to female and male participants than the material outcomes of the project. Finally, qualitative research allowed local interests to be identified and built upon when planning future initiatives. Hence, if the purpose of impact assessments is not only accountability but also learning, combining quantitative and qualitative methods is needed to enable the breadth and depth of analysis required in the learning process.For more information: Our findings showed that in majority of the projects, project team members only visited the target village once or twice during the project period. This can be changed for the benefit of all stakeholders if external staff modify their schedules to spend more time around the project site. We noted that the most popular projects by the villagers are always those in which project members spend \"non-project\" time with villagers. For example, when villagers remember the names of project staff, it is a strong indication that the project is integrated into the local social world.A successful project is one which has been incorporated into local social life; if possible, project staff should attend social events (weddings, local banquets and parties). We found that when the project is able to integrate some elements of the local social life, the relationships between the project and local people become stronger and more flexible. In line with the local way of holding meetings, at the same time organizing official meetings with the \"right\" team members-including people from the local party members, local government officials, etc.-it would be useful for a project to have informal meetings (outside the official meeting place, in a private home) to learn about issues that do not come up in formal settings and to meet people who do not come to these formal meetings.For more information: • self-and collective-efficacy;• ability to assess options and identify key system challenges;• ability to go through iterative visioning, planning and reflective learning cycles;• capacity to link to other actors and to use linkages strategically in support of own plans;• enhanced capacity for effective collective action; and,• enhanced leadership skills [22].Building capacity to innovate will increase the likelihood of unexpected outcomes as well as expected ones. Experience shows that it is often the unexpected and opportunistic outcomes that lead to real impact. The project should monitor for these and retain sufficient flexibility to support beneficial ones.With respect to the technology development and adoption pathway, development partners and relevant government and extension services who are part of the transdisciplinary research team would take the lead role in ensuring that the research findings are widely understood and adopted by the marginalized group(s). They also play a key role in ensuring that these technologies/ activities/interventions are scaled out in a suitable manner to other ethnic groups.With respect to the policy influence pathway, it is important to present to decision makers and policy makers evidence-based research findings and methods to demonstrate the importance of engaging with ethnic minorities: project evidence should provide policy makers with information for scaling and institutionalization of innovations.• Carry out a stakeholder workshop, including minority groups, to agree on the overall development challenge, identify stakeholders' strengths and opportunities to tackle it.• Involve development practitioners and other relevant local stakeholders such as government extension services in the transdisciplinary team, and get their inputs from the beginning regarding strategies and mechanisms that are already in place or can be adapted to potentially scale out the proposed technologies/interventions/ activities, particularly among marginalized ethnic groups. Describe this explicitly as part of the project's communication and uptake strategy.• Use this input to develop a theory of change for the project that makes its causal assumptions explicit.• Carry out a mid-term review to identify emerging outcomes and positive feedback loops, both expected and unexpected. Use these findings to revisit and provide detail to the original theory of change. Make appropriate course corrections including providing support to emerging feedback loops and outcomes and making the project's outreach and communication strategy more specific. In some cases, generic stakeholder groups can be replaced with specific organizations, or better, the names of specific people.• Develop an understanding of the extent of the need and demand for the technologies, interventions, or other project activities amongst ethnic minority groups in the neighbouring communes, districts, and provinces; assess whether or not an enabling environment exists for scaling out. Consultations with relevant partners and simple GIS-based decision support tools can be used in this context.• Take steps to understand the best way of ensuring farmer-to-farmer learning, taking into account that how information flows and how effectively it is exchanged may be shaped by pre-existing social networks and relations. As much as possible, make use of ethnic minorities' traditional ways of learning and innovations.• Identify potential \"champions\" at appropriate levels at the beginning of the research, who can help with scaling out among ethnic minorities and also with scaling up. This can be a high-level politician with a research background, policy-makers, local authorities or local elites, or members of Indigenous People's / ethnic minorities' groups.• Organize policy dialogues and field visits for key local, regional, and national policy makers to project sites.• Identify and participate in existing national processes such as sector working groups, national forums, and donor and development meetings: participation in these processes will help inform decisionmakers of research findings and the importance of engaging with marginalized ethnic groups.• Include a budget for a communications and uptake coordinator, who could promote project interests and generate knowledge both proactively and reactively during the course of the project. The uptake coordinator should invest adequate timeAccording to Elias and Hermanowicz (2016), it is important to consider four factors when preparing to communicate research findings:• Understand your audience by identifying groups who will be using your findings from the very start of the research process. Consult both women and men from these groups to hone in on stakeholder information needs and perceptions. Also, share your findings with different types of actors, including groups that can take up, but also further share the research results.• Showcase relevant findings, e.g., by gender and/or by ethnic group, by unpacking, analyzing, and representing data according to relevant variables of analysis-these could be ethnicity, gender, or age, for example. Images and videos used to illustrate research findings should include both women and men and include members from all relevant ethnic groups.• Share research findings with differentiated stakeholders through relevant channels by considering where different target audiences obtain their information, and use those channels for outreach. Use appropriate language that is matched to the level of technical understanding of the target audience. Adopt diverse and mixed methods of communication to reach different ethnic groups and both women and men-e.g., visual materials such as illustrated pamphlets, photographs and videos, and verbal methods of transmitting information.• Monitor and evaluate outreach strategy: whatever communication activities are chosen, they should be monitored and evaluated for effectiveness in reaching the different target audiences to strive for continuous improvement and fine-tune the communication strategy.All these must be adequately planned and budgeted for early on in the research process. By ensuring that local women, men, and marginalized groups are able to equitably access research findings, it is possible to support their empowerment-an essential part of the R4D process.Elias M, Hermanowicz E. 2016. Practical tips for communicating findings in a gender-responsive way. Rome: Bioversity International.to promote project uptake to the degree needed: this requires additional time and effort, as well as a specific skill set.ChALLENGE c.7: How do we ensure that our project is directly linked to the outcomes that marginalized ethnic groups need?What to do c.7: The identification of a common development challenge with marginalized groups, as described above in Challenge c.6, ensures that the project goals match their needs. The subsequently-developed theory of change shows how project activity and outputs are expected to contribute to these goals. The project will need to establish a monitoring and evaluation system to track these assumptions and intentions as implementation unfolds, and adjust accordingly.How c.7:• Develop a theory of change in a participatory manner with project staff, partners, and key stakeholders. The process helps identify key actors to target: who needs to be influenced, how they ought to be influenced-e.g., bringing about changes in their knowledge, attitude, or skills-and strategies to do this. Participatory identification of a theory of change helps build ownership of the project by implementing partners.• Further refinements can be made to the theory of change mid-term, after a more in-depth understanding is gained at the research site, after specific relationships and partnerships are initiated and early outcomes have been identified.In addition to a mid-term review, plan for annual after action reviews for the project to critically reflect on its progress over the year in terms of what is working well, not so well and what to change in the coming year. It may not be practical to carry out these reviews with the entire team; it is thus important to plan how and when reflections and iterative project modifications will occur.• Outcome evidencing is a suitable method for carrying out a mid-term revisiting of project theory of change. The method identifies outcomes to which the project is contributing and how it is doing so.Transdisciplinary action research has different resourcing and timing requirements to normal agricultural R4D. Start-up takes longer to gain access, engage, build trust and connections and to identify research issues that motivate participation from a range of actors, in particular ethnic minorities and other marginalized groups. Team composition will be different, involving a broader range of disciplines and more \"soft\" skills, in particular facilitation.Given the importance of engagement and creating safe spaces to work on issues of mutual interest, the number and type of events will be greater, and they will last longer. See above index (table 1) for the kind of activities, methods, and tools that can be used to facilitate participation and engagement.While front end costs maybe higher, and research outputs slower to come, return on investment can be expected as a result of the motivation, trust, linkages, platforms built, etc. that evidence shows [23] can last many years after the project finishes. The additional time and costs required to work with marginalized Outcome evidencing is a rapid and participatory evaluation approach built on a complexity-aware understanding of how change happens. The approach assumes that programs achieve impact when the resources they provide find resonance with key stakeholders engaged in on-going or emerging areas of change. The approach is designed to (a) identify areas of change to which the program is contributing; (b) within them, identify clusters of outcomes, both expected and unexpected; (c) develop causal chains that link the program activity and outputs to emerging outcomes; and (d) compare those links with the program's original theory of change. The information is then used to show accountability to stakeholders as well as to derive lessons and propose actions to strengthen the capacities of the implementing teams and the implementing organizations as a whole.Paz-Ybarnegaray R, Douthwaite B, (in press). Outcome evidencing: a method for enabling and evaluating program interventions in complex systems. American Journal of Evaluation.groups may not fit with the donor's current orientation toward \"efficiency\" and short time frames of projects. Discuss and negotiate with donors and host institutions about this different dynamic that such an agricultural R4D entails. If there is no institutional or donor support, transdisciplinary action research that engages ethnic minorities would not be worth starting.","tokenCount":"9510"} \ No newline at end of file diff --git a/data/part_3/7555873551.json b/data/part_3/7555873551.json new file mode 100644 index 0000000000000000000000000000000000000000..63c5b8f21b2044f11a701e958504692225f7a082 --- /dev/null +++ b/data/part_3/7555873551.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c46f4a618d2ac198df7024da907090fa","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/c45c4c4c-c8d3-4d61-b89e-3aef0343f6ab/retrieve","id":"-345197861"},"keywords":[],"sieverID":"d16ab764-f8b2-4758-9e21-2443115e1a3a","pagecount":"36","content":"To the members of the CGIAR System Management BoardIn compliance with the assignment entrusted to us by you, we hereby report to you, for the year ended December 31, 2018 on the audit of the accompanying financial statements (hereafter \"the Financial Statements\") of CGIAR System Organization as attached to this report.These Financial Statements were prepared under the responsibility of the Management. Our role is to express an opinion on these Financial Statements based on our audit.We conducted our audit in accordance with the International Standards on Auditing. Those standards require that we plan and perform the audit to obtain reasonable assurance about whether the Financial Statements are free of material misstatement. An audit involves performing procedures, using sample techniques or other methods of selection, to obtain audit evidence about the amounts and disclosures in the Financial Statements. An audit also includes evaluating the appropriateness of accounting policies used and the reasonableness of accounting estimates made, as well as the overall presentation of the financial statements. We believe that the audit evidence we have obtained is sufficient and appropriate to provide a basis for our audit opinion.In our opinion, the Financial Statements give, in all material respects, a true and fair view of the assets and liabilities and of the financial position of the Entity as at December 31, 2018 and of the results of its operations for the year then ended in accordance with International Financial Reporting Standards.The CGIAR System Organization's ('System Organization') 2018 Financial Statements reflect its continuing and successful efforts to streamline and more strategically focus its activities, as well as to support the ongoing evolution of a more impactful CGIAR System. 2018 was a year that saw great work towards more effective strategizing and planning for the System. Under the leadership of its Executive Director, the System Organization effectively stewarded the development of Strengthening the Partnership, Creating Impact -CGIAR System 3-Year Business Plan 2019-2021. The 3-Year Business Plan lays the groundwork for the advancement of a System-wide CGIAR 2030 Plan ('2030 Plan') that will be developed over the coming two years in collaboration with stakeholders inside and outside of the CGIAR System. The aim of the 2030 Plan is to set out an ambitious forward vision for the CGIAR System including a new round of programming for the 2022-2030 period, framed in terms of CGIAR's planned contribution to meeting the Sustainable Development Goals.System Organization management has provided effective support to the CGIAR System Council and its newly established Assurance Oversight Committee ('AOC'). Management has facilitated the work of the System Council's Strategic Impact, Monitoring and Evaluation Committee ('SIMEC') in the committee's oversight and realignment of the System Council's independent advisory services. Following a decision of the System Management Board in September 2018, management will be proceeding in 2019 with the establishment of a small staff presence in Rome, Italy, facilitated by a hosting and co-location agreement with Bioversity International, a CGIAR Center. At its September 2018 meeting, the System Management Board also endorsed a proposal from several CGIAR stakeholders that the System Organization work in collaboration with interested CGIAR Centers to establish a CGIAR Rome Hub to provide greater connectivity and profile for CGIAR as a system in the global food security debate and with other development/agriculture institutions.These strategic developments will be supported by an ever-improving capacity to measure performance standards and monitor compliance and achievements through a combined assurance approach. As formal CGIAR Center alliances and increased System-wide interest in shared services opportunities continue to be explored, the prospects of strengthened collaboration make 2019 an exciting year to look forward to.I want to give credit to the System Management Board and its Audit and Risk Committee for their exceptionally hard work in 2018, and particularly to their members, whether independent or from Centers, who completed their mandates in 2018. I convey our gratitude to our Funders for their continued support. Finally, I would like to congratulate each member of the System Management Office's staff for their engagement and commitment to deliver on the mission and vision of the CGIAR System during 2018.The System Management Board has ultimate responsibility for ensuring that the System Organization has in place appropriate risk management and internal control systems and practices. The Board's responsibility includes the determination of the nature and extent of the key risks that the Board is willing to take to achieve the strategic objectives of the organization, and being satisfied that management has understood the risks, is implementing (the first line of defense) and monitoring (the second line of defense) appropriate policies, and is providing the Board with timely information so that the Board may discharge its responsibilities.Financial, operational and reputational risk is an everyday part of CGIAR System activities given: the range of actors; the number of countries in which CGIAR research actions are undertaken by CGIAR Centers and CGIAR Partners; that CGIAR's operations are heavily focused on operating with and across multiple partnerships; and in certain settings, there are challenging development contexts that impact on day-to-day operations. The System Organization is one constituent part of the CGIAR System, with multiple other stakeholders having different roles and responsibilities.The Risk Management Framework of the CGIAR System ('Framework') provides for risk management to be embedded in CGIAR's governance and management practices and throughout the control environment of relevant CGIAR entities. The Framework explains roles and responsibilities and describes how all the parts fit together in an 'extended enterprise' environment where a number of CGIAR entities come together in a joint endeavor in order to achieve outcomes that none of them could have achieved on their own. Because of the links between strategy and the underlying opportunities and risks, the Framework sets out the agreed five 'strategic operational objectives' for the CGIAR System, and thus for the System Organization operational entity-namely 'delivery, relevance, reputation, reliability and efficiency'. Within the scope of all that is possible as a System, the System's risk appetite statement provides a guide on CGIAR's overall willingness to exploit opportunities to reach its three System Level Outcomes, with relevant entities ensuring that their respective risk management practices are aligned with the System's overall risk appetite. The focus is on taking the right risks, but with no tolerance for financial mismanagement. This heightened focus on risk management as a daily business practice is reflected in changes in the way the System Organization now operates. Key deliverables are revisited half-yearly, resulting in clearer accountabilities and milestones. Internal audit requirements for the System Organization are periodically re-assessed and processes have been established for a systematic follow-up on the implementation of audit recommendations.The System Management Board's Audit and Risk Committee met six times over the 2018 year and conducted a joint meeting with the newly formed Assurance Oversight Committee of the System Council. As part of the Audit and Risk Committee's role and responsibilities, it reviewed forecasts of available resources for the CGIAR Portfolio, monitored the financial position and stability of the System Organization and the Centers, and considered the System level risks of specific events in Centers and provided guidance and oversight to the development of 3-Year 2019-2021 CGIAR Research Financing Plan in support of the 3-Year Business Plan.In continued support to the System Management Board and the CGIAR System, the Audit and Risk Committee in 2019 will prioritize (i) the definition and implementation of a cross-System whistleblowing process to ensure effective linkages with Center-own processes; (ii) operational protocols for System-wide policy consultation and adoption; and (iii) the development and communication of a System-wide policy on event reporting, with clear definitions of triggers for when an event should be reported and a mechanism for System-wide sharing of information and disclosure to stakeholders.The CGIAR System Management Office has direct responsibility for the accounting of all System Organization expenditures and has maintained a system of internal controls designed to provide reasonable assurance that assets are safeguarded and that the financial records of the Office are properly kept. On 17 June 2016, the CGIAR Centers and Funders adopted a 'CGIAR System Framework' that sets out the overall governing framework of the CGIAR System and provides for a System Council and a CGIAR System Organization with its two constituent parts, a CGIAR System Management Board and CGIAR System Management Office. The responsibilities of the System Management Office are further defined in the 'Charter of the CGIAR System Organization'.The accompanying annual Financial Statements of the System Organization for the year ended 31 December 2018, have been prepared in accordance with International Financial Reporting Standards ('IFRS'). PricewaterhouseCoopers ('PwC') has been engaged to examine and report on the financial statements of the System Organization. The firm's examination is conducted in accordance with International Standards on Auditing ('ISAs'). PwC's report accompanies these 2018 Financial Statements.The System Organization's Chief Audit Executive performs internal audit assurance and advisory engagements according to a Charter approved by the System Management Board pursuant to The International Standards for the Professional Practice of Internal Auditing. Internal Audit delivers findings and provides recommendations regarding the adequacy of the CGIAR System Organization's policies and procedures and the effectiveness of their implementation.The System Organization has fiduciary responsibility for all Window 1 and Window 2 funds disbursed from the CGIAR Trust Fund managed by the World Bank as Trustee to CGIAR Centers and other partners that are leading or participating in CGIAR Research Programs and Platforms 1 . Consistent with prior years these funds are not reflected in the Financial Statements of the CGIAR System Organization. These funds are for the implementation of CGIAR Research Programs and Platforms and are reported in the financial statements of the respective Centers.Taking into account the 'extended enterprise' nature of CGIAR's operations, separately, the System Organization prepares aggregated CGIAR System financial information (presented annually as the 'CGIAR Financial Report'), which is based on the 15 Centers audited financial statements and the reporting of expenditures by System entities 2 . The CGIAR System financial information presents System Organization and Center management, the CGIAR System Management Board and the System Council, with an accurate view of the System's operations, which enables identification and discernment of strategic opportunities and risks. The System Organization has had full operational and legal responsibility for its activities since 2016, overseen by the former Consortium Board to 30 June 2016. From 1 July 2016, the System Management Board was in place. Refer to Note 6 below for membership details of the System Management Board as constituted in 2018.Pursuant to the Charter, the purpose of the System Organization is to provide support to the CGIAR System. Led by the Executive Director, the System Organization manages the day-to-day operations of the System Organization, the System Management Board and the System Council, and facilitates collaboration within the CGIAR System.The CGIAR System Organization is an independent international organization with such international legal personality as may be necessary for the exercise of its functions and powers, and the fulfillment of its purposes, including without prejudice to the generality of the foregoing, the legal capacity:(a) to enter into treaties, agreements, arrangements and contracts; (b) to acquire and dispose of movable and immovable property; (c) to institute and respond to legal proceedings.The System Organization is not subject to statutory laws and regulations which would require the entity to prepare a full set of annual Financial Statements. For the 2017 calendar year, due to decisions taken by the CGIAR System Council and the System Management Board in July 2016 4 , the System Organization continued to operate pursuant to the 'Joint Agreement entered into between the CGIAR Consortium and the Fund Council of the CGIAR Fund represented by the World Bank' ('Joint Agreement') 5 . Pursuant to article 19.3 of the Joint Agreement, the System Organization was required to present a full set of annual Financial Statements through to 31 December 2017, at which time the obligations under the Joint Agreement came to an end. For 2018 and beyond, the System Organization recognizes the benefit to its stakeholders of continuing to provide a comprehensive annual review of its business performance and financial position through the provision of a full set of annual Financial Statements, together with an independent external audit opinion.The authority for the System Organization to operate in France is conferred in the 'Agreement between the Government of the French Republic and the Consortium of International Agricultural Research Centers regarding the headquarters of the Consortium and its privileges and immunities on French territory' entered into on 4 March 2013 ('Headquarters Agreement') 6 .On 31 March 2015, an agreement was signed with the Région Occitanie (formerly titled Languedoc-Roussillon) providing an office building located at 1000, avenue Agropolis, F-34394 Montpellier Cedex 5, France, from where the System Organization operates ('Premises Agreement'). The building includes 790 sqm of office, meeting and open space, and the facility is built on a piece of land of approximately 1,000 sqm, which is part of the Agricultural Agropolis Park. The facility is provided by the Région Occitanie free of charge except for an agreed upon late modification for which the System Organization agreed to reimburse the Région with a payment of Euro 10,474 during the first five years of occupation. The Premises Agreement is in place for a duration of 20 years and if not renewed the facility shall be returned to the Région Occitanie.CGIAR's vision is a world free of poverty, hunger and environmental degradation. CGIAR's mission is to advance agri-food science and innovation to enable poor people, especially poor women, to increase agricultural productivity and resilience, share in economic growth, feed themselves and their families better, and conserve natural resources in the face of climate change and other threats. CGIAR's 2016 -2030 Strategy and Results Framework (\"SRF\") 7 defines CGIAR's aspirations and strategic actions to deliver on our mission, with the actions of the System Organization operationally aligned to that SRF due to the organization's status as one part of the collective whole of the definition of the CGIAR System. 8This note provides a list of the significant accounting policies adopted in the preparation of these financial statements. These policies have been consistently applied to all the years presented, unless otherwise stated. A brief description is provided below of the accounting policies and principles adopted in preparing the Financial Statements.Items included in the Financial Statements are measured using the currency of the primary economic environment in which the System Organization operates (the 'functional currency').The Financial Statements are presented in US dollars, which is the Organization's functional and presentation currency. Those assets and liabilities denominated in other currencies are converted at the exchange rate in effect at the end of each financial period. Grants received in currencies other than US dollars are recorded at market exchange rates in effect at the time the grant is received or, if outstanding as of 31 December at the market exchange rate in effect at the year-end.Foreign currency transactions are translated into the functional currency using the exchange rates at the dates of the transactions. Foreign exchange gains and losses resulting from the settlement of such transactions and from the translation of monetary assets and liabilities denominated in foreign currencies at year end exchange rates are generally recognized in the income statement.Most of the revenue is derived through the recognition of revenue from restricted grants.Restricted grants are those that are received from a transfer of resources, including Window 1 funds transferred from the CGIAR Trust Fund to the System Organization in return for past or future compliance with specific conditions. These grants are recognized as revenue once there is reasonable assurance that the System Organization has complied with the conditions attached. Restricted grants are recognized as revenue to the extent of expenses for that grant are incurred.Restricted grants in currencies other than US dollars, are recorded as income and expenses at the exchange rate in effect at the time of receipt of funds. Grants related to acquisition of assets are recognized as a reduction of the assets and systematically taken as a reduction of depreciation over the useful life of the asset to which they refer.Other revenue is measured at the fair value of the consideration received or receivable.The System Organization recognizes revenue when the amount of revenue can be reliably measured, it is probable that future economic benefits will flow to the System Organization and risks and rewards of the underlying goods or services have been transferred.Cash and cash equivalents include cash on hand, demand deposits with financial institutions, other short-term and highly liquid investments with original maturities of three months or less that are readily convertible to known amounts of cash and which are subject to an insignificant risk of changes in value.Receivables are recognized initially at fair value and subsequently measured at amortized cost using the effective interest method less provision for impairment. Receivables are generally defined as claims held against others for the future receipt of money, goods or services and include claims from Funders, advances to employees, and advances to CGIAR Centers and claims against third parties for services rendered. Accounts receivable from Funders consist of claims from Funders for grants pledged in accordance with the terms specified by the Funder. It also pertains to claims for expenses paid on behalf of projects more than cash received from Funders.• Unrestricted grants: receivables from unrestricted grants should be recognized in full in the period specified by the Funder. Before an unrestricted grant can be recognized as revenue, enough verifiable evidence should exist documenting that a commitment was made by the Funder and received by the organization. • Restricted grants: receivables from restricted grants will be recognized in accordance with the terms of the underlying contract. • Receivables from employees are recognized as they arise and cancelled when payment is received. • Advances to CGIAR Centers are recognized when the cash or other assets borrowed are delivered or when payment is made for a liability to the Center. • Other receivables are recognized upon the occurrence of event or transaction which gives the System Organization a legal claim against others.These amounts represent liabilities for goods and services provided to the System Organization prior to the end of the financial year, which are unpaid. Trade and other payables are presented as current liabilities unless payment is not due within 12 months after the reporting period. They are recognized initially at their fair value and subsequently measured at amortized cost using the effective interest method.Provisions are recognized when the System Organization has a present legal or constructive obligation as a result of past events, it is probable that an outflow of resources will be required to settle the obligation, and the amount can be reliably estimated. Provisions are not recognized for future operating losses.Provisions are measured at the present value of management's best estimate of the expenditure required to settle the present obligation at the end of the reporting period. The discount rate used to determine the present value is a pre-tax rate that reflects current market assessments of the time value of money and the risks specific to the liability. The increase in the provision due to the passage of time is recognized as interest expense.When the System Organization expects some or all of a provision to be reimbursed, the reimbursement is recognized as a separate asset, but only when the reimbursement is certain.The expense relating to a provision is presented in the statement of financial activity net of any reimbursement.g) Employee benefits i. Short-term employee benefits Liabilities for wages and salaries, including bonuses (if any) that are expected to be settled wholly within 12 months after the end of the period in which the employees render the related service, are recognized in respect of employees' services up to the end of the reporting period and are measured at the amounts expected to be paid when the liabilities are settled. The liabilities are presented as current employee benefit obligations in the balance sheet.ii. Defined contribution planThe System Organization contributes to a defined contribution retirement benefit plan for all qualifying employees. The monthly contribution is 16% of gross salary. Contributions to the defined contribution plan are recorded as expenses as incurred. The assets of the defined contribution plan are held separately from those of the System Organization in the name the individual employee and under the oversight of the Board of Trustees of AIARC.Net assets include general designated and undesignated reserves in their utilization. Designated reserves are typically dedicated to serve the acquisition or replacement of property, plant and equipment (capital fund) and are referred to capital invested in fixed assets.All amounts disclosed in the Financial Statements and notes have been rounded off to the nearest thousand unless otherwise stated.Under the accrual basis of accounting, transactions and events are recognized when they occur (and not when cash or its cash equivalent is received or paid) and these are recorded in the accounting books and reported in the Financial Statements during the periods to which they relate. Expenses are recognized in the Statement of Activities and Other Comprehensive Income based on a direct association between the costs incurred and the earnings of specific items of revenue.Pursuant to the Headquarters Agreement entered into with the French Government (see Note 1), employees of the System Organization are not personally liable to pay French income tax on salaries and other benefits paid by the System Organization. Consequently, the System Organization does not account for income tax in its Financial Statements.The following standards and interpretations issued by the International Accounting Standards Board ('IASB') have mandatory application in 2018 and have been applied in the preparation of these statements.This standard, issued by the IASB in May 2014, requires an institute to recognize revenue upon transfer of control of goods or services to a customer at an amount that reflects the consideration it expects to receive. This new revenue recognition model defines a five-step process to achieve this objective. The updated guidance also requires additional disclosures about the nature, amount, timing and uncertainty of revenue and cash flows arising from customer contracts.The improvements introduced by this new standard, issued by the IASB in July 2014, includes a logical approach for classification and measurement of financial instruments, impairment of financial assets, and general hedge accounting guidance.This was issued by the IASB in December 2016 and addresses the exchange rate to use in transactions that involve advance consideration paid or received in a foreign currency.Based on management's analysis, the new IFRS standards and interpretations referred to above have no material impact on the System Organization's 2018 Financial Statements.The following standard issued by the International Accounting Standards Board ('IASB') will have mandatory application in 2019 and a potential impact on the System Organization financial statements.IFRS 16 provides a comprehensive model for the identification of lease arrangements and their treatment in the financial statements for both lessors and lessees. IFRS 16 will change how to account for leases previously classified as operating leases under IAS 17, which were off balance sheet. On initial application of IFRS 16, for all leases unless they are short term leases or leases of low value assets the System Organization will:• Recognize right of use assets and lease liabilities in the consolidated statement of financial position, initially measured at the present value of the future lease payments; • Recognize depreciation of right of use assets and interest on lease liabilities in the consolidated statement of profit or loss; • Separate the total amount of cash paid into a principal portion (presented within financing activities) and interest (presented within operating activities) in the consolidated cash flow statement.Based on management's preliminary assessment, the new IFRS standard referred to above is not expected to have a material impact on the 2019 System Organization's Financial Statements.The activities of the System Organization are exposed to the following financial risks: market risk (including exchange rate risk), credit risk, and liquidity risk.Management of the System Organization identifies and assesses financial risks in accordance with the Risk Management Framework of the CGIAR System 9 and the accompanying Risk Management Guidelines of the CGIAR System 10 .The System Organization is exposed to market risks associated with exchange rates.The System Organization operates internationally and is exposed to foreign exchange risk arising when its business transactions are in currencies other than US dollars, the latter being the currency with which the organization predominantly operates. The System Organization is exposed to foreign currency risk arising primarily through foreign exchange operations risk.Although the System Organization predominantly executes operating activities in US dollars, it is nevertheless exposed to foreign currency risk in connection with scheduled payments in currencies other than US dollars.In general, this mainly relates to foreign currency denominated payables for local and international operations and payments of salaries which are denominated in Euros. The System Organization monitors the exposure to foreign currency risk arising from operating activities and based on the limited transactions in foreign currencies, does not use derivative financial instruments to hedge its foreign exchange exposure in relation to investments or cash flows.The System Organization is primarily exposed to changes in USD/EUR exchange rates. The sensitivity of the Statement of Activities and Other Comprehensive Income to changes in the exchange rate arises mainly from EUR denominated cash and cash equivalents, accounts receivable and payables.The System Organization maintains most of its financial instruments in US dollars however there are some financial instruments denominated in Euros at year-end. The impact on the net surplus (deficit) of the organization of a reasonably possible change in the US dollars exchange rate in comparison to the Euro can be determined by considering the impact of a 10% shift in the exchange rate: The System Organization does not hold any financial instruments subject to price risk.The System Organization is not subject to any significant interest rate risk as the only maturing interest rate are on the funds held in the bank accounts.The System Organization's credit risk represents the exposure of the System Organization to potential losses due to counterparty inability to discharge the obligations undertaken. This exposure mainly relates to trade receivables deriving from claims for grants promised or pledged or for expenses paid on behalf of its operation or projects more than cash received from Funders.The credit risk for the System Organization's operation is considered low since its primary function is that of a secretariat and not an implementer of CGIAR Research Programs or Platforms. In addition, Funders consist primarily of large international organizations or foundations, Crown corporations or national governments, or intergovernmental organizations. In the ordinary course of business, the System Organization faces the risk that receivables from CGIAR Centers may not be paid on the due date, leading then to an increase in their age and the risk of insolvency.To mitigate the credit risk associated with its counterparties, System Organization management constantly reviews its credit exposure and monitors the collection of receivables on the contractually agreed due dates. The assets are reported gross of impairment losses calculated based on the default risk of the counterparties, considering the information available on solvency as well as historical data. Credit risk also arises from cash and cash equivalents and deposits with banks and financial institutions. The organization mitigates this risk by ensuring that funds are maintained only in reputable well-established financial institutions.• Reviews of aging reports are carried out monthly and provisions for doubtful amounts made for any potentially unrecoverable amounts. • Advances to partner and hosted Centers are subject to the System Organization's internal requirements to limit losses arising from funds advanced by the System Organization.Overdue 1 -30 days 3 30Overdue 30 -90 days -11Overdue 91 -120 days 13 45Overdue by more than 120 days 199 111Total 976 374Liquidity risk takes place when the System Organization has insufficient financial resources available to meet its financial obligations and commitments when due. The System Organization's management of liquidity risk in the ordinary course of business involves maintaining a sufficient level of cash to maximize the efficiency of management of financial resources.Cash flows required to settle other financial liabilities, other than those to lenders, do not differ significantly from the recognized carrying amount. In this regard, it is noted that there is no significant concentration of liquidity risk, either in relation to financial assets or in relation to the sources of finance due to short-term period:The preparation of Financial Statements requires that accounting standards and methods be applied, which in certain cases depend on subjective measurements and estimates based on past experience as well as assumptions which, on a case-by-case basis, are considered reasonable and realistic in the specific circumstances. The use of such estimates and assumptions influences the amounts reported in the statement of financial position, the comprehensive income statement, the statement of cash flows and the explanatory notes. Actual results for such items may differ from the amounts reported in the Financial Statements due to the uncertainties that characterize the assumptions and conditions on which such estimates were made.As described in Note 1, CGIAR adopted a revised governance model in 2016, approved by the Centers and Funders in June 2016. As part of that revised model, the CGIAR System Management Board became the governing body of the System Organization from 1 July 2016.The Board's nine voting members are appointed by the CGIAR Centers, typically for a two-year term. Membership rotations are typically staggered to provide for a balance between continuity of expertise and bringing in new voices to the Board taking into consideration gender equality and other diversity principles as much as possible. Effective from 12 April 2018, the CGIAR System decided to adjust the voting member composition of the System Management Board to move to a balance of three independent members and six Center-affiliated members (from two independent members and seven Center-affiliated members). The third independent voting member of the System Management Board was appointed with effect from 1 December 2018.Tables 1 and 2 The following table sets forth a breakdown of cash and cash equivalents:Short term investments were made during the year, namely Certificates of Deposit ('CoD') with BNP Paribas in the amount of the estimated monthly salary and benefit commitments in US dollars. The investment return is accounted for as financial income.An agreement between ICARDA and the then named CGIAR Consortium (now System Organization) was amended in 2016 to extend, until 31 December 2018, the operation of a trust fund in US dollars to facilitate payments by the System Organization on ICARDA's behalf as ICARDA had experienced delays in the processing of payments due to geopolitical circumstances. The arrangement was not renewed by agreement between the System Organization and ICARDA as at its end date at 31 December 2018, and all remaining funds held in trust were returned to ICARDA in 2019.All receivable balances are valued at their net realizable value, that is, the gross amount of receivable minus, if applicable, allowances provided for doubtful accounts.'Accounts receivables -Funders' consist of claims for grants promised from Funders or pledged in accordance with the terms specified by the Funder. It also pertains to claims from Funders for expenses paid on behalf of projects in excess of cash received.The Executive Secretariat of the '4 pour 1000', an initiative hosted in Montpellier by the System Organization with effect from June 2017, organized a symposium in South Africa from 24 to 26 October 2018 to raise awareness of the '4 pour 1000' initiative on the continent by bringing together 200 participants from different African countries. Outstanding amounts were reimbursed by the Funders in February 2019.The amount at 31 December 2018 represents an accounting entry to reflect that the scholastic year in Montpellier runs from September to June of the following year. Certain staff made full payment of the educational costs for their children during the 2018 calendar year, with a proportion of those costs relating to attendance at school in the 2019 portion of the same academic year.'4 per 1000' -Africa Symposium 34 -Employees 13 -'Accounts receivables -CGIAR Centers' mainly consist of receivables for meetings hosted arrangements, shared services and others.'Accounts receivable -Others' mainly consist of:• Outstanding reimbursement of VAT from the French government pursuant to the Headquarters Agreement referred to in Note 1 • Advances to AIARC 11 , a third-party supplier to the System Organization, for processing the monthly payroll, defined contribution pension contributions and health insurance premiums for the System Organization personnel. (i) Income from provision of shared purchasing services to Centers and partners. The CGIAR System Organization leverages the combined purchasing power of CGIAR to provide maximum value for money to the Centers.(ii) The internal tax that the System Organization is required to deduct at source from the gross salaries of employees for the benefit of the System Organization pursuant to the Headquarters Agreement signed with the Government of France (see Note 1). Currently, the System Organization (based on decisions of the former Consortium Board) has set that internal tax at the rate of 5.5%. The internal tax is recognized as revenue for the System Organization.The conclusion of the various Special Initiatives Projects in 2017 and early 2018 explain the decrease in CGIAR collaboration expenses.The following table sets forth a breakdown of operating expenses:Represents realized and unrealized exchange gains and losses during the year, interest earned on short-term investments and all bank charges. ","tokenCount":"5508"} \ No newline at end of file diff --git a/data/part_3/7560822258.json b/data/part_3/7560822258.json new file mode 100644 index 0000000000000000000000000000000000000000..a8ffcdc446b4fecec42ee91caf8f73b574e1fd9f --- /dev/null +++ b/data/part_3/7560822258.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c00ae5ba5df9ce5fb4387082029aa59f","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/49e203b9-7749-429f-8cdb-1becff0c9834/retrieve","id":"382210388"},"keywords":[],"sieverID":"ba223025-f1e0-4bd4-8fda-7940e17eaa78","pagecount":"20","content":"Figura 1. Talleres realizados el 27 de agosto (izquierda, grupo A) y 28 de agosto (derecha, grupo B) ........ Figura 2. Mapas de cobertura/uso del suelo (izquierda arriba), erosión (derecha arriba), sedimentación (izquierda abajo) y riesgo de inundación (derecha abajo) utilizados en los talleres .. En el presente documento se resume el enfoque metodológico desarrollado e implementado por CIAT en el marco del proyecto Raíces-Ahuachapán, con el fin de proveer recomendaciones sobre escenarios de prácticas de manejo del uso de la tierra para mitigar la erosión/sedimentación y el riesgo de inundación en la subcuenca Agua Caliente.Una vez que se generaron, validaron y ajustaron los mapas de erosión/sedimentación y riesgo de inundación para la subcuenca Agua Caliente, se llevaron a cabo dos talleres en Ahuachapán y San Salvador con la finalidad de definir escenarios participativos de cambios en el uso del suelo y prácticas de manejo para áreas críticas en la subcuenca (Figura 1). Actores agrícolas regionales, productores, tomadores de decisiones locales y promotores de campo asistieron al taller del 27 de agosto en Ahuachapán (Grupo A), mientras que tomadores de decisiones, profesionales y asesores de organizaciones gubernamentales, instituciones educativas e institutos de investigación asistieron al taller el 28 de agosto en San Salvador (Grupo B). Para el desarrollo de los dos talleres, los participantes fueron divididos en tres grupos, cada grupo representaba una región de la sub cuenca, y se les entregó mapas de coberturas/usos del suelo, erosión, sedimentación y riesgo de inundación de la subcuenca (Figura 2), así como dos listados con las coberturas actuales y múltiples prácticas de manejo (Tabla 1 y Tabla 2).Cada grupo debía seleccionar las microcuencas más críticas o de mayor importancia para mitigar los fenómenos analizados en este documento y sugerir prácticas de manejo y/o cambios de uso de suelo. Las tablas presentaban una codificación lo cual permitía a los participantes fácilmente asignar un código a una recomendación de cambio de cobertura/uso del suelo y/o práctica a ser implementada como escenario en algunas microcuencas de interés, con el objetivo de reducir o mitigar cualquiera de los fenómenos analizados en el presente documento.Figura 2. Mapas de cobertura/uso del suelo (izquierda arriba), erosión (derecha arriba), sedimentación (izquierda abajo) y riesgo de inundación (derecha abajo) utilizados en los talleres Con base en las recomendaciones de los participantes en ambos talleres, se definieron en total cinco escenarios a ser modelados; dos de los cuales incluyen solamente los cambios sugeridos a nivel de microcuencas (Esc_A = definido por el grupo A, Esc_B = definido por el grupo B, ver Tablas 3 y 4). Tomando como base estos escenarios, se definieron otros dos (Ext_A, Ext_B, ver Tablas 5 y 6) empleando las recomendaciones más frecuentes aportadas por los participantes a nivel de microcuenca, extendiéndolas de manera general a toda la subcuenca para ver los impactos a una escala mayor. Finalmente, se implementó un quinto escenario (Forestry_L, ver Tabla 7) tomando como guía las recomendaciones estipuladas en la Ley Forestal de El Salvador de 2002 1 .Dado que las recomendaciones fueron realizadas utilizando las dos tablas anteriores, se procedió a definir los factores C y P finales como una multiplicidad de las distintas recomendaciones que podrían existir para una misma cobertura dentro de una microcuenca seleccionada, acorde con lo realizado por Panagos (2015) 2 . En cuanto a la ley forestal, las recomendaciones adoptadas se encuentran más ligadas al fomento y conservación de áreas forestales en las rondas de los cuerpos de agua y al adecuado uso de los suelos de clase VII y VIII (MAG, 1996) 3 los cuales se restringen al uso agroforestal y forestal, respectivamente. De acuerdo a lo anterior, se muestran a continuación las tablas que resumen las recomendaciones a implementar para los cinco escenarios: En general los cambios de coberturas que se realizaron se dieron por las recomendaciones de implementar sistemas agroforestales o silvopastoriles, especialmente en áreas cultivadas con café en sombra o caña de azúcar y en pasturas. Otro cambio de cobertura que se implementó, específicamente para el grupo B, fue la homogenización de un territorio pasando de múltiples cultivos a uno predominante, como lo fue el cambio de granos básicos a café en sombra. Finalmente, una recomendación que se dio muy general en ambos grupos y que generó un cambio en la cobertura vegetal, fue el manejo de bordas o reforestación de riberas de ríos con bosques de galería, pasando en algunos casos de pastos y cultivos a dicho bosque o conservando el bosque actual.Respecto a las prácticas de manejo, se recomendó de manera general la siembra en contorno para aquellos cultivos en laderas, ya que esta práctica divide la pendiente y consecuentemente reduce la energía cinética de la escorrentía interceptando su recorrido y además permite una mayor infiltración del agua en el suelo. No quema y labranza de conservación principalmente para cultivos de caña de azúcar y granos básicos, así como la implementación de barreras vivas o abonos verdes. Todas estas prácticas reducen la pérdida de humedad en el suelo, mejora su estructura y su capacidad de infiltración, reduce el impacto de la lluvia y por ende la escorrentía generada; además de brindar un sostenimiento amigable con el medio ambiente. De igual modo, se brindaron recomendaciones de implementar drenajes superficiales como canales o fosas de infiltración para cultivos como café y mosaico de pastos y cultivos, ya que sirven como acumulador de agua y mejoran la infiltración del agua en el suelo. Sin embargo, es importante tener en cuenta que estas prácticas requieren de bastante mano de obra y movimiento del suelo.Tomando como base los cambios que implicaban los escenarios descritos anteriormente, se ejecutaron de nuevo los modelos de erosión, sedimentación e inundación y se procedió a identificar el porcentaje de área de cada clase o intervalo para cada uno de los fenómenos analizados. Las comparaciones entre los resultados se muestran en las Figuras 3 y 4 para erosión y sedimentación y riesgo de inundación, respectivamente. Los valores de los intervalos presentados en las siguientes figuras, pueden ser apreciados en la sección de ANEXOS. Analizando los niveles de erosión y sedimentación se puede observar que, al implementar prácticas de manejo y cambios en las coberturas vegetales, incluso a nivel de microcuenca, generan reducción a nivel de toda la subcuenca, disminuyendo las zonas que presentan los niveles más altos de erosión y sedimentación (High y Very High) y aumentando aquellas con niveles bajos (Low) (Figura 3). Los escenarios que mayor reducción generan en estos dos fenómenos son aquellos implementados a nivel de subcuenca, resaltando los efectos positivos que tienen los escenarios extendidos (Ext_A y Ext_B) los cuales fueron incluso mayores que los del escenario de la Ley Forestal. Para este último caso, es de notar que la reducción que este escenario genera a nivel de toda la subcuenca es muy baja, siendo equiparable a los cambios obtenidos con los escenarios implementados a nivel de microcuenca (Esc_A y Esc_B).Es importante mencionar que intervenciones a nivel de microcuenca generan cambios representativos a nivel de toda la subcuenca. Esto es muy importante al momento de planificar la gestión del territorio y de optimizar recursos económicos para dichas intervenciones.Para los análisis de riesgo de inundación, sorprendentemente los resultados muestran una reducción en las áreas con nivel bajo de riesgo y por lo tanto un incremento en aquellas áreas con nivel medio y alto. Estos resultados son el reflejo directo de los pocos cambios de coberturas propuestos, los cuales intervenían dentro del modelo a través de los números de curva (CN) que permiten a su vez determinar el nivel de infiltración o de escorrentía de agua en el suelo. Estos resultados abren el debate para discutir la importancia de las prácticas de manejo, las cuales sí hicieron parte de los escenarios de erosión/sedimentación pero que no se tuvieron en cuenta para los escenarios del riesgo de inundación y que, por lo tanto, se deberían incluir como una capa criterio en futuros análisis. Otra información que no estaba disponible para esos análisis era el mapa de humedales, el cual se debe considerar para futuros estudios de riesgo de inundación. Los humedales tienen funciones importantes como la regulación hídrica y conservación de la biodiversidad e intervenciones de manejo que reduzcan el nivel freático de esas áreas puede generar un impacto ambiental alto y, por lo tanto, esas áreas deben ser excluidas del mapa de riesgo de inundación.Todos los cambios y diferencias entre los cinco escenarios explicados anteriormente, también pueden ser apreciados espacialmente en los siguientes mapas: Se pudo observar que las recomendaciones brindadas por el grupo B, el cual estuvo conformado por profesionales y tomadores de decisiones de instituciones de ámbito nacional, generarían una mayor reducción de erosión y sedimentación tanto a nivel de microcuenca como al de subcuenca.Para los análisis de riesgo de inundación es importante no confundir las áreas de humedales naturales con zonas de inundación para no entrar a realizar intervenciones que disturben el medio natural. Para esto es necesario realizar un proceso de identificación de los humedales y excluirlos de los análisis.Los resultados obtenidos serán importantes insumos para la planificación de actividades de las diferentes instituciones con competencia en la subcuenca, ya que permiten priorizar zonas críticas para implementar acciones que mitiguen la degradación del recurso suelo.Es importante mencionar que intervenciones a nivel de microcuenca generan cambios representativos a nivel de toda la subcuenca. Esto es muy importante al momento de planificar la gestión del territorio y de optimizar recursos económicos para dichas intervenciones.Los mapas generados son una herramienta valiosa para los tomadores de decisiones puesto que pueden ser empleados en la prevención de desastres y en la priorización de zonas con mayores niveles de deterioro del suelo.","tokenCount":"1601"} \ No newline at end of file diff --git a/data/part_3/7566171797.json b/data/part_3/7566171797.json new file mode 100644 index 0000000000000000000000000000000000000000..0f944fea7f50a25d11f5240a53489ffc10341039 --- /dev/null +++ b/data/part_3/7566171797.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"4b193f86af2afdcc7a98877546dcd5a8","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/b9421d4d-aacd-4c4a-9437-29f80f474cad/retrieve","id":"-395523577"},"keywords":["multidrug-resistance","whole-genome sequencing","non-typhoidal Salmonella","pathogenicity and virulence","silent resistant genes","beef carcass","Yaounde abattoir Conceptualization: C.M., L.M.N., M.G., E.P., R.P.","data curation: C.M.","formal analysis: C.M., I.N., B.J.N., S.N.E.","funding acquisition: C.M.","investigation: C.M.","methodology: C.M., E.M.M., M.K., I.N., D.G., J.J., P.B., G.N.","project administration: R.P.","Software: C.M., I.N., J.J., D.G., P.B.","resources: M.G., E.P., E.M.M., M.K., B.M.N.","supervision: L.M.N., E.P., R.P.","validation: C.M.","visualization: C.M.","writing-original draft: C.M.","writing-review & editing: C.M., P.B., G.N., S.N.E.,"],"sieverID":"7a871a80-806d-4ddf-9206-da9ce49cee4c","pagecount":"17","content":"One of the crucial public health problems today is the emerging and re-emerging of multidrug-resistant (MDR) bacteria coupled with a decline in the development of new antimicrobials. Non-typhoidal Salmonella (NTS) is classified among the MDR pathogens of international concern. To predict their MDR potentials, 23 assembled genomes of NTS from live cattle (n = 1), beef carcass (n = 19), butchers' hands (n = 1) and beef processing environments (n = 2) isolated from 830 wet swabs at the Yaounde abattoir between December 2014 and November 2015 were explored using whole-genome sequencing. Phenotypically, while 22% (n = 5) of Salmonella isolates were streptomycinresistant, 13% (n = 3) were MDR. Genotypically, all the Salmonella isolates possessed high MDR potentials against several classes of antibiotics including critically important drugs (carbapenems, third-generation cephalosporin and fluoroquinolone). Moreover, >31% of NTS exhibited resistance potentials to polymyxin, considered as the last resort drug. Additionally, ≤80% of isolates harbored \"silent resistant genes\" as a potential reservoir of drug resistance. Our isolates showed a high degree of pathogenicity and possessed key virulence factors to establish infection even in humans. Wholegenome sequencing unveiled both broader antimicrobial resistance (AMR) profiles and inference of pathogen characteristics. This study calls for the prudent use of antibiotics and constant monitoring of AMR of NTS.Today's world is experiencing an antibiotic resistance pandemic due to growing bacterial resistance to a broad range of drugs in animals and clinical settings [1][2][3]. Microbial multidrug resistance (MDR) frustrates efforts for infection control resulting in a considerable increase in morbidity and mortality worldwide [1,2].MDR has also been reported in non-typhoidal Salmonella (NTS). For instance, while 16% of NTS isolates exhibited resistance to at least one essential antibiotic, as high as 2% of them were resistant to at least three different classes of antibiotics in the US [2]. In Europe, 23% of NTS isolated from calf carcasses were MDR [3]. In Europe, 23% of NTS isolated from calf carcasses were MDR [3]. In Africa, there is an emergence of an invasive non-typhoidal Salmonella (iNTS) lineage with increased multidrug resistance (MDR) potential playing a considerable role in outbreaks, thereby threatening the global market and tourism [4,5]. Moreover, close to 80% of all the reported cases in 2017 occurred in sub-Saharan Africa alone, affecting mainly children under five, adolescents and active young people under fifty [5]. Therefore, NTS seems to be a significant cause of loss of economic activity in Africa [6]. In Cameroon, despite the absence of official statistics on foodborne diseases in general, sporadic cases of invasive salmonellosis mistaken either for malaria or typhoid fever have been recently reported [7][8][9].Current knowledge of the type of Salmonella serovars and their antibiotic resistance profile is essential to inform policy and guide treatment strategies for appropriate therapy and the development of new antimicrobials [1,2]; thus, the WHO recommendation for national surveillance of antimicrobial resistance (AMR) in Salmonella [1]. Given their zoonotic nature, there is a need for an integrative 'One Health' approach for the surveillance of AMR among humans and animal Salmonella isolates [10]. Healthy or asymptomatic live animals such as cattle may carry Salmonella, thereby representing an important risk factor for beef carcass contamination during processing at the abattoirs such as the Yaoundé abattoir [11,12].The Yaoundé abattoir where more than 6000 animals are slaughtered every week, is one of the major slaughterhouses in Cameroon that has the capacity to supply meat to three regions (centre, west and south) of Cameroon and neighboring countries (Equatorial Guinea and Gabon). Following the WHO recommendation and given the use of antibiotics for disease prevention or animal growth promotion, it seems crucial to monitor the antimicrobial resistance profile of Salmonella isolates at the Yaounde abattoir using molecular techniques such as whole-genome sequencing (WGS).Unlike traditional antimicrobial susceptibility testing, whole-genome sequencing (WGS) can give information on the presence of MDR genes [13] and pathogenicity and virulence factors in Salmonella organisms. This study was aimed at predicting the MDR, pathogenicity, and virulence potentials of Salmonella isolated at the Yaounde abattoir using WGS.Twenty-three genomes of 38 identified Salmonella isolates were successfully sequenced. Only 19 sequenced genomes were thoroughly exploitable for the required bioinformatics analyses. The genomic profile of NTS isolates and their GenBank accession numbers are outlined in Table S1.Isolates 8ev, 20de, 22sa, 34de, 60sa, and evjul were resistant to streptomycin, whereas between 18 and 20 isolates were highly susceptible to ampicillin, chloramphenicol, and tetracycline (Tables 1 and S2. Interestingly, isolates 8ev, 22sa, and 34de were MDR. NB: + indicates resistance to the test antibiotic; I = intermediate isolates; − susceptible isolates; code and serovar of Salmonella strain written in red, represent the multidrug-resistant (MDR) strains.The distribution of specific antibiotic resistance genes among the Salmonella isolates is summarized in Table 2. The streptomycin-resistance genes, aadA, aadA1, and aadA2 were, respectively, present in 15.8%, 26.3%, and 21% of Salmonella isolates. Moreover, chloramphenicol-resistance was found in 26.3%, 15.8%, 10.5, 10.5% of the isolates carrying cat, cat1, cat2, and cat3 genes, separately while 10.5% of isolates harbored cmlA1, cml5, and cml6 genes, respectively. The tetracycline-resistance genes, tetA, tetB, tetC and tetR were present in 5.26% 26.3%, 26.3%, 31.6% and 84.2% of isolates, respectively. Ampicillinresistance genes TEM-1 and TEM-163 were identified in 15.8% and 21% of NTS isolates, respectively. However, close to 80% of Salmonella isolates harbored at least one falsenegative result (Tables 2 and 3). The true positive and true negatives cases represented perfect matching between their phenotypic and genotypic antibiotic resistance (Table 3). The sensitivity was highest (62.5%) for resistance against streptomycin and chloramphenicol, and lowest for ampicillin (16.7%), respectively. Nevertheless, despite a general low sensitivity (averagely 45.3%), the specificity was 100% for all the antibiotics with the sum of sensitivity + specificity being ≥1.5 for all the tested Salmonella in the present study. The positive predictive value was 100% for all the tested antibiotics while the negative predictive values varied between 6.2% (for ampicillin) and 81.2% (for ampicillin).Generally, results indicate that whole-genome sequencing predicted four times the antimicrobial resistance for NST than the traditional susceptibility testing (OR = 4.0, p = 0.46).Eighteen genes (in purple) involved in the efflux, transport, and reduced permeability of antimicrobials were identified in Salmonella isolates (Table 4). Except for phenicol, the gene TolC was reported only in the phenotypic MDR isolates 8ev, 22sa, and 34de. The gene golS was detected in all the isolates. Interestingly, the MdsABC (multidrug transporter) complex was also present alongside gene golS in isolates that exhibited resistance potential against phenicols. The E. coli soxS and soxR genes were detected in 78.94 to 100% of Salmonella isolates.Furthermore, the gene mdtk that promotes resistance solely against fluoroquinolone was present in 100% Salmonella isolates. The AcraB regulator gene sdiA was detected in all the isolates. Furthermore, sulfonamide-resistance genes sul1 and sul2 and the gene CTX-M-14 that regulates resistance against third-generation cephalosporin were present in 15.8 and 5.26% of Salmonella isolates, respectively. Then, isolates 8ev, 22sa and 34de harbored cephalosporin-resistance genes OXA-1, OXA-2, and OXA-7. Additionally, the fluoroquinolone-resistance gene qnrB1 was reported in isolates 8ev, 20de, 34de, and 60sa. The gene macA that mediates efflux of macrolide and secretion of enterotoxin ST11 was detected in 52.63% of NTS isolates. Moreover, 47.36% of Salmonella isolates hosted the gene marA, which exports antibiotics and disinfectants out of bacteria. multiple resistance gene; − = no multiple resistance gene detected; Sulfa = Sulfonamide; PMB = Polymyxin B; Genes in purple = multiple resistance genes; genes in red = genes coding resistance against antibiotics high concern by WHO; Genes in black = represent genes that code resistance against not more than one class of antibiotics.Mutations of the PmrAB system were detected in more than 31% of isolates (Table 5). Our isolates had a mean probability of 94% to cause diseases in humans, though no significant difference (p > 0.05) was found among different Salmonella serovars in pathogenicity (Table 6). Moreover, their proteomes matched with a broad range of pathogenic bacterial families (466-787). Serovars Enteritidis and Poona were predicted greatest (p = 0.95) and least (p = 0.93) human pathogens, respectively. Of the 11 identified SPIs, only C63PI was present in all the isolates (Table 7). The function of each virulence factor and each effector protein is summarized in Tables S3 and S4, respectively. Other determinants including effector proteins, adhesion factors, virulence plasmids, and toxins were detailed in Table S5a,b. About 82% of Salmonella isolates possessed SipABCD, SopBDE, SopE2, EnvEF, InvAE, Sii E, IagB, SptP, OrgB, PhoP, MisL, ShdA, and rtn, as well as cell entry-facilitating factors; between 56% and 61% of expressed adhesion factors including FimA, FimC, FimZ, HilD, ecpD1, CsgD, FliZ, FliT; also, between 56% and 69%, NTS expressed SopABDE, SpiC, SpvB, SseBCD, PipB2, SptP, SopE2, Spa family as response regulators. Additionally, while 95% of NTS carried H-NS, between 21% and 47% expressed heat shock and stress proteins, specifically CuSA, ScsC, and bacteriocin exporter. Four types of plasmids (IncF, IncI, Col (PHAD28), and IncH) and four bacterial toxins (Flavodoxin, Shiga-like toxin A, entericidin A, and Thioredoxin 1) were detected in some Salmonella isolates. Despite a relatively moderate resistance shown to streptomycin (21.7%), the majority of Salmonella strains isolated at the Yaounde abattoir were sensitive to tetracycline, chlo-ramphenicol, and ampicillin (Table 1). These results corroborate the findings of previous studies that showed common resistance against streptomycin among Salmonella [14].Findings from the present study indicate that tetracycline, chloramphenicol, and ampicillin are still effective antibiotics in Cameroon contrary to the situation in many countries where these drugs are no longer appropriate for the treatment of invasive salmonellosis. Notwithstanding, the presence of 13% of MDR Salmonella isolates constitutes a serious health concern. Similarly, MDR was recently reported to be observed among Salmonella isolated in an Ethiopian abattoir on similar drugs [15]. In the present work, MDR salmonellae were isolated from beef at different processing steps underlining a significant food safety hazard. The development and spread of AMR among NTS are specifically crucial when found in environmental settings such as the abattoir. Such an environment may be a source of cross-contamination between meat products and meat handlers to become a threat to public health.Furthermore, the detection of the respective resistance genes to streptomycin, chloramphenicol, tetracycline, and ampicillin in the Salmonella isolates confirms their phenotypic antimicrobial resistance status described in Table 1. However, false-negative cases or \"silent genes\" were reported for each of the tested antibiotics. They represent genes that were previously detected in the susceptible isolates but failed to be expressed phenotypically. Previous studies attributed this mismatch between the phenotypic and genotypic resistance profile of bacteria to the fact that such genes were in \"silent mode\" in vitro [16][17][18][19]. The resistance phenotype depends on the mode and level of expression of the resistance gene that could be influenced by growth or environmental factors [16]. However, the reasons for their no phenotypic expression are not yet fully elucidated based on previous studies [16][17][18][19]. The absence or impairment of the promoter sequence or the presence of negative regulators might have downregulated their expression in vitro. Alternatively, the expression of these genes might have occurred without the expression of the gene products. Therefore, many factors exist to control the expression of the resistance phenotypes. However, if by any mechanism these genes are switched onto \"activated mode\", the host bacteria will modify their phenotypic resistance status [20]. Consequently, \"silent genes\" can be regarded as a reservoir of antimicrobial resistance for major foodborne bacteria via horizontal gene transfer or other mechanisms [17]. This hypothesis supports previous works that considered \"silent genes\" as a significant potential threat to the therapeutic efficacy of antibiotics [17,19].Furthermore, the non-expression of the \"silent genes\" in the susceptible phenotypes underscores a lack of definite genotype-phenotype correlation testing indicating a lack of clear genotype-phenotype correlation (OR = 4.0; p = 0.46). However, the value of greater than 1.5 of the sum of sensitivity and specificity reflects the usefulness of the WGS prediction (Table 3). The high PPV predicts a high prevalence of antimicrobial resistance among NTS isolates at the Yaounde abattoir. Similarly, the absence of a conclusive correlation between the phenotypic and genotypic characteristics was also reported among nontyphoidal Salmonella isolated from wildlife [13]. These findings clearly show that antibiotic susceptibility testing (AST) does not provide any information about the underlying genes responsible for the resistance. This suggests that WGS could be used as a complementary tool to AST to extract additional information such as the presence of silent resistance genes.In addition, WGS is also useful in predicting the multiple drug resistance of NTS. Based on their mode of action, the eighteen MDR-promoting genes detected in this study are grouped into: (i) those that export drugs out of the bacterial cells (sdiA, mdsA, mdsB, mdsC, E. coli soxS, E. coli soxR, acrB, acrD, golS, marA, patA and ramR); (ii) those that reduce membrane permeability to drugs (E. coli soxR, E. coli soxS, and marA); and (iii) those that alter antibiotic target configuration (bacA, E. coli soxR, E. coli soxS, and ramA) [17]. Nevertheless, the mechanism of action of some genes, such as E. coli sox R, E. coli soxS, and ramA overlap (Data not shown).All the genes involved in drug efflux are part of the resistance nodulation cell division (RND) efflux systems and effectively perform their duty in synergy with TolC [19].Moreover, there were also multi-efflux pumps such as mdsA, mdsB, mdsC, acrA, acrB, and mdtk, which generally work in synergy either with transcriptional activators (E. coli soxS and E. coli soxR, ramA, marA) or promotors such as TolC and golS [20]. The presence of TolC only in MDR isolates justifies the critical role it plays in synergy with RND efflux systems in exporting a range of antimicrobials. The golS gene promotes the MdsABC complex to disseminate resistance against a variety of drugs and toxins and confers virulence and pathogenicity potentials to Salmonella [21]; thus, the presence of the MdsABC complex in all the isolates that had golS. The gene sdiA, a regulator for AcraB, a multi-drug resistance pump [22] detected in 100% of the isolates is a powerful promoter of resistance against a vast arsenal of antibiotics (data not shown).The presence of mdtK and qnrB1 in our isolates is extremely crucial because they could synergistically offer Salmonella an advantage to develop resistance via a plasmid-mediated or efflux pump mechanism against fluoroquinolone [13,23]. However, transcriptional activators, particularly ramR, soxS and marA could equally induce resistance against fluoroquinolone via overexpression of acrAB-TolC efflux pump in Salmonella [24]. The detection of OXA-1, OXA-2, OXA-7, CTX-M-14, and qnrB in some isolates is critical because they, respectively, confer resistance against third-generation cephalosporin and fluoroquinolone, all considered as the WHOs highest priority drugs [25,26]. Particularly, OXA-1 and OXA-2 genes exhibit broad-spectrum cephalosporin-hydrolyzing and carbapenem-hydrolyzing activities, respectively [27,28]. Furthermore, the resistance potential to polymyxin is crucial because of its consideration as the last resort drug.Polymyxin is a bactericidal polypeptide, which disrupts lipid A subunit of the LPS outer membrane of Gram-negative bacteria causing cell lysis and their eventual irreversible death. One of the key resistance mechanisms to polymyxin adapted by Salmonella resides in the modification of lipid A, via mutations on the PmrA/PmrB system causing overexpression of LPS-modified genes [28]. The resistance potential of Salmonella isolates to polymyxin in this study unveils both clinical and veterinary importance [29]. Not only did the NTS isolates in this study exhibit resistance potentials to several antibiotics, they equally demonstrated high pathogenicity ability to cause diseases in humans.In fact, their belonging to large pathogenic families confirms the zoonotic status of NTS and their ability to exhibit broad-host adaptation. It is not surprising that serovar Enteritidis scored the highest probability to cause disease in humans. Previously, Salmonella Enteritidis has been the most prevalent world foodborne pathogen after S. Typhimurium based on its involvement in disease outbreaks [30]. Curiously, one out of two (50%) Enteritidis isolates in the current study belonged to sequence type ST-11, already incriminated as the major cause of African NTS [30]. Despite its exceptional MDR potential, serovar Poona was the least human pathogen. Its relatively low pathogenicity may reflect its low virulence power. Indeed, NTS disposes an arsenal of virulence factors to cause damage to their hosts.The Salmonella pathogenicity islands described in Table 7 represent powerful virulence weapons during Salmonella infections. The ubiquity of C63PI may explain its role in Salmonella survival during iron uptake, thus its conservation among Salmonella species [31,32]. Out of the 11 identified SPIs, SPI-1, SPI-2, SPI-3, SPI-4, and SPI-5 play a more critical role during Salmonella pathogenesis [33]. While SPI-1 is mainly involved in the initiating stage of infection, SPI-2 is required for systemic infection by easing the replication of intracellular bacteria within SCV [34]. Additionally, SPI-3 is required for survival in macrophages including in a low-magnesium environment; SPI-4 is needed for intramacrophage survival, toxin secretion, and apoptosis [35]. Furthermore, Salmonella uses SPI-5 to induce a pro-inflammatory immune response sometimes resulting in diarrhea [36]. However, the functions of SPI-1, SPI-2, SPI-3, SPI-4, and SPI-5 could also overlap [37]. Conversely, SPI-8, SPI-9, SPI-13, and SPI-14 are associated with the regulation of the expression of other SPI genes or associated effector proteins [33] (Table S4).The observed variation in the SPI profile among NTS in this study unveils their differential degree of virulence. Each of the SPIs works in synergy with an arsenal of genes that code for different specialized effector proteins. These effectors are either secreted or translocated into the host cells to enable Salmonella to manipulate the host's key cellular functions such as signal transduction, membrane trafficking, and immune responses. In occurrence virulence factors, notably SipA, SipC, SopB, SopD, SopE, SopE2, SipB, EnvE, EnvF, InvA, InvE, SipD, Sii E, IagB, SptP, OrgB, PhoP, MisL, ShdA, and rtn detected in roughly 82% of Salmonella isolates appear necessary to facilitate their entry into host cells to establish infection (Table S5a). Interestingly, all the effectors described in the Salmonella entry process are SPI-1 encoded [38,39]. Putative fimbriae usher (FimA, FimC, FimZ, HilD), pilin chaperon (ecpD1, CsgD), and flagellin (proteins FliZ, FliT) collectively called adhesion factors are additional virulence determinants to ensure successful colonization and persistence of Salmonella in the hosts [32]. Moreover, the expression of \"SipA and SipC\" and \"SopE and SopE2\" required, respectively, for invasion and internalization efficiency [38,39] reinforced the pathogenicity potentials of our isolates. The expression of SopB, SopE, SopA, SopD, SpiC, SpvB, SseB, SseC, SseD, PipB2, SptP, SopE2, and antigen presentation proteins, especially SpaK, SpaN, SpaS, and SpaR was sufficient for the maturation and trafficking process of SCV, replication within SCV and the monitoring of the host immune responses. Likewise, virulence determinants such as heat shock protein, stress protein, CuSA, ScsC, and putative ABC-type bacteriocin exporter could enable isolates to successfully control competing bacteria during infection [37,40,41].Though HilA, the leading regulator of SPI-1 [38] was not detected in the isolates, between 59% and 68% of NTS isolates possessed PhoP, HilD, and FliZ, three important transcriptional regulators; also, 95% carried H-NS, the master silencer of horizontal transfer genes [37,42] to regulate the secretion or translocation of effector proteins during each step of Salmonella infection [43]. Otherwise, virulence plasmids were not widely distributed among NTS in this study (Table S5b). IncF plasmid known as a crucial virulence plasmid [19] was carried by Salmonella isolates that harbored the gene qnrB. This observation corroborates a previous study that seemed to establish a certain relationship between harboring IncF plasmid and fluoroquinolone-resistance potential [44]. Despite the wide distribution of IncI1 plasmids in Salmonella, [18,45] only 23% of our NTS isolates harbored them. The restricted presence of Col (PHAD28) plasmid to MDR Poona isolates seems to underline a certain correlation between harboring this plasmid and the MDR potential of the host [18]. Equally, the exclusive presence of IncH plasmid seems to correlate well with the detection of genes cat, qnr, strAB, TEM-1, and tet in isolate 34de as previously reported [18]. Remarkably, all the aforementioned plasmids are mobilizable plasmids that are known to promote multiple drug resistance in bacteria [18].Although the fact that the samples analyzed were limited to a single abattoir, this study has revealed the public health importance of Salmonella isolates at the Yaounde abattoir. Despite a relatively moderate phenotypic resistance to streptomycin, genotypically, Salmonella isolates possessed high MDR potentials against several classes of antibiotics notably third-generation cephalosporin and fluoroquinolone. More than 31% of the isolates exhibited resistance potential to polymyxin, considered a critically important drug. Additionally, close to 80% of NTS isolates harbored \"silent genes\" which could act as a reservoir of resistance to foodborne bacteria. The role of plasmids should be integrated into the antibiotic surveillance program. Salmonella isolates also exhibited a high degree of pathogenicity and virulence to establish infection in their hosts including humans. The presence of virulence determinants is crucial in Salmonella pathogenicity and in understanding the epidemiological knowledge about the potential severity of infections and to mitigate potential outbreaks of Salmonellosis. The combined effect of high pathogenicity and MDR potentials of NTS at the Yaounde abattoir highlights the need for improvement in food safety practices and the need for antibiotic stewardship in livestock production systems in Cameroon. Given the fact that there is a lack of reliable data on the NTS AMR prevalence in Cameroon, this study suggests that further studies are needed to elucidate the epidemiology of the antibiotic resistance among Salmonella across all the Cameroo-nian slaughterhouses including characterizing the genes involved and the plasmids that carry them.This study was a cross-sectional study. Prior to slaughter, five cattle were randomly chosen per week for every sampling session following the Meat Industry Guide describing sampling frequency for red meat carcasses [46]. Moreover, five butchers (one-fifth of the butchers at duty) were recruited for every sampling session. Wet swabs (n = 830) from live cattle (n = 145), beef carcasses (n = 435), butchers' hands (n = 145) and the meat contact surfaces (n = 105), were aseptically collected between December 2014 and November 2015 at the Yaounde abattoir to isolate non-typhoidal Salmonella (NTS) following ISO 6579 [47]. Finally, 23 NTS were isolated and were distributed as follows: live cattle (n = 1), beef carcasses (n = 19), processing environments (n = 2), and butchers' hands (n = 1) All Salmonella isolates were confirmed using API-20 E kit (BioMérieux, France) and a qualitative real-time PCR assay [48].Salmonella concentration (1.5 × 10 8 CFU/mL) and those of controls (Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 43300) were spread onto the surface of Mueller-Hinton agar to which the antibiotic disks were placed and incubated for 18 to 24 h. The diameter of the zones of inhibition around each antibiotic disk was measured with a ruler and recorded to the nearest millimeter and isolates were classified as resistant, susceptible, or intermediate [49]. The antibiotics used were ampicillin (AMP) 10 µg, chloramphenicol (C) 30 µg, tetracycline (TE) 30 µg, and streptomycin (STR) 25 µg.Total DNA was extracted from Salmonella overnight culture using Quick-DNA™ Miniprep Plus Kit (Zymo Research, Irvine, CA, USA) following the manufacturer's instructions. The purified DNA was quantified using a NanoDrop 2000c spectrophotometer (ThermoFisher Scientific, Santa Clara, CA, USA) and stored at −20 • C until use.Paired-end libraries were constructed with 0.2 ng/µL of purified DNA using the Nextera XT DNA Library Prep Kit as recommended by the manufacturer (Illumina, San Diego, CA, USA) and were quantified using a Qubit fluorometer (ThermoFisher Scientific, USA). WGS was performed on Illumina NextSeq platform using NextSeq 500/550 highoutput kit v2 (300 cycles) at Murdoch University (Australia) and on Illumina Miseq platform using pair-ended MiSeq reagent v3 kit (2 × 201 bp) at the BecA-ILRI Hub (Nairobi, Kenya) following the manufacturers' guidelines.The qualities of the raw sequences were checked with FASTQC and trimmed using Trimmomatic 2.6 at Q score below 20. The trimmed data were assembled using SPAdes version 3.11, and genomes were annotated with the NCBI Prokaryotic Genome Annotation Pipeline [50]. The antibiotic resistance genes (ARG) in the assembled genomes were identified by BLAST search against the reference ARG sequences from ResFinder 3.0 [23] and CARD 2017 [51] with ≥95% gene identity and 60% sequence length of the resistance gene. The pathogenicity of NTS was predicted using PathogenFinder 1.1 [52] with the threshold for minimum % identity at 95% and minimum % coverage at 60%. The Salmonella pathogenicity islands were detected using SPIFinder 1.0 [33] at ≥95% gene identity and 60% sequence length cut off. Acquired virulence genes were detected by uploading the raw reads into VirulenceFinder 2.0 [53] while virulence plasmid was assessed using PlasmidFinder 2.1 [53] with the threshold for % identity at minimum % coverage at 60%.Statistical significance for all tests was set at the level of p ≤ 0.05, using the methods of Duncan [54], and descriptive statistics were calculated for all variables as appropriate using IBM SPSS 20 [55]. Sensitivity and specificity were calculated to determine the relationship between phenotypic and genotypic profiles of NTS following the method described by Genders et al. [56]. The odds ratio was determined using online MedCalc Version 20.027.","tokenCount":"4134"} \ No newline at end of file diff --git a/data/part_3/7571036263.json b/data/part_3/7571036263.json new file mode 100644 index 0000000000000000000000000000000000000000..24df4b7e01079069b5183c3a988d349389d8de73 --- /dev/null +++ b/data/part_3/7571036263.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"ea879e43d7ccf2d3e90f8a93e82c14a8","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/9b4fe734-8406-41c8-a8e3-f3aafb0c2bfa/retrieve","id":"-1934248865"},"keywords":["Bio-economic model","watershed","resource degradation","nutrient mining","nutrient balances","erosion","dynamic programming","Ethiopia) Bio-economic model","watershed","resource degradation","nutrient mining","nutrient balances","erosion","dynamic programming","Ethiopia)"],"sieverID":"152ecf6c-0577-4114-8a82-f734e38a3150","pagecount":"37","content":"A dynamic bio-economic model is used to show that, without technological and policy intervention, soil nutrient balances, income and nutrition could not be substantially or sustainably improved in a highland area of Ethiopia. Although cash incomes could rise from a very low base by more than 50% over a twelve-year planning period, average per ha nutrient balances indicate significant nutrient mining and associated soil losses of about 31 tons per ha. With the adoption of an integrated package of new technologies (involving new high yielding crop varieties, agroforestry, animal manure and inorganic fertilizers use, construction of a communal drain to reduce water logging and some limited land user rights), results show the possibility of an average twoand-a-half-fold increase in cash incomes and a 28% decline in aggregate erosion levels over a twelve year period with a population growth rate of 2.3%. Moreover, a minimum daily calorie intake of 2000 per adult equivalent could be met from on-farm production, and per ha nutrient balances, while still negative for nitrogen and potassium, could be reduced by 36 and 6 % respectively, with phosphorous balances being reversed to positive values. However, these gains might be eroded by the need to meet increased nutritional demands arising both from increasing consumption levels and a more rapid population growth of over 2.8%. From a policy perspective, this reduction in nutrient losses in the face of higher reliance on the watershed for subsistence food requirements, would imply an increasing need for a more secure land tenure policy than currently prevailing, provision of credit to facilitate uptake of the new technology package and a shift from the current livestock management strategy that emphasizes use of livestock as a store of wealth to the one that encourages livestock keeping as a commercial activity. It would also imply a shift from a general approach to land management to a relatively more site-specific approach that recognizes the need for spatial and inter-temporal variability in input use based on land quality that would encompass an efficient nutrient management strategy.Land degradation, low productivity, poverty and declining human welfare are the dominant problems of the crop livestock production systems prevalent in most parts of the tropical highlands. This study examines economic outcomes and soil nutrient balance changes as these problems are targeted by specific technology interventions. The analysis proceeds using a bio-economic model applied at watershed level, (rather than a purely economic/ bio-physical model applied at farmhousehold level). The model is validated for the Ginchi watershed in the central highlands of Ethiopia. The current situation, involving limited intervention in the watershed, is compared with a situation involving integrated interventions. Our approach is motivated by arguments for a shift in focus from increasing agricultural production by use of purchased inputs to overcome soil nutrient constraints, to a minimization of external inputs use and maximization of their efficiency (e.g., Sanchez, 1994). Following such an approach this study utilizes a nutrient balance monitoring technique (van den Bosch et al., 1998) to gain insight into the effects of proposed interventions on the gains and losses of major nutrients in the watershed and accompanying economic performance. This study aims at identifying effective and robust strategies for raising watershed income and improving soil nutrient balance, so as to enhance livestock and crop productivity over time in a typical tropical highland watershed such as the Ginchi area.A dynamic non-linear mathematical programming model maximizes aggregate watershed financial surplus from agricultural production that is linked to biophysical aspects of the watershed through an exponential soil loss-crop yield decline model, with a single year time lag. Cumulative soil losses are computed for each year and these determine crop yields in the following year after accounting for the effects of chemical fertilizer and dung manure applications. The model takes into account seasonality in input requirements and outputs, labour substitutability, the various roles of gender, crop and livestock constraints, rising household food requirements, and forestry activities, as well as the biophysical aspects of soil erosion and soil nutrient balances arising from these activities.Cross-sectional socio-economic and biophysical data from four land categories in the watershed for the years 1995, 1996 and 1997 are used to test the model and are supplemented with experimental data. Output from the validated dynamic model is then used to generate nutrient balances arising from the interactions and interrelationships between technological and policy components on one hand, and biophysical and human factors on the other.Part two of the paper gives a background to the degradation problem in the Ethiopian highlands and the specifics of Ginchi watershed, part three outlines the analytical model while parts four and five present the results and policy implications, respectively.The Ethiopian highlands, lying at about 1500m above sea level, are some of the most severely denuded landscapes in the world. They comprise 46% of the country's landmass and are home to 88% of the 60 million total population (Shiferaw and Holden, 1998). Since agricultural productivity is low, the 80% of population employed in this sector generates less than 50% of the GDP, and these low productivity levels continue to decline due to land degradation. Current estimated soil loss from cropped areas is 42 tones per ha per annum (Hurni, 1987), while total soil loss from the highlands are estimated at 1900 million tons per annum (FAO, 1986).The Ginchi watershed typifies the degradation problem in the Ethiopian highlands and similar highlands elsewhere. Located in the central highland massif, this watershed has experienced significant degradation over time. Evidence shows that in 1950, only 34% of the watershed was under crops while 60% was under pasture and woodland. The remaining 6% was under communal roads and paths. In 1990, the situation had totally reversed. Crops are now produced on over 61% of the land area, while pasture and woodland have declined to below half their previous sizes. These changes have been accompanied by increased severe erosion and drastic declines in crop yields and animal productivity. The bottomlands of the watershed also suffer from water logging at the beginning of the rainy season due to the predominantly clay vertic soils.To arrest land degradation (nutrient mining and soil erosion) and revitalize the mixed croplivestock production system in the highlands, a consortium of research and development institutions under the Joint Vertisols Project (JVP) developed an integrated package of production and conservation technologies. The package includes improved animal drawn equipment for drainage (the Broad Bed and Furrow Maker or BBM), new crop/forage varieties and related agronomic practices, new breeds of livestock, and agro-forestry. Adoption of new high yielding crop varieties would require higher amounts of chemical and organic fertilizers, hence more cash and/or access to credit. Also, improved drainage of the lowland vertisols, through adoption of the BBM plough, leads to higher demand for animal draught power for cultivation. Its success would depend on construction of drainage channels to drain off excess water from the individual farm plots to a communal drain or to the river channel. Construction of both the feeder and communal drains as well as their maintenance would require collaborative action at the community level. This would put pressure on the available resources. Similarly, introduction of new breeds of livestock such as crossbred cows would call for higher amounts of animal feeds with higher nutritive value than is currently available, putting pressure on the existing pastures. This study examines the potential implications of adopting this package of technologies.To date, most studies of the impact of technology on human needs and environmental concerns utilize farm household models (Nakajima, 1986;Shiferaw and Holden, 1998). Assessment of production and conservation technologies at a household level is, however, too restrictive as it ignores the natural delineation of the landscape, and hence the biophysical scale of the problem. It also avoids consideration of resource multi-functionality and the multi-dimensional trade-offs that emerge from this, as well as the important role of community participation in solving general externalities arising from household agricultural production (Rhoades, 1998). Household decisions include communal considerations at a landscape level, especially where a community participatory management approach is in place. Thus, the analysis of the problem at an aggregate watershed level is viewed as more appropriate than individual household level analysis.Watershed-level dynamic bio-economic models present a feasible method for implementing this watershed-level approach in the present case. In some circumstances, they may suffer from aggregation problems associated with averaging resource availability and other structural parameters across individual units (Hazell, 1998). Such problems arise where there is a mis-match between the form in which resources are available and the decision unit for allocation of these resources. In such cases the model may assume a degree of homogeneity in resource availability and flexibility in resource allocation that may not be reflected in the processes being modeled. In the Ginchi watershed, the likelihood of this type of problem is minimized by the high degree of homogeneity within the community in terms of quantity and quality of resource endowment especially land. As Gryseels et al. (1983) noted: \" Membership in the Peasant Association 1 implies access to land for communal and individual cultivation, with the size of the individual holding determined mainly by the size of small holder family and the total land area and mix of land qualities available to the PA.\". In addition, high inter-household interactions in terms of communal labour and animal draft sharing is observed, further increasing homogeneity of access to resources and flexibility in use, hence justifying the assumption of a single decision maker at the watershed level. Population growth is modeled by assuming a corresponding annual increase in the demand for basic nutritional needs in the watershed.The bio-economic model The dynamic bio-economic model used here is focused on maximizing the margin over variable costs generated by agricultural activities in the watershed.Because of particular characteristics of the social and cultural framework in the Ginchi area this may actually be interpreted as maximizing aggregate utility based on income, leisure and basic food requirements 2 since it becomes possible to treat leisure and calorie intake as fixed and separable from income 3 in the utility function. Risk 4 is not incorporated due to limited time series data and the large size of the model.The simplified model is specified as follows:3 It may also be assumed that leisure and income decisions are strongly separable. In the Ginchi watershed, where 90% of the community belong to the Orthodox Church, religious holidays account for almost half the normal working days in a year. These holidays are strictly adhered to and hence must be subtracted to get actual number of available working days. Any day that is not a church holiday is used for farm work. Leisure is thus a component of the church holidays and can be assumed fixed. Holding church holidays constant leaves income as the only argument of the utility function.4 One caveat of this formulation is its assumption of perfect knowledge of market prices and yields (i.e. certainty), with limited explanation of how income from each activity varies across time or how the individual activities interact to produce variable aggregate incomes. Use of cross sectional data to calculate risk is possible but it ignores inter annual price variation (Ciriacy-Wantrup, 1968). The formulation also assumes that farmers in the watershed explicitly portray an optimization behavior.[ ] { } ( )where: b refers to land type (=A, B, C or D), i =1 to j are pasture activities, i =j+1 to m are planted trees activities, i =m+1 to p are livestock and livestock products activities, Q it is the quantity of output produced by activity i in time period t, P it is the price of output produced by activity i in time period t, X cit is the quantity of input c used by activity i in time period t, P ct is the price of input c in time period t, ct X is the total quantity of input c available in time period t, c = 1…r inputs used τ is the discount rate, a cit are the technical coefficients of production, q ibt is yield per hectare of crop, hay, trees and pasture activities on land type b in year t; h ibt are hectares under activity i in land type b in time t, e is the natural log base, α ib are crop specific coefficients varying with land use activity i and land type b (i.e. slope, soil type and depth), E bt is soil loss from land type b in period t, β bt-1 is the cumulative soil loss in tons per ha for the preceding t-1 years on land type b, and W b is the area of type b soils in hectares in the watershed. K ibt, N ibt, R t, D t , Z t and S t are coefficients in the Universal Soil Loss Equation.Cumulative soil loss is calculated by summing over past years' E bt values. These are annual soil losses estimated by the Universal Soil Loss Equation (USLE) Model. E bt is thus the level of erosion on land class b while W b is the area of type b in hectares in the watershed; K ibt is the land cover by activity i on land class b; N ibt is the management of activity i on land class b; R t is the rainfall; while D t , Z t and S t are the soil erodibility, the slope (gradient) factor and the slope length respectively. USLE coefficients for Ethiopian conditions are specified in Annex 13.The watershed was delineated into four land categories, A, B, C, and D, based on slope and soil type. Land type A is comprised of Vertisols of 0-4% slope, land type B Vertisols of 5-9% slope, land type C alfisols of 10-15% slope while land type D is comprised of acrisols of over 20% slope. One potential problem with using the USLE in the current context arises from the fact that this model is designed for estimation of gross soil loss from individual homogenous tracts of land, rather than net soil loss from a series of interconnected plots. Thus it is not designed to measure soil deposition occurring in a watershed as soil eroded from one land type is deposited on a land type at lower altitude. However this problem does not arise in the current context because each tract of land was observed to slope towards a riverine, so that most of the eroded soil is deposited in the water channels and carried away by the river rather than being transferred to another land type within the watershed. Thus, gross soil loss on each land type is approximately equal to net soil loss. A range of soil loss coefficients for activities in the model are given in Annex 14.The model utilizes a dynamic mathematical programming procedure to adjust yields each year over the planning horizon as a function of cumulative soil loss in previous years using equation ( 6). This is a modified version of the model developed by Lal (1981) and used by Ehui et al., (1990) and Bishop (1995). The function φ(.) refers to yields without soil erosion, taking into account crop management practices, application of dung and artificial fertilizer use. Then e expresses the decline in yields due to cumulative soil loss effects. The parameters of this relationship have been estimated by Lal (1981), who used a regression approach to estimate equations for eight crops and four slopes (1, 5, 10, 15%) of alfisol soils in Nigeria. The estimated values for (α) ranged between 0.002 and 0.036 for legumes and 0.003 and 0.017 for cereals. All except one of the alpha coefficients were significant at 5% level.For Ethiopian conditions, particularly the Ginchi study area, no experimental studies had been carried out to estimate yield decline due to soil loss on the various slopes of the watershed. However, conditions on the Nigerian site are similar to those in Ginchi in terms of soil erodibility and erosive climatic regime. It is hence assumed that crop yields in Ginchi are no less sensitive to soil loss than they are in Nigeria, although actual soil loss rates may vary. The model is further modified to take into account the fact that crop yields are not equally sensitive to soil loss across all soil types and slope. Based on expert judgement and intuition, the coefficient α ib is varied by crop type, soil class and depth, to attain a range of penalties on yields that are assumed to encompass the true impact of soil loss (Bishop, 1995). Thus for each crop type planted on different slopes or land class, α ib is varied to capture the yield decline differential due to these factors. The range of coefficients used lie within the range of those derived by Lal (1981) for broad categories of crops such as legumes and cereals 5 . The Lal model, calibrated for the Ginchi watershed conditions and linked to a modified USLE model, helps bridge the gap in the amount of data required for this analysis. Given an estimate of the annual rate of soil loss and the mean current yields, the model is able to estimate current and future yield losses adjusted to account for the effects of dung manure and artificial fertilizer application, slope and soil depth. Further validation of the model is achieved by comparing model projected crop yield decline over time with observed yield trends in areas with similar conditions to the Ginchi site. A range of yield coefficients from the model are shown in Annex 1.Additional data on the relationship between rates of soil loss and decline of yields for cereals and legumes in the Ginchi area, was obtained from key farmer interviews about yields obtained on individual plots of the major crops over past years. This information was compared with experimental data from other parts of sub-Saharan Africa. More specifically, data on soil loss and yield decline from Kano, Nigeria was used to validate farmer recall data for some of the crops. Based on this data set, the model used in this study generated expected yield changes per unit of cumulative soil loss of between -9.9 to -0.4% of annual yields for legumes, millet and sorghum (with and without dung manure). This scale of yield change is consistent with what has been previously observed under continuous cultivation (Nye and Greenland, 1960). Further details of the yield coefficient values used and their derivation, and additional information on the structure of the model are provided in Annex 1 of this paper.Nutrient balances are computed using the following equation:Where, NUTBAL u = A vector of nutrient balances; i = crop and pasture activities in the watershed; b= denotes the four land types, m denotes seasons in the crop year, h are tree activities; u= 1, 2 and 3 refers to major plant nutrients specified as nitrogen, phosphorous and potassium respectively; σ ui = amount of nutrient u applied on a unit (ha) of crop activity i through dung and chemical fertilizer use; σ uh = amount of nutrient u applied on a unit (ha) of type h tree activity through dung and chemical fertilizer use; ν ui = amount of nutrient u added to the soil by crop activity i e.g. nitrogen fixation; W = Total watershed area in hectares; ϒ u = per ha addition of nutrient u through atmospheric deposition; ψ u = Background biological nitrogen fixation; ∂ hu = Amount of nutrient u contained in a unit of crop i harvests; Q i = Quantity of crop i harvests; Q h = Quantity of tree h harvests; E = Aggregate amount of soil erosion generated in the watershed; ω u = Amount of nutrient u in a unit of soil lost through erosion; Leach u = Amount of nutrient u lost through leaching.The bio-economic model was implemented as an aggregate level dynamic non-linear programme similar in some ways to the model used by Moxey et al. (1995). The model treats the study area as a single profit maximizing unit, planning for a twelve year time horizon and choosing a land use mix constrained by existing traditional technology on one hand and a set of new technologies on the other. The impact of limited tenure, arising from the way in which Peasant Associations reallocate land between farmers 6 (Gryseels and Anderson, 1983), is taken into account in setting the length of planning horizon. The choice of a twelve-year horizon is based on the length of time period after which farmers thought land re-distribution might occur. In addition, the lack of longer-term commitment that this system entails, is taken into account in the model by omitting from consideration the terminal value of livestock, crops, trees and land.The model attempts to simulate farmers' decision-making processes by choosing a land use mix constrained by seasonal resource availability, including substitutability of labour by gender. This component of the model is based on results of a characterization study carried out in 1994-95 that indicated a substantial transfer of labour across gender and crop activities. A structured questionnaire, with detailed resource use budgets to reflect labour (by gender) per ha, other input use, and the resulting yields for each season, was then used to collect information on input-output coefficients for the various crops in the watershed. Policy restrictions, institutional arrangements and previous production choices are also taken into account. Spatial variation across the watershed is reflected in the model through inclusion of agricultural activities as part of the decision set for a specific land type and not others.Construction and validation of the economic component of the model is based on 1995 observed land use patterns. Consumption habits, that dictate a bias towards production of teff and wheat staples especially on land types A and B, were taken into account by specifying minimum areas under teff and wheat on these two land types. Omitting these restrictions would have resulted in a land allocation that does not reflect either the people's production and consumption preferences, or their attempt to be self sufficient in most of the grains and pulses. Because of the large number of pulses, spices and oil crops grown on small plots of land, some aggregation of these activities was necessary. Thus areas under fenugreek, horsebean, and noug were lumped together, and were considered under the \"other crops\" category as suggested by Hazell and Norton (1986). Crops such as sorghum and millet, observed only on the slopes of land type D with limited possibility of cultivation on land type A, B and C, were not included in the options available for these latter land categories.Additional details on production possibilities and profitability of activities included in the dynamic bio-economic model were based on the Ginchi Watershed Characterization Survey of 1990. This study was conducted by the JVP consortium of institutions between 1989 and 1990. Gross margin tables and detailed resource use budgets for teff, wheat and chick pea, compiled from these 1990 observations were used to cross check the model inputoutput (I-O) crop coefficients (See Annexes 5 and 7). No integrated intervention had been undertaken on or before 1995, and hence the impact of fertilizer and dung application had minimal impact in the watershed. Validation of the integrated intervention version of the model was therefore based on crop budgets relating to areas outside the watershed that had relatively high fertilizer and dung use plus considerable adoption of some of the BBM set of technologies. Only areas with environmental conditions similar to those in Ginchi watershed were considered in generating these coefficients, using crop budgets for 1995 prepared by USAID (unpublished data). Relevant adjustments were made to take into account differences in labor costs and prices (See Annexes 4, 6 and 8).Average yields obtained for the local variety of teff, with a fertilizer application rate of 65kg Di-Ammonium Phosphate (DAP) per ha, are 1300kg in West Gojam. These compare with model yields of 2053, 2086, 1425, and 1425 kgs/ha on land types A, B, C and D respectively, when 60kgs/ha of DAP is applied. Given that the Ginchi watershed is considered to be among the most fertile teff growing areas in Ethiopia, and also taking into account the multiple impact of other technologies on yields, these figures are within the expected range. Likewise, values for traditional wheat yields of about 1750 kg per ha, when fertilizer is applied at a rate of 80 kg in the Assella, Arsi zone, are consistent with estimates generated and used in the model that are in the range of 2480, 2390, 1425, and 1868 kg per ha for land types A, B, C and D respectively, assuming a fertilizer application rate of 90kg per ha.Soil losses projected by the model for land type A were compared to the results of a soil erosion measurement experiment. Erosion values were found to be in the range of 11 -14 tons per ha (Michael Klaij, personal communication). Projected model estimates under a limited intervention scenario were in the range of 13.5 to 15.4 tons per ha over the twelveyear horizon. Validating projected soil losses on the other three land types was not feasible within the time-scale and resources of this study. An investigation of the sensitivity of the results to the level of discount rate indicated that the principal economic and biophysical outcomes were largely insensitive to variations in the discount rate parameter within a wide range (5% -25%) encompassing most feasible values. The results reported here are based on using a discount rate of 12%.The 1995 actual land use pattern and its implications for producer incomes, trade in staple crops, and soil erosion are summarized in column 1 of Table 1. The observed values indicate a diversified land use pattern with a bias towards teff production and considerable dependence on the market for essential grains. This bias arises from local eating habits and from the fact that teff prices tend to be 20% higher than wheat prices in the two local markets. More than half of land type A is under teff production, while the rest is shared among local wheat cultivation and other crops such as pulses and spices. The amount of land left for animal pasture on this land category during the wet (cropping) season is minimal at 7% of the total. On land type B, over 60% of the land is allocated to teff while pulses take 20%. The remaining 20 percent is shared among wheat, maize, hay making and pasture. Teff dominates land type C, covering almost 50% of the area with maize being grown around the homesteads using dung manure. Pulses and wheat utilize most of the remaining land. Similarly, a significant amount of land type D (steep slopes) is used for teff cultivation with other crops and maize taking up half of the land.Only about 19% of the watershed farmers planted the new wheat variety ET 13 in 1995. Most of them were observed to prefer cultivation of the traditional wheat variety for a number of reasons, including easy availability of seeds and lower fertilizer requirements, as well as lower draught power requirement for tillage.The land use pattern in the dry season, after the crop harvest, changes drastically. Most land is used for communal grazing by all the watershed dwellers. Thus animals belonging to farmers in the bottom parts of the watershed roam freely throughout the watershed to the steep slopes of land type D and vice versa. Moreover, animals from outside the watershed graze within it while watershed animals, similarly, graze outside the watershed boundary. It is assumed that these two transfers cancel each other out.Overall, daily consumption was estimated at 1500 calories per adult equivalent per day, with estimated average household income of 1200 birr (US$120) per year. In addition to the grains and pulses produced in the watershed, substantial amounts of grains had to be bought in, amounting to about 13 tons of teff and 7 tons of wheat during the cropping season across the watershed.The estimated level of soil loss arising from the observed land use pattern in 1995 was 31 tons per ha per annum. This is about 26% lower than the national average for cropland (Hurni, 1987). Crop rotation and diversification as well as a modest amount of fertilizer application were the main practices used to reduce soil loss by enabling more prolific growth and hence better groundcover.Soil nutrient balances arising from this land management were calculated using the methodology specified earlier. Estimates per hectare were -112kg , -5kg and -63 kg of N,P and K respectively. These are in the range of reported losses for other sites with similar conditions in the Eastern African highlands. In the highly populated Kisii District in the Kenya highlands for example, the values stand at -112kg N, -3kg P and -70 kg K per ha per year (Smaling et al., 1993). Figure 1 illustrates the relative importance of the main factors contributing to these negative balances (soil erosion, grain and straw harvests and leaching/gaseous emission losses), showing that soil erosion may account for more than a half of these losses while crop grain uptake could contribute about 14%. The rest may be lost through straw harvests for animal feed and/or through emissions. These values support studies carried out elsewhere in the region; for example Van den Bosch et al. (1998) attribute high loss of nutrients through soil erosion to the fact that \"… fine particles are dislodged first in the process of erosion… hence eroded soils tend to be richer in nutrients than soil in situ\".The Baseline Scenario As a starting point, a baseline version of the bio-economic model is run with population and consumption levels set at observed 1995 levels and with existing technology plus some inorganic fertilizer use. This model is used to simulate agricultural activities in the watershed over a 12-year time horizon. Population growth is assumed to occur at the current national average annual rate of 2.3% over this period. It is also assumed that livestock numbers remain static reflecting traditional practices of keeping more oxen than cows for plowing purposes. The resulting levels of agricultural activity, grain purchase, income and soil erosion from this scenario, for selected years over the twelve-year horizon, are shown in the second and subsequent columns of Table 1. Figure 2 provides an illustration of some key results in comparison with the patterns observed in 1995. By providing an estimate of how the system might evolve in the absence of integrated intervention and as population grows, these results provide a baseline against which the impact and robustness of integrated technology adoption can be judged.Compared to the land use observed in 1995, a smaller area is devoted to teff and wheat by approximately 50 per cent and there is a shift in the cultivation of these crops from land types C and D to land types A and B. These differences reflect the increased yields that are made possible by limited fertilizer applications (allowing nutritional needs to be met from a reduced area) and the desirability of reducing the area devoted to more erosive crops 7 (teff) on land susceptible to erosion (land types C and D). There is a corresponding increase in area devoted to maize production on land types C and D.The trajectory of grain purchases/sales and of farm incomes deserves special attention. The switch from the significant grain purchases observed in 1995 to substantial sales, predicted in year II and subsequent years in the baseline simulation, reveals the un-tapped potential from a more collective form of management without adopting the full package of technology -merely increasing fertilizer use. The significant decline in sales towards the end of the simulated period reflects the increasing difficulty of maintaining these yields (and of supporting the growing nutritional requirements) as cumulative soil erosion effects begin to have an impact.It is also important to note that although area under some crops remains the same on some land types throughout the 12-year period, fertilizer application rates change across the years. For instance area under teff on land type B is constant at 40 ha each year. In year 2, however, an average fertilizer application rate of just under 50kg/ha is used, but by year 4 this has increased to 60Kg/ ha. Similarly on land type A, fertilizer application rates on teff are about 30kg/ha in the initial years but by the seventh year they have increased to 60kg/ha. Hence although the spatial dimension of the crop activity remains fairly constant, the net nutrient flows that define degradation intensify over time. On the other hand, the upper slopes (land type D) experience less variation in fertilizer input use rates per ha and more spatial changes in land use over time. Model results show that as time progresses, an increasing amount of wheat cultivation is undertaken on land type D between the second and the seventh year, replacing the less erosive maize, barley and sorghum. The result is a higher erosion rate that impacts negatively on wheat yields making its cultivation on this part of the watershed increasingly unsustainable. The land is hence reverted back to its former use (sorghum and barley cropping) by the eleventh and the twelfth year 8 .The combined effect of this trajectory of land use, grain sales and fertilizer use, would be an initial substantial boost in incomes that gradually erodes to levels at the end of the simulation period that are just less than 40 per cent of those observed in 1995. As an estimate of how the system might evolve in the absence of exogenous changes and as population grows, these results suggest that a \"minimal change\" strategy is not sustainable. As yields decline due to the cumulative impact of soil erosion even modest levels of nutrition cannot be sustained in the face of current levels of population growth.Projected nutrient balances under this farming system, assuming modest fertilizer use on the part of watershed farmers, are -102kg N, -4 kg P and -65kg K. These compare very closely with the balances computed for the observed cropping pattern above. Thus the optimizing behaviour results in nutrient loss reductions of 8 and 25% for N and P respectively but a 3% rise in potassium losses. This scenario assumes no dung manure 9 use on the major crops, consistent with the observation that dung is usually burned as domestic fuel by households in the watershed. The nutrient results for this simulated base scenario are depicted in Figure 3.Against this baseline, two scenarios are run to explore the possible impact of a package of new technologies (the JVP technologies), exploring the extent to which such a package might be used to alleviate the problems highlighted in the baseline scenario and how they might respond to the additional tensions generated by the increasing demands arising from the need to support increased nutritional standards and higher levels of population growth.Evaluating the net gains achievable through adoption and use of the JVP technologies and related land management strategies, with the concomitant costs of such adoption, is undertaken using the bio-economic model. This model evaluates the net gains from optimal technology intervention based on land suitability. For each land type, for instance, the model calculates the optimal fertilizer and dung application rates for every crop activity and then selects the most viable for cultivation in a particular year based on relative prices and costs and taking into account the impact of cumulative soil erosion on yields. This represents a significant advantage over past studies (e.g. Smaling et al., 1996;Van dan Bosch et al., 1998;De Jaeger et al., 1998), which have been generally diagnostic in approach and did not consider interventions aimed at improving nutrient balances through optimally adjusted land use patterns.The technologies that are part of the integrated package considered are: a) construction of a communal drain to eradicate water logging in the bottom lands, b) use of a new high yielding wheat variety, c) use of dung as manure instead of burning it for fuel, d) planting of eucalyptus trees and harvesting them after every four years for sale as construction poles and as wood fuel, e) keeping the optimal number of livestock based on available feed, their commercial sales value and their capacity to generate dung manure for crops.It is assumed that all these technologies are simultaneously available to farmers in the watershed. Existence of a good marketing infrastructure was similarly assumed, and consumption in all twelve years was set above baseline levels at 2000 calories 10 per adult equivalent per day; annual population growth remained at 2.3%. By increasing the nutritional demands on the system in this way it is intended to test the robustness as well as the effectiveness of the technology package.The key model results for this scenario (detailed in Table 2 and illustrated in Figure 4) suggest that cash income can rise by more than 40% over that achievable in the baseline scenario (Table 1) representing an average two-and-a-half-fold increase over incomes observed in the watershed in 1995. This is accompanied by a decline of 28% in soil loss representing a reduction of just over 55% on observed 1995 levels. At the same time, average grain sales over the planning horizon decline substantially to around 44% of those in the baseline scenario. The optimal number of animals in the watershed also changes, cows increasing by around 6 fold and oxen declining to about one third of baseline levels, leading to an approximate doubling of total livestock numbers. These results are illustrated in Figure 4 in comparison with the baseline scenario.The land use patterns underlying these results are also shown in Table 2. The principal differences from the baseline scenario include; a shift from local wheat cultivation to teff on land type A, the substitution of the new improved wheat variety for local wheat on land type B, and the substitution of eucalyptus for part of the maize crop on land types B, C and for wheat and other crops on land type D. Planting of eucalyptus for commercial purposes has been shown to earn farmers more than ten times what they earn from crop cultivation. Similarly, cultivation of crops using chemical fertilizer and dung manure has resulted in substantial increases in yields; in some instances yields have doubled or even tripled. This is in line with projections by Wrigley et al., 1969, as quoted in Mpairwe, 1998. Cultivation of the local wheat variety still persists on Land Type A even when farmers have the option of adopting the new high yielding variety (ET 13). This can be attributed in part to the high labour demands for planting the new variety, which are observed to be 24% higher than those of the local variety. More importantly, land type A is relatively flat and low lying so that cultivation of the new variety requires a thorough ploughing, making of furrows with the BBM plough, and construction of a communal drain with a complete system of feeder drains for improved drainage, as well as purchase and use of certified seeds and fertilizer. It is also likely that, though yields of ET 13 are higher than those of the local variety, the high labour requirements (especially for male labour) conflict with the high labour demand for teff cultivation, which is the preferred staple in the watershed. The relatively low labour demand during peak labour periods (i.e. land preparation, planting, and harvesting) in growing traditional wheat enables the farmer to have adequate time to cultivate and manage the highly labour intensive teff. These factors contribute to the relative attractiveness of continuing with the local wheat variety. However, the advantages of the local variety are likely to diminish over time as the cumulative effects of soil erosion on yield leads to higher fertilizer applications, favouring a switch to more fertilizerresponsive varieties such as ET 13.As illustrated in Figure 5, the introduction and uptake of these JVP technologies means that net nutrient balances are reduced to -72kg N, +4.5kg P and -59kg K. These values represent a reduction in aggregate nutrient loss of just over 26% compared with the baseline scenario 11 . The impact on potassium is least, and there is a substantial effect on nitrogen and phosphorous balances.11 To assess the contribution of livestock to the reduction in nutrient loss we compare these losses with those that would arise if there is no application of dung manure on crops. This would sever the nutrient cycling process since failing to apply manure would mean that nutrient losses through livestock are not replenished and hence nutrient mining occurs at significantly higher rates. With no dung manure application, nutrient balances are calculated at -92kg N, -2.4kg P and -59kg K, approximately 10 per cent below baseline values. Thus the proper integration of livestock into the cropping system has the potential of more than doubling the reduction in nutrient losses, though this may vary depending on how animal waste is handled.As an additional test of the robustness of JVP technologies the implications of increasing nutritional requirements to 3000 calories per adult equivalent per day and greater than average annual population growth (3%) are illustrated by the results presented in Table 3. These results are compared with those in the baseline scenario to illustrate the performance of the adopted JVP technologies when nutritional demands within the watershed increase at a faster rate from a higher base (Figure 6).These results show that increasing nutritional demands through improving nutritional standards and faster population growth has some impact on land use patterns and soil loss across the watershed. The area of teff is reduced slightly. At the same time, local wheat on Land type A is replaced by increased production of the improved wheat variety on land type B, while maize and other crops are substituted for eucalyptus on land type D. Increased grain consumption requirements are met mainly by reducing grain sales to less than 50% of baseline values (about 85% of those shown in Table 2), involving a reduction of approximately 58% in annual teff sales, though wheat sales actually increase by approximately 10% of those in Table 2. Accordingly, cash incomes are around 85% of those in Table 2, while soil erosion increases by around 5%.Changes over the planning horizon in this scenario would suggest that as nutritional demands increase, and soil erosion generates pressure on yields of traditional crops, the new wheat variety continues to be substituted for pulses on land type B, reducing the scope for effective crop rotation on this land category. In addition there is a reduction in eucalyptus cover on land type D, replaced by increased production of maize and other crops. The result is a slight rise in erosion levels and an asymmetric impact on incomes. The increase in incomes (compared with Table 2) in the early years (probably reflecting the reduced commitment of land to eucalyptus planting) is followed by a significant reduction in later years as the impact of increased soil erosion on yields intensifies the impact of increased nutritional requirements on grain sales. Another interesting phenomenon is the appearance of fallow in the early years, as land previously reserved for eucalyptus is kept out of production, thereby gleaning the benefits of reduced soil erosion while at the same time ensuring that the land is available for cultivation in later years.These results show that the adoption of the integrated intervention package can significantly reduce soil losses, even when higher consumption targets must be met. However, supporting significantly higher consumption levels at high rates of population growth introduced strains on the watershed system. In particular the model provides some evidence that the initial large reductions in soil loss may not be sustainable in the longer term as the system struggles to support higher production levels. One effect is a switch from eucalyptus planting to food crops in order to meet nutritional demands, even in the early years of the simulation period, that has implications for soil erosion and thus for yields in later years. We may speculate whether these impacts would have been identified if we had assumed a longer planning horizon (and the more established property rights that this would imply) that would have allowed the cumulative effects of soil loss on yields to become more substantial. It is also open to speculation whether the cost of installing a communal drain on land A might have been justified in such a longer horizon model.The bio-economic modeling approach used in this study and disaggregation of the watershed into relatively homogenous land types, allows application of traditional techniques such as the USLE in a dynamic mathematical programming framework, to simultaneously assess socioeconomic and environmental impacts of technology interventions.The model results indicate the potential for real income gains for watershed producers arising through rationalization of crop growing between the different land categories, adjusting animal numbers and establishing forestry enterprises on the upper slopes. Net cash incomes for the farmers in the watershed could rise by as much as a factor of around two-and-a-half over those prevailing before intervention and by just over a factor of two in the high nutrition scenario. However, these gains are eroded by the need to meet increased nutritional demands arising both from increasing consumption levels and population growth.Rising nutrition demands are likely to reduce cash incomes, impact negatively on net nutrient balances by reducing the level of crop rotation among legumes and cereals, and increase soil erosion. One key impact here is that the relative viability of some of the JVP technologies changes. For example, the new wheat variety becomes increasingly important with higher population growth rate and higher calorie intake while at the same time there is a reduction in the area under eucalyptus, demonstrating the potential role of population growth in the development and adoption of innovations. This observation (that new wheat varieties become important at higher population densities) lends support to the population induced innovation argument. Similarly, the observation that these varieties are increasingly needed to arrest soil degradation as well, appear to support the conservation induced innovation argument.The modeling undertaken in this study also reveals the potential benefits of adopting the integrated technology package. Livestock play a significant and potentially positive role here though mainly in conjunction with other elements of the technology package. Over the simulation period, soil losses are shown to continue at a high, although reduced rate, but relative nutrient losses are reduced and even reversed when the technology is adopted. However, this relative advantage may not be robust to increases in the required nutritional levels, especially in the presence of high rates of population growth.Model estimates also show a high correlation between soil nutrient balances and soil erosion in the watershed, though this varies by nutrient. Nitrogen, for instance, shows less correlation with soil erosion especially in the last 5 years of the planning horizon, as a consequence of inflows of dung and chemical fertilizer to replace losses arising from soil erosion and crop harvests. Phosphorous losses are more closely related to erosion but losses are less significant due to the impacts of DAP fertilizer application used mainly to replenish nitrogen. Potassium balances exhibit a strong and direct positive relationship with erosion quantities reflecting that dung is the only source of potassium inflow.In practice, however, there are significant barriers to accomplishing this major shift in farmer behaviour, including lack of capital, and insecurity of land tenure. These barriers will need to be overcome before the full benefits identified here can be realized. At the same time the possibility that these gains might be further eroded by increased nutritional demands must be carefully considered.Thus, from a policy standpoint, it is clear that well targeted policies that provide incentives to use land according to suitability and comparative advantage can enhance overall social welfare by increasing income as well as by reducing degradation. The dichotomy between private and communal actions must be recognized and an appropriate policy environment created with a view to increasing their joint effectiveness. In particular, care should be taken to avoid promotion of conflicting policies. Preferably, those technologies that have multiple impacts in terms of meeting both the human welfare and biophysical objectives must be prioritized, and appropriate policy instruments enacted to facilitate the same. Note that land use data refers to wet season uses only. In the dry season the land is predominantly used for grazing with the exception of crops sown late in the wet season, either to avoid water-logging in the early part of the season, or as a second crop to take advantage of residual moisture. These latter crops are mainly spices. ","tokenCount":"8075"} \ No newline at end of file diff --git a/data/part_3/7574054263.json b/data/part_3/7574054263.json new file mode 100644 index 0000000000000000000000000000000000000000..3d297f2905fee428ad113bab25b2d6c0a1091ef4 --- /dev/null +++ b/data/part_3/7574054263.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"8886b3ab818e12c708b2467a98fee961","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/1c089a46-cff4-4b2e-9e17-a1abcab7e326/retrieve","id":"-1407851033"},"keywords":[],"sieverID":"36127b85-4a83-46ea-8065-5487f5b1a1f0","pagecount":"2","content":"Natural resource degradation and environmental damage are important concerns today. Through the influence of overgrazing, overstocking and feeding of crop residues, livestock have undoubtedly contributed to these processes. All too often, however, allegations about the detrimental impact of livestock on the environment are exaggerated or unfounded. Available empirical evidence does not establish a direct and negative relationship between livestock and the environment in a global context. Nor can the evidence discount the significant contributions that livestock make, in many parts of the world, to aggregate food supply, farm income, human nutrition, and to the sustainability of production systems. Drawing on evidence from past research and the proceedings of a recent global electronic conference on livestockenvironment interactions, this paper highlights the vital role played by livestock in promoting productivity and sustainability.Livestock are a critical source of income for many smallholders in developing countries. Dairy production and sales of live animals and animal products constitute important sources of income, employment and food supply. Livestock ownership also has a significant impact on farm productivity (through use of animal traction and manure as fertiliser or fuel) and hence cereal food production.Demand for animal products in developing countries is projected to rise significantly and faster than in developed countries as a result of population growth, urbanisation and rising incomes. Between 1975/79 and 1990/94, per capita milk and meat consumption grew by only 1.4 and 0.5%, respectively, in the developed world, and by 2.4 and 4.9%, respectively, in Asia. Over the same period, per capita demand for milk and meat stagnated in largely urbanised Latin America (registering rates of 0.3 and 0.9%, respectively), and declined in subSaharan Africa where rates of 0.2% and 0.4%, respectively, were recorded.Overall, the scope for further increases in demand for livestock products appears to be still large in Asia and Africa, where the share of population in urban areas is still low (though on the rise), and where prospects for future income growth are high. Given projected increases in income and relatively high elasticities of urban demand for livestock products, demand for livestock products can, therefore, be expected to rise in much of Asia and Africa.A global electronic conference held from January to March 1997, in which more than 1000 people from 86 countries participated, provided valuable information on livestock-environment interactions and identified critical needs in addressing livestock-environment issues, namely: the development of sustainable agricultural systems for different ecoregions of the world a more holistic research approach to better quantify biophysical and socioeconomic interactions between livestock, the environment and human needs policy recommendations based on broad stakeholder participation, i.e. farmers, scientists and policy makers in the design and implementation of appropriate policies.As the consultation demonstrated, there are growing concerns worldwide about maintaining or improving the natural resource base for agriculture. Currently, 5-10 million hectares of agricultural land are lost each year through severe degradation. Globally, there has been a 17% cumulative loss in productivity over 40 years (1945 to 1990). Other concerns like the emission of greenhouse gases, health hazards, biodiversity loss, overgrazing and desertification, are also increasing as human populations grow.Livestock contribute to these problems, but allegations against them are often exaggerated or unfounded. For example, in Central America land degradation is mainly caused by land speculation, corrupt titling procedures and biased financial incentives rather than increasing livestock numbers or pasture land. Similarly, methane emissions from ruminants have been shown to be highest where both animal productivity and feed quality are low, indicating that improved feeding strategies, and hence increased productivity, would reduce such emissions.While environmental concerns are real, the needs of those who rely on livestock for their very livelihoods must be taken into consideration. Improved agricultural systems must be flexible enough to evolve and develop if they are to continue to meet the changing needs and desires of society. To a large extent, this means increasing output through productivity increases. Increasing output and protecting the environment may seem mutually exclusive goals, but both can be achieved through proper allocation and management of resources.Research at ILRI shows that livestock can play a vital role in the development of sustainable and environmentally sound mixed crop-livestock farming systems, given their centrality to nutrient cycling. The use of livestock inputs like manure and animal traction fosters intensification-an alternative to expanded cultivation of marginal lands and low productivity. Livestock also provide an entry point for the promotion of sustainable land use through the introduction of forage legumes (e.g. in fodder banks) which would be beneficial for increased crop and livestock productivity, and for food supply.There would thus appear to be a broad range of opportunities for breaking the desperate cycle of expanded cultivation, land degradation and poverty prevailing in developing countries through increased livestock production. Increasing livestock production, in all its forms, and using appropriate research and policy measures, can contribute to the development of sustainable farming systems, and to improved human nutrition and farm income. With economic growth and improvements in standards of living, increased investment in crop and livestock production should lead to better health and protection of the environment.For more information on this issue see: Ehui S., Li Pun H., Mares V. and Shapiro B. 1998. The role of livestock in food security and environmental protection. Outlook on Agriculture 27(2):81-87.","tokenCount":"870"} \ No newline at end of file diff --git a/data/part_3/7605117673.json b/data/part_3/7605117673.json new file mode 100644 index 0000000000000000000000000000000000000000..38c3ecd27c75f059f2b4f25ead1164d9147af118 --- /dev/null +++ b/data/part_3/7605117673.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"b1ee07acd9ac1268244f79a012b33a49","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/31b30d77-d800-4907-85d5-3bc7bbb67b00/retrieve","id":"-2107986896"},"keywords":[],"sieverID":"274cbea5-c6e6-4039-80b0-5113be3d0885","pagecount":"2","content":"Kenya is a leader in climate-change research and policy in Africa. ILRI takes great pride in partnering with Kenya on work that is improving the livelihoods of its smallholder farmers and herders, as well as food and nutritional security for the whole population.The multi-year series of droughts ravaging Kenya's vast north-eastern drylands is but the latest alarm bell ringing of the dangers a changing climate is bringing to this largely rain-fed agricultural nation. As pastures and riverbeds dry up, an estimated one and a half million livestock have been lost and three and a half million livelihoods devastated.Following three consecutive poor rainy seasons, the country's pastoral households, normally so resilient, are finding themselves no longer able to cope. Unable to keep most of their stock alive, to feed and nourish themselves adequately, or to continue to educate all of their children, households and communities here are being forced to ask for support, which Kenyan and humanitarian agencies are providing.But the Kenya Government is doing much more than that. As a major livestock-producing country, Kenya is specifically targeting efficient livestock management in its 'climate-smart agriculture' agenda. This includes Kenya's plans to reduce its greenhouse gas emissions as stipulated in its 'nationally determined contribution' to achieve the global temperature goal set out in the 2015 Paris Climate Accords.Partnering with Kenya in this work to develop its livestock systems in the face of climate change is the CGIAR's International Livestock Research Institute (ILRI).ILRI works directly with Kenya's government ministries, research agencies, private companies and local communities to help solve problems faced by the country's millions of small-scale livestock farmers and herders trying to produce food under a drying, harsher and more erratic climate.Much of this joint Kenya-ILRI climate change work falls in four broad areas.Joint ILRI initiatives with Kenya's Ministry of Agriculture, Livestock, Fisheries and Co-operatives, are helping to guide implementation of the Kenya Climate-Smart Agriculture Implementation Framework and other national climate-related policies.ILRI's Mazingira ('Environment') Centre is determining reliable greenhouse gas emission factors for livestock, to help Kenya and other African countries more accurately report on their greenhouse gas reduction targets.ILRI is also supporting Kenyan livestock solutions to climate change that provide both greater gender equality and more jobs for the youth. And ILRI has helped Kenya improve the efficiency of its livestock production systems, which enhances livestock yields while reducing livestock greenhouse gas emission intensities via better feeds and breeds and better management of rangelands and manure.2) Implementing early warning and climate information systems ILRI and Kenyan experts are building tools that help the country to prepare for climate shocks. ILRI leads a programme in Kenya, for example, called Accelerating Impacts of CGIAR Climate Research for Africa (AICCRA), which makes climate information services and climate-smart agricultural information more accessible to smallholder farmers. This joint ILRI-Kenya work includes the Kenya Agricultural Observatory Platform, which is developing a web-based dashboard bundling climate and agricultural advisories.ILRI and Kenya host the Jameel Observatory for Food Security Early Action (https://jameelobservatory.org/), which is creating open innovation 'labs' where observatory partners, collaborators and a wider community of practice can connect to identify bottlenecks to climate-related food security and nutrition in drylands.3) Building more efficient livestock markets and value chains ILRI is working with Kenya to develop or refine livestock market information systems and value chains. One of these, KAZNET, uses a mobile phone app to crowdsource market data in pastoral areas so that livestock producers and traders have ready access to the same information on livestock prices. At California Vermifarm, which is located at Sibanga Market in Kitale, Trans Nzoia County, Mr Wafula specialises in vermicomposting, the process of turning organic debris into worm castings (manure).\"Here, I look into ways of enhancing the nutrient content of vermicompost by including in their feedstock green biomass that is known to contain relatively higher amounts of potassium and nitrogen than other green leaves. The nutrient content of vermicompost depends on the type of feedstock they are given,\" he says.On his farm, Mr Wafula who holds a master of science degree in Renewable Energy from Oldenburg University, Germany, has several demonstration plots where he studies the e ect of di erent mixtures of fertilisers on plant growth. The former Energy ministry o cial also graduated from the University of Nairobi with a bachelor of science degree in chemistry.Through this farming, there is vermicast production also called worm castings, worm humus, worm manure or worm faeces, which is the end-product of the breakdown of organic matter by earthworms. At the moment he has a production capacity of about 10 tonnes.Then there is the production of vermitea, a lateral product of the vermicomposting process, which contains nitrogen, phosphorous, micronutrients, hormones and earthworm enzyme, which promote plant growth and yield as well as increase the resistance of the plant to disease and pests.\"I also produce Eisenia fetida, known under various common names such as manure worm or redworm. This is a species of earthworm, which I sell to other farmers,\" explains Mr Wafula.But apart from the business side of it, this farming has immense environmental advantages. \"The right proportion of organic, biofertiliser and chemical fertiliser can produce an equivalent yield of the crop as that produced by chemical fertilisers. We can, therefore, decrease our use of chemical fertilisers. The latter has been known to increase the emissions of carbon dioxide and nitrous oxide from the soil. Both of these are greenhouse gases.\"His inspiration to venture into this stems from his experience with the biogas dissemination programme while at the Ministry of Energy.\"I wanted to add value to the e uent from the biogas plant by producing an improved organic fertiliser. By using the e uent (cow dung slurry) as part of the feedstock for earthworms, vermicompost can be produced,\" he says.Though rewarding, this venture requires skill and caution. \"For instance, when it comes to choosing vermibedding, any biodegradable material that provides the worms with a relatively stable habitat, you must ensure that it has high absorbency. This is because worms breathe through their skins, and therefore must have a moist environment in which to live. There should also be good bulking potential because worms require oxygen to live.\"Apart from that, he says, there has to be high carbon and low protein (nitrogen) content. \"High protein levels can result in rapid degradation and its associated heating, creating inhospitable conditions,\" explains Mr Wafula.Also, though earthworms will consume many types of dried animal manures and biodegradables, you have to ensure that the feeds containing high amounts of carbohydrate or woody residues are composted beyond the heating stage.\"The feed and supplements can be spread on top of the bedding about three-four inches deep. Food scraps should be pre-composited or covered to prevent fruit fl ies and other pests. Feed the worms regularly (once or twice a week). When all of the feed has been consumed, it is time to feed again. If too much feed is added, the beds may overheat, become anaerobic (oxygen-deprived), or too acidic,\" he explains.Nutrient tests are usually carried out at the Kenya Agriculture and Livestock Research Organisation labs. One should also look out for predators including mites, birds and ants such as safari ants, he says.\"For this reason, enclosing the vermicomposting site with wire netting can mitigate bird invasion. Ants can be controlled with insecticide powders sprinkled cautiously at the base of the vermibed bins,\" says Mr Wafula.Harvesting beds or bins, he says, may be accomplished by several methods. \"The common harvesting technique is using either brilliant sunlight or bright light shining overhead to drive the worms deeper into the pile to escape the light,\" he says.pongaji@ke.nationmedia.com I wanted to add value to the e uent from the biogas plant by producing an improved organic fertiliser >Chemical fertiliser substitute Expert in vermicomposting bets on eco-friendly venture to ease the use of arti cial fertilisers linked to emissions Earthworms churn out organic manure cash for Trans Nzoia scientist","tokenCount":"1312"} \ No newline at end of file diff --git a/data/part_3/7608052374.json b/data/part_3/7608052374.json new file mode 100644 index 0000000000000000000000000000000000000000..05c25a250f0f77ec29c2b1ad357d854789c68404 --- /dev/null +++ b/data/part_3/7608052374.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"294916550ef8953e13d3d95314462b7f","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/691a5c24-d404-424c-b706-eeaeb9a82d23/retrieve","id":"-1639083495"},"keywords":[],"sieverID":"6f6e5bca-1873-4e00-96b3-e660c00d97d6","pagecount":"21","content":"To improve the ability of the Consultative Group on International Agricultura! Research (CG IAR) system and other collaborating institutions to develop technology that alleviates poverty, improves food security, and protcc ts the em•ironment while ensuring equity.Form partnersh ips with organizations that enable the PRGA Program to have a major impact on (1) integrating PR&GA into agricultura} research, and (2) enhancing methods and approaches that help improve the livelihoods of the very poor, particularly rural women Develop tools that go beyond generic gender diagnosis and analysis to ( 1) enable the design of tailored analyses, and (2) guide researchers in interpreting gender analysis (GA) results so they may effectively addre ss their implications in research planning and a d aptationInteractive Web site Dissemination Pu blications Enhance the support function of the working groups PBG, PNRM-wg, and GAwg• Greater access to a global exchange of PR&GA expertise among a wide range of institutions • Accelerated learning from experiences; and new, widely applicable, m ethodologies for PR&GA genera ted • Considerable savings and increased impact from national agricultura! research systems (NARS) generated by better designed technologies • Indigenous systems of crop development and NRM strengthened and integrated with forma l research in a mutually reinforcing way • Peor rural women become meanin gful participants in, and the beneficiaries of, research • Greatly accelerated development and adoption of diverse germplasm in major food cropsPoor rural farmers, international agricultura! research centers (IARCs), national agricultura} research institutes (NARis), nongovernmental organizations (NGOs), and rural grassroots organizationsIARCs, NARS, NGOs, grassroots organizations, and universities PRGA Summary Progra m Anua l Report 2 003 ------------------ The overall budget for year 2003 is as follows :Sub totalAmount (US$) 30,000a 30,000 926,587Pro_l!_ortion (%)3.1 96.9a. There are more funds from the 2002 carry-over that were not included beca use they were received after the budget allocation dates.The following The purpose ofthe Small Grants Program ofthe PRGA Program is to build capacity for a pplying participatory research (PR) and gender analysis (GA) approaches to ongoing research.The funded projects contribu te methodological and organizational innovation to the field of PRGA and rigorous evaluations of the impact of applying participatory and equity-enhancing a pproaches, v;ith special attention to the effects on poor, rural women. Projects analyze the outcomes of these methods, comparing them with those of conventional research methods, and evaluate the effects on the research process itself.The PRGA Program continu es to support three doctoral theses. These are making good progress, with fieldwork near completion. They focus on themes essential for filling gaps within the PPB field: local seed systems, farmers' decision making in PPB in the context of a systems persp ective, and how to break the nexus between pove rty and agrobiodivers ity.Collaborative efforts with PPB partners h a ve resulted in the following publications: The PNRM-wg is open to a ll practitioners a nd d evelopers of participatory research a pproaches for NRM. The Group inte racts through an e-mail discussion list, meetings, seminars, and small, self-orga nizing subgroups tha t form to underta k e specific projects.The PRGA Program's general objective of m ainstreaming involves severa l discre te bu t interrela ted activities: Th ree separa te \"institu tionalization\" activi ti es ha ve been funded: for Year 1, a \"Quality of Science in PPB\" worksh op, anda set of in-depth PPB impact studies; and, forYear2, a series ofworking papers on th e Qua lity ofScience in PR&GA.Strong center-based conviction, and key change agents for PR&GA approaches are essential for strong systemwide commitment. To help foster organizational strategies for PR&GA work, Intra-Center Change Committees were established. Events to help form andjor reinforce such Com mittees were planned under the PRGA Program's umbrella at CIP, CIAT, and ICARDA.The Working Group on Participatory Research at the International Potato Center (ClP) was an important catalyst for establishing the lntra-Center Change Committees. Barun Gurung, PRGA Program, fi rst visited CIP in July 2002 to discuss and develop an action plan for collaboration between the Working Group and the PRGA Program for further institutionalization.Discussions led to the pla nning of an initial institutional assessment.The action plan that emerged was based on the identification of two major groups through which PR&GA approaches are expected to be institutionalized within C IAT: the Gender and Diversity Committee (G&D) for CIAT; a nd the Germplasm Group. The G&D Committee was established in 2003 and is conducting its own study of CIAT's organizational culture. When th e study is completed in October 2003, the PRGA Program and the G&D Committee will jointly develop a plan of action for insti tu tionalization.The Germplasm Group h as started to systematize client involvement in technology development within CIAT's various germplasm projects. An initial activity is under way to promote \"bcst practices to engage end users\", already u sed by breeders, across a ll the Center's germplasm projects. When the survey is completed, the PRGA Program will facilitate a discussion workshop in November 2003 to generate a plan of action for systematizing end-user engagement in technology development.Based on existing collaborative experience between the two entities, Barun Gurung (PRGA Program) and Ade n Aw-Hassan (ICARDA) h e ld extensive discussions on how to proceed toward d eveloping an action plan for institutionalizing PRGA in !CARDA. An institutional assessment was commissioned in late October 2002 and a final draft completed and submitted to the PRGA Program for review. Once this review is completed, the final draft will be submitted in November 2003. PRGA Summa ry Progra m Anua l Report 2003 ------------------The PRGA Program and FARA propase to strengthen, consolidare, and mainstream PR&GA in a high priority, highly visible program that recognizes and promotes gender equity and gender-sensitive participatory approaches as comprising an important strategy to make R&D organizations demand driven. One avenue for doing so is through enhanced capacity development for gender-sensitive participatory a pproaches, combined with enhanced capacity for organizational innovations, that will sustain the use of such approaches beyond the projec t's life by institutionalizing them within the procedures, stru c tures , and cultures of the participating organizations.A Nepalese NGO , LI-BIRD h as been conducting farmer participatory maize breeding in the Gulmi Oistrict in the Western hills of Nepa l s ince 1999. lt focu sed not only on developing a new farmer-preferred maize variety, but also on strengthening farmerled breeding and informal seed selection and maintenance procedures.The impact studya collaborative e ffort betv:een the PRGA Progra m and LI-BIRDbegan with a planning workshop in October 2002. The study's specific objective was to assess changes in farmers ' skills and economic benefits that may accrue from the increased knowledge. Excellent baseline data already exists on the participating farmers, and the sam e 100 farmers at two sites were surveyed to assess the changes in human capital dueto project impact.The overall goal is to strengthen the capacity of our national R&D partners to develop innovative agricultura! technologies and income generation opportunities tha t would address women's special needs and constraints.- ---------------- For the last 4 years, with the collaboration of many institutions and individuals, the PRGA Progra m h as systematically collected scientifically credible e m pirical evidence of the impact a nd costs of PR in NRM a nd PB by conducting impact case studies. A m ethodology was developed for the collaborative studies to analyze both impact and costs of PR&GA. 8oth qua lita tive and qua ntitative d ata are used , including existing project documentation; as are open-ended interviews with project staff, farmer participants, and other key informa nts , including community lead ers a nd policy makers; and s tatistical a nd econometric analyses of survey data.One case study on participatory barley breeding in Syria was completed with ICARDA during this reporting period. A second impact study, on participatory rice varietal selection in West Africa, was also completed with the collaboration of the West Africa Rice Development Association (WARDA) in February 2002(1). The results were written up and published as a PRGA Program working d ocument (Lilja and Erenstein 2002). Two oth er collaborative case studies on impact were started and are still being completed : on e with the Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) in Brazil on participatory cassava breeding, and the other with LI -B IRD in Nepal on participatory maize breedin g.Eviden ce from the impact case studies d emonstrates th at th e use ofPR&GA methods in research generates a process of learning a nd c hange , particularly in methods innova tions that result from farmers' feedback (Johnson et al. 2000; Lilja and Erenstein 2002)(2) . Results ofimpact case studies conducted with ICRISAT, ICARDA, World Neighbours Cana da, and WARDA demonstrated that user participation led to feedback that changed the priorities and practices of research institutions. Systematizing m e thods and learning, together with cap acity building to use PR&GA m ethods more effectively have contributed to s caling-up (reaching more people more quickly) . The year 2002-2003 provided an opportunity to reflect on sorne of the findings , and synthesize the results of the PNRM and PPB impact studies. Five presentations were made in international meetings. The Program created an lA Web site that provides access to all publication outputs of the Program's lA research , that is, project inventaries, impact case studies, guides on lA meth ods, and PowerPoint formats on synthesized results pre sented at various international m eetings. The site also offers access to other reviewed and recommended lA research m e thods and empirical re sults. The site's address is at: In the second phase, the major focus of the Program will be on mainstreaming gendersensitive participatory a pproaches to better e nable agricu ltura! R&D to become more demand -driven .In addition to building upon existing global p artnerships and a lliances from phase one, a major area of PRGA Program atten tion will focus on the Sub-Saharan African region. A partnership has been established with the Forum for Agricultura! Research in Africa (FARA) to work with institutions that come under their u mbrella in East, South and WestAfrica.The PRGA Program's strategy for mainstreaming will focu s on the following activities:• PR&GA m ethods, • impact assessment skills for learning and c hange, a nd • concepts and skills of organizational development for their institutionalization within their own organizations.• Conducting empirical studies on participatory research m ethods for plant breeding and natural resource management • The developmen t and dissemination of tools and methods that enable scientists to capture the impact of products a nd processes, and integrate learning from impact assessment into research planning and a d aptation (learning and change)-----------------PRGA Summary Program Anual Report 2003 11 S. 5.3 Develop action research partnerships to institutionalize PR&GA approaches with a core groups ofiARCs and NARIS. Activities will include:• conducting institutional assessm ent to assess opportunities and constraints for institutionalizing PR&GA a pproaches • forming partnerships with institutions that enable the PRGA Program to have a m ajor impact on ( 1) integrating PR&GA into agricultura! research, and (2) enhancing m ethods and approach es that help improve the livelih oods of the rural poor, particularly women.• Develop tools that go beyond generic gender diagnosis and analysis to ( 1) enable the design of ta ilored a n a lyses, a nd (2) guide research ers in interpreting gender analysis results so they m ay effectively address their implications in research planning a nd adapta tion.• Enhance the support function of working groups on gender analysis (GA) , participatory plant breeding (PPB) and natural resource managem ent (NRM). This function a ims to d evelop a collaborative process of devolving PRGA Program decision-making responsibilities to Pr ogram partners, particularly in the areas of fund raising, establishin g objectives and activities etc.In colla boration with FARA, CIAT Africa and ILRI the following 4-step strategy is presently being impleme nted for the mainstreaming initiative in Africa.• Mainstreaming Planning Team. The team is being d evelop ed to provide the n ecessary guidance to the program on how to generate d em a nd , what steps are a ppropria te, provide political clout, etc. The composition of the team will be based on the following criteria:-knowledge of PR&GA approaches -knowledge of African context -experience ofusing PR&GA approaches -committed to the agenda for use of PR&GA approaches and the organizational --innovation that is required to sustain their use beyond the project level -som eone who is influential, p a rticularly in the regional context.","tokenCount":"2083"} \ No newline at end of file diff --git a/data/part_3/7620286109.json b/data/part_3/7620286109.json new file mode 100644 index 0000000000000000000000000000000000000000..bdb13bcd94ee77e5e7c931983fc648c7e0ccb53b --- /dev/null +++ b/data/part_3/7620286109.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"11d119cd9de65beb16b4646a4d97f0af","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/49d42d39-ef3e-48a7-9e0a-34700ecf314d/retrieve","id":"-1288797464"},"keywords":[],"sieverID":"93e3fb95-3088-4d59-94bc-240b5e00a9ff","pagecount":"4","content":"Katie Tavenner and Todd A. Crane September 2018Participation in the dairy sector has been hailed as a means of improving rural livelihoods and lifting people out of poverty due to the availability of significant commercial opportunities. Yet, due to social contexts and structural conditions, the opportunities afforded to men and women for entering the dairy sector are often different. Women frequently face substantial barriers to participation in the dairy value chain and in their capacity to accrue benefits from such participation. Thus, mitigation interventions must consider the household-and community-level gender norms that influence women's adoption of LEDD technologies and practices.Research was conducted on the gender norms and intrahousehold dynamics that influence women's participation in LEDD interventions, with a focus on direct payments to women as incentives. There is a clear gender division of labour in Kenyan dairy production. Women are predominately responsible for the daily and time-consuming tasks related to the management of cows. They secure fodder for the animals, remove their manure, provide them with water, assess and take care of their health needs, determine whether they are in heat and require mating or artificial insemination, and of course milk them. These tasks can easily take six hours a day. Men's tasks tend to be more 'seasonally needs-based' or sporadic. They include purchasing and selling cows, spraying them against ticks and planting fodder crops.Despite women's labour-intensive contributions to dairy production, they are often less privileged in terms of cattle ownership, decision-making associated with the animals (buying/selling) and the sharing of the income from the sale of milk. These household gender dynamics are further reinforced by cultural norms that privilege men's legitimacy in accessing the benefits of dairy farming through formal participation in milk markets.To contest these dynamics, work is being undertaken across Kenya to integrate women into LEDD interventions.Strategies frequently seek to facilitate the registration of women as members of milk cooperatives and help them to open bank accounts (either individually or jointly with their spouse) whereby women can receive monthly payments based on the volume of milk they and their families supplied.Kenyan case-study summaryIn many cultural contexts in Kenya, cows, milk marketing and commercial production practices in formal market spheres are culturally considered masculine domains. This generates significant gender-related conflicts that greatly influence women's ability and incentives to participate in LEDD interventions.As interventions using direct payments rely on monthly, formally bulked bank deposits, income derived from the formal sale of milk is viewed as culturally the legitimate property for men, who have been traditionally responsible for large household expenditures.In most cases, direct payments alone do not appear to incentivize married women to participate in LEDD interventions. However, when bundled together with other non-financial incentives (e.g. agro-veterinary services, access to credit and loans, additional training in dairy and in other livestock/agricultural value chains), women may be more likely to participate in LEDD interventions.As they are more likely to control the revenue from formal milk sales, single women (never married, divorcees and widows) are incentivized to participate in LEDD interventions involving direct payments. However, they face considerable cultural barriers, such as lack of financial capital, land and cattle that act as disincentives to their participation.In sum, incentivizing participation in LEDD interventions is complex and culturally conditioned. It requires an understanding of household gender dynamics to recognize the cultural incentives and disincentives women have for participating. In the Kenyan case study, a combination of cultural gender norms and household dynamics around male management responsibilities and marketplaces shape women's ability to participate in and benefit from LEDD interventions. Moreover, the case study highlighted that while women may face common challenges in participating in LEDD interventions, they are not a homogenous group. Other types of social differences (e.g. age, marital status and ethnicity) also shaped why, how and to what extent women choose to participate. Inclusive incentives and gender safeguards must consider these intersectional differences in designing appropriate interventions.The 2015 Paris agreement stipulates that climate change mitigation should be pursued in alignment with broader Sustainable Development Goals. While the agreement calls for the introduction of monitoring, reporting and verification (MRV) assessments for LEDD interventions, a major policy gap exists in that there are currently no specifications for reporting on social outcomes that emerge from the pursuit of those biophysical targets. For example, how will the promotion and uptake of LEDD interventions affect women's socio-economic position and access to opportunities? A sole focus on technology and technical practice in MRV glosses over the socio-economic changes implied in the implementation of new climatesmart technologies and on-farm practices. Therefore, the analysis of gender power dynamics at the intra-household and community levels are necessary to assess the gender impacts and social implications of the adoption of LEDD interventions.As National-level and constitutional protections of ensuring gender parity in Kenyan governing bodies should be enforced. The Constitution of Kenya provides a clear framework for institutionalizing gender equality. It sets out a two-thirds rule, meaning that a single gender cannot form more than two-thirds of a public decision-making body. This gender quota addresses the historic and contemporary underrepresentation of women in political and governance institutions and could be used as a framework for ensuring women's representation in LEDD decision-making bodies.1. Explore the possibility of bundling direct payment options with other non-financial incentives (e.g. agro-veterinary services, access to credit and loans) as a way of increasing the direct benefits accrued to women from participation in LEDD interventions. 2. Actively engage with smallholders regarding gender roles and equity as a way of customizing incentives for women's participation in LEDD interventions. This would help ensure that these incentives are culturally sensitive, context specific and firmly based on women's needs, priorities and day-to-day realities.3. Ensure 'gender safeguards' are adopted in combination with direct payment options to counter-balance potentially detrimental impacts of LEDD interventions on women. This could be done by identifying locally relevant livestock/agricultural activities outside of dairy farming where women would be able to access economic benefits more directly and provide training, services or resources in these areas. Alongside this, adopt a 'do no harm' approach to the design of LEDD technologies with women's capacities and current workload in mind. ","tokenCount":"1017"} \ No newline at end of file diff --git a/data/part_3/7626211353.json b/data/part_3/7626211353.json new file mode 100644 index 0000000000000000000000000000000000000000..ec4cef637a02460ea0f4cdac8a8691f045529dc4 --- /dev/null +++ b/data/part_3/7626211353.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"6664c355c5452f87de7822ad37957742","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/5c429c0e-f1b2-43bb-af57-abfe154a6545/retrieve","id":"434145190"},"keywords":[],"sieverID":"39fabf1b-cd6e-44bb-b882-29ca401a89ab","pagecount":"4","content":"Most rural households in Kenya rely on both agriculture and livestock for their nutrition and incomes. With increasing population growth, there is increased demand for food from the same area of land, eventually leading to intensification. Most of these farms practice mixed farming, with both crops and livestock supplying the agricultural produce for domestic consumption and sale. One of the benefits arising from the system at farm level is complementarity. Crops and crop residues supply feed to the animals, while livestock in return supply manure that improves crop performance. These systems are, therefore, dynamic especially with the increasing human population.Milk productivity has been relatively low in Kenya compared to other areas in the world. Improved cattle and crosses produce about 8 kg/cow/day (Miua et al. 2011), while in developed countries like the USA milk yield goes up to about 23 kg/cow/day, which is about three times higher (IFNC 2014). Improving productivity is, therefore, necessary for efficiency in addition to reducing greenhouse gas (methane) production per unit of livestock output. Consequently, the work reported here was to capture the current status in Nyandarua in central Kenya, especially on livestock contribution and management in the area targeted by the 2SCALE project led by IFDC, the International Fertilizer Development Center (http://ifdc.org/2scale/) that aims at improving dairy productivity and marketing access for dairy farmers.The study sites were in Oljoro Orok in Nyandarua county of central Kenya located at about 0° (latitude) and 036° E (longitude). The area is on the lee ward side of the Aberdare ranges with occasional low temperatures and frost bites (Miua et al. 2011).FEAST (Feed Assessment Tool) developed by Duncan et al. (2012) was applied to capture information from three farmers groups that deliver their milk produce collectively to Edoville, a private milk processor, in the area (http://www.eldoville.co.ke/). The groups were Nyamarura, Hillten and Kanguu. The tool was further applied to a control farmers group (Kagera) not involved in selling their milk to any processor. Farmer selection was assisted by county agricultural extension staff. The tool was applied separately to women and men in each of the farmer groups. The tool entails two sections, each with structured questions. The first section is through focus group discussions that link to the second session of detailed interviews with selected farmers. The first session categorized farmers in attendance based on their land size, i.e. small, medium, large and telephone farmers. Two farmers from each category were then randomly selected and underwent individual detailed interviews. Data were entered into FEAST software that subsequently helped summarize the various responses from detailed interviews.The perception of land sizes among landless, small, medium and large differed amongst the groups, and for both women and men (Table1). Landless and telephone farmers were considered negligible across all groups. Except in the control group, women reported >50% contribution from livestock to the household incomes, especially from dairy. Men estimated <50% contribution from dairy, except for the Kanguu group. Dairy contribution was estimated least in the control group compared to the rest, but had significant support from agriculture and business (Table 2).Table 1. Land size categories as estimated in Focus Group Discussions by women and men from Nyamarura, Hillten, Kanguu and Kagera (control) farmer groups of Central Kenya (N=110); numbers in brackets denote % of households in the corresponding land size category. A variety of fodder crops were reported across the groups that are usually utilized in the area. These included Napier grass (Pennisetum purpureum), and stovers and thinnings of sorghum (Sorghum bicolor) and maize (Zea mays). Other fodders included oats (Avena sativa), Lucerne (Medicago sativa), Columbus grass (Sorghum x almum), lupins, desmodiums, vetch (Vicia sativa) and Rhodes grass (Chloris gayana) not used for grazing directly, unlike Kikuyu grass (Pennisetum clandestinum), but harvested and availed to the animals. The use of maize for fodder featured strongly except in Kagera, the control group, where oats plaid an even stronger role (Table 3). Gender differences in estimating areas planted with fodder were very conspicuous with women giving much smaller areas. Animal feed availability throughout the year was appraised similar amongst the four groups and both by women and men groups. Although availability was closely related to rainfall, it was noticeable even after the rainy season that fodder was not adequate with about 75% availability, at best. Fodder deficit was felt most during the first five months of the calendar year (Figure 1). Overall, the use of green forage was higher than grazing followed by crop residues. The main objective of this study was to assess the status of livestock, especially dairy cattle regarding feeds and feeding management and contribution to household incomes. Substantial use of collected green forage and crop residues indicates a departure from predominant grazing to more intensified systems as farm sizes decrease due to subdivision mainly caused by generational inheritance. Indeed, most of the land sizes were categorized as small by either gender (Table 1) and with largely less than two acres of land, while <15% farms were perceived as large size, and negligible for telephone farmers, across the groups. This may partly explain the increased use of maize as a fodder, which is rather new for Kenyan households, where maize is the staple in most diets (Kang'ethe 2011), but typical for trends in the region (De Groot et al. 2013). Intensification is, therefore, likely to continue as population increases (ASDSP 2011) in Nyandarua, an area that had been known for livestock grazing. Forage demand will most likely increase as livestock and especially dairy continue to be important in household incomes (Table 3). Market pull from the processor will almost certainly trigger further impetus for increased milk productivity and subsequent forage cultivation to support the production.Involvement of both women and men in agricultural activities in the area is concomitant with the importance of agriculture in household nutrition and incomes. However, differences in levels of involvement may explain the wider range of forages and substantially larger areas perceived by men. Usually, women may be more involved in the actual implementation of livestock activities like milking and feeding, while men may have more opportunities of access to information, but probably not shared in equal measure with the real implementers. Nevertheless, fodder availability and rainfall pattern were estimated alike between women and men. Although fodder availability increased during rains, at no time did it become abundantly available, suggesting the animals never expressed their full potential. There is need, therefore, to increase fodder production in the area to support livestock performance and increase milk production and especially productivity per area.Livestock, especially dairy, is key in the area for household incomes but, there is need to improve productivity as more intensified systems emerge. Improving milk marketing by the 2SCALE project is most likely to enhance and improve the contribution of dairy to household incomes. This is evident from the lower contribution of livestock to household incomes by the control group, compared to the groups organized in their milk marketing.","tokenCount":"1153"} \ No newline at end of file diff --git a/data/part_3/7651609663.json b/data/part_3/7651609663.json new file mode 100644 index 0000000000000000000000000000000000000000..9f6bb6a37b083a9d8d9545899bc1bfa51224b802 --- /dev/null +++ b/data/part_3/7651609663.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"99db8749632667bddc44df6a9e33fcd0","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/84651b1e-5d3b-4eca-a69a-5c8231eac465/retrieve","id":"1422598905"},"keywords":[],"sieverID":"999eced5-b3c4-4ac6-abb2-0967ca5b6b3f","pagecount":"16","content":"The International Potato Center (CIP) has seen steady programmatic and financial growth over the last couple of years and 2014 continued this trend. The highlight of the year was continuing the lead in implementing the CGIAR Research Program on Roots, Tubers and Bananas. CIP is the lead partner in this exciting research program and is joined by three other CGIAR partner centers: International Center for Tropical Agriculture (CIAT), International Institute for Tropical Agriculture (IITA), and Bioversity International, plus The Agricultural Research for Development Center (CIRAD). CIP is also working in a total of seven other CGIAR Research Programs (CRP) including; CRP on Agriculture for Nutrition and Health, CRP on Climate Change, Agriculture, and Food Security, CRP on Dryland Systems, CRP for Managing and Sustaining Crop Collections, CRP on Integrated Systems for the Humid Tropics, CRP on Policies and Institutions and Markets, and CRP on Water Land and Ecosystems. These CGIAR Research Programs also allow CIP to expand its research programs to continue playing an important role in improving potato and sweetpotato production systems and the livelihoods of millions of people around the world.The Center was successful in achieving an operating surplus of US$1.8M in 2014 and in achieving revenue of US$72.4M during 2014, a year-over-year increase of US$4.3M or an increase of 6%. This increase in revenue for 2014 was mainly due to the increase in donors' contributions to Window 3 (contributions allocated by Fund donors to specific CGIAR Centers).CIP's financial indicators reflect that the Center is maintaining its financial health, though no institution is immune to financial or operational risk. To mitigate risk, the Board's Audit Committee ensures oversight of CIP's risk management policies and plans. In a much broader sense, the Board oversees Center operations in the interest of donors and stakeholders.This year was a turbulent and challenging year for the CGIAR system and for its Centers. One key factor was the Mid-Term Review (MTR) of the CGIAR reform; the final report being issued in October. This is to lead to strengthening and simplification of the Consortium-Fund Council governance mechanism. During 2014, the CG also invested major efforts in revisiting the Strategy and Results Framework (SRF) and developing an improved accountability framework for the CGIAR. These and related changes are to promote a more effective and efficient collaboration among CGIAR Centers and with their partners.I would like to express my gratitude and appreciation to Dr. Stella Williams and Dr. Peter VanderZaag who served with dedication and high standards during their tenure as Board members. I would also like to welcome the four new Board members: Mr. Jim Eckles from the United States of America; Dr. Frannie Léautier, who has dual nationality -Tanzania and France; Dr. Linley Chiwona-Karltun, who has dual nationality -Malawi and Sweden; and Dr. Alberto Maurer, who has dual nationality -Peru and Italy.On behalf of the Board, I would like to thank CIP's donors, investors, and all CGIAR partners for their support. I also extend my appreciation to CIP's management and staff for their continued dedication to the organization and its important mission.With appreciation,As the director general of a CGIAR Center, I am privileged to work with colleagues who are leading experts in their fields -both scientifically and operationally. We need to use the best science and leadership to reach our vital goal of feeding the nine billion people who are expected to be living on the Earth by 2030. I want to point out this combination of science and operational excellence because at CIP we have been focusing on cross-cutting efforts necessary for us to reach our shared goals.Because CIP alone can't provide for the food security, poverty alleviation, and nutritional needs of smallholder farmers and their communities, we work through an array of partnerships with other organizations, local governments and academic research centers, among others, to maximize our effectiveness. CIP's 2014 Strategic and Corporate Plan identifies cross-cutting efforts required to be successful in the pro-poor research and development cycle. This annual report focuses on three crosscutting areas: gender, partnerships and capacity building. The common thread in each is cooperation, and the vignettes that follow illustrate how CIP brokers relationships to the advantage of beneficiaries, while ensuring inclusiveness of ideas, resources and results.I am touched by the personal stories that inevitably arise from CIP-led interventions, and I'm moved by the success of the USAID Horticulture Project in Bangladesh that integrates CIP's orange-fleshed sweetpotato [OFSP] with nutrient-rich vegetables. This project shows how we combine crops in partnership with other organizations such as AVRDC-The World Vegetable Center to build communities and strengthen the role of women in them. This is just one example of the essential work CIP is doing with farmers in challenging areas like Bangladesh. I'm proud of CIP's work and I admire the contributions of all of our partner organizations. CIP has done a tremendous amount of work over the past two years developing a framework for the next decade. 2014 was pivotal to that process. The stories in this year's annual report provide examples of how we are improving the lives of smallholder farmers and their communities. We will be scaling up such work in coming years, and as a result of the past years' efforts, we now have the team and tools in place to have an even greater impact.I want to express my appreciation to the generous donors and partners who make what we do possible. The food security, poverty alleviation, and nutrition of the world's poor has improved as a result of their ongoing support. We will continue committing ourselves in the coming years to furthering that cause.Tens of thousands of smallholders in villages in southern Bangladesh have improved their farming methods, their families' diets and their incomes, thanks to a horticulture project led by CIP and the World Vegetable Center (AVRDC).Shawkat Begum, a Bangladeshi anthropologist who serves as the project's Chief of Party, explains that it has provided training in sustainable agricultural techniques such as integrated pest management and grafting to rural men and women in four districts of Bangladesh. Those farmers are now producing improved orange-fleshed sweetpotato (OFSP) varieties and nutrient-rich vegetables. At the same time, CIP has helped Bangladeshi potato farmers boost their production and incomes through the improvements in potato seed storage.The four-year project, which is supported by the United States Agency for International Development (USAID) under its Feed the Future initiative, is using potato, sweetpotato and target vegetables to improve the food security, nutrition and incomes of smallholders. To accomplish this, CIP and AVRDC have partnered with the Bangladesh Agricultural Research Institute (BARI), the Bangladesh Rural Advancement Committee (BRAC) and the PROSHIKA Centre for Human Development. Scientists at US universities Virginia State University and University of California, Davis have contributed to the project's integrated pest management and potato storage components.There is great need for such interventions in rural Bangladesh, where many families don't own enough land to grow sufficient food, and malnutrition rates are among the world's highest. Sweetpotato is an excellent option for those farmers, since it grows quickly and can produce a lot of calories in a small area, even in marginal soils. The OFSP varieties that the project has distributed have the advantage of being high in iron and beta carotene, which the body converts to vitamin A. What's more, the plant's leaves are also nutritious, which has led to a growing popularity of sweetpotato-leaf curry in those four districts.The goal of the project is to reach 100,000 households by September 2015. In 2014, significant progress was made toward that goal. The implementing partners reached 39,000 households in 2014, which brought the total number of beneficiaries during the project's first three years to 69,000. Given the multiplier effect of the project's train-the-trainer approach, it is well on track to meet its goal.The horticulture project not only addresses such widespread problems as poverty and vitamin A deficiency in children; it also has a strong gender equity strategy. Bangladeshi inheritance laws and traditions have left most of the country's women land-poor, so the project provides training to groups of women in productive activities that require very little land, such as cultivating home gardens and producing grafted tomato seedlings, eggplant seedlings or sweetpotato vine cuttings -all viable planting material -to sell. Almost half of the project's participants to date are female, and the training and assistance they've received has improved their families' diets and incomes while helping them to take greater control over their lives, health and livelihoods.Begum is quite familiar with the limitations that rural women face in her country. She explained that numerous female beneficiaries have told her that the project helped them to gain more respect from their husbands and community members. \"I personally did case studies on vine multiplication with women who told me that they had never felt that they would have ownership over anything, but they now feel that their lives have meaning, and they can tell their husbands that they have earned their own income, \" Begum said. \"That is really motivating. \"One participant, Jogun, who lives in the Chowgachha area of the Jessore district, explained that since receiving training from the project, she has grown sweetpotato for her family and neighbors and has earned income from the sale of planting material.\"We regularly eat sweetpotato leaves and roots, \" she said. \"My grandchildren like sweetpotato and they are eating it regularly. I hope that this makes them healthy. \"Jogun explained that she grew enough sweetpotato vines on five decimals (about 200 square meters) of land in five months to earn 5,000 taka (approx. US$65), which she used to improve her family's diet and to purchase a goat. She added that she intends to sell the goat when it is grown and hopes to save enough money to buy a cow.\"Women in my village are taking interest and approaching me to learn vine multiplication. I have helped them, and now they are helping others. This simple technology is spreading in my village, \" she said.The horticulture project's impact has likewise spread beyond the communities it works with directly. CIP has also contributed to a project led by WorldFish called Aquaculture for Income and Nutrition. CIP provided Worldfish with sweetpotato vine cuttings so that the organization could promote sweetpotato production among participants in the aquaculture project. The horticulture project also contributed 20 metric tons of sweetpotato roots to a factory that is producing baby food from fish, sweetpotato and rice.Begum explained that she has witnessed plenty of success stories since the project was launched. For example, she cited a group of landless women in Barisal whom the project trained in vine multiplication and who managed to produce enough vines in areas behind their homes to earn about $130 per member in eight months. The women spent their earnings on such essentials as milk and school supplies for their children.\"When you see women following innovative approaches, or when you give them a way to generate their own income and attain a different role in their community, that is very rewarding, \" Begum said.After a pilot orange-fleshed sweetpotato (OFSP) project quickly showed great promise in 2013, the Government of Odisha, India decided to strengthen its partnership with CIP for four more years by way of a \"mega-project\" called GAINS (Generating Advances in Incomes and Nutrition through Sweetpotato).The state of Odisha, located on India's east coast, is the country's biggest sweetpotato producer. The root crop is grown both during Kharif (wet, southwest monsoon, June-October) and Rabi (dry, postmonsoon, November-April); however, its productivity has historically been low, with yields of 9.1 tons/ hectare (compared to the Asian average of 15t/ha). OFSP -rich in beta-carotene, the precursor of Vitamin A -is also not readily available in Odisha, a state with high malnutrition and poverty rates.In collaboration with the Department of Agriculture and Horticulture of Odisha and the Central Tuber Crops Research Institute (CTCRI), CIP initiated a one-year pilot program in November 2012, involving farmers in participatory trials with the objective of popularizing improved sweetpotato varieties and technologies for better income and nutrition in Odisha's Ganjam, Koraput and Dhenkanal districts. This project kicked off in January 2013 with a launching workshop and planning meeting in Bhubaneswar, the state capital. The one-day event, attended by 50 participants representing various organizations and institutions, was also well featured on several television broadcasts and in regional newspapers.The pilot project covered an area of 360 hectares in three districts over two seasons. The objective was to train farmers and technicians in sweetpotato cultivation, including pre-planting, and to help disseminate knowledge on sweetpotato's potential for improving income and nutrition. Because of a high demand for sweetpotato planting material, efforts were made to ensure the availability of varieties preferred by farmers. Some of these -including the white to yellow-fleshed varieties Kanjan Gad (Denkhanal) and Jajpur Local -were already popular and have been commercially successful over the past two decades.Because farmers were directly involved in the varietal evaluation process, the project received a good response from farming communities in all three districts during the first season. It was an opportunity for them to experiment with many varieties, both the established sweetpotato varieties and improved OFSP varieties introduced through the project.The farmers' results -20% to 50% yield increase observed in all three districts -were highly encouraging, prompting them to shift from local varieties to improved varieties. With superior taste and nutritional advantage, the OFSP variety 'CIP-440127' has attracted large numbers of farmers, who have chosen to assess its cultivation under local conditions.Based on the pilot project's success, the Government of Odisha decided to approve and move ahead with a larger-scale CIP-led project, with a main proposal grant approved for US$1.5 million. A Memorandum of Understanding (MoU) was signed by CIP and the Odisha Government on 10 December 2013 at the International Crops Research Institute for Semi-Arid Tropics (ICRISAT) headquarters in Hyderabad, India. ICRISAT, a CGIAR Research Center, also hosted the project's inaugural workshop.\"The objective is to cover 1,325 hectares in four districts (Ganjam, Koraput, Sundergarh and Dhenkanal) with varieties that mainly include OFSP, \" explained Dr. Sreekanth Attaluri, CIP's Program Director for Odisha.In addition to its nutritional benefits, sweetpotato offers another critical advantage: its resilience in the event of natural disasters such as cyclone Phailin, which struck India in October 2013. After floods caused by the cyclone seriously damaged staple cereals and pulses, CIP and CTCRI quickly advised government officials and farmers to harvest root and tuber crops, which were consumed by more than a quarter million people in the district after the cyclone.\"Crops such as sweetpotato should be better recognized by authorities for their resilience to damage caused by cyclones, when immediate food is needed, \" said Julian Parr, CIP Director for Asia. \"I am glad that the Government of Odisha, in collaboration with CIP through the GAINS project, gave support to resource-poor farmers when it was needed to meet food and nutrition demands. \"Maria Andrade, a CIP sweetpotato breeder based in Maputo, Mozambique, can hardly believe the progress that has been made on improving that important crop for African farmers in recent years.\"A decade ago, there were very few (sweetpotato) breeding programs in Africa, and they mostly depended on the introduction of material from other countries or regions to do adaptive trials, \" she said, adding that those sweetpotato varieties often did not adapt well to local conditions.Andrade is one of four CIP scientists who have spearheaded a transformation of sweetpotato breeding in sub-Saharan Africa (SSA) over the past five years. They are working to expand and accelerate the development of varieties that are adapted to local conditions in order to improve food security, health and incomes.CIP is strengthening the sweetpotato breeding capacity of National Agricultural Research Systems (NARS) across the continent, in close coordination with the Alliance for a Green Revolution in Africa (AGRA), as part of the Sweetpotato Action for Security and Health in Africa (SASHA) project, funded by the Bill & Melinda Gates Foundation. CIP has provided the latest technology and helped breeders adopt new tools and methods through training and knowledge sharing. This has created a breeders' community of practice that has produced impressive results: 46 new sweetpotato varieties released in the region since 2009, 37 of which Capacity Building R. MWANGA are OFSP varieties rich in beta carotene that can greatly improve the health of young children. And because it takes years to develop and release a new variety, the initiative's output has barely begun.Wolfgang Grüneberg, who coordinates CIP's efforts to improve sweetpotato breeding, explains that a decade ago, CIP emphasized a centralized breeding approach in which new varieties were developed in Peru, then shipped to other regions for evaluation and possible adoption. Now CIP prioritizes a decentralized approach, which focuses on strengthening national breeding programs and taking advantage of the genetic diversity of local sweetpotato populations.To achieve this, CIP has established support platforms in SSA and Asia that are strengthening the breeding programs of NARS in those regions. These include three sub-regional platforms in SSA: an East Africa platform based in Uganda, a Southern Africa platform in Mozambique and a West Africa platform in Ghana. Because of the decentralized breeding approach's success in Africa, an Asian platform was recently established to work with NARS in India, Bangladesh and Indonesia. CIP's work in South America and Haiti remains centralized, with varieties being developed at CIP headquarters in Lima, Peru, with one exception: a NARS breeding program in Cuba.Over the past five years, each African support platform has organized one or two regional workshops per year, and CIP has brought Africa's top sweetpotato breeders together for annual meetings. CIP scientists also arrange capacity building for smaller groups in specific countries as needed.\"We put an emphasis on sharing knowledge, and it is trickling down, \" Grüneberg explained. \"Each of the breeders that participate in the workshops usually has one or two technicians working with them, as well as colleagues in their institution who work on other crops. There are now more sweetpotato breeding programs in Africa and more breeders with more knowledge of African sweetpotato breeding material, and -most importantly -there are many more sweetpotato crosses being made in Africa for Africa. \" CIP's Robert Mwanga, who heads the East Africa support platform, notes that decentralized breeding is essential because each region is composed of different environments, making it difficult to develop a variety that will thrive in all parts of a single country, let alone several countries. While all the platforms promote the development of resilient sweetpotato varieties with high nutrient content and dry matter, each one also focuses on a specific trait of importance for its region. In the case of East Africa, the priority trait is virus resistance, whereas in Southern Africa, it is drought tolerance, and in West Africa, it is low sugar content.\"The three platforms have different major focuses, but we all come together for a single training with the same tools, \" said Mwanga. \"This way we minimize the duplication of efforts and maximize the use of resources. \"According to Ted Carey, who manages the West Africa breeding platform, in close collaboration with Ghana's Crops Research Institute (CRI), sweetpotato was a seriously neglected crop in that region prior to SASHA. Today, it has a modern breeding program that makes crosses, analyzes progeny using the latest approaches and develops new varieties. \"We have two major objectives: population improvement and participatory variety selection for release, \" said Carey. \"All of our activities are thoroughly collaborative, from the beginning to the release. \"One of CIP's most revolutionary contributions has been the accelerated breeding scheme. Traditionally, it has taken a minimum of eight or more years to develop a new sweetpotato variety, whereas the new technique has resulted in the development of various new varieties by different breeding programs in only four years.African scientists using this accelerated breeding scheme have adopted the moniker \"speedbreeders, \" and their work is resulting in the development and release of more resilient and nutritious sweetpotato varieties than African farmers have ever had access to before. Those varieties will play a vital role in efforts to improve diets and livelihoods across the continent, and to feed a growing population while adapting to a changing climate.\"Our community of practice is quite coherent, and the result is that more varieties are being released and they are being developed much more quickly than in the past, \" Mwanga observed. \"I think that we will accomplish a lot in the coming years. \"In 2014, CIP's scientific productivity increased markedly, with 70 papers published in international scientific journals and a number of manuals for strengthening capacity among scientists and practitioners. CIP's Office of the Deputy Director General of Research and Development highlights the following significant scientific achievements in the past year: ","tokenCount":"3443"} \ No newline at end of file diff --git a/data/part_3/7656320358.json b/data/part_3/7656320358.json new file mode 100644 index 0000000000000000000000000000000000000000..cbaa6a0aab5ee90c38386d5acd8ee4a3bad81c36 --- /dev/null +++ b/data/part_3/7656320358.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"263b2605e8fa3808040d008ef8aa37ef","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/d9d13b96-d728-4266-82e8-648d928f4564/retrieve","id":"2140343081"},"keywords":["LIVES","changing lives LIVES","changing lives"],"sieverID":"cff0a629-c7bc-40a1-a46b-2da6f33ec84d","pagecount":"8","content":"The Livestock and Irrigation Value chain for Ethiopian Smallholders (LIVES) project aims to support the Government of Ethiopia's efforts to transform the smallholder subsistence agricultural sector to a more market-oriented smallholder sector that contributes to the new Growth and Transformation Plan (GTP) of the country. The project is aligned with this government strategy and is implemented jointly by the International Livestock Research Institute (ILRI), the International Water Management Institute (IWMI), the Ministry of Agriculture (MoA) and the Ethiopian Institute of Agricultural Research (EIAR) at Federal, Regional, Zonal and District levels. Launched in January 2013, LIVES works towards achieving its goal by facilitating capacity development of all actors along the value chain; by facilitating knowledge management -creation, storage, sharing and utilization of knowledge; by trying out value chain development technologies, processes and innovations; and by undertaking action research to learn and promote best practices and lessons. In this newsletter, we share our progress in terms of program planning and implementation in the past few months. Among other activities, the project has built a vibrant team to bring its interventions to the ground! Azage Tegegne (PhD), LIVES Project ManagerIn May and June 2013, LIVES regional and zonal teams in the four regions (Amhara, Oromia, SNNP and Tigray) were busy, together with public sector staff, prioritizing and aligning project interventions with the bureaus and agencies at region, zone and district levels. As a result, the regional team identified and aligned action plans and assigned responsibilities to kick off value chain interventions in selected priority areas and commodities. Furthermore, many of the sites have assigned a LIVES focal person to ensure rapport and working procedures for implementation of the planned interventions. The project expects to have 49 such focal persons from the public sector. In all project sites, pilot Kebelles were selected according to mutually agreed upon criteria that included on the ground validation. In addition, space for the LIVES Zonal Coordinators offices and knowledge centers were provided. In all the consultations, the innovative participatory approach and focus of LIVES to contribute to commercialization of livestock and irrigated agriculture value chains was appreciated by the partners. While planning the interventions and action plans for Year 2, the regional and zonal teams also worked on acquiring office space in the regional research institutes and the bureaus of agriculture/livestock agencies. So far, office space was allocated by regional research institutes/centers (such as TARI, SARI, Gonder research center), regional universities (namely Axum university) and bureaus of agriculture (in East Shoa, West Shoa, and Jimma). The allocation of office spaces in partner institutions and organizations will ensure smooth and efficient collaboration and partnership to implement jointly selected interventions.Based on experiences from IPMS, LIVES has encouraged participating project districts and zones to establish knowledge centers. All the zones and districts across the board have shown great interest towards the establishment of these knowledge centers (KCs). For instance, in Oromia, of the 12 rooms required for establishment of the KCs in the three zones and districts, 11 rooms were immediately made available. However, the rooms vary in size and level of maintenance required to make them operational. The responsibility to operationalize the knowledge centers lies upon the project and the organization where it will be established.Establishment of new knowledge centers as well as strengthening of the already existing ones will be handled by the project including purchase of ICT equipment, furniture and publications; while logistical arrangements and management of the centers will be handled by the respective organizations including assigning a center manager, providing suitable rooms and any other logistical requirements.Contributed by LIVES regional team Notewor thy goes into the account of the dairy cooperative. A small amount of milk is also sold to nearby town dwellers at ETB 10/ltr; however the cooperative does not have many customers because it is located outside the town. In Addis Alem town itself, individual farmers sell raw milk for ETB 10/ltr to restaurants and individuals. Perhaps, a possibility for the cooperative to penetrate this market by offering its milk to these town customers at a price somewhere between ETB 8.25 and 10 might be competitive? Such competitive behavior is normal business practice by private sector entrepreneurs who are penetrating lucrative milk sheds, initially developed by cooperatives. So why not reverse this process, by establishing a small milk shop in town and enter into contract arrangements with restaurants? Another piece of business advice would be to explore the ways to increase the supply of milk to the cooperative by enlarging the milk collection area. Presently, most milk is purchased from nearby farmers who deliver the milk, on foot, to the cooperative once a day. Farmers, who live further away, may be \"lured\" into the milk market if transportation could be made available. Since the cost of collecting milk from each individual farmer would be too high as daily supplies are too small, milk needs to be \"bulked\" in collection points. So how can transportation be organized? Should the farmers or the cooperative arrange it -should transport be rented or purchased? Discussions on these options should be held to come to an economically viable option which is not dependent on another gift from a well-meaning donor.We human beings use April 2013 to March 2014 will be a year of many firsts for the LIVES project. Now that most of the staff have been recruited and the activities in capacity development, knowledge management, promotion, value chain development and research have been identified; it's time to get started!The program of work for the year is based on the overall project objectives and strategies and outputs that evolved during the first project year through assessments of existing situations and consultations at district, zonal, regional and national levels. The responsibility to implement agreed upon project activities will be shared between ILRI, IWMI and federal and regional level development and research partners. ","tokenCount":"972"} \ No newline at end of file diff --git a/data/part_3/7680626322.json b/data/part_3/7680626322.json new file mode 100644 index 0000000000000000000000000000000000000000..065dc1fdae686260f0c98949090915e48f33429c --- /dev/null +++ b/data/part_3/7680626322.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"1ad3888f731081b0f99846d34dd55b10","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/fadbb40c-4269-4960-9a7e-0760dfd13038/retrieve","id":"-1028866745"},"keywords":[],"sieverID":"1a5b9597-4391-4e01-8469-bc740e1aa75b","pagecount":"2","content":"Medium to very large scale (water volume independent)The business model shows one opportunity of mixed capital funding of medium-to large-scale wastewater treatment, which often lacks financial viability despite significant economic benefits. Viability Gap Funding (VGF) reduces the upfront capital costs by providing grant funding at the time of financial close. The VGF is the 'gap' between the revenue needed to make a project commercially viable and the revenue likely to be generated by user fees. VGF helps mobilize private sector investment for development projects, while ensuring that the private sector accepts a share in the risks of infrastructure delivery and operation. Recognized by several international financial organizations, VGF provides a significant leverage to the financial assistance of international donors and will allow new projects to materialize.Supported projects are run on a timebound operation agreement, such as the build, operate and transfer (BOT) model, whereby the private sector manages the project. Once operational, the treatment plant can generate revenue from government payments or user fees for wastewater treatment and reuse. Acomprehensive risk management and reassurance scheme has to accompany and guide the partnership to ensure adherence to resource commitment by all parties throughout the duration of the PPP term.The As Samra waste water treatment plant (WWTP) near Amman, Jordan, is the largest in the country, and was purposely designed to support agricultural production in the Jordan Valley, which relies increasingly on treated wastewater for irrigation purposes. Set up as a PPP (25-year BOT contract), the WWTP replaced an older, pond-based treatment system.The upgrade and expansion of the plant initially received financial support from the United States Agency for International Development (USAID), and a VGF by the Millennium Challenge Corporation for the latest construction Market risks: Without reliable calculations of cost recovery and attractive profit margins, public overspending is likely. Also, private sector investors will only buy into the venture if it is financially viable. Technological risks: At the end of the PPP agreement, the public sector is likely to receive state-of-the-art facilities, which, if not prepared, can pose challenges for management takeover. Also, private sector partners must be selected competitively to avoid technology and funding pitfalls.Political and regulatory risks: The model's dependency on reliable funding commitments and risk-sharing entails heightened relevance of political and regulatory stability. Reinsurance guarantees have to be given by stable, legitimate partners that are very likely to remain unchanged throughout the duration of the PPP agreement. Safety, environmental and health risks: The construction of a large-scale wastewater treatment plant will impact the site itself and its immediate surroundings, including ecosystems and communities, and must be accompanied by environmental impact assessments.The business model ranks highest on socio-environmental impact as it takes care of low returns expected from poor households while supporting very high treatment volumes, and reducing environmental pollution and water contamination, with a high reuse potential. However, the model is not easy to replicate due to the challenging set up of contracts between parties and the high transaction costs before operations can begin.phase, in order to reach a capacity of 364,000 cubic meters (m 3 ) of water per day. Under the coordination of the Ministry of Water and Irrigation, the construction was facilitated by a 20-year commercial loan and a comprehensive risk sharing arrangement. The expanded plant was inaugurated in October 2015 and provides Jordan with up to 133 million cubic meters (Mm 3 ) of treated water per year. Today, treated wastewater represents 13% of Jordan's entire renewable water resources, freeing up freshwater for more valuable uses. In addition, the As Samra plant is able to generate up to 95% of its energy needs, and thereby reduce its costs and carbon footprint. ","tokenCount":"607"} \ No newline at end of file diff --git a/data/part_3/7692415241.json b/data/part_3/7692415241.json new file mode 100644 index 0000000000000000000000000000000000000000..5d041a4f9b5852a0970a69b8e43fcf0890b71447 --- /dev/null +++ b/data/part_3/7692415241.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"845962561977f78316337e3102007e95","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/c6dfcf82-c1cd-479a-86fc-288be7fd688c/retrieve","id":"-37075201"},"keywords":[],"sieverID":"7af6d448-3a58-4f34-9a41-46ea574e6eff","pagecount":"33","content":"The genetic potential of wild & exotic germplasm is often unpredictable• ~40% of FDA-approved pharmaceuticals and 80% of traditional therapeutic medicines come directly from plants or have a chemical structure derived from a naturally occurring plant compound.• Gene banks aim to provide \"one stop shopping\" to facilitate informed utilization of crop plant biodiversity.• Making digital sequence information readily available/ query-able is key to achieving this goal.Sequencing of the collections provides a robust scaffold for• organizing, quantifying and comparing accession diversity• integrating diverse domains of data (genotypic, phenotypic, environmental) across levels of biological complexity and across species• applications of machine learning and AI to facilitate exploration of the genetic space (temporally, geographically, ecologically)","tokenCount":"112"} \ No newline at end of file diff --git a/data/part_3/7698457110.json b/data/part_3/7698457110.json new file mode 100644 index 0000000000000000000000000000000000000000..cac1862d35d0deaa25cda9b6bfaa26ae2fd0b531 --- /dev/null +++ b/data/part_3/7698457110.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"05ef8e6a602f1316652eec17f3792b82","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/f6002868-2e77-47c8-b349-46f922e50fd0/retrieve","id":"-1775184623"},"keywords":[],"sieverID":"75774fc6-3237-4d18-aea8-244d078b4f41","pagecount":"12","content":"Links between land tenure and food and nutritional insecurity are receiving increased attention. Nevertheless, urban and periurban dwellers face challenges in accessing land to produce food for subsistence and sale. An ethnographic study and food and nutrition insecurity survey were conducted between October 2013 and November 2014 in Tamale, Northern Region of Ghana, to explore the dynamic and recursive links between land access, food access and the ability to maintain resources to meet long-term needs. Results showed that infrastructural development and agriculture compete for land. The shortage of land for agricultural purposes was pronounced in urban areas (20%) than in periurban areas (1.3%) and rural areas (0%). Food insecure households were more likely to name a lack of land than anything else as the primary reason for their inability to grow crops (Fisher's exact probability = 0.040). Urban and periurban dwellers cope with the constraints posed in the communal tenure system by using strategies such as urban-periurban-rural migrant farming and buffer zone cultivation. The role of women in providing nutritious soups is especially important, and they use various mechanisms to circumvent their lack of access to land and provide food for the household. Political, economic and cultural elements thus interact to constitute the link between land and food.Land is a critical resource to socioeconomic development in the Global South, especially in Sub-Saharan Africa, home to more than 60% of people directly depending on the agricultural sector (Goedde et al., 2019;Feyertag et al., 2021). Coincidentally, millions of people suffering from chronic food insecurity and undernourishment live in sub-Saharan Africa (Shimeles et al., 2018). The high prevalence of hunger in the region is attributed to the underperformance of agriculture, climate change, civil and political instability, and high population growth rate (OECD-FAO, 2016;Shimeles et al., 2018). Reversing the food problems in sub-Saharan Africa does not, however, require shifting investment or policy focus to alternative sectors. Instead, transformations that position agriculture on a growth trajectory are required. Central to the transformation is land use and management which, according to Kamau et al. (2021), is critical for the achievement of sustainable development goals (SDG) of ending poverty (SDG 1), zero hunger (SDG 2), and responsible production and consumption (SDG 12).Land use is the utilization of land resources by populations for diverse purposes, including social and economic functions. Agriculture is an economic and anthropogenic activity that drives changes in land use across regions, directly affecting livelihood, social, and economic outcomes (Ahmed et al., 2016). Much of the recent changes in land use have occurred in sub-Saharan Africa, particularly resulting from rapid population growth and urbanization. High population growth has caused expansion of cultivated land area and agricultural intensification due to increasing food demand (Aleman et al., 2016), while urbanization causes the conversion of agricultural land to commercial, industrial, and residential infrastructure to accommodate populations from rural areas, as well to allow economic diversification of African economies (Magigi and Drescher, 2010;Schoneveld and German, 2014;Kleemann et al., 2017). These changes are responsible for local and regional climate change, soil degradation, and loss of biodiversity which are also linked to food insecurity and malnutrition. This implies that land use is also directly and indirectly linked with SSG 11 (sustainable cities and communities), SDG 13 (climate action), and SDG 15 (reverse land degradation and halt biodiversity loss) (Kamau et al., 2019). Thus, the relationship between land use and social, economic, and environmental impacts is complex and has varying implications across sub-Saharan Africa.Land tenure is an important social and economic concept that refers to the way land rights are distributed or bestowed to individuals or groups of people, legally or customarily. Tenure incorporates the rights of individuals to access, use, manage, make profit or loss, transform, and transfer ownership of land and land resources. Consequently, land tenure security is linked to land use and access, driving farmers' livelihood diversification options and food security outcomes (Keovilignavong and Suhardiman, 2020). The conceptual linkage between land tenure and food security is explained in literature as being intertwined and land use and productivity are central to the relationship (Borras et al., 2015;Holden and Ghebru, 2016). Land degradation, for instance, causes a shortage of productive land and reduces agricultural productivity which is a threat to food security (Utuk and Daniel, 2015). Therefore, land tenure defines how land is used, playing a crucial role in the ability of individuals and groups to improve productivity and food security.However, land tenure is important when it secures and promotes inclusive socio-economic development for the achievement of SDG 5 (gender equality). In sub-Saharan Africa, tenure security for women is held back by social and cultural norms which often undermine their livelihoods. Customary tenure is common in Africa, where land is inherited or held by a clan, making land ownership unequal for women (Nadasen, 2012). Married women are often not recognized as part of the lineage, thereby limiting their access to and use of land (Yaro, 2010). Secure land ownership among women also depends on sociodemographic and economic characteristics, including marital status (married, divorced, or widowed), women's position in households and communities, age, sex, marriage types, education, economic status, and social capital and networks (Nnoko-Mewanu, 2016;Doss and Meinzen-Dick, 2020). Even though policy and legal frameworks have been adopted to address inequalities in land tenure in sub-Saharan Africa, they are insensitive and treat women as a homogenous group with similar challenges (Chigbu et al., 2019). This is not always true given the different circumstances and experiences of women in their pursuit to access land for agricultural purposes.West Africa is a climate hotspot in sub-Saharan Africa, with changes in land use and technology adoption identified as crucial to averting adverse effects of climate and weather variability on agriculture. Although climate change is cited as an important challenge to food security in West Africa (Ahmed et al., 2016), demographic changes have historically contributed to concerns about food production and security. High urbanization in West Africa is complicating the region's potential to meet the current and future food demand of the growing population. Ghana is a relevant example of countries in the sub-region that has registered rapid population growth in the post-independence era (Kleemann et al., 2017). Much of the urbanization in Ghana is happening in the coastal and inland cities of Accra, Kumasi, and Tamale. In 2020, Ghana had the largest share (57%) of the urban population than any other populous country in the sub-region (World Bank, 2022). The high population in urban and rural areas has caused extreme pressure on land, with significant changes in land use. This presents a major concern in Northern Ghana where agriculture is a dominant activity and is affected by erratic rainfall and long dry periods, causing extreme poverty and chronic food insecurity and malnutrition (Kleemann et al., 2017;Nkegbe et al., 2017;WFP, 2021). The threat of food insecurity is compounded by increasing competition for land for agricultural and commercial purposes (Schoneveld and German, 2014).The distinction in regional economic development in Ghana between the Northern and Southern parts is attributed to disparities in national investment and differences in natural resource endowment. The historical background of land planning and tenure could explain the differences in levels of economic development in the two regions. Three broad categories of land tenure or rather ownership exist in Ghana: customary, state, and shared ownership. Customary ownership constitutes about 78% of the total land in the country (Schoneveld and German, 2014). Ghanian land legislation recognizes customary ownership and forbids the sale, but only allows temporary alienation through leasing and can be inherited by individuals, groups, sub-groups, or allocation by the chief. Few usufruct titles are held as individual landholdings, meaning that land ownership and access are via groups or sub-groups (Schoneveld and German, 2014).The chiefs are powerful custodians of land traditions in the north than in the south. Chiefs give land to titleholders, allocate vacant land to users, and arbitrate land disputes. The growing population pressure in the north has therefore created conflicts with chiefs (Schoneveld and German, 2014). In contrast, local institutions in southern Ghana are more experienced in land matters, making land allotment less controversial. In cities, land planning is largely under statutory tenure and, therefore, land management and use are better controlled than in rural areas. However, peri-urban areas are marked by transitions from customary tenure to statutory tenure and the demarcation of the applicable tenure is not clearly defined, leading to tenure issues. The majority of land owned in peri-urban areas, especially land-titled under customary tenure, remains undocumented because the statutory system is considered a colonial heritage (Schoneveld and German, 2014). The confusions about the applicable laws and arising conflicts and contestations have implications on land use and the ability of agriculture and food systems to meet the increasing urban demand for food in Ghana.Like elsewhere in sub-Saharan Africa, there exist unequal land tenure rights in Ghana despite recent land reforms. Sociocultural norms are deep-rooted and continue framing land access rights for individuals and groups. Land tenure is shaped at several levels, including resource allocation systems, social, institutional, and governance (Britwum et al., 2014). The customary entitlement to land arises out of the multiplicity of social relations which strengthens land access and use for others while weakening claims over land for other groups. Social norms define gender roles and power relations which determine the way socially valued resources are accessed and controlled (Britwum et al., 2014). The social norms in Ghana also run deep in institutional and governance structures for land allocation. The end-product is a land tenure that is insensitive to the experiences of heterogeneous groups, especially women, hindering their access and control over land. Women's access to land also varies in Ghana, with women's land rights being less autonomous in the North than in the South. Women in the north own smaller and less productive land parcels, and their land use is limited to growing a narrow range of crops, especially vegetables. Thus, the weak and skewed land rights in Northern Ghana create inequalities that stifle food production and food availability, and accessibility (Nara et al., 2020).Understanding the land tenure-land/use-food security nexus is, therefore, a critical step in informing policy and legal reforms that would create and reinforce the land rights of individuals and groups. Establishing the relationship between land tenure, land use, and food security will expose the complexities of existing tenure systems and the varying realities of men's and women's access to land and food security outcomes in Ghana. Nonetheless, the lived experiences of women are not homogenous for they are affected by varying contexts and individual and group characteristics, which are inadequately covered in the empirical literature. This study investigates how gender and land use varies in Ghana and the implication of land tenure and gender on food security. The study hypothesizes that the complex land tenure systems present challenges to urban and peri-urban women farmers in securing long-term access to land and sustaining their agricultural activities. In testing this hypothesis, the study also posits that traditional gender roles and social norms in Tamale impact women's access to land and resources, contributing to household food and nutrition insecurity. Adaptive land-use strategies can help urban and peri-urban farmers overcome land scarcity challenges created by gender insensitive tenure systems, but have implications on soil fertility, land use, and resource management.The United Nations ratified SDGs in 2015 with a call to people, nations, and organizations to focus on fostering shared and inclusive prosperity for the realization of the seventeen interlinked global goals. The UN progress report years later acknowledged that it would be challenging for the all the SGDs to be achieved by 2030 unless a holistic approach that clarifies the interrelationships between SGDs and considers the complexities involved are actioned (United Nation, 2018). However, it is inconceivable that 17 goals can be achieved simultaneously just like it is nonsensical to focus on delivering the goals separately (Fu et al., 2019). Studies have recognized that the goals are indivisible and used different approaches, including the nexus approach, to explore interactions and causal relationships between SGDs (Gao and Bryan, 2017). Consequently, reviewing literature that accounts for synergies between gender, land tenure, land use, and food security is critical in understanding how causal relationships among the phenomena can influence the achievement of development goals.Land is a scarce productive resource that can be managed to meet the demand for food and other products. However, as a fixed resource, land is constrained by competition, pressure, and path dependencies that may enhance or create trade-offs in the achievement of SDGs (Obersteiner et al., 2016). Policy options that center on the management of land-based resources have an implication on interactions among multiple SDGs such as gender equality, zero hunger, no poverty, climate action, and sustainable production. Studies have acknowledged interactions among these goals and indicated that policy-driven land-use systems can undo inherent constraints to the achievement of the goals and solve sustainable management concerns (Kamau et al., 2021). Women in sub-Saharan Africa are mostly involved in agricultural activities such as cultivation, planting, weeding, and harvesting crops (Ben-Ari, 2014), making them important in land-use changes. Accordingly, Fonjong et al. (2013) observed that women play a crucial role in the execution of land-related decisions and should be at the heart of farming, conservation, and land management and policy matters.Literature has provided mixed results with respect to gender and land use. Nigussie et al. (2017) reported that female-headed households apply less capital-intensive land-use practices such as manure compared to men who tend to use capital-intensive practices like the application of inorganic fertilizer and the use of irrigation. The results contrast earlier findings by Pender and Gebremedhin (2008) who reported that female-headed households applied less manure/compost and contour farming compared to male-headed households. Explainers of the gender difference in land use management practices are cited as differences in physical and human capital endowments (Teklewold et al., 2013).Besides, land tenure has been cited as an important factor affecting land use, but the evidence remains mixed (Asaaga et al., 2020). For instance, several studies in Ghana and elsewhere in sub-Saharan Africa have found that the intensity of investment in land-use practices varies depending on tenancy agreements (Abdulai et al., 2011;Abdulai and Goetz, 2014). Even so, Asaaga et al. (2020) note that land tenure arrangements in Ghana do not solely influence land-use practices but rather other extra-tenurial context-specific factors such as ethnicity and gender. This suggests socially differentiated land users. For instance, the implementation of sustainable land-use practices in Ejura Sekyedumase and Bongo districts of Ghana was lower among vulnerable and marginalized groups such as women and immigrants due to insecure land tenure (Antwi-Agyei et al., 2015). In most communities in the Global South, land-use decisions are mostly biased against women who struggle due to limited access and insecure control over land because of local customs and culture (Fonjong et al., 2013;Meinzen-Dick, 2019).The effects of land-use change and tenure security are socially differentiated resulting in differences in productivity and other downstream impacts such as food security. The conversion of agricultural land for commercial purposes has been rapid over the five decades. Agricultural land-use changes have reduced farmland under food production, resulting in lower yield and food insecurity, especially in communities with weak land tenure rights (Appiah et al., 2019;Bonye et al., 2021). Nara et al. (2021) found that strengthening land rights, especially traditional land rights and tenure, enhanced productive land use, thereby leading to increased food production and food security in Northwest Ghana.The food-security and gender nexus in Ghana is articulated by Fonjong, Gyapong, 2021) who argued that achieving SDG 2 requires gender-inclusive land tenure. Dispossession caused by land-use changes affects women more than men due to women's close relationship with household food provisioning through farming (Fonjong, Gyapong, 2021;Dzanku et al., 2021;Wood et al., 2021). The intersection between gender and food security in Ghana was also reviewed by Wood et al. (2021) who showed that women have been historically disenfranchised by social and institutional organizations which restrict them from accessing labour and capital outside their homes. However, acknowledgement of women's role in Ghana has led to some policy progress that aims to erase factors that restrict women from contributing to food security. Food security, land use, and gender equality nexus and its significance in the achievement of SGDs 1, 2, 5 and landscape management are closely linked and can be achieved through land reforms that are inclusive and sensitive to local needs (Asiama et al., 2021). Therefore, the need to integrate a gender dimension into achieving zero hunger via sustainable land use through secure land tenure is critical.The intersectionality framework provides an overarching theoretical framework for analyzing gender, land use, land tenure, and food security nexus. The framework posits that social categories intersect or interact at an individual level to influence social and economic outcomes (Akimowicz et al., 2022). The intersectionality framework is founded on the belief that interdependencies among social categories result in the marginalization of some groups of people within communities. The framework allows exploration of social and economic structures of people's lives and how local contexts create hierarchies and bestow power within societies and their implications on access to resources and services, as well as the impact on all aspects of living in marginalized communities.The successive development of the intersectionality framework has enabled its application across disciplines, including agriculture. In agriculture and social sciences, the theory is applied to identify marginalized groups and the unique challenges they face in their local contexts, and how the challenges are linked to social organizations (Wood et al., 2021). In the current study, the intersectionality approach provides an accurate picture of the social, economic, and institutional challenges women face in Ghana with respect to land rights, security of land tenure, and land use. The challenges are deeply rooted in customary land tenure systems that perpetuate gender inequalities in land access and use. Formal land access rights are affected by customs which weaken the implementation of inclusive policies. Consequently, unequal land right affects women's investment in sustainable land management practices resulting in a socially differentiated outcome such as food security. For instance, increased competition for land for commercial purposes has changed agricultural land use in the Global South, causing an increase in food insecurity. Therefore, the intersectionality framework helps in framing the gender-land use, land tenure security, and food security in Ghana.A sequential mixed-method approach was used in this study. Although it can be challenging to meet the assumptions of both quantitative and qualitative research methods, the mixed methods approach used strengthened and maximised the advantages of both methodologies. It provided a more meaningful interpretation of farmers' livelihood strategies in the face of urbanisation and changing tenure systems. A survey was carried out between November and December 2013 in and around Tamale (Fig. 1). The survey aimed at understanding the dynamics of food and nutrition insecurity and the role played by urban, periurban and rural agriculture along the urban-rural continuum. This survey involved 240 households randomly selected over seven districts (Fig. 1). Structured questionnaires were used to collect data on crop and livestock production and consumption and the prevalence of household food and nutrition insecurity.Simultaneously, an ethnographic study was carried out from October 2013 to November 2014 in and around Tamale to understand the resource use politics of urban and periurban vegetable farming. During this ethnographic study, 12 households were randomly selected from 240 households surveyed for food and nutrition insecurity and men and women in each household were interviewed on how they access land, grow food and provide livelihood for their families.The food and nutrition insecurity survey was based on a transect approach. The transect approach has been used in previous studies on vegetable production, the use of natural resources and the analysis of vegetation (Alberti, 2008;Kamga et al., 2017). Transects were laid radially, 70 km long and 2 km wide from the Tamale central market (Fig. 1). The working definitions of urban, periurban and rural areas were based on reviewed literature on West Africa (e.g. Adam, 2001, Drescher andIaiquinta 2000). In this study urban areas are defined as those that extend up to 10 km from the city center, periurban 10 -40 km and rural areas 40-70 km. All the houses along the transects were digitised in ArcGIS 10 Geographical Information Systems software using recent imagery. Twenty households were randomly selected per transect using GIS, giving a total of 240 households being selected (20 households' x 3 areas/zones x 4 transects).Twelve households were randomly selected from the 240 households who participated in the food and nutrition survey covering urban and periurban Tamale, six from urban and six from periurban areas, to find out how land tenure systems influence their food and nutritional insecurity. 5 men and 7 women were interviewed with one representative from each household chosen as a key informant, resulting in a sample of 12 participants.A further series of targeted in-depth interviews and informal conversations with key informants was carried out from December 2013 to November 2014, specifically to delve deeper into the link between access to land and food security in urban and periurban Tamale. The current paper uses data from both studies.The food and nutrition insecurity study used the following households' food and nutrition indicators:Household Food Insecurity Access Scale (HFIAS): this is based on responses to 18 questions about behaviours and attitudes related to food insecurity experience over the past four weeks (consisting of 9 occurrence questions and 9 frequency-of-occurrence questions), resulting in households being assigned scores that range from 0 to 27 (Coates et al., 2007). Households were divided into two HFIAS classes, based on the distribution in the sample as recommended by FAO (2011), with a score of ≤ 11 as food secure and a score of > 11 as food insecure (Chagomoka et al., 2018). A higher HFIAS score reflects greater household food insecurity and poorer access to food.Women's Dietary Diversity Score (WDDS): this is a proxy for household nutrition (FAO, 2011). Based on food items consumed in the past 24 h, respondents were assigned the number of food groups they consumed, ranging from 0 to 9. An increase in the number of food groups or WDDS is related to increased nutrient adequacy of the diet. Households were classified into three groups based on the distribution in the sample: ≤ 3 food groups as lowest dietary diversity, 4 -5 food groups as medium dietary diversity and ≥ 6 highest dietary diversity (Chagomoka et al., 2016a).The data collection tools were tested for validity and reliability before the actual data collection exercises. Content validity was used to ensure data collection tools' validity. Two subject matter experts reviewed the questionnaire for relevance and completeness of the content. Cronbach's alpha was used to test the internal consistency of our survey questionnaire. The Cronbach's alpha value for HFIAS was 0.83 and for WDDS was 0.79. These values were considered good measures of reliability of the scales in measuring food security because they were above the acceptable level of 0.70.Data was entered with Epidata version 9, and exported to Stata 11 software for analysis. The Pearson chi-square test was used to test the association between reasons for not growing crops and the geographical location. Fisher's exact chi-square test was used where expected cell frequencies were less than 5 and N < 50. We did the Fisher's chi-square exact test for household nutrition and food insecurity indicators associated with reasons for not growing crops. Interview guides were used in directing discussions with informants. All in-depth interviews and focus group discussions were recorded and transcribed using the F4 transcription tool.In each community, study objectives and purpose were clearly conveyed to community leaders and respondents. Permission was sought before data collection from local leaders and respondents. Respondents had the opportunity to stop participating in the research at any time of their choice during interviews but none opted out during this study.The Dagomba (70%) and Gonja (17%) ethnic groups formed the majority of respondents who took part in the food and nutrition survey which informed the sampling population for further in-depth interviews. Women (39%) and men (61%) participated in the food and nutrition survey (Table 1).The results of the food and nutrition survey revealed that 7.1% of respondents were not producing crops because they did not own any land. Unsurprisingly, land shortages were more pronounced in urban and periurban areas than rural areas (Table 2).Food insecure households were more likely to name a lack of land than anything else as the primary reason for their inability to grow crops (Table 3). Nevertheless, there was no statistically significant association between various reasons for not growing crops and household nutrition security (WDDS) (Table 4).Hypothesis 1. The complex land tenure systems present challenges to urban and peri-urban women farmers in securing long-term access to land and sustaining their agricultural activities.According to Nchanji (2018), the land tenure system in the study region is communal, with some pockets of public land. These public lands host government and public buildings which help provide for the socio-cultural and economic needs of the people. In this communal system, land belongs to communities and families. The chiefs are custodians of community lands in trust for the people while the lineage heads are in charge of their family land. Chiefs have allodial rights 1 over the community land and the farmers have usufruct rights over these same lands, which they can pass on from generation to generation legally. In this system the chief who is the custodian of land for the people is expected to use it on behalf of and in trust for the subjects in accordance with customary law and usage. In this case the chief could lease community land and the proceeds are used for the development of the community. Land used for agricultural purposes in urban and periurban areas can be acquired with a gift token of \"kola\" (kola here varies in form as it can be kola nuts, bread etc.).When this is done, the \"new owner\" has \"user's\" rights on the land. If the indigene needs land for a residential building, the same rule for acquiring agricultural land applies. But an additional monetary token is expected after which the indigene is given an allocation note from the chief stating that the land now belongs to him/her. After this process, the indigene can apply for a land title, which is a long term lease. Prices for 100 m x 100 m of land in periurban areas ranged from 2500 to 5000 new Ghana Cedi in 2014 (1 Ghana Cedi was approximately 0.25 Euro in October 2014), while in the urban areas land prices ranged from 8000 to 15,000 new Ghana Cedi in 2014. These prices have definitely increased as of 2018. Land given out just for \"kola\" can also be leased to prospective buyers prepared to give cash as well as \"kola\", if they intend to use the land for development. Lands leased with an allocation note are generally used for the construction of houses and not for any farming activity, as observed by the authors. Most land owners highlighted in interviews that land where persons who had invested to get an allocation note were secured for posterity and not to be sold, even in a case of extreme food crisis. They argued that land is a symbol of identity and pride to be inherited and never sold.1 Free, not subject to the rights of any lord or superior, owned without obligation of vassalage or fealty E.B. Nchanji et al. fertility, land use, and resource management.This study revealed that most periurban farmers sought ways to secure their agricultural land in the face of uncertainties about long term access within the communal land system. After the harvesting of cereals and tubers the farmer gives about 100 kg of the crop (usually referred to as 'kola') to the chief to maintain ties of trust and loyalty and in so doing secure the use of the land for the next season, similar to land buyers who provide \"kola\" with additional cash when they want to acquire land for residential and commercial purposes. If farmers fail to provide their land owner with some produce or money because they do not have enough produce to feed their household, the land might be taken from them and given to someone else. The chief usually appoints elders whose role is to check that farmers give him a share of their harvest, which he will use for his family's needs. This mechanism mitigates against food security in these communities.In urban Tamale, there are zones where the Town and Country Planning Department (TCPD) authorities prohibit residential construction following a flood that happened in 1989. The ownership of these lands is contested between different factions of the traditional royal family, the Ghana Water Company (GWC) and the Volta River Authority of the Northern Electricity Distribution Company (VRA/NEDco). The government institutions have won ownership of these lands in the court of law but are not using these lands because they have been designated by the Town and Country Planning Department as disaster zones. The chiefs still maintain that these lands were not sold to the government and are \"unofficially\" leasing these plots of lands from these zones to any interested buyer. These lands are the Gumbihini old dam, Gumbihini new dam and the former Gumbihini Volta River Authority site (also known as \"Waterworks\") (Fig. 2).The number of farmers who are using these lands for agricultural purposes has continually increased after the disaster as stated by one of the farmers on this site during an interview. Alongside these conventional mechanisms, farmers are working with non-governmental organisations and some government institutions like the TCPD to stake claims to these zones. They are collaborating with various institutions including the NGO -Urban Agriculture Network (Urbanet) to facilitate infrastructural development in some of the sites. Specifically, water pipes have been installed for vegetable irrigation at the Gumbihini old and new dam sites. Interview data from farmers and court officials revealed a colloquial perception that such infrastructural investment in land strengthens one's claim to it for future use. The main users of these Fisher's exact probability = 0.040 (significant). Fisher's exact probability= 0.102 (insignificant).lands are dry season farmers who produce vegetables including cabbage (Brassica oleracea), lettuce (Lactuca sativa), amaranth (Amaranthus spp), roselle (Hibiscus sabdariffa), jute mallow (Corchurus olitorious) and okra (Abelmoschus esculentus). The buffer zone covers approximately 125,000 m 2 . Besides easing the pressure of land shortages, the use of buffer zones provides a wide range of vegetables to the urban and periurban population.Farmers have also taken up cultivation on other vacant areas of land outside the buffer zone, for example at Choggu cheferuguni, Ganasco dam, Sangani, and Zagyuri amongst other locations, where vegetables like cabbage, cowpea (Vigna unguiculata) lettuce, amaranth, roselle, jute mallow, pepper (Capsicum annuum) and tomatoes (Solanum lycopersicum L) are grown. These open spaces are found on undeveloped public, private and community lands to which the farmers do not have allodial rights but are squatting, renting, borrowing or have usufruct rights. Some of the farmers have borrowed land from its legal owners and are acting as caretakers to secure it from encroachment.Shortage of land in the urban and periurban areas was frequently due to community land being sold for development, which implies that farmers often produce crops on less than half a hectare of land. Also this has pushed some farmers to crop in and around buildings. This practice has led to depleted and poor soils on farmers' fields, lowered yields and contributed to household food shortages. In an attempt to overcome this problem, farmers are using several options. They practice mixed cropping with nitrogen fixing legumes such as cowpea to improve the soil's fertility, and use inorganic fertilisers such as sulphate of ammonia and different blends of compound NPK fertiliser, which, even though relatively expensive, are readily available in the markets. There is also a sizable proportion of farmers using organic manures such as cow dung, chicken manure and sewage as well as compost to improve soil fertility. Apart from boosting the soil farmers also use pesticides in an endeavour to boost production, but due to high levels of illiteracy in the study areas (Table 1), the recommended rates of pesticides are not always applied and some farmers use non-recommended combinations.Hypothesis 3. Traditional gender roles and social norms impact access to land and resources, contributing to household food and nutrition insecurity.From interviews we confirmed that household heads ('landlords') and owners of land were almost always men in the study area. During the main farming season women were usually given a small portion of land on the farm around the edges of their male relatives' field to produce or cultivate vegetables. This plot of land was often less fertile and considered not \"good enough\" for cereals or legumes production, which are the main crops. The vegetables cultivated are usually jute mallow, roselle, pepper and okra. This way of growing vegetables by women and sometimes preserving them for use in the dry season is a strategy for improving household food and nutritional security.Interview results showed that, in order to provide soup for the household while sometimes not having access to enough land, women often work on the farms of their husband or other male kin during harvesting. After harvesting, a certain portion of the crop is given to the female harvesters. In the case of okra, a bowl of okra or more is given to each woman depending on the number of harvesters. In the case of pepper a basin is given to each woman. These vegetables are usually used in the household by the women to prepare soup. In the case of abundant vegetables given after harvesting, women also sell some to get income to buy spices and salt to prepare the soup in their households. In the case of widows, harvesting cereals and legumes are necessary if they are to feed their household as well as sell to supplement household needs. Although women do not own land and sometimes find it difficult to provide the soup, men usually leave some crops during harvesting which women glean and use to provide the soup. After the farm owner harvests, widows and old women can enter any field with their bowls to harvest the left over cereals.Another interesting element related to women's responsibility to provide soup lies in the arrangements of access to two economic trees. These trees are the dawadawa (Parkia biglobosa) and sheanut trees (Vitellaria paradoxa). For women to access these trees they have to go through men, as these trees are on land owned by men. The fruit of the dawadawa and sheanut trees are consumed by the community as a spice for soup, porridge and as oil respectively. The dawadawa tree is owned by the chief/sub chief in that community, so in most cases permission needs to be sought for its harvesting. Women also collect sheanut fruits to eat and sell the seeds to individuals or shea butter extraction production centres. They also use shea butter for cooking and pepper preservation. These trees therefore provide income generating opportunities to the women who sell the fruits and their by-products. .In the study site, we observed a new phenomenon of urban to rural migration. This information came out of discussions with farmers who described their search for agricultural land in rural areas. This move was prompted by the search of land in areas where urbanisation, population pressure and shortage of arable land are not yet perceived to be a problem. They give \"kola\" in exchange for agricultural land where they farm. After harvesting they bring their harvest back to the periurban and urban areas for consumption and sale.Urban farmers, due to land shortage, are also moving their production activities to irrigation sites, where they rent plots of land and pay water charges to grow their vegetables and staple crops for home consumption and income generation. There is an influx of urban farmers from Kumbungu and Tamale in Ghana's Northern region, and even from Bawku in the Upper East region, to irrigation sites such as Bontanga and Golinga, This usually occurs during the dry season, when okra, onion (Allium cepa), green pepper and rice (Oryza sativa) are grown to target the early market, including the festive periods of christmas and new year holidays. Onions are produced in large quantities and are sold in Tamale, Kumasi and Accra amongst others destinations.This study reveals that chiefs' manipulation of the customary land tenure system in Northern Region of Ghana is one mechanism whereby agricultural land is lost to residential construction. The manipulation of customary land tenure system by chiefs and the hybrodization of land tenure systems are not only a manifestation of inefficiencies (Nchanji et al., 2017;Nchanji, Bellwood-Howard, 2018), but also its broader implication for food security. These occurrences could be attributed to urban planning policies that encourage rezoning of public land to private developers and residential areas, shrinking available land for agricultural activities and leading to food insecurity. The hybrid planning practices in urban and peri-urban overseen chiefs and local authorities propagate tenure insecurity and encourage land speculation and conversion of agricultural land for commercial purposes (Akaateba et al., 2021), thereby undermining the realization of sustainable cities and communities (SDG 11). The exacerbation of tenure insecurity for peri-urban and urban areas also renders residents landless without alternative sources of livelihood and secure food sources. This relates to findings by Afriyie et al. (2020) who found that spatial expansion of Greater Kumasi reduced the availability of arable land for urban and peri-urban agriculture, denying farmers access to land to meet their basic needs worsening their economic conditions.Comparison to other urban and peri-urban areas in Ghana reveals almost similar across various the country. Although distinct patterns may be influenced by regional-specific factors such as economic conditions, cultural norms and population density are the popular drivers of land use changes in major urban areas in the country. For instance, like in Tamale, the majority of customary lands in Accra and Cape Coast have been leased to private individuals due to rapid urbanization and increased demand for land. The land tenure system in these cities are characterized by improper documentation of land transactions and boundaries, encroachment on public lands, multiple sale of lands, and intractable land disputes (Water Aid, 2009).However, in Tamale, land users do not engage in land markets and doWomen negotiating land tenure security.Nina (name has been changed for ethical reasons), is a widow in a periurban village called Jimle. She lives with her aged mother and children and borrowed land from her brother. Nina complains that this land is infertile. She would like to borrow more productive land from elderly men who have larger surface areas of lands and cannot afford to cultivate them due to high input costs. However, she has been unsuccessful in negotiating access to such lands. She exercises her resource gathering rights by collecting sheanut and dawadawa fruits from communal holdings. She processes these into oil and spice, used for domestic consumption and also as a source of income. Nina also got permission from her brother to fell neem trees found on his land, which she sells as firewood to sustain her family. She considers that non-family members are kinder to women with no land than family members. Nina argues that borrowed land is secure if the borrower maintains a good relationship with the owner. This involves giving some crops, gifts or other basic commodities like salt to the owner after every harvest. Maintaining a good personal relationship is a starting point for negotiating security of tenure for women.Improving value chains.In urban Tamale, around Gumani, securing land for agricultural activities is difficult, as Ashaitu (name has been changed for ethical reasons) notes. Her husband has no piece of land and his former land holdings have been sold by the chief to estate developers for residential purposes. Ashaitu is the sole provider of food for her household. She has multiple activities she engages in to feed her family. Ashaitu harvests on the farms of her friends and kin, and is paid with the crop she harvests. She does not have the luxury of choosing the type of crops she can harvest, so she harvests any crop she is called upon to assist. Ashaitu prefers to harvest rice, cereals, groundnuts and vegetables. She consumes all the vegetables either fresh or in dried form and she processes the rice she harvests and sells it to generate more income. Ashaitu says land ownership is important but not sufficient, as you need other technical farm inputs to be able to get a good yield from the farm to feed the family.not benefit financially from economic transactions involving their lands (Ubink, 2007), being limited to giving 'kola' to secure their access to it. This non fungibility of land and cash from the users' point of view contributed towards the study respondents' noncommercial conceptualisation of land. Similar strategies were observed by Townsend (1995) in India, where households who did not sell their capital assets instead depleted their cash reserves and adjusted their eating habits. Corbett (1988) and Debessa et al. (2022), also revealed that households did not sell capital assets but instead reduced their food consumption or adopted food coping strategies which would not hinder their household income generation in the long term. Chagomoka et al. (2016b) reported diverfy food coping strategies used by households in West African cities. However, despite the threat to their ability to access land, farmers in Tamale were using ingenious methods to access interstitial urban and periurban spaces and thus continue cultivation. In addition to counteracting land sales by chiefs with 'kola', they cultivate on the buffer zones and other unoccupied urban land (Nchanji et al., 2017). The movement of urban farmers to periurban spaces, including irrigation sites, can also be seen as part of this strategy. All these farmers are exploiting loopholes and gaps in existing tenure arrangements to gain access to the crucial resource, land in order to feed their families.The urban to rural migration we encountered contrasts with the longstanding phenomenon of rural-urban migration by farmers offering labour for wages. This changing strategy has also been noted by Yaro (2010), who describes a case where farmers migrated to Gbanyamni, a periurban town 10 km from Malshegu, Tamale, and had to further move due to land commodification some years later to a rural area in search of land to farm. In Burkina Faso the Groupe de Recherche et d′Action sur le Foncier (2011) discovered that migration patterns towards the rural areas for land were due to poor soils in urban and peri-urban areas, and pastoralists' increasing cultivation of fodder crops as part of their livelihood strategy.Furthermore, the findings of the study challenge the long-standing traditional hypothesis that secure tenure incentivizes agricultural investment. Classically, secure tenure is hypothesised to incentivise intensive agricultural investment (Fatton, 1997). According to this perspective, farmers will be more willing to invest for three reasons. They will be keen to enjoy the returns of long term improvement and conservation measures: the 'assurance effect' (Braselle et al., 2002). Returns on investment made can easily be recuperated, which is the 'realisation effect', and farming productivity increases through improvements in allocative efficiency. Yet Bruce (1988) questioned the direction of causality between tenure and investment, arguing that tenure security may not cause investment to increase but rather investment may stimulate land security. The study found that farmers' investments in soil fertility were found to be more influenced by socio-economic status than by land security, suggesting that the relationship between tenure and investment may be more complex than previously assumed. This observation is reinforced by a study in Ghana showed that tenure security had a very positive impact on investment in the Anloga area, but a less noticeable impact in Wassa-Amenfi and no influence in Ejura (Migot-Adholla et al., 1994). Besley (1995aBesley ( , 1995b) ) used the same data to assess the sensitivity of the results to the estimation methodology used, and reached the conclusions that better land rights facilitated investment in Wassa but not in Anloga. In Tamale, interviews with the farmers revealed that as much as access to land influences food and nutritional security, the effects of poverty are also significant. Investments in soil fertility of land are more influenced by the farmer's socio-economic status and are not directly influenced by the security of access to the land (Nchanji et al., 2017). In fact, influences on soil fertility management are diverse and interact with household roles and responsibilities. Organic manures such as faecal sludge are being used by farmers in Tamale to improve their soil fertility and increase yields to be able to feed their families (Gyasi et al., 2014). In Burkina Faso, when women plant legumes to fix nitrogen in the soil, men sometimes took over the improved soil the next year to plant their cereals (Jones-Casey, 2014). Like the majority of West African farmers in the increasingly common situation of land scarcity, those in Tamale implement diverse soil fertility management strategies to maintain high yields.The majority of crops grown on these urban farmlands are vegetables, which are good sources of micronutrients and help households to generate income (Chagomoka et al., 2014). Urban agricultural activity does contribute to improved household food and nutritional security (Chagomoka et al., 2018). However, the use of these interstitial spaces for agriculture does have its drawbacks for the consuming urban populace. Pesticide misuse and the occasional use of waste water for irrigation (Kamga et al., 2013, Nchanji et al., 2017) mean that intensive urban and periurban farming has possible health and food safety risks, which occur partly as a result of farmers' intensive use of chemical inputs on their small spaces of land in the urban zone.The role of women in maintaining household food security is crucial. Our data revealed that women have used different food security strategies to reconcile their lack of access to land (Nchanji and Bellwood-Howard, 2016). Thus, in a situation where land is becoming scarcer in general, these strategies, involving gleaning and cultivating on field edges and small plots, come to the fore. Women's cultivation of soup vegetables is not exclusive to the Northern Region of Ghana: in Kenya and Burkina Faso women also cultivate crops perceived as less valuable (Jones-Casey, 2014). Mechanisms have also developed that allow women access to natural resources on land owned by men, concomitant with their role as gatherers (Doss et al., 2014). Their use of fruits and seed for food and as a source of income mirrors their use of other natural resources such as firewood and water. Yet they do not gain ownership over any of these resources. Inter-gender, class and status power relations are especially evident in the case of the dawadawa tree, important to women's livelihood strategies but considered to belong to the traditional authorities (Mahama, 2009). The activities employed by women to guarantee food security, such as harvesting from male kin, relying on economic trees and cultivating borrowed land, are set to continue and even to gain importance in the future (Nchanji andBellwood-Howard, 2016a, 2016b) as more of the urban population loses access to agricultural land.Although the study underpins the intersection of gender, land insecurity, and food insecurity in Tamale and more broadly in Northern Ghana, the findings lso reveals intricate web of socio-economic and cultural dynamics that can influence food security outcomes. This finding may also resonate to other regions in the country and beyond. In addition, the study reveals that land tenure systems in the Tamale, customary or statute, places women in a precarious position which has an implication on types of policies that can be instituted to address the issue. However, despite women facing hurdles in access to and use of land, they play a crucial role in maintaining household food security. Therefore, the study provides a step towards the understanding of policies that can integrate gender-sensitive strategies and recognition of women roles in food security in provision of solutions to their relative lack of land access.Furthermore, study reveals local farmers' resilience and adaptability to land tenure issues in Northern Ghana. Despite facing land use obstacles, farmers find innovative strategies to use urban and periurban spaces for food production. However, the strategies pursued by farmers are a further revelation of larger structural issues related to land commodification, urbanisation, and the changing dynamics of land tenure systems in Northern regions and the entire country to some extent. This has a crucial implication on urban and periurban agriculture policies and land reform, as well as food security. Therefore, although the study is contextually grounded in Nothern Ghana, the insights it provides are valuable in understanding gender, land, and food security nexus in Ghana and similar contexts across the world, especially with respect to dialogues on sustainable cities.The study concludes that the communal nature of the land system in Northern Region of Ghana interacts with agricultural and food provisioning activities and consequently affects household food and nutritional security. Growing crops entails not just access to land but also access to other bundles of power associated with financial institutions, inputs and health. Due to the complexity of land access mechanisms in urban and periurban areas, and the commodification of urban land, farmers are adapting various strategies to provide food for their households. These strategies are embedded in social relations and interactions with family and external actors to gain access to buffer zones, irrigation sites, periurban and rural sites.In the midst of this complex interaction between land tenure and food and nutritional security are women. They do not usually own land, but are expected to provide soup for the household. To cope with this dilemma, they are found working as harvesters so as to have crops like okra and pepper to provide soup for their household. Simultaneously, they seek permission from men to harvest from trees of economic importance such as the dawadawa and sheanut. These food provisioning strategies of the landless may continue in a situation of increasingly difficult access to land and have implications at landscape scale, for example for the conservation of trees.Land tenure and food and nutritional insecurity are thus embedded in the socio-economic and political environment of urban and periurban farming households. Therefore, understanding the urban and periurban farmers' context can help to grasp the recursive links between access to land, access to food and the ability to maintain sufficient resources to meet long term needs. Thus, from a policy perspective, understanding and ability to manipulate the flexibility of the communal land system through encouragement of integration of vegetable cultivation and other urban and periurban agricultural activities into the socio-political milieu will go a long way towards improving household food and nutrition security. At the same time, new forms of institutional organisation, particularly in irrigation projects, are opening up alternative modes of access to land for women. These, and other government schemes, should be encouraged to enhance women's access to resources needed to boost household income and food security.The findings that customary land tenure system and land commodification have implications on secure tenure for agricultural investments, food security, and inclusive cities and sustainable development should be used to inform both national and local policy decisions. Local and national policies decisions could range from stricter regulations on land conveyancing and adjudication the development of more equitable land tenure systems that consider the needs of local farmers, especially women and immigrants. The findings also provides an entry point for policy that balances urbanization and preservation of agricultural lands for food security and sustainability of urban livelihoods.Furthermore, the study findings highlight the critical role played by women in securing and maintaining household food security. Understanding of strategies used by women to navigate land access and use constraints reveal need for developing gender-sensitive agricultural interventions. Such interventions could encompass promoting and securing women's access to land. The program could also entail creating opportunities for women in urban and peri-urban agriculture to engage more in profitable and sustainable farming practices by providing training and resources. Such programs could also form entry points for addressing urban farming challenges, such as potential health risks associated with use of waste water for irrigation and misuse of pesticides. Training and educational programs in sustainable farming practice could ensure adherence to health and safety standards in urban farming. Considering that the urban farming households are often poor and marginalized, implementation of sustainable social safety nets that consider the complexities in accessing and using land and gender issues is recommended. For instance, agricultural support programs that increase access to agricultural training, resources, and credit will not only ensure improve women's ability to make efficient use of scarce land but also critical in addressing food security in a sustainable way.The study also acknowledges and provides a firm foundation for future researchers. For instance, future research should explore the socio-economic factors influencing investments in soil fertility and use of sustainable farming practices in urban agriculture, with consideration of both ingenious and modern farming methods. The limitation of the study is its narrow focus on the northern region of Ghana, and therefore may not fully reflect land use and food security dynamics across the entire country due to uniqueness of land tenure systems in each region. However, the issues and trends uncovered by this study are relevant to other countries in West Africa, sub-Saharan Africa, and other developing regions of the world that are experiencing similar dynamics of urbanization, changing land use patterns, and food security challenges. Therefore, the study provides global lessons that can be used by developing countries in responding to these issues. Another limitation relates to limited focus on effect of gender dynamics surrounding land use and agriculture and the effect of specific cultural practices on what was observed by study. Thus, further research would be critical in feeling these gaps.","tokenCount":"8939"} \ No newline at end of file diff --git a/data/part_3/7702666203.json b/data/part_3/7702666203.json new file mode 100644 index 0000000000000000000000000000000000000000..579bbcd6f786f9a162f1914c1d825daa096b86a5 --- /dev/null +++ b/data/part_3/7702666203.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"485d959eb0450481bef3bc22ec0a39c0","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/b409f5d0-9103-4597-ab0a-ca657a6b6109/retrieve","id":"2119961696"},"keywords":[],"sieverID":"fbd4a1de-a219-4b36-a599-2ddc73294979","pagecount":"2","content":"Estudios del comportamiento fisiológico de la semilla de granadilla (Passiflora ligularis Juss.) para la conservación ex situ 1,2 Paula Posada*, 1,2 John Ocampo, 2 Luis Guillermo Santos ¹Departamento de ciencias Biológicas, Facultad de ciencias Agropecuarias, Universidad Nacional de colombia Sede Palmira (Grupo de investigaciones GIRFIN), AA. 237, Palmira, Valle del cauca, colombia. 2 centro Internacional de Agricultura Tropical -CIAT (Programa de Recursos Genéticos) Autor para correspondencia: paposadaq@unal.edu.coPalabras clave: Passiflora, semillas, germinación, conservación.El genotipo de una especie vegetal comprende una diversidad genética per se que posee un valor para el presente o el futuro, y constituye un patrimonio de la humanidad de valor incalculable, por tanto, su pérdida es un proceso irreversible que supone una grave amenaza para la estabilidad de los ecosistemas, el desarrollo agrícola y la seguridad alimentaria. La conservación de los recursos genéticos de los frutales andinos ha sido poco implementada y en especial la ex situ, ya que permite mantener una gran representatividad de la variabilidad presente en cada taxa (Ocampo, 2007). La granadilla es la segunda especie en importancia económica del género Passiflora L., por su consumo en fresco en los mercados nacionales e internacionales. A pesar de esto, no hay información disponible que permita a los productores preservar la semilla de los mejores genotipos de cada cosecha sin deteriorar su calidad. El objetivo de este estudio es determinar el comportamiento fisiológico de la semilla frente al almacenamiento, y proponer estrategias para la conservación ex situ.En la primera etapa, las semillas frescas secadas en cámaras con flujo continuo de aire disminuyeron su humedad entre 10% y 12% en veinte horas con un porcentaje de germinación de 80%. En la segunda etapa, la humedad de las semillas disminuyó hasta 6% en 105 horas, presentando un porcentaje de germinación de 91%. Por otro lado, las semillas conservadas a -20°c mostraron una variabilidad en el porcentaje de germinación, con 85% (1 mes), 92% (tres meses) y 95% (seis meses). El análisis de varianza (Anova) indicó que existen diferencias significativas (P < 0.05) entre los tratamientos T1, T2 y T3, pero no entre T2, T4 y T5 (Figura 1). El porcentaje de germinación de la semilla con una humedad de 12% fue el más bajo (80%), lo cual indica que el contenido de humedad al 6% favorece la germinación. Así mismo, un periodo de conservación durante seis meses puede romper la dormancia, ya que la germinación aumenta hasta 10%, en relación con los demás tratamientos. No obstante, investigaciones de Hong y Ellis (1996) indican que el frío es un modo indicado para romper la dormancia en las semillas provenientes de los trópicos, ya que activa la hormona de crecimiento AG 3 (ácido giberélico). Lo anterior sugiere que la semilla de la granadilla presenta un comportamiento ortodoxo frente al almacenamiento, ya que soportan la disminución de humedad y temperatura para su conservación. • El seguimiento del protocolo de Hong y Ellis permitió determinar el comportamiento fisiológico de la semilla de la granadilla como de tipo ortodoxo. • Las mejores condiciones para conservar la semilla de granadilla son en bolsas herméticas de aluminio a -20°c con una humedad de 6%. • Las semillas preservadas al ambiente durante treinta días pueden alcanzar entre 10% al 12% de humedad y conservadas en nevera (46°c) durante seis meses, la germinación (85%) y el vigor no se ven afectados. Esto permite a los agricultores conservar las semillas de los mejores genotipos de cada cosecha sin perder sus cualidades agronómicas. • Estos resultados contribuyen en el manejo y la conservación de los recursos genéticos de los frutales neotropicales. Así mismo, en los procesos de selección y mejoramiento genético de la granadilla.Los autores expresan sus agradecimientos al ministerio de Agricultura y Desarrollo Rural de colombia (MADR) y al Centro Internacional de Agricultura Tropical -CIAT (Programa de Recursos Genéticos) por el financiamiento y la logística en el desarrollo de esta investigación.","tokenCount":"642"} \ No newline at end of file diff --git a/data/part_3/7713653536.json b/data/part_3/7713653536.json new file mode 100644 index 0000000000000000000000000000000000000000..a30a4730aff14db383c3aef725f2c3961b8af576 --- /dev/null +++ b/data/part_3/7713653536.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"02a15fd8ab306538a5f6f74bf6d9964c","source":"gardian_index","url":"http://ciat-library.ciat.cgiar.org/Articulos_Ciat/Digital/HF5415.2R5C.2_An%C3%A1lisis_socio-empresarial_de_usos_y_opciones_de_mercado_para_productores_de_ca%C3%B1a.pdf","id":"-1105524431"},"keywords":[],"sieverID":"65b95996-8164-4722-9dac-b998eb99861c","pagecount":"82","content":"Cuadro 1. Colombia, principales cultivos permanentes total nacional. Cuadro 2. Rangos de los parámetros financieros Cuadro 3. Perfil ideal para un microempresario rural Cuadro 4. Cuadro de inversiones Cuadro 5. Valor de la inversión y su puntaje Cuadro 6. Bloque A de opciones Cuadro 7 . Bloque B de opciones Cuadro 8. Bloque C de opciones Cuadro 9. Escala de acercamiento al perfil ideal pág. 1997 VII LISTA DE ANEXOS pág. Anexo 1. Ayudas memorias de los modelos financieros Anexo 2. Ayuda memoria \"Cultivo de caña panelera en barreras vivas actual\" Anexo 3. Ayuda memoria \"Trapiche de tecnología tradicional\" Anexo 4. Ayuda memoria \"Trapiche de tecnología ajustada\" Anexo 5. Ayuda memoria \"Trapiche de tecnología mejorada comunitario\" Anexo 6 . Ayuda memoria \"Trapiche de tecnología mejorada privado\" Anexo 7. Ayuda memoria \"Estufa CIPAV (12% de U.c.!)\" Anexo 8. Ayuda memoria \"Ganado lechero (razas cruzadas)\" Anexo 9. Modelo financiero: Cultivo de caña panelera en barreras vivas actual Anexo 10. Modelo financiero: Trapiche de tecnología tradicional Anexo 11. Modelo financiero: Trapiche de tecnología ajustada. Anexo 12. Modelo financiero: Trapiche de tecnología mejorada (comunitario) Anexo 13. Modelo financiero: Trapiche de tecnología mejorada (privado) Anexo 14. Modelo financiero: Estufa C!PAV (12% de U.C.I) Anexo 15. Modelo financiero: Ganado lechero (razas cruzadas) Anexo 16. MOdelo financiero: Cultivo de caña panelera en barreras vivas modificado. Anexo 17. Modelo financiero: Estufa CIPAV (30% de U.C.I) Anexo 18 . Modelo financiero: Ganado lechero (razas criollas) Anexo 19. Matriz de parámetros financieros Anexo 20. Colaboradores del proyecto Vtll 1. RESUMEN EJECUTIVOFigura 22. Variación de puntos de la TFR frente a cambios de mas y menos 20% de cada variable para el cultivo de caña en barreras vivas actual. 50Figura 23. Variación de puntos de la TFR frente a cambios de mas y menos 20% de cada variable para un trapiche tradicional Figura 24. Variación de puntos de la TFR frente a cambios de mas y menos 20% de cada variable para un trapiche ajustado Figura 25. Variación de puntos de la TFR frente a cambios de mas y menos 20% de cada variable para un trapiche mejorado comunitario Figura 26. Variación de puntos de la TFR frente a cambios de mas y menos 20% de cada variable para un trapiche mejorado privado 54Figura 27 . Variación de puntos de la TFR frente a cambios de mas y menos 20%de cada variable para una estufa CIPAV (12% de U.C.I).Figura 27. Variación de puntos de la TFR frente a cambios de mas y menos 20% de cada variable para ganado lechero (r. cruzadas)Para fomentar la adopción de la caña panelera como barrera viva, es importante dar a conocer otras alternativas de uso y procesamiento que generen al agricultor la posibilidad de mejorar la utilidad económica . Esto se logra mediante el análisis comparativo de estas opciones por medio del desarrollo de modelos de rentabilidad.Las alternati vas a comparar corresponden a: i) el cultivo de caña panelera en barreras vivas actual ii) el cultivo de caña panelera en barreras vivas actual y venta de caña a los trapiches mejorados (modificado) iii) la estufa comunitaria para producción de mieles, utilizando aceite quemado como combustible (diseño CIPAV con diferentes utilizaciones de la capaCidad), iv) proyectos de ganado lechero (razas cruzadas y criollas de la región) y v) la producción de panela en diferentes tecnologías de trapiches paneleros.Analizar diferentes usos y opciones de mercado, para apoyar la toma de decisiones de los productores que siembran caña panel era como barrera viva en el norte del departamento del Cauca.A pesar que el cultivo de barreras vivas, como técnica de conservación de suelos ofrece múltiples ventajas a los agricultores y que ha sido promovido por parte de algunas instituciones (caso de Caldono); el proceso de adopción de esta técnica ha sido lento.La enseñanza de otras alternativas para el uso de la caña panelera sembrada como barrera viva, surge como estrategia para aumentar la adopción de este cultivo. Esto se logra después de analizar y enseñar al agricultor las diversas alternativas que existen para el procesamiento y el manejo comercial de la caña panelera. El estudio de dichas opciones, además de posibilitar el incremento de los ingresos, constituye una herramienta que busca facilitar la toma de decisiones de los productores, para mejorar su calidad de vida y apoyar la conservación del suelo.Para la realización de la investigación, inicialmente se definieron las opciones de mercado a evaluar, luego se identificó y recolectó la información necesaria para la elaboración de los modelos financieros. La información fue suministrada por productores y procesadores de caña panelera, ubicados en el Municipio de Caldono, Santander de QUilichao y El Dovio. También se encontró información en instituciones como CETEC, CORPOTUNIA, FlDAR, CIPAV y CIAT.El siguiente paso fue la elaboración de los modelos financieros, después de definir los paquetes tecnológicos de cada opción y de estimar las productividades. Los modelos financieros se realizaron en hoja de cálculo eXCel y están compuestos por celdas que encadenan toda la información de una hoja a otra.Posteriormente, para cada opción se compararon los parámetros financieros como: la TFR, el Valor Presente Neto (VPN), el margen bruto, el margen neto y la mano de obra. Después se realizo el análisis de sensibilidad de la Tasa Financiera de Retorno (TFR), que se hizo utilizando como base los modelos financieros. El objetivo de este ejercicio es conocer que variables tienen mayor incidencia en los parámetros financieros y se realizó; al suponer un valor del 10% y 20% por encima y por debajo del valor real de las variables. Finalmente se compararon los factores financieros y no financieros como: el capital humano, aspectos de mercadeo, financieros, tecnológicos, ambientales, materia prima y organizativos El último paso fue la elaboración de las conclusiones y recomendaciones y el taller de retroalimentación a los agricultores de la región, que se realizó el 2 de noviembre en las instalaciones del Colegio Guillermo León Valencia en Pescador, Municipio de Caldono, al cual asistieron 40 agricultores de la zona y representantes de los proyectos IPRA, Manejo de Tierras, Unidad de Suelos y Agroempresas Rurales del CIAT. Después de la socialización se realizó una sección de práctica en la finca demostrativa El Sol, ubicada en Pescador, dónde se enseño a los agricultores un ejemplo de finca sostenible y se resaltó la importancia del uso de las barreras vivas.• En todos los modelos, el precio de venta del producto final es el factor que más incide en la sensibilidad de la TFR.• La variación de la TFR con el precio de venta del producto final es muy fuerte en los modelos de trapiche mejorado privado y trapiche tradicional. Es menos fuerte en la estufa CIPAV y el ganado lechero.• El esquema utilizado actualmente por los agricultores en la venta y comercialización de la caña panelera sembrada en barreras vivas del Municipio de Caldono, no es rentable. Esta afirmación es valida teniendo en cuenta que en el modelo financiero, no se ha incluido las ventajas económicas y de sostenibilidad a largo plazo, de un productor que implementa barreras vivas en su finca ; sino so lamente se incluye el efecto a corto plazo por la venta de la caña (ingresos inmedi atos).• Los agricultores pueden seguir cultivando y vendiendo la caña panelera en barreras vivas, pero deben asociarse y vender su producción a los trapiches de tecnología mejorada de la zona .• Con la opción de vender la caña a trapiches de tecnología mejorada, el agricultor continua perdiendo el bagazo .• La opción de la estufa comunitaria CIPAV utilizando el 30% de la capacidad instalada es atracti va. Sin embargo, presenta dificultades a nivel del mercadeo ya que la miel es un producto nuevo que requiere inversiones en promoción .• El uso de aceite quemado como combustible en la estufa CIPAV disminuye los costos de producción y el productor puede dar otros usos al bagazo de la caña ; sin embargo, aún no se tienen datos sobre el nivel de contaminación que genera.• La opción del trapiche de tecnología mejorada es interesante desde el punto de vista financiero y de mercadeo, pero se considera que el valor de la inversión y el abastecimiento de la caña requerido, se sale de las manos de lo que puede ofrecer un grupo de productores rurales.• El proyecto de ganado lechero de razas cruzadas se considera una opción interesante como alternativa para el uso de la caña. Para llevar a cabo este modelo hay que introducir razas mejoradas que no están adaptadas a la zona y se requiere de una inversión considerable.• Para un grupo de productores, invertir en alimentado con caña en barreras vivas no tienen baja capacidad de producción de adaptadas a la zona y se requiere de una cruzadas.ganado de raza criolla o nativa es rentable, ya que estas razas leche ; sin embargo son razas inversión más baja que las razas• Se debe fomentar a los productores, a aumentar el área de caña panelera sembrada en barreras vivas.• Se recomienda a los productores de barreras vivas que se asocien o se agremien para poder fortalecerse entre sí.• Para las instituciones que han apoyado el cultivo de caña panelera en barreras vivas, sería conveniente reconocer que el nivel de adopción de estas técnicas de conservación de suelos, está ligado con 105 ingresos que pueda generar a corto plazo al productor.• Para facilitar que se lleven a cabo las alternativas planteadas y que sean sostenibles a largo plazo, es importante ofrecer una promoción y apoyo a nivel de creación y fortalecimiento de agroempresas a los productores rurales.• Este trabajo se debe tomar como punto de partida paral. a selección de la alternativa más atractiva del portafolio de opciones, teniendo en cuenta la participación activa de los agricultores.• Es recomendable continuar con 105 talleres de retroalimentación a los pequeños productores rurales y realizar planes de acción entre el proyecto de Agroempresas Rurales y la Unidad de Suelos del CIAT para que se lleven a cabo las recomendaciones planteadas.• Realizar acciones colectivas con las instituciones que dan a los trapiches paneleros de tecnología tradicional, la oportunidad de realizar mejoras tecnológicas, y así mejorar el precio de la caña panelera en la zona.• Realizar estudios sobre los niveles de contaminación que presenta el uso del aceite quemado como combustible, en una estufa CIPAV, tanto para la atmósfera, como en los alimentos que ahí se preparen.• Es conveniente que se estudien otras alternativas para el uso de la caña en alimentación animal, con otras especies diferentes al ganado, pueden ser: especies porcinas y menores.Las barreras vivas son hileras de plantas perennes y de crecimiento denso, sembradas perpendicularmente a la pendiente (curvas a nivel). Las plantas se siembran una a la otra para formar una barrera continua que minimiza el poder erosivo del suelo. La función de las barreras vivas es la de controlar la escorrentía, al aminorar la velocidad y esparcir el flujo de agua. Así, ayudan a conservar la fertilidad de los suelos. Entre las ventajas que ofrece implementar esta práctica se tienen: a) requiere baja cantidad de mano de obra en la instalación, b) ocupan poco espacio, c) facilidad de trazo. Algunos ejemplos de barreras vivas son: el pasto de corte, el sorgo y la caña panelera.\"En el Municipio de Caldono, los agricultores no cuentan con la opción de cultivar en los valles de los ríos en las tierras bajas, que antes eran fértiles y productivas, lo que ha generado que se vean forzados a cultivar las tierras marginales más frágiles, esto trae como consecuencia el progresivo deterioro del suelo, que se encuentra en un avanzado estado de degradación en las pendientes más inclinadas\"'. Por tal razón algunas instituciones locales como el Centro Internacional de Agricultura Tropical (CIAT), el Consorcio Interinstitucional para la Agricultura Sostenible en Laderas '(CIPASLA) y la Fundación para la Investigación y el Desarrollo de la Agroindustria Rural (FIDAR), han promovido en la Subcuenca del río Cabuyal, el uso de instrumentos de conservación de suelos, tales como las barreras vivas.\"La especie preferida por los agricultores del Municipio de Caldono para establecer en barreras vivas es la caña panelera (Sacharum offícínarum), porque es la que más beneficios les ofrece como: alimentación familiar, alimentación para los animales, control de la erosión,,2. La utilidad económica para los agricultores que siembran caña en barreras vivas se ve afectada de manera negativa por el tipo de arreglo comercial que se ha dado tradicionalmente entre los productores y trapiches panel eros de la zona. Este esquema consiste, en que el productor debe transportar la caña al trapiche (lo cual representa un gran volumen de biomasa) y entregar el bagazo, así como la mitad de la producción de panela; como pago por el procesamiento de la caña en el trapiche] La FAO registra a la panela \"como azúcar no centrifugado\". La panela es un bloque de color opaco o café que también se presenta como panela granulada, obtenida del jugo de la caña panelera solidificado que se utiliza para preparar bebidas calientes y Frías, en reposterías y pastelerías.Colombia es el tercer país productor de panela en el mundo y el primero en consumo por habitante (Centro de Investigaciones para el Mejoramiento de la Agroindustria Panelera (CIMPA), 1992), por esto, su producción es una de las principales actividades agrícolas de la economía nacional, entre otras razones, por su participación en el Producto Interno Bruto (PIB), la superficie dedicada al cultivo de la caña panelera (Véase cuadro 1), la generación de empleo rural y la importancia de la panela en la dieta de los Colombianos, Se puede afirmar que la panela constituye uno de los rasgos característicos de la identidad cultural de la nacionalidad Colombian a, (CIMPA , 1992).Según cifras del CIMPA, se estiman que existen cerca de 70,000 unidades que cultivan caña panelera y aproximadamente 15,000 trapiches en los que se elabora la panela . 1992).A pesar que el departamento del Cauca no está entre los principales departamentos productores de panela en Colombia, esta agroindustria es una de las actividades económicas más importante de la región y ha sido considerada parte importante en la cultura ya que en muchos casos es la fuente de subsistencia y es un elemento común de trueque o pago.El CIM PA y la Corporación Colombiana de Investigación Agropecuaria (CORPOICA) desde hace varios años trabajan en el mejoramiento tecnológico de esta Agroindustria Rural (AIR), tarea que se ha concentrado en los departamentos de Santander y Cundinamarca, principales productores de panela en Colombia.Actualmente se están transfiriendo estas mejoras al departamento del Cauca a tra vés del Proyecto de Apoyo a la Microempresa Rural (PADEMER) con la colaboración de la Corporación para el Desarrollo de Tunia (CORPOTUNIA) y CORPOICA, creando así diferentes tecnologías de trapiches paneleros que han mejorado las condiciones en el proceso de producción de panela.Para fomentar la adopción de la caña panelera como barrera viva, es importante dar a conocer otras alternativas de uso y procesamiento que generen al agricultor la posibilidad de mejorar la utilidad económica. Esto se logra mediante el análisis comparativo de estas opciones por medio del desarrollo de modelos de rentabilidad.Las alternati vas a comparar corresponden a: i) el cultivo de caña panel era en barreras v ivas actual ii) el cultivo de caña panelera en barreras vivas actual y venta de caña a los trapiches mejorados (modificado) iii) la estufa comunitaria para producción de mieles, utilizando aceite quemado como combustible (diseñada por el Centro de Investigación de Agricultura Sostenible (CIPAV) con diferentes utilizaciones de la capaCidad), iv) proyectos de ganado lechero (razas cruzadas y criollas de la región) y v) la producción de panela en diferentes tecnologías de trapiches paneleros .Para efectos del análisis, se han clasificado a los trapiches paneleros en cuatro categorías, a saber: tradicionales, ajustados y mejorados (comunitario y privado).Analizar diferentes usos y opciones de mercado, para apoyar la toma de decisiones de los productores que siembran caña panelera como barrera viva en el norte del departamento del Cauca.• Definir las opciones de mercado pertinentes a evaluar para los productores• Conocer el manejo agronómico y comercial que se da actualmente al cultivo de la caña panelera como barrera viva en el municipio de Caldono.• Diferenciar las opciones de los trapiches paneleros en la zona de estudio, técnica y organizativamente.• Investigar el funcionamiento de la tecnología CIPAV para producir mieles, aplicada por un productor rural en el norte del departamento del Valle del Cauca.• Plantear y desarrollar una alternativa para el uso de la caña panelera en alimentación animal (ganado).• Desarrollar los modelos financieros respectivos para cada opCión en hoja de cálculo excel.• Idenlificar las variables que más incidencia tienen en la rentabilidad de cada modelo, mediante un análisis de sensibilidad de la Tasa Financiera de Retorno (TFR).• Comparar y contrastar las opciones desde un punto de vista técnico, social, económico, ambiental y efectuar las previas recomendaciones.• Efectuar un taller de retroalimentación en la zona, para las instituciones y representantes de los agricultores que siembran caña en barreras vivas .\"En un Municipio como Caldono, donde el \"BO.9% de la población tiene por lo menos una necesidad básica insatisfecha, (64.4% de este segmento pertenece a la zona rural)\"4 , el implementar una técnica de conservación de suelos que no genere ingresos extra, dificulta su adopción por parte de los agricultores\"S \"A pesar que el cultivo de barreras vivas, como técnica de conservación de suelos ofrece múltiples ventajas a los agricultores y que ha sido promovido por parte de algunas instituciones (caso de Caldono); el proceso de adopción de esta técnica ha sido lento,,6La caña panelera es el cultivo más apetecido por los agricultores del Municipio de Caldono para sembrar como barrera viva; sin embargo, actualmente la siembra de caña no ofrece la posibilidad al agricultor de percibir ingresos extra o genera ingresos bajos, ésto en razón al esquema comercial que se ha manejado tradicionalmente.La enseñanza de otras alternativas para el uso de la caña panelera sembrada como barrera viva, surge como estrategia para aumentar la adopción de este cultivo.Esto se logra después de analizar y enseñar al agricultor las diversas alternativas que existen para el procesamiento y el manejo comercial de la caña panelera. El estudio de dichas opciones, además de posibilitar el incremento de los ingresos, constituye una herramienta que busca facilitar la toma de decisiones de los productores, para mejorar su calidad de vida y apoyar la conservación del suelo.El presente estudio se apoya en siete modelos de rentabilidad desarrollados en hojas de cálculo en el programa excel, de los cuales se derivan otras opciones, que son sometidas a un análisis de rentabilidad. También se estudia la sensibilidad que presentan respecto a cambios en algunas variables. Logrado ésto, se comparan los parámetros financieros y no financieros (capital humano, mercadeo, tecnológicos, ambientales etc.).Se espera que los resultados de este análisis, permitan a los campesinos del Municipio de Caldono conocer diferentes opciones a las utilizadas por ellos tradicionalmente, al igual que los aspectos positivos y negativos de cada opción .El estudio también se propone destacar la importancia de asociarse, como factor clave de éxito para la creación y el mantenimiento de agroempresas .El análisis también está orientado a aquellas instituci ones, que necesitan conocer otras herramientas para el planteamiento de proyectos, que apoyen la conservac ión de suelos y fomenten el aumento del área sembrada de barreras vivas.JO 5. METODOLOGIA La metodología empleada en esta investigación, esta representada en el siguiente gráfico:\", ..'\" ,,. ,.\"\" I \" .\", ., \" .... \" . '. \"' \" _ ... .! ,,.., , ,.' _\",, f \"\" .......... '''',\"''''''• I ~ , '\" .•. ,l: .... , ..... , ...•Inicialmente se planteó un portafolio de usos y opciones de mercado consideradas apropiadas para analizar y convenientes para los agricultores. Estas cuatro opciones eran: tres categorías de trapiches y un molino portátil que recogiera el jugo de la caña panelera de finca en finca, para venderlo a los trapiches cercanos de la zona y así dejar el bagazo para uso de los productores. Más adelante se incluyó en la lista de opciones un modelo que determinara las características agronómicas y comerciales de manejo, que se da actualmente al cultivo de la caña panel era en barreras vivas. Este modelo se tomó como base para el estudio de las otras opciones. Posteriormente se incluyó un modelo de alimentación animal de ganado lechero. La especie animal escogida fue el ganado lechero, por que en la región ha sido fomentado.Al iniciar la investigación se encontró que el trapiche de tecnología mejorada o más eficiente de la región, presenta dos manejos organizativos diferentes: el manejo de organización privada y el de organización comunitaria, los cuales se decidió modelar por separado.En el transcurso del trabajo se descartó la opción del molino portátil, principalmente por dos razones: una de ellas porque los trapicheros de la zona no estaban interesados en comprar el jugo en vez de la caña, ya que quedarse sin el bagazo significa tener que comparar otro tipo de combustible para las hornillas paneleras. La otra razón, es por que el jugo de la caña panelera es un alimento altamente perecedero. Al descartMse ésta opción se dio origen al estudio de la estufa para producción de mieles diseñada por CIPAV que utiliza aceite quemado como combustible.De las opciones originales, surgieron unas derivadas. En el caso del modelo de caña panelera en barreras vivas para venta a trapiches tradicional, se derivó la alternativa de vender la caña a un trapiche mejorado, ya que se aumenta la rentabilidad del negocio al cambiar algunas variables. Lo mismo ocurrió en el caso de la estufa CIPAV, dónde se cambió la variable utilización de la capacidad instalada. Del modelo de ganado lechero de razas cruzadas, se derivó el de las razas criollas para dar un acercamiento a la actividad ganadera de la región.Se analizó que tipo de información tanto secundaria como primaria se debía recolectar para cada modelo. Para conseguir la información primaria se plantearon los cuestionarios orientados a identificar el manejo productivo, comercial y organizativo que se ha dado a cada opción.Las variables que se tuvieron en cuenta para la formulación de los cuestionarios fueron las referentes al manejo técnico, empresarial y de rentabilidad de cada negocio. Una vez se definieron 105 cuestionarios, se validaron en la zona y se retroalimentaron con las personas involucradas en el proceso.Posteriormente se definió la muestra a estudiar y su ubicación en la zona por medio de información secundaria obtenida de instituciones como CETEC, CORPOTUNIA, FIDAR y CIAT. La muestra estuvo conformada por productores y procesadores de caña panelera y un productor que alimenta el ganado con caña panelera en barreras v ivas. El paso siguiente fue realizar los contactos personalmente y la s entrevistas (Véase figura 1).Para los modelos de trapiches y la estufa CIPAV, se realizaron otras actividades fuera de la recolección de información, por medio de entrevistas, como por ejemplo: la obtención de rendimientos por medio de evaluaciones técnicas para determinar los factores de conversión (Véase figura 2.), el estudio de los soportes contables y la toma de datos en los mercados del producto final.Los precios reales y actualizados de los insumas y los precios de venta se obtuvieron con fuentes distintas a las mencionadas anteriormente como por ejemplo: en almacenes agrícolas o agroindustriales de la zona. La ampliación respecto a la información recolectada de cada modelo se presenta detalladamente en los anexos descritos al final del documento (Véase anexos 1-8). La definición de los paquetes tecnológicos para los modelos del cultivo de la caña panelera, los trapiches, la estufa CIPAV y el ganado fue un requisito previo al desarrollo de los modelos financieros . Aunque se encontró información secundaria, el resultado de las encuestas y la obtención de los rendimientos en los trapiches y la estufa CIPAV, fue la información base para este paso.Lo primero que se realizó con la información secundaria fue una identificación general del producto, es decir, que es, como se hace y cuales son los costos fijos y va riables que se incurren en el proceso de elaboración. Después se paso a recolectar la informa ció n primaria a nivel técnico , realizando diferentes pasos, según las condiciones de cada modelo. Lo último que se realizó fue una estimación de la productividad utilizando la información recolectada. (Véase anexos 1-8).El diseño de los modelos se hizo con base a la metodología del Manual de Identificación y Evaluación de Oportunidades de Mercado para Pequeños Productores Rurales de Carlos Felipe Ostertag.Una vez definidos los paquetes tecnológicos, se procede al desarrollo de los modelos financieros o de rentabilidad.Primero se tomaron decisiones respecto a: la duración del proyecto, la capacidad de producción, la tasa de utilización de la capacidad, la tasa de descuento, el manejo de la inflación, manejo de la depreciación, el valor de imprevistos y el valor residual de activos.Posteriormente se organizó la información recolectada y se hicieron las suposiciones necesarias.Los modelos financieros son deflactados, manejan una tasa de descuento del 4.35% que es igual al costo de oportunidad del capital (DTF o tasa de ahorro) para el año 2000 en Colombia (13.1 % efectivo anual)',menos el valor de la inflación acumulada en Colombia (8.75%)8.Los modelos se desarrollaron en hoja electrónica excel. Están compuestos por celdas, donde se digitaron las cifras, fórmulas y funciones. Los modelos se realizaron en diferentes hojas para cada archivo y se encuentran encadenadas entre sí, de tal manera que el cambio de una cifra o de una fórmula cambia los parámetros financieros.En general los componentes de los modelos financieros son: la información básica, la inversión estimada, la capacidad instalada, los costos de producción/ t de producto, los costos de producción/año, las ventas y la matriz de flujo de caja.La información ampliada sobre la construcción de cada modelo se encuentra detallada en los anexos al final del documento. (Véase anexos 1-8).Esta comparación se realizó a los modelos originales y a los derivados. Primero se agruparon en una matriz, todos los parámetros financieros de cada alternativa, como por ejemplo: la tasa financiera de retorno, el valor presente neto, el margen bruto, el número de jornales y la mano de obra entre otros (Véase anexo 19).Posteriormente se determinaron los rangos de los negocios, según los valores máximos y mínimos de cada parámetro. Después se pasó a una evaluación comparativa de los parámetros, por medio de un sistema de calificación basado en el perfil ideal para el agricultor y la técnica estadista \"the rank procedure,,9 o de orden jerárquico. Lo que se obtuvo con esta comparación fue un cuadro que presenta las alternativas en orden descendente, según la cercanía al perfil ideal (escala de acercamiento al perfil ideal).Esta información se detalla en el capitulo de comparación de parámetros financieros.El objetivo de este ejercicio es conocer qué variables tienen mayor incidencia en los parámetros financieros, principalmente en la TFR. Este análisis permitió conocer más a fondo cada uno de los modelos, de tal manera que hizo posible que surgieran modelos derivados para un análisis más profundo. También, por medio de este análisis se obtiene una base para planear estrategias que ayuden aumentar la TFR de los negocios.Los factores financieros y no financieros se reúnen en una matriz resumen para cada una de las opciones, con excepción a la opción de la estufa ClPAV con 12% de U.C.I lo , que es reemplazado por la estufa ClPAV con el 30% de la U.C.I, y de la opción del trapiche mejorado comunitario, por que solamente se estudia el de manejo privado.Este análisis se hizo desde el punto de vista de los autores, con el objetivo de presentar a los agricultores una visión general de la incidencia de los factores financieros y no financieros para cada una de las alternativas.Lo primero que se hizo fue escoger los factores financieros y no financieros considerados de mayor importancia y agruparlos en 7 categorías: capital humano, aspectos de mercadeo, financieros, tecnológicos, ambientales, materia prima e insumas y organizativos. Para cada opción se analizaron las ventajas y desventajas que pueden tener los productores si deciden adoptar alguna de las alternativas.Al final de cada matriz aparece el reto ambiental que es una condición o reto necesario para que sea posible llevar a cabo el negocio y a la vez fomentar el aumento del área de caña sembrada en barreras vivas. Este reto ambiental fue obtenido, teniendo en cuenta las necesidades de caña anuales para cada uno de los negocios planteados y utilizando un rendimiento de 14 caña kg caña/m lineal para un año de producción. Es decir, se estableció la mínima cantidad de área y de fincas que deben de sembrar caña para llevar a cabo las opciones que requieren de un aumento de caña.Se debe tener en cuenta que en las matrices, lo señalado con letra itálica y en negrilla corresponde a la información que se repite en el momento de compararlas.El 2 de noviembre de 2001 se realizó un taller de retroalimentación a los agricultores de la región en las instalaciones del Colegio Guillermo León Valencia en Pescador, Municipio de Caldono, al cual asistieron 40 agricultores de la zona y los representantes de los proyectos IPRA, Manejo de Tierras, Unidad de Suelos y Agroempresas Rurales del CIAT. (Véase figura 3 y 4)En este evento se presentaron los siguientes trabajos de investigación: i) Evaluación participativa sobre uso y manejo de barreras vivas, en la Subcuenca del río Cabuyal (Elías Claros) ii) Análisis socio-empresarial de usos y opciones de mercado para productores de caña panelera en barreras vivas (Juliana Rizo) y iii) Estudio de algunos grupos de macroinvertebrados y su relación con las propiedades del suelo en diferentes usos de la tierra (Fernando Sevilla).Los productores invitados se mostraron muy interesados y resaltaron la importancia de querer conocer los trabajos que el CIAT viene llevando a cabo en la zona, además, realizaron inquietudes respecto al tema de la panela. Después de la socialización se realizó una sección de práctica en la finca demostrativa El Sol, ubicada en Pecador, donde se enseño a los agricultores un ejemplo de finca sostenible y se resaltó la importancia del uso de las barreras vivas.\" ' l \" .. , .Figura 3 Y 4. Taller de retroalimentación a los agricultoresEn esta se cc ión se presentan los conceptos o palabras claves utilizados en la investigación . La definición de estos conceptos es considerado el primer paso para entender las opciones y determinar la conveniencia y viabilidad de estas alternativ as , frente al contexto de los productores que siembran caña panelera como barrera v iva.Pa ra el lector, conocer la definición y el manejo de los conceptos, constituye un paso cla v e en la comprensión de los resultados, con clusiones y recomendaciones planteadas .Los conceptos se han di v idido en dos grupos : los de rentabilidad o financieros y los técnicos.• Usos y opciones de mercado (Ostertag, 1999). Son las oportunidades o alternativas que tienen los productos o servicios para ser destinados vendidos o comercializados y que se puedan producir en una región de una manera rentable.• Mercado. Conjunto de transacciones que se realizan entre los compradores y los vendedores de un bien o servicio; vale decir, es el punto de encuentro entre los agentes económicos que actúan como oferentes y demandantes de bienes y servicios. Por lo tanto el mercado se define como la relación a las fuerzas de la oferta y la demanda constituyéndose en el mecanismo básico de asignación de recursos de las economías.• Factores de conversión. Parámetro técnico que indica la productividad de un proceso o producto.• Tasa de descuento (Ostertag, 1999). Es la tasa de interés usada para convertir una serie de flujos anuales futuros a un solo valor presente .• Tasa de interés (Infante, 1988) . Cuando un inversionista acepte recibir una suma de dinero dentro de un periodo de tiempo (un mes, un semestre, un año), en lugar de recibirla ahora, es preciso entregarle al final una suma superior a la actual. La cantidad adicional que es necesario reconocerle refleja la capacidad que el dinero tiene de crecer en sus manos, que expresada como un porcentaje de la suma inicial se llama tasa de interés.• Tasa de oportunidad o tasa de interés del mercado (Infante, 1988y Ostertag, 1999), Representa el promedio general de la tasa de interés de los individuos y entidades que constituyen la comunidad económica, También se denomina la tasa de interés que el sistema financiero reconoce por el ahorro ; por ejemplo, depósitos a término fijo (DTF),• Costo o valor de oportunidad. \"Es el costo de hacer algo medido como la pérdida de la oportunidad para realizar una acción colectiva. Es el costo que se tiene al dejar una oportunidad por otra\"ll• Parámetros de rentabilidad o financieros (O stertag, 1999), Son los indicadores que se estiman en 105 modelos financieros y que sirven para determinar la rentabilidad de un negocio u opción de mercado, Existen múltiples parámetros de rentabilidad: pero uno de los más generalizados es la Tasa Interna de Retorno (TIR), que tiene dos variantes; la Tasa Económica de Retorno (TER) y la Tasa Financiera de Retorno (TFR) , La diferencia entre la TFR y la TER está en como se calculan los flujos anuale s, La TER toma el punto de vista de la sociedad y la TFR toma el punto de vista empresarial,• Inversión (Ostertag, 1999). Es la aplicación de recursos económicos con el objetivo de obtener ganancias en un determinado período. Se refiere a las construcciones, equipos y estudios necesarios.Ejemplo: compra de terreno, diseño de planta, estudios de ingeniería, obra civil, vías o accesos, transformadores, maquinaria y equipos, montaje de equipos, mano de obra de la siembra, imprevistos.• Modelos financieros deflactados (Ostertag, 1999). Modelos financieros que no tienen en cuenta la tasa de inflación. La TFR mínima debe ser igual al costo de oportunidad del capital menos la tasa anual de inflación, para que sea rentable.• Punto de Equilibrio. Se define como aquel punto o niv el de actividad en el cual los ingresos igualan a los costos y gastos totales, es decir aquel punto en que la utilidad es igual a cero.• Costos variables (Ostertag, 1999). Son aquellos costos del proceso que varían con el volumen de producción. Por ejemplo: materia prima, empaques, combustibles, mano de obra, transporte, comisiones.• Costos fijos (Ostertag, 1999) . Son aquellos costos que no varían con el volumen de producción, pero que se producen con el paso del tiempo. Por ejemplo: personal administrativo, mantenimiento de planta o cultivo, v iáticos.• Flujo de caja (Ostertag, 1992). Es el cuadro en que se calcula el movimiento de recursos financieros, determinando su origen y sus aplicaciones en el tiempo. En el año cero aparece la inversión inicial incluyendo el capital de trabajo, o sea que el flujo de caja para este periodo es negativo. A partir del año uno se calculan los ingresos anuales por venta del producto. Se le restan los costos variables y los fijos. Como resultado se obtienen los flujos para cada periodo de tiempo escogido (semestre, año). la serie de estos flujos se utiliza para calcular los parámetros financieros.• Capital de trabajo (Ostertag, 1992). El capital de trabajo es parte de la inversión inicial, pero se considera como un elemento separado debido a que representa efectivo usado para operar y no para construir. El monto del capital de trabajo requerido es una función de los costos, volumen de producción y plazos de pago. Se debe devolver al final de la vida de un proyecto.• Análisis de sensibilidad (Ostertag, 1999). Estudio realizado con el modelo de rentabilidad para determinar las variables que más afecten a un parámetro financiero de interés.• Margen neto o utilidad neta. (Ostertag, 1999). Parámetro de rentabilidad que se define como las ventas menos los costos totales (costos fijos y variables). Se puede expresar como porcentaje o un monto de dinero.• Inversión preproducción. (Ostertag, 1999) . Monto de dinero que se gasta antes de la primera cosecha de un cultivo. Por ejemplo: incluye los costos de mantenimiento de un cultivo antes de la primera cosecha y la inversión total• Margen bruto. (Ostertag, 1999). Parámetro de rentabilidad que se define como las ventas menos los costos variables. Se puede expresar como porcentaje o un monto de dinero.• Relación de flujo de efectivo por jornal. (Ostertag, 1999). Se define como la sumatoria del flujo de efectivo (o el margen neto) durante la vida del proyecto dividido entre la sumatoria total del número de jornales.• Relación de ventas por jornal. (Ostertag, 1999). Se define al valor total de las ventas durante la vida del proyecto dividido entre la sumatoria total del número de jornales.• Promedio de Jornales al año (Ostertag, 1999). Es la sumatoria de jornales requeridos durante la vida del proyecto dividida entre el número de años que dura el proyecto. \".Se consideran conceptos técnicos a las palabras o expresiones empleadas exclusivamente, y con sentido distinto al vulgar, en el lenguaje propio de un arte, ciencia u oficio.En esta sección se han seleccionado 105 conceptos técnicos considerados claves y sus respectivas definiciones para cada alternativa u opción estudiada.• Escorrentía. Es fa lámina de agua que circula en una cuenca de drenaje, es decir la altura en milímetros de agua de lluvia escurrida y extendida uniformemente sobre el terreno. El agua total se divide en tres fracciones: la que se infiltra en los suelos, la que se evapora y la de escorrentía.• Conservación de suelos (CORPOICA, 1973). Es la integración de un conjunto de prácticas de conservación, con un uso y tratamiento sano del suelo (proteger de la erosión). La conservación de suelos a nivel de finca o de explotación agrícola se basa en el uso apropiado de cada hectárea y la planeación de una agricultura con miras hacia el futuro.• Erosión (FIDAR, 1998). Es el desprendimiento y arrastre acelerado de la capa superficial del suelo ocasionado por fen ómenos como la lluvia, fuerzas de gravedad, agua o por la intervención del hombre. (Véase figura 5).Figura 5 . Erosión en las laderas del Municipio de Caldono Fuente: Claros, EJías• Barrera:; vivas (Cubero, 1994). Son hileras de plantas perennes y de crecimiento denso, sembradas perpendicularmente a la pendiente (curvas a nivel). Las plantas se siembran una cerca a la otra para formar una barrera continua . Las barreras vivas sirven para reducir la velocidad de escorrentía, y además actúan como filtros vivos, atrapand o los sedimentos que lleva el agua que escurre sobre el suelo. Entre las especies más usadas se encuentra la caña panelera (Sacharum officinarum) . (Véase figura 6). Figura 6. Vista lateral de un cultivo de Barreas Vivas Fuente: Escobar, Fredy• Caña Panelera en barreras vivas. Cultivo de caña panelera (independiente de su variedad) que cumple la función de barrera viva . El cultivo de esta especie es considerado multipropósito porque conserva los suelos y ofrece la posibilidad de generar ingresos extras al agricultor.(Véase figura 7).Figura 7. Corte y alce de la caña en barreras vivas Fuente: Claros, Elías• Acarreo de la caña. Operación que consiste en transportar la caña desde el sitio del cultivo hasta la finca, generalmente este transporte es realizado en caballo o mula (Véase figura 8).Figura 8. Corte, alce y acarreo de caña panelera• Periodo vegetativo (Arango y Esguerra 1990). Periodo de un cultivo que va desde el momento en que se corta hasta su nueva maduración.• Traslape. Sistema de siembra que consiste en sembrar los cogollos de la planta a nivel horizontal uno en cima del otro.• Proceso de producción de panela. Proceso que consiste en la extracción, ev aporación y con centración de los jugos de la caña panelera . (Véase figura 9). . ,-, -,,, ... J\" ... , '''' ~''. lo ' 9. Panela Figura 9 . Diagrama de flujo del proceso de producción de panela• Molienda (Arango y Esgue rra 1990). Proceso agroindustrial que consiste en la elaboración de panela a partir de la caña panelera, lo cual se lleva a cabo en un lugar donde se encuentra la maquinaria, los eq uipos y demás accesorios requeridos para la producción.• Trapiche (Arango y Esguerra, 1990). Es la máquina o molino por el cual se pasa la caña para realizar la extracción del jugo, y así separarlo del bagazo. También se cono ce como trapiche la unidad o sitio donde se produc e la panela.• Gavera. Se denomina gavera al molde donde se enfría y cristaliza la panela .• la batea (Carrero y Rodriguez, 1989). Es un recipiente de madera o de aluminio. Destinado al batido de la panela. Se encuentra ubicada frente al fondo panelero. (Véase figura 10).'.t~ Figura 10. Productor batiendo la panela en una batea de madera• Hornilla (Arango y Esguerra 1990). Tiene como función tomar energía de un combustible sólido , para la evaporación del agua ligada a los jugos de caña . Generalmente son construidas en ladrillo, compuestas de una serie de cámaras que soportan las pailas. (Véase figura 11) . Figura 12. Tecnologías de pailas• Trapiche tradicional. Es la unidad productora de panela que tiene la ca racterístic a principal de poseer un trapiche o molino de masas vertica les, accionado por tracción animal, además tiene un ducto recto de combustión como hornilla , para el proceso de elaboración de panela . La producción en promedio de panela es de 8.4 kg/hora. (Véase figura 13) .Figura 13. Características de un trapiche tradicional• MoHno de masas verticales (Arango y Esguerra,1990). Tiene su engranaje en la parte superior de sus tres mazas . Son movidos generalmente por tracción animal, mediante un madero horizontal que se fija a una plancha acanalada en la parte saliente del eje de la maza principal. (Véase figura 14).Figura 14. Vista frontal de un trapiche de masas verticales (CIMPA, 1991). Relaciona el peso del jugo recuperado en el molino con respecto a una determinada cantidad de caña.• Melero. Operario encargado de realizar el paleo manual de las mieles de caña panelera y obtener el punto hasta convertirlas en panela.• Atizador. Operario encargado de introducir y controlar la entrada de combustible en la hornilla.• Arriero. Persona que se encarga de arriar el caballo de manera circular para que se accion e el molino en la extracción de jugos.• Tallador. Operario encargado de pasar la caña por el molino y recolectar el bagazo que cae en el proceso de extracción de jugos.• Cadillo. Insumo vegetal utilizado como floculante en el proceso de clarificación o limpieza del jugo .• Cera de laurel. Insumo natural utilizado como antiespumante en el proceso de elaboración de panela .• Cachaza. Subproducto que se obtiene del p'0ceso de clarificación o limpieza de los jugos y se destina para alimentación animal.• Bagazo. Subproducto que se obtiene del proceso de extracción de jugos, es destinado para combustible de la hornilla, alimentación animal o abono .• Apronte de la caña (CORPOICA, 1998). Operación que se refiere a las accio nes de recolección de la caña cortada, su transporte desde el sitio del cultivo hasta el trapiche y su almacenamiento en el depósito del trapiche , previo a la extracción de los jugos en el trapiche.• Molino de masas horizontales (Arango y Esguerra, 1990) . Pueden ser accionados por motor (sea eléctrico o diesel) , rueda hidráulica o turbina. Generalmente son de tres masas. Estos molinos tienen mayor capacidad para moler caña panelera. (Véase figura 15).~' \" ~ .. , \".'\" -Figura 15. Vista frontal de un trapiche de masas horizontales• Trapiche de tecnología ajustada. Se denomina trapiche ajustado porque ha sido mejorado tecnológicamente, en algunos casos por instituciones y en otros por sus dueños, Los ajustes o mejoras aún no se encuentran terminadas , Es la unidad productora de panela que tiene la característica de poseer un trapiche o molino de masas horizontales (R2 panelero) accionad os por un motor eléctrico, gasolina o diesel, además presenta una hornilla modificada para un proceso de combustión más eficiente , Algunos trapiches de esta tecnología poseen elementos que ayudan a mejorar la calidad de la panela, como son: el prelimpiador, el cuarto de batido y moldeo (sin terminar), la bagacera etc. La producción promedio de panela es de 33 kgfhora. (Véase figura 16), ~ . '!!I$ ,'\" ,,, Figura 16. Características de un trapiche ajustado • Bagacero. Operario encargado de re coger y almacenar el bagazo de la caña, en la fase de extracción de jugos.• Moldero. Operario encargado de m oldea r o darle forma a la panela, en los respectivos moldes o gaveras.• Guarapo. Jugo que se extrae de la caña panelera.• Prelimpiador. Es un tanque de aluminio o ladrillo que actúa como filtro retenedor de impurezas que tiene el jugo de la caña panelera después del proceso de extracción. (Véase figura 17).Figura 17. Vista frontal de un prelimpiador de aluminio• Bagaceras (Arango y Esguerra, 1990). Son los sitios dentro del trapiche donde se almacena el bagazo que sale del molino para dejarlo secar. El bagazo seco será el combustible de las hornillas en las posteriores moliendas. (Véase figura 18) .Figura 18. Vista frontal de una bagacera• Trapiche de tecnología mejorada Ha sido mejorado tecnológicamente, hasta el punto de ser la tecnología más eficiente de la región. Ti ene un molino acciona do por electricidad, gasolina o diesel con mayor capacidad que el R2 (es decir de R4 en adelante). La hornilla es mejorada y presenta una chimenea que mejora el proceso de eficiencia calórica, a la vez, disminuye el uso de la leña como combustible. Esta tecnología presenta elementos como : cuarto de batido y moldeo, aprov echamiento de la g ra vedad para la caída de jugo, prelimpiador y las bagaceras . La producción promedio de panela es de 60 kg/hora (Véase figura 19).• Diseño y funcionamiento de la estufa. El montaje de la estufa CIPAV es sencillo, consta de: una tina dónde se almacena el aceite quemado (puesta sobre una base), un tubo por donde sale el aceite al quemador, un tubo para la salida de vapores 13 , un quemador, una paila de aluminio y un motor blower (Véase figura 20 y 21). Cuando el quemador (enterrado bajo de la tierra) se alimenta continuamente con aceite quemado y al mismo tiempo recibe una inyección de aire (proporcionado por un motor blower) y un poco de gasolina, ocurre la combustión. La combustión genera la llama por debajo de la paila, que permite iniciar el proceso de calentamiento de jugos.Figura 20. Partes de una estufa CIPAV• Aceite quemado. Desecho liquido que es quemado en los vehículos, considerándose como un desecho industrial y que se puede utilizar como combustible.• Motor blower. Motor pequeño de un caballo de fuerza que proporciona viento para realizar la combustión.13 Actualmente no existen datos sobre el efecto que produce el uso de aceite quemado como combustible, en la emIsión de vapores a la atmósfera y a los alimentos Figura 21. Columna Izquierda: fondo de la hornilla y llama Columna derecha: caída de aceite quemado y jugos calentándose• Período de gestación o de lactancia (Ospina y Aldana, 1995). Período en el cual se desarrolla el embrión en las hembras, desde su concepción hasta el parto. En el caso del ganado lechero al iniciarse este periodD se aumenta intensamente el metabolismo de las mamas, lo que hace que se inicie la producción de leche .• Cratylia Argentea (Argel y Lascano, 1997). Es un arbusto nativo de la Amazonia, de la parte central de Brasil y de áreas de Perú, Bolivia y nordeste de Argentina. Se caracteriza por su amplia adaptación a zonas bajas tropicales con sequías hasta de 6 meses y suelos ácidos de baja fertilidad del tipo ultlsol y oxisol. Bajo estas condiciones produce buenos rendimientos de forraje bajo corte y tiene la capacidad de rebrotar durante el período seco debido a un desarrollo radicular vigoroso. Por otra parte, produce abundante semilla y su establecimiento es relativamente rápido cuando las condiciones son adecuadas.• Cruzamiento de razas o razas cruzadas (Ospina y Aldana, 1995). Es la reproducción entre individuos de diferente raza, que da lugar a una descendencia que participa parcialmente de los caracteres del padre y la madre. Este sistema de apareamiento le brinda al productor la oportunidad de incrementar en forma substancial la producción total.• Razas criollas o nativas (Ospina y Aldana 1995). Se caracterizan por ser rusticas y soportar condiciones de cambios bruscos de temperatura y humedad. En el caso del ganado lechero presentan baja producción de leche.A continuación se presentan diez opciones de mercado planteadas en la investigación para el uso, procesamiento y comercialización de la caña panelera (Saccharum officinarum) como barrera viva. Estas opciones se dividen en dos grupos, uno de ellos conformado por siete modelos financieros iniciales y el otro está constituido por tres modelos financieros derivados de los siete iniciales.Los modelos financieros son deflactados, manejan una tasa de descuento del 4.35% que es igual al costo de oportunidad del capital (DTF o tasa de ahorro) para el año 2000 en Colombia (13.1 % efectivo anual), menos el nivel de la inflación acumulada en Colombia (8.75%). Los primeros cuatro modelos descritos a continuación son hechos con datos reales de la zona y con algunos datos supuestos. Los dos últimos son modelos planteados por el autor basado en la adaptación de datos reales.Para todos los modelos financieros existe una matriz de información básica, donde se encuentran los datos que hacen referencia a los factores técnicos y los de conversión influyentes en los rendimientos de producción y la rentabilidad final. Estos indicadores son llamados factores de conversión. La matriz de información básica se encuentra descrita para cada modelo.La información detallada de los modelo está incluida en los anexos finales de este documento, al igual que los modelos financieros, elaborados en hoja de cálculo excel. (Véase anexos 1-18).Los modelos financieros son:Se asume que el proyecto se inicia en el año 2000 y finaliza en el 2009, al terminarse el ciclo productivo del cultivo. Para efectos del modelo no se tiene en cuenta las ventajas económicas y de sostenibilidad a largo plazo de un productor que implementa barreras vivas en su finca (conservando los suelos), sino solamente el efecto a corto plazo por la venta de la caña (como ingresos inmediatos).Este modelo se inicia cuando un agricultor siembra los cogollos de la caña panelera (variedad POJ)\" y los dispone uno encima del otro de manera lineal en la superficie. El espacia sembrado de caña que maneja este modelo es de 200 m lineales, lo que equivale a 200 m 2 • Cuando las barreras empiezan a crecer, el agricultor no incurre en gastos de fertilización como tal, ya que aprovecha los fertilizantes que caen por la ladera de los cultivos acompañantes. Se realizan dos desyerbas por cada corte de barrera, es decir que en los nueve años del proyecto, se hacen 14.El agricultor de este modelo espera 18 meses para hacer el primer corte de las barreras de caña y luego da un tiempo de recuperación de 15 meses para realizar los siguientes cortes. Al cortar la caña el agricultor consigue un caballo para realizar el acarreo.Cuando la caña se encuentra en la finca, el productor contrata un servicIo de transporte (vehículo a gasolina) y la lleva hasta el trapiche más cercano, que es el trapiche de tecnología tradicional. La distancia promedio entre la finca y el trapiche es de 3 km. Cuando el trapiche recibe la caña, la convierte en panel a y le paga al productor con la mitad de la producción. El productor la destina a autoconsumo o los excedentes los transporta al punto de venta y los vende. El bagazo de la caña es destinado por el trapichero como combustible de la hornilla.Matriz de información básica: el área sembrada del cultivo evaluado en el modelo es de 200 m lineales (cantidad que corresponde al espacio promedio de todos les productores de la zona que participaron en el transcurso de la investigación) . En la misma matriz se encuentra el rendimiento del cultivo que es igual a 18 kg de cañalm lineal, cuando la producción se hace cada 15.4 meses. El rendimiento anual es de 14 Kg de cañal m lineal. El primer corte de caña empieza a partir del segundo año del proyecto, y en el quinto año no se realiza corte. Para dar mayor claridad en el modelo se saca una produCCión anual; al dividir la producción total del proyecto (25,200 kg de caña) entre 9 años. Este valor se divide entre 12 meses para sacar la producción mensual. (Véase modelo anexo 9).-Este modelo corresponde a un trapiche de tecnología tradicional, que produce panela como producto principal y cachaza y bagazo como subproductos del proceso. Este proyecto se inicia en el año 2000 y termina en el 2012, tiene una duración de 12 años.Antes de hablar del funcionamiento del trapiche modelado, se aclara, que esta tecnología es la más antigua y menos eficiente de la zona. El manejo del trapiche se hace en forma semicomunitaria, ya que una parte de su procesamiento lo hace el propietario y la otra lo hacen entre la comunidad y el propietario. El funcionamiento del trapiche se hace de dos formas relacionadas con la procedencia de la materia prima (caña panelera) y el arreglo que se tenga con los agricultores:1.Modalidad de molienda en compañia: los agricultores cercanos de la zona (incluidos los de caña en barreras vivas) cubren el costo del transporte de la caña al trapiche y reciben el 50% de la producción de panela. Bajo ésta modalidad en el trapiche se produce 8.1 t de panela anuales, lo que significa que el 50% de esta producción (4 t) es para el productor de caña y el 50% restante es vendida por el dueño del trapiche. Los costos fijos y variables del trapiche son pagados por el propietario con excepción al de la caña y transporte de ésta.ii. Modalidad de trapiche propio: ocurre cuando el dueño del trapiche procesa su propia caña y vende el 100% de la producción de panela. Asume los costos fijos y variables.Este trapiche opera 6.7 días al mes, en una operación denominada molienda y trabaja 11.5 semanas/a ño. Su producción anual es de 10 t de panela. El 80% (8. 1 t) de la producción anual ocurre bajo modalidad de compañía y el 20% (2 t) restante bajo modalidad de trapiche propio.El transporte de la panela se hace el último día de la molienda, es decir al finalizar la semana y se realiza a caballo. La panela se vende en el municipio de Caldono.Matriz de información básica: el porcentaje de extracción de jugo de un molino de masas verticales típico de la tecnología tradicional, es igual al 50%. El factor de conversión caña a panela es 10.6 kg/kg 1S Según los trapiches entrevistados en promedio un día de molienda dura 15 horas. La producción promedio diaria es de 7@16 de panela, lo que equivale a 126 kg. (Véase modelo anexo 10) .Es el modelo de un trapiche de tecnología ajustada, que produce panela como producto principal, cachaza y bagazo como subproductos del proceso. El proyecto se inicia en el año 2000 y termina en el 2012, tiene una duración de 12 años.Este trapiche se maneja de forma semicomunitaria. El funcionamiento del trapiche se hace de 2 formas relacionadas con la procedencia de la materia prima y el arreglo que se tenga con los agricultores (caña panel era) :i. Modalidad de molienda en compañia: Los agricultores se encargan de transportar su caña al trapiche y reciben el 70.83% de la producción de panela. Bajo esta modalidad se producen 77.43 t de panela al año, lo que significa que el 70.83% de esta producción (54.84 t) es para el productor de caña y el 29.17% (22.59 t) restante es vendida por el dueño del trapiche. Los costos fijos y variables son pagados por el trapiche con excepción de la caña , el transporte de ésta, la leña de las hornillas y la mano de obra del baga cero que se utiliza en el proceso de elaboración de panela (costos que cubren los agricultores).ii. Modalidad de trapiche propio: ocurre cuando el dueño del trapiche procesa su propia caña y vende el 100% de la producción de panela. El trapiche asume los costos fijos y variables.El trapiche opera 4 días a la semana, 52.14 semanas en el año y produce anualmente 103.24 t de panela. Del 100% (103.24 t) de la producción anual de panela, el 75% (77.43 t) se produce bajo modalidad de compañía y el 25% (25.81 t) restante se produce bajo modalidad de trapiche propio.El transporte de la panela se hace el último día de la finalizar la semana y se realiza en un vehículo a gasolina. el mercado de Santander de Quilichao.molienda, es decir, al La panela se vende en Matriz de información básica: los factores de conversión se obtuvieron con los resultados promediados de evaluaciones realizadas en los trapiches muestra para esta tecnología y trapiches de tecnología mejorada. Las evaluaciones se hicieron de la siguiente manera:• Se aseguró que durante las evaluaciones el trapiche trabajara en condiciones normales, para asemejar lo más posible los datos a la realidad.• En el momento de aprontar la caña en el trapiche, se seleccionaron aleatoriamente muestras de las diferentes variedades que llegaban para ser procesadas .• Posteriormente se pesan los tallos de las cañas (sin cogollos y sin hojas) utilizando como equipos la balanza reloj, el trípode y la coleta.• Luego se procede a moler la cantidad de caña pesada y se pesa la producción de guarapo.• Se tomó el tiempo que dura el proceso de extracción de jugo.• Paralelamente se pesó la cantidad de bagazo y por último la producción total en kilogramos de panela.El factor de conversión caña a panela es 9 kg/kg. Según los trapiches de esta tecnología, un día de molienda dura 15 horas y la producción diaria es de 27.5@ lo que equivale a 495 kg de panela. La producción mensual equivale a la producción semanal multiplicada por 4.34 semanas de un mes. (Véase modelo anexo 11).El modelo corresponde a un trapiche de tecnología mejorada de manejo comunitario que produce panela como producto principal, cachaza y bagazo como subproductos del proceso. El proyecto se inicia en el año 2000 y termina en el 2012, tiene una duración de 12 años.Este trapiche es de manejo comunitario, debido a que toda su producción ocurre bajo la modalidad de molienda en compañia, que se explica a continuación:i. Modalidad de molienda en compañia : los agricultores cercanos de la zona, que se encargan de transportar su caña al trapiche y reciben el 70.83% de la producción de panela. Lo que significa que de toda la producción anual del trapiche (170 t de panela), 120.33 t de panela es para los agricultores asociados y 49.55 t es vendida por el trapiche. Los costos fijos y variables son pagados por el trapiche a excepción de la caña, el transporte de ésta, la leña y la mano de obra del bagacero que se utiliza en el proceso de elaboración de la panela (costos que cubre el agricultor).El trapiche opera 4 días de la semana, 52 .14 semanas en el año y produce anualmente 170 t de panela bajo la modalidad mencionada anteriormente.El tran sporte de la panela se hace el último día de la molienda, es decir, al finalizar la semana y se realiza en un vehículo a gasolina.Matriz de información básica: para obtener los factores de conversión se empleó la misma metod ología utilizada para el trapiche de tecnología ajustada.El factor de conversión caña a panela es 8.35 kgjkg. Según el administrador de este trapiche, un día de molienda dura 17 horas y la producción diaria es de 45 .5@ lo que equivale a 814.5 kg de panela. La producción mensual es igual a la semanal multiplicada por 4.34 semanas al mes. (Véase modelo ane xo 12) .Es el modelo correspondiente a un trapiche de tecnología mejorada de manejo privado que produce panela como producto principal, cachaza y bagazo como subproductos del proceso . El proyecto se inicia en\" el año 2000 y termina en el 2012, tiene una duración de 12 añ os.Este trapiche es considerado privado, ya que toda su producción ocurre bajo la mod alidad de trapiche propio explicada a continuación:i. Modalidad de trapiche propio : el trapiche utiliza la caña panelera sembrada en sus terrenos o compra la caña a los productores. El trapiche cubre los costos fijos y variables y vende el 100% de la producción de panela .El trapiche opera 3 días a la semana, 52.14 semanas en el año y produce anualmente 154 t de panela bajo la modalidad mencionada anteriormente.El transporte de la panela se hace el último día de la molienda, es decir al finalizar la semana y se realiza en un vehículo a gasolina. La panela se vende en el mercado de Santander de Quilichao.Matriz de información básica: para obtener los factores de conversión se empleó la misma metodología utilizada en el trapiche de tecnología ajustada.El factor de conversión caña a panela es 8.35 kg /kg. Según el administrador de estos trapiches, un día de molienda dura 14 horas y la producción diaria es de 54.66@ lo que equivale a 984 kg de panela. La producción mensual es igual a la semanal multiplicada por 4.34 semanas al mes. (Véase modelo anexo 13) .7.1.6 Estufa CIPAV (12% U.C.I).Este modelo propone una planta productora de mieles para consumo humano, a partir del jugo de la caña panelera y donde se obtienen como subproductos del proceso , la cachaza y el bagazo. La planta está formada por una estufa diseñada por C¡PAV, que utiliza aceite quemado como combustible y cuyo diseño tecnológico se encuentra descrito detalladamente en el capítulo de conceptos técnicos. El proyecto se inicia en el año 2000 y termina su funcionamiento en el 2012, tiene una duración de 12 años.El proyecto es el resultado de la agrupación de 12 productores de caña en barreras vivas que existen en la zona actualmente (año 2000).La planta es comunitaria y todos los productores son pequeños inversionistas que reciben las utilidades generadas por las ventas de las mieles o en el caso de autoconsumo tienen la ventaja de poseer la miel en su finca y no es necesario compararla en el mercado (costo de oportunidad).Los 12 productores ofrecen 33,600 kg/año de caña panelera. Se supone que la estufa se encuentra a una distancia favorable o central a los productores. La labor diaria de procesamiento se inicia las 7:00 AM , cuando uno de los productores asociados (previamente seleccionado en la planeación) lleva su caña a la planta.El transporte de la miel se hace semanalmente y se realiza en un vehículo a gasolina. La miel se vende en el mercado del MuniCipio de Caldono.Matriz de información básica: los factores de conversión obtenidos en esta investigación, durante evaluaciones realizadas en la finca El Ciprés, Municipio de El Dovio -norte del Valle del Cauca-donde hace un año se implementó una estufa C¡PAV piloto. Los factores de conversión se obtuvieron en conjunto con un técnico de C¡PAV, Fernando Díaz.Existen muchos factores agronómicos que influyen en el rendimiento de la caña en la producción final de mieles, pero básicamente en este trabajo, se tienen en cuenta los que se relacionan con el procesamiento de mieles, lo cual se encierra en dos fases:1 Fase de extracción de jugos:esta fase se encuentra directamente relacionada con el tipo, marca o nivel tecnológico del molino panelero que exista en la planta y el ajuste de sus masas. En el caso del proyecto la planta trabajaría con un trapiche con 53% de extracción de jugos, accionado por un motor eléctrico o a gasolina (en el modelo se supone eléctrico por disminución de costos) .Para obtener los factores de conversión en esta fase, se llevaron a cabo los siguientes pasos:• Se aseguró que durante las evaluaciones la planta de miel trabajara en condiciones normales, para asemejar lo más posible los datos a la realidad.• En el momento de aprontar la caña en el trapiche, se seleccionaron aleatoriamente muestras de las diferentes variedades que llegaban al trapiche para ser procesadas.• Posteriormente se pesan los tallos de las cañas (sin cogollos y sin hOjas) utilizando la balanza reloj, el trípode y la coleta.• Luego se procede a moler la cantidad de caña pesada y se pesa la producción de guarapo.• Paralelamente se pesó la cantidad de bagazo y por último la producción total en kilogramos de miel.2 Fase de evaporación y concentración de jugos (estufa): aquí se tiene en cuenta factores como la eficiencia de la construcción de la estufa y del combustible a utilizar (aceite quemado). En esta fase se obtuvieron los factores de conversión por medio del pesaje del jugo, la miel, la cachaza y la cantidad de aceite quemado El factor de conversión caña a miel es 7 kg/kg. Con la oferta actual de caña, la planta opera 3 días al mes, 52.14 semanas en el año y produce 4.8 t anuales de miel. (Véase modelo anexo 14).Este modelo corresponde a un hato lechero, donde se obtiene como producto principal la leche y terneros como subproductos. El modelo se planteó con razas cruzadas 17, ya que la producción de leche es más alta que las razas criollas o nativas de la región. El ganado se alimenta con caña en barreras vivas forrajera 18 y Cratylia Argentea como forraje. El proyecto se inicia en el año 2000 y termina en el 2006, al terminarse el ciclo productivo de la vaca . La fuente de ingresos equivale a la venta diaria de leche y la venta de terneros que nacen cada 1.1 años.El hato es comunitario y todos los productores son pequeños inversionistas que reciben las utilidades generadas por la venta de la leche y de terneros, en el caso de autoconsumo tienen la ventaja de poseer la leche en su finca y no es necesario comprarla en el mercado (costo de oportunidad).Uno de los 12 productores tiene en su finca todos los equipos y construcciones necesarias para conformar el hato lechero. Este mismo productor tiene cultivos de caña en barreras vivas y de Cratylia Argentea. El modelo supone que el agricultor o un grupo de agricultores se encargan de: a) alimentar y cuidar el ganado b) vigilar el hato e) manejar una planeación de las fechas en que los productores reciben las utilidades de la venta de la leche y entre los que se encargan de llevar la caña para alimentar el ganado d) realizar el mantenimiento de los equipos, el ganado y del cultivo de Cratylia Argentea e) vender la leche y los terneros.\"En el período de gestación o de lactancia del ganado, lo ideal es que la producción de leche ocurra durante 9 meses cada año, pero el dato real de la zona (y asumido en este modelo) es que la producción ocurre durante 9 meses cada 1.1 años\". (Holmann, 2001)19La leche se vende diariamente y es transportada al Municipio de Caldono.Se aclara que este modelo no contabiliza los costos de adaptabilidad de las razas cruzadas en la zona.Matriz de información básica: en esta matriz se encuentra descrito el número de vacas (6) con que se inicia el negocio . El número de vacas se halla de acuerdo a la oferta de caña sembrada en barreras vivas que hay actualmente en la zona (aunque en este modelo los productores requieren un poco de más área sembrada para cubrir la alimentación de los terneros). Con la alimentación que supone este modelo, la producción de leche promedio de una vaca de raza cruzada es de 8 It/día; la producción mensual por vaca es igual a 8 It diarios multiplicados por 30 días del mes y anual es igual a la producción mensual multiplicado por 8 meses en el año (valor equivalente a 9 meses cada 1.1 años). (Véase modelo anexo 15). Esta opción no presenta modificaciones, respecto a la opción del cultivo de caña en barreras vivas actual, con relación a su manejo agronómico. Las modificaciones que sufre son a nivel de procesamiento y ventas.Lo que se evalúa es una propuesta realizada por un trapiche de tecnología mejorada de manejo privado, ubicado en la frontera de los Municipios de Santander de Quilichao y Caldono. La propuesta surge por la necesidad de comprar caña para su trapiche, ya que este tipo de trapiches requieren de grandes cantidades de caña para su funcionamiento (en comparación con las otras tecnologías de trapiches de la región).La propuesta de este trapiche consiste en que los productores que se encuentren cercanos a la carretera Panamericana (1-5 km) se asocien y lleven su caña a la carretera Panamericana.Una vez este la caña acopiada en la carretera Panamericana, el trapiche se compromete a recoger la caña en la Panamericana y el pago se hace al productor con la mitad de la producción de panela que se produzca con esa caña. Se tiene en cuenta que en este trapiche, el factor de conversión caña a panela es más eficiente en comparación a un trapiche tradicional (donde hoy en día se procesa la caña de los productores de barreras vivas). Por tal razón el precio de venta de la caña aumenta, ya que aumenta la cantidad de panela elaborada (Véase anexo 16).Esta opción es valida cuando el precio de la caña se vende en el mercado del Municipio de Caldono, ya que si se vende en Santander de Quilichao, la rentabilidad generada es negativa.La opción estufa CIPAV (30% de U.C.I), no plantea ningún cambio al modelo de la estufa comunitaria CIPAV (12% U.C.I), respecto al proceso tecnológico de producción de mieles y el manejo organizativo o empresarial del negocio.Las modificaciones que sufre este modelo consiste en aumentar la capacidad instalada de la estufa CIPAV pasando del 12% al 30%. Teniendo en cuenta que los costos fijos del modelo siguen constantes. (Véase modelo anexo 17).Esta opción surge ante la necesidad de realizar un modelo más cercano a la realidad de la actividad ganadera en el Municipio de Caldono.La variación que sufre el modelo de ganado lechero de razas criollas, es respecto a la producción de leche, ya que disminuye de 8 Itfdía a 4.5 It/día . Lo anterior sucede por que se trabaja con razas criollas o nativas de la región .También se presentan cambios en la inversión, y a que las vacas de razas criollas tienen un precio de compra más bajo. Además se han eliminado algunos equipos que se considera n poco comunes de la zona, como por ejemplo el pica pasto y el motor.De la dieta alimenticia se ha eliminado el concentrado lechero comercial. Las vacas solamente se al imentan de caña panelera y cratylia argentea. (Véase modelo anexo 18) .En la matriz de parámetros financieros (Véase anexo 19) se agrupan los parámetros de cada opción. Esta matriz se utiliza para la comparar las alternativas desde el punto de vista financiero. Los parámetros que se comparan son originados de los modelos de rentabilidad.Para la calificación de los parámetros financieros, es necesario conocer los rangos máximos y mínimos de cada parámetro, para las opciones más representativas. Para esto se han clasificado las opciones de la siguiente manera: a) Modelos financieros realizados con base en datos reales de la zona, como son: los diferentes tipos de trapiche (tecnología tradicional, mejorado ajustado, mejorado comunitario y privado ) y el cultivo de caña en barreras vivas actual.Los trapiches de tecnología tradicional y ajustada tienen un dueño o un grupo pequeño de socios y son de carácter semicomunitario, es decir, una parte del tiempo se dedican a producir panela con la caña que compran o siembran en sus terrenos y la otra parte reciben caña de los productores aledaños y les pagan con parte de la panela producida en el trapiche. Los trapiches de nivel tecnológico mejorado de carácter comunitario y privado, se diferencian en el manejo organizativo que le dan a cada uno. El primero en mención es manejado por un grupo de productores de la zona, los cuales llevan su caña al trapiche y reciben un porcentaje (70%) de la producción de panela. El segundo (privado) es de un grupo de socios que reciben todas las utilidades del negocio y compran grandes cantidades de caña como materia prima .La alternativa de la caña en barreras vivas actual modela cuando un solo productor siembr'~ 200 m lineales de caña en su finca y su producción se vende al trapiche más cercano (tecnología tradicional). b) Alternativas planteados con datos reales y algunas suposiciones; como son: la estufa ClPAV (12% de U.C.l) y el ganado lechero (razas cruzadas). Son planteadas de carácter comunitario, donde cada uno de los productores recibe utilidades por la venta de la caña y por la venta de las mieles o la leche según sea el caso. Los productores deben estar organizados.c) Las alternativas que se derivan de una u otra forma de los modelos originales (cultivo y venta de caña de barreras vivas a los trapiches de tecnología mejorada privado, ganado leche ro (razas criollas) y estufa CIPAV (30% de U.C.I) .La alternativa de la estufa para producción de mieles CIPAV (30% de U.C.I), se deriva del modelo inicial (12% de U.C.I). Cuando se vio que el modelo original era rentable, se decide aumentar la utilización de la capacidad para aumentar la rentabilidad del modelo inicial ; sin embargo se conservan las mismas ca racterísticas de manejo y distribución de utilidades. El modelo de ganado lechero con vacas de raza criolla tiene el mismo manejo organizativo que el de razas cruzadas, la diferencia radica en que la producción de leche de una vaca criolla es de 4.5 It/día y la de una vaca de raza cruzada es de 8 It/ día, el precio de la vaca criolla es menor al igual que el costo de la alimentación. El modelo modificado de caña en barreras vivas de caña es técnica y organizativamente igual al original pero la diferencia está en que la caña es llevada a procesar a un trap iche de tecnolog ía mejorada en la zona.El siguiente cuadro nos muestra los rangos de los parámetros financieros, que van desde el menor hasta el mayor va lor y con la opción correspondiente a cada caso.(Véase cuadro 2 )Cuadro 2. Rangos de los parámetros financieros Para escoger la opción más atractiva desde el punto de vista financiero, se realizó una evaluación comparativa de los parámetros, teniendo en cuenta unos criterios y llevando a cabo los siguientes pasos: i.Se escogió el perfil ideal de evaluación (Véase cuadro 3); que consiste en darle a cada uno de los parámetros financieros un valor cualitativo (Bajo y Alto) que más le convenga a un microempresario rural. Lo anterior se hace teniendo en cuenta factores empresariales. El perfil ideal se utiliza como base para dar los puntajes de la evaluación cuantitativa. Entre más se acerque un parámetro financiero al perfil ideal, mayor será su puntaje. A continuación se presenta el perfil ideal de cada parámetro. ii.Se definió el peso o nivel de importancia de cada parámetro (según la conveniencia de los productores) clasificándolos de la siguiente manera: los parámetros de mayor peso se califican de tres en tres (TFR y VPN), los de mediano peso de dos en dos (el margen neto, bruto y la inversión) y los de menor peso, de uno en uno (jornal/año, ventas/año, efectiva/jornal, mano de obra) .iii. La técnica estadística utilizada para la calificación de las opciones fue \"the rank procedure\" o en su traducción al español, el método de orden jerárquico. El funcionamiento de ésta técnica se explica detalladamente por medio del siguiente ejemplo: si el parámetro a calificar fuera la inversión.Según la matriz de parámetros financieros los valores de la inversión, se encuentran en el siguiente cuadro (Véase cuadro 4): Después se sigue el mismo procedimiento para cada parámetro financiero (TFR, VPN, etc) con cada opción.iv. Debido a que los valores de algunas variables presentan empates o se repiten es necesario dividir las opciones en tres bloques, para comparar cada uno por separado y llegar a un solo bloque de opciones o la escala de acercamiento al perfil ideal. Los bloques son los siguientes:Bloque A: este bloque está conformado por las alternativas de trapiches (ninguna presenta empates o repeticiones) y por las que presentan empates que tienen un indicador de rentabilidad o Tasa Financiera de Retorno más altos (estufa CIPAV (30% de U.c.l), ganado lechero (razas cruzadas), cultivo de caña modificado). El puntaje de cada opción que aparece en el siguiente cuadro equivale a la suma de los puntajes asignados a cada parámetro financiero (inversión , mano de obra, TRF, VPN), como se expl ica en el ejemplo del punto iii. El siguiente cuadro nos enseña, para la inversión, los resultados de la comparación de éste bloque (Véase cuadro 6) : Bloque B: nace de las opciones que en sus variables presentan empate y un indicador de rentabilidad o TFR más bajo que las del bloque A. La comparación del bloque B tiene el objetivo de encontrar el puesto de la opción estufa CIPAV (12% de U.C.I), en la escala de acercamiento al perfil ideal. Lo primero que se hizo fue una comparación en dúo, es decir se comparan los puntajes de la estufa CIPAV (12 % de U.c.l) con las opciones que estuvieran por debajo de la estufa ClPAV (30% de U.C.l) (Véase Bloque A) como: ganado cruzado, trapiche privado y así sucesivamente hasta encontrar la opción que supera en puntaje. Como la opción de cultivo de caña modificado tiene menos puntaje que la estufa ClPAV (12% de U.C.I), el bloque B quedo conformado por las siguientes cuatro opciones en su respectivo orden (véase cuadro 7): • La Tasa Financiera de Retorno (TFR) presenta una variación de 28 puntos, cuando el precio de venta de la caña panelera fluctúa en un 10% por encima y por debajo de su valor actual. Si esta variable fluctúa en un 20% la TFR varía en 56 puntos. La TFR está muy fuertemente influenciada por el precio de venta de la caña panelera. (Véase figura 22).• La TFR presenta una variación de 19 puntos cuando el rendimiento kg caña/m lineal fluctúa en un 10% por encima y por debajo de su valor actual. Si esta variable fluctúa en un 20% la TFR varía en 38 puntos. La TFR está fuertemente influenciada por el rendimiento kg caña/m lineal.• La TFR tiene una variación de 7 y 9 puntos cuando los valores del área de caña panelera sembrada y el transporte de la caña al trapiche en su respectivo orden, se modifican en un 10% por encima y por debajo de su valor actual. Si estos valores fluctúan en un 20% la TFR varía en 16 y 18 puntos respectivamente. La TFR del modelo es medianamente influenciada por el transporte de la caña al trapiche y el área sembrada de caña Panelera en barreras vivas, respectivamente.• La TFR de la mano de obra y la inversión varían en 9 y 6 puntos respectivamente, cuando los valores actuales son aumentados y disminuidos en un 20%. La TFR responde levemente a cambios en la mano de obra y la inversión.Inversión M. de obra A.Rend . P de venta sembrada Figura 22. Variación de puntos de la TFR frente a cambios de mas y menos 20% de cada variable para un cultivo de caña en barreras vivas (actual)• La TFR presenta una variación de 43 puntos cuando el precio de venta de la panela flu ctúa en un 10% por encima y por debajo de su valor actual ( 670Col$/kg de panela). Si el precio de ven ta fluctúa en un 20% la TFR varía en 86 puntos. la TFR del modelo está muy fuertemente influenciada por el precio de venta de la panela. (Véase figura 23).• La TFR tiene una variación de 23 puntos cuando el co sto de la mano de obra anual se modifica en un 10% por encima y por debajo de su va lor actual. Si el costo de la mano de obra anual fluctúa en un 20% la TFR varía en 46 puntos. la TFR del modelo es fuertemente influenciada por el costo de la mano de obra anual.• La TFR varía en 16, 16 Y 14 puntos respectivamente cuando los valores del factor de co nversión caña-panela, el precio de compra de la caña y la utilización de la capacidad son aumentados o disminuidos en un 20%. la TFR responde medianamente a cambios en el factor de conversión caña-panela, el precio de compra de la caña y la utilización de la capacidad en su respectivo orden.• La TFR en la inversión inicial varía en 6 puntos cuando los valores actuales son aumentado s y disminuidos en un 20% . la TFR responde levemente a cambios la inversión inicial. Figura 23. Variación de puntos de la TFR frente a cambios de mas y menos 20% de cada variable para un trapiche tradicional 9.3 Trapiche ajustado• La TFR presenta una variación de 33 puntos cuando el precio de venta de la panela fluctúa en un 10% por encima y por debajo de su valor actual (555. 5 Col$/kg de panela). Si el precio de venta fluctúa en un 20% la TFR varía en 66 puntos. La TFR del modelo está muy fuertemente influenciada por el precio de venta de la panela. (Véase figura 24).• La TFR tiene una variación de 16 puntos, cuando el costo de la mano de obra anual se modifica en un 10% por encima y por debajo de su valor actual. Si el costo de la mano de obra fluctúa en un 20% la TFR varía en 32 puntos. La TFR del modelo es fuertemente influenciada por la mano de obra anual.• La TFR varía en 21 puntos cuando el precio compra de la caña panelera y el factor de conversión caña-panela son aumentados o disminuidos en un 20% .Se concluye que La TFR responde medianamente a cambios en el precio de compra de la caña panelera y el factor de conversión caña-panela.• La TFR de la utilización de la capacidad y la inversión inicial varía en 10 y 5 puntos respectivamente, cuando los valores actuales son aumentados y disminuidos en un 20% . La TFR responde levemente a cambios en la utilización de la capacidad y la inversión inicial en su respectivo orden. Figura 24. Variación de puntos de la TFR frente a cambios de mas y menos 20% de cada variable para un trapiche ajustado 9.4 Trapiche mejorado (comunitario)• La TFR tiene una variación de 25 puntos cuando el precio de venta de la panela fluctúa en un 10% por encima y por debajo de su valor actual (555. 5 Col$/ kg de panela). Si el precio de venta fluctúa en un 20% la TFR varía en 50 puntos. La TFR del modelo está muy fuertemente influenciada por el precio de venta de la panela. (Véase figura 25).• La TFR tiene una variación de 15 puntos cuando el costo de la mano de obra anual se modifica en un 10% por encima y por debajo de su valor actual. Si el costo de la mano de obra cambia en un 20% la TFR varía en 32 puntos. La TFR del modelo es fuertemente influenciada por el costo de la mano de obra anual.• La TFR varía en 11 puntos cuando la utilización de la capacidad se aumenta o se disminuye en 20% de su valor inicial. La TFR responde medianamente a cambios en la utilización de la capacidad.• La TFR varía en 7 puntos cuando la inversión inicial se aumenta o se disminuye en un 20% de su valor inicial. La TFR responde levemente a cambios en la inversión inicial. Figura 25. Variación de puntos de la TFR frente a cambio.s de mas y menos 20% de cada variable para un trapiche mejorado comunitario 9.5 Trapiche mejorado (privado)• La TFR tiene una variación de 51 puntos, cuando el precio de venta de la panela fluctúa en un 10% por encima y por debajo de su valor actual (555. 5 Col$/kg de panela). Cuando el precio de venta fluctúa en un 20% la TFR varía en 102 puntos. la TFR del modelo esta muy fuertemente influenciada por el precio de venta de la panela. (Véase figura 26).• La TFR tiene un com portamiento similar cuando el factor de conversión cañapanela y precio de compra de la caña varían en un 10% por encima y por debajo sus valores actuales. En este caso la TFR va ría en 24 y 23 puntos respectivamente. Si se supone una fluctuación del 20%, la TFR varía en ambos casos en 50 puntos. De lo anterior se concluye que la TFR del modelo está fuertemente influenciada por el factor de conversión caña-panela y el precio de compra de la caña.• La TFR varía en 24, 17 puntos respectivamente cuando los valores de la utilización de la capacidad y la mano de obra anual son aumentados o disminuidos en un 20% de su valor inicial. la TFR responde medianamente a cambios en la utilización de la capacidad y la mano de obra anual en su respectivo orden .• La TFR varía en 10 puntos cuando la inversión inicial aumenta o disminuye en un 20% de su valor inicial . la TFR responde levemente a cambios en la inversión inicial. Figura 26. Variación de puntos de la TFR frente a cambios de mas y menos 20% de cada variable para un trapiche mejorado privado . 9.6 Estufa CIPAV (12% U.C.I)• La TFR presenta una variación de 13 puntos cuando el precio de venta de la miel fluctúa en un 10% por encima y por debajo de su valor actual (1,000 Col$/ kg de panela). Si el precio de ve nta fluctúa en un 20% la TFR varía en 27 puntos. La TFR del modelo está fuertemente influenciada por el precio de venta de la miel. (Véase figura 27) .• La TFR tiene una variación de 5 puntos cuando el factor de conversión cañamiel se modifica en un 10% por encima y por debajo de su valor actual. Si el valor del factor de conversión ca ña-miel fluctúa en un 20% la TFR varía en 10 puntos. La TFR del modelo es medianamente influenciada por el factor de conversión caña -miel.• La TFR de la utilización de la capacidad de producción, la inversión inicial, la mano de obra y el precio de compra de la caña varía en 7, 6, 6 Y 6 puntos respectivamente cuando los valores actuales son aumentados o disminuidos en un 20%. La TFR responde levemente a cambios en la utilización de la capacidad instalada, la inversión inicial, la mano de obra y el precio de compra de la caña respectivamente. Figura 27. Variación de puntos de la TFR frente a cambios de mas y menos 20% de cada variable para una estufa CIPAV (120/0 de U.C.I) 9.7 Ganado lechero (razas cruzadas).• La TFR tiene una variación de 12 puntos cuando el precio de venta de la leche se modifica en un 10% por encima y por debajo de su valor actual. Si el valor del precio de venta de la leche fluctúa en un 20% la TFR varía en 23 puntos. la TFR del modelo está fuertemente influenciada por el precio de venta de la leche. (Véase figura 28).• La TFR presenta una variación de 12 puntos cuando la producción de leche varía en un 10% por encima y por debajo de su valor actual (8 It/ día-vaca). Si la producción de leche se modifica en un 20% la TFR varía en 23 puntos. la TFR del modelo es fuertemente influenciada por la producción de leche.Al observar el VPN, se concluye, que el precio de venta tiene una mayor influencia en la TFR que la producción de leche.• La TFR de la inversión, el precio de venta de los terneros y la mano de obra, varían en 11, 8 Y 7 puntos respectivamente, cuando los valores actuales son aumentados y disminuidos en un 20%. la TFR responde medianamente a cambios en la inversión inicial, el precio de venta de los terneros y la mano de obra .• La TFR del precio de caña y el precio del concentrado varían en 5 y 4 puntos respectivamente, cuando los valores actuales son aumentados y disminuidos en un 20%. la TF~ responde levemente a cambios en el precio de caña y el precio del concentrado. Figura 28. Variación de puntos de la TFR frente a cambios de mas y menos 20% de cada variable para ganado lechero (r. cruzadas) VENTAJAS DESVENTAJAS• Mano de obra familiar Capital humano• Requiere mano de obra con bajo nivel de escolaridad• Demanda estable • Tamaño del mercado limitado• Precios estables a nivel regional• En Caldono la panela tiene • Tecnología no apropiada un mejor precio de venta para el desarrollo de nuevos• La panela es 100% natural productos que exige el • Mano de obra familiar• Requiere mano de obra con Capital humano bajo nivel de escolaridad• Genera mano de obra en la reqión • Demanda estable• Nivel fuerte de competencia • Precios estables a nivel regional y nacional• La panela es 100% natural • Requiere manO de obra con bajo nivel de escolaridad• la miel es 100% natural• Producto en etapa de • Bajo nivel de competencia a introducción al mercado nivel regional y nacional (riesgo). Aspectos de• Miel, buen precio de venta en • El diseño de la estufa permite contaminen las mieles que utilizar otros combustibles ahí se producen (ACPM o Bagazo).• Cercanía del trapiche a la• El acceso a la materia prima materia prima se dificulta porque la estufa Materia prima e necesita una oferta de insumos 87,721 kg de caña anuales, donde actualmente hay 33 600 kg en barreras • I nd icadore s de rentabilidad• I nve rsión inicia l alta• Alto pr ecio del concent ra do leche ro• Buena produ cció n de lec he • Introd ucción de razas poco para el prom edio de la región comunes en la región • Mano de obra familiar• Requiere mano de obra con Capital humano bajo nivel de escolaridad• Se decida poco tiempo al cuidado de las barreras• La caña panelera es 100% • Cultivo con un ciclo de Aspectos de natural producción largo de 15 a 18 mercadeo meses.• Inversión inicial muy baja • Bajo nivel de competencia a nivel regional• Producto tradicional• I nvers ió n inicial medio al ta , • Indi cad o res de rentabilidad co n posi bilida des de qu e sea negativos Aspectos financieros menor• Costo de alimentación m ás bai o• Razas adapt adas a la región • Ganad o co n baja producci ón • Según la comparación de la matriz de parámetros financieros, las diez alternativas se dividen en dos grupos; uno de ellos, se refiere a las opciones que más se acercan al perfil ideal, al que pertenecen la estufa CIPAV (30% U.c.!), el ganado lechero de razas cruzadas, trapiche mejorado privado, estufa CIPAV (12% U.C.I) y el cultivo de caña en barreras vivas para venta a trapiches mejorados. El otro grupo es el que más se aleja del perfil ideal, al que corresponden: el trapiche mejorado comunitario, el cultivo de caña en barreras (actual) , ganado lechero (razas criollas), el trapiche ajustado y el trapiche tradicional en su respectivo orden.• Desde el punto de vista financiero, la opción que más se acerca al perfil ideal para un productor de barreras, es la estufa CIPAV, cuando se utiliza al menos el 30% de la capacidad instalada.• La opción más alejada del perfil ideal es el modelo de trapiche tradicional.• De los cuatro trapiches planteados como alternativas de esta investigación, el trapiche de tecnología mejorada de manejo privado es el que más se acerca al perfil ideal. Esta afirmación es cierta, teniendo en cuenta que en el estudio del trapiche mejorado comunitario no se ha incluido en la rentabilidad, el impacto social traducido en ingresos, para los productores que llevan la caña al t~apiche.• A pesar de existir dos alternativas de trapiches con el mismo nivel tecnológico (mejorado), la diferencia en el manejo organizativo, hace que el comunitario se salga de las opciones que se acercan al perfil ideal.• El modelo de estufa CIPAV (12% de U.C.I) se encuentra entre el grupo de las opciones que se acercan al perfil ideal; además, se puede iniciar con la oferta de caña en barreras vivas que existe actualmente en la zona.• Continuar con la siembra de caña en barreras vivas para venta a trapiches tradicionales, se aleja del perfil ideal y no es rentable.• El cultivar caña en barreras vivas para vender a un trapiche de tecnología mejorada es una opción que se acerca al perfil ideal y es una solución a corto plazo.• La producción de leche tiene una alta influencia en la rentabilidad del negocio. Esto se confirma, al comparar los modelos de ganado lechero; mientras que el modelo de razas cruzadas (8 It leche/día) presenta un acercamiento al perfil ideal de negocio para el productor, el negocio de la producción de leche con ganado criollo (4 .5 It leche/día) no es recomendable para los productores.• Las opciones no se deben estudiar desde el punto de vista financiero solamente, sino analizar otros aspectos como los ambientales, organizativos, de mercadeo, tecnológicos y sociales.• El esquema utilizado actualmente por los agri cultores en la venta y comercialización de la caña panelera sembrada en barreras vivas del Municipio de Caldono , no es rentable. Esta afirmación es valida teniendo en cuenta que en el modelo financiero, no se ha incluido las ventajas económicas y de sostenibilidad a largo plazo, de un productor que implementa barreras vivas en su finca ; sino solamente se incluye el efecto a corto plazo por la venta de la caña (ingresos inmediatos) .• Actualmente los productores que siembran caña en barreras vivas pierden el bagazo, por el arreglo al que llegan con los trapiches . Con estas alternativas el bagazo puede ser utilizado como combustible en sus propios trapiches o en el caso de la estufa CIPAV, se le da otros usos y genera ingresos extras al proyecto.• Los agricultores pueden seguir cultivando y vendiendo la caña en barreras vivas, pero deben asociarse y vender su producción a los trapiches de tecnología mejorada en la zona; la dificultad radica en que se presenta desconocimiento por parte de los productores sobre esta alternativa y sobre la importancia de aumentar el área sembrada de caña en barreras.• Con la opción de vender la caña a trapiches de tecnología mejorada, el agricultor continua co n el ciclo de perder el bagazo .• La opción de la estufa comunitaria CIPAV utilizando el 30% de la capacidad instalada es atractiva cuando se agrupan a los productores que siembran caña en barreras vivas y manejan adecuadamente la logística del modelo. También se considera atractiva por requerir una baja inversión, tener indicadores de rentabilidad positivos, brindar la posibilidad de aprovechar los diversos usos que ofrece la estufa y tener la posibilidad de usar otros combustibles; sin embargo, presenta dificultades a nivel del mercadeo ya que la miel es un producto nuevo en etapa de introducción y requiere inversiones en promoción.• El uso de aceite quemado como combustible en la estufa CIPAV disminuye los costos de producción y el productor puede dar otros usos al bagazo de la caña; sin embargo, aún no se tienen datos sobre el nivel de contaminación que genere tanto al ambiente, como a los alimentos que ahí se preparen.• La mano de obra requerida en el modelo de ganado lechero de razas cruzadas y estufa CIPAV para las labores de producción, es de bajo nivel de escolaridad, pero para que se lleve a cabo un buen funcionamiento es recomendable una persona que tenga habilidades en administración.• A pesar que el modelo CIPAV (12% de U.C.I) se puede iniciar con la producción de caña actual, se encuentra entre las opciones cercanas al perfil ideal, la rentabilidad y el acercamiento al perfil aumenta cuando se utiliza el 30% de la U.c.l.• La opción del trapiche de tecnología mejorada es interesante desde el punto de vista financiero y de mercadeo, ya que presenta los indicadores de rentabilidad más altos en comparación con las otras opciones y la panela posee una demanda estable; pero se considera que el valor de la inversión y el abastecimiento de la caña requerido para sostenerse, se sale de las manos de lo que un grupo de productores rurales pueda ofrecer.• La opción del trapi che tradicional no se considera atractiva desde el punto de vista financiero, tecnológico, ambiental ni de mercadeo. Presenta tres características que lo pueden hacer importante para un grupo de productores, como son: a) requiere de baja inversión, b) tecnología que representa un saber-hacer tradicional c) representa una tecnología de fácil aprendizaje y manejo.• El alejamiento de la opción de trapiche de tecnología mejorada comunitaria hacia el perfil ideal, se debe a que se mira desde un punto de vista empresarial.• La mayoría de tecnologías de trapiches, a excepción de la tradicional, requieren de una persona que tenga conocimientos administrativos, debido al volumen de personal y de producción de panela que se maneja.• El proyecto de ganado lechero de razas cruzadas se considera una opción interesante como alternativa para el uso de la caña, ya que presenta indicadores de rentabilidad positivos, utiliza baja cantidad de mano de obra y se considera que la leche tiene un mercado estable. Para llevar a cabo este modelo hay que conseguir una inversión considerable e introducir razas mejoradas que no están adaptadas a la zona.• Para un grupo de productores, invertir en ganado de raza criolla o nativa alimentado con caña en barreras vivas no es rentable, ya que estas razas tienen baja capacidad de producción de leche. Sin embargo son razas adaptadas a la zona y se requiere de una inversión mas baja que las razas cruzadas .• Las alternativas planteadas requieren un aumento del área de caña por agricultor, y por número de fincas en la zona. El modelo que más requiere un incremento del área de caña, es el modelo de trapiche de tecnología mejorada.• Es indispensable que se implemente un aumento en el área sembrada de caña (condición), para que se puedan ejecutar las opciones planteadas en esta• Se debe fomentar a los productores, a aumentar el área de caña sembrada en barreras vivas; enseñándoles de una manera didáctica cómo aumentan sus ingresos con el cultivo, si aumentan el área sembrada. Esto sin perder la orientación de conservación de los suelos. También se debe promover el incremento de los agricultores que siembran barreras vivas en sus fincas.• Se recomienda a los productores agremien para poder fortalecerse recomendadas en este trabajo.de barreras vivas que se asocien o se y realizar las alternativas empresariales• Para las instituciones que han apoyado el cultivo de caña en barreras vivas, sería conveniente reconocer que el nivel de adopción de estas técnicas de conservación de suelos está ligado con los ingresos que pueda generar a corto plazo al productor; y así encaminar su metodología de apoyo al productor que quiere conservar el suelo, pero necesita tener un sustento de vida diario.• Para facilitar que se lleven a cabo las alternativas planteadas y que sean sostenibles a largo plazo, es importante ofrecer una promoClon y apoyo a nivel de creación y fortalecimiento de agroempresas a los productores rurales (sobretodo en la fase de mercadeo y organización).• Este trabajo se debe tomar como punto de partida para la selección de la alternativa más atractiva del portafolio de opciones; sin embargo, la selección es eficiente en la medida en que los agricultores participen en la toma de decisiones.• Es recomendable continuar con los talleres de retroalimentación a los Pequeños Productores Rurales, y realizar planes de acción entre el Proyecto de Agroempresas Rurales y la Unidad de Suelos del CIAT para que se lleven a cabo las recomendaciones planteadas.• Posterior a esta investigación se recomienda cuantificar y analizar, cuál es el impacto ambiental a largo plazo de las barreras vivas, traducido en ingresos para un agricultor, para complementar los beneficios a corto plazo que se presentan en este trabajo.• Realizar acciones colectivas con las instituciones que dan a los trapiches paneleros de tecnología tradicional la oportunidad de realizar mejoras tecnológicas. Estas acciones pueden ir encaminadas a brindar asesorías a los trapiches del Municipio de Caldono, con el objetivo de conseguir una mayor eficiencia en el proceso de conversión de caña a panela, en los trapiches cercanos a los cultivos de caña en barreras vivas. Esto se traduce en mejores prec ios de la caña panelera para los agricultores.• Es importante enseñar a los agricultores que existen otras tecnologías de trapiches diferentes a la tradicional, y que estos trapiches requieren grandes cantidades de caña para su funcionamiento. Además, que existe la posibilidad que la caña sea vendida a un mejor precio de venta. Por lo tanto se sugiere mantener conversaciones con este tipo de trapiches.• Se recomienda realizar estudios sobre los niveles de contaminación que presenta el uso del aceite quemado como combustible, en una estufa CIPAV, tanto para la atmósfera como en los alimentos que ahí se preparen.• Se recomienda a los productores que posean mejor condición económica, el implementar una estufa CIPAV en su finca y aprovechar los diversos usos que ofrece.• Cuantificar el impacto de un trapiche de tecnología mejorada comunitario para los productores, teniendo en cuenta no solamente la rentabilidad del trapiche como empresa, sino el impacto social de los agricultores.• Es conveniente que se estudien otras alternativas para el uso de la caña en alimentación animal, con otras especies diferentes al ganado, pueden ser: especies porcinas y menores.","tokenCount":"16871"} \ No newline at end of file diff --git a/data/part_3/7739129764.json b/data/part_3/7739129764.json new file mode 100644 index 0000000000000000000000000000000000000000..862149b60920a2aa559b2a6b6aff28d57a907d7f --- /dev/null +++ b/data/part_3/7739129764.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c2b638b18d0d2006409acf26929b4278","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/5ebeb5aa-c7c3-4553-8c51-8b60b1643124/retrieve","id":"1903239124"},"keywords":[],"sieverID":"48f7cda8-69b7-4b01-acc8-d0c7f73fb30e","pagecount":"18","content":"The CGIAR Research Program on Roots, Tubers and Bananas (RTB) is a partnership collaboration led by the International Potato Center (CIP) implemented jointly with the Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), the International Institute of Tropical Agriculture (IITA), and the Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), that includes a growing number of research and development partners. RTB brings together research on its mandate crops: bananas and plantains, cassava, potato, sweetpotato, yams, and minor roots and tubers, to improve nutrition and food security and foster greater gender equity, especially among some of the world's poorest and most vulnerable populations. www.rtb.cgiar.orgSeed health is a common challenge for smallholder farmers, especially for vegetatively propagated crops. An integrated seed health approach combines three key seed health management components: quality seed, disease resistant varieties, and on-farm management (Thomas-Sharma et al. 2016). The combination of these three factors that gives the best result for a given scenario can be evaluated using the seedHealth program.Planting disease-free seed is often only a short-term solution if disease is present in volunteer crops, weeds, or nearby fields. Resistant varieties are a good solution, but full resistance is often not available. On-farm management may not be sufficient alone under heavy disease pressure, but can make the difference in an integrated strategy (Figure 1). A model of seed degeneration was developed to address how these management components can work together for successful seed health management (Thomas-Sharma et al. 2017). This model is now available in an online interface for use in training about seed degeneration and for exploring the effects of management in specific systems. It is also available for more detailed study in the seedHealth R package. This user guide provides details about using these two versions of the model.These models are designed to support training and decision-making by researchers, policy makers, and personnel implementing projects to improve seed health and crop productivity. The online model is designed for simpler use without the need for using the R programming environment directly.The seedHealth package can be used to evaluate the likely disease and yield outcomes for specific systems and user groups (e.g., gender or age groups), when sufficient data are available about seed degeneration rates and responses.The seedHealth package can be used for decision-support modeling by users who can develop or access estimates of seed degeneration rates for their systems.The seedHealth model simulates disease buildup and yield loss to disease across seasons, based on a number of parameters describing the system. The model is explained in detail in Thomas-Sharma et al. (2017).The model can be applied with hypothetical parameter values for training or asking general questions about likely system outcomes, and Thomas-Sharma et al. ( 2017) illustrate general scenarios with the model.Questions that can be addressed using seedHealth include:What combination of clean seed, disease resistance, and on-farm management will be best for a particular location?How frequently should disease-free seed be purchased to balance maintaining yield and limiting expenses?If male and female farmers have different seed management practices, how does that affect degeneration and associated yields?Ideally, data about disease and yield would be available from replicate scenarios representing multiple types of abiotic environments, multiple varieties representing multiple levels of resistance, and multiple on-farm management strategies.In practice, the data available will generally be more limited. The seedHealth model can still be used with limited data in speculative scenario analysis. In this case, it is important to be cautious about communicating speculative model results, where communication should include information about levels of uncertainty.Projects may choose to take a model of seed degeneration based on somewhat limited data inputs, and test and refine it in work with farmers to test and improve recommendations such as the best frequency of quality seed purchase.The data available from each individual experiment will tend to have a unique structure. Based on the data available, seedHealth parameters can be estimated for input in the model.The initial presentation of the seedHealth model by Thomas-Sharma et al. ( 2017) includes a set of general examples illustrating the potential interactions between key parameters determining outcomes for crop health and yield.The seedHealth model was used to evaluate potential outcomes for a sweetpotato seed system in Tanzania (Ogero et al., 2019). The integrated seed health approach was also used to evaluate recommendations for the potato seed system in the Republic of Georgia (Andersen et al., in review).The seedHealth model can also be used in combination with other tools in the seed system toolbox (Andrade-Piedra et al., 2020). For example, it can be used to describe seed degeneration within nodes in an impact network analysis (Garrett et al., 2018;Garrett, 2020).When mapped data layers for parameterizing the seedHealth model are available, there is the potential for applying management performance mapping using the model (Buddenhagen et al., 2020). Another potential application is for evaluating the effects of phytosanitary thresholds on disease loss (Choudhury et al., 2017).The online interface for using the seedHealth model (Figure 2) is available through a link at garrettlab.com/seedhealth This interactive interface for running the seedHealth model evaluates and plots 100 realizations of the model by default. The plots illustrate yield loss (%) across seasons. There are 13 arguments that can be entered and modified in the input boxes, to automatically update the plot and evaluate the effects of new values on the outcomes across time. The following parameters are used in the seedHealth model. The parameter names (such as pHSinit)needed when using the R package directly are included in this list for reference, although these are not needed when simply using the online interactive interface.The initial proportion of healthy seed (numeric between 0 and 1; pHSinit) with default 0.8 for the first planting season.Total number of plants in the initial season (positive integer; Kx) with default 100 for evaluating a small plot.External inoculum around farm (50 = high level of external inoculum, 0 = absence of external inoculum) can be thought of in terms of how many equivalents of the location in question are providing inoculum. For example, if there are three other fields of similar size nearby, the value would be 3.Maximum seasonal transmission rate (betax) the maximum rate of disease transmission during the growing season when there are no limitations for disease to spread, assumed to stay the same from season to season in this model.Environmental effect on transmission rate can be generated as a truncated normal variable by specifying the mean (wxtnormm; between 0 and 1) and the standard deviation (wxtnormsd).Host effect on transmission rate (hx; between 0 and 1) is the host susceptibility with value 1 indicating 'complete susceptibility' and value 0 indicating completely immunity.Management effect on transmission rate the effect size of vector and weed management is generated by specifying the mean (mxtnormm; between 0 and 1) and the standard deviation (mxtnormsd) for a truncated normal distribution.Roguing effect the effect of removing diseased plants is generated by specifying the mean effect size (axtnormm; between 0 and 1) and standard deviation (axtnormsd) for a truncated normal distribution.Reversion rate (rx; between 0 and 1) the reversion in infected plants expressed as the proportion of diseasefree seed produced by diseased plants (1=only healthy seed produced by an infected plant, 0=only infected seed produced by an infected plant)The proportional selection against diseased plants as part of a program of positive or negative selection. The effect of plant (seed) selection is generated by specifying the mean (zxtnormm; between 0 and 1) and the standard deviation (zxtnormsd) for a truncated normal distribution. A value 1 indicates random selection and 0 indicates complete selection against diseased plants.Seed production rate in healthy plant (gx; positive integer) denotes the number of seed produced per healthy plant.The proportional seed production rate in diseased plants (cx; between 0 and 1) is the differential seed production, where 1 indicates no difference in seed production between healthy and infected plants and value 0 indicates no seed production in diseased plants.The proportion clean seed purchased (phix; between 0 and 1) denotes the proportion of certified seed usage for the initial season with value 1 indicating only certified seed used and value 0 for no certified seed used.The proportion healthy plant number cutoff (HPcut)numeric or numeric vector) selected.Proportion healthy seed cutoff (pHScut)numeric or numeric vector) selected.Maximum attainable yield (maY) the maximum attainable yield at the end of a season, in the absence of disease.Minimum yield (miY) the minimum yield when all plants are diseased (useable yield despite disease).Yield decline (thetax) the rate of decline of yield with increasing disease incidence.This section is designed for users who would like to go beyond the online interface to use the R package more directly, and potentially modify the code for their specific interests.The seedHealth R package can be read from GitHub using the following commands in R.install.packages(\"devtools\") library(devtools) devtools::install_github(\"GarrettLab/seedHealth\") library(seedHealth)Updates about the code and new vignettes and other information will be available at garrettlab.com/seedhealth. Following is a summary of the main functions in seedHealth, and more information is available through the R package documentation.The function onesim evaluates seed degeneration (proportion diseased seed, end of season yield loss, etc.) in consecutive seasons based on entry of parameter values as described above for the online interactive interface.For onesim output, the first element of the output list is a data frame with 14 variables and with rows representing the seed degeneration status across the number of seasons specified. The second element includes more information about the last season.The same plot produced by the online interface can also be produced in R using the onesim_plot function (Figure 3). By default onesim_plot evaluates 100 realizations over time for one set of values of the arguments. An The output of multipar is a tibble (using the R tidyverse) with the number of rows equal to the total number parameter combinations. In each row is the corresponding output for one parameter combination.Function multipar_plot generates two plots of the output from multipar, showing how yield loss after the specified number of seasons compares across parameter values for the proportion healthy seeds and the level of disease-conduciveness of weather (Figure 4). An integrated seed health approach can provide a framework for improving seed health management, by drawing on multiple potential management components: quality seed, resistant varieties, and on-farm seed health management. The seedHealth online interface and R package evaluate the likely crop health and yield outcomes of scenarios for seed health management, to support decision making by project implementers and policy makers.These tools are designed to complement other tools in the toolbox for working with root, tuber and banana seed systems (Andrade-Piedra et al., 2020).degeneration: Informing an integrated seed health strategy for vegetatively propagated crops.Phytopathology, 107, 1123-1135. https://doi.org/10.1094/PHYTO-09-16-0340-R","tokenCount":"1772"} \ No newline at end of file diff --git a/data/part_3/7740557192.json b/data/part_3/7740557192.json new file mode 100644 index 0000000000000000000000000000000000000000..85f42124f2b902af430f09b74ddaa9b017a14517 --- /dev/null +++ b/data/part_3/7740557192.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"350a859d1098a393db49f3f0953319d5","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/7e58d352-3fb2-40ee-bb40-d1ab27c85ec6/retrieve","id":"-952160934"},"keywords":[],"sieverID":"c3b8ce6d-b1cb-4cf6-878e-02cc5b30a0a3","pagecount":"26","content":"Program strategy and objectives STRATEGY (In response to): • ILRI livestock agenda • CGIAR research programs (CRPs) • AU/NEPAD African Biosciences Initiative (ABI) S&T strategy • African NARS needs and priorities • Africa's agriculture development plans and priorities at Continental and regional level (CAADP, S3A, ASARECA, CORAF) • Development of strategic collaborations between African NARIs/universities and world leading research institutions and Universities• AU/NEPAD -Africa Biosciences Initiative (ABI): Creation of four regional networksThe mission is achieved through the program's contribution to:• Enabling research to harness the potential of the biosciences to contribute to increasing agricultural productivity, improving food and nutritional safety and security. ","tokenCount":"102"} \ No newline at end of file diff --git a/data/part_3/7747864408.json b/data/part_3/7747864408.json new file mode 100644 index 0000000000000000000000000000000000000000..0036da3312c5eab4c4a3683bd91023a2212fdacb --- /dev/null +++ b/data/part_3/7747864408.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"fc2e3389aa72184a0743591419724549","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/a0b79c87-cca2-43b4-b9a6-b45f7979fcb2/retrieve","id":"-49565526"},"keywords":[],"sieverID":"d9e761de-9a8f-4dee-81b1-c504452b674d","pagecount":"2","content":"By the end of the third year, the project has directly reached 207,267 households with OFSP and other 144,105 households indirectly in partnership with the Government of Rwanda and other partners. Decentralized vine multipliers (DVMs) have sold vines worth US $411,529. Farmers have sold sweetpotato roots worth US $114,250. It is estimated that the beneficiaries reached by the project have produced and consumed 14,296 tons of OFSP roots.What is the Problem? Significant investment in Rwanda's agricultural sector has played an important role in the rapid and sustained economic growth which the nation has witnessed in recent years. This growth has benefited millions of smallholder farmers and contributed to the steadily declining poverty rate throughout the country. Despite these advances, however, the incidence of poverty remains stubbornly high. This is especially true of rural areas, where 24% of the population -classified as \"ultra-poor\" -have difficulties meeting their basic needs. Moreover, malnutrition remains widespread and it is estimated that 39% of children under the age of five are deficient in vitamin A and the stunting rate is still 38% national average. Therefore, a comprehensive response is thus required to address rural poverty and malnutrition challenges. Approaches that combine interventions from a range of agricultural, economic, health, infrastructure, and social service sectors are key if Rwanda is to make further progress. Nutrition-oriented agricultural development can make significant contributions given the pivotal role of agriculture as the main source of food and income for the rural households estimated to be 70% of the total population. This is critical, since ensuring household food and nutrition security remains a priority for the Government of Rwanda.Feed the Future Rwanda Orange-fleshed Sweetpotato (OFSP) for Income and Nutrition Activity has been a three-year project (October 2015 -September 2018) financed by USAID and implemented by the International Potato Center (CIP). The project goals were to reach 200,000 households and 245,000 children under 5 years in ten districts of Rwanda. The project was to contribute to inclusive agricultural sector growth, income generation and improved nutritional status of women and children though the promotion of OFSP production and consumption. Local implementing partners, working closely with local authorities, community health workers and agricultural extension staff selected beneficiary households with children under five years old or pregnant woman as part of the project interventions. CIP with its partners strengthened OFSP vine multiplication, distribution, and demonstrations. As part of the \"pull\" strategy, the project engaged in nutrition education and counseling campaigns. Therefore, the project strengthened sector-wide human and institutional capacity for nutrition-sensitive and market-oriented agricultural development. It also fostered linkages with the health and nutrition sector at national and local levels. The project increased the demand for OFSP though public awareness campaigns and technical support to food processors to include OFSP as an ingredient in their existing and new products.The project activities were implemented in the Feed the Future zones of influence in ten targeted districts in Rwanda. These are Gatsibo, Bugesera, Burera, Musanze, Rubavu, Ngororero, Rutsiro, Karongi, Nyamagabe, and Nyaruguru. What did the project achieve? By August 2018, the project had reached 207,267 households directly with OFSP vines, nutrition and agronomic messages. Through partnerships the project also reached additional 144,105 households indirectly in partnership with the Government of Rwanda and other partners. Therefore, a total of 351,372 new households in three years have started growing OFSP. With an average household size of 5 members of the households, the project has therefore reached at least 1.7 million individuals out of the 12.2 million persons in Rwanda. That is about 14% of the total population. The estimated area covered under OFSP due to the project invention is 1,580 hectares. The project established 41 Decentralized Vine Multipliers (DVMs) in 10 districts. These DVMs sold vines worth US $411,529.36. The root producers sold sweetpotato roots worth US $114,250. Households consumed approximately 14,296 tons of OFSP roots (Fig. 2). A total of 162 partners and other USAID funded projects' agronomists were trained on OFSP agronomic practices. Additionally, 21 processors working with the project and other USAID funded projects were trained on how to process different products using OFSP puree (Doughnuts, Cakes, Breads and Biscuit). Six of them have already started incorporating OFSP in their normal baked products.The project also reached 247,497 children via nutrition trainings and counselling for their caregivers (Fig. 3). This has been possible through the training of 454 community health workers (CHWs) and other nutritionists on nutrition sensitive programing and key concepts on mother and infant and young child nutrition (MIYCN). The trained CHWs have been training beneficiaries through groups. However, some selected households were visited at home for more intensive nutrition counseling. Results from the indicators survey shows that 97.5% of the households used OFSP roots for home consumption and the average quantity of use was 42 Kgs per year. Thirty-eight percent of the households gave on average 25 kgs to their neighbors or friends. Delivery of improved varieties shows that yields increased dramatically from 5-7t/ha to average of 17 t/ha with Gihingamukungu giving 21 t/ha (Fig. 4). The project organized sensory consumer testing of the roots and Kabode was the most preferred variety compared to other varieties with a score of 7.06 out of a 9-point hedonic scale where 9 was the best score. ","tokenCount":"870"} \ No newline at end of file diff --git a/data/part_3/7749838158.json b/data/part_3/7749838158.json new file mode 100644 index 0000000000000000000000000000000000000000..fc0b977a06972ec6abc5173cb4cb1c8dc01759fe --- /dev/null +++ b/data/part_3/7749838158.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"5e44e963ff0fa3797e937bf7bdb06430","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/3e0968c8-17c3-40a4-b3cc-0b02f1b39e1b/content","id":"-1252882040"},"keywords":["tan spot","durum wheat","landrace","phenotypic diversity","plant height","resistance","Mediterranean","Tunisia"],"sieverID":"5107fe4d-2e02-470e-851c-78f3f3cd586f","pagecount":"20","content":"Tan spot (TS), caused by the fugus Pyrenophora tritici-repentis (Ptr), has gained significant importance in the last few years, thereby representing a threat to wheat production in all major wheat-growing regions, including Tunisia. In this context, we evaluated a Mediterranean collection of 549 durum wheat accessions under field conditions for resistance to Ptr over two cropping seasons in Jendouba (Tunisia), a hot spot for Ptr. The relative disease severities showed significant phenotypic variation from resistance to susceptibility. The correlation between disease scores over the two trials was significant, as 50% of the accessions maintained good levels of resistance (resistant-moderately resistant). Seedling and adult-stage reactions were significantly correlated. The ANOVA analysis revealed that the genotype term is highly significant at the adult stage, thus emphasizing the high genetic variability of the tested accessions. Reaction-type comparison among and between countries revealed a high diversity of TS resistance. Plant height (PH) was negatively correlated to disease scores, indicating that PH might either have a significant effect on TS severity or that it can be a potential disease escape trait. The evaluation of this collection allowed for the identification of potential diverse resistance sources to Ptr that can be incorporated in breeding programs.The Mediterranean region is known as a major secondary center of durum wheat (Triticum turgidum), the domestication of which occurred in the region 12,000 years ago [1]. The genetic evolution of durum wheat in the Mediterranean region, as well as natural and human selection, led to the establishment of Landraces, with key quality traits including agronomic, quality characteristics, and adaptation to the region's contrasting environment [2][3][4][5][6]. Durum wheat is still grown in the Mediterranean basin and North African countries (Algeria, Morocco, Tunisia, and Libya) mainly for its culinary final products, such as semolina, pasta, couscous, frike, and bourghul. North Africa produces 18.7 million tons (MT) of durum wheat, of which 1.5 MT is in Tunisia [7]. Since the 1970s, Tunisian farmers gradually abandoned landraces in favor of elite cultivars. Although, the currently cultivated cultivars are high yielding, they were found to be susceptible to multiple diseases, including tan spot, Septoria tritici blotch, and rusts [8][9][10][11]. Numerous studies evaluated Mediterranean durum wheat landraces for genetic diversity as well as resistance/tolerance accessions were planted on 13 November 2018 and 16 November 2020, in a wheat after wheat monoculture system.An augmented experimental design with unreplicated entries but replicated checks was implemented during both year trials. Plots consisted of two rows of 1 m length. Spacings between plots and blocks were 0.5 and 1 m, respectively. Four local checks were used in each block, with a total of 36 checks. The checks include varieties known to be moderate ('INRAT 100'), susceptible ('Karim' and 'Nasr'), and resistant ('Salim') to tan spot disease. The susceptible variety 'Nasr' was also planted in the middle of the block and served as disease spreader to induce infection and ensure optimal disease development and distribution among and within plots. To further induce infection, infested straw from the previous cropping seasons was incorporated into the soil with a rotary harrow. Additional straw inoculations were performed by evenly spreading freshly cut infected wheat straw over the experimental plots and disease spreader with an inoculum density of approximately 500 g•m −2 at GS10 [43]. Irrigation was also applied to ensure favorable conditions for TS development and standard wheat agronomic practices were carried out. The average of the replicated checks was used to verify the uniformity of infection and to classify the accessions tested in this study based on their levels of resistance/susceptibility (Table S2). Plant height (PH) was measured using a yardstick (in cm), at maturity, from ground level to the tip of the spike (including awns) at both 2018-2019 and 2020-2021 seasons.Weather conditions including precipitations, temperature (T) (minimum, mean, and maximum), and relative humidity (RH) were recorded over the two cropping seasons from November to May (2018-2019 and 2020-2021) [44]. Data are illustrated in Figure S2.Samples were collected from debris and leaves at different growth stages for pathogen morphological confirmation. Leaves with typical tan spot symptoms were subsequently cut into small pieces and placed in petri dishes, each containing two layers of sterile filter paper moistened with sterile distilled water. These plates were incubated under fluorescent light for 24 h at 20 • C and then transferred to darkness at 15 • C for 18 to 24 h to promote conidial production. Leaf fragments were then examined using 40× binocular magnifiers to observe the presence or absence of conidia and conidiophores of Ptr. Single conidia identified as Ptr, were transferred to V8-PDA medium (150 mL of V8 juice, 10 g of Potato Dextrose Agar, 3 g of CaCO 3 , 10 g of water agar, and 850 mL of distilled water) and incubated at 20 • C. Debris were also examined under microscope to confirm the pathogen identity.All accessions were evaluated for tan spot resistance/susceptibility under field conditions. The inoculated plants were evaluated for the severity of their reaction to P. tritici-repentis infection at GS13-GS20 [43] using a slightly modified 0-5 lesion rating scale [14]. Briefly, scores equal to 5 indicated susceptibility, while those equal to 4 indicated a moderately susceptible reaction of the genotype. Scores equal to 3 indicated a moderately resistant reaction of the genotype, while those equal or less than 2 indicated resistance. The comparison between seedling and adult growth stages resistance was crucial, as resistance expression may differ according to the plant development stage. Hence, all accessions were assessed for disease resistance under field conditions at three-four consecutive time points at the adult stage (GS55) [43] with a 7 day interval between each evaluation, over the two-year trials. These multiple observations allowed for the calculations of the area under the disease progress curve (AUDPC) and the relative area under the disease progress curve (rAUDPC). The disease progression was estimated by measuring the incidence and severity based on the double-digit scale (00-99) [45], where the first digit indicates disease incidence on the infected plants, and the second digit refers to the severity of infection. The AUDPC and rAUDPC were calculated according to the formulas shown below [46] and allowed for quantitative analyses of the temporal differences in disease progress:where: y i = disease severity at time t i ; t (i+1) − t i = time interval (days) between two disease scores; n = numbers of scoring events.where Nasr is the susceptible check of the corresponding trial.R software version 4.1.2 (R Foundation for Statistical Computing (R Core Team (2021)) [47] was used for all data analysis. Principal Component Analysis (PCA) was performed using the R package 'MASS' [48]. The determination and visualization of clusters was performed using R packages 'factoextra', 'cluster', and 'stats' [49,50]. The coefficient of correlation between variables (seedling and adult reaction, and PH) was determined with 'cor.test' function from the R package 'stats', and the analysis of variance (ANOVA) was performed with 'aov' function from the R package 'stats'.As a part of the evaluation process, infected wheat leaves and debris were collected and analyzed morphologically to confirm the presence of Ptr. The identification of typical conidia of Ptr from collected leaf samples confirmed the infection with tan spot (Figure S3), and several obtained isolates have been published in Laribi et al. [24,25]. In addition, the collected debris contained spherical black pseudothecia visible to naked eyes. The latter were smashed and further examined under a microscope for the identification of asci and ascospores of Ptr (Figure S3).The rAUDPC scores of the resistant and susceptible checks ('Salim' and 'Nasr') implemented in the experimental design were used to classify the Mediterranean wheat accessions for TS resistance under field conditions (Table 1 and Table S1). The comparison of the mean rAUDPC and standard deviation of the tested germplasm as well as the checks used in this study showed highly consistent overall disease pressure (Figure 1 and Table S2). The environmental conditions (temperature range, precipitations, and relative humidity (Figure S2)) coupled with the inoculation methodology used in this study were favorable for disease development among and within plots and blocks during both cropping seasons. The overall disease pressure for all tested accessions was similar between the two cropping seasons, similar to the disease pressure for checks (Figure 1).The comparison of the mean rAUDPC and standard deviation of the tested germplasm as well as the checks used in this study showed highly consistent overall disease pressure (Figure 1 and Table S2). The environmental conditions (temperature range, precipitations, and relative humidity (Figure S2)) coupled with the inoculation methodology used in this study were favorable for disease development among and within plots and blocks during both cropping seasons. The overall disease pressure for all tested accessions was similar between the two cropping seasons, similar to the disease pressure for checks (Figure 1). All accessions responded differentially to TS under field conditions at the adult growth stage over the two-year trials, exhibiting reactions that ranged from susceptible (S) to resistant (R) (Tables 1 and S1) (Figure 2). Our results show that 25% were resistant (R), 37% moderately resistant (MR), 22% moderately susceptible (MS), and 15% susceptible (S) in the 2018-2019 cropping season, while 9%, 50%, 28% and 13% were R, MR, MS, and S in the 2020-2021 cropping season. The number of susceptible accessions remained approximately the same from 2018-2019 to 2020-2021, while the number of resistant accessions decreased towards MR and MS reactions (Figure 2). The Pearson correlation coefficient (r) between the experiments at the adult stage was highly significant (r = 0.531, p ≤ 0.001) (Table 2), where 50% of the accessions maintained good levels of resistance (R-MR) across the two trials (Figure 2, Table S1). All accessions responded differentially to TS under field conditions at the adult growth stage over the two-year trials, exhibiting reactions that ranged from susceptible (S) to resistant (R) (Table 1 and Table S1) (Figure 2). Our results show that 25% were resistant (R), 37% moderately resistant (MR), 22% moderately susceptible (MS), and 15% susceptible (S) in the 2018-2019 cropping season, while 9%, 50%, 28% and 13% were R, MR, MS, and S in the 2020-2021 cropping season. The number of susceptible accessions remained approximately the same from 2018-2019 to 2020-2021, while the number of resistant accessions decreased towards MR and MS reactions (Figure 2). The Pearson correlation coefficient (r) between the experiments at the adult stage was highly significant (r = 0.531, p ≤ 0.001) (Table 2), where 50% of the accessions maintained good levels of resistance (R-MR) across the two trials (Figure 2, Table S1). The analysis of variance showed that the genotype is highly significant (p ≤ 0.001), indicating that the observed variation in the disease response is mainly due to the level of genetic variation between the accessions (Table 3). A moderately significant difference in disease response means between years (2019 and 2021) was revealed by ANOVA analysis. Moreover, no significant genotype × year interaction was observed (Table 3). The analysis of variance showed that the genotype is highly significant (p ≤ 0.001), indicating that the observed variation in the disease response is mainly due to the level of genetic variation between the accessions (Table 3). A moderately significant difference in disease response means between years (2019 and 2021) was revealed by ANOVA analysis. Moreover, no significant genotype × year interaction was observed (Table 3).All accessions were evaluated for seedling and adult resistance/susceptibility under field conditions during the 2018-2019 cropping season. On average, 64% and 62% of the accessions had good levels of resistance (R-MR) at both the seedling and adult stages, while 36% and 38% showed susceptible reactions (MS-S) to Ptr (Figure 3). The Pearson correlation coefficient (r) between the seedling and adult stages was highly significant (r = 0.287, p ≤ 0.001) (Table 2). The analysis of variance showed that the seedling reaction is highly significant (p ≤ 0.001), thereby indicating that the observed disease response at the adult stage is highly associated to that of seedling stage (Table 3). The same level of 69% of R-MR accessions at the seedling stage remained as R-MR at the adult stage during the 2018-2019 cropping season (Table S1). All accessions were evaluated for seedling and adult resistance/susceptibility under field conditions during the 2018-2019 cropping season. On average, 64% and 62% of the accessions had good levels of resistance (R-MR) at both the seedling and adult stages, while 36% and 38% showed susceptible reactions (MS-S) to Ptr (Figure 3). The Pearson correlation coefficient (r) between the seedling and adult stages was highly significant (r = 0.287, p ≤ 0.001) (Table 2). The analysis of variance showed that the seedling reaction is highly significant (p ≤ 0.001), thereby indicating that the observed disease response at the adult stage is highly associated to that of seedling stage (Table 3). The same level of 69% of R-MR accessions at the seedling stage remained as R-MR at the adult stage during the 2018-2019 cropping season (Table S1). The resistance levels varied between the stages of development and countries of origin (Figure 4). At the seedling stage, over 50% of accessions from all five Mediterranean countries (Algeria, France, Italy, Portugal, and Spain) had good resistance levels (R-MR) at the seedling stage, with Portugal having the highest percentage of resistant accessions (78%), followed by France and Spain (63% and 61%, respectively). At the adult stage, The resistance levels varied between the stages of development and countries of origin (Figure 4). At the seedling stage, over 50% of accessions from all five Mediterranean countries (Algeria, France, Italy, Portugal, and Spain) had good resistance levels (R-MR) at the seedling stage, with Portugal having the highest percentage of resistant accessions (78%), followed by France and Spain (63% and 61%, respectively). At the adult stage, Spain and Portugal had the highest levels of resistance, where 90% and 84% of the accessions were R and MR. In contrast, France had the lowest frequency of resistant accessions (25% R-MR). The Algerian, Italian, and Portuguese populations had a slight to-non-existent change in resistance level between the seedling and adult stages, whereas the French and Spanish populations were highly variable (Figure 4). Although a highly significant correlation was observed between seedling and adult stages reactions for the 2018-2019 cropping season (Table 2), some variability between countries was observed; for instance, accessions from France and Spain showed a variability in their disease response from seedling to adult stage while accessions from Algeria, Italy, and Portugal maintained similar levels of resistance.Spain and Portugal had the highest levels of resistance, where 90% and 84% of the accessions were R and MR. In contrast, France had the lowest frequency of resistant accessions (25% R-MR). The Algerian, Italian, and Portuguese populations had a slight to-non-existent change in resistance level between the seedling and adult stages, whereas the French and Spanish populations were highly variable (Figure 4). Although a highly significant correlation was observed between seedling and adult stages reactions for the 2018-2019 cropping season (Table 2), some variability between countries was observed; for instance, accessions from France and Spain showed a variability in their disease response from seedling to adult stage while accessions from Algeria, Italy, and Portugal maintained similar levels of resistance. A high diversity within and between countries of origin was observed when comparing the resistance levels over the two-year trials (Figure 5). ANOVA analysis showed that the origin of accessions is highly significant (p ≤ 0.001) at the adult stage over the two testing years, thereby indicating that the observed disease response at the adult stage is highly associated to the geographical origin of accessions (Table 3). The same trend was observed for accessions from Algeria and Italy that showed low variability in terms of frequencies of resistance (R-MR)/susceptibility (MS-S) levels among and between years (Figure 5). Accessions from France, Portugal, and Spain showed a variability in the frequency of resistant and susceptible reactions between years. Although populations from the latter regions had good levels of resistance, there was a shift in the frequencies of disease reactions from R to MR between years. Portugal and Spain had the lowest frequencies of MS-S accessions over the two years. Although a highly significant correlation was observed between adult-stage reactions over the two years (Table 2), a variability between countries of origin, particularly for accessions from France and Spain was noticed (Figure 5). A high diversity within and between countries of origin was observed when comparing the resistance levels over the two-year trials (Figure 5). ANOVA analysis showed that the origin of accessions is highly significant (p ≤ 0.001) at the adult stage over the two testing years, thereby indicating that the observed disease response at the adult stage is highly associated to the geographical origin of accessions (Table 3). The same trend was observed for accessions from Algeria and Italy that showed low variability in terms of frequencies of resistance (R-MR)/susceptibility (MS-S) levels among and between years (Figure 5). Accessions from France, Portugal, and Spain showed a variability in the frequency of resistant and susceptible reactions between years. Although populations from the latter regions had good levels of resistance, there was a shift in the frequencies of disease reactions from R to MR between years. Portugal and Spain had the lowest frequencies of MS-S accessions over the two years. Although a highly significant correlation was observed between adult-stage reactions over the two years (Table 2), a variability between countries of origin, particularly for accessions from France and Spain was noticed (Figure 5). When comparing the frequency of resistance (R-MR) of all accessions based on their level of improvement at both the seedling and adult stages, a high diversity was observed with regard to TS resistance. At the seedling stage, the percentage of R-MR accessions varied depending on the level of improvement from 30% for Cultivars to 73% for Accessions with unknown improvement status (Table 4). At the adult stage, the percentage of R-MR accessions varied from 18 to 85% over two years of trials (Table 4). Genetic material and Landraces had the highest levels of resistance with 85% and 49%, respectively, while cultivars had the lowest level of R-MR with 18% (Table 4). The latter results further confirmed the ANOVA analysis that showed that the Level of improvement of accessions is highly significant at the adult stage over two years (p ≤ 0.001) (Table 3). The percentage of R-MR accessions remained similar from 2019 to 2021 for all levels of improvement further confirming the significant correlation between adult responses over the two years of trials (Table 2). When comparing the frequency of resistance (R-MR) of all accessions based on their level of improvement at both the seedling and adult stages, a high diversity was observed with regard to TS resistance. At the seedling stage, the percentage of R-MR accessions varied depending on the level of improvement from 30% for cultivars to 73% for accessions with unknown improvement status (Table 4). At the adult stage, the percentage of R-MR accessions varied from 18 to 85% over two years of trials (Table 4). Genetic material and Landraces had the highest levels of resistance with 85% and 49%, respectively, while cultivars had the lowest level of R-MR with 18% (Table 4). The latter results further confirmed the ANOVA analysis that showed that the Level of improvement of accessions is highly significant at the adult stage over two years (p ≤ 0.001) (Table 3). The percentage of R-MR accessions remained similar from 2019 to 2021 for all levels of improvement further confirming the significant correlation between adult responses over the two years of trials (Table 2). In addition to the disease response, plant height (PH) was recorded to identify any association to tan spot infection. A significant variation within the collection of accessions in relation to this trait was observed (Table S1). PH ranged from 60 to 195 cm for 2019 and from 75 to 190 cm for 2021. To further investigate the effect of PH on tan spot infection, a principal component analysis (PCA) was conducted using PH and rAUDPC as parameters. The results show two dimensions of PCA, explaining 79.3% of data variance (Figure 6). The first dimension accounted for 49.4% of the variances, while the second dimension accounted for 29.9% of variances.Genes 2021, 12, x FOR PEER REVIEW 10 of 21In addition to the disease response, plant height (PH) was recorded to identify any association to tan spot infection. A significant variation within the collection of accessions in relation to this trait was observed (Table S1). PH ranged from 60 to 195 cm for 2019 and from 75 to 190 cm for 2021. To further investigate the effect of PH on tan spot infection, a principal component analysis (PCA) was conducted using PH and rAUDPC as parameters. The results show two dimensions of PCA, explaining 79.3% of data variance (Figure 6). The first dimension accounted for 49.4% of the variances, while the second dimension accounted for 29.9% of variances. Significant correlation (r = 0.605, p ≤ 0.001) was detected between PH values measured in 2019 and 2021 (Table 2). A negative, moderately significant correlation between PH and rAUDPC values was found (r = −0.086, p ≤ 0.05) for 2019, while for 2021 a negative, highly significant correlation between PH and rAUDPC values was noticed (r = −0.347, p ≤ 0.001). ANOVA analysis revealed the significant negative effect of PH (p ≤ 0.001) on adult disease reactions (Table 2).To classify the accessions, a cluster analysis was conducted and revealed the presence of three clusters (Figure 7a). The first cluster (red) included most of the accessions (287 accessions). Cluster 3 (blue) was the second largest cluster, with 191 accessions, while Cluster 2 (green) contained 71 accessions. PH ranged from 95 to 185 cm for accessions of Cluster S1).A second cluster analysis was conducted with accessions that maintained their R or S reactions over the two years of trials, in order to differentiate between them. Accessions with MR and MS reactions were eliminated from this analysis. In total, 59 accessions were clustered into three different clusters (Figure 7b). The results show two dimensions explaining 91.5% of data variance. The first dimension accounted for 59% of the variances while the second dimension accounted for 32.5% of the variances. Cluster 1 (red) comprised 20 accessions, Cluster 2 (green) contained 16 accessions, while Cluster 3 (blue) comprised 23 accessions. Cluster 3 comprised 93.5% R accessions and 6.5 % S accessions with PH ranging from 105 to 180 cm. Cluster 1 included 92.5% of S accessions with PH ranging 2). A negative, moderately significant correlation between PH and rAUDPC values was found (r = −0.086, p ≤ 0.05) for 2019, while for 2021 a negative, highly significant correlation between PH and rAUDPC values was noticed (r = −0.347, p ≤ 0.001). ANOVA analysis revealed the significant negative effect of PH (p ≤ 0.001) on adult disease reactions (Table 2).To classify the accessions, a cluster analysis was conducted and revealed the presence of three clusters (Figure 7a). The first cluster (red) included most of the accessions (287 accessions). Cluster 3 (blue) was the second largest cluster, with 191 accessions, while Cluster 2 (green) contained 71 accessions. PH ranged from 95 to 185 cm for accessions of Cluster 1, from 60 to 160 cm for Cluster 2, and from 100 to 195 cm for Cluster 3. Cluster 1 included mostly R-MR accessions across the two years of trials (277 and 243 accessions in 2019 and 2021, respectively) and no susceptible accessions. Accessions in Cluster 2 were mostly MS-S (48 and 64 accessions in 2019 and 2021, respectively). Accessions in Cluster 3 were mostly MR-MS (128 and 162 accessions in 2019 and 2021, respectively) (Table S1).A second cluster analysis was conducted with accessions that maintained their R or S reactions over the two years of trials, in order to differentiate between them. Accessions with MR and MS reactions were eliminated from this analysis. In total, 59 accessions were clustered into three different clusters (Figure 7b). The results show two dimensions explaining 91.5% of data variance. The first dimension accounted for 59% of the variances while the second dimension accounted for 32.5% of the variances. Accessions with a common name but different PI/Cltr numbers (USDA reference identifier) from the same or different countries of origin were compared for tan spot disease resistance/susceptibility at the adult stage during the 2018-2019 and 2020-2021 cropping seasons. Populations from Portugal had the highest level of resistance (R-MR) (Figure 8). Populations from Algeria and Italy had lower levels of resistance compared to populations from Portugal. Populations 'Beliouni' from Algeria, 'Giorgi and Maliani' from Italy, and 'Arrancada', 'Branco', 'Candeal', 'Durazio Molar', 'Durazio Rijo', and 'Mourisco' from Portugal maintained a good level of resistance (above 50% R-MR). Populations such as 'Oued Zenati' from Algeria and 'Gerardo' from Italy showed low levels of resistance in both cropping seasons (Figure 8). The 'Arrancada' population from Portugal Accessions with a common name but different PI/Cltr numbers (USDA reference identifier) from the same or different countries of origin were compared for tan spot disease resistance/susceptibility at the adult stage during the 2018-2019 and 2020-2021 cropping seasons. Populations from Portugal had the highest level of resistance (R-MR) (Figure 8). Populations from Algeria and Italy had lower levels of resistance compared to populations from Portugal. Populations 'Beliouni' from Algeria, 'Giorgi and Maliani' from Italy, and 'Arrancada', 'Branco', 'Candeal', 'Durazio Molar', 'Durazio Rijo', and 'Mourisco' from Portugal maintained a good level of resistance (above 50% R-MR). Populations such as 'Oued Zenati' from Algeria and 'Gerardo' from Italy showed low levels of resistance in both cropping seasons (Figure 8). The 'Arrancada' population from Portugal and 'Maliani' from Italy showed a low variability in resistance between years, while other populations, such as 'Candeal' from Portugal, showed an important resistance/susceptibility variation between the trials (Figure 8). and 'Maliani' from Italy showed a low variability in resistance between years, while other populations, such as 'Candeal' from Portugal, showed an important resistance/susceptibility variation between the trials (Figure 8). Levels of resistance/susceptibility of populations with the same common name but originating from different regions were also compared in this study (Figure 9). The population 'Raspinegro' was scored R-MR independently from the year-trial or origin of accessions. Meanwhile, the populations 'Bidi' and 'Russo' displayed a variable level of resistance and susceptibility with regard to the region of origin of the accessions (Figure 9). Levels of resistance/susceptibility of populations with the same common name but originating from different regions were also compared in this study (Figure 9). The population 'Raspinegro' was scored R-MR independently from the year-trial or origin of accessions. Meanwhile, the populations 'Bidi' and 'Russo' displayed a variable level of resistance and susceptibility with regard to the region of origin of the accessions (Figure 9). and 'Maliani' from Italy showed a low variability in resistance between years, while other populations, such as 'Candeal' from Portugal, showed an important resistance/susceptibility variation between the trials (Figure 8). Levels of resistance/susceptibility of populations with the same common name but originating from different regions were also compared in this study (Figure 9). The population 'Raspinegro' was scored R-MR independently from the year-trial or origin of accessions. Meanwhile, the populations 'Bidi' and 'Russo' displayed a variable level of resistance and susceptibility with regard to the region of origin of the accessions (Figure 9). Among the 549 Mediterranean wheat accessions tested in this study for TS resistance, 538 were also tested for STB resistance during two copping seasons (2016-2017 and 2018-2019) at the same location [42]. The Pearson correlation coefficient was highly significant (r = 0.289, p ≤ 0.001 and r = 0.328, p ≤ 0.001) for the overall STB-TS adult and STB-TS seedling, respectively. The overall results showed that these accessions were more susceptible to Ptr infection (Figure 10, Table S1).Genes 2021, 12, x FOR PEER REVIEW 13 of 21Figure 9. Disease reaction at adult growth stage of populations with a common name originating from different countries, under field conditions during the 2018-2019 and 2020-2021 cropping seasons. AD refers to adult-stage reaction. R, MR, and MS refer to resistant, moderately resistant and moderately susceptible reactions, respectively.Among the 549 Mediterranean wheat accessions tested in this study for TS resistance, 538 were also tested for STB resistance during two copping seasons (2016-2017 and 2018-2019) at the same location [42]. The Pearson correlation coefficient was highly significant (r = 0.289, p ≤ 0.001 and r = 0.328, p ≤ 0.001) for the overall STB-TS adult and STB-TS seedling, respectively. The overall results showed that these accessions were more susceptible to Ptr infection (Figure 10, Table S1). The comparison of STB and TS data showed that among the 447 accessions that remained R-MR for STB disease over the two-year trials, 222 accessions (49.66%) remained R-MR for TS over the two trials (Figure 10, Table S1). The STB resistance levels between 2016/2017 and 2018/2019 were not variable, contrary to the TS resistance levels 2018/2019 and 2020/2021, where the number of R accessions decreased and the number of MR-MS accessions increased (Figure 10).Accessions with a common name but different PI/Cltr numbers (USDA reference identifier) from the same or different countries of origin were compared for TS and STB diseases resistance/susceptibility at the adult stage during the 2018-2019 cropping season [41] (Figure 11).Populations ('Vermelejoilo', 'DurazioRijo') from Portugal, ('Bidi') from Italy and ('Raspinegro') from both Spain and Portugal had the highest level of resistance (R-MR) for both TS and STB diseases (Figure 11). The Italian populations ('Gerardo' and 'Giorgio') and Algerian populations ('Hedba' and 'Bidi') showed different levels of resistance/susceptibility for TS and STB and were more susceptible than the other populations (Figure 11). Levels of resistance/susceptibility of populations with the same common name ('Bidi' and 'Raspinegro') but originating from different regions were also compared (Figure 11). Population 'Raspinegro' was R-MR to both TS and STB independent of their origin. Meanwhile, population 'Bidi' displayed a variable level of resistance and susceptibility between the country of origin (Algeria, Italy) (Figure 11). The comparison of STB and TS data showed that among the 447 accessions that remained R-MR for STB disease over the two-year trials, 222 accessions (49.66%) remained R-MR for TS over the two trials (Figure 10, Table S1). The STB resistance levels between 2016/2017 and 2018/2019 were not variable, contrary to the TS resistance levels 2018/2019 and 2020/2021, where the number of R accessions decreased and the number of MR-MS accessions increased (Figure 10).Accessions with a common name but different PI/Cltr numbers (USDA reference identifier) from the same or different countries of origin were compared for TS and STB diseases resistance/susceptibility at the adult stage during the 2018-2019 cropping season [42] (Figure 11).Populations ('Vermelejoilo', and 'DurazioRijo') from Portugal, ('Bidi') from Italy, and ('Raspinegro') from both Spain and Portugal had the highest level of resistance (R-MR) for both TS and STB diseases (Figure 11). The Italian populations ('Gerardo' and 'Giorgio') and Algerian populations ('Hedba' and 'Bidi') showed different levels of resistance/susceptibility for TS and STB and were more susceptible than the other populations (Figure 11). Levels of resistance/susceptibility of populations with the same common name ('Bidi' and 'Raspinegro') but originating from different regions were also compared (Figure 11). Population 'Raspinegro' was R-MR to both TS and STB independent of their origin. Meanwhile, population 'Bidi' displayed a variable level of resistance and susceptibility between the country of origin (Algeria, Italy) (Figure 11). Tan spot is among the rapidly emerging diseases threatening wheat production in Tunisia and can incur important yield losses under favorable conditions for disease development. Recent studies on Pyrenophora tritici-repentis in Tunisia revealed high phenotypic and genotypic diversity of Ptr in Tunisia. Hence, phenotyping wheat populations from the Mediterranean region under favorable conditions can lead to the discrimination between resistant and susceptible accessions [14,19,24,25]. In this study, 549 wheat accessions that comprised mainly landraces from five Mediterranean countries were assessed for resistance/susceptibility to TS disease in Tunisia over two cropping seasons at the adult stage. In addition, in the 2018-2019 cropping season, these accessions were also evaluated at the seedling stage. Furthermore, the climatic conditions in the Jendouba region (Figure S2) along with the artificial inoculation with infested straws and irrigation allowed for a uniform and optimal infection distribution. A variability in reactions to TS was observed between genotypes at both seedling and adult stages; several phenotypic classes were established (R, MR, MS, and S) and novel sources of resistance to TS were identified. The comparison of seedling and adult resistance revealed a highly significant correlation, similar to a recent study by Laribi et al. [14] under the same conditions, and to other studies [51][52][53][54]. During the testing period (2018-2019), 69% of accessions remained R-MR at both growth stages; therefore, screening for tan spot disease resistance at the seedling stage can allow for the elimination of most susceptible materials, avoiding costly and lengthy confirmations of field resistance as well as allowing one to reduce the number of accessions to be further tested in replicated field trials. This significant correlation may suggest the presence of all-stage resistance sources, QTLs or genes that are present, and most likely sustainable, at all plant growth stages [55]. Although the results of seedlingadult-stage responses to TS were highly correlated, we opted to focus on adult-stage resistance on the following year trial (2020-2021), as screening accessions for both stages under field conditions is labor intensive and time consuming, besides the fact that adultstage resistance is preferred by breeders over seedling resistance as it represents a nonrace-specific resistance to TS, which is a more sustainable form of resistance [34,35]. The accessions that exhibited different reactions between seedling and adult reactions, R-MR at the adult stage but MS-S at the seedling stage, could harbor a form of adult plant resistance (APR) that confers incomplete or partial resistance in the field [56]. The ANOVA Tan spot is among the rapidly emerging diseases threatening wheat production in Tunisia and can incur important yield losses under favorable conditions for disease development. Recent studies on Pyrenophora tritici-repentis in Tunisia revealed high phenotypic and genotypic diversity of Ptr in Tunisia. Hence, phenotyping wheat populations from the Mediterranean region under favorable conditions can lead to the discrimination between resistant and susceptible accessions [14,19,24,25]. In this study, 549 wheat accessions that comprised mainly landraces from five Mediterranean countries were assessed for resistance/susceptibility to TS disease in Tunisia over two cropping seasons at the adult stage. In addition, in the 2018-2019 cropping season, these accessions were also evaluated at the seedling stage. Furthermore, the climatic conditions in the Jendouba region (Figure S2) along with the artificial inoculation with infested straws and irrigation allowed for a uniform and optimal infection distribution. A variability in reactions to TS was observed between genotypes at both seedling and adult stages; several phenotypic classes were established (R, MR, MS, and S) and novel sources of resistance to TS were identified. The comparison of seedling and adult resistance revealed a highly significant correlation, similar to a recent study by Laribi et al. [14] under the same conditions, and to other studies [51][52][53][54]. During the testing period (2018-2019), 69% of accessions remained R-MR at both growth stages; therefore, screening for tan spot disease resistance at the seedling stage can allow for the elimination of most susceptible materials, avoiding costly and lengthy confirmations of field resistance as well as allowing one to reduce the number of accessions to be further tested in replicated field trials. This significant correlation may suggest the presence of all-stage resistance sources, QTLs or genes that are present, and most likely sustainable, at all plant growth stages [55]. Although the results of seedling-adult-stage responses to TS were highly correlated, we opted to focus on adult-stage resistance on the following year trial (2020-2021), as screening accessions for both stages under field conditions is labor intensive and time consuming, besides the fact that adult-stage resistance is preferred by breeders over seedling resistance as it represents a non-race-specific resistance to TS, which is a more sustainable form of resistance [34,35]. The accessions that exhibited different reactions between seedling and adult reactions, R-MR at the adult stage but MS-S at the seedling stage, could harbor a form of adult plant resistance (APR) that confers incomplete or partial resistance in the field [56]. The ANOVA analysis revealed that the genotype was highly significant at the adult stage, which indicates the diverse genetic background of the accessions tested in this study. Accessions that were R-MR in 2018-2019 but shifted to MR in 2020-2021 could carry combinations of major/minor resistance genes. Thus, a genome-wide association mapping study of these accessions along with the accessions that maintained an R-MR reaction over the two years of trials may lead to the identification of novel APR genes/QTLs that can be effective regardless of the environmental conditions and the plant growth stage. These accessions can be integrated in breeding for tan spot resistance in areas where the fungal population is highly diverse, such as Tunisia, where races 2, 4, 5, 6, 7, and 8 were identified in addition to the recent detection of atypical isolates that were able to cause necrosis on the differential line 'Glenlea' but lacked the expected ToxA gene [14,19,24,25]. As the breakdown of resistance could occur over all levels of resistance types and growth stages, it would be crucial to pyramid minor and major genes in order to avoid such an event, especially when breeding for resistance for a fungal disease that is highly diverse. The number of resistant accessions decreased towards MR and MS reactions from 2018/2019 to 2020/2021. The precipitations, relative humidity, and mean temperature were higher in 2020/2021, which could explain the spread of symptoms and increased disease severity for TS in comparison to 2018/2019 (Figure 2, Figure S2). The Ptr-wheat interaction follows an inverse gene-for-gene model, where susceptibility results from the unique interaction between Necrotrophic effectors (NEs) and specific receptors in the host, while the lack of NE recognition by the host leads to resistance. Hence, the best strategy for breeding against tan spot disease would couple the elimination of susceptibility genes with the introgression of genes that confer resistance at all growth stages to multiple races, as illustrated in previous studies on tan spot resistance that support the involvement of several NE-host interactions that may depend on the host growth stage [34,[53][54][55]57,58]. The inheritance of resistance to tan spot is known to be both qualitative and quantitative [34,35,[59][60][61][62][63][64][65] and to date, nine major Tsr genes (Tsrl-Tsr7, TsrHar and TsrAri) have been identified [66][67][68][69][70][71][72]. As the accessions in this study were tested in a region where multiple races were identified, a quantitative form of resistance to Ptr that is non-race specific could be identified, particularly in the accessions that exhibited R-MR reactions [34,65]. Moreover, accessions with a common name but different PI/Cltr numbers (USDA reference identifier) that may be similar or different were compared in this study. The geographical origin of accessions was found to have a significant effect on adult disease scores during the two years of trials. Populations from Portugal had the highest level of resistance (R-MR) at the adult stage over the years of trials, compared to populations from Algeria, France, and Italy. In fact, all populations from Portugal maintained a good level of resistance (above 50% R-MR). Populations such as 'Oued Zenati' from Algeria and 'Gerardo' from Italy showed low levels of resistance across the two-year trials. Levels of resistance/susceptibility of populations with the same common name but originating from different regions were also compared in this study. The 'Raspinegro' population was R-MR independent of the testing season or origin of accessions, suggesting that these accessions probably have a common origin or that seed exchange occurred between Portugal and Spain. Other populations, such as 'Bidi' and 'Russo', displayed a variable level of resistance and susceptibility with regard to the country of origin of the accessions, indicating that these accessions may be different despite of their common name. Therefore, genotyping of these accessions could help in identifying their origin as well as their genetic diversity. The origin of the accessions along with the phenotypic and genotypic diversity of Ptr populations in the NWR of Tunisia [25], where this study was conducted, may have an effect on the disease response of accessions, similar to the study of Dinglasan et al. [55], where they hypothesized that the prevalence of diverse Ptr populations was a main factor influencing wheat selection pressure and that accessions with all-stage resistance genes (ASR) and APR genes had different geographical origins. In addition, a high diversity was observed when comparing the frequency of resistance (R-MR) of all accessions based on their level of improvement at both growth stages. Genetic material and Landraces were the most resistant, while cultivars were the least resistant. The analysis of variance showed a significant effect of the level of improvement of accessions on adult resistance. These finding further highlight the importance of exploitation of landraces in breeding programs for TS resistance and the introgression for novel resistance genes into modern cultivars.In addition, in this study, PH was significantly negatively correlated to adult-stage resistance, indicating that the shorter plants are the more susceptible to TS. This could also indicate an escape effect, as illustrated in the study of Muqaddasi et al. [73], as taller plants have more space between nodes, thus making the spread of conidia from lower leaves to upper leaves difficult. This suggests that selection for increased height would help in contributing to escape from TS. Many studies delt with correlation between wheat resistance to TS and PH, where conflicting results were found; while some studies concluded that there was no significant effect of PH on TS development [14,51,74,75], other studies concluded that plant height may affect TS severity [73,76]. Many factors could have contributed to these different outcomes, including the use of genetically different germplasms, the size of the panel, the conduction of these experiments in different environments, environmental or epidemiological factors, and the variable Ptr populations used in the conduction of these studies. The cluster analysis based on rAUDPC, and PH over the two cropping seasons, revealed three clusters. Cluster 1 included 96.5% and 84.7% of R-MR accessions in 2019 and 2021, respectively, while MS-S accessions were mostly included in Cluster 2 and MR-MS were mostly included in Cluster 3. These results suggest that accessions from Cluster 1 are most suitable for use in breeding programs for tan spot resistance. The second cluster (Figure 7b) included 59 accessions with R or S reaction to TS over the two years of trials, and allowed for the classification of wheat accessions into three different clusters. In total, 93.5% of resistant accessions over the two years of trials were included in Cluster 3 separately from susceptible accessions that were grouped in Clusters 1 and 2, suggesting that accessions of Cluster 3 are most suitable for use in breeding programs for TS resistance. In this study, although days of heading (DH) was not investigated, it could be a trait that may have an effect on tan spot severity, particularly given that several studies tested the effect of DH on tan spot development and reported contradictory conclusions. While some concluded that DH was no correlated to TS resistance/susceptibility [74][75][76], others suggested that DH may have an effect on TS severity [14,73]. Hence, follow-up studies could shed further light on the contribution of DH in disease development.When comparing the resistance of 538 accessions to both STB and TS diseases, the resistance levels of STB between 2016/2017 and 2018/2019 were not variable; meanwhile, the number of R accessions to TS decreased in favor of MR-MS accessions. This can be partially attributed to the homothallic nature of Ptr compared to the heterothallic nature of Z. tritici. In heterothallic fungi such as Z. tritici, sexual reproduction occurs uniquely after the mating of two strains of opposite mating types, whereas in homothallic fungi, such as Ptr, sexual reproduction can occur even within the same clone, which increases its spread [77][78][79]. Thus, the availability of compatible mating type for Z. tritici may limit its sexual reproduction and hinder overwintering survival [79,80]. Furthermore, increased disease prevalence in heterothallic fungi was shown to increase the probability of contact between the two mating types [81,82]. Meanwhile in homothallic fungi, this mechanism is absent, making critical the environmental signals triggering the production of the resting structures [79]. Indeed, in Tunisia, the occurrence of TS infection in wheat fields before STB [83], coupled with the environmental conditions (Figure S2) that are conducive to TS development, along with the homothallic nature of Ptr, could lead to a fast spread of TS and an increase in inoculum density [79,82]. Inoculum density decreases the latency period; since Z. tritici has a longer latent period (10-14 days) compared to Ptr (5-7 days) [79,82], this allows for faster establishment of TS. Therefore, the high genetic diversity and fast spread of Ptr could lead to resistance breakdown faster than that of Z. tritici. Climatic conditions were also more favorable for TS disease than STB within the studied years. In this study, almost half of the 538 accessions maintained an R-MR reaction for both diseases; these accessions can be exploited simultaneously for STB and TS resistance breeding. The overall results of this study suggest that the accessions with R-MR reaction types to TS and STB diseases can be used to identify possible novel APR genes/QTLs that confer","tokenCount":"7524"} \ No newline at end of file diff --git a/data/part_3/7777321436.json b/data/part_3/7777321436.json new file mode 100644 index 0000000000000000000000000000000000000000..836286e610ece531a0124bb1b9fb753a4ecfec0d --- /dev/null +++ b/data/part_3/7777321436.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"29d709088789d84483aef6be2397e1b8","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/b30d72bc-b855-48c1-a85d-f0c0f558b2bc/retrieve","id":"-1088425746"},"keywords":[],"sieverID":"b2706891-d195-4ae9-b2d3-cafb91a9c6a1","pagecount":"11","content":"Losses and damages from climate change have been increasing as global temperatures continue to rise above pre-industrial levels. Low-income, climate vulnerable countries bear a disproportionate share of these losses and damages. After decades of international negotiations, the Loss and Damage Fund was established in late 2022, aiming at addressing both economic and non-economic losses arising from slow-and sudden-onset climate change events. Recognizing the complex nature of climate-related events, the establishment of the Loss and Damage Fund underscores an urgent need for precise attribution of these events to climate change, highlighting the fund's reliance on scientific evidence to guide its efforts. Attribution science, which decouples specific causes of changes in climate hazards and impacts, can support loss and damage negotiations. Low-income countries, which have contributed the least to climate change, are experiencing more severe impacts. However, data quality and coverage required for scientific studies to attribute loss and damage to climate change remain limited in these developing countries. In this paper, we highlight the challenges to attribute losses and damages to climate change in developing countries and underscore strategies to overcome those challenges using examples from the agrifood sector. These strategies have implications for the operationalizing of the Loss and Damage Fund. We emphasize how improving data availability and quality can lead to rigorous scientific conclusions, supporting evidence-based, inclusive, and effective interventions. We also indicated measures that enable strengthening climate resilience to avoid and minimize losses and damages.People worldwide are increasingly experiencing the impacts of climate change from both longterm shifts and sudden onset events. The extreme conditions resulting from climate change have increasingly more pronounced impacts on both human and natural systems, resulting from greater intensity and frequency of extreme climate events, such as droughts, floods, heat waves, cyclones, and wildfires, as well as slow-onset events, such as biodiversity loss, rising temperatures, and sea level rise [1].Climate change impacts have already caused human, social, environmental, and economic losses and damages [2][3][4], defined as \"adverse observed impacts and/or projected risks [that] can be economic and/or non-economic\" [1]. Climate-related losses and damages encompass both economic and non-economic aspects [2,5], with economic losses involving markettraded resources, goods and services, while non-economic losses are often intangible and not commonly traded in markets, such as life, health, displacement and human mobility, territory, cultural heritage, indigenous/local knowledge, biodiversity and ecosystem services [6,7].The increasing losses and damages due to climate change have heightened policy dialogues on Loss and Damage, resulting in the establishment of the Warsaw International Mechanism (WIM) for Loss and Damage associated with climate change impacts at the 19 th United Nations Framework Convention on Climate Change (UNFCCC) Conference of Parties (COP) in 2013 [8]. The WIM aims to address loss and damage associated with impacts of climate change in developing countries that are particularly vulnerable to the adverse effects of climate change. Since the establishment of the WIM, countries have made significant progress in dialogues and actions to avert, minimize, and address climate-related losses and damages. At COP27, the Loss and Damage Fund [9,10] was established to assist climate vulnerable, developing countries to respond to loss and damage [11], with initial pledges at COP28 totaling 770.6 million USD. While these pledges were commended by many, they were also criticized for being insufficient when compared to the projected costs, anticipated to exceed 1 trillion USD by 2050 [12].Climate policy dialogues underscore the critical needs for an inclusive and broad range of effective, science-based solutions that can be scaled to avert, minimize and address loss and damage in developing countries [9,13,14]. Attribution science, providing quantitative insights into the contributions of both anthropogenic and natural causes of climate change, can bolster actions and dialogues on Loss and Damage [15]. This review aims to highlight developments and challenges in attributing loss and damage to climate change, and identify strategies to address these challenges in developing countries, thereby enhancing evidence-based policy decisions regarding Loss and Damage. We illustrate the importance of addressing data gaps in attribution and avoiding loss and damage using the agrifood sector as an example due to its significant vulnerability to climate change impacts.Attribution of climate change is defined as \"the process of evaluating the relative contributions of multiple causal factors to a change or event with an assignment of statistical confidence\" [16]. Building on robust methodological developments [17,18] that detect and distinguish changes in climate variables from internal variability, attribution science has rapidly advanced. These methodological developments have been extended to analyze individual and classes of extreme event(s) [19]. Since then, attribution science has progressed to the point where it is now possible to make specific attribution statements about individual events. Researchers have conducted long-term change analyses and numerous extreme event attribution studies across the globe. In this section, we briefly explore the evolution of attribution science that has informed Loss and Damage negotiations.Probabilistic event attribution (PEA) is the most frequently used attribution method. PEA allows a quantitative assessment of the extent to which human-induced climate change is affecting local weather events [20]. The methodology provides an opportunity and potential to ensure quantified accountability for loss and damage. The Storyline approach is an alternative method, defined as a \"physically self-consistent unfolding of past events, or of plausible future events or pathways\" [21]. This approach involves considering main driving factors of change and assessing their roles in a conditional manner [22]. As methodologies for attribution science evolved, this field unveiled the causal relationship between human activity and climate change. Attribution science has advanced our understanding of the causal chains within the climate system to establish the relationship between nature and humans' contributions to increasing concentration of atmospheric greenhouse gases [20]. This understanding extends to both slow-and sudden-onset climate change [23,24], and their devastating impacts on natural and human systems. This connectedness is the foundation of decades-long Loss and Damage negotiations.Climate change attribution also enabled shaping risk assessment discussions on Loss and Damage. Relating meteorological changes to the consequent loss and damage had been the focus of the Loss and Damage negotiation. Following robust developments in attribution methods, loss and damage discussions focus on impacts that are caused by only anthropogenic climate change [25].The discussions have evolved include humans influence on climate change [25], with anthropogenic factors being identifiable in various climate extremes such as heat waves, droughts, and floods [26], though not all such events can be currently attributed to human actions.The scope of attribution science has broadened to include the assessment of anthropogenic influence in observed climate hazard impacts, a field that is gaining traction. A growing body of impact attribution research is examining impacts in economic and non-economic areas, depending on the feasibility of allocating monetary values to losses and damages of climate change. Economic impacts refer to commonly traded goods and services in markets (e.g., impacts on agricultural production, see Section 3) while non-economic loss and damage refers to impacts of climate change on human and natural systems to which assigning monetary values is challenging. Examples of non-economic loss and damage include losses of life or health, territory, indigenous knowledge and identity, cultural heritage, and loss of biodiversity or entire ecosystems [27]. Studies have attributed impacts of climate change on non-economic impacts such as ecosystem health [28] and human health [29,30]. Human-induced changes in weather patterns, particularly heat waves' influence on the Vibrio emergence in Northern Europe and Lyme disease in Canada, is evidence to adverse impacts of climate change on human health. Observed changes of adverse health outcomes both in rates and geographic are associated with climate change [29,30]. In addition, human-induced unusual meteorological conditions in the Iberian Peninsula during winter and spring of 2015/16 contributed to unusually high anomaly in vegetation greenness, which is a proxy indicator for ecosystem productivity [28]. Studies have underscored that anthropogenic climate change disproportionately affects vulnerable countries. For instance, Smiley et al. [31] found that, among different socioeconomic classes within the spatial coverage of Hurricane Harvey, vulnerable populations are disproportionately affected by climate change-attributed impacts. Although attribution science has significantly evolved in recent decades, it has not kept pace with the increasing demand to attribute losses and damages in the regions that are already experiencing devastating impacts of climate change, particularly in the Global South.Attributing long-term and sudden-onset changes in the climate requires reliable observational data that are lacking in most of the developing countries. When available, data are often incomplete, spatially scarce, and have insufficient temporal coverage, which hampers reliably evaluating model simulations for attributing loss and damage. Despite progress towards operationalizing climate modeling that is more suited to the evolving needs of society, developing countries encounter obstacles in accessing and utilizing high-resolution, convective-permitting climate models [32]. Some of the state-of-art models running at high resolution (4.5 km) offer more accurate representations of hourly rainfall characteristics compared to the coarser 25 km resolution models that use convection parameterization. The convection-permitting models have the ability to predict future increase in the length of dry spells over West and Central Africa in the future [33]. The general lack of data limits model simulations, leading to inaccuracies in risk estimation and loss and damage attributions.Scientific attribution studies also require reliable climate models and databases. Their limited availability has resulted in a geographic bias in the distribution of climate hazard attribution studies, with a notable dearth in developing countries [34]. Since 2003, several climate events such as heat waves, droughts, and floods occurred in developing countries. However, the disparities in available data and the absence of suitable tools for data collection in these regions have limited our understanding of these events [34]. Decisions on Loss and Damage require bridging the data and technological gap to foster the development of the necessary dataset and models for attribution.There remains a pressing need to comprehend the impacts of climate change across various sectors and scales, ranging from national to subnational, and across temporal spans to capture all dimensions of economic and non-economic losses, including political and social aspects within developing countries. To date, the available data and advancements in loss and damage attribution in developing countries do not show the exact magnitude of direct impacts of climate change on different sectors. However, impact assessment studies have clearly indicated that agrifood systems are amongst those most heavily affected by climate change and variability [35]. For this reason, we use the agrifood sector as an example to highlight sector-specific losses and damages (in Section 3.1) as well as strategies to avoid or minimize such losses and damages (in Section 4).Globally, there is a growing willingness to share climate-related data that can improve models and broaden data access for developing countries for their adoption. Yet, the tools for such data sharing must be tailored and scaled appropriately, and there is a need to build capacity for their effective use in tackling loss and damage within these countries [12,36].Climate change and variability have extensively impacted agrifood systems. Adverse impacts of climate change on the agrifood sector exacerbate food insecurity, particularly in the Global South. This sector is highly vulnerable to climate change due to several limitations such as relying on rainfed practices. As a result, the agrifood sector is particularly vulnerable to extreme weather events like droughts and floods, which have resulted in significant losses, thus leaving millions of people under stress, crisis, emergency, and famine every year [37,38]. In the past 30 years, 3.8 trillion USD worth of crops and livestock production have been lost due to climate-related events [26], equivalent to 5% of the annual global agricultural gross domestic product (GDP) [26]). The agrifood sector employs about 50% of workers in developing countries [39], including 500 million smallholder farmers who produce one third of the world's food yet are among the world's most climate-vulnerable. Consequently, the agrifood sector's dual role as a contributor to and a victim of climate change necessitates prioritized consideration within the Loss and Damage agenda.Investment in agricultural research has played a substantial role in enhancing agricultural productivity across different parts of the world [40]. Yet, progress in enhancing agricultural productivity in other parts of the world has stymied [41] in large part due to the observed above 1˚C increase in global temperature which shifts rain belts and limits moisture availability through enhanced evapotranspiration [1,42,43]. With different levels of confidence, IPCC's Sixth Assessment Report (AR6) indicated that anthropogenic climate change has contributed to increasing adverse impacts on water availability and food production resulting in losses in crop production, livestock health and fisheries, with implications on human health and wellbeing [1]. The temporal evolution of the frequency of climate-related food production shows an increasing loss in crops, livestock, fisheries and aquaculture over the last decades [1].Studies conducted on the yields of major cereal crops (wheat, maize, and barley) showed that climate change-induced warming caused losses of 5 billion USD per year, during 1981 and 2002 [44]. Comparatively, global production of maize and wheat has decreased by 3.8% and 5.5%, respectively, from 1980 to 2008, when assessed against a no-anthropogenic climate change scenario [45]. Moore et al. [46] extended these findings, showing a 5.7% annual reduction in global calorie production from maize, wheat, and rice since 1960, attributed to anthropogenic climate change [46]. However, such attribution studies largely focused only on major cereal crops, which only account for about 20% of agriculture's global net production value [47,48].The broader implications of climate change on agriculture are further underscored by the work of Ortiz-Bobea et al. [49] who examined the effect of anthropogenic climate change on agricultural total factor productivity (TFP). TFP-a measure of the aggregate output produced per unit of aggregate input-reflects the efficiency of agricultural production. It is determined by technological knowledge, the effect of weather (average temperature and total precipitation), and observed and unobserved inputs. According to Ortiz-Bobea et al. [49], anthropogenic climate change is responsible for about 21% decline in global agricultural TFP since 1961. This reduction is even more pronounced in the tropics, including regions like Africa, Latin America, and the Caribbean, where the slowdown in TFP growth ranges between approximately 26-34%. This highlights the disparate impact of climate change on agricultural productivity across different climatic zones, with tropical regions bearing a disproportionately higher burden.As the global community grapples with the escalating impacts of climate change, the concepts of adaptation and loss and damage emerge as complementary yet distinct aspects of the broader climate action framework. Adaptation strategies aim to mitigate the risks and reduce the vulnerability of communities to climate change, focusing on pre-emptive measures. However, the reality of exceeding adaptation limits has brought the issue of loss and damage to the forefront, highlighting the need for specific approaches to address the inevitable impacts that surpass adaptation capacities.The establishment of mechanisms like the Warsaw International Mechanism for Loss and Damage under the UNFCCC framework reflects a growing acknowledgment of these inevitable impacts. This approach encompasses both economic and non-economic losses, addressing the immediate and residual effects of climate change events that adaptation measures cannot fully prevent or mitigate. In the early days of the UNFCCC, there was concern that the increasing attention to adaptation in the climate agenda would detract from mitigation efforts [50]. Climate negotiators soon recognized both mitigation and adaptation are needed. The same is true for adaptation and loss and damage. While there are limits to adaptation that cause some losses and damages to be unavoidable, adaptation is still undoubtedly necessary to minimize and avoid losses and damages in the first place. This section explores how strategies for addressing loss and damage can be effectively integrated with ongoing adaptation efforts for both planning and post-event recovery, using examples from the agrifood sector. We highlight the synergies between these approaches and emphasize the importance of a cohesive strategy that includes financial mechanisms, policy support, and equity considerations to assist those most affected by climate change.Climate service involves \"the production, translation, transfer and use of climate knowledge and information in climate-informed decision-making and climate-smart policy and planning\" [51]. Challenges in data availability can be improved through investing in timely observational data collection, digitization and access; enhancing climate data translation and transfer; building capacity of local stakeholders, and building trust among regional, national, and institutional stakeholders to share the best available data.Delivering demand-driven and policy-relevant climate information at a national and regional level can accelerate data availability. Digital climate service platforms have been used to provide country-specific early warning and agro-advisory services in countries such Angola, Colombia, Guatemala, Ethiopia, Malawi, Peru, Tanzania, and Zambia [52]. Successful collaborations with national meteorological institutions enable the utilization of national data together with scientific global tools to produce the required climate information to support countries to minimize climate-related loss and damage.Nevertheless, climate services should be improved and scaled to enhance data quality and availability which can support evidence-based Loss and Damage decision making. Improvements include making climate information relevant for decision-making [53], enhancing collaboration between scientists and target users [54], developing tools for climate monitoring [55], and enhancing access to institutional data repositories and databases for climate hazards to provide data for Loss and Damage decisions and interventions.The robustness of observation-based attribution results in data scarce regions can be assessed using reanalysis [56] and remote sensing [57]. Non-commercial and commercial climate-related remote sensing data, which also covers developing countries has been available since the 1980s. Some climate variables have over 30 years of historical records, which can be used to complement observational data gaps in data-scarce parts of the world. Advancing utilization of these resource-efficient technologies enables monitoring long-term climate change and climate hazards as they unfold, as well as non-climate drivers of hazards [58]. Combining these spatial technologies with smartphones can improve timely data collection on extreme events and inform Loss and Damage decisions [59].IPCC defines Resilience as \"the capacity of social, economic and environmental systems to cope with a hazardous event or trend or disturbance, responding or reorganising in ways that maintain their essential function, identity and structure while also maintaining the capacity for adaptation, learning and transformation\" [1]. Enhancing climate resilience is one of the efficient ways to minimize and avert loss and damage. Adaptation approaches, such as transformative adaptation options, enable significant changes in structure or function beyond adjusting existing practices, allowing large-scale adoption, new strategies, and the transformation of places. Transformative adaptation embraces the systemic inclusion of social equity, enabling comprehensive, multidisciplinary, and inclusive approaches to address economic and non-economic loss and damage. This enhances the use of new strategies, models, digital tools, and processes with attention to social equity to comprehensively plan and implement adaptation actions. The focus on adaptation being context-specific, inclusive of various stakeholders and vulnerabilities within communities, and outcome-oriented limits maladaptation [60] and its associated loss and damage, which includes current or potential negative consequences of adaptation-related responses that exacerbate or shift the vulnerability or exposure of a system, sector, or group of the population, or that erode sustainable development [1].Approaches such as incremental adaptation can also contribute to transformative adaptation and they play a key role in building climate resilience and limiting climate-related losses and damage [38], such as loss of crops and livestock within the agrifood value chains. Therefore, identifying and scaling up efficient climate adaptation solutions and creating enabling political, social and economic environments are important to mobilize and invest funds for Loss and Damage [61].Addressing climate risk in the agrifood sector requires a multifaceted approach, drawing upon a range of strategies to preempt, minimize, and manage the adverse impacts of climate variability and extreme events. The selection of examples discussed herein-ranging from decision-support models and early warning systems to insurance mechanisms-is guided by their proven effectiveness, scalability, and direct relevance to the agrifood sector's unique vulnerabilities. These strategies are illustrative rather than exhaustive, highlighting innovative approaches that have shown substantial promise in various contexts.Climate-informed agronomic decision support models. The complexity of climate impacts on agriculture necessitates sophisticated tools for informed decision-making. Decision-support models that incorporate climate-food-emissions projections offer tailored advice for crop diversification and land use, enhancing resilience to climatic shifts [62,63]. Models also utilizes spatial, crop and population data to provide suitable sites for specific crops minimizing crop losses associated with changing growing conditions due to climate change in a specific area [64,65], providing a critical bridge between climate science and practical agronomy.Early warning systems and early action services. The deployment of early warning systems (EWS) and early action services represents a vital strategy for reducing climate risk. These systems provide anticipatory alerts for extreme weather events, enabling timely preparedness and response actions that can significantly mitigate potential damages [66,67]. Recent advancements have seen the integration of EWS with disaster management protocols and financial mobilization strategies, thereby enhancing the capacity to avert and address loss and damage effectively. The bundling of these services has demonstrated considerable success in minimizing the impacts of floods and other climate extremes, showcasing the value of proactive intervention [68].Climate and conflict nexus. The intricate linkage between climate change and sociopolitical conflicts necessitates a nuanced approach to risk reduction [69,70]. As climate extremes exacerbate resource scarcity, the resultant stress can fuel conflict and displacement [71,72], underscoring the need for solutions that address the intersection of climate, peace, and security. Tools and methodologies designed to provide evidence-based insights on climate risks, particularly in vulnerable regions like Africa, are crucial for crafting strategies that mitigate both direct and indirect impacts of climate change, including non-economic losses such as displacement and social unrest [73,74].Farm-scale financial access. Financial tools such as climate risk insurance schemes, sometimes bundled with agricultural credits [24], enable smallholder farmers to adapt and recover from loss and damage within the agrifood sector. These tools, coupled with satellite data for rapid assessment and compensation, offer a buffer against the financial shock of climate extremes, providing a safety net for affected communities [5,24,60]. The effectiveness of these products depends on supportive policies and a conducive environment for their adoption and scaling. While promising, these solutions must be carefully tailored to address the full spectrum of climate events, including slow-onset disasters, to ensure comprehensive coverage [75][76][77].Reducing climate risk through these diversified strategies is foundational to any comprehensive effort to address loss and damage. By integrating decision-support models, early warning and action services, conflict mitigation strategies, and financial mechanisms, stakeholders can significantly enhance the agrifood sector's resilience to climate change.Lack of quality observational data in the Global South has been a challenge, and there are only a few climate hazard attribution studies that have covered developing countries. Therefore, there is a need to increase investments in gathering, storing, and processing data to facilitate loss and damage attributions, especially in the Global South. Improving data sharing platforms and establishing new ones, capacity building, and delivering demand-driven and policy-relevant climate information at national and regional levels can be used as strategies to accelerate data availability. Synergies and cross-border collaborations are necessary for data sharing, and for experience and knowledge exchange. Existing cooperations between developing and developed countries could be leveraged to build synergies for timely data sharing. It is also necessary for policy makers and for data and technology owners to improve laws and policies so that they can support data and technology sharing. Furthermore, reanalysis, remote sensing, and station-satellite blended data can be used to assess the robustness of attribution findings in data-scarce regions of the Global South.Building climate resilience, due to its systemic approach, can minimize climate changerelated losses and damages. Further harmonization of loss and damage interventions with broader categories of climate action can minimize tradeoffs and maladaptation, and at the same time enhance resource-use efficiency. Policy makers should continue to invest in solutions for transformative adaptation, such as climate services, early warning systems, and insurance to enhance climate resilience and minimize, or when possible, avert losses and damages in the agrifood sector. Given existing limitations in attributing losses and damages, researchers and policy makers should bolster data availability on climate events and their impacts in developing countries, as well as increase Loss and Damage funds to strengthen climate resilience within developing countries.","tokenCount":"3975"} \ No newline at end of file diff --git a/data/part_3/7843765851.json b/data/part_3/7843765851.json new file mode 100644 index 0000000000000000000000000000000000000000..10fe4784a09d17b38974a265c9cdcd6557cc9fea --- /dev/null +++ b/data/part_3/7843765851.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"5b940e7bf4cc72679afcee580b0d39c0","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/3ce890d7-a61e-4564-83b7-d0840820dca4/retrieve","id":"-2053397044"},"keywords":["Urochloa","reciprocal recurrent selection","multi-environmental trial"],"sieverID":"c8849c2d-4df2-482d-986b-76c292cc83fa","pagecount":"11","content":"With the aim to increase the supply of forage options, the Tropical Forages program at the International Center for Tropical Agriculture (CIAT; now Alliance Bioversity International -CIAT), has contributed since 1968 continuously to improve livestock production systems through selection and breeding of Urochloa grass to identify genotypes with desirable characteristics such as drought-tolerance, spittlebug resistance and adaptation to acid soils, which has allowed enhancing the efficiency of livestock production systems in the tropics. A new cohort of interspecific and apomictic hybrids (Br19) was evaluated in three locations to select best 300 hybrids with high adaptation to acid soils. The experiment was conducted in Federer's augmented designs. Traits such as biomass, height, coverage area, and growth habit were evaluated. An analysis of variance and another of genetic variability were performed only for the height trait. The analysis of variance indicates that there are significant differences between genotypes, revealing that there is sufficient variability in evaluated genotypes so the selection to develop new cultivars with the desired height can be effective. The evaluation dates in the three environments showed high values of heritability combined with high values of genetic advancement, which indicates that the height trait is controlled by the additive action of genes and can be improved by simple selection or by descent methods.deseables como tolerancia a la sequía, resistencia al complejo salivazo y adaptación a suelos ácidos lo que ha permitido optimizar la eficiencia de los sistemas de producción ganadera del trópico. Una nueva cohorte de híbridos interespecificos apomícticos (Br19) se evaluó en tres localidades con el fin de seleccionar 300 híbridos con alta adaptación a suelos ácidos. El experimento fue conducido en un diseño experimental de bloques aumentados de Federer. Variables como biomasa, altura, área de cobertura y habito de desarrollo fueron evaluadas. Un análisis de varianza y otro de variabilidad genética fueron realizados únicamente para la variable altura. El análisis de varianza indica que existen diferencias significativas entre los genotipos utilizados en el estudio, revelando que existe suficiente variabilidad en el carácter evaluado, por lo que la selección para desarrollar nuevos cultivares con una altura deseada puede ser efectiva. Las fechas de evaluación en los tres ambientes mostraron altos valores de heredabilidad combinados con altos valores de avance genético, lo que indica que el carácter altura está controlado por la acción aditiva de genes y puede mejorarse mediante selección simple o por métodos de descendencia.Palabras clave: Urochloa, selección recurrente recíproca, ensayo multiambiental.El mayor limitante en sistemas de producción ganadera del trópico seco se centra en el bajo número de ofertas forrajeras que se adapten a sus condiciones edafoclimáticas. La región ganadera de los llanos orientales se caracteriza por presentar suelos ácidos (Miles et al., 1996), periodos de sequía prolongados (hasta seis meses con baja precipitación) y presencia de plagas (complejo salivazo (Hemitera: Cercopidae); Holmann y Peck, 2002) y enfermedades (Rhizoctonia solani Kuhn.; Alvarez et al., 2013). A pesar que en el mercado existen cultivares que presentan características como alta adaptación a suelos ácidos (c.v. Basilisk; Wenzl et al., 2001), resistencia al complejo salivazo (c.v. Marandu;Nunes et al. 1984) y alta calidad nutricional (c.v Toledo; Lascano et al., 2002), pocos genotipos logran reunir todas estas características. Sumado a lo anterior, existe el riesgo potencial que las plagas y enfermedades logres quebrar la resistencia de las plantas y/o aparición aparición de nuevas potenciales plagas. Para suplir la demanda de ofertas forrajeras, el programa de forrajes tropicales del centro internacional de agricultura tropical CIAT, ha contribuido desde 1968 en el mejoramiento continuo de sistemas de producción ganadera a través de la selección y mejoramiento genético de Urochloa con el fin de identificar genotipos con características deseables como tolerancia a la sequía, resistencia al complejo salivazo y adaptación a suelos ácidos lo que permitirá optimizar la eficiencia de los sistemas de producción ganadera del trópico.Los cruces genéticos del programa de mejoramiento de Urochloa interespecífico tiene como base genética el cruce entre accesiones tetraploides (2n=4x=36) de las especies U. brizantha, U. decumbens y U. ruziziensis (Miles, 2007). El programa sigue un esquema de selección recurrente basada en habilidad combinatoria específica en el cual cada tres años se produce una nueva progenie de híbridos a partir del cruzamiento entre los materiales sexuales mejorados y el probador apomíctico CIAT:606 (c.v. Basilisk;Worthington & Miles, 2015). La progenie obtenida se utiliza para el desarrollo de nuevos cultivares a través de la selección en tándem, en la cual en la primera etapa se seleccionan los híbridos con mejor capacidad de adaptación a suelos ácidos. Luego, las poblaciones híbridas seleccionados se avalúan contra limitantes bióticos y abióticos y rasgos de calidad nutricional. Finalmente, los híbridos elite son sometidos a ensayos multilocacionales para evaluar su interacción con el ambiente.Para el año 2019 se logró obtener una cohorte de 7039 híbridos, correspondientes al 11º ciclo de selección recurrente. De estos híbridos, 3507 mostraron ser de naturaleza apomíctica (identificados a través del marcador molecular p779/p780; Worthington, 2016) los cuales entran en proceso de evaluación para selección en tándem. Por esto, el objetivo del presente estudio fue evaluar la población hibrida apomíctica Br19 con el fin de seleccionar una cohorte de 300 híbridos con alta adaptación a suelos ácidos.Durante los años 2019 y 2020, se evaluaron en tres localidades (Palmira, LlanosAlta y LlanosBaja) 2507 hibridos apomicticos (poblacion Br19), 299 híbridos sexuales (Sx18, mothers of Br19 genotypes) y tres testigos (Mulato II, Basilisk y Marandú).Para la siembra en campo se extrajeron macollas de plantas mantenidas en vivero y se sembraron suelo y arena en una proporción 3:1. Veinte días después, los genotipos fueron transportados a campo y sembrados siguiendo un arreglo experimental de bloques aumentados de Federer (Federer, 1956). El diseño experimental fue generado en el software R mediante la función design.dau del paquete estadístico agricolae (Mendiburu and Muhammad, 2020). En total se generaron tres repeticiones, cada una de 46 bloques de 64 unidades experimentales (8 filas, 8 columnas) de las cuales 3 correspondieron a los testigos (Mulato II, Basilisk y Marandú). Los bloques fueron ensamblados en Excel con el fin de generar el mapa de campo y los respectivos listados de evaluación.El primer lote seleccionado para el estudio está ubicado en el Valle geográfico del rio Cauca en el campus Palmira del CIAT (coordenadas) el cual se caracteriza por presentar condiciones de alta fertilidad. Los otros dos lotes seleccionados correspondieron a lotes de altillanura (Puerto López, Finca el Porvenir, coordenadas) históricamente utilizados para la producción de ganado en sistemas extensivos y caracterizados por su elevada saturación de Aluminio. Los lotes ubicados en altillanura fueron fertilizados (Tabla 1) veinte días después de la siembra. La siembra se realizó de forma manual colocando las plántulas a una profundidad de 10 cm. El control de malezas se realizó combinando el método mecánico y químico.Ocho días antes de la siembra se aplicaron los herbicidas pre-emergentes Atrazina® y Dual® a una dosis de 1.5 g l -1 y 1.5 cc l -1 respectivamente. Posterior a la siembra se utilizó el método mecánico de forma focalizada según la necesidad. Para el control de hormiga arriera (Acromirmex sp.) se realizaron aplicaciones de lorsban 75 WG mezclado con cal (relación 1:1) con la ayuda de una insufladora. En cada ambiente se realizaron evaluaciones en cinco fechas separadas (Tabla 2). La primera evaluación fue conducida 8 semanas después de la siembra. Dos evaluaciones se realizaron en época de máxima precipitación y dos en época de mínima precipitación cada una a 35 días de rebrote. Posterior a cada evaluación se realizó un corte de estandarización a 20 cm de altura. Los caracteres evaluados sobre las plantas fueron: habito de crecimiento, biomasa visual, altura y área de cobertura. El hábito de crecimiento fue estimado únicamente en la primera evaluación de forma visual en una escala de 1 a 5, siendo 1 una planta totalmente rastrera y 5 una planta totalmente erecta (Figura 1). La biomasa visual se estimó según la cantidad de materia verde producida en un rango de 1 a 9, siendo 1 la planta con menor biomasa y 9 la planta con mayor biomasa. La altura (cm) se cuantifico midiendo la distancia desde la parte basal de la planta hasta la altura máxima. El área de cobertura (cm 2 ) fue estimada mediante el análisis de imágenes capturadas con dron.Tabla 2. Fechas de siembra, corte y evaluación en lotes de altillanura y Palmira. Todos los análisis estadísticos fueron realizados utilizando el programa estadístico R (R-4.0.3, R Core Team, 2020). Un gráfico de densidad fue elaborado para conocer la distribución de los datos utilizando el paquete estadístico ggplot2 (Wickham, 2011). Un análisis de varianza y otro de variabilidad genética fueron realizados únicamente para la variable altura por ambiente y fecha de evaluación haciendo uso del paquete estadístico augmentedRCBD (Aravind et al. 2020).En general, los datos de los parámetros evaluados presentaron una distribución normal (Figure 2). En cada ambiente, los valores de altura y área de cobertura fueron mayores en época de máxima precipitación que en época de mínima precipitación (Table 3, Figure 2). Comparando los datos de altillanura, los genotipos presentaron mejor comportamiento en LlanosAlta que en LlanosBaja. En Palmira los mayores valores promedio se presentaron en la evaluación cuatro la cual coincide con la época de máxima precipitación. Los datos de evaluación de hábito de crecimiento siguieron una distribución normal (Figura 3). Los genotipos Br19 mostraron ser en su mayoría de habito decumbente (38.8%), los cuales, en algunos casos, presentan estolones. El 18.3% de los genotipos mostraron ser de habito rastrero, estos genotipos se caracterizan por tener hojas y entrenudos cortos, poca altura y, en algunos casos, presencia de estolones lo que se deriva en alta área de cobertura. El 6.6% presento habito de crecimiento erecto, estos se caracterizan por tener tallos gruesos y entrenudos largos y hojas largas, ideales para sistemas de corte y acarreo.Figura 2. Distribución de los datos de habito de desarrollo evaluado sobre la población Br19. El análisis de varianza indica que existen diferencias significativas entre los genotipos utilizados en el estudio, revelando que existe suficiente variabilidad en el carácter evaluado (Altura) en las 5 fechas de cada localidad, por lo que la selección para desarrollar nuevos cultivares con una altura deseada puede ser efectiva. El resultado del análisis de varianza se presenta en la Tabla 1 y 2.Tabla 1. Análisis de varianza (con ajuste de tratamiento) realizado para la variable Altura en cinco fechas de evaluación y estimada sobre los genotipos Br19 sembrados en bloques aumentados de Federer en tres localidades.Tabla 2. Análisis de varianza (con ajuste de bloques) realizado para la variable Altura en cinco fechas de evaluación y estimada sobre los genotipos Br19 sembrados en bloques aumentados de Federer en tres localidades Los resultados del análisis de variabilidad genética se presentan en la tabla 3. Los valores de coeficiente de variación genotípica fueron menores al coeficiente de variación fenotípica en las tres localidades en todas las fechas de evaluación. En Palmira se presentaron los valores más altos de coeficiente de variación genotípica (19 -38.5) y fenotípica (26.8 -43.1). En las cinco fechas de evaluación de los tres ambientes el coeficiente de variación fenotípica es clasificado como alto (Sivasubramaniam and Madhavamenon, 1973) mientras que el coeficiente de variación genotípica se clasifica como medio.En general, la alta magnitud de la variación fenotípica (PV) se compuso de una alta variación genotípica (GV) y una menor variación ambiental (EV, tabla 3), lo que indica una alta variabilidad genética para la variable altura y una menor influencia del entorno. Por lo tanto, la selección basada en el fenotipo puede ser eficaz para mejorar estos rasgos en futuros cultivares.La heredabilidad o confiabilidad del valor fenotípico de la altura, fue clasifica de media a alta (de acuerdo con Robinson 1966). Estos valores sugieren que puede ser efectivo realizar una selección de genotipos basados en el carácter altura. Altos valores de heredabilidad indican que la expresión del carácter evaluado esta menos influenciado por el ambiente. El avance genético como porcentaje de la media proporciona información concerniente a la efectividad de selección para la mejora de rasgos (Johnson et al. 1955). En el presente estudio se encontró que el avance genético como porcentaje de la media oscila entre 23.3 y clasificado, según Johnson et al. (1955), como alto en los tres ambientes en todas las fechas de evaluación.Teniendo en cuenta que la heredabilidad en sentido amplio encierra efectos tanto aditivos como epistáticos, se tiene que es confiable solo cuando en el experimento existen altos valores de avance genético. Por tanto, las estimaciones de heredabilidad junto con el avance genético son más útiles que la heredabilidad por sí misma para predecir la efectividad de la selección (Johnson et al. 1955). En este estudio todas las fechas de evaluación en los tres ambientes mostraron altos valores de heredabilidad combinados con altos valores de avance genético, lo que indica que el carácter altura está controlado por la acción aditiva de genes y puede mejorarse mediante selección simple o por métodos de descendencia (Panse and Sukhatme, 1957).Tabla 3. Genetic Variability Analysis from Height data obtained in Br19 populatoin evaluated in trhee environments. CV: coefficient of variation; PV: phenotyic variance; GV genotyipc variance; EV: environmental variance; GCV: genotypic coefficient of variation; PCV: phenotypic coefficient of variation;ECV: environmental coefficient of variation; hBS: broad-sense heritability; GA: genetic advance; GAM: genetic advance as percent of mean.Construir un índice de selección teniendo en cuenta los valores de todos los parámetros evaluados en los diferentes ambientes y fechas de evaluación.Luego de realizada la selección se debe proceder a implementar dos estudios, el primero para determinar la calidad nutricional de los genotipos y el segundo una prueba de progenie con el fin de corroborar la efectividad del marcador molecular de apomixis.Posterior a la prueba de progenie y calidad nutricional, los mejores 100 genotipos serán sometidos a estrés biótico (complejo salivazos, Hemiptera: Cercopidae) y abiótico (sequia).","tokenCount":"2290"} \ No newline at end of file diff --git a/data/part_3/7851186317.json b/data/part_3/7851186317.json new file mode 100644 index 0000000000000000000000000000000000000000..b697b0b7c914b1c7d80c41b596891225cb549e68 --- /dev/null +++ b/data/part_3/7851186317.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"b84a616058db251e936d9712687a5fb5","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/4e53cb44-248f-4d34-b62a-9920e44fc887/retrieve","id":"-1475573792"},"keywords":[],"sieverID":"c11fb06e-7a21-4381-b32f-5c63a46f1b4c","pagecount":"36","content":"This report benefitted from the excellent input, discussions and support of Veronica Ndetu (Ministry of Agriculture, Livestock, Fisheries and Co-operatives), Paul Opio (FAOKE), Nancy Omolo, Nyang'ori Ohenjo (CEMIRIDE), Lilian Wandaka (ALIN), Joshua Laichena (KIPPRA), Dr. Linda Oucho (AMADPOC), and Gabriel Naaspan (Turkana Development Forum).The authors are also grateful to all the workshop participants for their engagement and active support.• Displacement and mobility. Climate-related livelihood insecurity drives changes in mobility patterns and can increase displacement due to sudden and slow-onset climatic events. Although migration is often considered an adaptive response, increased tensions can eventually result in conflict, particularly between host and migrant communities.• Warrior culture. Climate-induced reduction in agricultural productivity and natural resources when combined with some religious and spiritual mechanisms can instigate violent episodes such as cattle rustling. Low-intensity violent traditional practices are currently also being intensified through nonclimatic drivers, such as commercialization and globalization.• Increased mistrust in government. Poverty and marginalization due to climate-induced loss of livelihood can undermine trust in government agencies, fueling societal instability and recruitment into non-state armed groups. For vulnerable populations, this can exacerbate the inadequate provision of basic social protection and public services, further eroding government legitimacy towards its constituents.Following the development of a common understanding of the various ways in which climate variability and extremes may act as a risk multiplier for populations in Kenya's ASALs regions, the group focused on co-developing policy and programmatic recommendations to effectively integrate climate security into the country's climate action strategies. Considering that climate and security policies have historically been addressed in silos in Kenya, workshop participants agreed that an effective integration of this nexus first requires policy processes that support learning across multiple levels of governance. As a result, the establishment of a multidisciplinary and multi-level community of practice was proposed as a first and critical step towards fostering a climate security agenda in Kenya to break down policy silos across multiple climate, development, peace, and security sectors. A promising concrete action in this direction is to increase collaboration among national and sub-national actors to incorporate a climate security lens into the Climate Smart Agriculture Multi-Stakeholder Platform (CSA-MSP), which is currently coordinated by the Ministry of Agriculture, Livestock, Fisheries, and Co-operatives.Involving diverse climate, agricultural, development, humanitarian, peace, and security actors within this framework can enhance the development and implementation of national and subnational climate-and conflict-sensitive action plans and policies, improve coordination, encourage collaborative reflections between climate and peace actors, and support evidence creation and knowledge sharing.Along with this first tailored proposal, a number of recommendations were identified as further critical steps towards developing more integrated and responsive climate and security governance at the national and sub-national levels. Recommendations were divided into five action areas:1. Multi-level governance: To support the effective integration of a climate security sensitive approach in climate and peacebuilding strategies, governance efforts must adopt deliberate plans to develop multiactor agreements and foster shared perceptions of climate security risks that span across policy sectors and political-administrative levels. A preliminary approach to close the programmatic gap between climate adaptation and peacebuilding efforts include formalizing the integration of climate security in selected multi-stakeholder platforms across the governance system, thereby fostering a community of practice for climate security in Kenya. Existing collaborative spaces deemed suitable for this purpose were the Climate Smart Agriculture Multi-Stakeholder Platform and the Kenya Food Security Meeting and Steering Group (at national levels); plus, the County Climate Change Funds and Peace Committees (at county level).2. Policy frameworks: Recommendations for initiating a national policy dialogue to facilitate the adoption of climate action as an instrument for peacebuilding should focus on identifying policies, strategies and action plans at national and sub-national levels that could be potentially updated through a climate security lens. A first step in this direction would be to include climate security as an issue of concern in the updating of the National Climate Change Action Plan (NCCAP 2023(NCCAP -2027)). Additional policy instruments at multiple levels were proposed as potential entry points to strengthen collaborative action between the climate, peace and conflict sectors. Examples in this regard include the National peace policy, the Ending Drought Emergencies (EDE) strategy, the County Integrated Development Plans 2023-2027 (CIDPs), and the County Climate Change Funds (CCCFs).3. Programmatic planning: Increasing cross-sectoral and multi-level coordination on climate security through a national community of practice can also support the design of climate adaptation programmes and initiatives that actively contribute to peacebuilding efforts in Kenya. This endeavour requires a collaborative reflection by climate and security actors on existing programmatic practices to complement long-held assumptions and customs in both sectors. Building upon existing climate and peacebuilding programmes across Kenya that act at the intersection between the five climate security pathways presented in this report could guide efforts towards developing climate security-sensitive programming practices.Increasing the availability of comprehensive and actionable knowledge will lead to a better understanding of how various types of climatic extremes and variability could potentially exacerbate different expressions of conflict and insecurity that afflict Kenyan populations.Research directions include: an expanded focus beyond ASALs regions in Kenya; the co-production of climate security assessments with affected communities that account for local particularities, gender dynamics and other intersectional sources of vulnerability; as well as expanding current modelling capabilities to better understand future risks.Climate adaptation action has traditionally avoided conflict-affected regions due to their high-risk profile and security concerns. As a result, there is an urgent need to build upon existing climate and peace practices to increase the flow of funds and investment capital towards building conflict-sensitive resilience in climate security hotspots. For instance, Climate-Smart Agriculture (CSA) investments, which are increasingly common in Kenya, can be tailored to mitigate Towards a Common Vision of Climate Security in KENYA Kenya possesses a diverse set of climatic conditions due to its vast and varied geography. The coast is usually hot and humid, inland areas tend to be more temperate, while northern and southern regions are typically dry and extremely hot (Ministry of Foreign Affairs, 2018). Kenya's natural resources base is similarly diverse, including forests, wetlands, drylands, aquatic, and marine resources. Despite its rich biodiversity, Kenya's unique ecosystems are threatened by various factors, including population increase, coastline erosion, deforestation, improper land management, and climate change (World Bank Group, 2021). Specifically, climate-related disasters, like floods and drought, have increasingly affected agropastoral activities and threatened the physical security of exposed communities and populations (Ministry of Foreign Affairs, 2018).Rising temperatures and prolonged dry spells in the northern counties (Figure 1), have a detrimental impact on local water storage capacity, thereby leading to major economic losses, particularly in livestock and agricultural production. As shown by Figure 1, northeastern and northwestern counties are more prone to heat stress and rainwater scarcity than coastal and inland areas, making the former highly vulnerable to repeated drought episodes. Land degradation and soil erosion, exacerbated by more frequent floods, and lower agricultural productivity disproportionately affect the sources of income for the rural poor and throw into flux longstanding socio-cultural identities tied to place and production system (World Bank Group, 2021). As reported by Figure 1, floods are more likely to occur in the Lake Victoria Basin in western Kenya where high levels of precipitation not only positively ensure agricultural production but also negatively impact land, assets, and high-quality water supply. Kenya's capacity to cope with and recover from climate shocks, particularly in the ASALs, is further compromised by internal social and political tensions, largely fueled by pre-and post-election tensions (Ladekjaer & Muriu, 2022), weakened administration and traditional governance systems, gaps in national land management regulations (Ministry of Foreign Affairs, 2018), and politicized and ethnicized competition over scarce farmland and natural resources (Theisen, 2012). The northern counties, the Rift Valley, the peripheral pastoralist drylands, and the coastal region have been identified as the areas most affected by insecurity (Wasike, 2021;Achicanoy et al., 2021). High density conflict clusters (red squares) are indeed located in these key regions, as presented in Figure 2. Historically, instability in these regions has been fueled by a variety of interconnected and compounding factors, including ethnic intolerance, border disputes, and competition over land and other resources (Huho, 2019). Furthermore, the presence of non-state armed groups (NSAGs), as well as institutional gaps to maintain security at the local level, reduced trust in formal and traditional authorities, poverty and underdevelopment, and marginalization have worsened instability. At the same time, central regions as well as areas along the Lake Victoria, have been reportedly affected by less frequent and severe conflicts, as showed by the moderate and limited conflict clusters of Figure 2, mainly due to increasing political tensions and unrest (Rarieya & Fortun, 2010).Climate impacts are likely to alter the dynamics related to conflict in multiple ways, catalyzing some processes while simultaneously inhibiting others. For instance, in the Arid and Semi-Arid Lands competition over natural resources, mainly water and pasture, has been exacerbated by drought-induced scarcities. A scarcity of natural resources has forced pastoralist communities to alter their traditional grazing routes, migrate into new areas, move more often and farther than usual, spend longer time outside their traditional grazing areas and encounter groups with whom no previous resource sharing or conflict resolution mechanisms have been agreed (Scheffran et al., 2019). The likelihood of these encounters turning violent is increased by other compounding factors, such as weak local institutions, the proliferation of small firearms, political incitements, unclear property right regimes, and a longstanding culture of cattle-raiding. Drought has therefore been identified as a major contributing factor to violence, particularly among pastoral groups (and between farmers and herders).In Kenya's coastal regions, land disputes arising from discrimination against ethnic minorities -combined with climate-related livelihood pressures and a lack of economic opportunities -have contributed to the recruitment of local youth by Non-State Armed Groups operating across national and county borders.There is also evidence of inter-ethnic and cross-border violence among coastal communities arising due to climate-induced food scarcity (World Bank Group, 2016). Dwindling fish populations and species range changes in marine fish around East African coastlines (IPCC, 2022), combined with jurisdictional disputes, have prompted Kenyan fishermen to fish close to (and occasionally into) Somali waters, or Somali fishermen to come to Kenyan waters. This tendency has resulted in frequent cross-border confrontations, showing the importance of accounting for the regional and cross-border dimension of natural resource-based conflicts and of international border arbitration. Finally, as lake levels rise in the Western region, conflicts over water and land have become increasingly channeled into politicized ethnic clashes (Raini, 2009). Politically exacerbated resource-based grievances have fueled ethnic tensions and displacement along Lake Nakuru, as well as in Trans Nzoia and Uasin Gishu (Veit, 2011), primarily for political electoral gain (Mwamba et al., 2019). At the same time, in Baringo, heavy and intense rainfall has further contributed to rising water levels in the lake, increasing conflict over available land and awakening historical grievances, particularly between the communities of Baringo South and the neighboring Pokot (Government of Kenya & UNDP, 2021).These examples underline how climate-related impacts are unlikely to act as a direct driver of conflict in isolation from other factors. Instead, climate represents a threat or risk multiplier, exacerbating pre-existing stresses, vulnerabilities, and insecurities (Rüttinger et al., 2015). This is particularly relevant in contexts marked by fragility, defined as the combination of risk, exposure, and insufficient coping capacity of the state, system, and/or communities to manage, absorb, and mitigate those risks (Desai & Forsberg, 2020).It is therefore critical to interpret climate-conflict links as the result of complex interactions between pre-existing stressors and vulnerabilities, as well as the role played by climate variability in exacerbating these by acting on important intermediary variables. Identifying these intermediary variables leading from climate impacts to conflict demands a focus on the interactions between factors from: ecological systems (including climate variability, natural resource access and quality, and ecosystem health); socioeconomic systems (including agricultural productivity, food and nutritional security, poverty, and inequity); and political systems and institutions (such as social structures and identities, the nature of institutions and governance, the presence of conflict/instability).Towards a Common Vision of Climate Security in KENYA ASALs cover 80 percent of Kenya's territory, are home to almost one-third of the Kenyan population, and heavily rely on climate-sensitive income generation strategies, such as crop and livestock production (FAO et al., 2015). ASALs are also experiencing multiple forms of conflict -including natural resource-based conflict, inter-ethnic violence, cattle rustling, border and land disputes, drug trafficking, and terrorism 1that are deeply rooted in the long history of marginalization, ethnic-based violence, and instability that has characterized the broader East African context. North-Western and North-Eastern Kenya are the two areas in the ASALs that are most exposed to compounding climate and conflict risks (Achicanoy et al., 2021). These hotspots are: within and between the Turkana and South Omo regions; the Marsabit, Borana, and Dawa region; the Mandera, Dollo Ado and Gedo region -comprising Kenya, Somalia, and Ethiopia; and the wider Karamoja cluster along the borders of South-Western Ethiopia, North-Western Kenya, South-Eastern South Sudan, and North-Eastern Uganda.Figure 3 shows the ASALs climate-security nexus by displaying the direct and indirect links that connect all the factors involved in the relationship, namely environmental, socio-economic, political, and cultural variables. These variables have been identified as crucial components within the climate-security nexus for Kenya's arid and semi-arid regions, given their relevance in translating the impact of climatic extremes and variability into rising social, ethnic, and political conflicts.The case of the Arid and Semi-Arid Lands (ASALs)1 Despite these diverse expressions of violence, the workshop outputs are grouped under a single term for \"conflict\". While recognizing the limits of this simplification, a homogenous approach to conflict was necessary to manage the uncertainty of unknown dynamics within the climate-security nexus in Kenya´s ASALs regions. Although the present discussion refers mostly to the conflict risks as a standardized term, the document recognizes the need for further evidence of how climate change affects human security as well as the different expressions of conflict in Kenya´s ASALs regions. Towards a Common Vision of Climate Security in KENYA Conflict in ASALs regions is perceived to undermine community well-being and security through a wide variety of forms. The management of conflict imposes significant economic costs to both government and households; it also undermines investment in productive activities and in social security and access to basic infrastructure and services, hence reinforcing mistrust in government and institutional incapacity for effective governance. These effects can drive poverty and marginalization, which are already prevalent, hence diminishing people´s adaptive capacity in the face of climate extremes and variability. Conflict also undermines food security and livelihood strategies by restricting food and livestock production and access to markets. Furthermore, these effects increase dependence on natural resources and drive ecosystemIt is important to recognize that the compounded risks of conflict as a result of climate extremes and variability represent a one-sided vision of climate-related security risk. Just as exposure to climate hazards under a context of high vulnerability can undermine human security and exacerbate the risk of conflict, the presence of conflict has a significant effect on the well-being of an affected population, increasing their vulnerability to future climate hazards. This reinforcing feedback loop can potentially trap societies in a \"vicious circle\" of increased vulnerability and fragility, whereby the presence of conflict and insecurity further undermines their capacity to adapt and cope with the effects of climate extremes and variability, while the impact of climate worsens the underlying drivers of conflict. Towards a Common Vision of Climate Security in KENYA 2 The use of pathways -which represent a specific causal sequence, either linear or non-linear -is a useful way to identify and demonstrate the emergent nature of climate-related security risks. The concept of pathways can help stakeholders such as policymakers and practitioners in navigating the complex relationships between climate change and security and inform policy formulation processes regarding climate insecurity. Pathways capture a range of pre-existing conditions, intermediary variables, and characteristics, thereby representing how climate-related impacts may cause insecurities to spill over and produce non-linear impacts across multiple interconnected systems and system dimensions. The pathways should not be considered predictive or prescriptive but rather a theoretical mapping exercise in which the potentially cross-scalar and cross-dimensional interactions of several key drivers and factors are mapped.degradation. Finally, conflict is considered to be one of the main causes of displacement in Kenya´s ASALs counties; while for some populations, especially pastoralist communities, the impact of conflict may undermine their capacity to migrate in search of grazing land and water.Based on settings described by Figure 3 and 4, five potential pathways 2 were identified linking climate, conflict, and security in Kenya´s ASALs counties, all of which are embedded in the complex, multi-directional relation described above. These pathways are presented and summarized below:Increasing temperature and rainfall variability are directly linked to increasingly intense, frequent, and prolonged droughts as well as sudden and destructive floods. Such extreme changes in climate variability can hamper the availability and access to natural and productive resources such as water and pastureland in the ASALs areas, where resource-dependent agro-pastoral activities are the primary source of livelihood.Given the prevalence of pastoral communities in these counties, ensuring regular and equitable access to natural resources for livestock and crop production is a major concern for communities reliant upon agropastoral livelihoods.While resource scarcity does not necessarily lead to conflict, climate-induced natural resource scarcity is indirectly connected with a higher incidence of inter-communal conflict and tensions over access to these natural resources (DuttaGupta et al., 2021). Increased incidence of cattle rustling, banditry, and attacks by armed group are common manifestations of these conflicts in Kenya´s ASALs regions. These risks are amplified by the fact that -as a consequence of climate-related impacts -cattle are more susceptible to disease and communities are forced to increasingly rely on the same narrow set of available resources.Changes in pastoral mobility and routes to access resources can lead to more frequent interactions between communities. This may lead to tensions, especially if communities try to secure their seasonal herder routes or hold long-standing grievances based on inter-ethnic disputes. Furthermore, as opportunities for agricultural and pastoralist income generation are reduced, recruitment into armed groups is seen as an increasingly attractive option, reducing the opportunity cost to engage in conflict-related activities. Reduced availability of pastureland and water can also result in human-wildlife conflict, as the human-wildlife contact that may occur while searching for scarce natural resources can increase the risk of pastoralist communities engaging in conflict with conservation authorities. Rangelands in Laikipia have not regenerated due to the increasing frequency of droughts and extreme temperatures, which in turn increases the demand for managed water resources, such as the Rubere dam in Kinamba, Laikipia. Herders in the Laikipia Nature Conservancy, for example, travel to the dam during drought periods to look for water for their livestock.In the process, they encroach on land of agricultural farmers, especially throughout parts of Laikipia West, hence exacerbating the risk of conflict between them. Given that 50 percent of land in Laikipia is under privately held ranches, the herders have limited access to traditional forms of pasture, an issue exacerbated by more intense and longer droughts.Extract from presentation of Lilian Wandaka, Arid Lands Information Network (ALIN)Increased impact of both drought and floods are associated with the loss of livestock and crops. In Kenya's ASALs counties, livestock losses have a severe economic impact on pastoral households given that livestock production accounts for nearly 95 percent of family income and underpins food and nutritional security. Economic instability, and hence poverty and marginalization, are thought to be amongst the most important drivers of conflict since these factors enhance communities' propensity to engage in violence as an alternative source of revenue. As a result, most experts believe that the weakening of pastoralist and agricultural livelihood options increases the risk of conflict, criminal activity, and recruitment by non-state armed groups.Food insecurity is also perceived as a driver of inter-communal violence (DuttaGupta et al., 2021), especially among young people who use cattle rustling and raids to replenish food reserves or gather enough resources to buy food. This is particularly worrisome given the fact that the Horn of Africa region has at the time of In Kenya, we see an increasing frequency of droughts, which are now almost a continuous occurrence and affect an increasing number of people. The decreasing availability of water impacts people´s livelihoods in multiple ways and induces conflict amongst communities.Presently, whole areas of Marsabit are under curfew due to drought-driven conflict. Something that needs to be recognized, however, is that the search for natural resources is not the only driver of conflict in the context of climate-induced insecurity in the ASALs. Low levels of education, highly vulnerable livelihood strategies and the lack of opportunities for alternative incomes represent underlying catalysts of conflict and insecurity throughout Kenya. These socio-economic issues are widespread in Kenya´s ASALs regions due to climate variability and lack of comprehensive strategies to invest in ASALs regional development since independence. This is underscored by the sessional paper No. 10 of 1965, titled \"African socialism and its application to planning in Kenya\" that adopted a strategy that favoured and encouraged development in areas with abundant natural resources . Alternative sources of income, along with sufficient levels of education, increase the opportunity of communities experiencing resource scarcity to negotiate and avoid developing antagonistic relations.Developing resilient livelihood options is a crucial strategy to mitigate climate security risks. writing experienced an unprecedent four consecutive failed rainy seasons, with a fifth later in the year also projected to yield much lower than average precipitation rates (FEWS-NET, 2022). Because of these climaterelated impacts -as well as several other compounding drivers of insecurity and vulnerability, such as conflict -around 20 million people are currently at risk of acute food insecurity across the region (Kurzer et al., 2022).Scarce employment opportunities as well as limited labour skills available as potential means of alternative livelihood strategies, along with limited access to infrastructure, basic services, and social protection, are critical contributing conditions that exacerbate the risk of conflict and food and nutrition insecurity.Additionally, the inability to move when mobility is an essential livelihood strategy, particularly in areas with limited opportunities for employment, may push individuals to seek alternative, and sometimes illegal, sources of income and reduce the opportunity cost of engaging in various types of violence.Despite of the need for more empirical evidence on the complex nexus between climate extremes and variability, human mobility, and conflict in Kenya´s ASALs counties, experts and practitioners recognize that climate change can exacerbate conflict risks by affecting mobility patterns. It is important, however, to untangle the complex ways through which climate-related impacts may shape different forms of human mobility, including pastoral migration, voluntary migration (as a result of, for example, deteriorating livelihood opportunities), and involuntary displacement (often as a consequence of natural disasters or weather extremes).The decreased availability of natural resources, the deterioration of pastoral and agro-pastoral livelihoods, and the effects of extreme climatic events can combine to limit and shape the dynamics of pastoral mobility, an important consideration when discussing the impact of climate on a specific, pre-existing pastoral mobility pattern. Limiting or shifting the traditional mobility patterns of those who depend on them is likely to render such communities even more vulnerable to climate shocks in the long term, especially when climate-related impacts make traditional migration routes impractical. Pastoral mobility has historically been a commonly employed adaptation strategy to protect livestock productivity and minimize localized environmental degradation, yet as climate-related extremes progressively decrease the availability of water and pasture, pastoralist communities are increasingly forced to migrate towards and compete for the same resource bases. The disruption of traditional pastoral migratory routes might therefore indirectly increase the probability of inter-communal conflict over natural resources, for example between pastoralist groups and between pastoral and agricultural communities.Aside from impacting on existing forms of migration, climate may also increasingly begin to influence individual (or, more often, household) decision-making processes with regards to pursuing in-situ versus mobility-driven adaptation strategies. Internal migration is quite common and frequently falls into preexisting migratory trends such as urbanization, yet rural-urban mobility may be permanent, temporary, or seasonal/cyclical in nature depending on the specific characteristics and needs of a given household or community. At the same time, uncontrolled migration across international borders is currently spreading cattle disease, exacerbating pressure on natural resources and limiting labour opportunities, sometimes inducing communities to violently resist when contacting outsiders.While it is therefore important to recognize the variability and context-specificity involved with climatemigration pathways, it is also true that rapid, non-linear growth in migration rates can result in increasing pressure on urban infrastructure, more precarious living conditions, and unstable jobs and revenues, limited access to basic services, insecure housing and land tenure, and high levels of competition for jobs.These circumstances can exacerbate ethnic and cultural conflict between host communities and migrants, increasing the willingness of people to engage in criminal activity as an alternative source of income.Finally, those on the move may also have been forced to do so as a consequence of being displaced by extreme weather events and shocks. This form of migration is usually more episodic and rapid, and households often intend to return to their original location once it is deemed safe to do so. However, in circumstances characterized by extreme environmental degradation -or, alternatively, where other, perhaps conflict-related Towards a Common Vision of Climate Security in KENYAThe impact of climate extremes and variability drives people out of their homes by interacting with underlying sources of vulnerability, hence acting as a secondary, third, or fourth reason for people to relocate. Although we do not yet fully understand the complexity of these interrelations, we must develop better strategies for managing them, given the widespread political, economic, and social implications, all of which are exacerbated by climate change. When we look at Garissa, where the Dadaab refugee camp has been settled since the 1990s, one of the main challenges to maintaining regional security has been competition over increasingly scarce resources, including water and timber, which has exacerbated conflictive relations between neighbouring communities and refugees, increased insecurity throughout the region and reduced State capacity to maintain stability.Refugees in Garissa are currently facing multiple intersecting challenges, including increasing impact of climate change on their health, livelihoods and food security, the lack of protection from non-State armed groups, and the incapacity of State agencies to provide the basic goods and services required for subsistence. circumstances, contribute to an area remaining unsafe -situations of prolonged displacement may arise.Prolonged displacement can, if not managed properly, similarly contribute to tensions between host and displaced communities, particularly when the presence of displaced populations in some way infringes upon the ability of host communities to pursue their livelihoods.In the ASALs counties, understanding and dealing with the complex interconnections between climate and conflict requires accounting for the sacred beliefs and cultural practices -heroism, dowry payments, and initiation rites -that shape the relationship between pastoralist communities and their cattle. The elders bless cattle raiders, the young males who are primary agents in driving conflict through cattle rustling and inter-community clashes over natural resources, while women play a role in encouraging violence and supporting warriors. Traditionally, resource-based conflicts, mostly expressed through cattle rustling, involve small-scale and manageable violence motivated by the need for animal replacement and restocking, gaining access to grazing land, putting into practice religious and spiritual beliefs, as well as securing social status and dowry payments. However, recent trends -such as conflicts over political power and heroism, the proliferation of small arms and automatic weapons, and escalating disagreements over access to land and tenure rights -have exacerbated the severity and implications of resource-based violence amongst pastoralist groups.The weakening of traditional institutions undermines the ability of existing conflict management systems to regulate violence. This is because it compromises the role of the elders and erodes forms of authority based on gerontocracy, which have historically served to guide behavioural norms during conflict mediation between ethnicities. A rapid change in the distribution of authority under conditions of fragility and low-State presence leads to a practical gap between eroded traditional practices and modern forms of conflict management.Practitioners, on the other hand, emphasize that youth pastoralists' notions of becoming warriors and their desire to advance through a social hierarchy are grounded in the strength of local institutions, as it is often elders who, when appropriate, encourage and grant legitimacy to the youth seeking to prove themselves and gain social status. The impact of climate extremes and variability on natural resource availability and traditional pastoralist livelihoods are thought to influence pastoralist groups' religious and environmental sense-making, which has the potential to exacerbate community-based conflict driven by sacred beliefs around entitlements and attachments to cattle. It is also thought to exacerbate the search for higher social status amongst the youth, by increasing the need for cattle grabbing under conditions of scarcity. Furthermore, religious organizations (such as churches, faith-based organizations, and even non-state armed groups with religious beliefs) play a significant role in filling the gaps in public service provision in areas with insufficient government presence. Under certain conditions, this role is thought to both potentially contribute to radicalization or support peacebuilding processes through better resource sharing and cooperation. Nonetheless, there is a general agreement that there are significant gaps in our current understanding of how religious and spiritual beliefs and cultural practices are indirectly affected by the impact of climate on scarce natural resources.A lower availability of natural resources, the weakening of livelihoods, increased food insecurity and conditions of poverty and marginalization -all direct and indirect impacts of climate variability and extremes -are thought to contribute towards a widespread feeling of mistrust over government authorities, potentially increasing the willingness of individuals to participate in violence or be recruited by non-state armed groups. Practitioners generally agree that conflicts fuelled by natural resource shortages and the loss of resource-dependent livelihoods are characterized by a widespread belief that government is mostly to blame for the onset and continuance of conflict.The lack of state presence, low provision of public services, exclusionary and discriminatory policies, corruption and misuse of public funds, and peace-and resilience-building interventions which lead to the unintended incitement of conflict were all cited as factors undermining the legitimacy of government as keeper of the peace in Kenya's ASALs regions. As a result, declining trust in government both enhances the chance of conflict emerging and hinders the ability of institutions to respond to the outbreak of conflict. For example, conflict resolution, post-conflict peacebuilding and disarmament in Kenya´s northern border counties were perceived as implemented through top-down approaches that fail to account for everyday conflict dynamics or foster local ownership and therefore ultimately exacerbate conflict amongst pastoral communities. A diminished legitimacy of government to effectively maintain security, coupled with fundamental changes in traditional community and family structures, may lead to the replacement by the youth of these formal and informal institutions with non-state armed groups and organized crime organizations as units of belonging, hence increasing the risk of recruitment into violent activities.Governance structures for policy making and programme implementation have a substantial influence on the extent to which climatic extremes and variability can enhance conflict risk. Although climate change impacts human security by increasing the scarcity of natural resources and through a loss of livelihood strategies, the impact can be mitigated by leveraging a variety of policy systems, such as resilience-building through climate change adaptation efforts, livelihood protection through social security schemes, and peace dividends achieved through sustainable peace-building interventions.On the other hand, policies and programmes within these policy sectors that fail to recognize climate security risks in their strategic planning can unintentionally exacerbate the underlying drivers of conflict, for example, by profiting populations in a biased or partisan manner, hence increasing inequality and resentment between communities, or by deploying repressive security measures that enhance long-term grievances between state and non-state actors. In a context of widespread distrust in government authorities, institutional capacity for the effective implementation of climate, security, and peace-building efforts that strategically account for climate security threats can be considerably hampered. The secluded location of ASALs counties hinders the presence of formal institutions and increases local vulnerabilities to cross-border instability, hence complicating the challenge of strengthening government legitimacy in the region.Towards a Common Vision of Climate Security in KENYA Indigenous Peoples in Kenya heavily rely on land, water and genetic resources for food production. When these are denied to them, the risk of conflict will of course increase.Laikipia represents an example of widespread resource-based conflicts, where struggles between conservationists and indigenous peoples are widespread. These people are not \"illegal herders\", they in fact previously owned that land which was taken away from them.It is an issue of historical injustice which should be accounted for and corrected during the implementation of solutions. Low availability and lack of access to water and grazing land are linked with increasing cattle rustling, killing of herders, kidnappings, among other forms of conflict. A situation that is worsened by government (mis)handling of conflict onset, which in some instances have in fact exacerbated antagonistic relations. This is because government responses are sometimes interpreted as favoring certain social groups over others. Due to climate-induced conflict, Indigenous Peoples experience lower agricultural production and loss of livelihood strategies, hence further increasing long-held resentment from political exclusion and reducing trust in government authorities. Towards a Common Vision of Climate Security in KENYA Climate-related security risks in Kenya are very much a product of -and embedded within -an increasingly complex governance landscape. These risks can be best understood as cascading processes of change occurring over different spatial and temporal scales, dotting a complex landscape in which causes, and effects are exceptionally difficult to detect and frequently interconnected into feedback-type relationships.Effective governance in the face of these risks thus requires recognition of the multidimensional, and often multi-scalar, nature of how climate-related security risks emerge, as characterized by unpredictability and, in some cases, unknowability. Recognizing the existence of multiple and diverse indirect mechanisms linking climate, conflict, and security in ASALs countries, more concrete actions by multiple policy sectors and governance levels are required to develop an integrated approach (both vertically and horizontally) for managing climate-related security risks.Preliminary research on how climate-conflict linkages are addressed in integrated and coherent ways -or, conversely, how they are not -in Kenya policy narratives and documents highlights the need for improved governance systems and processes across sectors and scales. For instance, Carneiro et al. (2021) investigate the importance and nature of climate security narratives and dynamics among policymakers at the national level by using innovative machine learning approaches to extract, process, and analyse thousands of Tweets from policymakers and government institutions. The findings suggest that the linkages between climate and conflict are poorly reflected in Kenyan government actors' official discourse on Twitter. These results are broadly in line with the preliminary findings generated by Schapendonk et al. (2022), who find that selected Kenyan policy documents (extracted from climate, peace and security, development, disaster risk reduction, and gender sectors) are more likely to engage with climate-conflict linkages at a surface level than they are to put forward and implement integrated climate-peace programmatic interventions. The authors also find that peace and security-related policy documents demonstrated little engagement with climate-related impacts and climate-related security risks, suggesting that peace and security actors do not currently tend to perceive climate action as an entry point for building peace and social cohesion.Considering the critical importance of breaking down policy silos between climate and security, the recommendations presented here are intended to be short-term strategies for strengthening a climate security agenda at the national and subnational levels. They do, however, embody high-level recommendations based on an initial conversation with representatives of practitioner organisations working at the intersection of the climate and security nexus. Further coordination between sectors, levels, and stakeholders is thus proposed to translate the recommendations posed here into concrete actionable plans that build upon a diverse set of capacities, viewpoints, and interests. The formation of a community of practice is identified as a necessary first step toward more vertically and horizontally integrated and responsive climate security governance. Such a community should deliberate, implement, and design adaptive approaches that explicitly define climate adaptation as an instrument for peace.A first concrete step in this direction is to increase collaboration among national and sub-national actors to incorporate a climate security lens into the Climate Smart Agriculture Multi-Stakeholder Platform (CSA-MSP), which is currently coordinated by the Ministry of Agriculture, Livestock, Fisheries, and Co-operatives.Along with this first specific proposal, the broad recommendations included below are divided into five strategic areas of action: multi-level governance, policy frameworks, programmatic planning, research and evidence gaps, and climate security finance.Implementing participatory spaces for collective conversation can support the establishment of policy networks composed of interdependent actors who then learn to operate in greater synergy, thereby effectively becoming a system. To modify current practices for climate adaptation and peacebuilding towards integrating a climate security sensitive approach -and for successful approaches to be scaled up where possible -governance efforts must adopt conscious strategies to develop multi-actor agreements and shared perceptions of climate security risks that span across policy sectors and political-administrative levels. Recognizing this challenge, workshop participants emphasized the need to implement efforts towards developing a community of practice for Climate Security in Kenya to:• Identify existing multi-stakeholder platforms at national and sub-national levels that may serve as a base towards integrating a climate security focus on both climate action and peacebuilding strategies.These spaces should serve as potential meeting places for the existing communities of practice for climate change adaptation, disaster risk reduction and management, and peace and security. Along with the Climate Smart Agriculture Multi-Stakeholder Platform (CSA-MSP) mentioned above, the Countylevel Climate Change Funds (CCCF) and County Steering Groups (CSG) (sub-national), the Climate-Smart Agriculture Multi-Stakeholder Platform (national and sub-national levels) and the Greater Horn of Africa Climate Outlook Forum (GHACOF) (regional level) were suggested as potential platforms.• Conduct a needs assessment of the designated multi-stakeholder platforms to identify actions required for increasing their capacity to include a climate security perspective. This includes accounting for the needs of the platforms and their members in terms of stakeholder engagement, technical capacity on climate security, leadership, resources, and capacity for change as well as developing recommendations and action plans to increase the capacity of these spaces to effectively integrate climate security as a topic for strategic action.• Identify organizational mandates within the platforms that could be complemented with a climatesecurity oriented action and cluster actors in thematic areas in relation to expertise and mandates.• Develop a multi-level governance strategy for the participating platforms that ensure the effective participation and recognition of county-and community-level priorities for climate security action. For this goal, governance systems relating to both climate action and peace and security at the sub-county, ward, and community levels should be examined in order to identify where current cross-scalar integration mechanisms and processes are currently located and to discover local civil society groups that could be included in the community of practice. A consultation and dialogue process should thereafter be carried out with the objective of defining how and where multi-level coordinating structures can be made more effective.• Co-develop an agenda and clear terms of reference for the community of practice that indicate coordinating mandates, priority areas of action and mechanisms for collaboration and building stakeholder capacity. Identifying channels for sharing experiences and information, and developing a knowledge management system that fosters capacity building at the network level could be steps forward.Given that governance frameworks for climate change and peace have traditionally evolved independently due to inadequate cross-sectoral collaboration, a significant degree of institutional learning is required to effectively integrate climate security as a topic of concern in Kenya´s policies and governance systems.Recommendations by workshop participants for initiating a national policy dialogue to facilitate the adoption of climate action as an entry point for conflict prevention, conflict transformation, and peacebuilding focused on identifying policies, strategies and action plans at national and sub-national levels that could be potentially updated through a climate security lens.Priority actions identified included:• Define key priorities and actions towards integrating climate security as a topic of concern in the updated National Climate Change Action Plan (NCCAP 2023-2027). Actions in this direction could build on the five climate security pathways identified by workshop participants, which could be seen as a summary of the priority areas of concern collectively evidenced by Kenyan stakeholders currently working at the intersection of climate and security. Priorities for action and intervention to sever the complex links between climate and conflict could, for instance, be designed for the purposes of mitigating some of the key contextual factors that render communities more vulnerable to climate-related security risks and impacts.• Map existing legal and policy frameworks relevant for climate and security at the national level and assess their coherence and integration in terms of climate security. This includes policies and strategies like the Ending Drought Emergencies (EDE) strategy and the National Peace Policy. The findings of the workshop should serve as a guide to identify relevant policy frameworks that currently or could in the future operate at the intersection between climate and security to effectively respond to local and national challenges presented by climate change and conflict. County-level spatial planning processes could be a starting point to account for sub-national perspectives on boundary disputes. Moreover, continued efforts for policy advocacy and lobbying towards increasing the relevance of climate security as a national concern are considered essential.There is a need to design climate adaptation programmes and initiatives that proactively contribute to sustaining peace actions. Similarly, peace and security actors should undertake programme planning with a climate perspective. Such efforts should crucially be responsive to specific local contexts and needs.Integrating climate and security risk analyses into the design of resilience and peace dividend projects across Kenya therefore demands significant engagement and coordination across sectors and scales of governance, along with increasing capacity assessment where needed. These recommendations focus on facilitating continuous engagement between climate and peace related actors to identify cross-cutting and synergistic strategies that build upon existing programming practices to:• Map existing climate action and peacebuilding programmes throughout Kenya that may be relevant to address climate security risks. A potential starting point is to identify resilience and peace building projects that act at the intersection between the five climate security pathways outlined above. This would ensure that efforts towards developing climate security-sensitive programming practices achieve a wider set of co-benefits and peace dividends.• Build upon a better understanding of community-level risk coping and conflict management strategies towards developing climate security action plans. Climate-related security risks are frequently conceptualized through technocratic perspectives of system dynamics, favouring prescriptions for action that overly focus on high-level governance priorities rather than human security needs as experienced in everyday life. This highlights the need for conflict-sensitive interventions that account for people's self-articulated visions of risk, resilience, and peace. During programming processes, there is a need to incorporate approaches of linking weakened traditional institutions, youth preferences for resilience building and development, and formal mechanisms for peacebuilding and security.• Strengthen peacebuilding and climate actors' capacity to conduct conflict assessments that integrate a climate perspective and vulnerability assessments that account for conflict risks respectively.Both sectors should be supported in implementing conflict-sensitive approaches to resilience building and natural-resource management strategies that protect rural livelihoods. This includes technical coordination and collaboration between peace and climate actors during programmatic planning and implementation. The latter should also account for complex assessments of the need to complement long-held practices and assumptions in both sectors, such as operating and evaluating metrics, tradeoffs between programmatic priorities, sector level intelligence, and formal and informal norms that govern network dynamics.The workshop emphasized the importance of upgrading and expanding present empirical research on climate security in Kenya. Given the diverse findings and scattered evidence, empirical research to date has been unable to provide coherent insights on the climate and conflict nexus. Stakeholders identified ways to fill gaps in existing research and evidence through:• Gaining a better understanding of how various types of climatic extremes and variability enhance multiple and diverse conflict risks, such as resource-based, inter-ethnic or territorial conflicts, banditry and criminality, drug trafficking, and recruitment by non-State armed groups; along with their connection Towards a Common Vision of Climate Security in KENYA with the weakening of agricultural and resource-dependent livelihoods, different forms of mobility, Statesociety relations, and inter-and intra-communal relations.• Expanding research focus both beyond and within the ASALs region. There is a need for research on the climate-security nexus that differentiates between different settings within ASALs counties, as well as for performing analyses in non-ASALs counties to better guide development initiatives across the country. Western counties, for example, are largely absent from Kenya's existing climate security literature, even though floods and rising lake levels have been identified as potential contributing factors to conflict, particularly that of a political nature.• Developing further evidence on the indirect linkages between climate and conflict -expanding on the role of migration and displacement, political drivers of conflict or loss of livelihoods. Most of the current research is focused on the increase in resource-based conflict because of climatic variability and extremes; however, such a focus risks undermining an understanding of the complexities of the entire climate security nexus, which involves various economic, social, political, and environmental factors.• Investigating further the gender dimensions of climate security in Kenya, especially as gender roles are rapidly shifting in both rural and urban contexts. Consistently using and mainstreaming an intersectional approach to understanding risk and resilience with regards to climate-related security risks will likely be critical here.• Co-producing context-specific climate security assessments relying on community voices that account for traditional coping strategies. It is critical to integrate, to a much greater extent, the experience of those living and working in areas subject to emerging climate-related security risks to co-produce knowledge, set research agendas, help prioritize efforts and investments, and re-orient the focus of the climate security field -something the CGIAR Climate Security Workshop has been designed to facilitate.• Expand climate modeling capabilities to gain a better understanding of future risks by linking current dynamics of climate security with future hazards, while emphasizing the uncertainties inherent in modeling work, as well as the complex and non-linear interactions that are essential to decision-making processes.Understanding that conflict-affected areas receive significantly less climate action investment than those viewed as secure (UNDP & the Climate Security Mechanism, 2021), workshop participants acknowledged the need for investments with co-benefits for both adaptation and peacebuilding in Kenya's climate security hotspots. Even though climate adaptation action has traditionally avoided conflict-affected regions due to their high-risk profile and security concerns, there is an opportunity to link investment initiatives with climate security hotspots. Building on the workshop's outputs, investment planning procedures are needed to codesign climate security investments together with local communities and multiple stakeholders that align incentives across the humanitarian-development-peace nexus with an emphasis on the following:• In conflict-affected areas, climate-smart agricultural investments can help mitigate the drivers of resource-related violence. The development of climate-resilient value chains for production systems including (but not limited to) cassava, chicken, dairy, fish (catfish, tilapia), green grams, millet, and sorghum can increase household income, improving adaptive capacity to both climate and conflict risks. Financial products with built-in environmental insurance components (that rescind the need for repayment if a pre-determined 'trigger point' is reached) can shift economic risk away from producers- • A co-design process is critical for ensuring the validity, accuracy, and local ownership of climate security investments. This requires a participation process that begins at initiation and is cross-cutting throughout the investment lifecycle. Most importantly, the voices of households and communities at risk of climate insecurity must be centred to ensure a \"user-based\" approach to investment design, where the concerns and desires of beneficiaries form the core of an intervention's objectives. This can be achieved by including local civil society organizations in investment design and as finance beneficiaries, potentially as part of a sub-granting process through national organizations. Social equity frameworks should be included from the beginning of the investment development process to ensure marginalized groups are meaningfully included in its co-design.• More work is needed to measure climate security risks in order to structure financial products so that they are attractive to investors, allowing finance to flow to insecure populations. As commercial investors view the agricultural sector as inherently risky even in stable contexts, the explicit targeting of areas vulnerable to insecurity is likely to exceed the risk appetite of conventional financiers. The evaluation of target value chains for climate security risks may address and alleviate these concerns.Additionally, the \"peace dividend\"-the financial return generated for investors through the maintenance of peace-needs to be defined. For pastoralist communities, an \"anchoring\" or place-based value chain may help to mobilize investment.• Climate security should feature more prominently in the public budget. A dedicated budget line for climate security in budgets across different levels of government can help focus funds where they are needed.Tagging can help policymakers identify climate action investments at the national and sub-national levels that may need to be made climate-sensitive, and vice versa. Where possible, the architecture of the Inter-governmental Budget and Economic Council (IBEC), which serves as a coordinating platform for national and county-level governments dealing with fiscal issues, should be used to align investment priorities at multiple levels of governance.• Enhance the grant writing and fundraising skills of organizations working at the intersection of climate and security. This action entails mapping funding partners and organizations, such as the Green Climate Fund (GCF), that are increasingly interested in climate security action, as well as learning from previous and current projects funded in other regions and countries.","tokenCount":"8231"} \ No newline at end of file diff --git a/data/part_3/7863540607.json b/data/part_3/7863540607.json new file mode 100644 index 0000000000000000000000000000000000000000..5071973a27d1f5c43442cd5ca2a30d0e27a28f59 --- /dev/null +++ b/data/part_3/7863540607.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"ab9c7e63f3e39097120e0d718f8946c2","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/ed6c99fd-bb00-4c99-8ed7-0776588dbba8/retrieve","id":"1299782234"},"keywords":[],"sieverID":"11a9f4da-6ccc-4c32-b02e-254d23f26c8e","pagecount":"8","content":"This Highlight reviews 34 papers that deal with interventions aimed at reducing negative impacts of irrigating with Arsenic (As) rich water. These studies show that there are six broad groups of interventions: deficit irrigation, soil fertilization, growing crops other than paddy, switching to As tolerant paddy cultivars, cooking methods to reduce As content in cooked rice and nutritional supplements. All these treatments are effective in reducing the uptake of As in grains and its accumulation in soil and increasing crop yields compared to control group, but the extent of these impacts vary. From a policy perspective, it is encouraging that these interventions are able to mitigate the negative impact of As in irrigation water to varying extent. This is because poor farmers in the Bengal delta are likely to continue to use groundwater for irrigation in the foreseeable future in the absence of any other viable options.Literature on arsenic (As) contamination of groundwater is replete with studies about the impacts of drinking As contaminated water on human health as well as mitigation efforts in that context. Less is known, however, on the extent of use of As rich groundwater for irrigation and effectiveness of As remediation in agricultural contexts despite obvious implications for food and livelihood security (Dittmar et al. 2007) and the possible adverse health and crop impacts associated with As exposure via food chain contamination (Williams et al. 2006;Khan et al. 2009). In this study, we do a systematic review of all available evidence on the impact of mitigation measures aimed at reducing negative consequences of irrigating with As rich water.While irrigation with As contaminated groundwater has emerged as a threat to health and livelihoods of poor people in the Bengal delta (Bangladesh and West Bengal), the scale and complexity of these threats as well as the tradeoffs involved are not very well understood. This is because of the multi-dimensionality of the problems involved. First, chronic exposure via contaminated crop consumption poses serious health risks such as stroke, cancers of the skin, bladder, lung, and liver (National Research Council 2001). However, unlike the risk of exposure via drinking water, the numbers affected by food-chain contamination are un-quantified. Second dimension is that groundwater is often the only source of irrigation in these regions and plays an important role in livelihood and food security. Consider Bangladesh, which achieved food self-sufficiency and rapid poverty alleviation in the 1990s, thanks to intensive use of groundwater (Karim 2001) and West-Bengal, which became self-sufficient in the 1980s by using groundwater for irrigation (Pal et al. 2009:3349). Thus groundwater irrigation plays a crucial role in bridging shortfalls in water supply, stabilizing agricultural production and achieving food security in these regions and is also an effective vehicle of poverty alleviation (Palmer-Jones 1992;Hariss 1993). Third, dependence on groundwater for livelihoods and poverty alleviation means that the very farmers who are the targets of remediation policies often get negatively affected by mitigation efforts, unless those efforts also look at credible alternatives (Khan et al. 2010;Azad et al. 2009;Abedin et al. 2002;Panaullah et al. 2009).This review focuses on impact evaluation studies that look at remediation efforts for agricultural uses of As contaminated water. To examine the effectiveness of these mitigation efforts we used the methodology of systematic review (Higgins and Green (eds) 2008), which draws on methodical search and data collation techniques to synthesize evidence across all available studies. To locate as comprehensive a set of studies as possible, we searched all major academic databases. We also conducted searches of 'grey' literature to locate relevant conference proceedings, technical reports and other unpublished documents.These searches returned over 1200 records. After reviewing titles and abstracts, we then limited our citations to those which were about mitigation strategies for agriculture in the Bengal delta; studies that used credible counterfactuals to measure impact of mitigation efforts; and where As uptake by crops and soils and yield of crop were used as outcome measures. According to this, 34 studies were included for review. We then coded studies on a range of methodological, descriptive and outcome/ impact related attributes. Though all studies were of high methodological quality, heterogeneity in intervention type and outcomes measured precluded quantitative meta-analysis. Therefore, we synthesize the existing evidence using narrative summaries and tables.A review of literature shows that interventions aimed at mitigating negative impacts of irrigating with As contaminated water may be summarized into six categories (Table 1).The largest number of mitigation related studies focus on paddy and alternative irrigation methods to irrigate paddy. The overwhelming majority of these studies (Stroud et al. 2011;Li et al. 2009;Sarkar et al. 2012;Rahaman et al. 2011;Xu et al. 2008;Roberts et al. 2011;Huq et al. 2006;Hua et al. 2011;Das et al. 2008;Basu et al. 2010) show that deficit irrigation systems reduce As grain content when compared to conventional flood irrigation regimes. Duxbury et al. (2007) is the only key exception.However, there is some debate over which type of deficit irrigation system: aerobic or intermittent ponding, results in the least grain accumulation. On one hand, Li et al. (2009) found growing rice aerobically during the entire rice growth duration resulted in the least grain As accumulation. Basu et al. (2010) and Xu et al. (2008) cite similar findings. On the other hand, Sarkar et al. (2012) found that while aerobic water regimes resulted in the lowest level of root As, the content of As in leaf and grain attained by imposition of intermittent ponding only during the vegetative stage of rice growth was optimum in terms of reducing As content in straw and grain (by 23 and 33 percent respectively).The impacts of deficit irrigation on crop productivity are also contested and differ depending on the type of regime used. According to Duxbury et al. (2007), Xu et al. (2008) and Talukder et al. (2010) the yield of aerobically grown crops is less affected by As contamination than conventional flooded systems. On the other hand, Li et al. (2009), Peng et al. (2006) and Sarkar et al. (2012) find that the continuous cultivation of aerobic rice actually results in a substantial yield decline vis-à-vis other water management regimes.However, in all reviewed studies As accumulation in soils was the least in aerobic conditions. According to Sarkar et al. (2012), the highest value of soil As was attained under continuous ponding followed by intermittent ponding, saturated and aerobic regimes. Similarly, Talukder et al. (2010) and Xu et al. (2008) argue aerobic cultivation reduced the amount of As deposited to the soil.Taken together, the evidence suggests that the remediation potential of deficit irrigation is promising in terms of reducing As content in grains and soils. However, the positive impacts of deficit irrigation for crop productivity are contested. This may be a cause for concern from a policy perspective since it will be difficult to convince farmers to move to deficit irrigation regimes if their crop yields go down on account of this.A large number of studies explore the mitigation potential of soil amendments such as application of inorganic fertilizer or organic manure which can immobilize, adsorb, bind or co-precipitate As in situ. The overwhelming majority of studies found that fertilization (irrespective of type) reduces As concentrations in grains. Several studies also investigate the potential of organic matter to remediate As accumulation in grains. Rahman et al. (2011) found that combined applications of various types of organic manure reduced the As content by 33.47 percent and 36.87 percent in whole grains and milled grains respectively, compared to control soils where no such manure was applied. Similarly, Huq et al. (2008) reported that organic matter application was able to reduce As accumulation by as much as 75 percent in the vegetative part of the plant.Overall the impact of fertilization on crop yields is positive. Li et al. (2009) found the addition of Si fertilizer increased grain and straw yield significantly. Huq et al. (2008) found yield differences could be avoided by balance fertilization. Huq et al. (2011) also found that the effect of balanced fertilization on the total and grain yield of rice was highly significant. Pigna et al. (2010) found that for plants grown without phosphorous addition there was a decrease in biomass production of 15 percent, 52 percent, and 67 percent as As concentration in the irrigation water increased, but this reduction was less severe when phosphorous was added to soils. Finally, Huq et al. (2008) found that organic-matter application had a more positive effect on yields than no application at all levels of As spiking.A commonly cited drawback of fertilization, however is that it has not proven to be effective in remediating As accumulation in agricultural soils. Li et al. (2009) for instance found the addition of Si fertilizers increased As concentration in the soil solution. Huq and Joardar (2008) record similar results for balanced fertilization, and Huq et al. (2011) observed that higher amounts of As were found to remain in the soils treated with balanced fertilizers compared to non-fertilized soils. However, Das et al. (2008) and Mukhopadhyay et al. (2000) found that the As content in soil markedly decreased, especially with farmyard manure application.Bio-remediation of soils using algae and fungi has been tried and shown to be successful. Huq et al. (2007) observed that algae could reduce accumulation of As in rice plants by as much as 71 percent and was also found to depress As accumulation in soil. In a related study, Srivastava et al. (2010), evaluated the As removal efficacy of ten fungal strains and found five out of these strains were very effective with high rates of bioaccumulation.Substituting dry land crops such as maize or wheat for rice also has the potential to reduce As accumulation in both soils and food crops (Brammer 2009). Dry-land crops are less water-intensive than paddy and as such can reduce soil As content and crop uptake using the same mechanisms as aerobic cultivation. Indeed, Duxbury et al. (2007) found that 'wheat and maize grain contained approximately 7 and 25 times less As than rice grain. ' Williams et al. (2007) produced similar results in their study of 173 individual sample sets of commercially farmed rice, wheat, and barley. Finally, Su et al. (2010) found that regardless of the As form supplied to plants [arsenite or arsenate], rice accumulated more As in the shoots than wheat or barley. However, Brammer (2009) raises important questions about the feasibility of substituting field crops, such as wheat, barley and maize for rice on a large scale; given that rice has always been the preferred crop of the farmers in the region.Limitations of crop substitution have led scholars such as Norton et al. (2009) to advocate breeding As tolerant rice cultivars. To date, research in this area shows that As uptake, accumulation, and phytotoxicity differ significantly depending on the cultivar used (Rauf et al. 2011;Hua et al. 2011). For example, in a comparative study of As uptake in three different rice cultivars, Hua et al. (2011) found Rondo and Cocodrie varieties were more susceptible to elevated soil As levels, while Zhe 733 was less susceptible. Similarly, Rauf et al. (2011Rauf et al. ( :1678) ) found that the As contents in grain and husk of rice variety BR 11 were higher than those of BRRI Dhan 33. Another study (Huq et al. 2011) found total accumulation of As in the rice variety BR 35 to be less than BR 29 and both to almost 50 percent less than BR 36. Thus, the remediation potential of breeding As tolerant rice varieties is promising in terms of reducing grain content and yield losses. However, such mitigation solutions have no impact on the rate of soil-As accumulation.The potential of cooking methods to reduce As content in rice grains is shown by Pal et al. (2009) who found that, up to 57 percent of As can be removed from As contaminated rice using cooking methods traditional to the Indian subcontinent (wash until clear, cook rice in excess water and finally discard excess water). These results are consistent with those obtained by Sengupta et al. (2006Sengupta et al. ( :1823) ) and Mihuez et al. (2007Mihuez et al. ( :1722)). However, the remediation potential of traditional cooking methods depends on the As content of the cooking water. This again underlines the need for providing As free water for drinking and domestic purposes to all rural households in Bengal.A very different set of studies investigate the links between poor nutritional status and increased susceptibility to As related diseases (Mitra et al. 2004;Maharjan et al. 2006) and highlight the potential of nutritional supplements to reduce the risk of As related health outcomes. Gamble et al. (2006) in a randomized, double-blind, placebo controlled folic acid supplementation trial in a rural region of Bangladesh found that folic acid supplementation to participants enhances As methylation. Because persons whose urine contains low proportions of dimethyl arsinate (DMA) and high proportions of monomethyl arsonate (MMA) and inorganic (unmethylated) As have been reported to be at greater risk of skin and bladder cancers and peripheral vascular disease, these results suggest that folic acid supplementation may reduce the risk of As-related health outcomes.As contamination of groundwater and its consequences for drinking water and remediation measures thereof has been an area of intense focus and study since the early 1990s. However, as this paper highlights, the debate on impact of irrigation with As contaminated water is much more complex than the drinking water debate.What is encouraging however is that search for solutions has already begun and it is recognized that agriculture and irrigation with groundwater are central to the livelihoods of millions of poor people in the Bengal delta. We found as many as 34 high quality papers that used credible counterfactuals to measure the impact of six broad categories of treatments. Our review shows that all these methods have some positive impact by reducing uptake of As by plant and its accumulation in the soil and preventing yield reduction in crops, though all interventions are not equally effective, some are better than others and effectiveness depends on a large number of other factors. Here, the area for future research is to understand the combined effect of all these interventions. For example, Das et al. (2008) studied the interaction between zinc fertilization and deficit irrigation. While these studies and experiments are going on, it is equally important to create awareness among farmers and extension officials about several mitigation interventions that show promising results. It is highly likely that farmers in Bengal delta will continue to use groundwater for irrigation in the foreseeable future because there are no other alternate sources of irrigation. Therefore, understanding and adopting these mitigation measures is necessary to minimize the negative impacts of irrigating with As contaminated water.","tokenCount":"2445"} \ No newline at end of file diff --git a/data/part_3/7869021631.json b/data/part_3/7869021631.json new file mode 100644 index 0000000000000000000000000000000000000000..b63d820f9a174184835949898f8a45e0e489cfbb --- /dev/null +++ b/data/part_3/7869021631.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"e89680996d4ede17b126cefaa2979721","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/3d031f8b-a8ff-40af-ae97-5b827d74b42d/retrieve","id":"-150956721"},"keywords":[],"sieverID":"98cc86a7-812f-4b0e-a8ee-0333349c9c9b","pagecount":"30","content":"SABANA Colombia Los Cerezos (ICA) 09°23' N 73°36' O 40 29.0 1500 59 27 14 5.2 El Paraíso (CIAT) 04°20'y principales caracterlsticas de clima y suelo.La Figura 1 muestra la distribución de los ensayos regionales en los ecosistemas de bosques y sabanas donde el Andropogon\" gayanus fue evaluado.Período de establecimiento La escasa información disponible sobre el porcentaje de cobertura alcanzado por ~. gayanus CIAT 621 en los \"Llanos Orientales de Colombia.se muestra en el Cuadro 2. Los resultados de tres fincas (El Paralso, Guayaba 1 y Carimagua), muestran que los porcentajes de cobertura son muy semejantes a los de Br\"achiaria decumhens. alcanzando una cobertura aproximada del 40% a 12 semanas de sembradas.El análisis de agrupamiento (cluster ana1ysis) para altura y cobertura durante el período de establecimiento para ocho localidades se muestran en el Cuadro 3. La altura máxima alcanzada entre .,.2 y 16 semanas, luego de sembrado, perm; ten di stinguir tres grupos con alturas medias de 55, 93\"y 277 cm, respectivamente. La cobertura se agrupa a su vez en tres, cuyas medias son 39, 57 Y 73 cm, respectivamente.Los parámetros químicos y físicos del suelo de las localidades presentan tanta variabilidad que impiden relacionarlo directamente con alguno de ellos. El parámetro que más destaca entre los grupos es el pH del suelo, siendo de 7.0, 5.3 Y 6.0 para el primero, segundo y tercer grupo.El común denomi nador para todas las locol idodes dentro de cada grupo es la gran varÍCIción de los suelos en texturo y composición, así como . ., ... ----------cm----------- Puede observarse que !l. gayanus 6200 presenta producciones' semejantes a la mayoría de las gramíneas evaluadas en el período de máxima precipitación, siendo su producción 2.4 veces superior a la de la sabana nativa.En el período de mlnima, precipitación se observa que es la' gramínea de mayor producción de materia seca superando en este período en seis veces a la producción de la sabana nativa.Al mismo tiempo, estos resultados muestran que la concentración de la producción de materia seca para !l. ,gayanus durante el período de mínima precipitación es del 46%, siendo para el resto de las gramíneas evaluadas apenas del 28%.El análisis de agrupamiento (cluster analysis) para !l. gayanus, teniendo'en cuenta' los parámetros de producción de materia seca acumulada a 12 semanas, fósforo. potasio, arena y arcilla para el períOdo de máx';ma y mínima precipitac\"ión se presentan en el Cuadro 7. En el periodo de máxima precipitación se observan tres grupos. La producción decrece de 2591 a 293, al mismo tiempo que el porcentaje de arena aumenta de.un 14% a un 51% y el tenor de arcilla decrece de un 48% a un 25%.Para el período de mínima precipitación. el factor que puede haber influído en, la producción es la precipitación, siendo Menegua, Pachaquiaro, y Carimagua las localidades ,con mayor porcentaje de lluvia caída en este período con 12%, 34% Y 10%, respectivamente, no habiendo información completa para ese período en todas las otras localidades, aumentando el porcentaje de arena del 15% al 37% y el P del 4 ppm a 1.7 ppm para los diferentes grupos.\".Una estimación que pudo realizarse con la información de la precipitación ocurrida durante el período de evaluació\"n de la producción de materia seca es la de eficiencia.\" El Cuadro 8 resume y compara el ~. gayanus CIAT 621 y 6200 frente a gramíneas del género Brachiaria.Tanto en el periodo de máxima corno de mínima precipitación [1. gayanus se destaca. La media general para ambos periodos \"es semejante entre gramíneas. A. gayanus produce 10 kg.MS.ha -1 mm~ para el período de máxima precipitación y 13 kg.MS.ha-l mm-1 para el período de mínima preci-tación~ Resultados que varian entre 9 a 11 kg.MS.lÍa-1 mm 1 han sido reportados en la literatura por Barrault (1973). Haggar (1975) 59 :1:. 9.0 12 ----------< 85 :1:. 15.4 12 ----------------------------<------------ ---------------------------------- En 10 que se refiere a la efici•encia de producción de materia seca! mm de lluvia caída durante el perlado experimental., los resultados obtenidos en estas localidades muestran que la media fue de 12 kg.MS.ha-1 mm-l en el p~r'íodo de menor precipitación\" para el ~. gayanus (Cuadro 11 ).El~.gayanus presenta 1 as mayores produce iones comparada con las otras gram'íneas en el período de máxima precipitación, siendo semejante la eficiencia de las cuatro gramíneas en el periodo de menor precipitación. La media general y las eficiencias de cada una de las gramíneas evaluadas es may.or en el periodo de mayor precipitación que en el de menor precipitación.El hecho de que la producción en el periodo de menor precipitación sea en muchas localidades superior que en el período de máxima precipitación, no debe en primera instancia tomarse como algo extraño. En estos \" , ecosistemas la diferencia entre ambos periodos de evaluación agronómica no son tan contrastantes como en el ecosistema da sabana. Por otro 'ado, características climatológicas de varias localidades muestran que el 62% de las localidades tienen radiación solar en el período de mínima superior a la del período de máxima; 13% de localidades con latitud en el período de máxima precipitación.","tokenCount":"839"} \ No newline at end of file diff --git a/data/part_3/7880367151.json b/data/part_3/7880367151.json new file mode 100644 index 0000000000000000000000000000000000000000..a506b7cebca97985a3033184041859bac1ba7922 --- /dev/null +++ b/data/part_3/7880367151.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"881b5877aedfa4fc2bd32bd95ac0e8b0","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/a26c865d-cea4-4f96-b030-dddb40b3a183/retrieve","id":"1253724335"},"keywords":[],"sieverID":"d4e52ad2-a124-4fa6-8426-431a545fdce5","pagecount":"96","content":"A large number of Chinese farmers, extension workers, scientists and policy makers contributed to project R&D activities, with the support of a small cadre of international scientists from CIMMYT and IWMI -to all thanks is due. During their studies students have contributed to the collection, analysis and interpretation of data. Thanks are due to the technicians and support staff who facilitated operations. Finally, the contributions, advice and patience of CPWF managers notably the Theme 1 leader is appreciated.The project goal was to improve the incomes and livelihoods of smallholder farm families in the rainfed cropping areas of Henan, Inner Mongolia, Ningxia and Shandong (Shanxi was added later) while simultaneously improving soil quality and reducing land degradation and soil erosion that threaten system sustainability. Specific objectives included fostering farm family adoption of conservation agriculture practices through participatory research, farmer experimentation and farmer-to-farmer interaction and extension; assessing the (biophysical, social and economic) consequences of conservation agriculture adoption; encouraging a policy environment that does not discriminate against conservation agriculture; and strengthening the capacity of local partners. Project partners include two international Centers (CIMMYT and IWMI), Provincial and County NARES, and Universities. Project beneficiaries were expected to include farm families; downstream water users; researchers and extension workers; and future generations.Each report in the CPWF Project Report series is reviewed by an independent research supervisor and the CPWF Secretariat, under the oversight of the Associate Director. The views expressed in these reports are those of the author(s) and do not necessarily reflect the official views of the CGIAR Challenge Program on Water and Food. Reports may be copied freely and cited with due acknowledgment. Before taking any action based on the information in this publication, readers are advised to seek expert professional, scientific and technical advice.Citation: PN12 Project team. 2010. Conservation agriculture for the dry-land areas of the Yellow River Basin: Increasing the productivity, sustainability, equity and water use efficiency of dry-land agriculture, while protecting downstream water users. CPWF Project Report submitted to the Challenge Program on Water and Food (CPWF). It is sometimes forgotten how strongly climate affects cropping system and their potential for improvement, and consequent environmental impacts and poverty reduction. The project characterized 6 first-level cropping systems and 15 second-level sub-cropping systems in the Yellow River Basin (YRB). Related to climate, water scarcity is a key determinant of crop productivity. In the YRB rainfall decreases from the north to the south, and from the northwest to the southeast. The growth of population and industry placed heavy demands on water in the YRB which led to crisis during the 1990s.Conservation agriculture (featuring reduced or zero tillage, mulch retention, crop rotations and cover crops) offers a possible solution. Conservation agriculture (CA) systems typically result in increased crop water availability and agroecosystem productivity, reduced soil erosion, increased soil organic matter and nutrient availability, reduced labor and fuel use and increased biological control of pests. Building on experienced in irrigated areas of China and international experience, the project adapted CA for rainfed areas of the YRB.Project scientists distinguished Full CA (or Real CA) and Partial CA (or Nominal CA) technology packages. Full CA is characterized by adopting both no till (or reduced till) technology with residue retention, and is consistent with the internationally recognized three principles of CA definition. In contrast, Partial CA is characterized by either no till (or reduced till) technology or residue retention technology. Appropriate is crucial to effective CA and the project supported the development and improvement of no-till seeders and other machinery in all Provinces. For example, the 2BM-5X NT seeder is now successful for direct seeding wheat, maize, minor grain crops on wheat, rice or maize residue fields due to a special knife opener introduced by the project.Project scientists showed that CA techniques increased soil moisture (beneficial for crop growth) across a range of environments. CA also reduced maximum soil temperature, with variable effects on crop establishment and growth depending on environment. However, residue retention reduced maize yields because of the lower soil temperatures under the residues. This was especially marked in relatively cold Ningxia Province.Although in the trials CA generally had positive effects on yields, survey results of farmers who have adopted CA report no significant effects of CA on yields. As in other countries, farmers perceive the reduction in production costs from the reduction or elimination of tillage as a major advantage. The project surveys found that adoption of CA technologies significantly reduced farm household poverty by 5 percent.CA contributes to increasing water use efficiency through reduction in soil evaporation and consequently higher soil moisture available to the crop. The project survey found that 71% of villages reported an improvement of their environment following the adoption of CA; and some farmers had observed an increase in water use efficiency.More than 5000 farmers took part in project training courses or field days at the CA demonstrations. Our research results show that Partial CA technology begun to be adopted in the YRB since the early 1980s, but rapid development commenced during the 1990s, and picked up especially since the 2000. In contrast to Partial CA technology, Full CA technology began to be adopted during the late 1990s. Overall, the adoption rates of CA technology (either for partial or full CA technology) are still very low. The adoption rate for Partial CA technology (especially for residue retention) is relatively high. However, the Full (or real) CA (combining reduced till and residue retention together) is limited.Policy and socio-economic factors are important drivers of wider adoption of CA technology. Results show that policy intervention (such as machinery subsidy policy and policy of forbidding burning residue) can play some role in promoting the adoption of CA technology. The project has had some success in influencing policy; for example, a no-till seeder has been put into the list of Agricultural Machinery Purchase Allowance of 40% of purchase price. More than 85 sets of the seeder have been produced and used to no-till plant more than 700 ha in YRB region.The capacity of National, Provincial and County research and extension organizations has been built. Also 4 PhD candidates and 33 Master students have worked on project data. With the implementation of this project, 5 patents relative to CA have been registered. Five international papers and 50 national papers have been published. Two CA techniques got provincial prizes. At same time, the participants from the project organizations won 5 national CA project and 10 provincial CA projects. Senior project scientists took part in high-level policy dialogues at national and provincial levels, and project results were utilized to reorient the five-year plan, including \"CA blueprints\" in national & provincial plans. This is a very important impact in the light of the survey results which showed that resource endowment positively affected CA adoption, and that this could be offset by subsidies on the CA components that increased initial investment -especially no-till machinery.The Yellow River Basin (YRB) is characterized by very high population density and extensive poverty. Soil erosion is also a major problem in the Basin: the river is one of the most sediment laden in the world. Many regions of the YRB are relatively dry and there are large areas of rainfed cropping. Hydrology is a key issue: there was a crisis of water availability and river flow in the 1990s because of the rapidly growing demand from agriculture, domestic and industrial uses. Conservation agriculture (featuring reduced or zero tillage, mulch retention, crop rotations and cover crops) offers a possible solution to these issues. Conservation agriculture systems typically result in increased crop water availability and agroecosystem productivity, reduced soil erosion, increased soil organic matter and nutrient availability, reduced labor and fuel use and increased biological control of pests. Most of the recent advances in conservation agriculture in China have been in irrigated areas, from which technologies and approaches were adapted for this project.The project goal was to improve the incomes and livelihoods of smallholder farm families in the rainfed cropping areas of Henan, Inner Mongolia, Ningxia and Shandong (Shanxi was added later) while simultaneously improving soil quality and reducing land degradation and soil erosion that threaten system sustainability. Specific objectives include fostering farm family adoption of conservation agriculture practices through participatory research, farmer experimentation and farmer-to-farmer interaction and extension; assessing the (biophysical, social and economic) consequences of conservation agriculture adoption; encouraging a policy environment that does not discriminate against conservation agriculture; and strengthening the capacity of local partners. Project partners include two international Centers (CIMMYT and IWMI), Provincial and County NARES, and Universities. Project beneficiaries were expected to include farm families; downstream water users; researchers and extension workers; and future generations.The project brought together scientists, extension workers and policy makers from National, Provincial and County organizations along with scientists from CIMMYT and IWMI to conduct research, extend results to, train and foster adoption of CA among farmers. Experimental sites were identified in five pilot Counties and characterized in terms of soils, climate and cropping history. These provided the platform for the 4-year trials of CA techniques especially tillage and residue management with wheat, maize and cash crops. Minimum data sets of agronomic and soil data were systematically collected at all sites. The results of the experiments were the basis for the establishment of participatory on-farm demonstrations and farmer training in all the Counties. The experimental data were an input to crop modeling of CA technologies using the DSSAT model. Farm household group and individual interview surveys were conducted in 2005 and 2008. Again, participatory research methods were applied to the testing and adaptation of farm equipment especially no-till planters for CA. Impact pathways were identified. Students benefited from supervised analysis and interpretation of project data. Study tours to observe CA in the field and participate in conferences were organized for the project scientists. Policy discussions were arranged at various levels to foster appropriate policy adjustments to support CA adoption,The field experiments were a rich source of data on CA for different cropping systems, soils and climates. Climate affects cropping system and their potential for improvement, and consequent environmental impacts and poverty reduction. The project assembled and analysed detailed meteorological data for the YRB. Rainfall decreases from the north to the south, and from the northwest to the southeast. The growth of population and industry placed heavy demands on water in the YRB which led to crisis during the 1990s, providing an underlying rationale for water-efficient methods such as CA. The project characterized the six first-level cropping systems and 15 second-level sub-cropping systems in the Yellow River Basin (YRB) -see more detail below. Related to climate, water scarcity is a key determinant of crop productivity; but the project experiments showed that low soil temperatures were a binding constraint on crop establishment in the north.Conservation agriculture (featuring reduced or zero tillage, mulch retention, crop rotations and cover crops) offers a possible solution. The project showed that CA techniques affect soil moisture (affecting hydrology and crop growth) and temperature (affecting crop establishment and growth) -see details below --in general strongly. Consequently, it increased agroecosystem productivity (in a majority of experiments). While crop yields were increased significantly, the water and nutrient use efficiency increased by more than 20% for wheat and maize. However, low spring soil temperatures were aggravated by surface residue in the north (Ningxia) and the Full CA (no-tillage with full residue retention) delayed summer crop (maize) establishment, and for this reason farmers preferred plastic to mulch. Specific details are described below.The project supported the development and improvement of no-till seeders and other machinery in all Provinces. For example, the 2BM-5X NT seeder is successful for direct seeding wheat, maize, minor grain crops into fields covered with wheat, rice or maize residues due to a special knife opener. As well as developing equipment for medium sized tractors, the project experimented with some two-wheel tractor equipment. Moreover, the project facilitated the import of three advanced no-till planters (\"Happy Seeders\") from India to Ningxia Province which have been successfully put to work.Policy and socio-economic factors are important drivers of wider adoption of CA technology. Results show that policy intervention (such as machinery subsidy policy and policy of forbidding burning residue) can play some role in promoting the adoption of CA technology. The project has had some success in influencing policy; for example, a no-till seeder has been put into the list of Agricultural Machinery Purchase Allowance of 40% of purchase price. More than 85 sets of the seeder have been produced and used to plant without tillage on more than 700 ha in YRB the region.The capacity of National, Provincial and County research and extension organizations has been built. Also 4 PDFs, 8 PhD candidates and 17 Master students have worked on project data. Five international papers and 50 national papers have been published. Two CA techniques got provincial prizes.More than 5000 farmers took part in project training courses or field days at the CA demonstrations. Our research results show that Partial CA technology begun to be adopted in the YRB since the early 1980s, but rapid development commenced during the 1990s, and picked up especially since the 2000. In contrast to Partial CA technology, Full CA technology began to be adopted during the late 1990s. Overall, the adoption rates of CA technology (either for partial or full CA technology) are still very low. The adoption rate for Partial CA technology (especially for residue retention) is relatively high. However, the Full (or real) CA (combining reduced till and residue retention together) is limited.With the implementation of this project, 5 patents relative to CA have been registered. At same time, the participants from the project organizations won 5 national CA project and 10 provincial CA projects. Senior project scientists took part in high-level policy dialogues at national and provincial levels, and project results were utilized to reorient the five-year plan, including \"CA blueprints\" in national & provincial plans.As well as increasing productivity, CA also reduces soil erosion from wind and water. As in other countries, farmers perceive the reduction in production costs from the reduction or elimination of tillage as a major advantage. For example, CA can reduce the cost of machine service fees, reduce fuel input from 25 to 40 percent, and reduce labor input. The farm surveys found huge reductions in labour use with CA -up to 80% reduction in the maize crop. Similarly, CA increases farmer income, and the project surveys found that adoption of CA technologies can significantly reduce farm household poverty by 5 percent.In relation to environmental impacts, CA contributes to increasing water use efficiency, increasing soil moisture and reducing soil evaporation by about 30 percent. Finally, CA reduces runoff of surface water by about 60 percent. The project survey found that 71% of villages reported an improvement of their environment following the adoption of CA; and some farmers had observed an increase in water use efficiency.The rainfed agricultural areas of the provinces of Ningxia, Inner Mongolia, Henan and Shandong share many similarities despite the many differences in climatic factors, cropping patterns, infrastructure, and income levels that also characterize these regions. While part of the targeted region is situated on the highly erodible Loess Plateau, others are on sedimentary deposits. Rainfall varies from approximately 750 mm per year in southeastern Shandong to 200 mm in northern Ningxia. Most of the rainfed agricultural areas are found in zones that receive at least 400 mm of annual rainfall. However, rainfall use efficiency is generally quite low throughout the region. The reasons for poor efficiency vary somewhat with soil type: in the loess areas it is largely due to high evaporation rates from the soil, whereas in the areas of alluvial deposits, low soil water infiltration rates are a major limiting factor, leading also to significant water run-off and soil erosion.Soil erosion has long been recognized as a severe problem in the Yellow River basin. The Yellow River is the most sediment-laden river in the world with most of the sediment originating in the thick loess deposits of Shaanxi and Shanxi Provinces, outside the geographic scope of this project. Nevertheless, soil erosion, both by wind and water, in the basin as a whole removes the most fertile topsoil and compound water and air pollution problems. These processes are particularly marked in the drier and more sloping lands associated with rainfed agriculture.Dryland area accounts for almost 6.6 million hectares or approximately 57% of the cultivated land in the Yellow River Basin (YRB), although definitions of \"dryland\" in China also include areas that have some supplemental irrigation. Using the official poverty definition of per capita income less than US$625 a year, the average incidence of poverty in the YRB overall has been estimated at 11.8%. While official data on poverty incidence in the rainfed areas alone does not exist, research findings suggest an incidence at least 5% higher than the basin average (CCAP unpublished, 2003). Not only are off-farm income opportunities frequently not available to agricultural households in many of the YRB rainfed areas, but crop diversification opportunities are largely limited by agro ecological conditions. Agriculture is generally the predominant source of income for households in this region, and, therefore, successful means of increasing agricultural system productivity and water use efficiency of agriculture will contribute to the improvement of farmer livelihoods.Crop residues cover on the soil surface has numerous advantages: surface soil structure, and therefore water infiltration rate, is maintained and evaporation reduced; drought is mitigated; soil biological activity is increased as there is a permanent substrate for soil fauna and flora; biological pest control is enhanced; and soil organic matter, the motor behind soil physical, chemical and biological fertility, gradually increases over time (e.g. Six et al., 2002). Surface residues also efficiently reduce soil erosion, both by wind, due to the protective cover and wind impedance, and by water, due to the improved infiltration rate and reductions in water run-off velocity. Moreover, the reduction in soil tillage associated with residue retention (optimally zero tillage), reduces labor inputs, benefiting especially women and children, and creates the potential for more diversification possibilities in the farm enterprise.The adoption of conservation agriculture brings benefits not only to the farm family in terms of increased livelihoods, reduced risk, reduced labor requirements and the possibility of the diversification, but also to other members of society. Downstream water users benefit from decreased sediment load in waterways, and more even stream flow when fed by a greater proportion of ground-water and less surface run-off. City dwellers benefit from decreased wind erosion: dust clouds from the more arid western regions have become an important problem in China, reaching as far east as Beijing. Increases in soil organic matter, attributable to the omission of tillage, surface residue retention and increased biological activity, imply the sequestration of carbon in the soil, and a reduction in carbon dioxide emissions. A 60-70% reduction in fuel use for crop production, in areas with mechanized traction, further reduces greenhouse gas emission. As agriculture accounts for 20-25% of the worlds CO2 emissions, conservation agriculture can play an important role in the mitigation of global warming.Zero tillage agriculture has already proved viable and profitable to farmers in Shanxi, Hebei, Sichuan and parts of Inner Mongolia, especially in fully or partially irrigated areas.There is little published information from these projects, but correspondence with some of the researchers involved has revealed benefits in water use efficiency, weed control and, in many instances, in crop productivity (J. Tullberg, C. Chang -personal communication).The principles of conservation agriculture, comprising reduced or zero tillage, residue retention and crop rotation, have extremely wide applicability and have been adopted on more than 70 million hectares worldwide. They are used in areas with as low as 200 mm of annual precipitation and with as much as 2500 mm per year; on soils with up to 85% clay and on soils with more than 90% sand. However, even though the principles are widely adapted, the specific techniques and technologies required to apply them are very site specific: some farmers in Brazil even change their management practices between different adjacent fields.The project aimed to extend the use of conservation agriculture to pilot areas in the rainfed cropping areas of the Yellow River basin. The project will promote the development of innovation networks focusing on the efforts and experiences of innovative farmers, farmer experimentation with the proposed technologies, and farmer-to-farmer extension and dissemination. In this way the project proposes to initiate a process of spontaneous adoption, as has happened in regions of small farmers in Brazil, India, Pakistan and Ghana.As conservation agriculture involves a complete change in the agricultural system, and a change away from the paradigm of the plough and aggressive tillage, it is the initial adoption that may be slow and difficult. Once a few innovative farmers have adopted the system, the evident benefits have led to an explosion of adoption in other small-farm areas: in the Indo-Gangetic Plains less than 100 ha in 1997 had grown to 500, 000 ha of zero-tillage wheat in 2003. The expected widespread adoption of conservation agriculture in the rainfed areas of the YRB, in all probability after the end of the project, will attain the project goal of increasing farm family livelihoods through improved productivity, profitability and sustainability of agriculture in these areas, while at the same time reducing the downstream effects of soil degradation, especially soil erosion.The project focused on the areas of five Provinces targeted by the Water and Food Challenge Program that receive, on average, more than 400 mm per year of rainfall.Although conservation agriculture may well prove successful in the drier areas, the project team felt that it will be more advantageous to first adapt conservation agriculture to the \"wetter\" areas, and, once adoption has begun, then concentrate on extending it to the drier areas. The project established sites with two pilot communities in each of the four Provinces (Henan, Shandong, Ningxia and Inner Mongolia), plus additional sites in Shanxi Province. All provinces have rainfed agricultural areas with more than 400 mm/yr rainfall. Aided by Geographic Information Systems and Participatory Rural Appraisal techniques, the project located the eight communities that represented a gradient in rainfall from the nearly 700 mm of Henan to the 400 mm/year areas of southern Inner Mongolia and Ningxia.Contribute to poverty alleviation by improving the livelihoods, system productivity and the sustainability of agricultural production in the poorer rainfed areas of the Yellow river basin. Through the development and dissemination of conservation agriculture management systems to increase rainfall use efficiency, crop and labor productivity, and reduce soil erosion.(1) Foster farm family adoption of conservation agriculture practices based on zero tillage, direct seeding, residue retention and crop rotation in four villages of the Yellow River basin, representing a rainfall gradient.(2) Assess the consequences of the adoption of conservation agriculture practices on system productivity, income, livelihoods, equity, resource quality, water use, and soil erosion at the field, watershed and river basin levels.(3) Encourage the development of a policy environment that does not discriminate against conservation agriculture practices and of input, equipment and rental markets needed to make conservation agriculture practices generally accessible.(4) Strengthen the capacity of local partners to conduct collaborative research and development on conservation agriculture in a partnership mode with multiple stakeholders.This main body of the report begins with an overview of the farming systems of the YRB in the next section, followed by a brief profile of the selected Counties which implemented the research and demonstrations.Because of the spatial and temporal differences in climate, soil type and physiography in the YRB, crops grown and their management vary between regions. In Shandong and Henan, double cropping (two crops per year) of winter wheat and maize is the common practice. Livestock is mainly pigs, poultry and cattle, and farmers earn off-farm income through providing labour to other farms. In Inner Mongolia, Ningxia and Shanxi, the main crops are millet and wheat with one crop per year, and the principal livestock are cattle, sheep, pigs and poultry (Figure 1).The core of the project was based on the field experiments, learning sites and demonstrations in four provinces.According to specific rainfall, geographical feature and dryland faming systems, four counties in four provinces were selected for pilot research and learning sites. Figure2. The annual rainfall amount in the pilot sites and supplementary site Each pilot county was selected through in-depth discussion during the inception workshop.The principal relevant characteristics of the Counties are shown in Table 1 and the location of each shown in Figure 3. After inception, scientists from CAAS, CAU, CAS and Henan, Shandong, Inner Mongolia as well as Ningxia carried out the primary data collection. The data set included the daily temperature, humidity, rainfall, crop species, yield, crop plantation structure, and current status of CA application, especially for the 4 pilot counties. At the end of 2005, experts from CIMMYT, CCAP and CAAS carried out the social and economic investigation in YRB, which data-set include cultivated land, irrigated land, and the sowing area of major crops, crop yield, agricultural production inputs, farmer income, livestock population and other socio-economic relevant data. International and domestic conservation agriculture literature was also reviewed, especially for the target 4 provinces.In the 5 pilot sites, field trials were designed and planned to last 4 years. The trials are described briefly in the following sections which present the main findings for each location.Management of no-tillage conditions.In Shandong, conservation agriculture (CA) based practices have been widely adopted for maize planting in recent years. Maize generally follows wheat, which is harvested using combine harvesters and all the straw left covering the soil. After that, the direct seeding of maize with seed drills is conducted without tillage and with residue retention (Figure 4). Therefore in the following experiments we superimposed the tilled check plot on these fields, and the CA treatments followed on from the previous untilled system and the results reflect effects of no-tillage for longer than the establishment of the trials. In the first season we compared soil conditions in the no tillage plots with the conventionally tilled checks that had been superimposed on the no-till fields. No significant differences in soil porosity and soil bulk density were observed in conservation and conventional tillage conditions.The plant nitrogen content was determined at late growth stages of maize. Also, no significant difference in nitrogen content was found, with plant nitrogen content (0.48% to 0.49%). Likewise, previous no tillage exerts little effect on maize developments and yield component formation.The project endeavoured to validate and use the DSSAT model for the conditions of the project sites. We used the beta version of the new DSSAT-CSM which has been updated with algorithms with handle effects of tillage and residue management on the cropping system. The new DSSAT (version 4.5) cropping system model (CSM) has a modular structure to allow easy replacement or addition of modules. However, the model needed some major modifications to incorporate the treatments used in China, and this was not completed during the project. The following are some of the issues encountered.For few soil properties we used the values suggested by the model because they were not available from the field trials. The model can handle all tillage and residue management operations performed during the field trials. Use of plastic covers is common in China but the DSSAT model does not have a routine for handling plastic mulch. The team tried to modify soil properties such that they mimicked the conditions created by plastic mulch but we have found no reference in the literature to similar adjustments to the model and so are still not confident of the adjustments that we have made to the model. The model is also not capable of simulating the effects of standing stubble. The Inner Mongolia site has two treatments in which they leave standing stubble of two different heights. We are incorporating the effects of standing stubble by simulating the residue into soil rather than leaving on the surface. This way we can simulate the effect of roots of standing stubble and we are testing different amounts of residue until we get a good match with the field trial data. To help us neutralize the effects of variables other than residue cover and tillage, we first calibrate the model for conventional tillage so that everything except residue cover and conservation tillage operations is accounted for in the model. We then used this model and modify it to calibrate for conservation agriculture treatments. We agree however that this method is very questionable and until we are able to modify the model adequately we will not present the results.In this section the principal results are presented for the major challenges under Objective Soil bulk density and soil porosity.After one year of applying the treatments soil bulk density was higher, and soil porosity lower, in the Jimai 20 plots with conservation tillage compared to the conventionally tilled plots (Table 2). We are unable to explain why the bulk density of the soil under Yannong 19 was so much lower than the other two varieties, especially in the 0-20 soil layer. The soil moisture content under CA was lower than that under conventional tillage system. As the wheat grew, the moisture in no-tilled soil showed a lower water loss and higher rainfall water retention. This suggests that the water evaporation rate is lower under no tillage and residue retention conditions.Soil temperature.Between March 30 and May 18, 2006, average soil temperature at 10 cm below the soil surface was 2.0ºC lower in the CA plots than in conventional tillage plots, whereas at 20 cm, the difference was less -the soil under conservation tillage was only 0.6ºC cooler.Soil organic matter content.After only one year, and despite the very high variability, the organic matter content was significantly greater in the CA system at 0-20 cm soil depth, while at 20-40 cm soil depth no significant differences were observed (Table 3). The variations in organic matter content are partially attributed to residue retention under the CA system. There were no significant differences in total nitrogen contents, but alkali-hydrolyzable nitrogen was significantly higher in CA plots at 0-20 cm soil depth, while at 20-40 cm soil depth there were no significant differences (Table 3). Wheat population dynamics.There were no differences in establishment between tillage treatments, and plant population was similar across treatments. However, tiller numbers per plant and tillers m -2 were significantly higher under CA: there were 70% more tillers m -2 under CA. So we conclude that the tillering in early winter and early spring is promoted under CA practices, even though germination and plant establishment is not affected.Wheat LAI was measured on twenty plants per plot with a LICOR LI-3000A area meter. Results showed that in variety Jimai 20 (grown under both conventional tillage and CA) LAI under CA conditions was consistently higher than in conventional tillage system, and increased more rapidly as plants grew during the March 20 to May 18 period. At peak LAI (18-27 April) the crop under CA had a LAI of 2.3 whereas under conventional tillage it was only 1.5.There were no significant differences between treatments in relative leaf chlorophyll content (expressed as SPAD value)Dry matter accumulation.The crop was sampled to measure total above-ground dry matter at four times during the season from March 20 to April 28. Aboveground biomass was determined on twenty plants per plot after oven drying at 60°C to a constant weight. In Jimai 20 there were no differences between the tillage treatments at the first three samplings, but at the last sampling date, TDM was 10% higher in the CA treatment.Grain yield and yield components.Yield was measured at maturity by hand harvesting the middle 20 rows of each plot on June 7, 2006. The harvested plants were mechanically threshed and the grain was allowed to air-dry to 13% moisture. The number of heads per square meter and the number of kernels per head were determined from the harvested plant samples. Kernel weight was determined by taking the average weight of 1000 kernels taken randomly from seeds harvested within each plot.As shown in Table 4, the yield of wheat Jimai 20 increased by 20% under no-tillage conditions, due to the significantly higher spike numbers and grain numbers per spikeoffset to some degree by lower kernel weights as would be expected. Under conservation o-tillage practice, the maximum yield was obtained in variety Yannong 19, followed by Yannong 24 and Jimai 20. The two Yanong varieties appear to be well adapted to no-tillage, rainfed conditions. In the conservation tillage system, soil alkali hydolyzable nitrogen and organic matter were higher than in the conventionally tilled treatment, presumably due to the effects of residue retention. Yield of Jimai 20 was considerably (20%) higher in the conservation tillage treatment, and the other two varieties appear well adapted to conservation tillage conditions. In all the 16 genotypes of wheat, photosynthetic rate was steady prior to flowering, and then decreased gradually. Before flowering, higher photosynthetic rates were observed in Yan Blu 6439, Luohan 6, Lainong 0301 and Linhan 51329, while after flowering, higher photosynthetic rate was observed in Lainong L155, Luohan 12 and Aikang 58. However, photosynthetic rate was not correlated in this study with grain yield.The normalized difference vegetative index (NDVI) has been correlated with physiological plant parameters and used to evaluate plant growth (Govaerts et al., 2007). At 145-146 DAT for autumn application or 30 DAT for spring application, canopy reflectance was measured using a GreenSeeker Hand-held optical sensor (NTech Industries, Inc., Ukiah, CA, USA). The sensor unit has self-contained illumination in both red and near infrared bands and measures reflectance in the red and near infrared (NIR) regions of the electromagnetic spectrum. This reflectance is used by the sensor to compute NDVI according to the formula NDVI = (NIR-R)/(NIR+R), where NIR is the reflectance of emitted NIR radiation returned from the sensed area, and R is the reflectance of emitted visible red radiation returned from the sensed area. Measurements were taken around mid-day (between 10:00 h and 14:00 h). The sensor was held parallel to the soil, about 50 cm above the crop canopy. In measuring a plot, the trigger was kept down for 4-5 seconds so that 12 single counts were collected. The NDVI values of these counts were then averaged to obtain a mean value for each plot.Figure 5 shows that Shimai 15 and Shijiazhuang 8 have the highest NDVI, Kenong 9204 has the lowest. The NDVI values are very consistent with their grain yield, suggesting that NDVI is significantly correlated with the grain yield and water use efficiency in wheat.Results showed that NDVI values of different wheat genotypes differed significantly at different development stages. Value of wheat NDVI expressed a positive correlation with drought yield index at heading stage. Varieties that had higher NDVI values at heading had better drought yield indices. Under the experimental conditions, Shimai 15, Shijiazhuang 8 and Yan Blu6439 have higher drought yield index than others.The maximum LAI in all the wheat genotypes was observed at flowering, followed by a gradual decrease after flowering. During the period from heading to flowering, Shijiazhuang 8, Shimai 15 and Shimai 12 developed higher LAI than the other 13 varieties.The LAI is highly concordant with the grain yield, which suggests that the LAI during the period from heading to flowering can be used as an important indicator of water use efficiency and yield formation under CA conditions in dry-land.Generally speaking, flag leaf SPAD values in all wheat genotypes increased during the early stages of wheat growth, and then decreased at later stages. The maximum flag leaf SPAD value was found at flowering or early grain filling. During grain filling Shimai 15 had the highest leaf chlorophyll concentrations -significantly higher than all the other varieties except Yannong 21, Kenong 9204 and Shijiazhuang 8.Field experiments were conducted in the 2007/2008 crop season at trial fields of the Shandong Academy of Agricultural Sciences (36′42″ N, 117′ 04″ E). The CA technologies were first adopted in 2004 with wheat/maize rotation system. The soil of the site is a loam, containing 1.22% of organic matter, 13.45 mg kg -1 rapidly available phosphorous, 138.3 mg kg -1 of rapidly available potassium, and 66.9 mg kg -1 of rapidly available nitrogen. The winter wheat variety Jimai 22 was used for experiment.The experiment was laid out in a randomized complete block design with a split plot arrangement. Three treatments -no-tillage with straw cover (NS), tillage plus straw cover (TS), and conventional tillage without straw retention (CT) -were replicated four times on experimental plots 2.8 m wide by 10 m long.For determination of soil moisture, samples were taken from to 0-10 and 10-20 cm horizons. Three soil samples were taken from each plot using steel tubes (5 cm × 10 cm). Soil moisture was measured by the oven-drying method. The samples were weighed wet, dried in a ventilated oven at 105°C for 48 h, and weighed again to determine soil water content. The air-dried soil samples were used to determine the contents of nitrogen and organic matter contents. . NDVI of different genotypes of wheat under CA conditions Subsurface soil temperature (5 cm depth) was measured from seeding to the first node stage at 7:00, 13:00 and 19:00 h daily, using mercury-in-glass thermometers with bent stems. The thermometers were sunk into the inter-row ground to the depths of 5 cm.Soil respiration measurement was performed based on carbon dioxide analyses using an ADC 2250 differential infrared CO 2 gas analyzer (ADC BioScientific Ltd). Shoots were removed by clipping at soil level before measuring soil respiration. Measurements were made by sealing the lid onto the collar and continuously circulating air from the chamber through the ADC 2250 CO 2 analyzer and back into the chamber through the perforated air-dispersion ring on the underside of the lid. The sampling pump had a flow rate of 1 L min -1 , with the CO 2 concentration obtained within 30 s to an accuracy of 1%.As can be seen from Table 5, the soil moisture increased as the soil depth increased. Treatment effects were not consistent. Generally speaking, the 0-20 cm soil moisture under NS conditions tended to have higher moisture content than the CT treatment, but this positive difference was only significant in the March 14, April 14 and May 14 sampling dates. In the early May sampling, there was significantly more soil moisture in the CT plots than in the NS plots in the 0-20 cm layer. The reasons for this are not known. The soil temperature at 5 cm under NS conditions was significantly lower than that under TS and CT conditions (results not shown here). The lower soil temperature under no tillage conditions may be attributed to weak light penetration to soil with higher compaction and residue retention. The reduced absorptions of radiant energy will result in the lower temperature.Under NS conditions, the soil respiration was lower than that under TS and CT conditions, indicating that the release of CO 2 from soil respiration decreased due to the no-tillage and straw cover.A large number of colonies of soil microorganisms were observed on the culture medium. The soil microorganisms, including bacterium, yeast, actinomycetes, and mould, varied with different planting methods. There were a great number of actinomycetes in the soil under NS conditions, while mould abounded in the soil under TS conditions (Table 6). Under CT conditions, only bacterium and yeast were observed in the soil. The species were determined using biochemical reaction approach after isolation and purification of microorganisms. The main species of bacteria are bacillus (Bacteriaceae), Vibrio (Vibrionaceae), staph (Micrococcaceae). Two treatments, no-tillage (CT) plus straw cover and conventional tillage (CT), were designed. Wheat was planted on 25 September, 2007 at a planting rate of 13 kg mu -1 . The trials were fertilized with 37.5 ton ha -1 organic fertilizer (manure), 105 kg N ha -1 applied as urea, 130 kg P ha -1 applied as triple super phosphate and 105 kg K 2 O ha -1 as basal fertilizer at planting and 105 kg N ha -1 top-dressed as urea at the booting stage.For determination of soil moisture, samples were taken from every 10 cm of the top 20 cm depth in planting zone. Three soil samples were taken from each plot using steel tubes (5 cm × 10 cm). Soil moisture was measured by the oven-drying method. The samples were weighed wet, dried in a fan-aided oven set at 105°C for 48 h, and weighed again to determine soil water content. The air-dried soil samples were used to determinate the contents of nitrogen and organic matter contents.Wheat LAI was measured with a LICOR LI-3000A area meter. Wheat DMA of aboveground parts of plants was determined after oven drying at 60°C to a constant weight. Twenty wheat plants per plot were sampled for each measurement.During the period of plant growth and development, the average soil moisture content at all soil depths was slightly, but not significantly, higher in NT planting over CT planting (Table 7). There was no difference in plant population between NT and CT conditions. The number of tillers per plant under NT conditions was 1.3 more than that under CT conditions (5.5 vs 4.2). However, this did not result in more spikes, and there were more spikes m-2 in the CT treatment than in the NT treatment in contrast to Expt. 1 above where there were more spikes in the NT treatment than in the CT treatment. .The results indicate that that NT planting favors the tillering due to the slower drop of temperature in the fall and early winter. While at greening-up stage of wheat, the soil temperature was lower in NT planting than in CT planting due to the residue retention. As a result, the total number of spikes per ha and percentage of ear-bearing tillers were lower under NT conditions, than that under CT conditions.From the grain-filling stage on, the leaf area index (LAI) in wheat under NT conditions was lower than under CT conditions, probably due to the smaller area of the flag leaves and second leaves from the top. However, the LAI decreased more slowly in no-tillage planting than in CT planting after the mid grain-filling stage. These data indicate that under NT planting conditions, the air circulation and light transmission were improved, light reception was increased, leaf senescence was delayed, and the photosynthetic duration for functional leaves was extended.Photosynthetic rate and dry matter accumulation.The photosynthetic rate of flag leaves in winter wheat was higher in NT planting than in CT planting during the period from flowering stage to late grain-filling stage.At early stages of plant growth, no significant difference in dry matter accumulation was observed between NT and CT planting conditions. While after the flowering stage, the dry matter accumulation differed significantly between NT planting and CT planting. These results suggest that the efficiency of assimilation in winter wheat in NT planting is higher than in CT planting. The higher assimilation efficiency in NT planting favors the transfer of organics from vegetative organs to grains, increasing crop yield.At the mid grain-filling stage, no significant difference in the dry weight ratio of spike and total plant was observed between NT planting and CT planting, while as the plant grew, the dry weight ratio of spike and total plant was significantly higher in NT planting over CT planting. During the whole grain-filling stage, the proportion of functional leaves in the entire plant was higher in NT planting than CT planting, indicating that the NT planting could delay the leaf senescence and keep the canopy photosynthesis higher. At early grain-filling stage, the dry weight ratio of straw and whole plant was slight higher in NT planting than in CT planting, contributing the higher lodging-resistance in wheat under NT planting conditions. Whereas at mid and late grain-filling stages, the ratio was lower in wheat in NT planting than in CT planting, which may be due to the more effective transfer of dry matter from stem to grains in NT planting.Although the spike number per unit area was lower, the grains per spike and 1000-kernel weight were significantly higher in NT planting than in CT planting. Ultimately, the grain yield for NT planting was increased by 8.21% as compared to CT planting (Table 8). The research has indicated that the area of flag leaves and second leaves are considerably lower in NT planting than in CT planting, which can improve light transmission in the canopy and air circulation, promoting the border effect and delaying the leaf senescence. Both the individual and population structures of wheat are better in NT planting in dry land. These advantages have effectively increased the grain yield of winter wheat.The results of this research demonstrate that no-tillage planting is very suitable for winter wheat production in dry land.Analysis of the production costs of CA cf conventional systemBased on a long-term trial conducted at Weibei farm (yield results not reported here), production costs were calculated for the conventional and conservation agriculture systems. In the case of Conservation agriculture with wheat/maize rotation, production costs were 11,325 yuan RMB ha -1 . In the case of Conventional intensive cultivation, also with wheat/maize rotation, the production cost was 13,290 yuan RMB ha -1 . In the case of Conventional roto-tillage planting, the production cost amounted to 12,705 yuan RMB ha -1 .According to the estimation of crop yield in 2007, the average wheat yield of CA plots in six demonstration counties including Changyi, Zhangqiu, and Gaoqing was 6735 kg ha -1 with the highest yield of 7677 kg ha -1 . The average yield with CA was 8 percent higher than that of conventional planting. In hill and dry-lands, grain yield of wheat grown under CA conditions was 4455 kg with the highest yield of 5775 kg ha -1 , 23 percent higher than yields with conventional tillage. In the fields of Innovation and Demonstration Projects managed by Shandong Agricultural Machinery, the grain yield reached to 9215 kg ha -1 , 13.7% higher than conventional planting. In dry-lands of Boshan, wheat grain output was 6576 kg ha -1 , 35% higher than conventional planting. Corn mechanical direct sowing can give good plant density, efficient application of fertilizers, good air and light penetration and thriving development, and can avoid damage of the wheat and corn when seeding corn or when harvesting wheat. The corn yield can increase by about 5%.During the past years, the wheat planted using CA technology cropped better than that using conventional planting. The grain yields have significantly increased. This may be attributed to the following: 1) The seeding-machine newly-purchased in 2006 works well and gives good seed placement and seed-soil contact; 2) improved soil moisture because the soil is not disturbed and exposed to the atmosphere, and because residue cover inhibits soil moisture evaporation and increases the ability of the soil to retain water. A measurement made in 14 April, 2007 in dry-lands of Wangguang village in Zhangqiu showed that the water volume that the 0-20 cm topsoil can hold increased by 6.7% after adoption of CA technology.There were more ineffective tillers due to the higher temperature under conventional planting conditions, thus wasting much water and fertilizers. While in fields planted using CA technology with residue retention, the lower soil temperature, slower soil moisture evaporation and deeply applied fertilizers promote the seedling and root growth and productive tiller development. A survey of experimental plots in Zhangqiu showed that the wheat planted using CA technology developed 3-5 more tillers per plant than that using conventional planting technology. Results showed that 1-2 more effective tillers developed in wheat planted using CA technology and nearly no excess growth occurred. Whereas the secondary roots in conventional planted wheat developed poorly due to high soil moisture evaporation during the long turn-around period in corn/wheat rotation planting system, thus leading to the deficiency of water and fertilizers and then affecting the wheat yields.The slower rise of soil temperature due to the stalk covering and higher soil moisture in spring gave a slightly later development of seedlings, and so the wheat escaped the freezing damage by the late spring cold that occurred in 16 March, 2007.The germination of weed seeds is light-dependent. Under CA conditions the stalk covering can effectively block the post-germination growth of weeds. Based on our investigations we have found that the weed numbers in the fields planted using CA technology are less than half those in the fields planted using conventional planting.The soil fertility in fields planted using CA technology is gradually increasing year by year due to the residue retention. In Changyi, Zhangqiu and other counties, the soil fertility in fields planted using CA technology for 2-3 years has significantly enhanced, giving better harvests.The wide row spacing alternating with narrow spacing in wheat fields planted using no-till seeder could improve the air and light penetration into the canopy and favor the development of border row superiority. Additionally, the lower soil temperature and higher soil moisture under CA conditions could prevent senescence, and thus increasing the grains per spike and 1000-kernel weight.Wheat planted using CA technology can develop reasonable crop structure and better air and light availability, with decreased plant height and improved growth. Seeds sown with the wide row spacing are uniformly distributed and develop vigorous roots, more effective tillers, and robust and lodging-resistant seedlings. Lodging occurred frequently in conventionally planted wheat, while this was rarely seen in CA-planted wheat.The production cost can be cut down by 100 yuan when using CA technology and increase income from grain output by 90 yuan, thus giving an additional 190 yuan of net income.The farmers' income increased by 79.61 million yuan in Shandong after the adoption of CA technology in 419 000 plots in 2006. If the area could increase to 30 million mu (2 million ha), the farmers' income should have increased by 5.7×10 9 yuan.Sun Deguang, the owner of the rotary no-till seeder, sowed more than 500 mu of crop in 2005, about 1000 mu in the fall of 2006, having recovered his costs in these two years.According to a survey that each of eight owners of no-till seeders in Changyi planted 700-1000 mu of crop in 2006. Though subsidized and lower rates for seeding requested by the governments, one of the owners could still earn more than 20 RMB yuan from seeding of one mu of wheat, and the average annual incomes for the equipment owners could reach 12,000 yuan. The net income of all machine owners in Shandong totaled 8.38 million yuan in one year.The soil fertility and nutrient components have significantly been improved in CA planting system. The soil organic matter content has increased by 0.05% due to residue retention in double-cropped systems. The soil under CA conditions has a good infiltration of rainfall due to the continuous pore system, and has higher drought-resistance due to large soil moisture storage and residue retention.Under CA conditions, residue retention and stalk covering favor soil conservation, increase soil organic matter, improve aggregate structure of soil and decrease the finely ground particles of soil that are easily eroded by wind. CA can save fuel by 2.47 liter per mu compared to conventional planting. If the adoption of CA technology could increase up to 2 million ha, 74,100 ton of diesel oil would be saved. During one wheat/corn rotation period, 60 m 3 of water would be saved per mu. The irrational extraction of groundwater has greatly diminished.The adoption of CA technology can significantly reduce the production cost and resource inputs. The CA technology is not only adapted to hill and dry-lands but to irrigable lands with high yields as well. Conservation agriculture is a highly efficient management system. Conservation agriculture favors the construction of resource-saving society.Low operating efficiency of corn combine and high charges for harvest considerably increase the production cost. The development of corn combine should be strengthened. The size of current no-till planter used for irrigable lands is the same as used for dry-lands. The row spacing created by the planter is too wide for the dry-land wheat to cover the ridge, causing the waste of light and energy and higher water evaporation rate from soils. No-till planter with variable row spacing should be developed to meet the agriculture needs of lands with different water availability and soil fertilities. Installation of equipment for residue cutting on wheat combines should be encouraged to enhance the quality of corn direct seeding. The time is ripe for comprehensive extension of the CA technology in Shandong. Local governments at all levels the executive branch of agriculture machinery should give more policy support, publicity and promotional events, intensify the efforts on market guides and popularize the revolutionary technology as soon as possible.Sub-soiling, straw cover, reduced tillage and zero tillage were chosen as the main research and demonstration thrusts. The goal was to find a set of best and easy techniques for the farmers: the techniques should be easy to operate, save water, move less soil and be suitable for the local area.We chose Yaowa village for demonstration and established a demonstration field (learning site) of about 20 Chinese mu (more than 1 ha). The treatments were: zero-tillage (with zero till seeder made by \"Nonghaha\"); furrow planting which is widely accepted by the local farmers; and permanent bed-planting. The year of 2007 was a very dry year in the history of Luoyang area. The total rainfall was only 370.2mm, 62% of the average precipitation.The rainfall in Aug-Sep was only 59.2mm, 33% compare to the normal year. The climate was also dry in 2008, e.g., the rainfall between Feb-Mar was only 11.3mm, or 19% of the normal rainfall. Wheat developed only 2-3 tillers (usually 6-7 tillers) and the yield decreased to 60%-80% of the average wheat yield.In 2006, all the cover treatments, including plastic cover and straw cover, improved wheat yield (Table 9). The reason is these treatments improve the ear number m -2 and the grains/ ear. The plastic cover can improve the yielding by 10.4% compare to the CK. The straw cover also can improve 3.9% yielding compare to the check.In 2007, there were few significant differences in yield between treatments (Table 10). However, the treatment with plastic mulch did yield significantly less than the highest yielding treatment -bed planting with straw cover -as early season temperatures were high so that the wheat under plastic cover grew very fast and consumed too much water in the early stages and did not have enough water for grain filling.The beginning of the 2008 season was dry and there was significant moisture stress in all treatments. Wheat yields were very low this season (Table 11) because of this stress and the resultant low spike numbers and grain numbers per spike. In maize in 2006 (Table 12), all of the treatments except the plastic mulch yielded significantly more than the check, with the furrow planted treatment giving the highest yield as a result of having significantly more cobs/ha than all the other treatments. In 2007 (Table 13) all the cover treatments were significantly higher yielding than the check. The bed-planting treatment with straw cover, which improved yield by 26.4% and the plastic cover which improved yield by 24.2% yielded significantly more than the furrow planting and straw cover treatments which significantly more than the check with increases of 17.8% and 17.6% respectively over the check. The 2008 season was very dry and there was not enough moisture for a maize crop. A trial comparing five six tillage systems in a maize-wheat double-crop system was initiated in Luoyang Village in 2006. The trial, arranged in a randomized block design with three replications compared a) Maize (zero till) +Wheat (sub-soiled); b) Maize (zero till) +Wheat (zero till); c) Maize(sub-soiled)+Wheat(sub-soiled); d) Maize (sub-soiled) + Wheat(zero till) e) Maize (zero till) + Wheat (sub-soiled) with residues replaced after sub-soiling and f) the check treatment with both maize and wheat conventionally tilled.In year 2006, sub-soiled and zero till both improved wheat yields: the best system was the Maize (Zero till)-Wheat (Zero till) which gave 6.5% higher wheat yield than the conventionally tilled check. The Maize (Sub-soiled) -Wheat (sub-soiled) treatment improved wheat yield by 5.2%, and Maize (sub-soiled) -Wheat (zero till) improved wheat yield by 5.1%.Maize (sub-soiled)-Wheat (zero till) gave the highest maize yields compared to the other treatments. Maize yield in this treatment was 23.54% higher than the Check, whereas in the Maize (zero till)-Wheat (zero till) maize yields were 14.97% higher than those in the Check.In 2007, there were no significant differences in wheat yields between tillage treatments (Table 14). The 1000 grain weight, ear numbers and numbers of grains per ear were all significantly higher in all the sub-soiled and zero tillage treatments compared to the check. Maize yields in 2007 were, however, significantly greater in all the no-till and sub-soiled treatments than in the check (Table 15). Highest yields were obtained when both crops were sown without tillage (11.4% higher than the check) and when both crops were sub-soiled (10.8% greater than the check). Yield increases arose from a combination of increased ear numbers and grains per ear.The wheat season in 2008 was particularly dry and yields were low as a result of the moisture stress (Table 16). Under these conditions the effect of the no-till and sub-soiling treatments on crop yield were huge: the yield of wheat in the double no-till system (MzWz) was almost double that of the check, and the lowest yielding alternative tillage treatmentwhere straw was replaced after sub-soiling prior to the wheat crop -was 44% higher than the check, and all the no-till and sub-soiled treatments yielded significantly more than the check. These yield increases were largely due to a combination of increased grain numbers per spike and heavier grains, suggesting benefits in soil moisture both before and after flowering in the no-till and sub-soiled treatments. The soil moisture in the various treatments during the 2007 and 2008 wheat season are shown in Figures 6 and 7 respectively. It is evident from these two figures the difference in total soil moisture in the top two meters of soil during most of the early part of the season in 2007. In 2008, soil moisture increased towards the end of the season as the crop was so poor it did not extract all of the moisture available from some late rains. In 2008, the soil moisture content of all 4 kinds of conservation tillage and the straw stalk tillage were higher than the Check, although there were changes between treatments at the different crop stages.This experiment was conducted in 2006 in Songzhuang village. There were five treatments in a randomized block design with three replications: Reduced tillage (one crop a year, wheat), zero tillage (one crop a year, wheat), sub-soiling (one crop a year, wheat), two crops a year, Conventional tillage.In 2006, none of the treatments yielded significantly differently to the check. However, the treatment with wheat in a system with two crops per year yielded the least, and this was significantly less than the treatment with wheat after sub-soiling (Table 17). R: reduced tillage (one crop a year, wheat) Z: zero tillage (one crop a year, wheat) S: sub-soiling (one crop a year, wheat) DC: two crops a year (wheat-maize) C: conventional tillage.The rainfall of Luoyang area usually is enough for one crop a year but not enough for two crops a year (as can be seen in Table 17). In recent years, more and more farmers choose the wheat-maize rotation instead of only planting wheat in a growing season, but the proportion of maize suffering from drought in the early summer is very high, so the farmers in this area have an aphorism \"you can plant maize but you should not hope for any harvest\". We hoped to find another crop for this area to decrease the risk of planting maize. There were some good choices for this area such as millet and sesame. Soybean isn't the best one for this area, but we think the soybean needs less field work than other crops and it is also easier to harvest by machine.We used furrow-planting, zero tillage and bed-planting in farmers' fields for the second year in 2006 following wheat, maize and soybean planted in the field last year. Data on yield and yield components are shown in Tables 18 and 19 for the 2006 and 2007 seasons respectively. In 2006, furrow-planting produced the highest yield in a double-crop system, bed-planting was second, and the lowest was zero-tillage. However, in 2007, the ranking of yields was reversed, with zero tillage resulting in the highest yields -significantly more than both the furrow planting and the wheat on beds. However, the seeding mechanism of the seeder used for the raised bed system did not work properly, resulting in lower plant stands and fewer spikes per unit area.The highest wheat yield was produced in the one-crop system, significantly higher than conventional wheat after maize, suggesting that stored moisture in the soil profile at the start of the wheat season is very important. However, in the 2007 season (Table19) the wheat sown with zero tillage in a double crop system did not yield significantly less than the single crop wheat in a conventionally tilled system.Grain Yield kg ha -1Over CK (%) R Soil temperature was measured by a probe (HIOKI, Japan) and an electric resistance-probe (IEDA) at 8~9 am and 14~15 pm on certain days. Soil temperature was measured each day from planting to seedling and every 2 days from seedling to end of May, every 3 days in June and every 7 days in July.Soil microorganism: Soil sampling was carried out in October 2007 (after harvesting maize). Soil samples from each plot were composed from ten sub-samples which were taken with a probe (5 cm diameter core) and divided into layers of 0-5cm, 5-10cm, 10-20cm, and 20-30 cm. After carefully removing the surface organic materials and fine roots, each mixed soil sample was divided into two parts. One part of the soil sample was air-dried for the estimation of soil chemical properties and the other part was sieved through a 2 mm wide screen and adjusted to 50% of its water holding capacity and then incubated at 25 o C for 2 weeks to permit uniform rewetting and to stabilize the microbial activity after the initial disturbances. Microbial biomass C and biomass N were estimated by fumigation-extraction. Soil enzyme activities (dehydrogenase, β-glucosidase, alkaline phosphatase, and urease) were determined by the method of Wu et al.The soil moisture results showed that July to August is a high consumption period for moisture stored in the soil, because the crop has high water requirement and evaporation due to the high temperatures during this period. There are differences in soil moisture at different stages of crop growth. The steady period of moisture is the first, from seeding to emergence, when the crop requires less water, and differences in soil moisture depend mainly on the treatments. NTS and the control had the lowest soil moisture levels, whereas other treatments retained more water in soil and thus had higher moisture content. From early July to mid-August, water stored in soil dropped to the lowest level. From mid-August, soil moisture recovered since the temperature gradually falls, and the crop's water requirement also decreases. In addition, soil moisture is supplemented by rainfall and the amount of stored soil water increases gradually. Although the soil moisture pattern is the same for all treatments, there are differences between the different treatments and ASRT and NTSM retain more water than the others. CK and NTS had the lowest soil moisture. No tillage and mulching improved and enhanced soil moisture.Soil temperature has a large influence on maize germination, and CA and tillage can have major effects on surface soil temperature. Because the soil surface is covered with straw, it difficult for sunlight to reach the ground directly and soil temperature under CA is lower than under conventional tillage. The no tillage with mulch treatment reduced soil temperature by 1 to 2°C compared with conventional tillage. Under the no tillage treatment, soil moisture content is high and soil heat exchange is not good. The temperature effect is greatest at the soil surface but can be measured all the way down to 60cm.Under the no tillage the soil temperature of the treatment with all straw mulch retained was rather low over the seeding period: around 8-13°C. Low temperature is always a key limiting factor. Diurnal variation in soil temperature in the 0-5 cm layer was affected by different treatments. For all the treatments, the highest diurnal variation in soil temperature occurred in the 0-5 cm layer, which can reach 10-20%. The variation coefficient of soil temperature decreased rapidly in the layers below 5 cm (Figure 8). Soil water infiltration is the process of water entering the soil through all or part of the ground surface. The process is influenced by water supply and the soil capacity for water infiltration, which determines the quantity of water entering soil or lost by runoff. The capacity for soil water infiltration is related to soil texture, soil structure, ground gradient and water content of soil section pane. At the same time, the capacity for soil water infiltration in the field is related to the tillage method. The stabilized infiltration rate (26.4mm/h) with deep tillage (DT) was twice that with light tillage (LT), and 4.1 times more than with no tillage (6.4mm/h). When rainfall lasted 20 and 40 min, deep tillage increased infiltration by 21% and 28%, respectively, compared with light tillage, and increased by 31% and 33%, respectively, compared with no tillage. This typically signals serious soil degradation after several years of farming. Conservation agriculture with mulch cover promotes soil water infiltration and improves soil physical and chemical properties. However, the effect only becomes apparent after quite a long period. The results of our trial show that treatments including whole straw mulch, no tillage with mulch, shallow rotary tillage with mulch, and conventional tillage all affect soil infiltration rate. Initially, the infiltration rate under conventional tillage was the highest, and the rate under no tillage with mulch was the lowest. However, the differences in infiltration rate gradually decreased, which is consistent with the results reported by other researchers. This indicates that conservation agriculture technologies like zero and reduced tillage are useful for improving soil water infiltration.Soil organic carbon, soil total N and soil total phosphorus Tillage had large effects on soil chemical properties. Soil organic carbon (SOC) differed significantly (P>0.05) among tillage systems and soil depths. In the 0 to 5 cm layer, organic matter content increased with decreasing tillage intensity so that it was 43% greater with no tillage, compared to the average of the other tillage treatments. CK and RRT resulted in the lowest organic matter content throughout the 0-20 cm soil layer. Below the 0 to 5 cm layer, organic matter decreased under no tillage, but tended to remain constant in the other treatments. The CK and RRT treatments, compared to no-tillage, incorporate residues into a larger volume of soil and therefore increase the rate of organic matter decomposition and C mineralization (Salinas-Garcia et al., 2002), by increasing the contact between soil microorganisms and crop residues (Henriksen and Breland, 1999).Return of all the residues did not increase SOC throughout the 0-20 cm in all treatments. However, after four years, the effects were extended to the 20-40 cm depth, where ASRT had higher values than other treatments. Below 50 cm, ASRT and NTSM had higher SOC than RT and CK treatments (Table 21). Soil organic carbon stocks have been identified as a good indicator of carbon dynamics under different management systems (Farage et al. 2007). Unlike SOC concentrations, stocks account for changes in both SOC concentrations and bulk density. Comparison of horizon and cumulative carbon stocks among tillage systems showed significant (P>0.05) tillage effect. At 0-20 cm depth, NTSM had significantly (P>0.05) higher horizon stocks than other treatments. Similarly, horizon stocks were higher at 20-40cm under ASRT than other treatments. After 4 years, CT (55. 4 Mg C/ha) and RT (56.4 Mg C/ha) had about 19.5% lower (P>0.05) cumulative carbon stocks at 0-100 cm than ASRT (65.9 Mg C/ha) and NTSM (67.8 Mg C/ha).These remarkable increases in carbon stocks indicate attainable carbon sequestration by converting from conventional tillage to straw return tillage and no tillage systems (Table 22). @ Treatments that share the same letter within the same row (depth) are not significantly different (P<0.05).Aggregate-size and soil organic carbon in aggregates Significant differences due to different tillage systems were observed in all aggregate size classes (>2, 0.25-2 and 0.053-0.25 mm), and in the silt + clay fraction (<0.053 mm).ASRT and NTSM soils had a higher proportion of macroaggregates than microaggregates. Within the macroaggregates of ASRT and NTSM, the 0.25-2 mm fractions were more abundant. RRT and CK significantly reduced macroaggregates in the surface layer (0-20 cm) (Table 23). The effect of tillage systems on soil aggregate stability was evaluated by mean weight diameter (MWD) of aggregates. MWD was significantly (P>0.05) affected by tillage systems in the top 0-20 cm. Average MWD at 0-20cm depth decreased in the order: ASRT (0.84mm)>NTSM (0.80mm)>RRT (0.68mm)>CK (0.61mm) (Figure 9). The increasing trend (CK low stubble with residues cover > high stubble > low stubble > conventional tillage.SOM and N, P, K nutrients CA leads to increases in soil organic matter content from year to year. After four years of CA, soil organic matter content in 0 ~ 20 cm of NHS was higher than CK by 0.12%, NLS by 0.09%, and NH and NL by 0.05%. CA improves soil structure, increases soil moisture, and accelerates mulch decomposition, so that the organic matter content on the soil surface increases significantly.Continuous no-tillage and straw mulch resulted in total nitrogen content in soil increasing year by year. High stubble with residues cover, low stubble with residues cover, high stubble and low stubble treatments all had greater total nitrogen contents than conventional tillage in all years (2006)(2007)(2008) showing that no-tillage and straw mulch can raise the soil total N contents significantly.Different tillage methods affected soil total phosphorus content significantly. The total phosphorus content under conventional tillage was lower in 2006-2007 than in 2005 while in all other treatments the total phosphorus content showed a gradual upward trend. The trend of 2008 was the same as 2007.As the time under CA increased, soil potassium showed a significant increasing trend. At harvest in the third year total soil potassium in the 0-20cm layer was significantly greater than levels at sowing time of the second year. The greatest increase was with high stubble with residue cover, followed by high stubble, low stubble with residues cover and low stubble.Soil microbial biomass carbon, nitrogen and phosphorus changed with soil depth in all growth stages. In all treatments microbial C, N and P levels were highest in the sub-surface (10-20cm) layer followed by surface soil (0-10cm) -microbial C, N and P were lowest in the 20-40cm layer. When measured at three different times, the differences between treatments in levels of microbial C, N and P followed the same pattern: NHS> NLS> NH> NL> T. Within the same treatment, levels also varied over time within the season -grain filling period> seeding period> harvest period.The water and soil erosion quantity was different under different tillage treatments. For example, in 2006 the largest quantity of run-off and soil loss was from the conventional tillage treatments, and the lowest from the high stubble with residue cover treatment. The runoff and soil loss quantity from the conventional tillage treatment was respectively 3.08 times and 2.79 times that of the high stubble with residue cover. The runoff and soil loss from the high stubble treatment were 2.09 times and 1.05 times that of the high stubble with residue cover. The water and soil loss in 2004 and 2005 were similar to that of 2006. Therefore, it is clear that CA significantly reduces the soil and water loss compared with the conventional tillage, while the residue cover can significantly increase the soil and water erosion protection effects.In 2006, the yield of the conventional tillage treatment was the highest in all crops, while the yield of the zero tillage treatment with residue cover was higher than that without cover. In corn, for example, the yield of the conventional treatment was 20.5% higher than that of the yield of the zero tillage with high stubble treatment with residues, and 92.4% higher than the high stubble treatment without residues (Table 27). The yield of the zero tillage with low stubble and residue cover was 60% higher than that of the treatment without residue cover. The yields of millet, soybean, oat and sticky millet (broomcorn millet -Panicum miliaceum) with conventional tillage were 13%, 28%, 12% and 10% higher, respectively, than that of the zero tillage with residue cover. It should be noted however that the land on which this trial was sited had been abandoned due to severe land degradation prior to the trial.In the very dry year of 2007, yield was relatively lower than normal. The yield of the different treatments showed: zero-tillage and mulching>zero-tillage and no mulching>conventional tillage. In 2008, after four years of applying CA, crop yield shows increasing benefits: crop yield in NHS was 33%, 33%, 29%, 27% and 27% higher than the conventional tillage check in maize, oat, soybean, millet and sticky millet, respectively (Table 28); crop yield in NLS was 30%, 27%, 22%, 2q% and 17% higher than the check oat, maize, soybean, millet and sticky millet, respectively; NH increased yield by 10-20% and NL by 10-15% compared to that of traditional tillage. Yield was higher in 2008 mainly because of higher than normal rainfall. A trial was initiated in Pengyang County in September 2006 comparing the conventional tillage practices for winter wheat with no-till treatments with either 15cm or 30cm stubble left standing in the field. The trial was organized in a randomized block with three replications.The Analysis of Variance of the yield results in 2007 showed that there was significant difference between 30 cm stubble treatment and conventional tillage treatment. Keeping 30 cm and 15 cm stubbles increased yield by 16.2% and 12.9%, respectively, compared with traditional tillage (Table 29). However, 1n 2008 after three years of continuous wheat there were no significant differences between treatments (Table 30). In this randomized block trial with three replications established in 2006/2007, an increasingly common practice of laying a strip of white plastic mulch and planting wheat at the side of this strip was compared with winter wheat seeded without the plastic mulch. The results (Table 31) showed that winter wheat with plastic mulch yielded 79% more than in the check without plastic mulch. Analysis showed that net income from seeding of winter wheat with plastic mulch was 80% higher than in the check without mulch, showing that the plastic mulch resulted in greater water use efficiency, especially in a drought year. A winter wheat trial was conducted with no tillage and with plastic mulch in all treatments to compare the effect of stubble height on crop performance in situations with plastic mulch. The three treatments in the trial were with stubble cut at 5cm, 15 cm and 30 cm. Analysis showed that there were significant differences in yield and yield components between treatments, with taller stubble giving greater yields (Table 32). Keeping 30 cm and 15cm stubbles increase yield by 17% and 8%, respectively, compared to the 5cm stubble treatment: yield was directly related to the height of stubble or increase straw quantity.Soil moisture response to stubble height with plastic mulch Soil moisture contents (0-60cm) for the different treatments were measured over the period from October 2006 to June 2007. Soil moisture contents of the different treatments showed an increase in moisture content with increasing stubble height: 30cm and 15cm stubble increased soil moisture content by 16% and 20%, respectively, compared to the 5cm stubble treatment. The effect of stubble treatments on soil moisture could be seen in all soil layers down to 60 cm: in the 0-20cm layer soil moisture was increased by 26%and 31%, respectively in the 30cm and 15cm stubble treatments compared to the 5cm stubble; in the 20-40cm layer soil moisture was increased by 31%and 26%; and in the 40-60cm layer soil moisture was increased by 14%and 3%, respectively in the 30cm and 15cm stubble treatments compared to the 5cm stubble.Analysis of the effects of the different stubble height treatments with plastic mulch on soil temperature showed that there was a significant difference between 15cm and 5cm stubble treatments, but that, inexplicably the treatment with the 30cm. stubble was intermediate (Table 33). Yield was reduced by residue retention due largely to a decrease in plant stand (Table34), although grain weight per ear was also somewhat reduced by residue retention. Thus the principal effect was the effect of the treatments on plant stand. There was, however, more soil moisture at seeding in the plots with residue cover (Table 35) and emergence rates were not different between treatments (Table 36). Soil moisture throughout the season was higher in the plots with residue cover than in the check (Figure 10). However, early growth was much slower in the treatments with straw cover (Table 37). Although the crops with straw cover had caught up to some degree with the check by tasselling, the effect of this reduced growth on ear numbers was already established. Average temperature of different soil layers was measured in different growth stages from 8:00 to 20:00. The soil temperature variation curves are shown in Figure 11 comparing soil temperature effects in the different treatments. Keeping residues on the soil surface reduced soil temperature, and temperature was reduced more with greater quantities of straw mulch. In the seedling stage 1/2 and full straw retention treatments reduced soil temperature by 17% and 26.2% respectively compared with control; while in the jointing stage soil temperatures were reduced by 8.2% and 13.8% by the 1/2 and full straw retention treatments respectively. Similarly at the heading stage soil temperatures of the 1/2 and full straw retention treatments reduced soil temperature by 9.2% and 13.1% respectively compared to the control, but at the harvest differences in soil temperature were smaller: 3.2% and 5.1% lower than the control in the 1/2 and full straw retention treatments respectively. Results showed that treatments with full and 1/2 straw retention reduced yield, although they conserved more moisture. However, the overriding effect of the treatments was on soil temperature which reduced crop growth and resulted in fewer cobs per hectare.The trial was planted in April 2007 with five treatments: 1. Traditional farming (ck): spring plough land (15cm-depth) after rain; harrow and apply plastic mulch, plant maize. 2. 1/2 straw retention: direct seeding (no tillage) 3. Full straw retention: direct seeding (no tillage) 4. 1/2 straw retention: plastic mulch, direct seeding (no tillage) 5. 1/2 straw residue: cover plastic mulch with cultivationThe trial was organized in a randomized block design with three replications. Seedrate was 30kg/. The trial was planted on raised beds with a bed width of 60cm and a furrow width 40cm. Bed height was 5cm and two rows of maize, spaced 40cm apart were planted on each bed with a spacing between plants in the row of 33cm. Plastic strips, laid on the beds, were 60 cm wide and there was a space between plastic strips of 40 cm. The maize was sown on the beds into holes in the plastic.Results showed that there were significant difference between treatments with plastic mulch and those without plastic mulch (Table 38). The treatments without mulch yielded considerably less than the treatments with plastic mulch. Soil temperature differences between different trial treatments Again there were significant difference between treatments with plastic cover and those without plastic -soil temperature without plastic mulch was 4-5 o C below the soil temperature with plastic cover (Table 39), resulting in the large yield differences observed.Table 39. Effect of different treatments on soil temperature. All treatments direct planted.Average Soil Temperature °C # 1. Check -Tilled with plastic 24.9 a 2. 1/2 straw retention: -no plastic, no tillage 20.5 b 3. Full straw retention: -no plastic, no tillage 20.0 b 4. 1/2 straw retention: with plastic mulch, no tillage 25.3 a 5. 1/2 straw residue: cover plastic mulch with cultivation 23.9 a # Treatments that do not share the same letter are significantly different (P<0.01).The previous crop was zero tilled winter wheat. The maize conservation tillage trial was planted in March 2008. The 5 treatments were as follows:1. Traditional tilling (ck): spring plough land (15cm-deepth) after rain. Harrow and apply plastic film, plant maize; 2. Early spring strip tilling only + plastic film; 3. Early spring strip tilling only + plastic film + straw cover (1.5 t/ha); 4. Early spring tilling (almost same as ck, but tilled land in early spring due to a snow in winter) + plastic film; 5. Early spring zero tilling + plastic film + straw covering (1.5 t/ha).The trial used a randomized block design with three replications. The seeding rate was 30kg/ha. The trial was planted on raised beds with a bed width of 60cm and a furrow width 40cm. Two rows of maize, spaced 40cm apart were planted on each bed with a spacing between plants in the row of 33cm.Effect on yield and net benefits.Results showed that, as all treatments had plastic mulch, reduced-tillage treatments significantly increased maize yield y approximately 23%. There were no significant differences between the different reduced tillage treatments but all yielded significantly more than the conventionally tilled check (Table 40). These yield increases led to almost a 40% increase in net benefits with the reduced tillage treatments (Table 41). The trial used a randomized block design with three replications. The seeding rate was 1500kg/ha. Potatoes were planted in alternate narrow and wide rows. The spacing between wide rows was 60cm and the spacing between narrow rows was 40cm. Spacing between plants was 40cm.Impact on yield and yield componentsThe yield results showed that reduced-tillage treatments had significant positive effects on yield, which was increased by over 10% when full tillage was not done (Table 42). All the zero tillage and strip tillage treatments yielded significantly more than the check and there was no effect of plastic mulch on yield. This led to an average increase in net benefits in the reduced tillage treatments of 27% (Table 43). The cost of the plastic mulch has not been included in this analysis, and therefore the treatments without the plastic mulch in fact had even greater net benefits -a lower cost of USD 131.9 and therefore net benefits of USD 1,216, 43% greater than the conventionally tilled check. Develop a Permanent Raised Bed No-Till (PRB-NT) Seeder for no-till planting maize and wheat in the provinces of Shandong, Henan and Ningxia. The seeder suitable for a 50 hp 4-wheel tractor could direct plant maize in chopped wheat straw and direct plant wheat in maize stubble (most maize stalks removed from field), place fertilizer deep and place seeds at the required depth. There was no similar type of seeder in China prior to this project.Develop a Layered Bed Former. To make beds in loosened soil at beginning of PRB-NT system, the bed former would match the PRB-NT seeder for the provinces of Shandong, Henan and Ningxia. Select and improve a Maize/Minor Grain NT SeederObjective 1:To provide no-till seeders and related implement to support the CA trials in Shandong, Henan, Ningxia and Inner-Mongolia.There were two kinds of seeders needed for the project. The first of these was for Permanent Raised Beds with residue covered fields, called the PRB-NT seeder, for Shandong and Henan provinces. Because PRB-NT system was the main research technology of the project, it was a key machine, however, this seeder was not available in China, and indeed in the world, and thus a new development was needed. The second was a machine for working on the flat cropping area of Inner Mongolia and Ningxia provinces. This kind of NT seeder was available, but the performance was not acceptable and improvement was necessary.Objective 2:Cooperating with two private machinery manufacturers in Shandong and Inner-Mongolia to manufacture the proto-type seeders and encouraging the manufacturers to observe and participate in experiments, improving the prototype seeders and raising their production levels, to develop 1-2 prototypes of no-till seeders for CA extension in the dry land area of the 4 provinces.Main Research Thrusts:1)Develop a Permanent Raised Beds No-Till (PRB-NT) Seeder for no-till planting of maize and wheat in the provinces of Shandong, Henan and Ningxia. The seeder matched with 50 hp wheel s could direct plant maize in chopped wheat straw fields and direct plant wheat in fields with maize stubble (maize stalks removed from the field), while placing fertilizer deep and seeds at the required depth. As a seeder with these specifications was not available in China, it was necessary to develop a new machine.2) Develop a Bed Former to make beds in loosened soil at the beginning of the PRB-NT system. The bed former would match the PRB-NT seeder for the provinces of Shandong, Henan and Ningxia.3)Select and improve a Maize/Small Grain NT Seeder for Inner Mongolia. The seeder needed to be adequate for an 18 or 20 hp wheel tractor could direct plant maize or small grains (millet, sesame) into residues, place fertilizer at depth and place seed at the required depth.4) Cooperate with a private farm machine manufacture in Shandong province to develop \"PRB-NT seeder\" and \"Bed Former\", encourage the manufacture to participate in field trials and improve the seeder, and initiate commercial production. Cooperate with a private farm machine manufacture in Inner Mongolia to improve \"maize/small grain NT seeder\", encourage the manufacture to participate in field trials and improve the seeder, and initiate commercial production.According to the requirement of the project to test a PRB-NT system in Shandong and Henan provinces, a bed former was needed to make beds to be able to initiate the PRB-NT system. Agronomists of Shandong and Henan provinces defined the bed spacing, height and top width as 1350mm, 140mm and 950mm, respectively. Due to the wide bed spacing, using one pair of discs would be impossible to form the bed. To solve this problem, several pairs of devices were needed. Besides, if the bed former were mounted on the seeder, it would make the seeder too long to function properly in small fields and with small tractors. On the other hand, the PBR-NT system is not necessary to form beds every year: it only needs to form beds in the first year of system establishment. Therefore, a bed former was designed with 3 pairs of disks and 1 pair of chisels together to dig and move soil four times to form the bed appropriately, followed by the press roller to smooth the top of the bed. The sketch map of the bed former can be seen in Figure 12. The bed former was made in June 2005 in the Qingdao Wannongda Peanut Machinery factory. In the first trial, it was found that it was too light to dig the soil, and the function of the press wheel wasn't good. It was modified to include two aspects: the machine, including the frame, handles of digging devices and linkage parts were strengthened and the press wheel structure was changed from a holistic roller to an assembly of several cylinders.The bed former was used to test reshaping ability before wheat planting in 2006. It was found that, without reshaping, the PRB-NT seeder had poor planting efficiency -specifically the seeds were placed quite shallow or even on top of the ground on both side rows. The bed former, equipped with disks and plows, improved the shape of the beds to help the seeder achieve better planting.According to the agricultural requirement, the seeder should be appropriate for direct seeding of maize into fully chopped wheat straw and direct seeding of wheat into maize stubble (maize stalks removed from the field) in areas with two crops per year. After discussion with project partners in Shandong, Henan and Ningxia, one PRB-NT seeder was designed for a 50 hp (Shanghai-50) tractor. The seeder can plant 6-rows of wheat or 2-rows of maize on each bed. A sketch map of the PBR-NT seeder is shown in Figure 13 and the set-up for planting wheat and maize is shown in Figure 14. The technical difficulties for the seeder included: easy blockage when there were many maize stalks or weeds in the field; need to plant both wheat and maize in PRB-NT; reshaping of beds while planting.• The flat disk (4) was designed to cut the wheat straw and weeds on the bed and to reduce residue blockage.• Opener and Frame: a tine opener was selected to place fertilizer and seed at the same time. Wheat seeding depth is 30mm-50mm, maize seeding depth 40mm-60mm, and the fertilizing depth 80mm-100mm.• There are three beams on the seeder. When planting maize, the openers are installed on the back beam and the cutter devices installed on the middle frame, while when planting wheat, the openers are staggered on the middle and the back beams. Because the seeder needs to plant both wheat and maize, a dual-purpose feed roller for wheat and maize is employed to fit the requirement.• Reshaping device and ground wheel. The bed reshaping device was designed to repair destroyed beds. The deflecting angle is a key parameter for reshaping effect and defined by field tests.• The ground wheels run in the furrows, and drive the seed metering mechanism.• The structure of combined press roller uses compacting wheels to press the sides of the beds if soil is loose after reshaping; press wheels are used to press on the planting zone with gap designed to enable easy passage of the maize stubble when planting. The first field test was done at 24/Jul/2005 and after improving the seeder, the second field test was done at 13/ Sep/2005 and the wheat emergence was good. According to the test results and the project partners' opinions, the seeder was improved in the following aspects: Reshaping devices were reduced from 4 to 2, as the devices were very close to the openers and easily blocked. Also the single drive wheel was changed to two ground wheels to improve the seed metering.Four bed formers and 4 PRB-NT seeders were sent to Shandong, Henan, Ningxia and Beijing respectively. The PBR-NT seeders were used to plant wheat in Shandong and Henan Provinces. Field results showed that seeder performance was good and reached the anticipated goals.The combination press roller had been improved with the diameter of hemisphere of the combination press roller reduced from 450cm to 350cm. So the hemisphere can keep a space with the bed bottom, it ensures the press-wheel can touch the face of seed zone.Other parts of the combination press roller: The thickness of the diameter of the roller was increased from 2.5cm to 4cm to increase pressure.Improvement of the opener: the tine point opener is suitable for making shallow furrows, e.g. less than 5cm. In this case it has good penetration, gives little soil disturbance but the soil disturbance and horizontal force are larger as the furrow depth increased.The improved knife opener is suitable for making deep furrows, up to 10cm. In this case there is no big change in soil disturbance and horizontal force as furrow depth increases, and the opener has additional soil penetration and residue cut through ability.The improved PRB-NT seeder was used to plant maize in fields covered with wheat residue in Beijing in June, 2006. The results showed the knife furrow opener on this machine can reduce the surface soil disturbance and fuel consumption. While in Beijing direct seeding maize into wheat residues was a success (because the wheat sown with two wide rows left for maize planting) but in some other conditions, where wider spacing wheat rows kept for planting maize are not kept, or where there are heavy weed populations on the bed, direct seeding of maize with this machine would be a problem.The improved PRB-NT seeder was used to plant wheat into fields with chopped maize residues in Oct. 2006 in Beijing. Even with the chopped residues there were some residue blockage problems because of the very heavy maize residue levels, but the seeder worked adequately and completed planting on time. The emergence of wheat seedlings was acceptable.At the beginning of 2008, the project team discussed the feasibility of adopting the power driven rotary blades to cut through residue and so increase the \"anti-blockage\" ability of the PRB-NT seeder. It is clear from 2 years of experimenting that the existing PRB-NT seeder could not plant wheat into beds covered with maize stalks. Also from two years research, a big problem was found in machinery system of PRB-NT: the tractor rear wheel axle width (< 1.5 meters) is less than that of all the grain combines (> 1.8 meters).Because of this any width of bed will be damaged by the combine wheel, or by tractor wheels: therefore the PRB-NT system is not yet ready for extension in Central China.However to test whether the power driven mechanism can increase the anti-blockage ability enough to complete direct seeding of wheat into full maize residue covered beds it was decided to design a prototype model focusing on the anti-blockage results without worrying at this stage about wheel damage to the beds.A diagram of the planting pattern of the new seeder matching with a 60hp tractor and which will plant 7 rows of wheat or 2 rows of maize is shown in Figure 15 and the principal characteristics are shown in Table 44. 45.The maize/small grain no-till seeder The 2BM-5 no-till seeder was selected for Inner Mongolia and designed to be able to plant maize and small grains into straw mulch. Common tractor power is around 20 hp. However, the initial version gave poor results and was too fragile, and therefore improvement was necessary.The main improvements carried out were as follows: a) The opener was changed from a narrow point type to a knife type, which gave it more cutting ability to cut residue and break through hard soil, and so be able to work in maize and rice fields with residues; b) the press wheel changed from a single unit model to individual units for each row to better follow the uneven upland terrain in Inner Mongolia; and c) the driving device was changed from the press wheel to a ground wheel to reduce slip and obtain more even seed distribution.Deli New Technical-Equipment manufactory in Huhehot was selected as the manufacturer. Two units of the 2BM-5A no-till maize/small grain seeder were manufactured based on the improved plans. A Conservation Tillage conference was held in Huhehot on 18 Apr. 2006, and the experts and technicians that took part in the conference visited the machine exhibition. The 2BM-5A seeder was exhibited, and many visitors were interested in the no-till seeder.The 2BM-5A NT seeder was tested in plots covered with maize stubble and with 15~25cm high standing maize stubble and 50cm row spacing in Inner Mongolia in April 2006. The test result showed the depth and seed and fertilizer metering could satisfy the expected agricultural requirements. The seeder was also used to plant wheat in Inner-Mongolia and Ningxia provinces, and 20 ha of NT wheat were planted in Pengyang of Ningxia. Furthermore, and as spin-off from the project, a trial of NT planted wheat into rice residues in the Yellow river irrigation area was successful and showed good performance of the knife opener to cut through the rice residue as well forming a perfect seedbed.The function of the seeder was amplified to include no-till planting of wheat and so it can plant maize, small grains and wheat. In accordance with this the name of the machine was changed to 2BM-5X. Secondly, the drive wheel was moved to the back of the seeder from the middle to avoid the greater slippage and the blockage between the wheel and openers when no-till planting maize in fields covered with maize residue. After improvement, the seeder slippage was decreased and the performance improved (Figure 16). Third, the no-till seeder was improved with a much stronger frame and better precision in the manufacture. A total of 35 units of the 2BM-5X seeder were manufactured in 2007 and more than 50 units manufactured in 2008. The principal characteristics of the seeder are shown in Table 46.The 2BM-5X NT seeder was used to no-till plant maize, spring wheat and winter wheat in Inner-Mongolia, Ningxia and Shanxi. When used to plant spring wheat in Inner-Mongolia in May and to plant winter wheat in fields covered with rice residue in Ningxia in October, the results showed that the seeder performance is good and the knife opener can reduce the surface soil disturbance. In direct seeding of maize, the 2BM-5X NT seeder performance was acceptable, but in some cases maize germination was poor due to insufficient pressure from the press wheel. Within each province, we selected two counties that had CA CPWF project activities. Within each county, we randomly selected a set of villages and households. One set of villages was drawn from villages that were being targeted for the extension of CA projects. A list of these villages was provided to the authors by the agricultural department of each county. The other set of villages was drawn from the remaining villages in the county (i.e., those with no known participation in a formal CA extension project-though in some cases there were local extension agents promoting different variants of CA technology). The CA demonstration projects and extension efforts were almost all funded by either the central or regional government, or some international organization (such as a CGIAR center) and carried out by local extension agronomists and professors from local agricultural universities. Our sample villages were randomly selected in parts of China where, according to many key informants (including agronomists and other agricultural scientists), CA technology had the best chance of being adopted. Finally, within the sample villages, a minimum of five households were randomly selected and surveyed. In the villages that had CA projects, the sample households included both households participating in CA extension projects and non-participating households.Within each sample village, two surveys were carried out. The first was a village-level survey with key village leader informants. The village survey gathered general information about the village (e.g., demographics, per capita income, infrastructure, land use, the main cropping rotations, crop productivity and major village income sources), as well as specific information related to the adoption (or lack thereof) of CA technology. Questions were asked about machinery availability and use, the importance of livestock, residue use, soil information and government subsidies. Detailed information was recorded on the nature of the CA technology extension program (if there was one). The second part of the survey targeted sample households in the sample villages. The household survey enumerators gathered detailed information on each household's demographic structure, employment history, and asset base, and on the income stream of family members.We also recorded data on a plot by plot basis on farmers' production efforts. For households that had not adopted any CA technology, two plots were randomly selected from the set of plots planted to crops that accounted for the largest share of the household's cropping activities. For those households that had adopted CA technology, one plot planted under CA technology was selected, and one without CA technology. Wherever possible, we tried to select the second plot to be planted to the same crop that was being cultivated with CA technology. For all plots, enumerators asked farmers to recount detailed information regarding inputs (e.g., fertilizer and labor input) and outputs (e.g., yields) as well as plot characteristics (e.g., distance from the household and plot quality).In 2008, CCAP conducted the second round of field surveys in the Yellow River Basin. In this survey, we focused mainly on wheat producing regions in the Yellow River Basin. Since there are no wheat producing areas in Inner Mongolia, we did not visit the villages there, only in the three other provinces (Ningxia, Henan and Shandong). In this survey, we tried to revisit the same villages as in our 2005 baseline sample; we also added new villages that were not included in the baseline survey. Unlike 2005, the survey team did not select villages randomly, but instead selected those villages where some farmers had adopted CA. These villages have been influenced both directly and indirectly by our project. We selected both rainfed and irrigated villages, for a total of 14 villages in three provinces.In each village, 12 farmers were selected to attend our focus group discussion. When selecting farmers, based on their per capita income, we divided the farmers into three groups: poor farmers whose income was lower than the village average, normal farmers whose income was equal to village average and rich farmers whose income was higher than the average income of the village. We also randomly selected four farmers from each group of farmers to attend our discussion. Besides considering income levels, we also tried to strike a balance between female and male farmers.For the focus group survey, we designed semi-structured questionnaires together with CIMMYT scientists. The questionnaires included the following: village characteristics, farm size, household characteristics, resource endowments, land use, production goals and market access; wheat production systems characteristics (rotations, implements used, residue management practices, yields and input and output prices); CA adoption status, implementation levels and characteristics; advantages and disadvantages of CA adoption; environmental benefits and constraints to CA adoption.To gain a better understanding of the determinants of CA technology adoption, it was necessary to conduct a multivariate analysis to separate the influence of each factor. Applying 2005 field survey data, we constructed the following econometric model to explain the determinants of CA adoption measured at the village level:where yik represents CA adoption in village k in year i. It is a dummy variable: if the village adopts any type of CA technology (either Full or Partial), yik = 1; otherwise, yik = 0. The rest of the variables explain adoption of CA technology. The vector of Sik represents a set of socio-economic variables, measured by the share of the family's labor working off-farm; per capita cultivated land area; share of cultivated land that is irrigated; and the distance from the household to the township.We also included two policy variables (Pik). The first variable measures whether or not there is an active subsidy policy in the village that encourages the purchase of machinery (which is equal to 1 if village farmers can obtain the subsidy, and 0 otherwise). The other policy variable measures if there is a local regulation that is being implemented that bans the burning crop residue (measured as 1 if village leaders know there is such a policy, and 0 otherwise).Finally, we included a variable to measure the extent of the government's effort to promote CA technology. Specifically, the variable (Iik) measures the influence of whether there was a CA technology extension project in the village or not. This variable is measured as a dummy variable. If there was an extension project in the village at some time in the past (or currently), the variable is equal to 1; otherwise, it is zero. The symbols α , β , γ , δ and φ are parameters to be estimated, and jk ε is the error term assumed to be uncorrelated with the other explanatory variables in the model.To understand why some households adopt CA technology and others do not, we constructed the following econometric model at the household level:where Tj represents adoption of CA technology by household j. In our analysis, this is a dummy variable which is set equal to 1, if the household adopts any kind of CA technology (either Full or Partial); otherwise, Tj = 0. The rest of the variables explain CA adoption at the household level (and in many cases are similar to those used in equation 1). The vector, Hj, represents household socio-economic characteristics that affect adoption. Most importantly, we included two household variables that measure the family's labor (share of family members in the off-farm sector) and land endowments (per capita cultivated landholdings). We also included other variables as controls (e.g., age and education of household head). A wealth variable (measured as the value of the family's housing assets) was included as a control for whether or not the household was facing a liquidity constraint. In addition, we also controlled the possible influence of soil type on CA adoption, measured by the share of loam plots and share of clay plots on the farm.In addition to household-specific variables, we included a number of policy and extension variables. The variable (Pj) is a variable that measures whether or not the household knows there is a residue burning ban. If the respondent knows about this policy, Pj =1; otherwise, Pj =0. In addition, we included a variable, Ij, to measure the influence of whether there is a CA technology extension project in the village or not. If the household has participated in a CA extension project, Ij =1; otherwise, Ij =0. The symbols ε , ϕ , η and ς are parameters to be estimated and j ω is the error term assumed to be uncorrelated with the other explanatory variables in the model.To explore the impacts of CA adoption on agricultural production (crop yield, labor and machine input), poverty and the environment, we not only performed literature reviews and applied our field survey data, but also used descriptive statistics and conducted econometric analysis. The following econometric model has been constructed to understand the impacts of CA adoption on crop yields:where y ijk represents wheat or maize crop yields in village k, household j and plot i. In the model, we specified crop yields (kg/ha) as the log term. The rest of the variables are those variables that explain crop yields.The vector of T ijk is of our variable of interest, representing adoption of CA technology. For this set of variables, we had two options. The first option is to treat CA adoption as one variable; farmers may adopt any kind of CA technology (reduced till or residue retention separately or together). If farmers adopt any kind of CA technology, T ijk = 1; otherwise, T ijk = 0. The second option is to treat T ijk as three variables. The first variable refers to reduced till adoption; if adopted, it equals 1, otherwise it equals 0. The second variable refers to adoption of residue retention; if adopted, it equals 1, otherwise, it equals 0. The third variable refers to adopting reduced till and residue retention together; if adopted, it equals 1, otherwise, it equals 0.In addition to the CA adoption variable, we also included many other variables to control the influence of other variables on crop yields. The vector of I ijk represents a set of production input variables measured by fertilizer cost per hectare, labor use per hectare, machine cost per hectare and value of other inputs per hectare. We transferred them into log term. The vector of H ijk represents a set of household characteristics, measured by the age of household head (and its square term) and education of the household head. The vector of O ijk represents a set of plot characteristics. First, we included variables that reflect the influence of soil quality, as two dummy variables: one to measure if plot quality is the best in the village; if it is, O ijk = 1, otherwise, O ijk = 0. The other variable measures if plot quality is good in the village; if it is, O ijk = 1, otherwise, O ijk = 0. Second, the variable distance from home has also been included as a variable representing plot characteristics. The vector of Z ijk represents other control variables, such as production shocks measured by yield reduction due to production shocks, years of adopting conservation technology, whether planting in one season (if one season, it is set to 1, otherwise, 0), dummy for use of plastic mulch and village dummy. The symbols α , β , γ , δ , φ and µ are parameters to be estimated, and the error term ijk ε is assumed not to be correlated with the other explanatory variables in the model.To understand the impact of CA adoption on labor input, we have specified the following econometric model:where L ijk represents labor input (total working days in the growth period) for wheat or maize production in village k, household j and plot i. The rest of the variables are those variables that explain crop yields. The vector of T ijk represents CA adoption, which is similar to that in equation 3.1. The vector of P ijk represents one vector of variables that measure the price of both product and input, such as the price of wheat (or maize), price of labor, seed, fertilizer and machine service. In this model, we also included H ijk and O ijk to represent household and plot characteristics that have similar specifications as that in equation 3.1. For the other control variables of Z ijk , unlike in equation 3.1, we did not include the dummy variable use of plastic mulch; instead, we included the opportunity cost of farm labor measured by the share of labor doing off-farm work; the other three control variables in the vector of Z ijk are similar to equation 3.1.To gain an understanding of the impact of CA adoption on poverty, we built the following econometric model:where V jk represents the poverty status of household j in village k. This is a dummy variable; if the per capita income in the household is below the extreme national poverty line, we consider the household to be poor, i.e., the variable V jk is set to 1, otherwise, it equals zero. The rest of the variables are those variables that explain crop yields. The vector of T ijk represents CA adoption. In this model, we only treated this variable to be one; if farmers adopt any kind of CA technology, it equals to 1, otherwise, it equals zero. The vectors of H ijk and O ijk represent household and plot characteristics. The specifications of household variables are similar to those in equation 3.1. In this model, we included more variables to measure plot characteristics such as land area, number of plots, share of plots with irrigation, share of simple plots, share of loam plots, share of clay plots, share of first-class plots and share of saline soil plots. For the other control variables of Z ijk , unlike in equation 2.1, we did not include a dummy variable for use of plastic mulch; instead we included the opportunity cost of farm labor measured by the share of labor doing off-farm work; the other three control variables in the vector of Z ijk , they are similar to equation 3.1. The development and promotion of suitable equipment received attention and a handful of major machinery manufacturers, collaborating with scientists and engineers, began to adapt and sell zero and reduced till equipment with substantial subsidies from national and provincial governments. As a result of such demonstration activities and strong policy support, it is estimated that by the end of 2007 the CA adoption area in China reached 2.16 million ha. Demonstration Provinces included Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia, Liaoning, Jilin, Heilongjiang, Shandong, Henan, Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang Provinces. Development of CA in the Yellow River Basin is similar to the national trend. The first year of CA adoption in the YRB was probably 1992 in Linfeng and Shouyang counties of Shanxi Province. Until now, as shown in Figure 17, the CA adoption areas in Inner Mongolia are the highest, reaching 539,000 ha 1 . However, in Gansu Province, the adoption area is only 19,000 ha, the lowest in all provinces. For other provinces, CA adoption areas range from 20,000 to 372,000 ha (Zhao and Xu, 2006; http://www.sxnj.org.cn/zyxx/06sxbhx.doc). We also examined the adoption rate by share of sown areas adopting CA. Results show that based on the adoption rate, CA adoption in Shanxi Province is the highest, reaching 9.7% in 2006. The lowest CA adoption is in Henan, reaching only 0.4%.In the following discussion we seek to track the adoption of CA technology in the Yellow River Basin using two sets of measures derived from our survey data. First, we use a village-level measure. According to this measure, a village is considered to have adopted CA technology (either Full or Partial) if at least one plot of one farm in the village uses the technology. While this does not mean that all, or even most, farmers in a village are using a given technology, information on how many villages have at least one farmer using a technology provides an understanding of how spatially pervasive a practice has become. It also provides a convenient way to track the dissemination of each technology over time. The second measure, percentage of sown area on which a new technology is being used, is a measure of the actual extent of adoption at the farm level.According to our survey, using the village-level measure of CA technology adoption, Partial CA technology expanded from the late 1990s to the early 2000s. In the 1980s, adoption rates of reduced till and residue retention (by themselves) were both low (Figure 18). On average, only 2% of villages had any farmers that practiced reduced tillage. In 4% of villages there was at least one farmer that had adopted some form of residue retention technology. Moreover, during the 1980s the rise in the share of villages in which a farmer was adopting reduced till/residue technology was almost zero. Adoption of residue retention, which grew slowly in the early 1990s, accelerated after the mid-1990s. Although adoption rates of reduced till started more slowly, farmers began to adopt reduced till in the late 1990s. By the last year of our data collection, there was at least one farmer using residue retention in 40% of our sample villages, and in more than 25% of the sample villages, at least one farmer was practicing reduced till.The adoption path of Full CA technology differs somewhat from that of Partial CA technology (Figure 18). In fact, from the early 1980s to the late 1990s, there was not even one farmer in one village who had adopted Full CA technology. In the late 1990s, the share of villages rose slightly, to 2% of villages. After 2001, however, adoption of Full CA technology (at least one household in each sample village) rose gradually. From 2000 to 2005, the share of villages adopting Full CA technology increased to 16%. Differences across provinces. Although adoption rates using village-level measures were fairly low across our whole sample (at least until the last years of our study), we did observe differences among provinces in the adoption paths of CA technology. For example, in 92% of villages in Henan Province at least one farmer used residue retention technology in 2005. In contrast, farmers in only 17% of villages in the Ningxia Province sample villages used this technology. Adoption of residue retention in Shandong and Inner Mongolia Provinces were intermediate.There are also variations among provinces in adoption levels of reduced till in 2005 (Table 47): In 62% of villages in Inner Mongolia, at least one household adopted reduced till technology. However, reduced till could only be found in 8% of villages in Ningxia Province and in no villages of Shandong Province.In the case of adoption of Full CA technology using the village-level measure, there were also differences across the sample provinces. In 39% of villages in Inner Mongolia, at least one farmer adopted Full CA technology. The levels were lower in Henan (16%) and Shandong (17%). Strikingly, no villages among all the sample villages in Ningxia Provinces adopted Full CA technology-despite government efforts to promote the technology.The most striking findings of our adoption analysis were revealed when using household-level measures of CA adoption. When measuring the share of total area within the sample villages that is devoted to CA technology, we found that, in fact, while Full CA technology adoption level was low (3%), Partial CA technology adoption reached 31% in 2005. It should be noted that these adoption levels need to be kept in context, i.e., they occurred in areas where the government is actively extending the technology. We believe if one were to do a wider, fully random sample of villages, adoption levels of Full CA technology would almost certainly be lower. Hence, at least in 2005 in our study areas, adoption rates of Full CA technology-or the most comprehensive set of practices that are consistent with the Blue Revolution technology package-were very low.According to the field survey conducted in three provinces of the Yellow River Basin in 2008, when CA adoption was assessed by crop (wheat and maize), the adoption rate of Full CA was higher than our findings in 2005 which studied CA adoption by plot. For example, the average adoption rate of Full CA for wheat in three provinces increased from 25% to 35% (Table 47). For the Full CA, the most important technology is reduced tillage with crushed residue cover. The adoption rate for the other two CA component technologies was almost zero. The Full CA technologies were adopted mainly by farmers in Shandong and Henan Provinces; in Ningxia Province, the adoption rate was very low. Compared with Full CA, the adoption rate of Partial CA was much lower, less than 1% in 2008. The CA adoption rate was higher for the maize crop. In both 2005 and 2008, the share of sown area adopting Full CA for maize was more than 71%, mainly in Henan and Shandong Provinces. The main type of Full CA technology for maize is zero tillage with complete residue cover. Similarly, the adoption rate of Partial CA (mainly zero tillage) is much lower than that of Full CA technology. To meet the goal of identifying factors associated with CA technology adoption, in this section we will first look at cross tabulations between measures of CA technology adoption and a set of socio-economic factors that define the nature of China's villages and the farmers who live there. We will also attempt to determine whether policy and extension/research projects' efforts to provide information to producers about the benefits of CA technology are correlated with adoption rates. Some of the most distinctive characteristics of producers who adopt CA technologies compared to those who do not are access to household labor and land resources. Results show that in villages adopting CA technology, the share of the labor force that works off-farm (33%) is higher than in villages without CA technology (24%) (Table 48). Therefore, according to our data, if farmers have better off-farm opportunities, they appear to be more interested in adopting CA technology. Within China, our descriptive data suggest that those villages that have more of their labor force in the off-farm sector have an higher opportunity cost for labor, and are more interested in the labor-saving benefits of CA technology.Our survey data also indicate that farmers in villages that have more land are more likely to adopt CA technology. Our data suggest that when land is less dear, farmers are relatively more interested in adopting CA technology, even though there may be a yield penalty (or at least no yield gain) in the short run. Hence, in the case of labor (assuming more off-farm labor means higher opportunity cost for on-farm work) and land (assuming less land means land is scarcer and the implicit returns to land-or the rent-are higher), the value of factor endowments appear to affect the interest in CA technology of farmers living in China's villages.Beyond factor endowments, access to policy support may also influence the adoption of technologies (CIMMYT 1993;FAO, 2001). Before investing in any soil or water conservation practice (or any new technologies), farmers have to be convinced that the benefits will be greater than the costs (given constant risk), and farmers often have to overcome some type of constraint (Ervin and Ervin, 1982;Reardon and Vosti, 1995;Clay et al., 2002).Because these uncertainties and constraints may mean that farmers do not see immediate gain from the technology, government support policies (for financial aid and infrastructure construction) are often associated with successful CA adoption (Reardon and Vosti 1997;Malla 1999;Sanders and Cahill 1999;Bekele 2003). Specifically, when the government provides subsidies or loans to encourage adoption, we would expect to see more adoption.The data from our study sites, in fact, do show this. When examining the data on village-level measures of adoption, we see that if the government provides subsidies for machinery used for developing CA technology, the probability of a farmer in a village adopting CA technology is higher. Results also show that if the cost of replacing existing machines is relatively low, it is easier to extend CA technology in the field.Policies can also create barriers. For example, because of concerns about air pollution, many localities in China (and elsewhere in the world) are taking steps to prohibit the burning of agricultural residue. If farmers cannot burn residue, they have to spend money to haul it away and dispose of it; the cost of technologies that do not require removing residues would then be lower. In fact, our data show that in villages where the government does not allow farmers to burn crop residue in the field, CA adoption occurs at a higher rate.Finally, having access to information on the attributes of the new technology and how to use it in the field should also improve the likelihood of adoption. Therefore, we can expect areas with access to extension agents promoting CA technology to adopt the technology at higher rates. According to our data, in villages where farmers were using CA technology, there was a relatively good opportunity for farmers to access information about the cost and benefits of CA technology (33% of adopting villages). In contrast, in villages that did not adopt any kind of CA technology, only 6% of farmers had had any opportunity to participate in a CA technology extension project.Similar results are found when looking at the household-level measures of technology adoption (Table 49). For example, if the household has more family members working off the farm, the probability of the household adopting some type of CA technology is higher. Households with more land also seem relatively more willing to adopt CA technology. Hence, in our household descriptive statistics, as in the village-level descriptive statistics, there is evidence that the scarcity of factor endowments plays an important role in encouraging technology adoption. Interestingly, Lin (1992), in a paper on hybrid rice adoption, found similar results in his sample of Hunan farmers.Our household level data also suggest that policy and extension can play a role in encouraging adoption. First, households with less wealth, adopt less. This could mean there is a wealth constraint, since CA technology does involve some potential yield loss and investing in new machinery. Therefore, it is not surprising that results of our village-level descriptive statistics found that government subsidy policies helped encourage CA adoption.In addition, although adoption rates are relatively low, there are still differences between farmers in regions affected by different government regulations and between farmers who have differential access to government extension programs. For example, in the case of households that adopted CA technology, 31% of them stated that they lived in villages in which the government does not allow burning of crop residues, but only 19% of non-adopters lived in such localities. The importance of extension efforts is also evidenced by the fact that 39% of households that had adopted some type of CA technology had at some point in the past participated in an extension training program on CA technology, whereas only 6% of non-adopting households had done so.During estimation, we tried several different specifications for both the village-level (equation 2.1) (Table 50) and household-level models (equation 2.2) (Table 51). Since there may be a correlation between the error terms and the key right hand side explanatory variables, we used a fixed effect approach to control for all unobserved non-time varying factors. There may also be multicollinearity between several of our key policy variables. For example, it could be that in places where government bans the burning of crop residue, it also gives subsidies to farmers for purchasing machinery. The same is true in areas that have promoted CA technology (perhaps the same areas that provide machinery subsidies or ban residue burning). In other words, it is possible that policies come in packages, which would make identifying individual effects difficult. Because of this, in our analysis, we deal with this by considering policy variables separately.In using a fixed effects approach to estimate equation 2.1, it appears that our models perform relatively well. The goodness of fit measures, the R 2 statistics, range from 0.36 to 0.50 for the village-level mode (Table 50). These high measures mean that the fit is relatively good for this type of analysis. The household-level model also performed well.The relative high Pseudo R 2 (from 0.46 to 0.48) statistics and high Chi2 (from 183 to 192) statistics show the model fits well (Table 51).The relatively satisfactory performance of the model can also be analyzed from the coefficients of some of the control variables. Many of the coefficients of control variables in the equations have the expected signs and are statistically significant. For example, as estimated in the household-level model, farmers cultivating predominantly clay soils rarely adopt CA technology (Table 51). In fact, extension agents do not encourage using CA technologies on clay soils because water penetration and germination is poorer in such soils if CA technology is used. Adoption of CA technology is also significantly correlated with age of household.More importantly, we found in the multivariate analysis-as was so clear in the descriptive statistics-that CA adoption is affected by the factor endowments that characterize villages and farm households. Specifically, the coefficients of variables measuring the opportunity cost of the farm household (the share of the village/family labor force that works off-farm) are positive and statistically significant in both the village-and household-level models (Tables 50 and 51). Although the coefficient of the land variable is not significant, the sign suggests that farmers with more land (or villages with farmers with more land) adopt CA technology more frequently. Hence, factor endowments appear to be one of the most important determinants of CA technology adoption.We also saw evidence in our multivariate analysis that switching technologies may be expensive (or at least risky). From our household-based analysis, the coefficient of the wealth variable (which is positive and significant) suggests that rich farmers are more likely to adopt CA technology than poor ones (Table 51). In addition, the coefficients of variables that measure the presence of local machine-subsidizing policies (which could help alleviate the wealth constraint) is positive and statistically significant in the village-level model (Table 50). Together, these results suggest that, ceteris paribus, a policy that seeks to assist farmers in financing initial adoption indeed appears to promote the adoption of CA technology.Our results-also as seen in the descriptive statistics-demonstrate the importance of other policy efforts, including government initiatives to run extension projects. First, when policies banning residue burning are well promoted (and perhaps effectively enforced), village-and household-level regressions show that CA adoption rates rise (Tables 50 and 51). Moreover, when villages host extension projects featuring CA technology, coefficients of variables measuring these extension efforts are positive and statistically significant.Based on the literature review, we found that, in most cases, CA can increase wheat yield. Eighty-three percent of studies reported that after CA adoption, wheat yield increased, and only 17% reported that CA resulted in wheat yield reduction. Although we found some negative impacts of CA on wheat yield, we did not find any negative impact on maize yield in the literature. Based on our 2005 field survey, and applying both descriptive statistic and econometric analyses, we found that CA did not increase crop yield significantly (Table 53). Compared with wheat yields of farmers adopting CA technologies (2220 kg/ha), yields of conventional farmers was higher (3225 kg/ha) (Wang et al., 2007). However, farmers adopting CA had higher maize yield (5010 kg/ha) than non-adopting farmers (4478 kg/ha). Crop yield is influenced not only by tillage technologies (such as CA or conventional tillage), but also by many other socio-economic variables. To determine the real impact of CA technologies on crop yields, we established econometric models for both wheat and maize yields. Econometric results show that CA adoption did not significantly increase or reduce wheat yield, since the coefficients of CA variables in the models are not statistically significant. The econometric model for maize yield (not shown) was similar. In sum, CA adoption had no significant impact on crop yield.In our 2008 field survey, we again asked farmers about the impacts of CA on wheat and maize yields (Table 52). It seems that in some areas of the YRB, in the beginning of CA adoption, crop yield increased, while in other areas, crop yield decreased. For example, our survey found that in 47% of villages, after CA adoption, wheat yield increased 2-47%, while in 53% of villages wheat yield decreased 1-69%. Similarly, maize yield increased 11-31% in 27% of villages, and decreased 8-40% in 73% of villages.Farmers provided some explanation for the positive and negative impacts of CA on maize and wheat yields. Farmers in Henan and Shandong Provinces considered that yield increase was due to the preservation of soil moisture. Conversely, they believed that yield decreased as a result of the deleterious effects of poor seed drills on soils. Seed varieties and climate change are two other important reasons for yield reduction. Farmers in Ningxia Province gave three reasons for yield reduction after CA adoption: (1) CA does not preserve soil moisture; (2) manure cannot be used on the fields; and (3) weed problems worsen after CA adoption.Based on either descriptive statistics analysis or econometric analysis, the 2005 survey results show that CA adoption can significantly reduce labor input. Full CA adoption can reduce labor input of wheat production by 50% (Table 55), while Partial CA can effect a reduction of 33-67%. For maize production, Full CA can reduce labor input by 46%, and Partial CA can reduce labor input 15-46%. We found similar data for potato and oats. The labor effect is not hard to understand: since CA farmers do not need to prepare the land; their labor input for land preparation is zero. However, farmers who do traditional tillage have a labor input of 10.5 days per ha. For other activities such as harrowing, fertilizer application, seeding, weeding and cleaning residue, labor requirements of CA farmers are lower than those of farmers who do not adopt CA. In our econometric model for wheat labor input, the dummy variable of CA adoption is negative and significant, which means that after controlling other factors, farmers adopting CA will significantly reduce labor use (about 33%). We found results for maize production were similar to those for wheat production. Econometric results showed that compared with traditional agriculture, labor input for maize production under CA can decrease by about 86%. Due to the reduction of production costs, the research also shows that CA can increase farmer income. Some 60% of literature reported that CA can increase farmer income by less than 30% (Zhao and Shi, 2006). A further 20% of literature found that after adopting CA farmer income can increase by 40% to 60% (Gao, 2006). The remaining 20% of literature demonstrates that CA even can increase farmer income by more than 70% (Ma et al., 2006).We conducted both descriptive and quantitative analysis using econometric models to identify the actual impact of CA technologies on poverty (Table 56). Based on descriptive analysis, we found that compared with the group that did not adopt any CA technologies, the adopting group had a lower share (about 4%) of households under the extreme poverty line2. The results of our econometric model are consistent with our descriptive analysis.Our regression results show that many coefficients of our control variables have the expected signs and are statistically significant. Importantly, we found that adoption of CA technologies can significantly reduce poverty by 5%.Based on our 2008 field survey, CA adoption has some influence on women's labor input and non-farm labor time. For example, 33% of villages in Ningxia Province reported that due to CA adoption, labor intensity decreased. Mechanization of CA means women's work is enough for agriculture, and more labor force can go outside to find non-farm jobs. In Henan Province, 100% of villages reported that due to CA adoption, women's labor time increased, since most men looked outside for non-farm jobs. In addition, they said there are more weeds in no-tillage plots, which need more labor to eliminate weeds. In Shandong Province, no villages reported that CA influenced the labor input of women.Most villages in our 2008 field survey reported that their environment have been influenced by the adoption of CA. On average, 71% of villages reported that their environment has been influenced. In Shandong Province, 83% of villages have been affected. In Ningxia and Henan Provinces, this number is 67% and 60%, respectively. Some farmers said that CA has some effect on water use efficiency, but their responses differ by region. For example, in Shandong Province, 50% of farmers said it saved water by 20% to 50%. The other half of farmers said that there was no change at all. In Ningxia Province, most farmers said they did not observe such effects. Only one said water evaporation decreased, but that the capacity for saving rainfall decreased, too. Rain is lost because of the smooth land surface. In Henan Province, the majority answered that there were no changes. Only one village said that it did not save water, but wasted 50% water.Some farmers pointed out that soil quality improved due to CA adoption. In Henan Province, 60% of villages said there were no changes, and 40% said soil quality was better, but they were not able to specifically quantify the improvement. In Shandong Province, 50% of villages said that the soil is getting better, but again without detailed knowledge of the changes. The rest were not aware of any change at all. In Ningxia Province there was no awareness of the impacts of CA on soil quality.Reduced soil erosion as a result of CA adoption was also reported by some farmers. In Henan Province, 60% of farmers do not know, 20% think it is getting less but could not quantify the reduction. In Shandong Province, the majority answered that there were no changes; only one village said they were unable to respond, for lack of understanding. However, in Ningxia Province, farmers were unaware of the impacts of CA on soil erosion. 2 The extreme poverty line is 693 yuan (USD 99) per capita.Increased soil organic matter content is another possible, positive environmental effect of CA adoption. In Henan Province, 80% of villages said they had no idea, while 20% said organic matter content increased 0.03%, e.g., from 0.05% to 0.08%. In Shandong Province, two out of three villages had no idea. The others said it increased. One of them said determination of potassium increased by 10%. However, in Ningxia Province, no one knows the impact of CA on organic matter content.Conservation agriculture can also reduce chemicals use. In Henan Province, 60% of villages said there was no change, while 40% said it increased by 20-50%. In Shandong Province, the majority answered that there were no changes. Only one village said that pesticide use decreased by 10%. However, in Ningxia Province, no one knew of such impact of CA.The data used in this report come from our field survey in four provinces of northern China. Based on these findings, it seems that if China implements the policy banning residue burning well, conducts more CA demonstrations, provides more labor opportunities and better irrigation, and if the cost of replacing existing machines and draft animals is low, CA technology will be adopted in the country quickly. However, for now, labor in China is intensive, and the ability of farmers to replace existing machines or animals is still low. In the future, increasing labor opportunities and farmers' capital investment capacity, and implementing more CA demonstrations and improving irrigation will facilitate CA technology adoption.Based on our 2005 field survey, we found that CA did not increase crop yield significantly.In our 2008 field survey, we asked farmers about the impacts of CA on wheat and maize yields. It seems that in some areas of the Yellow River Basin, at the beginning of CA adoption, crop yields increased, while in other areas, crop yields decreased.The 2005 survey results show that adopting CA can significantly reduce labor input. Based on our 2008 field survey, most farmers also think that CA can reduce production costs, especially for labor input.Due to reduction of production inputs, studies have also found that CA increases farmer income: 60% reported that CA can increase farmer income by nearly 30%. Based on descriptive and quantitative analysis using econometric models, we found that adoption of CA technologies can significantly reduce poverty by 5%. Based on our field survey in 2008, CA adoption has some influence on the labor input of women and non-farm labor time.Conservation agriculture adoption has three types of environmental impacts: (1) it contributes to increasing water use efficiency; (2) it increases soil moisture and reduces soil water evaporation by about 30%; and (3) it can reduce runoff of surface water by about 60%. Also, because some or all residues are retained on the soil surface, not burned, environmental pollution is reduced. During the 2008 field survey, 71% of villages reported that their environment had been influenced by CA adoption. Some farmers said that the CA had some effect on water use efficiency, but their responses differ by region.Encourage the development of a policy environment that does not discriminate against conservation agriculture practices and of input, equipment and rental markets needed to make conservation agriculture practices generally accessible.The project design engaged senior leaders from each of the seven participating organizations in order, inter alia, to facilitate the communication of project results to policy makers at national, Provincial and County level, related to CA promotion including national and regional plans, CA extension programs and subsidies on CA equipment. Relevant officials from MOA, Provincial and Local Government were regularly invited to visit field demonstration sites and observe the performance of CA in farmers' fields. Project results were shared regularly with the Yellow River Commission so Basin planners and policy makers could incorporate the implications of the field research into decisions on Basin development. Project scientists engaged in relevant debates, for example the potential of CA to mitigate dust storms affecting Beijing through CA.The socioeconomic surveys identified policy and socio-economic factors which are important drivers of wider adoption of CA technology. Results show that policy intervention (such as machinery subsidy policy and policy of forbidding burning residue) can play some role in promoting the adoption of CA technology.At a national level, project leaders contributed to the CA component of the national Five Year Plan which targeted resources for the promotion of CA in China. The incorporation of the CA blueprint in the national plan is a major accomplishment. In addition, the implications of the project results were brought to the attention of the Minister of Agriculture.At the provincial level, some project staff participated in provincial meetings on machinery subsidy in order to decide which farm equipment should receive subsidy from the National Government. As a consequence, one of the no-till seeders developed with project support has been added to the Agricultural Machinery Purchase Allowance list, implying a subsidy for farmers equivalent to 40% of purchase price, thus promoting manufacture and sales of the no-till seeder.The Yellow River Commission was regularly briefed on project results through visits of project staff and participation in the Yellow River Commission Forum in 2007. Commission leaders are aware of the potential of CA to contribute to water-efficient sustainable development in the Basin.There has been a high level of engagement with policy makers at national, Basin, Provincial and County levels which has developed an understanding of the potential for CA and the required adjustments to policy. It is expected that the benefits of these project actions will continue to be seen with ongoing adjustments to future plans and policies to support CA. The project worked with seven major local partners, including the Chinese Agricultural University, research organizations or universities in five Provinces, and station and adaptive researchers and extension workers in five pilot Counties. Furthermore the project worked with farm equipment factories in three Provinces. Through these local partners, several hundred professional research and extension staff improved their management of CA trials and demonstrations. In addition, the project attracted students to contribute to the analysis of research results in the course of their thesis work. While many of the partners had strong scientific capacity for research on varieties, agronomy, soil management and economic analysis, it was recognized that innovation for CA is complex and demands systems and participatory research. While the project sought to strengthen component research field skills, especially through one-on-one mentoring by international scientists, workshops and an international study were organized in order to strengthen capacity to design, manage and implement collaborative multi-stakeholder collaborative research and development.Some 50 students in partner institutions received, or will shortly receive, Bachelors, Masters or Ph D degrees based on project research data and supervised by project scientists. Another valuable capacity building activity was the regular \"on the job\" advice and mentoring of international scientists from CIMMYT and IMWI on the management of research and demonstration fields, interpretation of results, and on hydrology and crop modeling using DSSAT. International scientists from CIMMYT introduced new research tools such as the GreenSeeker NDVI sensor to estimate nitrogen use efficiency and web based knowledge sharing tools. One innovation in capacity building was the organization of the traveling workshops around mid-year to review and learn from the field activities in each pilot County. This successfully brought together multi-disciplinary groups of research, academic and extension staff from different partner institutions to visit, once per year, the field work of a couple of Provinces and learn together through discussions of site selection and characterization, experimental design, specification of treatments (especially the timing and tillage practices, and the height and nature of retained crop residues) and interpretation of results.In terms of more formal capacity building, more than 50 researchers participated in the Participatory Research Workshop in 2006 or the Impact Pathways Workshop in 2007. The former was restricted to project researchers and covered participatory diagnoses, on-farm research, and participatory farmer evaluation. The workshop evaluation recorded a substantial increase in participants' understanding and knowledge. With strengthened skills, these partner staff demonstrated greater confidence and effectiveness in managing participatory demonstrations. The Impact Pathways Workshop was attended by scientists from project partners, as well as staff from other Basin projects, and brought a new paradigm to the networks of actors which advance innovation and the multiple channels through which farmers acquire and benefit from improved CA technologies. One study tour was organized to India for partner scientists to observe the rapid spread of CA in north-west India.There has been two-way benefit from the exposure of participating scientists in the Ghana (Yan Changrong) and Addis (staff member from Yan Changrong's team) workshops, and the study tour to India. Collaborating scientists have acquired a greater understanding of the biophysical and socioeconomic aspects of resource-productivity enhancing technologies and their adoption.The project made substantial contributions to the capacity of partners, both in the science of CA and the innovative approaches to multi-stakeholder CA R&D through formal and informal capacity building. Given the great importance and need for continuing adaptation and expansion of CA to other Counties and Provinces in China, there is arguably high value (and evident strong demand) for continued capacity building in innovative approaches to collaborative R&D for CA.The positive results from this project are relevant to rainfed areas outside the four target Provinces and outside China. Site-similarity analysis will aid the targeting, i.e., definition of the most likely areas of extended impact to other areas with similar agro-ecologies and relevant institutional settings, including water scarce and also cool temperate environments, e.g., in Central and South Asia. CPWF and the international centers (CIMMYT and IMWI) could facilitate the dissemination of the IPGs in various ways, including the presentation of project results in workshops and even the World Congress on Conservation Agriculture. Publications (in English language for the international community) resulting from this project, intended both for the scientific community and for the general public, will spread the knowledge outputs of this research, including the existence of the patents, and awareness of the benefits of conservation agriculture on farmer livelihoods, the natural resource base and the environment. Of the changes listed above, which have the greatest potential to be adopted and have impact? What might the potential be on the ultimate beneficiaries?From policy makers to farmers there is a greater understanding of the potential of CA to contribute to sustainable development. One notable outcome is the greater understanding of the potential role of CA in sustainable development by leaders of the Yellow River Commission. The capacity and profile including visibility built through the project enabled project organizations to submit successful proposals for science funding, and be awarded 5 national CA and 10 provincial CA projects, thus leveraging the CPWF investment in China. While the outcomes in terms of policy makers have been referred to above, including a CA component in the national Five Year Plan, there have been major outcomes and impacts at the local level in pilot Counties through demonstration and training. For example, more than 5000 farmers took part in project training courses or field days at the CA demonstrations, and they will have shared their observations on CA with other farmers in their villages. The socio-economic survey results show that the adoption of technologies of CA, although still low at a national level, speeded up during the current decade. The results of the socioeconomic survey and the field trials and demonstrations substantially influenced the preparation of an Asian Development Bank loan proposal for China.Naturally, the impacts at farm level of CA adoption have been substantial (numbers of farmers are great even if proportion of adopters is still low). Increased farm incomes have arisen from the 25% or more reduction in production costs, and according to the survey results the adoption of CA technologies significantly reduced farm household poverty. As well as increasing income, CA has increased the water use efficiency and nutrient use efficiency, and also reduced soil erosion from wind and water.All the above have potential for strong impact: however, the greatest potential for impact would lie with incorporation of the CA blueprint in the National Plan will have the, through increased adaptation, subsidies and extension effort, especially in the context of growing environmental challenges in rural China. The farmer beneficiaries will benefit from increased income and improved soil health (physical assets). The expansion of the YRB CA R&D to other Basins in China would increase spillover benefits.What still needs to be done to achieve this potential? Are measures in place (e.g., a new project, on-going commitments) to achieve this potential? Please describe what will happen when the project ends.Ongoing mentoring of CA technology/package adaptation in the current and other Provinces/basins in China; monitoring of adoption and identification of CA performance, policy and institutional constraints to adoption; capacity building at Provincial and County levels; maintenance of international links and networks for international CA knowledge sharing.Each row of the table above is an impact pathway describing how the project contributed to outcomes in a particular actor or actors. Which of these impact pathways were unexpected (compared to expectations at the beginning of the project?)Incorporation of the \"CA blueprint\" in the national Five Year Plan was hoped for but not expected -whereas improvements in plans for CA at Provincial and County level were expected.Why were they unexpected? How was the project able to take advantage of them?Normally beyond reach of a small project. Because of early CA field results and international experience gained through the study tour of the senior project leaders, the potential of CA was brought to the attention of the national Minister of Agriculture and national planners.What would you do differently next time to better achieve outcomes (i.e. changes in stakeholder knowledge, attitudes, skills and practice)?Advance the training in participatory research and impact pathways. Increase the knowledge sharing through Chinese language web CA knowledge platforms within the Basin; and strengthen English language links to Asian and OECD countries' experience with CA, through, for example, participation in international conferences on CA.With the implementation of this project, participants improved their research capacities greatly and established more extensive collaborative relationships across Provinces and with other countries.Given the importance of increasing water productivity and reducing poverty in the YRB and China, the first recommendation is to reinforce and expand the platform for CA R & D in China -focusing on further research on selected CA production and policy issues and expanding the project footprint on the ground beyond the current pilot Counties.While science is strong in Chinese organizations, strengthening international partnerships on CA is a priority. In particular, continuing exposure to cutting edge science, e.g., GreenSeeker NDVI sensors and research methods, e.g., impact pathways and participatory research, would be of immense value to CA in China.Further research should be conducted on variety selection and supporting cultivation technology to perfect CA technology, for which linkages to sources of international germplasm, equipment and research would be beneficial. Clearly, simply copying the methods and technologies from other places will not be effective. The research and demonstration of CA systems needs to be targeted to various local conditions, in relation to socio-economic and environmental circumstances.Farmer training will have to be strengthened to improve farmers' knowledge and skills related to CA technology. For instance, farmer perceptions of CA systems is one two of the major impediments to the expansion of CA. It is important to convey a whole CA system approach rather than individual component technologies.Public private cooperation is required for the development of appropriate CA equipment.A scientists-technicians-governments-factories-farmers innovation system should be tested and expanded for a long-term expansion of CA systems.Policy making should pay attention to the ecological and environmental benefits of CA which complement the benefits from productivity and poverty reduction. With feasible CA technologies now demonstrated, the government can consider the strengthening of the implementation of the policy of forbidding burning residue.","tokenCount":"26482"} \ No newline at end of file diff --git a/data/part_3/7934212051.json b/data/part_3/7934212051.json new file mode 100644 index 0000000000000000000000000000000000000000..940f8d1ad1ec2abd84a605c20d206e225270f2b3 --- /dev/null +++ b/data/part_3/7934212051.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"1324c4b80ac63c2d729e44a97da401f9","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/a45d321f-7020-4f52-beea-a6a67bd71930/retrieve","id":"1702263107"},"keywords":[],"sieverID":"a06daa9c-4267-4cd0-8cdb-1cb0a2e4797e","pagecount":"28","content":"La mosca blanca Trial.eurodes vaporariornm (Westwood) o palomilla en fréjol y vainita, cada día hace mayor daño a los cultivos por el mal manejo que se ha hecho de la plaga.El uso irresponsable de insecticidas o venenos contra la plaga, ocasiona serios problemas: aumento en los costos de producción, eliminación de enemigos naturales, resistencia de la plaga a los insecticidas, riesgos para la salud de productores y consumidores y contaminación del ambiente.Existe la tecnología adecuada para hacer un manejo responsable de la plaga, fruto de resultados de investigación que adelanta el CIAT en colaboración con el ICA en Colombia, la Corpora ción Grupo Randi-Randi en Ecuador y PROINPA en Bolivia y que a través de esta cartilla se ponen a consideración para beneficio de los agIicultores de la Zona Andina.La mosca blanca (Trialeurodes vaporariorum) o palomilla es la plaga que ocasiona mayor daño económico a los cultivos de fréjol y vainita.La mosca blanca o palomilla (Foto 1) coloca los huevos (Foto 2) debajo de la hoja; una semana después aparecen unos punticos transparentes que son las ninfas (Foto 3) y empiezan a chupar los jugos (savia) de las hojas. A la semana y media las ninfas se convierten en unas conchitas o pupas (Foto 4). De las pupas, a los ocho días, salen nuevas mosquitas blancas, o palomillas, que empiezan a chupar los jugos de las hojas y a poner de nuevo huevos, para producir más palomillas.Desde que nacen las ninfas y los adultos o palomillas chupan el jugo o savia de la planta, que es el alimento para poder dar buenas vainas en fréjol o vainita, o sea que la producción se merma.Mientras la palomilla se alimenta echa una sustancia azucarada sobre las hojas y ahí crece un hongo que produce el hollín o fumagina, que también debilita la planta, y mancha las vainas o sea se produce una cosecha de mala calidad.4 Hojas cubiertas con sustancia azucarada Fumagina en hojas Fumagina en vainasUn programa de manejo de la mosca blanca busca:• Evitar que cause tanto daño al cultivo.• Conservar los insectos benéficos y algunos hongos que matan a la mosca blanca o palomilla en forma natural. • Mantener un ambiente más sano: usted y su familia vivirán más saludables. • Obtener una cosecha sin tanto veneno y así gastar menos dinero en el cultivo. • Aprender a rotar bien el fréjol y la vainita con cultivos que no les de palomilla. • Aprender a utilizar los venenos en el momento preciso, para no botar la plata.Para lograr estos beneficios usamos el Control Natural, el Control Cultural y el Control Químico Responsable.El control natural es el que hace la misma naturaleza. Existen diferentes avispitas (Foto 1), muy pequeñas, que cuando nacen se comen la ninfa de la palomilla por dentro o sea la parasitan.También hay unos cucarroncitos (Foto 2) y muchos otros insectos que se alimentan de las ninfas y adultos de la palomilla o mosca blanca.Además de los insectos benéficos, hay otro grupo de enemigos naturales que atacan a la mosca blanca y son ciertos hongos (Foto 3).Siga las siguientes recomendaciones para evitar que la palomilla ataque tan seguido sus cultivos y los de sus vecinos; pero sus vecinos también deben seguir estos consejos técnicos:Primero: No siembre fréjol en un lote que se haya sembrado con cualquiera de estos cultivos: zapallo, ají, vainita, pepino, tomate, papa, pimiento o el mismo fréjol.Segundo: Luego de cosechar fréjol o vainita, en ese mismo lote puede rotar con maíz, cilantro, repollo, cebolla, ajo, arracacha, remolacha ó zanahoria, que no son atacados por mosca blanca.No siembre sobre rastrojos o cultivos abandonados.No haga siembras escalonadas.Quinto: Los residuos de cosecha del fréjol revuélvalos con el suelo o sáquelos del lote y quémelos. Destruya todo el rastrojo de la vainita tan pronto termine de cosechar y en lo posible quémela; por ningún motivo deje en el lote residuos de plantas de fréjol o de vainita, porque son la principal fuente de palomilla para usted y sus vecinos.Residuos de cosecha de zapallo, ají, fréjol, pepino, tomate, papa y pimiento también hay que destruirlos.Un día antes de la siembra, trate la semilla con el insecticida sistémico Gaucho (imidacloprid) en dosis de seis (6) centímetros cúbicos (2 cucharaditas dulceras) por cada kilogramo de semilla. Siga los siguientes pasos:1. Ponga la semilla en una bolsa plástica y agregue el insecticida.2. Sacuda la bolsa hasta que todas las semillas queden bien untadas con el veneno.3.Ponga a secar la seoúlla sobre un costal de cabuya a la sombra.Con este tratamiento se controla bien la mosca blanca o palomilla. durante los primeros 25 días. si se tienen en cuenta también las recomendaciones de control cultural.A los 25 días después de la siembra. se termina el efecto del GAUCHO; para saber cuando hacer la primera aplicación de veneno al cultivo. se necesita conocer la cantidad de plaga. pero no de mosquitas adultas sino de ninfas recién nacidas.Para eso hay que hacer un muestreo de hojas. recorriendo el lote como se le indica a continuación: \"• Sitio de la planta para tomar la muestra En fréjol: tome la muestra más o menos en el sitio marcado con este dibujo ~ según el estado de crecimiento de la planta. Solo coja la hojita del cen~.A los 27 días A los 34 días A los 41 días A los 50 días A los 55 días A los 61 días A los 70 díasEn vainita: tome la muestra más o menos en el sitio marcado con este dibujo \" según el estado de crecimiento de la planta.------------------_ --. ........Coja las hojitas o folíolos centrales en los sitios de la planta marcados con el dibujo \"* como se mostró en las figuras anteriores. Examine las hojas, si prefiere ayúdese con una lupa. Usted puede en contar que no hay ninfas (Foto 1) o que hay una cuantas muy pequeñas recién nacidas (Foto 2). En esta situación quiere decir que la población de plaga es muy poca y todavía no necesita aplicar veneno.Cada semana repita la misma operación de muestreo cogiendo cincuenta (50) hojitas caminando el lote como se le indicó; revise las hojitas y si encuentra que veinticinco (25) o más tienen menos de la tercera parte de la hojita cubierta por ninfas pequeñas, no aplique veneno todavía. Pero regrese a los 2 ó 3 días después y repita el muestreo .... Menos de la tercera parte de la hoja con ninfas recién nacidas.La población de plaga no llega todavía a la cantidad de daño económico..... al regresar de nuevo al cultivo a los 2 ó 3 días, si encuentra que veinticinco (25) hojitas de las 50 que cogió, están con la tercera parte o más de la hojita ocupada por ninfas recién nacidas, quiere decir que ahora si tiene la cantidad de plaga que necesita aplicación de veneno.Hojita con la tercera parte cubierta de ninfas.Hojita con más de tercera parte cubierta de ninfasAplique cualquiera de los siguientes productos que matan ninfas y mosquitas blancas (adultos):• 600 gramos de APPLAUD por hectárea, Ó • 450 gramos de EVISECf más 500 centímetros cúbicos de KARATE por hectárea, Ó • Un (1) litro de POW más 600 gramos de EVISECT por hectárea, Ó • 600 gramos de APPLAUD más 600 gramos de EVISECT por hectárea, Ó • 600 centímetros cúbicos de SENSEI por hectárea Ó • 400 gramos de ACTARA por hectárea.Procure que el insecticida (veneno) moje todas las hojas por debajo y ojalá haga la aplicación en las horas de la mañana.Una semana después de la primera aplicación del veneno, visite de nuevo el cultivo y repita la misma operación de muestreo; busque ninfas recién nacidas en la hojita central y cuando encuentre que veinticinco (25) hojitas de las cincuenta (50), tienen la tercera parte o más con ninfas pequeñas aplique VENENO.Haga los muestreos hasta el incio de la cosecha, tanto en fréjol como en vainita. Amigo Agricultor .... Asista a las demostraciones y días de campo para que complete su capacitación y así podrá:• Hacer un mejor control de la mosca blanca • Hacer menos aplicaciones de veneno por cosecha • Tener menos gastos por venenos y jornales • Aumentar la producción por hectárea • Tener un ambiente más sano para todos.","tokenCount":"1363"} \ No newline at end of file diff --git a/data/part_3/7938911674.json b/data/part_3/7938911674.json new file mode 100644 index 0000000000000000000000000000000000000000..29192e6cbf3f133e38e495d23c85d2980a32c22d --- /dev/null +++ b/data/part_3/7938911674.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"fb46e5135c84791fcd585f29a15b9dc0","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/f0e44136-92c1-43c6-96ef-f84598d8ccd5/retrieve","id":"415977570"},"keywords":[],"sieverID":"fda5d9ce-0a5b-48e9-853e-69286d380ce8","pagecount":"6","content":"la cual equivale al 40% del total.En las regiones donde la población depende del consumo de arroz, se presentan problemas nutricionales relacionados con deficiencias de minerales y vitaminas, entre otros. Los niños, ancianos y mujeres embarazadas están entre los más afectados y vulnerables.El proyecto AgroSalud, con el programa de arroz del Centro Internacional de Agricultura Tropical (CIAT), busca mediante diferentes técnicas de mejoramiento, incrementar el contenido de hierro y zinc en el grano de arroz pulido. El proyecto es financiado por la Agencia Canadiense de Desarrollo Internacional (ClDA) -Canadá. Entre las actividades desarrolladas para la identificación de los materiales con mayor contenido de hierro y zinc se mencionan:Pronto se liberarán otras variedades de arroz en Nicaragua, Brasil y Cuba.1. Establecimiento de protocolos , metodologías para identificar líneas de arroz con abos comenidos de hierro ,Zinc.Se establecen procedimientos de campo y laboratorio que ayudan a disminuir contaminaciones e identificar, de forma confiable, líneas de arroz con mayores contenidos de hierro y zinc en el grano.Se evalúan variedades locales y líneas avanzadas para identificar materiales con alto contenido de hierro y zinc que tengan utilidad inmediata.Variedades mejoradas nutricionalmente liberadas en Bolivia y Cuba durante el año 2009:Azucena, variedad introducida en el departamento de Santa Cruz, Bolivia, para condiciones de secano (sistema manual), con mayor contenido de hierro (3.40 mg/kg) y zinc (18.6 mg/ kg) que las variedades tradicionales. Tolera períodos de seqUla, y tiene buena calidad industrial y culinaria. Es recomendada para pequeños agricultores.Saavedra 27, variedad proveniente de un cruce interespecífico que muestra alto potencial de rendimiento, buena adaptación, y tolerancia a plagas y enfermedades. Es recomendada para siembras en secano favorecido y riego del sistema mecanizado. Puede suplir 18% y 28% más de hierro y zinc a la dieta boliviana que las variedades sembradas comercialmente por los agricultores en este país.IACUBA-30, variedad de alto rendimiento, y de buena calidad industrial y culinaria. Esta variedad tiene un gran impacto productivo social en Cuba dada su especial significación en la población propensa al padecimiento de anemia. Tiene 30-40% más de hierro y zinc con relación al arroz comercial importado en Cuba.En Panamá se liberaron recientementemente las variedades de arroz IDIAP GAB 2, IDIAP GAB 6, IDIAP GAB 8 Y IDIAP GAS 11. El contenido de los micronutrientes hierro y zinc oscilaron entre 3.5 a 4.1 mg/kg (hierro) y de 13.2 a 15.5 mg/ kg (zinc) para sistema ae chuzo, y para fangueo se determinó entre 3.7 a 4.0 mg/ kg (hierro) y 13.9 a 15.3 (zinc), comparado con análisis efectuados a diversas marcas de arroz comerciales y de consumo en Panamá, que tienen una concentración promedio de 2.1 mg/kg (hierro) y 12.3 mg/ kg (zinc) .El mejoramiento de la calidad nutricional debe combinarse con las característícas de interés para los agricultores y consumidores tales como buen potencial de rendimiento, resistencias a plagas y enfermedades, y buena calidad de grano.El material mejorado por el proyecto AgroSalud es distribuido a los programas nacionales para la evaluación, selección y multiplicación de semilla bajo condiciones locales. Las mejores líneas son liberadas como variedades con mayor valor nutricional (Cuadro). Estudios de este tipo se desarrollan localmente con los programas nacionales de arroz en <:uba, Bra sil, Bolivia, Colombia, p¡roamá, República Dom inicana y Nicaragua. Esta informa,ión es necesari para recomendar a los ag ricultores prácticas de !=cultivo que contritluyan a una produttión eco-eficiente de arroz. ,uacl611 del stedo nUbtclonal 11 celltac16n ullUlrla de lis lineas promlSllrlas.La calidad' de un alimento, además de aspectos nutricionales y de seguridad sanitaria, también está 125 ºC) para romper así la estructura amilosa-lípido y solubilizar la fracción de amilosa. La presencia de sustancias grasas puede crear problemas por la tendencia a ranciarse en el almacenamiento (Ceballos y De la Cruz, 2002).Tabla 1. Características de la amilosa y la amilopectina.Peso molecular 1-2 x 10 5 > 2 x 10 7Grado de polimerización 990 7200Ligamientos Los gránulos de almidón de yuca son redondos con terminales truncados y con un núcleo bien definido y su tamaño varía de 5-35 nm, con promedios de 20 nm. Los gránulos de los almidones de arroz y maíz ceroso tienen forma poliédrica, mientras que los gránulos de almidón de papa son ovoides y presentan los gránulos de mayor tamaño (5-100 nm), con promedio de 33 nm.El tamaño de los gránulos de maíz y maíz ceroso es intermedio entre 3-26 nm, con un promedio de 15 nm, similar al de los gránulos de almidón de yuca (Ceballos y De la Cruz, 2002).Los gránulos más pequeños corresponden a los de arroz, que varían de 3-8 nm y son considerados como los más resistentes a procesos con altas temperaturas, como la esterilización; además, poseen mayor digestibilidad (ver Figura 13). El nivel de cristalización del almidón de yuca esta por el orden de 38% (Rickard et al., 1991). La cristalinidad del granulo se debe esencialmente a la amilopectina. Las propiedades de claridad y baja retrogradación del almidón de yuca pueden ser utilizadas en muchos productos alimenticios; sus características reológicas se asemejan bastante a las del almidón de maíz ceroso. Las propiedades de calidad de las pastas de almidón son modificadas durante el proceso de congelación, aumentando, la exudación de agua o \"sinéresis\", lo que deteriora la estructura de la pasta, algunos almidones nativos, como la yuca y la oca, han sido considerados resistentes a este proceso (Ruales, 1995). También se ha encontrado que las pastas de almidón de yuca son estables a medios ácidos por debajo de pH 2,4, medio en el cual hay destrucción del gránulo y del aspecto físico de la pasta, debido a una hidrólisis parcial o total de las pastas.Figura 14. Gelificación de gránulos de almidón.Fuente: UAM, 2005Figura 15. Cinética de gelificación de gránulos de almidón.Fuente: UAM, 2005El almidón es utilizado en diversos sectores, como la industria de alimentos, la industria de papel y cartón, la industria textil, la industria de adhesivos, la industria farmacéutica, entre otros.-Industria de adhesivos. El almidón se usa para la elaboración de adhesivos o colas baratas. Estos pegantes se utilizan para fabricar materiales de embalaje, etiquetas, papel de envoltura y cinta pegante de humedecer, productos cuyo uso los hace desechables. Los pegantes son muy útiles para las empacadoras y etiquetadoras de alta velocidad, por dos razones: costo relativamente bajo y gran velocidad de adhesión (Alarcón y Dufour, 1998).-Industria farmacéutica. El almidón pregelatinizado se emplea en farmacia para diluir, aglutinar, lubricar o desintegrar diversos productos sólidos. Este almidón actúa también como absorbente, da viscosidad y sirve de vehículo a sustancias pastosas, liquidas o semisólidas en la elaboración de cremas y lociones de uso dermatológico. Se emplea además para fabricar polvos faciales finos, polvos compactos y polvos nutritivos y como soporte en la fabricación de obleas (Balagopalan et al.,1988).-Otros usos. El almidón nativo de yuca se usa en la industria química para obtener alcoholes, glucosa y acetona; para fabricar explosivos, colorantes, pilas secas e impresiones dentales; y en la coagulación del caucho, en minería como flocúlante y como componente de las soluciones empleadas en la perforación de pozos de petróleo (Alarcón y Dufour, 1998).El almidón muestra propiedades especiales que pueden ser usadas para diferentes propósitos. Muchas de estas no son apropiadas para algunas aplicaciones específicas y existen métodos disponibles para modificarlas. Las principales modificaciones pueden ser físicas, químicas y degradativas. Los tratamientos químicos están basados en la disponibilidad de un gran número de radicales hidroxilo en las moléculas de almidón, estos radicales pueden reaccionar en diferentes vías con diferentes reactivos. La modificación degradativa incluye dextrinización, oxidación hidrolizada e hidrólisis en compuestos de bajo peso molecular. Existe una creciente demanda de los almidones modificados, los cuales son utilizados con fines muy específicos. El almidón de yuca presenta alrededor del 18 % de amilosa, mientras que el de los cereales, alrededor del 22 %. Cerca a los carbohidratos, el almidón puede presentar, bajos contenidos de sustancias acompañantes, que pueden modificar drásticamente sus propiedades, entres esos componentes, se encuentra el nitrógeno, lípidos, y minerales como el fósforo, este ultimo se encuentra en forma de Ester, y relacionado con mayor frecuencia a la amilopectina (Moorthy, 1994).-Modificaciones del almidón. Las modificaciones del almidón pueden clasificarse en físicas, químicas, enzimáticas y combinadas. En la figura 16 se muestran las principales modificaciones que se pueden realizar al almidón.El almidón puede ser modificado por vía ácida para reducir la viscosidad y ser usado en textiles, papel e industria de alimentos; los almidones oxidados, obtenidos por reacción del almidón con hipoclorito en medio alcalino, se producen simultáneamente reacciones de oxidación e hidrólisis que rompen los enlaces glucosídicos del almidón, se utilizan en la preparación de salsas y mayonesas y tienen una pequeña participación en el mercado de encolado, no retrogradan ni melifican; el almidón entrecruzado Se obtienen por reacción con moléculas bifuncionales como la epiclorhidrina, el oxicloruro de fósforo o anhídridos mixtos de ácidos orgánicos, por esta ruta pueden obtenerse productos con cadenas entrecruzadas, mucho más estables y de gran resistencia, con escasa tendencia al hinchamiento. Son de especial interés para alimentos congelados, sobre todo si el tratamiento se combina con esterificación; el almidón acétilado presenta menor tendencia a la retrogradación; el almidón fosfatado es recomendado para alimentos refrigerados o congelados, es obtenido por tratamientos con ácido fosfórico, para introducir un grupo iónico fosfato a la estructura del almidón, así pueden ser obtenidos almidones mono-ester-fosfato o poli-ester-fosfato, estos almidones son indicados para la elaboración de gelatinas y gomas coloidales y poseen estabilidad en el congelamiento; también hay procesos enzimáticos que dan origen a dextrina, maltosa y glucosa, azucares con diferentes grados de endulzamiento y adherencia, la dextrina es la base para la elaboración de pegamentos, y la maltosa y la glucosa son de usos versátiles, como en alimentos y bebidas fermentadas (Wurzburg, 1986).Científicamente, las dextrinas son productos de degradación parcial del almidón obtenidos por medio de temperatura y/o catalizadores, en un mecanismo de conversión que involucra procesos de ruptura hidrolítica, reorganización de moléculas y repolimerización. La dextrina tiene la misma fórmula empírica del almidón original (C 6 H 10 O 5 )n, donde en el almidón el valor de n es completamente largo pero en las dextrinas decrece progresivamente con la degradación del almidón. La dextrina es considerada químicamente intermediaria entre el almidón y la dextrosa, se presenta como un sólido amorfo color crema hasta marrón, soluble en agua fría, insoluble en alcohol. Las soluciones de dextrina son ópticamente activas y dextrógiras y su rotación específica es +195. (Aristizábal, 2004) El origen del almidón es muy importante para la manufactura de dextrinas, ya que dependiendo de este así será la calidad y propiedades de las dextrinas obtenidas. El almidón de yuca ha sido reconocido como la materia prima más adecuada para la producción de dextrinas de alta calidad (Prime Quality Dextrins). El proceso de producción de dextrinas es esencialmente el mismo para todos los almidones, pero la facilidad de conversión cambia con el tipo de almidón y su calidad. Almidones de cualquier variedad de yuca pueden ser utilizados para la producción de dextrinas; sin embargo, la conversión se favorece para variedades de alto contenido de amilopectina. Se determinó que a partir de harina no es posible obtener dextrinas de excelente calidad (Acosta y Salcedo, 2004).La obtención de dextrinas puede llevarse a cabo por medio de dos rutas, ruta húmeda y ruta seca (Aristizábal, 2004). -Ruta húmeda. El almidón se dispersa en agua y es calentado en presencia de un catalizador o tratado con enzimas y posteriormente secado (Linden y Lorient, 1994). Los tratamientos que se hacen con ácido y enzimas se describen a continuación.-Tratamiento con ácido. Se preparan por simple calentamiento de suspensiones acuosas de almidón con ácido. Son usadas para textiles o adhesivos; sin embargo, poseen cierta cantidad de dextrosa y su presencia en cantidades excesivas causa rompimiento de la película adhesiva con la consecuente disminución de su fuerza (Linden y Lorient, 1994).-Tratamiento con enzima. La conversión con enzimas se lleva a cabo por tratamiento de una pasta de almidón, con enzimas hidrolíticas. Según el tipo de enzima se pueden obtener Maltodextrinas, que se emplean en mezclas de panadería, polvos para bebidas, condimentos, alimentos deshidratados o instantáneos, mezclas de jabones secos, encapsulantes de sabor, aromas y color, espesantes y estabilizantes de emulsiones y espumas, sustitutos de grasa, endulzantes en alimentos infantiles y dietéticos. Otro de los productos obtenidos con este tratamiento son las Ciclodextrinas, las cuales tienen entre sus principales aplicaciones industriales la estabilización de sustancias volátiles, de emulsiones y de compuestos aromáticos, modificación de la actividad química de una molécula por protección de algunos de sus grupos funcionales, encapsulamiento de aromas y sabores, extracción de productos tóxicos de aguas residuales y tienen como potencial imitar el papel de un biocatalizador (Linden y Lorient, 1994).-Ruta seca. El almidón es sometido a altas temperaturas en presencia de un catalizador, dependiendo de la temperatura que se maneje, y la presencia o ausencia de un catalizador se pueden obtener tres clases de dextrinas (Balagopalan et al., 1988).-Dextrinas blancas. Se obtienen por tratamiento del almidón con trazas de ácidos minerales, pH bajo, baja temperatura; 80-120 °C y tiempos de tostación relativamente cortos; 3-8 horas. Son de color blanco similar al almidón, poseen viscosidad variable y su solubilidad en agua fría puede ser desde 0-90%. El grado promedio de ramificación es calculado alrededor del 3%. En estas dextrinas la hidrólisis es la principal reacción, obteniéndose almidones depolimerizados por ruptura de enlaces α (1,4). Su empleo es principalmente en la industria de confitería y de adhesivos (Balagopalan et al., 1988).-Dextrinas amarillas o canarias. Son obtenidas a temperaturas mayores; 150-220 °C, pH bajo y por largo tiempo de tostación; 6-18 horas. Presentan un distintivo color que va desde crema a amarillo y tienen alta solubilidad. La mayoría son solubles 100% en agua fría. El grado promedio de ramificación es 20%. Estas dextrinas resultan de la combinación de dos mecanismos hidrólisis y repolimerización, los cuales tienen lugar en sucesión. Forman excelentes adhesivos para la industria del papel, se emplean también como aglutinantes, plastificantes y flexibilizantes (Balagopalan et al.,1988).-Gomas británicas. Se forman cuando el almidón sólo se calienta a temperaturas altas; 130-220 °C, a alto pH, y por un tiempo largo de proceso, 10-20 horas. El rompimiento hidrolítico es mínimo y las reacciones de dextrinización son lentas. Son de color marrón oscuro, tiene gran variación en solubilidad y poder viscosante. El grado de ramificación es del orden 20-25% (Balagopalan et al.,1988).1.3.2 Reacciones en el proceso de dextrinización por ruta seca. En la dextrinización ocurren principalmente tres reacciones que se describen a continuación (Aristizábal, 2004).-Hidrólisis. Esta primera etapa está dada por el rompimiento de los enlaces glucosídicos α (1-4) y probablemente algunos enlaces α (1-6); esta reacción tiene lugar en la etapa de presecado por la acción del catalizador, la humedad y el calor. El principal resultado es una reducción del tamaño de la molécula, un decrecimiento en la viscosidad y un incremento en la cantidad de azúcares reductores. El catalizador ataca principalmente las regiones amorfas y luego las de alta cristalinidad, cuando el tiempo de la reacción avanza la cristalinidad aumenta y el contenido de amilosa disminuye (Naparorn et al., 2000).-Tranglucosidación.Una vez ocurre el rompimiento de los enlaces glucosídicos se da una reubicación de las moléculas para la producción de estructuras altamente ramificadas. La recombinación de fragmentos se realiza entre los grupos hidroxilos más cercanos a la molécula fraccionada, este tipo de reacción es la que produce estructuras ramificadas. El proceso es completamente aleatorio y se producen ramificaciones tanto por enlaces α (1-6) como α (1-2) ó α (1-4). Esta reacción se favorece por el calor que se da cuando la humedad ha desaparecido. Esta etapa no modifica el peso ni la cantidad de azúcares reductores, le otorga estabilidad a la dextrina, ya que reduce la cantidad de moléculas lineales (Wurzburg, 1986).-Repolimerización. Durante esta etapa el número de azúcares reductores disminuye, dado que la glucosa es capaz de polimerizar a altas temperaturas y en la presencia de cantidades catalíticas de ácido. Durante este proceso se lleva a cabo una repolimerización o unión de algunas moléculas en otras más largas (Aristizábal, 2004).Debido a la naturaleza del proceso de dextrinización y la complejidad molecular del almidón, un ilimitado número de dextrinas puede ser obtenido. Todas las variaciones en la estructura producen solamente dos cambios característicos.Uno es el tamaño molecular de la partícula de dextrina y el otro es un cambio en el grado de linealidad. Cada uno de estos cambios tiene un efecto específico sobre las características físicas y químicas de la dextrina. La variación en el peso molecular promedio influye en la viscosidad de la dextrina, mientras que el cambio en la linealidad influye enormemente en las características de solubilidad (Aristizábal, 2004).Colombia, las dextrinas obtenidas por ruta seca son la principal materia prima para la elaboración de adhesivos principalmente para la elaboración de tubos en espiral, formado de sacos de papel, cierre de cajas de cartón y pegado de etiquetas sobre vidrio (Acosta y Salcedo, 2004).Figura 17. Principales aplicaciones de los adhesivos de dextrina.Fuente: Aristizábal, 2004 -Cerrado de cajas de cartón. Este adhesivo se usa para encolar las aletas superiores y/o inferiores de las cajas de cartón corrugado a mano o en máquina. El factor principal en la selección del adhesivo adecuado está en el largo de la unidad de compresión que controla el tiempo. Generalmente, se usan adhesivos con alto contenido de soda cáustica. Los adhesivos tienen un contenido de sólidos de 30-40 % y 1.000-3.000 cP (25 ºC) (Aristizábal, 2004).-Fabricación de cores o tubos en espiral. En la formación de un tubo en espiral, formado por varias capas de cartón enrolladas unidas entre sí, se usan dos tipos de adhesivos. Para las capas más externas se usan emulsiones de PVA y para las más internas se usan adhesivos con base de dextrina. El adhesivo constituye la base para la formación de un buen tubo en espiral, ya que este esta sujeto a altas velocidades en su uso final y además del propio peso del material del cual esta formado. El consumo de adhesivo en esta aplicación depende del ancho de la pared, que varía de acuerdo a la necesidad de resistencia que se requiera. Estos adhesivos usualmente contienen 40-50% de sólidos con viscosidades entre 80.000-150.000 cP (Aristizábal, 2004).-Formado de sacos multipliegos y bolsas de papel. Para la fabricación de sacos multipliegos se requieren principalmente dos clases de adhesivos, uno para pegado de los laterales, otro para la base. Se usan adhesivos solubles en agua fría, cuya principal característica es que deben ser razonablemente pegajosos y de secado rápido. Generalmente son usadas dextrinas blancas poco solubles, especialmente en máquinas de alta velocidad. Su principal sustituto son las emulsiones de PVA o mezclas de adhesivos dextrina-PVA. El adhesivo para pegar los laterales puede ser de secado lento, altamente diluido, siempre y cuando posea buen poder adhesivo. El adhesivo para la base debe poseer buena penetración ya que si se dispersa demasiado los sacos pueden pegarse unos con otros sacos al momento de ser almacenados, hecho que es indeseable. Actualmente los adhesivos para costura tienen unos márgenes normales de 20-33% de sólidos y viscosidades entre 2.000-3.000 cP (Aristizábal, 2004).-Etiquetado de botellas de vidrio. Generalmente para esta aplicación se usan adhesivos a partir de dextrinas y solubles en agua fría. Son adhesivos extremadamente pegajosos. Estos adhesivos pueden ser usados en máquinas de alta velocidad, son fáciles de manejar, y fáciles de limpiar. Su principal sustituto son los adhesivos con base de caseína y los Jelly Gum (en el caso en el cual los envases deban ser refrigerados), siendo esta la principal desventaja de las dextrinas en este tipo de aplicación, su baja resistencia al frío. Se pueden usar también dextrina boratados en el caso de sustratos porosos. La característica más importante de los adhesivos para esta aplicación tenga resistencia al frío y que sea estable al cambio de temperatura (Aristizábal, 2004).La extracción de almidón en Colombia a partir de las raíces, es una agroindustria que se ha desarrollado en los últimos años. Aunque la utilización de los recursos en las rallanderías es generalizado, se presentan diferencias entre unas y otras; estas diferencias dependen básicamente de las fuentes y utilización de los recursos en el proceso de extracción del almidón, la 1.4.5 Rallanderías en Colombia. Las rallanderías en Colombia presentan una capacidad de rallado de 500 o más kg de yuca por hora. Del total de las 148 rallanderías, el 67,6% realiza el proceso de sedimentación en tanques, y el 30,4% en canales de sedimentación. En el proceso de fermentación, el 45,3% de las plantas procesadoras de yuca, utilizan entre 30-35 días de fermentación, y el 29,1% emplean de 40-60 días en este proceso. La Tabla 6 presenta la cantidad de rallanderías y el tipo de infraestructura que poseen para el proceso de sedimentación (DANE Y MADR, 2003).El almidón desmenuzado se extiende en patios de concreto sobre plásticos de polietileno negro para ser secado al sol. De acuerdo con el estudio citado, en cada metro cuadrado de piso, se deben esparcir de 8-10 kg de trozos de yuca fresca. Los métodos de secado de los trozos de yuca dependen de la tecnología disponible y de los costos. De los 93 patios de secado activos, el 94,6% (88), utilizan el sistema de secado natural y apenas el 4,3% (4), emplean secado mixto (combinan natural y artificial). El proceso de producción de yuca seca, al cual se dedican los patios de secado, consta de las etapas de cosecha, pesaje y trozado de las raíces, secamiento, empaque y almacenamiento del producto seco (DANE Y MADR, 2003). Tabla 6. Cantidad de rallanderías por tipo de infraestructura utilizada en el proceso de sedimentación, según departamento en 2003. Actualmente, el gobierno está apoyando el desarrollo del cultivo de la yuca dentro de la cadena productiva de maíz y soya, incrementando la superficie sembrada y aumentando la productividad, con lo cual existe la oportunidad de explorar nuevos mercados que generen una mayor demanda de raíces de yuca. El almidón de yuca y los almidones modificados constituyen mercados que pueden generar una gran demanda de yuca por sus altos volúmenes de consumo y su alto valor agregado principalmente en los sectores alimenticio, de papel y cartón. Dentro de los almidones modificados las dextrinas ocupan un lugar importante.Recientes estudios realizados sobre la modificación de almidón de yuca por vía seca permitieron comprobar que es posible la producción de pirodextrinas, utilizando secado con aire a través de un lecho de pellets siendo una tecnología que permite agrega valor al método tradicional de extracción de almidón de yuca empleado por pequeños agricultores y procesadores en Colombia y presenta ventajas frente a las tecnologías actuales de producción de dextrinas en forma de polvo (Aristizábal, 2004).La tecnología propuesta fue determinada como la más aplicable en términos técnicos, económicos, sociales y ambientales a una agroindustria rural. El incremento del área superficial del producto aumenta la transferencia de calor y, en consecuencia, disminuye los tiempos de proceso. La tecnología reduce los costos de inversión y permite la producción de la dextrina enseguida del proceso de extracción de almidón de yuca utilizado en pequeñas agroindustrias o rallanderías, eliminando una etapa de proceso (secado del almidón), no partiendo de almidón seco del que parten las tecnologías actuales de modificación por vía seca, sino de los bloques de almidón que sedimentan en los canales. La dextrina así obtenida es de fácil manejo, empaque y elimina la contaminación por polvos.De esta manera el almidón que se utiliza como materia prima para la producción de dextrinas por vía seca es mezclado con el catalizador una vez sale de la etapa de sedimentación, se trata en húmedo sin necesidad del secado del almidón. El almidón húmedo mezclado con el catalizador es tratado en forma de pelets que son secados a altas temperaturas; los pelets facilitan el manejo y empaque, eliminan la contaminación ambiental por polvos y es una nueva opción de mercado; factores que resultan en un aumento de la rentabilidad para las rallanderías, al mismo tiempo que se determinan las bases para el desarrollo de esta industria, implementando tecnología con oportunidades de incorporación por las rallanderías, y generando una progresiva demanda de estos productos por las industrias que los incluyen en sus procesos; permitiendo la incorporación de una tecnología que promueva el desarrollo del sector almidonero a nivel rural, concentrado en su mayoría en la región de Santander de Quilichao, en el departamento del Cauca en alrededor de 120 rallanderías, las cuales producen aproximadamente 11.000 toneladas anuales destinados casi en su totalidad a la producción de almidón agrio para el sector alimenticio (Alarcón y Dufour, 1998).No solo la tecnología es aplicable a la modificación de almidón por vía seca, sino que puede ser aplicada a la operación de secado en la producción de almidón nativo de yuca. En este caso se reducirían los tiempos de secado, ya que es esta la operación más limitante del proceso, dado que se requieren extensos patios de secados, los cuales constituyen alrededor del 20% del costo de inversión de una rallandería; además el secado está determinado por las condiciones climáticas. Aunque existen rallanderías tecnificadas, la mayoría son de pequeña y mediana escala, y los almidones obtenidos de estas tienen limitaciones en cuanto al cumplimiento de las especificaciones de calidad, exigidas para el almidón industrial; debido a que el secado solar promueve su contaminación (Alarcón y Dufour, 1998).Consecuentemente, este proyecto busca la aplicación del estudio técnico y económico de la producción de dextrinas utilizando tecnología de vía seca (Aristizábal, 2004), en una rallandería ubicada en el municipio de Pescador (Cauca), contribuyendo con las acciones tendientes a la promoción del desarrollo tecnológico de la agroindustria de almidón y almidones modificados en el país, ampliando el portafolio de productos de las típicas rallanderías y haciendo uso de la infraestructura que actualmente ellos poseen. Así mismo, se busca que los resultados obtenidos puedan servir de base para el diseño de equipos y la formulación de un plan de negocios para inversionistas que vean en este mercado una oportunidad.De acuerdo a la situación planteada, el presente estudio definió como objetivo general:Validar el proceso de producción de dextrinas a partir de almidón de yuca dulce en la rallandería TODOYUCA ubicada en el corregimiento de Pescador, municipio de Caldono (Cauca).-Definir las condiciones de proceso para la producción de almidón nativo en la rallandería.-Definir las condiciones de operación, las unidades y la línea de proceso para la producción de dextrinas en la rallandería.-Determinar los requerimientos tecnológicos y las oportunidades de incorporación de tecnología para la producción de dextrinas en la rallandería.-Determinar la oportunidad de incorporación de la tecnología de secado, utilizada en el proceso de dextrinización, utilizada para la producción de almidón nativo, almidón agrio y harina de yuca.En este capitulo se presenta una descripción del proceso de extracción de almidón de yuca, que comprende básicamente las operaciones de lavado, rallado, colado, sedimentación y secado. Dependiendo del tipo de tecnología utilizada en la agroindustria así la eficiencia del proceso y la calidad del almidón obtenido en las diferentes tecnologías varia (Alarcón y Dufour, 1998).Además se presenta el proceso tradicional de obtención de dextrinas, y el proceso de obtención de dextrinas adaptado a una rallandería de mediana escala.La rallandería donde se llevó a cabo la fase experimental del estudio fue la rallandería TODOYUCA, que pertenece al grupo de rallanderías de mediana escala, esta ubicada en un terreno con pendiente para aprovechar la gravedad y movilizar el flujo de producto que sale de cada equipo a través del proceso (Alarcón y Dufour, 1998).En la rallandería TODOYUCA existe una zona destinada para la recepción de las raíces de yuca, el piso de esta zona es de cemento, y esta incluida dentro de la estructura principal de la rallandería, por lo cual esta cubierta. Además esta ubicada al comienzo del proceso de producción, de esta manera el operario manipula con mayor facilidad los sacos que contienen las raíces de yuca que siguen a la siguiente etapa como lo muestra la Figura 19.El lavado y pelado mecánico se hace en un tambor cilíndrico, donde las raíces de yuca reciben chorros de agua mientras se friccionan unas con otras y contra la lámina del tambor (ver Figura 20).Figura 19. Área de recepción de raíces de yuca.La lámina tiene agujeros rectangulares que permiten la salida de desechos del interior del tambor. El flujo de agua ayuda a desprender las impurezas y la cascarilla de las raíces, en este equipo no se desprende la corteza interior, así que las raíces continúan el proceso de esta manera (Alarcón y Dufour, 1998).Figura 20. Lavado mecánico de raíces de yuca.Las pérdidas ocurridas en la operación de lavado y pelado de las raíces de yuca dependen de tres factores: la variedad de yuca, el estado en que se encuentren las raíces y las características de la máquina lavadora. Las pérdidas de materia prima y, por ende, de almidón de la lavadora se deben principalmente a la duración del lavado y al diseño de los agujeros del cilindro;si éstos tienen un borde interno muy grande, pueden romper todo el tejido de la raíz, desintegrándola en trozos muy pequeños. Normalmente, estas pérdidas por lavado están entre el 2%-3% del peso de las raíces frescas (Alarcón y Dufour, 1998).El equipo que se utiliza en este tipo de rallandería tiene las mismas bases del utilizado a escala artesanal; en este caso la rotación del tambor rallador no es manual, el movimiento lo proporciona un motor que va conectado al equipo por un sistema transmisor de potencia (ver Figura 21) (Alarcón y Dufour, 1998).Figura 21. Rallado mecánico de raíces de yuca.La velocidad de rotación del cilindro varía de 1200-1300 rpm. El rendimiento promedio del equipo es de 1500 kg de raíces por hora. En este tipo de equipos se utiliza agua en la operación de rallado si el proceso esta instalado en pendiente, para aprovechar la gravedad y crear un flujo hacia la siguiente operación. La superficie áspera y cortante del tambor, constituida por los bordes filudos de múltiples agujeros, establece una línea de corte (un rallo) con la cara interior de una tabla colocada frente al tambor. Ese rallo produce una masa de ralladura de yuca, que será fina o gruesa según el espacio (o ''luz\") dejado entre el tambor y el borde de madera (Alarcón y Dufour, 1998).Si el rallado no es eficiente, no se logran separar totalmente los gránulos de almidón de las fibras, el rendimiento del proceso es bajo y se pierde mucho almidón en el afrecho desechado. Por otra parte, si el rallado es demasiado fino, los gránulos muy pequeños de almidón sufren daño físico y, mas tarde, deterioro enzimático, además la sedimentación sería más lenta ya que el gránulo fino pierde densidad (CIAT, 1995).En esta operación la masa rallada es lavada para arrastrar con el agua los gránulos de almidón, para el proceso de extracción del almidón se utiliza una coladora discontinua, cilíndrica (ver Figura 22). Dentro del cilindro hay aspas que mezclan la masa rallada de yuca con agua. La lamina interior del cilindro esta cubierta por una malla de tela o nylon, cuya trama es de 80 mesh (180 micras), en la que se tamiza la mezcla de masa rallada y agua. Esta malla permite el paso de la lechada de almidón y retiene la fibra o afrecho. La capacidad normal de esta coladora mecánica es de 250-300 kg de masa rallada por hora (Alarcón y Dufour, 1998).Figura 22. Colado de masa rallada.Debe evitarse en lo posible que pequeñas partículas de fibra pasen a la lechada de almidón; por ello posterior al colado se realiza un recolado de la lechada de almidón con el objeto de retener las fibras finas que pudieron filtrarse. En esta etapa se consumen grandes cantidades de agua; entre esta etapa y la de lavado se consumen alrededor de 7 litros por kilogramo de yuca.La eficiencia de esta operación determina, en gran parte, el rendimiento total del almidón en el proceso de extracción. El rendimiento del proceso en este tipo de rallanderías varía entre 17 y 25 %, dependiendo de la eficiencia de extracción (Alarcón y Dufour, 1998).Figura 23. Recolado de la lechada de almidón. Un grano de almidón debe recorrer 0,8 m en un tanque de sedimentación y sólo 0,1 m en los canales antes de sedimentarse. Esta diferencia explica, en gran parte, la ventaja antes mencionada, o sea, la rapidez de la sedimentación con el uso de canales. Al final de la sedimentación quedan tres capas en los canales de sedimentación: La superior es el agua residual que se elimina retirando unas compuertas que están situadas al final de los canales de sedimentación; la intermedia que es almidón con material proteico, lo que se denomina \"mancha\", que se retira con la misma herramienta que se utiliza para retirar esta capa en los tanques y la inferior es el almidón sedimentado que se retira en forma de bloques. La sedimentación puede durar 3 h en los canales y de 6-8h en los tanques de sedimentación (Alarcón y Dufour, 1998).Figura 24. Canales de sedimentación de lechada de almidón.El almidón se seca al sol, generalmente, sobre un plástico de polietileno de color negro calibre 6 que capta mayor radiación solar y facilita el secado rápido y uniforme. El almidón se extiende en capas de aproximadamente 1-2 kg/m 2 . Para secar una tonelada de almidón se necesitan, aproximadamente, 1000 m 2 de superficie de secado. Por ello, el área de secado es otra de las limitantes que afecta sensiblemente a este tipo de rallanderías (ver Figura 25) (Alarcón y Dufour, 1998).Una vez el almidón ha llegado a la humedad entre 12-13% es retirada de los patios de secado. Posteriormente es tamizado en una zaranda provista de una malla de nylon unida a un marco de madera para retirar impurezas que pudieron caer sobre el almidón durante el secado.Terminada la clasificación, se realiza el empaque, que se hace en sacos de polipropileno de 25 y 50 kg (Alarcón y Dufour, 1998).Figura 25. Secado de almidón.Existen diferentes tecnologías para la producción de dextrinas, las cuales varían según el tipo de equipo utilizado para la etapa de tostación o conversión, los equipos de dextrinización son usualmente construidos en acero inoxidable, cobre o varias aleaciones resistentes a la corrosión; entre los equipos más conocidos están el Tostador convencional, el Equipo Blattman, Lecho Fluidizado, Horno rotatorio, Turbo-Dryer y Extrusor, siendo los mas utilizados el Lecho Fluidizado y el Tostador convencional. El proceso de dextrinización tradicional por ruta seca comprende las etapas de mezcla del catalizador, presecado, tostación y enfriamiento (Aristizábal, 2004).El proceso de producción de dextrinas tradicional por ruta seca comprende las siguientes operaciones:-Mezcla del catalizador. Esta etapa es de particular importancia porque el catalizador debe ser distribuido completamente sobre los gránulos de almidón, logrando una buena penetración, de lo contrario se presentarán problemas de carbonización de las partículas de almidón. El ácido debe estar suficientemente diluido, puesto que la capacidad y la resistencia a la penetración decrece con la disminución en el contenido de agua del almidón (Radley, 1954).-Maduración. Esta etapa es opcional. Se refiere al almacenamiento del almidón una vez adicionado el catalizador para permitir que se difunda completamente por toda la masa. Sin embargo, con una eficiente mezcla se puede garantizar una buena difusión del catalizador (Aristizábal, 2004).-Presecado. La reducción de la humedad antes de la etapa de conversión es necesaria, dado que un alto contenido de humedad en el almidón es indeseable, particularmente a bajos niveles de pH, porque promueve escisión hidrolítica y la consecuente formación de azúcares durante el primer periodo de calentamiento y suprime las reacciones de condensación, las cuales usualmente se dan sólo si el contenido de humedad del almidón es inferior a 3% (Kennedy y Fischer, 1984). El presecado se lleva a cabo a temperatura entre 50-60 °C.-Tostación o Conversión. Una de las principales condiciones de esta operación es garantizar un cuidadoso control de la temperatura hasta el final del ciclo de calentamiento, dado que uno de los aspectos esenciales del proceso de conversión es evitar gradientes de temperatura a través de la masa.Adicionalmente, una buena ventilación es necesaria para lograr una rápida emoción de la humedad y de los vapores formados en la dextrinización. Según estudios realizados, las temperaturas de tostación varían entre 120-150 °C.Encontrándose esta última como la mejor, dado que la velocidad de reacción es más rápida (Aristizábal y Robles, 2001).-Enfriamiento. Finalizada la conversión al nivel deseado, la acción del catalizador es detenida por medio de un rápido y completo enfriamiento, evitando así la formación de azúcares solubles (Aristizábal y Robles, 2001).-Rehumedecimiento. La dextrina puede ser humidificada hasta un nivel entre 5-12% por exposición a aire humidificado o por atomización de agua sobre ella.Generalmente, este proceso se lleva a cabo a temperatura ambiente. Se realiza para evitar la formación de espuma cuando la dextrina es cocinada con agua, y además la formación de grumos, hecho que se debe a los gases adsorbidos en la etapa de tostación (Acton, 1976).-Empaque. Si es necesario la dextrina es molida o tamizada y finalmente empacada en sacos de papel (Aristizábal y Robles, 2001).El proceso de producción de dextrinas por vía seca adaptado a una rallandería, tiene las mismas etapas de proceso utilizadas en las rallanderías hasta la producción de la torta de almidón; la cual comprende las operaciones de lavado, rallado, colado y recolado y sedimentación. Posterior a esta última etapa, se realiza la recolección de la torta de almidón y se siguen las etapas para la producción de dextrina que comprende las operaciones de mezclado del catalizador, peletización, presecado y tostación, enfriamiento, empaque y acondicionamiento (Aristizábal, 2004), la diferencia entre el proceso de producción tradicional y el proceso adaptado a una rallandería se encuentra en las etapas de mezclado del catalizador, la peletización y la utilización de un secador con flujo de aire vertical y quemador de gas para el presecado y la tostación; diferente al secador con flujo de aire de ingreso horizontal y calentamiento eléctrico, utilizado por Aristizábal (2004).-Mezclado del catalizador. La pasta o torta de almidón se solubiliza en agua a una concentración de 37,8% w/v, la cual permite que la solución sea agitada por la bomba mecánica. Luego se adicionan 0,2% de HCl (concentración 37%) con respecto al peso de almidón seco presente en la suspensión de almidón.Adicionalmente se adiciona el aglutinante, que es la misma dextrina (ya elaborada) en una proporción de 3,0% con respecto al peso de almidón seco.-Neutralización del agua sobrenadante. Esta etapa es importante en el empleo del método de mezclado en suspensión, debido a que el almidón se deja decantar y el agua sobrenadante, la cual tiene alta acidez, se neutraliza con Carbonato de Calcio, por su bajo costo y fácil manejo, utilizando 0,35% (w/v) para obtener así un pH promedio en el agua sobrenadante de 7,2.-Peletizado. La pasta de almidón decantada en el tanque de acidificación, la cual tiene una humedad promedio de 45-47% es pasada por un granulador, para homogenizar su humedad, quedando esta al final de este proceso en 45%, la cual es la humedad óptima para realizar el peletizado, el cual se realiza con el objeto de aumentar el área superficial de las partículas y facilitar así su secado. El tamaño promedio de los pelets es 10 mm de longitud y diámetro 4,7 mm que es el diámetro promedio de los agujeros del disco de extrusión.-Presecado. El presecado de los pelets se lleva a cabo en un secador de bandejas de circulación de aire a temperatura entre 55-60 °C, hasta alcanzar una humedad por debajo del 5% aproximadamente en 120 minutos utilizando un lecho de 1 cm de espesor y un área de 810 cm 2 . El flujo de aire utilizado en el secador es de 0,21 m 3 /s y usando un sistema de homogenización de aire y temperatura, lo cual permite disminuir los gradientes y mantener la temperatura constante durante el secado.-Tostación. La tostación se lleva a cabo en un secador de bandejas de circulación de aire a una temperatura de 150 ºC hasta alcanzar la conversión deseada (100% solubles en agua fría) aproximadamente en 45 minutos utilizando un lecho de 1 cm de espesor y un área de 810 cm 2 . El flujo de aire utilizado en el secador es de 0,1 m 3 /s y usando un sistema de homogenización de aire y temperatura, lo cual permite mantener la temperatura de 150 °C dentro del secado.La elaboración de adhesivos de dextrina sigue técnicas sencillas como son la disolución en agua de la dextrina con aditivos tales como bórax, NaOH, antiespumante, biocida entre otros, con calentamiento y agitación controlados para obtener una viscosidad deseada según sea la aplicación del adhesivo. Los adhesivos de dextrina, dado que son derivados de un producto biodegradable, son susceptibles a la proliferación de hongos y bacterias, disminuyendo su vida útil. Sin embargo, son usadas en varias aplicaciones por su bajo costo, mayor adhesividad y estabilidad, unido a que su uso en sustratos de papel o cartón facilita los procesos de reciclado del mismo. El principal producto sustituto de este tipo de adhesivos es el acetato de polivinilo (PVA), particularmente para las tres primeras aplicaciones, dado su menor tiempo de secado en comparación con las dextrinas y adicionalmente por que evita el excesivo humedecimiento del sustrato. Los adhesivos de dextrina de yuca tienen excelente pegajosidad, fuerza adhesiva y estabilidad, su película es clara y brillante; características superiores comparadas con las de los adhesivos de dextrina de maíz su principal competidor; cuyas películas son opacas, con un brillo imperfecto y no son estables en el almacenamiento. Además existe una creciente tendencia de las instituciones hacia productos y procesos más sostenibles ambientalmente, lo que representa una excelente oportunidad para los adhesivos de dextrina de yuca. Aunado a las regulaciones ambientales cada vez más exigentes, sobre el uso de fibra reciclada y la prohibición de grapas y adhesivos que pueden resultar tóxicos par el empaque de productos alimenticios (Aristizábal, 2004).Existen diferentes formulaciones para los adhesivos de dextrinas, sin embargo los aditivos básicos son los mismos para todos, la formulación de estos adhesivos se presenta en el Anexo A.Para el logro de cada uno de los objetivos propuestos al inicio del estudio se desarrollaron actividades, en etapas consecutivas, en donde se establecieron objetivos claros que permitieron alcanzar el objetivo general del estudio, obtener dextrinas de yuca a partir de almidón dulce o nativo.Para el acondicionamiento de los equipos, se realizaron ensayos de producción de dextrinas a nivel de rallandería evaluando cada una de las etapas; que incluyeron mezclado, peletizado, presecado, tostación y enfriamiento, tomando como parámetro las variables establecidas en el estudio realizado por Aristizábal (2004).A continuación se describe la localización donde se desarrolló la fase experimental, junto con los materiales, equipos y métodos de análisis utilizados.3.1.1 Localización. La fase experimental de producción de almidón se llevó a cabo en la rallandería TODOYUCA ubicada en el corregimiento de Pescador, municipio de Caldono, norte del departamento del Cauca, en beneficio de la rallandería. Ubicada a 2º 48' 22,085'' de latitud Norte (N) y a 76º 33' 01,314'' de longitud occidental (O) a una altura de 1585 msnm, con un clima subhúmedo tropical, al lado de la vía panamericana que comunica Cali y Popayán. La temperatura promedio de esta región es de 23 ºC.desarrollo experimental se dividen en los utilizados en las pruebas de producción de almidón de yuca, acidulación y mezcla, peletizado, presecado, y pruebas de tostación o conversión. Los materiales utilizados en cada una de las pruebas realizadas se describen en el Cuadro 1.Cuadro 1. Materiales utilizados en el estudio para la producción de dextrinas de yuca.Pruebas de producción de almidón nativo de yuca -Tornillo sin fin: -L = 18 cm. D = 8 cm. L/D = 2,25 -Disco de extrusión: -D = 9,9 cm. Número de agujeros: 108. D agujero = 4,7 mm -motor-reductor: potencia 1 HP, trifásico, velocidad de entrada 1720 rpm, torque nominal 143 Nm y factor de servicio de 1,5 (50%) (CLAYUCA)Secador -Tipo de secador: secador de calentamiento con gas propano.-Dimensiones: ancho: 97 cm, largo: 97 cm, alto: 150 cm.-Temperatura: Tem. ambiente-270 °C -Ducto de aire: largo: 250 cm, área: 400 cm 2 .-Área de entrada de aire: 400 cm 2 -salida de aire: 400 cm 2 . (CETEC)Quemador para gas natural o propano -Quemador marca WAYNE, capacidad de calentamiento: de 80.000-210.000 BTU, -Voltaje: 110 V -Controlador automático.-Termostato con rango de temperatura de 30-150 ºC.Ventilador -Ventilador centrifugo marca CHICAGO BLOWER, Diseño 39 SQI, tamaño 9, clase estándar, arreglo 9.-motor monofásico, marca Siemens de 1.0 HP, 1800 rpm, 3/60/115/230 Voltios, protección IP 54 (TEFC), F.S 1,15.Tabla 7. Tipo de análisis y métodos analíticos utilizados. Los métodos de análisis estadístico utilizado en el estudio, cada uno con un nivel de confianza del 95%, se presentan a continuación:• Balances de materia: análisis de varianza univariante• Acidificación de lechada de almidón: método de calibración y análisis de correlación de Pearson• Acidificación de suspensión de almidón: método de calibración• Peletizado de almidón: análisis de varianza univariante• Secado de pelets de almidón: análisis de varianza univariante• Dextrinización de los pelets de almidón: análisis de varianza univariante Análisis estadístico. Con ayuda de la herramienta estadística SPSS 14.0 (nivel de confianza de 95%) fueron seleccionadas algunas de las operaciones más adecuadas en la determinación de la línea de proceso óptima para la obtención de dextrinas a partir de almidón dulce de yuca. 3.3.1 Determinación de balances de materia y consumo de energía del proceso actual de extracción de almidón. En la primera fase del estudio se determinaron las corrientes de entrada y salida, y los tiempos de operación en las etapas de proceso, tomando 10 mediciones de cada uno de ellos; en el caso de las corrientes que involucran la materia prima (raíces de yuca) se realizó el seguimiento a 6 baches de 300 kg, en días diferentes. Para la determinación de los contenidos de almidón y HCN se realizó a un muestreo de 3 lotes diferentes de raíces de yuca, para determinar la cantidad de almidón en las corrientes, se tomaron muestras en las corrientes durante el proceso de tres lotes diferentes. Los datos obtenidos permitieron determinar las capacidades y uso de servicios de cada uno de los equipos y realizar el balance de materia del proceso de extracción. El consumo de energía se determinó mediante las especificaciones del motor y el tiempo de proceso para cada bache realizado.Dentro del balance de materia hay un factor importante que es el calculo de la eficiencia de rallado que determina la eficiencia de liberación de los gránulos de almidón. Este factor fue calculado con el método empleado por Alarcón y Dufour (1998) de la siguiente manera.A A = almidón recuperado en el afrecho en porcentaje F R = fibra cruda en las raíces frescas en porcentaje A R = almidón en las raíces frescas en porcentaje F A = fibra cruda en el afrecho en porcentaje ER= eficiencia de rallado La finalidad del diseño experimental en el cálculo de los balances de materia fue comprobar que no hay diferencias entre lotes para los contenidos de materia seca y HCN total.En estudios previos (Aristizábal, 2004), el mezclado del catalizador se realizó a nivel piloto utilizando una mezcladora para incorporar el catalizador a la pasta de almidón; sin embargo para grandes volúmenes de material se requeriría un equipo de alta potencia ya que la pasta de almidón húmedo tiende a compactarse y forma una pasta fuerte, lo que dificulta el mezclado; esta alternativa es de alto costo y no viable para una rallandería. Por ello este estudio propuso una nueva técnica de mezclado; en donde se solubiliza la pasta de almidón hasta una densidad que permita ser agitada por una bomba mecánica (ver Figura 26); se eligió este equipo porque comparado con la mezcladora es asequible, de fácil manejo y se puede desplazar en caso de que el mezclado se realice en varios tanques. Figura 26. Mezclado de una suspensión de almidón con bomba mecánica.-Mezcla del catalizador utilizando lechada. Para utilizar este método se determinó el factor ácido * , ya que en estudios anteriores se determinó este factor para aplicarlo a una masa de almidón en condiciones diferentes de humedad. Para el cálculo del factor ácido se tomaron 9 muestras aleatorias de lechada de almidón durante una semana de producción, utilizando 200 ml de lechada de almidón de cada muestra para ser acidificada. La acidificación se realizó por titulación hasta obtener un pH cercano a 3,0. Los datos obtenidos de la calibración del método para obtener la cantidad de HCL que se debe adicionar, fueron tratados con una distribución normal, con un 95 % de confianza, para la calibración se realizaron un total de 39 ensayos.-Mezcla del catalizador utilizando pasta de almidón en suspensión. El análisis para determinar la concentración de almidón se realizó con volúmenes de agua de 100 ml, variando las concentraciones de almidón hasta obtener una concentración limite en donde el almidón se mantuvo en suspensión mediante agitación. Al determinarse la concentración adecuada de almidón en la suspensión, se realizaron pruebas para determinar el factor ácido de la suspensión. Adicionando el HCL (37%) a un volumen de 320 ml de suspensión, hasta obtener un pH cercano a tres, para la calibración se recolectaron 20 * Cantidad de ácido necesaria para llevar una suspensión de almidón-agua, hasta un pH de 3,0, que es el pH óptimo para iniciar la dextrinización. Este factor es determinado potenciométricamente por titulación de almidón con ácido clorhídrico. datos, los cuales se trataron con una distribución normal con un 95% de confianza.Para las pruebas de mezclado utilizando la bomba mecánica se utilizó almidón nativo de yuca sin acidificar, ya que los objetivos de esta prueba eran, en primer lugar verificar si la bomba tenía la capacidad suficiente para crear un reflujo de la suspensión en el tanque de mezclado y en segundo lugar determinar si el reflujo podía mantener todo el almidón en suspensión; este punto es de vital importancia ya que al agregar el catalizador este se disocia en el agua y el almidón al estar suspendido en su totalidad en la masa de agua acidificada entra en contacto con el ácido en forma homogénea. Si el almidón se decanta es más difícil que los gránulos de almidón entren en contacto con el catalizador y produciendo un mezclado ineficiente.-Neutralización de agua sobrenadante. Una vez finalizada la etapa de mezclado y sedimentación se obtuvo como efluente agua sobrenadante con alta acidez, la cual requiere su neutralización antes de verterla al ambiente. El tratamiento de este efluente en el estudio se realizó utilizando carbonato de calcio mediante un procedimiento de calibración, se titularon muestras de este efluente con carbonato de calcio, tomando muestras de 40 ml de agua sobrenadante acidificada.Para la evaluación de esta etapa se realizaron ensayos de peletización a muestras de almidón acidulado tratadas con y sin equipo utilizado para realizar la granulación de la pasta de almidón previo al peletizado se presenta en la Figura 28.En este caso la finalidad del estudio fue probar que la variación en el tipo de aglutinante y su concentración, presenta diferencias en la dureza del pelet.El presecado de los pelets se llevó a cabo a temperatura entre 55-60 °C, hasta alcanzar una humedad por debajo del 5% con dos tratamientos (Ver Figura 29), el primero con un caudal de aire de 0,26 m 3 /s y flujo libre, el segundo con un caudal de aire de 0,21 m 3 /s, y sistema de homogenización del flujo, donde se redujo el área de salida del aire a la mitad (0,2 m 2 ). La tostación se llevó a cabo a una temperatura de 150 ºC hasta alcanzar la conversión deseada, medida como porcentaje de solubilidad, con un porcentaje entre 95-100%, el procedimiento para determinar la solubilidad se presenta en el Anexo C. Durante esta etapa se utilizó un solo tipo de caudal (ver Figura 30), y el sistema de homogenización de flujo de aire utilizado en el presecado. El sistema de homogenización consistió en colocar una lámina perforada con 57 orificios de área de 7 cm 2 que en total suman un área de 400 cm 2 , esta es e es el área del ducto por el cual entra el aire a la recamara de secado, La finalidad del estudio en el secado de los pelets fue probar que la variación del caudal y la inclusión de un sistema de homogenización de aire caliente, genera uniformidad en el comportamiento del secado en cada una de las bandejas. En el caso de la dextrinización, fue probar que la inclusión de un sistema de homogenización de aire caliente, genera uniformidad en el comportamiento de la conversión de los pelets en cada una de las bandejas.Figura 29. Pruebas de presecado de pelets de almidón.Caudal de aire con flujo libre: 0,26 m 3 /s de aire caliente Sistema de homogenización 0,21 m El área de cada bandeja era de 810 cm 2 . En cada prueba se utilizó una carga de 2,5 kg por bandeja de almidón acidulado y un espesor de lecho promedio de 1 cm; dado que los pelets tenían la misma humedad de 45%, se asumió que tanto el tipo de aglutinante como su concentración no afectaba el tiempo de secado de los pelets. El equipo de utilizado para las pruebas de presecado y tostación se presenta en la Figura 31. de dextrina de maíz. Las dextrinas de yuca obtenidas fueron caracterizadas analizando sus principales propiedades funcionales: solubilidad en agua fría y viscosidad. Adicionalmente se realizaron dos clases de adhesivo utilizando la dextrina obtenida y una dextrina comercial de maíz (dextrina 210 Quimex Coragum 08700) comparando sus propiedades: pH, color, olor en húmedo y apariencia de película. Los adhesivos elaborados fueron los utilizados para el cerrado lateral y el cerrado de fondo de bolsas multipliego, las formulaciones típicas de los adhesivos de dextrina se encuentran en el Anexo E.Secado de otros productos utilizando la tecnología de peletizadosecado. Para determinar la oportunidad de incorporación de la tecnología de secado, utilizada en el proceso de dextrinización, para secar almidón nativo, almidón agrio y harina de yuca, se realizaron análisis a los productos obtenidos luego del proceso de secado artificial (peletizando los tres productos a una humedad del 45% y secándolos en el secador de bandejas de aire caliente a 40 ºC) y comparando este secado con el secado tradicional para este tipo de productos (entre 30-40 ºC.Según Ospina y Ceballos (2002) el contenido de materia seca de la raíz de yuca fluctúa entre 30% y 40%, las muestras de yuca fresca analizadas presentan un contenido del 42,08% de materia seca, coincide con el expuesto en la teoría, en cuanto al contenido de almidón, en las muestras de yuca analizadas fue de 73% y la teoría (Buitrago, 2001) reporta que el contenido de almidón varia entre 75% y 80%, valor que coincide con el reportado en las muestras analizadas. Para el caso del contenido de HCN total los resultados del análisis reportan un contenido de 125,88 ppm clasificando la mezcla de variedades de yuca como dulces, tal y como lo afirma Domínguez (1979) que para variedades con contenidos de HCN menores a 180 ppm las cataloga como variedades dulces. La diferencia puede deberse a que las muestras de yuca analizadas corresponden a una mezcla de variedades de diversas regiones y distintas edades, factores que influyen en el contenido de materia seca, almidón y HCN (Alarcón y Dufour, 1998), este comportamiento se puede observar en la Figura 32. Los resultados del análisis de muestras de afrecho para los contenidos de materia seca, almidón y HCN reportaron 13,63%, 54,57% y 1,41 ppm respectivamente, comparados con los valores expuestos por la teoría, 14,7% de materia seca (Ospina y Ceballos, 2002), para el contenido de almidón puede alcanzar hasta 60% (Ospina y Ceballos, 2002) y en cuanto al contenido de HCN 13,2 ppm (Ospina y Ceballos, 2002). Los contenidos de materia seca y almidón de las muestras analizadas coinciden con los valores reportados en la teoría, en el caso del contenido de HCN no coincide, esto se puede deber a un proceso eficiente en la etapa de rallado logrando una alta destrucción de los tejidos permitiendo así, un mayor contacto de la enzima linamaraza con la linamarina que permite una mayor liberación de HCN el cual es eliminado en el agua utilizada en el proceso (Domínguez, 1979). En la Figura 33 se observa el comportamiento de las diferentes muestras de afrecho. La mancha es un producto de alto valor nutricional por su contenido de almidón casi un 90% y un contenido de materia seca de un 5% (Ospina y Ceballos, 2002), Alarcón y Dufour (1998) reportan un contenido de almidón de 55,6%, las muestras analizadas presentaron 72% de almidón valor que se encuentra entre los contenidos reportados por la teoría.Las diferencias significativas de los tratamientos mencionados se pueden observar en el Anexo D.-Eficiencia de rallado. La eficiencia en esta operación determina en gran parte, el rendimiento total de almidón en el proceso de extracción, según Alarcón y Dufour (1998), una eficiencia de rallado cercana al 80% se considera como eficiente, La eficiencia de rallado para el proceso fue de 79,8% valor que coincide con el reportado, para procesos de rallado eficaces.4.1.2 Balance de materia del proceso de obtención de almidón nativo de yuca. En las Tablas 9 y 110, se presentan los promedios de los tiempos de operación, caudales volumétricos de agua de servicio y caudales másicos en cada una de las etapas del proceso de extracción de almidón, los cuales se utilizaron para el cálculo de los balances.Tabla 9. Tiempo de operación y caudales de agua de servicio en las etapas del proceso de extracción de almidón para un bache de 300 Kg. Los resultados de los análisis realizados a las corrientes de entrada y salida a cada una de las etapas evaluadas en la obtención de almidón se registran en la Tabla 8.El rendimiento de extracción de almidón de acuerdo a la relación de pesos de la materia prima y el producto fue 20,9%, se debe tener en cuenta que el rendimiento se calcula para almidón con un 12% de humedad (almidón seco) y el peso de almidón que se reporta en la tabla 26 es almidón sedimentado con un 45% de humedad. El rendimiento del proceso coincide con el reportado por Alarcón y Dufour (1998) que es de 22,6%.4.1.3 Consumo de energía en el proceso de obtención de almidón de yuca. El cálculo de energía se hizo para el motor que proporciona la potencia para el funcionamiento de los equipos de la rallandería, teniendo en cuenta el tiempo que se emplea en el proceso y el consumo de energía reportado en las especificaciones del motor.El cálculo de la energía eléctrica consumida por el motor para procesar un bache de 300 kg fue: Costo de la energía consumida por una hora de proceso = $19.433El procesamiento de 300 kg de raíces por bache de proceso demanda un tiempo total de un ahora, donde se obtienen 100,2 kg de almidón sedimentado, consumiendo 58,36 Kw/h con un costo de $19.433. La etapa de sedimentación no demanda consumo de energía, así, el costo de energía consumida en el proceso para producir 1kg de almidón seco en la rallandería TODOYUCA es de $ 310.Para la evaluación de esta etapa se realizaron dos tipos de pruebas: la prueba de acidificación utilizando lechada y la prueba de acidificación utilizando una suspensión de almidón.El procedimiento de calibración aplicado en la acidificación de lechada de almidón, arrojó un rango de HCL adicionado entre -0,8-0,71 ml (con un 95% de confianza), con un promedio de 0,31 ml. Tanto el promedio como el rango encontrado, para la adición de HCL no son aplicables para la línea de proceso que se buscó establecer, debido a la amplitud del rango encontrado, como se observa en la Figura 34. Dado que el método analizado no presentó resultados aplicables para el estudio, se realizó un análisis de correlación de Pearson de las variables involucradas en el proceso de acidificación, para establecer cual de ellas presentó mayor relevancia en el proceso de acidificación con la cantidad de HCL adicionado, dado que es el factor que se desea establecer para el método de acidificación y esta relacionado directamente con el pH final. De esta manera lograr establecer un método de mezclado del catalizador con una cantidad de HCL definida, por medio de una calibración, el resultado del anales de correlación se presenta en el Cuadro 4.Cuadro 4. Análisis de correlación en el proceso de acidificación de lechada El análisis de correlación de Pearson realizado para la prueba de acidificación utilizando la lechada, demostró que la variación en la cantidad de HCL adicionado, presentó una correlación mayor con la cantidad de sólidos contenidos en la lechada, de esta manera se realizó un estudio de acidificación con una concentración de sólidos definida. El comportamiento de la cantidad de sólidos medidos en la lechada y la cantidad de HCL adicionado presentado (Ver Figura 35), confirma lo encontrado con el análisis de correlación de Pearson.Figura 35. Comportamiento de la cantidad de HCL gastado con respecto al contenido de sólidos. almidón presente en la solución obtenida a partir de los ensayos de adición de almidón a un volumen determinado de agua, hasta obtener una solución concentrada de almidón en suspensión, dio como resultado una concentración de 37,8% (w/v), esta concentración coincide con la reportada por Moorthy (2000) para la acidificación de suspensiones de almidón que esta entre 30% y 40% (w/v).Los datos obtenidos del procedimiento de calibración aplicado a la acidificación de almidón con un pH inicial de 5,1 ± 0,84 presentan un rango entre 0,18-0,23 ml de HCL adicionado (con un 95% de confianza), con una media de 0,2 ml de HCL (ver Figura 36), que representa un porcentaje de 0,19% (w/w) con respecto al peso de almidón seco presente en la suspensión, este valor se encuentra por debajo del rango reportado por Moorthy (2000) que esta entre 0,5% y 0,3% de HCL, lo que representa una ventaja económica para el proceso de acidificación, sin embargo, la teoría no reporta el pH final obtenido. El procedimiento de calibración de los datos de pH obtenidos con la adición de HCL en el rango obtenido, permiten obtener un pH final entre 2,94-3,3 (con un 95% de confianza), con una media de 3,1 (ver Figura 37) resultado que coincide con el reportado por Aristizabal ( 2004) para obtención de dextrina por vía seca, además, el rango encontrado esta dentro del rango reportado por Kerr (1950) para la acidificación de almidón en la obtención de dextrinas (pH 2,8-3,4)Figura 36. Comportamiento de la cantidad de HCL adicionado. El procedimiento de calibración permitió determinar la cantidad necesaria para la neutralización del agua acidificada obteniendo un rango entre 0,92-0,13 g de carbonato de calcio (con un 95% de confianza), con una media de 0,13 g que representa un porcentaje del 0,35% (w/v) para obtener un rango de pH entre 6,39-8,03con una media de 7,21. El comportamiento de la cantidad carbonato de calcio utilizado para la neutralización se puede observar en la Figura 38Figura 38 Comportamiento de la cantidad de carbonato de calcio adicionado. Estudios anteriores (Aristizábal, 2004) reportan una concentración de 1,5% (w/w) de almidón pregelatinizado utilizado como aglutinante que proporciona un nivel de dureza aceptable para pelets de dextrina. Las concentraciones de los aglutinantes utilizados en el estudio reportaron valores de dureza mayores que los reportados por Aristizábal (2004) que fue de 2 kg-f. El análisis de varianza univariante no presentó diferencias significativas entre pasta de almidón y dextrina al 1,5% (w/w) de concentración, sin embargo, a una concentración de 3% (w/w), si presentaron diferencias significativas, siendo la dextrina utilizada como aglutinante la que presentó un mayor valor de dureza (ver Figura 39), y los pelets formados una mejor consistencia y no se desbarataron con facilidad, razón por la cual se eligió la dextrina como aglutinante con una concentración de 3% (w/w). El primer tratamiento con un caudal de aire de 0,26 m 3 /s y flujo libre, con un tiempo total de secado de 135 minutos, según los métodos de Duncan y Tukey las bandejas 2 y 3 no presentan diferencias significativas entre si, comparadas con la bandeja 1 que presentó diferencias significativas a lo largo del proceso de secado (Ver Cuadro 5). Estos resultados coinciden con la teoría de secado (Treybal, 1998) \"una de las dificultades mas importantes en la utilización de secadores de este tipo es la no uniformidad del contenido en humedad, propia del producto terminado que se extrae de diferentes partes del secador. Esa falta de uniformidad es principalmente el resultado del movimiento inadecuado y no uniforme del aire dentro del secador\".El segundo tratamiento con un caudal de 0,21 m 3 /s, el sistema de homogenización y la restricción de la salida del aire, presentó un tiempo total de secado de 120 minutos, el método de Duncan reporta que no hay diferencias significativas entre las bandejas 2 y 3, pero si hay diferencias significativas entre estas dos bandejas y la bandeja 1, por el contrario Tukey muestra que las bandejas 1 y 2 no presentan diferencias significativas al igual que las bandejas 2 y 3, sin embargo se presentan diferencias significativas entre la bandeja 1 y 3 (ver Cuadro 6). Con estos resultados se puede afirmar que aunque se presentan diferencias entre bandejas la disminución del caudal y la implementación del sistema de homogenización generaron uniformidad en el secado, esto coincide con lo mencionado por Treybal (1998), que recomienda reducir la cantidad de aire y recircular su mayoría, para mejorar la uniformidad del secado en este tipo de sistemas.El comportamiento de cada uno de los tratamientos, se observa en las Figuras 40 y 41.Cuadro 5. Análisis estadístico del proceso de secado con caudal de 0,26 m 3 /s La dextrinización obtenida utilizando 0,1 m 3 /s, y flujo de aire libre, presentó un tiempo de conversión de 90 minutos, para obtener una conversión medida con una solubilidad entre 95-100%, el análisis de varianza univariante muestra una variación significativa de la solubilidad entre las bandejas; las bandejas 2 y 3, no presentan diferencias significativas hasta los 50 minutos, la bandeja 3, presenta una caída en la solubilidad, esto puede deberse a falta de uniformidad en la conversión dentro de la bandeja, debido a los inconvenientes que tienen este tipo de equipos, mencionados anteriormente en el presecado, generados por el movimiento inadecuado y no uniforme dentro del secador, lo que seguramente influye también en el comportamiento de la solubilidad de la bandeja 1 (ver Figura 42), aunque la solubilidad de las bandejas converge a los 90 minutos, la falta de uniformidad de la conversión dentro de cada bandeja no asegura una conversión total de los pelets de almidón a dextrina. Cuadro 6. Análisis estadístico del proceso de secado con caudal de 0,21 m 3 /s y sistema de homogenización [Cuadro tomado del Paquete Estadístico SPSS 14.0] El tratamiento con un caudal de 0,1 m 3 /s, y sistema de homogenización de flujo de aire, presentó un comportamiento uniforme según el análisis de varianza univariante, como se observa en la Figura 43, además el tiempo de conversión fue menor que el encontrado con el primer tratamiento, siendo de 45 minutos a 150 ºC, valor que no coincide con el reportado por Kennedy y Fisher (1984), que esta entre 8-14 horas, para temperaturas entre 135-160 ºC, lo que representa una ventaja económica para el proceso de producción de dextrinas por vía seca Los resultados obtenidos con el ultimo tratamiento, confirma que la implementación del sistema de homogenización mejora la uniformidad en el comportamiento de las bandejas. Las dextrinas obtenidas en el estudio presentarón una solubilidad del 95%, y una viscosidad de 32,56 cP, según Aristizábal (2004) las dextrinas presentan una solubilidad en agua fría entre 80-100% rango que coincide con lo encontrado en el estudio, además, reporta que la viscosidad de las dextrinas esta entre 2,5-3,8 cP valores que no coinciden con los resultados encontrados en el estudio, esta diferencia puede deberse a diferencias en el calentamiento y la agitación que se utilizaron en el método de determinación de viscosidad como lo afirman Kennedy y Fisher (1984) que estos factores influyen en la obtención de niveles específicos de viscosidad.-Caracterización de adhesivos de dextrina. Los adhesivos elaborados a partir de dextrinas de yuca presentaron mejores características que los elaborados con dextrina comercial de maíz (ver Tablas 10 y 11), resultados que coinciden con lo reportado por Aristizábal (2004), quien afirma que las dextrinas de yuca poseen características superiores comparadas con las dextrinas de maíz, su principal competidor; cuyas películas son opacas, con un brillo imperfecto y no son estables. El almidón de yuca, comparado con el almidón de maíz, proporciona dextrinas de excelente dispersión y estabilidad, en tanto que las dextrinas de maíz tienden a volverse espesas durante el almacenamiento, factores que hacen a la dextrina de yuca una materia prima adecuada para la producción de este tipo de adhesivos. Las diferencias de color entre los adhesivos de dextrina se deben principalmente a la presencia de grupos fosfato unidos a la molécula de almidón de yuca, el olor en húmedo y la opacidad de la película de maíz, se deben principalmente a que los cereales comparados con las raíces, presentan mayor contenido de lípidos y proteínas, los lípidos son los responsables del olor, mientras que la presencia de proteínas pude generar reacciones de Maillard, durante la dextrinización lo cual hace que las películas sean opacas (Swinkels, 1996).Tabla 11. Caracterización de adhesivos para costura lateral. Figura 44. Amilograma de almidón nativo secado solar y artificial.Como se observa en la Figura 44, se presentó diferencia en el comportamiento reológico en el almidón nativo, dependiendo del secado utilizado. Así, el almidón nativo con secado solar presenta una menor viscosidad máxima (63,48 unidades RVA) comparada con el almidón nativo con secado artificial, cuya viscosidad máxima fue 73 unidades RVA. La temperatura de gelatinización del almidón con secado solar fue mayor (60,5 ºC) comparada con la temperatura de gelatinización del almidón nativo con secado artificial (56,1 ºC). En general durante el periodo de enfriamiento la viscosidad de los almidones se mantuvo constante con una tendencia a aumentar al final del tratamiento.-Ensayos de secado de almidón agrio. El volumen específico del almidón agrio con secado solar y artificial, se realizó evaluando su poder de expansión con la elaboración de un pan utilizando estos almidones. Según los resultados de los análisis realizados el volumen específico promedio del almidón agrio con secado solar fue 12,1 g/ml y el volumen específico promedio del almidón agrio con secado artificial fue 5,6 g/ml. Con base en estos resultados se demostró, como lo menciona la literatura y como siempre se ha sabido, que el almidón agrio necesita de un secado solar, para adquirir sus propiedades de expansión; aunque siga todo el proceso de fermentación. Esto es ambos almidones agrios analizados en esta prueba tuvieron un tiempo de fermentación de 35 días en tanques de fermentación, pero lo que varió fue el tipo de secado solar o artificial. Por ello la utilización de la técnica de secado artificial no es apta para realizar el secado de almidón agrio si se desea obtener en este, altos niveles de expansión.-Ensayos de secado de harina de yuca. En la Figura 45 se presenta el comportamiento reológico de la harina de yuca utilizando el secado artificial (40 o C) y el secado solar (30-40 o C).Como se observa en la Figura 45, no hubo una diferencia significativa en el comportamiento reológico de las harinas de yuca, secadas utilizando el secado solar y artificial. La harina de yuca con secado solar presenta una mayor viscosidad máxima (28,35 unidades RVA) comparada con la harina de yuca con secado artificial, cuya viscosidad máxima fue 25,3 unidades RVA. La temperatura de gelatinización la harina de yuca con secado solar fue menor (57,5 ºC) comparada con la temperatura de gelatinización de la harina de yuca con secado artificial (60,2 ºC).Figura 45. Amilograma de harina de yuca secado solar y artificial.Durante el periodo de enfriamiento la viscosidad de las harinas de yuca se mantuvo estable con una tendencia a aumentar al final del tratamiento. Se observa que el valor de las viscosidades de las harinas de yuca, elaboradas con las mismas raíces de yuca de las que se extrajo el almidón nativo para estos ensayos, disminuyó casi la mitad de las unidades RVA, esto debido a la presencia de fibra y proteína en las harinas obtenidas. Cuadro 7. Descripción de las corrientes de cada una de las etapas del proceso de producción de dextrinas a nivel de rallandería. Cuadro 7. Descripción de las corrientes de cada una de las etapas del proceso de producción de dextrinas a nivel de rallandería. * La cantidad de agua de servicio para el mezclado se calcula con respecto a la cantidad de almidón sin humedad, para obtener una suspensión con 37,8% (w/w).♦ La cantidad de HCL se calcula con respeto a la cantidad de almidón sin humedad, en un porcentaje de 0,19% (w/w).°♣ La cantidad de aglutinante se calcula con respecto a la cantidad de almidón sin humedad, en un porcentaje de 3% (w/w) de dextrina-La tasa de recuperación del proceso de extracción de almidón en la rallandería TODOYUCA es cercana al 70%, con un rendimiento del 20,9% de almidón con respecto a la materia prima, lo que indica que el proceso de extracción de almidón esta entre los estándares para este tipo de rallandería.-La acidificación de lechada de almidón, para obtención de dextrinas, no es posible principalmente a que la cantidad de acido que se debe adicionar para obtener un pH adecuado en la dextrinización, se correlaciona en primer lugar con la cantidad de sólidos presentes en la lechada, factor que no se puede fijar en esta etapa, por las condiciones propias de la operación.-La adición de 0,19% de HCL, a una suspensión de almidón con una concentración de 37,8% (w/v), permite obtener un pH promedio de 3,1, necesario para la producción de dextrinas.-Para la neutralización de agua acida, efluente resultante de la etapa de acidificación de la suspensión de almidón, se debe adicionar 0,35% (w/v) de carbonato de calcio, para obtener un pH promedio de 7,2.-El aglutinante más adecuado para el formado de pelets de almidón, es dextrina con una concentración de 3% (w/w), que permite obtener pelets de buena consistencia.-La implementación de un sistema de homogenización de flujo de aire, con un caudal de 0,21 m 3 /s, permite mejorar la uniformidad de la humedad del producto secado y disminuye el tiempo de secado, para secadores por lotes de lecho fijo.-La etapa de tostación con flujo de aire de 0,1 m 3 /s, e implementación de sistema de homogenización de flujo de aire, permiten obtener tiempos de conversión mas cortos, que representa una ventaja económica para el proceso de obtención de dextrinas.-Las dextrinas obtenidas en el proceso, presentaron características similares a las reportadas en la teoría, lo que las hace aptas para las mismas aplicaciones industriales.-La validación de las dextrinas de yuca obtenidas, para la producción de adhesivos para el cerrado lateral y fondo de bolsas multipliego de papel, permitió comprobar que los adhesivos de dextrina de yuca comparados con los adhesivos de dextrina de maíz, tienen mejores propiedades lo que les permite competir en el mercado frente estos productos sustitutos.-Realizar estudios comparativos de producción de dextrinas por vía seca con las condiciones establecidas en el presente estudio, pero utilizando como materia prima variedades especificas de yuca y una mezcla de variedades, que permitan determinar si hay diferencias significativas en las dextrinas obtenidas con cada una de ellas.-Evaluar el efecto del peso molecular de las moléculas de almidón con respecto a la cantidad de acido que se debe adicionar para lograr la acides requerida en la producción de dextrinas.-Realizar estudios sobre el efecto que tiene el peletizado en las propiedades reológicas del almidón acidulado.-Utilizando las bases determinadas en el presente estudio para la etapa de presecado y tostación, se recomienda realizar estudios técnicos que permitan determinar las características más adecuadas para un equipo de secado de lecho fijo por lotes.-Realizar estudios sobre el cambio en las propiedades reológicas del almidón acidulado a lo largo de las etapas de presecado y tostación que permitan establecer el punto final y grado de dextrinización del almidón.-Para la implementación de la etapa de peletizado del almidón en la industria, es necesario realizar estudios que permitan establecer variables específicas en esta etapa, obteniendo flujos altos de producto procesado, sin afectar las propiedades reológicas del almidón, todo esto con el fin de que esta etapa no genere cuellos de botella en los proceso para los cuales se desee implementar.-Aunque el desarrollo de las rallanderías de mediana escala, tiene un fuerte impacto a nivel social, no se puede dejar de lado, el impacto ambiental que genera esta agroindustria; ya que sus aguas de proceso son tomadas de fuentes naturales limpias y devueltas a los mismos con altas cargas contaminantes. Por ello, se recomienda realizar estudios para la recirculación de las aguas efluentes de algunas etapas de proceso que sirvan en otras etapas, y a la vez identificar la carga contaminante que contienen las aguas efluentes de cada etapa de proceso para su tratamiento con productos que permitan realizar una efectiva sedimentación de los contaminantes, y así poder realizar una reutilización de estas aguas.COLOMBIA. ","tokenCount":"17181"} \ No newline at end of file diff --git a/data/part_3/8287887785.json b/data/part_3/8287887785.json new file mode 100644 index 0000000000000000000000000000000000000000..13324e074a218769e98d442c62a2c64417abecbf --- /dev/null +++ b/data/part_3/8287887785.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"07ded0765c5b791a1a56a9ed183a22f5","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/abe5dbe7-580f-4e21-83ce-4c8b59a34966/retrieve","id":"-1924787056"},"keywords":[],"sieverID":"75495f30-f6d4-4761-b235-7d6a194db3f0","pagecount":"12","content":"Small-scale farmer-led irrigation development (FLID) has been part of farming systems for hundreds of years. It is now attracting increased attention from government institutions, donors and development organizations. FLID can help transform food systems by enhancing climate resilience, increasing and diversifying agricultural production, reducing poverty, and supporting youth and women's empowerment. However, despite its substantial potential, FLID has been expanding only at a slow pace. Encouraging experiences are now emerging across Africa due to various research, development and investment efforts. Catalyzing FLID expansion at scale in SSA in the next 5 to 10 years will require sustainable and inclusive strategies, and joint efforts to address the barriers and gaps, as well as seizing opportunities present across the business, research and implementation spaces.The context determines farmers' needs and abilities to invest in FLID, available technologies and services, and the existing business models for supplying irrigation equipment. Socioeconomic dynamics such as population growth, urbanization and increasing water use, and demands due to climate change affect water availability for irrigation. Understanding the multifaceted context, therefore, is essential for bundling and catalyzing irrigation equipment, products and services that meet different demands in specific geographical areas, as highlighted in the presentation titled 'Bundling and Catalyzing Solar-based Technologies and Services: Experiences from Ghana, Ethiopia and Mali' summarized in Box 1.Demand segmentation is essential to making investment decisions, developing marketing strategies, and tailoring business models, as shared in the presentation titled 'Tailoring Business Models for Ghana's Inclusive Solar Irrigation Market' (Box 1). The segmentation can be based on land ownership and size, water access and use, farming systems and irrigation practices, financial capital, financing management, equipment and service preferences, and other relevant factors. Examples of specific needs identified through market segmentation studies are theft-prevention technology for solar panels, and multi-use and gender-responsive technology for women.Different scenes from the conference titled Investing in Farmer-led Irrigation Development in Sub-Saharan Africa: Business, Research and Development Practices (photo: Barbara van Rijn, BVR Productions Ltd., and Maxwell Amponsah Twumasi and Kwaku Andoh Amponsah, IWMI, Ghana).Farmer-led irrigation development is a process by which farmers strive to improve their agricultural water use, bringing in or developing new ideas and technologies, changing investment patterns and creating new knowledge (Veldwisch et al. 2019). FLID is not one typology, and it is not linked to any one technology; it is best viewed as a dynamic and unfolding development process (Izzi et al. 2021). Estimates of FLID expansion in SSA range from 1 to 2 million hectares (Mha), benefiting 185 million farmers with net annual revenues of USD 20 billion (Wiggins and Lankford 2019).Box 1. Highlights from conference presentations.Bundling and Catalyzing Solar-based Technologies and Services: Experiences from Ghana, Ethiopia and Mali. Investments in solar-based irrigation are limited primarily due to the high initial cost, diverse demand, and need for more availability of innovation bundles that address the complex problems and needs of producers and businesses. An action research approach to co-develop solar-based irrigation bundles involves four interrelated steps: Analyze, co-develop, engage and reflect (Minh and Schmitter 2020). Several strategies have been used to contextually catalyze solar-based irrigation bundles (SBIBs) addressing diverse conditions in Ghana, Ethiopia and Mali. These include business research partnerships, scaling grants, targeted investment, demand-driven capacity building and multistakeholder dialogue.Tailoring Business Models for Ghana's Inclusive Solar Irrigation Market. Pumptech, Ghana's private sector irrigation equipment supplier, has tailored its business models for different segments of the solar-powered pump market. The payment and installation model is for resource-rich farmers who demand high-capacity pump systems. The PAYOWN model is for resource-limited farmers holding cultivated lands with access to dugouts and well water. The PAYGO model is for farmer groups with limited upfront capital to pay for SBIBs. Movable solar-powered pumps with a plug-and-play accessory system are customized to mobile farmers. Win-win partnerships are applied through institutional clients, i.e., government agencies, development partners, and training institutions introducing SBIBs to farmers. Thus, by customizing its business models, Pumptech has promoted inclusive SBIB investment for smallholder farmers, reaching multidimensional scales.Carbon Financing: A Case from the Ghana Cocoa Forest REDD+ Program. Many countries have established the REDD+ framework to protect forests as part of the Paris Agreement on climate change. Within this framework, developing countries receive results-based payments for reducing deforestation. In Ghana, the Forestry Commission and the Ghana Cocoa Board aim to reduce deforestation and forest degradation by supporting farmers in adopting climate-smart intensive expansion methods. Based on its performance, Ghana will obtain USD 5 per ton of carbon under an emission reduction payment agreement with the World Bank (LEGKL 2019).Digital Awareness and Outreach: IrriTrack and Microscale Irrigation MIS. To support sustainable animal, crop and fish production, Uganda's Ministry of Agriculture, Animal Industry and Fisheries compiles, analyzes, maintains and disseminates data on soils, water resources, wetlands and irrigation development in semi-arid areas and rangelands. The ministry's IrriTrack app allows extension staff to collect data on farmers using Android tablets and phones. This supports planning, resource allocation, performance monitoring, and improves accessibility and transparency in resource use and decision-making by the private sector and other stakeholders.Ensuring the Capacity to Sustain Water for Agriculture and Resilience in Ethiopia. AgriTech hackathons are conducted as part of the collaboration between research institutions and the private sector. These hackathons build the capacity of university students to develop innovative solutions for private-sector businesses. Through such hackathons, Rensys Engineering has developed information and communications technology (ICT) systems to improve marketing, client assessment, and sales and market linkages. The hackathons also build the capacity of universities to host and manage similar events in the future, and arrange internships with the private sector to train youth, giving them opportunities to network and develop their professional skills within relevant or related industries.Inclusive solar-based Irrigation: Lessons on Women's Access to Credit. Demand and supply constraints limit women's ability to afford solar-based irrigation technologies. One inclusive approach to overcome this constraint is asset-based financing. The challenges in this approach must be addressed, focusing on credit assessment, targeting, marketing, and after-sales support. Inclusion focuses on four main steps: customer identification, customer credit evaluation, payment transactions, and agronomic and market support. Customer identification must be targeted at women and the poorest farmers and included in the training of the sales force. Customer credit evaluation must be designed using asset-based finance tools and processes that are gender-and farmer-responsive. Payment transactions must adapt terms of repayment and must manage subsidies to reduce risks to companies and farmers. Agronomic and market support must focus on finance for diverse crops and complementary inputs.Through the Microscale Irrigation Program, the Government of Uganda supports farmers acquiring microscale irrigation equipment by providing matching grants/partial subsidies. Support from the government is between 25% and 75% of the cost, with a maximum contribution of USD 2,000 per 0.4 ha per farmer. Smart partial subsidies have greatly enhanced technology uptake. Farmer co-funding ensures ownership and sustainability. It also reduces the burden on government investment. For implementation to be successful, there is a need for awareness creation to manage expectations, innovativeness on credit access, and purposeful targeting of farmers who can co-fund. A periodic review is essential to know what works and what does not and to improve processes.Multistakeholder Dialogues: An Interactive Learning Platform for FLID. FLID multistakeholder dialogues bring stakeholders together to address common challenges. These include competing stakeholder priorities, more synergy in small-scale irrigation interventions, and coordination among sectors and programs. Others are limited innovation scaling efforts, limited information flow and cross-sector learning, and the need for consolidated efforts on the stakeholders' front to contribute to policy direction. Cross-learning from these dialogues helps actors co-design and co-implement suitable models for scaling context-specific irrigation solutions. Inclusive financial modalities for accelerating FLID at a larger scale Access to finance is a significant challenge to catalyzing FLID. There is a need to develop cost-effective solutions to support farmers' investments and de-risk private sector businesses. In Ghana, Mali, Ethiopia and many other countries in SSA, affordability remains an issue for smallholder farmers, even with subsidies and pay-as-you-go (PAYGO)/pay-as-you-own (PAYOWN) financing models. PAYGO/PAYOWN financing offers farmers affordable credit compared to the conventional loans provided by profit-oriented commercial banks and financial institutions. These financing methods may also include aftersales services, agronomic input provision or multiple-use services such as drying, freezing and milling to enable farmers to recoup their investment. However, despite their benefits, PAYGO/PAYOWN financing may bring a high debt burden to smallholder farmers, and increase investment and business risks in the private sector.Nevertheless, the availability of PAYGO and PAYOWN financing methods has significantly shifted the private sector business portfolio, improving their ability to sell irrigation technologies to smallholders. Lessons from practice show that there is a need to find cost-effective ways for farmers to repay credit. Companies offering these services require early-stage equity through grants or soft loans from impact investors or donors. Government support is vital for developing suitable financing models. These include blended financing, where government subsidies and loans are disbursed through financial institutions. Financial institutions need institutional instruments to lend to green energy, agriculture and climate change adaptation initiatives. The government must regulate (smart) subsidies such as matching and results-based grants to improve smallholder farmers' access while enabling their transition from subsidy dependence to market participation.Impact investments offer other sustainable and inclusive financing options for catalyzing FLID. Credit scorecards are an alternative to standard documentation on profit/loss and costs/revenues. However, this approach tends to limit women's access where there is a lack of documents to prove ownership of the assessed assets. Sociocultural norms do not support women owning property, limiting their access to agricultural land, on-farm income and the desire to register property in their name. For instance, pumps purchased by women may be in the name of a spouse or jointly registered, or in the name of a male relative. Rethinking the indicators for women's financial management capacity and creditworthiness is critical. Distribution models that deploy women and communityembedded sales agents, and offer flexible subsidy repayments help to improve women's access and reduce the risk of default.Recently, carbon credits have emerged as an opportunity for financing FLID. The presentation titled 'Carbon Financing: A Case from the Ghana Cocoa Forest REDD+ Program' (Box 1) highlighted that a carbon credit model could be adapted to FLID. Carbon financing is an alternative to bilateral/multilateral funding, the sources of which are declining in SSA countries such as Ghana, Kenya and others. Research to quantify carbon emissions from motor pump irrigation will support the case for a carbon credit model to support green energy for FLID. Countries could use carbon credits to solicit climate funding for FLID. In such a scenario, robust measurement, reporting, and verification systems will help track and monetize carbon reduction. Political transparency will ensure engagement, Farmers planting shallots in Volta Region, Ghana (photo: Barbara van Rijn).inclusiveness, and effective national and subnational structures to manage carbon funds.Irrigation-and investment-related behavioral change is required for sustainable FLID in SSA. The availability of past and current data helps with key actors' decision-making. Data are most beneficial when they are in a helpful format, easy to use and affordable. Information and innovations on the possible use of unconventional water sources, i.e., recycled water, greywater, stormwater, brackish water and atmospheric moisture, can change irrigation practices. Conventional communication channels and digital innovations can help inform farmers and other value chain actors about available irrigation technologies and services. They help to disseminate information and stimulate actions to guide technology selection and farming practices. This is the case in Uganda, as shown in the presentation titled 'Digital Awareness and Outreach: IrriTrack and Microscale Irrigation MIS' (Box 1). Digital solutions help to collect data at the farm level and beyond, even in remote areas, to document indigenous knowledge and support the private and public sectors in making informed decisions. These solutions help to fill data gaps that inhibit investment in and expansion of FLID. These solutions include surface water and groundwater governance, sociotechnical constraints to water access, and financing opportunities. Digital solutions offer opportunities for youth and start-ups, and enable stakeholder engagement in codesigning contextually relevant solutions.Capacity strengthening is essential to foster FLID and achieve large-scale impact. Training builds farmers' technical capacity to irrigate sustainably and improves their financial literacy to be able to invest in FLID. Similarly, innovation and internship develop the ability of the young labor force and universities to address practical business challenges, especially when it is built into the curricula of universities, as shown in the presentation titled 'Ensuring the Capacity to Sustain Water for Agriculture and Resilience in Ethiopia' (Box 1). The private sector requires the capacity to test and develop business models and decision-support systems, e.g., client assessment tools, and digital marketing and sales applications. Capacity strengthening also helps to generate demand-driven solutions to solve real problems. Clearly defined roles, responsibilities, expected deliverables for innovation hackathons and incubation, and internships with private sector entities will improve the actors' effectiveness in the education and capacity strengthening domain.Women and youth face socioeconomic hindrances that limit their access to production factors and participation in FLID.A farmer irrigating maize using a sprinkler in Volta Region, Ghana (photo: Barbara van Rijn). Multi-pathway approaches are required to make FLID more inclusive of women and youth, as shared in the presentation titled 'Inclusive Solar-based Irrigation: Lessons on Women's Access to Credit' (Box 1), which draws from the ILSSI project in Ethiopia, Ghana and Mali. These approaches attain equity, including co-designing digital inclusive financial assessment and credit tools, labor-saving technology for women, job creation for youth, and agronomic support targeting women and youth.Political and economic stability is an incentive for the private sector because instability creates uncertainty and endangers current and future investments in catalyzing FLID. Favorable policies such as tax exemptions and smart subsidies motivate private sector investment. Moving FLID toward inclusivity and sustainability requires adapting and enforcing water and irrigation governance systems that help communities self-regulate. All this requires a long-term commitment from political decision-makers and implementers, as advocated in the presentation titled 'Subsidies for Microscale Irrigation Development in Uganda' (Box 1). In politically unstable locations, implementers may use project-based businessto-business models to introduce, pilot and scale irrigation technologies and services.There is consensus that no single actor can work alone on catalyzing FLID. Multi-actor, win-win partnerships can enable the scaling of FLID. Partnerships built on trust with clearly defined roles and responsibilities will enable gains for FLID.These partnerships must balance profitability and social impact, and address multistakeholder interests. Sharing knowledge, tools, biophysical information, remote sensing and water governance information is critical to support crosscountry learning for FLID across SSA. The presentation titled 'Multistakeholder Dialogues: An Interactive Learning Platform for FLID' (Box 1) has examples from Ghana and Ethiopia on how multistakeholder dialogues can be used to share knowledge on FLID.A shared vision of the pathways to follow and investments needed to scale FLID in SSA in the next 5 years is presented in Figure 1. This shared vision will guide activities and investments to tap the significant and transformational potential in SSA, in which FLID can be the game-changer in terms of agri-food system transformation, food security and climate change resilience.Piloting and promoting single innovations are standard practices to support FLID across the SSA region. In many contexts, the inclusiveness and sustainability of such support are issues due to biophysical, political, economic and sociocultural obstacles. Bundling irrigation technologies, services and processes can bring synergies to minimize these obstacles and the tradeoffs associated with introducing individual innovations while de-risking farmer and private sector investments. It provides context-specific solutions for farmers, combining existing and innovative technologies, products and services. Developing and catalyzing innovation bundles aim at putting together innovations, services and practices to make contextspecific FLID solutions available to farmers. Technologies such as solar-powered irrigation pumps may serve as a core innovation that can be bundled with, for example, water conveyance, storage and application equipment, soil moisture monitoring sensors, PAYGO/PAYOWN financial services, other agricultural inputs and good agricultural practices. When catalyzing these bundles at a large scale, bundling tools and digital innovations for land and water resource mapping, climate information services and advisory, and targeting investment decisions are necessary to achieve sustainability and inclusion.Innovation bundles should be relevant to specific contexts and needs, and must be accessible and affordable to farmers and their communities. Co-designing, co-developing and co-bundling are vital principles that make the bundles costeffective, built on farmer experiences, and leveraging existing government, local extension, farmer, private sector and other value chain actor networks. Enhancing the effectiveness of the bundles requires awareness creation through participatory demonstrations and road shows, the use of digital platforms, intelligent incentives for early adopters, and monitoring, evaluation and learning. The willingness of partners to bundle products and services is the first step to successful bundling. This is achieved by aligning their interests, agreeing on a shared vision, building trust and managing trade-offs. Bundling is resource-and time-consuming and should be adaptive, evidence-based, and continually improved based on the context and changes in the context. It, therefore, requires joint actions from multiple stakeholders, including the government, private sector, research organizations, non-governmental organizations (NGOs) and development partners. The bundling process is the backbone for linking stakeholders and sharing data for inclusive decision-making.Market linkages within irrigated agricultural value chains are weak, limiting farmers' ability to participate effectively in FLID. Several stakeholders manage land, water, soil, mining, agriculture and other water-related industries as separate sectors while addressing sector-specific challenges. Given the complexity of food systems and the diversity and dynamism of FLID, no single actor and sector can do all the work effectively. Multi-actor and multisectoral partnerships and collaboration are vital to breaking these silos while leveraging each other's strengths and resources.Fostering scaling partnerships and collaboration aims to mobilize joint efforts and resources to invest in sustainable catalyzing of FLID and innovation bundles and an inclusive FLID market. Public and private sector partnerships can invest in agricultural water management, financing, product and service demonstrations, development of clean energy sources, farmer group engagement for co-creation and capacity building, and behavioral change campaigns. The government, private sector, NGOs, and research and development partners can collaborate to develop multiple cropping seasons and improve irrigated farming systems using irrigation technologies and services, Internet of Things (IoT) sensors, good agricultural practices, and blockchain technology information sharing. Research, the private sector and public actors can partner to create linkages between the private and public sectors, farmers and input suppliers, off-takers, output markets and supporting services, including extension and credit access. Strong market linkages support the effective scaling of innovation bundles. Governments must lead in natural resource planning that incorporates water resources for irrigation and how to sustainably meet these needs.Financing FLID investments remains a significant challenge to catalyzing the practice in SSA. The desire of smallholder farmers to borrow from commercial banks and financial institutions is low due to high interest rates, collateral requirements, lengthy application processes and lack of credit history. Furthermore, banks and financial institutions have a strong risk aversion to lending for agricultural purposes. Hence, there is an urgent need for sustainable and inclusive financing services for smallholder farmers' investment in expanding FLID.The private sector can use innovative financing models such as PAYGO and PAYOWN to improve farmers' access to irrigation technologies and services. However, it requires liquidity to expand lending to farmers, which may limit the ability to offer PAYGO and PAYOWN financial services. PAYGO and PAYOWN financing may prioritize established farmers over new and small farmers who tend to be riskier. Subsidizing the first pumps of small farmers using results-based financing will improve their access to these technologies. Other funding sources for FLID include carbon financing, green bonds and insurance, blended financing, concessional finance, revolving funds, and performance-based subsidies and grants that can de-risk the market actors' investment, enabling FLID supply businesses to be inclusive of diverse demands.Farmers thus play a more significant role in shaping and investing in their irrigation practices while the implementing agencies provide safety nets for farmers by facilitating access to credit. Investments in FLID, therefore, must be adaptive to supplement farmers' investments. To be adaptive, capacity strengthening of financial sector actors must empower them to provide farmers with reasonable and practical products and services. To be effective, developing and engaging the new generation of private, innovative finance providers in bundling and other financial products and services in agricultural value chains as their core business are essential. Financial institutions require capacity development on the high-value irrigated agricultural value chains and agricultural financing. Creating and maintaining linkages among financial institutions, irrigation equipment suppliers and farmers will further improve the ability of financial institutions to lend for agricultural purposes. Minimizing duplication and waste of resources requires government guarantees and coordination from development partners and impact investors.Women and youth should be more recognized and integrated into irrigation planning, decision-making and marketing efforts. Their participation in FLID is limited to small areas due to sociocultural barriers limiting access to factors of production. Women, for example, have lower access to extension services because social norms may permit them to interact only occasionally with male extension agents. Some women also require the permission of a male to access loans or to buy farm equipment. Interventions that intentionally improve women's and youth's access to production factors and support services are limited. Moreover, pathways targeting women in maleheaded households may differ from those required for femaleheaded households.Enabling gender equality and social inclusion in FLID aims to minimize such barriers. New pathways are needed to reach these groups, such as employing women sales agents, minimizing the risk of failure by improving their access to seeds, labor-saving and more efficient technologies, and facilitating transportation and childcare support for women during training to encourage their participation. At the same time, existing approaches can sometimes be adjusted to be more inclusive. Collaboration among stakeholders is required to ensure women and youth inclusion in FLID. Farmers, researchers, the private sector, NGOs and development partners can work with government agencies to co-design inclusive innovation bundles for women and young farmers. These include improving financial access for women and youth through subsidies, grants, revolving funds and other financial instruments, and designing suitable irrigation technology and service bundles. Business models on digital platforms provide cost-effective ways to provide women and youth with access to water, land, extension, and improved farming technologies and services. Other ways include training of female researchers, internship and earlycareer programs targeting women, and entrepreneurial skill training programs for women that highlight their needs.Initiatives and investments in catalyzing FLID exist in many SSA countries. However, technical assistance and multistakeholder dialogues are limited to projects, interventions and the national level. Therefore, knowledge sharing at national and regional levels is limited to providing support to learning and investment in FLID. Furthermore, knowledge gaps exist in resource availability and quality, market insights, business investment and the financial ecosystem.Brokering knowledge for sustainability aims to foster crosslearning in SSA, manage trade-offs, leverage synergies and optimize impacts from the catalyzing of FLID by providing data-driven tools and technical assistance, and enhancing multistakeholder dialogues. Simple digital knowledge-sharing platforms are accessible to multiple stakeholders. Multi-actor collaboration is required to create reliable natural resource maps and use them to guide policy and project implementation. The information includes the quantity and quality of surface water and groundwater, soils, sustainable irrigation, agricultural water management, and environmental sustainability. The knowledge-sharing platforms integrate good agricultural practices, and market, financial and climate information into services provided to farmers and other users.Existing irrigation-related digital tools include pump sizing, maintenance and payment apps. Further digitalization, such as real-time pricing information for input and output markets, could help farmers maximize their return on investment and encourage other farmers to adopt irrigation. Data-driven planning and monitoring tools are important to improve water governance and prevent overexploitation of water resources. Digitalization and institutionalization of data collection and storage, and information management are needed to facilitate multistakeholder engagement and dialogues, capacity building, interactive learning, and sustainable and inclusive FLID investments at a large scale.Value chain actors operate in silos with varying degrees of knowledge about improved technologies and services for catalyzing FLID. Knowledge sharing and better linkages have resulted in sustainable interventions and investments. Multiple skills training is required to equip value chain actors to work together to improve synergies. Farmers and extension officers require training in modern and cost-effective irrigation technologies and services available to support and improve farming activities. Enhancing capacity for system transformation aims to develop the capacity of public and private sector actors to use existing and innovative technologies, services and processes to impact FLID positively. Capacity development is required continuously to address challenges identified in the irrigated agricultural value chain. Partnerships between the government, NGOs, development partners and farmers to train extension agents and other value chain actors will ensure consistency and sustainability in capacity building. Research organizations can support this process by sharing experiences on irrigation solutions that may be adapted to fit various contexts.Although FLID has recently received increased attention from governments and development communities, the enabling environment often does support bringing innovations beyond pilot programs. For decades, irrigation development in SSA has prioritized large public schemes. Unfavorable policy environments and programs hinder FLID investments by farmers and the private sector. Where policies exist, relevant institutions must be resourced to implement irrigation regulations and interventions to catalyze FLID while supporting the private sector to thrive.Unlocking enabling environment aims to improve the policy and business environments to incentivize FLID to realize its potential. The governments should set up policies specific to FLID, guiding interventions and enhancing private sector participation. These include policies on clean energy, capacity development to train local technicians to design, repair and maintain the irrigation infrastructure, and cross-learning among SSA governments to improve synergies. Favorable tax policies and simplified import processes will attract private sector investors to import and locally manufacture irrigation equipment at affordable prices. State institutions with adequate funding, training and logistics will monitor the use of groundwater and other resources to ensure sustainability. Research institutions help to identify relevant irrigation solutions and partnerships to catalyze FLID while contributing to policy direction. Cooperatives, water user associations and farmer-based organizations implement policies and regulations at the local level.The recognition of and enthusiasm for multi-actor partnerships as an enabler of FLID was clear from the interactive discussions and networking during the conference. As participants continue operating in their respective countries, it is hoped that a shared vision for FLID is more firmly embedded in agricultural policies and practices to make irrigation a reality for millions of African farmers. Different pathways bring about many practical solutions for tangible impacts. Consensus and commitment to building a solid community of practices and jointly advancing cross-sectoral strategies are essential to transformative and impactful FLID.Stakeholders and actors in the FLID system participate in catalyzing FLID based on their capabilities and desires. Operationalizing each pathway requires joint efforts from various actors, each with unique roles and resources to contribute. As a core group of agents, they attract the participation of other actors and stakeholders. Their involvement and contributions can be clustered into three core groups: agripreneurs, investors and facilitators.Agripreneurs such as farmers, agribusiness entities and other value chain actors are the champions of Pathway 1 and Pathway 2 (Figure 1). Farmers and farmer communities are at the center of FLID as their needs determine the innovations and innovation bundles the actors focus on. By piloting innovations, they provide feedback that helps product/service improvement and thus contribute to policy development. They support the FLID vision by sharing indigenous knowledge that may be used individually or in combination with modern approaches to address challenges to catalyzing FLID. This includes local ways of locating groundwater, managing water and water conflicts, and storing the harvest. Private sector entities contribute to co-designing irrigation products, services and bundles that meet the specific needs of farmers. They offer farmers products and services, including irrigation equipment supply, input and transportation services, and aggregation. Private sector entities support research organizations, farmers and other actors to test, refine and scale innovations for irrigated agriculture. Collectively, the private sector has the potential to influence business policy to address challenges related to taxes, importation, manufacturing and financial services to support business. Research continuously helps to identify emerging challenges that partners can deliberate on to find joint solutions. Research and knowledge partners also support partners working in natural resource management.Several guiding principles must be considered for successful and impactful operationalizing and investing in FLID pathways. First, the participation and ownership of multiple stakeholders and actors are needed to enhance their commitment and accountability. Second, flexibility and adaptability are key to adapting well to real circumstances and flexibly dealing with changes and particular conditions. Third, partnership and coinvestment are essential to ensure that sufficient resources can be mobilized and leveraged from the private and public sectors and development partners to ensure long-term investment for catalyzing FLID. Finally, interactive learning and institutional capacity strengthening are critical to continual improvement in processes and providing support to FLID.A woman farmer picking pepper in Volta Region, Ghana (photo: Barbara van Rijn).","tokenCount":"4798"} \ No newline at end of file diff --git a/data/part_3/8298101378.json b/data/part_3/8298101378.json new file mode 100644 index 0000000000000000000000000000000000000000..95141c786db988b297e6c946909b35668fdddc61 --- /dev/null +++ b/data/part_3/8298101378.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"10c0a9b7a078aee36486a8ce7a273fa2","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/137f4940-6b2d-4ffa-b4d5-36d0bf878f91/content","id":"100037815"},"keywords":["Food security","Sustainable intensification","Farm typology","Global Yield Gap Atlas","Fertilizer input subsidy program"],"sieverID":"0a2785bf-7c34-476a-bcd3-8fe6782f8232","pagecount":"16","content":"Maize production in Zambia must increase with a view towards improved food security and reduced food imports whilst avoiding cropland expansion. To achieve this, it is important to understand the causes behind the large maize yield gaps observed in smallholder farming systems across the country. This is the first study providing a yield gap decomposition for maize in Zambia, and combining it with farm typology delineation, to identify the key limiting factors to maize yield gaps across the diversity of farms in the country. The analysis builds upon a nationally representative household survey covering three growing seasons and crop model simulations to benchmark on-farm maize yields and N application rates. Three farm types were delineated, including households for which maize is a marginal crop, households who are net buyers of maize, and households who are market-oriented maize producers. Yield gap closure was about 20% of the water-limited yield, corresponding to an actual yield of 2.4 t ha −1 . Market-oriented maize farms yielded slightly more than the other farm types, yet the drivers of yield variability were largely consistent across farm types. The large yield gap was mostly attributed to the technology yield gap indicating that more efficient production methods are needed to raise maize yields beyond the levels observed in highest yielding fields. Yet, narrowing efficiency and resource yield gaps through improved crop management (i.e., sowing time, plant population, fertilizer inputs, and weed control) could more than double current yields. Creating a conducive environment to increase maize production should focus on the dissemination of technologies that conserve soil moisture in semi-arid areas and improve soil health in humid areas. Recommendations of sustainable intensification practices need to consider profitability, risk, and other non-information constraints to improved crop management and must be geographically targeted to the diversity of farming systems across the country.Economic development in Zambia is strongly linked to productivity growth in agriculture and sustainable management João Vasco Silva j.silva@cgiar.org; jvasco323@posteo.net Food and Agriculture Organization of the United Nations, FAO-Zambia, Lusaka, Zambia of farming systems (IAPRI 2020). Approximately 75% of the population rely on smallholder farming for their livelihoods (MoA/CSO 2019). Maize (Zea mays L.) is the main staple food crop in the country, as in other Southern African countries (Smale 1995), with a harvested area of approximately 1 Mha and providing 50-90% of the caloric intake of the national population. Maize production in Zambia is associated with low use of mineral fertilizers and low adoption of other sustainable intensification practices (e.g., conservation agriculture and improved maize legume cropping systems; Arslan et al. 2014). Poor soil fertility and adverse effects of increased climate variability reduce farmers' financial resource base (Komarek et al. 2019) and contribute to low adaptive capacity of maize-based farming systems in the country (Cairns et al. 2013).Smallholder farming systems in sub-Saharan Africa are highly diverse and farm typologies have proven useful to identify farms with different levels of resource endowments and livelihood strategies (Tittonell et al. 2010). The same is true in Zambia where approximately 1.6 million farmers are considered small scale with 70% having farm sizes below 2 ha, 25% having farm sizes between 2 and 5 ha, and 5% having farm sizes between 5 and 20 ha (Ngoma et al. 2019), and where poor subsistence farming co-exists with more market-oriented emerging commercial farming (Alvarez et al. 2018). Grain legumes are often produced alongside maize (Mwila et al. 2021) and livestock is kept in dry land areas of Southern and Western provinces characterized by low and erratic rainfall. Identifying different farm types is a means to consider farmers' socio-economic context and resource endowment when promoting agricultural technologies (e.g., Jayne et al. 2019) and an important first step to target technologies for different farm types (Berre et al. 2017).Yield gaps of rain-fed crops are defined as the difference between the water-limited yield (Yw) and the actual yield (Ya) observed in farmers' fields (van Ittersum et al. 2013). Yw is defined as the maximum yield that can be obtained under rain-fed conditions in a well-defined biophysical environment and without nutrient limitations or yield reductions due to pests, diseases, or weeds. Currently, Ya for maize in Zambia ranges between 1.4 and 3.0 t ha −1 , which is considerably lower than a Yw of 8-15 t ha −1 that could be achieved with best agronomic practices (Figure 1; van Ittersum et al. 2016). Yield gap decomposition is a means to unpack the causes behind yield gaps as it identifies the key crop management factors limiting or reducing Ya (Silva et al. 2017). The resource yield gap indicates the scope to increase Ya through higher amounts of inputs, whereas the efficiency yield gap indicates the scope to increase Ya through fine tuning current management practices and technologies in terms of the time, space, and application form of these inputs. The technology yield gap indicates the possible yield increases beyond current best performing technologies on-farm. This decomposition is important to derive policy recommendations and prioritize research and development interventions towards increasing maize yields in existing cropland as food security and biodiversity conservation are dependent on such improvements. This is the first study providing a yield gap decomposition for maize in Southern Africa and combining it with farm typology delineation to identify what interventions are needed, where, and for which farm types to narrow existing yield gaps. We hypothesized that the magnitude and the determinants of the yield gap differ across farm types with different production orientations and resource endowments. The main objective of this study was thus to characterize farm diversity across maize-based farming systems in Zambia, and to identify the key limiting factors to maize yield gaps across the diversity of farms in the country. The analyses built upon a nationally representative household survey covering the 2011/12, 2014/15 and 2017/18 growing seasons (Figure 2; IAPRI 2012IAPRI , 2015IAPRI , 2019)). Multivariate statistical techniques were used to construct the farm typology (Alvarez et al. 2018) and yield gaps were decomposed using a combination of frontier analysis and crop modeling (Silva et al. 2017). The latter was used to simulate Yw and estimate the nitrogen (N) rates needed to reach it, which were then used to benchmark maize yields and N rates observed in farmers' fields.Data from the Rural Agricultural Livelihoods Survey (RALS) was used to identify the main farm types engaged in maize production and to determine the drivers of maize yield variability in Zambia. The RALS comprises a panel of households interviewed over three different periods and is statistically representative of the rural population at the province and national levels. The spatial distribution of households included in the RALS is provided in Figure 2. The survey requested information on farm(er) characteristics and on field-specific crop management practices, thus meeting the requirements for yield gap decomposition (Beza et al. 2017). A unimodal rainfall regime with one wet season lasting from November to April in each year was observed across the country (Herrmann and Mohr 2011). Yet, annual rainfall was lowest in the Southern and Western regions of Zambia, with an average between 600 and 800 mm per year, intermediate in the central regions, with an average between 800 and 1200 mm per year, and highest in the Northern regions, with an average above 1200 mm per year (Figure 2).Secondary data were retrieved from spatial products using the GPS coordinates of the individual households. Climatic data were retrieved from the climate zone scheme of the Global Yield Gap Atlas (GYGA) and comprised three variables: growing degrees days, temperature seasonality, and aridity index (Van Wart et al. 2013). Soil data on clay, silt and sand contents, pH in water and exchangeable acidity were retrieved from SoilGrids at 250m resolution (Hengl et al. 2017) and on rooting depth and soil available water from AfSIS-GYGA (Leenaars et al. 2015). Simulated water-limited yields for maize were retrieved from GYGA. Rainfall data were obtained from Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS, Funk et al. 2015) and used to determine the dekad corresponding to the onset of the rains for each of the growing seasons surveyed. The onset of the rains was defined as the first dekad with a cumulative rainfall equal to or greater than 25mm between the months of September and December (Hachigonta et al. 2008).The farm typology was constructed using principal component analysis (PCA) followed by hierarchical clustering (HC; Alvarez et al. 2018) on the pooled data. PCA is a technique used to reduce the number of dimensions in a dataset to a few synthetic and uncorrelated variables called principal components. The principal components are linear combinations of the original variables, which can be conceptualized as the directions of high-dimensional data that capture the maximum amount of variance and project it onto a smaller dimensional subspace. The principal components retained for analysis were those with an eigenvalue greater than one. PCA was conducted in R using the dudi.pca() function of the ade4 package (Dray and Dufour 2007). HC refers to the hierarchical decomposition of the data based on group similarities and was then applied to a distance matrix calculated for the principal components selected following the PCA. Similarities between clusters were calculated using the Ward method. The final number of clusters was identified through visual inspection of the resulting dendrogram aiming to reach not less than three and not more than five clusters. HC was conducted with the hclust() function of the R stats package (R Core Team 2013).Thirteen variables aggregated at the farm level were used to construct the farm typology, seven of which were structural variables (i.e., describing the structure of the household, variables that tend to remain constant from one season to the next) and six of which were functional variables (i.e., describing the performance of the household). The farm(er) characteristics included in the typology were the age of the household head (years), household size (#), and area of owned cultivated land (ha) at the time of the surveys. Resource endowments were captured with variables referring to the cash available to each household (ZMW), farm assets calculated as the sum of the assets owned by each household multiplied by their respective economic value (in Zambian Kwacha, ZMW), total cultivated land in ha, and livestock ownership in tropical livestock units (TLU; Jahnke 1982) for each survey year. The total amount of maize produced, sold and bought per farm (all in kg) and the area cultivated with maize and legumes (both in ha) were included to assess the level of engagement of each farm in maize and legume production, whereas the total fertilizer use at farm level (in kg) was included to assess the level of agricultural intensification of each farm. Variables were screened for outliers and standardized using the scale() function in R to avoid the influence of different levels of variation due to the unit of measurement of each variable. The mean value of each variable was compared for each farm type and the number of households per farm type were summarized per province and per year.Yield gap decomposition (Silva et al. 2017) relies on four yield levels to diagnose agronomic constraints in cropping systems at regional level (Doré et al. 1997). In addition to Yw and Ya (van Ittersum et al. 2013), the highest farmers' yield (Y HF ) is defined as the average top 10th percentile of farmers' yields whereas the technically efficient yield (Y TEx ) is defined as the maximum yield that can be achieved for a given input level in a well-defined biophysical environment. The efficiency yield gap refers to the difference between Y TEx and Ya and is explained by suboptimal crop management in relation to time, space and form of inputs applied. The resource yield gap refers to the difference between Y HF and Y TEx and is explained by suboptimal amounts of inputs applied. The technology yield gap refers to the difference between Yw and Y HF and is explained by low input use and the lack of use of specific technologies. The feasible yield (Yf) was also considered to unpack the contribution of suboptimal input use (i.e., resource yield gaps) and variety choice to the technology yield gap. Yf is defined as the maximum yield with available technology and best-practice management but with no economic constraints (van Dijk et al. 2017).Stochastic frontiers account for two random errors, v it (random noise) and u it (technical inefficiency), assumed to be independently distributed from each other when estimating production functions (Kumbhakar and Lovell 2000). A Cobb-Douglas functional form (Equation 1), comprising only first-order terms in the production frontier, was used to describe the relationship between maize yield and a vector of agronomic relevant variables defined according to principles of production ecology (van Ittersum and Rabbinge 1997). A translog functional form was also fitted to test the effect of second-order terms (i.e., squared and interactions) on maize yield. The results of the translog functional form are presented in Supplementary Material given the large number of estimated parameters (Supplementary Table 3). Inefficiency effects, i.e., the drivers of the efficiency yield gap, were also estimated through a one-step estimation of the production frontier and the second-stage regression (Equation 2; Battese and Coelli 1995), as follows:(1)(3)where y it represents the maize yield in field i and in year t, x kit is a vector of agronomic inputs k used on field i and year t and, α 0 and β k are parameters to be estimated. The vector z jit comprises the j crop management drivers of the efficiency yield gap in field i and in year t. Y TEx and Yf were estimated for each field using the Cobb-Douglas model described earlier (Equations 1 and 6), but without considering inefficiency effects. Model parameters were estimated for the pooled data and for each farm type with maximum likelihood using the sfa() function of the R package frontier (Coelli and Henningsen 2013). Continuous variables were ln-transformed prior to the analysis and data were used as a cross-section rather than as a panel, hence technological change and time-(in)variant technical efficiency were not assessed. The vector of inputs x kit was designed to capture the effect of growth-defining, growth-limiting, and growthreducing factors on maize yield (Silva et al. 2017). Growth-defining factors were controlled for with the following variables: growing degrees day considering a base temperature of 0 • C (Van Wart et al. 2013), temperature seasonality defined as the standard deviation of average monthly temperatures (Van Wart et al. 2013), seed rates (kg ha −1 ), replanting (yes or no), and variety type (openpollinated, hybrid, or unknown). Growth-limiting factors related to water included variety classification according to drought tolerance (yes, no, or unknown), aridity index defined as the ratio between total annual precipitation and annual total potential evapotranspiration (Van Wart et al. 2013), soil rooting depth and soil available water (Leenaars et al. 2015), soil texture class constructed based on spatial predictions of clay, silt, and sand contents (Hengl et al. 2017), location of the field in a wetland (yes or no), and presence of erosion or flood control practices (yes or no). Growth-limiting factors related to nutrients included the rate of N applied (kg N ha −1 ), pH in water, and exchangeable acidity (Hengl et al. 2017). Finally, growth-reducing factors were captured with the number of weeding operations (none or one, two, and three or more), herbicide use (yes or no), and insecticide use (yes or no). Sowing date, expressed in weeks after the onset of the rains, and date of the first weeding operation, expressed in weeks after sowing, were included in the model as inefficiency effects. The variance inflation factors indicated no multicollinearity between the considered variables.The Cobb-Douglas frontier model without inefficiency effects was used to predict Yf for specific values of some of the input variables. To do so, seed rate was set at 25 kg ha −1 , which is the recommended seed rate for maize in Zambia. N application rate was set at 350 kg N ha −1 , which is the minimum N requirement for a target of 80% of Yw in the high rainfall areas of Zambia (www.yieldgap.org). It was further assumed that drought tolerant hybrid maize varieties were used in combination with replanting of maize seedlings, herbicides, and insecticides. The estimation of Yf further assumed that fields with a pH in water below 6.5 were corrected to a pH in water of 6.5 and that fields with exchangeable acidity above 0.2 cmol+ kg −1 were corrected to that level in fields with pH below 6.5.Farmers' fields were categorized as highest, average, and lowest yielding fields based on the distribution of Ya observed for a given variety type and climate zone x soil type combination. Highest yielding fields were identified as those with Ya above the 90th percentile. Average yielding fields were identified as those with Ya between the 10th and the 90th percentiles and lowest yielding fields as those with Ya below the 10th percentile. Highest (Y HF ), average (Y AF ) and lowest farmers' yields (Y LF ) were calculated as the average Ya for the fields in each respective group. The field classification was specific to each of three variety types and to each unique climate zone (Van Wart et al. 2013) and soil type (Hengl et al. 2015), so genotype and biophysical factors were controlled for when comparing maize yields and management practices across the different fields.Yw for rain-fed maize across Zambia was obtained from GYGA. Maize Yw in Zambia was simulated with the HybridMaize crop model (Yang et al. 2004) for the period 2001-2010 (see www.yieldgap.org/Zambia for further details). The average Yw data over the period 2001-2010 for a given climate zone was used here to benchmark Ya in farmers' fields and the technology yield gap was then calculated as the difference between Yw and Y HF for unique climate zone x soil type x variety combinations. It was not possible to make use of year-specific Yw data for the same growing seasons in which the surveys were conducted due to lack of Yw data for the growing seasons surveyed, which introduces uncertainties in the magnitude of the overall yield gap estimated, particularly in regions with erratic rainfall. Therefore, coefficients of variation of maize Yw were computed to better characterize inter-annual yield variability across Zambia. The N rates needed to reach 80% of Yw were also retrieved from GYGA (ten Berge et al. 2019) to benchmark N used in farmers' fields.Rural agricultural households across Zambia cultivate on average 2.2 ha of land and own 4.5 tropical livestock units (TLU; Figure 3A and B). Yet, the median values were considerably lower with 50% of the surveyed households cultivating less than 1.6 ha and owning less than 1.1 TLU. Maize was cultivated throughout the country with an average and median maize area share of 67% of the total cultivated (Figure 3C). This corresponds to an average maize area per farm of about 1.4 ha. Fertilizer use across the country was on average 140 kg ha −1 of cultivated land, with 50% of the surveyed farms using less than 110 kg of fertilizer per ha of cultivated land across the three survey periods (Figure 3D).There were wide variations in total cultivated land, livestock ownership, maize share of cultivated cropland, and total fertilizer use across the different provinces (Figure 3 and Supplementary Table 1). The average total cultivated land was larger than the national average in the Southern (3.4 ha), Central (2.8 ha), and Eastern provinces (2.4 ha), and lower in all other provinces (1.4-2.1 ha; Figure 3A). The same was true for livestock ownership which was on average 11.9, 5.5, and 4.4 TLU in the Southern, Central, and Eastern provinces, respectively, and much lower in all other provinces, notably those in the Northern part of the country (Figure 3B). Maize represented more than 50% of the cultivated land for at least 50% the surveyed farms in all provinces (Figure 3C). The average maize share of cultivated cropland was above 80% in the provinces of Lusaka and Copperbelt, between 70 and 75% in the Southern, Northwestern, and Central provinces, and about 60% in the Eastern, Muchinga, and Luapula provinces.The Northern province was where the maize share of cultivated cropland was lowest, ca. 55% of the total cultivated land. Finally, fertilizer use was below the national average in the Southern, Eastern, and Western provinces (50-100 kg ha −1 ), and slightly above the national average in the other provinces (Figure 3D). The farm typology was constructed using principal component analysis (PCA) followed by hierarchical clustering (HC). Four principal components had an eigenvalue greater than one and were retained for further analysis. These four principal components explained approximately 60% of the cumulative variance in the data. Three clusters were identified in the dissimilarity dendrogram of the HC analysis, corresponding to three distinct farm types. In short, Farm Type 1 (FT1) exhibited a low dependency on maize production and consumption, Farm Type 2 (FT2) were net buyers of maize and exhibited low levels of maize area and production, and Farm Type 3 (FT3) were market-oriented maize producers engaged in agricultural activities, as indicated by the large number of livestock kept and large amount of fertilizer used (Figure 4 and Supplementary Table 2).The age of the household head did not vary significantly across farm types (Figure 4) whereas household size was lower for FT1 (5.5 individuals), intermediate for FT2 (7.2 individuals), and higher for FT3 (8.2 individuals). FT1 owned 1.5 TLU and cultivated a total of 1.4 ha, 0.8 ha of which were allocated to maize and 0.3 ha to legumes, and used 140 kg of fertilizer per farm per year. FT1 produced an average of 1500 kg of maize, sold 600 kg of maize, and bought 50 kg of maize per farm per year. FT2 had access to 2.7 TLU and cultivated a total of 1.3 ha, of which 0.8 and 0.1 ha were cultivated with maize and legumes, respectively. Fertilizer use was lower in FT2 than in FT1 (Figure 4) with a rate of 90 kg fertilizer per farm per year, and so was maize 2). The spatial and temporal distribution of the farm types is provided in Supplementary Figures 1 and 2, respectively. Abbreviations: 'HH' = household, 'TLU' = tropical livestock units.production and maize sold (Figure 4), with an average of 1000 kg and 250 kg per farm per year, respectively. FT3 used 600 kg of fertilizer, produced 6500 kg of maize, sold 1600 kg of maize, and purchased 80 kg of maize per farm per year. There were slight differences in the spatial distribution of the three farm types (Supplementary Figure 1). In Western province, nearly 70% of the farms were classified as FT2 and only 10% of the farms were classified as FT3. By contrast, in Southern and Central provinces as much as 50% of the farms were classified as FT3 whereas 20% and 30% were classified as FT1 and FT2, respectively. In Luapula, Muchinga, Northern, and Northwestern provinces, 35-40% of the farms were classified as either FT1 or FT3. Farms were evenly distributed amongst farm types (ca. 30% per farm type), in the Eastern and Copperbelt provinces. There were no major changes in farm type classification for single farms over time (Supplementary Figure 2): out of 5238 farm-year combinations, 715 were classified as FT3, 412 as FT2, and 209 as FT1 in the three rounds of the survey. Other changes in farm type classification were not consistent and were likely to reflect fluctuations in farm performance over time.Maize Ya across all farm-year combinations analyzed ranged between nil and 9.0 t ha −1 (Figure 5). Ya was smaller and more variable in 2019 than in 2012 and 2015 harvest years (Figure 5A), with average values of 2.6, 2.4, and 2.2 t ha −1 and a coefficient of variation (CV) of 67, 67, and 77% during the 2012, 2015 and 2019 harvest years, respectively (Figure 5A). There were also clear differences in the distribution of Ya across agro-ecological zones, farm types, and variety types. Ya was smallest and most variable in agro-ecology IIb (mean = 1.3 t ha −1 , CV = 82%) and greatest and least variable in agro-ecology III (2.7 t ha −1 , 61%), with intermediate values observed in agro-ecology IIa and I (Figure 5B). Ya was also smallest and most variable for FT2 (1.8 t ha −1 , 76%), intermediate for FT1 (2.4 t ha −1 , 66%), and greatest and least variable for FT3 (2.9 t ha −1 , 61%; Figure 5C). Finally, Ya was on average 1.9 and 2.9 t ha −1 , with a CV of 61 and 73%, for open-pollinated and hybrid maize varieties, respectively (Figure 5D).Simulated yield potential (Yp) ranged between 13 and 19 t ha −1 in the Southern and Northern provinces, respectively, without a clear spatial distribution across the country (Table 1). Conversely, Yw was greatest and least variable in the Northern, Luapula, and Muchinga provinces, intermediate in the Eastern and Central provinces, and smallest and most variable in the Southern and Western provinces (Table 1). Yw was on average 18 t ha −1 in the Northern province, 13 t ha −1 in the Eastern province, and 9.5 t ha −1 in the Western and Southern provinces. The respective CV for Yw was 5, 30, and 45% for the Northern, Eastern, and Western and Southern provinces, respectively (Table 1). The difference between Yp and Yw indicates the yield gap due to water limitations, whose magnitude increased along a North-South gradient (Table 1) characterized by lower and more erratic rainfall (Figure 2). N rates needed to reach 80% of Yw were greater than 250 kg N ha −1 in the Northern, Luapula, and Muchinga provinces, ca. 230 kg N ha −1 in the Eastern province, and about 170 kg N ha −1 in the Western and Southern provinces (Table 1).Yield gap closure (i.e., the ratio between Ya and Yw) was on average 21% of Yw and varied with agro-ecological zone, province, and farm type (Figure 6). Yield gap closure was greatest in agro-ecology I (35% of Yw), intermediate in agro-ecology IIa (23% of Yw), and smallest in agroecologies IIb and III (15% of Yw; Figure 6A and B). Yield gap closure per province was similar to that per agroecology (Figure 6B and E) because most of the Southern province is in agro-ecology I, the Central and Eastern provinces are in agro-ecology IIa, the Western province is in agro-ecology IIb, and the Northern, Northwestern, Luapula, Muchinga and Copperbelt provinces are in agro-ecology III. Finally, yield gap closure was on average 30% of Yw for FT3, 20% of Yw for FT1, and only 15% of Yw for FT2 (Figure 6C and F).Most of the yield gap was attributed to the technology yield gap, which accounted for 7.2 t ha −1 (50% of Yw) on average, yet narrowing efficiency and resource yield gaps could more than double Ya for maize in Zambia (Figure 6). The efficiency yield gap was on average 1.6 t ha −1 (14% of Yw) and the resource yield gap was on average 1.7 t ha −1 (16% of Yw), which means that fine tuning current crop management practices and increasing input use to the level of highest yielding fields can increase yields from the current 2.4 t ha −1 to 5.7 t ha −1 . The resource yield gap considering the feasible yield (i.e., maximum yield with available technology and best-practice management but with no economic constraints) as ceiling was small with an average of 1.0 t ha −1 (7% of Yw). This means that resource-use efficiency in farmers' fields is low and must be improved to realize the yield gains associated with increased input use and better technology. The large technology yield gap is thus a result of suboptimal input use compared to what is needed to reach Yw and of low resource-use efficiency of current farm practices.There were slight differences between agro-ecological zones and provinces in the relative contribution of each yield gap to the overall yield gap (Figure 6). For instance, the relative contribution of the technology yield gap to the total yield gap was less than 10% of Yw in the Southern province (which is part of agro-ecological zone I; Figure 6D Mean values (and coefficients of variation) are as follows: 2.6 t ha −1 (67.0%) for year 2012; 2.4 t ha −1 (66.6%) for year 2015; 2.2 t ha −1 (76.8%) for year 2019; 2.1 t ha −1 (74.0%) for AEZ I; 2.4 t ha −1 (70.3%) for AEZ IIa; 1.1 t ha −1 (82.0%) for AEZ IIb; 2.7 t ha −1 (61.4%) for AEZ III; 2.4 t ha −1 (66.2%) for farm type 1; 1.8 t ha −1 (76.2%) for farm type 2; 2.9 t ha −1 (61.3%) for farm type 3; 2.9 t ha −1 (60.9%) for hybrid varieties; 1.9 t ha −1 (73. E), whereas the relative contribution of the efficiency and resource yield gaps were ca. 20% and 30% of Yw. In Lusaka province (with areas also part of agro-ecological zone I), each of the three intermediate yield gaps accounted for ca. 20% of the total yield gap. The differences in the relative of contribution of the efficiency, resource, and technology yield gaps to the overall yield gap between these two provinces (Southern and Lusaka) and the other provinces is likely attributed to the low water-limited yield simulated, and hence small technology yield gap in absolute terms, for the Southern and Lusaka provinces (and respective agroecological zone, Figure 6A and B). There were also slightly differences in the causes of yield gaps for the different farm types (Figure 6C and F): the efficiency yield gap was slightly greater for FT3 (i.e., market-oriented maize farms) than for FT1 and FT2, whereas the opposite was true for the resource yield gap (Figure 6C and F).The stochastic frontier model fitted to the pooled data revealed that seed rate, variety type, aridity index, soil available water, and herbicide use were the key drivers of maize yield variability (Table 2). The seed rate had a significant positive effect on Ya with a 1% increase in seed rate resulting in 0.33% increase in Ya. There was also a significant effect of variety on Ya, with hybrid varieties yielding ca. 13% more than open-pollinated varieties. The effects of temperature seasonality and replanting on Ya were also statistically significant, but the effect was small. Aridity index and soil available water had a significant positive effect on Ya with a 1% increase in these variables resulting into 0.50 and 0.20% increase in Ya. Ya in loamy sand soils were significantly lower (135%) than in clay soils and adoption of erosion and flood control practices increased Ya by 5%. N applied had a significant positive effect on Ya whereas exchangeable acidity had a significant negative effect on Ya, but in both cases the effect was small. Herbicide use had a significant positive effect on Ya, resulting in 12.5% greater Ya compared to fields where herbicides were not used. Finally, Ya was significantly lower in 2015 and in 2019 than in 2012 (cf. Figure 5A). The time of the first weeding, measured in number of days after sowing, had a significant negative effect on the efficiency yield gap, meaning that smaller efficiency yield gaps were observed when the first weeding was done at later dates, but again the effect was small.The significance level and magnitude of the first-order terms derived from the survey data were comparable in both the Cobb-Douglas and translog stochastic frontier models (Supplementary Table 3). Yet, variables derived from secondary sources (temperature seasonality, aridity index, rooting depth, soil available water, pH in water, and exchangeable acidity) showed contrasting signs and different effect sizes (Supplementary Table 3). Quadratic terms were statistically significant for all continuous variables, except soil available water (Supplementary Table 3), indicating a quadratic effect of seed rate on Ya and a quadratic positive effect of N applied on Ya (cf. Figure 5E and F). There were negative interactions between seed rate and growing degree days, aridity index and N applied, and positive interactions between seed rate and temperature seasonality and pH in water. N applied showed a negative interaction with growing degree days, seed rate, rooting depth and soil available water, meaning that maize yield response to N decreased with increases in these variables.The effect of seed rate and N applied on maize yield was further investigated for highest, average, and lowest yielding fields. Maize yield ranged between 0 and 1.5 t ha −1 , 1.5 and 4.0 t ha −1 , and 4.0 and 9.0 t ha −1 for lowest, average, and highest yielding fields (Figure 5E and F). Seed and N rates were lowest in lowest yielding fields (16 kg ha −1 and 54 kg N ha −1 ), intermediate for average yielding fields (23 kg ha −1 and 84 kg N ha −1 ), and greatest for highest yielding fields (25 kg ha −1 and 100 kg N ha −1 ). There were no major differences in yield and input use for the different farm types across highest, average, and lowest yielding fields (data not shown). The quadratic effect of seed rate on yield was significant for highest and average yielding fields, but not for lowest yielding fields (Figure 5E), whereas the effect of N applied on yield was linear and positive for lowest, average, and highest yielding fields (Figure 5F). Yield response to N was greatest, intermediate, and smallest for average, highest, and lowest yielding fields, respectively.The drivers of maize yield variability for each farm type were largely comparable to those observed for the pooled data (Table 2), as opposed to the results obtained for Northern, Eastern, and Southern provinces (Supplementary Table 4). For all farm types, seed rate, aridity index, soil available water, and N applied had a significant positive effect on Ya and Ya was significantly smaller in 2019 than in 2012. Variety type and herbicide use had a positive effect on Ya for FT1 and FT3, and fields weeded three or more times yielded 15% more for FT1, and 9% less for FT3, than fields weeded once or not weeded. Increasing temperature seasonality by 1% translated into increases in Ya of 28% for FT1, replanted fields yielded 11% less than non-replanted fields for FT3, and fields where erosion or flood control practices were adopted for FT2 had 11% greater Ya than fields where these practices were not adopted. Also for FT2, fields weeded twice yielded 10% more than fields with one or no weeding operations. The effects of soil type on Ya were not consistent across farm types. The seed rate and N applied had a significant positive effect of maize, and a similar effect size, independently of the province (Supplementary Table 4) and the effect of biophysical variables (e.g., aridity index and soil available water) was not significant when the model was fitted per province (Supplementary Table 4).Agricultural productivity must increase in sub-Saharan Africa with a view towards improved food security and reduced food imports with minimum crop expansion in biodiversity and carbon-rich natural habitats (e.g., Giller et al. 2021a;Jayne and Sanchez 2021;Giller 2020;Keating et al. 2014). Zambia is no exception to this narrative (Figure 1), where narrowing yield gaps up to 80% of Yw is needed for the country to reach cereal self-sufficiency by 2050 with cropland expansion (van Ittersum et al. 2016). Yield gap closure for rain-fed maize across Zambia is only ca. 20% of Yw (Figure 6), which is similar for other crops in other countries across sub-Saharan Africa (van Ittersum et al. 2016;Tittonell and Giller 2013). The large yield gap of rain-fed maize in Zambia is mostly attributed to the technology yield gap (Figure 6) indicating that more efficient production methods are needed to narrow maize yield gaps. Yet, narrowing efficiency and resource yield gaps through fine tuning current farm practices could more than double current yields (Figure 6). The latter can be achieved through improved timeliness and precision of management operations and through increases in input use to levels observed in highest yielding fields (Figures 5E and 5F). Similar findings regarding the relative importance of efficiency, resource, and technology yield gaps were reported for cereal farming systems in Eastern Africa (Silva et al. 2019(Silva et al. , 2021;;Assefa et al. 2020;van Dijk et al. 2017), pointing to the need for making inputs available to farmers at the right amount, cost, and time, and of targeting and packaging technologies in ways that increase adoption at farm level.Seed and N rates, variety, weed control, and sowing date were the most important management drivers of maize yield variability in Zambia (Table 2). All these are well-known drivers of maize yield variability in Eastern and Southern Africa (e.g., Burke et al. 2020;Assefa et al. 2020). First, seed rate and variety type had a large impact on maize yield, with a 1% increase in seed rate resulting ca. 0.35% increase in maize yield and hybrid varieties yielding 12% more than traditional OPVs (Table 2). Seed rate might well be a proxy for plant population, a key factor controlling maize productivity in Southern Africa (Nyagumbo et al. under review). Second, the timing of the first weeding operation was an important driver of the efficiency yield gap (Table 2), reflecting the importance of timely weeding at the start of the growing season for maize productivity. Third, N fertilizer rate had a linear positive effect on maize yield (Figure 5F; Table 2), but the effect size was small due to the low amounts of N applied by farmers. In fact, the range of N application rates observed in farmers' fields was considerably lower than that needed to reach 80% of Yw (i.e., 170-320 kg N ha −1 ; Table 1). Such large N application rates are out of reach for most smallholders in the country, and may well not be profitable or desirable under prevailing conditions (e.g., input-output markets, infrastructure, and soil acidity). Lastly, the effect of timely sowing on maize productivity was very much related to the onset of the rains (Supplementary Figures 3 and 4), and appropriate-scale mechanization can contribute to timely and more precise sowing across the region (Baudron et al. 2015).The drivers of maize yield variability were largely consistent across farm types (Table 2), but the importance of maize for rural livelihoods across Zambia was farm-type specific (Figure 4). This means that interventions aiming to narrow maize yield gaps will likely benefit the different farm types differently. For instance, boosting maize productivity can be a suitable 'stepping up' strategy for market-oriented maize farms (FT3), who achieve the highest maize yields in Zambia (Figure 6C). Targeting interventions to this type of farm might well be the most effective way to increase maize production at national level. Conversely, farms with low levels of assets (FT1 and FT2, Figure 4), for whom 'stepping out' of maize production through investments in new on-farm activities or off-farm activities is likely more suitable, do not seem to have the productive capacity to intensify maize production in the short-term. Yet, increasing maize yields would be more beneficial for FT2 than for FT1 given the large dependency on bought maize of the former (Figure 4). Clearly, strategies aiming to narrow maize yield gaps must thus be complemented with a suite of pro-poor policies and investments tailored to specific farm types. This will be crucial to stimulate and embed smallholder agriculture into a broader rural development program that can provide social safety nets in the absence of livelihood options off-farm (Giller et al. 2021a).Maize production in Zambia takes place across a gradient of agro-ecological conditions, which in turn have a considerable impact on yield gaps and their causes throughout the country (Figure 6; Supplementary Table 4). For instance, our analysis indicates that a 1% increase in soil available water translates into ca. 0.20% greater maize yield and that a 1% decrease in exchangeable acidity results into a 0.02% increase in maize yield across the pooled sample (Supplementary Table 4). Water is indeed a key limiting factor to production in the semi-arid areas of Southern and Western Zambia (Table 1, Figure 2; Ngoma et al. 2021) whereas soil acidity is known to be a major constraint to agricultural production in the humid areas of Northern Zambia (Pelletier et al. 2020;Burke et al. 2017;Pauw 1994). These biophysical constraints may impact the adoption of mineral fertilizers to narrow resource yield gaps due to the risks involved in areas with low and erratic rainfall and the low nutrient-use efficiency in areas with acid soils, both with implications beyond maize farming in Zambia. Erratic rainfall is widespread across much of Eastern and Southern Africa (Muthoni et al. 2019) whereas soil acidity (defined here as low pH areas with high levels of exchangeable acidity) affects over half of all countries in sub-Saharan Africa (Silva et al., in preparation). These results support the revision of the subsidy program by the Government of Zambia (Morgan et al. 2019) to make it possible for farmers to access mechanized services and inputs (e.g., seeds, fertilizers, and lime) and to strengthen extension systems to deliver timely and site-specific agronomic recommendations (Jayne et al. 2018). This is crucial to improve soil health and sustainably intensify maize production in the country.Further research is needed to understand how fertilizer use is influenced by climate variability and to identify profitable soil water conservation technologies for semi-arid areas. A range of new technologies building on previous conservation agriculture research (e.g., improved legume systems with strip-, double, relay and intercropping, green manure cover crops, and agroforestry species) are currently being tested on-farm in Zambia to address these challenges. For humid areas, it is crucial to revisit past research on soil acidity to assess the returns-on-investment associated with liming or acid soil management strategies (CIMMYT 2021; Burke et al. 2017). Simulated yield ceilings across the continent, and respective N rates needed to reach such yields (Table 1; van Ittersum et al., 2016), should also be thoroughly tested against empirical data as they are well above maximum yields reported in agronomic experiments under controlled conditions (see Masuka et al. 2017;Mupangwa et al. 2017 for examples in Zambia).High rainfall variability makes rain-fed farming across Eastern and Southern Africa a risky activity for smallholders. Site-specific recommendations must thus consider year-to-year variation in profitability and smallholders' risk profile to cope with uncertain yield response to inputs (Descheemaeker et al. 2016), as these are known to constrain farmers' willingness to investment in technologies. More attention must be paid to incorporate the effects of rainfall variability and soil properties on yield response to inputs to better explain the adoption of technologies (Chamberlin et al. 2021;Burke et al. 2017), which appear to be profitable on average, but have high variance in outcomes over time. The role of non-information constraints, such as alternative uses of labor at critical periods (Silva et al. 2019;Kamanga et al. 2014), to the adoption of improved crop management practices also needs to be explored as these can limit the timely management needed to narrow yield gaps. Small farm sizes are another important constraint to technology adoption and intensification of crop production in African smallholder farming systems (Harris and Orr 2014), as narrowing yield gaps on small farms is often not enough to ensure food self-sufficiency or a living income at household level (Giller et al. 2021b).Maize is the dominant crop in Zambian farming systems, which range from mixed-crop livestock systems in semiarid areas of the Southern and Western provinces to mixed maize systems in the rest of the country. This study combined for the first time a farm typology delineation with yield gap decomposition to gain insights on what interventions are needed, where, and for which farm types, to increase maize production in Zambia. Three farm types were identified, including households for which maize is a marginal crop, households which are net buyers of maize, and households which are market-oriented maize producers. Maize yield gap closure across the country was only 20% of the water-limited yield (Yw), corresponding to 2.4 t ha −1 , and was slightly larger for marketoriented maize farms. For nearly all agro-ecological regions, provinces, and farm types, about half of the yield gap was attributed to current technologies used by farmers not reaching their full agronomic potential. Yet, improving current technologies in terms of timeliness and precision of operations and increasing input use, particularly mineral fertilizers, could more than double current yields. Doing so requires targeted approaches for technology intervention, e.g., by focusing on market-oriented maize producers, accompanied by carefully designed policy interventions ensuring other households benefit from other value chains or off-farm opportunities. If profitable, adoption of practices that increase soil moisture in semi-arid areas, such as conservation agriculture, and management of soil acidity in humid areas are key to improve yield response to mineral fertilizers. Two avenues can facilitate the foregoing policy levers. First, the current national subsidy program needs to be flexible enough to make it possible for farmers to access mechanized services and inputs. Second, the extension systems need to be strengthened to help farmers cope with risk and uncertain crop yield response to inputs in areas with high rainfall variability. Further research is needed to better understand the profitability of maize production under rain-fed conditions and to disseminate technologies that can reduce the vulnerability of farmers to inter-annual rainfall variability. Blanket, one-size-fitsall, recommendations should be avoided when promoting sustainable intensification practices aiming to increase yields in the country.","tokenCount":"7562"} \ No newline at end of file diff --git a/data/part_3/8305545211.json b/data/part_3/8305545211.json new file mode 100644 index 0000000000000000000000000000000000000000..642efe9626bd03112d97d133f9d3b76fa16be624 --- /dev/null +++ b/data/part_3/8305545211.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"2aa01d6e6603800bee03177822af6de8","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/6c0b5cd3-57a8-4af4-b425-ecd5c886cdbb/retrieve","id":"-1330374381"},"keywords":["Padulosi","S. (Stefano)","editor. | King","E. D. I. Oliver (E. D. Israel Oliver)","editor. | Hunter","Danny","editor. | Swaminathan","M. S. (Monkombu Sambasivan)","editor Germplasm resources conservation. | Millets-Breeding-Case studies. | Agrobiodiversity. | Agrobiodiversity conservation. | Plant species diversity. | Plant diversity conservation. | Food security. | Sustainable agriculture. Classification: LCC SB175 .O77 2021 (print) | LCC SB175 (ebook) | CAB International. Ulian","T.","Diazgranados","M.","Pironon","S.","Padulosi","S.","Liu","U.","Davies","L.","Howes","M.-J.R.","Borrell","J.","Ondo","I.","Pérez-Escobar","O.A.","Sharrock","S.","Ryan","P.","Hunter","D.","Lee","M.A.","Barstow","C.","Łuczaj","Ł.","Pieroni","A.","Cámara-Leret","R.","Noorani","A.","Mba","C.","Womdim","R.N.","Muminjanov","H.","Antonelli","A.","Pritchard","H.W. and Mattana","E NUS for nutrition-sensitive agriculture 57 Cambridge University Press","Cambridge. Ulian","T.","Diazgranados","M.","Pironon","S.","Padulosi","S.","Liu","U.","Davies","L.","Howes","M.-J.R.","Borrell","J.","Ondo","I.","Pérez-Escobar","O.A.","Sharrock","S.","Ryan","P.","Hunter","D.","Lee","M.A.","Barstow","C.","Łuczaj","Ł.","Pieroni","A.","Cámara-Leret","R.","Noorani","A.","Mba","C.","Womdim","R.N.","Muminjanov","H.","Antonelli","A.","Pritchard","H.W. and M attana","E Willett","W.","Rockström","J.","Loken","B.","Springmann","M.","Lang","T.","Vermeulen","S.","Garnett","T.","Tilman","D.","DeClerck","F.","Wood","A.","et al"],"sieverID":"f2e405d3-c22c-4c55-9b19-01b751791953","pagecount":"471","content":"Orphan Crops for Sustainable Food and Nutrition Security discusses the issues, challenges, needs and opportunities related to the promotion of orphan crops, known also as neglected and underutilized species (NUS).The book is structured into six parts, covering the following themes: introduction to NUS, approaches, methods and tools for the use enhancement of NUS, integrated conservation and use of minor millets, nutritional and food security roles of minor millets, stakeholders and global champions, and, building an enabling environment. Presenting a number of case studies at the regional and country levels, the chapters cover different but highly interlinked aspects along the value chains, from acquisition and characterization of genetic diversity, cultivation and harvesting to value addition, marketing, consumption and policy for mainstreaming. Cross-cutting issues like gender, capacity building and empowerment of vulnerable groups are also addressed by authors. Representatives from communities, research for development agencies and the private sector also share their reflections on the needs for the use enhancement of NUS from their own perspectives. This book will be of great interest to students and scholars of food security, sustainable agriculture, nutrition and health and development, as well as practitioners and policymakers involved in building more resilient food and production systems.For more information about this series, please visit: www.routledge.com/Issuesin-Agricultural-Biodiversity/book-series/ECIAB This series of books is published by Earthscan in association with the Alliance of Bioversity International and CIAT. The aim of the series is to review the current state of knowledge in topical issues associated with agricultural biodiversity, to identify gaps in our knowledge base, to synthesize lessons learned and to propose future research and development actions. The overall objective is to increase the sustainable use of biodiversity in improving people's well-being and food and nutrition security. The series' scope is all aspects of agricultural biodiversity, ranging from conservation biology of genetic resources through social sciences to policy and legal aspects. It also covers the fields of research, education, communication and coordination, information management and knowledge sharing.Today we are confronted with two major paradoxes globally -the persistence of hunger in the midst of an impressive technological capacity to grow more food; and the narrowing of crop diversity within global food systems in the face of a fast-growing world population. Both conditions call for urgent actions to ensure a world without hunger.Agriculture is the mother of nutrition security. It is believed that agriculture or settled cultivation began over 12,000 years ago with women growing crops of importance to life on earth. Yet, over time, the importance of genetic variability was not given adequate recognition, leading to an over-reliance on a few crops such as rice, wheat and maize. Not only has this resulted in a large number of plants becoming extinct, but it has also put the food and nutrition security of the poor and marginalized, dependent on a range of crop species, at risk. With a focus on the standardization of production systems, not only are species lost, but so are markets -national and international -as is research interest in improving the productivity of these crops. This is why planned initiatives for the conservation, cultivation, consumption and commerce of genetic resources are important.Maintaining the genetic diversity of crops is even more critical in today's context of climate change. It is, in fact, the dynamic maintenance of agrobiodiversity operated by farmers in situ/on farm that could help make our food systems more resilient. Whereas the world can feel relatively comforted by the 1,450 gene banks that have been built to safeguard crop diversity -including the Svalbard Vault in Norway -much more needs to be done to map, collect, characterize, document and evaluate the thousands of orphan and underutilized crops, today just marginally conserved in gene banks, but whose survival is thanks to the laborious work of millions of farming communities around the world, a service done for the public good -but at their own personal cost! In that regard, the work pursued by the M.S. Swaminathan Research Foundation and other NGOsxxiv Preface and acknowledgments in building capacities of farmers in conserving local crop needs should be encouraged and supported.Given the scarcity of land, we must recognize that ensuring food security cannot be addressed by expanding land available for agricultural activities. We need to embrace a different paradigm that, while using less land, can provide more food from crops that are better adapted to climate change. At the same time, we need to do more to safeguard biodiversity so as to kee foodscapes healthy and productive; reduce the depletion of finite resources like water and soil; promote equitable, gender-inclusive food systems and foster greater synergy between scientific and indigenous knowledge. The role of women in feeding the planet needs to be better recognized and supported.One of the great achievements of science was the development of our ability to describe the genomic structure of major crop species and their wild relatives, which has provided a wealth of information useful for increasing both crop production and productivity. However, what we are witnessing now is that yields of major crops are reaching a plateau that may not be easy to overcome. More innovative solutions are needed to address the yield bottleneck. Leveraging agrobiodiversity to grow more and diverse nutritious food in difficult areas with poor soil and challenging climatic conditions should receive greater attention. This is not new to us, since risk-aversion practices have always guided generations of farmers who have been growing different crop and varietal mixes to buffer against shocks. Farming families have often been motivated by a desire to minimize risks, not just maximize profits; hence, the wisdom underlying the decisions to balance subsistence and market motivations needs to be recovered.In fact, significant progress in agronomic research and the adoption of systems approaches have shown the many benefits that biodiversity-based practices can bring about in challenging conditions, not just to the environment, but equally to ensuring the food and nutrition security of local communities. Crops considered 'orphan, underutilized and neglected' are all extremely valuable as not only are they often more nutritious than the major cereals, but also tend to need less water and are more tolerant of high temperatures and grow better in difficult climatic conditions.I have stressed, on various occasions, the disparities in access to technology that we are witnessing today. Despite the many exciting developments -be it in digital and precision agriculture, biotechnologies or ecotechnologies -we still register what I describe as a 'technological apartheid', which is contributing to 'orphan crops remaining orphans' in relation to the choice of research areas for their use enhancement. A good example is the case of technology for processing minor millets, which until recently was hardly accessible for rural households, discouraging the consumption of these nutritious foods where they are most needed.Back in 1968, I warned that if all locally adapted crop varieties were replaced with one or two high-yielding strains, it could lead to serious damage from pests, pathogens and weeds, contributing to the making of major agriculturalAgricultural biodiversity represents a strategic resource in ensuring food and nutrition security for humankind (Thrupp, 2000;Frison et al., 2006;Bioversity International, 2017). It keeps us healthy, as diets with poor biodiversity often lack crucial vitamins and micronutrients and are associated with diet-related non-communicable diseases (diabetes, heart attacks, overweight, obesity and cancer), which are a leading cause of death at the global level (Branca et al., 2019). Diversity on our plate is of paramount importance to everybody, and making sure this diversity is safeguarded and promoted should receive the utmost attention of decision makers, both at the national and the international level.The period of intense agricultural growth from the early 1960s to mid-1980s, known as the Green Revolution, 1 was characterized by an u nprecedented expansion in the production of staple crops through the development of high-yielding varieties (HYV). The Green Revolution contributed to a r eduction of poverty. An increase of approximately 15% in per capita GDP as a result of a 10% use increase of the HYV in the period 1960-2000 was observed, with an associated reduction of food insecurity for billions of people, and an estimated 18-27 million hectares of natural ecosystems safeguarded from being converted to agricultural land (Hazell, 2003;FAO, 2011;Pingali, 2012;Stevenson et al., 2013;Gollin et al., 2018). Among the key players of the Green Revolution were the international agricultural research centers of the CGIAR Consortium, responsible for the development of HYVs of major staples-mostly cereals-whose production more than doubled in developing nations between the years 1961and 1985(Tribe, 1994;;Conway, 1998). Unfortunately, this success came with a heavy cost to the environment (e.g., in the loss of wild and cultivated biodiversity, water scarcity, increased crop vulnerability to pests and diseases and loss of soil fertility), and caused a deterioration in human nutrition 1 NUS What they are and why we need them more than ever Stefano Padulosi, Gennifer Meldrum, E.D. Israel Oliver King and Danny Hunter (e.g., with essential amino acid deficiencies and a general lack of balanced essential fatty acids, vitamins and minerals from cereal-dominated diets), as well as increased health hazards from the widespread use of pesticides. This period also brought about socio-political instabilities (e.g., rural-urban migration of farmers unable to afford introduced technologies, as well as social conflicts and marginalization) (Jennings, 1988;Fowler and Mooney, 1990;Pingali, 2012).The greater availability of calories resulting from the Green Revolution's efforts has not represented an escape from hunger for millions of people, as HYV have been scarcely adopted in Africa, for instance, and the narrow crop diversity has led to food systems simplification, reducing options for healthy diets (Mooney and Fowler, 1990;Vanhaute, 2011;Willett et al., 2019). Nearly one in three people globally are still afflicted by malnutrition-a situation predicted to worsen in coming years based on current trends (FAO et al., 2018;UNSCN, 2018).The diversity reductionist approach followed by the Green Revolution has influenced the way agricultural development strategies and programs have been developed in every country for decades. This approach continues to have an influence today at different levels; however, it is increasingly questioned and less accepted, with urgent calls for a global transformation of the food system growing (Schutter and Vanloueren, 2011).As we tackle the ambitious Sustainable Development Goal 2 (SDG2) of achieving 'zero hunger' by 2030, we are faced with the disturbing paradox that is hindering our efforts: of the 5,000 food crops estimated to exist worldwide, global food systems are dominated by just three (rice, wheat and maize), which provide half the world's plant-derived calories (FAO, 2015;Willis, 2017). An incredible wealth of nutritious crops, and other wild edible food plants, is largely overlooked in our battle to produce food and tackle malnutrition, and this is happening now when the need for diversification of production and food systems has never been greater. Crop uniformity and standardization of agricultural fields are causing food systems to be enormously vulnerable to climate change, reducing farmers' capacity to absorb shocks and leaving consumers with fewer choices for nutritious and healthy diets (Padulosi et al., 2019). Those thousands of nutritious plant species left behind by the Green Revolution, which we call 'neglected and underutilized species' (NUS), represent a unique treasure for humanity that must be recovered from their state of neglect and must be mobilized to fuel a truly evergreen agricultural revolution (Swaminathan, 1996(Swaminathan, , 2020)).Neglected and underutilized species have become a popular topic lately, both in public debates and scientific papers. Different terminologies (orphan, forgotten, lost, alternative, minor, novel, local, traditional, etc.) are interchangeably used to refer to these species, creating confusion among researchers and development practitioners. It is one of the aims of this book to dispel this confusion. NUS is a terminology subject to different interpretations, reflecting people's own cultural background and sensitivity, and we hope to put everybody on the same level of understanding through the following observations.In simple words, NUS are plant species that-although appreciated at local level-are forgotten, abandoned or rarely explored by researchers and other agriculture and food systems R&D actors, for various reasons (e.g., low economic competitiveness; lack of improved seed, adequate cultivation practices, or processing technologies and reduced consumer appeal). They include wild, semi or fully domesticated plants from different food plant groups (including cereals, vegetables, legumes, roots and tubers, fruits, nuts, spices, etc.), diverse growth forms (herbs, shrubs, vines, trees, etc.) and life cycles (annual, biennial, perennial) (Padulosi et al., 2018). Although this book focuses solely on food plants, we should point out that NUS as a concept may well refer to other species too (plants or animals), as exemplified by the growing interest in the use of insects as a source of sustainable and cheap proteins for food and feed (van Huis et al., 2013;Dickie et al., 2019).The reduced use of NUS over time has led to the loss of both their genetic diversity and a wealth of traditional practices and associated knowledge that was developed by generations of traditional farmers for managing sustainable harvests (if occurring wild), cultivation, processing and preparation. Also contributing to this marginalization is the widespread perception, registered particularly among younger consumers, that NUS are the legacy of backwardness and hardship of traditional rural societies, the food of the poor, and should therefore be abandoned (Durst and Nomindelger, 2014;Padulosi et al., 2019).The term 'neglected and underutilized species' was first conceived by IP-GRI (the predecessor of Bioversity) in the late 1990s (Eyzaguirre et al., 1999). The reason why this term was chosen relates to its usefulness in conveying two key messages upfront: firstly, the status of neglect by research and development efforts of these traditional resources; and secondly, the status of underuse in relation to the multiple benefits they can bring to improving nutrition and health, livelihoods, the environment and biodiversity conservation, if better harnessed by society. Furthermore, the use of the word 'species' instead of 'crops', was also preferred in reminding people that NUS do encompass both naturally occurring species that are harvested in the wild and domesticated species. Lastly, the word 'neglected' is useful for evoking in our narratives those millions of 'neglected' people (vulnerable groups, marginalized members of society), who rely on NUS for their livelihood and for whom the improvement of these resources, to which they are culturally connected, represents an opportunity of economic growth, empowerment and reaffirmation of identity.The term 'orphan crops', present also in the title of this book, is often used interchangeably with NUS, though the latter is broader in scope as it includes both wild and cultivated species that may not immediately convey the messages with the same intensity described in Box 1.1. For more reflections on the semantics of the term NUS, the reader can refer to Padulosi et al. (2004Padulosi et al. ( , 2008)).Description SourceNeglected \"Neglected crops are those grown primarily in their centres IPGRI, crops of origin by traditional farmers, where they are still 2002 important for the subsistence of local communities. Some species may be widely distributed around the world but tend to occupy special niches in the local ecology and in local production and consumption systems. While these crops continue to be maintained by sociocultural preferences and the ways they are used, they remain inadequately documented and neglected by formal research and conservation\". NUS \"Acronym standing for Neglected and Underutilized Padulosi et Species and applied to useful plant species which are al., 2013 marginalized, if not entirely ignored, by researchers, breeders and policy makers; they belong to a large, biodiverse group of thousands of domesticated, semidomesticated or wild species; they may be locally adapted minor crops as well as non-timber forest species. The 'NUS' term is a fluid one, as when a crop is simultaneously a well-established major crop in one country and a neglected minor crop in another. NUS tend to be managed with traditional systems, use informal seed sources and involve a strong gender element\". In a wider sense, the term NUS also could be used to refer to animal species. Orphan crops \"Orphan crops are defined as crops that have either Mabhaudhi originated in a geographic location or those that have et al., become 'indigenized' over many years (> 10 decades) 2019. of cultivation as well as natural and farmer selection (Dawson et al., 2007). The term 'orphan' has often been used to refer to crops that may have originated elsewhere, but have undergone extensive domestication locally, thus giving rise to local variations, i.e., 'naturalized/indigenized crops' (Mabhaudhi et al., 2017)\". Underutilized \"Underutilized crops were once grown more widely or IPGRI, crops intensively but are falling into disuse for a variety of 2002 agronomic, genetic, economic and cultural reasons. Farmers and consumers are using these crops less because they are in some way not competitive with other species in the same agricultural environment. The decline of these crops may erode the genetic base and prevent distinctive and valuable traits being used in crop adaptation and improvement\".Beyond the terminology used, the best way to describe NUS is to refer to their key characteristics, which can be helpful in identifying the common limitations behind their marginalization as well as the multiple useful traits that can be leveraged for their promotion. Box 1.2 provides a list of these recurrent features that we have been documenting around the world, during our work focusing on the use enhancement of NUS. In fact, such a list of features could be well considered a 'terms of reference' for a shared comprehension of NUS by workers.Referring to these key features of NUS is useful in making a clear distinction between NUS and landraces of major crops (e.g., local varieties of wheat, rice or beans), whose status of neglect and underuse is also recorded in many countries. Our position is that these varieties should not be considered NUS, because their status can be improved by leveraging the vast network of research focusing on major crops that already exists in most countries. The growing interest on NUS by the research community and development practitioners (and hopefully accompanied by much needed funding!) should, therefore, strategically be used to tackle the promotion of NUS 'sensu stricto' instead of being used for underutilized v arieties of major crops for which the R&D infrastructure already exists.• Low competitiveness: little R&D investment has left NUS behind in terms of advances in their conservation, cultivation, harvest, postharvest, marketability, nutritional profiles, gender, policies and legal frameworks.Relevant only to local consumption and production systems: being intimately linked to local food cultures, NUS are used in traditional food preparations and are associated with social and religious ceremonies and rituals.Adapted to agroecological niches and marginal areas: NUS often demonstrate comparative advantages over commercial crops due to natural selection or selection carried out by local growers against biotic and abiotic stresses, which makes them perform comparatively better under low input and biological agriculture techniques.Resilient to climate change: compared with commodity crops, NUS are perceived by local growers as highly adapted to biotic and abiotic stresses related to climate change, something that is being increasingly confirmed by scientific research.Represented by ecotypes or landraces: owing to the poor attention received from breeders, they are often represented by germplasm material that is not performing so well, requiring some degree of genetic i mprovement-a fact that hinders their competitiveness in production systems.With regard to how many NUS exist at the global level, we can safely say that taking into account both wild and cultivated species, the number is in the order of thousands (Padulosi et al., 2018). In fact, most of the estimated 5,000 cultivated food crops recently recorded as existing (RBG Kew, 2016;Ulian et al., 2020) are in some state of marginalization. For instance, in the case of cultivated vegetables, within the family Leguminosae, there are an estimated 23,000 species (Plant List, 2020), of which some 653 have been cultivated (Khoshbakht and Hammer, 2008). Taking as an example the 127 species of cultivated vegetables belonging to this family, the majority have been found to be neglected, based on three key indicators viz. (a) number of records in Google Scholar as indicator of research effort devoted to the species, (b) number of accessions maintained in ex situ germplasm collections worldwide and (c) production data from the FAO's FAOSTAT, an indicator of knowledge on species distribution and production levels (Meldrum et al., 2018). Similarly, in the family Compositae the numbers are as follows: of its 27,000 species, 284 are cultivated plants, of which 85 vegetables are also largely neglected.Further complications in a shared understanding of NUS may arise also from the fact that some species that are clearly underutilized in one country are, on the • Rich in traditional knowledge: in view of the ongoing cultural erosion affecting traditional societies, associated knowledge on NUS is being rapidly lost, which, in turn, leads to the loss of genetic diversity and continued opportunities for appreciation by consumers, especially the younger generation.Poorly represented in ex situ gene banks: their genetic diversity is maintained largely in situ and on-farm and (possibly) in private seed collections (e.g., the one maintained by the Baker Creek Heirloom Seeds Company 2 ) or community seed banks (such as those maintained by MSSRF in south India 3 ).Characterized by poorly developed or non-existent seed supply systems: inferior quality of seed that has a negative impact on their performance in cultivation.Highly relevant in Indigenous Peoples' societies: for Indigenous communities, NUS are the result of sophisticated trials and accumulation of experience over many centuries and generations: they are a manifestation of a systematic process that involved intricate ways of learning and accumulating experience (Padulosi et al., 2019).Multi-functionality and multiple benefits: they are often able to provide people with not just nutritious food, but also valuable non-food products and ecosystem services. Excellent examples of such multi -functionality can be found in Bambara groundnut, chaya or minor millets that are presented in the chapters in this book.NUS: what they are and why we need them 9 contrary, very popular in another. This is the case for the cereal tef, (Eragrostis tef ), a staple food in Ethiopia, that is hardly consumed outside the country, except in small amounts primarily by the Ethiopian diaspora. The opposite case is that of quinoa (Chenopodium quinoa), which was an underutilized crop until a few years ago, when it started to spread from the Andean region across all continents to become a global commodity (Bazile et al., 2016). The spicy rocket (collective name for Eruca sativa and Diplotaxis spp. originating from the Mediterranean/Central Asia) was another typical underutilized vegetable until the early 1990s (Padulosi et al., 2008); yet, today it is being cultivated on all continents, with 400,000 tons/ year produced in a small area near Salerno (\"Piana del Sele\") in south Italy alone, representing 73% of the entire Italian production (Pignataro, 2019).The status of NUS nowadays changes rapidly (for better or for worse) and it becomes hard to keep track of these changes in a consistent manner. What we see today, is very often a 'mosaic' situation, with a crop being popular in one country (or region) and highly marginalized in others. Such a scenario poses great challenges to workers engaged in setting priorities for choosing the 'best' NUS to support agricultural development programs. In our opinion, more than a silver bullet, what the world really needs today are portfolios of 'silver baskets' of NUS diversity to meet the various needs of consumers from different socioeconomic and cultural backgrounds across regions and countries. The reader may find more on priority-setting approaches for NUS in Chapters 2, 9, 13 of this volume, and in the wider scientific literature (Padulosi, 1999a,b;Hunter et al., 2019Hunter et al., , 2020;;Ulian et al., 2020, and references therein).The chapters in Part I provide several examples of benefits associated with the use enhancement of emblematic NUS from India and other regions of the world. An overview of livelihood benefits arising from the use enhancement of NUS can be also found in the works of Ravi et al. (2010), Padulosi et al. (2011Padulosi et al. ( , 2013)), Massawe et al. (2015), Mabhaudhi et al. (2019) and Raneri et al. (2019).In Table 1.1, we have summarized the wide range of the benefits associated with NUS and compare these to similar ones that can be obtained from commodity crops. As can be appreciated, benefits from the wider cultivation and use of NUS far outweigh those associated with commodity crops. Research investment is urgently needed to translate these potential benefits into concrete realities by providing high-quality seed, refined cultivation practices, more efficient processing technologies, marketing that is more efficient, etc. It is worth stressing-as mentioned by Professor Swaminathan in his foreword to this book-that our societies are well equipped to address the bottlenecks hindering the use of NUS; what is most needed is the political will to leverage the enormous technology and expertise accumulated from working on commodity crops, to benefit of the NUS cause (see also Chapters 3, 13 and 17 for more on mainstreaming needs and opportunities). Consistent with this long list of benefits is that NUS can be powerful levers in support of important activities framed in the context of International Treaties and Agreements, such as those of the UN's Sustainable Development Goals (for example SDGs 2, 7, 12, 13, 15 and 17, the Aichi Biodiversity Target 13, 5 Activity 11 [and others as well] of the FAO Second Global Plan of Action on PGRFA, 6 the IFAD Action Plans on Mainstreaming Nutrition 7 2019-2025, the IFAD R ural Youth Action Plan 2019-2021 8 and IFAD Strategy and Action Plan on Environment and Climate Change 2019-2025 9 ). Interesting to note is that in 2014, at the Second International Conference on Nutrition (ICN2), member states acknowledged the key role played by diversified and sustainable diets, including traditional foods such as NUS, in reducing malnutrition 10 (see the UNSCN's commentary provided in Chapter 31).With regard to climate change, one of the most interesting examples of the drought-escaping capacity of NUS in stress-avoiding strategies comes from minor millets and in particular from barnyard millet (Echinochloa colona), whose grains can reach maturity just 45 days after sowing (Hulse et al., 1980), and hence represent ideal crops in areas with very short rainy seasons. Minor millets can produce a reasonable harvest with only about 10% of the water required to grow rice, which makes them an ideal (and cheap) alternative source of carbohydrates and other important micronutrients for areas like South Asia, which are suffering from climate change and where the cultivation of rice is increasingly challenged (Padulosi et al., 2009). Similarly, the highly nutritious tepary bean (Phaseolus acutifolius)-which completes its reproductive cycle rapidly and thus avoids subsequent drought (Nabhan, 1990)-is able to produce mature beans in just 60 days (Wolf, 2018). This legume is a precious source of protein, especially in Central America, where the crop used to be popular in the past and where it could help counteract the decline in common bean production as a result of recurrent droughts (Bioversity International, 2018). Cañahua (Chenopodium pallidicaule), a close relative of quinoa, is a very nutritious and hardy crop but its fate has been very different from that of the popularity of quinoa. In fact, cañahua is capable of withstanding cold stresses, a trait not present in quinoa and one that makes it much desired by local farmers who are experiencing more frequent morning frosts around Lake Titicaca in Bolivia and Peru. Unfortunately, the abandonment of this crop by farmers, who replaced it with the more remunerative quinoa, has led to the disappearance of its germplasm, making its re-introduction to farming communities hard to realize (Bioversity International, 2017).Supporting evidence also exists in the literature for the risk-avoidance practices adopted by small-scale farmers in areas where the crop diversity of NUS is particularly high (Altieri, 1987;Holt-Gimenez, 2006). An example of mixed production systems in which farmers can harness the multiple and complementary benefits (agronomic, economic, social) from NUS to mitigate harvest failures due to climate change (Mijatovic et al., 2019) is that of the 'baranaja' mixed cropping system. This farming practice, used in the Garhwal region of the state of Uttarakhand in India, involves sowing 12 or more crops on the same plot, including various types of beans, grains and millets, and harvesting them at different times (Ghosh and Dhyani, 2004). Several of these crops are NUS and such practices help farmers make the best use of limited land, save on the cost of chemical fertilizers through the N-fixing capacity of some species and make use of enhancing soil capacities and different maturity times of crops to help secure a regular and nutritious supply of foods to households.Other NUS that are often mentioned in the literature for their drought tolerance/adaptation include the baobab (Adansonia digitata), pigeon pea ( Cajanus cajan), jute mallow (Corchorus olitorius), chaya (Cnidoscolus aconitifolius), fonio (Digitaria exilis), moringa (Moringa oleifera), tepary bean (Phaseolus acutifolius), Bambara groundnut (Vigna subterranea), jujube (Ziziphus mauritania), strawberry tree (Arbutus spp.), marula (Sclerocarya birrea), amaranth (Amaranthus spp.) and grass pea (Lathyrus sativus) (Padulosi et al., 2011).From a nutritional point of view, it is very important to highlight that NUS have similar or sometimes remarkably higher nutritional profiles than those found in commodity crops (Hunter et al., 2019). Considering that the 51 essential nutrients needed for sustaining human life (Graham et al., 2007) cannot be found easily in the few staple crops feeding the world today, we can make a strong case for the theory that the vast NUS portfolio that fortunately still exists at local level is a strategic source of vital nutrients in the fight against malnutrition (Raneri et al., 2019). The diversity of NUS can be a source of essential nutrients year round and, at the same time, can make peoples' meals more delicious, tastier and more enjoyable. More NUS diversity on the plate helps people of different age groups better meet their own nutritional needs, and can allow the fulfillment of individual health requirements and food preferences. Interestingly, 10 of the 17 essential micronutrients and 13 (out of 13) vitamins can be found in fruits and vegetables, a category of crops represented by thousands of species that are today largely underutilized.Furthermore, whereas affluent people nowadays have the privilege of accessing food originating from all parts of the world on supermarket shelves at any time of the year, for the majority of the world's population such a privilege is largely denied. It is a fact that for most people living in vulnerable areas of sub-Saharan Africa or Asia, food security is largely dependent on crops grown locally. Due to the shrinking of the food basket that these areas are seeing, local populations are more vulnerable to the so-called lean season, the period preceding the harvest of main staples during which households have often exhausted their household food reserves. In this regard, our research in Mali, India and Guatemala has discovered that several local NUS (wild and cultivated) that are currently scarcely used due to low awareness of their nutritional values, lack of seed or other constraints can be revitalized and become helpful allies in fighting food insecurity during the lean season (Lochetti et al., 2020). More on the seasonal calendars developed to guide local populations in managing this untapped diversity is provided in Chapter 14, whereas a more extensive articulation of NUS and nutrition-sensitive agriculture is provided in Chapter 3.As stressed previously, the promotion of NUS can be leveraged to support the empowerment of local communities, because it is in those areas-inhabited especially by Indigenous Peoples-that a great diversity of NUS is found. Agricultural systems in Indigenous Peoples' territories have not been subjected to intensive cultivation practices and local communities living there have been safeguarding a great amount of diversity compared to other societies (IFAD, 2019;Singh and Rana, 2020). The intimate link between NUS and local communities, whose own identity is quite dependent on these foods, offers an opportunity for the revitalization of the gastronomic culture through, for instance, agritourism approaches as practiced in depressed areas of Lake Titicaca by Bioversity and its partners in the mid-2000s (Taranto and Padulosi, 2009).As noted in previous publications (Eyzaguirre et al., 1999;Padulosi et al., 2013;Hunter et al., 2019;Borelli et al., 2020;Hunter et al., 2020), NUS are often called 'minor' crops in view of the fact that their production volume is much lower compared to that of 'major' crops (commodities or staples). In terms of their multiple livelihood and other benefits, NUS are not minor at all and, hence, call for more robust and consistent actions by decision makers for their recognition and promotion.Tapping the portfolio of an estimated 653 leguminous NUS (Khoshbakht and Hammer, 2008) to provide proteins to a hungry world in ways that are more sustainable to the environment, using less water and fewer chemical fertilizers as compared to livestock farms, is, for example, an important contribution to safeguarding our planet and is consistent with the objective of the so-called 'sustainable intensification' of agriculture that is advocated by many (Cassman and Grassini, 2020).Dramatic climate change scenarios predicted in the not-too-distant future warn that a rise in the sea level is expected to submerge many coastal areas around the world, and most affected would be the small islands of the Pacific and other such low-lying regions (Nurse et al., 2014). The NUS basket can certainly be of great help to those areas, for providing plants adapted to cope with increasing levels of salinity and water logging associated with such changes; thus, this approach deserves the urgent attention of governments, researchers and other stakeholders.The intense urbanization all over the world is also leading to greater demand for more nutritious food, which-by encouraging the practice of growing locally and leveraging the diversity of well-adapted (smart') NUS-could help mitigate the impact that increased food production would have on the environment. The potential of tapping this diversity to provide fresh, healthy, safe and tasty food to millions of people living in large cities through vertical farming is also another opportunity worth seizing.The dramatic COVID-19 pandemic that the world has been experiencing lately is also reminding us of the need to strengthen localized sourcing of food in order to help communities cope with shocks of this nature. DOI: 10.4324/9781003044802-3Looking back at the last 50 years, we can comfortably say that both public and private institutions have been slow in recognizing, appreciating, and supporting research on neglected and underutilized species (NUS). Many are the reasons behind such a tepid position regarding the promotion of these species, but above all stands the strong influence exerted by the Green Revolution's legacy in setting research priorities in agriculture at both the national and international levels. The focus on a few staple crops to feed the world has been inhibiting the development of research for non-commodity/non-staple crops around the world. Notoriously, the Consultative Group on International Agricultural Research (CGIAR), the largest organization engaged in agricultural research spends almost its entire budget on a few strategic staple crops, viz. lentils, cowpeas, groundnuts, m illets, wheat, coconuts, maize, pigeon peas, potatoes, rice, soybeans, sweet potatoes, and yams. 1 Most of these crops have been receiving dedicated funding since the early 1960s, whereas very limited resources have been directed towards developing NUS. Low attention to NUS is also registered among National Agricultural Research Systems (NARS) as reported in national country reports dedicated to the conservation and use of Plant Genetic Resources for Food and Agriculture (PGRFA) (FAO, 1996(FAO, , 2011)). Although a number of global institutions and NARS have been playing over the years a commendable role in support of NUS in terms of implementing supportive policies, programs and projects for their sustainable conservation and use, we would like to emphasize that it is I ndigenous Peoples and other ethnic groups who have been so far the true custodians of these local resources and the promoters of their continued traditional use (Padulosi et al., 2019).Stefano Padulosi andDanny Hunter 20 Stefano Padulosi andDanny Hunter Period: 1970-1980 This period is characterized by a predominant R&D focus on major commodities (staple crops and industrial crops). Though the work of agricultural research institutes (including the CGIAR) have yielded important impacts in terms of hunger and poverty reduction, it is also causing the marginalization of hundreds of nutritious crops (especially minor cereals, pulses, vegetables, and fruits) that are no longer competitive with the high yielding varieties massively promoted by governments. Deployment of a broader basket of species to mitigate the impact of crop failures and, hence, to fight periodic food insecurity is far from becoming a key issue of this decade. A milestone in the advocacy for opening the door to research on NUS is the USA National Academy of Sciences' (NAS) document drawing attention to underutilized species (NAS 1975); the paper was the outcome of a NAS-commissioned \"extensive survey of underexploited tropical plants\" as possible crops for the future. Among the 36 species addressed by this report, the winged bean (Psophocarpus tetragonolobus) was particularly recommended to the research community for further attention due to its \"exceptional merits\".This is when attention on NUS starts building up. This is due to increased recognition of the importance that crops' wild relatives gained within the CGIAR as well as within FAO (Hunter and Heywood, 2011). An example of this is the International Institute of Tropical Agriculture (IITA), which started a programme supported by the Italian government in 1990 to survey and collect wild Vigna species (Padulosi et al., 1991). A similar programme supported by the German Agency for Technical Cooperation GTZ (today GIZ) was also launched at IITA to survey, collect and study Bambara groundnuts (Vigna subterranea) in Africa (Begemann, 1988). In 1987, the International Conference on \"New Crops for Food and Industry\" was held at the University of Southampton and as a result of one of its recommendations, the International Center for Underutilized Crops (ICUC) was established the following year. In 1988, the University of Purdue (USA) organized the first of a series of International Symposia on New Crops, mainly looking for alternatives to major crops, targeting US farmers ( Janick and Simon, 1990).Also relevant is the CSC/ICAR Delhi International Workshop, held in 1987, on the maintenance and evaluation of life-support species in Asia and the Pa cific region (Paroda, 1988). The publication in 1989 of Lost Crops of the Incas (NRC, 1989) was the first of several books from a highly prestigious source that focuses on NUS in Latin America (subsequent volumes of the book would be dedicated to NUS in Africa, viz. NRC, 1996, 2006, 2008). India recognized the importance of underutilized species as a means to attain sustainable agricultural production, improve the nutritional value of food for large sections of the population and reduce the country's dependence on food imports. Thus, in 1982, the All-India Coordinated Research Project on Underutilized Plants was launched, focusing on a list of priority species (Tyagi et al., 2017). International collaboration on underutilized species was also promoted through newly funded biodiversity projects such as that of the Department for International Development (DFID), meant to support ICUC research (focusing on underutilized tropical fruit trees 2 ). Another important publication is New Crops for Food and Industry (Wickens et al., 1989).The drawbacks of the Green Revolution were beginning to be acknowledged in literature at this time as well (Smale, 1997). The concept of sustainable agriculture made its first appearance in scientific papers (Dimitri and Richman, 2000), as did innovative approaches based on the deployment of greater diversity in farmers' fields using species thus far considered underutilized (see f.e. the case of alley-cropping introduced in sub-Saharan Africa by IITA, revolving around the use of leguminous crops such as Leucaena spp. to maintain or restore fertility in farmers' fields [FAO, 1995]).In 1992, the Convention of Biological Diversity (CBD) stressed the concept of sustainability, 3 rooted in agricultural and cultural diversity supportive of nutritional needs, incomes and greater protection from biotic and abiotic stresses. It also drew attention to the significant contribution of Indigenous Peoples to the conservation and sustainable use of biodiversity (Article 8J). It is important also to recall the establishment of the Work on Agricultural Biodiversity proposed by the Conference of the Parties to the Convention, which decided to establish a multiyear programme of work on agricultural biological diversity (Decision III/11), 4 aimed -inter alia -aimed at \"promoting the conservation and sustainable use of genetic resources of actual and potential value for food and agriculture\" (Box 2.1).The CBD had a tremendous impact in raising the awareness in people at the highest levels of the value of biodiversity, including underutilized species: it helped introduce new values such as the environmental services provided by biodiversity, which would have a profound impact in the years to come in influencing countries' strategies in agricultural activities, to make them more conducive than in the past to safeguarding less commercialized crops and species.In 1992, the Asian Vegetable Research and Development Center (AVR DC -The World Vegetable Center), launched a number of projects focusing specifically on traditional African vegetables (Dinssa et al., 2016). The CGIAR revised its mission statement, limiting it no more to food security, but broadened it by including poverty reduction and protection of the environment; opportunities to work on species not necessarily used in food production were highlighted. An IDRC (International Development Research Centre)-supported study recommended IPGRI's greater involvement in medicinal plants in view of the fact that many of these species were underutilized and neglected by R&D despite their high-income generation potential (Leaman et al., 1999).The decade was marked by a remarkable increase in support from Overseas Development Agencies (ODA) for NUS. Italy, the IDRC, the Asian Development Bank, the European Commission, the Netherlands and other donors joined Germany and the UK in financing ad hoc projects and networks dealing with NUS (e.g., MEDUSA [\"Network on the Identification, Conservation and Use of Wild Plants in the Mediterranean Region\"],BAMNET [International Bambara Groundnut Network], UTFANET [Underutilized Tropical Fruit in Asia Network], SEANUC [Southern and East Africa Network on Underutilized Crops], PROSEA) [Plant Resources of South East Asia] ( Williams and Haq, 2000).In 1994, IPGRI launched \"The Underutilized Mediterranean Species\"(UMS) project, which established four NUS-focused networks, guided by the outcome of a Mediterranean-wide survey of 400 researchers and aimed at advancing knowledge on challenges, needs and opportunities in the promotion of NUS as well as promoting close cooperation for NUS use enhancement across regional research institutions (Padulosi et al., 1994;Padulosi, 1998).Nevertheless, funding still remained limited against the background of large R&D gaps to fill. Therefore, international cooperation was advocated in several meetings as the only way to achieve a visible impact in this domain.The four key elements of the CBD programme of work on agricultural biodiversity:1 Assessments: to provide an overview of the status and trends of the world's agricultural biodiversity, their underlying causes and knowledge of management practices 2 Adaptive Management: to identify adaptive management practices, technologies and policies that promote the positive effects and mitigate the negative impacts of agriculture on biodiversity, and enhance productivity and the capacity to sustain livelihoods, by expanding knowledge, understanding and awareness of the multiple goods and services provided by the different levels and functions of agricultural biodiversity 3 Capacity Building: to strengthen the capacities of farmers, Indigenous and local communities, and their organizations and other stakeholders, to manage agricultural biodiversity sustainably so as to increase their benefits, and to promote awareness and responsible action 4 Mainstreaming: to support the development of national plans and strategies for the conservation and sustainable use of agricultural biodiversity and to promote their mainstreaming and integration in both sectoral and cross-sectoral plans and programmes.Other Symposia on New Crops were organized by the University of Purdue ( Janick and Simon, 1993;Janick 1996;Janick, 1999;Janick and Whipkey, 2002); such meetings provided an important platform to the scientific community for sharing experiences and lessons directly related to NUS and their development of new crops.The FAO process of the International Conference and Program for Plant Genetic Resources, leading to the 1996 Leipzig FAO IV Technical Conference on Plant Genetic Resources for Food and Agriculture (PGRFA), raised the visibility of NUS at the UN level. Preparatory national and regional meetings to the conference (especially the European meeting held in Nitra, Slovakia on 15 October 1995) contributed through country-driven, bottom-up approaches to the development of the Global Plan of Action (GPA) for PGRFA (FAO, 1996). The GPA, listing 20 activities across an array of themes from conservation to the sustainable use of PGRFA, provided unprecedented visibility to NUS, while an activity specifically dedicated to them (Activity 12: cfr. \"Promoting development and commercialization of underutilized crops and species\" 5 ) was also included.In 1994, IPGRI launched a series of projects focusing on African leafy vegetables that would end in 2004; these efforts were an important contribution to improving the methodological approach in NUS promotion especially in Kenya, contributing to changing \"the food of the poor\" stigma so often associated with these crops and helping draw policymakers' attention to their use enhancement (Gotor and Irungu, 2010).The 1996, the FAO State of the World Report outlined a worrying situation with regard to the conservation of NUS: less than 22% of the estimated six million germplasm samples held in gene banks around the world were noncommodity crops, and of this portfolio (inclusive of NUS), species were scarcely represented in terms of intra-specific diversity. More than 80% of these, on average, were made up of less than ten accessions (Padulosi et al., 2002).In 1998, in the framework of Italy's campaign in support of the development of the FAO International Treaty on Plant Genetic Resources, a panel of experts gathered in Florence, Italy to discuss the development of an alternative list of species to Annex I of the International Treaty. At this meeting, specific discussions were held on the possibility of including NUS in the treaty (Padulosi, 2000). It is interesting to note that Annex I of the approved treaty contains today a total of 80 genera, of which only 15 include some underutilized species. The discussion on the inclusion of NUS in Annex I was re-opened in 2013, but the debate is still ongoing today.Also, an important endorsement of the value of NUS (particularly fruit trees, vegetables and medicinal and aromatic plants) was recorded at the World Conference on Horticultural Research held in Rome in 1998 (Morico et al., 1999).In 1999, the IFAD-supported workshop organized in Chennai, India, by the CGIAR PGR Policy Committee, chaired by Prof. M.S. Swaminathan, covered NUS specifically (GRPC, 1999). The meeting yielded large support from attending CGIAR centres and donor representatives. It is interesting to note that this meeting represented the first time ever that the CGIAR discussed NUS in a formal way. Important publications focusing in large part on Asia and the Pacific were also published (Bhag Mal 1994;de Groot and Haq, 1995;Smartt and Haq, 1997).How underutilized species also play an important role in enriching the landscape and local cultures was covered at an international workshop focusing on the Mediterranean region, organized by the Italian National Research Council in Naples, Italy in 1997 (Padulosi, 1997).The Global Forum on Agricultural Research (GFAR) discussed NUS at a meeting in Dresden, Germany (GFAR, 2001). As a follow-up to that meeting, a small group comprising IPGRI, ICUC, IFAD and the German Ministry of Economic Cooperation and Development (BMZ) recommended the establishment of a Global Facilitating Unit (GFU), to pursue the goal of drawing attention to the potential contribution hitherto underutilized species could make to food security and livelihood of marginalized and poor communities so that an increasing number of research institutions, extension services, policy makers and donors include the development of underutilized species in their programmes and plans. 6 The unit was established in 2002 and was housed at IPGRI in Rome. The GFU was a major effort that aimed at increasing the contribution of underutilized species to food security and poverty alleviation of the rural and urban poor through facilitating access to information on underutilized species, performing policy analysis and providing advice to policymakers on how to create an enabling policy environment for underutilized species and enhancing public awareness on these species. 7 In addition, Germany also funded a GTZ multi-regional project \"People and Biodiversity in Rural Areas\" that supported national partners in improving existing value-chains of underutilized crops and breeds, and that analyzed the economic potential of other underutilized species and breeds in selected regions. Several publications on the topic were published and workshops organized, such as the excellent publication by GTZ on Promising and underutilized crops and breeds (Thies, 2000).In 2003, the PROTA (Plant Resources of Tropical Africa) Network was launched to provide access to information on 7,000 tropical African plants, most of them little known or underutilized (Schmelzer and Omino, 2003).AVRDC launched its strategy for 2001-2010, one objective of which was to increase the diversity of indigenous and underutilized vegetables for better nutrition, health and income (AVRDC, 2001).The first global project on NUS (Grant 533) was also implemented from 2001 to 2005 by IPGRI, thanks to the support of IFAD (focusing on Ecuador, Bolivia, Peru, Yemen, Egypt, Nepal and India). This project would provide a unique opportunity to test the hypothesis that NUS are strategic crops in supporting poverty reduction and the empowerment of the poor. The results of the first phase of the project showed extremely encouraging results in the areas of income generation and empowerment of local communities, particularly in India and Latin America (Padulosi et al., 2003). Follow-up phases of this first UN-funded programme on NUS would be implemented until 2020. 8 IPGRI published its strategy on NUS (Eyzaguirre et al., 1999), recommending interventions in eight main strategic areas, namely, (1) gathering and sharing information, (2) priority setting, (3) promoting production and use, (4) maintaining diversity, (5) marketing, (6) strengthening partnerships and capacities, (7) developing effective policies and (8) improving public awareness, which would then be translated into five languages (IPGRI, 2002). Interesting to point out that this is the first time the acronym \"NUS\" was used to refer to neglected and underutilized species (wild and cultivated) (see also Chapter 1). A joint ICUC-IPGRI analysis of the status of underutilized species was also published in 2002 (Williams and Haq, 2000).A BMZ-funded workshop on underutilized species was organized by GFU, GTZ and InWEnt in Leipzig, Germany (Gundel et al., 2003) during which the need for mainstreaming NUS in the R&D agenda was stressed as necessary action to successfully exploit the potential of these species.An issue of the LEISA magazine entirely dedicated to underutilized species was published in 2004 (LEISA, 2004), earning a largely positive consensus among stakeholders (see Padulosi and Hoeschle-Zeledon, 2004).At the 7th Meeting of the Conference of the Parties to the CBD in 2004, a relevant pro-NUS recommendation of the Subsidiary Body on Scientific, Technical and Technological Advice (SBSTTA) was endorsed. This recommendation suggested activities that contributed to improved food security and human nutrition through the enhanced use of crop and livestock diversity, and the conservation and sustainable use of NUS. The SBSTTA underlined that the identification of constraints and success factors in marketing underutilized species is a key aspect for their promotion and that capacity building at different levels was highly needed.For the first time, in 2004, a major donor (EU) made a specific call within its 6 th Framework for \" [r]esearch to increase the sustainable use and productivity of annual and perennial under-utilized tropical and sub-tropical crops and species important for the livelihoods of local populations\". The EU recognized that these crops have potential for wider use and could significantly contribute to food security, agricultural diversification and income generation.In 2005, the International Horticultural Assessment commissioned by US-AID was published. This work (which engaged 750 participants, 60 countries and three regional workshops, and which involved a major survey) was a strong endorsement of the value of underutilized crops to revitalizing an agricultural sector in crisis. More than a third of promising horticultural species were underutilized according to the report: of the 226 listed fruits, vegetable crops, herbs, spices and ornamentals, 79 belonged to the NUS category. Excerpts of the report related to horticulture in sub-Saharan Africa and Latin America were also supportive of underutilized species. For instance, in sub-Saharan Africa, the report stressed that despite diverse biophysical constraints such as droughts and low soil fertility, the region called for expanded cultivations of its underutilized and indigenous crops adapted to harsh conditions (such as the leafy vegetables Cleome gynandra, Solanum aethiopicum, Solanum macrocarpon, Moringa oleifera and Hibiscus sabdariffa and fruits like Ziziphus mauritania). In Latin America and the Caribbean, underutilized fruit trees represented opportunities to generate new markets. One recommendation suggested compiling regional knowledge about the cultivation and traditional uses of these species at a regional and national level.In 2005, at the end of a broadly participative process, the CGIAR published its research priorities for the period 2005-2015. 9 In this document, NUS were given high visibility under System Priorities 1b (\"Promotion, conservation and characterization of underutilized plant genetic resources to increase the income of the poor\") and 3a (\"Increasing income from fruit and vegetables\" in consideration that many of the latter are considered underutilized species). In addition, underutilized species were also considered indirectly through Priorities 3d (\"Sustainable income generation from forests and trees\") and 4d (\"Sustainable agro-ecological intensification in low-and high-potential environments\"). The emergence of niche and high-value markets for underutilized crops in developed countries provides a potential pathway out of poverty for farmers in developing countries, hence, underutilized plant genetic resources (UPGR) were relevant also to Priority 5b (\"Making international and domestic and domestic markets work for the poor\").In April 2005, 100 R&D experts and policy makers with varied backgrounds from 25 countries took part in a consultation at the M.S. Swaminathan Research Foundation in Chennai, India. This meeting represented a major milestone in support of agricultural biodiversity, including NUS. The consultation, jointly organized by IPGRI, GFU and The M.S. Swaminathan Research Foundation (MSSRF), was called to discuss how biodiversity could help the world achieve the UN's Millennium Development Goals -in particular, the goal of freedom from hunger and poverty. The \"Chennai Platform for Action\" that resulted from this consultation, in its ten recommendations, emphasized the importance of underutilized species and called upon policymakers to promote specific interventions in support of these species. 10 During this period, increased visibility on underutilized species was provided by dedicated websites developed by both international and national agencies.In 2006, a ICUC-IPGRI-GFU electronic consultation to design a strategic framework for R&D on underutilized species was carried out; this was followed by two regional strategy workshops held in Colombo, Sri Lanka , and Nairobi, ( Jaenicke and Höschle-Zeledon, 2006).An International Conference on Indigenous Vegetables was held in Hyderabad, India, on December 2006 (Chadha andLumpkin 2007). The International Society for Horticultural Science (ISHS) launched a Working Group on Underutilized Species within its Commission on Plant Genetic Resources, which was jointly chaired by GFU and ICUC. In 2004, the ACP-EU project on NUS value-chains for Africa was launched (Rudebjer, 2014).In 2009, a new organization, Crops For the Future (CFF) was established through the merger of the International Centre for Underutilized Crops (ICUC) in Sri Lanka and the Global Facilitation Unit for Underutilized Species (GFU) in Rome (Gregory et al., 2019). Based in Kuala Lumpur, Malaysia, the m ission of this new agency consisted of four major objectives, viz. (1) increase the knowledge-base for neglected crops, (2) advocate policies that do not discriminate against crop diversity; (3) increase awareness of the relevance of neglected crops for rural livelihoods and (4) strengthen capacities in relevant sectors. In 2001, the CFF Research Centre was created in Malaysia to provide research support to the global CFF organization. 11 In 2010, the FAO Second State of the World Report on PGRFA (FAO 2010) reported on still poor conservation statuses for NUS, calling for urgent actions to be taken to safeguard these resources, important allies in the fight against food insecurity around the world. In 2011, the second ISHS International Symposium on \"Underutilized Plants: Crops for the Future, Beyond Food Security\" was held in Kuala Lumpur, Malaysia ( Jaenicke, 2013).On December 2012, an international conference on the \"Lost Crops of XXI Century\" was held in Cordoba, Spain (Padulosi et al., 2013). The conference, attended by the Spanish Minister of Agriculture, the Director General of FAO, the Director General of Bioversity and the Chairman of the Slow Food Movement, was held to debate how to fight hunger and rural poverty through the greater deployment of NUS (called here \"promising crops\"). 12 The conference also celebrated the launch of the 2013 UN International Year of Quinoa. An important collective document, the Cordoba Declaration 13 was released by the participants, and called for a number of important actions in support of the use enhancement of NUS, viz:• Raising awareness of these crops and their strategic roles • Conserving genetic and cultural diversity • Promoting their use in small-scale family farming to improve rural livelihoods • Developing value-chains from production-to-consumption and to gastronomy • Changing incorrect perceptions and developing an evidence base • Enhancing research and capacities for promotion • Building inter-sectoral and interdisciplinary collaboration • Creating a conducive policy environment • Establishing an ombudsman to represent the rights of future generations in national and international decision-making Among these, the last was a particularly innovative idea, and helped underscore the fact that the conservation of agricultural biodiversity and other relevant natural resources are relevant both to present and future generations. A highly strategic policy recommendation also proposed in the document was the launching of a new international dialogue on PGRFA to explore ways in which the International Treaty on PGRFA (IT-PGRFA) could further support the conservation, exchange and sustainable use of NUS.The following year, a major pan-African conference on NUS was organized by Bioversity in Accra, Ghana, through the support of the European Union (ACP-EU project) and the IFAD-NUS Project. The \"Accra Statement for a food-secure Africa\" that emerged from the conference set out nine action points to promote greater use of NUS (Bioversity International 2014), viz:1 Include NUS in national and international strategies and frameworks that address global issues 2 Establish a list of priority NUS on which to focus R&D 3 Support research on NUS and their agronomic, environmental, nutritional and socioeconomic contributions to resilient production systems 4 Support the development of value-chains and small agri-businesses for NUS 5 Strengthen collaboration and information-sharing between researchers, extension specialists, the private sector, farmers and their organizations 6 Promote the cultivation of NUS through campaigns to raise awareness of the commercial opportunities they offer and their agronomic and nutritional benefits 7 Increase support for conservation of NUS in situ, on-farm and ex situ, and strengthen seed systems 8 Empower custodian farmers and support farmers' rights to share the benefits from NUS 9 Strengthen the capacity of individuals and organizations in R&D and education of NUS.An important paper on agrobiodiversity highlighting the role of NUS in strengthening food security, health and income generation appeared in Agronomy for Sustainable Development (Kahane et al., 2013). Bioversity's revised strategy for NUS was published in 2013 (Padulosi et al., 2013) offering an analysis of the NUS status of conservation and use, based on country reports produced for the FAO 2010 SWR on PGRFA. This document stressed eight key areas of action to realize the effective promotion of NUS (Box 2.2).India approved, in 2013, its Food Security Bill, which included \"coarse grains\" (millets, sorghum and maize) in the Public Distribution System (PDS). This move, which represented an unprecedented recognition of NUS, never made by any previous government, was done in appreciation of the following aspects: (1) the importance of finger millets and others coarse cereals of high nutritional value for the diversification of the food basket;(2) the inclusion of millets would expand the quantum of food that can be procured at the same time and (3) promote climate resilient farming, which would more appropriately cater to the food habits of different regions (Padulosi et al., 2015). 14 Notably, these crops were set to be used also to reinforce several nutrition-related schemes and activities, including the Integrated Child Development Services, mid-day meals and community canteens. The Second International Conference on Nutrition Framework for Action called, in its recommendation (no. 10), for the \"the diversification of crops including underutilized traditional crops\". Two seminal papers on the holistic value-chain approach developed by IFAD-NUS were published (Padulosi et al., 2014(Padulosi et al., , 2015) ) along with a strategic document from Bioversity on the way forward for the promotion of NUS (Padulosi et al., 2013).In 2016, the Royal Botanical Gardens (RBG) at Kew developed its internal strategy on useful plants, which focuses on NUS, while use enhancement along the lines of Bioversity's work on holistic value-chains is being developed (Ulian et al., 2015).Sustainable markets for NUS need to be developed and and upgrade strengthened at the local, national and international levels market chains while ensuring that benefits are shared fairly. Support to develop effective value-chains for NUS (through enhanced vertical and horizontal integration) is also needed. Domestic demand for NUS and value-added NUS products needs to be expanded and trade barriers for NUS products in developed countries need to be removed. The links between farmers, researchers and consumers need to be strengthened, and programmes need to highlight the growing importance of NUS in gastronomy.Legal frameworks are needed to protect NUS (wild or supportive cultivated). National governments also need to put in policy place policies to effectively conserve and use NUS. environment There need to be incentives for managing NUS on-farm. Policies, guided by principles of equity and fairness, need to safeguard germplasm for crop improvement and sharing, and provide better access to international markets. 8 Increase NUS are local and traditional, but are globally significant cooperation and thus require scientific and political attention beyond the local and national levels. More needs to be done to strengthen cooperation among stakeholder groups and create national, regional and international synergies.In July 2016, the FAO International Treaty for PGRFA organized a meeting at Volterra, Italy, to address the development of a \"toolbox\" for the use enhancement of agricultural biodiversity, including NUS.In November 2016, Bioversity and its partners from Africa, organized in Benin an expert meeting on NUS value-chains in sub-Saharan Africa for strengthening agricultural diversification, the UN Agenda 2030 and climate-change responses; among the recommendations that emerged from this meeting the following needs were seen as the most critical to advancing the NUS agenda in the region: (1) strengthening capacities of young scientists working on NUS;(2) mainstreaming NUS in school and university curricula; (3) greater PPP to boost local NUS entrepreneurs; (4) continued advocacy and lobbying with decision-makers at national and international levels for developing supportive policies for NUS and (5) facilitating access to NUS knowledge and material among workers.Over the course of 2015 and 2016, three expert meetings were organized under the leadership of CFF in Paris, Kuala Lumpur and Rome, to discuss the implementation of a newly developed Global Action Plan for Agricultural Diversification (GAPAD), designed to meet the needs of a heating world. The alliance formed around GAPAD aimed at promoting agricultural diversification and NUS crops, in particular, which were recognized as a strategic means to contribute to the UN's Sustainable Development Goals (SGDs), with special reference to SDGs 2, 7, 12, 13, 15 and 17. In 2016, an international consultation was jointly organized by FAO and the Australian Centre for International Agricultural Research under FAO RAP's Regional Initiative on Zero Hunger Challenge (RI-ZHC), in Bangkok, Thailand. Its purpose was to identify promising NUS crops that are nutritionally dense, climate resilient, economically viable and locally available or adaptable, and to provide strategic advice to decision-makers. These promising NUS were to be referred to as \"Future Smart Food\" (FSF). The consultation, attended by representatives from eight countries and several international agencies, aimed at four specific objectives: (i) validating the preliminary scoping report on crop-related NUS in the selected countries; (ii) ranking and prioritizing highpotential NUS based on established priority criteria, (iii) identifying five to six crop-related NUS per country and (iv) strategizing to enhance production and the utilization of selected crops in local diets (Li et al., 2018). The meeting identified ten recommendations for policymakers (Box 2.3) A similar meeting was also organized in Bangkok in 2017 by APAARI and was attended by representatives of 16 countries from the Asia-Pacific region (Tyagi et al., 2018a,b).Two more projects worth mentioning have also sprung up over the last few years, viz. the GFAR's Collective Action on \"Harnessing forgotten foods for improved livelihoods\" (GFAR, 2017) and the campaign of the USA-based Lexicon on \"Rediscovered Food\", which includes inter alia some well-packaged introduction on 25 forgotten nutritious NUS and success stories of farmers, scientists and chefs from 14 countries. 15 In September 2020, a major publication by the RBG (Ulian et al., 2020) was released in conjunction with the State of the World's Plants and Fungi 2020 report published by the same organization (Antonelli et al., 2020). Drawing on the results of the report, the paper reiterates that narrow reliance of humankind on a small handful of food crops, in spite of 7,039 documented edible species. In fact, the majority of these edible plants belong to NUS and should be better promoted in recognition of their role in improving the quality, resilience and self-sufficiency of food production. In order to unleash such potential, the authors call for renovated efforts especially with regard to: (1) filling knowledge gaps on the biology and ecology of NUS; (2) gaining a better understanding on the impacts of climate change on NUS to allow their better deployment in future climate-change coping strategies; (3) promoting the better integration of methods and tools developed by farmers and researchers for the cultivation of major crops, with the traditional knowledge of uses and practices regarding NUS; (4) providing further aid to strengthen research programs focusing on NUS, including supporting information exchange; (5) promoting participatory decision-making processes in NUS enhancement and ( 6) fostering the development and implementation of legal and policy frameworks accompanied by economic incentives and subsidies in support of NUS.Box 2.3 Recommendations to policymakers emerging from the FAO regional meeting for Asia and the Pacific on smart food foods/NUS held in Bangkok in 2016 existing coordination mechanisms, and build partnerships at national and regional levels, including academia, civil society and the private sector, to enhance research and consumption and to attract the private sector to boost production, processing, value addition, product development and marketing of FSF. 10 Establish a regionally coordinated network on FSF to facilitate the exchange of information, policy, technologies and genetic resources, as well as FSF promotion, in target countries.Although we have come a long way from those isolated pro-NUS activities of the early 1980s, all the way to the international conferences and projects dedicated to NUS that have been launched lately, we are still far from having reached the \"graduation\" of NUS (with the exception of a few crops like quinoa, which has become truly a commodity crop). While we can affirm that methodologies for the use enhancement of NUS have been successfully developed, what is needed these days, rather, is to scale the many successful approaches recorded around the world in order to have a wider impact. Mainstreaming NUS into government actions is today the key pursuit for workers engaged in the movement and, to achieve that, enabling policies covering a range of priority areas (from conservation to resilient food systems, sustainable cultivations, equitable marketing and nutrition security) are urgently needed (the inclusion of minor millets into the PDS system in India is, to that regard, a most illuminating example). These policies will require lobbying from all stakeholders who should be working closely together to achieve the shared vision. One of the propositions that has been 2000000-978 (2016-2020, focusing on Guatemala, Mali and India) and co-funded also by the EU. 9 ftp://ftp.fao.org/docrep/nonfao/ah893e/ah893e00.pdf 10 http://www.underutilized-species.org/documents/PUBLICATIONS/chennai_ declaration_en.pdf 11 https://www.nottingham.edu.my/CFFRC/index.aspx 12 https://tkbulletin.wordpress.com/2012/12/12/this-week-in-review-cordobaseminar-hears-from-fao-director-general-on-value-of-underutilized-cropssustainable-diets/ 13 http://www.nuscommunity.org/fileadmin/templates/nuscommunity.org/upload/ documents/Publications/2012_Cordoba-Declaration-on-Promising-Crops-for-the-XXI-Century.pdf 14 http://bit.ly/2wKepWM 15 https://www.thelexicon.org/ 16 https://www.bioversityinternational.org/news/detail/spotlight-on-forgottencrops/#:~:text=Annual%20Report%20stor y.,This%20year%20neglected%20 and%20underutilized%20species%20found%20the%20spotlight:%202013,the%20 world's%20%E2%80%9Cforgotten%20crops%E2%80%9D.(cited in text plus selected papers published over the 50 years deemed particularly relevant for NUS; entries marked with * include priority setting and/or lists of priority species). Anonymous (2012) Cordoba Declaration on Promising Crops for the XXI Century. Retrieved on 10 May 2020. http://www.fao.org/fileadmin/templates/food_ composition/documents/Cordoba_NUS_Declaration_2012_FINAL.pdf Anthony, K., Meadley, J. and Röbbelen, G. (1993a) New Crops for Temperate Regions.Chapman & Hall, London. Anthony, K., de Groot, P. and Haq, N. eds. (1993b) Underutilized Fruits and Nuts in Asia.CSC, London.DOI: 10.4324/9781003044802-4Neglected and underutilized species (NUS) can be strategic allies in developing nutrition-sensitive agricultural food systems and value chains. This statement is supported by the numerous benefits linked to these resources, as highlighted in Chapter 1 (Fanzo et al., 2013;Baldermann et al., 2016;Bioversity International, 2017;Fanzo, 2019;Hunter et al., 2020). The central message reiterated throughout this book is that the diversification of food and production systems is urgently needed to adapt to climate change and fight malnutrition in all its forms, and to that regard, NUS offer a tremendous opportunity for impact. How to translate this vision into reality is not an easy task as many barriers need to be addressed, including the lack of or very poor germplasm conserved in ex situ gene banks, lack of improved varieties, poor seed systems, low competitiveness in production systems and markets and little awareness from consumers of their livelihood benefits. Tools to assist practitioners, and more generally all actors, involved in the use-enhancement and promotion of NUS are needed. As an answer to this call, in 2019, Bioversity and IFAD published an operational framework to assist experts of IFAD and other agencies at the national and international levels, in promoting the wider use of biodiversity, especially NUS, to improve the lives of people, particularly the more vulnerable members of society (Padulosi et al., 2019). This document complements other valuable strategic papers recently published (e.g., Hunter et al., 2015;Kennedy et al., 2017;Romanelli et al., 2020), briefly presented later in the chapter. The scope of this chapter is to present this framework and enrich it with reflections prompted by the 2020 global COVID-19 pandemic, for which we believe NUS can prove to be a valuable instrument to strengthen the resilience of local communities, their weakened economies and food systems. Key messages we would like to convey through this chapter include:• The deployment of local crops in food and production systems is a valid contribution in addressing malnutrition and making food systems more resilient and adapted to changes such as those brought about by the current pandemic. • NUS are highly adapted to agro-ecological niches and marginal areas and are able to withstand climatic stresses. These traits are of great value to feed the world's growing population and, as such, should be better recognized and leveraged in support of agricultural strategies and development plans. • The enhanced use of NUS offers important opportunities for income generation and empowerment of both rural and urban communities, benefiting also vulnerable members of society. • Bringing NUS out of their condition of marginalization requires a viable market that creates incentives for local value-chain actors, to secure their continued cultivation, processing and marketing. Upgrading NUS value-chains must, therefore, be a central element of their overall promotion strategy. • A holistic value-chain approach is needed for the promotion of NUS. 'Siloed' formulas focusing on specific aspects (e.g., only on the conservation, cultivation or marketing), as typically practiced for commodity crops, cannot work for NUS. These resources have been for too long at the margins of research and development, and multiple technological gaps need to be filled.The holistic approach we are advocating for NUS should be interdisciplinary, multi-sectorial, highly participatory and gender sensitive. According to FAO, nutrition-sensitive agriculture is \"a food-based approach to agricultural development that puts nutritionally rich foods, dietary diversity, and food fortification at the heart of overcoming malnutrition and micronutrient deficiencies\" and nutrition-sensitive value chains are those that leverage opportunities to enhance supply and/or demand for nutritious food, as well as opportunities to add nutritional value (and/or minimize food and nutrient loss) at each step of the chain, thereby improving the availability, affordability, quality and acceptability of nutritious food. For lasting impacts on nutrition, this approach must be placed in a sustainability context as well. (FAO, 2014a,b) Numerous publications have addressed issues and the strategies needed to make agriculture and value chains more nutrition sensitive (e.g., Jaenicke and Virchow, 2013;Gelli et al., 2015;FAO, 2017;De la Peña and Garrett, 2018). Among these, worth mentioning is the outcome of the Second International Conference on Nutrition (ICN2), which specifically calls upon governments to \"[P]romote the diversification of crops including underutilized traditional crops, more production of fruits and vegetables, and appropriate production of animal-source products as needed, applying sustainable food production and natural resource management practices\" 1 (FAO and WHO, 2014). While referring to basic concepts contained therein, through this chapter we will focus exclusively on interventions to leverage the value of NUS for better attaining these goals.In the NUS operational framework published by Bioversity and IFAD, we indicate five basic steps for making a project focusing on NUS more nutrition-sensitive, viz:• Step 1. Explicitly incorporate improved nutrition into the project's outcomes and integrate nutrition-relevant indicators into the project logical framework • Step 2. Include a situation analysis on the nutrition context, addressing nutrient gaps of the targeted beneficiaries • Step 3. Include nutrient-dense NUS in agricultural development interventions to complement the nutritional role played by staple crops, guided by a diversity-based sustainable diet approach • Step 4. Trace the impact pathway -i.e., the steps from breeding and production to seed systems and consumption needed for the interventionto improve nutrition along the NUS value chain. Design and i mplement project actions that will affect that pathway in a systematic way. For example, determine if a change in dietary habits is needed to encourage the consumption of some wild edibles and, if so, implement actions to promote such changes. Allocate dedicated financial resources to implementing nutrition-sensitive activities • Step 5. Through policy engagement and partnerships, address opportunities and constraints that affect the pathway and the effectiveness of the intervention, such as the institutional environment, gender and/or environmental sustainability, and define implementing arrangements for the delivery of nutrition-sensitive activities.The central element of efforts needed to mobilize NUS in support of nutrition-sensitive agriculture is the holistic value-chain, as represented in Figure 3.1. This approach consists of highly interlinked interventions in each of the segments of a typical value chain for agricultural products, namely input supply, production, harvest, processing, marketing and final consumption. For those products realized by farmers exclusively for home consumption, marketing interventions would not be necessary. The holistic value-chain approach has been designed to tackle simultaneously three key challenges: climate change, nutrition and the economic insecurity of local communities. As shown in Figure 3.1, the synergistic interaction among the outcomes resulting from these multiple interventions is expected to ultimately strengthen the resilience of livelihoods as a whole, which should be the ultimate goal of our efforts. A description of the key entry points along the value chains in order to realize such an impact with regard to NUS is provided in the following section.This is the first entry point that is often overlooked by agricultural development projects, interested more in the income-generation dimension with little or no attention paid to the inter-and intra-specific diversity needed to strengthen nutrition. Our experience is that too many rural development projects focus minimally (or not at all) on plant genetic resources. Most often, attention is dedicated to only a handful of commodity crops (and few varieties therein) with the intent of boosting agricultural food production and fighting poor nutrition, neglecting the wealth of wild and cultivated species that can be mobilized for climate-smart and nutrition-sensitive agriculture. In such a segment of the value chain, the following interventions are, thus, highly recommended:• Include NUS in the design of projects (especially species that might identify key nutrient gaps that cause local malnutrition problems) and ensure that their diversity is well represented at both inter-and intra-specific level. Provision of germplasm should be accompanied also by enhanced cultivating practices, where both scientific and traditional knowledge should be leveraged. This is very relevant for NUS, whose knowledge is highly vulnerable due to the abandonment of cultivation. The selection of species to focus upon should be carried out in a highly participatory fashion, involving all stakeholders and giving ample space to women, who are the strategic nexus between biodiversity and nutrition in households (King and Padulosi, 2017). • An assessment of the nutrition needs and seasonal dynamics of hunger in target communities should be also carried out in conjunction with the previous activity so as to develop an inventory of local food species (wild and cultivated) to allow all players to gain a good understanding of spectrum of species that can be potentially targeted by the project. The result of these surveys will be then used to develop seasonal calendars that can guide local populations in making best use of existing overlooked nutritious food species and to strengthen their capacity in fighting nutrition insecurity, especially during the 'hungry season' (see also Chapter 14). • Support an ex situ/in situ integrated conservation of the genetic resources of NUS and their associated traditional knowledge. This is a fundamental intervention that must be factored into projects if we are to secure continued access to the genetic diversity of NUS by user communities and safeguard, at the same time, associated relevant practices (agronomic, value addition, food preparation, ceremonies, rituals, etc.) that allow the cultivation, use and appreciation of these traditional resources across generations (Padulosi et al., 2012). • Encourage visibility of NUS in local and regional media such as newspapers, radio and TV programs, as well as social media. Great opportunities exist in this regard by involving renowned chefs who can help remove the 'food of the poor' stigma associated with many NUS (Amaya et al., 2019). • Promote the use of NUS in schools and universities through curriculum development -describing the multiple values of NUS -and associated activities such diverse school gardens (for more in this regard, see Rudebjer and Padulosi, 2018;Hunter et al., 2020). The agronomists of the future need to be informed on the value of crop diversification for supporting nutrition security and, at the same time, as future consumers, need to be aware of the multiple values of NUS, too often disregarded by younger generations as the food of the poor. Campaigns on the importance of NUS should be done in an enticing fashion, that is, by linking NUS to nutrition and health benefits as well as to other important benefits, such as the sustainability of our planet, keeping options for the future, building resilient food systems in difficult times (including those experienced during the COVID-19 pandemic) and maintaining cultural and territorial identity. Lastly, consumers should all be made aware that by bringing NUS back to the table, there will be more options for tastier, more exciting, more attractive and more enjoyable foods!• By nature of their definition, NUS are largely undervalued by the scientific community and, as such, there is often limited data available on their potential, such as micronutrient content or climate-change resilience. In cases where micronutrient content is unknown, it can be estimated with a similar food or categorized according to the common nutritional traits of its food group characteristics (e.g., dark green leafy vegetables can contain iron and vitamin A). Local and scientific knowledge associated with prioritized species is essential, as some may have toxic or anti-nutrient properties, and must be consumed in small amounts or be processed in special ways to reduce toxin content.Once NUS species have been selected, the second entry point for nutrition along the value chain is related to production activities, such as selecting better varieties, developing better practices and improving seed. In order to support these activities, decentralized seed-selection and production systems should be pursued (de Boef et al., 2013;Vernooy et al., 2015). Increased use of NUS should be promoted to help farmers take maximum advantage of the hardiness of these species, especially in vulnerable, drought-prone areas where such crops are able to exploit residual soil moisture and scarce rainfall regimes. NUS should be included by projects and research managers in crop selection programs/participatory variety selection, and national and international players should cooperate to build up a knowledge base on the performance of these species, which is currently lacking. More studies should be carried out on their agronomic performance, including climate-change adaptation, which will allow for comparisons with staple crops. Such a process should involve all value-chain actors and encourage the active participation of women, Indigenous Peoples and youth. Evaluation activities should go hand-in-hand with the characterization of germplasm for nutritional content to support the selection of resilient, nutritious and economically interesting species (Shanthakumar et al., 2010).More efforts should be deployed in improving cultivation practices for NUS, aiming at the elimination of drudgery in the field and the introduction of innovative cultivation approaches based on the blending of traditional knowledge and scientific findings (Padulosi et al., 2015).Improved harvesting methods and storage are extremely relevant for NUS, especially for perishable, nutritious-dense fruits and vegetables. In view of the great progress achieved in these disciplines for commodity crops, there is ample scope for leveraging such knowledge for the benefit of NUS. Our experience has often demonstrated that modest investments in support of innovation to improve harvest operations can be highly valuable, as in the case of amaranth, where a simple modification in the sieve of the harvesting machine used by farmers in Peru has resulted in a significant reduction of grain loss during harvest operations (Padulosi et al., 2014).Improved processing can play a key role in making nutritious NUS foods more convenient, increasing their shelf life and facilitating transportation and storage. However, processing enhancement of NUS should be done in ways that respect their nutritional value and do not prioritize convenience or aesthetic values only. For instance, in the case of fonio and minor millets, polishing operations have been observed to eliminate important micro-nutrients. Grains will look more appealing to consumers, but will be of reduced nutritional value. Improved processing can be achieved by building on Indigenous technology and local wisdom and/or by blending it with scientific findings. Our work on minor millets in India has also taught us that simple, inexpensive processing technology mobilized by local communities has played a strategic role in boosting local consumption of these crops at the household level, while also supporting women-led cottage industries and local entrepreneurship, and has contributed to building greater self-esteem and empowerment among vulnerable women groups (King and Padulosi, 2017).Marketing aspects for NUS are crucial to bringing about sustainability in their use enhancement. Nutritious local crops should be effectively marketed if we are to strengthen nutrition-sensitive agriculture and value-chains. A highly strategic component of this domain of action (but equally relevant also for the other areas) has to do with making food more diverse and healthier and, at the same time, delicious and appealing to the consumer, but doing so in ways that involve and incentivize all actors in the food systems, taking into account multiple agendas and values (Béné et al., 2020). Some of the actions related to marketing NUS more effectively include:• Supporting the identification and promotion of nutrition-friendly packaging solutions, including approaches accessible by local vendors and small markets. Strengthen collectives (e.g., cooperatives, farmer-producer companies, confederations of producers/MSMEs) that are required to build reliable distribution systems for NUS that are typically produced locally and by farmers not well-linked to other value-chain actors. • Dissemination of nutrition information as well as any other information on useful traits present in NUS (including resilience) for promoting greater adoption of these species by value-chain actors.This is the last segment of the value chain and the one most strategic in influencing the wider utilization of NUS purchased in markets or self-produced/bartered and consumed in farmers' households. Key actions at this stage include:• Building greater awareness among consumers on the importance of NUS for crafting more nutritious and healthy diets. • Developing products, and marketing healthy and sustainable options, as appealing and delicious, rather than focusing on messages of health, sustainability or abstemiousness (Sunstein, 2015;Vermeulen et al., 2020). • Supporting the development of more attractive food recipes and food products that have NUS as ingredients, by organizing cooking sessions with community members and forming alliances between growers, value-chain actors, chefs and food movements to promote local foods that are also culturally appealing; and challenging niche-identity associations of these products through marketing and branding. • Raising awareness of decision-makers to get their buy-in regarding NUS in government actions and seeking their commitment to developing enabling policies that mainstream NUS into agricultural development programs.Policy-makers should be engaged from the start of NUS projects in order to solicit a sense of ownership in the promotion of NUS. Among the policy interventions for NUS, the most strategic are those favoring their inclusion in procurement programs (e.g., targeting school feeding programs) (Hunter et al., 2019), or those regarding the inclusion of NUS in school/university curricula, which can have important multiplier effects (Rudebjer and Padulosi, 2018;Amaya et al., 2019;Hunter et al., 2020). • Making healthy and sustainable options highly visible and increasing the quantity of them available in menus, supermarkets, at catered events, schools, canteens or other public places (Vermuelen et al., 2020). • Supporting food festivals and using these occasions to recognize the invaluable work done by custodian farmers, Indigenous Peoples, women and youth organizations for safeguarding the wealth of NUS and traditional knowledge, and, at the same time, support a better understanding of the Indigenous approach to marketing. • Introducing marketing intelligence systems that allow the sharing of information on offer and demanding estimates via mobile phones across value-chain actors, as successfully practiced in Kenya and other African countries. Such an approach should be complemented by the development of mobile apps for local communities that can provide information about where to find NUS in the community, how to use them and how to buy and sell them. These apps could be particularly helpful in situations when people's movements are limited, such as conditions experienced during the COVID-19 pandemic.Promoting local foods through convenient mobile apps can the winning card for bringing NUS to the masses; to that end, it could be useful to replicate (or join) currently available systems that link consumers with farmers markets (see f.e. apps like Farmstand and Locavore). 2In addition to the entry points mentioned above, there are interventions that can be considered that cut across the entire value chain. The NUS operational framework (Padulosi et al., 2019) stresses, in particular, those related to capacity building and empowering vulnerable groups.Scaling up best practices to more effectively use NUS will need a robust investment in capacity building that benefits different stakeholders and covers highly interlinked themes, including adaptation to climate change of agricultural production, food and nutrition security, value chains and marketing issues, raising public awareness and policy advocacy. Strengthening the governance and technical capacity of farmer associations, especially Indigenous food community associations, will need to be pursued as part of a broader public-private partnership initiative and investment goal in the agricultural marketing of NUS. Dealing with NUS calls for a broad interdisciplinary understanding of their roles, which is too often not registered among R&D experts and rural advisory services in most NARS (Raneri et al., 2019). During project design we should, thus, create opportunities for an interdisciplinary dialogue among stakeholders where knowledge about NUS is provided and shared. These interactions will allow all stakeholders to become acquainted with the roles of NUS, especially regarding their resilience, nutritional values and income-generation opportunities and understand the importance of building synergy across such disciplines for sustained impact (Ulian et al., 2020). These participatory reviews can be supported through ex ante analysis to capture existing values of NUS in the socioeconomic context of the target areas through available data and food system modelling.Strengthening the capacities of community members, including women, youth and Indigenous Peoples, is needed in order toto boost production efficiency, improve post-production, technologies, business and entrepreneurship skills as well as enhance markets and market information, sustainable investments in physical infrastructure and access to produce.With regard to access to markets, the networks of local, weekly markets present in most countries can be leveraged to sell NUS. This will be sustainable only if NUS marketing bottlenecks are effectively addressed, such as the possible isolation of production areas from marketplaces and the existence of poor infrastructure for storage, processing and packaging. Specialized technical assistance for NUS products and market development, along with agri-business capacity-building and mentoring of producer groups, should be also pursued. Innovative technologies for NUS processing and their commercial viability need to be tested in a commercial context to promote scalability.The promotion of wild species should be done with caution so as to avoid overharvesting; domestication can be an effective intervention to mitigate that risk (Padulosi et al., 2002). In view of the considerable efforts needed in the domestication process (long-term field and laboratory experiments, marketing research, etc.), it should receive the support of government research institutions, universities and the private sector and could also benefit from being included in agricultural and rural development projects (Heywood, 1999).Locally available biodiversity may not be able to address all the issues related to poor diet quality and malnutrition. A combination of that, along with other approaches, including the introduction of nutritious species from elsewhere, may be required to fill possible gaps.Cross-collaboration between agricultural extension and rural health services can be effective for promoting resilient and nutritious NUS in diets and production systems. Training extension agents on the agronomy, marketing and nutrition aspects of NUS is a strategic way to leverage their role for the promotion of NUS (Raneri et al., 2019). Strengthening their familiarity with the wild and semi-domesticated plants in the local environment will support their role in assisting communities in the identification of priority species. Understanding local diets and nutrition issues in target populations supports the prioritization process. Sensitization on local consumption preferences and perceptions, and how to engage with farmers to collect this type of information, is also important for understanding demand-side issues. Building the capacity to recognize important actors in the value-chain and establishing a proactive attitude to reach out and engage these actors to overcome bottlenecks will help advance the use-enhancement of these nutritious species.The dearth of data on crop adaptation can be addressed through the use of participatory varietal selection done in farmers' fields. Crowdsourcing can be a highly effective way to select the best varieties whose performance is assessed in the context of where the need is, and not at the research stations (van Etten et al., 2017).The use-enhancement of NUS can be a cost-effective and culturally appropriate way to improve the resilience of local food systems, as well as farming household incomes and nutrition. NUS can be integrated into existing extension programs that focus on commodity species. For example, NUS of fruits and vegetables should be considered in any project working to increase the availability and marketing of major staples (Padulosi et al., 2018).The use-enhancement of NUS is a robust way to empower women, Indigenous Peoples, rural youth and other vulnerable groups who depend on these species for their livelihoods. Economic empowerment should be at the core of these actions. This includes designing interventions targeted at strengthening community institutions and farmer groups as a tool for empowering marginalized communities. Groups should be supported in the areas of adaptive extension, leveraging local agrobiodiversity, market access, agro-processing and value addition, paying particular attention to business skills development and market orientation. These actions should be designed through a culturally sensitive lens. Use-enhancement of NUS along the value chain should be driven by equity considerations and the inclusion of vulnerable groups (Rosado-May et al., 2018).While Indigenous Peoples and local communities have been nurturing and using NUS for many generations, it is only in the more recent post-Green R evolution period that NUS have become a focus of global policy in general (see Chapter 1) and, only even more recently, that they have been considered a portfolio of foods that can substantially contribute to more sustainable solutions to global malnutrition. The operational framework supporting nutrition-sensitive a griculture through the greater use of NUS described in this chapter is an additional resource to the growing basket of tools that aims to mainstream NUS into more projects, programs and investments for improved nutrition, and which are important instruments for strengthening collaboration between the agriculture, nutrition and health and environmental sectors.A major milestone in the recognition of the important role NUS, and biodiversity more broadly, can play in improving nutrition and human health was the establishment of the Framework for a Cross-Cutting Initiative on B iodiversity for Food and Nutrition in 2006, within the Convention on Biological Diversity (CBD). In 2004, the CBD's Conference of the Parties (COP) formally recognized the linkages between biodiversity, food and nutrition, and the need to enhance sustainable use of biodiversity to combat hunger and malnutrition. The COP requested the CBD's Executive Secretary, in collaboration with FAO and the former International Plant Genetic Resources Institute -now Bioversity International -to undertake a cross-cutting initiative on biodiversity for food and nutrition, which was adopted by the COP in 2006 (WHO/CBD, 2015). The recently completed GEF-funded Biodiversity for Food and Nutrition Project has been a major vehicle for the implementation of this cross-cutting initiative and has demonstrated, at a country level, how to prioritize NUS for mainstreaming into relevant policies, programs and markets so as to improve nutrition. It has also developed a range of methods, tools and other resources to support mainstreaming (Hunter et al., 2020;see Chapter 13).Around the same time, the Commission on Genetic Resources for Food and Agriculture (CGRFA) also requested that FAO evaluate the relationship between biodiversity and nutrition. In 2005, via the Intergovernmental Technical Working Group on Plant Genetic Resources for Food and Agriculture, eight high-priority actions and six lower-priority actions were identified. Subsequently, the CGRFA, at its 14th session in 2013, formally recognized nutrients and diets, as well as food, as ecosystem services, in order to further increase the awareness of human nutrition as a concern for the environmental sector, and the awareness among human nutritionists of the importance of biodiversity. It also requested the preparation of guidelines for mainstreaming biodiversity into all aspects of nutrition, including education, interventions, policies and programs (WHO/CBD, 2015). The Voluntary Guidelines for Mainstreaming Biodiversity into Policies, Programmes and National and Regional Plans of Action on Nutrition (FAO, 2015) was adopted at the 15th Session of the CGRFA in 2015 and provides a framework to mobilize NUS for improving nutrition.The Second International Conference on Nutrition (ICN2), jointly c onvened by the FAO and the WHO in 2014, focused on policies aimed at eradicating malnutrition in all its forms and transforming food systems to make nutritious diets available to all. Participants at ICN2 endorsed the Rome Declaration on Nutrition and the Framework for Action, with Recommendation 10 being particularly for the NUS community (ibid. p. 45). \"[P]romote the diversification of crops including underutilized traditional crops, more production of fruits and vegetables, and appropriate production of animal source products as needed, applying sustainable food production and natural resource management practices\".In 2015, the WHO and CBD jointly published a \"state of knowledge\" review, Connecting Global Priorities: Biodiversity and Human Health (WHO/CBD, 2015), which contained a chapter dedicated to NUS, biodiversity and nutrition (Hunter et al., 2015). This was followed, in 2017, by the publication by Bioversity International of the Mainstreaming Agrobiodiversity in Sustainable Food Systems report (Bioversity International, 2017), which included a chapter on the importance of NUS and food biodiversity for healthy, diverse diets (Kennedy et al., 2017). Both publications highlight approaches and opportunities to better mainstream NUS in order to improve nutrition and diets. Most recently, the WHO has published further Guidance on Mainstreaming Biodiversity for Nutrition and Health, which focuses on the importance of NUS and their value chains (Romanelli et al., 2020).Collectively, this presents an ever-improving, enabling policy environment for the promotion of NUS, especially in the context of addressing malnutrition challenges. However, as Chapter 1 and other chapters of this book highlight, there are still many constraints and barriers on both the supply and demand side that need to be addressed. One such need that is urgent is better collaboration across the NUS community, not just in the agriculture sector but with others who champion NUS in sectors such as health, environment and education. Greater coherence between global and national policies is also needed to ensure that the NUS community collaborates more effectively in developing and implementing projects and investments, to ensure the most efficient use of limited resources.The importance of promoting NUS for making agriculture and value chains more effective in supporting nutrition has been particularly appreciated over the last decade, and the recent COVID-19 pandemic has made even more apparent the resilience role that NUS can play in buffering communities against both supply and demand shocks. The world needs NUS and we need societies to steer food systems in the right direction, a pathway that is sustainable for our own lives and for the planet.1 Recommendation 10 of ICN2 2014/3 Corr.1 2 More example at https://foodtank.com/news/2015/01/harvesting-the-best-10-appsfor-healthy-organic-shopping/ DOI: 10.4324/9781003044802-5Agrobiodiversity provides diverse options for people's strategies in cultivating, collecting and processing a diversity of plants for their food, nutrition, livelihood security and resilience. Only in the last two decades has the attention of agricultural research started to slowly broadening from staple crops and vegetables to \"neglected and underutilized species\" (NUS) or \"orphan crops\". This chapter is largely based on three baseline studies in Myanmar, Peru and Zimbabwe. The objective is to understand people's perspectives of NUS in relation to their concept of nutrition and their food security strategies. Particular attention is paid to women's access and use of NUS and the biodiversity source of household diets. A combination of methods were used:• Household surveys of socio-demographics and agricultural crops, and a modified version of Household Dietary Diversity Score (HDDS) (FAO, 2010). • A gender-disaggregated community resource flow map (Manicad, 2002(Manicad, , 2004)), which consisted of area mapping farms and the landscape, and the collection and use of plants. A focus group discussion identified people's folk taxonomy, uses, locations, seasonality, collection and propagation of NUS (Oxfam Novib, 2018). • Participatory Rural Appraisal, including a seasonal calendar developed to identify the NUS availability and locations for the entire year (ANDES, 2016).The methods were applied twice, once each during the plenty and lean seasons of food availability. The studies involved Indigenous and local peoples, who are mostly engaged in subsistence farming and employ largely rain-fed agricultural practices. The three countries represented diverse crop systems in distinct agro-ecologies, from the delta in Myanmar to the high altitudes of Peru and the semi-arid regions of Zimbabwe (see Table 4.1).One of the most widely accepted characteristic of NUS is the neglect of science and markets. During the surveys, the term \"neglect\" and \"underutilisation\" consistently created confusion amongst local people. In Peru, NUS have \"strong sacred value as they are conceived as fruits of the Pachamama (Mother Earth), and are crops sent by the Apus (natural divinities), or are blood of the Apus and species used to purify the body\" (ibid.). However, while NUS may be sacred to some, they also carry the stigma of being \"poor people's food\". In Zimbabwe, Tsine (or \"Black Jack\") is perceived as a food consumed by those suffering from hunger and as curative item for people who are HIV positive (CTDT, 2015).A key defining feature of NUS is that these are highly localised plants involving specialised local knowledge of mostly women, who are often marginalised and impoverished. Through lessons learnt, the confusion over NUS terminology was better managed through a combination of the following techniques: (i) prior to the survey, we harmonised the community custodians' local concepts of NUS with a set of working definitions of it. (ii) We properly sequenced the material resource-flow map to first enumerate all the plants collected. This was followed by key informant interviews to classify which of the collected plants were NUS; and then we characterised each NUS according to the local knowledge of folk taxonomy, ethnobotany, seasonal availability, locations, harvesting, propagation and processing methods. This was followed by (iii) the collection of specimens, (iv) verification with the wider community and (v) discussions with research organisations about, for instance, the NUS' scientific names and its nutritional composition.A \"lean\" or \"hunger\" period refers to recurrent food shortages amongst the poorest households. Reflecting the seasonality of agricultural production, the lean period often occurs just before the upcoming harvest when food supply is at its lowest and when it coincides with the low demand for agricultural labour.In the coastal Irrawaddy region of Myanmar, the lean period also coincides with the cyclone season. Hence, the lean season often combines the stresses of lack of food, lack of wages to buy food and, in some cases, environmental calamities. The lean period is a predictable, seasonal \"sink or swim\" time when households either survive from one season to the next, or they lose assets, accumulate debt and sink further into poverty.The survey on the lean period, referred to as \"hunger\" or \"scarcity\" periods, proved highly sensitive. In Peru for example, \"scarcity\" (\"escasez\" in Spanish) does not have an equivalent in Quechua and is often associated with poverty. Asking someone about their food scarcity or hunger were considered taboo in all three countries. These sensitivities were managed by keeping the survey private within households, and ensuring that trusted local people were part of the study team. Table 4.1 shows that a substantial percentage of the sample populations confirmed that they regularly experienced hunger. However, the percentages for each country cannot be compared due to the difficulties in covering the topic and the likely different interpretations across cultures of the hunger period.Most respondents referred to the lean period as the time when they had low access to food supply and as a period of physical stress and mental anxieties. In Myanmar, respondents associated hunger with a shortage of rice. This could be attributed to the importance of rice in their culture, diet and income. It is also likely that the lack of carbohydrates directly manifest in the sensation of hunger.The three countries have common some coping strategies. This includes consumption of food preserved or stored during the season of plenty; aspects of reciprocity, such as borrowing or receiving food from relatives and friends; and buying food on credit or shifting to cheaper and lower quality and taste. More vulnerable households turn to harmful strategies such as reducing their portion sizes or skipping meals. In some households, adults may reduce or skip meals in favour of children; in other households, working members are prioritised. In more desperate circumstances, some households in Myanmar and Zimbabwe resort to eating premature crops. This is an example of households losing assets during lean periods, such as their next harvest and seeds for the subsequent growing season. For example, the over-harvesting of perennial crops such as taro is likely to reduce yields, and the consumption of cereal seeds is a major threat to seed security. In Zimbabwe, many respondents also rely on food aid.All respondents referred to the collection and consumption of NUS as an important part of their coping strategies. Most households collect semi-wild and wild plants to supplement their diets and for market sales. NUS are cultivated and collected from home gardens, on farms and roadsides and in forests, wetlands and pasture areas. They also referred to the traditional knowledge of the elderly for understanding the availability of different NUS during specific times and at specific locations. The responsibilities for executing the coping strategies, including the collection of NUS, are shared within the household, with women having a prominent role.In all three countries, the local people stated that they have limited knowledge of nutrition since they lack access to their governments' nutrition education programme. In Myanmar, the respondents said that they are less aware of the nutritional impacts of their food choices. The communities showed a very limited understanding of micronutrients such as vitamins. However, in all three countries, there were good indications that local people traditionally have a functional knowledge of the association between dietary diversity and well-being.NUS are particularly important for the people's sense of well-being and are appreciated for both the eating satisfaction, as well as their health and healing values. These knew cures for gastroenteritis, anaemia, colds and flu, prostrate and liver inflammation, muscle cramps and various pains. A number of NUS consumed as food were also valued for their contraceptive uses, or for easing menstruations (ANDES, 2016). In Myanmar, NUS were consumed because of their associated good health benefits. The uses of NUS as medicines are most helpful during hunger periods when money is tight. In general, however, people increasingly prefer to purchase medicines from pharmacies (Metta and Searice, 2015). In Zimbabwe, the most important NUS were believed to have curative properties against malaria, dehydration, pain and HIV/AIDS (CTDT, 2015). These findings concur with that of other studies (e.g. Pieroni and Price, 2006) on the lack of distinction between food and medicine in traditional food systems. The surveys indicated that inter-generational transfer of knowledge might need to be better understood and further enhanced.In the Lares Valley, the equivalent concept of well-being is \"Sumaq kausay\", which means \"good living\". They refer to Sumaq kausay as the balance and reciprocal relation between the individual and collective, and nature and ecosystem services. Aspects of cultural identity, leisure, celebrations and knowledge heritage are also integrated in their concept of well-being (ANDES, 2016).In all three countries, most of the respondents' sense of well-being was connected to healthy ecosystems with diverse land use, including farming and gardening. People derived their dietary diversity from the biodiversity on farms and within landscapes. This was articulated in the NUS flow maps in Myanmar, Zimbabwe and Peru, which illustrated where people gather domesticated, semi-and non-domesticated plants. Many were NUS, which vary across time and space. In Peru, a high dietary diversity resulted from a combination of more intensive food production, gathering of plants within diverse ecologies and the purchase and barter of a wider variety of food. In the Lares Valley, women's networks operate five traditional barter markets involving farms within the three levels of agro-ecologies from the top, middle and lower zones of the region (see Table 4.1). This enables the exchange of a variety of vegetables, fruits, spices, condiments and beverages. The barter markets enhance local resilience based on diverse land use combined with the traditional social relationships of reciprocity and redistribution (ANDES, 2016).Similar links between dietary diversity and agrobiodiversity were established in a study involving Indigenous and local peoples in the East Usambara Mountains in Tanzania (Powell et al., 2017). In this study, local farmers indicated that maintaining multiple land uses increases crop diversity, which helps ensure their food security and dietary diversity. In another study in Mount Malindang in the Philippines, the Subanens also displayed a diverse collection of biodiversity on farms and in the wild from diverse ecologies within their landscape (Manicad, 2004). Similar to Peru, the study further alluded to the people's integrated landscapes perspectives with the management of biodiversity on farms and in the wild. In both the Subanens in the Philippines and the Quechua in Peru, traditional beliefs and social relations also help regulate the sustainable and equitable harvesting and distribution of biodiversity in the wild (ibid and ANDES, 2016).The studies in Myanmar, Peru and Zimbabwe indicated that land degradation, farming, environmental pollution, extensive mining and deforestation threaten their well-being and food sources. In Peru and Zimbabwe, malnutrition was associated with the lack of consumption of local wild foods and the occurrence of diseases in cultivars. In Myanmar, the respondents directly linked the inaccessibility of diverse diets as a main cause of malnutrition in their communities.The respondents in the three countries also referred to changing climates as a threat to the diversity of their food sources. They pointed to increased pest and disease infestations, and the worsening scarcity of wild plants. In Zimbabwe, they pointed to climate change and the total drying up of wetlands in Uzumba, Maramba and Pfungwe (UMP), which in turn resulted in the disappearance of indigenous vegetables that used to grow there during the lean seasons (CTDT, 2015). This indicates that not only does climate change threaten livelihoods and food security, it also threatens people's coping strategies.Social Relations The baseline studies in Myanmar, Peru and Zimbabwe contribute to the understanding of NUS as integrated in local peoples' land use and agrobiodiversity management. Local people associate agrobiodiversity, including NUS, with dietary diversity, which they closely link with their sense of well-being. These baseline studies indicate that NUS are part of people's strategies for food and nutrition security during both the lean and the plenty seasons. For the further enhancement of NUS for people's well-being, a few courses of action are suggested:1 Research and development interventions on NUS need to be guided by the principle of equity. For effective interventions on NUS, it is important to understand and address the underlying gender and social relations within households and between generations, including the youth. 2 Considering the rich cultural context and the sensitivities within which NUS are managed, training and engaging local communities and researchers can contribute to a more robust and user-oriented results. This also creates capacities to implement and follow through on plans for intervention.Joint planning and periodic reviews of methods, measurements and analysis can mitigate the trade-off between diverse local research and global comparisons. 3 This chapter concurs with a study in Tanzania (Powell et al., 2017) ). There are varieties especially in little millet and proso millet, which mature in 60-70 days, yet provide reasonable and assured harvests even under most adverse conditions. India, being the primary or secondary centre of origin and domestication of small millets, is a storehouse of highly valuable genetic variability. Asia and Africa are the major producers of these species at the global level, and India is possibly the largest producer of millets, with an estimated production of around 16 million tonnes annually. Exports and imports of millets are negligible, indicating low demand and/or unreliable availability of marketable surpluses in local/world markets. Urbanites by-and-large have forgotten the amazing foods and dishes made out of millets. Being eco-friendly crops, they are suitable for fragile and vulnerable environments and for sustainable and green agriculture. The promotion of these crops can lead to more efficient natural resource management and a holistic approach to sustaining precious agrobiodiversity.Millet grains are very nutritious as they contain good quality protein and are rich in minerals, dietary fibre, phytochemicals and vitamins. A cursory look at the proximate composition of various food grains (Table 5.1) would reveal the distinct nutritional superiority of millets over major food grains such as wheat and rice. This needs to be exploited in terms of its health and nutritional benefits for alleviating nutritional deficiency, the result of changed food habits and a shrunken food basket. Millet, with its unique grain properties, exhibit considerable opportunities for diversification of its food use through processing and value addition.Securing the existing cultivation area for millets is a matter of concern. As shown in Table 5.2, in the past six decades, the area used for growing millets has gone down by 62.57%, dropping from 36.34 million ha (1955)(1956) to around 13.84 million ha (2017)(2018)). Yet, the production targets of all millet crops were maintained as a result of an increase in productivity per hectare -over four times in pearl millet and more than two times in sorghum, finger millet and small millet crops -over the decades.Even though small millets are cultivated in almost every Indian state, the distribution of individual millets is not uniform. The major finger millet growing states are Karnataka, Tamil Nadu, Andhra Pradesh, Orissa, Bihar, Maharashtra and Uttar Pradesh. Karnataka has the largest area under finger millet, accounting for nearly 60% of the total area. Kodo, little millet and foxtail millet are grown widely in Karnataka, Tamil Nadu, Andhra Pradesh, Orissa, Bihar, Madhya Pradesh and Maharashtra. In Madhya Pradesh, both kodo and little millet are predominant, whereas foxtail millet is important in Andhra Pradesh, Karnataka and Telangana. Barnyard millet and proso millet are grown largely in hills of Uttar Pradesh, Uttarakhand, the north-eastern regions and plains of north Bihar and western Uttar Pradesh and Maharashtra.The bulk of millets produced in the country are consumed at the farm level and very little finds its way to organised markets. Millets provide much-needed food and feed security, especially to vulnerable groups. However, it is important to note that food security at the national level will only be effective when regionally important crops are allowed to play their due role in meeting the food and fodder needs of the region. Such a vulnerable situation calls for an urgent intervention from policy makers; an ideal correction would be to produce the required food within the state/region itself, by promoting and developing locally and/or regionally important rainfed crops. The promotion of millets can lead to much more efficient natural resource management and, ultimately, to a more holistic approach in sustaining precious agrobiodiversity. 1955-1956 1965-1966 1975-1976 1985-1986 1995-1996 2005-2006 2017 (Seetharam, 2015). In view of this, India is recognised as a secondary centre of diversity for this crop. The highly variability found in finger millet is divided into five cultivated races viz. coracana, vulgaris, elongata, plana and compacta; they are distinct essentially on the basis of inflorescence morphology. Foxtail millet, Setaria italica (L.) P. Beauv., and its closest wild relative, Setaria italica subsp. viridis (L.) Thell., originated in the highlands of China some 5,000 thousand years ago and later spread to India as a cereal crop (Prasad Rao et al., 1987). Proso millet (Panicum miliaceum L.) is native to Manchuria (China) and moved to Europe some 3,000 years ago. Little millet (Panicum sumatrense Roth) is native to India and is widely cultivated across the country in many states. Indian barnyard millet (Echinochloa frumentacea Link), domesticated and cultivated in India, is highly variable. Kodo millet (Paspalum scrobiculatum L.), domesticated in India some 3,000 years ago, is widely distributed in wet damp habitats, grown in several states from Tamil Nadu in the south to Uttar Pradesh in the north. By and large, small millets in India are important to hill and tribal agriculture.In the past, small millets breeders had limited access to germplasm and worked with very limited accessions that lacked diversity, which blunted opportunities for yield improvement. This situation was, to some extent, rectified in the 1960s, when first attempts were made by Indian Council of Agricultural Research (ICAR) to pool the collections under the \"PL 480 Project\". Conservation activities gained further momentum with the National Bureau of Plant Genetic Resources (NBPGR) in New Delhi, which has been playing a key role in augmenting the initial small millets collection. Recognising the importance of conservation and greater access to germplasm, the All-India Coordinated Millets Improvement Project (AICMIP) established a germplasm unit in Bangalore in 1979 to cater to these species. This unit, since then, has been making efforts to collect pool germplasm from various sources and make it available to breeders. The unit is also recognised as one of the NBPGR's National Active Germplasm Sites (NAGS) and has the mandate for the collection, conservation, evaluation and documentation of small millets germplasm within the country. Presently, the Bangalore unit maintains one of the largest collections, with more than 15, 000 accessions of six small millet species, incl. 7,122 accessions of finger millet, 2,821 of foxtail millet, 1,537 of kodo millet, 939 of proso millet, 1,657 of little millet and 988 of barnyard millet (AICSMIP, 2012).Full utilisation of germplasm depends on two factors: (a) evaluation and characterisation and (b) identification of useful gene sources. These two areas have received attention during the last 25 years and the majority of millet accessions have been screened for desirable agronomic and grain quality traits. A good data base is available for most accessions conserved.In order to improve the efficiency of germplasm use, core subsets of the collection have been formed and made available to breeders. The identification of several sources of stable resistance to blast disease in finger millet and their deployment in breeding research has been highly rewarding with regard to the development of high-yielding blast-resistant varieties of finger millet ( Ravikumar et al., 1990( Ravikumar et al., , 1991;;Byre Gowda et al., 1999). The secondary gene pool of subsp. africana has been of interest from the breeding point of view as a source of useful genes for improving tillering abilities, fodder yield and quality, drought tolerance, finger number and length. Pre-breeding is required for the introgression of characters from E. africana to E. coracana, so as to derive lines useful in breeding programs.Exotic collections of finger millet, especially from Africa, have been used in recombination breeding, resulting in the release of many superior, high-yielding varieties (HYVs) in many states. The African germplasm has thick stem, dark leaves, robust growth, large ears and high grain density and is a source of resistance to blast disease (Naik et al., 1993). Hybridisation between African and Indian elite varieties has been highly rewarding and has resulted in the release of many HYVs.Several useful genetic stocks have also been identified in the germplasm of small millets with regard to higher protein content, desirable agronomic attributes with high carbon dioxide fixation and low leaf area, suitable for rain fed situations and germination under conditions of limited moisture and a hard soil crust (Sashidhar et al., 1983;Seetharam et al., 1984). Accessions capable of producing higher biomass, dual purpose types with superior stover quality are available for improving the grain and stover yield of cultivars (Schiere et al., 2004). There are finger millet accessions that have significantly higher grain calcium and protein content. In foxtail millet, new sources of dwarfing genes controlled by oligo genes have been also identified. These accessions are useful in breeding dwarf foxtail millet. The variability available for protein content (7.176-15.73 g) and seed fat content (4.0-7.1 g) in foxtail millet is enormous and can be exploited in breeding (Seetharam, 2015). Optimising the use of germplasm in small millets is a priority for crop improvement, in order to make these species competitive vis-à-vis other crops.Small millets improvement efforts have been in progress since the beginning of the twentieth century (Seetharam, 2015). The launching of coordinated crop improvement programs during the late 1950s has contributed significantly to the development of new superior varieties and enhanced production and protection technologies in small millets. The release of improved varieties and production packages has contributed to a threefold increase in grain productivity in the country. Small millets have been the last crops prioritised in the agriculture developmental agenda in the country, with finger millet receiving a little more attention than other species. An attempt has been made here to trace the progress in crop improvement of small millets over the last nine decades.In the 1950s and 1960s, crop improvement for small millets was confined to a few states such as Tamil Nadu, Andhra Pradesh, Karnataka and Uttar Pradesh. The emphasis was on varietal improvement through selecting better types from local varieties. In Tamil Nadu, a Millet Research Station was established in 1923 at Coimbatore, under the erstwhile Madras Presidency. Finger millet work in Karnataka dates back to 1900, initiated in Bangalore especially with finger millet, and in Uttar Pradesh at Kanpur and Gorakhpur in 1944.The first finger millet variety released in the country was H22, as early as 1918 in Karnataka. Other finger millet varieties released were Co6 (1935); R0870, ES13, K1 and ES11 (1939);Hagari1 (1941);Co1, Co2, Co3 and Co4 (1942);VZM1 andVZM2 (1958) andT36 B (1949). Finger millet improvement received a boost in Karnataka during the 1950-1960 period, and several new varieties such as Aruna, Udaya, K1, Purna, ROH 2 and Cauvery were released. Similarly, many varieties were released for other small millets in other states as well (Seetharam, 2015), including little millet variety Co 1 (1954); foxtail millet varieties Co1, Co2, Co3 (1943), H1, H2 (1948), T 4 (1949); kodo millet varieties PLR 1 (1942( ), T2 (1949( ), Co1 (1953)); proso millet variety Co1 (1954) and barnyard millet varieties T25 and T46 (1949).During the 1950s, with food production remaining stagnant and with population growing, the importance of millet crops in Indian agriculture, as important resources for dry land agriculture, started gaining recognition. A project for the intensification of research on cotton, oil seeds and millets was launched during this period, with several centres working on millets alone. The importance of genetic resources as primary raw material for crop improvement was recognised prior to initiation of coordinated project. The first attempt to collect the germplasm of millets in the country was made in 1961 under the PL 480 Project \"Storage, Maintenance and Distribution of Millets Germplasm\", which resulted in the collection of nearly 3,000 genetic stocks of various species including 718 samples of finger millet, 584 of kodo millet, 431of little millet, 615 of foxtail millet, 250 of proso millet and 399 of barnyard millet.Millets, in general, started receiving attention with the launch of the AICMIP in 1969. Small millets also started receiving some attention in a few selected centres. Crop improvement received a major boost during 1978-1979 through an International Development Research Centre (IDRC)-funded project of five crop-specific lead research centres in the country (viz. Almora in Uttarakhand [barnyard millet], Dholi in Bihar [proso millet], Dindori in Madhya Pradesh [kodo millet], Semiliguda in Orissa [little millet] and Nandyal in Andhra Pradesh [foxtail millet]). The project continued until 1985 and was replaced subsequently by the \"All-India Coordinated Small Millets Improvement Project\" (AICSMIP) in 1986. The centres that were operating under the IDRC project became part of AICSMIP. Small millets research has focused all along on the development of varieties and agro-production and protection technologies suitable for different regions. Currently, there are 14 centres functioning under the AICSMIP, spread across the country. Their work is multidisciplinary and applied in nature.Crop improvement is aimed at developing HYVs with resistance to blast disease quality fodder, early and medium maturity and white seed in finger millet, resistance to head smut in kodo millet and resistance to shoot fly in both proso and little millets. So far, a total of 293 varieties for the six small millet species have been released in the country from 1918 to 2020. Out of this, 86 were released before 1986 (pre coordinated-era) and 207 during 1986-2020 (post coordinated-project era) (Table 5.3).Modern finger millet varieties have the genetic potential of producing five to six tonne/ha under optimum cultivation conditions. Recombination breeding has resulted in the release of many superior varieties in foxtail, proso and barnyard millets as well. Large-scale variety testing on farmers' fields in participatory mode (Gowda et al., 2000) and frontline demonstrations have helped in spreading HYVs among farmers. Seed production and distribution, which is key to the successful adoption of HYVs is weak in many states. This has deprived farmers of many benefits arising from the cultivation of improved millets, in most parts of the country. Harnessing the yield advantages from these improved varieties is the need of the hour in order to make the cultivation of small millets truly competitive and economically viable.Packages of information about best practices such as the optimal time for sowing/planting, choice of varieties, time and method of application of fertilisers, etc. have been developed for different regions of the country. Management practices for aberrant weather conditions, for mitigating early, mid-and late season drought have been worked out. Remunerative cropping systems involving different pulse crops in millet for different regions have been created. Technology transfers attempted through frontline demonstrations on farmers' fields and large-scale station demonstrations have also helped narrow down the yield gap that exists between farmers' fields, demonstration plots and research station trials (Seetharam, 2015;Prabhakar, 2017). Plant protection measures to control economically important diseases and pests have been enhanced for small millets (Seetharam, 2015). Several blastresistant lines have been identified from the germplasm available at NAGS, and better crop protection practices for these diseases have been recommended.After years of neglect, millets are finding a place in agricultural research and agendas of large private companies, and from there are reaching supermarkets everywhere. They are increasingly being recommended by doctors and nutritionists as important foods for health and wellness, and as being helpful in preventing many diseases related to modern lifestyles, including obesity and diabetes. Numerous elite food chains have begun selling millets and millet-based products as health foods. As it stand, today, the productivity of small millets can be increased by more than 50% by adopting improved production practices, allowing more people to take advantage of these nutritious and healthy crops. In recent years, milling technology has been considerably improved to enhance grain quality. Millet mills are available for cottage-level and large-scale processing. Millets can be further processed for making various food items such as flakes, quick food cereals, ready to eat snacks, supplementary foods, extrusion cooking items, malt-based products, weaning foods and, more importantly, health foods.Farmers who had shifted from millets to other crops are keen now to go back to millets in view of the stable harvests ensured, the easy crop production, its drought resistance and eco-friendly production perspectives. The higher prices being offered in many parts of the country -especially for small millets, duly recognising their unique nutritional features -is making millets production a remunerative proposition vis-à-vis other crop options available in each region. The R&D efforts made in the area of grain processing and value addition through the development of novel diversified foods especially in sorghum, finger millet and other millets are opening new avenues for expanding the consumer base and enhanced the absorption of production for food use.The immediate needs for supporting millet promotion are:I Sustain and increase production of nutritionally rich millets and expand opportunities for value addition as incentives. II Conserve the genetic resource base and provide superior germplasm possessing the required attributes for food, feed and other diversified use-needs. III Overcome production constraints by providing technological inputs appropriate to each region. IV Raise awareness among the general public, policy makers, traders, farming communities, consumers, entrepreneurs and donors on the role of nutrientdense millets, thereby increasing demand and use.Keeping all the above in view, research activities are to be restructured and should reflect closely the location-specific needs in each region. Millet R&D should not be viewed from crop and productivity angles only, but also should be more holistic, reflecting other benefits such as acquiring greater ecological balance and climate change adaptation of production systems, as well as strengthening the food, nutrition and health security of people at large.After years of neglect, small millets suitably designated as climatic-resilient or climate-smart crops, or as nutri-cereals, are now receiving more attention in India's agricultural R&D agenda. Their rich crop diversity has made these plants well suited to contingency crop planning and also to address issues related to climate change. Highly versatile millets like foxtail, barnyard, proso and little millet would fit into any situation of climatic change and could save farmers from total crop failures. Future research priorities for small millets include the utilisation of trait-specific germplasm, basic and strategic research for resistance to biotic and abiotic stresses, varietal diversification, developing viable crop production and protection technologies and value addition. Small millets are viewed as important crops for the health and wellness of people and can help in preventing many kinds of diseases related to modern lifestyles, including obesity and diabetes. Lately, plenty of elite food chains have begun selling millets and millets-based products as health food. Increased popularity of small millets as nutri-cereals paves away for further strengthening nutritional security in India. DOI: 10.4324/9781003044802-7Africa's dominant food systems heavily rely on exotic species (National Research Council, 2008). Some of the main staples across the continent, such as maize (Zea mays) and cassava (Manihot esculenta), as well as a number of widely grown fruits and vegetables such as papaya (Carica papaya) and tomatoes (Solanum lycopersicum), were introduced from the 'New World'. Other species widely present on the continent such as mango (Mangifera indica) and irrigated rice (Oryza sativa) were imported from Asia.Nonetheless, a number of species originating from the African continent have made it into global value-chains, including coffee (arabica [Coffea arabica] and robusta [Coffea canephora]), oil palm (Elaeis guineensis), and a cotton species (Gossypium spp.) (Van Damme and Termote, 2008). Africa is also a center of diversity for a number of commodities of importance, that are as yet underresearched and under-invested in. Staples such as sorghum (Sorghum bicolor), pearl millet (Pennisetum glaucum), yams (Dioscorea spp.), finger millet (Eleusine coracana), fonio (Digitaria exilis) and teff (Eragrostis teff ); legumes such as cowpea (Vigna unguiculata) or lablab (Lablab purpureus); vegetables such as African eggplant (Solanum aethiopicum) or okra (Abelmoschus esculentus); and fruits such as tamarind (Tamarindus indica) or baobab (Adansonia digitata) have entered national or regional value-chains, but are yet to be used to their full potential (Van Damme and Termote, 2008). At the same time, the continent harbors an enormous amount of locally important species -such as fumbwa (Gnetum africanum), spider plant (Cleome gynandra), weda (Saba senegalensis), safou (Dacryodes edulis) and African locust bean (Parkia biglobosa) to name but a few -that have potential to be further developed and to contribute to the livelihoods and nutrition security of smallholder family farmers.Céline Termote, Stepha McMullin, Hendre Prasad However, scientists and policy makers often remain unaware of the great nutritional, socio-cultural, economic and environmental potential of these resources to African food systems (Akinola et al., 2020). Therefore, this chapter presents a number of examples on how to increase interest in these species through research, domestication, production, marketing, consumption and promotion of these valuable species.Ethnobotany is the science that documents human-plant interactions, or, in other words, how humans use the plant biodiversity surrounding them for food, feed, arts, medicines, etc., allowing new crops to be discovered (Van Damme and Termote, 2008).Ethnobotanical surveys have been and are still being carried out all over the continent in order to document the rich knowledge on edible species held by the inhabitants of specific villages, tribes or regions (e.g., Termote et al., 2011 on wild edible plants in Tshopo District, DR Congo or Ojelel et al., 2019 for wild edible plants in Teso-karamoja, Uganda). Most of the studies only cover specific regions or tribes and it is much harder to find national overviews, such as the book by Maundu et al. (1999) Traditional Food Plants of Kenya. Other authors only deal with a specific food group such as fruits (e.g., Gueye et al., 2014, wild fruits from the Malinke in Senegal) or vegetables (e.g., Achigan-Dako et al., 2010, Traditional Vegetables in Benin).While there is plenty of information available on African edible plants that merits inclusion in accessible national and regional databases, there are still many gaps in terms of coverage of ethnic groups, agro-ecological zones and/or regions, in order to unravel the continent's rich botanical heritage before it's lost (Akinola et al., 2020). In that regard, the open access PROTA book series, 1 presenting plant resources for tropical Africa in different volumes, is an interesting resource to start with.A number of these species have the potential to be further developed and promoted for niche markets (Van Damme and Termote, 2008). Such markets allow for price setting by the farmers and offer many more opportunities for smallscale, resource-poor farmers to earn decent livelihoods compared to global commodity markets for items such as coffee, tea or cocoa, where prices are set by international players at the expense of the farmer. As the resources for further morphological, genetic, nutritional, economic or socio-cultural characterizations as well as domestication trials and market development are limited, a prioritization of species for further development is required, a process that should include beneficiary communities.For example, in northern Benin, Bioversity International (BI) worked with local stakeholders to prioritize 11 multi-purpose species (Table 6.1), which are currently undergoing full characterization (nutritional composition, sociocultural and economic value, and agronomic potential). Combined with studies on threats, conservation status and domestication potential, species knowledge products are in development and will support ongoing interventions using local biodiversity to improve diet quality and nutrition of vulnerable populations in northern Benin.In Northern Kenya (Turkana county), BI researchers documented local knowledge on 64 wild edible plant species (WEPs) (unpublished data); however, almost none of these species were found in the diets of 240 mothers and small children surveyed in pastoralist and agro-pastoralist communities in Loima sub-county (Aluso, 2018). Nonetheless a number of them have the potential to improve dietary quality of women and small children in the area. Six of these wild foods (some naturalized) were selected based on availability of nutrient content data and their potential contribution to closing nutrient gaps (Sterculia africana [African-star chestnut], Berchemia discolor [wild almond], Grewia tenax [white crossberry], Amaranthus hybridus [amaranth], Solanum americanum [American nightshade] and Celosia argentea [celosia]), to model the lowest-cost, most-nutritious diets with and without these wild foods using the Cost of Diet linear programming tool developed by Save the Children, UK. 2 Results showed that the addition of the three wild vegetables resulted in cost reductions of 30%-71% compared to the models without wild foods, as well as making up for iron and zinc gaps in the models without wild foods (Sarfo et al., 2020). Many NUS have higher nutrient values than their cultivated counterparts (Akinola et al., 2020); however, they do not always contribute as much as they could to closing nutrient gaps or improving livelihoods. In a study around the Lama Forest in southern Benin, 91% of households mentioned they sometimes collect WEPs, but only 8 of the 61 WEPs documented in the area were found in 37% of the 240 24h-dietary intake recalls carried out during the lean season. Fermented Parkia biglobosa kernels were consumed the most (Boedecker et al., 2014). Similar results were found in a study on WEP consumption in Tshopo District, DR Congo by Termote et al. (2012) with only 11 out of 77 known WEPs reported in 30% of the recalls carried out in Yaoseko village. Both studies found that people who consumed WEPs the previous day, compared to those that did not, had higher dietary diversity scores and/or higher nutrient intakes for that day. Other studies, such as Dovie et al. (2007) in South Africa, found much higher contributions of WEPs to micronutrient intakes.Increasing knowledge on the nutritional and livelihood benefits of NUS through nutrition education or counseling -whether or not in combination with trainings on how to grow, prepare, conserve and market them -has been successful in several projects throughout the continent. One of the earliest examples (Box 6.1), is the African Leafy Vegetables (ALV) project carried out in Kenya by BI and partners from 1996 to 2003, wherein the multifaceted approach of prioritizing, characterizing, improving production and simultaneously creating demand through nutrition education and media campaigns led to better livelihoods for hundreds of ALV farmers (Gotor and Irungu, 2010). Building on this early work, an integrated community-based approach for farm, market and diet diversity was developed in Vihiga county, Kenya. 3 A diagnostic survey documented dietary intake patterns and agricultural biodiversity. Subsequently, community groups were taken through a series of workshops wherein (a) the importance of nutrition and balanced diets was explained, (b) the diagnostic survey results were discussed and (c) community action plans (CAP) were drafted. All groups decided to grow ALVs and legumes in kitchen gardens and some even added poultry activities. During CAP implementation, the groups were guided through agricultural trainings and nutrition counseling. An end-line survey after one year showed that dietary diversity scores had significantly increased for women as well as for small children in the whole community. The percentage of children meeting minimum dietary diversity (consuming foods from a minimum of four out of seven food groups) also increased significantly (Boedecker et al., 2019). The approach is currently being further piloted in two new contexts in Kenya (in Turkana and Busia counties).Other interesting models currently being pilot-tested in Kenya to promote production and consumption of NUS are f.e. (1) direct food procurement for school feeding programs, linking ALV farmers with schools in Busia county with the double goal of improving school meal quality, nutrition and performance of pupils as well as improving farmer incomes and livelihoods (Borelli et al., in press); and (2) multi-stakeholder platforms to connect ALV farmers with markets, facilitate business plan development and attract investments in Nakuru (SASS project 4 led by the European Centre for Development Policy Management) and Kisumu (Healthy Food Africa project 5 led by BI), with the aim to build inclusive value-chains that support food system resilience and diet quality.To support this work, a range of tools to raise awareness on the nutritional and livelihood benefits of NUS have been developed; for example, in southern Benin, BI researchers developed a picture-based recipe book integrating NUS into traditional recipes to improve their nutritional quality (Bodjrènou et al., 2018). Another tool developed and refined within several BI projects is the seasonal food availability calendar to assist extension workers and consumers with yearround selection of foods from different food groups to meet minimum dietaryRealizing that nutritious traditional leafy vegetables were rapidly disappearing from plates and fields, BI and its partners started implementing a project on ALV in the mid-1990s. Through ethnobotanical surveys, 210 different ALVs were documented, of which few were found to be regularly consumed by those surveyed. Germplasm was collected for conservation in the national gene-bank and characterized. Eight species, including Amaranthus (Amaranth spp.), spider plant (Cleome gynandra) and cowpeas (Vigna unguiculata), were prioritized for further research. Their nutritional composition was determined and the effects of storage and processing on their nutrient composition was studied.Subsequently, the project worked with farmers and consumers to optimize agronomic protocols and increase knowledge on the nutritional benefits of ALVs. Four hundred and fifty farmers benefited from seed starter packages and training on growing ALVs. Farmers were linked with market outlets and public awareness strategies such as cooking contests; recipe booklets and radio station coverage were organized. As a result, ALVs started appearing in supermarkets in Nairobi (EIARD, 2013). Three years after the project ended, an impact study revealed that the production of ALVs in peri-urban Nairobi had increased more than ten-fold since 1997. Almost 23% more farmers grew a minimum of one ALV, and the average number of ALVs grown increased from 1.5 to 2.3 (Gotor and Irungu, 2010). Women played a key role in the production, marketing and consumption of ALVs, and incomes increased in regions where farmers were linked to markets. Increased awareness of the nutritional value of ALVs was identified as a key driver for the increased demand.diversity standards and, thus, increase chances of covering all individual nutrient needs (Lochetti et al., 2020).The World Agroforestry (ICRAF) developed the food tree and crop portfolio approach to enhance the seasonal availability of nutritious foods in local food systems (McMullin et al., 2019). These nutritious food portfolios are location-specific recommendations for cultivating a greater diversity of indigenous and exotic food trees (those that provide fruits, leafy vegetables, nuts, seeds and oils) with complementary vegetable, pulse and staple crops that could address food harvest and micronutrient gaps in local households' diets. Additionally, the tool shows the nutritional value (vitamin A, vitamin C, iron and folate) of selected species using a scoring system to simplify nutrient content information, which is very useful in supporting decision-making for species selection. Indigenous and underutilized species are included in the portfolios as they are socio-culturally relevant in local food systems, and are adapted to individual landscapes, with a diversity of species enhancing resilience to more variable environmental conditions (Dawson et al., 2019). Tree-foods are often available when other crops fail, and also during the \"lean\" season. They complement and diversify the predominantly staple-based diets of rural households through the year (Kehlenbeck et al., 2013).Another tool to support mainstreaming micronutrient rich tree-foods in local food systems is ICRAF's Priority Food Tree and Crop Food Composition Database, 6 which presents nutrient data of over 90 food-tree and crop species. The database presents the backbone of the portfolios but can also be used for dietary assessments, developing training materials, and selecting nutrient-rich species for domestication and breeding programs. However, for a range of indigenous species, nutrient content data is still missing due to a lack of research and private sector interest and investment in these species (Dawson et al., 2018).One of the biggest challenges to growing a diversity of food-tree species, and NUS in general, is the lack of availability and access to quality planting material. Attention to delivery systems for planting material has been identified as an important success factor for mainstreaming orphan crops (McMullin et al., 2021). To effectively reach large numbers of smallholder farmers, well-functioning, decentralized systems for delivering seeds, seedlings and associated management information are required (Dawson et al., 2012).ICRAF has been working on domesticating and improving its mandate trees, many of which fall into the category of NUS. The Genetic Resources Unit of ICRAF maintains more than 120 tree species either as seeds or in-situ collections. Most trees have a very long lifespan, are propagated using vegetative means and are difficult to breed using traditional methods. Traditionally, trees have been bred using simple methods like selecting good performing ones, known as \"(plus)+\" trees, which are then supplied as clonal improved material; but further steps are needed for major increments in phenotypic traits and better performance. To enhance tree-breeding efforts, the African Orphan Crops Consortium (AOCC 7 ) is developing genomics resources for 101 crop species, around half of which are trees while the remaining are annual species. The AOCC aims to improve the nutritional value, productivity and climate adaptability of these traditional food crops and to increase their use in African diets (Hendre et al., 2019;Jamnadass et al., 2020). A number of AOCC species have been considered by ICRAF for developing advanced breeding programs using modern genomics tools (Table 6.2). Africa is home to a lot of promising species with the potential to improve diets and livelihoods. Only a few African species have made it into global value-chains, but a large number of them have regional, national or local importance, albeit with their full potential still yet to be discovered. While knowledge gaps remain on the nutritional, economic, socio-cultural and ecological importance of these species, ongoing research into context-adapted models promoting NUS production and consumption are generating evidence on how these have the potential to enhance diet quality, nutrition and incomes. Given that NUS are also well adapted to their local environments and support farm resilience, they could play an important role in the transition towards healthy, sustainable and inclusive African food systems. Latin America is home to an extraordinary diversity of nutritionally important fruit-tree species (Kermath et al., 2014) and, for millennia, local people have selected and domesticated useful species in their landscape (Levis et al., 2018). Despite the high diversity of nutritionally rich fruit trees, the homogenization and Westernization of consumption patterns in the region have driven the spread of poor diets, particularly in rural areas. Diets, especially of Indigenous communities are increasingly based on staples and processed food with lower nutritional values (Coimbra et al., 2013). Farming in Latin America is increasingly based on unsustainable and environmentally damaging practices, which drive tropical forest degradation and deforestation (Dobrovolski et al., 2011). Over 80% of Latin American farms are managed by smallholders (Leporati et al., 2014), who are incentivized by policy initiatives to prioritize fruit cash-crops at the expense of on-farm diversity (Sthapit et al., 2016). Although crops such as palm oil Elaeis guineensis), cacao (Theobroma cacao) and banana (Musa sp.) can play an important economic role in the region, monocultures make farmers increasingly vulnerable to socioeconomic and environmental shocks (Maas et al., 2020).The advantages of adopting a greater diversity of fruit-tree species clearly extend beyond economic resilience. One premise of this chapter is that ecological benefits, including restoration of landscapes and delivery of ecosystem services -carbon sequestration, pollination, soil protection, and fauna habitat connectivity -will be generated through increasing the role of underutilized fruit species in local, national and international markets. This will also contribute to the conservation of important genetic resources (vanHove and VanDamme, 2013;Thomas et al., 2018;van Zonneveld et al., 2020). In the Americas alone, there are several thousand fruit-bearing tree species with the potential to generateRobin Van Loon, Elisabeth Lagneaux, Gabriela Wiederkehr Guerra, Fidel Chiriboga-Arroyo, Evert Thomas, Bruno Gamarra, Maarten van Zonneveld, Chris Kettle income and improve diets (Bioversity, 2004). Despite considerable evidence supporting their ecological, cultural, nutritional, and livelihood-related benefits (Santos, 2005;Jansen et al., 2020), many of these native fruit species remain neglected or underutilized (NUS). While it is clear that not all fruit species have the potential to become global market sensations, significant opportunities exist to increase the range of promising species at regional or national levels, improving community food security and local economies.We reviewed a representative sample of 150 NUS across 27 families from various Latin American ecoregions. From this species list, we identify 25 highpotential species, considered to have the greatest scope expanding their commercial horizons (Table 7.1). We identify and discuss a range of barriers to adoption of native fruit-tree species, across farmer-facing obstacles, gaps in the value-chain and barriers in consumer demand (Table 7.2). We describe examples of how these specific barriers have been lifted in the past. Finally, we make suggestions on how these solutions can be extended to other contexts in the future, unlocking the potential of a broader range of Latin American biodiversity -thus meeting growing consumer demand for supply-chain transparency and benefiting farmers throughout the continent.Multiple factors can inhibit the uptake of native fruit-tree species in diversified farmer production systems and consumers' diets (see Table 7.2). The barriers are compiled into three main categories: (i) farmer-facing constraints at the production stage; (ii) value-chain related obstacles and (iii) challenges related to consumer demand and marketability.On-farm challenges in fruit production can prevent farmers from adopting certain crops, thereby limiting the diversification of agroforestry systems. These challenges are often related to a lack of knowledge or capacity. In a study on native Amazonian fruit species selected for their high economic, social and ecological benefits, the identified barriers to adoption, whether for home consumption or as cash crops, were primarily socio-technical rather than market or profit oriented (Lagneaux et al., 2021). The most common limitations were, in order of frequency: lack of knowledge about the species, skepticism about productive potential given soil conditions, challenges related to harvests (e.g., in the case of tall palm species) and limited access to seeds and seedlings. This suggests that the factors keeping farmers from integrating more NUS fruit species are diverse and not exclusively economic.For greater uptake of NUS it is helpful to understand which species are compatible with important commercial crops. Coffee in Central America is often Selection of 25 high-potential Latin American fruit-tree NUS along with their possible uses, current geographical distribution and recommended scale of market interplanted with fruit species that are complementary in terms of size and ecology, such as guava (Psidium guajava) and hog plum (Spondias mombin) (de Sousa et al., 2019). However, in many cases, in-field compatibility among fruit species may be limited; therefore, optimizing the designs of farm parcels is crucial to achieve successful outcomes. The lack of agronomic knowledge is also a significant barrier to the adoption and success of NUS -albeit one that can be overcome with training and horizontal knowledge sharing among farmers, such as in farmer field schools (see section 3). Decision-making on which species to plant is sometimes influenced by the time it takes for a species to become productive. The Amazonian Brazil-nut tree (Bertholletia excelsa) for example is a hyper-dominant species, delivering multiple ecosystem services (Thomas et al., 2018). However, the trees only become profitable after 15-20 years or more and concerns in the region about its future market viability are increasing despite some enrichment planting (Bronzini, 2019). The investment required to bring this species to productive age may discourage its use when other species can deliver returns quicker. This serves to illustrate how a species' ecology -and the level of knowledge thereof -can act as barriers to adoption, in this case by smallholders in the Amazon.Two of the most significant challenges faced by smallholders in rural areas are post-harvest storage and the transport of fresh fruit to market. Given the perishability of many tropical fruits, processing them into value-added products with longer shelf-life is crucial for producers to fully benefit from the economic potential of these species. Farmers often face basic infrastructural limitations such as lack of electricity or potable water, restricting fruit processing options (Smith et al., 2007). Many fruits are never folded into even local market supply-chains due to the simple lack of transportation access to those markets, despite the fruits being delicious and highly nutritious. Fruits are typically moved at the farmer's expense by boat, motorcycle or truck to intermediate buyers, leading to less profitable transactions and an increased risk of damage to the product, resulting from a lack of operational cold chains. Consequently, market opportunities for fresh fruits are often extremely limited, and improvements to on-farm processing are needed for the development of viable fruit value-chains. Fresh copoazú (Theobroma grandiflorum), a relative of cacao, has a rather short shelf-life, perishing only four days after fruit-drop if it is not cold stored or processed. Other fruits are even faster to lose their color or flavor after harvest. For such species, the constant monitoring of trees, quick harvests and rapid transport to the closest local market are required in the absence of on-farm infrastructure.Another Amazonian fruit, camu camu (Myrciaria dubia), prized for its outstanding nutritional value (Rodrigues et al., 2001), requires careful handling for optimum quality. If harvested semi-ripe, the fruit contains high amounts of vitamin C -the highest of any fruit -but its color and flavor are less attractive.Harvested ripe, it possesses an impressive color and flavor, but the vitamin C content is less stable. Promoting fruits such as camu camu requires research and investment in more sophisticated fruit processing capacity, which, in this example, would enable the stabilization of vitamin C while also preserving organoleptic qualities.Many native fruits are unknown to urban consumers, hampering their inclusion in national diets. In big cities, fruit consumption is often limited to conventional, familiar fruits. Even though copoazú and Brazil-nuts are major income generators in the Peruvian Amazon, they are almost unknown in the capital Lima, where their consumption is surpassed by strawberries and almonds. This was also historically the case for camu camu -until 2019 when the Aje Group, Peru's largest soft-drink company, carried out a national publicity campaign and established the fruit as the main ingredient in a beverage on the market. This example demonstrates the impact that effective awareness-raising and marketing can have on increasing the visibility of NUS fruits. Public institutions can also play an important role in educating the masses on the benefits of a variety of locally produced fruits -for example, municipalities organizing cultural and gastronomic events.On the other hand, consumer preference for local fruits in the Global North can amount to an obstacle to the promotion of underutilized Latin American fruits in international markets. This is mainly because of concerns about sustainability, the carbon footprint of airfreight and the lack of transparency of supply chains in remote countries. Novel tropical-fruit products can benefit from expanding conscientious markets ( Jansen et al., 2020); consumers are increasingly demanding ethically sourced products that demonstrate traceability and provide guarantees of ecological sustainability and social fairness. Value-chains in which brands and retailers are committed to tracing fruits back to farmers can provide powerful incentives to continue growing native fruit species. A new product is mainly successful when it offers great taste, high quality and competitive pricing, but marketing can also break through by focusing on nutritional, social or environmental benefits.For any particular NUS, multiple barriers to adoption are often present. The removal of one significant barrier can sometimes be sufficient to unlock the potential of a species. We do not necessarily need to confront all barriers to adoption to effectively address crucial bottlenecks.Farm-facing solutions: In general, the removal of on-farm barriers requires engagement, working closely with farmers at each stage in the production process. This is especially the case when scaling-up diverse farming systems, where longterm species are intercropped with short-and medium-term income-generating species -successional agroforestry. Government and other programs can help reduce the risk of traditional cultivars being replaced with monocultures by promoting diverse agroforestry systems with multiple perennial species, such as in the case of cacao cultivation in Central America (de Sousa et al., 2019). Diversity fortifies resilience, both on the farm and in the market, yet does require effective decentralized platforms for delivery of technical support, capacity building and knowledge transfer on species selection, planting design, management and harvesting strategies. Agronomic knowledge on the compatibility and complementarity of different native fruit species in agroforestry systems also needs to be more widely available and horizontally shared.Finally, gaps in infrastructure and know-how for propagation (nurseries) and distribution in rural, remote areas with limited accessibility must be addressed if promising species are to be widely adopted. In the example of cherimoya, access to selected cultivars in combination with improved management (e.g., introduction of new pruning approaches) has resulted in increased incomes for Andean farmers in Peru, Ecuador and Bolivia (Vanhove and Van Dammel, 2013).Another example is ramón (Brosimum alicastrum), a hyper-dominant forest species that is now embraced by local communities in the Maya Biosphere Reserve in Guatemala. Community-and farmer-facing outreach focused on the economic and nutritional benefits of new fruits is fundamental to the success of such non-profit programs. At the same time, the organization of fruit harvesters in associations -in this case with the collaboration of associations such as Asociación de Comunidades Forestales de Petén and NGOs like Rainforest Alliance (Izabela et al., 2019) -can be key to hitting export volumes and for successful co-investing in necessary infrastructure.Value-chain development: A critical aspect of fomenting the adoption of native fruit species is the provision of economic incentives to farmers through reliable and equitable value-chains. In parallel, ensuring a consistent product through processing is critical to resilient value-chains. In Latin America, numerous examples of successful fruit processing exist, including pulp, dried fruit, flour, jams and freeze-or spray-dried powders (e.g., Moraes et al., 1994). All these added-value mechanisms help remove fruit transport barriers, though each has its own disadvantages. For example, the production of freeze-dried powder requires expensive equipment and fruit pulps need strict cold chains; meanwhile, jams are niche products with low overall consumption and demand. Opportunities exist for private and public sector actors to innovate. One alternative for overcoming fruit durability and transport barriers while preserving most of the fruit's natural features is the production of purees, a pasteurized form of fruit pulp that is highly versatile and can be used as an ingredient in a variety of final products. Puree is simple and cost-efficient to process and it can be stored and transported without a strict cold-chain. This is a solution that can be managed at the farm-level, keeping the added value of fruit processing in the hands of farmers.Many of Latin America's most economically significant trees provide other commodities such as seed oil for cosmetic or edible use. Brazil-nut, murumuru (Astrocaryum murumuru), and andiroba (Carapa guianensis) are just a few of the many native seed oils that have been successfully commercialized in Brazil (Plowden, 2004;Campos et al., 2015;Smith, 2015). Basic equipment -in this case oil presses -is all that is needed to enable small producers or cooperatives to offer value-added products to national markets. When this barrier -lack of access to capital or know-how for value-added equipment -is removed, fruits that previously were left to decompose on the forest floor can incentivize sustainable management of natural forest resources and the augmentation of wild production via agroforestry planting. In the example of Brazil, accessible financing terms are offered to farmers for investment in equipment and infrastructure (Machado de Moraes, 2014). Economic policies that promote the establishment of village-level infrastructure and development of local market-facing supply chains play a key role in successfully lifting a species from NUS status. The establishment of robust cooperatives or producer associations can help secure financing for equipment and strengthen producers' negotiating power with buyers and is, therefore, a vital component of fair trade certification standards -ensuring consumer satisfaction while also making a compelling argument for the consumption of unique fruits from distant regions.Up-scaling NUS access to consumers: The Amazon is home to a rich diversity of palms that are extremely abundant producers of nutritious and culturally significant fruits. The pulp of açaí (Euterpe oleracea) is now a globally consumed, antioxidant-rich \"superfood\" that was traditionally prominent in the forest economy and food security of the lower Amazon basin (Muñiz-Miret et al., 1996). This product became known beyond Brazil's borders thanks both to well-positioned flagship brands in foreign markets (such as Sambazon in the US) and to a range of policies that support farm-and village-level producers (OECD, 2011).In addition to açaí, acerola (Malpighia glabra), burití (Mauritia flexuosa) and copoazú have reached markets beyond the Amazon basin, but the lesson learned from Brazil suggests that establishing domestic as well as international markets is important for the creation of resilient value-chains. Brazil boasts a tremendous diversity of effectively domestically marketed products from the Amazon bioregion that remain underutilized in neighboring Peru, Bolivia, Ecuador and Colombia, presumably due to a lack of similar national economic policies. Species that remain underutilized throughout their native range but which have been developed in Brazil include peach palm (Bactris gasipaes), pama (Pseudolmedia macrophylla), pitanga (Eugenia uniflora), patauá (Oenocarpus bataua) and charichuelo (Garcinia madruno).Governmental organizations, NGOs and Brazilian agricultural research institutes have promoted the consumption of native fruit species, resulting in the publication of a national ordinance that officially recognizes the nutritional value of more than 60 native food plants (Beltrame et al., 2016). With this policy support, federal and local governments have been able to achieve the inclusion of several fruits in subnational and local school lunch programs. Farmers who supply these programs are able to diversify their farms with nutritious food plants because the officially mediated procurement market incentivizes them to do so (Wittman and Blesh, 2017). Significant secondary benefits are achieved by introducing NUS in such school lunch programs, enhancing cultural acceptance and leading the way to the development of more robust local economies for these fruits.The promotion of new fruit products in national or international markets requires investment. For successful adoption, knowledge about the fruit diversity of a region must be shared among producers, practitioners and distributors and with food businesses, including restaurants and end-consumers. Food fairs such as Lima's massive Mistura Food Festival, academic presentations and social events are just some of the many platforms that can be used to promote new tastes and raise awareness of the nutritional, social and ecological values of fruits.A key component is the involvement of adequate first-market adopters including tastemakers and celebrity chefs such as Virgilio Martinez and Pedro Miguel Schiaffino, two of Latin America's most important voices currently at the intersection of gastronomy and biodiversity. Successfully promoting new and exotic tastes involves customers that are curious and open, for example, to exotic and innovative cuisine, as found in some of Latin America's top-ranked restaurants. To reach these customers and further broaden these fruits' clientele, creative cultural solutions are needed -a challenge that is multifaceted yet of great importance if broader acceptance of unfamiliar fruits is to be achieved.The barriers to adoption for underutilized fruit species in Latin America are as complex and diverse as the fruits themselves. The challenges in mainstreaming these fruits in food systems span from on-farm barriers, such as a lack of infrastructure or knowledge, to gaps in the value-chain, such as inability to process, stock or transport raw material, to lack of consumer demand because some products are not affordable or accepted. Heterogeneous and unfamiliar products struggle to scale up market access and consumer awareness. There are burgeoning examples of native fruit species that were, until recently, underutilized, but that now provide much-needed sustainable livelihood options for rural communities across the region. As demonstrated in this chapter, innovative processing systems, social institutions, ethical consumption and awareness-raising all play a role in lifting barriers (Table 7.2), to establish more resilient agroecological systems using the extraordinary genetic diversity of Latin American fruit-tree species. To synergistically contribute to income generation, diet diversification and resilient landscapes, poly-cultural food production using a greater diversity of fruit trees generates benefits from the local to the global scale. Simultaneously, better social outcomes are achieved, such as the creation of diverse diets with increased fruit consumption and associated public health improvement, development of more resilient farming systems, enriched livelihoods and the strengthening of local food security in cases of catastrophes. The diversity of fruits in Latin America is considerable and, while often overlooked, has the potential to help farmers overcome many of the biggest challenges they face. In order to unlock this transformative potential, practitioners from all sectors -governments, academia, businesses and NGOs -must collaborate on generating and sharing the practical knowledge of successes and failures that represents our most viable strategy for diversifying the food system.Buckwheat is an annual crop native to China. There are two main cultivated types, namely, common buckwheat and tartary buckwheat. The former is also called sweet buckwheat, while the latter is also called bitter buckwheat. Buckwheat is used for multiple purposes. The flour from the seed can be used to make a variety of foods. The straw and leaves can be used as fodder and medical raw material. Buckwheat grain is rich in protein, vitamins, minerals, plant cellulose and other nutrients, and contains flavonoids, especially rutin, which has pharmacological effects for reducing blood fat and cholesterol and preventing cardiovascular diseases (Lin, 2013). Buckwheat is very adaptable to poor soil and cool weather conditions. The growth period of buckwheat is short -it generally takes about 60-90 days to mature. The annual planting area for the crop in China is 0.6-0.8 million hectares, and the total output is 0.5-0.6 million tons (Zhang and Wu, 2010). Buckwheat is a minor crop in China, as its cultivation area is small compared to staple crops such as rice, wheat and corn. However, buckwheat is considered an advanced food due to its high nutritional and medical values. The market demand for it at home and abroad is constantly expanding, which brings opportunities for strengthening buckwheat research and development (R&D) in China. This chapter aims to systematically review the current status of buckwheat biodiversity and its R&D in China, as well as identify research gaps and needs, and put forward action plans for improving the sustainable development of the buckwheat industry.Buckwheat is a pseudo-cereal crop belonging to the genus Fagopyrum, Family Polygonaceae. Fagopyrum species are widely distributed in Eurasia, with theirprimary diversity center being China. Before 1998, there were nine species and two varieties of Fagopyrum recorded in China (Li, 1998). Over the past 20 years, however, both Chinese and foreign scholars have discovered and reported more than 20 new wild species of Fagopyrum (Xia et al., 2007;Fan et al., 2019), particularly the ancestor species of buckwheat, namely, F.esculentum ssp. ancestrale (Ohnishi, 1998a) and F. tataricum ssp. potanini (Ohnishi, 1998b), were identified in the southwest of China. There are two main cultivated species, namely, F. esculentum Moench and F. tataricum (L.) Gaertn in China. Due to its medicinal use, F. cymosum (Trev.) Meisn. is being domesticated and some cultivated forms have been developed in China (Yuan et al., 2019).During the long history of its cultivation and domestication in China, two major types of buckwheat formed, namely, the cross-pollinated common buckwheat with high genetic diversity within its population, and the self-pollinated tartary buckwheat with high genetic diversity between populations. With years of effort, China has collected 3,085 accessions of buckwheat germplasm, including 2869 landraces (Zhang and Wu, 2010), accounting for 93% of the total. Landraces of tartary buckwheat were mainly from southwest regions, including Yunnan, Sichuan, Guizhou and Tibet, while those of common buckwheat were from north, northeast and northwest, including Shanxi, Shaanxi, Hebei, Inner Mongolia, Gansu and Jilin.The ex situ conservation of buckwheat biodiversity is managed by the National Crop Genebank (NCG) at the Chinese Academy of Agricultural Sciences (CAAS). Buckwheat accessions were identified, multiplied, catalogued and stored for the long term in a temperature of -18°C. At the same time, samples of these accessions were also stored under mid-term conditions. Researchers from national organizations can access the accessions stored in NCG for research purposes (Zhang and Wu, 2010).As F. cymosum (Trev.) Meisn. has very important medicinal value, the Ministry of Agriculture and Rural Affairs established in situ conservation sites in the Hubei and Hunan provinces to prevent important populations of F. cymosum (Trev.) Meisn. by using the way of physical isolation (Zheng et al., 2019). For onfarm management, Bioversity International and a partner of the Chinese Academy of Sciences initiated a study on in situ conservation of buckwheat in Liangshan, Sichuan province. The investigation showed that tartary buckwheat is a staple food crop of the Yi ethnic group that is native to Lianshan. A variety of landraces of tartary buckwheat were managed by local farmers. The living customs in the Promoting buckwheat in China 111Yi ethnic group and the ecological conditions in Liangshan were all conducive to the on-farm management of buckwheat biodiversity (Zhao et al., 1998).The characterization of agronomic traits of buckwheat biodiversity is mainly carried out by the relevant national research organizations coordinated by NCG at CAAS. Traits of plants, flowers and grains were measured; the growth period, lodging property and seed-shattering were accounted; and the contents of protein, fat, amino acids, vitamins and trace elements were analyzed. The analysis showed that buckwheat accessions had a rich diversity of agronomic traits, which was not only reflected in the traits themselves, but also showed great variation among materials from different regions. For example, the plant height ranged from 34 cm-205 cm, averaging 98.7 cm. The 1,000-grain weight of common buckwheat (26.68g) was significantly higher than that of tartary buckwheat (19.30g) (Zhang and Wu, 2010).With the rapid development of biotechnology, DNA molecular marker technology has been widely used in the study of the genetic diversity of buckwheat. Bioversity International, in cooperation with the CAAS and other relevant partners in China, analyzed the genetic diversity of buckwheat by using ISSR (inter-simple sequence repeat) markers. The results showed that there were significant genetic differences among local buckwheat cultivars in Yunnan, and there were significant genetic differences among local cultivars in Guizhou, Hubei and Yunnan (Zhao et al., 2006). A genetic linkage map of buckwheat was constructed by combining morphological and molecular markers, laying a foundation for gene mining in buckwheat (Du et al., 2013). Recently, Bioversity and CAAS carried out the transcriptome analysis with a focus on rutin accumulation at filling stage seeds among three buckwheat species (Gao et al., 2017) China attaches great importance to the improvement of buckwheat varieties. With the support of relevant national and local projects, many research institutions and universities have participated in breeding new buckwheat varieties, aiming to improve the yield per unit area, lodging resistance and quality, so as to meet the farmers' needs for more income generation by growing buckwheat. Breeding technology was mainly based on systematic selection. With the mechanism of cross-pollination of common buckwheat, natural hybridization was the source of variants for selection. With mutagenesis technology to enhance the germplasm, a batch of new buckwheat varieties were bred (Ma et al., 2015). Marker-assisted selection technique is used in buckwheat breeding, by identifying useful diversity, constructing genetic linkage map, and developing molecular indicators such as SSR (simple sequence repeat) markers for identifying the heterozygotes of interspecific hybridization (Yang et al., 2019).In the 1950s, the annual planting area of buckwheat in China crossed two million hectares. Later, it was squeezed by high-yielding crops, and the annual sown area has been 0.6-0.8 million hectares in current years. At present, buckwheat is grown in more than 20 provinces and regions, in which tartary buckwheat is mainly present in the southwest and common buckwheat in the north, northeast and northwest. According to buckwheat distribution, the production area can be divided into four ecological regions:1 Northern spring buckwheat region: This area includes the plateau and mountainous areas along the Great Wall and to the north, including parts of Heilongjiang, Jilin, Liaoning, Inner Mongolia, Hebei, northern Shanxi, Gansu, Ningxia and Qinghai. This area is also the main producing area of common buckwheat. 2 Northern summer buckwheat region: This area is centered on the Yellow River Basin, bounded to the south by Qinling mountain and Huaihe River, west by the Loess Plateau and east by the Yellow Sea, where is also a traditional winter wheat region. Buckwheat is planted as a second crop, generally seeded in June-July. 3 Southern autumn and winter buckwheat region: This region includes the south of Huaihe River, the middle and low reaches of, and the south of the Yangtze River. This region has a wide area, warm climate, long frost-free period and abundant rainfall. It is dominated by rice with buckwheat used to fill vacant fields, and is sowed in September-November. 4 Southwest high land spring and autumn buckwheat region: This region includes Qinghai-Tibet Plateau, Yunnan-Guizhou Plateau and the hills of Sichuan, Hubei, Hunan and Guizhou. It has a high altitude, as well as complicated ecological and geographical environments, with more clouds, less sunshine and large temperature differences between day and night. Tartary buckwheat is mainly planted in this region.The processing of buckwheat products is an important part of the value-chain.Early enterprises engaged in buckwheat processing were very small and were mainly based in the areas of buckwheat production. The processing products were mostly primary products, such as flour and noodles from common buckwheat, and flour and tea from tartary buckwheat. In recent years, buckwheatprocessing technologies have developed rapidly, and the product-market chain has extended dramatically. New products include kernels, roasted buckwheat rice, instant noodles, biscuits, beer, liquor, flavonoids, shell pillows, leaf powder, etc. Some traditional buckwheat food such as nest head, vinegar and powderedPromoting buckwheat in China 113 jelly also have been revitalized and popularized for driving the consumption of buckwheat, and achieving good economic and social benefits from the crop. Buckwheat is largely consumed by farmers themselves. However, considerable quantities are also made available to local and international markets. Bioversity and the Shanxi Academy of Agricultural Sciences worked on buckwheat value-chains with farmers, processors, traders and consumers to promote its production, processing and marketing, and contribute to income generation for farmers by adding the value to buckwheat produce and linking farmers to markets. However, great changes are have been taking place in buckwheat markets in China in recent years. With the increase of domestic consumption demand driven by its health value, China, an exporter of buckwheat, began to import buckwheat in large quantities -for example, 270,000 tons were imported in 2018 and 365,000 tons in 2019.China attaches importance to the R&D of buckwheat. In 2011, the Ministry of Agriculture and Rural Affairs (MARA) integrated buckwheat into the modern agriculture technology system by establishing the national buckwheat R&D center, including laboratories and experimental stations tasked with the roles of organizing and coordinating the efforts in buckwheat R&D in the country, involving germplasm and breeding, cultivation, pest and disease control and processing. In 2017, the MARA, together with other relevant ministries and commissions, formulated the Outline of Action Plan on Advancing Special Agricultural Products, including buckwheat. Some local governments in buckwheat-producing provinces also issued relevant policies related to buckwheat R&D. In 2014, the government of Liangshan Prefecture of Sichuan Province promulgated the \"Suggestions to Promote the Development of Tartary Buckwheat Industry;\" In Guizhou Province, buckwheat was regarded as a green agricultural product in its \"Green Agricultural Products Project Work Plan (2017Plan ( -2020)).\" In 2019, the government of Shanxi Province formulated the \"Suggestions on Accelerating the Development of the Whole Industrial Chain of Miscellaneous Cereals\" including buckwheat as one of the eight miscellaneous crops prioritized.Due to the extension of high-yield crops such as corn and potato, the acreage of buckwheat is unstable, and many local varieties are at risk of being lost. In addition, the identification and evaluation of buckwheat germplasm resources are not sufficient, and many social, ecological and economic values of buckwheat remain unrevealed and underutilized.Buckwheat yield-per-hectare is low, and generally is below than one ton per hectare. There is a significant gap in productivity, specifically, a lower benefit from growing buckwheat than that from other crops such as potato. Therefore, the benefit of planting buckwheat has become the main concern of farmers and local governments, and is also a key problem that needs to be solved through research on improving yield and market value.The annual consumption of buckwheat in China is about 0.4 million tons, less than a half kilogram per capita. As buckwheat is recognized as a nutritional and healthy food, a diet centering on it has entered the public's cookbooks. Therefore, there is a huge potential for expanding the consumption of buckwheat in nutritional and healthy diets in China.Although the central and local governments have issued some support policies for buckwheat R&D, there is still a big gap compared to those for staple crops, including insufficient funds for research, weak in personnel capacity, lack of seed subsidies and fewer opportunities to secure loans from state-owned banks. Therefore, the sustainable development of buckwheat needs more favorable policies at the local and national levels.Efforts should be made to effectively evaluate and use buckwheat biodiversity for food, nutrition and income generation. More landraces and improved varieties should be made available for responding to consumer demand for nutritional and healthy foods and managing climate risks under changing environments. To achieve this objective, the following research activities should be undertaken:• Strengthening integrated conservation of buckwheat biodiversity through linking ex situ collections in genebank to in situ conservation in the wild and field.• Evaluating and identifying buckwheat biodiversity for useful traits with integrated morphological and molecular approaches. • Using local buckwheat biodiversity to improve yield and nutrition quality for new varieties and meet the needs of farmers, processers and consumers through integrated modern and participatory breeding methods.Planting mode and farming practices are critical for productivity and quality in buckwheat production. Strengthening the research on cultivation technology of buckwheat will contribute to increasing the yield potential, highlighting its nutritional characteristics and improving benefits from planting buckwheat. To achieve this, the following research activities should be strengthened:• Promoting green production of buckwheat with low inputs to maintain the nutritional and health value. • Promoting multiple cropping with buckwheat, by filling seasonal gaps to increase the efficiency of land use as well as farmers' incomes. • Advancing the mechanization for planting and harvesting to address labor shortage issues.Processing and marketing is an important part of the buckwheat value-chain and an effective way to realize the nutritional value of the crop. Only by making buckwheat popular with the masses, will consumers realize its nutritional and health value. To achieve this, the following research activities should be strengthened:• Promoting the value-chain of buckwheat by linking farmers to processors, traders and consumers. • Understanding and being aware of the nutritional and health value of buckwheat diets. • Promoting communication to change consumer behavior for dietary diversity.The external environment of buckwheat R&D includes relevant supporting policies and research programmes. Through strengthening the partnership with research institutions, enterprises and farmers to understand their need for support the relevant policy suggestions should be put forward to relevant government departments. To achieve this objective, the following policies must be promoted:• Subsidizing buckwheat seed production and distribution.• Financial support to support buckwheat activities, including funds for research, loans for businesses and small loans for farmers. • Enhancing national action in mainstreaming buckwheat for nutritious and healthy diets.Buckwheat is an underutilized crop, mainly used for food, feed and medical raw materials. Buckwheat biodiversity is the material basis for its improvement and options for farmers to improve their livelihoods. With the support of relevant national programmes and international collaboration, great progress has been made in buckwheat research on biodiversity conservation, variety improvement, production practice and food processing and marketing. The gaps and opportunities for further development of buckwheat have been identified in this chapter, and key action plans were put forward to promote the conservation of biodiversity for variety improvement, farming practices for high productivity, the value-chain for income generation and relevant policies for the revival and sustainable development of the buckwheat industry. DOI: 10.4324/9781003044802-10Mexico is a megadiverse country, harbouring at least 23,314 species of vascular plants, around half of which are endemic (Villaseñor, 2016) and distributed in ecosystems ranging from arid to wet and tropical to temperate types (Sarukhán et al., 2009). This high biodiversity is complemented by considerable cultural richness, encompassing 62 ethnic groups speaking 290 languages and over 360 linguistic variants (Eberhard, 2020), making Mexico among the top-ten countries for linguistic diversity and cultural richness (Sarukhán et al., 2009;Casas et al., 2016a) and home to one of the most important biocultural legacies of the world (Sarukhán et al., 2009). Such tremendous biocultural diversity has resulted in more than 9,000 plants with known uses (Casas et al., 2016a), including 2,168 documented as edible (Mapes and Basurto, 2016). From prehistoric times, southern Mexico together with Central America has been a centre of origin of plant domestication ( Harlan, 1971;MacNeish, 1992;Vavilov et al., 1992), including for many current main crops, such as maize (Zea mays), beans (Phaseolus vulgaris, P. coccineus, P. acutifolius), pumpkins (Cucurbita argyrosperma, C. pepo), and chilies (Capsicum annuum). These crops contributed to shaping the agricultural system known as 'milpa' -meaning cultivated field in Nahuatl -which gave origin to and sustained Mesoamerican cultures (Moreno-Calles et al., 2010).In Mexico, there are nearly 200 native species of plants bearing clear signs of domestication. Moreover, nearly 1,200 species are under some form of management, such as let standing and planting enhancement, or special care dedicated to desirable plants. Such interventions may affect vegetation composition and promote particular 'types' (phenotypes of some species with favourable traits) and incipient domestication processes (Casas et al., 2007(Casas et al., , 2016b)).Status and priorities for their conservation and sustainable use Tiziana Ulian, Hugh W. Pritchard, Alejandro Casas, Efisio Mattana, Udayangani Liu, Elena Castillo-Lorenzo, Michael Way, Patricia Dávila Aranda, and Rafael Lira Within the edible plants basket, plentiful are the neglected and underutilized species (NUS) relatively unknown outside Mesoamerica. These are of importance locally for both food security and people's livelihoods. Being highly adapted to marginal environments, they contribute significantly to agroecosystem resilience and are crucial in our efforts to fight food and nutritional insecurity and help communities cope with pervasive climate change (Padulosi et al.. 2011;Ulian et al., 2020). This chapter reviews NUS in Mexico, in relation to the urgent need to secure their conservation and promote their sustainable use.From the great diversity of edible plants occurring in Mexico, it is possible to cluster species in three main groups:1 Traditional vegetables, such as the quelites (plural for 'quilitl' in Nahuatl, meaning 'greens'). These are herbs from several plant families, mainly used as food, but also include some species of trees and shrubs with edible flowers (Bye and Linares, 2016). Examples include Anoda cristata (alache), Crotalaria pumila (chipil or chipilin), Amaranthus hybridus, A. hypochondriacus, A. cruentus (quelites or amarantos), Dysphania ambrosioides (epazote), Chenopodium berlandieri (huauzontle), and Porophyllum ruderale subsp. macrocephalum (pápalo or pápaloquelite) whose young leaves -and in some cases inflorescences or seeds -are used as food (leaves from this taxon and D. ambrosioides are used as condiment as well as in anthelmintic treatments [Frei et al., 1998]). Young leaves and flowers from trees, such as Leucaena spp. (in náhuatl 'guaxquilitl' meaning quelite de guaje) are eaten as vegetables (Bye and Linares, 2016). It is very common that quelites are gathered in the wild for family consumption, grown in marginal cultivations, or sold in traditional and regional markets (Bretting, 1982;Casas et al., 2007;Blanckaert et al., 2012;Casas et al., 2016a,b;Mapes and Basurto, 2016;Vibrans, 2016). 2 Edible flowers and/or fruits of agave and cacti. Since prehistoric times, the leaves, flowers, and shortened stem (corm) of numerous Agave species have been used for fibres, food, and beverages. Alcoholic drinks such as pulque are at least 3,000 years old, while distilled beverages (mescal, bacanora, sotol, and tequila) are more recent innovations. Some species have been used also for medicinal and ceremonial purposes. Incipient or advanced domestication has been documented only in few species (i.e., A. fourcroydes, A. salmiana, A. americana, A. mapisaga, A. tequilana, A. angustifolia, A. hookeri) (Figueredo-Urbina et al., 2017;Álvarez-Ríos et al., 2020). Demographic and genetic studies indicate that around 20 species (including A. marmorata, A. potatorum, A. kerchovei, A. tequilana blue variety, A. inaequidens) are at a high risk of extinction due to the degradation of their habitat, low genetic variation and/or overexploitation (Colunga García- Marín et al., 1996;Figueredo-Urbina et al., 2017;Aguirre-Planter et al., 2020).120 Tiziana Ulian et al.Among the cacti, the Opuntia species have been used since prehistory. This group of around 80 species and 200 local varieties native to Mexico (Reyes-Aguero et al., 2005) are used as living fences, to enhance soil conservation and/or combat desertification. Its cladodes (modified stems called nopales or nopalitos in Spanish) and fruits (grouped into two types, tunassweet -and xoconostles -sour) of about 10 species, are appreciated as sources of food, forage, medicinal remedies, additives for cosmetics, and used for feeding cochineal insects from which a carmin pigment is obtained (widely used as colourant in the food and cosmetic industries). Artificial selection (e.g., spineless cladodes), traditional management (Opuntia streptacantha), or partial domestication (O. hyptiacantha) or full domestication (O. ficus-indica) are known. Several food products, juices, and alcoholic beverages are commercially produced from cladodes and fruits. For example, 'colonche' (also referred to as coloche and nochoctli) is fermented from fruits of different cactus species, including columnar cacti (Ojeda-Linares et al, 2020). More recently, there has been an improvement of quality and safety, reduction of production costs, and development of marketing strategies for products of Opuntia (Illoldi-Rangel et al., 2012;López-Palacios et al., 2012).Several species of columnar cacti are used as food (e.g., Escontria chiotillaStenocereus stellatus [pitaya de agosto] and S. pruinosus [pitaya de mayo]) (Casas and Barbera, 2002;Casas et al., 2007Casas et al., , 2016b). These have great economic and cultural importance in several regions of Mexico (including in the Tehuacán Valley and the Balsas River Basin in the south-central region). The fruits of wild-cultivated Cephalocereus tetetzo (tetecho) and Pachycereus weberi (cardón) are highly appreciated by local people and are commonly left standing in agroforestry systems. 3 Fruits of trees and shrubs. Mexico has at least 2,885 native tree species (Tellez et al., 2020), many of which produce fruits that have been consumed by native populations since pre-Hispanic times (González and De-lAmo, 2012). Four species of well-documented management practices and domestication processes are Brosimum alicastrum (ramón), Leucaena esculenta (guaje), Sideroxylon palmeri (tempesquistle), and Ceiba aesculifolia ssp. brevifolia (pochote) (Casas and Caballero, 1996;González-Soberanis and Casas, 2004;Avendaño et al., 2006). Brosimum alicastrum is one dominant tree species that grows in perennial and sub-deciduous tropical forests along both coasts of Mexico. The fresh pulp of the fruit and the seeds are edible, while the leaves provide good fodder for animals. Its seeds, roasted and ground, are used as a coffee substitute and for preparing dark-coloured dough used for making bread and tortillas. They are rich in carbohydrates and protein (12% in dry weight), tryptophan (an amino acid poorly represented in maize), and also contain calcium, phosphorus, iron, and vitamins A, B, and C. The abundance of this tree in Mayan archaeological sites is an indication of its management and cultivation by this ethnic group (Mapes and Basurto 2016).Leucaena esculenta [guaje] is mainly used as food by the Mixtec, Nahua, and Tlapanec peoples in the state of Guerrero, as well as by the Popoloca people in the Tehuacán Valley, Central Mexico. Its leaf buds, flowers, seeds, and young pods are eaten, and local gatherers have ensured morphological divergence between managed and unmanaged wild populations (Casas and Caballero, 1996;Casas et al., 2007;Blancas et al., 2010). Sideroxylon palmeri fruits are consumed in the Tehuacán Valley, where the species is widely commercialised (González-Soberanis and Casas, 2004). Flowers, roots, and seeds of C. aesculifolia subsp. parvifolia are consumed by local people, while stems and branches are used as firewood. Occasionally, the bark is used as a medicinal remedy to cure kidney disorders and skin infections, as well as to decrease blood sugar levels. In addition, locals protect individual trees and can favour varieties with purple-reddish fruits (Avendaño et al., 2006).In Mesoamerica, the Sapotaceae is among the most important fruit tree families (González and DelAmo, 2012). Manilkara zapota (zapote or chicozapote) grows in tropical forests in southern Mexico, where its fruits are consumed raw, used for making preserves or preparing sherbets and ice cream. At the global level, this species is better known for its latex, which is used in the production of the chewing gum. Pouteria campechiana (zapote amarillo, canistel), whose fruits are consumed raw, also thrives in the tropical forests of Mexico and is also commonly found in home gardens. Similarly, P. sapota (mamey), also occurring in tropical forests, is much appreciated for its fruits, which are consumed raw, or used in the preparation of sherbets, ice cream, and refreshing beverages. Mix cropping of these trees with other species is known, e.g citrus, ornamentals, and timber species, and they can be found in cocoa and coffee plantations to provide shade. Chrysophyllum cainito (caimito or cayumito) is a common tree of tropical forests with two variants of its fruit (purple and yellow/green) which are edible (Mapes and Basurto, 2016). Finally, about 13 species of Pinus (pinos piñoneros) are valued for their edible nuts (the most important being Pinus cembroides, P. nelsonii, P. maximartinezii and P. culminicola). These are distributed mainly in northern Mexico, and their seeds, rich in lipids and proteins, are collected from the wild and are used in desserts and snacks, and marketed all over the country (Mapes and Basurto, 2016).Traditional forms of plant management in Mexico range from the cultivation and selection of plant varieties to different types of management in situ, and to the gathering of plant products directly from the wild (Blancas et al., 2010). The degree of artificial selection and divergence between managed and wild populations is guided by farmers' needs (Casas et al., 2007;Blancas et al., 2010) and multiple approaches might be applied in the same field (Blancas et al., 2010; 122 Tiziana Ulian et al. -Calles and Casas, 2010). When plants are cultivated, they are sown by seeds or planted in agriculture fields or home gardens (Blanckaert et al., 2004). Some useful plants (wild or weedy forms) that already grow there may be spared by farmers and may be protected in various ways against herbivores, competitors, cold spells, intense solar radiation, and drought (Blancas et al., 2010). Their presence can be also increased through the dispersal of sexual or vegetative propagules. Among those plants maintained through seed dispersal, there are many quelites, such as A. hybridus, C. pumila, and A. cristata (Mapes and Basurto 2016).In contrast, many species of columnar cacti, several Opuntia species, agaves, and trees (e.g., L. esculenta and S. palmeri) are multiplied through vegetative propagation (Blancas et al., 2010). Nonetheless, many plant products are still extracted directly from the wild, based on sound ecological understanding and following sustainable practices, as recorded in the Guerrero Mountains, the Tehuacán Valley (Casas et al., 2007;Blancas et al., 2010), and the Sierra Tarahumara of the Chihuahua State (LaRochelle and Berkes, 2003). Since February 2002, the Royal Botanic Gardens, Kew (RBG Kew), and the Facultad de Estudios Superiores, Iztacala of the National Autonomous University of Mexico (Fes-I UNAM) have been banking seeds of wild plant species, including crop wild relatives from the arid and semiarid areas of Mexico (León-Lobos et al., 2012). Seeds have been collected and deposited at Fes-I UNAM, with duplicates stored at RBG Kew's Millennium Seed Bank (MSB), under an Access and Benefit Sharing Agreement. This has been achieved in the framework of the Millennium Seed Bank Project (now Partnership), which acts globally to safeguard plant diversity, focusing in particular on plants most at risk and most useful for the future of humankind (Liu et al., 2018). The partnership in Mexico served as a catalyst also for two further projects, viz. 'The MGU -Useful Plant Project' and the 'Science-based conservation of tree species in Mexico'. Overall, 2,598 wild plant species (more than 10 % of the Mexican flora) have so far been conserved ex situ as seeds in Mexico, with duplicates stored in the MSB. However, only 62 seed samples of 21 species from the most important groups of NUS mentioned here have been safeguarded through seed banking, and it is hoped that such a significant gap in the long-term conservation of NUS in Mexico can be filled in the near future.In situ and on-farm conservation realised by local communities in Mexico is an important facet of integrated plant conservation (Blanckaert et al., 2004(Blanckaert et al., , 2007;;Rodríguez-Arévalo et al., 2017). Traditional management systems have been recognised, in fact, to have higher capacity for conserving biodiversity and ensuring the resilience of socioecological systems than industrial systems (Berkes et al., 2000;Blancas et al., 2010;Chappell and LaValle, 2011).Many NUS in Mexico do occur in a wide range of traditional agroecosystems, such as milpa (corn-bean-squash field), chilar (chili pepper field), frijolar (bean field), and cafetal (coffee groves) (Mapes and Basurto, 2016), or are grown as crops in forests and agroforestry systems (Moreno-Calles et al., 2013). These are crucial places for the conservation of biodiversity and represent important reservoirs of plant genetic diversity (Blanckaert et al., 2004;Larios et al., 2013).Seed banking is highly complementary to these traditional management systems. However, seed conservation needs to be better targeted to adequately capture the great genetic diversity of NUS present in Mexico. More research on seed germination requirements and dormancy is also needed to support large-scale species propagation. Moreover, seed conservation is still highly challenging for numerous species with recalcitrant, desiccation-sensitive seeds, therefore alternative conservation measures (e.g., cryopreservation of embryos and embryonic axes) should also be deployed (Li and Pritchard, 2009;Wyse et al., 2018). In addition, there is a need to promote the 'cross pollination' of ideas between agriculturalists focusing on major crops and farmers working on traditional forms of management (Turner et al., 2011), if we are to really strengthen the development of sustainable agriculture practices.Although NUS are mainly collected for family consumption, some species are exchanged among households (Arellanes et al., 2013;Blancas et al., 2013) or are traded in markets (tianquiste), including those in big cities (Arellanes et al., 2013;Farfán-Heredia et al., 2018). Local and regional media, schools, NGOs, social organisations, and some governmental institutions promote the conservation and sustainable use of native plant resources and their associated traditional knowledge. However, greater mainstreaming and inclusion of NUS in policy and legal frameworks is much needed, as noted in 'The National Report on the Status of The Phyto-genetic Resources for Agriculture and Food Supply' (Molina-Moreno and Córdova-Téllez, 2006). In this regard, the Mexican Commission for the Knowledge and Use of Biodiversity (CONABIO), serves as an important bridge between academia, governmental agencies, and other sectors of society, by compiling and sharing knowledge on biological diversity, and promoting its conservation and sustainable use. 1 CONABIO now leads the project 'Securing the Future of Global Agriculture in the Face of Climate Change by Conserving the Genetic Diversity of the Traditional Agro-ecosystems of Mexico,' that seeks to support agrobiodiversity conservation, sustainable use, and resilience, 2 in line with the Nagoya Protocol of the Convention on Biological Diversity (https://www. cbd.int/abs/). However, strong participatory-driven decision-making (Padulosi et al., 2011;Noorani et al., 2015;FAO, 2019), economic incentives, and subsidies (Padulosi et al., 2019) are needed for such a process to be truly successful.Like other elements of nature such as minerals and fossil fuels, plant genetic resources are not dispersed evenly around the globe, being found in greater abundance in certain regions, especially in tropical countries (Shulman, 1986). The process of evolution, adaptation and migration of human beings across the planet and the exchange of germplasm was and continues to be decisive for the great variety of grains, fruits, vegetables, roots and tubers available, even if the majority of this diversity is still neglected and underutilized (NUS). During the period of the world's great navigations, between the fifteenth and seventeenth centuries, there was a substantial exchange of species (Hue, 2008) and some acclimatized on different continents, which became the basis of the world economy, resulting in strong global interdependence. Another important contingent of species, native to each region, was slowly being replaced by exotic species that were being introduced and, over time, these species stopped being used and fell into relative obscurity, though pockets of this biodiversity have been maintained by many different communities. Thus, thousands of native species have not received their due attention or support from research, despite the fact that their economic value and nutritional advantages have already been demonstrated in many instances (Coradin et al., 2018). With the greatest biodiversity on the planet, Brazil seeks, on the one hand, to increase the production of exotic commercial species that form the basis of most mainstream agriculture and food production in the country. On the other hand, also seeks to draw increasing attention to the wealth of NUS, native or naturalized, which can become new cultivation options, diversifying the agricultural and food portfolio, and bringing economic and socio-environmental advantages while also addressing many of the increasing malnutrition, health and environmental concerns of the country.Nuno Rodrigo Madeira, Valdely Ferreira Kinupp and Lidio Coradin Many initiatives from different sectors of the federal and state governments, non-governmental organizations and the private sector have emerged to expand knowledge of NUS in the country. By valuing these species, which are more resilient and adaptable to adverse soil and climate conditions, thus requiring fewer external inputs, people's perception of their potential is increased and there is now greater awareness of the opportunities and possibilities of using such a vast diversity.Brazil presents a great variety of biomes and climates. Its geographical, environmental, climatic and cultural diversity is reflected in its food diversity, one of the greatest on the planet, as shown by the several sources of carbohydrates (rice, beans, corn, wheat, cassava, potatoes, sweet potatoes, yams) and meats (cattle, poultry, pigs, fish, goats and sheep) consumed.When the Portuguese arrived in Brazil, in the year 1500, most Indigenous Peoples (around 300 ethnic groups at the time, 180 nowadays) had a diet based on cassava, sweet potatoes and corn, complemented by hunting and fishing. However, as hunters and gathers, there is also evidence of the use of many other species (Lopes, 2017).During the colonization process, intense cultural miscegenation took place, with the introduction of exotic ingredients that joined those already present in Brazilian territory. Cascudo (1983) concluded that Europeans introduced technique and sophistication in taste to existing Indigenous and African elements. Madeira et al. (2008) mention the exchange of vegetables by the Portuguese, directly and intentionally but also indirectly, through the enslavement of Africans.After the 1960s, with intense urbanization and globalization, there was a loss of the reference of the home gardens production and a strong influence of market power in food choices and in the strengthening of large supermarket chains, driving dietary simplification and prioritizing species with structured production chains, resulting in the reduced use of local species with subsequent social, economic and environmental impacts (Brazil, 2013).However, some NUS with significant cultural importance in certain regions of Brazil continued to be used, mainly by local people (Brasil, 2015). Table 10.1 presents examples of these NUS, including assaí, cupuaçu, peach palm, Brazilian nut, jambu and waterleaf in the north; buriti, babassu, uricuri, umbu, hibiscus and yam in the northeast; Brazilian grape, pereskia, taro, arracacha, taioba and Malabar spinach in the southeast; feijoa, pindo, horseradish, Brazilian pine and mate in the south; and pequi, baru, Brazilian copal, cagaita and guariroba in the mid-west (Coradin et al., 2018). Other species that were once part of daily life are now largely forgotten, including arrowroot, mangarito, yam bean and sweetcorn root (Table 10.1), in a process termed \"food extinction\" by Madeira and Botrel (2019).In Brazil, there is some confusion regarding the use of the term \"NUS\" and which species call under this terminology proposed by IPGRI (2002). Other terminologies also used in Brazil are \"traditional vegetables\" (Madeira et al., 2013), \"unconventional vegetables\" (Cardoso et al., 1998) and PANC -\"nonconventional edible plants\" in Portuguese (Kinupp and Lorenzi, 2014), the last of which is nowadays the most accepted term in Portuguese for NUS. Kinupp and Lorenzi (2014) defined PANC as \"unconventional and nonordinary plants that have one or more parts that can be used as food, or even unconventional parts of conventional plants, as banana navel or papaya tree marrow.\" Madeira and Kinupp (2016) add that PANC don't have a structured production chain. This term being very expressive and euphonic in Brazil (PANC in Portuguese sounds exactly like \"punk,\" giving it a curious double meaning) seeks to promote and disseminate the use of these plants that are still considered unusual by the vast majority of the Brazilian population.In Brazil, a considerable number of studies on individual species can be found, but academic studies on the broader themes of NUS or PANC are rare or few in number. The lack of studies regarding the cultivation and promotion of NUS use is a real concern and requires special attention being given to further research, as well as development that might stimulate their greater conservation, production and consumption. In this context, a series of initiatives related to the promotion of NUS use in Brazil have been developed and continue to be encouraged. One classic work is the Dictionary of Useful Plants of Brazil and Cultivated Exotic Plants, written by Pio Corrêa and published by the Ministry of Agriculture between 1926 and 1978 in six volumes, with the collaboration of Penna for volumes 3-6, and reissued in 1984. With the objective of promoting regional food culture, Cardoso (1997) released the book Non-conventional vegetables from the Amazon, emphasizing their full adaptability to high temperatures and humidity and low soil fertility.The sustainable use of the Brazilian genetic resources is limited to areas of natural occurrence and involves complex activities, from bioprospecting and research to the transformation, production and creation of new markets and commercialization.To tackle this issue, the Ministry of the Environment has developed, since the 2000s, the \"Plants for the Future\" initiative, which aims to identify native species that can be used for crop diversification to expand opportunities for investment by the private and public sectors and to reduce the vulnerability of the agri-food system.As biodiversity is used and valued, its conservation is enhanced and the number of species used is expanded, together with its contribution to climate change adaptation. Through partnerships with governmental and non-governmental institutions, the academic and business sectors and civil society, the initiative has been building strategies that also contribute to the rescue and valorization of knowledge and flavors of traditional and regional Brazilian cuisine (Santiago and Coradin, 2018).More than 800 species have been prioritized in the five geopolitical regions of Brazil. In each of these regions, the species were organized into different groups of use: food, aromatic, medicinal, oilseed and ornamental, among others. A richly illustrated and technically comprehensive book has been published for each region (Figure 10.1). In 2011, the first book, Native species of Brazilian flora with actual or potential economic value: Plants for the Future -South Region, was published. In 2017, the book for the mid-west region was released; in 2018, the one for the northeast region; and the books for the north and southeast regions are set to be launched in 2021, concluding this series, which has involved the contributions of hundreds of experts.These books collectively and for the first time present to the wider Brazilian society quality information about the value o f native biodiversity for health, food security, wellbeing, employment opportunities and income generation -all of which are key objectives of the Plants for the Future initiative. It's the first effort of this kind carried out in a megadiverse country. It also represents an important step for the implementation, in Brazil, of the Aichi Biodiversity Targets of the Convention on Biological Diversity (CBD), as well as of the Targets of the Global Strategy for Plant Conservation (GSPC) and will no doubt be an important platform for the country to enhance the conservation and use of NUS in the Convention on Biological Diversity (CBD) post-2020 global biodiversity framework.Furthermore, the partnership between Plants for the Future and the Biodiversity for Food and Nutrition project 1 has enabled greater collaborations with different sectors of society, in addition to creating new opportunities for mainstreaming biodiversity into already existing federal initiatives related to food and nutrition (Figure 10.2) (Hunter et al., 2020). This facilitated the capacity building of many technicians and students and the publication of recipe book -Brazilian Biodiversity: tastes and flavours. With 335 classic and contemporary recipes, the book has revived traditional flavors and techniques, presenting new tastes and textures (Santiago & Coradin, 2018). This partnership also facilitated the organization of a list of native Brazilian socio-biodiversity species of nutritional value (Ordinance MMA/MDS nº 284/2018) to guide governmental actions, while also creating incentives for family farmers who produce and commercialize these species (Coradin et al., 2018).In 2007, Kinupp defended his doctoral thesis on native plants known as bushes and weeds in the urban area of Porto Alegre, Brazil, whose economic potential was then little-known (Kinupp, 2007). He estimated the local floristic wealth of 1,500 species, out of which 311 (21%) could be used for food, proving the NUS in Brazil 133 undeniable potential of NUS for enriching the human diet. As of 2020, this document had been accessed online more than 54,000 times. Later, Kinupp and Lorenzi (2014) released the book Non-conventional Edible Plants (PANC) in Brazil: identification guide, nutritional aspects and illustrated recipes, which is a significant reference volume in Brazil about NUS. The book is richly illustrated (with 2,510 photos) and presents data on 351 species (205 of which are native), including a brief botanical characterization, agronomic recommendations and three culinary recipes for each species, totaling 1,053 recipes. This book and the associated research that has arisen from it has led to considerable advances in the promotion of NUS in Brazil. Through interaction with traditional and social media, this work has given fresh impetus to the topic and has helped shine a light on some of the uses of NUS in daily life of Brazilian society, especially for those in search of healthy diets. Embrapa Vegetables, located in the Federal District, maintains an important collection of traditional vegetables (Figure 10.3), with about 400 accessions and 80 NUS. It is responsible for research focusing on the rescue of traditional vegetables, of which many are native while others are considered \"naturalized\" thanks to their full climatic adaptation. More recently, some NUS new to Brazil that have traditionally been used in other countries, such as moringa and chaya (Table 10.1), have been incorporated into the Embrapa collection due to their resilience and adaptability. This work began officially in 2006 and has been responsible for building partnerships with different institutions working on traditional vegetables, and for encouraging activities in different regions of the country. These vegetables were once maintained by farmers, which is why the term \"traditional vegetables\" is used to refer to them. Besides the maintenance of the collection and conservation of the species, the studies encourage the cultivation and consumption of these vegetables, improving production systems, diversifying production and increasing the income of family farmers (Madeira et al., 2013). Source: Lidio Coradin (used with permission).In a partnership between Embrapa, the Ministry of Agriculture, Livestock and Supply, and the Technical Assistance and Rural Extension Agency of Minas Gerais State, including family farmers' organizations, the cultivation and consumption of traditional vegetables was encouraged in Minas Gerais through the establishment of community seed-banks, the organization of events (technical lectures, field days, culinary and agronomic workshops, etc.) and the publication of booklets and books (Brasil, 2013;Pedrosa, 2013), benefiting more than 50 municipalities and 5,000 family farmers. Other important partners of this work are the Agricultural Research Company of Minas Gerais, Viçosa Federal University and Lavras Federal University, all of which have established collections of traditional vegetables and have carried out important research on the topic. These actions were also expanded to the states of São Paulo and Santa Catarina, through partnerships with research and rural extension state agencies (Castro and Devide, 2013;Calegari and Matos Filho, 2017), also influencing the states of Goiás, Paraná and Bahia.Many NUS have recognized functional effects as nutraceuticals. Important nutritional studies were carried out by the VP Functional Nutrition Center, analyzing the nutritional value of several NUS, showing that they contained high levels of proteins, minerals and functional compounds (Paschoal et al., 2017).The Ministry of Health, in partnership with several institutions, released Dietary Guidelines for the Brazilian Population (Brasil, 2014) with ten steps for establishing an adequate and healthy diet. They also published the book Brazilian Regional Foods (Brasil, 2015) with 191 foods (123 NUS) emphasizing that healthy eating involves, besides the choice of suitable foods, biodiversity conservation and the recognition of cultural heritage.The Slow Food organization has described 186 food communities in Brazil, out of which 110 are food plant species and 98 are NUS (Slow Food Brasil, 2020).Another important aspect of the promotion of NUS in Brazil is the organization of technical and scientific events in the country. In 2007, in Porto Seguro, Bahia, the 47 th Brazilian Horticulture Congress prioritized the theme \"Rescuing and Valuing Underutilized Vegetables.\" In 2018, Brazilian biomes and their NUS were the themes of the 14 th International Congress of Functional Nutrition in São Paulo.In 2017, Embrapa Vegetables and its partners organized, in Brasília, the 1 st HortPANC -National Meeting for Non-conventional Vegetables, focused on agriculture (Figure 10.4), but also promoting dialogue about nutrition and cooking and linking producers with cooks and chefs. The second HortPANC was held in São Paulo in 2018; the third in Curitiba, Paraná State, in 2019; and the fourth was postponed to 2021 in Salvador, Bahia State, due to the COVID-19 pandemic. It is important to highlight the growing number of researchers, and related initiatives, in Brazil that are developing studies with NUS. Today more than 1,000 researchers, professors and students use the acronym PANC in their curriculums, as registered in the Brazilian National Research Council (CNPq) platform.Finally, it's noteworthy that the interest of the population and the use of NUS are growing in Brazil, which can be verified by the large number of social media communities that are using the acronym PANC on platforms such as WhatsApp, Facebook and Instagram. And, as a response to that, there is a growing number of farmers and entrepreneurs investing in the production of NUS.Actions to promote the valorization, production and the consumption of NUS, which are part of Brazil's socio-cultural heritage, are very important not only for food security but also for food and nutritional sovereignty, since they contribute to increasing diversity and richness in diets, in addition to promoting good eating habits that encompass cultural, economic and social aspects. Such actions also bring to light more resilient species with a high capacity to mitigate the negative effects of climate change.Current European agriculture results from half a century of dramatic transformation, mostly driven by the Common Agricultural Policy, which, after being launched in 1962, pursued food security and self-sufficiency through increased productivity and farm restructuring at the expense of crop diversity. Despite policy shifts from a productivist to what Ward et al. (2008) call a post-productivist paradigm in the 1970s and 1980s (mostly aiming at managing produce surplus, and balancing agricultural production with environmental protection and rural development), the picture of European cropland is today far from being biodiverse. The development of European agriculture has been characterised by high concentration and specialisation, which led to a remarkable hegemony of a small number of crops, both in cultivated areas and in breeding efforts. In fact, Europe is no exception to the dominance of the \"big three\" crops in food systems -rice, maize and wheat -that cover 40% of worldwide arable land and provide 55% of humankind's total caloric intake (Stamp et al. 2012).Looking at the EU's combinable crops area -the sector where biodiversity loss is most severe (Stamp et al., 2012), and which this chapter mostly focuses onthere is a striking dominance of cereal crops (82%), followed by a 16% of oilseed crops and just 2% of protein crops. As of 2020, 64% of the total combinable area is covered by just three species: common wheat, grain maize and barley. The European common catalogue of plant varieties shows a similar picture: only two species (common wheat and maize) have more than 2,000 registered varieties, and three (barley, oilseed rape and sunflower) have more than 1,000, whereas all protein grain crops comprise 633 varieties, of which 411 for just one species (Pisum sativum). Both the area partitioning and the number of registered varieties show the remarkable dominance of major cereal (common wheat, maize) and oilseed (sunflower, oilseed rape) crops, and the alarming trend of disappearing grain legumes (Zander et al., 2016) in the agricultural as well as in the research and development landscape. It is against this extremely hegemonic landscape that the diversification of the seed and crops basket should be framed, as part of an overall transition towards more sustainable agricultural system (Chable et al., 2020).With awareness that long-term stable and sustainable development through locally adapted agricultural systems will depend on increasing crop biodiversity, the EU H2020 Framework Programme (2014-2020) targeted, under the Societal Challenges 2 \"Food security, sustainable agriculture and forestry\", the rediscovery and valorisation of underutilized genetic resources for food and agriculture.As part of this effort, the project \"Embedding crop diversity and networking for local high-quality food systems -DIVERSIFOOD (2014-2019)\" has explored a wide range of species, both major and those actually neglected and underutilized, and the potential of diversification in the context of communities of users. This project aimed to go beyond mere conservation of diversity, emphasising innovation and appreciating these genetic resources as a key asset to restore agricultural diversity. In a continuous debate over the meaning of \"orphan\", \"neglected\", \"underutilized\" and \"alternative\" crops, the DIVERSIFOOD project formulated a working definition according to which an underutilized crop is classified as \"a plant genetic resource with limited current use and potential to improve and diversify cropping systems and supply chains in a given context\". According to this conceptualisation, underutilized crops are not to be looked at in isolation.On the contrary, the focus needs to shift from the plants to the processes of their (re)introduction as related to agricultural diversification in specific contexts. In the European context, at least three interconnected processes are worth exploring to purse this goal: (i) shifting cultivation areas; (ii) reintroducing \"minor\" species and (iii) diversifying the genetic structure of major and minor species.Shifts in cultivation areas of cultivated plant are a process that has characterised human history for millennia. As demonstrated by Vavilov (1935), cultivated plants were domesticated in relatively small foci, the \"centres of origin\", from which their cultivation expanded into larger areas. In several instances, species have crossed geographical barriers, like the acquisition of a huge variety of species in Europe following the colonisation of the Americas, sometimes generating further diversification centres far from the centre of origin, like for maize in Europe (Thenaillot and Charcosset, 2011). Shifting cultivation areas is a continuous process and is still ongoing (Khoury et al., 2016).A first notable trend is that some species start to be cultivated commercially in a region whose climate is not too dissimilar from their home region, as e.g., for quinoa (Chenopodium quinoa Wild.). This annual species, a staple food for Andean Amerindian people going back millennia, is currently cultivated in 95 countries worldwide, notably in Europe, as a result of significant research efforts in the 1990s (Bazile et al., 2016). Quinoa is possibly a \"model species\" of underutilized crop, for its success as well as for the problematic implications of such a success. The renaissance of its demand and production was due to the discovery of its interesting nutritional properties (Repo-Carrasco et al., 2003) as well as to its high level of genetic diversity, which facilitates its adaptation (Ruiz et al., 2014). However, the sudden explosion in interest in this species has also roused non-negligible and still unsolved concerns of equity and fairness regarding the exploitation of the value added to its genetics by generations of Andean farmers (Chevarria-Lazo et al., 2015).A second trend is plants following human migrations: \"exotic\" crops introduced on a non-commercial basis, grown for family consumption as part of growers' cultural heritage, and that are rarely surveyed or subjected to formal documentation and conservation. A notable example is the \"Sowing New Seeds\" work conducted in the early 2010s on the plants cultivated by overseas immigrants in their allotments in the English Midlands, which highlighted the potential of non-professional cultivation and selection of exotic species for more general resilience and the diversification of agriculture (Kell et al., 2013).A third trend is expanding cultivation areas following, or anticipating, changes in climate. A remarkable example is the northwards expansion of field crops in northern Europe, due to milder winters and potentially longer growing seasons, and the subsequent opportunities (Peltonen-Sainio et al., 2009) as well as challenges of pests and diseases expansion (Hakala et al., 2011).During the process of the modernisation and standardisation of European agriculture, which led to massive concentration on a few species, a large number of species has been abandoned. This is true both in dominant and currently shrinking sectors, like cereals and protein crops, respectively. In cereals, among the most widespread and most intensively bred crops in Europe is wheat, mostly common wheat (Triticum aestivum) with a small fraction of durum wheat (Triticum durum) in Mediterranean regions. However, the genus Triticum comprises many species that were once more widely cultivated but that are now relegated to the status of \"minor cereals\" and cultivated in limited amounts, often in marginal areas. The hulled wheats are typical examples of this: the hexaploid spelt (Triticum spelta), the tetraploid emmer (Triticum dicoccon) and the diploid einkorn (Triticum monococcum), in order of decreasing acreage, have seen increasing market interest due to their nutritional properties as well as to their rusticity and adaptation to stressful environments (Cubadda and Marconi, 2002;Zaharieva et al., 2010;Zaharieva and Monneveux, 2014).Amongst Triticum species, of particular interest is Triticum turgidum L., known as \"Rivet wheat\" in the British Isles or \"Poulard wheat\" in France. It is a close relative of durum wheat, particularly common in mountainous areas and Atlantic climates, the object of some breeding efforts in England during the 1930s (Zeven et al., 1990), but then abandoned and nowadays virtually non-existent. The European Search Catalogue for Plant Genetic Resources (EURISCO) database 3 records more than 14,000 accessions of T. turgidum conserved in European genebanks, 38% of which are in Italy. A large representation of these accessions was tested during the DIVERSIFOOD project, highlighting a great variability in physical properties of the grain, which makes it a good candidate for both bread-and pasta-making, also in regions (like north-western France, the Netherlands and the United Kingdom) that are not suitable for durum wheat (Chable, 2018;Costanzo et al., 2019).The shrinking number of species is only part of the loss of diversity resulting in modern European agriculture. In fact, for many crops -notably the most widespread and those with the largest number of registered varieties -crop phenotypic diversity is drastically reduced to extremely homogeneous crop types, such as pure line varieties (e.g., wheat and barley) and F1-bybrids (e.g., maize), to the detriment of historic varieties, landraces and genetically diverse populations. Increasing genetic and phenotypic diversity within species is, however, a key process to enhance sustainability and resilience through functional diversity (Newton et al., 2009) and a key priority in \"neglected\" as well as mainstream species. For instance, whilst testing einkorn entries in view of exploring their potential for UK organic farming, a striking yield advantage of landraces over a modern, dwarf commercial einkorn variety (Costanzo et al., 2019) was a reminder that the reintroduction of forgotten species cannot be separated from a rethinking of the relationships between breeding and target cropping systems. In fact, marginal environments, with low input use and high exposure to climatic extremes, need, and can be added value by, more resilient/rustic phenotypes for both minor (like einkorn) and major crops (like wheat and barley). However, diversification of the genetic structure of crops goes well beyond the \"rediscovery of the old\", towards the development of decentralised, evolutionary (Phillips and Wolfe, 2005) and participatory breeding methods, that have extensively been applied in wheat (Van Frank et al., 2020), showing clear advantages in terms of performance, robustness and stability (Goldringer et al., 2020).It is important to point out that, whilst the rediscovery of forgotten species mainly faces practical and economic constraints, genetic diversification within species encounters further obstacles in the legislative structure developed by and for mainstream agriculture, such as the UPOV (International Union for the Protection Of New Varieties of Plants) convention and national and international seed legislation (European catalogue and seed certification for seed marketing). In fact, the official conditions for cereal seed certification, namely the \"sufficient identity and varietal purity\" (Art. 1, 66/402/EEC of 1966), effectively ruled out any marketing of cereal seed that was not distinct, uniform and stable in appearance, until a \"temporary experiment\", under the Commission Implementing Decision 2014/150/EU, allowed the marketing of \"populations\" of wheat, oats, barley and maize, under quantitative restrictions. The legality of genetically heterogeneous seeds and of genetic structures not covered by the above \"temporary experiment\" is currently under discussion in the context of the Revised Organic Regulation that will come into force in 2021 (Costanzo and Bickler, 2019).In the DIVERSIFOOD project, nine species have been tested with hundreds of accessions in 33 different trials across Europe. Seeds have been sourced from a variety of both informal and formal, ex situ and in situ collections, and evaluated in participatory experiments with multi-actor communities of researchers, farmers and potential users. Four main outcomes have been noted:• Certain traits that during modern breeding had been lost have reappeared, including undesirable traits that might have played a role in the abandonment of certain species or phenotypes, like the brittle rachis in einkorn that can generate huge grain losses, or the extreme straw height of certain winter cereals like rivet wheat, which creates problems of lodging. Moreover, many genetic resources show considerable within-crop phenotypic heterogeneity, either linked to their genetic structure, them being landraces or resulting from intentional or even accidental mixtures occurred during in situ informal conservation. • Agroecosystem performance of the same genetic resource can vary greatly depending on where it is grown and must, therefore, be looked at on a very local scale. As obvious as it might seem, this reinforces the importance of deploying and testing genetic resources in multiple farms rather than on research stations, to identify the potential for local adaptation. • The yield of \"underutilized genetic resources\" can be a serious limiting factor, as the tested material can be either low-yielding or difficult to harvest, but, in many cases, can be a relief for marginal conditions. Species such as einkorn, emmer or rivet wheat can thrive where their commonly grown closest relatives (e.g., durum or bread wheat) are not a viable option. This is one of the key benefits expected from underutilized crops: they can be a valuable resource for more marginal land. • A diversity of crops triggers a diversity of products that, in turn, need adaptation in both processing and the methods and concepts used to assess their quality. Grains from minor cereals are not necessarily suited to industrial milling but provide an opportunity for artisanal millers and bakers, whose processing methods are more flexible and adaptable to the raw material, to add value to highly nutritious grains.A series of booklets covering practical aspects of research, farming, marketing and policy around increasing crops diversity on the farm and in the supply chain has been produced by the DIVERSIFOOD project, including a guide to participatory experiments on underutilized genetic resources (Costanzo and Serpolay, 2019) and case studies of the marketing of products from newly bred lines and underutilized crops (Padel et al., 2018).European agriculture faces the urgent need to diversify its crop basket, to overcome the dominance of a very limited number of crops and the related socio-technical lock-ins that prevent easy diversification (Meynard et al., 2018).Neglected and underutilized crops have a huge strategic importance in the transition towards more sustainable agricultural systems. However, diversification is a complex process, not limited to the (re)introduction of a few species, but encompassing all aspects of cropping systems' design, connection between genetic resource conservation and use, more inclusive breeding systems and stronger connections between producers and consumers.Oceania represents a considerable array of agro-ecosystems comprising an equal diversity of wild and cultivated plant species that, at one time or another, have been used for food and other purposes. This diversity of crops and trees has played an important role in the lives and development of populations throughout the islands that comprise Oceania. However, today only a small fraction of this diversity is regularly used or found in markets and value-chains. Bringing back these foods to the tables of consumers will play a strategic role in supporting local production systems in adapting to pervasive climate change, and will also help re-establish healthy food habits to tackle a growing public-health nutrition problem and safeguard cultural identity. For the purpose of this chapter, we define Oceania broadly as to include the islands of the Pacific, including Melanesia, Polynesia and Micronesia, as well as New Zealand and Australia. Communities in Oceania have historically created an enduring relationship with the landscape and its compliment of flora and fauna. With 60,000 years of settlement, Indigenous Australians have developed an intimate relationship with and knowledge of a diverse range of ecosystems (Mulvaney and Golson, 1971;Clarke, 2003a). Today, this reliance on traditional foods is still evident in some communities, such as those in Arnhem Land, Cape York and the Torres Strait, where hunting, gathering and fishing supplement significantly modern store-bought diets. But in most instances these communities have been disconnected from their traditional foods and food systems. Around 30,000 years ago, people started to move into the western part of the Pacific, including Papua New Guinea (PNG), the Solomon Islands and northern Australia, taking with them their traditional foods such as taro, yams, banana, coconut, breadfruit pandanus, sago and arrowroot, before moving further east into the more scattered islands of the Pacific Ocean (Denham, 2008;Denham et al., 2009aDenham et al., , 2009b;;Haden, 2009). Pacific Islanders have developed farming and food systems that have exploited a unique range of ecosystems in high and low islands throughout the region and which employ a diversity of plant and animal species. Many of these crops, such as taro, have adapted to range of agro-ecologies, resulting in hundreds of unique cultivars (Iosefa et al., 2013). Significant and unique genetic diversity exists in many other traditional Pacific Island crops, and this is true also for nutritional diversity (Englberger et al., 2009). A thousand years ago, the indigenous Māori, on settling Aotearoa-New Zealand from the more tropical Pacific Islands, had to adapt their horticultural practices to a new environment of unpredictable and limiting climate with extremes from sub-tropical features in the north to sub-Antarctic in the south, thereby shaping a lifestyle that was based on a subsistence approach, including both cultivated and uncultivated plants and the seasonal harvesting of birds and fish. While this chapter can only provide a very general and brief survey of NUS from Oceania, it also looks at those factors that have undermined traditional food systems and diversity, particularly colonisation and globalisation, and the impacts this has had on food systems, diets and nutrition. The chapter highlights recent efforts to promote and reinvigorate traditional food systems and NUS, and highlights the challenges and opportunities for their promotion.The nutrition transition -the process by which development, globalisation, urbanisation, poverty and subsequent changes in lifestyle have led to excessive calorific intake, poor-quality diets and low physical activity -is particularly prevalent among communities of Indigenous People in Australia, New Zealand and the Pacific. This has been exacerbated by inappropriate development, health, food and trade policies that support imports of less healthy foods, as in the case of the Pacific, or the availability of culturally inappropriate and nutritionally poor foods in remote stores, as in Australia (Lee et al., 2009;Brimblecombe et al., 2013). Urbanisation and lifestyle changes, including in eating habits, also seriously threaten the very existence of many traditional food crops. An alarming dietary shift from traditional foods and healthy diets towards the consumption of poor-quality processed foods and diets has taken place, which has led to the dramatic emergence of obesity and associated chronic diseases, especially among Indigenous compared to non-Indigenous groups. In addition to over-nutrition and obesity, there are problems of deficiency of vital micronutrients (hidden hunger) among communities of Indigenous People in Oceania, which can -in extreme situations -contribute to early death or to impaired physical and intellectual development, especially of children. For example, the Federated States of Micronesia (FSM), recently ranked among the most obese countries in the world, is also a country where pockets of Vitamin A deficiency (VAD) are among the highest in the world (Englberger et al., 2003(Englberger et al., , 2011)). Studies of Indigenous peoples' diets in Australia, New Zealand and the Pacific consistently report low intake of fruit and vegetables; high intake of soft drinks, refined cereals and sugars; excessive sodium intake and limited availability of several key micronutrients. This is contributing to a rapidly growing health burden, including both physical and psychological illnesses, as countries try to deal with the associated healthcare costs, reduced productivity and shorter lifespans.The great irony is that few of these health problems existed prior to European contact, colonisation or development. Indigenous foodways contained a diversity of animals, plants and trees that were nutritionally rich and that provided ample levels of both macro-and micronutrients for a healthy diet. Englberger et al. (2003Englberger et al. ( , 2011) ) highlight reports from early visitors that suggest that island communities consumed a diversity of foods and appeared healthy. There was little evidence of malnutrition, diabetes or hypertension before the 1940s, with VAD not documented until 1998. Many of the traditional foods of these Indigenous foodways have now been marginalised or forgotten, and the traditional ecological knowledge associated with them lost or threatened. Furthermore, inappropriate policy and regulatory frameworks have, especially in the Pacific, increased dependency on food imports through the promotion of culturally unsuitable foods, which have resulted in changes in the pattern of agricultural production towards cash-and export-oriented cropping, ignoring the potential of nutritionally rich local foods (Englberger et al., 2003).Indigenous foodways of Māori and Aboriginal Australia have also fared poorly, been marginalised and been forgotten (Haden, 2009). Davy (2016) reports that the much higher rate of illness and disease among Aboriginal populations in Australia compared to non-Indigenous ones is directly related to food insecurity and poor diet, including through poorer access to nutritious foods. Bussey (2013) highlights that, prior to European contact, levels of diet-related illness among Indigenous Australians were non-existent. National health surveys in New Zealand consistently reveal the high prevalence of obesity and non-communicable diseases (i.e., cardiovascular disease, cancer and type 2 diabetes) among the Māori -the indigenous people of Aotearoa-New Zealand. These trends have been mostly attributed to sedentary lifestyles and poor dietary choices, as the Māori move to urban areas and away from their lands and highly adapted food production systems. With the shift to urban settings, much of the traditional knowledge surrounding the production, processing and storing of local foods is being lost and agricultural/cultural systems are reportedly being further threatened by biosecurity risks and corporate ownership (Roskruge, BFN website 1 ).Increasingly there are calls to revitalise these Indigenous foodways and the nutrient-rich foods they contain (Kuhnlein et al., 2009;FAO, 2021). The access, availability and use of traditional foods have the potential to recover, improve and safeguard food security, especially among remote Indigenous communities, now and in the future, and, thus, demands further research (Bussey, 2013).A short chapter of this nature, dealing as it does with such a large geographic area, prevents a comprehensive inventory or description of the neglected and underutilized species (NUS) present in Oceania. Rather, what we aim for here is a brief introduction highlighting some of the key NUS with most potential for development and utilisation. For those interested in exploring the NUS of Oceania in more detail we provide some important references.Although the land area of the Pacific is small, it is recognised as a centre of diversity and/or origin of a small number of crops, for example, taro (Colocasia esculenta), which comprises thousands of distinct cultivars grown and eaten throughout the region (Rao et al., 2010). In 2009, participants from 15 countries representing the three sub-regions of the Pacific (Melanesia, Micronesia and Polynesia) came together for the first time to develop a regional priority list of NUS/species groups, including a strategy for their conservation and sustainable use, addressing: generation and collection of knowledge/research; communication and dissemination; policy advocacy, market development and partnerships; capacity building and institutional strengthening (Taylor et al., 2009). Regional priorities were clearly breadfruit (Artocarpus altilis), bananas (Musa spp.) of the Fe'i group and/or Pacific plantain, Polynesian chestnut (Inocarpus fagifer), and tava (Pometia pinnata). Other priority species included bele/aibika (Abelmoschus manihot), pandanus (Pandanus tectoris), noni (Morinda citrifolia), football fruit (Pangium edule), pitpit/duruka (Sacchurum edule), arrowroot (Tacca leontopetaloides), saijan/ drumstick (Moringa oleifera), Spondias dulcis, Diplazium esculentum, fig tree (Ficus tinctoria), sago (Metroxylon sagu), aupa (Amaranthus spp.), fern (Diplazium spp.), Malay apple (Syzygium malaccense) and mangrove (Bruguiera spp.). Some locally important underutilized nut species were also identified, including Galip nut (Canarium indicum) and nuts from Terminalia catappa, Barringtonia edulis and B. procera. Some of the tree species mentioned here, and others with edible parts, have also been prioritised and described in detail more recently by Thomson et al. (2018). Much of this diversity remains under threat in the Pacific, as a result of urbanisation and lifestyle changes, including changes in eating habits as well as pests and diseases (Box 12.1).Highlands pitpit (Setaria palmifoliai) has been a crop of significant value in terms of food, medicine, bride price ceremonies and other traditional uses since ancestral days, matched with a diversity of varieties and traditional names found across the Highlands region (Figure 12.1). For instance, the Imbbonggu people of the Southern Highlands call it moi in the local Imbbonggu language, while it is known as wotani in the Gahuku language of the Eastern Highlands. The different varieties of highlands pitpit are characterised by colour, leaf shape and other morphology. The local people believe that the geographical location of the crop contributes to its attributes. For example, the Imbbonggu District of the Southern Highlands Province has four main varieties: Moi kapatumbe (sacred colourful variety); Moi arimoka (white stem variety); Moi gene (green variety) and Moi leruku (purple stem variety). There is also considerable nutritional diversity among the many varieties (Semese, 2018). Highlands pitpit is only eaten within Melanesian society, especially in PNG. The inner thickened soft base of the plant is the main edible portion and is cooked as a green vegetable or in a mixed meal with meat and other vegetables. Cooking recipes differ per region and tribe. The most common approach to cooking is the traditional mumu, a hermetic form of underground cooking. In addition, highlands pitpit is used as stock-feed across the region, especially for pigs, which have currency value in PNG. Many believe the fibrous nature of the plant helps grind the pigs' teeth and keeps them healthy. It is also a good supplement food for pigs in times when other food crops are limited in supply or during natural disasters such as drought due to its potential to withstand drought periods. Today, introduced crops, urbanisation and climate change all contribute to the declining production and use of highlands pitpit. A number of horticultural plants have featured in traditional M ori society in Aotearoa-New Zealand and most are underutilized today. They provide the basis for a body of knowledge or mātauranga aligned with traditional horticulture; however, not all plants used by the Māori were cultivated (Best, 1976). There was also the availability of food stores from 'uncultivated' plants such as aruhe (fernroot, Pteridium spp.) a range of seaweeds including kārengo (pārengo or sea lettuce, Porphyra columbina) and berries or fruit of tree crops such as the hīnau (Elaeocarpus dentatus) and miro (Prumnopitys ferruginea), which were often located near settlements and harvested in much the same way as cultivated plants were. While these crops were considered uncultivated, they were no less managed to ensure maximum production of the harvested plant parts, e.g., the timing of harvest or minimising competition between plants for the best quality produce. The primary cultivated crops included kūmara (sweet potato, Ipomoea batatas), taro (Colocasis esculenta), the uwhi or yam (Dioscorea alata), various species of pūhā or rauriki (Sonchus spp., see Box 12.2), varieties of tii kouka (Cordyline australis and related species) (Fankhauser, 1990) and kōkihi (NZ spinach, Tetragonia tetragonioides). Since colonisation, a number of other crops have been introduced in traditional gardens and are now considered traditional Māori foods. These include kamokamo, a local selection of Cucurbita pepo, taewa or Māori potatoes and kānga or Indian corn. Roskruge (2014Roskruge ( , 2015) ) has worked with the national Māori āPūhā (also known as pūwhā, rauriki, kautara, tiotio or pororua) is a generic term for the introduced leafy green plant commonly called sow-thistle (various plants of the Sonchus spp.) in other countries, which is now a favourite utility plant for both the food and health needs of the Māori (Figure 12.2).Traditionally not a cultivated crop by early Māori but harvested from the wild, pūhā has previously been described as a culturally important plant to the Māori (Taylor and Smith, 1997;Roskruge, 2013Roskruge, , 2015)). The traditional whakatauaki or proverb in the subheading above is recognition in itself of the value of pūhā to Māori, which is now considered an uncultivated Indigenous vegetable or food by most New Zealanders. The reliability of pūhā as an available green vegetable plant throughout most of the year has perpetuated its usefulness in the New Zealand diet. Coincidentally, the resurgent interest in traditional crops such as pūhā has enhanced its potential to contribute to the cultural and economic future of the Māori, including as a processed product, similar to new and innovative spinach products that are frozen, canned and/or mixed with other base products. Looking at the diversity of vegetable-based products on supermarkets shelves, the opportunities seem endless: a good example is pre-packaged liquid soups sold in a ready-to-heat pouch. Source: Nick Roskruge (used with permission).Historically, pūhā was only ever used as a fresh green vegetable, especially in the spring and early summer, and was provided a relish for meals, primarily fish. For the Māori, there are several ways in which pūhā is utilised in the diet. Primarily, it is a basis for a meal that includes pūhā, meat, potatoes and, sometimes, further relishes such as plain dumplings (colloquially termed dough-buoys). Often substitute green vegetables such as kouka (Cordyline spp.), kōkihi (Tetragonia tetragonioides), tohetaka (native dandelion, Taraxacum magellanicum), watercress (Nasturtium spp.), silverbeet (Beta vulgaris) or cabbage (Brassica oleracea var. capitata) are used to replace the pūhā when it is out of season or is in limited supply. A further use for pūhā is as a base for toroī or bottled/preserved pūhā and mussels (Dixon, 2007). In this case, the older, more stringent or bitter plants are often preferred. Penupenu is a mash of vegetables generally prepared for infants or invalids. In this meal, the pūhā forms the basis of a mix of vegetables usually including taewa (Māori potatoes) and kamokamo (Cucurbit spp.).154 Danny Hunter et al. horticultural collective Tahuri Whenua to highlight the diversity of the traditional Māori diet and this has contributed to a resurgence in the cultivation of these foods.With 60,000 years of continuous settlement of the land and an ongoing intimate relationship with and knowledge of many different ecosystems and the possible array of plants and animals available therein, it is almost impossible to comprehend the extent to which these would have been used for food. A comprehensive database of Australian Aboriginal food-plants (currently containing about 1,400 -and rising -plant/fungi species, including 100 insect-based foods) has been constructed in a project at the University of Adelaide, funded by the Orana Foundation. 2 This inventory is based primarily on historical sources but, by extension, the true number of edible plants used by Aboriginal foragers likely would have been greater when accounting for the many species of Acacia etc. that were also probably utilised as food. A few writers and researchers have written generally about some of the more common or key plant-food species that have been used, including Tim Low in his two books Wild Food Plants of Australia (1988) and Bush Tucker: Australia's Wild Food Harvest (1989) or, more recently, John Newton's The Oldest Foods on Earth: A History of Australian Native Foods with Recipes (2016). Other researchers such as Peter Latz have written in considerable detail about Indigenous plant use in a specific geographical region, such as Bushfires and Bushtucker: Aboriginal Plant Use in Central Australia (1995). There is a considerable literature on this topic and the reader is guided to key publications by Clarke (2003aClarke ( ,b, 2007Clarke ( , 2018;;Jones and Clarke, 2018) for more information. The list of plant species used for food alone runs in the thousands and covers environments ranging from temperate to arid and tropic. Indigenous food sources include native fruits like wild fig (Ficus platypoda), desert quandong (Santalum acuminatum), native gooseberry (Cucumis melo), native plum (Santalum lanceolatum), bush banana (Leichhardtia australia), finger lime (Citrus australasica), Kakadu plum (Terminalia ferdinandiana), bush tomato (Solanum centrale), pandanus (Pandanus tectorius, Figure 12.3). They also comprise greens (various pigweeds [Portulaca spp.], wood sorrels [Oxalis spp.]); wild seeds (including grasses, beans and nuts) such as various Acacia spp., native millet (Panicum decompositum); woolybutt (Eragrostis eriopoda), Oryza spp., wild sorghums, cycads (Cycas media), desert kurrajong (Brachychiton gregorii), bunya nut (Araucaria bidwillii); roots and tubers (bush potato (Ipomoea costata), nalgoo (Cyperus spp.) and murnong (Microseris lanceolata) to highlight relatively few. It should also be mentioned, that many of these heavily relied-on food sources are highly toxic and labour intensive to prepare, which is a challenge when attempting to reintroduce them into contemporary food pathways.There are a number of past and ongoing initiatives to promote NUS in Oceania such as bringing back traditional, forgotten foods through links to gastronomic initiatives and chef alliances, food tourism, community-based initiatives to promote improved food security through healthier diets based on local foods and efforts targeting schools and the youth.Ongoing initiatives in New Zealand aimed at reviving traditional crops and traditional food systems as well as exploring production systems, markets, Indigenous branding, education and research include those led by the National Māori Horticultural Collective known as Tahuri Whenua, 3 which has projects aligned with food crops/plants including:• 'Ahi kōuka i te ata, he ai i te po -the value of kōuka from a Māori lens' 4 a project looking at the traditional knowledge and use of the Tii Kouka/cabbage tree (Nga Pae o Maramatanga funded). • E moe tonu ana te tohetaka, kaore ano i kohera -a project to identify and document heritage food-plants (primarily introduced during colonisation); Ministry of Business Innovation and Employment (New Zealand) (MBIE) (Government) funded.• Kaore te kumara e korero mo tona ake reka -a project to establish protocols for a germplasm collection of traditional Māori foods; MBIE funded (Tahuri Whenua/Massey University collaboration).The Tahuri Whenua has also been active in reconnecting young Māori with their traditional food heritage through school gardens (māra) and other schoolbased activities (Roskruge, 2020).In the Pacific, probably the most high-profile initiative to promote healthier diets and better nutrition based on local NUS has been the 'Let's go Local' approach (see Box 12.3), implemented in the FSM (Englberger, 2011;Englberger and Johnson, 2013). A more recent similar example to leverage neglected and underutilized food crops for improved nutrition in the Pacific is the Community Food and Health project. Other efforts to promote the utilisation of neglected and underutilized crops in the Pacific include initiatives to link local foods to tourism, gastronomy and chef alliances, e.g., the Pacific Island Food Revolution, 5 and other market opportunities (CTA, 2017;Berno, 2020), as well as through schools and school garden activities (Redfeather and Cole, 2020; Ming Wei and Bikajle, 2020)The FSM has recently witnessed significant dietary shifts and increasing dependence on imported, often unhealthy, foods. Traditionally, these islands have relied on sustainable agriculture practices producing nutritious staples such as roots and tubers, breadfruit and banana for food security and nutrition. Since the middle of the twentieth century onwards, however, less nutritious, cheaper imported foods have dominated the food supply and have contributed to the poor health of the population. VAD levels in this community are among the highest in the world, as are levels of obesity and being overweight, and non-communicable diseases like diabetes.These problems occur despite a remarkable biodiversity of underutilized nutritious foods available in the country. Pohnpei state alone has 133 varieties of breadfruit, 55 bananas, 171 yams, 24 giant swamp taros, nine tapiocas and many pandanus varieties documented. To address these health-and foodsystem problems, efforts were started in 1998 to identify local plant foods that could be promoted to alleviate the VAD problem. Local biodiversity experts highlighted the rare Karat and other yellow-fleshed banana varieties as potential options. Subsequent nutrient compositional analyses demonstrated that Karat, a variety traditionally given to infants as a weaning food, was rich in beta-carotene, the most important of the provitamin A carotenoids, with amounts much higher than those found in common white-fleshed bananas.A number of the earlier mentioned publications have raised awareness of the importance of traditional foods in Australia, which have largely been neglected and unexplored despite the multiple benefits they might bring. Bussey (2013) stresses that the gaps in literature on the access, availability and use of traditional foods should be examined further, as they have the potential to recover, improve and safeguard food security in remote Aboriginal communities. While there is increasing attention being paid to the importance of traditional foods and Indigenous food systems in Australia -through school-based education (Dawe et al., 2020), improving food security and nutrition in a more sustainable manner, links to sustainable gastronomy initiatives (such as The Orana Foundation 6 and Black Olive Catering 7 ) and other niche markets for native foods, as well as other livelihood and income-generating opportunities -there is still some way to go in developing a suitable environment that enables and ensures that the benefits arising from the sustainable use of traditional foods are accessible for Indigenous communities, the long-time custodians of these genetic resources.2019 will be remembered as a landmark year for food and nutrition reports, which have laid bare the nutritional and environmental disruptions our global food system is causing (FAO, 2019;IPBES, 2019;IPCC, 2019;Willett et al., 2019). In many of these and in preceding reports, the conservation and sustainable use of biodiversity for food and agriculture features as one critical pathway to diversify diets, improve livelihoods and contribute to environmental outcomes (Mouillé et al., 2010;FAO, 2015;Bioversity International, 2017;FAO, 2019). Meanwhile, the impact of the COVID-19 pandemic in 2020 has exposed the limitations of our food systems and has highlighted the importance of localising food production and consumption as well as the need to re-evaluate local foods including neglected and underutilized species (NUS) (HLPE, 2020).Despite the existence of guiding principles to support countries in increasing the use of biodiversity in the agriculture, climate change, food security and nutrition and other relevant sectors (FAO, 2016), their implementation constitutes a challenge for many countries (FAO, 2017). Partly to blame are the limited examples of effective cross-sectoral collaboration and multi-disciplinary platforms to make the case for investing in biodiversity for better food and nutrition (Hunter et al., 2016). It is with these challenges in mind that, in 2018, the Biodiversity for Food and Nutrition (BFN) 1 project sought to fill the existing information gaps by putting together the Biodiversity Mainstreaming for Healthy & Sustainable Food Systems Toolkit -a compendium of experiences and lessons learned, gained by Brazil, Kenya, Sri Lanka and Turkey during project implementation (Figure 13.1). The BFN toolkit provides concrete examples that can help implement these guidelines and provides a framework to support countries in transitioning toward healthier, more sustainable diets as indicated by the recent WHO Guidance on Mainstreaming Biodiversity (WHO, 2020). Underpinning the BFN project is a comprehensive three-pillar approach for mainstreaming biodiversity for better food and nutrition into policies and practices by: 1) Providing Evidence, 2) Influencing Policy and 3) Raising Awareness ( Figure 13.2). Originally conceptualised by the Leveraging Agriculture for Nutrition in South Asia research consortium in its effort to improve understanding of how agriculture and food systems could be better designed to enhance nutrition in the region (Hunter et al., 2016), the approach had never been tested on the ground. With limited examples and literature to guide the countries at the onset of the project, Brazil, Kenya, Sri Lanka and Turkey put the theory into practice and took stock of the experiences gained (and challenges faced) during project implementation to assist fellow practitioners wishing to replicate the approach. In the final stages of the project, implementers from each country came together during a writing workshop to lay the groundwork for the toolkit.The toolkit lays out the fundamentals of biodiversity mainstreaming, including NUS, into sectoral policies and practices, including how to facilitate and align activities to support achieving national targets linked to biodiversity conservation i supply factual evidence that justifies NUS mainstreaming for the specific purpose of improving food and nutrition ii identify suitable entry points for effective implementation iii establish a positive enabling environment and gain financial and institutional support iv increase market interest and capacity to produce NUS v develop awareness-raising campaigns vi set up a monitoring and evaluation framework.The approaches used to implement activities across the three pillars are not prescriptive and are likely to vary depending on country context and the different social, cultural or economic backgrounds. In implementing the BFN project, for example, it was found that efforts to increase the appreciation of local NUS wasStrengthen scientific evidence of the importance of local food diversity, e.g. food composition data, traditional knowledge and the benefits of using local plant and animal species to improve diversity and nutrition.Integrate locally important biodiversity for food and agriculture into nutritionrelated policies, programmes and action plans and increase their availability in production systems and markets.Communicate the multiple benefits of biodiversity for food and nutrition to different audiences (e.g. producers and consumers). easier in some countries and less so in others. Efforts to step up production and consumption of the target species proved easier in Turkey and Sri Lanka than in Kenya, a country where, under colonial rule, traditional crops were displaced by European staples and which were, until recently, associated with backwardness, poverty and/or famine (Raschke and Cheema, 2008).To reverse these perceptions, scientific evidence of the nutritional quality of NUS is critical. The toolkit dwells on the methodologies that facilitate the generation of nutrition information to gain support for increasing the production and consumption of NUS. Of chief importance is establishing effective research partnerships, determining what information already exists and the country's capacity to fill any research gaps, and identifying which species to prioritise for further research and marketing. In Kenya, selecting the species for food composition analysis was undertaken following a market survey and ensuing ranking exercise carried out by the Kenya Agricultural and Livestock Research Organization in close collaboration with local communities (Figure 13.3). Similarly, in Brazil, partnerships established with federal universities and research institutes helped build the nutritional profile of 64 native species (mostly fruit and nuts) identified by the project (Figure 13.4) (Gee et al., 2020).Solanum spp.Amaranthus spp. FIGURE 13.3 Indigenous neglected and underutilized species that were targeted by the BFN project in Kenya for food composition analysis. (Credit: BFN Kenya.) Used with permission.The BFN Mainstreaming Toolkit 167Once data is available, time and resources should be made available to identify and engage the most strategic and like-minded allies to achieve the intended mainstreaming aims as well as to understand the policy landscape in which these partners operate. Pre-existing multi-stakeholder policy platforms that deal with food and nutrition security are an ideal starting point to garner policy support for the greater use of NUS (Gee et al., 2020). However, platforms will often need to be built from scratch. Considerable time can be spent in creating the enabling environment needed for durable mainstreaming to occur and this should carefully be accounted for during the planning process (Gee et al., 2020). An entire section in the toolkit outlines several fruitful strategies for targeting receptive policies, such as the National Biodiversity Strategy and Action Plans (NBSAPs), as well as agricultural and nutrition policies. It also highlights ideal partners to engage. These can range from sectoral ministries to universities and research organisations, as well as civil society actors such as community groups, nongovernmental organisations, Indigenous groups and professional associations that have an interest in promoting NUS. However, non-conventional partners such as schools and chefs can also help promote the use of these unfamiliar ingredients. Long-term behavioural change and the acceptance of NUS in food systems and diets requires coordinated action on both the supply and demand side of the food value-chain as well as the public and private institutions working together to develop and implement policies and strategies that support more sustainable and diversified food systems centred on NUS. These actions include:• Building the capacity of producers to incorporate NUS in their production systems • Improving or creating market infrastructure for biodiversity • Raising consumer awareness to increase demand for food biodiversity.In the toolkit, one example from Kenya illustrates how business training and technical assistance provided to small-scale farmers helped establish market linkages with schools and how this increased the sustainable production of African indigenous vegetables and forgotten pulses such as bambara groundnut (Vigna subterranea). Additional examples are provided in Module 2 of the BFN e-learning course and in Hunter et al. (2019), Borelli et al. (2020) and Gee et al. (2020). Naturally, where the aim is increased production of species that are collected or managed in the wild, domestication programmes and/or sustainable collection or management guidelines will need to be considered to avoid overexploitation (Gee et al., 2020).The BFN Mainstreaming Toolkit 169The toolkit also demonstrates how to select NUS that are more suited for marketing. Most likely biological, environmental, cultural, economic and nutritional considerations, such as the presence of limiting nutrients, will come into play. An interesting example is offered by the ad hoc sustainability index developed by Turkey to reduce an initial sample size of 43 species, mostly wild edibles, to three target species -foxtail lily (Eremurus spectabilis), golden thistle (Scolymus hispanicus) and einkorn wheat (Triticum monococcum) -which have since been the object of domestication research as well as post-harvest handling and value-chain analysis (Table 13.1).Once the target species have been identified, new marketing options can be explored that make it profitable for actors along the food value-chain -from producers to consumers -to engage. Such is the case for the 28 NUS identified by Sri Lanka. Jackfruit (Artocarpus heterophyllus), water lily (Nymphaea pubescens), traditional cowpea (Vigna unguiculata), black gram (Vigna mungo) and horse gram (Macrotyloma uniflorum) varieties, as well as traditional rice varieties, are among the NUS currently on offer at Helabojun, 18 BFN-supported food outlets that source their ingredients directly from local communities and which sell freshly prepared local foods. The outlets also employ and empower rural women who receive nutrition, food and business training from the Women Farmers Extension Program of the Department of Agriculture and can earn a reasonable wage by working at the stores.In terms of awareness-raising, the toolkit illustrates how practitioners can make the most of ongoing activities in the country that revolve around gastronomy and ecotourism, such as the Alaçatı herb festival in Turkey, and national and regional campaigns on healthy eating, to get the messaging across (Figure 13.5). It also discusses the benefits of engaging the health sector to target the development and revision of national dietary guidelines or the advantages of engaging the education sector to include the teaching of biodiversity for food and nutrition in health and nutrition education in schools and vocational training programmes. The BFN Mainstreaming Toolkit 171Careful monitoring of increased use of NUS can help garner additional support for their inclusion in food and nutrition security strategies. For this reason, desired mainstreaming outcomes should be established early in the planning phase and be SMART, 2 tailored to the specific country context as well as the resources that are available (Hunter et al., 2018). SMART objectives can range from community-to policy-level improvements, and enough time should be devoted to establishing a baseline against which the suggested monitoring indicators can be measured. These include, but are not limited to:• Level of funding/resource mobilisation to support NUS for improving diets/nutrition in research and interventions. • Extent of NUS mainstreaming for healthy diets and nutrition in relevant national instruments including in national dietary guidelines, NBSAPs or multi-sectoral nutrition action plans and strategies. • Level of diversification in public food procurement and school feeding programmes.• Increase in scientific literature focusing on the composition or consumption of NUS.In conclusion, the BFN Mainstreaming Toolkit provides practitioners with a foundation and much-needed guidance on how to achieve wider appreciation of biodiversity, including NUS, in health, nutrition, agriculture and food security programmes, as envisaged by the FAO Voluntary Guidelines for Mainstreaming Biodiversity into Policies, Programmes and National and Regional Plans of Action on Nutrition and the Committee on World Food Security (CFS)Voluntary Guidelines on Food Systems for Nutrition of the Committee on World Food Security (CFS). However, in implementing the BFN approach, it has become apparent that there is no one-size-fits-all solution to the challenge of using biodiversity and NUS to transform our current food systems. Without a doubt, there are countless possibilities waiting to be explored. We encourage workers to identify the most suitable and culturally appropriate solutions for their individual countries that can help transition the BFN approach into actionable policies that matter for people and the planet. Seasonality is a concept that can often be overlooked, particularly in Western countries where people are accustomed to having constant access to fresh plant foods even out of season. Economic development and consequent urbanisation have produced a shift in food systems, which have become more global and standardised worldwide, particularly in urban areas. It is, in fact, not uncommon to find food products out of season in markets and supermarkets, which have been transported from the other side of the world at a high cost to the environment.While this might go unnoticed by the inattentive consumer, seasonal patterns and food availability are still very much at the core of the food systems and their efficient functioning, and are important for the sustainable management and use of agrobiodiversity, as well as understanding market fluctuations and the consequent availability of and access to food. Particularly in low-and middleincome countries, food production is dependent on the passing of seasons, and understanding how seasonal patterns influence the availability, diversity and abundance of food is key to implementing strategies to eradicate malnutrition and to improve food security and diets globally.Recent statistics (FAO et al., 2019) show how malnutrition is still widespread, with 821 million people undernourished and 10% of the world population still severely food insecure, meaning that they lack sufficient accessibility, availability, stability or utilisation of food. The relationship between seasonality and food and nutrition security is no longer an obscure one, as highlighted by a considerable body of literature (Leonard, 1991;Dercon and Krishnan, 2000;Savy et al., 2006). Furthermore, changes in diet quality, both in terms of energy and nutrient intake, as well as dietary diversity, are often due to seasonal variation in foodSeasonal calendars for sustainable diets in Guatemala, Mali and India 175 availability (Ferguson et al., 1993;Hirvonen et al., 2016;Stelmach-Mardas et al., 2016;Broaddus-Shea et al., 2018;Oduor et al., 2019).Understanding the role of food availability and its patterns, characteristics and seasonal variation can be an entry point to achieving more diverse, healthy and nutritious diets, and to ultimately improving food security. Suboptimal diets are a major health risk that contributes to the global burden of disease (Hall et al., 2009;Afshin et al., 2019). Furthermore, global diets are becoming less diverse, in a process that has been defined as 'nutrition transition' (Drewnowski and Popkin, 2009), and are also becoming more and more reliant on a handful of economically important animal and plant species. The agricultural intensification required for these changes has had detrimental effects on environmental health and agrobiodiversity, critical for both food system sustainability and climate change resilience (Millennium Ecosystem Assessment, 2005;Mijatović et al., 2013). Despite the estimation that over 5,000 food crops exist worldwide (RGB Kew, 2016), 51% of energy intake relies on rice, wheat and maize (FAOSTAT, 2018). Poor and monotonous diets, characterised by a low consumption of fruits, vegetables and other nutrient-dense food increases the risk of obesity, cardiovascular disease, diabetes, cancer and other non-communicable diseases (He et al., 2006). This biodiversity loss in diets is of severe concern, considering that diet diversity has been associated with nutritional adequacy, health outcomes, food self-sufficiency and food security (Arimond and Ruel, 2004;Kennedy et al., 2007;Sibhatu et al., 2015;KC et al., 2016;Lachat et al., 2018).Improving dietary diversity and quality is, therefore, a key strategy for alleviating the global burden of malnutrition. Healthy and diverse diets provide a vast and diverse array of macro and micronutrients, such as vitamins, minerals and bioactive compounds, which are fundamental for human health. As a result, understanding seasonal food availability patterns is crucial.While there are numerous ways to assess local available agrobiodiversity and its fluctuations throughout the year, the best method can be decided based on the scope and purpose of a specific research project. Production and market surveys can enable a more concrete and factual understanding of seasonal availability, but can also be both time and resource intensive, and can often overlook important sources of nutrients in the landscape, such as those stemming from wild resources, or those exchanged within communities. Participatory research approaches, on the other hand, have a strong focus on local perspectives and can capture more efficiently the availability of wild, cultivated and exchanged species, which may be of particular relevance in the local context. Furthermore, participatory ap proaches enable the creation of a space for mutual learning, where communities can discuss and identify locally tailored action plans (PAR, 2018;Mijatović et al., 2019).The assessment of seasonal food availability through participatory approaches entails organising focus group discussions (FGDs). Seasonal food availability FGDs are a very versatile and straightforward participatory data collection method that allows the collection of information on local food species availability and their sourcing, as well as different types of other information (PAR, 2018). A detailed methodology guide on how to collect seasonality data through this participatory approach has been recently published and can be found online (Lochetti et al., 2020).These FGDs normally last up to a day, depending on the available agrobiodiversity, the scope of the research and the interests of participants. The data collected using this participatory methodology corresponds to perceived seasonal availability, and the quality of the results is dependent on participants' knowledge and interest in the foods being discussed. Selecting participants who are familiar with the seasonal dynamics of the foods of interest, such as experienced farmers and merchants, is advisable, in order to gather data of the highest quality. Data collected with this method enables the mapping of seasonal periods of food shortages and gaps in food availability. At the same time, it is also possible to identify periods of high availability of nutrient-dense foods, which are vital entry points to improving year-round availability of healthy and diverse foods.FGDs can provide key insights to the obstacles and barriers to the production and the consumption of locally available species, and participants should be encouraged and challenged to develop locally relevant solutions to these bottlenecks, with the aim of ultimately leading to the improvement of food and nutrition security, diet diversity and the resilience of smallholder farmers.Within the IFAD-EC NUS project 'Linking agrobiodiversity value chains, climate adaptation and nutrition: Empowering the poor to manage risk', implemented from 2015 to 2020, 1 several FGDs on seasonal availability were organised in the three countries targeted by the project, namely, Guatemala, India and Mali. The project aimed to revitalise the use of local agrobiodiversity, which typically includes a large assortment of nutritious species well adapted to local conditions, but which are underutilized for a variety of reasons, including a lack of awareness and promotion. Overall, 12 villages across the target countries took part in the data collection and contributed significantly to the assessment of local available agrobiodiversity and its seasonal patterns.The relevance of locally available agrobiodiversity for the livelihoods of the villages involved in the project was immediately apparent. In particular, these FGDs, compared to the production surveys carried out during the baseline assessment, were able to capture the presence of numerous wild-sourced species, which, in the study areas, make important contributions to household diets.One fundamental legacy of this project was the creation of location-specific seasonal food availability calendars, created from the data collected in the FGDs. In total, four different calendars were created for the three countries, and in each country translations into local languages were also arranged.The resulting calendars (Figure 14.1) are colourful and graphically pleasing products, easily comprehendible to children and people with a low level of literacy. Furthermore, by drawing on baseline results and closely working with local partners, calendars were enriched with nutritional education and awarenessraising materials in booklets that were distributed back to participating communities (Bioversity International and IER, 2018). These booklets relied on simple graphics and text in the national or local language to present basic nutrition information derived from national guidelines, when available, and included a section with an overview of the state of food and nutrition security specific to each locality, and of local diet quality and consumption levels of fruits and vegetables. A section with easy tips on how to improve diet diversity and year-round consumption of nutritious foods was also included. When available, national food-based dietary guidelines were provided as a starting point to present information on how to achieve a more diversified and healthy diet. Cooperation with national ministries for public health or national institutes of nutrition should be sought to update or improve existing nutrition education material or to develop new guidelines if national ones are not currently available in the country. At the time of the IFAD-EC NUS project, national food-based dietary guidelines were not available in Mali, leading to close cooperation with local nutritionists and the Ministry of Public Health to develop dietary guidelines that were relevant to the local context. Source: Bioversity International and IER (2018).Building from local experience and knowledge, calendars can thus guide diversification both in terms of food consumption and in terms of production and landscape management. Diversified agroecosystems, leveraging ecosystem services and the interactions between different species are key strategies for strengthening resilience to climate change and other external shocks (Oliver et al., 2015;Rioux et al., 2016). They can optimise yields, provide additional sources of income and contribute to food and nutrition security (Powell et al., 2013(Powell et al., , 2015;;Boedecker, et al., 2014;Isbell et al., 2017;Mijatović et al., 2019). This is particularly pressing when considering accelerating climate change and widespread ecosystem degradation. The seasonal food availability calendars, and the discussions they build upon, can be very helpful tools for raising awareness of the presence of local food species that may be neglected and underutilized, and can then be promoted through follow-up actions and projects. Finally, the participatory nature of this tool can play a fundamental role in the documentation and preservation of whole sets of traditional knowledge related to local agrobiodiversity, including local names, traditional cultivation practices and uses related to these species.Seasonal food availability calendars can be used to explore and understand seasonal variations and changes in the availability, abundance and diversity of foods present in both wild and cultivated environments. They can be relevant both at the urban and the rural levels, as consuming a diverse array of foods that are available across different seasons will ultimately lead to positive health gains, a reduced burden of disease and lower impacts on the environment, thereby also eventually improving the overall sustainability of food systems. The understanding of seasonal food availability patterns contributes to the analysis of the local food system and can be fundamental in fostering knowledge and raising awareness of local underutilized species and their potential role in both food and nutrition security, and income generation. When the calendar builds on participatory approaches, it can be used to inform and create awareness of local constraints and barriers to the production and consumption of diverse food, allowing the development of tailored and relevant nutrition education materials. This tool is an example of a bottom-up strategy that can help improve food and nutrition security and the livelihoods of smallholder farmers as well as people's food sovereignty. A greater knowledge and understanding of locally available food biodiversity can enhance peoples' right to define their own food and agriculture systems, reducing the reliance on external imports and inputs. In fact, this year, the Covid-19 crisis has underscored the world's overdependence on long food supply-chains, and has highlighted the need to diversify locally available options that can ensure communities' food security. These calendars, therefore, represent a valuable tool in increasing food knowledge and access, especially for vulnerable groups. Increasing the awareness in the final consumers of the role of and opportunities in consuming seasonal food, whether they live in rural Guatemala or a major European city, has the potential to lead to positive health outcomes and significantly more sustainable approaches to food production and consumption.Many African grains including pearl millet, sorghum, finger millet and some legumes are declining in importance. Crops such as maize, rice and wheat, which enjoy big market shares and attention from researchers, the private sector and government agencies, are replacing these minor crops. Rural women producers of these minor grains are being disenfranchised as their market shrinks. Over the last few decades, agricultural production has received a boost thanks to enhanced cultivation methods, but the majority of agricultural food products in Africa are still sold in local markets as fresh produce or in raw forms. The main challenge experienced by farmers is the lack of appropriate technologies for harvest operations and post-harvest processing before consumption. In particular, research in processing technologies for minor cereals is needed in order to develop novel ways of consuming local grains other than the conventional preparation methods of porridge or \"ugali\", which are considered highly monotonous foods, especially among younger consumers.In order to promote the use of local food resources and to enhance the appreciation of neglected and underutilized species (NUS) by people, scientists from the Alliance of Bioversity International and CIAT, in partnership with a multi-disciplinary group, pioneered a community-led intervention that added value to local cereals and legumes through the production and marketing of \"pressure popped\" snacks (Figure 15.1). Pressure-popping is a technology that uses high temperature and pressure to puff cereals and legumes such as sorghum, finger millet, green gram and a variety of other seemingly \"unfashionable\" grains (Figure 15.2).Partnerships in a success story of a pop cereal business in KenyaThe machine is user friendly and cheap to maintain as it is manually operated and requires little wood fuel to be operated, making it easily accessible in rural areas.Since 2016, through the financial and technical support from the Japanese Ministry of Agriculture, Forestry and Fisheries, and the Japan Association for International Collaboration of Agriculture and Forestry ( JAICAF), a prototype machine was tested and fabricated by a Kenyan private company, DK engineering Co. Ltd, using locally available materials with technical support from Japanese engineers. The same financial support enabled IEDA Confectionary Limited, a Japanese private company, to work with three local communities in the Kitui, Embu and Migori counties to initiate the experimental production of popped grain and value addition. The popping properties of a number of local grains were explored and the training of community members on value addition carried out. The groups embarked on marketing the new products, providing cheap, natural and healthy snacks for both rural and urban people, targeting especially children.The intervention motivated local individual entrepreneurs to purchase the machine using their own funds and start local business focused on popping grains. This technology has proved to be a novel way of adding economic value to local food resources through their use as snack, thus providing income and several business opportunities to local groups and individual entrepreneurs.These efforts have demonstrated great potential to contribute to food security and enhanced livelihoods in Kenya, particularly with regard to:• The increased use of local food resources (in our case, local grains) and boosting their appreciation as new sources of nutrition and income by local consumers • Creating new business opportunities, especially for youth and women interested in growing, selling and adding value to local crops • Enhancing partnerships between farmers and private companies, promoting entrepreneurships and local value chains • Conserving local agrobiodiversity, production landscapes and the culture associated with local foods.Because cereal popping is still relatively new to most Kenyans, in order to raise consumers' interest in popped cereal snacks, the project team carried out practical demonstrations in the three target counties and elsewhere in the country about the popping technique and the marketing of its products.Overall, 25 of these events were held between May 2017 and February 2018. The events, which included agricultural shows, seminars and workshops, were able to be organised also in neighbouring countries. These public demonstrations generated great interest, as evidenced through the high level of public participation and the many enquiries received. People following the events were keen to know more on how to start a business and how to access local manufacturers, besides requesting more information on technical aspects concerning the popping machine and its operation. Over the course of these events, the project team received 37 public awards from 14 agriculture shows attended. The activities were also widely covered by public media (12 events were covered in Kenya and 15 in Japan between March 2019 and January 2020). Annex I lists some relevant media releases covering the events in Kenya.Worth mentioning as well is that the popping activity helped strengthen the cohesion in communities, bringing success to some groups, while failing to do the same in others (apparently due to some financial mismanagement and disgruntlement among some members, caused by lack of clear role allocation and experience in business activities). Another lesson learnt is related to the case wherein the popping machine was donated to the community by some supporters: here we registered some problems when the machine needed servicing; the repair, instead of being dealt with by the group as a whole, fell upon just a single individual who was not particularly happy with that situation, As a result, the project started to encourage self-financing for the purchase of the machine as a way to assign greater responsibility among all members of the group, including when it came to servicing work.The following factors were key to the success of this initiative:1 The economic benefits arising from the initiative were among the strongest factors that led to a shift in the attitude of farmers, traders and consumers towards minor grains, which were no longer seen as crops of the poor with no future. 2 The pop cereal machine could be fully fabricated locally. DK Engineering played a key role in providing the technical backstopping for the machines' servicing, spare parts, training in operating procedures and maintenance. A business relying solely on imported machines tends to progress less due to the high costs of machines and spare parts, the extra time spent obtaining the spare parts and the lack of management information and human resources to offer necessary repairs and follow-ups. 3 Multi-disciplinary partnerships including community groups, entrepreneurs, private companies, development agents, local governments and scientists played a strategic role in providing action-oriented solutions. These partnerships also created opportunities for individual consultations, providing information and practical trainings to those who were interested in starting the business. They supported, furthermore, the development of unique community products, promoting the use of different varieties of local cereals and seasoning and flavouring through natural products. 4 Steady demonstration sales during public events and business fairs, supported by well-crafted communications messages spread through public and social media. This created opportunities to demonstrate local innovations in their products, i.e., presentations in labelling, packaging and marketing strategies.Following are two case studies that share the experiences of two private companies who ventured into the popping business. The first case is from Kieru Foods Ltd., owned by Gichangi Mahinda, a new company based in Embu that manufactures popped cereals from local grains such as pearl millet and sorghum.The second is from DK Engineering Co. Ltd. in Nairobi, whose sales manager, Daniel Kirori, offers his perspective on playing a key role in promoting the wider use of NUS.Case 1: Kieru Foods Ltd., Embu, KenyaIn the year 2008, together with my wife, Lilian Gichangi, I opened a cereal retail shop in the Embu market (Gichangi Cereals & Spices). After earning a living for many years as cereals farmers and traders, we decided to explore new opportunities of value adding technology for our produce. We initially roasted groundnuts and soybean, selling these products in our shop in the Embu market, together with other grains.In the year 2016, at a farmers' field day organised by Bioversity International, I saw a novel technology for making popped local grains such as pearl millet and sorghum. I was much impressed by this innovation and decided to order a popping machine fabricated locally by DK Engineering and received the necessary training for its operation from Bioversity International and JAICAF. In 2017, JAICAF facilitated my further training at the IEDA Confectionary Ltd. Company in Japan, where I gained additional knowledge on popping techniques and product development. The training in Japan was a real eye-opener for me, as the company I was exposed to was capable of dealing successfully with large volumes of raw material processed and readily sold. Back home in Kenya, I established Kieru Foods Company and spent about 300,000 Ksh (around US$3,000) as initial capital to purchase a popping machine, drying chambers, packaging materials and other items needed for our new business.Compared with other local businesses, such as the processing of juices from local fruits, popping has several advantages, including easy and low cost operations and management, from production to sales; therefore, starters have a high chance of success.The work at Kieru Ltd. focused initially on pearl millet, which is often mixed with roasted groundnuts and flavoured with soya flour, baobab, hibiscus, turmeric, ginger and cinnamon powder; sesame oil and honey are also added to churn out a nutritious delicacy. As indicated in Tables 15.1 and 15.2, we found that by implementing this production and sales schedule four times a month, the expenses of the machine would be repaid after 13 weeks, or a little over three months. The company is able to pop about 40 kg of cereals daily, which we package and sell to retailers. One kg of pearl millet, which we buy from farmers at a rate of 70 Ksh, yields more than 144 small-sized bars of snacks called \"kashata\" (Figure 15.3), which we sell at 10 Ksh each, gaining a total of 1,440 Ksh. I regard this income an exponential monetary value appreciation! Commercialisation I can say that whatever the reasons are for maintaining these local crops, we have to ensure that these products are able to satisfy the three major needs faced by rural farmers, viz. income generation, food sufficiency and good health. Food processing technologies are important to strengthen the resilience of local farming communities against social and environmental transformations, and, at the same time, to provide opportunities for diversifying diets and generating additional income. Credit: Y. Morimoto Kieru Foods Ltd. offers a variety of popped cereal products from local grains that are already familiar to consumers. It should be noted that the diversity of crops used in the snacks is not the only factor behind customers' appreciation. Added flavours (obtained from local fruits, vegetables and aromatic plants) are also very important. To that regard, the company has been investing in innovative ways of flavouring and seasoning popped cereals, as in the case of flour from roasted soybeans and Bambara groundnuts, by-products of popping, that are good for making porridge also. The company is currently marketing its products through bulk selling to retailers and supporting commercialisation with advertisements and public awareness campaigns in crowded places like bus parks (Figure 15.4).The increased marketing of traditional foods in urban areas will create more demand for the raw materials and, hence, will boost the cultivation of these local crops. At the same time, the traditional knowledge associated with the use of these crops, as well as the genetic diversity of these resources, will be preserved. I also believe that the establishment of local industries revolving around the use of such crops will help tackle the problem of rural-urban migration so common among younger ones. More awareness on the health benefits of these foods will also help popularise their use, which is in great decline due to changing preferences and modernisation of local food cultures. Most of our products in the Profit rate (%) (6)/(5)Source: Y. Kanda et al. (2017, p.38).market have basic nutritional information printed on the packages. However, a more complete nutrient profile is also needed.Popping cereals represent a new snack to Kenyan people and their promotion is, thus, very important. When we started this business, we had to give free samples of snacks to potential customers in order to popularise the products. According to one of our regular customers, the snack bar is handy food for children, easy to pack and consume at school, and this is certainly helped spread this product among younger kids.I have been providing training on popped cereal techniques to individuals wanting to start their own popping businesses (Figure 15.5). The trainees also learn tips on how to avoid failures in their business: f.e. we advise trainees on ways to modify product packaging in accordance with the new policy of the Kenyan government, which bans the use of single-use plastic shopping bags.More needs to be done, however, to support the promotion of popping products in Kenya, and I advocate for greater research support to foster the development of new ideas to help the wider popularisation of these healthy foods.In collaboration with some of our trainees, we are creating a formal association of Kenyan poppers. This group will act on behalf of its members, presenting their grievances and requests to relevant authorities and facilitating the acquisition of the Quality Mark from the Kenya Bureau of Standards, which costs entrepreneurs time and money. The association would be tasked with bringing members together for information sharing and training. The network will provide many innovative ideas for developing new products, as well as approaches for optimising prices, boosting sale volumes, increasing public demand and raising business expectations.Our venture has now picked up quite well and the good returns so far give us hope for widening our marketing and expanding our business within and beyond Embu, to other towns in Kenya. We envision having a processing factory able to offer a good market for neglected crops, which will be very helpful for struggling smallholder farmers, and we trust that we shall contribute to making better foods of high nutritional value, while also opening up job opportunities to the youth and women.Our income has decreased as the number of people in markets decreased, as a result of COVID-19 policies, including a ban on demonstration sales in the open market. Many sectors, such as restaurants and tourism, have been affected by the disruptions caused by the pandemic and many people have lost their jobs. Sectors related to basic food, production and sales, however, tended to be less affected. Many people are eating at home and, as children are staying at home due to restrictions, people are becoming also more conscious of the importance of healthy diets. To that regard, we have registered an increase in consumers' interest in locally made, healthy, traditional foods. In line with the need for greater hygienic and sanitary procedures, our company has also introduced in our factory a new packaging machine to wrap products individually (Figure 15.6).The development of novel marketing strategies is always a continuous need for every entrepreneur. In that regard, we continue to interact with scientists to explore together alternative snack-making machines that cheaper and easier to carry around. For instance, some of the latest technologies developed -the handgrill and puff-cracker machines -each costs less than a quarter of the price of a popping machine; furthermore, in addition to being affordable, they are easy to maintain since they require little technical expertise and are operated by just one person (Figure 15.7). Whereas the popping machine converts grains to snacks, the cracker utilises flours of sifted cereals like cassava, wheat, rice, pearl millet, maize, amaranth, sorghum and finger millet -among others -to come up with the snacks (Figure 15.8). I strongly believe that these types of innovations can help tackle many challenges facing our society; they can create employment for younger ones and help curb food insecurity, wastage and malnutrition. Case 2: DK Engineering Co. Ltd., Nairobi, Kenya DK Engineering Co. Ltd. was established in 1986 in order to provide engineering technology solutions in food processing and related service support. The company has been a key player in providing machines to industries within and across regions, focusing on bakeries, fruit juices, peanut butter, honey, wet and dry vegetables and institutional/restaurant kitchen equipment.After inspecting the prototype popping machine brought from Japan, DK Engineering expressed interest in fabricating a facsimile using locally available materials. It studied the design of the Japanese model, investigated the materials used and identified areas requiring redesigns using local materials.The major challenges experienced during the development process included the following:• Developing a cylinder vessel that would hold the required high pressure without leakage. • Moulding the lid guide and locking the peg that would fit tight on the lid.• Designing the entire machine with the same precision of the original made in Japan. • In addition, the pressure tight adjustment screw bolt was often bent due to accumulation of pressure, and the locking peg was broken upon hammering to open the lid. The selection and appropriate heat-resistant material was not precise, so we had to engage in trial-and-error methods repeatedly, which consumed time and resources.To solve all these problems, a request for engineering guidance was made to JAICAF and also to Mr. Yoshimura of Pop Cereal Machine Sales Ltd., Japan, who was the original designer of the popping machine (Figure 15.9). Based on their guidance, we applied a super-alloy containing a large content of sulphur constituent (\"En9\") to increase the strength and also contracted a steel foundry to cast the lid guide and locking peg.In terms of challenges encountered in selling the machine, customers expressed some concerns over the loud noise of the machine; others found that although the machine requires the use of relatively little wood fuel, this could be still a limiting factor if the equipment is to be used in urban settings.Our knowledge regarding the fabrication of the popping machine has been greatly improved, thanks not only to interactions with the project team, but also Further improvements to the popping machine are in the making, including replacing the wood stove with a gas stove, adding an insulated panel for reducing the noise and developing mobile equipment that would allow users to reach strategic points of sale.So far, we have sold about 30 machines in our region; our customers include local farmers groups, individual entrepreneurs, companies, NGOs, local governments and a UN agency interested in promoting the use of local cereals through this technology.The Lake Titicaca basin is the center of origin for numerous domesticated crops. Quinoa (Chenopodium quinoa), potato (Solanum tuberosa), oca (Oxalis tuberosa), isaño (Tropaeolum tuberosum) and cañahua (Chenopodium pallidicaule) are some of the crops domesticated in the region, that have, in some cases, been credited with permitting the development of complex civilizations throughout the Andes (Erickson, 1988;Mann, 2011). Crops such as potatoes serve as globally important staple foods that today are the primary source of nutrition for hundreds of societies (Pearsall, 2008;Bradshaw and Ramsey, 2009).Over millennia, Indigenous farmers in the Andes not only domesticated single crops from wild plants but, in many cases, developed hundreds and even thousands of varieties of each (Pearsall, 2008). In Bolivia, it is estimated that farmers have developed as many as 2,963 varieties of quinoa and up to 1,944 varieties of potato (INIAF, n.d.). Such high levels of diversity have arisen in part due to the highly variable topography, soil and climate regimes in the region, leading to farmers continually having to select the varieties that are best adapted to local conditions, dietary requirements and constantly shifting cultural practices and preferences (National Academies Press, 1989;FAO, 2009).Despite its importance for traditional diets and cuisines, alleviating and combating food insecurity and adaptation to climate change, the loss of agrobiodiversity is widespread in the Andes (Padulosi et al., 2011;Zimmerer, 2013). In recent decades, large-scale and rapid migration from rural to urban areas, shifting weather patterns and the globalization of food systems have led to a decline in agrobiodiversity in Bolivia and elsewhere around the world (Padulosi et al., 2011). Furthermore, as rural populations age and older farmers die or cease to farm, knowledge and techniques for maintaining crop diversity areStephen R. Taranto, Eliseo Mamani Alvarez and Wilfredo Rojas lost, contributing to the extinction of many varieties (Thrupp, 2000;Zimmerer, 2014).In response to this genetic erosion, in recent decades Indigenous Aymara and campesino farmers and farming communities in Bolivia and Peru, and their allies from the public and private sectors, have been identifying and experimenting with a variety of practices aimed at halting the loss of agrobiodiversity. This includes in situ and ex situ conservation of germplasm, disease control, soil management, market development and commercialization of products and agritourism (Gandarillas, 2001;Coca, 2010cited by Rea, 1995;Córdoba, 2017). This chapter shares the results of an ongoing community-based agrobiodiversity conservation project and assesses the potential of agritourism to contribute to the in situ conservation of Andean crops in a traditional farming community on Lake Titicaca.Between 2008 and 2014, Bioversity International and the PROINPA Foundation of Bolivia collaborated on the conservation and commercialization of native Andean crops on the Neglected and Underutilized Species (NUS) project, supported by the International Fund for Agricultural Development. In Latin America, the NUS project was implemented in Bolivia and Ecuador (Rojas et al., 2010(Rojas et al., , 2014) ) and worked with Indigenous farming communities, agronomists, government agencies, tour operators, restaurants and other stakeholders to identify and implement sustainable interventions to prevent further loss of Andean agrobiodiversity.NUS interventions in Bolivia included the design and implementation of a community agritourism pilot project. Community-based tourism (CBT) is an increasingly popular approach to tourism that seeks the greater participation of local communities in tourism activities and services. CBT initiatives are designed to extend a greater share of the benefits of tourism to local communities by reducing the outsourcing of certain services to external actors, such as private tour operators, restaurant owners and transportation providers (Dangi and Jamal, 2016). Since the mid-1990s, dozens of CBT initiatives have been developed in Bolivia and elsewhere, with highly variable results. Challenging to implement and difficult to sustain, CBT projects are often located in remote rural communities associated with high-biodiversity protected areas and under intense pressure from migration (Baldinelli, 2013), climate change (Meave and Lugo-Morín, 2014) and illegal timber extraction and mining, and where food systems tend to decline in diversity (Blundo-Canto et al., 2020).To identify a pilot site for a CBT agritourism project and assess the feasibility of its sustainable implementation, PROINPA worked with Sendas Altas, a private tour operator in La Paz experienced in supporting and promoting CBT initiatives and familiar with its challenges. As a component of its corporate social responsibility program, Sendas Altas was actively working with several CBT initiatives in protected areas (T. Sivila, personal communication, 20 April 2018).For the NUS agritourism pilot project -and based on PROINPA's recommendations -four communities, Cariquina Grande, Cachilaya, Coromata Media, Santiago de Okola and Titijoni, were evaluated as potential pilot project sites under four criteria: agrobiodiversity levels; project acceptance by the community; accessibility of the community and the presence of tourist attractions beyond agrobiodiversity.Approximately 1.5 hours by ferry from the Island on the Sun in Lake Titicaca, the most important non-urban tourist destination in Bolivia, and four hours from the city of La Paz, the village of Santiago de Okola on Titicaca was selected for the project. Community members expressed interest in developing a tourism project and, in fact, the village had been receiving tourists informally for several years (T. Laruta Hilari, personal comm, 28 February 2008). In addition to the high levels of agrobiodiversity inventoried by PROINPA ( 2008) and Torresin, who identified 136 useful plant species in the village (2015), the community possesses numerous landscapes, sites and activities of interest, in particular the Sleeping Dragon bluff, an important archaeological site on the shores of the lake (Calla et al., 2013) that until today is used for traditional Aymara rituals (Gil, 2017).Together with community members and PROINPA, Sendas Altas f acilitated the participatory design of the CBT project based on the interests and abilities of participating community members, the identification of complementary attractions and activities, the generation of income and the use of agrobiodiversity. Through group discussions, skill-building workshops, field trips and other participatory methods, tourism skills and services such as interpretation, hygiene practices, food preparation and accommodation were developed. Agrobiodiversity was integrated into the project in various ways, including its inclusion in meals, the design of a cookbook highlighting agrobiodiversity, interpretive walks that include information on agrobiodiversity and traditional production systems and the creation of a community museum highlighting agrobiodiversity.Since the start of the project in 2008, an estimated 3,500 tourists have visited Santiago de Okola, many crossing Lake Titicaca from the Island of the Sun and others coming by land from La Paz. Furthermore, in parallel with the NUS project and to this day, a sustained series of additional, externally funded projects have been implemented in the community, including the d evelopm ent of a low-impact trail system on the Sleeping Dragon bluff, the organizational strengthening of the Integrated Tourism Association of Santiago de Okola (ASITURSO) -the formal community organization that emerged from the project -and the construction of a community center. Recently, the project has received support from the Italian Cooperation with a particular focus on the remnants of Qhapaq Ñan, the Great Inca Trail that passes directly through the town, which is being developed as a long-distance regional trekking route from Ecuador to Chile (see Figure 16.1).The objectives of this study are: a) to evaluate whether the last 12 years of agritourism in Santiago de Okola have contributed to the conservation of the Andean crop varieties inventoried at the beginning of the project; and b) assess the impacts and potential of agritourism to contribute to the in situ conservation of Andean agrobiodiversity. At the beginning of the NUS project in 2008, 12 families from Santiago de Okola agreed to participate in the agritourism pilot project and were surveyed in Aymara and Spanish by PROINPA and Sendas Altas to assess established perceptions about tourism and to inventory household agrobiodiversity (Mamani et al., 2008). Researchers visited each family independently after the 2008 harvest and asked respondents to display and name each variety. Once all the families were surveyed, a database of crops and crop varieties was generated and recorded as present (1) or not present (0) in each household. The same method was used for the 2020 surveys and the data were analyzed using descriptive statistics, with the household as the unit of analysis.To evaluate changes in household agrobiodiversity levels, we compared levels reported in 2008 to those reported in 2020. The 2020 surveys were conducted with the same families and with the same questionnaire. Due to the COVID-19 pandemic, only seven families (58%) were surveyed; however, the remaining families will be surveyed when safe access to the region is secured and the data presented here will be updated.Today, the agricultural systems of the Lake Titicaca basin reflect five centuries of crop exchange with food systems from around the world and the diets of both rural and urban consumers reflects deep integration with introduced crops such as broad beans, wheat and barley. Farmers in Santiago de Okola cultivate a broad array of native and introduced crops; however, for the purposes of this study, results are presented only for the seven native Andean crops inventoried during both the 2008 and the 2020 surveys. Four tubers (potato, oca, isaño and papalisa) and three grains (quinoa, cañahua and maize) were inventoried, while introduced crops such as barley and wheat were excluded, in order to evaluate the impact of the project on native Andean crops rather than all crops present in the systems. Figures 16.3 and 16.4 summarize the change in the number of varieties of each crop that each household cultivated in 2008 and in 2020. Increases in the number of varieties grown by each household were reported for the seven crops in six of the seven households: oca increased from an average of four to eight varieties, isaño from one to four varieties, papalisa from one to four varieties, maize from three to nine varieties and quinoa from one to six varieties per household. While in 2008 cañahua was not cultivated by any participants, in 2020 one family reported cultivating four varieties of it. The greatest change was registered for potatoes, with an increase in the average number of varieties from 12 to 32 (Figure 16.4). The change in number of varieties of potato is presented separately because while potatoes were not a focus crop of the NUS project, they are central to food security in rural communities and their diversity is crucial to monitor and conserve.The results also served to evaluate changes in the overall composition of crops and their varieties at the intra-family level between 2008 and 2020 (Figure 16.5). Traditional Andean farming systems are characterized as poly-culture systems and Figure 16.5 summarizes changes in crop variety composition with Families 2 and 3 increasing the total number of crop varieties by 131% and 71% respectively; Families 5, 6 and 7 increasing the number of varieties by more than 200% each and Family 4 increasing the number of varieties by more than 500%. Family 1 did not ultimately participate in the project and reported a 50% reduction in number of varieties.The results of this initial analysis show promise for community-based agritourism projects to contribute to the in situ conservation of Andean agrobiodiversity. While five households remain to be interviewed, the consistent and sustained increases both in the number of varieties of each crop cultivated by participating families and in the overall diversity and complexity of household farming systems suggest that varieties at risk of loss are, in fact, being conserved among participating households. While there is little evidence, with the exception of cañahua, of new varieties being introduced from outside the community, the results clearly show that participating families are actively exchanging varieties amongst themselves and, as such, are establishing multiple, highly diverse in situ conservation plots within the village.There are a number of factors that may have contributed to these outcomes. First, it is important to mention that from the early stages of the project there was a steady flow of tourists visiting the community and paying to experience its agrobiodiversity. Santiago de Okola's agricultural landscape was highlighted in promotional materials used by local tour operators to attract visitors, with offers of homestays and traditional meals with families, an agrobiodiversity and medicinal plant walk, cooking workshops and visits to the community museum with exhibits on the food and farming systems of the village and region.At the same time, project technicians from PROINPA and Sendas Altas were supporting community members by providing skill-building and organizational strengthening, helping participants respond to the needs of visitors, fundraising for new projects and managing the marketing efforts required to sustain the flow of tourists. Together, the internal and external efforts made by project partners and the consistent focus on agrobiodiversity combined to motivate participants to internalize the importance of agrobiodiversity not only for local food security requirements but also as a source of income linked to being the stewards of such a valuable resource.Qualitative data collected during the 2020 inventories support the notion that the combination of receiving income during and beyond the early stages of the project while also simultaneously developing services and skills associated with tourism focused on agrobiodiversity caused the revaluing of crop varieties by both tourists and community members. During the 2008 inventories, for example, many respondents could not remember the names and uses of the varieties surveyed, while in 2020 farmers demonstrated much greater knowledge of varieties and much more interest in conserving them. Further, cultivating a greater number of varieties has become a source of pride and positive competition among project participants as they report the desire to demonstrate their commitment to stewarding cultural patrimony not only for tourists but also for neighbors and nearby communities, ostensibly elevating the village's status among its peers.Finally, positive developments achieved in Santiago de Okola took place in the context of broader national and international efforts to revalue traditional food and farming systems (M. Taha, personal communication, 12 August 2020). The rise of Indigenous leadership at a national level in Bolivia, for example, greatly influenced increasing pride in traditional cultural practices, including native cuisine. The year 2013, for example, was declared as a Year of Quinoa by the Food and Agricultural Organization. These are just two examples of larger trends that have elevated appreciation for and consumption of native crop varieties and that have influenced tourist interests in the same.At the time of writing, and most unfortunately, the 2020 global coronavirus pandemic has brought tourism in Santiago de Okola to a halt and throws into doubt the long term sustainability of agritourism to contribute to agrobiodiversity conservation in the community. The virus' impact on elderly populations is severe, placing Santiago de Okola's aging farmers at risk and, with them, the cultural and agroecological practices associated with the agrobiodiversity they conserve.Diets low in consumption of fruits, vegetables, and other nutrient-dense foods and high in energy, fats, free sugars, and salt are a leading cause of non-communicable diseases in sub-Saharan Africa (SSA), underpinning millions of premature deaths (Afshin et al., 2019). The World Health Organization recommends the consumption of 400 grams or five portions a day of fruits and vegetables for good health. However, healthy diets that include fresh vegetables are unaffordable for more than half the households in SSA (Harris et al., 2019;Hirvonen et al., 2020).Traditional African vegetables (TAVs) are diverse in taste, flavors, and nutrient content. They present one way to improve people's diets in SSA countries at low cost with food plants suited to local taste and flavors, and which are connected to people's cultural history and adapted to local agro-ecological environments. Yet these vegetables are often neglected and underutilized for multiple reasons, including (i) shifts in food habits and preferences; (ii) agricultural and food policies promoting only a handful of energy-dense staple crops and exotic vegetables; (iii) poor planting materials available to smallholders; and (iv) poor crop management practices and postharvest handling due to inadequate extension and infrastructure.This chapter gives a brief overview of the World Vegetable Center (WorldVeg) and its partners' efforts to promote TAV production and consumption in SSA and safeguard TAV biodiversity before it is lost. The lessons learned from these efforts will contribute to an African vegetable revolution to improve diets in the continent.TAVs are vegetables native to SSA or vegetables that have been introduced to SSA and adopted by farmers in their traditional production systems. ThreeSognigbe N'Danikou, Maarten van Zonneveld, Fekadu Fufa Dinssa, Roland Schafleitner, Jody Harris, Pepijn Schreinemachers and Srinivasan Ramasamy primary regions of crop diversity of TAVs have been identified: (i) Dahomey gap in western lowland tropical Africa; (ii) the Ethiopian highlands; and (iii) South Cameroon (van Zonneveld et al., 2021). Tanzania and Eswatini are two regions of TAV diversity of predominantly wild vegetables; Angola, DR Congo, and South Sudan are areas of potential diversity that require further investigation because of the currently low number of observations (van Zonneveld et al., 2021). Madagascar is another fascinating region of vegetable crop diversity as a historic meeting point of people originating from SSA, Southeast Asia, and the Middle East, who each introduced their own crops and varieties. More than 400 species are reported to be used as traditional vegetables in Africa, with over 60% being leafy vegetables (van Zonneveld et al., 2021). A more detailed study among 126 TAVs indicates that about one-third are domesticated, another third are semi-domesticated, and the rest are predominantly harvested in the wild (van Zonneveld et al., 2021).Many local varieties of domesticated and semi-domesticated species are lost due to underutilization. For wild species, habitat loss and overexploitation are major conservation concerns. WorldVeg maintains a global key collection of TAVs in the public domain in its genebank in Tanzania, which includes germplasm of amaranth, African nightshade, okra, roselle, and jute mallow, among other crops. This collection comprises about 2,400 accessions of TAV landraces and their wild relatives, collected from 38 African countries. The early collecting missions date back to the 1990s through different grant projects. In partnership with National Plant Genetic Resources Centers in SSA, WorldVeg is implementing a plan to rescue African vegetable biodiversity and support ex situ conservation of TAV biodiversity and breeding in Africa. Thanks to these partnerships, new collecting missions have started in western, eastern and southern Africa to fill geographical gaps in the conservation of TAVs.The TAV collection at WorldVeg is held in trust for humanity. It can be accessed for breeding and research in accordance with the guidelines of the International Treaty on Plant Genetic Resources for Food and Agriculture.In addition to distributing germplasm for research, education, and breeding, WorldVeg distributes vegetable seed kits to international and local NGOs, farmer groups, and local governments, which share the kits with households for the direct cultivation of these crops. Most seed kits aim to improve nutrition through home consumption and to diversify incomes by selling TAVs in local markets. WorldVeg also distributes seed kits to organizations for disaster relief to support smallholders affected by crises such as displacement due to civil unrest or crop failure because of extreme weather events. For example, from 2013 to 2020, the WorldVeg genebank distributed nearly 47,000 seed kits containing about 211,000 seed samples of improved lines and purified promising accessions to smallholder farmers in Tanzania, Kenya, Uganda, and Madagascar through development projects and programs. Bulk seed distribution in Tanzania, Benin, and Mali was part of the Center's effort to support communities affected by the Covid-19 pandemic. These large numbers reflect increasing recognition among government and development organizations of the relevance of TAVs for income and nutrition.The lines distributed are open-pollinated, allowing growers to produce and save their own seeds for future seasons. These lines of promising genebank accessions, selections, and WorldVeg improved lines have been tested under local conditions for yield, disease resistance, and consumer preference. Seed kits are distributed along with training in vegetable production and seed saving. Each kit contains a booklet with planting instructions that follow good agricultural practices and information on each crop's nutritional values. Seed kit distributions are intended to be one-time only to avoid dependency or crowding-out local seed enterprises. The provision of healthy seed kits to households coupled with behavior change communication has been shown to raise consumers' nutritional awareness of TAVs (Afari-Sefa et al., 2016). Such actions have resulted in significant improvements in households' dietary diversity, particularly for children under five and women of reproductive age (Ochieng et al., 2018).In areas where formal and informal seed sectors of TAVs are underdeveloped, vegetable seed kits help introduce good quality seed in local seed systems. Seed kits are also a promising tool for participatory variety evaluation with farmer organizations and local seed enterprises, which, in turn, inform seed enterprises and seed companies about farmer preferences to tailor their supply to local demand. As seed companies and public institutions expand their portfolio with traditional vegetables, the role of the WorldVeg genebank shifts from seed kit distribution to supplying germplasm resources for variety development by seed companies and public institutions. Thus, the WorldVeg genebank optimizes the distribution of vegetable diversity by working with partners in both formal and local seed systems and aims to contribute to integrated seed system development.Farmers in several SSA countries such as Kenya, Tanzania, and Mali are already adopting varieties developed from WorldVeg genebank materials supplied to seed companies in Africa. For instance, 51% of amaranth areas planted in Kenya and 70% in Tanzania were from WorldVeg improved lines that were released in these countries (Ochieng et al., 2019). Also, 2.9 tons (59%) of amaranth seeds sold by companies in 2016 used WorldVeg-based germplasm. WorldVeg's amaranth lines have reached about 231,000 households in Kenya and Tanzania alone (Ochieng et al., 2019).The germplasm improvement of TAVs at WorldVeg started in 1992 with a handful of the most popular TAVs, namely amaranth, African eggplant, and Ethiopian mustard. Through repeated selection, purification, and farmers' participatory variety selection, plant breeders quickly identified promising lines for release as improved cultivars of amaranth and African eggplant in Tanzania, Kenya, Ethiopia, and Cameroon (Figure 17.1).A WorldVeg breeding program for amaranth and African eggplant started in 2015 to develop advanced lines with enhanced yield, nutrients, product color, shape, size, taste, and late and early maturation. These lines have been distributed to national agricultural research systems, private seed companies, and other partners in Africa (Dinssa et al., 2016). They have been adopted at large scales by farmers in several countries such as Tanzania and Kenya (Ochieng et al., 2019). As a result, improved cultivars of amaranth and African eggplant have been released in several countries in the continent. Most seed companies directly use the released varieties and multiply the seed for commercialization. A few advanced companies have started using WorldVeg improved lines in their breeding programs. The increasing commercialization of seed suggests commensurate increasing consumer demand for these vegetables and, consequently, more interest from farmers to invest in amaranth production. Further research will help provide further insights into these dynamics and how to further scale vegetable seed supply in SSA.To further advance variety release and supply quality vegetable seed, the Africa Vegetable Breeding Consortium (AVBC) was established in 2018. The AVBC is a joint initiative of WorldVeg and the African Seed Trade Association to develop a strong vegetable seed sector in Africa. All WorldVeg improved lines are publicly available and can be requested. AVBC members have limited exclusivity claims to some WorldVeg-developed lines before they become a global public good.WorldVeg improved lines include African eggplant accessions resistant to shoot borer Leucinodes orbonalis, and sources of resistance in amaranth have been identified for foliar pests and stem weevils (AVRDC, 2003;Othim et al., 2018). In combination with appropriate pest and disease management practices, farmers can boost TAV supply to meet growing demand. These practices include removing and destroying infested crop debris, crop rotations with non-host crop species, eradicating weeds, good drainage, and growing healthy seedlings. Grafting African eggplant on suitable resistant rootstocks is an important control measure to overcome bacterial wilt and Verticillium wilt diseases. Soil fumigation and soil solarization are important means to control pathogens and root-knot nematodes. Damping-off diseases can be controlled by treating seed with fungicides (including bio-fungicides such as Trichoderma) or hot water. Using disease-free seedlings, removing and destroying diseased plants, and protecting fields and nurseries from insect vectors are further recommendations to help manage virus diseases. Yellow sticky traps (for whitefly, leafminer, leaf hopper, and aphids) and/or blue sticky traps (for thrips) should be erected on the windward side of fields and nurseries to help trap these pests, some of which also act as vectors of virus diseases. Application of predatory mites and insects and entomopathogenic fungi such as Neozygites floridana, Beauveria bassiana, and Metarhizium anisopliae help reduce infestations of pests such as spider mites. The application of bio-pesticides, including neem formulations, reduces insect pests and also conserves natural enemies such as predatory ladybird beetles and syrphid flies, as well as parasitoids. Extension and training in improved production and postharvest practices support farmers in boosting the TAV supply in SSA, as would adequate infrastructure to get vegetables to appropriate markets.Vegetable consumption is generally low in SSA. Only 7% of countries in Africa reach a mean consumption of 240 g/day, as recommended by WHO/ FAO guidelines (Kalmpourtzidou et al., 2020), though there is wide variation between regions and countries in SSA (Afshin et al., 2019). Data specifically on TAV intake at individual or population level is not readily available, because national data-collection systems focus predominantly on economically important vegetables (Herforth et al., 2019). Further research is needed to understand the intake of TAVs at household and individual levels in many SSA countries.Behavior change communication programs have been tested in several countries to promote fruit and vegetable consumption, including some TAVs. Among these approaches are school garden programs used to stimulate interest of children at a young age (Schreinemachers et al., 2019); and integrated home garden programs-coupling garden-based training with nutrition behavior change-to increase the household-level availability of vegetables while simultaneously stimulating demand (Olney et al., 2015). Other approaches include media campaigns, cooking demonstrations and competitions, promoting local food ambassadors/champions, and holding food and seed fairs (Ochieng et al., 2019). Over the last three decades, tens of thousands of households in western (Mali, Burkina Faso), central (Cameroon), eastern (Kenya, Uganda, Tanzania, Madagascar) and southern Africa (Malawi, Zambia) have been trained on the nutritional benefits of TAVs and how to prepare them by different organizations including WorldVeg, Bioversity International, and their national partners.Thanks to a series of interventions on both the demand and supply sides, TAVs are successfully being mainstreamed in Kenya and Uganda, especially in the capital cities like Nairobi and Kampala, through a revival of traditional eating patterns among the middle classes. This has been possible because of policy support to create an enabling environment for vegetables in food systems. The recognition of quality declared seeds (QDS) boosted TAV supply to meet increasing urban consumption in these cities (Mabaya et al., 2019). QDS provides farmers with access to quality (though not nationally registered) seeds of less highly bred crops such as TAVs. The QDS process involves local seed enterprises, boosting livelihoods and making diverse vegetables available for healthy diets.However, in most cases, interventions are fragmented because they address only part of the value chain. There is a need for systems-based actions that encompass the whole value chain and that are enforced by enabling policies to support sustainable production and consumption. Many food and seed policies do not explicitly consider vegetables or desired dietary outcomes for national populations. Therefore, more work is needed to understand how these system-level interventions can connect the production and consumption of nutrient-rich vegetable foods.Despite increased interest from the scientific community in the ongoing work on TAVs, there are still important steps left to achieve an African vegetable revolution to improve diets in the continent. We here identify three significant areas that need a clear commitment from high-level institutions in Africa and worldwide.a Enabling policies to mainstream African traditional vegetables into food systems. Policies to shape the food system to nourish people, not just feed them, must look across the food system from inputs to production and food environments. Multidisciplinary research is key to reveal gaps and opportunities for increasing TAVs in food systems, starting with the desired outcomes-including healthy diets, fair livelihoods, and sustainable environments (McMullin et al., 2021). A critical component of this research is the investigation of seed policies and how to make them more inclusive by (i) recognizing farmer-saved seeds; (ii) supporting the development of nutritious vegetable varieties; and (iii) making these vegetable seeds available to and affordable for farmers. Policies that support farmers in risk management will encourage them to grow TAVs. These include providing subsidies for nutritious foods and insurance programs for TAVs, and connecting growers with consistent institutional markets such as school feeding programs while demand increases. b Promotion and outreach to boost consumption of TAVs. There is increasing evidence of the impact of promotion campaigns on public awareness of the nutritional value of TAVs and their role in dietary diversity at the household level (Afari-Sefa et al., 2016;Ochieng et al., 2018). Specialized government agencies (e.g., Food and Nutrition Councils and their equivalents) can be tasked with such campaigns. c Strengthen regional R&D programs and initiatives to enhance the use of African vegetable germplasm. This will require governments and funders to invest and stakeholders to organize efforts to rescue the biodiversity of TAVs and strengthen vegetable breeding programs in Africa. An example of such an initiative is the AVBC, which brings WorldVeg and seed companies together to build capacities and exchange knowledge on new breeding techniques. A regional action plan with public, societal, and private actors will be essential to rescue and make efficient use of TAV biodiversity in Africa.While notable efforts are ongoing to mainstream TAVs in production and food systems in SSA for healthier diets, improved livelihoods, and the protection of genetic diversity, several bottlenecks remain: policies to create an enabling environment are needed to integrate these vegetables into people's diets; awareness campaigns to encourage consumption will enhance the adoption and acceptability of TAVs; consistent investment to safeguard TAV biodiversity is essential for resilient production and supply to meet consumer demand; and supply of high-quality seeds to farmers in combination with extension will help build capacity among farmers for safe and sustainable production practices. DOI: 10.4324/9781003044802-20Slow Food (SF) is a global grassroots organization and movement founded in 1989 to counter the acceleration of frenetic consumerism by renewing interest in food and the pleasure of eating, protecting local food cultures, and ensuring that everyone has access to food that is good (healthy and delicious), clean (produced and consumed with respect for the environment), and fair (contributing to social justice) (Petrini, 2005). Since its inception, SF has articulated a multifaceted concept of gastronomy that understands food as a web of relationships linking pleasure and wellbeing, people and landscapes, producers and consumers, cultures and ecosystems (Schneider, 2008). SF's activities and initiatives focus on education, traditional knowledge, agroecology, empowerment of women and Indigenous Peoples, participatory management of foodscapes, policy and advocacy, and the creation of short, equitable supply chains. A commitment to defending the biological and cultural diversity on which the resilience of human communities and the global food system depend underpins all of this work. This is in keeping with the growing political, popular, and scientific interest in the role that traditional food systems can play in combatting and potentially reversing the erosion of biocultural diversity (Maffi, 2001) that has accelerated in recent decades. Particular attention is now paid to neglected and underutilized species (NUS) (Padulosi et al., 2013), which may hold solutions to challenges facing socioecological systems and human health and nutrition. Not just governments, research institutions, and private sector organizations, but also local and international food movements have made important contributions to recovering NUS (Goodman et al., 2012;Counihan and Siniscalchi, 2014). Several grassroots initiatives identify, document, and promote neglected and marginalized products and their associated biocultural and gastronomic value (Nabhan et al., Charles Barstow, Edie Mukiibi and Dauro Mattia Zocchi 2010). In this chapter we discuss aspects of SF's approach to what it calls 'endangered food products'. While this term overlaps in its meaning with NUS, it refers to a broader domain than the latter, as we will illustrate. Our focus is on the systems-based approach and the underlying values of SF's global biodiversity projects.The Ark of Taste, coordinated by the SF Foundation for Biodiversity, is an online catalogue of endangered varieties, breeds, and processed products from cultures and territories around the world (for more information on the Foundation, see www.fondazioneslowfood.com/en/). The criteria that products must satisfy for inclusion on the Ark help define the \"ecogastronomic unit of concern\" (Nabhan et al., 2010).First, items must be food products, including domesticated plant varieties and animal breeds, populations, wild species, and processed products. Second, Ark products must be of distinctive organoleptic quality. This criterion points to one of SF's distinguishing features, its concern with pleasure and 'good taste', which implies affording as much importance to what 'tastes good' as to what is healthy. 'Quality' is defined within the relevant local context; understanding the factors that contribute to perceptions of quality requires intercultural dialogue, and pleasure is often what brings people into the conversation. Third, Ark products must be linked to a specific territory and the memory, identity, and traditional knowledge of a particular community. This underscores the importance of landscapes and 'foodscapes', the human-natural systems in which the cultural and ecological values of the ecogastronomic unit (the product) take shape and acquire meaning, and where traditional knowledge and management practices are created, maintained, and transmitted (Stepp et al., 2003;Barthel et al., 2013).Finally, Ark of Taste products must be produced in limited quantities and at risk or endangered due to various social, economic, and ecological factors. These factors include habitat degradation and land use conversion, forced or voluntary migration, sedentarization of mobile populations, lack of intergenerational knowledge transfer, barriers to market entry, one-size-fits-all hygiene regulations, climate change, environmental and genetic pollution, incentives to adopt improved or foreign varieties and breeds, changing sentiments due to education and the media, and the general mechanization, industrialization, and standardization of the food system.Looking at these criteria, there are key similarities and differences between SF's concept of endangered food products and the various working definitions of NUS (as elaborated, e.g., in Delêtre et al., 2013). Among the important differences are that, for SF, the local is privileged over the global, the 'what' (i.e., the unit of concern) is more broadly defined, and the 'why' is motivated primarily by questions of culture and identity rather than unrealized market potential. These differences have a number of important implications, as elaborated on below.SF relies on the wisdom of the crowd-its global network of farmers, fishers, herders, artisans, cooks, educators, academics, activists, Indigenous Peoples, and consumers-to identify endangered products. Ark of Taste products most often result from nominations submitted by people across the globe who may or may not be formally associated with the SF network. If a nominated product meets the criteria described above, it is boarded on the Ark to raise awareness and increase its visibility; individuals and communities can then take action, in their own way or through the implementation of other SF projects. In other cases, Ark products arise from biodiversity mapping undertaken by members of the network with technical support from SF and local experts, or by SF staff during field visits. Mapping is one of the methodologies that appear in the literature on NUS (e.g., Will, 2008), though the order of the steps involved, the elements to be mapped, and the justifications for selecting certain products differ slightly in the SF approach.Critically, SF does not select products in advance; it works to support and facilitate the efforts of communities in its network, not set an agenda for them. Likewise, SF does not undertake field research or projects in a territory without being invited. This approach seeks to put technical support, networking capacity, and scientific knowledge at the service of local communities, not merely supplement research and development with those communities' traditional knowledge and solicit their input and involvement. In addition to products themselves, SF maps stakeholders within the foodscape. These could be farmers, processors, civil society institutions, tourism and hospitality organizations, and markets. Without understanding this constellation of stakeholders, and particularly how it links rural and urban areas, identifying and promoting endangered products is rarely fruitful. Likewise, it is impossible to promote products according to SF's values without interest and commitment from local communities.While 'protecting' and 'promoting' serve and create opportunities for each other, there is potential for opportunities to become threats (Will, 2008), such as when resource use and market attention become too intense in relation to one product at the expense of other endangered products and the environment. Therefore, economic potential alone is insufficient to warrant SF's attention, and when it comes to such potential, emphasis is primarily on local economies and food sovereignty rather than the global market and food security. SF challenges the assertion that global food production must increase 50%-100% by 2050 (Foley et al., 2011;FAO, 2019). Calls to drastically increase production are used to justify a progressist narrative of growth, liberal trade, and technological fixes, the disastrous consequences of which are evident (Ghosh, 2010;Tomlinson, 2013;Hunter et al., 2017). Feeding everybody while protecting biocultural diversity and maintaining production potential in the long term requires multiple local Slow Food and NUS 219 strategies tailored to local complexities (Cunningham et al., 2013). Moreover, though small-scale production alone is insufficient, it is absolutely necessary for achieving these goals-such production already feeds a huge proportion of humanity while simultaneously supporting ecosystem services and high levels of biodiversity (Ricciardi et al., 2018).With these issues in mind, the SF Foundation for Biodiversity has developed several projects to promote traditional and endangered products-such as those on the Ark of Taste-and their associated biocultural contexts within a broad view of promotion as a means for protection. For example, the Gardens in Africa project is a continent-wide network of school and community gardens designed to protect traditional varieties of plants and promote nutrition and knowledge transfer using gardens as productive and educational spaces. Subsistence is rarely 'mere subsistence'. The importance of subsistence agriculture for biodiversity conservation, nutrition and dietary diversity, and food sovereignty based on access to wild and cultivated traditional foods-particularly among poor and Indigenous communities-is well documented (Kuhnlein and Receveur, 1996;Roche et al., 2008;Galluzzi et al., 2010;Jones et al., 2014;Powell et al., 2015).The SF Presidium project, a more market-oriented initiative, supports groups of producers committed to reviving or revitalizing endangered products. The SF Foundation provides training and technical assistance and works with producers to create production protocols similar to those for products with Protected Designation of Origin or other geographical indications, but designed to foster flexibility, innovation, and subtle differences between producers, all in the spirit of subverting standardization (Friedman and McNair, 2008). Presidia raise the visibility of these products on the market and producers may legally use SF's registered snail logo, which has become a highly regarded seal of approval for good, clean, and fair foods. Furthermore, Presidia use narrative labels to highlight each product's connection to a particular territory and the knowledge of producers, replacing the 'fast' reading of traditional certifications and label texts with the 'slow' reading of biocultural contexts.One distinguishing feature of SF Presidia is their increasing focus on systems of production rather than single products. An example of this is the recently launched Presidium for the Chiapas Milpa System, which uses agroecology to grow several Ark of Taste products, supports the reproduction and sharing of traditional seeds and knowledge, and empowers women involved in producing and marketing traditional corn products. Another example is the Presidium for dried nettles (Urtica massaica) from Kenya's Mau Forest. The Gikuyu and other local Indigenous communities use nettles as food and medicine for themselves and their livestock. Because deforestation has reduced the availability of wild nettles, Gikuyu women have brought them into cultivation in disturbed areas around dwellings and the fertile soils of formerly grazed land. The Presidium assists with production and promotes both fresh and dried powdered nettles in restaurants and in local and regional markets.As some NUS literature points out, value addition can be key for bringing marginalized foods to wider markets (Will, 2008;Padulosi et al., 2013). SF takes this a step further, considering processed products like cheeses, honey, and cured meats. The importance of traditional knowledge, techniques, and technologies associated with these products is clear. What may be less apparent is the biodiversity and cultural value of non-food species behind these products, including Source: Oliver Migliore, SF Archive (used with permission).Slow Food and NUS 221 bees, forage plants, and microorganisms responsible for fermentation. Promoting such products can contribute to the protection of these species, their habitats, and their associated ecosystem services. Two examples help clarify this. Honey is vitally important to the gastronomy of the Ogiek, another Indigenous community of the Mau Forest. Many of the melliferous species upon which local bees rely, while inedible to humans, provide materials for tools and beekeeping equipment.One is Dombeya torrida, known locally as silibwet, a sacred tree that yields the Ogiek's most valued honey (Zocchi et al., 2020). The Ogiek Honey Presidium helps protect this tree and the Mau Forest ecosystem generally.Another example is the relationship between forage plants and the qualities of dairy products. Sahrawi nomads in Western Sahara know exactly how the plants that camels eat affect the sensory and nutritional qualities of their milk, and believe that this milk retains the medicinal properties of the plants ingested (Volpato and Puri, 2014). Similar observations have been made by Raika camel herders in Rajasthan (Köhler-Rollefson et al., 2013), whose milk is an Ark of Taste product. In Europe, the astonishing diversity of mountain cheeses results directly from biophysical variation across mountain pastures. Promoting these cheeses and their value chains could help reduce agricultural abandonment, which threatens landscape diversity and traditional cultures (MacDonald et al., 2000). SF has recently promoted natural cheeses (those produced with raw milk and natural fermentation) across Europe. Such cheeses have increased organoleptic complexity that reflects the specific communities of microorganisms in the pastures and dairy facilities where they're produced, and their producers are not beholden to companies that make and distribute selected fermentation cultures. These examples refer to landscapes that produce little or no plant-based food for humans, but whose biocultural diversity and contributions to ecological structure and function are worthy of attention. Food can be an effective entry point and rallying cry in this regard.Over the last three decades, parallel to concerns about the sustainability and equitability of the global food system and its effects on biodiversity, SF has developed a grassroots approach that identifies food systems as both cause and victim of the current ecological crisis, as well as a potential solution. Recognizing that protecting and promoting endangered food products and NUS is insufficient on its own, SF addresses the wider sociocultural and ecological systems of which these products are a part. Social movements, institutional initiatives, and policies must emphasize and rigorously defend the inherent value of these systems. This means using the market in service of these values, not the other way around, and it requires leaving decision-making power in the hands of local communities so that they don't become dependent on market channels over which they have no influence. While global logistics and communications make it increasingly easy to promote and market NUS, endangered foods, dietary diversity, and local, seasonal produce in cities and the Global North-which is desirable-such promotion must never come at the cost of failing to protect these things where they already exist in rural areas and the Global South. Furthermore, financial and other benefits must be returned to and shared with communities. The task, then, is to create a new gastronomy that incorporates biodiversity, cultural diversity, and traditional knowledge into agricultural systems and foodscapes, both rural and urban, and that generates markets and networks of solidarity that incentivize and derive pleasure from these diversities, while recognizing their full value.Underutilized crop genetic resources are imperative for sustainable agriculture and small millets belong to this important group of crops (Vetriventhan and Upadhyaya, 2019). Plant genetic resources play a significant role in enhancing the adaptation and resilience of agricultural production systems. With the global population expected to reach 9.8 billion by 2050, there is an urgent need to enhance food production by 60%-70% from the current level. The Green Revolution signified an immense transformation in agriculture in the form of a broad spectrum of species, including locally adapted cultivars and landraces, which are needed to harness livelihood potential to cope with extreme climatic conditions, marginal lands and other biotic and abiotic stresses along with nutritional security (Fita et al., 2015). The Indian subcontinent is bestowed with an immense wealth of agrobiodiversity, which can be utilized to take up this challenge. One such group of vastly promising crops is that of small millets. This group is represented by six species viz. finger millet (Eleusine coracana L. Gaertner), kodo millet (Paspalum scrobiculatum L.), foxtail millet (Setaria italica L. Pal), little millet (Panicum sumatrense Roth ex Roemer and Schultes), proso millet (Panicum miliaceum L.) and barnyard millet (Echinochloa crusgalli and E. colona L. Link) that have climate-smart features (Saxena et al., 2018). The cultivation of small millets in India has progressively deteriorated over the last few decades due to their lower economic worth compared to major cereals and, lately, to horticultural crops. This has resulted from a variety of factors including the lack of high-yielding varieties, good quality seed, better cultivation practices, proper food processing technologies and poor value-chains (Upadhyaya and Vetriventhan, 2017). Overcoming these major bottlenecks can allow economically viable opportunities for farmers in areas where theKuldeep Singh, Nikhil Malhotra, Mohar Singh production of major cereals like rice, wheat and maize may be steadily declining due to climate change. In such scenarios, small millets offer a better alternative, as these are known to possess tremendous nutritional benefits. Overall, time demands immediate thrust for directing more research and development towards these crops.Globally, the largest ex situ germplasm collections of small millets are maintained by the Consultative Group on International Agricultural Research at the International Crop Research Institute for Semi-arid Tropics (ICRISAT) in Hyderabad, India, for long-term conservation. The ICRISAT gene bank conserves more than 12,000 accessions of six small millets (finger millet, barnyard millet, foxtail millet, proso millet, little millet, kodo millet and proso millet). The majority of these accessions belong to finger millet (5,947 accessions) followed by foxtail millet (1,542 accessions) (http://genebank.icrisat.org/IND/Core?Crop=-Finger%20millet). Other than the ICRISAT gene bank, small millets germplasm is also conserved in national gene banks across the world. Three gene banks viz. the National Bureau of Plant Genetic Resources, New Delhi, India, and the national active germplasm site at the All-India Coordinated Small Millet Improvement Project (AICSMIP), Bengaluru; the national gene bank of the Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China; and the gene bank of the United State Department of Agriculture maintain more than 15,000, 22,000 and 4,000 small millets accessions, respectively. Most of these collections are dominated by accessions belonging to finger millet and foxtail millet (Saha et al., 2016). A survey of these collections indicates that although the hot spots of small millets are well represented, gaps exist for wild and weedy relatives belonging to secondary and tertiary gene pools; for example, wild and weedy species constitute less than 10% of finger millet and foxtail millet global germplasm collections (Upadhyaya and Vetriventhan, 2017). Therefore, it is necessary to investigate these gaps and augment these collections with wild and weedy relatives harboring genes for biotic and abiotic tolerance along with agronomic and nutritional traits.Small millets germplasm contains significant variations for agro-morphological, quality and stress tolerance traits, and promising germplasm sources have been reported amongst them. A large-scale phenotypic characterization across the globe has revealed extensive genetic variations for traits of economic importance in germplasm collections. More successful utilization of these collections relies on their wide evaluation for agronomic traits in multiple locations exhibiting high genotype x environment interactions. However, multi-location evaluation of large collections is resource consuming and a constraint to obtain reliable phenotypic data for economic traits to identify trait specific accessions. In addition, for adequate assessment of grain quality and stress tolerance of a wide array of genetically diverse material, it is necessary to reduce the potential number of accessions requiring evaluation. Their use can be enhanced by developing a 'core collection' of reduced sample size, which represents the complete genetic spectrum of the base collection. By virtue of its reduced size, the core collection can be precisely evaluated for economic traits in replications under multiple locations for identification of trait-specific accessions. Germplasm diversity representative subsets (core and mini-core collections) have been developed and evaluated in small millets for agronomic and nutritional traits.Small millets germplasm conserved globally exhibit a wide range of variations in yield and other important agronomic traits. Extensive genetic variations have been reported in core and mini-core collections of small millets developed at ICRISAT. The multi-location evaluation of finger millet core and foxtail millet mini-core collections in India led to the identification of diverse accessions with earlier maturity, higher tillering, larger grain size and higher grain yields than existing control cultivars (Upadhyaya et al., 2011a, b). Likewise, an evaluation of the barnyard millet core collection in the Himalayan region identified promising trait donors for earliness, basal tillering, smut resistance and grain yield (Sood et al., 2015). In proso millet and little millet, a wide variation for morphological traits and trait-specific sources for productivity have been observed (Vetriventhan and Upadhyaya, 2016Upadhyaya, , 2018)).Core and mini-core collections of small millets have been characterized for grain micronutrients and protein contents. The finger millet mini-core collection has large variations for grain iron (1.71-65.23mg/kg), zinc (16.58-25.33 mg/kg), calcium (1.84-4.89 g/kg) and protein (6.00-11.09%) contents (Upadhyaya et al., 2011b). Likewise, substantial genetic variations for grain calcium (90.3-288.7 mg/ kg), iron (24.1-68.2 mg/kg) and zinc (33.6-74.2 mg/kg) have been reported in the mini-core collection of foxtail millet (Upadhyaya et al., 2011a). Wide genetic variations for iron (41-73 mg/kg), zinc (26-47 mg/kg) and calcium (91-241 mg/ kg) have been reported and trait-specific donors have been identified in global proso millet germplasm collections (Vetriventhan and Upadhyaya, 2016).Among various biotic stresses, blast in finger millet and foxtail millet, grain smut and sheath blight in little millet and barnyard millet, and sheath blight and bacterial spot in proso millet are important diseases affecting their production worldwide. These diseases are economically very destructive and are reported to cause over 50% yield losses (Esele and Odelle, 1995). The identification of trait-specific robust resistant sources is the most economic disease-management strategy to overcome such constraints. Mini-core collections have proven to be excellent reservoirs of resistant sources against many of these diseases. In finger millet, a screening of mini-core collection in both field and glasshouse conditions identified 66 accessions with combined resistance to leaf, neck and finger blast (Babu et al., 2013). Similarly, 21 accessions exhibiting resistance to neck and head blast under field evaluation and 11 accessions exhibiting seedling leaf-blast resistance in controlled conditions were identified in the core collection of foxtail millet (Sharma et al., 2014). In barnyard millet, accessions of Japanese E. esculenta germplasm were reported to have a strong immune response to grain smut, while a multi-location screening of Indian E. frumentacea germplasm did not yield favorable results (Gupta et al., 2010a). However, some landraces of E. frumentacea from Karnataka and Bihar are reported to have low grain-smut resistance (Gupta et al., 2010b).Small millets are suggested crops for drought-hit, marginal and fragile ecosystems. Substantial genetic variations for drought (Krishnamurthy et al., 2016a, b) and salt tolerance (Krishnamurthy et al., 2014a, b) have been reported and traitspecific sources have been identified in mini-core collections of finger millet and foxtail millet. Finger millet accessions (IE5201, IE2871, IE7320, IE2034 and IE 3391) belonging to mini-core collections are reported to exhibit higher root and shoot growth at the seedling stage under low phosphorus stress (Ramakrishnan et al., 2017).The ex situ germplasm collections across the world have a huge impact in terms of genetic improvement for yield enhancement and tolerance to various biotic and abiotic stresses. Among the six subtypes, proso millet is the most important species where germplasm augmentation has a major impact on enhancing productivity through cultivar development in the USA (Habiyaremye et al., 2017). Out of the 15 proso millet cultivars, nine were direct selections from the adapted landraces preserved in the USDA gene bank (Rajput and Santra, 2016). Similarly, in Africa, where systematic breeding efforts are limited, elite landraces of finger millet have been released as cultivars in Tanzania (Upadhyaya and Vetriventhan, 2017). Likewise, in India, the active germplasm collection of AICRP-small millets, Bengaluru, has a major impact on promising cultivar development for different agro-climatic zones of the country. So far, a total of 272 varieties in the six small millets have been released in the country and a majority of them are the pure line selections from promising germplasm lines of indigenous and exotic origins. Apart from pure line selection, the utilization of promising germplasm lines in recombination breeding has resulted in many high-yielding cultivars and new plant types in small millets. In a report by Upadhyaya and Vetriventhan (2017), hybridization between trait-specific donors followed by pedigree selection has remained the main breeding method for foxtail improvement in China since 1970s, which has resulted in the development of more than 870 cultivars.Towards the development of new plant types, isolation of awnless semi-dwarf genotypes of Japanese barnyard millet (E. esculenta) is a promising endeavor from the Vivekananda Parvatiya Krishi Anusandhan Sansthan (VPKAS) in Almora, India. These awnless derivatives with reduced plant height and great fodder potential are affirmative initiatives for improvement of barnyard millet (Sood et al., 2015).Yield and yield-contributing parameters are the most targeted traits in the improvement of small millets. Germplasm collections exhibiting substantial variation for various traits, including maturity duration can be subjugated to breed tailored cultivars as per eco-geographical conditions (Upadhyaya et al., 2014;Vetriventhan and Upadhyaya, 2018;Vetriventhan and Upadhyaya, 2019). Hybridization to generate variability followed by assortment in segregating population has been a major breeding method in small millets especially in finger millet, foxtail millet and proso millet. In finger millet, 45% of the cultivars released in India were obtained from hybridization and selection breeding methods, followed by 22% in foxtail millet and 29% in proso millet (AICSMIP, 2014). Emasculation and crossing methods have also been reported in small millets (Gupta et al., 2011). However, the exploitation of hybrid vigor is limited in small millets due to difficulties in hybridization. Thus, developing male sterile lines would be a feasible alternative to use heterosis, which is being effectively implemented in major crops for commercial hybrid seed production.Trait-specific germplasm characterization is a primary requirement to identify genotypes contrasting for desirable traits, and genomic resources such as DNA markers, linkage maps and genome sequence are essential for gene tagging, gene mapping and marker-assistant selection for rapid crop-improvement. In small millets, genomes of foxtail millet, finger millet, proso millet, little and barnyard millet have been sequenced till date (Table 19.1). Foxtail millet has the smallest genome size (423 Mb) while finger millet has the largest one (1.5 Gb), followed by barnyard millet (1.27 Gb). However, the draft sequence information is adequately informative for large-scale genotyping applications and gene mining. In a study, the Solexa sequencing technology and the Genome Analyzer II were employed to re-sequence the genome of a foxtail millet landrace 'Shi-Li-Xiang' and to analyze its genetic structures (Bai et al., 2013). The results provided a rich tag library for future genetic studies and molecular breeding of foxtail millet and its related species. In barnyard millet, Wallace et al. (2015) genotyped the core collection using the genotyping-by-sequencing approach to investigate the patterns of population structure and phylogenetic relationships among the accessions. Further, most agronomically important traits are determined by several genes, which is called quantitative trait loci (QTLs). With the rapid development in sequencing technology, marker-assisted crop breeding has resulted in the acceleration of genetic improvement of small millets. Gimode et al. (2016) have identified single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers in finger millet by next generation sequencing (NGS) technologies, using both Roche 454 and Illumina platforms. Wang et al. (2017) reported a high-density genetic map and QTL analysis of agronomic traits in foxtail millet using RAD-seq and identified 11 major QTLs for eight agronomic traits along with the development of five co-dominant DNA markers. A finger millet genotype ML-365 was also sequenced using Illumina and SOLiD sequencing technologies (Hittalmani et al., 2017). Later, Kumar et al. (2018) reported high iron and zinc content QTLs using diversity array technology (DArT) and SSRs markers to generate a genetic linkage map using a population of 317 recombinant inbred lines (RILs) in pearl millet. Many other studies have focused on drought tolerance and fungal diseases in pearl millet using marker-assisted selection approaches.Although genetics and genomics have allowed for noteworthy progress in studying millets, transcriptome-based gene expression profiling has also contributed significantly. In this regard, Rahman et al. (2014) analyzed the salinity receptive leaf transcriptome of distinct finger millet genotypes and identified numerous differentially expressed genes in the tolerant genotype. Similarly, Parvathi et al. (2019) analyzed transcriptome dynamics in leaf samples of finger millet exposed to drought stress conditions. The foxtail millet transcriptome was the first to be released, where Zhang et al. (2012) sequenced the total RNA of root, stem, leaf and spike 'Zhang gu' strain. Recently, Li et al. (2020) sequenced the transcriptome of foxtail millet during Sclerospora graminicola infection, and identified many candidate genes for advanced functional characterization. Further, comprehensive protocols for callus regeneration and transgenics have been reported for all small millet species except little millet (Plaza-Wüthrich and Tadele, 2012). The Agrobacterium-mediated system has been predominantly used in small millets transformation as reported in studies by Bayer et al. (2014) and Li et al. (2017). In addition, the availability of standardized protocols for genetic transformation has resulted in the application of a transgene-based approach in a few small millets. The use of clustered, regularly interspaced short palindromic repeat (CRISPR)/Cas mutagenesis was reported in foxtail millet (Lin et al., 2018), where a mutation of the foxtail millet PDS gene by CRISPR/Cas9 system has been achieved through protoplast transfection.Small millets have the potential to serve as an alternate to major crops because of their diverse adaptation to adverse conditions and their great nutritional qualities. They fit very well into multiple cropping systems both under irrigated and rainfed conditions. The major bottleneck, however, is inadequate information on their genetic diversity, which limits their effective utilization in crop improvement programs. Therefore, effective germplasm collection is the effective solution to categorize trait-specific resources, which can be utilized in small millets breeding programs. The yield barrier in small millets can be surpassed by a male sterility system and by employing hybrid vigor and genomics-assisted crop improvement. Further, NGS techniques can facilitate the molecular characterization of small millets germplasm along with RNA interference and genome editing tools like CRISPR/Cas, which reduce antinutrients of small millets to make them more useful to feed growing population. Moreover, a coordinated multidisciplinary approach involving farmers and public-private partnerships is needed to speed up research and development programs in small millets. With the ever-changing climate scenario and prevailing conditions of hidden hunger, greater research and developmental focus on small millets is the key to achieving future nutrition security. DOI: 10.4324/9781003044802-23Globally, there is a re-emphasis on the revival and conservation of neglected and underutilized species (NUS), including small millets. Such crops are seen as alternatives to rice and wheat, especially for the poor in the peripheral areas of the Global South (Muthamilarasan and Prasad, 2020). Millets require much less water than rice and wheat and are ideally suited for upland rainfed regions.Can a species, including small millets, be sustainably conserved without preserving the ecosystem in which it is cultivated? This chapter argues that it is important to consider both the natural and social ecosystems in which these NUS are cultivated as well as the interaction between social and natural systems. It draws on and supplements the findings of an earlier work (Mitra and Rao, 2019) in Koraput district of Odisha.Koraput had a tribal population of 50.6% in the 2011 census. It is a district where the 'Special Programme for Promotion of Millets in Tribal Areas of Odisha,' also called the Odisha Millet Mission (OMM) has been implemented since 2017 (NCDS, 2019). Small millets are typically cultivated in the rainfed uplands of ecologically sensitive areas of the district. The agrarian landscape, along water flows, is rather complex, but millet cultivation using natural fertilisers like dung and crop residue mulch has been critical to the growing of indigenous rice varieties in the lowlands. These practices were evolved over centuries by tribal women and men, with women playing a critical role in the maintenance and reproduction of these systems. Women decided the species, the area to be planted, household consumption and sale specifics but did not plough or sow. Crop diversity, including mixed cropping on the same plot, was practiced. Despite the existence of the concept of private property in land, the ecosystem 20was collectively owned. The overall productivity of the ecosystem, instead of individual crops, was focused on.Relations between men and women were of asymmetric mutuality. While hierarchies have always existed, today some of these hierarchies have grown and are perhaps behind the near breakdown of the social systems that nurtured NUS.This chapter argues that with the rapid usurpation of the uplands in the Koraput district for corporate eucalyptus plantations, the ecosystem (natural and social) has transformed drastically. The landraces of paddy and small millets reduced sharply between the 1950s and the 2000s. Only eight small millet landraces were extant in 2000 (Mishra, 2009). The soil quality in the area has deteriorated (Bannerjee, 2015). Long-term field observations reveal a drop in the cattle population.Small millets are essentially a woman's crop. Eucalyptus, in the domain of men, has skewed gender relations in these areas. The uplands in which small millets were cultivated are now under eucalyptus plantations (Mitra and Rao, 2019). Community relations are giving way to individualisation and increasing wage labour. These transformations are to the detriment of both the NUS and the people belonging to a range of tribes. With rising inequalities, distress migration is the order of the day (Mitra and Rao, 2019).India has the third largest area under small millets cultivation in the world. Cultivated small millets comprise six species -finger millet (Eleusine coracana), little millet (Panicum sumatrense), Italian or foxtail millet (Setaria italica), barnyard millet (Echinochloa crus-galli), proso millet (Panicum miliaceum) and kodo millet (Paspalum scrobiculatum). Taken together, they are grown over approximately two million hectares, mostly in semi-arid, hilly and mountainous regions. Finger millets predominate, comprising 60% of the area and 70% of the production (Bala Ravi et al., 2010). These are hardy crops and are quite resilient to agroclimatic shocks like diminished rainfall and falling soil fertility. They are important in local food cultures, being an important source of food and beverages. The straw is valuable fodder. Nutritionally, they are rich in micronutrients, especially calcium and iron, and are high in dietary fibre. Their grain protein is richer in sulphur and other essential amino acids than all other major cereals (Bala Ravi et al., 2010).Hills and forests interspersed with numerous streams and rivers are a part of the landscape of the Koraput district, Odisha. Over centuries, local tribes have transformed the landscape into productive systems, both private and public, to meet their food and housing needs. A unique cropping pattern, the Myda system, which involves mixing the seeds of long-and short-duration paddy varieties in the same plot, and nurturing them through carefully monitoring the levels of water and vegetative growth, evolved (Mishra, 2009). Land-use patterns developed along water flows, enabling optimal and sustainable use of the environment.The present day Koraput district was a part of the Jeypore princely state until 1947. Disruptions in local indigenous land-use patterns began in the midnineteenth century with the exploitation of forests by the colonial state's forest department. The British extended the Madras Forest Act to Jeypore state in 1891, reservation began in 1900, and protected forests were demarcated in 1916. By 1940, reserved area quantity rose five times, leading to a substantial increase in state revenues (Bell, 1945: 101). Critically, a lot of the village commons and even the uplands were usurped as protected forests and were planted with teak. This impacted adversely the cultivation of NUS and reduced the availability of uncultivated crops (Mitra and Rao, 2019).Post-Independence, the Forest Conservation Act, 1980, and the Wildlife Protection Act, 1972, further changed land-use patterns by halting shifting cultivation, and also enhanced usurpation of village commons.The local people, however, classify forests into two types: bon and jangal. Bon corresponds to the protected forests and jangal to the reserved. Most subsistence needs like fuel, roots, tubers and leaf litter come from the bon. Cattle also graze there. The bon are the commons upslope of the habitat. Above the bon lies the jangal, often consecrated in the name of a deity. There are strict rules about the use of usufructs of these sacred groves but the trees cannot be cut, a norm often violated by the Forest Department for commercial plantations, including of eucalyptus (Mitra and Pal, 1994).The forest department fells trees from the bon too, clearing the land for eucalyptus plantations and changing traditional land-use patterns (Mitra and Rao, 2019). The undulating lands between and along the forests and the settlement has been shaped into four types of croplands: uplands ([dongar] on the hill slopes), midlands (bhettabeda), lowlands (khalbeda), and terraces ( jholas, that start from the dongar and go down to the stream below) (Mishra, 2009). This complex land-use pattern has been developed over centuries through humannature interactions. It is driven by household consumption needs, maintenance of soil fertility, sustainable water use and safeguarding against the vagaries of nature. Local communities nurture and conserve water by harvesting rainwater, diverting river flows into farm ponds during the monsoons, cultivating varietiesespecially of paddy -suited to water availability and not using chemical fertilisers in the dongar, to avoid polluting the ground water aquifers (Mitra and Rao, 2019) The leaf litter from the bon above the dongar fertilises the crops grown there. This underscores the need to consider crop lands and forest lands as parts of an integrated ecosystem essential for the conservation of NUS.In 2006, the Government of India enacted the Scheduled Tribes and Other Traditional Forest Dwellers (Recognition of Forest Rights) Act that acknowledged that 'traditional forest dwellers' are integral to the very survival and sustainability of the forest ecosystem. By recognising their customary rights, this Act sought to ensure livelihoods and food security, while empowering the people to sustainably use and manage forest biodiversity (Deb et al., 2014). In districts like Koraput, managing forest biodiversity is essential to sustainably managing agrobiodiversity, including that of NUS. At the end of a decade, while close to 78% of individual claims to forestland were met in Koraput district, with about 27,628 households receiving an acre of land each, only 9% of community land claims had been granted. Gaining legal legitimacy for using what they have seen as their land -and, indeed, life -has not been easy (CFR-LA, 2016). The central government's recent enactment of the Compensatory Afforestation Fund Act 2016 appears to be diluting the very intent of the 2006 legislation. Apart from bypassing locally elected bodies and community forest-management groups, and being dominated by the forest bureaucracy, civil society actors fear it will both displace forest dwellers and promote large-scale commercial eucalyptus plantations with little benefit to the local people (Ibid). This reflects a further marginalisation of collective responsibility for social reproduction and care of the environment, and a focus on capital accumulation and individual profits.While the regulations, as well as state interventions to improve agriculture, did not consider the interconnections and distinctions between different types of land and their contributions to food and consumption needs, cultivation practices and the crops grown remain sensitive to the local landscape. Thus, the dongar lands are used to grow a mix of millets, pigeon pea, cowpea, niger, turmeric, sesame and arums, high in nutrient content and not water-intensive, primarily for domestic consumption. The duration of these crops differ. Some are shallow rooted while others are deep rooted. Each crop has an attached ritual. Thus, traditional land-use patterns meet cultural, spiritual, consumption and ecological needs, instead of emphasising the productivity of a single crop (Niyogi, 2020). In the field, it is observed that the nature of the soil and the slope, and whether the plot is on the windward or the leeward side are important determinants of the crop mix and even the landraces of a particular crop. However, not much research has been done in this area.Men support the processes of land preparation and transportation of the harvest, but the cultivation is mainly managed by women. In fact, dongar lands are often considered women's plots, wherein they control decisions around crop choices and use, including income from sales, if any (Mitra and Rao, 2019).Paddy is cultivated in the bhettabeda and khalbeda and if water is available, so is a second winter crop of pulses or vegetables. They are considered household plots but fall under male control. Both men and women have to contribute labour to the cultivation of the basic 'household' staple in one season, but can cultivate their own 'individual' crops in the second season to fulfil their shared and separate responsibilities towards household provisioning (Ibid).Eucalyptus plantations started in Koraput in the 1960s. In 1990, the Jeypore-based JK Paper Mills launched a farm forestry programme under which it added 7,000 hectares annually by distributing over 40 million saplings to farmers (https://jkplantation.wordpress.com/about-jk-paper-ltd/jaykay-paper-mills-ltdrayagada/). In 2003, the paper industry, through a front NGO under a corporate social responsibility scheme, secured consent from the tribals to plant eucalyptus on their uplands with assured buyback and lump sum payments upon each successive harvest (in the fourth, eighth and twelfth year after planting). Farmers do not have to invest initially as the advances by the company are deducted from the first payment. A study of 2,004 households who planted eucalyptus on 3,360 acres of land showed gross earnings per acre to be Rs 86,000, Rs 150,000 and Rs 82,500 (at the rate of Rs 4,500/metric tonne) for the three successive harvests (Mahana, 2014).The rapid conversion of land, especially dongar, to eucalyptus plantations, has led to a loss of food, especially protein and micronutrients (from millets and vegetables). Soil humus and fertility is likely to decline, as are the water flows, given the displacement of traditional systems of fuel, fodder and water management (NABARD, n.d.; Stanturf et al., 2013). Planting eucalyptus on dongar lands impacts fields downstream as the high synthetic fertiliser inputs affect the organic cultivation of aromatic landraces of paddy, including the kalazeera rice for which the district is famous.Apart from education and house construction, a major reason for growing eucalyptus is the desire for large amounts of ready cash. Cropping patterns earlier adhered to community decisions; however, now each household situates the decision to cultivate eucalyptus within the dynamics of their own household structure and its needs, reflecting a transition to a society based on individualism rather than reciprocity.Yet, some women and men are resisting the commoditisation of their land and labour. While hired wage labour is now widespread in the area, the Parojas and Gadabas still continue the Palli (exchange) system. Men have succumbed more easily to both the commodification of their land, seen in the rapid shift to eucalyptus planting, and labour, pushed by the growing need for cash in an increasingly neoliberal, market-driven economy. Migration, still rare amongst the Gadabas, is now rising amongst most tribes, especially in the lean, summer season, prior to the start of paddy cultivation. However, migrant work is effort-intensive, with little rest and restricted diets. The men often return home unwell and are unable to contribute much to household activities. Their absence and subsequent return only enhances the burdens on women (Mitra and Rao, 2019).Corporate plantations have led to the individualisation of the ecosystem. These plantations on the uplands have consequences for the entire cropping pattern, as well as for social relations. This has been accompanied by the introduction of mono-cropping in contrast to the old mixed-cropping practices led by women. To promote millet cultivation, contemporary state-and NGO-led efforts seek to promote the mono-cropping of finger millets, which has led to a decline of, for instance, vegetable cultivation by women. Thus, in Kadaguda village (name changed) even five years ago, the women grew vegetables and various greens in small plots behind their homestead. Now finger millets are grown in these plots, forcing households to cut down on their vegetable consumption. This is happening in many villages in the area.Although rice was the major staple consumed by the people, there were many varieties. Millets were a major food supplement. With the distribution of highly subsidised rice and wheat by the state, the consumption of millets is being significantly reduced (Bala Ravi et al., 2010).There has been a recent spike in urban demand across the country for small millets as health foods (Kulkarni, 2018). It is important to ask whether and to what extent the thrust on conserving and reviving the cultivation of small millets, especially in the mission mode, benefits small and marginal tribal farmers of districts like Koraput. The OMM baseline survey of the Koraput district, in 2017, found that millets were being cultivated in 1,311.9 ha land by 2,605 millet-cultivating households of the seven blocks surveyed. Finger millets comprised 87.5% of this area and 12.5% was under small millets. Interestingly, 95% of these households consumed millets in summer, 90.7% in winter and 80.9% during the monsoons. The dip in consumption during the monsoons is probably due to a decline in household stocks (NCDS, 2019).The survey does not mention the crop mixes nor the kind of land in which a particular type of millet is cultivated and by whom. No doubt a lot of the millets will be sold in markets by the men, impacting the villagers' already poor dietary diversity (Mitra and Rao, 2017). The OMM's practices are essentially mono-cropping of finger millets with much higher external inputs, without considering the social and natural ecosystem (Sood and Jishnu, 2015;Niyogi, 2020) This is already furthering inequalities, including of gender, and will lead to the loss of agrobiodiversity and Indigenous knowledge.Small millet cultivation by tribals in districts like Koraput formed an integral part of the Indigenous natural resource management system, involving forests, uplands, midlands, low lands and water flows. Based on exchange labour systems grounded in reciprocity and mutuality between women and men, small millet cultivation involved an element of individual choice that did not adversely affect the welfare of others.The first blow to this equilibrium came with the introduction of corporate eucalyptus plantations in the uplands. Market penetration individualising the economy and breaking down both the social and natural ecosystems has had deleterious consequences for NUS.Under these circumstances, efforts to increase the production of small millets and other NUS through a 'kit' approach, of governments giving beneficiary farmers free kits that include fertilisers, bio-fertilisers, micronutrients, seed treatments and plant protection chemicals (Sood and Jishnu, 2015), will have tremendous social and ecological costs. From the policy point of view, it might be more productive to adopt an interdisciplinary, research-based approach that seeks to conserve the ecosystem and the cultures of which these crops are an essential part.Though humans have utilized a vast number of plant species for food (Ulian et al., 2020), today, food security is confined to very few major crops, such as maize, wheat and rice and a few other commodity crops. This has led to the marginalization of many nutritious crops, including 'neglected and underutilized species' (NUS) (see Chapter 1), among which the millet species belonging to the genera Eleusine, Panicum, Setaria and Paspalum, continue to be cultivated and consumed by smallholder families inhabiting marginal environments.Landraces of millets are preferred by farm families, but not solely for their nutritional qualities. They are appreciated also because of their inherent resilience to withstand the vagaries of weather as well as pest and disease attacks (Bala Ravi, 2004;Nagarajan and Smale, 2007). These crops are well suited to smallholder agro-ecology and are an important part of local food cultures. Conventional millet farming practices include mixed cropping and crop rotation, and are commonly subsistence oriented. In the past, the selection, preservation and exchange of seeds were popular practices encountered across farming communities. For instance, labour exchange practices within kinship units and communities were conventionally used to minimize cultivation costs, for traditional crops like millets also. The role of custodian families has also been strategic for the conservation and management of landraces and traditional knowledge associated with NUS crops.In India, small millets are known for their adaptability to marginal and drought-prone areas. Compared to rice, these species contain higher levels of minerals, fibre, vitamins and many essential amino acids (Hulse et al., 1980;Malleshi and Desikachar, 1986) interventions, inadequate processing technologies and market forces have resulted in the decline of on-farm agro biodiversity, aggravating the already fragile conditions of local communities (Gruere et al., 2009). Other constraints include low productivity, lack of good quality seeds and disorganized value chains. Nevertheless, about two million farm households across India still depend primarily on these species for their livelihoods. Furthermore, climate change scenarios and the global food price crisis have brought to the forefront the strategic role that these crops can play in strengthening resilience in agricultural production systems and mitigating the shocks caused by shortages in major cereals that may occur due to various reasons.The case studies in this chapter highlight some key research and development (R&D) interventions carried out (Plate 21.1.1-21.1.6) in the Indian states of Tamil Nadu, Odisha, Andhra Pradesh, Karnataka, Madhya Pradesh, Meghalaya, Uttarakhand and Jharkhand, since 2000, thanks to the support of various national and international agencies.In the last three decades, Kolli Hills in the Eastern Ghats of Tamil Nadu has witnessed land-use changes due to introduction of cash crops like cassava, coffee and pepper. This fact, accompanied by the expansion of roads and food subsidies, has greatly affected the cultivation and use of millets. Furthermore, the low profitability of millets vis-à-vis cassava, the weakening of traditional seed systems, the drudgery in millet processing and their poor market opportunities have also contributed to relegating these highly nutritious and resilient crops to smaller areas.Since the early 1990s, the M.S. Swaminathan Research Foundation (MSSRF) has been collaborating with poor smallholder farmers to prevent the erosion of millet diversity by creating an enabling environment for their continued use, thanks to highly participatory R&D efforts. MSSRF has nurtured family farmer groups to conserve and enhance the use of millets and has facilitated the establishment of 'Kolli Hills Agrobiodiversity Conservers Federation' (KHABCoFED, now evolved into the 'Kolli Hills Agro-Bioresource Producer Company Limited' KHABPCOL), to revitalize millet cultivation. Major activities included the scouting of local growers; assessment of traditional knowledge; collection, characterization and evaluation of landraces; multiplication of high-quality seeds; revitalization of seed storage and exchange systems through community seed banks and dissemination of best cultivation practices (including intercropping millets with cassava). Additional measures undertaken included the provisioning of low-cost processing machines accessible to communities, value-addition skill-enhancement, development of novel products, branding, strengthening of community-based institutions and linking local production to peri-urban and local markets.Challenges and best practices of nutri-millets in India 247Land-use changes have resulted in the erosion of on-farm millet diversity (Bhag Mal et al., 2010). Since 2001, KHABCoFED has been promoting collection, multiplication and distribution of 21 landraces belonging to five millet species and associated crops, through a network of 15 village seed banks functioning across seven Panchayats (village councils), spread across 45 settlements. The KHABCoFED has developed mechanisms to manage and share germplasm through Community Seed Banks and Seed Exchange Networks, whereby farmers are able to choose varieties apt for changing weather conditions and evolving markets. Custodian farmers are empowered for carrying out effectively their strategic role as conservers of seeds and managers of seed networks.Over the years, the 15 local seed networks have evolved into Village Agrobioresource Centres, where community members are able to access quality seeds and relevant information regarding millet landraces, conservation, cultivation practices, value-addition and marketing. It also provides training on agricultural best practices, leading to better yields, higher income, more diversified food baskets and, ultimately, strengthened livelihood resilience.Improved agronomic practices like the usage of farmyard manure, highquality seeds, line sowing, intercropping with cassava and agroforestry, which reinforce the sustainability of natural resource management, have resulted in an average increase of 24.36% productivity and 37.23% net income. A blend of traditional and modern agro practices are disseminated through capacity-building interventions.The enhancement of cultivation practices and value-adding technologies has led to 75% to 85% reduction in drudgery and time spent on processing These included the introduction of row seeding (one-meter length with six blades and 20 cm gap between blades), cono-weeder, improved spades for intercultural operations (six inches width and six inches length) and the use of pulverizers (mechanical flourmill pulverizers and de-husking machines -see next section).Drudgery in processing is a major limitation, as all seeds but finger millet have several layers of hard coats, requiring high abrasive force to break through. Traditional decortication processes using mortar and pestle are physically tedious and are almost exclusively performed by women. The above-discussed interventions facilitated the establishment of improved technology for de-hullers and pulverizers, adaptable to different types of millet species and catering to many households. This has helped the community, especially women, who now are capable of carrying out the processing of millets without suffering fatigue, benefiting them in terms of health and time saved.The established KHABCoFED greatly facilitates the skill development of women (members of self-help groups) to reap the market potential of millets and other NUS products through training on value-addition, quality standards, packaging, labelling and marketing. Trained women are now able to produce with success -inter alia -products like malt, rava (semolina), and millets flour mixes, all contributing to raising their income. \"Kolli Hills Natural Foods\" has become a popular brand, successfully marketing 11 products across Tamil Nadu. This is a fully self-sustainable value-chain of local natural products, consisting of seed conservers, farmers and other actors engaged in procurement, valueaddition and marketing.Encouraged by such successes, the District Rural Development Agency (DRDA) of Tamil Nadu provided financial support for establishing small-scale mills along with providing guidance on legal matters to local communities. Individuals and organizations committed to organic farming and natural health foods have also supported the momentum by purchasing and promoting the products of the KHABCoFED. Participation in exhibitions and fairs (melas) has provided an additional opportunity to further expand the KHABPCOL, including additional networks, research institutions and Community Based Organisation, and developing new market linkages.The KHABCoFED has grown steadily, and as of 2020 includes 109 associations consisting of 985 men and 526 women members; its assets include machineries, value-addition units and a procurement centre worth more than US$53,000. Over the years, cultivation, procurement, value-addition, diversification and sales have generated a gross income of approximately US$98,708.Notably, the KHABCoFED has contributed to strengthening the conservation of millet diversity, making agriculture-based livelihood systems resilient to climate change, improving access to nutritious foods and contributing to an effective interplay of natural, social, economic and infrastructure capitals for the fulfilment of livelihood, empowerment and self-esteem needs of local communities.In the tribal areas of the state of Odisha, like in the Koraput district, millets have traditionally occupied a central place in people's diets and in local cropping systems. Most farmers inhabiting these areas are resource-poor and are largely dependent on monsoons. Growing crops in uncertain agro-climatic conditions is challenging because of frequent dryland stresses and limited access to quality inputs, especially seeds and suitable technologies. The seed replacement rate in millets is very low, i.e., 1.62 t in Odisha, which implies that agriculture mostly relies on traditional practices, and seed is either self-saved or acquired through local networks. Saving and exchanging seeds among farmers is certainly a key part of maintaining local diversity, but too often such practices are not being integrated with the introduction of good quality seed. In order to address the diffuse shortage of quality seeds among farmers, an alternate seed system model (Figure 21.2) was tested out. Components of this model included the dissemination to farmers of a package of best practices, as well as reconnaissance surveys to assess seed demand, seed systems and associated constraints faced by local farmers.The model encompassed a plan for improving seed availability and accessibility to improved varieties seeds for resource-poor farmers and capacity building at the community level to enhance productivity. This model involved the Farmer Producer Organization (FPO) the \"Kolab Farmers Producer Company Limited\" (KFPCL), in order to ensure the timely and sustainable supply of good quality seed at affordable prices and the creation of self-sustainable seed enterprise.Participatory selection of varieties, demonstrations of best practices in farmers' fields, involvement of self-help groups, village-based seed committees; capacity building for seed production, processing, packaging, storage and distribution, business planning and administration were key actions of these interventions.MSSRF built the capacity of the KFPCL for quality seed production. Improved varieties of seeds were obtained from research institutions and were demonstrated in farmers' fields through participatory variety selection and evaluation trials. The best performing and preferred varieties were selected for large-scale seed production. The KFPCL followed the norms and standards of the Odisha State Seed and Organic Products Certification Agency for seed A processing unit comprising of an aspirator and grader cum de-stoner was established at Machhra village, Umuri Gram Panchayat to improve seed quality. The KFPCL has an arrangement with the Odisha State Seed Corporation Ltd. to directly procure seed materials at the rates fixed by government. In the very first year, KFPCL was able to sell 132 quintals of certified seeds of finger millet to the Odisha State Seed Corporation Ltd. and around 35 quintals to other farmers, institutions and NGOs. Besides the quality millet seed business, members of the KFPCL are also involved in the preparation of value-added millet products including ragi powder, ragi malt, laddus, chakli and processed grains of little millet, foxtail millet and barnyard millet.Tamil Nadu is one of the few states in India where almost all small millets are cultivated across different agro-ecological zones. However, from 1980 to 2011, the area under small millets fell drastically, with a 49.4% reduction in finger millet areas and 84.8% in other small millets areas. A 2012 study by the DHAN Foundation on the value chains of small millets in the state highlighted, as the reason for the decline, poorly organized supply chains characterized by seasonal uncertain production restricted to few pockets of land, erosion of varietal and crop diversity and lack of assured farm gate prices, leading to uncertainty in supply, quality and prices of raw materials to the small millet processors and food enterprises. Other critical factors included:• Lack of local processing infrastructure, with few large-scale processors in south Tamil Nadu primarily serving as semi-processors for Maharashtrabased processing units. • Existence of few millet food enterprises and largely of limited capacities.• Poor consumer demand due to low awareness of millets, lower culinary skills and low availability, coupled with high prices. • Inadequate policy support for the production, processing, market development and, moreover, consumption of small millets.Realizing the importance for the nutritional security and ecological wellbeing, since 2001, the DHAN Foundation has undertaken a set of interrelated interventions, targeting regional value chains in collaboration with the Tamil Nadu Agricultural University (TNAU), Canadian research institutions and several value-chain actors. These efforts resulted in the establishment of the Small Millet Foundation, an exclusive organization dedicated to scaling-up proven interventions across India, which included:i Streamlining supply chains through (a) capacity building of Farmers Organizations (FOs) in millet clusters (four in Tamil Nadu and two in Odisha) (b) productivity enhancement and (c) collective marketing ii Promoting decentralized processing through (a) the development and commercialization of improved small-scale millet processing equipment;(b) facilitating their adoption across India and (c) building capacities of eight small-scale equipment manufacturers iii Developing 56 appealing, small-millet-based food products and their commercialization through training 662 persons and providing onsite incubation support to 66 food enterprises iv Building capacity of 152 pushcart millet-porridge vendors v Promoting household consumption through dissemination of promotional materials, organizing promotional events and media campaigns, and building capacity of 85 women and FOs located in Tamil Nadu, Andhra Pradesh and Odisha vi Linking FOs, millet processors and food enterprises with consumer organizations for shortening the value chain vii Synthesizing and sharing policy lessons emerging from these efforts with provincial and national governments.The Overseas Development Institute (ODI), UK, on reviewing the initiatives in 2017 (Keats and Jeyaranjan 2018) and 2019, identified the following positive outcomes:• Farmers are able to access new varieties and increase cultivation, sell their produce collectively, reduce drudgery and time by using processing equipment and increase consumption (cf. during 2018-2019, 87 • Millet-based food entrepreneurs have increased production and sales, developed new millet-based products and improved marketing techniques (cf. 66 existing enterprises improved their millet food business and 69 entrepreneurs and NGOs ventured into the small-scale millet food business. One hundred and fifty two pushcart millet-porridge vendors improved food hygiene and registered with the Food Safety and Standards Authority of India (FSSAI). TNAU has integrated small millet huller and food products developed as part of its ongoing incubation program, thereby sustaining their commercialization). • Low-income consumers enrolled in the women's and farmers' organizations have improved their awareness of the health benefits of millets, haveChallenges and best practices of nutri-millets in India 255 enhanced their skills in cooking healthy recipes and are able to access millets at lower than the market price (cf. FOs and Kalanjiam Thozhilagam Limited [KTL], an associated enterprise of DHAN Foundation, have supplied 300 tons of small millet rice between 2016 and 2018). • With new knowledge and access to millets, women were able to improve their family's diet. Women farmers saved time and energy using processing equipment and women entrepreneurs increased their income and improved their status (cf. knowledge of 725 women extension staff to promote millet consumption, the skills of 12,993 women on the inclusion of small millets in diets and the entrepreneurial skills of 39 women in millet food businesses were enhanced).Such interlinked efforts were key to transforming the value chain of small millets in Tamil Nadu, which was the result of the cooperation of many stakeholders, including the government and media. Large processors in southern Tamil Nadu started focusing on regional consumption and the market network has widened, leading to an increase in the availability of less polished small millets rice and value-added products, even in small towns. The share of the product moving out of Tamil Nadu has decreased with increased inflow from other states. The transformation of small-millets-based food products from the 'elite food' category towards the 'mass food' category has been accomplished to an extent. channels and difficult processing have contributed to their decline as convenient and profitable crops with better market access and wage labour opportunities have developed. The production of small millets on isolated sloping and rocky lands where other crops are difficult to produce remains important among tribal farmers, yet low yields and poor marketability limit the benefits to these vulnerable groups.To secure greater benefits from small millets for producers and to encourage their wider use, a holistic approach addressing bottlenecks in their supply and demand was followed in the project \"Linking agrobiodiversity value chains, climate adaptation, and nutrition: Empowering the poor to manage risk\". Activities sought to connect producers to markets and to enhance and multiply impacts for food security, conservation, profitability and women's empowerment. The stakeholder consultations carried out from 2015 to 2019 guided the pro-poor and gender-sensitive interventions. Farmer producer companies, along with local women shareholders, were a major focal point of interventions to raise productivity and enhance commercial potential (King et al., 2018;Meldrum et al., 2020).Of the 104 million Indigenous People inhabiting India, 12% of them, with over 200 tribes and sub-tribes, with their own unique languages, cultures and p olitical structures, reside in the North Eastern region of the country (Xaxa et al., 2014). Meghalaya, a state in this region, is largely inhabited by Indigenous communities (86.1%) like Khasi (includes Khynriam, Bhoi, War, Pnar and Lyngngam sub-groups) in the east and Garo in the west. Women play a pivotal role in maintaining and preserving the rich biodiversity in the area, as they are closer to nature (Ellena and Nongkynrih, 2017).North East Slow Food and Agro biodiversity Society (NESFAS), a grassroots organization, works towards the promotion of traditional food for food security and nutrition in the North East. In 2011, it initiated work towards promoting millets in Nongtraw village, on the southern slopes of Meghalaya, in the Khatarshnong Laitkroh Block, in collaboration with the Indigenous Partnership for Agrobiodiversity and Food Sovereignty. In close collaboration with custodian farmers, mostly women, it campaigned the slogan \"No Woman, No Krai\"millet is known as Krai among the Khasis.For Indigenous communities, millets are not only staple food but also play a central cultural role. Documentary evidence reveals that the Khasis cultivated millets as far back as the late nineteenth century and there are wild species/ relatives as well as the edible forms of millets (Singh and Arora, 1972). Millet is usually grown in the jhum or shifting cultivation fields, wherein seeds, usually traditional and preserved by custodian farmers, are used (Nongtraw Village, 2011). Commonly cultivated millets are finger millets (Eleusine coracana) known as kraitruh (in Khasi) and Job's tears (Coix lacryma-jobi), locally known as adlay.Post-harvest processes include sun-drying the grains and storing them in cloth or gunny bags. De-husking is done when needed using a mortar (Thlong) and iron or wooden pestle (Synrei), and finally winnowed using an open mat-type container (Prah) (Singh and Arora, 1972). This process is quite labour intensive, and both men and women are involved. The Nongtraw community celebrate a harvest festival for millet called \"Bom Krai\", where millet sheaves are laid on a bamboo platform and smoked from underneath with a particular wood to enhance the flavour of the grain. The seeds that escape through the gaps are used for planting the next season. The elders know just when to end the process. Next, the millet is threshed with sticks (pduh krai) by men and women, followed by further separation of the seeds by stamping on the millets accompanied by singing, which is most enjoyed by the children (Nongtraw Village, 2011;NESFAS, 2016).Traditionally, millet is cooked and consumed as much as rice or, more often, one part millet is mixed with two parts rice. Previously, a kind of bread was prepared out of millet flour; though it is still made, nowadays it is chiefly consumed as porridge (Singh and Arora, 1972). In the East Khasi hill areas like War Pynursla, millet is used for brewing local liquor (Caritas India, 2018). In winter, millet also provides fodder for cattle. The straw is dumped on cow dung or in pigsties, where pigs trample it and this mixture is then utilized as compost. It has strong roots and acts as a soil binder, reducing soil erosion (Singh and Arora, 1972).However, the cultivation and consumption of millet reduced after the introduction of the public distribution system, specifically after 1997, with its focus on providing subsidized rice to below-poverty-level families . With rice being more easily available, cultivation of millet became secondary. In addition, rice was easier to cook, while millet required lot of work; thus, given the easy alternative, people reduced the production and consumption of millet. As a result, the market for millet by the late 1990s and early 2000s was very low.Custodian farmers from Nongtraw shared that by 2010, only two out of the 37 households cultivated millets and, of the four available varieties, only one variety of finger millet was still cultivated. However, with the work of NESFAS and custodian farmers, by 2014, 13 of the 46 villages in Khatarshnong area were cultivating millet, and this revival is spreading also to other areas, including the Mawkynrew Block of East Khasi Hills, Lyngngam area in the West Khasi Hills and Garo Hills. NESFAS has also facilitated the farmers from Nongtraw getting an organic certificate through the Participatory Guarantee Scheme (PGS). In 2019, 12 farmers in two groups received the PGS organic certificate. This has benefitted and boosted marketing, as consumers prefer certified organic products. Around the same period, opportunities opened up with a dealer from Gujarat in west India requiring 200 kgs of organic millet every season.Traditionally, \"millet rice\", or even millet mixed with rice, was a staple food, but the youth and younger children do not seem to like it. To encourage their consumption, millet flour is now used to make products like porridge, pancakes, cakes, bread, biscuits, doughnuts, etc. Since 2018, NESFAS has conducted cooking demonstrations monthly to encourage the consumption of millets in different forms at the Meiramew Farmers' Markets. Other steps include sharing the recipe of a simple millet pancake while selling millet flour, and encouraging local bakers to sell millet-based bakery products in the farmers' markets, along Enhanced consciousness and motivation among farmers and consumers (used with permission).Challenges and best practices of nutri-millets in India 259 with traditional snacks called pusla. Farmers' markets are a platform where millet flour is sold, though sales are not limited here, as NESFAS facilitates sales on the basis of orders also, since locally grown millet is not available in the local market.NESFAS also publishes the nutritional value of millet in its packaging materials and engages with the public through local newspapers. This way, the Meiramew Farmers' Market has been able to enhance consciousness regarding millet being a staple of the Indigenous communities, to educate consumers on the ways to consume millet and its nutritional benefits and to improve access to millet. This has improved the sale of millet; on average, NESFAS sells at least 10-15 kgs of millet flour in every farmers market each time.There are of course challenges in the value-chain development. Generally, farmers in Meghalaya are marginal farmers, with small landholdings (55.34% own less than one hectare and 27.23% own one to two hectares) (Department of Agriculture, Government of Meghalaya, n.d.). Millet-producing communities also grow other crops and, therefore, the share of millet production is low. Thus, farmers cannot always meet the demand for millet. However, understanding the demand, NESFAS has encouraged other communities who were not growing millet earlier to cultivate it. In early 2020, NESFAS was able to facilitate an exchange of millet seeds through a millet network among four new villages in the East Khasi Hills and Ri Bhoi district.Exchange visits and learnings among farmers were facilitated locally, to states within North East India such as Nagaland and Arunachal Pradesh and across the region. Such experiences have instilled confidence among farmers and have motivated them to cultivate millet.Another challenge is in the pounding of millet grains into flour, which is labour intensive. NESFAS has promoted mechanical grinding with a millet machine in Nongtraw, which helped farmers a great deal. This also motivated other farmers to expand their millet production. However, this growth was sustained only for about two years (2015)(2016)(2017), as the farmers were unable to keep up with expenses of the electricity bill and equipment maintenance, making it unviable for the community. This experience helped NESFAS understand the importance of conducting feasibility studies before installing machinery in a village.The low participation and interest of youth in promoting millet -and in agriculture, in general -is the greatest challenge. To address this, NESFAS promoted a youth group in Nongtraw and trained them on millet processing, including the packaging, labelling, and costing of millets while following hygienic standards. Throughout the process, they served as a marketing platform for millets and other traditional foods. The group was registered as Nongtraw Multipurpose and Marketing Cooperative Society in 2017.At present, Farmer Groups that are certified by the PGS are taking forward the work of marketing millets.With increased consciousness about the nutritional benefits of millet, coupled with the knowledge that it used to be the staple food of our Indigenous communities, there is an interest among farmers and consumers alike in the production and consumption of locally grown millet.Drought and low soil-moisture conditions are likely to increase in the future, and will affect crop production and further impact negatively farmers inhabiting hilly, rainfed, semi-arid and dry areas, who are most vulnerable to the vagaries of climate change. Millet farming is a climate-resilient system consisting of hardy crops suited to low and erratic rainfall and varied soil nutrient conditions.Based on the diverse interventions carried out in various Indian states, we would like to recommend that the following pathways and critical issues be taken into consideration for moving the NUS agenda forward:• The holistic '4C' approach that concurrently addresses conservation, cultivation, consumption and commerce has proven to be an effective pathway for retaining and using millet farming systems in a changing socioeconomic context. • Village seed banks for revitalizing and promoting farmer-to-farmer seed exchanges, improved agronomic practices, additional income derived through millet-based livelihoods in the supply chain, enhancing on-farm millet conservation, reinforcing seed exchange networks in target communities and creating better linkages with value-chain actors and private companies. • Collective initiatives harnessed the adaptive capacity of local communities to deal with climate change by leveraging the potential of resilient crops and production systems. • The availability, consumption and access to diversified diets of micronutrientrich foods like millets can contribute to better health, enhanced incomes, sustainable agriculture and a more resilient production system. • Small millets can be a valid instrument of economic and social empowerment for women and vulnerable and marginalized groups. The facilitation of an effective interface between scientific institutions and value-chain actors for participatory research and commercialization of research outputs can aid in value-chain development. • State-funded medium-term support measures for value-chain actors, including medium and small enterprises (MSEs), are necessary to develop value chains and millet foods, along with identifying and supporting pro-poor stakeholders like vendors, women self-help group federations and farmers' organizations in reaching everyone. • The active participation of women in Farmer Producer Companies (FPCs) needs special attention, because although their membership is high, cultural values and local norms do not encourage their active engagement. • More research to validate nutrition and health claims supported by Indigenous knowledge is needed.• Consistent sensitization of local governments in order to develop supportive policies and projects towards millet production and the use of NUS can contribute at a grassroots level. • Despite tremendous efforts, still more needs to be done to address the e rosion of landraces, lack of improved varieties, knowledge on cultivation practices, post-harvest technologies, skills and processing facilities, disorganized markets, the limited participation of the private sector and poor credit support for value-chain development.Millets are C4 crops with high nutrition and climate-resilience qualities and are native to the rainfed areas of India (NAAS, 2013). Among them, finger millet and other small millets were largely grown, historically, and were part of the diet of the tribal communities of Odisha. Among small millets, little millets are grown in the districts of Bolangir, Koraput, Malkangiri, Mayurbhanj, Sundergarh and Rayagada (DMD, GoI [2014]). In the case of finger millets (Eleusine coracana), the area of cultivation declined from 0.25 million hectares in 1990-1991 to 0.11 million hectares in 2017-2018 and the yield per hectare in the same period declined from 10.23 quintals per hectare to 8.80 quintals per hectare in 2017-2018 (Status of Agriculture in Odisha). The decline is further escalating due to a lack of support for cultivation, lack of appropriate processing technology and poor market development (Bhag Mal, et al., 2010). However, since 2010 onwards, there has been a growing interest in promotion of millets both by the Union and state governments. The Initiative for Nutritional Security through Intensive Millets Promotion, Rainfed Area Development Programme and Integrated Cereals Development Programmes in Coarse Cereals-based Cropping Systems Areas (ICDP-CC) under the Macro Management of Agriculture are some of the initiatives that were launched by the Union government. But these have not been successful in bringing about changes in the millet landscape (RESMISA, 2012).It is in this context of the decline of millets that the Planning & Convergence Department, Government of Odisha (GoO) and Nabakrushna ChoudhuryDinesh Balam, Saurabh Garg, Srijit, Bhagyalaxmi, Mallo Indra, Jayshree Kiyawat The key objectives of the OMM were to increase household consumption of millets by about 25% to enhance household nutrition security and to create demand for millets with a focus on women and children; promote milletprocessing enterprises at the Gram Panchayat (GP) and block levels to ease processing in households and for value-added markets; improve productivity of millets crop systems and make them profitable; develop millet enterprises and establish market linkages to rural/urban markets, with a focus on women entrepreneurs, and include millets in state nutrition programmes and the public distribution system. Taking millets to the millions 265The Block was chosen as a unit of the implementation and the OMM targets were extended from 1,000 to 2,500 acres within a Block in five years. The OMM started in 30 blocks across seven districts and later extended to 76 blocks covering 14 districts in a phased manner. The SS consists of a programme secretariat (PS) and a research secretariat (RS). The Watershed Support Services and Activities Network (WASSAN) was selected as PS. NCDS was chosen as the research secretariat in addition to SS.The annual reports of OMM (Garg and Muthukumar 2017, 2018, 2019) elaborates on the design and initiation of the project, progress and achievements.Awareness on millets were built up on a massive scale through food festivals, cooking competitions, awareness campaigns, district-level melas and millet recipe training events with active participation from different district-line departments.To reduce drudgery during the post-harvest and processing of millets, the OMM aimed to set up post-harvest and processing machinery at the GP and block le vels. It was proposed that about 10 post-harvest/processing units (threshers, d estoners, graders, dehullers and pulverisors) be set up in each block through WSHGs/FPOs. The technical specifications of the machines are finalised through a state-level committee on processing consisting of different experts. WSHGs/FPOs are selected through a expression of Interest process at the district level through another committee consisting of members from ATMA, District Social Welfare Officer, Odisha Livelihood Mission and FAs. Against the target of 444 threshers, 299 are placed in the district.Encouraging farmers through the provision of incentives for a period of three years for adoption of improved agronomic practices such as System of Millet Intensification, line transplanting, line sowing and intercropping. Incentives to farmers are designed to be gradually reduced over a period of three years. No chemical inputs are supplied to farmers under the OMM, with the farmers encouraged to adopt agro-ecological practice (Table 22.1).Farmer-preferred and locally appropriate seeds were promoted under the OMM. This was done through participatory varietal trials with varieties released by Indian Council of Agricultural Research (ICAR), State Agricultural Universities (SAUs), and the government. The best-performing varieties are then selected and multiplied through seed farmers. A working group has been formed for developing alternate seed system for indigenous landraces under the OMM. For the first time, four finger millet landraces -namely, Bati Mandia, Kalia Mandia, Bhadi Mandia and Mami Mandia -are being considered for release by DA&FE and the GoO (Table 22.2).Locally appropriate implements are supplied on a for-hire basis through c ustom hiring centres to reduce drudgery in various intercultural operations. Eight sub-centres within block-level Custom hiring centres are anchored by SHGs/ FPOs/CBOs per block under the OMM. The comprehensive revival of millets in a Block requires service delivery. The community/farmer-level institutional base varies from Block to Block. FPOs will be formed at the block level. These FPOs will also anchor the different enterprises by linking with SHGs and other smaller collectives (Table 22.3).The GoO approved the initiation of ragi procurement in 2018. Accordingly, a three-year proposal for US$42.78 million was also approved. The Tribal Development Cooperative Corporation Odisha Limited was selected as the nodal procurement agency. The Department of Agriculture & Farmers Empowerment issued the finger millet procurement guidelines, with the concurrence of the Food Supplies & Consumer Welfare Department, to the concerned district administration. The District-Level Procurement Committee, under the chairpersonship of the Collector and District Magistrate, finalise the timelines for farmer registration, the points and dates for procurement, procurement infrastructure and effective awareness campaigns in their respective districts.In KMS 2018-2019, the first year of the procurement programme, unforeseen challenges restricted procurement to 17,986 quintals against the target of 75,000 quintals. Finger millet was distributed at the rate of 1 kg per ration card through the PDS scheme in six districts. In Malkangiri District, it was distributed at the rate of 2 kg per ration card. Millet procured in Sundergarh District was provisioned for inclusion in ICDS in Keonjhar District.The learnings from KMS 2018-2019 were used to lay the groundwork for KMS 2019-2020. A procurement target of 100,000 quintals was approved for 2019-2020. The Government of India declared the Minimum support price for the KMS 2019-2020 as US$43.04 per quintal. By making changes based on past experiences, the procurement increased more than five times, totalling 94,745 quintals in KMS 2019-2020 (Table 22.4). In the KMS 2020-2021, a procurement target of 1,65,000 quintals has been finalised by DA&FE and GoO. For the first time, the procurement of finger millet shall also be done by 16 FPOs in different blocks. Finger millet procured by these FPOs is proposed to be utilised in the ICDS and PDS.Following the successful procurement witnessed in year 2, finger-millet-based entitlements were included in the PDS and ICDS schemes. Finger millet laddu was piloted in the anganwadi menu in Keonjhar District on July 2, 2020 and in Sundergarh District on August 15, 2020. Distribution of finger millet in PDS is planned in the 14 procurement districts in lieu of rice. The High Powered Committee of the OMM has approved the inclusion of millets in ICDS and MDM through DMF.The NCDS baseline report has shown that among the beneficiaries of the OMM, yield has doubled and income has tripled. Based on the successful outcomes, the Government of India has asked all states to adopt the OMM model for the promotion of millets, pulses and oilseeds. Niti Aayog has chosen Odisha and Karnataka as two progressive models and is willing to facilitate learnings for the same. The Governor of Maharashtra has requested the GoO to extend support to initiate a similar project on millets in the state of Maharashtra. The Government of India has set up a task force to understand the framework of the OMM and include the learnings of the OMM into new guidelines of national sub-mission on nutri-cereals.Keeping in view the crop failures, farmer indebtedness and poor nutrition profiles, the District Administration of Vikarabad, Government of Telangana, initiated a pilot project to include sorghum in ICDS with the support of WASSAN. A series of three millet food festivals were organised to build consensus around the inclusion of millets in ICDS. Children and mothers were given millet-based foods at the festivals. To understand the public perception on including millets in diets, feedback was taken from the community, mothers, people's representatives, anganwadi teachers, helpers and children. Resolutions passed in the mothers' committees were also taken to understand the view on these millet-based efforts. Through such participatory approaches, diverse menu options were selected, which also included inputs from the community and from scientists at the National Institute of Nutrition. Such innovative, nutritious and appealing preparations included a preliminary menu of foxtail millet kitchidi and sorghum upma, which were given to the children in 45 Anganwadi Centres (AWCs). The initiative was launched on April 14, 2017. The cost of one normal rice-based meal per child per day is US$0.08. As millets were not subsidised under PDS, cost of the korra (foxtail millet) kitchdi and jonna (sorghum) upma is about US$0.11 and US$0.14 respectively. Additional funds were provided from the District Collector through the Flexi-Funds Scheme. For the pilot of three months, covering 45 AWCs and 1,000 children, an additional expenditure of Rs. 1.73 lakhs was incurred. The Civil Supplies (CS) Department procured millets through farmer cooperatives as per approved specifications.Based on the success of the Vikarabad initiative, the Women Development & Child Welfare Department, Government of Telangana, is now planning to champion the inclusion of millets in ICDS on a large scale. A proposal for decentralised pilots for three aspirational districts was also submitted to Niti Aayog. The proposal was approved in the 13 th Empowered Committee meeting of Niti Aayog on July 10, 2020. In addition, the state of Telangana has also received an outlay of 355 Metric Tonnes of jowar and 607 MT of bajra under ICDS for piloting millets in ICDS (Deverajan, D. [2020] \"Note on inclusion of millets in Telangana\").Mahila Arthik Vikas Mahamandal (MAVM), Department of Women & Child Development, Government of Maharashtra, encouraged WSHGs to take up the value addition and marketing of millet products. As a result, 404 WSHG members started cultivating finger millets in 78 acres of land and harvested 300 quintals of the crop; of this, 200 quintals were kept aside for household consumption, while the rest was purchased by the Community Managed Resource Centre (CMRC) for the preparation of different finger-millet-based products such as malt, biscuits, laddoo, etc. CMRC also opted for FSSAI certification and proper branding and packaging was tackled.The revenue generated from this was US$19,677.51, against a total cost of US$14,129.54. The CMRC with the support of MAVIM tied up with Dr. Balasaheb Konkan Agriculture University, Dapoli for technical support. CMRC also linked with Shri Vivekanand Research and Training Institute, at Lote, and the corporate social responsibility wing of Excel Industries Pvt. Ltd to purchase small machinery.The MAVM initiative is a good example of how proper micro-planning combined with strong grassroot institutions and convergence can make a substantial difference in the lives of millet-growing farmers.The Mahila Vitt Evam Vikas Nigam (MVEVN), Government of Madhya Pradesh, through the International Fund for Agriculture Development (IFAD), supported the Tejaswini Project, which initiated the promotion of kodo (kodo millet) and kutki (little millet) in the Mehandwani area in Dindori District in 41 tribal villages in 2013. Initially, 1,497 women farmers from SHG Federations were trained on improved agricultural practices to take up millet cultivation in at least 0.5 acres of land. By 2017, the area under millet cultivation had increased from 748.5 to 3,750 acres, with an associated growth in total production from 2,245.5 quintals to 15,000 quintals. The total income increased from US$122,738.45 to US$819,896.15, with a net profit increase from US$53,416.23 to US$562,995.35. Apart from the increase in area, productivity, income and profit, the number of women farmers who took on the goal of millet cultivation rose to over 7,500 farmers. Inspired by this success, Taking millets to the millions 271All these interventions show that a multi-stakeholder approach involving different departments, civil society and farmers'/women's collectives and that focuses on the value chain within and outside government programmes leads to success. Transforming food systems for meeting the emerging needs of climate change and malnutrition will need a multi-stakeholder approach.farmers from other nearby blocks like Sambalpura and Shahpura are also adopting these processes and are reaping benefits through millet cultivation.Further, with support of MVEVN, the SHG Federations shouldered the responsibility for processing, marketing, FSSAI certification and branding. For a wider reach, marketing and promotion was undertaken in various avenues like women's clubs, exhibitions, melas etc., covering cities like Nagpur, Nasik, Jabalpur and Bhopal. A pilot on the inclusion of Kodo-Kutki Bar in 226 Aanganwadi Centres for about 5,000 children was taken up. The efforts of Tejaswini in spreading the use of millets in everyday diets has been recognised at multiple forums and has also won the Sitaram Rao Livelihood India Case Study Award and SKOCH Order of Merit Award.According to the FAO, an increasing number of people are going to bed hungry, and more than a billion people are known to be nutritionally poor (Swaminathan 2010). Agroecology-based intercropping -growing more than one crop at the same time on a given piece of land -is now regarded as a promising approach for addressing food security in an environmentally and socially sustainable way (Brooker et al. 2015;Duchene et al. 2017). Many studies have shown that intercropping provides greater resource use-efficiency, reduced soil erosion and nutrient losses, and improved soil moisture (Maitra 2020;Triveni et al. 2017). Water is arguably the single most important factor that limits crop production in agriculture, particularly in rainfed or dryland ecosystems, and a consideration of plant hydraulic lift of soil water may help in designing a sustainable intercropping system (Liste and White 2008).Soil microbes such as arbuscular mycorrhizal fungi (AMF) and plantgrowth-promoting rhizobacteria (PGPR) may be beneficial as well, particularly the former with their capability to form a common mycorrhizal network (CMN) that extends beyond plant root systems, facilitating long-distance nutrient mobilization and water transfer (Aroca and Ruiz-Lozano 2009). Sustainable intensification through intercropping may be achieved with many different crops but requires the integration of various sciences such as agronomy, soil, microbial and social sciences (Brooker et al. 2015). This chapter deals with millet-based intercropping systems as an example. Specifically, we show results from our recent studies, revealing the contribution of CMN in mediating \"bioirrigation\", a process where the hydraulically lifted water by a deep-rooted legume such asNatarajan Mathimaran,Devesh Singh,Rengalakshmi Raj,Thimmegowda Matadadoddi Nanjundegowda,Prabavathy Vaiyapuri Ramalingam,Jegan Sekar,Yuvaraj Periyasamy,E. D. Israel Oliver King,Bagyaraj Davis Joseph,Thomas Boller,Ansgar Kahmen and Paul Mäder 274 Natarajan Mathimaran et al. pigeon pea provides water to the neighboring shallow-root cereal finger millet (Singh et al. 2020).Millets can be intercropped with many crop species, particularly with oil seeds such as sesame, or with legumes such as black gram, cowpea and pigeon pea. The choice of companion crop with the millets is usually decided by the farmers based on the economic value/benefit-cost ratio, land equivalent ratio (LER) and social factors like labour availability. However, legumes are particularly interesting because of their potential to fix atmospheric nitrogen in symbiosis with rhizobia and thereby to increase soil fertility, as shown, for example, in grain legume-pearl millet intercropping systems (McDonagh and Hillyer 2003).In addition, studies have shown facilitation in intercropping systems, where one species promotes the growth of the other (Callaway 2007;Li et al. 2009). Studies by Li et al. (2016) clearly show that in a maize and faba bean intercropping system, the root exudates of maize increase nodulation and enhance nitrogen fixation of faba bean. A trial conducted by Dass and Sudhishri (2010) with a combination of finger millet with pulses revealed enhanced productivity and increased resource conservation by a significant reduction of soil runoff. Several studies have reported the yield of millet to increase under legume intercropping systems, particularly in low fertile soils and low-input systems (Runkulatile et al. 2015;Triveni et al. 2017;Bitew et al. 2020). Significantly increased LER, more efficient water and better nutrient utilization were observed in intercropping systems than in monocropping (Yu et al. 2016;Daryanto et al. 2020). Among different legume-millet intercropping systems, the pigeon pea-finger millet system is a widely adapted practice by the farmers, particularly in the rainfed regions of south India. We discuss this example in more detail below.Many herbs, grasses, shrubs and trees are known to lift water via roots from subsoil and redistribute it to topsoil in a process known as hydraulic redistribution. The lifting of water by roots is passive and driven by leaf transpiration and stomatal closure. The redistributed water into topsoil might provide su fficient moisture for shallow-rooted plants growing adjacent to a deep-rooted plant (Caldwell et al. 1998). Using a stable isotope deuterium tracer, Sekiya and Yano (2004) found that pigeon pea could redistribute hydraulically lifted water to neighboring maize plants. Furthermore, the hydraulically redistributed w ater into dry topsoil is known to trigger microbial activities, which, in turn, could initiate v arious biogeochemical cycles, eventually leading to plant nutrient availability. This important ecophysiological process is an inherent part of many intercropping Millet-based intercropping systems in the tropics 275 systems, particularly where a deep-rooted legume such as pigeon pea is grown with shallow-rooted cereals such as finger millet.Numerous studies have shown that below-ground niche complementarity and resource sharing, combined with improved plant water relations, forms the basis for the overall productivity of the system. Measurements using various techniques, including stable isotope tools, have shown improved plant water relations, particularly under drought conditions (Zegada-Lizarazu et al. 2006). A classic work by Querejeta et al. (2012) showed the facilitative role of mycorrhizal hyphae in redistributing the water hydraulically lifted by oak. Catabolic response profiling of the microbial community obtained from the native shrubs grown in drylands at Sahel showed greater microbial diversity and a more active microbial community in the rhizosphere compared with a monocropping system (Diakhaté et al. 2016). Microbiome analysis in millet rhizosphere showed that an intercropping system can harbor potentially huge number of beneficial microbes (Debenport et al. 2015). Although there is ample information about rhizosphere microbial diversity, only limited knowledge is available with regard to ecophysiological and/or functional ecology of microbes involved in complex below-ground interaction. In particular, our current knowledge on the role of microbes in the facilitation of nutrients and water (Duchene et al. 2017) is limited.Despite some studies showing role of beneficial microbes in facilitating hydraulic lifts, mostly in tree species, currently there are only few studies showing the role of CMN in combination with PGPR in facilitating \"bioirrigation\" in crop species, particularly in cereals and legumes. In this regard, we conducted a series of research, first starting to unravel facilitative role of CMN in combination with PGPR in pigeon pea-finger millet intercropping systems (Figure 23.1).In one of our earliest studies in this context, we tested whether finger millet, a shallow-rooted cereal, can profit from neighboring pigeon pea, a deep-rooted legume, in the presence of \"biofertilization\" with AMF and PGPR, under drought conditions. Our results showed that \"biofertilization\" with AMF alleviates the negative effects of drought conditions on finger millet, indicating that CMN connecting pigeon pea and finger millet exert clearly a positive influence in this simulated intercropping system (Saharan et al. 2018). In our latest work in this regard (Singh et al. 2020), we used stable isotope and classical physiological measurements such as stomatal conductance to better understand the ecophysiology of bioirrigation. We found that pigeon pea can indeed promote the water relations of finger millet during a drought event. The observed facilitative e ffects of pigeon pea on finger millet were partially enhanced by the presence of a CMN. In contrast to the facilitative effects under drought, pigeon pea exerted strong competitive effects on finger millet before the onset of drought. This hindered the growth and biomass production of finger millet when intercropped with pigeon pea, an effect that was even enhanced in the presence of a CMN. The results from our study, thus, indicate that in intercropping, deep-rooted plants may act as \"bioirrigators\" for shallow-rooted crops, and that a CMN can promote these facilitative effects. In more general terms, our study shows that the extent to which the antagonistic effects of facilitation and competition are expressed in an intercropping system strongly depends on the availability of resources (Singh et al. 2020).Furthermore, we conducted field trials over three consecutive seasons at two sites in India, an intercropping and biofertilization scheme to boost their yields under low-input conditions. Our major findings are (i) the effects of the biofertilizers were particularly pronounced at the site of low fertility; (ii) the dual inoculation of AMF+PGPR to finger millet and pigeon pea crops showed increased grain yields more effectively than single inoculation; (iii) the combined grain yields of finger millet and pigeon pea in intercropping increased up to 128% due to the biofertilizer application and (iv) compared to direct sowing, the transplanting system of pigeon pea increased their average grain yield up to 267% across site, and the yield gains due to biofertilization and the transplanting system were additive (Mathimaran et al. 2020).Finally, as millets are considered neglected crops, at least in the recent past, the diversity of millets is yet to be brought back the mainstream farming for nutritional security. King et al. (2009) have reviewed the importance of agrobiodiversity and conservation of millets for tribal populations in south India. The adoption of millets-legume intercropping systems by smallholders are governed by several socioeconomic factors. In one of our studies in south India we found that access to market, the choice of companion intercrops and the cost of cultivation are major influencing factors for adopting a legume-millet intercropping system by smallholder farmers. Similar scenarios have been seen in several African countries, corroborating our study in south India. For example, a study by Ortega et al. (2016) in Malawi found that labour constraints and market access are the key factors governing farmers' adoption of maize-legume intercropping practices despite their ecological benefits. Another important variable that is considered in the decision-making process is the availability of family labour while adopting intercropping systems in Uganda (Ekepu and Tirivanhu 2016). Last, but not least, the value-chain models for the intercropping system have yet to be developed for different combinations of crops and biological inputs, including the biofertilizers, so as to make millet-based a model for sustainable farming, both in socioeconomic and environmental dimensions. A study by Magrini et al. (2016) has pointed out the need for combined actions both in the research and development of catalytic technologies, institutional innovations and market support to upscale the adoption of millet-legume intercropping systems. Similarly, access to quality seeds and markets, as well as policy support, were highlighted as key factors essential to upscaling millet and legume intercropping systems in sub-Saharan Africa (Mugendi et al. 2011).Agroecological farming methods, such as intercropping, have been in use by farmers for centuries. However, practicing intercropping on a larger scale has been always a challenge for various reasons that include limited understanding of complex interactions, particularly below-ground microbial interactions at the rhizosphere, involving various biotic and abiotic factors. Thanks to recent advancements in molecular and ecophysiological tools, there has been an increasing amount of research on the role of microbes in the intercropping system, eventually allowing us to explore possibilities for adapting microbial-facilitated 278 Natarajan Mathimaran et al.intercropping to a larger scale. Yet mainstreaming intercropping requires further basic and applied research to optimize productivity and economic sustainability, as shown by our studies of the millet-based intercropping systems.Minor-grained cereal grasses are collectively described as 'millets' and are one of the oldest cultivated foods known to humans. The major group of millets includes crops like sorghum and pearl millet, while minor millets consist of finger millet, foxtail, kodo, barnyard, proso and little millet. Millets are a traditional staple food of the dryland regions of the world. In India, they are grown in about 15 million ha with an annual production of 16 million tonnes and contribute slightly less than 10% to the country's food-grain basket. Nutri-cereals are known to have high nutrient content, including protein, essential fatty acids, dietary fiber, B-vitamins, and minerals such as calcium, iron, zinc, potassium and magnesium. Although millets are nutritionally rich like other fine cereals, their consumption has significantly declined over the last three decades. The decline is mainly due to the rather laborious and time-consuming process involved in the preparation of millet and government policy to supply fine cereals at subsidized prices. Therefore, it has become necessary to reorient efforts on millets to generate demand through value addition of processed foods. Value addition in food processing has a high degree of interdependence with forwarding and backward linkages, which can play an essential role in accelerating economic development. Through value addition, the shelf life and storage quality of food can be improved.• Lack of appropriate processing technologies that yield stable shelf products constitutes a significant limitation in the utilization of millet grain to d evelop value-added products.An overview • Consumer-level preferences include food that is convenient, tasty and attractive, with good texture, which may not always be the case with millet products. • The size of grain is minor so processing is a challenge.• The outer seed coat of most minor millets has about 1-7 layers, making it further difficult to process with available means. • Polishing minor millets as done for major food cereals may lead to nutrition losses, defeating the purpose of consuming it. • Lack of proper mechanism to separate unhulled grains from de-hulled grains.• No serious processing interventions are attempted because of lack of demand for these millets. • The market is limited as primarily poor farmers from tribal regions and typical dryland regions produce and consume millets. • Absence of grades and standards.• Lack of awareness with regard to grain and product quality standards.• Regular supply of grains is inadequate for demand from large-scale manufacturing lines. • Non-availability of local millet processing units.• Lack of grain storage options.Processing grains enhances its consumer acceptability and adds to its convenience. Though millet is known for its nutritional qualities, its consumption has declined due to the unavailability of ready-to-eat (RTE) and ready-to-cook (RTC) millet products. It is also regarded in many countries as an inferior food. A decrease in millet consumption is found to be proportional to an increase in expenditure. Besides, increased income is accompanied by increased consumption of wheat and rice, as products from these fine cereals are easy to prepare and have better 'keeping' quality. At the same time, people now tend to eat a greater variety of foods. Technological change could perhaps shift the status of millets, improving its production and utilization. Processing also improves the food value in terms of increasing the variety of products and improving carbohydrate and protein digestibility.The primary processing of millets revolves around the grading of millets (which depends on the size of the grain), de-stoning (removal of stones and other impurities), de-hulling (removal of outer indigestible husk layer), and p olishing. Its essential aim is the removal of waste, stones, and glumes from the grain, which are necessary for proper storage and consumer acceptance. The majority of primary processing is still performed with inefficient machinery and demands skilled operators, making it uneconomical for farmers and minor-scale entrepreneurs. The primary processing of millets is a vital step to converting the grain into an edible form and thereby enhancing its quality. Although processing millets without husk (naked grains) -i.e., sorghum, pearl, and finger millets -are easy, processing millets that do have husk -i.e., little, proso, kodo, barnyard, and foxtail millets -are more complicated, as they have an inedible husk that needs to be removed through primary processing (Figures 24.1,24.2).Constraints identified in the existing primary processing machinery 1 As of now, no machinery is available that can effectively perform the process of cleaning, grading, de-hulling, and separation. The development of FIGURE 24.2 Different de-hullers available for primary processing of millets. such machinery will prove to be a helping aid for various entrepreneurs and minor-scale industries. 2 The de-hulling efficiency of millets is influenced by impeller speed, hence a provision to control the working speed of machines should be incorporated. 3 Separation of de-hulled and raw grains from the de-huller output is due to the slight difference in specific gravity. Hence, because of improper sieve sizes and the design of reciprocating sieves, nearly 1.0-1.5 kg of material falls through the sieve holes and accumulates deep inside the machine, leading to wastage. 4 The collection of husk is burdensome, and causes spillages all over the working station, sometimes getting mixed with de-hulled output. 5 After the de-hulling activity, the next stage is to separate the de-hulled grains and raw grains. The separation stage is imperative and dramatically affects overall grain recovery; nearly 1 kg of de-hulled grains (for every cycle of separation) is prone to wastage due to inefficient separation methodology.Not all minor millets can be de-hulled by one machine due to the different size and shape of each millet. Specific and suitable machine is required for proper recovery.A study was conducted on minor millets by using different existing de-hulling machines, and the recovery was observed (Table 24.1). The study indicated that the minor de-huller was best suited for barnyard, foxtail, and kodo millet, while the single-stage de-huller best fit proso and the double-stage was suitable for little millet.Secondary processing involves using the primary processed raw material for different RTE and RTC millet products such as flour, millets-based multigrain flour, semolina (fine and medium), millet cookies, vermicelli, pasta, etc., which minimize the cooking time needed and make them convenient foods. It also increases the shelf life of products. Busy lifestyles and the lack of inspiration to cook make convenient nutritious RTC and RTE products more appealing and accessible (Alavi et al., 2019). These products have a multi-billion dollar market worldwide. ICAR-IIMR has developed and standardized millet-based products such as atta, semolina (fine and medium), flakes, cookies, cold extruded products (pasta and vermicelli), RTE snacks, etc. using different processing technologies.Flaking is the process where moistened and roasted grain is pressed into flattened flakes and dried. It can be applied to any millet grain, irrespective of variety, size, and shape. However, the pericarp color of the grain impacts the color of the flakes.The machines used for different flaking technology are:1 Edge runner -produces thick flakes like rice flakes 2 Roller flaker -produces thin flakes like corn flakesThis technology comprises many sub-processes like soaking the grains in excess water to hydrate their equilibrium moisture content. After soaking, the grains are washed appropriately by changing the water thrice; otherwise, the grain's sliminess will affect the storage life of the flakes. This soaking method is similar for both edge-runner and roller-flakes processing (Figures 24.3,24.7,24.8).Cold extruded products such as vermicelli, pasta, and noodles are generally made from durum wheat or refined wheat flour. These products can also be manufactured with millets by the same machine, called a \"cold extruder.\" In millet-based cold extruded products, the raw material should be fine-sized millet semolina (355 µ); otherwise, the binding nature will be very low, which would increase the cooking losses. Currently, every millet-based product is blended with wheat semolina/suji (500 µ), as the millet grains are devoid of gluten, and so lack the binding properties and strength of the texture. Extruded millet products are mixed in a blender with different ingredients and desired moisture levels to make a wet homogenous mass. Subsequently, it is forced through an opening in a perforated plate or dies with a design specific (it varies for vermicelli, pasta, and noodles), and is cut to a specified size by blades. Now this moist product goes through the drying process (Figures 24.4,24.9).The popular and world-famous snack popcorn is commonly made from maize. Likewise, expanded rice or murmura is also a very popular and simple traditional snack. However, similar products from other cereals are rare. \"Gun popping\" is another traditional method of cereal popping, widely used in East Asian countries, but not popular in India. Recent R&D has shown that millet-expanded snacks can also be processed using the gun popping method. Mainly this technology requires decorticated and polished grains to deliver puffs/pops with high functional and highly acceptable sensory qualities. The puffing occurs due to the quick transmission of heat from the barrel to the grain and converts its moisture levels into steam form. It gelatinizes the starch and produces high pressure in the core part of the grain, resulting in the expansion of the grain, forming its puffy nature. These products are milky white and have a pleasant aroma, with an attractive appearance and soggy texture. The roasting process can be applied to improve its crispiness (Figures 24.5,24.10).Baked goods are RTE and the most popular snack foods across the world. They include cookies, biscuits, bread, buns, rusks, doughnuts, etc., with cookies being the most consumed by the population. Currently, the ICAR-IIMR has developed 100% pure millet-based cookies and cakes with improved textures by applying different emulsifiers, which are closely comparable to famous wheatbased cookies in the market. The machine used for cookie and cake processing are the cookie/biscuit-cutting machine, rotary rack oven, cake-filling machine, planetary mixer, etc. In the cookie process, the millet in the form of fine flour (150 µ and 180µ particle size) is used. Millet cookies are manufactured by the creaming process (vegetable fat/vegetable oil and sugar) and the addition of leavening agents, flavors, and millet flour, along with desired moisture levels, and making it into soft dough, cutting and baking at 180 °C for 18-20 minutes. Its attractiveness can be improved by incorporating different ingredients like cashew nuts, almonds, chocolate chips, etc. These products lack the sponginess of wheat bread and pizzas because they do not contain gluten protein (Collar et al., 2019) (Figures 24.6, 24.11). The government programs spearheaded by the Ministry of Agriculture were primarily focused on improving the supply of millets. Minor millets are na turally nutrient-dense cereals (Malleshi et al., 1982), and so making them available through public-funded schemes can help deal with the problem of micronutrient deficiency or hidden hunger among the less-privileged sections of the population. Within the Indian context, as a healthy food, minor millets have great potential to address this challenge due to their nutritional qualities ( Durairaj et al., 2019). The effective delivery of millets under public-funded schemes could have far-reaching implications for tackling the problem of malnutrition. Most public food programs do not include millets, except for the inclusion of finger millet in Integrated Child Development Scheme (ICDS) in a few states of the country. There are no exclusive government schemes/projects/programs for minor millets. However, many Indian states are gradually starting to support the consumption of millets through government-sponsored schemes; for instance, Karnataka was the first state to distribute millets through the PDS; Odisha has started the Millets Mission; Andhra Pradesh supplies finger millets and jowar through PDS, and Tamil Nadu has included millets in its MGR Nutritious Meal Programme 2011-12 and in ICDS. It is necessary to include millets in public-funded schemes in all states to minimize malnutrition and mortality rates throughout India.There are limited policies and schemes that explicitly include millets, with not many exclusive government schemes/projects/programs for minor millets. Of the extant schemes, the most important ones are Initiative for Nutritional Security through Intensive Millets Promotion as part of the Rashtriya Krishi Vikas Yojana (RKVY); Rainfed Area Development Programme as part of Rashtriya Kristi Visas Yolanda (RKVY); and Integrated Cereals Development Programmed in Coarse Cereals-based Cropping Systems Areas (ICDP-CC) under the Macro Management of Agriculture. There is a lot of variation across the states on how they utilize these opportunities for promoting millets.The processing of minor millets has come a long way; however, one grey area is the lack of availability of efficient de-hullers and separators in primary processing that have a greater than 80% efficiency. This is an important determinant for secondary processing, as quality raw material will lead to greater scope of diversified millet products through secondary processing. Secondary processing technologies like flaking, puffing, milling, and baking are standardized, but current raw material costs do not favor viable products except as niche markets. The greater the efficiency in primary processing, the higher the share of farmer producers in the consumer's rupee. Further bioavailability studies of millet-based products need to be conducted to develop standards and grades, to identify suitable minor millet cultivars for specific end-products for large-scale production, and to strengthen the use of minor millets, which are storehouses of nutrition. There should be an in-depth policy shift from the government towards accommodating the inclusion of minor millets in public-funded schemes to address malnutrition and lifestyle diseases.Small millets are well adapted to poor quality soils and rainfed, low moisture conditions, while also producing grains that have superior nutrient values compared to paddy and wheat (Saleh et al. 2013;Behera 2017, Figure 25.1). For these reasons, small millets are recognized as key assets for ensuring food security under climate change (Padulosi et al. 2015;Davis et al. 2019). To inform strategies to leverage their role in climate change adaptation, the precise mechanisms by which small millets support food security should be clarified in consideration of the many parameters and constraints of farm and livelihood systems.Millets may contribute to climate change adaptation through several mechanisms. Because of their drought tolerance, including millets in a diversified farm portfolio can support harvest security in drought years (e.g., Prieto et al. 2015;Renard and Tilman 2019). If drought stress becomes very severe, minor millets could replace more drought-sensitive staples (e.g., Kurukulasuriya and Mendelsohn 2008). Because of their capacity to produce a harvest on marginal soils, minor millets could enable more areas in the landscape to be brought into production, which can help mitigate the effect of yield losses resulting from climate change. The ability of millets to be stored for long periods can also provide a fallback source of nutrition and income under variable weather conditions. The contribution of millets to climate change adaptation may derive from one or a combination of these mechanisms, among other possibilities.To sharpen understanding of the mechanisms by which minor millets support food security under climate change, a scenario modelling exercise was carried out. The study focused on the Mandla and Dindori districts of eastern Madhya Pradesh, India, where kodo (Paspalum scrobiculatum) and kutki (Panicum sumatrense) millets are cultivated by tribal farmers in marginal lands. Kodo and kutki are grown especially on rocky and sloping lands, whereas flatter richer soils tend to be used for paddy cultivation. Millets have received limited attention from the research and development perspective in India. Agricultural schemes in Madhya Pradesh have even pushed to replace these \"low-value crops\" with higher-value ones like oil seeds and pulses in recent decades (Gupta 2003;Catalyst Management Services Ltd. 2009). Improved rice varieties have been promoted in the region, while improved varieties of millet have only been promoted more recently and their adoption is still limited (Bioversity International and ASA 2016).A simple model for household production and consumption was devised as summarized in Figure 25.2. The model considered household production of rice and minor millets, storage of rice and millet, and consumption of millets and rice in fulfilling household energy requirements. The production levels of millet and rice varied depending on whether or not drought was faced in a given year. Once family requirements were met, surplus grain from the current year's production would be placed in storage. The model assumed that the household would preferentially consume rice over millet and fresh grains over stored grain.The model was built as a series of linked equations as presented in Table 25.1 using the R statistical programing language (R Core Team 2018). The parameters for the model are summarized in Table 25.2. A single iteration of the model provided data for an individual household over a 20-year span. For a given set of parameters, the model was applied over the full range of drought risk values (0-1) and repeated for 1,000 iterations. The initial amount of rice in storage was set as half of the household's annual energy requirement, as was done for the initial store of millets. Three distinct investigations were completed with the model in which the yield values or the area planted with rice and millet were varied, while the remaining parameters were left constant. The questions explored in these investigations were as follows:• Investigation 1: How do different values for crop yield in drought and good years affect household food security under increasing levels of drought risk? • Investigation 2: How does the area planted with small millets and rice affect household food security under increasing levels of drought risk? • Investigation 3: How would increasing yield values for small millets affect household food security under increasing levels of drought risk?The first investigation explored the effect of different yield values in drought and non-drought years. The values for millet and rice yields under drought and non-drought conditions were defined with reference to the government's yield and weather data for a 35-year period (1997)(1998)(1999)(2000)(2001)(2002)(2003)(2004)(2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012)(2013)(2014). General linear models of millet and paddy yields obtained for total rainfall by district were developed and the predicted values were used in defining the parameters for the scenario model. For drought years, we used two alternative yield values, which were the predicted yields under the minimum level of precipitation experienced over the previous 20 years (Min) and the predicted yields for below-average precipitation levels (Q1). For non-drought years, we used four alternative yield values, which were the predicted yields for mean precipitation levels (Avg); the predicted yields for above average precipitation (Q3); the predicted yields under the maximum level of precipitation (Max); and the absolute highest yields for rice and millet in the dataset (AbsMax). The combinations of yield values that were simulated are shown in Table 25 A1.The area planted with millet and rice was held constant in the first investigation. The area values were defined based on a household survey in the focal area with 297 households across 30 villages (Bioversity International and ASA 2016). The survey results showed that the mean area households assigned to paddy was 0.6 Ha and 0.6 Ha to small millets. These values were used as the parameters for crop area in the first investigation. Local consultations suggested that farmers use their best quality soil with black color for rice and their rocky red soils not suitable for paddy to grow millet. These discussions suggested that farmers could grow millet in areas where rice is currently grown but that rice may not be easily cultivated in areas where farmers currently grow millet. The second investigation explored this nuance, in considering that intensifying drought conditions may mean that planting millet on black soils -effectively replacing some area of rice cultivation -could bring greater harvest and food security. The combinations of areas planted to rice and millet are shown in Table 25A2, which assumes millets could be grown on land currently used by rice but not vice versa. The simulations in the second investigation used the most optimistic yield values (Q1 in drought years, AbsMax in good years).The third investigation assessed the role of improved millet varieties in supporting climate change adaptation. Starting with more optimistic yield values • The energy content of rice (RiceE) was set to 3,533,200 kcal/ton (Longvah et al., 2017;Saleh et al., 2013;Shobana et al., 2013) • The energy content of millet (MilE) was defined as 3,278,500, which is the mean value for kodo and kutki (combined: 327.85 kcal/100g; kodo: 320 kcal/100g; kutki: 335.69 kcal/100g; Longvah et al., 2017;Saleh et al., 2013;Shobana et al., 2013) • Yield values for drought years (RiceYLow, MilYLow, value greater than 0) and non-drought years (RiceYHigh, MilYHigh, value greater than 0) were defined with reference to government yield data (see Tables 25A1 and 25A2)• The drought probability (Drought Prob) was set to a value ranging from 0 to 1 • The initial quantity of rice and millet in storage (RiceEStore0 and MilEStore0) was set to half the energy requirement of the household in the first year and as the amount remaining from the previous year for subsequent iterations (RiceEStore1: defined inStep 7; MilEStore1: defined in Step 11).2 Drought=sample(c(0:100),size=1,replace=T) Whether a drought occurs in given year (Drought, TRUE/FALSE) depends on the <(DroughtProb*100) probability of drought (DroughtProb: defined in Step 1).11The amount of millet energy in storage at the end of a given year (MilEStore1, kcal) is MilESurProd calculated as the amount remaining in storage from the previous year (MilEStore0: defined in Step 1) minus the amount consumed (MilEConSto: defined in Step 10) or plus the amount added from surplus production (MilESurProd: defined in Step 9).12 MilECons=if((ProdRiceE+RiceEStore0)> If production (ProdRiceE: defined in Step 4) and storage (RiceEStore0: defined in Step 1) =Ereq) 0 else availability of rice meet the family's needs, then no millet will be consumed (MilECons, if ((ProdMilE + MilEStore0)>= (Ereq -kcal). Otherwise, the family will attempt to make up their energy requirements with (ProdRiceE + RiceEStore0))) (Ereq -millets, consuming (MilECons, kcal) just enough to fill the gap if quantities are (ProdRiceE + RiceEStore0)) else available, or consuming the full amount in storage (MilEStore0: defined in Step 1) ifthere is a shortfall.13 Econs=RiceECons + MilECons The total energy (Econs, kcal) consumed by the family in a given year is assumed to be the total of rice consumed (RiceECons: defined in Step 8) and millet consumed (MilECons: defined in Step 12) 14 FoodSecure=(Econs>=Ereq) A family is food secure in a given year (FoodSecure, TRUE/FALSE) if their consumption (Econs: defined in Step 13) is greater or equal to their energy requirements (Ereq: defined in Step 1).in a normal year and a drought year (Q1:AbsMax), the effect of progressive yield increases from 125% to 350% over the base values were modelled, assuming equal percent yield increases in drought and normal years.Yields of paddy recorded in the region ranged from 0.364 to 2.640 ton/ha with a mean of 0.947 ton/ha. The yields of small millets (kodo-kutki) ranged from 0.089 to 0.903 ton/ha with a mean of 0.266 ton/ha. Precipitation ranged from 480.2 mm to 1595.0 mm with a mean of 1090.0 mm. Above average precipitation (Q3) was 1163.0 mm and below-average precipitation (Q1) was 965.9 mm. The regression analysis showed a significantly increasing trend for yields of both paddy (slope 0.00104±0.00045, t=2.330, p=0.0267) and small millets (slope 0.00038±0.00014, t=2.634, p=0.0132) with higher monsoon precipitation. The slope was steeper for paddy, meaning its yields were more impacted by poor rainfall than the yields of millets, but the yields of small millets were always considerably lower than those for paddy (Figure 25.2). The scenario modelling revealed that households only achieved their annual energy requirements under the most favourable climate conditions (Figure 25.3 top-left panel). The role of millets for food security was most significant when yields were high in good years, which allowed households to store millets for use in drought years.Optimal food security was achieved under the current 'average' situation, with rice grown to the maximal area available with adequate soil quality. The worst outcomes for household food security were seen under the scenario where millet replaced or nearly replaced rice. This was because rice is higher yielding than millets, so producing it on the largest area possible maximized the harvest and the household energy consumption. Millets showed an important food security role when surpluses could be stored in good years. The scenario models investigating the effect of yield-enhancements revealed that yield increases of millet as low 150% notably increased food security when drought risk was high (0.5 to 0.8).This modelling exercise provided useful insights into the mechanisms by which millets may contribute to climate change resilience and adaptation. A key result was that the low yields of millet limit their role in food security in the face of increasing drought risk. Modest yield increases resulted in food security benefits in our modelling, and the values would be realistic to achieve with existing varieties. For instance, yields as low as 0.350 tonne/ha in drought years and 1.355 tonne/ha in good years showed notable food security benefits in the model results. Kodo variety DPS 9-1 has a yield ranging from 2.7 to 3.0 tonnes/ha, while the kutki variety DHL M36-3 has a range of 1.4-1.6 tonnes/ha (ICAR nd). The yields of these varieties obtained in farmer fields may be lower than these values achieved under more controlled experimental conditions, but the numbers reveal good potential for these improved varieties (and others that are already available in the region) to contribute to improved food security outcomes. The major role of millets for household food and climate security was seen in terms of their storability. Millets provide a source of food from marginal soils with little effort that provides a fallback for food security. Discussions with farmers in the project area have highlighted the storability of millets as a cherished quality and our results point to this characteristic as one that deserves more attention in discourses and research regarding the role of millets in climate change adaptation.It is acknowledged that the model oversimplifies the farm and livelihood system, such as by excluding any links to the market and the diversity of other crops and livestock, as well as wild harvesting, which is quite prevalent. We note that this simplicity was a conscious choice to focus on the tradeoffs in cultivating and consuming the most important cereal crops of the region. The fact that the households generally did not achieve their energy requirements in our models may reveal that there is an important role for other crops, the market, or the public distribution system in supplementing food security, which is not captured by the model. Otherwise, this result may reflect upon the extent of the poor n utrition that exists in Madhya Pradesh, where 60% of children under five years of age are underweight as compared to 43% at the national level (IIPS and Macro International 2007, p 269 and p 273). Scheduled Castes and Tribes, which are the predominant population in the focal area, are disproportionately affected by malnutrition (WFP and IHD 2008;Das and Bose 2015;Jain et al. 2015;Kapoor and Dhall 2016).It is noted that this was a quick exercise and that the model could benefit from further validation and verification. More sophisticated modelling approaches for cropping systems and household nutrition exist and could provide more reliable results. This simple approach was nevertheless useful because it was possible to devise using open source software. It has clarified expectations and understanding within a short project timeline. The model can easily be modified to consider other nutrients aside from energy and to vary additional parameters that have not been explored in this paper. E.D.I. Oliver King, and Stefano Padulosi were fundamental in conceptualizing the model. Thank you for sharing your insights on the role of millets in improving the livelihoods of farming communities in the focal area and in other regions of India. The main challenges of the 21st century are population growth, climate change, water scarcity and soaring food prices, all of which could trigger a great threat to agriculture and food security worldwide (Kulkarni et al., 2018). Globally, the burden of malnutrition, in all its forms, remains a challenge. Nearly 8.9% (~690 million) of the world population is undernourished according to 2019 estimates; and 21.3% of children under five years of age are stunted, 6.9% wasted and 5.6% overweight (FAO et al., 2020). Nutrition insecurity is a major threat to the world's population, which is highly reliant on cereal-based diets (seen in both developing and under-developed countries), particularly refined cereals that are deficient in micronutrients. Today the bigger threat comes from the triple burden of malnutrition -under-nutrition co-existing with micronutrient deficiencies and over-nutrition. Economic losses equal to 5%-6% of Gross National Product (GNP) were estimated due to deficiencies of iron, zinc and vitamin A in South Asia, leading to illness and poor performance (Shivran, 2016). Both micronutrient deficiencies and economic loss could be averted with improvements in nutritional status through enhanced quality, agriculture productivity (De Benoist et al., 2004) and cereal staples consumption. Agricultural research needs to engage in novel t echnologies and strike a balance between boosted food production with better crop genotypes and improved nutritional quality of food crops (Saha et al., 2016). The process of biofortification is one means to improve the micronutrient content (vitamins and minerals) of food grains is improved, through plant breeding and agronomic practices. Staple crops, when biofortified and consumed routinely, could have a greater positive impact on the nutritional status of vulnerable populations.Millets are a highly promising alternative option to strengthening rice-and wheat-based diets, as they can survive in arid conditions, leave a smaller carbon footprint and still offer higher nutritional value (Bergamini et al., 2013). These ancient grains have been used as cereal staples by millions of people in arid zones across sub-Saharan Africa and Asia, and for fodder, feed and industrial purposes in developed economies (Pasha et al., 2018). Despite India being among the largest producers of small millets (SM), consumption of these crops is currently low (Kulkarni et al., 2018), as they have been replaced largely by rice and wheat since the Green Revolution. One of the factors hindering the wider use of SM is their cumbersome traditional processing; but today, this can be effectively replaced with novel techniques capable of creating more value-added and readily acceptable products. Such innovations represent, indeed, a robust strategy to increase the consumption of these (Kulkarni et al., 2018).SM are a group of small-seeded cereals of the grass family Poaceae. They include finger millet (FM) (Eleusine coracana (L.) Gaertn.), kodo millet (KM) (Paspalum scrobiculatum L.), little millet (LM) (Panicum sumatrense Roth), foxtail millet (FXM) (Setaria italica (L.) P. Beauv.), barnyard millet (BM) (Echinochloa spp.), proso millet (PM) (Panicum miliaceum L.) and brown top millet (BTM) (Brachiaria ramosa (L.) Stapf ) (Figure 26.1). FM, FXM and PM are important crops cultivated globally, while the other millets are region or country specific. For example, KM, LM and BTM are cultivated as cereals in India (Vetriventhan et al., 2020).The climate-resilient and nutrient-dense characteristics of SM make them highly relevant crops for food and feed, even in agriculturally marginalized areas FIGURE 26.1 Small millet grains.Unleashing the nutrition potential of small millets 311 that are characterized by scarce water and poor soil. SM are excellent sources of carbohydrates, micronutrients and phytochemicals with nutraceutical properties. They are also excellent sources of B-group vitamins. Although their proteins are poor in lysine and tryptophan, their consumption can be easily complemented with lysine-rich (leguminous) vegetables and animal proteins. Because of their high nutritional value, millets have been recently renamed 'nutri-cereals' by the Government of India through a Gazette Notification (Ministry of Agriculture and Farmers Welfare, 2018).In recent times, there has been noticeable progress in the development of millet processing machinery, enabling a more effective preparation of value-added products from SM. Each subtype of SM has unique physical, nutritional and processing qualities. Varietal selection within each SM with desired nutritional and processing traits is a prerequisite for making value-added products or novel food items and recipes. Today, there are many new varieties of SM, including biofortified ones, which could be utilized to boost nutritional security.Germplasm characterization is the process allowing a detailed description of accessions at phenotypic, biochemical and molecular levels. Owing to their unique genetic diversity, combined with great nutritional properties, SM offer a tremendous opportunity for diet diversification, which should be better capitalized on. Over 133,000 germplasm of SM have been conserved globally (Vetriventhan et al., 2020). The International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) conserves over 12,000 accessions of six SM, and germplasm diversity sub-sets evaluated for grain nutrients composition have revealed significant variability; numerous trait-specific germplasm have been identified so far in support of crop improvement (Table 26.1). Some of the millets, in general, contain lower amylose compared to wheat and rice, which may be a factor that results in high glycaemic index. There is, thus, a need to identify varieties of SM with higher amylose for slower sugar assimilation that would, thus, be better suited for diabetics.SM are neither ready-to-eat (RTE) nor ready-to-cook (RTC) grains and need to be processed (Saleh et al., 2013;Jaybhaye et al., 2014). Commonly followed, conventional, contemporary and novel processing techniques to exploit the nutritional and value-addition potential of SM (Figure 26.2) are discussed below.The term 'milling' in the context of SM refers to de-husking and de-branning operations, similar to those done in rice, and to size reduction and gradation as done in wheat. In the case of SM except FM, the grains can be de-husked in a centrifugal sheller, rubber roll sheller or even in the traditional disc mills and then de-branned to a desirable degree of polish. Decorticated as well as de-branned millets can be cooked as rice or may be flaked or used to prepare expanded grains or pulverized and size-graded to prepare flour or semolina for conventional food preparations. Hardening the endosperm through hydrothermal treatment improves dehulling efficiency. Milled millets have improved bioavailability of nutrients and higher consumer acceptability. The bran fraction from SM has higher oil and nutraceutical content whereas FM seed coat, rich in phenolics, may serve as functional food additive (Devi et al., 2014). L arge-scale SM milling systems involve high capital investments. However, today, small-scale, low-cost millet dehullers and integrated millet mills equipped with pre-cleaner, destoner, dehuller and gravity separator are also available.Grain popping is a popular dry-heat (high temperature short time-HTST) treatment, which is simple and least energy-intensive processing method followed to prepare RTE products. Wholegrain SM are used to prepare popped/ puffed grains. Normally, the expansion volume of popped SM ranges from 7 to 12 ml/g (the highest being for PM and the lowest for BM). A few good popping varieties of SM have been identified (Malleshi, 1989;Delost-Lewis et al., 1992, Mirza et al., 2015). During popping, due to the heat, the lipases get denatured and this enhances the shelf life of the product. Now-a-days, expanded SM are also emerging, which are prepared using dehulled/debranned grains following gun-popping process or processingparboiled millets similar to rice (murmura). Expanded millets have high potential for confectioneries, low-fat breakfast cereals, cereal bars and also as a thickener in soup mixes.Parboiling or hydrothermal treatment hardens SM and improves their decortication or milling, as well as cooking, characteristics. The process also facilitates resistant starch formation, minimizes the loss of vitamins and minerals during milling and improves the storage qualities of millets (Shobana and Malleshi, 2007). Normally, SM with denser endosperm and high amylose content yield better quality parboiled millets. Parboiling is not practiced extensively but it has very high potential for extended uses of SM.Flakes from millets are prepared by traditional edge runner, roller flaker and extrusion cooking methods. RTE flakes result from the process of starch gelatinization; they are used for a wide range of snacks, roasted flakes find applications in granola bars, breakfast cereals and muesli formulations. Generally, bold grains with well-filled starchy endosperm yield better quality flakes.FM has unique potential for malting and its malt is a storehouse of active hydrolytic enzymes, andtermed as\"Amylase Rich Food\". Thus, it finds a place in the preparation of infant, weaning and enteral food formulations. Germination lowers anti-nutrients and enhances mineral bioavailability. Varietal variations of malting characteristics in FM have been observed and varieties 'Indaf ' 1, 3 and 9, and Annapurna have been identified as good malting strains (Malleshi and Desikachar, 1979). Further screening of germplasm for identifying or breeding malt-millet accessions deserve attention.Popular fermented FM-based alcoholic beverages in India are 'Kodo ko jaanr', 'Koozh' and 'Chhang', while lactic fermented beer is popular in sub-Saharan Africa. Fermented products have higher protein and starch digestibility and lower antinutrients. Ambali, a mild, auto-fermented thin porridge, is a popular product made from FM. Currently idli, dosa and other traditional Indian f ermented products are prepared from all types of SM.Various food products from SM are produced by adapting both cold and hot extrusion technologies. SM are non-glutinous cereals and, hence, need special pre-treatments for the preparation of cold extruded products such as vermicelli and pasta (Malleshi, 2007;Ushakumar and Malleshi, 2007). Shobana et al. (2018) successfully prepared medium GI gluten-free vermicelli from SM by cold extrusion. RTE snacks, breakfast cereals and specialty foods such as 'Smoothix' are produced from SM (Ushakumari et al., 2004). Normally, millets with higher amylose content are more suitable for preparing cold extruded products with a firm and chewy texture, whereas hot extruded products are generally not varietal specific. Information on the suitability of SM varieties for such products would be valuable so as to enhance the production of these high-value products for both the national and international markets.Due to an absence of gluten, SM are a challenging ingredient to use for bakery and confectionary products similar to those obtained from wheat. However, composite flours consisting of wheat and SM flours (up to 30%) can be used for the preparation of pizza, cookies, cakes, muffins, flatbread, etc. FM varieties GPHCPB-149 and VL 324 are more suitable for biscuits (Kaur et al., 2020). According to Desai et al. (2010), 50% of malted FM flour can be utilized in cake formulations. Based on these findings, there is a need for greater screening of SM germplasm in order to identify varieties suitable for each of these products.There is ample scope for the preparation of SM-based RTE and RTC products such as papad, sandige, murukku, chakkuli and ready-to-warm rotis (similar to Mexican tortillas) on industrial scale, as such products are in great demand.Papads from FM are very popular whereas multi-millet baked as well as deepfried snacks are also gaining popularity. The use of SM for making ice cream, halwa, idli, dosa and traditional sweet and savoury products is now possible thanks to the latest findings in food technology.SM are starchy grains and can be used for the industrial-level production of starches and starch derivatives such as resistant malto-dextrins (soluble fibre with less viscosity) and glucose. However, lower level of starch content in SM hinders their use in Industrial level production of starch and allied products including ethanol. Suitable SM germplasm with desirable carbohydrate characteristics need to be identified for this purpose.All these are contemporary technologies being applied to SM for the development of healthy, wellness, weaning and supplementary foods; milk-based beverages can be also prepared.Another area that can be explored is the application of nanotechnology to prepare millet flours with characteristic physical and rheological properties for diverse food applications with enhanced bioavailability of nutrients and phytochemicals. Milk and millet-malt-based fermented probiotics indicate a possible use for millets in synbiotic foods (Chaudhary and Sreeja, 2020).The glycaemic properties of SM preparations range from low to high ( Shobana et al., 2013); however, the information on varietal variations is still lacking. Identifying suitable germplasm for high amylose and soluble dietary fibre contents and complex-rigid protein and starch architecture may help in identifying low glycaemic index (GI) millet products.Identifying suitable germplasm for specific foods, developing value chains for consistent supply of such varieties to processing industries and creating public awareness about the health benefits of SM need to be better addressed.SM are important alternative cereal grains to help mitigate malnutrition, of both the under and over kind. Millet varieties with higher protein, dietary fibre and micronutrient content, and better bioavailability of nutrients would be suitable for preparing holistic SM-based products, while high-amylose varieties could beAgriculture and allied activities are a major source of livelihood for almost 60% of the Indian population. Nearly 85% are small and marginal farmers with less than five acres of land (GoI, 2011). Within this scenario, leveraging agriculture for nutrition is a strategic pathway to impact that should be decisively promoted. There are six main pathways linking agriculture to nutrition. Three are related to the nutritional impacts of farm production, farm incomes, and food prices. The other three are related to agricultural linkages with gender, i.e., how agriculture can influence women's empowerment, childcare and feeding, and women's and children's nutritional outcomes (Kadiyala et al., 2014). In spite of a major share of population dependent on agriculture, and agriculture's potential to improve nutritional outcomes, the nutritional indicators of India's population tell a different tale. In 2015-2016, 38.4% of India's children below the age of five were stunted, 35.7% were underweight, and more than 50% of women and children were anaemic (IIPS and ICF, 2017).Millets promoted as a part of leveraging agriculture for nutrition through nutrition-sensitive agriculture policies and programmes have the potential to improve nutrition outcomes. Farming System for Nutrition (FSN) is an example of nutrition-sensitive agriculture policy, defined by Prof. M. S. Swaminathan as \"the introduction of location-specific agricultural remedies for nutritional maladies by mainstreaming nutritional criteria in the selection of farming system components involving crops, animals and wherever feasible fish\" (Nagarajan et al., 2014). Nutrition awareness is an integral component of the FSN approach. The M. S. Swaminathan Research Foundation (MSSRF) undertook a study between 2013 and 2018 to demonstrate the feasibility of an FSN approach to addressing undernutrition under the research programme \"Leveraging Agriculture forNutrition in South Asia\". The study was undertaken in a core set of seven villages (658 households, 2,845 people) in the Koraput district, Odisha, and five villages (556 households, 2,254 people) in the Wardha district, Maharashtra, both areas of millet cultivation and consumption (Bhaskar et al., 2017).The promotion of nutrient-dense millets (sorghum in Wardha and finger millet in Koraput) represented a key crop intervention under the approach. The National Food Security Act (NFSA), enacted in 2013, provides for the inclusion of millets in government food distribution programmes like the public distribution system (PDS) and supplementary nutrition programme (SNP) under the Integrated Child Development Services (ICDS). Karnataka was the first state in the country to introduce the procurement of millets for supply under the PDS. 1 This chapter examines the acceptability and viability of millets as a component of the FSN approach and in the PDS.Finger millet and sorghum are hardy, nutrient-dense, largely rainfed crops that have been a part of the traditional diet of Indigenous communities in many parts of the world. In India, different millet species are cultivated in different regions of the country. Overall, their cultivation and consumption has been on steady decline (Raju et al., 2018).Finger millet (Eleusine coracana) is among the major crops cultivated in the Koraput district, Odisha. It is grown in the kharif season ( June-September), on marginal lands in the upland and hilly regions, with few external inputs, either as a pure crop or under mixed-cropping systems. 2 It is sold directly as a grain or is brewed into local beer for sale in local markets. However, the area under finger millet cultivation in the district declined by 55%, from 144,480 ha in 1980 to 65,160 ha in 2013, leading to reduced consumption (GoO, 2015). Due to traditional cultivation practices, the grain yield is as low as 4 q/ha under the broadcasting method; even with traditional transplanting methods, the yield is only 9 q/ha (Adhikari, 2014). The primary reasons for low production are poor crop management (use of low-quality seeds, broadcasting method of sowing leading to low plant population, lack of nutrient and/or weed management practices, etc.) and the replacement of existing millet fields with commercial plantations of eucalyptus, leading to reduced consumption of this food by local communities (Pradhan et al., 2017). One possible way to improve the food and nutrition security of the population is to improve the yield of this native crop that is highly adaptive to the local climate, has a high nutrient value, and can efficiently withstand biotic and/or abiotic stresses. Therefore, under the FSN study, one intervention was to focus on increasing the productivity and profitability of finger millet, alongside nutrition awareness initiatives (Pradhan et al., 2019).The traditional practice of cultivation included broadcasting local landraces of finger millet at a high seed rate (25 kg/ha), carried out by farmers as a safeguard measure against poor seed quality and uncertain soil moisture; this practice results in a very dense crop, causing crowded plant populations and high competition for water and the scarce nutrients present in the soil. Inadequate fertilization coupled with poor crop management practices results in low yields. Seeds saved from these fields also turn out to be of inferior quality, with considerable physical mixing, which further adversely affects the yield potential. The FSN study included on-field demonstrations (OFD) in the fields of seven farmers over 0.52 ha in kharif (2015)(2016), in order to select the most suitable variety and appropriate agronomic practices for higher productivity. GPU-67, a high-yielding finger millet variety selected under a participatory varietal selection programme conducted earlier, was taken along with farmers' varieties for comparison (Mishra et al., 2014).GPU-67 is a semi-dwarf (non-lodging) medium-duration variety (114-118 days) with desirable traits like good panicle shape, no grain shattering, and a yield potential of 30-35 q/ha. Improved agronomic practices adopted in the intervention included: (a) nursery raising with seed rate of 5 kg/ha -1 ; (b) line transplanting of three to five week old seedlings; (c) population density at 20 cm × 10 cm; (d) application of recommended doses of fertilizer in the order of 40:20:20 kg nitrogen (N), phosphorous (P), and potassium (K) per ha; and (e) timely weeding and need-based plant protection measures. Each farmer's field in the OFD was considered as a replicate, and the allotted area under each farmer was split into four treatments for yield comparison. The details of the treatments with farmers' variety and improved variety are provided in Table 27.1. GPU-67 under improved agronomic practices (T1) produced the highest grain yield of 2,067 kg/ha, 31% higher than that with farmers' variety and with traditional practices, providing a larger quantity of nutrient-rich food to farmers' households. It was, thus, chosen for promotion and upscaling. The farmers' adaptability to the recommended practice was so good that by kharif 2017-2018, it was being cultivated by 167 farmers across 23.5 ha in the seven core study villages, and by 87 farmers in 11 ha in 18 other neighbouring villages. For sustainability, triple-layered bags were distributed among the farmers for the safe storage of seeds. A village-level seed bank was also established for timely availability of quality seeds and to help farmers in distress. Small-scale, village-level millet processing mills were installed to encourage farmers to process and consume their produce. Furthermore, several nutrition awareness initiatives were conducted about the nutrient content of the crop, its consumption benefits, and recipe demonstration, in addition to exposure visits to finger millet fields and trainings on improved agronomic practices. The end-line food consumption survey revealed an increase of 13% in the average intake of finger millet over the baseline (70 g/person/day). In addition, the number of households consuming finger millet daily increased from 172 during the baseline to 187, with 68% sourcing it from their own production versus 47% during the baseline.Akin to finger millet, the area under sorghum has been also falling in Wardha (Rukmani and Manjula, 2009). A similar approach was followed to promote the cultivation of that crop and its consumption. The experience in the five core study villages was analogous to that of finger millet in Koraput, with 26% of households cultivating and consuming sorghum at end-line as compared to 6% during baseline; there was also an increase of 64% in average sorghum intake over the baseline (150 g/person/day).Given that millets are naturally nutrient-dense cereals, making them available through the PDS can help address the problem of micronutrient deficiency among poorer households (Raju et al., 2018). After the enactment of the NFSA in 2013, the Karnataka government began to procure millets for distribution through the PDS -finger millet in south Karnataka and sorghum in north Karnataka as traditionally the cultivation and consumption of these two millets happens in these respective geographical areas. The scheme, titled \"Anna Bhagya Yojana,\" had the double objectives of buying millets from farmers, which supported income generation for rural farm households, and allowing households with PDS cards to gain access to nutritious food grains at low prices (KAPRICOM, 2014).As part of the study by MSSRF, primary surveys were carried out in four districts of the state. Districts with the highest numbers of procurement and distribution of finger millet through the PDS (Mandya and Tumkur in south Karnataka) and of sorghum (Gadag and Dharwad in north Karnataka) were selected for the primary survey. Two hundred farmers (50 in each district) were interviewed to collect information on issues related to production, pricing, and procurement. A consumer survey was conducted across 50 rural and 50 urban households in each district, after ensuring that they were either BPL (below poverty line) or Antyodaya Anna Yojana cardholders and eligible to receive grains under the PDS (Rajshekar and Raju, 2017).The state government had offered attractive procurement prices, including a bonus over and above the Minimum Support Price (MSP) announced by the Central Government (Rs 2,250 per quintal for finger millet and Rs 2,300 per quintal for sorghum), to encourage farmers to grow millets and ensure sufficient quantities for procurement. Interviews with farmers showed that the MSP did cover the actual cost of production (A1) and imputed cost of family labour, making it attractive for them to cultivate millets. However, the time taken for payment after the government's procurement ranged from about three to four weeks, as against payment received in one to two days in the case of open market sales in all the surveyed districts. This time-lag offset the benefit of the higher price offered by the government. If announced on time and sustained, and if the procurement window is increased, this price should encourage farmers to switch to millets from cotton and maize.On the consumption side, 87% of households in Karnataka reported consuming finger millet or sorghum. For 48% of the population of rural and urban Karnataka, millets accounted for 20%-40% of total cereal consumption. The average per capita monthly consumption of finger millet by rural households fell from 1.8 kg in 2004-2005 to 1.2 kg in 2011-2012, and from 1 kg to 0.8 kg for urban households. Similarly, the per capita monthly consumption of sorghum for rural households declined from 2.3 kg in 2004-2005 to 1.4 kg in 2011-2012, and from 1.2 kg to 0.7 kg for urban households in the same period. Wheat and finger millet or sorghum were consumed in equal quantities in urban areas, while in rural areas, millet consumption was higher than that of wheat. The majority of the respondents, when asked about desired changes in the PDS, did not want an increase in the quantity of millets supplied if it came at the cost of a lower quantity of rice. The main reasons given were that the quantity of rice supplied was already insufficient and that farmers could grow finger millet and sorghum if required, but could not grow rice as easily. Reasons given for the strong preference for rice were its taste, ease of preparation, and popularity with children. Finger millet and sorghum were preferred for their nutritive value and by those engaged in physical labour. Consumer preferences for different kinds of millet in different parts of the state call for a decentralized procurement and distribution mechanism. Consumer preferences and cultural factors need to be taken into account, and awareness needs to be created regarding the benefits of consuming millets (Raju et al., 2018).The Green Revolution dominated by rice and wheat was backed by public policy and price support. Similar support is required for millets. The NFSA ( 2013) is a major step in this direction. The FSN study by MSSRF showed the potential for increasing the consumption of millets by increasing their production and processing, and promoting awareness on their nutritive value. The study on introduction of millets in PDS highlighted the need for streamlining the government procurement and payment mechanisms and for decentralized processing. Millet farmers in a block or district could be linked with the PDS and institutional feeding programmes, providing them an incentive to cultivate and supply their crops for a ready market. Across India, in many states, different millets are grown in small pockets of lands. Such pockets can be identified and mapped for local procurement in the distribution system to improve food and nutrition security, while also increasing the procurement window and reducing the time between procurement and payment.Millets are generally regarded as women's crops and do not receive the attention given to rice and wheat. This has to change. Agriculture department officials and extension staff need to be sensitized on how to guide farmers to follow improved cultivation practices and use improved varieties of seeds. Millets should be promoted as climate-resilient crops and more R&D should be done by agricultural universities and research institutes to produce high-yielding varieties that are profitable for farmers. A few initiatives are underway and need to become more widespread. The government of Odisha launched the Odisha Millet Mission in 2017, in partnership with NGOs and research institutes, to increase production and consumption of millets. 3 Decentralized cluster-level millet processing units managed by self-help groups or farmers' groups in villages can reduce the drudgery in millet processing faced by women and also boost consumption by producer households.Awareness-raising has to happen at two levels: first of all, at the level of production and production techniques (e.g., line sowing, timely weeding, and proper application of fertilizers); secondly, nutrition awareness under the Prime Minister's Overarching Scheme for Holistic Nutrition, also called the POS-HAN Abhiyan 4 of the National Nutrition Mission should actively highlight nutritive value of millets and promote their consumption. Nutrition awareness workshops should also be conducted at the local level by the ICDS centre workers and ASHA (Accredited Social Health Activists) in villages at regular intervals, highlighting the nutritive value of millets and providing recipe demonstrations. They can be trained and incentivized to conduct such workshops at least once a month, which would increase awareness about the nutritive value of various food groups and the combinations of food to be eaten for better nutrient absorption. Sharing recipes can also be promoted along with the organization of cooking competitions; millets can be cooked in ways that would be more attractive to children (such as snacks) and this can raise their interest in this food instead of viewing it as something they are forced to eat and don't enjoy.The Covid-19 pandemic has turned the spotlight onto the already vulnerable and is expected to further worsen their nutrition status. The closure of schools and ICDS centres has, for instance, put a halt to the noon-meal served to children attending them. At this time, the government issued directives for distribution of Take Home Rations (THR) in lieu of the meal (Bhavani and Rampal, 2020). Millets procured can be a nutritive and integral component of this THR. In fact, millets can also be used for free distribution along with other grains and pulses in food distribution programmes during the pandemic and also during other disasters in future. This would provide income to the farmers while also providing additional nutrition to vulnerable populations. Notes DOI: 10.4324/9781003044802-32Food system solutions incorporating a Smart Food Triple Bottom Line approach 'Food security' was the key focus in developing countries while mass starvation was a real threat. Alleviating hunger was a driving force for the Green Revolution (Behera, 2017). Awareness of hidden hunger then surfaced, and 'nutrition security' was added to the rhetoric. More recently, the UN and other organizations have underlined the imperative for 'sustainable diets', defined as \"diets with low environmental impacts which contribute to food and nutrition security\", and the urgency to set targets to strive towards this.The next critical step is to cater to all these needs and go one step further with solutions that are not only good for you and the planet, but also for the farmer. The Smart Food Triple Bottom Line advocates for solutions that approach all these three areas in unison. This is recommended as a framework for food system solutions. It will also help break down both discipline and sector silos.Applying these solutions with crops that are 'smart foods', that is, foods that are inherently good for you, the planet and farmer, will strengthen our ability to achieve the 'Smart Food Triple Bottom Line'. Many NUS may fit the criteria of being a smart food. They may be good for the farmer and environment because they bring diversity to the farm, are more suitable crops for varying agroecologies, are crops that need fewer inputs and are resilient to the vagaries of climate change. However, without well-developed value chains that are sensitive to consumer awareness and demand, it is challenging to make them financially viable for the farmer.It is paramount that having less-developed value chains do not become the excuse for continuing to support the same few major crops. It is regularly expressed that we need to transform the food system. A purposeful and consistent strategyThe importance of the triple bottom line and diversifying staples Joanna Kane-Potaka, Nigel Poole, Agathe Diama, Parkavi Kumar, Seetha Anitha and Oseyemi Akinbamijo for the said transformation becomes imperative and the 'Business as usual' will not achieve this. Changing where we invest resources and supporting policies are needed, and strengthening value chains of smart foods so as to mainstream them is an opportunity for us to contribute to many of the UN's Sustainable Development Goals (SDGs) in unison.A project in Kenya applied the 'Smart Food Triple Bottom Line' approach with NUS, tackling diversity in diets, diversity on farms and diversity in incomes, with the aim of crops being commercially viable as well as being consumed by the local community to improve diet diversity and nutrition. Six smart foods including millets, sorghum and legumes were selected and focused on. Families of over 60,000 children below the age of five were reached through volunteer Smart Food Ambassadors, who spread nutrition messages and conducted fun activities like cook-offs. The integration of education, health, nutrition and a fun approach in conveying the same message imparted strong knowledge of millets, sorghum and legumes.In just one year, the behavior patterns of the women and children changed significantly towards adopting a more micronutrient-rich diet, indicated by an increase of 15% in dietary diversity score for women and of almost 80% in the children's dietary diversity score. Similarly, consumers showed a considerable change in buying patterns. Rich in iron and fiber, both cowpea and pearl millet sales at the farm level more than doubled. Production also increased for all the smart food crops except finger millet. Consumption of four of the smart food crops increased. Households became more commercially oriented and sales of four of the crops increased.(ICRISAT, 2018)To complement this approach of all food solutions having a Smart Food Triple Bottom Line, there is also a specific objective under the Smart Food initiative to diversify staples. Big impacts can be achieved by focusing on diversifying staples, given that across Africa and Asia staples can typically constitute as much as 70% of what is on the plate, and are often refined and low-nutrient carbohydrates, with approximately 60% of calories in developing countries coming from cerealsa number that can even be more than 80% in the poorest countries (Awika, 2011;Anitha et al., 2019a). The diversification of staples with foods that fit the smart food criteria of being good for you, good for the planet and good for the farmer will require dissolving the boundaries of the 'Food System Divide', where the largest investments have for decades gone into the Big 3 staples -rice, wheat and maize -including government support, private industry investment, R&D, product development and even development aid.NUS can regain their popularity and enter the mainstream through concerted multi-pronged efforts across the whole value chain. Lessons can also be learnt from the successes of the Big 3, but approaches must be applied in an appropriate, sustainable and healthy way.Some steps key to diversifying staples being pursued as part of the Smart Food initiative are:1 Dedicated effort on just a couple of smart foods: Breaking the food system divide will take a focused approach and significant investments to develop value chains. Hence, an approach focused on just a couple of foods at a time is required. This complements initiatives that work broadly on popularizing NUS to bring diversity to farms and diets, and also builds niche markets that can be the springboard for larger markets in the future. 2 Selecting millets and sorghum first: Millets and sorghum were selected as the first foods to focus on and mainstream as they fit the profile of a smart food. Moreover, they were already the staples across many countries in Africa and Asia, with different millets originating from many countries and continents and growing from the Sahel to the Himalayas. They also fit into many global health food trends -being a super food, an ancient grain, gluten free with a low glycemic index (GI), high in fiber, good for managing weight, and good with strong health management.In particular, millets and sorghum are highly nutritious and fulfil some of the biggest health needs. For example, a few millets are very high in iron and zinc, which are among the top three micronutrient deficiencies globally. Taking bioavailability into account, the right varieties can provide as much iron as white or red meat. Finger millet has three times the amount of calcium found in milk. Most millets have a low GI, which is extremely beneficial within the context of community/public health due to the growing incidence of non-communicable metabolic disorders like diabetes; they are also a good alternative to other food sources high in complex carbohydrates like white refined rice (Anitha et al., 2021). They also have high fiber, reasonable levels of protein and, when combined with legumes, create a complete diet of protein with good levels of all the essential amino acids (Longvah et al., 2017;Anitha et al., 2019b).From a sustainable resource management point of view, millets and sorghum have a low carbon footprint. They are typically grown and thrive with minimal inputs like pesticides and fertilizers. They tolerate high temperatures and survive with very little water. They are often the last crop standing in times of drought, are climate smart and are a good risk-management strategy for farmers. They have multiple uses, from food, feed and fodder, to brewing and biofuels (Tonapi et al., 2015;Davis et al., 2019).3 Create global commodities: While the goal is to contribute to the SDGs and especially help poor and malnourished communities across Africa and Asia, in order to mainstream smart foods as staples, they need to be widely adopted commodities globally. Focusing on portraying millets and sorghum as staples is also a key part of the plan for them to be affordable. 4 The consumer comes first: Most efforts and investments to date in millets and sorghum have been at the farm-production end. There is an urgent need to drive demand, by investing at the consumer end, changing perceptions, building awareness and creating a 'buzz' and desire around these smart foods. This is being achieved by working with food processors, governments and other key influencers. Some key approaches that the Smart Food initiative has used to drive consumer demand include:• Working with the hidden middle: Social entrepreneurs who genuinely want to change the food system for the better, and micro, small and medium enterprises (MSMEs) who are typically the pioneers in creating new consumer preferences, struggle as much as farmers do. Until MSMEs are equally supported, smart foods and NUS won't be available, affordable and, hence, accessible and demanded by consumers. They are often called 'the hidden middle' and need to be recognized as change-makers rather than only as operators in the value chain. Policy support is required to create a better enabling environment for MSMEs to thrive. The Smart Food initiative has launched a 'millet finder' that maps products around the globe to bring attention to the wide availability and silent revolution of millet and sorghum products being made available by MSMEs (smartfood.org, a). • Make it delicious, convenient and easy -the image and the reality:For smart foods to be popularized, they have to be sought by the consumer. Although different foods are consumed for different purposes, to be popular in the mainstream and to reach the largest number of people, in general, food needs to be tasty, convenient and easy to make. • Promotion through chefs: The catering sector is a conduit to taking new foods to the consumer as well as the way to change the food's image. The Smart Food initiative has engaged ambassador chefs, organized cooking master classes in West Africa, including with the President's chefs and a Smart Food Culinary Challenge for student chefs pan-India, and in Tanzania, chefs were introduced to street venders, who were trained on using millet and sorghum flour (smartfood.org, b). • Ambassadors and champions: Influencers are important when perceptions and behavior need to be changed or significant awareness needs to be built. The Smart Food initiative has engaged VIPs to achieve this (smartfood.org, c), e.g., the First Lady of Niger, Dr. Malika Issoufou, became a Smart Ambassador, leading the way to a greater mobilization and commitment by the government for the cause of smart foods. She initiated an international millet festival (FESTIMIL), which captured a lot of attention among consumers, value-chain actors, farmers, processors and small and medium enterprises (SMEs) and served as a platform for a science and policy dialog on better developing value chains. This ledThe smart food approach 331to Senegal announcing its interest in following suit to create an annual millet festival. • Media and social media outreach: Outreach has been key in building awareness and reaching wider audiences (Diama et al., 2020). One example is the smart food reality show on Kenyan national television that reached 800,000 viewers (Vital, 2018). • International platforms: Influencing researchers, governments, donors and industry are important and can be achieved through high-level panel discussions and international symposia (Diama et al., 2020).5 Scientific backing on nutritional benefits: As far less R&D has been invested in NUS compared to the major staples, the field requires additional investment. The Smart Food initiative is currently collating and analyzing all existing nutrition studies on millets and sorghum, and is identifying research gaps. Some nutrition and consumer acceptance studies undertaken by the Smart Food initiative include:• India school feeding study: A millet-based meal introduced for three months with 1,500 adolescent children had significantly higher nutritional levels compared to the control group of iron fortified rice-based meals, see Figure 28.1, and led to:-growth in terms of BMI and height, 50% more in the intervention group relative to the control group; and -high acceptance scoring ≥ 4.5 out of 5 for taste (Anitha et al., 2019a).Key lessons learnt on how to introduce millets to maximize nutritional benefits and acceptance, along with policy recommendations were identified and are shown in Figure 28.2.• Tanzania school feeding study: Over 2,800 students in four boarding schools were introduced to finger millet and pigeon pea in their menu cycle in a participatory approach, taking into account cultural sensitivities. Fifteen months later, the schools were revisited and surveys identified that: • 80% of the students changed their negative perception of finger millet; • >95% of the students wanted to eat the finger millet dishes at school (Wangari et al., 2020). • Myanmar malnutrition and acceptance study: This had a positive impact on the extent of wasting and underweight children between 2 and 14 months of age. Also sensory evaluations showed an average score of four out of five for all recipes and products (Anitha et al., 2019c).Guiding the development of smart foods to keep or maximize their nutritional benefits is critical; this includes:• Popularize whole grain: As most small millets have to be de-hulled, there is a risk they will also be polished to make them whiter and quicker to cook. It is important that consumers are exposed to the unrefined taste and convenient products made with the whole grain. Building awareness about the nutritional value of whole grain is essential. • Not ultra-processed or excessive added ingredients: Efforts to diversify and popularize orphan crops will be to no avail if they are then over-processed and lose their nutritive value or if unhealthy ingredients like sugar, salt, saturated and trans fats and artificial additives are incorporated in high levels.• Selection of biofortified varieties: Nutrition levels vary significantly by variety of the millets, so value chains from seed to consumer need to be The smart food approach 333 developed and branded to recognize biofortified varieties in order to maximize the nutrition levels.The Smart Food vision is a world where food is healthy, environmentally sustainable and contributes positively to the welfare of those who produce it, especially smallholder farmers. Studies have shown the positive nutritional benefits of millets and sorghum and high consumer acceptance for them. With 2023 declared by the UN as the International Year of Millets, this will be the turning point for millets to be globally recognized and popularized. Asia and Africa need value chains developed to be able to leverage the impending millet revolution. This can be the opportunity for millets and sorghum to return to their status as staples across many countries and be globally recognized, heralding their reach as a major staple, showing the potential for smart foods and NUS to gain popularity and acceptance and move into the mainstream.Farming communities have played a crucial role in the conservation and management of agrobiodiversity, including the rich diversity of nutritive crops that their ecosystem supports. Communities and farmers are the key stakeholders in the conservation of NUS, which plays a crucial role in their livelihoods and wellbeing. This chapter records the perspectives of custodian farmers, and the community-based and non-governmental organizations that support them, across the Indian landscape. Frequently identified bottlenecks in the cultivation and consumption of neglected and underutilized species (NUS) include lack of awareness, inadequate skills, drudgery (including limited access to available technology), inadequate support price mechanisms and procurement arrangements by the state, and limited marketing arrangements.To address these issues, key interventions included working on all aspects of millet cultivation. The formation of core groups of millet farmers and selfhelp groups, and participatory assessments of traditional knowledge related to millets were important initial steps to ensure continuity. The technical aspect included the nutritive value assessment, seed collection from farming communities, quality seed production, distribution to farmers, revival of seed storage systems along with exchanges through community seed banks, demonstration of modified methods of cultivation including line sowing, intercropping to increase yield and additional income, and the provision of machinery to reduce drudgery in de-husking millets. The commercial aspect included training on value-addedThe custodians of neglected and underutilized species products preparation, the creation of suitable rural infrastructure, facilitating enterprise units, and identifying and linking producers with potential markets.Smt. Sunadei Pitia and Shri Loichan Sukia of Machhara Village, Smt. Tukuna Burudi, Khiloput and Shri Sunamani Muduli of Janiguda Village of Koraput District Facilitator: Prashant Kumar Parida, MSSRF Millet has a long history of cultivation in the high lands of this region, so much so that Koraput is called the island of mandia (finger millet). Millets, especially mandia, are the staple food of the tribal people of Koraput. They begin their days, especially in the summer, with the consumption of mandiapejo (ragi gruel).Though millets are still part of subsistence agriculture in Koraput, the industrialization of the recent past has had a major impact on their cultivation. The area under millets has reduced drastically as farmers have shifted to commercial crops, with eucalyptus tree plantations and maize replacing large areas previously occupied under millets cultivation.Most NUS crops like finger millet, little millet, foxtail millet, pearl millet, niger, horse gram, red gram, dolichos lablab, wild vegetables, etc. were mainly part of shifting cultivation practices (Podu Chaso). Now, the Forest Department or community forest groups like the Vana Surakshya Samiti (VSSP) prohibit such practices. Moreover, people are not so interested in cultivating NUS crops in their meagre land, replacing other crops that may fetch better returns. These NUS crops are mostly suited for cultivation on the uplands rather than other land categories. Other factors for the decline included the lack of marketing opportunities for NUS crops with remunerative prices. Since no processing facilities for NUS are available in rural areas, there are very low-level value-addition opportunities, leading to distress sales of surplus grains. Modernization has also influenced the present generation a lot, especially children who are not so interested in consuming millet in their daily diet, with the supply of rice in Public Distribution System (PDS) by the state government having changed the dietary preference of most tribal people.Interventions to be pursued for their effective promotion:• Institutions should create opportunities for processing at the Village/Gram Panchayat level, along with value addition, marketing, and remunerative prices, which will encourage farmers to cultivate more NUS crops. • Researchers have to revisit the crop species available in the region and fo cus on seed purification and quality seed production of traditional varieties,The custodians of NUS 339 blending with improved varieties, and must make available quality seeds at reasonable rates at the right time. • There is a need to shift from monocropping systems to traditional cropping systems such as mixed cropping, intercropping, multiple cropping, and crop rotation practices, with the introduction of modern technologies and sustainable agricultural practices and a focus on capacity building of farmers.Mr. Loknath Naure, Kearandiguda, Bisamacataka, Rayagada, Odisha Facilitator: Mr. Biswa Sankar Das, WASSAN.NUS such as millets, pulses, and oilseeds are very important. They are very healthy for humans and for soil. This also reduces pest incidence and provides different foods for consumption.Previously, people used to grow different crops for meeting their food security needs. But after PDS has come in, people have slowly stopped growing different crops. In addition, the younger generations are more used to the taste of rice, and prefer not to consume millets and coarse cereals. Without the need for consumption, there will be reduction in production.The government should create awareness and build prestige around these crops. They should also be included in schools and hostels so the youth does not lose interest. Some incentives should be given to promote them.Ramkali Bai, Meera Bai, Magartagar Village, Dindori District Phool Bai, Bhilai Village, Indra Bai, Dhiravan Village, Dindori District Facilitator: Mr. Sharad Mishra, Action for social Advancement, BhopalViews with regard to NUS?Kodo and kutki millets are well known in Madhya Pradesh and many farmers maintain their seeds. These crops are the lifeline of the tribal communities, and they are eager to learn of improved practices for their cultivation and use. The availability of improved varieties of millets, better linkages of farmers with markets, and improved processing units to reduce the drudgery of women are key interventions in our view.Farmers in the Kachchh District are conserving diverse traditional seeds, which they use to cope with climate variability. For example, if there is an early monsoon, they grow bajra (pearl millet), but if the rains are delayed by a month, they opt for sorghum. Similarly, they choose white sesame in the case of early rain, and prefer brown sesame for mid-late rains or brown type for late rain. This is to say that the more crops and varieties we keep in the communities, the more options we have to adapt to climate variability and satisfy other livelihood needs.Today, only few farmers still maintain traditional seeds, with low genetic purity. This is because traditional crops have been widely replaced by modern ones, promoted aggressively by the government and private seed companies. Extension agents denigrate NUS as being inefficient crops and this is not helpful.• All NUS should be documented for their traits like drought tolerance or disease resistance, and their germplasm should be protected against bio-piracy. • The government should change their attitude and promote NUS for their special features such as nutritional value, drought tolerance, etc. • Incentives should be provided to farmers for the conservation and cultivation of NUS.Mrs. Nanchiyamma & Manikandan, Kallakkara Village & Rami and Maruthi, Marrappalam Village, Sholayur Panchayath, Attappadi Block; Maruthan Ganeshan, Nakkupathi Village, Agali Panchayat Facilitator: Mr. Girigan Gopi, MSSRF Attappadi is valley in the Western Ghats inhabited mostly by tribal communities. People here appreciate traditional crops like NUS for its adaptation to harsh climates and difficult environments and for being an important source of food. The area under NUS has shown drastic reduction since the 1980s for various reasons, including the abandonment of agriculture by youth, changes in traditional diets, high competition from subsidized rice, laborious processing of NUS, and preference towards modern foods.Millets and other NUS would be very helpful to fight the growing malnutrition recorded in Attappadi; however, farmers feel that it will be very difficult to bring NUS back into cultivation. We believe, however, that some interventions from the government can help towards that goal, e.g., the promotion of collective ownership of land, more credit opportunities to farmers, dissemination of improved know-how, more irrigation, and protection from wild animals. As for younger farmers, we believe that if the cultivation of NUS were shown to be profitable, they would be happy to remain in their farms without migrating. In this regard, the creation of local markets for NUS will help realize fair prices for these products and improve their commercialization. Many varieties of NUS have been lost and we need support to better safeguard their seeds; we also need improved varieties, more irrigation for our fields, promotion of collective actions, improved processing (especially for millets), and application of the PDS also for these local crops.Ms. Ridian Syiem, Khweng, Ms. Bibiana Ranee, Nongtraw Facilitator: Dr. Melari Shisha Nongrum, North East Slow Food & Agrobiodiversity Society (NESFAS), MeghalayaWe belong to Indigenous communities that altogether form a numerically small minority of India's population. The state of Meghalaya is inhabited largely by the Khasi people (including Khynriam, Bhoi, War, Pnar, and Lyngngam sub-groups) and Garo Indigenous communities. Our forests are rich in biodiversity and agrobiodiversity, with many wild edibles (green leafy vegetables, fruits, tubers, shoots, nuts and seeds, and mushrooms) used in traditional food preparations. Wild edibles are important to us as Indigenous communities and they are an integral part of our ancient food culture. These edibles are safe foods as compared to most market foods, which contain a lot of toxins due to the heavy use of chemical fertilizers and pesticides. They can be found both in the wild and in home gardens, and are precious foods to supplement our diets, especially during lean seasons. Even during the lockdown period due to the COVID-19 pandemic in April 2020, many of these plants (wild and cultivated) helped households with a secure source of food.Though wild edibles are integral to the traditional foods of the Indigenous People, we are seeing a change in their availability and consumption. Due to growing populations in the Villages, there is increased pressure on land and forest resources. There is exploitation of forests for various purposes, either for fuel wood, the heavy collection of non-timber forest products, wood collection for making charcoal, stone quarrying, mining of coal, or limestone mining, which destroys both land and forests. Also agricultural activities such as cash crop cultivation can be deleterious for wild edibles, due to massive land clearing associated with them. Because of these facts, we need now to walk increasingly longer distances to gather wild edibles, which is affecting regular access to and consumption of these plants. Also, these days, much of the youth and many young mothers regard wild edibles as a not-so-nutritious food. Major crops dominate markets and the difficulties in accessing these for wild edible sellers are also important limiting factors for their popularization.Despite these challenges, the translation of research evidence of the high nutritive values of wild edibles into local and simple languages by organizations like the NESFAS has really helped the youth and people at large regain confidence in wild edibles. More of such awareness-raising is required for school children and youth so that they understand the importance of wild edibles in enriching their diets.Knowledge sharing among farmers is key to sustaining and continuing the existence of this knowledge. This sharing can be done across different platforms such as Agroecological Learning Circles, a platform of farmers that NESFAS has facilitated in many communities; the Indigenous Food Communities Alliance among the youth; and also in the school gardens where children can grow and learn about the wild edibles. From our experiences, this sharing of knowledge has led to sharing seeds. \"If we lose our seeds, we have lost our food,\" said one custodian farmer. Preserving and promoting the cultivation of underutilized crops is very important. Thus, it is important to preserve traditional seeds as individual farmers or in community seed banks.We can also allow wild edible plants to grow in kitchen gardens and cultivated fields. This will enhance access to these edibles as we frequent the fields regularly. This will enhance the access and consumption of wild edible greens.The participation of the private sector is widely considered critical in order to achieve a truly sustainable conservation and use of agrobiodiversity. The role of the private sector is particularly relevant for the use enhancement of neglected and underutilized species (NUS) (Padulosi et al., 2013(Padulosi et al., , 2019) ) whose promotion requires knowledge of the proper functioning of value chains -from farm to fork -that is rarely available to communities, community-based organizations (CBOs) or even government organizations. Experiences and competences from the private sector are highly complementary to those of other stakeholders; thus, canvassing the cooperation among all actors should be central to all projects and programmes focusing on NUS. This is not a minor task though. Different are too often the sensitivities of private firms with regard to the methods, approaches and tools for the sustainable use of NUS, in terms of type of biodiversity to deploy in production systems (e.g., landraces vs. uniform, high-yielding varieties), participation of vulnerable groups, interest in safeguarding traditional knowledge, fair and transparent sharing of benefits among value-chain actors, capacity building of local actors, especially youth, women or Indigenous People, to just mention a few. The 11 contributions included in this chapter (from Guatemala, Brazil, India, Nepal, Sri Lanka and Kenya) are brief testimonials of private companies engaged at various levels in business activities dealing with NUS. The most common messages across all contributions include calls for the greater involvement of private companies in NUS projects, greater support from governments for upgrading the processing technologies of private firms engagedAna Luiza Vergueiro, Daniel Kirori, Jacqueline Damon, Jose Alfredo Lopez, Leon Kenya, Mahesh Sharma, Ram Bahadur Rana, Margaret Komen, Meghana Narayan, Michael Ngugi, Rohan Karawita, Sergio Vergueiro, Serkan Eser, Shauravi Malik, Simon Nderitu, Sohini Dey, Sridhar Murthy Iriventi, Vikram Sankaranarayanan in the promotion of NUS, greater support from governments in raising peoples' awareness of the many livelihood benefits associated with NUS, greater sharing of research findings with the private sector, capacity building where the private sector can be both a recipient and giver of knowledge, and enabling policies in support of entrepreneurship for the cultivation, processing and marketing NUS. General perspectives about NUS are provided along with some examples on specific issues related to the cultivation, processing and marketing of minor millets or other emblematic NUS.Dr. Rohan Karawita, National Food Promotion Board, Ministry of Agriculture, Colombo, Sri LankaThe main task of Sri Lanka's National Food Promotion Board (NFPB) is to promote local and indigenous foods (there are many NUS among these) as our citizens have become increasingly dependent upon poorly nutritious starchy foods and junk foods rich in fats, and have become used to consuming their meals in short eats. These food habits are not healthy as they cause the spread of non-communicable diseases among the population. As a way to counter these negative trends, the NFPB has been carrying out several programs and projects aimed at increasing peoples' awareness about Sri Lanka's valuable, rich biodiversity and promoting its greater use. Thanks to the Biodiversity for Food and Nutrition Project (BFN), 1 NFPB was able to strengthen these efforts and successfully develop three underutilized fruit drinks, sold in 80 ml ready-to-serve (RTS) bottles (namely 'Ceylon olive', 'Sour soup' and 'Ceylon mango'), all very natural and free from artificial additives and preservatives. These drinks are now being commercialized by the Peradeniya Agriculture Department's Food Research Unit in Gannoruwa.Though NFPB has manufactured RTS drinks in the past, the demand for such products has always exceeded our capacities. Due to a number of factorsincluding the lack of novel technology, insufficient labor force, high unit costs and limited fruit pulp preservation capacity -we were, in fact, unable to manufacture RTS products regularly throughout the year. Not helpful either have been NFPB's efforts in disseminating relevant technologies to local communities in the hope that they would pick them up through cottage-based productions.What is much needed to broaden the use of NUS in Sri Lanka is the strengthening of their commercialization through the close involvement of the private s ector.Although at NFPB we already sell RTS products made out of NUS through the company 'Thriposha Limited' and our two outlets in Narahenpita and Dehiwala, we do recognize the need to invest more in marketing efforts. To that regard, NFPB has now taken all the steps necessary to transfer RTS technology to a fruit-processing factory, the 'V and J Industries', 2 located in Pallekele (Kandy).All is ready for the new arrangements to take off and as soon as the COVID-19 pandemic eases up the pressure on our work, we are ready to start this new joint venture. The legal agreement between this company and NFPB will allow the mobilization of the company's know-how and physical capacities to support the wider promotion of NUS products across the country. This is expected to create greater demand of NUS raw products for farmers and, in so doing, boost local incomes, open up job opportunities and ultimately contribute to empowering smallholder farmers as per our vision.Margaret Komen, MACE FOODS Ltd., Eldoret, KenyaThe increasing awareness of the pro-health properties of non-nutrient, bioactive compounds found in fruits and vegetables has directed immense attention towards vegetables as vital components of our daily diets. For Kenya and sub-Saharan Africa in general, such an attention is very significant, as leafy vegetables have long been indispensable ingredients in the traditional sauces that accompany carbohydrate-rich staple foods. As a result, demand for traditional vegetables such a black nightshade, spider plant, common amaranth and cowpea leaves have been on the rise in local, urban and regional markets across Kenya. These vegetables have been typically growing in the wild, or in disturbed areas such as wheat farms, disused cow sheds and other farm areas.In 2009, Mace Foods Ltd. (MFL) embarked on an ambitious project to produce, process and market five varieties of African leafy vegetables (ALV) for the East African diaspora and medium-income markets in urban areas. Mace Foods Ltd aimed at bridging the demand and supply gap between rainy and dry seasons as well as delivering high-quality, hygienic and nutritious food options to busy working-class women, who have little time to spare for selecting, plucking, cooking and serving these vegetables on a regular basis.Since its inception, MFL has mobilized, recruited and trained many farmers in the production of ALV. So far the enterprise has piloted black nightshade (managu), common amaranth (dodo), spider plant (saga), cowpea leaves (kunde) and kales (sukuma wiki 3 ).• More information be provided to consumers about the health benefits associated with the consumption of NUS. Both governmental and nongovernmental organizations should provide platforms to educate the publi c on this matter, for example through media, road shows, trade fairs, schools and organized visits to research institutions • Major institutions like ministries of agriculture, should lobby for policy bills in support of the wide dissemination of food processors like flour mills and snack processors that can help people make better use of local crops, to produce foods like 'ugali' from composite flour (i.e., maize plus millets flour, rather than only maize flour) or snack bars and breakfast cereals from NUS One of the main technical challenge encountered in processing NUS had to do with the popping machine. Through numerous trials using modified parts of the machine, we were able, in the end, to address successfully such a problem and our company is now able to use the right pressure for the popping any type of cereals, including NUS.Ing. Jose Alfredo Lopez L., EUROTROPIC, S.A., Guatemala Central AmericaEurotropics S.A. is a Guatemala-based import-export company established in 2003, dealing with exporting food and ornamental plants. In 2011, we were contracted by the National Council of Science and Technology, the University of San Carlos, the University Del Valle de Guatemala and the University Mariano Galvez, to characterize endemic species of high nutritional and medicinal value. After five years of research, planting, germinating, cultivating, pruning, harvesting and analyzing roots, seeds, stems, leaves and flowers of numerous species, grown from 14 m a.s.l. to 3,240 m a.s.l. in the high mountains of Los Cuchutamanes, we discovered plant species with amazing properties for pregnant women, kids, young, adults and elderly people! We decided, thus, to rescue those amazing plants to help Guatemala strengthen food security and the health of its people. This country has a shameful 49% level of malnutrition among children under five years old! Almost half the population has low corporal weight, and low neuronal development. This is no longer acceptable and we wanted to help change that.First of all there is a lack of education related to Mesoamerican plants that are much underutilized in our current food systems. About 25,000 years ago, these plants grew wild in this marvelous, biodiversity-rich region, and we have documents indicating that such plants were already being widely used by the Mayan civilization some 4,000 years ago. Though still used today by some Mayan tribes, they are rarely known by the young people. Very sadly, knowledge about these plants is fast disappearing among common citizens. Universities do not teach ancestral knowledge regarding these plants, and schools do not educate students on their importance. Governments and policy makers do not pay attention to them at all.The Ministries of Health, Education, Agriculture, Environment and Development are not spending enough efforts to leverage NUS knowledge to improve peoples' livelihood. There is a need to establish national programs to educate students about NUS, starting from kindergartens to the doctoral degree level. Chefs, cooks, farmers, industry managers and food manufacturers have to be all involved in such programs too; they should be mobilized to help create a 'Certificate of Origin of Mayan Superfood in Mesoamerica' for all kinds of NUS foods, such as drinks like atole, 4 crackers, powders, cookies or tortillas, and people ought to learn about those amazing nutritional and medicinal properties that are helpful in strengthening our health. The importance of these traditional species is even more relevant today, as we are frantically struggling against the COVID-19 pandemic. It is realistic to say, in fact, that these neglected medicinal plants from the NUS basket may well harbor important biochemical compounds that could boost our immune system for better fighting this disease as well; hence, more research is needed on them! Unfortunately, humankind spends more efforts in building hospitals rather than preventing diseases through the education, promotion and cultivation regarding nutritious local plants as well as in processing them into high-quality products that are cheap and available to national, regional and international markets. I strongly believe that greater focus on NUS would reduce malnutrition, especially among pregnant women and children, and it would create new jobs, reduce youth migration and protect weak national currencies from depreciation. Guatemala is the eighth richest megadiverse center of biodiversity on Earth and such natural wealth is not sufficiently put to work! I hope my plea for a better future will be heard!Ms. Meghana Narayan, Shauravi Malik & Sohini Dey Slurrp Farm, New DelhiFood is a fundamental need in our lives. But food isn't merely a substance for staying alive, but rather a means to enhance the quality of life by assuring the required nourishment for our body. The lack of dietary diversity is well known 350 Ana Luiza Vergueiro et al.to be a major cause for malnutrition, not just in India but across the globe. With the long-standing popularity of rice and wheat as the main foods in peoples' diets, experts are calling for urgent changes in our meals: more diverse crops are needed to fill the nutritional void left by the overconsumption of just few grains in our diet.At Slurrp Farm we believe that millets are indeed among those underutilized species that need to be better promoted, and through our work, we hope to play a role in bringing them back to the plate. We believe that millets, with their inherent high nutritional benefits, can be part of the solution in tackling food and nutrition insecurity in India. Lately, we have seen a rapid rise in the use of oats and quinoa, a South American staple that has truly become a world commodity in just few years, and minor millets could well follow the same trend.Millets are rich sources of fiber, vitamin B-complex and minerals, as well as polyphenols, lignans, phytosterols, phytoestrogens and phytocyanins, which act as antioxidants, detoxifying agents and immunity modulators. Additionally, millets are gluten-free grains, an advantage in the midst of increasing cases of celiac disease and gluten intolerances that restrict or entirely prohibit the consumption of wheat for lots of people. The nutritional benefits of various millets are elucidated in other chapters of this book and here we just want to stress that the value of these grains is based not only on their nutritional merits, but also on the important contribution that they can make to supporting sustainable agricultural practices and resilience in times of a continuously changing climate. Millets are highly resistant to adversities of cold, drought and salinity, and are, thus, highly suitable for cultivation in dry and arid lands (Padulosi et al., 2009).In India, farmers are struggling with the effects of drought on their cultivations, and this is raising great concerns over the sustainable provisioning of the food necessary to feed 1.2 billion people. To that regard, the capacity of millets (including small millets) to thrive in harsh climatic conditions offers an immense potential to rescue agricultural communities ridden by drought and poverty. The revival of underutilized and neglected crops such as millets can exert significant influence on the cultural traditions and diversity and contribute to the self-identity, self-esteem and visibility of local communities.Limited awareness and nascent consumers' demand are the major challenges. For customers used to decades of diets based only on rice and wheat, transitioning to millets will be a challenge. Low awareness accompanied by a lack of interest in taste can be a deterrent for consumers, who may be unable to understand the value of these nutritious food in their dietPost-cultivation drudgery remains one of the greatest challenges for millet farmers and a major obstacle in the popularization of these and other NUS. Apart from finger millet, pearl millet and sorghum, all small millets must be threshed and de-hulled before they are ready for consumption (more details on millet processing technologies are provided in Chapter 26 of this)As emphasis has always been placed on improving a few grains for large-scale commercial use, the consumption of millets has declined steadily as a result, which has impacted negatively their production and potential for growthWe live in times of ever-changing food trends and rapidly mingling culinary cultures. Globally, chefs are continuously pushing the bar for innovation, combining far-flung ingredients, reinventing traditional recipes and presenting food not simply as a means of subsistence but also as a multi-sensorial experience. This new trend is very helpful for the revitalization of NUS and the time has come for millets to be put back on the global food map. To that end, we believe the following are three most robust solutions currently needed:A Develop innovative millet products that are tasty, convenient and affordable Using millets to develop products that are tasty, affordable and in a convenient easy-to-use format is most critical. Finger millet (ragi), which was among the lesser-known crops until a few years ago, is now making its way back into mainstream markets as an ingredient in a variety of products, from pre-packaged dosa and pancake mixes to chips. Similar product development will also increase the popularity of other small millets. B Launch a nationwide awareness campaign Millets are often called forgotten foods because the communities that once consumed them regularly are now out of touch with their benefits and associated food cultures. A national advertising campaign similar to the 'Egg Campaign' or the 'Operation Flood Milk Campaign' are the need of the hour if we are to push the agenda for nutritious millets, good for our health and the planet. Bollywood stars like Alia Bhatt, Anushka Sharma and Virat Kohli have all shown ways in which they include millets in their diets and it would be great to also include top nutritionists, sports stars and movie celebrities in such campaigns too.Millets have remained out of the R&D sphere for decades, with only a handful of institutes investing time and resources into studying and promoting them. Having turned to mainstream crops in recent years, many farmers are unaware of the many advantages of growing millets. Giving farmers access to information on best practices and facilitating small-scale testing can help them assess the conditions that are best suited for each millet species and variety. Leading research into the nutritional content of millets is imperative in order to better understand the numerous health benefits of these crops. Making scientific information accessible to millet-based product manufacturers, as well as consumers, can also have a positive impact. With a number of independent companies around the country working on millet-based products, instead of conventional food grains, active support from research organizations can aid product development and enhancement.Simon Nderitu, Leon Kenya and Jacqueline Damon African Forest, Nairobi, KenyaAfrican Forest is a holistic agro-forestry social enterprise established in 2006 and located on the edge of the Soysambu Conservancy in Kenya, a 22,000 ha ranch surrounding Lake Elmenteita, in the Rift Valley. African Forest has an indigenous organic plant nursery, seed center and trial plantations. We produce and promote, in conjunction with local communities, a wide range of non-timber forest products. These include medicinal plants, vegetables and other food crops, skincare products, bee products, fibers, oils, tannins and dyes. African Forest also offers services such as plantation establishment and management, reforestation, gardening and sustainable development planning and implementation, as well as assistance in raising 'green' finance.Our 'Planet Positive Forestry' program involves planting a mixture of indigenous climax and pioneer tree/shrubs, to create a bio-diverse forest. These are intercropped with foods, fruits and herbs.The livelihoods of the world's population depend on food systems and food value-chains. There is a dire need to make our food systems more sustainable, especially in view of climate change, cultural changes and the many adversities affecting production systems. We strongly believe that food systems that are socially inclusive should be promoted, as opposed to the current ones that are controlled by corporations. Currently, it is estimated that 50% of the world's population cannot meet its food needs. Research also estimates that to meet the population's food requirements in 2050, measures need to be implemented to facilitate a 70% increase in current production. And these measures have to be inclusive of women, youth and Indigenous People.Out of the 1.4 billion people in the world living in extreme poverty, 70% live in rural areas and are the most affected by drought and famine. Climate change has created unpredictable weather conditions, presenting challenges for Indigenous producers who depend on natural conditions for farming.With the emphasis on Western lifestyles, critical Indigenous knowledge has been lost and is no longer being transmitted from one generation to the next. This is depriving our societies of knowledge on vital foods, while at the same time new lifestyles are compromising people's health.We have, nevertheless, registered lately an increased awareness of the prohealth properties n indigenous vegetables, rich in micronutrients and bio-active compounds. Vegetables should be, therefore, core components of peoples' daily diets. Scientific findings are also confirming that local species and varieties are rich in compounds that have antioxidant properties, such as β-carotene, as well as in iron, calcium and zinc.More demonstrations of the production, processing, cooking, marketing, distribution and consumption methods of NUS should be carried out in communities, in order to leverage Indigenous People's knowledge about these species and help promote their wider use. Critical publications of research findings on these species have been made, but these are not readily accessible to the Indigenous People. More should be done to disseminate relevant findings to strengthen farmers' knowledge of sustainable production and the use of these species.The main obstacles for the enhanced use of indigenous vegetables includes access to production means, including quality seeds, land tenure, soil additives, water, etc. Indigenous farmers barely get access to knowledge on best practices. The perishability of many NUS vegetables and fruits, caused by their short shelf-life, is also a great challenge in their effective storage and marketing.• Train traditional farmer communities on the sustainable production and use of NUS to empower them. Training packages should cover inter alia small-scale, diversified farming and the use of environmentally sustainable technology • Implement participatory guaranteed systems, giving greater role to women, youth and farmer groups, building on trust, social knowledge and networks • Provide support and outreach programs including extension, helping farmers establish their own community structures. Interventions could start with one ward in a county (e.g., Mbaruk ward in Nakuru County, Kenya) and 1-2 villages for demo production sites (e.g., the Kasambara and Echaririe villages of the Mbaruk ward, Kenya) • Provide farmers with quality seed for the focus NUS and demonstrate potential for including other species in value chains We believe traditional crops, especially nutritionally dense cereals and vegetables, are going to be one of the strategic sources of food for the ever-increasing number of urban consumers around the world. In Nepal, NUS are playing an instrumental role in meeting the food and nutrition security needs of households, particularly those residing in hilly and mountainous areas, where farming systems, to a large extent, rely on traditional crops and varieties. Needless to say, growing the use of NUS contributes to a healthier environment, as these plants require less chemicals and pesticides. Some NUS are also known to be climate resilient, meaning they perform reasonably well even in harsh growing conditions (they are cold and drought tolerant, need low external input environment, etc.), thus contributing to household food security in rainfed farming systems.Popularizing NUS among health-conscious urban consumers may spur demand for these traditional crops, which in turn would contribute to improving smallholder farmers' livelihood.Anamol Biu was established 10 years ago and, since its inception, has been working closely with rural farmers in the seed supply chain, where community seed banks (CSBs) have played pivotal role in preserving and promoting NUS crops. We source our vegetable and cereal seeds primarily from CSBs under a buy-back guarantee system. With technical support provided through LI-BIRD, Anamol Biu has diversified its seed portfolio with the inclusion of several NUS into its activities. Amaranth, coriander, faba bean, fenugreek, broad leaf mustard, local beans, cucumber and many other vegetables are included in our 'Vegetable Seed Composite Kit', a family-nutrition-targeted product, that has become highly popular among development efforts such as the SUAAHARA Project 5 and the Home Garden Project, 6 both implemented in Nepal. In recent years, this tool has become a standard approach for distributing seasonal vegetable seeds to farmers by development organizations and government agencies alike, thereby increasing the potential for mainstreaming NUS in seed supply systems. In order to capitalize on the increasing demand for selected NUS products (including minor millets, amaranth, mountain beans, sticky rice, etc.), Anamol Biu, with the support of several agencies, is investing in the establishment of a 'Packaging House', planned to come into operation in early 2021. The Packaging House is expected to aggregate, clean, grade and package NUS products in a particular brand before marketing them in domestic and international markets. We will be starting a line of composite vegetable packets comprising NUS vegetables for rooftop urban gardens in the near future, as we have received an increasing number of requests during agricultural fairs/melas. Unfortunately, the mainstreaming of NUS varieties into formal seed systems, securing a niche for themselves in the current seed market is still rather low. Many factors are responsible for such slow progress, including unfavorable government policies and programs, limited research and development support, lack of awareness on the part of consumers and lack of best practices knowledge among the growers. It is, therefore, highly imperative that responsible actors increase their investments in the R&D of NUS, if we are to really help these crops emerge from their marginalization.Although the promotion of NUS features in strategic policy papers of the Nepalese government, in reality this area has garnered the least priority in research investments, resulting in negligible progress towards the identification of promising species and their varietal enhancement. On the other hand, the private sector in Nepal is rather weak, in financial and technical terms, to be able to invest in R&D and is interested in acting only at the stage of popularization where heritage crops are concerned. As a matter of fact, a market system for NUS crops including access to quality seeds is yet to be developed in the country. So even if a NUS variety is registered, there remains a serious problem in the supply chain. When the market demands a significant amount of a particular NUS crop, the reality is that producers cannot actually be located to meet such a demand. This is the case for instance of the local amaranth variety 'Ramechhap Hariyo Latte', which was successfully registered at the national level by the Seed Quality Control Centre in 2018, upon which Anamol Biu was able to purchase 17 kg of the seeds from a farmers-managed CSB in Jugu, Dolakha district; the following year, however, we required at least 10 kg of that seed but the CSB in Dolakha was not able to provide such amount. We met the farmer representatives and the program staff from LI-BIRD, and learned about problems that the producers were experiencing, which related mostly to price and financial issues. Anamol Biu agreed to meet the farmers' price expectations, and LI-BIRD helped as well in multiplying the seeds in the Sindhupalchok and Lamjung districts.The irony is that when producers have something to sell, they complain about market availability and accessibility issues, which is a reflection of dysfunctional market for NUS crops. The government is not very helpful because it has failed to come up with any longer-term monetary and non-monetary schemes to promote NUS.Two factors hindering the promotion of NUS are the limited number of food recipes available for their popularization among consumers and the persistence of incorrect socio-cultural beliefs regarding NUS, often termed 'crops of the poor' or 'famine foods'.As mentioned already, R&D throughout the value chain, from production to consumption, is one critical area policymakers should think seriously of investing in, so as to promote NUS effectively. This will pave the way towards solving production limitations and marketing challenges.On a positive note, we should say that in Nepal, the government has made the registration of local crop varieties in the formal seed system a much easier task, something that is expected to benefit the popularization and commercialization of these neglected crops. But more essential interventions are still needed from the government, such as access to soft loans, support in machinery and tools for production and post-harvesting operations, and financing crop insurance to lure producers and make the cultivation of NUS crops more competitive and profitable for farmers. Furthermore, policymakers need also to help promote NUS through the national education system: NUS education for healthy diets and improved nutrition should be promoted in schools, college cafeterias and even office canteens.Public-private partnerships (PPP) often prove to be a fruitful and sustainable venture for promoting the value chains of products such as NUS, where women and youth can be targeted at large through attractive schemes.Lastly, we foresee a potential alternative of promoting NUS as organic crops, targeting upper economic classes and regions. Such an approach could prove very helpful: once the supply chain is firmly established it can then gradually cater to the needs also of middle-to low-income classes and thereby contribute to the wider popularization of these nutritious crops.Simlaw Seeds, Nairobi, KenyaThe importance of these neglected species of plants cannot be over-emphasized.Here in Kenya, NUS have been used as source of food for generations by many communities. Sadly, government research bodies have given them little attention insofar, focusing instead only on main food crops such as maize, wheat and beans.We at Simlaws do appreciate the importance of NUS in food security and, most importantly, in nutrition. These species can grow well with minimum use of inputs. They have stable yields in local environments where they are highly adapted and able to thrive where exotic crop species are challenged, such as in marginal lands where rainfall is scarce and irrigation is not affordable.Most communities would normally go to pick NUS vegetables in the wild, because these species are not easily found under cultivation due to the lack of seed systems dedicated to them. Consequently, there has been erratic supply of these food crops in the market. This despite their inherent superiority in terms of resilience, disease and pest tolerance. Unfortunately, private seed companies have not been availing NUS seed in the formal market either.For the successful promotion of NUS there should be a concerted effort in funding projects involving both national governments and the international community. This will ensure that these species are collected, safeguarded, characterized, selected, improved and massively produced for wider use. Training should be undertaken especially in the fields of breeding, conservation, seed production, agronomy, nutrition and value addition. The private sector should be also involved in training, so as to leverage its knowledge, which is helpful in promoting NUS at affordable prices more widely. Moreover, communities will need also to be educated through demonstrations on how to grow and use these nutritious crops more efficiently.Serkan Eser, Bilgi Sistem Yönetimi -İthalat & İhracat, Serik Antalya -TurkeyWe are located in the Mediterranean region and we have good knowledge about the biodiversity there, including those species occurring in the wild that have not been properly researched yet. We support several research projects involving scientists, who are directing the attention to all the promising leafy greens NUS growing in this region.NUS need to be better considered by both household users as well as people involved in the so-called 'horeca' sector (hotel/restaurant/café) who should devote continuous attention towards their use enhancement. Unfortunately, today this is not happening, and such a situation is limiting the wider use of NUS by chefs, which, in turn, is hindering their wider promotion. With regard to home users, these traditional crops need to be suitable for kitchen use and food cultures. The many good qualities of NUS should be highlighted and leveraged through novel, versatile and easy recipes in order to promote their popularization as home foods; to that end, more research on cooking aptitudes and methods is needed.A We need to do more for the promotion of NUS, especially among chefs B We believe that geographical indications would play a highly strategic role in the marketing of NUS C It would be extremely helpful to create an ad hoc brand, as has been done for other products. For instance, in the case of coffee: the majority of Turkish people refer to standard American coffee as 'Nescafe' so as to distinguish it from the classic Turkish coffee; so this commercial brand is applied widely to refer in fact to many types of coffee. When thinking about that, I realize that advertising is extremely powerful and could be, indeed, leveraged for the promotion of these nutritious but little-known foods.GoBhaarati Agro Industries and Services Pvt. Ltd., IndiaMr. Sridhar Murthy Iriventi, GoBhaarati Agro Industries and Services Pvt. Ltd., Hyderabad, TelanganaConsumers' food behavior is mostly cultural. Throughout human history we see cultural evolution has been a function of local contexts, including the policy framework implemented in that place. Like lifestyles, food styles have their own comfort zones ingrained into the unconscious pattern of choices of items on people's plates.For the last ten years or so, our company, made up of first generation of entrepreneurs, has been at the forefront of food innovation and of introducing 10 varieties of millets, including sorghum, in three states of India. Over the years we have observed a significant rise in people's awareness with regard to NUS, especially millets, and this has been very helpful in promoting the consumption of these foods. We see NUS as the food of the future -good for the consumer, for the planet, for the farmer and for the economy too. Over the last decade, we have interacted with more than 50,000 customers, in hundreds of road shows, conferences, cooking competitions and other events, and the lessons we learned during these interactions can be summarized as follows:• Consumers wouldn't mind using NUS in traditional recipes. For example, a traditional Indian recipe like idli, can well be made with little millet too, and this innovative food will be as palatable as that prepared with conventional ingredients like rice • Entrepreneurs/private sector cannot carry out NUS promotion alone. Ideally, the private sector should focus on marketing NUS products while research institutions and governments should focus instead on studying the health or nutrition benefits associated with NUS; thus, the outcome of such work can inform the private sector for their campaigns. I think this would be an ideal partnership for the promotion of NUS • NUS, especially minor millets, contain many important nutrients that can be strategic in achieving a balanced diet, but more needs to be done to highlight this fact in promotional campaigns • During interactions with our customers, we register comments ranging from, \"We don't know millets\", to \"We are Millet Ambassadors\". While we are happy to inform customers on the value of millets and contributing, thus, to filling the gap in awareness, there are a number of obstacles in doing that, viz.:• Food is first and foremost a cultural experience that goes back to what we ate in our childhood when our mothers fed us with love. Most of the current adult generation has been fed by mothers who had access to basic food grains through the Public Distribution System (PDS), which focused (until very recently) only on rice and wheat. • The millet basket is made of many species and, owing to the poor knowledge that people have about these crops, it is normal to register some kind of hesitation in consumers when they need to make a decision on which type of millet to buy. • NUS products change continuously and do not last on the shelf for more than a year or so. This is not good for their popularization, as clients fall back into the 'comfort zone', i.e., purchasing the usual foods made out of wheat or rice. • 2018 was declared by the Indian government as 'The Year of Millets'. This was a good move, but unfortunately the awareness campaigns on millets that followed did not do it justice in presenting in a convincing manner the many potentials of these crops. Much more and better needs to be done to promote NUS! • Policies in favor of millets need to be better implemented to bring change! What we observe, unfortunately, is that most work for the promotion of NUS is led by scientists and bureaucrats who don't appreciate entrepreneurial efforts. For instance, our company has made a breakthrough in packaging, which has increased the shelf-life of de-hulled millets by 300%! Yes, we have been appreciated for this outcome, but were not supported beyond that in scaling-up such novel processes.A Instead of encouraging Farmer Producer Organizations to do everything from farm to fork, governments should encourage instead centers of excellence to take care of specific activities along the value chain B Develop a 45-day off-season business education program for farmers on how NUS can improve their standard of living and the quality of their jobs. Such capacity building sessions can be steered by business professionals with inputs from both academicians and administrators. We believe that this business education can be very helpful in promoting the establishment of effective 'micro business models' at the farm-gate level C Reduce bureaucracy and let government and research institutions invest more in NUS promotion through well-crafted public awareness campaigns, while entrepreneurs focus more on marketing aspects. NUS products must be included in government canteens, PDS and other programs, with entrepreneurs participating through healthy competition and not bidding/auction models.Ana Luiza Vergueiro and Sergio Vergueiro ECONUT Comércio de Produtos Naturais Ltda., BrazilBrazil has abundant natural resources and, among those, is the majestic Brazil nut tree (Bertholletia excelsa Bonpl.), notable for its size and its edible seeds (the Brazil nut), which are the greatest natural source of selenium known. Even though it is a traditional product in the Brazilian export line, the Brazil nut is one of the main NUS. The tree grows along the entire Amazon rainforest, but it is mainly found along the Brazilian share of the region. Considering the vast area covered by these long-living trees, there is no precise data regarding its production, and our hypothesis is that 90% of the natural nut production is not harvested, left abandoned on the forest floor. Even though Brazil nut exploitation is a traditional activity in the country, the main obstacle to its improvement is organizing a value chain. The process starts with the harvesters that live in the forest, who should receive a better salary for their hard work. At the end of the chain are the consumers that demand -rightly so -that quality and safety requirements are followed during processing operations. To that end, there is a need for clearer quality and food-safety regulations for the processing of Brazil nuts, along with appropriate packaging of the final product for proper preservation during its shelf-life.In light of the above, and in order to achieve the effective promotion of the Brazil nuts, we propose three main measures tackling environmental, socioeconomic and commercial viability as follows:• Environmental viability: the development of species cultivation, recovering deforested areas in the Amazon rainforest and considering viable logistics to exportation control points • Socioeconomic viability: support for harvests taking place in the forests, with minimum regional prices along with the establishment of classification, drying and packaging stations in the producing regions, in addition to tax exemption for the entire production chain • Commercial viability: promotion and marketing of the product and its qualities (regarding production and nutrition) to national and international consumer regions, as well as the simplification of bureaucracy for exports.SanLak Agro-Industries Pvt. Ltd., IndiaVikram Sankaranarayanan, Director, SanLak Agro-Industries Pvt. Ltd. Coimbatore,Given the current debates surrounding food and nutrition security under the threat of climate change, stakeholders engaged in food value-chains, both public and private, are exploring new sources of food from resilient and nutritious crops, so as to complement what is already available in the market. Another push in that direction is also coming from the increasing interest of consumers, which is shifting from food-fortification approaches to a more effective deployment of biodiversity, in order to achieve a more sustainable diet. These trends are contributing to the growing interest in NUS.From an entrepreneurial perspective, NUS, under the aforementioned context, offer myriad market opportunities to tap at a time when consumers are also keen to explore wellness and nutrition through alternative plant-based diets. Our company, through the guidance and mentorship of Ms. Santha Sheela Nair, began working on minor millets, crops that have been long forgotten due to overdominance of rice and wheat, promoted under the Green Revolution.Following are some examples of our work on NUS, focusing on millets and amaranth, which are central to our public awareness campaigns and which are needed to inform consumers about the multiple nutrition and health benefits of these species, so much marginalized also for the pejorative labeling of them as 'low-status' foods. Fortunately, perceptions are changing gradually but steadily, with even the nomenclature being rightly changed from 'coarse grains' to 'nutri-cereals'. Millet consumption is gradually gaining momentum in our food systems also in reaction to the rise of non-communicable diseases and the need to make healthier food choices for our own wellness.Minor millets are a group of cereal crops that are climate change resilient and low resource-intensive. They require one-sixth of the amount of water necessary for rice (some 3,000-4,000 liters on average, depending on the rice variety). They are capable of growing well in degraded soils, under drought conditions and can withstand temperatures up to 48 o C. They are gluten-free grains and offer a range of micronutrients naturally produced, vital in combatting the rise in non-communicable diseases as well as malnutrition, present in numerous areas of India, especially among women and children, and afflicting poor and vulnerable members of society.There is certainly a great opportunity to be seized in millets, in terms of widening their consumption by all citizens. Such an outcome is, however, contingent on proper institutional intervention, needed to ensure that millet valuechains receive the same attention that has been directed for decades at other commodities.Numerous factors have diminished and constrained momentum in the growth of millets use, from farm to fork. These factors, grouped under institutional, market and consumer behavior, are summarized as follows:Although the Government of India, in its official ordinance in favor of millets (called 'nutricereals' therein) has requested the Indian states to include these crops in their respective PDS, such a request has not been implemented by most states. The failure to do so seems most likely to have been caused by the lack of proper coordinated efforts, and sadly, it did not help the fact that millets are being acknowledged as vital crops for our food and nutrition security. Furthermore, given that minor millets do not fall under the category of cash crops and are not given a 'minimum support price' (MSP), the lack of guaranteed pricing has discouraged farmers, traders and processors from entering this space. Double-digit variation in pricing has been observed between harvests, which has rendered minor millets difficult commodities to trade. Some states such as Karnataka have taken the lead in value-chain development for minor millets and establishing farm-to-market businessto-business (B2B) and business-to-consumer (B2C) linkages. Under the previous Hon'ble Minister for Agriculture, Govt. of Karnataka, Mr. Krishna Byre Gowda, minor millets gathered momentum with wide market reach and demand pull, catalyzing a subsequent product push from the farm-gate. Such strong political support is very much needed, as it strategically addressed the politics of food. In Tamil Nadu, the Ex-Vice Chairman of the State Planning Commission, Ms. Santha Sheela Nair, undertook similar initiatives, which resulted in a number of successful state schemes, such as the 'Mission on Sustainable Dryland Agriculture'. Indeed, a continuous thrust from the political establishment and administration is much needed in order to circumvent macro-barriers for the introduction of NUS.In India, one of the main bottlenecks in millets value-chains is the lack of availability of evenly distributed processing infrastructures. Processing machinery developed so far for these crops has, in fact, not been successful at all, lacking proper food-grade standards and processing efficiency. In view of this prominent gap in technology, our company has invested a lot in R&D, and these efforts have led us to developing 'Borne SMART' (Small Millet Aleurone Retention Technology), which allow the effective processing of millet grains. This technology includes machinery for carrying out several processing steps at the same time: pre-cleaning, de-gluming (to remove the glume layeron barnyard, kodo and browntop millet [Brachiaria ramosa]) as well as de-hulling, fine separation and gravity separation. Borne SMART machines are available in different dimensions, with processing capacities of 100 kg/hr, 250 kg/hr, 500 kg/hr, 1 ton/hr or 2 ton/hr. Though these machine could help process many NUS, they are being requested by our clients especially for millets.Market-based factors are to be addressed from a value-chain perspective, in a holistic manner. Starting at the farm-gate, cluster formations of millet growers are imperative if we are to gain economies of scale. Such an approach was developed through the 'Raitha Siri' program in Karnataka, wherein dry-land clusters were selected, and a sum per acre was distributed to farmers within these clusters, with each cluster focusing on the cultivation of a specific variety of minor millet. It was a successful initiative at the farmlevel but, unfortunately, it was not effective in ensuring that millets reached the market effectively, as the forward integration of traders, processors and companies were not developed. Understanding and proper coordination of value chains are vital in ensuring that these crops reach the targeted consumers effectively. Such a major bottleneck is prevalent in various parts of the country, and needs to be addressed on war footing.A key link between producers and the market is processing and, although machinery is now available for all the end-to-end processing steps needed for minor millets, this technology is yet to reach stakeholders at a mass level. Previous initiatives undertaken between 2009 and 2012, whereby machinery was distributed, failed miserably due to the low quality of machinery processing output, lack of food-grade standards and breakdowns encountered. Although improvements in processing technology and protocols have been established, such as those of the Borne SMART line mentioned earlier, their uptake is slow, due to lack of investor confidence and previous bad experiences faced by clients. D Consumers' behavioral factors Though the private sector has acknowledged the scope for growth in minor millet consumption, there is still limited awareness among consumers, regarding the nutritional virtues of the range of minor millets. Robust public awareness campaigns are much needed in order to catalyze attention and promote wider consumption of these NUS.1 See Chapter 13 for more about this project 2 ISO certified company; for more see http://www.vandjindustries.com/ 3 Var. acephala of cabbage (Brassica oleracea), characterized by the lack of the close-knit core of leaves (a \"head\") like other cabbages 4 Corn-based traditional hot drink 5 https://www.usaid.gov/nepal/fact-sheets/suaahara-project-good-nutrition 6 http://www.b4fn.org/case-studies/case-studies/home-gardens-in-nepal/#:~:text=-This%20project%20has%20worked%20to,increase%20income%20in%20poor%20 households.Research for Development (R4D) agencies have historically played an important role in promoting the conservation and sustainable use of neglected and underutilized species (NUS) around the world by providing investments and assistance to vulnerable communities that has helped build research partnerships and capacity, which has enabled them to benefit from sustainable livelihoods, improved diets and nutrition, food security and enhanced resilience and adaptation to pest and diseases, water scarcity and changing climate. The historical development of the NUS movement, the key agencies and actors involved as well as landmark events and publications are highlighted in Chapter 2 of this volume. Furthermore, many R4D agencies are profiled in Chapter 33, and it is largely through the efforts of these agencies that financial and other needed resources have been, and continue to be, directed towards fundamental research partnerships on NUS, though the gap in research budget allocated to the top few staple crops alone and the wider NUS portfolio remains huge. IFAD promotes a holistic and pluralistic approach to inclusive rural transformation and agricultural food systems as a part of its lending programme, which currently exceeds USD 1.5 billion, annually. NUS are viewed by IFAD as an intrinsic part of its arsenal of nature-positive, biodiversity-friendly approaches. They are increasingly promoted by IFAD for their promise in contributing to an economically remunerative and environmentally sustainable future -for rural communities and their habitats -depending on the socioeconomic, cultural, institutional and biophysical context. IFAD pursues people-centred approaches and, in the context of the NUS-sustainable livelihoods nexus, we believe that the theory of change is really about positioning rural communities (including Indigenous Peoples as the key custodians of NUS) to make the most out of the promising nature of rich, nutrition-sensitive markets and the values chains they are linked to.IFAD investments in the NUS-based food systems of rural (Indigenous) communities (and their local knowledge embedded in those) are strongly associated with multiple positive relationships with incomes, nutrition and health of humans and their habitats. They drive financially attractive investment projects with outcomes that are poverty reducing, nutrient rich, diet-diverse, environmentally friendly and climate smart. It would be hard to find a better win-win strategy in any inclusive rural transformation agenda pursued by the international development community.Over the past two decades, IFAD has developed experience in supporting NUS and has used key lessons learned to develop guidance on how, when, and why to incorporate considerations of NUS into nutrition-sensitive agricultural projects, with due attention paid to the inclusion of Indigenous Peoples and the enhancement of their livelihoods and wellbeing. The focus has been on a multitude of truly participatory rural development and transformation approaches incorporating the importance of NUS and their contribution to biodiversity conservation, improving nutrition (in the context of dietary diversity), quality traditional diets and Indigenous Peoples' food systems and their knowledge on these.The advent of the very recognition of so-called NUS in formal sciences and by international agricultural research for development systems started with IFAD's pioneering grant support back in the late 1990s. The Fund's first grant was to establish a strategic, global, multi-stakeholder partnership led by the erstwhile International Plant Genetic Resources Institute (now the Alliance of Bioversity International and International Center for Tropical Agriculture (CIAT)).This initiative benefitted immensely from the passionate, scientific leadership of a few individuals, and IFAD's investment scaled-up the so-called NUS agenda and placed it in the global research and development spotlight -pursuing the multiple objectives of \"conservation-through-utilisation\" and, later, a more composite goal of \"sustainable utilisation\".With the strong conviction that NUS were neglected and underutilized for counter-intuitive reasons, a global constituency became established in the early part of this century. This community of practise views NUS as the \"crops of and for the future\" and as multi-dimensional \"weapons of poverty alleviation\" (ironically) in the hands of the world's most marginalised communities -who are the true custodians of NUS and most of the world's biodiversity.In early IFAD-sponsored international conferences, we conceived a new, global multi-stakeholder initiative. For instance, in 1999, the IFAD-supported workshop organised in Chennai, India, by the CGIAR Plant Genetic Resources Policy Committee, focused specifically on NUS. This landmark meeting drew broad-ranging support from participating CGIAR centres and donors. It is interesting to note that this meeting represents the first time ever that the CGIAR discussed NUS in a formal way.This milestone conference received the intellectual guidance of Professor MS Swaminathan, who cautioned us early partners and practitioners against the use of negative nomenclatures connoting the neglect and underutilisation of such a promising set of crops and commodities.Indeed, on the other hand, these have been often regarded as strategic assets of rural poor communities (especially Indigenous communities) -resources that have helped these otherwise marginalised communities build resilience and cope with the challenges of food and nutrition insecurity, health calamities and pandemics, climate change and in their struggle against economic and social disempowerment.Since the early 2000s, IFAD has actively helped build new alliances with global initiatives such as the Global Forum on Agricultural Research and Innovation's (GFAR) Collective Action on Forgotten Foods. Given the multi-stakeholder and interdisciplinary nature of GFAR and the power of the IFAD-investment portfolio in supporting community-based, participatory workshops aimed at enriching beneficiary knowledge on resilient cultivation practices, financing rural infrastructure and small and micro-enterprises for improving processing and consumption options has helped improve small-scale producer links to NUSdriven value chains and niche markets.Incorporating NUS into food systems affords a more dynamic, in situ \"peoplecentred\" approach to addressing the biophysical challenges of modern agriculture. The above meetings provided a deeper understanding of the incentive structure of farming communities in managing risks and how strategic production choices (e.g., of cultivating NUS) can strengthen resilience, especially of resource-poor farming systems.Informed by these important scientific exchanges, IFAD-grants financed multi-locational research programmes in all the developing regions of the globe and have generated a series of evidence-based innovations, which have been incorporated into multi-million dollar loan project designs.The innovative deployment of nature-positive and environmentally sensitive components in agricultural development projects, is bringing to light the immense value of the orphan crops of the past -from relative obscurity into prominence. They exhibit attractive transformational characteristics and elite traits -a metaphorical reference to the tale of \"Cinderella\" (hence the label).Neglected no more, the increasing production and trade of erstwhile NUS (quinoa, amaranth, finger millets and other [mislabelled] \"coarse\" grains like sorghum, maize and kiwi fruit to name a few) represent a vast spectrum of hidden gems.They have demonstrated improved and multiple beneficial outcomes while simultaneously including robust local adaptability, better incomes, improved livelihoods and nutrition and ecosystem benefits -all of which are designed to improve the resilience of smallholders to biophysical and socioeconomic adversities and shocks. The range of the potential of NUS is so extensive that it is now becoming an increasingly inherent part of conventional food production systemsmaking them valuable in so many respects, well beyond the local context and the niche markets that they were associated with in the past -now, they are a part of the economic mainstream.The multipurpose species of the future NUS are increasingly better known as the promising multipurpose species for the future, resurrected from their general underutilisation and even disuse (as indigenous knowledge systems on their utility had eroded over the generations). A more development-outcome-led formal research system has brought to light cuttingedge knowledge on the multiple benefits and high value embedded in NUS. The agrobiodiversity associated with NUS \"production\" systems is also a direct contributor to the diverse range of micronutrients that NUS have made available to the diets of Indigenous and other rural communities. Such dietary diversity is known for addressing their micronutrient deficiency and under-nutrition, and also spontaneously targeting some of the root causes of stunting and wasting among children while improving the resilience of adults to health shocks.The extensive use of NUS will, thus, ultimately contribute not just to SDG2, which is associated with zero hunger; reduction of all forms of malnutrition and sustainable agriculture, they will also help reach several targets under SDGs 7, 12, 13, 15 and 17, as well as relevant targets within the context of the CBD post-2020 global biodiversity framework. IFAD's Strategic Objective 1 (increase poor rural people's productive capacities), which focuses heavily on improving nutritional knowledge and behavioural change communication on healthy diets for all, has NUS elements. IFAD's Action Plan on Mainstreaming Nutrition-Sensitive Agriculture has a predominant NUS focus and the recently published Bioversity-IFAD operational framework in support of nutrition-sensitive agriculture through NUS will certainly help promote the adoption of NUS for sustainable food systems.Yet, much more is needed to help countries mainstream NUS through participatory, pro-poor, gender-sensitive, multi-sector, multi-stakeholder and multidisciplinary approaches. Further development and testing of NUS to promote replicability and transferability to other contexts; an advocacy role for policy change at the global level and the engagement of development practitioners (through participation in training and capacity building) are key. Innovative policy sensitisation is required to provide an enabling institutional environment so that the rural poor can achieve the twin objectives of income generation along with the positive nutrition potential currently locked inside their local NUSbased farming systems.We will continue to need new investments in innovations systems, including by bringing leading-edge science to build on local and Indigenous knowledge systems -for instance, developing appropriate food technologies to maximise the nutritional benefits from local crops. The international community needs to better appreciate the power of the crops of the future and unleash their potential in addressing the challenges of faltering food systems. We need to trigger a paradigm shift towards the adoption of more (bio-)diverse agricultural systems -and a departure from current food systems, which are precariously focused on an ever-shrinking portfolio of crops and commodities -ironically, where there are a large variety of robust but overlooked Cinderella species-in-waiting.Paul Wagstaff, Senior Agriculture Advisor, Self Help Africa and Isabella Rae, Head of Policy, Research and EvaluationNUS in Africa are a complex topic and one where limited generalisations can be made. Traditional fruit, vegetable and grain species have been neglected due to declines in demand, a decline in access to wild plant foods, low yields and poor adaptation to the livelihoods and workloads of farmers, particularly women. It is important to distinguish between NUS that are preferred \"luxury\" foods, and those that are only eaten in desperation during times of famine. Though not traded internationally, NUS are uniquely adapted to their local environments and play a vital role in supporting diverse diets in sub-Saharan Africa.Self Help Africa (SHA) focuses on improving family nutrition and household economy through diversifying incomes and linking farmers to markets, both of which have to take into account climatic factors and women's access to and control over resources. SHA, therefore, looks at the nutritional, crop diversity and market potential of NUS, including the possible impact on women's workloads related to the collection or cultivation of NUS.One of the biggest drivers of the marginalisation of NUS has been the radical changes in diet, especially in East and Southern Africa, where \"chicken and chips\" have become the \"aspirational\" foods that have driven traditional foods out of local restaurants, with local foods being seen as a \"poor person's food\" (less so in West Africa and Ethiopia). In complete contrast, some neglected crops are enjoying a renaissance and are being considered \"status foods\" for the urban middle classes, and \"comfort food\" for the diaspora.Several NUS with significant potential as resilient food crops are not more widely used due to the presence of toxic, anti-nutritive, excessively bitter or allergenic compounds, which must be taken into account when promoting NUS for home gardens. Some of the best-known examples include:• Grass pea, a highly drought-tolerant legume that can cause lathyrism when eaten in significant qualities; • Solanaceous crops that have not been exposed to generations of selection for low solanine levels can pose a health risk; • Water lily roots, Nymphaea, an important famine food in the wetlands of South Sudan and Uganda, contain a toxic alkaloid, and young ferns, a delicacy in Sierra Leone, can be carcinogenic; • Members of the Cruciferae can be goitrogenic in areas of low natural iodine while species high in tannins, oxalic acid and phytic acid can inhibit the uptake of iron, a disadvantage in countries with high levels of anaemia.By definition, the term NUS implies little research interest. While this is true when compared to the level of research conducted on the main staple crops, a significant amount of research on NUS does take place but is often confined to MSc and PhD thesis and project reports, which receive little attention. The promotion of NUS can be politically sensitive, and NUS research and market development initiatives are sometimes treated with suspicion by some sectors of civil society.A lack of investment and research into these crops has led to farmers planting them less and less, reduced access to high-quality seed and loss of traditional knowledge.Creating demand: Researching niche markets and creating demand for NUS as \"aspirational\" foods, starting with the urban middle classes. Chia seeds are a well-known example, with affluent health-conscious consumers in Europe creating demand for chia seeds grown by farmers supported by SHA in Uganda.Addressing NUS seed and germplasm shortages: This requires a vibrant, diverse seed sector, that supports farmer-to-farmer seed exchanges and SME-and farmer-owned seed enterprises as well as large-scale commercial seed production of a wide range of crops and varieties. Diversifying crops and varieties will require the adoption of newer techniques, such as \"Crop Innovation's Genetic Finger Printing\" for registering new varieties and recognising the intrinsic value of genetic diversity in landraces. Small-and medium-scale NUS seed production requires a reliable source of EGS. SHA's Edget Cooperative Union model in Ethiopia has proved that a union of seed producer cooperatives can produce EGS for its member co-ops, an approach also used by co-ops in the USA and Canada. Other EGS models that show promise include contracting out EGS production to specialist EGS companies (Brazil) and Agriculture Universities (USA and India), and setting up commercial spin-off EGS companies from National Agricultural Research Organizations (Nigeria, Uganda).Plant breeding to improve the nutritional value and commercial viability of NUS: Using conventional plant breeding, plant breeders in India have produced varieties of grass pea with very low toxicity and there is considerable potential to use gene editing to disable genes for toxins and anti-nutritive compounds. The domestication of wild NUS is important to address the reduction in access to wild foods and can also reduce the time taken to reach maturity, especially for wild tree crops. Conversely, farmer-managed natural regeneration of degraded lands can increase the availability of wild fruits through the selective protection of wild fruit-trees with desirable traits. Agriculture, food security and nutrition are consolidated priority areas of intervention for Italian development cooperation, centred on family agriculture and small-scale farmers and contributing to the achievement of SDG2 and other related SDGs. In this context, the Italian Development Cooperation Agency (AICS) approach entails: the promotion of sustainable agro-ecological practices that protect the environment and preserve biodiversity; strengthening networks that improve access to resources and local markets and increasing resilience to shocks and climate change by addressing the economic, social and environmental causes that underlie poverty, conflict and migration.Moreover, AICS aims at strengthening and developing sustainable production chains, with particular emphasis on the enhancement of local/typical products with the objective to increase productivity and improve quality while also promoting good agricultural practices, aimed at the conservation of production areas. In this framework, AICS shares fully the growing interest around NUS and is highly aware of the strategic role that NUS can play in improving food and nutrition security, resilience to climate change, income generation and the empowerment of vulnerable people and communities.In recent years, the yearly average disbursement of AICS for initiatives concerning agriculture and food security, rural development, including biodiversity conservation and protection of the environment, have amounted to around €150 million. AICS believes that in advancing the agenda of NUS at the global level, there are some aspects that should receive greater attention, with particular reference to the conservation of wild and cultivated diversity of such species, through ex situ and in situ methods, in order to allow countries to safeguard precious resource assets that are now under threat of being lost. Another relevant aspect is the enhancement of capacities of National Agricultural Research Systems in carrying out strategic research needed to tap effectively the potential of NUS for tackling the key challenges highlighted above. Lastly, the importance of strengthening appropriate information sharing tools to harness the wealth of knowledge currently scattered for the improved conservation and sustainable use of NUS needs to be understood.The interventions promoted by the Italian Cooperation in this domain are aimed at enhancing the use of climate-resilient varieties, encouraging the production and consumption of high-quality and nutritious food and promoting healthy diets, identifying markets and raising awareness of communities. In this regard, AICS has supported several projects targeting biodiversity conservation and valorisation, both bilaterally and multilaterally through the Rome-based UN agencies (FAO, IFAD and WFP), Bioversity International, UNIDO and CIHEAM-Bari. The involvement of Italian research institutions and academia is also promoted.Among the principal areas of intervention by AICS has been: the enhancement of Tunisian plant genetic resources (cereals, olives, fruit trees, food legumes) either through in situ or ex situ conservation actions, by strengthening the National Gene Bank of Tunisia through providing capacity building for Tunisian technical and institutional staff; value-chain development of local crops with high nutritional value in Ethiopia and the diversification of local communities diets in Oromia region; ongoing support to the FAO Mountain Partnership to better utilise NUS and support to the production, productivity and value chains of moringa (M. stenopetala and M. oleifera) in Ethiopia. Finally, AICS recognises the pivotal role of women in NUS conservation and use through initiatives aimed at supporting women and youth to grow, process, market and cook healthy food. Founded in 1962, International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM) is an intergovernmental organisation focused on the sustainable development of agriculture, from food security to food quality and nutrition in rural and coastal areas, including the sustainability of local natural resources, agro ecosystems and fisheries in the Mediterranean. Its member countries are Albania, Algeria, Egypt, France, Greece, Italy, Lebanon, Malta, Morocco, Portugal, Spain, Tunisia and Turkey, and operations are carried out through its four institutes based in Bari (Italy, CIHEAM-Bari), Chania (Greece), Montpellier (France) and Zaragoza (Spain) and the headquarters in Paris. The CIHEAM Strategic Agenda 2025 provides an innovative development framework that revolves around four pillars (viz. protecting the planet, food security and nutrition, inclusive development and crises and resilience) divided into 15 thematic priorities, the fifth one being \"enhancing agrobiodiversity conservation and agro-ecological practices\".The Mediterranean Basin is one of the world's 25 hotspots of global biodiversity, presenting a high level of diversity of different food species, forages, aromatic and medicinal species. CIHEAM-Bari provides education and knowledge building on agrobiodiversity conservation and agro-ecology in its M.Sc. course on Mediterranean Organic Agriculture. It also works on the conservation of Mediterranean biodiversity through projects on the protection of endangered species (e.g., MEDISLANDPLANT -ensuring the survival of endangered plants in the Mediterranean) and/or the conservation of local and ancient species (e.g., Crop Wild Relatives) and local crop varieties (e.g., Tunisian Phytogenetic Resources Better Conserved and Enhanced). Furthermore, it carries out institutional capacity-building and promotes networking among national plant conservation centres through programs such as GENMEDA (Network of Mediterranean Plant Conservation Centres). CIHEAM-Bari also carries out analyses of agriculture and natural systems sustainability, cropping systems management, soil quality and participatory approaches in the management of natural resources. Particular attention is also paid to biodiversity's role in safeguarding and promoting the Mediterranean diet.CIHEAM-Bari believes that NUS can help in addressing several challenges such as climate change, food and nutrition insecurity, livelihoods vulnerability and poverty, biodiversity loss and ecosystem degradation. However, NUS development requires research and innovation investments. However, many constraints hinder the wider adoption of NUS, most of them relating to seed production and seed systems, agronomic practices, genetics and eco-physiology, use and markets. Furthermore, different factors hamper the promotion of NUS, among them: lack of sound data on their nutritional properties; low awareness by farmers, researchers and extension workers; poor economic competitiveness; inefficiencies in value chains (production, storage and processing) and limited availability of germplasm.Research and innovation (R&I) are important for NUS to play an essential role in building a resilient and economically vibrant agricultural sector, able to sustain food and nutrition security needs and sustainable rural livelihoods under climate change. In this respect, cross-country collaboration is of paramount importance to set up an R&I strategy to bridge existing gaps and overcome the issues highlighted above. The strategy should address all relevant scientific disciplines, from natural and agronomical sciences (e.g., agronomic research on adaptation of NUS to changing climate, poor soils and dry environments) to social sciences and economics. Investigating the connection between NUS and food security, nutrition and livelihoods of rural communities could raise the awareness of all actors, both in the academic and policy arenas, on the benefits of mainstreaming NUS in farming systems and local diets. Attention should be also paid to adopting adequate policies and institutional/governance arrangements to enhance NUS in relation to agriculture, the environment, health and gender. In particular, concrete political support is needed to include NUS in national strategies for climate change adaptation and sustainable food systems, with the view of fighting environmental degradation and natural resource depletion that constrain the productivity of NUS in the context of agroecosystems, especially in remote rural communities.CIHEAM-Bari pursues strengthening research on NUS within the Agricultural Knowledge and Innovation Systems by developing a long-term international agenda for research, innovation and development through concerted efforts involving relevant stakeholders from researchers to policy makers, farmers and consumers at different levels (from local to regional). An example of common engagement and shared efforts by different actors is given by the EU-funded project SUSTLIVES (Box 1). This project will play an important role in unlocking NUS potential in Burkina Faso, Niger and beyond (e.g., West Africa, Sahel), while also addressing the SDGs and the Paris Climate Agreement. In conclusion, it appears essential to build and support multi-actor partnerships that engage in raising joint funds for R&I on NUS, especially in the countries of the Global South.376 Claudio Bogliotti et al.The UNSCN does not have a formal view regarding NUS. However, it does have a clear understanding that unhealthy diets these days are the major contributors to disease. Therefore, the promotion of healthy diets is an importantThe project SUSTLIVES (SUSTaining and improving local crop patrimony in Burkina Faso and Niger for better LIVes and EcoSystems) falls under the thematic priority \"Vegetables, legumes, roots and tubers\" of the DeSIRA initiative (Development Smart Innovation through Research in Agriculture). It is under the direct management of AICS and brings together partners including CIHEAM-Bari, Bioversity International, Italian National Research Council (CNR), University Roma Tre, the Natural Resources Institute Finland (LUKE), the University of Ouagadougou (Burkina Faso) and the University of Niamey (Niger). It has a budget of €6 million and a duration of four years. SUSTLIVES aims to improve food and nutrition security and livelihoods of rural communities in Burkina Faso and Niger through agrobiodiversity. Agrobiodiversity, and particularly the valorisation of NUS, constitutes the driving force behind our ability better meet nutritional needs of rural communities, to create income-generating opportunities for youth, farmers and women and to support national and local institutions to cope with climate change and its effects on agriculture. SUSTLIVES consists of three expected results: (i) identifying and assessing stress-tolerant crops, target areas, local stakeholders and their needs, and achieving a higher resilience of agroecosystems; (ii) raising awareness of communities and consumers about stress-tolerant NUS, and empowering local actors, especially youth and women, in inclusive NUS value-chains and (iii) ensuring policy-making and sustainable planning on agrobiodiversity, supported and in coordination with EU planning and priorities. The main direct beneficiaries are value-chain actors (farmers -especially smallholders -processors, etc.) and their organisations, women and young people, local administrations, research institutions and extension services and local seed producers and companies. Indirect beneficiaries include rural communities as well as consumers.part of the solution. A major characteristic of healthy diets is diversity. Diets are an outcome of food systems and the current dominant food systems do not deliver healthy diets. In addition, food systems are also major contributors to biodiversity loss (and to the pollution of water, soil and air, as well as to climate change). Our current food system utilises and promotes a very limited number of crops and species. During the Second International Conference on Nutrition (ICN2), in 2014, member states acknowledged the key role played by diversified and sustainable diets, including traditional ones, in reducing malnutrition. At the same time, the ICN2 acknowledged the importance of cultural identity in relation to diets. This resulted in formal commitments to, among other things, enhancing sustainable food systems and promoting safe and diversified healthy diets. It also recommended strengthening local food production and promoting diversification of crops, including underutilized traditional crops. Many studies have shown that NUS can play an important role in improving nutrition. Their nutritional value is often higher than corresponding exotic or imported foods. In addition, they are locally adapted and are often part of cultural heritages. In summary, they can play an important role as part of sustainable healthy diets, to confront the challenges described above.A major obstacle for the enhanced sustainable use of NUS are some of the very same positive characteristics listed above. They are so locally adapted and context specific that it is often difficult to bring them to the forefront in one solid overarching definition. One could say they are so contextualised that they are difficult to (sustainably) promote beyond their immediate context or locality. There is no common understanding of what NUS are -thus, the beauty of NUS is also its weakness. In addition to this, and possibly linked to it, is the lack of knowledge about the nutritional value of many species and varieties. The lack of a common understanding of what exactly NUS are has also contributed to their \"neglect\" or insufficient protection in (international) law. At the level of individual crops, additional issues can pop up, such as: consumers have lost the habit of preparing them or don't appreciate the taste, smell or colour (anymore), and producers don't see their potential (anymore) because they have become used to more dominant crops that have been promoted at liberty by companies, government services and policies. However, obstacles to the uptake of individual crops (as opposed to NUS in general) can be overcome more easily (relatively speaking) -see below, under Question 3. More worrisome are the obstacles that extend to the promotion of NUS overall. There is a lack of:• recognition of NUS' potential roles; • awareness on NUS potential among governments; • adequate research (especially in the nutrition field);• coherence and adequate protection in local and international legal frameworks; • interest from the private sector to invest in NUS; • funds and advocacy to local communities to implement all the above. Solving these gaps requires political solutions as well as the collaboration of various sectors and stakeholders.Solutions can be distinguished for individual crops and NUS in general. For individual crops, chefs or other champions (farmers, caterers, etc.) in various settings such as in school gardens (e.g., biodiversity project Brazil) or in the tourism sector (tourism in Uganda) can handle promotion. Whenever NUS are promoted in their endemic areas, it is important to take care not to over exploit a specific crop, for example, by establishing value chains abroad. The local population must continue to have access to it and benefit. To promote the uptake of more NUS in general, it is paramount to do more research and make an inventory of NUS and their nutrient content. NUS can also be promoted by advising people to include them in their diets. A very helpful tool for this is the national food-based dietary guidelines (FBDG), especially those that have sustainability criteria. FBDG take into account the actual consumption of the population, as well as cultural acceptability and preferences. FBDG also consider what is locally available and accessible. As such, FBDG can prove to be a very good tool to promote locally produced crops and species, including NUS!The International Treaty on Plant Genetic Resources for Food and Agriculture (International Treaty) 1 was negotiated by FAO and adopted in 2001 to create a global system that provides farmers, plant breeders and scientists access to plant genetic materials. It aims at:• protecting and promoting Farmers' Rights, recognising the enormous contribution of farmers to the diversity of crops that feed the world; • promoting the exploration, conservation and sustainable use of plant genetic diversity in an integrated manner and • establishing a global system to provide farmers, plant breeders and scientists with access to plant genetic materials, while ensuring that recipients also share benefits they derive from the use of these genetic materials.NUS are local crop varieties -also known as landraces or farmers' varietiesproviding basic daily food nutrition and livelihoods, but also socio-cultural and environmental values that are fundamental for sustainable agriculture and local economic development. Economically, they have enormous potential for fighting poverty, hunger and malnutrition. Around the world, smallholders and peasant farming communities, particularly those in remote rural and marginal areas, rely on a wide range of NUS for their food, nutritional and health security, and livelihoods. NUS not only provide diversified healthy food and nutrition, but most of them, with ancient origins, have been conserved and sustainably managed until today because of their unique social and cultural values, as well as environmental importance.To date, the International Treaty is the only legally binding international agreement that recognises the enormous contributions that farmers from all regions of the world have made, and will continue to make, for the conservation and development of plant genetic resources as the basis of food and agricultural production. Article 9 of the International Treaty lists some measures that recognise and promote Farmers' Rights, 2 or the rights of farmers to crop genetic resources for food and agriculture. These measures are closely linked to one of the core objectives of the International Treaty -the conservation and sustainable use of plant genetic resources. Promoting the expanded use of local and locally adapted crops, varieties and underutilized species is specifically suggested by the International Treaty as a means of sustainably using plant genetic resources. The implementation can be realised through a list of measures at national levels that could be taken to protect, promote and realise these rights. 3 Farmers' Rights are critical to ensuring the conservation and sustainable use of plant genetic resources for food and agriculture (PGRFA) and, consequently, for food securitytoday and in the future. Now, 15 years since the International Treaty came into operation, the need to realise Farmers' Rights is more relevant than ever. With an estimated 1.2 billion of the poorest people living in rural areas and depending largely on traditional agriculture and their own local crop varieties, promoting their rights to crop genetic diversity can be a valuable channel for the eradication of poverty, hunger and malnutrition. Many of these local crops are nutritionally dense, and, therefore, their erosion can have immediate consequences for the nutritional status and food security of the poor, while their sustainable use can bring about better nutrition and success in fighting hidden hunger. For most of these rural farmers, access to commercial varieties and the required production inputs, such as fertilisers and pesticides, are unaffordable. Thus, they depend on the diversity of their local traditional crops. Crop diversification can provide insurance against crop failure due to pests and diseases, or adverse climatic conditions, such as drought or floods, while the produce may be central to traditional local cuisine and specific dietary requirements. Furthermore, diverse crop genetic resources are an important source of locally adapted genes for the improvement of other crops, to build climate-change-resilient agricultural production systems. Therefore, enabling farmers to maintain and develop this crop diversity, and recognising and rewarding them for their contribution to the global gene pool are basic prerequisites for the achievement of the Sustainable Development Goals (SDG1: no poverty; SDG2: zero hunger; SDG15: life on land).To date, the enormous potential of NUS for food security and nutrition, hunger and local economic development have not been fully explored or utilised. This is despite increasing awareness and discussions at various fora highlighting the nutritional, economic, social, cultural and ecological values of NUS. The enabling environments, such as strategies for promotion and institutional mechanisms to support NUS, were always missing or were not mainstreamed in existing food and nutrition security policies, programmes and agendas. NUS are still not a priority for many governments, and investments in researching and improving the productivity, adaptability and utilisation are not yet in place. The lack of investments in local crops has meant that their potential benefits remain undervalued and untapped. If there are no enabling environments and supporting polices, and if there is no value and demand for NUS, farmers will ultimately give up the cultivation of these crops. In addition to this, the lack of institutional mechanisms to support NUS farmers, e.g., market incentives, marketing support for producers, access to financial and technical services, etc., is making it difficult for them to continue conserving and sustainably using NUS. The widespread adoption of high yielding uniform varieties has contributed to the diminishing exploitation of many NUS and other diverse local varieties, along with the knowledge systems associated with their cultivation and use. Therefore, appropriate infrastructures need to be in place to support NUS farmers to continue the cultivation of local traditional crop varieties -varieties that are genetically diverse due to repeated cycles of selection, seed-saving and re-planting, which has resulted in their adaptation to local environmental conditions. The promotion of local crop varieties, increasing knowledge and raising awareness are important elements in efforts to sustain their cultivation.It all starts with the seed. Farming begins with seeds. Without seed, there can be no crops and no food production. Farmers and other crop maintainers depend on access to sufficient quantities of good quality seeds of their varieties of choice, and for these seeds to be available in time for planting when they need them. Seed systems -from production, through processing, storage and distribution -are, therefore, central in efforts to sustain local crop diversity. The top three solutions are:1 Mainstream NUS into national and local policies and programmes to create an enabling environment and to support farmers by providing technical support and access to financial services 2 Create institutional mechanisms to support rural livelihood strategies and household income diversification, such as access to market and market facilities, develop market value-chains -markets for local products, linkage to tourism and other potential income-generation support for NUS farmers 3 Strengthen local seed systems and increase the number and quality of local seed banks to promote sharing and exchange of seeds among farmers.These solutions might help address the challenges that confront smallholder farmers and Indigenous local communities in conserving and sustainably using local crops and NUS. No difference should be made in terms of \"formal\" and \"informal\" seed systems at the local level to facilitate access to plant genetic resources. A supportive legal and policy framework for the cultivation and marketing of local crop varieties is lacking in many countries. There are activities that can help enhance their unique value and support the creation of new in situ diversity. This may, in turn, serve to inform and influence the development of a more appropriate, supportive policy environment. This is particularly critical in the many developing countries where as much as 80-90 percent of seed requirements of smallholder farmers are sourced through local exchange networks, as well as from markets and household stocks.A further tangible way to safeguard local crop varieties and to secure the seed supply for local communities are Community Seed Banks (CSBs). CSBs serve as repositories of local crop diversity that is often adapted to prevailing climate conditions, including biotic stresses, such as pests and other infestations, and facilitate farmers' access to seeds in time for planting. This is particularly necessary during periods of calamities, natural disasters or emergencies/crises. Many experiences, including through the Benefit Sharing Fund 4 of the International Treaty, operating in more than 60 countries around the world, highlights the importance of local seed banks for local food security and the empowerment of local communities, as well as for maintaining traditional knowledge and raising awareness of the value of local crop diversity. Therefore, supporting farmers and local communities in developing and maintaining these seed systems is important to sustaining diversity and ensuring local food and nutrition security.Creating stable value chains for crop produce is one option that is widely considered to be central to efforts promoting the sustainable use of local crop varieties. Effective commercialisation and innovative marketing systems can promote NUS and maximise their economic value. This can involve a range of stakeholders, including farmers and farmers' cooperatives, local promotional associations and businesses, research and development organisations, food processing companies and local government agencies. To enhance marketing options, value-adding measures should include the development of new products from raw sources, the use of high-quality processing methods and packaging and registration through schemes such as Geographic Indications (GI) and traditional knowledge. Products may be sold in local markets, grocery shops and supermarkets, and via internet-based outlets, 5 as well as to restaurants.Lastly, knowledge management and information dissemination is crucial to the conservation of local crop diversity. The International Treaty promotes knowledge sharing and information dissemination through a Toolbox for Sustainable Use of PGRFA. 6 The toolbox is aimed at assisting countries in designing and implementing measures to promote sustainable use. It caters to those seeking information or guidance on policies, strategies and activities that can promote and enhance the sustainable use of PGRFA, particularly at the national and local levels. Intended users may come from a wide range of stakeholder groups, including those working in or associated with public research institutions and gene banks; government agencies; farmers' associations; agro-NGOs; local and Indigenous community enterprises; seed networks; educational establishments; international bodies; networks and services; private plant-breeding companies and the commercial seed and plant production industries, as well as independent plant breeders, farmers and seed producers.To demonstrate the top three solutions to safeguard local crop diversity, below are some of the living examples extracted from the national measures and practices on the implementation of Farmers' Rights under the International Treaty. 7 These examples support the conservation of local crop diversity while enhancing food and nutrition and the livelihoods of farmers and rural communities.In 2017, the Ecuadorian government adopted a Law for Agrobiodiversity, Seeds and Promotion of Sustainable Agriculture. One of the important components of the law is the conservation of native seeds. The main objectives of the law are to protect, revitalise and promote the dynamic conservation of agricultural biodiversity; ensuring production and free and permanent access to quality seeds, including by strengthening scientific research and promoting sustainable agricultural production models. It also respects the diverse identities, knowledge and traditions that guarantee the availability of healthy, diverse, nutritious and culturally appropriate foods to achieve food sovereignty and contribute to \"Good Living\" (\"Sumak Kawsay\"). It guarantees the free use and exchange of peasant seeds, and establishes rules for the production, certification and commercialisation of certified seeds. The law is a normative instrument that would allow the conservation of diverse agricultural biodiversity species of nutritional and economic importance, as well as with industrial potentials.The Heirloom Rice Project, started in 2014, is supported by the Department of Agriculture of the Philippines and the International Rice Research Institute. It aims to enhance the productivity and enrich the legacy of heirloom and traditional rice varieties by empowering communities in rice-based ecosystems in the Philippines. Heirloom rice varieties, grown and handed down for generations by small landholders, have exceptional cooking quality, flavour, aroma, texture, colour and nutritional value. There is high demand for these varieties, and they command higher prices in both domestic and international markets. However, there are also challenges hindering farmers from seizing these opportunities, and some varieties are at risk of extinction. The Heirloom Rice Project takes a market and product development approach, from characterising the existing heirloom or traditional varieties alongside modern climate-resilient varieties to capacity development and enterprise building in farming communities, and identifying opportunities for value addition and market linkages. The project resulted not only in an almost 80% increase in the production of heirloom rice varieties in six years but also, more importantly, in providing opportunities for farmers to increase their income-generating capacity.During the 2013-2014 period, Agenzia Lucana di Sviluppo ed Innovazione in Agricoltura (ALSIA), an agency of the regional government of the Basilicata region in Italy supporting agricultural development and innovation, carried out a survey among farmers of the region to identify rye growers. Four farmers cultivating a total area of two hectares with an old variety called \"Lermana\" or \"Germana\" were identified. In 2018, ALSIA succeeded in registering the local \"Lermana\" rye variety in the Italian National Seed Catalogue in the \"Conservation Varieties\" section. This was followed by activities for value-chain development, which increased the area cultivated with \"Lermana\" rye from 2 hectares to 15 hectares, and also increased the number of farmers cultivating the variety from 4 to 30. This success demonstrates the importance of the \"conservation through use\" approach for the conservation of local PGRFA, and also the role that local authorities can play in supporting local development through on-farm conservation of traditional varieties.CSBs have been established in many countries to safeguard local crop varieties and to secure seed supply for local communities. CSBs are commonly established and managed by farming communities but may also involve collaboration with NGOs or research institutes. The CSB in Ejere, Ethiopia, attracts many visitors each year, from Ethiopia as well as abroad, who wish to learn about their achievements and success. Through conservation and the participatory improvement of local crop diversity and related activities, the CSB has significantly improved seed and food security, nutrition and livelihoods in the whole area. Initiated in 1990 by USC Canada 8 in collaboration with the erstwhile Plant Genetic Resources Centre, Ethiopia, the work was later taken over by the Ethio-Organic Seed Action, with support from the Development Fund of Norway. The initiative promotes sustainable climate-change-adaptation practices among farmer communities through enhanced capacity to sustainably manage, develop and utilise local agrobiodiversity as an adaptive mechanism. To bolster local crop diversity conservation, it supports implementation of practical actions on the ground, such as a reintroduction of traditional crops; participatory varietal selection to adapt promising crops to changing environmental conditions and improve desired properties; quality seed production and distribution; seed fairs and training in advanced organic production methods and income-generating activities. The global resurgence of interest in neglected and underutilized species (NUS) like millets, including viewing them as a panacea for fighting food and nutrition insecurity during the COVID-19 pandemic, is welcome. These crops are being considered as alternatives to rice and wheat, especially for the poor in the peripheral areas of the Global South (Muthamilarasan and Prasad, 2020). However, the focus on millets will be counter-productive if social equity, including gender concerns, are not taken into account in their promotion, as happened in the case of major staples, especially during the Green Revolution.Debates on male versus female farming systems, especially in the African continent (Boserup, 1970), have highlighted the social and technical reasons as to why particular crops are considered as men's or women's. Instead of sophisticated machinery, women often used hoes to cultivate; due to lower access to resources and assets they used fewer inputs than men; and, importantly, given their role in ensuring household food security, their cropping patterns often prioritized food and subsistence crops over cash crops. Therefore, highlighted the importance of recognizing women's roles and contributions to farming in national accounts and supporting them through better access to and provision of resources, inputs, services, and markets.Women are often portrayed as risk-averse subsistence farmers, perhaps due to the choices they make or the constraints they confront. Policies, hence, ignore their crops (Devkota et al., 2014), as does research (Donatti et al., 2019). Despite their low social standing, these crops are crucial to household food and nutrition security, and the optimum and sustainable use of the ecosystem including soil management. Using counter-examples from Zambia and Zimbabwe, Jackson (2007) demonstrates how risk behaviours of women in farming are strongly related to the nature of marriage,Nitya Rao, Amit Mitra and Raj Rengalakshmi conjugality, and gendered notions of insurance and dependence. Further, most crop production systems involve both men's and women's labour, making it important to understand relational dimensions, including gendered contributions, in order to ensure gender equality and household food and livelihood security, alongside sustainable resource use (Rao, 2017;Doss et al., 2018).Small millets and other NUS, like roots and tubers or wild fruits have been integral to farming systems, especially in the hills and mountains or their adjoining forests in rural India and elsewhere across the world. These traditionally included multiple crops, meant for both consumption and sale. Crop rotation, mixed/inter-cropping including of non-cultivated edible greens or fodder for livestock, and practices such as bund crops to reduce soil erosion on slopes, growing pulses, or mulching crop residues helped maintain soil fertility. Overall biomass productivity was enhanced by effectively sharing resources (water, sunlight, nutrients), ensuring regulation of pests and attacks from wild animals, and collective action to maintain a uniform sowing time, sharing seed resources, and maintaining informal seed networks and crop watching at harvest time. All these actions, directed at maintaining the ecosystem, also strengthened resilience to climate variability (cf. Voelcker, 1893). This strategy diversified sources of income and food and contributed to ensuring diverse diets and nutrition security. Additionally, the system helped generate and stabilize employment by extending the cropping season throughout the year.Importantly, such diversified farming systems were premised on principles of social equity, including gender equity, involving elements of mutuality, albeit asymmetric, in production, processing, and consumption (Mitra and Rao, 2019). With changes in land tenures and agricultural modernization as well as the emphasis on agricultural production as a source of income, there has been a shift to mono-cropping of high-value crops. Single varieties are subject to higher risks from price fluctuations and climate change. They conform to more individualized forms of production, with little attention given to the collective management and maintenance of the larger ecosystem. Using the example of millets, we draw insights the broader dimensions of inequalities and the mechanisms of their production and reproduction over time. We focus particularly on the evolution of three dimensions of inequalities: access and control over resources including knowledge and skills; labour relations; and decision-making processes in the production, processing, sale, and consumption of millets. These dimensions impact gender and the wider relations between people, collective action, and the natural environment. The reflections in this paper come from the long-term engagement of the authors with communities in the Kolli Hills in Tamil Nadu and Koraput in Odisha. Tribals, historically seen as 'marginalized' and 'backward' communities in the Indian context, predominate in both sites.What do we mean by social equity? There are multiple levels of inequity prevalent in any society, based on many social and economic markers including class, landownership, caste, ethnicity, age, educational status, and gender. While our emphasis here is on gender, we understand gender identity as embedded in other social relations of caste, class and ethnicity. We adopt an intersectional perspective on gender, exploring the experiences of women -not as a category, but, rather, seeing women and men, as heterogenous groups, and how their experiences are shaped by their particular social position (Rao, 2017).Gender analysis unpacks the power relations involved in resource access, especially land, a critical resource for agriculture, but equally reflected in both labour contributions and control over income and decision-making processes. We find variations in women's labour and time burdens depending on the quantity, quality, and the location of land in the ecosystem, and crop choices. Most tribal communities in the study areas manage cultivation with household labour. Hired labour is uncommon, though harvesting, threshing, and cleaning draw, at times, on reciprocal community labour (Mitra and Rao, 2019).Women's knowledge of cultivation, especially in seed management and forming seed exchange networks, was valued and recognized in scenarios where millets were cultivated regularly. Additionally, women were free to choose the crop mixes in particular types of lands, especially the uplands. Plantation crops, like eucalyptus, in which agreements are mostly made by men and lumpsum payments received in cash, are now replacing millets in the uplands (Mitra and Rao, 2019). With market-driven cropping systems, including of millets, gaining ground, women have lost their say in crop choices, but equally in the kind of crops to be sold as well as the quantities. Their knowledge, needs, and preferences, including for domestic consumption and assuring basic nutrition, are no longer given due consideration.The final issue relates to decision-making control or the exercise of agency. Priorities clearly are negotiated within the household (Sen, 1990). Changes in the types of land and the types of cultivation practiced, upland versus lowland, are accompanied by shifts in decision-making control. This is because uplands are often associated with women and their crops, used for subsistence, while lowlands are seen as better-quality lands, for paddy cultivation, which lies in men's domain (Rao, 2008). This normative distinction is linked to gender roles, with men considered 'providers', responsible for the staple crop, and women 'home-makers', responsible for the food accompaniments rich in micronutrients (Carney and Watts, 1990). With the growing need for cash incomes to meet needs beyond food, which is considered to lie in the public (male) domain, there has been a shift towards greater male control decision-making over land use and household expenditures. In the process, women's central role as farmers is forgotten.In India, social position matters in shaping both access to agricultural land, and the nature of cultivation practiced. In Koraput, the experiences of the landed and slightly better-off Bhumiya tribe differ from the near-landless Parojas or the landless Scheduled Caste Doms. While for the Bhumiyas, their crop choices are increasingly based on the exchange value of particular species in the markets, the driving factor for the Parojas is still the use-value of different varieties for a range of purposes like food, liquor, fuel, and social rituals. Among the small millets, finger millets constitute the bulk of the production, as they can be fermented easily, and the straw used for fodder and housing material. Little millets are still offered to the gods. The Doms, dependent entirely on wage labour, are not necessarily aware of the intricate drivers of crop choices. While both the Bhumiyas and Parojas cultivate millets, the former are shifting to mono-cropping finger millet (ragi) in their lowlands due to growing market demand. The Parojas, mostly upland cultivators, continue to grow multiple millet varieties mixed with pulses and vegetables (Mitra and Rao, 2019). This suggests a growing gap between those with access to resources, particularly lowlands, and those without. Yet this gap in landownership does not necessarily translate into dietary diversity in household food consumption. In fact, higher incomes through sales of surplus production are invested in expenditure on education, capital assets, and at times health, rather than better food.A second, related trend in land management is a shift from diversified cropping systems suited to particular land types towards cash crops, be it a shift from millets to tapioca/cassava in the midlands in the Kolli Hills, or to eucalyptus plantations in the uplands of Koraput, both crops that are contracted to industry. In the Kolli Hills, the local Malayali people regularly practiced mixed cropping, crop rotation, and inter-cropping (Vedavalli and Rengalakshmi, 2019). The poramboke lands (uncultivated commons), often interspersed with the rocky steep slopes (kolla kadu), provided fuel, fodder, uncultivated foods, and leaf mulch for millet cultivation in the uplands or paddy in the wetlands. Diverse farming systems also contribute to soil health, maintaining water resources and managing ecosystem services. While the new cash crops do bring in assured cash to the individual household, this is at the cost of environmental health and regeneration. Here too, the negative effects on household nutrition are visible, as is the shift in decision-making and control from women to men.In terms of formal land tenures, the notion of private property was introduced by issuing pattas (recorded land titles) in men's names in the first half of the twentieth century in Koraput, a princely state until 1947. In the Kolli Hills, annexed by the British in 1792, the ryotwari system of revenue collection (where the state collected revenue directly from the cultivators) was introduced in 1797-1798 (Saravanan, 2010). While in Koraput many non-tribal outsiders, clerks, and moneylenders occupied tribal lands (Behuria, 1966) -similar to experiences in the tribal parts of colonial British India (Rao, 2008) -in the Kolli Hills, major land-use changes began with the introduction of commercial tapioca in the early 1970s (Vedavalli and Rengalakshmi, 2019).Despite the changes in the local economy due to the land settlements and commercial crops, the de-facto situation did not change much for a long time on the ground as women continued to cultivate upland plots. While individual ownership was recognized over individual plots, the ownership and management of the ecosystem remained a collective responsibility. A farmer could not make changes or cultivate crops that would adversely impact plots downstream (Mitra and Rao, 2019). In both sites, contrary to the images of life being on the margins of subsistence, there was food self-sufficiency, considerable trade in forest products, and various arts and handicrafts. Surpluses might not have been large, but there was a balance and reciprocity with the natural environment (Mitra and Rao, 2019).Each crop has a different set of timings for different activities from planting to weeding, irrigating, and harvesting. These are gendered, with men normally performing land clearing and ploughing activities, while women are involved in sowing and weeding. In Koraput, where households now cultivate both lowland and upland crops -the former usually for sale in the market and controlled by men -women's labour is diverted to this crop, with little time available for weeding or attending to their traditional varieties, often millets and pulses, grown on the uplands. This results in a decline in the production and consumption of NUS (Rao and Raju, 2019), with negative effects also on soil productivity.An analysis of gendered time use across seasons in Koraput highlighted that it was major crops like paddy that were most time intensive for women, both during planting and harvesting. In fact, during these seasons, women had much less time available for domestic work, or household care, including self-care. Rest and leisure are not just critical for ensuring women's own health, but also the squeezing of time for domestic work directly impacts time spent on cooking and feeding, with potentially negative outcomes for children and, indeed, the entire family. Interestingly, women from the Gadaba community, who continued to practice a more diversified cropping and livelihood system, did not confront the severe time shortfalls or seasonal bodyweight losses during the peak cultivation seasons as did the Bhumiya women (Rao and Raju, 2019).There is renewed interest in diversified farming systems on grounds of food and nutrition concerns. It needs to be highlighted that these systems also valued women's time and labour, alongside ensuring they had control over the crop and its use. In India, more research that accounts for women's labour in the calculation of costs and prices of different agricultural commodities is needed. As women are counted only as 'unpaid household helpers', their labour tends to remain undervalued, with negative effects on their decision-making control, nutrition, and indeed health.A key decision area relates to the choice of crops across different types of landlowland, midlands, and uplands. Each of these land types and crop choices have different contours, water resources, and labour needs. The available market opportunities also shape household decision-making processes. This is evident in the case of Kadaguda (name changed), a village in Koraput district. Women from Paroja households used to cultivate a variety of crops, including small millets, niger, and pulses on the uplands, like all other villages in the area. Almost every household had one or two vegetable plots owned and managed by the women. Changes began about 15 years ago with the introduction of eucalyptus plantations on the uplands, and sweet potatoes on their vegetable plots. The cash income, however, officially accrues to the men, though it involves the labour of both men and women. It is not spent on the purchase of food, so dietary diversity has declined. The villagers now rely on cheap cereals from the Public Distribution System. Kadaguda was famous in the area for the quality of its fermented millet beer. This has now been replaced by cheap country liquor and Indian-made foreign liquor. Women used to drink the nutritious millet beer but now are discouraged from consuming alcohol. Their labour is appropriated, but they receive neither cash nor nutrition in return. Further, not only is crop diversity lost, but so too is women's knowledge in adapting to the microenvironment nullified. This is not to say that diversified farming systems in these communities were gender equitable. Men have always held leadership positions in the community and the household, with women excluded from participation in village or community-level decisions (Rao, 2008). Yet, similar to the case of the New Guinea Highlands, despite their exclusion from the ritual, political sphere, women's participation in production, and the social acknowledgement of that, ensured that they had a voice both in the household and in the community (Strathern, 1988). Their voice, though negotiated, could not be ignored. If this happened, women found everyday forms of protest, including through withdrawing their labour from the men's crops (Carney and Watts, 1990;Rao, 2008).The situation began to change with the introduction of the notion of private property and the issuing of pattas (Land Title) in men's names, seen as the 'heads of households'. As social relations, especially vis-à-vis the state, became more male-centric, this tendency moved down to the community level too. Bride price was gradually replaced by dowry, as women were seen as a burden, to be looked after, rather than as productive members of the household. Women's rights in terms of the choice of marriage partner, the right to divorce and remarry, and control over their bodies more generally started being restricted.While women's freedoms were curtailed, their work burdens were not. They continue to hold the primary responsibility for land management, production, and processing, yet their ability to make decisions on how to do so is constrained. While some women do resist their marginalization, new forces of development, including education, organized religion, and a cash economy based on enhancing the productivity of single crops, have limited their opportunities for resistance. As many women noted across sites, they now have fewer children and aspire to educate their children. This means that they lack household labour to manage a diversified farming system, ultimately giving in to men's pleas to shift to cash crops or contract farming (Rao and Raju, 2019). Despite a weakening in their material basis in this process, they nevertheless hope that their hard work for the household will ensure a degree of jointness in both production and consumption.The above analysis has several implications for gender-sensitive policy. While clearly recognizing women as farmers is key, and ensuring their basic entitlements to assured credit, insurance, remunerative prices, value-addition technologies, and so on, this is not sufficient. Specific constraints confronting the cultivation of NUS and maintaining diversified farming systems need to be acknowledged and addressed.An important emergent need in rural communities is that of enhancing cash earnings. This has led to the devaluation of NUS, largely seen as subsistence crops. To enhance the status and value of NUS, urgent research is needed to improve the productivity of local, resilient varieties, but equally to value addition of the entire plant biomass, including straw and husk and not just the grain. This has been attempted in case of paddy, and some plantation crops such as coconut and banana, but continues to remain neglected for millets. A second strategy to ensure minimum incomes from the cultivation of NUS is through public procurement at assured prices, provision of insurance, including at the warehouse level, and credit provision to women farmers. While minimum support prices are announced, very little of the produce is actually procured at these prices or, indeed, made available for mass consumption. In fact, due to the nutritional quality of millets, the elite, rather than the poor, are now consuming them.From a social equity and gender perspective, it is important to recognize women's contributions, both in terms of their knowledge of seeds, soils, and water management, and their time and labour spent on the cultivation and processing of these crops. Women in the Kolli Hills told the first author that they did not like to cook millets at home, not just because their children did not have a taste for it, but also because it required hand pounding and was too labour and time intensive to prepare. Research and policy need to focus on the development of labour-saving technologies that value and support women's labour in relation to NUS.Finally, promoting the cultivation of millets by adopting a cluster approach would help to enhance ecosystem services along with the collective management of pests that damage the crops. This is in the interest of all farmers, and will ultimately benefit not just women, but the entire community. DOI: 10.4324/9781003044802-39Through this updated list of key players and initiatives focusing on neglected and underutilized species (NUS) around the world, we hope to facilitate possible synergies, collaborations and partnerships among organizations interested in advancing the conservation and sustainable use of these resources. Far from aiming to be exhaustive, our analysis results from consulting various sources of information obtained from published literature, unpublished reports, the internet and LinkedIn profiles. The list includes research institutions (national and international), NGOs, universities, networks, consortia, major NUS conferences, private sector companies and donors who have been supporting/are supporting NUS activities. This chapter also complements Chapter 2, which highlights some of the historical landmark events related to NUS.A number of centres of the Consultative Group on International Agricultural Research (CGIAR) are engaged in research and development of a crops, landraces, and other plant and tree species that can be considered NUS. Here we only highlight some of the key centres.The recently launched Alliance is bringing together expertise of two centres, Bioversity International (formerly IBPGR, IPGRI) and the International Center for Tropical Agriculture (CIAT), both with an active engagement in the promotion of NUS. With regard to Bioversity, its work on NUS dates back to its very establishment, at a time when the organization developed regional conservation strategies and priorities that included NUS (IBPGR, 1981). Currently Bioversity has just ended the fifth phase of an IFAD-EU supported programme on NUS, which was implemented from 2015 to 2020 in Guatemala, Mali and India (Padulosi et al., 2019), and a GEF-UNEP Project ended in 2019 and implemented in Brazil, Kenya, Sri Lanka and Turkey (Hunter et al., 2019) specifically addressing the nutritional value of a large portfolio of NUS. A three-year research project funded by GIZ on NUS has been also recently launched in Ethiopia and Kenya to help communities develop their own action plans to improve nutrition and diet diversity, harnessing local agrobiodiversity (Nowicki, 2019). CIAT maintains in its germplasm collection numerous species of NUS legumes and forages of tropical origin and involved in their use enhancement.This CGIAR centre is active in promoting NUS, mostly tree species, such as moringa (Moringa oleifera), the safou plum (Dacryodes edulis) and the medicinal African plum (Prunus africana). The centre is a major partner in the African Orphan Crops Consortium (AOCC -see later) Website: http://worldagroforestry.org/ICRISAT as a centre actively involved in the promotion of millets, for which it holds a large ex situ germplasm collection. Currently engaged in a global initiativethe \"Smart Food Initiative\", described in Chapter 28 -which covers several NUS cereals and pulses (Smart Food Executive Council, 2019). Website: www.icrisat.orgCrops for the Future (CFF) Crops for the Future was established in 2009 out of the merger of the Global Facilitation Unit for Underutilized Species (GFU) and the International Centre for Underutilized Crops. In 2011, it launched the CFF Research Centre in Malaysia, which comprises laboratories, offices and a field research centre (Gregory et al., 2019), which is currently being relocated to another country. CFF and CFF-RC became one entity in 2014. Website: http://www.cropsforthefuture.org/ Royal Botanic Gardens (RBG), Kew, UK In 2007, Royal Botanic Gardens-Kew launched Project MGU known as \"The Useful Plants Project\", which aims at enhancing the ex situ conservation of native useful plants for human wellbeing across Africa and Mexico by building the capacity of local communities to successfully conserve and use these species sustainably. Since its establishment, the project has been working with partners in Botswana, Kenya, Mali, Mexico and South Africa to conserve and sustainably use indigenous plants that are important to local communities (Ulian et al., 2016). More information on the project is provided in Chapter 9. Website: https:// www.kew.org/science/our-science/projects/project-mgu-useful-plants-project. Worth mentioning here is also RBG Kew's latest publication by Ulian et al. (2020), released in conjunction with the RBG's State of the World's Plants and Fungi 2020 report (Antonelli et al., 2020), in which authors stress the urgency for the better promotion and recognition of NUS' role in improving the quality, resilience and self-sufficiency of food production.The FAO has been actively involved in the promotion of NUS for some time. As a matter of fact, IPBGR (the first predecessor to Bioversity International) was established in 1974 within the FAO and from there it operated until its separation from the UN system in 1993. Through the Commission on Genetic Resources for Food and Agriculture, the FAO is active in promoting, inter alia, the genetic resources of underused species. The FAO's second Global Plan of Action for the Conservation and Sustainable Utilization of PGRFA is another important not legally binding multilateral framework that promotes NUS as well through its activities. The International Treaty on Plant Genetic Resources for Food and Agriculture (International Treaty) considers NUS one of its priorities (Article 6e) and efforts are deployed to promote their sustainable use through its Access and Benefit-Sharing Funding Mechanism (see Chapter 31). The FAO is also active in the use-enhancement of NUS through its efforts to safeguard Indigenous Peoples' food systems. 1 Within the FAO, the Global Forum for Agricultural Research Key Focus Area 1 contains a specific collective action (1C) dedicated to \"Rediscovering Forgotten Foods and Ensuring Benefits to Smallholder Farmers Foods\". Worth mentioning is the initiative implemented by the FAO's Regional Office for Asia and the Pacific on \" Future Smart Foods\", defined as NUS, carried out in the context of its efforts to achieve zero hunger. Its programme on non-wood forest products also covers many NUS in forest areas. With regard to nutrition, it is important to mention the work of its INFOODS programme, which includes information on the nutritional profile of several NUS crops and species. Website: https://www. fao.orgThe GCDT launched, in 2017, the Food Forever Initiative, a global partnership to raise awareness of the importance and urgency of conserving and using agricultural biodiversity to achieve SDG Target 2.5. This initiative is very active in promoting the wider use of crop diversity for improved nutrition, including NUS. Website: https://www.food4ever.orgThe Lexicon, USA This media company (\"The Lexicon for Sustainability\") was founded in 2009 to accelerate the adoption of practices that build more resilient food systems and help combat climate change; it is currently implementing -with the support of several organizations (including Bioversity) -the \"Rediscovered Food Initiative\", which focuses on 25 NUS from around the world. Website: https://www. thelexicon.org/rediscovered/This research centre has many activities dealing with NUS, including the maintenance of a germplasm collection of fruits, vegetables and palms (Ebert et al., 2007). Website: https://www.catie.ac.crThe World Vegetable Centre (AVRDC) This international nonprofit research and development institute, is committed to alleviating poverty and malnutrition in the developing world through the increased production and consumption of nutritious and health-promoting vegetables, many of which fall into the NUS category, such as traditional African leafy vegetables (see Chapter 17). In support of such a mission it maintains the world's largest public vegetable germplasm collection with more than 61,000 accessions from 155 countries, including about 12,000 accessions of indigenous vegetables, many of which are NUS. Website: https://avrdc.org/our-work/ managing-germplasm/This French agricultural research and international cooperation organization works for the sustainable development of tropical and Mediterranean regions. In its key area dedicated to biodiversity, it works with partners to study the conditions in which conserving, restoring, mobilizing and exploiting biodiversity, including NUS, could help alleviate poverty and boost food security and safety. Website: https://www.cirad.fr/enWith 50 years of service at the global level, the German Agency for International Cooperation works in the field of sustainable development and international education; it engages in a variety of areas, including the sustainable use of agrobiodiversity in which it funds numerous projects, including the recently launched \"Improving Dietary Quality and Livelihoods using Farm and Wild Biodiversity through an Integrated Community-Based Approach in Ethiopia and Kenya\", which will target several highly nutritious indigenous NUS (see also Chapter 6). Website: https://www.giz.de/en/html/index.html OXFAM This international NGO is very active in the promotion of NUS to tackle food insecurity, poverty and the marginalization of vulnerable peoples. Particularly relevant is its \"Sowing Diversity=Harvesting Security\" programme, which aims to improve access and use of crop diversity (including NUS) to change the current unsustainable and unequal food production systems. Website: https://www. sdhsprogram.org/ United Nations Educational, Scientific and Cultural Organization (UNESCO) Among its efforts, UNESCO has numerous initiatives focusing on the safeguarding of wild and cultivated genetic food species, including NUS. The work of UNESCO for the documentation and valorization of traditional food cultures entrenched with NUS is particularly relevant; see, for example, some of the activities carried out in the context of \"The Man and the Biosphere Programme\". Website: https://en.unesco.org/This USA-based advocacy NGO works to build a global community for safe, healthy, nourished eaters. It spotlights and supports environmentally, socially and economically sustainable ways of alleviating hunger, obesity and poverty and creates networks of people, organizations and content to push for food system change. Many of its initiatives focus on NUS and their sustainable promotion in today's food systems. Website: https://foodtank.com/Slow Food is a global grassroots organization founded in 1989 to prevent the disappearance of local food cultures and traditions, counteract the rise of fast food and combat people's dwindling interest in the food they eat, where it comes from and how our food choices affect the world around us. Through its Slow Food Foundation for Biodiversity, it works to defend local food traditions, protect food communities, preserve food biodiversity and promote quality artisanal products, with an increasing focus on the global south. Many of its projects focus on A network established in 2001 to promote the conservation and use of the genetic resources of crops of local importance in order to ensure long-term conservation and access to these genetic resources by Pacific Island populations, which in turn will contribute to sustainable development, food security and income generation. Some of the NUS that have been the focus of PAPGREN and CePaCT (below) are highlighted in Chapter 12. Website: https://lrd.spc.int/ the-pacific-plant-genetic-resources-network-papgrenThe Centre for Pacific Crops and Trees (CePaCT) An internationally recognized gene bank established in Fiji to assist Pacific Island countries and territories in conserving the region's unique genetic resources and providing access to the diversity they need. It is a propagation material vault operated by the Pacific Community's (SPC) Land Resources Division. It conserves the region's major crops with over 2,000 accessions, including the world's largest taro collection (over 1,100 accessions). Website: https://www. spc.int/about-us For further information on other organizations working directly or indirectly on NUS such as the World Wide Fund for Nature (WWF), the World Conservation Union (IUCN), Botanic Gardens Conservation International, United Nations Environment Programme (UNEP) and other crop-specific collaborations and thematic networks, including relevant civil society and Indigenous Peoples' networks, the reader is directed to Chapter 2 of Maxted et al. (2020).An online platform for sharing research results, development news and policy advice regarding the use and conservation of NUS. It aims to support research and promote the use of NUS to strengthen food security; build more resilient, climate-smart agriculture and empower people through income generation and revitalized local food culture. It also provides access to information and lessons from projects that Bioversity International implements jointly with research and development partners around the globe. In addition, it serves as an information hub in support of human capacity development and synergy building among practitioners engaged in this field. Website: http://www. nuscommunity.orgMajor NUS actors and ongoing efforts 401Funded by the Global Environment Facility (GEF), the Biodiversity for Food and Nutrition (BFN) initiative (formally known as Mainstreaming Biodiversity Conservation and Sustainable Use for Improved Nutrition and Well-Being) commenced in 2012 and was led by Brazil, Kenya, Sri Lanka and Turkey, coordinated and executed by Bioversity International with implementation support from the UNEP and the FAO of the United Nations. The project prioritized nutrient-rich NUS in participating countries, demonstrating and providing evidence for their nutritional value by supporting significant research on food composition. Using this expanded knowledge-base, the project undertook the challenge of strengthening the enabling environment to better promote and mainstream NUS for improved diets and nutrition, including through the development of policy incentives, markets, public food procurement, school feeding programmes and food-based dietary guidelines. The initiative also undertook considerable awareness raising, working closely with chefs and gastronomy movements, school garden networks and consumer groups. Website: http://www.b4fn.org/countries/ Crops for the Future Its website provides useful online resources on NUS, including relevant publications, portals, online libraries, weblinks and publications. More resources can also be found at the website (still accessible) of the CFF predecessor, GFU, at http://www.underutilized-species.org/MasksSearch/SearchInstitutionDetail_ id_55.html Website: http://www.cropsforthefuture.org/FutureCrop-@-LandingArticle. aspx#Other_Online_ResourcesA journal that is sensitive to NUS and has been covering them in various articles. It has also published a number of special issues on various NUS. Website: http:// www.new-ag.info/en/focus/on.php?a=423A useful site developed and maintained by Green Deane on wild greens and their foraging. It contains an online database with more than 1,000 wild edibles. Website: http://www.eattheweeds.com/An international foundation that networks with a large number of R&D organizations, within and outside tropical Africa to facilitate access to the Similar to PROTA, this international cooperative programme has the main goal of documenting information on plant resources in South East Asia, and making it widely available for use by the education, extension, research and industry sectors, as well as for the end-users, for the betterment of the livelihoods of regional communities. Website: http://proseanet.org/prosea/A collaborative space for the exchange of information on useful plants (including NUS) and their uses. It is not intended to duplicate existing encyclopedias (such as Wikipedia), but to offer additional features such as online resources, thematic literature, species lists, etc. Website: https://uses.plantnet-project.org/ en/Introduction_to_useful_plants Food Plant Solutions, Australia A project of the Rotary Action Group designed to address malnutrition through the use of readily available and local food sources. It creates educational publications that help people understand the connection between plant selection and nutrition, and empowers them to grow a range of highly nutritious plants with differing seasonal requirements and maturities. It focuses on NUS, defined as plants that are growing in and adapted to their environment, which are high in the most beneficial nutrients. Website: https://foodplantsolutions. org/about-us/ This is a free information-exchange platform devoted to the promotion of moringa and other NUS with a strong potential to improve the quality of life in developing countries. It offers consultancy services to help create and implement research, development and communication projects for NGOs and businesses. Moringa News offers through its website its knowledge, know-how and experience, as well as its still-evolving professional network of international partners. Moringa News implements research, development and communication projects (publications and seminars) with or without the partnership of other associations, businesses, farmer groups, research centres and universities. Website: http:// www.moringanews.org/gb/ The Mediterranean Germplasm Database, Italy A rich database used as reference for the germplasm collection of food crops of the Institute of Biosciences and Bioresources of Research Council (CNR), Bari, Italy. The collection contains some 56,000 accessions belonging to more than 100 genera and over 700 species and it devotes particular attention to landraces of major crops and NUS, including plants potentially useful for the extraction of bioactive or technological compounds. Website: https://ibbr.cnr.it/mgd/ National governmental research institutions Kenya: Kenya Agricultural and Livestock Research Organization (KALRO) KALRO focuses on a broad range of crops, including many considered to be NUS and supports research to generate and promote crop knowledge, information and technologies that respond to farmer needs and opportunities. KALRO also hosts the Genetic Resources Research Centre, which contains a number of NUS accessions. Most recently, through the earlier mentioned BFN project, KALRO has been active in the promotion and mainstreaming of African leafy vegetables (ALVs) in school feeding programmes and in organizing and linking local growers of ALVs to school markets.One of the largest ex situ genebanks, it maintains genetic resources of many wild and cultivated NUS and it hosts a NUS-dedicated programme (All-India Coordinated Research Network on Potential Crops) focusing on the use-enhancement of 17 of them (see later on in this chapter). Website: http://www.nbpgr.ernet.in/IER is involved in collecting, conserving and characterizing NUS, as well as in carrying out research on agroecological adaptation, propagation, food technology, marketing and promotion. Currently, it is implementing a project on NUS in partnership with Bioversity focusing on fonio and Bambara groundnut (Mbosso et al., 2020). Website: http://www.ier.gouv. Action for Social Advancement (ASA), India One of the leading NGOs in the sector of farm-based livelihoods for the poor and for natural resource management. It is engaged in the field implementation of NRM projects with active community participation, supporting communities in financial inclusion, sustainable agriculture, establishing farmer producer companies, capacity building and institutional development. ASA is involved in the cultivation, promotion and marketing of minor millets, partnering also with Bioversity in the implementation of the IFAD-EU Global Programme on NUS. Website: https://asaindia.orgAn Italian non-profit foundation, located in the Umbria region of Italy and focusing on the conservation, study and promotion of local fruit-tree diversity (some 150 ecotypes rescued so far, belonging to both popular species and NUS, like quince and sorb tree). Germplasm is maintained in a field collection near Perugia. Website: http://www.archeologiaarborea.orgCABI's mission is to improve people's lives worldwide by providing information and applying expertise to solving problems in agriculture and the environment. Several of its knowledge management resources are relevant for NUS, including books, e-books and multimedia tools, the Global Open Data for Agriculture and Nutrition Action and the mobile advisory services such as m-Kisan and m-Nutrition. Website: https://www.cabi.org/ Crops of the Future Collaborative (COTF), USA Crops of the Future is a public-private collaborative established by the Foundation for Food and Agriculture Research to enhance US and global agriculture by developing the crops needed to feed a growing population. COTF aims to expand knowledge of the genes and traits that give rise to the characteristics crops need to adapt to a changing future. Website: https://foundationfar.org/ cotf-crops-of-the-future-collaborative/ ECHO Community, USA An international NGO engaged in promoting sustainable agricultural practices and providing assistance to local communities through training activities and other interventions. Involved in the promotion of NUS and advocating their greater use for improving the resilience, nutrition and incomes of local communities. Website: https://www.echocommunity.orgThe PROINPA Foundation promotes technical innovation to improve the competitiveness of Andean crops (including NUS), food security and the conservation and sustainable use of genetic resources, for the benefit of farmers and Bolivian society as a whole. Website: http://www.proinpa.org/web/A Nepal-based organization that carries out numerous projects focusing on NUS, committed to capitalizing on local resources, innovations, and institutions for sustainable management of natural resources for improving livelihoods of smallholder farmers. Long-standing partner of Bioversity and other international R4D organizations. Website: http://www.libird.orgThe MSSRF was established in 1988 as a not-for-profit trust. MSSRF was envisioned and founded by Professor M.S. Swaminathan with proceeds from the First World Food Prize that he received in 1987. The Foundation aims to accelerate use of modern science and technology for agricultural and rural development to improve the lives and livelihoods of communities. MSSRF follows a pro-poor, pro-women and pro-nature approach and applies appropriate science and technology options to addressing practical problems faced by rural populations in agriculture, food and nutrition. It is involved in numerous projects focusing on NUS (see also Chapter 21). Website: https://www.mssrf.org/This Indian, Odisha-based NGO has worked with 20,000 tribal and farmer households on sustainable, biodiversity-based farming, community resilience and climate justice, land and forest rights, natural resource conservation and management and nutrition for the last two decades. It gives special emphasis to community-led processes for the conservation of agrobiodiversity and has extensively campaigned for mainstreaming millets since 2011. Website: https://www.nirmanodisha.org/ 408 Stefano Padulosi et al.The Italian Farmers' Seeds Network was established in 2007 and, as of 2014, consisted of more than 30 associations conserving and promoting local agrobiodiversity, including NUS. RSR supports farmers, politically and scientifically, in the creation and dissemination of self-and truly sustainable organic farming processes. Its objective is to rebuild sustainable agricultural systems starting from the re-localization of agriculture, territorial re-contextualization of agricultural research and the technical, political and cultural centrality of farmers and rural areas. Actively engaged in the PGR advocacy policy arena. Website: https:// www.semirurali.it/ Native Seeds/SEARCH, USA A seed conservation organization based in Tucson, Arizona, whose mission is to safeguard and promote the arid-adapted crop diversity of the southwest USA in support of sustainable farming and food security. In its gene bank, it maintains about 2,000 varieties of crops adapted to arid landscapes, including many NUS and their wild relatives. The collection represents the cultural heritage and farming knowledge of over 50 Indigenous communities and recent immigrants. Website: https://www.nativeseeds.orgIt is involved in the conservation of plant varieties and breeds. SAVE is also engaged in the documentation and promotion of the genetic diversity of NUS, including fruits and berries in Europe. Website: http://www.save-foundation. net/en/ Society for Research and Initiatives for Sustainable Technologies and Institutions (SRISTI), India SRISTI is a developmental organization aiming to strengthen the creativity of grassroots communities, including individual innovators. It supports eco-friendly solutions to local problems. It also nurtures ecopreneurs engaged in conserving biodiversity, including NUS, common property resources, cultural diversity and educational innovators. Website: http://www.sristi.org/A company based in Bharatpur, Chitwan, its work is driven by a \"triple bottom line\" approach of pursuing economic, social and environmental objectives.It provides good quality seeds to farmers, for both popular varieties as well NUS, such as broadleaf mustard and amaranth. Website: https://www.anamolbiu.com/ Oroverde, Switzerland It operates, with selected tropical fruits (many of which are NUS), a trading business from the farmer to the industrial partner, encourages production models of ecological cultures, initiates the bio-certification of fruit culture regions and processing plants in Amazonia as well as of products in the consumer countries, implements quality promotion and quality assurance, develops new innovative products with and for customers and is characterized by its proximity to the producers, co-operatives and communities. Website: http://www.oroverde-fruits. com/EN/fruits.htmlThis is an online magazine for Zimbabweans and everyone else with a passion for our natural foods, natural health and our natural environment. It showcases news, stories, opinions, recipes, interviews, trends and profiles of companies to entertain and educate readers on local foods, many of which are NUS. Website: https://naturallyzimbabwean.com/2015/07/01/welcome-to-the-1st-edition/ Tulimara Specialty Foods, Zimbabwe This company focuses on processing and commercializing NUS such as indigenous beans, wild fruits and herbal tea. Website: https://www.organic-bio.com/ en/company/5173-TULIMARA-SPECIALITY-FOODS UNILEVER Its brand Knorr has teamed up with WWF-UK, plus leading scientists, nutritionists and agricultural experts, to compile the Future 50 Foods report, aiming at promoting the wider consumption of highly nutritious NUS from around the world. Website: http://www.knorr.com/uk/future50reportACIAR is Australia's specialist international agricultural R4D agency, whose purpose is to broker and fund research partnerships between Australian scientists and their counterparts in developing countries. It supports numerous efforts to research and promote NUS in the Pacific, Asia and Africa, including the promotion of traditional vegetables in Papua New Guinea, sustainable taro production in Samoa and other Pacific countries and the promotion and consumption of ALVs in schools and communities in Kenya. Website: https://www.aciar.gov.au/The International Development Research Centre (IDRC) funds research in developing countries to promote growth, reduce poverty and drive large-scale positive change. The agency works with numerous development partners and brings innovations to people around the world. Many of its supported projects focus on agrobiodiversity and NUS in particular, and aim at enhancing their sustainable conservation and use. They are based in Canada with five regional offices spread across South America, sub-Saharan Africa and Asia. Website: https://www.idrc.ca/enIFAD is an international financial institution and food and agriculture hub of the United Nations. It has been championing financial support for the useenhancement of NUS since 2001, funding numerous projects (the most important being the Bioversity-led IFAD-NUS Programme). In 2019, it published jointly with Bioversity an operational framework for the promotion of NUS in its loans programme and through other R4D projects (Padulosi et al., 2019). Website: https://www.ifad.org/en/The EU has supported, over decades, numerous projects focusing on NUS. Particularly worth mentioning is the DESIRA Programme (Development of Smart Innovation through Research in Agriculture) and the Framework Programme for Research and Innovation, Horizon 2020. Both cover NUS through numerous international efforts focusing on Europe and other regions of the world. Website: https://europa.eu/european-union/index_enThe GEF is the financial mechanism of the Convention on Biological Diversity (CBD) and provides financial support to countries for the implementation of projects to help meet their commitments within the framework of the CBD. Mainstreaming biodiversity conservation and sustainable use into production landscapes is recognized as a key strategy to secure the objectives of the CBD, and as a major objective for projects supported by GEF. Over the last few decades, the GEF has provided much support for projects that actively promote the conservation and sustainable use of NUS (Hunter et al., 2019). For example, many of the projects undertaken by the UNEP as a GEF-implementing agency over the past 20 years, many with the execution support of Bioversity International, have provided a rich body of experience for ensuring the effective conservation and use of NUS. Fourteen projects in 36 countries have been implemented in diverse agricultural landscapes by a wide range of national and international partners, supported by civil society and in collaboration with local communities who continue to maintain and use globally important agricultural biodiversity (Mijatovic et al., 2018). These projects have made a substantial contribution to achieving GEF's mainstreaming strategy as well as contributing to the CBD's Aichi Biodiversity Target 13 (maintenance of genetic diversity of crops, animals and other socio-economically important species).The goal of its Collaborative Crop Research Programme is to improve access to local, sustainable, nutritious food using collaborative research and knowledgesharing with smallholder farmers, research institutions and development organizations, working to ensure a world where all have access to nutritious food that is sustainably produced by local people. Website http://www.ccrp.org/ Accessed 5 March 2020The Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ), Germany GIZ is Germany's development agency that provides services in the field of international development cooperation. It funds and/or supports several projects focusing on NUS to strengthen food and nutrition security, income generation and the empowerment of vulnerable groups. https://www.giz.de/en/html/ about_giz.htmlThe Foundation supports projects dealing with agrobiodiversity, including NUS, and aims at the conservation of plant genetic resources, and the enhanced use of NUS for improved nutrition and income generation (see A4NH-led Project in Nigeria and Vietnam, the African Orphan Crops Consortium and the Crop Trust). Website: https://www.gatesfoundation.org/ USAID Actively engaged in fighting hunger at the global level, through its programme \"Feed the Future\", it covers also the use-enhancement of NUS. One of its projects being implemented in Kenya (FOODSCAP) addressed the shortage of improved crop varieties and plant protection options for orphan crops or open-pollinated varieties. Website: https://www.usaid.gov/what-we-do/ agriculture-and-food-security/increasing-food-security-through-feed-future 412 Stefano Padulosi et al.Committed to empowering the disadvantaged, this organization works on providing solutions to some of the world's most complex social, agricultural and environmental challenges, partnering with communities to develop and implement strategies that boost food production and that are resilient in the face of a changing climate, including NUS as well in these interventions. Website: https://www.winrock.org/about/ Syngenta Foundation for Sustainable Agriculture (SFSA)It provides financial and technical support to a number of projects focusing on NUS. Website: https://www.ipixel.ch/images/Syngenta_Review_2018.pdfThe consortium was established in 2011 to facilitate the genetic improvement of NUS, through the genomic characterization of 101 traditional African local food crops. Its core founding members are the World Agroforestry (ICRAF), Mars Inc., AUDA-NEPAD, the University of California -Davis (USA) and WWF. Website: http://africanorphancrops.org/Operating under NBPGR (ICAR), New Delhi, this collaborative network has as its main objective the generation of improved technologies in selected crops of minor economic importance for food, fodder and industrial use. It coordinates and conducts research on 17 crops of food, fodder and industrial value through various centres across agro-climatic zones of India. Website: http://www.nbpgr. ernet.in/AICRN_on_PC.aspxISHS is actively engaged in promoting knowledge sharing on horticultural crops, including NUS, through conferences and symposia. It has a Work Group on Underutilized Plant Genetic Resources that meets usually during the Symposia on Underutilized Plant Species (see below). Website: https://www.ishs.org/This was established in 2007 to promote community action for the revival of millet-based farming and food systems, placing control of food, seeds, markets and natural resources in the hands of the poor, especially women. Today, it is a large alliance of over 120 members representing over 50 farmer organizations, scientists, nutritionists, civil society groups, media persons and women. They represent over 15 rainfed states of India. Website: https://milletindia.org/ The Forgotten Foods Network, Malaysia A global initiative launched by CFF that collects and shares information on foods, recipes and traditions in danger of being lost. The objective is to promote the rediscovery of foods that can transform the way people eat and that could better nourish future populations. Website: http://www.forgottenfoodsnetwork.org/The Asia-Pacific Association of Agricultural Research Institutions (APAARI) APAARI was established by the FAO in 1990, it is a membership-based, apolitical, multi-stakeholder and inter-governmental regional organization working to bridge gaps between national, regional and global stakeholders to bring about collective change in the agri-food systems of Asia-Pacific. They are involved in numerous initiatives for the promotion of NUS, including dedicated NUS conferences (see Tyagi et al., 2017). Website: https://www.apaari.org/This is a network of more than 250 members of civil society organizations/NGOs working with small-scale farmers in East, Central and Southern Africa engaged in promoting participatory ecological land use and management practices including promoting indigenous foods/NUS. Website: https://www. pelum.net/This is a Southeast Asian initiative focusing on the conservation and useenhancement of plant and animal genetic resources, including NUS (focus on local vegetables). Website: https://field-indonesia.or.id/en/participatoryenhancement-of-diversity-of-genetic-resources/The many initiatives listed above are a genuine indication of the fact that concrete interest in NUS has become a reality at both the national and international levels. While this is an excellent development, more should be done to connect isolated efforts to avoid duplications, allow better use of limited funding and build a robust collaborative network at the regional and international levels to bring impact to scale. In particular, more resources should be directed in support DOI: 10.4324/9781003044802-40In what could be considered a modern food paradox, current human diets have narrowed to a very small number of food items worldwide, even though globalization and people's mobility should increase the availability and integration of foods from almost anywhere into more diversified diets everywhere. Many factors have led us to this condition. Well before the onset of agriculture, the diet of early humans consisted of a wide variety of fruits, grains, leaves, seeds, nuts, tubers, mushrooms, lichens, flowers and even plant saps, collected over vast territories by communities of hunter gatherers. From the roughly 375,000 plant species known in the world today (Christenhusz and Byng, 2018), it is estimated that between 6,000 and 7,000 are edible for humans (FAO, 2019). Many of them may have been part of the diets of human population around the world. Sedentarization, made possible by the invention of agriculture around 10,000 years ago, brought more predictable and available food sources and accelerated human population growth. But it also had some unintended consequences. It triggered a gradual process of erosion of the number of plant species and food sources that provide the necessary nutrients for human survival. From the vast number of viable food sources, only around 200 plant species were subsequently cultivated, and the continued race for higher yields and selected plant characteristics further reduced that number to about 30 major crops that constitute today the large majority of our plant-based foods. Three of them -maize, rice and wheat -alone account for around 60% of our global energy intake (Seck et al., 2012).Modern agriculture has undeniably improved food available but it has not yet succeeded in providing sufficient calories and adequate nutrients to everyone on the planet. Despite significant progress over recent decades, the number of undernourished people is growing again, rising from 784 million in 2015 to 820A well-nourished world and NUS on the table 417 million in 2018 (FAO et al., 2019). Insufficient food consumption is only part of the challenge; today, more than two billion people, many of them children, do not consume sufficient micronutrients. There is also a realization that the success in increasing agricultural productivity has come at a cost: the progressive reduction in nutrient content for most cultivated species, particularly the major staple foods (Willett et al., 2019). This constant impoverishment of food diversity is masked by the industrialization of food processing, which transforms a small number of plants and ingredients into a multitude of products and presentations, giving the false impression of a great abundance and diversity of food sources. Processed foods are typically high in energy and poor in nutrients. As our consumption of industrialized foods increases, the impact becomes apparent and difficult to ignore. More than two billion people in both developed and developing countries have become overweight or obese. This is now recognized as one of the major challenges to global health that societies have to address (WHO, 2018).If we want to achieve the UN's Sustainable Development Goals by 2030, business as usual is not an option, and our food systems need a drastic and rapid transformation. Several changes are necessary, and part of the solution is at handbringing back more diversity to our diet and reintroducing or revalorizing some of the numerous crops that used be part of our ancestral diets (Mayes et al., 2012). We must use our knowledge on best agronomic practices to increase the production of these crops without losing their nutrient value, and must take advantage of existing and novel food technologies to add value and create new products based on those crop species. In the next sections, we would like to illustrate how this can be achieved.A growing body of scientific evidence (Ebert, 2014;Nyadanu and Lowor, 2015) shows that traditional but undervalued and underutilized food sources, frequently have a higher nutrient content and are particularly rich in minerals, vitamins and dietary fibre, which are the missing component in many \"modern aliments\". Recognizing the potential of traditional food, the Agriculture and Food Security Program 1 of the International Development Research Centre in Canada 2 launched, a decade ago, an ambitious research initiative to generate scientific evidence on the potential of underutilized crops for our food systems. The effort targeted communities that still consumed undervalued traditional foods and looked at ways to reintroduce or increase the production and consumption of plant species with high nutrient content from various regions of the world. Two large programs supported this work: the Canadian International Food Security Research Fund, 3 jointly funded by Global Affairs Canada, and the Cultivating Africa's Future program, 4 a joint initiative with the Australian Centre for International Agricultural Research. Results from these programs clearly showed the potential for underutilized crops and the willingness of local populations to produce and consume them, but also demonstrated that they could represent an attractive and viable business model for new agri-entrepreneurs, particularly for the youth and women. Scientific methods documented the potential of indigenous species to contribute to daily diets (as components of new foods or through new presentations of traditional foods), and as new sources of compounds for the pharmaceutical and nutraceutical industry.The following examples illustrate this potential.Ancient crops, new terrains: In the narrow terraces of Nepal, the availability of arable land and crops species that can thrive on terraces present major constraints. The \"Nepal Terrace Farming and Sustainable Agriculture Kits\" 5 project tested an innovative public -private model to scale up low-cost and regionally relevant sustainable agriculture kits to address these limitations, reduce drudgery for farmers -the vast majority of whom are women -and increase farmers' income and food security. Implemented as a collaboration between LI-BIRD 6 in Nepal and the University of Guelph in Canada, researchers developed a set of options to make use of the terrace's vertical walls. The toolkit included species of local value such as climbing beans, and also introduced others such as chayote (Sechium edule -originally from Central America), and yams (Dioscorea spp. from Southeast Asia). Yams were planted in sacks at the base of the walls, which simplified the harvesting of the tubers and provided an important source of income for farmers, while chayote found a niche in local cuisines and as food for small livestock and poultry.The toolkits included inputs and seeds for growing high-protein legumes and micronutrient-rich vegetables, as well as small technologies such as manual corn shellers and kneepads from which farmers could select based on their preferences, needs and opportunities. The project also took advantage of established local retailers to sell products that farmers identified as needed and for which they were willing to pay. Overall, the project reached more than 60,000 smallholderfarming households in nine districts in Central Nepal, impacting more than 173,000 people. Adoption of the toolkit earned families up to US$200 a season and reduced female drudgery (Chapagain and Raizada, 2017) while at the same time allowing households to significantly increase their dietary diversity. The project proved that when technologies are affordable enough and are properly explained using tools such as picture books (Raizada and Smith, 2019) designed for illiterate farmers, they can be quickly and widely adopted.Greens to the plate: In Nigeria and Benin, the project \"Microveg\", 7 run by a consortium of universities from Benin, Nigeria and Canada, reintroduced and promoted several species of indigenous vegetables particularly rich in micronutrients, iron and zinc that were locally produced and consumed but not on a commercial scale. The project identified the best-yielding varieties with high micronutrient content, established seed multiplication systems by farmer cooperatives and trained farmers on the best agronomic practices. Four species of indigenous vegetables were particularly appreciated and were adopted by farmers in the two countries: fluted pumpkin (Telfairia occidentalis), African eggplant A well-nourished world and NUS on the table 419 (Solanum macrocarpon), amaranth (Amaranthus cruentus) and African basil (Ocimum gratissimum).The project trained more than 250,000 farmers who increased, by ten-fold, the area cultivated with indigenous vegetables (from 8,090 to 82,000 ha in three years) (Kanyinsola et al., 2018). It increased the demand for indigenous vegetables, developed new products based on these crops such as syrups and bottled beverages, breads and cookies and expanded markets through promotional campaigns. Over 20,000 women were involved in the marketing of indigenous vegetable products. New business, mostly operated by young entrepreneurs from the community were initiated and have continued operating successfully. Novel research identified a variety of polyphenol compounds extracted from these indigenous vegetables, with potential applications in the nutraceutical industry (Moussa et al., 2019), and suggest that they can reduce blood pressure and control diabetes (Olarewaju et al., 2018). The potential of these products is immense and will hopefully spearhead research on other underutilized crops in Africa and beyond (Odunlade et al., 2019). The project organized the first International Conference on indigenous vegetables in Cotonou, Benin in 2017, which led to the publication of a special issue on African vegetables in the Acta Horticulturae Journal in 2019.Pulses once again on the menu: Legume seeds (or pulses) are particularly rich in proteins, iron, zinc and micronutrients and have been an important part of traditional diets. They are not only good for human nutrition and health, but also play a role in improving soil quality, thanks to their symbiotic association with soil microorganisms (Rhizobia) that fix nitrogen from the atmosphere, making it available to plants. Legumes have dispersed from their sites of origin to reach almost every place where agriculture is practiced. Common beans from Mesoamerica are now cultivated globally, and lentils, faba beans, and chickpeas from the Middle East have become staple foods in South Asia and are widely consumed worldwide, particularly in developing countries. Despite this apparent success, the true potential of pulses for global food systems is far from being realized.In Ethiopia, despite recent progress on food security, malnutrition remains a challenge. The levels of stunting ranks among the highest in the world and anaemia affects nearly 37% of children under the age of five. The project \"Pulse Innovations: Food and Nutrition Security in Southern Ethiopia\" 8 tested and adapted technologies to allow farmers to increase their incomes by planting pulses on land that was often left idle after the cereal harvest. The establishment of women's micro-franchises increased employment for women and their participation in production and marketing, improved household nutrition, and popularized pulse products. Consumers in 15 districts were introduced to ready-to-eat, pulse-rich products and more than 23,000 female-led farm households in 52 villages benefited from recipe demonstrations, complementary food preparation training, improved children feeding practices, and nutrition education (Kabata et al., 2017) and demonstrated that the dietary diversity of children and lactating mothers improved with pulse consumption. A unique partnership between male and female farmers, processors, consumers, universities, and the government transformed subsistence agriculture into a dynamic and market-oriented enterprise. There has been especial interest in expanding the use of the Hawassa Dume seed variety, which produced higher yields, is preferred by consumers, and has proven to be highly resilient to heavy rainfalls and flooding.Another project on \"Scaling Legume Technologies in Tanzania\" 9 aimed to introduce soybeans and locally desirable common bean varieties in Tanzania where demand is growing and legumes are fetching good market value. Over a period of two years, an estimated 656,000 farming family members were provided consistent information on improved legume technologies through multimedia campaigns. Six radio series were created and broadcasted nationally, and interactive radio campaigns were launched to target large audiences. Community radio listening groups, with space for listeners to question and discuss information, proved particularly effective at reaching women and youth. A dedicated series of a comic book called Shujaaz, developed and distributed nationwide to reach young people in bean-farming families in target areas, reached more than 23% of Tanzanian youth. These multimedia campaigns, complemented by farmer-to-farmer exchanges and demonstration schools, resulted in an estimated 128,589 farming family members adopting at least one of the improved legume technology practices such as improved seeds, row spacing, fertilizing, weeding, and storage (Kansiime et al., 2018). The adoption of soya bean, introduced by the project, led to the rapid increase of production to feed small livestock and poultry and is being progressively integrated into local diets. The international market is booming, and the government is facilitating an increase in national production for export. Soybean is a good example of legumes that can and should play a role in local food systems. The project successfully influenced key policies in Tanzania to speed-up seed varieties registration, cut input costs, and expand communitybased seed systems for the adoption of new varieties. The Agricultural Seed Agency (ASA) significantly altered its business model by stocking seeds for both soybean and common bean varieties, and private-sector seed producers are following suit. ASA developed a network that trained 75 agro-dealers on input business management.The declaration of 2016 as the \"international year of pulses\" by the FAO brought to the forefront the potential of underutilized species, contributed to their dissemination, and opened new opportunities for farmers in many regions. The International Development Research Centre (IDRC) and its partners worked with a high-level group of public-and private-sector experts to develop an internationally coordinated pulse crop productivity and sustainability research strategy for the following ten years. 10Finger millets, from obscurity to supermarkets: Finger millet was domesticated more than 5,000 years ago in the highlands of Ethiopia. It spread within Africa and rapidly reached northern India, where it has been part of traditional dishes for centuries. The manual processing of small millets is tedious and labour intensive, which contributed to a rapid decline in their consumption. Lower yields compared to other cereals, weak supply chains, poor consumer awareness, inadequate or inefficient processing facilities, and policy neglect led to the quasi disappearance of finger millet from markets. Implemented by the Tamil Nadu Agricultural University, the DHEA Foundation in India, and the University of Toronto, the project \"Scaling up small millet production and consumption in India\", 11 developed and reintroduced improved higher-yield varieties into a large number of farms in northern India. It also developed more efficient and user-friendly equipment for de-hulling and processing small millets, which increased production and reduced women's drudgery. Increasing equipment manufacturers' capacity to produce and sell more de-hulling machines supported the development of decentralized small millet processing infrastructures in eastern and central India. Over the course of the project, 72,490 people, mostly women, farmers, and schoolchildren, were trained on the health benefits of small millets (Adekunle et al., 2018) and more than 200,000 people learned about the values of small millets through programs aired on community radio and local TV, and through text and audio messages.A wide range of small millet food products such as cookies, flour, chips and noodles were developed collaboratively with women farmers; the project worked with 66 food enterprises, 152 pushcart millet-porridge vendors, four Farmer Producer Organizations, and 15 non-governmental organizations to expand the market for ready-to-eat small millet products. Private-sector involvement was instrumental in the marketing of these new products and close coordination with local governments facilitated seed production and distribution systems, making it possible for finger millets to be sold, once again, in most markets and supermarkets in northern India. Small millets are being introduced through public food programs in India and there are opportunities to scale up the experience in other countries in South Asia and Africa, where the demand for drought-resistant varieties is growing and where millet is slowly being reintroduced into local diets and avant-garde cuisines in urban centres.A new time for traditional cereals: Sorghum is a staple food consumed by more than 60 million people in Ethiopia. The crop is also a major source of animal feed, fuel, and building material. However, sorghum production is risky and the increased frequency and severity of droughts compound the challenges faced by Ethiopian farmers, exposing them to food shortages and livestock losses due to a lack of feed. Currently, 70% of sorghum grain is consumed domestically, with women providing most of the labour and trading for the crop. The project \"Climate-smart interventions for smallholder farmers in Ethiopia\" 12 is trying to revalorize the production and consumption of sorghum through the development and promotion of improved and drought-tolerant sorghum varieties and post-harvest management technologies, and the development of new value chains. The project will improve productivity and climate resilience for 240,000 smallholder sorghum farmers, reduce post-harvest loss through farm-scale grain storage options, and increase economic opportunities for women through value-added products, small-scale threshers, and improved storage facilities. It is implemented by the Ethiopian Agricultural Research Institute.An ancestral taste from the Andes going global: Even though quinoa (Chenopodium quinoa) is increasingly marketed in Western countries as a \"superfood\", it has been, for millennia, the main staple food of the Indigenous Peoples of the highland Andes in Bolivia and Peru. It is a robust plant that can grow at high elevations, tolerate extreme temperature fluctuations, and adapt to dry zones and even saline soils. Appetite for this gluten-free cereal with a high nutritional value is growing rapidly among the affluent consumers in Europe, North America, and Asia. Limited research investments to improve varieties and agronomic practices has led to the tripling of yields and quinoa has made rapid strides to become a commercially significant crop in a relatively short time. Quinoa production increased globally ten-fold in one decade and the cereal is now grown in more than 70 countries. Given its remarkable qualities, it constitutes a viable alternative for many regions of the world (Bastidas et al., 2016), especially where water is in short supply and where soils are depleted. The project \"Scaling up Quinoa Value Chain to Improve Food and Nutritional Security in rural Morocco\", implemented by the International Centre for Biosaline Agriculture, brought experts in quinoa production from the Andes to select and introduce best varieties and agronomic practices in Morocco. Although the project is still ongoing, it has generated strong interest from farmer cooperatives and local governments, which are promoting its integration into local diets and developing the value chains necessary to supply a growing external market.Following efforts from the Government of Bolivia, supported by IDRC, 2013 was declared by the UN as the \"International Year of Quinoa\". That helped to bring together different sectors and stakeholders, farmers, governments, scientists, and the private sector and contributed to advancing the crop internationally. The example of quinoa illustrates how underutilized species can evolve from being forgotten and underutilized to becoming important staple crops beyond their homelands.There is a renewed interest worldwide in expanding and diversifying food sources. The body of scientific literature on underutilized and undervalued food crop species is slowly growing and receiving international attention, as illustrated by publications on quinoa, which have multiplied ten-fold in the last five years (Inglese et al., 2017;FAO, 2018). Attention to underutilized species is growing in many countries. Quinoa and lentils have been prioritized in the National Food Security Plans of the Government of Bhutan, and taro and moringa by several countries in South and Southeast Asia (Li and Siddique, 2018).The hype about \"superfoods\" and a new generation of food-conscious consumers represent an opportunity to bring back some of the great diversity of colours, shapes, and flavours that humanity once consumed. To move forward, we urgently need to preserve germplasms and select high-yield and high-nutrientcontent varieties that can adapt to diverse conditions and locations. We must also change the common misperception that these species are \"poor people's crops\". Local knowledge is rapidly eroding and urgent efforts are required to recover and document traditional knowledge and practices regarding underutilized species. Production and post-harvest practices need to be modernized, value chains for added value products developed, and resources made available to enhance the capacity of researchers, policymakers, extension agents, farmers and farming cooperatives, and especially the private sector to realize the full potential of underutilized crops.The resilience of food systems and their capacity to provide sufficient healthy food to a growing population require the inclusion of a greater diversity of crops, many of which are currently undervalued. Many cultures around the world have successfully preserved the culinary knowledge, cultural value, and cultivation and processing techniques for underutilized crops over time; it is now time for science to support their efforts and contribute to the improvement of desired traits and the enhancement of productivity and income-generation opportunities. Underutilized crop species have allowed ancient civilizations to flourish and can, once again, regularly feature in our diets and lead to the development of new food preparations and even new medicines. The IDRC is committed to continuing its efforts to rescue and revitalize underutilized crops and alternative food practices as a key contribution to the development of equitable and resilient food systems. ","tokenCount":"108025"} \ No newline at end of file diff --git a/data/part_3/8359712518.json b/data/part_3/8359712518.json new file mode 100644 index 0000000000000000000000000000000000000000..856e144faa9370a480bc87c052136837ee171bba --- /dev/null +++ b/data/part_3/8359712518.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"db2d859418db9a692ceb395ef8245dfb","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/f2feb35e-36ac-415f-84a9-92dff749f622/retrieve","id":"1640038461"},"keywords":[],"sieverID":"db58470a-ec87-4054-8563-27faaedd404f","pagecount":"2","content":"Tree lucerne, providing agricultural products and ecosystem services ILRI thanks all donors that globally support its work through their contributions to the CGIAR system Photo 3. Farmers at the Endamehoni Africa RISING site, Tigray region, feeding tree lucerne to small ruminants.Tree lucerne is one of the few leguminous fodder and fertilizer tree species that perform well areas of high altitude. The plant fixes and adds nitrogen to the system, enhancing livestock, crop and soil productivity. Commonly referred to as tree lucerne and tagasaste, it is native to Spain and exotic species to Australia, Ethiopia, South Africa, Rwanda and New Zealand.• Lucerne can grow in areas from 2,000-over 3,000 masl of the Ethiopian highlands. • It requires from 350-1,600 mm of rainfall.• The soil in which it is planted should be well drained.• The identification of farmers interested in planting, managing and using tree lucerne is important. Lucerne requirement is important. • A seedling size of more than 45 cm is preferable for planting.• Seedlings require at least three months in the nursery.• A planting hole of 30-40 cm deep is recommended to protect the tap roots from being deformed. • Tree Lucerne seedlings can be planted as live fence, fodder lot, soil and water conservation structures, and boundary planting and intercropped with crops and vegetables.• Lucerne trees should be planted at least 25 cm apart from each other.• Regularly weed around the seedlings.• Fencing should be erected to protect the trees against incursion by livestock-trampling and browsing. • The use of mulch/manure is recommended to help retain moisture in the soil and suppress weeds. • The plants should be watered at an early on to improve survival and growth rates. • Cutting the tree at a height of 1-1.5 m provides good biomass.• The plant can be harvested two-three times a year, depending on growing niches and management practices. Utilization of tree lucerne• In a well-managed farm, the plant can be harvested and used as animal feed with nine months of planting. • The lucerne tree can produce more than 4-7 t ha-1 of dry biomass year-1 when planted at 1 m x 1 m spacing. • The leaf and edible branches of tree lucerne contain large amounts of crude protein (20-25%) and digestible organic matter (> 70%). • The foliage of tree lucerne can be fed green or wilted or preserved in the form of hay and used as needed.• A 1 kg supplement of dried tree lucerne leaf feed to a lactating dairy cow can give up to 1.2 litres of extra milk. • A 300-400 g supplement of tree lucerne hay fed to a fattening sheep is enough to achieve a daily body weight gain of 70 g. • Tree lucerne seeds serve as good sources of poultry feed.• Tree lucerne flowers are a very good source of bee fodder.Household size, access to reliable water supply, and management factors-including fencing planted seedlings to protect from browsing, mulching during dry periods, clean spot weeding and applying organic fertilizers-significantly enhanced survival and growth of tree lucerne at the Africa RISING planting sites.","tokenCount":"513"} \ No newline at end of file diff --git a/data/part_3/8360171202.json b/data/part_3/8360171202.json new file mode 100644 index 0000000000000000000000000000000000000000..6d47cfff9e958b62cb37af8d3f838c73a138027f --- /dev/null +++ b/data/part_3/8360171202.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"9964cef318185169d56cbd05dc0ad4d6","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/b9e11646-f106-445f-a745-a591b6962e92/retrieve","id":"-2066739997"},"keywords":[],"sieverID":"e1452728-f691-4398-be0c-5f4f073a4139","pagecount":"98","content":"Most cassava IS produced m margmal areas which are ramfed and have problem s01ls In the absence of externa! pressures for mtensificauon of cassava producuon, the demand placed on the land to feed farm fam1hes and hvestock Js sustamable, I e , producuon demands are balanced wuh the capacuy of the ecosystem such that the net effect on the envuonment and the quahty of rural hfe IS posJUve However, m many regions of Afnca and South Amenca, cassava IS mcreasmg m Importance as a food and feed crop for the rapidly growmg urban and rural populauons Pressure for mtensifJcauon IS transformmg the prooucuon system mto a less sustamable state, Imposmg even greater nsks for small-scale farmers m the futureThe mcreasmg demand for cassava combmed wuh other pressures, such as dechnmg land avallabihty and mountmg pest and disease constramts, are leadmg to poor agronomic pracuces and mappropnate use of agncultural chemicals wh1ch degrade the natural resource base avallable for cassava producuon Reversa! of this process m areas where u already occurs, and us prevenuon m reg10ns where producuon demands are sllll m balance wlth the capacuy of the surroundmg natural resource base, requues maJor effort and Immediate attenuon Consequently, sustamable cassava producuon will mcreasmgly depend on the avallablllty of ecologJcally sound crop producuon and protecuon pracuces Cassava growiDg areas charactenzed by IDtensificauon of producuon and faced wlth senous pest problems are prevalent ID South Amenca and Afnca In sorne areas, IDCreased producuon assoc1ated w1th IDcreased commerc1ahzauon of cassava (e g , dned cassava for ammal feed, processed cassava products, starch) are creatiDg an econom1c context favorable for the IDcreased use of pest1c1des and other purchased, 1mported 1Dputs The development and Implementauon of ecolog1cally sustaiDable crop producuon and protecuon systems 1s espec1ally urgent ID such areasIn South Amenca, the seasonally dry to sem1and zone of Northeast Brazll 1s a cnucal area ID terms of the nsk to agncultural susta1Dab1hty assoc1ated wlth 1Dtens1f1ed cassava producuon Brazll 1s the world's largest cassava producer and 58 percent of th1s producuon (14 5 mllhon tons) 1s concentrated m the Northeast, partly because the env1ronmental cond1t1ons are unfavorable for the culuvat1on of most other crops Most cassava m th1s reg10n 1s grown by tenant farmers who cult1vate plots of less than one ha wlth generally low soll feruhty and uncertam ramfall Cassava producttv1ty m the northeastern states 1s 10 8 t/ha, a thud lower than the rest of Brazll The Food and Agnculture Orgamzauon (FAO) cons1ders th1s to be a senous calone def1c1t problem explammg the mass em1grauon to ram forest arAasThe rap1dly growmg rural and urban populauons m Afnca are acceleratmg the demand for cassava Afnca presently accounts for 40% of the world s total cassava producuon 90% of wh1ch 1s used for human consumpuon One thud of the contment s total producuon of 50 mllhon tons comes from West Afnca Cassava m th1s reg10n 1s a food staple and the most 1mportant source of carbohydrates, prov1dmg more than two and a half times the calones contnbuted by the second and thudrankmg crops, ma1ze, and yams for 75 mllhon people Cassava IS grown by small-scale farmers on plots of less than O 5 ha where producuon rarely exceeds 8 t/ha Fallow penods wh1ch traditionally restored the land to 1ts ongmal producuv1ty have dechned sharply m recent years as mcreasmg producuon demands move local agroecosystems toward nonsustamablllty Cassava pests mcludmg arthropods, pathogens, and weeds, reduce cassava producuon by an est1mated 50% Y1eld losses vary wuh pest spec1es and preva1hng agronom1c and edaphochmauc cond1t1ons Severe pest problems m ~,..assava tend to occur 1) m areas where exot1c pests and diSeases have been mtroduced, 2) where the avallable germplasm 1s not well adapted to the local ecolog1cal condltlons, 3) where mtensificauon of producuon over a long penod has destab1hzed the agroecosystem balance ach1eved by farmers, or 4) where cassava culuvauon has a short h1story and th1s adapt1ve process has not had suffic1ent ume to evolveIn Afnca, the w1despread occurrence of severe pest problems on cassava, an mtroduced food crop, 1s related pnnc1pally to the acc1dental mtroducuon of arthropods and plant pathogens to areas where local germplasm 1s susceptible and where effecuve natural enem1es are absent The exouc cassava mealybug m Afnca can completely destroy Jts host plant and ehmmate cassava producuon m extreme cases The exouc cassava green mtte reduces y1elds 13 to 80% dependmg on sotl feruhty, pest load, t1me of plantmg ume of harvest, and cultivar Other exouc pests mclude the larger gram borer wh1ch attacks harvested and processed cassava, the plant pathogen cassava bactenal bhght wh1ch can devastate cassava m hum1d reg1ons, and perhaps the whitefly vector of cassava mosa1c v1rusCassava pest and d1sease problems are widespread m Northeast Braztl The extens1ve culuvat10n of cassava 10 the dry mtenor hmterlands of th1s reg10n IS a relauvely recent development, related to the high rates of populauon growth m the area dunng th1s century The complex of pests and d1seases mcludes the cassava green m1te, cassava mealybug, cassava homworm, lacebugs, whttefltes and root rot pathogens The causes underlymg these problems relate to germplasm adaptauon, the presence of exouc spectes under madequate b10logtcal control m sorne cases, and the lack of an evolved tradiuon for managmg pests and dtseases Pest and dtsease 1mpact IS proJected to mcrease as producuon mtensifles However, farmer demand for crop producuon and protecuon technology already ex1sts, prov1dmg favorable condiUons for adoptton of tmproved technology Presently, pesuctde use on cassava ts neghg1ble m the reg10n, however, a chmate favorable to mcreased use 1s develolptng now that subs1d1es for wheat and other crops wh1ch compete w1th cassava have been removed and new markets for cassava have been opened Farmers who formerly could not afford to use pest1c1des may be mcreasmgly able to do so IIT A and CIA T ha ve worked together over the last decade to develop ecolog1cally sustamable and agronomtcally acceptable cassava plant protecuon technolog1es for Afnca and South Amenca This ha1son between mternauonal mst1tuuons created a bndge between nauonal programs Isolated withtn conunents, but wlth Similar cassava product10n problems and expenences This bndge provides access to natural enemies res1stant germplasm, and experuse that IS essenual for nauonal programs when developtng and Implemenung appropnate cassava plant protecuon technologies Both msututes advocate a pest management phtlosophy which m1mm1zes the need for artificial control tacucs m favor of ecologically onented control methods The first step wtth any suspected pest ts to determme whether the damage caused ts economtcally stgmftcant and to charactenze why the problem occurs Ecologtcal adjustments appropnate for spectftc envuonmental and soctoeconomtc condlttons are then sought The ulttmate objecuve has been to destgn crop management systems that prevent pest butld up and, whenever necessary, respond to curattve measures based on sound ecologtcal pnnctples and economtc reahues The technologtes bemg developed, tested, and tmplemented are envuonmentally compatible and ecologtcally effecuve, gtven the sustamable product10n hmus of the target ecosystem TradtUonal systems of cassava-based cult1vat10n are an tdeal startmg pomt for the development of plant protect10n pracuces whtch can contnbute to sustamabthty m agroecosystems under pressure for mtens1ftcat10n of producuon Appropnate combmauons of btologtcal control, reststant germplasm, and cultural pracuces are the basts of ecologtcally sound plant protecuon Remedtal control tacttcs, such as the use of pesttctdes, are only recommended tf and when the ecologtcal approach fads to proVlde an adequate solut10n Pesttctde use ts neghgtble on cassava, and the mcorporauon of pesuctdes m crop protecuon technology for these systems u not anttctpated where contnbutmg to sustamablluy ts a pnnctpal obJecuve Thts ecologtcally sound approach to plant protecuon ts dtfferent from the concept of Integrated Pest Management (IPM) whtcb calls for an ecologtcally rat10nal suue of crop protecuon pracuces to hmu the amount of pesuctdes apphed m the ecosystem Ecologtcal crop protectton atms to prevent the need, and consequently, the use of pestlctdes, whlle IPM mtegrates blOiogtcal and cultural control pracuces wuh the JUdtctous use of pesuctdes IPM may be appropnate where pesuctdes are a part of the producuon system, but m the case of cassava producuon, pesuctdes should contmue to be avotded Thts approach conserves the efftcacy of natural enemtes by avmdmg the lethal contact and restdual toxtclty of most pesttctdes and preserves the envuonmental mtegnty of water resources and the food cham wuhm the targeted agroecosystemThe catalyst that brought liT A and CIA T together was the mtroductton of the cassava mealybug from South Amenca mto Afnca Thts exottc pest spread raptdly throughout the contment leavmg wtdespread devastatton m tts wake liTA tmtlated a classtcal b10logtcal control campatgn m the early 1980s as the mealybug problem engulfed the remamder of the cassava belt CIAT was engaged to do foretgn explorauon for natural enemtes m South Amenca whtle liTA tmplemented the release and follow up campatgn m Afnca A key to the success of thts proJeCt was the acttve parttctpatton of nattonal programs from both contments The cassava mealybug IS now substanually controlled m most ecologies of Afnca as a duect consequence of thiS proJect This concerted effort of mternauonal and nauonal collaborators re~ulted m one of the most spectacular biological control campaigns ever undertaken m the history of the diSCipline A recent economic analysis shows that the beneflt cost ratio of this control campaign was conservauvely estimated at 149 1The cassava mealybug project began a decade of collaborauon between liT A, CIAT, and numerous nat10nal and mternauonal msututes that 1 extended well beyond the ongmal pest This proJect became a par.ad1gm for developmg envuonmentally sound and economically feasible plant protecuon for basic food crops m developmg counmes The momentum gamed m research, trammg, and Implementauon was soon capualized upon as other pests of cassava were targeted for control m both conunents These actJvities gave nse to an overall management strategy for food crop producuon based on sustamable p1ant protect10n Dedtcated to these pnncipals an entue program at liTA was formed m 1988 (formally the BIOlogical Control Program, now the Biological and Integrated Plant Protecuon Program) liTA and CIA T along wuh several nauonal programs, Imtlated a biOiogical control campaign agamst another exouc pest of cassava m Afnca -the cassava green mite lt spread throughout the cassava belt of Afnca m about 10 years and IS now the most Important pest on cassava m many reg10ns of the contment In South Amenca, where the cassava green mue IS mdigenous, locally selected culuvars and well adapted natural enem1es keep the pest m check m sorne areas Natural enemies of the mite famiiy Phytosendae were Ident1f1ed as the most promiSing predators of cassava green mues, consequently an extens1ve foreign explorat1on effort was launched by liT A m collaborauon wuh CIA T and Empresa Brasileua de Pesquisa Agropecuana (EMBRAPA) Studies by CIA T and EMBRAP A show that phytosend natural enemies can prevent yield losses of about 30% Among the more than 50 phytoseud spectes found associated wuh the mue m the Neotropics, a dozen promismg species have been shtpped to Afnca for expenmental releases Classical biological control of the cassava green mue IS under Implementauon m Afnca, and establishment of potenually effecuve phytosends has recently been documentedThe cassava green m1te has been the object of a pest management effort by EMBRAPA m Northeast Braz1l smce the 1970s Losses have been esumated at 10-50% dependmg on agroecolog•cal zone, vanety, plantmg date, plantmg system, and length of the crop cycle Dunng fore1gn explorat10n 1n Northeast Brazll for natural enem1es of cassava green mlte, CIAT and EMBRAPA observed that the most severe attacks occur m semtand areas Phytoseud natural enemtes were absent m 30% of ftelds sampled across a range of humtd to semtand zones and m 32% of the ftelds m semtand zones Only three spectes were conststently assoctated wtth cassava Ftfty-stx percent of flelds had only one spectes and 28% were devotd of phytoseuds Thts result ts m stnkmg contrast to ' the sttuauon m northern South Amenca (Colombta, Venezuela, Ecuador) where 18 spectes of phytoseuds were common, up to twelve spectes were found per fteld, and 29% of fields had three or more spectes Thts suggests a potenual for mcreasmg the effecuveness of local natural enemtes through augmentatton and conservauon practtces, and for tmprovmg the level of b1ologtcal control by mtroductton of exouc spectes Several of the spectes whtch have not been detected m Braztl, and dtfferent strams of spectes whtch do occur m Braztl, have been found m homo1ogous seasonally dry and semtand cassava-growmg areas elsewhere m South Amenca A pathogemc fungus wtth a htgh degree of host spectftctty has been found attackmg the mue m seasonally dry areas of Colombta, Venezuela, and Northeast Braztl Feastbthty studtes mdtcate the fungus has potenual as a biOlogtcal control agent for both Afnca and parts of Northeast Braztl m areas recemng between 800 and 1200 mm ramfall a year Other pests of cassava have been studted by liTA and CIAT to determme the posstbdtttes of ecologtcally sound pest control In Afnca, liTA has exammed the vanegated grasshopper, a consptcuous pest found m the humtd and subhumtd ecolog1es, whtch can defohate and kili cassava, the whttefly vector of the cassava mosatc vtrus, a dtsease esumated to cause up to 50% reductton m y1eld, and the larger grato borer, an exouc pest whtch can cause post-harvest losses of up to 100% In South Amenca, CIAT has studted the cassava hornworm, a pest whtch causes 15 to 65% reducttons m y1eld dependmg on sotl fertthty and number of attacks a complex of whJtefly spec1es wh1ch reduce photosynthetJc acttvlty through honeydew productton and the growth of sooty molds, and as vectors of a number of detr1mental plant vuuses, the cassava mealybug Phenacoccus herren1, an exouc pest m Northeast Brazd whtch can cause losses as h1gh as 80% and root rots wh1ch are the maJOr product1on constramt causmg an average of 40% y1eld loss m at least 300,000 ha of cassava m Northeast Brazd Class1cal b•ologJcal control JS bemg pursued to constram exot1c pest spec1es Prom1smg natural enem1es mclude predators for the cassava green mttes and the larger gram borer, a parasJtOJd for the cassava mealybug Phenacoccus herren1, and a fungal pathogen for the cc~ssava green m1te Conservauon and augmentauon of ex1stmg natural enem1es 1s also bemg used to enhance the 1mpact of pathogens on the cassava hornworm, the vartegated grasshopper, and sorne spec1es of whttefhes, and predators on the cassava green mtte m Northeast Brazd Host plant res1stance to cassava pests h¡¡s been stud1ed by liTA and CIAT for many years Both msututes h1stoncally concentrated theu cassava plant protectJOn efforts on res1stance breedmg They found that host plant res1stance can contnbute sigmficantly to alleVJaUng the negauve 1mpact of severa! 1mportant cassava pests on both contments In Afnca, sJgmficant resJstance was found to the cas~ava mósa1c v1rus vectored by whJtefhes Efforts to develop host plant resJstance to cassava green mue, wh1tefhes, and other pests contmue In South Amenca host plant resJstance offers potenual m the control of root rots, cassava green mue, and whuefh\"s ResJstance screenmg targetmg these pests has led to Jdentificauon of clones wh1ch have entered hybnduauon programsThe 1ole of cultural pract1ces m med1atmg cassava pest problems has rece1ved attenuon recen ti y by liTA and CIA T Prev1ous research mdtcated that good cassava producuon started wuh plantmg matenal free of av01dable plant pathogen and pest contammants Weeds, mulchJitg, t1me of plantmg, spacmg, mtercrops, and ume of harvest have :.11 been shown to mfluence the 1mpact of a vanety of cassava pests Recent Simulauon stud1es show that y1eld losses are often most severe on cassava of mtermed1ate vigor In general, cultural pracuces that enhance plant growth also mcrease pest numbers (e g cassava green mues, whJtefl1es, and hornworms), but not necessanly plant damage The 1mportance of cultural pracuces m management of root rots has already been menuoned Conservat1on of phytosend predators of cassava green mtte through mamtenance of weed refuges, the creauon of seed plantmgs where h1gh dens1t1es of phytosends can develop under fleld condlt1ons for d1ssemmauon to the mam area plantmg, and other avadable habltat management methods wdl be evaluated wJth farmers 10 the technology testmg and adaptauon phase of the proJect -In both West Afnca and Braz1l, cassava sustamab1l ty can only be ach1eved by cons1denng the management of the system as a whole The soc1oeconom1c and pohucal envuonment m cassava-growmg areas mfluences crop producuon charactensucs m complex ways, and hence, affects the possJbJhtles for 1mplementat1on of sustamable crop productlon and protecuon practlces The hnks between factors such as farm s1ze, Iand avadabduy and tenure, m1grauon patterns gender 1ssues market charactensucs government agncultural pohc1es, and crop producuon are under mvesugatiOn m severa! stud1es currently underway m Afnca and South Amenca In Afnca, liTA has severa! stud1es of th1s type m progress mcludmg the COSCA Survey, an extens1ve survey sponsored by the Rockefeller Foundatlon, wh1ch a1ms to charactenze the structure of cassava-based croppmg systems m order to 1mprove the relevance and 1mpact of agncultural research on Stxty-two BraZ!hans have been tramed m mtenstve muludtsctphnary cassava and plant protecuon courses held at CIAT, however, cassavarelated trammg acttvttles at CIAT have been progresstvely changmg theu focus and content Intenstve muludtsctphnary and plant protecuon courses targeted at young research workers and extens10n leaders wlth httle or no prevtous expenence are bemg supplanted by penods of m-serVIce trammg Forty-seven profess10nals have recetved thts type of mtenstve trammg to date ExtensiOn/development personnel and onfarm researchers wtth severa! years of expenence wuh cassava requtre greater skdls m problem and opportumty tdenttftcauon so as to respond to the changmg needs of theu chent farmers Thts target group ts served , by parttctpauon m mtegrated modular courses on cassava producuon, processmg and marketing, followed by a penod of dtsctphnary spectahzauon In addttton to techmcal aspects of cassava research, the subjects of proJect management, farmer, and mstuuuonal orgamzauon, and methods of evaluaung technology wuh farmers are also mcluded Etghteen multldtsctphnary courses of thts type have been held to date m Brazli servmg 262 Brazthan professtonals Fourteen of these spectahzed courses have been held smce 1986Collaborattve research of many kmds has been underway wuh nauonal programs smce the begmmng of the mealybug proJect Thts contact has bolstered the capactty of nat10nal prograrns m the area of sustamable plant protect10n by provtdmg much needed trammg, re~earch expenence, and umely logtsuc support for acttvtues whtch ach1eve appropnate objecttves It also helped hnk nanonal programs wuh researchers m other nauonal and mternauonal programs domg stmllar work, and prov1ded a channel for mformauon dissemmation and exchangeThe research of liTA and CIAT has been rev1ewed by mdependent experts penod1cally smce the start of collaborauve acuvlties m the early 1980s A rev1ew commJssion by the consoruum of donors supportmg the proJect m 1987 pra1sed the progress, duect1on, and scope of the work ID sustamable plant protecuon and strongly recommended contmued support by the mternauonal donor communlty liT A s leadersh1p capac1ty m th1s f1eld IS ev1dent m the 1990 rev1ew by the external program rev1ew of the Techmcal AdVJsory Commutee of the CGIAR wh1ch commended the Biological Control Program as bemg a dynam1c, producuve, coherent, and strong research program\" In the same year, liTA and CIAT shared the prestigious Kmg BaudouiD Award for 'outstandiDg ach1evements ID the classJcal biological control of the cassava mealybug m Afnca and for contnbutmg to agnculture and human welfare m developmg countr1es Recently, the duector of liTAs B10logical Control Program rece1ved the Rank Pnze for h1s leadersh1p m duectmg a program wh1ch has sigmflcantly contnbuted toward allev1atmg hunger ID Afnca In summary, cassava culuvauon m Afnca and Northeast Brazd 1s pracuced under a set of Similar ecologJcal, agronom1c, and socJoeconomic condltions and constramts Demand for cassava ID both reg10ns 1s IDcreasiDg, and the resultiDg IDtensifJcauon of producuon wdl result ID envuonmental degradat1on unless steps are taken to ra1se productivlty ID an envuonmentally sound manner The need for appropnate crop protecuon technology 1s espec1ally urgent ID West Afnca and Northeast BrazJI where agncuhural sustamab1hty JS dechmng Pests represent a s1gmflcant producuon constraiDt ID both areas, and appropnate crop protecuon pracuces can contnbute to both raJSIDg and sustammg productJvlty Through bilateral collaborauon and networkiDg w1th other IDternauonal and nat10nal mstltuuons, CIAT and liTA have developed the knowledge base, technology components traiDmg experuse and adopuon methodology necessary to address sustamab1hty problems through an IDtegrated approach to crop protecuon The record of effecuve collaborauon ID crop protecuon held by liTA and CIAT afford these mstttutes a umque comparattve advantage m future efforts duected towards mamtaiDIDg the sustamab1hty of frag1le tropical agncultural zones ID these areasThe proJeCt wlll develop test, and adapt sustdmable plant protectton technology for the most 1mportant cassava pests found m selected ecolog1es ID Northeast Brazd m South Amenca and m four West Afncan countnes -Ghana, Benm, Ntgena, and Cameroon The proJect wtll be a JOmt effort by CIAT and liTA m collaborauon wtth nauonal plant protecuon staff, extens10n workers, and farmers from the targeted countnes The capactty of nauonal programs to conduct envuonmentally sound crop protecuon research whtch mcorporates farmer's mput 10 the technology development and adaptauon process wtll be strengthened through theu duect parttctpauon m all phases of the proJect In order to mcrease the probabthty of technology adopt10n, extens10n workers and farmers wtll be spectally tra10ed 10 the pnnctples and pracuces of sustamable plant protecuon Thts proJeCt wtll provtde the essenual logtsttc support needed to test, adapt, and tmplement crop protecuon technologtes, tdenufy problems whtch requtre the generatton of new technology, develop a nucleus of tramed and expenenced plant protectton researchers and pracuuoners, and generate umely mformauon resources requued by the crop protecuon networks estabhshed wuhm each target country Development of new 10tervenuons wtll also be pursued where warranted The paradtgm for developmg, testmg, and tmplement10g ecologtcally sustamable plant protecuon by nat10nal programs proposed 10 th1s proJect w1ll serve as a model for plant protecuon and pest management technologtes and strategtes for other croppmg systems In a spectal effort to enhance the status and representauon of Afncan women 10 agnculture, liTA m collaborauon wllh W10rock Internauonal, wtll select at least 3 Afncan women from each parttc1pat10g country for MSc or equtvalent post graduate trammg Wmrock Internauonal's Afncan Women Leaders 10 Agnculture and the Envuonment (A WLAE) program 1s a spectal proJect to enhance women s credenuals skills, poslttons, and 10fluence m four arenas of agnculture and the enV!ronment pohcy, management, research and extensJOn, and to bu!ld and sustam an enabhng envuonment to achteve these goals The program a1ms to prepare a cnucal mass of Afncan women as profess10nals and Ieaders wnh credenuals management trammg, and long-term profess10nal support who w1ll be gutded 10 the apphcauon and relevance of theu work to women farmers Candtdates selected for post-graduate trammg m th1s proJect w!ll become part of the A WLAE programThe proJect w1ll be dJVtded mto three mterrelated and parually concurrent phases covenng a penod of 4 years The fust phase w11l refme the ex1stmg knowledge base on maJor pests of cassava through dtagnosuc surveys Thts mformauon w1ll be hnked to databases generated by the Rockefeller-funded Collaborattve Study of Cassava m Afnca (COSCA) and the CIAT s Land Use and Resource Management Program to permn mtegrated analysts of the relauonshtps between pest constramts and soctoeconomtc factors In the second phase, farmers w11I part1c1pate 10 the development and testmg of a range of crop protect1on technologies, and formal trammg of farmers, extens10n workers, and researchers m the pnnc1ples and pracuces of sustamable crop product1on and protecuon wdl be prov1ded In the thud phase, progress m ach1ev10g tra1010g and technology ~1tnplementat10n goals wdl be evaluated Many of these act1v1tles ~111 requ1re strateg1c research, methodology development, and mformauon resources support The spec1f1c objectJVes of the d1agnosuc phase (Phase The present or pre proJect s1tuat1on Cassava culuvauon m Afnca and Northeast Brazll 1s pracuced under a set of similar ecologtcal agronom1c, and soctoeconomic condltlons and constramts Demand for cassava m both reg10ns IS mcreasmg, and the resulung IDtenstflcauon of producuon wJll lead to envuonmental degradauon ID areas where the producuon demand exceeds the capaclty of the natural resource base, unless envuonmentally sound ways to ra1se productJvtty are pract1ced Pests represent a sigmflcant producuon constramt ID both areas, and appropnate crop protect1on pract1ces can contnbute to both ra1smg and sustaiDIDg producuvuy Crop protecuon technolog1es have been developed by a network of collaboratiDg nauonal and IDternauonal msutuuons and are ava1lable for testmg and adaptauon under farm condJtJons Nauonal crop protecuon capablllty m these areas 1s bmlted and resources for trammg, testmg, and adapung technolog1es are lackmgThe Sltuatwn expected at the end of the proposed proJeCt A model for crop protecuon wlth the exphclt goal of maiDtammg agncultural sustamab1hty 10 complex dtverse and nsk prone, small scale farmmg systems w1ll be m place Enhanced nauonal research capab1hty m sustamable crop protecuon w1ll be evtdent m the target countnes and reg10ns Farmer knowledge of sustamable crop protecuon pnnc1ples and pracuces wiii be greater as a consequence of bas1c trammg prov1ded Technology adopuon wtll be facthtated by duect farmer partlcipauon m tratnmg and ID technology development, testmg and adaptatlon Cassava y1elds and/or quahty should 1mprove stgmftcantly on farms where technologies have been adoptedInformat10n resources developed dunng the proJect wlll facthtate the ImplementatJon of similar efforts m the futureThe current crop protecuon suuat10n m West Afnca and Northeast Braztl has been analyzed as a consequence of long-standmg collaboratlon between nat10nal and mternattonal mstltutlons m Afnca and South Amenca Of particular tmportance IS the decade of contmuous collaborauon by liTA and CIAT to control exouc cassava pests m Afnca Beneftts of thts collaborat10n apphcable to current crop protectlon efforts mclude development of several sustamable pest control technologtes, knowledge of cntlcal mteracttons and productton constramts m cassava agroecosystems, and pracucal fteld expenence on both contments It also provtdes a hnk between nattonal programs, ecologtcally strnllar subreg10ns, and contment-restncted resources needed to develop and tmplement ecologtcally sound cassava plant protecuon Use of thts accumulated knowledge to benefit small-scale farmers wtll requue an mtenstve trnplementatlon process, mvolvmg the mtegratton of researchers, extens10n worker, and farmersThe success of the acttv1t1es m both contments wtll depend on shanng complementary experuse and mformat10n held by the collaborators and on f'Xtenstve hnks to other dtsc1phnes of duect trnportance to development and 1rnplementat10n of crop protect10n (e g breedmg, agroecologtcal studtes, b10technology, agronomy soctoeconomtcs, trammg, and commumcattons) The umfted approach to developmg, testmg, and tmplementmg the plant protecuon technolog1es whtch has been developed by liT A and CIAT IS umque and w!ll contnbute to efftctent use of resources for ach1evement of the objecttves of th1s proJect Otber Part1c1pahng Agenc1es liTA and CIAT are the only CGIAR msututes dtrectly mvolved m developmg, testmg, and Irnplementmg sustamable cassava plant protecuon \"1th nat10nal programs m Afnca and Northeast Braztl Many donor countnes contnbute to related research, trammg, and trnplementauon activlttes through bilateral a1d programs liTA and CIAT collaborate closely with these agencies and msututes fievelopment Objechve and 1ts RelatiOn to Country Programs Ensunng food secunty and sustamed producttvny are pnmary '.>bjecttves of developmg countnes where cassava 1s grown The development of ecologtcally sustamable plant protectton for these cassava ecosystems contnbutes both to country obJecuves and to the sustamablltty of agnculture m areas whtch are at nsk of envuonmental degradatton Most nauonal programs have msufftctent resources and few tramed personnel wtth enough research expenence to develop, test, and tmplement plant protecuon strategtes whtch contrtbute to sustamabthty Equally tmportant, nattonal programs, tsolated by pohttcal and geographtcal boundanes do not have access to ecologtcal and mformauon resources present m other countnes and other parts of the world These deftctts wtll be addressed m thts proJect through the extenstve collaborattve research and trammg acttvttles wtth parttctpatmg nattonal programsThe project wtll be a model for developtng and 1mplementmg ecologically sound plant protectton technolog1es that can be used for other crops and other pests The hvehhood of one quarter of the world's populauon depends on the sustamed producuvuy of land m unfavorable or dtfftcult areas whtch are mamly troptcal, ramfed, and have fraglie or problem solis In the absence of externa! pressures for mtenstftcatiOn of producuon, the demands placed on the land to feed farm famthes and hvestock m these areas are modest and compatible w1th the concept of sustamable agnculture In th1s sense, sustamabliny 1s defmed as the practtce of balancmg producuon demands w1th the capacny of the ecosystem such that the net effect on the envuonment and the quahty of hfe for the farmer IS posit1ve However, m many areas of the trop1cs where the agnculture ts complex, d1verse, and nsk-prone Intenstficauon of product1on resultmg from populauon growth and other externa! pressures IS rap1dly transformmg the producuon system mto a less sustamable state Cassava IS often a key component of the tradUIOnal croppmg system m Afnca and South Amenca Today, cassava IS a crop wh1ch contr1butes Sigmficantly to meeting the calonc demand of the rap1dly growmg urban and rural populauons Easy to grow, even under harsh agronomtc condlllons, cassava IS a pnmary source of carbohydrates, ammal feed, and food secunty for more than 300 mlihon of the poorest people m Afnca and South Amenca Cassava also provtdes raw matenal for rural agromdustries, an 1mportant source of rural mcome Htstoncally, locally available and ecologically sustamable agronom1c mputs were part of crop product1on and protecuon traditiOns evolved by farmers However, rap1dly mcreasmg demand for cassava producuon m Afnca and South Amenca IS transformmg these dehcately balanced ar.d often fragde agroecosystems In Afnca farmers have reduced f .tllow penods and now culuvate mcreasmgly margmal are as In sorne areas of South Amenca, mcreases m product1on assoc1ated wllh mcreased commerciahzatiOn of cassava (e g , dned cassava for ammal feed, processed cassava products starch and alcohol producuon) have created an econom1c context favorable for the use of pestiCides and other nonsustamable mputs The development and Implementauon of ecologtcally sustamable mputs 1s espec1ally urgent m these situations Ecologtcal crop protecuon atms to prevent the need, and consequently, the use of pesttctdes, whtle Integrated Pest Management (IPM) mtegrates btologtcal and cultural control pracuces wtth the JUdtctous use of pesttctdes IPM may be approprtate where pesttctdes are a part of the producuon system, but m the case of cassava producuon, pesttctdes should contmue to be avotded Thts approach conserves the efftcacy of natural enemtes by avotdmg the lethal contact and restdual toxtcny of most pesttctdes, and preserves the envuonmental mtegnty of water resources and the food cham wnh10 the targeted agroecosystem Tradntonal systems of cassava culttvatton are the tdeal start10g pomt for the development of ecologtcally sound plant protectton practtces Appropnate crop protectton practtces can contrtbute to both ralSlng and susta1010g producttvtty S10ce the underly10g causes of pest problems 10 Afnca and South Amenca are stmdar, many of the plant protectton acttvtttes and expertences can be mutually beneftctal Cassava crop protecuon technologtes have been developed by a network of collaboraung nattonal and 10ternat10nal 10stttuttons and are avatlable for testmg and adaptatton under farro condntons A broad knowledge base of other related productton constramts, as they affect pests, ts now bemg generated through thts collaborattve process However, ensunng that farmers are the beneftctanes of thts experttse requues an mtenstve tmplementauon process, mvolvmg the mtegrat10n of researchers, extenston workers, and farmers to assure tmpact An obJecttve of thts process wtll be to develop a cadre of sktlled agro-ecosystems managers mcludmg farmers, extens10n workers, and nattonal program researchers who collaborate m the development and tmplementatton of appropnate mtervenuon technologtes Nat10nal crop protectton capabthty m these areas ts hmned, and resources for tram10g, tesung, and adapt10g technology ts lack10g Cassava culttvatton m Afnca and South Amenca ts pracuced under a set of stmdar ecologtcal, agronom1c, and soc1oeconom1c cond1ttons and constramts Demand for cassava ID both reg10ns 1s 10creasmg, and the result10g 1ntens1f1catton of producuon wtll lead to envtronmental degradatton ID areas where the productton demand exceeds the capacny of the natural resource base, unless envuonmentally sound ways to ra1se producttv1ty are pracuced The need for tmproved crop protecuon technology 1s parttcularly urgent m West Afnca and Northeast Brazd Pests, 10cludmg arthropods, weeds, and pathogens, represent s1gmf1cant constramt to productton m both areas causmg esttmated losses of 50% and reducmg dry matter content resultmg 10 lowered or unacceptable root quahty for processmg and fresh consumpuon CURRENT RESEARCH PROGRAMS The B10logtcal and Integrated Plant Protecuon Program of liT A has evolved from a proJect targetmg two pests of cassava to a full program dedtcated to sustamable plant protecuon of pnmary food crops 10 Afnca The program s research phllosophy ts to tdenttfy the ecologtcal tmbalances m the system causmg pest problems and to provtde envuonmentally and economtcally appropnate soluuons Consequently, the approach ts mterdtsctphnary and often multHnsututiOnal \"Pests' are carefully evaluated for theu real pest status before extenstve '\"esearch commttments and control campatgns are mlttated Program acttvtttes mclude baste research, mterventton technology development, trammg, tmplementatlon, techmcal support to nat10nal programs, and post-tmplementauon follow up Presently, bestdes the work on cassava pests, mvesugat10ns are m progress on stem borers and the larger grato borer on matze, pre-and post-flowenng pests of cowpeas, mango mealybugs, and weevlls on banana and plantams CIAT's mtsston ts to contnbute to the allevtatlon of hunger and poverty m troptcal developmg countrtes by generatmg technology opuons whtch beneftt the poor and contnbute to lasung mcreases m agncultural output whtle preservmg the natural resource base In order to fulftll thts mtsston, CIAT pursues vanous avenues of research whtch bear relatton to sustamable crop productton and protectiOn technology The C..tssava Program collaborates closely wtth EMBRAPA, the Brazthan nattonal agncultural research program, m the development of crop protecuon technology for many pests and dtseases of tmportance m Northeast Braztl, and u has worked closely wJth liTA m the deployment of classtcal bJOiogtcal control of the cassava mealybug and the cassava green mue m Afnca The program ts applymg and refmmg techmques for evaluatmg technology wtth farmers, ongmally developed by CIAT s Partlctpatory Research Unu, for the development and dtssemmatJOn of tmproved cassava germplasm and cultural pracuces Addtttonally, 1t has ptoneered a htghly successful demand-dnven mtegrated approach to crop commodtty research and development In the apphcauon of thts approach to cassava, the tdenuftcauon and charactenzauon of market opportumttes provtdes the basts for the destgn and development of cassava produrt10n and processmg technologtes These technologtes are subsequently tested and adapted wuh farmer paructpauon under market condtttons through research and development proJects m representattve productton reg10ns Momtonng and evaluauon help to fme-tune the technologtes for subsequent dtffuston over a wtde area and provtde feedback for new research needs Cassava productton sustamabthty research focuses on the relattonshtps between fertthty and water management, eros10n control, and cultural practlces It has recetved htgh pnonty m CIAT smce the 1970s The Agroecological Stud1es Umt, wh1ch defmes and maps cassava microregions ID Latm Amenca, mtegratlng edaphochmatlc and socioeconomic data, and the cassava demand stud1es conducted by the program ID Laun Amenca m the early 1980s, were the forerunners of and proVIded the 1mpetus for the liT A COSCA S11rvey currently underway ID AfncaBecause of the cooperauon needed to successfully develop, test, and 1mplement sustamable plant protecuon, liT A has estabhshed a comprehens1ve outreach and traiDIDg program to strengthen nauonal programs throughout the cassava belt of Afnca The ha1son between mtemauonal mstitut10ns creates a bndge between nauonal programs ISolated w1thm contments but wlth similar cassava producuon problems and expenences, and provides access to natural enem1es, resiStant germplasm, and experuse that IS essenual for nauonal programs developmg and 1mplementmg appropnate cassava plant protection technolog1es The first pnonty has been to broaden the knowledge of nauonal programs In the theory and pracuce of sustamable plant protecuon through short-term group trammg, spec1ahzed m-country traiDIDg, and post graduate trammg To date, a total of 447 nauonal program staff have been tramed m collaborauon w1th FAO ID the practical aspects of plant protecuon, and liTA postgraduate fellows have completed 25 MSc and 18 Ph D (men and women) m related subjects over the past 6 years Many of these traiDmg actlviUes were supported by UNDP The second pnonty has been to prov1de the logistic means needed to support specific plant protecuon actlvitles m targeted countnes ThiS mcludes modest, but timely, f1Danc1al support from liT A to nauonal programs and help ID arrangmg bilateral fundiDg Fmally, liT A has Imtlated the establishment of nauonal biolog1cal control commlttees to draw attenuon to sustamable methods of plant protecuon and to fac1htate similar activitles m the future In a special effort to enhance the role of women m plant protecuon ID Afnca, liTA has Jmned wlth Wmrock Internat10nal s Afncan Women Leaders ID Agnculture and the EnVIronment (A WLAE) program Women have pnmary responsibdity for food product1on and a maJor IDfluence on the natural resources assoc1ated wuh agnculture ID Afnca Presently, they occupy only 7% of government extens1on serv1ces and hold fewer than 4% of the professional agncultural posltions, even though they produce as much as 70% of the domestically consumed food The A WLAE program a1ms to Improve women s credenuals sk1lls, posltions, and mfluence m four arenas of agnculture and the envuonment pohcy, management, research, and extens10n, and to bu1ld and sustam an enabhng envuonment to ach1eve these goals The program a1ms to prepare a cntJcal mass of Afncan women as profess1onals and leaders wuh credentJals, management trammg, and long-term profess1onal support who wlll be gu1ded m the apphcat1on and relevance of theu work to women farmers The program emphas1zes bulldmg an enabhng envuonment for these women to gaiD accesj; to Ieadersh1p posJtJons and IDStltutJonahzmg the program through networks, momtonng actlvJtJes, and profess1onal support mechamsms for success1ve generattons Cand1dates selected for post-graduate trammg ID th1s proJect wdl JOID the A WLAE program Cassava-related trammg actJvitJes at CIAT have been progress1vely changmg theu focus and content Intens1ve muiUdJsclphnary and plant protectton courses targeted at young research workers ánd extens1on leaders w1th hule or no prev10us expenence are bemg supplanted by penods of m-serVIce trammg Forty-seven Braz1han profess10nals have rece1ved th1s type of IDtensive traiDIDg to date ExtensJon/development personnel and on-farm researchers w1th severa! years of expenence wuh cassava requue greater skiiis ID problem and opportumty JdentJfication so as to respond to the changmg needs of theu chent farmers Th1s target group IS served by partJclpatJon ID IDtegrated modular courses on cassava product1on, processiDg, and marketmg, followed by a penod of diSCiphnary speciahzat1on In additional to techmcal aspects of cassava research, proJect management, farmer and IDStltutlonal organization, and methods of evaluatiDg technology wuh farmers are also IDcluded E1ghteen courses of th1s type have been held to date ID Brazll serviDg 262 Braz1han profess10nals UNDP contnbuted sigmficantly to the fundiDg of these trammg activJties PROJECT JUSTIFICATION PRESENT SITUATION AND PROBLEMS TO BE ADDRESSED Cassava farmers ID Afnca grow about 40% of the worlds total productJon The product1on of cassava ID Afnca contmues to chmb, but the rate of IDCrease has dropped sharply compared to populauon growth rates Most cassava producuon ID Afnca 1s for human consumpt1on About 70% of the contment's cassava producuon and half of us sub Saharan populauon are found ID West and Central Afnca The countnes partJc1patmg ID th1s proJect, Ghana, BeniD, N1gena, and Cameroon, represent about a thud of the total sub-Saharan populauon of 400 mdhon and about a thud of the total cassava product1on of 50 m1lhon tons per annum These four countnes account for the most sJgmficant cassava growiDg area ID West Afnca, plus the transltlon area between west and central cassava growiDg reg10ns of the contiDent They form an ecologically congruous subregion where cassava Is a food staple and the most Important source of carbohydrates (more than two and half umes the calones provided by the second and thud-rank10g crops, mmze and yams, 10 the reg10n) for about half the total populauon (ca 65 mllhon people) It IS a subregion where the populauon and demand for cassava 10 the humid and subhumid ecologies are rap1dly 10creas10g, especially 10 urban centers Cassava 10 this regaon IS grown by small-scale farmers on an average plot of less than half a hectare and production averages 6 8 t/ha FaHow penods, which tradlt10nally restored the land to Its ong10al producUvity, have dechned sharply 10 recent years as 10creas10g producuon demands move these agroecosystems away from a once sustamable equihbnum Nigena, Afnca s most populated country, Is by far the largest producer of cassava 10 the reg10n at 12 mllhon tons per annum, about a quarter of the total producuon for Afnca The other countnes, represent10g three of the five next most Important cassava producers 10 West Afnca, mclude Ghana Bemn, and Cameroon at 2, O 7, and O 60 mllhon tons, respecuvely In terms of calones consumed per capita per day, Bemn tops the hst here With 470, followed by Ghana at 416, then Nigena and Cameroon at 250 each Besides represent10g an ecologically congruous cassava producuon subregion, these four countnes are easily accessible by road and au from the proJect headquarters 10 Bemn and readlly supported by the 10frastructure proposed 10 the proJect The activiUes to be carned out 10 this subreg10n wlll be a model for other countnes and subreg10ns 10 Afnca and South Amenca where cassava IS an Important crop Brazll IS the world s largest cassava producer Ftfty etght percent of Brazll'~ cassava producuon (14 5 mtlhon tons) ts concentrated 10 the Northeast Cassava ts amportant 10 thas regwn because the envuonmental condtttons are unfavorable for the culttvauon of most other crops Most cassava farmers culuvate plots of less than 1 ha wtth generally low s01l feruhty 10 a regaon wtth only a mammum 10frastructure of roads, electncuy, and servtces Cassava producuvuy 10 the northeastern states as 37% lower than the average for the rest of Brazll The average y¡eld 10 the reg10n ts 10 8 t/ha FAO considers that a maJor calone deftclt problem exists 10 the area The states of Babia, Pernambuco, and Ceara are targeted for the proJeCt because of thetr tmportance as cassava produc10g regtons the wtdespread mctdence of cassava pest problems, and because of complementary CIAT/EMBRAPA actlvttles m the area A regional development proJect funded by the Kellogg Foundauon for 10tegrated producuon, process10g, and commerctahzauon of dry cassava for ammal feed ts generat10g farmer demand for crop producuon and protect1on technology and wlll thus facllatate the technology amplementauon process Pest1c1de use on cassava 1s neghg1ble ID Afnca and Northeast Brazd However, a chmate favorable to mcreased use IS develop1Dg 1n Brazd now that subsidies for wheat have been removed and new markets for cassava have been opened through development of cassava-based ammal feeds and fresh cassava conservat10n methods Cassava producuon 1s mcreasmg 10 response to the new demand, and farmers who formerly could not afford to use pesuc1des may 1D<;reas1ngly be able to do so Sigmficant mcreases m pest1c1de use could result ID severe problems of envuonmental contamiDatlon ID an area where 63% of the populatlon hve and where water 1s the maJor factor hmumg agnculture over 70% of the reg10n PestiCide-related health problems could also be ant1c1pat~d ID th1s area where h1gh rates of malnutnuon, dhteracy, and mfant mortahty are related to wtdespread poverty and underdevelopment of the reg1on Ecolog1cal crop protecuon technologtes are needed to prevent the need for, and consequently, the use of pesuc1des Th1s approach wlll conserve the efftcacy of natural enem1es by av01dmg the lethal contact and residual toxiclty of most pestlcides, and preserve the envuonmental mtegruy of water resources and the food-cham wuhm targeted agroecosystems Pest Constramts on Cassava Productwn Biolog1cal constramts on cassava producuon commonly mclude weeds, plant pathogens, and phytophagous arthropods However, few stud1es of the 1mpact and econom1c 1mportance of these constramts on a regtonal or contment-w1de bas1s ex1st Considerable Informauon 1s avadable on the 1mpact of weeds ID the broad sense, whlle httle 1s known about the effect of IDdivldual weed spec1es and theu 1mportance as a refuge for natural enem1es of cassava pests The tmportant plant pathogens ID Afnca and South Amenca (cassava bactenal bhght, cassava mosa1c virus, anthracnose, and root rots) are presently the subject of reststance breedmg, bJOiogtcal control, and cultural pract1ce research by both natlonal and 1Dternat10nal mstltutlons Btological constramts to cassava product10n frequently depend on producuon pracuces Although the mfluence of agronomtc pracuces on cassava productton are well known thetr effect on pest populauons requues further mvesugauon Good qualuy plantmg matenal and pracuces to conserve sotl motsture and feruhty (appropnate mtercroppmg, mLlchmg, fallow penods, etc ) usually enhance producuvtty but often exacerbate pest problemsThe socioeconomic and pohucal envuonment m cassava growmg areas mfluences crop production charactenstiCS m complex ways and hence, affects the possibihtles for sustamable crop producuon and protectiOn practices The hnks between factors such as farm size, land avallabihty and tenure system, migrauon patterns, gender ISsues, market charactenstics, government agncultural pohcies, and crop production are under mvesugation m several on-gomg studies m Afnca and South Amen caIn Afnca, liT A has severa! studies of this type m progress mcludmg the Rockefeller-sponsored COSCA Survey, an extensive study designed to target the most Important cassava growmg regions of the contment, and severa! smaller-scale, but more mtensive studies m selected snes m Bemn, Nigena, and CameroonIn Northeast Brazll the Kellogg-sponsored CIAT/EMBRAPA proJeCt for production, processmg, and commerciahzation of cassava IS generaung mformat10n on agronomic and socioeconomic constramts and opportumties m cassava production In addUion, CIA T' s existmg databases on chmate, solls, vegetauon, and socioeconomic factors cover both Afnca and South Amenca, and are contmually updated as new mformauon IS generated These represent an Important analytic tool In addiUon, the Land Use Program which wlll soon form part of CIAT's new Natural Resources Division wlll contnbute to the design of rural surveys as a basiS for analyzmg relauonships between the soc10economic envuonment and crop product10n and protecuon constramts These surveys can also provide a basis for plannmg the development of Improved technology and for assessmg ns Impact In Afnca, the Widespread occurrence of severe pest problems on cassava, an mtroduced food crop, IS related pnncipally to the accidental mtroducuon of arthropod species to an area where the local germplasm IS susceptible to attack, where effecuve naturdl enemies are absent, and where a tradltlon of pracuces evolved by farmers to cope wuh the mtroduced pests does not exist This has been the case wuh the well known cassava mealybug (Phenacoccus mamhoti) and the cassava green mue (Mononychellus tanaJoa) Other tmportant pests of cassava m Afnca mclude the recently mtroduced larger gram borer (Prostephanus truncatus), whtch attacks harvested and processed storage roots, the seasonally abundant grasshopper (Zonocerus vanegatus) somettmes found m devastatmg numbers at the end of the dry season, and the whttefly (Bem1s1a tabac1), a vector of cassava mosatc vtrus In Northeast Braztl, the extenstve culuvauon of cassava m the dry mtenor hmterlands JS a relauvely recent development related to the h1gh rates of populauon growth m the area dunng th1s century A complex of pests and d1seases occurs m the regwn mcludmg the cassava green mue, cassava mealybug (Phenacoccus herren1) cassava hornworm (Ennny1s ello), lacebugs (Vatlga 1lludens), whllefhes, and root rots The causes underlymg these pest problems are similar to those descnbed for Afnca, and relate to germplasm adaptauon, poss1bly exot1c spec1es ID sorne cases, and the lack of an evolved trad1Uon for managmg pests The 1mpact of the best known constraiDts to cassava producuon ID Northeast Braz1l and ID sub-Saharan Afnca can be summanzed as follows Cassava mealybugs (Phenacoccus mamhot1, P herrem) Both spec1es are nat1ve to South Amenca P mamhot1 1s a pest only ID Afnca and ach1eved pest status after accidental IDtroductwn to the contiDent P herren1 1s nauve to Venezuela and became a pest after IDvadmg Brazll P man1hot1 has been the target of one of the most successful class1cal b10log•cal control campa1gns The cassava mealybug caused rap1d and w1despread devastauon as Il spread over the cassava belt of West and Central Afnca before the start of the control campa1gn In many regwns, cassava producuon ceased when the mealybug destroyed both the cassava ID the f1eld and local sources of plantmg matenal Y1eld losses of 100% were common ID IDfested areas The mealybug 1s now s•gmficantly controlled m most ecolog1es by the mtroduced parasJt01d Ep1dmocars1s lopez1 However, m areas where cassava 1s grown on extremely poor, sandy so1ls (less than 5% of the total cassava area m West Afnca), the parasJt01d appears unable to develop properly on the apparently mfenor mealybug hosts Th1s leads to an explos10n m the pest populauon and consp1cuous plant damage P herrent causes leaf yellowmg, curhng and cabbage hke malformauon of the growmg p01nt Y1eld reducuons as h1gh as 80% have been reported, as well as reducuon of root quahty and destrucuon of planung matenal Greater losses occur m drought years P herren1 currently occurs pnmanly m coastal areas of Northeast Braz1l lntensificauon of producuon 1s expected to lead to more frequent attacks over a broader geograph1cal area ID the future Cassava green m1te (Mononychellus tanaJoa) The cassava green mlte 1s another pest nauve to South Amenca that was IDtroduced mto Afnca m the early 1970s lt spread throughout the cassava belt of Afnca m a relauvely short 10 year penod and IS now the most 1mportant pest on cassava ID many regwns of the contment The green m1te causes y1eld losses rang1ng from 30 to 80% dependiDg on vanety cultural pracuces and local agroecological conditlons threatemng food secunty ID many regwns of the contment The cassava green m1te has been one of the pnnc1pal targets of pest management efforts by EMBRAPA m Northeast Brazll smce the 1970s In recent surveys conducted as part of collaborauve research between EMBRAPA, CIAT, and liTA, the areas most senously affected by the cassava green mne were m sem1and zones (450 to 800 mm precipllallon per year) Y1eld loss assessment tnals md1cate that 10-50% losses occur m seasonally dry and sem1and zones dependmg on vanety, plantmg date, plantmg system, and the length of the crop cycle Root dry matter content IS also reduced, affectmg quahty of roots and reducmg acceptabllny for both fresh consumpuon and processmg Cassava hornworm (Ermny•s ello) Neotrop1cal hornworms can cause complete defohauon of a cassava crop and thus are more hkely to lead to pest1c1de use by farmers than other cassava pests, even though pest1c1de apphcat10ns may be econom1cally unwarranted Repeated attacks can occur and may be stronger due to ehmmat10n of natural enem1es by pesUc1des Y1eld loss depends on plant age the number of consecuuve attacks, and s01l feruhty condn10ns Y1eld losses m low feruhty areas are from 15 to 46% after one attack and up to 64% after two consecuuve attacks Y1eld loss m plants attacked after s1x months of age 1s generally less severe than on younger plants, but root quahty 1s adversely affected Wh1tefl•es (BemiSia tabac1, B tuberculata, Aleurothr1xus aep1m, Aleurotrachelus soc•ahs, a n d Tnaleurodes vanab1hs) Wh1tefhes cause duect damage to cassava m Northeast Braz1l through theu feedmg and the sooty mold that grows on theu excret10n wh1ch reduces photosynthes1s Prolonged attacks lastmg throughout the growmg season are common and can result m y1eld losses as h1gh as 80% One or more of the Brazthan whllefly spectes ts thought to be the vector of cassava vem mosatc vuus m the reg10n Expenence m other reg10ns of South Amenca has shown that tncreased mctdence and seventy of whttefly attacks are commonly assoctated wJth mtenstftcauon of producuon The only spectes found m Afnca B tabac1 occurs throughout the cassava belt of the conttnent but does not attack cassava m Braztl However the damage 11 causes IS mostly mduect as a vector of the cassava mosa1c vuus a plant pathogen esttmated to cause up to 50% reducuon m y1eld The vtrus attacks the leaves causmg chloros1s and shnvehng Th1s ulumately reduces y1eld because the photosynthettc acnvny of the plant IS reduced Vanegated grasshopper (Zonocerus V anega tus) The consp1cuous var1egated grasshopper IS mdtgenous to West and Central Afnca where 1t IS found m the hum1d and subhum1d ecolog1es It 1s a pest wh1ch emerges as a synchromzed mass of nymphs from s01l-borne eggs dunng the dry season It feeds on a w1de vanety of green vegetauon mcludmg cassava, often the only s¡gmf¡cant crop found m farmers f1elds dunng th1s penod Grasshopper populat10ns reach matunty by the begmmng of the wet season Adult females concentrate theu egg laymg m the sotls of undtsturbed habltats Large concentrauons of the grasshopper can defohate a cassava fleld and kili the plants when the bark 1s chewed off the stems Cassava lacebug (Vat1ga 11ludens) Surveys have shown that lacebugs are w1despread m Northeast Braz1l Heavy mfestauons leadmg to extenstve leaf damage are frequent however, the damage/y1eld relationshlp has not been stud1ed suff¡c¡ently, and the extent of yteld losses lS not known Y1eld losses of up to 40% have been reported under expenmental cond1Uons Lacebug attack occurs dunng the dry season and htgh populauons cause severe defohat10n In other cassava-growmg reg10ns of South Amenca, mtenstflcatiOn of product10n has been assoc1ated wlth mcreased frequency and mtenstty of attacks and the d¡ssemmauon of Jacebug spec1es to formerly unaffected areas Larger gram borer (Prostephanus truncatus) The larger gram borer, mtroduced mto Afnca m 1981 1s a senous pest of stored ma1ze but also attacks harvested and processed Cdssava Losses of up to 70% after three months of mfestatton have been reportedA number of foliar and root pathogens commonly affect cassava product1on m Afnca and South Amenca In Afnca, the most 1mportant plant pathogen 1s the cassava mosa1c vtrus a pathogen found throughout the cassava belt Cassava mosa1c vuus IS so common m sorne parts of Afnca that the farmers do not cons1der leaves exh1btt1ng vuus symptoms to be dtseased However yteld losses of 25 to 60 percent have been esttmated m susceptible germplasm In the more humtd reg1ons, cassava bactenal bltght and anthracnose damage can exceed that of mosa1c vuus The extent of damage depends on the ummg of mfecuon, envuonmental condtt1ons, pathogemc vuulence, and cassava vanety Stm1lar problems wtth related vual and bactenal fohar pathogens are found m South Amencan Root rots mcludmg Fusanum, Phytophthora, D1plodza Scytal1d1Um and VertlcllliUm spp are also maJor product10n constramts m both conunents Y1eld losses of 40% are reported for at least 300 000 ha of cassava m Northeast Braz1IWeeds Numerous weed spectes can cause severe cassava product1on Iosses sorne esttmated as h1gh as 80% ¡f left unchecked Cassava 1s most susceptible to weeds dunng the flTst month after plantmg and penod1cally dunng the ramy season Although tradltlonal pracuces have evolved m most reg10ns to keep weed problems under control, the labor requued, about 45% of the total producuon costs, can be a hmttmg factor Among the most troublesome weeds m Afnca and South Amenca are 1m pe rata cyl1 ndnca, C h romo la e na odorata, Pan 1 e u m spp, Andropogon spp, Hyperrhanw spp, Penn1setum spp, M1mosa spp, and Commelma sppThe plant protect10n technolog1es avallable for testmg and adaptauon can be grouped mto three categones of mtervent1ons b10logacal control, host plant res1stance, and cultural pracuces In Afnca and Northeast Brazll, a strategy mvolvmg a combmauon of baologacal control, host plant res1stance and cultural pracuces wiii be followed 8IOlog1cal control cons1sts of three bas1c strateg1es In classical biOiogical control, ecolog1cally well adapted natural enem1es are mtroduced from outs1de the target area Conservauon mvolves the use of cultural pracuces and mampulat10n of the habuat m order to enhance the occurrence, acuvtty and pers1stence of natural enem1es already present m the system Augmentauon mvolves the muluphcauon and release of locally occumng natural enem1es m order to mcrease theu 1mpact Cassava pests have been stud1ed by JITA and CIAT for many years m v1ew of developmg host plant res1stance Res1stance to severa! 1rnportant pests and d1seases m Afnca and South Amenca has been mcorporated mto ehte germplasm for use by nauonal programs and has resulted m the release of cassava vaneues w1th res1stance to pests and d1seases Res1stant germplasm wlll be a component of the technology tested m th1s proJectThe role of cultural pracuces m enhancmg cassava product10n 1s well understood Good cassava producuon starts w1th quahty plantmg matenal free of avo1dable plant pathogens and pest contammants AddiUonally, tt mvolves optimlzation of agronom1c practlces such as weedmg, mulchmg tlme of plantmg, spacmg mtercrops, and tlme of harvest However knowledge of agronom1c pracuces as they affect pests and d1seases must be assembled so that 11 can be passed to farmers through properly tramed natlonal research and extens10n workersCassava green m1te In South Amenca where the cassava green mue 1s md1genous, locally selected culllvars and well adapted natural enem1es keep th1s spec1es m check m many areas Stud1es by CIAT and EMBRAPA show that natural enem1es alone prevent y1eld Iosses of about 30% liTA dec1ded early on to pursue class1cal b10log1cal control of the cassava green m1te as the fust mtervenllon opuon Natural enem1es of the m1te famdy Phytoseudae were JdenllfJed as the most promlSlng predators of cassava green m1te An extens1ve fore1gn exploratton effort was launched m 1984 by liTA m collaborauon wuh CIAT and EMBRAPA Among the more than 50 phytoseud spec1es found assoc1ated w1th the m1te m the Neotrop1cs, a dozen promiSing spec1es have been sh1pped to Afnca for expenmental releases Two of these spec1es have been Jdent1f1ed as VIable fleld cand1dates based on estabhshment and prehmmary 1mpact stud1es These mclude Neose¡ulus 1daeus and Typhlodromalus llmon~cus sensu lato from Brazll Other spec1es wlll be tned dunng the course of the proJect based on recent f1eld stud1es m the Neotrop1cs They mclude N anonymus, T ar1po, and T limon1cus sensu stncto wh1ch are all from Brazll and other phytoseuds from elsewhere m the cassava green mue's range m South Amenca Each of these spec1es/populauons has spec1al attr1butes or ecolog1cal preferences of mterest for the cassava ecolog1es under cons1deratton m Afnca Another group of natural enem1es bemg expl01ted for sp1der mue control are pathogens In the case of the cassava green mue, a fungus has been found attackmg the mue m the dner areas of Northeast Brazd The fungus, Neozygltes sp , IS an Entomophthorales wuh a h1gh degree of host spec1fiC1ty Stud1es have been underway for the last two years by EMBRAPA and CIAT as part of ongomg collaborauon wuh liTA Prehmmary results from eptdem10logy, mfect1V1ty and spec1f1cUy stud1es show the fungus as a prom1smg classtcal b10logtcal control agent m areas rece1vmg between 800 and 1200 mm ramfall per year In a proJeCt to be funded by USAID at the end of 1991, liTA and EMBRAPA wdl conunue to study the spectf1cuy and eptdem10logy of the fungus, and develop procedures for cultunng and transportmg mass-cultured stock for expenmental mampulat10n Stratn charactenzatwn and selecllon wlll be done as part of the UNDP sponsored acllv111es The fungus wlll be sh1pped to liT A at the end of 1992 m lime to mclude u m the on-farm tr1als of phase two of th1s proJect In Northeast Brazll, phytosend natural enem1es of the cassava green mue were absent m 30% of ftelds sampled across a range of humtd to sem1and ecolog1cal zones and m 32% of ftelds m sem1and zones Only three species were consistently reported Eighteen species of phytosends were common m fields sampled m Northern South Amenca (Colombia, Venezuela, Ecuador) across a comparable range of humid to semiand zones where 93% of the fields had low populauons or were dev01d of cassava green mite This suggests a potenual for mcreasmg the effectlveness of local natural enemies through augmentauon and conservat10n techmques Several spec1es of natural enem1es that have not been detected m Brazd and sorne different biotypes of spectes that do occur m Brazll have been detected m homologous seasonally dry and semtand cassava growmg areas elsewhere m South Amenca, suggestmg a potenttal role for classical b10logtcal control The selecuon and mtroduct10n of vuulent strams of the fungus N e o z y g 1t es m certam agroecologtcal areas 1s also planned Mamtenance and mass product10n of natural enemies requues a umque techmcal capactty and mfrastructure liTA and CIAT have developed these capactties over the years whlle workmg on a wide vanety of natural enemtes mcludmg parasttOids, predators, and pathogens Smallscale culture methods appropnate for tmplementatlon by nauonal programs m both contments and by farmer cooperauves m South Amenca are under development for severa! spectes of natural enemtes These methods can be used m the regiOnal dtssemmauon of exouc spectes and m augmentat10n of nattve spectes or stramsThe mcorporauon of sources of cassava green mue reststance mto agronomically acceptable culuvars offers potenttal for the control of cassava green mue m Afnca and Northeast Braztl liTA 1s developmg promismg culuvars that wlll be avatlable for testmg m on-farm tnals m Afnca dunng the proJect The IFAD-sponsored CIAT/EMBRAPA/IITA proJect for breedmg and selecuon of cassava for semiand areas 1s developmg germplasm pools for evaluauon m South Amenca and Afnca Reststance to cassava green mlte 1s one of the select10n entena m the IFAD proJect Matenals from these projects and from the nat10nal cassava programs wlll be muluphed and tested wtth farmers as part of th1s proJect Appropnate cultural pracuces for cassava green mlte can be Identtfted based on systems research, even though much work remams to be done Fteld studtes recently corroborated by computer stmulatlons mdtcate that cassava planted early m the wet season suffers low mue-mduced yteld reducuons compared wtth cassava planted later m the season, and that a poslttve relauonshtp ex1st between soll feruhty (orgamc matter mtrogen, water), plant vtgor, and mue denslty The relauonshtp between mue denslty and yteld 1s nonhnear wtth the greatest muemduced yield losses occurrmg m plants of mtermedtate vigor Thts tdentlftes mue-mfested cassava grown on s01ls of mtermedtate fertthty as the most hkely target for cultural pracuces that 1mprove so1l fertlluy and water-holdmg capaclty Conservauon of phytoseud predators of cassava green m1te through mamtenance of weed refuges the creatlon of \"seed' plantmgs where h1gh dens1t1es of phytoseuds can develop under f1eld condltlons for dissemmauon to the mam plantmg area, and other avatlable habltat management methods w11l be evaluated wuh farmers m the technology testmg and adaptatiOn phase of the proJeCt Cassava hornworm Effecuve control of hornworm has been ach1eved m southern Braz1l wnh the hornworm baculovuus The technology for homworm control IS well developed and 1s already bemg Implemented by farmers AdaptatiOn of the technology for Northeast Braz1l wlll depend upon assured availabilny of sufficient quant1t1es of vuulent strams of the virus, the preparauon of regional d1stnbuuon plans, and development of propagauon and apphcauon methods appropnate to cond1t10ns m Northeast Braziigrasshopper Most of the damage caused by th1s grasshopper m Afnca IS compensated for by the plant 1f the harvest can be delayed for a few months after attack Th1s does not help farmers who rely on the fohage as a vegetable or harvest the root a few weeks after a grasshopper attack In these cases, the use of microbial agents to control the grasshopper Cdn be Implemented As the humidity mcreases toward the end of the dry season, the pathogemc fungus Entomophaga gryll1 attacks the grasshopper and usually devastates the populauon soon after the start of the wet season Augmentauon of E gryll1 or the apphcatlon of another vuulent fungus at the ume of attack should prove efflcac10us liTA IS presently workmg on severa! fungal 1ntervenuons and apphcauon technologies m connecuon wnh a proJect to control both the m1gratory locust and the vanegated grasshopper PromlSlng vuulent strams of E gryll1 and another fungus, M etarrhiZIUm an~sopl1ae, are presently avadable for on farm testmg Cultural pracuces wh1ch reduce breedmg sues and the availabihty of preferred host plants such as Chromolaena odorata w1ll also be recommended to farmers as a way to reduce source populJUonsIn Afnca, the cassava mealybug IS now sigmficantly controlled m most ecolog1es by the mtroduced parasn01d Ep1dmocars1S lopez1 However m areas where cassava 1s grown on poor sandy solls the paras1to1d appears unable to develop properly because the mealybug hosts are mfenor The efflcacy of E lopez¡ m these suuauons may be 1mproved by promotmg cultural pracuces that enhance the feruhty and water holdmg capacny of the s01l (e g mulchmg weed management, selected mtercrops, and proper fallow penods) In add¡Uon releases of exouc predators mto these pockets of mfestatJOn are planned Two coccmeihds from South Amenca, Hyperasp1s notata and D10mus sp, have already been estabhshed locally m several countnes and more spectes are bemg released Thts should tmprove the quahty of the mealybug hosts and the efftctency of the parasltmd A htghly spectftc and effictent parasitmd of the mealybug P herrem has been tdenttfled from Its area of ongm m Venezuela Thts spectes Anaes1us n vexans, ts avatlable m culture at CIAT A dectston to mtroduce thts spectes to Braztl wtll depend on evaluat10n of the extent and level of damage caused by P herrem as esttmated by dtagnosuc surveys The expenence of liTA wtth classtcal b10logtcal control of P man1hot1 m Afnca wtll provtde gutdehnes for thts effort parttcularly m the adaptatton of mass reanng and dtssemmatton methods Whatefhes In Northeast Braztl, a broader knowledge of the btology, ecology, and natural enemtes of whitefhes m cassava ts needed to gutde the development of control methodsThe fungal pathogens Cladosponum sp and Vertlcllllum dahl1ae cause stgmftcant mortahty of whitefhes under fteld condttlons Low cost culture methods wtll be adapted from extstmg procedures and farmer parttctpatton m tnals of apphcatton methods and fteld-to fteld transfer techmques wtll be tmttated Reststance screenmg has led to tdentlftcauon of 50 promtsmg and ftve htghly reststant culttvars These have entered mto a hybndtzauon program and the progeny are under evaluauon At thts ttme, the tmpact of whttefhes m Afnca as vectors of cassava mosatc vuus ts best controlled through reststant germplasm presently developed and dtstnbuted by liT A and nauonal programs Larger gram borer Recently, an mtroduced htstend beetle predator Teretnosoma mgrescens from Costa Rtca has been released agamst thts pest m Togo, West Afnca liTA ts also mvolved m a proJect to tdenttfy, tmport, and release promiSing natural enemtes of the larger gram borer from Central Amenca mto Afnca Promtsmg mtervent10n technologtes that are avatlable wdl be tested m thts proJect Lacebug If yteld loss tnals JUStlfy further attenuon, the feastbthty of mcorporatmg genettc reststance agamst the l.tcebug m Braztl wtll be constdered Nmety-four promtsmg clones have been tdenttfted m prehmmary germplasm screemngA number of cassava vanettes reststant to several plant pathogens have been developed by nat10nal and mternattonal mstttutes and are avatlable for on-farm testmg m Afnca and South Amenca liTA has developed and dtstnbuted to Afncan nattonal programs a number of cassava hnes that are htghly restMant to cassava mosatc vuus and cassava bactenal bhght Sorne nauonal programs are now mcorporatmg these sources of reststance mto locaily acceptable culttvars whtch are avatlable for on-farm tesung In a proJect executed by Centro de Pesqutsa Agroforestal da Amazoma Occtdental, EMBRAPA, and CIAT, the tmplementauon of appropnate cultural pracuces and tolerant vartettes led to 90% reduct10ns m root rot mctdence and 3-fold mcreases m ytelds Thts technology has been adopted tn 40 mumctpabtJes m North Braztl m 40-50 ha of cassava per mumctpahty AdaptatJOn of thts technology for affected areas of Northeast Brazli wtll requtre the development and deployment of tolerant germplasm and cultural practtces appropnate for the reg10n The htghest levels of reststance are found ID germplasm from the Amazoman regton However, these genotypes are poorly adapted to the ecologtcal condtttons of the Northeast Reststance must be transferred to local matenal through breediDg A germplasm collecuon and a root rot workmg group conststJng of collaborators from state research mstttuuons from Northern, Northeast Braztl the nauonal cassava research center, and CIAT has been assembledWeeds The pnnctple method of weed control ID cassava ts by hand weediDg early m the growtng season and penodtcally thereafter dependmg on the spectes, raiDfall, and cassava vanety But because of the amount of labor requued, alternate methods of control would be attracttve tf appropnate Commerctal herbtctdes are potenual nsks to the envtronment and usually beyond the economtc reach of most cassava farmers BJOlogtcal control has a great theorettcal potenttal but remaiDs largely unexplored for troptcal weeds Cultural pracuces hold the greatest promtse Profusely branchmg cassava culuvars, plus carefully selected and properly ttmed mtercrops, stgmftcantly reduce the amount and frequency of weediDg requued In a stmtlar manner, sorne noxtous weeds m cassava have been successfully managed wtth selected low growmg herbaceous legumes Ecologtcal RISks Severa! types of nsks may be assoctated wtth the explottauon of bJOlogtcal control agents of arthropod pests An acceptable degree of spectftctty for the target pest must be assured m order to guarantee that bJOiogtcal control agents wtll not cause damage to crops or to other beneftctal IDsects Posstble dtsplacement of nauve populattons of beneftctal orgamsms can result as a consequence of mtroducuons of exottc spectes or strams of natural enemtes An addtttonal nsk m the case of mtcrobtal control agents ts the posstbthty of effects on human healthThe spectftctty of the parasttOJd Ana es 1 u s ve x a n s proposed for mtroductJOn to Northeast BraZ!l for control of cassava mealybug has been studted extens1vely A vexans does not uuhze foods of plant ongm nor parasltlze non-mealybug hosts, and 1s htghly spectftc for Phenacoccus herren1In natlve vegetat10n and m agncultural systems, phytoseuds are known V to consume plant exudates, leaf mtcroflora, pollen, and arthropods such as thnps They have also been know to consume phytophagous acanne prey and other spec1es of phytoseuds when phytophagous acanne prey are scarce Sorne spectes of phytoseuds practlce canmbahsm when other food sources are scarce The use of alternate or supplemental foods of plant ongm, however, has not been assoctated wlth crop damage m any case where phytoseuds have been employed as bJological control agents Canmbahsm and the consumpuon of non-target spec1es of arthropods as a means to avo1d local extmctlon when acanne prey are scarce occurs m und1sturbed systems and m systems where phytosends have been deployed as btologtcal control agents In our optmon, the level of nsk tmphed by th1s phenomenon IS acceptable when balanced agamst the beneflts of successful control of the cassava green mue L1ttle IS known about the cham ecologtcal consequences wh1ch may result 1f dtsplacement of nauve natural enem1es occurs after mtroducuon of exot1c spec1es of phytoseuds or other natural enemtes Exouc spec1es are mtroduced when nauve spec1es are shown to be mfecuve or madequate m controlhng pest populauons Many phytoseuds can occur on a range of plant spectes It 1s posstble that natlve phytoseuds could be tmportant as biOlogtcal control agents of other acanne spectes m non-target crops or m nat1ve vegetatlon, and that cassava represents an alternate habltat or temporary refuge for these spec1es The nsk of perturbmg such a system through the mtroductlon of exotlc spec1es must be balanced agamst the beneflts of successful control on cassava green mtte The hornworm baculovuus belongs to a group of h1ghly host spectfic orgamsms whtch have been extenstvely used m biOlogtcal control No evtdence has been found that the hornworm baculovuus or green mue fungal pathogen, Neozygues mfect other biOlogical control agents The baculovuus has been deployed m the North Coast of Colombia and m Southern BrazJI smce 1984 w1th no reports of human health effects Further mvesugat10n of posstble negauve envuonmental consequences of the use of mtcrob1al control agents and of other crop protecuon technology components wtll be undertaken as part of th1s prOJect m Northeast BrazdThe success of the proJect wtll be based on the complementary experttse and comparattve advantages of the collaboraung mstuuuons, and the umfted approach to developmg, testmg, and tmplemenung plant protecuon technologtes The parallel efforts m Afnca and South Amenca wlll rely on shared mformat10n (arthropod, agroecologtcal and soctoeconomtc databases, and stmulauon models), experttse (e g , classtcal b10logtcal control, mass reanng systems, taxonomy, mtcrobtal control, modehng, populat10n b10logy, mformauon management) and resources (e g , mformauon systems, natural enemy sources, common quarantme arrangements) leadmg to economtes of scale The hatson between mternauonal mstttuuons wtll create a bndge between nattonal programs tsolated wtthm contments, but wuh stmtlar cassava product10n problems, that provtdes access to natural enemies, reststant germplasm, and experuse essenual for developmg and tmplementmg appropnate cassava plant protectton technologtes Teams of nat10nal and mternattonal counterparts from each contment wtll be formed at the begmnmg of the proJect and wtll meet m planmng workshops to prepare detatled workplans, survey protocols, and samphng procedures pnor to tmttaung fteld acuvttles The overall objecuve wtll be to tdenufy stgmf1cant pest constramts m tmportant cassava-growmg reg10ns of each country, then test avatlable mtervenuon technologtes on farms through the paructpauon of ttamed nat10nal program staff and farmers The proJeCt wdl be dtvtded mto , three mterrelated and parually concurrent phases covenng a total of 4 years The ftrst phase wtll refme the extstmg knowledge base on maJor pests of cassava through dtagnosuc surveys In the second phase, farmers wtll paructpate m the development and testmg of a range of crop protectton technology components Addltlonally, formal trammg of farmers, extens10n workers, and researchers m the pnnctples and pract1ces of sustamable crop productton and protecuon wlll be provtded In the thud phase, progress m ach1evmg trammg and technology tmplementatton wtll be evaluated Btologtcal control mtervent10ns wtll be the core technologtes tested and adapted m Afnca Consequently, the contmumg classtcal btologtcal control effort m Afnca wtll depend on the prompt and adequate supply of replacement and new natural enemy spectes from South Amenca Natural enemy product10n systems and release technologtes wdl be developed m anttctpatton of new predators and patbogemc fungt whtch wtll be produced for expenmental releases As these systems are developed, new candtdate natural enemtes Wlll be sent from CIAT and EMBRAPA through quarantme at tbe Umversuy of Amsterdam to IITA's Btological Control Center for Afnca m Benm Many of the procedures and technologies developed for the pracucal Implementauon of biolog1cal control m Afnca wlll be adapted for work planned on the cassava green mue and the cassava mealybug, Phenacoccus herren1, m Northeast Brazd In particular, Afncan expenences m mass rearmg, release, and follow-up actlVItles wdl be mcorporated mto b10logxcal control work m South Amenca Likewise, procedures developed for mampulaung microbial agents, such as the cassava green mite fungus and the cassava hornworm vuus m South Amenca, wdl be adapted for Similar work planned m Afnca Trammg actlvihes m Afnca and South Amenca WIII be conducted through nauonal programs and hnked through the development of similar syllabi and trammg matenals Because of extensive expenences m plant protecuon traimng m Afnca, liT A wxll take the lead m developmg trammg elements Related to this, will be the placement of post-graduate tramees from one collaboratmg msutuuon to another where a comparauve advantage m research opportunuy and superviSion may exist In Afnca, a special Imtlative wiii be made m collaborauon wnh Wmrock lnternauonal to enhance the status and mfluence of women 1n agnculture by providmg post graduate trammg opportumties to women mvolved m research, trammg, and Implementation actlvities related to sustamable plant protection m the partlcipaung countnes lncreases m producUvity of cassava, a key food staple m Northeast Brazd should result m Improved food avallabihty which could duectly benefit women and children m the region Although the partlcipatlon of women m cassava producuon m Northeast Brazll IS hmned, women and chlldren are heavily mvolved m arusanal cassava processmg actlvities and could ostensibly benefit mdnectly from mcreases m producuvuy CIAT and EMBRAPA are already mvolved m a number of actlviUes to ensure that women WIII benefu from Improved cassava-related producuon and processmg technology m Northeast Brazll Women have traditlonally contnbuted unpaid labor to artlsanal fannha production m cornrnunally owned, rural producuon facilities Sorne O 5 rnilhon women m the state of Ceara alone, are estirnated to partlcipate m the producuon of fannha frorn cassava roots The construcuon of drymg plants m Ceara has resulted m diversion of cassava frorn producuon of fannha to producuon of dry chips which are sold to the ammal feed mdustry at a proflt This IS creatmg addltional econornic opportumues by divertmg sorne of the forrnerly unpaid labor of wornen to actiVlties which generate mcorne The Kellogg Foundauon IS providmg funds to set up a wornen s cornrnunally-rnanaged chicken productlon pdot proJeCt m Ceara whtch wJll eventually mvolve artesanal productJOn of chtcken feed rauons based on dned cassava roots and fohage Increases m cassava producttvJty obtaiDed through tmproved crop protectton can, therefore, contnbute to raiSlng the standard of hvmg of rural women and chddren ID Northeast Brazd A htgh proporuon of the EMBRAPA and state research and extens1on personnel are women, parucularly ID ftelds related to crop protecuon Thts wdl facthtate the mvolvement of women m all phases of the tmplementauon of thts proJect m Northeast Brazd Informatton resources wtll be developed to facthtate processmg, summartzatton, IDterpretatton, testiDg, and commumcat10n of the large amount of multtdtsctphnary and mterdtsctphnary data generated dunng the project Th1s wdl IDCiude the preparauon of database systems appropnate for the dtfferent kiDds of mformauon and end users, and systems models wh1ch charactenze cnucal mteract1ons m the cassava ecosystem and wh1ch have both strategtc and tacucal capablluy Taxonom1c IDformatton concermng the arthropods assoctated wJth cassava agroecosystems ID Afnca and South Amenca wtll be refined throughout the proJect Informauon and expenences of nat10nal and IDternauonal collaborators wlll be exchanged ID regularly scheduled workshops InformatJOn resources wtll become part of the project s legacy to crop protecttomsts ID the target countnes EXPECTED END OF PROJECT SITUATION Enhanced natJOnal research capabthty tn sustaiDable crop protect10n wtll be eVJdent ID the target countnes and reg10ns Farmer knowledge of sustamable crop protecuon pnnctples and pracuces wtll be greater as a consequence of bas1c traiDmg provtded to the farmer Technology adoptton w1II be facduated by duect farmer parttc1pauon ID tramiDg and tts development, testmg, and adaptauon Cassava y1elds and/or root quahty should 1mprove stgmficantly on farms where technolog1es have been adopted lnformatton resources developed dunng the proJect wdl facduate the 1mplementauon of stmdar efforts m the future Targeted BeneflcJanes NatJOnal, regtonal, and mternattonal orgamzattons mvolved m research and tmplementatton of sustamable plant protectton for cassava and related crops grown by small-scale farmers under troptcal, ram-fed, low-feruhty condttlons ID complex, dtverse and nsk-prone cropp1Dg systems Wlll benefu from thts proJeCt Small-scale farmers m the cassava-belts of Afnca and Northeast Braztl are the dtrect beneftctartes of sustatned producttvtty, reduced pest and d1sease problems, stable mcomes, food secunty, and a pestJc1de-free envuonment Induect benefus of tmprovmg sustamablltty of agnculture m fraglle agncultural envuonments wtll extend to netghbonng regtons and countnes whtch are affected through ecologJcal hnks to the target areasBenef•c•anesThe tmmedtate beneftctartes are the partictpatmg farmers, extens1omsts, and researchers of the nauonal and mternauonal research mstttut10ns mvolved m thts proJeCtReasons for External Ass1stance from UNDP Research on sustamable plant protecuon technologtes ts a relatlvely recent phenomenon Few mstuutes work spectftcally m thts area liT A and CIAT, the CGIAR msututes concerned wuh cassava, have JOmed forces to develop envuonmentally sound plant protecuon technologtes wtth the collaborauon of nauonal programs and farmers for a crop that, unul recently, attracted lude plant protecuon attenuon Thts proJect ftlls a gap m the development and tmplementauon of ecologtcally sound plant protecuon technology lt hnks nat10nal programs wtth stmtlar cassava plant protectton problems and expenences through mternauonal mstttutes, and provtdes access to ecologtcal (natural enemtes germplasm) and mformatton (experttse, research and tmplementatton expenences) resources that are otherwtse out of reach UNDP and FAO have supported trammg and tmplementatton components of th1s collaborauve effort smce 1984 However, support for sustamable plant protecuon proJects has been hmtted It ts for thts reason that UNDP ts requested to help mamtam the momentum gamed between collaboraung msutuuons m the development, testmg, and tmplementatton of successful mterventton technologtes by supportmg thts proJectThe current crop protecuon sttuauon m West Afnca and Northeast Braztl has been analyzed as a consequence of long standmg collaboratton between nauonal and mternauonal mstttuuons m Afnca and South Amenca Parucularly tmportant ts the decade of contmuous collaborauon by liT A and CIAT to control exottc cassava pests m Afnca Beneftts of thts collaborauon apphcable to current crop protecuon efforts mclude development of several sustamable pest control constramts m cassava agroecosystems, and practica! f1eld expenence m both contments lt also proVldes a hnk between nauonal programs, ecolog¡cally similar subregwns and conunent restncted resources needed m the development and 1mplementatton of ecologically sound cassava plant protect10nUse of th1s accumulated knowledge to benefu small scale farmers w¡ll requue an mtens1ve ¡mplementatlOn process mvolvmg the mtegrat1on of researchers, extens10n workers, and farmers The success of the actlVItles m both contments w1ll depend on shanng complementary expert1se and mformauon held by the collaborators, and on extens1ve hnks to other diSCiplines of duect Importance to development and 1mplementauon of crop protectton (e g , breedmg, agroecological stud1es, b10technology agronomy socioeconomics, trammg, and commumcauons) The umf1ed approach to developmg tesung and 1mplementmg the plant protect10n technologies wh1ch has been developed by liT A and CIAT ts umque and wiii contnbute to efficient use of resources for ach1evement of the objecuves of th1s proJeCtCIAT and liTA will be respons1ble for coordinatlOn of ptoject acttvtt1es m South Amenca and Afnca, respecuvely A scientific prOJect leader from liTA and one from CIAT wiii be respons1ble for the research acuvllies m Afnca and South Amenca respectiVely Liaison With the nauonal programs wiii be mamtamed through the proJeCt leaders and the nat10nal coordmators Acuvtties between conunents wtll be coordmated through the two scJentifJc proJect leaders Research at liTA and CIAT ts orgamzed on a program bas1s, and there IS a program duector/coordmator respons1ble for the coordmatwn and mtegrat1on of the cassava plant protecuon actiVJlies m each mstuute These program leaders report to a Duector of Research who has overall responsibiiity to the Duector General and the Board of Trustees for research and management m each msutute ProJeCt collaborators w11l hold a yearly mternal rev1ew meeting for the purposes of exchangmg mformauon and settmg pnorltles Thts meetmg wiii be attended by liTAs BwlogJcal Control Program Duector, the ProJeCt Leader for the Afncan Component liTA scJentists (2) CIAT s Cassava Program Entomolog1st the ProJeCt Leader for the South Amencan Component CIAT sc1enusts (2) and the ProJect Leaders from each of the nat10nal programs Respons1bihty for orgamzat1on of the meeting wiii rota te between CIA T and liTA A prOJect adv1sory panel wdl be set up by eiAT and liTA and wdl be expected to attend the yearly rev1ew meetmg The adv1sory panel wdl rev1ew the progress made on techmcal matters, provide advice on the relevance of the work undertaken, and recommend changes when needed The panel wdl also approve the annual workplans Experts, such as the followmg wdl be asked to serve on this panel Drs P Kenmore (FAO), 1 Oka (Indonesia) B Okigbo (Nigena), F Moscardi (Brazii), e Kramer (Resource of the Future Washington, D e ) K Andrews (Zamorano, Honduras)The travel, per diem, and other mcidental costs mcurred by the adv1sory panel WIII be covered by separate funds provided by UNDP for that purpose Funds destmed for South Amenca and Afnca wiii be disbursed to eiA T and liTA, respecuvely Funds destmed for Northeast Brazd will be d1sbursed to EMBRAP AteNPMF by CIA T EMBRAP A/eNPMF wdl be respons1ble for management and admmistrauon of these funds and will provide fmancial status reports to eiAT s chief fmanc1al officer quarterly liTA w1ll disburse funds to the Afncan natwnal programs of Benm, Ghana Nigena, and eameroon Each nauonal program wdl be responsible for management and admmistratwn of these funds and will pro vide fmanc1al status reports to liT A s ch1ef fmancial offlcer quarterly liT A will prov1de semiannual fmancial reports for the Afncan component of the proJeCt to eiAT In turn CIAT wdl be responsible for submlttmg a global semiannual fmanc1al progress report and a global fmancial statement at the completiOn of the prOJect Accountabilny for proJect expendnures remams the responsibiiity of liT A for the Afnca based component of the proJeCt and eiA T for the Latm Amenca based port10n Serv1ces liT A provtdes sctentlftc, techmcal, and fmanctal asststance (both duect and mduect) to Afncan countnes wuh a desue to develop btologtcal and other ecologtcally sound pest and dtsease control approaches to plant protectton Thts proJect also provtdes Afncan nat10nal programs a hnk to natural enemy and germplasm resources, plus experuse and relevant cassava plant protectton expenences found m nattonal and mternattonal mstttuttons m South Amenca Currently, liTA has a network of 24 countnes m the cassava belt of Afnca partlcipatmg m a Biological and Integrated Plant ProtectJOn Network liT A s goal IS to develop and transfer the ~xpemse and technologies needed for plant protecuon research and 1mplementat1on to nauonal or regional programs This 1s bemg ach1eved by workmg wuh nauonal programs on collaborat1ve research actlvJtles, proVIdmg mstttutional mfrastructure and support, and by trammg techmcal staffThe country program counterpart teams needed for th1s project wlll be Identified by the partJcipatmg nauonal programs m consultatton wtth liTA and CIAT The project 'Recherche Apphquee en Mllieu Reel Bemn (RAMB)\" 1mt1ated by liTA SIX years ago, wuh support from the Dutch government and the Near East Foundauon, IS a multidisciphnary team of nat10nal agnculturahsts workmg on food producuon problems m selected s1tes m Benm Th1s approach has proven to be a very successful workmg parad1gm and wlll serve as a model for assembhng and orgamzmg multldlsctphnary natJOnal program teams m Afnca Th1s prOJect w11l contrtbute to a comprehens1ve effort to 1mprove rural mcomes, stab1hze agncultural producuon and mamtam sustamabihty m Northeast Brazii through collaborauve mtegrated research and development of cassava as a staple food and as a raw matenal for rural agromdustrtes, and through development of germplasm resources The collaborators m this effort are CIAT, EMBRAPA, state agncultural mstttutions, and other partiCipants m the Brazihan nauonal agncultural research and development systemThe pnncipal objecuves of this prOJeCt are 1) to develop crop protectJOn networks of tramed farmers, extens10n workers, and researchers familiar wuh the elements of sustamable crop protectlon and 2) to test and adapt ecologically sound technology components with farmers m order to obtam feedback on the appropnateness of mterventlon opuons, and thereby facihtate the adopuon of Improved technology Development and adopuon of effecuve crop protecuon technology wlll contnbute to the reducuon of pest losses, to stabihzmg cassava yield and root quahty, and to mamtammg the sustamablluy of agnculture m the tropical, ram-fed, low s01l feruhty areas where much of West Afncan and Brazihan cassava producuon IS concentrated Widespread adopt10n of this approach to plant protecuon should assure the envuonmental quahty of cassava-based agroecosystems by av01dmg or mimmtzmg mcreases m pestlcide use IMMEDIATE OBJECTIVES, OUTPUTS, AND ACTIVITIESDetermme maJor pest constramts m pnnctpal agroecologtcal zonesThe maJOr cassava pest constratnts m each of the pnnctpal agroecologtcal zones where cassava ts tmportant wtll be determmed through a combmatton of extenstve country-wtde/regton-wtde surveys followed by mtenstve stte-spectftc studtes m each country Extenstve surveys wtll be used to determme the tmportant cassava ecologtes, suspected maJor pest spectes, and the concerns and percepuons of farmers and extenston workers m the targeted areas Intenstve fteld studtes to momtor pest populatton dynamtcs and measure theu yteld and root quahty tmpact, and to vahdate the soc10economtc data recorded dunng the extenstve surveys wtll follow m sttes selected for suspected pest problems These results wtll be used to determme whtch pest constramts should recetve pnonty, and where the on-farm test sttes should be located m each country lnterdtsctphnary teams constsung of crop protecuon and producuon spectahsts wtll be assembled by liTA, CIAT, and by the parttctpatmg countnes and wdl be responstble for project actlvtues m Afnca and South Amenca, respecuvely ldenuficauon of add¡uonal research needs for pests whtch are slgmf¡cant constramts to product10n, but for wh1ch control technology components have not been developed are madequately developed or have not been tested at the farm leve!Laboratory and on-stauon stud1es to determme the potenual 1mpact and poss1ble mterventlons of selected pests If necessary, mterventlon technolog¡es w11l be developed and tested on-stanon followed by on farm evaluat10nTest and adapt selected crop protect10n technology components m farmer-controlled tnals On-farm tnals wdl be set up to test selected mtervent1on technolog1es g1ven spec1f1c combmauons of ecolog1cal agronom1c, and soc1oeconomic factors These tnals wlll be 1mt1ated and momtored by nauonal program counterparts who have been tramed to carry out these actlvitles, whlle the actual field tnals wlll be 1mplemented by carefully selected farmers In add1t1on, progress1ve and mnovat1ve farmers wdl be encouraged to 1mplement plant protecuon pracuces m therr f1elds Th1s presumes that mtervenuon technolog1es m demand (quahty plantmg matenal, natural enem1es, expert adv1ce) wdl be made avadable m a umely manner by tramed extens10n workers partiCipaung m thiS proJect These technolog1es wdl mclude an array of b10log¡cal control agents, res1stant germplasm, and cultural control techmques Output 1Effect1ve, ecolog1cally sustamable crop protecuon mtervenuons wh1ch are attracuve to and Implementable by farmersPrepare mtervenuon technolog1es to be tested mcludmg clean plantmg matenal from muluphcauon plots estabhshed locally, sh1pment of prom1smg natural enem1es to Afnca and Braz1l VIa quarantme Mass producuon of natural enem1es (predators, parasltmds and pathogens, root rot pathogen b10log1cal control agents) of selected pests Cultural control mformauon resources needed by extens10n workers and farmers also to be made avadableImplement farmer-controlled f1eld tnals and program staff) prescnbed ecolog1cal, agronom1c parameters throughout the growmg season momtor (nauonal and soc10econom1cOutput 2Multttrophtc and multtdtsctphnary systems analysts for charactenzmg tmportant mteracuons and measunng tmpact at dtfferent levelsAdapt extstmg multttrophtc ecosystems model wtth data from Afnca and South Amenca Develop strategtc multtdtsctphnary systems models whtch can be used to study cnttcal mteract1ons between ecologtcal, agronomtc, and socJOeconomtc factors whtch are too complex and/or costly to study through fteld expenmentatton These models wlll also have tactlcal capab1hty, permtttmg theu use as tools for day-to-day dectston makmg m crop protecuon Accordmgly, they wtll be destgned for w1dely avallable mtcrocomputer equtpment and wtll have userfnendly mterfaces makmg them access1ble lo nauonal program research and extens10n staff Output 3Evaluauon of newly developed and recently adapted crop protecuon technology componentsTest newly developed and recently adapted pest control technolog1es Thts work would be restncted to acttvltles whtch support the testmg and adaptauon of developed pest control technolog1es or address pressmg new pest problems not prevtously antlctpated In Afnca, these actlvtttes wtll be carned out by the liTA staff and post-graduate students bemg tramed by the proJectTram farmers extens10n workers, and nattonal program researchers m the pnnctples and pracuce of ecologically sustamable crop protectJOn Trammg m the theory and practlce of sustamable plant protectton as apphed to cassava ecosystems, and gtven the mterests and background of each target group, wtll contmue throughout thts phase Extens10n workers, extenswn worker tramers, and farmers wlll parttctpate m developmg the syllabt to be used dunng the subsequent trammg The appropnateness of the trammg program and the tmpact and acceptab1hty of the tested technologtes will be evaluated by nauonal programs The avatlabthty of natural enemtes, quahty plantmg matenal, a selectton of mstltutwnal vaneues and extens10n worker advtce on a wtde vartety of toptcs (e g planttng ttme, spacmg, mulchmg and weedmg practtces, harvest time and post harvest measures to prevent pest damage) wtll also be measured Retrammg and addttiOnal trammg wtll be offered to selected mdtvtduals where potenually beneftctal At thts stage, the technologtes and the trammg wtll be ngorously evaluated on farm by the proJect staff m collaborat10n wtth natiOnal program staff, along wtth an tmpact assessment of the vanous acttvtues undertaken dunng the proJeCt An exchange of mformatwn between all collaborators of the proJec! wlll be held on a regular basts Select and tram nauonal program research staff who wtll contnbute to the proJect m each country In the ftrst year, the natwnal counterparts m each country will be selected and tramed, followed by essenual support staff the next year Trammg wdl be dtsctphne spectftc and w1ll prov1de the tools and expenence needed to perform the dtagnosts, 1mplement, and momtor the on-farm tnals In Afnca, 15 nat10nal program staff wdl be tramed per countryTram extens10n workers and farmers m sustamable plant protecuon pracuces m each partlctpatmg country In Afnca, ttammg wtll be done annually after the fust year A total of 50 extens10n workers and 350 farmers per country w1ll be tramedRetram selected nauonal staff, extens10n workers, and farmers m Afnca m year three A total of 15 extensJOn workers and 50 farmers per country wtll be retramed Evaluate the trammg 1mpact at all levels w1thm each country m year three Assess 1mpact of trammg, as well as the 1mpact and adopuon of 1mproved crop protectlon technology Res.( cont) Entomolog1sts from CIAT and EMBRAPA wlll be ass1gned to coordmate the project An mformauon management spec1ahst headquartered at CIAT wdl be ass1gned global responsibdlty for settmg up mformat10n resources and systems for the enure proJect Counterpart nauonal and mtemat1onal research teams wdl be assembled At CIAT, the team wlll cons1st of an entomolog1st, a reanng spec1ahst, and an msect patholog1st to be hued by the proJect, m addlt1on to the proJect coordmator (entomologiSt) and the 1nformat10n management spec1ahst Personnel from core funds as detaded m the CIAT contnbuuon to the proJeCt (see budget) wdl also be prov1dedIn Northeast Brazd, a nauonal team compnsed of entomolog1sts ( 6), patholog1sts (6), breeders (1), agronom1sts (5), sod sc1enust (3), sociOeconomiSts (1), ecologiSts (2), and extens1omsts (60) wdl be completed by hmng an envuonmentahst, extens10n coordmator, msect patholog1st, acarologist, and a trammg coordmator The nauonal coordmator wdl be prov1ded by EMBRAPA Personnel, other than the nat1onal coordmator, wdl be asstgned to the prOJect on a part-t1me bas1s as deta1Ied m the esumate prov1ded of EMBRAPA's contnbuuon to the proJect (see budget)Representauves of the nat10nal and mternauonal teams wlll meet m a workshop held early m the fust year m order to defme obJecuves and pnonues and to destgn survey protocols and samphng procedures A survey team wtll be formed for each state Extenstve surveys wlll be conducted m order to determme and map maJOr and potenttal pest and d1sease constramts, extstmg crop protect10n methods, and the related concems and percepuons of farmers Informauon on soctOeconomlC and phytosamtary constramts wlll be gathered 1n Bah1a Trammg of the nauonal research team headquartered at Cruz das Almas, Bah1a, m the pnnc1ples of ecolog¡cally sustamable crop protecuon and m research and crop protecuon methodology w11l be prov1ded by the nauonal coordmator m collaborauon wlth experts from CIAT In add1t10n, m-serv1ce trammg m spec1ahzed top1cs, such as natural enemy rearmg methods Wlll be prov1ded dunng the fust year of the proJect A refresher workshop wlll be g1ven dunng the th1rd year of the project 'In order to foster establishment of crop protecuon networks m Northeast Braz1l, and to ach1eve an 1ntegrated approach to crop protecuon m an area where cassava 1s generally mtercropped or rotated wtth other crops, trammg tn pnnctples and methodology wtll be proVIded ID the form of two workshops to researchers workmg ID related crops One extens10mst from each state wtll be selected to lead the traiDIDg efforts ID that state Thts group of three extensiOmsts wtll be closely mvolved m strategtc research and methodology development as a form of m-servtce tramiDg A two week course for these extens10msts wdl be conducted m 1993 ID order to defme objecttves and set pnonues In 1994, two addtuonal extens10msts wtll be selected and a two week course wdl be provtded to prepare the full group of ftve extens10msts who wdl be responstble for supervlSlon of the ftve sues hostmg farmer trtals and demonstratton plots These flve wtll also be responstble for provtdmg trammg to 15 addtuonal extenstomsts m each state through a senes of one week courses commencmg m 1994 Trammg for extenstomsts wtll mvolve the pnnctples of ecologtcally sound crop protectton and tts practtce m agroecosystems mvolvmg cassava Extenstomsts wdl be orgamzed mto a network m order to foster exchange of mformatton and expenence between states Four hundred and ftfty farmers wtll recetve trammg m crop protectton practtces through a senes of fteld days to be held severa! ttmes each year m the last two years of the proJect Farmers wtll be repeatedly exposed to demoostratton trtals and wdl be brought mto contact wlth the farmers who parttctpate dtrectly m testmg and adaptmg technology components State and commumty leaders wlll be mvtted to workshops (one m 1994, another m 1996) where they wtll be exposed to the concepts goals, and achtevements of the proJect The tmportance and mtegrated role of host plant reststance, cultural practtces, and btologtcal control m crop protectton wtll be stressed m trammg at all levels Farmers and extensiOmsts wtll be famthartzed wtth spectftc technology components avatlable for each of these tacttcs Extenstomsts and farmers wtll be tramed to recogmze the charactensttcs of pest and dtsease tolerant vanettes and to dtstmgutsh beneftctal arthropods (natural enemtes) from pests Farmers wtll be tramed to recogmze and manage alternauve host plants whtch provtde refuges for pest and dtsease spectes, and wtll be exposed to techmques of natural enemy augmentatton and conservat10nIn order to provtde basehne mformatton to be used m assessmg the tmpact of the trammg program at all levels all groups recetvmg trammg wtll be surveyed m advance to charactenze thetr knowledge of crop protectton pnnctples and pracuces Appropnate manuals, audiov•suals, pamphlets, and other matenals wdl be developed for each aud1ence by the trammg coordinator m collaborauon w1th nauonal and CIAT team members and w1th llTAMomtormg and evaluauon of the proJect wdl mclude a system for momtonng on farm technology testmg and adaptauort tnals, farmer adopuon stud1es to assess the acceptance and •mpact of 1mproved technology components, and surveys to assess 1mpact of trammg at all levels A system for momtonng on-farm technology tesung and adaptauon tnals and results of demonstrauon plots wlil be set up m each state by the proJect mformauon management spectahst m collaborauon w1th the nauonal research and extens10n teams The des1gn and •mplementauon of computer databases for these actlviUes wlil draw from the expenences of the Kellogg proJect m Ceara Adopt10n stud1es wdl be conducted m order to assess the 1mpact of the proJect Surveys wlll be made to esumate the number of farmers 1mplementmg crop protecuon technology components Adopuon rates for parUclpatmg and non-parUc1paung farmers m the same commumues at vanous d1stances from the partlcipatmg communltles w11l be compared SociOeconomic charactensttcs of the farmers and agroecological charactensucs of the farms wlll be compared among farmers adoptmg and not adoptmg technology m the commumt1es surveyed The 1mpact of the trammg program at all levels wlll be assessed by surveymg partlc1pants after they complete trammg m order to assess the efflcacy of the program m 1mpartmg mformauon on the pnnc1ples and pracuce of ecolog•cally sustamable crop protecuon Support ActivJtJes Support actlvltles essenual to the workplan mclude the development of mformauon management systems, mass producuon of natural enem1es for use m strateg•c research, farmer tnals and demonstrat10n plots, taxonom1c serv1ces, muluphcauon of plantmg matenals for tesung of 1mproved germplasm, natural enemy sh1pment and natural enemy quaranuneIn collaborat•on wlth JITA and the nauonal progi'ams of Brazll, N1gena, Ghana Bemn and Cameroon CIA T wlll develop a global mformauon management plan to be used on both conunents The plan wlll mvolve database structures for socioeconomic biOecological, and phytosamtary mformatJOn to be generated by the proJect, a pnon staustJcal des1gns and standard1zed samphng protocols Th1s wdl fac1htate the companson and mtegrauon of mformatton and results from both contments Natural enem1es wdl be mass prodoJced at the nat10nal cassava research center (CNPMF) m Cruz das Almas, Bah1a for dJstnbutJOn to each state for use m on farm tnals researcher-controlled expenments, and demonstratton plots Germplasm w1th res1stance to pests and d1seases selected by the natJOnal cassava research center m collaborauon w1th CIAT wlll be multtphed by the proJect for dtstnbutJOn to and evaluauon by farmers m on farm tnals and demonstrauon plots CIA T and EMBRAP A wtll prov1de natural enemy shtpments to liT A upon request v1a the lnternattonal Quarantme for Mlte Predators, Umverstty of Amsterdam CIAT wJII also provtde natural enemtes to EMBRAPA upon request v1a quaranttne facdtttes at Centro Nactonal de Pesqu1sa para Defesa da Agncultura (CNPDA), Jaguartuna, Sao Paolo CNPDA wtll prov1de taxonom1c serv1ces to all proJeCt collaborators 4) and nauonal program team ( 4) wlll requue suff1c1ent fuel to cover 75,000 km per year, e g, $15,000 for liTA research $5,000 for liTA trammg, and $10,000 for each nat10nal coordmator and program team These costs are apporuoned accordmg to the t1me allocated to each act1v1tyExpendable supphes laboratory (chem1cals for dJet stud1es and electrophoresJs, glass and plasuc ware, forceps probes, cotton wool, reference Manuals) and f1eld supphes (coolboxes, paper and plast1c bags pestlcJdes, plasuc stakes spnng balances) These costs are apporuoned dccordmg to the ume allocated to each aCtlVlty E Commumcauons covers the cost of the post telex fax and telephone These costs are apport10ned accordmg to the time allocated to each acuvuy F Pubhcauons -covers the cost of pubhshJOg manuscnpts JO SCientlflC JOUrnals G Workshop a plannJOg meeung of all nauonal and mternat10nal program partiClpants JO the proJect to determme objecuveonented goals rev1ew procedures, and estabhsh operatmg procedures The meetmg wlll be conducted m phases wuh part1c1pants m the Afncan reg10n meetmg a few days before the global meetJOgGroup trammg -programmed for each nauonal program pnor to a regiOnal workshop to harmomze actJvJtJes Th1s wlll mclude an 1mt1al 1 week sess10n m each country followed by a regional 1 week sess10n at liT A 1 Syllabus preparatlon -costs assoc1ated wlth the development and producuon of cassava plant protecuon syllabus mcludmg edumg, des1gn, layout, and producuon of trammg support matenals such as audiO/visual a1ds, pamphlets, brochures, f1eld gu1des, and manuals J Translauon -all Enghsh trammg matenals wdl be translated mto French Travel -liTA -regwnal research ca 200 sc1ent1sts-days per year @ $150 per day, trammg/haJson ca 65 scientJsts-days per year @ $150 per da y, liT A -mternauonal research ca f1ve 10-day tnps @ $4,000 per tr1p for proJect staff to confer w1th South Amencan and other mternauonal colleagues Travel mcludes uckets and per d1ems N A R S covers daliy and overmght expenses (ca 500 staffdays per year @ $60 per day for coordmator, three scienusts and support staff) Note that rates w1ll vary for each country These costs are apport10ned accordmg to the ume allocated to each achvity for liTA actlvttles a'ld 4% for NARS acttvtties An accountmg of these charges IS prov1ded m the proJect appendtx X Vehicle~ -4X4 vehtcles (landcrutsers and ptckups, as appropnate, gtven the road condttions m each country) and a mmtvan Thts mcludes one veh1cle per mternauonal sctentlst (3) and nat10nal coordmator (4), plus a pool of two veh1cles to support regional research and trammg actiVIties, surveys m the larger countnes, and to replace damaged vehtcle~ These costs are apportloned accordmg to the time allocated to each acttvity Y Computers -for mformauon management data analysts, resource management and development, graph1cs, and commumcattons Two large-capacuy workstauons wtth graphtcs support (laser prmters) to develop and manage regiOnal databases and other mformatton resources, e g , newsletters, pubhcat10ns, and btbhographtes For the f1eld and laboratory operauons, nattonal and mternauonal sctenllsts wtll each operate on stmtlar hardware (portable computers, tnkjet pnnters, CD ROM dnve, hardd1sk backup med1um) and software platforms (word processmg, database, spreadsheet, stallstlcs graphtcs), and have the capactty to prepare reports digJtlze and manage data access CD-ROM and other database medta, and commumcate locally and remotely wtthm the regwn These costs are apporttoned accordmg to the ttme allocated to each actlvity Z Trammg equipment -shde and overhead proJectors, photographic and video equipment, blackboards, electromc stencils photocopymg machmes, and portable tables and chaus AA Field equipment -portable weather stat10n, portable refngerator ground positiOnmg system, altimeter, weighmg scales, and water and fuel reservmrs AB Entomopathology lab -lammar flow hood, autoclave, mcubators, remodehng facilities to msulate agamst possible contammants, and addmg an electrophoresis umt, e g, preciSion power supply, gel molds, band separat10n basm water disUJler AC Construcuon and upgradmg of ca 800 m2 of mass reanng facilities to proVIde the natural enemies requued by the nat10nal programs (e g , clean cassava cuttmgs and natural enemy amphfication) dunng the hfe of the proJect This mcludes a new screen house with the followmg elements -structure ($25,000), roofmg and screens ($23,000), chmate control ($22,000) and transport and construcuon ($20,000) for a total of $90,000 And upgradmg existmg greenhouses with structural modifications ($50 000) chmate control equipment ($50 000) and transport and mstallauon ($1 0,000) for a total of $110,000 Personnel mcludes arnval allowance, salanes and beneftts for mternatlonal staff, salanes and benef1ts for nauonal staff, plus allowance for an annual mcrement of 5% Internauonal staff mcludes one semor sc1enust and one semor research fellow for the postt10ns of entomologtst and mformatlon spectahst, respecuvely The entomologiSt will also serve as the project coordmator for South Amenca Travel covers all local and mternauonal expenses mcludmg uckets and per d1emsOperauons covers veh1cle mamtenance, fuel, expendable laboratory and f1eld supphes, costs of operatmg f1eld tnals and mamtammg cultures of natural enem1es pests and pathogens, natural enemy sh1pments,","tokenCount":"17406"} \ No newline at end of file diff --git a/data/part_3/8361288505.json b/data/part_3/8361288505.json new file mode 100644 index 0000000000000000000000000000000000000000..f9f485df2747ec804172611d12ef4515562b7739 --- /dev/null +++ b/data/part_3/8361288505.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"935c551b5df682faa054c6514baf88c9","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/4e6e3767-000f-458d-a5eb-ec11649db042/retrieve","id":"564933697"},"keywords":[],"sieverID":"4c9101b5-37c7-403a-b0cb-6bd4ab77874d","pagecount":"3","content":"yielding varietíes. Al! are modem varieties except for Cheptí gurmatia. F or farmers, the top ranking varieties included BG380-2, ORI158-261, R714-2-9-3-3, IR63429, and R574-11. These are al! modem varietíes, bu! no! always top yielding. R714-2-9-3-3 gave medium yields, while IR63429 gave relatively low yields when compared with the other varieties. Farmers and breeders agreed onIy on R574-11, BG380-2, and ORl158-261 as their favorite varieties (table 9). During the kharif season 2000, Ihe medium-duratíon' varielies that were further evaluated on-stalion and on farmers' fields were IR4234 (breeders' choice), R574-1I (farmers' choice), BG380-2 (common choice), and Chepti gurmatía (best local choice). The late-duration varieties were BKP-232 (farmers' choice), R304-34 (breeder's choice), R650-1817 (common choice), and Swarna (local check).The challenge facing plant breeders in IGAU and IRRI ís lo develop new cultívars that are better Ihan Swama and Maharnaya, while a1so meeting the other requirements and criteria thal furmers have for their given rice environments. While it is impossíble 10 combine all the requirements in one single variety, giving farmers (both men and women) an opportunity 10 test the performance of different rice genotypes on their own fields and 10 evaluate their cooking and eating qualíties can ¡ead 10 more efficient rice varietal improvement in the Chhattisgarh region in Madhya Pradesh.This paper focused on methodologies for improving our understanding ofthe eriteria used by farmers (both men and women) in selecling specific rice varieties and ofhow these criteria are considered in partícipatory breeding strategies in the rainfed lowland environments of the Chhatisgarh region in Madhya Pradesh, eastem India, Different methods for understanding farmers' eriteria in selecting rice varíeties were used. These melhods were (1) a questionnaire with open-ended queslions eliciting positive and negative attribules ofthe most popular modem and traditional varíeties, (2) a participatory weighted-ranking method, disaggregating the perceptions of men and women by land types and size oflandholdings, and (3) participatory varietal selection, where farmers evaluated severa] prereleased and local varíeties on their fields as well as on-station. The results of the study highlíght the importanee farmers attach to characteristies other than grain yield: eating quality (taste), rnarket price, durationlrnaturity, drought tolerance, and pest and inseet resistance.Both men and women have similar eriteria in choosing rice varíeties. However, straw quality for multiple uses is an important consideration for women farrners but not for meno F armers, particu-larIy women who do most ofthe weeding, prefer rice varíeties that are inherently dark green orpurpie to distinguish them from wild rice and enable the farmer to eradicate the wíld rice at an early stage of crop growth. Wild rice is a prevalent pesl and a constraint to high rice productivity in the Chhattisgarh regíon. The attributes considered by men and women farmers, however, are not gen-eralIy used as screenlng eriteria in most formal breeding prograrns, where the emphasis is mainly on grain yield. Qualíty attributes should be' emphasized more Ihan they have been in the past in breeding prograrns for rainfed areas. Because of the proximity of the villages lo !he markel, farmers prefer lo grow varieties Ibat no! only mee! their own eonsumption needs bul also those of consumers, including millers and traders. Therefore, farmers maintain their rice diversity and grow both traditional and modero varíeties that meet their varied interests and needs. Using approaches like farmer participatory breeding and varíetal selection from many rice lines provides an opportunity to fanners to choose varieties suitable lo their environment and needs as well as access to new seeds.Breeding lines R574-1l, BG308-2, and IR42342 performed well over the tbree years ofthe project in the medillm-duratíon group and showed tolerance to drought. Breeding lines R304-34 and JET -14444 (R 738-1-64) also proved promising. A large quantity of seeds have been multiplied by one ofthe farmers of Saguni village where blight is a problem.","tokenCount":"625"} \ No newline at end of file diff --git a/data/part_3/8365103397.json b/data/part_3/8365103397.json new file mode 100644 index 0000000000000000000000000000000000000000..c2be4261e9be5daf030b905f5711335d110d3605 --- /dev/null +++ b/data/part_3/8365103397.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"78e56c3542c9f56f4013ba737f5b2b0d","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/c9647217-e01d-46a0-9972-bec03e126434/retrieve","id":"-1699404560"},"keywords":[],"sieverID":"e24b1bbe-d9bd-450d-a684-4011899b0663","pagecount":"31","content":"Though beekeeping is a common farming enterprise and income generating activity in Atsbi Wemberta woreda, and promotional efforts have been made to improve it, no systematic study has been undertaken to evaluate the promotional efforts and people's response to it. The objectives of this study were to identify determinants of improved box hive adoption by the beekeepers; and to analyse fi nancial benefi ts from adopting improved box hive technology in Atsbi Wemberta district of Eastern Zone, Tigray Region of Ethiopia. Stratifi ed sampling technique was employed to identify the sample respondents, who were categorized into adopters and non-adopters of improved box hive. Based on probability proportional to size, 45 adopters and 85 non-adopters were selected. The data were collected using structured interview schedule, group discussion, key informant discussion and observation; and were analysed using descriptive statistics, partial budgeting, and logit model. Partial budgeting revealed that the net benefi t from improved box hives was more than double that obtained from traditional hive. The logit model revealed that credit, knowledge, education level of household head, perception and visits to demonstrations positively and signifi cantly infl uenced adoption of improved box hive. Major problems for promoting improved beekeeping practices were identifi ed in the study area. Ranking showed that drought, honeybee pests and diseases, lack of beekeeping materials, death of colony, lack of adequate extension support, marketing problem, shortage of bee forage, lack of adequate beekeeping skill and reduction of honeybee colonies were the major constraints in the beekeeping development in their order of importance. There is a need for actors to come together for concerted and coordinated action to address the constraints and problems, as the solutions are not in the domain of any one actor. Women and landless youths can be encouraged to take up this income generating enterprise. Developing the skills of beekeepers and extension agents on bee management and utilization of beeswax through intensive training, enhancing bee forage production and utilization, integrating beekeeping with water harvesting, modifying the improved box hive to include only one super to reduce initial cost, linking honey producers to stable and reliable markets and following a participatory value chain based approach, promoting private entrepreneurs to provide additional services for value addition, promoting farmer-to-farmer knowledge sharing, and encouraging farmer groups to enhance bargaining power and create a learning environment are some initiatives that could go a long way in the sustainable development of this important economic subsector.Livestock is an important economic sector in Ethiopia which contributes to economic development. Ethiopia is generally considered to have the largest population of livestock than any country in Africa (Halderman 2004). Livestock contribute upto 20% to Ethiopia's GDP and livelihoods of 60-70% of the population. Apiculture, which is one of the important livestock subsectors, contributes signifi cantly to the improvement of the livelihoods of the nation's population (Aklilu 2002).There is no well-documented evidence that indicates when and where beekeeping practice started in Ethiopia. According to Ayalew (1978), it had started in the country between 3500-3000 BC. The country has a high potential for beekeeping as the climate is favourable for growing different vegetation and crops, which are a good source of nectar and pollen for honeybees. Due to suitable natural environment of the country a large number of honeybee colonies, estimated at about 10 million, exist in the country (Ayalew 1978).Ethiopia produces around 23.6% and 2.1% of the total African and world's honey, respectively. It is the leading honey producer in Africa and one of the 10 largest honeyproducing countries in the world (Ayalew 1990). It is also one of the four largest beeswax producing countries in the world. In Ethiopia, beeswax is one of the 12 major exportable agricultural products and an estimated one million farmers are engaged in beekeeping (Mammo 1976). The country produces about 28,500 t of honey and 5000 t of beeswax annually (HBRC 2004).Beekeeping in Ethiopia plays an important role in income generation for beekeeper farmers. An average of Ethiopian birr (ETB) 1 420 million is obtained annually from the sale of honey, both in local and world markets. Honey production of the country meets beverage requirements of the urban and rural population. It is also demanded for its nutritional and medicinal values. The other hive products such as beeswax, royal jelly, propolis, and bee venom have high demand globally.In addition, honeybees play a great role in pollinating plants and contribute to increased crop yield. Self-sterile plants (cross pollinated) require pollinating agents to maintain viable seed. According to Crane (1990) honeybees can increase the yield of Citrus sinensis by 30%, water melon by 100% and tomatoes by 25%. Admasu et al. (2004) also reported that onion yields increased by 94% due to honeybee pollination.The Ethiopian government, realizing the potential of beekeeping subsector of the country, established demonstration stations at Holeta, Nekempt and Jima in 1965. The main objectives of the demonstration stations were to introduce imported improved beekeeping technologies (box hives, casting mold, honey extractor, honey presser, smoker, water sprayer, veil, glove etc.) to the beekeepers and to offer beekeeping training for farmers and experts. According to EBA (2005), formally organized beekeeping extension started in 1978. While the demonstration stations mainly targeted beekeepers located in the vicinity of the station and their coverage was small, formally organized extension has been aiming for a wider coverage. Currently, different private organizations are also engaged in the production of beekeeping equipment.Atsbi Wemberta is one of the districts of Tigray Region with a high potential for beekeeping development. The woreda (district) has 16,915 honeybee colonies (Atsbi Woreda OoARD 2006), making it one of the high potential areas for developing beekeeping in the region as well as in the country. All beekeepers of the district were only using traditional beehives until eight years ago. The traditional beehive is not convenient to undertake internal inspection and feeding, and offers no possibilities of supering (adding an additional box) to differentiate the brood chamber and honey chamber. The annual crude honey yield per traditional beehive is 5-7 kg, while the national average yield of improved box hive is 20-25 kg (HBRC 2004). The quality of honey produced in an improved box hive is also signifi cantly better being free of pollen, beeswax, brood and debris.In order to improve the quantity and quality of honey yield, the Agricultural and Rural Development (ARD) Offi ce and different non-governmental organizations have introduced improved box hives (Zander type) in Atsbi Wemberta district. Ruttner (1988) noted that the moderate climate of Ethiopia makes it one of the most successful countries in the tropics in box hive utilization.Improved box hive was introduced into the district in 1998, 30 years after its introduction to the country. Even though the duration of its introduction to the district is short the promotion of the technology is encouraging and currently there are 5716 of such hives in the woreda. Improved and traditional beekeeping practices are found to co-exist in the area. Highland areas are used for traditional beekeeping and the mid-lands for improved beekeeping. According to the beekeepers and bee expert of the district, the highland is not suitable for improved box hive as it is too cold and the honeybees cannot resist the cold in the box hive. This results in high rate of absconding of honeybees and low yield.Traditional hives are mainly engaged in multiplying honeybee colonies and providing them to beekeepers engaged in improved beekeeping management. The current price of a honeybee colony is about ETB 550. A previous study conducted in Atsbi showed that while male beekeeper farmers get about 80% of their stock from fellow farmers, women depend on the forest for 70% of their bee stock (IPMS 2005).The beekeepers get income from the sale of honey and honeybee colonies. Other hive product, namely beeswax, which can be used for multiple purposes like foundation sheet making, candle making, shoe cream etc. has not been utilized in the study area.Currently, beekeeping extension is trying to promote both improved and traditional beekeeping practices. It follows a package approach including provision of credit.They provide training on bee management, hive product and colony multiplication. It was observed that the training coverage was very low and as a result, majority of the beekeepers were using indigenous knowledge. IPMS (2005) documented that for most men and women beekeeper farmers the major sources of knowledge and skills was parents and their previous experience. Very few availed trainings organized by World Vision, FAO and Offi ce of ARD. However, the extension workers in the district, especially the DAs, are not conversant with the practical skills or knowledge required to be able to advise the farmers. Generally, the beekeepers get direct technical assistance from the district bee expert, resulting in the knowledge resource being spread very thin. The involvement of DAs in providing technical assistance to the beekeepers is minimal.In the study area This study looked at adoption of improved box hives at the individual farm household level. Individual adoption refers to the farmer's decisions to incorporate a new technology into the production process (Feder et al. 1985). According to Dasgupta (1989), the term adoption implies the continued use of a recommended idea or practice by individuals or groups over a reasonably long period. Adoption is a complex process, which is governed by many socio-economic factors including: farmers' socio-psychological system; their degree of readiness and exposure to improved practices and ideas, i.e. changes like the awareness and attitude of farmers towards improved agricultural technologies;institutional factors which act as incentives/disincentives to agricultural practices; and farmers' resource endowment like land holding size and labour are some of the factors of considerable importance in bringing about the technological change in agriculture (Salim 1986). The decision of whether or not to adopt a new technology hinges upon a careful evaluation of a large number of technical, economical and social factors. Adoption or rejection of an innovation is a decision to be made by an individual.Adoption is viewed as a variable representing behavioural changes that farmers undergo in accepting new ideas and innovations in agriculture. The term behavioural change refers to desirable change in knowledge, understanding and ability to apply technological information, changes in feeling behaviour such as changes in interest, attitudes, aspirations, values and the like; and changes in overt abilities and skills (Ray 2001).Identifi cation of the factors that infl uence the adoption of a technology, positively or negatively, are important for policymakers, researchers and organizations involved in beekeeping development programs to get insights into the adoption of improved box hive, which in turn would help them to suitably modify the strategies for improved uptake.Kerealem (2005) showed that adoption rate of improved box hives is low in the country and highlighted the importance of investigating factors infl uencing the adoption of improved box hives. There is no information currently available on the determinants of the technology adoption, and the fi nancial benefi t of adopting the box hive technology.To fi ll this knowledge gap, this study was designed with the specifi c objectives of: identifying the determinants of improved box hive adoption by the beekeepers, and Purposive sampling was employed to identify peasant associations in which improved box hive was promoted. Based upon the number of beekeepers and honeybee colony population, four peasant associations (Hayelom, Dibab-Akorein, Barka-Adisabiha and Michael Emba) with high beehive population were selected purposively (Figure 1). In the selected peasant associations, the beekeepers were stratifi ed into adopters and nonadopters 1 of improved box hives. The total sample size for the study was 130 beekeepers among which 8 are women and 122 are men. There were no women that adopted box hives in the sample respondents. Based on the probability proportional to size principle, 45 adopters and 85 non-adopters were selected for the study through systematic sampling method.A full understanding of the complexities involved in the adoption of technologies and the impacts they have can only be achieved by mixing methods, such as quantitative surveys, qualitative interviews, focus group discussions etc. (Dick et al. 2004). The required data were collected from beekeepers and extension workers of the district.1. Adopters are those beekeepers who used improved box hive for at least two years and non-adopters are beekeepers who did not use improved box hives during the study period. Structured interview schedule was prepared and pre-tested to include all quantitative data pertaining to the proposed study. For obtaining the relevant information, personal observations, focus group discussions and personal interviews were conducted with beekeepers, extension workers and bee experts.Enumerators who have know-how on beekeeping were recruited and trained to collect data using the interview schedule, under the supervision of the researcher. The researcher monitored the enumerators during data collection. Secondary data were collected from different sources such as books, research publications, journals, offi ce reports, internet etc.The required data for partial budgeting, such as prices of improved box hive, pure beeswax and accessories were collected from the District ARD offi ce. Honey yield, price, feed cost, labour cost and traditional hive cost were collected from respondents.Tools used for data analysis and presentation were descriptive statistics such as percentages, frequencies, mean and standard deviations; t-test and χ 2 were employed to test the signifi cance of continuous and discrete variables, respectively. SPSS version 12 was used to analyse the quantitative data. Any data/information that could not be captured through quantitative analysis were analysed qualitatively based upon interview and group discussion with extension workers and beekeepers. For assessing fi nancial benefi t of improved box hive, partial budgeting 2 was employed.Many models used in adoption studies fail to meet the statistical assumption necessary to validate the conclusions based on the hypothesis tested and they recommend the use of qualitative response models (Feder et al. 1985). Logit and probit models are mainly used in adoption studies. However, the output of probit and logit models is usually similar (Aldrich and Nelson 1984). Even though their outputs are similar, the logit model is easier to estimate. A binary logit model was used to identify the determinants of improved box hive adoption in this study. Following Gujarati (1988) the model is specifi ed as:The dependent variable is the natural log of the probability of adopting improved box hive (P), divided by the probability of adopting (1-P). The model was estimated using the 2. A partial budget is a technique for assessing the benefi ts and costs of a practice relative to not using the practices. It takes into account only those changes in costs and returns that result directly from using a new practice.3 Adopting improved box hives for beekeeping in Atsbi Wemberta Yohannis (1992) and Shiferaw and Holden (1998) in their study of adoption of soil and water conservation in Ethiopia also indicated that age of the household head negatively infl uenced adoption. The mean family size is 6.6 and 5.9 for adopters and non-adopters, respectively, again signifi cantly different at P<0.05. This indicates that beekeepers with large family size opt for improved technologies to improve productivity and incomes.Adopting improved box hives also demands additional labour and therefore, households with larger family size are more able to meet these demands. IPMS (2005) documented that highest labour is involved in watching and during swarming times, beehive construction, honey extraction and colony multiplication.In relation to beekeeping experience, there is no statistically signifi cant difference between adopters and non-adopters. The average years of beekeeping experience of both categories is nearly equal. The education level of adopters of improved box hive is signifi cantly higher than non-adopters of the technology, implying the infl uence of the variable in making adoption decisions. The average farm size of adopters and nonadopters is 0.55 ha and 0.59 ha, respectively (both below the national average land holding of 1.5 ha). This difference was not statistically signifi cant, implying that farm size does not affect adoption of improved box hive in the study area.Apiary is the place where honeybee colonies are kept on the farm/homestead. The apiary size ranges from 6 m 2 to 100 m 2 with the mean of 26.8 m 2 and 19.01 m 2 for adopters and non-adopters, respectively. The difference which is not signifi cant indicates that beekeeping activity does not require large or fertile pieces of land. Uncultivated land can also be used.Even landless farmers with small plots of land around homesteads can engage in this activity.The mean livestock holding, taken as a proxy for wealth status, is 4.4 and 3.9 for adopters and non-adopters, respectively. There is no signifi cant difference in the wealth status of both categories measured by livestock holding, implying that the improved box hive technology is not necessarily suitable only for resource rich households. The average honeybee colony holding was 3.2 and 2.4 honeybee colonies for adopters and non-adopters, respectively. Having more or less number of colonies did not affect the use of improved box hive, as farming households which decided to use the technology could start by purchasing the colonies. Among the respondents, 29.4 and 71.1% of non-adopters and adopters respectively, had got an opportunity to visit an apiary, through extension activities. It is signifi cantly different at P<0.01, showing that farmer-to-farmer exchange of experience and knowledge sharing infl uences adoption positively.The difference in positive perception about the technology was also signifi cantly different among adopters and non-adopters. Higher yields and better quality, ease of inspection and, ease of product harvesting are the major relative advantages of improved box hive identifi ed by the majority of beekeepers. On the other hand, high cost, high skill requirement need of accessories, and unavailability of the box hives are the main relative disadvantages of improved box hive as noted by the respondents.As noted by Robinson (1980), among the relative advantages of beekeeping is that the whole family can be involved in beekeeping activities. There are different activities involved in beekeeping such as swarm catching, transferring, hive inspection, honeybee feeding, honey harvesting, honey extraction and marketing. Figure 2 The participation of women in the beekeeping activities was high in adopter category and the difference is signifi cant at P<0.1, showing that adoption of improved box hive increases the labour share of women. But this also indicates that improved beekeeping activities are convenient for participating women. Traditional hives have to be hanged on a tree or under the roof, which makes it diffi cult for women to operate. The perception of the farmers was also that improved beekeeping activities do not necessarily overload the women as the activities in which they are mainly involved like honey extraction, harvesting and, transferring are carried out during their free time and are not done on a daily basis. For instance, transferring is done once a year, unless additional hives are introduced or absconded colonies have to be replaced. Honey extraction is done twice a year in the study area. Group discussions revealed that in most cases honey is sold by women. However, previous studies show that the income from sale of honey is mainly controlled by men (IPMS 2005).As indicated in Credit -In the study area, improved box hive was perceived as being costly by the beekeepers. Under such circumstances, credit plays a signifi cant role in enhancing the technology promotion. As anticipated, credit affects adoption positively and signifi cantly at P<0.01, the odds in favour of adopting improved box hive increased by a factor of 13.6 for beekeepers who had received credit. This result is supported by Lelisa (1998) who studied determinants of fertilizer adoption, intensity and probability of its use and found that access to credit is one determinant of fertilizer adoption and intensity of its use. Doss et al. (2003), Feder et al. (1985), and Cramb (2003) also concluded that credit is correlated with the use of improved inputs.Knowledge -Improved beekeeping technology requires knowledge on the practical aspects. The odds in favour of adopting improved box hive increased by a factor of 5.24 for beekeepers who acquired better skills on improved beekeeping practices. The result is in line with Yadav (1992) who found that adoption of improved paddy cultivation practices has a highly signifi cant and positive correlation with knowledge of farmers.Degnet and Belay ( 2001) also showed that farmers' knowledge of fertilizer use and its application rate positively infl uenced adoption of high yielding maize varieties.Education -Education increases the access to information and thereby possible knowledge of beekeepers regarding improved box hive. It also increases the understanding of the technology and facilitates its application. As hypothesized, education infl uences adoption of improved box hive positively and signifi cantly at P<0.01%. The odds in favour of adopting improved box hive increased by a factor of 1.56 for beekeepers who had higher education level. The result is also supported by earlier studies of Voh (1982) that dealt with factors associated with the adoption of recommended farm practices in a Nigerian village ;Feder et al. (1985) which focuses on adoption of agricultural innovation in developing countries; and Cramb (2003) Yield is an important determinant factor in adopting the technology. The higher the yield obtained from the introduced technology, the easier it is to convince the farmers to adopt the technology. In the study area the minimum and maximum honey yield per annum for improved box hive is 8 and 64 kg, respectively. The mean annual honey yield is 27 kg. It is above the national honey yield average, which is about 20-25 kg/hive per annum. The price of one kg pure honey was ETB 35 at farm gate and ETB 50 at nearby regional town.Hence, a beekeeper could get ETB 945-1350 gross benefi t per hive/annum.The partial budgeting reveals that adoption of improved box hive does result in additional income to the extent of ETB 489.11 in the study area (Table 3), the income being almost three times what one would get from the traditional hive. Melaku (2005) using partial budgeting analysis also concluded that both the homemade and institutionally made Kenya Top Bar Hive (KTBH) were benefi cial and remunerative. As noted by the author, movable top bar hives result in higher net return per colony compared with traditional hives. The national average of KTBH is 10-15 kg crude honey/hive per annum, which is below the national average of improved box hive (20-25 kg pure honey/annum).Comparison of KTBH with improved box hive was not included in this analysis, as the KTBH were not used in the study area. Observation and discussions with beekeeper farmers revealed that they were using only one super, while they received two supers. Hence, there is an opportunity to reduce the price of the hive if the beekeepers are provided with one super instead of two supers.Currently, the hive stand of box hive is made up of metal, which also increases the cost of the hive. This can also be made from locally available materials. With the reduction in cost of these two items, the price of the hive can be reduced.Group discussions were held with representative respondents including adopters and non-adopters as a part of the study, with the objective of identifying the existing constraints limiting development of beekeeping subsector. The participants identifi ed and prioritized 10 major constraints (Table 4). Drought is considered to be the primary constraint in beekeeping in the study area. It affects the feed sources (bee forage and water) adversely. IPMS (2005) documented that the major source of feed is from the natural forest (about 70% of the requirement) and the rest is from home prepared pulse fl our and sugar. Another problem mentioned is that of 'imodia' (rust) which affects the fl ower, as a result of which the honeybee cannot get nectar and pollen. As a consequence, the honeybee colony absconds to areas where resources are available for their survival. The prevalence of diseases and pests (ant and wax moth) also forces the colonies to abscond.In order to enable safety, protective materials such as veil, glove and smoker are essential for the beekeepers. In the study area, though the dissemination of improved hives was encouraging, in most cases they were not accompanied by these protective materials.Death of colonies was reported from Michael-Emba peasant association. As confi rmed during group discussion, this was due to the draining of chemicals used in the animal health centre of the peasant association into the water source of the area, from which honeybees consume the water.In actor-alliances with a specifi c objective will be a useful mechanism to do this. The extension service should take the lead in creating necessary linkages and forming such alliances.Utilization of beeswax: Currently, the beekeepers in the study area are using only honey and honeybee colonies for income generation. However, other hive products particularly beeswax which is important for foundation sheet making is not yet utilized in the area.Therefore, beekeeping extension, NGOs and private sectors can make efforts to promote the utilization of the beeswax produced through provision of training on collection of the crude beeswax and extraction. This will enhance the income from the enterprise.Management strategies: Absconding of colonies is the common problem faced by beekeepers in the area, mainly caused due to feed scarcity, honeybee enemies attacking honeybees as well as the products, and indiscriminate agrochemical application.Beekeeping extension, NGOs and private sector should focus efforts on skills development in managing bee colonies including improved feeding practice and growing more bee forage. Particularly, promoting ant protection methods using cone shaped metal sheet, cone shaped used inner tube of rubber and used engine oil is urgently required to overcome the existing ant problems in the study area. Integrating with water harvesting: Drought is one of the major problems in beekeeping development of the area. To overcome the problem, it is crucial to integrate beekeeping activities with water harvesting to secure their livelihood. The research organizations should select moisture stress tolerant perennial bee forage suitable to the area and promote them widely in collaboration with beekeeping extension, NGOs, and the private sector. Similarly, the existing indigenous bee forages such as in 'gribiya' (Hypostus ariculata) and 'tebeb' (Basium clandiforbium) etc., which fl ower even in the summer season should be promoted and also grown in area enclosures.Modifying box-hives to reduce costs: Farmers were using only one super, while two are generally provided. Reducing the number to one will signifi cantly reduce the initial cost and make it more affordable and therefore attractive to the beekeeper farmers. The possibilities of substituting the metallic hive stand with one made from locally available materials can also be explored in order to reduce the cost. If this accelerates adoption, the quality and yield of honey will improve and there will be enough volume to supply the newly developing market through the private processing company.Promoting farmer-to-farmer knowledge sharing: Opportunities to visit other farmers' apiaries were found to signifi cantly infl uence adoption of improved box hive through developing a positive perception and trust in the technology. This is an effective extension method, but requiring additional resources. Extension strategies need to be rethought to design ways of incorporating such effective methods (including fi eld days) while effi ciently utilizing available resources. This requires development agents who are competent, knowledgeable and who understand the signifi cance of farmer-to-farmer exchange. In addition to the farmers, DAs also need in-service training on improved beekeeping practices to develop practical knowledge of the technology.Farmer groups to create learning environment: Cooperative offi ce of the district ARD and NGOs need to come together to strengthen the existing beekeepers cooperative as they can provide a good learning environment for similar areas. Organizing them to operate in enclosure areas has multiple advantages, i.e. apiary can be established in the area and they can also protect and conserve it by planting different bee forages.","tokenCount":"4594"} \ No newline at end of file diff --git a/data/part_3/8369931713.json b/data/part_3/8369931713.json new file mode 100644 index 0000000000000000000000000000000000000000..517a727f77011ae3cbca8ec8d8c35100d85bf49a --- /dev/null +++ b/data/part_3/8369931713.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c560396ffdd550d90a6f2cb4e283daf2","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/a90fe84e-64b3-4e22-88ad-174b10fdac47/retrieve","id":"597443928"},"keywords":[],"sieverID":"879510d3-6066-42cd-bf1e-b381c5e2bdb3","pagecount":"14","content":"There is a growing recognition among water resource managers that sustainable watershed management needs to not only account for the diverse ways humans benefit from the environment, but also incorporate the impact of human actions on the natural system. Coupled naturalhuman system modeling through explicit modeling of both natural and human behavior can help reveal the reciprocal interactions and co-evolution of the natural and human systems. This study develops a spatially scalable, generalized agent-based modeling (ABM) framework consisting of a process-based semi-distributed hydrologic model (SWAT) and a decentralized water system model to simulate the impacts of water resource management decisions that affect the food-water-energy-environment (FWEE) nexus at a watershed scale. Agents within a river basin are geographically delineated based on both political and watershed boundaries and represent key stakeholders of ecosystem services. Agents decide about the priority across three primary water uses: food production, hydropower generation and ecosystem health within their geographical domains. Agents interact with the environment (streamflow) through the SWAT model and interact with other agents through a parameter representing willingness to cooperate. The innovative twoway coupling between the water system model and SWAT enables this framework to fully explore the feedback of human decisions on the environmental dynamics and vice versa. To support non-technical stakeholder interactions, a web-based user interface has been developed that allows for role-play and participatory modeling. The generalized ABM framework is also tested in two key transboundary river basins, the Mekong River basin in Southeast Asia and the Niger River basin in West Africa, where water uses for ecosystem health compete with growing human demands on food and energy resources. We present modeling results for crop production, energy generation and violation of ecohydrological indicators at both the agent and basin-wide levels to shed light on holistic FWEE management policies in these two basins.Comprehensive watershed management is a challenging task that requires multidisciplinary knowledge. An emerging research area highlights the importance of using watershed management to sustain various ecosystem services for human society (Jewitt, 2002;Lundy and Wade, 2011). While the various services provided by a river are primarily viewed through the prism of human benefits, maintaining a healthy ecosystem can be mutually beneficial to both human society and ecological systems. A failure to maintain adequate levels of riverine ecosystem health may result in compromised human benefits for future generations (Baron et al., 2004). There is therefore a growing recognition among water resource managers that sustainable watershed management needs to not only account for the diverse ways humans benefit from the environment, but also incorporate the impact of human actions on the natural system (Vogel et al., 2015). This is perhaps most prominently advocated in the emerging science of socio-hydrology, which calls for an understanding of the two-way interactions and co-evolution of coupled human-water systems (Sivapalan et al., 2012). ThisPublished by Copernicus Publications on behalf of the European Geosciences Union.two-way coupling, then, needs to be integrated into computational tools used to aid watershed management.A coupled human natural systems modeling approach, where the stochastic interactions between agents are represented, also facilitates stakeholder involvement. It can be used as a communication tool to organize information between hydrologists, systems analysts, policy makers and other stakeholders to inform the model and provide meaning to its results. The process of involving stakeholders in the modeling process allows them to observe how their actions affect other agents and observe the system-wide trends that emerge based on low-level agent interactions (Lund and Palmer, 1997).Traditional watershed modeling does not effectively capture system heterogeneity, limiting its ability to effectively represent the two-way interaction between human and natural systems. Conventional models of water resource systems developed for assisting decision-making treat human benefits as a single objective using a centralized optimization approach, which ignores the heterogeneity among water users and uses (e.g., priority of different water uses along a river system based on socioeconomic differences) (Yang et al., 2009). The decision-maker is usually assumed to possess perfect information with respect to demand and supply of water and other resources in the watershed. If they are considered at all, most ecological functions are considered as constraints in the system, often for numerical convenience and frequently leading to oversimplification (Stone-Jovicich, 2015).In this paper, we develop a modeling framework that can effectively address both system heterogeneity and the linkage between human society and hydrology that influences water cycling in the watershed. We do so by differentiating key stakeholders of ecosystem services as active agents based on their characteristics such as location and water use preferences, and tightly couple the human system with a processbased watershed model that simulates the stock and flow of environmental variables needed by the stakeholders.In this two-way coupled natural-human systems modeling framework, the human system is modeled as a decentralized water systems model and is linked to a process-based, semidistributed hydrologic model. Empirical data obtained from surveys of water practitioners are used to develop behavior rules for water use, providing a realistic representation of human behaviors in water resource modeling. In addition to incorporating indirect interaction between the agents through the environment, i.e., surface water flows, a novel advancement offered in this framework is the ability of agents to directly interact by requesting assistance from other agents based on their level of cooperation. A web-based user interface for this coupled model has been developed which enables non-technical stakeholders to use this modeling platform online. The online portal allows for role-play and participatory modeling. We apply this modeling framework to two different transboundary basins where ecological needs are competing with growing human demands on the water resources: the Mekong River basin in Southeast Asia and the Niger River basin in West Africa.2 Previous studies of coupled natural-human system modelingCoupled natural-human system modeling through explicit modeling of both natural processes (e.g., rainfall-runoff for water supply) and human behavior (e.g., services that humans derive from natural systems, such as water resources) helps reveal the reciprocal interactions and coevolution of the natural and human systems. Modeling efforts coupling the natural and human systems have increased in recent years (Liu et al., 2007), evolving from an approach that focused mostly on understanding the natural processes and that treated human actions as fixed boundary conditions (Sivakumar et al., 2005). The human system coupled with the natural system can be simulation (descriptive) or optimization (prescriptive) based, depending on the modeling objective (Giuliani et al., 2016).A watershed is a self-organizing system characterized by distributed albeit interactive decision processes. If a coordination mechanism exists, it will guide the interactions among individual decision processes. The agent-based modeling (ABM) framework provides such a mechanism for integrating knowledge and understanding across diverse domains (Berglund, 2015;Yang et al., 2009). In an ABM, individual actors are represented as unique and autonomous \"agents\" with their own interests. Agents follow certain behavioral rules and interact with each other in a shared environment allowing for a natural representation of realworld, \"bottom-up\" watershed management processes. A (semi-)distributed hydrological model that can simulate the environment, and which provides ecosystem services, can then be linked with the agent-based model that represents decentralized decision-making processes. This linkage allows us to utilize the strength from both models and better represent a watershed as a coupled natural-human complex system.Distributed process-based hydrologic models are well suited for linkage with ABMs. Compared to statistical or data driven models, process-based models are more robust for extrapolation or in simulating conditions under changing management practices. Distributed and semi-distributed models have the capacity to reflect the spatial heterogeneity of hydrologic and water quality processes within a river basin. This capacity also facilitates the evaluation of spatially variable user demands for ecosystem services. Open-source hydrologic models, where it is possible for third-party users to incorporate region-specific knowledge into the models to improve performance or extend model capability, are especially suitable for coupling with decentralized water system models. The spatial structure of the hydrologic model and its consistency with the model structure of the ABM it is being coupled to are additional important considerations.SWAT (Soil and Water Assessment Tool) is one such hydrologic modeling platform with many of the features described above that has been used previously to explore effects of human intervention on basin water resources. It provides built-in functions to simulate reservoir operations, irrigation and a variety of best management practices (BMPs) for nutrient pollution control (Bracmort et al., 2006;Strauch et al., 2013). Its open-source nature allows users to incorporate locale-specific knowledge into the model to improve model performance or extend a model's capabilities. SWAT conducts simulations at the level of the sub-watershed, or hydrological response unit. When the modeling domain of an agent-based model is delineated following the boundaries of a sub-watershed, it has the advantage of spatial unit consistency with agent-based models. Furthermore, it has been coupled with (non-ABM) decision modeling tools to identify cost-effective solutions to basin water resource management challenges (Ciou et al., 2012;Karamouz et al., 2010). We therefore choose SWAT as the hydrologic model for this study.A fully coupled modeling framework involves continuous information exchange between the agent-based and hydrologic models such that the two models are solved simultaneously or iteratively in each time step. Relevant existing studies that link agent-based models with other simulation models are summarized in Table S1 in the Supplement. A review of the existing literature shows that most coupled natural-human systems models, especially in the context of surface-water management, are only loosely linked and thus do not fully capture the impact of human actions on hydrology (Berger et al., 2007;Giacomoni et al., 2013;Ng et al., 2011;Yang et al., 2012). \"Fully coupled\" models can be found for groundwater analysis (e.g., Reeves and Zellner, 2010). This is because the common outputs from groundwater models are \"stock variables\" such as groundwater head, and it is relatively easy to restart the simulation model from the previous step. Surface hydrologic models, on the other hand, usually output flux (i.e., streamflow) and not stock variables (e.g., lake storage and soil moisture). To be \"fully coupled\" with an agent-based model, a modification of the programming code of the watershed model is usually necessary to output state variables and allow the agent-based model to interact with the watershed model at monthly or daily time steps (Mishra, 2013).The methodology proposed here is designed primarily to help improve stakeholder understanding of a complex system as well as recognition of various, alternative development pathways for the basin in question. A linkage between an agent-based model and a process-based watershed model, incorporating direct interactions between agents, is a promising method to accurately represent complex coupled natural-human systems as well as to appropriately involve non-technical stakeholders in the assessment.The generalized framework for the two-way coupling between an agent-based model and a process-based watershed model is described here in greater detail. In this framework, the river basin is divided into politically and hydrologically similar sub-regions, where water management is primarily carried out under the ambit of a single administrative unit, which represents an autonomous agent. This approach to delineating regions is also found in other studies, e.g., the Food Production Unit in the International Model for Policy Analysis of Agricultural Commodities and Trade (Robinson et al., 2015).In this framework, agents follow prescribed rules, based on which their benefits are calculated. Agents make water management decisions, on an annual time step, for agricultural production, hydropower generation and ecological management based on targets set using long-term historical data. They update their actions every year based on their experience from previous years; this behavior can be classified as a hybrid between reactive and deliberative approaches (Akhbari and Grigg, 2013). In this modeling framework, agents can interact both directly and indirectly. Agents interact indirectly through their water usage for agriculture, and changes in streamflow in response to hydropower production. For direct communication between agents, we include a level of cooperation (LOC) parameter that signifies the willingness of an agent to alter their own water management actions to benefit a downstream agent. This setting allows for the incorporation of stochasticity into the agent decision-making process.Figure 1 shows the higher-level coupled modeling framework. First, user-defined preferences and level of cooperation are defined based on stakeholder input. These input parameters can either be defined by individual users according to specific scenarios of interest, or be determined by directly eliciting the information from the various water-using stakeholders, for example, through surveys. As part of this project, we conducted comprehensive surveys across three transboundary river basins (Indus, Mekong and Niger) to identify water use preferences (Khan et al., 2017). A sample survey questionnaire is provided in the Supplement. The surveys were developed to elicit the perceived importance of various ecosystem services across each basin under a variety of economic and hydrologic future conditions. One of the questions in the survey asked respondents to rank different ecosystem services in order of importance for each agent. These responses were then averaged across all the respondents for each agent to obtain a ranking of the importance of the different ecosystem services. These rankings were used in the decision algorithm for the case study models developed and presented in Sect. 4. Second, other initial input parameters are incorporated into the ABM framework. These include reservoir characteristics, such as storage, release capacity, efficiency and operational rules for each reser- voir. The geographic linkages between subbasins, ecosystem hotspots and agents across the entire river basin are defined in the ABM as well. For each subbasin, agricultural parameters are defined, including the type of land cover, total cropped area and type of crop produced. For each agent, targets are defined for each of the three water uses based on historical flow conditions. These targets form the basis relative to which the agents make their water management decisions.The ABM, built using the R statistical language, reports agent decisions concerning reservoir operation and irrigated area that are then used as input for the calibrated SWAT model that simulates the hydrology for the next time step. The crop production and reservoir modules in the SWAT model are driven using water management decisions from the ABM and hydroclimatologic conditions. Upon completion, the SWAT model generates three primary output files that are used as input for the agent-based model. These files include the following.-Proportion of cropped area and crop yield for each hydrologic-response unit (HRU) in each subbasin in each agent.-Daily storage volume and releases from each reservoir.-Daily streamflow at the outlet of each of the subbasins across the basin.The output from the SWAT model is then fed back into the ABM, based on which the agents make water management decisions for the next time step. In the last time step of the modeling run, the ABM provides a summary file summarizing the performances for each of the three water uses: agriculture, hydropower and ecology.Figure 2 shows the algorithm through which the ABM and the hydrologic model interact, and the process through which various agents make their water management decisions, in two distinct parts. In the first part, the agent's water management decision is made based on its preferences of water use, while in the second part the decisions are made based on its willingness to cooperate. In the first part, the algorithm uses the water use preferences for each agent, and compares the target value with the output from the SWAT model for each of the water uses to make the water management decision for each agent. Under the current setting, the agent is allowed to only make one water management decision every year. However, this can be modified in future studies to allow multiple decisions to be made in a year. Additional information from stakeholders (such as rules of tiebreak) would be needed for this.For instance, consider an agent that ranks agricultural production higher than other water uses. In this case, the ABM checks to see whether crop production meets the target crop production. If crop production is significantly lower than the target crop production, then the agent decides to increase the irrigated area. If crop production meets the target production, then the ABM checks to see whether hydropower generation for the current time step meets the hydropower generation target. If the hydropower generation target is not met, the agent decides to decrease the number of days actual storage needs to meet the target storage. This allows for greater releases and increased hydropower generation. If the hydropower generation target has also been satisfied, then the ABM moves to the second part of the decision-making algorithm.An important input to the ABM is the identification of ecosystem hotspots. Ecosystem hotspots are specific regions in the river basin that are especially critical to or indicative of the health of the ecosystem in the entire basin. Ecosystem hotspots can be identified in a variety of ways including through a literature review of critical ecological concerns in a basin and/or input from local ecological experts. For this analysis, for each ecosystem hotspot, relevant Indicators of Hydrologic Alteration (IHA) and Environmental Flow Component (EFC) parameters are selected based on expert opinion to measure ecosystem health (Richter et al., 1997(Richter et al., , 1996)). Baseline values for relevant IHA and EFC parameters, which are streamflow-based indicators, are calculated from daily streamflow of the calibrated SWAT model. The IHA and EFC parameters included for the case study applications described H. F. Khan et al.: A coupled modeling framework for sustainable watershed management in Sect. 4 include monthly median flows, 7-day annual maximum flow, small and large flood event duration, timing and duration of extreme low flows, etc. We use ±10 % from the baseline value as a decision threshold in the ABM as recommended by research consortium partner WorldFish and Wetlands International. This means the modeled IHA and EFC values deviating from the baseline value by more than 10 % would require an agent to take action.Water management to satisfy ecological targets depends on the specific hydro-ecology of the ecosystem hotspot. For example, a river reach may need low flows during the breeding season, while a downstream wetland may need higher flows to avoid eutrophic conditions. Satisfying multiple ecologic needs, as is often the case in large river basins, can require contrasting interventions and add tremendous complexity to the water management decision-making process. In the case study applications for this modeling framework (detailed in Sect. 4), we find that the information needed to fully incorporate ecosystem hotspot management into the ABM-SWAT framework is limited. The link between management actions (e.g., reservoir operations, crop land management) and ecological concerns is not well understood and requires further investigation that is beyond the scope of this work.In the absence of detailed information on ecological needs, we incorporate ecosystem hotspot management into the model by creating a \"flag\" when the timing and magnitude of the relevant IHA and EFC deviate from the target values in each hotspot. Thus, while the agents do not actively consider ecosystem hotspots in their decisions, they recognize when violations (deviations from target values) occur. We use these violations to constrain the agent's decision, so that if any of the ecologic targets have been violated and ecologic needs are ranked highest, no action can be undertaken for agricultural production or hydropower generation. This current setting mimics most real-world policies about ecosystem conservation that do not have an active reaction to environmental issues, especially in developing countries. Of course, this algorithm is flexible and allows for a more proactive decision-making process for ecologic management if more information regarding stakeholder perceptions is available.In the second part of the decision-making algorithm, agents decide whether to alter their water management actions based on requests from downstream agents. This feature aims to represent the possibility of cooperative water management in a transboundary river basin. For instance, in March 2016, China released additional water from its Jinghong reservoir, in response to a request from Vietnam, to help alleviate water shortages in downstream countries in the Mekong River basin (Tiezzi, 2016). In the current framework, a downstream agent can request an upstream agent to change its reservoir operations to alleviate prolonged water scarcity (at least two time steps). For instance, if a downstream agent has been unable to meet its agricultural production target for 2 years, then it can request an upstream agent to increase releases. Wherever available, one upstream reservoir is identified for each agent.Once a request is made by a downstream agent, the upstream agent first checks to see whether it has surplus storage, after accounting for its own needs, to consider releasing additional water. If the available storage is not sufficiently higher than the target storage, then the upstream agent declines the request and does not change its reservoir operations. If the upstream reservoir has sufficient storage, then it decides on whether to respond favorably to the downstream request based on its willingness to cooperate. In this modeling framework, the LOC represents the probability (from 0 to 1) of the agent responding favorably to a downstream request and incorporates human decision-making uncertainty, making the second part of the decision-making algorithm stochastic to mimic human decision uncertainty. In any given time step, an upstream reservoir can only respond to one request. Once the second part of the algorithm is executed, the water management decisions are made and relevant information is then fed back to the SWAT model as input for the next time step.This modeling framework is generalizable, tackling the challenge of paucity of transparency and reusability often associated with ABM development (O'Sullivan et al., 2016). The framework design means that the ABM can be adapted to different watersheds by simply preparing a different set of input files without having to modify the structure of the model. An Overview, Design, and Details (ODD) document (Grimm et al., 2010) for the ABM is provided in the Supplement.In this section, we show the application of this generalized coupled modeling framework to two transboundary river basins: the Mekong and Niger River basins. We describe the development of the ABM and hydrology model for each of the basins, and then show model outputs illustrating the impacts of agent behavior on agent-specific and basin-wide outcomes. We use the Mekong River basin as an example to show how agents' preferences impact different water uses, while the Niger River basin is used as a case study to demonstrate how interactions between different agents and their willingness to cooperate influence basin-wide outcomes.We apply the generalized ABM framework described in Sect.3 to the Mekong River basin. The Mekong River, with an annual average discharge of 450 km 3 , drains the sixth largest river basin in the world in terms of runoff (Kite, 2001). It is a transboundary river originating in China and flows through or borders Myanmar, Thailand, Laos and Cambodia before finally draining in the Mekong delta in Vietnam. Flow in the upper Mekong in China is mainly comprised of snowmelt, while precipitation from the two monsoon systems provides the bulk of the flow in the lower Mekong (Ringler, 2001). Around 70 million people depend upon the Mekong River for food, water and economic sustenance, and the basin is home to several diverse and productive ecosystems. The Tonle Sap lake, among the most productive ecosystems in the world (Bakker, 1999), is an example of the unique ecology and biodiversity in the basin. Agriculture accounts for about 80-90 % of total freshwater consumption in the Mekong (MRC, 2002), with rice being the most widely grown crop. The Mekong delta is another hotspot of economic activity and produces approximately half of Vietnam's annual rice harvest and over half of Vietnam's fish exports (Kite, 2001). The Mekong is currently in a phase of rapid infrastructure development (storage and hydropower), raising concerns regarding the downstream ecological impact (Urban et al., 2013).The Mekong was spatially delineated into 12 distinct hydrologically similar agents who make water management decisions to satisfy their own targets. Figure 3 shows the distribution of the agents across the basin and the locations of major existing and planned water infrastructure facilities, and important ecological hotspots identified by local ecological experts. In total, there are 19 major dams (7 existing and 12 planned) and 23 ecological hotspots identified by local ecological experts using the existing literature (Baran et al., 2012). To allow for a more intuitive interpretation of results, here we only model crop production for irrigated rice, but the modeling framework allows for incorporation of any number of crop types. The modeling structure allows for simulations under either existing water infrastructure or future conditions that also include dams under construction. For demonstration purposes, we present results under future water infrastructure.A SWAT hydrology model was developed, calibrated and validated with streamflow data from 1978 to 2007. Details on model setup and calibration and validation results for the hydrology model are provided in the Supplement. In addition, Fig. S4 in the Supplement shows simulated average hydropower generation under historic streamflow conditions and compares it with the observed hydropower generation for five existing reservoirs during the period of comparison as validation for the ABM. Figure 4 shows an example of how total crop production (of irrigated rice) changes over the simulation period with a different assigned priority (lowest vs. highest) for agriculture for the agent representing southern Laos. Both these simulated crop production time series are run with the same hydrologic time series, so the differences between the levels of crop production are caused by different water management actions. Over the simulation period of 25 years, there is a significant cumulative difference in agricultural production largely because of the compounding effect of increasing irrigated area whenever the crop production target is not met. When agriculture is assigned a lower priority, the agent prioritizes either hydropower generation or ecosystem health and is less likely to make decisions to increase agricultural production.Different ecosystem services respond differently to changes in external drivers, depending on the nature of water use. Figure 5 shows a comparison of the effect of different priorities on hydropower generation for the Nam Theun 2 dam in the agent representing central Laos. As in the previous example, both the simulated time series are run with similar hydrology to isolate the difference in hydropower generation due only to different agent behavior. For this model, if simulated hydropower generation is less than 90 % of historic (for existing dams) or expected (for future dams) mean annual energy, the agent can decide to change its operation rules for the dam to increase hydropower generation. In this model specifically, agents do so by increasing the minimum monthly releases from their reservoirs.The fluctuations in HP generation from year to year are caused by changes in hydrology, while the differences between the blue and red lines represent the agent preference regarding the relative importance of hydropower. We observe that the annual fluctuations in hydropower generation (due to hydrology) are significantly greater than the slight changes in generation stemming from modified reservoir operations. Time steps with high streamflow conditions lead to very similar outcomes regardless of preference. The difference is more prominent in low-flow conditions, where a higher prioritization of hydropower leads to an increased \"minimum\" level of hydropower. Despite the fact that the difference between hydropower generation due to a change in prioritization is not as significant as that for the agricultural production, annual differences in hydropower generation can be as high as 8 % (210 GWh). In the context of energy shortages in the Mekong, this difference is non-trivial. Another interesting feature to note in Fig. 5 is that when the agent decides to increase releases in a time step for larger hydropower generation, generation in the next time step is reduced because of reduced storage. The emergence of this myopic behavior pattern also gives us confidence in the model as it replicates how hydropower generation decisions are made in the real world.Finally, we also investigate the impact of changing priorities on ecologic performance. For each of the 23 hotspots, relevant indicators of ecologic health using the IHA and EFC framework are identified. As explained in Sect. 3, agents can protect ecological health by choosing to limit water management actions for other water uses (agriculture and hydropower). Simulation results for this model showed that different agent preferences do not have a significant impact on ecological violations. The amount of water available (hydrology) has a much more pronounced impact. A reason for the lack of a negative impact of changes in reservoir operations on ecological performance is that reservoir capacities are low relative to streamflow. It is important to note here that the eco-hydrological indicators we used in the current modeling framework do not account for fish migration patterns and sediment transport, which are among the biggest concerns about hydropower in the Mekong. Future studies can link the current framework with more complex ecological models to address these concerns.To illustrate the system-wide impacts of varying levels of agent cooperation, we apply this generalized ABM framework to the Niger River basin. The Niger River drains an area of over 2 million km 2 spanning nine riparian countries in West Africa, making it the ninth largest river basin globally in terms of area. The Niger River is spread across a wide range of ecosystem zones, and the basin is thus notable for its high spatial and temporal hydrologic variability on interannual and decadal scales (Ghile et al., 2014). Based on GDP, all nine countries of the Niger basin fall in the bottom quartile of national incomes (Ogilvie et al., 2010). Agriculture constitutes a large part of the economic output for the region (approximately 33 %), with livestock and fisheries also contributing substantially in some areas (Welcomme, 1986). Owing to the lack of a well-developed irrigation system, most of the agriculture in the Niger is rainfed, with only 20 % of available arable land under cultivation. Investment in water resource infrastructure and institutions offers a potential pathway to economic development for the basin population and several large dams are slated for construction under the existing Niger Basin Authority investment plan. However, the downstream impacts of upstream infrastructure have become a contentious issue.For the Niger basin, 15 agents were identified based on hydrologic characteristics and administrative boundaries. A map of the system showing the agent and subbasin boundaries, and existing and planned water infrastructure, is provided in Fig. 6. Nineteen ecologic hotspots identified by local ecological experts using the Niger Basin Atlas (Aboubacar, 2007) and 10 dams (6 existing + 4 planned) are included in the model. For the agricultural module, we simulate irrigated We run this model under two different settings and then compare the results to evaluate the basin-wide impacts of cooperation between agents. In the first setting, agents make water management decision solely to satisfy their own objectives without interacting directly with other agents. In the second setting, agents' decisions are driven by both their own objectives, and their willingness to cooperate with other agents. Willingness to cooperate, represented in the model with the level of cooperation parameter (LOC), can be set on a scale of 0 to 1 and signifies the probability of an agent responding favorably to a request from another agent to alter its water management decisions. In this model, agents with reservoirs respond to a downstream request by increasing the minimum flow if storage in the reservoir is above the target storage. For the purposes of demonstration, we set the LOC for agents to 1 to simulate a fully cooperative environment. Both model runs are made with the same set of agent preferences. To illustrate impacts of future infrastructure development, we run both the simulations under the future state of water infrastructure.Over the course of the 26-year simulation period, we observe 73 instances of agents requesting help successfully, with many of these requests made during low-flow years. We see that additional releases from an upstream agent willing to cooperate can often, but not always, result in an appreciable increase in crop production compared to when the agents are solely interested in satisfying their own objectives. For example, in year 20 of the simulation, the Outlet Delta agent successfully requests the upstream Jebba reservoir for additional water releases, and experiences an increase in food production of almost 50 000 tons without any decrease in production in the upstream agent.Figures 7 and 8 illustrate the changes in reservoir operation and its impact on streamflow downstream when an upstream agent decides to cooperate. For Jebba reservoir, Fig. 7 shows the difference in reservoir releases between the \"cooperation\" and \"no cooperation\" runs, the blue region representing the additional volume that is released based on the decision of the agent to cooperate. Figure 8 shows the available streamflow downstream of the dam under both the simulation scenarios: the red line indicates releases when the agent alters its reservoir operations in response to the request while the blue line shows releases in the model where the agents do not cooperate. It is interesting, but not surprising to note, that additional water released leads to reduced releases in subsequent time steps due to reduced storage.This change in the timing of water availability has the potential to both negatively and positively affect all downstream users, including those that were not part of the negotiation that led to the altered water management action (i.e., \"thirdparty impacts\"). The occurrence of third-party impacts is dependent on the context; they do not necessarily occur every time, and if they do occur, they can be either positive or negative. In these modeling runs, we observe many instances of varying third-party impacts. For example, in response to consecutive years of reduced agricultural production, the Niger Inner Delta (South) Agent requests the upstream Fomi Dam for additional releases in year 13 of the simulation. The agent managing Fomi Dam, Siguiri-Kankan, agrees to the request and increases its minimum releases. Not only does crop production in Niger Inner Delta (South) increase as a result, but crop production in Niger Inner Delta (North) is also positively impacted. However, the Office Du Niger Agent suffers from a decrease in food production.It is pertinent to note here that additional releases do not necessarily increase crop production; it is possible that there are constraints other than water availability that are limiting crop production. In the same year of the simulation as the previous example, the agent representing Mid-stream Niger requests additional releases from Touassa Dam and experiences an increase in crop production. Crop production in the mid-stream does not change appreciably as a result; however, production in another downstream agent, Mid-Stream Nigeria, is increased. In the current model, agents make requests when they are unable to meet crop production targets. However, the modeling framework allows for making requests dependent on other factors (e.g., ecological needs).These third-party impacts, also referred to as externalities in the natural resource economics literature, are also seen in ecologic performance. The nature and magnitude of thirdparty impacts on ecologic performance are dependent on the specific ecosystem. Arguably, ecologic health is even more sensitive than agricultural production to changes in the timing and magnitude of streamflow. In these simulations, we see evidence of this impact. In year 9, in response to a request from Mid-Stream Nigeria, Kandaji reservoir releases additional water that (compared to the no cooperation setting) positively affects the ecosystem hotspots in Mid-Stream Niger and Mid-Stream Nigeria, but results in increased violations of ecological targets in the downstream Outlet Delta. In particular, the ecological parameter seen to be violated is the IHA parameter for minimum average 7-day flow. Despite the increase in total annual flow due to the additional releases, the change in the flow timing leads to an ecologically inferior outcome for the Outlet Delta. This finding supports the argument that evaluations of ecological health performed at coarse timescales (e.g., annual) may overlook finer timescale flow parameters that are critical to ecosystems (Palmer et al., 2005). In the absence of detailed data relating flow conditions to aquatic health in the Niger Outlet Delta, it is difficult to ascertain the exact impact that the violation of this target would have on the delta's ecosystem.The generalized coupled modeling framework presented in this paper adopts many of the principles from the Shared Vision Modeling (SVM) approach (Palmer et al., 2013). To improve allocation of scarce resources across competing uses, it is crucial to understand the values placed on various water uses by stakeholders in the watershed. For the case study applications, model development was preceded and followed by extensive stakeholder engagements. Before the model development began, an electronic survey of water users in each of the river basins was conducted to analyze perceptions of the relative importance of different water uses. Rules derived from these surveys improve representation of the interactions between heterogeneous subsystems. Moreover, to make this modeling framework more accessible to users, a web-based interface has been developed where users can perform model simulations with differently specified agent behavior rules.The online interface allows users to visualize and save results from several modeling runs. Information from the modeling runs made on the online platform can be used to further develop agent behavior rules and have stakeholders evaluate the results to gain insight into emerging development pathways in the basin. In addition to the utility provided by the visualization of the outcomes, the exercise of tailoring the modeling framework to a specific basin requires stakeholders to conceptualize the water system better. A beta version of the website with the model for the Mekong River basin has been developed and tested with stakeholders in the Mekong.Third-party impacts, which are costs or benefits borne by a party due to the actions of others, have been recognized as an obstacle to promoting cooperative water management practices a water system with many heterogeneous users (Petersen-Perlman et al., 2017). While the existence and importance of third-party impacts are widely acknowledged, they are not easily quantified, making them difficult to incorporate into stakeholder discussions on water management in transboundary settings. The case study results for the Niger River basin presented here quantify these third-party impacts on agricultural production, hydropower generation and ecological performance. Quantification of the impacts, both positive and negative, of the actions of water users can help develop a shared understanding of the water system dynamics among stakeholders (Skurray et al., 2012). By offering a way to fully couple human and natural systems with several ecosystem services, with flexibility to incorporate varying levels of importance for heterogeneous users, the modeling framework presented here can be useful as a tool to stimulate cooperative water management in transboundary settings.The case study models developed use observed climate data to develop hydrologic time series for model simulations. Observed streamflow data are used for model simulations under the future infrastructure setting as well. However, significant uncertainty exists regarding future hydroclimatology and its impact on water resources in these basins (Lauri et al., 2012). A climate stress-test approach where the agent's response to varying hydroclimatological conditions is evaluated can provide insight into sensitivity to climate variables (Brown et al., 2012).Another useful extension of this modeling framework would be to incorporate seasonal forecasts of water availability into the decision-making process of agents. Water managers often perceive the advantages offered by seasonal forecasts as being low (Pagano et al., 2002), even though the economy-wide benefits of seasonal forecasts can be substantial (Rodrigues et al., 2016). This modeling framework can be used to highlight the potential benefits of shortterm seasonal forecasts for agents' decisions on water allocation and willingness to cooperate with other agents, and introduce another dimension of stochasticity to the agent decision-making process. The seasonal forecasts used, however, would need to be geographically suitable and temporally appropriate for each agent's operations.The development of coupled river basin models needs to carefully address several tradeoffs to ensure that the models are scientifically sound and computationally tractable. The focus of this work is to develop a generalized ABM framework that addresses model transparency and model/module reusability (An, 2012;Parker et al., 2003). To address this, the geographic delineations of our agents are relatively larger than traditional agent-based models (which define individual water users as agents). This is a necessary simplification in order to balance model complexity (or the level of detail of simulated decision processes) and computational resource and data availability. Furthermore, it is pertinent to recognize that agent-based models are best used to explain existing relationships or phenomena, rather than as prediction tools. Another related limitation associated with large-scale agentbased models is reliance on informal validation. For the case studies presented here, we validate the ABM with internal checks, for instance by comparing modeled and observed hydropower generated (Fig. S4). We also address this limitation through the use of surveys to inform agent behavior rules.To further improve the agent decision module, Bayesian decision theory would be a useful avenue of future research to better address uncertainty of human decisions (Kocabas and Dragicevic, 2013;Van Oijen et al., 2011). However, this approach is computationally costly, especially in our setting with a variety of different agents, water use preferences and willingness to cooperate. High performance computing technology might become necessary for this purpose.The coupled modeling framework described in this paper operates on an annual time step. This means that exchange of information between the ABM and SWAT takes place at the start of every year. The framework can be made more realistic by configuring the models to interact at the finer timescale at which water management decisions are made, i.e., monthly or weekly. While the modeling framework is sufficiently flexible to allow for a range of water management actions, in the modeling framework described here, we model ecological health management in a passive rather than active manner. Active ecologic health management, where the agents make specific decisions (especially with regards to reservoir operations), requires a more in-depth understanding of the basin ecology than was available for either of the two transboundary rivers used as case studies for this paper.Sustainable watershed management requires water managers and policy makers to have a clear understanding of their water system and its interactions with the natural environment. This study develops a spatially scalable, generalized agentbased modeling (ABM) framework consisting of a process-based semi-distributed hydrologic model, SWAT and a decentralized water system model to simulate the impacts of water resource management decisions on the food-waterenergy-environment nexus (FWEE) at the watershed scale. The two-way coupling provides a holistic understanding of the FWEE nexus. A novel advancement offered in this framework is the ability of agents to directly interact by requesting assistance from other agents based on their level of cooperation (LOC). Quantification of the LOC is especially useful for transboundary river basins with unique actors with different water management objectives. Among various other future uses, this modeling system has been developed for the CGIAR Research Program on Water, Land and Ecosystems to assess tradeoffs between agricultural production, productivity, other water-based ecosystem services and ecosystem health. To support non-technical stakeholder interactions in developing country settings, where CGIAR operates, a web-based user interface has been developed. This online portal allows for end-user role-play, participatory modeling and inference of prioritized ecosystem services and ecosystem health.We show the flexibility of this modeling framework by applying it to two large transboundary rivers as case studies and demonstrate its ability to reveal the impact of water use preferences and willingness to cooperate on region-specific and basin-wide outcomes. In the case studies, we see that agent preferences have a more pronounced effect on crop production compared to hydropower generation. Changing preferences has a relatively smaller impact on ecological health, but that is heavily dependent on the river basin, ecological health indicators and water management actions. The impact of agent cooperation revealed the presence of both positive and negative third-party impacts that need to be acknowledged and accounted for when considering cooperative river management in transboundary settings, especially at finer timescales.","tokenCount":"7249"} \ No newline at end of file diff --git a/data/part_3/8370545467.json b/data/part_3/8370545467.json new file mode 100644 index 0000000000000000000000000000000000000000..f9b1c17050262749f70659b51d9b445ef50415a2 --- /dev/null +++ b/data/part_3/8370545467.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"8b75a6d15a01b4ce086d1120b35c9d8a","source":"gardian_index","url":"https://publications.iwmi.org/pdf/H018373.pdf","id":"372273232"},"keywords":[],"sieverID":"4d3d709c-31fe-437a-9cea-7454f57bee04","pagecount":"16","content":"The fact that the problem of designing incentive-compatible institutions-institutions capable of achieving compatibilify between individual, organizational, and social objectives-has not been solved at even the most abstract theoretical level means that institutional design proceeds on an ad hoc trial-and-error basis-and that the errors continue to be expensive. (Ruftan 1993THE PURPOSE OF this paper is to provide a framework for the work of this workshop. In order to do this, the paper addresses four questions. These questions are: What do we mean by the terms \"institution\" and \"organization\"? Why are institutions and organizations important?What are some of the key issues and problem areas, given the range of variation in institutional arrangements for management of irrigated agriculture?What will be the ingredients for a successful institutional framework for irrigation in the future and how can policymakers facilitate the necessary institutional changes'?The hope is that the discussion of these four questions will provide a useful guide as we are introduced to the experiences from other countries, as we try to grapple with what we think future institutional arrangements will--or should-look like, and discuss what the possibilities are for reform and improvement in the future. The paper is necessarily conceptual; other papers will introduce specific cases and examples as the workshop proceeds. It is also selective: the topic is vast, so I have deliberately chosen issues I believe are particularly imponant.This workshop is particularly timely. Many of you would have heard that the Nobel Prize for Economics for this year was recently announced. For the first time the prize did not go to classical economic theorists or econometricians, but to two economic historians, Roben Fogel and Douglas North.Classical economic theory has a tendency to depend on \"pure\" market analysis; that is, to assume for the purpose of analysis that something like a free market operates, in which individuals act according to rational calculations of material self-interest based on near-perfect knowledge. Of course economists know that none of this is true in reality, but it is a convenient fiction for d. analytical purposes. Things like \"institutions,\" culture, politics, etc., are \"noise\" that interferes with otherwise elegant analyses.Fogel and particularly North legitimized for economists the study of historical processes and the role of social institutions in economic growth, thus building an important bridge between economics and other social sciences such as sociology, political science. and anthropology. From economists' perspective, of course, we sociologists and anthropologists are students of that \"noise\" that upsets thcir calculations, and is inherently chaotic and not amenable to scientific analysis.\"Institutional economics\" is to a considerable degree the creation of these two economists, along with others. Their central insight is that people's responses to economic incentives are to a very large degree a function of the institutional framework within which they live. How people respond tu econumic incentives, and their consequences for a society are largely a function of institutions such as property rights, laws of contract, functioning regulatory organizations and the like. An appropriate, effective institutional framework is a necessary condition for long-term sustainable economic growth and therefore for a sustainable productive irrigated agriculture sector.The terms \"institution\" and \"organization\" are often used loosely and interchangeably. Indeed they are overlapping terms, but it is helpful to distinguish between them, as many social scientists do. \"Organizations\" are siruciures of recognized and accepted roles\" (Uphoff 1986). Thus, a simple voluntary society with a president, secretary, and members is an \"organization.\" It has roles-president, secretary, and member-who have specific functions, and specific relationships among them. Examples of \"organizations\" include: an irrigation department; a water users association; a cooperative; a voluntary organization (NGO): the German Foundation for International Development and IIMI.The term \"institution\" has a different definitlon: institutions are complexes of norms and behaviors that persist uver time because they are valued as well as useful. Note the key characteristics-they are patterns of norms and behaviors which persist because they are valued and useful. There are thus institutions which are not organizations: the laws of a country are institutions in themselves which exist separately from the particular courts which enforce them. Unwritten customary rules for sharing water in an indigenous irrigation system may be an institution if it is valued and persists over time in a community-regardless of whether national law recognizes its legitimacy. The market-as a system to set prices through buying and selling goods-is an institution that exists separately from the particular shop or bazaar within which transactions take place. Marriage is an institution, as is kinship; they are valued principles and norms on the basis of which organizations-families, lineages-are formed.Organizations may be \"institutions\" or they may not. An organization that includes a set o f norms and behaviors that persists because it is valued and useful is an institution. Examples include the family, an irrigation department, a water users organization that persists over time regardless of whether it is legally recognized (though legal recognition may make it more robust-more of an institution), a private firm, DSE, or IIMI.This means that some organizations are not necessarily \"institutions.\" An ad hoc group that forms itself to achieve a single short-term objective, then dissolves after some time is an organization that is not an institution. When IIMI was established in 1984 it was an organization-a structure of roles-but it was yet not an institution, as it had not persisted and developed to the point where it was perceived as valuable and useful. A wzter users organization formed by government officials as part of an irrigation project may be an organization which functions for the construction period; if it persists over time, and continues to fill a need that is valued and useful to its members, it becomes an institution. This is what is meant by the term \"institutionalization\": a process by which behaviors and roles become valued and therefore worth something, so that they continue as a part of peoples' lives.Both organizations and institutions are ubiquitous in human society. Humans are a social species, and therefore all societies have organizations-structured roles-and institutions-valued roles, norms and behaviors that persist. Institutions are so much a part of our lives, that we take them for granted; to a considerable extent we internalize them so that our perceptions, our concepts of right and wrong, good and bad, rational and irrational, the categories in which we think, the basic unconscious, unspoken premises in terms of which we look at and interpret the world-all these are products of our living within particular institutional landscapes. All of us have a complex set of social identities: nationality, parent, child of our parents, kinship group, language or ethnic group, discipline, policymaker, researcher or manager. These identities are all the outcome of the particular institutional framework within which we live and work. So the first part of the answer to the question on why institutions are important is that our personal identities and our mindsetshow we categorize, perceive, think, feel-are largely the result of the particular institutional and organizational context in which we live and work.Another important function of institutions is that they provide a basis for predicting others' behavior. They provide the rules of the game, specify what we can do and cannot do, and what the consequences will be if we do not stay within the limits. Institutions like rules defining basic property rights and contracts make it possible for us to engage in transactions, for example purchasing a piece of land or a house or engaging in business. The institutional arrangements regarding property rights and contracts in the countries of the former Soviet Union obviously had a tremendous impact on what people could do or could not do and are now constraining their capacity to respond to new opportunities; developing new institutions is a complex and time-consuming but necessary process.The fact that rights to water can be privately held in some countries, leading to water markets and sales between farmers and urban water authorities, while in other countries they are inseparable from rights to land or are owned solely by the governments, is an institutional difference with very profound consequences for management of water. Thus we see that institutions are constraints-they establish limitations and boundaries-and they provide the basis for opportunities for change, innovation or \"doing business.\"Finally, Organizations enable individuals to cooperate with each other, to coordinate their activities, and to mobilize resources that individuals by themselves could not obtain. It is through organizations that people get things done, and that societies grow and develop. Those organizations that we important to the longer-term welfare and functioning of society~-or important to significant subsets of people-are institutionalized, for example, schools, police, business firms, regulatory agencies, irrigation departments, and the like. Without complex organizations and institutions modern societies by definition would not exist.Informal organizations form and either become institutionalized or disappear in time. Further, informal social relations coexist with formal organizations and institutions. They are functionally necessary, but as the paper on South Asian institutions emphasizes (Bandaragoda 1993), when there is a gap between informal rules and behaviors and the formal institutions, serious problems can arise. In small-scale societies. cooperation and resource mobilization are no less important than in large modern nations; only the scale is different. Those societies whose institutional framework encourages and facilitates a proliferation of organizations tend to be more dynamic and innovative than those that stifle such initiative.When we read the papers about institutions in other parts of the world later in this volume, we get a glimpse of the wide range of variation in the forms and effectiveness of institutions and organizations governing irrigated agriculture. In some countries, there are also very rapid changes occurring, as governments respond to financial and other pressures by privatizing, restructuring, and the like. There is at present no research basis for definitive statements on what kinds of institutional arrangements work best, and no easy answers to the questions facing countries' irrigated agriculture or water resources sectors.This section provides one possible framework for analyzing the range of variation, and identifies particular issues that need attention. The discussion is organized under four main headings:Legal framework Governance Organizations Finance Clearly, these are overlapping categories, and it will not be possible to discuss each one in isolation from the others. Nevertheless, it may provide a convenient way of organizing the discussions as we look at other regions' experiences, and analyze the experiences of the countries represented in this workshop.We should be clear that the domain we are discussing is itself very complex and wide-ranging, and not independent of other domains. The workshop is about institutional frameworks for \"irrigation,\" the application of water to land to grow crops. On the one hand, irrigated agriculture is a sub-domain of the agriculture sector. On the other hand, irrigation is a sub-domain of the water resources sector. Countries vary considerably in how they organize these domains: some countries manage irrigation within the context of agriculture, through a ministry of agriculture for example. Some countries separate irrigation from both agriculture and the management of water resources for other purposes, through a ministry of irrigation for example. Some combine irrigation and land, separating it from water; some create \"authorities\" separate from line departments to do \"integrated development and management of irrigated agriculture. Managing water resources for all purposes in an integrated way may he less common in the world, but as competition for water resources increases, this may become more common.This paper focuses more on the institutional framework for irrigation management, while paying less attention to the institutions which support agriculture per se.A major impediment to the economic transformation of the countries that were part of the former Soviet Union is that the existing legal framework does not clearly define basic rights and obligations vis-a-vis property, contracts, formation of companies, and the like necessary for a market-oriented economy. An effective legal framework is no less important in the irrigated agriculture sector. In many countries, we find that either some provisions of the legal framework have become constraints in achieving the goals policymakers have, or that there are gaps-areas of silence-that are constraints.I propose to focus on three issues which have important implications for the effectiveness of a country's legal framework. These are:. Effectiveness of laws Rights to water . Environmental protection Obviously, there are many other issues that would have to be covered in a comprehensive discussion; these include land tenure, contract law, conflict resolution, and legal provisions for forming nongovernment or private organizations.Two issues are raised under this heading:The basic philosophy of the function of law in society The extent to which there is a consistency between the legal framework and observable behavior Theseissuesgetat thebroaderquestionoftheeffectiveness oflaws. Thereareotherpossible issues; but these two seem particularly important in understanding the potential direction of future reforms.Philosophy of law. Different legal traditions start from different premises regarding the nature of law, perhaps based on deeply and subconsciously held theories of human nature. To oversimplify, I suggest two contrasting types:Those legal systems whose objective is primarily to limit and control undesirable behavior Those designed to enable and facilitate desired behavior Most systems have elements of both, but I suggest that there are important differences in emphasis that have serious consequences for societies.Laws which place emphasis on limiting and controlling behavior tend by and large to be very detailed: the legislation itself lays down strict details on who may do what, what may not be done, how things are to be done, etc. In other words, the legislative and regulatory functions of law are not clearly separated. An example is the water users associations' laws as adopted in most provinces of Pakistan. These laws specify many details about how a water users association is to be structured, who may be members and who may not be, and how they will transact business. Punishments for not fulfilling the provisions of the law, including not cleaning watercourses, are also specified. Needless to say, this law has not been effective in encouraging water users associations, and is not enforceable.The alternative approach is to design laws that specify the basic principles and objectives, in a way that then facilitates people to use the provisions to achieve their objectives. It is up to the civil service, ideally interacting with stakeholders in a transparent public process, to frame implementation regulations and procedures. Laws that make it relatively easy for water users to get themselves organized, that accept diversity in the details of organizational procedures and the like, and that provide incentives which make it worthwhile for people to form organizations are more likely to have the desired impact than the punitive type.Consistency of the laws and reality. The other important issue is the extent to which legal provisions and reality are consistent with each other. In some instances, there are serious gaps: the lack of a clear legal provision covering water rights, for example, often means that people operate extra-legally, perhaps damaging the resource, or the resource is not developed at all. In quite a large number of cases, the legal provisions are no longer effective in intluencing behavior. In the first instance, the problem may be simply one of designing and promulgating appropriate laws to fill the gap. In the second instance, the problem is far more complex. If there has been a general breakdown of \"law and order\" as indicated by widespread evasion or ignoring of the law, it may be that a government has lost some of its authority. But in many cases, it also indicates that the laws are n o longer functional or appropriate: society has changed to a degree such that new laws are required that arc enforceable and fit reality. Throughout the world, there is a wide variation in provisions regarding water rights, and few \"pure\" cases fitting under one of the above categories. Although there may be a few countries with no legal provisions at all regarding access to and use of water, we do find countries where the law is ambiguous and unclear, leading to conflicts. A complete lack of legal provisions may be acceptable when there is a large surplus of water, but as competition increases this will lead to depletion in terms of both quantity and quality, and to severe conflicts and imbalances.In many countries, water is allocated administratively, by the government: the government claims ownership of water, and makes it available to a variety of users for particular defined purposes through administrative processes. In such a system, there is a danger of rent seeking and inefficient use of water, especially when allocation among uses is restricted.In a growing number of countries, administrative allocation is being modified by increasing the role of user groups in decisions regarding water allocation and use. Finally, there is increasing interest among some policymakers, donors, and economists on the potential for improving long-term water management through market incentives, based on private rights to water. Examples of this can be cited from the USA, groundwater systems in India, and elsewhere.In a system dominated by administrative allocation of water, rights to use water may be clear, and may he secure; but only the government can effect transfers of rights of access and use. In a system where users share control with the government, security of rights may he achieved, but clarity may be sacrificed if rights are shared by users and the government; transferability is also likely to be limited within a particular use (say, irrigation) and within aparticular basin if not an irrigation system. It is only in a system governed by market mechanisms, in which individuals or groups or both have clear and secure title to specific measurable quantities of water that full transferability is achievable.Until recently, no one thought of market mechanisms as appropriate for governing the use and transfer of water. It is still only a theoretical concept in many countries. But it is increasingly common in some of the developed countries (California being a well-known but not unique example), and is found in some developing countries, for example Chile (Gazmuri 1992). It is claimed that making rights to water clear, secure and entirely transferable and tradable has led to dramatic improvements in efficiency and productivity of water in Chile, and has reduced the necessity for public investment in new infrastructure. In India and other South Asian countries, sophisticated markets in groundwater have developed in some irrigated areas, sometimes parallel to administrative allocation on public canal systems. There is evidence that these markets promote more equity, not less as may be thought, and more efficient and productive use of water; Chambers et al. (1989) have suggested that allocating clear and secure rights to water (and trees) to poor communities would be an effective means to reduce poverty in India.During the last few decades, irrigation systems were being developed with little regard to the potential for competing demands on water: it was assumed that the water resources were sufficient to meet all the demands. Now even the countries of Southeast Asia, which from a global perspective are not water-deficient countries, are facing serious conflicts and shortages in at least some river basins. Pressures will build for countries to consider market mechanisms for improving water use efficiency; in such a case, the role of governments will shift from control and allocation through administrative mechanisms to regulating and refereeing the process. This is because at present irrigation uses by far the largest amount of water but gives the lowest economic return per unit of water.The continuing provision of subsidized water to irrigation, while poor people in large cities pay large amounts for low-quality domestic water, is not sustainable (Bhatia and Falkenmark 1992). There is no doubt that in many countries water will be transferred from agriculture to other uses; but how this is to be managed remains a big question.This too is a broad area, but its importance is increasingly recognized. I suggest two inter-related issues:The extent to which irrigated agriculture is threatened by the behavior of people upstream of irrigation systems or by irrigators' own behaviorThe extent to which irrigation behavior is a threat to others outside the irrigation system .The former relates to protection of watersheds, and the soils and aquifers that are part of the irrigation system, The latter relates primarily to the impact of drainage water whose quality is affected by its use for irrigation, and also to the depletion of aquifers shared with other users. The real issue is, how can laws contribute to protecting the environment?This question cannot be addressed separately from the questions of philosophy of law, and water rights. From a legal perspective, the choices are the same as the four categories of water rights mentioned above. Lack of legal provision for protecting the quality of water, watersheds, and aquifers is increasingly dangerous in most countries. Attempting to control these matters through government administrative mechanisms-restricting access, licensing, etc.-is the traditional approach, but is difficult to implement, and often leads to what economists politely refer to as \"rent seeking\" and \"externalities.\" Shared control with users may be better but by itself does not provide a clear signal for evaluating the costs and benefits of the tradeoffs involved. There is an interesting example of full local control from California for aquifer management. In California, the government's policy is to encourage and support the development of autonomous local institutions which take responsibility for aquifer management: a recent study has shown that while there is considerable variation among river basins in the types of organizations that have emerged and their effectiveness, in most basins aquifers are now managed in ways that appear sustainable (Blomquist 1992).A key factor of course is the use of market mechanisms for valuing and charging for water. If water is a valuable asset, to which local groups or individuals have clear, secure and transferable rights, they haveconsiderablemotivation to ensure that aquifers are preserved. The same principle applies to water quality: if water is a tradable good, and if one's use of the water affects its value to others further downstream, one approach is to require upstream users to pay the costs incurred for purification.Governance refers to the basic allocation of power and authority, and the boundaries and limits on authority. In federal systems, water is often a responsibility of provinces or states, with the central government attempting to provide overall guidelines, and mediating interstate sharing of water resources. But even federal systems may have highly centralized concentration of authority over water.I suggest three basic forms of governance:. .Decentralized-authority is shared between the higher and lower levels of the bureaucracy Devolved-authority is devolved to local organizations Actual systems may not fit these categories entirely, but exhibit elements of two or even all three of these forms. But the type of governance characteristic in a given country will have a very significant impact on performance, and on what types of future policies may be feasible.In a centralized system, authority over water allocation is concentrated at relatively high levels of government bureaucracies. The government not only makes policy; it also takes the primary responsibility for implementing water allocations and deliveries. It controls--or attempts to control-water allocations among and within sectors; it may manage water distribution directly, or may regulate the use of water through issuing permits or licenses. Such systems are generally characterized by administrative allocation of water, discussed above.In a decentralized system, the government retains authority and wntrol over water, but the locus of control is at lower levels of the bureaucracy, closer to the users. In such a system, there may he a clearer separation of the policymaking and implementation functions, with policymaking retained at higher levels, while implementation within the policy guidelines is at lower levels. This form of governance makes sharing control over water with user groups more feasible and more likely. But administrative control of water allocation and distribution is still likely to be the dominant mode of management, supplemented with the issuing of permits to local users.This type of governance involves local governments, local boards, and local nongovernment organizations such as utilities, user groups, firms, and individuals having primary control over the allocation, distribution, and decisions about the use of water. In this type of system, policymaking and implementation are clearly differentiated: the higher-level government's role is to set broad policy frameworks, regulate the use of water to avoid abuses or imbalances, and perhaps, provide specialized support services not available in the private sector. In such a system, allocation is most likely to be governed by market mechanisms, though a system of permits issued by local authorities is also possible.\"Turnover\" and \"privatization\" are important issues relative to establishing a devolved or localized system for governance. Turnover generally involves giving authority for management of water and delivery infrastructure to local users, hut often the government retains ownership and ultimate (residual) control. It is not clear to what extent such a policy is conducive to local investment in operation, maintenance and especially long-term improvement, Privatization is the most common term for the policy of turning over full ownership of infrastructure, as well as clear rights to specific amounts of water. In principle, if local users own the assets and have clear, secure and transferable rights to water, they are more likely to use the water efficiently (especially when there are other potential users willing to pay more for it) and more likely to invest in infraswctural improvements.Following directly from the broad forms of governance, is the question of what types of organizations are found in the irrigated agriculture sector, and what are the implications of the presence of particular kinds of organizations for future developments. The analysis here distinguishes the policy and implementation levels; and within each, identifies a variety of arrangements.At this level, there are three primary types of organization: Specialized ministry of irrigation, separate from ministries handling agriculture and other water resource uses Ministry of agriculture that includes responsibility for irrigation, but not other uses of water Ministry of water resources that includes irrigation as well as other uses of water, separate from the ministry of agriculture . Specialized ministry of irrigation, Some countries have regarded irrigation as so important to their development, and as sufficiently distinctive in the policies and management required, that they have established ministries specialized in irrigation. A common subtype is those countries where irrigation is a wing of a public works ministry, or as in Sri Lanka, a wing of a land development ministry. In these cases, one usually finds a heavy emphasis on relatively large-scale irrigation, and a strong construction-orientation. Problems of coordination with the ministry of agriculture, representing the main clients of the irrigation managers, is a frequent characteristic. I suggest the hypothesis that once a country reaches a situation where there is competition between irrigation and other uses of water, this mode of organizing at the policy level is likely to prove increasingly ineffective.Ministv of agriculture that includes irrigation. It is not uncommon in some parts of the world to find that irrigation development and management are within a ministry of agriculture at the policy level. This mode of organization increases the likelihood of close integration and coordination of irrigation and other agricultural functions; I suggest the hypothesis that this mode of organizing is more conducive to a stronger management approach to irrigation, with less emphasis on heavy construction.On the other hand, as competition for water with other users increases, irrigation may continue to dominate beyond a point where it is economically viable. In Israel for example, all water allocations aredone from within the ministry of agriculture; although Israel is justly famous for its relatively high irrigation efficiencies, this arrangement may have led Israel into more dependence on irrigated agriculture than is sustainable in the long term (Sexton 1990).Ministry ofwater resources that includes irrigation. A third major alternative for organizing irrigation policymaking is to include irrigation in a ministry of water resources, separate from the ministry of agriculture. A subtype would be a ministry of natural resources including water. This approach has the advantage of allowing an integrated and comprehensive approach to the water sector, which is increasingly important in countries facing serious shortages and competition among different water uses. It begs the question of coordination with agriculture, which in most developing countries is still the most important economic sector in terms of employment if not income generation.It is also possible to combine some of the above types. For example, Egypt has a Ministry of Public Works and Water Resources, within which the Irrigation Department is a powerful management agency. The danger in this approach is that \"public works\"-construclion-may be given too great an emphasis vis-a-vis management of the water supply.Organization for managing implementation may he congruent with the policy management arrangements described above, or may not. At the implementation level, I suggest there are four basic approaches common around the world. These are: Specialized irrigation civil engineering department Integrated authority for irrigation and agriculture . . Specialized irrigation civil engineering department. This type of management organization is common in those countries having had a British colonial tradition, though it is not restricted to them, A subtype found in some countries is departments that are called water resources departments, though these are usually so specialized in irrigation that the distinction is nominal. Such departments are almost invariably highly centralized hierarchical departments whose staff are largely if not exclusive civil engineers. These departments often have a strong tradition which at least in the past ensured a high degree of loyalty and dedication. They usually have their origins as construction-oriented departments, and construction usually remains their primary interest.As countries move from a \"construction phase\" in irrigation to a \"management phase,\" there are increasingly important questions about whether such departments can make the transition to management and service orientation, and if so how they can be assisted to make this transformation. The Department of Irrigation and Drainage in Malaysia is an interesting case of a department that is changing; several states in India are presently designing major projects with donor support to hasten the transformation of their line civil engineering departments into water resources departments oriented toward management and provision of services.Integrated specialized authorities. Quite a number of countries have established special authorities on particular river basins to manage the \"integrated\" development and operation of water resources for multiple uses. The Tennessee Valley Authority of the USA is sometimes taken (or mistaken) as the model for these authorities; examples can be cited from Malaysia, India, Sri Lanka and other places. A variation on this type is the creation of authorities that operate parallel to irrigation departments, hut at the tertiary level, to support tertiary irrigation development and farmer involvement. India's Command Area Development Authority (CADA) is a well-known example.But the classic authorities are created by special legislation, and have special powers and authority for constructing the infrastructure to harness the water resources of a river basin, developing the \"downstream\" irrigation facilities, settling people or assisting in their reorganization for agricultural production, and providing integrated support services for agriculture, and sometimes other services.These authorities often have a degree of flexibility, legal authority, and attractivc incentives for staff that are lacking in the \"normal\" management organizations. They are usually effective at creating the infrastructure and getting aproject up and running. But their relatively authoritarian approach, and the relatively high costs of administration, often lead to increasingly serious problems. Their authoritarianism-often combined with a high degree of idealistic paternalism-results in a relatively dependent population of clients, rather than the self-reliant autonomous farmers expected in the planning documents (Merrey 1992). Integrated management, with many services provided by and through the government, is also expensive; as governments come under increasing financial pressures, the viability of continuing integrated authorities becomes an important issue.Autonomous government-owned corporations or utilities. There are some cases where irrigation is managed by government-owned corporations, either nationally (Philippines) or by river basin (Morocco). There are relatively few cases of utilities, of the type found in the electricity, domestic gas, and domestic water supply sectors, though this mode of organization is frequently cited as having a high potential. Utilities, of course, may he owned by private shareholders and regulated by the government; therefore this type of organization could also appear under the next heading, in which local entities are responsible for management of irrigation.The advantage of this mode of operation, in principle, is that corporate entities are more flexible and can adapt to changing conditions more easily than can government departments Government-owned autonomous corporations, or utilities Management by local entities, with government regulation governed by strict civil service rules. It is relatively easier to build in incentives for performance accountability of staff, and of the organization to its clients. Of course, politicians may regret their reduced opportunities for controlling access to an important resource. The success of this mode of organization is closely linked to financial autonomy, discussed below under Finance.Local control with government regulation. Local control of irrigation through specialized irrigation companies or \"districts\" controlled by the user-shareholders is common in some of the developed countries, but relatively rare in developing countries outside Latin America? In this type of organization, there is a legal framework enabling local users to form organizations through which they may construct and own irrigation infrastructure and water rights. In some cases, this form of organization may coexist with a government department which does major construction, and manages large dams and canals, wholesaling water to irrigation districts (the USA is an example). The success of this form of management depends on the local entities having clear and secure water rights, which are preferably transferable and tradable as well. The major role of the government in this type of environment is to ensure that titles to water rights are clear, and evaluate and regulate water use to ensure sustainahility and economic efficiency. The government may also provide assistance in construction of major works, manage major works, and intervene when drought or other crises make emergency measures necessary.Our interest for the purpose of this paper is the institutional implications of the financing of irrigation. There is no such thing as free irrigation: someone pays for it. But who pays, and the structuring of financial flows vary considerably among countries. These two questions have a profound impact on the institutional framework for, and the performance of, irrigation. Whether users pay directly for irrigation, based on the amount of water they use and perhaps on the quality of the water returned to the source, will have a major influence on how efficiently water is used.Whether users pay the providers of irrigation services directly or indirectly will have a major impact on the incentives for the provider to ensure that the service is responsive to the customers' needs.I suggest three variants of \"who pays,\" though these often coexist. They are: Free to users.Users pay full costs.Free to users. It is still not uncommon that irrigation water is provided on government schemes without the users having to pay any direct fees. There are therefore no linkages among the cost of providing the water, the economic value of the water to the user or to other potential users, and the use of the water. It is not surprising that in such systems water is often used inefficiently, and the quality of physical maintenance and operational services is a source of constant complaint. Indirect means of recovering costs, for example taxes on produce, are often used to recover the costs of providing irrigation services, but there is no linkage between payment and the service provided.Users pay part of the costs.3 Shah and Bhattncharya (1992) discuss the rise of member-companies for managing hlkwells which are coming up spontaneously in Gujarat, India, and which appear to be more robust than hlbewell cooperatives.Userspaypart of the costs. It is more frequent to fina that users on public irrigation systems pay fees that cover part of the costs of the service, but not the full cost: operation and maintenance costs but not capital costs for example. But outside the richer countries of Europe and North America it is rare to find fees based on the quantity of water used, or the economic value of that water. Evasion of payment among significant numbers of users is also not ,uncommon, as enforcement is difficult. It is also not uncommon that the amount paid is not adequate to cover the full costs of operation and maintenance. leading to deferred maintenance, and subsidized rehabilitation.Userspay full costs of irrigation directly. On publicly managed irrigation systems. to find that users are paying the full costs of providing the water (ope.ration and maintenance as well as capital). But on private systems, for example private tubewells in South Asia, or commercial farms, users do pay the full direct costs of irrigation; and markets exist whereby owners of tubewells sell water to their neighbors. Where farmers pay the full costs, especially if other agricultural inputs are not significantly subsidized, there is a strong tendency to grow higher-value crops as lower-value grain crops may not be economical.Mixed systems of cost recovery. This is probably the most common situation: in South Asia for example, \"free\" irrigation from public systems coexists with privately financed and owned tubewell irrigation. More commonly, while irrigated agricultural users pay nothing directly. or pay only part of the real costs of irrigation, users in other sectors pay heavily for their domestic and industrial water. In seine water-short urban areas, the poorest people with the worst service pay high prices for low-quality water, while farmers and sometimes rich domestic users pay little or nothing(BhatiaandFa1kenmark 1992). Itisclearthat ascountries movetowards moreemphasis on market-based systems for allocating water, as a response to inter-sectoral competition in water-short areas, the present arrangements in which irrigation is subsidized at the expense of others will come under increasing pressure.No less important than the question of who pays is the question of how payment is made, i.e., how financial flows are structured. Both issues profoundly affect the incentives for providing efficient irrigation services. There are three basic alternatives:No one pays directly..If no one pays directly for water, then there is no incentive either for the user to make efficient use of the water, or for the managing agency to provide good service. This option is therefore not further discussed.Indirectfinancing uf irrigation. In many countries, for example in South Asia, if the users pay anything for irrigation services, it is not directly to the management agency, but to the government. \"Irrigation fees\" are collected as a kind of land tax, sometimes based on the crop grown, but rarely based on the amount of water used. This tax is collected by the revenue department of the government, and goes directly into the treasury. Funds are allocated from the treasury to the irrigation department based on criteria that have nothing whatsoever to do with the amount paid in fees. There is thus no linkage between the users' payments and the services received. Whether it provides a good or poor service has no impact on the department's income or staff incentives. This only compounds the problems arising from fees bearing no relationship to the amount of water used, or to the real costs of irrigation.Direct payments by users to provider.Research has shown clearly that those irrigation agencies which are financially autonomous, to whom water users pay irrigation fees directly, show better management performance than agencies who receive their finances indirectly, such that they are dependent on the government treasury (Small and Carruthers 1991;Svendsen 1992). If an irrigation agency is financially autonomous and directly dependent for a significant portion of its income on service fees paid by its customers, there will be significant incentives to provide good service.However, it is important over the long term for that agency to have the authority to revise its fee structure as necessary, and to have the flexibility to adjust its human resources, and provide incentives for staff performance. This takes us back to a governance issue: if the autonomous agency has a monopoly, then a transparent system for monitoring and regulating its services and costs, and justifying its fees, will be necessary In other words, the agency should operate as a public utility. An alternative is to devolve ownership and management of individual systems to corporate entities in which the users are shareholders.This paper began with a discussion of the distinction between organizations and institutions, and the ways in which institutions pervade our lives and affect our thinking and understanding. Institutions develop historically through a complex process of interactions among technology, environment, and people's behavior and perceptions as shaped by their previous cultural and institutional history. Therefore, institutions in place often have considerable staying power, and seem to have a life of their own which stymie attempts at reform. Resistance to change is likely to he based on a combination of values and limited perspectives of participants, and the strong vested interests many have in existing arrangements.One implication of this view of institutions and organizations is that they are not readily transferable from one country context to another. We cannot expect that because a particular institution works well in one place, it will automatically apply, as it is, in another. There are cases of transfer but invariably the institution is reinterpreted and transformed into something unique as part of the process. This is not to argue that we cannot learn from others' experience. On the contrary, we can, but what is transferable is the basic idea and concept, suitably transformed to fit into a new context.The direction and rate of change, the strategies that might be most effective, and the possible options for the near and medium future are constrained by existing institutional arrangements. The trick then is to develop change strategies that are appropriate to the specific situation, and to take a long-term perspective. It is particularly important to avoid adopting solutions to short-term problems that will be nonadaptive or severely constrain future options.Policymakers must choose between two basic change strategies:Radical change imposed from the top down Encouraging change through an iterative bottom-up long-term processThe former may be attractive when a country is facing a crisis, or a total breakdown of the existing system, as in the former Soviet Union. But it is highly risky, is likely to be strongly resisted, and may go wrong very easily. The latter requires more patience, but I suggest in most circumstances it is more likely to lead to the evolution of workable solutions, including new institutions. The role of the policymaker in this approach is to set the broad objectives, identify the guiding principles, and act as a coach to facilitate and guide the change process.Beginning from the different institutional contexts found in various countries, clearly it is not likely or desirable that there will be uniformity in the future. I would like to propose a few broad principles that could guide the evolution of institutions in the water resources and irrigated agriculture sector, principles that apply to other sectors as well. These principles are: Accountability Financial autonomy and sustainability I suggest that the workshop participants might wish to consider whether they agree with these principles, whether there are others that should be added, and what the implications will be for the future development of their countries if these principles are adopted, Clear, secure, transferable water rights Decentralized and devolved management organizations Government role as facilitator and regulator, not controller","tokenCount":"7194"} \ No newline at end of file diff --git a/data/part_3/8385272024.json b/data/part_3/8385272024.json new file mode 100644 index 0000000000000000000000000000000000000000..622767398ca30a6826facd1bb9551bbd3157b9f2 --- /dev/null +++ b/data/part_3/8385272024.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"4a2449f5d425140d360b3a96b5c68b29","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/8bdc58a6-d7e1-4885-a827-c2837cd59adb/retrieve","id":"-4739541"},"keywords":[],"sieverID":"acf0625c-8b40-439d-997f-f9908e3f0ed6","pagecount":"8","content":"With the outbreak of COVID-19, governments attempted to contain the spread of the virus by limiting the movement and interaction of people through a variety of measures, including restrictions on domestic and international travel, social distancing, and \"lockdowns\" that temporarily shut down non-essential businesses (IFPRI 2020). While governments had control over these domestic measures, they could do little to shield economies from disruptions to global trade or declines in foreign investment and tourism. Amid uncertainty about how the pandemic would unfold, IFPRI worked with local partners during 2020 to develop economywide models to analyze the impacts of COVID-19 measures on economic growth, food systems, and livelihoods in approximately 30 countries (Pauw, Smart, and Thurlow 2021). Initially, social accounting matrix (SAM) multiplier models were used to trace quarterly and annual shocks during the 2020 calendar year. The real-time analysis provided by these results could potentially be used by policymakers to inform the design of COVID-19 restrictions (for example, in terms of sector targeting or duration) and remedial measures (such as targeted cash transfers or firm subsidies).As countries emerge from the slowdown in 2020 and 2021 -while dealing with recurring waves of illness and new restrictions -the research emphasis is shifting to modeling the pandemic's medium-term impacts and the trajectory of recovery using IFPRI's Rural Investment and Policy Analysis (RIAPA) model. The RIAPA model is calibrated to the same SAMs used in the earlier analysis but relaxes many of the restrictive behavioral assumptions of multiplier models that were more appropriate for lockdowns when domestic markets were disrupted or ceased to function (Box 1). RIAPA also allows more flexibility in simulation design as well as a consideration of private sector behavioral responses and public sector policy responses to the pandemic. The model's recursive-dynamic setup further provides a multiyear perspective on the recovery trajectory. This chapter reviews key findings from the multiplier analysis and presents the latest results from the ongoing RIAPA analysis. We showcase our work in three countries: Bangladesh, Kenya, and Nigeria.Two types of models were used to measure the impacts of the COVID-19 pandemic. Multiplier models track the spillover effects along and across all supply chains in a country, allowing them to measure how downstream disruptions to restaurants, for example, can have implications for farmers upstream. An important assumption in these models is that resource allocations and utilization rates in an economy are not mediated by market and price adjustments, which was the case during the initial period of the pandemic: demand for many products declined irrespective of price responses. Multiplier models are also easy to implement, so long as their core database -a social accounting matrix (SAM) -is available. With support from CGIAR's Policies, Institutions, and Markets (PIM) program, IFPRI has constructed and maintained SAMs for many developing countries over the last decade, which enabled IFPRI to rapidly respond to governments' need for COVID-19 analysis. IFPRI's country programs and its network of in-country part-ners, especially within governments, made it possible to enlist the support of local researchers and policymakers within weeks of the initial outbreaks.Over time, however, the focus of most governments has shifted from anticipating COVID-19 impacts to formulating responses and recovery efforts, and more recently, to reestablishing longer-term policy and investment goals, albeit within the context of persistent COVID-19. As markets resumed traditional functions, the type of model needed to analyze COVID-19's impacts and related policy priorities also shifted. Computable general equilibrium (CGE) models, such as IFPRI's RIAPA model, better capture how markets and price adjustments can help economies adapt to persistent shocks like COVID-19. They are also better able to depict a wider range of policy interventions. Long-standing investments in RIAPA by PIM and other donor partners made it possible for IFPRI to continue to engage governments, even as their focus shifted. Note: Simulated results show the range estimated under faster and slower recovery scenarios. The 3.5 percent reported GDP growth for Bangladesh is for the financial year ending June 2021. Adjusting our results to the financial year would imply growth of 0.2 percent rather than −1.1 percent for the calendar year.Compared to the pre-COVID growth projections of 7.2, 6.0, and 2.1 percent in Bangladesh, Kenya, and Nigeria (World Bank 2020b), the multiplier model results translated into year-on-year GDP growth rates of −1.1, −1.9, and −8.1 percent under the faster recovery scenario. National accounts data released over the last year now reveal a more positive growth outturn of 3.5, −0.3, and −1.8 percent (World Bank 2021a). In Kenya and Nigeria, where GDP results are reported quarterly, it is evident that the multiplier models especially overstated losses in the second quarter (Table 1).First, the simulations assumed that restrictive measures would be implemented as they were designed. Many countries adapted their policy responses over time (for example, to deal with localized outbreaks) or failed to fully enforce policies in rural areas or informal settings, for instance. Second, the extent to which employers would adapt to restrictions was uncertain. Even though the pandemic has persisted longer than the simulations anticipated, many businesses seemingly adapted more quickly than expected to virtual work environments, switching, for example, to home delivery and internet-based services. Although the private sector has not been equally resilient across all countries, its adaptability is a potentially important driver of the recovery that has not been fully explored. Third, the simulations considered only the adverse effects of restrictive measures, not the counteracting effects of mitigative measures introduced by governments (many of which were still being developed at the time the analysis was being undertaken). Mitigative measures injected billions of dollars into the economies of Bangladesh (Islam et al. 2020), Kenya (McDade et al. 2020), and Nigeria (Andam et al. 2020) in the form of financial stimulus packages, loan facilities, cash transfers, or food aid.Fourth, the external shocks factored into the multiplier model simulations were generally less severe than initially anticipated. The World Bank (2020a) projected declines in remittance inflows of more than 20 percent for sub-Saharan Africa (SSA) and South Asia. However, revised estimates show that remittances declined only 12.5 percent in SSA and grew by 5.2 percent in South Asia (World Bank 2021b). Although the 34.7 percent decline in global foreign direct investment (FDI) in 2020 (UNCTAD 2021) was consistent with initial expectations (UNCTAD 2020), the decline was heavily skewed toward developed economies: FDI in SSA declined only 11.7 percent, while FDI in South Asia grew 20.1 percent. Initial tourism projections, on the other hand, were accurate. Tourist numbers declined 63 percent in SSA and 70 percent in South Asia (UNWTO 2021), which was within the range of early projections (58-78 percent) (UNWTO 2020).Fifth, economic accounting practices may differ between countries, especially in accounting for labor productivity losses associated with work-from-home measures, among others. School closures, for example, would render teachers unproductive if online learning were not possible. In principle, this should have been recorded as a decline in value added -as was done in the multiplier analysisbut if teachers' wages continued to be paid, national accountants may have decided to record this as value added, with no reported loss in GDP. National accounts data from our case study countries reveal interesting differences, even though all three countries closed schools in March 2020. Nigeria reported a 56.2 percent year-on-year decline in education GDP in the second quarter (NBS 2021) and Kenya reported a 24.1 percent decline (KNBS 2021). In contrast, Bangladesh reported growth of more than 5 percent for the calendar year (quarterly results are not reported) (BBS 2021). These results are not correlated with the internet penetration rates of 34, 23, and 13 percent in Nigeria, Kenya, and Bangladesh, respectively (World Bank 2021c), which serve as a good proxy for how easily countries can shift to online learning. A reasonable deduction is that accounting of value addition indeed differs between these countries.agrifood system resilience proved to be importantAlthough overall losses were likely overstated, IFPRI multiplier analysis offered two important insights critical to shaping the early narrative around COVID-19 impacts. The first relates to the careful accounting of relative sectoral impacts. The multiplier models consistently showed that wholesale and retail trade, transport, and hospitality sectors would be affected most by the pandemic. Given their size, these sectors also contributed most to overall GDP losses. However, the agrifood system (AFS), which consists of primary agriculture, agro-processing, food trade and transport, and food services (such as hotels and restaurants), was relatively less affected (Table 2). This reflects the fact that agricultural production and food processing were generally exempted from COVID19 restrictions, even though disruptions to food supply chains (due to restrictions on movement of people and goods, for example) and restrictions on the hospitality sector did have some direct or indirect effects on the AFS (Pauw, Smart, and Thurlow 2021). Findings on the relative sectoral impacts of COVID-19 have largely been validated by national accounts data so far (BBS 2021; KNBS 2021; NBS 2021).Table 2 presents multiplier model results from the fast recovery scenario. The AFS accounts for approximately 30 percent of GDP in Bangladesh and Nigeria, and almost 50 percent in Kenya. AFS losses range from −1.8 percent in Bangladesh to −3.8 percent in Kenya and −4.4 percent in Nigeria. These losses contribute as little as 7.1 percent to overall GDP losses in Bangladesh but 24.7 percent in Kenya, where the sector is relatively larger. These results imply that concerns around food security during the pandemic were more directly linked to the loss of household income than to the availability of food. The AFS proved to be not only more resilient than nonfood sectors during the COVID-19 pandemic, but also an important safety net for the overall economy and population. The second important insight relates to poverty and the distributional effects of COVID-19. The pandemic had a significant impact on household livelihoods, with incomes falling by roughly the same magnitude as GDP losses. However, in most countries, COVID-19 policy design and enforcement meant that rural and poor households' incomes were less affected than the incomes of urban and nonpoor households. In Kenya, for example, income losses among rural households were only 48.4 percent that of urban households (Table 3). Despite lower income losses, however, between 41.9 and 69.3 percent of people pushed into poverty during the second quarter of 2020 in these three countries live in rural areas. Across the 18 countries surveyed by Pauw, Smart, and Thurlow (2021), between 42 and 93 percent (67 percent average) of people pushed into poverty were in rural areas. Kenya and Nigeria are therefore at the lower end of the range.In short, the COVID-19 pandemic made all households worse off, but it narrowed the income gap between urban and rural and between poor and nonpoor households, resulting in lower inequality. However, this finding does not justify excluding rural households from government support measures during the recovery phase. In most countries -Kenya and Nigeria being exceptions -most people who became poor during the pandemic are rural, which highlights the increased vulnerability of rural households to shocks. It may also take much longer for poor and/or rural households to recover from shocks.Whereas the multiplier analysis proved useful for analyzing the structural and distributional effects of COVID-19 in the short term, the RIAPA model is now being used to analyze medium-term impacts, the economic recovery, and outcomes under alternative policy and investment scenarios. Since the RIAPA model relaxes some of the most restrictive assumptions of multiplier models -most notably the assumption of fixed relative prices -the implications of COVID-19 for poverty and diet outcomes can be studied more carefully. Source: SAM multiplier model results.Note: Poverty changes reported are for the second quarter of 2020 when COVID-19 restrictions were at their most stringent. These poverty results have been adjusted to account for the overestimation of GDP losses in the multiplier model (see Table 1).As with the multiplier analysis, simulation results are compared against a hypothetical no-COVID baseline. Figure 1 presents preliminary results for Bangladesh, Kenya, and Nigeria. The COVID-19 scenario is based on the World Bank (2021a) GDP results for 2020 and projections for 2021 onward, released in June 2021. A further adjustment is made for the negative impact of the SARS-CoV-2 Delta variant, which had not yet been factored into the World Bank projections at the time.FIGURe 1 Selected results from RIAPA COVID-19 modeling: GDP, agrifood system GDP, poverty, and diet deprivation 1 present cumulative differences in the year-on-year growth rates in GDP and AFS GDP between the COVID-19 scenario and the no-COVID baseline. Although differences in growth rates are similar in 2020 across the three countries, the World Bank (2021a) projects a much quicker recovery for Kenya and Nigeria from 2021 onward, resulting in much higher cumulative losses in Bangladesh over the 2020-2025 analysis period relative to the baseline. Consistent with earlier SAM multiplier results, AFS GDP losses are smaller than national GDP losses.Panel (c) presents deviations in poverty rates. Although the modeling shows that poverty rates start recovering after their peak in 2020, the gap between baseline and COVID-19 poverty rates continues to grow in 2021, and beyond that in Kenya and Nigeria. This reflects the lasting impact of large income losses in 2020 on current investment and hence the future earnings potential of households.Panel (d) presents changes in the Reference Diet Deprivation (ReDD) index, a multidimensional indicator of consumption gaps across main food groups (staples, fruits, vegetables, dairy, protein foods, and added fats) (Pauw, Ekert, et al. 2021). An increase in ReDD indicates deteriorating diet quality. ReDD is influenced by changes in disposable income and relative food prices, which affect the real cost of a healthy diet. Decomposition of RIAPA results reveals that while COVID-19 generally causes the price of foods to decline relative to non-foods -due to the food sector's exemption from restrictions -household income losses dominate and cause diet quality to worsen relative to the no-COVID baseline.RIAPA results presented here are preliminary and subject to change as new information becomes available about domestic and global impacts. The model is also designed to easily incorporate the effects of new waves of the pandemic, such as the new SARS-CoV-2 Omicron variant. The focus of future work will also be on the economic recovery. Here the interest is in both the \"private\" and \"public\" drivers of recovery. The adaptability of the private sector to new business and policy environments is a potentially important driver of the recovery. Understanding the endogenous behavioral responses of businesses and exploring how these can be better captured in RIAPA will be an important focus of future work.Future analysis will also be geared toward informing government policy and investment options that can help shape the pace and nature of the recovery, while recognizing that government ambitions in this regard may be severely curbed by high levels of post-pandemic debt and revenue shortfalls.Even though results consistently highlight that the AFS has been relatively less affected by COVID-19 restrictions, the sector has played an important role in providing a safety net for the overall economy and population. As such, investments in the AFS should continue to be prioritized as a cornerstone of the recovery strategy.","tokenCount":"2504"} \ No newline at end of file diff --git a/data/part_3/8409130726.json b/data/part_3/8409130726.json new file mode 100644 index 0000000000000000000000000000000000000000..18f1c2ddfc680f62774fe11451ce201de5251ca5 --- /dev/null +++ b/data/part_3/8409130726.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"448f9dfb43dc62eca82f577d7da48bf3","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/27a79420-a3ad-4ab6-a162-2a39692ee89e/retrieve","id":"-120050079"},"keywords":[],"sieverID":"f23cb51e-936a-46c6-aca1-64d5e5465583","pagecount":"8","content":"V/\\U/\\N\\\\ Ol~ o¡:. ,SLU' C\\Q:D ~W GA6uyRlC' ~( y 1) 1<:: oL-OG ( U--+LThe hydrology of the Rio Cabuyal is defined here as: 1.the good: water, run-off 2.produetion: eatehment area, (preeipitation)1:Environmental Cunctions oC the Rio Cabuyal II:Measuring the strength oC the environmentaI functions of the Rio CabuyaIMeasuring ¡he strength or significance of the environmental functions is a daunting task. The precise workings and dynamics of many of the regulation functions is clouded in uncertai nty. As such il is very difficult to determine the role (and significance) of the Rio Cabuyal in these function s. lt is easier to determine the strength of production functions, where consmuption of the good can be more easily measured.1.Regula/ioll of local alld global energy balallce Absorption of sun 's rays by water -> results in hot / cold areas (changing energy balance).Volume of water influences amount of energy absorbed.Hyelrological cycle influences chemical composition of ¡he atmosphere (C02 is absorbed by the oceans, and rivers ?). Volume of water influences amount of C02 absorbed in the ocean and Rio Cabuya!.Regula/ion of /he chemical composi/ioll of the ocealls Volume of H20 and chemical composition of the Rio Cabuya!.Volume of water (into oceans and evaporation) influences hydrological cycle, local & global cJimate.Preven/ion (?) of soil eros ion and sedimenl cOlllrol Increased run-off can increase soilloss. Potential soil Joss, tonnes (from USLE ?).(2, Carrier functions (see production functions) Crop growth, animal husbandry, ¿energy?, ¿recreation?, ¿nature conservation, ¿habitat?)Volume of water consumed through household use, agricultural (irrigation) and industrial purposes.¿ VoJume of craps praduced without irrigation? i.e. only ineludes craps grown through precipitation and watertable ??Net oxygen production in the Rio Cabuyal: Gross production -respiration.4.1 Aesthetics: Survey -ranking imporlance of river seetions for aeslhetie purposes : Conlingent valuation. ¿Scientific / edu.? ¿Spiritual, cultural / art, histo~ic?Any comprehensiye mClIsurcment of lhe aboye environmental funclions would require large quantities of physical data about the river such as: volume of water, chemical composition, sediment load, water quality, BOD, river fauna etc. These data would then have to be related to the environmental functions. e.g. the role of X cubic metres of water in the Rio Cabuyal in regulating local and global energy balance.The measurement (if they exist) of information functions would require sociaIJhumanistic data to be coIlecled by interviewing the local populace.III: The economic value oC the environmental Cunctions oC the Rio Cabuyal Most of the environmental functions wiIl pro vide benefits of sorne sort to the local and global populace. Environmental economics methods can be used to determine the economic value of these benetits. Carrier functions (see production functions)Crop growth, animal husbandry, ¿Energy?, ¿Recreation?, ¿Nature Conservation?, ¿Habitat?Productioll functions (consumption) 3.1 Water Market value: How mueh is volume consumed worlh according to current market prices? i.e. How much would it cost to get water from alternatiye sources ? 3.2 Food ¿Amoujlt and market value of crops grown without irrigation ?how important is water (precipi'ation -watercatchment and the water table) as a factor of crop production ? -willingness to pay for future availability of the Rio Cabuya! -willingness to accept compe.nsation following loss (degradation) of lhe Rio Cabuyal Accurate calculation of lhe economic value of many of lhe environmental funclions wouJd be exceedingly difficult, if not impossible wilhout the necessary 'strength'measuremenls identifed in the previous section. However, if such measuremenls and data were available lhen the valuation results of other studies could be used l\\S a basis for assigning va!ues to Rio Cabuyal functions (benefits tran sfer theory) .Given the absence of the necessary dala sets for lhe Río Cabuyal and generallack of knowledge conceming the measurement (workings and models) of global regulation functions, no atlempt wiU be made to measure and value regulation and information functions. Instead, an atlempt will be made to demonslrate the possibilities of using GIS for spatial economic valuation, focusing on the production functions of the Rio Cabuyal hydrology.The production functions of the Rio Cabuya! The hydrology of Ihe Río Cabuyal is currently used for household water consumption and crop production through irrigation and natural precipitation, run-off and lhe water tableo In addition, the Rio Cabuya! provides waler (and run-off?) to lhe Rio Ovejas which has produclion fun ctions downstream (current and potentia!).The focus is on household water consumption and downstream use of the Río Cabuya!.Economic benefils [rom household consumption. Two water tanks, La Esperanza and El Oriente are used to supply water to households in the Rio Cabuya!. La Esperanza is supplied with water directly from the river, whilst El Orienle is supplied through the water table (well).The water consumed via lhe water tank is currently treated as a ' free' good, with locals paying a mínima! charge for maintenance of the water tanks but nothing for the good itself. An estimate of marke t va!ue for Ihe good was based upon Ihe number of consumers and the costs of supplying Ihem from an alternative source: When the water supply from lhe tanks runs out, the consumers have lo fetch water from the river itself, at a cost of 500 pesos per 50 litres. In the absence of more suitable data, this was taken as the benefit va!ue of the watcr supplied at lhe water tanks. This gave figures of over US$ . -.. .: . ,. .3 million for El Oriente tank and over US$ 2 million for La Esperanza tank. These figures are very coarse estimates and may actuatyndervalue the price of the good, since they only reflect labour costs for transportation, and do not inelude any production costs (i.e. cosls of producing waler).Economic benefits from downstream consumption. These are based on the reporl by (R. Knapp and others.??) which eslimates lhe value of the water and mn-off oflhe Rio Cabuyal inlo lhe Rio Ovejas for use downstream at about US$ 2 million.Mapping economic benefits from household consumption. Using GIS, economic values can be assigned to those areas (or cells) involved in the production of the good (benefit). If a cell produces a good which has economic benefits, lhen an economic value can be assigned to that cel!. In order to do this it is necessary to identify which cells are involved in the production of the good, and their significance or role in the production of the good. In the case of the Rio Cabuyal water tanks it was necessary to determine where (he water which supplies the tanks is coming from (being produced).The TRACE command in ArcInfo was used lo select alllhe streams upstream of lhe waler tank. These were then visually overlayed on top of a DTM of lhe area and the calchment area for the streams was manually interpreted by following the topography of the DTM (using the SELECTPOL YGON command). The catelmlent area was then saved as a separate grid layer. The INTcommand was then used to convert the catchment grid to an integer grid (INT) containing the value 1 for all cells. The number of cells in this INT grid was found from the . V AT fileit contained 67,154 5 metre cells.It was assumed that all cells 'produced'(or captured) the same quantity of lhe good, although in reality lhis is unlikely to be the case, since the volume of mn-off depends upon the land cover, soil permeability and evapotranspiration . Assuming all cells have lhe same production value, then lhe benefit value per cell can be found by dividing lhe lotal benefit value by the number of producti ve cells : 3,193,750 (total benefit value) /67, 154 (number of productive cells) = 47.64 So the benefit value fur La Esperanza in each productive 5m cell is US$ 47.64 (per annum). The catchment grid (conlaining cells wilh value ,1) was multiplied by 47.64 to give each cell in the catchmcnt arca a value of 47.64.El Oriente water tank is supplied by from lhe watertable (underground spring ?). Since lhere were no GIS data on the geology (or watertable) it was assumed that the water supply for the El Oriente came from higher ground.The height of the El Oriente water tank was estimaled at 2155 m. AIl cells higher than 2155 m were then selected from the DTM grid. Then a catchment area was selected from these cells, which only ineluded cells whose height values increased consecutively from the El Oriente. The / number of 5 m cells in the catchment area for the El Oriente was 24, 828.Again, the same assumption was made that all the ce lis in the catchment area had the same production function. The benefit value was then calculated by dividing the total benefít for the El Oriente by the number of cells: 2,395,312.5 (total benefit value) /24,828 (number of productive cells) = 96.48 Therefore the benefit value for El Oriente in each productive 5m cell is US$ 96.48 (per annum).The catchment grid containing cells with value 1, was multiplied by 96.48, to give all cells in the catchment area a value of 96.48.The downstream benefits (current and poten ti al ?) of waler from the Rio Cabuyal were estimated at $2,000,000. In order to map the economic value of lhe water benefil, it is fírst necessary to determine lhe spatial variabilily of lhe production [unction, i.e. where is the water coming from ? Ideally, I would have liked to know how much water flows in lo the Rio Cabuyal from each (5m) cell in the catchment area. As these data were not available, Ihe spatial variability of the production function taken as the variations in flow cates at different points in the river.The production [unction (or strength) of three sections was calculated on the basis of the flow rate from the section: The location of the sample points 1,2 and 3 on the Rlo Cabuyal was known. These were used as origin points in the TRACE cornmand to select all the streams upstream of that point (but in the case of 2 and 3, downslream of Ihe previous sample point). Once slream coverages for sample points 1,2 and 3 were selecled, Ihe calchment areas for Ihese slream seleclions were obtained though visual interepretation (using SELECTPOL YGON) of Ihe DTM. The catchment areas contained 5 m cells, each with Ihe value l. Again, as with the water tanks, il was assumed that all cells within the same catchment area contributed the same quantity of waler to the Rio Cabuya!. The number of 5 m cells in each catchment area was known [rom the catchment area grids and was used to ca1culate the benefit value for each produclive cell: The total downstream benefit value for the Rio Cabuyal was $2,000,00ü. This figure was then divided into the three sections on the basis of their production vaJue (% of total flow cate). These figures were then subdivided among the number of cells in each section's catchment area to give benefit vaJue per cel!. The catchment grid for each of the three sections was multiplied by the appropriate benefit value (1.99, 1.12 and 1.25) to give three economic value maps for downstream benefits.The following grids were produced:/paloma/cauca/jeremy/va /paloma/cauca/jeremy/vb /paloma/cauca/jeremy/v 1 /paloma/cauca/jeremy/v2 /paloma/cauca/jeremy/v3 /paloma/cauca/jeremy/valt economic value of La Esperanza economic value of El Oriente downstream economic value -for river section 1 dowllstream ecollomic value -for river section 2 dowllstream ecollomic value -fOI river sectioll 3 total economic vaJue = va + vb + vI + v2 + v3 AML to display total ecollomic value grid:/paloma/cauca/jeremy/jerem.aml ....,-","tokenCount":"1886"} \ No newline at end of file diff --git a/data/part_3/8427981908.json b/data/part_3/8427981908.json new file mode 100644 index 0000000000000000000000000000000000000000..27d2a28c6afbfada8a341718e311358e67764ea7 --- /dev/null +++ b/data/part_3/8427981908.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"5efa60bcdc066fb0b731c3505a3a5ba0","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/29632e61-7477-4543-98c9-39582be252cd/retrieve","id":"-1149748453"},"keywords":["Infomediaries","climate-smart agriculture","teaching climate change","climate change adaptation"],"sieverID":"d3837bdd-5266-4828-83e0-4c06584a9b5b","pagecount":"33","content":"While efforts to adapt to the impacts of climate change have generally increased, the impression is that there is a negligible effort to include the vulnerable areas in the agenda. This paper seeks to fill in the gap by presenting an agricultural extension mechanism to tap high school students as information providers of climate-smart rice agriculture information in their rice-farming communities. This paper looks at the characteristics of the high school students who served as infomediaries as well as their information sources and perceptions on climate change; the best teaching media that can be used; and the infomediation pathways that can be drawn from this initiative. Two survey rounds, 2014 (n=) and 2015(n=), were used as data sources. Focus group discussions and interviews were also conducted. Chi-square tests were also employed. Data show that females are more likely to be infomediaries than males.Schools serve as the primary sources of information on climate change, and students generally equate climate change to extreme weather events such as drought. Various teaching media explored seem to be useful in various development contexts. Teachers are seen as the champions of this initiative. Hence, this initiative rests heavily on the extent of capacity enhancement that can be extended to the teachers so they are in a better position to train their students in the future.The agriculture sector is among the most vulnerable sectors when it comes to climate change adaptation (Lasco et al., 2015). There is massive evidence on the far-ranging impacts of climate change on agriculture such as increased prevalence of pests and diseases, significant yield reduction, and heat stress among animals (Thornton et al., 2008;Comiso et al., 2014). In the Philippines, this data is most relevant as agriculture remains the major driver of the economy and that there are more than 2 million households who are dependent on rice farming. In the past, massive rice yield loss was documented owing to the El Niño episode (Tacio, 2014), which prompted the country to increase its level of imports. Farmers and fisherfolks remain as the poorest sectors of the Philippine population (NSCB, 2014).While there has been a sharp increase in the climate change adaptation reports, particularly in the grey literature, the general impression is that there is a negligible effort to include the most vulnerable populations (Ford et al., 2014). It is known that access to climate information (Di Falco et al. 2011;Roco et al., 2014) and extension (Di Falco et al., 2011;Truelove et al., 2015;Gbetibouo, 2009) is positively linked to adaptation. This is something that may be absent in most rural and remote communities in the Philippines. Being the world's second largest archipelago coupled with challenging terrains makes it difficult even for the most wellintentioned agricultural extension workers or those tasked to deliver advances in agriculture to farmers to visit these areas. Hence, there is a need to come up with creative ways on how to address this \"adaptation deficit\" (Ford et al., 2014) in these remote rice-farming communities in the Philippines. Adaptation deficit is simply the gap in understanding what works best when it comes to climate change adaptation (Ford et al., 2014).In this paper, the experiences in mobilizing young people to serve as infomediaries for CSA under the Infomediary Campaign will be discussed. A short background about the Campaign is provided in the next section. The data sources from the action research conducted span 2 years of youth engagement to serve as CSA infomediaries. This design has allowed the authors to carefully investigate this matter especially that one of the main activities of the campaign is the integration of CSA lessons in the curriculum of the participating schools.This paper seeks to explore the idea of mobilizing young people for climate-smart agriculture. Specifically, it aims to ask how young people can be mobilized to serve as infomediaries (information providers) on CSA. The specific objectives of this paper are to: (1) show that young people can be mobilized as infomediaries on CSA; (2) characterize young people according to their knowledge, perception, and sources of information on climate change; (3) identify teaching media that can be effectively used in teaching about CSA to students; and (4) discuss infomediation pathways on CSA that can be drawn from this initiative.Conceived in 2012, the Infomediary Campaign is PhilRice's initiative to engage the youth in agriculture. It is being implemented in 108 high schools in collaboration with the Technical-Vocational Unit of the Department of Education. The key concept is to mobilize high school students to serve as information providers in their remote-rice farming communities (Manalo et al., 2013). The argument for this is while it is difficult to visit the individual houses of farmers especially those who live in geographically disadvantageous areas, their children converge in schools. Hence, the school can serve as the nucleus of agricultural science.The Campaign has three main components: Read, Surf, and Text. The Read component covers the printed publication needs of the schools. Most of these high schools do not have comprehensive resources on rice. Hence, PhilRice, being the lead agency in rice science and development in the Philippines, is in the best position to provide these reading materials. Also, many of the participating schools do not have electricity in their areas. Hence, the reading component is among the very few strategies that will work in conveying agricultural information in these communities.The Surf component introduces the students to the PinoyRice developed by the Open Academy for Philippine Agriculture. PinoyRice (www.pinoyrice.com) is an information portal that contains plenty of information on rice farming in the Philippines. It has downloadables such as learning modules, powerpoint presentations, and technology videos.All of these are free for downloading. Considering that many of the participating schools are located in remote communities, most of them comprise the so-called bottom of the pyramid, an offline version is available. This way, the students do not have to access the Internet to use PinoyRice. All they need is the CD with the whole portal in it, and from there they can do the searching. The Text component introduces the students to the PhilRice Text Center (PTC), also developed by OpAPA. PTC is an SMS platform that caters to all queries on rice farming in the Philippines. There are Text Center agents who respond to the queries.Aside from the key components, the Campaign also has its main activities. They are the Infomediary Quiz Bee and FaceOff, putting up of rice garden managed by the students, and the regular monitoring and evaluation activities. The Infomediary Quiz Bee and Face Off are edutainment (education and entertainment) mechanisms of the Campaign to gauge the knowledge of the students on rice and rice-based farming systems and to assess their credibility as infomediaries. The students answer three sets of questions in the quiz bee, which are comprised of multiple choices, identification, and practical questions. The idea is to present farming in the most engaging way possible. This method, education and entertainment) is strongly supported in the literature on engaging young people in development initiatives (Whiting, 2009). The Faceoff Round is the last part of the Quiz Bee where farmers in the community are invited to ask questions to the students. The students do not have to know the answer to the questions. They just need to know how to find the answers from the PinoyRice.A laptop is provided during this round. After which, the farmers answer a 5-question survey, the Credibility Index, that basically revolves around the credibility of the students as infomediaries. The principle behind the FaceOff Round is to address concerns relating to the apprehension of the parents to support their children to be engaged in agriculture-related tasks (Punch & Sugden, 2012;Manalo & Van De Fliert, 2014). Additionally, the thought that farmers will doubt what the students will say has always been present considering that they have been farming all their lives.The rice garden aims to give the students some hands-on experience in growing rice. This will also help them gain more confidence when they talk about advances in rice farming to their parents. It has been reported that children learn best or are more productive when they are actively engaged rather than being mere receivers of information (UK STC, 2007).Since 2014, the Campaign has shifted its focus to climate-smart agriculture with the CGIAR Research on Climate Change, Agriculture, and Food Security (CGIAR CCAFS) as its main partner together with the Philippines' Department of Education (DepEd). Under this framework, the same activities and key components are being implemented with a few modifications and additions. Among the modifications is the focus on CSA in the Infomediary Quiz Bee questions. The poster-and film-making contests are among the additions.Under the auspices of this project, participating schools were given three CSA modules and teaching guides. They are on Climate Change 101, Climate Change Mitigation Strategies, and Climate Change Adaptation Strategies. All three modules are in Filipino.Climate Change 101 contains basic information on the science of climate change and its impact on rice production. The aim for this module is to highlight the science and so avoid communicating fear among students. It is known that fear does not motivate action when it comes to climate change adaptation (IPCC, 2007). Climate Change Mitigation module contains the different ways by which people contribute to worsening the phenomenon and the ways by which contributions to lessen climate change impact can be made possible. The PalayCheck System, which is an integrated crop management system and PhilRice's banner program for favorable ecosystems, is extensively discussed in this module. The Climate Change Adaptation module contains strategies for rice farmers to adapt to the impacts of climate change. Palayamanan or rice-based farming systems, which is PhilRice's banner program for unfavorable ecosystems, is extensively discussed in this module.The Teaching guide serves more like a script for the teachers. This is a necessary intervention to assist the teachers in more effectively teaching this subject matter especially that materials on climate change and rice production are not always adequate.A.This paper has two main data sources: the 2014 and 2015 surveys conducted under the project. The 2014 survey was conducted (n=388) in 8 participating schools (Table 1). All students directly engaged in the Campaign, about 50 per school, were surveyed. Crops production majors comprised the majority (52.3%) of the respondents. Likewise, 67.5% of the respondents were females. Most of the respondents were from Grades 8-10 and 13-18 years old. Lastly, 56% of the respondents came from non-rice farming households. Data from the 2014 survey are used in establishing the profiles of the infomediaries and in responding to the objective concerning the teaching media that can be used in teaching CSA. The 2015 survey (n=482) was conducted in 9 randomly selected schools from the 108 participating high schools nationwide. Five of the 9 schools were those closely engaged in 20141 while the other 4 were engaged closely in 20152. The purpose of dividing the 9 schools into two (2014 and 2015 sites) is to establish points of comparison for some areas of interest such as on the perception of the students on climate change especially how it impacts on rice production and the information sources of the respondents on climate change. This is important as this would inform the strategies that are worth pursuing. Age range of the respondents is 13-16 years old. Respondents were 274 males and 208 females. Most of the respondents were in grade 9 and above (385). The students were taking crop production (266), horticulture (151), and other courses (52). Additionally, 71% of the respondents fall under the 1 For brevity, sites closely engaged in 2014 will be referred to, from hereon, as 2014 sites 2 For brevity, sites that will be closely engaged in 2015 will be referred to, from hereon, as 2015 sites 13-15 age range. Data from the 2015 survey are used in answering the questions relating to the perception, knowledge, and sources of information on climate change of the students.Overall, 870 students participated in the surveys. Their characteristics were laid down in the previous section. Some more details are provided in Table 1. For the qualitative method, basically focus group discussions (FGD), research participants were the teachers trained by the Campaign, TecVoc unit heads, and the school principal in each school. The communities surrounding the research sites are all agricultural with rice as the main crop. Vegetables and some fruit-bearing trees are grown in most of the sites. Most of them are far from the main road and therefore have some accessibility issues.This paper utilizes data from a mix of qualitative (FGDs, in-depth interviews, participant observation) and quantitative (survey) methods. Details of the surveys were provided in the previous section. For the FGDs, discussions revolved around issues and strategies in campaign implementation. There were 17 FGDs conducted, 1 each per school. In-depth interviews were conducted with some of the participating teachers to investigate on the innovations that they did in implementing the project. A case study drawn from the in-depth interviews and FGDs is presented towards the end of this paper.Descriptive analyses were done with the survey data. Chi-square and t-tests were employed to make sense of the data gathered. Data are presented in tables and in frequencies and percentages. For the qualitatively derived data, thematic analysis was employed. The data are presented in tables.Using data from the 2014 survey, this section will characterize the CSA infomediaries.Searching for information by reading publications, sending SMS to the PTC, or surfing through the PinoyRice and sharing them with the farmers in their community are the manifestations of being an infomediary.Chi-square tests were employed (Table 2). Being an infomediary is gender bias. Females (p=0.071) are more likely to share than males, although the margin of difference was not well pronounced. This can mean several things but among the more important points are creating avenues to optimize the infomediary potential of female high school students. The second point is to create platforms by which the potentials of both genders can be optimized. Noncrop production majors are also more likely to share information than crop production majors (p=0.052). This is something that is worthy of further investigation, but in the literature, among farmers engaged in Farmers Field School in Iloilo, Philippines, sharing was not obvious (Rola et al., 2002). To some extent, learning was kept to themselves. This somehow relates to the finding as those who are supposed to be more interested with the subject matter and are therefore expected to share their learnings did not always function as infomediaries.Land ownership does not seem to affect the proclivity of young people to become infomediaries. Hence, this means that their being an infomediary is not at all affected by their land ownership status. When students share CSA information, they then become one of the important players in the climate change adaptation chain. Lastly, being a CSA infomediary does not seem to be affected by the familial background of the students. This means that act of sharing is possible regardless of the livelihood source of their families. A critical reading of this finding would suggest that perhaps the act of sharing CSA information remains relevant to the students as they came from rice-farming communities even as their own household does not heavily rely on farming. At some point the students are a part of a bigger community, and hence, household-centric analysis may sometimes not be very useful. This then is consistent with Amartya Sen's Capability Approach, which says that people will value something that they have a reason to value (Grunfeld, 2007). The next section will discuss the various media used in teaching CSA. As mentioned, one of the key activities of this initiative is the integration of CSA modules in the curriculum of the participating schools. In this action research, several media were used to convey CSA lessons.Using 2014 survey round as well as interviews with participating teachers, the next section will inform which media are best to use in bringing thee CSA agenda in the classroom. Pictures and videos were also shared in the online and offline versions of the PinoyRice.On the other hand, strategies that required face-to-face interactions likewise proved relevant. This is true in the case of school programs and field activities. School programs were not as popular as other communication tools/strategies in the sense that not all had the chance to hold one relating to the campaign. Those who initiated at least one big school activity, however, managed to drive home the key messages of the campaign. The case of LAIHS illustrates this. Seventy-eight percent of the respondents reported they used this for disseminating CSA. The school organized a field day where local executives and parents were invited. This same activity was documented in CRVS and in SJNAIHS. These schools do have the capability to mobilize their community, which is in part a big help in disseminating advocacies relating to CSA. Hence, this is another mechanism that the campaign should focus its attention on-how to support schools in conducting community-based events. Moreover, in select schools where the Infomediary Quiz Bee was conducted, the team noted a different Done properly (during the morning, in groups, fun way, or in the afternoon as they no longer have to clean themselves for their next class), field work can be a good practical tool. This is true in all schools especially in SSNCHS. Learning by doing is something that is emphasized in this activity. In the Infomediary Campaign Facebook Group, there is massive documentation of how some students enjoyed this activity. UK STC (2007) noted that active engagement of young people produces more productive results as opposed to just letting them be passive receivers of intervention. More involvement of females is one thing that should be improved in this activity. Scheduling was also an issue as some did the planting when the sun was already high up. Hence, students no longer wanted to participate. These small things should be attended to lest they downplay the big things that can result from this Campaign.There are several lessons that can be drawn from these findings. First, the findings reinforce the need for context-specific mechanisms. This is something that has been echoed quite a few times in the climate change adaptation discourse. It is said that interventions must be something that is organic from the community (McNaught et al., 2014;Diehl et al., 2015).Second, and which needs to be highlighted is the need to ponder on how different media are useful. Often, there is the so-called ICT bias when it comes to dealing with young people.ICTs are seen as a \"magic wand\" (Mansell, 2006) as though it can address all concerns especially if the tech-savvy young people are concerned. It should be noted that ICT infrastructure remains challenging in many rural areas where the agricultural communities are. In the previous work of the authors, it was noted that there are areas with no electricity (Manalo et al., 2014). Hence, in no way will ICT platforms be useful in these areas. World Bank (2011) noted that development interventions must not think of how to fit in ICT as a solution, rather explore all possible solutions (not just ICTs) to the development issues at hand.In the 2015 survey data, 99% of the students reported they have already heard about climate change. The disaggregated data on the students' perceptions of the impacts of climate change on rice production (Table 4) offer several insights. It seems palpable that the percentages for increase in temperature, typhoon and flood, and drought are higher in 2014 sites than those in 2015 sites. The result for drought (Table 3) is statistically significant (Sig. 2-tailed t=.02700). A plausible explanation for this is that schools that have been engaged since last year may have been more aware of climate change owing to the various activities conducted in their respective schools. It should be noted that while all students surveyed are new to the Campaign, those coming from 2014 sites must have participated in at least one Infomediaryrelated event where CSA must have been tackled. Additionally, the \"end of the world\" and \"no idea\" categories likewise scored low, which indicate that the science of climate change has been well communicated. Some of the notable rice-producing provinces such as Isabela, Nueva Ecija, and Leyte, seem to have felt the impact of climate change through increase in temperature. Typhoon and flood were observed to be highest in RDCAS (Nueva Ecija). The students explained during their participatory drawing how typhoon Santi swept away their crops. These findings resonate observation that people tend to associate impacts of climate change on recent events (Dang et al., 2014) or there might be some confusion between associations related to weather (short-term) and climate (long-term) (Gbetibouo, 2009) There are several important points that can be drawn from these findings. First, it is imperative that the scoping studies look into the perception and knowledge of the students on climate change as perception and knowledge are important factors before anyone can be mobilized for action.The IPCC ( 2007) noted that how one interprets information (perception) is more important than the information per se in the adaptation process due to the cultural, societal, and other contextual factors.The findings suggest that the implementation should focus on how to best mobilize students for action knowing that most of them are already aware. It is advised that for climate change adaptation to be successful, one should veer away from stand-alone climate change awareness campaigns (McNaught et al., 2014); more in-depth learning and understanding is necessary (Harvey et al., 2012).More than half (55%) of the students reported they learned about climate change from their respective schools. This is an important point as during the time of data collection, teachers who were trained on CSA and rice production have already lectured on this topic. In 2014, students heavily relied on traditional media outlets such as the TV, radio, and newspaper as sources of information on CSA (Manalo et al., 2015a). Hence, this goes to show that the information sharing mechanism (teacher to students) in place seems to be working. Hence, if the schools will be properly mobilized on CSA, they can play pivotal roles in helping farmers manage the impacts of climate change. On hindsight, the findings can be read to have several implications as well. First, this finding is favorable as far as the modules are concerned. This means that the modules developed under this initiative were put to good use. This reinforces observation of Kabir et al. (2015), although their study is under the health domain of climate change, that modules are effective in improving the knowledge of the students on this subject. The authors, however, concluded that the effectiveness of modules in influencing behavior is yet to be seen. Second point is the need for a more focused and high-quality engagement of teachers on climate change, and for the purposes of the project, on CSA.In the Philippines, content will be a major issue as teachers have inadequate access to teaching materials on CSA. Filling in this gap means that schools can serve as a reliable information hub in these rural communities. In the literature, access to information on climate change is positively linked to adoption and/or adaptation (Dang et al., 2014). The third point relates to how the teachers should be capacitated so they have everything they need to step up this initiative. As climate change is an important topic, investments on training good communicators who will talk about this subject must well be in place (McNaught et al., 2014;Diehl et al., 2015;Lebongha et al., 2015). It is known that among the barriers to adapting and/or adopting CSA technologies is the quality of the information sources (Dang et al., 2014) and the relationship among sources of information and their intended recipients (IPCC, 2007;Lebongha et al., 2015). If teachers are well capacitated, they can then be more effective in addressing the \"adaptation deficit\" on CSA.The disaggregated data on where the students first learned about climate change establish quite a number of things (Table 6). The data suggest that for 2014 sites, schools were the number one source of information. This finding (Table 5) is also statistically significant (Sig. 2-tailed t=.05).This means that the information sharing in place is working. This is not yet very obvious in 2015 sites as most of them still rely on traditional media (radio, TV, and newspaper). For 2014 sites, use of internet to know more about climate change is significantly higher than in 2015 sites. SJNAIHS and CNHS reported highest percentage of Internet usage. Evidence of internet usage was present in these schools as validated during the field visits such as the introduction of PinoyRice in their respective classes. Cases of peerto-peer sharing, albeit just a few, took place among 2014 sites (5.32%). Further investigation may be in the right direction: To what extent do they bring into their public spheres their knowledge on CSA? The fact that instances of peer sharing transpired means that CSA merits a space in their public sphere. Corollary to this point is to investigate how this peer-to-peer sharing on CSA can affect positively or negatively sharing of information to farmers. To what extent can it be reinforced so it remains as an affirmative action and useful in addressing the \"adaptation deficit\" (Ford et al., 2014) on CSA? In the past 2 years, teachers have shown that they form a significant part of the infomediation chain. They did plenty of innovations on their own to best implement this initiative in their respective areas. Hence, they are the champions of this initiative (Manalo et al., 2015). Ramirez and Quarry (2009) note champions are people who are driven and passionate about stepping up the development initiatives so it is able to touch more lives. Table 7 shows some of the innovations initiated by the teachers. These activities were all done by them with minimal support from the project. Figure 5 shows the infomediation process documented during the 2014 implementation of the Campaign. There are three communication pathways for CSA information to reach the farmers, and in all three the teachers are present. From PhilRice where they had their training on CSA and rice production, the teachers were instrumental in bringing knowledge to farmers in various ways: either through their students, themselves, or through the PhilRice mechanisms, which they introduced to their students.This finding has several implications. First, there is a need to invest on training the teachers. This is something that was highlighted earlier. The second point is to ensure that the teachers are trained both on the technical aspects of CSA but also on the extension side as well. It is supported in the literature that adaptation is greatly enhanced by the quality of information passed on the relationship of the people involved (Baloyi (2011) as cited by Lebohang et al., (2015) in the infomediation process. Quarry and Ramirez (2009). The location of the school, which sits in an agricultural, particularly a rice-farming community is favorable for this project. Previously, it was identified that the Infomediary Campaign is far more successful in agricultural areas as opposed to areas with plenty of livelihood sources. This is something that is strongly supported by Amartya Sen's Capability Approach, which basically says that people will value something that they have a reason to value.A supportive organization is also supported in the previous work of the authors (Manalo et al., 2014;2015). Likewise, it is said that for any development intervention to succeed, it must be taken into account that the organization is half the methodology (Bessette, 2004, p. 104). The favorable behaviour of the students and the whole community towards this project can be explained by the high relevance of the project for them. It is known that context-specificity is a major consideration for any climate change adaptation mechanism.This article cogently presents a strategy on how to assist some of the most vulnerable populations to adapt to the impacts of climate change. As it stands, there seems a negligible effort to include the most vulnerable groups in the adaptation agenda even as the number of mechanisms to arrest the impacts of climate change are in place. Drawing on from the findings of this study, the need for context-specific strategies in mobilizing young people as CSA infomediaries in the rice-farming communities is extremely important. The social milieu and the various social actors and actresses in the community must well be considered to inform the interventions that will be put in place. This study has plenty of practical implications. Among them is the need for a supportive macro structure. This initiative heavily rests on having a structure and /or organization (the DepEd) that permits the existence of the Campaign and all the activities connected to it. This is something that is not always present and not always easy to realize.Strong organizational support is central to the success of this initiative. Another thing is to seriously consider training of teachers as they are the champions of this initiative, aside of course from the students themselves. Careful reflection is needed on how to actively capacitate them so they can achieve even bigger things for their respective communities. Lastly, what this article has shown is that young people can be a force to be reckoned with as far as being infomediaries on CSA is concerned. While this paper has provided plenty of insights on the profile and some youth engagement styles, the strategies on how to successfully engage them remain open for practitioners and scholars to explore. Research supported by: Fund CCAFS is led by: Strategic partner:","tokenCount":"4913"} \ No newline at end of file diff --git a/data/part_3/8444214854.json b/data/part_3/8444214854.json new file mode 100644 index 0000000000000000000000000000000000000000..0d22fec757947905d16af214f2f614ab75f7614b --- /dev/null +++ b/data/part_3/8444214854.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c319f750b7f593970421fa36f2d9e962","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/a88ab527-6d13-4a41-bb32-41ac435533a9/content","id":"678150890"},"keywords":[],"sieverID":"374c5ece-a436-413d-b024-3dbbb5bb9e65","pagecount":"1","content":"Since the first detection of race TTKSK (Ug99) of Puccinia graminis f. sp. tritici in Uganda in 1998 (Pretorius et al. 2000), it has been a priority to track its further spread to other wheat growing areas. To date, 10 variants in the Ug99 race group have been detected in 12 countries, i.e., Uganda, Kenya, Ethiopia, Sudan, Tanzania, Eritrea, Rwanda, South Africa, Zimbabwe, Mozambique, Yemen and Iran (Patpour et al. 2015). In the 2014 crop season, the presence of virulence to Sr31 in Egypt was suspected based on preliminary field observations of high infection on sources of Sr31 planted as international stem rust trap nursery at 1) Sakha Agricultural Research Station in Kafrelsheikh (31.094059° N, 30.933899° E), 2) Al-Sharqia (30.601400° N, 31.510383° E), and 3) Nubaria (30.91464° N, 29.95543° E). At Sakha, wheat cv. PBW343 (carrying Sr31) was scored 30MS-S, and the monogenic line Benno Sr31/6*LMPG was scored 20MS-S at Al-Sharqia. Three samples from each of these lines were sent to the Global Rust Reference Center (GRRC, Denmark). At Nubaria, stem rust was observed on wheat cvs. Misr-1, Misr-2, Giza 168 and Giza 171, and infected samples were collected and sent under permit to the Foreign Disease-Weed Science Research Unit (MD, USA). Urediniospores of each sample were recovered on susceptible wheat cv. Morocco and McNair 701. Twenty-three and 11 single pustule isolates were derived and analyzed at GRRC and USDA-ARS Cereals Disease Laboratory, respectively, using 20 North American stem rust differential lines following standard race-typing procedure and infection type (IT) criteria determining virulence and avirulence (Jin et al. 2008). In addition, three supplemental tester lines of Siouxland (carrying Sr24+Sr31), Sisson (carrying Sr31+Sr36), and Triumph 64 (donor of SrTmp) were included to confirm virulence/avirulence to Sr24, Sr31, Sr36, and SrTmp. The experiments were repeated two to three times. Three races in the Ug99 race group were detected; TTKST (four isolates, IT 3+4 for Sr24, Sr31 and cv. Siouxland) from Al-Sharqia, TTKTK (13 isolates, IT 4 for Sr31, SrTmp and cv. Triumph 64) from Sakha, and TTKSK (2 isolates, IT 4 for Sr31) from Nubaria. This is the first confirmation of races in the Ug99 race group in Egypt, thereby extending the geographical distribution of Ug99-related races. Since Egypt may play a role as green-bridge for Puccinia graminis f. sp. tritici between East and North African countries and the wheat belts in the Middle East and Mediterranean region, the rust surveillance efforts should be intensified in affected countries as well as in neighboring regions. ","tokenCount":"412"} \ No newline at end of file diff --git a/data/part_3/8445656501.json b/data/part_3/8445656501.json new file mode 100644 index 0000000000000000000000000000000000000000..5143d59cc51c4fbc7dda6918f29cb16993a5f6db --- /dev/null +++ b/data/part_3/8445656501.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c867ed66a2b6e25dad863be0268d5dae","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/f1ebb684-64c6-47c9-b057-23788dc3dc15/retrieve","id":"-119522130"},"keywords":[],"sieverID":"8d7667cd-7797-4926-bea6-07e235ca6253","pagecount":"1","content":"Human behavioral factors have been found to be central in the transmission of Rift Valley fever. Consumption of contaminated meat and milk in particular have been identified as one of the key risk factors for the transmission of Rift Valley fever in humans.In pastoral communities, livestock is the main source of livelihood from which many benefits such as food as well as economic and cultural services are derived. Zoonotic diseases therefore have a great impact on pastoral communities livelihoods.However, lay perceptions regarding the transmission of these diseases including Rift Valley fever hampers their effective control.This study investigated the lay perceptions of risks of Rift Valley fever transmission in a pastoral community in northern Kenya.. Though the communities in this region were aware of Rift Valley fever, they did not have elaborate information regarding the disease transmission dynamics to humans.To avoid misconception about transmission of the disease, intervention strategies, require to be accompanied by comprehensive explanations of the dynamics of its transmission.It is necessary to develop appropriate interventions that take into consideration, lay perceptions of risk factors for the disease and communities' livelihood strategies. These areas were chosen because they were one of the regions where the Rift Valley fever outbreaks have constantly occurred and at a great magnitude. The population depends on pastoralism for livelihood.Data was collected using focus group discussions (FGDs) and narratives guided by checklists. Participatory mapping and ranking exercises were used to understand the communities perception of Rift Valley fever causality.The participants reported that they had experienced Rift Valley fever in their livestock especially sheep and in humans both in 1997/1998 and 2006/2007. However, they believed that infections in humans occurred as a result of mosquito bites and had little to do with their consumption of meat, milk and blood from infected livestock.The participants in this study indicated that they had heard of the risks of acquiring the disease through consumption of livestock products but their experiences did not tally with the information they had received hence to them, Rift Valley fever was not transmissible through their dietary practicesData was transcribed, coded and analysed according to emergent themesThe eight FGDs consisted of 44 women and 41 men in total while four of the informants for the narrative were men and two were women (Table 1) ","tokenCount":"378"} \ No newline at end of file diff --git a/data/part_3/8447492422.json b/data/part_3/8447492422.json new file mode 100644 index 0000000000000000000000000000000000000000..dae89c57b09275071b58aaa74162b0d930b02d98 --- /dev/null +++ b/data/part_3/8447492422.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"ffd5372675d0e9cc431d2d1d9b701841","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/bde19972-81d5-496a-ab2f-320e46a9e825/retrieve","id":"1378235073"},"keywords":[],"sieverID":"dda2841e-3ad7-4205-bd48-9ed75d8527d9","pagecount":"24","content":"resilient and drought adapted forage options for mixed farming systems in Northern Ghana. Montpellier (France): CGIAR Initiative on Mixed Farming Systems. 24 p.The Savannas are characterized by a distinct wet and dry season with seasonal variation in temperature and rainfall (Holdridge,1947). The vegetation is characterized by a mix of grasses and scattered trees, forming a unique landscape with an adaptation to periodic drought conditions (Scholes & Archer, 1997). The soils in the savanna are characterised by a generally well-drained and moderately nutrient-rich conditions which influences the types of crops grown in the zone (Lal (2015). The savanna has a potential for agriculture with a strong support for a wide range of crops and livestock.In Ghana, the savanna comprises the coastal and guinea zones with the latter covering five of the 16 regions (Northern, North-East, Savanna, Upper West and Upper East regions). The wet season occurs during the months of May to October with the dry season occurring from November to April (Ayantunde et al., 2000). The soils are often sandy with potentially high tendency for soil degradation and erosion especially during the dry season (Osei and Agyeman, 2003). The unique climate condition within the Savanna often limits crop production to the approximately five months of rainy season with little or no production in the dry season. The dry season is usually dominated with livestock production and moderate irrigation farming.Livestock production is a significant component of the agricultural activities within the savanna agro-ecological zone of Ghana providing livelihood support for a large population of the inhabitants of the zone (Yami and Merkel, 2008). The dominant livestock species in the region are cattle, sheep, goats, poultry and pigs. Livestock contributes to the food and nutrition security, employment and income source for most small holder farmers, draught power, production of hide, skin, manure, capital accumulation. Livestock contribution to Agricultural GDP was 12.79% in 2021 (SRID, 2022). The estimated livestock population in Ghana was 98,552,000 (SRID, 2020) comprising cattle (2.2%), sheep (5.8%), goat (8.5%) pig (0.8%) and poultry (82.6%). The Savanna regions accounts for the highest population of ruminant livestock in Ghana. These livestock derive their nutrition predominantly from natural pasture. The wet season is usually characterised by widespread cultivation of food crops on most natural grazing lands thereby reducing availability and accessibility of forage. This practice results in most farmers tethering their animals and feeding them on browse plants and other home-generated agro-by-products. Anane et al. (2023) identified about 12 perennials and 11 and annual forages in the savanna agro-ecological zone. Anane et al. (2023) reported an average dry matter yield of between 0.63 t ha −1 to 13.43 t ha −1 , with the average dry matter yield being 3.09 t ha −1 during the peak of the raining season.In the dry season where there is virtually no crop cultivation and animals have access to the grazing lands, the quality of forage is very low with CP levels of some grasses dropping from 12.5% in the wet season to as low as 3% in the dry season (Alhassan et al., 1999). Olubajo and Oyenuga (1970) found an 8-10% difference in the digestibility of forages between the rainy and dry seasons in Nigeria, which has similar climatic conditions as Ghana. The grazing of cereal crop residues on farmlands in the dry season is a common phenomenon (Ansah et al., 2006). Crop residues such as rice straw and maize stover together with overgrown and dry forages serve as the main energy diet in the dry season. The residues are obtained from farmers' own farms or bought from other farmers (Ansah et al., 2014). These crop residues normally complement standing hay and, in some cases, take the place of natural grasses in the range in providing the bulk of ruminant feed especially in the dry season. The quality of these crop residues is usually not the only challenge, but availability is limited as well due to rampant bush fires within the savannah zone. Rice straw, one of the common crop residues has been reported to contain a CP of about 3.3% (Avornyo et al., 2007). Ansah et al. (2011) found out that feeding ruminants solely on rice straw resulted in poor growth and high mortality.Large scale feeding of crop residues is also hindered by alternative uses such as fuel source, thatching and the problem of collection in view of the bulkiness of the residue and in some cases distance from settlements (MoFA, 1998). The legume-based crop residues, such as groundnut and cowpea haulms and vines are used as protein sources and are usually harvested and fed to ruminants, but due to problems of harvesting and storage, a lot of it is wasted (Ansah et al., 2014).The use of pods, fruits and leaves of trees as feed for livestock is gaining significant importance among farmers in the face of these feeding problems in the northern region of Ghana (Ansah and Nagbila, 2011). Leaves of trees or browse plants have been reported to maintain a high amount of CP and low fibre compared with grasses even in the dry season (Le Houérou, 1980;Pellew, 1980). The average CP content for all browse species have been reported to be 125 g/kg DM (Le Houérou, 1980). In Ghana, an average CP of 92.2 and 299 g/kg DM was reported for eight commonly fed browse plants (Ansah et al., 2018).Forage cultivation amongst smallholder livestock farmers is not a common practice and usually have no space in terms of land allocation within the farming systems in the savanna agroecological zone. The increase in livestock population and the accompanying rise in forage demand offers a great potential for pasture cultivation. Pasture cultivation has the potential for job creation, income generation, and climate resilience. Despite these potentials, pasture production is faced with some challenges that need to be addressed to make the industry attractive to farmers especially in the northern savanna agroecological zone. The challenges include land tenure and access to other planting resources, inadequate knowledge, research and extension services (Ibe, & Jibreel, 2018;Narteh, & Buah, 2014;Nyende, & Duguma 2010;Ayantunde and Fernandez-Rivera 2004).There have been a few pasture cultivation trials in the Northern savanna region of Ghana in the last decade. Shedrack et al. (2019) evaluated the growth and biomass yield of three accessions of Napier grass (16783, 16798 and 16840) from ILRI and a local variety in Ghana. The biomass yield after 90 days was 2,299 kg DM/ha 1,354 kg DM/ha 1,384 kg DM/ha 3,339 kg DM/ha for the 16783, 16798, 16840 and Local respectively. In another study where the Napier grass was harvested three times within the cropping season (first at 8 weeks and subsequently at 4 weeks intervals), the overall biomass yield for the local Napier grass was in the range of 5,000 kg DM /ha and 30,000 kg DM/ha (Ansah, unpublished handbook).In another study, Millet forage was cultivated as sole grass, intercrop, boarder or in selected spots within a Pigeon pea field and harvested three times within the five months rainy season. The three cutting periods produced a total biomass yield of 2,755.3kg DM/ha, 1,695.7 kg DM/ ha, 1,199.5 kg DM/ ha and 594.2 kg DM/ ha for sole grass, border, intercrop, and spot respectively (Tenakwa et al., 2023). Konlan et al. (2021) evaluated the biomass yield of two forage species Brachiaria ruziziensis and Sorghum almum in the Savanna agro-ecological zone. After 60 days of planting, the biomass yield recorded was 8.28 t/ha and 8.71 t/ha for Brachiaria ruziziensis and Sorghum almum respectively. Tenakwa et al. (2022) investigated the effect of cutting management on the biomass yield of Pigeon pea fodder in the Savanna agro-ecological zone. Pigeon fodder was harvested at 12, 16 and 20 weeks after planting and also after regrowth. The biomass at initial harvest was 3175 kg DM/ha, 5929 kg DM/ha and 6515 kg DM/ha for harvest at 12, 16 and 20 weeks respectively. The regrowth biomass yield was 1774.3, 1718.3 and 2443.7 kg DM/ha for the same harvest regime. The reviewed literature on the grasses (Napier grass, Millet forage, Brachiaria ruziziensis and Sorghum almumI) and the legume (Pigeon pea) indicates a potential to produce higher biomass compared to the yield from natural pasture to support animal production.Common livestock feed resources utilized by most smallholder farmers in Ghana are natural pasture, crop residues and agro-industrial by-product (Larfarge and Loiseau, 2013). In the dry season, the quality of the available grasses on grazing lands declines due to senescence, high ambient temperature and low soil moisture (Thornton, 2010). In the rainy season, the extensive cultivation of food crops limits animals' accessibility to pasture and makes grazing on natural pasture very limited. In this season, livestock farmers often placed their animals on restricted feeding regimes such as zero grazing (cut and carry feeding) or tethering to prevent them from grazing other farmers' crops. The limited grazing often leads to decreases in animals' weight gain and productivity due to the restricted feeding. Also, the sources of forage and browse plants that are being cut for zero grazing are diminishing and are very difficult to obtain. This restricted feeding regime consequently affects the overall productivity of animals and results in low animal performance and directly decreases farm output and farmers' income. This phenomenon has led to the search for alternative feed sources for sustainable production of animals. There is also a very low adoption of improved forage cultivation as fodder for feeding ruminants in Ghana and need to be investigated to determine the underpinning factors affecting the adoption and to improve technologies to encourage forage cultivation in the farming system. It is therefore important to appraise and evaluate the locally available forage species and introduce high performing forages into the farming system to increase feed availability and livestock productivity. Information on the locally available forage species and the challenges of incorporating forage production into the mixed farming system as one of the intensification pathways is very relevant for improved livestock production and general productivity of the farming system. Brachiaria (Urochloa spp.) and Panicum grasses (Megathyrsus spp.) are two important tropical forage species indigenous to Africa that are widely cultivated in Africa, South America, Australia and East Asia and have demonstrated success in transforming beef and dairy industries (Sokupa et al., 2023;Douglas et al. 1991). These grasses are valued for their adaptability to diverse environmental conditions and their ability to improve livestock productivity. They are perennial, fast growing with high biomass production potential, palatable and nutritious to livestock. They possess large root systems, fix carbon in soils, and are adapted to drought and a wide variety of soils, tolerant to shade, waterlogging and to pests and diseases. Brachiaria and Panicum grasses are extensively used for grazing, cut-and-carry, and silage and hay production. Improved cultivars are high yielding, responsive to fertilizer applications, persistent and can remain green long into the dry season. The objective of this research activity is to evaluate the suitability of improved Brachiaria and Panicum cultivars and hybrids for their integration into mixed farming system of smallholder farmers in Northern Ghana. A total of ten different grass accessions of Brachiaria and Panicum and one legume forage (Crotalaria juncea) were obtained from Alliance for Biodiversity and CIAT for evaluation (Table 2). At both sites, one ha was allocated for the forage trial. Brachiaria Mestizo Urochloa hybrid \"Mestizo\" Brachiaria hybrid GP3025 \"Camello\" Urochloa hybrid GP3025 \"Camello\" Brachiaria hybrid GP0423 Urochloa hybrid GP0423 Brachiaria hybrid GP1794 \"Cobra\" Urochloa hybrid GP1794 \"Cobra\" Brachiaria hybrid CIATGP1005BR \"Talisman\" Urochloa hybrid CIATGP1005BR \"Talisman\" Brachiaria Basilisk Urochloa decumbens cv \"Basilisk\" Brachiaria Marandu Urochloa brizantha cv \"Marandu\" Panicum Mombasa Megathyrsus maximus cv \"Mombasa\" Panicum Maasai Megathyrsus maximus cv \"Maasai\" Panicum Mun River Megathyrsus maximus cv \"Mun River\" Crotalaria juncea Crotalaria junceaPlanting was done on 22 nd July 2023 at a seed rate of 7 kg/ha. Two weeks after planting, the grasses were fertilized with NPK 23-10-5 at the rate of 60 kg/ha with the exception of the legume.Weed was manually controlled on regular basis.At the age of 6 weeks the grasses were harvested with a sickle at a stubble height of 5cm. The legume was harvested at 7 weeks at 50% flowering.Plant population was estimated with a 1m x 1m quadrat randomly placed over the 2 central rows at 4 weeks interval during establishment phase and at 8 weeks interval during the production phase. Tiller number was estimated by selecting 4 plants within the 1 x 1 m quadrat after 4 weeks of establishment and continued throughout the production phase. Plant height was measured with tape measure after selecting 4 plants within the 1 x 1 m frame at the same interval as tiller numbers above.Each plot was harvested initially at 6 weeks. The regrowth was harvested at 13 weeks and at 17 weeks. The fresh weight of the harvest was recorded per plot and a subsample of 400-500g was oven dried at 105 o C for 48 hours for dry weight determination.The forage samples were subjected to nutritive value analysis including Crude Protein (CP), Neutral Detergent Fiber (NDF), Acid Detergent Fiber (ADF), Acid Detergent Lignin (ADL), Metabolizable Energy (ME), Ash, Calcium (Ca), Phosphorus (P) and others. Results will be available early 2024.The data collected was analysed by ANOVA, with the grass varieties and harvesting periods as independent factors and the other parameters such as plant population, plant height, forage fresh and dry matter yield as dependent factors.Five farmers including two women were selected for this activity. They visited the forage plots, discussed the selection criteria and assessed the different forages.The planting of the forage seeds was done in July 2023 during three days, due to intermittent rains over that period. The seeds were sown in 10 rows per plot with 50cm between rows, at an average seeding rate of 42.5 kg/ha. Germination was observed within 3-8 days after planting.Weeds were removed in the field on the 3rd (Plate 2) and 6th week after planting using a hand hoe. A basal application of IDISALTM fertilizer (NPK 25-10-10) was carried out at a rate of 100kg/ha before the standardization cutting of establishing forages (Plate 3) at week six after planting.Data collection took place twice: at week 7 and 9after planting. Plant population per square meter on each plot was determined. Four plants in each plot within a square meter were randomly selected, and each plant height measured, and tiller number counted manually before standardization cut (Plate 3). Representative samples of one meter square at a height of 5 cm above ground level were collected and weighed to estimate forage fresh weight. Samples of the harvested forages were dried at 60 0 C for 48 hours to determine dry matter content and be able to calculate dry matter yields per ha.The dry samples of the harvested forages were sub-sampled and ground with a hammer miller to pass through a 2 mm sieve for nutritional analysis in the laboratory. The results will be reported as soon as they are available.Establishment of Crotalaria juncea was very poor and therefore this crop was left out of the analysis.The data collected was analysed by ANOVA using GenStat twelfth edition, with the grass varieties and harvesting periods as independent factors and the other parameters such as plant population, plant height, forage fresh and dry matter yield as dependent factors. Individual differences were determined using LSD at P<0.05 levels.Figure 2 shows that plant height was significantly different at all harvest periods with the Panicum spp. consistently being taller than the Brachiaria spp. The grasses were much taller in the second harvest (regrowth at 7 weeks after first harvest) than the first (6 weeks after planting) and third (regrowth at 4 weeks after second harvest). The tiller number of the grasses appeared to be increasing from the first to the third harvest and significantly differed at all harvest periods (Figure 3). The forage legume Crotalia juncea was tallest in the first harvest and its height declined after the second and third harvest (Figure 7). The biomass yield followed the same trend with the biomass decreasing after the first harvest (Figure 8). The results are presented in Tables 4 to 6. At the first harvest there were significant (P<0.05) differences between forage varieties for the parameters measured (Table 4), the Panicum varieties performing better than the Brachiaria varieties. The dry matter yield of the forages differed significantly (P=0.002) among the forages and ranged from 0.53 tons/ha (B. Basilisk) to 1.52 tons/ha (P. Mombasa). At both first and second harvests the plant population and plant height of the forages showed significant differences (P<0.05). The second harvest dry matter yield of the forages followed the same trend as at the first harvest but did not show significant differences (P = 0.32), P. Maasai recording the highest dry matter yield value of 13.04 tons/ha and lowest being B. basilisk with 8.04 tons/ha (Table 3).Generally the dry matter yield of the forages were higher than other results of forage trials in the same Savannah zone reported by (Shadrack et al., 2019;Konlan et al., 2021). At second harvest, there was still significant (P=0.033) difference in plant population and plant height (P<0.001) among forage varieties in line with the first harvest (Table 5). Similarly, Panicum species recorded the highest population and plant heights among the grass forage varieties in the second harvesting period. No significant differences were observed between the fresh and dry biomass yields of the forage varieties during the second harvest data collection.Table 4 shows significant interactions (P<0.001) in the cutting periods and forage grass varieties relative to fresh and dry biomass yield (Table 6). B. Cobra recorded the highest fresh biomass yield and dry biomass yield in the second harvest whereas B. Basilisk recorded the lowest fresh and dry biomass yield at the first harvest. No significant difference (P>0.05) was observed in variety, and variety by harvesting period interaction.• Based on their initial performance (up to four months after planting), the potential of the evaluated forages to produce quality feed seems high. • Panicum varieties performed in general better than the Brachiaria varieties. The Panicum cultivars grew faster. • Preliminary farmer evaluations did not favour Panicum over Brachiaria, especially the hybrids GP0423, Mestizo and Cobra were liked very much, the latter for its suitability as a cut-andcarry feed. • Both agronomic and farmer assessments might change as the dry season progresses and the Panicum grasses are likely to suffer more than the Brachiarias. ","tokenCount":"3050"} \ No newline at end of file diff --git a/data/part_3/8451378484.json b/data/part_3/8451378484.json new file mode 100644 index 0000000000000000000000000000000000000000..e4756bb7431f5e95789a1404b685ae3663d34032 --- /dev/null +++ b/data/part_3/8451378484.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"e3aa80149854cc709273c11e86722734","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/2f885bc2-cbb7-4f30-8f6c-a1133982c1d6/retrieve","id":"-1529090467"},"keywords":[],"sieverID":"ef492c97-e3ee-4a00-b0d1-2049a700d75c","pagecount":"4","content":"The Kenya government and international humanitarian agencies spent a combined total of US$ 1.56 billion on drought mitigation from 1998 to 2011 [1] . These droughts occurred in the arid and semi-arid areas of Kenya, which account for 80% of the total land mass. If this situation (where it is becoming more expensive to mitigate drought) is not reversed, the country's ability to achieve the Big Four Agenda will be seriously undermined. Food security is a central pillar to the realization of Vision 2030 as well. Improving drought management system is key to reducing the number of food insecure people in Kenya who were estimated at 2.6 million by January 2017 [2]. Improved monitoring of drought and timely Droughts are classified into three categories according to their magnitude: extreme, severe, and moderate droughts. The two growing seasons -the long rains and short rains experienced varying magnitudes of drought between 1973 and 2013. For the period of study, all the nine sites experienced 11 droughts, 7 of which were during the short rains and the rest during the long rains. More than half the years analysed experienced drought during the short rain season (Figure 2). The high frequency of droughts in eastern Kenya explains the persistently low yield of the lead crops such as sorghum, cowpeas and millet [3] . This results in relatively high levels of poverty and overreliance on relief food -especially in Makueni, Kitui and Tharaka-Nithi counties [4] . dissemination of early warning information are strategies to mitigate the adverse effect of drought. Increased knowledge and skills of early warning systems among stakeholders has the potential to reduce drought related risk and improve resilience of semi-arid communities, such as those found in Eastern Kenya.Effective early warning and monitoring of drought depend on knowledge of occurrence rate and spatial spread of drought. Such knowledge informs planning, implementation and funding of drought responses by government and humanitarian agencies. Against this background, this brief highlights the frequency of occurrence and severity of drought between 1973 and 2013 in eastern Kenya (Figure 1). (Tseikuru, Embu, Chogoria, Meru Met, Meru Forest).Consecutive droughts aggravate the impact of droughts on livelihoods and natural resources upon which people depend on. For an agropastoralist, failure of both rain seasons has negative impacts on crop yields, pasture and water availability.Marimanti -long rains; and Mutomo -short rains) (Figure 3). More droughts are reported in the short rains season -underscoring the vulnerability of this season to drought.Despite the vulnerability, agro pastoralists in eastern Kenya rely mostly on the short rain season [4,5,6] . To reduce risks associated with drought, overreliance on the short rains needs to be re-assed. Farmers need to increase area under crop during the long rains growing season. This will require the initiative of practitioners in the agriculture sector to intensify awareness and offer incentives to encourage farming during the long rains.18% 10% ","tokenCount":"476"} \ No newline at end of file diff --git a/data/part_3/8459679642.json b/data/part_3/8459679642.json new file mode 100644 index 0000000000000000000000000000000000000000..7bdb7490b480e06f88b0be2a5a3f4803989ef22b --- /dev/null +++ b/data/part_3/8459679642.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"1988ca02a9217d0f9bd2a234b6210419","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/6272e989-7e5a-4eb1-aedb-d714dee73513/retrieve","id":"-998578238"},"keywords":[],"sieverID":"8bdbc6a4-c722-40b4-a55b-285cc1274ae0","pagecount":"46","content":"https://climatesecurity.cgiar.org CGIAR aims to address gaps in knowledge about climate change and food security for peace and security policies and operations through a unique multidisciplinary approach. Our main objective is to align evidence from the realms of climate, land, and food systems science with peacebuilding efforts already underway that address conflict through evidence-based environmental, political, and socio-economic solutions.Climate change can potentially exacerbate the social, economic and political processes that lead to instability and conflict. Yet, there is insufficient localized and policy-relevant evidence on how exactly climaterelated security risks may emerge across different geographic contexts.The ClimBeR initiative held a 3-day workshop to understand the climate action needs of Kenya and to explore the main challenges towards integrating the climate security nexus in Kenya's climate change policy frameworks and action strategies.The linkages between climate, conflict, and human security are increasingly evident in Kenya. Given its high economic dependence on rainfed agriculture, climatic stressors such as rising temperatures, rainfall variability and increasing frequency and intensity of droughts and floods may seriously impact climatesensitive livelihoods relying on crop, fishery and livestock systems. The resultant pressure on available resources can then act as a trigger for conflicts, undermining peace and stability.While it is well established that climate variability and extremes do not directly lead to conflict, under certain conditions, unavailability and reduced access to water, pasture and food due to erratic climatic patterns may exacerbate conflict risk among communities who rely on these resources for their livelihoods. This complex nexus between climate impacts and risks of societal instability can materialize through a number of context-specific pathways.Failure to acknowledge the role of climate as a multiplier of human security risks can jeopardize the efficacy of national efforts to build and improve resilience. Further, adaptation strategies that are not conflict-sensitive might enhance existing tensions and grievances. Similarly, existing conflicts and insecurities can significantly affect the effectiveness of adaptation strategies.However, despite increasing recognition from international actors and policymakers that climate is worsening existing challenges related to vulnerable livelihoods and resource-related conflicts, there is inadequate evidence that could be used to inform policy processes and integrated solutions.Practitioners' Perspectives @NEIL PALMER/CIATA high-level panel of experts discussed how the links between climate extremes and variabilities and conflict are materializing across Kenya. • Insufficient evidence of where climate and security risk hotspots are in Kenya, and which groups are being impacted the most by these risks. An intersectional approach is required that focuses on gender dynamics and minority populations.• Low understanding of the interconnections between drivers of conflict and climate impacts, such as agricultural livelihoods, mobility, and political/election violence.• Limited investment for resilience in areas characterized by high risks of conflict and levels of inequality.• Ineffective integration of climate change and Disaster Risk Reduction (DRR) policies into county-and other sub-national level systems, to localize decision-making power and allow affected areas to make proactive decisions.• Need to address the challenge from a livelihoods perspective, not only from the perspective of policy sectors, and involve vulnerable people. Also need to emphasize a human-centric, human security focused approach.• Foster alternative dispute resolution mechanisms that work from the bottom-up, including many traditional resource management and conflict resolution mechanisms that can be strengthened.• Need for a regional focus given the cross-border nature of many conflicts (Uganda, Somalia, and Ethiopia).• The Global Peace Index (GPI) for Kenya dropped by 5%.• Kenya is recognized as highly vulnerable to climate change impacts, ranked 152 out of 191 countries in the 2019 ND-Gain index.• Climate can contribute to increased conflict, along indirect pathways, such as natural resources, agricultural production, food insecurity, inequality, and others -as outlined in the Intergovernmental Panel on Climate Change (IPCC) report 2022.• Hotspots tend to be areas where climate vulnerabilities, inequalities, and other sources of state fragility overlap. Climate change has been proven to act as a 'threat multiplier' in the area, worsening resource availability and compounding existing economic, social and political risks that drive violence.Despite existing evidence, the climate security nexus in the northern counties of Kenya manifests in different complex and context-specific ways that vary at the sub-national level.KEY TAKEAWAYS:• Kenya, and particularly the northern counties, must recognize climate change and insecurity as a regional, national and sub-national topic, thereby working at multiple levels to address the issue.• It is essential to promote integrated multi-stakeholder approaches that are guided by scientific evidence and account for diverse contexts and priorities.• In addressing climate security risks effectively, it is imperative to build upon traditional and community-level institutions which have been historically neglected.• Integrated project and programme designs for climate action that contribute to peacebuilding should not only be informed by local voices but led by them.• It is important to understand how the different gender groups experience and manage conflicts in this region of the country.Laikipia currently evidences severe vegetation deficit due to increasing droughts.• Droughts: the number of people in need of assistance due to droughts has increased from 3.5m in May to 4.1m in June 2022;• Laikipia North and West record severe vegetation deficit;• Current trekking distance to water source from grazing areas is worsening;• Private ranches occupy 50% of the County total land area;• Pasture is a predictor of conflict in Laikipia County.• Climate change has affected land viability due to various economic and social activities;• Increased competition due to dwindling land resources is raising tension;• Climate-induced migration across county borders due to lack of pasture is leading to conflict with farmers;• Competition for land and water resources due to local groups' different interests;• Inequalities in land distribution can exacerbate climate vulnerability and risks of conflict;• Tension due to encroachment and scarce water sources is leading to conflict between ranch owners, farmers and pastoralists.Source: Lilian Wandaka, Arid Lands Information Network (ALIN) @M.VANHOUTTEIndigenous Peoples (IPs) and climate change• IPs livelihoods are amongst the most vulnerable;• IPs are subjected to inequality, lack of justice, exclusion from political discourse & decision making, weak access to basic social services & productive assets.• Climate impacts lead to cattle rustling, killing and kidnapping of herders, as well as displacement.• Government intervention has led to repression and increasing inequalities, potentially exacerbating the risk of conflict.• Due to climate-induced conflicts, IPs experience low productivity and loss of traditional livelihoods, hence being more vulnerable.• Some laws are inadequate -they do not involve IPs in their formulation and implementation. For instance, there is a need for more dynamic and inclusive land use regulations.• Despite the enactment of the Community Land Act ( 2016), community lands are yet to be registered.• The response mechanisms of donors and governments are often not timely, address pure humanitarian needs, and ignore prevention mechanisms for climate induced conflicts.Interventions need to be adapted to the real needs and rights of IPs.• These interventions are quite urgent considering IP's distrust of government and development-related actors as well as their isolation and marginalization from formal institutional structures.The climate-migrationconflict nexusMigration is often used by individuals as an adaptation strategy to climate change. Such a coping strategy needs to be further examined accounting for its different root causes as well as different migrants' profiles. Some examples on different ways in which migration relates to climate change are reported below:• Changing mobility patterns: lower availability of natural resources modifies traditional migratory routes and patterns;• Labour migration: Climate change increases economic insecurity, influencing decisions to move to search for new job opportunities;• Forced displacement: Climate change leads to temporary/permanent displacement of individuals and communities;• Climate refugees: Climate change leads to cross-border displacement and increases the incidence of refugees' presence across countries.• Participate in existing coordination mechanisms raising the climate drivers of migration as a topic to be regionally, nationally, and sub-nationally discussed.• Contribute and promote to the development of a National Migration Policy. Migration and environmental action are priority areas for Kenya. However, the design of the policy has yet to be finalized, which could incorporate a focus on the climatemigration-conflict nexus.• Conduct research on the climate change-migrationconflict nexus while taking into consideration the different climatic, socio-economic, and political contexts of the country. This research can then inform policy processes, e.g. the revision of the National Climate Action Plan (2018-2022), help identifying specific programming interventions for the regions that are most affected by climate change, and support the identification of best practices and lessons learned on the strategies adopted in the existing national responses.• Promote a continuous dialogue on the nexus with all the relevant stakeholders, including local communities.Through a plenary discussion, participants highlighted the following characteristics of climaterelated security risks, which ought to be accounted for in governance and programmatic strategies to manage them:CONTINGENCY: Climate Security risks result from interaction of several climatic, socio-economic, and political processes that occur in unique ways at multiple scales and timing under different settings, hence leading to highly localized impacts.COMPLEXITY AND NON-LINEARITY: climate impacts can be localized at one geographical scale and may be manifested in specific ways, but they may also set in motion or strengthen cascading risk processes that can escalate through underlying socio-economic and political factors. The socio-economic, political, cultural and environmental factors that exacerbate population sensibility towards climate impacts.The socio-economic, Temperature increase and droughts can adversely impact the availability of resources for agricultural and pastoral livelihoods, increasing the risk of conflict over natural resources. Scarcity of resources also exacerbates human-wildlife conflict.• Weakening of traditional institutions Reducing agricultural productivity, due to more frequent droughts and floods, can lead to further poverty and marginalization, hence directly increasing the risk of conflict or recruitment into armed groups.• Weakening of traditional institutionsSESSION 2 -Developing a common vision on Climate Security: Climate Security risks in Kenya's ASAL countiesIncreasing poverty and marginalization, due to climate-induced loss of livelihood, can also lead to reduced trust in the government, fueling societal instability and recruitment.• Discriminatory policies • Context-specific assessments. Expand research focus beyond and within ASALs. There is a need for evidence around the climate security nexus that distinguishes between different settings within ASAL counties, as well as for conducting analyses in non-ASAL counties.• Climate as a \"risk multiplier\". Current research is mostly focused on the increase of resource-based conflict as a result of climate effects. Developing evidence on the indirect linkages between climate and conflict, such as the role of migration and displacement, political drivers of conflict and loss of livelihoods in the climate security nexus, is fundamental.• Gender and climate security. Gender dimensions of climate security in Kenya must be the subject of further inquiry, particularly as gender roles are rapidly changing both in rural and urban settings.• Bottom-up perspectives. Co-produce context-specific climate security assessments through community voices that account also for traditional risk coping strategies. Each participant described:• where in the climate security nexus they intervene and how• the levels in the governance system in which they have most presence (regional, national, sub-national, local)Part 2:Participants were asked to indicate the main platforms, channels and processes of collaboration between stakeholders that could be used as a base to integrate climate security in climate adaptation strategies:• Has this space ever focused on climate security as a topic of concern?• How did climate security become a topic of focus and which actors were involved? Which decisions were taken?• What opportunities and challenges are there to integrate a focus on climate security action within these spaces? • Existing institutional arrangements: there are already key platforms to foster climate security action in Kenya and the sharing of experiences.• Build on existing capacities: conduct an institutional needs assessment within identified platforms and develop clear terms of reference.• Funding priorities: integrate climate security goals in county development plans and capitalize on the CCCFs.• Siloed representation: existing engagement spaces do not allow for peacebuilding and climate actors to coordinate.• Low coordination: lack of multi-stakeholder platforms focusing on climate security as an issue of concern.• Lack of follow-up action: decisions and insights derived from engagement processes do not lead to continuous action. Participants were asked to reflect on the question:What is needed to develop a Community of Practice (CoP) on climate security in Kenya?Step 1 Individually, write down one required action to build a CoP around climate security in Kenya.Step 2 For 2 out of the 4 areas of action, write down:• One thing that your organization could work on as part of the CoP.• One thing for which the CSO could support within these topics.Step 31.Examine your proposals.2.Group them through similarities.3. Discuss the differences.Step 4Discuss and reach a consensus on a vision for a CoP on climate security in Kenya.Required actions to institutionalize a Community of Practice within Kenya:• Identify existing multi-stakeholder platforms and projects' theories of change at national and sub-national levels that may serve as a base towards integrating a climate security focus on both climate action and peacebuilding strategies. An example includes the Climate Smart Agriculture Multistakeholder Platform.• Carry out an organizational needs assessment of the identified platforms to inform required efforts towards building the platforms' capacity to integrate a climate security focus. Account for the platform's and its members' needs in terms of stakeholder engagement, technical capacity on climate security, leadership, resources, and capacity for change.• Identify organizational mandates within the platform and relevant government agencies that could be complemented with a focus on climate security action and cluster actors in thematic areas in relation to expertise and mandates. Align indicator and incentive systems towards greater concerted action between climate and peace actors.• Co-develop an agenda and clear terms of reference for the community of practice that indicate coordinating mandates, priority areas of action, indicators of progress, mechanisms for collaboration, and means for sharing experiences and information.• Anchor climate security priorities at national level in the updated National Climate Change Action Plan 2023-2027 (NCCAP)• Map existing programmes and initiatives throughout Kenya, in both the climate and peacebuilding sectors, that may be relevant to address climate security risks.• Build upon a better understanding of community-level risk coping and conflict management strategies towards developing climate security action strategies through bottom-up approaches.• Formalize programmes and projects for resilience-building with a climate security focus, while emphasizing the multistakeholder approach that capitalizes on various forms of expertise.• Strengthen the capacity of peacebuilding and climate actors towards integrating climate security sensitive approaches.• Foster policy advocacy towards integrating climate security in annual budgets for climate action and peacebuilding, at national and subnational levels.• Map existing climate investment initiatives in the country that could potentially integrate a peacebuilding lens.• Link investment initiatives with climate security hotspots across the country and develop a climate security sensitive approach to their implementation.• Build organizational skills for grant writing and fundraising with a focus on climate security action.• Inform the annual budgetary process at county levels.Which ","tokenCount":"2420"} \ No newline at end of file diff --git a/data/part_3/8462117995.json b/data/part_3/8462117995.json new file mode 100644 index 0000000000000000000000000000000000000000..1f3389ffef732a99fbed4068258ac7579a4d48e9 --- /dev/null +++ b/data/part_3/8462117995.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"cb737d84a960ecabf42ba444c43fb9de","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/e9200218-c93e-4af5-8a28-428ab6b8186d/retrieve","id":"-69734279"},"keywords":[],"sieverID":"fca1b49a-e03e-4c8f-b4a6-e84404d76ecc","pagecount":"42","content":"has been prepared by ILRI under a contract with the Feed III project funded by the United States Department of Agriculture (USDA) and managed by ACDI-VOCA in collaboration with local partners. For this purpose, ILRI hired Getnet Asefa 1 and Michael Turner 2 , independent consultants with complementary experience, to carry out the assignment under supervision of ILRI staff. A workplan extending from February-November 2019 was agreed, allowing ample time for review and consultation. The first activity was a scoping study to provide a background to the work and; this was submitted at the end of March 2019.This report is based mostly on fieldwork carried out by the consultants from 14-28 May 2019, during which time information was gathered and key stakeholders were interviewed (see Annex 3 for the list of people consulted). Most meetings were held in Addis Ababa but a visit was made to the EIAR station and ILRI seed unit in Debre Zeit to inspect the forage plots. An overnight trip was made to Bahir Dar to obtain a regional perspective. Some relevant text from the scoping study has been assimilated into this report, the priority now being to understand the current status of forage seed production and prepare a draft certification scheme as a basis for further review.Section 2 provides a brief background to the livestock and feed sector, emphasizing trends and issues that may have implications for forage and seed requirement. Section 3 explains the key principles and practices of seed certificationThe need to improve the quantity and quality of livestock feed in Ethiopia has been recognized for many years. Development projects, policy documents and technical meetings have all emphasized this issue. Increasing the use of cultivated forages has been identified as a means to address this problem, by improving livestock productivity and, thus reducing pressure on the environment. A wide range of forage crops have been introduced and evaluated by the International Livestock Research Institute (ILRI) and passed on to the Ethiopian Institute of Agricultural Research (EIAR) for further development. However, lack of good quality seed is still commonly cited as a constraint to expanding the production of cultivated forages; much research has been done on this topic. All professionals working in the field understand this problem, but it has proved very difficult to find a way forward, despite the clear justification.Providing a certification scheme for forage seeds may help to overcome this constraint by strengthening the production and marketing chain with an independent quality control mechanism. In particular, it could formalize the current fragmented production system and increase confidence in the final product.Certification schemes are a key component of the regulatory framework and the formal seed sector in most countries. They provide a comprehensive quality control mechanism from the breeder/maintainer of the variety to the farmer who purchases \"certified seed\", based on the fundamental principle of traceability. The technical and administrative elements of seed certification are well known and are embodied in the international schemes managed by the Organization for Economic Cooperation and Development (OECD) to support the international seed trade. Ethiopia has comprehensive seed legislation at the federal level and certification is a routine procedure for major cereal crops such as wheat, barley and teff; although the percentage of certified seed within the total seed requirement is small, as in many developing countries. The mechanics of certification are handled by regional authorities, and in most crops, the regional enterprises are the main seed suppliers.A special feature of the national seed system is that the quality standards are prepared and published by the Ethiopian Standards Agency (ESA) in consultation with the Ministry of Agriculture (MoA). A separate standard exists for almost every crop (including forages) and they are remarkably detailed based on information collected from relevant sources worldwide. However, some aspects of these standards would be difficult or impossible to implement or enforce with the facilities at the disposal of the regional authorities.In principle, all the elements of a certification scheme for forage seeds already exist in the published standards and they could be implemented immediately if the regional authorities wish to do so. However, in practice, very little forage seed is produced within the formal seed system. As a result, the certification system is not invoked for these crops. Despite the strong justification for increasing the availability and use of improved forage seeds, the regional enterprises still show little interest, probably for financial/commercial reasons that prevail over their social obligations.In these circumstances, preparing the technical and administrative details of a certification scheme is unlikely to energize the existing system sufficiently in the short term. It will require a strong commitment by key participants and stakeholders to provide the technical services for certification and to follow through with the delivery of seeds to end users. Such an initiative should probably be piloted at a regional level, where most of the seed system is now organized. Policy support from the regional Bureau of Agriculture and at national level from the Agricultural Transformation Agency (ATA) would be helpful. The Seed Policy and Seed Proclamation are currently under review and, if possible, these key documents should reflect the importance of improving the feed supply situation, given that this has been a matter of concern for many years.A full certification scheme is demanding and costly to manage and this may be one reason why it has not been implemented for \"marginal crops\" like forages. An alternative approach known as Quality Declared Seed (QDS) places more responsibility on producers for the quality of their products and is; therefore, more flexible, provided the standards are respected. QDS is recognized under the Seed Proclamation and should be considered as an alternative to certification as an intermediate step.The marketing system for seeds and other inputs in Ethiopia has traditionally been administered through official channels; this did not allow for direct connection between producers and users. It was also an impediment to the distribution of uncertified seeds, such as forages. The Direct Seed Marketing initiative is being rolled out and this model will facilitate the development of a real market for forage seeds, by linking producers and farmers more closely in a supply chainThe GIZ-funded FeedSeed project that ran from 2013-16 generated much useful information on the forage seed market, although it was probably too optimistic about the prospects for commercialization. There was no follow up and momentum has since been lost. It would be useful to revisit the outputs of the project, particularly with regard to the economics of seed production. A quality assurance scheme (certification or QDS) can only be implemented once there is an organized production system and a commitment among stakeholders to improve quality.Despite the clear recognition of the need to improve feed supplies and the role that cultivated forages could play in achieving that, most of the livestock in Ethiopia are kept by subsistence farmers and they play a diverse role in the household. Farmers of this kind will not create a consistent demand for forage seeds because they will not see a cash return from their purchase. A more organized livestock industry is emerging and will be the main driver for increasing forage production not only by livestock keepers themselves, but also by arable farmers who could regard this as a cash crop. The wider use of irrigation would also increase the productivity of forage crops and make them a more attractive component of the farming system. Discussion about certification schemes relates entirely to the formal seed sector, which still accounts for a small part of the total seed supply/requirement in all crops, except hybrid maize. Although cultivated forages were not part of the traditional farming system, there is a significant informal trade in these seeds. This is handled directly by farmers and traders who operate without regulation and sell directly to NGOs and other buyers at favorable prices. While this parallel production system does provide seeds to poor farmers who are clients of NGO projects, it inhibits the development of a more organized market because farmers are conditioned to receive free or subsidized seed. This issue requires attention at the policy level if a sustainable and financially viable production model is to emerge.There is abundant information reflected in several official documents regarding the importance of livestock in the rural economy. For this reason, a series of large development projects have targeted the livestock sector; many interventions have been proposed and implemented. Key among these is the need to improve the quality of available feed because natural pastures and low-grade crop residues still provide well over 90% of the intake. Many factors contribute to this situation, particularly the small size of farms and the general pressure on land use from an increasing population of both humans and animals. The diverse uses of livestock at household level and many social aspects add further complexity given the predominance of smallholder farming in Ethiopia.The conclusion of most studies is that the productivity of livestock remains low and must be improved as a matter of urgency if their role as a driver in the rural economy is to be fulfilled. Increasing the supply of cultivated forage is one approach that has been extensively studied, and this in turn, creates a need for seed to grow these crops. Consequently, there has also been much research on the technology of seed production but despite concerted efforts over many years, the lack of sufficient good quality seed is routinely cited as a constraint to improving forage production.The seed certification scheme proposed in this report is an attempt to formalize a very diffuse production system and thereby improve the quantity and quality of seed available to farmers. However, it is recognized that many external factors will affect the achievement of this goal. These factors are highlighted in the report so they can be discussed, and if possible, addressed from the start. that must be reflected in the scheme and Section 4 describes the current status of seed production, regulation and institutions into which the scheme will be placed, Section 5 considers some of the issues and challenges that may need to be addressed in making the scheme operational and sustainable and finally, Section 6 presents a summary of conclusions and recommendations. A proposed \"guideline\" for the scheme is presented as Annex 5.According to the workplan, this report will be circulated to stakeholders for comment before being finalized and presented at a workshop later in 2019. To that extent, it should be considered as an interim document.In view of the substantial amount of relevant information in the literature, an annotated list of key documents is provided in Annex 4, rather than referencing the text.Livestock production in Ethiopia is the main means of livelihood for pastoralists and farmers. It provides food for the family, supports crop production and makes a significant contribution to the national economy. However, productivity remains very low mainly constrained by inadequate supply of quality feed. In the national development strategy, livestock is considered as a key driver for change. The Livestock Master Plan (LMP), the Climate-resilient Green Economy Strategy (CRGE) and the Growth and Transformation Plan (GTP II) all propose improved quality feed supply from the cultivation of forages as a key intervention for increasing productivity. Development initiatives by various agencies indicate that the supply of high-quality forage seeds is a critical constraint in achieving this goal. This calls for improved supply of forage seeds and a strengthening of the seed production system.Insufficient feed of good quality is the most critical and widespread technical constraint. The main feed resources currently are natural grazing pastures and poor-quality roughage, such as crop residues. A recent assessment of feed resources by working groups established and supported by ATA in the four major regions of the country indicated that the contribution of cultivated forages and concentrates to the feed resource base was only 3 and 2 %, respectively (ATA, unpublished) 3 , crop residues contributed 54.5% and grazing 40.5%. The national agricultural sample survey statistics in sedentary areas has also shown that the contribution of improved forages was only 1% (Central Statistical Agency 2017) 4 . Various studies on these feed resources in different agroecologies indicated that available poor-quality feed supply is hardly enough for year-round feeding of the existing livestock population. Under such conditions, transformation of the production and productivity of livestock is only possible through the supply of quality feed. Experience from many countries and various research recommendations in Ethiopia show us the wider use of cultivated forages clearly offers great potential for improving livestock performance in most of the regions in the country.Research on forage crops was formally started as a national program when the Institute of Agricultural Research (IAR) was established in the mid 1960s. At this time, a wide range of tropical and temperate pasture and fodder species were introduced from different parts of the world with the support of the Food and Agriculture Organization of the United Nations (FAO). The aim was to broaden the genetic base for evaluation and to select suitable species and cultivars for the diverse agroecological conditions of the country. The former ILCA (now ILRI) also played a significant role in introducing various fodder species and establishing a collection of species indigenous to Africa. As a result of these efforts, ILRI has developed and recommended about 50 well-adapted forage crops together with appropriate production packages for the different agroecologies. However, the adoption of this improved material has been limited.• opportunity to use a range of species and practices recommended for specific locations and production systems as a source of high-quality feed.• ease of production close to dwellings and farmyards, including inaccessible areas.• possibility of integrating forage production with food crops to improve soil management.• relatively low cost of production.• benefits to environmental protection and natural resource management.With frequent drought and degradation of natural resources, including grazing lands, and critical feed shortage in Ethiopia, forage crops have decisive roles in:i providing quality feed close to the household, especially in areas where there is poor supply of other feed sources like concentrates.ii combining the key objectives of improved conservation and productivity enhancement by introducing perennials and leguminous crops more widely in the farming system.iii improving cultivated forage production to reduce global warming; pasture lands are very good carbon sinks and animals with higher productivity resulting from improved feeding regimes have lower greenhouse gas emissions.It should be noted that Ethiopia is currently implementing a climate resilient green economy and wider use of forage crops is indicated in the different national strategies. This calls for a substantial increase in the supply of forage seeds and planting materials for implementing these strategies.Certification emerged in the middle of the last century in response to the increasing number of varieties coming from plant breeding programs and the need to confirm the identity of these varieties for purchasers by carrying out field inspections of the seed crop. These schemes were often voluntary and were established by producers who wished to enhance the status of their products in the marketplace. The Crop Improvement Associations in the USA are a good example of this but similar schemes were set up in many countries. In due course, certification embraced the quality standards for seed lots that are determined by laboratory analysis and thus, became a comprehensive statement covering all components of variety and seed quality.Certification was assimilated as an official process in some countries, particularly in Europe, where it was made compulsory for seeds of major agricultural crops. This has been a cornerstone of the regulatory regime for seeds in the European Union for the past 50 years and has helped raise quality standards across diverse countries and facilitated trade between them. When national seed projects were set up in developing countries from the 1970s onwards, certification formed part of the quality control/assurance component and was in some cases made compulsory for major crops, despite the limited capacity of local institutions to carry out the necessary technical work. In practice, these projects supplied a small proportion of the total seed requirement and the majority of farmers continued to depend on traditional sources within the farm or local community.Certification is an essential element in the formal seed system, which is subject to official control based on laws and regulations. In contrast, unregulated sources such as on-farm seed saving, community exchange or purchasing in local markets, are collectively referred to as the \"informal seed system\" 5 . For smallholders in tropical countries, this remains the default source of supply for cereal and legume crops, in which it is easy to save a portion of the grain from one harvest and use it as seed the following season. There is little differentiation between seed and grain in the informal system. From a farmer's perspective, the informal system has advantages and it should not be regarded in a purely negative way. There is sound logic in retaining seed of open pollinating crops on farms and renewing the stock every three to four years; hence the concept of \"seed replacement rate\".Certification schemes are now used in many countries as the standard system of seed quality control. They provide a comprehensive package of measures that is intended to monitor each stage of the seed production process and thus, assure the quality of the final product sown by farmers. This is achieved by prescribing standards and procedures for the production field and for testing the seed lot after harvest. To support these activities, there must be a system of 5. The term \"seed system\" has come into common use in recent years as an umbrella covering all the mechanisms through which farmers meet their annual seed requirement. Besides the clearly defined formal and informal areas, there is much interest in semi-formal and integrated seed systems, which fill the space in between and may have particular relevance to the needs of developing countries.record keeping that follows each crop from sowing though to final sale in sealed units, which are labeled as certified seed. This is always the generation sold to farmers.This sequence of control measures is applied not only to the final generation but also to preceding multiplications leading back to the breeder, who is responsible for maintaining the variety in its original genetic condition 6 . This gives rise to the concept of named generations and a system of reference numbers for seed crops and lots that link them together. In this way, seed certification was an early example of traceability, which is now widely used in many spheres of production. It is especially important in seeds because each stage of multiplication carries risks of contamination or deterioration.The label is a key element of the scheme because it is a symbol of the entire quality control system. For this reason, it is essential to maintain the reputation and status of the label in the eye of the users. It has the same function as a logo or a brand name but of course it can be used by many different producers and requires good supervision to maintain consistent standards. The entire scheme may lose credibility if the reputation of the label becomes compromised through poor supervision or deliberate malpractice. These issues are relevant to the scheme proposed here.The key components of seed certification are common to all schemes and are listed below.• The variety must be known and registered with a description of its characters sufficient for it to be distinguished from other varieties of the same species/crop and for its identity to be confirmed during field inspection.• The production field must meet certain criteria, particularly with regard to its previous cropping history, uniformity and general agronomic suitability for the crop.• The crop must be formally entered in the certification scheme and given a reference number; there may be an application fee at this stage according to the size of the crop.• The grower (company or individual farmer) must normally be registered as a recognized seed producer and there may be some specific criteria for this.• The seed sown must be of known origin (with a reference number) and ultimately, traceable to material produced by the breeder or maintainer through named generations.• During the growing season, the seed crop must be sufficiently isolated from any other crop that might cause contamination; isolation distance depends on the pollination mechanism of the species and may range from two metres to a kilometre or more.• The crop is inspected one or more times at critical growth stages to confirm that it is free of contaminants, particularly other varieties of the same crop, and that the isolation requirement is satisfied. A crop inspection report is then prepared; the crop may be failed if it does not meet the required standards, but re-inspection is generally allowed within a specified period if the reasons for failure have been rectified.• The harvest and post-harvest procedures must be carried out in an approved way to avoid any risk of contamination of the seed lot. The facilities used for seed cleaning (processing) and storage may need to be registered and approved by the scheme; they may be subject to spot inspection to confirm that correct procedures are being followed. All bags used at this stage must be clean and labeled immediately.• After processing is complete, a sample is taken from the seed lot according to defined procedures and specified quality tests are carried out on this sample in a laboratory, again following the procedures established for the species. A reference sample of the seed lot is kept by the laboratory for a specified time (normally one or two years) in case of disputes about quality.• If the crop inspection report and all laboratory tests are satisfactory, the seed lot is given a reference number and is regarded as being \"certified\" and ready for sale. A fee may be charged at this time to issue the certificate.• When certified seed is sold, it must be in a closed package and must carry an official label that shows the reference number and any other information specified under the scheme. If any defects are subsequently found in the crop, the source should be traceable. Seals or other techniques may be used to reduce the risk of tampering.• Ideally, a post-control plot (or grow-out test) should be carried out on a sample of the seed lot to confirm that it complies with the standards of genetic purity. This is not always done in practice because of the resources required. Post-control plots may be carried out on a certain percentage of the seed lots, or on those that may be suspect.• In addition to these technical elements, there must be an administrative office that takes care of all the above activities, keeps the records, allocates numbers and issues labels. The availability of computers has greatly simplified this process. Crop inspection reports can now be entered directly in the field and all information about the crop and seed lot can be kept in a central database.All the above activities would normally be carried out by a designated seed certification agency but the task may belong to other organs of the Ministry or delegated to third parties. Trained personnel are required for the key technical operations of inspection, sampling and seed testing. Because of the seasonal nature of crops, it can often be difficult to inspect all crops within a limited time and this prompts the use of licensed inspectors who are employed on a temporary basis.Implementing a certification scheme involves a considerable amount of work in the field, laboratory and office, so it is customary to charge the users, who are normally seed companies. The level of charging is a matter of policy; it may vary from a token amount to full cost recovery. If certification is provided at very low cost as a service to farmers, it may then be a considerable burden for the Ministry. This raises the prospect of weak implementation. There is a global trend towards the delegation of certification to third parties, with the government playing a monitoring role.The scheme proposed in this report should define how each of the above activities will be carried out in a coordinated way. In practice, this will need to be linked to existing quality control activities carried out for other crops for which an organizational framework is already in place. However, forage crops may be more demanding and may be less well served by the system than cereals and legumes. If difficulties are foreseen, alternative arrangements may be required for the scheme to be successfully implemented and achieve its goal. These issues are discussed in Section 5.These main components of certification described above are common to all schemes, but forage crops may present some additional challenges because:• varieties may not be well-defined and less uniform than is normally the case in grain crops such as cereals and legumes, although there are also far fewer varieties.• management of the crops and field inspection may be more difficult due to their branching habit and perennial growth, which means that seed can be harvested in successive years from the same crop.• seed quality attributes such as purity and germination are often more difficult to determine accurately. Therefore, it may be necessary to adopt specialized testing procedures and accept relatively low standards for certification purposes.• some forage crops are propagated by cuttings or root splits and may not produce seeds. It is still possible to certify these vegetative materials, but the procedures are completely different.One positive attribute of forage grasses and some legumes is that the seeds are small, which means a high multiplication factor can be achieved in each generation. This reduces the number of generations required to supply commercial quantities from the small stock of elite seeds released by breeders. It is a basic principle of seed production that all possible steps are taken to maximize the multiplication factor through good crop management, reducing the number of generations required. For this reason, seed production should always be done with farmers who have sufficient resources and ability to manage the crop well.Most of the species used as cultivated forage crops in the tropics were not part of traditional farming systems and because of their more complex seed production practices, they may not be easily accommodated in the informal system. Moreover, quality might be unpredictable because of their more complex seed structure and physiology. This provides a justification for having an organized system of forage seed supply that can meet the demand for livestock feed in a sustainable way.It should be emphasized that seed can be harvested opportunistically by allowing an ordinary forage crop to flower after a certain period of cutting. This may enable seeds to be produced relatively cheaply by farmers without any special management procedures or quality control, enabling them to enter informal trade. According to various sources of information, seed produced by farmers informally is the major sources of seed supply in Ethiopia. Perennial grasses and oats may be particularly susceptible to this approach. A contrary possibility is that a crop grown for seed production may be harvested prematurely as forage if there is a good market price. These scenarios arise because unlike grain crops, there are alternative uses and market options for forage crop during its lifespan. Such alternative sources of supply are not subject to any quality control process and therefore constitute a risk for the final users.The Organization for Economic Cooperation and Development (OECD) provides certification schemes to facilitate international trade in seeds 7 . These focus on eight different groups of crops, one of which includes 86 grass and 54 legume species. The species list does not differentiate on the basis of use and while many of the grasses are used for forage, the legumes include both food and feed species. As of 2018, 61 countries participated in one or more of these schemes as producers or importers according to their needs. The members of the OECD schemes are predominantly countries with a temperate climate and the crops covered are largely, but not exclusively, grown in temperate regions.Countries that make most use of these schemes are those that are major producers for export into the international trade, such as Australia, Canada, Denmark and New Zealand. In East and Southern Africa, the only member countries are Kenya, South Africa, Zambia and Zimbabwe. Among these, only Kenya and South Africa are in the herbage scheme. The certification agencies in those countries are Kenya Plant Health Inspectorate Service (KEPHIS) and South African National Seed Organization (SANSOR), respectively. Participation in the OECD seed schemes is open to any country and does not require membership of the OECD itself.It should be noted that the OECD schemes relate specifically to varieties and no standards for purity and germination of seeds are specified because these are matters of national legislation. In practice, seed moving under OECD labels would generally be accompanied by an Orange International Certificate issued by a laboratory accredited by the International Seed Testing Association (ISTA). Ethiopia does not have an ISTA accredited laboratory but the seed testing laboratories that do exist, whether in institutions or companies, would probably use the ISTA Rules for carrying out seed analysis. This is standard practice because the rules are based on long experience and validation by seed analysts. Most forage species grown in Ethiopia appear in the ISTA rules, but these only specify the procedures for testing, not actual standards. Of course, there are no standards for vegetatively-propagated species, which would require different procedures if they were to be included in the scheme proposed here.Given the predominance of the OECD schemes as a global model, there is little justification for following up on the domestic schemes of individual countries because these will, or should, broadly follow the OECD format. The seed quality standards of other countries such as Kenya or South Africa may be of interest if they are radically different from those published by ESA for Ethiopia.As explained above, certification is a regulatory procedure and a key component of the formal seed system in many countries. To implement a certification scheme for forage seed in Ethiopia, it will be necessary to integrate the practices and requirements listed in section 3.3 into the existing regulatory framework and to apply this to the existing seed production system. Based on consultations with stakeholders and review of available documents, this section outlines how this alignment may be achieved and where problems might arise.The primary legislation governing the seed sector in Ethiopia is the Proclamation on Seed (No 783/2013). The secondary legislation was made under the previous proclamation in 2002 and has not yet been revised. It is not known if this gives rise to any practical problems in implementation. The proclamation has been reviewed recently and a revised version is expected within one year. The changes will have the effect of simplifying the registration of varieties but should not have any major impact on forage varieties because they all originate from the official research stations of EIAR or the regions. Another motivation for reviewing the proclamation is that Ethiopia is a member of COMESA, which has a regional seed scheme. However, this scheme does not currently include any reference to forage seeds. The proclamation applies to all regions but responsibility for carrying out some of the tasks, including quality control, rests with authorities in the regions.The proclamation does not explicitly state that seed certification is compulsory although that is implied by Article 13, which refers to the issue of a certificate of seed quality. It is said that bureau and woreda offices do expect the seed they handle to have an official certificate. Thus, certification would be compulsory in practice for seeds distributed through this channel. The major grain crops are normally all certified; however, the category of Quality Declared Seed (QDS) is also recognized in Definition 13 and Article 13 of the proclamation and the possible use of this option is discussed in Section 5.2.Varieties can only be multiplied and certified if they have been evaluated and approved by the National Variety Release Committee. They are then included in the crop variety register published annually by the MoA. The most recent issue (no. 20) is dated June 2017 and the 2018 edition is currently in preparation. This is a substantial document of 370 pages listing all varieties of the crops covered by registration procedures. At present, there is no procedure for review or deletion and many of the varieties listed are actually obsolete. This issue may be addressed in the current revision of the proclamation.Forage and pasture crops (Group VII) are covered in pages 327-357 of the 2017 register, which lists a total of 23 species and 49 varieties, as shown in Annex 1. It may be assumed that many of these have been superseded by later introductions and that only a relatively small number would be considered for inclusion in the scheme. The final list of eligible varieties will be agreed between the key stakeholders when the scheme is being finalized. Initially, it would be desirable to select one superior variety from each of the major crops and with six to eight varieties in total reflecting the different uses and agroecologies. This will make the scheme manageable and allow its procedures to be developed and tested gradually.Almost all varieties listed in the register have been released from EIAR or regional research institutes. They are mostly based on lines originally obtained from ILRI and evaluated to identify those best adapted to specific agroecologies. There is no active breeding of forage crops in Ethiopia because the diversity of material held in the ILRI gene bank, including many introduced accessions, is considered to be a sufficient resource. Forage oats are the subject of commercial breeding in some countries, but the resulting varieties will almost certainly be protected. This issue is discussed in section 5.4.The procedures for variety registration are set out in Part 2 of the proclamation and are based on a review of all available information by the National Variety Release Committee, which recommends addition to the register. In the year of first registration, a description of the variety is included in the register and this would be the point of reference in subsequent years. This does not amount to a full morphological description, as would be required for distinctness, uniformity and stability (DUS) testing that is required for plant variety protection.No attempt has been made to evaluate the registration system and evaluating perennial forage varieties is intrinsically more complex than grain crops because of the extended period of production, the many quality attributes involved and different systems of management. However, there is substantial experience of forages within the research system and new varieties are regularly added to the register, as shown in Annex 1. It may be assumed that the variety evaluation and registration system is effective and is certainly not an impediment to the introduction of new materials to the market.The proclamation requires the breeder to maintain the variety and defines the subsequent generations as breeder, pre-basic, basic and certified, in accordance with the nomenclature of the OECD scheme. The color coding of labels for each generation also follows the OECD scheme and is being applied for cereal crops.These are not part of the proclamation itself but are contained in \"specifications\" published by the Ethiopian Standards Agency (ESA). There is one standard per crop and almost all the forage crops have a standard, as shown in Annex 2. Among the important forage species, Desho (Pennisetum glaucifolium) is the one notable exception but like Napier grass, it is propagated vegetatively and will not fit into a \"seed scheme\". The intervention of a national standards institution in seeds is unusual, possibly unique, and presumably reflects a strong culture of standardization within the government system. However, the standards are prepared by the Technical Committee for Seeds (TC16) in which the MoA participates. Since certification is apparently compulsory, these are effectively the standards that would be applied within the scheme.The actual standards presented in these specifications are extremely detailed and contain all possible quality attributes, particularly with regard to seed health, the assessment of which is quite demanding. Moreover, the generations named do not reflect the reality of seed production in many of the crops, including forages. These standards have clearly been prepared as a rather theoretical exercise using many different sources of information to achieve maximum control but without sufficient consideration for the practical implications in seed production or seed testing. This is a possible impediment and it discussed in Section 5, together with the alternative strategies that might be available. Many of the details, particularly on seed health, may be overlooked in practice because the tests are not relevant or cannot be carried out. However, attention should be given to any specific pathogens of forage that may be seed transmitted.The technical procedures related to quality control, such as the sampling of seed lots and laboratory testing, apply to all crops and are set out in separate specifications from ESA. These are also shown in Annex 2 for reference.Part four of the proclamation assigns responsibility for implementing seed quality control to the regional authorities responsible for agriculture. At present, only Amhara, Oromia, Southern and Tigray bureaus have established the necessary infrastructure although it is reported that others are working on this. In the case of Amhara region, the full title of this body is the Seed Quality Control and Quarantine Authority.We visited Amhara region and observed the procedures of the Amhara Seed Enterprise. They carry out their own internal quality control throughout the production and processing chain and fix their own label to each bag when it is closed with stitching. Staff of the Authority visit the store periodically to take samples from the bagged seed lots and test these in their own laboratory. If the standards are satisfied, a sticker is added to the company label to confirm that the seed is officially certified by the authority. This is a logical procedure, but the addition of stickers looks like a time-consuming job that requires every sack to be handled again. An alternative approach in many countries is for the internal laboratory of the enterprise to be accredited for certification and for its results to be monitored by random/ spot testing of seed lots.It should be noted that the process described above is not radically different from that of a QDS model. The primary quality assurance work is done internally by the enterprises and their results are checked by the relevant authority. If only a randomly selected proportion of the seed lots were sampled for the monitoring function, this would effectively be a QDS system. For historical reasons, the regional enterprises all have seed testing facilities whereas other independent companies probably do not, with the exception of the international company Pioneer.The various forms and other procedures relating to quality control are stipulated by the MoA in the regulations and are used nationally. Some aspects may be specific to certain crops like hybrid maize. It is assumed that other minor modifications could be made if required, such as in the case of perennial grass crops. Whatever forms exist at present would be used by the proposed scheme.Part five of the proclamation requires any party involved in seed activities to hold a \"certificate of competence\". There is a clear guideline (in Amharic) that describes all the steps and criteria required to obtain a certificate of competence.It is understood that at present, no fee is charged for this process. If the activities are conducted within one region, then it is the regional authority that issues this certificate.The requirements for labelling of seed packages/containers are set out in the standard ESA 481. Based on labels used by the Amhara Seed Enterprise, the information provided includes species, variety, weight, lot number, date of sealing, purity, germination and moisture content. Given the small size of the label, this information has to be written by hand on each label.While considering regulatory issues, it is appropriate to mention that plant breeders' rights (PBR) exist in Ethiopia under Proclamation No. 1068/2017. However, the system is not in use yet because the Ministry does not have the facilities to carry out the necessary tests for DUS. Even if this system were operational, it is very unlikely that PBR would have any relevance to forage varieties from the public sector. ILRI would have a view on this since they are the source of the materials. In principle, a foreign breeder could seek PBR for an introduced variety, but this would depend on the confidence they have in the enforcement of the law, which could be problematic. The purpose of PBR is to secure revenue from the use of protected varieties through a royalty system but this is difficult to manage when the majority of farmers are smallholders.The public sector is still a dominant player through one national and four regional seed enterprises. These handle the full portfolio of agricultural (grain) crops, including the less profitable self-pollinating crops such as teff, wheat and barley that are unattractive to the private sector. They are expected to break-even financially but also have a social/ development role in providing a reasonable quantity of certified seed. In practice, they are the delivery arm for the EIAR and regional research stations but despite this, they do not supply forage seed to any significant extentThe major international company is Pioneer, which produces and sells large quantities of mid-altitude hybrid maize seed, all from its own breeding programs. Pioneer gained this commanding lead by forming a joint venture with the former Ethiopian Seed Corporation when it was restructured. Unlike neighboring countries, none of the other international companies are significant players in the market. All local companies are relatively small, leading to lack of commercial diversity in the market. The reasons for this are beyond the remit of this report but it may reflect a relatively restrictive environment in which the government is still a major player, again for historical reasons. This is now changing, as evidenced by the expansion of the direct marketing initiative, and this may encourage greater private sector participation.The delivery system for seeds and other inputs involves the woredas, unions and coops in an administrative process and makes conventional marketing difficult. This approach has legal force through Article 7 of the Proclamation entitled \"Integrated Production Planning\". The direct seed marketing initiative is promoted by the ATA and supported by International Food Policy Research Institute (IFPRI) in an attempt to address this issue and it is making steady progress.The Ethiopian Seed Association exists to represent the commercial seed sector. It has about 25 members including the five public sector enterprises; but only half of its members are said to be active. It is indicated that there are more than 50 national and multinational companies operating in the country but most of these are producing only a few cereal crops (maize, wheat, teff and barley) and satisfy only a small proportion of the national requirement. These companies are not generally engaged in the production of more difficult crops such as vegetables, forage crops or legumes. The association should be more active in strengthening the commercial seed sector in order to fulfill the needs of Ethiopian farmers.Overview of the cropsIn principle, a very wide range of forage crops is available and the ILRI gene bank is a major global resource from which Ethiopia has derived great benefit over the years. In practice, the range narrows to a relatively small number of crops when agronomic and feeding attributes are taken into consideration. ILRI has produced a series of information sheets on the most useful species. The most likely candidate species for inclusion in the certification scheme are given in Table 1. From a seed production perspective, the key division is between annual crops (mostly legumes and oats) and perennials, (mostly grasses and some shrubby legumes). Besides having a quicker growth cycle, the annuals present fewer technical problems and some (oats, lupin and lablab) can effectively be treated as grain crops, making on-farm seed saving easy. Therefore, they may pass into the informal seed system and be more difficult to sell on a regular basis.The perennial grasses are more demanding in terms of seed production and often require special techniques to obtain good yield of high-quality seeds. These have greater potential for commercial sale provided that the quality can be assured, although the long cycle of production means that demand is unpredictable. Napier grass and Desho do not set seed reliably and are propagated by stem cuttings or root splits. The certification of such vegetative materials presents quite a different problem compared to seed crops and this would introduce a complication if included in the scheme initially.As already noted, forage seed production has a very long history and there has been a substantial research effort on this subject to overcome perceived constraints. The national workshop on forage seeds held by EIAR and the proceedings listed in Annex 4 show clearly the extent of this work across all regions of the country. Likewise, the report of the FeedSeed project, also listed in Annex 4, provides detailed information on this subject and should be regarded as a supporting source of information.There are four types of forage seed producers that may be subject to, or benefit from, a seed certification scheme. These are:National research institutes: EIAR's research stations and the regions produce a significant quantity of seed to meet the needs of their demonstrations and other outreach activities. In some cases, they may also sell seed on a semicommercial basis, depending on land availability and official policies. The fact that this production continues in significant quantities reflects both the importance attached to forages by the institutes and the lack of true demand pull that would encourage commercial entities to take over the task. If that demand existed, the research stations would maintain their varieties and supply basic seed on request to feed a commercial multiplication and marketing chain. That should be their main function once demonstrations have stimulated sufficient interest.ILRI: has been a significant seed supplier for the past 30 years using its seed production unit in Debre Zeit. This has been declining through the years due to the loss of irrigation facilities. Regardless of this current constraint, the role of a CGIAR centre as a regular supplier of seed is questionable, although the unit does aim to cover its costs through the price it charges. Again, the fact that ILRI has continued to act as a seed supplier shows the real interest in cultivated forages and the difficulty of shifting the task to other parties, especially to the private sector.Semi-formal producers: GIZ's FeedSeed project implemented by ILRI from 2013-16 made a concerted effort to make forage seed production sustainable. It recruited a group of 30 interested farmers and provided intensive training in both production technology and business management. Given this highly focused approach to a well-defined problem, the project can be considered as providing maximum possible support; it was judged by the donor to have been successful and was not extended or renewed. At present, it is said that 12 of the group remain as regular producers but they still face problems of unfair competition, weak demand and lack of recognition for their product. These issues are discussed in the next section. The only dedicated forage seed company in Ethiopia-Eden Field-was a partner in this project and they have a substantial business that started with forest tree seeds and then embraced forages. Despite being market leaders in these seeds, it seems that they have not been inclined or felt the need to adopt certification. Consequently, their production must still be regarded as \"semi-informal\" even if it is quite substantial and organized.Informal producers: there are a number of traders who carry out opportunistic seed production with farmers, often on a substantial scale. It is understood that they have no quality control system and do not comply with any of the regulations. Despite these legal and professional shortcomings, their business model must be considered as sustainable. Their key strength is the ability to offer large quantities of seed to development projects and NGOs who put out tenders and offer good prices. It is also reported that the regional bureaus also purchase these seeds in order to address short-term needs. Complaints about the quality of forage seeds may well be due to the activities of these traders and the absence of any control in the supply chain, which provides many opportunities for malpractice. It was not possible to visit any of these producers during the mission and the information about them is secondhand, but they are well known within the regions and to NGOs who buy the seeds.The total amount of seeds supplied annually through the above channel is difficult to quantify because the contribution of the informal producers is not known. However, there clearly is demand for these seeds as shown by the suppliers listed above. Calculation of the demand for the period 2014-18 was made in the GTPII and LMP, but these are theoretical and have not been achieved. The FeedSeed project report also presents data on production by its participants and other market information.The seed sector in Ethiopia has been subject to much analysis. A seed system development strategy (Annex 4) was prepared for the period 2013-17 as a consultation document but this made little reference to forage seeds. It is assumed that the policy will serve all seeds, including forage seed. A new policy document is under active consideration at present.Given that there is a substantial and recognized need for forage seeds but little effective demand, it would be appropriate for the new policy to address this inherent contradiction. Banning free seed distribution would be a possible step but is probably too controversial. However, it would be reasonable and equitable for the NGOs to accept a code of conduct for their activities, so they do not prejudice the emergence of a viable trade in forage seeds.The National Seed Advisory Group serves as an apex body for the seed sector and should be the guardian of the policy. Since the promotion of cultivated forages and increasing seed supply is a strategic concern in the rural sector, this group should address the issue and reflect it in the revised policy.5. Design and implementation of the schemeAgainst the background of the three preceding sections, we now come to the key challenge of how to design a certification scheme that will achieve its intended purpose and be sustainable.Contrary to expectations, there is a forage seed certification scheme in Ethiopia. It is not specifically described or defined as a scheme, but all the components are there in the regulations and standards; just as they are for the major arable crops like maize, teff and wheat, which are certified on a routine basis. The regulatory framework is in place, but it is simply not used. Although production is a problem in some crops, this is not a major impediment because several actors are producing seed and they could produce more. The obstacles lie in three main areas: uncertainty about demand, technical capacity for conducting quality assurance and bureaucratic complexity in the seed delivery system. These are discussed below.Everyone consulted during the mission agrees that there is a need for forage seeds. This is why various actors are trying to satisfy that need for their respective clients at subsidized prices and, in some cases, free of charge. However, this does not translate into a consistent demand from customers who are prepared to pay a real market price and support a viable commercial trade. This uncertainty about demand has a deterrent effect on producers because they may simply prefer other uses of their land that give a quicker and more reliable return. The case of alfalfa is less clear because the seed price is relatively high and there appears to be real demand, even for expensive imported material. A more serious intervention by the private sector might be expected in this crop.NGOs are a perverse force in this arena because they pay a good price to informal producers but undermine the development of a real market by their subsidized distribution of this material in their projects. It is widely stated that farmers are conditioned to receive this cheap or free seed and are therefore, reluctant to pay for it, certainly not a commercial price. This is a serious problem that may be difficult to overcome because the NGO activities provide poor smallholder farmers and incur no cost to the government, but these farmers do not continue cultivating forage crops when projects phase out. They and their suppliers are presumably tolerated by the official system for that reason, even though they do not undertake proper quality assurance or comply with the regulations. Regardless of the benefits to poor farmers who are the immediate beneficiaries, in the long term, Ethiopia will need a market-based forage seed supply system to support the development of a commercial livestock sector and reduce pressure on the environment.The fact that grass crops are perennial removes the need for farmers to repurchase in any particular season and these fields may be kept for many years, albeit with declining productivity. This makes demand inconsistent, a scenario that is familiar to herbage seed suppliers in other countries. The herbaceous legume species, as well as oats, can be maintained through seed saving on farm. Seed of browse shrubs would be required in small quantities and can probably be sourced within the community.Farmers must feel confident that the investment they make in purchasing seed will be repaid in the yield and quality of the crop they grow. In the case of forage seeds, yield (or overall value) is a more complex parameter because of the different ways in which forage can be fed to stock, the relationship between biomass yield and feed quality, and the perennial nature of some crops. Husbandry techniques can strongly influence the optimization of feeding value of the crop and this is yet another factor that may affect the readiness of farmers to purchase forage seeds unless they have been trained. It is probably only under conditions of good management that the benefits of cultivated forages become sufficiently evident to encourage regular seed purchase.It would seem that the typical Ethiopian smallholders with one or two cattle are subsistence farmers and despite having a significant asset in these animals, they have limited participation in the cash economy. In the field of mainstream seeds, it is clearly understood that one cannot sell seeds on a regular basis to subsistence farmers because they don't relate the cost of seed purchase to cash return. It is only when farmers become connected to a market and regularly sell their surplus that they are willing to purchase seed regularly. This is the classic story of hybrid maize in Kenya.NGOs are probably improving the livelihoods of their subsistence clients, but this will not lead to regular demand for seed. That will only come when commercial livestock enterprises have to decide on their preferred source of feed and select cut forage as a viable option. They should then become regular buyers and forage may also become a cash crop for other farmers to grow. Taking all the above factors into consideration, it is not surprising that real seed demand remains weak.The seed testing laboratories of regional bureaus and enterprises have little/no experience in testing seeds of forage species and are probably reluctant to get involved in this work. They are geared up to a throughput of the main cereal crops and prefer to keep it that way. In principle, this should not be a problem because seed analysts could easily learn how to handle these seeds and ILRI has all the background experience to provide additional training if that is needed.The same would apply to crop inspection, which may be unfamiliar to staff of regulatory authorities but does not involve fundamentally different work to that which they normally do. Both of these issues are probably a matter of management that could be overcome if the motivation was there but enterprises are risk averse given the uncertainty on demand, and the requirement for the enterprises to break-even. The regional authorities will not become involved until there is seed being produced but as already explained, all the technical information and regulatory framework is in place for them to do that work if required.As noted in section 4.2, the channel for seed delivery is not straightforward, although the situation may be easing as direct seed marketing expands. The present system involves the woredas, unions and coops in a bureaucratic process of reconciling demand and supply, with the intention of facilitating the overall system and (hopefully) ensuring equitable allocation. There is much anecdotal evidence that this system does not work well but it is long-established and probably has its supporters. It is geared to seeds of major grain crops that are produced and required in large quantities. Therefore, it is not surprising that niche crops like forages are difficult to accommodate, both from the supply and demand side. Another negative factor is that the present system requires certificates for the seed lots it handles and since forage seeds remain uncertified, they may not be accepted. One company specifically mentioned this as a marketing problem.For all of the above reasons, the DSM model of seed supply would be a more effective approach if it can connect producers and forage growers directly without any bureaucratic intervention. It would also enable producers to benefit from the reputation of their product if it is clearly identifiable to the buyer through the label and/or logo.QDS was prepared and promoted by FAO as a way to reduce the burden of full certification. It places more responsibility on the producer to carry out quality assurance and monitors compliance through random or systematic inspection. FAO documentation provides a framework of principles with details that can be adapted to local circumstances and needs. QDS may be regarded either as a steppingstone to certification or as a permanent solution when certification is too expensive or too difficult to implement. The success of QDS depends very much on the resolve of producers to follow the correct procedures and maintain high standards. If a member fails to do this, the scheme may lose credibility and jeopardize the sales prospects for all.The Seed Proclamation recognizes Quality Declared Seed and defines it as \"seed produced by organized and registered smallholder farmers or registered small farmers, in conformity with the required standards\". Guidelines for implementing QDS have been prepared but only in Amharic and it is not known to what extent they are being used by regular seed producers 8 . It is assumed that the required standards are still those from the ESA specifications but that some other aspects of production, especially crop inspection, would be left in the hands of the producer or an overall coordinator. It would still be necessary to have some mechanism for assessing seed quality; otherwise it will not be distinguished from seed produced by informal producers.The QDS approach could clearly be relevant to forage seeds if a producer group could be formed and organized. This could hold the \"certificate of competence\" but the members would still have to be registered and it is not known what this would involve. It is essential to obtain a copy of these guidelines and study their implications. It is interesting to note in Annex 2 that a QDS standard has been prepared for lablab recently. This implies that ESA and the technical committee are prepared to take account of the QDS model. Seed produced by farmers supported by ISSD may effectively be considered as QDS and their experience in this connection may be relevant.It is clear that there is no ownership of forage seed certification at present because no entity has shown sufficient interest to use what already exists in the regulations. This may be due to lack of awareness but more likely because the other impediments listed in section 5.1 have deterred anyone from investigating the opportunities. An existing seed company would be the most likely new entrant, but members of the seed association must already be aware of Eden Field and they have decided not to diversify and compete in that business area. Considering the high priority attached to forages and the depth of experience in ILRI and the regional research institutions, it is surprising that none of the regional enterprises have made a greater effort to drive the seed production chain. The scheme proposed here will have to involve the research centres as suppliers of breeder/basic seed for multiplication. It will also need the support of regional authorities for seed quality testing, unless some other body can take on that specialized task, which is unlikely in the short term.Simply declaring the details of a scheme will have little impact unless some other actions are taken to give it an identity in the market and provide some initial momentum to encourage production and facilitate marketing. There is sufficient experience on production, particularly among the FeedSeed growers, but it requires too much effort for them to do quality control and marketing individually. If these burdens could be taken over by an umbrella body, then production may be more attractive. It would be logical for the group to use the QDS model rather than full certification since it allows more flexibility in the quality assurance system. The group could hold the certificate of competence and assist individual members if they need to be registered as growers. These details need to be worked out when the scheme is being designed and launched.Marketing arrangements should be coordinated and must involve direct selling to livestock enterprises or individual farmers who produce forage for sale as the business develops. The involvement of bureaucratic intermediaries will be a 8. It is reported that QDS was developed partly to meet the needs of potato seed production but that is a very different activity.handicap to an embryonic scheme, unless a coop or union has a special interest in promoting cultivated forages among its members. Regional research centres have ample experience in promoting cultivated forages through demonstrations and they probably also know the more organized livestock producers who would be potential customers.The guideline presented in Annex 5 describes the key aspects of this approach, although it is not exactly a certification scheme as originally foreseen. Instead, it is a quality assurance scheme that is sufficiently robust to meet regulatory requirements and, with motivation of members, to maintain high standards. As mentioned in section 3.1, this was the origin of many voluntary certification schemes, which were initiated by committed farmers or groups to promote their seeds within the farming community.The portfolio of crops and varieties must be chosen carefully, reflecting both the production aspects and the income stream from annuals and perennials. Seed enterprises commonly live with a situation in which several products make little or no profit, while one or two keep the business running. In Ethiopia, alfalfa seems to be the most promising crop in the portfolio and efforts should be made to exploit this as much as possible by securing the best varieties and maximizing seed yield by growing in optimum locations. Pricing will be critical and market information can be collected but the selling price must cover production costs and a margin for overheads and risks. This will need some financial analysis and must start with a reasonably robust model that can tolerate the expected market fluctuations. Reports of the FeedSeed project may have relevant information on this, although now four years out of date.A stand-alone seed enterprise is always vulnerable to cash flow problems because of the strong seasonality of production and sales. This is true even in the main cereal crops; forages have additional problems, especially their perennial habit which removes the need for annual purchase. One solution is to link the seeds with other businesses that have the same general interest but more consistent or different cyclical cash flow. This can provide synergy in the product range and greater financial security. These suggestions go beyond the remit of designing a certification scheme, but they reflect the need to place the quality assurance scheme in a commercial context and achieve better prospects of sustainability through a viable business model. This was a key objective in the FeedSeed project (see Annex 4) but it was not followed through to implementation and momentum was lost after the project ended.Local stakeholders may be able to identify possible options, and this can be discussed in more detail prior to implementation.This study is predicated on the use of material/varieties coming originally from ILRI via various regional research stations that have carried out adaptive trials. However, the ultimate goal is to improve livestock feeding and productivity, and the door should be open to any variety that can help to achieve that goal. ILRI has long experience in the procedures for secure variety introduction and can continue to provide that service but it must be done with the clear expectation that other parties will handle the following stages of evaluation, maintenance, multiplication and sales.Most market-focused plant breeding activities now take place in the private sector and the products are usually protected by breeder's rights. This may present problems for developing countries with smallholder agriculture where variety protection laws are weak or absent. However, this should not be regarded as a complete obstacle. Companies may be willing to accept an agreement with a reliable partner in exchange for good research results and favorable publicity. Development partners may be willing to facilitate such arrangements.The Napier grass variety Maralfalfa may be mentioned in this connection. It was introduced from a private company in Spain through EIAR and is now being evaluated, with promising results. Being vegetatively propagated, it will be very difficult to maintain any control of the material once it is out in the farming community; it will simply be diffused through the informal system. If its merits are confirmed, an agreement for the use of this variety within Ethiopia should be made even though it will not generate direct revenue for the breeder via PBR. The precise status of this variety should be confirmed although it is not a candidate for inclusion in the current scheme.Annex 5 provides the framework for a guideline 9 summarizing the elements that should be covered and it can be used as a checklist of the issues that need to be considered in finalizing the scheme. Consultation will be required among the parties to decide the best course of action and allocation of responsibilities at each stage. Since the technical standards for the selected crops already exist, consultations should focus on procedures for implementing those standards and the overall management of the scheme that will provide administrative coordination and market identity.The term \"scheme\" implies an operational entity of some kind that uses existing regulatory frameworks, or a modified version, to provide additional coordination and focus to make it work in practice. The institutional arrangements needed to achieve this key step will require careful consideration by the parties, and if possible, policy support to encourage the participation of the main public sector actors, especially the regulatory authorities. Given that the key physical activities of the seed supply chain now take place in the regions, it would be logical to organize this scheme at a regional level initially and perhaps to regard one region as a pilot to commission the system.The adoption and implementation of this scheme will depend on the willingness of interested parties to support it so that it becomes a viable entity. It may be regarded as a community of practice with a shared interest in achieving goals that should bring important social benefits. Although some modest support may be required initially, it should not be highly subsidized leading to failure when the subsidy is withdrawn.It is hoped that existing producers (both formal and informal) will join the scheme and align their production processes with it. However, seed analysis is a specialized skill and requires some basic facilities; it will be essential for existing regional laboratories to participate and provide quality assurance for the product.• The need to increase the production of cultivated forages has been recognized for many years and been the subject of much research. This will improve the productivity of livestock and reduce the pressure on natural grazing lands (both are high priorities). There may be other environmental benefits in terms of soil management and crop rotation. To realize these benefits, there must be a source of quality seeds so that farmers and livestock keepers can assimilate these crops into their production systems.• In practice, it has proven very difficult to translate this clear justification into a consistent demand for quality seed at a market price. For this reason, several actors have continued to supply subsidized seeds, even though this is not their true role. However, supply push alone is not sufficient to stimulate a commercial market.• Subsistence/smallholder farmers may understand the value of cultivated forages but are unlikely to purchase seed on a regular basis. Many have benefitted from seed distribution by NGOs further inhibiting the development of a real market.• The breakthrough to a demand-driven market will depend on the emergence of a more commercial livestock sector for dairying or fattening, and there are signs that this is happening. These producers cannot rely on traditional feed sources and will have to compare the cost of alternatives, especially manufactured feeds, which are expensive. The irrigation of cultivated forages to increase productivity and the emergence of forages as an alternative cash crop for arable farmers may be key steps in this process.• In principle, a certification scheme for forages already exists within the regulatory framework but it is not being used by any of the potential actors. Establishing such a scheme may give greater confidence to buyers but is unlikely to transform the market unless other steps are taken to link producers directly to users. The missing element that needs to be addressed is to bring producers together in a way that strengthens their marketing opportunities. To this extent, the scheme is as much about production and marketing as it is about quality assurance.• The wider acceptance of direct seed marketing will facilitate these arrangements by enabling recognized producers to gain a reputation for their products and benefit from that. Here again, the existence of a trusted label, logo or brand would be a strong support to these marketing initiatives.• A quality assurance scheme based on the QDS model should be adopted initially as this will provide greater flexibility. The precise conditions and requirements for implementing QDS should be confirmed with the MoA and regional authorities since they will still have to validate the scheme and its participants. A checklist of action points to implement QDS should be prepared for discussion with all stakeholders since their commitment will be essential for the success of the scheme.• Given the high priority attached to cultivated forages and the need to improve seed supply, any policy issues or regulatory changes required to facilitate this scheme should be addressed by the National Seed Advisory Group, and if possible, be reflected in the reviews/revisions of policy and law that are currently in progress.• The scale and mechanisms of the informal seed trade promoted by NGOs should be investigated to assess its merits and limitations. The possibility of regulating this trade should also be considered in order to recruit/ embrace the key producers and enhance its quality status. This is a policy issue because it appears that there is significant informal production which is unregulated and; therefore, a source of risk to purchasers.Annex Annex 5. Guidelines for a forage seed quality assurance schemeThe long-term goal should be for forage seeds to be handled in the same way as cereal seeds and subject to the key elements of certification as set out in section 3.3 of this report. In principle, there are currently no regulatory impediments to do this. The production processes, quality standards and labeling requirements all exist and are known to the relevant stakeholders, including the seed enterprises and regulatory authorities. In practice however, they have not taken the initiative to extend certification to forage crops for the various reasons explained in section 5.1. Therefore, it is proposed to launch the scheme initially as Quality Declared Seed with a view to progress to full certification in due course. This will require that a group of interested and experienced producers are encouraged and supported to join the scheme and commit to it, with improved marketing prospects as the benefit. This will still probably need the participation of regional authorities to carry out key quality control functions.5.2 Implementing a QDS scheme• Status: the scheme will be established and managed by a group of interested parties who wish to promote the production and use of improved forage seeds. It must have official recognition at the federal and/or regional levels sufficient to support its objectives and facilitate its activities.• Management: the coordinating body should have terms of reference in order to define their responsibilities. The terms of reference should include both technical supervision of the production process and promotion of the product, preferably with a brand identity. The existence of a quality assurance system would be a key element in maintaining the reputation and integrity of the brand/logo.• Eligible varieties: in consultation with stakeholders, the group will agree an initial list of six to eight priority crops/varieties that will be grown under the scheme. Only seed-propagated crops will be eligible initially, so Napier and Desho will not be included. The list can be expanded upon request and according to need.• Variety maintenance: the institute identified in the register of varieties will agree to act as the maintainer and establish a nucleus stock of the variety from which breeder seed or basic seed will be generated. It will be the responsibility of the institute to hold a stock of the breeder or basic seed sufficient to meet the expected annual demand. The actual quantity will be agreed between the parties taking account of recent production experience and other practical matters such as storage facilities.• Variety descriptions: the responsible institute shall prepare a brief description of each variety in the scheme indicating its key characteristics that will enable it to be identified in the field. This will not need to be a full DUS style description but should be sufficient to distinguish the variety from others of the same crop that might be in use. In practice, the number of varieties of each species in current use is quite small.• Nucleus material: a growing plot of the nucleus material or breeders seed shall be inspected by a technical group to confirm the genetic purity of the stock and the key characters noted in the description. This will be the source material for each eligible variety and it must be validated as such by the concerned parties.• Generation control: the multiplication from breeder/pre-basic seed through one or two generations shall be done according to the relevant specification published by ESA for the crop and is subject to any variations that are agreed to facilitate the scheme. For the candidate crops, two multiplications should be sufficient initially, but perhaps three eventually in the case of legumes and oats. The naming of these generations will be pre-basic seed, basic seed and quality seed. Only quality seed will be sold to farmers. The pre-basic and basic generations will be under the control or supervision of the relevant research institute.• Seed multiplication: this will be undertaken either by members of the group or under contract by farmers.Certificates of competence or other registration procedures will be handled by the regional authority in consultation with group members. The procedures for arranging and managing contracts with seed growers will follow existing practices for cereal crops as far as possible. Seed multiplication may be easier to manage if it is organized and managed initially on a regional basis rather than nationally. In this case, the regional research stations should be the nodal points of the scheme. This would not prevent sales between regions and the quality standards adopted must be the same for all regions to facilitate such movement.• Documentation and record keeping: the entry of crops into the scheme shall be done using the standard forms used by the regional authority but with any agreed modifications that are required for the particular crop. The numbering system for crops and seed lots shall broadly follow that currently used by the regional authority, unless any special modifications are required. The seed lot number for quality seed should make the generation status clear. The institute shall maintain a record of seed stocks it holds of each eligible variety, indicating their reference number and generational status.• Field inspection: inspection of fields before and during the growing season shall be done either by the regional authority or by persons delegated to do this work under the scheme based on their knowledge and experience of the crops. Report forms will follow the standard format but with any minor adjustments as required.• Crop management: detailed procedures for managing seed crops during the growing season and at harvest time will be set out in an information sheet attached to the contract/agreement with growers and taking account of the relevant ESA specification.• Processing: this will be done by companies or individuals who hold a certificate of competence or are registered in some other way to confirm that they have the necessary facilities and skills.• Sampling: taking good representative sample is fundamental to seed quality control. For this reason, training in sampling techniques for field staff will be absolutely essential. Likewise, the procedures for handling samples in the laboratory should be documented. These procedures are described in the ISTA rules.• Seed quality standards: these will cover only the physical purity and germination standards as set out in the ESA specification for each crop. If either of these standards are believed to be difficult to achieve under normal production conditions, then a somewhat lower quality seed standard should be agreed with ESA and regional authorities. ILRI's seed laboratory may advise on this based on its long experience with these seeds.• Seed quality testing: the only laboratories able to carry out seed analysis at present are those in the seed enterprises, the regional authorities and at ILRI. It may be assumed that regional research stations also have some seed testing facilities since they are active producers. Since these stations will be closely involved in the scheme, it would be helpful if they could accept responsibility for taking seed samples and testing them initially.• Labeling of seed containers: this will follow the requirements of ESA 481 but if a brand or logo is created to represent the scheme, then this could be the main label under a validated QDS scheme. The label for quality seed should be clearly distinct from the official certification labels.• Marketing: those who sell the seed, and intermediaries in the marketing chain, should have recognized status within the scheme and will be expected to conform to an agreed code of conduct for managing their seed stocks and providing information to customers. The size of containers to be used requires careful consideration so that it matches the expected requirement for a standard/known unit of land area. A distinctive design or color printed on the sack should be considered. This will have to be coordinated in order to serve all participants in the scheme.• Monitoring: the group will agree a system of monitoring of the key activities in order to maintain standards along the production chain and protect the reputation of the brand/logo.• Documentation: if the approach proposed here is accepted, then all of the above points should be assimilated into a guideline for the scheme which should be endorsed and/or validated by all the concerned parties to give it official status. MoA already has guidelines for production of certain crops and that model could be followed or adapted as necessary.Most of the points listed above apply to both quality declared seed and certified seed. Therefore, putting these various elements into practice lays the foundation for a certification scheme. The key differences are:• simple quality standards that will make it easier for seed lots to be tested and approved for sale.• ownership of the scheme by a group of experienced producers who are committed to maintain the quality of the product.• delegation of responsibilities for crop inspection (and probably sampling) to members of this group who have been trained in these tasks.• establishment of closer links between producers and customers so that the benefits of good quality seed lead to increased sales and the development of a reputation. This is also consistent with current move towards direct seed marketing. ","tokenCount":"13460"} \ No newline at end of file diff --git a/data/part_3/8468387368.json b/data/part_3/8468387368.json new file mode 100644 index 0000000000000000000000000000000000000000..143e669b8866a1b5d67205434d55eee4f7dc86ac --- /dev/null +++ b/data/part_3/8468387368.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"90800d5b0633e2d1d9efab7bcbda0c2f","source":"gardian_index","url":"https://www.cifor.org/publications/pdf_files/WPapers/CIFOR-ICRAF-WP-17.pdf","id":"-460218558"},"keywords":[],"sieverID":"5ea99362-ee6b-46f4-abb9-3f4c58d4682c","pagecount":"70","content":"1 153 tree species selected as initial candidates for species distribution modelling. 2 Final subset of predictor variables selected for species suitability modelling in our analysis. 3 Datasets of occurrence observations used in our analysis. 4 Results from the spatial thinning of occurrence observations. 5 Minimum number of occurrence observations recommended for species distribution modelling, according to selected references, ordered by number of recommended observations. 6 Target number of environmentally thinned occurrence observations. 7 Mountains peaks added to the set of background locations. 8 Target number of background observations 9 Number of occurrence and background locations used for spatial folding. 10 Argument settings for the BiodiversityR::ensemble.calibrate.weights function. 11 Evaluation statistics for the selected ensemble models used to generate species distribution maps. 12 Rules to classify habitat change.5 For each species, background locations (small, green symbols) used for modelling were restricted to a 500 km buffer around occurrence locations (large, red symbols). 6 Occurrence and background locations for each species were assigned to four spatial folds with a size of 500 km. 7 Convex hull for a hypothetical tree species with a relatively narrow range across Africa. 8 Convex hull for a hypothetical tree species with a wide range across Africa.This working paper describes the methods used to develop the online Climate change atlas for Africa of tree species prioritized for forest landscape restoration in Ethiopia (http://atlas.worldagroforestry. org/). The atlas shows the baseline and 2050s habitat distributions across Africa for 127 tree species. The purpose of the atlas is to indicate how alterations in environmental conditions caused by climate change will likely affect the locations where particular tree species can grow in Africa. This is important for planning current and future tree-planting activities, including tree-planting-based forest landscape restoration actions. The atlas will help ensure that the right species are chosen for planting in particular locations, and is an important part of the process of operationalizing Climate Appropriate Portfolios of Tree Diversity (Kindt et al. 2023). The atlas is part of a larger set of tools developed by CIFOR-ICRAF for tree species selection for planting purposes that can be found on the Global Tree Knowledge Platform (https://www.worldagroforestry.org/tree-knowledge). Further background on the atlas and why it is important is provided in Box 1.Box 1. The online Climate change atlas for Africa of tree species prioritized for forest landscape restoration in Ethiopia.The tree species that have been mapped in the online atlas are priorities identified through the Provision of Adequate Tree Seed Portfolio in Ethiopia (PATSPO) project (https://www.worldagroforestry.org/project/ provision-adequate-tree-seed-portfolio-ethiopia). This project, now in its second phase, is developing tree seed supply capacity in Ethiopia to help reach the country's large forest landscape restoration target of 15 million hectares. The PATSPO project is describing existing tree seed sources and is planting breeding seedling (or seed) orchards (BSOs) for tree improvement; these BSOs further act as high-quality adapted seed sources. Mapping where tree species can grow under future climate helps PATSPO to plan for sustainable, appropriate tree seed supply.Although the PATSPO project focuses on Ethiopia, the online atlas covers species distributions for the whole of Africa. Principally, this is to anticipate situations where suitable habitat shifts across national boundaries. Such shifts will occur when novel future climatic conditions for Ethiopia are already experienced in other African countries under their baseline climate. Another reason to model at the continental scale is to increase the number, and to reduce the bias, in the occurrence observations used for the model calibrations (see also Luedeling et al. 2014;Meyer et al. 2016). Finally, by scaling out to the whole of Africa, the atlas can be used by researchers, restoration planners and tree planters in other African nations, for those tree species that are common priorities with Ethiopia.The modelling of contemporary and likely future tree species distributions, as carried out for the online atlas, can be used in three ways to narrow down what tree species to plant: first, by taking account of contemporary climate only; second, by considering future climate only; or, third, by considering both situations. In the last case, priority is given to the tree species that are predicted to be present in the future and that are present currently. This last option is an attractive one for both maximizing the probability of initial tree-planting success (establishment) and the likelihood of obtaining products and services from planted trees when these will only be fully realized decades later (e.g., when the product is timber or the service is carbon sequestration). For further information on these points, please refer to Kindt et al. (2023).In this working paper, we describe the methods behind the creation of the online atlas. These methods, and most of the occurrence observations behind our maps, are available publicly. By sharing our methods, we hope they can be used more widely for mapping tree species distributions in current and predicted future climates. This would apply for mapping other tree species in Africa and for undertaking mapping on other continents. In this working paper, we do not discuss the interpretation of our maps -this will be covered in other, forthcoming publications. Readers of this working paper should also note that its purpose is not to provide an introduction to species distribution modelling methods. For readers who are not familiar with the basic methods for creating habitat suitability maps from species occurrence data and environmental raster data, we suggest they read the references we provide in our description of steps in the subsequent sections of this paper.Overall, our modelling relies heavily on scripts run in the R software package. 1 Guisan et al. (2017) and Hijmans andElith (2016-2021; https://rspatial.org/raster/sdm/index.html) specifically address the use of R for species distribution modelling. Another example R script for species distribution modelling, which showcases many of the same methods used for creating the current atlas, is available from https://rpubs.com/Roeland-KINDT/854918. The following tutorial shows how to use the graphical user interface of BiodiversityR for species distribution modelling: https://www. researchgate.net/publication/301515736_Ensemble_suitability_modelling_with_the_new_GUI_ interface_of_BiodiversityR. Good starting points for an overall understanding of species distribution modelling are Guisan and Thuiller (2005), Guisan et al. (2017), Booth (2018) and Kindt (2018b). Note also that the following video is a recording of a seminar about our atlas: https://www.youtube.com/ watch?v=csKvEeHl3jA.In the following sections of this working paper, we discuss, step-by-step, our methods for atlas development. The different steps proceed from the collection of information on environmental predictor variables and species' occurrences for prioritized species, through data processing and model calibration, to the generation of the final maps. We also summarize the visualization of outputs in the online atlas.In this section, we explain how we came up with an initial list of tree species for modelling species distributions. We started with 153 species at this stage, a number later reduced to 127 species, as will be explained in subsequent sections.An initial selection of priority tree species for the PATSPO project was undertaken in 2017. A 'Top 96' list of species was compiled first (Kindt 2018a). This included 25 priority tree species 2 identified in the Ethiopian Country Report for the State of the World's Forest Genetic Resources report (SoW-FGR; Institute of Biodiversity Conservation 2012); and other tree species in the SoW-FGR that were listed as important for solid wood production, for energy, for non-wood products, for agroforestry systems, for environmental services, and that have social values (see Table 4.1 in Kindt 2018a). Also included in Kindt's 'Top-96' list are tree species mentioned in the SoW-FGR for which genetic variability has been assessed; for which there are genetic or seed improvement programs; that are target species for in situ conservation; that have seed production areas; and for which seed are distributed by Ethiopia's Forestry Research Centre (FRC). The 'Top 96' of Kindt (2018a) further included tree species recorded on the seed price lists of the national and subnational (regional) tree seed centers in Ethiopia; and species imported by the High Value Tree Crops project.Species were classified as native or exotic to Ethiopia based on information available from the SoW-FGR and the Useful Trees and Shrubs of Ethiopia publication (Bekele-Tesemma et al. 2007). For species that were not described in these sources, the Plants of the World Online portal (POWO; http://powo.science.kew.org/; see also Section 15) was consulted to identify their origin (accessed 22 November 2017).From a 'long list' of 240 candidate species for species distribution modelling prepared at the same time as the 'Top 96' list (Kindt 2018a: Appendix II therein), the 'Top 96' list was expanded to 153 species. This was done by adding 57 further species that were native to Ethiopia and that were also included either in the Agroforestree Database (Orwa et al. 2009) or the University of Copenhagen Seed Leaflets series (from 1983 ongoing). Inclusion of the species in the Agroforestree Database or Seed Leaflets series was used as a proxy for the general usefulness of the trees in agroforestry and forestry. Table 1 lists all 153 species taken forward at this initial stage for distribution modelling.Table 1. 153 tree species 3 selected as initial candidates for species distribution modelling. The 'Criterion' column indicates how each species was selected (T25: among the 'Top 25' species; T96: otherwise among the 'Top 96' species; A: native species listed in the Agroforestree Database; L: native species listed in the Seed Leaflets series). Origin distinguishes between native (N) and exotic (E) to Ethiopia. The remaining columns document whether the species is listed in the Ecocrop database (E), the Selection of Forages for the Tropics (F), the Global Species Matrix (G), the Tropical Forestry Handbook (H), the Food Composition database (U) and the Wood Database (W). 4Criterion5 The exotic species Ceiba pentandra was included among the 153 candidate species as it had been identified as native to Ethiopia by Bekele-Tesemma et al. (2007), whereas information from Plants of the World Online (POWO) -compiled later and taken as a more authoritative source -indicated it to be exotic to the country.continued on next page In this section, we explain how we came up with the list of bioclimatic, soil and topographic variables used to model the distributions of prioritized tree species (see also https://rspatial.org/raster/sdm/4_ sdm_envdata.html). From the ENVIREM website (https://envirem.github.io/; accessed September 2016; note the use of capitals to differentiate the website from the envirem package mentioned above 7 ), the topographic wetness index (variable topoWet) and topographic roughness index (variable tri) were also downloaded at resolutions of 30 and 150 arc-seconds. As above, the two different resolutions were required for model calibrations and actual map projections, respectively.Soil measurements selected as candidate predictor variables were average bulk density (fine earth fraction in cg cm -3 ), clay content (particles < 0.002 mm in the fine earth fraction in g kg -1 ), silt content (particles ≥ 0.002 mm and ≤ 0.05 mm in the fine earth fraction in g kg -1 ) and soil pH in H 2 O (x 10). These measurements were obtained from SoilGrids250 (Hengl et al. 2017; https://www.isric.org/explore/ soilgrids; May 2020 release version). Values were taken for each variable from soil depths of 5 to 15 cm, 15 to 30 cm, 30 to 60 cm and 60 to 100 cm, before averaging for the variable for all soil depths. These were the same averaged soil variables used by Hannah et al. (2020), with the exception of depth to bedrock, which they also used. 8 Another difference in our analysis compared with Hannah et al. was that we used a higher resolution of 250 m for model calibrations. Soil variables, only at the higher resolution of 2.5 arc-minutes, were downloaded (August 2020) as raster layers by adapting an R script available from https://git.wur.nl/isric/soilgrids/soilgrids.notebooks/-/blob/master/markdown/wcs_ from_R.md. This script results in averaged soil data at the selected resolution. After creating subsets of spatially thinned occurrence observations (see Sections 6 and 7) for each tree species, soil information was extracted as comma-separated data files from the highest resolution of 250 m of SoilGrids250 via Soilgrids REST API (https://rest.isric.org/soilgrids/v2.0/docs). This was done separately for each observation. The same method was used to extract soil information for background locations (see Section 8). A particular reason for us to include soil variables in our analysis was to model tree species that are edaphic specialists (Corlett andTomlinson 2020, Hannah et al. 2020).Once sets of candidate variables had been extracted, a Variance Inflation Factor (VIF; Fox and Monette 1992) analysis was carried out via function BiodiversityR::ensemble.VIF.dataframe to select a subset of lesser-correlated predictor variables for actual modelling, setting argument VIF.max to 5. First, a data.frame was created that contained all the information for the full set of background locations from the highest resolution data sets (250 m for soil variables and 30 arc-seconds for the other variables).After excluding the records with missing data, the data.frame contained 9,898 records. 9 Initially, we had intended to keep all of the variables of ariditySeason, BIO6 (minimum temperature of the coldest month 10 ), Moisture Index and growingDegDays5 in our final subset of chosen variables for modelling, based in part on our reading of Booth (2016). However, within our final subset, we only retained AriditySeason, as several of the above variables had a final VIF > 10. Our final predictor subset consisted of 15 variables, all with VIF values below 5, except for AriditySeason with a VIF below 10 (Table 2). Settling on these VIF limits was consistent with previous studies. Ranjitkar et al. (2014a), for example, used a VIF threshold of 5 to select predictor variables for suitability modelling, as recommended by Rogerson (2000). Naimi et al. (2013), Ranjitkar et al. (2014b), de Sousa et al. (2019) and Ramirez-Villegas et al. (2020) in their analyses used a threshold of 10 for predictor variable selection. For our chosen subset of variables, high pairwise correlations (of magnitude ≥ 0.8; the limit set by Ranjitkar et al. 2014a) were observed only between AriditySeason and BIO18, and between topoWet and tri (Figures 1 to 3).VIF was calculated for the highest resolution data available. The VIF range was obtained from 10 repetitions of the analysis, with default settings for the BiodiversityR::ensemble.VIF function using the 2.5 arc-minutes raster layers as predictors to create baseline maps. (1,000 randomly selected points) using the baseline raster layers at 2.5 minutes resolution.In this section, we provide information about the future climates that we used for species distribution modelling for prioritized tree species in the atlas.Future climates in the atlas correspond to projections for the middle of the 21 st century (2050s, 2041-2060) under a low-emissions scenario (Shared Socioeconomic Pathway [SSP] 1-2.6) and a high-emissions scenario (SSP 3-7.0) from CMIP6. SSP 1-2.6 is the CMIP6 equivalent of the CMIP5 low-emissions scenario of RCP2.6. SSP 3-7.0 is a middle-of-the-road high-emissions scenario of CMIP6, between worst case and optimistic outcomes when the world fails to enact any climate policies (for further information, see: https://www. carbonbrief.org/cmip6-the-next-generation-of-climate-models-explained).For both of these scenarios, bioclimatic and monthly climatic data were downloaded for nine Global Climate Models (GCMs, or General Circulation Models) available from WorldClim 2.1. These are: BCCand MRI-ESM2-0. The resolution of the raster layers we used was 2.5 arc-minutes. This was the highest resolution available for future climates from WorldClim 2.1, when downloading these raster layers in 2020.Values for the expanded set of bioclimatic variables (AriditySeason, Moisture Index and variables generated via envirem) were calculated for each GCM and each emission scenario with similar methods to those used for the baseline climate layers. As these calculations required details on extraterrestrial solar radiation, relevant raster layers were first created for each year from 2041 to 2060 via the function envirem::ETsolradRasters, and these were then averaged.In this section, we explain how we collected occurrence data for prioritized tree species. Species occurrence observations in geographic space are the basis for modelling individual species distributions.We combined occurrence data for our prioritized species from eight sources (Table 3). Three of the datasets used (AERTS, DEMISSEW and BORCHARDT) only documented occurrences in Ethiopia, but we included these given our particular focus on that country. (Note that spatial and environmental thinning procedures described in the following sections reduce potential bias towards Ethiopia.) As the AERTS, DEMISSEW and BORCHARDT datasets refer only to Ethiopia, we did not use the data cleaning protocols described in the next paragraph. (For the same reason, we also did not use such protocols for the Burkina Faso TERRIBLE dataset.)For the datasets of GBIF and NATURALIS, we used data cleaning protocols available via the CoordinateCleaner package (version 1.0-7; Zizka et al. 2019). We deemed these cleaning procedures unnecessary for pan-African datasets where the procedures for excluding erroneous locations were clearly documented (for BIEN, version 1.2.4, see Maitner et al. 2017; for RAINBIO, see Dauby et al. 2016). We used current names for location determinations and known synonyms (see Tables A1.2 and A1.3, Appendix 1). In this section, we explain how we spatially thin occurrence data to reduce sampling biases that can otherwise occur in generating species distribution maps.To reduce possible sampling biases with occurrence data, we applied spatial thinning using the functions BiodiversityR::ensemble.spatialThin and BiodiversityR::ensemble.spatialThin.quant, based on a similar algorithm to spThin::thin (Aiello-Lammens 2015). This procedure thins out species records using a random systematic approach to record removal until all paired occurrences are above a minimum distance threshold.First, we rounded all occurrence coordinates to four decimal places and removed duplicate records for each species (Table 4). Second, occurrence data were limited to Africa, the region covered by the atlas.Then, for species where the number of retained records in Africa was above 50, the argument of thin.km in the BiodiversityR::ensemble.spatialThin and BiodiversityR::ensemble.spatialThin.quant functions was set at 10 km. This minimum distance has been widely used in species distribution modelling studies (Aiello-Lammens 2015, Title and Bemmels (2018), Castellanos et al. 2019, van Zonneveld et al. 2020).The criterion of 10 km was applied to 121 tree species from our prioritized species list (see 'km' column in Table 4); only two of these species 11 then failed additional criteria for species distribution modelling (as explained in Section 10).For 32 tree species on our initial prioritized list for which the number of retained records in Africa was 50 or lower (Table 4: 'Africa' column), the argument of thin.km was set at a less stringent 2 km for spatial filtering with BiodiversityR::ensemble.spatialThin. This meant that one occurrence observation was retained per 30 arc-seconds grid cell, a similar procedure for limiting occurrence records to unique grid cells to that used for model calibrations by a number of other authors (e.g., de Sousa et al. 2019, Thuiller et al. 2019, Fremout et al. 2020, Hannah et al. 2020). Lowering the distance criterion from 10 km to 2 km captured another eight species 12 that could be taken forward for distribution modelling (meaning 121 -2 + 8 = 127 species in total). In this section, we explain how we environmentally thin occurrence data to reduce sampling biases that can otherwise occur in generating species distribution maps. According to different authors, the minimum number of occurrence records required for species distribution modelling ranges from 5 to > 200 observations (Table 5). Selecting occurrence observations less biased in environmental space can increase the performance of species suitability models (Varela et al. 2014, Castellanos et al. 2019). We therefore applied the BiodiversityR::ensemble.environmentalThin function for environmental filtering of the occurrence observations of some species.We used the following rules to calculate the number of occurrence observations to retain for each of our tree species (this number is used for argument thin.n in the function):• Remove at least one third of observations closest in environmental space for species with at least 75 occurrences after spatial thinning. • Maximally retain 200 observations after environmental thinning.• Minimally retain 50 observations after environmental thinning for species with 50 to 74 observations. • No environmental thinning when the initial number of spatial occurrence records is 50 or below.The targets of retained occurrence observations are summarized in Table 6. Our overall aim was to retain a high number of occurrence observations to calibrate species distribution models (see also Castellanos et al. 2019: Figure 3 For a subset of species, the environmental thinning process resulted in a dataset with fewer records than the target number. This was due to the second algorithm applied in the BiodiversityR::ensemble. environmentalThin function, where the random selection process attempts to create smaller subsets with the same minimum environmental distance. Environmental thinning failed for three species: Albizia grandibracteata, Coffea arabica and Schinus molle. For these species, the occurrences of spatially-thinned observations alone were retained for modelling (see Table 4).In this section, we explain how we selected background (pseudo-absence) locations for species distribution modelling.Across the domain covered by the atlas, we randomly selected 10,000 background (pseudo-absence) locations (see https://rspatial.org/raster/sdm/3_sdm_absence-background.html) that had nonmissing values for bioclimatic predictor variables 13 at the resolution of 30 arc-seconds. This was done via the dismo::randomPoints function and resulted in the locations shown in Figure 4. For each of the background locations, soil data were obtained via Soilgrids REST API (see Section 3). We excluded from our initial 10,000 background locations those with missing soil data, resulting in a final tally of 9,898 random background locations with complete details for predictor variables.13 Soil raster data were only obtained for the resolution of 2.5 arc-minutes, as described in Section 3. To the 9,898 randomly selected background locations, we added 40 locations representing the highest mountain peaks in Africa that were otherwise easy to miss in background location selection. This was important because some of our initial model runs predicted some (Afromontane) tree species to be suitable for mountain peaks. An initial list of 98 mountain peaks with location details was downloaded from Wikipedia (https://en.wikipedia.org/wiki/List_of_highest_mountain_peaks_of_Africa; accessed 14 July 2020), and the peaks were ordered by altitude. We then created a new peak list, eliminating peaks lower down on the ordered original list if they were located less than 10 km from a mountain peak higher on the list. Pairwise geographical distances between mountain peaks were calculated via the function of geosphere::distGeo (version 1-5-10; Hijmans 2019). Ultimately, we decided to retain the 40 highest mountain peaks (Table 7).Then, for each tree species, a separate set of background locations was selected as a subset from the full set of background locations constituting the initial random locations and the locations of mountain peaks. In a first step, for each species a subset of background locations was created by selecting only those locations within a 500 km buffer (created via function dismo::circles) of occurrence observations (Figure 5). This buffer width had been used earlier by Hannah et al. (2020) (see also mentions of 500 km as a potential migration or dispersal distance by Lazarus and McGill 2014, Hoenner et al. 2018and Iverson et al. 2019).14 The question marks associated with mountain peak names are as in the initial Wikipedia names list In a second step, the set of random background locations within the buffer was randomly subsetted via the base::sample function, using the following rules (see also Table 8):• The target number for the subset of background locations should be 10 times the number of occurrence observations when these observations are 40 or more. • When the number of occurrence observations is less than 40, the target should still be 400 background observations. • If fewer background locations are available than the target, then all available background locations should be retained.For species with 50 or more occurrence observations, our algorithm for subsetting applied the same rules as Khoury et al. (2019). However, unlike in our case, Khoury et al. (2019) used background locations that were 100 times the number of occurrence locations for species with fewer than 50 occurrences. 15 Our approach took account of the observations of the simulation study of Grimmet et al. (2020: their Figure 4) who showed that a prevalence of 0.1 (the ratio of occurrence to background locations) is a good compromise for the performance of different algorithms of species distribution modelling. The same authors found that using a prevalence of 0.05 also resulted in acceptable, but slightly lower, model performances among different algorithms. 16 As in our case the lowest number of occurrence observations was 20 for the species retained for species suitability modelling (for Cupressus sempervirens, see Table 9 in next section), we expect our choices on setting background locations (at 400 for species with fewer than 40 presence observations, corresponding to the lowest prevalence of 0.05 = 20 / 400 for Cupressus sempervirens), to be appropriate. background observations Figure 6. Occurrence and background locations for each species were assigned to four spatial folds with a size of 500 km. Larger symbols show occurrence observations, smaller symbols background locations, with the colour representing the fold. This figure shows the same locations for Faidherbia albida as for Figure 5.In this section, we explain how we applied a spatial folding scheme to group presence and background locations for subsequent cross-validations in the generation of species distribution maps.Occurrence and background locations were assigned to four spatial folds via the BiodiversityR:: ensemble.spatialBlock function that internally calls the blockCV::spatialBlock function (Valavi et al. 2018). In fourfold model cross-validation, locations from each single fold are used for the evaluation of models calibrated with locations from the other three folds (see Box 1 in Valavi et al. 2018). As argued by Valavi et al., spatial folding methods are preferred to conventional random techniques of crossvalidation since the latter can lead to underestimation of prediction error.We set the size of the folds to 500 km (argument theRange = 500000), the same size as the magnitude of the circular buffer used to select background locations (see Section 8). In a first run for each species, we set the minimum number of locations in each fold (argument numLimit) to 20. For species where this target could not be achieved, we reduced the minimum number of locations to 10. In a final run for species where the target of 10 could not be reached, we set the minimum target number to 5. As we judged 5 locations to be a minimum to evaluate model calibrations in cross-validation tests, species where this target could not be met were excluded from model calibrations (26 species in Table 9 with minimum occurrences in a fold < 5). As a consequence, the final atlas we generated contains maps for 127 species, corresponding to the species in Table 9 with minimum occurrences in a fold ≥ 5.Prior to applying the spatial folding function, occurrence and background locations were transformed to the equal-area Mollweide projection (https://spatialreference.org/ref/esri/53009/), as spatial folding requires equal-area coordinate reference systems (Valavi et al. 2018). After spatial folding, the locations were transformed back to their latitudes and longitudes (https://spatialreference.org/ref/epsg/4326/). In this section, we explain how we calibrated the species distribution models and generated the suitability maps.Species distribution models were calibrated via the functions BiodiversityR::ensemble.calibrate. weights and BiodiversityR::ensemble.calibrate.models via procedures of ensemble suitability modelling described by Kindt (2018b). Similar procedures were used in other species distribution studies with BiodiversityR, such as those by Ranjitkar et al. (2014a,b), de Sousa et al. ( 2019), Fremout et al. (2020) and van Zonneveld et al. (2020). The ensemble procedures of BiodiversityR calculate habitat suitability as a weighted average of predictions from different algorithms, 17 an approach that may significantly increase model performance (Marmion et al. 2009, Hao et al. 2019). Allouche et al. 2006). Although the use of AUC has been criticized (e.g., by Jimenez-Valverde 2011), it provides a valid measure of relative model performance for the same species and study area (Wisz et al. 2008), and therefore it is also valid for comparing the performance of a consensus model and the individual performance of contributing algorithms (Kindt 2018b). 17 These methods have also been described as 'consensus methods', where a relevant combination of several model outputs results in a prediction that has higher accuracy than those of individual model outputs; similar consensus methods are used in meteorology, climatology and economics (Marmion 2009). For an online example, check https://rspatial.org/ raster/sdm/6_sdm_methods.html#combining-model-predictions.18 See Kindt (2018b) for how weights are calculated from AUC values. Weights can be zero so that results from algorithms with weight zero are not included in the calculations. When only one weight is larger than zero, the ensemble predictions are equal to those of the selected (best) model. When it is not known a priori which algorithm has the best predictions for a particular species or study region, selection of the single best algorithm still is a method of ensemble suitability modelling.19 In this working paper, we do not report results for the TSS, as Wunderlich et al. (2019) demonstrated that SEDI has superior qualities as an evaluation metric. Transform suitability predictions from each algorithm to probabilities via a probit transformation. See Kindt (2018b) for details.Table 10. ContinuedAs some machine-learning algorithms use randomization approaches, we carried out model calibration procedures 5 times 20 for each species. Based on their average AUC in the fourfold cross-validations (AUC-mean), from the 5 calibrated ensemble models for each species we selected the ensemble model with the highest AUC-mean (see Table 11) to generate habitat suitability maps for the baseline and future climates (GCMs × scenarios) via BiodiversityR::ensemble.raster.Model performance statistics shown in Table 11 correspond to the selected ensemble model. In the majority of cases (102 species when comparing AUC-mean statistics), the ensemble model outperformed individual algorithms. In cases where an individual algorithm had higher AUC-mean than the ensemble model, GLMSTEP ranked first for 7 species, and MAXNET and GAMSTEP ranked first for 6 species each. There were only 4 cases where the ensemble model ranked third and only 2 cases where it ranked fourth, but for all these cases the final model had an AUC-final value above 90%. Only for Catha edulis was the AUC-mean difference between the best ranking algorithm and the ensemble model larger than 2%.Elsewhere, prediction accuracies with AUC-mean of more than 90% are classed as excellent, 21 from 90% to 80% as good, from 80% to 70% as fair, from 70% to 60% as poor, 22 and below 60% as a fail. On this basis, in the current analysis no species failed for cross-validation, and the model was considered to be poor for 5 species only: Grewia damine, Ziziphus mucronata, Adansonia digitata, Combretum aculeatum and Hyphaene thebaica (in descending order of AUC-mean value; Table 11). Taking the same classification thresholds, the minimum AUC in a fold (AUC-min) was classified as a fail for 3 species, Ziziphus mucronata, Commiphora africana and Garcinia livingstonei; and as poor for 39 species, ranging from 69.9% for Anogeissus leiocarpa to 60.7% for Entada abyssinica. The prediction accuracies for the final models that were fitted with the full set of occurrence and background locations were all classed as good or excellent, with Commiphora africana ranked lowest with a value of 82% for AUC-final. The BiodiversityR::ensemble.raster function generates three types of habitat suitability maps (Kindt 2018b) that are all included in the atlas:• Predicted presence maps depict areas where a species is predicted to be suitable (present) or not suitable (absent) as predicted by a particular ensemble model. • Predicted suitability maps depict the probability that a species is suitable across the mapped area as predicted by a particular ensemble model. • Count suitability maps show how many of the algorithms that are used by a particular ensemble model predict that a species is suitable (consensus map).Predicted presence maps are derived from predicted suitability maps by applying a suitability threshold value that discriminates areas where a species is predicted to be present (above the threshold) or absent (below the threshold). Various approaches exist to calculate the threshold; based on these we applied a threshold that maximizes the sum of sensitivity and specificity, as recommended by Liu et al. (2013Liu et al. ( , 2016)). This threshold has been widely used by a range of authors in species suitability For the predicted suitability maps, the species absence-presence threshold was used in combination with maximum suitability values to classify species suitability maps to four quartile ranges above the threshold using function raster::quantile with argument probs=c(0, 0.25, 0.5, 0.75, 1.0). Below the threshold and with minimum suitability values, we calculated a 90% percentile value to show some of the areas (those of highest suitability) where the species was predicted not to be suitable.The BiodiversityR::ensemble.raster function also generates count suitability maps that show the number of algorithms that predict species presence (Kindt 2018b). These types of maps can be used to investigate consensus among the different algorithms used to calculate habitat suitability by the ensemble model.Water bodies were masked out in the generation of maps by applying the inland and ocean water layer of Lamarche et al. (2017). We reprojected ('warped') this layer to the resolution of our predictor variables and the suitability maps in QGIS, using a quantile method whereby a raster was classed as a water body when at least 25% was covered by water.In this section, we explain how we separately mapped areas with novel environmental conditions. An argument can be made that species should be predicted not to be suitable (should be predicted absent) in areas with novel environmental conditions (conditions outside the observed environmental range of the species).Identifying areas with novel conditions is conceptually related to the multivariate environmental similarity surface (MESS) methodology developed by Elith et al. (2010), but for the atlas we use a binary classification of novel versus not-novel environments, where these had negative MESS values and values within the observed range, respectively.The observed environmental ranges of each tree species for our 43 environmental variables were obtained via the BiodiversityR::ensemble.novel.object function. In two separate exercises, one using our predictor variables and one using the full set of 43 environmental variables, we created maps for each species that showed areas where there are novel conditions 23 within the predicted habitat.The maps for novel conditions allow discrimination between novel conditions for variables not used for calibrating the model ('Extrapolated #1'); and novel conditions for variables that were used for calibrating the model ('Extrapolated #2').In this section, we explain how we generated a posteriori distance constraining hulls. For each species, the hulls are used to show areas in the modelled distribution (outside the hull) where the conditions for the species are predicted to be suitable, but that are distant from known presence observations of the species. Areas outside hulls are expected not to be reachable by natural dispersal processes and to be outside the natural range of a species by consequence.Maps in the online atlas include a convex hull that was created via the BiodiversityR::ensemble.chull. create function. All spatially thinned occurrence observations for a species were used to create this hull (Figures 7 and 8). The argument setting of buffer.maxmins = TRUE selected the Buffered Minimum Convex Polygon (BMCP) as an a posteriori distance constraining method, as described by Mendes et al. (2020).Mendes et al. ( 2020) investigated various methods of adding distance constraints to reduce overprediction in species distribution modelling. These methods include dispersal constraints that essentially exclude areas unlikely to have been colonized by a species. The BMCP algorithm was among the a posteriori methods that reduced overprediction without incurring high omission errors. For each species, the buffer width for BMCP corresponds to the maximum calculated from the distances to the nearest neighbour for each occurrence location.13 Convex hulls for an a posteriori distance constraining method Convex hulls were added to our maps as a visual aid for users to identify areas where it is unlikely that species occur naturally. Note that we have not used convex hulls as masks for the area calculations given in the atlas. The area statistics shown, calculated after reprojecting the rasters to the equal-area Mollweide projection (https://spatialreference.org/ref/esri/53009/), include areas outside the hulls.In this section, we explain how the main atlas maps were created.The base (continental) map used throughout the atlas was obtained from https://maps.wikimedia. For the species presence maps in the baseline climate, spatially thinned occurrence observations from only the RAINBIO database (Dauby et al. 2016), one of the databases used to compile occurrence observations (see Section 5), were added. Spatial thinning was done via BiodiversityR::ensemble. spatial.thin for occurrences closer than 100 km. This was carried out for graphical reasons, to avoid the overlap of occurrence symbols and increase the visibility of the habitat suitability layer.Our reason to select RAINBIO occurrences only for visual purposes was based on the numerous quality checks, including manual checks by African flora experts, undertaken while georeferencing these occurrences. The inclusion of occurrences from RAINBIO in the maps therefore provides users with a reliable check for the modelled distributions. However, as RAINBIO is geographically focused on mainland Africa, and especially to areas south of the Sahel and north of southern Africa, the distribution of occurrences from RAINBIO should not be used to inspect the reliability of the models outside the area that is thereby defined. 24 The spatially thinned RAINBIO locations served as inputs for the creation of a concave hull (different from the convex a posteriori distance constraining hulls described in Section 13) via the ggforce::geom_ mark_hull function (version 0.3.2; Pedersen 2020). Default parameter settings were used, except for concavity = 1.5. These concave hulls were added to maps to assist the user in locating the spatially thinned observations from the RAINBIO database.24 Inset maps in the atlas from Plants of the World Online help counter this problem of limited geographic range (see Section 15 of this working paper).In this section, we explain how the inset atlas maps were created.For each of the tree species mapped in the atlas, we compiled country distributions from Plants of the World Online (POWO; http://powo.science.kew.org/; accessed 4 September 2021) using the classifications of 'Native', 'Introduced' and 'Doubtful'. Countries that were not listed by POWO for a species were classified as 'Absent'.An inset map was created with the Natural Earth (NE) 1:10 million Admin0 shapefile (version 4.1.0, downloaded May 2018 via https://www.naturalearthdata.com/downloads/10m-cultural-vectors/10madmin-0-details/). Insets were only shown for baseline climate maps, to avoid any misunderstanding that POWO would provide future climate projections.To match country names from POWO with country names in the NE shapefile, a lookup table was created with past and current names where these were different for countries (e.g., Democratic Republic of the Congo versus Zaïre; and Eswatini versus Swaziland). Whereas POWO mapped the Cape Provinces, Free State, KwaZulu-Natal and Northern Provinces separately for South Africa, the inset maps show information aggregated for South Africa. Other areas that were mapped separately by POWO were Cabinda (mapped in the inset map as Angola), the Gulf of Guinea Islands (mapped in the inset map as Equatorial Guinea) and the Caprivi Strip (mapped in the inset map as Namibia). As POWO does not separately list the new countries of South Sudan and Somaliland, the data for these nations were contained within the POWO data for Sudan and Somalia, respectively.Similar to the visualization of full convex hulls (see Section 13), and of the occurrence locations as well as the concave hulls derived from RAINBIO (see Section 14), the inset maps can aid users to visually check the performance of suitability models. ","tokenCount":"6471"} \ No newline at end of file diff --git a/data/part_3/8470627944.json b/data/part_3/8470627944.json new file mode 100644 index 0000000000000000000000000000000000000000..81c88f38043530beb44700f273d9ae661bc93081 --- /dev/null +++ b/data/part_3/8470627944.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"99b6624b2b986af7ec46e6dc7d3b27f4","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/20303f7e-f756-4e97-8cf6-1ef48dc65857/retrieve","id":"330124635"},"keywords":[],"sieverID":"2c5b638e-010a-402c-9edd-212f5ae2a45e","pagecount":"19","content":"cgiar annual PERFORManCE REPORT 2021 7We are pleased to present the cgiar annual Performance report for 2021, which honors our 50th year of delivering critical science and innovations to address food insecurity, inequality, and environmental degradation.In the last five decades, CGIAR has expanded its initial aim of solving hunger to encompass some of the world's most important and intractable challenges -to which food, land, and water systems are central. The ongoing cOViD-19 pandemic has demonstrated the vulnerability of food systems to shocks, the growing need for resilience, and the scale of ambition needed to address major challenges -making cgiar's systems approach to tackling these issues ever more important.For our 50th anniversary in 2021, we brought together a collection of our innovations that have changed the world over the years, demonstrating the breadth and reach of our work impacting food and nutrition security as well as livelihoods for millions worldwide. We invite you to explore our impacts, discover our contributions, and see how they provide a solid foundation for our future work.in 2021, we made important progress toward the One cgiar transition. in March, the System council endorsed our new operational structure encompassing research Delivery and impact, global Engagement and innovation, and institutional Strategy and Systems. This structure will enable cgiar to organize itself in a more powerful and interconnected manner to deliver on the new 2030 CGIAR Research and Innovation Strategy, which is supported by increased financial investments in CGIAR. another major milestone occurred in June, when the System council approved the new System Board-recommended 2022-2024 Investment Prospectus. The investment Prospectus sets out cgiar's new portfolio to deliver the cgiar research and innovation Strategy, which comprises 32 initiatives -major, prioritized areas of investment that bring capacity from within and beyond CGIAR to bear on well-defined, major challenges.it is significant that 2021 is cGiar's 50th anniversary year, and we are reminded that global problems are now known to be more complex and interrelated than perceived to be in 1971. importantly, it is the moment to rise to the challenge of demonstrating the essential need for cGiar as one cGiar -a bolder and more operationally integrated institution -we are a stronger global, regional and local partner, and at the forefront of creating solutions.\"-Juergen Voegele, chair of the System council chair's summary of the 13th CGIAR System Council Meeting, June 9-10, 2021 cgiar reported important contributions to global food systems and climate change summits during the year, including the United Nations Food Systems Summit (UNFSS) and the 2021 United Nations Framework convention on climate change conference (UNFccc) for the conference of the Parties (cOP) 26 held in glasgow. Funders recognized the contributions cgiar makes to food, land, and water system transformations, and climate solutions with pledges worth more than US$1 billion in 2021. They made significant pledges at COP26, including a pledge by the Bill & Melinda gates Foundation of US$315 million for the next three years, and the United States agency for international Development (USaiD) of US$215 million for the next five years. In addition, another major pledge was made by the European commission, the Netherlands, and Belgium US$256 million at the Global Citizen Live event.in 2021, cgiar researchers and a cgiar center were recipients of prestigious food awards recognizing their valuable contributions to global food security. among the honors were Dr. Shakuntala Haraksingh Thilsted, who was named World Food Prize Laureate; Dr. Elliott Dossou-Yovo, who won the Borlaug Field Award; and the international crops research institute for the Semi-arid Tropics (icriSaT), which won the Africa Food Prize.2021 marked the final year for CGIAR's research Programs and Platforms (crPs), which have left a legacy of enduring contributions to the United Nations' (UN) Sustainable Development goals (SDgs). The 2021 annual Performance Report provides examples of recent achievements from all the crPs and Platforms, with in-depth reporting on 13 outcome cases.The cOViD-19 pandemic continued to evolve and impact health, economies, food system transformation, and food security in 2021. CGIAR continued its efforts to support pandemic responses in 2021, with the cgiar COVID-19 Hub, which ended in December 2021, providing evidence, innovations, and tools from a range of expertise to policymakers and food system actors in a number of countries to help with their response and recovery efforts.We invite you to explore the summary of reported results for the year and hope you enjoy reading cgiar's 2021 annual Performance report.Figures and maps are clickable and link to offer additional levels of detail. We have quality assessed all data and information contained in the Dashboard, which aligns with CGIAR's Annual Performance Reports. CRP: Fish agri-food Systems (FiSH)SDGs:SLO TARGET: 3.3. restore 55 million ha of degraded land area.In Bangladesh, FISH-led interventions helped protect 264,413 ha through effective co-management in hilsa shad (Tenualosa ilisha) sanctuaries and coastal areas. By applying better management practices for aquaculture, 80,368 ha of pond area were restored. In addition, 344,781 ha of biologically significant areas were placed under improved natural resource management. The adoption of improved GLDC varieties has helped an estimated 19 million people -50% of whom are women -meet their dietary energy requirements. These crops have assisted 38 million people -48% women -in meeting their dietary protein requirements through the supply of additional nutrients. gLDc varieties have also helped 3.8 million women of reproductive age to meet their dietary protein requirements.Reduction of greenhouse gas emissions from agriculture CRP: climate change, agriculture and Food Security (ccaFS)SDGs:SLO TARGET: 3.2 Reduce agriculturally related greenhouse gas emissions by 0.2 gigatons of carbon dioxide equivalent per year (gt cO2e/year) (5%) compared with the business-as-usual scenario in 2022.ccaFS's research on Low Emissions Development aims to reduce greenhouse gas emissions from agriculture, while ensuring food security at a large scale. Over 10 years, ccaFS has generated impacts that hold the potential to reduce emissions by 196 million tons of cO2e.ccaFS-led mitigation includes avoided emissions (92%) and carbon sequestration above and below ground (8%). Emissions avoided include water and nutrient management in paddy-rice and other crops, and improved livestock systems.Thirty-six million farmers have adopted mitigation technologies and practices or received agro-advisory services. These farmers are using these practices to promote low-emissions agriculture on 69 million hectares of land. Governments, global climate finance, the private sector, and bilateral and multilateral funding organizations have also committed to investments totaling more US$4 billion. The scaling partnership involved many national and international partners, including Punjab Seed corporation, CIMMYT, Family Farm Foods, and GAIN, as well as six funders of HarvestPlus and WHEAT. Combining high yield and high zinc has been a recent breeding success that will be sustained by future genetic discovery research. research to improve molecular breeding for zinc is ongoing. As a result of delivery efforts led by HarvestPlus, 12.8 million farming households were growing biofortified crops in 2021. This translates to 64 million people from these households consuming biofortified foods. These figures on biofortified crops and food are likely to be underestimated. In addition to the individual household members of the growing households, sales of biofortified products rose in 2021. This increase likely means that more people were consuming biofortified products obtained through markets, resulting in more people with reduced micronutrient deficiencies. For 50 years, cgiar has been delivering critical science and innovation to feed the world and end inequality.To mark the 50th anniversary, in 2021 cgiar curated a collection of innovations -new ideas, products, services, and solutions driven by science -that have made a difference to some of the world's biggest development challenges. as part of the collection, cgiar published a seriesof deep dives into the following: innovations for nutrition and growth; a climate crisis; food system transformation; a brighter future; a healthy world; and gender equality.cgiar was actively involved in the United Nations Food Systems Summit (UNFSS), which included global dialogues at various levels, consultations with a variety of stakeholders, the dissemination of new studies and reports, and a Pre-Summit in July 2021. all of these activities contributed to UNFSS's main Summit held on September 23, 2021. at the September Summit, cgiar joined heads of state and global leaders to announce its commitment to UNFSS's mission of addressing such global challenges as hunger, climate change, poverty, and inequality through transformed food systems. research conducted by the crP on FiSH is contributing to the Feed the Future Cambodia Rice Field Fisheries II project, which has shown that well-managed community fish refuges (CFRs) can significantly improve the fish productivity of rice field environments. By producing high-value rice and fish in comanaged CFRs, the project aims to increase consumption of highly nutritious foods in malnourished areas. in addition to addressing multiple causes of malnutrition, the initiative also strives to improve resilience to climate change by protecting fish habitats and creating secure drinking and irrigation water.The crP on Forests, Trees and agroforestry's managing partner, World Agroforestry Centre, created the agroforestry Species Switchboard, an online resource containing more than 170,000 species and corresponding information across geographies. The agroforestry Species Switchboard connects reliable species databases that contain ecological information needed to develop and implement suitable restoration programs around the world. researchers and practitioners worldwide have visited the Switchboard more than 350,000 times to support effective landscape restoration. Working with national and international partners in Ethiopia, scientists from the crP on Wheat collaborated to fight wheat rust through surveillance, advanced epidemiological modeling, and an alert system for farmers. globally, wheat yellow rust is spreading, causing wheat yield losses of 10-70% and crop losses of 5.5M tons per year. all rust spores can migrate long distances and mutate quickly to produce diverse populations that are difficult to control. in Ethiopia, almost 5 million smallholder farming households that grow wheat struggle with virulent, rapidly evolving yellow and stem rust.Improved grain, legume, and cereal crop varieties have been widely adopted across South Asia and Africaresearch by crP on grain Legumes and Dryland cereals (gLDc) indicates that 17.64 million households have adopted improved GLDC crop varieties on more than 15.37 million hectares of land in gLDc's 13 priority countries. Numerous studies have been conducted in the past to document the adoption of gLDc crops, but there have been gaps in the analysis and synthesis of these findings. To better understand these results, gLDc in 2021 carried out a review of 69 impact studies in 35 independent country crop combinations.research, advocacy, and trainings on spineless cactus pear (Opuntia Ficus-indica) across South and West asia by the crP on Livestock's partner international centre for agricultural research in the Dry areas and others has led to rapid adoption by smallholder farmers, who are benefiting from greater income. The cactus pear exhibits crassulacean acid metabolism, allowing it to successfully adapt to drought, erratic rainfall, and low soil fertility. The crop has attracted global attention for its capacity to grow with minimal cost and inputs, as well as its multiple benefits for food, livestock feed, and livelihoods.Read the full story >Bioversity-ciaT alliance, a lead center of the crP on rice, and the Latin american Fund for irrigated rice have disseminated germplasm through local partners across Latin america. This partnership has contributed to breeding hundreds of improved varieties, including the popular MAC-18 variety, that now support rice production. Within six years of being released, Mac-18 had been adopted by one out of four Bolivian rice producers. It is the first variety developed by a national breeding program to reach such high rates of dissemination.The crP on Maize's innovations in rapid-cycle maize breeding and varietal replacements have delivered improved maize varieties to farmers across africa. These innovations help maize systems adapt to increasing climate variability and facilitate a farmer-accessible, competitive seed sector. Stress-tolerant maize is a key intervention to improve the livelihoods of millions of resource-constrained smallholder farmers, offset potential losses under climate change, and sustainably meet the needs of future generations.Read the full story > cgiar annual PERFORManCE REPORT 2021 21The crP on climate change, agriculture and Food Security has co-developed, tested, and scaled climate services approaches that have been used for agricultural decision-making by more than 420 institutions in 11 countries in Latin america, reaching 501,000 farmers.Local stakeholders and farmers in Latin america generally have limited access to agroclimatic information or mechanisms to relate this information to local climate impacts. This lack of access prevents stakeholders from translating information into actionable knowledge. The international Potato center, the lead center of the crP on roots, Tubers and Bananas, and WorldFish, the cgiar Platform for Big Data in agriculture's partner, developed the PeskaaS system (a digital data application) in response to a need for information on small-scale fisheries. Since 2017, WorldFish scientists have worked with the government of Timor-Leste to develop a digital catch reporting system that could gather information on fisheries around the country in near real time. The system is now the platform for data-driven fisheries decision-making in Timor-Leste. The cgiar Platform for Big Data in agriculture used big data to solve agricultural development problems faster, better, and at greater scale.In 2021, the Platform completed its fifth and final year of building CGIAR's crosscutting digital capabilities, partnerships, and innovation strategy in digital agriculture.The Big Data Platform was guided by the conviction that data standards, tools, open science infrastructure, digital partnerships, and technical communities of practice, and applied digital innovation can build powerful capabilities for accelerating impact in agricultural research for development.in 2021, the Platform team continued contributing to cgiar's digital capabilities, innovations, and partnerships for impact, while also engaging in the design of a new cgiar research portfolio and organization.The CGIAR Excellence in Breeding Platform (EiB) contributed to the modernization of crop breeding programs that target the global South.In The cgiar genebank Platform supported the activities of the cgiar genebanks and germplasm health units (gHUs) to conserve and make available crop, forage, and tree genetic resources, contributing to the SDGs, specifically Target 2.5. Monitoring, evaluation, learning and impact assessment in 2021, the 12 cgiar crPs and four Platforms reported 330 monitoring, evaluation, learning, and impact assessment (MELia) activities. MELia studies are principally used to inform learning and adaptive management, meet accountability requirements, and inform the design of new initiatives.cgiar centers reported entering into a total of 55 Limited Exclusivity Agreements in 2021. A total of five patent applications and one plant variety protection application were reported in 2021. Two of these five patent applications were made on a provisional basis and, as such, require further filings to secure patent protection. No restricted Use agreements were reported in 2021.Open and FAIR data assets cgiar adheres to the principle that the results of its research and development activities are international public goods. it is committed to their widespread dissemination and use to achieve the maximum impact to benefit the poor, especially smallholder farmers in low-and middle-income countries. cgiar is, therefore, committed to sharing outputs of its research that are as open as possible and always Findable, accessible, interoperable, and reusable (FAIR), advancing cgiar's aspirations to digital transformation and data-driven innovation. Working together (cont'd) ","tokenCount":"2467"} \ No newline at end of file diff --git a/data/part_3/8474493238.json b/data/part_3/8474493238.json new file mode 100644 index 0000000000000000000000000000000000000000..617512266f629b613db1aaf854d74cfd598507cf --- /dev/null +++ b/data/part_3/8474493238.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"0a1d5316efa683c8c09017887aeb4fc6","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/f020b58b-2291-4da4-a734-3ee511c84172/retrieve","id":"-1673184937"},"keywords":[],"sieverID":"6dcb4de3-efe2-4d30-b1d0-7e7ede557e59","pagecount":"38","content":"The Sustainable Intensification of Mixed Farming Systems Initiative aims to provide equitable, transformative pathways for improved livelihoods of actors in mixed farming systems through sustainable intensification within target agroecology and socio-economic settings.Through action research and development partnerships, the Initiative will improve smallholder farmers' resilience to weather-induced shocks, provide a more stable income and significant benefits in welfare, and enhance social justice and inclusion for 13 million people by 2030.Activities will be implemented in six focus countries globally representing diverse mixed farming systems as follows: Ghana (cereal-root crop mixed), Ethiopia (highland mixed), Malawi: (maize mixed), Bangladesh (rice mixed), Nepal (highland mixed), and Lao People's Democratic Republic (upland intensive mixed/ highland extensive mixed).The Transforming Agrifood Systems in South Asia Initiative (TAFSSA) is a CGIAR Regional Integrated Initiative that supports actions improving equitable access to sustainable healthy diets, that boosts farmers' livelihoods and resilience, and that conserves land, air, and water resources in a climate crisis.The Sustainable Intensification of Mixed Farming Systems (SIMFS) is a CGIAR initiative. This initiative 'aims to provide equitable, transformative pathways for improved livelihoods of actors in mixed farming systems through sustainable intensification within target agroecological and socioeconomic settings. To achieve this, different methodologies, innovations, and practices have been implemented to understand and improve the agroecological/productive conditions to assess a benefit on nutrition, food security and welfare. SIMFS works closely with the CGIAR Regional Integrated Initiative on Transforming Agrifood Systems in South Asia (TAFSSA) that propels evidence into impact through engagement with public and private partners across the production-to-consumption continuum, to achieve productive, environmentallysound South Asian agrifood systems that support equitable access to sustainable healthy diets.The use of Principal Component Analysis through Hierarchical Clustering (PCA-HC) is a tool which provides relevant information for farmers, practitioners, and other stakeholders. The development of typologies is a methodological approach to systematically arrange and interpret data associated with the categorization of groups of variables. In farming systems analysis, household-level data are critical in delineating internal farm dynamics that include production processes, adaptive strategies, and resilience metrics. Structural variables, characterized by their stability over short to medium-term periods, are key to discerning consistent trends and patterns within farming systems. These variables assist in identifying the strategic choices made by farm households to advance their welfare and nutrition. The analytical process is structured to support the establishment of sustainable and productive mixed crop-livestock-tree farming systems.Table 1.1 outlines the survey's scope, which was conducted in three regions of interest: North, South, and West (as depicted in Figure 1.1), aligning with the areas of intervention for the SI-MFS, Asian Mega Deltas, and/or TAFSSA Initiatives. The survey was carried out in the Bengali language by local enumerators, utilizing electronic devices equipped with Kobo toolbox application. Data collection occurred between December 2022 and May 2023, resulting in a total of 1857 records. Following a thorough data cleaning process, 1680 records were retained. This farm typology report specifically focuses on the data obtained from the West region, encompassing 432 entries, covering the districts of Chapainawabganj (217) and Rajshahi (215). The original data frame was recorded in a CSV file. The land definition was provided by the farmers, and the local units were changed into a metric system. Some tests were applied to identify possible outliers in Excel of Office 360 and corrected with expertise from the CIMMYT-Bangladesh team. For the analysis some variables were used as collected, meanwhile other were created from original information, as ratios or indexes.The analysis was conducted using R (v 4.2.2), in R-Studio (v 2022.12.0 Build 353), over Windows 10 Enterprise 22H2. The packages used for analysis included dplyr, reshape, ggpubr, corrplot, psych, caret, Hmisc, agricolae for data analysis and factoextra, ade4, vioplot, sf, tmap, grid, gridExtra, ggplot2 for graphical representation.Before conducting the PCA-HC analysis, a preliminary step involved the removal of variables from the available dataset in order to mitigate dimensionality. To accomplish this, we classified variables into two distinct categories: structural and non-structural. Structural variables, exemplified by attributes such as land surface area, active subsystems within the farm, and land use, exhibit minimal year-to-year variability. In contrast, non-structural variables such as crop yields or income, can change dramatically within a year. Binomial or categorical variables were considered within the dataset, although their treatment in the analysis is not specified in this context. The decision to exclusively retain the structural variables for the subsequent PCA-HC analysis stems from their inherent stability over time.Subsequently, all initially selected variables were tested and those having more ≥74% of the data as NA, or a prevalence of ≥80% of 0 (zero) value as responses, were consequently excluded from further analysis. This systematic approach was undertaken to augment the distinctions between farms within the PCA-HCA framework. In the context of PCA-HCA, the resulting 'reduced' dataset was used in a two-step testing process to refine and obtain a cleaner version for typological analysis:To assess the near-zero variance of each variable, a statistical test, as outlined by Kuhn (2023), was utilized to demonstrate significant near-zero variance behavior. This test relied on the ratio of the most frequently occurring high values to the percent uniqueness of values within all data vectors. We next conducted a visual examination of the dataset's variable distributions through the use of boxplots and histograms, with the aim of identifying patterns resembling normal distributions. In order to evaluate relationships between variables, we utilized Pearson's correlation to examine data that were comprised of numerical variables. Following Barba-Escoto et al. (2019), a threshold of 0.7 was employed as a discriminating point. Any correlations exceeding this absolute reference value were scrutinized across all related variables, and for interpretation purposes, the most significant variable was selected among those with multiple correlations or varying levels of significance.Before the cleaning process 54 variables and 432 farmer respondents' data were preselected for the farm typology characterization of Rajshahi and Chapainawabganj districts. 11 variables linked to the identification of each survey were directly removed. Another 17 variables were removed after the cleaning process. The final farm type definition presented in this document is based on a matrix of 26 variables 432 farmer household survey respondents. The ratio of surveys to variables in this analysis is 16.6, which exceeds the commonly accepted threshold of 5, indicating the reliability of the analysis. For more detailed information on the original pre-selected variables, please refer to Table 5.1, and for numerical data, consult Table 5.2 in the annexes.Our process of typology construction (Barba-Escoto, et al., 2019) is divided into two main processes: a) PCA relevant components definition (dimensions), and b) HCA clustering for groups definition. Thereafter, the farm types are described by the differences between the groups.The definition of the dimensions is based on the eigenvalues for each potential component; those with eigenvalues >1 were considered relevant. The scree test provides a visual support for this step. In this case, 10 dimensions were defined (Table 2.1, Figure 2.1). Following the preliminary assessment, the farm system components are delineated, and the districts are allocated into these components (as illustrated in Figure 2.2). This classification is based on the distance of each district's corresponding value in the vector created by each variable and the direction across these components. The significance or weighting of each selected variable can be found in ¡Error! No se encuentra el origen de la referencia., provided in the annexes. In the second phase of the typology construction, the grouping process is established, guided by the Within Group Squared Sum (WGSS) and a hierarchical classification (as depicted in Figure 2.4). Combining the insights derived from both methods, three distinct farm types were defined. Subsequently, each record was categorized and allocated to one of these three groups, as depicted in Figure 2.5. Table 2.2 summarizes the distribution of the records into the different farm types. As described in the previous section, utilizing the PCA-HCA approach, three distinct farm types have been identified. It is essential to note that the farm type descriptions presented below provide a relative perspective on the characteristics among these farm types. The variables employed in designing the farm types are visually represented in a heatmap (¡Error! No se encuentra el origen de la referencia.) to emphasize group differences. For each farm type a graphic representation showing the average component characteristics as well as the average interactions/flows between components is given (Figures 2.6 to 2.8).Several key considerations also include (i) the TLU score, based on the simplified model by Njuki et al. (2011), considers solely the reported number of animals to derive a value based on weight and fodder requirements; and (ii) there are three primary productive seasons: spring (kharif-1), monsoon (kharif-2), and winter (rabi) seasons; (iii) naming of the farm types was done with the support of Chat GPT (3.6 v); (iv) these are preliminary results.Supplementary information is available in the annexes, it includes: i.A map displaying the surveyed farms and their corresponding farm types (Figure 5.1). ii.The results of a Bonferroni test carried out to assess significant differences between farm types for the definitive variables (Table 5.5) as well as the results of a Chi-squared test applied to analyse the variables (Table 5.6). iii.A comprehensive visualization of variables across all districts presented through boxplots (Figures 5.2 to 5.7). It's important to note that this information relies on the same dataset; however, additional outliers were removed specifically when examining production. The key topics addressed encompass household information, income sources, land allocations, production, and indicators of system resilience.Type 1 (130 n / 30.1 %) -Small-scale, income restricted rice-based farms with limited crop diversity.Among the three identified farm types, Type 1 (T1) farms exhibit characteristics including the smallest average landholdings, amounting to 0.7 hectares, which are typically divided into a medium number of plots (5.3). Crop cultivation dominates during the kharif-2 season (98.3%) and is less prominent during the winter rabi season (32.7%). Notably, the main crops cultivated by T1 farms are predominantly irrigated (97.6%). However, the land available per person and per animal is relatively low, at 0.2 hectares per person and 0.3 hectares per animal, respectively. Surprisingly, despite limited land resources, land occupancy on their land is the lowest among the farm types, standing at 89.3%.Rice cultivation plays a primary role on T1 farms, with the highest share of land allocated to this crop (98.4%) and generating the largest proportion of income (95.7%).In contrast, other crops hold less importance, both in terms of land allocation and income generation. These farms exhibit the least crop diversity (0.8) and appear to have no significant diversity in vegetable production (0.0). Their homesteads show limited diversity in leafy vegetables (0.5), but they have a relatively higher diversity in fruit trees (0.5) and moderate timber diversity (2.3). Approximately 74.5% of homestead produce is utilized for self-consumption.T1 farms maintain a small number of animals, with a Total Livestock Units (TLU) score of 1, including 0.9 for cattle-buffalo, 0.1 for goats, and a substantial number of chickens (0.8). Despite this, they produce the smallest quantity of milk, totalling 160 liters per year, and the income share from animal production is the lowest among the farm types, at 7.2%.Income sources for T1 farms predominantly stem from selling their own labour (16%) and trade-related services (18.9%), whereas cropping contributes the least to their income (57.0%). Additionally, T1 farms receive the lowest levels of support from both government (2.2 out of 12) and other organizations (1.0 out of 12) Type 2 (T2) farms exhibit slightly larger average landholdings, approximately 0.8 hectares, yet are divided into fewer plots, averaging around 4.8 fields per farm. Notably, they present the lowest area under cultivation during the kharif-2 season (92.0%) but the highest during the rabi season (86.8%). They consequently display the highest land occupancy (108%) among the three identified farm types. A significant portion of their crop production relies on irrigation, accounting for approximately 90.2% of the total cropped area.The land available per person and per animal is similar to T1 farms, standing at 0.2 hectares per person and 0.4 hectares per animal, respectively. In terms of crop allocation, T2 farms allocate the lowest proportion of land to rice cropping (66.1%), while dedicating the highest share to mustard cultivation (17.9%) and maintaining a moderate allocation for other winter crops, including wheat (9.9%) and lentils (4.1%).Consequently, the contribution of rice sales to their income is the lowest among the farm types (69.8%), whereas mustard generates 14.8% of their total income, and wheat contributes 8.6%.This farm type demonstrates a moderate level of crop diversity (1.0) and boasts the highest vegetable diversity among western Bangladesh farm types (0.3). T2 farms exhibit the highest diversity in homestead leafy vegetable production (0.7), maintain a moderate level of diversity in fruit trees (0.4), and possess the lowest diversity in timber resources (1.8). Approximately 71.3% of homestead produce is intended for selfconsumption.Regarding animal husbandry, T2 farms maintain a similar number of goats as the other two farm types (goat TLU 0.1) and possess a TLU score of 1.3, including a cattlebuffalo TLU of 1.2. They maintain the lowest number of chickens (0.7) but exhibit the highest annual milk production, averaging 315 liters. Nonetheless, income generated from animal production activities remains relatively low, contributing only 8.4% to the overall income mix.In terms of income sources, cropping constitutes the majority, representing 65.4%, followed by trade and services at 17.2%, while labour sales constitute only 7.7% of their income. T2 farms receive moderate support from both government (2.6 out of 12) and private organizations (1.3 out of 12). The third farm type (T3) exhibits the largest average landholding, averaging 1.6 hectares, and the highest number of plots, approximately 11.7, resulting in a corresponding increase in available land per person and per animal, measuring 0.3 hectares per person and 0.8 hectares per animal, respectively. These farms allocate a substantial 95.6% of their land area to cultivation during the kharif-2 season, followed by 59.9% during rabi, culminating in a moderate land occupancy of 96.4%. Interestingly, this farm type relies slightly less on irrigation, with 85.6% of cultivation being irrigated.T3 farms allocate a noteworthy portion of their land to rice cropping, encompassing 75.4%, and allocate the largest share among the three farm types to wheat cultivation, accounting for 10.6% of their land. Additionally, while lentils remain a marginal crop, they hold more significance for this farm type than the others, constituting 6.4% of land allocation and contributing 4.9% to overall income. This farm type also boasts the highest percentage of rice sold (66%) and exhibits the highest crop diversity (1.3).In terms of homestead agriculture, T3 farms share the same leafy vegetable production score as T2 (0.7), albeit with a lower quantity of fruit trees (0.3) and a higher quantity of timber crops (3.2). A substantial 81.0% of homestead produce is dedicated to self-consumption. Furthermore, T3 farms maintain the largest number of animals, with a TLU of 1.4 (total) and 1.3 cattle-buffalo, along with 0.6 goats and 0.8 chickens. These farms achieve an average yearly milk production of 211.2 liters, exceeding T1 but falling short of T2. The income share derived from animal production is the highest among the three farm types, at 10.9%.The income structure of T3 farms is characterized by a predominant reliance on cropping income, constituting 72.6% of their total income, while other income sources, such as trade and services (12.8%) and labour sales (3.7%), contribute less significantly. These farms receive the highest level of support from both government (2.8 out of 12) and private organizations (1.5 out of 12). Note: The heatmap is based on a 3-colour scale for numerical values for each variable, with green for the largest value and red for lowest, to facilitate visual analysis. For deeper analysis in important to evaluate the larger distances between values as a broad description.Small scale farming systems are often complex combining several farm (e.g. crop, livestock, aquaculture) and non-farm activities for the livelihood of rural families. This complexity often generates, within the same region or agroecological zone, a large diversity of farming systems with, for example, different levels of specialisation on certain crops and/or livestock activities, differences in the reliance on farming and non-farming activities for the generation of income or differences in the labour engagement for the different activities carried out by the household.Capturing such diversity and complexity of farming systems is an essential step towards developing suitable (baskets of) socio-technical innovation bundles (Barret, et al, 2022) that i) address the main challenges for the sustainability of specific types of farming systems and ii) identify distinctive (best fit) opportunities and entry points for improving their performance. Not all farmers are the same and no innovation is a best fit for all farmers.In this analysis we have identified three relatively homogeneous and significantly different types of farming systems for two districts of Western Bangladesh based on a survey applied to 432 farm households in Chapainawabganj (217) and Rajshashi (215) districts: Type 1 (T1) -Small-scale, income restricted rice-based farms with limited crop diversity; Type 2 (T2) -Intensive and moderately diversified rice-based farms generating income from mustard cultivation; and; Type 3 (T3) -Large rice-wheat farmers integrating livestock and generating income from cropping.For each of these farm household types we have identified their distinctive features, the main components of the farming systems and their relative importance, as well as some internal and external flows. This systemic characterization of the diversity of farming systems in Chapainawabganj and Rajshahi can be conceived as a first step toward the analysis and design of more sustainable Mixed Farming Systems in this part of Bangladesh.In the OneCGIAR SI-MFS initiative the DEED framework has been adopted for the codesign of more sustainable MFS. The DEED framework encompasses a series of phases for systems analysis and co-design (Describe, Explain, Explore, and Design; Figure 3.1) (Gebreyes et al., 2023). The definition of farm typologies is part of the \"Describe\" phase of this framework. Based on this typology developed for Western Bangladesh, further analysis of the detailed dataset for the different types as well as focus group discussions (FGD) and semi-structured interviews, would allow to identify the main limitations and inefficiencies for different types of farming systems, their differentiated priorities and indicators of success and assess their performance through multi-criteria assessment. For example, Type 1 farms have small landholding, few animals and focus on rice production mainly; further they generate a significant part of their income by selling their labor and engaging in trade and service activities. Thus, they would probably seek innovations that can enhance their rice harvest but do not require big investments in time and labour. On the other hand Type 2 farms have slightly bigger landholdings but moreover they have a strong focus on winter crops production (e.g. mustard); therefore they would probably seek innovations that allow them to grow winter crops more successfully. Further they also have the highest milk production among the farm types of western Bangladesh, even higher than Type 3 farms that have more land available, thus innovations linked to livestock production or a better integration between crop and livestock production within the farm might also be of interest for these type of households. Formalising these hypotheses and assessing specific process trough empirical or analytical pathways would need to be carried out during the Explain phase of the DEED cycle.Exploring the potential effect of specific socio-technical innovation bundles for different types of farm households would allow to identify type-specific areas of improvement and identify potential trade-offs and synergies that need to be addressed or exploited in the process of co-design of more sustainable MFS. Such trade-off and synergies would be different for different farm types and will delimit their specific window of opportunities for improving systems performance and will inform the most promising pathways for successful co-design. Finally, based on action research and informed by previous phases of the DEED cycle, novel practices and systems configurations can be designed, suitable for different types of farming systems and engage in a process of co-innovation where farmers and researchers put together their learning tools to improve the sustainability of mixed farming systems. Note: each variable compares the media's types assigning a letter, in which similar letters imply no-statistical difference between types. The green colour highlights statistical difference between types. cgiar.org/initiative/mixed-farming-systems cgiar.org/initiative/transforming-agrifood-systems-in-south-asia-tafssa/","tokenCount":"3345"} \ No newline at end of file diff --git a/data/part_3/8474869742.json b/data/part_3/8474869742.json new file mode 100644 index 0000000000000000000000000000000000000000..094c4bac6f832a10316c9e5ff2f4fd1a8124a40a --- /dev/null +++ b/data/part_3/8474869742.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"9da9ba484836e204aa136fd16614ea29","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/dc17b942-11b9-4403-8b8e-e58575edda88/retrieve","id":"-1193956535"},"keywords":["OICR: Outcome Impact Case Report Geographic scope:","National Country(ies):","Uzbekistan Comments: References cited: Quantification: Gender, Youth, Capacity Development and Climate Change: Gender relevance: Youth relevance: CapDev relevance: Climate Change relevance: Other cross-cutting dimensions: Other cross-cutting dimensions description: Outcome Impact Case Report link: Study #3685"],"sieverID":"818ae4c8-ad82-4989-90c1-516cb13c2c7d","pagecount":"2","content":"Part II: CGIAR system level reporting Link to Common Results Reporting Indicator of Policies : Stage of maturity of change reported: Links to the Strategic Results Framework: Sub-IDOs: • Reduced net greenhouse gas emissions from agriculture, forests and other forms of land-use (Mitigation and adaptation achieved) • Conducive agricultural policy environment Is this OICR linked to some SRF 2022/2030 target?: Too early to say Description of activity / study: IWMI shared with the government official results of IWMI's research findings on water saving technologies within framework of USAID PEER projects, where it has demonstrated improved irrigation technologies in the lift irrigated areas and explained its multiple benefits in terms of water and energy saving, reduction of carbon emissions, reduction of return flow from irrigated fields and minimizing water pollution and also it is impact on land improvement (solving waterlogging and salinity issues). IWMI has contribute to launch state program on water saving technologies including drip, sprinkler, gated pipe irrigation and laser levelling in more than 450,000 ha in 2021.","tokenCount":"173"} \ No newline at end of file diff --git a/data/part_3/8482264851.json b/data/part_3/8482264851.json new file mode 100644 index 0000000000000000000000000000000000000000..f0f3a2d08839763f53c57cbc6249b4950a3a77b8 --- /dev/null +++ b/data/part_3/8482264851.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"a97d344136f89a80a9ab2044b4b122f7","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/02b3df1f-1182-4e67-9f43-630280e31418/retrieve","id":"-2088333670"},"keywords":[],"sieverID":"c0edabc1-ac08-43e8-b7bc-8e2a9e27bddb","pagecount":"30","content":"website: www.cifor.cgiar.orgWe have audited the accompanying statements of financial position of CIFOR as of 3 1 December 2005 and 2004, and the related statements of activities, changes in net assets, and cash flows for the years then ended. These financial statements are the responsibility of CIFORs management. Our responsibility is to express an opinion on these financial statements based on our audits.We conducted our audits in accordance with auditing standards established by the Indonesian Institute of Accountants. Those standards require that we plan and perform the audit to obtain reasonable assurance about whether the financial statements are fiee of material misstatement. An audit includes examining, on a test basis, evidence supporting the amounts and disclosures in the financial statements. An audit also includes assessing the accounting principles used and significant estimates made by management, as well as evaluating the overall financial statement presentation. We believe that our audits provide a reasonable basis for our opinion.In our opinion, the financial statements referred to above present fairly, in all material respects, the financial position of CIFOR as of 3 1 December 2005 and 2004, and the changes in its net assets and its cash flows for the years then ended in conformity with accounting principles generally accepted in Indonesia.Our audits.were conducted for the purposes of forming an opinion on the basic financial statements taken as a whole. The supplementary information in Schedule 1 and Schedule 2 is presented for the purpose of additional analysis and is not a required part of the basic financial statements. Such information has been subject to the auditing procedures applied in the examination of the basic financial statements and, in our opinion, is fairly stated in all material respects in relation to the basic financial statements taken as a whole. See Notes to the Financial Statements, which form an integral part of these financial statements. The accounting and reporting policies adopted by CIFOR, which are based on CGIAR accounting policies and reporting practices manual, are in accordance with accounting principles generally accepted in Indonesia and the frnancial statements are presented in conformity with Statement of Financial Accounting Standards No. 45 \"Financial statements of not-for-profit organizations\". The significant accounting policies, consistently applied in the preparation of the financial statements for the years ended 3 1 December 2005 and 2004, were as follows:a. Basis for preparation of the financial statements CIFOR's cash inftows and outflows are predominantly in US Dollar ('VSD) and accordingly, US Dollar has been used as CIFOR's recording and reporting currency. The financial statements are prepared on the accrual basis, using the historical cost concept.The statements of cash flows present the changes in cash and cash equivalents fiom operating, investing and financing activities. CIFOR considers short-term time deposits with maturities of not more than three months at the date of placement to be cash equivalents. The statements of cash flows are prepared using the indirect method.Unrestricted grants are grants received that are not restricted by donors and may be used for the purposes specified in CIFOR's articles of association. Unrestricted grants are recognized as revenue in the year in which the grants are pledged, as long as collection is probable, and when the donor imposed conditions are met.Restricted grants are grants received in support of specified projects or activities mutually agreed upon by CIFOR and donors. Restricted grants are recognized as revenue when the grant conditions have been met and the related expenses have been incurred.At each period end, to the extent there are grants that are conditional upon incurrence of expenditures, the excess of the amounts received over the amounts expended is considered to be a rehndable advance and is presented as an account payable.Expenses are recognized in the statement of activities as incurred. Equipment that is restricted for use in restricted projects and that requires approval from donor upon disposition at the conclusion of the related project, is directly expensed as acquired.Indirect expenses charged to restricted project activities and classified as part of research programs expenses are credited to an indirect expense recovery account. The rate of the indirect expense recovery is determined by the agreement with each donor. Transactions denominated in currencies other than USD are converted to USD at the exchange rate prevailing at the date of the transaction. Monetary assets and liabilities denominated in currencies other than USD are translated into USD at the exchange rates prevailing at the year end.As of 3 1 December 2005 and 2004, the rates used for the translation are as follows: Exchange gains and losses arising on transactions in currencies other than USD and on the translation of monetary assets and liabilities in currencies other than USD are recognized in the statement of activities.The preparation of financial statements in conformity with generally accepted accounting principles requires management to make estimates and assumptions that affect the reported amounts of assets and liabilities and disclosures of contingent assets and liabilities at the date of the financial statements and the reported amounts of revenue and expenses during the reporting period. Actual results could differ from those estimates. .~ The computation of indirect expense ratios is based on the CGIAR guidelines issued in August 2001.Expenses that are readily identifiable as and specific to research activities are grouped as direct expenses.Common expenses that are incurred in support of the entity's activities, including research, are allocated among research and related support activities (direct expenses) and non-research activities (indirect expenses).","tokenCount":"898"} \ No newline at end of file diff --git a/data/part_3/8534754508.json b/data/part_3/8534754508.json new file mode 100644 index 0000000000000000000000000000000000000000..6e734982e0773d64bd79e01ccc75826eff875b90 --- /dev/null +++ b/data/part_3/8534754508.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"55f3e7345f9cb5e6efe3ac2682960e2d","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/5ae5993d-04fa-4814-b8d1-45e11e8d1366/retrieve","id":"-1417508098"},"keywords":[],"sieverID":"b400bb52-c697-4430-8021-734a51d2b620","pagecount":"19","content":"IDA helps the world's poorest countries by providing grants and low to zero-interest loans for projects and programs that boost economic growth, reduce poverty, and improve poor people's lives. IDA is one of the largest sources of assistance for the world's 76 poorest countries, 39 of which are in Africa. Annual IDA commitments have averaged about $21 billion over circa 2017-2020, with approximately 61 percent going to Africa.. The authors would like to thank all involved, including its partners and sponsors. Further, sincere gratitude is extended to the interns who participated in the tracer survey.To cite this report Makungwe et al. 2023 this tracer survey was carried out to assess the effectiveness of the internship program, to what extent have the capacity of young Zambians that participated in the internship program have their skills, capacity and network been strengthened.In 2023, the I2G program in partnership with ACDI/VOCA under their EDGE project and Bongohive, successfully implemented the Internship with private. A total of 41 interns that participated in the internship program. 36 were enrolled under the partnership with ACDI/VOCA and 5 under partnership with Bongohive. Of the 41 interns that participated in the program, 36 were able to respond to our online-survey questionnaire. The ACDI/VOCA internship commenced in September 2022 to March 2023 and the Bongohive internship was from April 2023 to September 2023.To assess the effectiveness of the internship program, to what extent have the capacity of young Zambians that participated in the internship program have their skills, capacity and network been strengthened, A Survey tool (based on JOT Form) was developed and tested prior to the launch and refined for clarity and the response time to be spent on the survey to fit within an average of 15 minutes. Email messages including the link to the survey were sent out to all 41 interns and 36 successfully completed the form. A week was allowed for participants to complete the survey form. Follow up were made by sending the link via WhatsApp and phone messages to those that did not respond to the survey.The following are the outcomes of the tracer survey:The interns were asked general information on gender, age category and academic qualification. According to figure xxx, out of the 36 that participated in this survey, 69% are female and 31% are male. At the time of the survey, the highest academic qualification of 30 participants had bachelors, 5 had a diploma and 1 participant had a professional ACCA qualification (Figure xxx). Prior to the internship, only 8% of the participants were employed (this includes self-employment), 20 % were studying full time and 57% were unemployed. Those that were unemployed, the majority of them 84% were unemployed because they were looking for a job but could not find one. After the 6 months internship program, it can be observed in figures xxx and xxx that the number of employed (including self-employed) participants increased from 8% before the internship to 43% while the number of unemployed reduced from 57% to 37%. Those that were unemployed when asked if the skills they learned during the internship will help in finding employment, 88% gave yes as a response. When asked if their participation in the internship program helped increase their chances of getting a job, 53% said yes while 42% said no. For those that said the internship improved their chances of getting a job, they were asked how and some of the responses they gave are in bellow quotes. During the internship/immediately 5Have not yet found employment 14Did not respond 8Total 36 To understand how the internship program developed skills/capacity of the interns, the interns were asked rate their experience with the internship program on a Likert scale of 1 to 5 (1 strongly disagree 2 disagree; 3 indifferent/ neutral 4 agree 5 strongly agree). The responses from the interns are in figures 7 As can be observed in table xxx, around 83.3% of the interns agreed that the internship helped them develop innovative and problem-solving skills. 86.1% of the interns agreed that the internship helped them improve their interpersonal communication skills. 83.3% of the interns agreed that their experience in the internship helped them develop professional competence. 88.9% of the interns agreed that the experience with the internship helped them improve their time management and organizational skills. 86.1% of the interns agreed that the internship helped them improve writing and speaking skills. As can be observed in Figure 8 , the extent to which the internship helped the participants in building their career using a rating from 1 to 5. and it can be observed that 83% (30 out of 36) participants gave a rating of 3 and above. As can be observed in figure 9, 77% (28 out of 36) participants gave an overall rating of Good to excellent on internship experience with SME they were placed. Figure 10 shows that 88.9% (32 out of 36) participants were comfortable asking questions and clarity from supervisor during internship. Figure 11 shows that 83% (30 out of 36) participants' knowledge and skills were well matched with assigned job/duties. To answer the question about what what was least satisfying about their assigned duties and/or the internship experience, the participants said:\"Not being given an opportunity to actualize the innovative ideas suggested.\"\"I was underutilized. There were difficulties in finding a placement during the internship. The company almost didn't need interns.\"\"The firms had little information on the type of intern they were expecting.\"\"The least satisfying aspect of my assigned duties and the internship experience as a Sales Intern was the occasional discrepancy between academic theories and the practical realities of the sales field. should prepare before receiving an intern. These three must be properly identified and discussed between the University, organizations and EDGE. There is interest from organizations to benefit from grants, this will make the organizations request for intern even if they don't need one. This will affect the intern because in most organizations we were attached to, you will find that there is no program set for that particular intern. Which I personally went through. In short there should be a program from the organizations to state what the intern will learn from them as well so that the whole process should benefits the organizations who want to participate in grants also to offer a training or work experience to intern. If this is not looked into, intern will be just there doing nothing and it will not benefit anything. EDGE must know that organizations have different interest, some wants just to benefit from grants, some will need both the services of intern and also grants.\"\"Make sure the SME has representatives during the training to help the internship be a success\" \"For AICCRA/EDGE to ensure that the Organizations where the interns are to be placed are well informed about the program and are willing to host the interns in their companies before interns are even placed with the companies'\" \"The universities help share more programs like this to students which is good for the project and the students.\"\"Probably next time, if possible, extend the program, maybe in the long run one might be lucky and find employment\"","tokenCount":"1194"} \ No newline at end of file diff --git a/data/part_3/8550278346.json b/data/part_3/8550278346.json new file mode 100644 index 0000000000000000000000000000000000000000..74837917dfafc3f1e7b20a7c7b3c293d08a31004 --- /dev/null +++ b/data/part_3/8550278346.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"064aca10e2aeb94a9b0d05eee4e51c5d","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/376fc882-3986-4c08-a101-88903d998f4a/retrieve","id":"2108680823"},"keywords":[],"sieverID":"9d00c5e2-77e1-4302-b8a4-b09ea783a267","pagecount":"21","content":"El documento reúne información de las actividades \"ganadería\" realizadas durante el año 2020 en el municipio El Rama. Las acciones desarrolladas estuvieron enfocadas en el fortalecimiento de capacidades de familias ganaderas en temas de buenas prácticas para el manejo de los sistemas ganaderos del municipio, contribuyendo así en la mejora de la productividad y la protección de los recursos naturales de la zona. Se trabajó con 440 productores (110 mujeres, 147 hombres y 183 jóvenes) representando familias ganaderas de 11 comunidades: Julio Buitrago, María Cristina, El Castillo, Chalmeca, San Ramón, Salto de la Cruz, La Ceiba, Walpapine, El Pavón, Minas de Kisilala y la Concha. De los 11 ECAs que se atienden dentro del Proyecto PASOS se desarrollaron 10 durante el mes de febrero, 7 durante el mes de marzo, 3 durante el mes de abril (debido a la suspensión parcial de actividades por COVID-19), 9 durante los meses de mayo y junio, 8 durante el mes de julio y 11 durante los meses de septiembre a diciembre. Con la coordinación del equipo técnico del proyecto y el equipo de M&E de SOLIDARIDAD se logró desarrollar el envío de mensajes de texto a productores sobre prácticas que no deben dejar de realizarse durante la época de verano. Con apoyo de SOLIDARIDAD se buscaron 5 promotores para desarrollar ECAS y visitas a los productores.Las actividades consistieron por la mayor parte en capacitaciones a familias ganaderas que conforman las Escuelas de Campo (ECA).1. Plan de Uso de Finca (PUF) 2. Alternativas de alimentación en épocas de verano 3. Aplicación de productos fármacos 4. Análisis de Fertilidad en Sementales (ver también el Anexo: Resultados de evaluaciones de fertilidad de sementales en fincas ganaderas de Proyecto PASOS CIAT en municipio El Rama) 5. Uso y Establecimiento de cercas vivas 6. Manejo Responsable de productos fitosanitarios 7. Uso Eficiente de Fertilización en Pasturas Mejoradas 8. Uso Correcto de Sales Minerales 9. Uso del botón de oro como fuente de proteína 10. Proceso de Evaluación de Aprendizaje 1. Plan de Uso de Finca (PUF) Objetivo General: Brindar a los grupos y sus miembros un instrumento de mediano a largo plazo que les permita planificar e implementar el uso racional y sostenible del terreno en las fincas, contribuyendo a la conservación del ambiente, al mejoramiento de la productividad y la rentabilidad. Mostrar la importancia de realizar un.  Elaborar un plan de actividades en la finca que facilite la toma de decisiones de las familias y mejore la calidad de vida.  Practica del llenado de registros.Se dio a conocer la importancia sobre la realización de un plan de uso de finca. Una \"finca\" normalmente corresponde a una \"unidad de producción\" pero no son siempre iguales, ya que en algunos casos un beneficiario está trabajando varias fincas separadas que para él conforman una misma unidad de producción. El uso de suelo de la finca puede variar entre agrícola, ganadero, forestal o mixto (agropecuario, agroforestal o silvopastoril). El significado central del PUF radica en la conservación del ambiente a nivel de finca, y no es un plan solo de desarrollo productivo. Sin embargo, el PUF ayuda a entender cuáles inversiones podrán ser aporte propio del beneficiario y cuáles deberán ser aporte externo. No se requiere especificar todos los detalles de las inversiones ya que el PUF es un plan maestro de la finca a mediano y largo plazo. Para esta ocasión se les enseño la elaboración de un PUF apegado a las actividades ganaderas que tendrá la durabilidad de un año. A través del desarrollo de la ECA los productores adquirieron mayor fortaleza para la elaboración de un plan de actividades en finca, el cual les permita distribuir en todo un año las actividades conforme al tiempo conveniente y el desarrollo de la misma, se creó debate para medir los conocimientos de los productores sobre el tema haciendo que estas experiencias contribuyan al fortalecimiento de ideas que ayudan a mejorar la toma de decisiones dentro de las familias productoras. Durante el desarrollo de las ECAS se colaboró a que las instituciones de gobierno como el MEFFCA, INTA e INAFOR desarrollen experiencias en temas que ayuden a mejorar las condiciones de vida de las familias productoras, que se les provea de especies forestales para su establecimiento y les capaciten en su debido manejo.Objetivo General: Brindar a los grupos y sus miembros diferentes alternativas de alimentación para su ganado en época seca. Mostrar la importancia de preparar y conservar alimentos para época de sequía como los beneficios que estos traen en la dieta del bovino y a los ingresos de las familias.  Practica de elaboración de alternativa de alimentación (ensilaje, bloques multinutricionales, concentrado entre otros).Se dio a conocer la importancia que existe en las familias productoras sobre diversas alternativas de alimentación de verano. En algunos casos los productores se ven en la necesidad de incurrir a la compra de alimentos como concentrados, heno u otros tipos de alimentos que les permita nutrir sus animales y que estos no bajen su condición corporal o producción de leche. Por tal razón durante las ECAs se estuvo realizando una de diferentes alternativas de alimentación para épocas donde hay escases de comida para los bovinos. Un animal a diario necesita de buena alimentación en cantidad y calidad para la sobrevivencia de el mismo como para la producción ya sea de leche o carne; siendo esta obtenida de los pastos que consumen en los potreros. En la estación de invierno los pastos producen la suficiente cantidad de follaje y nutrientes como para poder cubrir los requerimientos del bovino, por tal razón los productores no se ven a la necesidad de elaborar otro tipo de alimento más que el pastoreo tradicional. El caso es que en época de verano los pastos tienden a disminuir la calidad nutricional debido a los escases de agua, es ahí donde los bovinos empiezan a bajar de peso y disminuir la producción de leche/carne ocasionando pérdidas económicas a las familias productoras. En este caso es importante suministrar otros alimentos que conlleven alto valor nutritivo el cual permita que el animal no consuma de sus reservas del cuerpo para la producción del mismo ya sea en leche o carne. Durante el desarrollo de las ECAS se colaboró a que las instituciones de gobierno como el MEFFCA, INTA e INAFOR desarrollen experiencias en temas que ayuden a mejorar las condiciones de vida de las familias productoras, que se les provea de especies forestales para su establecimiento y les capaciten en su debido manejo. Objetivo General: Brindar a los grupos y sus miembros el conocer de las diferentes vías de administración de productos fármacos. Mostrar la importancia de aplicar productos fármacos de cualquier índole como vitaminas, desparasitante, antibióticos, sueros entre otros a través de los diferentes puntos de administración.  Practica de aplicación de productos fármacos.Mediante el desarrollo de las diferentes ECAS, se dio a conocer la importancia que existe en las familias productoras sobre diversas vías de administración de productos fármacos. Es importante recalcar que los productores día a día conviven con la actividad ganadera y que en circunstancias se afrontan con cosas complejas como la necesidad de aplicar un tratamiento mediante alguna vía que ellos desconocen o sienten temor en hacerlo. Se vio la necesidad de compartir los conocimientos con las diferentes ECAS que se atienden en la zona de El Rama para crear estas herramientas que aportan con el fortalecimientos de capacidades dentro de las familias productoras, como es el caso de administrar productos fármacos por diferentes vías.Durante el desarrollo de las ECAS se colaboró a que las instituciones de gobierno como el MEFFCA desarrollen experiencias en temas que ayuden a mejorar las condiciones de vida de las familias productoras. También se logró crear una base de datos actualizadas con la mayor cantidad posible de contactos para el envío de SMS dese el equipo de M&E por parte de SOLIDARIDAD para mantener a las familias productoras al tanto de las actividades que se deben estar realizando en el rubro, más en tiempos de verano donde se requiere mayor vigilancia del hato. Objetivo General: Brindar a los grupos y sus miembros el conocer de la importancia que existe en la elaboración de Exámenes de Fertilidad en Sementales. Sabrán la importancia de elaborar exámenes de fertilidad a los sementales.  Elaboración de los exámenes para determinar % de fertilidad.Mediante el desarrollo de las diferentes ECAS, se dio a conocer la importancia que existe en las familias productoras sobre realizar las pruebas de \"Análisis de fertilidad en sementales\".En las unidades de producción se dan a la tarea del cuido y manejo del hato bovino que indispensablemente no debe faltar un semental. Por tal razón es importante recalcar que los productores se afrontan con problemas de reproducción bovina y se vio la necesidad de realizar y compartir los conocimientos con las diferentes ECAS que se atienden en la zona del Rama y CONAGAN; para realizar una prueba de fertilidad que les permitiese conocer como esta su toro en la actualidad como principal medio de reproducción. Esto ayudara a que los productores mejoren el IPP, vitaminar muy bien sus toros para que estos den el mayor % de preñez dentro del hato ganadero, lo cual ayudara a que las vacas se preñen con seguridad y traer el aumento de producción de leche y terneros dentro de la finca. En esta zona se identifica un porcentaje de toros infértiles, relativamente bajo, que indica un buen manejo de los toros, seguramente está incidiendo los servicios de asistencia técnica del CIAT, en alimentación y manejo. Uso de minerales y vitaminas y en especial micro minerales para los sementales evaluados como regulares (Selenio, Zinc, Cobre, Iodo, Manganeso).  Orientar sacrificio de los sementales de descarte y su reposición con sementales de buena fertilidad  Compra de sementales certificados, con fertilidad comprobada.  Evitar desparasitaciones en periodos de monta, procurando reducir el uso de ivermectina.Objetivo General: Brindar a los grupos y sus miembros el valor del buen uso y la importancia de establecer las cercas vivas dentro de la unidad productiva. Compartir experiencias del uso y establecimiento de las cercas vivas.  Saber la importancia del uso y establecimiento de las cercas vivas para su debido manejo.  Practicar en la selección correcta de cercas vivas.Mediante el desarrollo de las diferentes ECAS, se dio a conocer la importancia que existe en las familias productoras el \"Uso y Establecimiento de cercas vivas\". El uso de cercas vivas en reemplazo de los sistemas tradicionales para delimitar áreas, ofrece ventajas que van desde las ecológicas (ya que con ellas se disminuye la deforestación y la liberación de gases efecto invernadero a la atmósfera) hasta las económicas (si se plantan árboles de alto valor). Establecer árboles de manera productiva no solo significa establecer una plantación compacta en un arreglo silvopastoril1 agroforestal, también es posible obtener madera comercial a partir de la plantación de cercas vivas.Las cercas vivas son plantaciones de especies forestales que se establecen para dividir potreros o linderos, establecer barreras rompe vientos, proteger fuentes de agua, suelos, cultivos o pastizales, proteger contra las heladas o contribuir al mejoramiento de la ecología local. En algunos casos, en predios de grandes extensiones, además de servir en los linderos, proveen madera con un enfoque productivo si se usan especies valiosas (como teca, cedro o caoba). El cerco vivo se define como una línea de árboles principalmente nativos, multipropósito o de usos múltiples, que se encuentran delimitando una propiedad. El uso de este tipo de cercos en la agricultura y la ganadería de la región es una práctica poco utilizada, lo cual nos llevó a desarrollar este importante tema. Además de su función principal (servir como barrera), las cercas vivas pueden proveer leña, forraje, alimentos, actuar como cortinas rompe vientos y enriquecer el suelo, dependiendo de las especies que se utilicen. Además, es una actividad fácil, productiva, mejora el rancho, valoriza la tierra, diferencia linderos, da sombra y disminuye el mantenimiento de las cercas.Objetivo General: Brindar a las familias productoras el conocimiento de una nueva tecnología que les permita reducir al máximo los daños ocasionados por productos agroquímicos. Saber el uso y la importancia de la cama biológica.  Hacer la construcción de la cama biológica.Mediante el desarrollo de las diferentes ECAS, se dio a conocer la importancia que existe en las familias productoras el \"Manejo responsable de productos fitosanitarios\". Las camas biológicas se diseñan en base a una biomezcla, es decir, un conjunto de diferentes materiales que pueden ir variando de acuerdo a la zona. Una cama biológica es un lugar que se construye para destinar los depósitos de los residuos de los enjuagues de la bomba, cuando se aplica un producto químico o plaguicida. Uno de los componentes fundamentales es el suelo, que se aconseja que sea de la misma región en donde se va a construir el biolechos. El mismo, \"es el que aporta los microorganismos que están adaptados a la degradación de agroquímicos que se aplican en ese campo y a las condiciones de ese lugar\".Asimismo, al suelo se le suma alguna materia rica en fibra celulósica ya sea pasto seco, trigo o paja de alfalfa. Otra alternativa que se puede incorporar es material orgánico que provea aireación a la biomezcla como resaca de río o compost. Una vez que los líquidos contaminados llegan a la cama biológica, el trabajo lo realizan los microorganismos. \"Las bacterias y los hongos degradan los agroquímicos, por lo que no se trata de pasar el contaminante de una matriz a otra, sino de degradarlo\". Se ha comprobado que esta tecnología resulta ser eficiente en la remoción de glifosato y se realizan ensayos con combinaciones de los agroquímicos más empleados en la región, incluyendo PYCLORAN, 2-4D, CARBENDAZIM entre otros.Capa de tierra y zacate: Ayudan en la infiltración de los agroquímicos hacia las capas de abajo. Ayudan a mantener el porcentaje de humedad de la cama biológica, el cual debe mantener un porcentaje mínimo de 70%.Desarrollan hongos descomponedores de agroquímicos. Objetivo General: Brindar a las familias productoras la importancia del uso eficiente de fertilización en pasturas de tal modo que permita incrementar la productividad forrajera y representa la práctica clave en el manejo de los rejuvenecimientos y promociones de diferentes especies. Sabrán la importancia de fertilizar las pasturas.  Harán fertilizante orgánico.Mediante el desarrollo de las diferentes ECAS, se dio a conocer la importancia que existe en las familias productoras el \"Uso Eficiente de Fertilización en Pasturas Mejoradas\". De igual manera se le dio a conocer la importancia que se le debe dar al cuido del hato ganadero en mineralización, alimentación y manejo sanitario. La ganadería bovina que se desarrolla en las regiones tropicales basan su alimentación con pastos y forrajes por ser la fuente más económica y disponible estos presentan las limitantes que son de producción estacional, dependiente de la época climática (seca y lluvias) y que presentan bajo valor nutritivo, sobre todo en el contenido de proteína cruda, lo que afecta la producción de carne y leche. Los efectos de estas limitantes pueden disminuirse a través de la fertilización mineral, la cual reestablece los nutrimentos esenciales que fueron removidos por el animal durante el pastoreo o corte.Los productores deben ver el pasto como un cultivo, tal como es; ya que su establecimiento indica costos elevados de inversión y valor agregado a su unidad de producción. Por tal razón deben convivir más con los potreros, así garantizaran cuando y que es lo que está pidiendo el pasto, existen diferentes casos de requerimientos nutricionales en las pasturas, los tales podemos diferenciar con solo ver sus hojas:  Deficiencia de Nitrógeno.  Deficiencia de Fosforo.  Deficiencia de Potasio. Deficiencia Calcio.  Deficiencia de Zinc.De no brindarles su debida atención tendríamos pérdidas económicas cuantiosas por degradación de pasturas, perdidas de coberturas en el área donde se estableció el pasto y esto nos llevaría a menos forraje disponible lo cual indica que habrá menos volumen de ganado e incluso muertes de animales. Es necesario hacer un buen uso eficiente de fertilizantes de manera constante a los potreros donde hemos establecido diferentes variedades de cultivos de gramíneas mejoradas. Esto permitirá que haya pasturas frescas, jóvenes, vigorosas y con muchos nutrientes que dispondría mayor Calidad nutricional para los animales. La fertilización balanceada aumenta la cantidad y la capacidad del forraje y, por consiguiente, incrementa la capacidad de mantenimiento y producción por unidad de área. Total de visitas en el mes 43Objetivo General: Brindar a las familias productoras la importancia del uso correcto de sales minerales en la dieta de los bovinos como suplemento para mejorar los índices de producción. Sabrán la importancia del uso correcto de sales minerales.  Elaboraran Sal Proteinizada.Mediante el desarrollo de las diferentes ECAS, se dio a conocer la importancia que existe en las familias productoras el \"Uso Correcto de Sales Minerales\". Además de contar con una buena calidad de forrajes y fuentes hídricas, cierto es que los pastos aportan en más proporción proteína, energía y fibra. Sin embargo, debemos tener presente que las sales contienen minerales, las sales minerales son un suplemento en la dieta de los bovinos que generan grandes beneficios. Los ganaderos deben tener en cuenta la importancia de las sales mineralizadas en la alimentación balanceada de sus semovientes.Con una proporción adecuada y balanceada, esta sustancia será el complemento perfecto en la alimentación del animal para generar una mejor y mayor productividad en el predio. Los minerales no representan una opción nutricional en el hato de carne o leche, son obligatorios. Y la cantidad que se debe dar, por medio de los alimentos, está relacionada con la zona, tipo de ganado y calidad de las pasturas.La sal blanca solo le aporta cloruro de sodio a los semovientes. Mientras que el fósforo y el calcio, que son importantes y básicos para el desarrollo cárnico y lácteo, están en el producto mineralizado. Varios estudios científicos revelan que la suplementación animal con sales minerales beneficia: La producción y reproducción de las terneras que en un futuro próximo serán el reemplazo de las vacas productoras.  Baja los índices de mortalidad ya que fortalece su sistema inmunológico.  Aumenta el desempeño del animal en el predio.Las sales se deben suministrar en cantidades específicas, sin cometer el error de dejarlas en los potreros en abundancia. Por ejemplo, si se tiene en el predio una vaca de mediana producción se dan 100 gramos al día de sal mineral y de alta producción, 150 gramos. \"No es llenar los saleros como lo hacen a veces los ganaderos, es proveerle el suplemento mineral necesario del semoviente\".\"Los problemas de reproducción son por falta de algunos minerales que ayudan al buen funcionamiento de la parte reproductiva\", es elemental que la sal otorgada cuente con micro elementos. Es importante que les den a las semovientes sales mineralizadas y no blancas. \"Gracias al consumo de estas sales el ganadero obtendrá una carne de mejor sabor y un mejor peso del animal. En cuanto a la cría, el productor tendrá mayores partos, pues se disminuirán los intervalos entre parto-parto\". Total de visitas en el mes 33 9. Uso del botón de oro como fuente de proteína Objetivo General: Brindar a las familias productoras una guía técnica para el montaje de un sistema silvopastoril basado en el uso de botón de oro (Tithonia diversifolia) en potreros con pasturas mejoradas previamente establecidas. Conocer el valor nutritivo e importancia del uso del botón de oro.  Realizar siembra de botón de oro en pasturas establecidas como SSP Mediante el desarrollo de las diferentes ECAS, se dio a conocer la importancia que existe en las familias productoras el \"Uso del botón de oro como fuente de proteína\".En ganado lechero son indispensables para su producción y entre más leche produce una vaca, más proteínas requiere diariamente\". También los nutricionistas explican que la principal fuente de proteínas para el ganado bovino son los pastos y otros forrajes (madero negro, botón de oro) que deben estar disponibles en suficiente cantidad para llenar los requerimientos de estos animales.El botón de oro (Tithonia diversifolia) es una planta herbácea, de grandes flores amarillas con olor a miel, hojas simples y alternas de tres a cinco lóbulos; de alto valor nutricional y rápida recuperación; luego del ramoneo, produce gran cantidad de forraje y resiste la sequía.Tiene un alto nivel de proteína, con concentraciones que van desde 19% a 29 %. Dado su elevado contenido de proteína, el ganadero puede reemplazar concentrados con esta planta. El beneficio es nutricional y también económico, pues mientras el productor se ve obligado a gastar mucho dinero en alimentos balanceados, el botón de oro no tiene mayor costo y se da de forma natural en el predio.Además, es una planta que funciona y se complementa en sistemas silvopastoriles, las varetas deben de medir de 20 a 30 cm al establecerlo por material vegetativo. Cuando se usa como arbusto forrajero, el animal lo puede ramonear directamente y consumir su flor en áreas con asocio de pasturas mejoradas establecidas.Aunque no contribuye a aumentar la producción de leche, sí permite una mejoría en la calidad. Cuando una vaca consume botón de oro, los niveles de proteína y de grasa aumentan, hecho que redunda en beneficio para el productor que obtiene un mayor precio si la calidad del lácteo es mejor.De otro lado, el botón de oro puede emplearse para restaurar los suelos y las áreas degradadas. La facilidad que tiene para cubrir suelos erosionados y formar mantos densos en terrenos inestables lo hacen ideal para recuperar terrenos que se creían perdidos, las hojas tienen un alto contenido de fósforo y potasio.Finalmente, varios trabajos llevados a cabo por investigadores concluyeron que el botón de oro actúa como repelente contra las hormigas arrieras o cortadoras de hojas. En este caso, aunque no las mata en condiciones naturales, la planta ejerce un efecto disuasivo, obligándolas a hacer largos recorridos para evitar las hojas que se encuentra cerca del botón de oro. En otras regiones, los productores lo utilizan para espantar garrapatas y moscas que afectan al ganado.\" ","tokenCount":"3657"} \ No newline at end of file diff --git a/data/part_3/8572647223.json b/data/part_3/8572647223.json new file mode 100644 index 0000000000000000000000000000000000000000..9163d61ce0d40e6d298476bacd81d239b1978b81 --- /dev/null +++ b/data/part_3/8572647223.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"29d9b83d19d6e6070e45fc9c0fdb8380","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/7bca5ed8-4963-48f4-bedc-5ea51e641906/retrieve","id":"-1501827424"},"keywords":["adaptation","perception on climate change","Nile Basin of Ethiopia vii"],"sieverID":"0a2ef9b4-b725-4475-84ce-21f36e210623","pagecount":"36","content":"was established in 1975. IFPRI is one of 15 agricultural research centers that receive principal funding from governments, private foundations, and international and regional organizations, most of which are members of the Consultative Group on International Agricultural Research (CGIAR).Studies indicate that Africa's agriculture is negatively affected by climate change (Pearce et al. 1996;McCarthy et al. 2001). Adaptation is one of the policy options for reducing the negative impact of climate change (Adger et al. 2003;Kurukulasuriya and Mendelsohn 2006a). Adaptation to climate change refers to adjustment in natural or human systems in response to actual or expected climatic stimuli or their effects, which moderates harm or exploits beneficial opportunities (IPCC 2001). Common adaptation methods in agriculture include use of new crop varieties and livestock species that are better suited to drier conditions, irrigation, crop diversification, adoption of mixed crop and livestock farming systems, and changing planting dates (Bradshaw, Dolan, and Smit 2004;Kurukulasuriya and Mendelsohn ,2006a;Nhemachena and Hassan 2007).Agriculture is the main sector of the Ethiopian economy. It contributes about 52 percent of the GDP, generates more than 85 percent of the foreign exchange earnings, and employs about 80 percent of the population (CSA 2004). Despite its high contribution to the overall economy, this sector is challenged by many factors, of which climate-related disasters like drought and flood (often causing famine), are the major ones (Deressa 2007). Knowledge of the adaptation methods and factors affecting farmers' choices enhances policies directed toward tackling the challenges that climate change is imposing on Ethiopian farmers.Some attempts have been made to study the impact of climate change on Ethiopian agriculture (NMSA 2001;Deressa 2007). NMSA (2001) identified potential adaptation measures for coping with adverse impacts of climate change on crop and livestock production, but it failed to indicate the factors that dictate the choice of adaptation measures. Deressa (2007) employed the Ricardian approach to estimate the monetary impact of climate change on Ethiopian agriculture. Even though, the applied approach includes adaptation, it does not identify the determinants of each of the adaptation methods used by farmers. Additionally, adaptation to climate change is a two-step process: first, the household must perceive that the climate is changing and then respond to changes through adaptation.Until now, no study has attempted to identify the factors that affect households' choice of adaptation methods and perceptions of climate change in Ethiopia. Thus, the objective of this study is to identify those factors in order to guide policymakers on ways to promote adaptation. This paper is organized as follows: Chapter 2 describes the agriculture sector and climate of Ethiopia. Chapter 3 discusses the study area and data. Chapter 4 describes the analytical models. Chapter 5 gives model results, and Chapter 6 presents the conclusions and policy implications.Small-scale, mixed crop and livestock farmers dominate the agricultural sector, which is the mainstay of the country's economy. Based on variations in agroecological settings, five major farming systems exist in Ethiopia. These are the highland mixed farming system, the lowland mixed agriculture, the pastoral system, shifting cultivation, and commercial agriculture (Befekadu and Berhanu 2000). The highland areas constitute about 45 percent of the total crop area, including about four-fifths of the total population and supporting about 70 percent of the livestock population of the country.Under these diverse farming systems, different varieties of crops and species of livestock are produced. The major crops grown include cereals, pulses, oil seeds, spices and herbs, stimulants, fruits, sugarcane, fibers, vegetables, and root and tuber crops. The major livestock species raised include cattle, sheep, goats, camels, donkeys, horses, mules, poultry, and pigs. Crop production is estimated to contribute on average about 60 percent of the total agricultural value, while livestock accounts for about 27 percent and forestry and other subsectors account for about 13 percent (MEDaC 1999).The potential for growing different varieties of crops and keeping different species of livestock across the diverse farming systems of Ethiopia is high. For instance, about 73.6 million hectares (66 percent) of the country's land area is estimated to be potentially suitable for agricultural production (MEDaC 1999). Despite this huge potential, the country has remained unable to feed its people for many years due to a number of socioeconomic and environmental constraints.The major socioeconomic constraints in crop production include inappropriate polices; declining farm size and subsistence farming due to population growth; land degradation due to inappropriate use of land, such as cultivation of steep slopes; and over cultivation and overgrazing. Additionally, tenure insecurity, weak agricultural research and extension services, lack of agricultural marketing, inadequate transport networks, inadequate use of agricultural inputs, and the use of backward technologies are other constraints. The major causes of poor production in the livestock subsector include inadequate feed and nutrition, low level of veterinary care, occurrence of diseases, poor genetic structure, inadequate budget allocation, limited infrastructure, and limited research on livestock. The major environmental problem in both crop and livestock production is recurrent droughts, hailstorms, floods, and pest incidence (Befekadu and Berhanu 2000).The specifically climate-related constraint, recurrent drought, is the most damaging because it has made the country dependent on food aid. Thus, future efforts should emphasize increasing understanding of the complex interdependence between the climatic conditions and Ethiopian agriculture, in addition to addressing the other socioeconomic problems.The climate of Ethiopia is mainly controlled by the seasonal migration of the Inter-tropical Convergence Zone (ITCZ), which follows the position of the sun relative to the earth and the associated atmospheric circulation, in conjunction with the complex topography of the country (NMSA 2001). There are different ways of classifying the climatic systems of Ethiopia, including the traditional, the Köppen's, the Throthwaite's, the rainfall regimes, and the agroclimatic zone classification systems (Yohannes 2003).The most commonly used classification systems are the traditional and the agroclimatic zones. According to the traditional classification system, which mainly relies on altitude and temperature for classification, Ethiopia has five climatic zones (Table 1). The agroecological classification method is based on combining growing periods with temperature and moisture regimes. According to the agroecological zone classification system, Ethiopia has 18 major agroecological zones, which are further subdivided into 49 subagroecological zones (Figure 1). These agroecologies are also grouped under six major categories (MoA 2000), which include the following:1. Arid zone: This zone is less productive and pastoral, occupying 53.5 million hectares (31.5 percent of the country). 2. Semi-arid: This area is less harsh and occupies 4 million hectares (3.5 percent of the country). 3. Submoist: This zone occupies 22.2 million hectares (19.7 percent of the country), highly threatened by erosion. 4. Moist: This agroecology covers 28 million hectares (25 percent of the country) of the most important agricultural land of the country, and cereals are the dominant crops. 5. Subhumid and humid: These zones cover 17.5 million hectares (15.5 percent of the country) and 4.4 million hectares (4 percent of the country), respectively; they provide the most stable and ideal conditions for annual and perennial crops and are home to the remaining forest and wildlife, having the most biological diversity. 6. Per-humid: This zone covers about 1 million hectares (close to 1 percent of the country) and is suited for perennial crops and forests. Over these diverse agroecological settings, mean annual rainfall and temperature vary widely. Mean annual rainfall ranges from about 2,000 millimeters over some pocket areas in the southwest to less than 250 millimeters over the Afar lowlands in the northeast and Ogaden in the southeast. Mean annual temperature varies from about 10 0 C over the high table lands of the northwest, central, and southeast to about 35 0 C on the northeastern edges.In addition to variations in different parts of the country, the Ethiopian climate is also characterized by a history of climate extremes, such as drought and flood, and increasing and decreasing trends in temperature and precipitation, respectively. The history of climate extremes, especially drought, is not a new phenomenon in Ethiopia. Recorded history of drought in Ethiopia dates back to 250 BC, and since then droughts have occurred in different parts of the country at different times (Webb, von Braun, and Yohannes 1992). Even though there has been a long history of drought, studies show that the frequency of drought has increased over the past few decades, especially in the lowlands (Lautze et al. 2003). Knowledge of the climatic conditions of the country and the adaptation options available to farmers will assist policy aimed at decreasing vulnerability of farmers to future climate changes. The next chapter discusses the data sources, study area, and the methods employed to analyze the determinants of farmers' choice of adaptation methods and perceptions of climate change.The study area for this research is the Nile Basin of Ethiopia, which covers a total area of about 358,889 square kilometers-equivalent to 34 percent of the total geographic area of the country. Moreover, about 40 percent of the population of Ethiopia lives in this basin. The basin covers six regional states of Ethiopia in different proportions: 38 percent of the total land area of Amhara, 24 percent of Oromiya, 15 percent of Benishangul-Gumuz, 11 percent of Tigray, 7 percent of Gambella, and 5 percent of Southern Nations Nationalities and Peoples (SNNP) Regional States (MoWR 1998).This basin consists of three major rivers: the Abbay River, which originates in the central highlands; Tekeze River, which originates in the northwest; and Baro-Akobo River, which originates in the southwestern part of the country. The total annual surface runoff of the three rivers is estimated at 80.83 billion cubic meters per year, which amounts to nearly 74 of Ethiopia's 12 river basins (MoWR 1998). Almost all of the traditional agroecological zones of Ethiopia are also found in the Nile Basin of Ethiopia (Figure 2). The International Food Policy Research Institute (IFPRI) in collaboration with the Ethiopian Development Research Institute (EDRI) collected the data for this study. A cross-sectional household survey of farmers was conducted during the 2004/05 production year in the Nile Basin of Ethiopia. The household survey covered five regional states of Ethiopia, 20 districts, and 1,000 households (Table 2). The sample districts were purposely selected to include different attributes of the basin, including the traditional typology of agroecological zones in the country, the degree of irrigation activity (percent of cultivated land), average annual rainfall, rainfall variability, and vulnerability (the food aid-dependent population). Peasant associations (administrative units smaller than districts) were also purposely selected to include households that irrigate their farms. One peasant association is selected from every district, making a total of 20 each. Once the peasant associations were chosen, 50 farmers were randomly selected from each peasant association, making 1,000 the total number of households interviewed.The data set collected has 10 major parts, which include household characteristics, incidence of different climatic and other shocks over the past five years, food aid, land tenure, machinery ownership, rainfed and irrigated agriculture, livestock production, access to credit, market and extension, expenditure on food and income, perceptions of climate change, adaptation options, and social capital.Two types of analytical models are adopted for this study. The first model analyzes what determinates the method farmers choose to adapt to climate change, whereas the second model examines the farmers perceptions of and adaptations to climate change in the Nile Basin of Ethiopia.The decision on whether or not to adopt a new technology (an adaptation method in this case) is considered under the general framework of utility or profit maximization (Norris and Batie 1987;Pryanishnikov and Katarina 2003). It is assumed that economic agents, including smallholder subsistence farmers, use adaptation methods only when the perceived utility or net benefit from using such a method is significantly greater than is the case without it. Although utility is not directly observed, the actions of economic agents are observed through the choices they make. Suppose that Y j and Y k represent a household's utility for two choices, which are denoted by U j and U k , respectively. The linear random utility model could then be specified as:where j U and k U are perceived utilities of adaptation methods j and k, respectively, X i is the vector of explanatory variables that influence the perceived desirability of the method, B j and B k are parameters to be estimated, and ε j and ε k are error terms assumed to be independently and identically distributed (Green 2000).In the case of climate change adaptation methods, if a household decides to use option j, it follows that the perceived utility or benefit from option j is greater than the utility from other options (say k) depicted as:The probability that a household will use method j among the set of climate change adaptation options could then be defined aswhere P is a probability function, U ij , U ik , , and X i are as defined above,is a vector of unknown parameters that can be interpreted as a net influence of the vector of independent variables influencing adaptation, andThe exact distribution of F depends on the distribution of the random disturbance term, ε*. Depending on the assumed distribution that the random disturbance term follows, several qualitative choice models can be estimated (Green 2000).The multinomial logit (MNL) model is used for this analysis. This method can be used to analyze crop (Kurukulasuriya and Mendelsohn 2006b) and livestock (Seo and Mendelsohn 2006) choices as methods to adapt to the negative impacts of climate change. The advantage of the MNL is that it permits the analysis of decisions across more than two categories, allowing the determination of choice probabilities for different categories (Madalla 1983;Wooldridge 2002). Moreover, Koch (2007) emphasizes the usefulness of this model by describing the ease of interpreting estimates from this model.To describe the MNL model, let y denote a random variable taking on the values } ... For this study, the adaptation options or response probabilities are six: 1. No adaptation 2. Soil conservation 3. Use of different crop varieties 4. Planting trees 5. Changing planting dates 6. Irrigation Unbiased and consistent parameter estimates of the MNL model in equation (1) require the assumption of independence of irrelevant alternatives (IIA) to hold. More specifically, the IIA assumption requires that the probability of using a certain adaptation method by a given household needs to be independent from the probability of choosing another adaptation method (that is, P j /P k is independent of the remaining probabilities). The premise of the IIA assumption is the independent and homoscedastic disturbance terms of the basic model in equation ( 1).The parameter estimates of the MNL model provide only the direction of the effect of the independent variables on the dependent (response) variable, but estimates do not represent either the actual magnitude of change nor probabilities. Differentiating equation ( 1) with respect to the explanatory variables provides marginal effects of the explanatory variables given as:The marginal effects or marginal probabilities are functions of the probability itself and measure the expected change in probability of a particular choice being made with respect to a unit change in an independent variable from the mean (Green 2000;Koch 2007).The climate change research community has identified different adaptation methods. The adaptation methods most commonly cited in literature include the use of new crop varieties and livestock species that are more suited to drier conditions, irrigation, crop diversification, mixed crop livestock farming systems, change of planting dates, diversification from farm to nonfarm activities, increased use of water and soil conservation techniques, changed use of capital and labor, and trees planted for shade and shelter (Bradshaw, Dolan, and Smit 2004;Kurukulasuriya and Mendelsohn 2006a;Maddison 2006;Nhemachena and Hassan2007).The adaptation methods for this study are based on asking farmers about their perceptions of climate change and the actions they take to counteract the negative impacts of climate change (Figure 3). The adaptation measures that farmers report may be profit driven, rather than climate change driven. Despite this missing link, we assume that their actions are driven by climatic factors, as reported by farmers themselves in the studies by Maddison (2006) and Nhemachena and Hassan (2007).As indicated in Figure 3, use of different crop varieties is the most commonly used method, whereas use of irrigation is the adaptation least practiced among the major adaptation methods identified in the Nile Basin of Ethiopia. Greater use of different crop varieties as an adaptation method could be associated with the lower expense and ease of access by farmers, while the limited use of irrigation could be attributed to the need for more capital and low potential for irrigation. Moreover, about 42 percent of the surveyed farmers reported not to have taken any adaptation method for a number of reasons, discussed below.The analysis of barriers to adaptation to climate change in the Nile basin of Ethiopia indicates that there are five major constraints to adaptation. These are lack of information, lack of money, shortage of labor, shortage of land, and poor potential for irrigation (Figure 4). Most of these constraints are associated with poverty. For instance, lack of information on appropriate adaptation options could be attributed to the dearth of research on climate change and adaptation options in the country. Lack of money hindersIrrigation 4%Early and late planting 5% Soil conservation 15%No adaptation 42%farmers from getting the necessary resources and technologies that facilitate adapting to climate change.Adaptation to climate change is costly (Mendelson 2004), and the need for intensive labor use may contribute to this cost. Thus, if farmers do not have sufficient family labor or the financial means to hire labor, they cannot adapt. Shortage of land has been associated with high population pressure, which forces farmers to intensively farm a small plot of land and makes them unable to prevent further damage by using practices, such as planting trees that compete for agricultural land. Given the fact that the Nile Basin in Ethiopia is very rich in water resources (FAO 1997), poor irrigation potential is most likely associated with the inability of farmers to use the water that is already there, due to technological incapability. Farmers in Ethiopia in general are very poor and cannot afford to invest in irrigation technology to adapt to climate change or sustain their livelihoods during harsh climatic extremes, such as drought. Different household and farm characteristics, infrastructure, and institutional factors influence the use of adaptation methods by farmers. The most commonly cited household characteristics include age, education, farming experience, marital status, gender of the head of household, and wealth. Farm characteristics include farm size, fertility, and slope; institutional factors include access to extension and credit; and infrastructure includes distance to input and output markets (Maddison 2006;Nhemachena and Hassan 2007).The explanatory variables for this study include household characteristics such as education, gender, age of the household head, household size, farm and nonfarm income, and livestock ownership; institutional factors such as extension services on crop and livestock production, information on climate, access to credit, social capital, which includes farmer-to-farmer extension services and the number of relatives in the \"got;\" 1 the local area, and agroecological characteristics such as temperature and rainfall.Higher level of education is believed to be associated with access to information on improved technologies and higher productivity (Norris and Batie 1987). Evidence from various sources indicates that there is a positive relationship between the education level of the household head and the adoption of improved technologies (Igoden, Ohoji, and Ekpare 1990;Lin 1991) and adaptation to climate change (Maddison 2006). Therefore, farmers with higher levels of education are more likely to adapt better to climate change.Male-headed households are more likely to get information about new technologies and undertake risky businesses than female-headed households (Asfaw and Admassie 2004). Moreover, Tenge De Graffe and Heller ( 2004) argue that having a female head of household may have negative effects on the adoption of soil and water conservation measures, because women may have limited access to information, land, and other resources due to traditional social barriers. A study by Nhemachena and Hassan (2007) finds contrary results, arguing that female-headed households are more likely to take up climate change adaptation methods. The authors conclude that women are more likely to adapt because they are responsible for much of the agricultural work in the region and therefore have greater experience and access to information on various management and farming practices. Thus, the adoptions of new technologies or adaptation methods appear to be rather context specific.Age of the head of household can be used to capture farming experience. On the one hand, studies in Ethiopia have shown a positive relationship between number of years of experience in agriculture and the adoption of improved agricultural technologies (Kebede, Kunjal, and Coffin 1990), while a study by Shiferaw and Holden (1998) indicates a negative relationship between age and adoption of improved soil conservation practices. On the other hand, studies by Maddison (2006) and Nhemachena and Hassan (2007) indicate that experience in farming increases the probability of uptake of adaptation measures to climate change. This study hypothesizes that experience increases the probability of adapting to climate change.The influence of household size on use of adaptation methods can be seen from two angles. The first assumption is that households with large families may be forced to divert part of the labor force to off-farm activities in an attempt to earn income in order to ease the consumption pressure imposed by a large family (Yirga 2007). The other assumption is that large family size is normally associated with a higher labor endowment, which would enable a household to accomplish various agricultural tasks. For instance, Croppenstedt, Demeke, and Meschi (2003) argue that households with a larger pool of labor are more likely to adopt agricultural technology and use it more intensively because they have fewer labor shortages at peak times. Here it is expected that households with large families are more likely to adapt to climate change.Farm and nonfarm income and livestock ownership represent wealth. It is regularly hypothesized that the adoption of agricultural technologies requires sufficient financial wellbeing (Knowler and Bradshaw 2007). Other studies that investigate the impact of income on adoption found a positive correlation (Franzel 1999). Higher-income farmers may be less risk averse and have more access to information, a lower discount rate, and a longer-term planning horizon (CIMMYT 1993).Livestock plays a very important role by serving as a store of value and by providing traction (especially oxen) and manure required for soil fertility maintenance (Yirga 2007). Thus, for this study, farm and nonfarm income and livestock ownership are hypothesized to increase adaptation to climate change.Extension on crop and livestock production and information on climate represent access to the information required to make the decision to adapt to climate change. Various studies in developing countries, including Ethiopia, report a strong positive relationship between access to information and the adoption behavior of farmers (Yirga 2007), and that access to information through extension increases the likelihood of adapting to climate change (Maddison 2006;Nhemachena and Hassan 2007). Thus, this study also hypothesizes that access to information increases probability of adapting to climate change.Availability of credit eases the cash constraints and allows farmers to buy purchased inputs such as fertilizer, improved crop varieties, and irrigation facilities. Research on adoption of agricultural technologies indicates that there is a positive relationship between the level of adoption and the availability of credit (Yirga 2007;Pattanayak et al. 2003). Likewise, this study also hypothesizes that there is a positive relationship between availability of credit and adaptation. Social capital is represented by the number of relatives of a household in the local area and farmer-to-farmer extension. Informal institutions and private social networks play three distinct roles in adoption of agricultural technologies (Hogest 2005, cited in Katungi 2007). First, they act as conduits for financial transfers that may relax the farmer's credit constraints. Second, they act as conduits for information about new technology. Third, social networks can facilitate cooperation to overcome collective action dilemmas, where the adoption of technologies involves externalities. Isham (2002) shows that ethnically based and participatory social affiliations act as forms of social capital in the decision to adopt fertilizer. Thus, this study hypothesizes that social capital positively influences adaptation to change.Studies on adoption of agricultural technologies indicate that farm size has both negative and positive effects on adoption, showing that the effect of farm size on technology adoption is inconclusive (Bradshaw, Dolan, and Smit 2004). However, because farm size is associated with greater wealth, it is hypothesized to increase adaptation to climate change.It is hypothesized that as distance to output and input markets increases, adaptation to climate change decreases. Proximity to market is an important determinant of adaptation, presumably because the market serves as a means of exchanging information with other farmers (Maddison 2006).It is also hypothesized that different households living in different agroecological settings use different adaptation methods. This is due to the fact that climatic conditions, soil, and other factors vary across different agroecologies, influencing farmers' perceptions of climate change and their decisions to adapt. Detailed analysis of the relationships between climatic variables such as temperature and rainfall and choice of adaptation methods requires time series data on how farmers have behaved over time in response to changing climatic conditions. As this type of data is not available for this study, it is assumed that cross-sectional variations can proxy temporal variations. Thus, the analysis includes controls for variations in temperature and rainfall across farm households over the 2004/05 survey period. Table 3 gives the descriptive statistics of the independent variables hypothesized to affect adaptation measures in this study. Adaptation to climate change involves a two-stage process: first, perceiving change and, second, deciding whether or not to adapt by taking a particular measure. This leads to a sample selectivity problem, since only those who perceive climate change will adapt, whereas we need to make an inference about adaptation by the agricultural population in general, which implies the use of Heckman's sample selectivity probit model (Maddison 2006).The probit model for sample selection assumes that an underlying relationship exists, the latent equation given bysuch that we observe only the binary outcome given by the probit model as * ( 0)The dependent variable is observed only if j is observed if the selection equation 2 ( 0 )where x is a k-vector of regressors, z is an m vector of repressors, u 1 and u 2 are error terms.When 0 ρ ≠ , standard probit techniques applied to equation ( 6) yield biased results. Thus, the Heckman probit (heckprob) provides consistent, asymptotically efficient estimates for all parameters in such models (StataCorp 2003). Thus, the Heckman probit selection model is employed to analyze the perception and adaptation to climate change in the Nile Basin of Ethiopia.For this study, the first stage of the Heckman probit model considers whether the farmer perceived a climate change; this is the selection model. The second-stage model looks at whether the farmer tried to adapt to climate change, and it is conditional on the first stage, that is, a perceived change in climate. This second stage is the outcome model. The variables hypothesized as affecting perceptions and adaptations to changes in climatic conditions, along with their respective dependent variables, are indicated in Table 4. For the selection equation, it is hypothesized that, education, age of the head of household, farm and nonfarm income, information on climate, farmer-to-farmer extension, number of relatives in the got and agroecological setting influence farmers' awareness of climate change. More education is believed to be associated with access to information on improved technologies and higher productivity (Norris and Batie 1987); here, it is hypothesized that farmers with a higher level of education will have more information on climate change. Age of the head of household is assumed to represent farming experience. More experienced farmers are more likely to observe the change in climatic conditions over time.Higher income (both farm and nonfarm) is often associated with access to information, lower discount rates, and a longer-term planning horizon by farmers (CIMMYT 1993). Therefore, it is hypothesized that higher income increases awareness of climate change. Obviously, access to information on climate change from either extension agents or any other organization is likely to create awareness of climate change. Farmer-to-farmer extension and the number of relatives in the got represent social capital. In technology adoption studies, social capital plays a significant role in information sharing (Isham 2002), and hence, it is hypothesized that more social capital is associated with greater awareness of climate change. Moreover, farmers living in lowland areas are hypothesized to be more likely to have perceived climate change than farmers in the midlands and highlands. This is because the lowlands are already hotter and a marginal change in temperature can be perceived more easily.The variables hypothesized to influence adaptation include education of the head of household, size of household, gender of the head of household, nonfarm income, livestock ownership, extension on crop and livestock production, credit, farm size, and distance to input and output markets. The justification for the inclusion of these variables along with the hypothesized direction of relationship with adaptation has been explained in the first section of this chapter and omitted here to avoid redundancy.The estimation of the multinomial logit model for this study was undertaken by normalizing one category, which is normally referred to as the \"reference state,\" or the \"base category.\" In this analysis, the first category (no adaptation) is the reference state.In the initial run, farm size and distance to input and output markets were added to the model, but they were dropped, as they were not significant. Finally, the model was run and tested for the validity of the independence of the irrelevant alternatives (IIA) assumptions by using both the Hausman test for IIA and the seemingly unrelated postestimation procedure (SUEST) 2 . Both tests failed to reject the null hypothesis of independence of the climate change adaptation options, suggesting that the multinomial logit (MNL) specification is appropriate to model climate change adaptation practices of smallholder farmers ( 2 χ ranged from -4.63 to 40.73, with probability values ranging from 0.85 to 1.00 in the case of the Hausman test and 2 χ ranging from 13.07 to 20.49, with a P value of 0.20 to 0.67 in the case of SUEST). The estimated coefficients of the MNL model, along with the levels of significance, are presented in Table 5. The likelihood ratio statistics as indicated by 2 χ statistics are highly significant (P < 0.00001), suggesting the model has a strong explanatory power.As indicated earlier, the parameter estimates of the MNL model provide only the direction of the effect of the independent variables on the dependent (response) variable: estimates do not represent actual magnitude of change or probabilities. Thus, the marginal effects from the MNL, which measure the expected change in probability of a particular choice being made with respect to a unit change in an independent variable, are reported and discussed. In all cases the estimated coefficients should be compared with the base category of no adaptation. Moreover, the MNL is run with and without the explanatory variables, such as extension on crop and livestock production and information on climate change and credit availability, assuming these variables to be endogenous, as they are in many studies. The results indicate that the inclusion of these variables does not significantly change the parameters of the estimates (the Hausman test has been employed to compare the models with and without these variables). Table 6 presents the marginal effects along with the levels of statistical significance.Education. Education of the head of household increases the probability of adapting to climate change. As can be observed in Table 6, education significantly increases soil conservation and changing planting dates as an adaptation method. A unit increase in number of years of schooling would result in a 1 percent increase in the probability of soil conservation and a 0.6 percent increase in change in planting dates to adapt to climate change. Moreover, almost all of the marginal values of education are positive across all adaptation options indicating the positive relationship between education and adaptation to climate change.Household size. For most of the adaptation methods, increasing household size did not significantly increase the probability of adaptation, though the coefficient on the adaptation options has a positive sign. Even though it is not significant, it can be inferred that the larger the size of the household, the better the chance of adapting to climate change.Gender of the head of household. The results indicate that male-headed households adapt more readily to climate change. Male-headed households were 7.6 percent more likely to plant trees and 2.4 percent more likely to change planting dates. .Age of the household head. Age of the household head, which represents experience, affected adaptation to climate change. For instance, a unit increase in age of the household head results in a 9 percent increase in the probability of soil conservation, a 12 percent increase in changing of crop varieties, and a 10 percent increase in tree planting.Farm income. The farm income of the households surveyed has a positive and significant impact on conserving soil, using different crop varieties, and changing planting dates. A unit increase in farm income increases these probabilities by less than 0.01 percent.Nonfarm income. In addition to farm income, nonfarm income also significantly increases the likelihood of planting trees, changing planting dates, and using irrigation as adaptation options. A unit increase in nonfarm income increases the probability of planting tress and changing planting dates by 0.004 and 0.001 percent, respectively. Nonfarm income showed a negative relationship with the adoption of soil conservation practices and the use of different crop varieties, although these results are not statistically significant.Livestock ownership. The ownership of livestock is also positively related to most of the adaptation options, even though the marginal impacts are not significant. It is positively related to the adoption of adaptation methods such as conserving soil, planting trees, and changing planting dates. Livestock ownership is negatively related to the use of different crop varieties and irrigation, although not significantly.Crop and livestock extension. As expected, access to crop and livestock extension has a positive and significant impact on planting trees. Having access to crop and livestock production increases the probability of planting trees by 18 percent. Planting trees counteracts different types of environmental damage and provides shade for livestock.Information on climate change. Information on temperature and rainfall has a significant and positive impact on the likelihood of using different crop varieties: it increases the likelihood of using different crop varieties by 17.6 percent.Access to credit. Access to credit has a positive and significant impact on the likelihood of using soil conservation, changing planting dates, and using irrigation. This result implies the important role of increased institutional support in promoting the use of adaptation options to reduce the negative impact of climate changeFarmer-to-farmer extension. Having access to farmer-to-farmer extension increases the likelihood of using different crop varieties by 11.3 percent and planting trees by 12 percent. It also appears to increase the use of the other adaptation methods, although the results are not statistically significant.Having more relatives in the got is also positively related to the likelihood of adoption of most of the adaptation methods, although the coefficients are not statistically significant. The implication of this result is that social networks increase awareness and use of climate change adaptation options.Agroecological setting. As expected, different farmers living in different agroecological settings employ different adaptation methods. For instance, farming in the kola zone significantly increases the probability of soil conservation by 8.9 percent, compared with farming in weynadega. However, farming in kola significantly reduces the probability of using different crop varieties, planting trees, and irrigation by 21, 13 and 2.3 percent, respectively, compared with farming in weynadega. Moreover, farming in dega significantly decreases the probability of planting trees by 7 percent, compared with farming in weynadega.Temperature. Households with higher annual mean temperature over the survey period were more likely to adapt to climate change through the adoption of different practices. A rise in temperature one degree higher than the mean increases the probability of using soil conservation (2.6 percent), different crop varieties (5.5 percent), irrigation (0.6 percent), and changing planting dates (1.2 percent). These results indicate that, with more warming, farmers will conserve soil to preserve the moisture content and use drought-tolerant varieties to cope with increased temperature. Moreover, farmers will vary planting dates so that critical crop growth stages do not coincide with peak temperature periods, and they will irrigate to supplement rain water and to compensate for loss of water associated with increased evapo-transpiration due to increased temperature.Precipitation. Unlike rising temperatures, higher levels of precipitation over the survey period appear to work in the opposite direction with regard to the likelihood of adoption of adaptation techniques. This indicates that increasing precipitation relaxes the constraints imposed by increased temperature on soil moisture content and thus crop growth. Conversely, the results of this analysis reconfirm that decreasing precipitation significantly increases the likelihood of using soil conservation, changing crop varieties, changing planting dates, and irrigating.The analysis of farmers' perceptions of climate change indicates that most of the farmers in this study are aware of the fact that temperature is increasing and the level of precipitation is declining (Figure 5). To get information on their perceptions of climate change, farmers were asked if they have observed any change in temperature or the amount of rainfall over the past 20 years. (To clarify, farmers were also asked whether the number of hot or rainy days had increased, decreased, or stayed the same over the past 20 years.) The responses from the farmers are in line with the report by the National Meteorological Services Agency (NMSA 2001), which depicted an increasing trend in temperature and decreasing trend in precipitation. Although the majority of the farmers interviewed claimed that they had perceived at least one change in climatic attributes, some of these farmers did not respond by taking adaptation measures. Here it is argued that farmers who perceived climate change but did not adapt had some common characteristics.Farmers adapted to climate change by using different methods, of which the major ones are included in this study. Those who did not use any of the methods considered described lack of information on adaptation methods and lack of money as major constraints to adaptation. The study uses the multinomial logit (MNL) model to investigate the factors guiding household choices of climate change adaptation methods. In the model, the dependent variables include six adaptation options and the explanatory variables include different household, institutional, and social factors. The MNL was run and tested for the assumption of the independence of irrelevant alternatives (IIA) There was no evidence that this assumption was violated when the Heckman and the seemingly unrelated post-estimation procedures (SUEST) were run, justifying the application of the MNL specification to the data. The marginal effects from the MNL, which measure the expected change in probability of a particular choice being made with respect to a unit change in an independent variable, were presented for their ease of interpretation. The results from the marginal analysis indicate that most of the household variables, wealth attributes, institutional factors (availability of information), social capital, agroecological features, and temperature influence adaptation to climate change in the Nile Basin of Ethiopia.The analysis of farmers' perceptions of climate change indicates that most of the farmers in the study are aware that temperature is increasing and the level of precipitation is declining. The Heckman probit selection model is employed to analyze the two-stage process of adaptation-perceiving changes in climate conditions in the first stage and then adapting to perceived climate changes in the second stage. The results further indicate that age of the household head, wealth, information on climate change, and social capital positively influence farmers' perceptions of changes in climatic attributes, while factors affecting adaptation are similar to and support the results of the choice model employed earlier. Moreover, farmers living in dega (highlands) places perceived more changes in climate.These analyses of the constraints to adaptation and the factors that influence farmers' perceptions of and adaptation to climate change in the Nile Basin of Ethiopia suggest a number of different policy options. These options include raising awareness of climate change and the appropriate adaptation methods, facilitating the availability of credit, investing in yield-increasing technology packages to increase farm income, creating opportunities for off-farm employment, conducting research on use of new crop varieties and livestock species that are better suited to drier conditions, encouraging informal social networks, and investing in irrigation.","tokenCount":"6717"} \ No newline at end of file diff --git a/data/part_3/8573236380.json b/data/part_3/8573236380.json new file mode 100644 index 0000000000000000000000000000000000000000..5d73cad09ff202ebc3cba4437a6824d6c51e2840 --- /dev/null +++ b/data/part_3/8573236380.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c94dd352110a6baaf5651380143977b2","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/f475ccb4-cb15-4d8d-ac85-95e55ae5391a/retrieve","id":"739948809"},"keywords":[],"sieverID":"1b011b1f-0376-4e26-a46f-57fcbf496a97","pagecount":"2","content":"Livestock production significantly contributes to global greenhouse gas (GHG) emissions, with ruminants being major contributors due to the methane they produce. This research update underscores the interconnectedness of cattle health, methane emissions, and food security. Improving animal health will reduce GHG emissions, advance national climate commitments, bolster livestock adaptation to climate change, and increase the production of animal-sourced food.While wealthier nations discuss reducing livestock consumption to address climate change, lower-middle-income countries (LMICs) face a critical issue of protein and micronutrient deficiency. Globally, more than half a billion women are affected by anemia and almost one quarter of children under five years old are stunted. This nutritional gap has tangible health consequences, particularly for children and pregnant women. With the increasing population in Africa, the challenge lies in meeting nutritional needs while ensuring environmental sustainability of food systems. Diets that include animal products lie at the heart of prevention of malnutrition and some of the diseases in humans.Improving animal health offers a promising solution to the livestock paradox. Disease is a significant cause of food production losses in livestock, particularly in LMICs. A collaborative seed project has assessed the impact of various animal health conditions on productivity and GHG emission intensity, GHG emitted per unit of animal product.Preliminary results from the seed project have revealed the following:A. Tanzania:Pregnancy losses in dairy cattle lead to reduced milk and meat output, increasing GHG emission intensity by up to 14%. This loss is equivalent to the protein requirements of a million Tanzanians.Chronic mastitis exists in over 50% of tested dairy cattle. Mastitis has been linked directly with reduced milk production and can lead to clinical complications which are associated with an increased use of antibiotics representing a significant production and economic loss and increase risk of antimicrobial resistance (AMR).The death of beef calves before reaching one year old escalates GHG emission intensity by 6% for beef products. This represents a nutritional void for 3.6 million Kenyans.Improving animal health is imperative for sustainable livestock production, with wider implications for environmental preservation and human nutrition. It is not only about food security but also a step towards safeguarding human health via a One Health approach, strategies that aim to sustainably optimize the health of people, animals, and the environment. This will reduce zoonotic disease and AMR risk ensuring a resilient future for the planet.Claudia Arndt 1 , Endale Balcha 1,2 , Barend Bronsvoort 3 , Elizabeth Cook 1 , James Gibbons 4 , Felix Lankester 5,6 , Şeyda Özkan 7 , Peri Rosenstein 8 , George Semango 9 , Nick Wheelhouse 10 and Andreas Wilkes 11 ","tokenCount":"430"} \ No newline at end of file diff --git a/data/part_3/8587285938.json b/data/part_3/8587285938.json new file mode 100644 index 0000000000000000000000000000000000000000..c23db3a36e03338182b4a1b3a0f755a8595c7b7d --- /dev/null +++ b/data/part_3/8587285938.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"470e88b3ee6b359ef12188ea884e8c17","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/ad22b505-7566-459b-a488-3932a50cc86d/retrieve","id":"-740660516"},"keywords":[],"sieverID":"823c54e8-d05e-4ab8-ab42-a0d0823a5fd8","pagecount":"11","content":"University of Otago -International excellence scholarship for postgraduate programs. application deadline: december 10, 2022. Click for details. n Wageningen University -Post-doctoral researcher on reflexivity in marine governance to improve implementation and performance. application deadline: december 11, 2022. Click for details. n University of Copenhagen -Postdoctoral position in circadian biology and bioinformatics. application deadline: december 11, 2022. Click for details. n University of Copenhagen -PhD fellowship in veterinary epidemiology and risk assessment. application deadline: december 11, 2022. Click for details. n The World Academy of Sciences (TWAS) research professors. application deadline: december 12, 2022. Click for details. n The World Academy of Sciences (TWAS) postgraduate fellowship program. application deadline: december 12, 2022. Click for details. n Penn Development Research Initiative (PDRI) DevLab visiting fellowship for African scholars. application deadline: december 13, 2022. Click for details. n University of Bologna -PhD in agricultural, environmental and food science and technology. application deadline: december 14, 2022. Click for details. n Norwegian University of Science and Technology -Postdoctoral fellowship in developmental and educational psychology. application deadline: december 15, 2022. Click for details. n University of Freiburg -Fully funded PhD opportunity: resilient regeneration methods to restore forests in a climate change hot spot. application deadline: december 15, 2022. Click for details. capacity development 3 photo credit: ilRi","tokenCount":"211"} \ No newline at end of file diff --git a/data/part_3/8588085853.json b/data/part_3/8588085853.json new file mode 100644 index 0000000000000000000000000000000000000000..4cbfbb6e9a57c696bded6db0e125633198ab0f27 --- /dev/null +++ b/data/part_3/8588085853.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"1b372fa91147573bbc09d08845867825","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/c3db6504-4816-47f7-ae1f-de5525055199/retrieve","id":"-295671017"},"keywords":["Data standardisation and formatting","Experimental metadata","Minimum information recommendations","Plant phenotyping","Experiment description"],"sieverID":"e127616d-525a-4850-a9a0-a0d67777d8cf","pagecount":"18","content":"Background: Plant phenotypic data shrouds a wealth of information which, when accurately analysed and linked to other data types, brings to light the knowledge about the mechanisms of life. As phenotyping is a field of research comprising manifold, diverse and time-consuming experiments, the findings can be fostered by reusing and combining existing datasets. Their correct interpretation, and thus replicability, comparability and interoperability, is possible provided that the collected observations are equipped with an adequate set of metadata. So far there have been no common standards governing phenotypic data description, which hampered data exchange and reuse.Phenotyping is a very wide and heterogeneous research field. It analyses both static quantities and dynamic processes. Sensitivity of the phenotypic observations to environmental conditions (in the sense of the genotypeby-environment interaction, G × E) requires scrupulous data handling for the acquired signal to be optimally preserved and persisted in databases to deliver most substantial scientific value. Meanwhile, differing amounts of metadata about experiment set-ups, lots of different trait names and their synonyms, and diverse rating scales are used (e.g. [2,3]), leading to ambiguity and inconsistency of phenotypic data description. Hence, both correct integration and interpretation of phenotyping experiments is hampered. Actions undertaken so far for phenotypic data have either been project-specific (DROPS [4]), platformspecific (PODD [5,6]; Phenome FPPN [7]), or databasespecific (MaizeGDB [8], Triticeae Toolbox [9], Phenopsis DB [10], GnpIS-Ephesis [11]). The lack of common standards of plant phenotyping experiments' description, both in terms of its content and the format, hampers the correct usage and re-usage of phenotypic data.A proper description of experimental metadata is a key to the correct interpretation of the outcome. In many research domains there have been initiatives aiming at provisioning of recommendations for the set of metadata needed to describe experimental results of particular biological assays. Most of them have resulted in a formulation of a \"Minimum Information\" or a similar \"checklist\" document, containing assay-specific recommendations. For example, the Genomic Standards Initiative formulated requirements for reporting sequences of nucleotides (MIxS [12]). The Microarray Gene Expression Database Group suggested the requirements for the description of transcriptomic data (MIAME/Plant [13]). The Proteomics Standards Initiative published a corresponding set of recommendations for protein data (MIAPE [14]). Finally, the Metabolomics Standards Initiative provided rules concerning metabolomic observations (CIMR [15][16][17]) that were recently considered as a basis for more formal standardization by Rocca-Serra et al. [18]. These documents agree-in principle-on how to describe the experimental material and the treatments applied to it. A similar approach seems advisable to provide metadata recommendations for plant phenotypic data.As far as data formatting is concerned, for most data types the existing policies are database-specific. Formats that gained wider acceptance are MAGE-TAB [19], a text, tabular format required by the ArrayExpress database [20], storing gene expression data, and PRIDE XML or mzIdentML, required by the PRIDE database [21] for proteomics data. The ISA-Tab format [22] has been developed to address descriptions for many types of experiments and assays. Its flexibility and focus on the experimental metadata, clearly separated from the data itself, make ISA-Tab a generic solution, now used by a number of research communities [23], with a potential to constitute a general experimental metadata description standard, also for phenotypes.In this paper, we report the measures taken to standardize the description of plant phenotypic data. We present solutions that are a concrete implementation of the opinions expressed recently by many partners of two European infrastructural projects, transPLANT (Transnational Infrastructure for Plant Genomic Science [24]) and EPPN (European Plant Phenotyping Network [25]) in [1]. The solutions are generic and intended to systematize the way of describing all types of phenotypic data independently of the particular local requirements of a project or database, and thus aim for a better interoperability. At the same time, our propositions take into account the achievements of other omics-and phenotype-oriented initiatives, including the above mentioned.We provide a document called \"Minimum Information About a Plant Phenotyping Experiment\" (MIAPPE). It constitutes a list of attributes that, based on our experience, are necessary for a useful description of a plant phenotyping experiment and understanding of the data obtained in it. In particular, it comprises recommendations given by Poorter et al. [26] and Hannemann et al. [27] about the documentation of environmental parameters during the experiment, which is a crucial aspect in a G × E-aware phenotype analysis.As to the way of formatting the metadata, we propose using the above-mentioned ISA-Tab structure for experimental metadata collection and exchange. We show that ISA-Tab, thanks to its generality and flexibility, can handle multitude of phenotyping experiment types and designs. Also, due to its application by several projects and platforms (see [23]), it promotes compatibility of our propositions with those concerning other data types.Interoperability cannot take place without semantic annotation of the data with respect to the publicly available, controlled vocabularies and ontologies, which provide a community vetted language. This must be done at least for properly identified pivot objects, or key resources, i.e. the elements of a given dataset that allow its integration with other datasets. While the use of particular ontologies is not our main topic, we provide some recommendations in this area. Importantly, all annotations can be conveyed by the ISA-Tab formatted files. Finally, we present example datasets constructed according to the methods described. Technical aspects of dataset construction and data annotation using recommended ontologies are not covered in this paper; we give some general remarks and refer to existing tools designed for these tasks. We present a few examples of systems where the recommendations have been (or are being) implemented and tested. Some of them are based on own tools and databases, others make use of publicly available utilities provided by the developers of ISA-Tab format [28]. They demonstrate some use cases where the approach described in this paper proved suitable.The Minimum Information About a Plant Phenotyping Experiment is a list of attributes that we recommend for the description of phenotypic observations. It contains the properties that should be provided (by a person or system depositing the data) alongside experimental results to ensure easy and correct interpretation, assessment, review and reproducibility.To create the recommendations contained in MIAPPE, we took into account previously created Minimum Information documents for various branches of biological research: MIxS for sequences, MIAME/Plant for transcriptomics, MIAPE for proteomics, and CIMR for metabolomics, and have re-used their attribute definition where appropriate. In many cases, where several standards touch upon the same data type (e.g. general metadata, timing and location, treatments), they do so in a compatible fashion, making it straightforward to adopt existing recommendations. Yet, for a number of data types we had to make a choice which approach to adopt. Finally, some information had not been described in the existing documents, which called for provision of such a description from scratch.The MIAPPE checklist consists of attributes that can be classified within the following sections:-General metadata, -Timing and location, -Biosource, -Environment, -Treatments, -Experimental design, -Sample collection, processing, management, -Observed variables.Each section aggregates attributes detailing specific aspects of an experiment that are important to note, where applicable. The full list of MIAPPE attributes, their origins, and the reasons behind their selection, are given in Table 1. Below, we justify the presence of particular MIAPPE sections.The attributes from the \"General metadata\" section should allow to identify the research by providing some basic formal facts. First of all, an identifier of the dataset should be given, possibly a unified and permanent one. Additional important characteristics include a list of the contacts and other people involved, institutions, related projects and publications, data use policy, etc.Another important aspect of research is to take note of the location and timing of an experiment. Depending on the nature of the study and scientific objectives, different initial time points might be crucial-sowing date or transfer date, treatment application time, etc. Duration of particular stages is also important. As regards location, certain amount of information about the experimental site should be provided for most types of research, in the form of a geographical identifier.Plant material identification is a critical interoperability pivot and should receive careful attention when building a dataset. In the MI documents, a name \"Biosource\" has been coined for it. We recommend to define the biosource, i.e. biological object under study, by at least two attributes (as suggested by MIxS): one describing the organism's species name, and the other the infraspecific name-either in the strict sense of McNeill et al. [29], or otherwise simply in the sense of the name of the plant accession, line, or variety, preferably included in a public collection of names, or in a namespace of an experimental station or a genebank (see also similar recommendations on the FAO/Bioversity Multi-Crop Passport Descriptors [30]). We also recommend indicating the source of the seeds for the experiment. Any additional descriptors, further specifying the biosource are optional, yet appreciated.Owing to the central influence of environmental conditions on the phenotypic expression, accurate reporting on the conditions in which an experiment is performed is critical and warrants the level of details of the section \"Environment\" of the MIAPPE recommendations. It is our proposition to follow here Poorter et al. [26], who provided a table of attributes recommended to characterise the environment in which plant experiments are conducted. These recommendations encompass environmental descriptors for plants grown in growth chambers, greenhouses, and experimental fields and gardens. Collectively, they constitute a list of descriptors that should be used to describe basic properties of the experimental environment: aerial conditions, light, rooting conditions, fertilizing regimes, watering, and salinity.Treatments are an inherent element of most phenotyping experiments. While it is impossible to list the types or names of all possible interventions that are used to test the reactions of plants, in MIAPPE's section \"Treatment\" we provide some suggestions of experimental factors that should be added to the description, if applicable. Some of them are related to the environmental properties, Ontology [36] Table 1 continued whereas others are of artificial nature (e.g. mechanical treatment). With the help of this general list of treatments provided in MIAPPE, the description of the experiment should be completed with the details of all of the perturbations that appeared during the trial.Plant phenotyping experiments are performed in a wide range of experimental designs. To obey the basic rules of replication and local control defined by Ronald A. Fisher, the (incomplete) block, row and column, or other layouts are used, both in the field and in greenhouse experiments. The description of the experimental design is an important part of metadata because any data analysis unaware of it cannot be valid. Especially, experimental units should be defined, i.e. \"the groups of material to which a treatment is applied in a single trial\" [31]; examples of the entities that play the role of experimental units in plants experiments are: single plant, a plot, or a pot (understood not as containers, but groups of plants).Sample collection and processing information should include metadata related to phenotyping procedures, in particular sample collection protocol, sample preparation and treatments. If sampling is repeated in time, the time points must be specified.A specific feature of phenotyping assays is the wide spectrum of observed variables and protocols (methods) used for measurements. This is reflected in MIAPPE in the section \"Observed Variables\". Following the approach of the Crop Ontology platform [32,33], we propose to describe the observed variables by three basic attributes: trait name, method, and scale. In this section, in addition to phenotypic variables (any plant characteristics that are measured in a phenotyping experiment), we also consider environmental variables, i.e. any attributes of the environment in which the phenotypic variables are recorded. Such variables are defined here because it is frequently necessary to measure various characteristics influencing the phenotype (potential covariates), possibly (or even usually) not just once, but periodically during the course of the experiment. Indeed, in the limiting situation one can imagine an assay in which the only variables measured are of the environmental type.We are fully aware that MIAPPE suggests a description of the experiment that is rather extended in comparison to current practices. Hence, although we think that all of the attributes in Table 1 are needed to adequately describe each dataset, we accept that, in practice, the full complement of information may not be possible to collect, or might be unavailable to the person building the dataset. Therefore, we have selected and marked those descriptors deemed absolutely essential. These are also the attributes that we have used as defaults for constructing practical configurations and templates for data formatting (see \"Metadata formatting\" below). The rest of the attributes form an extended description.Without proper semantic annotation, the wording used to name particular metadata elements might remain obscure. Referencing publicly available dictionaries and ontologies clarifies the concepts involved in the description, and should be done wherever possible. Ideally, the semantic layer present in an experiment's description should also enable its use by automatic analysis and reasoning tools. In Table 1 we recommend ontologies for use in metadata annotation.The selection of ontologies is based on [1] and on recent developments in this area. In addition to the reference ontologies for plants recommended by the Planteome project [34], e.g. Plant Trait Ontology (PTO), Plant Ontology (PO), ontology of phenotypic qualities (PATO), widely recognized and already frequently used vocabularies like Ontology for Biomedical Investigations (OBI), Gazetteer (GAZ), Environment Ontology (ENVO), NCBI Taxonomy, EURISCO catalogue, and species-specific ontologies developed as part of the Crop Ontology project, we recommend using the recently constructed:-Crop Research Ontology [35]-especially for the MIAPPE sections General metadata, Environment, Treatments, and Experimental Design, -XEO, XEML Environment Ontology [36]-especially for the section Environment and for environmental variables, -STATO, Statistics Ontology [37]-for the section Experimental design and for unambiguously describing key statistical measures, such as p value, mean, standard deviation.As a sustainable exchange format for describing phenotyping experiments, we use the ISA-Tab, \"Investigation-Study-Assay\" format [22]. To facilitate formatting of MIAPPE-compliant datasets, we designed a novel ISA-Tab Phenotyping Configuration that satisfies the recommendations of the Minimum Information document. ISA-Tab is a general-purpose format to handle experimental metadata description. It consists of a set of tabdelimited text files, namely Investigation, Study, and Assay files, that are linked to each other to form a hierarchy, and describe different properties of a scientific undertaking (Fig. 1). In each dataset a sole Investigation file contains formal general information, e.g. the title, goals, methods, participants, etc. It also lists and formally describes one or more studies performed as parts of that undertaking. Each Study file represents a practical experiment, i.e. it describes the biosources (biological objects), experimental design, environmental conditions and treatments. An Assay file accommodates information about measurements, including description of samples collected from an experiment described in the Study for specific type of analysis, in particular their characteristics, processing and measuring procedures. The actual results of the measurements (or quantities derived from them-statistics) are contained in separate data files and linked to the corresponding metadata through a reference in the Assay file. There can be multiple Assay files per Study, each of them dedicated to a different assay type.The Study and Assay files consist of columns describing properties of the objects under study; the objects are defined in rows. The allowed types of objects' properties and the rules of their arrangements are defined in the ISA-Tab format specification [38]. Among the columns in Study and Assay files the main ones are so called \"data nodes\" (identifiers of groups of objects, objects, their parts, or samples taken from them; e.g. Source Name, Sample Name, Extract Name, Assay Name) that represent consecutive stages of the experiment. They are described by Characteristics (providing detailed object characterisation), Factors (naming experimental factors and their levels applied to each object), Protocols with Parameters (describing conditions and handling of the objects between particular stages), and Comments (any other unclassified content). All properties can be accompanied by their semantic annotation in dedicated fields (Term Source REF and Term Accession Number columns following the property column). Raw Data File and Derived Data File columns contain references to files in which raw and processed results of measurements are stored.ISA-Tab configurations are extensions of the general specification, and provide additional requirements for types and arrangement of properties for particular purposes. Configurations can also be used to convey formatting to tools and services dealing with ISA-Tab files.We propose a Phenotyping Configuration which facilitates formatting of MIAPPE-compliant ISA-Tab datasets. Within the configuration we define a dedicated Study file which provides a backbone for detailed description of field and greenhouse plant experiments, and a new type of Assay, a Phenotyping Assay, which deals with the information about phenotypic trait measuring procedures. The phenotyping Study files are compatible with other ISA-Tab Assays, so they can be useful for describing any plant experiment in which the environmental conditions are worth recording, irrespective of the types of measurements performed. The Phenotyping Assay can also be used with the default ISA-Tab configuration, and thus integrated in complex, multi-assay datasets that combine ISA-Tab-formatted results of diverse aspects of the analysed phenomena.The application of the format for phenotypic datasets consists in defining an ISA-Tab structure that serves as a container for MIAPPE concepts. This structure is defined in an XML file called ISA-Tab configuration. When preparing an ISA-Tab configuration for plant phenotyping, we had to allow for differences that occur between particular types of plant experiments, e.g. performed in different growth facilities. This is reflected in a varying set of attributes recommended in MIAPPE. Therefore, we propose an ISA-Tab Phenotyping Configuration that consists of a standard Investigation file, a Phenotyping Assay (described later) and three versions of a Study file: The ISA-Tab Phenotyping Configuration is available online via our record registered with the BioSharing community [39].The specificity of the Phenotyping Assay (among other ISA-Tab assays, see [40]) lies in the fact that it collects information about different phenotypic and environmental variables that can be measured using different methods. The description of those variables is contained in a separate dedicated file, so-called Trait Definition File, referenced in the Phenotyping Assay as a parameter Trait Definition File of \"Data transformation\" Protocol. This file is an extension of the ISA-Tab specification, similar to the one that has been used in the ISA-Tab metabolomic configuration (see [41]) to describe metabolites.The Trait Definition File contains a table with rows corresponding to variables and columns corresponding to the appropriate MIAPPE attributes, describing the trait, method and scale. In particular, it consists of the following columns:-Variable ID-a local unique identifier of a variable, e.g. a short name, that is a key linking the definitions of variables with observations in Derived Data File, -Trait-a name of the trait mapped to an external ontology; if there is no exact mapping, an informative description of the trait, -Method-a name of the measurement method mapped to an external ontology; if there is no exact mapping, an informative description of the measurement procedure, -Scale-units of the measurement or a scale in which the observations are expressed; if possible, standard units and scales should be used and mapped to existing ontologies; in case of a non-standard scale a full explanation should be given.The data (observations or their functions) are represented in ISA-Tab in separate files, contained within the dataset or external, and are referenced in the Assay file as Raw Data File or Derived Data File properties. Formatting of the data file is not governed by the ISA-Tab specification, yet some recommendations usually exist within particular communities. In our implementation of MIAPPE, we do not restrict the format of the raw data in any way; it can be any custom, platform-or devicespecific format, including texts, images, binary data, etc. Similarly, we do not restrict the format of any file referred to as Derived Data File; however, we require that the format be fully described in the corresponding Protocol \"Data transformation\" (a field that should precede the data reference, and explain how it was derived from the raw data, or from the previous derived data). If there is no description, the Derived Data File should be a standard, plain tab-separated sample-by-variable matrix. Its first column should contain (in the simplest situation) values from the Assay Name column in the Assay file, and the rest of the columns provide values for all variables.The names of those columns should correspond to the values in the Variable ID column in the Trait Definition File (see above). So, a default derived data format is an \"Assay Name × Variable\" matrix of observations, that can be quantitative or qualitative. An extension of the above rule governing the format of the Derived Data File is possible by using values from another \"data node\" column (e.g. Source Name, Sample Name, Extract Name, etc.) as unique identifiers of the rows in the table with the associated observations. Thus, we can provide separate data files with measurements taken for different observational units, e.g., morphological traits like 'height' and 'number of leaves' can be assigned to the whole plant, whereas physiological traits can be restricted to samples taken from particular leaf of a plant. Also conveying data aggregated over \"data nodes\" is possible in this way.The developed standard as well as the solutions proposed in this paper were first applied by the project partners dealing with phenotypic data. The main implementations, demonstrating possible approaches to follow the specification, are described below.At the Institute of Plant Genetics PAS, a BII database serving as an ISA-Tab-compliant storage for phenotypic data compatible with the MIAPPE standards has been launched. The BII software is part of the ISA Software Suite [28]. It consists of BII-Manager application which is used to validate ISA-Tab formatted datasets and store information to the database backend, and of BII Web application that provides a database front-end accessible via an Internet browser. The installation runs on a server at Poznań Supercomputing and Networking Center and is publicly available [42]. The system serves as a proof of concept and an illustration of the application of a generic, out-of-the-box tool for the basic needs of plant phenotypic data management.Upon submission of the ISA-Tab archive to the administrator, the software is used to validate the files against a suitable configuration. If the validation is successful, the files get stored, and selected metadata are parsed into the internal structures for indexing and search. The content of the database is accessible via the web interface.Datasets can be browsed online, searched for by selected metadata terms, filtered according to the organism name and assay properties, and downloaded as ISA-Tab archives. It is also possible to declare a dataset as private, so that it is stored in private sections of the database and is inaccessible for unauthorized users. In its present version, the BII software cannot be used to retrieve data filtered by all metadata, so it does not use the full potential of the ISA-Tab format.GnpIS [43] is an information system that allows data discovery and mining of genomic, genetic and phenomic data for plants and their bioagressors. GnpIS-Ephesis [11] allows experimental phenomics data mining, additionally including extended phenotype, genotype and environmental data and metadata integration. It offers users the possibility of creating multi-trial datasets suitable for various analyses (G × E meta-analysis, GWAS, etc.). GnpIS can be used, for example, to retrieve all data for a given diversity panel across several years or locations, all observations of a given phenological variable over several years, or all the data of a specific scientific study or project. Furthermore, all GWAS and genetic data integrated in GnpIS can be linked to a GnpIS-Ephesis experiment, allowing a better traceability and data exploration.GnpIS-Ephesis allows to dynamically build and export ISA-Tab datasets, which demonstrates the capability of the format to handle results of diverse experiments, and to serve as a dataset exchange format. In the exported dataset the Investigation file represents the whole search results, and it integrates all the metadata, including the search parameters. There is one Study per trial. The Study contains only the subset of data corresponding to the user query with all the metadata necessary to ensure the reusability and the traceability of the data. The advantage of this implementation is that many public datasets are available through GnpIS, which allows to demonstrate the ISA-Tab format features.An example the reader may look at is a dataset [44] that covers the winter wheat phenotypic observations from a French experimental network. It includes different traits (agronomic, quality, disease, phenology, etc.) measured at 10 experimental locations during 15 years (more than 700 trials) and for more than 1700 winter wheat genotypes [45], in the experimental network that allows to produce new varieties which can be registered to the French catalogue of varieties (CTPS) after their eight's generation. Their identification is centralized by the French Wheat Genebank at Clermont Ferrand and is available through GnpIS. Several treatments were applied, like low fertilization, high nitrogen, etc. Each trial is stored as a single Study in ISA-Tab. Each Study lists the varieties used in a specific trial. The observation variables are collected in a dedicated ontology which is referenced in the ISA-Tab archive. Only derived data files are available.IPK's research data infrastructure comprises four layers [46]:1. Primary research data: data generated manually or automatically in the course of experiments, derived data after post-processing of primary research data.Those data files are stored in IPK's storage backend.System (LIMS), used for documentation of experimental metadata (experimental setup, used protocols etc.), based on primary data from layer 1. 3. Dedicated web-based information systems and databases, which provide access to curated and relationally structured data from layer 1, and which optionally link to the information from the LIMS (layer 2) [47]. 4. The e!DAL data publication infrastructure [48],which provides DOIs for layer 1 data (especially datasets which are not covered by databases of layer 3), and which enables the public download of these datasets and registration of related technical metadata in the DataCite repository.The ISA-Tab-based exchange format for plant phenotyping data was discussed among the collaborators from the German Plant Phenotyping Network (DPPN), the German Network for Bioinformatics Infrastructure (de. NBI), and partners from the European transPLANT project. Its application for future exchange of phenotypic data was agreed among partners from DPPN (especially IPK, German Research Center for Environmental Health, HMGU, Munich and Research Center Jülich GmbH, FZJ). It will serve as an exchange format for the semantic description of published data.As an initial step, a reference experiment comprising multiple data domains was described using ISA-Tab structure and published [49] as a part of a research article of Junker et al. [50]. This dataset combines results and metadata from metabolite profiling, high throughput automated imaging and image analysis, as well as manual phenotypic measurements. All semantic and technical documentations, measured parameters, protocols and references to ontologies were manually described using ISA-Tab format. All raw files of such ISA-Tab formatted data publications are stored in the Plant Genomics and Phenomics Data Repository (PGP [51]), hosted at IPK using e!DAL as software infrastructure [52]. Recently IPK has published the first MIAPPE-compliant ISA-Tab container describing a high throughput plant phenotyping experiment including metadata, raw and processed images, extracted phenotypic features and manual validation data ( [53], also stored in the PGP repository) as a data descriptor accepted at Nature's Scientific Data journal [54]. The ISA-Tab files were manually filled and will be used as templates for the automated export of respective standardized metadata files describing all future high throughput plant phenotyping experiments. This dataset is shortly described as Dataset III in Discussion below.GWA-Portal [55] is a web-application that allows researchers to upload their phenotypes and easily carry out Genome Wide Association Studies (GWAS) without installing any software. The GWAS results as well as the phenotypes can be shared with collaborators. By storing information ranging from phenotypes, germplasm to GWAS results in a single database, a comprehensive genotype-phenotype map can be constructed and thus allows researchers to do meta-analysis of pleiotropy. The development of GWA-Portal started before the MIAPPE was formulated and relies on the Genomic Diversity and Phenotype Data Model (GDPDM [56]) that was originally developed by Terry Casstevens from Ed Buckler's lab. Although GDPDM was primarily designed for maize, it is not plant specific. In fact, the GWA-Portal instance that is hosted at the GMI, is used by the Arabidopsis community for storing phenotypes of the model plant A. thaliana. Initially GWA-Portal allowed the user to upload and download phenotypes as simple comma separated files. In the course of the transPLANT project the functionality was extended to support the ISA-Tab format. As GDPDM stores less information about phenotypes than what is defined in MIAPPE, we use the basic phenotyping configuration. Phenotypes in GDPDM are always stored as part of a study. This hierarchical structure maps quite well to the Investigation-Study-Assay set of the ISA-Tab format, with a study in GWA-Portal being equivalent to an investigation in ISA-Tab. As a result the mapping is quite straightforward.The export functionality was implemented first. In order to avoid re-inventing the wheel, we tried to leverage the ISA-Tab toolchain and libraries as much of as possible. Specifically we used the ISAcreator library [57]. The import functionality was implemented shortly after. The ISAcreator library that we used for the export and import functionality is a GUI application and because we only use a small part of it, we suggested to the ISA-Tools team to create a dedicated lightweight library for parsing and creating ISA-Tab files.MIAPPE recommendations provide a list of attributes that might be necessary to sufficiently describe a phenotypic dataset. One of its goals is to raise awareness of the researchers about the need to record a rich set of experimental metadata, especially environmental qualities which constitute a factor determining the phenotype in interaction with the genotype. Therefore, the MIAPPE requirements should serve as a checklist for the researchers recording the data to make them consider all aspects that might influence the experimental process and take note of those aspects. We suggest that the MIAPPE recommendations should be used in phenotyping projects already at the data management planning stage and be implemented according to the plan at all later stages of data collection.We have selected a subset of MIAPPE attributes that seem common to the basic plant phenotyping cases, and marked them as obligatory ones. They should always be provided by the data producers to ensure some minimum standardisation in terms of data content. Inclusion of other attributes depends on the type of particular research, and it is up to the data owner to collect and describe all the factors in a responsible way, so that the dataset is correctly interpretable.Selection of obligatory attributes raises the question of acceptance of the datasets by repositories. This is a community-wide issue. Repositories may wish to first flag submissions which are syntactically valid (a bare minimum for interoperation). Then, repositories may wish to insist on compliance with MIAPPE guidelines because there is an obvious long term benefit in terms of reuse, related to the notion of making data FAIR, i.e. Findable, Accessible, Interoperable and Reusable [58].Application of ISA-Tab format for plant phenotyping can be seen as a reference implementation of MIAPPE requirements. The textual and tabular nature of this format makes it usable for everyone without any dedicated tools or skills. We recommend using ISA-Tab as a format for experimental metadata collection and exchange. Whether to use the format to also store the datasets internally is a matter of individual decisions, based on existing solutions and needs.The ISA-Tab Phenotyping Configuration contains the basic common subset of attributes that are necessary to describe a phenotyping experiment according to MIAPPE requirements. We propose using the configuration to ensure consistency of the phenotyping datasets formatted as ISA-Tab. Preparation of each dataset should involve providing all of the attributes named in the configuration, as well as identifying and adding to the dataset all other qualities present in the experiment (e.g. experimental factors and treatments, or supplementary protocols) as additional columns (e.g. Factor, Characteristics or Protocol REF and Protocol Parameter). Preparation of the ISA-Tab files can be done in three ways:• manually in a text editor, adhering to the rules of the ISA-Tab format specification and Phenotyping Configuration; practically, the easiest way for the researchers recording the data might be to fill in a template (an empty dataset) provided by a data manager who prepares it based on the suitable Phenotyping Configuration through extending it by all adequate MIAPPE attributes and distributes it among the researchers; • partly-manually, by using the ISA-Creator tool from official ISA software suite distribution with the Phenotyping Configuration to fill in and annotate experimental metadata; • automatically, by preparing own scripts, possibly using the existing APIs, to construct ISA-Tab datasets based on manual data input (e.g. in GUI) or export from phenotypic databases.Validation of the completed datasets against the rules provided in the ISA-Tab format specification and in the configuration can be done automatically by dedicated tools, e.g. ISA Validator.In individual cases where adding the same new qualities for a number of experiments is necessary, we suggest creating a new local configuration based on the Phenotyping Configuration through extending it by the missing attributes, which will ensure the same structure for all of the experiments. It is important that the names of fields inherited from the original Phenotyping Configuration should not be changed in such derived configurations, and no fields should be removed, even if not used.Similarly, the definition of Phenotyping Assay that we propose can be used as a starting point for building more specific extensions to the Phenotyping Configuration that would be appropriate for other common phenotyping measurements. For example, a high-throughput phenotyping protocol could be handled by an extension to the Phenotyping Assay, which should involve additional attributes defining phenotyping-facility-specific settings. Such extensions for the popular phenotyping platforms could be published, and included in the Phenotyping Configuration.ISA-Tab is a very general format, suitable for a structured description of different kinds of experiments. The Investigation-Study-Assay model may look complicated at first; however, this very structure makes the format adjustable to various types of studies, and serves as a method of normalizing the metadata. Accepting a standard universal structure should remove the burden of learning new metadata arrangement formats every time a different dataset is produced. In the Phenotyping Configuration, we propose a data arrangement that should be applicable to the vast majority of plant experiments and phenotyping procedures, and which permits a straightforward integration with different assay types.How to use ISA-Tab? Imagine a situation in which a collection of seeds of a number of crop varieties is given to researchers at different sites to compare the influence of the local environment on yield. They perform separate trials on, assumingly, the same set of objects, in similar-but not exactly the same-experimental designs. All general information about Biosource, Environment, Treatments and Experimental Design is to be given in separate Study files for each site. Data can later be aggregated across locations according to the obligatory attribute \"Geographic location\". Imagine another situation, where an experiment is performed in one location, and many different researchers take samples from it, taking note of the identifier of the plant they analyse. In such a case, there is just one Study file, and a number of Assays for the individual researchers to record detailed description of handling of the samples and measurements.We discuss the application of the presented approach by three examples of formatted datasets.Data contained in 'dataset_basic_GMI_Atwell' (Additional file 1) comes from the investigation described by Atwell et al. [59], and concerns Arabidopsis accessions. The data was downloaded in the ISA-Tab format from GWA-Portal at GMI. It has been formatted according to the basic phenotyping configuration. The Study file \"s_Study1.txt\" lists all the Biosources, i.e. Arabidopsis accessions, which are annotated by their identifiers in the GMI's accession list. There are multiple replications of each accession; each one is assigned a unique Sample Name. The Sample Names are repeated in the Assay file \"a_study1.txt\" which links them to the rows of the Derived Data File \"d_data.txt\" through Assay Name column. The columns of the Derived Data File correspond to the 107 phenotypic variables stored on the GWAS platform and defined in the Trait Definition File named \"tdf.txt\".This example illustrates a situation in which the structure of the ISA-Tab archive does not reflect any actual experiment; the data, exported from an intermediary database, are in fact detached from most of their original metadata. Therefore, the information that is to be conveyed is very simple. One may say that in this situation the ISA-Tab structure, even in its basic configuration, is too complicated. However, obeying the rules even for simple datasets enhances greatly their interoperability.Data contained in 'dataset_field_IPGPAS_Polapgen' (Additional file 2) were obtained in a project aimed at studying reaction to drought in populations of barley recombinant inbred lines (RIL) [60]. The GeH population, obtained from a cross between Georgie and Harmal, consisting of 100 lines, was observed in a two-year field experiment in 2012 and 2013. The RILs and their parental forms constitute 102 biosources defined at the Study level in two files \"s_study1.txt\" and \"s_study2.txt\", corresponding to the two years. The most important environmental data concerning soil type, field size, sowing density, and day temperature are provided as values of Parameters of the appropriate Protocols. Some information required by MIAPPE was not available, therefore a few columns in both Study files are empty. The phenotyping done on samples taken from field experiments is described in two Phenotyping Assay files, \"a_study1_phenotyping_ field2012.txt\" and \"a_study1_phenotyping_field2013.txt\". In the experiment eight phenotypic traits were measured; these are named and annotated in the Trait Definition File \"tdf_polapgen_field.txt\". Additionally, two environmental variables were recorded: \"water vapor pressure deficit\" and \"total precipitation\"; they are also described in the Trait Definition File. The observations of phenotypic traits and of environmental variables are contained in data files \"d_polapgen_field2012.txt\" and \"d_polapgen_ field2013.txt\", corresponding to the two assays.The GeH RIL dataset represents a very common case of a multi-environment study made with the same set of plant accessions. We decided to take the two environments-years-as two separate Studies; data are distinguishable upon processing by the value of the Characteristics[Study start] attribute. Another approach to handle different environments would consist in describing them within one Study file. In our case, however, the separation based on time-depended attribute seemed more convenient for data collection and the management of a whole series of experiments. In general, time points of sampling or data collection can be specified as a Factor or Characteristic.Values of the environmental variables are constant over assays, as they represent the mean for the whole experimentation period and the whole experimental field. The same structure would hold single per-plot measurements. An environmental variable measured many times per experimental unit can be handled by splitting into a number of separate variables for each time point. Another approach would be to define a Factor \"Time\" and use it to define individual Assay Name for combinations of experimental units and time. Yet another solution would be to define a separate Assay to keep measurements of environmental variables.The experiment described and data contained in [53] have been acquired in the frame of a series of validation experiments in IPK's high throughput plant phenotyping system for small plants. It assessed the effect of plant rotation during imaging (Factor \"rotating\"/\"stationary\") as well as of soil covers (Factor \"covered\"/\"uncovered\") on growth and development of 484 Arabidopsis plants. The dataset contains raw and processed images, extracted phenotypic features relevant for quantification of biomass (growth) and manual validation data. Detailed information about the experimental procedures and results can be found in [50]. The study has been described according to a MIAPPE-compliant ISA-Tab phenotyping configuration (Greenhouse Study) and was a part of data descriptor article [54]. The raw image files can be found in the \"1135FA_images\" folder. The subfolders are ordered and categorized into \"camera_sensor\" (vis/fluo/nir), \"cam-era_view\" (top/side) and \"das\" (day after sowing). The corresponding ISA-Tab files (Investigation, Study, and Assay files) for the semantical description are located in the \"metadata\" folder.This dataset demonstrates the application of the ISA-Tab configuration (and MIAPPE) for a high throughput phenotyping experiment comprising time series measurements with different camera sensors. On the basis of this example the integration and representation of further related data (novel sensors, and importantly, environmental data) will be done at IPK.The results of research funded from public resources are expected to be publicly available, not only as a proof that the research was done, but also as a source of knowledge, or even input for further analyses. Open access to data is usually provided through open repositories (e.g. Dryad or Zenodo). They implement different policies of data formatting and description. Some accept objects (including datasets) of any type, assigning them simply an ID; others require adding a set of general attributes describing an object; some more ask for a specific data format. Repositories and databases of particular institutions and projects provide their own way for storage and access to data, most suitable for their needs, with an increasing policy toward Open Access. Future usability of datasets dispersed across all those repositories relies upon numerous factors: possibility to extract a specific dataset together with its metadata, comprehensible dataset formatting, completeness of its description, and clear meaning of individual elements of this description. Compatibility with other experimental results, also those of different types, is also not to be neglected in the context of data interoperability. Our work has been aimed at moving phenotyping data towards these objectives:• The MIAPPE document, defining recommendations for phenotypic dataset description elements, helps to provide the right metadata in the dataset. • The ISA-Tab format allows experimental metadata formatting, and thus inclusion of all important information within the dataset, making it exchangeable and independent of a data repository's metadata policy. Flexibility of the format allows to export databases' internal structures as ISA-Tab, while the definite rules for element arrangement make the experimental process traceable. • The ISA-Tab Phenotyping Configuration provides mapping of MIAPPE requirements to ISA-Tab structures for the basic phenotyping situations, and thus facilitates dataset construction. Thanks to holding information on ontologies for particular attributes, it supports data annotation. A list of recommended ontologies for annotation of particular elements of experiment description assists in choosing formal terminology to clarify the wording, and thus avoiding ambiguity of the description. Ontological annotation is accommodated in ISA-Tab datasets.The Minimum Information About a Plant Phenotyping Experiment document has been constructed as a result of consultations with a number of research groups within the transPLANT project and beyond, especially EPPN and DPPN. Although it is focused on classical phenotyping experiments, some attention in MIAPPE is also given to less frequently performed, but nonetheless important, experiments in aquatic and biotic conditions. Yet, a real application of MIAPPE in such situations would require more discussion with relevant practitioners. The same remark applies to observational studies.Based on experimental data from high throughput plant phenotyping experiments at IPK using the Lem-naTec platform, a first version of a high throughput phenotyping configuration has been prepared. This work builds the basis for a comprehensive plant phenomics experiment documentation and data publication pipeline. Indeed this kind of experiments comprising automated multisensor-imaging-based procedures can produce terabytes of data for each experiment. Handling such Big Data needs dedicated technologies and the level of resolution of related experimental metadata to be represented and published using ISA-Tab archives is still a matter of discussion. The selection of an adequate level of detail (geographical location of every single pot vs. location of the greenhouse), data volume (whether to remove low quality images or not) and processing stage (raw images vs. compressed/processed images) for data publication is linked to the technical capability of publication servers as well as institutional or journal policies. Nevertheless, the continuous documentation of the data lifecycle is a basic requirement for a consistent and seamless creation of ISA-Tab archives. We hope that the discussion with interested parties dealing with this type of experiments will allow a general or platform-specific High-Throughput Phenotyping Assay to be developed.The textual nature of the ISA-Tab format makes it directly readable for everyone, without the need for any special software and support from computer scientists or bioinformaticians. Similarly, the construction of a dataset is possible manually, in a text or spreadsheet editor, by filling in a prepared template. A more advanced option is the preparation of an own implementation of data export/import as ISA-Tab based on the format specification to combine ISA-Tab with existing databases and tools. ISA-Tab is also supported by a free software suite, ISA-Tools, developed by ISA group [61] and members of the community. There are a number of tools and APIs for dataset construction, validation, analysis, management, and export to other formats. Certain functionalities of this official tools distribution are not yet provided, but the implementation of new user-friendly environments for dataset management is in progress [62,63]. Further development of tools supporting formatting of data according to the given rules is an important step to promote adoption of the metadata standards.Since the textual nature of ISA-Tab makes it not particularly convenient for automatic processing, the possibility to export ISA-Tab dataset structure to other formats is a useful feature. The existing tools provide, among others, JSON and RDF representations, as well as OWL for compatibility with the Linked Data. ISA-API [64] is going to further simplify programmatic approach to data formatting and management.The ISA-Tab format has been accepted by the Nature Publishing Group for dataset publication, which additionally popularizes the format and encourages new users. More work is needed to achieve a widespread acceptance of the policy of data publication in the form of open resources. The FAIR Data Principles [58] that define the properties of a good dataset are a convenient remainder of the targets that are to be aimed at. Acceptance of the rules described in this paper will help to achieve these targets by the plant phenotyping community.","tokenCount":"7606"} \ No newline at end of file diff --git a/data/part_3/8588703579.json b/data/part_3/8588703579.json new file mode 100644 index 0000000000000000000000000000000000000000..3d9d1cb8d7e1965a15696209b453f1321c63b312 --- /dev/null +++ b/data/part_3/8588703579.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"bd7abcd8d253d9c57301ada409acb7c0","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/960571eb-8d67-4022-b6ee-b0024c511ffd/retrieve","id":"244228509"},"keywords":[],"sieverID":"09ac91af-b828-4bc0-82a7-ca454edd8378","pagecount":"6","content":"Regional south-south exchanges and continuous engagement for scaling-out the CCAFS-LTAC approach with institutions in Honduras(90), Colombia(80), Guatemala(18), and Nicaragua(8) have led to the creation of 13 new LTACs and strengthening of 5 existing LTACs across the four countries. The initiative has enabled the empowerment of more than 190 institutions including farmer-organizations, private-sector, international-NGOs, and governmental-organizations, through new capacities related to participatory generation, provision, interpretation and use of forecast-based recommendations for adaptation to climate variability led by CIAT's modelling-team.Links to the Strategic Results Framework: Sub-IDOs:• Enhanced institutional capacity of partner research organizations Colombia has been the pioneering country in Latin-America, reaching a total of 8 LTACs, 5 established prior to 2017 (Cordoba, Sucre, Magdalena-Cesar-Guajira, Caldas, and Cauca) [1,3,25,27]. In 2017 and early 2018, two more were established (Narino [6,8] and Tolima [9]), which are coordinated by the Ministry of Agriculture (MADR) and FAO [23]. Meetings between CCAFS scientists and FAO facilitated the use of the method by FAO. In Santander, following initial work from Agroclimas in 2016 [10,11,26], the LTAC was made operational in 2017-2018 when the National Cereal and Legume Federation (FENALCE) secured funding (USD25k) from the National Legume Fund[11, 13,28]. Around 80 different institutions, including FEDEARROZ [29], receive, use, and deliver locally-relevant agro-climatic information through the LTACs, moving Colombia closer to the NDC target of establishing 15-LTACs [22,24].Thanks to a south-south exchange Honduras knew first-hand the LTAC approach in Colombia and it's now the leading country in Central America in climate variability adaptation [13,14,15]. In 2017, seven SAG-led LTACs started generating forecast-based recommendations for farmers [16], with 90 participating institutions in total. Importantly, outputs from the Climate Site-specific Management System(CSMS), namely, a novel agro-climatic zonification [17], have been incorporated into the Golfo de Fonseca LTAC. Continued innovation by SAG and capacity building on crop modeling by CIAT have enhanced the decision making tools in the LTACs. Furthermore, CIAT/CCAFS work with COPECO (National meteorological service) has improved the flow of information between institutions [13].In Guatemala, the Olopa-CSV work on engagement at subnational level facilitated the dialogue between local institutions and CIAT regarding climate information for farmers' decisions. The latter led to a recent technical exchange between CCAFS/CIAT scientists with CUNORI(local-university) and INSIVUMEH (national meteorological service), which supported the establishment of the Chiquimula LTAC [19] and the generation of its first agro-climatic bulletin [20]. In Nicaragua, UNAG (National Farmers&Livestock Keepers Association) is leading LTACs in Esteli and Madriz (dry-corridor), in partnership with CIAT, Heifer International, INTA-Nicaragua, and Fontagro [21].","tokenCount":"408"} \ No newline at end of file diff --git a/data/part_3/8620424467.json b/data/part_3/8620424467.json new file mode 100644 index 0000000000000000000000000000000000000000..cb5b0f1eaa236181cd34ffe17442fcc0ce12995d --- /dev/null +++ b/data/part_3/8620424467.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"4f4ada0b1995fdc252a3b98afc409ec3","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/9e128b08-6053-4ab2-8ec6-1ead0225de62/retrieve","id":"-1114354782"},"keywords":[],"sieverID":"9ce397bf-30ca-4038-a65b-b0879e6f965f","pagecount":"1","content":"Vinh Phuc animal health and livestock sub-department • In Vietnam, around 80% of pork is produced by smallholder farmers who often use antibiotics for disease prevention and growth promotion due to their low cost and lack of farmer knowledge or concern over AMU.• To reduce AMU in livestock, there is need to identify how farmers could benefit from reduction to motivate behaviour change.• The use of nanosilver as replacement of antibiotic added to the feed showed no difference in ADG, nor in AMR profile of E. coli in a small-scale pig production.• These trial results suggest a possible alternative to antibiotic use in pig production to reduce AMU and AMR.• Evidence of efficacy, cost-benefit, acceptability to farmers, development of resistance, risk assessment for transfer to pork and an environmental impact assessment of nanosilver are needed before scaling up its use. • No significant difference observed between the control and intervention group at all times of measurement (p>0.05).ADG after different times of measurement (by gram/day)","tokenCount":"164"} \ No newline at end of file diff --git a/data/part_3/8638623143.json b/data/part_3/8638623143.json new file mode 100644 index 0000000000000000000000000000000000000000..983c97cdcf6a0049f0a5c6b6cbd4f43947c7d4b1 --- /dev/null +++ b/data/part_3/8638623143.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"eacd67976513ecf6f7422dad42890684","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/dc18c244-44ed-4b60-9afd-206ca3f5e320/retrieve","id":"1339170255"},"keywords":[],"sieverID":"b124fb53-f17f-493c-8754-8c56015fa98b","pagecount":"96","content":"NlC 151 3 3 4 4'\" => '\" ~ '\" '\"'\"\"\" t liNO -------------------------------------------------------------------------------------------------------------------------------------------------- -637!Y;;hAD3 HAS 44b: 2a4 ; 2 J 6 7 3 j 1 3 7 3 7 8 7 4:, ó 7 7 n 13 20 18 13 H 23 18 26 Z7 25 lb5 458 2~~ ~0:1 8 1Be 474 5:! 3~7 398 - --------------------~---------------------------------------------------------------~-~-------~~------------~--------------------------------- IAri 9@ , A 40 -----------------------------------------------------------------~-------------~ ---------~------------~-------------------------------------------------------------------------------~----------------------------------~-- ,-------------------~ --------._-----~ ------------------------------------------------------------------------~ -~ ---~----------------------~ ------- --------------------------~ ----------~ ---------------~ ~ --------------------------------------------------------------------- 399 CtlHi-ES 7.12 -------------~~----------------~------------------------------------------------~~--------.~---------~--------------_._-~~-----------------------------_. __ --------~-----------------------------~~~------~----------------------------~-------------------------------------------------~--------------------------~~~----------------~---~-314 \"POS la467-2G-H OOR 364: Cu : 1 ::; 3' tI 3 3 1 1 3. 3 7 4 8 3 7 2 IlEneo 83 , EH! m~ Respür~sablE-! SiliflO Hugo Dr,,;:cú S.","tokenCount":"928"} \ No newline at end of file diff --git a/data/part_3/8647912215.json b/data/part_3/8647912215.json new file mode 100644 index 0000000000000000000000000000000000000000..415a7cc9ff99f219233e8e233e8c1182807f2868 --- /dev/null +++ b/data/part_3/8647912215.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"d988025b52744f06c8f4f4d6efe99b9b","source":"gardian_index","url":"https://www.foreststreesagroforestry.org/wp-content/uploads/2021/10/Infographic-The-Aguaje.pdf","id":"2119742328"},"keywords":[],"sieverID":"9841a1b1-032c-4123-a0a6-51754f05a987","pagecount":"1","content":"Aguaje moriche, burutí.The plant's edible oil, which is extracted from the fruit pulp, has the highest concentration of provitamin A found in nature. A single 100 g portion of aguaje fruit pulp contains 1,204 mcg of vitamin A (RAE), which is 133.8% the daily recommended value for an adult. This fruit is one of many that could helpThe trees also offer exceptional is used to make a variety of juices and desserts.Aguajina, a traditional Peruvian drink, is made of the pulp diluted in water with sugar.The leaves, roots and palm heart of M. flexuosa are also edible.The fruitUp to 35 mMaturity before yieldsThe treeAguaje fruit is a valuable commodity in local markets. In Peru, the national demand for aguaje is 20 metric tons per day. Similar drinks and desserts are sold in other Amazonian countries as well.including water quality improvement and carbon fixation. in the Amazon.","tokenCount":"146"} \ No newline at end of file diff --git a/data/part_3/8661015073.json b/data/part_3/8661015073.json new file mode 100644 index 0000000000000000000000000000000000000000..17da752a1652d73563ff35481166daf66b31f514 --- /dev/null +++ b/data/part_3/8661015073.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"6be1507cf793cbeabbe5db942138e521","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/f6aef9ac-626e-4705-b367-04bd7ce9c4e0/retrieve","id":"-1186913239"},"keywords":[],"sieverID":"24cfbc8e-4c0b-49c5-9ccd-dd6cedc5dde7","pagecount":"73","content":"In the leading pork producing areas, large supp11es of gralns available at a reasonable prlce provide this energy sourCe In other countries, produetion of cereal gratns 1& insufficient for human snd animal needs Many of these countries, however, have the potential or are already productng large quantlties of other feed sOurees that, if properly fed snd supplemented, could support a large and efficient swine industry One feed source with a great unrealized potential ln many tropical areas in Kanihot escu1ents Crantz. common1y known as csssava, yuca, manioc, tapioca or mandioca Cassav8 i8 grown in the low1and tropic5 throughout the wor1d, genera1ly bet~een latitudes 30 c N and S Bnd Almost always below 1800 meters altitude within these regions (Rogers, 1963) These areas generally delineate regions oi productlon because of the frost sensitive nsture of the plant Cassava has a wlde rsnge of sdaptability, resistance to drouth. tolerance of poor 90ils and relatlve ease of cultivation As there are varieties adapted to nearly every so11 type snd degree of annual ratnfal1, the plant offera an almost unlimited production potential Large quantities of csssava are now belng produced utili7ing a wide range of genera11y unimproved genetic materials and under very poor agronomic conditions !he annual world production of csssava, as reported by FAO (1970), was 90,958.000 metric tons These figures may not, however, reflect an accurate production because cassava, except ~round a few cities, is notMost of the crop i5 produeed on smal1 farms in small acreages and many times as a \"bac'-yard\" staple for home consumption Of the total world production, approximately 39 percent i8 produced in the Latin American countries, with 33 percent or 30,074,000 metric tons of the world'a total being produced annually in Bra.ilAlthough cassava 18 nlnth in terma of world production of all cropa and fifth in world produetion oC tropical eropa, its importance snd potential 8S a feed crop in the tropical regions throughout the world i8 not widely reeognized by researchers and livestock produeers Cassava, other root crops, snd the p13ntsins are a major souree of carbohydrates for the human population of both Latin Ameriea and Africa The usefulness and potential of cassava for supporting 8n anlmal lndustry ln these same reg~ons has oot been given the attention deserved by elther researchers or producer5 of livestockPresent farro yields of cassava as reported in agricultural státistics are generally Iow, ranging from 3 to 30 tons per hectare Sorne vat\"letles requ~re 16 to 20 months to mature, yet varieties exist that will yleld up to 78 tons of fresh cassava in experimental plots in 10 months (Varon, 1968) Given the wide range and d~ver.ity of genetic materials available in the world and the ease with which cassava can be sexually ero.sed, the development of new varieties and strains should offer important opportunftles for inereased production !he fresh cassava root contains on the average 65 percent moisture and 3S percent dry mstter (tabIe 1) !he pulp or interna1 portion of the root contains slightly more dry matter than the peeling (37 8 vs 27 81)and representa approximately 86 8 percent of the total roat w1th the rema inlng 13 2 percent made up by the peeling (table 2) !he percentage composition oi pulp and pee1 doea not vary signiflcantly with tncreasing maturity oi the root !he cassava root contributes bastcally carbohydratps (pnerpy) to thc diet of humana snd animaIs An average of 30 84 percent of the fresh root ls nitrogen-free extract, composed mainly of starch snd sugar (Table 1)The nitrogen-free extract fraction of cassava consLsts of approximately 80 percent starch and 20 percent sugar and amtdes (Vogt, 1966) Sucrose l. present in varlable amounts and some varieties may contain, up to 5 pereent (Brautlecht, 1953) The fundamental unit of the starch mo1ecule is d-glucose, as thls ls the on1y monoaecharide obtained on total hydro1-ys18 !he two chief constltuents of starch are amylose, whlch 15 nonbranching in atructure, and amylopectin, which consista of highly branched chatns Accordlng to Kerr (1950) and Johnson and Raymond (1965), cassava starch 15 about 20 percent amylose and 70 percent amylopectin Cassava conta1n. on1y .malI quantities of flher (1 45%) and i8 almost devoid oE ether extraet (O 29%)The ash conteat comprlses on1y about 1 5 percent of the total root (rabIe 1)The levels of ealcium (O 12%), phosphorous (O 16%). sodlum (O 06%) and magaeslum (O 37%) are generally low (table 3) As in the sltuation with most root erops, the potass1om level 15 relatively high (O 86t)The majorlty oí the varletles now being produced contatn very small quantities of nitrogen !he erude protein (N 2 X 6 25) eontent oí tne majority of tne varieties tested do not exeeed 3 O percent when expressed on an Bir dried basls (approx 10t moisture)However, other variet es have been repocted to contain nigher levels of crude protein reported an Afriean variety that eontained 9 pereent crude proteln and Jaramlllo and Herrera (1970) have reported a world colleetion (Man~ Carthagenensis that contained 15 4 percent erude protetn when expre~<;ed on a nOlsture free basis Maner (lq69) has reported varlctlPS that e0ntaln up to 2 33 pereent crude protein in the freso root or 7 25 perecnt wh~n expre~sed on a m01sture free basls Further stlldies by Maner and Daniels (1970) dear', lOd,cate irar alj of the nItrogen present in the cassava root is nor tn the 'orm 0' true proteln Data presented in Table 5 demonstrates the high nitrogcn content of samples of the variety \"Llanera\" \",hieh \"'ere harve of corn in ratlons tor growlng-finlshtng piga As seen from tne summary of tnesa results presented in table 9, the growtn rata of the piga was \"tmllar with that of the 40 percent cassava fed piga higher than th. control These results do not indicate that cassava has the same or superior nutritive valUé as corn, because all diets contained a level of protein superior to that required by pigs of these weights !bese resulta do however indlcate that the energy value of c8ssava is similar to that of corn Aumaitre (1969) compared the feeding va1ue of corn, wheat,barley and oata to that of drled caSS8va meal The 20 percent proteln diets were fed to baby pige between the agesof 5 and 9 weeks and Buitrago, 1964, Maner and Jlmenez, 1967, Maner, Buitrago and Jimenez, 1967, Maner Buitrago a~ Gallo, 1970, Maner, 1971, Maner and Daniels, 1970, Mesa and Maner, 1971) The caSSBVB used in studies 1, 2, 3 snd 5 was a mixture of severa1 The growth curves of Che three treatment groups (F 1 \"ure ',) demonthat the plgS con~uming both eaSsm,a and 1.2 118 p~rcent proteln cent protein corn-soybean meal control diet In doins so, however. they voluntarily consumed a ration that was excesstve in protein (see Figure 5 The pigs were housed in 2 5 x 8 meter concret( lots durlng lhe entire 84 day expenmental penod and body welght ehanges and proteln supplement eonsumptlon were recorded for caeh lot at weev!y fntnrvals Cassava con\",umption was recorded dal1yThe performance data are presented in Table 17 rhe ave rage da Lly gams and growth curves (figure 7) were slmilar for a11 gr0ups fed either of the basie prote!n supp1ements free choice There was no cons1stcnt advantage of addlog hlgher than recommended levels of vltamlns and trace-The averar\" galns obtalned from the groups red controlled (Figure 11) did, however, appreclably .ffact the percentase of protein 2) eaSSaya root silage plus protein supplement 3) Cassava root, leaf and stalk eilage plus prote!~ supplement.!he protein supplement used la presented in Ir appeara thar the inclusion of the stalk in the whole plant si1age redueed the scceptability of this ailage by the pig The bard, fibrous nature of the stalk preventa eaay m8stication and iuereased selection and separatian of the 8i1age lt ia suggested that the roota snd the leaves be ensiled for piga but that the stalka uor be loeluded.Fresh CassavaGestating aova should be ~intained in \" tbin condition and never \"lloved to become fat. To prevent tbe sovs from becoming too heavy.they are usually limit fed daily in individual feedlng atalls Sovs maineained in confinement normally require about 1.82 to 2 5 kilos ( 4to S 5 pounds) of a complete feed containing 15 to 16 percent proteLn.As cassava ia generally a poor acuree of protein, ie Must be properly suppleMented vith protein, vitaMina snd minerals This supplementatlon can be supplled by a apecially prepared high procein feed or proceln aupplement.A feeding level of 1 82 kilos (4 :ba ) of a 15 pereent protein fead viII provida approximately 273 grama of erude protein. !be compositlon of che diets snd supplements used are presented in Table 24 !be composition of the vitamln-trace mineral premix ls preseuted in Table 25 AII BOWS from the time of farrowing untll weaning were fed ad libitum a standard 16 percent protein cron-soybean meal diet !be performance data for the three sow groups are presented inAs can he seen froro these data, ehe aova maintalned In eonfiuement and fed 3 1 kg of fresh caS88VS aud O 62 kg of protein 8Upplement gained appreciably more during gestation than ehe other two treatmeut groups. !bese sovs farrowed less pigs per 1itter whlch re-8ulted in a corresponding lower average number of pige weaned per litter.Birth weigbte aud weanlng weights of these groups were similar.'8.SOW8 fed cassava and 9uppl~ment on pa8tu~e fa~~owed 10 live piga per litter as compared to la 4 piga per lit ter recorded for the control Althaugh its nutritional slgn1flcance ia not known. the cassava fed aova maintained on pasture produced an increased number of still born piga (16.7 percent).Althaugh additional informar1on 15 needed, it vas demonstrated that Performance data for the aova snd piga are presented in Table 29.Because of chance, aowa allotted to the fresh cassava treatment farrowed less aud slightly heavier pigs. This reduced number of piga ae farrowing resulted ln a correspondíng lover average number at weanlog st 3) daya, as percentage mortalíty from birth to wesning was similar ln all groups and only sllghtly higher ln group 2.Average weantng weighta were lowese for pisa from the control sows and heaviest for pig frem the fresh casaava fed aova. !heae results atght be expected in consideration of the amaIIer Iittera of the fresh caaBava group and the d1fferencea are probably not associated with treaemento The dr1ed cassava trestment groups were intermediate in weaning weight Sovs fed the dried ca •• ava diete eonsumed an average of 5.24 kg. of diet da11y aa compsred to the 4 82 kg. consumed by che control aova SOW8 fed the freah caa.ava and aupplement ration consumed lesa air-dried than either of the complete, dry diet groupa. These aova consumed ao average of 6 5 kg of fresh casssva snd 1.21 kg of 40 perceot protein 8upplement par day.Average 80V body weight gains were not different in groupa 1 and 2 (11.0 v •• 12.6 kg.) snd 001y slightly inferior in treacment 3 (7.6 kg.) Whole 11 Contr~buted 2500 1 U vltamln A, 250 I.U vltamln D, 2 5 mg riboflavln i2 5 mg nlaCLn, 7 5 mg pantothenlc aCld 125 mg chollne chlarLde, 16 5 mg Vlta~ln B12, 50 ng chloratetracycllne, 51 5 mg ~n, 2 mg Ca, 4 4 mg Cu, and 45 4 mg Zn per kg of finlshed feed ln the control dlet, approxlrnately 4 t~es thlS amount was added to the proteln supplement , ","tokenCount":"2304"} \ No newline at end of file diff --git a/data/part_3/8669824818.json b/data/part_3/8669824818.json new file mode 100644 index 0000000000000000000000000000000000000000..d265a10d161cbcd3c751d51910f47dd0b5fbeb7c --- /dev/null +++ b/data/part_3/8669824818.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"afbe90ef2feb02364cb319efd85724bc","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/198b2513-a812-4c5a-a03a-fa8650ed1b91/retrieve","id":"-770142170"},"keywords":[],"sieverID":"d1a37cae-de0a-4a62-821e-d67bf8496da6","pagecount":"2","content":"I undertook my internship at ILRI, Nairobi, within two the projects titled 'Source attribution of Campylobacter in England and Kenyan poultry value chains', and \"Epidemiology, ecology and socio-economics of disease emergence in Nairobi,\" where my supervisors were Mr Vicente Lopez and Dr Pablo Alarcon respectively. I was actively committed in the first project from 1 st August to 4 th September 2013 and in the second project from 5 th September to 30 th September, 2013.The first project aimed at giving a full description, characterization and mapping of all different steps and people involved in the poultry value chain of the Kenyan poultry industry so as to understand the mechanisms that can prevent the occurrence of food-borne diseases like Campylobacteriosis in humans arising from consumption of contaminated poultry products. I took part in making contacts with the major players in the poultry industry that included managers and owners of poultry breeder farms, hatcheries, commercial farms, abattoirs and feed mills so as to get access to these premises.We also made a list of retailers of poultry products with an intention of visiting. After this, we designed questionnaires that were tailored towards extracting as much information as possible from the people involved and the activities carried out at the different steps in the chain in order to identify those points that posed serious public health risk hotspots. The questionnaires were piloted at the Brade Gate poultry industry and necessary changes made. Another set of questionnaires was designed and used in the second project to collect data from red meat slaughter houses within Nairobi with the same objectives in mind.The internship was a learning experience where I gained knowledge on doing systematic review of scientific publications. I also learnt on the various research methodologies that were used in the project, chiefly designing semi structured questionnaires to collect data from focus groups and individuals. I had an opportunity to take part in data collection and reporting using the questionnaires.Amongst the skills I have gained while working as an intern are mapping food value chains and identification of the public health risk hot spots in the value chain, data collection and analysis. I have also been exposed to skills on writing scientific reports.The knowledge, experience and skills that I gained during this internship will play an integral role steer me forward in my research career. I have already enrolled for an MSc degree at the University of Nairobi and thus with the research background that I have been exposed to while working on these projects is going to boost me credentials in doing my own Master's research project.","tokenCount":"433"} \ No newline at end of file diff --git a/data/part_3/8690363679.json b/data/part_3/8690363679.json new file mode 100644 index 0000000000000000000000000000000000000000..8e75e32d022d26308e861be75fd88fdbebe52079 --- /dev/null +++ b/data/part_3/8690363679.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"3ca978c48ab129a17b566a051471558b","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/1e3b6010-1864-4c24-bf37-52679ad4030f/retrieve","id":"1887309712"},"keywords":["• Marie-Line Caruana du Cirad","Danny Coyne de l'IITA","Luis Pocasangre","Franklin Rosales","Rony Swennen de Bioversity International pour leurs apports scientifiques"],"sieverID":"43ef409d-57de-4626-b7a0-fe9f756bec3d","pagecount":"56","content":"La multiplication de matériel de plantation de qualité pour améliorer l'état sanitaire et la productivité des cultures: Pratiques clefs pour les bananiers et les bananiers plantain 1 La multiplication de matériel de plantation de qualité pour améliorer l'état sanitaire et la productivité des cultures Pratiques clefs pour les bananiers et les bananiers plantain Guide illustré Guide illustréchapitRe 1: ¿Es importante la calidad del material de siembra para la productividad de las plantaciones de las musaceas?La multiplication de matériel de plantation de qualité pour améliorer l'état sanitaire et la productivité des cultures: Pratiques clefs pour les bananiers et les bananiers plantainChapitre 1 : La qualité du matériel de plantation est-elle réellement importante pour la productivité des plantations de bananiers?La culture de la banane dessert, de la banane plantain et de la banane à cuire 1 est importante pour les petits agriculteurs, en zones tropicales et subtropicales: elle assure et diversifie leur alimentation et génère des revenus à des millions de familles rurales.Chaque année, les familles paysannes font usage de 20 à 30 milliards de rejets ou d'autres types de matériel de plantation.Ce guide illustré présente une synthèse des pratiques clefs permettant de produire du matériel de plantation sain, potentiellement plus productif pour les petits producteurs, selon les ravageurs et maladies qui peuvent se présenter.Ce guide est également conçu comme une contribution à une meilleure planification de la multiplication du matériel de plantation pour des projets de développement rural et d'aide dans le cadre de désastres.Une version simplifiée de ce manuel est disponible sous forme de fiches de terrain destinées aux producteurs, abondamment illustrées de photographies.Les légendes et explications des différentes méthodes pourront être traduites, le cas échéant, dans des dialectes ou langues locales.6 chapitRe 1: La qualité du matériel de plantation est-elle réellement importante pour la productivité des plantations de bananiers?La multiplication de matériel de plantation de qualité pour améliorer l'état sanitaire et la productivité des cultures: Pratiques clefs pour les bananiers et les bananiers plantainMinimiser la transmission des maladies et des ravageursChaque rejet est une opportunité, pour les petits producteurs d'améliorer la qualité de la récolte mais il peut également donner une plante improductive. Comme toutes les cultures à propagation végétative, une mauvaise sélection du matériel de plantation peut favoriser la présence d'insectes nuisibles, la transmission de maladies fongiques, bactériennes ou et virales. Un matériel de plantation infecté par un insecte ou une maladie peut, selon la nature du problème, provoquer des pertes de 20 à 100% lors de la première récolte et peut réduire le nombre de récoltes de moitié voire davantage.Obtenir un matériel de plantation sain est un grand défi pour les petits producteurs car ce ne sont pas cinq ou dix plantes dont ils ont besoin chaque année, mais des centaines, voire des milliers. Avec seulement 10 ou 20% du matériel de plantation infecté, les maladies et ravageurs se propagent rapidement aux plantes saines, réduisant aussi bien la taille du régime que le nombre de récoltes. Certaines maladies comme les bactérioses, la fusariose et la maladie causée par le virus \"bunchy top\" du bananier sont mortelles ; les nouvelles plantations utilisant des plants infectés seront totalement improductives.Pour les petits agriculteurs ayant un jardin diversifié, pouvoir compter sur des rejets exempts de maladies, ravageurs ou insectes est primordial. Ils peuvent cependant préférer, pour leur propre consommation, une plus grande diversité de cultivars qui produisent quelques régimes par mois (GO).chapitRe 1: ¿Es importante la calidad del material de siembra para la productividad de las plantaciones de las musaceas?chapitRe 1: La qualité du matériel de plantation est-elle réellement importante pour la productivité des plantations de bananiers?La multiplication de matériel de plantation de qualité pour améliorer l'état sanitaire et la productivité des cultures: Pratiques clefs pour les bananiers et les bananiers plantainChaque rejet planté possède le potentiel pour produire des régimes dont la taille et les caractéristiques dépendent du pied-mère. Durant des milliers d'années, les producteurs ont sélectionné des plantes pour leurs caractéristiques spéciales en vue de la replantation, générant ainsi l'agrobiodiversité mondiale des bananiers. Les producteurs d' Afrique de l'Est possèdent ainsi plus de 200 variétés de leurs bananiers d'altitude. Aujourd'hui, le défi pour chaque producteur est de planter des rejets potentiellement plus productifs dans chaque nouvelle plantation, au moyen de la sélection de plantes provenant des meilleurs pieds-mères, éliminant ainsi les plantes les moins productives.Les petits agriculteurs qui produisent pour le marché local et leur propre consommation, ne plantent pas plus d'une ou deux variétés. Ils préfèrent des plantations qui ont une longue vie utile et qui produisent plusieurs récoltes. Ils doivent utiliser du matériel de plantation exempt de ravageurs et de maladies.Une sélection soigneuse des pied-mères leur permet aussi d'améliorer le potentiel productif de leurs plantations à chaque plantation (CS).chapitRe 1: La qualité du matériel de plantation est-elle réellement importante pour la productivité des plantations de bananiers?La multiplication de matériel de plantation de qualité pour améliorer l'état sanitaire et la productivité des cultures: Pratiques clefs pour les bananiers et les bananiers plantainPlanifier l'étalement de la récolteEn plus de la transmission de ravageurs et de maladies et du potentiel productif, la qualité du matériel de plantation utilisé peut aussi contribuer à l' étalement de la récolte. Des rejets de différentes tailles, plantés dans la même parcelle, produiront les premiers régimes sur une période plus longue que des rejets ou d'autres types de matériels de plantation plus uniformes. Pour la consommation familiale, une production plus étalée dans le temps est préférable mais, pour le marché, pouvoir offrir plus de régimes sur une période plus courte peut être une stratégie rentable.Quand le prix de la banane sur les marchés est élevé, on peut utiliser de grandes quantités d'intrants et une forte densité de plantes afin de concentrer la récolte sur un laps de temps court. Ces systèmes demandent un matériel de plantation sain, avec un potentiel productif élevé et une taille assez uniforme (LP).1. Les nématodes et charançons du bananier : ces ravageurs sont très fréquents et provoquent des dégâts importants, mais ils peuvent être gérés assez facilement et sans trop de risques par les producteurs.présent dans les bananiers plantain AAB : Ce groupe de maladies nécessite des traitements spéciaux au sein de l' exploitation car il peut présenter quelques risques. Nous allons brièvement passer en revue ces trois types de problèmes.Note: On trouve les virus du \"bunchy top\" et de la mosaïque des bractées, la race tropicale 4 de la fusariose et les flétrissements bactériens (dûs à Xanthomonas et Ralstonia) seulement dans certaines régions. Les procédures de quarantaine aux niveaux international et national ont pour but de réduire la propagation de ces maladies dans de nouvelles zones non encore infectées. Consultez les autorités locales pour savoir si ces maladies sont présentes ou non dans votre pays ou votre région. Problèmes fréquents de ravageurs qui peuvent être facilement contrôlés sur l'exploitationQuelques nématodes des plantes (ou phytonématodes) et le charançon du bananier peuvent être transmis par du matériel de plantation infecté. Cependant, au moyen de pratiques simples, on peut produire sur l' exploitation du matériel de plantation sain.Les nématodes sont de minuscules vers qui vivent dans le sol. Ils sont invisibles à l'oeil nu mais ils causent de sérieux dégâts dans les exploitations où ils se trouvent. Ils affaiblissent le système racinaire et peuvent entraîner la chute des plantes avant récolte. Quand l'attaque est très sévère, les plantes peuvent tomber avant même d'avoir un régime (PC).Les nématodes à galles provoquent la déformation des racines (IPB).Les divers nématodes des plantes provoquent des lésions de couleur café-rougeâtre sur les racines qui sont normalement de couleur blanche. Si les attaques persistent, les racines peuvent même devenir noires (CS). Les plantes atteintes de fusariose, un champignon, présentent un jaunissement progressif de leurs feuilles, en commençant par les feuilles les plus anciennes, suivi par le flétrissement et l'affaissement des feuilles (PC).En plus d'utiliser des pratiques adéquates de multiplication pour réduire la transmission des nématodes et des charançons par le matériel de plantation bananier, il est recommandé de prendre des mesures supplémentaires, sur l' exploitation ou dans les pépinières, afin de réduire les risques de transmission des maladies produites par les bactéries ou les champignons sur le matériel de plantation.La race tropicale 4 de la fusariose, particulièrement létale, est présente dans toute l' Asie et s'attaque à un large éventail de variétés.Le BSV se retrouve couramment présent dans le génome B du bananier plantain (AAB) et dans certains hybrides ayant du génome B dans leurs séquences géniques. Ces séquences de virus sont la plupart du temps dormantes, raison pour laquelle la production de bananes plantain AAB reste normale dans les plantations qui proviennent de rejets. Si le bananier plantain AAB avec les séquences de virus a subi des stress hydriques ou des écarts de températures très importants, les plantes présentent alors des symptômes et une production réduite. L'usage de pratiques spéciales sur l' exploitation, consistant essentiellement en l' élimination des plantes présentant des symptômes, permet de réduire l'impact du BSV sur la production. Il existe des outils moléculaires permettant de détecter en laboratoire si le bananier plantain est porteur de séquences virales dormantes, mais ces outils ne sont pas encore commercialisés. Le BSV sur d'autres cultivars (principalement AAA) est décrit dans la section « Problèmes de maladies qui nécessitent des techniques de propagation spéciales hors exploitation ». Quand il y a présence de flétrissement bactérien, on peut observer un liquide ou exsudat marron sur la coupe transversale du pseudotronc, souvent associé à une décoloration du pseudotronc (PC).On observe que les feuilles extérieures du pseudotronc ont un tissu souple et d'aspect aqueux, avec une décoloration couleur café au fur et à mesure que la maladie s' étend (PC).Le champignon envahit les racines et le système vasculaire de la plante et des fils bruns (mycelium fongique) peuvent progresser jusqu'au pseudotronc (PC).(TL) (SD) (TL) Sur le bananier plantain (AAB), le BSV se caractérise par des rayures chlorotiques en tirets ou en plage qui ensuite deviendront nécrotiques. Il est fréquent que le pseudotronc se fende vers sa base. La présence de BSV peut produire, dans ses formes les plus graves, l'apparition du régime, alors déformé, au travers du pseudotronc.Comment contrôler facilement les maladies qui demandent des soins spéciaux sur l'exploitation ?Dans le cas du flétrissement bactérien et fongique : 1. Ne pas extraire les rejets de plantes atteintes par le BSV. 2. Extraire les rejets des plantes qui sont sur le point d' être récoltées quand les symptômes peuvent être plus visibles.3. Eliminer rigoureusement les plantes anormales (hors-type) ou présentant des symptômes de BSV à chaque étape de multiplication et de mise en place de la plantation. 4. Replanter dans des zones peu éloignées afin de limiter la diffusion potentielle du virus.Certains types de virus affectent très sévèrement le rendement des bananiers. Si, dans une région, il est courant que le matériel de plantation soit contaminé par ces virus, les producteurs ne doivent pas utiliser du matériel de plantation de leurs propres plantations ou de celles des voisins. Des plantes exemptes de virus, produites in vitro, doivent être multipliées dans des laboratoires spécialisés, en suivant des protocoles spécifiques de détection et d' éventuelle décontamination de ces virus.Dans les plantes atteintes par le virus du \"bunchy top\" du bananier (BBTV), les nouvelles feuilles sont érigées, étroites et rassemblées en touffe au sommet du plant. Chaque nouvelle feuille est de plus en plus petite, mince, craquante avec un jaunissement marginal. Le bananier présente un nanisme important. Le symptôme principal et caractéristique consiste en des tirets vert foncés sur la nervure centrale, le pseudotronc et les nervures secondaires (CS).Le BBTV peut apparaître chez les rejets et les pousses alors que le pied-mère ne présente aucun symptôme. Le virus est déjà présent avant que les symptômes typiques de jaunissement et diminution de la taille des feuilles apparaissent (CS).Les plantes atteintes par le BSV peuvent présenter un éclatement à la base du pseudotronc (P-YT).Les virus de la mosaïque en tirets (BSV) du bananier (à l'exception du bananier plantain AAB) sont de différents types mais présentent des symptômes communs tels que des tirets chlorotiques évoluant en nécroses. Les symptômes du BSV décrits ici sont très similaires à ceux décrits précédemment pour le bananier plantain AAB (JCR).D'autres virus connus comprennent le virus de la mosaïque du concombre (CMV) et le virus de la mosaïque atténuée du bananier (BanMMV). Quand ils touchent seulement quelques plantes isolées, ces virus provoquent des dégâts peu importants mais ils peuvent entraîner de sérieuses pertes de récolte s'ils infectent un grand nombre de plantes à la fois. Le CMV, transmis par des pucerons, peut avoir un impact encore plus important si d'autres plantes hôtes telles que la pastèque, le concombre et la courge ont été plantées comme cultures intercalaires.Le virus de la mosaïque des bractées du bananier (BBrMV) n'est pas visible sur les rejets. Le BBrMV est responsable de mosaïques sur les feuilles qui peuvent disparaître rapidement (48 heures). Une mosaïque jaune ou blanc/rouge peut apparaître sur le pseudotronc. Des rayures brun-rougeâtre ou la décoloration des bractées du bourgeon floral permettent le diagnostic de la maladie (CS).Comment éviter d'introduire des maladies virales ? Pratiques clefs pour la gestion des maladies qui nécessitent des techniques de propagation spéciales hors exploitation Différents types de matériel de plantation peuvent être extraits d'une plantation de bananiers. Presque tous les types ou formes de rejets ou de cormes principaux peuvent être utilisés, entiers ou coupés en morceaux, pour de nouvelles plantations.Bien que les différents types de matériel de plantation, de formes et tailles diverses, puissent être utilisés pour produire un régime, certains d' entre eux ont un cycle de production plus court de la plantation à la récolte. Les souches provenant de plantes de grande taille, qui n' ont pas encore fleuri, possèdent le cycle le plus court de la plantation à la récolte, suivis par les grands puis les petits rejets baïonnettes. Les petits oeilletons et les rejets-choux possèdent le cycle le plus long.Un pied qui a déjà produit une première récolte peut avoir des cormes, rejets ou pousses de différentes tailles. Même les rejets-choux et les pousses les plus petites peuvent être extraits et plantés dans des pépinières. Les souches provenant de grands pseudotroncs, peuvent aussi être utilisées comme source de matériel de plantation avant la floraison ou après la récolte (PC).Souche de plante non fleurie (PC).Petit rejet baïonnette (CS). En plus de la taille et de l'âge du matériel de plantation, il peut exister une certaine variabilité selon les variétés ou cultivars. En fonction de leurs objectifs, les producteurs peuvent préférer une plantation qui produit en permanence pour la consommation familiale ou la stabilité de la demande marchande, ou une plantation plus homogène pour récolter une grande quantité de régimes d'un même type sur une courte période.A l' établissement d'une nouvelle plantation, un producteur peut avoir besoin de plusieurs centaines à des milliers de rejets ou d'un autre matériel de plantation. Plus le matériel planté sera uniforme, en termes d'âge et de taille, plus la récolte sera concentrée dans le temps (entre 2 et 5 mois, suivant les conditions de culture). Si le matériel de plantation est de différentes tailles ou bien si l' on plante pendant plusieurs mois, la récolte s' étalera sur une plus longue période.OEilletons ('Peepers') (PC).chapitRe 4: ¿Podemos mejorar el rendimiento potencial a través de la selección de las plantas madre?La multiplication de matériel de plantation de qualité pour améliorer l'état sanitaire et la productivité des cultures: Pratiques clefs pour les bananiers et les bananiers plantain Principes de sélection de pieds-mère possédant des caractéristiques souhaitables• Identifier les caractéristiques importantes sur lesquelles se focalisera le processus de sélection.• Déterminer les valeurs minimales ou maximales des caractéristiques prises en compte lors de la sélection.• Marquer les plantes en production qui possèdent les caractéristiques souhaitables pour la sélection.• Sélectionner les pieds-mère uniquement parmi les plantes situées dans des conditions normales et homogènes de sols.• Eviter de sélectionner des plantes en bordure de champ ou dans d'autres endroits qui apportent des conditions de croissance exceptionnelles.• Eviter les plantes qui possèdent des caractéristiques anormales ou des symptômes de maladies ou de ravageurs connus.Les rejets sélectionnés de cette façon peuvent être plantés ou multipliés en faisant usage de diverses techniques.L'Institut taïwanais de recherche sur le bananier (Taiwan Banana Research Institute -TBRI) a réalisé une sélection à grande échelle pour identifier des plantes plus tolérantes à la fusariose. Chaque année, les producteurs de bananes taïwanais replantent leurs plantations avec des vitroplants, ce qui était, au départ, une stratégie pensée pour limiter les pertes dues aux typhons. Depuis l'apparition de la fusariose, les scientifiques et producteurs ont sélectionné des plantes qui continuent à se développer même si les plantes voisines ont été affectées par la fusariose. Grâce à cette stratégie, de nouvelles lignées de bananiers dessert (AAA Cavendish) tolérants à la race subtropicale 4 de la fusariose ont été identifiées, même si généralement on considère que ce groupe est sensible à la maladie. Il existe cinq méthodes courantes pour obtenir du matériel de plantation pour l'établissement de nouvelles plantations de bananiers. Chaque méthode a ses propres exigences en termes de facilités et d' équipement, un taux de multiplication caractéristique et certains risques de contamination dus à des maladies et ravageurs. Les méthodes varient de l' extraction d'un petit nombre de rejets d'une même parcelle, en passant par de petites pépinières de quelques centaines de plantules distribuées localement, jusqu'à des unités de production industrielle de plusieurs millions de vitroplants pour l' exportation au niveau international.Les techniques les plus simples sont décrites et illustrées ci-après. Nous décrirons les pratiques adéquates pour les différentes étapes de la multiplication des plantes dans les sections qui suivent.Les rejets doivent être extraits du pied-mère, en utilisant des techniques appropriées pour éviter d'affaiblir leurs systèmes racinaires et donc leur ancrage (PC).Un bananier produit des rejets qui proviennent de bourgeons du piedmère. Ces rejets peuvent être extraits et replantés pour établir une nouvelle plantation (CS). Les rejets sont parés, traités avec des désinfectants puis plantés dans des sachets en plastique remplis de substrat sain (CS). Dans les sections précédentes, trois catégories de ravageurs et de maladies ont été décrites: 1) faciles à gérer sur l' exploitation, 2) exigeant une gestion particulière sur l' exploitation et 3) exigeant des techniques spécialisées hors exploitation. Dans le tableau ci-dessous, le risque de transmission de huit maladies et ravageurs importants est estimé pour les méthodes de multiplication les plus courantes. Cette estimation du risque n' est valable que si certaines pratiques clefs sont utilisées avec l'habileté et les précautions requises pour chaque méthode. Les pratiques clefs pour chaque méthode sont décrites dans la section 7 (voir pages suivantes). Merci de prêter une attention particulière aux pratiques clefs lors de la préparation ou de l'achat de matériel de plantation. Bien sûr, si l'un de ces ravageurs ou de ces maladies ne sont pas présents dans votre zone géographique, par exemple le BBTV en Amérique latine, le risque est réduit, sauf si vous apportez du matériel de plantation d'un autre continent ou d'une zone où le parasite ou la maladie est présent. Pratiques clefs pour la sélection de pieds-mère supérieurs et sains 1. Extraire les rejets uniquement de plantations bananières exemptes de virus notamment de BBTV, BBrMV, BSV et CMV. 2. Extraire les rejets uniquement de plantations exemptes de flétrissement bactérien ou fongique. 3. Extraire les rejets uniquement de plantations ayant une présence réduite de nématodes et de charançons. 4. Tout au long de l'année, marquer les plantes qui possèdent les plus gros régimes comme source de rejets une fois les régimes récoltés. Après récolte, il serait en effet difficile de reconnaître les plantes les plus productives. 5. Tout au long de l'année, marquer les plantes qui possèdent des feuilles abondantes et saines, des racines bien ancrées, un pseudotronc robuste et éventuellement une hauteur inférieure à la moyenne, comme source de rejets. 6. Si vous sélectionnez les rejets pour une multiplication en laboratoire de culture de tissus et même par propagation de bourgeons axillaires, choisissez les pieds-mère qui possèdent les meilleures caractéristiques. Si le pied-mère supérieur a été mal sélectionné, alors le matériel multiplié n' offrira pas tous les avantages que l' on peut espérer d'un taux élevé de multiplication. 7. Le matériel végétal issu de pieds-mères pour la culture de tissus doit subir une période de quarantaine suivie d'analyses vis-à-vis des virus et bactéries avant toute multiplication. Ne pas extraire de rejets de vieilles plantations ou de parcelles où les meilleures plantes n'ont pas été identifiées (CS).Précautions à prendre lors de la sélection du pied-mère Pour parer :• Parer les cormes sur le lieu même où ils ont été extraits, jusqu'à ce qu'il ne reste plus que la chair blanche. • Eliminer tous les rejets dont une grande partie du corme a été coupée ou qui présentent trop de taches brun-noirâtre au niveau du bulbe ou sur lesquels on trouve des décolorations ou des exsudats au niveau de la coupe transversale du pseudotronc. • Transporter immédiatement les rejets parés dans un nouvel endroit éloigné de toute plantation bananière afin d'éviter une nouvelle contamination par des charançons qui sont attirés par l'odeur des tissus bananiers fraichement coupés.Matériel de plantation préférable (PC). Matériel de plantation acceptable (PC). Pour traiter les bulbes à l'eau chaude :• Sélectionnez les rejets possédant un bulbe blanc et sain, en rejetant tous les rejets à petit corme, ou présentant des décolorations ou des exsudats au niveau de la coupe transversale du pseudotronc, ou bien un bulbe endommagé par des galeries de charançons. Toutefois, un parage complet et approfondi n' est pas nécessaire. • Immerger les cormes dans de l' eau bouillante pendant 30 secondes.• Transporter immédiatement les rejets et bulbes traités loin de la plantation de bananiers pour éviter une nouvelle contamination par les charançons.Traitement à l'eau bouillante (DC). Bulbes prêts à l'immersion dans de l'eau bouillante (DC).Bulbes après le traitement (PC). Ne pas planter de rejets qui présentent des décolorations ou un exsudat au niveau de la coupe du pseudotronc (SM).Ne pas planter de rejets avec des racines ou partiellement pelés car des nématodes ou des larves de charançons pourraient encore être présents (PC).Précaution à prendre pendant la multiplication des rejets en parcelles 1. Suivre les pratiques indiquées dans la section sur le choix de pieds-mère de qualité supérieure. 2. Suivre les pratiques indiquées dans la section sur la sélection et préparation de rejets pour la plantation directe, qui incluent le parage ou la désinfection à l' eau bouillante. 3. Sélectionner une parcelle pour la plantation où l' on n'a pas planté de bananiers depuis au moins un an et qui soit éloignée d'autres plantations de bananiers. 4. Eliminer les plantes atypiques ou celles qui présentent des symptômes suspects et abandonner la parcelle comme source de matériel de plantation si l' on rencontre des plantes atteintes par les virus BBTV, BSV ou BBrMV, le flétrissement bactérien ou la fusariose. 5. Arrêter la croissance florale avant l' émergence de la fleur (par décapitation, fausse décapitation ou pliage du pseudotronc).La décapitation sert à éliminer le point de croissance avant qu'émerge la fleur et à stimuler l'émergence et la croissance de rejets (JC).La fausse décapitation sert, de la même manière, à stimuler la formation de rejets, tout en préservant les réserves nutritives de la plante mère (PC).Les rejets doivent être récoltés dès qu'ils atteignent une taille minimum afin de libérer de l'espace pour les rejets restants (JC). Les rejets parés sont mis dans des sachets en plastique remplis de substrat sain et sous ombrière simple (PC).Les plants sont classés et séparés en groupes uniformes (hauteur, nombre de feuilles). Les plantes atypiques et de peu de vigueur sont éliminées (CS).Précautions à prendre pour la croissance des micro-cormes :1. Ne pas utiliser de rejets qui n' ont pas été parés. 2. Ne pas laisser de plantes trop serrées entre elles sans les classer, surtout après deux semaines. Pratiques clefs pour la multiplication par plantes issues de bourgeons axillaires (PIB)1. Suivre les pratiques indiquées dans la section sur le choix de piedsmère de qualité supérieure. 2. Suivre les pratiques indiquées dans la section sur l' extraction pour la plantation directe. 3. Peler les rejets qui atteignent un poids de 200 à 500 grammes, jusqu'à ce qu' on ne voie que la chair blanc-crème. 4. Couper les feuilles, une à une, au dessus de la base des gaines foliaires, pour laisser apparaître les bourgeons axillaires à la base de chaque gaine.Réaliser une entaille, en forme de croix, au niveau du point principal de croissance, au centre de la coupe transversale du pseudotronc. 5. Préparer un germoir avec de la sciure de bois, qu'il faudra recouvrir d'une bâche ou d'un film plastique, en partie à l' ombre. 6. Eliminer toute repousse importante éventuelle qui sortirait du bourgeon principal (mal éliminé) car elle empêcherait le développement des bourgeons axillaires. 7. Enlever avec précaution les plantules issues des bourgeons axillaires qui possèdent déjà des racines, en faisant attention à garder intact le bulbe de base. 8. Remettre les bulbes sur la sciure humide pour obtenir des pousses additionnelles. 9. Suivre les pratiques clefs pour le grossissement des plantes en pépinières.Les rejets sont parés puis la base des gaines foliaire sont coupées avec précaution, une par une, pour laisser apparaître les bourgeons axillaires qui se trouvent à la base de chaque gaine (TL).Les rejets sont déposés sur de la sciure de bois humidifiée dans le germoir, à l'intérieur d'une chambre humide. Cet endroit doit être à environ 50% à l'ombre (TL).Les rejets du bourgeon principal doivent être éliminés dès qu'ils apparaissent car ils inhibent l'émergence des bourgeons axillaires (TL). La couche de sciure doit être humidifiée régulièrement. S'il n'y a pas de condensation sur les parois intérieures du germoir, la sciure est trop sèche (GB).Les bulbes sont replacés dans le germoir pour qu'ils poursuivent la production et la croissance d'autres plantules (OB).La croissance du bourgeon principal empêche celles des bourgeons axillaires (CS).Précautions à prendre pour la multiplication par plantes issues de bourgeons axillaires 1. Eviter la repousse du bourgeon principal.2. Ne pas endommager les bourgeons axillaires au moment de la coupe des gaines foliaires. 3. Ne pas laisser se développer trop de nouvelles plantules. 4. Eviter une élévation trop importante de la température dans le germoir ou un dessèchement de la sciure.Les vitroplants peuvent présenter des problèmes de développement dus à une contamination par virus, bactéries ou par champignons, aussi bien dans la pépinière que dans la plantation (TL).Les virus peuvent être introduits via les vitroplants, si les tests de détection des virus ne sont pas effectués avant, pendant et après la multiplication (MLC).Pratiques clefs pour l'achat de vitroplants Précautions à prendre lors de l'achat des vitroplants 1. Ne pas acheter de vitroplants sans avoir obtenu les certificats de qualité des pieds-mère et des garanties sanitaires (tests d'absence de contamination par virus, bactéries ou champignons).Pratiques clefs pour la croissance en pépinière de grossissement de micro-cormes, de plantes obtenues à partir de bourgeons axillaires et de vitroplants Le substrat doit être exempt de contamination par les ravageurs et maladies, mais également riche en matière organique et en substances nutritives (LP).Toutes les plantes atypiques, malades ou de croissance lente doivent être éliminées (QDPI).Ne pas trop serrer les plantes entre elles. Elles ont besoin de plus d'espace au fur et à mesure qu'elles grandissent et développent plus de feuilles (CS).Ne pas mélanger les petites plantes avec les grandes (PC).Ne pas maintenir une ombre excessive.A mesure que les plantes grandissent, elles peuvent supporter et profiter de plus de lumière (PC). Programmes alternatifs pour produire 50 000 plantes en présence de maladies nécessitant de réaliser la multiplication en dehors de l'exploitation L'usage de rejets produits localement pour une plantation directe en champ ou la production de rejets en parcelles, de micro-cormes ou de plantes provenant de bourgeons axillaires représentent un risque très élevé de multiplication de certaines maladies qui peuvent être présentes. L'unique option viable est la multiplication in vitro à partir de bourgeons apicaux garantis exempts de virus. A moyen terme, si le programme se maintient pendant une période de 5 à 10 ans, le processus de sélection peut inclure l'identification de clones de qualité supérieure qui possèdent un potentiel productif élevé et uniforme.L'option 1 (voir tableau 1 ci-après) s'applique le plus fréquemment quand les plantes in vitro sont bon marché et le taux de réinfection est élevé. Elle a été utilisée à Taiwan lors d'une menace de fusariose et aux Philippines où la présence du BBTV est très élevée. Dans ces conditions, l'usage de parcelles de multiplication de rejets présente un haut risque de réinfection qui ne permet pas la mise en place de germoirs de multiplication à partir des bourgeons axillaires.L'option 2 (voir tableau 1) est exigeante car elle impose des mesures de protection pendant plusieurs étapes, mais peut être appliquée là où le risque de réinfection est moindre, où la production de plantes in vitro est plus chère, où les prestations des laboratoires sont limitées et quand le cultivar est essentiellement d'intérêt local. Dans le cadre du développement d'un plan d'action pour améliorer le matériel de plantation au niveau des producteurs, les premières questions auxquelles il faut répondre sont les suivantes : que veut-on obtenir et qui doit savoir quoi pour améliorer sa situation ? Dans le cas de pays ou régions où des maladies qui nécessitent des services spéciaux en dehors de l' exploitation ne sont pas présentes, il faut travailler dans deux directions:1. Le renforcement des services de quarantaine pour s'assurer que les pays ou les régions exemptes de maladies telles que le BBTV, la maladie de Moko (Ralstonia), le flétrissement bactérien causé par Xanthomonas (BXW) ou la race 4 du Fusarium continuent à l' être. 2. Le renforcement des capacités humaines qui doit se centrer sur le personnel technique relativement réduit qui dirige et exécute les procédures de quarantaine phytosanitaire, accompagné de campagnes publiques de sensibilisation, à l'attention de ceux qui pourraient représenter le plus grand risque d'introduction involontaire de semences malades.Il existe aussi un éventail de possibilités pour améliorer la capacité des producteurs à utiliser du matériel de plantation provenant de pieds-mère de qualité supérieure et présentant moins de risques d'infestation par les charançons et les nématodes. Grâce à une amélioration des supports d' enseignement et de meilleures pratiques de terrain, dans les écoles techniques, les universités et les programmes de vulgarisation et de formation, les producteurs seraient plus susceptibles de recevoir une aide technique sur la qualité du matériel de plantation. Ce manuel est basé sur des décennies de recherche et développement sur du matériel de plantation plus efficient. Malgré tout, la mise en place de programmes efficaces qui facilitent l'utilisation par l'agriculteur de matériel végétal de meilleure qualité est toujours un défi de développement considérable au-delà des détails et des pratiques essentielles des différentes méthodes de multiplication.Pépinière de sevrage Dans une pépinière de sevrage, les conditions de croissance pour les plantes encore tendres passent progressivement de l'ombre partielle au plein soleil ou presque. Ce processus est utile pour permettre au matériel de plantation qui est petit et possède un potentiel de croissance limité, de générer des racines additionnelles et de la surface foliaire. Le but d'une pépinière de sevrage est de préparer les plantes destinées à la transplantation à des conditions au champ avec une augmentation de la lumière et des fluctuations plus importantes de température, d'humidité relative et d'eau.Pépinière initiale pour une acclimatation artificielle aux conditions in vivo de plantes cultivées in vitro. Un environnement très humide avec des températures modérées est nécessaire. La fluctuation de la température et le vent doivent également être évités. Cet environnement permet à la plante de prendre racine et de développer sa surface foliaire avant le transfert à une pépinière de sevrage. Lorsque les plants sont en pleine croissance, ils sont transplantés dans un récipient plus grand et sont décrits comme plantes ex vitro.Facteurs réduisant le taux de croissance des bananiers et la taille de leur régime, tels que l'excès ou le manque d'eau, le manque de macro ou de micronutriments, l'excès d'éléments toxiques, des températures extérieures hors de la fourchette optimale pour la croissance et le rendement et niveaux de lumière inférieurs au niveau optimal.","tokenCount":"5327"} \ No newline at end of file diff --git a/data/part_3/8691879257.json b/data/part_3/8691879257.json new file mode 100644 index 0000000000000000000000000000000000000000..f9215946eb574ac6b7e533fbcfbc93cc51b46155 --- /dev/null +++ b/data/part_3/8691879257.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"74950a5376f4305534d1ae17793d2ff9","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/49b32c15-9019-4771-ae81-95a5a2ebcf0a/retrieve","id":"328917121"},"keywords":[],"sieverID":"c6ac8662-5f66-4d08-8315-f3a9b23db196","pagecount":"16","content":"The first brief in this series presented the results of the RHoMIS household (HH) surveys, which amongst other things, found a positive association between Heifer supported cooperatives and the adoption of CSA practices.• This brief assesses the potential impact of these CSA practices on greenhouse gas emissions, and land and water use intensity associated with goat production. This analysis was conducted using the CLEANED tool which is a rapid environmental impact assessment tool for livestock systems.• HH surveys coupled with follow-up consultations with cooperative focal points were used to characterise typical farming systems in three regions of Nepal where Heifer is present. For each region the typical non-Heifer HH, the typical Heifer HH, and an aspirational farm based on the best performing Heifer HH were assessed.• In almost all regions, the intensity of GHG emissions, and land and water use per kg of goat meat were lower in farms belonging to Heifer supported cooperatives compared to farms from cooperatives that did not receive support from Heifer. However, for a number of regions and metrics (land use and GHGe) there was an increase in absolute terms as Heifer HH typically had larger herd sizes.• The largest differences were observed when comparing both the Heifer and non-Heifer HH with the aspirational farm, which was characterised by improved feeding practices and breeds.• Improved sheds and legume intercropping were found to be the most effective interventions to reduce emissions intensity, followed by improving the feed basket through the addition of improved forages and feed additives. There is also considerable potential to reduce emissions intensity through the adoption of improved breeds, which currently only experiences low levels of adoption.• The results demonstrate that Heifer is already contributing to more efficient and environmentally sustainable management practices for goat farming. Furthermore, there is considerable potential to greatly improve these efficiencies if all Heifer HHs were to be lifted to the same level as the most successful adopters. See Brief 1 for information on the types of programming that would support this transition.Heifer Nepal works with more than 12,500 selfhelp groups, 255 cooperatives, and three District Unions, across 43 districts. Running a series of large programmes that support the development of competitive and resilient agricultural value chains, through improving farmers' access to a range of enterprise support services. With the aim to raise overall household incomes through means that have minimal negative impact on the environment.Participating HH have benefitted from a series of Heifer implemented projects that supports climate resilient livestock production and marketing; including training under the Improved Animal Management (IAM) program, increased access to AgroVet services through 662 Community AgroVet entrepreneurs (CAVE), and increased access to improved breeds through the Community Initiative for Genetic Improvement in Goats (CIGIG) program.This research aims to contribute to Heifer Nepal's programming by providing greater insight into the context, challenges, and opportunities for Nepal's smallholder goat farmers, with special focus on Heifer's work to promote the use of CSA techniques and their potential to reduce carbon emissions. The research was conducted in three districts encompassing the main agro-ecological contexts in which Heifer Nepal works, including Sarlahi (Eastern Terai), Chitwan (Inner Terai), and Surkhet (Mid-West Hills). The research outputs are divided into four separate, but complementary information briefs: The information presented in this brief (Brief 2) is based on analysis conducted using the CLEANED tool. CLEANED (Comprehensive Livestock Environmental Assessment for improved Nutrition and secured Environment and Sustainable Development along livestock value chains) is a rapid ex-ante environmental impact assessment tool that allows users to explore multiple impacts of developing livestock value chains by running different intervention scenarios. The intervention scenarios represent differences in goat production systems including breed types, feeding practices, and herd size. The tool then provides impact estimates for several environmental indicators i.e., land requirements, water use, and greenhouse gas emissions (GHGe) for each of these scenarios or production systems. The CLEANED analysis assesses the potential impact of higher adoption rates for CSA practices such as composting, zero grazing, legume intercropping, improved breeds, feed additives, and improved fodder on the above indicators.The tool was set up using RHoMIS survey data for Heifer and non-Heifer households in the three study regions: the districts of Saptari (Eastern Terai), Chitwan (Inner Terai), and Surkhet (Mid-West Hills).For more details on the characteristics of the three regions and the RHoMIS survey tool, see Brief 1 in the series. This second brief sets out to answer the following research questions: Household characteristics, livestock production practices and agro-climate conditions interact and together determine the performance and environmental footprint of a livestock production enterprise. In order to deal with this heterogeneity, a farming household typology was developed, classifying farming HHs into three distinct HH types per region. In the first instance, farming households were grouped in their respective study regions -Eastern terai, Inner terai and Mid-West hills. In each of the regions the households were further divided into those in Heifer supported cooperatives (35 HH each from two Heifer cooperatives) and those in non-Heifer supported cooperatives (35 HH from one non-Heifer cooperative). For each of the resulting 6 types, the typical goat production system was described based on the survey results. The non-Heifer HHs were characterised by low levels of CSA adoption, while the Heifer HH had on average slightly higher levels of CSA adoption. In terms of herd size and composition, the key difference between the non-Heifer HH's and Heifer HH's goat enterprise is the presence of improved breeds and larger herd sizes. This is most apparent in Chitwan where average herd sizes increased from 6 to 17 heads, followed by Sarlahi where they doubled from 4 to 8 heads, and finally Surkhet where there was a 50% increase from 4 to 6 heads.A third type was introduced in each region, the aspirational or \"high adoption\" HH who manages the goats intensively and has adopted the identified CSA practices on 80% of their holding. The CSA practices that were included in this aspirational are: intensive zero grazing; increased share of improved feeds in the feed basket such as feed additives, cultivated fodder, and concentrates; increased share of improved breeds in the herd; reduced use of chemical fertilizers through composting; legume intercropping with chickpeas and lentils; and mulching. While the herd size of the Heifer and aspirational HH's goat enterprise is the same, the latter has a larger proportion (80%) of improved breeds (see Table 1 for details). Key differences in the feed basket are covered in the next section. Feeding practices are one of the main differentiating factors for these 9 different types and form the key input into the CLEANED tool. A breakdown of the typical feed basket for Heifer and non-Heifer cooperatives for each region and season are presented in Figure 1. Generally, the feed baskets of Heifer and non-Heifer HH were similar across the three regions with grazing constituting 60-70% of the feed intake by small ruminants, followed by gathered forage, crop residues, cultivated forage, grains, and supplements. The only exception was for Heifer farming HH in the Western Hills where grazing constituted a smaller proportion of the feed basket, being substituted with cultivated forage and crop residues. There are a number of factors that may be contributing to the smaller share of grazing in the feed baskets of Heifer supported cooperative in Surkhet, with cooperative representatives highlighting a lack of available grazing, and farmers choosing to dedicate a larger share of their land to crop production. This may result in the impact of Heifer programming in terms of the increased share of improved feeds to be overexaggerated, which is supported by the CSA adoption data from RHoMIS that does not show a markedly higher adoption rate for improved feeding practice amongst Heifer cooperatives. This disparity likely stems from inherent differences between the farming systems in the control non-Heifer cooperative and the Heifer supported cooperatives. These differences should be considered when interpreting the results and attributing all impacts to Heifer programming.The \"high adopt\" aspirational type was modelled using an optimised feed basket based on Heifer \"medium adopt\" feed basket data but with even greater use of improved feeding practices under an intensive zero grazing regime. Consequently, the feed baskets of the \"high adopt\" HH consist predominantly of cultivated forage, along with grains, supplements, and gathered forage. The largest differences are recorded when comparing either the non-Heifer \"low adopt\" or the Heifer \"medium adopt\" to the aspirational \"high adopt\" HH typology.As discussed in the previous section, the aspirational scenario has been developed to indicate what the impact of a goat farming HH would be, were they to implement the recommended CSA interventions (composting, zero grazing, legume intercropping, improved breeds, feed additives, and improved fodder) on 80% of their system. This scenario sets out a target of what can be achieved with continued and targeted support to Heifer HH.Comparing the \"low\" or \"medium\" to the \"high adopt\" or \"aspirational\" farming HH typology, shows considerable potential impact across all regions and metrics. Land use intensity falls by between 74-85%, water use intensity by between 87-98%, and GHGe intensity by between 74-91%. These results demonstrate the considerable potential for improved production efficiency and more sustainable production methods. These types of interventions will therefore be essential in supporting Nepal's goat sector to grow production in line with domestic demand, while also contributing to Nepal's commitments in terms of globally agreed GHG mitigation targets. The CLEANED tool was further used to isolate the potential impact of priority CSA interventions in each of the regions. Results of the analysis are presented in table 3 along with information on their adoption rate, perceived impact, information and training sources, and the main barriers to adoption, identified by HH through the RHoMIS survey. Details on the input data and key assumptions used for this analysis can be found in annex 2.Improved forage production supports goat farming HH in Nepal to increase the quality of their feed baskets, through the introduction of highly nutritious feeds. Cultivated forages, with effective selection and careful management, can also provide vital feed sources in lean months or following disasters when grazing is limited. These factors contribute to increased live weight gain (LWG) (Khanal & Upreti, 2014). Farming HH in Nepal often choose which forages to plant based on their dry matter yield, fuel wood yield, length of harvested season, and to a lesser extent their nutritional and energy yield (Degen et al., 2010).In addition to the productivity benefits, improved forage crops can increase the eco-efficiency of goat production by reducing the methane emitted through enteric fermentation (Ku-Vera et al., 2020). Forage legumes can also reduce the need for inorganic fertilisers through their ability to fix nitrogen, increase levels of soil organic carbon, and reduce nutrient leaching (Kovacevic, 2021). In our analysis and in line with these insights, improved forage production has been found to reduce emissions intensity by between 18-43% depending on the region.Cultivated and gathered forage constituted on average 28% of the feed basket across the three districts, with a higher share in Surkhet which has less available grazing than the other districts (see figure 1). Commonly cultivated forage crops include tree and shrub forages such as bakaino (melia azedarach), kimbu (morus alba), tanki L (bauhinia purpurea), ipilipil L (leucena leucocephala), mendola L (tephrosia candida), dabdabe (garuga pinnata), and khanayo (ficus cunia). Other promising forage crops commonly grown include grasses, ground legumes, and oats such as napier (pennisatum sp.), berseem L (trifolium alexandrium), and Jai (avena sativa). See figure 2 for a breakdown of mitigation potential of each of the major forage crops per region, with reductions in emissions intensity ranging from 16-45%, with kimbu, jai, bakaino, and ipil-ipil performing the best. Chitwan and Sarlahi harbour greater mitigation potential than Surkhet where cultivated forages already constitute a larger share of the feed basket for Heifer supported HH.Of the HH adopting improved forages, 94% found them to be beneficial or very beneficial, with 38% having received training from Heifer on their production. A good proportion of households growing improved forages highlighted that it was a labour-intensive activity and that sometimes they lacked sufficient technical knowledge on the different varieties and their management.As with improved forages, the introduction of feed additives into the goat feed basket offers multifaceted environmental and productivity benefits. Feed additives such as rice bran, maize bran, rice husk, and maize husk are highly nutritious and energy dense feeds that can increase goat productivity (Osti, 2020). These are often mixed with kitchen waste and other vegetables to create homemade concentrates. Like improved forages, feed additives reduce the emissions from enteric fermentation in goats along with the land requirement for goat production, reducing emissions and the pressure on forests and other agricultural lands. Oilseed meals and cakes are also home produced in some rural areas, being rich in proteins, antioxidants, fibers, vitamins, and minerals (Osti, 2020). Figure 3 provides a breakdown of the impact of different feed additives on emissions, with reduction in emissions intensity ranging from 36-58% depending on region and crop. Of those HH using feed additives, 98% found it beneficial or very beneficial, with 23% getting information on the practice from Heifer. There was however a significant number who identified challenges linked to the high costs of purchasing inputs.The construction of improved sheds supports goat rearing HH to transition away from extensive to semiintensive/intensive production. Improved sheds offer protection to goats from harsh conditions, including high summer temperatures, excessive rainfall, or extreme cold winter conditions, all of which impact goat production in Nepal. Raised sheds constructed above the ground with slatted floors create a healthy airflow and support the removal of dung for more hygienic conditions, this in turn reduces the incidence of parasites and infectious diseases. Sheds also provide goats with protection from predators such as tigers and jackals.For the analysis, the construction of improved sheds has also been bundled with changes in feed management, with a higher proportion of the feed basket coming from cut and carry stall feeding versus grazing. These improvements in the feed basket influence the live weight gain of goats and their impact on the environment. The practice is linked with improved manure management techniques with manure removed and stored separately. Collectively, our analysis indicates that these measures reduce the emissions intensity of goat production by 56-84% depending on the region.Of those HH adopting improved sheds, 97% found them to be beneficial or very beneficial, with 29% receiving information from Heifer and 26% training.Challenges for HH in constructing controlled sheds include labour constraints, high costs, and technical knowledge (table 3).There are four breeds of indigenous goats that make up the majority of the goats found in Nepal, namely the Chyangra which is found in mountain areas, Sinhal from the high hills and low mountains, Khari from the hills and mid hills, and the Terai which is mostly distributed in the lower plains. Although uncommon, there are several improved breeds, namely the Boer, Jamnapari, Barbari, and Beetal, that are used for crossbreeding with indigenous Khari and Terai breeds (Bhattarai et al., 2019). It has been noted however that while there is a strong preference from enterprises to increase the share of improved and crossbreed goats due to their greater productivity potential, there is a need to conserve the genetic resources of indigenous breeds and their adaptive attributes (Bhattarai et al., 2019).The introduction of improved or crossbreed goats is generally favoured by enterprises due to their higher growth rates, higher feed conversion ratios, their prolificacy, resistance to internal parasites, and the carcass yield (Bhattarai et al., 2019). These factors impact the LWG of improved or crossbred breeds compared to their native counterparts while reducing the feed requirement per kg of meat (Sapkota et al., 2016). These changes in LWG were included in the model based on figures provided by experts form the National Goat Research Centre of the Nepal Agricultural Research Council (see details in annex 1).In our analysis, the introduction of improved breeds reduces the emissions intensity by 22-26% While only a small proportion of HH assessed were found to be using improved breeds, of those that were, 75% found the practice either beneficial or very beneficial (the lowest approval rating of all the practices covered). The main constraints for the introduction of improved breeds were the labour requirement and issues around technical knowledge on appropriate animal husbandry practices. Heifer was found to play a key role in providing information and training on improved goat breeds, which is to be expected given their work on introducing and scaling the adoption of improved breeds through their passing on the gift programme.Compost production and application is not widely implemented by Heifer supported HH, although those supported by Heifer are more likely to be implementing it than non-supported HH. Compost application promotes healthier, nutrient rich soils, that better support plant growth, store more organic carbon, and reduce the need for inorganic inputs by 23-25% (Ahmad et al., 2008;Kabato et al., 2022;Sarwar et al., 2007). This reduces the emissions associated with goat production for animals fed using forage crops, crop residues, or additives grown on those fields. As a result, it is estimated that emissions associated with goat production on farms practicing composting will be unchanged in Surkhet and fall slightly by 1-4% in the other regions where higher levels of chemical fertilizer use are recorded. This figure is comparatively low compared to other practices as the systems approach used by the CLEANED tool assumes that higher forage productivity results in a greater holding capacity for livestock, with emissions reductions per ha in the form of reduced chemical input use and increased soil organic carbon offset by higher number of livestock heads.Of the small number of HH practicing composting 95% rated the practice as either beneficial or very beneficial, with 18% receiving training on the intervention from Heifer. A large proportion of implementing HH did consider the practice to be labour intensive, acting as a barrier to more widespread adoption.The incorporation of leguminous crops into agricultural production systems increases the availability of Nitrogen in the soils, reducing the need for inorganic inputs, increasing yields, and supporting healthier soils (Alomia-Hinojosa et al., 2018). For more details on the impact of legume intercropping on soil health see Brief 3 in this series on CSA practices and soil health. Legume crops can also become a valuable source of livestock feed in the case of forage legumes or can be sold to generate additional income. Livestock fed using forage legumes or from crops grown in conjunction with legumes tend to have a smaller environmental impact than those with conventional feeding (Kovacevic, 2021). We estimated that legume intercropping results in a reduction in emissions intensity of 52-63%.A small number of HH were found to be implementing legume intercropping or rotation in Sarlahi and Chitwan districts while almost none were using the practice in Surkhet. Of those HH adopting the practice 81% ranked it as either beneficial or very beneficial, but only a small proportion (16%) identified Heifer as the source of information on the practice. Barriers to more widespread adoption included it being labour intensive and a lack of technical knowledge for effective implementation.Differences in HH type and region were found to significantly influence the land use, water use, and emissions intensity of goat production. The differences across regions were mostly driven by variations in the feed basket, which while fairly consistent between Chitwan and Sarlahi, saw Heifer supported HH in Surkhet use a much larger share of improved feeds compared to their non-Heifer supported counterparts, due to limited access to grazing and other factors arising from inherent differences between the farming systems in the non-Heifer and Heifer cooperatives (See Brief 1).Moving from the non-Heifer low adopt scenario to the Heifer medium adopt scenario had the largest impact in terms or water use intensity and GHGe intensity in Surkhet, mostly driven by the changes in the feed basket. In the other two districts where smaller changes in the feed basket were observed the impact on water use and GHGe intensity was far lower, highlighting the importance of improved feeding practices in addressing issues around natural resource management and GHGe. In all cases there was potential for considerable savings in land use, water use, and GHGe intensity where HH to transition to the aspirational high adopt scenario. This scenario was modelled based on the best performing HH in each region where they were implementing improved CSA practices on 80% of their land/herd. Improved sheds and legume intercropping were found to be the most effective mitigation measures across the three districts, currently only receiving moderate to low adoption amongst Heifer supported HH. As most HH that are already adopting these practices find them either beneficial or very beneficial, there is considerable potential to further scale these interventions, unlocking GHGe reductions in the process.Improvements to the feed basket through the introduction of feed additives and improved forage crops were also found to be effective mitigation measures, each of which perform better in Sarlahi and Chitwan where their current share of the feed basket is low. The best performing forage crops were kimbu, jai, bakaino, and ipil-ipil. While the best performing feed additives were rice bran and maize bran in terms of reductions in GHGe intensity of goat production.The results highlight the potential of CSA interventions to greatly improve the natural resource use efficiency and reduce the emissions intensity of goat production in Nepal. Identifying areas where Heifer programming is already being successful along with the priority interventions to be targeted with additional support programming.","tokenCount":"3573"} \ No newline at end of file diff --git a/data/part_3/8694275358.json b/data/part_3/8694275358.json new file mode 100644 index 0000000000000000000000000000000000000000..aad94d4cdebf169bfe7d2019450a1413bab4b394 --- /dev/null +++ b/data/part_3/8694275358.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"485c6bf5957ee04281cfd5475146b385","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/967719dd-f3d3-4f8a-9e3c-7af5f5bf1a07/retrieve","id":"-1342546188"},"keywords":["Smallholder dairy production","dairy development policy","informal markets","developing countries","poverty reduction","South Asia","East Africa"],"sieverID":"0f44ec8b-ccca-4316-95f6-019ac676d896","pagecount":"67","content":"This is the 44th of a series of Working Papers prepared for the Pro-Poor Livestock Policy Initiative (PPLPI). The purpose of these papers is to explore issues related to livestock development in the context of poverty alleviation.Livestock is vital to the economies of many developing countries. Animals are a source of food, more specifically protein for human diets, income, employment and possibly foreign exchange. For low income producers, livestock can serve as a store of wealth, provide draught power and organic fertiliser for crop production and a means of transport. Consumption of livestock and livestock products in developing countries, though starting from a low base, is growing rapidly.The aims of this study are to analyse trends and determinants of dairy development in East Africa and South Asia in order to assess the role of policies and institutions on the evolution of the sector in general, and their impact on the poor in particular. Although traditional and commercial dairy production/marketing systems coexist in both regions, traditional/informal dairy production systems continue to dominate, are generally competitive, and have played a key role in sector development, because of continued strong demand for the products and services they offer. Policies which build on traditional production systems, with a particular focus on employment generation and food safety and quality, are therefore expected to be pro-poor.We hope this paper will provide useful information to its readers and any feedback is welcomed by the authors, PPLPI and the Livestock Information, Sector Analysis and Policy Branch (AGAL) of the Food and Agriculture Organization (FAO).Tables Table 1: 2: Key factors affecting milk production per worker in 5 regions in Kenya, 1989Kenya, to 1999. ..18 . ..18 (1995)(1996). .................28 Figure 13: Number of artificial inseminations carried out and calves born in Ethiopia, 1984Ethiopia, -2000.34 .34 Figure 14 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or its authorities or concerning the delimitations of its frontiers or boundaries. The opinions expressed are solely those of the author(s) and do not constitute in any way the official position of the FAO.As a simplistic description of the beginning and end points of the dairy development process, two stylized representations of dairy systems are used:• the 'traditional model' (also known as the small-scale subsistence or Southern tropical model) to reflect the small-scale, farm-household milk production and informal market systems that predominate in most developing countries; and• the 'commercial model' (also known as the large-scale industrial or Northern coldchain model), representing the large-scale industrialized production and integrated marketing that is observed in developed countries.It is important to note that elements of both models will often occur simultaneously in both rich and poor country settings. The characteristics of these models are described below and reflect both farm and market differences.Characteristics of 'traditional' milk production systems include:• multi-objective household model of farmer behaviour • low levels of inputs and outputs • nutrient deficit in both farm and household Characteristics of 'commercial' milk production systems include:• single objective enterprise model of farmer behaviour • high levels of both inputs and outputs • nutrient surplus in both farm and household Characteristics of 'traditional' milk marketing systems include:• diffuse market structure, consisting of many small-scale market agents• artisanal processing, labour-intensive handling and transport methods • low-cost products, mostly liquid and limited in diversity • great diversity in market behaviour and roles • no voice or role in dairy policy making Characteristics of 'commercial' milk marketing systems include:• concentrated market structure, consisting of relatively few, large-scale, verticallyintegrated market agents• industrial processing, based on capital-intensive technologies at all market levels • value-added products, mostly non-liquid and diverse • little diversity in market enterprise types • loud voice and large role in dairy policy making At the heart of this process is the shift from a multi-objective farm-household activity to a focused-objective enterprise activity. The conceptual framework poses a number of factors that drive this shift. These include:Demand levels and consumption patterns, which are closely associated with income growth and urbanization and with local consumption traditions. Milk is not a commodity but rather a complex set of products, the demand for which is determined by:• increased demand for quality, food safety and standardization • changes in consumption habits and lifestyles • demand for convenience • changes in levels of demand Opportunity costs of labour and land are also key driving forces for system change, which tend to bring about a substitution of capital for both of these factors and a general shift towards commercial systems. Aspects of this include:• opportunity costs of labour in milk production • opportunity costs of labour in milk markets • opportunity costs of land Market access, infrastructure and institutional development condition the structure and performance of production systems for a highly perishable product. Elements of these described in the report include:• transaction costs and infrastructure • transactions costs and institutions • transaction costs and location of production Finally, technology and policy interventions can alter the opportunities and incentives for dairy system change and development. Generally, improved technology will reduce costs and induce shifts towards more commercial systems; adapting to changes in other factors will be dependent on the availability of technological alternatives, ether existing or new. Policies -deliberate or inadvertent -for market regulation and infrastructure investment can alter market institutions and transactions costs. Critically, policies can partially determine the winners and losers of structural changes in the sector, determine market participation of smallholders versus larger producers and employment generation and incomes at both farm and market level.While development, meaning commercialization, of the dairy sector is favourably viewed by policymakers, it should be understood in the context of the contribution of livestock production to livelihoods and income generation for smallholder farmers through the production of higher-value products compared to most crops. Of key importance are the differences in policies that can condition those outcomes in terms of benefits to different communities and social groups. Elements of the outcomes for the poor include income and employment generation, which includes both selfemployment of farmers and market agents but also hired labour on farm and in the market. Less tangible returns to milk production include the value of livestock assets for finance and insurance functions.Dairy development is also linked to nutrition, both among farm families and resourcepoor consumers of dairy products and also on farm in soil nutrients. Consumption of even small amounts of milk can have dramatic effects on improving the nutritional status of poor people and is especially important for children and nursing and expectant mothers. Further, as long as low soil fertility remains the primary constraint to agriculture in most developing countries, manure from dairy cows can provides a critical source of organic matter and nutrients, boosting smallholder's crop yields on farms where chemical fertilizers are often unavailable and unaffordable.Policy interventions, as well as market forces, can help to determine whether dairy development follows more or less equitable development paths. An equitable development path occurs when shifts towards farm and market commercialization are associated with increased alternative opportunities off-farm, in urban areas and in alternative agricultural enterprises or industries. An inequitable development path occurs when increased commercialization at farm and market levels are associated with reduced opportunities and alternatives for small-scale farmers and market agents.Our conceptual framework has at its core the shift from labour intensive practices towards more capital intensive practices, both on farm and in market, due to increased opportunity costs of labour. That shift also implies higher productivity of labour. The stages of change between traditional and commercial can thus be measured in terms of labour productivity; if we equate that change with 'dairy development' we can use labour productivity as a general proxy for dairy development, reflecting changes in all parts of dairy systems. Due to data limitations, that productivity measure will take several different forms in the analyses that follow.These two regions represent some of the most important dairy development zones among poorer countries globally. Within them occur countries where dairy production and consumption has a long historical tradition and has been an important part of agricultural systems. In other countries in the same regions, however, dairy production has been a less significant enterprise, often for cultural reasons but also due to limited potential. These regions thus present an excellent framework for understanding both the driving factors and the pro-poor implications of dairy development and of related policies and interventions. Data used from five South Asian countries and ten East African countries, based on FAOSTAT and the World Bank's World Development Indicators database, is used in a regional analysis of comparative trends in milk production. Milk production is used as a proxy for dairy ix development. Explanatory variables include proxies for various aspects of demand and market development, inputs and labour markets, technology and human capital, infrastructure and transaction costs and policy.East Africa. Demand-related factors play a key role in explaining development of the dairy sector in East Africa, as shown by the significant contribution to growth of demand-related factors in the three countries with the fastest growth in milk production (Sudan, Kenya and Uganda). Development of formal milk markets, input markets, technology and policy do not explain the differences between fast-growing countries and the rest. This suggests that adjusting supply to type and quality of products demanded, expanding demand by reducing consumer prices and reducing transaction costs should be a necessary condition to expand the dairy sector in East Africa.South Asia. The dairy sector in South Asia is following a different path. Consumption of dairy products is higher on average than in East Africa and demand-related factors have been contributing to growth in the dairy sector for the past 30 years in all countries. Differences in growth are more related to the possibility of expanding supply to match the growing demand of dairy products. India and Pakistan were able to link the transformation in agriculture originated in the Green Revolution to successfully expand production and output; this is reflected in the contribution of input markets and technology to growth in milk production. In the case of countries with slow growth in milk production, such as Bangladesh and Nepal, development of cereal production, feed markets and a growing demand did not translate into technical change in the dairy sector, as was the case in India and Pakistan. The policy environment in these countries is also less favourable than in the fast-growing countries. Sri Lanka's constraints to growth in the dairy sector appear to be mainly on the supply side. As in East Africa, development of formal milk markets in South Asia is not associated with increased growth rates.These four countries represent a range of production conditions, histories and policy environments related to dairy development: India and Kenya are also held up as examples of 'successful' dairy development. Where available, detailed provincial and district data were gathered from each country on dairy development and its potential determinants. Data were analysed using similar approaches to those applied in the regional analysis, outlined above. Due to severe data limitations, relatively complete analyses were only possible in Kenya and in India. Data were also gathered from farm and market level on income and employment generation in different scales of dairy enterprises.The results exhibit more similarities than differences. Of importance to dairy development in all cases are the roles of demand growth, the traditional market and availability of improved dairy animals. Policies related to investment and trade show mixed results. More detail from the four country case studies can be found in Part 2 (Kenya and Ethiopia -this report) and Part 3 (Pakistan and India) of this series. The final synthesis of the regional and case study results, summarized below, highlights the main outcomes from all the analyses.xThe analyses highlight the importance of growth in consumption and demand, brought about either through growth in GDP per capita or exports, or through increased urbanization.Supply-side interventions can, in some cases, be over-credited with bringing about growth. The Indian milk revolution, for example, may be largely a result of demandside forces, although the technical and agricultural sector factors discussed below played a key role as well. Unless these facts are understood, there may be overemphasis on supply-side interventions that have not been demonstrated to bring about development in some cases.Clear understanding of potential market trends and opportunities is needed for policy and planning in the dairy sub-sector. Because demand is highly conditioned by local perceptions and traditions regarding dairy consumption, this understanding should be pragmatic and based on local realities, not on assumed duplication of trends observed elsewhere. Where poor people play a large role in the consumption of dairy products, interventions to support the provision of low-cost products are likely to simulate dairy development.Interventions to facilitate better, more efficient supply-demand linkages are also likely to have positive impact.Improved dairy animals and other farm technology. A consistent and clear outcome of the analysis, both at the regional and country-case levels, is that nearly all strong dairy development growth scenarios are associated with technical change in terms of yield per animal. Genetic improvement has obviously had dramatic impact on development and growth.• Clearly, use of exotic cattle genes is a rapid and potentially sustainable path to higher productivity, even among small-scale and resource-poor farmers and in warm, semi-arid or humid climates. At the same time, the failures caused by importing high-grade animals should be noted and avoided.• National and local breeding strategies need to address the realities of climate and disease risk. Given appropriate breeding strategies and disease control measures, however, it is possible to develop and sustain cross-bred dairy production systems; such systems have often played a key role in dairy development.• Although it is difficult to capture the role of fodder technology in the aggregate analyses in this study, for the Kenya case it was possible to demonstrate that planted fodder technology played a key role in growth in dairy productivity.• Research has shown that the 'appropriateness' of intensive fodder production is much more likely to depend on availability of cheap labour, scarcity of land and good access to milk markets, than it is on agro-climatic setting. Where labour is scarce, evidence shows that intensive fodder cultivation practices and feeding of crop residues to cattle, unless mechanized, are unlikely to be taken up. Interventions to promote those should pay very close attention to labour opportunity costs.• Where relative land and labour values constrain uptake of specialized fodder technologies, a potential avenue for increased productivity is through improved 'food-fodder' crop varieties, bred to increase the fodder quality and digestibility of the straws and stovers they produce.In some regions and countries, general agricultural sector growth and transformation was shown to play a role in dairy development; for example India and Pakistan were able to link the transformation in agriculture originated in the Green Revolution to expand milk production. The link with the agricultural sector is not as evident in some other South Asian countries or in East Africa. Productivity change in those cases may continue to rely on fodder technology, given the low opportunity costs of labour.Traditional milk and dairy product markets. One of the key findings of the study is that traditional/informal milk markets have apparently played a key role in dairy development in both regions and in most countries. In countries with the strongest growth, such as Pakistan, India, Sudan and Uganda, traditional, small-scale markets control over 80% of marketed milk; there is no evidence that this basic structure will change significantly in the next few decades. These facts, which are often overlooked because traditional markets are generally not reflected in national dairy industry statistics, pose several important implications for dairy policy and development.• All the evidence suggests that the traditional market dominance is not a result of lack of investment in formal market channels, or of non-enforcement of national milk standards; rather they are the result of continued strong demand for the products and services that they offer. As a consequence, in many cases, investment in formal dairy processing facilities, both in the private and public sectors, have failed leading to underutilized capacity surviving on subsidies or abandoned milk processing plants and cooling facilities.• In some cases there is strong demand for traditional products by high-income consumers as well as the resource poor; growth in disposable income may not necessarily significantly reduce demand for traditional products.• The analysis in this study does not support the view that formal market structures are required to stimulate dairy development. One of the countries in this study with the strongest growth, Pakistan, displays a negligible formal market share. In East Africa, the analysis suggests a negative association between formal market share and dairy development, as measured. This is likely to be because formal market share in that region was less a result of market forces but rather due to public investment decisions. Also, poorly managed formal market institutions provided a much less effective link between farmers and consumers than the traditional informal market.• Traditional informal markets have clearly provided an effective, functional link between farmers and consumers which responds to consumer demand: they should not be regarded as market failures. Moreover, such markets are generally those most often serving the needs of small-scale farmers and resource-poor consumers. The analysis has also demonstrated the large and positive employment implications of such markets.• Public policy-makers should engage constructively with traditional markets rather than oppose them directly, particularly as demand for food safety may grow with increases in disposable income. Policies that allow the continued functioning of such markets, but which support increased quality and food safety, are likely to be pro-poor in nature. Policies that simply oppose and attempt to police such markets are likely to impact negatively on small-scale farmers, consumers and small-scale market agents.xii Dairy co-operative development. Mixed messages emerge from the analysis of the two countries where co-operatives have played a significant role in dairy development: Kenya and India. In Kenya, evidence suggests that dairy co-operatives played a significant role in fostering dairy development, primarily by providing a stable market environment and delivering services to farmers. In India, there was no empirical evidence that co-operative development was associated locally with dairy development as measured, although it were found to be associated with genetic improvement in dairy animals.• Dairy co-operatives may play an important role in providing a base for service delivery to farmers, stable agricultural knowledge systems for uptake of improved technology and increased management skills among farmers.• There is no empirical evidence that dairy co-operatives are more effective than other market channels in linking poor farmers to output markets. Pakistan illustrates very dramatically that strong market growth can occur in the absence of dairy co-operatives.• The mixed experience suggests that dairy co-operative development is heavily dependent on good co-operative management, honest and effective investment of resources and accountability to the interests of the farmer members. Political and governmental influence in co-operatives needs to be minimized.• Further, dairy co-operatives often cannot easily tap into the strong demand for traditional products and raw milk and generally remain tied to demand for formally processed products. While traditional demand remains the driving force, dairy cooperatives face the same growth impediments as the formal private sector.• Investment in dairy co-operative development can be effective and pro-poor -if it is well-managed, placed outside strong political forces and is linked to strong demand. Because of these constraints, dairy co-operative development should not be the primary focus of dairy development efforts; rather it should be part of a mix of market channels, including formal private sector and small-scale traditional.• Other less formal forms of farmer groups, such as self-help groups, could play important roles in some local cases.There is ample evidence to suggest that smallholder dairy producers are generally competitive and are likely to endure for some time, particularly where the opportunity costs of family labour and wages remain low. The most compelling evidence towards this is the continued dominance of smallholders in all the countries studied, even where there is steady economic growth. Furthermore, dairy as an enterprise is an option available to landless and socially marginalized groups.• Policy-makers and development investors should resist the often-heard assumption that the role of smallholders is ending and that efforts should now be made to support larger-scale, 'more efficient' milk production to meet growing consumer demand. Instead, that growing demand should be used as a mechanism to help continue and sustain smallholder dairy enterprises.• Smallholders may, in some cases, face increased barriers to participating in changing markets; alternative options, such as contract farming, should be explored and promoted where appropriate.Public investment. Due to data limitations, the analysis was not able to show a link between agricultural research and development (R&D) and growth in dairy development, mainly because no measures of R&D investment specifically for dairy were available. In spite of the lack of strong empirical evidence in this analysis, it is reasonable to assume that investment in dairy R&D and provision of appropriate credit to smallholder producers will grow in importance, particularly as producers shift towards greater commercial orientation, increasing their demand for improved technologies and investment.xiii Trade policy. Imports and exports, as well as macro policy and level of openness of the economy, show very mixed results and cannot apparently be demonstrated to play a consistent role in the pace of development.• Exports, as demonstrated in South Asia, may play a role in dairy development.Export opportunities might increase if, for example, EU export subsidies are curtailed as is expected, although barriers to entry remain significant.• Countries that do not have a strong tradition of milk production and consumption, such as Sri Lanka and Bangladesh, are particularly susceptible to import competition. Supporting the development of traditional markets takes on the added feature of helping buffer domestic producers from imports.• Even though trade in dairy products tends to receive a disproportionate amount of attention, perhaps because of issues of national pride and self-sufficiency, there is little evidence that trade issues are of major importance for the welfare of the large majority of producers, market agents or even consumers. The projections of the Livestock Revolution (Delgado et al. 1999(Delgado et al. , 2001) ) show very clearly that the demand growth and opportunities in milk is going to happen domestically rather than across borders.• Policy-makers and planners would be well advised to focus their attention to the much larger and more dynamic domestic markets, rather than the smaller and less welcoming international markets.The lessons learned from this analysis, as well as those gleaned from the other research cited, suggest some elements of what might be termed an 'agenda for propoor dairy policy and development'.• employment creation in rural and peri-urban areas, both on farm and along market distribution and value chains• reliable income generation and asset accumulation for resource-poor farmers • provision of low-cost and safe dairy products to resource-poor consumers • improved natural resource management and sustained farming systems through dairy cattle-mediated nutrient cycling• improved child nutrition and cognitive development in resource-poor householdsSuch a model would simply incorporate the lessons and recommendations outlined above, and so would include the following main elements:• build on traditional dairy product consumption habits and preferences, at the same time as promoting demand for new products Kenya has one of the largest dairy industries in sub-Saharan Africa. It has a well developed production and processing capacity based on over 5 million improved cattle. This is the largest such herd in Africa 1 with more dairy cattle than the rest of the countries in East and Southern Africa combined. In economic terms, the dairy industry is the single largest agricultural sub-sector in Kenya, larger even than tea; it contributes some 14% of agricultural GDP and 3.5% of total GDP (Muriuki et al. 2004).Except during extreme drought years, Kenya is generally self-sufficient in milk and other dairy products. Annual milk production is estimated at about 2.4 billion litres, although the country has a domestic supply potential of 4 billion litres (Muriuki et al. 2003). About 64% of milk produced is marketed while 36% is consumed at home or fed to calves (Omore et al. 1999). Small quantities of dairy products are also exported to neighbouring countries. Smallholder dairy farmers, estimated to number over 1.5 million households, account for more than 85% of the annual total milk production and 80% of total marketed milk (Staal et al. 2001).Dairy production is concentrated in the highland and high-and medium-potential areas of the country, occupying about 2.8 million hectares (GoK 1991). Ranking milk production by administrative provinces, Rift Valley produces 47%, Central and Nairobi 31%, Eastern 11%, Nyanza 6%, Western 4% and Coast 1% of total production, respectively. Besides growing crops for subsistence and commercial purposes, most dairy farmers keep up to three cows with their followers, typically on about one hectare of land in the intensively farmed high-potential areas and 2.5 hectares in the less intensively farmed medium-potential areas (Staal et al. 1998).Dairy production systems largely entail mixed crop-livestock farming which includes other livestock (mostly poultry, sheep and goats), cash crops (coffee, tea and horticulture) and subsistence crops (maize, beans and vegetables). Since Kenya gained independence in 1963, significant changes in the dairy industry have occurred with a major shift towards smallholder production and marketing.The livestock population is estimated at 10 million beef cattle, over 5 million dairy cattle and their crosses, 9 million goats, 7 million sheep, 800,000 camels, 520,000 donkeys, 300,000 pigs and 29 million chickens (Table 1). In the high potential areas with adequate rainfall and high population densities, exotic breeds of livestock and their crosses are kept for the production of milk, eggs and red and white meat on both smallholder and large-scale commercial farms. Where available land is limited, farmers use zero or semi-zero grazing systems and cultivate fodders for dairy cattle. In these areas, production is market-oriented. In the low potential areas, production is mainly by large commercial ranches, mostly keeping improved livestock meat breeds. In the arid and semi-arid areas (ASALs), indigenous livestock breeds, such as zebu cattle, are kept under pastoral and semi-pastoral systems. • expansion of rural infrastructure (e.g. roads, electrification, water etc).These efforts significantly contributed to the rapid growth of the dairy industry until the early 1980s, when inadequate government budget allocations caused the quality of services to decline (Omore et al. 1999). The demand for milk and milk products is influenced by many factors including changes in: (i) consumer prices, (ii) disposable incomes, (iii) urbanization, and (iv) consumer preferences (taste). The effects of some of such variables as price and income are briefly reviewed later in the report.This review suggests that policies have historically targeted achievement of national development goals in food security, employment and income generation. These policies have influenced dairy production and marketing and have resulted in phenomenal increase in the contribution of smallholder farmers to total national marketed milk production. The policies have affected land tenure (transfer and subdivision from settler farmers to smallholders), deregulation of input and feed prices, decontrol of producer prices and government divestiture in the provision of public services (Nyangito et al. 2003). This has enabled a considerable increase in private sector investments in feed production and distribution, privatization of delivery of veterinary services and private sector involvement in milk processing and marketing. There are still, however, areas that require both public and private sector participation to revitalize the dairy industry further.A conducive legal regulatory framework is important in facilitating growth and development in the dairy industry and economy. The regulatory framework for the dairy industry consists of various laws enacted in a number of legal documents, not all of which are necessarily harmonized. These acts include the Dairy Industry Act (Cap 336, Laws of Kenya) enacted in 1958, which established the Kenya Dairy Board (KDB) to regulate the dairy industry. The act has been revised in the past (1962, 1972 and 1984) with the aim of improving sectoral performance in the dairy industry. Changes in the legal framework to support changing policy circumstances have generally lagged significantly behind various public policy pronouncements from senior government officials; nonetheless the latter are often taken as 'official policy' and implemented by officials on the ground. The Dairy Industry Act has been under a stop-go revision process from 1997 to 2005, but has yet to be finalized and sent to parliament.The main functions of the KDB include: (i) licensing of retailers, (ii) controlling of milk movement and quality, and (iii) appointment of dairy inspectors. However, the KDB lacks the necessary resources (personnel, laboratories and operational funds) to effectively implement its mandate (Muriuki et al. 2003). Other bodies charged with regulating the milk market, such as the Kenya Bureau of Standards (KEBS) and the Department of Public Health of the Ministry of Health, seem to experience similar weaknesses.Another important regulation is the Co-operative Development Act (Cap 390, Laws of Kenya), which governs all dairy marketing co-operatives. Despite good performance in many cases, most dairy co-operatives have not allowed sufficient farmer participation in their management. The act was revised in 1997 to ensure greater farmer control and less government intervention. In early 2004, it was again revised to promote the contribution of co-operatives to economic recovery and development, but this process has not been completed.The Companies Act (Cap 486, Laws of Kenya) is another important legal and policy framework that provides for registration of companies engaged in various business transactions in the milk supply chain. These include: (i) registration and licensing of milk processors, (ii) licensing of retailers, (iii) regulations of milk transportation, and (iv) inspectors' regulations (by KDB). Violation of these regulations is liable to prosecution.Another statutory body, KEBS -established under the Standards Act, CAP 496, Laws of Kenya -promotes adherence to standards in industry and commerce and undertakes educational work in connection with these standards. These standards are intended to safeguard both consumers and producers for product quality and for fair commercial dealings. KEBS has specified the methods of analysis to be followed for various products (including dairy products) and has powers to enforce these standards, by prosecution if necessary.Generally, the policy environment has been evolving since the early 1980s when various reforms were introduced which stressed less government participation in markets for various goods and services. However, most legislative processes have not kept pace with changes in policy directions, such as new thinking introduced through Poverty Reduction Strategies. As a result, there is now a tangle of more than 20 delayed bills in parliament that have some relationship to agriculture and livestock.Changes in policy implementation tend to occur not through changes in legislation but rather through changes in interpretation and implementation, which seems to be allowed considerable flexibility. Some of the regulations that are contradictory to new policy directions are ignored, while others are not enforced due to lack of adequate human, physical and financial resources.Until 1987, feed prices were controlled by the government through powers vested in the minister charged with livestock. The Kenya Farmers' Association (KFA) enjoyed a legal monopoly in the marketing of animal feeds. To reduce the cost of animal feeds, the government waived duty on imported feed ingredients and no additional taxes are levied on manufactured feeds. Price deregulation in 1987 resulted in increased participation in processing and distribution of animal feeds by both the private sector and co-operatives throughout Kenya (Mbugua 1999). There is now generally greater feed availability and usage in most parts of the country, although its quality is sometimes suspect. Lack of capacity to enforce regulations has created an environment that fails to deter or penalize manufacturers from supplying sub-standard feeds; variation in feed quality remains a critical constraint to increased farmer confidence in and use of concentrate feeds (Muriuki et al. 2003).Animal breeding programmes have aimed at improving dairy productivity, shortening calving intervals and enhancing herd fertility by minimizing breeding diseases while eliminating the cost of keeping a bull (Rege et al. 2001). The rapid and widespread adoption of exotic (Bos taurus) dairy cattle has been a striking and positive feature in the history of livestock development in Kenya, beginning with their introduction by colonial settler-farmers in the early 1900s. While annual milk production for local zebu breeds (Bos indicus) ranges between 100 and 200 litres per cow, cross-bred or grade dairy cattle in Kenya produce some 1400 to 1700 litres per year on smallholder farms, more on larger commercial farms. These figures lag behind the genetic potential of the cattle, but still yield good profits to smallholders. As has been demonstrated in numerous developing country settings, exotic breeds of cattle when crossed with local breeds can significantly improve milk yields in a sustainable manner. Finding an appropriate exotic-local breed mix has been, at least nominally if not actually, the principal objective of various dairy-breeding initiatives by the Kenyan Government and other development agents.While there is no explicit animal breeding policy in Kenya (unlike Uganda which developed a comprehensive National Animal Breeding Policy in 1997), various livestock and other generic policy statements have provided some direction for the breeding programmes in Kenya. For example the National Livestock Development Policy (1980) provided some brief guidelines, including:• expanded breeding and selection through wider use of artificial insemination (AI)and bull camps• expansion of the dairy herd and increased productivity per cow under intensive production systems through breeding and selection• expansion of services including:o dairy recording o registration of cattle o bull evaluation (progeny testing)• rearing of bull calves from best parents under extension service supervision • exploitation of government institutions and farms for stock breeding and multiplication of high-quality cattle• production of high-yielding disease-resistant cattle types supported by necessary input and services.To a large extent these policies were implemented in the early 1980s when the government was still subsidizing agriculture: for example through the establishment of government multiplication farms and recording and progeny testing. However, most of these effort failed and broke down from the late 1980s and 1990s, either through lack of resources and management, or though the withdrawal of support during the liberalization process.Cattle breed improvement initiatives started almost a century ago when European settlers first introduced dairy cattle breeds in Kenya. The Kenya Stud Book was established to keep animal breeding records in the early 1920s. Since then, major cattle breeding-related activities have been introduced. These include the Livestock Recording Centre, to keep livestock statistics and performance; Dairy Recording Services of Kenya -formerly Kenya Milk Records -to keep milk performance data; Central Artificial Insemination Station (CAIS) to produce semen; and the Kenya National Artificial Insemination Service (KNAIS) to distribute semen (Conelly 1998). To assist further the adoption of the higher-yielding inputs and enhance dairy productivity, duties were waived on imported semen and embryos. However, the breeding efforts were not well coordinated and they suffered perpetual financial problems that rendered the breeding programmes ineffective.Artificial insemination (AI) services were introduced in the 1940s, with motorized daily runs and frozen semen. Initially the AI programme was quite successful, especially amongst smallholders, and the Swedish Government was a major external financier. However, AI services did not escape the general problems of high operational costs and subsequent subsidies; its decline started in 1979, with government inseminations falling from 548,000 a year to around 60,000 by 1997 (Figure 2). This drop was accelerated by the progressive increase in the subsidized price of an insemination from KES 1 (about USD 0.05-10 depending on the year) that had been set in 1971, to an average of KES 580 for locally produced semen today (some USD 7.25) postprivatization, and double that for imported semen.In order to deal with these problems and as part of a wider agricultural liberalization policy, the government decided to privatize AI service provision in 1991. It also licensed private companies to import genetic material. However, the private sector has not grown sufficiently to replace the government service and many farmers are resorting to bull services of unknown quality. Figure 1 shows the dramatic shift from AI to bull service between 1990 and 2000 by highland dairy farmers. In addition to licensed AI providers, who are mainly vets, a few private large-to middle-scale commercial farms and co-operative societies run their own AI schemes using semen bought from CAIS. Since 1997, however, private provision of AI services has fluctuated, raising concerns regarding the manner of privatization and continued government involvement in AI service delivery.There is now considerable concern as to how to revitalize AI services within a liberalized environment in order to enhance dairy production in the country. The main issues affecting the breeding services revolve around:• lack of harmonization of breeding organizations and activities Bull (uncontrolled) 26%Bull (controlled) 34% AI 34%Bull (controlled) 63%Bull (uncontrolled) 18% AI 19%• government policy of not licensing inseminators trained by the private sector (only those with government training)• perceived high failure rates in AI services • high cost of private AI services -where these are available • lack of availability or systems to produce stabilized crossbreed semen • need for proper formulation of effective and viable bull schemes in areas where efficient AI is impossible or uneconomical• need for a national breeding policy.The strong legacy from the colonial era, including AI, recording systems and breed societies, provided the impetus for a strong genetic improvement system. Encouragement from the government, with external support particularly from Sweden, led to widespread uptake of improved cattle among smallholder African farmers. However, the liberalization and privatization process and lack of finance to government-supported institutions have led to significant decline in the ability of support services to sustain genetic improvement and in use of AI by farmers.One of the primary disease threats to dairy cattle in Kenya, particularly those with exotic genes, is East Coast fever (ECF) -a tick-borne disease which causes significant mortality. The practice of cattle dipping started in 1912 to control ticks and other disease vectors. Among smallholders, communal dips were the main approach in tick control programmes after independence; by 1987 there were over 6000 dips in the country. Disease and vector control programmes were a major source of success in the dairy industry, although their management was not very efficient. Following the collapse of government-run dip services, dips were handed over to local communities and were run by community management committees on a revolving fund basis (Omiti and Muma 2000). The success of this arrangement has been mixed to poor; some have reverted back to government supervision but with no improvement in service provision and less than half of communal dips were reported to be operational by the end of 1997 (Omore et al. 1999). Many farmers have opted to use hand-sprayers due to the decline in dipping services.Due to the increasing dominance of smallholders, in 1974 the first veterinary clinical centre was opened to cater for them. By 1978, eighteen clinical centres were in operation, expanding to 284 by 1995. Clinical services operated with strong public sector support, including government-employed veterinarians and nominal charges for drugs. In 1988, the government started to gradually increase the rate of cost recovery as well as encouraging the establishment of private veterinarians. Since the liberalization period of the mid 1990s, public intervention has focused on retaining surveillance and prevention of notifiable diseases, such as anthrax, contagious bovine pleuropneumonia (CBPP), ECF, foot-and-mouth disease, heartwater, lumpy skin disease and rinderpest. Since that time, clinical services have been left almost entirely to the private sector, with little attempt to support or coordinate the privatization process. As a consequence, privatization of veterinary services has been generally slow and patchy, especially in areas with low concentrations of dairy cattle (Oruko et al. 2000). It is generally agreed that public-good disease control interventions, such as vaccination, should be supported by government veterinary services and public resources. In terms of clinic services, the current policy is to provide public support to clinical services for producers in ASALs who depend heavily on livestock yet may not have resources to pay for services. In marginal localities on the fringes of the highlands, a mix of public and private service provision is intended, with eventual withdrawal of public support. In intensive high-potential areas, the private sector is expected to provide all clinical services. Today, reliable access to clinic veterinary services is nevertheless problematic and variable for different types of dairy producers. Recent analysis (Baltenweck et al. 2005) shows that up to 30% of farmers have no access at all to veterinary services; the most resource poor have the least access, with only some 30% of that category reporting reliable access to veterinary services (Figure 3). Cost and quality of clinical services affect dairy productivity and are an important area of development policy concern.Kenya highlands.Source: Baltenweck et al. 2005(based on SDP household surveys, 1997-2000).By sub-Saharan African standards, research in agriculture and the livestock sector in Kenya has been relatively well funded (Beynon et al. 1998). Although donor funding in agricultural research has been declining over the years (Figure 4), government investment has increased, leading to steadily increasing expenditure during the 1980s and 1990s. Data for investment specifically in dairy research are not available, but would be expected to be a relativity significant part of general agricultural research investment. 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 Mill. Kenya Pounds Through national extension programmes, there has been much effort to improve dairy husbandry practices. Investments have also been made in training at university, diploma and certificate levels. Donor agencies have contributed greatly in enhancing the efficiency of extension services. Notable among these efforts was the National Dairy Development Project (NDDP) in the 1980s, funded by the Dutch government. However, during the general liberalization programmes of the 1990s, public resources for extension services, including livestock, were generally reduced. Recent research shows that, although most farmers report continued availability of government extension, many do not use those extension services, possibly reflecting lack of access (Figure 5). For most of Kenya's post-independence history, producer and consumer milk prices were controlled by the minister in charge of livestock development and more recently through the KDB. Generally, the government would announce pan-territorial prices that applied across seasons for that year. In 1971, a dry-season price bonus was introduced to assist with livestock feeding during this challenging period, which usually occurs between the months of January and April. Price legislation continued until the advent of the economic reforms that led to price decontrols in 1992. After liberalization, real milk prices rose by 20-40 % between 1992 and 1994, but appear to have remained relatively stable since then (Owango et al. 1998).There are other direct taxes that processors and consumers pay, such as value-added tax (VAT) on farm and processing inputs and dairy products such as fermented milk (maziwa lala), cheese, yoghurt and butter. Up to 1997, the dairy industry was zerorated; this meant that VAT on some inputs was refundable. Now the dairy sector is duty-exempt; this is a cause of concern in the industry as, though it removes the requirement to collect VAT on milk product sales, it also removes the ability to recover VAT on inputs, thus increasing input costs.The KDB also levies a quantitative monthly tax (cess) on all milk sold by a licensed party. Milk processors, milk bars, traders and co-operatives pay cess of KES 0.20 per litre handled. Failure to pay cess attracts a penalty equal to one-quarter of the amount of cess in default. Cess is intended to be used for dairy development activities, such as in the repair and maintenance of feeder roads; in practice its usage appears to leave a lot to be desired.The Kenya Co-operative Creameries (KCC) was registered as a company in 1925 and in 1932 became a registered co-operative under the Dairy Industry Act (Cap 336, Laws of Kenya). After its first creamery was opened at Naivasha in the 1920s, KCC rapidly expanded to become the biggest milk processor: by the early 1980s it had 11 milk processing and another 11 milk cooling centres with a combined installed capacity in excess of one million litres per day. A few farmers' dairy co-operative societies (FDCS) also operate their own cooling centres, some established through donor-supported dairy development projects.At this time, KCC had a government-mandated monopoly on all urban milk sales. Of milk supplied to the KCC, 34% came from large-scale producers, 54% from small-scale producers through their co-operatives, and 12% from individual small-scale farmers who supplied KCC directly. The KCC was regarded as the milk buyer of the last resort, although it was not able to accept all the milk offered for sale during 'flush periods' due to plant capacity limitations. Surplus milk was made into skim-milk powder and butter and also ultra-high temperature treated (UHT) milk for distribution to more remote areas and also primary schools under the School Milk Feeding Programme.In May 1992, reforms took place in the industry and price controls were abolished to create a competitive self-sustaining dairy industry, characterized by increased private sector participation (Owango et al. 1998). The liberalization was interpreted to also imply the lifting of the KCC's urban milk monopoly, although that was never explicitly decreed. With liberalization, KCC milk intake showed a downward trend that led to closure of most of its processing plants. New private processors, co-operative societies and informal milk traders became major participants in milk marketing. There are some 45 licensed processors handling less than 20% of the total marketed milk, while informal traders account for an estimated 38% of marketed milk: the balance is marketed directly to consumers by producers. Currently, the dairy industry has a processing capacity of 2 million litres per day; KCC has a capacity of 1.2 million litres per day with the balance in the private sector.Informal milk marketing, or hawking, is especially important in rural areas although it also operates in 'zoned' (urban) areas, even though hawking has been considered illegal for a variety of reasons. The main participants in informal milk markets are dairy co-operatives, milk bars, middlemen/traders and farmers (Figure 6). The high proportion of raw milk sales directly to consumers and through informal traders is an indication not only of many consumers unwillingness to pay the extra costs of processing but also of strong traditional preferences for raw milk, which is generally boiled before consumption. Although the informal raw milk market grew after liberalization, it had always played an important role, contrary to the perceptions of many observers and industry players (Figure 7). What did change after liberalization was more open activity by raw milk traders and greater penetration into urban areas, particularly Nairobi -formerly the preserve of the KCC. Regulation and licensing of the many players in the raw milk trade is a major policy issue. Although the dairy policy recognizes milk bars as a source of cheap (unpacked) and safe (pasteurized) milk, the dairy industry act does not. Although retail shops are licensed to sell pasteurized milk, many of them use the licence to sell raw milk. In the past, traders/middlemen and farmers have not generally been licensed to sell raw milk, although locally some authorities have granted such licences. Beginning in 2004, however, there was significant public policy debate in the media and among stakeholders about the role of raw milk markets for small-scale farmers and poor consumers. As a consequence and in the climate of a new reformist and pro-poor government, the dairy act is being revised to formalize raw milk marketing under minimum handling and packaging standards. This is regarded as a major pro-poor policy change, which is also now being adopted in other countries in the region, particularly Tanzania and Uganda.Dairy co-operatives have played a critical role in milk procurement systems in some areas of Kenya. Where there are significant local milk surpluses that small-scale informal milk markets cannot handle, FDCSs provide a functional means to access larger formal markets. There are about 200 dairy co-operatives in Kenya, although only about 70% are functional. In recent years, some members have abandoned their co-operative societies due to mismanagement and collapse and opted to either operate independently or form self-help groups. Nearly all FDCSs sell raw milk locally at retail prices, supplying only the excess to processors for which they receive a lower price. Some FDCSs joined the KCC as co-operative members so that they can supply it with the excess milk during flush production periods. Currently, however, most FDCSs sell most of their output to private processors; these now occupy the largest share of the formal milk market but generally reduce prices paid during the flush season and sometime limit quantities purchased when supply peaks. The formal and the informal marketing subsystems have therefore become intrinsically linked.Kenya has been generally self-sufficient in dairy requirements in the past and has not experienced significant importation of dairy products except during years of extreme droughts (Figure 8). Kenya imports very small quantities of dairy products, usually less than 1% of domestic production (Muriuki et al. 2003). Between 1985 and 1997, annual milk powder imports averaged 1444 tonnes. Since liberalization of the industry, fresh milk and butter exports averaged 158 and 381 tonnes per year, respectively (Staal et al. 2002).Local dairy processors import small quantities of milk powder regularly, presumably to use in processed products such as yoghurt, although they may also be reconstituting it into liquid milk. In spite of the relatively small scale of milk product imports, they are often targeted as being a primary source of concern to Kenyan farmers. The duty on such imports was raised from 35% to 60% in early 2002 in response to a fall in the milk prices paid to farmers in some parts of Kenya. However, milk imports during that period actually fell by half and the farm-level price fall was almost certainly due to unusually abundant rains during early 2002, which is usually a dry period (Muriuki et al. 2003). In general, the engine of the Kenya dairy industry is the domestic market and there is little evidence that trade policy will influence its fortunes.Kenya has amongst the highest levels of milk and dairy product consumption of all developing countries. Traditionally, dairy consumption is mainly in the form of liquid milk (as tea) with a high preference for raw milk even among high-income urban groups. Raw milk is regarded as superior due to its high butterfat content, appealing taste and lower price compared to pasteurized milk. Raw milk is generally 20-50% cheaper than pasteurised milk, making it more available to the poor.The proportion of households consuming raw fresh milk (which is boiled before consumption), pasteurized milk, yoghurt and soured milk has increased in recent years. However, more households consume home-made fermented milk, butter, tinned condensed milk and skimmed milk than a decade ago (early 1990s). Some products, such as milk powder and UHT milk, were more readily available in the past (Ouma et al. 2002), when KCC subsidized production of these products from surplus milk. Yoghurt consumption is increasing because it is more available as a result of the increase in the number of processors. When all dairy products are converted into liquid milk equivalents, consumption of liquid milk averages over 97% of total dairy products, with higher consumption in rural areas than urban areas. Rural households tend to consume more raw milk and less processed milk compared to their urban counterparts. Quantities of dairy products consumed increase as income increases (Figure 9) and the composition of the dairy products consumed changes with income changes (Ouma et al. 2000). Source: Ouma et al. (2002) Changes in population, urbanization and the ability to purchase food have changed food expenditure patterns over time. Kenyan households spend a large share of their budget on foods (56%), with an expenditure elasticity of 0.93 (Staal et al. 2002).Expenditure on services averages 23%, much lower than food expenditure. Although as expected cereals take the largest share in the household food budget, this is closely followed by dairy products (17% of food expenditure), underlining the importance of milk in the Kenyan diet. Estimates of per capita annual consumption of milk in Kenya range from 80 to 125 kg, depending on location, ethnicity and other socio-economic characteristics: for sub-Saharan Africa as a whole, per capita consumption is less than 25 kg. In terms of unit milk consumption per capita GDP, a crude proxy for share of income spent on milk, Kenya is surpassed globally only by Mongolia and Mauritania (FAOSTATS).The budget share of raw milk is higher than processed milk derivatives among lowincome households. This implies that consumption of more processed milk derivatives increases with income, depicting variations in purchasing powers across income groups. However, raw milk is highly income inelastic implying that demand does not change with changes in income levels. Demand for the highly processed dairy products is income elastic with an expenditure elasticity of 1.10; this implies purchase of more units with an increase in disposable income. This suggests that processed product consumption will increase with increasing incomes, but that demand for raw milk will also be sustained, pointing to continued growth prospects for the raw milk industry in KenyaThe dairy industry plays an important role in the livelihoods of farmers, traders, processors and other participants engaged in the entire milk supply chain. In recent years, the industry has witnessed major changes in policy leading to substantial reduction in milk supplies to KCC, as described above (Figure 10). These changes have been due to a number of factors, including the removal of the KCC's monopoly and entry of other processors, but also due to increasing urbanization. To understand better these changes, a regression model was fitted to capture these developments. Accurate historical data were very difficult to obtain, so the analysis is limited to a few points in time and regions. Data for the regression includes information for five regions: an aggregate of Central Province (not including Nyeri), and information for each of the following districts: Kajiado, Nakuru and Narok in Rift Valley Province and Mombasa in Coast Province. The database covers information for 1989 and 1999 only. As a proxy for dairy development, in a slight variation from the conceptual framework presented earlier in this report, the model uses as its dependent variable milk production per agricultural worker. The independent variables used are based on the conceptual framework. Due to extreme limitations of the types of data available, a more complete model was not possible.The regression results indicate that the key factors associated with dairy development include: area under fodder production, urban population, enrolment ratio for primary school, percentage of household with electricity and trends in the rest of the economy (Table 2). These contribute significantly and positively to the change in the dependent variable (milk production per worker).In spite of the apparent historical role of the KCC, milk intake by the KCC is not shown to be significant during the period analysed. This points towards the relatively small role played by the formal sector, particularly during the 1990s, and the large and important role of the informal sector. This suggests that dairy farmers can be motivated to increase production through a variety of market channels. For each additional percentage point of agricultural land put under fodder cultivation, milk production in the three provinces increases by about 0.9%. In the case of highland Kenya, the primary fodder for intensive dairy production is Napier grass (Pennisetum purpurum), an elephant grass that yields very high quantities of fodder per unit land.Similarly, for each percentage point increase in maize production, milk production in the three provinces increases by about 1.4%. This accurately reflects the fact that both green and dried maize stalks and stovers are key fodder sources for dairy production: a significant proportion of highland farmers depend on these by-products from maize in order to feed their dairy cattle. Although the adjusted R 2 (0.9872) is high, this regression was run using only 10 observations due to data constraints and should only be considered as roughly indicating the effect of some variables on the development of the dairy sector.Urbanization is a major driving force in increasing demand for milk. For each percentage point increase in the urban population in the three provinces, milk production increases by about 3.6%. Milk consumption per capita is higher in urban areas and hence the positive sign is consistent with effects of urbanization on demand for food items such as milk. Moreover, increase in disposable incomes drives effective demand of high-value food items, such as milk and other protein sources. For each percentage point increase in income in the three provinces, milk production increases by about 0.3 percentage points, although the coefficient is only significant at the 10% level. Central CoastThere are, however, some factors that are negatively associated with milk production per worker. For example, for each percentage point increase in the number of children enrolled in primary school in the three provinces, milk production per worker decreases by some 11%. School enrolment is a proxy for population: these reflect higher density areas, so production per worker is lower. Furthermore, for each additional percentage point of households supplied with electricity in the three provinces, milk production decreases by about 2.4%. These results reflect lower production per worker and localities shifting from rural to more densely populated, peri-urban settings. Finally, the constant term represents average milk production per worker for all regions included in the analysis, while the negative coefficient for districts in Coast and Rift Valley provinces means that, on average, these districts show values of milk production per worker below the average values of regions included in the regression analysis (below Central Province).These basic regression results, while only indicative due to the extreme data limitations, supports key findings seen elsewhere: a) the formal market is not a requirement for dairy development, since the informal market has provided apparently effective market mechanisms, b) complementary agricultural development can support dairy production through fodder and potentially through its role in larger infrastructure development, and c) demand is critical to developing production of a relatively high-value good such as milk.Poverty-reduction and employment generation are important goals in various development strategies and policies in Kenya, including the recent Economic Recovery Strategy for Wealth and Employment Creation (ERSWEC, 2003(ERSWEC, -2007) ) and the Strategy for Revitalization of Agriculture (SRA, 2004(SRA, -2014)). In both these policy documents it is recognized that dairy activities generate many employment opportunities in the course of milk production, processing and marketing.For some time, there has been an estimated 650,000 dairy farm households in Kenya (Omore et al. 1999). Based on random surveys of thousands of rural households by the Smallholder Dairy Project (SDP) in late 1990s and early 2000s, it is now clear that the true number is much higher (SDP 2005). SDP estimates from these surveys, followed by further ground-truthing surveys and complete censuses of selected locations, now indicate that there are some 2 million dairy farm households, keeping over 5 million grade or cross-bred dairy cattle, mostly in the highlands. The employment figures below are based on these revised estimates of the size of the dairy sector.Smallholder dairy farms depend heavily on family labour to perform various tasks. Dairy production is therefore an important source of self-employment, especially for rural households. A significant proportion of dairy operators also hire long-term or casual labour, which creates employment among some of the poorest segments of society, including landless households. Recognizing that most of the dairy activities occur in predominantly mixed crop-livestock production systems, it is not easy to attribute full-time engagement of farm households to dairy activities alone. From existing surveys, it estimated that about 50 long-term waged labour opportunities are generated for every 1000 litres of milk produced by farmers on a daily basis, while some three persons are employed on casual basis per 1000 litres of milk produced at the farm level (Table 3). Even on the smallest farms, in total at farm level some 77 people are employed full-time for every 1000 litres of milk produced on a dairy basis.To put this in perspective, in the Netherlands 2500 litres of milk flow per day are required to generate a single job. Dairy farming generates an average annual return to labour per enterprise of KES 38,000 (USD 475) for small-scale farmers and KES 298,129 (USD 6025) for large-scale farmers, with an average weighted annual return of KES 114,000 (USD 1425).Compared to an average per capita GDP of approximately KES 27,825 (USD 347) for Kenya (World Bank 2003), dairying provides significant additional income to farmers and consistently higher returns than those available through rural wage labour.Dairying is estimated to engage more than one-third of dairy farmers on a full-time basis, which translates into some 256,000 self-employed persons. Small-and medium-scale dairy enterprises account for most (87%) of the employment that is attributed to dairying at farm level, largely because of their dominance in the dairy industry in the country.Significantly, dairy farmers also engage full-time (permanent) hired labour for dairy production activities and also occasionally hire casual labour. Countrywide, hired farm labour for dairy is estimated to represent about 585,000 full-time workers, or about 24 % of the total agricultural labour force of some 2.5 million (Table 4). In total, some 841,000 people, 34% of the total agricultural labour force, are directly employed in dairy production at the farm level. Approximately 6 million litres of milk is traded daily in Kenya through both formal and informal, small-scale and large-scale, processors and traders. Beyond farm level, processing and marketing of milk and other dairy products offers numerous employment and income-earning opportunities for the various participants in the milk supply chain. These include transporters, mobile milk traders, milk bars and shops/kiosks operators, small-scale processors and service providers, such as vehicle repairs, security firms and catering outlets. Mobile milk traders do not have fixed business premises. Milk collection from producers is mainly on foot, by bicycle or public transport.Most small-scale traders handle between 50-120 litres of raw milk daily. Traders with milk bars have fixed premises and mainly sell unpasteurized and fermented liquid milk. Besides family labour, waged employees are actively involved in running milk bars. Small processors in Kenya mostly process and sell pasteurized milk, with a small proportion of throughput devoted to yoghurt and cheese, either as wholesalers and/or retailers: they are much fewer in proportion to other cadres of milk traders.Labour requirements in small-scale milk marketing activities include milk collection, transportation, processing and sales, creating direct and indirect employment. Direct employees are those who occupy themselves with the milk marketing and processing on a daily basis and include self, family and wage labour. Indirect employees are those involved in providing services to the dairy business, such as artisans repairing farm equipment, bicycles etc. The overall number of both direct and indirect jobs created in the marketing segment of the supply chain varies from 3 to 20 for every 1000 litres traded on a daily basis, depending on type and scale of enterprise (Table 5). This suggests that a significant number of jobs are created considering the volume of milk that is traded via various intermediaries daily.On average, informal milk marketing generates 18 jobs per 1000 litres of milk handled daily and this includes 15 direct job opportunities and 3 indirect jobs. The formal sector generates less employment per 1000 litres of milk handled on a daily basis (13) with 12 direct jobs and one indirect. Scaling out the employment effects to cover the whole country, formal milk processing and marketing generates about 15,000 jobs compared to informal marketing that creates more than 39,000, giving a total of about 54,000 jobs.Further, these are relatively well remunerated jobs. From this study, it is estimated that formal employment in milk processing and marketing provides an average monthly wage of KES 11, 936 (USD 150) while informal market agents earn an average of KES 9,992 (USD 125), both much higher than the government's minimum wage guideline of USD 43. There are a number of important lessons that can be drawn from Kenya's generally successful dairy development history and the policies associated with it.Improved dairy cattle. Grade and cross-bred dairy cattle, using European dairy genes, have had a clear and large positive role in the development of the dairy sector in Kenya. The strong legacy from the colonial era -when AI, recording systems and breed societies were established -provided the impetus for large improvements in productivity. This required large-scale public investment, including from foreign donors such as Sweden and the Netherlands, and subsidized provision of genetic material. Clearly, use of exotic genes, particularly in a temperate climate such as found in highland Kenya, is a rapid and potentially sustainable path to higher productivity, even among small-scale and resource-poor farmers.As demonstrated in the regression analysis (Table 2), planted fodder technology has played a key role in growth in dairy productivity. This is nearly all due to widespread adoption of high biomass-yielding Napier grass, apparently introduced originally as mulch for coffee plants. Reflecting its importance, it currently occupies as much land in some parts of highland Kenya as maize, the national staple food (Staal et al. 1998).Although the data available were not able to demonstrate this empirically, there is adequate evidence to suggest that, particularly towards the end of the 1980s, dairy co-operatives played a significant role in fostering dairy development, primarily by providing a stable market environment. It has been demonstrated that proximity to a co-operative milk collection centre was significantly associated with an increased probability of a household successfully entering into dairy production (Baltenweck 2000).Demographics. Growth in urban populations and incomes appears to be linked to growing demand and scale of the dairy industry and to diversification of products.There is considerable evidence to show that the period of policy reforms and liberalization during the 1990s produced mixed outcomes for the sector. While price liberalization and lifting of the KCC's monopoly led to more competitive milk markets and higher real farm prices for milk, access to livestock services appears to have suffered significantly. This is evidenced by the dramatic decline in use of AI and also of worsened farmer-reported access to veterinary services.There is no evidence that investment in formal milk market processing, such as the KCC, has had a measurable impact on dairy development. On the contrary, the growth in the dairy industry has continued even when the informal raw milk market has grown in share. This has been accompanied by a shift towards liquid and traditional products, apparently as a result of demanddriven market responses, compared to the supply-driven product mix offered under the subsidized KCC monopoly system.The dairy industry is important in Kenya's economic development. As has been demonstrated, it supports many farmers, traders and service providers as a source of income and employment. It also provides many poor households with a daily source of protein, energy and micronutrients. Development of the dairy sector has generally had clear benefits for the poor.A policy of Africanization of production during the late colonial era and after independence deliberately brought smallholder indigenous farmers to the forefront of the dairy sector. This was supported in the early years by a relatively strong government extension system and support to disease control, although those had weakened by the late 1980s. As a consequence, smallholders now dominate the dairy industry and the opportunities that arise from it.Income and equity in the dairy sector. As shown in the employment section above, approximately 900,000 people, more than a third of the total agricultural labour force, are employed in the dairy sector: some of the most resource poor are hired as labourers on dairy farms; over 85% of this total are engaged in small-scale production and marketing. Further, these employment opportunities, on average, yield greater incomes than available alternatives, both at farm level and in the market place.Although large-scale producers show higher levels of returns overall, research has shown that unit profitability ranges between USD 0.13 and USD 0.16 per litre and is not significantly different between large-and small-scale producers (Omiti et al, 2006). Research has also shown that access to land is not a significant constraint to engaging in dairy production in Kenya and that women-headed households are just as likely as male-headed households to be dairy farmers. Both these indicators point to the dairy enterprise being a viable option, even for resource-poor and socially marginalized households.The informal market and the poor. The informal raw milk market has been demonstrated to play a key role in providing important market outlets for small-scale farmers and for providing low-cost milk and dairy products for poor consumers. Its strength is that it is driven by demand for traditional products. An unintended consequence of the liberalization of the 1990s was the growth of the informal market.Liberalization of livestock services. One area where policy is likely to have had a detrimental affect on the poor is liberalization of services. Access to and use of AI has declined dramatically and evidence suggests that access to veterinary and extension services has also declined. As shown in Figure 5, resource-poor dairy farmers, who are the majority, report the lowest access to private veterinary services which were intended to fill the gap left by reduced public services. An apparent consequence of the reduction in public services was that the rate of adoption of dairy production by smallholder producers in highland Kenya fell significantly in the 1990s (Baltenweck 2000).Legislation. Dairy-related policy issues need to be coherently addressed and legislation, under revision since the mid-1990s, needs to be updated and passed.Particularly important is to ensure that legislation and policy documents incorporate: a) adequate inclusive stakeholder representation and institutional reform to implement that, and b) steps to formalize the large raw milk markets. Policy and legislative efforts should pay due attention to the dairy sector within the broader national goals of poverty reduction, employment creation and food security: these need to look beyond the typical objectives of increased milk production and strict public health enforcement. Harmonization of the different acts that affect the dairy sector is required to reduce existing conflicts and to facilitate faster sectoral growth.Mainstreaming the informal sector. The informal milk market has enormous potential for off-farm employment generation. However, the efficient operation of this market sector and its potential evolution towards higher quality standards has been impeded by the failure to recognize raw milk traders due to public health concerns. The mobile traders have often operated without trade licences and actively sought innovative ways and means to circumvent such official impediments to their business operations.Research has shown, however, that the quality of milk sold by mobile milk traders is not significantly different from those with fixed premises and licences and that training can help improve quality (Omore et al. 2002). Recently, in 2004and 2005, the Kenyan Government has taken steps to 'formalize' and legalize raw milk marketing, for example through training and certification of small-scale traders. Where appropriate, institutions should explore alternative systems, such as self-regulation and partnership with the private sector. The required legislation to safeguard these policy changes is currently making its way through the legislative channels for enactment. Similar changes have occurred or are occurring in other countries in East Africa, particularly Tanzania and Uganda. Even as income and urbanization trends favour a larger share for the formal market, this type of policy shift can mainstream the informal sector and raise the quality of milk it handles, bridging the informalformal gap as the industry develops.Renewed public investment in livestock services. It is apparent that the withdrawal of government support to livestock services in the 1990s was not matched with increased provision by the private sector. Smallholders in particular now have less access to some of these services. In order to support continued opportunities for resource-poor farmers to increase productivity and opportunities in dairy, its likely that renewed public investment in services will be required until viable, appropriate private services are widely available.Encouraging private service provision. The policy of simply vacating public services with the expectation that private providers will step in to fill the gap has failed. This is partly because of continued barriers to private service entry, in particular licensing requirements that have restricted private sector participation. Changes that allow licensing of privately-training AI technicians and animal health technicians are needed to reduce barriers to private participations. Where that is not possible, sustainable alternatives should be sought, such as the introduction of cost sharing, or the training and equipping of community-based service providers.Improving road infrastructure. Although improved roads benefit a variety of agricultural and rural sub-sectors, infrastructure is particularly important to dairy development due to the perishable nature of milk and the need for daily collections.For every kilometre of poor feeder road that separate them from the nearest main road, farmers receive 3% less for their milk (SDP Policy Brief # 3, 2004a). Improved feeder roads are likely to have a significant positive impact on dairy development.In the late 1980s, agriculture in Ethiopia contributed about 45% of national GDP while the livestock sector contributed about 40% of agricultural GDP (18% national GDP) and 30% of agricultural employment. Dairy output accounted for about half of livestock output (Feleke and Geda 2001). More recent figures indicate that the livestock sector contributes about 12-16% of national GDP, 30-35% of agricultural GDP, 15% of export earnings and 30% of agricultural employment. Livestock contribute to the livelihoods of 60-70% of the population (Aklilu 2002;Ayele et al. 2003;Ejigu 2003).Over the last 30 years, national and per capita production and consumption of livestock products declined (Ayele et al. 2003). During 1993-2001, per capita income remained at about USD 100. Livestock production increased by much less than the production increase for the agriculture sector as a whole, so relative share of livestock to agricultural GDP declined. During this period, per capita livestock output fell by 5% while crop, food and agriculture grew at 14, 7 and 6%, respectively (Halderman 2004).From 1966-2000, milk production in Ethiopia increased by 1.6% and per capita production decreased by 0.8% annually. Per capita production grew slightly only after the introduction of structural adjustment and market liberalization policies in 1992 (Table 6). Due to declining per capita production over the long term and decreases in net imports in recent years, per capita consumption decreased from about 26 litres in the mid 1980s to about 16 litres in 2001 (Muriuki and Thorpe 2003). Estimates of specific contributions of the dairy sector to output, income and employment are not readily available. Four main dairy production systems can be identified in the country: a small commercial sector consisting of large private and state farms; small urban/peri-urban systems raising cross-bred or both cross-bred and local cattle and having access to milk collection centres or co-operatives; smallholder mixed farming systems in the highlands using indigenous breeds; and pastoral/agropastoral system in the lowlands. Reliable figures on the relative importance of these systems in terms of number of farms/herds, dairy population or share of milk produced are not available. However, a rough estimate indicates that currently, out of about 1.43 billion litres of milk produced annually, 900 million litres (63.3%) is produced by rural small-scale mixed farms in the highlands, 205 million litres (14.3%) by small urban/peri-urban farms in the highlands, 320 million litres (22.4% ) by pastoral/agro-pastoral producers in the lowlands and 5 million litres (less than 0.03%) by large private and state farms (Ahmed et al. 2003;Feleke and Geda 2001).Household consumption and expenditure surveys indicate that livestock products comprise only 8% of total food expenditure, with half of this expenditure allocated to dairy products. About 56% of milk in the country is processed into butter, cheese and yoghurt and 44% is consumed fresh (Table 7). Although levels of consumption vary according to income levels, relative shares of liquid milk and other products, mainly butter, remain about the same across income groups (Figure 12). Only a small amount of milk is processed into pasteurized milk, butter and cheese by large-scale commercial processors. Most of the milk produced in the country is processed on-farm into butter and soft cheese (ayib) for home consumption and sale. Rural producers, located far from urban markets, usually process surplus milk into butter because of difficulties in selling fresh milk locally; the main butter markets are in the towns and cities.Apart from income, consumer preferences and dietary customs also help to explain the relatively low demand for dairy products. Orthodox Christians, comprising about 40% of the Ethiopian population, abstain from consuming dairy and other animal products for about 200 days a year. Low demand for dairy products in Ethiopia compared to demand in other low-income countries in sub-Saharan Africa appears to be a major reason for the slow growth of the dairy sector.Many factors other than demand, however, have contributed to the stagnant nature of the overall economy and the poor performance of the dairy sector. The purpose of this section is to highlight some of the policy issues that contributed directly and/or indirectly to the performance of the dairy sector, explain the regional differences in dairy sector growth and marketing and assess the potential for income and employment opportunities in dairy production, processing and marketing. Finally, conclusions are presented along with lessons learned.Figure 12: Milk consumption by expenditure group in litres per capita (1995)(1996). Since the 1960s, three distinct periods can be identified in Ethiopia: the later years of the Imperial Regime (pre-1974), the socialist Derg Regime (1974)(1975)(1976)(1977)(1978)(1979)(1980)(1981)(1982)(1983)(1984)(1985)(1986)(1987)(1988)(1989)(1990)(1991) and the structural adjustment and market liberalization policies since 1991. Though Ethiopia's rural economy is dominated by smallholder mixed crop-livestock farms, the objectives of various policies of the successive regimes over the past five decades have been similar; to improve commercial dairy production in selected areas of the country, especially around Addis Ababa, through introduction of exotic and cross-bred cattle and related feed and management technologies, and development of a milk processing industry to supply the Addis Ababa market. The policy instruments and operational procedures employed to achieve these goals varied over time, reflecting the politicoeconomic philosophy of the respective governments.The first attempt to introduce modern dairy production in the country was made by the Imperial Government in 1947, when 300 Friesian and Brown Swiss dairy cattle were received as a donation from the United Nations Relief and Rehabilitation Administration. A small milk processing plant was established in Shola, just outside Addis Ababa, to support commercial dairy production (Yigezu 2000). Later missionaries and some foreign individuals and organizations also introduced small numbers of imported exotic dairy cattle. Between 1959 and 1969, with additional support from the UNICEF, several successive steps were taken to meet increased urban demand for milk. These included: expansion of the capacity of the Shola plant, first to10,000 litres per day and later to 30,000 litres; to supply the processing plant, opening of milk purchasing and collection centres throughout Addis Ababa, and later up to a radius of 70 km around Addis Ababa along main roads; and limited extension service and incentives to well-off farmers to take up commercial dairy production to supply the milk collection points (Staal 1995).In 1971, the Dairy Development Agency (DDA) was created as an autonomous body to provide guidance and assistance; for example provision of extension and credit to farmers to establish commercial dairy farms in areas serving the cities and townships and improve the quality and increase the quantity of milk and milk products (Ketema 2000;Yigezu, 2000). Under this scheme, 30 medium-sized farms (40 milking cows each) were established with imported exotic cattle, 885 grade and cross-bred in-calf heifers were distribution to medium-and small-scale farms and 13 new milk collection centres were constructed and renovated.With the encouragement of the DDA, co-operatives came into existence to undertake commercial agricultural production, including dairy, although co-operatives did not engage in milk collection at that time. Co-op members were those with larger land holdings for dairy production purposes (Alemayehu 1992). At that time the DDA used to pay lower prices to farmers compared to prices paid by milk hawkers who would buy milk from urban/peri-urban farmers and sell directly to consumers in the city. Consequently a large informal market developed that was unregulated by the authorities but estimated by FAO to account for one-third of the liquid milk market in Addis Ababa.While promotion of commercial dairy production around Addis Ababa was going on, attempts were also made to improve dairy production of smallholder farmers in selected parts of the country through a number of agricultural development projects. Prominent among these were the Swedish International Development Agency-supported Chilalo Agricultural Development Unit (CADU), initiated in 1967 in the Arsi region, and the Wolaita Agricultural Development Unit (WADU) funded by the International Development Association (IDA). Achievements of CADU in the dairy sector include the pioneering of the 'one-cow-unit' dairy development package, in-country production of frozen cattle semen and cross-bred dairy heifers, introduction of small-scale milk processing units and AI services to smallholder farmers, and the popularization of forage cultivation. Achievements of WADU included the establishment of the project's farm of 290 dairy cattle, the attempted introduction of AI and bull station services, which led to positive attitudinal change to improved dairying, and a reduced calf mortality rate from 17% to 5% due to animal health services. Also, livestock was included in the Minimum Package Programme of the extension service of the Ministry of Agriculture: this was initiated in 1972 with IDA funding to expand CADU's dairy development operation to other parts of the country.Because of all these efforts, by 1972 the dairy industry in the Addis Ababa area was well established and growing. As large farms were emerging, surplus intake was occurring at the Shola plant. AI services were established and the general quality of animals belonging to small-scale dairy producers gradually improved. By 1972 the DDA was receiving about 21,000 litres of raw milk each day, 57% coming from 65 large farms (defined as having 10-250 cross-bred cows), the remainder from smallholders through some 30 collection centres (Staal 1995). Between 1961 and 1974, milk production increased by over 16% from 637,375 tonnes to 743,100 tonnes, an average annual growth rate of 1.6%; at the same time, however, per capita milk production declined at an average rate of 0.9% per annum (Table 6). This growth in production was largely due to economies of scale, as well as marketing facilities in the Addis Ababa milkshed, subsidies in transport to the formal market, secured land tenure and an active free market for feed and other inputs (Staal and Shapiro 1996).However, the development projects and extension programmes implemented in other parts of the country made an insignificant contribution to dairy output growth. CADU could not be replicated countrywide because of the high cost per beneficiary and it led to the acceleration of evictions of landless tenants as landlords became more aware of the benefits from improved dairying and began to farm themselves. WADU experienced a high staff attrition rate; it made more investment in infrastructure than extension services and the project was very capital intensive. The dairy component of the Ministry of Agriculture's Minimum Package Programme was constrained by shortage of animal stock.In 1974, the Imperial Government was overthrown by the socialist Derg Regime, which pursued a range of policies under a centralized economic system. Some of the important policies that directly or indirectly affected the dairy sector were: a) All land was nationalized and distributed to peasants through newly formed Peasant Associations (PA) with only usufruct rights, without the right to rent, mortgage or sell. Allocated land could be taken back by the PA in order to reallocate to new families. All large farms, including dairy farms established under the Addis Ababa Dairy Development Project (AADDP) and other projects such as CADU and WADU, were nationalized or annexed by the PAs. Some large farms were converted into state farms and also some new state farms were established.Between 1985 and 1989, 63% of all public expenditures were directed towards state farms.b) Apart from PAs, formation of producers' and service co-operatives was promoted, which changed the nature of agricultural extension work including the services to dairy producers; rather than individuals, producer co-operatives which collectively owned heifers and other supporting inputs were approached as a group (Staal 1995). Producer co-operatives had priority in the allocation of good-quality grazing land, leaving individual non-member peasants with any remaining poor-quality land for communal grazing. It was assumed that state farms and producer co-operatives would have greater capacity to utilize modern technologies and would demonstrate greater efficiency deriving from positive economies of scale. The operational procedures of CADU and WADU were changed and inputs and services were distributed to producer co-operatives rather than individual peasant households. New donor-funded dairy projects restarted in the mid 1980s and had the primary objective of supporting the dairy farms of producers' co-operatives (Ketema, 2000).c) The DDA and the nationalized dairy farms previously established under the AADDP were merged under the newly established Dairy Development Enterprise (DDE). Operational budgets were no longer provided by the government but had to be attained through sales revenues and loans from banks. From 1976-89, 79% of formal sector loans to agriculture went to the state farms though these farms contributed less than 10% of output. Of the total loans disbursed, only 3% went to the livestock sector, with the bulk of these being allocated for draft cattle and beef fattening (Assefa 1990).d) With additional assistance of the Government of Finland and the United Nations Capital Development Fund, the processing capacity of the Shola plant was increased to 60,000 litres per day, butter-oil recombination capacity was introduced, 30 collection kiosks and 16 chilling centres were established and milk collection routes were extended to 150 km around Addis Ababa. DDE retained the right to fix prices paid to raw milk suppliers. Prices paid to producers by DDE increased by 43% in nominal terms from 1972 to 1992 (ETB 0.50 per litre); this favoured the expansion of the informal sector where the rate of price increase was apparently much higher, although exact figures are not available.e) The Derg Regime pursued a fixed, overvalued foreign exchange rate policy throughout almost its entire reign; as a consequence exports became more expensive and imports cheaper.The consequences of these policy changes adversely affected the growth of the dairy industry in Ethiopia for the following 17 years (Ketema 2000). The rural mixed farming systems, which produced the largest share of milk in the country, remained largely neglected. According to Staal (1995), dairy policy in the 1980s can be characterized as a \"severe misdirection of effort\". The focus of substantial resources on parastatal institutions yielded little benefit to consumers or producers. Attempts to develop market-oriented dairying in rural PAs were hampered by low producer prices and a narrow focus on co-operatives. These same attempts also led to a complete neglect of the informal urban producers; though they were the most important for urban milk supply they were forced to seek the inputs and services they needed without institutional support.In spite of huge public expenditure and credit facilities provided to state farms, production from these farms declined from a high of some 6 million litres in 1983/84 to less than 5 million litres in 1989/90. At that time calf mortality rates were as high as 38%. All dairy services (technical, plant operations, veterinary etc) declined rapidly. By 1978, milk intake at the Shola plant had fallen to 3.5 million litres per year from 5.8 million litres in 1974: processing in this plant never exceeded 60% of capacity; a little above one-third of capacity was utilized only because of World Food Program (WFP) donations of milk powder which were reconstituted at the plant. The policy of a fixed and overvalued exchange rate led to stifled domestic production and cheaper commercial imports in addition to dairy food-aid (Von Massow 1989).During this period, co-operatives suffered from a loss of credibility by members and the public; they were turned into government and political tools rather than instruments for socio-economic development. Members, who were forced to form or join co-operatives, started to show their dissatisfaction and they lacked tangible benefits or a clear role. Their sense of ownership gradually faded with the result that the co-operatives gradually became non-functional (Ketema 2000).Government policies during this period led to a dramatic increase in the role of the informal market in urban milk supply and demand. A study of consumer purchases of liquid milk in Addis Ababa between 1984 and 1986 showed that 71% of milk was purchased directly from producers, 14.8% from DDE shops or outlets, 13% from private grocery shops and 2% from itinerant traders (Mbogoh 1992). Another study, carried out in 1986 on producer sales of milk in Addis Ababa and surrounding areas, showed that most large urban and peri-urban producers sold milk directly to various institutions, such as hospitals, schools, the armed forces, coffee houses, hotels and restaurants, in order to reduce marketing and transaction costs. On the other hand, small rural producers who had access to DDE milk collection centres chose to sell most of their milk to this outlet due to lower marketing and transaction cost and year-round access, even though prices were on average lower than in the local market (Debrah 1992). Hurissa (1998) found that 53% of intra-urban producers sold milk at their farm gates, while 33% and 14%, respectively, delivered to customers' homes or used both methods of distribution.Although informal urban producers were supplying 70% of the urban liquid milk they received little, if any, assistance (AI, veterinary services, feed quotas etc.) as urban areas contained no PAs or co-operatives to channel assistance and informal urban producers were not officially recognized to exist (Prank and Tuinenberg 1998). The growing importance of the informal market resulted in a major supply shift, from periurban landholders to urban backyard producers who purchased feed from peri-urban areas. Driving this process was insecure land tenure. During the period in which land was claimed by the state and farms were annexed by the PAs, the number of crossbred cattle held by urban backyard producers increased. Milk production thus shifted away from the rural feed-base to near urban consumers, bypassing the formal milk collection and marketing system which remained geared towards the rural areas around Addis Ababa (Staal 1995). The rest of the countryside remained largely ignored.In 1990, in view of the world's economic prospects, the Derg Regime revised its policies and adopted a mixed economy. Due to the failure of socialized agriculture, producer co-operatives were reorganized by giving them the opportunity to act in a democratic manner and decide their own destinies: 95% of producer co-operatives disintegrated within three months of this announcement (Alemayehu 1992). Collective property was either divided between members or sold; in this way a large number of cross-bred dairy cattle came into the hands of small-scale private producers in urban areas (Gizaw and Amare 1992). The Dairy Rehabilitation and Development Programme and the extension programme then had to revise their programmes to serve individually owned dairy farms which kept one or two cows rather than the cooperatives (Ketema 2000;MoA 1994).In 1991, the Ethiopian People's Revolutionary Democratic Front came to power and implemented several macroeconomic policy changes: the fixed exchange rate system was changed to a more market-determined system and the local currency was devalued significantly in 1992, followed by a series of smaller devaluations. This discouraged imports, including of dairy products. A new land policy was declared in which land remained a national property but usufruct was made tenable for indefinite period with rights to transfer to children; although selling and mortgaging remained prohibited temporary leasing was allowed.During the initial transition period, service co-operatives were looted, peasants forcibly repossessed communal property and cattle breeding ranches had large parts of their land repossessed by PAs (Alemayehu 1992). From 1990-92, the milk supply systems rapidly collapsed due to the increased insecurity, culminating in the collapse of the Derg Regime and subsequent paralysis and uncertainty among official institutions (Staal 1995). Subsequent dairy development strategy formulated during this period focused on creating an environment for greater market access by smallholder dairy farmers. The objective was that producers would be stimulated to produce more to satisfy market demand.The only official body dealing with dairy policies during this period was the Dairy Development Advisory Board, whose sole task was the allocation of funds, generated from reconstitution and sales of WFP milk powder, towards dairy development.Financial support used to go primarily towards forage development, expansion of veterinary and AI services and the supply of feeds and veterinary inputs (Staal 1995).In 1993, the DDE was taken back under government control but was given more management autonomy to make it more efficient, profitable and financially selfsupporting (Yigezu 2000). Of the 14 large dairy farms run by DDE, 12 were returned to their previous owners or sold. These farms have now expanded their activities to include self-processing of milk. As a result of policy change to allow private sector investment in dairy production, processing and marketing, several small-and mediumscale dairy processing companies have been established around Addis Ababa and other urban areas. These firms process milk from their own production and also collect from other producers.The DDE retained its role as the primary actor in the dairy market. In 1993, intake at the Shola plant was one-sixth of installed capacity. Since then, official prices paid to producers were progressively raised, reaching ETB 1.50 per litre in 2003. The entrance in late 1991 of Sebeta Agro-Industry, a private dairy processing firm which offered producers up to ETB 2.00 per litre of raw milk, stimulated competition and helped expand the formal market: as a result many peri-urban producers have stopped supplying the DDE. Though the administratively set prices paid to producers have been raised, the informal sector continues to dominate the market and accounts for about 80% of the milk market in the Addis Ababa milkshed (Staal and Shapiro 1996). The move towards deregulation had a similar effect at about the same time in Ethiopia and Kenya, although the two countries were not fully and directly comparable because of historical differences in the evolution and structure of the dairy industry and related policies.To take advantage of the newly created market opportunities as a result of the economic reform measures, prominent dairy producers within a 100 km radius of Addis Ababa formed the Addis Ababa Dairy Producers Association (AADPA). By the end of 1992, 90% of all urban dairy producers were members. The main objective was procurement of cattle feed rather than milk collection. The rural co-operatives were rebuilt giving more attention to human capital; their role would be to serve and not to govern, taking account of lessons learned about the undesirable role of the government in co-op affairs. A new government proclamation in 1998 further helped to promote a new kind of co-operative: the role of government was reduced from direct control to that of an advisor. However, these multipurpose co-operatives were still primarily engaged in crop activities and input supplies for members; dairy was not yet a major activity and therefore they had only a minor role in the milk marketformal or informal.Among the development projects, FINNIDA implemented the Smallholder Dairy Development Pilot Project (SDDP), with additional funding from FAO and WFP. This covered two woredas from 1991-1994 and 16 more from 1995-2000. Identifying marketing as the major constraint for dairy development, the SDDP organized smallscale milk processing and marketing units to raise income and nutritional standards of smallholder farmers through improved dairying. About 30 co-operatives were formed in the peri-urban areas of Addis Ababa. Due to input limitations, however, the project had to reduce the number of contract farmers from 1000 to 500.In addition to these focused projects, general improvements in veterinary services, breeding services including artificial insemination and promotion of forage and feed production through the general extension service has also been observed. For example, between 1984/85 and 1999/2000, more than 351,000 inseminations were performed throughout the country, most in the Addis Ababa milkshed (Figure 13). About 75% of the semen was Friesian and 20% Jersey. An average of three inseminations were required per conception due to problems on both the supply (untimely delivery, poor quality of semen) and demand side (inability to detect heat in time, delayed insemination due to long distance) so the actual number of calves born due to AI was about one-third the number of inseminations (Feleke and Geda 2001). 1985-86 1986-87 1987-88 1988-89 1989-90 1990-01 1991-92 1992-93 1993-94 1994-95 1995-96 1996-97 1997-98 1998-99 1999-2000 Thousands YearSource: Feleke and Geda 2001Overall, policy changes during this period were successful in reinvigorating a dairy sector that had been gravely affected by the socialist regime. Macroeconomic policies, changes in co-operative legislation and the openness of the manufacturing sector to private investment all resulted in positive changes. This gave growth in the dairy sector a new impulse in both the peri-urban areas, where most development projects are located, and in rural areas, where mixed farming is practiced. Although the results obtained by the sector so far are positive when compared to the past (Table 6), the historical performance of the dairy sector in Ethiopia has been disappointing given its potential.It was mentioned earlier that dairy development efforts in the country were concentrated in the highlands, especially around Addis Ababa, so differential growth across geographical areas would be expected due to differences in production environment, infrastructure and other factors that facilitate or hinder growth. In the absence of suitable time-series data at lower administrative levels, e.g. woreda, the analysis of regional differences was conducted using cross-sectional data from a livestock survey carried out in 2001/2002 by the Central Statistical Authority of Ethiopia (CSA 2003). Data were available at zone level for 43 zones in all the regions, except for Mekele in Tigray region and two zones (Godere and Zone 3) in Gambella region. Information was collected on demography, agricultural resources, production systems and practices, input use and outputs and sales for different enterprises. For the present study two aspects are considered: differences in dairy production and marketing are explained by descriptive statistics of production and marketed patterns and differences in the degree of commercialization of dairy are explained by using a regression with appropriate variables.There are virtually no reliable estimates of milk production under different production systems over time for different regions: FAOSTAT database only gives national figures. According to a survey by the CSA (2003), 9.3 million milking cows produced an estimated 2.59 billion litres of milk in 2001/2002; an average yield of 278 litres per cow per year. However, the FAOSTAT database shows that 7.3 million milking cows produced 1.45 billion tonnes of milk in 2001. The FAO estimate is close to the CSA's estimate of milk consumption from their household income and expenditure surveys (CSA 1997;2001), which shows that total consumption of dairy products (in milk equivalents) amounted to 1.38 billion litres in 1995/1996 and 1.19 billion litres in 1999/2000. Since FAO data is not available at regional level, for the purposes of this study the regional figures of the CSA survey have been adjusted proportionally using the FAO estimate of total output (Table 8). For regional comparisons, Amhara and Oromia regions are divided into sub-regions in order to capture variability within an extensive area. Milk production in Somali and Afar regions are not included in the comparison because information in the CSA survey of 2003 for these regions is not complete.The regional distribution shows that 20% of total output is produced in SNNPR followed by the zones in Oromia and Amhara surrounding Addis Ababa and other zones in Oromia and Amhara, all of them with shares between 10 and 15% of total output. This distribution of output roughly follows dairy shares of the cow population in the different regions, indicating that production and consumption are local -as expected given economic development and income, infrastructure, urbanization and geographic distribution of population. The only exception to this is the region comprising the capital Addis Ababa, which is supplied by producers in neighbouring zones. In any case, the impact of the Addis Ababa market on these zones is not evident at this level of aggregation.Yields are significantly higher in Addis Ababa due to the high incidence of cross-bred and exotic cattle but variation between other regions is not high. Cross-bred and exotic cows represent only 1.8% of total milking cows in Ethiopia but 47% in Addis Ababa (Table 8). This is a result of the past and present policy of promotion of exotic blood in and around Addis Ababa and the recognition by producers that these breeds are most economically suited to highland intensive urban production. This explains higher yields per milking cow in Addis Ababa. Areas in central Amhara and Eastern Oromia regions around Addis Ababa and between Addis and Dire Dawa show cross-bred and exotic cows above the average for the country but below 2% in all cases, so have no significant impact on yields and total output of these sub-regions. Gambella and Benishangul, showing a small proportion of total milk production, have slightly higher yields than other regions. On average, 78% of all milk produced in the country is consumed by producing households; only 22% goes to market (Figure 14). In Dire Dawa and Harar about 40% of output is marketed; in Addis and its surroundings about 30% of a much larger volume of output is marketed. In most regions, about half of total milk consumed by the producer household is consumed as liquid milk and 30% as butter, the remainder in other forms such as fresh cheese and yoghurt. Households producing milk in urban areas and also in zones in East and Southeast Oromia consume significantly lower amounts of butter. On average for Ethiopia, 53% of total milk sold by producers is sold as liquid milk and 42% is sold as butter, though with considerable regional variation in these proportions. In urban areas and in East and Southeast Oromia, most of the milk is sold as liquid milk. Butter is the main commercial product in Central Amhara, West and Central Oromia and also in the zones around Addis Ababa, Tigray and SNNRP. there is a positive relationship between the dependent variable and the share of farms engaged in mixed crop-livestock and only livestock production. Distance to Addis Ababa is not significant in any of the regressions.One possible interpretation of these results is that sales of liquid milk are related to development of cereal production and high population density in regional markets; Addis Ababa's liquid milk market has no effect on these regional milksheds because of the long distance. Liquid milk sales would be higher where higher population densities reduce transport and transaction costs and facilitate development of local markets. Sales of butter and cheese are directly related to production systems capable of generating surplus milk, which are processed and then sold in local markets, though Addis Ababa's market is one of the main final destinations. Since all zones target the Addis market for butter to some degree, distance to Addis appears to have a neutral effect on the sales of butter in a zone. In this case, the larger the proportion of the population engaged in specialized crop production systems in a particular zone and the larger the urban population in this zone, the smaller the volume of butter and cheese sales per person in that region. According to this, urbanization's negative effect on butter sales could be related to a positive impact of this variable on sales of liquid milk (positive but not significant in the second regression) and hence indirectly reducing sales of processed products.Regional effects, captured by dummy variables, are relatively unimportant. Only two regions -Southeast Oromiya and Gambella -show significantly higher liquid milk sales per capita compared to the average and two others regions -Northwest and Central Amhara -show significantly lower liquid milk sales compared to the average. In case of butter and cheese, Oromia -to the west of Addis Ababa -appears to have higher sales per capita and Southeast Oromiya has significantly lower sales, everything else being equal.Literacy of the population shows a negative relationship with liquid milk and butter and cheese sales. As an indicator of human capital, literacy is normally related to innovation capacity when it refers directly to the dairy producer or the household members. In this case, literacy refers to all population in a particular zone and the negative response of milk sales to literacy could be related to the fact that zones with higher literacy rates develop other activities (probably non-agriculture activities), negatively affecting milk production and sales in that particular zone.The effect of urbanization appears to be positive but not significant when explaining sales of liquid milk but negative and significant in the case of sales of butter and cheese. Differences in the degree of urbanization across regions are also not very pronounced.Employment and income from the dairy sector will vary between and within production systems because of differences in feed sources, management, herd sizes, form of milk and disposal patterns, amongst others. A comparison of employment and income from all dairy-related activities for two groups of farms from the highlandsone having cross-bred cows and another with local cows -are shown in Table 10. Both groups have an average of two cows, two oxen, a horse or donkey and some sheep and chickens. These two groups may be taken as representative of the small peri-urban and rural mixed systems, respectively. Share of dairy has been calculated based on detailed daily data records.Traditional smallholder mixed farming systems generate several times more employment, but less income per unit of milk produced, than urban/peri-urban dairy systems because of low productivity of animals in the former. In both systems over two-thirds of labour is provided by children, who usually do the herding. Women tend not to be involved in production activities but are primarily responsible for traditional processing and marketing (see below).Extrapolating the labour requirement figures per 1000 litres of milk produced to the systems level, the urban/peri-urban system, which produces 205 million litres of milk a year, creates annually 4.4 million person days of work or 14,760 full-time jobs (assuming a 300 day working year). The figure increases to 16,400 full-time jobs if it is assumed that 270 days are worked per year. The small-scale mixed farming systems, which produce 900 million litres of milk annually, can create 166 million person days of work, equivalent to 553,500 full-time jobs at 300 days per year (615,000 jobs at 270 days per year). Employment figures for the pastoral livestock system, which produces 320 million litres of milk, could not be calculated due to lack of information. Only a small amount of milk is processed into pasteurized milk, butter and cheese by large-scale commercial processors. Most milk is processed by the producers on-farm into butter and soft cheese (ayib) for home consumption and sale. Rural producers who are located far from urban markets usually process surplus milk into butter because of difficulties in selling fresh milk locally and strong demand for butter in markets in towns and cities.To estimate labour use for on-farm rural processing, previous farm surveys conducted in the highlands (O'Mahony and Bekele 1985) have been used.For the large-scale industrial processing sector, data were obtained from two industrial processors both located in or close to Addis Ababa: Sebeta Agro-Industry (Mama Milk) and Dairy Development Enterprise (DDE). These two plants process about 9 million litres of milk per year and supply products to small shops and supermarkets in Addis Ababa. For other commercial processors in urban and semi-urban areas, a survey of small-, medium-and large-scale processors was conducted in Central and Western Ethiopia in early 2004.Extrapolating the results of these surveys and secondary data to the national level, potential employment and income from dairy processing and marketing are summarized in Table 11. In general, there is an inverse relationship between scale of operation of business and jobs per 1000 litres of milk processed daily, although income per worker increases as the scale of operation or business increases. Overall, labour use in various dairy processing and marketing activities in the different production systems and scales of operation total an equivalent of 174,000 full-time jobs. Of this, on-farm processing and marketing generate 94% of the daily employment because commercial processing is still at rudimentary stage in the country. Nearly all on-farm processing and sales are conducted by women; as processing moves off-farm and scale increases, the share of female labour in processing declines. Milk quantity handled (L/day) Ethiopia's rural economy is dominated by smallholder crop-livestock mixed farms. However, over the last half century the main thrust of dairy development policies of successive regimes has been on improving commercial dairy production in selected areas of the country, especially around Addis Ababa. This was done by promoting cross-bred and exotic cows and related feed and management technologies and the development of a milk processing industry to supply the Addis Ababa market. However, these development efforts had little impact on the growth of the sector as a whole, even in the areas where they were implemented. Out of a total of 9 million dairy cows in the country (including about 7 million milking cows), there are only about 300,000 (3.3% of total cows) cross-bred or grade cattle, most of them located around Addis Ababa (Ejigu 2003). The exact exotic blood levels of these animals are not known. Only 4 % of total milk consumed in the country is pasteurized.This poor performance is partly because of low income but also due to demand-and supply-side constraints. The past poor performance of Ethiopia's dairy sector has been attributed to socio-economic, infrastructure and technical constraints, inadequate research and extension in livestock compared to crop and lack of direction and scope of policies related to dairy (Gebrewold et al. 2000). The most common constraints noted are land tenure policies, feed availability, breeds of cattle used and lack of animal services, marketing outlets, roads and transportation. Felleke and Geda (2001) argue that there is no livestock breeding and dairy development strategy in the country except for the draft policy incorporated in the general agricultural policy and the draft breeding policy of 1986, neither of which are yet finalized. Past dairy development efforts were based on projects related to purpose-and area-specific dairy strategies, without any national policy aimed at setting out a comprehensive dairy development strategy or programme.However, there is general consensus that the most important reason for poor performance has been the policies and policy instruments pursued by various regimes, most notably during the centralized economic systems of the Derg (1974Derg ( -1991)), which stalled and stifled progress. The policy of introduction of an inappropriate technology package for improving productivity under the poor economic and infrastructural environment of the country to serve the urban market also failed. In a low-income country with low consumption of dairy products and where more than 80% of the market is for butter and raw milk, the impact of these policies ought to be very limited. Politicization of the co-operatives also distorted and stifled the limited role they could play in promoting production and marketing. The main outcome of these policies is an established dairy processing industry, with one private firm increasing its share in the Addis Ababa market. This firm is capitalizing on previous developments and policies implemented by the government to supply the government-owned plant, which has been affected by competition, reducing its share in the market and operating at only a fraction of its capacity.These policies did not benefit consumers; just a small group of producers benefited who supply the manufacturing plants. The impact of these policies cannot even be detected at an aggregate level in the Oromia and Amhara regions, close to Addis Ababa. Liquid milk sales are a regional phenomenon not related to the Addis Ababa market but mainly determined by feed availability (cereal production per capita) and population density. There is some evidence to suggest that where improved cereal production technology has been adopted, better livestock technologies are also being adopted resulting in better productivity and higher marketed surplus of milk. Addis Ababa appears to have some influence as a regional market for milk surpluses processed as butter and cheese by producers in mixed and livestock production systems, at least in those zones closer to the capital (informal market). However, introduction of economic and market reform measures since 1992 and promotion of other supporting services, such as veterinary services and artificial insemination, have started creating positive impacts on the sector, especially in the peri-urban areas.Looking at the historical data and considering the key role that domestic demand had played in the development of the dairy sector in other poor countries, we conclude that demand played an important role constraining growth of the dairy sector in Ethiopia. Consumption per capita is low due to consumer preferences and low income. Total growth of GDP per capita between 1961 and 1999 was 17% in total (or 0.4 % per year) compared to 56 and 37% in Kenya and Sudan, respectively.With such demand constraints, it is not surprising that changes on the supply side were very limited and confined largely in and around Addis Ababa. Improved technology in production and processing did not spread much beyond the Addis Ababa milkshed due to the small size of the market. As shown by de Janvry and Sadoulet (2001), technical change in a sector selling marketable surpluses in the domestic market would result in sharp decreases of output prices with no gains in income for producers, except for those resulting from increased home consumption. If this is the case, the explanations of lack of development of the sector based on supply constraints cannot be sustained.Growth of the dairy sector could be constrained by low demand and low prices and/or by high transaction costs, which reduces both the price received by producers and their incentive to generate surpluses: milk is mainly produced for household consumption. Any surplus is taken to the market provided the price received compensates the effort involved (the opportunity cost): production costs and technology play no role in this decision. The higher the price received and the lower the cost of selling that milk, the higher the incentive to take more milk to the market. This interpretation may be further supported by the fact that milk consumption per capita decreased between 1995/96 and 1999/2000 according to the CSA's household expenditure surveys (CSA 1997;2001) although GDP per capita increased at an average annual rate of 3.3% between 1993 and 1999 according to World Bank data. Assuming that income elasticity for dairy products is greater than zero (probably greater than 1), demand should have grown during this period, but in fact consumption decreased. The reason for this apparent anomaly may be that there is a market failure in the dairy sector and that the main constraints to its expansion at present are related to market development and marketing. The market failure would imply that prices for dairy products are too high for some consumers and too low for producers, which could explain why aggregate consumption decreases with income growth and why a growing demand is not reflected in prices and does not result in increased supply. This is normally the case when high transaction costs exist.Politico-economic philosophies and related policies pursued by three successive regimes are the overriding factors responsible for relative stagnation and endemic poverty in the country. For that reason, the problems and opportunities in dairy production and marketing in the country are no different from the problems of agriculture in general because most of the producers are small-scale mixed farmers. The policy of improving commercial dairy production in selected areas of the country, especially around Addis Ababa, by promoting cross-bred and exotic cows and related feed and management technologies and development of a milk processing industry to supply the Addis Ababa market benefited a small number of producers in the urban/peri-urban areas, but created little impact on rural dairy producers. Cooperatives were unable to play their role effectively in promoting smallholder production and marketing because there was little incentive on the part of the smallscale producers to do so. Dairy production for the majority of the poor, small-scale farmers remains a minor activity to complement crop production. Large amounts of labour are used in raising animals by traditional smallholders, much provided by children who do not attend school due to poverty. But because of the low productivity of the animals raised, little income and marketable surplus is generated. On-farm processing of milk into butter and cheese is the responsibility of women but inadequate roads and market infrastructure constrain remunerative market access for products, so their return from value-added activities remains meagre.Population and urbanization are growing rapidly in Ethiopia. Income growth in the past few years has been modest and will likely continue at this pace, failing to create any major changes in the demand for dairy products. Dairy production will remain primarily in the hands of small-scale mixed farms in the rural areas, though the market share of urban/peri-urban systems will increase slowly. Main government efforts to commercialize agriculture will remain focused on the crop sector, which is understandable and in fact desirable; without a major take-off in the crop sector, dairy development efforts focused on the poor, especially in distant rural areas, will face many problems. Given these scenarios, the following actions should be considered.First, promotion of dairy as a tool for poverty alleviation will be fostered by supporting both infrastructural and technological options that would enable smallholder farmers and small-scale local processors to add value through marketing and processing products demanded by both rural, town and city-based consumers. Scaling up of processing technology and sizes of firms could gradually evolve with the general economic development of the country.Second, policies should target the development of raw milk and butter markets because these are the products demanded by most of the population in Ethiopia; pasteurized milk and butter are poor substitutes for these products at the present levels of income. This is why the informal market for these products, representing about 90% of the milk market, kept growing during 40 years of policies focusing on developing industrial processing. Policies to develop the present informal markets should focus on supporting small-and medium-scale private enterprises in rural areas and on reducing transaction costs, increasing prices and margins for producers and reducing prices and increasing quality for consumers.Third, given poor infrastructure and the costs of moving perishable commodities within the country, policies directed to different milksheds, beyond Addis Ababa, will be necessary in order to expand the benefits of development of the dairy sector to other areas. Regions in the highlands with high potential for crop production and milk surpluses and high population density could contribute significantly to the development of the dairy sector. The expansion of Green Revolution-type technology is still limited and constrained by structural problems in the grain marketing systems.Solving grain marketing problems will also provide greater opportunities to introduce improved technology-based livestock production to complement improved crop production but the complementarities of the issues, constraints and opportunities need to be pursued through appropriate research, policy analysis and design of functional projects. Because of the land tenure policy, many younger families are landless; they are constrained to raise livestock, especially dairy cows, due to feed shortage. However, landless and smallholders can still raise one or two cows by accessing common-grazing resources or collecting feeds from various local sources. Because of their need to buy cereals for family consumption, they have a high propensity to sell their milk output. As farm size increases and dependence on markets for cereal reduce, families tend to consume an increasing share of their milk output. Larger farms with adequate cereals and a feed-base to raise more dairy cattle have larger marketable surpluses. This production and marketing phenomenon has important implications for development practitioners for targeting technology, credit, input and service delivery; poorer households may not be suitable for raising crossbred cows but access to credit and appropriate technology may help them get out of poverty by raising local dairy animals.","tokenCount":"19944"} \ No newline at end of file diff --git a/data/part_3/8706548517.json b/data/part_3/8706548517.json new file mode 100644 index 0000000000000000000000000000000000000000..704b8a1b15e744032248e7f21b41850997cd1183 --- /dev/null +++ b/data/part_3/8706548517.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"8b2d85c8877f411cadb757eaf6b9e40c","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/9a43d9fd-6e52-44b8-8dc6-4691bf53d53d/retrieve","id":"1190658044"},"keywords":[],"sieverID":"dc167e82-88a2-4c6f-87f7-d508bd74d5b2","pagecount":"39","content":"The Sustainable Intensification of Mixed Farming Systems Initiative aims to provide equitable, transformative pathways for improved livelihoods of actors in mixed farming systems through sustainable intensification within target agroecologies and socio-economic settings.Through action research and development partnerships, the Initiative aims to improve smallholder farmers' resilience to weather-induced shocks, provide a more stable income and significant benefits in welfare, and enhance social justice and inclusion for 13 million people by 2030.Activities are implemented in six focus countries globally representing diverse mixed farming systems as follows: Ghana (cereal-root crop mixed), Ethiopia (highland mixed), Malawi: (maize mixed), Bangladesh (rice mixed), Nepal (highland mixed), and Lao People's Democratic Republic (upland intensive mixed/ highland extensive mixed).The Transforming Agrifood Systems in South Asia Initiative is a CGIAR Regional Integrated Initiative to support actions that improve equitable access to sustainable healthy diets, improve farmers' livelihoods and resilience, and conserve land, air, and water resources in South Asia.Tropical Livestock Units estimates a numeric value for the animal individuals within a farm-system according to the type, probable average weight and fodder demand to estimate a general idea of the relevance in the system (Njuki et al,. 2011) Over the past centuries, the mid-hills of Nepal have been inhabited and cultivated by nomads, settlers and in the recent decades intensified farming systems. The system is constantly under systemic change due to farmers own actions and policies within the confines of biophysical resource envelope. Without proper design, the farming system has been characterised by high levels of degradation, expansion to marginal fragile landscapes, outmigration and high cost of production. These challenges pose higher productivity, financial and social risks. To sustainably manage the landscapes, reconfiguration of the farming system towards reduced risk and improved production is desirable. Coincidentally, this corresponds to Nepal's devolution of planning to local authorities who demand the context specific redesign and resource management plans.The Sustainable Intensification of Mixed Farming Systems (SIMFS) is a CGIAR initiative. This initiative 'aims to provide equitable, transformative pathways for improved livelihoods of actors in mixed farming systems through sustainable intensification within target agroecological and socioeconomic settings. To achieve this, different methodologies, innovations, and practices have been implemented to understand and improve the agroecological/productive conditions to assess a benefit on nutrition, food security and welfare. SIMFS works closely with the CGIAR Regional Integrated Initiative on Transforming Agrifood Systems in South Asia (TAFSSA) that propels evidence into impact through engagement with public and private partners across the production-to-consumption continuum, to achieve productive, environmentally-sound South Asian agrifood systems that support equitable access to sustainable healthy diets.The use of Principal Component Analysis through Hierarchical Clustering (PCA-HC) is a tool which provides relevant information for farmers, practitioners, and other stakeholders. The development of typologies is a methodological approach to systematically arrange and interpret data associated with the categorization of groups of variables. In farming systems analysis, household-level data are critical in delineating internal farm dynamics that include production processes, adaptive strategies, and resilience metrics. Structural variables, characterized by their stability over short to medium-term periods, are key to discerning consistent trends and patterns within farming systems. These variables assist in identifying the strategic choices made by farm households to advance their welfare and nutrition. The analytical process is structured to support the establishment of sustainable and productive mixed crop-livestock-tree farming systems. The original data frame was recorded in a CSV file. The land definition was provided by the farmers, and the local units were changed into a metric system. Some tests were applied to identify possible outliers in Excel of Office 360 and corrected with expertise from the CIMMYT-Bangladesh team. For the analysis some variables were used as they were collected, while others were derived from the original information, as ratios or indexes.The analysis was conducted using R (v 4.2.2), in R-Studio (v 2022.12.0 Build 353), over Windows 10 Enterprise 22H2. The packages used for analysis included dplyr, reshape, ggpubr, corrplot, psych, caret, Hmisc, agricolae for data analysis and factoextra, ade4, vioplot, sf, tmap, grid, gridExtra, ggplot2 for graphical representation.Before conducting the PCA-HC analysis, a preliminary step involved the removal of variables from the available dataset in order to mitigate dimensionality. To accomplish this, we classified variables into two distinct categories: structural and non-structural. Structural variables, exemplified by attributes such as land surface area, active subsystems within the farm, and land use, exhibit minimal year-to-year variability. In contrast, non-structural variables such as crop yields or income, can change dramatically within a year. Binomial or categorical variables were considered within the dataset, although their treatment in the analysis is not specified in this context. The decision to exclusively retain the structural variables for the subsequent PCA-HC analysis stems from their inherent stability over time.Subsequently, all initially selected variables were tested and those having more ≥74% of the data as NA, or a prevalence of ≥80% of 0 (zero) value as responses, were consequently excluded from further analysis. This systematic approach was undertaken to augment the distinctions between farms within the PCA-HCA framework. In the context of PCA-HCA, the resulting 'reduced' dataset was used in a two-step testing process to refine and obtain a cleaner version for typological analysis:To assess the near-zero variance of each variable, a statistical test, as outlined by Kuhn (2023), was utilized to demonstrate significant near-zero variance behavior. This test relied on the ratio of the most frequently occurring high values to the percent uniqueness of values within all data vectors. We next conducted a visual examination of the dataset's variable distributions through the use of boxplots and histograms, with the aim of identifying patterns resembling normal distributions. In order to evaluate relationships between variables, we utilized Pearson's correlation to examine data that were comprised of numerical variables. Following Barba-Escoto et al. (2019), a threshold of 0.7 was employed as a discriminating point. Any correlations exceeding this absolute reference value were scrutinized across all related variables, and for interpretation purposes, the most significant variable was selected among those with multiple correlations or varying levels of significance.Before the cleaning process 51 variables and 407 farmer respondents' data were preselected for the farm typology characterization of Khotang district. 11 variables linked to the identification of each survey were directly removed. Another 10 variables were removed after the cleaning process. The final farm type definition presented in this document is based on a matrix of 30 variables  407 farmer household survey respondents. The ratio of surveys to variables in this analysis is 10.2, which exceeds the commonly accepted threshold of 5, indicating the reliability of the analysis. For more detailed information on the original pre-selected variables, please refer to Table 5.4, and for numerical data, consult Table 5.1 in the annexes.The typology design ( Barba-Escoto, et al., 2019) is divided into two main processes: a) PCA relevant components definition (dimensions), and b) HCA clustering for groups definition. Thereafter, the types are described by the differences between the groups.The definition of the dimensions is based on the eigenvalues for each potential component; those with eigenvalues >1 are considered relevant. The scree test provides a visual support for this step. In this case, 10 dimensions were defined (Table 2.1, Figure 2.2). Following the preliminary assessment, the farm system components are delineated, and the districts are allocated into these components (as illustrated in Figure 2.3). This classification is based on the distance of each district's corresponding value in the vector created by each variable and the direction across these components. The significance or weighting of each selected variable can be found in Table 5.3, provided in the annexes. In the second phase of the typology construction, the grouping process is established, guided by the Within Group Squared Sum (WGSS) and a hierarchical classification (as depicted in Figure 2.4). Combining the insights derived from both methods, five distinct farm types were defined. Subsequently, each record was categorized and allocated to one of these five groups, as depicted in Figure 2.5. Table 2.2 summarizes the distribution of the records into the different farm types. As described in the previous section, utilizing the PCA-HCA approach, five distinct farm types have been identified. It is essential to note that the farm type descriptions presented below provide a relative perspective on the characteristics among these farm types. The variables employed in designing the farm types are visually represented in a heatmap (Table 2.3) to emphasize group differences. For each farm type a graphic representation showing the average component characteristics as well as the average interactions/flows between components is given (Figures 2.6 to 2.10).Note that (i) the TLU score, based on the simplified model by Njuki et al. (2011), considers solely the reported number of animals to derive a value based on weight and fodder requirements; and (ii) there are three primary productive seasons: spring (kharif-1), monsoon (kharif-2), and winter (rabi) seasons ; (iii) naming of the farm types was done with the support of Chat GPT (3.6 v); (iv) these are preliminary results.Supplementary information is available in the annexes, it includes: i.A map displaying the surveyed farms and their corresponding farm types (Figure 5.1). ii.The results of a Bonferroni test carried out to assess significant differences between farm types for the definitive variables (Table 5.4) as well as the results of a Chi-squared test applied to analyse the variables (Table 5.5). iii.A comprehensive visualization of variables across all districts presented through boxplots (Figures 5.2 to 5.7). It's important to note that this information relies on the same dataset; however, additional outliers were removed specifically when examining production. The key topics addressed encompass household information, income sources, land allocations, production, and indicators of system resilience.T1 farms are characterized by having the smallest landholdings (0.5ha), and the lowest numbers of months when water is available (10.9). Nevertheless, they have the highest share of land cropped during winter (15.6%), and the lowest share cropped during monsoon season (94.4%), resulting in a moderate cropping intensity across seasons (118.9%). On average they are at an altitude of 1,048 masl, and at a moderate distance from markets of 9.7 km. Among the four farm types they have the second highest land share allocated to maize (59.5%), masayang (mungbean, 9.2%), and banana (1.4%) and the lowest allocated to millet (10.1%). They have the lowest use of manure (16 Mg) and chemical fertilizer (29 kg). They also have the lowest diversity score for homestead vegetables (1.1) and a low score for homestead crops in general (1.5) with almost no homestead production. However, they also have the lowest rate of homestead produce consumed within the household (65.8%) which indicates that a greater portion of it is sold. They have a moderate fruit tree diversity (1.1). In terms of farm animals, they have the second lowest TLU scores with 1.9 (all animals), 1.3 (cattle and buffalo) and 0.4 (goat and sheep). T1 farms have the second highest share of income from remittances (37.9%) and concomitant to their lower land and animal endowments the lowest share of income from crop production (2.3%), animal production (4.6%) and off-farm income related to farm assets (6.8%). They have a more diverse homestead production than T1/T3 farms with scores of 1.6 and 2.2 for vegetable diversity and all crop diversity, respectively. And the second highest fruit tree diversity (1.3). Further, they consume 82.9% of their homestead production. They also have the second highest TLU scores with 3.0 (all animals), 1.8 (cattle and buffalo), 0.9 (goat and sheep) and 0.2 (pigs). These farms have the highest income share from agricultural activities: animal production (28.4%), crop production (13.9%) and off-farm income related to farm assets (40.5%). And the lowest share of income from remittances (10.3%). Type 3 (105 n / 25.8%) -High-Altitude millet based subsistence farm households.T3 farms have similar small landholdings (0.5ha) and number of months when water is available (11.2) as T1 farms, but they differ in land hare cultivated: they cultivate all their land during the monsoon season and only 2.7% (the lowest proportion) during winter. While their cropping intensity is similar to T1 farms (115.5%) they have 51.4% of fallow land across all seasons. T3 farms are at the highest altitude (1,329 masl) and are closest to the market (4.7km). Among the four farm types they have the second lowest land share allocated to maize (52.3%), the highest allocated to millet (42.6%), and the lowest for all other categories (masayang 1.7%, banana 0.2% and other crops 2.2%). They have the lowest use of seed (59.9 kg) and the second lowest use of manure (25 Mg) and chemical fertilizer (38 kg). They have similar low diversity scores for homestead vegetables (1.1) and homestead crops in general (1.4) as T1 farms but differ in amount produced (0.1 Mg as opposed to almost no production recorded for T1 type). They consume 70.9% of the homestead produce. They have the lowest fruit tree diversity (0.4). They have the lowest amount of farm animals: TLU scores of 1 (all animals), 0.7 (cattle and buffalo) and 0.2 (goat and sheep). For T3 farms income from remittances is important (19.6%); and off-farm income related to farm assets is moderate (14.5%). Although T3 farms own less animals the share of income from animal production (5%) is similar to T1 farms, while the income from crop production is the second highest (7.1%) across the four farm types.The income share from off-farm activities is 11.2%, with 10.4% from animals and 6.3% from crops. The remittances have a very high share (62.1%) T4 farms have the biggest landholdings (1.2ha), and water almost all year long (11.8 months). They cultivate all their land during the monsoon season and 5.2% during winter, they have the biggest area of fallow land across seasons (1.3ha), resulting in the lowest land occupancy (108%). On average they are an altitude of 1156 masl and are the furthest away from markets (17.3 km).Across the four farm types they have the largest share of land allocated to maize cultivation (61.8%) and masayang (12.2%), the second highest allocated to other crops (11.6%) while millet and banana are less important (10.5% and 1.1%, respectively). They make use of similar amounts of manure (34 Mg) as T2 farms and use the highest amounts of chemical fertilizer (92.1 kg) as well as seed (227.1 kg), which are much higher than what other farm types use. They have the most diverse homestead production with scores of 2.2 and 2.3 for vegetable diversity and all crop diversity, respectively. And the highest fruit tree diversity (1.9). They consume almost all (92.2%) of the produce within the household, this could be linked either to the fact that their homestead production is negligible (0.0Mg) or with the further distance form markets or be an indication that they do not need to sell any homestead produce to generate income. T4 farms own the highest amounts of animals: TLU scores are 4.7 (all animals), 2.7 (cattle and buffalo), 1.4 (goat and sheep) and 0.5 (pigs). Although T4 farms have the highest amounts of productive resources like land and animals as well as highest input use the income share from agriculture related activities is second lowest for crop production (6.3%) and off-farm income related to farm assets (11.2%) and only second highest for animal production (10.4%). On the other hand, the income share from remittances is highest with (62.1%). It might be possible that the higher input use and livestock endowment is \"subsidized\" by the remittance money. The heatmap is based on 3-colour scale for numerical values for each variable, with green for the larger value and red for lowest, to facilitate visual analysis. For deeper analysis in important to evaluate the larger distances between values as a broad description. Grey colour in the variable name highlights those variables included in the PCA-HC.Small scale farming systems are often complex combining several farm (e.g. crop, livestock, aquaculture) and non-farm activities for the livelihood of rural families. This complexity often generates, within the same region or agroecological zone such as Khotang district, a large diversity of farming systems with, for example, different levels of specialisation on certain crops of livestock activities, their reliance on farming and non-farming activities for the generation of income or for labour engagement.Capturing such diversity and complexity of farming systems is an essential step towards developing suitable (baskets of) socio-technical innovation bundles (Barret, et al, 2022) that i) address the main challenges for the sustainability of specific types of farming systems and ii) identify distinctive (best fit) opportunities and entry points for improving their performance. No all farmers are the same and no innovation fits all.In this analysis we have identified four relatively homogeneous and significantly different types of farming systems for Khotang district based on a survey applied to 407 farm households in the Halesi Tuwachung municipality: Type 1 (T1) -Marginal farms, surviving based on remittances; Type 2 (T2) -Agricultural production focussed farms; Type 3 (T3) -High lands livestock integrated maize-millet system with high trading services, and; Type 4 (T4) -Extensive maize-livestock \"subsidized\" by remittances.For each of these farm household types we have identified their distinctive features, the main components of the farming systems and their relative importance, some internal and external flows. This systemic characterization of the diversity of farming systems in Khotang district can be conceived as a first step toward the analysis and design of more sustainable Mixed Farming Systems in the region.In the OneCGIAR SI-MFS initiative the DEED framework has been adopted for the co-design of more sustainable MFS. The DEED framework encompasses a series of phases for systems analysis and co-design (Describe, Explain, Explore, and Design; Figure 3.1) (Gebreyes et al., 2023). For example, based on this typology developed for Khotang district, further analysis of the detailed dataset for the different types as well as FGD and semi-structured interviews, would allow to identify the main limitations and inefficiencies for different types of farming systems, their differentiated priorities and indicators of success and assess their performance through multi-criteria assessment. For example, T4 is a very-close system, with large land (relatively higher and the farthest, with largest fallow) for cropping and livestock, with fruit trees and homestead, but for majorly self-consume because the high dependency on remittances as income source, and those farms could be interested in productive innovations and land restauration, with farm-products conservation to increase trade outside farm. T2 farms are based on relatively low winter land (with some fallow) with income based on cropping (monsoon millet and others) and livestock, with the larger off-farm activities, and could be interested improve efficiency on farm subsystems and inputs recycling. On the other extreme, T1 farms have land restriction for maize-masayang, but with a high dependency of remittances as income but no off-farm activities, with the lower water access and homestead self-consume, and could be interested in intensive land use innovations, and sub-system improvements as more diversity on homestead and fruits and animals. Finally, T3 farms are the closer to markets and have low surfaces millet+maize based crops, not very diverse in fruits, animals, or homestead, and could be interested on MFS innovations for a heavy diversification. Formalising these hypotheses and assessing specific process trough empirical or analytical pathways would need to be carried out during the Explain phase of the DEED cycle.Exploring the potential effect of specific socio-technical innovation bundles for different types of farm households allow to identify type-specific areas of improvement and identify potential trade-offs and synergies that need to be addressed or exploited in the process of co-design of more sustainable MFS. Such trade-off and synergies would be different for different farm types and will delimit their specific window of opportunities for improving systems performance and will inform the most promising pathways for successful co-design. Finally, based on action research and informed y previous phases of the DEED cycle, novel practices and systems configurations can be designed, suitable for different types of farming systems and engage in a process of co-innovation where farmers and researchers put together their learning tools to improve the sustainability of mixed farming systems. Table 5.4 Bonferroni test result to show significant differences between farm type definitory variables. Note: each variable compares the media's types assigning a letter, in which similar letters imply no-statistical difference between types. The green colour highlights statistical difference between types. Note: for 'HH head education: informal, 1; informal with read skills, 3; elementary, 6; secondary, 9; college or above, 16'. Note: for 'Food worries': never, 0; sometimes, 0.5; often, 1.","tokenCount":"3379"} \ No newline at end of file diff --git a/data/part_3/8708593006.json b/data/part_3/8708593006.json new file mode 100644 index 0000000000000000000000000000000000000000..65d6b7eb7c721cdab0f876804dc90a423c394e34 --- /dev/null +++ b/data/part_3/8708593006.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"6869faf1a2469855d86e48a5b07dade0","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/15cf8019-78ae-418d-a0ac-92cecdf72b6b/retrieve","id":"-1850779012"},"keywords":[],"sieverID":"7ffed6a3-355b-4ecf-a084-ae59a29872af","pagecount":"1","content":"The One Health approach emphasizes the interconnectedness of human, animal, and environmental health, recognizing that addressing complex health challenges requires collaboration across disciplines and sectors. In Southeast Asia, this approach has gained momentum as countries work to develop and implement strategies that promote health security through coordinated actions.1. Describe the current status of One Health platforms, strategies, action plans, and regulations across the Southeast Asia region.2. Identify gaps and considerations to improve the implementation of One Health initiatives in Southeast Asia.The findings presented here offer a comprehensive overview of regional efforts, highlighting progress and opportunities for enhancing the One Health approach to address the region's health and environmental challenges.Literature Review: Information was collected from sources such as Google, official websites of WHO, FAO, WOAH, UNEP, and national ministries in Southeast Asia. Reports like Joint External Evaluation, National Action Plans for Health Security, and National Bridging Workshop reports were also reviewed.We conducted 5 interviews with One Health experts. All data was analyzed for alignment with international frameworks from WHO and FAO In Southeast Asia, each country has established a One Health coordination mechanism for national action programs. While there is no single regional framework, several initiatives, policies, and networks support the One Health approach to address health challenges holistically. Regional strategy and framework emphasize applying OH approach to address health issues 1. ASEAN strategic framework to combat Antimicrobial Resistance through One Health approach (2019 -2030) 2. ASEAN Regional strategy for preventing transmission of zoonotic diseases from wildlife Trade 2022 3. Strategic framework for action for strengthening surveillance, risk assessment, and field epidemiology for health security threats in the WHO South-East Asia re- One Health operation Mechanism in SEA: Almost countries has form of national One Health coordination mechanism, which take different forms but cover similar areas (AMR, Zoonotic diseases, food safety). In some countries, OH is coordinated by an extant OH committee or working group, whereas other nations have a OH plan that a management group may not permanently support.  Unclear or fragmented coordination structures across sectors and agencies. Dependence on external funding for program activities and continuity.To improve OH implementation, SEA must enhance multisector collaboration, harmonize regulations, invest in capacity building, and strengthen surveillance and data sharing. Addressing these gaps will improve the region's ability to manage health threats at the human-animalenvironment interface.","tokenCount":"384"} \ No newline at end of file diff --git a/data/part_3/8709185610.json b/data/part_3/8709185610.json new file mode 100644 index 0000000000000000000000000000000000000000..b367a548256ef6397cee3172fee596bc612d3ca3 --- /dev/null +++ b/data/part_3/8709185610.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"207a0a8ff1eafe43b2ac10260c86f06e","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/e698ab7c-8732-451b-b126-e7c7c3b7f0be/retrieve","id":"1778731241"},"keywords":[],"sieverID":"455ccbac-97c3-498b-9c72-7dd7524991a4","pagecount":"1","content":" African Chicken Genetic Gains (ACGG) is an agriculture-research-fordevelopment (AR4D) project seeking to introduce, test, and upscale improved, tropically-adapted chicken strains in Ethiopia, Nigeria, and Tanzania. Given its dual emphasis on research and development, ACGG aims to integrate gender into its technical research and day-to-day development operations. ACGG undertakes research into how improved breeds impact gender relations and how gender relations impact the adoption of improved breeds. The development approach of ACGG seeks to improve the lives of participating farmers.Joint ownership of chickens is the most frequent ownership type, followed by ownership by the female household members.• Compared to women, men own more farm and household assets.• Dietary diversity scores were higher for children, 5.93 in Ethiopia, 6.41 in Nigeria, and 5.79 in Tanzania, than for men and women.The vast majority of households, >95%, kept poultry for at least two years.• Adult women have the heaviest labour burden in poultry systems, ranging from 90-138 minutes a week on chicken-keeping activities, followed by children.• Significant differences were reported in the control over benefits across ACGG; Ethiopia, 70% of decisions regarding the sale of birds are joint household decisions; Nigeria, households reported that 46.3% of the time adult females decide on the number of chickens sold; and Tanzania, 60% of sale events are a joint household decision.The outcomes of the ACGG gender research can be used to:  Improve adoption in breed improvement programs across species;  Enhance the existing knowledge base on the impact of breed improvement programs on gender relations; and  Inform the development of inclusive breed improvement in the smallholder chicken value chains in sub-Saharan Africa.This program is funded by the Bill & Melinda Gates Foundation.ACGG Ethiopia beneficiary with improved, tropically-adapted chicken strains (Photo credit: ILRI\\Apollo Habtamu)Figure 1. The ACGG common conceptual framework as mapped by the Royal Tropical Institute (KIT). The ACGG gender strategy is centred on researching and improving: gender division of labour; access to and control over resources; intra-household decision-making; and gender norms. Through participatory methods, the Royal Tropical Institute (KIT) worked with the ACGG teams in Nigeria, Ethiopia, and Tanzania to frame these key concepts in the ACGG common conceptual framework.ACGG thanks all donors and organizations which globally support this work through their contributions to the CGIAR system","tokenCount":"374"} \ No newline at end of file diff --git a/data/part_3/8732140506.json b/data/part_3/8732140506.json new file mode 100644 index 0000000000000000000000000000000000000000..5a0d239ab3a7c157b38db4007c8af5e230edd225 --- /dev/null +++ b/data/part_3/8732140506.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"334adca318c4bbc8b02077c3449427a6","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/c7cc05db-a593-4eff-9198-c86546cd4e7b/retrieve","id":"181212713"},"keywords":["low nitrogen","maize, marker assisted selection","QTL"],"sieverID":"7fdccfda-f911-40f8-b265-7fb40a747497","pagecount":"16","content":"Understanding the genetic basis of maize grain yield and other traits under low-nitrogen (N) stressed environments could improve selection efficiency. In this study, five doubled haploid (DH) populations were evaluated under optimum and N-stressed conditions, during the main rainy season and off-season in Kenya and Rwanda, from 2014 to 2015. Identifying the genomic regions associated with grain yield (GY), anthesis date (AD), anthesis-silking interval (ASI), plant height (PH), ear height (EH), ear position (EPO), and leaf senescence (SEN) under optimum and N-stressed environments could facilitate the use of marker-assisted selection to develop N-use-efficient maize varieties. DH lines were genotyped with genotyping by sequencing. A total of 13, 43,13,25, 30,21, and 10 QTL were identified for GY, AD ASI, PH, EH, EPO, and SEN, respectively. For GY, PH, EH, and SEN, the highest number of QTL was found under low-N environments. No common QTL between optimum and low-N stressed conditions were identified for GY and ASI. For secondary traits, there were some common QTL for optimum and low-N conditions. Most QTL conferring tolerance to N stress was on a different chromosome position under optimum conditions.In Sub-Saharan Africa, most maize is produced under N-deficient conditions, owing to limited availability of resources, low purchasing power of farmers, and low incentive from governments [1,2]. In this scenario, developing cultivars tolerant to low-N stressed environments is crucial for sustainable production and ensuring food security in the region. Contrary to farmers' practice, most breeding programs in the region develop new varieties under optimally managed on-station experimental plots. The genetic mechanism for grain yield (GY) under optimum and low-N stressed conditions are different, and varieties developed for optimal environments often respond differently under N-limiting environments [2,3]. Understanding the genetic architecture of GY and traits correlated with it would accelerate genetic improvement in maize yield.GY is the most economically important trait in maize breeding programs in developing countries. Other agronomically relevant traits, including ASI, PH, EH, EPO, and SEN, are often used by breeders to find desirable plant architecture and for indirect selection of high-yielding maize varieties. The availability of reliable large-effect quantitative trait loci (QTL) for GY and other traits under optimum, as well as low-N stressed, conditions would accelerate the development and release of new maize varieties meeting yield demand under optimum and poor soil conditions, particularly for resource-poor farmers. Unfortunately, not much is known about the genetic architecture of most of these traits under N-stressed conditions, and QTL with a major effect have not yet been reported. Breeding for low-N stressed conditions thus far focused on direct selection for GY and indirect selection for correlated secondary traits under N-stressed conditions. Selection based on phenotypic traits is less accurate and expensive compared to marker-based selection.QTL analysis based on high-density linkage maps will provide the basic understanding of the genetic architecture of quantitative traits, thereby relating specific genetic loci with the biological mechanisms associated with desirable phenotypes [4]. The identification and characterization of QTL will help the breeders/geneticists to recognize genomic regions associated with the expression of complex traits and their precise genetic contribution at target loci. Several QTL studies have been undertaken in an effort to understand the genetic basis of abiotic stress tolerance in maize [5][6][7][8][9][10][11]. However, most studies focused on drought stress, and little research has been done on the dissection of the genetic basis of low-N tolerance. The few studies conducted to understand the NUE and associated traits in maize have given good insight into the genetic basis of low-N tolerance in maize [4,12]. One of the challenges in translating QTL identified into MAS, has been the environment-dependent and genotype-specific nature of QTL identified [13]. Most QTL reported under low and optimum N so far are mainly based on studies from one population in one/few optimum and low-N environments. For example, one mapping population with 240 F 2:3 families was evaluated under one optimum and two low-N sites in Mexico [12]. Another study [14] evaluated 214 F 3 families in one location over two seasons. Previous QTL mapping efforts for low-N were conducted in single optimum or low-N stressed sites, using only one mapping population. Multilocation trial data from more than one mapping population would provide a clear picture on the stability of QTL across environments and genetic backgrounds. In this study, five doubled haploid (DH) populations were evaluated in three to five optimum environments and one to three environments under managed low-N stress in the wet and off-seasons. The main objectives of this study were (1) to identify the QTL associated with GY, and other related traits under optimum and low-N stressed (wet and off-season) conditions, and (2) to identify common genomic regions across management conditions, traits, and genetic backgrounds. The identification of major QTL for GY and/or other traits that are common across different N conditions and genetic backgrounds would facilitate the application of MAS for the improvement of grain yield under low-N stress conditions.Increase in the intensity of N stress decreased trial mean for GY, PH, EH, and EPO, and increased trial mean for ASI and SEN (Figure 1). Average genetic variance in all populations was higher under optimum conditions for GY, PH, EH, and EPO, but it was high under low-N conditions for AD, SEN, and ASI. Despite relatively higher genetic variance under optimum than low-N conditions, broad sense heritability for GY and most secondary traits under low-N and optimum conditions were on par. Phenotypic and genetic correlations for GY were consistently positive and significant with PH, EH, EPO, and AD. A total map length of 3688.3, 4004.6, 3871.9, 7193.1, and 3426.4 cM was obtained from 2104, 2699, 1962, 1985, and 2086 SNP markers (Table 1) for populations 1, 2, 3, 4, and 5, respectively. The average distance between adjacent markers ranged from 1.48 cM for population 2 to 3.62 cM for population 4.QTL analysis identified 155 significant QTL for GY, AD, ASI, PH, EH, EPO, and SEN across ten maize chromosomes under optimum (55), LNM (49), and LNO (51) conditions (Table 2). Though slightly higher under optimum conditions, the total number of QTL identified for all N conditions, traits, and populations were comparable. The total number of QTL identified for GY, AD, ASI, PH, EH, EPO, and SEN were 13, 43, 13, 25, 30, 21, and 10, respectively. The distribution of QTL was variable among chromosomes, ranging between 6 (chromosome 9) and 51 (chromosome 1), with an average of 15.5 QTL in each chromosome. The three chromosomes with the largest number of QTL were chromosome 1 (51), chromosome 3 (26), and chromosome 8 (20). The distribution of the QTL across the five populations was 28, 84, 16, 13, and 14 for population 1, 2, 3, 4, and 5, respectively.For GY, 13 significant QTL were identified under optimum (3), LNM (2), and LNO (8) conditions across all chromosomes, except chromosomes 5, 6, and 9 (Table 3). Common QTL for optimum and low-N stressed conditions were not identified in all five populations. QTL underlying GY under optimum, LNM, and LNO conditions were identified on chromosomes 1, 2, 7, and 10 of population 2. About 62% of all QTL for GY individually contributed more than 10% of the observed phenotypic variance. The proportion of phenotypic variance explained by each QTL varied between 6.05 and 17.55%, with an average of 10.79%. The total phenotypic variance explained (TPVE) by all QTL under optimum conditions was 16.68% for population 1, 39.17% for population 2, and 9.32% for population 5. QTL for LNM were found only in population 2, and the TPVE was 11.50%.Management/population A total map length of 3688. 1) for populations 1, 2, 3, 4, and 5, respectively. The average distance between adjacent markers ranged from 1.48 cM for population 2 to 3.62 cM for population 4.QTL analysis identified 155 significant QTL for GY, AD, ASI, PH, EH, EPO, and SEN across ten maize chromosomes under optimum (55), LNM (49), and LNO (51) conditions (Table 2). Though slightly higher under optimum conditions, the total number of QTL identified for all N conditions, traits, and populations were comparable. The total number of QTL identified for GY, AD, ASI, PH, EH, EPO, and SEN were 13, 43, 13, 25, 30, 21, and 10, respectively. The distribution of QTL was variable among chromosomes, ranging between 6 (chromosome 9) and 51 (chromosome 1), with an average of 15.5 QTL in each chromosome. The three chromosomes with the largest number of QTL were chromosome 1 (51), chromosome 3 (26), and chromosome 8 (20). The distribution of the QTL across the five populations was 28, 84, 16, 13, and 14 for population 1, 2, 3, 4, and 5, respectively.For GY, 13 significant QTL were identified under optimum (3), LNM (2), and LNO (8) conditions across all chromosomes, except chromosomes 5, 6, and 9 (Table 3). Common QTL for optimum and low-N stressed conditions were not identified in all five populations. QTL underlying GY under optimum, LNM, and LNO conditions were identified on chromosomes 1, 2, 7, and 10 of population 2. About 62% of all QTL for GY individually contributed more than 10% of the observed phenotypic variance. The proportion of phenotypic variance explained by each QTL varied between 6.05 and 17.55%, with an average of 10.79%. The total phenotypic variance explained (TPVE) by all QTL under optimum conditions was 16.68% for population 1, 39.17% for population 2, and 9.32% for population 5. QTL for LNM were found only in population 2, and the TPVE was 11.50%. The TPVE under LNO was 11.50% for population 2, 23.34% for population 3, 22.30% for population 4, and 30.54% for population 5. The average QTL effect size under optimum (0.14 t ha −1 ) conditions was the highest compared to LNM (0.04 t ha −1 ) or LNO (0.08 t ha −1 ) conditions. Interestingly, the favorable alleles of the QTL detected under all management conditions were contributed by both low-N tolerant and susceptible parents.Forty-three significant QTL were identified for AD under optimum and low-N stressed conditions (Table 4 and Supplementary Table S1) across all chromosomes and populations. The number of QTL identified was 18 under optimum, 13 under LNM, and 12 under LNO conditions. The largest number of QTL was detected in population 2 (16), followed by population 1 (15). The phenotypic variance explained by each QTL ranged between 3.19% and 95.81%, with an average of 17.40%. The total proportion of phenotypic variance explained by all QTL under optimum conditions was 71.31% for population 1, 46.88% for population 2, 29.02% for population 3 (only one QTL), and 13.36% for population 4 (only one QTL). Under LNM, TPVE was 28.86% for population 1, 58.04% for population 2, 12.04% for population 3 (only one QTL), 8% for population 4 (only one QTL), and 37.71% for population 5. The TPVE under LNO was 47.27% for population 1, 33.58% for population 2, 46.11% for population 3, 25.45% for population 4, and 29.69% for population 5. The effect size of all QTL ranged from 0.11 to 3.56 days, with an average of 0.54 days. Despite many (24) individual QTL explaining more than 10% phenotypic variance under different management conditions, only one QTL with high effect size under all management conditions was found. This QTL was identified on chromosome 1 (343 cM) from population 3. The effect size of this QTL was 2.99 days under optimum, 2.23 days under LNM condition, and 3.56 days under LNO condition. ASI is another secondary trait related to flowering and indicates the tolerance of maize genotypes to low-N stress. Only three QTL, one in population 2, 4, and 5, which explained more than 10% of phenotypic variation for ASI (Table 4 and Supplementary Table S2) were identified. The TPVE by two QTL (39.41%) in population 5 was the highest attained in this study. The highest effect size for ASI was attained by these two QTL (0.53 and 0.32 days). Generally, the effect size for ASI varied between 0.05 and 0.53, days with an average of 0.14 days.From the total of 25 QTL identified for PH from all populations on all chromosomes except chromosomes 4, 5, and 10, seven were under optimum, 10 under LNM, and eight under LNO conditions (Table 4 and Supplementary Table S3). Only population 2 had QTL for all three management conditions. Thirteen QTL from the three conditions individually explained more than 10% phenotypic variance for PH. For the QTL in population 2, the TPVE was 59.82% under optimum, 61.72% under LNM, and 49.52% under LNO conditions. For populations 1 and 3, the total phenotypic variance explained by all QTL under LNM were 20.40% (one QTL) and 44.52%, respectively. Three QTL together explained 26.45% of the phenotypic variation observed for PH in population 1. One QTL each in population 3, 4, and 5 explained 24.33%, 8.05%, and 13.39% of the observed phenotypic variance for PH. The effect size of the individual QTL for PH ranged from 0.87 to 8.34 cm, with an average of 2.19 cm. Like AD, a QTL on chromosome 1 (343 cM) of population 3 combined more than 10% phenotypic variance and the highest effect size for PH. Two other QTL on chromosomes 1 (194.94 to 195.75 Mbp) and 8 (92.20 to 94.58 Mbp) of population 2 explained high phenotypic variance (16.96% and 13.92%) and had high effect size (3.27 and 2.99 cm). Like PH, the largest number of QTL for EH and EPO (Table 4 and Supplementary Tables S4 and S5) was identified from population 2. The QTL on chromosome 1 of population 3, which combines a higher proportion of phenotypic variance explained and high QTL effect for AD and PH, also had the same effect for EH.Unlike other traits in this study, QTL for SEN were identified only from population 2, with the largest number being under LNO (Table 4 and Supplementary Table S6). The total phenotypic variance explained under optimum, LNM, and LNO conditions was 23.65%, 15.06%, and 45.87%, respectively. The highest amount of phenotypic variance and largest number of QTL under LNO indicates the genetic variability existing under LNO for SEN and the contrasting nature of the two parents that constituted population 2. Discovering common QTL between different N conditions facilitates the identification of markers commonly used for optimum and low-N-stress breeding environments for a target trait. In this study, several common QTLs between optimum and N-stress conditions were identified for different traits, mainly in population 2 (Figure 2). For AD, one QTL (ADQTL1) under optimum conditions Discovering common QTL between different N conditions facilitates the identification of markers commonly used for optimum and low-N-stress breeding environments for a target trait. In this study, several common QTLs between optimum and N-stress conditions were identified for different traits, mainly in population 2 (Figure 2). Markers associated with common QTL among different traits and genetic backgrounds would facilitate the use of MAS to achieve yield improvement under low-N stressed conditions. Several multi-trait QTL were identified from all populations, except population 4. Because of large numbers of such QTL, only QTL with high PVE (≥10%) and relatively high effect size were reported here (Table 4 and Supplementary Tables). In population 1, a QTL on chromosome 1 (45.04 to 47.83 Mbp) was involved in the control of AD, EH, and PH under LNM conditions. Another QTL in this population was found on chromosome 8 from 137.47 to 142. 23 18 Mbp, was associated with AD under all the three N conditions and for PH under low-N conditions (LNM and LNO). A QTL on chromosome 8 (162.19 to 168.27 Mbp) of population 5 was involved in the control of GY, PH, and EH under LNO conditions. This is an adaptive QTL responsible for the control of GY, PH and EH only under severe low-N stress conditions. Some QTL common between different genetic backgrounds were found for AD (chromosome 8 in population 1 and 2), and ASI (chromosome 3 of population 2 and 4). Both the upstream and downstream of the multi-trait QTL (57.84-69.87 Mbp) identified from population 3 also integrated QTL identified for GY and other secondary traits from other populations. This indicates that this specific region could be common among multiple genetic backgrounds and needs further research to fine-tune the position of the QTL responsible for the control of multiple traits and possible candidate genes involved.Yield reduction under low-N stress conditions is an indication of the role of N in the growth and development of maize. In this study, mean GY was reduced by 71% under severe N stress (LNO), and by 39% under moderate N stress (LNM) conditions. The yield reduction under moderate stress was similar to yield reduction reported previously [15] under low-N stress conditions. Under severe N stress, the yield reduction observed was similar to yield reduction reported in an earlier study [12] under severe low-N stress conditions during the wet season in Mexico. Many authors attributed yield reduction under low-N stress to reduction in number of kernels as a result of increased abortion [2,12,14,15]. A big gap between silk emergence and pollen shed (ASI) under low-N stress conditions is one of the causes for kernel abortion. The large difference in yield reduction under low N during main and off-seasons showed the seasonal variation of low-N environments during the rainy and dry seasons.If GY under low-N stress is below 50% of the yield obtained under optimum N conditions, the yield reduction is related to mechanisms that impart tolerance to low-N stress [16]. In this study, GY obtained under severe stress conditions was only 29% of yield under optimum conditions and thus suitable for studying QTL underlying GY and secondary traits under low-N stressed conditions. However, since high levels of stress affect genetic variance and hence data [5] was collected for moderately N stressed environments also to capture QTL under all N-stress levels. In addition to GY, higher genetic variance was observed for some secondary traits under low-N conditions compared to optimum conditions, indicating the stress-adaptive nature of these traits [8], and therefore increases the power of QTL detection under low N [14].QTL underlying GY and secondary traits under optimum and low-N stress conditions could accelerate the development of NUE varieties. QTL analysis in this study identified 155 significant QTLs in five populations for seven traits under optimum, LNM, and LNO conditions. Some of these QTL were specific to only one trait, management condition, and population, while others were found across traits, management conditions, and populations. The distribution of the QTL also varied across the ten chromosomes of maize. The total number of QTL identified under the three conditions was comparable, indicating the existence of genetic variability under all three conditions. The highest number of QTL was detected for AD among traits, and in population 2 among populations. The result was consistent with the highest genetic variance observed for AD under all management conditions. The highest number of QTL in population 2 indicates the contrasting nature of the constituting parents for most traits under all management conditions. Chromosomes 1, 3 and 8 had the highest number of QTL and could be targeted for further QTL studies for GY and related secondary traits under both optimum and low-N stressed conditions. In another study [17], 13 QTL were identified under both low and high N levels. On chromosome 10, overlapping QTL were found for grain yield, ASI, and AD. Only three QTL were found to be common under low-N and optimal conditions, and this was for the \"Stay Green\" trait.For any target trait, identifying common QTL across management conditions, traits, and populations is desirable for successful implementation of MAS schemes. GY is the primary trait of interest in most breeding programs in Sub-Saharan Africa, where maize is a staple food. Most breeding programs on the subcontinent develop new varieties under optimally managed experimental fields, and the resulting new varieties are commonly grown under N-limiting small-scale maize farms. The correlation between low-and high-N environments for grain yield has been reported to be low in both tropical [2,18] and temperate [19] environments. Lack of common QTL between low-and optimum-N conditions for GY in this study agrees with classical correlation studies, and shows distinct genetic mechanisms for GY under low and optimum N conditions. N-uptake efficiency under optimum and both uptake and utilization efficiencies under low-N conditions play a role in GY [15,20]. As such, GY improvement for low-N stressed environments should be through direct selection in target environments as previously suggested [2]. More QTL detected for GY under low-N than optimum conditions in this study indicates high genetic variability for GY under low-N stressed conditions. Most of these QTL explained more than 10% of phenotypic variance, suggesting that the markers associated with these QTL could be useful in MAS, to improve GY under low-N stressed conditions. MAS reduces the cost of extensive field testing and cuts the time required to develop NUE inbred lines and varieties [14] through a conventional plant-breeding approach. Previous QTL reports for GY under low and optimum N were highly variable [9,14]. Like the current study, no common QTL between optimum and low-N conditions for GY was found in a previous study [14]. Another study [12] reported QTL correspondence between optimum-and low-N conditions on chromosomes 1 and 3. Differences in number of markers, locations, and populations used in different studies could contribute to the different results.Successful use of QTL for improving complex traits has apparently been hampered by their small effect size and lack of consistency across different genetic backgrounds [8] and locations. Identifying major effect QTL underlying single or multiple traits in various populations determines the successful use of QTL through MAS [8]. Since the advent of molecular markers, many QTL have been identified for GY and secondary traits under optimum and various stress environments, mainly based on individual or few mapping populations [4,5,12]. In this study, QTL were identified that were common between optimum and low-N stressed conditions (LNO or LNM) for all secondary traits except ASI. The QTL correspondence between optimum and low-N stressed conditions (LNM and LNO) for secondary traits was in agreement with high genetic and phenotypic correlation reported between optimum and low-N environments for each trait [2,18,19]. Common QTL for secondary traits justify the higher magnitude of correlation between optimum and low-N stress environments. The common QTL could be used to simultaneously improve each secondary traits for both optimum and low-N stressed conditions through markers associated with QTL identified under both optimum and low-N stressed conditions. However, QTL correspondences identified between optimum and low-N conditions for most secondary traits were not similar across populations, indicating the genetic-background-specific nature of QTL. In addition to common QTL for single traits between management conditions, multi-trait QTL would facilitate simultaneous improvement of traits or used in indirect selection for complex traits like GY through highly heritable and easily measurable traits. Populations 1, 2, 3, and 5 hosted QTL controlling multiple traits under different management conditions. The QTL identified in population 3 (chromosome 1: 52.35-230.18 Mbp; 343 cM), particularly, was remarkable, as it was common for AD, PH, and EH and integrated many QTL from other populations for AD, PH, GY, and ASI under optimum and low-N stressed conditions. QTL common between GY and easy-to-measure secondary traits can be used for indirect selection under low-N stress environments.Recurrent selection with markers associated with GY QTL under both optimum and low-N stressed conditions can help to accumulate favorable alleles for GY. Finding major QTL for complex traits like GY is challenging and needs to consider other alternatives. One alternative approach is the use of indirect selection through QTL common between GY and secondary traits that are easy to measure, highly heritable, and controlled by a few genes compared to GY. An adaptive QTL to low-N stressed conditions identified on chromosome 8 (162.19 to 168.27 Mbp) in this study is promising for indirect selection for GY through selection for PH and EH. This QTL was identified from population 4 and was involved in the control of GY, PH, and EH under LNO conditions. The markers associated with this QTL can be used for simultaneous improvement of GY, PH and EH. A high correlation between GY and PH due to co-localized QTL for both traits was reported [12], and suggested inclusion of PH in selection indices as important trait for improving GY under low-N conditions. Pleiotropic QTL for GY with EPO and PH under low N was also reported previously [14], but on a different chromosome than seen in this study, indicating the possibility of identifying such QTL in different genomic regions across different genetic backgrounds.Five doubled haploid (DH) populations from the Improved Maize for African Soils (IMAS) and the Water Efficient Maize for Africa (WEMA) projects of CIMMYT were used in this study. The populations were developed through an in vivo DH technique [21]. Population 1 (CML494/CML550), population 2 (CML504/CML550), and population 3 (CML511/CML550) consisted of 108, 219, and 111 DH lines, respectively, developed from four inbred lines from CIMMYT heterotic group B. Population 4 (CML505/LaPostaSeqC7-F64-2-6-2-2-B-B) and population 5 (CML536/LaPostaSeqC7-F64-2-6-2-2-B-B) consisted of 159 and 109 DH lines, respectively, and were developed from three inbred lines from CIMMYT heterotic group A. CML550, LaPostaSeqC7-F64-2-6-2-2-B-B and CML494 are among the top 20 low-N donor lines identified from a 412 panel of lines tested under low N in multiple environments, while CML504, CML505, and CML536 were sensitive to low-N stress (data not shown). Consequently, one population used in this study represented low-N tolerant x tolerant (CML494/CML550), while the remaining four populations represented tolerant x sensitive crosses. The DH lines from the five populations were testcrossed to a tester from the complementary heterotic group. DH lines from population 1 were testcrossed to an inbred line tester CML312; population 2 and 3 were testcrossed to a single cross tester, CML312/CML443, and populations 4 and 5 were testcrossed to an inbred line tester, CML395. Testcross progenies from all five the populations were evaluated under optimum and managed low-N conditions in the main and off-seasons of 2014 and 2015 in Kenya and Rwanda. The low-N stress trials conducted during the off-season yielded significantly lower than the low-N stressed trials conducted during the main rainy seasons, and therefore separate genetic analyses were performed for N-stressed trials in the main rainy season (LNM) and off-season (LNO).Testcross progenies from the DH lines derived from the five populations were arranged into five different trials and planted across one to ten sites in Kenya and Rwanda, between the main season (A) of 2014 and off-season (B) of 2015 (Table 5). In each trial, three to seven commercial checks were included. All optimum trials were evaluated during the main season. For low-N trials, some were evaluated during the main season, and others during the off-season, to capture the seasonal variability of N availability (Table 5). All trials were laid out in an alpha lattice design [22], each with two replications, except one site for each population 2 and population 3, which had three replications at the low-N site in Kiboko during the 2014 off-season. In all sites, plots were hand-planted with interand intra-row spacing of 0.75 and 0.25 m, except at Kiboko, where a row length of 4 m, with interand intra-row spacing of 0.75 and 0.2 m was used under both optimum and managed low-N stress sites. Two seeds per hill were planted in all sites. Three weeks after germination, plots were thinned to one plant per hill, to achieve a final plant density of 53,000 plants per hectare. At planting, only triple phosphate (46% P 2 O 5 ) was applied to all low-N trials, at a rate of 50 kg of P 2 O 5 ha −1 . For optimum trials, diammonium phosphate (DAP)-fertilizer was applied at the recommended rate, for each location. Four weeks after planting, all optimum trials were top-dressed with urea fertilizer. The rate and type of fertilizer applied were the same during main and off-seasons. Optimum and low-N trials at Kiboko were irrigated as required throughout the growing season, to avoid moisture stress, but trials on all other sites were rain fed. Except for N fertilization, the same management was applied to trials planted under optimum and low-N stress sites. The low-N trial fields were depleted of N for several seasons, and no N fertilizer was applied. Data were collected for GY, anthesis date (AD), anthesis-silking interval (ASI), plant height (PH), ear height (EH), ear position (EPO), and leaf senescence (SEN). GY was calculated from field weight by adjusting grain moisture to 12.5% and the shelling percentage to 80%. AD is the number of days from planting to when 50% of plants in the plot started shedding pollen on the main axis of the tassel. ASI was calculated as the difference between the number of days when 50% of plants in a plot emerged 2-3 cm silk and pollen shedding. PH and EH were measured in centimeters as a distance from the base of a plant to the first branch of the tassel and the upper most ear from ten representative plants, respectively. EPO was calculated as the ratio between PH and EH. SEN was recorded by visual assessment, using a 1-10 scale, where 1 indicates all leaves of all plants in a plot were green and 10 indicates that all leaves were dead. At harvest, edge plants were removed from all rows from trials planted under low N, to avoid border effects.Genomic DNA was extracted from young leaves collected in a bulk of 10 plants per entry, using a modified version of the CIMMYT high-throughput mini-prep Cetyl Trimethyl Ammonium Bromide (CTAB) method [23]. DNA samples were genotyped at the Institute of Biotechnology at Cornell University (http://www.biotech.cornell.edu/brc/genomics-facility), USA, using ApeKI as restriction enzyme and 96-plex multiplexing [24]. Genotyping by sequencing (GBS) data for a total of 955,120 SNP loci distributed across the ten maize chromosomes was received from the Institute of Genomic Diversity (IGD), Cornell University, USA. The genotype data was filtered with a minor allele frequency (MAF) of 0.05 and a minimum count of 95% of the sample size, using TASSEL v.5.2.24 software [25]. Only marker loci homozygous for both parents and polymorphic between the two parents were retained in all populations. Finally, markers were selected based on distance (more than 250 Mb apart) in order to get the number of markers handled by the QTL analysis software and to ensure uniform distribution of markers on the genome.Linkage maps for all five populations were constructed using by QTL IciM mapping ver. 4.0.6.0. (http://www.isbreeding.net) software using a criterion of more than 3.0 logarithm of odds (LOD) [26]. Recombination frequencies between two linked loci were transformed into cM distances, using Kosambi s mapping function [27]. QTL analysis was performed by using the across locations BLUPs for each population within each management condition. QTL associated with each trait were identified by using an inclusive interval mapping (ICIM) method implemented in the software QTL IciM Mapping v.4.0.6.0 [26]. The walking step in QTL scanning was 1 cM, and a LOD threshold of 3.0 was used to declare putative QTL [15]. The sign of the additive effects of each QTL was used to identify the direction (the origin of the favorable allele) and effect size of each QTL.This study identified QTL underlying GY, AD, ASI, PH, EH, EPO, and SEN under optimum and low-N stressed conditions and SNP markers associated with each QTL. Some of the QTL identified were important to explain the genetic basis of correlation between optimum and low-N environments for GY and secondary traits. The genetic mechanism under optimum and low-N conditions seem distinct for GY, as there were no common QTL found under either condition. Generally, the cost of phenotypic evaluation under low-N environments is higher than under optimum conditions, due to the need for establishment and management of managed low-N stressed sites across regions. MAS through genomic regions associated with GY or indirectly through secondary traits correlated with GY under low-N environments would help to reduce the cost of breeding for stress environments. QTL explaining more than 10% phenotypic variance and relatively higher effect size can be used for fine mapping and/or marker-assisted breeding for rapid GY improvement under optimum and low-N stressed conditions.The following are available online at http://www.mdpi.com/1422-0067/21/2/543/s1. ","tokenCount":"5339"} \ No newline at end of file diff --git a/data/part_3/8742300147.json b/data/part_3/8742300147.json new file mode 100644 index 0000000000000000000000000000000000000000..3997ad208329edd6323bd50de11ffe7ab2ea440f --- /dev/null +++ b/data/part_3/8742300147.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"0e60391cedbec14ddaca55afe5d7a9d1","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/f57c7ce3-6278-4fff-bd8e-b287a16a7ef4/retrieve","id":"-2079387202"},"keywords":[],"sieverID":"89badd45-b386-4f32-90a7-9b06b93ed76f","pagecount":"6","content":"Uno de los pasos mas importantes en los procesos de mejoramiento de frijol es el mantenimiento y distribucibn de semilla de las variedades liberadas.Para la liberación de nuevas variedades cada institución o empresa de semillas tiene su propio sistema de regulaciones, por lo que no entraremos en detalles sobre dichos procedimientos. Una vez que una variedad ha sido nombrada y liberada, es responsabilidad del mejorador mantener la variedad. En el caso de una variedad desarrollada como una linea pura, no hay mucha dificultad en describir la variedad y mantener el tipo de planta deseado. La mayorla de las variedades utilizadas en los paises centroamericanos conservan un grado de heterogeneidad, por ser desarrolladas a partir de selecciones masales en las ultimas etapas del proceso de mejoramiento.En tales casos el mantenimiento de la ,¡ariedad, debe conservar el tipo original de la variedad, pero conservando la heterogeneidad original.La produccibn de semilla genetica no presenta problemas muy La semilla genetica debe ser producida en terrenos libres de residuos de plantas de frijol, bajo riego durante las épocas secas.Para el mantenimiento de una variedad de frijol, que conserva cierta homogeneidad, se puede proceder de la manera siguiente:Paso 1.Durante la epoca mas importante de produccibn, y en una localidad representativa de las zonas de adaptacibn de la variedad, se siembra un lote de reselección de-la variedad.Se procede Es aconsejable, separar la semilla de cada planta, para generar progenies que se siembran en la siguiente epoca apropiada, para visualizar caracteristicas que son mejor apreciadas en surcos completos que en plantas individuales.Caracteres como arquitectura, ancho y altura de copa, floración y madurez, se aprecian mejor en dicha forma. En esta etapa se deben descartar todas las progenies que se sospeche que no se conforman con el tipo de planta, ti pico de la variedad. La semilla de los surcos conservados se cosecha en masa, formando la base de semilla genetica. Esta semilla se puede incrementar si se desea.Finalmente, es necesario insistir.en que la produccibn. de semilla genética es re,;;ponsabilidad del mejorador o programa La semilla se debeescasez.","tokenCount":"339"} \ No newline at end of file diff --git a/data/part_3/8744104653.json b/data/part_3/8744104653.json new file mode 100644 index 0000000000000000000000000000000000000000..7b1890985679249ea71ae58a41f85bdd32dc5973 --- /dev/null +++ b/data/part_3/8744104653.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"216195a2b6fc788da03acd61a5f90de3","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/66fd1498-3e35-4e02-97ee-d9f9e9c7320e/retrieve","id":"1543508314"},"keywords":[],"sieverID":"3d6ce8a5-89ba-4fb0-90f1-28cb3abc9a82","pagecount":"60","content":"At IWMI, we look at water as a system, because as it interconnects people, nature and the economy in countless and complex ways, we need to be mindful of the trade-offs, possible disruptions to supply and other uncertainties. Solutions for water need to take all of this into account.Over the course of the year and starting from discussions at World Water Week in Stockholm, Sweden, in 2018, IWMI undertook a series of internal and external consultations to sharpen mission-driven research priorities, which position the Institute to make a meaningful contribution to the transformative 2030 Agenda outlined in the United Nations Sustainable Development Goals (SDGs), and also in the Paris Agreement, the Sendai Framework for Disaster Risk Reduction, and by the Global Commission on Adaptation.Motivated by key global challenges, the strategy will guide IWMI's vision of a water secure world by focusing on three Strategic Programs -Water, food and ecosystems; water, climate change and resilience; and water, growth and inclusion. These new strategic programs will aim to solve global water problems by purposefully building bridges between science and water management, policy and practice. A significant investment has also been to ensure that IWMI is well positioned to become a digital leader and innovator by developing applications that can best leverage the massive amounts of water data at our disposal to promote informed policy and investment decisions at landscape up to government and international levels.Underneath the Strategic Programs, mission-oriented research is organized to best reflect IWMI's problemsolving capabilities. The new strategy builds on a 35-year legacy and traditional strengths, including strong field presence. Indeed, the strategy is designed to strengthen the presence that we have in the countries and regions we work in, with Country Representatives leading and driving strategic partnerships and program development.This annual report includes highlights of progress on key research innovations that lay the groundwork for success in implementing the new strategy. We highlight the critical role of diverse public, private and civil society partnerships, and how these enable not only widespread adoption of new practices but also changes in policies and institutions necessary to deliver impacts at scale.In 2019, we could not have foreseen the tragedy of the global pandemic of 2020, and in particular its impact on the developing world. A strong component of IWMI's strategy is to focus on building resilience to shockswhether pandemics or climate change that is ravaging the world today. We will continue with this resolve after the combined forces of the global health system have been brought to bear for the development of interventions that will at least mitigate the damage wrought by Covid-19. There will be lessons learned and IWMI will apply collegial thinking to ensure that no effort is lost to 'build back better'.Finally, 2019 also saw great advances in the CGIAR reform process with an agreed mission that focuses on transforming food, land and water systems in a climate crisis. The year saw a strong effort to ensure that IWMI's strategic direction is in line with that of 'One CGIAR' and central to meeting the most fundamental and urgent challenges facing our world today. One CGIAR thinking is now fully embedded in the Institute. And, as CGIAR transforms, a 'water' voice will be essential in the adoption of a full systems approach. Colombo, Sri Lanka -the location of IWMI's headquarters -is the only capital city out of 18 'wetland cities' recognized by the Ramsar Convention for protecting urban wetlands. Ahead of this formal recognition, IWMI worked closely with various government institutions of Sri Lanka to increase awareness of the importance of the Colombo wetland complex, to bring stakeholders together, and conduct analyses and an assessment of the ecosystem services provided by the wetlands.The New Urban Agenda highlights the importance of safe drinking water and sanitation to urban development.The Agenda commits to enhancing the conservation and sustainable use of water by rehabilitating water resources in urban, peri-urban and rural areas, reducing and treating wastewater, improving water reuse, and increasing storage and being mindful of the water cycle. IWMI's highly regarded work in promoting a circular economy mindset that regards 'waste' as raw material that can be converted into an economically valuable commodity progressed along several fronts in 2019.IWMI Director General Claudia Sadoff addressed the high-level segment at the 2019 United Nations Climate Change Conference (COP25) in Madrid, Spain, highlighting the critical role water plays in climate change adaptation. IWMI co-led the side event \"Action for Adaptation: How We Manage Water for Climate Change Resilience\" with the World Water Council (WWC), bringing together experts to discuss how smarter water management can deliver critical adaptation solutions. A key objective was highlighting findings from the GCA's water background paper. ▪ Women comprise about 43% of the agricultural labor force in developing countries. If they had the same access to resources as men, women could increase farm yields by 20-30%. This could reduce the number of hungry people in the world by around 12 to 17%Major trends shaping IWMI's strategic and operational context in 2019 It is extremely gratifying when long years of evidence gathering and partnership building come to fruition with policy changes that will improve the lives of small-scale farmers. One such example is Ethiopia adopting a tax reform bill in 2019 that removed all import taxes on equipment for irrigation and other agricultural activities.Previously, import duties represented 37% of the cost of a pump; removing these taxes was one of the first recommendations made by IWMI in 2009 through its AgWater Solutions project. Early in 2018, Abiy Ahmed, the incoming Ethiopian Prime Minister, committed to \"... implementing irrigation works extensively and in a coordinated manner ...\" in one of his first important speeches. A little more than a year later, the new tax reform cameBig picture story Photo: David Brazier / IWMI into force -the culmination of more than a decade of hard work and effort. IWMI is now leading the irrigation advisory group for the Ministry of Water Resources, and is working with the Ethiopian Agricultural Transformation Agency to ensure that farmers who depend on irrigation benefit from the tax exemptions.Elsewhere in Africa, we continue to support and advocate for sustainable and inclusive farmer-led irrigation. This is crucial because 80% of the farmland in sub-Saharan Africa is managed by 250 million smallscale farmers, but only 7% of the area is irrigated. Small-scale farmers, who depend on adequate rainfall for a successful harvest, are thus particularly vulnerable to the climate emergency. We want to ensure that small-scale farmers can influence the development of irrigation to meet their own needs.One way IWMI is addressing this is through publicprivate partnerships. In Ghana, Mali and Ethiopia, echoing our work in Southeast Asia, we established 'living labs' with private sector partners to scale up farmer-led irrigation. We also offer innovation grants, scholarships and internships to develop capacities and skills that will further accelerate change.A crucial difficulty is that small-scale farmers, particularly women, simply cannot afford many technologies and often have different technology preferences. Also, despite the benefits of decreased emissions, greater food security and climate resilience, one problem with solar-powered irrigation is that running the pump is essentially free and this could lead to overpumping.Recognizing these problems, Futurepump shares pumping data with IWMI via Internet of Things (IoT) technology 'for the good of the agriculture sector'. These data contribute to the IWMI Real-time East Africa Live Groundwater Use Database (REAL-GUD). REAL-GUD was a winner of the 2019 Inspire Challenge of the CGIAR Platform for Big Data in Agriculture. The project was awarded USD 100,000 for the purpose of using pumping data to build our evidence on current groundwater levels, and understand patterns of water abstraction and how they affect shallow groundwater tables.This information can be used to understand potential risks of over-abstraction. We have already developed the world's first solar suitability tool online, which uses geospatial analysis and remote sensing to allow anyone to identify areas in Africa that are suitable for solar-powered irrigation. Several private sector actors are interested in using the solar suitability data to assess potential markets, which will also help to validate the tool's predictions. As partners invest in solar-powered irrigation, IWMI will be working with the public and private sectors to ensure that overpumping does not derail the development of farmer-led irrigation.The Central Dry Zone of Myanmar covers just 13% of the country and is home to about a third of its people. It is the most water-scarce, least food-secure region in the country. However, completion of an IWMI-led project in 2019 points to a better, more climate-resilient future.Government investment in the past resulted in some 300 pump-based irrigation schemes across the Dry Zone, a few of which are meeting their potential. However, problems range from poor maintenance of distribution canals through the cost of pumping to inequities of distribution. To combat these problems and put water management on a more sustainable footing, IWMI piloted a Water UserPhoto: Sanjiv de Silva / IWMI Association (WUA) that gives farmers an important voice in managing the government's Pyawt Ywar Pump Irrigation Scheme.Pyawt Ywar takes water from the Mu River near Myinmu Township in Sagaing Region, about 70 kilometers west of Mandalay. The river should be able to supply water for about 2,025 hectares. However, less than a third of this has been achieved in recent years. As part of the project, the United Nations Office for Project Services (UNOPS) undertook repairs of the irrigation infrastructure. While this was being done, IWMI worked with Myanmar's Irrigation and Water Utilization Management Department (IWUMD) and the local people to set up the WUA.A succession of workshops across the area brought together canal representatives, community leaders, the government and, most importantly, farmers, ensuring that even the poorest and most marginal had a voice. One source of conflict that surfaced from the constructive discussions was power asymmetries among the villages, based partly on their location relative to the pumping stations and to one another.The solution was a multi-layer set up, in which the WUA oversees three pumping station coordination committees and 18 Water User Groups that include 53 subgroups. At the end of the pilot project in 2019, the WUA comprised 693 registered members, who have together developed processes to negotiate outcomes that minimize conflict.Managing the water supply, however, is only part of the solution. It is also important to ensure that the water is used efficiently. The cultivation of rice, in the Central Dry Zone, is not the most attractive option.Farmers in the project learned how to improve the production of pulses, and to grow vegetables, fruit trees and other high-value crops such as chilies. These crops create a win-win situation in the waterenergy-food nexus, as they require less water and energy, thereby reducing the pressure on irrigation infrastructure and preventing water-related conflicts. As a result, and with the shift to the cultivation of high-value crops within the season, many farmers have already seen their incomes increase. A glance at IWMI's website reveals a host of existing digital innovations developed over the years, some of which are highlighted in this report. Flood risk maps are the foundation of index-based insurance schemes in South Asia. Solar-powered pumps report on water extraction via inbuilt sensors and the Internet of Things. The solar suitability tool can guide sustainable irrigation decisions. The Digital Innovations program will build on these existing innovations to strengthen the ability of all stakeholders to make use of the information our tools provide for water management in agriculture.The strategy for Digital Innovations was developed only after extensive consultations internally and externally at six globally important meetings on agriculture and water. The feedback we received made it clear that our strength lies in the design side, understanding a problem and its context, and working with stakeholders at all levels. In addition, however, we also need to ensure that 'tried and tested' approaches leave space for innovations that might eventually prove superior, and that all communities are able to make use of digital innovations.To begin with, we will work largely in sub-Saharan Africa and South Asia, with a longer-term aim to make knowledge gained in those regions widely available and adaptable to other circumstances. The initial focus will be on high-profile issues such as water quality, water governance, gender and inclusion, and capacity strengthening. Some digital innovation projects can move ahead quickly. For example, big investors have a good track record of supporting irrigation through capital investment, but too often no resources are set aside for maintenance. Systematic Asset Management Software for Irrigators (SAMS) captures infrastructure investments in a database, and can track performance and predict the need for maintenance. This process will enable stakeholders to audit investments and keep track of maintenance.At the same time as advancing external developments, internally, IWMI as an organization will become more digitally minded. Some projects that are just getting under way provide good opportunities to move this forward. Phase I of the Water Secure Africa Initiative, for example, will allow us to make use of Open Data Cube (ODC), a new structure that gives better access to the petabytes of data collected over Africa by orbiting satellites. We will be adapting our existing tools -Water Accounting Plus (WA+), and flood and drought monitoring -to make use of ODC while building the regional skills to apply and refine the approach across Africa.Guided by the strategy for Digital Innovations, the next task will be to develop ambitious proposals to take advantage of IWMI's undoubted expertise in the use of digital data for water management.IWMI will become a bridge between the technical experts -space agencies and others who provide technical tools and datasets -and end users (e.g., farmers, river basin authorities and investors), each with specific problems and managing their own solutions.The theme for World Water Day 2019 was 'Leaving no one behind'. World Water Week, in August, was dedicated to 'Water for society -Including all'. Bridging the two events, digital innovations played a central part in IWMI's Voicing Water Visions project.Four communities, directly affected by issues related to water governance and sustainability, were able to share their stories with the world beyond their experience, including policy-makers, whose decisions can have tremendous impacts on their lives.People thrive on telling stories; digital innovationssuch as smartphones -provide new opportunities to document and share our lived experiences. Through a variety of participatory activities designed to build confidence and capacity, we sought to support participants in telling their stories using their own images and words. The aim was to also connect their stories with appropriate audiences, from the Voicing Water Visions website to meetings with policy-makers.In Western Nepal, construction of a dam on the Karnali River was approved in 2008. Although no work has begun yet, two people from each of the three villages closest to the dam site -Ramaghat, Daba and Asaraghat -shared their concerns. Just downstream of the dam, fishing is the only source of income for people who are members of the most disadvantaged caste in Nepal. Construction of the dam will put an end to fishing and have an impact on the livelihoods of these people. However, they have not been invited to any of the planning meetings, which could be because they do not have an official title to the land they live on. Villages upstream of the dam have additional concerns about losing land and displacement. In each case, participatory photos enabled them to put those concerns in front of policy-makers, media, practitioners and civil society representatives at IWMI's Digo Jal Bikas project dissemination workshop.In Ghana, two young men from the Upper East region shared some of their coping strategies during the dry season. One man lives in a village that has access to water for irrigation. He said that the dry-season harvests help all the families to survive. Vegetable sales pay for additional food for his family and school supplies for his younger siblings. His ambition is to attend agricultural college and return to help the community to improve the way they farm. The other man lives in a village without access to water for irrigation and explained how he wanted to get into dryseason farming to become more resilient, in addition to building up his own small herd of cows.In South Africa, two communities -Ga-Moela and Tshakhuma -made videos about their experiences with the Multiple-Use water Services (MUS) project, designed to amplify community voices in efforts made by municipalities and nongovernmental organizations (NGOs) to supply water to people. Ga-Moela's tracked the stages of the participatory design and construction of new storage and piping, which brings water to the community. Tshakhuma's videos showed how they constructed their own water supply system to include the entire community of 12,000 residents. As in Nepal, the videos were shown to government officials, international donors, researchers and NGOs in South Africa. They were able to see how the MUS process connects municipalities to their communities, holding the former accountable and backstopping the latter to facilitate good governance and sustainable water use.Laos provides a final example, concentrating on the Laos-China railway that runs more than 400 kilometers through the heart of the country. Although it promises better transport and economic opportunities, construction of the railroad is taking land and polluting water supplies. Families in Nasang village used photos to explain how polluted water hurts their skin, poisons their poultry and reduces crop yields. When agricultural land is taken for the railroad, some families can no longer grow a surplus to sell. Also, the compensation they receive may not be able to guarantee their food security. However, their stories also convey hope for a better future, with opportunities for education and trade, access to electricity and, eventually, clean water.Participatory media is just one of many opportunities -for research, storytelling, participation and collaboration -afforded by digital innovations. Water is one of the more immediate and direct manifestations of the climate emergency. Food systems around the world are having to cope with floods, droughts, and changes in growing seasons and patterns of rainfall.Global policy arenas, however, do not seem to consider water a priority. Even when climate summits have considered water, there is no acknowledgement that food security, human health, biodiversity, energy supply, industrial growth and urban development depend on this precious commodity.During 2019, IWMI has given particular emphasis to the integration of water into the international climate discourse. Building on our reputation as a global leader in water research, we aim to influence a more holistic view of water in the climate change debates. This entails a shift from the current, sectoral, approach, which considers water for sanitation, health, agriculture and the environment as separate areas of discussion, to more systems-based thinking on resource management under increasingly stressed conditions. To achieve this goal, a better understanding is needed of future climate conditions, including general trends and the prevalence of extreme weather events such as droughts and floods.Global policy-makers were tasked with taking these issues into consideration when IWMI partnered with the World Water Council and the Alliance for Global Water Adaptation (AGWA) to lead a side event at the United Nations Climate Change Conference (COP25) in Madrid, Spain. A background paper, prepared by IWMI and AGWA for the Global Commission on Adaptation (GCA), was launched at the side event. The paper guides progress towards climate-resilient water management. Event participants provided inspiring examples that showcased water management solutions for climate change adaptation from around the world.The paper for GCA provides an important summary of the water-related impacts of climate change, highlighting key areas for adaptation planning. Critically, it draws attention to a necessary shift in water management thinking. Previously, water planning has assumed that the climate -and thus water conditions -of tomorrow will be the same as yesterday, and that averages and probabilities of the past can guide action for the future. This is no longer true; the era of 'stationarity' is over. Against that background, the paper makes a series of recommendations that can be acted on at all levels of government and society. It calls for a change of mindset, making water a central concern of adaptation and resilience building. The paper concludes by stating that, \"Every decision we make now about water management is also a chance to build resilience to climate change.\" IWMI is committed to supporting the delivery of GCA's action tracks on water and agriculture. Under the ongoing Two Degree Initiative -from the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) and partners across CGIAR -we are working with many countries to address climate change risks and shocks in their water, food and agricultural systems. The aim is to also support the development of climate-resilient river basin management plans.Commitment to international initiatives also continues through IWMI's contribution to the Intergovernmental Panel on Climate Change (IPCC) in helping to prepare the Sixth Assessment Report (AR6). During 2019, Aditi Mukherji, Leader of IWMI's Research Group on Climate Change Adaptation and Resilience, was joint coordinating author on the water chapter of AR6, and several other researchers acted as expert reviewers for parts of the report. Here, too, we are stressing the central role of water in climate change.IWMI's position on water and climate change is essentially hopeful. In many cases, we have solutions that can help adaptation even in the face of uncertainty. Early warning systems coupled with flood or drought insurance can help protect people in affected areas to recover more rapidly. Also, mitigation efforts through nature-based solutions and climatesmart agriculture can help farmers and water managers to manage the impacts of shifting weather patterns. Developing sustainable river basin management under a changing climate is particularly important for transboundary rivers. The rivers that feed the Aral Sea provide a classic example, flowing through the five countries of Central Asia. Some countries, such as Tajikistan, are home to the snow and glaciers that are the source of the Amudarya and the Syrdarya rivers. Others, such as Uzbekistan and Turkmenistan are considered downstream countries and extract more water than they contribute to Amudarya.Photo: Neil Palmer / IWMI water-use efficiency while strengthening regional water cooperation and the means to adapt to and mitigate climate change. The effort is vital, because irrigated agriculture is the foundation of the region's economies, while at the same time, changing availability brings unprecedented challenges in meeting all the other growing demands for water.Integrated river basin planning depends crucially on sound data about water availability and use. One of IWMI's main activities in 2019 was to produce a better model of the hydrology of the entire Aral Sea Basin. The new model uses a combination of ground-based measurements of water flows with remotely sensed land-use maps and soil data, along with climate information. During testing, it proved accurate enough to improve predictions that could form the basis for future water resources management.An important element in these models is the rate of water loss through evaporation and transpiration by plants. The standard method for estimating evapotranspiration requires several measurements, such as solar radiation, air temperature, wind speed and humidity. As there are few weather stations in Central Asia that can provide the necessary data, we investigated a simpler method, which uses only air temperature, in southern Uzbekistan. During most of the year, the method provides a sufficiently accurate estimate, except in the summer when the figures were too low. A simple modification to the calculation, however, makes it considerably more accurate.In addition to models, we have also provided evidence to improve irrigation. In 2019, we reported on experiments to compare the impacts of three different methods of irrigation on cotton yields in the Karshi Steppe, Uzbekistan: traditional flooded furrows, gated irrigation pipes and drip irrigation. At the end of the season, drip irrigation had used less than half the water of flooded furrows. It had also produced a larger cotton crop from fewer seeds in a shorter time. Overall, the efficiency of drip irrigation was almost three times greater than conventional flood irrigation, with additional benefits such as lower fertilizer use and reduced runoff.Clearly, cotton and wheat farmers would benefit more by using drip irrigation. However, that requires substantial investment. The water for irrigation is raised about 135 meters from the Amudarya River by a series of seven pumping stations. Currently, the pumping stations consume 70% of the budget of Uzbekistan's Ministry of Agriculture and Water Resources and generate 420 kilotons of carbon dioxide (CO 2 ) equivalent per year. Part of our advice to the government is to support better irrigation technology rather than the provision of water. This shift would help adaptation to climate change while also mitigating 120 kilotons of CO 2 equivalent.As a result of IWMI's research, the Government of Uzbekistan agreed to expand the area of drip irrigation. It is offering a subsidy of 50% of the cost of drip irrigation equipment, and farmers who install drip irrigation are exempt from the land tax for five years. The government is also withdrawing energy subsidies from farmers who do not adopt drip irrigation, a further incentive. It is also planning other changes to improve water-use efficiency in the Karshi Steppe. IWMI | Annual Report 2019The sharing of reliable and agreed data is a crucial aspect of transboundary water management for informed decision-making and evidence-based management. To support this, in 2019, we released a series of Digital Diagnostic Atlases for three administrations in the area. The atlases compile biogeographic, economic and social information with predictions of a changing climate, and offer a sound basis for improved water planning and management. The importance of water is enshrined in Goal 6 (clean water and sanitation) of the United Nations Sustainable Development Goals (SDGs). Groundwater, however, often suffers from being out of sight and therefore out of mind. As long as the water is coming out of a well or borehole now, long-term changes in what is happening underground in aquifers may be ignored.To address this challenge, in January 2019, UN-Water agreed that the theme for World Water Day in 2022 would be Groundwater: Making the Invisible Visible. Subsequently, they also announced a Groundwater Summit to be held in 2022 in connection with World Water Day, which would give even greater attention to the topic. This priority focus on groundwater is something IWMI has been working towards for years. So, in 2019, one of our priorities was to continue strengthening alliances to build on the momentum of the enhanced focus on groundwater in 2022.We were one of five globally representative authors who published a call to action on Global Groundwater Sustainability in the journal Nature. By the end of 2019, the Global Groundwater Statement, which calls for \"…action to ensure groundwater benefits society now and into the future,\" had received support from more than 800 global scientists, practitioners and experts in more than 80 countries.In September, the Groundwater Solutions Initiative for Policy and Practice (GRIPP) published a timeline of the past 7,000 years of groundwater development and management. The timeline is another part of our strategic effort to draw attention to the issue of groundwater.IWMI also launched a strategic initiative in September -the Groundwater for Resilience in Africa Network (GRAN) -to strengthen the evidence base for sound groundwater policy, and to work with partners to ensure that groundwater is included in broader water resources development and management policies across the African continent. This aligns with the concurrently established African Ministers' Council on Water (AMCOW) Pan-African Groundwater Program (APAGroP). APAGroP offers IWMI and research and practitioner organizations collaborating in GRAN a unique opportunity to provide the evidence-based information, policy advice and networking that will support the achievement of sustainable groundwater development in Africa.In Southeast Asia, the longstanding work of IWMI and partners in Laos has informed government policy around groundwater. Although considered as having abundant water resources, changing climates are affecting water cycles in the country, which up to now has been more concerned with surface flows through the Mekong Delta. For four years, we worked with farmers to show how their livelihoods could be improved through the use of groundwater to cultivate high-value crops, as long as the resource was carefully managed.It was the first multidisciplinary research effort to look at groundwater issues in the country, and when it ended, communities and policy-makers came to appreciate that groundwater management and capacity building at all levels are good for development. The Lao government started to emphasize sustainable groundwater development in its national priorities. A case study published in 2019 highlighted the lessons learned during project implementation, which may help others working on groundwater under similar conditions.Groundwater is finally recognized as an integral element of sustainable development. Even beyond Goal 6, water is so closely entwined in so many other SDGs, including food security, sustainable cities, climate adaptation, health, and environmental protection, that it is imperative that IWMI continues to do whatever possible to facilitate the good governance of this vital resource.The Groundwater Statement has no formal funding with participants freely volunteering time and support.The Groundwater Solutions Initiative for Policy and Practice (GRIPP) partnership, led by the International Water Management Institute (IWMI), will strengthen, expand and connect current groundwater initiatives. Around 70% of Africa's people depend on water stored in soil and rocks, i.e., groundwater, for their drinking water. This situation is not limited to the countryside, but is also the case in rapidly growing urban areas. Groundwater is the foundation of water security and climate resilience across the continent. This is why IWMI will be working closely with member states of the African Ministers' Council on Water (AMCOW) to identify knowledge gaps together, and then set about filling those gaps and sharing information with key stakeholders across the continent.For example, the Groundwater for Resilience in Africa Network (GRAN) is pulling together the Africa Groundwater Atlas, an online tool that makes it easier to access information on the groundwater resources of 51 African countries. The Atlas can be used for groundwater assessments, planning sustainable development, training programs and anything that requires open access to information on groundwater. A paper in the highly-respected scientific journal Nature further exemplifies the kind of evidence and advice IWMI and partners can offer AMCOW and others. Most climate models predict that Africa will become drier as a result of climate change, and that has understandably prompted concern about the recharge of aquifers. Together with a large number of colleagues, we investigated long-term data series from 14 areas across sub-Saharan Africa, looking for patterns in rainfall and recharge. Some areas were as one might expect; the level of groundwater rises and falls in sync with rainfall, at least above a certain minimum amount of rain. In others, such as the humid tropics, there is constant recharge every year, effectively independent of rainfall. A third group, mostly in arid areas, was particularly interesting; groundwater levels are not related to average rainfall over the year. Rather, sporadic intense precipitation, occurring perhaps only once in a decade, recharges the aquifers. This information can help to plan for climate change. The first type of aquifer might deplete more rapidly if, as predicted, rainfall generally declines. The second type might not be affected by a drier climate. Importantly, the third type might not be affected by climate change over a medium-term perspective, because although total precipitation is predicted to decline with climate change, climate models also predict a greater frequency and intensity of extreme weather events, which would maintain aquifers in these arid areas.Much remains to be done to understand patterns of groundwater use and recharge in detail. At a local scale, IWMI and partners have been working to empower concerned citizens to contribute to knowledge generation and management. A project funded by the Danish International Development Agency (Danida) is centered on the Hout catchment in the Limpopo River Basin of the Republic of South Africa. Groundwater has been a valuable resource since the 1960s supporting the livelihoods of multiple farmers, and from space, parts of the catchment can be seen as a green oasis in an otherwise arid landscape.Local people are concerned that water use is becoming unsustainable, partly as a result of climate change. We are training citizen scientists to measure groundwater levels, streamflow and rainfall, and to upload their observations via a smartphone app. The data will help us to understand water in the Hout catchment, for example, through modelling, and return information to the community so that they can jointly decide how best to use the limited, but highly valuable, shared groundwater resources.The Groundwater Solutions Initiative for Policy and Practice (GRIPP) partnership, led by the International Water Management Institute (IWMI), will strengthen, expand and connect current groundwater initiatives.'My Citizen Science' is an online application tool to promote citizen (volunteer)-collected water resources data from the Hout catchment, Limpopo River Basin, Republic of South Africa. The application has been built in association with IWMI, Pretoria, South Africa, as a part of the Danida-funded project Enhancing Sustainable Groundwater Use in South Africa (ESGUSA). In Ghana, we have been developing three public-private partnerships (PPPs) toBig picture story build sustainable businesses using waste streams as resources. Two of these PPPs are increasing production of the innovative product Fortifer™, a clean and safe agricultural fertilizer produced from fecal sludge, which is available in various formulations, e.g., the conversion of solid organic waste into briquettes to be used as a low-cost fuel. The third PPP is using treated domestic wastewater to hatch the brood stock for aquaculture in separate freshwater ponds. The waste stream thus creates additional value in the form of an important food source.In July 2019, building on our experience in Ghana, IWMI joined the Food and Agriculture Organization of the United Nations (FAO) to assist what is now the Ministry of Urban Development, Water Supply and Housing Facilities of Sri Lanka in a project to explore innovative approaches to reduce, recycle and reuse food waste. Approximately 60% of the 700 tonnes of solid waste generated in the capital city, Colombo, each day is organic waste, and food waste is the largest portion. The main focus of the project is on reducing the amount of food that is not eaten, in order to complement IWMI's earlier emphasis on composting the waste, which will inevitably remain.In November 2019, this work was summarized in a video on YouTube.In addition to our efforts to promote the conversion of 'waste' into a valuable resource, we will also be contributing to an evidence-based national strategy on food waste for the Government of Sri Lanka.A pilot project was launched in September 2019, together with CGIAR colleagues at World Agroforestry (ICRAF) and the International Center for Tropical Agriculture (CIAT), to reduce land degradation around refugee settlements and their host communities in Ethiopia, Kenya and Uganda. This is a new focus for CGIAR projects, recognizing that meeting the energy needs of refugee settlements leads to severe deforestation, which can in part be addressed through RRR. For example, waste briquettes will provide an alternative energy source. The project will also aim to recycle resources to improve soil fertility and resilience in the plots that supply refugees with nutritious fruits and vegetables, while also improving sanitation. We will be exploring many other technologies to improve the lives of people in the settlements, including the safe use of 'gray' water for irrigation, all with an eye on the circular economy.Sharing information is crucial if we are to enable others to build their own circular economies. Therefore, we feed lessons learned into our technical reports on RRR. In 2019, these reports included Guidelines and regulations for fecal sludge management from on-site sanitation facilities and Global experiences on waste processing with black soldier fly (Hermetia illucens): From technology to business.Overall, our research on the circular economy produces a virtuous circle of its own. Successful projects generate a revenue stream that enhances the management of the resource and adds to its sustainability. That, in turn, directly improves the urban environment. The additional products created from 'waste' contribute to the city's resilience and food security.Enhancing the ability of local people to take advantage of research conducted by IWMI and build their own parts of the circular economy has long been a focus of our work. In 2019, this effort reached a new level with a university curriculum that has been adopted by seven institutions and is under active consideration by several more.The curriculum is based on the book we published in 2018, which details a series of empirical business models to address the challenges of waste management and sanitation. The curriculum came about through a conscious decision to broaden the range of people who are able to make use of IWMI's research results, while also being able to influence future thinking on RRR. To ensure that the curriculum meets the needs of students and teachers, an intensive course was conducted at IWMI's headquarters in Colombo, Sri Lanka, in the summer of 2018. For two days, we worked with 25 university teachers who would be using the material. After this workshop, we welcomed about 50 undergraduate and graduate students to an intensive seven-day summer school to fine-tune the course material.As a result, seven institutes of higher education formally agreed to use the curriculum in their degree courses in 2019 -Asian Institute of Technology, Thailand; Makerere University, Uganda; Birla Institute of Technology and Science, India; Open University, Sri Lanka; University of Moratuwa, Sri Lanka; Technische Hochschule Köln, Germany; and Ghent University, Belgium. Several other universities remain interested and are continuing discussions.So far, the universities that are using the course material cover mostly technical topics, such as sanitation and wastewater management. To gain broader involvement, in 2019, we compiled a list of business schools around the world which might be interested in using the course materials and case studies we have developed. We will be pursuing opportunities to interest them in our work. Broader adoption of the curriculum would benefit global communities because our work has shown that sustainable recycling schemes often offer jobs to women and youth, for whom there are few other opportunities in large cities.We also recognize that not every student or potential entrepreneur is able to attend a university course. To that end, we worked with the International Centre for Water Management Services (cewas) in Switzerland to develop an online course that any potential entrepreneur can take to prepare themselves to launch a business based on RRR in the sanitationagriculture interface.Together, the online course and the university curriculum, which continue to increase their reach, are making the case for sustainable waste management businesses around the world, in support of crop production and our environment. Natural disasters such as floods hit smallholders disproportionately hard. These farmers have very little savings and often need to borrow money for house repairs and to replant damaged crops. Even if offered, insurance is out of reach for most farmers. Therefore, disasters often push poor farmers deeper into debt, as they cannot repay existing loans while also having to borrow more money. Over the past three years, IWMI has successfully tested new, hightech index-based flood insurance (IBFI) products. The products are simple, flexible and affordable, and increase the resilience of farmers to climate change. Governments have responded enthusiastically.Index insurance is a relatively new tool that farmers can use to help manage risk. It uses an objective index, such as rainfall, which can be measured at a local weather station or by satellite, to determine the payout, rather than using some consequence of weather, such as crop yield. It is important to assess the damage from afar, in order to avoid costly field visits by insurance experts. For floods, this has meant assessing the risk of flooding in particular areas by examining decades of images gleaned from the Moderate Resolution Imaging Spectroradiometer (MODIS) of the National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA) Sentinel-1 satellites, and others. These data are combined with hydrological and rainfall data to construct a model of the likelihood of inundation. When an area floods, researchers can use current weather data and satellite images to quickly calculate the extent of flooding and trigger rapid insurance payouts.The other important feature of IBFI is to ensure that farmers understand the insurance productPhoto: IWMI being offered and can afford the premiums. This has required working closely with microfinance institutions (MFIs), which have strong ties in communities, understand their cultures and are well trusted by farmers.MFIs organize meetings to enable farmers to learn how the insurance works. It is important that farmers understand the scheme and how it operates in some detail, so that they do not have unrealistic expectations. MFIs can also offer loans specifically to pay the premiums, and can remit this in bulk to the IBFI scheme. Although MFIs can reduce the cost of collecting premiums from individual farmers, government subsidies may still be needed to make the premiums affordable. Nevertheless, for the government, insurance subsidies can be more costeffective than disaster relief.Weather index insurance has proved valuable in empowering women in pilot studies in Bangladesh. In addition to the threats of flooding, women face further difficulties due to the migration of men in search of better employment elsewhere. Even after men have left the farm, women still have little say over how to spend household money. With premiums paid through the mutually supportive self-help groups established by MFIs, women can be confident that their family will be able to survive a flood. Rapid payouts help to maintain food security by allowing women to purchase food for their families when their own harvest has failed. IWMI has also used the IBFI model to develop products for droughts. By using satellite images and remote measures of soil moisture to assess the extent of the drought, IWMI developed the South Asia Drought Monitoring System (SADMS), an index that integrates information on vegetation, soil moisture and temperature. In 2019, IWMI and the Indian Council of Agricultural Research (ICAR) shared weekly drought maps with agricultural extension services and state authorities to assist with the preparation of drought contingency plans to help farmers manage drought risks and to also trigger insurance payouts.In 2019, IWMI launched the Bundled Solutions of Index Insurance with Climate Information and Seed Systems to manage Agricultural Risks (BICSA) project. The BICSA project offers insurance against floods and droughts as well as seed varieties developed for their tolerance to flooding and drought. Through the project, farmers also receive short message service (SMS)-based weather information, and advice on crop and water management. The BICSA package trial covered 1,000 households, of which 450 benefitted from an insurance payout that totaled approximately USD 12,500. Therefore, the project offers an effective strategy to build climate resilience.In December 2019, we shared the experience gained in the various pilot projects during a regional consultation with the South Asian Association for Regional Cooperation (SAARC). Participants were given details about how the schemes work and results to date, along with practical next steps to encourage the uptake of weather index insurance in their own countries.The IBFI project is funded by the CGIAR Research Programs on Climate Change, Agriculture and Food Security (CCAFS) and Water, Land and Ecosystems (WLE), and the Indian Council of Agricultural Research (ICAR).Bihar in northeast India is the state most prone to flooding and it also suffers from droughts. Together, natural disasters cost the state around USD 3 million a year. Over the past three years, IWMI has worked closely with the Indian Council of Agricultural Research (ICAR) to develop the Bundled Solutions of Index Insurance with Climate Information and Seed Systems to manage Agricultural Risks (BICSA) project. BICSA offers rural smallholders a package of insurance against floods and droughts along with improved varieties of seeds that can withstand too much or too little water.In 2019, in Muzaffarpur district, 269 farm families enrolled in the scheme. Bihar and much of India were flooded that year, but 150 of the affected farmers received a rapid payout totaling USD 10,000. The insurance payout allowed them to repair their homes and replant their crops without getting further into debt.The pilot scheme specifically indicated that half of the participants should be women. As it turned out, 67 of the 150 households that received a payout were in fact headed by women, who would have otherwise found it difficult to get the resources they need toOutcome story rebuild their livelihoods. The BICSA project, thus, helps to empower women.The index-based flood insurance (IBFI) pilot project continued into its third year in 2019. The project has clearly demonstrated that the package it offers Photo: Metro Media / IWMI While India has developed good policies for agricultural insurance, this has not been the case in neighboring Bangladesh, which is among the most vulnerable to flooding in the world. An extension of weather index insurance to Sirajganj district that started in 2019 is helping to change attitudes in Bangladesh.In Bangladesh, as in India, IWMI partnered with local microfinance institutions to educate farmers about crop insurance and to collect premiums, of which 50% was subsidized through the project. When flooding occurred, 750 households, many of them headed by women, shared a total payout of USD 31,500 that was transferred directly to their bank accounts within two weeks. This was the first time that satellite-based insurance had been used in Bangladesh.Farmers were naturally pleased with the outcome, despite having experienced flood damage, and so too were parliamentarians and government officials. Some called for Bangladesh's Department of Disaster Management to pay insurance premiums as a way of reducing the suffering of vulnerable people after disasters. The pilot in Bangladesh is now being extended to three additional districts in the northern part of the country. forward some real solutions for more and better food systems, healthier landscapes and increased equity.\"It was a year of impacts in 2019, and 2020 is asking us to rise to new challenges. WLE will make some pivots towards addressing our global health issues. We will also continue to connect researchers, farmers, implementers and policy-makers to help find answers to address these impact areas, and to address the biggest question of all -How can we feed more people, more equitably, with a more positive impact on our environment? The world must move forward on agricultural solutions that do not just solve one problem, but consider ecosystems, people and the planet as a whole. Expenses by Function For the years ended December 31, 2019 and 2018 (In US Dollars '000)","tokenCount":"7693"} \ No newline at end of file diff --git a/data/part_3/8744412884.json b/data/part_3/8744412884.json new file mode 100644 index 0000000000000000000000000000000000000000..2662f353e0345dc4666bcd6f644c77f5196d6faa --- /dev/null +++ b/data/part_3/8744412884.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"00c6c47b6789f2087e020ecc29c0c53e","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/92109cdc-8446-4411-9690-4cf5b8bfd157/content","id":"-1651594121"},"keywords":["DH, doubled haploid","FDR, false discovery rate","FNR, false negative rate","HIR, haploid induction rate","MCC, Matthews correlation coefficient"],"sieverID":"9a7e3614-25e6-413b-880d-a6d9ad87b201","pagecount":"11","content":"T he efficient production of inbred lines through the doubled haploid (DH) technology provides significant economic advantages to crop breeding programs (Dunwell, 2010). In maize breeding, use of DH lines enhances genetic gains and improves breeding efficiency via simplification of the logistics and cost reduction for line development and maintenance (Schmidt, 2003;Melchinger et al., 2005;Lee and Tracy, 2009). The DH technology in maize essentially involves in vivo induction using a haploid inducer stock, identification of haploids, doubling the haploid chromosome complement, and the production of seed from fertile DH plants (Prasanna et al., 2012;Prigge and Melchinger, 2012) In vivo haploid induction is achieved by crossing the source germplasm with pollen from maternal haploid inducers that have the capability to induce haploid embryos. Inducers with 6 to 15% haploid induction rates are now available in both temperate (Röber et al., 2005;Prigge et al., 2012b) and tropical genetic backgrounds (Prigge et al., 2012a). Haploids can be distinguished from diploids based on phenotypic markers or differences in plant characteristics at the adult stage (Xu et al., 2013;Weber, 2014;Wu et al., 2014). However, identification of haploids at the seed or early seedling stage is important for large scale production ofVijay Chaikam, Leocadio Martinez, Albrecht E. Melchinger, Wolfgang Schipprack, and Prasanna M. Boddupalli* ABSTRACT One of the critical limitations for the in vivo production of doubled haploid (DH) lines in maize (Zea mays L.) is the inability to effectively identify haploids in a significant proportion of induction crosses due to the possibility of complete or partial inhibition of the currently used R1-nj (Navajo) color marker. In this study, we demonstrate that the R1-nj marker could result in a high proportion of false positives among the haploids identified, besides being ineffective in germplasm with natural anthocyanin expression in pericarp tissue.To address these limitations, we developed haploid inducer lines with triple anthocyanin color markers, including the expression of anthocyanin coloration in the seedling roots and leaf sheaths, in addition to the Navajo marker on the seed. Although these inducers show acceptable haploid induction rates ranging from 8.6 to 10.2%, they exhibited relatively poor agronomic performance compared with tropicalized haploid inducers within tropical environments. The addition of the red root marker more accurately identified haploids among the germinating seedlings, including four tropical inbred lines and eight breeding populations that showed complete inhibition of R1-nj. We also demonstrate that the red root marker can be used for haploid identification in germplasm with natural anthocyanin expression in the pericarp. A survey of 546 tropical inbreds and 244 landraces showed that anthocyanin accumulation in the roots of germinating seedlings is very rare compared with anthocyanin accumulation in the seed and leaf sheath tissues. As a result, the red root marker can serve as a highly complementary marker to R1-nj to enable effective identification of haploids within a wide range of tropical maize germplasm.DH lines, as chromosomal doubling is generally achieved by treating the haploids at the early seedling stage with mitotic inhibitors such as colchicine (Melchinger et al., 2016). The chromosomal doubling procedure is laborand resource-intensive. Additionally, this technique involves the use expensive and toxic chemicals (Kleiber et al., 2012). Hence, efficient identification of haploids before chromosomal doubling saves considerable resources with respect to the use of chemicals, greenhouse space, field space, labor and expenses related to management of diploids in the field. The R1-nj (Navajo) anthocyanin color marker is widely used for haploid identification and all currently used haploid inducers have the genetic constitution that is necessary for R1-nj expression (Melchinger et al., 2015a). R1-nj is inherited dominantly and in progeny resulting from the induction crosses, the diploid kernels are marked with purple coloration on the crown region of the endosperm and scutellum of the embryo. In contrast, the haploid kernels show anthocyanin coloration only on the endosperm and no coloration within the scutellum. Thus, the R1-nj marker facilitates the visual sorting of haploids from diploids at the seed stage (Nanda and Chase, 1966;Greenblatt and Bock, 1967). However, R1-nj fails in haploid identification when (i) R1-nj expression is completely inhibited by dominant color inhibitor genes; (ii) R1-nj expression is segregating among the kernels of the source germplasm; and (iii) R1-nj marker expression is poor with respect to anthocyanin intensity or the marked area. In a set of 897 tropical inbred lines, complete inhibition of R1-nj was shown to frequently occur (~30%) and was attributed to the presence of the color inhibitor C1-I (Chaikam et al., 2015). In addition, ~70% of the 155 landraces and ~40% of 157 breeding populations showed segregation for R1-nj expression. Hence, the use of R1-nj is not efficient in such germplasm (Chaikam et al., 2015). Even when expressed, poor intensity of the R1-nj marker expression can result in high rates of misclassification in temperate flint germplasm (Röber et al., 2005;Melchinger et al., 2014) and tropical landraces (Prigge et al., 2011). Physiological factors such as high moisture content (Rotarenco et al., 2010) and the development of air pockets underneath the pericarp (Prigge et al., 2011) can also affect the efficiency and accuracy of R1-nj based haploid identification. Another potential problem is the masking of R1-nj phenotype by natural anthocyanin coloration in the seed, especially in the pericarp, of maize landraces.Two non-anthocyanin based alternatives were proposed for haploid identification to address the abovementioned limitations of the R1-nj marker. Pollination with haploid inducers with sufficiently high kernel oil content, followed by rapid differentiation of haploid kernels based on their lower oil content using Nuclear Magnetic Resonance Spectroscopy (NMR), has been previously demonstrated (Melchinger et al., 2013(Melchinger et al., , 2015b)). This method facilitates high-throughput identification of haploids through automation. However, high oil haploid inducers and automation technology are not yet widely available and could be relatively expensive. Transgenic herbicide tolerance was shown to aid in the unambiguous identification of haploids from diploids in genotypeindependent manner (Geiger et al., 1994). However, this method is labor-intensive and cannot be employed at the seed or germinating seedling stage (Röber et al., 2005); in addition, the approval process for genetically modified organisms may limit or prohibit its use in many countries.Two additional anthocyanin marker systems based on stem and root coloration have been previously proposed (Röber et al., 2005;Li et al., 2009;Rotarenco et al., 2010) to complement R1-nj based haploid identification. A purple or red stem and sheath color marker conditioned by the anthocyanin regulatory gene Pl was integrated into some inducer lines such as RWS (Röber et al., 2005), UH400 (Univ. of Hohenheim, https://plant-breeding. uni-hohenheim.de/84531#jfmulticontent_c167370-2) and CAUHOI (Li et al., 2009). Use of these inducers for induction crosses results in diploids with purple or red stems and sheaths and haploids with green stems and sheaths, provided the source germplasm does not express the Purple (PI) gene itself. However, purple coloration in the stem and sheath is only expressed at the late seedling or adult plant stage (Röber et al., 2005). On the contrary, the red root marker can be expressed in the roots of germinating seedlings. Rotarenco et al. (2010) demonstrated the use of purple or red root phenotype for distinguishing haploids from diploids at an early seedling stage in a population that completely inhibited R1-nj expression. Thus, this marker could effectively complement R1-nj in visual identification of haploids at early seedling stages. However, it was not known whether the red root marker is effective within a wide range of tropical maize germplasm for haploid identification as anthocyanin expression in roots could be affected by the genetic background of the source germplasm. In addition, the frequency of natural occurrence of anthocyanin coloration in roots of maize germplasm is unknown. Natural anthocyanin expression in seedling roots could potentially mask the root marker expression in the progeny resulting from an induction cross between source germplasm and the inducer having the genetic constitution for red root marker expression.In this study, we present newly developed haploid inducer lines that possess three anthocyanin markers; namely R1-nj, purple sheath and stem, and red root. Due to the combination of the multiple marker traits, we termed these as \"triple marker inducer lines\". The objectives of this study are to: (i) determine the accuracy of haploid and diploid seed classification based on the R1-nj marker system in terms of false discovery rates and the numbers of haploids are significantly less than the number of diploids in this study, MCC is preferred over other statistical parameters like the F-score.Two temperate haploid inducers (UH400 and RWS) from the University of Hohenheim, Germany, were used as sources for haploid induction ability, in addition to the Navajo marker expression and purple stem coloration carried by these inducers. The red root phenotype was identified in population ([Pool16´ ZAPACHI] ´ Pool16) ´ ZAPACHI obtained from the CIMMYT maize germplasm bank. This population was crossed to a temperate haploid inducer hybrid RWS ´ UH400. The F 1 was backcrossed to RWS ´ UH400, and the best agronomic plants were selected in the subsequent three backcross generations followed by ear-to-row pedigree breeding. A set of 71 S 4 lines was selected and evaluated for the red root phenotype, and 21 lines that expressed the red root phenotype were self-pollinated for two additional cycles. During this process, selections were made within each line for intense red color expression in the roots and good agronomic characters (plant vigor, standability, tassel size, and ear quality). These lines were evaluated for haploid induction rate (HIR) in the summer cycles of 2012 and 2013 at the CIMMYT El Batan experimental station in Mexico (19.52° N, 98.88° W) by crossing the candidate inducers to a liguleless tester (homozygous for the lg2 gene) and scoring for the liguleless phenotype on testcross seedlings as described by Prigge et al. (2012a). Ten candidate haploid inducers with more than 6% HIR were further evaluated in the 2014 winter cycle at Agua Fria, 2014 summer cycle at Metztitlan, state of Hidalgo, Mexico (20.6° N, 98.76° W) and 2015 winter cycle at Agua Fria to determine the stability of HIR and plant characteristics. Agronomic characteristics of 10 candidate inducers were evaluated alongside the tropical and temperate inducers in the 2015 winter cycle at the Agua Fria experimental station. Plant height was measured from the soil surface to the base of the flag leaf. Ear height was measured from the soil surface to the upper ear attachment for ten plants within the middle of the row. Plant aspect was scored on a scale of 1 to 5, where 1 = strong, healthy plants and 5 = very poor, weak and disease-infected plants. Days to anthesis was recorded as the number of days from sowing to the time when pollen shedding occurred in more than half of the individuals within an inducer line. The root and leaf sheath colors were scored on a scale of 1 to 5 where 1 = deep purple or red coloration and 5 = no coloration.To validate the effectiveness of the red root marker, four diverse CIMMYT maize lines (CML376 from the subtropical breeding program in Mexico; CML494 from the lowland tropical breeding program in Mexico; CML506 and CML508 from the subtropical breeding program at CIMMYT-Zimbabwe) and eight lowland tropical CIMMYT-Mexico maize breeding populations, that showed complete inhibition of the R1-nj marker (Chaikam et al., 2015) were grown in the 2014 summer cycle at Metztitlan and pollinated with the bulk of pollen false negative rates; (ii) evaluate haploid induction rates and agronomic traits of triple marker inducer lines; (iii) validate the usefulness of the red root marker in haploid identification when the R1-nj marker is either completely inhibited or masked; and (iv) analyze the prevalence of natural anthocyanin expression within different plant tissues of tropical maize germplasm.The tropicalized haploid inducer hybrid TAIL9 × TAIL8 (http:// www.cimmyt.org/es/que-hacemos/investigacion-sobre-maiz/ item/tropicalized-maize-haploid-inducers-for-doubled-haploid-based-breeding) was crossed to nine diverse breeding populations and two synthetic populations obtained from different breeding programs in CIMMYT during the winter cycle of 2015 at the CIMMYT Agua Fria experimental station located in the state of Puebla in Mexico (20.26° N, 97.38° W). Seed resulting from the crosses were visually classified into putative haploids and diploids based on the Navajo phenotype, as previously described (Chaikam and Prasanna, 2012). For confirming the true ploidy status, 500 seeds from each of the putative haploid and putative diploid fractions were planted from each population in the field and the surviving plants were evaluated at anthesis stage using a \"gold standard\" classification based on visual assessment of differences in plant vigor, erectness of leaves, and male fertility in haploids and diploids. Seeds that failed to germinate and the plants that did not survive till anthesis were not taken into account. Putative haploids and putative diploids that were confirmed to be true were categorized as true positives (TP) and true negatives (TN), respectively. True diploids in the putative haploid fraction and true haploids in the putative diploid fraction were categorized as false positives (FP) and false negatives (FN), respectively. The numbers of TP, TN, FP, and FN were adjusted in each population based on the total number of putative haploids and diploids identified within the population based on the R1-nj marker. The resulting data from the \"gold standard\" classification was used to calculate the statistics of false discovery rate (FDR), false negative rate (FNR), and Matthews correlation coefficient (MCC) (Matthews, 1975;Altman andBland, 1994a, 1994b;Melchinger et al., 2013) according to the following formulae:where FDR is the proportion of diploids in the seed fraction classified as putative haploids, FNR is the proportion of true haploids misclassified as diploid seed, and MCC indicates the correlation between the real and predicted ploidy status based on the R1-nj marker. MCC has been suggested as a balanced measure of quality of binary classifications especially when the binary classes are of very different sizes (Matthews, 1975). As from the triple marker inducers CMRRI003, CMRRI005, CMRRI009 and CMRRI010. After harvest, ears were visually assessed for R1-nj expression. Seed were germinated on paper towels for 72 h in a growth chamber and maintained at 28 to 30°C under dark conditions as previously described in Chaikam and Mahuku (2012). Subsequently, the seedlings were maintained in a cold room at 8 to 12°C in the dark for 24 h to suspend growth and allow the accumulation of anthocyanin.Seedlings were separated into putative haploids and putative diploids based on white and red root phenotype, respectively, and were transplanted to the field. Haploids and diploids were reconfirmed in the field based on the \"gold standard\" classification, that is, a visual assessment of differences in plant vigor, erectness of leaves and male fertility in haploids and diploids.The statistics FDR, FNR and MCC were calculated for the R1-nj classification. To validate the use of the R1-nj and red root markers in germplasm containing natural expression of anthocyanin in the seed, two blue and one red corn synthetic maize varieties were obtained from the CIMMYT highland maize breeding program in Mexico. These synthetics were grown in the 2014 summer cycle at Metztitlan, Mexico and were crossed with bulked pollen from the triple marker inducers CMRRI003, CMRRI005, CMRRI009 and CMRRI010. R1-nj expression in the progeny from these induction crosses was visually determined in the seed at physiological maturity.To validate the use of red root marker for haploid identification, seeds from these induction crosses were germinated and seedlings were separated into putative haploids and putative diploids based on root color. True ploidy was assessed using the \"gold standard\" classification (per adult plant characteristics) and the associated statistics were calculated as described above.Seed for 546 CIMMYT lines and 244 landrace accessions were obtained from the CIMMYT maize germplasm bank. Fifty seeds from each entry were visually assessed for the presence of anthocyanin coloration and the Navajo phenotype in the endosperm and embryo. If a purple or red pericarp was detected, the seeds were broken to determine if anthocyanin was accumulated only in the pericarp or also in the endosperm and embryo tissues; this is the identifying expression characteristic of the Navajo marker.To determine the presence of anthocyanin coloration in the roots, 25 seeds of each CIMMYT line and landrace accession were germinated in two replications on paper towels along with the triple marker inducer controls as described above. The paper towels were spread under room light and germinating seedlings were assessed for the expression of anthocyanin in the primary and secondary roots. Anthocyanin coloration in the leaf sheath was scored at anthesis in 10 plants grown in the field. For determining the expression in the stem, leaf sheaths below the ear nodes were removed and anthocyanin accumulation was scored.Statistics associated with binary classification for true ploidy test using the \"gold standard\" classification for a portion of putative haploids and putative diploids identified in eleven populations based on R1-nj were presented in Table 1. FDR ranged from 1.8 to 43.8% among the 11 populations; the overall FDR value was 24.2%. The majority of the populations studied (8 of 11) had FDR values exceeding 20%. FNR ranged from 0 to 39.5% in the 11 populations; overall FNR across all populations was 8.9%. The MCC value ranged from 0.65 to 0.96 among the populations and averaged 0.82 overall. The statistics indicate the possibility of higher misclassification rates when the R1-nj marker is used for haploid or diploid classification in tropical germplasm.The triple marker inducers show expression of the Navajo phenotype in the seed, red coloration in the roots under darkness and purple or red coloration in the stem (Fig. 1). Both primary and secondary roots develop anthocyanin coloration in darkness from 72 h after germination. Seedlings have white hypocotyls with green tips. In adult plants, stems have intense purple coloration. Although leaf sheaths develop intense purple coloration, leaf blades and margins do not show any anthocyanin coloration. Tassel branches are green in color with purple anthers, which Table 1. Statistics associated with the \"gold standard\" classification for confirming the true ploidy of putative haploids and putative diploids identified using the R1-nj marker in induction crosses generated with the tropicalized haploid inducer hybrid TAIL9 ´ TAIL8.32.0 0.0 0.82 triple marker inducers showed poorer performance for plant traits than the tropical inducer lines. Among the four triple marker inducers, CMRRI010 showed relatively better agronomic performance. With the exception of CMRRI010, all three inducers showed similar anthesis dates as the temperate inducers. CMRRI010 showed a slight flowering delay in relative compared to other triple marker inducers. All triple marker inducers showed intense red coloration in the root when grown under dark conditions. On the other hand, the temperate and tropical inducers did not show any root pigmentation under the same conditions. CMRRI005 and CMRRI010 showed a relatively higher intensity of anthocyanin coloration in the roots as compared to other triple marker inducers. All of the triple marker inducers showed more intense purple coloration in the leaf sheath compared to the tropical or temperate inducers.become yellowish purple when dry. The Navajo phenotype expression on the seed varies among these haploid inducers, with some showing red pigmentation throughout the endosperm and embryo; while in others, the Navajo marker is bluish purple and specifically expressed on the crown and scutellum area. Table 2 lists the haploid induction rates (HIR) and associated 95% confidence intervals for the triple marker inducer lines in comparison with selected temperate and tropical inducers based on the results obtained with a liguleless tester. HIR varied from 8.6 to 10.2% among the four triple marker inducers. CMRRI010 showed the highest induction rate of 10.2% among the triple marker inducers. Two temperate inducers showed average HIR >10% and two tropical inducers showed HIR of 7.5 and 9.9%, respectively. Table 3 presents the agronomic characteristics of the triple marker inducers in comparison with the parental temperate inducer lines and tropical inducer lines. Plant height, ear height and plant aspect at flowering for triple marker inducers were better than the temperate inbred RWS but poorer than in UH400. All of the When crossed with pollen from the triple marker inducer lines, four CIMMYT maize lines and six populations did not show Navajo marker expression on the seed (data not shown). As expected, the majority of germinating seedlings expressed purple or red coloration in the roots while few seedlings showed no root coloration. When the seedlings showing purple or red and white roots were grown separately in the field till anthesis, the majority of the purple or red root plants showed good vigor, broad and erect leaves and good pollen fertility. All of these seedlings were confirmed to be diploids. The majority of plants with white roots at the seedling stage showed poor vigor, narrow and erect leaves with no or poor male fertility. Seedlings with these characteristics were confirmed to be haploids.The statistical parameters for the binary classification of diploids and haploids, based on the \"gold standard\" classification for putative haploids and diploids with root coloration, are presented in Table 4. False discovery rate ranged from 0 to 55.6% and the overall FDR remained at 13.9%. The majority of the germplasm studied (9 of 12) had FDR values smaller than 15%. False negative rate ranged from 0 to 16.7% across populations and the overall FNR remained at 6.1%. The MCC value ranged from 0.61 to 0.98 and the overall MCC value averaged 0.89. Thus, our study clearly demonstrates that, on the basis of root coloration, one can reliably differentiate haploids from diploids in crosses with the triple marker inducers, even when the induction crosses show complete inhibition of the Navajo kernel color phenotype. The seed of blue and red corn synthetics used in this study showed deep intense purple and red coloration, respectively, in the pericarp covering the entire seed. When crossed with pollen from the triple marker inducers, R1-nj expression is completely masked by anthocyanin expression in the pericarp (Fig. 2). Consequently, it was not possible to separate haploids and diploids based on R1-nj expression alone. When the seeds were germinated, the majority of the seedlings showed red coloration in the root tissues while few seedlings showed white roots. When the red and white root seedlings were grown separately in the field till anthesis, the majority of purple-root plants were confirmed to be true diploids and the majority of white-root plants as true haploids (Table 5). The FDR for two blue corn synthetics ranged from 27.2 to 35%, while FDR was 13% for the red corn synthetic. The FNR was lower for the blue corn synthetics, which ranged from 1.5 to 3.7% as compared to 9.1% for the red corn synthetic. The MCC for the blue corn synthetic 1 and 2 was 0.82 and 0.78, respectively, whereas MCC was 0.88 for the red corn synthetic. Taken together, these statistics indicate that the red root marker can aid in identification of haploids in germplasm that masks the expression of the Navajo phenotype.The frequency of natural expression of anthocyanin in different plant tissues of tropical maize germplam is presented in Table 6. Anthocyanin coloration is not present in the endosperm and embryo of elite maize inbreds developed at CIMMYT (with the exception of some blue maize lines/hybrids developed at CIMMYT-Mexico). On the other hand, in the seed of maize landrace accessions, anthocyanin expression occurs quite frequently (40.9%). However, of the 100 maize landraces that express anthocyanin coloration in the seed, 55 showed segregation for the presence/absence of anthocyanin pigments (data not shown). Among the landrace accessions that express anthocyanins in the seed, only two accessions (Morelia 43 and Veracruz 56) showed Navajo marker expression. None of the elite maize inbreds (CIMMYT lines) showed root coloration under dark conditions, whereas 21 landraces (8.6%) (Supplemental Table S1) showed anthocyanin accumulation in root tissue. All of these accessions showed segregation among seedlings for presence or absence of anthocyanin coloration in the root. For accessions with expression of the red root phenotype, the frequency of red root occurrence (i.e., the proportion of plants with red roots in an accession among the total number of plants germinated in that accession) varied from 4 to 40% (average 17.5%) (data not shown). With regard to the leaf sheath coloration, 9.8% of the inbred lines showed purple coloration, while 60.2% of the landrace accessions revealed sheath coloration. The majority (91.8%) of the accessions showing purple coloration in the sheath also displayed Table 5. Statistics associated with \"gold standard\" classification for confirming the true ploidy of putative haploids and putative diploids identified using the red root marker in induction crosses with blue and red corn synthetics. Bulked pollen from the triple marker inducers, CMRRI003, CMRRI005, CMRRI009, and CMRRI0010 was used for the induction crosses. segregation (presence/absence) of sheath color. While only two inbreds showed coloration in the stem, 13.1% of the landrace accessions expressed anthocyanin coloration in the stem; of these, 90.6% showed segregation for stem color expression. In the elite inbreds, the frequency of anthocyanin expression in the leaf sheath and stem was similar. Among the landraces, highland accessions showed red root and purple leaf sheath phenotype more frequently than subtropical and lowland tropical accessions.Doubled haploid lines are commonly produced from biparental populations generated from elite maize inbred lines (Prigge et al., 2011). These DH lines can also be produced from landraces and open-pollinated varieties for purification and fixation, as well as for enhancing the genetic diversity of maize breeding programs (Wilde et al., 2010;Strigens et al., 2013). However, inability to identify haploids because of complete or partial inhibition of the currently used R1-nj (Navajo) anthocyanin marker is a critical limitation for DH-line production from many breeding populations and landrace accessions (Chaikam et al., 2015). In addition, it has been previously noted that use of R1-nj has resulted in a high number of false positives (true diploids among putative haploids) (Röber et al., 2005;Prigge et al., 2011;Choe et al., 2012;Melchinger et al., 2014). It is also possible that all haploids present in the induction cross could not be detected based on R1-nj marker expression and can also be falsely included among the diploids (Melchinger et al., 2015b). Röber et al. (2005) showed that temperate flint germplasm with high FDR also have high FNR. To date, no publications which demonstrated the determination of FNR from R1-nj based on induction crosses in tropical germplasm. The possible occurrence of high FNR in haploid/diploid classification based on the Navajo phenotype may necessitate the planting of additional plants from the source germplasm to ensure that a sufficient number of haploids can be obtained. In this study, we systematically evaluated both FDR and FNR resulting from R1-nj based classification within induction crosses of 11 tropical populations. This study revealed that overall, R1-nj haploid/diploid classification can result in FDR >24% in the analyzed tropical maize germplasm. FDR depended on the source germplasm, with some germplasm showing very high values (>40%). Higher FDR of R1-nj based haploid/diploid classification leads to wastage of resources during chromosomal doubling and the generation of seed for DH lines. In the majority of the populations used in this study, relatively few true haploids were falsely identified as diploids using the R1-nj marker, resulting in an overall low FNR (8.9%). However, similar to FDR, FNR is also dependent on the source germplasm with two populations having >20% FNR. In populations with high FNR, a significant proportion of true haploids will be misclassified in the diploid fraction. A high FNR results in a failure to identify all of the haploids present in the induction cross. As a result, fewer haploids are available for downstream chromosomal doubling. Consequently, this may result in fewer DH lines from a population than desired. A high frequency of R1-nj marker inhibition, taken together with high levels of FDR in most of the germplasm and high levels of FNR in some tropical maize germplasm, necessitates alternative or complementary haploid identification marker systems that can effectively address these limitations.The triple marker inducers developed in this study express the R1-nj based Navajo phenotype in seeds, the purple color marker in both the primary and secondary roots, and purple coloration in leaf sheaths and stems. Unlike the temperate and tropical inducers used in this study that do not show root color phenotype under experimental conditions, the triple marker inducers have the genetic constitution required for anthocyanin accumulation in seedling roots. Moreover, these inducers showed reasonably good haploid induction rates for use in haploid induction nurseries. However, generally speaking, the agronomic performance of the triple marker inducers --------------------------------% of germplasm evaluated -------------------------------- in terms of plant height, ear height and plant aspect at flowering, was relatively poor as compared to the firstgeneration tropical inducers (TAIL8 and TAIL9) that were jointly developed by CIMMYT and the University of Hohenheim, Germany. It is possible that the poor agronomic performance of the triple marker inducers could be the result of using landrace accessions and temperate inducers as parents, and the testing of the inducers in tropical environments. In a previous study, temperate haploid inducers showed poor agronomic performance in the tropical environments (Prigge et al., 2012a).Triple marker inducer lines were used to validate the usefulness of the red root marker for identifying haploids from germplasm that completely inhibits the expression of the Navajo kernel phenotype, conditioned by R1-nj. When 12 diverse tropical germplasm were crossed with pollen from the triple marker inducers, all crosses showed complete inhibition of Navajo marker expression but showed segregation for purple coloration in the roots. These observations indicated that the color inhibitor genes do not influence the anthocyanin accumulation in the seedling root tissues. The haploid/diploid classification based on the red root marker in these 12 crosses established that it could be a potential alternative for haploid identification when R1-nj expression is inhibited. The FDR was less than 10% in 75% of the germplasm used in this experiment. This observation was significant considering that only 28% of the germplasm showed an FDR less than 10% when using the R1-nj marker. However, similar to the R1-nj marker, the red root marker also resulted in an exceptionally high FDR values in some source germplasm such as inbreds CML494 and CML506. When using the red root marker, higher FDR in some germplasm can result from slow germination and growth of some diploids due to infection with ear rot fungi, which delays the accumulation of anthocyanins in the roots. In addition, in some germplasm, the poor intensity of anthocyanin coloration in roots at the seedling stage could lead to human errors and a higher FDR. Lower FNR values were noticed using the red root marker as compared to the R1-nj marker (overall 6.1 vs. 8.9%), indicating that relatively lower numbers of true haploids were misclassified as diploids. Considering that most seed (>85%) resulting from the induction crosses are diploids, the red root marker is valuable in identifying and discarding large numbers of diploids that are not of any value in DH line production. Comparing the MCC values resulting from the red root marker-based and R1-nj marker-based haploid/diploid classifications (overall 0.89 vs. 0.82), it can be further inferred that the red root marker-based classification has a higher correlation with the true ploidy status of the plants than that of the R1-nj marker. Taken together, the results from our study clearly demonstrate that the red root marker can be used for recovering high proportion of haploids from the induction crosses that show complete inhibition of R1-nj at the early seedling stage. In addition, our findings support the supposition that the red root marker can be similarly used for recovering a maximum number of haploids from induction crosses with partial inhibition of R1-nj marker expression. If germplasm with segregation for the anthocyanin color inhibitor gene is employed in induction crosses using inducers with both R1-nj and red root markers, a certain proportion of the induced seed showing anthocyanin coloration can be classified into haploids and diploids first based on Navajo phenotype. The other portion of seed with inhibition of the Navajo phenotype can be germinated and the seedlings can be separated into haploids and diploids based on root coloration. Thus, the triple marker haploid inducers could be highly useful for DH line production in tropical maize breeding populations and landraces which show a high frequency of complete/partial inhibition of Navajo marker expression (Chaikam et al., 2015).The red root marker also paves the way for the efficient identification of false positives in the haploid fraction separated based on R1-nj before the application of expensive and laborious chromosomal doubling treatments. Previously, the purple sheath marker was proposed to identify such false positives and some of the inducer lines are equipped with this marker (Röber et al., 2005;Li et al., 2009). Our study indicated that purple sheath occurs naturally at a frequency of ~60% in tropical landraces and ~10% in elite CIMMYT inbreds that are used worldwide. Hence, under many circumstances, this marker could not work for selection in many landraces and populations using inbreds with natural sheath coloration. In addition, this marker cannot identify haploids before chromosomal doubling treatments as it only expresses at later stages of plant establishment. Hence, it can be concluded that the sheath color marker is of little use in DH line development. On the contrary, red root color was not noticed in any tropical inbreds used in this study and occurs rarely (~8.6%) in the landraces. As also demonstrated in this study, the red root marker is expressed in germinating seedlings and is independent of the expression of R1-nj. Taken together, it is clear that the red root marker is best suited for the identification of false positives before chromosomal doubling treatments.In addition, the red root marker can aid in the identification of haploids in the germplasm with natural anthocyanin coloration in the seed. In such germplasm, R1-nj expression may be masked and, thus, could not be effective as demonstrated in this study using purple and red corn synthetics. Natural anthocyanin expression in the seed is not present in the inbreds developed at CIMMYT and also in most inbreds developed by public and private maize breeding programs worldwide, which primarily focus on yellow and white maize. Hence, the masking of R1-nj is not a problem in inbreds and populations derived from them. On the contrary, 40.9% of the landraces analyzed in this study showed natural anthocyanin accumulation in the seed. Some of these landrace accessions have significant nutritional and economic value. For example, purple maize landraces are used in some parts of Central and South America for making purple tortillas, drinks such as \"chicha morada\" and also as a source of colorant (Petroni et al., 2014). In addition, the demand for this type of corn is growing worldwide as the health benefits with anthocyanin-rich foods is becoming widely publicized. Hence, there is an opportunity for improving such landraces through modern breeding approaches. The production of inbred lines through DH technology with R1-nj based haploid inducers is not possible in such landraces. As anthocyanin coloration occurs rarely in the roots of landrace accessions (~8.6%), the red root marker does not suffer from the masking effects. In this study, using blue corn and red corn synthetics, we demonstrated that the red root marker can effectively identify haploids from such germplasm with reasonably high accuracy as indicated by the MCC value of 0.82. However, some diploids can be misclassified in the haploid fraction as indicated by FDR (overall ~27%). Very few haploids are falsely identified in the diploid fraction using the red root marker as indicated by the FNR (overall ~3.4%).In summary, the red root marker perfectly complements the R1-nj marker in haploid identification in germplasm with complete or partial inhibition of R1-nj and in germplasm with natural anthocyanin accumulation in the seed. It also helps to eliminate false positives before chromosomal doubling treatments. Hence, the triple marker inducers equipped with both R1-nj and red root marker are valuable to identify haploids in the majority of the germplasm with reasonable accuracy and to increase the overall efficiency of the DH production process. However, one limitation of using red root marker is that it requires the germination of thousands of seeds resulting from haploid induction crosses, which is both labor-and resource-intensive as compared to R1-nj or high kernel oil based haploid/diploid classification. To address this problem, we recommend integrating the high oil trait into triple marker inducers, which may help in adopting a pyramiding classification scheme to separate haploids from diploids at different stages of plant development. Using such inducers, the first separation of haploids and diploids can be achieved by using the high oil trait. At the second stage, any diploid seed falsely identified in the haploid fraction can be eliminated using the R1-nj marker (if expressed). At the third stage of selection, the red root marker can be employed at the seedling stage. Collectively, these three levels of selection could substantially reduce the cost of labor involved in haploid identification and the rate of false positives in the field. If any false positives escape these three levels of selection, they can be eliminated by using the purple sheath or stem marker or by looking at the plant stature. Until triple marker inducers with high oil trait are available, it would be pragmatic to use a classification scheme based on the R1-nj marker and/ or high oil content in induction crosses with inducers such as UH600 or UH601 (Melchinger et al., 2013), possessing both of these markers and limit the use of red root marker to those cases where these markers cannot be employed. In the latter case, the germination process needs to be further optimized to reduce the labor and costs associated with this process. In addition, it is also necessary to integrate the red root marker in better-adapted tropical haploid inducers to achieve optimum agronomic performance in the induction nurseries in diverse tropical environments.Supplemental material is available with the online version of this article.","tokenCount":"6254"} \ No newline at end of file diff --git a/data/part_3/8746661321.json b/data/part_3/8746661321.json new file mode 100644 index 0000000000000000000000000000000000000000..3df42d363a3951fc5814b1d444d1a3b7780a9e86 --- /dev/null +++ b/data/part_3/8746661321.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"fbf5e19c5ed5842d87b41e9ff29882f3","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/352d9246-84a5-4b87-99a2-3c160aa44a9b/retrieve","id":"-1134153643"},"keywords":[],"sieverID":"416f5712-6c3c-4c37-b718-4a19f1558588","pagecount":"5","content":"Community-based breeding of small ruminants in Ethiopia are technically feasible to implement, result in sustained genetic gains and are economically rewarding to the participating communities.• Community-based breeding programs (CBBPs) ensure the genuine participation of livestock keepers in the design and implementation of sheep and goat breeding, as well as control over the sales and products generated.• A conducive institutional environment such as support by NARS, and the availability of policy support and complementary services such as access to improved and affordable health services and access to adequate and quality feed resources and market linkages, are crucial to the sustainability of such breeding programs• Legal breeder cooperatives are crucial for the sustainability of CBBPs because collective action facilitates access to inputs, marketing, better selection and management of the flock.To increase animal productivity, African countries have spent the past few decades replicating a centralized breeding program approach that has been successful in several developed countries. Called a 'nucleus scheme', it involves keeping hundreds of animals in a government-managed centralized facility for selection and breeding, with the best animals then distributed to farmers.Unfortunately, this approach has not generated the results expected. The extensive infrastructure required is expensive, the exotic breeds imported as part of the program have struggled to adapt to local conditions and finally, the program has not reflected the needs and interests of farmers, especially smallholder ones. As a result, the nucleus scheme has mostly been unsuccessful in many African countries.A new approach that addresses the challenges of 'centralized' schemes was therefore needed. One such approach that has stimulated global interest is the community-based breeding program (CBBP). CBBPs focus on indigenous stock and consider farmers' needs, views, decisions and active participation, from inception through to implementation, and have been identified as the program of choice. CBBPs have been implemented by the International Center for Agricultural Research in the Dry Areas in partnership with the International Livestock Research Institute (ILRI), BOKU University (Austria) and Ethiopia NARS, mainly in Ethiopia and then scaled to many countries in Africa and have generated substantial impacts.Breeding programs that are community-based cover a range of situations. Typically, they target low input systems with farmers within a limited geographical area who have a common interest to work together for the improvement of the genetic resources of their animals. CBBPs focus on indigenous stock and consider farmers' needs, views, decisions and active participation, from inception through to implementation. Most importantly, they provide a participatory and bottom-up approach.CBBP combines farmer training to improve selection methods, consisting of pooling community flocks to create a larger gene pool from which breeding animals can be selected, scientific support to provide farmers with information on different breeding options and data collection to monitor how well individual animals perform. The entire community flock is treated as one.In low input smallholder production systems, flock sizes are generally small, which makes the design of breeding programs difficult, primarily because of the dangers of inbreeding. CBBPs avert this challenge by pooling flocks together, arranging sire sharing and implementing a rotation scheme among different mating groups.Two stages of sire selection are usually applied -an initial screening when traditionally premature sales of young lambs/ kids occur (usually at 4-6 months of age) and then a final selection for admission to breeding. This consists of:1.All young rams/bucks in each community are collected in a centralized location at an agreed screening date.Selection of rams/bucks for breeding are conducted based on the estimated breeding values (when more than one trait is involved, an index is created).Final approval is based on farmer preferences and criteria, taking into full consideration indigenous knowledge and community interests in the breeding program.The selected sires are subsequently made available to the community after they have been put into different sire groups.Livestock keepers who choose to participate in the program are organized into sheep/goat breeding associations, many of which later evolve into formal cooperatives.The aim of CBBPs is to unlock the potential of small ruminants in Ethiopia. While the primary users of CBBPs are rural poor livestock keepers, genetic improvement can provide spillover effects in the overall small ruminant value chain. In addition to improved incomes for farmers, the availability of better sheep and goats benefit different actors along the value chainincluding input suppliers, market agents, youth/women groups engaged in sheep fattening activities, slaughterhouses and endconsumers.Improved sheep and goats have likewise led to the development of vibrant associations and cooperatives, which are creating livelihood opportunities for youth and women.In addition, with the focus on indigenous stock, CBBPs naturally integrate climate change adaptation traits of sheep and goats.Resilient and locally adapted livestock have the potential to be more productive, which can contribute directly to improved incomes and enhance food security. More productive small ruminants also lead to lower greenhouse gas emissions per unit of output.• Pilot testing of CBBP in Ethiopia with different production systems, and sheep and goat populations involving more than 4000 households was completed.• Guidelines for practitioners on setting up CBBPs for sheep and goat prepared (Haile et al., 2011, Haile et al., 2018).• Evaluation/ impact assessment of CBBPs for sheep and goat was completed, with results indicating that CBBPs result in measurable genetic gains that produce tangible benefits to the communities in Ethiopia (Haile et al., 2020).• Scaling framework for the dissemination of improved genetics from CBBPs to be used by extension staff developed (Mueller et al., 2019).• Financial feasibility of CBBP as a productivity improvement model assessed.• Business model for the cooperatives targeting sale of improved sires was developed.• Ongoing scaling is taking place across Ethiopia in the four major regions (Amhara, Oromia, South and Tigray) and across countries in Africa (Uganda, Malawi, South Africa, Tanzania, Burkina faso, Tunisia).Breeding cooperative member from Bonga with her ewe.Photo ILRI/Apollo HabtamuTen years of CBBP in Ethiopia have produced some key outcomes and impacts. Some of these are:• More than 7000 rural smallholder households are directly involved in and have benefited from CBBPs through improved incomes (20%) and consumption of meat (households slaughter three sheep or goat per year compared to a single slaughter when the program started (see outcome story 1).• Sheep/goat farming, once a side activity for farmers, is now a main business activity and the linchpin of their livelihoods.• Most of the participating households in Menz (one of the CBBP sites) graduated from the government-run safety net program that support short-term food needs through emergency relief.They now use income from sheep sales to buy food.• The successes of CBBP in Ethiopia have led to the upscale of the program in many African countries (Uganda, Malawi, South Africa, Tanzania, Liberia, Burkina Faso and Sudan) and drawn the attention of investors.• CBBP has been accepted as the strategy of choice for the genetic improvement of small ruminants in Ethiopia and has been incorporated in the country's Livestock Master Plan. The Ethiopian government is scaling up the program through its national livestock and fisheries sector development project.• Demand for better-trained breeders has led Ethiopian national universities (more than 10) to officially incorporate communitybased breeding into their curriculum. There are 50 masters and 15 PhD students who either have or are conducting their thesis studies on community-based breeding programs (see outcome story 2).• The economic impact of one CBBP in Ethiopia, called Boka-Shuta, is now serving as a role model for CBBP across the country (see box Bonga story).SmaRT Ethiopia / Small Ruminant value chain Transformation in Ethiopia -3The CBBP in Bonga, a town in south-west Ethiopia in Southern Nations, Nationalities and Peoples Region, is one of the four established CBBP sites in 2009 in the birthplace of wild Arabica coffee. The breeding program started with 120 households as a cooperative in one village but has since increased to 16 cooperatives, comprising more than 2300 households. The first cooperative-Boka-Shuta-has steadily increased its membership base to 450 members, with astounding results achieved. Their flock productivity has improved, farmer incomes have increased on average by 20%, breeding rams are frequently sent to other regions of Ethiopia for breeding and the village has seen improvements in household resilience and community cohesiveness.The cooperative now holds Birr 3.34 million (US$96,500) in capital. So far, the community has paid a total of Birr 1.36 million (US$39,800) in dividends and spent Birr 377,500 (US$10,700) on cooperative infrastructure projects. Some of the projects supported by the cooperative has contributed have been the construction of a local road in the village, the building of a big meeting hall for farmers in the village and a neighboring community and the purchase of bonds to support the construction of the Grand Ethiopian Renaissance Dam and the purchase of 50 chairs for the village administration.Breeding ram from Bonga.Breeding ram from Bonga.Photo ILRI/Apollo Habtamu Photo ILRI/Apollo Habtamu Based on the experience and lessons learnt from the implementation of CBBP pilots in Ethiopia, critical factors for the success of CBBPs were identified:• To reach impact at scale, the Ethiopian government needs to prioritize expansion of CBBPs across larger populations.• Transforming subsistence sheep and goat production to become market-oriented businesses is crucial. Therefore, government and private sector support in linking breeders' cooperatives to input supply, breeding animal multiplication and dissemination as well as markets is needed.• The private sector, including farmer cooperatives, veterinary drug suppliers, feed processors and traders, should play an active role in the provision of inputs and services to support breeding programs. Incentives by government are needed to encourage the private sector to actively support farmers. This could include, for example, tax exemption on inputs over a specific period, access to credit facilities and access to land.• It is recommended that the government invest in CBBPs as opposed to the often-unsuccessful centralized nucleus schemes involving crossbreeding with exotic breeds. ","tokenCount":"1606"} \ No newline at end of file diff --git a/data/part_3/8775021649.json b/data/part_3/8775021649.json new file mode 100644 index 0000000000000000000000000000000000000000..dc1f484185584a84c2ed1499eae6ad0a616a8458 --- /dev/null +++ b/data/part_3/8775021649.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"810777e6373bc33d4d08541be052306a","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/d2050c1d-f64a-4f81-8ba3-41a5baa00aaa/retrieve","id":"-1843061308"},"keywords":[],"sieverID":"4c7b4103-52a8-4e77-b935-c37c4b3e225b","pagecount":"1","content":"• Individuals evaluate their economic conditions relative to others around them; if they are \"primed\" to feel poorer than others, this may heighten feelings of economic stress, which can have impacts on gender attitudes that differ for women vs. men • Married women may be triggered to \"cede decision-making power\" in times of economic stress Project Overview• We conducted a 2019 survey experiment with approximately 2,000 adult women and men in Nepal • We employed an established survey treatment called a priming experiment to subtly alter respondents' perceptions of their relative economic well-being:• 50% (control condition): Primed to feel like the income distribution is narrow and they are in the middle of it• 50% (treatment condition): Primed to feel that the income distribution is wide and they are toward the bottom of it• Goal is to assess whether being randomly assigned to feel relatively deprived affects subsequent answers about gender attitudesRelative Deprivation PrimeThe Prime Had its Intended Effect Randomly assigned to a priming condition and read the response choices(1-5)Step 1Asked what is their household income(5 discrete answer choices, or income brackets)Step 2Asked about their subjective sense of their relative economic statusStep 3Asked about attitudes towards women's roles in intra-household decision-making ( 8questionsassembled into indexStep 4Measuring Attitudes Around Women's Roles in Decision-Making Married Women, But Not Men, Become Less Egalitarian• The results underscore the deleterious effects that feelings of relative deprivation can have on women's own gender attitudes; women may cede power to avoid conflict within the household or may feel that fulfilling traditional roles is increasingly important in hard economic times• These lessons are particularly relevant as income inequality within developing countries is on the rise (Ravallion, 2014), and given that the salience of inequality is also increasing (e.g., due to social media, migration and travel, etc)• More work is needed on whether these impacts hold up to cases of real-world economic stress (beyond a survey experiment), how enduring these impacts are, and what are the contextual factors explaining women's responsesTreatment Condition (50%) 1 <3,000 <25,000 2 3,000 -6,000 25,000 -50,000 3 6,000 -9,000 50,000 -100,000 4 9,000 -12,000 100,000 -200,000 5 >12,000 >200,000How much income did your family earn last month (in NRS)?1. EXPENDITURES: In your opinion, to what extent should women and men have equal ability to decide how to spend the money their household earns from farming and other work? [1=A great deal, 2=A lot, 3=Moderately, 4=A little, 5=Not at all]Women and men should have equal control over income their household earns. [1=Strongly agree, 2=Moderately agree, 3=Neither agree nor disagree, 4=Slightly disagree, 5=Strongly disagree]Men and women should share household chores.Women should be able to work outside the home if they want to.Every individual should follow tradition, especially women.It is important for a woman to do what her husband asks, even if she disagrees with him.A good woman always supports her husband's opinions.*All coded so that higher values mean more egalitarian gender attitudes• Being primed to feel poor makes married women more likely to say the husband should control expenditures and income, less likely to support sharing chores, less likely to feel it is okay for women to work outside the home, and more supportive of traditional norms. • Men are largely unaffected","tokenCount":"535"} \ No newline at end of file diff --git a/data/part_3/8785196107.json b/data/part_3/8785196107.json new file mode 100644 index 0000000000000000000000000000000000000000..e7b9c2d62648c8273474bb6f4df7a51ff010dcca --- /dev/null +++ b/data/part_3/8785196107.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"de9dda798ab610d39bb6804162f28a1c","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/63b74d65-5982-4335-b2d3-6b7b41274073/retrieve","id":"613588745"},"keywords":[],"sieverID":"6c2c63e3-c38d-4b66-be6a-62455ee1375d","pagecount":"2","content":"P345 -Tools and methods to assess and deliver impact of nutrition-sensitive agricultural programs Description of the innovation: A comprehensive set of data collection tools for estimating financial and economic costs of nutrition-sensitive interventions delivered through multisectoral projects. Tools can also be used for general financial budget projections as part of scaling up nutrition-sensitive interventions. Designed so that they can be easily used alongside planned or ongoing process or impact evaluations. This is part of the Strengthening Economic Evaluation for Multisectoral Nutrition Strategies (SEEMS-Nutrition) initiative of which A4NH researchers from IFPRI are participating. New Innovation: No Innovation type: Social Science Stage of innovation: Stage 3: available/ ready for uptake (AV) Geographic Scope: Global Number of individual improved lines/varieties: Description of Stage reached: The tools have been applied to assess financial and economic costs of an integrated agriculture-nutrition intervention. Cost per beneficiary estimates of implementing the intervention through an early childhood development platform compare favorably with similar interventions. Tools are available online and are being used to perform cost analysis for other interventions.","tokenCount":"173"} \ No newline at end of file diff --git a/data/part_3/8837752484.json b/data/part_3/8837752484.json new file mode 100644 index 0000000000000000000000000000000000000000..31d2c59fb37d17b4bbb51cf76982fb3703cbdf73 --- /dev/null +++ b/data/part_3/8837752484.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"97996c20b946efb08f876175f6b3b51f","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/f74aef96-be6f-4a14-b382-fe6f4ad0881d/retrieve","id":"-1084480906"},"keywords":["Adaptation","Aggregation","Agriculture","Capacity","Capital","Carbon","Cash","Credits","Debt","Equity","Finance","Farming","Forest","Investment","Inputs","Interest","Land","Mitigation","Return","Resilience","Risk","Smallholder","Sustainable","Tenure Clean Development Mechanism, Afforestation / Reforestation methodologies DRP: Dispute Resolution Process LU: Land Use N/A: Not Applicable NAMA: Nationally Appropriate Mitigation Activity NGO: Non-Governmental Organization SME: Small and Medium sized Enterprise VCMs: Voluntary Carbon Market(s) VCS Verified Carbon Standard"],"sieverID":"153a67a8-6dc7-4645-b4e1-9739b9b5fd9e","pagecount":"27","content":"The views expressed in this document cannot be taken to reflect the official opinions of these agencies, nor the official position of the CGIAR or ESSP.Tanja Havemann is a Director at Beyond Carbon GmbH, a Swiss company that advises on direct investments in sustainable land management. Tanja has worked with environmental investments for over seven years in a variety of roles with investment funds, private investors, multilateral and bilateral agencies, Governments and NGOs. She holds an LLM in Environmental Law and Policy, an MSc in Applied Environmental Economics and a BSc (Hons) in Tropical Environmental Science.Titlisstrasse 35, 8032 Zürich, Switzerland Tel: +41 (0) 786642790 E-mail: tanja.havemann@beyondcarbon.chThis chapter describes obstacles to financing mitigation in smallholder agricultural systems 1 , and provides recommendations to overcome these. The emphasis is on smallholder agricultural finance and overlaps with carbon finance, rather than specific carbon finance issues. It is structured as follows: first, characteristics of carbon finance in the context of agriculture, forestry and other land uses (AFOLU) are summarized; second, the characteristics of smallholder agricultural finance are described; third, the overlaps between obstacles to carbon and agricultural finance are discussed; fourth conclusions are drawn.1 Smallholders are defined as commercial and subsistence-oriented farmers, managing less than 5 hectares of landSmallholders can generate carbon credits through energy and land use (LU) practices. This chapter focuses on LU practices, summarized in Table 1.Net increases in mitigation attributable to improved practices, compared to usual practices, are used to estimate carbon credit volumes. Credits must be quantified and independently verified according to a chosen carbon credit standard and a methodology under that standard.Although sales of carbon credits could be a valuable addition to smallholder incomes, a number of barriers have prevented this.One barrier has been a lack of accepted standards with methodologies to quantify mitigation from agricultural practices, illustrated by Table 1. The lack of methodologies to credit increases in soil carbon is, however, currently being addressed. The Vi Project in Kenya is working with the World Bank to develop a Verified Carbon Standard (VCS) methodology to credit increases in both above and below ground carbon stocks. 2 Other barriers to both energy and LU agricultural mitigation projects involving smallholders include:• Small size of benefit per smallholder: projects require significant spatial scale to be economically viable, given the transaction costs of monitoring, measuring mitigation achieved.• The informational complexity faced by the smallholder during the carbon credit registration and issuance processes.• The sizeable up-front cost of project development. .• Uncertainty of cash flow ex-ante; Projects using a voluntary carbon standard can be difficult to value, as Voluntary Carbon Markets (VCMs) are relatively un-transparent and illiquid. Additional barriers faced by LU projects (listed as \"L\" in Table 1) include:• Lumpy cash flows; carbon credits can typically only be sold after a minimum of five years of operation (and are generated only once every five years) 4 , whereas significant costs are incurred in this period. Credit volumes are relatively small in the first issuance periods.• Demand is primarily from VCMs, where prices and demand are more uncertain.• Engagement in a carbon credit project may reduce the already limited smallholders' land management options, which may be a dis-incentive.4 An exception to this is the Plan Vivo standard, which does allow for significantly quicker crediting, but which suffers from relatively poor demand. More information on the Plan Vivo standard can be found at: www.planvivo.org and information on demand and prices can be found in: Many of the barriers to smallholder carbon credit mitigation projects are general issues associated with investing in smallholder agriculture, rather than carbon finance per se.Most agricultural investments in developing countries are funded domestically (Ritchie 2010).These sources of capital can be classified as informal (personal loans from family members or informal lenders) or formal. Formal sources include trade credit (e.g. seed and subsidy programs) and commercial lending by banks. Non-domestic sources include loans associated with international agriculture companies, banks, donors and NGOs.Formal financial agents can engage with smallholders in a variety of ways, broadly categorized into short and long term credit, provision of risk mitigation instruments, and equity. Table 2 summarizes formal financing types that are not associated with an aggregating institution, such as contract farming (including share cropping), or to production (trade credit). The cost of providing such capital varies depending on factors including duration and location. Monies can be distributed through a company, individual or cooperative.Various smallholder categories exist, and access to capital tends to reflect the smallholders' producer category. It is also influenced by location and local infrastructure (physical, social, institutional). Smallholder production categories include production for:• Subsistence, as opposed to sale.• Sale in domestic markets as opposed to for export.• Export, as part of an aggregating institution, or on a more individual basis, for example, through a local trader.It may be easiest for smallholders producing for export, particularly those part of an aggregating institution, to access formal sources of capital. These may also be the most accessible, in terms of financing improvements to their management practices. It may be difficult to claim a premium for 'climate-friendly' agricultural products from smallholders who only supply their local markets, where customers typically are not in a position to pay a premium for 'sustainable' products. Investors pursue opportunities according to their specific goals. Investors pursuing riskier opportunities tend to require higher returns. Some investors may be subsidized by cheaper capital from multinational organizations, aid agencies or philanthropic sources.Geographically and sector diverse investors operate according to different social and environmental ideals. Investor interest is also heavily influenced by local government policies and practices, e.g. taxation, stability of rule of law, foreign exchange constraints.Risk and return characteristics also vary according to smallholder type. Smallholders that are highly reliant on the land for their livelihood may strongly favour short-term returns, i.e. they apply a high discount rate to evaluate any new activity. They may also engage in many different income-generating activities, on and off the land, to diversify their incomes and minimize risk. Risk related to uncertain land tenure and availability of land may increase smallholder preference for quicker returns, rather than returns associated with more sustainable, long-term LU practices.'Sustainable agriculture' investments 5 , that maintain long-term productivity, may require significant upfront costs, potentially accompanied by a reduction in short to medium-term income. For example, it may take many years before benefits of new tree crops are realized.However, such an investment, once made, may translate into a lessened likelihood of abandonment by the smallholder. In order to be successful, payments must help smallholders overcome initial upfront costs, and reduce the short to medium term penalties associated with implementing a longer-term improved land management practice.Although farmers may receive higher prices for export crops, particularly for certified produce, risks may also increase. They may take on significant risk in committing to deliver a certain type and volume of produce, potentially diverting productive capacity away from directly feeding their family, and reducing income diversity (in terms of products and seasonality). By selling into markets with higher standards, they take on new and additional costs (and risk) associated with certification. This issue was encountered by DrumNet in Kenya, where a company buying produce from smallholders suddenly stopped doing so because of lack of compliance with new European import requirements. This forced producers to sell their product below expected price and they returned to their subsistence crops (Ashraf et al. 2010).Carbon credits could be considered a form of export produce, and existing risks could be lessened or exacerbated by carbon finance. Risks could be exacerbated if the benefit associated with mitigation is only provided to the smallholder after credits are issued and if the smallholder has to bear upfront costs associated with developing a carbon credit project.The effect on smallholders depends on the basis on which benefits associated with mitigation are issued, e.g. payments made for changing practices versus for the production of specific 5 This paper defines 'sustainable agriculture' investment as investments in a 'integrated system of plant and animal production practices having a sitespecific application that will, over the long term: satisfy human food and fibre needs; enhance environmental quality and the natural resource base upon which the agricultural economy depends; make the most efficient use of non-renewable resources and on-farm resources and integrate, where appropriate, natural biological cycles and controls; sustain the economic viability of farm operations; and enhance the quality of life for farmers and society as a whole.\" carbon credit volumes. The form and timing of when carbon-related benefits are provided will influence smallholders' appetite for engaging in mitigation activities.An example of how international commodity producers could facilitate mitigation is Cadburys, which is investigating if carbon credits could be used to help finance Ghanaian farmers in transitioning to shade grown, rather than un-shaded cocoa. However, this approach may be limited to a tree crops for which there is a robust market, and to companies that can afford the upfront cost of sustainability and that can pay for developing the carbon credit project.Profitability of both agriculture and carbon credit projects is a factor of production volumes, expected product prices and the size and timing of production costs. While there is some difference between specific barriers associated with improved and increased investment in smallholder agriculture and carbon credit projects, significant overlap exists. Figure 1 illustrates some of these overlaps. Selected the overlapping factors are described in the subsections below. The ability to control risks helps to smooth income. Smallholders may be sensitive to agricultural risks due to lack of income or food source diversity. They face risks related to production (e.g. adverse weather, pests), overdependence on a few crops, price volatility and changes to regulatory frameworks -for both agricultural products and carbon credits.Weather-related risks are likely to increase as a result of climate change.Insurance and risk mitigation challenges are linked to infrastructure (e.g. weather stations), government policies and legislation (Kloeppinger-Todd and Sharma 2010). Large agricultural companies and investors control financial risks through expert credit evaluation systems, portfolio diversification, managing exposure limits, provisioning and hedging. These are not available to the smallholder.Many smallholders rely on traditional coping methods and formal or semi-formal arrangements to manage financial risk e.g. social networks, informal loans, contract farming and sharing liability amongst a group. These methods are more limited in their ability to transfer and diversify risk and context sensitive. More formal risk mitigation methods e.g. insurance, tradable futures contracts 6 and guarantees are less readily available in developing countries. Combining micro-insurance with access to credit has demonstrated some successes, however this form of risk mitigation is still relatively new (Kloeppinger-Todd and Sharma 2010). 7,8 Risk within a project should be transferred to the entity best able to control it. There are risks specifically associated with a carbon credit project (registration, monitoring, reporting and verification), in addition to the general implementation risks mentioned above. The project developer, rather than the smallholder, is best equipped to manage specific carbon credit project risks.Links to adaptation and resilience programs could also be explored. Most rural households operate tiny land holdings (less than 2 Ha) for a range of subsistence production activities and they diversify their income sources across farm and non-farm economic activities. They tend to favor low-risk, low-return crops that do not require significant investment in inputs but are more robust even in unfavorable weather and soil conditions. For example, 1 Ha of maize, which requires several applications of (costly) fertilizer, can yield 3x as much as 1 Ha of millet or sorghum. A study in Kenya found that less than one-half of farmers who intended to invest in fertilizer actually did so even though fertilizer increases yield returns up to 36% over several months. For cash constrained households, the security of a sub-optimal supply of food is frequently the only rational option. This subsistence approach to farming minimizes demand for external capital and its potential returns.'Access to credit and banking infrastructure can help smallholders reduce risk, manage cash flows and invest in increased productivity. Risk and credit issues are interlinked. Credit worthiness is, for example, evaluated on the basis of repayment capacity and assets (collateral). Seeds, fertilizers and equipment also require either cash or forms of credit. Table 3 describes some of the commercial credit sources -note that it excludes informal sources. generation of a specific product. Investment that is subsidized may not be sustainable.Investment is based on expected carbon credit revenues.Requires a minimum scale, for example in terms of number of participating households and tons of carbon mitigated.Carbon financiers are also influenced by fund life and the timing of market demand, e.g. associated with length of a commitment period. Various actors have a role to play in improving access to both agricultural and financial inputs. Fertilizer companies are, for example, repackaging products to make them more accessible to smallholders. Mobile telephone banking is helping smallholders to access microinsurance. Aggregation is important in improving access, e.g. by making leasing of farm tools to make them more affordable and by pooling collateral necessary to purchase infrastructure.Government policies could help improve access to inputs, including credit, e.g. by developing credit bureaus and property registries, information technology infrastructure to support monitoring and gather weather data, financial education and development of risk transfer mechanisms and guarantees. Mainstreaming recognition of other sources of collateral, including warehouse receipts, accounts receivable, equipment, standing crops and livestock are also necessary. Carbon credit purchase contracts could, for example, be a form of collateral.Aggregation, for example through farmer cooperatives, can improve access to resources including credit and risk mitigation products and can increase bargaining power. Investors for both carbon credits and agricultural products require a minimum scale of operation to justify time, effort and costs associated with making an investment.Commercially viable models do exist for engaging smallholders, but require aggregation to help reduce barriers to inputs (credit, fertilizer, seeds etc.), access markets and infrastructure.Group members can, for example, guarantee each others' loans, and group purchase agreements with buyers can help increase access to seeds and fertilizer.The Chiansi irrigation project in Zambia developed by InfraCo (Palmer et al. 2010) provides an example of how benefits can be increased through aggregation. 'Patient capital' and an appropriate benefit-sharing model were used to overcome investment barriers, including high up-front costs, long payback periods and a perception of high risk by investors. This concept of developing appropriate local benefit sharing models with 'patient capital', '…'long-term, subordinated capital invested at sub-commercial cost, which is used to fund the one-off startup costs and part of the cost of the very long-life assets' (Palmer et al. 2010) could be an interesting model to examine to in the context of mitigation.Business models to engage smallholders through different aggregation models are summarized in Table 4 (Cotula and Vermeulen 2010). Many variations of these models exist.Note that the terms 'out-grower scheme' and 'contract farming' are used interchangeably and describe a situation where a smallholder has a contractual relationship with a purchaser of agricultural goods. The smallholder is paid for production and may as part of the deal get access to production-increasing goods and services including improved seed varieties, credit or storage facilities. Formal credit attached to the supply chain, through one of the aggregation models described in Table 4, has been the dominant source of working capital for smallholders (Doran et al. 2009). However, the reach of formal credit to smallholders has been hampered by lack of organization, transparent pricing and fragmentation (van Empel 2010).Despite their diversity, aggregation models have some common ingredients for long-term success, including:• Clear participation criteria for the farmers e.g. minimum landholding size, demonstration of sufficient entrepreneurial spirit or engagement, basic understanding of business planning and farm management skills;• Transparent terms of reference for the product, e.g. describing quality requirements, pricing arrangements and services provided such as input, credit and extension services;• Trust between parties in the model, for example established in agreed codes of conduct;• Registration and record keeping.Many smallholders lack access to extension services that could help them improve yields without increasing costs. Such services may be paid for by the farmer (privately), an NGO or the government or provided by the aggregating entity. NGOs such as Land O'Lakes have been instrumental in providing extension services but the sustainability of this provision may be an issue. Information technology may help to overcome some of these barriers, e.g. by providing advice via text messages. It is likely that both carbon credit project developers and agricultural investors will have to invest in improved extension services to train smallholders.Tenure and property rights are often unclear -in the context of agricultural production and carbon credits. Various access and user rights may be attached to the land, these may be allocated to parties other than the landowner. Improper consideration of tenure issues may exacerbate inequality within the community and lead to conflict, compromising investment returns. Differences in rights to below and above ground carbon can also be unclear.Enforcement of rights including proper arbitration processes for dispute resolution processes (DRPs) may also be lacking. DRPs must be transparent, accessible and must not be too lengthy in order to encourage investment. For example, Indonesia is considering establishing 'Green Benches' to tackle disputes arising as a result of carbon-related investments.Existing carbon finance approaches, with their complex procedures, unpredictable and often long payback periods are exacerbated by existing agricultural finance barriers. Financing barriers faced by smallholders are more fundamental to address than barriers specifically related to carbon credit development. If designed correctly, carbon finance could reduce some of these hurdles by providing revenue diversification tied to sustainable practices and by encouraging aggregation which could increase the accessibility of services and products. The forms of carbon finance which will be most appropriate to smallholders will likely be those which particularly target improving their long-term productivity while at the same time increasing mitigation (and resilience).Agricultural mitigation finance could result in win-win situations for smallholders. However, the profitability of pure agricultural carbon projects involving smallholders is often too low to be of interest. It may therefore be necessary to design carbon finance in such a way that it helps to bridge the gap until the project becomes economical.Recommendations to various groups for developing win-win approaches that address smallholder financing (and carbon finance) barriers are given below:Governments, multilaterals and donor agencies • Support infrastructure development that improves smallholders' access to financial inputs (e.g. credit bureaus, weather stations);• Support controlled productivity gains e.g. access to input through broad coinvestment subsidies;• Evaluate government policies e.g. taxation to encourage increased investment in improved smallholder agriculture;• Re-examine trade rules that act as barriers to agricultural producers in developing countries and 'climate friendly' labelling;• Develop private public partnerships catalyzing improved investment in agriculture such e.g. leveraging 'patient capital' and credit guarantee facilities. An example of this is the US$10m guarantee facilities developed by AGRA and its partners;• Support pilots that promote improved agricultural practices.• Test the application of carbon as an additional revenue stream in existing smallholder production systems;• Develop new products that can be used by smallholders to overcome barriers, e.g. M-PESA, the Kenyan mobile payment system;• Test the use of new forms of collateral e.g. carbon credit purchase contracts;• Help leverage and invest 'patient capital'.• Explore opportunities for adding a mitigation element to existing private and public extensions services (e.g. piggybacking on PepsiCo's Indian distribution system);• Develop and test instruments to help farmers overcome barriers, e.g. risk mitigation instruments, securitization of future carbon revenues;• Facilitate aggregation, e.g. support the building of farmers' organizations, act as a trusted intermediary.The barriers that must be overcome are fundamental to the livelihoods of many, and go far beyond carbon finance issues, although significant overlap is acknowledged. By tackling these barriers, it may be possible to unlock some of the potential mitigation from agriculture.Vice-versa, 'fit-for-purpose' carbon finance for mitigation could help to overcome some existing barriers faced by smallholders. In designing fit-for-purpose carbon finance, emphasis must be on overcoming these fundamental, traditional barriers faced by smallholders and to financing sustainable agriculture in general, rather than on generating discrete units of mitigation.","tokenCount":"3314"} \ No newline at end of file diff --git a/data/part_3/8844874066.json b/data/part_3/8844874066.json new file mode 100644 index 0000000000000000000000000000000000000000..b8ba4d1576442ce2100cd758a93c1cc4cd369b8b --- /dev/null +++ b/data/part_3/8844874066.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"f45440b44472316c456935dfa434e7ca","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/78cf64aa-b02d-462e-8ddd-f2e3a4db0748/retrieve","id":"1545564382"},"keywords":[],"sieverID":"0f34ca10-1983-48ff-8fbc-c572bfbc6139","pagecount":"46","content":"Cash and cash equivalents (4a) 70,318 56,577 Endowment fund (4b) 75,426Bioversity International is the world's largest international research organization dedicated solely to the conservation and use of agricultural biodiversity.Bioversity is part of the Consultative Group on International Agricultural Research, which works to reduce hunger, poverty and environmental degradation in developing countries by generating and sharing relevant agricultural knowledge, technologies and policies. This research, focused on development, is conducted by a Consortium of 15 CGIAR centres working with hundreds of partners worldwide and supported by a multi-donor Fund.Research into the conservation and use of agricultural biodiversity is important for everyone. The more plant and animal genetic diversity is conserved --in farmers' fields and in genebanks --the more options poor, rural farmers have to cope with the challenges of climate change and to improve nutrition. Agricultural biodiversity also offers more opportunities for innovation and growth in agricultural production.Biodiversity makes food production more secure and resilient, makes meals more nutritious, and makes lives more vibrant.Agricultural biodiversity is a resource available to farm families even in the most impoverished areas of the world. Indeed, some of the world's poorest countries are among the richest in biodiversity. Promoting research that can protect this biodiversity and harness it to fuel community development in ways that respect local traditions and the environment is what Bioversity is all about.Bioversity is committed to research that can help foster sustainable development; research that can help people living in poverty secure dignified and sustainable livelihoods through food and agricultural production, research that can help raise nutrition levels in areas where hunger is widespread, and research that can help keep communities and the environment healthy.Our area of expertise is agricultural biodiversity, and benefiting smallholder farmers and poor people in the developing world is at the centre of our work.Our work is motivated by a vision in which people today and in the future enjoy greater well-being through increased incomes, sustainably improved food security and nutrition, and greater environmental health, made possible by conservation and the deployment of agricultural biodiversity on farms and in forestsBioversity undertakes, encourages and supports research and other activities on the use and conservation of agricultural biodiversity, especially genetic resources, to create more productive, resilient and sustainable harvests. Our aim is to promote the greater well-being of people, particularly poor people in developing countries, by helping them to achieve food security, to improve their health and nutrition, to boost their incomes, and to conserve the natural resources on which they depend. Bioversity works with a global range of partners to maximize impact, to develop capacity and to ensure that all stakeholders have an effective voice Bioversity International The accompanying notes are an integral part of this statement.(1) Statement of purpose Bioversity's work is motivated by a vision in which people today and in the future enjoy greater well-being through increased incomes, sustainably improved food security and nutrition, and greater environmental health, made possible by conservation and the deployment of agricultural biodiversity on farms and in forests.Bioversity undertakes, encourages and supports research and other activities on the use and conservation of agricultural biodiversity, especially genetic resources, to create more productive, resilient and sustainable harvests. Bioversity's aim is to promote the greater well-being of people, particularly poor people in developing countries, by helping them to achieve food security, to improve their health and nutrition, to boost their incomes, and to conserve the natural resources on which they depend. Bioversity works with a global range of partners to maximize impact, to develop capacity and to ensure that all stakeholders have an effective voice. (2) IPGRI/INIBAP integration (3) Summary of significant accounting policies (a) Accounting for not-for-profit organizationsThe financial statements of Bioversity are presented using the accrual basis of accounting. Bioversity follows the accounting policies issued by the CGIAR Secretariat. Revenue is the gross inflow of economic benefits during the period arising in the course of the ordinary activities of a Centre where those inflows result in increases in net assets. The major portion of Bioversity's revenue is derived through the receipt of donor grants -either \"Unrestricted\" or \"Restricted\".Unrestricted Grant revenue arises from the unconditional transfer of cash or other assets to Bioversity.Restricted Grant revenue arises from a transfer of resources to Bioversity in return for past or future compliance related to the operating activities of the organization.Revenue is measured at the fair value of the consideration received or receivable. a. Cash grants are recorded at the face value of the cash received or the US dollar equivalent. b. Grant revenue, including non-monetary grants at fair value, is recognized when there is reasonable assurance that: i. Bioversity will comply with the conditions attached to them; and, ii. the grants will be received. c. Grants are recognized as revenue over the periods necessary to match them with the related costs which they are intended to compensate, on a systematic basis. d. Grants-in-kind are recorded at the fair value of the assets (or services) received or promised, or the fair value of the liabilities satisfied. Grants-in-kind relating to staff support will be recognized subject to the following conditions: i. the donated staff must be fully engaged in a project within Bioversity's agreed agenda activities; ii. the project must be full-cost budgeted in Bioversity's work programme; iii. the full cost as budgeted is borne by the in-kind provider; and iv. the in-kind provider approves of the inclusion and the value of their support as revenue in Bioversity's financial statements. e. Other revenues/(Other losses/expenses) include, but are not limited to: i. consultancy revenue earned from third parties; ii. gains, net of losses, resulting from transactions involving currencies other than the US dollar and restatement of foreign currency denominated assets and liabilities at year-end or at reporting date; iii. other miscellaneous revenue/losses or expenses, including any other items not specifically covered above.Expenses are recognized in the Statement of Activities when a decrease in future economic benefits related to a decrease in an asset or an increase in a liability has arisen that can be measured reliably. Specifically, Bioversity considers a liability to have arisen when the agreement for output is signed.Expenses are recognized in the Statement of Activities on the basis of a direct association between the costs incurred and the earning of specific items of revenue (Matching principle).When economic benefits are expected to arise over several accounting periods and the association with revenue can only be broadly or indirectly determined, expenses are recognized on the basis of systematic and rational allocation procedures. (e.g., depreciation and amortization).An expense is recognized immediately when expenditure produces no future benefit or when future economic benefits cease to qualify for recognition as assets in the Statement of Financial Position.Bioversity habitually effects transactions in a number of foreign currencies. The US dollar is its reporting currency and the accounting records are maintained in US dollars. Foreign currency transactions in Bioversity are accounted for at the exchange rates prevailing at the date of transactions: gains and losses resulting from the settlement of such transactions are recognized in the statement of activities.At year-end all monetary items denominated in foreign currencies are re-valued at exchange rates prevailing on the date of the statement of financial position. Any resulting exchange gains and losses are recognized in the statement of activities as \"Other revenues and gains\" or \"Other losses and expenses.\" Non-monetary items denominated in foreign currency which are carried at historical cost are reported using the exchange rate at the date of the transaction.Property and equipment are defined as tangible assets that:1. are held by Bioversity for use in the production, or supply of goods or services or for administrative purposes; 2. are expected to be used for more than one period; 3. have a minimum cost of $750 (This minimum was lowered from $1,000 to $750 on purchases from July 1, 2010.)Property and equipment are initially measured at cost. Subsequent to initial recognition as an asset, property and equipment are carried at cost less any accumulated depreciation and any accumulated impairment losses.The cost of an item of property and equipment comprises its purchase price and all other incidental costs in bringing the asset to its working condition for its intended use.Depreciation of property and equipment is calculated on the straight-line basis over the estimated useful lives of the assets. In 2010, the estimated useful life of computers was revised from 4 to 5 years and that of software from 2 to 3 years. The change in the estimated useful lives of these assets is accounted for prospectively commencing in the year of change by spreading the remaining undepreciated cost of the affected assets over the years of remaining useful life. Estimated useful lives are as follows:Building Depreciation of acquired assets is made in the year the asset is placed in operation and continues until the asset is fully depreciated or its use is discontinued.Gains or losses arising from the retirement or disposal of property and equipment are determined as the difference between the estimated net disposal proceeds and the carrying amount of the asset and are recognized as revenue or expense in the Statement of Activities within the caption \"Other losses/(gains)\".Property and equipment acquired through the use of grants restricted for a certain project are recorded as an asset. Such assets are depreciated at a rate of 100% and the depreciation expense charged directly to the appropriate restricted project in the year of acquisition.Bioversity charges indirect costs to restricted projects to ensure that such projects contain a fair share of research support and institutional costs.Bioversity uses a percentage rate of recovery. The percentage rate is set periodically by the Board of Trustees upon management recommendation. The Board approved target rate of indirect cost recovery for projects negotiated from 1994 onward is 25%, but the actual rate chargeable depends on the provision agreed upon by the two contracting parties (Bioversity and the donor) for indirect cost recovery and stated in each project's contract.The amount of $2,948,000 indirect cost recovery ($2,847,000 in 2009) represents recoveries from restricted projects and hosting activities.The Endowment fund is held on behalf of the Global Crop Diversity Trust and recorded at fair market value. (4a) Cash and cash equivalentsThe amounts are composed of the following: Cash and cash equivalents comprise cash in hand and in banks (current accounts) and interest bearing time deposits held at call with banks. The banks where Bioversity's cash holdings are maintained have bank ratings which are not lower than A. In addition, no more than 50% of total cash and investments are held in any one bank at any point in time. Cash in banks are denominated in US Dollars, Euro and GBP. Regional offices' imprest funds are denominated in local currencies (Kenyan Shillings, Euro, Malaysian Ringgits, Uganda Shillings and Central African Francs), as well as in US Dollars.The following schedule represents the composition of the market value of the Endowment fund as at December 31: (5) InvestmentsInvestments acquired with the intention of disposing the same within one year or less from the acquisition date are classified as current investments. Investments classified as current, as distinguished from cash equivalents, are those that are acquired with original maturities of more than three months, but not exceeding one year. This account represents time deposits in US Dollars and in Euro, both bearing interest at current bank rates.(6) Accounts receivableAll receivable balances are valued at their net realizable value, that is, the gross amount of receivable minus, if applicable, allowances provided for doubtful accounts.Allowances for doubtful accounts are provided in an amount equal to the total receivables shown, or reasonably estimated to be doubtful of collection. The amount in the allowance is based on past experience and on a continuous review of receivable reports and other relevant factors.When an account receivable is deemed doubtful of collection, an allowance is provided during the year the account is deemed doubtful.Any receivable or portion of receivable judged to be uncollectible is written off. Write-offs of receivables are done via allowance for doubtful accounts after all efforts to collect have been exhausted.Based on past experience and review of accounts receivable at year-end, $610,000 was deemed doubtful of collection in 2010; $300,000 in 2009.(a) Accounts receivable -donors Accounts receivable from donors consists of claims from donors for grants promised or pledged in accordance with the terms specified by the donor. It also pertains to claims from donors for expenses paid on behalf of projects in excess of cash received.The amounts are composed of the following: The amount is composed of accruals and provisions made for supplies and services received and expenses incurred before year-end for which invoices were not yet received or payment not made as of the balance sheet date. This includes regional office expenditures not yet paid out of the imprest accounts as of year-end.The amount is composed of: (13) Employee benefits programmeThe Bioversity Employee Benefits Programme (EBP) replaces the social security programmes of its various host countries. The EBP was established by the CGIAR and adopted by all of its institutions. It provides a comprehensive package of insurance and fund accumulations to meet staff members' and their dependents' needs during employment and for retirement. The EBP is fully funded by Bioversity. No deductions from salary are required from staff members.Bioversity makes contributions on behalf of staff members to the pension plan managed by the Association of International Agricultural Research Centres (AIARC). These contributions are charged against revenue in the year in which the benefit accrues. Therefore, Bioversity has no future obligations for retirement benefits for its staff members.The 2010 contribution to the AIARC administered pension plan amounted to $1,823,000; this amount was $1,844,000 in 2009.(This balance consists of accruals for amounts due to staff members for separation allowances. The separation allowance is an end-of-service indemnity payable to Bioversity staff members on completion of appointment. The value of this indemnity is calculated in accordance with the personnel policies of Bioversity and is based on the length of service and salary level.(15) Net assetsNet assets are the residual interest in Bioversity's assets remaining after liabilities are deducted.The overall change in net assets represents the total gains and losses generated by Bioversity's activities during the year.Net assets are classified as either undesignated or designated.(a) Undesignated -that part of net assets that is not designated by Bioversity's management for specific purposes.(b) Designated -that part of net assets that has been designated by Bioversity's management for specific purposes.As per Board of Trustees resolution, each year an amount equal to the annual depreciation charged to operating income is designated to meet the costs of acquisition and replacement of property and equipment (1) Canada's 2010 unrestricted contribution of CAD1,084,827.98 at year-end rate of exchange of CAD.9937 = US$1.00. (2) The Netherlands' 2010 unrestricted contribution of Euro 75,000 at year-end rate of exchange of Euro.7454 = US$1.00.(3) Norway's 2010 unrestricted contribution of NOK6,500,000 at actual US$ amount that will be received from the CGIAR. (4) The Philippines' 2010 unrestricted contribution of PHP 260,000 at year-end rate of exchange of PHP43.81 = US$1.00.(5) Sweden's 2010 unrestricted contribution of SEK 5,200,000 at actual US$ amount that will be received from the CGIAR. ","tokenCount":"2509"} \ No newline at end of file diff --git a/data/part_3/8871665504.json b/data/part_3/8871665504.json new file mode 100644 index 0000000000000000000000000000000000000000..cc6de2724650cfe224f49c4ba0c3ccd0005bf50d --- /dev/null +++ b/data/part_3/8871665504.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"0c0613ed78ed4b4da216e4b79189aa1c","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/b9ab0874-8f54-41a2-ae9f-dbe8311e7160/retrieve","id":"949566747"},"keywords":[],"sieverID":"dc4bf0da-ba7f-4e69-a86d-823f03136f9e","pagecount":"10","content":"Diseño de un mecanismo financiero mixto y evaluación del potencial de carbono para sistemas sostenibles de cacao en Caquetá y Cesar: necesidades, barreras y recomendaciones 1 El presente informe técnico fue redactado con base a un entregable de la Consultoría No. No 13075659 suscrito entre el Centro Internacional de Agricultura Tropical (CIAT) y la Corporación Ecoversa.El CGIAR es una asociación mundial de investigación para un futuro con seguridad alimentaria. La ciencia del CGIAR se dedica a transformar los sistemas de alimentos, tierra y agua en una crisis climática. Su investigación la llevan a cabo 13 Centros/Alianzas del CGIAR en estrecha colaboración con cientos de socios, entre los que se incluyen institutos de investigación nacionales y regionales, organizaciones de la sociedad civil, el mundo académico, organizaciones de desarrollo y el sector privado. www.cgiar.org Agradecemos a todos los financiadores que apoyan esta investigación a través de sus contribuciones al Fondo Fiduciario del CGIAR: www.cgiar.org/funders. Para saber más sobre esta Iniciativa, visite esta página web.Para obtener más información sobre esta y otras iniciativas de la cartera de investigación del CGIAR, visite www.cgiar.org/cgiar-portfolio.2023 Organización del Sistema CGIAR. Algunos derechos reservados. Esta obra está bajo una Licencia Creative Commons Reconocimiento-NoComercial 4.0 Internacional (CC BYNC 4.0).El CGIAR es una asociación mundial de investigación para un futuro con seguridad alimentaria. La ciencia del CGIAR se dedica a transformar los sistemas de alimentos, tierra y agua en una crisis climática. Su investigación la llevan a cabo 13 Centros/Alianzas del CGIAR en estrecha colaboración con cientos de socios, entre los que se incluyen institutos de investigación nacionales y regionales, organizaciones de la sociedad civil, el mundo académico, organizaciones de desarrollo y el sector privado. www.cgiar.org Agradecemos a todos los financiadores que apoyan esta investigación a través de sus contribuciones al Fondo Fiduciario del CGIAR: www.cgiar.org/funders. Para saber más sobre esta Iniciativa, visite esta página web.Para obtener más información sobre esta y otras iniciativas de la cartera de investigación del CGIAR, visite www.cgiar.org/cgiar-portfolio.2023 Organización del Sistema CGIAR. Algunos derechos reservados. Esta obra está bajo una Licencia Creative Commons Reconocimiento-NoComercial 4.0 Internacional (CC BYNC 4.0).Para comenzar, se hizo una presentación del objetivo general del proyecto: \"diseñar un mecanismo financiero mixto dirigido a la adopción y escalamiento de sistemas de producción de cacao bajo en emisiones y que contribuya a la paz para los departamentos de Caquetá y Cesar\".Además, se compartió la agenda de la reunión presentada a continuación. • Identificar las necesidades de financiamiento para sistemas sostenibles de cacao en Caquetá y Cesar.Identificar las barreras de financiamiento para sistemas sostenibles de cacao en Caquetá y Cesar.Sobre la consolidación de información cualitativa sobre las actividades que requerían financiación, se mencionó que estas podían incluir, por ejemplo, la reconversión de fincas, ampliación de sistemas existentes o certificación hacia sistemas agroforestales de cacao sostenible, y que, además, se buscaba comprender las condiciones necesarias para esta financiación en términos de plazos, montos y tipo de financiamiento.Por otro lado, se profundizó en que se pretendía recopilar información sobre las barreras que enfrentan los actores de la cadena de valor del cacao sostenible, incluyendo tanto factores externos como circunstancias de orden público, falta de claridad en la información o tenencia de tierras, como barreras inherentes al acceso a recursos financieros, como requisitos excesivos, montos y plazos inadecuados, falta de asistencia técnica y capacidades, así como la falta de mercados rentables.Finalmente, el facilitador destacó que el punto de partida era el conocimiento y la experiencia de los colaboradores en la adopción de sistemas de cacao sostenible, considerando su trabajo en el Proyecto SLUS y otros programas relacionados.A modo de introducción del grupo focal se realizó una corta presentación sobre el proyecto SLUS, cuyo objetivo es implementar sistemas productivos sostenibles agrícolas y pecuarios para simultáneamente alcanzar la conservación de los bosques para la mitigación del cambio climático (REDD+) y la construcción de la paz en Colombia. El proyecto busca conectar enfoques territoriales con enfoques económicos, financieros y de mercado, para poder construir sistemas sostenibles escalables. Para esto, existen cuatro paquetes de trabajo que son: i) integración de políticas, ii) sistemas sostenibles de uso del suelo (SLUS), iii) estrategias de cadenas de valor, y iv) modelos de negocio. Sus logros, en resumidas cuentas, han sido: a nivel académico, 23 artículos publicados sobre acción climática y paz, un artículo sobre sistemas alimentarios bajos en carbono, y 4 herramientas que permiten integrar co-beneficios de paz a través de la acción climática. Además, se ha acompañado el acuerdo cero deforestación de la cadena láctea y de cacao, y se ha apoyado el fortalecimiento de capacidades a través de 4 estudiantes de maestría y 8 de doctorado.Para comenzar con este bloque se preguntó ¿Cuáles son las principales actividades o inversiones de los sistemas sostenibles de cacao que requieren financiación y por qué?Se destacaron las inversiones iniciales en los costos de establecimiento de prácticas sostenibles, señalando que estas eran difíciles de internalizar inicialmente. Además, se subrayó la importancia de escalar estas prácticas en términos de número de hectáreas y beneficiarios para asegurar su rentabilidad. Asimismo, se mencionó la necesidad de cumplir con normas ambientales previas al establecimiento, reconociendo las dificultades para llevar a cabo trámites con corporaciones en este aspecto.Posteriormente, se profundizó en la discusión al preguntar qué aspectos específicos debían impulsarse en relación con los costos iniciales de las adopciones sostenibles y los puntos críticos de financiación para la transición a un sistema sostenible o su escalamiento. Se resaltó que el cacao por sí solo no era rentable y que era necesario adoptar prácticas adicionales, como la certificación orgánica, técnicas pos cosecha para mejorar la calidad del grano, y la incorporación de cultivos asociados como plátano y madera. Se enfatizó la necesidad crucial de acceso a mercados diferenciados y requisitos específicos de licencia técnica, así como el fortalecimiento de las asociaciones de productores.Se compartió un ejercicio de costo-beneficio que abarcó un periodo de un año desde el establecimiento desde cero, revelando que el cultivo no generaba producción durante los primeros tres años, lo que requería financiación. Se hizo hincapié en que el tamaño rentable del cultivo debía ser igual o superior a tres hectáreas, alcanzando rentabilidad positiva sin financiación a partir del sexto año. Para la reconversión, se destacó la importancia de la asistencia técnica adecuada y el fortalecimiento de las asociaciones de productores.A continuación, el grupo focal se enfocó en responder a siguiente pregunta: De acuerdo con la experiencia de su programa, ¿cuáles son las características que necesita tener [esa financiación] en términos de montos, plazos y tipo de financiación?Desde el CIAT, se llevó a cabo un análisis de costo-beneficio tanto para la certificación orgánica en Caquetá como para el riego en Cesar, considerando los costos reales incurridos en la adopción de sistemas SLUS como buenas aproximaciones a estos precios.Para iniciar con este bloque se preguntó: ¿Cuáles son las principales barreras que han enfrentado sus socios para acceder a una financiación adecuada y oportuna?En Caquetá, se destacaron vacíos en la reglamentación de las figuras de ordenamiento como una barrera significativa. Estos vacíos generan falta de claridad entre las familias sobre la propiedad y tenencia de la tierra, así como las actividades permitidas según las figuras de ordenamiento. La presencia de Parques Nacionales y el Distrito de Conservación de Suelos y Aguas del Caquetá, aunque existentes como figuras, no se aplican operativamente.Se mencionó que la barrera relacionada con la tenencia de la tierra puede ser independiente de la figura de protección y es un problema generalizado en el país. En Cesar, además de esta barrera, se resaltaron las medidas de control ambiental y sus requisitos (permisos, autorizaciones y concesiones) como factores limitantes para el acceso a la financiación.La informalidad fue identificada como otro obstáculo, ralentizando los procesos, aunque no siempre impidiéndolos, constituyendo una limitación en muchos casos. También se señaló la necesidad de contar con proyectos estructurados, lo cual requiere el apoyo de organizaciones para la formulación inicial y sus costos asociados. La rentabilidad del proyecto también fue identificada como una barrera crucial, ya que debe demostrarse que es rentable incluso sin el respaldo de instrumentos de crédito o fomento, siendo un riesgo significativo para la financiación.A continuación, se realizó la siguiente pregunta: ¿A quién acude el productor en busca de información sobre alternativas de financiación o de asistencia técnica para implementar esas necesidades?En Caquetá, se destacó la presencia de diversas organizaciones. En el sur, Conservación Internacional, a través del programa Natura Amazona, respalda arreglos agroforestales con cacao y otras especies promisorias de la Amazonía. Además, contribuyen al fortalecimiento de la investigación en biodiversidad y restauración ecológica. La GiZ apoya a nivel organizativo a las asociaciones, enfocándose en temas de certificación e infraestructura para el manejo de poscosecha, fermentación y secado. WWF ha colaborado con productores y asociaciones, mientras que otras organizaciones de base se centran en temas de restauración y conectividad. En el ámbito de PEDET, se priorizaron Belén y San José, dando importancia a temas agropecuarios, pero priorizando en realidad otros temas.Para el desarrollo de la sección de recomendación se plantearon las siguientes cinco preguntas:1. ¿Cómo podría mejorarse el financiamiento para lograr la adopción de sistemas productivos sostenibles de cacao?2. ¿Cómo podría mejorarse la asistencia técnica y el acompañamiento para lograr la adopción de sistemas productivos sostenibles de cacao?¿Cómo podría mejorarse el financiamiento de los bancos o privado de las empresas ancla?4. ¿Cuál debería ser el rol de las asociaciones en un modelo mixto de financiamiento y asistencia técnica?5. ¿Cuál debería ser el rol de las entidades públicas regionales y municipales del sector rural y ambiental?Durante el desarrollo del grupo focal, se establecieron importantes consideraciones y recomendaciones. Desde el inicio, se resaltó la importancia de forjar alianzas con corporaciones regionales, fortaleciendo así las asociaciones para que desempeñen un papel más dinámico en temas de financiamiento y asistencia técnica.Se reconoció la necesidad de conocer la realidad única de cada territorio, con sus propias características, necesidades y barreras. Se hizo hincapié en la importancia de considerar las necesidades tanto de productores pequeños como medianos, comprendiendo su realidad productiva y social. La construcción de propuestas se planteó como un proceso colaborativo con las comunidades, asegurando que estén arraigadas en los territorios y contemplando posibles acciones a corto, mediano y largo plazo.En cuanto a la mejora del financiamiento, se sugirió una buena focalización, aprovechando la condición de trabajar en municipios PDET y Áreas Estratégicas como una ventaja, no una limitante. Se subrayó la necesidad de cuantificar los cobeneficios generados por los proyectos y comunicarlos de manera efectiva a públicos y privados. La combinación de fuentes y la unión de esfuerzos públicos y privados, junto con la visibilidad del valor agregado mediante instrumentos como certificaciones, sellos o acuerdos de cero deforestación, se destacaron como estrategias valiosas, aunque se reconoció que también podrían presentar desafíos.Se señaló la necesidad de superar la tendencia a trabajar de manera aislada y fomentar alianzas y sociedades para mejorar la relación costo-beneficio. La importancia de desarrollar procesos integrales en lugar de proyectos aislados se destacó como una lección clave. La participación activa y el acompañamiento técnico y socioempresarial a largo plazo a las familias fueron resaltados como aspectos críticos para el éxito, reconociendo que la falta de seguimiento y acompañamiento después de la conclusión de los proyectos ha sido una razón común de fracaso en el pasado.El grupo focal concluyó con un agradecimiento a la participación de todos los presentes cuyas contribuciones son fundamentales para la formulación de la propuesta mecanismo financiero mixto para cultivos de cacao sostenible en Caquetá y Cesar. ","tokenCount":"1899"} \ No newline at end of file diff --git a/data/part_3/8898469425.json b/data/part_3/8898469425.json new file mode 100644 index 0000000000000000000000000000000000000000..706917268ef9ac643ee8b6455c7057dd5f345577 --- /dev/null +++ b/data/part_3/8898469425.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"821f222946deded121e77ea072093132","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/71a0da25-4283-4f4c-ad1b-1516bc31e974/retrieve","id":"1159259721"},"keywords":[],"sieverID":"b7bf0c06-44b3-4c26-8ef0-3eaa3812d4f6","pagecount":"42","content":"Bioversity International is part of the Consultative Group on International Agricultural Research, which works to reduce hunger, poverty and environmental degradation in developing countries by generating and sharing relevant agricultural knowledge, technologies and policies. This research, focused on development, is conducted by a Consortium of 15 CGIAR centres working with hundreds of partners worldwide and supported by a multi-donor Fund (http://www.bioversityinternational.org; http://www.cgiar.org; http://cgiarconsortium.cgxchange.org; www.cgiarfund.org). Bioversity has its headquarters in Maccarese, near Rome, Italy, with offices in more than 20 other countries worldwide. The organization operates through four programmes: Diversity for Livelihoods, Understanding and Managing Biodiversity, Global Partnerships, and Commodities for Livelihoods.The international status of Bioversity is conferred under an Establishment Agreement which, by January 2010, had been signed by the Governments of Algeria,Daniela Giovannini welcomed the participants on behalf of the Fruit Crop Research Unit of Forlì and was pleased to host the Eighth Meeting of the Working Group on Prunus in Emilia-Romagna, a leading and traditional producer of peach, plum, strawberry and pear.Daniela Benediková, interim Chair of the Working Group (WG), welcomed the participants and thanked the local organizers. Since many country delegates were new to the Group, D. Benediková suggested that the participants introduce themselves.Lorenzo Maggioni, ECPGR Coordinator, updated participants on the status of the European Cooperative Programme for Plant Genetic Resources (ECPGR) during the ongoing Phase VIII (2009VIII ( -2013)). The main decisions of the previous Steering Committee meeting held in 2008 were summarized, including the priorities for Phase VIII (sharing of responsibilities being the top one), the available budget and the planned meetings and actions of the Fruit Network. The current status of the European Plant Genetic Resources Search Catalogue (or European Internet Search Catalogue, EURISCO) with its data on more than 1 million accessions from 41 countries was described. The recent possibility for the countries to indicate their designated Multilateral System accessions in EURISCO was highlighted, showing that over 212 000 European accessions had been so far designated by 13 countries. The Documentation and Information Network of ECPGR has developed a concept to include non-standardized characterization and evaluation data into EURISCO. The intention is that EURISCO will contribute its data to the global information system that is being developed at Bioversity with funds from the Food and Agriculture Organization (FAO), the Secretariat of the International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA), Bioversity and the Global Crop Diversity Trust. This system, called GENESYS, compiles data from the System-wide Information Network for Genetic Resources (SINGER) of the Consultative Group on International Agricultural Research (CGIAR), the Genetic Resources Information Network (GRIN) of the United States Department of Agriculture (USDA) and Canada, and EURISCO. The results and recommendations of the ECPGR Independent External Review that took place in July 2010 at Bioversity Headquarters in Rome were summarized.Marc Lateur: The ECPGR Documentation and Information Network Coordinating Group lacks the expertise of a fruit tree database manager, which means that the specific information and documentation needs of this category of crops are often neglected.The ECPGR Coordinator will bring the above request to the attention of the Documentation and Information Network Coordinator.Emilie Balsemin: The Group needs more data (especially characterization) than are available in EURISCO so that it can select the Most Appropriate Accessions (MAAs). It is not sufficient to download data from EURISCO for this purpose. Moreover, discrepancies remain between the lists of accessions in EURISCO and those received by the European Prunus Database (EPDB) Manager.Stein Harald Hjeltnes: It is not clear whether data should be provided to the National Inventory Focal Point for upload to EURISCO and/or to the EPDB Manager.L. Maggioni: Only those accessions that are included in EURISCO (National Inventory accessions) will be eligible for designation to the European Collection. The passport data should be sent to the National Inventory Focal Point and specific additional information on the accessions sent to the EPDB, as agreed by the Group. Curators of the collections should be careful not to create unnecessary discrepancies between the data provided to EURISCO and the EPDB. Data can be downloaded from EURISCO for inclusion into the EPDB, but the opposite is not possible since EURISCO only receives data from the National Inventory Focal Points.All WG members should make sure that data of their national Prunus collections are sent to EURISCO (via their National Inventory Focal Points) and that they are also included, with the additional agreed descriptors, in the EPDB.Working Group on Prunus: Chairperson's report D. Benediková, interim Chair of the Group following the departure of Ken Tobutt in 2008 from the positions of WG Chair and Coordinator of the Fruit Network Coordinating Group (NCG), presented the results of the Group's activities after the previous WG meeting held in Cyprus in 2005.An ad hoc workshop on fingerprinting of fruit varieties was held in December 2006 at East Malling, United Kingdom, attended by 20 experts from 11 European countries. The discussions focused on choosing reference accessions, standardizing microsatellite sets, harmonizing allele labelling and standardizing record sheets, so that microsatellite fingerprints can be used effectively to characterize accessions of Prunus, Malus and Pyrus collections and, in particular, to facilitate comparison of data sets between laboratories to detect duplicates and synonyms.Participants proposed a set of molecular markers and a set of reference accessions for each crop. The cherry set was subsequently reported at the meeting of the European Association for Research on Plant Breeding (EUCARPIA) in Zaragoza, Spain, in September 2007.An ad hoc meeting of the ECPGR Fruit Database Managers (Malus, Prunus, Pyrus and Vitis) and an ad hoc meeting of European experts on fruit synonyms were organized in Gembloux, Belgium, 23-25 June 2008, at the Centre Wallon de Recherches Agronomiques (CRA-W). These meetings were aimed at harmonizing and sharing progress in the management of European fruit tree collections. The European Central Crop Database Managers of Malus (University of Reading, UK), Prunus (Institut National de la Recherche Agronomique [INRA], Bordeaux, France), Pyrus (CRA-W, Gembloux, Belgium) and Vitis (Julius Kühn-Institut, Siebeldingen, Germany) compared the databases and evaluated their progress.Jointly exploring techniques that would allow harmonization of the databases (DBs) and comparing experiences in DB management, the Managers mapped the future development of the online DBs. The SynoPyrus software, developed by R. Oger and M. Lateur, was demonstrated, and all DB Managers agreed to use it in the future to identify synonyms, which pose serious problems in collection management, and in the development and use of the DBs. The DB accessions for Malus/Pyrus and Prunus were analysed with the objective of validating lists of synonyms according to the best reference books for each crop. The Most Appropriate Accessions (MAAs) can thus be identified for inclusion in the European Collection, currently being defined by the initiative for A European Genebank Integrated System (AEGIS). More than 600 cherry accession names were examined by the respective expert groups with the view to determine their most appropriate names, country of historic origin, synonyms linked with bibliographic references and a reference description that could be used for the validation of the accession's identity. Draft guidelines for inclusion of photographs in the ECPGR European Fruit Databases were prepared.The Prunus AEGIS group met in Radzików, Poland, in July 2008. Before the meeting a preliminary list of the MAAs was generated, using the results of the meeting on fruit synonyms and the EPDB as a tool. The group commented on the practicalities of implementing AEGIS and formulated draft Quality Standards.During 2006 and 2007, the Cherry Database and data sets were revised. EURISCO descriptors, five AEGIS-specific descriptors and molecular descriptors were incorporated. New data sets were included.The ad hoc workshop on in situ and on-farm conservation of Prunus, Malus/Pyrus and Vitis could not take place. The compilation of the Prunus Newsletter, issue 6, could not be completed as the compilers (Edite Kaufmane and Daniela Benediková) had not received articles from the WG members. The last Prunus Genetic Resources Newsletter issue was compiled by Mihai Botu and distributed in September 2005. The next issue will still be published, but only as an e-newsletter on the ECPGR Web site by December 2010, if the WG members agree to provide articles.A workplan for Phase VIII was formulated, focusing on the steps needed to implement AEGIS in cherry.A number of partially developed products of the Prunus WG have not been finalized and are not available from a central place. In particular, the report of the ad hoc meeting on standard molecular markers for cherry, apple and pears, which was held in 2006 at East Malling, United Kingdom, is still awaited. Workplan 1. A document including the agreed list of molecular markers for cherry, apple and pear will be prepared by Felicidad Fernández, in consultation with the Chair and other WG members, by the end of January 2011. The document will be sent to the ECPGR Secretariat and to the EPDB Manager for upload to the Prunus WG and the EPDB Web sites. 2. Guidelines for taking photographs of the accessions, to be uploaded to the EPDB Web site, will be finalized by David Szalatnay by the end of 2010 and sent to the EPDB Manager (copy to the ECPGR Secretariat) for upload to the EPDB Web site. ) from 15 countries. Ten countries have included all their collections in the national programme, while three have included only some of the collections. The total number of accessions reported is more than 15 700, of which more than 10 700 accessions are of national origin. Collections in Denmark, France, Hungary, Italy and Turkey are those that are most exhaustively characterized. Accessions are mostly used for breeding purposes, but also for supporting the use of heritage varieties in local markets and fruit exhibitions. Only five countries indicated that data were sent to the EPDB. All the countries have Prunus field collections with 2-3 trees grafted on specific rootstocks. Trees are visually and regularly checked for the most important diseases (plum pox virus [PPV], Monilinia spp. and Gnomonia spp.). In vitro conservation is carried out in Italy and cryoconservation in Finland, France (2009-11 national French CRYOVEG project) and Italy. Most of the countries (except Bosnia and Herzegovina, and Slovenia) have started the safetyduplication of their collections, with a level ranging from 30% to 80%. Safety-duplicates are held in a different location of the same conservation sites (as in Slovakia) or in a different region of the country (France). The main problems that the Prunus accessions face are: health status (virus infection requires eradication); lack of funds for curating staff and plant maintenance; decreasing national budgets for activities such as identification, collecting, introduction, evaluation and regeneration; urgent regeneration of some very old field collections.Bosnia and Herzegovina, and Denmark need to send some additional information to make the questionnaire more exhaustive. UK: All Prunus genetic resources as such will be deposited in Brogdale. Other material will be kept for breeding and will not be included in future lists. A number of private collections need to be identified and listed as UK genetic resources, as long as the owners agree.Spain: A clearer picture of the Prunus genetic resources in Spain will emerge once the national group on Prunus meets later in 2010.Spain and Slovakia: Breeders have their own collections of research material, but this is not part of national genetic resources collections.Romania: The national fruit and grapevine collections in Romania do not receive any support from the government. These collections are over 25 years old and in bad phytosanitary condition; if no firm action is taken the collections will be lost in the near future.Germany: The situation is better because large collections have been identified and maintained with private funds. A network has been set up, and public funds are provided for characterization.Denmark: The genebank collection is open to all, but some material is conserved only in private collections and not available to the public to safeguard breeding interests.Finland: Each genebank should have a specific mandate; breeding is included in the mandate of some genebanks. Private funds should be sought if no public funds are available. It would be interesting to know to whom the members of the German network are accountable.Germany: Network members have specific contracts and report to the coordinator on the status of their collections.Switzerland: Conservation and characterization are currently funded by the government. Inventory and precise identification of the material are important to find out what is really unique (there are many more names than actual genotypes). The efforts can thus focus on conservation and characterization of unique accessions, and funds can be saved.Germany: The same action is carried out in Germany, in order to decrease the number of accessions to be maintained. L. Maggioni: AEGIS is trying to empower the European Networks so that they can monitor the problems and find solutions. Unique accessions that are being lost in one country could be transferred to a different host country that volunteers to maintain them. Spain: Rationalization should go even further by adopting the concept of core collection, which represents maximum genetic diversity with a minimum number of samples.UK: The government listens to public opinion, which often sees genetic resources as museum material (no scientific basis for conservation of genetic diversity). Rationalization is therefore difficult to implement, as genetic diversity is not the only criterion. Denmark: Rationalization is important but it requires funding; it is also a demanding and complex job. The funding situation has worsened over the past 10 years.Finland: It would be useful to learn from networks established with private funds. M. Lateur: As a summary of the discussion, it can be said that lack of funds is always a problem. To rationalize the use of funds, the concept of \"national collection\" should be introduced in each country. The Group should start developing this concept as soon as possible. It is also important to develop public awareness, since it is easier to maintain the collection when the public knows that something valuable is being conserved. Government aid can be better garnered through public support.The Group expressed concern for the reported situation of the old fruit collections in Romania, particularly the threat of loss of original varieties that are genetically unique and need to be re-propagated and cured of virus infections. The Group recommended that the Romanian national programme dedicate sufficient and specific resources to rescue and maintain for the long term the valuable collections and/or seek solutions for the transfer of the collections to a different country. The DB is based on recent freely available technologies, MySQL 5.1 (database management system), Apache 2 (Web server) and PHP 5.2.4+ (scripting language). Different levels of access are possible: public access and password-protected partner access. The database philosophy allows distinguishing of individual trees of each accession and grouping of accessions into accession groups (varieties). Phenotypic descriptions made in different years and molecular assessments are also traceable to the individual trees that were characterized.The main functionalities allow (1) quick advanced searches for one or multiple accessions;(2) comparisons of accessions maintained at different sites (possibility of comparing photographs as well as passport, phenotypic and/or molecular data of several accessions of the same variety); (3) export of data in different output formats, where molecular data are directly compatible with a wide range of software for genetic analysis; (4) linking of accessions according to accession groups such as synonyms or accession names for identification of duplicate groups.The upload process uses a tabular format (.csv) that allows uploading of many data simultaneously. It is also possible to capture data directly on a dedicated Web interface, therefore enabling the data owners to autonomously add new accessions and/or new data sets; they can also edit or delete data.The technical development of the EPDB model tool is being finalized by an INRA team (Thomas Persohn, Emilie Balsemin and Loïck Le Dantec) and should be completed by the end of 2010. This tool will be tested by CRA-W Gembloux, Belgium, and possibly adopted by the Pyrus WG for use in the ECPGR Pyrus Database.Other Prunus database structures for plum, almond, apricot, peach cultivated species and their related species will also be set up by July 2011. A new Web site will be created with a common EPDB portal and links between the Prunus crop databases. Data can then be either imported by the DB Manager from Excel data files received, or input directly by the data owner who will receive login and uploading instructions.In order to ensure provision of complete data, the Group will need to agree on a set of minimum mandatory passport descriptors, to add new characterization and evaluation data descriptors and to agree on a set of molecular markers data.M. Lateur confirmed that the Pyrus DB Manager was prepared to test the new functionalities of the Prunus DB and possibly adopt them, in order to harmonize the various Fruit DBs to the extent possible. M. Lateur also thought that the new EPDB tool is very good but also sophisticated, raising concerns on the sustainability of the system once the external developers complete their work.E. Balsemin assured that the developers will provide an administration and information manual and train INRA staff. Moreover, the tool should be perfectly functional and further assistance be needed only when new developments will be requested.H. Flachowski asked whether it would be possible to hide data that are not updated. Participants agreed that even if it were possible to hide data, the responsibility of the data rests upon the data providers and that it would be better to indicate the updating date. Even old information (characterization) of accessions no longer existing would still be relevant for pedigree and other analyses. Accessions that no longer exist should be flagged, but their data should be retained. The background, objectives and perceived benefits of the AEGIS initiative were summarized by L. Maggioni. Among the milestones of AEGIS, the following were listed: the Strategic Framework Policy Guide, which is the document endorsed by the Steering Committee in 2008 and the Memorandum of Understanding (MoU), which is the legal document that was sent for signature to all ECPGR member countries in the first half of 2009. A Competitive Small Grant Scheme was launched in 2009 to facilitate the establishment and operation of this process. Eighteen proposals were received and three awarded. A new call for proposals is foreseen for late autumn 2010.The EUROGENEBANK proposal, aimed at the implementation of AEGIS, was submitted to the European Commission's Seventh Framework Programme (FP7) Research Infrastructure Call in 2009; although it met the threshold, it was not selected for funding. The proposal will be re-submitted for the 2012 call, provided a new suitable call is launched.The European Collection will be the main product of AEGIS, consisting of dispersed Most Appropriate Accessions (MAAs); it will be a virtual European genebank. By signing the MoU, countries accept responsibilities for long-term conservation and availability of the European Accessions and agree to conserve/manage them according to the quality standards. Conservation/management strategies for each crop need to be prepared by the respective Crop WGs/NCGs and approved by the Steering Committee.EURISCO is the information portal for the European Collection. In this catalogue, accessions will be flagged as (AEGIS) European Accessions. No definite procedures have been set, and no precise definition of MAA exists (it will be the result of a process). As foreseen in the process, the WG will agree on \"selection criteria\" for each crop or crop group to identify MAAs among sets of duplicates. The process of identification of MAAs can proceed from two sides: a proposal from the WG on the basis of its knowledge of existing unique and most appropriate accessions; or a selection of \"candidate\" accessions at the national level, considering the selection requirements and the possible offers for long-term maintenance. The two processes will need to come to an agreed conclusion through an iterative process. The process is, however, not yet completely defined as it requires empirical testing, and alternatives to the above approach can be considered.It is proposed that the WG takes the following actions: 1. Proceed with the compiling of the final list of selection criteria; 2. Strive to ensure that missing data are provided to EURISCO as soon as possible; 3. Assist countries (and their Associate Member institutes) in identifying \"candidate\" MAAs in their collections; 4. Develop a crop-or genepool-specific list of MAAs on the basis of the candidate accessions, using the selection criteria; 5. Where necessary, suggest any additional accessions to countries; 6. Establish a final list of European Accessions for a given crop genepool and confirm the final decision with National Coordinators.D. Giovannini and E. Balsemin reported on the activities carried out together with K. Tobutt and Janos Apostol as members of the sub-group on Prunus during the AEGIS feasibility study. This group had reached conclusions and recommendations regarding the categories to be considered for the choice of genotypes and the criteria for selecting MAAs among these genotypes. 1 Bottlenecks were identified as: the need for countries to join AEGIS and offer their accessions before any selection can be made; the compromising health status of many virus-infected accessions; the lack of characterization data and frequent difficulties in identifying the correct denomination of accessions due to synonymies and homonymies. In order to enable the selection of MAAs, a number of mandatory and recommended passport data were identified.A procedure to establish a list of MAAs was drafted, and which will be applied once the countries join AEGIS. A test exercise to simulate the MAA definition had been made with an initial list of 2708 sweet cherry accessions, which revealed 1116 unique genotypes and 367 duplicate groups. Secondary selection criteria were applied to the 367 duplicate groups in order to identify 367 primary and 367 reserve MAAs in these groups.The Prunus (cherry) minimum technical standards proposed by the AEGIS Prunus subgroup were reported; these are to be discussed and endorsed during this meeting (see further, pp. 16-17). The proposed workplan originally drafted by the sub-group for the implementation of AEGIS for Prunus was outlined; its estimated cost amounts to approximately € 250 000.Selection criteria to be used for the choice of MAAs were prioritized; the Group provisionally ranked the criteria in order of importance as follows:1. Trueness-to-type (particularly relevant for perennial clonal crops in which synonyms and homonyms are frequent) 2. Accompanied by passport information using the EURISCO multi-crop passport descriptors 3. Accompanied by characterization and evaluation data (at least those priority descriptors defined by the Prunus WG) 4. Maintained in country of origin 5. Of high health status, e.g. virus-free 6. Of known source, whether collected or bred. L. Maggioni summarized the elements that are being established for the implementation of the AEGIS Quality System (AQUAS).A draft template was prepared by the Secretariat and it was tested by the Nordic Genetic Resource Center (NordGen), Sweden, and by the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Germany. The template, once approved by the AEGIS Advisory Committee, has to be filled in by the Associate Members' genebanks in order to complete their operational genebank manuals. The Prunus WG is invited to comment on the template from the fruit tree conservation point of view.The standards will be drafted by the Secretariat based on the operational manuals and suggestions by the WGs; this activity will also take into account FAO's ongoing, parallel process of revising the international genebank standards.All WGs will need to agree on their respective crop standards, which will complement the generic standards.The WGs, with advice from the AEGIS Advisory Group, will need to organize a system for record-keeping and reporting as well as the implementation of a monitoring system. Workplan 9. The Group agreed to update the cherry passport data of all the national and regional collections and provide data to the EPDB (direct upload or Excel file) and to the National Inventory Focal Point (before the end of 2011 (2) same model of homepage with three different levels of access (\"Public access\"; \"Partner access\" and \"Administrator access\") and (3) same set of passport descriptors (FAO, EURISCO, AEGIS), same model for inclusion of molecular markers data and photographs. In the case of photographs, a query tool will be developed for posting a photo gallery, which will be useful for comparing accessions, homonyms and/or synonyms. 3. Establish a common workplan.The general objectives of the meeting were: (1) to help identify recurrent synonyms and duplicates within and between collections;(2) to help potential users find what they are looking for in the ECPGR databases; (3) to define a catalogue of names that would be accepted for inclusion in the database, together with the respective conversion tables to locate the accession names originally used; (4) to help the process of identification of the accessions that could belong to the national collections and (5) to help the process of selection of the MAAs for the implementation of the AEGIS concept.More specific objectives of this meeting were also (1) to define and build up a step-bystep, simple and efficient methodology to sort out the most important synonyms that are present in both the ECPGR collections and in the fruit DBs as it will facilitate the management of data and related lists of synonyms from collections and reference books;(2) to clearly define some specific passport data (e.g. \"Country of origin\", which is defined as the historical country of origin where the cultivars were either raised or bred, or where they traditionally originated. This information plays an important role in the AEGIS concept as it allows the management of data and related lists of synonyms from collections and reference books or bibliographic sources.With this preliminary work on synonyms, using the knowledge of the crop experts, the WG will be put in condition to rationalize the European collections as it will be possible to putatively identify 40-50% of the duplicates that are currently present within and between the collections. This meeting took a new initiative of gathering expertise from both inside and outside the WGs. Therefore, invited participants included an expert on old pomology books, specific crop experts, and an author belonging to the European Nursery Association, which has listed all cultivated fruit varieties in the world's nursery market.Thorough preparatory work before the meeting ensured that all participants received, prior to the meeting, a list of the most frequent accessions recorded in the ECPGR Cherry and Pear DBs, including both already recorded or proposed synonym lists with bibliographic references and proposed country of origin. The experts could thus properly prepare for the meeting. It was also very useful that several old reference books on pomology, either in printed form or as electronic scanned documents that were recorded in an Access DB, were brought to the meeting.The main outcomes of the meeting were:1. It was pointed out that there are historically five types of origins of \"old\" and obsolete cultivars: (i) old named amateur-bred cultivars with historic names and written references and proper description; (ii) local landraces (Populer 1979 2 ) derived from the oral rural traditions, very often having rural names and without any historical written descriptions; (iii) professional breeders' cultivars with a new complication of both protected and/or marketing trademarks that are synonyms of the cultivar name and with the multiple mutant sports having other names but genetically derived from a cultivar; (iv) unnamed chance seedlings; (v) unnamed and unidentified cultivars.• \"Synonym\" is defined as a different name or spelling used throughout time and space but that defines the same and unique cultivar or genotype. Synonyms have different origins: for example, different misspellings such as different transliteration versions; new local names given to well-known cultivars; different transcription from oral language (e.g. for cherry 'Burtoul'; 'Boûrtoule', etc.); different translations of generic names (e.g. 'Bigarreau'; 'Kraker'; 'Bigaroons', 'Knorpelkirschen') and translations of names; new names given for commercial purposes (often by nurseries).Conflicts between authors concerning origins, identity and synonyms are also found; therefore the concrete experiences of experts are essential for this work.• \"Homonym\" is the same name or one of the words of a given name that actually belongs to a different cultivar or genotype.• \"Accession Name\": name received from the donor of the accession. In the case of unknown cultivars: provisional name given by the person who collected the accession. All accession names always need to be validated by a defined procedure.• \"Preferred Name\" or \"Referenced Name\": it is the first historical name given or, in some cases, the most common name that is used as the most convenient and chosen from various synonyms and variant spellings. These names also always need to be validated by a defined procedure and be endorsed by a reference book or historical references.3. As an important part of the methodology for the building up a referenced system, a representative sample of the European diversity of reference books was proposed as well as a standardized list of acronyms of these references. These acronyms will be used in the DB for tracing the references, either for the \"Country of origin\", \"Preferred name\" or \"Synonym\" concept.4. Another part of the methodology was to assign to each \"Preferred name\" linked to a well defined cultivar a chosen book or reference source, which the experts were convinced represented the first historically available description and/or the most precise available historical representative description of the cultivar. A specific link was then put in the list of accessions that are present in the Fruit DBs.These referenced descriptions of the cultivars will be scanned to make them easily available -at the cultivar or genotype level -in the future DBs.The crop expert groups had the possibility of applying this defined methodology for both the first 600 most common accession names that were already included in the Cherry DB and the first 1200 most common accession names that were already included in the Pear DB.Inger Hjalmarsson informed about the national genebank for vegetatively propagated plants that is under establishment in Sweden by the Programme for Diversity of Cultivated Plants (POM). In the meantime, a national survey is being conducted to collect material that will be included in the genebank, which will be ready in 2015. It will contain fruit and berry varieties that are part of the national heritage. The mandate list contains: (1) local Swedish varieties, (2) varieties produced by Swedish breeders and (3) traditional foreign varieties that have been grown in Sweden for a long time. Conservation of Prunus varieties will consist of two trees in a local clonal archive, two trees in the future central collection in Alnarp and two trees (nuclear stocks) at the Swedish Elite Plant Station.Local clonal archives are established by contracts establishing compensations for municipalities, horticulture schools and outdoor museums that maintain the varieties. In this way, material is conserved in its original area and public awareness is created.Chance seedlings of interest would also be conserved as mandate material.Larisa Gustavsson reported on a project funded by the Swedish Board of Agriculture (SJV)/POM for SSR-based investigation of Swedish mandate cultivars (apple, pear and cherry). Large collections kept at Balsgård and in the clonal archives include old material that may have been mislabelled and is not well characterized/identified. Four cultivar classes were distinguished through DNA-marker screening:1. Samples originating from a single source, with each cultivar displaying a unique DNA profile 2. Samples from different sources, with each cultivar still displaying only a unique DNA profile 3. Cultivars sharing a DNA profile with at least one other cultivar (i.e. the same genotype has been sampled under different names, which therefore are synonyms) 4. Cultivars having different DNA profiles that are erroneously known under the same name (homonyms).Standard SSR markers were used for Swedish heritage varieties of sweet and sour cherry, pear and apple. Unique profiles, new triploids, cases of synonyms and possible mislabelling were identified and greatly clarified the identity of the material in the national collections. These molecular studies showed that mislabelling of varieties is very frequent (up to more than 30%), especially in collections of old varieties. These findings are useful for removing unnecessary duplicates from the collections and using correctly identified material in research projects. Genetic diversity in the collections was also investigated, and it was found that Swedish apples are a good representation of the genetic diversity of the crop.M. Lateur: Morphological characterization and pomology expertise is a necessary complement to correctly interpret the molecular results and take informed decisions on the possible rationalization of the collection. Presenters confirmed that this is duly taken care of in Sweden.Petra Engel gave an overview of research carried out in Italy over the past 10 years, based on a bibliographic survey of 656 publications derived from international symposia (Acta Horticulturae) and relevant national congresses. The most researched crop is peach/nectarine, followed by apricot and cherry. The main research topics were autochthonous germplasm (characterization and use), orchard management, physiology, stress and diseases, and fruit quality.D. Szalatnay reminded the Group that at the last meeting in Cyprus (December 2005), a task force composed of D. Szalatnay, E. Balsemin, M. Lateur, J. Blazek, M. Höfer and C. Gregoriou was formed with the mission to prepare guidelines for photographing accessions. Photographs are convenient and effective for an immediate characterization of an accession. They can also be easily uploaded to a database and raise awareness by attracting visitors. But it can also be a time-consuming activity. Correct focus, exposure and white balance are very important. Minimum requirements are that the fruit size must be visible, the identification of the accession needs to be on the photograph and the fruit needs to be taken from different angles. Each photograph should be traceable to the given individual tree. Detailed instructions were outlined. These will be compiled and made available to the Group as per Workplan decision 2 (see above, p.3).F. Fernández: It is difficult to take the right illustration of red colour in strawberries, cherries, etc. D. Szalatnay: It is important to spend time to learn the most suitable camera settings. M. Lateur: If artificial light is not available, natural light can be used, but photographs should not be taken before 10:00 or after 15:00, otherwise colour reproduction may not be accurate.D. Szalatnay: In case of photographs of leaves or flowers in the field, it is important to include a reference measure in the photograph.Rafael Socias i Company presented the results of the EU-funded AGRI GEN RES 870/2004 project on \"Safeguard of hazelnut and almond genetic resources: from traditional uses to novel agro industrial opportunities\" (SAFENUT, http://www.safenut.net/).Work Package 5 is about the definition of the European almond core collection. Almond was found to have very high variability in blooming time, which depends on temperature conditions. Almond quality is defined by protein, oil content, oleic/linolenic acid ratios and tocoferol content. Dendrograms of genetic diversity were obtained, taking not only the kernel composition into account, but also molecular markers. Photographs were taken of all the accessions. Discussion R. Socias i Company: Bitter almonds are not maintained in the collection, since they are not considered interesting. It is only one recessive gene that determines bitterness.Emilia Caboni was unable to attend the meeting, but sent a PowerPoint presentation, which is posted on the WG Web site.Only Latvia sent a contribution for the next issue of the Prunus Newsletter. It was therefore proposed that the information presented during the current meeting be compiled in the Prunus Newsletter. Workplan 12. Abstracts of presentations made during the meeting or full articles will be sent to D. Benediková by 15 December 2010 to be included in an electronic Newsletter that will be compiled by D. Benediková. WG members who did not attend the meeting are also welcome to send their contributions about national activities on Prunus genetic resources.M. Lateur presented the philosophy and objectives of the FruitBreedomics project that was recently approved for funding under the European Commission (EC) Seventh Framework Programme for Research.L. Maggioni reported on the evaluation received from the EC regarding the EUROGENEBANK project, for which a request for funding the implementation of AEGIS had been submitted in December 2009 to the EC Seventh Framework Programme for Research. The evaluation was generally positive (score 11.5/15) and passed the threshold, but did not reach a sufficiently high score to be funded. The limitations of the proposal, according to the evaluators, were reported.Calls for proposals related to plant genetic resources that were launched as part of the EC 2011 Work Programmes were mentioned. Full details are available at http://cordis.europa.eu/fp7/home_en.html.M. Lateur pointed out that the INTEREG IVC programme (http://www.interreg4c.net/) could be explored for re-submitting the proposal for implementation of AEGIS.Proposed points of the workplan were presented for preliminary discussion so that they could be finalized before the end of the meeting (see below).S.H. Hjeltnes: Considering the proposal, how can the quality standards be applied to trees maintained on-farm, such as the private collections that participate in national conservation networks?Accessions that would be part of AEGIS need to respect the standards.Guidelines should be developed for on-farm conservation and allowing evolution to continue. The Group however could not identify at the moment any volunteers to work on these aspects. This initiative, as well as the possibility of organizing an ad hoc meeting with key stakeholders and representatives of the In situ and On-farm Conservation Network can be considered for ECPGR's next phase.The WG split into three separate groups to discuss specific items. The results of the discussions are reported below.Chaired by E. Balsemin. Participants: Kristiina Antonius, Eva-Maria Gantar, Inger Hjalmarsson, Stein Harald Hjeltnes, Rajmonda Sevo, Rafael Socias i Company, Sandor Szügyi, Selim Tokmak.The group started the discussion on the basis of the minimum standards for Prunus conservation that were proposed by the AEGIS Prunus sub-group in 2008.The following suggestions/precisions were given complementary to the proposal made in 2008:• Minimum passport data required for the selection of MAAs for AEGIS Mandatory: ACCENUMB, ACCENAME, INSTCODE, NICODE, GENUS, SPECIES, ORIGCTY (but not to be confused with the country of the donor; if not known, it should be left blank) Recommended: ACQDATE, DONORCODE, DONORDESCR, DONORNUMB, OTHERNUMB, BREDCODE, BREDDESCR Other recommended: -IDENTIF (using a standardized method) -VIRUSTATUS and VIRUSDATE (descriptors to be revised) -SAMPSTAT -STORAGE (but need to revise EURISCO descriptor; e.g. it is not possible to indicate that an accession is stored both in the field and in the greenhouse).• Minimum passport data for a given accession that is received/acquired Recommended to the donor or the collector: ACCENAME, GENUS, SPECIES, DONORCODE or DONORDESCR, DONORNUMB, ORIGCTY, and other passport data known to the donor/collector Mandatory for the genebank (for an accession that is registered in the genebank documentation system): ACCENUMB, INSTCODE, DONORCODE or DONORDESCR (if accession is received from a donor institute), and GENUS (if not previously mentioned by the donor/collector) Recommended to the genebank: ORIGCTY (but not to be confused with the country of the donor; if not known, it should be left blank).• When an accession is dispatched, it should be accompanied by a label with minimum passport data, as follows:Mandatory: NICODE (only for transfers from the National Inventory to EURISCO), INSTCODE, ACCENUMB and GENUS, because all are mandatory descriptors for EURISCO Recommended: ACCENAME, SPECIES, ORIGCTY (if known).• A set of minimum Prunus characterization data should be agreed by the WG (also useful for selection of MAAs for AEGIS), including both phenotypic and perhaps genotypic data and photographs of the fruit, if possible. This list is still to be discussed (see further, \"Phenotypic and molecular characterization\" session).• Regarding the possible addition of other Prunus-specific standards as new elements to complete the whole process, it was considered that elements of management of a Prunus genebank such as managing human resources, ensuring physical security and ensuring security of equipment are not Prunus-specific. On the other hand, data management and traceability require the following standards:-Traceability of information for each individual, from the initial grafting to death; -Registration of data into dedicated files or databases.It is also important to use a standard methodology to verify accession identity. The WG will need to develop this methodology.Additional elements of the Prunus-specific standards need to be included, keeping in mind that other propagation techniques beside grafting are used:-Propagation/re-propagation: use virus-tested compatible rootstocks (only if grafting is necessary); -Distribution: maintain a record of the transaction.Additional elements of the Prunus-specific standards may have to be included, keeping in mind other conservation methods:-Seed collections: only for conservation of rootstock seed, but these are not part of a genebank activity (not to be included in the Prunus AQUAS); -In vitro culture collections: in vitro experts would need to develop these standards; -Cryopreserved collections: as the techniques are not well developed for Prunus, it is too early to include any standard in the Prunus AQUAS; -Add greenhouse/screenhouse collection standards.Regarding the draft version (v.8) of the template for the preparation of a genebank operational manual provided by the ECPGR Secretariat, it was recommended that a section on conservation in greenhouse/screenhouse be added. It was also suggested that the existing operation manual prepared by the Corvallis USDA genebank be used as a basis as it includes screenhouse operations.species will be prepared by E. Balsemin and circulated to the Group for final approval by November 2010. 14. A document summarizing all the proposed Prunus-specific standards will be prepared by E. Balsemin and circulated to the Group for final approval by June 2011.Chaired by Daniela Benediková. Participants: Mihai Botu, Edite Kaufmane, Miroslav Cizmovic, Metka Hudina and Torben Toldam-Andersen.Safety-duplication is considered very important. Many countries organize it in the field and greenhouse (in vivo); only a few countries organize it in vitro (Italy and Estonia at the experimental stage). In vitro safety-duplication is considered expensive and problematic for the slow regeneration of the entire plant. The protocols are also very crop-and varietyspecific. In vivo safety-duplication is preferred, with 2-3 trees per accession in 2 places. The need to prepare protocols for in vitro conservation was also discussed.and circulate it to the Group for approval.Chaired by M. Lateur. Participants: Felicidad Fernández (Rapporteur), Daniela Giovannini, David Szlalatnay, Henryk Flachowsky, Hedi Kalmäe, Larisa Gustavsson, Petra Engel and Pakeza Drkenda.As an introduction to the specific work of characterization and evaluation of genetic resource collections, M. Lateur presented some general methodological aspects of the work.To start with, \"characterization\" work, which is of most specific importance for the identification of the material, should be differentiated from the \"evaluation\", which is of tremendous importance for the further potential use of the material. Characterization deals with the most stable and the less environmentally influenced traits. Therefore the characterization work can be carried out during a limited period of time with data collected during at least 3 representative years. Concerning the evaluation work, the methods used, the orchard management conditions and specific methodologies need to be properly defined; duration or number of years needed for a proper evaluation work depends on, for example, priorities defined by the curators, available budgets, available competent staff, orchard management systems, representative years. Evaluation is a dynamic process that needs to be properly planned to obtain logical series of data that can be finally analysed. For the evaluation, an average of 5-6 representative years would be optimal with a strict minimum of 3 good representative years.The task of curators is to implement a good primary evaluation that can be defined as a first screening using standardized protocols, but with a very simple experimental design because the very large number of accessions allows only a few replications. This work should take place in a homogeneous environment to enable comparison of accessions in the same conditions. This primary evaluation could later on be followed by a secondary evaluation applied to a subset of the collection, using a proper experimental design with the aim of confirming and increasing the accuracy of the first screening data. Some basic recommendations were given for disease evaluation as it is quite specific work requiring plots that are not sprayed at all. A sufficient level of knowledge must be acquired on the pathology of the disease and its cycles, as well as good diagnosis expertise and good knowledge of the specific expressions of the symptoms. This will help to identify the proper time for evaluation and to retain years with sufficient pressure and with a representative diversity of pathotypes. There should be sufficient uniformity of disease pressure inside the orchards and sufficient presence of representative controls.Good assessment scales are also required. The first priority should be assessment scales that follow the global approach reflecting disease intensity (intensity = incidence + severity components) instead of separating the \"incidence\" and \"severity\" components.The descriptor list itself is less important than the need to have relative disease susceptibility values for each accession in order to rank them for this specific trait.The importance of validating the quality of data by checking their replicability was also pointed out.One suggestion was to wait until a sufficient number of representative evaluation data were accumulated (at least 3-6 representative evaluation years) before analysing the data and summarizing the interpreted results. These results would eventually be sent to the Central Crop Database as an \"end product\" rather than \"raw material\".It is important to specify the material and methods used, the identification of each tree, the number of replicates, the number of evaluation years, the yearly mean susceptibility scores observed in a specific plot in order to determine some quality parameters of the data itself. To define minimum statistical parameters such as mean values, standard deviation, maximum value and minimum value, observed data should be collected over several years. Control cultivars for those traits should be included.It was considered very important to use as far as possible the existing descriptors, which have already been defined by the Prunus WG. As the domain of genetic diversity considered is much larger than that covered by the International Union for the Protection of New Varieties of Plants (UPOV), it was approved that the scales at the bottom and at the top be opened, when needed, by using the term \"extremely\", signifying \"more than what we currently have or know\". A good description of the methodology used was deemed very important for obtaining the scores of the descriptor. Reference cultivars should cover a wide range, so that they can be suitable for all locations in Europe where the experiments will be conducted.A first set of primary descriptors should be defined, and then other series will follow. A proposal will also be made to prioritize within the set of priority descriptors.The scales will be harmonized by using 1-9 scales as far as possible and when reasonably feasible. For descriptors dealing with colours, the Group decided to refer to colour charts and to reference cultivars.The Group was deeply impressed by the quality of the descriptor lists for cherry, plum, apple and pear developed by D. Szalatnay from Switzerland, using very good quality diagrams and photographs to illustrate a large number of descriptors. These descriptor lists were considered a reference document that could be used for many descriptors. This document may possibly be translated under the umbrella of ECPGR, but no formal decision was taken. No.No.No.No.No. No.No.No.No.No. ","tokenCount":"7781"} \ No newline at end of file diff --git a/data/part_3/8922373747.json b/data/part_3/8922373747.json new file mode 100644 index 0000000000000000000000000000000000000000..02a4669986f9f0d640602870861a43fbe12c8c62 --- /dev/null +++ b/data/part_3/8922373747.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"da9fa4a49f81236a3b73869e490cf19f","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/d7da3a7e-b797-410b-8411-dd879b18ccf2/retrieve","id":"1716810616"},"keywords":[],"sieverID":"f47fe259-c763-41aa-a21b-ad2bfbdfa8f1","pagecount":"1","content":"• Smallholder dairy contributes the largest proportion of milk in Tanzania. • Farmers do not have access to productive and adapted seedstock that best suit their production systems • Access to information to enable farmers extract optimum benefits from their livestock enterprises is limited • There is no systematic and sustainable selection and breeding program for dairy cattle • Artificial insemination is used to deliver exotic genetics but is not accessible to all neither is it supported by empirical data and feedback systems. • A nationally harmonized animal identification system is in place but is not widely implemented. Breeding programs that deliver improved genetics that are adaptable to the local environments and smallholder management systems are possible and sustainable when supported by: digital tools for data capture, integration of genomic analyses, enhanced capacity of national partners and participation of private and public sector actors.","tokenCount":"144"} \ No newline at end of file diff --git a/data/part_3/8932970752.json b/data/part_3/8932970752.json new file mode 100644 index 0000000000000000000000000000000000000000..9555b00506d77c992cefb4729cbec75fead28b5c --- /dev/null +++ b/data/part_3/8932970752.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"9adc561a41838e8086b2d563e78e9cf2","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/c57ea2bb-a397-41e8-a2ca-fe7145340a88/retrieve","id":"1278870993"},"keywords":[],"sieverID":"7e9e7fa4-4f97-4ec2-b628-087a12f1a76b","pagecount":"10","content":"Digitalization of agriculture (DA) has emerged as a powerful rural transformative force. However, the dynamics of how digitalization is changing smallholder farming practices at the heart of rural life remain underexplored. Here, we employ a mixed-method approach (1565 survey respondents, 16 focus group discussions, and 22 interviews) to examine farmers' experiences with digital agriculture services in Northern Ghana through a social practice theory (SPT) lens. We found that farmers perceive digitalization as transitioning their everyday activities across the farming spectrum, including decisions and activities related to season planning, planting, husbandry, harvesting, post-harvest management, and sales. Notably, 1) new materials of phones and digital platforms redefine farmers' knowledge and competencies, ultimately 2) temporary re-patterning their routines and rhythms. Therefore, we argue that, beyond the contested claims of digital transformations, a pertinent dimension of DA and rural social change is the transitions in the everyday practices of farmers and rural living. Our paper, as we know, is among the early attempts to theoretically and empirically examine agriculture digitalization through an explicit practice lens, and more so in the context of African smallholder systems. We contribute to the scholarship on DA and rural change by (re)framing the dynamics of the phenomenon through everyday practices. By this approach we aim to steer the DA discourse and policy from the optimistic rural transformations towards the often-overlooked yet critical gradual changes and transitions in the day-to-day life of farmers.Technological innovations, including digitalization, are transforming society in many domains (Duncan et al., 2021;Hilbert, 2022). In particular, digitalization of agriculture (DA) is presented as a pathway to transformation-radical and mostly structural change-in food systems and rural landscapes (Atanga, 2020). However, despite growing interest and research on the impacts of digitalization on agriculture (Carolan, 2020a;Fielke et al., 2022;Klerkx et al., 2019) and rural lives (Lin et al., 2016;Rolandi et al., 2021), further exploration is needed to appreciate the heterogeneous changes and transitions-gradual, pervasive shift from one condition to something different (Hinrichs, 2014)-in farmer's day to day life across different rural landscapes (Abdulai, 2022b). Because, many empirical and theoretical questions remain on the social dynamics of agricultural digitalization, especially in smallholder systems. For example, 1) how do rural smallholders perceive and experience changes in their farming activities through engagements with DA? And 2) through which mechanism(s) do DA cause change to smallholder living at the basic level? We use the social practice' approach -dynamics in the unfolding constellations of everyday actions and activities (Reckwitz, 2002;Schatzki, 2002)-to explore these questions in the context of DA use cases in Northen Ghana. It is documented that previous technological breakthroughs disrupted and transformed farming activities, such as the automation of previously manual tasks and creation of new life forms (Bear and Holloway, 2015). Consequently, emerging digital tools, such as robots, drones, mobile Abbreviations: DA, Digital agriculture; AI, Artificial Intelligence; GSMA, Global System for Mobile Communications Association; FAO, Food and Agriculture Organization of the United Nations. phones, and AI, are following suit in changing farming activities (Carolan, 2017b(Carolan, , 2020a;;Holloway and Bear, 2017;Vasconez et al., 2019). Yet, there is a little attempt in the literature to understand how digital innovations alter the day to day practices of farmers , especially in rural smallholder systems.Meanwhile, digitalization efforts have become mainstay interventions in rural smallholder agriculture. The Digital technologies in agriculture and rural areas -Status report (FAO, 2019) emphasized the growing application of mobile advisories, satellite imagery, blockchains, and drones in many aspects of rural activities. Two reports released by GIZ and partners in 2021 (Deutsche Gesellschaft für Internationale Zusammenarbeit et al., 2021) also furthered observations of DA embeddement in and changing rural activities in Africa. These, together with similar reports (GSMA, 2020;Kim et al., 2020) all speak to the emergence of new transformative technologies rapidly penetrating and changing the fibre of farming and rural communities. In smallholder system in particular, digital services, defined as the leveraging of digital tools, hardware, and software, to create services that aid agriculture activities and processes, are at the heart of this transformation. Meanwhile, mobile advisories that digitally deliver information on topics such as weather and market prices to farmers' mobile phones is the commonest of such services in sub-Sahara Africa (GSMA, 2020). Whether these technologies would become truly transformative is still in question, but we do know they are already altering the dynamics of smallholders (Fabregas et al., 2019;Tsan et al., 2019). Thus, rural scholars must explore how such alterations are manifesting across geographies. Notably, the need for social theoretical explanations of the mechanisms of change underscores the essence of rural scholars' engagements on the subject.This paper contributes to a nascent work on agricultural digitalization and rural (social) change (Carolan, 2020b;Rotz et al., 2019) through a social practice exploration. We draw on smallholders' experiences with mobile-based agronomic, climate information and market connection services to show how digitalization introduces new competencies in digital materialities and temporarily reorganize routines. We show that digitalization's discoureses need to move beyond transformation to pay attention to changes to social practices. The paper proceeds as follows.In the next section, we review literature on digitalization and rural change to show the growing interest in the subject. We then introduce social practice as a candidate theory to further scholars' engagement with digitalization. The materials and methods section outlines our study area, cases and the activities of our mixed-method approach while reflecting on our data analysis and limitations. Our results and findings are presented through farmer perceptions and experiences with digital information and services. The discussion draws out the mechanism(s) of agriculture digitalization-induced rural change through new materialities, competencies and routines. We end with a conclusion and reflection on our work's novel practical and theoretical contributions, and highlight areas for further research.Social science perspectives on agricultural digitalization are growing, primarily intorragating their socio-cultural implications (see, for example; Carolan, 2017aCarolan, , 2020b;;Rotz et al., 2019). According to Klerkx et al. (2019), the social science research on digitalization converges around five key area; 1) On-farm adoption, uses and adaptation of digital technologies; 2) Effects of digitalization on farmer identity, farmer skills, and farm work; 3) Power, ownership, privacy and ethics in digitalizing agriculture; 4) Digitalization and agricultural knowledge and in-novation systems, and 5) Economics and management of DA. These and many more on the social implications of DA have been thoroughly explored in the existing literature and in this journal (see, for examples, Alam et al., 2018;Carolan, 2020c;Fraser, 2021;Lin et al., 2016;Rotz et al., 2019). These papers, thoughprimarily reflect the Global North's experiences, lay the foundations on the interrogating interactions of DA in rural spaces. However, our interest in this literature is understanding how digitalization shapes performances and social life in the often-neglected spaces of rural smallholder Africa.The lituruture is emphatic that digitalization is already changing farming, rural dynamics and subjectivities in myriad ways (Carolan, 2020b;Holloway and Bear, 2017;Sam and Grobbelaar, 2021;Vasconez et al., 2019). For example, automated systems such as robots and drones drastically alters the basic activities humans and 'other things' do in farming spaces. This change involves the shifts from hands-on farming practices to data-driven and/or (semi)autonomous (Carolan, 2017a;Driessen and Heutinck, 2015;Holloway and Bear, 2017;Rotz et al., 2019). Historically, robots have been successfully employed in agriculture to undertake the repetitive task to reduce workloads, reduce stress, optimize processes, cost and efficiencies in areas such as land preparation, irrigation, milking, and harvesting (Carolan, 2020b;Vasconez et al., 2019). These processes not only (re)produce human-robot interactions but also alter farming's very 'performances'. Likewise, these tools 'discipline' farmers' work routines in specific ways (Carolan, 2020a), including making farming operations more predictable and streamlined along preset ways (Wittman et al., 2020). Meanwhile, these tools results in collecting big data, increasingly converging with earlier mechanical tools and biological materials-substances in living organisms-to reshape labour dynamics in farming (Ajates, 2022).However, as Sam and Grobbelaar (2021) note in their review of the current field, there is still limited research on the changing farmer routines emanating from digitalization -some exceptions being Abdulai (2022b); Lin et al. (2016). Meanwhile, different tools and services would engender variegated and heterogeneous changes across systems, scales, and geographies. For example, while robotics could make farming less hands-on, mobile advisories may reduce time spent on the farm without necessarily providing similar labour-shedding dynamics. Similarly, the effects of different digital tools will differ through place-based socio-economic and cultural dynamics dictates.In smallholder systems, for example, digitalization, including mobile advisories and market platforms are reportedly helping farmers 'upgrade' the way they farm (Kliemann, 2020) in ways which may alter their routines. Salkovic et al. (2015) showed in the case of Ghana that the use of Esoko call and SMS-based weather and market price platform influenced rural culture and how 'interpersonal communications and relationships are enacted, experienced, performed, and even maintained\" (p.1). One way to understand these changing dynamics is exploring the constitution of everyday life of farming (cfMcMillan, 2017;Schatzki, 2002). Hence, we use conceptions of 'practices of farming' (see next section) to invests in these issues by assessing the digitalization-induced changes to smallholders performances of farming practices.Social practices (or practices) may offer an understanding how digitalization alters agriculture's dynamics in smallholder cultures. Without a unified definition, practices are the unfolding of constellations of everyday activities (Feldman and Worline, 2016). According to Reckwitz (2002, p. 256), practices are the \"routinized way in which bodies are moved, objects are handled, subjects are treated, things are described, and the world is understood.\" Practices \"appear at different locales and times and are carried out by different bodies/minds\" (p.250). Practices entail the everyday temporary assemblages of acts filling space and time. Thus, practices involve sets, nexus, or an array of human activities. This description is concisely captured in the many works of Theodora Schatzki (e.g. Schatzki, 1996;20012002, 2013, 2019), where practices are described as 'open-ended spatial-temporal manifolds of actions' (2005, p. 77) manifested in sayings and doings spread out over objective space and time (Schatzki, 2019).In setting out this definition of practices, Schatzki (1996) distinguishes between 'integrative' and dispersed practices. Dispersed practices are the generic doings and sayings in everyday life. Examples of such practices include 'describing, explaining, questioning, and imagining' (Schatzki, 1996: p.91). Integrated practices -'complex practices found in and constitutive of particular domains of social life (1996, p. 98)-have been the focus of the concept throughout the millennium, examples which include farming, cooking, and business practices. In Sustainable Practices, Warde, 2013 explained eating as an interconnected and compound practice. Specifically, eating is at the intersection of several integrative practices, including nutrition, cooking, the organization of meal occasions, and aesthetic judgments of taste. Shove et al. (2012) described this integration as bundles of practices, which are interrelated aspects or activities that make up our daily lives. \"For example, through being co-located in a kitchen, an office or some other spatial or temporal 'container' -in these cases, practices have a separate existence, the only shared aspect being that of time and/or space\" (Pantzar and Shove, 2010, p. 12) but can also share materials if 'things' are considered at non-element parts of practices.Following the descriptions of practices, we are interested in how digital technologies cause social change. We draw on the descriptions on ICTs and social change through practices (Abdulai, 2022b;Lin et al., 2016;Ropke and Christensen, 2013;Schatzki, 2019). In situating materiality in practice, Schatzki draws our attention to how WELL online community integrated into its users' everyday lives to enable new practices, new forms and means of interaction. The introduction of the new materials in ICTs bounded into other bundles they participated in at work, at home, or in their free time to create new forms of socializing (Schatzki, 2019). As Ropke and Christensen (2013) posited, integrating digital technologies into everyday activities softens time and space constraints by changing what, where, and how people undertake specific actions and the time used. For instance, the introduction of smartphones and the internet allows people to combine practices of reading news and other activities, such as waiting to board a bus (Ropke and Christensen, 2013).Building on these conceptions of practices and digital materialities, we conceive practices in multiple folds. First, we contend that social life is constituted by arrangements of practices; therefore, every activity is either a practice or a constituent of a practice (Schatzki, 2019). In this sense, farming is a practice. The constituent processes of planning, planting, husbandry, harvesting, and marketing/sale are sub-practices and activities that bundle into an 'integrated farming practice'. Hence, any change in how (and what, where, when) of any of these sub-practices or their formational activities is broadly an alteration to the basic unit of social life. Second, following Shove et al. (2012) work, andAbdulai's (2022b) conception of digitalization in smallholder systems, (digital) farming is a practice that comes together through the integration of material stuff of life, knowhow, understandings and knowledge and symbolic aspirations (see Abdulai, 2022b). In that case, digital tools, services, and software are new materials in the fibre of farming, which alter how other elements are brought together over time and space in performances. Thirdly, practices entail patterning daily lives and how actions and activities are arranged to fill the time vacuum (Southerton, 2020). Following these three conceptual aspects to practices, we are interested in how the introduction of digital services affects the performance of farming and/or the constituent actions. We are also interested in how DA alters the key elements in practices, as well as the temporal re-organization of farming and rural spaces.We employed a mixed-method approach (Clark and Ivankova, 2015;Creswell and Creswell, 2017), simultaneously combining (see Morse, 2010) surveys (from July to September 2021), interviews and focus group discussions (February to October 2021) to explore changing practices within three use cases of digital solutions in Northern Ghana-Esoko, Farmradio and Agrocenta (See Fig. 1 and Table 1). The cases were selected because of being most widely used of the different types digital services in the region. The focus on services delivered through mobile was also infomed by it being the commonest form of DA usage among smallholder in Africa (see Tsan et al., 2019;Abdulai, 2023). The use of mixed methods to explore practices was further informed by Sargant (2014) practiced-based approach to sustainable consumption.Northern Ghana has a strong rural agricultural system that draws the interest of researchers (see Nyantakyi-Frimpong and Bezner Kerr, 2017;Vercillo and Hird-Younger, 2019). The region is home to many developmental NGOs and programs that offer farmers experiences with pro-poor interventions in agriculture, including the diverse digital agricultural innovations (see Etwire et al., 2017;Hidrobo et al., 2021 for examples). These characteristics make the setting an excellent socio-technical environment for understanding digitalization's social interactions.To collect data in this region we followed the cultural ethos of the area, including prior information and announcements before visits through chiefs and religious leaders and paying homage to chiefs with colanut. These procedures were in line with ethics approval granted by the University of Guelph Research Ethics Board. All research activities were in Dagbani and Mumpruli, the local languages in the area-and conducted or supervised by the lead author.The data collection was pragmatic in approach as we relied mainly on experiences in the field to inform the methods and timeline of activities. We started with prilimenary interviews and a few focus group discussions. After a few months of qualitative data, insights and key themes on farming change were built into the survey that examined farmers' perceptions and experiences. For example, our preliminary data showed that farmers viewed digitalization in relation to the services and changes perceived changes relative to specific aspects of activities. So the survey included a section to assess the percentages of farmaers that experienced changes in planning, husbandry, marketing and so on (see results). The data collection then ended with additional interviews and focus group discussions that allowed us to follow up and clarify higher level insights from the surveys. . Below we outline the details of each method.We administered a survey to assess engagement with DA, experiences and perceptions. Following prior works on a survey of rural smallholders in Africa (for example, Baiyegunhi et al., 2018;Kansanga et al., 2018), we surveyed 1565 farmers across four districts in the Northern region -Savelugu, Nantong, Kumbungu, and Sagnarigubetween May to August 2021.A multistage sampling method was used for participating smallholder farmer selection. First, four districts were selected due to their proximity to the regional capital, Tamale Metropolis. Their closeness to the regional capital makes them accessible to the many NGOs that operate from the city and provide services to rural smallholders. Secondly, 28 communities were selected through a simple random sampling from a pool of communities compiled through preliminary field activities. Finally, we used a systematic sampling technique to choose participating households. Every other third house selection criteria was used within communities after field assistants were assigned to segments in communities (Kansanga et al., 2018). Enumerators had to skip two houses after each survey before selecting another household. The survey participants were randomly chosen at their homes based on availability at the time of data collection and a set pattern of the first household in the house or third household if there were more than three households in a house. The household heads were the primary target, but in the absence of the household head, the wife or other senior household members were surveyed.The data were collected digitally through kobo toolbox with the help of twenty-five trained research assistants. Regarding design, questionnaires included open-and closed-ended questions (Nardi, 2018). The survey focused on understanding respondents' characteristics, perceptions of the impacts of DA, challenges, and adoption. Our choice of the survey was because of € ability to reach large number of participants and capture a broad scope of a phenomenon while enhancing the validity of study findings (Moser et al., 2017).We adopted face-to-face interviews to assess the changes individuals using digital services experience. Specifically, semi-structured interviews were used, allowing the researcher to seek clarification (McIntosh and Morse, 2015;Paine, 2015). Twenty-two (22) farmers were interviewed through purposive sampling in relation to leadership and connection with digital services. The farmers selected were mainly key informants as they served as lead farmers or group leaders in particular digitalization interventions. In an attempt to ensure we cover the diversity of smallholder agriculture, interviews included farmers with different systems (see supplementary material-Table 2.Generally, the number of farmers interviewed was also based on the availability of participants at the time of visits, scheduling, and willingness to participate. Hence, following Barrett and Rose (2020), the sampling was based on 'an achievable and pragmatic number feasible within the time and circumstances of the research.' Each interview lasted between 30 min and 90 min. A semi-structured interview guide was employed for all participants, with variations for each group of respondents. All questions were open-ended, allowing us to explore the topics of interest (Rowley, 2012). Topics were from the nature of engagement with digital tools to the changes experienced by farmers. Interviews occasionally moved away from the guided questions to explore broader issues affecting farmers in the area, including access to inputs. All discussions were audio-recorded and with extensive notes also taken with a tablet. Interviews took place in different locations, including offices for officials, homes, farms, and community centres for farmers and were all conducted by the lead author. We conducted sixteen focus group discussions across thirteen communities to assess how digitalization changes practices in their communities. These involved interaction between the lead researcher and six to twelve purposefully selected informants (Carey et al., 2016;Krueger, 2014;Stewart and Shamdasani, 2014). To capture the diversity in smallholder groups, we conducted 14 mixed groups, one male-only and one female-only. Mixed groups were conducted in communities where females felt free to speak in the presence of males. The mixed groups were majority male dominated (8 groups), while six were balanced with equal numbers between men and women. Participants were different in most focus groups, except in the one community of the female-only focus where three of the participants also participated in the mixed group. However, having participants speak freely when brought together was still an issue, especially for women, which may undermine gendered nuances in the results-but individualized interviews and the sex-specific focus group discussion would have minimized this concern. Discussions took place at locations desired by participants, mainly at community centres, the chief's house, the home of a lead farmer, or communal seating places.The focused group discussions, guided by a guide, covered smallholder experiences of changes in their communities. The guide, included prompts on agricultural transformation issues, motivations of engagement with digital tools, experiences with services, impacts, challenges, and expectations.For analysis, the survey data were exported from Kobo Toolbox into XLS and CSV files and later into SPSS and R-Statistics to create relevant tables and statistics. For interviews and focus group data, thematic and content analysis were used. That process involved recording, listening, coding and analysis. First, we renamed the interview and focus group files based on their number in the recording and corresponding case. For example, the first interview we undertook was renamed F1-A, where F refers to Farmer and A, meaning the respondent spoke about Agrocenta(A). F5-E means the respondent was a farmer participant for Essoko(E). The same approach was used to rename the focus group discussions. The first focus group was FG-1-A, which was conducted with beneficiaries of Agrocenta (A). We then uploaded the files to Nvivo for audio coding at the first stage. The lead author and research assistant independently listened to the files and coded them based on predetermined and emergent themes. Each coder transcribed the resulting translated quotations and stories corresponding to the identified themes. The lead author corroborated these themes after the audios were fully transcribed in Expres Scribe before thematic and content analysis. We described what was said to ensure content stayed close to respo'dents' words, which adds validity to qualitative information. However, we also acknowledge that translations may have affected the quality of extracts.Before we present the results and further discussions, we must further clarify some issues readers must be mindful. First, the respondents' across the methods were predominantly male. Because the cultural setting of the area makes for majority male household heads, the current poor targeting by digital interventions turns to exclude female in registrations (Abdulai et al. 2023;Tsan et al, 2019;). This situation may obscure the nuances women's experiences could have enriched our discussions. However, some of the generic experiences discussed included both sexes, making the results generazable. Second, snapshotting farming in time potentially debarred changes experienced in other seasons. This limitation certainly has theoretical implications because practices are temporal (Pantzar and Shove, 2010;Schatzki, 2013). Finally, our data is based on specific cases of digital services and their interactions with practices within the research settings. But we appreciate that digitalization is broader than the case covered and practices are contextual (McMillan, 2017); hence the data must be interpreted within this theoretical assumption-without necessarily undermining the broader insights.We assessed farmers' perceptions on digitalization impacts on rural livelihood activities and farming practices. Off 1271 that responded to the perception questions, as expected, the majority (72.15% and 83.2%) affirmed digitalization changed livelihoods and farming practices, respectively. Those that perceived digitalization as changing livelihood referenced the many impacts experienced in their interaction, as we expand later sections. Surprisingly, about 6.1% and 4.6% did not believe services altered their livelihoods or farming practices, and 21.72%,12.3% respectively were unsure. Considering the apparent effects of these services (as a reviewer pointed out), we attribute the lingering uncertainties to skepticism on the part of some farmers, low engagement due to low literacy and other barriers (Abdulai et al. forthcoming), and a general lack of understanding by some farmers on what impacts may be attributed to the services.Chi-square analysis at a 95% confidence level showed farmers' perceptions of livelihood changes from digital services varied significantly across districts (P < 0.001) and sex (P = 0.030), while perceptions of farming practice changes were significant across sex (P < 0.001), age (P = 0.008); and districts (P < 0.001) (see Supplementary materials-Table 3). Farmers in Nantong and female farmers were likelier to perceive that digitalization changes livelihoods in rural communities. However, farmers in the Sagnarigu District (89.9%), male (89.7%) and 60+ years farmers (89.7%) were likely to attribute digital services to changing farming (see Table 3,Supplemtary materials). The reasons for such variations were unclear at the time of the research, and must be explored further.Despite some variations in perceptions among groups, farmers generally believed that changes to farming practices. Because rural livelihood activities are primarily connected to agriculture, such as agrifood trade and the sale of labour time on farms, farmers perceived any changes to farming practices as reflective of collective social dynamics.Using the three use cases outlined in Table 1, we explored the changes experienced by farmers in their interaction with four types of digital services: digital agronomic advice; weather information; market/ price information; and market connections. Farmers viewed digitalization as the services provided rather than just the technologies; \"we know there are new methods to reach us with all the phones and things, but I think for us here it's about the knowledge we get, and you the new things [services] they do for us in the community. Because many of us didn't go to school, we cannot use technologies but benefit from the information\" (F4-F). Hence, farmers constantly referred to receiving information through the phone as the anchor to engaging with the world of digitalization. Smallholders are, therefore, currently interested in the services and less about knowing the technologies behind those services. Nonetheless, farmers were still particular about how the new technologies, particularly phones, and the information received affects their longstanding practices (Table 2).Farmers viewed the delivery of agronomic advice through innovative digital-enhanced radio programmings, 1 SMS and calls as integral to how they farm. Mobile agronomic advice was critical to what, when and how to plant and careed for farms. At a focus group discussion on Farm Radio programming, a participant noted that:\"our prayers have brought you people here …. serious, we have been looking to talk to Farm radio again. What Farm radio did in this community with the radio programme, you know they talked to some of us, we called in too, we did many things with them, but everyone in this community really can say they changed how we farmed. We didn't know you could plant rice in rows, but we followed the programs, and they reminded us on the phone, now everyday plant that way. And then the fertilizer thing and how to take care of our crops, I do, and I think other people here will tell you, we follow what they say, and farming has never been the same since they came. ….\" FG7-F.Farmers emphasized how the digital delivery of agronomic information has allowed them to introduce newly cultivated rice in the community. Others switched crops in some seasons based on their interactive radio programming and calling to ask the experts. The ability of digital information to open them to knowledge quickly was crucial in farmers deciding on what they do on their farms throughout the season and how. Reaching agronomic information faster also meant that they could respond to emergent issues quickly and in varied ways, as a lead farmer also noted: \"because I easily connect to them when the fall armyworm came, and we didn't know what to do, we called, they provided directions, but people were also able to learn from the radio and engage in finding solutions to their unique farm issues\" F4-F.Weather and climate information was a common form of digitalization with apparent routine altering potentials. Farm radio and Esoko services incorporated climate and weather information via SMS, phone calls, and radio. A respondent who actively received both services talked about how it informed the family's farming activities: …. . They tell me the forecast, so I plan my planting and spray based on it. Before that, we just spray; sometimes rain will wash it away, and your time and money go like that. It's different with Esoko … you know what? Even when we harvest groundnut and want to dry, I tell my wives that alerts and ensure they don't waste time bringing things out and rushing to store again because of unexpected rain. F4-F Specifically, we found this information to change planting, crop management and post-harvest activities. When farmers receive weather alerts, they apply the knowledge to inform farming activities rather than past uncertainties. This information thus allow them to plan and execute specific tasks based on weather predictions efficiently. Specifically, farmers plan when to plant, produce, spray, and undertake certain postharvest management activities, such as when to dry their crops and, for some, when to even travel to market centres. The mechanism of change is to digital innovations now enhancing radio programmings. We studied Farmradio ULIZA project, which combine radio, mobile phones and, often, IVR to enable listeners to communicate and exchange information with their radio station quickly, easily and free of charge (https://farmradio.org/uliza-services/ ).thus time use and efforts put into specific farming tasks. However, some respondents were also critical of these services, alluding to the oassional unreliability of the information which undermine their planning.Farmers employed market price alerts and connections to alter their marketing activities. Many farmers traditionally sell at low prices at nearby open markets due in part in to limited information. Others sell through intermediaries coming to communities to buy produce at their set, yet farmer-unfavourable, prices. However, knowing prices at different markets allowed farmers to make good decisions and \"choose where and when to go and sell\" (F8-E). Likewise, market price information influenced negotiation practices. Knowing prices beforehand, farmers' marketing strategies incorporates the added knowledge, as a 60 years old farmer described: \"when everything is good, then I am no more a blind farmer forced to sell; I decide when I want to go to the market …\" (F8-E). The added knowledge advantage creates new modalities of farmers' interaction with other value chain actors like middlemen and wholesalers. However, as in the case of F8-E, she referred to when everything is good, meaning the ability for marketing changes is circumstantial on poverty and emerging financial needs.We also found that new digital services that connect farmers to markers by buying produces also cause a different kind of change for smallholders. In a conversation with a young farmer participating digital-enabled market connection, he quickly pointed to diverse ways farming has changed in the last three years:Lead author: you have experienced this program for a while, so how has that changed your farming? F4-A: so many ways, I think it's freedom from hustling for the market. I concentrate on just farming.Lead author: can you shed light on freedom and concentration? What has notably changed in your routines? F4-A: I changed many things … at least, I haven't gone to the market centre for two years, at least not to sell my maize or sorghum. When I harvested in the past, I travelled several miles to market, sometimes many times. And sometimes, I don't even get buyers, and I carry the maize back. Think of the struggle. Things were different when they came and registered us, provided us inputs in the first year, and the agent continued to visit and advise us. I call him to come for what I have, don't go anywhere. They even pay me on my mobile money.. you know that's anything because now no fear of losing money in travels.. cash is secured. You see, these are all peace of mind … Throughout our interviews, farmers in market connection programs shared this sense of peace with the certainty of sales. Changes that come with that within farming activities or broader social life were considered instrumental in solving market and financial problems they faced. Farmers viewed changes to sourcing markets as time-saving and taskreducing. For example, the typical person will describe African rural farming as struggling to find buyers for produce after harvest. However, experiences with emerging digital markets solutions pointed to the shifting of this long-held belief as F4-A later added in our conversation, \"what is expected for us farmers is changing … and if these services become widespread, many people will sell through the program instead of travelling long distances to markets ….\". By concentrating on just activities on the farm, thse solution are offering pathways to changing farmer livelihood routines.We further assessed perceptions among those who had used digital services regarding seven non-exhaustiveareas of potential changes to farming activities (see Table 3 and supplementary materials). These areas were derived from the initial qualitative interviews and focus groups and built into the survey.Among all seven areas, season's planning was the highest change reported by farmers (91.1%), followed by modifications to harvesting (89.6%) and post-harvest management activities (85.8%). The intensity of experienced changes was partly attributed to the nature of the information provided and the applicability within specific periods of a farmers' season. For example, farmers indicated that service providers actively engage them at the start of the season, allowing them to use more information to inform planning for the season. Likewise, farmers' desperation to find markets after harvest meant they paid attention and applied digital information to their activities. The experiences showed that rural farmers are experiencing digitalization-induced changes from pre-to post-production activities. However, certain farmers were still adamant about whether these services resulted in any changes for them. Changes to everyday farm practices had the highest percentage of disagreement of change (10.2%), followed by decisions on the choice of crops (7.8%). These reported lack of changes and uncertainties reveal important yet surprising insights into farmers' engagement with these innovations. Low literacies, among many other challenges, still hinder some farmers from using the innovations, even if they are regularly provided with services (Abdulai et al. 2023). However, these require further investigations to understand the issues hindering services from impacting some farmers.The DA discourses among smallholders, though contested (Abdulai 2022c;Duncan et al., 2021), optimistically and uncritically anticipate transformational impacts (Atanga, 2020;FAO, 2019;An et al., 2021) at the macro structural levels, framed on anticipatory potentials rather than current lived realities. Such analysis, as Motta and Martín (2021) argue, has severe limitations for understanding how transformations take place in the individual's life course; because, they obscure the micro-level changes in daily rural life. Meanwhile, practice scholars (see Shove et al., 2012) have emphasized that analysis of individual everyday actions has unique nuances for social change and how phenomenon like digitalization could become established in society.The results show that digital information and services are reshaping farmers' long-held understandings of rural farming. Following Warde's description of eating as an interconnected and compound practice (Warde, 2013) and earlier works on bundles and constellations (Shove et al., 2012), farming shares similar attributes of being an integrated practice (Schatzki and Schatzki, 1996). It comprises constituent activities and sub-practices like planning, land preparation, planting, Farmers decide where and when to sell using market connection services. Burden of moving products taken from farmers to digital platforms.weeding, fertilizing, harvesting, husbandry activities, marketing, sales, and judgments of good agriculture, all of which our results points to digitalization-induced changes. Hence, we contend that farming is a social practice(s) (Reckwitz, 2002;Schatzki, 2019) is being transitioned into a new digital agriculture practice. This new DA practice is a digitally enabled farming. It differs from the older ways of smallholder farming through the new materials (digital tools and services) and competencies introduced into the everyday activities of farmers. And these changes, in turn, reflect in reshaping smallholder livelihoods and causing rural social change. Two main observations inform our argument: I) Digitalization is introducing new (digital) materiality that are altering understandings of farming, which ultimately is II) temporally re-patterning of rural farming routines. We expand these two observations in the next sections.The first mechanism that digitalization is changing the farming is introducing new material elements with competence-altering abilities into its processes. Though we do not wish to engage in the debates on materials and their agencies in practice (see, for example, Arcari, 2019;Schatzki, 2010Schatzki, , 2019;;Shove et al., 2012 for extensive discussions), we are interested in how digitalization through their material services reconstitutes the make-up and doings of farming activities. According to Schatzki (2019), \"veritable cascades of new and improved hardware and software ….., in conjunction with evolving and repeatedly upgraded electronic infrastructures, have made significant contributions to the emergence, development, persistence, and dissolution of social phenomena\" (p.19) Likewise, Abdulai (2022b), drawing from Shove et al. (2012) argue that the introduction of digital innovations represents new material stuff into the fibre agriculture, which are altering the constitution and performance of farming. Building on these positions, our results show that digital innovations are introducing new materials -phones, radio, and the information delivered through them-into what is generally required to do farming. However, our results extends that, materiality is beyond the physical hardware and the software, as it includes new informational elements by way of digital platforms and information services. The role of digital materiality is therefore evident in the new ways farmers undertake their activities by drawing on digital devices and information alerts. Also salient in these observations is how these material elements influence farmers' practical understandings and knowledge.It is well established that a critical element of social practices is understanding (Reckwitz, 2002;Schatzki, 2010;Shove et al., 2012;Warde, 2013) or what Shove and colleagues (2014;2012;2010) simplified as competence-skills, knowhow and techniques of action. The informational services affect knowhows among smallholders: most farmers confirmed that they used the advisories to inform activities such as when to go to the farm, when to plant, what crops to plant and undertaking marketing activities. Hence, these advisories (re)define the understanding of how to do various farming activities to follow the dictates of 'digital things,' moving them away from older methods, such as solely depending on experiences and guessing. Understandably, farmers perceived these changes as emergence of new knowledge that complements old ways of decision making. Considering that competencies are central to the formation and performance of practices, the injections of new understandings, and by extension, the consciousness of farming actions by digital mediums engenders different farming agencies. These knowledge changes confirm the claims that agencies and competencies are distributed between things and people (Latour, 2007;Reckwitz, 2002;Shove et al., 2012). Certainly, these developments raise questions on the autonomy and subjectivities of smallholder farmers with their actions increasingly dictated by the digital artifacts and the agencies they carry. These practice-altering mechanisms of mobile-based digital services enrich our understanding of how the digitalization is reshaping rural subjectivities (Rose and Chilvers, 2018) and, in the process, either strengthening and undermining certain rustic elements (Carolan, 2020a). These changes, as we will show in what follows, triggers new mechanisms of social change through the temporality and pace of rural rhythms.The second mechanism we observe in digitalization changing rural social life is the temporal re-patterning of farmers' activities. Practices are spatial-temporal because they entail assemblages of acts filling space and time (Schatzki et al., 2005(Schatzki et al., 2005;;Southerton, 2020). Practices and their constituent activities take place in or over time. Hence, how human activities are temporary organized is a central mechanisms of change (Southerton, 2020). Our results confirm Lin et al. (2016) observations of digital services shifting rural life to follow the rhythms of the information era: In our case, changes were evident in the amount of time spent on various activities and how different activities were patterned across the time vacuum. Digital services and solutions allow farmers to alter the frequency, duration and sequence of planting activities, crop care, harvesting and marketing strategies. Likewise, planning daily activities based on the information means that the rhythms of farmers' livelihood activities increasingly rely on digital technologies (cf Ropke and Christensen, 2013). And since farmers do more or less of the same practices every day (cf Lefebvre, 2013), based on product, location and time of the year, digital services now allow them to scheme what and how they go about routines. For instance, we found that on a typical day in the start of the farming season, a rural farmer in Northern Ghana undertakes the following routine: wakes up, takes breakfast, walk or rides bicycle/motorcycle to the farm, does field preparation or planting, returns back home, talk to peers enroute home or at community grounds and visits family.However, on days of an alert indicating rain, the routines are reshaped to exclude, for example, visiting the farm and planting, as well as the interactions with people to and from the farm. Instead, the time is used to do other activities, such as spending time with children. These tidal movements in the performance of everyday farming experiences constitute the 'softening' of farming time and space (cf Ropke and Christensen, 2013). Hence, we argue, and in consonant to practice theory (cf McMillan, 2017), that the ability of digital tools and services to alter rural communities also lies in how they reshape the temporary routines and rhythms of farming life and the connections to other activities.We have drawn on the social practice theory to discuss digitalizationdriven changes in smallholderand rural farming life in Northern Ghana. We established that digital innovations are redefining agriculture and rural life through 1) new digital materials that carry competencealtering agencies ,which 2) restructures the temporary routines and rhythms of farmers'. Our paper responded to calls for \"partial, contextualized and empirically-based analysis of social change\" (Motta and Martín, 2021, p. 504) and empirically backed earlier assertions that digital technologies may rescript rural farming and communities (Carolan, 2020b;Rose and Chilvers, 2018), In so doing, we have also redirected the DA discourse in smallholder systems from current obsession with transformations towards a much needed, but often neglected micro changes and transitions occurring in day to day activities of farmers.The discussions are critical in policy and practice circles for understanding and managing social change emanating from DA. Without discounting the relevance of development/policy interventions broadly engaging interests in structural changes on rural employment, incomes, and other indices, we contend a shift to practices provides nuances for management of the DA processes as they are more visible and relatable at the individual level. We recommend that policy stakeholders use these day-to-day changes as the focus of interventions. Doing so would require re-targeting digital innovations and public policy towards positive, desirable enhancement of farmers' lived experiences. Similarly, public policy needs to enable and facilitate micro changes among farmers through place-based policies that are farmer-centred and promote local capacity building. Likewise, the competence altering mechanism of digital innovation must be leveraged by extension actors to aid knowledge transfers and facilitate rural behavior changes.However, we do not expect the changing practices to be taken uncritically. Other theoretical lenses, such as political economy and responsible innovations, must be employed to attain a fuller picture of the the power, equity and inclusivity implications in these rural spaces. Furthermore, we do not claim to provide an exhaustive stock of how DA change farming activities and communities, nor have we claimed such changes are universal-for example, nuanced sex and gender dimensions are not adequately captured. Third, we have not evaluated the normative directionality of the changing practices, i.e., related to power, wealth, ecological feedback, and other issues that are critical to rural sustainability and resilience. Instead, we have outlined and, by extension, extended understandings of how these technologies redefine what farming means and how it is done. We acknowledge that digital changes can be a transition in the wrong direction (Ropke and Christensen, 2013), especially in agriculture, where anxieties about potential undesirable cconsequencies on rural labour, farmer autonomy and dependence, and power imbalances has come under scrutiny (Bronson and Knezevic, 2016;Carolan, 2017aCarolan, , 2020b;;Rose and Chilvers, 2018;Rotz et al., 2019). Hence, further research on the inclusiveness and sustainability of the observed patterns is critical to avoid undesirable consequences on farming and rural social life. Future research must also assess the kind of world views digital services project on farmers and rural communities. ","tokenCount":"7282"} \ No newline at end of file diff --git a/data/part_3/8935320375.json b/data/part_3/8935320375.json new file mode 100644 index 0000000000000000000000000000000000000000..cc4f2be8541feb393b681535102a2f1f7dfb9263 --- /dev/null +++ b/data/part_3/8935320375.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"cf3ee781fa6044da2881550d602463ea","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/d5f17559-5b00-4afb-b773-9f772653ec79/retrieve","id":"-1062824697"},"keywords":["Innovation","Gender","Drought Tolerant Maize Variety","Nigeria"],"sieverID":"0b1e1d4b-ebd6-4705-bfa3-725688a3f6a6","pagecount":"9","content":"Maize is one of the worlds' three primary cereal crops, sustainable increasing production of this crop is important to farmers to be able to meet the ever increasing consumption of maize which is one of the major reasons for the development of Drought tolerant maize variety (DTMA). The study analyses farmers' varietal preference of drought tolerant maize in Southern Guinea Savannah region of Nigeria. It specifically determined the socioeconomic characteristics of farmers, identified their gender based preference for Drought Tolerant maize variety and elucidated the reasons for preference. Three-stage stratified sampling technique was used. Well-structured questionnaire was used to collect information from a total of 48 farmers. Descriptive, Ranking and LSD were used to analyse the data collected. The result of the analysis showed that majority of the male and female farmers have primary education and are youths. The result of varietal preference differs between genders in some locations Male farmers identified big cobs with full grains, big seed, and multiple cobs as the main reasons for their preference while female farmers identified yellow colour of seed, nutrient fortified seed and big cobs with full grains as the main reasons for their preference. It is therefore recommended that effort should be made to involve male and female farmers in the varietal selection procedure as to facilitate easy adoption of hybrid maize. The women are more concerned with the food security of their family and hence are important segment in maize innovation that improve the food security of farming households. It is therefore imperative that Programmes and policies should not exclude female farmers.Maize is one of the worlds' three primary cereal crops. It occupies an important position in world economy and trade as a food, feed and industrial grain crop. The importance of maize in Nigeria cannot be over emphasized, with the country producing 43% of maize grown on West Africa (8). Empirical evidence have shown that the use of drought tolerant (DT) maize varieties stabilize maize yields in the DT-prone ecologies and also increase land area cultivated to maize. The corollary is an enhancement in the economic status of the resource-limited farmers in the country.Agricultural production in low income countries is generally diversified; focusing on rain fed staple crop production and raising livestock, activities that are inherently risky (12). The contribution of farming to rural development is highly dependent on the generation and delivery of new agricultural technology (9). Technological innovation refers to a process driven by an intention of imposed changes, managed, accompanied, collaboratively or individually elaborated in view of introducing, suppressing, restructuring or displacing an element or system within an established context (1).In recent years, development practitioners have become increasingly interested in questions relating to the distributional impacts of technological change in agriculture. Scientific breakthroughs have brought about dramatic productivity gains in many of the world's leading cereal crops, but the persistence of chronic malnutrition among a significant portion of the world's population has led to the realization that millions of people still lack reliable access to sufficient quantities of food. This realization has caused increased attention to be directed at the technology adoption process (6).Technological adoption among Male and female farmers is crucial to improving the productivity of maize under cultivation in Nigeria, therefore it is crucial to know whether gender-related differences in adoption patterns can be attributed to innate characteristics of improved technologies themselves or result from other, external factors. It has been recommended that information and knowledge on new technology and innovation should be made available to the both male and female farmers (4). The distinction is also crucial, because gender directly affects the technology adoption process. Despite the important role women play in agricultural production, they remain disadvantaged in numerous respects. Women have limited access to a wide range of physical assets including agricultural inputs, technological resources, land, and so forth (2). Reenforcing maize innovation adoption and productivity can help render dynamic development in maize production for sustainable growth in this staple food. This can be done by the use of core socio-cultural fabrics like the role women play is value-added, as per food security and growth processes (7).In order to know and meet the farmers' need, evaluation of the maize variety preference is necessary and important. Satisfying the need of farmer has been a challenge to innovation producers due to change in technology, innovations and life style. Preferences are symbolized by the perceptions, taste and attitudes that consumers hold toward food types (3). As markets emerge, consumers are faced with more choices. For successful adoption, a new crop or cultivar should offer a combination of good variety and market demand by meeting the needs of users (3). Innovation producers should know that end-users' preference will drive the evolution of the farm industry (5).Women are a key part of the mainstream in agriculture, yet they face formidable obstacles (10). It is therefore of importance to have strategy to put men and women's concerns and experiences at the centre of research design, implementation, monitoring, and evaluation. This involves looking at the socioeconomic settings of men and women to ensure that they benefit equally -often referred to as \"gender mainstreaming\". Bridging the gap in access to technology between men and women, we could increase productivity (Food and Agriculture report (2010)(2011). It can contribute to child survival and nutrition, as \"women are key to household food security.\" Gender shapes patterns of power relations, asset and wealth distribution and control, labor allocations, as well as preferences and aspirations within households. Gender is moving from neutrality to awareness and finally to gender transformative program design and implementation. Gender \"aware\"-that is, not only generating gender disaggregated data on the stakeholders that benefit from their development work -but transformation lies in using that information to improve the products and services delivered, paying specific attention to women's preferences. Research and innovations that would reduce the drudgery of farm work for women and meeting their needs is also important. Paying attention to women's needs and voices in the selection of maize varieties will make it possible to meet their needs. It is against this background that this research seeks to describe the socio-economic characteristics of respondent farmers; identify farmer varietal preference based on different gender for Drought Tolerant Maize (DTM) and elucidate the reasons for preferences.The study was carried out in southern guinea savanna (SGS) of Nigeria. The sampling technique consists of three multi-stage stratified sampling. At the first stage, two states out of the three states in the SGS were selected purposively. The states with the highest seed distribution for on -farm trials (see Appendix 1) were selected which were Kwara and Niger. The second stage involved selection of locations. In the two states there were four location of DTMA trials (Appendix 2), three of the locations with the highest varietal distribution where selected. The locations selected were Mokwa, Ilorin 1 (Unilorin) and Ilorin 2 (Alapa). The third stage involved selection of farmers. Sixteen farmers with equal number of female and male were selected in each of the locations for the survey. The total number of farmers selected was forty -eight (48) with Female Twenty -four (24) and Male Twenty -four (24).The Primary data were collected with the use of structured questionnaire. The questionnaire included questions on the farmers' socio-economic characteristics and the preference of the varietal DTM planted. The procedure followed is as thus:The intention was to collect data on trait (and variety) preferences of participating farmers on all the varieties tested. This evaluation was done when the crop was still on the field. Farmers viewed all the plots before they selected the variety/plot they like most and the variety/plot they dislike most from the entire plots. Careful discussion with female and male participants on why they liked or disliked a plot/variety based on the counts of like and dislike was documented.Data collected were analyzed using descriptive analysis (frequency, averages, mode and mean), ranking mean and Least Square Difference (LSD).The ranking method used a four-Likert scale. Most preferred Rank 1, and More preferred Rank 2, Preferred rank 3 and Least preferred rank 4. The Likert scale summative scores were then ordered.The ordered scores significant differences were identified using LSD. The relative frequency with which a quality was preferred was used to establish its ordinal rank. This preference ranking was tested for statistical significance using the method reported in (11). The test statistic (at α = 0.05) = 1.96 x (SF(n) x (n+1)/6) 1/2 , where SF was the number of surveyed farmers and n was the number of ranked quality parameters. Least significance difference (LSD) was used to test the ranking for statistical significance using the method represented in pair-wise comparism at 5% level of significant.The result of the analysis revealed in Table 1 that majority of the farmers (both male and female) were youths between the ages of 21-30 years. This probably gives the respondent almost the same level of exposure. More than 54% of the male farmers have more than 10 years of education while only about 37% of the female farmers also have more than 10 years of education. Only one female farmer is a household head while majority of the male farmers are their household heads. This may affect their decision taken in innovation. The average farm size of the male farmers was 3.5ha while that of the female farmer was 2.8ha. This couple with fact that 75 % of male respondents own and managed their farms unlike the female while only 25% own and managed stipulates that the female are less privileged to inputs and less involved in decision making process. In Niger state, the preferences of the farmers by gender are similar. The evaluated farmers preferred DTMA hybrid (M1026-13) and white maize of striga tolerant variety (WHITE DYSTR SYNIWDES SYN W) for trial plot 1 and 2, respectively as shown in figure 1 and 2. The evaluated farmers least preferred local variety. However the most preferred and second preferred are not significantly different so the DT maize varieties are equally preferred (Table 1 & 2). This shows that male and female farmers' preferences may not all times contradict. In Kwara State the preferences of the farmers by gender are not similar. Male farmers preferred 2004 TZE Y DT STR C4 followed by 2010 TZE-WDT STR while the female preferred 2004 TZE Y DT STR C4 followed by EVDT-1-2000-STR QPM CO (Figure 3). In varietal trial, female farmers most preferred variety was M0926-6 while the male most preferred variety was M1026-8 as shown figure 4. This reveals that the preferences might not be same among genders.Table 4 shows the results of the LSD statistic which revealed that least preference of the local variety by both male and female farmers is significantly different. However in the varietal trial farm, unlike the female, the male farmers do not least preferred the local variety rather least preferred variety was M0826-11 (table 5).Table 6 highlighted the reasons for preference by gender. Male farmers identified big cobs with full grains, big seed, and multiple cobs while female farmers identified yellow colour of seed, nutrient fortified seed and big cobs with full grains as the main reasons for their preference. The female farmers are more concerned with the colour and nutrient content of the seed such as in case of quality maize (EVDT-1-2000-STR QPM CO). On further examination it was discovered that the quality protein maize has been grown by farmers and they identified that it has good taste. The female farmers preferred maize with fortified nutrient. They added that it will be good also if other nutrients like vitamins can be fortified in maize. Other reason farmers' identified include; Produce multiple cobs; High vigorous; Cobs with full grains (see figure 5); Tall stalks or good stand as in case of (DTE STR SY); Strongly matured cobs; Well tasseling; Attractive look; Greenish leaf colour. Source : Author' s Field Work It is evident that men and women farm ren preferences sometimes and it is possib en interest will be considered. The result shows that the women are incapacitated in their decision making ability but they are still having their preferences and choices. The women choices are based on the food security of their household and that explains reasons for their preference of nutrient fortified improved maize varieties. Hence women are essential segment to be involved at any stage of innovation's conception. Considering the complex nature of agricultural research demands, coordinated effort is needed among all actors in order to ensure appropriate technology is promoted. It is therefore recommended that effort and policies should be made to involve male and female farme tal selection procedure as to facilitate easy adoption of improved maize. The collaboration between biological scientists, extension agents, socioeconomist, male and female farmers can improve the result of maize innovation.","tokenCount":"2129"} \ No newline at end of file diff --git a/data/part_3/8949873772.json b/data/part_3/8949873772.json new file mode 100644 index 0000000000000000000000000000000000000000..786dd01ab1ca91af6054e9e9df4827e77e38f96f --- /dev/null +++ b/data/part_3/8949873772.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"5c06f3b8eebd3bd1efc4010e5424cc83","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/057053c6-c4bc-4e13-ae83-42a167cf556e/retrieve","id":"1027947501"},"keywords":[],"sieverID":"5f736b7f-98df-437d-b090-dd8a177d61f5","pagecount":"62","content":"The CGIAR Research Program on Agriculture for Nutrition and Health (A4NH) seeks to realize the potential of agricultural development to make significant contributions to improving the nutrition and health of people worldwide. A4NH is led by the International Food Policy Research Institute (IFPRI) and managed by four other CGIAR Centers: Bioversity International, the International Center for Tropical Agriculture (CIAT), the International Institute of Tropical Agriculture (IITA), and the International Livestock Research Institute (ILRI); and two academic institutions: the London School of Hygiene & Tropical Medicine (LSHTM) and Wageningen University and Research (WUR). Some 2018 accomplishments that you will read about in this report include:• National plans in Bangladesh emphasized agriculture-nutrition linkages and promoted multisectoral interventions that approach nutrition through an agricultural lens and vice versa, referencing results from a six-year research initiative in that region. • The Indian Council of Agricultural Research established minimum levels of iron and zinc for their pearl millet breeding program, levels informed by joint research with CGIAR. • Through the Partnership for Aflatoxin Control in Africa (PACA), three countries included Aflasafe as a component for aflatoxin mitigation in their National Agriculture Investment Plans. • The Reach, Benefit, Empower framework, which helps distinguish between approaches that 'reach' women as participants, those that actually 'benefit' women and finally those that 'empower' them, was used by development partners. • In Ethiopia, several organizations used a recent paper, which applied a food systems framework to research priorities in the Ethiopian context, as a guiding document in their work on food systems.• The Bill & Melinda Gates Foundation and the UK Department for International Development used our evidence on food safety in low-and middle-income countries to shape their $13 million research for development investment. • The World Bank and the Government of Malawi agreed to scale-up a nutrition-sensitive intervention based on results from an impact evaluation which showed that preschools can be an effective platform for delivering a nutrition-sensitive agricultural intervention. • In Kenya, the Department of Veterinary Services allocated funds and personnel to scale-up the use of a mobile-phone based surveillance system, co-developed and piloted with CGIAR, that will be used to prevent the spread of zoonotic diseases and protect meat safety in one county.• Iron-biofortified pearl millet was released in Niger and zinc-biofortified maize was released in three more countries in Latin America. • Aflasafe was registered in Ghana, Tanzania, and Zambia, bringing the total to eight countries.• We signed a memorandum of understanding with the Ethiopian Public Health Institute to strengthen collaboration around nutrition and health. • With AfricaRice, we started fieldwork as part of an overall joint strategy to build disease management strategies into rice intensification programs in West Africa. • With the International Potato Center (CIP), we established a collaboration to harmonize the monitoring and evaluation of scaling-up biofortification.More research outputs, events, and achievements can be found in the interactive A4NH 2018 Annual Report, on our website, or @A4NH_CGIAR on Twitter.Part A: NARRATIVEAs CGIAR's only research program on nutrition and health, Agriculture for Nutrition and Health (A4NH) research contributes to the system-level outcome (SLO) on food and nutrition security for health. Our 2018 contributions to the SLO targets from rigorous adoption and impact data are summarized in Table 1 and described below.• In 2018, 4.5 million farming households were reached with biofortified planting material, bringing the total number of farming households growing and consuming biofortified crops globally to 7.6 million. In 2018, 28 new biofortified crop varieties were released, bringing the total number of releases through HarvestPlus efforts to 208 varieties of 11 crops, across 30 countries (with 31 additional countries in testing phase). When orange-fleshed sweetpotato varieties released through the International Potato Center (CIP) are included, this figure increases to more than 300 varieties of biofortified crops.• During 2018, more than 63,000 hectares were treated with Aflasafe by approximately 60,000 farmers, allowing production of maize and groundnut with safe aflatoxin levels. Large-scale use of Aflasafe contributed to improved food safety in most of the areas where crops were treated.The large majority of the treated crops contained aflatoxin-compliant concentrations even for the most stringent markets (i.e., less than 4 ppb total aflatoxins). In Nigeria, use of Aflasafe increased the income of smallholder maize farmers (average 11.5% more than regular maize). Some agribusinesses are investing their increased income to expand their businesses. In addition, a total of 10,919 persons across all countries where the Aflasafe initiative operates have received training on aflatoxins and management strategies.A4NH seeks to realize the potential of agricultural development to contribute to improved nutrition and health of people worldwide. We highlight two 2018 achievements made outside the progress achieved through our five flagships.Gender and equity. It has been a momentous year for our Gender Equity and Empowerment (GEE) unit with the publication of the Reach Benefit Empower (RBE) framework and the launch of the pilot version of the project-level Women's Empowerment in Agriculture Index (pro-WEAI), a survey-based index for measuring empowerment, agency, and inclusion of women in the agriculture sector. Capacity building workshops and technical support provided by the WEAI Resource Center keep the attention on the critical role gender has in agricultural research and increase the volume and quality of evidence. In response to recommendations from a 2017 review, A4NH commissioned a set of studies on equity in agriculture, nutrition, and health in 2018. Results from these studies will help shape our overall equity research strategy (expected in 2019-2020).Convening stakeholders around nutrition and health. Since 2016, A4NH has co-organized the Agriculture, Nutrition and Health Academy Week event with the London School of Hygiene & Tropical Medicine (LSHTM). The event has enhanced individual research capacity of early career researchers from low-and middle-income countries and filled a gap in networking opportunities around agriculture, nutrition, and health. A4NH researchers also helped organize several high-level convenings, including a side event around the future of food systems at the Accelerating the End of Hunger and Malnutrition conference and a Brussels Development Briefing on food safety .F1 -Food Systems for Healthier Diets Flagship progress • An analysis of food system components and their linkages with diets in Ethiopia was published, identifying 25 research areas for which there is insufficient evidence available. This paper has served as a guiding document for the National Information Platforms for Nutrition (NIPN), Alive & Thrive, and the World Resources Institute. Comparable publications for Bangladesh, Nigeria, and Vietnam are expected in 2019.• To understand dietary patterns and identify where gaps in healthy diets exist, researchers undertook analyses using nationally -representative household expenditure surveys, which allows for comparisons of food intake and dietary quality across regions and socioeconomic groups. Reports for Ethiopia and Nigeria have been finalized; Bangladesh and Vietnam are ongoing. Researchers also created food-composition data tables and conducted diagnostic workshops in Bangladesh and Nigeria. Foresight analysis revealed how the Nigerian food system is expected to transform in coming decades and identified leverage points for ensuring the transformation contributes to balanced diets.• An article in World Development reviewed the different narratives about food systems and the way sustainability is defined. The authors concluded that trade-offs between the different dimensions of sustainability are unavoidable and proposed a framework on how to transition to sustainable food systems.• Iron-biofortified pearl millet was released in Niger, which will help combat iron-deficiency anemia and support healthy cognitive and physical development in children. Zinc-biofortified maize was released in three more countries in Latin America-Colombia, Guatemala, and Nicaragua.• Two key studies establishing the efficacy of iron and zinc biofortification to improve health and nutrition were published. The studies showed that iron-biofortified pearl millet can significantly improve nutrition and cognitive performance in adolescents, stemming the negative effects of iron deficiency, and that young children in India who ate foods prepared with zinc-enriched wheat spent significantly fewer days sick.• By the end of 2018, 21 countries had included biofortification in national agricultural and/or nutrition strategies. India prioritized nutrition in breeding by setting official minimum standard levels of iron and zinc in all new varieties of pearl millet. The Indian government also declared millets \"nutri-cereals,\" important for improving food and nutrition security, and recommended their inclusion in the country's extensive public food distribution system.• HarvestPlus made a new agreement with CIP to harmonize the monitoring and evaluation of scaling up/commercialization of HarvestPlus varieties and CIP's orange fleshed sweetpotato. This new arrangement will provide important lessons learned for CGIAR.• The Bill & Melinda Gates Foundation (BMGF) and UK Department for International Development (DFID) made a $13 million research for development investment in food safety in six countries in Africa and one state in India, informed in part by evidence from a decade of research on informal markets. A4NH will be involved in four of these projects.• Researchers contributed to major reports with the World Bank, The Safe Food Imperative, and the Global Food Safety Partnership, Food Safety in Africa . The first randomized controlled trial (RCT) on aflatoxin and child stunting was published. The study demonstrated no causal links at 2 years of age but found an association (not necessarily indicative of causation) at 12 months. A special issue of Global Food Security included 12 articles on leveraging value chains for food safety and nutrition security.• Aflasafe was registered in three more countries -Ghana, Tanzania, and Zambia -bringing the total to eight. Farmers in more countries, if using Aflasafe with other management practices, will have increased chances to reach premium markets reserved for aflatoxin-compliant crops.• Through the Partnership for Aflatoxin Control in Africa (PACA), three countries included Aflasafe as a component for aflatoxin mitigation in National Agriculture Investment Plans.• The Leveraging Agriculture for Nutrition in South Asia (LANSA) initiative ended six years of work.A special issue of Food Policy summarized highlighted lessons for researchers and policymakers. Strong partnerships and dissemination efforts have meant LANSA results have been used to inform national investment plans, introduce nutrition elements into agricultural extension models, and move the nutrition-sensitive agricultural agenda forward across several countries in South Asia.• The World Bank and the Government of Malawi agreed to scale-up a nutrition-sensitive agricultural intervention based on results from an impact evaluation which showed that preschools can be an effective platform for delivering this type of intervention. This project is expected to benefit 1.2 million preschool-aged children in 13 districts.• The article on 'what works' as it relates to nutrition-sensitive agricultural programs was used by Alive & Thrive to inform nutrition-sensitive agriculture work in their second iteration and by the World Food Programme to improve the design of their nutrition-sensitive programs as part of an ongoing partnership with A4NH.• Rigorous evidence of the effectiveness and cost-effectiveness of food-assisted multisectoral maternal and child health and nutrition programs targeted to women and children in the first 1,000 days in Burundi and Guatemala were published.• New results from studies of antimicrobial resistance (AMR) genes in livestock food chains in Kenya and Vietnam added to the understanding of AMR transmission from livestock to humans. Through global engagement with other CGIAR partners, we built new partnerships and helped develop a CGIAR AMR strategy.• The Turkana County Department of Veterinary Services allocated funds and personnel to scaleup a mobile phone-based surveillance system, co-developed and piloted with A4NH researchers, that will be used to prevent the spread of zoonotic diseases, protect meat safety, and provide data on antimicrobial use in livestock in Kenya.• Reanalyzing studies comparing malaria risk in rice-growing and control areas in Africa showed that rice villages tend to have less malaria when baseline prevalence is high, but more malaria than non-rice villages when it is low (Chan et al., submitted). As malaria comes under greater control, irrigated rice schemes may become malaria hotspots. With AfricaRice, we launched a trial intervention to reduce vector production.• Earlier published work showed that the poor performance of standard hospital based diagnostics for human brucellosis led to inappropriate drug use. This work has contributed to the development of policies in Kenya and Tanzania (under review).This year has been the start of a trend, which we expect to continue, of greater investment in and demand for research on food safety. Our research teams met country demand expressed either directly or through the World Bank in a variety of ways. We completed food safety situational analyses in Vietnam and started the process in Bangladesh, Cambodia, Ethiopia, and Kenya. With the World Bank, we made important contributions to two major reports and contributed evidence that shaped a major investment by BMGF and DFID.In food systems, we expanded our work in diagnostics and foresight and launched a new BMGF-funded project on consumer demand for vegetables. In response to growing interest in urban food systems, we are moving forward with this research agenda and are hopeful a stream of new research grants will be awarded in 2019 (in Bangladesh) and 2020 (in East Africa).We provided technical inputs into the special initiative on AMR described in the new CGIAR Business Plan (2019-2021) and played a major role in the design of the CGIAR AMR Hub along with CGIAR Centers and at least two other CRPs. The increased attention to the topic has helped accelerate our plans and partnerships.Research areas and objectives remained mostly consistent with what was described in the A4NH Full Proposal for Phase II. A4NH remains successful in raising bilateral grant funding to maintain a healthy portfolio of research.In 2018, HarvestPlus, which leads Flagship 2, began a major pivot. Activities will shift to support other actors to scale biofortification, through such strategies as mainstreaming micronutrient breeding in CGIAR's programs and supporting partners -rather than delivering -biofortified varieties and products. A4NH investment in HarvestPlus will continue to focus on evaluation and generating more evidence through partnerships and advocacy. The new agreement with CIP to harmonize the monitoring and evaluation of scaling-up/commercialization of HarvestPlus varieties and CIP's orange fleshed sweetpotato will support these goals. Gender is well integrated in some parts, particularly Flagship 4. In other parts, progress is slower, or is in early stages with no results to share in 2018. Individual institutional capacity within the Managing Partners remains variable. The cross-cutting function of the GEE Unit is designed to help, such as through small equity grants to flagships. For example, recognizing that some gender issues could be missing in their research, Flagship 1 used the small equity grant to reassess gaps in the theories of change in order to understand where to focus.The 2017 external review found A4NH research investigates several areas of equity, including gender, income, poverty, life stage, youth, and geography, but only focuses systematically on gender. In 2018, we conducted a series of consultations with partners in Africa, South Asia, and Southeast Asia, as well as with the Rome-based agencies, to hear their perspectives and interests in equity research. These consultations have been summarized (click here and scroll to the bottom of the page to find the series of consultation reports). Using the recommendations from the 2017 review, 2018 consultations, and input from our management and advisory teams, A4NH commissioned a set of studies on equity in agriculture, nutrition, and health, which will be completed in 2019:• A framing paper about youth and food systems transformation to guide A4NH work;• An examination of the theory of change for Flagship 1 to identify how equity fits into impact pathways between food systems innovations and healthier diets, which will be used to develop framework for flagship research;• Curriculum for undergraduate students in veterinary science at the Lilongwe University of Agriculture and Natural Resources in Malawi that introduced concepts around equity issues in veterinary science research and practice and provided technical support on integrating equity aspects in research project proposals required for their coursework; and• A structured review of existing equity in agriculture, nutrition, and health research to identify gaps and opportunities for A4NH.Too early to share findings.A 2017 external review found A4NH research investigates several areas of equity, including gender, income, poverty, life stage, youth, and geography, but only focuses systematically on gender. Using the recommendations from this review and input from our management and advisory teams, in 2018, A4NH commissioned a set of studies on equity in agriculture, nutrition, and health, which will be completed in 2019. Those are described above.Not necessarily, however, as described above, there is room for improvement which we are addressing.• Flagship 1 established an MSc Food System Research Grant Scheme to build capacity of young researchers and their supervisors from local universities in food systems research in Ethiopia and Vietnam. The small grant scheme includes a training workshop and mentorship and supports the integration of systems thinking in the curricula.• The Agriculture, Nutrition and Health Academy (ANH Academy) Week has helped convene a global community of researchers and research users working on agriculture, nutrition, and health challenges. Since 2016, A4NH has co-organized this annual event with LSHTM. These events have enhanced individual capacity of early-career researchers from low-and middleincome countries and filled a gap in networking opportunities around agriculture, nutrition, and health. In 2018, the third ANH Academy Week was held in Accra, Ghana, and attracted 343 participants from 49 countries, who attended 17 learning labs and heard results from nearly 200 scientific presentations. A4NH researchers led learning labs on metrics for diets, women's empowerment, food safety, and child growth; research communication strategies; and co-led one with the Global Alliance for Improved Nutrition (GAIN) on public-private collaboration.• Accumulated experience from impact evaluations and data analyses across different projects was drawn on to offer recommendations to the data analysis approach promoted through NIPN, which have been accepted and incorporated into their strategy. NIPN's aim is to strengthen capacity to analyze data to track progress, inform policies and improve programs for better nutrition.• For a seventh year, the Transforming Nutrition short course, led by IFPRI and the Institute of Development Studies (IDS), trained global leaders, practitioners, and other professionals, bringing the total number of people reached through the course to nearly 200. Leaders who have taken the course have gone on to apply knowledge gained to their professional work in delivering programs and supporting policy processes for improving nutrition.• A4NH researchers contributed to two high-profile 2018 publications on the links between climate change and human nutrition and health. One was the Lancet Countdown report on health and climate change, which is the highest-ranked CGIAR publication of all time on Altmetrics. The second was an article in Nature Sustainability, which projected the dietary availability of several nutrients and micronutrients through 2050, relative to levels needed to maintain good health.• With the CRP on Climate Change Agriculture and Food Security (CCAFS), A4NH has continued to support the International Fund for Agricultural Development (IFAD) in mainstreaming climate change and nutrition into its investment portfolio, contributed to a joint op-ed , \"Hidden impacts: As carbon dioxide goes up, crop nutrients go down,\" and is coordinating climate and nutrition modelling work in Bangladesh.• A4NH's country coordination approach is proving to be an effective means of supporting flagship research in five focus countries. The teams in Vietnam (CIAT-led with ILRI support) and Ethiopia (ILRI-led with IFPRI support) have made the most progress. In 2018, country coordination activities moved forward quickly in Bangladesh and India (both led by IFPRI). Based on a 2018 review, changes will be implemented in 2019 to move forward more efficiently in Nigeria (IITA-led). Ongoing activities and achievements from the focus countries are regularly highlighted in the A4NH e-newsletter.• In 2018, we launched an annual review to assess partner compliance with the Program Participant Agreement (PPA) provisions, mainly around research quality, work plan delivery, and evolving roles and responsibilities in A4NH. The review and subsequent discussion were documented in a memo and shared internally.• One management challenge in 2018 has been anticipating and responding to the major changes in CGIAR planning and reporting. As a result of revisions to the new guidance and templates, several adjustments to MARLO had to be made that delayed and disrupted A4NH planning and reporting that will hopefully not persist in 2019.• Two new members of the A4NH Independent Steering Committee (ISC) were nominated in 2018 through a consultative process with the A4NH Planning and Management Committee (PMC).The new members will begin their three-year term in 2019. More than half of the ISC members attended the PMC's biannual face-to-face meeting in Hanoi in March 2018, providing an opportunity for them to meet local partners and policymakers and better understand A4NH research and engagement in Vietnam. Having one of the PMC's face-to-face meetings in an A4NH focus country has proven to be a helpful way for these two important management and governance bodies to interact with one another and with local partners.National/regional researchers and policymakers • A4NH, through IFPRI, signed a memorandum of understanding with the Ethiopian Public Health Institute (EPHI) under the Federal Ministry of Health, to strengthen collaboration across the gamut of A4NH research.• In Ethiopia, we progressed on a major new initiative with the Food and Agriculture Organization of the United Nations (FAO) to support EPHI and the Federal Ministry of Health with development of food-based dietary guidelines. A4NH worked with its lead partners in focus countries to convene multi-stakeholder partner sharing and learning events, for example with the National Institute of Nutrition (NIN) in Vietnam and with the Power and Participation Research Center (PPRC) in Bangladesh on a food systems policy baseline.• Two 2018 case reports highlight results from the Biodiversity for Food and Nutrition Project , a multi-country, multi-partner initiative funded by the Global Environment Facility. In Kenya, Busia County's Biodiversity Conservation Policy was the culmination of nearly two years of engagement and research with multi-level partners including policymakers, farmer groups, women's organizations, and school procurers to spread awareness regarding the value of indigenous species.• The East African Community (EAC) launched a series of policy briefs, which were co-developed with IITA. The briefs contain key findings and recommendations from 11 technical papers developed under a prior USAID project, which was led by IITA. This achievement complements other ongoing engagement efforts with PACA.• One critical broker for A4NH with private sector companies has been GAIN. In 2018, GAIN and HarvestPlus established a new partnership to develop a joint approach to planning and implementing fortification and biofortification. GAIN is also a collaborator on identifying, developing, and testing public-private food system innovations. In 2018, we agreed to focus joint efforts moving forward in three A4NH and GAIN focus countries: Bangladesh, Ethiopia, and Nigeria.A4NH has expanded its collaborations across CGIAR and strengthened several ongoing partnerships. Highlights from 2018 are summarized below.• Flagship 2 established a new agreement with CIP to harmonize the monitoring and evaluation of scaling-up/commercialization of HarvestPlus varieties and CIP's orange fleshed sweetpotato. This work was made possible with an additional Window 1/Window 2 (W1/W2) allocation in 2018 and implementation will begin in 2019. This new arrangement will provide important lessons learned on biofortification for CGIAR.• Flagship 5 launched new research with AfricaRice to build disease management strategies into rice intensification programs in West Africa. More specifically, the joint fieldwork, which will begin in 2019, has been designed to track mosquito productivity of alternative irrigated rice cultivation techniques, to identify how to grow rice in Africa without growing deadly mosquitoes, and to assess effects of landscape-change on the vectoral capacity of malaria vectors.• With the CRP on Livestock, the CRP on Fish, and Water, Land, and Ecosystems (WLE), Flagship 5 had a major role in designing the CGIAR AMR Research Hub and planning its launch (in February 2019). With these same partners, collaborative activities were initiated in 2018 to link all animal uses of antibiotics to human antimicrobial resistance.• A4NH's country team approach helps build cross-CGIAR partnerships around food systems, but also external partnerships with local actors in our focus countries. A 2018 internal assessment identified a need to improve synergies with IFPRI's Country Strategy Support Programs (CSSPs), which engage directly with national governments and stakeholders. Adjustments will be made in 2019 to engage these research teams in A4NH to accelerate progress toward healthy food systems in our focus countries.A) Have any intellectual assets been strategically managed by the CRP (together with the relevant Center) this year? As in previous years, the majority of intellectual assets are knowledge and information products that are open access. Intellectual assets associated with new varieties and germplasm for biofortified varieties are the responsibility of the CGIAR Center involved in developing them. IITA has expanded registration of Aflasafe to three new countries in 2018 (Ghana, Tanzania, and Zambia), bringing the total to eight countries in Africa.Not applicable to A4NH.context of the CRP Not applicable to A4NH.• In 2018, the external evaluation of HarvestPlus Phase 3 (2014-2018) was completed.Commissioned by BMGF, this evaluation will serve as one of the CRP Commissioned External Evaluations (CCEEs) of Flagship 2 in Phase II as described in the evaluation plan in the Full Proposal.• The CCEE of Flagship 4 was still ongoing in 2018. The final report will be circulated to our management and governance bodies in April 2019 and we expect to finalize the report and management response in May 2019. • Our Policy Working Group was established to help coordinate policy across A4NH. In 2018, they began efforts on new agri-food-nutrition challenges such as urban food systems and overweight and obesity, areas which fall under two A4NH flagships working on nutrition, one focusing more on issues and actors in the programs impact pathway (Flagship 4) and the other focusing more on the agri-food systems impact pathway (Flagship 1).• We made targeted investments to strengthen our five country coordination teams, which support flagship research and engagement with local stakeholders.Institutional risks. Within the CGIAR System, the roles and responsibilities for mitigating the major risks lie with the Centers. Thus, A4NH seeks to work closely with and support its Managing Partners to mitigate their individual and collective risks. Key risk mitigation compliance requirements are included in the annual PPA. The annual compliance review (described in 2.1) encouraged Managing Partners to mitigate some key risks, such as ensuring institutional ethical reviews for research involving human subjects.The key programmatic risk revolves around the ability to form a critical mass of innovative researchers across different institutions, which is most evident in Flagships 1 and 5. In 2018, the PMU and the country teams provided targeted support to the Flagship 1 team for stakeholder consultations and joint proposal coordination. The WUR team has skillfully engaged other Managing Partners in planning and implementing research and developing proposals. In Flagship 5, we made major progress in 2018 in strengthening leadership and developing clearer research roles and responsibilities across all three clusters of activities.Contextual Risks. The main contextual risk for A4NH is partnerships. The focus country teams are playing a critical role in engaging with national partners to understand their perspectives, while wisely managing expectations. As an integrating CRP, we are working to expand partnerships with CGIAR Centers interested in working with A4NH. In 2018, we developed new agreements with the International Maize and Wheat Improvement Center (CIMMYT) on wheat processing and CIP on monitoring and evaluation of biofortification.In 2018, 20 percent of W1/W2 funding to A4NH was used for cross-cutting support at the CRP level and 80 percent to the flagship programs. The funds were allocated strategically to support joint research (cross-flagship, cross-CGIAR, and with local partners), help A4NH disseminate results more widely, and build targeted partnerships and capacity in our five focus countries (Table 10). Some 2018 highlights of this critical investment are listed below.• Using a country coordination approach, engagement and support were provided to national partners in Bangladesh, Ethiopia, Nigeria, India, and Vietnam, linking A4NH research to national government and partner priorities and actions. In four of those countries (all except India), we engaged national partners in food systems analysis, assessment of food system innovations and multi-stakeholder partnerships, and a range of partnership building and capacity development activities.• The first RCT on aflatoxin and its effects on stunting was published, along with a review of recent evidence that summarizes existing knowledge on impacts, pathways, mechanisms, and contextual factors that affect where and how agriculture may improve nutrition outcomes.• CGIAR innovations were more widely disseminated, such as Aflasafe in Africa and the pilot version of pro-WEAI.• Flagship teams developed plans to fill important research gaps around food safety in Africa and Asia, agriculture's contribution to AMR, and human health issues associated with agriculture in West and Central Africa.Total A4NH expenditure in 2018 increased by 8 percent compared to 2017. The largest increase was a one-third increase in W1/W2 expenditure, which was similar across all flagships and cross-cutting units. This increased W1/W2 expenditure came from carryover funding from 2017 and Phase I.For A4NH overall, W3/bilateral funding in 2018 was similar (+1%) to 2017. The distribution of funding changed in 2018 with noticeable increases in W3/bilateral income and expenditure in flagships with newer institutional partnerships -Flagship 1 (+50%) and Flagship 5 (+35%) -and decreases in the more established flagships -Flagship 4 (-35%) and Flagship 2 (-8%). Flagship 3 W3/bilateral expenditure was relatively stable (+3%). CRP management costs were stable, but there was an increase in expenditure in the three cross-cutting units. 4.5 million farming households were reached with biofortified planting material, bringing the total number of farming households growing and consuming biofortified crops globally to 7.6 million (HarvestPlus global households reached projection model described in more detail here and here) Approximately 60,000 farmers treated more than 63,000 hectares with Aflasafe, allowing production of maize and groundnut with safe aflatoxin levels (donor report and further documentation here). Large-scale use of Aflasafe contributed to improved food safety in most of the areas where crops were treated. The large majority of the treated crops contained aflatoxin-compliant concentrations even for the most stringent markets (i.e., less than 4 ppb total aflatoxins). In Nigeria, use of Aflasafe increased the income of smallholder maize farmers (average 11.5% more than regular maize). Some of the Agribusinesses are investing their increased income to expand their businesses (read full story here ).Planned studies and surveys from Flagship 2 that will provide further evidence: vitamin A cassava in Nigeria ( 2018), iron pearl millet in India ( 2018), iron beans in Colombia ( 2018), zinc rice in Bangladesh (2018), vitamin A OSP in Uganda (2019). The global households reached projection model will be revised in 2019. Through Flagship 3, at least half a million hectares are expected to be treated with Aflasafe by 2020. The number of treated hectares by 2022 is expected to be considerably higher. Several 2018 achievements provide evidence that A4NH is positioned to make significant contributions to this 2022 target. 150 million more people, of which 50% are women, without deficiencies of one or more of the following essential micronutrients: iron, zinc, iodine, vitamin A, folate, and vitamin B12 4.5 million farming households (22.5 million people) were reached with biofortified planting material in 2018, bringing the total number of farming households growing and consuming biofortified crops globally to 7.6 million (38 million people, based on the HarvestPlus global households reached projection model) Planned impact evaluations (effectiveness studies) from Flagship 2, typically randomized controlled trials (RCTs) with a focus on consumption outcomes that will provide further evidence on A4NH's contribution toward this include: iron beans in Guatemala (2018-19), zinc wheat in Pakistan (concept note has been prepared and seeking funding), and multiple biofortified crops in countries TBD (2020). 10% reduction in women of reproductive age who are consuming less than the adequate number of food groups No new evidence in 2018 A4NH aims to contribute to a 10% reduction in women of reproductive age who are consuming less than the adequate number of food groups in the each of the four priority countries of FP1. The changes are expected to come about from research on the drivers of and constraints to diet changes among target populations and food system performance related to healthier diets, from tested interventions designed to improve the performance of multiple nutrient-rich agri-food value chains, and from identified options to upscale effective food system innovations to large segments of target populations. (2) The World Food Programme (WFP) is using the nutrition-sensitive guidance developed under our partnership to design more nutrition-sensitive programs and proposals.( In short-term programs facilitated by CRP/PTF 500 406In long-term programs facilitated by CRP/PTF 10 10 ","tokenCount":"5342"} \ No newline at end of file diff --git a/data/part_3/8951884004.json b/data/part_3/8951884004.json new file mode 100644 index 0000000000000000000000000000000000000000..4fbc211c5076e30b45b4fc209f3c9f2cd221fb0d --- /dev/null +++ b/data/part_3/8951884004.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"e226821275ea01fa35c8c445987e663b","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/a127a0cd-8ec5-4ae2-9e76-16b1627ddfb0/retrieve","id":"-374353091"},"keywords":[],"sieverID":"c2d6df7f-de86-4b34-8e09-879ea87d911e","pagecount":"2","content":"No other place on Earth boasts such a wide variety of wild animals so close to a bustling metropolis. Lions, giraffes, and ostriches roam freely against a backdrop of skyscrapers and jets landing at Kenya's international airport.But because of people moving in and fences going up in areas around the Nairobi National Park, zebras and wildebeest -and the lions who stalk them -may soon have no way of migrating to southern grasslands during the rainy season and back into the park, where water is plentiful during the dry season. Now the government and wildlife foundations are paying the Maasai, the famed warrior tribe of central Kenya, to not farm or fence in some land as a way to keep the migration corridor clear. In another conservation step, tribespeople also are being compensated whenever a lion kills their livestock, as long as they let the lion live.These unusual efforts come none to soon on a continent that in the past century has lost half its forests and a significant chunk of its wildlife to land development, agriculture, industry, and poachers.Protected game reserves like the Nairobi National Park make up about 8 percent of Kenya's land mass, though more than three-quarters of the wildlife is outside the reserves.\"A lot of structures are coming up,\" said Maasai community leader Godfrey Ntapayia, pointing to a cement factory at the edge of the 850-square-kilometer (330-squaremile) wildlife corridor that links the Nairobi National Park to southern Kenya's Amboseli region. \"These industries are encouraging construction around the dispersal (migration) area. People are buying land and erecting a lot of fences.\"The area around the capital is not the only wildlife corridor under threat. Of particular concern is the region between the Serengeti in northern Tanzania and the Masai Mara area of southern Kenya, whose dazzling array of wildlife has been reduced by 60 percent since the mid-1970s.But the problem is most pronounced in the Kitengela area south of Nairobi, where private property has replaced the Maasai's traditional system of collective land ownership and where farming has begun to replace cattle raising.The corridor is already 70 percent blocked, said Environment Minister Newton Kulundu. This has led to a marked increase in \"human-wildlife conflicts,\" he added, with Maasai tribesmen killing lions who prey on their cattle and wildebeest destroying fences and crops to clear the migration path.Residents of the region killed 11 lions last year, about the same number as in each of the previous four years. But no lions -a threatened though not an acutely endangered species -have been reported killed in 2004, giving hope that the two-year-old compensation program may be bearing fruit.\"I like to see lions,\" said 42-year-old Maasai shepherd James Turere, who said he's killed numerous lions in his lifetime but stopped when he started getting money for lost livestock. \"Other places don't have so many animals like we do. It's something special,\" he said.A total of 115 Maasai families in the Kitengela area are now receiving the equivalent of US$4 a month per acre in exchange for not farming or erecting fences on their land.This so-called lease program protects 8,500 acres (3,400 hectares), or only about 4 percent of the corridor, said Paul Gathitu Masela, the senior warden at the Nairobi National Park. However, the land being \"leased\" is often located in the most critical areas for animal crossings, such as near roads and rivers, he added.Masela said authorities would like to increase the protected area to 50,000 acres (20,000 hectares) but that lack of money means that 15,000 acres (6,000 hectares) already on a waiting list are not being leased. This latest holdup points up problems that have plagued Kenyan conservation efforts for many years: lack of funds, coordination, and government support. The lease program has proven to be a sensitive issue with the Maasai, many of whom have bitter memories of the British colonial annexation of their tribal lands.The good news is that recent years have seen a major shift in attitude among Kenyan tribes who now often see wildlife as a tourism resource to be exploited rather than vermin to be destroyed. \"Twenty years ago our young Maasai warriors used to go around killing the animals,\" said David Koshal, a Maasai wildlife guide in the Masai Mara reserve. \"Things are changing now. They know that there are benefits to be had from these lions, these animals.\"The Maasai are now seeking ways to funnel park entry fees and other tourismrelated revenue into their communities. Schools, dams, and cattle dips have been built. The government and conservation groups are encouraging tribespeople to develop camp sites for safari-goers and to sell handicrafts rather than cultivate the land.But critics say these programs are unlikely to arrest the most troubling trends. What's needed, they say, is a national land-use policy that will simply forbid human encroachment on wildlife corridors.Environment Minister Kulundu said such a policy is currently under review and stands a good chance of being passed.The animals that migrate are mostly wildebeest and zebras in search of more nutritious short grass in the wet season. They are followed by vultures, jackals, hyenas, and lions.\"From the beginning the Maasai have lived together with animals,\" said Maasai community leader Samuel Matanda, a 45-year-old father of seven. \"We don't want our children just to see animals in paintings.\"","tokenCount":"879"} \ No newline at end of file diff --git a/data/part_3/8963533953.json b/data/part_3/8963533953.json new file mode 100644 index 0000000000000000000000000000000000000000..ae2a82820728911678fe8979a5239857ed1d0936 --- /dev/null +++ b/data/part_3/8963533953.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"3438ca318a3e5068266e840efca91ce1","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/9ee6ad0e-22f3-4156-9053-07d8ecee5d2c/retrieve","id":"-103285739"},"keywords":[],"sieverID":"4cf47cb0-b2b2-401e-bc8b-c1ef231bcd7a","pagecount":"13","content":"Cacao agroforestry systems can offer important benefits, such as greenhouse gas mitigation, microclimate regulation and improved soil health. The selection of tree species for cacao agroforestry systems is a critical step impacting cacao yields, as well as the environmental and economic sustainability of the production system. However, the effects of different tree species on soil processes and functions have been poorly studied. We assessed a series of soil health indicators in a five-year-old agroforestry trial located in the Ecuadorian Amazon. The following treatments: \"control\" (cacao monoculture), \"timber\" (cacao with Cedrelinga cateniformis Ducke; a leguminous tree), \"fruit\" (cacao with Bactris gasipaes), \"N-fix\" (cacao with Erythrina velutina Wild) and \"mixed\" (cacao with C. cateniformis + E. velutina) were replicated 3 times in randomized blocks. The experiment was managed organically with low levels of external inputs. We collected soil, litter and leaf samples of cacao trees at two different distances (~2 m and ~ 6 m) from the shade tree. Biological (potential soil respiration, and macrofauna abundance, richness and Shannon diversity), chemical (pH, CEC, total C and N, macro and micronutrients and Cd), and physical (bulk density and water holding capacity) soil health indicators were measured. Additionally, we analysed nutrients and Cd in cacao leaves and litter. Results showed positive effects of the \"timber\" and \"mixed\" treatments on biological soil health indicators, primarily earthworm abundance and potential respiration, as compared to cacao monocultures. Treatment effects on potential respiration showed different trends in litter versus soil, indicating that effects of shade trees on litter respiration do not transfer directly to soil respiration. Physical and chemical soil indicators, including available Cd which is irrelevant in the context of food safety regulations, did not show any differences among the treatments. Five years after establishment, no significant differences in yields were found among the control and any of the shade tree treatments.Cacao (Theobroma cacao L.) is an important global commodity, grown mainly by smallholder farmers throughout the tropics. Most cacao is produced in West Africa and Ecuador is the largest cacao producer in Latin America. Despite growing market demand, global total cacao production is declining (Fountain and Hütz-Adams, 2022). Numerous factors have contributed to this trend, declining soil fertility, increases in pests and diseases and climate change are commonly reported (Richard and Raebild, 2016;Clough et al., 2009). Furthermore, social factors such as low profit for smallholder farmers and shortage of labour and technical assistance limit farmers' engagement in sustainable cacao production practices (Franzen and Mulder, 2007). Widespread impoverishment of soil health (Giller et al., 1997), is threatening cacao supply, the wellbeing of smallholder cacao producers and contribute to deforestation and biodiversity loss (Tscharntke et al., 2005;Pretty, 1997).Theobroma cacao is an understory tree species native to humid tropical regions of northern South America, and according to some reports, central America (Motamayor et al., 2002). Most cacao cultivation has traditionally taken place in agroforestry systems in the lower story of the evergreen forest (Boyer, 1973). Agroforestry management involves the combination of different vegetation strata and species (including shade trees) and is gaining advocacy in the context of global crises such as climate mitigation, adaptation and biodiversity loss. Agroforests can also contribute to the restoration and maintenance of soil health in cacao production systems (Jose, 2009). In the second half of the 20th century monocrop plantations have been introduced as the main production model for cacao. However, nowadays cacao AFS receive renewed interest (Blaser et al., 2018;Niether et al., 2020). Shading is especially crucial in the establishment phase of cacao production (de Almeida and Valle, 2007), but higher yields have been reported when shade is progressively removed during production plateau (Ofori-Frimpong et al., 2007;Blaser et al., 2017) as cacao trees have a high self-shading capacity once mature (Hartemink, 2005). Nonetheless, agroforestry systems are nowadays increasingly promoted by supply chain actors to improve the sustainability of cacao production systems (Blaser et al., 2018;Niether et al., 2020). The selection of shade tree species for cacao agroforestry systems is a critical step determining the performance of the cacao production system but has been poorly studied, especially when it comes to effects on soil health (Niether et al., 2020). Both Steffan-Dewenter et al. (2007) and Niether et al. (2020) highlight that the effects of shade trees are highly context-dependent and influenced by species' specific traits that affect interactions with the main crop due to resource competition and complementary. Therefore, although shade trees offer a number of key services, little is known about the effects of the presence and species of shade trees in cacao cultivation on soil functions and the net impacts on crop productivity (Marshall, 2004;Niether et al., 2020).The term soil health refers to \"the continued capacity of a soil to function as a vital living system, within ecosystem and land-use boundaries, to sustain plants, animals and humans\" (Doran and Zeiss, 2000). A healthy soil supports multiple soil functions: carbon cycling and storage, nutrient cycling, contaminant mitigation, pest control, water regulation and plant production (Creamer et al., 2022). Soil health is an abstraction of a holistic concept that cannot be measured directly (Janzen et al., 2021). Instead, we assess soil health based on sets of indicators that are proxies of soil processes relevant to the abovementioned soil functions. Indicator sets and assessments allow monitoring of soil health within agroecosystems, in response to different management strategies, and inform interventions to be implemented to restore and maintain soil health (Bünemann et al., 2018). Soil health integrates biology, physics, and chemistry, therefore any indicator set aimed at assessing soil health should ideally reflect all three aspects (Creamer et al., 2022). Most indicator schemes to assess soil health focus on temperate climates and annual cropping systems or pastures, yet few existing approaches for monitoring soil health have been applied to cacao (or other tropical perennial crops) rising to contextualise them for applicability in these production systems (Amponsah-Doku et al., 2022). Tropical perennial systems, such as cacao, distinctively rely on the substantial recycling of tree biomass into surface litter, which is crucial for maintaining soil health by enhancing organic matter content and nutrient cycling (Asigbaase et al., 2021).Over the past decade, a number of studies have assessed biological aspects of soil health in cacao plantations, expanding beyond traditional chemical and physical indicators. For example, Rousseau et al. (2012) explored soil macrofauna assemblages as a soil health indicator within cacao agroforestry systems in Costa Rica. Alfaro-Flores et al. (2015) reported that in Bolivia's \"Alto Beni\" region, agroforestry and fallow plots exhibit higher soil microbial biomass than monoculture cocoa farms, with no significant difference between organic and conventional management. In Peru, Buyer et al. (2017) found that soil microbial communities in cacao plantations are significantly affected by agroforestry management and cover cropping. Natural agroforestry systems altered less the microbial community structures compared to soils in slash-and-burn methods, and specific cover crops, like centro (Centrosema macrocarpum) and perennial peanut (Arachis pintoi), were found to alter bacterial ratios and fungal biomass. Yao et al. (2021) conducted a study in West Africa assessing carbon and macronutrient cycling in cocoa and teak (Tectona grandis) plantations using indicators such as leaf litterfall, carbon and macronutrient inputs, and soil chemical and microbial parameters. This study highlighted the importance of integrating trees that provide quality litter for enhanced cocoa nutrient availability and accelerated soil carbon storage. Further supporting this approach, a study by Koné and Yao (2021) in Ivory Coast demonstrated that mixed tree species stands, like agroforestry systems, can parallel natural forests in maintaining soil organic carbon stocks and microbial activity, underscoring their potential in the development of sustainable timber systems in West and Central Africa. These studies collectively emphasize the utility of biological indicators in detecting variations in soil health due to agroforestry, meanwhile highlighting a pivotal shift towards more sustainable cocoa farming practices that prioritize both crop yield and environmental conservation.. However, these studies place less emphasis on the impact of shade tree arrangement and young agroforestry trials on soil health, leaving a knowledge gap.Our study was aimed at quantifying the effect of different shade tree species and species arrangements on soil health and its relations to cacao production in a young plantation situated in the Ecuadorian Amazon. Special attention was placed on the role of different shade tree species (representing legume, fruit or timber trees, or combinations) and effect of distance of the shade trees in affecting: i) litter composition and soil health at different distance from the shade tree in cacao agroforestry systems, ii) the spatial tree diversity within the productions systems and iii) indicators with relevance for the following soil functions were prioritized in this context: nutrient cycling, carbon concentration, contaminant mitigation and cacao pod yield. The objective of this study was to evaluate a set of soil health indicators, that include biological, chemical, and physical aspects, and are linked to one or more soil functions in cacao agroecosystems. Another key objective was to determine which indicators are sensitive to changes in management, in particular different shade tree arrangements in a young agroforestry system, and to assess whether the proximity to these shade trees influences these indicators. We hypothesized that: i) the early effects of shade tree species on key soil functions are most prominently captured by soil biological indicators; ii) the inclusion of shade trees, especially leguminous trees, in a low-input organic cacao production system has a positive impact on cacao yields; iii) soil health indicator values change with distance from the shade trees and this effect can be related to differences in shading, litter quality and quantity.The study was carried out in the Northeastern part of the Ecuadorian Amazon region in an existing replicated field experiment established in 2015 at the Central Amazon Research Center (ECCA) of the Instituto Nacional de Investigaciones Agropecuarias (INIAP). The trial is located at Joya de los Sachas in the province of Orellana (0 • 21′31.9\"S, 76 • 51′51.1\"W; 265 m asl.). Mean annual temperature is 24.0 • C with variation of 1.3 • C and a mean annual precipitation of 3217 mm, corresponding to an Köppen-Geiger climate classification of tropical wet (Aw). The soil at the site has been classified as an Alfisol, according to USDA Soil Taxonomy (López et al., 2021). The soil texture was characterized as a clay loam (22.7% sand, 37.5% clay) in the top layer of the A horizon, changing to silty clay (15.5% sand, 42.3% clay) in the AB horizon (Table 1). The soil was slightly acidic, with an average pH of 5.4 and SOM content of 87.6 g kg − 1 in the A horizon. The trial includes four different treatments (low input organic, high input organic, high input conventional and medium input conventional). The current study only focused on the low-input organic treatment. Organic inputs for this treatment are mostly derived from internal resources such as litter fall and prunings from cacao and shade trees, which is representative of smallholder practices in the area.The shade treatments were established in a domized Block Design (n = 3) in 2015, in an area that was previously under oil palm production. All shade trees were recently planted and carefully chosen for their functional significance in the local context, including fruit production, nitrogen fixation, and wood production. The shade treatments consist of four agroforestry systems: \"timber\" (Cedrelinga cateniformis Ducke; a leguminous timber tree also/locally known as tornillo or cedrorana), \"fruit\" (Bactris gasipaes; peach palm), \"N-fix\" (Erythrina velutina Wild; a widely used leguminous shade tree) and \"mixed\" (C. cateniformis + E. velutina). A fifth \"control\" treatment is included (monoculture without shade; MONO). Shade tree spacing in the agroforestry systems was 12 × 12 m in timber and fruit, and 6 × 6 m in Erythrina. Cacao trees were newly planted at a density of 3 × 3 m. Net plots contained 6 cacao plants and were surrounded by 3 rows of cacao plants as borders (Fig. 1 and 2). The cacao cultivars in the trial are two national clones EET 95 and EET 103, alternated in strips (Fig. S1). Differences between cacao genotype were not determined in this study. The cacao trees received 0.5 kg Ecoabonaza\" (organic fertilizer with chicken manure) and 0.35 kg lime per tree before planting. No pesticides were applied. Pruning of the cacao trees is carried out biannually, with the clippings subsequently redistributed across the soil. Shade trees were pruned once per year and weed was controlled with a weed wacker monthly. Harvest took place manually once per month.The selection of indicators was driven by both practical and scientific considerations as the predictor should be meaningful, robust, interpretable, sensitive, low-cost and relatively easy to measure considering local field and laboratory conditions. We identified indicators that included at least one or more biological, chemical, or physical soil indicators, with a particular emphasis on those that provide information about the following soil functions: nutrient cycling, carbon concentration, contaminant mitigation (cadmium) and primary production. We conducted measurements of the biological indicators (potential soil and litter respiration, total macrofauna and earthworm abundance, and taxonomic richness and Shannon diversity of macrofauna); chemical indicators (pH, cation exchange capacity (CEC), total soil organic carbon (SOC), total nitrogen (N), macro and micronutrients and cadmium (Cd)); Fig. 1. Visual representation of the experimental trial in northern the Ecuadorian Amazon, which aimed to evaluate the performance of different shade tree arrangements on predictors of soil health and cacao productivity. The satellite image indicates the location of the experimental sites where the agroforestry systems were amended traditionally, while the tree icons indicate the type of agroforestry system within the sampled plot. The treatments consist of five agroforestry systems which are distinguished as: \"monoculture\" (without shade trees; control), \"timber\" (Cedrelinga cateniformis Ducke; a leguminous timber tree also/locally known as tornillo or cedrorana), \"fruit\" (Bactris gasipaes; peach palm), \"N-fix\" (Erythrina velutina Wild; a widely used leguminous shade tree) and \"mixed\" (C. cateniformis + E. velutina).and physical indicators (bulk density and water holding capacity). Furthermore, we assessed nutrient and trace metal levels in cacao leaves and litter.Soil, litter and leaf samples were collected in October 2019. In total, 15 plots were sampled (5 shade tree treatments x 3 replicate blocks). To account for the effects of distance from the shade trees on litter and soil characteristics, samples were taken around the cacao trees at two different locations within the net plot (~2 m and ~ 6 m from the shade tree). In the monoculture \"control\" plot, samples were taken in the center of the net plot (Fig. 2). Soil and litter samples were taken on opposite sides of the selected cacao tree (in an angle of 180 • ). Sampling was conducted within the rooting zone of the tree, at 60 cm from the trunk, as closer to the trunk of the cacao tree roots are not abundantly. First, surface litter was collected using a 20.3 cm diameter circular sampling frame after removal of living biomass. Then, the underlying soil was collected at depths of 0-7.5 cm and 7.5-15 using a spade. Litter and soil samples from the same tree were individually combined, yielding one composite soil sample and one composite litter sample per layer for each cacao tree. Additionally, the second pair of mature leaves on a flowering branch was collected in four cardinal directions, to obtain a total of 8 leaves per plant (2 leaf samples per plot) for foliar analysis. Immediately after sampling, field moist soil samples from the first soil depth were homogenized and split into two subsamples. About 250 g of moist soil was stored in a cooler with ice for transport to the laboratory. The remaining soil, leaf and litter samples, were transported at ambient temperature. Pod yield data for the years 2017, 2018, 2019 were collected as follows: Pods were collected once every month during the period January-September for 9 out of 144 cacao trees per plot. Fresh pod weight in kg per plant was recorded. Shade cover in the different shade trees (at two distances) was estimated using a spherical densitometer. Readings took place in the week of 21-26 October 2019, always by the same person to avoid bias. The device was held level above the cacao tree and the number of uncovered blocks on the mirror were counted. On each location four readings were made facing north, east, south, and west. Later, the average was calculated to determine overstory density (%).Soil macrofauna community abundance and diversity were assessed using the Tropical Soil Biology and Fertility (TSBF) method (Anderson and Ingram, 1993), with a modified sampling design considering small experimental plots. A soil monolith (25 × 25 × 20 cm deep) was excavated with a flat shovel adjacent to each sampled tree (two per plot) and put in a bag (Fig. 2). All macrofauna visible with the naked eye (>2 mm) was hand-sorted in a nearby barn and stored in 70% ethanol (or 4% formalin for earthworms). Blocks 1 and 2 of the trial had extremely high densities of ants dominated by the species Nylanderia fulva; commonly known as \"crazy ants\". Therefore, for practical reasons, we collected 100 ants from each monolith with >100 ants present, which refers to an equivalent of >1000 (ind. m − 2 ) . All macrofauna was transported in a cooler to the lab. Specimens from each sampling point were identified, generally, to the order level (depending on the taxonomic group), for calculation of diversity indices and further analyses. Macrofauna abundance and diversity were expressed as taxonomic richness (S, number of distinct taxonomic groups) and Shannon Index (H; Shannon, 1948).Potential soil respiration (CO 2 evolution during incubation under standardized conditions, homogenized soil sample, optimal temperature, and moisture) is used as indicator for microbial activity. This indicator was measured following a modified method from Hess and Schmidt (1995). Air-dried soil samples from the first soil layer were homogenized by passing 50 g of soil through a 2 mm sieve for removal of debris and large particles. The moisture content of dry soil was then gradually adjusted to 60% of the water holding capacity (determined by adding water to an approx. 50 g dry soil sample with a plant sprayer until the soil appeared shimmering and water was noticeably accumulated in the openings). The re-wetted soil was subsequently transferred to polyethylene bottles (300 mL), sealed with parafilm and stored in a dark place at constant temperature (23 • C). The bottles were opened for 10 min prior to each measurement to refresh the headspace. A Go Direct® CO 2 Gas Sensor was used to determine increase in gaseous CO 2 concentration in the headspace (ppm CO 2 s 1 ) of the bottles. Measurements were repeated at 24, 48, 72 and 96 h time intervals and lasted for 10 min. To avoid the disturbance effect due to rewetting, we excluded the measurements taken after 24 and 48 h from the data set and focused on respiration measurements once the CO 2 curve had stabilized following the first flush of gas (Pulleman and Tietema, 1999). The C respiration in μg C-CO 2 per gram dry soil per hour was calculated applying the following formula: where 0.273 is the conversion factor from C to CO 2 in mg.Bulk density (BD) and gravimetric soil moisture content (W) at the time of sampling were measured at a depth of 10 cm by inserting PVC rings (diam. 7.5 cm; height 7.8) into the center of this layer capturing undisturbed soil using one of the sides of the pit following excavation of the monoliths. This resulted in a total of two measurements per plot (one per cacao tree). The ring was then placed in an air-tight plastic bag within a protective container for transport. Soils in the PVC rings were carefully removed by cutting the edge of the ring with an iron saw. The diameter of each ring was measured (in cm) prior to its removal. The moist soil held by de ring was then weighed and a representative subsample (40 g) was used to determine the gravimetrical moisture content by oven drying at 105 • C until constant weight. The subsamples were used to determine dry weight of the moist samples in the rings. Rocks and large roots from each ring were dried and weighed separately. Then, the calculated dry soil weight (g) was divided by the soil volume (cm 3 ) to calculate bulk density (g.cm − 3 ).The disturbed soil samples (see Section 2.2) were air-dried, manually crushed and sieved (< 2 mm) prior to determination of nutrient availability and other chemical soil properties. Soil pH was measured in deionized water (1:2.5) after 30 min of equilibration. Availability of soil macro-, micro-nutrients and Cd was quantified by ICP-OES after Mehlich III extractions (Mehlich, 1984). Analyses included phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulphur (S), zinc (Zn), copper (Cu), iron (Fe), cadmium (Cd). Total soil carbon (TSC, also known as TOC) and total soil nitrogen (TSN) were quantified using dry combustion. This process involved using 150 mg of dry soil, which was homogenized through a 250 μm sieve to create a uniform and testable sample. We employed a CN Analyzer (Elementar Analyzer, Germany) for the analysis.The total weight of the litter samples collected in the field was measured when still moist and corrected for moisture content (see below) to calculate dry litter mass per m 2 present in the field at the time of sampling. One part of the moist litter sample was directly stored in the fridge for 30 d until further analysis. Potential litter respiration was measured following the same protocol mentioned for soil samples (Section 2.4), but adjusted for fresh organic material using the method described in Pulleman and Tietema (1999). A fixed amount of moist litter, corresponding to 4.4 g of dry weight, was brought to the desired initial gravimetric water content of 272% by adding demineralized water using a plant sprayer. Measurements of respiration lasted 10 min as described above for soil respiration measurements.The cacao leaves were cleaned in a bath of deionized water prior to drying and processing. The remaining part of the litter sample and the cacao leaf samples were oven-dried at 60 • C until stable weight. Dry litter and leaf samples were ground and sieved (850 μm) before determination of total element concentrations. In short, 350 mg of tissue was weighed in a 50 mL reaction tube. Then, samples were digested with 6 mL of concentrated HNO 3 and 1 mL of H 2 O 2 . The samples were left to digest for 12 h at 80 • C in an open digestion system (DigiPREP, SCP Science). Macro and micronutrients and trace metals were than quantified by ICP-OES. 50 mg of pulverized material (< 2 mm) were used to prepare a homogeneous testable sample to determine total carbon (TC) and total nitrogen (TN) content through dry combustion using an CN analyzer (Elementar Analyzer, Germany).Lignin concentrations in litter was measured using the Klason method in which lignin is determined as 'klason lignin' by quantifying the wood component insoluble in a 72% sulphuric acid solution (Kirk and Obst, 1988). No pre-treatment, such as ethanol-benzene or 80% aqueous ethanol (1:2), was applied for lignin determination as the effects of different pre-treatments are still widely disputed (Toda et al., 2015). The concentrations of extracted total polyphenol were determined according to method described by (Anderson and Ingram, 1993), after extraction with 20 mL methanol. Briefly, 0.75 g of litter was weighted into a 50 mL glass tube. Then, 20 mL of a 50% methanol solution was added. Accordingly, the tube was covered with parafilm and placed in a water bath at 70-75 • C for 1 h. The extract was then filtered.In a new flask were then Folin-Denis reagent, sodium 17% carbonate, the extract and water well mixed and put to rest for 20 min. Afterwards the absorbance of the extracts was measured at 761 nm using a UV-VIS spectrophotometer (Biotek synergy HT).All analyses were carried out using JMP pro 14.0.1 software package (SAS Institute 2015). Data analyses involved all soil, leaf and litter samples taken from the 5 different agroforestry treatments and 3 blocks, at 2 distances nested within the main plots (n = 33). Before starting any analyses, an ANOVA was used to rule out any block effect on leaf, litter, and soil indicators. Then, a mixed model approach was applied to examine the main and interaction effects of the treatments (Treat.; fixed factor) and distance from the shade trees (Dist; a random factor to account for spatial autocorrelation) on the different soil health indicator values, litter quality and quantity, shade cover and leaf nutrient content.Additionally, ANOVA was used to see if distance had an immediate effect on the C and N contents in the soil samples from different depths. This was not the case. Two-way ANOVA was used to explore relationships between soil C and N contents, Treat. and soil depth, to understand the impact of shade tree arrangement on these soil health indicators. Fixed factors included Treat., soil depth and Treat. by soil depth interactions. Where there were significant effects of Treat., interactions between Treat.*Dist. and Treat.*depth, Tukey post-hoc analysis (α = 0.05) was carried out. Another mixed model approach was applied to examine the main and interactive effects of treatment (Treat.) on cacao yield of 2017, 2018 and 2019 and block effect (as random factor). A principal component analysis (PCA) was performed to identify which soil health indicators and litter characteristics are most strongly associated with each other, determine which of those variables contribute most to the variation in the data, and how they related to the different agroforestry arrangements of the trial. When needed, data was log transformed to comply with statistical assumptions of homoscedasticity and normality of the residuals. This was done for i) Litter: K, Cd, polyphenols, respiration (96 h), ii) Leaf: P, Fe, Zn and Cd and iii) Soil: K, P, Zn, Cd and respiration (76 h), species richness, total macrofauna, macro fauna diversity and earthworm abundance.Shade cover at the time of sampling varied from 0 to 65%, depending on shade tree treatment (p < 0.001; Table 2). A clear effect of distance on shade cover of the cacao trees was observed, except for \"N-fix\". Estimated shade cover at 2 m from the shade tree was largest for the \"N-fix\" and \"fruit\" treatments (51% and 22%, respectively), and further decreased in the order \"timber\" = \"mixed\" > \"control\". At 6 m distance the shade cover followed the order \"N-fix\" > \"fruit\" = \"mixed\" = \"timber\" > \"control\". There was no interaction effect of treatment and sampling distance on shade cover.Litter dry weight, C/N ratio and macronutrient content were not significantly affected by treatment or sampling distance (Table 2). The average litter dry weight was 11.1 Mg ha − 1 and litter contained 275C, 19 N, 1.5 P, 5.3 K (g kg − 1 ). Concentrations of Zn (p = 0.027) and Cd (p = 0.038) in litter differed significantly among treatments with concentrations being highest in the \"control\" with only cacao trees (178 and 17.5 mg kg − 1 , for Zn and Cd respectively) and lowest in \"N-fix\" (130 and 5.5 g kg − 1 , respectively), but no distance or interaction effects were found.Potential litter respiration taken as point measurement after 96 h differed (p = 0.047) among treatments and was marginally significant after 168 h (p = 0.062; Fig. 3 & S2). Moreover, distance affected potential litter respiration after 168 h (p = 0.013). Overall, potential litter respiration rates were higher in samples collected closer to the shade trees than in the samples that were taken at larger distance. There was no interactive effect of shade tree and distance on potential litter respiration.A total of 2899 macro-invertebrates were collected, representing 15 different taxonomic groups (Table S1). Samples from two out of the three blocks were infested by ants with counts of more than >1000 individuals per m 2 . This specific ant was identified as Nylanderia fulva Mayr (1862), commonly known as crazy ant. When excluding crazy ants from the total macrofauna count, we counted a total of 376 specimens of arthropods and earthworms. The most abundant groups were Annelida (earthworms, 61.6%) and Hymenoptera (wasps, bees and ants, 15.9% of total individuals). All other taxonomic groups, including Isopoda (woodlice), Chilopoda (Centipedes) and Coleoptera (Beetles) counted each for <5% of total abundance.Earthworm abundance was affected by shade trees (p = 0.043), such that earthworm abundance was a factor 3.2 higher in \"mixed\"Means and standard errors for shading and litter data observed in the different cocoa agroforestry systems (n = 5). P-values for the effect of treatment (Treat.), Distance (Dist.) and their interaction (Int.) are provided. Samples were taken in October 2019 in a cocoa agroforestry trial in Coca, Amazon, Ecuador. Means followed by the same letter in the column do not differ as per the Tukey test (α = 0.05). Shaded headers indicate treatments that include legume trees. **Ca, Co, Mn, Cu and S were collected in this study but were not displayed in the main analyses as focus was placed on the macro and common micronutrient discussion, there were no significant differences found for these nutrients in this mixed model analyses. Al was not reported as result returned by ICP, furthermore Al results were also not reliable according to the reference sample. Na and Mo were reported but mostly below detection limit. (n.d = non defined).agroforests as compared to \"control\" monocultures. Earth worm abundance was not affected by distance from the shade trees nor by the interaction between the two (Fig. 3; Table 4). Treatment and distance did not influence macrofauna diversity, taxonomic richness, or other indicators of macrofauna abundance (p > 0.05). Taxonomic richness (number of orders) ranged from 4 to 6 taxa per monolith, while diversity, based on the Shannon Index (H), ranged from 0.57 to 0.90 per monolith.Potential soil respiration, as measured in lab conditions, was significantly affected by shade tree after 72 h (p < 0.01) and 96 h (p < 0.01; Fig. 3). After 96 h, soil respiration was a factor 1.43 higher in the \"timber\" treatment compared to the \"control\". These findings are consistent with respiration rates at 72 h. There was no effect of distance or its interaction with tree species on soil respiration (p > 0.05).Carbon and N contents and C/N ratios were analysed in two soil layers and showed significant depth effects (P < 0.01; Table 4). The C and N content in the first soil layer was two-fold greater than in the deeper soil layer in all treatments, but we found no effect of treatment on soil C and N content in both 0-7.5 and 7.5-15 cm layers.The soil C/N ratio varied (p = 0.021) with soil depth (D) and with treatment. The C/N ratio of the first soil layer was a factor 1.28 higher in \"fruit\" agroforestry systems as compared to \"mixed\". Moreover, higher C/N ratios were found in the upper soil layer (11.2 on average) compared to the deeper layer (7.9 on average) in all treatments. Tree species did not affect C/N ratio at the 7.5-15 cm depth. Total soil N was on average 4.7 (±0.13) g N kg − 1 in the first soil layer (Table 4), and Mehlich 3-extractable macronutrient concentration was on average 29.1 (±1.63) g P kg − 1 , 0.54 (±0.04) g K kg − 1 and Fe and Zn were 156.4 (±3.7) and 4.7(±0.32) mg kg − 1 , respectively, with no treatment effect for any of the measured nutrients (Table 3). Average Mehlich 3-extractable Cd in the soil across all treatments was 0.3 (±0.01) mg Cd kg − 1 . Nutrients and Cd were not significantly affected by treatment, distance, nor their interaction.Bulk density in the first soil layer was on average 0.73 g cm − 3 and the water holding capacity was 48% (gravimetric) across treatments (Table 3). Bulk density and the water holding capacity were not significantly affected by treatment, distance, nor their interaction.Relations between the litter characteristics, soil health indicators and shade trees were explored through principal component analysis (PCA). Each principal component (PC) was interpreted according to the magnitude of their eigenvalues (Fig. 4). The first principal component (PC1) explained 34.4% of the variance in the data and was mainly associated with litter parameters, such as litter respiration (0.97), lignin content (0.91), N content (− 0.96), C content (− 0.91) litter dry weight (− 0.98), but at the same time also strongly associated to chemical soil health indicators such as pH (0.92) and CEC (0.91). Litter dry weight, C and N concentrations clustered mostly around \"N-fix\", while soil biological parameters seem to cluster in the opposite direction of the cacao monocultures (\"control\"). Cadmium content in soil and litter appears to cluster with the cacao monocultures. The second principal component (PC2) explained 27.2% of the variance in the data and was mainly associated with soil health indicators, mainly positively with biological indicators such as macrofauna diversity (0.95), earthworm abundance (0.73) and macrofauna richness (0.71) and negatively with soil Cd (− 0.81). Litter characteristics and soil health indicators do not seem to cluster in clear separated groups.A significant variation in foliar nitrogen (N) content was observed across different treatments (p < 0.01, Table 5). Specifically, lower foliar N contents were recorded in both the \"control\" (20.3 g kg − 1 ) and \"fruit\" treatment (20.0 g kg − 1 ) as compared to the \"N-fix\" treatment (25.7 g kg − 1 ). No significant single or interactive effects of treatment and distance were found for other nutrients. Average foliar nutrient contents were 1.18 (±0.03) g P kg − 1 and 79.11 (±4.99) mg Fe kg − 1 , which is under the optimal value of 2 g kg − 1 and 175 mg kg − 1 as indicated by van Vliet and Giller (2017, Table 14). The foliar Cd content, averaging 10.87 (± 0.83) mg kg − 1 , exhibited no variation across treatments (p = 0.556).No difference was observed between the agroforestry systems (p = 0.667; Table 6), nor did we find a block (p = 0.338) effect on cacao bean yield of all 3 years establishment. Pod counts between year 2 and 5 after planting was variable in time, with 2018 showing the highest yields. Average pod production was 47 kg ha − 1 , 515 and 142 kg ha − 1 in 2017, 2018 and 2019, respectively.Means and standard errors for biological, chemical and physical soil health indicators observed in the different cocoa agroforestry systems (n = 5). P-values for the effect of treatment (Treat.), Distance (Dist.) and their interaction (Int.) are provided. Samples were taken in October 2019 in a cocoa agroforestry trial in Coca, Amazon, Ecuador. Means followed by the same letter in the column do not differ as per the Tukey test (α = 0.05). Shaded headers indicate treatments that include legume trees. Giller, 2017;Wessel, 1970). **Ca, Co, Mn, Cu and S were collected in this study but were not displayed in the main analyses as the focus was not mainly on chemical soil analyses, there were no significant differences found for these nutrients in this mixed model analyses. Al was not reported as result returned by ICP, furthermore Al results were also not reliable according to the reference sample. Na and Mo were reported but mostly below detection limit.C/N ratio, C & N content in the 0-7.5 cm, 7.5-15 layers in soils under different cocoa agroforestry systems in Coca, Amazonia, Ecuador (means). P-values for the effect of treatment (Treat.), Soil depth and their interaction (Int.) are provided. In each treatment, lowercase letters compare means on the columns. Means followed by the same letter in the column do not differ as per the Tukey test (p < 0.05). Shaded headers indicate treatments that include legume trees. Our findings showed that agroforestry influenced some of the biological soil health indicators, mainly earthworm abundance and soil respiration, even at early stage of establishment (5 years). Yet, other important physical and chemical soil health indicators were not affected by agroforestry systems. This confirms our first hypothesis that the early effects of shade tree species on soil health are mostly captured through biological soil indicators. Earthworms' abundances were a factor three higher in cacao intercropped with C. cateniformis + E. velutina than in the cacao monoculture. Similar findings were found in a coffee agroforestry in Costa Rica, where earthworm abundance was lowest in the organic monoculture system compared to the organic agroforestry systems with either Erythrina poepiggiana or Terminalia amazonia trees (Johnson-Maynard and Lugo-Perez, 2006). This positive effect of shade trees on earthworms and soil respiration may be explained by a higher litter quality in the system as compared to monoculture cacao. For instance, Cesarz et al. (2007) demonstrated in their study that earthworm density and diversity is generally positively correlated with tree species diversity, reflecting the importance of litter quality attributes for decomposer fauna. Despite the minimal variation in litter quality across treatments observed in our study, possibly because of the homogeneous litter layer dominated by cacao leaves, our data indeed suggests that shade trees can influence litter respiration. For instance, the highest rate of litter respiration was recorded in the plot with C. cateniformis, a leguminous timber tree species. This species may provide a more nutritionally rich litter layer, potentially enhancing the food source and therefore presence for earthworms as observed in the \"mixed\" treatment.Potential soil respiration was a factor 1.4 higher in agroforests that contained only C. cateniformis or B. gasipaes trees compared to \"control, indicating that shade tree species may provide better quality litter inputs than cacao only, thus stimulating soil microbial activity and nutrient cycling compared to unshaded cacao. Lori et al. (2022) found similar results in a 15-year-old cacao trial in Boliva, where organic management within a long-term agroforestry trial significantly enhanced the microbial community diversity in comparison to conventional monoculture. It's plausible that soil respiration rates are elevated in agroforestry systems due to enhanced temperature regulation coupled with a greater quantity and diversity of litter, these factors collectively foster an optimal niche, promoting a more varied microbial community (Araújo et al., 2014;Rodrigues et al., 2015). A more diverse microbial community with more abundant microbial community can result in higher respiration rates in agroforestry systems. It would therefore be recommended to test in a future study the total microbial biomass and community composition to better understand the dynamics between agroforestry systems and varying respiration rates in soil and litter layer within this study. We expected that N-fixing species (C. cateniformis and E. velutina) would have a greater positive effect on biological soil indicators, compared to other treatments, but this was not confirmed in our study. While potential respiration trends somewhat aligned between litter and soil in response to treatments, an anomaly arose with the 'nfix' and 'control' treatment. This suggests that the influence of shade trees on litter respiration in some cases may directly impact soil respiration. Such linkage carries implications for soil health, as the litter layer plays a pivotal role as an interface connecting above-ground and belowground ecosystems.Means and standard errors for leaf data observed in the different cocoa agroforestry systems (n = 5). P-values for the effect of treatment (Treat.), Distance (Dist.) and their interaction (Int.) are provided. Samples were taken in October 2019 in a cocoa agroforestry trial in Coca, Amazon, Ecuador. Means followed by the same letter in the column do not differ as per the Tukey test (α = 0.05). Shaded headers indicate treatments that include legume trees. Argüello et al., 2019 (Section 4.3). **Ca, Co, Mn, Cu and S were collected in this study but were not displayed in the main analyses as focus was placed on the macro and common micronutrient discussion, there were no significant differences found for these nutrients in this mixed model analyses. Al was not reported as result returned by ICP, furthermore Al results were also not reliable according to the reference sample. Na and Mo were reported but mostly below detection limit. (n.d = non defined).Means and standard errors for cacao pod yield data observed in the different cocoa agroforestry systems (n = 5). P-values for the effect of treatment (Treat.), block and their interaction (Int.) are provided. Samples were taken in October 2019 in a cocoa agroforestry trial in Coca, Amazon, Ecuador. Means followed by the same letter in the column do not differ as per the Tukey test (α = 0.05). Shaded headers indicate treatments that include legume trees. Shade trees had no effect on the selected chemical and physical soil health indicators, except C/N ratio in the upper soil layer (0-10 cm). Our results demonstrate that agroforestry systems influence soil health first through changes in biological indicators which over time could potentially lead to alter soil physical-chemical parameters and impact agronomic traits in cacao. For instance, a continued high earthworm density during a prolonged period of time may greatly influence soil organic matter dynamics and soil structure and associated physical conditions in a plot which positively affects nutrient cycling and plant uptake (Barois et al., 1999). However, the impact of shade trees on soil health can vary greatly between scientific studies. For instance, our results align with finding of Ayres et al. (2009) who confirmed in their study conducted in the Southern Rockey Mountains, North America, that tree species traits mainly influenced leaf litter quality, soil respiration, and macrofauna abundance. Contrastingly, de Souza et al. ( 2012), who compared a 13year-old coffee monoculture with agroforestry systems with differing shade-tree arrangements in the Atlantic Forest biome of Brazil, found that chemical and biological soil health in agroforestry systems did not differ significantly from full-sun coffee production systems.We hypothesized that soil health indicator values differ with distance from the shade trees and this effect can be related to differences in shading, litter quality and quantity. Recent studies confirm that soil health indicators could be affected by tree species in the agroforestry systems and the distance of the cacao to the shade tree (Niether et al., 2020). Nevertheless, our results showed that distance from the shade tree did not s change leaf, litter or soil health indicators. This finding could be attributed to the fact that cacao trees produce a substantial amount of litter (5-10 t/ha/y; van Vliet and Giller, 2017). However, litter samples closer to the shade tree showed overall higher microbial respiration compared to amples taken further away, after one week of incubation. A higher litter respiration rate implies greater microbial activity and decomposition activity within the litter layer. This may affect nutrient cycling, ecosystem productivity, carbon emissions, and soil health, contingent upon the broader ecological context and prevailing environmental conditions. As a result, it raises the possibility that, over time, proximity to certain shade trees (such as C. cateniformis and E. velutina) may increase nutrient availability in the soil. For instance, in a global meta-analysis on agroforestry, Ma et al. (2020) highlight that beside tree-biomass also the soil organic carbon stock in agroforestry systems (relative to cropland or pasture) increases with tree age and that such patterns vary with tree species richness and regional climate. However, this finding was not observed in the soil samples analysed in our study .The planting density of E. velutina within the \"N-fix\" treatment was higher than in the other treatments, which explains the elevated shade level observed within the treatment which could cause competition effects with cacao for other sun and essential nutrients (Blaser et al., 2018). Nonetheless, agroforestry treatments did not affect cacao yields, however the shade tree species arrangements impacted foliar nutrient content of cacao trees. For instance, foliar N content of cacao trees grown in the agroforest with only E. velutina trees was overall a factor 1.3 higher than foliar N content of cacao trees in the monoculture (\"control\") or agroforests with the fruit tree B. gasipaes. This might result from biomass inputs of the E. velutina trees. For instance, the higher N content in the leave tissue could be caused by the N-fixing capacity of the E. velutina shade trees in this system and the higher density of these trees compared to other arraignment. Oelbermann et al. (2004), who studied the decomposition of E. poeppigiana in alley cropping systems in Costa Rica, observed that N inputs ranged from 73.84 kg ha − 1 in younger productions system (< 5 years) to 220.85 kg ha − 1 in full grown production systems (> 15 years). Hence, tree species from the Erythrina genus can contribute significantly to both SOM storage and to the N capital of soils leading to higher N available for uptake compared to cacao monocultures (Heuveldop et al., 1988).Foliar nutrient analyses indicated a deficiency of P and Fe in the cacao leaves of all treatments, based on indicative references provided by van Vliet and Giller (2017). To achieve high productivity, cacao requires a soil with adequate levels of nutrients, however there is still a lack of knowledge on the impact of nutrient concentration on plant yields in cacao, particularly Fe. Soil pH affects the availability of nutrients, especially P, the optimum soil pH recommended to sustain adequate cacao growth is ~6.7 (Hartemink, 2005). However, most cacao soils, including the one analysed in our study, are more acidic mainly because the pedogenesis of soils in hot and humid environments (such as the one in the Amazon). Moreover, cacao cultivation tends to result in soil acidification because cacao trees, including their leaves, contain significant amounts of organic acids (Ahenkorah et al., 1987). These organic acids gradually contribute to soil acidity over time. Researchers have reported that cacao can tolerate acid soil pH provided that the supply of nutrients should be adequate (Wood, 1985). We further found that foliar Cd levels were not affected by shade trees and are too high which poses a risk for cacao farmers. Cadmium in cacao leaves is considered a good proxy for bean Cd (Shanying et al., 2017;Barraza et al., 2017). The elevated Cd content in the beans poses challenges for smallholder farmers in selling their produce, primarily due to food safety regulations (Argüello et al., 2019).Shade tree treatments did not affect cacao yields. Agroforestry systems have been reported to differ in yield by Blaser et al. (2018) andde Heuvels et al. (2012), both studies indicated that this is mostly due to differences in shading intensity in the plots. Nevertheless, the management of nutrients can significantly influence the relationship between shade tree density and cacao yields, a pattern that has also been observed in coffee cultivation (Pulleman et al., 2023). The latter is also in line with a study performed by Jacobi et al. (2015), who found that organically managed successional or simple agroforestry systems did not impact annual cacao production compared to monoculture systems in Alto Beni, Bolivia. Plot age in their study varied from 9 to 14 years. The lack of a yield effect in our study might also be explained by the young age (5 years) of the plantation. Cacao yields usually stabilize when the plants are more mature (>5 years; Lass and Wood, 1985), meaning that effects of the added shade trees on the cacao yields might become more prominent over the years (de Heuvels et al., 2012). We observed that cacao yields were very variable over the last 3 years (2017-19), with 2018 being the peak year. Several factors determine the actual yield of cacao, causing that yields generally strongly differ from site to site even within plantations (van Vliet and Giller, 2017). Further research is therefore needed to understand in greater details which mechanism influence cacao yield in agroforestry systems over time.In our study, we assessed various indicators to gauge their relevance in understanding the impact of shade trees on soil health and cacao production. At the forefront of usefulness, we report that earthworm abundance and soil respiration provided critical insights. These indicators showed the ecological conditions of the soil and microbial activity for better understand nutrient cycling and soil structure. Additionally, foliar nutrient content analysis played a pivotal role in optimizing cacao productivity by offering insights into nutrient availability. Chemical and physical soil health indicators, while not showing significant differences between treatments, contributed to a comprehensive view of soil health. Despite minimal variation in our study, the assessment of litter quality and quantity held relevance for long-term considerations of nutrient inputs and decomposition. Finally, monitoring Cd levels, crucial for food safety compliance, addressed a specific concern but was somewhat less directly related to the broader assessment of soil health. These findings collectively provided a nuanced understanding of the complex interactions within agroforestry systems and their potential benefits for cacao cultivation.This study contributes to a better understanding of the effects of shade tree management and tree species on soil health indicators and cacao yields in young cacao production systems. Our findings revealed biological indicators, mainly earthworm abundance and soil respiration, were most sensitive to early impacts of different agroforestry arrangements. Distance from shade tree or cacao genotype did not influence soil health indicators or litter characteristics. Litter respiration exhibited variations among the different shade tree arrangements, with the \"timber\" treatment, featuring the N-fixing tree species C. cateniformis, showing higher rates. This suggests a potential improvement in litter quality in this treatment. Cadmium levels in litter, leaves and soil were high and above threshold level mentioned in related literature. We conclude that biological soil health indicators are more sensitive to detect differences between shade tree species than chemical or physical indicators. However, this was not yet expressed in pod yields nor foliar nutrient levels, except foliar N content which varied among the different shade tree treatments, being highest within the \"N-fix\" and lowest in the \"Fruit\" systems. Further monitoring of this trial is recommended to capture the long-term effect of agroforestry systems in soil health, nutrient cycling, and cacao yield. Our data analysis revealed consistently high cadmium levels across all shade tree arrangements. However, we did not observe any discernible effects, which is possibly attributed to the relatively young age of the trial. Hence, for a more thorough understanding of the agroforestry system's influence on cadmium accumulation in cacao, it is advisable to conduct a comprehensive assessment in the future when the trial is old er or in similar settings with established shade trees. This research will help address the question of whether agroforestry can contribute to the mitigation of cadmium contamination in cacao plantations. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.de la Amazonía who supported the sampling. We thank the technicians at the Soils laboratory of ESPOL for the chemical analyses of the soil and tissue samples. We further thank dr. A. Margenot for sharing data on the soil profile taken at the INIAP trial in 2018. This study is part of the project \"Clima-LoCa\" (Fostering low cadmium and climate-relevant innovations to enhance the resilience and inclusiveness of the growing cacao sectors in Colombia, Ecuador and Peru). The project is coordinated by the Alliance of Bioversity International and CIAT and financially supported by the DeSIRA Programme of the European Union (grant no. FOOD/2019/407-158). The contents of this document are the sole responsibility of the researchers and can under no circumstances be regarded as reflecting the position of the European Union.","tokenCount":"8529"} \ No newline at end of file diff --git a/data/part_3/8985914352.json b/data/part_3/8985914352.json new file mode 100644 index 0000000000000000000000000000000000000000..f9d2da5648a6092257c4eb8dc8edb0af0108fd9f --- /dev/null +++ b/data/part_3/8985914352.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"14b73b3ed8e0699532b8e376a29ced59","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/b12578f0-c98d-47ee-82fd-d8d1bbd3fc33/content","id":"-116193836"},"keywords":["Triticum aestivum","plant breeding","gennplasm","breeding methods","varieties AGRIS category codes: F30","F01 Dewey decimal classification: 631.53 S. Rajaram Leader","Bread Wheat Section v"],"sieverID":"c1360cb2-428f-4e61-81fb-0bf4ac56340b","pagecount":"29","content":"By sharing research infonnation in this Wheat Special Report on a Guide to the CIMMYT Bread Wheat Section, we hope to contribute to the advancement of wheat breeding and to the importance of shared knowledge. However, the information in this report is shared with the understanding that it is not published in the sense of a refereed journal. Therefore, this report should not be cited in other publications without the specific consent of Dr. S. Rajaram. head of the Bread Wheat Section.The precursor of the present CIMMYT Wheat Program originated in 1944 under the sponsorship of the Rockefeller Foundation and the Office of Special Studies of the Mexican Ministry of Agriculture. In 1966, CIMMYT was established as a nonprofit organization responsible to an internationally elected board of trustees. The Ford and Rockefeller Foundations joined Mexico as the initial principal supporters of CIMMYT.The CIMMYT Wheat Program currently distributes advanced lines to more than 100 countries. Primary clients are the National Agricultural Research Systems (NARSs) of developing countries; germplasm distribution and utilization are dependent upon their close cooperation. The bread wheat breeding section has, therefore, attempted to address the specific problems and limitations associated with wheat production in these countries.In order to develop effective breeding strategies. various agroecological zones or megaenvironments (MEs) have been defmed. Germplasm developed for a given ME will withstand the major stresses, but not always the significant secondary stresses. How these products are used and distributed within an ME to address the needs of specific agroecological niches is the responsibility of the NARSs.The development of broadly adapted, disease resistant. high yielding and stable germplasm within the context of each ME is the Section's primary goal. Although soil and moisture factors influence crop stability and productivity, resistance to biotic factors such as diseases and insects can be critically important in maintaining high yields, thus contributing significantly to the adaptation of a given cultivar across time and environments. Emphasis is also given to maintenance of genetic diversity within each ME to counter the effects of genetic vulnerability.To breed for wide adaptation and high yield potential, the breeding program shuttles material between alternate sites within Mexico while pyramiding genes that carry resistance to various pathogens. International multilocational testing, through the distribution of International Nurseries and Yield Trials, and the cooperation of the NARSs. provides vital information for use in CIMMYT's Bread Wheat Section's crossing program.The . ME4C: Stored moisture after monsoon rains results in continuous or Subcontinent-tyPe drought. A representative location is Dharwar (India). Total estimated area: 5 million ha.The CIMMYT breeding program attempts to combine high yield potential with drought resistance for MEs 4A and 48. Other, more specifically adapted germplasm is needed for ME4C. This combination of traits is important in drought environments where rainfall is frequently erratic across years. When rains are sufficient in certain years, the crop must respond appropriately. For MEs 4A and 4C, white grain is a requirement, however, in ME4B red grain is preferred, to avoid sprouting problems.MES: Warmer area environment (areas between 23 0 N and 23 0 S below 1000 m altitude)The mean minimum temperature of the coolest month in this environment is > 17 0 C. In humid locations, resistances to Helminthosporium sativum, leaf rust, and sprouting are major objectives. The estimated area is about 9 million hectares. Representative humid locations are Joydebpur (Bangladesh), Chiangmai (Thailand), Encarnacion (Paraguay) and Poza Rica (Mexico). Kano (Nigeria), and Wad Medani (Sudan) are typically dry locations.ME6: High latitude environment (> 4S o N or S) ME9: Semi-arid, moderate cold (0 to SoC coolest month), low rainfall environment.Drought tolerance and resistance to stripe rust and bunts are requirements. Representative locations are Diyarbakir (Turkey) and Veron (Texas).Winter Wheat MEI0: Favorable, severe cold (-10 to OOC coolest month), irrigated environment Yield potential and resistances to stripe rust, leaf rust, and powdery mildew are requirements. Beijing (China) is a representative location.MEll: High rainfall (> 500 mm), severe cold (-10 to OOC coolest month) environmentMajor diseases are leaf rust, stripe rust, powdery mildew, and eye spot. Representative locations are Odessa (Ukraine) and Krasnodar (Russia).MEI2: Semi-arid, low rainfall, severe cold (-10 to OOC coolest month) environmentDrought tolerance and resistance to the bunts are needed. Ankara (Turkey) and Kansas (USA) are representative locations.All genetic materials have been assigned a standardized code, of 7 or 8 spaces, to easily identify the gerrnplasm now in the Bread Wheat Section.The first two or three spaces indicate the breeding generation or yield trial stage. In rare cases the initials of the researcher carrying out a special study is used. Some examples are given below:• CBS: Crossing Block Spring.• CBW: Crossing Block Winter.• F I, F2, etc.: Breeding generation.• FIT: FI top cross.• PC: Small plot (Parcela Chica in Spanish) of an advanced line bulked in F7 or F8. These lines have entered an unreplicated preliminary yield trial (PYT) for the first time.• EPC: An Elite Pc. These lines have entered replicated yield trials (YT). They have been tested previously as PYTs, and are candidates for International Screening Nurseries and Yield Trials.The second group of three characters defines the intended target mega-environment, ME 1, ME2, etc.: In some cases, the last two spaces, in positions 6 and 7, or 7 and 8, may provide a \"classifier\", which further specifies the breeding aim within an ME. Classifiers may be used for segregating populations and advanced lines: Some nurseries have been developed from material outside the program or have been assembled to represent expression of a specific set of traits for a special target area. These, therefore, have been assigned a unique set of classifiers:• BR: BRAZILICIMMYT• EC: ECUADOR/CIMMYT• YZ: YANGTZFJCIMMYT (China)Basic materials:Fl and segregating populations:Yield trials and corresponding multiplications:A standardized recording system is used for crosses made in the Bread Wheat Section. If parent A is crossed with parent B and the F 1 is crossed with parent C, its pedigree would be designated as AlBIIe. Subsequent crosses with parental material D, E, F, and G are indicated using a number in the following fashion:The female is designated by listing it fIrst (on the left) followed by the pollen parent (on the right). Thus, A is the female parent and B the pollen parent in the fIrst cross. The line AlB is the female and C the male parent in cross two, etc. Every segregating and advanced line in the program is assigned a so-called \"breeder's cross ID\" (BCID) and a selection history. This history records the process of selection, which describes where and how the selection was made and the stage or generation of selection.Each BCID begins with a letter designation of the cross origin (e.g. CM), followed by a sequential number (e.g. 33027). After this BCID, there is the selection history: the numbers identify the individual plant selected and the letter indicates the location where selection took place, using a selection code. The zero-letter combinations (OY, OM, etc.) are reserved for populations harvested in bulk in that generation. A zero followed by a number (05PR, olOM) indicates modified bulk selection, in which a certain number (in the example 5 or lO) of selected heads are bulked. • Patzcuaro 19 0 N, 2400 mas!. Located to the west of Toluca in the state of Michoacan, this rainfed site is used to screen and select for the septorias, head scab and acid soil tolerance. We plant 1-2 ha. The site represents ME21ME3.• El Tigre 21 0 N, 2300 mas!. At this site, located south of Guadalajara in the state of Jalisco, ME2 materials are evaluated for diseases, such as Septoria spp., Fusarium spp. and leaf rust.The Crossing BlockThe crossing block (CB) is a collection of elite breeding source materials arranged by mega-environment (ME), and within ME by trait. In order to facilitate crossing operations, the CB is sown on four different dates, ten days apart. In all sites spring wheat CBs are planted. In the Toluca winter cycle, also a winter CB is assembled and planted.The production of high yielding. widely adapted. stable and \"durable\" resistant spring gennplasm is the primary consideration of the bread wheat section. For this reason, the spring CB is the largest and most diversified of the two CBs. Gerrnplasm has been grouped according to ME. Crossing Block entries include the major varieties released in different countries, elite CIMMYT gerrnplasm identified from international and national testing, or advanced lines exhibiting extreme expression of a specific trait or group of traits (often made available by the germplasm enhancement and wide cross sections within the Wheat Program's Genetic Resources Subprogram).The specific breeding objectives for each ME were outlined earlier. Genotypes from each section of the CB carry genes specific to their defined ME. For example, ME I genotypes carry genes or combinations of genes coding for one or more of the following: high yield potential. lodging resistance (dwarfing genes Rht I, Rht2, and Rht8), improved industrial quality, durable resistance to the rusts, tolerance to saline soils, and resistance to aphids and powdery mildew. Within each ME, materials are sub-grouped based on their country of origin or specific character expression. There are five CBs arranged by ME. These are:• CB for favorable environments (FE),• CB for the high rainfall areas (HR; containing a ME3 section),• CB for semi-arid areas (SA),• CB for the warmer areas (WA),• CB for the high latitude areas (HL).The genotypic constitution of the different CBs are given below:• CB Spring for Favorable Environments (CBSMElFE) Crosses are directed toward specific .MEs and the resulting nurseries labeled accordingly (see Nomenclature Section). Many Fl populations are either top-or backcrossed.Topcrosses are used to extend the variability, particularly when parents carry many loci in common, and backcrosses are carried out to stabilize variability as the genetic distance between parents becomes greater. As a rule, 5-7 spikes are emasculated for simple crosses and 7-10 for top-or backcrosses.Once a cross has been made and classified. it is selected under the stresses specific to its targeted ME. However, as all elite CI1v1MYT advanced material is tested over a wide range of environments both in Mexico and internationally, the ME classification may be changed when additional adaptation becomes apparent.The following diagram is a hypothetical representation of germplasm classification, starting out from parental selection and resulting in replicated yield testing according to the standardized abbreviations in the Nomenclature Section: If the final product does not have the expected level of KB resistance, is agronomically sound, resistant to the rusts, and high yielding, then it can be reclassified as EPCME1FE.The details of the selection methodology are discussed in the following section.Advanced lines are bulked in the F7 following individual spike selection in the F6, to form small seed multiplication plots or PCs (Parcela Chica is \"small plot\" in Spanish). These PCs are also sown as PITs (preliminary yield trials) during the Obregon winter cycle, providing information on yield potential, agronomic type (on a large-plot basis), and disease resistance (from PC inoculation).PITs are single-replicate yield trials designed to eliminate the bottom end of the yield distribution. Two or three standard checks are included. The trials are either planted on beds (per entry: 2 beds (8Ocm wide/3m long), with 3 rowslbed,) or in irrigation units (melga is \"irrigation basin\" in Spanish; with 16 plots/melga; per entry: eight-row plot (5 m long), effective harvest area: 5 rn 2 ).PCs are sown in small plots for observation and rust and/or KB inoculation. During the summer cycle in Central Mexico, PCs may be sown in many different sites for disease and adaptation evaluation.Selected PC entries are advanced to EPCs and sown in replicated yield trials during the Obregon cycle. Three replicated (harvest area 5 m 2 ), alpha-lattice designs are normally used. Space permitting, an unreplicated trial is sown in another simulated mega-environment (reduced irrigation or late planting) to gauge the performance of materials outside their respective ME.As with all segregating material, each PC, EPC, PYT, and YT has an assigned ME, depending on its parents and selection history. However, genotypes across MEs can be expected to contain similar linkage blocks. These similarities have arisen through the conceptual belief at CIMMYT that breeding for yield potential is critical in both stressed and stress-free conditions, the former environment in addition requiring specific adaptive traits. This belief has been justified by the consistent demand for CIMMYT germplasm throughout the world. The specific trait requirements necessary for adaptation within defined MEs are included through the process of crossing and selection.The diagrams in this section are schematic representations of the general breeding procedures used in ME I and ME4. These are by no means rigid structures that must be adhered to under all circumstances. Considerable flexibility exists within the system allowing material to be channeled in different directions. Some segregating material is selected in other countries by CIMMYT staff and/or cooperators and returned to the program. The most important of these international shuttles are listed below:• CIMMYT/China (Fusarium spp.)• CIMMYTlEcuador (stripe rust)• CIMMYTlEthiopia (stripe rust and Septoria tririei)• CIMMYT/Guatemala (septoria, BYDV, and head scab)• CIMMYTlMexico, La Paz (salinity)• CIMMYTrrurkey (winter and facultative wheat)• CIMMYT/OSU (USA) (winter and facultative wheat)In Mexico, segregating material targeted for specific MEs may occasionally be sown outside the regular ObregonfI'oluca shuttle. In some instances, yield trials are conducted in the early generations depending on the nature of the material.The breeding procedures for ME I and ME4 are described in the following diagrams. FI, RI, and LP indicate full irrigation or moisture stress-free conditions, reduced irrigation, and late planted material, respectively.The bulk of the winter program is handled by the CIMMYT Program based in Turkey and in collaboration with OSU, although some breeding and selection is conducted in Toluca during the winter cycle (November to July). Winter x spring crosses are made during the Toluca winter cycle. These crosses contribute specific characters to the spring wheat gene pool and provide extended diversity. A portion of the resulting F I seed is made available to OSU and CIMMYTfTurkey.Considerable genetic diversity enters the breeding system in the form of introductions from various countries, including Argentina, Brazil, Paraguay, Chile, Uruguay, Peru, Bolivia, Ecuador, Colombia, Guatemala, USA, Canada, Australia, Russia, UK, France, Germany, South Africa, India, Pakistan, Bangladesh, Syria, China, Thailand, Egypt, Iran, Kenya, Ethiopia, Zimbabwe, Zambia, Japan, and Korea. The Industrial Quality Section evaluates the industrial quality of parents, segregating populations and advanced lines. The Bread Wheat Section aims at producing high yielding, broadly adapted resistant gennplasm for a range of quality characteristics. This is important as quality requirements among different countries vary from medium and strong types for the production of leavened breads. to medium but extensible dough for unleavened, flat and steamed breads, to weak dough for cookie and cake production.While much of the quality assessment is based on advanced materials and lines from international nurseries, increasing emphasis is being given to identifying better quality types in earlier generations. in particular the parental stocks. Electrophoretic techniques allow the identification of specific loci coding for the high molecular weight glutenin subunits. These bands can now be traced and combined more effectively. Sedimentation testS for gluten quality using small grain samples are fast and effective and are used to screen materials in the early generations.To determine sprouting tolerance advanced lines considered for ME2 and ME3 are planted at Toluca in January, and allowed to ripen during the peak rainy season. Materials are then screened visually in the field for sprouting tolerance. Selected lines are sent to the laboratory and tested for alpha-amylase activity (this enzyme is activated at germination and is involved in the process of starch degradation). Tolerant lines will have low enzymatic activity under rainfall free conditions with a slow rate of change under increasing rainfalLThe role of international testing as distribution and data collection mechanisms has been dealt with briefly in preceding sections. The collected data are used extensively within the breeding program to help defme and fine-tune objectives and make crosses for particular MEs. Each nursery consists of a set of varieties or lines and focuses on the specific requirements of individual MEs. Yield stability and disease resistance are primary objectives within the context of each ME.The operation of international nurseries is the responsibility of the International Nursery Section and can be divided into four major activities:• Formulation and targeting of nurseries, in conjunction with CIMMYT breeders and national program clients.• Nursery preparation and distribution.• Collation and analysis of returned data.• Distribution of information and reports.Nursery preparation involves the treatment, packaging, and distribution of healthy, diseasefree seed, grouped into mega-environment-oriented nurseries. The system is computerized to facilitate the production of field books and nursery lists. Seed is cleaned and treated with fungicide and insecticide prior to distribution to avoid the introduction of foreign pests and diseases.Data returned from cooperators are analyzed with the help of CI1v1MYT's System and Computing Service (SCS). Reports are published from the collated data from many sites and made available to cooperators. The accuracy and the completeness of any report depends heavily on the cooperation of staff in the national programs.The final output of CIMMYT's bread wheat improvement program is measured by the degree to which it benefits the national programs in different parts of the world, particularly developing countries.","tokenCount":"2845"} \ No newline at end of file diff --git a/data/part_3/9025589678.json b/data/part_3/9025589678.json new file mode 100644 index 0000000000000000000000000000000000000000..49f9e0de482c4cf5dbacd3d06ded8bdae368d9fe --- /dev/null +++ b/data/part_3/9025589678.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"b9eed5a542af3d9eae7d76ef2df9615d","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/e87c0f53-fdcf-4313-b108-68e081f78f41/retrieve","id":"-1273024831"},"keywords":[],"sieverID":"b0b04194-e078-4e15-952e-1882c3fe76db","pagecount":"255","content":"Market information systems and agricultural commodities exchanges ii CTA's working document series consists of material that, in view of its immediate relevance and pratical utility to specific readerships, the Centre wishes to make available without the delays inherent in the formal publication process. These working documents have not yet undergone technical editing by CTA and should be cited accordingly. Comments on matters of substance are welcome, and should be addressed directly to CTA.Since the mid-1990s, CTA has been actively involved in the promotion and pilot testing of market information systems (MIS) 1 and agricultural commodity exchanges (ACEs) 2 at the local, national and regional levels in Africa, the Caribbean and the Pacific (ACP). The results were reviewed at expert consultations in October 2000 and November 2001. CTA has also supported a series of training activities, and utilised electronic knowledge-sharing systems and publications to disseminate information.The pilot work has generally been successful in improving technical and institutional arrangements for gathering, storing and disseminating market information. However, stakeholders have highlighted the need to increase the usefulness of market information to farmers and rural traders. Similarly, investments in developing new selling points (e.g. auctions, commodity exchanges) have successfully tested new ideas, but remain effectively inaccessible to some farmers (e.g. those that are poorly organised in terms of their marketing efforts or who are unable to deliver produce of a sufficiently high standard for formal markets).The Expert Consultation on Market Information Systems and Agricultural Commodity Exchanges: Strengthening Market Signals and Institutio ns was convened to review CTA's investments in MIS and ACEs within a broad perspective to determine which are the more successful systems, what conditions have enabled them to function well, and how they are being used by farmers' organisations, traders and other development partners. Thus, the Consultation was expected to identify key factors that have supported success, and to discuss issues related to new opportunities for strengthening market signals and for gaining a better understanding of the conditions required to enable small-holder farmers to gain access to markets in a more sustainable and remunerative way.1 A market information system (MIS) is a service that involves the collection on a regular basis of information on prices and, in some cases, quantities of widely traded agricultural products from rural assembly markets, wholesale and retail markets, as appropriate, and dissemination of this information on a timely and regular basis through various media to farmers, traders, government officials, policy-makers and others, including consumers (Shepherd, 1998: http://www.fao.org/DOCREP/003/X6993E/x6993e03.htm; accessed 22 August 2006). 2 A commodity exchange (or commodities exchange) is an exchange where various commodities and derivatives products are traded. Most commodity markets across the world trade in agricultural products and other raw materials (such as wheat, barley, sugar, maize, cotton, cocoa, coffee, milk products, pork bellies, oil, metals) and contracts based on them. These contracts can include spots, forwards, futures and options on futures. Other sophisticated products may include interest rates, environmental instruments, swaps, or ocean freight contracts. Commodity exchanges usually trade futures contracts on commodities, such as trading contracts to receive something, for example maize, in a certain month. A farmer growing maize can sell a future contract on his or her maize, which will not be harvested for several months, and guarantee the price that he or she will be paid upon delivery; a breakfast cereal producer buys the contract now and guarantees the price will not go up when it is delivered. This protects the farmer from price drops and the buyer from price rises. Speculators also buy and sell the futures contracts to make a profit and provide liquidity to the system. (Wikipedia contributors, 2006: http://en.wikipedia.org/w/index.php?title=Commodities_exchange&oldid=70205359; accessed 22 August 2006) The key questions addressed by the Consultation were:• Sequencing: Is sequencing important in terms of developing and applying elements of an efficient marketing system? • Conditions: Are there any preconditions necessary for these strategies, tools and institutions to work in support of small-holder farmers? • Context: In what ways do the marketing tools and strategies have to be adapted to work effectively in different ACP countries? • Leadership (and ownership): Who should introduce these tools and strategies? How should they be funded? • Linkages: Should these tools, strategies and institutions be introduced as single entities or clustered to make efficiency gains? • Priorities: Where should CTA invest, especially in terms of research and development (R&D) interventions?An electronic working group was established with the Consultation participants and other selected partners to introduce the themes and provide a forum for sharing information on the topics to be debated. The e-working group was facilitated by a core group of experts; it commenced at the end of October 2005 and ran for 3 weeks. Weekly summaries were provided by one of the facilitators. The purpose of the e-working group was to enable the participants to raise issues and put forward ideas on the current thinking about marketing institutions, with the aim of learning from past experience and considering fresh viewpoints. The central question was: How can small-holder farmers in ACP countries take advantage of the opportunities offered by the liberalisation of agricultural markets? The e-working group defined the key areas (questions) for further debate at the meeting (see Introduction -Objectives and expectations above).The Expert Consultation itself was a 3-day meeting organised under the following sessions:• Marketing needs from government, trade and farmer perspectives;• Innovations in MIS;• Market instruments to strengthen the demand signal;• Auctions, warehouse receipts and ACEs -case studies.The following strategies, tools and institutions were identified and provided the context for answering the key questions:• Marketing policy support The meeting combined formal presentations, plenary discussions (question and answer sessions) and working group discussions.vIn terms of management of MIS, it was deemed inappropriate for the institution to be solely within the domain of government (evidence shows that full government control has been fatal to emerging MIS). In fact, no one entity should even own an MIS. Ideally, a developing MIS should involve collaboration and competition among government, private sector, development groups and public-sector agencies.In general, it was felt that government and donor(s) should take the l ead in determining policy for developing a market institution, with input from regional bodies, private sector, NGOs, universities and consultants.However, it was recommended that an analysis be conducted of the roles and responsibilities of the various actors, and the needs for each individual market institution. An analytical framework (e.g. Table 1) may be used for this.Who pays?Who plans and makes decisions?Who implements?Who uses?Who owns the outputs?Most participants felt that sequencing of investment in market ins titutions was useful, following the order presented at the consultation, namely: market information services -warehouse receipt system (WRS) -auctions -commodity exchanges.Ad-hoc or unplanned investment was considered likely to lead to failure or poor performance. However, it is important to remember the uniqueness of each country in terms of location and contextual situation, and to consider this in planning MIS development. Some concern was expressed over the practicalities of trying to introduce and integrate ideas in a measured and sequenced way, because of the differing agendas of the various actors involved; for example, if a government or donor unilaterally decides that a new institution is required, this will most likely happen regardless of sequencing logic.With reference to the list of interventions (institutions, strategies and tools; see Methodology above), it was considered that elements such as marketing policy support, market development vi analysis, and farmer organisation could be set up independently without any adverse effects on each other.The same was also considered the case for market information services, market intelligence, and grades and standards; however, the effectiveness and performance of this second group would be significantly improved if the first three interventions (see previous paragraph) were already in place. For example, marketing information would be effective even in the absence of marketing policy, in the absence of marketing studies and in situations where farmers were not organised; however, market information could yield considerably more benefit if farmers were well organised and acting on the advice of clear marketing studies and strategies.Conversely, introduction of the more sophisticated market institutions -e.g. warehouse receipt systems and agricultural commodity exchanges -would require some of the earlier interventions to be in place.For an emerging MIS to be sustainable, the appropriate institutional arrangements need to be in place; opportunistic strategies should be avoided; governments need to be involved for the 'public goods' aspect of the information; the private sector should pay for everything; and training (capacity-building) and universities should play a major role.CTA's mandate covers developing and providing services that improve access to information for agricultural and rural development, promoting the integrated use of communication channels for information exchange, and building capacity (mostly through training) in the generation and management of agricultural information. CTA may also provide funding for R&D.The Consultation identified eight opportunities for CTA to play a strategic role in niche areas of R&D investment to combine specialised information with new ICT technologies to improve competitiveness and innovation within the agricultural sector of ACP countries. These opportunities should then be developed (by CTA) beyond the pilot level for significant and sustained improvement of marketing institutions.1. Market information: Conduct an impact study of the value, utility, quality and benefits of MIS in terms of client needs, accuracy, timeliness and accessibility. There should be six case studies from ACP countries, to compare those with small (10-15 million), medium (20-40 million) and large (60 million +) populations, those with strong and weak ICT capacity, and those having different levels of market engagement at local, national, region and international levels. The analysis should identify what is and what is not working well and the reasons behind their success (or failure). The case studies should include ownership, implementation and management, with a view to determining which types of management system provide the best services (including which institutions are best placed to own and implement MIS), and how they can be supported financially. The study should also cover benefit-cost analyses of the services.The research will give better understanding of the status of MIS in ACP countries and should result in recommendations of best practices for the design and implementation of MIS that vii are appropriately targeted (i.e. at small-holder farmers).The research should also enable CTA to develop policy recommendations on public goods or private-sector financial arrangements to provide long-term support for MIS. This will enable CTA to develop an advocacy and policy dialogue process with key stakeholders in selected countries to demonstrate the importance and value of MIS.CTA should also become involved in the building of national capacity in the provision and analysis of market data targeted to specific groups.2. Marketing capacity tool: Develop an on-line marketing profiling instrument for use by ACP economic research groups, policy-makers and practitioners to self-evaluate their country's position vis-à-vis marketing interventions, institutions and investments. Thus, in effect, providing a 'health check' of market capacity. Areas of investigation would include: MIS capacity and competence; farmer organisation; media coverage (radio, television, newspapers); ICT access (Internet, cell phone); trader organisations; financial linkage to key agricultural sectors; storage capacity (warehouse, cold chain); research linkage to the private sector; collateral trading status (warehouse receipt; commodity exchange); and legal status.The tool would provide a low-cost mechanism for evaluating national or regional market needs and opportunities. The information could then be used as the basis for developing plans for investment or re-engineering options to improve marketing efficiency and performance.With the results of the marketing capacity analysis, CTA, its ACP partners and their service providers would be in a position to develop support packages or strategies for marketing development. The tool would help evaluate whether proposed interventions would be appropriate.4. Marketing support portal: Provide an interactive information portal to support methods, tools and applications for strengthening marketing analysis, institutional development and linkage of small-holder producers to markets. Thus, CTA would act as a lead organisation in bringing the latest conceptual thinking in applied trade and marketing approaches, methods, tools and applications within a high-profile information and learning resource. Rather than dominating the activity, CTA should adopt a consortium approach bringing together other leading research, development and private-sector agencies. The information provided should be directly linked with specific iterative 'learning alliance' approaches to build a cadre of trade and marketing specialists that can build the capacity of public-and private-sector market institutions.The portal would encourage the development of a community of practice to provide guidance in marketing, and agro-enterprise and agri-business development, including advice on strategies and sequenced areas of intervention to improve market efficiency. The portal should also support the marketing-evaluation and strategy-development tools developed (see 3 above).5. Integrating trade and market support: Explore options to integrate the trade-based information available via CTA's Agritrade web portal with activities that support marketbased interventions.viii Such an integration should provide greater opportunity for dialogue and knowledge-sharing between actors involved in policy-development and decision-making and those involved in developing ACP business opportunities within specific sectors.6. Linking farmers to formal market institutions: Evaluate opportunities and catalyse the process of enabling small-holder farmers to manage their risk through engaging in formal markets.Increased formalisation in ACP markets should provide increased food-security, better riskmanagement, more transparent interactions, opportunities to add value to produce, and generally strengthen good business practices. However, there are serious concerns about the benefits to small-holders. More and relevant information is required to ensure that infrastructure, information and quality-control equipment is available to organised farmer associations in rural areas.This research should evaluate the equity of benefits in the transition from informal to more formalised markets, especially in relation to small-holders and the market chains they are involved in.7. Best practices in farmers' organisations: In general, the better organised farmers are (collectively), the better able they are to take adva ntage of new market opportunities. Studies should be undertaken to evaluate where farmers are well organised and where they are not, and the key factors and methods that influence best practice in the establishment of primary and secondary farmer organisations. Best-practice approaches should be determined for farmers with good and poor market access, and those targeting high-and low-value markets.8. Low-cost MIS based on cell-phone networks: Determine where, and how, mobile (cellphone) technology could be developed in specific ACP countries to improve the marketing opportunities for the poorer, small-holder farmers, as well as increasing marketing efficiency within and between ACP countries.The research should provide recommendations and new innovations for the use of mobile technology in market information, trading and financial linkages (i.e. low-cost MIS). CTA and its partners will have the opportunity to design, test and privatise new services to improve the marketing performance of the poor. Background to the meeting Over the past 10 years, the Technical Centre for Agricultural and Rural Cooperation ACP-EC (CTA) has been actively involved in the promotion and pilot testing of market information systems (MIS) and agricultural commodity exchanges (ACE) to support agricultural trade in African, Caribbean and Pacific (ACP) countries. Results from this work were reviewed in two expert consultations, held in October 2000 and November 2001 in Wageningen, the Netherlands. In addition, CTA has supported a series of training activities with member countries and has disseminated information through electronic knowledge-sharing systems and publications.In general, the pilot work supported by CTA has been successful in finding new ways of improving technical and institutional arrangements for gathering, storing and disseminating market information. These innovations have included outsourcing activities from state-run agencies, and enabling new public and private partnerships to enhance the dissemination of information through rural radio and mobile phones. Feedback from stakeholders now suggests that further steps need to be taken to access the economic impact of these services and to enhance the utility of the market information that farmers and rural traders receive.Similarly, investments in the development of market outlets, such as auctions and product exchanges, have also proved successful in testing new ideas, but some problems remain, as many farmer groups are unable to use these services effectively for their commercial advantage, particularly those that are not well organised or able to produce products of a sufficiently high standard to sell into more formal markets.This meeting was organised by CTA to review previous investments in market information and commodity exchanges from a broader perspective, to evaluate which approaches have been more successful, what are the conditions that have enabled them to function well, and how these new interventions have benefited farmers' organisations, traders and other development partners.Through this process, it was hoped to ident ify key factors that have supported success, and to debate issues related to new opportunities that may both strengthen market signals and provide a better understanding of the conditions required to enable smallholder farmers to gain access to new markets in a more sustainable and remunerative manner.In order to place in context market institutions or interventions such as market information, warehouse receipt mechanisms and trading floors, this meeting reviewed the different types of information required by market actors, and how farmers and traders organise to strengthen market chain co-ordination. Talks from experts in their fields explored the range of market institutions, including policy options, farmers' groups, finance options, legal frameworks and commodity exchanges, to identify trends and new opportunities to strengthen the links between information and commodity sales for the rural community. The meeting also reviewed the challenges faced in current pilot site work, and evaluated these against new ideas and options.Although approaches to market information have progressed over the past 10 years, it has also been recognised that market information alone is unlikely to catalyse market supply chains. To be more effective, it has been suggested that such information should be integrated with other interventions, such as collective marketing, grading and standardising produce, and bulking supplies. Recurrent questions addressed at the meeting include the question as to whether MIS are financially sustainable; are MIS public goods? If so, should they be part of government expenditure? Should they be considered a business development service opportunity for the private sector? Or is there a justification for public-private sector partnerships?Challenges for commodity exchangesIn the past 10-15 years there have been several initiatives by the private sector and donorsupported projects, aiming to enhance trade flows through the establishment of auctions, trade credit schemes, inventory credit and commodity exchanges. These approaches have met with mixed levels of success, depending on the products being traded and the local economic conditions and business frameworks. While some schemes have shown steady progress and become significant marketing institutions, others have suffered from the effects of political instability, thin trade and weak supporting institutions. Does this range of outcomes suggest that certain enabling conditions need to be met before such schemes can work? If so, what are they? Does the selection of a commodity make a large difference to these options? Can such schemes be government-led? Should they be left to the private sector, or are there opportunities for public-private sector arrangements that could develop more sustainable and stronger demand signals for sellers?Purpose of the workshop Through presentations and dialogue sessions, stakeholders had the opportunity to draw on expert opinion and discuss key issues related to the success and challenges faced by practitioners. Through this debate, greater clarity was achieved in the performance of ongoing activities, providing an opportunity to make recommendations in the areas of policy, research and development to enhance innovation, the impact of future investments, and the development of marketing institutions.• Gain a better understanding of how market information integrates with other market interventions and institut ions.• Gain a more detailed picture of ongoing MIS and new opportunities in marketing institutions among CTA partners.• Are smallholder farmers benefiting from new market institutions?• Is the distribution of benefits equitable along the market chain in terms of farmers, rural traders, urban wholesalers and retailers?• Does sequencing make a difference in how market institutions are established and supported?• What is working well in the development of new innovations in market institutions?• What is not working well in the implementation of new marketing institutions?• How and where should development partners -especially CTA -consider investing future funds in supporting market institutions to support farmers, traders and other market chain actors?The evolution of markets -from barter to eBayPeter Robbins (CMIS) Archaeological evidence of market activity dates from prehistoric times. The earliest texts from ancient Persia, China, Egypt and the Mayan civilisation record the details of transactions in agricultural produce.Almost every form of exchange of goods and services used throughout history still co-exists in today's world. Types of exchange activity include barter, roadside stalls, fixed market places, travelling salesmen, retail stores, auctions, commodity exchanges, stock exchanges, futures markets, and online market places such as eBay. The form of the market is determined by the type of product being traded, and the number and needs of those wishing to use the exchange system, whether it is some informal exchange between individuals, or a highly sophisticated automated system that can handle hundreds of financial transactions a second.Trade in commodities predates the concept of money -most commonly, when one type of commodity is bartered for another type of commodity. Although effective, barter suffers from problems associated with the time taken to access the value of different types of goods. Very often, it is also impractical for groups of people to exchange bulky goods of various types, quantities and qualities with other groups of people who may live at great distances from each other.At first, exchange took the form of rare products such a cowry shells or precious metals. Such 'money', as a medium of exchange, had an advantage over barter, in that it did not deteriorate over time and could be exchanged for every type of product or service. Paper money (originally a form of promissory note) became an even more convenient exchange medium; today most transactions occur in the form of electronically transmitted account transfers. As soon as money took this semi-abstract form, its value had to be assured and guaranteed by banks and governments, which needed to be stable and dependable in order to offer confidence in the cur rency.Trading also became a specialist activity in prehistoric times. Two main types of trading activity quickly evolved. Itinerant traders move from place to place purchasing goods with the money they carry. The itinerant trader then arranges for the goods to be carried to a place where he or she can sell them. Sedentary traders remain at a fixed location and pay for goods as they are brought to them. They may purchase from producers or from itinerant traders. They normally arrange the storage of the goods they have purchased, before selling them on to consumers or to other itinerant traders, who are usually responsible for arranging transport to another location. The first fixed market places in the world developed around the activities of these sedentary traders.I use here the historical example of London to illustrate the evolution of markets, but much the same pattern has been repeated all over the world.The informal markets that grew up around the activities of London's sedentary traders became institutionalised over a number of centuries. Large buildings were erected to house the fish market in a London street called Billingsgate. Similar large buildings housed the meat market in Smithfield and the fruit and vegetable market in Covent Garden. These sites were adopted because they were convenient places to which produce could be brought (Billingsgate is situated on the bank of the River Thames, for instance), and where they could be reached conveniently by consumers and traders in densely populated areas where demand for the goods was high. These markets still exist, but they have been moved away from the narrow, winding streets of inner London to the outskirts of the city, where they are easier for large lorries to access, and more accessible for the docks and the motorway system.Trust in the honesty and probity of the organisation that ran these markets needed to be strengthened by adopting trading rules and standards, which the markets' traders were obliged to abide by. The enforcement of such rules was best achieved by requiring participating traders to become members of a trading association, and by giving the institution the right to withdraw membership from any trader who broke the rules. As the loss of membership prevented the traders from earning a living, they had a great incentive to abide by the rules.Although trust between users of any market is essential, cheating can occur more easily if there is no written evidence of the details of transactions. In order to create even more confidence in the market system, traders began to write purchase and sales contracts. Such documents were legally binding. They carried all the details of the transaction -the day the transaction was made, the quality, quantity, packing and description of the goods in question and, of course, the price and delivery arrangements. The document might also specify an agreed method of settling any dispute arising from the transaction. The wording of the contract could be corrected or amended by one party only with the agreement of the other.Some commodities and services cannot be traded physically. Some people, for instance, want to strike a deal to buy a commodity before it has been shipped from some overseas port. They may not be able to examine the goods in question, but they may trust the overseas supplier to deliver a good quality product. Some people also want to trade in abstract assets such as stocks and shares.In the 17th century, much of this type of trade was conducted informally in Britain by traders or 'stock jobbers', who met together in coffee houses and taverns in the famously named Exchange Alley, in the heart of the city of London. It became apparent, as the volume of trade and the number of traders increased, that coffee houses were too small to conduct business efficiently. Furthermore, as with physical markets, trust in the system needed to be assured by adopting trading rules and standards and by conferring membership on the traders that used the market. Many of these rules were instigated after events such as the 'South Sea bubble', when false stocks were circulated to unwitting speculators, leading to a seismic stock market crash.This type of trade moved from small coffee houses to specially constructed buildings. Many of the institutions, including commodity exchanges such as the London Metal Exchange, and other types of exchange, such as the London Stock Exchange and the Baltic Exchange, still operate today, although most of the transactions undertaken are now conducted electronically. These types of exchange are not equipped or designed to handle the physical commodities. They deal in abstract equivalents of the relevant commodity or service in which they specialise. The Metal Exchange conducts transactions in warehouse warrants and bills of lading, which are documents that give title to the goods described. The Stock Exchange deals in stocks, bonds and shares issued by governments and private companies, and the Baltic Exchange deals in documents giving title to shipping space. Another function of these exchanges is to settle disputes between members. This is often known as an arbitration service which, as such systems are run by the members of the market, is a cheaper and faster way of settling disputes than going to law.Large as the buildings were that housed these markets, they could not possibly accommodate the thousands of people wishing to trade in the assets in which the markets specialised. For this reason, the concept of the 'broker' evolved. A broker is an authorised member of a particular market who conducts transactions on the market on behalf of clients. These clients may be private companies, consumers, producers or providers of services, such as cargo space on oceangoing vessels. Brokers receive instructions from their clients to buy or sell a particular asset on a particular trading session of the market to or from other brokers, who represent their own set of clients and earn, for doing so, a commission based on the value of the transaction. Clients pay this commission on every deal they transact through the brokers, and the brokers, in turn, pay for the running and upkeep of the market.Some users of these markets may have no direct interest in the product or service, but may wish to speculate on the change in price of the product. Some markets positively encourage such speculative activity, as speculators are often prepared to take risks that other users of the market shy away from, and speculators add to the turnover or liquidity of the market, as well as increasing the broker's revenue by the commissions they pay.It can be seen that an important element in the evolution of markets has been the necessity to convince those using the market that they are run properly, and that the rules used to conduct trade are strongly enforced to preve nt cheating. This guarantee of probity also needs to be reinforced by other trusted institutions linked to market transactions such as banks, storage companies, insurance companies and, more broadly, a trusted national legal system.All these markets need to attract the business of producers, consumers, itinerant traders and others. These clients need to be confident that the market will not cheat them. In order to reinforce this trust, the market needs to provide a mechanism that allows clients to check the price paid for the goods they buy or sell on the market is the same, or nearly the same, as the price paid by other users of the market at the time of their transaction. This is called the 'price discovery' function of the market.In a simple street market, the seller of, for instance, tomatoes can approach a sedentary trader based in the market and negotiate a price for a box of his tomatoes. The seller, however, has no idea of the price the trader will pay to the next person offering tomatoes. Furthermo re, the seller has no way of knowing the price at which the trader will, in turn, sell the tomatoes to a consumer.One way of overcoming this problem is the public auction. Here, producers bring their produce for display at a fixed location. An auctioneer, who is independent of both buyers and sellers, is employed by the auction house to conduct the transactions. Potential buyers of a particular parcel, or 'lot', of a commodity indicate the price they are prepared to pay, and the buyer who is prepared to pay the highest price for the lot is then committed to buying it. All this is done with all the buyers present, as well as the seller and members of the public, if they wish to be there.These features of the auction make transactions transparent -everyone can see the transaction taking place and can note the price paid for a particular quantity and a particular quality of the product. This allows potential sellers to get a good idea of the price they will receive when they sell their goods, and prevents some forms of cheating. One form of cheating the auction has to combat is the possibility of all the buyers colluding with each other (to form a 'ring') to pay low prices for the goods. All auction houses have rules to punish anyone found to be involved in this kind of practice.Auctions are a very simple concept and are relatively cheap to run. An experienced and trustworthy auctioneer needs to be employed and paid for, but, depending on the commodity being traded, the auction often does not need to be conducted in a special building. Indeed, thousands of auctions for livestock and other agricultural produce take place in the open air.All the types of market described above not only need to offer market users the assurance that they will not be cheated, but also need to give potential clients market information, which might include the volume of trade conducted and the prices paid for the commodities and services in which the market specialises. For example, a farmer living 20 miles from a cattle auction will want to know how many of his cattle he can sell on any given day, and at what price he can sell them. If he can follow the change in the price paid for cattle traded at the auction over a period of a week, and feel satisfied that the price will not change significantly before he brings his own cattle to the auction, then he might take the considerable trouble to walk them all the way from his farm to the auction. Similarly, an arabica coffee grower in Brazil or Kenya needs to know what price is being paid i n New York, the location of the world's only major arabica coffee market.Some markets have no means of informing potential clients about the details of their transactions. Buyers and sellers are often reluctant to make the effort to bring their goods to market if they have no idea what price they will get for them. This reduces the overall volume of trade, decreases production and increases waste, which has a negative effect on both local and national economies.Markets can increase turnover and attract mo re users if they can find some way of disseminating information about the market's activities -the price paid for different types of product, the volume of trade, the reason for any changes in price, the quality of goods being offered, and the origin of customers and suppliers using the market. Such information helps potential buyers and sellers to make market decisions and gives them the assurance that the market is transparent and can handle their market needs.Once the market is established, market information of this type is, at first, disseminated by word of mouth, as market users travel to and from the market to other locations. As the market evolves, market information is also often carried by newspapers that are distributed within the market's catchment area; today such information can also be disseminated by radio, telephone links and via the web.One limitation of fixed markets and auctions is the problem of delivering the goods to the sales area, which may be very distant from the area where the commodity has been produced, or from the location where the commodity might be consumed.This problem has been solved in several ways. Some markets do not expect the supplier to transport the entire volume of the product they wish to sell. Buyers on that market will be presented with representative samples of the product by the seller and will base their offer price on the quality of that sample. They will only do this, however, if they can be fully assured that the sample is truly representative of the seller's goods. This can be achieved by engaging the services of an independent specialist sampling organisation. There are many such companies in developed countries, which often not only arrange to draw representative samples but also have the laboratory or testing systems to analyse the quality of the product. Many developing countries have few such facilities.Once a buyer has agreed to purchase goods based on the assessment of the sample, he or she will want to be assured of their ownership of that particular parcel of goods. The buyer needs to know of its exact location, and that those who are storing the product will be immediately prepared to deliver it to the buyer or his agent.This problem has been overcome in many countries by companies that specialise in running warehouses. These companies allow themselves to be inspected independently, to demonstrate to potential customers that their warehouse is secure from theft, that their staff are honest, that they have the necessary funds to meet customers' claims for errors they might make, and that they have an efficient system for registering any change of ownership, even though the goods remain in the warehouse.Such warehouse companies are often equipped to issue documents of title to the different parcels of goods they are storing. These are known as warehouse receipts, a kind of certificate that gives details of the weight or volume and description of the parcel of goods, as well as the date the goods entered the warehouse and the current owner of the goods. These documents can be made transferable from one owner of the goods to the next, simply by one owner signing and dating the document to endorse the change of ownership from him or herself to another named party.With the advent of warehouse receipts and other types of documents of title, such as bills of lading (which are also documents of title but represent goods on route aboard a ship and guaranteed by the shipping company), it became possible for markets to trade in the title to goods, rather than the goods themselves. Trading activity could now take the form of people buying and selling pieces of paper, which represented the goods. Such an opportunity attracted the interest of speculators. As the price of these goods rises and falls over time, mone y can be made by buying the product when the market price is low and selling it when the price is high. The speculator does not need to own warehouses, lorries or testing laboratories, and will never need to see the goods represented by the title documents, but can still actively trade in these markets.The effect on a market of speculative activity can be both positive and negative. In periods of shortage, especially of staple food commodities, the activity of speculators can be disastrous.They can buy all the surplus food, knowing that the population will have to either pay very high prices or starve.It may be, however, that a farmer needs to sell his product very quickly to pay off a debt or to purchase items for his farm. It may also be that there are no ordinary buyers for the goods, such as shopkeepers or traders in the physical product, at that particular moment. The speculator might be very willing to purchase the goods, albeit at a low price, if he believes the price will increase in the future, when shopkeepers have run out of stock. This type of speculative activity adds liquidity to the market and allows trading activity to continue in times when demand or, alternatively, supply is at a low level.Another facility offered by speculators is linked to their ability to 'sell short'. Selling short simply means selling something that you do not yet own. For instance, say a speculator discovers in May that many more farmers are planning to grow cotton in the next season compared with the previous one. T his unexpectedly high supply of cotton is likely to have the effect of depressing cotton prices in September, when the cotton is harvested. Let us also suppose that this speculator knows of a textile company that will need to buy cotton in September. The speculator will probably be more inclined to make a sale in May to the textile company at a lower price than, say, a trader with existing stocks. If the speculator's assessment of the future market price is correct, he can wait until the September harvest, purchase the cotton at a cheaper price than he sold it to the textile company, and make a profit.This type of trading activity became institutionalised in the form of futures markets. A number of the largest commodity exchanges in the world, including some of those for agricultural products -coffee, cocoa, sugar, rubber, wheat, maize and palm oil -are futures markets. Suppliers and consumers can buy or sell the commodity a year or more into the future. The exchange specifies the minimum quality of the commodity and the location of the registered warehouse to which it must be delivered. In practice, only a very small number of transactions on these markets represent the movement of the commodity in its physical form. Much of the trade is speculative, and much of the rest is known as hedging deals.Hedging is another facility offered by certain types of market. Hedging has become a highly sophisticated activity, which includes the purchase and sale of options that are not a straightforward purchase or sale of the commodity but a purchase or sale of the right to buy and sell at a particular price and date, which may or may not be exercised, depending on the way the price moves. This is not the right place to go into details about how options and other market derivatives work.The normal form of hedging is, however, quite simple in principle. The producer of large quantities of a commodity may not want to take the risk of the market price of his product falling between the time when he plants it and the time whe n he harvests it. The futures market offers him or her the opportunity to make a sale at a fixed price for delivery at the time of harvest, even though the transaction was made at planting time. Conversely, a large processor of the product may not wish to take the risk of the price of the raw material needed (to make the processed product) increasing between the time the sales order for the processed product is received and the time of delivery of the raw material. In this case, he or she can make a purchase on the futures market for the quantity of raw material needed, for the time they are needed in the factory.It should be noted that futures markets are designed to deal in bulk commodities that can conform to very specific quality standards. The minimum value of a single transaction is usually in excess of US$10,000.In very recent years, the advent of the Internet and satellite communication technology has offered a completely new type of trading system -the online market place. Any number of sellers can communicate details of the product they want to sell with any number of buyersprovided all these parties have an Internet connection. There are now a number of private companies and a number of development organisations that have set up dedicated trading sites on the web. Trust in these markets depends on whether the online market is prepared to guarantee the transaction to both buying and selling parties, and whether they have the ability to do so.All farmers in developing countries are now being encouraged to produce more surplus goods for sale. The size, location and output of farms in these countries varies enormously, however. The exchange system used by these different farmers has to be suitable and appropriate for their needs.In almost all farming areas in almost all ACP countries, individual farms are small. Although they do exist in ACP countries, large farms like those on the American prairies, or smaller, highly productive, specialist farms like many of those in Europe, are the rare exception. Most farmers in ACP countries are poor and cannot afford to employ modern farming technology using expensive machinery, farm chemicals and weatherproof, pest-proof storage facilities. As credit is difficult to obtain and storage facilities are rare, most farmers have to sell almost as soon as they harvest their crops. Although the cost of electronic communications systems used in some marketing systems is falling, most farmers are too poor to acquire the technology for themselves.Existing exchange systems, such as barter, roadside stalls (when farmers are near a busy road), village markets, local auctions and the activities of itinerant traders, may represent the most appropriate exchange mechanisms for large numbers of typical small-scale ACP farmers.As no contracts are drawn up, no banks are used, no products are insured, no quality standards are imposed, and no formal market information is disseminated, such informal markets can be conducted by the users of the markets without outside assistance. Any disputes can also be settled within the community in which these transactions take place.However, larger and more organised production can increase efficiency if there is access to more modern systems of exchange. Some argue that the very presence of more modern exchange systems might encourage larger and more productive farming. It should be said, however, that in almost every historical case where more sophisticated exchange systems have evolved successfully, the systems were established by t he users of the markets and not by outside agencies. As production units became larger, and as the quality of products became more homogeneous, it became possible to modernise exchange systems. This development evolved simultaneously with the establishment of trusted banking, insurance and storage companies and with governments establishing robust regulatory bodies and legal systems.The questions that need to be asked when considering the establishment of new kinds of markets in ACP countries might include the following.• What proportion of typical ACP people benefit from other, perhaps more sophisticated and more expensive exchange systems?• Is there sufficient enthusiasm among a sufficient number of people to justify the establishment of a new market system?• Is there enough potential trade in any commodity to justify a new market system and to provide the necessary turnover to pay for its establishment and running?• What research evidence is available to demonstrate that a more sophisticated market system, designed for larger farmers and traders in the same country, could produce a 'trickle-down' effect that could in some way be of benefit to these typical farmers?• If such evidence is available, should these people be expected to pay for the more sophisticated system?• Could any development agency or government funding be better used in improving the market environment in the country -for such things as the building of fixed place markets, roads, storage facilities, providing credit, enforcing trading rules, training in marketing or MIS, for example -rather than in the establishment of the new market system?• Does the country have the necessary business infrastructure -a trustworthy banking system, legal profession, regulatory framework, communication system, t esting laboratories, warehouse companies, insurance companies, white collar crime policing -to operate the new market system successfully?• What kinds of problems are likely to be incurred if the new market system is established without some, or all, of this business infrastructure in place?• Are the necessary skills available to run the market?• What measures could be put in place to discourage market speculation by people who could not afford any potential loss?• Could the mechanism of the new market system be used for nefarious activities, such as tax evasion?• Is the government of the country in question being pressurised to participate in the establishment of the new market system, either by traders who could afford to establish the new system themselves, or by outside agencies that are not fully aware of the difference between the agricultural market profile and available resources of the country, compared with those of countries where such systems have proved to be appropriate?Shaun Ferris (CIAT) and Peter Robbins (CMIS)In the build-up to this workshop, participants, many of whom were not able to attend the meeting, were invited to join a pre-conference electronic discussion group. The e-discussion was held through a Bellanet Dgroup, and can be accessed through www.dgroups.org/groups/cta/mis/index.cfmThe e-discussion commenced on 1 November 2005, with discussions facilitated by, and based on, a series of stimulation notes prepared by the expert speakers. The e-discussion introduced the thematic areas of the conference, and provided an opportunity for partners to share information on the topics that would be presented and further debated at the conference. During the course of the e-discussion 120 participants were registered on the site, which received more than 250 messages over the 3-week period. Participants represented a wide range of institutions and sectors from research, non-government organisations (NGOs) and the private sector.The purpose of the e-working group was to introduce the expert speakers to the thematic areas of the conference, and to enable the wider audience to raise issues and put forward ideas on innovations in marketing institutions in developing countries. Through this mechanism, it was hoped that participants would arrive well prepared for the meeting, having had an opportunity to learn from past experiences and consider fresh viewpoints.The outputs from the e-working group were used in defining areas for further debate at the conference and in assisting speakers to address important points raised. The following is a summary of the major points raised in the e-discussion.Week 1: Globalisation, policy and farmer perspectives on market institutions• Liberalisation: the main sentiment with regard to market liberalisation was that large-scale farmers and large formal traders are gaining most from the liberalisation process. Smallholders are being marginalised due to limited market access in overseas markets, and increased competition in domestic markets.• Domestic tariff protection: to support smallholder markets and avoid dumping, ACP countries should be able to protect their fledgling agricultural markets using tariff options, without censure by the World Trade Organization (WTO). At the same time, countries of the Organisation for Economic Co-operation and Development (OECD) should accelerate their reform programmes to reduce internal subsides for agricultural products, such as cotton, sugar, rice etc., where farmers in developing countries have a comparative advantage, and to increase market access for poor developing countries.• Falling commodity prices and supply management : the collapse in prices of traditional tropical cash crops over the past two decades was noted as a major problem for the economic and growth prospects of smallholder producers in poor countries. Measures proposed to counter this problem included the need for industrialised countries to reduce their export subsidies and to find effective ways of assisting the poorest countries to access OECD markets. The concept of supply management was raised as a possible means that producers could use to reduce market price volatility and raise commodity prices in some cases.• Productivity focus leads to oversupply: the issue was raised of development funds being too focused on increasing productivity, which further contributes to overproduction and falling commodity prices. According to one participant, studies have shown that increased productivity of food crops is required to raise competitiveness, and that productivity gains are an essential growth parameter. History shows, however, that industrial countries were able to develop successful non-agricultural economies as a first step to increasing farm productivity, but that this was achieved by protecting their agricultural sectors from outside competition. There is mounting evidence that an emphasis on export-led growth in many ACP countries has led to the overproduction of cash crops, causing significant price reductions and an increase i n the volume of imports of food products. This has led to a treadmill situation where many farmers are obliged to raise their production levels, simply to maintain a constant income level or retain as much as they can of a dwindling return. Many participants suggested that the current situation of oversupply calls for a greater focus on diversification, value addition and market protection, rather than productivity.• ACP to conduct more aggressive trade negotiations . It was noted that ACP farmers produce ove r 200 different types of commodity for export -including coffee, cocoa, cereals, pulses, gums, waxes, livestock, spices, natural fibres, vegetable oils, medicines, food additives, tobacco. These are products that the rest of the world is reluctant to do without. Therefore the ACP countries should negotiate more aggressively at trade talks. Frequent questions were put forward as to why this was not being done.• Differentiated client types: one of the problems raised in terms of market access was that different clients need different types of marketing support. It was generally agreed that the larger and more specialised farmers were able to use marketing services the most effectively. This group can also pay for market support services. However, it was argued that all farmers are capable of taking up opportunities offered by a more market-oriented environment, and the vast majority of farmers are smallholders. Points raised included the following.• Larger farmers can readily benefit from modern innovations in i nformation technology, expanding their financial options through warehouse receipt systems, and more speculative trading options through commodity exchanges. Members of this group have access to financial support and are often integrated with well established buyers. Larger farmers deal in bulked, higher-value products, which are sold into well defined markets.• Medium-sized farmers are less well capitalised, but can respond to new innovations when market conditions are not too volatile. Members of this group may not have strong links to formal financial support and often require additional training to keep pace with largerscale farmers.• Smallholders need more local and often simpler market-support systems. Smallholders have few links to finance, often have relatively low levels of education and, after the collapse of government cooperatives, have few links to other farmers. Despite these problems, these farmers can be more competitive in the market if they are given some form of market support, some of which is likely to be considered as public goods services.• Role of traders: many comments reflected the poor image of traders in the eyes of many participants and people in the public sector and in the development world, the unfortunate 'Shylock 3 syndrome'. Traders are considered to be unscrupulous, unprincipled and deceitful; being only too willing to take advantage of the unorganised, particularly when they are in most need. To counter this belief, several participants commented that traders offer an essential service to rural communities; often face great risk in their business; and there are clearly many problems of regulation and honesty in the market place. All these comments suggest the need, generally, for better dialogue between traders and producers and their service providers. The problem of determining who is offering sound goods and services is also an issue involving improving regulation, using standards and applying the basics of good governance in the market. A major challenge is whether the market players are interested in, or can afford, such reforms.• Strengthening farmer groups: the most popular method of promoting smallholders in the market place was to assist them to be better organised. Many participants mentioned the benefits of farmer groups, which would enable smallholders to achieve better economies of scale and better produce prices if they harmonise farming practices and collectively market their goods. In addition, it is easier to provide groups of farmers with services such as extension, training, credit and market information, and to apply business skills.• Rural finance: credit was raised as an impediment to a farmer's ability to produce and trade more effectively. The question of lack of land titles was also mentioned as a barrier to accessing formal credit. However, the traders suggested that lack of land titles or formal credit did not prevent business going ahead. The traders also suggested that warehouse receipts were an easier system to value and therefore likely to be a preferred form of collateral for credit providers.• There was no mention of savings schemes as a way of raising capital for smallholder farmers, and this question was raised in the financial talks given at the meeting. The expert speakers were asked to discuss the role of savings and internal loans schemes as ways for smallholders to raise sufficient capital in invest in farming enterprises.• Business skills: several comments were made on the need for smallholders to receive more business training, with a focus on profitability rather than productivity, and better access to technologies appropriate for them. Other ideas included finding ways to improve productivity, timing sales to obtain best prices, better handling of produce, and finding ways to raise quality standards.• Quality of services: MIS were considered to be of poor quality in most developing countries; however, a second generation of MIS were described as being far better. The differences in these new services consisted not in the type of information supplied, but rather in the management of the services, and their ability to provide these services more efficiently.• Information and communication technologies: it was suggested that ICT will not solve the difficulties of providing universal MIS to the millions of atomised smallholder farmers. The use of websites was not mentioned as a key component in MIS strategies. However, there has been considerable investment in web-based information services. The question was raised as to whether this was simply due to expediency and profile with respect to donor agencies. These challenging questions were put to the ICT marketing information experts, for them to answer in the next week, and at the workshop.Week 2: Market information services• Participants described two levels of market information: the more traditional types of service, and those that have been outsourced. The differences were described as follows.• First-generation MIS: mostly government-controlled services that focus on gathering price data for use by government and large institutions. These systems had poor dissemination methods, were not innovative and generally failed to meet the needs of smallholder farmers, which they were originally intended to support. Funding source: government and donors.• Second-gene ration MIS: a new set of MIS that are generally run by NGOs, such as those in Mali, Senegal and Uganda. These services focus on the producers. These systems are flexible, use several types of new communication technology, and are linked to both national and regional MIS. Funding source: donors and private sector.• Radio: virtually all contributors agreed that radio was the most effective means of disseminating simple market information to the farming sector. Limitations included:• in some countries radio broadcasting has not been liberalised, and access to information is poor, or is not considered impartial• in other countries there are too many stations, which makes it difficult for farmers to follow one information source• radio is a mainly one-way information flow• broadcasting costs can be prohibitive, thus most MIS are financially unsustainable in terms of their dissemination strategies -radio costs are up to 50% of an MIS budget.• Ownership: in some countries there has been a major shift in who owns an MIS, away from government control to NGOs that provide national MIS. The participants suggested that the private sector should also provide MIS, as is the case in industrialised nations. However, although smallholder farmers are the biggest private sector group in ACP agriculture, it was suggested that they have neither the time nor the skills to run an MIS. This begs the question of how MIS can be made relevant to meet farmers' needs without farmers' participation in the management and development of such services.• Mobile phones: there was much interest in the use of mobile phones as a means of gathering and collecting information, and also of acting on information, through direct communications. In many developing countries, mobile phones are considered to be more useful than computers, and certainly more accessible. Growth in the phone market has superseded computers in providing access to information and people through the Internet. The use of short message services (SMS), the ability to relay photos and to use phones for business and financial transactions, all suggest that phones are an essential trading tool for the future, and that smallholder farmers are part of, or can become involved in, this new way of accessing the information highway. Several studies have shown that where mobile phones have been introduced successfully, many farmers can access phones. However, due to the size of some countries in Africa, there are also a number of areas that do not yet have access to, or cannot currently afford phones. Some traders use SMS to inform farmers. This brings up the question of the different levels of access to information between farmer and trader, and how the effects of those differences can be minimised. But it also underscores the fact that the two-way nature of the phone makes it a powerful piece of equipment.• MIS content: a recurring question for information providers was whether there was only demand for market information that includes prices, volumes, locations, etc., or whether market information could be extended to include marketing information. This might include the results of market research, changing patterns of consumption, quality standards and inputs.• MIS sustainability: a report from Côte d'Ivoire outlined the useful work of the local MIS, including its function in food security analysis, but also raised the issue of lack of outside support and lack of funding to maintain the sustainability of the existing MIS. Several studies have shown that many of the MIS set up in the 1970s have collapsed due to lack of sustainable financing.• Utility: some participants suggested that even if smallholders receive market information, they do not know how to use it. Therefore the utility value of providing market information is small. This is an issue that is unclear and needs further analysis to ascertain. There needs to be a greater co-ordination of discussions between farmers, policy-makers, agricultural development theoreticians, traders, funding agencies, government agencies, service providers, radio station managers and, perhaps, advertisers, to decide just how useful radio broadcasts of market information are, how programming can be improved and made appropriate for ordinary farmers, and how broadcasts could be funded.• Linkage of market information to groups: participants suggested that when farmers are organised into groups, they can take advantage of market information more effectively. Groups could more easily afford mobile phones and, by buying in bulk, get cheaper inputs. Similarly, graded, bulked produce would also gain value in output markets. The issue of building social capital in farming communities was a much-repeated subject.• Market information services can work: one participant gave a strong endorsement of the need for, and utility of, MIS to support smallholder farmers, based on a recent review meeting. Guidelines from this work found that MIS were a public good, and that it made good sense to invest public resources in such services. MIS cannot work only with private sector funds; however, there can be assured financial sustainability through a combination of public-and private-sector support. Incentives for improving MIS can be developed, but the search for improvement is a persistent journey. Regional MIS cannot substitute for national MIS.• Policy: several participants raised the need for greater focus on developing policy frameworks that supported the ability of farmers to become more organised and be able to trade in a more equitable environment. These policies need to be at the micro-, me so-and macro-levels, so that farmers can address impediments to their ability to produce, co-ordinate in more market chains, and sell into buoyant and growing markets. At present there is considerable confusion over the policy mixes that will favour the smallholder agricultural sector, despite the importance of this sector in the economies of most developing countries.Week 3: New approaches to trading enter the commodity exchange• No obvious winner: the debate in week 3 moved onto the potential for ACP countries to adopt more sophisticated marketing institutions to boost economic growth in the agricultural sector. Advocates argued that reforms at the market level, such as auctions, warehouse receipts and commodity exchanges, would lead to increased prosperity for all actors in the farming sector. Sceptics suggested that many preconditions had not been achieved to enable such mechanisms to operate sustainably, and that the benefits in the short-to medium-term would not accrue to smallholders, but would be skimmed off by the larger-scale farmers and traders. Many sceptics thought that, in most countries, such measures were not applicable to the local context, and would fail.• New models emerging: the Southern African Commodity Exchange (SAFEX) is operating a successful agricultural commodity exchange (ACE), which operates on the Johannesburg derivatives market. SAFEX trades in maize, soya beans and sunflower seeds. Zimbabwe had a growing commodity-exchange platform until 2002. Several governments in ACP countrie s, including Kenya, Uganda, Zambia, Malawi and Ethiopia, are working towards developing commodity exchange-type models to increase the market efficiency of selected commercial crops such as coffee, tea and maize. There is also interest from NGOs in developing more localised warehouse and finance schemes. New marketing options being considered by governments and NGOs include auctions, partial-payment warehousing, brokering of commodity information, commodity-awareness websites, warehouse receipts, and deriva tives markets. Benefits of the new systems include:• a reliable and accurate mechanism for price discovery• rapid and transparent means of bringing willing buyers together with willing sellers• means of increasing finance into the agricultural sector• means of increasing greater formalisation in to the market, including grades and standards, and reliable services• means to reduce post-harvest losses, as unsold goods can be deposited securely in a registered warehouse where its quality can be assessed and guaranteed.• Intermediate stages: it was reported that in Latin America there are local warehouse systems where sellers are given a prepayment for goods deposited in a registered warehouse, pending full payment at the time of sale. In the example given, the wareho use was buying for larger retail operators and therefore had sound incentives for buying quality goods. These buyers were also able to provide partial payments on delivery, due to the confidence of banks in their contracts with recognised retailers.• When t o invest in new trading institutions: most participants recognised that, at a particular stage of market development, these new trading and marketing institutions were relevant and useful. However, the question remains as to how to identify this particular stage, and how and when to introduce the various functions of these institutions. Are there any preconditions that need to be met before a new trading platform can work effectively, and is sequencing of these conditions important? These are particularly relevant questions in Africa, where donor funding is very limited.• Question of who funds: if, as has been asserted, larger-scale traders and farmers are likely to benefit most from the development of warehouse receipt schemes and ACEs, is this a problem for the development group? It was suggested that, as long as the sector as a whole gains, investment in this type of trading institution should be pursued. This issue raised the question of targeting. If the funding for a new trading institution is to come from the donor group, and their policy directives are to support the poorest segment of the agricultural sector, is an ACE a justified investment? If the government is investing in this type of institution, can it be sure the gains will be reinvested back into the agricultural sector, and will this investment support more than the larger-scale producers? Based on these questions, is there a need to evaluate the impact of such an investment on specific beneficiary groups prior to making such an investment decision?• Esteem versus value: the cost of the Ugandan exercise to design and establish a warehouse receipt system or trading floor is €2 million, one-third of which will be used to pay technical assistance companies. This is equivalent to 30 times the cost of the annual budget for Uganda's national MIS. Some participants believe that ACEs and warehouse receipt systems are seen as modern and prestigious projects by donors and governments, whereas fully functioning MIS are 'invisible' and therefore cannot be used as a showpiece for development.• Return of the wholesale market: some participants felt that large wholesale markets, when properly regulated, fulfilled most of the functions of a commodity exchange. One participant suggested that, unless volumes of trade were above 1,000,000 mt, an exchange was unnecessary. Wholesale markets have deficiencies, in that they lack the openness of commodity exchanges, which prevents them from being used as a price-discovery mechanism. Wholesale markets can also suffer from problems, including collusion and the intimidation of new entrants. However, if there are only 20 traders working on a commodity exchange, the potential for insider trading and market fixing is also high.• Where exchanges work well: the best examples of ACEs are in countries where there are a significant number of large farms. Participants provided the example of one farmer group in Zimbabwe being able to supply 100,000 mt of maize in a season. SAFEX is also a strong marketing institution that is providing an effective market signal and a means of increasing trading efficiency. While SAFEX continues to grow within a sophisticated and well regulated economy, the Zimbabwe Agricultural Commodity Exchange (ZIMACE) failed when the land of the large farming community was expropriated. The question then remains, can the functions of these institutions be made useful for, and compatible with the interests of, smallholder farmers producing 500 kg of maize a year?• Sustainability: one participant raised the question of the sustainability of new market institutions. Donors are reluctant to fund a project for more than 3 or 4 years on the assumption that, once shown to be successful, a project will be taken on by the private sector so as to make profits from the system, and therefore sustain them thereafter. Is this a realistic assumption for, say, MIS for very poor farmers? This problem also applies to the intermediate exchange systems, where information on trade is brokered, but commissions do not cover costs of the service.• The trade policy environment: in the last week of the e-discussion, the marketing policy debate re-emerged as new participants joined the debate and provided their views on this subject area.• Commodity prices: participants were asked to remember the question of the absolute price of tropical commodities. At present, prices of the top 20 traded tropical commodities are trading at a fraction of 1980 levels, in real terms, and none of the systems discussed will do anything about overproduction, especially of cash crops, which has caused these prices to collapse.• Market concentration: apart from the strong recommendation that farmers should be encouraged and supported to market their products collectively, the institutions discussed in week 3 will do little to combat the effects of market concent ration among traders, processors and retailers. The effects of market concentration are ominous in terms of fair trading and competition along key market chains. For instance, in 1980 at the wholesale level, there were more than 30 large-scale traders in c ocoa working in London alone. Today, just four companies, Archer Daniel Midland, Barry Callebaut, Cargill and Hosta, account for 40% of global cocoa processing. Around nine companies account for 70% of total capacity. The same effect is happening at an ever more rapid rate in the retail sector. Whereas there were hundreds of different retail companies working in the UK, selling goods to customers, now there are only a handful of supermarkets that perform the same market function. In the UK the retail market is currently dominated by four or five retailers including Tesco, Sainsbury's and Asda. In the UK, Tesco alone has a 40% market share. This situation is repeated globally, and means the prices and methods of production for smallholder and medium-sized producers is based on the strategies of these companies. At present the small-scale producer receives, typically, only one half of 1% of the final retail price in the country's consumer sector, and in many cases the value of these goods at the farm gate is declining. In contrast, the profits for both transnational wholesalers and major retail houses are growing on an annual basis, and margins for some products, such as speciality and branded coffees, are considered by many observers to be excessive.• Markets and products: the comments made in this discussion raised more detailed questions about how to improve markets. These relate to the differences between the needs of large-scale and smallholder farmers; the difference between the markets for products for domestic consumption and those for export; the special possibilities for improving the markets of bulk crops such as grains, pulses and coffee (commodity exchanges, etc.) and the lack of those possibilities for the 200 or so other ACP agricultural products; and the different ways in which food commodity markets can be improved compared with how we look at cash crops.• ACP countries similar to USA? A late comment was made, which also asserted that the sophisticated MIS, warehouse registration and commodity exchanges in the USA evolved out of a simple agricultural sector of the type we find in many African countries today. Can we learn from these experiences, or are the historical, geographical, cultural and economic conditions in Africa and other ACP countries so different that a new approach is needed? Has the process of liberalisation gone too far, as some African countries now argue? When US farmers and traders began their march towards a successful, modern, mechanised agricultural sector, their industry was given larger amounts of government assistance, control and market protection than most African farmers are given today.• The sequence issue: in the e -discussion a number of tools and strategies were under scrutiny, including the following list of marketing tools, strategies and institutions that can assist in making markets more structured, in defining the conduct of participants, and in enabling efficiency gains that will monitor the market performance more effectively:1. strategic policy framework for marketing These issues and ideas led to the defining of some areas in which the conference should seek resolutions.Key questions that the conference hopes to answer include:• sequencing : is sequencing important in terms of developing and applying elements of an efficient marketing system?• conditions : are there any preconditions necessary for these strategies to work in support of the smallholder farmer?• context: in what ways do the marketing tools and strategies have to be adapted to work effectively in different ACP countries?• leadership: who should introduce these tools or strategies? how should they be funded?• linkages: should these tools, strategies and/or institutions be introduced as single entities or clustered to make efficiency gains?• priorities: where should CTA invest?Session 2Setting the sceneThe new trade environment and the plight of smallholder farmersThis paper focuses on the position of typical, small-scale ACP farmers from the global point of view, and aims to highlight how global influences have altered the farmer's position over time. I want to outline the main changes that have affected smallholders, and the various strategies being proposed for improving the position of small-scale farmers in the light of these changes. This paper refers to changes that have occurred since 1980.Why 1980? Because 1980 marks the beginning of the latest wave of economic and trade liberalisation, which has heralded most of these changes, and the beginning of an escalation of innovation in ICT. Let us talk first about the effects of changes in economic thinking.The list is long, but the major changes include the application of economic struc tural adjustment programmes, the ending of price-stabilising functions of international commodity agreements, the dismantling of most state-controlled marketing boards, the cutting of taxes, the acceptance of export-led and trade-led development, the partial reduction in the tariff barriers and farm subsidies of developed countries, and the pursuit of income-generation strategies for many subsistence farmers.Then there have also been major changes in the commercial links between the farmer and the consumer. Throughout this period, the number of trading companies dealing in agricultural goods, processors and retailing chains has been reduced significantly through a process of acquisitions and mergers.There have also been significant technical changes during this time, many advances in farming technology affecting even the smallest farms, including better varieties, better ways of storing products, better protection of livestock from diseases, etc.Communication systems are incomparably better. FM radio stations, mobile phones, e-mail and the Internet have made it possible to transfer huge amounts of information between any two points on the planet instantaneously and at very low cost. Let us look at these changes in order.What benefits were ACP countries supposed to derive from the liberalisation of markets?• Because developing countries were deemed to have a 'competitive advantage' in agriculture (because of climate and cheap labour), they were capable of increasing exports (especially if tariff barriers to consuming countries were lowered).• Exposing industries in developing countries to outside competition would make them more efficient.• Reducing government's role in marketing would allow private-sector people to compete with each other and become more efficient than equivalent government institutions.• Cutting government taxes would lift a burden from the private sector and therefore make it more profitable, giving a better opportunity for increased investment.The strategy has been successful for some farmers and not for others.Supermarkets in London are full of Kenyan fruit and vegetables. I can buy flowers from Ethiopia, dried fruit from Uganda and ornamental plants from Jamaica. This would not have been possible 25 years ago -so some ACP farmers are clearly benefiting. From my observations in British supermarkets, countries such as Brazil, India, Israel, Argentina, Colombia and Thailand have also massively increased agricultural exports, especially in more sophisticated semi-and fully processed goods.The success record of this strategy from the smallholder's point of view is decidedly patchy, however. Since international commodity agreements ceased their price-stability function, prices have collapsed to a fraction of what they were in 1980, in real terms.Marketing boards have gone, so governments cannot tax farmers on exported goods in that way any more, but now farmers have to negotiate with traders from a position of weakness and market ignorance. Local prices are now much more volatile than when marketing boards controlled prices.Farm credit (which might once have been available, in kind, from marketing boards) is unavailable for small-scale farmers in most ACP countries.Heavily subsidised agricultural products from wealthy countries are being dumped on ACP markets, thus undermining local producers.There is very little inward investment (and very little local investment) in facilities to add value to agricultural goods, because developed countries have already perfected processing techniques.Government interference has been reduced, but so have government services in such things as extension services for poor farmers.The requirement to concentrate on cash crops for exports means that many countries have to import more food.In short, most small-scale farmers have been unable to take advantage of the liberalisation of markets because they:• do not have the economies of scale to compete internationally• cannot meet quality standards• have no access to investment to improve their production• suffer from very low prices• have no access to appropriate market information• are in a weak bargaining position.The most important change in the chain of commercialisation has been the reduction in the number of trading, processing and retailing companies. In 1980, for instance, there were more than 30 large-scale traders in cocoa in London alone. Today, just four companies, Archer Daniel Midland, Barry Callebaut, Cargill and Hosta, account for 40% of global cocoa processing. Around nine companies account for 70% of total capacity. This means there is less competition between the major buyers of the products produced by small-scale farmers. The local trading companies, which now undertake the function of the dismantled marketing boards, not only lack the market power of the marketing boards, but also have as much interest in buying at cheap prices from farmers as they have in selling at high prices to the massive international trading companies.On domestic markets, the picture is different for each country and each commodity, but there has been a much slower rate of market concentration among local traders. The almost instant changeover from a centrally controlled agricultural market to one run by the private sector has meant that, in many countries, a fully efficient, competitive market has not yet evolved. In addition, the traditional method of small-scale farming means that rural populations are thinly dispersed, with each farm producing only a tiny surplus of products for sale.This often means that, in some locations, there is only enough business for one trader. There may be thousands of small-scale traders, instead of a few very large ones, as in developed countries. This means that there are often as many as five or six intermediaries between the producer and consumer. Each has to take a profit and each incurs handling costs. The net result of these changes is that in many ACP countries, farmers are paid too little and consumers pay too much.Another important feature of recent agricultural development strategy has been to encourage subsistence farmers to produce a surplus for sale. The impact on the rural economy varies between countries, but when these surpluses are of cash crops, the result has often been to contribute to global overproduction and collapsing prices. With increasing populations and more frequent shortages of food in developing countries, however, this strategy can have very positive benefits, not only for farmers but, through a multiplier effect, also for the general economy.A less successful strategy has been to encourage farmers to diversify: to grow a new product when the market price of their traditional crop has fallen. In too many cases, as with diversification into vanilla, the result has been to spread the problem of overproduction in one commodity into overproduction into many more.In order to take advantage of the opportunities that have occurred through the adoption of exportled development policies, ACP countries now have to produce more agricultural goods that meet high international quality and safety standards. Although many larger-scale producers have risen to this challenge, most typical, small-scale producers do not have the know-how or resources to compete in this area. Even if they could, local testing laboratories and certification authorities are scarce and expensive.So -how do we proceed from here to where we want to be? What are likely to be the most useful strategies for increasing the welfare of most ACP farmers?Let us review the international arena first. At the WTO meeting in Hong Kong later this year, the central debate will concern a reduction of import tariffs on agricultural products by the wealthiest countries in return for developing countries opening up their markets further to services and manufactured items from developed countries.Such changes will give the greatest benefits to large, comparatively wealthy, temperate countries that have large agricultural sectors -Australia, Argentina, Brazil and Canada. These countries do not subsidise their agricultural sector very heavily and rely on modern agricultural technology and enormous farms to retain competitiveness. They want to supply the USA, EU and Japan with more grains, oilseeds and meat.Some ACP countries might benefit from wealthy countries lowering their tariffs on sugar and cotton, but those ACP countries that presently enjoy EU Lomé/Cotonou trade concessions on sugar and beef could be seriously disadvantaged by these changes, especially if they also lose the protection they now have for their embryonic services and manufacturing industries. The WTO has already curbed the advantages that ACP banana producers had on access to the European market.The WTO has taken up the problem of market access for sugar into Europe and cotton export subsidies in the USA, and some ACP countries are likely to benefit from increased market access to these goods.Six African countries have submitted a proposal for the clarification of WTO rules covering measures that developing countries might take to reinstate international commodity agreements to end over-supply of tropical commodities and thus to increase prices. Their proposals also ask for clarification of measures that might be taken to combat the negative effects of market concentration and to end the dumping of cheap, subsidised agricultural commodities from wealthy countries on the markets of developing countries. If such measures were introduced, they could greatly benefit ACP countries and would be worth many times the total aid receipts of ACP countries.Many ACP countries are small, in terms of population, and as they have a small domestic market, they do not attract a great deal of inward investment. In order to comply with WTO rules, the EU is obliged to end its trading concessions with ACP countries as a block, but may retain concessions with all least-developed and developing countries. The mechanisms preferred by the EU for doing this are regional economic partnership agreements. Although this is a highly contentious issue, the formation of ACP countries into regional 'common markets' might encourage inward investment and stimulate regional trade between those countries.Although marketing boards were used as a tax-gathering mechanism by some governments and were often over-bureaucratic, they did fulfil some useful functions. Many acted as an arbiter for setting quality standards, some distributed credit in the form of inputs and, more importantly, they were able to bargain with large trading companies from a position of strength and thus gain fair market prices for the country's output. Some consideration is now being given to the idea of reconstructing a new form of institution that could re-establish some of these useful functions in a way that would benefit ordinary farmers.Almost all experts now agree that much more effort needs to be made to encourage farmers to form associations and to give them the necessary support to allow them to do so. While it is true that modern farming methods can increase the productivity of a given area of farmland by improving economies of scale, it would be impossible to clear the land now being worked by small-scale farmers in order to introduce large, modern farms. Economies of scale can also be improved if farmers harmonise their activities to grow a similar variety of crop and harvest it simultaneously. They can then market it collectively and obtain higher prices by selling it in bulk. Such associations can also purchase inputs in bulk more cheaply. In addition, it is far easier to deliver services to farmers, such as extension, training, credit and communication systems, if they form themselves into larger groups.European farmers have access to over 2,000 sources of market information, yet agriculture represents only 2% of Europe's economy. Many farmers in ACP countries, where agriculture represents over half the economy, have no access to market information. We now have a strategy that encourages farmers to maximise sales of their goods, without telling them what price they should expect to sell them for. There are some examples of successful MIS in ACP countries, but there are also many examples where no services exist for farmers. This is partly because funding for MIS seems to be a low priority. It is also impossible to evaluate quantitatively the benefits of MIS, because such benefits cannot be disaggregated from the many other factors affecting agriculture, such as weather, prices, availability of credit, and transport conditions. Nevertheless, asking farmers to make their living by selling their goods, then asking them to do this without market information, is like asking them to farm without land or water. An efficient and appropriate MIS for all ACP farmers is essential if their welfare is to be improved.Several ACP countries have established commodity exchanges to trade some of their staple commodities. In a typical commodity exchange, buyers and sellers of a particular commodity use the service of brokers to transact sales and purchases. Several brokers work permanently at the exchange, and each may represent many buyers and sellers. By combining buying and selling orders the y can then trade these with each other so that their clients who wish to sell can be linked to clients who wish to buy. The transactions between these brokers are carried out in a public arena, and the price of each transaction can be recorded and made pub lic without the identity of the original client being disclosed.This mechanism not only facilitates the marketing of agricultural goods, but also allows all the actors involved in the traded commodities to discover the latest market price for the commodity.In other words, it acts as a kind of MIS, and has the advantage over some conventional MIS in that the true market price is easier to discover than it would be, for instance, by asking individual traders for their estimate of the price.However, commodity exchanges are much more costly to set up than conventional MIS, and take up limited donor funding. In addition, commodity exchanges can only be used effectively, in the ACP context, to trade bulk commodities such as grains and pulses.The warehouse receipt system is usually linked to commodity exchanges. No-one would be willing to buy a product unless they have examined it, or have a guarantee from an impartial body that the quality of the product is as described. If such a guarantee can be supplied, buyers can trade not only in the physical commodity, but also in documents that give title of ownership to a particular quantity of that commodity, which is at a known, safe location and of guaranteed quality. Such documents could also be used as collateral to help the owner borrow money from a bank.In many ACP countries there is a lack of trust in the viability and probity of banks, and in the mechanisms used to enforce legal contracts. For a warehouse receipt system to be successful, a huge and costly effort needs to be made to ensure the legal and business institutions that guarantee the existence and quality of traded commodities are not in doubt.Consumers in developed countries now demand very high quality for the goods they buy. They will not buy food products unless there is a guarantee that they are safe to eat. They want good and attractive packaging, and they want goods that are uniform in appearance.Most small-scale farmers are not equipped to produce such goods and, even if they could, the companies that test the products for safety charge fees that are beyond the farmer's means. This means that only large or extremely well organised farms can benefit from this opportunity by adopting strict quality control measures and obtaining the necessary certification for their goods.Medium-sized farmers and groups of farmers working together could, perhaps, improve the quality of their products to international standards, but they are likely to lack the marketing skills and trade contacts to identify customers and to negotiate successfully with them.Such farmers should be encouraged to 'test-market' their goods on outlets such as tourist hotels, conference centres and upmarket supermarkets. Once they are confident they can produce a highquality product reliably and consistently, they are more likely to gain the confidence to market their products to other countries.Over the past 20 years the prices of primary agricultural products have fallen steeply, but retail prices for the same products, processed and packed for the supermarket shelf in industrial countries, has been climbing steadily. These factors suggest that producing countries could gain a lot more income for their goods if they added value to primary products by processing them. Farmers, too, could earn more money for their crops if they could achieve higher quality, sort and grade them properly, weigh and pack them in standard measures and, where appropriate, clean them.Agricultural extension services and agricultural development agencies place high priority on helping farmers to increase productivity and reduce wastage. This strategy may help individual groups of farmers, but the overall effect may be to add to the problem of overproduction and decreasing prices. In order to meet some of the challenges of the modern agricultural markets, these agencies should now seriously consider helping farmers to add value to their goods.This workshop is concerned with discussing a number of strategies that could be of assistance to people in ACP country agricultural sectors. These strategies include:• improving MIS and market intelligence systems• improving the provision of credit• expanding the role of auctions, ACEs and warehouse receipt systems• improving the legal framework for agricultural markets• improving grades and standards• improving government policy to improve marketing systems.Dr Aad van Tilburg (Wageningen University, The Netherlands)In recent years, food marketing systems (FMS) have attracted a great deal of interest in studies on regional development, supply-chain management and (international) marketing channels. This is, among other reasons, due to renewed interest in food quality, food security, food safety, sustainability of resources and seasonality in food supply. Another reason is that non-processed food items tend to be very vulnerable and, due to their limited shelf life, cannot be stored for a long period. This suggests, especially for fresh products such as vegetables, fruit, meat, fish and dairy products, that actors in the supply channel need to co-ordinate their activities to be able to deliver fresh, tasty and safe products of desired quality to their customer segments.Food marketing systems play a key role in regional development. The initiatives and risks taken by entrepreneurs, whether farmers, traders, processors or transporters, will affect the pace of regional development. Investment by public authorities in the physical and informational infrastructure will reduce transaction costs. Initiatives taken by private or public authorities to facilitate the improvement of marketing functions, such as standardisation of measures, product grades, standard contracts and MIS, can further reduce the transaction costs (e.g. search and inspection costs of traders).The aim of this paper is to discuss factors that influence the performance of FMS: the structure, co-ordination and performance of FMS and their institutions. Operations in an FMS are influenced by its (cultural, political, socio-economic and technological) environment, as well as by competition in input and output markets.Food marketing systems are defined as 'Sets of interdependent organisations involved in the process of making a food product available for consumption' (Kotler, 2000). An FMS includes participants, functions and institutions. Examples of participants are producers, traders, processors and transporters. Marketing functions are usually categorised into exchange functions, physical functions, and facilitating functions (Kohls and Uhl, 2001).Exchange functions include negotiating, buying and selling, and arbitrage. Physical functions include transport (place ut ility), storage (time utility) and processing (form utility). Facilitating functions include standardisation, financial services (e.g. credit), risk management (insurance, futures), market information and marketing research.Examples of marketing institutions are auctions, assembly markets, wholesale markets and MIS.An FMS in a country or region can be considered to consist of three subsystems: a number of spot markets; horizontal networks of assembly or wholesale markets; and vertical marketing channels.Insights into the structure, co-ordination and performance of FMS can be obtained from theories in economics and marketing. These theories include:• industrial organisation theory (Marion and Mueller, 1983;Baumol et al., 1988;Scherer and Ross, 1990;Carlton and Perlott, 1994) • marketing channel theory (Bucklin, 1970;Coughlan et al., 2001) • institutional economics (Nably and Nugent, 1989;Eggertsson, 1990;North, 1990) • transaction cost economics (Williamson, 1985;Douma and Schreuder, 2002).Building blocks for the framework to assess the performance of marketing systemsA central hypothesis in industrial organisation theory is that 'sufficient competition in markets solves economic co-ordination problems'. To this end, the actual degree of competition in a particular market is compared with a standard derived from theory.Examples of such standards are:• 'Perfect' competition, in which competition is optimal because of:• homogeneous products• many buyers and many sellers• market transparency (= complete market information)• freedom of entry and exit.Spot markets that approximate the level of perfect competition are auctions and commodity exchanges.• 'Workable' competition, in which competition has an acceptable level. For example, an oligopoly is preferred above a duopoly.• 'Contestable' competition (condition: free and costless entry and exit of a market), in which the threat of competition by potential newcomers (entrants) is sufficient to keep the prices of the exis ting (incumbent) traders low. For example, traders operating in an oligopsony (a market in which the number of buyers is small while the number of sellers in theory could be large) are buying in an assembly market. They may collude to fix a (low) buying price, but (expected) market entry of other buyers is supposed to break this collusive action.Marketing channel theory deals, among other issues, with the degree of cooperation and coordination in the channel.Three basic modes of co-ordination can be observed in marketing channels:• spot markets through price competition (conventional marketing channels)• hierarchies through lines of command, contract or joint planning (vertical marketing system)• networks through mutual trust among buyers and sellers.Co-ordination of economic activities is governed by the price mechanism (price discovery).Market prices embody a crucial signalling device for market participants. Different levels exist of supplier or buyer control over market prices, dependent on the degree of competition at the supply and demand side in the market. Often the degree of competition for homogeneous products is represented by a matrix with the number of suppliers (one, few, many) as axis 1 and the number of buyers (one, few, many) as axis 2. In this matrix, one can find perfect competition (many, many); oligopoly (few, many); oligopsony (many, few); monopoly (one, many); monopsony (many, one), etc.Co-ordination of economic activities can be obtained through an authority or a hierarchy (e.g. a channel leader) by means of contract (e.g. franchising) or planning (e.g. a common marketing plan).A network consists of informal relationships between agents, and is assumed to lubricate economic relations. cooperation, loyalty and trust among agents are major characteristics of networks.A summary of these forms of economic co-ordination is represented in Table 1. Source: Powell (1991).Main types of co-ordination that can be found in marketing channels are:• conventional marketing channels: competition through spot markets • vertical marketing system: co-ordination by channel participants or a channel leader in which co-ordination can be voluntary, contractual or based on ownership• Mixed forms.The main question in institutional economics is: what is the optimal mix of rules and economic organisation to facilitate exchange processes?Definitions of 'institutions' found in the literature are:• 'any behavioural regularity'• 'rules of the game' in a society.Examples of the first category are trade habits or informal codes of conduct. Examples of the second category are rules or regulations about grading and sorting, standardised contracts and rules about conduct in a market set by market authorities.Transaction costs can be related to the three classes of marketing function: exchange functions, physical functions and facilitating functions (Kohls and Uhl, 2001).The broad definition of transaction costs includes all costs related to these three classes of marketing function. The narrow definition of transaction costs usually regards only the exchange functions:• information collection and interpretation• negotiation / bargaining• enforcing contract.The costs of these facilitating functions are dependent on the availability of proper marketing institutions. These costs are related to the degree of:• standardisation of measures and product grades• availability of financial services, e.g. credit• risk management (insurance, futures market)• availability of MIS and marketing research services.The costs of the physical functions (transport, storage and processing) tend to be high, especially in developing countries where the physical infrastructure is underdeveloped.Framework to evaluate the performance of a food marketing systemWhat criteria can be used to judge that one FMS is functioning better than another? Performance assessment includes factors such as:• effectiveness: is the system doing what it is supposed to do? For example, are the level and quality of the chain's 'service outputs' satisfactory to its customers?• efficiency: are the resources to produce a product or service used in an optimal way? For example, is it better to 'make' or 'buy' a product or service?• equity: are there 'equal' opportunities for all participants to enter (or exit) a market, or to obtain a fair share of the value added in the chain? (Coughlan et al., 2001).The level and quality of the service outputs of a marketing channel may include:• price in relation to quality• delivery time or (customer) waiting time• lot size or package size (discrete, continuous)• access to, or density of, retail outlets• degree of product differentiation or product variety.In developing the framework, we need to know which factors may influence the performance of an FMS. A popular framework is the (supposed) relationship between market structure, market conduct and market performance (Cubbin, 1988;Scherer and Ross, 1990). For example, are market structure variables affecting market conduct and market performance? Or is interdependency between structure and conduct affecting market performance?The assessment of an FMS is decomposed into the assessment of three subsystems: spot markets; horizontal networks of (assembly or wholesale) markets; and one or more marketing channels.For example, an assembly market, an auction, a commodity exchange, a wholesale or a retail market.At this subsystem level, structure, conduct and performance can be defined as follows.Market structure characteristics:• degree of concentration of supply and demand• degree of market transparency (market information)• entry or exit barriers• availability of institutional support services.Market conduct characteristics:• people's market(-ing) strategies• degree of competition (e.g. oligopolistic behaviour)• degree of (tacit) collusion.• effectivity (process of price discovery)• efficiency (profitability) -benefits in relation to transaction costs• equity (market access).The conclusion of this type of analysis may be that the actual market is close to one of the described models of perfect or imperfect (workable, contestable) competition. What conclusion can be drawn from this analysis? What measures need to be taken to improve market performance?For example, at the level of horizontal networks of markets such as assembly markets, auctions, commodity exchanges, distributing wholesale markets.At this subsystem level, structure, conduct and performance can be defined as follows:Structural aspects of the network:• are markets linked through arbitrage activities by traders (or are they autarchies)?• institutional set-up.Conduct characteristics of the network:• does arbitrage by traders between markets reduce price differences and, finally, result in price differences that are equal to transaction or the costs of the three marketing functions?Performance indicators of the network:• effectivity -what is the degree of spatial price integration?• efficiency -benefits in relation to transaction costs • equity -are there entry barriers?The conclusion of this type of analysis may be: what is the degree of market or price integration between the selected markets? What measures need to be taken to improve arbitrage between markets?At this subsystem level, structure, conduct and performance can be defined as follows.• what type of governance system? (conventional marketing channels, vertical marketing system?)• what vertical marketing system?Conduct of people:• for example, in the case of a vertical marketing system, who is co-ordinating the marketing channel (channel leader)?Channel performance indicators:• effectivity -level of service outputs• efficiency -compare costs of 'make' or 'buy' decisions• equity -what is the added value in relation to the costs?The conclusion of the analysis is related to the question: Has the best governance structure been chosen for the marketing channel? What measures may improve vertical co-ordination?Integrating the results of the three subsystemsThe results of the performance assessment of each subsystem need to be integrated into an analysis for the total FMS.Application of the framework I selected FMS in two case-study countries to demonstrate the application of this framework: Benin and Costa Rica.The research in Benin was a joint project between three universities in The Netherlands (Amsterdam, Utrecht and Wageningen) and the Faculty of Agriculture of the University of Benin (Cotonou). Many MSc students of these four universities and several faculty members cooperated in collecting primary data on structure, conduct and performance in the maizemarketing system of Benin. This included market prices, marketing costs, levels of competition, collusion practices and entry barriers.The research in Costa Rica was part of a joint research project in which the Tropical Agricultural Research and Higher Education Center (CATIE), Wageningen University, the Universidad Nacional and the Universidad de Costa Rica cooperated. The study set-up was an integrated approach in which, among others, soil scientists, agronomists and economists cooperated in developing new research tools.In Benin, all data required were collected by trained enumerators. In Costa Rica, primary data were collected by enumerators and secondary data were obtained from several ministries and the Central Bureau of Statistics.The depth of analysis in the two studies was related to the availability and quality of the primary and secondary data. Consequently, the statistical methods used to test hypotheses or simulate policy scenarios also varied accordingly.The following conclusions were drawn from each of the three country studies.The research activities were concentrated in the southern part of Benin, with two rainy seasons and, consequently, two crops and harvests. The physical infrastructure was quite good, and was improved during the research period, resulting in lower transport costs.The rural assembly and wholesale-retail markets for maize were characterised as 'contestable', which means that other traders could easily enter the market in cases of price differences that were substantially higher than transaction costs. Traders, who were normally dealing in products other than maize, entered the maize market during times when trade profits were increasing, and left the maize market in periods when trade profits were decreasing. This suggests that these traders knew how to deal with entry barriers such as trade customs or practices (e.g. nonstandardised volume measures and product grades), lack of market information and working capital.The initial assumption was that one or two large-scale wholesale markets in the south (Bohicon and Cotonou) were the price-leading markets, in the sense that wholesalers were able to set prices based on their estimates about the ruling supply and demand conditions. However, this appeared not to be the case when the results of a co-integration analysis became available: Traders in five of six wholesale markets in the south of Benin appeared to interact in such a way that the ruling price level was the result of their joint activities.Here the hypothesis was that maize wholesalers were influencing the price level more than maize retailers. This was only partly true. Wholesalers appeared to affect the price level more than retailers in rural markets, whereas retailers influenced the price level more than wholesalers in urban markets.Relevant price information is difficult to obtain without proper standardisation of measures and product grades (Shepherd et al., 1997). Adequate price information about the quality of the underlying lot of products is necessary to assess its value. One may wonder why these basic requirements in the marketing of agricultural products have not yet been fulfilled in Benin. In the 1950s and 1960s, the Food and Agriculture Organization of the UN (FAO) published documents about this marketing problem (Abbott, 1961). One suggested answer is that these aspects are related to culture and habits, and tend to be hard to change in cases where there is not a clear incentive, as the history of Europe and the USA shows. A strong set of marketing institutions, backed by the government, may be able to enforce the required changes (Abbott, 1961).Research activities were mainly concentrated in the Atlantic Zone of Costa Rica.Assembly markets were especially relevant for products to be sold in domestic (wholesale or retail) markets. Farmers in the Atlantic Zone complained about the fact that they often could not sell their products because traders did not pass to buy them (for example, in the case of roots and tubers). However, both rural and national cattle auctions were operating in a transparent way.There was not much arbitrage between spatially separated wholesale markets at the same level in the channel, e.g. wholesale markets, mainly because of thin markets (caused by a low population density in parts of Costa Rica), large distances and a high mountain ridge (sierra) between markets.The marketing of export crops such as bananas (by multinationals), coffee (by a marketing board), fruit (by multinationals) and tubers (by export companies) was well organised as a corporate or contractual vertical marketing system. For non-export crops, the marketing channel had all characteristics of a conventional marketing channel.An agricultural sector analysis for Costa Rica demonstrated that the sector has been highly dependent on world prices for export commodities, and on transport costs for non-export commodities.A spatial equilibrium analysis was used to simulate relevant future market scenarios, e.g. to reduce trade barriers (WTO), to increase price levels for farmers, to shift demand functions upward (because of an expected rise in income), or to shift supply functions downward (because of expected technological improvements in agriculture). For example, the effect of reduced import tariffs or road construction was simulated. The profitability of the country's important export sector depends strongly on world market prices.The above framework helps us to understand the contributions of people, markets and institutions to better functioning of FMS. This will, in turn, contribute to regional development.Investment to improve the physical, facilitating and exchange infrastructure is essential.David Queen (freelance consultant, former senior buyer at Sainsbury, UK)Many contributors to this conference have provided evidence that market power in agricultural products is shifting away from the producers in favour of participants and further towards the consumer end of the market chain. The concentration of international trading companies, through a process of acquisitions and mergers, has enabled the small number of very large, international trading companies that remain in business to purchase goods from atomised and disorganised producers on terms that are increasingly more advantageous to them. A similar process of market concentration has taken place simultaneously in the processing and retailing sectors of the market chain, and companies in these sectors are increasingly able to dictate sales terms to the trading companies that supply them.In the UK, just four supermarket chains, Tesco, Asda, Sainsbury's and Morrisons, now account for about 70% of all grocery sales. Market concentration in this sector has occurred in most other major consuming countries, and is now also a feature in many developing countries. Many supermarket chains operate in more than one country and in more than one continent. Individual stores may cover an area of 50,000 square feet (1500 m 2 ) and may stock several thousand different grocery lines from hundreds of different suppliers. These four UK chains have reinforced their attraction to consumers of their traditional grocery and fresh food range by also offering non-food items including clothing, kitchenware, cosmetics, petrol, electronic equipment and services such as banking and insurance. In a relatively new strategy, they are now opening smaller local outlets, such as Tesco Express, displacing the traditional, family-owned corner shop. If a new supplier is unable to sell to one of these chains, they have little hope of penetrating the mainstream market.Many agricultural development agencies now advocate a strategy for developing country producers to add value to the goods they produce in order to capture some of the large profits of companies that occupy sectors nearer to the consuming end of the market chain. Ultimately, this means they should have their products sold through the giant supermarket chains.Supermarkets, however, need to be assured that all their suppliers can produce safe, high-quality products that are properly and attractively packaged, branded and labelled; that the supplier can deliver the product on time to the supermarket's warehouses; and that they have the means to compensate the store in the event of quality, performance or safety claims.Supermarket chains are powerful and highly sophisticated organisations designed to maximise profits and minimise risk. The functions of the organisation are divided between various departments and between the head office and the local supermarket branch. And, as the market power of the supermarket grows, the internal decision-making mechanisms are also evolving.The following section of this paper outlines many of the concepts and procedures used by supermarkets in their relationship with suppliers.Opportunities for the successful launch of new products and for new suppliers are becoming increasingly limited through UK supermarkets. Although suppliers of all products are affected to some extent, it is perhaps in the grocery sector where the effects are seen most clearly.Major supermarket chains are now actively engaged in reducing the number of suppliers they deal with. This is a corporately directed process, driven by various departments and individuals in the organisation, including accounts and logistics departments, store managers and area directors. Buyers (individuals employed at the head office of the supermarket to purchase various categories of goods such as fruit, canned goods and confectionery) are becoming less influential in the decisions taken about the choice and number of suppliers.Buyers are being encouraged to source more and more products from fewer and fewer suppliers -usually suppliers with a minimum turnover of £500,000. This has often been at the expense of some customer choice. Existing, large, reliable suppliers are even being required to supply grocery items that they have no previous experience of producing, in order to avoid supermarkets having to buy from small or less reliable suppliers of the product.Given the very large range of items offered in supermarkets, and the limited space available to stock them, individual stores are frequently changing shelf space per category of grocery item, and often inappropriately combining the shelf space given to previously separate categories.Many smaller suppliers are finding it necessary to match their products, and the way they market their products, exclusively to a single supermarket chain. Those who attempt to sell to all the large chains are considered less reliable -perhaps less trustworthy -no matter how good their products are or will become. Supermarket buyers work specifically with designated suppliers with whom they will spend a great deal of time harmonising the supplier's practices with their own requirements. Suppliers are becoming 'tagged', as the expression goes. They can either be a Tesco supplier or an Asda supplier. Only the most powerful brands can operate successfully across all the major retail chains.Supermarkets attempt to attract a larger share of customers with 'loss leaders'. These are usually limited offers of very inexpensive prices for products such as bananas or sugar. The marketing logic behind this tactic is that customers will go to a store, in which they would not normally do their shopping, in order to buy the very inexpensively priced item, and then develop a habit of visiting that store even after the loss-leader offer has elapsed.But what is a loss leader? Is it an item that makes a negative gross profit or a negative 'net net' profit (profit after fixed and variable costs have been subtracted)? The supermarket can make anything a loss leader, depending on whether they choose to add in retrospective rebates (see below). Suppliers, generally, are opposed to their products being treated in this way. It often means that the other outlets to which they sell (smaller grocery stores) suffer a fall in sales of the product. Of course, the supplier always has the option of withdrawing sales to the supermarket in protest, but any such retaliatory action would make any future attempt to sell to the supermarket very difficult to achieve.When supermarkets offer loss leaders, they are reluctant to take that loss themselves. Their market power is such that they can often drive the loss down the supply chain. They can squeeze their suppliers to offer at a lower price. The supplier can then use the excuse of the loss leader to press their ultimate supplier, the farmer, to cut the price.Supermarkets have two golden rules: maximise profit and minimise risk. The second is almost as important as the first. The risk factor is substantially reduced if all suppliers are large, experienced, familiar with the supermarket's buying arrangements, and based within the same legal system (us ually in the same country). These suppliers may buy the products that they sell to the supermarket from other countries, including developing countries, but the supermarket does not want to take this risk.Supermarkets are very willing to send their employees or agents to foreign countries to observe the production process and test quality control systems, etc., but they are often reluctant to purchase directly from foreign suppliers, even though this would be easy for them to accomplish.Supermarket buyers, who once had the greatest amount of control over buying policy within the organisation, are becoming more subservient to other departments of the organisation. Buyers are usually responsible for only one category of product -jams and honeys, or biscuits and nuts, for example. Senior management calculated that buyers can only see the success of the business from the narrow interests of their sector. It has become increasingly clear that the accounts department is likely to be better equipped to assess risk, the marketing department can more effectively attract customers, the logistics department is more likely to arrange efficient delivery, and time-and-motion experts are better at working out the costs of restacking supermarket shelves.The thinking in these organisations has moved away from the central requirement of the individual buyer, which is to source cheap, good-quality products. Although the buyer still has to fulfil this function, the organisation has shown that attention to quality control, product surveys, customer surveys, marketing strategies, stock loss, delivery optimisation and efficient management can make more significant contributions to profitability.The way suppliers deliver their goods to the supermarket is also changing in a way tha t benefits the supermarket. Palletised parcels of boxes or cartons of the product must be delivered at a rate dictated by the supermarket to all its UK depots. The supermarket is able to change this rate of delivery with only a week's notice. The supplier is also required to be very flexible over the minimum and maximum quantities delivered. Some stores sell some products at a slow rate and, as they do not wish to finance large stocks, the head office may require suppliers to be capable of delivering in very small quantities.Suppliers are also expected to provide, free of charge to the supermarket, in-store advertising material such as leaflets, window posters and shelf displays. In addition, they may be asked to provide special offers, recipes for food products and their own customer complaints service. Those suppliers who spend large sums on advertising their goods are, naturally, preferred by supermarkets.Although suppliers need an accurate estimate of the overall quantity of their product that the supermarket expects to sell, supermarket buyers are reluctant to commit themselves, even if they have their own accurate estimates. Despite this reluctance, they will nevertheless expect suppliers to maintain sufficient levels of stock, at their own expense, to cope with unexpected surges of demand.Each supermarket chain also expects suppliers to offer their organisation some special feature, unique point of difference or exclusive offer on the goods they supply, which is not offered to rival supermarket chains. Such offers could include competitions where customers can win prizes, superior packaging or free gifts in return for package labels.All these obligations, written or unwritten, in the supplier-supermarket relationship demonstrate the growing dependence of the supplier on the supermarket.Some of the benefits expected in this changing relationship are not willingly acknowledged in the trade. The supermarket is always in a position to benefit individual suppliers. This could take the form of stocking the product at a greater number of its stores or helping the supplier to launch a new product. Some compensation for this benefit might be expected. This could take the form of an increased discount for the product or a 'listing fee' (where the supplier pays for a new listing) or a 'marketing allowance' for an existing product.The most complicated and obscure incentive offered by suppliers is the 'retrospective payment', known in the trade as a 'retro'. The use and extent of this form of price discounting varies from country to country, but in the UK it often takes the form of a lump-sum payment to the supermarket from the supplier at the end of some agreed period of continuous sales. The lump sum is calculated as a percentage of the value of those sales over the set period, say 1% for the first £100,000 of sales, 1.5% for the second £100,000, and so on.The most interesting aspect of the retrospective payment is that the supermarket has the discretion to allocate the payment to any part of its activities, not necessarily to the account of the product in question. This allows the store to have considerable flexibility to, for instance, subsidise a new product in which it has high hopes of gaining future sales or to fund loss leaders.The practice also makes it nearly impossible for outside researchers or competitors to estimate the profit made by supermarkets on any individual product.Calculating the benefit, in terms of profit, for any individual product line can take several forms. In the past, supermarkets mainly calculated the profit on each item using a simple gross margin calculation -the difference between what was paid for the item and what it sold for. More recently the emphasis has been on using a 'net net' cost calculation where all external costs, suc h as shelf-filling, cooling or freezing, wastage, theft, cleaning and unpacking, are included. Even this net net calculation can vary, often depending on whether sales taxes are included or not.Although most consideration is given to the percentage margin on any product, the cash margin on high-value goods is sometimes considered to be more important.The question of what is enough gross margin is complex, and can be the subject of much discussion. It is ironic that, while the UK Government is investigating the major grocers for what is seen to be overcharging, other sectors (non-food retailers) think that grocery margins are low. While it is true, from time to time, that the profit margin on certain high-turnover, low-priced products, such as beans and bread, can be very low, the gross margin on most grocery product areas is higher than commonly believed. The gross margin on biscuits, snacks, nuts and crisps seldom falls below 35%. The gross margin on certain raw product areas, such as coffee and tea, can be considerably higher, especially when the high retrospective payments, traditionally paid for these items, are taken into account.Assessment of the activities of rival supermarket chains is an important aspect of marketing policy. Much intelligence can be gained by simple observation of the rival stores and their advertising output. An important source of scarcer, internal information from the rival camp is the so-called account managers employed by suppliers. The larger suppliers employ a manager (the account manager) with the specific function of dealing with an individual supermarket chain. These account managers are in constant communication with their fellow account managers, whose job is to liaise with the other supermarket chains. It is not in any supplier's interest, for instance, to have all major supermarkets promoting their product at the same time. It is therefore part of the account manager's job to see that these promotions happen on a stepped basis. Part of this process will be a discussion of current and promotional retail prices.Advice to potential suppliers to major supermarket chains It must be clear by now that supermarkets represent a very powerful market force within the commercial chain of agricultural products. If producers in developing countries wish to capture some of the enormous profits within the chain, they need to add value to their products. Adding value can take the form of simple steps, such as grading, sorting and packing in parcels of standard weights and measures. Fruits and vegetables can be canned or frozen, biscuits can be made from simpler ingredients, and chocolate can be manufactured from cocoa beans.These more sophisticated steps can only be taken with considerable investment and know-how.The problem is that, eve n if such investment could be obtained, how can such goods be marketed in the high-priced consumer markets of the world?Clearly, very few developing countries could establish or acquire a supplying entity with the capital base and experience to satisfy the exacting conditions demanded by the major supermarkets in every major consuming country. It may be possible, however, to make some progress in this endeavour.There are some large, specialist companies that source products from all over the world. They take on the burden of supplying supermarkets. It may be that they might often want to brand the product in their own name.The identity of these companies could be ascertained by visiting one of the many trade fairs specialising in the types of product in question. But the first requirement must be for the producer to have a good product, at a competitive price. The liberalisation of most facets of agricultural marketing in Uganda, which began more than a decade ago, involved a range of actions including (i) the abolition or curtailment of the activities of a number of parastatal agricultural marketing boards (coffee and cotton in particular); (ii) the relaxation of foreign exchange controls; (iii) removal of the anti-export bias in the taxation regime; (iv) a reduction in the role of the public sector in the direct provision of marketing services; and (v) the abolition of state-administered producer prices.These measures gave rise to an economy that was very open, not only by sub-Saharan African standards, but also by developing country standards. By 2003, tariff levels in Uganda were close to those in developed countries, and even lower for agricultural goods (World Bank, 2005).Among other things, these measures resulted in producers of export commodities receiving a greater proportion of export prices than had previously been the case -in the case of coffee, for example, the proportion rose from an average of approximately 45% in the early 1990s (and 15% in the late 1980s) to more than two-thirds in recent years.Today, agricultural marketing is characterised by limited access to finance among the large number of small traders; by limited quantities of produce being sold by smallholders who make up the bulk of the farming community; and by high transport costs -both internally and to regional and national markets. For example, the cost of transporting coffee to the coast by road has been calculated to be greater than the cost of shipping it from Mombasa to the export market.However, while farmers continue to complain of low and variable prices 4 , the liberalised marketing system is considered to be relatively robust and efficient, with producer prices in most instances accurately reflecting marketing costs and risks (Oxford Policy Mana gement, 2005).Farmers are well integrated into the market; for example, 76% of crop farmers are selling at least part of their produce, although the proportion is far less in more remote regions and in areas affected by the ongoing civil conflict (Deininger, 2001).Nevertheless, farmers continue to exhibit risk-averse behaviour, and have both limited access to information on local, regional and international markets and limited awareness/understanding of the markets for their produce. At the same time, the public sector's systems for regulating the quality of agricultural inputs and outputs are characterised by a number of inefficiencies and tend to be operated in an uncoordinated manner.The revised Poverty Eradication Action Plan (MoFPED, 2004) is the comprehensive national policy framework guiding development planning in Uganda. It comprises both the identification of priorities and the allocation of resources. It commits government to the overriding priority of tackling poverty, targeting its reduction to a level of 28% by 2013-14, from 38% in 2002-03. Poverty eradication is to be realised through successful implementation of a number of priority programmes, grouped under five 'pillars' or components. The second pillar, 'enhancing productio n, competitiveness and incomes', in particular, relates to the development of the agricultural sector.The Plan for the Modernisation of Agriculture (PMA), which is an integral part of the revised poverty eradication plan, seeks to increase incomes and improve the quality of life of poor subsistence farmers, improve household food security, provide gainful employment and promote the sustainable use and management of natural resources. Seven priority areas are identified in the plan, which require the sustained investment of public-sector resources if both the transformation of the agricultural sector and structural change are to be brought about. These are:• agricultural research and technology development• agricultural advisory services• rural financial servic es• agricultural education• sustainable natural resources use and management• supportive physical infrastructure• agro-processing and marketing.The marketing and agro-processing strategy A Marketing and Agro-Processing Strategy (MAPS; MTTI, 2005) has recently been published. It seeks to guide public sector investments in support of private sector activities in the latter priority area of the PMA. A lengthy and exhaustive consultation process, involving public sector bodies, development partners, civil society and private sector people, was adopted in drawing up the MAPS. In addition, a large number of analyses of agricultural marketing in the countrycommodity-specific, issue-specific and input-specific -were reviewed.The MAPS identifies the need for policy reforms and public expenditure in four priority areas.The principal public sector interventions proposed under each of the strategic priorities include the following.• Support the formation and growth of farmers' organisations through the National Agricultural Advisory Services Programme and by further developing the capacity of both the Uganda National Farmers' Federation and the cooperative movement in group marketing, among other things.• Develop the capacity of members of farmers' organisations in such areas as collective input and output marketing, quality standards and contract negotiation.• Increase collective action by traders handling non-traditional agricultural commodities such as vanilla, fish and organic produce.Improvements in road network, other rural infrastructure and transport services• Manage the phased construction of district and community access roads.• Rehabilitate infrastructure at border-crossing points and streamline customs procedures in order to reduce the time goods spend in transit.• Promote energy generation and use in rural areas, so as to boost the processing of agricultural commodities.• Upgrade/construct market facilities and storage structures, and promote post-harvest research in appropriate fields on farm produce storage structures.• Support investment in agro-processing ventures such as cotton spinning, abattoirs and coldchain networks.• Create an enabling environment in which telecommunications companies can operate.A fully functioning, comprehensive policy, legal and regulatory environment• Draw up and operationalise the National Trade Policy, the Medium-Term Competitiveness Strategy Phase II and MAPS, among others.• Develop public sector capacity in the analysis of trade issues and regional/international trade negotiations.• Rationalise the overlaps and institutional confusion that currently exist among public sector bodies responsible for trade analysis and negotiations.• Improve commercial contract law and its associated legal procedures s o as to enable contracts to be more easily enforced in rural areas.• Draw up/revise and monitor grading standards and quality regulations for key traded commodities -maize and beans, in particular. Following this, assistance will be provided to alert both traders and farmers to the new regulatory framework.• Consolidate the operations of the agricultural commodity exchange and implement a warehouse receipts system to enhance market efficiency and reduce marketing transaction costs.• Make available to farmers, agro-processors and traders information on agricultural commodities markets, quality requirements, volumes and prices, through a range of media (SMS, newspapers, radio and websites, in particular).• Provide training to farmers, traders and agro-processors in the analysis and use of market information.Strategies have been drawn up for the six other priority areas of the PMA, and interventions to operationalise them are being implemented.A variety of MAPS-related initiatives had been started prior to 2005, as components of interventions supported by both the government and its development partners, who have been strongly supportive of the MAPS. The wide array of interventions includes several pilot marketing information systems, an incipient warehouse receipts system, the establishment of an ACE, and expansion of the electricity grid in rural areas. A number of private sector investments in the fields of agro-processing and marketing have also recently been commissioned -most notably, a textile-manufacturing plant, a vegetable oil-processing works, and a cotton-processing factory.The planning of yet more interventions is now under way, taking into account lessons learned from implementing these and other pioneering programmes. (Such monitoring work will also inform the refinement of the strategy in the future.) However, the government is being realistic in recognising its limited capacity to undertake such programmes itself. The private sector is therefore expected to undertake the bulk of the new investments, with the government playing a role as facilitator.Various interest groups have expressed frustration at the time it is taking for the impact of a number of the interventions under the MAPS to be felt. For this reason, they continue to lobby policy-makers, planners and decision-makers to develop more 'interventionist' programmes, such as establishing food-grain reserves, subsidising producer prices, and providing farmers with subsidised or free agricultural inputs (principally seeds, seedlings, high-quality breeding stock and fertilisers).At the same time, the delayed operationalisation of some of the pillars of the PMA is jeopardising the full impact of the MAPS being realised. For example, the limited progress made so far in the field of rural financial services is hindering both the expansion of investment in agro-processing, and further development of the network of agricultural input stockists. Traders' perspectives: the enemy or an essential part of the value chain?Sophie Walker (Kenagri, Kenya) Throughout the e-discussion, and in many other development venues, traders are often portrayed as 'unscrupulous middlemen', suggesting that they are the vultures that leave only the bones at the market place for farmers. However, from a trader's perspective, it often appears the other way round -that the poor vultures have only bones to pick over! Whichever perspective is taken, traders are an essential part of the market chain involved with moving goods from producers to consumers.Traders evolved because farmers shifted from producing small amounts of agricultural produce for their own subsistence to a regular production of surplus. Once farmers were producing more than could be consumed in their local area, there was a need to move the h arvest surpluses further away. Farmers did not want, or were unable, to undertake this function at a profit. Traders appeared ready to buy from the farmer and take the risk that they would find a market for the goods further afield.Are traders symbiotic or parasitic? The tick bird on the impala is pecking off ticks and eating them; but if the tick bird finds a scab and is hungry, he will pick off the scab and drink the blood. Traders will assist in moving surpluses into deficit areas, storing commodities waiting for the markets to absorb them; but when there is an opportunity to take advantage of ignorance -they will.When I started as a sugar trader in the 1990s, there were 20-30 different sugar-trading companies in London, Paris and New York. They employed young men (and three women) to go out into countries such as Africa and Russia in order to find buyers for them. Our job was to travel to out-of-the-way places, finding the buyers, and building relationships with them. When in London, we would call these buyers on a regular basis (asking after their families, their business, their pets, their interests), hoping that that was the day they would say they wanted to buy. We would send faxes to these buyers with the prices of the commodity delivered to their market on a regular basis. We provided their market information, but with our margins included, and, other than information from other traders, they did not have another source of information giving them core prices.Out of every 10 trade deals that were made, seven were profitable, three probably made losses.Trade-for-trade, the losses are always larger than the profits.With the advance of the Internet and mobile phones, suddenly both buyers and sellers could see the prices the sellers and buyers were ge tting, freight charges were now available and they could see the margin the traders were charging, which included the trader's risk margin. The buyers and sellers were not prepared to allow the trader to make the previous margins, so the profit decreased (however the losses did not). Traders moved into more speculative markets and positions, made increasingly expensive mistakes, and many went bankrupt (my old company) or merged with larger trading groups such as Cargil. Now the number of sugar-trading companies can be counted on one hand.KenAgri is a branch office of USAgri, a privately owned American company. My boss realised, early on, that he could be one of many traders, or he could customise his business and carve out a niche. With knowledge of the trading market and, in particular, the grain business, he entered into long-term contracts with millers, first in West Africa, basically becoming their procurement departments. We would, on their behalf, negotiate with the sellers of wheat to obtain the best price for the commodity required. Because we were working with a number of mills, we could bulk their commodity up to further assist the millers with lower shipping costs. We expanded our area of coverage, and were employed to ease the South African millers through the liberalisation of the industry in South Africa. For the first year, we did all the purchases for the millers, then later we entered into long-term contracts with a few of the millers. We also work in Mozambique, Kenya, Uganda, Rwanda and Burundi. With the reduction of traders in the market, millers in South Africa and East Africa now feel they are able to buy without our assistance. So we are evolving again. This year, in Kenya I have acted as a broker for the large-scale wheat producers and as a consultant on agricultural trade issues. The wheat producers are perfectly aware of who the millers are, and in the past have negotiated with them themselves. However, they do not know the international market, or how to equate what they produce with a similar, imported wheat, nor are they in the market every day.There are many layers of traders who move produce from the farm gate to the end consumer/user. Much of the cost is incurred at the bulking level -gathering of the farmer's commodity into an efficient trading volume (e.g. from 100-500 kg to 40 mt truck-load). The longer the chain involved in moving the commodity to the market, the higher the costs involved.In ACP countries, I see two main groups of traders -turnover traders and speculative traders.The majority of traders in ACP are turnover traders, with minimal capital, whose main aim is to buy and sell within the shortest period of time so that, once the trade has happened, they can turn round and go back into the market to buy and sell aga in. A small number of speculative traders buy up stocks from the turnover traders and sit on them for a number of months, waiting for price increases. While turnover traders may speculate with a very small amount of stock, speculative traders will hold more substantial positions. The speculative traders will have access to more sophisticated information on supply and demand statistics. Turnover traders generally know the prices in the towns they normally visit. They will also have a network of contacts to find out prices in these towns. They can be badly hit when food aid is suddenly distributed in the towns they normally visit and the market is disrupted.The trader has significant costs. As the majority of farmers in these areas do not bulk their produce together, the trader has to visit every farmer to collect their goods. This means he or she has to arrange transport to every farm, to see if there is anything to buy. At the end of the trip, the cost of going to every farm, whether produce was purchased or not, has to be calculated against the purchased goods. Traders generally buy whatever quality is available on the farm (although they will reject very bad quality). The trader then needs to clean, dry and sort the goods so that they are acceptable to the consumer. The trader has to store the goods while waiting for the markets. Finally, the trader has the cost of tying up his or her capital. In East Africa, if the trader were to borrow money from the bank, it would be rare to have an interest rate of less than 18% pa.The trader assumes a number of very real risks whenever he or she buys the farmer's produce. Some are incorporated into the price; some hopefully will not happen. There is always the possibility of an adverse market price movement leaving the trader with stock above the market price. Often the trader will have to sell with credit (generally about 2 weeks), which also has to be financed, and then has the risk of non-payment. There may be dishonesty at the farmer level, for example where the top of bags are good produce but there is bad product at the bottom of the bag. As the trader has no way of testing the produce at the farm, he or she buys on the basis that the goods look reasonable. It is impossible to see infestations such as aflotoxin. Consequently, there is always the possibility that a government organisation could test the trader's goods, find them unfit for human consumption, and then destroy them without compensation. Farmers expect cash at the farm gate, and there is the risk of the cash being stolen while travelling to farmers. Once the truck is full, there is a risk that the produce will be stolen on the way back to the trader's store, or on the way to the next buyer. There is a risk that the goods will be stolen from the store. All these risks and costs have to be figured into the price offered to the farmer, as the price the consumer will pay is often less volatile and less negotiable than the farmer's price.Different levels of trader use different MIS. All traders have an MIS, although it may not be a formal system that can be accessed by others. Of the MIS formally available in East Africa, in Uganda there is the SMS service, and the Regional Agricultural Trade Intelligence Network (RATIN, www.ratin.net) and the TradeAfrica Commodity Trade Link (www.tradeafrica.biz). In Kenya, we have a bimonthly meeting (for the past 8 years) where traders, government, donors, and banks attend to discus the balance sheet in the main commodities (maize, beans, wheat and rice). (The only support these meeting receive is that FAO Kenya sends out reminders of the next meeting, and FAO Sudan lends a meeting room.) All sectors are asked for information, and the government balance sheet is discussed. People attend because the information at the meeting i s relevant and useful to know. There are no formal minutes sent out to those on the e-mail list, because people might then stop coming; however, this information is then fed out to the larger community through the RATIN and Tradeafrica.biz websites. RATIN also distributes précis information via e-mail to small-scale traders, and written sheets in both English and Swahili. These meetings were also started in Tanzania, Uganda and Rwanda but, for a number of reasons, have since failed.On any one day, the different MIS will have different prices for the same commodity in the same place. This does not necessarily mean the prices are wrong, but they are indicating different levels in the market, and sometimes even a different time when the price was observed. However, unless the information clearly states at what level it is accessing the market, it can be confusing for those viewing the site. For instance, the SMS service gives the off-truck price in the market. The Ugandan traders say they use it as a price-trend indication; however, they feel it is generally a day or so out of date, so at the same time they will call their contacts in different places to check what is happening on the ground. These traders say that SMS has been a boon for the farmers, as they can now know what the price was in a nearby market very easily and at a minimal cost, which has helped them to negotiate better prices. It has also allowed traders to show farmers the market prices, so that farmers have a basis for understanding the price they are offered and feel less exploited. Traders can use SMS price information to work out where there are anomalies in the prices: a price too high or too low against the expected price in that area.They will then call their contacts and find out what is happening in that market, and whether there is a market opportunity. The largest speculative trader in East Africa, Export Trading, uses people on the ground throughout East Africa, along with personal visits and networking among people to determine what they feel is the supply and demand situation, and where money can be made. Although they occasionally look at the websites, it is more for the production information than the price, which they feel needs verity to check its validity. It takes a number of years of solid performance from an MIS before traders will fully trust it.Traders will access market information if it is valuable -if it leads to making profitable sales. Therefore a test of an MIS is whether traders are using it. If traders are using an MIS then will also be useful to farmers, as it will reflect real prices or useful information.It has been discussed that commodity exchanges give an accurate price on a day-to-day basis. However, this is not entirely true. The majority of involvement in a commodity exchange is by investors, speculating against the fundamentals of a commodity. Look at the price on SAFEX today, or in Chicago -it is not the price at the farm gate. There are premiums and discounts to be considered, supply and demand, and location differentials. Therefore, while a commodity exchange gives a transparent base reference for a price, it is still not the final arbiter of the price.Commodity exchanges have more use than just a pricing mechanism at point of sale. Traders and farmers can use commodity exchanges to hedge prices and guarantee a proportion of their price.A physical trader (international) would use a commodity exchange as a price-hedging mechanism for a sale or a purchase that had not been purchased or sold. For example, if the trader had sold a fixed-price contract of, for instance, wheat to a miller in Kenya for delivery 2 months hence, but has not yet purchased the wheat, the trader would buy futures on the relevant commodity exchange. The trader would then source the wheat and, on buying this wheat, the trader would sell the futures. If, during this period, the price of wheat had gone up, the miller (buyer of the wheat) would have a contract below the market price, as the trader would have bought the futures at the the n market price, so the increase in the futures price would offset the trader's costs in procuring now more expensive wheat. If the market had gone down, the miller would have a contract above the market price, and the trader would have bought futures at a higher price and sold them at a lower price -so would have made a loss on the futures -but that would be recovered through the higher price the miller is paying.Proportionally very little physical commodity is delivered through an exchange when a delivery month is closed out. The commodity exchange is a price risk-management tool and a speculative adventure.So a farmer can use the exchange as a method of guaranteeing a price. As the farmer plants a crop, he or she can buy 'put options' -the option to sell at a certain price, paying a premium based on the market's assessment of the likelihood of the put option being exercised. If, when the farmer comes to sell, the exchange price is below the put option less the premium, the farmer can exercise his or her option to sell using the put option, and achieve a higher price than the market price at the time. If the market price is above the put option plus the premium price, the premium becomes a cost and the farmer can sell through the market at a higher price. At harvest time, the farmer can deliver the commodity to one of the warehouses/silos registered to the exchange and receive a warehouse receipt. The farmer can then sell that receipt through the exchange, or can sell the receipt directly to traders or end-users based on the exchange value. A reputable farmer, trusted in the market place, may not need the warehouse receipt and can sell directly to the trader or end-user, using the exchange as a price basis to negotiate the value of the crop at the farm gate.The use of warehouse receipts is essential for a functioning commodity exchange, as it guarantees the buyer of the receipt that the goods are in a known reputable store and are of known graded quality. Warehouse receipting will work only if the cost of putting the goods in store (known as the carry cost, and made up of storage, collateral management, fumigation and banking ) is less than the normal increase in market prices from the point of harvest and surplus to the point of short supply, and therefore the increased price.A warehouse receipt system can work well without the necessity of a commodity exchange. A warehouse receipt mechanism allows farmers to deposit their goods in storage that is well managed and, in the case of most small-scale farmers, far better than that available on the farm (post-harvest losses at the small-scale farmer level in Kenya are estimated to be between 15 and 25%). The farmer can then obtain bank financing for a proportion of the deposited goods to ease the cash-flow situation, and wait for the post-harvest price to increase, thereby getting a better income. Once the produce is in a known store with a known quality, large-scale buyers, such as millers or exporters, will be interested in entering into contracts with the farmers.Regulations that ensure the health of the consumers of produce are essential. All regulations cost money, and that cost will be borne by the farmer and the consumer, never the trader. Simple, reasonably priced regulations ensure good practice; too many regulations and too costly regulations provide a barrier to trade and/or encourage avoidance. Regulations also have to be based on sense. In Kenya, the maximum limit of aflotoxin is set at 20 parts per billion, however the people in Health want it moved t o 10 parts per billion. Of the aflotoxin tested in eastern Kenya last year, 20-42% was above 100 parts per billion, and there is no indication that it is any better in other parts of the country.There is no point in having sales or purchase contracts if they are not enforceable within a reasonable period (30 days). In Kenya, today, to take someone to arbitration over a commodity contract would take approximately 2.5 years, and is costly. Therefore contracts are routinely broken and exploited, and in these instances the complainant has no recourse. For example, a farmer recently delivered all his wheat to a miller on a fixed-price contract with payment at 30 days. After delivering his entire crop to the miller, the miller turned round and reduced the price. The farmer could not get his wheat back and therefore had to accept this arbitrary decision.More efficient testing laboratories are useful, but the cost of using such tests will be borne by the farmer and the consumer.Banks will finance supply contracts, but only if they are enforceable in the legal system. Banks will finance goods in warehouse receipt systems once the amount becomes meaningful. Farmers need to come together and bulk their commodities, both to be able to enter into contracts with end-users and to be able to enter into financing operations with banks or micro-financiers.Finally, at present there is an argument for saying that farmers concentrate only on production, and do not look to see what consumer requirements or consumer trends are. If the farmer concentrates only on production and sells at the farm gate, he or she will always be at the end of a long supply chain, with no control over the costs incurred by other parties. If farmers start to think of themselves as marketers of their products, they will then be interested in producing better quality goods to match market conditions, and will be more likely to give greater consideration to market trends and opportunities.Heishan Peiris (NASCOMEX/NASFAM, Malawi)Founded in 1997, the National Smallholder Farmers' Association of Malawi (NASFAM) is a farmer-directed business system based on the individual participation of close to 100,000 Malawian smallholders, most farming on less than a hectare of land.NASFAM is governed by a board of 12 directors, eight of which are democratically elected by NASFAM associations, and four of which are appointed on the basis of technical or commercial ability. NASFAM Commercial and NASFAM Development each run under advisory councils, with membership again drawn from a broad cross-section of stakeholders to provide technical expertise and guidance.Member associations jointly own NASFAM, a not-for-profit company, which provides them with access to resources, training and technical assistance. NASFAM, in turn, owns two subsidiaries.• The first subsidiary, NASFAM Commercial, houses the revenue-generating private sector business and marketing services.• A second subsidiary, NASFAM Development, provides 'soft' services that straddle the public-private divide, including information services, policy advocacy and outreach, HIV/AIDS, gender and other cross-cutting issues.Training services are implemented under the NASFAM Training and Development Institute.NASFAM provides a variety of services to its smallholder-farmer members throughout Malawi. These include, among others:• adult literacy training• policy and advocacy• training in business operations• links with private-and public-sector service providers• technical support for income-generating activities• auditing and financial services• information dissemination• input and output marketing.The services are both developmental and commercial, and are specifically tailored to the Malawi smallholder. The typical NASFAM smallholder member farms on a plot of less than 1 ha and is located in a rural setting. The type of membership is a level above the poorest of the poor, and members have been selected because they espouse the cause of carrying out farming as a business. A considerable amount of training is done to improve their business acumen, but much more needs to be done in this regard.NASFAM markets crop inputs to its membership through its chain of 53 shops. The items marketed include seed, fertiliser, chemicals, and farming equipment such as hoes. The shops are located in rural areas and are in close proximity to NASFAM's member associations. By locating such shops in close proximity to farming locations, members can concentrate on their prime activity rather than having to make long treks in search of crop inputs.NASFAM also assists in marketing member outputs. The main crop is Burley tobacco, which is grown by 60% of NASFAM's 100,000 members. Unlike all the other, non-tobacco crops, NASFAM merely assists members in ferrying their tobacco from farm gate to the auction floor, and in any other special projects. The non-tobacco crops which NASFAM helps members to market are:• groundnuts (mostly exported)• Malawi bird's eye chillies (totally exported)• soya• rice• cotton.Other crops for which external markets are sought are:• pigeonpeasNASFAM has a group of customers to whom it markets its members' produce, both internally and externally. Marketing support is received from an agent in Europe, who finds clientele for bird's eye chillies. NASFAM has created its own grade and standard for this product. Groundnuts, too, are exported to South Africa and Europe. Peanut butter manufacturers are the major users in South Africa, while exports to Europe are to a fair-trade organisation, through which the nuts find their way to retail market shelves.NASFAM also adds value to its groundnuts and rice. Groundnuts are sold in 1-kg packs in selected Malawi supermarkets and NASFAM shops, while rice is milled and marketed through the same. The products will soon be sold under a new NASFAM brand. NASFAM is actively seeking external markets for its rice.Members market their products collectively, when grading to the required standards. NASFAM enters into contracts in all its transactions with members and customers. In recent times, forward contracts have been signed with a few customers.NASFAM is also a founder member of the Agricultural Commodity Exchange in Malawi. We eagerly await its opening, so that we can find another potential outlet for its produce.The cost of finance is prohibitive in Malawi. The prime rate of lending is 27% and it is rare that NASFAM can borrow at less than 30% per annum. NASFAM obtains crop finance loans from finance institutions in order to procure crops from its members, and pays the loans back once the crops are sold. Some of the finance is in Malawi Kwacha, while finance for export crops is negotiated and obtained in US dollars.NASFAM, while being well financed by members in its infrastructure, has not been as fortunate in securing working capital for its crop procurement and marketing operations. Security in the form of collateral is a major issue when borrowing, and NASFAM does not own any major assets that can be provided for such purposes. Nevertheless, NASFAM members' enviable past record in repayment of loans does enable it to borrow funds, although at a cost.As mentioned above, NASFAM seeks smallholder farmer members who wish to carry out farming as a business. These farmers must form themselves into clubs, the members being located adjacent to each other, and are jointly and severally liable for each other's actions. This is a particularly good selling point for finance in Malawi, where often, unfortunately, repayment of loans is not very high on the smallholders' agenda. These clubs (10-15) form group-action centres, a group of which, in turn, form associations. A group of associations forms an association management centre.The marketing services are not subsidised. NASFAM pays members a market price for their produce, and reimburses the association for any costs it has incurred in buying the crop. The risk of finding markets is taken away from the members, and is NASFAM's duty. The development aspect of members activity is, however, fully funded by donors.NASFAM faces high competition from other buyers. However, NASFAM's advantage is that it can call on the loyalty of its members to sell the crop to NASFAM. This is not always the case, and members may sell to other buyers who offer a higher price, although their weighing scales' accuracy may be, at the very least, questionable.Members are always reminded of the need for high and exacting quality standards. This is seen very clearly in our bird's eye chilli sales. In 2005, NASFAM members marketed 17 containers to Europe, and not one had a significant query. Unfortunately, the same cannot be said of groundnuts, which depend heavily on good rainfall for a relatively aflatoxin-free crop. Members are advised on good farming methods by our crop-production department, and considerable attention is paid to producing a quality crop.NASFAM links up with the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) on its groundnut operations, particularly sampling. ICRISAT carries out the enzymelinked immunosorbent assay (ELISA) test and gives us a good idea regarding aflatoxin levels. While Europe does n ot accept this test, NASFAM uses these results as a basis for further sampling by high-performance liquid chromatography (HPLC) in South Africa, prior to exporting groundnuts to Europe.The NASFAM production department works very closely with service providers, such as seed providers, in procuring good-quality seed for members to grow. In 2005-06, members who grow groundnuts (in selected areas) will be on a pilot drought insurance scheme. Pesticide marketers work very closely with NASFAM members, particularly cotton growers, and provide quality agronomy services and advice.While this service is principally provided by our crop production department, it also utilises the services of crop research authorities whenever necessary. The Chitedze Agricultural Research Station is one such authority.Irrigation schemes are few in number, and this is one area where NASFAM is constantly in search for partnerships and/or funding. This is an area that requires major investment in a country where its abundant water resource, including the third largest lake in Africa, is not utilised to any significant degree in agriculture.NASFAM is only fairly recently established in marketing circles. It needs to enhance its reputation for quality production further, and this can be helped considerably through major investment in smallholder irrigation systems. Access to less costly crop finance can also help enhance smallholder and association incomes.Brook Johnson (CLUSA, Senegal)Smallholders do not have crop or input volume to take advantage of economies of scale and market opportunities. To overcome this, the Cooperative League of the USA (CLUSA; www.ncba.coop/clusa.cfm) works with farmers to form viable producer organisations. Through producer organisations, farmers increase their access to market information and increased competitiveness.Rural economies are heavily dependent on the agricultural sector. The key to reducing rural poverty is to increase the income available to small-scale farm families, using methods that allow the farmers and communities themselves to direct and control the process. In developing countries, land and labour are the primary assets of small-scale farmers. To increase income for farm families, farmers must improve the economic return they receive on the investment of their assets; this requires lowering the transaction costs of production and marketing, and increasing the price they receive for their production.But small-scale farmers face several barriers that prevent them from getting a good return on their assets:• inability to aggregate sufficient volume to capture a significant market share• lack of access to reasonably priced inputs delivered on time• lack of access to financing• lack of access to sustainable agriculture technology• inadequate market information.Overcoming these barriers requires group action: small-scale farmers cannot solve these problems individually. Rural producers must be able to rely on private-sector, member-owned and controlled businesses to reduce transaction costs and build a volume of business to purchase and maintain a foothold in the market place, operate on economies of scale, and gain access to services that are too costly for individual producers to provide for themselves.For more than 50 years, CLUSA 5 has worked in developing countries to economically empower individuals and communities through development of effective, sustainable group businesses and democratic practices. Cooperative development, both in the USA and abroad, is a critical component of CLUSA's mission. Since 1953, CLUSA has managed over 200 long-term projects in 53 countries and has performed over 1,000 short-term consultancies in 79 countries.CLUSA receives funding for its programmes from the US Agency for International Development, the International Fund for Agricultural Development, the World Bank, the Inter-American Development Bank, cooperatives and local banks.CLUSA's implementing partners include indigenous cooperative development organisations, host governments, local and international NGOs and agribusiness. Other partners include import/export cooperatives, technical services organisations, and small and micro-enterprise foundations, which have institutionalised programme services in El Salvador, Egypt and Indonesia, where a non-bank finance company was established by cooperatives to facilitate trade. Some of these organisations are 10 years old and fully self-sustainable.The CLUSA approach is founded on the belief that our clients should be the decision-makers, and that our role is in providing clients with training in analytical, problem-solving and entrepreneurial skills. We do not provide instructions on the 'whats', 'whens' or 'hows' of local development. Local communities can and must do the job of development for themselves. This participatory approach has been effective in imparting the skills necessary for communities to organise to solve development problems and gain the confidence to negotiate agreements on their own with suppliers, buyers, banks, donors, government agencies and others.Using this approach, CLUSA has been successful in empowering organisations -cooperatives, group enterprises, community health committees, community-based natural resource management organisations and others -to manage their own development in a participatory and sustainable manner. This is illustrated by the following principles.The ideal implementing agency is non-governmental -in addition to being free of civil service constraints/attitudes, the implementing organisation must have a strong business orientation, be capable of analysing, then evolving, based on lessons learned that have been elicited from programme experience, and be strongly values-based (participatory/consultative management style, respect for farmers, multi-directional feedback, etc).• Decentralisation -field staff are stationed within the communities where they work; all training/consultation/support occurs on site in the villages.• Participation results from member ownership and economic benefits -success breeds success.• Participatory decision-making, leader accountability and transparency are essential.• Experiential training methodology -the training is participatory, all book-keeping forms and records are developed, together with the users in local languages, rather than requiring that they adopt standardised formats.•Step-by-step -the development of producer organisations is organised in a series of distinct meetings/training sessions; staff training follows the same steps.CLUSA's projects include training, management and technical advice to the following clients:• rural farmers' associa tions, village organisations and cooperatives, producing and marketing fruits, vegetables and cereal grains, purchasing agricultural inputs, and undertaking other types of income-generating activities, e.g. cooperative consumer stores, pharmacies, and reforestation projects and firewood sales• cooperatives that export traditional and non-traditional products to the USA, Europe and Japan to raise incomes and diversify employment opportunities for members• rural and urban community development organisations providing small-scale credit and training to entrepreneurs and micro-businesses• community-managed service providers, including village-level health programmes, community-managed natural resources and civil society organisations/NGOs.The impact of CLUSA's international programmes in an average year is described in Table 1. CLUSA's core competencies can be summarised through the following general activities:• developing in members of farmers' organisations/cooperatives a sense of ownership, control and responsibility fo r their cooperative business, by having them assume decision-making authority, which is then discharged in a democratic, participatory manner• identifying viable business opportunities related to agriculture production, processing and marketing, and facilitating market links• facilitating the development of value-based organisations (NGO, consulting firm, etc.), which will subsequently be transferred to local management/ownership for institutionalisation purposes.Contact meeting and follow-up meetings -open meetings are held, during which the programme benefits and conditions for membership are explained. The follow-up meetings are held to ensure understanding, and to generate further discussion of the crucial importance of member selection. Additionally, member criteria and selection processes are developed.First group meeting -based on members' prior experience, duties are enumerated for each office member as deemed necessary, qualifications are developed, and a fair, democratic selection process is established. 6Animator training -two to four members selected by the producer organisation to serve as understudies and eventual replacements for the facilitators are given a 3-day training course in basic communication and facilitation skills; animators gradually take more responsibility in trainings/meetings as their capacity increases.Vision-setting -the producer organisation elaborates its vision, including what business activities, assets, membership and structure it will have 5 years in the future.Executive training -officer bearers are trained in the fundamentals of their duties and in two basic techniques: action planning and problem-solving.By-laws -through a series of questions, the group is led to develop its own by-laws to address elements such as purpose, entry/exit of members, share capital, terms of office and means of replacement, and general rules of governance; once the by-laws are adopted, the group is formalised.Self-analysis -approximately 6-8 weeks after formatio n, the group undertakes a systematic selfexamination of its officers, animators and membership, to identify strengths/weaknesses and take appropriate measures to correct any problems identified.Consequently, six to eight groups within a 10-20-km radius are asked to select one or two representatives to serve on the depot committee for its zone.Training is provided covering all duties of the depot committee.The depot committee develops screening criteria and a screening process; new groups apply for membership on the depot committee and are screened.Preparation -the depot committee organises the forthcoming input-distribution exercise.Budget and action plan -the depot committee prepares an operational budget and action plan.Training of depot managers -once selected, training is provided in the specifics of how to manage their duties, including developing and learning how to fill out requisite records.Extension system -each producer organisation selects two members to act as contact farmers and prepares a contract, including the compensation package; from among these, a lead contact farmer is selected for the depot. Using a pyramid system of LCF-CF then CF-members, training is conducted; covering farmers have also been the catalyst for a sub-group's undertaking its own research.Farmers submit credit requests.Self-assessment and audit -each depot committee must prepare and submit a written selfassessment that examines every facet of the operation, from screening through to actual physical distribution.With the approach of harvest time, formal interventions begin to assist the depot committee to prepare for their role in marketing the crops. This process parallels that of the input-distribution phase: preparation, action plan, training of depot manager, extension and evaluation. Again, the principle is to delegate as much as possible to the depot manager.As has been noted, training is typically training-of-trainers, aimed at building the capacities of local animators/contact farmers, using experiential learning methodologies.Given this general approach, the basic services that CLUSA facilitates are:• self-management -transferring literacy/numeracy, business, operational, organisational, financial, and managerial skills to cooperative leaders, employees and general members• economic strengthening -developing a series of profitable business activities that address members' economic needs• financing -securing a direct relationship between the cooperatives and reliable local sources of credit for financing their business activities• networking -accessing the technology and information needed to establish and operate competitive businesses. 7As is the case with any time-limited project, there is the challenge of how to sustain any gains realised during the life of the programmes. The crucial sustainability question is at the level where the services provided by the project can be institutionalised -which, in turn, is a question of capacity-building. Several options exist:• independent depots -in this scenario, each depot would act independently to secure its credit, obtain/transport its inputs and secure/deliver to its markets; although having the advantage of simplicity and lower costs, it faces the loss of benefits from volume purchases/sales.• association of depots -at whatever level effective concerted action were possible (zone, district, province or region), some benefits would be gained from the volume thus generated; co-ordination would become the major challenge• a company or NGO working on behalf of, and (ideally) under the governance of, the depots or associations would ensure the benefits of volume, and at the same time ease the logistics of 'doing business'.Through scaling up, farmers have increased access to information through more effective levels of organisation, and with improved networking and business skills, are able to actively seek out markets themselves.Due to their improved levels of efficiency, producer groups are typically in direct contact with buyers, and through this increased communication farmers can maximise their market information. This is the most effective market information for producer groups.Depot centres provide an improved target platform for receiving market information. Producer organisations in Uganda are currently using a mobile phone-based MIS with producer organisations possessing a phone.Some depot committees set up small marketing committees, which are able to find out about quality requirements and prices that are prevalent in the market at that particular time. Attention must be paid to ensuring these depot committees have the appropriate skills to carry out these kinds of marketing activities.Although the principles outlined above guide CLUSA's activities, its interventions differ according to the nature of the activity, of the relationship to the funding source, and of the market chain. To illustrate the process, activities in Senegal are presented below.Karaya gum is a gum exuded by the tree species Sterculia setigera. It is produced by only two countries in the world: India and Senegal. Karaya gum is used as a laxative, a food fixative and denture glue. Although Senegalese gum is considered to be a higher-quality product physically than its Indian counterpart, Indian gum dominates the world market, which produces a more hygienic product.Karaya gum has not only an international but also a national market, and approximately 30% of total production of Karaya gum is consumed in Senegal as a food condiment. The subsector has an estimated national turnover of approximately US$6 million per year, accounting for approximately 40% of the revenues of all forest products in the Tambacounda region, and providing an average income of about US$450 year per producer, in a country where the minimum rural cost of living has been estimated as US$350 per year.The Karaya gum subsector was traditionally a long and inefficient sector with many participants. Given the length of the market chain, producers, the primary resource managers, received relatively little of the profit. Perhaps because of the limited nature of the revenues, producers were typically Guinean migrants. These producers were not local community members and had little vested interest in the sustainable management of local resources, which resulted in the destruction of certain trees and reduced regeneration. These outside producers sold to collectors; collectors were often local store-owners and, because they had advanced farmers food, they could frequently purchase gum at very low prices, as producers wanted to erase their debts.Collectors sold to itinerant traders (bana-bana), who in turn sold the gum to the larger export firms. However, as the product was not readily perishable, itinerant traders would frequently stockpile the product and wait for higher prices. This forced the price up for exported gum and, on occasion, forced exporters to accept losses in order to respect their contractual obligations to external buyers. In addition to inflated pricing, Senegalese gum was considered to have a high bacterial infection rate compared with Indian gum. Both pricing and quality were limiting Senegalese gum competitiveness on the world market.Setexpharm, the primary gum-export business in Senegal, had long been looking to buy gum directly from producers, but had not had the resources to invest in subsector organisation. Wula Nafaa, which was looking to boost producer incomes and improve incentive for local producers to invest in long-term natural resource management, helped organise producer groups arranged around a collection point.Wula Nafaa is an agricultural/natural resources management project funded by USAID, partnered with the ministry of environment, primed by the international resource group. Wula Nafaa, which means 'benefits of the bush' in a local dialect, is based in south-eastern Senegal, and is mandated with implementing a natural resource management programme based on the 'nature, wealth, power' paradigm. Natural resource management rests on the interaction of resource characteristics, policies, institutions, skills and economic signals. Experience demonstrates that programmes that integrate nature (environmental management), wealth (economic concerns) and power (good governance) have promising results. CLUSA is an international resource group subcontractor responsible for the economic benefits portion of the programme.Wula Nafaa, following a modification of the steps elaborated above, has facilitated the organisation of 191 producer groups with 28 depot centres in both targeted and expansion zones.In addition, Wula Nafaa initially facilitated a 2-day participatory subsector workshop, in which actors elaborated an action plan that has helped guide project activities. Most importantly, Wula Nafaa facilitated the elaboration of a contract between producer groups and Setexpharm, in which producers received a price approximately 40% higher than what they had previously earned, in exchange for improved quality product and easier pick-up.In the year since the first contracts were signed, 141 tonnes of gum were collected from producer groups, leading to an increase in revenue of US$113,000 from 178 karaya gum enterprises (including some 50 producer organisations). Moussa Ba, president of a karaya producers' group, stated that some producers 'that had never held a sum of $100 in their hand before the signature of contracts with Setexpharm, were now able to buy ploughs and seeding machines thanks to the sale of karaya gum this year.' In addition to increasing producer revenues, Setexpharm has started to invest in the role of business development service provider, training producers in sustainable harvesting techniques and quality control. As a result of this increased economic interest, local communities are starting to look to manage their sterculia trees themselves, in a way that is conducive to long-term use: including reducing bush fires, increased regeneration and improved tapping techniques.Thus, while producer groups have collaborated with the lead firm, Setexpharm, resulting in increased competitiveness of Senegalese karaya gum on the world market and better prices for local producers, local forest-management groups are working with producers' groups to ensure the sustainability of sterculia harvesting and regeneration.While it is evident that some progress has been made in improving subsector efficiency: (producers' groups have been organised and their capacities in business skills, group dynamics, quality control and harvesting techniques reinforced; relationships between producers' groups and buyer have been established), it is felt there is now a very real need for improved market information on the part of both buyer and producer. In particular, there is a need for improved communication with regard to quantities of gum available at producer level, and the availability of funds on the part of the buyer (which, in turn, can be better co-ordinated by information of available production), and also information on pricing. In order to facilitate this, Wula Nafaa is looking into possibilities of collaborating with Manobi, also present at this conference, on developing solutions to improve communication. It seems doub tful that market information could have improved without an associated organisation, and capacity-building of producers.It is important to recognise the barriers to producer organisation development. The following are several critical factors noted by CLUSA.• Lack of transparency and undemocratic structures: producer organisations are susceptible to being hijacked by political interests, rather than economic interests. This was often the case in many countries where cooperative s were run by the State. This can also happen where little attention is paid to the correct facilitation process by development programmes, and the approach is not 'bottom-up'.• High levels of illiteracy and innumeracy provide barriers to the development of management and business skills. Any attempt to tackle literacy is long-term and potentially costly. Attempts to implement literacy as a secondary or tertiary activity are often very difficult to accomplish, especially given the average life span of projects. There needs to be a focus on targeted functional literacy, where possible.• While the time to organise producer groups is typically achievable within the life span of average products, organisation and the implementation of MIS takes a little longer, and is often complicated by the fact that organisation specialists are not always market information specialists. Without the assistance of development organisation, farmers' organisations have difficulties connecting to markets.• There is a tendency for many programmes to provide handouts (inputs, seeds, free credit, etc.) to small-scale farmers. This has been demonstrated to have a negative impact on their long-term economic development and foster a continued mentality of dependency. It also makes it difficult for other organisations, such as CLUSA, that possess a real 'facilitator' approach to succeed, because of expectations and precedents.• There are high levels of informality in a subsector that renders organisation and communication difficult. Development of producer organisations is easier and faster in areas that are reasonably well connected to markets, and for export-oriented or high-value crops, than in marginal areas focusing on subsistence crops.• There is waning enthusiasm on the part of certain segments of the development community to invest in producer organisations.The following are several lessons gleaned from previous CLUSA experiences in the development of producer organisations and their interactions with the market.• There sho uld be a concentration on the marketing of crops that producers are already growing, or have grown, and for which demand exists.• There should be a concentration on identifying reliable buyers and establishing links between buyers and producers, resulting i n clear economic gains. Developing long-term win-win business partnerships between farmers and input suppliers, buyers and financing institutions is central to success.• To facilitate links between producers and buyers, the development of producer organisations is critical.• Producer organisations and second-tier cooperatives must be able provide concrete business services to members.• Producer organisations require sufficient levels of capital to buy in quantity or invest in processing technologies; access to credit is critical.• Upper-tier cooperatives should be managed by professional managers, with solid business plans and audits.• In most cases, second-and third-level entities are best placed to carry out marketing activities and interact with private sector businesses, due to their enhanced management skills.• Improved communication is needed between producers and buyers to ensure trust (social capital is critical at the producer level), also correct market information.• Vertical integration is facilitated if there is a reasonably balanced power relationship between processors and producer members. The provision of basic market information is a service that aims to increase the efficiency of agricultural markets and contribute towards overcoming basic issues of market failure based on asymmetrical access to information. In its simplest form, it is argued that access to spot prices assists farmers to make decisions on where to sell their goods and to negotiate for better prices from a position of strength; traders also use this information to assist in facilitating arbitrage and the distribution of goods.Longer-term trend data allow farmers and service providers to make decisions on which crops to grow and when to harvest, based on seasonal price trends. Historical data also enable farmers and traders to make more informed decisions on storage options, and finance institutions can use this information to assess risks of lending for speculative storage and trading options. Policymakers and researchers use market information to review shifting market patterns and to assist in planning to foster market growth, making provision for marketing institutions and infrastructure, monitoring food security conditions, and for more accurate and timely provision of food relief.Due to the range of potential users and uses of market information, there is, in much of Africa, increasing demand for accessing such data if reliable, accurate and timely.Despite these benefits, debate on the need for long-term support to a market information system (MIS) continues. Issues of quality and financial sustainability are paramount, and these are important because the provision o f market information achieves best results when it is implemented as a long-term process. Any commitment to support such a service therefore has implications for locking in limited public finances over a considerable number of years. Consequently, many age ncies and government departments are reluctant to undertake this responsibility.Additional reasons for not supporting MIS include poor performance in many MIS projects, lack of income streams, and the problems associated with investors not being sure about the cost benefit of MIS. More recently, development thinking has also come to the view that services such as MIS should be undertaken by the private sector, and rather than supporting long-term public good services, projects should be designed to facilitate the transition of such services from being a public good to a private good. Current thinking is more focused on 'how' projects can be designed to make this transition: what level of capacity and competence is required of the existing MIS service, and whether there are certain local economic and political conditions that should be in place to achieve this transition successfully. In an attempt to answer some of these issues, a review of MIS in Uganda was undertaken to assess the usefulness, financial viability and cost benefit of MIS.Survey results found that information related to the marketing of agricultural produce was being provided by many agencies, including development projects, private sector, NGOs, research centres, relief agencies, parastatal organisations, government departments, banks and other financial agencies. The types of information spanned a range of issues related to contract provision, productivity enhancement, market co-ordination, business planning, market links, market information, credit allocations based on market options and market intelligence. However, only two or three agencies were providing 'market information', as defined by Shepherd et al. (1997) -a regular public dissemination of prevailing market prices, commodity volumes and market conditions and also available price trend data and analysis for specific commodities.As part of this study, a quantitative and qualitative survey was undertaken to provide a measure of the accessibility, usefulness and utility of the current MIS, and to assess how this type of service may be financed and improved in the future.The results showed that the overall evaluation of the MIS by farmers and rural traders was highly positive. In terms of access, survey results found that 94% of farmers own radios and approximately 70% of farmers gain MIS through radio programmes. Nearly 25% of farmers also own mobile phones and, surprisingly, up to 76% of farmers have access to mobile phones (Figure 1). The survey found that virtually all traders have mobile phones, a technology that has significantly improved business efficiency in Uganda.In the electronic survey, made up of traders, NGOs and analysts, it was found that 52% gain MIS data through e-mail and Internet, and many are using the SMS service. Up to 96% of those who receive regular market information through e-mail and Internet relay this information to their immediate clients. These findings suggest that FM radio is still the most appropriate means of providing market information to the poorest group -the farmers and rural traders; e -mail for those with connectivity; and that SMS is slowly gaining popularity (Figure 2). The priority 5 crops cited by farmers linked to their market activities and decisions are indicated in Figure 3. These crops are the most commercial agricultural products. Figure 4 shows that 60% of farmers found the MIS very useful, and 33% found it to be fairly useful. This overall figure of 93% of farmers finding the service useful is a very strong endorsement of the service in terms of getting information to the client group and their being able to understand and use this information. Some critics of MIS suggest that farmers are unable to use basic price and market condition information, but that is not borne out by this evidence. In terms of information accuracy, the findings show that 35% of farmers found the information to be very accurate and 58% found it to be fairly accurate. Again, this supports the view that those farmers who receive the information have considerable confidence in its accuracy (see Figure 5). The overall assessment of the MIS was rated according to a five-point scale (Figure 6). This analysis found that, in all areas, the MIS rated between fair and good. Overall, the farming community is reasonably satisfied with the performance of the service, and in no area was the service clearly underperforming. In a second type of survey that was conducted through an e-mail questionnaire, a different group of people were studied. This group was made up of all the people who receive the MIS on a daily basis, and comprised NGOs, larger traders, development projects, relief agencies, government and media houses, including print and radio. This group relies mainly on the e -mail service/Internet to receive its market information (Figure 7). The main uses of the information were for analysis, advice and trade (Figure 8). On further analysis it was found that, essentially, all these areas are related to trading, in which case 98% of the responses were related to trading purposes. When asked about who this group felt should operate the MIS in the future, 90% of responses indicated that it should be operated through a private-public arrangement. Many responses indicated that a government department should not take the lead in this area, due to perceived poor past performance (Figure 9). The priorities for crops from this group were more detailed, but confirmed the same priority crops identified by farmers.The final survey was conducted on the use of SMS price data in Uganda. Due to the rapid expansion of the mobile phone services in Uganda, a pilot SMS price service was set up in 2001 that is available on the MTN network, through the SMS media service provider. The price service data are currently being shared across all three mobile phone networks in Uganda including Mango and CellTel. The number of hits in this service has steadily grown as mobile phone usage has increased, and people have become aware of that market prices can be viewed on the SMS platform. Mobile phone coverage in Uganda is relatively good, and there are approximately 1 million subscribers out of a total population of 27 million people. However, on an empirical basis, the evidence for the past 2 years shows that the there has been a steady increase in numbers of people using the service on the SMS, with average hits in the region of 4,000-5,000 per month (Figure 10). Farmers also provided evidence of how they had used market information to make decisions on growing different crops, selling into new markets and gaining price premiums through the use of MIS information. These findings suggest that most farmers who receive this information understand how it can be applied, and many farmers, especially those organised into producer marketing groups, are able to make tangible financial gains through receiving market information.Comparison of the three main types of MIS being studied, including local MIS, national and regional MIS, revealed interesting results. In terms of quality of service, the local MIS scored very highly in three different, independent impact assessments. The surveys in this study, which evaluated the broader use of MIS, found a strong endorsement for the national service from farmers and rural traders, and a wide range of other user groups 8 . The use of regional market information based on this analysis was less convincing, although several analysts indicated that information on informal cross-border trade was useful. The regional service also provides market intelligence rather than market information; however, this type of information is of most use to speculative traders, a small minority in Uganda.On comparing the three services, it appears that the national MIS provides the best value, as it is the most cost-efficient means of disseminating market information to millions of users, many of whom have no other source of such information and cannot pay for services. Our calculations found the costs of the national MIS were approximately 27 Uganda shillings per household (1.5 US cents), given a total of 4 million households. Of those interviewed who provided information on business gains, through the use of MIS, levels of up to 70% gains were observed, although the average gains were in the 0 -12% range. The national service also offers prospects for introducing practical links between prices and quality of products, as a precursor to the use of grades and standards. From a financial perspective, the national service, more than any of the other services, also offers possibilities for being developed into an embedded service within the next 5-year period.Based on this analysis, a series of recommendations were made that may have wider implications.It is extremely beneficial for MIS to be securely embedded in the agricultural policy framework if such services are to receive long-term support from government and donor agencies. This can be developed through strategic research that evaluates the information needs of farmers and rural traders, their current m eans and levels of accessing market information, and the local infrastructure and services that could be used to provide such a service.In Uganda, research in the mid 1990s provided government planning with clear evidence of the need for MIS, and, from that point MIS was prioritised within the agricultural development policy framework, the Plan for the Modernisation of Agriculture (PMA). Based on this strategy document, implementing agencies were able to develop project proposals to access public funds to support the development of national and local MIS services.There are many types of MIS that can operate at local, national, regional and export levels. These types of MIS provide different types of information to specific end-users. Based on the findings of the Ugandan survey, it was recommended that a country first establish a national MIS service. This type of service should provide regular price and volume information on the leading commercial crops and agricultural products.There are advantages to this type of service being linked to other sources of market information, from neighbouring countries and export destinations, in that once a national service has been developed, there are good opportunities to complement the information within the country with the addition of local MIS services and market intelligence services. These complementary services can be very effective as they can focus on the needs of a more defined user group, and provide capacity-building in aspects such as how to use market information, linking farmer collective marketing groups to new market opportunities, and options such as speculative storage.There have been several attempts to construct MIS from the district level upwards. However, these have failed due to the high costs and difficulties of scaling up such projects, and the limited ability of local services to provide useful arbitrage options, if they are not integrated with a local service. Sequencing should also be considered in the selection of products. The simplest starting point when establishing an MIS is to focus on products that are storable, such as cereals and grains. As competence is gained, other products can be included, such as export products, through the direct linking of i nformation streams from terminal markets. This may include products such as coffee, tea, cotton and oil palm, which are traded at specific auctions and exchanges. The inclusion of more specialised and perishable products should be added only when there is sufficient expertise present in the service, as this can require considerable extra effort due to the short-term volatility of the produce prices and demand conditions.The main target group of an MIS are the many millions of poor, atomised farmers and rural traders who have little opportunity and means to pay for such a service. Secondary users include development projects, larger traders, processors, media houses, consultants, agricultural analysts, NGOs, research centres, relief agencies, parastatal organisations, government departments, donors, banks and other financial agencies. The service should be designed to demonstrate bias towards the primary clients, as the aim of such a service is primarily to reduce the asymmetry of access to market information.A national service should focus on the most commercial crops and be limited to the minimum number of provincial towns that can provide a sound measure of market condition and food security. The MIS should focus on the more commercial crops, and seek quality in the data rather than quantity of data. For a country the size of Uganda, with a population of 25 million, the MIS collects information on 27 commodities in 18 market centres. However, this recent review suggests that this should be reduced to 10-15 products and 10 towns. The reason for reducing the scope of the products and towns is to provide better quality rather than quantity.The regularity of market price and volume information depends on the type of produce that is being reported on. For storable, cereal produce it has been found that a daily update of basic goods should be provided from the country's main terminal markets. This information can effectively be supplemented with weekly data from major provincial markets. If the MIS is providing information on perishable goods, such as fresh vegetables and soft fruits, this will require daily updates in all markets, and in many cases more than once a day, due to the more volatile nature of the prices of these commodities.While price is probably the single most important piece of MIS data, an MIS should complement price with information on market conditions, product volumes and, where used, the premiums that link price with quality parameters. In most cases, this additional information is not provided, due to the considerable extra effort required. Therefore MIS providers should start with price and market conditions, and then add quality-based data only for the most commercial produce.In Uganda, the MIS is experimenting with volume and moisture content. The advantage of adding volume information is that, when it is integrated with price data, it is possible for the user to judge effective demand. Measurements of volume are generally crude, such as counting the numbers of trucks that arrive on a particular day.Use moisture content as precursor to more widespread use of grades and standards. This will require that moisture meters are purchased and provided to all MIS collection points in the country.Many MIS operate as stand-alone projects; however, to be more effective, efforts should be made to enhance the utilisation of market information through closer ties with leading development projects and other market-based service providers. These groups should be integrated into the process of information gathering and use by their clients.To improve the utility of market informa tion, the MIS should make efforts to build the capacity of farmers' groups by training them in how to use market information. This training should be carried out via other service providers and NGOs possessing considerable experience and effectiveness. In order to increase the ability of farmers to use market information, the MIS in Uganda developed and promoted a number of practice guides including: Collective Marketing for Smallholder Farmers (Robbins et al., 2004), The Market Facilitator's Guide (Ferris et al., 2006) and FAO's Guides on How to Use Market Information (Shepherd, 2003). In some cases these guides have also been developed into 10-part radio series, which radio managers could use to complement the broadcasting of market information news updates.To ensure quality of the service and avoid complacency, the agency that provides the future MIS should report on a quarterly basis to a board that is made up of people involved in produce marketing and extension. The performance evaluation board could include an international research organisation (such as the International Food Policy Research Institute, IFPRI), a private sector person (head of Uganda Grain Traders or similar), a representative from the National Agricultural Advisory Services, the Uganda Agricultural Productivity Enhancement Program, the Marketing and Agro-Processing Strategy and the Export Promotion Board. The terms of reference of this board should include an evaluation of progress, dissemination, costs and reviews by field agents.To be most effective, it could be argued that MIS should be maintained as an outsourced service.As stated previously, the view is that MIS should not be developed within an existing government department or parastatal, due to the perceived lack of innovation and poor past performance associated with being operated by government agencies in the past. The service should strengthen links with stakeholders to improve business performance and revenue opportunities, and also to increase stakeholder involvement in data collection and analysis.MIS services should be implemented by NGOs or a consortium of public-and private-sector people. Criteria for selection of who should operate the MIS should be based on: (i) experience in the provision of business support services; (ii) no conflict of interest in terms of provision of information and the ability to trade; (iii) ability to operate in a transparent and efficient manner; and (iv) a business design that fosters greater private-sector integration into the service. Through this process, the Plan for the Modernisation of Agriculture and the National Agricultural Advisory Services should establish a highly professional MIS that meets the needs of user groups identified in the study.To promote performance and innovation of an MIS service, future projects should be designed, where political and economic circumstances allow, through a tender process that achieves basic goals: (i) maintaining a professional MIS; and (ii) privatising the service. In Uganda, the new MIS project will therefore start with a call and evaluation of proposals from public-privatesector partners that combine service quality with a business plan outlining how such a service could become self-financing, within a 5 -year period. This may be achieved through the generation of resources, through means such as advertising, consultancy, or embedding the service into other business structures and services. Funds for the project should be made available through a tender process that is renewed on a 3 -year basis. Funding should be channelled through a responsible agency, overseen by a local marketing and business development steering committee.These ideas focus on some of the issues that should be considered when designing an MIS. It is hoped that such ideas will continue to maintain high levels of performance and innovation into the future. It is likely that donor funds for services such as MIS will continue to decline, unless ne w approaches are found that successfully integrate the business acumen of the private sector and still provide services to those in need, but are unable to pay for such services. Therefore developing these transitional projects and finding ways of facilitating the privatisation of business development service services is of the highest priority.Guidelines for building sustainable market information systems in Africa with strong public-private partnerships 1. An initial political commitment to an MIS by country-level policy-makers as well as private clients, guided by a vision of how such a system can help both private and public sectors.2. A persistent financial commitment over the medium term by local, national and external funding agencies to help establish and demonstrate the pay-off to such a system.3. Constant targeting and reassessment of the information needs of users, which is essential to building long-term political and financial support of the system.4. Development of local capacity within the MIS to acquire and use a thorough knowledge of the people and processes in the marketing systems of the country.5. Development of the human capital for managing the system.6. Choice of the appropriate institutional 'home' for managing the system.Steps for MIS design and implementation by category of activity Group discussions at a workshop of MIS professionals, held in Maputo in November 2004, identified four categories of action that help achieve and reinforce the six success factors discussed above.An essential element in building long-term support for an MIS is to instil within the organisation an entrepreneurial spirit that views the users of MIS information products as the organisation's customers. Customer needs, rather than bureaucratic routines, should drive the MIS's choice of products and services. It is this dedication to serving client needs (success factor 3 in the list above) that is part of the vision that leads to initial political commitment to support developing the MIS (factor 1) and the funding commitment that allows the MIS to establish itself (factor 3).• From the beginning, it is important to identify target client groups in both private and public sectors, their needs, and appropriate means of communication and dissemination, setting priorities among them. Different MIS customers will have different information needs, and the most efficient means of disseminating information to them will differ as well.• In addition to targeting the private sector (including farmers), an MIS has to involve, from its inception, as many strategic leaders as possible in the government, policy advisors, other key ministry people, and outside interested people, including donors. Such involvement is necessary because the system has to be in contact with policy-makers as well as privatesector clients in order to build trust in the system among the broad array of potential users of MIS. In order to build strong support for the MIS, the system should identify key policymakers (local government, national government and donors) who will be vocal and supportive of the MIS, and be especially careful to meet some of their priority needs.• A reputation of service and timely outputs is best developed when an MIS is kept simple and manageable, particularly in the beginning, with very specific objectives and narrow focus.Additional information and analysis products should be added in a stepwise process that is client-driven.• Including basic information about agricultural inputs should be considered as an MIS grows, but a system can rapidly be overloaded when a large number of both commodities and inputs are covered during the early years of MIS operation. Decisions about input information need to reflect country-level produc tion and marketing conditions, actual farmer use of commercial inputs and, perhaps most importantly, consideration of client information needs related to commercial inputs.• Good raw data collection and management are critical from the outset, but, even in the beginning, there needs to be an emphasis on converting raw data into strategic information and knowledge products for a range of clients.• In the process of developing an MIS, the implementing partner(s) must be able to look beyond such short-term objectives as covering the system's costs or generating a profit, and recognise that an MIS also produces important public goods that would not be necessarily produced by a purely private-sector organisation.• The process of identifying which information products the MIS should produce needs to incorporate the following considerations:(i)The ongoing process of prioritising needs of different stakeholders is critical if an MIS is going to build a reputation of service. A consultative process is necessary to reach consensus about priorities.(ii) For many users, it is the local generation of information that will ensure local needs are met, using local means of communication, and this can be achieved through locallevel partnerships.(iii) To address regional needs beyond national boundaries, a co-ordinating mechanism to facilitate exchange and learning among the national systems is more likely to be successful than a new regional MIS run as a separate system. A co-ordination approach should give high priority to helping give visibility to the national systems, so that they and their national clients remain in the spotlight.• A service orientation for public as well as private clients can be enhanced by developing a system of policy briefs or timely analysis that may act as a useful tool for policy-makers during critical events, providing technical advice to help avoid or mitigate crises and give assurances to private-sector clients that realities of market conditions are being considered by policy-makers. Such actions are needed to help establish the value to public and private decision-makers of the MIS as a source of information that merits continued funding and improvement over time.(i) It is crucial that an MIS be alert to emerging crises or critical events, and that early in such events, it should start generating information products that analyse market conditions and potential roles for private and public people. Bringing such information to the attention of policy-makers can provide them with information to design appropriate responses.(ii) Given the large number of net buyers of basic food commodities in rural as well as urban areas of many African countries, assessments of market improvements to lower the cost of food for consumers are very important. MIS analysts have important roles to play in using MIS information to help follow consumer markets, and to make assessments and recommendations.(iii) Markets are always being restructured, either because of adjustments to changes in population and consumer income, or due to changes in the rules set by government policies about how markets can operate. MIS data and analysis are essential to help inform options about this market restructuring.• Facilitating the interaction of private-sector buyers and sellers is important for an MIS, but an MIS is distinct from a commodity exchange. A commodity exchange may be developed based on an MIS, and uses the information from an MIS, but the objectives of a commodity exchange are more limited than the broader market development goals of a well designed MIS. The commodity exchange functions can be served by a strictly private agency operating under the profit motive.The constant targeting and reassessment of the information needs of the users (success factor 3) also requires a strategy that effectively disseminates information to MIS clients and captures their feedback. Activities contributing to an effective outreach and dissemination strategy include the following.• Establish reliable links b etween farmers and buyers through private-sector traders and processors, including their trade and farmers' organisations, by identifying the information needs of these groups, as well as the types of information they may be able to provide the MIS.• Establish reliable links with farmers' associations and the NGOs that work with them, both as users and suppliers of information.• Emphasise local-level participation in the MIS processes, seeking involvement as both suppliers and users of information, to ensure a balance of services for the different clients.• A mix of products and dissemination channels will always be needed and, to be most effective, these need to be tailored to different client groups' most critical information problems. (i) For farmers, local traders, and consumers, radio is probably the most effective (decentralised, local languages, responsive to local needs); (ii) a whole range of traditional written outputs is typically needed to reach different clients; (iii) modern ICT tools, such as the Internet and cell phones, need to be considered and used. They do not always substitute, however, for conventional communication tools, especially for providing broad-based, unbiased information to help improve the bargaining power of farmers (e.g. through rural radio) and in informing public decision-makers about how markets function in response to basic supply and demand forces, and how a lack of competition can affect market performance.• MIS can facilitate local-level buying and trading by using voluntary information from each side that allows identification of major traders in specific products, posted on market bulletin boards or in printed bulletins (e.g. directories of traders in a given region). However, it is unlikely that MIS can provide daily information on who is buying or selling what. Here, commodity exchanges or electronic markets are better suited to provide and diffuse this sort of complementary information.• Seek and develop best practices in training staff for MIS communication, in terms of both content and means. Collaboration with local journalists is particularly useful in 'translating' the MIS messages into a language that is easily understood by the system's various audiences.• Marketing extension can be accomplished through partnerships between MIS and publicsector extension agents, media producers, farmers' organisations and NGO staff. Recent NGO emphasis on markets and agricultural production for market sales presents an opportunity for the MIS to partner with them for extension.The fourth success factor listed above is the need to build skills within the MIS staff to (i) understand agricultural markets and how they are evolving; and (ii) effectively communicate that knowledge to various MIS clients.• The MIS staff must develop thorough and practical knowledge of the market systems or channels of the country. Marketing channels and new buyer/seller arrangements evolve, and MIS staff must plan for time to study and understand these trends, ready to modify the mix of information products and services as the market changes.• As discussed above, it is important for MIS to develop a system of policy briefs or timely analyses to inform policy-makers during critical market events. By providing technical advice to help avoid or mitigate crises, the MIS establishes itself as a valuable source of information that merits ongoing funding. But in order to produce such analyses, MIS staff must include some people who understand how markets work and have some comprehension of policy issues and policy levers. This has implications for investing in staff skills early on. Such investment cannot focus uniquely on statistical and computer skills, important as those are, but must also include understanding of market and policy processes.• Develop a rolling 5 -year strategic plan for staff development, including both skills enhancement for existing staff, and training of replacement staff for anticipated staff departures and expanded analytical needs for the MIS. Prioritising human resource development and retention of skilled staff, particularly in the early years, including staff at local level, is one of the most critical aspects for sustainability.• Use the project-funded time to help build team spirit and a sense of mission, identifying staff members who are committed and capable, who will then sustain the MIS when it shifts from project to public-private-sector financing with a resulting increase in uncertainty resulting from the loss of 'automatic' project funding.The final two success factors noted above involve developing managerial capacity, and an appropriate institutional home for the MIS. These issues are closely linked to developing a viable strategy for financial sustainability of the system.• Donors and special projects can be instrumental to help ensure medium-term financial support (5-10 years) that can adapt with growth in the system.• MIS may start under special project funding, given high investment costs for the initial system establishment; however, the public sector has to work closely with the private sector to develop ownership of the system and eventually become joint promoters and funders of the MIS.• Careful strategic planning is needed to conceive ways to enable transitions from project to a government and private client-supported MIS.• In industrial countries around the world, MIS retain important public-sector and policy information objectives, as well as an orientation to key private clients. If the services to the private clients are effective, they will be more willing to help pay for some of the products and services, and will also become the best lobby and support group to pressure government to provide adequate and reliable public funding for the MIS.• The appropriate institutional home depends on the environment in which the MIS is operating; however:(i) it is important to place the MIS in a structure where users of its services can demand accountability and put pressure on the system for good performance (ii) given the 'public good' nature of some of the MIS's services, some public sector financial support must be provided, regardless of the system's location.• While the MIS needs to be accountable to its customers, it also needs significant managerial autonomy to carry out its tasks efficiently:(i) management of the MIS must be fluid and efficient -if the system is under bureaucratic management, an MIS will be less able to adapt to market dynamics and respond to emerging needs (ii) if the MIS is far down in a hierarchical structure within a ministry or other structure, then budgetary problems and periodic problems of a lack of liquidity are likely to occur, and resources intended for the MIS may be siphoned off for other purposes.• The credibility of the MIS ultimately depends on the perception that it is providing objective, unbiased information. Therefore the system needs to have structures ('firewalls'), such as external advisory and review panels, that help guarantee the objectivity of the information and prevent the perception (or reality) that someone in the MIS's institutional home is manipulating the information for their own ends. Being able to guarantee the objectivity of the data and the analysis will be a critical factor in choosing the institutional home for the system.Taimalietane Matatumua (Ministry of Agriculture, Samoa)Market information can be used by those involved in the marketing process to make better marketing decisions.The primary objective of an MIS in most South Pacific islands is to increase the degree of knowledge of market participants (farmers, traders and consumers) about the market. Improved access to information leads to an improved understanding of the working of the market. This means that decisions made by the participants should be more informed and the profitability of their operations should be enhanced. Government planners and policy-makers should also benefit by the provision of market information, in that policies and programmes should be based on an improved understanding of the market. An MIS must therefore focus on the information needs of the different target group.In Samoa, the MIS is run and fully funded by the government through the Ministry of Agriculture and Fisheries. It is a newly established service and it is in its early stages.The Ministry's aim for this MIS is to improve:• decision-making for all stakeholders• competition• operatio nal efficiency.Like any other MIS, the main focus is the collection of the following data:• current prices of different crops and different varieties• prices in different markets• seasonal price trends• historical price series• quantities supplied.The collection of data for the locally available agricultural supply and prices is conducted by the Central Bank of Samoa (CBS) and the statistics division of the Ministry of Finance. This has been an ongoing activity for these two government departments, and the statistical data collected have already been institutionalised.Surveys are conducted weekly at the two major markets (Fugalei and Salelologa market) in order to collect quantities supplied and prices. Every Friday is chosen as a representative sample for the whole week. The information gathered is published as a monthly news bulletin by CBS. A variety of agricultural crops are included in the CBS news bulletin. The main crops are: taro, taamu (giant taro), banana, taro palagi (xanthosoma), coconut, Chinese cabbage, head cabbage, tomatoes, pumpkin and cucumber.The Policy Planning and Communication Division (PPCD) of the Ministry of Agriculture has recently made arrangements with CBS and the Statistics Division of the Ministry of Finance, in order for the PPCD to receive the raw data every week.Samoa export and import data are collected by the Ministry of Revenue (Customs Department) and the Quarantine Division of the Ministry of Agriculture and Fisheries. This information is normally given out to their usual stakeholders on request, free of charge.The Pacific Island Trade and Investment Commission in New Zealand and Australia produces a fortnightly list of average wholesale prices of various agricultural commodities.The Ministry of Agriculture and Fisheries has access to world market prices each week. This has made possible by paid subscription for a Public Ledger newsletter published by Agra Informa Ltd.It would be unlikely that the focus could be on all the available agricultural produce. For that reason, commodities will be prioritised or ranked according to level of consumer demand, prices and availability of markets overseas.The information gathered is analysed by Ministry of Agriculture staff into a simple format to be easily understood by the target audience in a fortnightly newsletter, The Market Link . This newsletter is then disseminated to other government departments, processors, importers, exporters, middlemen and farmers.The Market Link is translated into two languages: English and Samoan. Due to the fact that most farmers are illiterate, the Ministry of Agriculture's weekly radio programme is utilised to deliver market information. The local newspaper is also used as a means of disseminating market prices and quantities supplied, as well as daily exchange rates.The Strategies for the Development of Samoa highlights the development of commercial production, and this calls for the Ministry of Agriculture to respond to certain areas, including:• initiatives to recommence taro and cocoa exports• rehabilitation of the coconut industry• efforts to develop fruit exports• improvement in produce for the local market.The development of these areas requires a good MIS. Marketing information not only helps farmers make profitable decisions in the short term on when and where to market produce, what prices to expect, and what to produce or grow -but it also plays a vital role in the functioning of the whole market by regulating the competitive market process. By helping to ensure that produce goes to market where there is a demand for it, marketing channels are shortened, and this cuts down on transport costs. Advances in information technology now make it feasible to provide small-scale farmers with the marketing information they need. It is therefore not enough for marketing information to be collected, it must also be disseminated in a form accessible to farmers and adapted to their needs. An efficient and timely MIS enables effective and successful market development.• The main constraints to marketing in the Pacific can be attributed to a lack of infrastructure and marketing facilities.• The remoteness of Pacific island countries and high transportation and shipment costs make efficient marketing difficult.• There is competition between other, larger countries on certain produce.• With the exception of sugar, ginger and other spices in Fiji; cocoa, coffee etc. in Papua New Guinea; squash and vanilla in Tonga; papaya and noni in Cook Island and Samoa; and kava, root crops, copra and coconut oil in other Pacific island countries, marketing systems for most other agricultural produce in the region are generally poorly developed.• Post-harvest handling of produce is poor, due to lack of technology and knowledge.• Quarantine restrictions are another limiting factor in marketing agricultural produce.• Through the introduction of simple processing technologies, waste levels can be reduced, and the shelf life, economic returns and export earnings of produce increased.All the above issues have been our concerns in the past, and that is still true today. Marketing agencies in Pacific island countries are small, and they also lack the necessary resources and market intelligence to organise and supply the right product at the right time. As a result, they are unable to exploit market opportunities fully.But looking at the challenges beyond agriculture and marketing, health and environment are now becoming important new partners to the production sector.MIS is therefore becoming even more important to Pacific island countries if we are to compete with other producers internationally.Ultimately, the expected MIS for Samoa will play a vital role in the marketing activities and market issues of the stakeholders. Although there are likely to be constraints, there is a possibility that the advantages and opportunities for a well managed MIS will outweigh these problems.Henning Knipschild (ZADI, Germany) and Gaston Dossouhoui (ONASA, Benin) Presently, the market information is inserted into the information system by nine official national market information authorities. These authorities are also in charge of providing annual reports on the countries' nutritional status to the FAO. Trained market observers regularly collect market information on 390 markets throughout the network (approximately 50 markets per country). Presently, the main focus lies in the collection of market price information for staple foods.Participating countries also provide information on cultivated land, expected yields, available stock and precipitation.Information is inserted into the web-based system by different people in all partner countries.The system can distinguish between people with different editor rights. The data input can be done from any computer with Internet access, including Internet cafés. Geographic referencing of all the data (GIS) reflects data ownership throughout RESIMAO.Presently the network is concentrating on the collection of market price information. It is envisaged that the mechanisms of collaboration within the network will be mana ged in such a way that, in future, observers can collect other relevant data, such as climate data and information on the status of agricultural production.The driving mechanisms of an operational collection of relevant data will be a functional network, an efficient financing system, and web-based collaborative collection of data. Presently, a controlling system is being designed, allowing for individual payment for every data set that is entered into t he system. This will allow the partners of the network to provide a powerful service. Enquiries can be conducted through a network with radiating structure, the successful performance of data collectors is controlled via the web, and data holding is organised on a webserver.According to the conditions experienced, it is of the utmost importance that the driving forces of an information system develop slowly in parallel, prospering through interaction. Only then can the correct balance be achieved between the people accomplishing the enquiries, the funding, and the data-holding, with the resulting provision of accurate information.Depending on the region, access to the Internet has become more prevalent in recent years. Users publish information online or via e-mail. Because of difficulties in accessing the Internet, many other methods have been developed for communication between users and information systems.The intention is that our web-based information systems will also start distributing information via print and radio.In collaboration with ZADI, the market price agency Office National d'Appui á la Sécurité Alimentaire (ONASA) in Benin has set up a server that sends market price information to the mobile phones of users. Users send a message code via SMS to a server, which indicates what kind of information (which market, product or variety) they would like to be informed about. On demand, a system can easily be developed where data are inserted into a system and sent via mobile phone to the server. This system has not yet been implemented, as the use of mobile phones in many countries is restricted to urban areas.The knowledge resources of many people living in rural areas or isolated regions are of great potent ial, and could be presented to a wider audience if only contact with these people can be established. And by getting into contact with these people, information systems will assuredly be able to provide information that meets their needs and interests.Main activities of RESIMAO -with specific focus on the information systemInformation providers (members of the RESIMAO network) are the official national market information authorities from eight francophone countries. As the network ha s observers on every market in the region (around 400 markets), the link between public administration and merchants may easily be established. Presently, an additional service is being transferred from a prototype status (running for approximately 2.5 years) to a broad status: a global system for mobile communications (GSM) server sends out SMS to registered public users to allow dissemination of price information.A web-based database for data collection, via collaborative editing, with various modules for data output, open to the public. Data ownership is reflected through geographic labelling via web-GIS -a dynamic map indicating market information.Client profile:• policy-makers (members of RESIMAO)• information managers (members of RESIMAO)• scientists (interested in market price information)• the public with access to mobile phones and Internet• the public reached via radio.How are clients/users identified?The main users of the system are colleagues from RESIMAO, who have a defined task: to inform on market prices in the region. As the information system was built in cooperation with, and under the assignment of RESIMAO, which is a network which developed autonomously, the system was well accepted.Are the services free, subsidised or paid by clients?At present, the system is subsidised by different funding agencies and the governments of the member countries. Funding concepts are being developed.How do people take advantage of your services?As stated previously, ma rket information is disseminated via the web, SMS and radio.What is working work well, and what is not working well?The information system could be established within a few months, and as it has been launched in cooperation with influential partners, it runs well.Is the service area competitive or highly restricted?The service is free to the public, and open. The area for content management is highly complex, responsibilities are shared by managers, and the area is password-protected, but accessible via the web.How do farmers and traders take advantage of these systems?Mechanisms for further dissemination of the information are being explored. ZADI also hosts a question-and-answer service for farmers (QAS, www.runetwork.de), which may be linked in future, but this concept is still subject to discussion. countries. The strategy developed by MISTOWA relies on the one hand, on the common use of market information available in the sub-region; and on the other hand, on capacity building of producers and traders to enable them to access and use this information to develop their business.A considered use of new information technology will allow a noticeable improvement in the quality, accessibility and commercial use of market information produced by public and private MIS. The Internet and mobile telephony (SMS) are the two main media that allow organisations to develop, rapidly and simply, commercial information services, which their members at local, national or regional level can use.For ECOWAS 9 , the efficient and developed trade of inputs and agricultural products would be a powerful tool to support the economic growth and the dynamism of the regional integration, improve food security, and reduce in a general way the poverty of its inhabitants.Yet, in 2004, intra-regional exchanges of products and agricultural products were evaluated at approximately US$400 million per year, whereas the internal market in the same economic area amounted to US$24.4 billion, and exports outside ECOWAS represented over US$6.7 billion (IFPRI, 2004). The very low level of exchanges within the region may be partly due to limited and inadequate access to the agricultural market information by economic traders and participants; to the lack of organisation of producer organisations and trader organisations; and to a political and economic environment that is not conducive to trade.Mainly financed by the West African Regional Programme (WARP) of USAID 10 , and implemented by the IFDC 11 , the MISTOWA 12 project's main aim is to promote the trade of agr icultural products within ECOWAS. The implementation strategy consists of three key aims: first, pooling and improvement of the quantity, quality and accessibility of available market information within the sub-region; second, strengthened capacities of producers and traders to access and use this information to develop their businesses; and third, project collaboration with sub-regional institutions (ECOWAS; the West African Monetary Union; the Comité Inter-Etats de Lutte contre la Secheresse au Sahel) for the implementation of agricultural and economic politics and the development of infrastructure -transport and communication for instancewhich facilitates agricultural trade.In West Africa, especially in the French-speaking countries, most MIS arose out of the dismantling of the cereal offices. As a result of the liberalisation of these countries, and of the privatisations that have taken place over the past 20 years, these offices have been replaced by public structures in charge of managing food security stocks. These structures are backed by MIS, which informs about the price trend (and sometimes available volumes) related to cereals, based on a sample of markets that are considered representative (rural or urban markets, and terminal markets, for example).Today these MIS remain public services that cover in priority the cereal products in their respective countries 13 . In 2005, the eight MIS members of RESIMAO 14 used a network of surveyors, collecting on over 400 markets each week the wholesale prices for producers, and the retail prices for consumers.Most of the operators of these MIS mention the following constraints to explain the very low use of those services, which are free of charge. Information is often obsolete when it reaches them; its reliability is sometimes uncertain; accessibility is reduced because dissemination is often limited or inappropriate; the number of monitored chains is limited. Moreover, the operations of these MIS are aimed at food security issues first and, using primarily the price factor, they do not provide other important information, such as direct supply and demand, the availability and costs of transport, the quality of the product or marketing conditions. The national compartmentalisation of MIS renders access to market information of the other countries almost impossible for traders operating at the regional level. Finally, each year there is uncertainty about their renewal, given the financial situation of many countries, as they may be operating budgets that are already very low.13 This is the common case. Some MIS cover other products, such as livestock or specific fruits and vegetables. After having carried out detailed consultations with these MIS and the users during the project conception, MISTOWA committed itself to them, that it would use a strategy that would allow all economic operators to have an easy access, at a low price, to complete, reliable and updated market information that would cover all the countries and products of the sub-region. This is possible especially thanks to the rapid development of the Internet and the mobile telephony 15 . To summarise the current situation, we could say that today, in West Africa, 100% of producers who have marketable surpluses have access to the radio; 100% of traders in a position to commercialise these surpluses on the main national urban markets or in adjoining countries use mobile telephony; and 100% of national professional producer organisations or trader organisations, to which these operators belong, have access to the Internet. In this way, the project tries to support the emergence of a regional second-generation MIS, able to 'regionalise' and also to 'decentralise' the agricultural MIS by using the available new ICTs, but also by using more traditional dissemination means.It then agrees with its partners to:• redefine roles, involving producers, traders and their organisations in the informationgathering and -dissemination processes• share existing information at a regional level (regionalisation), based on public and private MIS that are decentralised• use the new ICTs reasonably, especially the Internet and mobile telephony.Supporting RESIMAO to bring together market information managed by public MIS for collective useWith the technical and financial support of MISTOWA and CTA, and the technical assistance of Zentralstelle für Agrardokumentation und -information (ZADI, a technical department of the German agricultural ministry; www.isicad.org, www.zadi.de), RESIMAO has developed a 'road map' for 3 years . This road map includes:• progressive common use of all the information collected• harmonisation of the methodologies and of information-gathering and -processing tools• development, according to an iterative process carried out by the MIS, of an electronic platform that allows information on prices to be put online, to process the information and to make it available• progressive extension of the covered chains, such as livestock, fruit and vegetables, and fertilisers• progressive extension of the geographical coverage to the 15 countries of ECOWAS, with the possibility for RESIMAO to become a specialised agency on agricultural market information.Today the MIS can already share most of their price data for over 50 main markets, on the same database and on the same RESIMAO website (www.resimao.org). The deadline for public availability has been considerably reduced. A GIS shows the prices on thematic maps and provides a direct and easy view of the regional situation. In November 2005, Nigeria joined RESIMAO through the membership of its National Agricultural Market Information Service.In 2006, version 3 of the platform will be implemented, which will allow researchers trained beforehand to put the collected information directly online, and will allow users to receive information by e-mail, fax or SMS.The project is also implemented in collaboration with BusyLab, a computer company based in Accra (Ghana). Since 2002, BusyLab has been developing TradeNet (www.tradenet.biz), an integrated management platform of commercial information for the agricultural sector. It is on the basis of this software that the West Africa agri-trade network implemented by the MISTOWA project operates. The project seeks to put in common, and at the disposal of any potent ial user, the existing market information in the sub-region. This same software is also used by the MIS in Honduras and Uganda.With less knowledge and computer equipment, this online platform allows any duly registered user to update, look for and disseminate prices, to search for professional directories, make bids or offers, or even disseminate news. Particularly innovative functions include the integration of SMS services for updating, sending and receiving prices or commercial offers; and the possibility of publishing information automatically (prices, offers, news) by e-mail or SMS for a group of operators. Any organisation that so wishes can personalise the tool to make it its own Internet information management platform -for instance by defining its markets and products, by specifying the information to be shared among its members and the information to be available to the general public or to other chosen organisations, or even by self-managing its system of dissemination of offers by SMS.During the project, MISTOWA pays the cost of the TradeNet software licence for all the countries of ECOWAS and the professional agricultural organisations that wish to use it for their own needs. In tight collaboration with Busyland, the project team advises, sugge sts and tests the development of new possibilities, depending on the needs identified and expressed by the partner organisations of the project.Thanks to www.wa-agritrade.net, the project has already enabled collecting and putting online most of the information available to the partner organisations. At the end of 2005, more than 30 correspondents, in Nigeria and Ghana, for instance, were providing the platform with new prices and other pieces of information on the main markets every day. The West Africa agri-trade network is also used as a particularly useful extension tool, because it allows all the professional partner organisations to discover the possibilities and advantages of such an information system, and to benefit from an online, free-of-charge and permanent distance-learning system.Assisting producer organisations and trader organisations to develop agricultural MIS for their membersAs professional organisations develop, many initiatives are created to put in place services for their members, market information and assistance to trade representing the top priorities for many of them.Let us mention the example of ANOPACI 16 in Côte d'Ivoire, which has developed a network of village information desks since 2003, or RECAO 17 , which co-ordinates the setting up of information and communication services within the agriculture chambers in seven countries, or also the association for the market development of Dawanau (DMDA in French, Kano, Nigeria) which relies on a community information centre to inform its approximately 50,000 active members about this market, which generates a turnover of almost US$5 billion per year.To back these private and public initiatives, the project has a grant portfolio of around US$2 million. Thanks to the equipment grant available in 2005, some 18 partners of the project have purchased computer hardware and have been able to access the Internet, as well as utilise the technical training that is needed for its use. Competitive grants are also available to allow, for instance, a local association of professionals from the same sector to dispose of equipment or to put in place a network of surveyors; a cybercafé situated in a rural area to receive training to disseminate services and advice concerning trade, etc.In this way, the project encourages and endorses the creation or capacity building of agricultural market information desks within producer organisations and trader organisations. As from 2006, over 60 information desks within the sub-region will be using these tools, allowing the dissemination of personalised market information to several tens of thousands of different producers and traders. 16 National Association of Professional Farmers of Côte d'Ivoire. ANOPACI is a member of Reseau des Organisations Paysannes et des Producteurs Agricoles de l'Afrique de l'Ouest, ROPPA (www.roppaao.org). 17 Regional Network of the Chambers of Agriculture of West Africa; it consists of the national chambers of agriculture of Benin, Burkina Faso, Côte d'Ivoire, Guinea, Mali, Niger and Togo.Mark Davies (BusyLab, Ghana)TRADENET is a stand-alone market information service (MIS) software. It is probably the first of a new generation of software products that offers institutions and organisations with an offthe-shelf solution to their information content, aggregation and distribution needs. This paper describes how TRADENET was started, what it is today, and where it is going in terms of strategy and development. Following a technical introduction to TRADENET, this paper seeks to explore some of the general issues about the role MIS can play, specifically in facilitating greater commercial thinking and decision-making for smallholder producers, and explores why marketing services need to be developed. The final section deals with opportunities and challenges that exist as this new sector reaches maturity, and strives for standardisation.BusyLab is a small research and development company based in Accra, Ghana with a special focus on technology and development. Our current focus is on providing a set of tools and services to farmers and traders. This product is currently called TRADENET; it was launched in 2005 and is currently providing information on the Internet and via mobile phones for 11 African countries and two South American countries.After 3 years of promoting ICT for development in Ghana (by building Africa's largest private technology centre, BusyInternet), there was some frustration in the lack of some simple but convincing stories to show how high-tech and the information highway could be usefully deployed in the field and help African communities in wealth creation. In discussions with Technoserve in 2004, it emerged that one avenue might be based on the needs of rural farmers who were seeking better price information for their commodities.BusyLab started research into what products were available for farmers or NGOs supporting farmers in the area of market information, and was surprised to discover that basic Excel sheets were still being used, and that there were no software products available, and proposed that they took advantage of the new technologies, to allow information to be more easily collected, stored, analysed and distributed. Assuming such MIS would inevitably be required in each country, BusyLab initiated a pilot project to develop a simple price collection and distribution software, managed through the web, and distributed via e-mail, web and mobile phone.BusyLab recognised the opportunity that mobile phone networks were offering in Africa, by extending communication into rural and semi-urban areas; and doing this much more quickly than incumbent telecommunications companies. In part funded by FAO, the BusyLab team started a collaboration with the FOODNET programme in Uganda, which had been developing MIS for the previous 4-5 years. They already had considerable experience in gathering and distributing market information via radio, SMS and the web. They were also providing one of the only non-government national MIS in Africa, and were keen to find collaborators who could assist them in being a more efficient operator.In our rapid survey of national MIS, several issues rapidly emerged.• Most MIS were not developed properly with the appropriate functional specification or needs analysis common to professional software development. Rather, the tools were a mix of poorer technologies, that often required multiple entry, were prone to data loss and, in some cases, ran the risk of confusing data sets.• The target market was not clear. Complex web interfaces were serving the needs of donors and partners, and it is arguable whether they were providing real value to end-users, if they were indeed traders and farmers. Only the very largest and most sophisticated of traders would have access to these types of application, and certainly not the millions of smallholder farmers who the service aimed to serve.• The tools and information provided were benefiting only the most tech-savvy and well connected traders, thus possibly further marginalising the smaller traders and producers and providing advantages to the wealthier traders.• National MIS were commissioning and paying for these systems, but without understanding the associated costs of software development on this scale, and frequently finding themselves in a position where they were unable to support the ongoing development costs required.TRADENET 1.0To address these issues, TRADENET was initially established to support a national MIS: allowing national players such as Ministries or NGOs that had been outsourced with this responsibility to use a set of tools to collect and distribute price information. Additional content 'modules' were added, as it become clear that news, archive documents, contact profiles and offers to buy and sell would all be appropriate. Foreseeing inter-country and global trading, the system was built with a set of standards for naming measures and currencies, which would allow any country to adopt the technology, and match commodity for commodity, despite local name variations, measures or other aspects. Further, in recognising the flexibility of the data, the system was designed as a 'telescopic' feature, enabling a view on the 'content' to come from either a smaller (town/market) or larger (sub-region) perspective, or to come from a commodity perspective (e.g. show me all the contacts, news, offers, prices for white maize…).A pilot project was established with the International Institute for Communication and Development's e-commerce project in Ghana in collaboration with Technoserve, focusing on shea butter and shea nuts. The project and software development were privately funded by BusyLab, with development support from the FOODNET project of the Association for Strengthening Agricultural Research in Eastern and Central Africa (ASARECA). At that time, the FAO had commissioned a study of methods to establish MIS, and this information was used as part of the design study (Ferris and Robbins, 2004). The TRADENET platform was integrated into the national Ugandan MIS in 2004, when CIAT also facilitated the establishment of an additional TRADENET site in Honduras.The featuresAlong with content modules for news, offers, prices, library, contacts… TRADENET allows countries to customise their web pages, by selecting which of these modules they would like to display. It also allows any organisation to combine any number of countries into a 'regional view' -collecting and combining all their content under one common custom interface. Powerful management tools have been developed to allow one organisation to easily manage and manip ulate the content and configuration. This has been, in large part, due to the collaboration with USAID's Market Information Systems and Traders' Organizations (MISTOWA) project in West Africa, promoting regional trade between 10 countries.TRADENET is currently deployed in Benin, Burkina Faso, Cote d'Ivoire, El Salvador, Ghana, Guinea, Honduras, Mali, Niger, Nigeria, Senegal, Togo and Uganda, and has regional web pages for Central America (www.agroemprendedor.org) and for West Africa (www.wa-agritrade.org).In 2006 TRADENET will add the remaining ECOWAS countries.TRADENET is a licensed software platform, and any country representative or group of representatives can license it annually for US$5,000. This covers the cost of the software, its ongoing development, the servers on which it resides, and all the administration and systems supervision required for uptime-critical systems (such as this application requires). No special equipment, servers or hosting are required by any licensee. The licensee is responsible for data collection, distribution and marketing. BusyLab is responsible for the technology, databases and systems. This clear division of responsibilities is a key aspect of how TRADENET has been conceived, leaving the software developers (BusyLab) to maintain and extend the systems, and the agro-institutions to focus on content acquisition, education and distribution.In 2006, TRADENET will move further into providing a set of tools and services for individual producers and traders, to enable them to act on the information provided by such MIS services. With basic national information service tools in place that should serve the needs of the national statistics or information departments of NGOs or go vernments, the focus now shifts to enabling farmers or traders themselves, or their associations, to have a set of tools that will enable them to market their goods, contact new markets, advertise their buy-or-sell offers, etc. Storefronts for individual associations, custom-branded pages for associations, with a set of online tools to manage members and distribute information about products, services and events, etc. will be one set of features delivered. Much of the functionality of TRADENET will shift onto the mobile phone platform, allowing an individual or a group to publish news or offers. Through this process, the service will reach out to other categories of traders, or smaller 'trusted circles' of friends and partners.The TRADENET development team would also like to combine the functionalities of products like Yahoo Groups for associations, and would like to see more peer-to-peer activity, such as can be found on eBay. With the standardisation of TRADENET and its reach into many countries, we feel i t has a unique position to offer trading opportunities via mobile networks, and customised interfaces for individual associations and traders/producers.Along with these new sets of tools, a new pricing structure will be introduced that will enable fee-for-service payments, through mobiles or by individual subscriptions, avoiding one-fee-percountry obligations.The broader market for market service applicationsAccess to larger markets One of the key opportunities afforded by these more sophisticated structured applications means that data can be shared and compared between and across regions of the world. This may be as simple as comparing the commodity sim sim in Uganda with sesame in Ghana. But as regional variations in language and categorisation can prevent users creating simple comparisons, so these relational databases can be structured in such a way that they link local names, local currencies and local measures and grades to standard definitions. Thus anyone in their own market wishing to compare something in another market will need to use the standardised index to be able to convert items into their own language. Such mappings will depend on standard definitions, which are woefully lacking in the African marketing context at this time. Very simply, what is a list of commodities, and how can they be compared? How can you compare commodities that are different in size, in weight, in quality? How can you compare something that is local or imported? Organic or not?If data storage is designed correctly and 'normalised' (part of the design of a relational database), then computers can access the data in ever more powerful ways and present the data in insightful ways: comparing markets, trends, and predicting perhaps what may happen over the coming seasons (based on certain algorithms). Simply seeing price trends over time in Excel worksheets can be interesting, but difficult to manipulate if you want users to change some of the elements considered. Web-based charting can now enable analysts to compare any number of items in any number of currencies, over any period. Comparing price trends, as crops come to maturity, with what has happened over the past few years may give certain institutions powerful insights into how these price trends may vary in the future. This 'data mining' is dependent on well designed databases and a thorough needs analysis of how the data will be used.As ICT tools become more transparent and easier to understand, it is wholly expected that users will increasingly use these tools to market their goods and services. This may be a larger producer advertising its goods on a web page for international traders and purchasers, or simply a smallholder texting a 'circle of friends' that their crop is ready for harvest and advertising a price. There is likely to be some disintermediation of traditional trading practices.The question of information utility is key in this context, and with the provision of a better information system, service providers should work with farmers' groups and associations to build their knowledge of how to understand and use this information. This can be done through training for local producers in collectively marketing their goods, using information to understand and target ever-increasing national and regional traders, and producing appropriate information about those goods and services online and on the mobile networks.As market services and information begin to make a difference to the incomes of different categories of producers and traders, it should become self-evident that these services have value and can be paid for. As such, the market services could develop fees for service and use the new technologies to provide ways for collection and payment. For example, currently when some traders access prices on their mobiles, they pay a premium rate for that SMS and the extra revenue is shared between the mobile operator and the content provider. That concept can be studied and extended, so that a whole range of services, such as offers to buy and sell, or premium information, can be paid for by farmers or their representatives, by deducting micropayments from their prepaid mobile account cards.Any number of new opportunities for mobile commerce will be developed over the next 10 years, and there is no reason why these market services cannot be a leading example of how to use those networks to gather income to pay for the services. For us, this is a leading research issue that could be addressed by an organisation such as CTA.Needless to say -and it is not in the scope of this paper to address these issues -with better information farmers and traders will make better and more informed decisions. Markets will become more transparent, and new commercial relationships can be created. As markets, particularly international markets, become more competitive, African counties should seek to exploit their regiona l trade markets more effectively, and in many cases also their national markets. Increasing market efficiency will lead to wealth creation, and that must be the key focus and key opportunity that these market service applications offer.With increasingly stringent requirements by the EU and other importing bodies, ACP farmers will increasingly be required to participate in systems that track and trace produce for export. This will probably be done by larger nuclear farms working in conjunction with smallholders. But new information tools must be developed that allow produce to be tracked appropriately to meet import regulations. Identifying where a crop comes from, where it is located by GIS technologies on a map, the quantity available, and what chemicals have been used, will increasingly be the responsibility of any potential supplier and exporter. Tying this into wider market service applications will enable this information to be standardised and available online to any potential buyer worldwide.Being able to get your message out further and faster, to use these new technologies to market your goods, and to make direct offers to sell and buy, will require that farmers collaborate to obtain the relevant training, gain access to the technologies and combine harvests to reach bulk pricing and meaningful use of the new communication opportunities. Thus groups and associations will have a new role in assisting farmers to develop their skills and perhaps acting as a proxy for them, again especially through training users and clients in how to integrate new technologies into their businesses and use these information and trading tools to better manage their associations.As mentioned above, one key requirement for standardising data across networks and databases is to enable different systems to recognise commonalities and enable users to know they are acting on similar items, grades and measures. This must be accomplished by the participants, who are building current MIS databases, joining together and establishing a common set of standards, to enable data-matching and sharing. A simple list of commodities is not available, either from FAO or from any other online resource. Yet de facto, each MIS must define its commodities. Rather than having several lists, and making matching a process that can be difficult, time-consuming and prone to error, there needs to be a concerted effort by CTA, or some other respected body, to issue a standardised set of commodities (taking into consideration weight, size, origin and other characteristics) so that the systems can be interoperable. This will enable many different systems to arise, and allow users to compare information easily across markets.Early on, it has been recognised that simply offering basic data is not enough. Moreover, it can have a distorting effect upon the market. All information that is delivered must be packaged in suc h a way that it is explained. Transport costs, grades and quality are all essential to understanding a market price. This can be accomplished through partnering with radio stations to issue news reports along with simple prices. It can also be achieved through the active participation of farmers' groups and associations. All MIS should be designed with this in mind and should accommodate news commentary to be placed alongside the raw data.Content targeted for communities that perhaps have little access to new technologies, have high illiteracy rates, and use local languages, must be customised to accommodate those communities, otherwise they may be further marginalised. Programmes should be put in place whereby local proxies (farmers' groups, extension officers, even cybercafé managers) can print out market reports that use graphical symbols as well as words for price information, and can be distributed via traditional methods (on market news boards, blackboards, etc.).With so many stakeholders involved in MIS (government departments, analysts, researchers, farmers, traders, NGOs, etc.), it is absolutely crucial that MIS avoids the common mistake in technology development, which is to create a large portal that is everything to everybody and, in the end, meaningless or too complicated for any one stakeholder. It is unlikely that farmers would want historical data going back 20 years (in some cases, the most they may want is the price this time last year), yet ma ny MIS supposedly for farmers will incorporate sophisticated mapping and graphing systems for historical analysis. Research shows that technology is driven by the users, and on the web it will be the NGOs, analysts and largest traders who will use these systems and thus define the priorities. If these MIS are truly designed for smallholders, the developers must be ruthlessly focused on what those smallholders want, and how they may honestly access that content. It is too easy to be seduced by new technologies of mailing lists, event planners, GIS mapping and more, when the focus should be on whatever it is that the smallholder is requesting.Understanding the software development processSoftware development is a process and should be understood by various participants, so that they can interact most effectively in that process. A proper needs analysis, an extensive functional specification, a detailed technical specification are all required for good planning and a sturdy product. Too often this development process is done ad hoc, where people think a certain type of content or feature can be added as they go. This causes systems to be built in such a way that the code is not easily maintainable or extensible, and generally will require the product to be started from scratch again every 4 years or so. Taking some time to understand how software is built may enable people to be more successful in the long term in their attempts at intervention.I would argue that all human involvement with technology should be seen as evolutionary and not revolutionary, especially in the light of the target audiences for MIS. The intervention of technology into a business/commercial process that has essentially remained unchanged for hundreds of years must be of benefit to, and improve, that tradition, not try and replace it. As such, traditional systems of barter and credit should somehow be supported and enhanced by the technology, not replaced. A good analysis of how this occurs, and how low-tech intervention can provably play a significant role in assisting traditional practices, will build enthusiasm for the new technologies and enable participants to adopt them more easily.Involving the private sector to own and pay for servicesIf the value of these MIS can be demonstrated to the participants, then a strong argument can be made to the effect that some percentage of that otherwise-unrealised value can be contributed for the renewal of these services. The challenge all along has been that these services make marginal contributions; perhaps more importantly, no system of fee collection and administration is viable or affordable. Both these assumptions will change with the new MIS offerings. Real value can be demonstrated and arguments made for participants to contribute. And with the distribution and penetration of new mobile networks, micro-payment options are now possible without involving a large (or any) network of payment points. Already, some countries are passing off the cost of the service by making SMS requests a premium rate. That same concept can be extended further as the content itself is differentiated and becomes more valuable. Further, new forms of mobile commerce will enable stakeholders to pay for and maintain subscriptions to services via mobile payments from pre-paid cards. Finally, with the growth in distribution of the content, and further targeting to specialised and differentiated markets, advertisers may be more likely to sponsor that content, providing another avenue of potential revenue.Presumably, content will become increasingly complicated. The source of the content will be shared, as more people are more easily able to submit content. The value of the content will become differentiated. Ownership of that content will become more important, so branding will be key and some level of auditing and accounting for any revenues earned from that content will be required. Finally, access to content may be limited, based on affiliation and subscription. Arguably, all MIS should consider this in initial planning and be prepared to brand content on the site and allow private areas and public areas, and use their powers to define where some content is free and some premium.To distribute the content in these ACP markets, mobile and radio networks will be the most promising delivery methods in the near future. The owners and managers of those networks must be involved early on in the design and implementation of these systems, as their networks will carry the content. Government can play a key role in lobbying and legislating for a certain degree of public access to these networks for services such as MIS. But shared business models and value creation for all stakeholders will be a more plausible and longer-lasting foundation on which to build participation and collaboration.In the past 2 years of developing TRADENET, we have learned many lessons and gained the support of many partners from research and development. It is clear that there is considerable demand for better MIS, and also a real need for reliable and flexible technologies to support such services. However, as demonstrated here, developing the right product for multiple end-users, such as those from government, donors and NGOs, who often pay for such services, and also providing effective wealth-supporting services to a spectrum of large-and small-scale traders and farmers, is a challenge. We believe the service must be standardised; it should meet the needs of the clients, providing different portals for different types of user. Information needs to be packaged in a way that clients can use and, for the millions of atomised smallholders, training and promotion are critical to the appropriate use of new technologies. Other challenges still remain. Although mobile phones are rapidly becoming essential trading tools for the more organised farmers, many millions of farmers still rely on receiving their information through radio; in the future, these more traditional services need to be supported through innovative business arrangements. The goal of TRADENET is to be a leading software product that can be supported, used and adapted by many various agencies and private-sector organisations in developing countries, to the benefit of many millions of smallholder farmers and for the fostering of more efficient agricultural trade.MANOBI: increasing the incomes and life quality of farmers in Senegal through a multimedia mobile phone MIS Daniel Annerose (Manobi, Senegal)Most of Africa's population (70%) live in rural areas. An important part of this population depend, directly or indirectly, on incomes from agriculture, fishing or animal breeding. Globalisation of the economy and of trade has markedly affected much African agriculture, which was not prepared for these developments because it had been supported for a long time by the State. The situation of poverty seen in both rural areas and suburbs bears witness to the difficulty of reintegrating rural populations in their markets and in their local, national and international economy.What part can the new technologies play in these circumstances to significantly improve the economic situation in these sectors? What approaches should be implemented to develop really helpful uses? What economic models can support those strategies and produce sustainable effects for the beneficiaries? Like most general services, such as water, energy and the communication infrastructures, the new communication and information technologies are considered as a priority for urban areas, whereas rural areas have little or no provision. Can this natural tendency be reversed, and through what mechanisms? Few answers to these questions are available today for the African rural populations due to a lack of pedagogical models to inspire their construction.Manobi, a multimedia service operator for agribusiness and the rural sector, was created with a view to participating in the construction of these models. The object of the case study briefly described here is to show how solutions based on the exploitation of new communication and information technologies can contribute directly to the development of rural populations and their environment.The multimedia MIS case studyIn Senegal, one of the main problems of producers and of middlemen (banas-banas) is the absence of reliable information on the situation of their products' destination markets. The product price is generally announced by word of mouth, and constitutes the main bone of contention between these two players. On one side, the banas-banas used to leave the market to go and get their supplies with some information already distorted when they arrived at the producer's. On the other hand, the producers, who only went to the market from time to time to check the actual price of their products, could not but doubt the sincerity of the banas-banas.Manobi has developed the T2M, a system that enables both groups to use their mobile phones in order to know in real time both the price and arrival status of their products at the markets, and the availability of the same products in the production sites. The prices and arrival changes of products on the markets are collected twice a day. The data, which are sent to and held at a centralised base, are analysed in real time before they are broadcast to users through a multimodal platform (WAP, SMS, voice XML, mobile and fixed Internet) specially developed by Manobi to provide value-added data services at lower cost with the mobile telephony operators' first-generation classical vocal networks. With this system, the Senegalese producers and banasbanas were the first WAP users in Senegal -something they mastered in a few days, even though the majority are illiterate and had never used the telephone before.The impact of this service was assessed on a sample of 50 producers and 15 banas-banas in the four-month horticultural campaign.The main result noted is a significant increase in users' income compared with those of previous campaigns. The producers immediately found a sale price for their products corresponding to the actual market prices. Because they could better seize the market opportunities with better information on the producers' offers, the banas-banas reduced their charges and sold their stocks more easily.The service cost for the user corresponds to a telephone communication per day: CFA F200 per minute.Thanks to this service, the group of producers studied increased their income on average by 15% after they had deducted the service access fees. In the 316 ha cultivated, there was a CFA F114 million ( €174,000) increase, that is an average increase of CFA F361,284 per ha (€550). Calculated on the 8-month horticultural campaign, the net income average increase is CFA F722,500 per ha (€1,100) for a service overall cost of CFA F30,000 (€45).Many different situations were identified from the data: the size of the cultivated area determines the level of additional income generated, and producers with a large variety of crops can better exploit the information provided and generate important margins (Figure 1). Thus a small producer with a 1 ha farm, growing very diversified crops, once he knows the market situation in real time, can make decisions that enable him to increase his income to levels equivalent to, or higher than, those of a producer who works on 10 ha of undiversified crops. This shows that in addition to the true value of the information provided, its economic impact is determined by its use by the receivers.Other important impacts of the service for beneficiaries were highlighted. They reveal interesting means of promoting innovative uses of new communication and information technologies for the low-income or poor populations.Important time is saved by T2M users, which they can devote to increasing value-generating activities. • For all beneficiaries, the information relayed by Manobi has become a reference. Trade between producers and the banas-banas is easier -their work has become more organised and with less conflict, and negotiations are now concluded quickly.• Producers no longer leave their farm to go and look for information at the markets. The service enables them to avoid the 2-day trips to the market that they used to make every week, on average, to check the price of their products.• Because they are confident of the reliability of the information, the banas-banas have reduced the time they spend on exploration and have organised to share their trips from production sites to markets.Because of the time saved thanks to this service, producers can spend more time on their farms and better supervise their employees and the family members who help them. This additional time has enabled many of them to:• increase cultivated areas• increase yields• increase the quality of their products.For the producerThe precision of the data provided by the system is an important tool that helps producers make decisions on:• choice of priority crops, depending on market demand• production diversification• optimisation of the use of fertiliser stocks.For the bana-banaThe T2M system enables the bana-bana to localise more rapidly and target precisely the products he needs and the producers who have them:• trips are optimised• destination markets are precisely targeted, based on the expected income.New jobs are also created around this service:• 'urban banas-banas' exploit the data to organise urban market-resupply circuits by playing on the price difference of the same produc t on these markets -they contribute to rebalancing the availability of products on the urban markets• in the production areas, producers and their professional organisations have entrusted to youths with horticultural education the charge of organising technical follow-up of producers -they act as technician-advisers to help producers derive most benefit from the service by maximising their farm management.The T2M system has enabled users and, in particular, producers to reintegrate their industry as full players each acknowledged by the others. By reappropriating a recognised role in the industry, they are discovering new ambitions, which we meet through the development of appropriate services. These concern namely:• development of the sale of their products in the continent, and export to the countries of the North• putting at their disposal tools to help them pilot their farms• development of the product quality and traceability needed to develop their labels and the credibility of their origin.The professional organisations of these producers have realised the changes these services have brought about in their members' behaviour and needs. They demand services that enable them to:• develop their own management methods• provide value-added services to their members• better participate in and master the local development of the area they cover.With this experience, we have succeeded in building a winning ecosystem for each participating player:• the rural communities, who are the final users and whose income and living conditions are directly improved• the national telephone operator, which now realises the prospects for developing activities in rural areas• Manobi, which concentrates efficiently on developing uses that meet local needs• the equipment makers , who have a vested interest in developing a new group of customers and providing the corresponding network infrastructure equipment (ex Alcatel).More natural relationships between the priva te and public sectors are established. Thanks to this project, supported by the International Development Research Centre (IDRC), new services and new technologies can now be experimented with in conditions that facilitate both better care being taken of users' needs, and the design of viable associated economic models.This case illustrates how the information technologies can contribute efficiently to the economic and social development of rural populations. For us, three key elements must be considered in order to answer efficiently the questions that currently limit dissemination of these technologies in rural areas.• Use versus access. Identify first of all the uses that correspond to local needs, before promoting access.• Services versus technologies. Design services while taking into account the users' particular situation (level of income, mobility, isolation) and mobilise adapted technologies (fixed, mobile Internet and its different modes) to provide this service in the best conditions for the user.• Rural versus urban. Define realistic economic models for network extension and quality, as well as providing services that strengthen the role of rural communities in their markets, their industries, their economy and their social environment.These conditions enable us to offer workable new prospects in using information technologies, mainly global systems for mobile communications, and services with high value added for all the players.Stephen Kiuri Njukia (RATES Project, Kenya)Overview of RATESThe Regional Agricultural Trade Expansion Support (RATES) Program is a 5 -year USAID/REDSO-funded programme implemented by Chemonics International Inc. Its overall goal is to inc rease the volume and value of agricultural trade within the East and southern Africa region, and between the region and the rest of the world. RATES is a commodity-focused activity and currently supports five commodity value chains, including specialty coffee, maize, cotton and textiles, livestock, and dairy. Through policy advocacy, lobbying, public relations and marketing, RATES is expanding private-sector contributions to regional trade initiatives in East and southern Africa.In developed economies, most people associate maize with 'corn-on-the-cob' dripping with butter, crunchy breakfast cereals, sweetcorn in salads and, for cinema-goers, no movie is complete without popcorn. However, in many African countries maize is associated with food security: 'where there's no maize there is no food'. As a result, maize is the major food crop in the region and a key component of national-level food security strategies. Demand for maize in sub-Saharan Africa is expected to double from 27 million MT in 1995 to 52 million MT in 2020 (IFPRI).However, it is not uncommon for certain parts of the region to be hit by severe seasonal food shortages, despite available maize stocks in nearby countries. The RATES Program undertook some value-chain studies for maize in selected key maize-producing and -consuming countries.The result demonstrates that, on average, the region produces 22,000,000 MT and consumes an estimated 16,000,0000 MT, leaving a regional surplus of 4,000,0000 MT. With such a huge surplus, why are our people suffering from food insecurity? Is it because we are not integrating our food requirements as a region? Are we denying our neighbouring states access to food, and discouraging larger markets for our farmers? Our conclusions were that the distance between the supply and demand of maize can be measured in terms of both kilometres from supply and the number of cross-border barriers inhibiting trade, plus lack of market information and correct supply-and-demand figures.To address the regional impediments to cross-trade, the RATES maize programme has the longterm goal of improving the flow of maize and expanding availability within the region, with a view to stabilising the regional maize market and helping to reduce the large swings in maize prices seen during periods of deficit. This goal is anchored on a regional theme of 'maize without borders' as a concept launched by RATES through the auspices of COMESA. This initiative promotes free cross-border trade and regional harmonisation of maize policies, and been adopted as a COMESA policy to increase inter-regional trade in grain.To address the challenges of managing 'real-time' market information and trade-links sites, the RATES Trade Office ( RTO), dedicated to the upkeep and management of both the www.ratin.net and www.tradeafrica.biz sites, was opened in 2003. This office serves as the RATES 'call centre', where trade inquiries are proactively pursued through the Internet, e-mail, telephone, SMS and radio. All site 'hits' and trade inquiries are monitored and tracked for transactional viability and completion. The RTO maintains an extensive trade directory of private companies and public-sector agencies connected to the maize, bean and pulse trade.The Regional Agricultural Trade Intelligence Network (RATIN, www.ratin.net) is a market information platform within the RATES Program that provides timely, accurate and relevant market information to people across the agricultural sector, including cross-border traders, processors and policy-makers. The selected commodities are maize, beans and rice, and the focus is on Kenya, Uganda, Tanzania and Rwanda.The information provided includes:• daily, weekly and monthly wholesale prices for selected terminal markets in East Africa• maize import parity prices for selected border and import points • monthly regional trade analysis in the form of a monthly food and trade bulletin• trade opportunities forecasts based on the regional production and inter-regional trade flows• provision of the estimated regional maize availability balance sheet.This information is disseminated through web, e-mail and posted mailings.This trade links site continues to draw interest from the private sector, with inquiries to buy maize closing the year 2005 at US$162.7 million for the year, representing 845,290 metric tons of grain. This is about a 20% increase on 2004. Offers to sell closed at US$118 million, representing 724,000 metric tons. The www.tradeafrica.biz site is used for both domestic and regional transactions; hence the totals far exceed the volume of formal regional trade for the year. The RATES Program has pushed the envelope on developing strategies for increasing grain trade within the region. The region has had some initial success in increasing inter-regional trade, in that formal maize trade increased this year from US$31,252,068 to US$47,476,232, and government policy-makers are beginning to change their attitudes towards the free movement of grain across their borders. The COMESA and East African Community (EAC) heads of state have endorsed the 'maize without borders' concept, which aims to improve the smooth flow of maize from surplus to deficit areas. Here are some examples of how the trade worked in the year 2004-05.• Zambia and Tanzania remained key maize trade players in 2004, with US$15,929,552 and US$14,959,948 in formal trade export value, respectively.• Most of Tanzania's trade flowed north as Kenya's main supplier (US$6 million) and west to Burundi and Rwanda (combined total of US$7 million).• Uganda exported a significant amount of maize, with a value of US$6,403,000 (up from US$4,359,000 last year), but shifted its focus from Kenya -its traditional trade partner -to Burundi and Rwanda. This may be related to World Food Program food-aid shipments to those countries, which are recorded as formal trade.• Ethiopia has come on the scene this year for the first time as a net supplier (although still limited) of maize to the region and the Middle East. Trade valued at US$1,662,000 is significantly higher than previous years' trade, valued at US$48,000 in 2003 and US$318,000 in 2002.• Malawi, although considered to be a perennial maize-deficit country, fo llowed Tanzania and Zambia as the third-largest maize-trading country at slightly over US$7 million. Following the concept of 'maize without borders', Malawi traded freely with countries such as Zambia (US$4.5 million) and Mozambique (US$1.3 million), whic h are the same countries from which it procured maize between harvests. As a prime example demonstrating that trade bans are unnecessary, Zambia sold maize to Malawi valued at US$6.6 million.• There are several examples of maize import and export trade occurring between the same countries, supporting the RATES premise that free regional trade in maize is the best form of food security -every country has a different harvest season. The best examples are Kenya and Uganda, which bought and sold maize with Tanzania; and Malawi, which bought and sold maize with Zambia. The challenge for RATES is to convince the public sector and foodsecurity operations that free trade is part of the process of maintaining and sustaining increased trade in the region that allows maize to flow freely from areas of surplus to areas of deficit.• Of significant importance is the comparison of informal (unrecorded) maize trade with recorded formal trade. Taking into consideration that informal trade is only partially monitored, and values are conservatively estimated, total informal trade for 2004-05 exceeds US$44 million -almost equal to the US$47 million formally recorded by COMESA. The informal trade between Uganda and Kenya is almost US$14 million, compared with recorded trade of US$400,000.Inter-regional grain trading has increased at various stages in the value chain. At the national level, a number of interesting initiatives are being explored, including contract farming schemes, forward contracting, warehouse receipt systems, and commodity exchange systems. All these efforts are prerequisites for establishing a more advanced system of regional trading. However, the pace of moving to a more liberalised environment has been somewhat slow, and these 'new'initiatives have not produced a formidable grain-trading platform. This slow pace has been hindered somewhat by government interventions (government participation in the market place), lack of capacity among private-sector players to fill the vacuum left by government marketing boards, and a lack of regionally focused distribution channels of grains from surplus to deficit areas. As a result, regional trading is still hampered by the dynamics of the past, where market principles and practices were monopolised by the state.The absence of a well organised regional food-grain market constrains broad participation by genuine and reputable grain traders, slows adoption of productivity-enhancing technologies at the farmer level, and generally leaves the grain value chain exposed to price and quantity volatility risks. For the trade to move forward, market participation requires:• broad regional participation -sufficient buyers and sellers in the regional market so that a single player cannot hold others to 'ransom'• rules of trade -qualification of buyers or sellers, and guidelines for orderly markets• transparency offers and bids in the regional market are known to all potential buyers and sellers• regional market intelligence -offers and bids in one area or country are known in other areas or countries in real time, so that trading between countries is facilitated• knowledge sharing -information on the underlying regional supply, including food aid imports, and demand fundamentals.Regional grain-trader summit, Nairobi; 12-13 October 2005 RATES, in collaboration with COMESA and the EAC, held the first regional grain-trade summit to provide a forum for all key players in the regional grain industry to meet as a group (for the first time) to map out a regionally focused strategy for grain-trade market development within COMESA. Participants included key policy-makers, leading food-aid policy-makers and procurement staff, leaders of strategic grain reserves, private traders, producers, millers, bankers and donors. The event attracted over 300 participants from 20 countries, including COMESA, EAC and the Southern African Development Community (SADC), as well as Europe and the USA.RATES is addressing trade-improvement issues head on through our 'maize without borders' initiative, and felt that the timing was right for the region to further develop strategies that encourage the development of a mature grain-trading system. To do this, the region needed to develop consensus on the right way forward among the commercial players in the value chain. In this regard, the regional grain-trade summit accomplished this objective. The theme 'the future of grain trade in East and southern Africa' formed the basis for all presentations and workshops.The four main topics that segregated the key summit presentations and workshop discussions were:• public, private and donor sector investment/intervention options• role of food aid and national grain reserves, and their impact on trade• competitiveness -farm to market systems• trade finance -collateral management, commodity exchange, and warehouse receipts.Structured grain-trading system in East and southern AfricaThe grain-trade summit concluded with a general objective of creating a structured trading system that will help foster the growth of regional agricultural trade, by creating a larger market for our farmers and other industry players along the value chain. The building blocks of such a system were identified as follows:• clean and identifiable storage facilities• aggregation of volume, especially from small-scale farmers• standards and grading, use of recognised, e.g. East Africa maize standards• contract-enforcement system• legal and regulatory environment• finance (role of banks)• commodity exchange• integrity.To start the process of building a structured grain-trading system, the RATES Program has incorporated stakeholders actively engaged in structured trade systems in warehouse receipts and commodity-exchange initiatives, targeting collateral management f irms, banks, trade associations and existing parastatal marketing agencies. One such group in Kenya, through the auspices of RATES and the Kenya Maize Development Program, a bilateral mission project, is actively pursing the formation of a regional grain council (East Africa Grain Council). The Grain Council's objectives are envisaged as follows:• promote a well functioning regional supply chain, focusing on trade issues of all sectors of the value chain, building a platform for reducing constraints in regional grain trade• build cooperation, interaction, partnerships, alliances, networks and market links• collect market data, generate information exchange and share regional expertise• promote investment in structured marketing systems, including warehouse receipts and commodity exchanges• act as main licence and certification authority in structured systems, and provide commercial services as needed• recognise and support accepted principles of international codes of corporate conduct• facilitate awareness of new technologies• represent the regional membership at national, regional and international forums, and lead advocacy and lobbying actions for best interests of council members.In Malawi, RATES is bringing together all grain industry workers with a view of forming a strong grain industry association with similar objectives to those of the East Africa Grain Council. In addition to promoting formation of the council, RATES is working closely with the East Africa community -Kenya, Uganda and Tanzania (EAC) and COMESA -to produce handbooks on import and export regulation requirements, targeting small-and medium-scale traders as well as government officials stationed at border posts. For example, a guide for maize traders on regulatory requirements for imports and exports of maize has been printed through the auspices of EAC and the respective revenue authorities of Kenya, Tanzania and Uganda. The publication and distribution has been followed by a training and promotion programme targeting traders' associations and customs officials at the Kenya/Uganda borders, and at the Tanzania/Kenya border points. These regulations are also posted on the RATIN and tradeafrica.biz websites.We believe a structured trading system will bring benefits such as:• price information to all participants -accurate, timely, public and readily available• uniform, regulated, and impartial system -acceptable code of conduct• market transparency -offers and bids are known by all participants• reduces seasonal spot market prices volatility -offers opportunity to manage your risks• increases the regions' money supply -bring liquidity to the grain market.The above benefits will be realised by farmers, traders, brokers, millers, banks, service providers and food-aid agencies.In conclusion, the RATES Program's efforts of promoting regional trade integration will lead to food security and economic growth to more than over 374 million people who live within COMESA, by addressing impediments to trade and improving market information flow to traders, farmers and policy-makers.Ardon Iton (CARDI, Trinidad & Tobago) The Caribbean Agribusiness Marketing Intelligence and Development (CAMID) network was established under the aegis of the Caribbean Agricultural Research and Development Institute (CARDI) in May 2001. CAMID is a marketing intelligence network that aims to support marketing development in the region. The members of CAMID include national and regional, public-and private-sector agribusiness entities that have a responsibility for the provision of marketing development services to the agribusiness sector in the Caribbean CARICOM countries.The network is directed by a regional management committee comprising representatives f rom national and regional, public-and private-sector organisations, while day-to-day management is carried out by the secretariat located at CARDI headquarters in Trinidad and Tobago. CAMID has developed a regional integrated marketing development strategy (RIMS) designed to solve the fundamental problems with respect to increased information flows between sellers and buyers, facilitation of product exchange and reduction of transaction costs.The RIMS aims to establish systems, mechanisms and arrangements that will allow the integration of major services, including marketing intelligence, trade facilitation, quality assurance and the supporting infrastructure.Specifically, producers and traders will benefit from the following support services:• a product supply-and-demand forecast service• e-commerce trading facility• agribusiness database• freight availability database• export marketing information service• industry and enterprise development services.The pack-houses and agro-processors in each country will be the nerve centre of the RIMS. The market intelligence network will assist them to enhance their ability to find markets, co-ordinate production, organise shipping and deliver products to customers' specifications in the domestic, regional and internationa l markets. In addition, these pack-houses/processors could work together in undertaking a joint export-marketing programme.The forecasting mechanism, the e -commerce facility, the agribusiness database and the transportation database will be accessible through the CAMID website. These and other services will be delivered as follows.The product supply forecasting mechanism will allow for information to be available on the future product supply situation at regional, country, sub-district and individual farmer levels. On a monthly basis, farmers will be required to complete or provide information to CAMID coordinators for the completion of rolling 3-month forecasts of their production, on the condition that they will be assisted in finding markets for their products. Domestic buyers in each CAMID country can access the database and will be able to search for suppliers of a product in a particular area, or in the whole country, who can supply products within a particular period. Buyers who do not have access to a computer will be able to contact central locations by phone for such information. The forecasting software will not allow buyers and sellers to conduct sales transactions via the computer, as this will be available via the e-commerce service.The CAMID secretariat will also develop a demand-forecast model which will utilise historical data and surveys of selected buyers to forecast demand, thus allowing for forecast of both demand and supply.The e-commerce trading facility will allow for communication between buyers and sellers via the computer. Sellers including pack-houses, processors and importers will be able to post onto the site products that they have for sale. Domestic and global buyers, such as wholesalers, hotels, supermarkets, restaurants and exporters, will be able to browse and select products offered by sellers and advertise their requirements online for the attention of sellers.The agribusiness database will allow authorised members, nationally and regionally, to store and retrieve data on a commodity basis with respect to all aspects of agribusiness. Information will be available on a product-specific basis in discrete marketable units. Research undertaken has shown that, to be most effective, the products purchased by public and private sectors should be available as marketable units. They include: industry profiles, market profiles, trade statistics, commodity profiles, production trends, investment profiles, supplier-and-buyer profiles, postharvest technology packages, production technology packages, processing technology packages, current market prices, price trends, market opportunities, supply forecast, sources of inputs, trade agreements, source of funding, government policies, support agencies, industry news and events, and short-term training.The service will allow for a database administrator who will manage the database in terms of:• ensuring the various information products meet requisite standards for publication• controlling access to the database by national and regional users• setting prices for information product/package• authorising other personnel who will be able to place data and information on the database from different locations in order to increase the efficiency and range of information.Each country or organisation will have the ability to control access to their own database and to market their discrete products as listed above.The freight-availability database will be accessible via the CAMID website. It will allow providers of air, sea and land freight services in the region to post details of their services in terms of up-to-date schedules and rates. The software will allow authorised traders to access the database to find the most appropriate transport solutions.The extra-regional joint marketing programme provides information and a forum that facilitates contact and dialogue between exporters and importers of Caribbean food products, and is aimed primarily at increasing members' competitiveness and market share in extra-regional markets through joint action, as it relates to:• identification and negotiation for purchasing contracts with buyers• consolidation of products to satisfy volume requirements of large buyers• consolidation of financial resources to promote products jointly• consolidation of procurement efforts to reduce unit costs• sharing of information to reduce costs• joint negotiation for freight space and rates• joint negotiation for development assistance• stronger lobbying voice with respect to government policy.In the execution of this programme, CAMID will supply information to the Caribbean Agribusiness Association (CABA) and other exporters.The industry and enterprise development service is a consultancy service aimed at facilitating the development of commodity/industry associations and individual bus iness enterprises through the execution of industry, business and market studies, preparation of industry, business and marketing plans, and the undertaking of product development projects on behalf of individual members, firms and industries. The development of industry associations, which is the main responsibility of CABA, is regarded as a major prerequisite for effective collection of agricultural production data.The RIMS has been presented to stakeholders at a number of forums at national, regional and international levels, and has won strong support from the regional public and private sector, including:• CTA, which has been a major source of financial support • FAO• The Committee of Lead Agencies of the RTP.The CAMID network, through CARDI's marketing development programme, is regarded among major public and private sector stakeholders at the national and regional level as the marketing intelligence system for leading the regional approach to agricultural marketing development in CARICOM.The establishment of the network has experienced initial problems, as with any other entity in a developing country. These problems span the spectrum from institutional identity to technical difficulties. The following are some of the more difficult problems encountered.• Agreement on institutional arrangements -protracted and sometimes acrimonio us discussions as to whether the network's management should be under the direct control of CARDI or whether it should be an autonomous entity. It was finally agreed, following ministerial intervention, that it should be a marketing intelligence system under the management of CARDI.• Some reservations on the confidentiality of the data supplied to the network. As a result of this, the software was designed so that each country and organisation would have 'password' control over their information.• Wide variability in type of data collected and the data-collection instrument, particularly with respect to production forecast. Standard data-collection instruments for production forecast and for industry profiles have been designed and generally agreed on by member countries.• Frequent staff movement in the Ministry of Agriculture. Significant delays have occurred in implementation at the national level, due to the transfer or resignation of persons selected as national co-ordinators.• Software modifications to meet the required level of flexibility and user-friendliness required.• Reluctance of the agricultural extension service to undertake the collection of production forecast data. The extension service, in many countries, holds that the collection of marketing information is the responsibility of agricultural marketing agencies, and their function is to provide production-related services. The marketing agencies, however, do not have an adequate number of officers to cover the required number of products and geographical area. The solution lies in the development of industry/commodity associations, improved marketing planning and better communication between buyers and farmers, including increased used of telephones and radio programmes.Notwithstanding the difficulties encountered, significant progress has been made in several areas, as outlined below.A regional management committee, comprising public-and private-sector stakeholders, has been established, and a draft memorandum of understanding defining how the network will operate has been developed by the CARICOM secretariat. The final draft of the memorandum of understanding is now being circulated to CAMID members and to the permanent secretaries in the Ministry of Agriculture, which will be finalised by the regional management committee and permanent secretaries in mid-December 2005.The day-to-day management of the network is currently carried out by a team of three part-time persons: a regional co-ordinator, a database administrator and an administrative assistant. National co-ordinators for the network as a whole, as well as for the agribusiness planning database and the product-supply forecast service, have been established in 13 countries.The agribusiness planning database, which was initially developed with funding from CTA, has been redesigned following review and testing of the software by 11 member states. The new database will function as a regional repository and search engine for all types of information relevant to the agribusiness sector in CARICOM. This new design is now in the process of being tested by stakeholders in the region, and is expected to be fully operational by the end of February 2006. The review, testing, redesigns and initial population of the database are being financed by FAO.Through partial funding from USAID and a joint venture agreement with a private-sector information technology company, Integrated Trade Solutions in Barbados, the network has developed Internet-based software to support the forecasting of primary produce production. Through funding from FAO, national meetings of public and private agribusiness stakeholders in 13 CARICOM countries have been informed about the rationale, benefits and modus operandi of the product-supply forecast software, co-ordinators from 11 countries have been trained in its use, and 10 countries have developed implementation plans. Final arrangements for its imple mentation at the national and regional level are expected to be arrived at during a meeting of permanent secretaries and heads of the national marketing agencies in mid-December 2005.The staff of the network secretariat have undertaken a number of consultancy projects under the enterprise and industry development component of the RIMS. These include:• market evaluation and marketing strategy for West Indian cherry-based fruit juices• market analysis and strategy for cassava products from Montserrat• study of the beef market in Trinidad and Tobago, and opportunities for the Jamaican beef industry in Trinidad and Tobago• analysis and strategic plan for the hot pepper industry in the Caribbean• strategic plan for the establishment of a national export services facility in Trinidad and Tobago• strategic and development plans for the Caribbean craft industry in Dominica• agribusiness development plan for the government of Trinidad and Tobago• market analysis and strategy for the rabbit industry in Trinidad and Tobago• feasibility of a dried fruit and vegetable industry in Trinidad and Tobago• co-ordination of analysis and policy framework development for the organic industry in the Caribbean• business analysis and establishment of marketing information system for Black Bay farmers' association in St Lucia• marketing development plan for the hot pepper industry in the Caribbean• agricultural development plan for the Goldsborough and Hillsborough districts in Tobago• analysis of the opportunities for the essential oils industry in Trinidad and Tobago• strategic framework for development of the agribusiness sector in OECS.The strategic framework for the implementation of this programme has been prepared. The strategy calls for the establishment of Caribbean food-buyers' associations (importers/ethnic shops/restaurants) in major cities in the Caribbean, North America, Europe and Asia, and the establishment of information-sharing agreements with the CAMID network. Through the CARICOM secretariat, CAMID has initiated action with the Caribbean American chamber of commerce in New York and the Southern Diaspora Research and Development Centre (SDRDC). Through this initiative, a draft memorandum of agreement has been prepared between CAMID and the southern caucus of NGOs for sustainable development and its regional centre in North America, Latin America, Africa, Asia and the Caribbean. Under this agreement, the SDRDC, based in New York, will function as CAMID's arm in the north-eastern USA. The agreement also covers a mechanism for sourcing funds for investment, in marketing development projects, as well as in regional agricultural production, food-processing and agrotourism ventures. Progress towards the establishment of the New York Caribbean Restaurant Association is also being made.CAMID will partner with CABA, which is expected to take the lead in the joint marketing programme, in the further development of this initiative.The CAMID secretariat ha s also partnered with Integrated Trade Solutions in the development of e-commerce software , which will be an integral part of the joint marketing programme.Since its official launch in May 2001 the network has been able to finance its operation through donor funding, which has amounted to US$457,000; consultancies, which have generated income of US$194,000; and in-kind support from CARDI, in the form of office facilities and the financial administration of donor funds.From very early in CAMID's conceptualisation/development, CTA has been a major contributor.To date, the network has received just over €62,000 from CTA. Donor funding for the network has also been received from FAO, USAID and IICA.The new focus of the network will be to become an agribusiness information centre, which will establish and strengthen relationships with public-and private-sector marketing information organisations, regionally and internationally. The main functions of the network will be coordination of:• a market demand and supply forecast service • the regional agribusiness planning database service • a regional freight availability database service• a quality assurance database.A significant amount of work remains to be done in facilitating the establishment and/or development of producer and buyer organisations, which are prerequisites for efficient and reliable data collection within and outside the region. In this regard, the network will need to work more closely with private sector bodies such as CABA and supermarket, hotel, restaurant, exporters' and agro-processors' associations within and outside the Caribbean. Given that the members of these organisations are the main sources of reliable marketing information, a memorandum of understanding will have to be established with them, particularly as it relates to information sharing and how such information will be used.The secretariat will be managed within CARDI via the organisational structure shown in Figure 1. The national co-ordinators will ensure the effective functioning of the national components of the network's programmes and provide support to network projects.It is recognised that the network must be partly self-financing in the longer term, through the sale of services. Over the next 2-3 years, as it builds its capacity to deliver its services, it will require additional development support. In the longer term, the network proposes to finance its operations through the following mechanisms.• Government. In each country, government is expected to assign one full-time staff member, either from the agricultural marketing development agency or from the ministry of agriculture, to function as the national network co-ordinator and assist with the operational costs of running the network.• Fees from use of forecasting software . Buyers including packing houses, processors, exporters, importers, wholesalers and retailers would be required t o pay for use of the software and access to the non-proprietary component of the information on the database.• Fees from access to the planning database. Regular users of the database will be required to pay an annual subscription to access all of, or components of, the database. Less regular users will be required to pay for specific information.• Fees from use of the freight database. Users of the database will be required to pay an annual subscription fee.• Funding from development agencies. Development age ncies will be asked to provide funding to support the development of the network over the next 3 years, when the network will be developing the quality and scope of its services, and to finance projects that the network will submit from time to time. This paper offers insight into how most businesses manage their finances, and how they are linked to financial service providers. In agricultural development, as farmers become increasingly commercial in their operations, they require access to funds for investment in new business ventures and for positioning themselves in the supply chain. The supply chain consists of a series of activities, linking farmers with farmers' cooperatives, traders, processors, machinery suppliers and exporters, all of whom need to make investments and manage variable cash flows.To provide the necessary financial services for commerce, there is a diversity of businesses that make up the financial framework. Some financial service providers are part of the formal regulated system, others are not; and the services they offer differ accordingly. This difference in service types is particularly relevant in rural areas, where there is often a lack of formal institutions and, in some cases, few informal financial service providers to support commercial development. This paper provides examples of how farmers are linking into the financial service framework, and concludes with a range of suggestions as to how rural financial services can be improved.Figure 1 summarises the typical flow of funds, goods and services found in most business activities. All business entities must mobilise funds to invest in their inputs for production, stocks of goods for resale, or to acquire equipment to supply services to others. In a sense, the text boxes in Figure 1 represent the two sides of a balance sheet: liabilities or sources of funds on the left, and assets or what has been bought with the funds on the right. Funds may come from the business owner's own savings or equity, or from investment made by others, such as partners (share capital) or lenders.When goods are obtained on credit from a supplier, this can be considered as a form of loan to the business, until the items are paid for. In turn, the business itself may sell goods on credit, which makes it a supplier of financial services in the same way. The centre circle illustrates the equation that determines whether a business makes a profit or a loss. Costs are incurred, and income is generated. If income exceeds costs, the business will make a profit, thus providing a return to the business owner. Interest charges may appear on either side of the equation, as a cost when paid by the business to a lender, and as an income when collected by the business from customers who obtain goods or services on credit.All the participants in the market chain are businesses, involved in transactions with each other, such as the buying or selling of goods and services. Therefore all parties are involved with the general process of managing finance, as described in Figure 1.There is a considerable range of options as to where a business can source operating funds. However, it is always important to remember that the first source is to self-finance using savings, including any profit they have made previously from the business. In terms of borrowing, farmers may turn to:• landlords• traders• a cooperative to which they belong• a rural bank• a pawnbroker in town.The source of finance will depend on local circumstances, available options, what the farmer is producing, and how long he has been in business. Often farmers are tied into arrangements they would prefer not to use. Banks are usually located in urban centres and may be inaccessible to many rural businesses. Cooperatives or micro-finance institutions often reach further into rural areas, but these institutions may limit access to certain groups of people. How a business is financed is governed partly by the available options and partly by the history of the business itself.The same logic of business finance also applies to specialist financial service providers (Figure 2). Financial service providers have to mobilise funds and make decisions about how to invest their funds. They may provide services to customers, but they have the same responsibility to manage in order to show profit.Figure 2 shows all the main possibilities a financial service provider has of raising funds (e.g. owner's equity or share capital, savings deposits collected from customers, loans taken from other institutions and, in the case of institutions offering micro-finance in particular, grants from donors or governments). The main use of funds for a financial service provider is to make loans, which then appear as assets on the business balance sheet. A formal institution may also invest the money in bonds or property, or in other banks. A full range of financial services is provided to customers, including transfer facilities, cheque-payment mechanisms and insurance policies.To make an income, a financial service business charges fees for services and interest on loans.If they are to stay in business, this income must be greater than the costs they incur, which means that interest rates and fees must be sufficiently high to achieve this. The moneylender Moneylenders are commonly found, informal financial service providers, based both in urban and in rural locations. They use equity to make loans and obtain an income from the interest charges. The rates moneylenders charge are often considered excessive. Moneylenders offer specialised services, they are convenient, and transactions are easy and discreet. Customers may have to consider using them despite the charges, rather as customers may have to consider the use of high-interest credit cards, where those are available. Moneylenders may augment the funds they have available for lending by borrowing themselves (Figure 3). Many moneylenders may also be landowners or shopkeepers, and be involved in supply-chain transactions as well. Cooperatives are member-owned institutions, and there are many forms of this type of organisation. They may be small, unregistered savings and loan groups, or large, regulated credit unions. The most important feature of this type of organisation is that the emphasis i s not on making profit, but on providing services to members. The most important service is providing a place for people to save. Nevertheless, even these institutions must cover their costs and make a margin to prevent capital erosion. Some rural cooperatives are multi-purpose and are involved in marketing and input supply as well as financial services (Figure 4).NGOs and micro-finance institutions (MFIs) are new types of financial service provider that have arisen in the past 10-20 years. Their primary focus is to provide credit to those customers who have been excluded from mainstream financial institutions. Many MFIs started operation with donor grant funds, which they may have supplemented with commercial loans. Apart from providing credit, they often offer other non-financial services as well, such as literacy training, business skills, health and nutrition advice (Figure 5). These organisations have been involved in offering their services to all sectors of society, as well as farmers. However, few of these organisations have been permitted to offer savings products, and many have rather rigid methodologies, which are not suitable for farm or equipment loans. Regardless of ownership, type of institution, rural or urban sphere of operation, all financial service providers ultimately must:• have their loans repaid• cover their costs from operational income.So, crucially, they need to:• have good client information• find ways to minimise the risk of lending As shown above, there are variations in the nature of different financial service providers, but there is one common factor -they must recover the money they lend to others. If they do not, their capital is lost, and they have no means of continuing in business. If this money belongs to others, it is especially damaging, so that governments usually impose strict controls on who can provide deposit-taking services.The key to loan recovery is in knowing your clients and ensuring they will have sufficient income flows to be able to repay the loan. As it is never possible to be absolutely certain of future income flows, and there is always a chance of wilful or unavoidable default, many lenders require additional security in the form of pledged assets or guarantees from other people. However, the priority should be to make properly assessed lending decisions in the first place.Informal lenders have a number of perceived advantages over formal financial institutions. They are normally part of the community in which they are permitted to provide the financial service, so they may have some knowledge of some of their customers. Additionally, they may have other roles that assist them to exert pressure on those who are in the position of defaulting on repayments, such as owning their land or buying their crop. Although informal lenders are a fairly constant feature of the financial landscape in all parts of the world, and are sometimes inevitable to the livelihoods of customers and the operation of many businesses, their services are sometimes unsatisfactory. Lending conditions may be very disadvantageous to the borrower, and amounts may be small and inadequate for proper investment needs.Formal financial institutions include commercial banks -state or privately owned -development banks, and certain types of non-bank financial institution. Bridging the gap between these and more informal mechanisms are various cooperatives, credit unions and micro-finance institutions. The formal providers are very risk-averse and have a tradition of insistence on assetbased collateral, which tends to exclude smaller customers. Their cost structure means they are generally urban-based, which is also where they find most large-scale customers. They are specialist institutions and are not, therefore, normally involved in marketing or other commercial activities that build links with their customers. Government regulations may be imposed on banks to require that they extend their services to excluded sectors such as agriculture, or that they open branches in rural areas, where revenue from that district alone may not cover the costs of setting up a bank and its operations there. There may be both positive and negative effects from any possible imposition of government regulations. If the regulation involves interest-rate control, the effects are invariably negative to further profit-making for the financial institutions.The creation of a rural banking infrastructure is, however, positive once the authorisation is given for the branches to be financially sustained. The nature of the formal and informal financial service providers has been described. This leads to the typical financial framework for contributors in an agricultural supply chain, illustrated in Figure 6. The formal institutions, such as banks, provide services to the large-scale participantsagri-businesses, processors, exporters, input-supply firms. They rarely provide direct services to small farmers or farmers' organisations. Some do, but it is less usual because it is perceived to be expensive and risky to serve this type of client. Informal lenders are therefore the primary source of financial services utilised by small-scale farmers. They may have access to semi-formal agencies, which can occupy the middle ground.This extension of the previous diagram simply imposes the web of potential supply-chain finance that may go on through all the various transactions and penalties that these businesses may make and incur. It does not mean that such finance is always available to all people in the chain; merely that such transactional finance through deferred payments is likely to be occurring up and down the chain. Connected with this, at the end of the day, are the banks providing financial services to the larger customers, who may then manage their cash flows in such a way as to be able to, in turn, provide short-term credit to their customers. Key points to remember are that:• banks do not like financing agriculture, which they calculate to be risky• government-driven efforts to possibly counter this through directed agricultural credit have generally created a poor repayment culture among farmers• establishing the particular conditions that will operate in rural areas carries a high cost, so that in many rural locations there are no formal financial service providers• as a consequence, small-scale farmers have to rely on the informal finance provided, and on whatever type of supply-chain finance is made available to them.These points summarise the broad conclusions that one can draw so far, regarding the financial framework of agricultural producers, input suppliers, processors, wholesalers, retailers and exporters today. The supply of financial services to small-scale farmers is often inadequate, but government regulations to counter this have often, unaccountably, created more problems than they have solved. It is possible to assert that directed credit with government backing could be regarded by some as easy money, apart from the obvious fact that there are many reasons why farmers do not, or cannot, repay the loans they receive, in full, or in part. In the long term, this can be seen as very financially damaging to all financial service providers, who may bear the onus of the debts incurred, and may be trying to operate as viable businesses. The means to the encouragement of better provision of services to the agricultural sector are there. In their turn, the obligations of farmers and financial providers are currently as follows:• small-scale farmers to improve the profitability and reliability of their production• farmers and producer associations to secure better prices• lenders to promote ethical and careful financial services and make better decisions• financial products to be better adapted to customer needs and fit for a modern society• institutional operating costs to be lowered where possible.As previously stated, lenders need to judge that they can recover their loans. For their part, in the system as described, customers need to assess for themselves and be able to forecast in a fair, but highly competitive market place that they will have sufficient income to repay the money they have borrowed. It then follows that improvements to the profitability and reliability of a farmer's income in these circumstances become necessary for business and financial reasons. In terms of financial service providers, the possibility of lowering their costs, making fair decisions and then lending in a just and reasonable manner will improve the quality of the decisions they make and the proper finance they can offer. Greater clarity with regard to 'creative' approaches to collateral, and wider use of fair practice in joint liability by those responsible, may help to encourage formal lenders to consider that they are in a position to lend responsibly to the agricultural sector in the future.Looking more closely at some of these suggestions, we first examine sensible ways of improving the profitability and reliability of farming. Quality technical advisory services can offer the right kind of support -but much more, of a proper and practical nature, needs to be done to provide a properly managed system, and to provide more equitable extension services. In a modernised system, properly authorised, the personnel engaged in providing advice to farmers would naturally need better instructions, training, enterprise planning, market research and budgeting controls.In the current circumstances, there is scarcely a doubt that diversified income sources can help to ensure more stable income flows in households that are currently economically deprived, but there is not the scope in this report to discuss how this could relate to lending. Advisory services need to appreciate this, and to have sufficient information to be able to give sensible and useful advice on what the options actually are. The same is true of increased economies of scale and adding value to products, both of which can increase profitability (see below). As a corollary, these improvements may necessitate group action by farmers to jointly own and manage equipment for production or processing activities. Advisors need to be able to provide quality guidance and advice on the costs and benefits of such actions.Requirements are:• technical services• better planning skills• diversified income• secure market through contracts• economies of scale and value addition• health and life insurance• livestock and weather-indexed crop insurance.Another possibility within the current system is securing more stable prices through contract arrangements. Finally, increased access to affordable insurance would be a reasonable step in reducing certain types of risk for small farmers. Currently situations occur where farmers are unable to keep farming satisfactorily; in certain instances, for example, if they or other family members are sick and cannot afford healthcare, or debts cannot be repaid when a farmer dies, health and life insurance may not only aid individuals but also lower certain types of risk for lenders. On a different note, with crop and livestock insurance some risk can be reduced. In practice, however, such schemes for crops and livestock have so far proved difficult in both detail of design and implementation.It is impossible to over-emphasise the importance of adequate market links in successful business development. Everything that can be done to increase farmers' awareness of markets, market prices and quality requirements has been done in the past. For the present, producer associations or marketing cooperatives could act with probity and proper responsibility in securing contracts and organising small producers to deliver goods of the right quality and quantity to meet contractual arrangements. The basic points are that proper market links and contractual arrangements generally reduce risk, producer associations enable goods to be sold in larger qua ntities and at higher quality, and market information could improve farmers' bargaining positions.In India, where 200 million people are engaged in farming or related activities, the India Tobacco Company (ITC), now a conglomerate dealing in many different lines of business, is developing its competitive agricultural business by empowering, not misleading or eliminating, the independent small farmer. Its business model centres around the deployment of a network of Internet-connected kiosks, known as e-choupals (a high-tech version of the traditional choupal or village gathering place in Hindi), where farmers are provided with the latest weather reports, local and international produce prices and agricultural advice. The kiosks also serve as procurement and purchase points, allowing farmers not only to sell their produce to ITC, but also to buy agricultural inputs and consumer goods. Each e-choupal is managed by an ITC-appointed sanchalak, a respected farmer of the community. The system lowers procurement costs for ITC and enables them to pay higher prices to the farmers. The farmers also benefit from transparent pricing and proper weighing practices. So far, the e-choupal system has been used for the procurement of soyabeans, coffee, shrimps and wheat. For more information see www.itcibd.com/e-choupal1.asp. Microsoft is now investing in this idea to spread access to this commercial sector.As previously remarked, the ability to insure crops and livestock would be instrumental in reducing farmers' production risk and thus one aspect of the perceived risk of lending to farmers.Using weather-based index and area-based yield contracts to insure against natural disasters can offer increased affordability and accessibility of insurance services for those customers who need it. Because triggers can be verified independently, there may be some reduction in the misplaced situation of vulnerability to political interference and manipulation of farm losses. It is practical to implement, and has low administrative and transaction costs (currently there are little or no government subsidies or interventions available).Weather-based index insurance makes payments proportional to the difference of a measurable weather event (rainfall, temperature) from a certain trigger, as measured at regional weather stations. Area-based index insurance makes payments proportional to the decline of area yields below a certain trigger at the county or district level. Insurance is sold in standard units (for example, $10 or $100 payouts), with a standard contract or certificate for each unit purchased. The premium rate is the same for all buyers, who all receive the same indemnity if the insured event occurs. Buyers are free to purchase as many units of the insurance as they wish. The insurance is written against the average yield for a region (county/district) and a payment is made when the measured regional yield falls below a defined limit (for example, 80% of normal).The National Smallholder Farmers' Association of Malawi, in conjunction with the Insurance Association of Malawi and with technical assistance from the World Bank and Opportunity International, have designed an index-based weather insurance contract that will pay out if the rainfall needed for groundnut production is insufficient. If there is a drought that triggers a payout from the insurance contract, funds will be paid directly to the bank to pay off the farmers' loans. If there is no drought, the farmers will benefit from selling the higher-value production in the market place. The insurance will help farmers obtain the financing necessary to purchase certified seeds, which produce higher yields and are more resistant to disease.BASIX (one of India's largest micro-finance institutions with nearly 100,000 borrowers in nine states) launched India's first rainfall insurance programme in July 2003 through its KBS Bank in Mahabubnagar in Andhra Pradesh, bordering Karnataka (the district has experienced three consecutive droughts during recent years). One of the main incentives for KBS Bank to offer rainfall insurance was that local area banks are limited to operations in three adjacent districts and therefore face limited portfolio diversification. Rainfall insurance for its borrowers would mitigate the natural default risk inherent in lending in such drought-prone areas. KBS bought a bulk insurance policy from ICICI Lombard and offered individual farmer policies for three categories of groundnut and castor farmers -small, medium and large. Farmer uptake was immediate, with around 100 farmers signing up the first day. Overall, a win-win outcome of the scheme is expected, in that not only do farmers benefit (from insurance against catastrophic events, improved income stability, and greater access to credit and lower interest rates), but banks also stand to benefit from secured lending and reduced default rates, improved collateral, and increased lending amounts and savings in rural areas.If financial service providers are to make and recover their loans, they must be in possession of information about the status of (and the reason for) the lending, and of proper information about conditions; be in a position of requiring correct information from customers; and be able to conduct financial analyses that can show clearly whether or not it will theoretically be possible for someone to repay a loan. In the system as it stands, lending officers are trained to undertake more appropriate background investigations of applicants and assess their character and attitude to their business. There is always room for improvement. To the rural farmer who has considerable variability in income flows, cash flow-based analysis of repayment capacity appears to be important. Simple gross margin or profit budgets are not considered a sufficient basis on which to judge repayment capacity. Household expenditure requirements are taken into account, as well as production input costs. It does help somewhat in evaluating loan applications from farmers, if loan officers have a good knowledge of agricultural enterprises in terms of production methods and market opportunities. This facilitates a kind of knowledgeable conversation with farmers, and theoretically enables better evaluation of the financial prospects and level of risk involved. Likewise, making use of local organisations working in areas where the financial institution has customers may help officers to keep up-to-date with development schemes and agricultural practices. Background information on customers should, of course, be properly obtained from the customers themselves.Credit scoring is a scientific method of assessing the credit risk associated with new credit applications. Statistical surveys produce theoretical predictive relationships between application information and the likelihood of satisfactory repayment. Surveys attempt to be empirically designed (they are developed entirely from information gained through prior experience), in a lending situation that is currently subject to all kinds of influences that would prevent completely accurate forecasting. Therefore credit scoring is only an objective risk-assessment tool, as opposed to any subjective methods authorised currently, which may attempt to rely on such things as a lending officer's opinion. Clearly, credit scoring is a risk-management tool. Presently, it is still held that scoring systems of this type may help a bank ensure more consistent underwriting and may provide management with a more insightful measure of credit risk, as well as positive results for the farmer, whatever the outcome. It is not suitable for all financial institutions -it works best for those with excellence in individual lending technology and with a large database of, historically, successful lending to the farmer, with probity, and with satisfactory results for all those who may be concerned.There is something of a fixation, by some, on credit in the form of loans with specified repayment terms when talking of financial services. However, it is just as important for people to be able to save, to draw on those savings when they want, to make payments to other people and to be able to manage variable cash demands by borrowing when necessary. I would argue that an accessible bank account with overdraft facilities would be perfect for most business operations.There is increased awareness of the importance of savings facilities, and those institutions legally enabled to offer deposit-taking do so. The main problem for rural customers is the travel time that may be involved in getting to such a facility, and this has led to the growth of informal savings groups and experiments with mobile banking or doorstep collection. There has been less experimentation with flexible loan products, which could be seen as a disadvantage to both farmers and traders. However, there are examples -the Kisan Credit Card system for farmers in India is a move in the right direction -and more could be done to introduce overdraft or creditline products for agricultural and micro-enterprises.New technology is likely to transform the whole financial product scene. In the Philippines, rural banks are already introducing payment services, cash withdrawals, deposits and loan repayments by mobile phone text messaging. This methodology is likely to outstrip any other outreach mechanism, and is the equivalent of Internet banking. It certainly has the potential to facilitate trade and commercial transactions in remote rural areas.As stated above, the ability to provide assets as collateral does increase access to loan finance by reducing the level of risk carried by the lending institution. However, the lack of land titles and difficulty of controlling movable assets results in limited lending to farmers by conservativeminded banks. There are options for overcoming these constraints, however, such as the acceptance of joint liability groups or personal guarantors in place of tangible assets. Leasing arrangements leave the ownership of the asset in the hands of the financier until it is fully paid for, thus recovering the asset in the event of default is easier.There is much current interest in development circles over the possibility of establishing managed warehouse systems, in which farmers can deposit their crops at harvest time and then borrow from banks using the stored crop as collateral -a system known as inventory credit. This provides more flexibility at harvest time and enables farmers to control when they sell their crops in order to get better prices. Additionally, it may be possible for governments or development agents to consider providing loan guarantees to financial institutions to encourage them to take more risk with their lending decisions. These schemes are not always successful, and should not be used to remove responsibility for lending decisions from the financial service provider. However, they may have a role in promotion of the expansion of financial services to remoter areas, or for longer-term investment in agricultural equipment .Finally, in this overview of the financial framework surrounding rural businesses, a reminder of some of the ways in which financial service providers could try to reduce costs of operating in more remote, low-population density areas. Two words predominate -technology and linkages. Computerisation and mobile phone technology are making things possible that could not have been achieved before, and this trend looks set to continue. Transactions can be made more quickly and with more security, and back-office systems can be updated and monitored more effectively. If new technology can be added to the possibility of creating client access points in shops, post offices, markets and so on, then we will have started to address the issue of outreach in rural financial services more effectively than ever. However, links are also about small groups of farmers being able to access services through local NGOs or MFIs acting as intermediaries for bigger banks. Group organisation remains an important way of lowering costs of operation when dealing with poorer clients.The net result of all improvements should be to ensure more access and more choice for all business people living in rural areas. Interventions should always aim to keep this in mind and think in terms of improving the financial landscape in the long term by encouraging diversity of financial service providers and offering diverse products that meet the needs of all the actors in the different supply chains.What about self-help?It seems appropriate to suggest one other solution to ensuring financial services that meet an individual's needs, and that is for that individual to start them up himself. Self-help solutions have always been there, and will always be there. It often needs some inspirational person to start the idea, and then if a real need is properly met, the idea continues to exist and grow. I cite just one example here. The extraordinary growth of women's self-help groups in India has been the result of official encouragement, coupled with an array of promoting institutions, from tiny NGOs to major foundations to commercial banks. These groups manage savings, give loans to members, and are often linked to banks, from which they may take a loan to increase the amounts members can borrow. However, it is not clear if the aim of these groups is to be a permanent institution, or simply to be an interim measure until women may hold bank accounts in their own right.Some federations of women's groups have already converted into cooperative societies, and that is a common way for all types of self-help groups to develop, if they are to be sustainable.Cooperative legislation is a way for many groups to become legal and to meet prudential standards of operation. Savings and credit cooperatives in East Africa, and credit unions in many parts of the world, have often grown from small beginnings into major financial institutions.Others have fallen by the wayside or been destroyed by government intervention. Memberowned institutions can be major contributors in the financial landscape and provide much-needed services in rural areas. However, all the remarks made above about good practice in financial service provision apply to this type of organisation, just as to any other. NABARD has the following functions:• serves as an apex financing agency for institutions providing investment and production credit for promoting the various developmental activities in rural areas• takes measures towards institution-building for improving the absorptive capacity of the credit-delivery system, including monitoring, formulation of rehabilitation schemes, restructuring of credit institutions and training of personnel• co-ordinates the rural financing activities of all institutions engaged in developmental work at the field level, and maintains liaison with the Government of India, state governments, RBI and other national-level institutions concerned with policy formulation• undertakes monitoring and evaluation of projects refinanced by it• supervises the cooperative banks and regional rural banks• finances rural infrastructure projects, including market projects by the state government.NABARD's refinance is available to state cooperative agriculture and rural development banks, state cooperative banks, regional rural banks, commercial banks and other financial institutions.While the ultimate beneficiaries of investment credit can be individuals, partnership concerns, companies, state-owned corporations or cooperative societies, production credit is generally given to individuals.NABARD operates throughout the country through its 28 regional offices and one sub-office, located in the capitals of all the states/union territories. It has 336 district offices across the country and also has six training establishments.A summary of NABARD's balance sheet is presented in Table 1. Innovations by NABARDA series of research studies conducted by NABARD during the early 1980s showed that, despite having a wide network of rural bank branches which implemented a variety of poverty alleviation programmes seeking creation of self-employment opportunities through bank credit for almost two decades, a very large number of the financially impoverished continued to remain outside the formal banking system. These studies also showed that the existing banking policies, systems and procedures, and deposit and loan products were perhaps not well suited to meet their needs. It appeared that what the financially disadvantaged really needed was a better access to these services and products, rather than cheap subsidised credit.Thus began a search for alternative policies, systems and procedures, savings and loan products, other complementary services, and new delivery mechanisms, which would fulfil the requirements of all those in financial straits. The emphasis was placed on improving their access to micro-finance rather than just micro-credit. As a large, village-based network of state-owned bank branches already existed, it focused not on creating alternative organisations, but on finding ways and means of proper access by the financially disadvantaged to the existing banking network. Many research studies were carried out, in-house as well as sponsored by professional institutions, and some action research projects, funded out of the research and development fund of NABARD, led it to develop the self help group-bank linkage model, as the core strategy that could be used by the banking system in India for outreach to the disadvantaged, who had hitherto been bypassed by them. The strategy involves forming small, cohesive and participatory groups of the impoverished, encouraging them to pool their means regularly and using the pooled resources to make small interest-bearing loans to members, and in the process learning the methods of financial discipline. Bank credit follows. It needs to be emphasised that NABARD sees the promotion and bank linking of self-help groups not merely as a credit programme, but as part of an overall arrangement for providing financial services to the financially disadvantaged in a sustainable manner, and also as an empowerment process for the members of these self-help groups.It was under these conditions that the self-help group-bank linkage programme was launched by NABARD in 1992, with the policy back-up of the RBI.Starting with the NABARD-led limited-scale pilot project in 1992, which aimed at promoting and financing 500 self-help groups across the country, the self-help group-bank linkage strategy has come a long way. Nearly 1.62 million self-help groups were provided bank credit of over Rs 68,984 million by March 2005. Almost 90% of groups are women's groups. Over 35,290 bank branches of 48 commercial banks, 196 regional rural banks and 316 cooperatives were involved in financing these groups. Repayments by members to self-help groups have been exceedingly high and on time.Repayments have hovered around 98%.A summary of progress under the self-help group-bank linkage programme made between 1992-93 and 2004-05 is presented in Table 3. Introduced in 1998-99 through NABARD, the Kisan (farmer) Credit Card (KCC) product was aimed at simplifying the procedures for providing timely and adequate short-term institutional credit to farmers, while concurrently reducing transaction costs for bankers. The product has done well, and the number of KCCs issued in successive years has grown steadily. At the end of March 2005, the number stood at 51 million cards; the cooperative banks accounted for the largest share. KCC is emerging as a widely accepted mechanism for delivery of crop loans. KCC gives farmers an easy option to borrow and quickly repay, and they have made good use of it.NABARD assists in the promotion of viable enterprises in rural areas in the business, service and industry sectors, by providing promotional support to NGOs/banks. The promotional support is provided for establishing rural haats (mobile weekly markets), development of rural clusters, rural entrepreneurship and marketing of non-farm products.Agricultural insurance in India was historically provided by general insurance companies. With a view to providing focused attention, the Agricultural Insurance Company of India Ltd (AICI) was established in 2002. NABARD is a partner in this company, along with other insurance companies, and has contributed 30% of equity. The company is expected to co-ordinate all the ongoing agricultural insurance schemes in the country; the important ones are detailed below.The crop loan insurance scheme provides insurance against reduction in crop yield because of natural calamities. This cover is provided for selected crops, and so far 59 million farmers have been covered under the scheme. The claims are settled on an area basis, therefore there are delays in the settlement of claims. Farmers want claim assessments to be made on an individual basis rather than an area basis.A leading private general insurance company has launched an index-based rainfall insurance with the clients of the local area bank in Andhra Pradesh. Under this arrangement an index is created, based on an analysis of historical correlation between rainfall and crop (groundnut) yield, by assigning weights to critical time periods. The historical weather data are then mapped onto this index to arrive at a normal threshold index. The actual weather data are superimposed on this to arrive at the actual index level. In the event of a deviation in either direction (excess or deficient) between the normal index and the actual index, compensation is paid out to the insured on the basis of a pre-agreed formula. This is still in the experimental stage. Along these lines, AICI has also introduced an insurance product called Varsa Bima (rainfall insurance) in four states.In addition to agricultural insurance, life and health insurance is also provided to farmers by various insurance providers. Life-insurance schemes are well established, whereas healthinsurance schemes are still evolving.NABARD is participating in the management and equity of major national-level commodity exchanges, in partnership with various other financial institutions. It has contributed Rs 45 million and Rs 125 million to the equity of the National Commodity and Derivative Exchange (NCDEX) and the Multi-Commodity Exchange (MCX), respectively. The role played by these institutions and the present status of commodity future markets in India is described below.Agricultural future markets, being a market-based instrument for managing risks, can contribute to the orderly establishment of a more open and liberalised agricultural sector. Future markets have emerged out of the need to deal with the risks associated with agricultural production, storage, trade and processing. They have also emerged in response to the counter-party default risk associated with forward markets. Commodity future markets, initially concentrated in a small number of developed economies, are now being established in newly liberalising, developing economies such as India, China, Brazil, Poland, Hungary, South Africa and Turkey.Agricultural commodity futures can potentially play a crucial role in the price risk-management process, especially in an economy such as India's. The two main economic roles of agricultural futures markets are hedging price risk, and providing a price-discovery mechanism. At the time of planting or sowing, farmers are not able to foresee the prices that would prevail at the time of harvest. By providing a mechanism for the discovery of prices in the future, futures markets can facilitate production, processing, storage and marketing decisions. It helps farmers, traders, processors and exporters by improving price discovery in their forward planning decisions and facilitates assessment of financial/credit requirements.Agricultural commodity futures exchanges in India are still not developed, compared with other developed countries. It is only after the onset of liberalisation during the 1990s that attitudes towards futures trading have changed, and its potential benefits are now being acknowledged in policy circles. However, there are still a number of impediments to their growth, many of which are on account of regulatory provisions, while others relate to the institutional weaknesses and practices of trade. The major problems afflicting the commodity exchanges are poor infrastructure, lack of online trading facilities, low level of awareness among various stakeholders (including farmers), strong presence of unofficial/illegal trading, high operational costs, unfavourable/stringent trading parameters, single commodity focus, and poor transparency in transactions. As a result of these impediments, membership of commodity exchanges and the volume of futures transactions have remained low.Although India has a long history of trade in commodity derivatives, this sector has remained underdeveloped due to government intervention in many commodity markets to control prices. The Bombay Cotton Trade Association set up the first commodity exchange in India, and formal organised futures trading started in cotton in 1875. A multitude of other exchanges followed, trading in such commodities as raw jute, jute products, pepper, turmeric, potatoes, sugar, food grains and gold. Many of these exchanges were set up in major agricultural centres in north India before the First World War broke out, and were mostly engaged in wheat futures until it was prohibited. During, and in the aftermath of, the Second World War, futures trading in most agrocommodities was banned, purportedly to curb hoarding and inflation.In the process of economic liberalisation, the 1990s witnessed a large number of reform measures in commodities futures markets. Some of the significant milestones are listed below.• In 1993 the Government of India appointed an expert committee on forward markets, which recommended the reintroduction of futures, and also aimed to widen coverage to many more agricultural commodities.• In 1996 the Forward Market Commission, the regulatory body, launched major efforts to reform and strengthen commodity future markets in India.• In 1998 a national workshop on commodity futures markets was jointly organised by the Government of India and the World Bank/UNCTAD. This brought the subject of commodity futures markets to centre stage in policy, as well as in academic, circles.• In 2000 the national agricultural policy envisaged external and domestic market reforms and the dismantling of all controls and regulations in agricultural commodity markets. It also proposed enlargement of coverage of futures markets to reduce the wide fluctuations in commodity prices, and to hedge the risk arising from price fluctuations.• The Government of India has recently decided to permit futures trading in almost all agricultural commodities. Trading in 'options' in commodities, however, continues to be banned.Currently there are 24 commodity exchanges located in various parts of the country, which are recognised for conducting futures trading in various commodities. Of these 24 commodity exchanges, four are multi-commodity exchanges with online trading systems, and the remainder The major part has come from three newly established NMCEs, which account for 81% of the total trade volume. The NCDEX alone accounted for 47% of total turnover. The share of these commodity exchanges is given in Figure 2. The organised futures markets can provide a transparent price-hedging mechanism and can be used to obtain competitive prices. Currently, the prevailing market price of various commodities, primarily agricultural produce, influences farmers' decisions on the next cropping pattern to a large extent. This reliance on prevailing market prices has the following implications for farmers and for the price realised from their crops. After harvesting, farmers carry their produce to local mandis (spot markets) and sell at the prevailing market/mandi price. A typical farmer has very little information on the trend in prices or information on the prices prevailing in other markets. Furthermore, the farmer has limited holding power with outstanding debt obligations in respect of money borrowed for inputs, such as seeds, fertilisers and other items used as inputs during the sowing period. As a result, a typical farmer has limited bargaining power, having already incurred trouble and expense to transport his produce to the local mandi and ends up using the prevailing market price to sell his produce.In some areas/crops, farmers sell their produce forward to middlemen, who are expected to pick up produce from the farm gate. Usually middlemen pay a lower price in case the market price falls after their contract with the farmer. Thus farmers are not protected against downward movements in prices, even after agreeing to sell forward. Also, they do not get any benefit of upward movements in market prices, as they have limited negotiating power vis-à-vis middlemen, who usually finance farmers' requirements in the interim period before harvesting.The use of prevailing market prices in the determination of the next season's cropping pattern also leads to the 'cobweb effect'. Higher market prices for a crop in any year usually leads to large-scale sowing of that particular crop the next year, and consequently to lower prices due to surplus production. However, lower prices in a commodity dissuade farmers from sowing that commodity, and farmers are not able to take advantage of high prices caused by lower supply.There have been efforts in the past to reduce the cost of credit from the organised sector to farmers through directed lending and administered prices. However, there is a need to provide the farmer with some holding power in the post-production period. Currently, in the absence of reliable price benchmarks or accredited warehousing facilities, and with inadequate physical logistics, banks are not keen to lend against stored commodities.Ideally, expectation of future prices should influence a farmer's decision regarding the next year's cropping pattern. It is here that commodity futures can play an important role in guiding farmers' decisions on planting, and protect them against fraudulent middlemen.Commodity futures exchanges are expected to extend the following benefits for the farmers.• Price dissemination: prices traded on commodity exchanges are expected to evolve as benchmark prices and are expected to benefit all farmers, whether or not they participate in the commodity markets. Once issues relating to the price-discovery process are streamlined, knowledge of spot and future prices available from commodity markets should enable farmers to: (i) decide on their cropping pattern; (ii) negotiate better prices while selling their produce; and (iii) make knowledgeable decisions regarding the timing of their decisions to sell. This can benefit farmers directly, as an individual farmer should be able to take advantage of this price information.• Price hedging: the participation of farmers in commodity exchanges should enable farmers to sell forward and hedge against price risk. A farmer can determine his or her selling price for an expected crop by selling futures on the exchange platforms, and protect him or herself fully from any downside price movement at the time the crops are ripe for harvest. In practice, this may require an aggregator (discussed in detail later) to be in place, through whom farmers can access the commodity markets.• Improved credit accessibility: in the absence of a proper risk-management tool, banks are reluctant to fund primary producers (farmers). If they do, the interest rates are very high. The availability of futures markets and hedging facilities reduces the risk perception, and banks are willing to provide easy credit to farmers.Benefits of futures trading that can accrue to farmers have been discussed above. However, there are a few serious problems relating to the use of futures markets by farmers. These are discussed below.The minimum lot size of transactions in commodity futures market is often too large for an individual farmer. For example, the minimum size of a pepper contract in the India Pepper and Spice Trade Association is 2.5 MT (at US$2.27 per kg, this will entail an exposure of about US$6,000). Similarly, the lot size of trading of cotton contracts in the East India cotton association, until recently, used to be 55 bales, which is equivalent to nearly 10 tonnes of cotton.Often a standard grade is used to design the futures contract and is used as a benchmark grade as a proxy for hedging, assuming the premium/discount for the actual grade supplied by the farmer would remain constant; but this premium or discount may fluctuate, creating 'basis risk', which cannot be hedged by the farmer.Futures transactions need the payment of an upfront margin and, depending on subsequent price behaviour, there are daily 'mark-to-market' margin requirements by the exchanges until the settlement date. Such conditions (which are essential to avoid any incentive to default on the part of futures market participants) may impose a financial burden on the farmer before the contract expires.On the settlement date, if the farmer decides on the use of the physical delivery route to settle the contract, the farmer has to move the produce from his village to the designated warehouse, at his cost. At the current stage there is a lack of accredited warehousing facilities in and around the villages, and transport to a designated warehouse can impose significant costs.Hedging through futures is a complicated financial product, and a farmer may not understand all the implications of transactions on the commodity exchanges. In comparison, hedging through the use of put options (giving producers the right to sell at a predetermined price, on payment of an initial premium) is a simple concept to understand. While, on the one hand, it protects farmers against the risks of downward price movements, on the other hand farmers are able to take benefit from an upward movement in prices, by simply letting the put option lapse. Also, unlike the case with futures, there are no margin calls and the farmers do not have to arrange any interim finance. Therefore options are superior price-hedging instruments when compared with futures. Currently 'option' contracts are not permitted in the Indian commodity markets.The benefits of futures markets have so far remained confined to traders and processors in various commodities, and have not reached average independent producers (farmers), except in cases where farmers have participated in futures trading through federated cooperatives, such as the National Dairy Development Board. There is a need to evolve suitable mechanisms for extending the benefits of futures trading to farmers.The concept of 'aggregators' could be one of the alternatives to bring the benefits of futures trading to farmers. As mentioned, a typical transaction lot in commodity derivative markets is too large for an individual small farmer. In addition, there are infrastructure and connectivity costs, which an individual farmer may not be in a position to absorb. While individual farmers would benefit from the price-discovery process and would be in a better position to negotiate the sale price of their produce, they would need the services of an aggregator to access the commodity markets. In this context, there is an imperative need for an entity for consolidating individual farmers' requirements and for allowing them to hedge, in a consolidated manner, all their needs on the exchange's platform. This aggregator would aggregate the produce of different farmers and provide the required logistical services, including transportation, testing and grading, interaction with warehouse, and finally, commodity exchanges. We can cons ider one or more of the following entities to act as an aggregator for farmers:• agro-extension service provider• producers' cooperative federation• corporate that uses the end product• bank branch• agriclinic/agribusiness centre.The role of user industries (agro-processing industries as aggregators) creates an inherent conflict of interest with the farmers' interest, as regards the price payable. Further, given the existing state of affairs at the cooperative or agro-extension service providers, a significant amount of hand-holding would be required to enable cooperatives to take up the role of aggregators. In this context, banks appear to be very well placed. On the one hand, with their existing branch networks in rural areas, they have substantial reach with farmers and enjoy credibility with the farming community; on the other hand, they are well positioned to take appropriate steps to carry out risk management after writing hedging products for individual farmers. A suitable policy framework needs to be deve loped for this purpose. Perhaps especially designated bank branches in rural areas (on the lines of SSI specialised branches) may have to be set up, and the personnel may be given the necessary training/support to perform the role of aggregator.The prices of agricultural commodities are also influenced by their qualities, grades, seasons of production, quality of storage and warehousing. The commodities are also bulky, involving difficulties in transportation, which affect spatial integration. These issues can be addressed by introducing a nationwide warehouse receipt system. Under this system the warehouses, which meet the prescribed standards of storage, preservation, testing, grading and certification, would be licensed by the central regulatory authority and the warehouse receipts issued by these warehouses would become negotiable.The central regulatory authority would evolve the system of inspection, monitoring and surveillance to ensure the licensed warehouses comply with the prescribed standards, and that warehouse receipts issued by them truly reflect the quality, quantity and the ownership of the goods. Commodity exchanges could create a market place for trading and settlement of warehouse receipts to facilitate hassle-free trading in commodities. This would improve the collateral value of the goods and, consequently, the credit flow to the commodity sector. This would obviate the need for distress sale by the farmers, and even by some of the mills, who do not have waiting capacity due to inadequate liquid assets necessary for meeting the immediate consumption/working capital needs.The government recognises the importance of separate legislation on accreditation of warehousing facilities, and this is in the process of being drafted and placed before the legislature. In the meantime, individual commodity exchanges, primarily the multi-commodity exchanges, have taken the lead and have begun empanelling warehouses in different areas. The NCDEX has taken a further lead in setting up a separate entity, which is expected to accredit warehouses and monitor their working (Annual Report, 2004-05). A few exchanges have begun accepting warehousing receipts for settlement and margin requirements. Independent assayers are attached to the approved warehouses, to ensure the seller is delivering the commodity as per the quality mentioned in the contract.It is important that the proposed legislation on warehousing receipts should ensure these receipts are secure, freely transferable collateral, and rights and obligations of various parties to warehouse receipts are well defined. The prospective recipient of a warehouse receipt should be able to determine the existence of prior claims and, once he receives it, he should be first in line to receive the stored goods. A reliable warehouse receipts system would also need reliable warehousing certification, guaranteeing basic physical and financial standards.Working group on warehouse receipts and commodity futures NABARD was associated as a member of the working group of RBI on warehouse receipts and commodity futures during 2004-05. The working group was entrusted with the task of evolving broad guidelines, criteria, limits, risk-management systems and also a legal framework to facilitate participation of banks in the commodity (derivative) market. The group was also asked to suggest enabling measures, including necessary statutory amendments to impart negotiable status to warehouse receipts, to encourage the flow of institutional finance to farmers.The working group has submitted its report. The report examines the existing situation, furnishes relevant international experience, and suggests a possible course of action on various issues. The group has recommended that banks may be permitted to offer futures-based products to farmers to enable them to hedge their price risk. To enable banks to offer such products, the group has recommended that banks may be permitted to have proprietary positions in agricultural commodities within certain prudential limits.India differs from most other countries in the world, in having a substantial agriculture sector.There is clearly a great opportunity for India to vastly increase value addition in agriculture through a more liberalised policy regime. Commodities futures have a very important role to play in discovering prices and providing market-based instruments for risk management. They help farmers by ensuring price dissemination, providing a platform for hedging and facilitating better access to credit. There is immense potential for development of commodity futures markets, as India is one of the leading producers of many agricultural and horticultural crops. However, there are several impediments that hinder the development of agricultural futures markets. These are poor liquidity, low number of active trading members, poor infrastructure, existence of illegal markets, and lack of awareness about their functioning among the stakeholders. These impediments pertain mainly to regional commodity exchanges. So far, the benefits of futures trading have remained confined to traders. There is a need to ensure that farmers also receive the benefits of commodity futures trading. For this to happen, the appointment of some intermediaries to act as 'aggregators' will have to be explored. For the development of commodity futures trading, it is important that the spot markets are free and transparent, there is participation by banks and financial institutions to improve liquidity of these markets, and illegal markets are effectively controlled.Legal framework: physical delivery of commodities in terms of futures contracts listed on the Johannesburg Stock ExchangeThe Agricultural Markets Division (AMD) of the erstwhile South African Futures Exchange (SAFEX) was founded in 1995 after deregulation of the agricultural markets, to allow the parties directly involved with commodities to reduce the risk of price volatility in producing, merchandising or processing the commodities. Previously, the Marketing Act (59, of 1968) required all producers to sell their commodities for a fixed price to one board in the interests of market stabilisation. The producers were not at risk of non-payment by the board, and the farmers indirectly controlled and owned the silos. As a result of the deregulation process, all marketing legislation was repealed by the Marketing of Agricultural Products Act (47, of 1996) and single-channel marketing was abolished. The cooperatives became limited companies and the producers consequently did not have the same level of control over the cooperatives.SAFEX was acquired by the Johannesburg Stock Exchange (JSE) Securities Exchange South Africa during July 2000. The AMD is now the Agricultural Products Division (APD) of the JSE. Agricultural commodities in South Africa are currently traded on the cash (spot) market as well as on the APD. The commodities currently traded on the APD are white and yellow maize, wheat, soybeans and sunflower seeds. This paper deals specifically with the delivery procedures and potential problems for buyers and sellers of commodities on the APD.The APD is a part of the derivatives division of the JSE, and is a financial market as defined in section 1 of the Fina ncial Markets Control Act (FMCA; 55 of 1989). The APD is a market for the business of buying and selling financial instruments taking place on an exchange. The financial instruments traded on the APD are futures and option contracts (defined in section 1 of the FMCA).Section 1 of the FMCA defines the rules in relation to the financial market as the rules of that exchange referred to in section 17 of the FMCA. The existence of rules (as contemplated in section 17) of a financial market is a precondition for the issuing or renewal of a financial market licence (sections 9 and 17 of the FMCA). Different categories of membership are established in terms of the JSE derivative rules (see below). The derivative rules make provision for clearing members and non-clearing members in the derivatives division. The definitions of the various classes of membership appear in section 2.10 of the derivative rules. A non-clearing member is any member who is not a clearing member but is either a broking or non-broking member of the JSE. A clearing member is defined in section 2.10 of the rules as a member who has entered into a clearing house agreement with the clearing house (see below).The derivative rules of the JSE are promulgated in terms of the FMCA. Section 17(6) of the FMCA stipulates that the provisions of any rule made under this section shall be binding on all members and representatives of members and on every person utilising the services of a member or who concludes a transaction with a member in the course of that member's business. Section 1.50.2.3 mirrors the FMCA and postulates that the derivative rules shall be binding on any person utilising the services of a derivatives member, or who concludes a transaction with a derivatives member in the course of that member's business.Section 1.60 of the derivative rules stipulates that every transaction in listed products entered into by a member and another member, and a member of the public, is entered into subject to the provisions of the FMCA, the derivative rules, the JSE directives and the decisions of the board in force at the time the deal was struck.Section 2 of the derivative rules contains interpretation and definitions and I will briefly quote some of the definitions applicable to this paper:• 'agricultural commodity' means an agricultural product as defined in the Marketing of Agricultural Products Act 47 of 1996• 'agricultural commodity contract' means an agricultural commodity futures contract or an agricultural commodity option contract• 'agricultural commodity futures contract' means a futures contract the underlying instrument of which is an agricultural commodity• 'agricultural commodity option contract' means an option contract, the underlying instrument of which is an agricultural commodity futures contract• 'agricultural products market' means the market operated by the JSE in terms of the Act (FMCA) to facilitate trading in agricultural commodity contracts• 'clear' means the process in terms of which the clearing house becomes the buyer from the seller and the seller to the buyer in every trade whereupon the clearing member (derivatives) guarantees to the clearing house all obligations arising out of any position resulting from such trade in terms of these derivatives rules• 'clearing house' means SAFEX clearing company (Pty) Ltd or any other body corporate or unincorporated association or department of the JSE designated by the JSE as such and recognised by the registrar of financial markets as a clearing house in terms of the FMCA• 'clearing house agreement' means a written agreement entered into between a clearing member (derivatives) and the clearing house, in terms of which the clearing member (derivatives) guarantees to the clearing house all of the obligations arising out of his proprietary positions, the positions of his clients, the proprietary position of the non-clearing members (derivatives) with which he has entered into a clearing agreement, and the positions of the clients of such non-clearing members• 'contract specification' means the standard terms and formal requirements of a futures or option contract contemplated in the definition of standardised contract in section 1 of the FMCA, as determined from time to time by the JSE.Section 7.170 of the derivative rules deals with rules of trading that are particular to the physical delivery of agricultural commodity contracts and will be dealt with in more detail below.The contract unit, in terms of the standard futures contracts, is defined in clause 2 of the contract specifications. For the purposes of this document, I will mostly refer to the maize contracts and silo receipts, as they constitute the vast majority of trades on the APD. The principles applicable to the other commodities are, however, exactly the same, due to the fact that the contract specifications, rules and terms of the silo receipts are identical in respect of each commodity.The contract unit of a maize (white or yellow) futures contract is 100 metric tons, a wheat and sunflower futures contract 50 tons, and a soya futures contract 25 tons, and silo receipts are similarly issued in denominations of 100, 50 or 25 tons, as the case may be.The procedure for delivery of the commodities on the APD is defined in clause 1.7 and appendix F to the contract specifications, and delivery is effected by the submission of a delivery notice on or before the last trading day (expiry day) followed by delivery of the original silo receipt on the APD on the following day (delivery day).There have been approximately 90,000 SAFEX silo receipts issued since the inception of the AMD, and the receipts have been used for trading in commodities on the APD as well as the spot market. The delivery process is discussed below.For the purposes of this paper, it is assumed that the farmer owns the land on which his or her crops are planted, and that he or she is the owner of the maize on the basis of plantatio et satio (Van der Merwe, 1989) and that when the farmer reaps the crop he or she remains owner of the harvested commodity. Producers of maize (or any other commodity) will deliver their produce to a silo as it is harvested on their lands. They will, for example, deliver 5 tons on one day, 10 tons on the next, and so forth. After each delivery, the silo owner will issue a receipt that states the quantity and quality held on behalf of the producer. This receipt is used as proof of delivery by the producer, and confirms the receipt of the commodity by the silo owner. The producer can, at any time, sell his or her produce by delivery of those receipts to prospective buyers, and the receipts will enable the buyer to obtain the goods purchased.If two or more producers deliver maize to the same silo, the maize is intermingled in such a manner that it is no longer possible to distinguish or physically separate that depositor's maize from any other maize of the same quality held at the silo. The commodities have been the subject of commixtio. This has to be distinguished from the concept of 'mingling', which signifies confusio and occurs in the case of liquids and metal alloys (Van der Merwe, 1989). When solids, for example grain, belonging to two or more persons are mingled in such a manner that identification of the grain that originally belonged to them is impossible, the mixture belongs to them jointly, provided mixing took place by consent. 21 It is important to note that the wording on the SAFEX silo receipt expressly records that the silo owner is not the owner of the product and that his sole right thereto is a lien for his storage and handling charges.Less than 50% of all commodities delivered to the silo industry in South Africa is covered by SAFEX silo receipts and the remainder is covered by the silo owner's own form of receipt. The silo owners are almost invariably the owners, in their own right, of certain of the commodities stored in their silos.The farmer will keep delivering grain at the silo, and when he has delivered 100 tons of white or yellow maize he may request the silo owner to issue a SAFEX silo receipt in his name. The SAFEX silo receipts are sequentially numbered and forwarded to each silo owner by courier.The silo owner issues an original silo receipt to the owner of the grain in question. The silo owner keeps a copy for his records and another copy is forwarded to the APD by courier. 22 The SAFEX silo receipt has unique security features, consisting of a hologram and distinct watermark. The receipts are individually numbered, and the APD keeps a record of receipts issued. These security features, coupled with the retention of the two copies by the silo owner and the APD, make it virtually impossible to forge a receipt or to obtain grain by producing a forged silo receipt. There has not been any forgery of a SAFEX silo receipt to date. A SAFEX silo receipt is a receipt that is issued by an approved silo owner in the form as set out in Appendix B to the contract specifications and on the terms set out in the various futures contracts.One of the characteristics of a thing (therefore a characteristic of moveable goods such as grain) is individuality. 23 The grain deposited in a silo by depositors lies undivided in the containers, and many silo receipts are issued to the depositors. The grain deposited by each depositor loses its characteristic of individuality and therefore ceases to exist as a separate thing. All depositors of the grain and subsequent holders of the receipts agree to this practice expressly or implicitly by usage, as all market participants are aware that their grain will not be stored in a separate silo or container, but will be stored with grain belonging to various other parties. The grain deposited has therefore been mingled by consent, and the mixture belongs to all the owners jointly. 24 The contract specifications and directives of the JSE, however, state that the depositor of the maize, to whom a SAFEX silo receipt is issued, remains the owner of the maize covered by the receipt. This position is contrary to the common law principles, stated previously, that would suggest that the holder of a SAFEX silo receipt is a co-owner of the maize in the silo together with the silo owner (if the silo owner has its own grain stored in the silo) and all other depositors of maize in that silo. The wording of the receipt clearly states that the silo owner is not the owner of the product 'solely, jointly or in common with others'. This proposition has however, not been tested by our courts, and it is doubtful whether the wording of the receipt (terms of a contract) will amount to an amendment of the common law. In my opinion, the terms of the contract specifications and silo receipt amount to nothing more than a contractual undertaking between the parties not to exercise their right of co-ownership in terms of the law of property. The terms of the agreement between the parties do not amount to an amendment of the principles of substantive law applicable to the rights of the parties.The holder of a silo receipt is therefore the joint owner of the mixture of grain stored in the silo.If, as a result of the continuous circulation of grain in a silo, the grain covered by the silo receipt is no longer in the container where it was deposited, and this silo receipt is transferred to the seller, no transfer of ownership can take place, as one person cannot be owner of one part of a thing and another owner of another part of the same thing. 25 The seller of the grain cannot be in possession of a part of a moveable thing, and consequently cannot be in possession or transfer ownership of the grain stored in a silo, as the grain sold does not comply with the characteristics of a thing. 26 The holder of the receipt can, at most, have a personal right for delivery of a similar quality and quantity of grain covered by the receipt. 27 It is interesting to note that, in English law, the sale of goods Act of 1979 28 stipulates that where the buyer of goods forming part of a bulk has paid the purchase price, the property in an undivided share in the bulk is transferred to the buyer and the buyer becomes an owner in common of the bulk. If the undivided shares in the bulk exceed the whole of the bulk, the undivided share of each buyer shall be reduced proportionally. 29 South Africa will have to promulgate similar legislation to amend the common law principles discussed in this paragraph.The SAFEX silo receipt contemplates that a person, the depositor, deposited a certain quantity and quality of maize with a silo owner. The silo owner will issue a SAFEX silo receipt to the depositor. This silo receipt records certain contractual obligations between the silo owner and the holder of the receipt and the transferor and transferee. It is clear from the wording of the receipt that it is within the contemplation of the depositor and the silo owner that the depositor may transfer his rights and obligations, specified in the receipt, to a transferee.There is also an entirely different contract contemplated by the SAFEX silo receipt, namely a futures contract relating to the sale of maize at a future date. This contract makes provision for a form of constructive delivery of the grain by the delivery of SAFEX silo receipts for the commodity specified in the contract. It has to be noted, however, that not all SAFEX receipts are utilised to deliver commodities in terms of a JSE listed futures contract, and that some of these receipts are merely used to sell commodities on the spot market. The parties appearing on the face of the receipt (except the short and long position holder in terms of a JSE futures contract) will not be bound by the rules or terms of the contract specifications of the JSE, as they do not fall within the ambit of section 17(6) of the FMCA or section 1.50.2.3 of the derivative rules.The terms appearing on the face of the silo receipt will be part of the terms of the agreement between the buyer and seller of the maize in question, even if the receipt is not utilised to fulfil a JSE futures contract.The producer can also ask the silo owner to furnish him with the silo owner's own receipt, but this receipt may not be utilised for delivery in terms of a futures contract listed on the APD. Financial institutions are loath to accept these receipts as security for financing loans to producers. The silo owner's own receipt is, however, proof of delivery of the quantity and quality of grain delivered by the producer.Who may issue a SAFEX silo receipt?The SAFEX silo receipt can only be issued by SAFEX-approved silo owners. There are currently 200 delivery points (silos) in Sout h Africa. This is quite unique in terms of world standards, as the Chicago Board of Trade, for example, has only three delivery points. The silo receipt may be freely transferred, and quite often will have the names of many prior holders endorsed on the receipt.Physical delivery of a commodity on the APDAll products on the APD are physically settled futures contracts. In terms of this contract, a person agrees to deliver the underlying instrument to, or receive it from, another person at an agreed price on a future date.The physical delivery of the underlying product is effected by delivery of the silo receipt on SAFEX. Valid and acceptable delivery will only be accomplished if the delivery of the SAFEX silo receipt enables the purchaser to take possession of the underlying commodity. The seller of the grain on SAFEX is referred to as the short position holder and the buyer is referred to as the long position holder. The delivery procedure is set out in clause 1.7 of the contract specifications and the detailed delivery procedure is described in Appendix F to the contract specifications. The method of physical delivery is described in clause 1.7 (a) of the contract specifications :'A short position holder who wishes to make delivery in satisfaction of a futures contract shall provide the JSE through a clearing member (derivatives) with a delivery notice. The delivery notice shall be assigned by the JSE to a long position holder as described in paragraph (f) below.The JSE shall notify the clearing member (derivatives) representing the long position holder of the delivery which has been assigned, and shall furnish the clearing member (derivatives) representing the short position holder with the name of the clearing member (derivatives) obligated to accept their delivery.Delivery by a short position holder to an assigned long position holder shall take place through delivery to the JSE of SAFEX silo receipts on a delivery day, subject to compliance with all terms of this contract specification.'The holder of every short position in an agricultural futures contract on expiry has an obligation to make delivery of the underlying agricultural commodity at the expiry price. The ho lder of every long position in an agricultural futures contract on expiry has an obligation to take delivery of the underlying agricultural commodity at the expiry price. The clearing house, by substitution in terms of the definition of 'clear', becomes buyer to every seller (short position holder) and seller to every buyer (long position holder).The short position holder effects delivery of the underlying agricultural product by delivery of a silo receipt to the APD and the silo receipt is randomly allocated to a long position holder by a computer generated random allocation process.It is clear from the rules, as well as the contract specifications, that the short position holder has the responsibility to deliver the underlying commodity reflected in the silo receipt. This delivery is effected by delivery of the silo receipt to the APD. If, however, the long position holder is unable to obtain the underlying product through presentation of the silo receipt, the short position holder has not 'delivered/settled' as defined in the rules, and the short position holder will then be in default. This would occur if, for example, there is no grain in the silo, or a court order prevents the holder from obtaining the grain reflected in the receipt.Risk management structure of the JSEIn terms of the risk management structure of the JSE and the rules pertaining to default, the member will stand in for its clients' obligations, and the clearing member will guarantee its members' obligations. In the event of a receipt delivered on the JSE that does not allow the long position holder to get delivery of the underlying product covered by the receipt, the APD will request the short position holder to furnish it with a replacement receipt or to cash settle the transaction (if the long position holder consents to a cash settlement). The long position holder is entitled to demand delivery of the grain in question, and, if they refuse to accept a cash settlement, the short position holder has to furnish replacement receipts.High Court applications at the end of 2000The SAFEX silo receipts were used to effect delivery of the underlying product for 5 years without any incidents. During the end of 2000, however, the High Court granted interdicts that prohibited the delivery of the grain in respect of two SAFEX silo receipts. The applications were heard prior to the acquisition of SAFEX by the JSE and the rules and contract specifications were, apart from certain amendments alluded to in this paper, identical. I will therefore use the terminology of the JSE and SAFEX interchangeably. These applications are the only instances where a SAFEX silo receipt was the subject matter of the courts' scrutiny. The facts and judgements are discussed briefly in the following paragraphs.This matter was heard by Hancke J. on 6 December 2000. The Court granted a temporary interdict in the form of a rule nisi calling on certain parties to give reasons why they should not be forbidden from delivering certain grain, which was the subject of certain silo receipts. An order was also issued forbidding them to deal with the silo receipts. The receipts in question were both SAFEX receipts and the silo owner's own receipts.Some 30 parties (includ ing Glencore -a client of one of the APD's members) intervened in the action as respondents. Zandveldt's case was that it was the owner of the grain covered by the relevant silo receipts. Zandveldt sold the grain covered by the receipts to one P. G. du Pl essis, and contended that they withheld ownership until payment was made by du Plessis (the purchase price was substantially higher than the market price). du Plessis took delivery of the grain by receiving the receipts and sold it to another party (at a price substantially lower than the market price). The grain covered by the SAFEX silo receipts was eventually sold to Glencore, a client of one of APD's members, who delivered the receipts in satisfaction of a futures contract. du Plessis received payment from his counterparty but failed to pay the purchase price to Zandveldt.Glencore contended that they were the true owner of the grain in question, as the silo receipts were negotiable instruments. They alleged that they obtained the receipt in good faith, for value and without knowledge of their predecessor's defective title. Alternatively, they contended that Zandveldt should be stopped from asserting their ownership, as they created the impression that they passed ownership of the grain in question to P. G. du Plessis.The High Court discharged the temporary order on the return day on procedural grounds, as Zandveldt did not prove a clear right on the grain in their founding affidavit. The order was only discharged in respect of the grain covered by the SAFEX silo receipts and the matter was referred to trial for adjudication on the grain covered by the other receipts. The Court did not make a finding as to the legal nature of a silo receipt (SAFEX or otherwise) or the validity of Glencore's contentions mentioned in the preceding paragraph.This matter was heard by Hancke J on 6 December 2000. F. S. Graan filed an application against certain parties (including P. G. du Plessis) and obtained a temporary interdict in the form of a rule nisi that called on the respondents to give reasons why they should not be forbidden from delivering or dealing with certain grain, which was the subject of SAFEX and other silo receipts. This was a separate application to the Zandveldt matter but it was heard on the same days. Louna Intex (Pty) Ltd intervened, and applied for an order declaring that it was the owner of grain covered by the receipts.F. S. Graan sold grain to P. G. du Plessis (at a price significantly higher than the market price) and P. G. du Plessis, in turn, sold the grain covered by the receipts (at a price lower than the market price) to other parties. The grain covered by the SAFEX receipts was eventually sold to Glencore, a client of one of the APD's members, who delivered the silo receipts in fulfilment of their obligations in terms of a futures contract. F. S. Graan asserted that its sale to du Plessis was a cash transaction, and that, due to the fact that he failed to pay the purchase price, owne rship of the grain in question remained vested in them.Glencore raised the same defences to F. S. Graan's claims of ownership that they raised in the Zandveldt matter, and the court also did not make a decision as to the validity thereof.On the return day of the rule nisi, the court discharged the temporary order in respect of the grain covered by the SAFEX silo receipts, on the grounds that F. S. Graan did not show a clear right in their founding affidavit. The court further dismissed Louna's claim of ownership. The dispute regarding the remainder of the grain covered by the other receipts was referred to trial. Due to the fact that the temporary order was not confirmed on procedural grounds, the court did not make any decision as to the legal nature of silo receipts.Glencore sold the grain covered by the silo receipts on the APD, and the receipts were randomly assigned by the JSE to a long position holder. Glencore was paid for the grain sold, but the long position holder could not obtain delivery of the grain, as temporary interdicts were granted that prevented them from obtaining delivery of the grain. The clearing house, by substitution, became a party to the transaction, and the long position holder insisted that the clearing house deliver a similar amount of grain covered by the interdicted silo receipts or, alternatively, cash settle the transaction.It is clear from Section 12.10.1 of the derivative rules that Glencore was automatically in default, from the moment that they failed to fulfil their obligations in terms of a trade or position as defined in section 12.10.1 of the rules. Due to the fact that 'default' is a factual state of affairs, the short position holder was automatically in default, when the long position holder was prevented from obtaining physical delivery of the maize. Glencore had, therefore, not 'delivered/settled' and the mere delivery of silo receipts was not a fulfilment of the short position holder's obligations as defined in the rules and contract specifications.Glencore and its broking member, Peregrine Equities, initially undertook to furnish SAFEX with replacement receipts that would enable the long position holder to obtain physical delivery of the commodity purchased from SAFEX. They reneged on their undertaking, and SAFEX had to cash settle with the long position holder as SAFEX had, by substitution, become seller to the long position holder.The broking member refused to initiate the default procedure against their client, and SAFEX was forced to cash settle with the long position holder. If the default procedure had been properly followed, the member would have had to stand in for its client's obligations, and deliver replacement receipts to the AMD or cash settle the transaction. The member, however, informed SAFEX management that they would only stand in for their client's obligations, if their client was 'placed in default'. The stance of the member was, in the opinion of the JSE, incorrect, as default is a factual state of affairs, Glencore was in default, from the moment when it could not give delivery of the underlying commodity. The executive committee of SAFEX then placed the client in default, and the member had to stand in for its client's obligations.The delay in initiating the default procedure described in the previous paragraphs will not be repeated, as the new rules state that a client shall default if the JSE, in its sole discretion, considers that the client has defaulted (Section 12.10A.2 of the derivative rules).The stance of the JSE member and its client that the client had fulfilled its obligations by the mere delivery of receipts was particularly worrying, as the clearing house guarantees each transaction by standing in for the long and short position holder's obligations. This stance is also contrary to the rules of the JSE. The member's client also maintained that the receipts were negotiable instruments. This would not have been problematic if the member had immediately initiated the default procedure and stood in for its defaulting client's obligations, as replacement receipts would have been delivered, and the member would have had to resolve the matter with its client. This problem is now sufficiently addressed by the contents of section 12.10A.2 as: the JSE may initiate the default procedure if a client is in default and the member failed to follow the default procedure.In both the High Court applications, the producers allowed a receipt to be issued in P. G. du Plessis's name without obtaining payment for the grain covered by it. When they realised that they had taken a risky business decision, and that du Plessis had no intention to pay the purchase price, and that he was the proverbial 'man of straw', the only remaining alternative was to claim that it was a cash transaction, and that they reserved ownership of the commodity sold to du Plessis. The facts presented to the court in the application for an urgent interdict were sufficient to convince the court to grant interim relief pending the adjudication of the dispute. The previous wording on the SAFEX silo receipt stated that the transferor certifies that he is the owner of the product covered by the receipt and, other than the silo owner's lien shown on the face of the receipt, there are no liens or other encumbrances on the product. The wording of the receipt did not preclude a prior holder of the receipt from reserving ownership of the grain in question. The applicants asserted that it was a cash transaction, and that they reserved ownership of the grain covered by the receipts, and they therefore succeeded in obtaining interim relief.In the two applications, the grain covered by the SAFEX receipts was released at the conclusion of the legal proceedings, but the delay caused by the temporary interdicts, coupled with the member's reluctance to initiate the default proceedings immediately, forced the clearing house to cash settle the long position holder. The clearing house was reimbursed (including interest) by the member, after its client was placed in default. It was clear that the litigation was not instituted, because of the wording on or legal status of the SAFEX silo receipts. The sole cause of the litigation was the producer's decision to issue the receipt in the name of a buyer without obtaining payment. The JSE, nonetheless, then embarked on a process to minimise the risk of these events being repeated. The JSE considered the legal status and principles applicable to warehouse (silo) receipts in other countries, and adopted certain measures that were best suited for the South African market.The legal principles relating to the negotiability of silo receipts were of particular importance, as this would be one of the ways to protect a bona fide purchaser against eviction by a previous holder of the receipt. If the SAFEX silo receipts were indeed negotiable instruments, Glencore (and the JSE) would have obtained good title to the receipts notwithstanding their predecessor, P. G. du Plessis's defective title.The definition of a negotiable instrumentIn South African law a document is only negotiable if it is so defined by statute or by trade usage and custom. 31 The bills of exchange Act 32 regulates bills, cheques and notes. It is obvious that a SAFEX silo receipt does not fall within the ambit of the definitions of a bill, cheque or note as postulated in this Act, 33 as it is neither an unconditional order in writing to pay a sum certain in money, a bill drawn on a banker payable on demand or a promissory note.Negotiable instruments are traditionally described as instruments which, in the same way as cash, are transferable by delivery or by delivery and endorsement, and on which the holder is entitled to sue in his own name. 34 Negotiable instruments have the following characteristics: the rights embodied in the instrument may be transferred by delivery (and endorsement if necessary), the bona fide transferee for value acquires a good and complete title to the instrument, and the rights embodied therein, and the holder can sue on the instrument in his own name. 35 The traditional test, to determine whether a document is a negotiable instrument, is, therefore, whether the instrument, by custom of trade, is transferable like cash by delivery, and capable of being sued upon by the person holding it pro tempore. 36 The following is one of the definitions of a negotiable instrument that has been formulated:'A negotiable instrument is a document of title embodying rights to the payment of money or a security for money, which, by custom or legislation, is a) transferable by delivery (or by endorsement and delivery) in such a way that the holder pro tempore may sue on in his own name and in his own right, and b) a bona fide transferee for value may acquire a good and complete title to the document and the rights embodied therein, notwithstanding that his predecessor had a defective title or no title at all.' 37 Good faith must exist at the time when value is given, as well as at the time when the instrument is transferred. 38 The title of a bona fide holder for va lue of a negotiable instrument is an original one and is an exception to the nemo plus iuris rule. In terms of this rule, a party cannot transfer better title than he himself has. A holder for value of a negotiable instrument does not obtain title subject to any defects in title of his predecessor, but his title is original and free of any defences that may have been invoked against his predecessor. 39 In this sense, 'negotiate' means to transfer in such a manner that a purchaser in good faith will acquire mo re rights to the instrument than his predecessor had, the so called 'transfer free of equities'. If the silo receipts were indeed negotiable instruments, Zandveldt and F. S. Graan would not have been able to exercise their rights of ownership against P. G. du Plessis's successors in title, if the successors could show that they obtained the receipts in good faith, for value, and without knowledge of du Plessis's defects in title.The repeal of the Agricultural Warehouse Act 41 had the effect that warehouse receipts were not negotiable by an act of parliament, and the question arose whether SAFEX silo receipts became negotiable by trade usage and custom.A custom will be found to be established if it complies with the following requirements: 42• it must have existed for a long time• it must have been uniformly observed by the community concerned• it must be reasonable• it must be certain.In the matter of Golden Cape Fruits (Pty) Ltd v. Fotoplate (Pty) Ltd, 43 Corbett J., stated that a person wo uld be bound by trade usage, if it is shown to be universally and uniformly observed within the particular trade concerned, long established, notorious, reasonable and certain, and does not conflict with the positive law or with the clear provisions of the contract.In order to prove that an instrument is a negotiable instrument by custom, it will be necessary to prove that an instrument possesses the essential characteristics of negotiability. Cowen 44 avers that there are only two essential characteristics of negotiability, it being the transfer of title by delivery, or delivery and endorsement, and the fact that a transferee of an instrument taken in good faith and for value acquires an original title free of underlying defences. The path to a ruling that silo receipts have become negotiable by custom is arduous and fraught with difficulty.The facts of the two supreme court applications show that it will be nearly impossible to prove that the custom has been uniformly observed: Zandveldt and F. S. Graan will claim that it is not a negotiable instrument and that they reserved ownership of the grain sold, and Glencore will claim that it is a negotiable instrument, that they obtained it in good faith, for value and without knowledge of any defects of their predecessor's title. The silo receipt is further not worded in the usual manner of a negotiable instrument.The recognition of new categories of negotiable instruments by trade usage has not been argued before our courts. Cowen 45 postulated the following guidelines to be followed in such a query: firstly, to prove that a mercantile custom has been established; secondly to establish that the essential characteristics of negotiability are present; and thirdly to show some compliance with the requirements of form of the bills of exchange Act. It is clear from the above that silo receipts are not recognised as negotiable instruments in any statute in South African law at present. A court will probably find that a silo receipt is not a negotiable instrument by uniform custom or trade usage for the following reasons.• The SAFEX silo receipt is not a negotiable instrument because it does not comply with the following requirements of a negotiable instrument: transfer of title by mere delivery, or delivery and endorsement; if the document is taken in good faith and for value, it is transferred free of underlying contractual defences.• It would be very difficult to produce clear and convincing evidence to prove the trade usage and custom that made the receipt a negotiable instrument. It would, in fact, be impossible to prove that the custom has been consistently accepted by all parties.• The maize market in general does not accept silo receipts as negotiable instruments.• No precedent could be found in terms whereof an instrument containing anything other than money, or a security in respect of money, has been recognised as a negotiable instrument.• The SAFEX silo receipt contains a number of conditions. Normally, negotiable instruments do not contain conditions.• The Court would in all probability find that a silo receipt is a transferable document, but not a negotiable instrument.It is therefore clear from the definition and requirements of negotiable instruments of South African law (and English law, upon which our law of negotiable instruments is based) that SAFEX silo receipts are not negotiable instruments, as the receipts do not comply with the requirements of a negotiable instrument, being the transfer of title by mere delivery or delivery and endorsement of the document taken in good faith for value, free of contractual defences. 46 There is, however, no authority in our law on the subject of warehouse receipts, whether negotiable or not.The Agricultural Warehouse Act 42 of 1930 (South Africa)The purpose of this Act was to provide for the establishment and licensing of warehouses for the storage of agricultural products, the issue of negotiable warehouse receipts as representing ownership or possession of agricultural products and for matters incidental thereto. In this Act, significant modifications in regard to the law of property, contract and negotiable instruments were introduced in relation to the storage of agricultural products in warehouses. The provisions of the Act reveal many similarities to the provisions of the Uniform Commercial Code of the United States of America. The Act as a whole was repealed in 1975, and its repeal was related to the fact that no producer of maize was entitled to sell maize, other than the maize board. It was therefore unnecessary to regulate the trading of maize at all. There has been no legislation promulgated after the demise of the maize board and there is at present no statutory provision relating to the legal status of silo receipts in general. The Act contained specific provisions regarding the negotiability of warehouse receipts, and receipts that complied with the requirements of the Act were indeed negotiable instruments. The proposed new legislation, in the form of the Grain Warehouse Act, was based, inter alia, on this Act, and it can still be used as a starting point for legislation covering silo receipts.From a review of American, English and South African law that legislation is necessary to afford the status of a negotiable instrument to silo receipts and that the SAFEX silo receipts were not negotiable instruments. It is of vital importance to protect bona fide purchasers of grain covered by silo receipts in certain circumstances (as in the English sale of goods Act). The problems faced by the APD were, however, immediate and pressing and could not wait for legislation to be passed to address these issues. The parties involved in the grain industry have for the past few years discussed a proposed South African grain warehouse Act, and a draft has been prepared and discussed over the last five years. There has, however, been virtually no progress in the promulgation of this Act, and it is now virtually accepted that the chances of such an Act being passed are very slim indeed. Representatives of the JSE attended meetings where the proposed legislation was discussed; and the consensus of the interested parties present at the last meeting was that the proposed Act will probably never be passed by Parliament.The JSE therefore addressed the issues by amend ing the wording of the silo receipts, contract specifications and rules. The JSE attempted to find solutions within the common law to afford protection for bona fide purchasers (such as the JSE) of commodities covered by SAFEX silo receipts. These amendments do not, and could not, solve all possible problems, but were a definite improvement, and were designed to foster discipline in the market.In essence, the physical settlement of futures contracts on the APD amounts to the buying and selling of moveable goods. South Africa has an abstract system of transfer of property. 47 The abstract system differentiates between the judicial act that compels a person to transfer ownership of the thing and the act of transfer itself. 48 The abstract system therefore differentiates between the so called 'verbintenisskeppende ooreenkoms' and 'saaklike ooreenkoms'.A seller who has sold goods is obliged to deliver possession of the goods to the buyer. The delivery required by law is the delivery of undisturbed possession. The seller also gives the buyer a guarantee against eviction; it is not necessary that the seller should be able to transfer ownership to the buyer, as the seller does not warrant the transfer of ownership, but merely warrants against eviction. 49 Possession has two elements: the element of detention, being physically able to deal with the goods to the exclusion of others, and the mental element, being the intention of dealing with the goods as his own. 50Actual delivery of the goods is not necessary; there can instead be constructive or symbolic delivery, where the purchaser is supplied with a symbol which will enable him to take the property into his physical possession 51 , for example, keys to a motor vehicle, and bills of lading.The mere transfer of a symbol is not sufficient, the symbol must enable the transferee to exercise control over the goods. 52 The requirements of symbolic delivery are as follows 53 :• the parties must have the intention to transfer possession by symbolic delivery • the keys must be delivered with the intention that the contents of the warehouse are thereby transferred• the keys must supply the transferee with exclusive control over the contents of the warehouse.Due to the fact that a silo receipt is no t a negotiable instrument, the nemo plus iuris rule applies and the seller cannot transfer better title to a purchaser than he himself in fact had. It further means that a bona fide purchaser for value (such as the JSE and other purchasers in good faith) will have to rely on the doctrine of estoppel to defeat any claim by another party claiming that it is entitled to the receipts or the products reflected thereon.Estoppel is a remedy based on the principles of equity. If a person created the impression tha t he is the true owner of a thing, or that he is entitled to dispose of it, and a third party, relying on that impression, acted in good faith to his detriment, the owner is, in terms of the doctrine of estoppel, precluded from exercising his rights of ownership 54 . This statement is subject to the qualification that, in certain cases, a representor will only be estopped to assert his rights of ownership if there was fault on his part. 55 The short position holder (seller) on the APD has to give possession of the maize to the long position holder (purchaser) and must also entrust the indications of the ownership or rights of disposal of the commodity in question. 56 In the case of commodities, it is the delivery of a SAFEX silo receipt. An owner might also be estopped from asserting his rights to the commodity, where, even though he has not been negligent, he is precluded from asserting his rights by compelling considerations of fairness. 57 The wording of the previous silo receipts did not preclude a seller from alleging that he reserved ownership of the grain sold, and it would therefore have been necessary to prove that he, by his acts or omissions, created the impression that he intended to transfer ownership. It was therefore decided to amend the wording on the silo receipt, to strengthen a defence based on estoppel, and to clarify the status of the silo receipt. The following measures were introduced:Silo receipt utilised as symbolic deliveryThe contract specifications were amended to state that the silo receipts were transferable documents utilised as symbolic delivery of the commodity covered by it. The silo receipt is therefore legal delivery of the underlying product, because it gives the buyer the ability to obtain control of the grain (similar to symbolic delivery of a motor vehicle by delivery of the keys). The silo receipt enables the holder to exercise control over the commodity, and possession of the commodity can be transferred by delivery of the silo receipt, with or without endorsement. The duty of the short position holder is therefore to effect delivery of the underlying product by the delivery of silo receipts that will enable the long position holder to obtain possession of the grain. The holder of a silo receipt cannot contend that it is a negotiable instrument, and that mere delivery of the document on the APD constitutes proper delivery in terms of the rules and contract specifications.Transferor precluded from reserving ownershipThe wording on the face of the silo receipt was amended, and the following clause was inserted after the warranty of ownership contained in the old receipt. The new wording reads as follows:'Should any dispute arise between any persons relating to the transfer of this silo receipt, such persons agree that their claims will be limited to monetary claims, and that no person will be entitled to claim that he has retained ownership or a real right in the product represented by this receipt after transfer of this receipt'.The amended wording will strengthen any defence based on estoppel by bona fide purchasers.The receipt now contains terms of the agreement between the transferor and transferee of the receipt and precludes the transferor from reserving ownership. The transferor therefore agrees to limit his common law remedies to a claim for payment of the purchase price. If a seller delivers the receipt to the purchaser, he warrants and creates the impression that, by the delivery of the silo receipt, he will not reserve ownership to the maize, and that he limits his contractual remedies to a monetary claim. Zandveldt and F. S. Graan would therefore not have been able to assert that they reserved ownership of the grain and their remedies would have been limited to a civil action against du Plessis for payment of the purchase price. The grain in question could be freely traded, even though du Plessis failed to pay the purchase price to his predecessors in title.The amended wording seeks to ensure that, as far as possible, no person who has an interest in the grain referred to in the silo receipt will be entitled to assert his ownership or any real right in the grain after transfer or delivery of the silo receipt. This provision will be binding on any person who is a party to the transfer of the receipt. If, however, grain is stolen from a farmer, deposited in a silo and a SAFEX silo receipt issued to the depositor, the clause will not prevent a farmer from asserting his ownership to the grain, as he was not a party to the transfer of the receipt. Any person who becomes a party to the silo receipt expressly foregoes any right to contend that he has retained ownership or another real right in the grain after he has transferred the silo receipt.The amended wording has been adopted to deal with the precise situation that occurred in the legal proceedings in the Zandveldt and F. S. Graan matters. The wording on the receipt was further intended to foster discipline in the market, by making it clear that any party who sells grain by the delivery of a silo receipt without receiving payment of the purchase price, takes a credit risk, as they are precluded from reserving ownership.The amended wording affords similar protection to a bona fide purchaser as the protection afforded by a negotiable instrument: the purchaser knows that any prior holder of the receipt may not reclaim the grain covered by the receipt but will be limited to the remedies mentioned on the face of the receipt. It is, indeed, the reverse side of the coin of the legal position of a purchaser in good faith of a negotiable instrument -the purchaser becomes holder in due course of a negotiable instrument; and the purchaser of a silo receipt knows that he will not be evicted due to a reservation of ownership by a predecessor in title. The main benefit is that the grain in question may be freely traded, even if there is a dispute regarding ownership.The amended wording does not protect a buyer who obtained a stolen or forged silo receipt. The various interested parties in the grain markets are in agreement that such protection will not be beneficial to the market, as they were of the opinion that the victim of theft or forgery should be able to recover his grain even from a bona fide purchaser thereof. There has, to date hereof, not been any instance of forgery, fraud or theft of a SAFEX silo receipt. In the absence of any legislation, SAFEX management was of the opinion that the measures discussed above were the best that could be adopted in the absence of legislation that will regulate the industry as a whole.The consequences of the bulk storage of grain covered by silo receiptsThe commodities deposited in a silo are mingled in such a manner that it is no longer possible to distinguish or physically separate one depositor's grain from another and the commodities are therefore the subject of commixtio (see paragraph 3 supra). The depositors of the grain in the silo become joint owners of the mixture, in relation to the value of their contribution to the mixture. 58 The grain deposited by each owner has lost its individuality, is now part of all the grain in the container, and the mingling of the grain has created a new thing. Although this mixture now belongs jointly to all the depositors, each owner can dispose of his undivided share in the mixture. 59 Each co-owner can freely deal with his share, or part of a share, without the consent or cooperation of the other owners. 60 The silo receipt will therefore be utilised as symbolic delivery of the seller's undivided share of the mixture.A problematic situation arises where, as a result of the continuous circulation of grain in a container, the holder of a silo receipt's maize is no longer in the container where it was deposited. The holder of the receipt is therefore not the co-owner of the mixture, but merely has a personal right against the silo owner for delivery of grain of the same quality and quantity. In these circumstances, the silo receipt cannot be utilised as symbolic delivery of the underlying commodity, as the holder can no w only cede his personal right to claim grain from the silo owner to the transferee on the face of the silo receipt. Cession is a juristic act, which transfers the right from the estate of the cedent to that of the cessionary, who thereby becomes creditor of the silo owner in his stead. 61 Personal rights are transferred by cession, and the silo receipt cannot be utilised as symbolic delivery of an underlying commodity, but merely serves as proof of certain terms and conditions of the underlying agreement of cession between the parties.The derivative rules, contract specifications or the terms and conditions appearing on the face of the silo receipt do not make any provision for the cession of personal rights as a way to settle obligations in terms of a futures contract. It is clear from the terms of the futures contract, the derivative rules, and the wording of the silo receipt, that all the parties to a futures contract contemplate a purchase and sale of a physical commodity. If the hypothesis in this paragraph is correct, it will necessitate material amendments to the derivative rules, contract specifications, and silo owner requirements, to enable the parties to continue their trade in physical commodities and not personal rights to claim these commodities from the silo owner. Another very important aspect of the entire grain market is the integrity of the silo owners. It is of paramount importance that the holder of a SAFEX silo receipt will be able to obtain the grain covered by the receipt. A SAFEX silo receipt may only be issued by an approved silo owner.The requirements for approved silo owners are listed in appendices C and D to the AMD contract specifications. The important requirements include the following.• Financial standing -the silo owner must be in good financial standing and credit, and shall have a net financial worth of R10 million.• Experience and expertise -the silo owner and management must have adequate experience and expertise in the handling and storing of the commodity.• Legal standing -the silo owner must be a legal entity registered in South Africa.• Compliance with rules of SAFEX -the silo owner must comply with the rules of SAFEX.• Record-keeping, inspection and reporting -the silo owner must maintain records reflecting the date of the receipt, quantity, quality and silo location of the commodity reflected on every SAFEX silo receipt in issue so as to facilitate audit and verification of the commodity reflected on the silo receipt by an inspector appointed by the JSE. The silo owner must provide the clearing house with a copy of each SAFEX silo receipt within a week of issue and shall notify within a week of the presentation and cancellation of a SAFEX silo receipt previously in issue.• Insurance -silo owners shall have current insurance policies in place, covering silo buildings, equipment and commodities stored therein against the following minimum risks: fire, earthquake, earth tremor, malicious damage, storm, flood, spontaneous combustion and explosion.The important buyers of grain were concerned that, in the event of the insolvency of the silo owner, they would only have a claim against the insolvent estate of the silo owner. All the parties agreed that the 'net worth' requirement will not afford sufficient protection to the holder of the receipt, as the quantity and the value of the grain stored by each silo owner are worth much more than the minimum 'net worth' requirement.The SAFEX silo receipt clearly states that the silo owner is not the owner of the product stored and that he only has a lien over the product stored, in the event of outstanding storage costs. In practice, all the storage costs are paid in advance, and there are very few occasions where the holder of the receipt will have to pay outstanding storage costs to the silo owner.If a silo owner is insolvent, his trustee (or the liquidator if it is a company in liquidation) would only have a claim for outstanding storage fees (if any) and would have to deliver the grain after receipt of these fees. The maize stored would therefore not form part of the insolvent estate and must be delivered to the holder of the receipt.The holder of the silo receipt is still the owner thereof, even if it is deposited in the same bin with grain belonging to other parties. The mixture belongs jointly to the depositors, if the mixing took place by consent. Each individual depositor retains his ownership in a portion of the grain stored in the silo.If, however, grain in a silo is circulated on a continual basis and, at the time that a holder of a silo receipt demands delivery of his grain, none of the original grain remained in the silo, and the silo contained entirely new grain, which was deposited after the issue of the receipt in question, then the holder of the receipt would not be the owner of any actual grain in the silo. The holder of the receipt will only have the right to claim delivery of an equivalent quality and quantity of grain from the silo owner. This issue will be material in the event of the insolvency of the silo owner, as the holder of the receipt now has a claim against the insolvent estate. The solution to this problem is to prohibit the silo owners from withdrawing any grain covered by a SAFEX silo receipt.A central SAFEX silo receipt registry (for physical receipts) has for some time been suggested by certain market participants. In principle, if implemented, the JSE would hold certain receipts on behalf of the owners thereof in a fireproof safe and would only deliver the receipt to the transferee, if the transferor of the receipt instructs the JSE to do so. The practical value of a central registry is still the subject of some debate, as it will not enhance the transferability of the receipts. The holder of the receipt merely has to ensure that he receives payment of the purchase price before he transfers the receipt to obtain similar benefits to the advantages of a receipt held in a central registry.The proposed central registry has not been the subject of much discussion during the last six months. The market participants were of the opinion that the amended wording is sufficient to limit the risks involved in trading grain through SAFEX silo receipts on the AMD and spot markets. The central registry would derogate from the SAFEX silo receipt's transferability, as the receipts would not be freely circulating in the market, but be kept on the premises of the APD. The protection afforded by a central registry could easily be obtained, by stipulating and ensuring that the purchase price must be and is paid before the SAFEX silo receipt is transferred to the purchaser of the grain.Warehouse receipts (of which silo receipts are an example) are by their nature paper based and there are no examples of electronic or dematerialised warehouse receipts in the world. Zambia is currently considering the possibility of dematerialising their silo receipts and is the only country, apart from South Africa, to do so.The dematerialisation of SAFEX silo receipts has also been the subject of recent discussions between the interested parties on the grain markets. The issues pertaining to the dematerialisation need to be considered in more detail. The immediate benefits of dematerialisation would seem to be:• faster and more efficient settlement of transactions• accurate transfer of stock from a transferor to transferee• more accurate and immediate checking of ownership of grain covered by the receipt• more accurate records of stock levels• financial institutions financing stock will take on fewer risks• silo owners will be able to identify who owns the stock in a particular silo• silo owners would be able to assist the industry by furnishing accurate grain levels• the dematerialised receipts will be held in a central silo receipt registry and will give additional integrity to the receipts.In terms of a notice published by the JSE on 15 January 2004, 62 the JSE informed all market participants of the possible implementation of electronic silo receipts as a method for the settlement of futures contracts. The introduction of the electronic silo receipt will enable parties to a futures contract to transfer silo receipts electronically via the Internet. The use of electronic silo receipts will not amount to the dematerialisation of all receipts where all paper based receipts will be removed from the market, it will merely afford a choice to market participants to make use of a paper or an electronic receipt.The Electronic Communications and Transactions Act 63 (ECTA) gives recognition to the fact that agreements concluded by data messages cannot be denied legal force and effect merely on the basis that it is concluded by way of a data message.The market participants are very enthusiastic about the possibility of dematerialising SAFEX silo receipts and, although the idea has only recently been discussed, it received wide ranging support from all the role players in the grain market. The legal status of such receipts would have to be investigated properly, as one of the requirements of a negotiable instrument is that it must be 'in writing'. There is, however, no authority to support (or disprove) the contention that the electronic reproduction of a negotiable instrument will satisfy the 'in writing' requirement as stipulated in the bills of exchange Act. 64 The provisions of the ECTA 65 do not apply to the 'in writing' requirement formulated in the Bills of Exchange Act. There is also no authority for an electronic form of symbolic delivery, as all the common law examples, such as keys and bills of lading are tangible. It would, however, seem that an electronic receipt would comply with the essential requirements of clavium tradition, it being the intention to deliver the goods by the delivery of a symbol, and the symbol would enable the purchaser to exercise physical control over the maize .During the deliberations and consultations that followed the High Cour t applications, it became clear that it would be impossible to eliminate all risks of a transaction relating to trades in commodities. If, for example, legislation was passed that declared a silo receipt to be a negotiable instrument, it would still not guarantee delivery of the grain covered by the receipt to the holder thereof (a cheque is a negotiable instrument but is not a guarantee that there will be funds to pay it).62 A 366. 63 25 of 2002. 64 Malan and Pretorius 49. 65 Section 4(3) and Schedule 1 to the Act.The only way to limit the risks as much as possible would be to take out an insurance policy over all the grain covered by SAFEX silo receipts. The JSE had discussions with insurance companies who stated that the idea was feasible. The clearing members of the JSE are, in principle, willing to pay a few cents more per transaction for payme nt of the premiums of the insurance policy.The negotiations regarding the insurance policy are not well advanced and further discussions would be necessary, if this option is pursued.The role players in the grain market, and, more specifically, the international grain purchasers, supported this idea and were of the opinion that this is the only way to be able to minimise the risks involved. It must still be decided whether this insurance policy will operate as additional cover to the existing policy of the silo owners or as comprehensive cover of all the grain stored in the silos.The SAFEX silo receipt has been used by various financial institutions as security for funds advanced to the holders thereof. The benefits of this form of security are that it can be liquidated within two days from delivery on the APD. The insurance policy mentioned above will go a long way towards minimising the risks in utilising the silo receipts as security for loans.Further consideration will have to be given to many of the issues raised: improvement of the commodities market as a whole is an integrated and ongoing process. The SAFEX silo receipt is not a negotiable instrument and can be equated with a bill of lading. There is no authority for the proposition that an instrument containing an undertaking to deliver anything other than money, or a security in respect of money, can be classified as a negotiable instrument. The SAFEX silo receipt is a document of title, and is transferable, but is not a negotiable instrument. The silo receipt is utilised to deliver the commodities covered by the receipt and the transfer of the commodities is facilitated by the delivery of the receipt. Delivery of the SAFEX silo receipt is delivery of the maize; and the transactions concluded on the APD are transactions in the commodities, and not transactions in silo receipts, or the right to claim delivery of the commodities covered by the receipts.The issue of the negotiability of SAFEX silo receipts m ust still be a subject for further discussion. The need for legislation to afford the status of negotiability to SAFEX silo receipts was explained in this document. It is important to note that the United States of America has extensive legislative provisions regarding the status of warehouse (silo) receipts, and the requirements to be a registered warehouseman (silo owner). English law protects a bona fide purchaser of movables through statute and although a warehouse receipt is not a negotiable instrument, the bona fide purchaser of goods covered by such a receipt is afforded certain protection through the workings of the Sale of Goods Act.The amendments to the wording of the SAFEX silo receipt will protect the bona fide purchaser in all instances, except if fraud or theft on the part of a predecessor in title was involved. In the absence of legislation, the amended wording on the receipt was designed to furnish maximum protection to bona fide purchasers of the commodity in question. If a SAFEX silo receipt was a negotiable instrument, a bona fide purchaser for value of a stolen receipt could obtain good title to the receipt. The interested parties in the grain markets will have to decide whether they wish to afford the status of negotiability to the SAFEX silo receipt. Legislation will have a positive influence on the status of a SAFEX silo receipt, as South Africa will have similar legislation to the United States of America, and investors will take cognisance of the fact that the status of SAFEX silo receipts is governed by statute.It needs to be stressed that legislation will not cure all ills or prevent all risks. It would be impossible to draft rules or legislation that will prevent the possibility of litigation pertaining to commodities delivered by silo receipts. Cheques are negotiable instruments and there are countless instances of fraud, forgery and theft of cheques. The holder of a cheque is not guaranteed payment, as there may not be enough funds to pay the cheque. In my opinion, the risks inherent in commodity markets can, at best, be managed, and deferred to insurance companies. There will, however, always be risks involved. Session 6Auctions, warehouse receipts and agricultural commodity exchangesPhilippe Ki (Afrique Verte, Burkina Faso) In the context of the assistance to the cereal actors for the marketing of cereals, Afrique Verte has organised cereal exchanges since 1990.What is a cereal exchange?It is a place and a time dedicated to the interaction of supply and demand of cereals. It brings together direct and indirect participants, partners and other stakeholders of the cereal network.What are the objectives of the cereal exchange?The cereal exchange aims to:• match supply and demand in cereals in order to satisfy the needs of the different people involved (buyers and sellers)• promote the marketing of cereal production from regions with surplus to regions with cereal deficit and to consumption centres• promote the relations of and cooperation between people, the support structures, and the funding institutions in rural areas• increase the professionalism of the people involved in the cereal network in the field of marketing.How does a cereal exchange work?In general, the exchange follows the steps outlined below.• Before the exchange: the potential participants send information sheets that consist of a description that is as detailed as possible of their needs during the exchange (purchase or sale of cereals). A synthesis of those needs is established by Afrique Verte.• During the exchange: the activities of the exchange start with a presentation of the synthesis of the needs expressed by the participants. At the end, a plenary session is organised to communicate the outcome of the supply and demand interaction, such as orders placed, and contracts signed.• After the exchange: this last step involves fulfilment of agreements reached through the execution of the contracts signed. Afrique Verte ensur es the monitoring of the transactions decided between people during the exchange. Through its role of support and intermediation, it contributes to facilitating the execution of the contracts.It is appropriate to add that, depending on the duration of the exchange, the programme can include presentations on various topics (related for instance to the rural world, the cereal network and the funding of cereal marketing) which aim to provide information to the participants and to support exchanges and consultations among the people in the network. In that way, the exchange is also a means of information and training for people involved in the cereal network.What are types of cereal exchange have been put in place?Until now Afrique Verte has set up three types of exchange.• The regional exchange: an exchange located in a determined area (generally an area with surplus). It is however open to all the people who believe that they can find business opportunities.• The national exchange: this is national, and generally takes place in the capital of the country. The participants come from all the different parts of the country. In general, during this exchange, presentations are made, in addition to discussions concerning the interaction between supply and demand.• The sub-regional exchange: an exchange that brings together the people in the cereal networks of the three countries that Afrique Verte supports -Burkina Faso, Mali and Niger.Who finances the cereal exchange?The exchange is a priority activity of Afrique V erte which ensures technical and material organisation, in close collaboration with the farmers' organisations in those countries.However, the funding of the exchange does not depend exclusively on Afrique Verte. Due to the relevance of the exchange, several participants contribute in one way or another to its organisation. Those involved include first of all the direct people (private operators and farmers organisations) who offer tangible contributions, and second, the development partners who can finance all or part of the exchange.El Hadj Démo (UDOPER, Benin)Beset by the withdrawal policy of the state in the 1990s, an associative grouping of farmers and breeders has been set up progressively. Its members were not ready to take over the roles and tasks abandoned by the State, but were determined to take their responsibilities in development matters. Since then, this grouping has evolved. What is a traditional livestock market?A traditional livestock market is a place where supply and demand meet to lead to the setting of a price for an ox or a small ruminant.The sale of an animal on livestock markets operates through a middleman (dilani). This type of market has the following main characteristics:• the buyer is never brought into contact with the seller, and vice versa• the middleman takes advantage of the transaction to obtain a financial remuneration from the buyer as well as from the seller in a dishonest way• in these transactions there is no price transparency.Faced by these facts, leaders-cum-advocates have thought about modernising the traditional markets. This reflection has led to livestock self-managed markets.What is a livestock self-managed market?The fundamental characteristics of livestock self-managed markets are as follows:• there is no middleman between seller and buyer, but a witness ( seedêjo in the Peuhl language)• the witness of the sale does not intervene in the bargaining between the two traders• the seedêjo receives a tax by head of cattle at the end of the transactions to which he has borne witness• these types of market have a legal status and various management documents, including:-transaction tickets -a sales book -a cash book -a pay book -a worksheet of the employees of the market -a book of the cash payments to fund local development.There is also a management committee, which brings together interested people, farmers and breeders, butchers, traders and loaders.Since their establishment, the livestock self-managed markets have evolved and grown. From the nine markets at the outset (Bodérou, Dérasi, Ina, Sakabansi, Monko, Kérou, Nièkènè-bansou, Ouèssè), which were part of a network called Réseau Lumodji Marefudji Sago du Bénin, the number of markets has risen to 21.There is no need to prove the socio-economic impact of livestock markets any more. On one hand, the livestock self-managed markets have enabled the construction of support services on the sites where they are located; on the other hand, they have invested in the development of their neighbourhoods. Other advantages of livestock self-managed markets include:• improvement in transactions and revenues, transparency, time-saving and centralisation of information• job creation and upgrading of the middleman's job• improvement of animal health by selling veterinary products at preferential prices to farmers of UDOPER• farmers taking part in decision-making concerning local development.But these livestock self-managed markets do not evolve without problems. With the advent of decentralisation, some laws specify that 'the management of sales infrastructure is within the jurisdiction of municipal authorities'. This leads to altercations between the former managers of these markets and the municipal authorities.But very early on, thanks to the support of SNV-Benin, this situation has been resolved reasonably, through the organisation of a workshop on the joint management of the livestock self-managed markets that took place in Gogounou on 16 and 17 August 2005.In the present context of the eradication of poverty on the one hand, and the constraints of decentralisation on the other hand, the setting up of livestock self-managed markets is justified.However, in order to ensure the sustainability of production and of the livestock enterprises, other markets are essential, such as for veterinary inputs and cattle feed.Since the workshop on the joint management of the livestock self-managed markets that took place in Gogounou on 16 and 17 August 2005, we know that the laws on decentralisation have entrusted the local authorities with the construction, the equipment, the repairs, the maintenance and the management of the markets and slaughterhouses through Article 104. In the Borgou and Alibori departments, these infrastructures were managed by farmers' organisations, under the supervision of UDOPER.These competences have to be transferred to the local authorities, in accordance with the legislation. However, following the failure of the first attempts at transfer, the local authorities have found it convenient to entrust UDOPER with the management through their authority.Our work is not a panacea for the problems of farmers and other social classes. Your contributions and suggestions for improvements are most welcome. To sustain our exchange, we wish to define collectively a framework that will enable us to see and analyse the problems that we have in common.Jonathan Coulter (Natural Resources Institute, UK) This paper provides guidance to people seeking to establish warehouse receipt systems (WRS) in Africa, based on the author's research and practical experience since the early 1990s. Rather than provide an encyclopaedic coverage of the topic, I have tried to identify the most important design considerations with a view to assisting those interested in promoting their introduction. The reader can obtain more detailed information by consulting references listed at the end of the paper.The rationale -why bother?First of all, rural Africa is collateral-starved. In many countries, banks have considerable excess liquidity, because the y find it difficult to identify enough low-risk lending opportunities. Urban real estate is the main form of collateral, but from a banking perspective it is far from ideal, being slow to realise in the event of foreclosure. Rural land is usually ineligible on account of customary forms of tenancy. This puts a great premium on systems that allow banks to attach debts to stock-in-trade. Such systems are particularly advantageous if they allow banks to focus attention on a single risk factor, the price of the stock itself, which they can mitigate in various ways: by using market intelligence, by 'hair-cutting' (only lending a percentage of the stock value) and, in some cases, by hedging so as to lock in a forward or minimum price.There are series of other reasons for establishing WRS in Africa. Smallholder agriculture is fragmented, lacks bargaining power and reliable sources of input supply, and, except when working in conjunction with strong outgrower schemes, is of little interest to the banks. Markets lack transparency, in terms of both quality and price, and it is often difficult for farmers to negotiate effectively with buyers. It is very difficult to set up enforceable contracts, for which reason grain must be bought and sold on a spot basis. African countries have much to gain by establishing systems that assist in the bulking and standardisation of agricultural products so that they can be traded more transparently and in line with market requirements; and provide smallholder farmers and small traders with a 'ladder' that they can use to gain the interest of banks and other service suppliers.With the liberalisation of agricultural marketing systems, collateral management agreements (CMAs) have become a common form of warehouse receipt system in Africa. They are typically used in the pre-export or post-import financing of commodity inventories, often as part of structured financing arrangements linking suppliers to end-users. Leading millers and traders have also used them as means of financing inventories of commodities, such as maize and sugar, which do not pass across borders. The provider of the collateral management service is normally the subsidiary of a Geneva-or Paris-based inspection company, and the agreement is tripartite in nature, involving the borrower (typically an exporter, trader or miller), a bank, and the collateral manager.Collateral managers have play an invaluable role in oiling the wheels of commerce in countries where there is a shortage of readily bankable customers; these countries cover most of the developing world, plus Eastern Europe and the former Soviet Union. However, their dominance over the storage business is also a symptom of these areas' relative underdevelopment and, more specifically, their lack of bankable home-grown warehousing systems. CMAs are accessible only to large customers who can afford the collateral managers' fixed charges; typically at least US$2,000 per site per month, excluding physical handling, store rental and pest control. Moreover, collateral managers will usually only provide services on a one-to-one basis, working with individual traders, millers, cotton-ginners etc. who must have sufficient commodity to fill the warehouse under management. Unlike warehouse and silo operators in some developed countries, and the Republic of South Africa, they do not operate 'public warehouses' (public depositories open to multiple depositors). This creates a major scale threshold, which makes it difficulty for farmers and small-and medium-scale enterprises to access collateral management services and low-cost or hard-currency financing.Precedents in various countries, notably the USA, much of South America and the Philippines, show that it is possible to solve this problem by organising regulated warehousing systems that enable a larger group of providers to enter into the warehousing business, including trading companies that offer storage services as a sideline (Coulter and Shepherd, 1995;Lacroix and Varangis, 1996).The organisation of regulated systems can strengthen the agricultural markets of Africa in a variety of other ways, notably by increasing market transparency; the regulatory regime can be instrumental in introducing standard grades, weights and measures at participating warehouses. It provides an opportunity for farmers to organise, bulk up produce, sell to remote buyers and gain a credit history. Indeed, production credit is potentially more attractive to both bank and borrower when the borrower is not obliged to sell his product after the harvest, but can deposit it with a collateral manager who holds it until prices are favourable. It makes it easier to establish commodity trading systems, and provides a tool by which public and food aid buyers can efficiently manage their stocks (Lacroix and Varangis, 1996;Martin and Bryde, 1998). The WRS can also become a focus for the organisation of stakeholders, and a healthy policy dialogue between these stakeholders and government (Coulter and Onumah, 2002;Coulter, 2005). In short, the organisation of an effective regulated WRS can contribute to breaking the log-jam of low productivity, which affects much of African agriculture.This paper focuses mainly on regulated systems, although it also considers other alternatives that may be workable where it is not possible to establish nationwide (or region-wide) regulatory systems.Experience to date calls attention to a few key considerations that need to be taken into account in designing a regulated system in Africa -trust, scale, the policy environment and the legal framework of the country concerned. The arrangement of trust is the most important factor, and explains why subsidiaries of multinational operators have come to dominate the collateral management business. While not immune from failure, these companies enjoy the backing of their first-world parents and have internationally underwritten professional liability insurance.The cover typically has various exclusions, and the collateral managers do not offer depositors a 'full out-turn guarantee', but the companies concerned clearly provide African banks with a significant level of comfort, such that they usually do not use home-grown collateral managers.In most deve loping countries, it is preferable to have some sort of regulatory framework to license warehouses to receive deposits of agricultural products, and issue warehouse receipts against them. The objective is that buyers of grain, banks and other participants will treat all warehouse receipts the same, regardless of which warehouse issued them. The more effectively regulated the system, the more trust depositors and banks will have in those warehouses that are licensed to operate and issue warehouse receipts. This is particularly important for warehouses in outlying locations, which bankers rarely visit.The criteria for licensing a warehouse operator will take account of its financial strength, physical facilities, competence of staff, ability to store according to quality standards, and administrative capabilities. The company may, moreover, have to put up a financial guarantee to protect depositors in the event of negligence and fraud. Apart from this, it will be subject to unannounced inspections to ensure that its obligations are covered by commodities in store.If the regulator is to be effective, it will need above all to be distanced from political processes. There are two reasons for this. First, there is a mismatch of time horizons between political processes and the development of the WRS. The WRS needs time to grow gradually and organically, but politicians interested in WRS tend to be looking for speedy solutions to marketing problems, or perceived problems. For this reason, they may try to rush the organisational process at the expense of the banking confidence necessary to underwrite the system in the long term. Second, regulatory decisions need to be made 'by the book' and without fear or favour. If decisions are swayed by political pressure, banks will lose trust and tend to eschew local operators in favour of established CMA arrangements.In countries where public administration is characteristically weak and/or highly politicised, the only alternative may be to place the regulatory regime in the hands of a body representing stakeholders who have a vested interest in the success of the system. At its simplest, such a body can operate on a purely contractual basis with warehousing companies whose suitability to handle third-party stocks it can certify. However, it is likely to have greater reach if it works under national warehousing laws and with regulatory powers delegated by the State.Stakeholder-controlled regulatory bodies do not guarantee success, as they can suffer schisms or become politicised in their own right. However, in some countries the approach appears to be yielding results. In the Republic of South Africa, the SAFEX division of the Johannesburg Stock Exchange oversees a large number of silo facilities that are registered as SAFEX delivery locations. Grains are delivered on SAFEX silo receipts that enjoy prestige vis à vis receipts issued by silo operators in their own name. Probably of greater relevance to the rest of Africa is the Zambian WRS, the only significant regulated WRS for grains in Africa north of the Limpopo. The regulatory function is handled by the Zambian Agricultural Commodities Association (ZACA) Ltd, a stakeholder-controlled organisation whose board includes representatives of farmers, traders, banks, insurers, government and development projects. In the second year of operation, five ZACA-certified warehouses received deposits of 66,000 tonnes of maize. One of the warehouse operators and four banks provided farmers with finance against the stocks they deposited in the warehouses.Another case worthy of mention is the coffee WRS in Tanzania, which in 2004-05 resulted in the lending of US$7.6 against stocks stored by cooperatively-owned coffee-curing companies, licensed by the Tanzania Coffee Board. A key feature which gives them credibility vis à vis banks and depositors is their autonomous member-controlled character and independence of political processes.In the case of Brazil, the world's fourth agricultural producer, politicisation was at the root of long-running failure of the warehousing sector. Some warehousing companies belonged to senators, and the public regulator was unable to establish rigorous regulatory discipline such that would disqualify underperforming operators (Coulter et al., 1998). With the passage in 2000 of law 11,076, the country is seeking to address this problem and generally modernise the warehousing system. Compared with the previous law (decree 1,102 of 1903), the new legislative framework allows private entities a more important role in managing the system. For example, the Central Bank of Brasil has authorised the clearing house of the leading commodity exchange (Bolsa de Mercadorias e Futuros, of São Paulo) to institute a system of electronic registration and custody of warehouse receipts.There are large economies of scale, both in running warehouses and in ensuring their integrity. A large part of the costs of managing warehouse sites are fixed, regardless of the capacity of the site, while the regulator's expenditure on activities such as reviewing financial statements, ensuring performance guarantees are in order, and travelling to warehouses, are also fixed. ZACA has a budget of around US$120,000 per year, and while it initially enjoys donor subsidy, aims to cover these costs fully within a period of 5 years from initiating activities. It obtains its revenue through a US15 cent per tonne month charge on stocks held by certified warehouses.The difference in running and regulating a site storing 1,000 tonnes and 10,000 tonnes of grain is in no way proportional to the difference in tonnages, so in order to make the operation selffinancing, it is important to bring a group of large warehousing sites within the system during the early years. Once the regulatory operation has covered its fixed costs, it can then proceed to license smaller warehouses in relatively remote areas, as long as the revenue they provide covers the regulator's relevant variable costs. This of course involves some element of crosssubsidisation, with larger warehouse operators funding a large share of the regulator's overall costs, but this can be called a 'smart subsidy' because it is self-financing and doesn't create costly market distortions.Owing to the relatively modest levels of overall agricultural production, and the prevalence of smallholder farmers as suppliers of commercial surpluses, scale is a particularly critical consideration in Africa. In most countries, total grain production is in the range of 1-4 million tonnes, and much of this is consumed in the villages where it is produced and never enters trade channels. These production levels are small in comparison with major world producers (e.g. the USA, average 345 million tonnes between 2001 and 2005; Argentina, 35 million tonnes), and are less than relatively small European countries (e.g. Hungary, 14 million tonnes; Bulgaria, 6 million tonnes).Smallholder farmers find it harder, though by no means impossible, to accumulate large surpluses and meet the quality requirements of warehouses, than do commercial farmers. For this reason it is very difficult, if not impossible, to establish a regulated WRS, simply on the basis of deposits by smallholder farmers. In order to bring in large deposits of commodities and attain econo mies of scale, it is necessary to involve people such as commercial farmers, millers, traders (including international commodity dealers), and public buyers including official food security reserves and food aid agencies. Once the system is up and running, NGOs and development projects can focus on helping smallholder groups and sees such as hammer-milling operations to take the greatest possible advantage of the system. Indeed, the system can only be fully successful if it creates a more even playing field whereby smallholder farmers can compete more effectively with commercial farmers.The World Food Programme (WFP) is now the largest buyer of grain north of the Limpopo, and can potentially enter into a mutually rewarding relationship with promoters of warehouse receipt systems around Africa. In Ethiopia and Uganda alone, WFP and other food aid agencies are currently purchasing locally in excess of 300,000 tonnes of grain per annum. By helping local stakeholders establish WRS, the WFP can improve its access to well graded commodity, diversify its supply sources and reduce procurement costs. At the same time, WFP can provide the necessary liquidity to ensure that the WRS takes off and gathers economies of scale (Walker et al., 2005).The banks are the other vital contributor to the development of the regulated WRS. Local staff of African banks north of the Limpopo have very little experience of WRS, apart from the tripartite CMA arrangements referred to above. This applies to both locally owned and international banks, even those that use the silo receipt system in South Africa. More seriously, most African bankers have very limited familiarity with, and exposure to, agriculture, and often view the sector as loss-making.Here the WRS offers a way of interesting banks in the agricultural sector, as it is potentially very attractive to them as a means of lending at low risk and expense. Once they are comfortable with the WRS, they can provide vital liquidity to make it work over the long term, and make it less dependent on concerns such as those of WFP, whose presence in countries waxes and wanes according to the size of refugee and internally displaced populations. Martin and Bryde (1998, p. 11), writing from Eastern European experience, put it this way: 'Once the \"demonstration effect\" has taken place, the warehouse receipts have the potential to become a standard way to finance the agribusiness sector. They could attract to it resources from institutions that at the moment consider this as one of the most risky sectors, in which the companies are not well capitalised, and where it is almost impossible to obtain good collateral.'WRS promoters should therefore seek to understand banks' opportunities and needs, and be prepared to provide training and capacity-building inputs accordingly.In the long term, it will probably be necessary for the regulatory authority to license all relevant warehouses of over a certain minimum capacity, regardless of whether they issue warehouse receipts, in order to ensure that all warehouse operators contribute to the regulatory costs. In this regard, it is worth noting that most American grain-producing states have found it necessary to establish mandatory licensing regimes. For example, the Indiana grain buyers and warehouse licensing agency maintains licensing and oversight of virtually all stored grain, with a view to 'preventing loss to Indiana farmers from fraud and bankruptcy of grain buyers and warehousemen'. Indiana's grain buyers and warehouse licensing and bonding law provides for mandatory licensing of all companies buying or storing more than 50,000 bushels. This is equivalent to about 1,270 tonnes, a minimal quantity for traders operating in the mid-west of the USA. The same agency registers companies storing less than 50,000 bushels as 'grain banks' (Anon, 2006).In countries starting to set up regulated WRS, it may be wise to make licensing voluntary until such time as the regulatory function has proved its efficiency to stakeholders in the country concerned. To facilitate the transition to a mandatory regime, any new WRS legislation should provide the means for government to institute it without the need for fresh legislation.Governments often welcome the establishment of WRS, but in practice the policy environment does not always prove favourable. For example, governments sometimes:• intervene suddenly in a way that alters market fundamentals, causing price to drop and people storing in licensed warehouses to lose money; the introduction of food aid grain on to the market can have a similar effect• maintain a high overall level of government intervention in the market, such that seasonal price movements do not reflect carrying costs 66 -this has been an issue in former socialist countries of East Europe (e.g. Poland in the late 1990s) rather than in Africa, where governments have generally lacked the resources to engage in sustained large-scale intervention• unexpectedly reduce import tariffs, with similar effect -this happened in Ghana in 1997, causing difficulties for two inventory credit schemes (Coulter and Onumah, 2002) • decline to make under-utilised public storage facilities available for WRS, even when they are unutilised.Given the history and politics of grain marketing, promoters should not expect the policy environment to be perfect for the establishment of WRS. However, it is best to organise such systems where the environment is relatively favourable, and build bridges with politicians and officials, consulting and familiarising them with their rationale and operation. Government may provide certain services, for example crop forecasts, food balance sheets and market information, which stakeholders can potentially use to mitigate the financial risks they incur. It is important to evaluate the information available and see how it can best be made available to stakeholders, e.g. over the Internet, through radio bulletins or mobile phones, and if the information is not suitable, seek it out through other sources.Some earlier papers have suggested that the most important element in establishing a WRS is a favourable legal environment (Lacroix and Varangis, 1996;Martin and Bryde, 1998). Banks and buyers require good title to the underlying goods represented by the warehouse receipts, and protection against seizure or litigation by other claimants to these goods. The latter requirement is encapsulated in the terms 'negotiability' and 'perfected security interest', which mean that a party who receives the receipt in good faith can take possession of the goods in preference to other claimants who may have a security interest in them. When WRS are 'negotiable' they are functionally equivalent to the goods themselves. Under such circumstances, business people can buy and sell, and lend against, warehouse receipts, without having to establish the absence of other charges against them. Such legal protection is of the greatest importance in developing a strong WRS, particularly when it involves grain stored by a large number of farmers or traders. Holders of warehouse receipts also need legal protection to provide cover for the possibility of events, such as the death or bankruptcy of the borrower or the warehouse operator. 66 The absence of a predictable seasonal price pattern will greatly diminish demand for WRS. However, it should be remembered that some players are attracted to WRS as a procurement tool rather than a means of making speculative gains. Large buyers such as millers, coffee exporters, cotton spinners and food-aid agencies may simply use them to finance their operating stocks.However, experience to date indicates that, at least in those countries that have a common-law legal framework, it is possible to start regulated WRS without a legal system which provides for negotiability. In South Africa, which has a Roman-Dutch legal system, the silo receipts system is treated as if negotiable, even though legally speaking, they are not negotiable instruments; certain test cases have upheld the position of receipt holders against other claimants. These and other experiences in Africa to date confirm the following statement from Coulter and Shepherd (1995, p. 26):'It is stressed that the 'practical' effects of a particular legal variable on the viability of inventory credit will usually not be evident from the examination of legal doctrine alone. Where the economics of the scheme are strong enough, and lenders are comfortable that the practical risks are small, they may be able to live with a certain amount of legal ambiguity. Where, however, the economics are unclear and the political and business culture is unaccustomed to what is being proposed, legal uncertainties may present another reason for sceptical participants, particularly banks, to turn away from an uncertain venture.'Where it is not possible to make the warehouse receipts de facto tradable and pledgeable, there is a strong case for new legislation. Zambian bankers made this point very poignantly during the second highly successful year of the regulated WRS in that country, by stating they were 'only scratching the surface'. They could achieve far more, particularly with smallholder grain, once the draft warehouse receipt law was passed and warehouse receipts became negotiable documents of title (Georgina Smith, Natural Resources International, UK, personal communication).The regulated model has two potential drawbacks: its requirements for scale; and honest and strict regulatory governance. It is worth asking whether there are alternative systems, apart from the above-mentioned CMAs, that can prosper in the absence of these prerequisites.There have been some well organised smallholder-oriented inventory credit or warehouse projects, including those organised by TechnoServe in Ghana and the Ministry of Agriculture and FAO in Niger (Bass and Henderson, 2000;Kwadzo, 2000). However, with such projects it is difficult for the promoter to find an exit strategy in a way that makes the regulatory oversight function self-financing. One case where promoters appear to have overcome this problem is that of the Caisses d'Epargne et de Crédit Mutuels (CECAMs) in Madagascar. Village credit unions belonging to a large regional micro-finance institution (MFI) are financing members who store paddy in small local warehouses. The stock is jointly held by the credit union and the borrower under a 'dual key' arrangement. Since the inception of this initiative in 1992, the volume of paddy stored had risen to around 80,000 tonnes and the project is reported to be having a very positive impact on local food security (Fraslin, 2002(Fraslin, , 2005)).The big advantage of the CECAM system is that a single institution fulfils both the regulatory and lending function; the lender is directly concerned in looking after its own assets and thereby absorbs the relevant overheads. However, two factors are likely to slow the replication of the CECAM experience. First, there are few rural MFIs of comparable strength in Africa. Second, MFIs tend to charge high interest rates and this may render them uncompetitive with banks; the CECAMs enjoyed access to a special government line of credit which has helped them lend at competitive rates.The combination of lending and regulatory functions may also work with commercial banks. During the 1990s, the government-owned Banco do Brasil directly supervised a group of tied warehouses which were acting as depositaries for grain financed by the bank (Coulter et al., 1998). Here again, however, it is difficult to replicate the model, as bankers generally wish to confine themselves to banking and are reluctant to get involved with the warehousing business. Few are willing, like Banco do Brasil, to set up their own structure for supervising warehouses. Moreover, tied warehouses of this kind are generally closed to lending by outside parties, and this may restrict their ability to attract deposits.Promoting the WRS: making things happen It should therefore be recognised that WRS are to a significant extent a 'public good', and that the skills of the promoting entities are crucial to their uptake. At the same time, support services that are highly dependent on donor support run the risk of becoming artificial and not developing local roots. Based on the experience of recent years, we can offer some guidelines for success.First and foremost, the entity will need to work closely with, and stimulate initiative by, the private stakeholders who stand to gain through creation of the new system. The more successful examples described here have all depended on strong private initiative. These players will, in turn, need at least tacit support of their governments, and preferably explicit backing in the policy and legal spheres.Funding arrangements will need to be very flexible, so that support is provided where the response of local stakeho lders is strong and coherent, and pull back where it is not. This can be challenging, because funding commitment sometimes creates a momentum of its own, regardless of developments on the ground. Sometimes several donors will be seeking to assist the development of local agricultural markets, and they should do all possible to harmonise agendas and work together in support of local stakeholders. This is particularly important with regulated systems, which are likely to require a single set of rules for the country concerned.Promoters will need to focus on the key requirements discussed in this paper -establishing trust in the system, economies of scale, a supportive policy environment and a strong legal basis. Lastly, they should work hard to define a clear exit strategy and a pathway to full local sustainability. KACE services KACE (www.kacekenya.com) is a private-sector firm launched in Nairobi, Kenya in 1997, to provide two services targeted at smallholder farmers: to link farmers to markets through matching commodity offers to sell and bids to buy; and to provide relevant and timely market information. Market information includes commodity prices in different markets in Kenyan, regional and international markets, commodity offers and bids (in quantity, quality, packaging, timing), transport services and costs.Lack of relevant and timely market information greatly disadvantages smallholder farmers in the market place, and reduces their access to better markets and better prices. As a result, farmers are often exploited by middlemen in local markets who offer relatively low prices, sometimes below production costs. In addition, farmers either remain ignorant of better market opportunities, or face high transaction costs in trying to access new markets. For any one crop, the marketing chain often consists of multiple middlemen, each taking a margin. The combination of low prices, lack of access to better markets or high transaction costs result in low farm incomes, keeping the farmer in a vicious cycle of poverty.Market information is also needed to help farmers decide and choose what commodities to produce, what technologies to apply for production, when to produce, for whom to produce, and when and at what price to sell. Without market information, farmers cannot be efficient in their production or marketing activities.To provide the two services of market links and market information provision, KACE has developed and piloted a simple low-cost MIS. The MIS involves using ICTs to collect, process, update and disseminate relevant and timely market information to enhance the bargaining power of farmers. The components of the KACE MIS are as follows.MIPs are information kiosks located in rural markets, serving as sources of market information.There are currently 15 MIPs, located mainly in western Kenya. An MIP consists of a simple office, with two staff (a manager and an assistant). Those in areas with electrical power and fixed landline telephone service are equipped with a computer, Internet connection and a fax machine.All are supplied with mobile phones. There are boards used to display market information, or used as trading floors for matching offers and bids. KACE Headquarters in Nairobi compiles market information and sends it to MIPs, where it is printed and placed on the boards for users to visit and view freely, with the help of KACE staff.KACE supports a service to upload market information into the Safaricom Ltd mobile phone service provider network, to which about 3 million Kenyans subscribe. Mobile phone users are then able to download market information through their mobile phone handsets as SMS messages in simple menu-driven steps. KACE has branded this service as SMS Sokoni.Negotiations are under way to develop a similar SMS with the second mobile phone service provider -Celtel Kenya Ltd, which has about 2.5 million subscribers.KACE has developed this service with the interactive media services. KACE sends updated commodity price information to the interactive media service daily. The service records the information in voice mail, and users access the information by dialling a designated hotline (0900 552055) and listening to the information by following a simple menu. Users have a choice of language, English or Swahili, as well as a choice of commodity or market for which they seek information. KACE has branded this service the Kilimo hotline.Farmers and farmers' groups with e-mail addresses, and other clients with Internet connectivity, are included in an electronic KACE database called the Regional Commodity Trade and Information System. The database includes the e-mail addresses of clients and a module of updated market information. The information is sent and received as e-mail messages. Some farmers and commodity buyers receive market information in this way. In addition, KACE has a website (www.kacekenya.com) which it is developing as a virtual library of agricultural information, as well as an electronic commodity trading platform for matching offers and bids.Limited KACE market price information is broadcast on national radio, reaching an estimated 5 million listeners a week, many of whom are farmers in rural communities. Liberalisation of the communications sector is still under way in Kenya. The few operating FM stations in rural areas demand prohibitive charges (about US$4,000 per 15-minute slot) to broadcast market information. Thus this medium has yet to be developed and exploited for market information dissemination in Kenya.Collecting and processing market informationMarket price information (mainly wholesale buying prices) is collected on the following 25 main traded commodities:• cereals: dry maize, green maize, rice• pulses: beans, groundnuts, soya beans, pigeonpeas, green grams• vegetables: cabbages, onions, carrots, tomatoes• tubers: potatoes• fruits: bananas, mangos, passion fruits, oranges, avocados• livestock: milk, beef cattle, meat: goats, sheep, chicken, eggs, fish.KACE MIP staff visit commodity markets in their areas early in the morning (0500-0700 h) each market day. Using standard KACE data collection sheets, they interview three to six who lesalers to obtain wholesale buying prices for each listed commodity traded in the market. They compute mean prices for the market for that trading day, and send by e-mail, SMS or telephone the information to the KACE Headquarters information technology department to arrive by 0800 h each trading day. They also send the offers and bids collected through client visits to the MIPs since the last reporting submission. The IT department staff then summarise the prices, offers and bids from all the MIPs, and send the information back to each MIP by email or fax. The MIP managers download the information, print it out and place the hard copies on information boards at the MIP for the users to access freely, replacing old information with new each time.Users visit the MIPs to receive market information. They read the information placed on the MIP wall or on boards. Users who can not read get assistance from the MIP staff. The information in Table 1 shows a record of direct users (those who visited all KACE MIPs) of the KACE MIS for the period November 2004 to end of October 2005. On average, 810 users visited MIPs every month, an increase of 63% from the previous year (Table 2). Of the total number of users (9,722), 37% were female and 63% male. The number of female users increased by 105% over last year's figure, whereas the increase in the number of male users was 46%. The number of indirect users, those who share or receive market information from direct users, is reckoned to be much higher: every direct user shares information with at least two or three other users. In a monitoring and evaluation survey, conducted by KACE in February 2005, of 222 farmers in western Kenya, 84% of farmers were using KACE as source of market information, 47% daily, 35% weekly and 13% monthly. 92% of farmers reported they were happy with KACE information. Also, 52% of traders were using KACE as source of market information. Maize, the Kenya n staple, is one of the most highly traded commodities for which the price is collected and disseminated.Tables 3 and 4 show dry maize wholesale prices for three markets: Bungoma (rural market), Eldoret (regional market) and Nairobi (national/terminal market) for the 12-month period November 2004 to October 2005. For the three markets, the maize price remained steady between Ksh 14. This notable drop in price at harvest time is due to a combination of factors: partly because farmers need cash and must sell; also because farmers do not have sufficient storage to store the crop until the price improves post-harvest; and furthermore, because farmers are not able t o access better markets elsewhere, either because they lack market information or are not organised enough to bulk the necessary volumes and quality required. This issue of wide price fluctuations is one of the problems that a warehouse receipt system could address, by enabling farmers to access some cash for their commodity while it is stored to await better post-harvest prices. Wholesale buying prices, as well as commodity offers and bids collected and summarised as described above, are uploaded into the Safaricom mobile phone network by the KACE IT department, and disseminated as SMS to Safaricom mobile phone subscribers on a daily basis. This same information for some commodities is also available on the IVR service provider, where it is recorded on voice mail and updated through the Kilimo hotline number.A subscriber pays Ksh 7 (US$0.10) per SMS of downloaded market information and Ksh 20 (US$0.27) per IVR call. KACE has revenue-sharing agreements with the service providers. For SMS, KACE receives a share of 10% of the user fee paid to Safaricom, while the KACE share is 20% per IVR call.Usage of SMS and IVR is shown in The total trade value reported is certainly grossly underestimated, as sales concluded outside the premises of KACE are rarely reported. In addition, it can be assumed that the provision of market information is reducing spatial arbitrage and bringing about increased market integration, although this has not been documented. KACE is thus correcting an important information externality, but it does not get paid for this important public service.Measures taken to ensure sustainability of the servicesFarmers are being trained and shown how to access and use market information. Once they benefit from it, through better market access and better prices, as pilot results have demonstrated, they will acquire the capacity to seek and access the information without further training from KACE. They will visit and access the information at the MIPs. They will also use mobile phones, which an increasing number of farmers are acquiring, especially on a group basis to share the costs of mobile phone handsets, to access SMS and IVR services.For further sustainability of the MIS provision, KACE plans to franchise MIPs to local entrepreneurs to operate them on a commercial basis. This will create private-sector operators, who will further develop a wide range of related agricultural marketing and extension services, and ensure long-term financial sustainability. It will also free KACE from intensive management of these centres, and hasten the scaling up of their services.KACE has entered into revenue-sharing agreements with the SMS and IVR service providers.For every SMS message, or IVR call, the user pays for airtime to the mobile phone service provider, or pays for the call to the IVR service provider, who in turn pays KACE an agreed percentage share. KACE will share the revenue so generated with the MIPs to contribute to their financial sustainability. It is planned that when the KACE MIS are fully developed and widely promoted and used by clientele, they will generate sufficient revenue to sustain themselves.• Lack of standard units of measurement: various local units are used in market places for trading. They often do not have uniform volumes or weights, posing a challenge in quoting a price per weight or volume. KAC E staff have been trained to convert and report prices per unit weight, e.g. kg; or unit volume, e.g. litre, which is bound to introduce some errors in the data.• Lack of grades and standards: commodities traded in the market place do not have specified grades and standards against which to provide price quotations. Everything is therefore sold as fair average quality.• Maintaining the cooperation of respondents to provide price data: some farmers or traders in a given market object to being asked to provide price information over a period of time. KACE staff then have to identify new respondents, or find some incentives for continued cooperation, such as the supply of market information from other markets, or offering to check the moisture content of grains using moisture meters.• Small quantities of highly varied quality commodities may be offered: this makes it difficult to attract large-volume buyers prepared to pay a premium price for better quality. This increases transaction costs. It can be addressed through collective marketing of commodities by farmers, which KACE and other development farmers are promoting.• The lack of standard units of measure and grades and standards makes market links difficult. For instance, there is no premium price for superior quality, and sellers have no incentive to improve on quality, which is often required for trade links to better (price) markets. Again, KACE and other partners are promoting collective marketing, where a group of farmers bulks the commodity and improves its quality, including packaging in standard units, before offering for sale.• Lack of a warehouse receipt system to enable farmers to access some cash or credit from stocks while they await selling at better post-harvest prices.• Unpredictable government policy: in Kenya the government, through the National Cereals and Produce Board, continues to intervene in grain markets, and this distorts prices and discourages increased private sector participation in commodity markets.There are two major developments that KACE plans to undertake in order to scale up its services: franchising of MIPs to make them financially sustainable; and the development of a physical (and electronic) trading floor in Nairobi, in conjunction with the Kenya Grain Council, which is currently under establishment for the promotion of structured grain trade not only in Kenya but also in the East Africa and COMESA regional markets.As indicated, plans are under way to franchise MIPs so that the y can operate commercially and become financially self-sustaining, but without abandoning their public goods MIS. In this concept, KACE would move further upstream and concentrate on operations in national and regional markets. Franchised MIPs would develop a wide range of services for which demand has been demonstrated, e.g. transport brokerage, warehousing, storage brokerage, weighing services, grading and quality control services, selling mobile phones and airtime, offering Internet services, selling farmer inputs, trading commodities for their own account, etc. The idea is that the franchises become independent, commercially viable local businesses. They would be encouraged to identify and engage in profitable trade opportunities in their areas of operation. KACE would provide training, technical assistance, networking service and quality control, as well as market links to upstream markets (at national and regional market levels).KACE itself would thus concentrate its activities at a higher aggregation market level, coordinate the market price information service, disseminate the market price and bid-offer information via ICT, work with the cellphone companies, provide market linkage and transparency at the national level, and run its own physical and electronic trading floor in Nairobi.Ian Goggin (ACE, Malawi)The idea for the formation of the Zimbabwe Agricultural Commodity Exchange (ZIMACE) was first mooted in the early 1990s, when the Government of Zimbabwe embarked on its Economic Structural Adjustment Programme. With the introduction of this programme, the liberalisation of agricultural marketing commenced, and it soon became apparent that an organisation was needed through which the free marketing of agricultural commodities could occur. Out of this, the concept of ZIMACE evolved.ZIMACE was started by interested parties in the private sector, namely the commercial farmers' union and Edwards and Company, a local firm of stockbrokers, who became shareholders and the financial backers. Subsequently, a board of directors was appointed and tasked with establishing a commodity exchange. Initially, while the administration was being set up, ZIMACE employed brokers who traded for ZIMACE, but from 1 March 1994 blocks of shares were sold, entitling the purchaser to appoint a broker to trade on their behalf. ZIMACE stopped utilising brokers and ceased being actively involved in any trading, and from that date, provided a forum for deals to take place.Although the Commercial Farmers' Union and Edwards and Company were initially the major shareholders in ZIMACE, this position changed over time. The Commercial Farmers' Union reduced its seat holding from eight to three, while Edwards and Company were no longer seat holders, having held seven seats originally. The balance of the current membership of 28 seats is made up of other organisations, including the Grain Marketing Board, millers, traders, banks, other buyers and broking firms. This membership has changed dramatically since the early days of ZIMACE.During the process of establishing ZIMACE, the aims and objectives were clearly stated as the need to 'create an orderly internal market which encourages production, allows free movement of goods and rewards good quality'. It was therefore determined that a commodity exchange of the highest integrity should be introduced, available to all the people of Zimbabwe and acceptable international traders, based on an open, free market system for the benefit of producers and consumers. The exchange facilitated the trade of any agricultural commodity provided or desired by consenting parties (willing buyer-willing seller).ZIMACE, the first ACE to start operating in southern Africa, commenced trading on 1 March 1994. The Zambian ACE followed in June of that year, with the agricultural division of the South African Futures Exchange (SAFEX) opening in January 1995.There is no doubt that the importance of ZIMACE continued to grow significantly in the local and regional agricultural markets, with considerably more notice being taken of this market internationally. This growth was not without its problems, some of which were predictable, while others were totally unforeseen.The continued lack of relevant market information, both within Zimbabwe and in the SADC region as a whole, had a major negative impact on the free market. Figures quoted as to crop size, quality and volume in store, and anticipated imports and exports, were inaccurate at best, and at times extremely distorting i n the market itself. Also, the lack of support of some of the larger and more firmly established market-based and -oriented institutions tended to undermine the operations of ZIMACE. Add to this the fact that some ZIMACE members were active in conducting trade off the exchange floor, and the enormity of the challenges faced by ZIMACE at that time begins to emerge. These problems are exacerbated by the fact that central government saw fit to impose price controls on basic foodstuffs, while at the same time doing little or nothing to halt increases in the cost of inputs either to the producer or the end-user.A decision was taken by the ZIMACE board, after consultation with the members, to enforce an existing provision in the rules making trade across the exchange floor compulsory for members. This was circulated as a resolution of the ZIMACE board, and was further enforced through an amendment, which was incorporated into the rules and regulations of the exchange. Obviously, this did not suit all the members, which resulted in a few of them electing to be 'non-broking members' rather than broking members. Such an election, while not diminishing any of their basic rights or responsibilities as members, required that they utilise the services of a broking member whenever they wished to conduct business across the exchange floor.ZIMACE continued to provide both a spot and forward market facility, but was unlikely to venture into the futures market. The relatively small volumes of production, together with a lack of speculators and the reluctance of financial institutions to involve themselves in the market, are seen as hindrances to the establishment of a futures market. The most sensible suggestion in this regard would be that the present futures market in South Africa be expanded to include the region as a whole. Indications were that this was already happening, with trade being conducted on SAFEX by some of the ZIMACE brokers, and the Zambian exchange using the SAFEX futures price and incorporating the transport differential into the price quoted in Zambia. As trade barriers are removed, the ability to trade on any of the exchanges within the region will become more practical and realistic, with the will to do so already there, particularly within the private sector.There are currently eight different contracts trading on ZIMACE, specific to maize, soya beans, groundnuts, sorghum, wheat, cotton and hogs. A general contract applies to all lesser traded commodities. All contracts include details pertaining to the quantity, quality, changeover of ownership and risk, price, payment terms, inspection, transport, delivery (or collection), packaging and force majeure. Every deal conducted across the ZIMACE floor is put to contract, which had to be signed by both parties immediately following the trading session. The contracts themselves are legally binding, giving additional security to the parties involved in the deal.All paperwork relative to deals conducted on ZIMACE was to be completed and lodged with the exchange by midday of the day on which the trade is actually conducted.The rules and regulations of the exchange governed the manner in which deals were transacted on ZIMACE. Through this mechanism, the integrity of the member companies, and the conduct of their brokers was monitored. The exchange also ensured the maintenance of standards of quality, not only of the commodities themselves, but also of trading practices through these rules and regulations.In the event of a dispute arising, where the disputing parties are unable to resolve the issue among themselves, the ZIMACE 'rules of arbitration' governed and an arbitration panel reviewed the controversy. The benefit of this arbitration facility is enormous in saving both the time and costs of having to take legal action through a court of law. Initially, there were a large number of arbitrations heard, many being used as test cases by larger organisations. Once rulings were handed down in all these cases and principles established, the swing tended to be towards resolving the dispute between the parties concerned where possible, without resorting to arbitration. As a result, considerably fewer arbitration hearings were conducted once the 'ground rules' had been established.ZIMACE succeeded, over the years, in building up a great deal of expertise, with the brokers establishing an increasing number of contacts throughout the world.The Grain Marketing Board, as already indicated, was made up of members of ZIMACE, and had two major functions to perform. The first was their own commercial operation, while the second was the requirement to purchase the strategic grain reserve on behalf of government. The difficulty with this system was that of separating these two functions. Regrettably, the general understanding was that the Grain Marketing Board set the price of maize in Zimbabwe, whereas this was in fact effectively set by the government in respect of the strategic grain reserve purchases. If the two functions of the Grain Marketing Board had been clearly separated, with the so called 'floor price' attached to the strategic grain reserve and not to the Grain Marketing Board and the purchase of non-strategic grain reserve stock, the situation would have been considerably more transparent, although the need to abolish this system remained a priority. Debate at a number of regional seminars and workshops centred around the need for a regional futures market and a separate spot and forward market. SAFEX would be the obvious answer to part of this need, but it was argued by ma ny participants that Zimbabwe, through ZIMACE, would be ideal for the regional spot and forward market exchange. The geographical location of the country, together with the relative sophistication of the communication and transport networks and the extremely good storage facilities, were all seen as advantages in this regard.ZIMACE remained the only true exchange functioning in the spot and forward markets in the region until September 2001 when, following legislation introduced in July of that year giving the Grain Marketing Board the sole right to trade in maize and wheat, trade became untenable. ZIMACE has not been disbanded, and the members are hopeful that they will be in a position to re-open the exchange at some stage in the future.The Zambian exchange has to a large extent failed in its efforts in this regard and is still operating as a 'one-man band', with no trading sessions taking place. ZIMACE made great strides in the market and continued to do so, despite the many barriers imposed on it. Its credibility remained high, not only internally, where the views of the exchange were increasingly sought by both the government and private sectors, but also regionally and internationally.This credibility is reflected in an increase in membership, from f our in 1995 to 28 in 1998, before settling at 23. The volume and value of trade conducted continues to grow, as reflected in Table 1, which indicates the total value of trade conducted each trading year, based on the period of April one year through to March the following year, since the inception of ZIMACE.While ZIMACE went through some uncertain periods, this in itself was not totally unexpected.Advice received from consultants prior to its formation indicated that the exchange could expect a great many ups and downs, particularly during the first 5 years of its operation. This undoubtedly proved to be true, but what emerged from this was a much stronger organisation, whose credibility rose tremendously. There is no doubt that, given the opportunity, ZIMACE will again rise to the occasion and expand, as there remains a huge need for an organisation of this sort in Zimbabwe. ACE: its formation and potential role in a liberalised market place Malawi, like many other countries in Africa, has an economy that is based on, and relies primarily on, agricultural production. In the past, Malawi established a name for the quality of the commodities produced -tea, coffee, groundnuts, rice and chillies, to mention but a few. However, the introduction of marketing boards, their inability to pay a premium for quality product, and a general lack of reliable market information led to a reduction in both the volumes produced and qualities achieved, as there was little or no incentive for farmers to produce or grade what was produced.A feasibility study conducted in 2004 revealed that the introduction of an ACE in Malawi would improve the marketing of agricultural produce and products in the country, with resultant economic benefits.The country faces many economic and market challenges. First and foremost, there is a total lack of reliable and accurate market information. While steps have been taken to address this, much still needs to be done, and ACE will supply a great deal of the necessary market information needed in this respect. By declaring sale prices in various parts of Malawi, as well as those other countries with members, and by registering bid and offer prices for commodities, market trends will be established. Add to this the function of the broker, whose duty it is to advise his client, whether buying or selling, as to the best marketing opportunities and when and where these are likely to occur, market participants will be much more empowered than they are at present. The transparency of the market will also provide an opportunity for those unable to conduct their business over the exchange floor to negotiate from a position of strength, having been informed of what the market is doing and what future trends are likely to be.Many of the benefits will be covered later, but perhaps one of the most significant is the 'order' the exchange can bring to the market. Through the establishment of quality standards for each commodity traded, it will be much easier to do business, as the market will be able to identify the grade being offered for sale, attach the known characteristics to that parcel and bid against the offer price on this basis.Many small-scale farmers have no option but to sell their produce, whether they want to or not, because they have nowhere to store it. The ACE warehouse/silo certificate system will provide an opportunity for them to do so, and will also bring the prospect of generating much-needed liquidity into the agricultural sector. This will also allow for those farmers who do not have access to registered storage to sell their commodities at a fair market price, as there is likely to be less of any specific commodity available in the market at harvest. These documents will afford an opportunity to producers, as well as traders and end-users, to store their goods in an ACE registered storage facility and to be issued a warehouse/silo receipt. This document can then be used to secure a loan using the commodity in store as the collateral.In recent years, the Government of Malawi has relaxed controls on almost all agricultural commodities. Following this, the liberalisation of agricultural marketing commenced, and it soon became apparent that an organisation was needed, through which the free marketing of these agricultural commodities could occur. Out of this need, the concept of ACE was first mooted.What has necessitated the introduction of an ACE in Malawi?• poor market information• lack of available markets• lack of competition• no quality standards• poor communication• lack of transparency.What are the potential benefits?• reliable market information, both pre-and post-harvest• much-improved market access• much more competition• introduction of quality standards• much-improved communication• full transparency• enforceable contracts• arbitration facility• more efficient and cost-effective markets.How can it assist the farming community as a whole, and the small-scale farming sector in particular?• market information not previously available• market access -local, regional and international• more market participants• higher prices for good quality• transparent deals and prices made public• written contracts that are enforceable• improved communication• more efficient and cost-effective markets• warehouse/silo certificates.What can it do for other sectors within the agricultural industry?• ability for all sectors to participate• opportunity for parastatals to participate• opportunity for transport to be traded• opportunity for storage to be traded• opportunity for the seed industry to participate.What are the potential benefits to the country?• much improved agricultural markets• renewed faith in agriculture• higher production• fewer imports• focus on Malawi and the exchange• more efficient and cost-effective markets.ACE was first mooted by the National Smallholder Farmers' Association of Malawi (NASFAM), who identified a need to bring more order to the market place. Although not everyone shared this view at first, recent developments in the local market have resulted in a distinct change in attitude. The development of agricultural industries, not previously in place, has played a considerable part in this change of attitude, and has resulted in a much broader interest in this new marketing initiative. Ultimately, a board of directors will be appointed and tasked with running the exchange on behalf of its members, made up of companies from the region, initially from Malawi, Zimbabwe and South Africa.ACE will provide a forum at which deals can take place.The primary requirement of a successful ACE in a producing country is:'an orderly internal market, which encourages production, allows free movement of the goods and rewards quality.'To this end, it is essential that we establish a commodity exchange of the highest integrity, available to all the people of Malawi, and acceptable international traders, based on an open, free market system fo r the benefit of producers and consumers. The exchange will facilitate the trade of any agricultural commodity provided or desired by any consenting parties. It will also provide price discovery and dissemination -prices are based on the economics of supply and demand and then supplied to the public via the media.How would an individual or company trade through ACE?Members of the exchange would appoint brokers to conduct business for them, and it is they who will conduct trade on behalf of their clients, whether they are individuals or companies. The members would get a return through the brokers, who will charge an agreed broking fee to their clients. This will not be set by the exchange, but will be negotiated between the client and the broker, and is usually in the region of 1 or 2% of the value of the contract.How is ACE financed?ACE will be set up as a non-profit-making company and will therefore not charge a fee for trade conducted across the exchange floor. It is presently funded by USAID through NASFAM, but will, in time, raise levies against the shareholding companies to meet its annual operating costs. This will also have the effect of encouraging them to utilise the exchange, as they will have a vested interest in it. Additionally, it is intended that members be charged a fee to join the exchange.What are the plans for ACE?In addition to the interest shown by local companies, expressions of interest have been received from six companies in Zimbabwe, all of whom were members of the exchange there, as well as one from South Africa. This will give the exchange much more of a regional flavour, with potential to draw additional members from Zambia, Mozambique, Tanzania and Kenya. The plans are to meet the needs of producers and buyers in the region by providing an open, free trading market in those countries that have already expressed an interest, and by further expansion into both the regional and international markets.There are many benefits to be gained from trading through an exchange such as ACE, some of which are detailed below.• Reducing risks to calculated ventures.• All the deals are transparent, which is certainly not the case in other markets. Prices are published through the news media, assuring both producers and consumers that they are getting the best price available at the time.• The rules and regulations of ACE govern the manner in which deals are transacted within the exchange. Through this mechanism, the integrity of member companies, and the conduct of their brokers, is monitored.• In the event of a dispute arising, and where the disputing parties are unable to resolve the issue among themselves, the ACE rules of arbitration govern, and an arbitration board will review the controversy. The benefit of this arbitration facility is enormous in saving both time and the costs involved in having to take legal action through the courts.• The exchange ensures the maintenance of standards of quality, not only of the commodities themselves, but also of trading practices through its rules and regulations.• There will be a great deal of expertise on the exchange, and the members located outside Malawi will make access into both regional and international markets considerably easier.• An exchange such as ACE also provides a very cost-effective marketing system, with the transaction costs involved being as transparent to both buyer and seller as any other details, such as price of the commodity, for example.• The AC E contracts, which must be signed by both parties and which are legally binding and are required to be lodged at ACE in respect of each deal conducted, give much-needed security to the parties involved in the transaction. These contracts cover the following assurances:- The current situation in Malawi and other countries in Africa Some initiatives have been taken already to try to improve market information, and a project under the banner of IDEAA, funded by the Rockefeller Foundation, with the full support of the Ministry of Agriculture, is now functional. While this is a welcome intervention into a market that, until recently, has had no worthwhile market information or intelligence, it nevertheless falls well short of the functions of an ACE. This programme also works in the micro-economic environment, whereas ACE will look at the bigger picture, with millers and other food processors, large traders, broking houses and financial institutions as potential members of the exchange.I have no doubt that it has benefited the small-scale producer, particularly those with very little to sell, as it has brought buyers and sellers together. However, it has not yet succeeded in getting to the wider audience, and sales are therefore generally conducted within specific areas. What is needed is to expand this concept further, and to attract more buyers and sellers to the market.There are also indications that the IDEAA initiative has succeeded in improving communication within the farming community, but much still needs to be done in this regard. An exchange provides real-time information, as it is happening, so that all market participants benefit. The most exposed group, and therefore the one that can potentially gain the most, is the small-scale farming sector. By getting the most up-to-date price and market information, even if they are unable to trade across the exchange floor for any reason, farmers can still negotiate a better price with buyers, based on the knowledge they have.The agricultural industry has indicated that it is anxious to get some order into t he market. Farmers are experiencing difficulty in identifying and accessing markets; buyers are concerned at the number of contracts that are broken; and all sectors are concerned with quality issues. The cost of doing business in Malawi remains high, with checks having to be made on each bag delivered, processors having to run the commodities through the manufacturing process a number of times due to the large variation in pip sizes, and the quality desired is often mixed with poorer grades. A commodity exchange is able to address all these concerns by ensuring the maintenance of standards. In its simplest form, a commodity exchange provides a venue at which buyers and sellers are brought together to conduct business, normally through a group of registered brokers. A properly run exchange should accommodate people active in the production, trade, processing and consumption of commodities, and reduce their costs of doing business:• market forces should determine prices• there should be many participants in the market -both buying and selling• there should be strong farmer support, preferably including commercial farmers• substantial volumes should be traded, allowing a minimum of three brokers to sustain their operations.It is also important to have a clear understanding of the role of a broker, and how this differs from that of a trader. In simple terms, a broker is an individual who conducts deals across the exchange floor on behalf of a buyer or seller, acting solely on his client's behalf, and who relies sole ly on commissions for his/her income. A trader, on the other hand, is someone who takes a position in the market and is directly involved in the purchase and sale of the commodity concerned, with a view to making a margin between the buying and selling prices. The margin made is not known by the seller at any time.Integrity and transparency are the cornerstones of the system. Trading sessions are open for public viewing, all deals are published, and closing prices are broadcast on a daily basis. The integr ity of member companies is monitored for proscribed practice, such as doing deals outside the view of all parties on the trading floor, market manipulation and 'front-running'. If the system is correctly managed, both producers and consumers (buyers/end-users) can be assured that they are getting the most advantageous possible price. Indeed the success of ZIMACE -an increase in trading volume from US$1.1 million in 1994 to U$677 million in 2001 -is founded on the generalised perception of integrity among the membership and the public in general.Agricultural commodity exchanges have greatly improved trading practices in many countries, and have brought more formality to trading methods, enhancing market transparency while in some cases improving the quality of commodities traded. Many of the parties expressing interest from outside Malawi have done so on the basis that the exchange will ease the existing problems with trade. Indeed, one large trader indicated that he would be keen to purchase the entire Malawian groundnut crop, provided he could do so through an institution such as ACE.Everything noted above will contribute to assisting small-scale farmers. However, perhaps one point that has not been emphasised sufficiently is contained in the contracts, and this is the price payable, together with the date of that payment, which will enable farmers to plan based on given facts. In time, I believe the market will develop to the point where forward contracts, and delivery at a future date at a guaranteed price with pre-arranged finance as part of the package, will become more common, which will again benefit the farming sector.Insofar as other sectors in the agricultural industry are concerned, there will be opportunities to buy and sell fertiliser and other inputs, transport, storage and other items related to farming, such as seeds and irrigation equipment. This will result in more competitive prices, with the resultant benefits to the agricultural market. In turn, this will have a knock-on effect of giving much more accurate information as to what might be available in any given commodity or service, irrespective of who owns it, based on much more reliable data.The potential benefits to the country and the region as a whole are many and varied. One, which perhaps might be overlooked, is the focus that will be placed on Malawi and the region as a result of a successful regional commodity exchange being operated from here. There is already a great deal of awareness, as evidenced by the interest shown from both Zimbabwe and South Africa, and the potential to expand further. It will also provide increased opportunities for the country itself to become more involved in the agricultural markets, by utilising the expertise available through the exchange. Additionally, there will be some income generation into the economy as a result of the joining and annual fees payable by all members. This is a very exciting project that will benefit all agricultural and agribusiness sectors in Malawi by making the trade in agricultural products more professional, opening up new markets, bringing market information and transparency to price formation and, through the warehouse receipt feature, improving access to capital.Rod Gravelet-Blondin (SAFEX, South Africa)The agricultural derivatives market in South Africa was first established as the Agricultural Markets Division of the South African Futures Exchange (SAFEX) as a result of the deregulation of the agricultural marketing sector in South Africa. The fact that the government moved out of the price-determination function and allowed agricultural prices to be based on the economic factors of demand and supply meant the introduction of price risk into the agricultural marketing equation. The agricultural derivatives market was established to provide all participants in the market with an efficient price risk-management facility and an effective price-discovery mechanism. The market was established on private-sector initiative by way of the compilation of a business plan (prospectus) and the subsequent selling of trading rights to the private sector to raise the required start-up capital. The role of the government in this was solely the provision of the enabling environment to allow the establishment of the market, and the fact that the market was left to operate without any interference. The regulation of the market was introduced and is operated by the Financial Services Board that administers the relevant acts under which exchange licences are granted and exchange rules are regulated.In August 2001, SAFEX was acquired by the then Johannesburg Stock Exchange (JSE), and the agricultural derivatives market in South Africa is now operated as the agricultural products division of the JSE. The membership structure of the market changed in July 2005, when the JSE demutualised and ownership of the exchange was effectively separated from the trading rights of the exchange. This is in line with many exchanges worldwide.It is important to note the exchange in South Africa was established as a derivative market trading futures and options contracts, and not spot or physical commodities.The market was established with a clear objective: to provide all participants in the market with an efficient price risk-management facility and an effective price-discovery mechanism. It is important to know the reason for the establishment of a market, and that objective must be linked to a need in the market. A market must add value to the process and should be economically viable or sustainable.In order for a derivatives market to work in agriculture, there should be 'consistency in inconsistency' -in other words, government policy regarding price determination and trade policy should be consistent. The objective or reason for the establishment of the market must continue to exist so that value can continue to be added to the agricultural marketing process.The more complicated the market structure, the more extensive and detailed the marketing and training programme, but it is vital that participants are fully aware of the benefits of the market and the potential pitfalls. Marketing and training are never complete, but must be ongoing. Much of the success in South Africa can be attributed to person-to-person marketing and training across the country. It is important to include the politicians, the administrators (government) and the media in marketing and education.This could be classed as a 'soft' issue, but dedicated, hard-working staff, who believe in what they are doing, can make or break the establishment of a market. Incentives can be looked at and can be helpful as motivation, but belief in a project cannot be bought.Any business organisation that does not remain effective, efficient and focused will not survive, unless it is supported for non-economic purposes. An agricultural market needs to be effective. A market that does not add value to the marketing process will also find it difficult to continue.There will be costs in using a market structure, but the value of using the market structures must outweigh the costs thereof.A particular challenge facing the derivatives market in South Africa is to make a market that is primarily devised for large commercial farmers relevant and applicable to the smaller subsistence farmers in the country. Obviously, the fact that the derivatives market establishes an efficient price signal is of enormous benefit to all farmers, as it clearly signals the true economic value of the product, but directly accessing the market to benefit from the price risk-management facilities is difficult for smaller farme rs.If the government policy in South Africa changes to re-introduce centralised price determination, the raison d'être for the derivatives market will disappear. It is important that policy-makers are aware of the mechanism of a market and are not intimidated by price fluctuations.Prospects for a regional agricultural derivatives marketOne of the questions that we were asked in coming to the CTA meeting was the issue of why SAFEX is not expanding into other countries. I have outlined in this section some ideas for the development of a Southern African regional trading platform. This is an opportunity that is still at the conceptual stage, and the reasons for not taking this forward are due to questions concerning finding the right partners, the right timing and the right financing; these issues, along with the opportunities, are outlined below.The Southern African region, whether defined as the five countries of the Southern African customs union or the larger 15-country Southern African Development Community (SADC), is an agricultural resource-based regional economy. This has prompted the view that economic development in the region should be agricultural resource-based in order to be sustainable. However, the nature of agriculture is such that it is subject to volatile pricing patterns and provides, according to many analysts, an unstable and unsuitable basis on which to develop the economy. It is now widely accepted that the preferred route to stabilise the impact of volatile commodity prices on an econo my is to facilitate access to a derivatives market. Not only can participants in the agricultural economy benefit from the advantages of the price riskmanagement facilities offered by a futures market, but the economy itself can benefit from the price-discovery function that is generated by an efficient market.In early 1995, SAFEX established an independent membership-based division, the agricultural markets division, to trade derivative instruments on agricultural commodities. The initial contracts introduced, based on chilled beef and potatoes, were not successful; however the subsequent contracts on white and yellow maize, wheat and sunflower seeds have been highly successful. Following the takeover of SAFEX by the JSE Securities Exchange in August 2001, agricultural derivative instruments are presently traded on the agricultural products division of the JSE Securities Exchange.It is widely accepted that, for a viable commodity derivatives exchange to be established, the following conditions should exist.• Supply and demand for the commodity concerned has to be large; there need to be many potential participants; and the commodity must be a fairly important component of these people's operations. Some literature states that there has to be a well functioning spot market and that before futures contracts can be introduced, forward contracts have to be actively traded. This actually does not correspond to the ways that commodity exchanges have developed historically (even in recent history, e.g. electricity) -they often helped spot and forward markets to develop, rather than being introduced only after these markets already functioned well.• The commodity traded must be well standardised, with grades widely accepted by commercial parties, and independent entities able to evaluate grades. Exchange trade is easier if a commodity is storable.• Pricing must be left to market forces. This means that there should be little likelihood of manipulation by:• private interests (note, in particular, the need to avoid control of a small number of people over transport and storage facilities)• government entities -either deliberate, for the commercial interest of government trading entities or the private interest of government officials, or because of a sudden change in government policy. The latter implies that there has to be a commitment from the government to a rule-based rather than arbitrary policy on the pricing and trade of the commodities to be traded on an exchange.• The exchange should be supported by major commercial interests. This does not just mean that many companies should use the market for hedging (or if they wish, speculation), but also that:• they are willing to use the exchange price as reference for their physical trading• even if they do not trade on the exchange, they should not feel left out -e.g. farmers should feel the exchange is good for them. This requires an educational effort by the exchange, and good public relations.• Well functioning and accessible services and infrastructure facilities are necessary, for example good access roads, availability of transport companies, weight bridges, quality control services, an efficient administration, warehousing, telecommunications, etc. (if the warehouses or transport companies are controlled by only a few companies and not available for public use, they are of little use from the exchange's point of view).• Judicious government support is required -including a willingness to adopt suitable new regulation/legislation and appropriate oversight over trade on the exchange.• Free market prices must be volatile enough to create large price risks.• There should be enough potential interest from the speculative community.• Well functioning and fully trusted clearing operations are needed, whereby trades are guaranteed and margin money/deposits are held with integrity.The modus operandi will be to look very briefly at each of the above listed conditions (fundamentals) to determine whether and to what extent they exist in the region as a unit. The viability, or not, of a regional agricultural derivatives exchange will be based thereon. Due to the nature of livestock and livestock products, the investigation will concentrate on field crops.• During average production years, South Africa produces approximately 50% of the maize in the region, 50% of the sunflower seed, 50% of the wheat and 40% of the soya beans. Thus, purely on a volume basis, a regional derivatives exchange could not only serve a large percentage of field crop production in the region, but the increased volume of underlying product could increase the liquidity of the contracts already successfully traded on the Agricultural Products Division of the JSE Securities Exchange. The only other products that are produced in any volume are barley, with almost 80% of the regional production produced in Ethiopia; and sorghum, with Ethiopia accounting for 50% of regional production. It can be safely assumed that there are many potential participants and that the commodities represent an important component of the participants' operations.• It is advisable that, for a regional derivatives market to function to its full potential, the commodity traded should not only be subject to good standardisation, but that such standardisation also be consistent across the region. The standardisation of potential products across the region that could be traded on a regional derivatives market at present is such that it would be very difficult to fully utilise the potential of a market under present conditions. It would be possible to hedge (on condition that there was a consistent correlation between domestic and exchange prices), but if the grading was not standardised, delivery in fulfilment of a futur es contract would be limited to long position holders taking delivery from a single point.• The agricultural pricing policies of the various potential participant countries in a regional derivatives exchange at present is diverse, and not without the possibility of manipulation by either private or government entities. It is essential for a regional derivatives exchange that government policies as regards agricultural marketing be consistent, and not subject to sudden change.• It is believed that a regional derivatives exchange would be supported by the major commercial interests throughout the region, and that the exchange price would indeed serve as the reference for physical trading. A more difficult area would possibly be structuring the exchange to serve the various levels of participants throughout the region.• Infrastructure facilities would not only need to be well functioning and services accessible, but there would need to be an acceptable level of consistency across participating countries. At present, it seems that this is not the case, and the benefit and operation of a regional derivatives exchange would be severely curtailed as a result.• It is difficult to gauge the level of support of the various possible participant governments for a regional derivatives exchange and the corresponding willingness to adopt/enact appropriate new legislation, However, it is assumed that if support were forthcoming, the appropriate legislation would follow. Present regional activities regarding such appropriate legislation seem to indicate, however, that support for such a regional derivatives exchange is not high on the agenda.• Without interventionist and stabilisation policies, it can be assumed that the free market prices of the possible products that would be traded on a regional exchange would indeed be volatile and create price risk, with the resultant need to manage such price risk.• It is difficult to assess whether speculative interest would exist, but generally it can be assumed that speculative interest will be attached to a well run market that has the necessary integrity. A difficulty would be the understanding of the role of speculation in the price formation of agricultural products, especially those closely connected to staple food products.• As with the difficulties with the present lack of compatible agricultural policies within the region, there is also a lack of compatible financial policies. A regional derivatives market would require an understanding of the necessary money market flows associated with the clearing operation of a derivatives market, as well as the smooth and uninterrupted flow of such funds.The above analysis consists of a brief and somewhat cursory introductory review of the possibilities of the establishment of a regional agricultural derivatives market. Although the product base and free market price fluctuations would certainly support the case for the establishment of such a market, it appears that, at present, there are major issues militating against such a development.These major issues are incompatibility in:• grading standards• agricultural policy as regards marketing of agricultural products• infrastructure• financial policy.A concerted effort, concentrating particularly on policy issues, agricultural and financial, by participating countries, would be required to move the process forward. Obviously, a major education/training effort would also be required.A step forward could possibly involve the greater regional utilisation of the Agricultural Products Division of the JSE by the surrounding countries. Although this would not provide the full benefits of a derivatives market because it would preclude delivery, it would assist in developing the understanding of the operations of a derivatives market and would provide a long hedging opportunity. The first step in this direction would be the development of a clear understanding of, and the smooth logistical flow for, financial obligations relating to the market.Questions and recommendations from marketing institutions• Is sequencing important in introducing the elements of tools, strategies and institutions?• Are there any preconditions necessary for implementing the market-strengthening tools, strategies and institutions discussed at this meeting?• Which are the most appropriate groupings for supporting and sustaining these tools, strategies and institutions?• What are strategies that can be used to increase the prospects of sustainability of these new developments?• What should be CTA's priorities in these areas?In one of the groups, 11 out of 12 people felt that the sequencing of investments in market institutions was a useful approach, and that making investments in the order presented at the conference would be more effective. The group suggested that investments made in an ad hoc or unplanned manner were likely to lead to either failure or poor performance of the said strategy. Several examples of this were cited from the group. However, although sequencing was a desirable outcome, the group also indicated some caveats, in that each country should be considered in regard to the location and its contextual situation. It may be that some agricultural sectors are prime candidates for support, such as online futures sales, whereas other parts of the economy would only benefit from more basic types of marketing support. The other concern was in relation to the practicalities of attempting to introduce and integrate ideas in a measured and sequenced fashion, due to the desires of multiple participants and agencies involved in decisionmaking and investment. Hence, if a government or donor specifically wanted a new institution to be supported, this would happen regardless of sequencing logic. The lack of any informed analysis or profiling of countries in terms of the marketing status may also preclude a logical development pathway.The group felt that, for the first set of strategies, tools and institutions mentioned in the list, there were few preconditions that would be a major impediment to the success of interventions at these levels. The first three could be set up independently and not have adverse effects on each other:• marketing policy support (strategy)• market development analysis (tool)• farmers' organisation (strategy).For the next three areas of marketing intervention, it was felt that their effectiveness and/or performance would be significantly improved if interventions 1-3 were in place. However, even if they were not, it would not necessarily make their usefulness redundant:• market information service (institution)• market intelligence (tool)• grades and standards (strategy).As an example, marketing information would be effective in the absence of a marketing policy or a series of widely known marketing studies, and even in a situation where farmers were not well organised. However, there would be considerable benefits in the utility of market information, if farmers were well organised and acting on the advice of clear marketing studies and strategies.Effective development of several of the complex marketing institutions, such as warehouse receipt systems and commodity exchanges, that stipulate some form of profiling method, would be a useful starting point from which advice could be offered by ACP countries on their strategies for developing marketing support to offer advice on appropriate marketing intervention linked to:• best practice• case studies• partners• timing• context• location• experience.The question of who should be involved in developing marketing institutions was addressed by the group through Table 3. Information dissemination by CTA.Ownership of MIS and other instruments may/may not be so important.Further consultation need on priorities and overall approach to development.CTA could work on consensus-building between stakeholders.Market information may/may not rank very high in relation to other farmer needs.Further consultation need on priorities and overall approach to development.CTA could work on consensus-building between stakeholders and priority setting.(may/may not)Further R&D may/may not be required to guide the development of strategies and best practices for establishing and maintaining MIS and other market instruments.Further consultation needed on priorities and overall approach to development.CTA could work on consensus-building between stakeholders and priority setting.Based on the presentations of the meeting and recommendations from the discussion groups, the following section provides some critical areas of research and development, in which CTA could play a leading role in assisting the marketing development of ACP countries over the next 5-year period.Due to the i ncreasing economic pressure caused by events such as globalisation and market reform, ACP countries need to find innovative means and methods to improve their market performance. CTA could assist in this area by playing a strategic role in niche pieces of research and developmental investment to combine specialised information with new ICT technologies to improve the competitiveness and innovation within the agricultural sector of ACP countries.Having identified niche opportunities, CTA should develop these new areas of intervention beyond the pilot level to have a significant and sustained impact on improving marketing institutions in ACP countries.Areas of intervention identified at this meeting include the following.Undertake an impact study of different types of MIS currently being used in selected ACP countries to evaluate the value, utility and quality of these services in terms of client needs, accuracy, timeliness and accessibility. This study sho uld determine the institutions best placed to own and implement such services and how they can be supported financially. The study should also clearly outline costs and benefits that accrue from the services. The study should compare services being administered in ACP countries having small (10-15 million), medium (20-40 million) and large (60 million +) populations, those with strong and weak ICT capacity and having different levels of market engagement at the local, national, regional and international levels.Outcomes of this research• better understanding of the status of MIS in ACP countries -this type of review has not been undertaken since 1996• recommendations of best practices in costs and types of services that have the most effective ways of reaching target users, particularly smallholder farmers• policy recommendations on public goods or private-sector financial arrangements to support long-term support in these sectors.As the marketing support services within ACP countries are highly diverse, it is currently difficult to identify which types of marketing support services would best suit any one country.To address this diversity, CTA should develop a rapid online marketing profiling instrument, using instruments such as 'sur vey monkey', so that ACP economic research groups, policy-makers and practitioners can use these tools to evaluate their country's position in terms of the status of its marketing interventions, institutions and investments. The assessment tool would be used to check market capacity. This information can then be used as the basis of developing plans for investment and or re-engineering options to improve the marketing efficiency and performance of key sectors, within the local context.• Development of an online analytical tool, that would profile the marketing status and capability of a country based on the investments and effectiveness of existing services and institutions. This profiling tool would provide a low-cost mechanism for CTA to work with ACP counterparts in evaluating national and regional market needs and opportunities.• Areas of investigation would include aspects such as MIS capacity and competence, farmers' organisations, media coverage (radio, TV, newspapers), ICT access (Internet, mobile phone), traders' organisations, financial linkage to key agricultural sectors, storage capacity, (warehouse, cold chain), research linkage to PS, collateral trading status (WHR, exchange), legal status.Based on the results of the marketing capacity analysis, CTA would be in a position to work with ACP partners and their service providers in developing support packages and or strategies for marketing development. CTA could also use this tool to evaluate whether new interventions being advocated by CTA, such as mobile trading and mobile MIS, would be an appropriate investment in a particular country.• Application of market capacity instrument to identify key factors related to the marketing status and capability of a country, based on the investments and effectiveness of existing services and institutions. At present, CTA is only able to commission individual support measures for ACP countries on a demand basis.• This profiling tool would provide a low-cost mechanism for CTA to work with ACP counterparts in evaluating services across the ACP region, which would provide a prescribed scheme on which to base new interventions, and also decisions as to where to make the most effective investments relative to poverty/populations/marketing capacity indicators.To provide an interactive information portal for a community of practice to support methods, tools and application to strengthen marketing analysis, institutional development and linkage of smallholder producers to markets. The information on the marketing portal should be directly linked with specific iterative 'learning alliance' approaches to build a cadre of marketing trade and marketing specialists that can build the capacity of private-and public-sector market institutions.• CTA would act as a lead organisation in obtaining the latest conceptual thinking in applied trade and marketing approaches, methods, tools and applications within a high-profile information and learning resource. CTA would, however, build this process using a consortium approach so as to bring together inputs from other leading research, development and private-sector agencies. In this way, the portal would lead to the establishment of a community of practice that would support an interactive information portal to provide guidance in marketing and agro-enterprise -agribusiness development.• The information platform will build on existing materials, supplemented with news studies from partner organisations. Based on this marketing portal, CTA will encourage partners in its extensive network to evaluate where there are strengths and where there are weakness in their marketing systems and, through a consultative process, provide advice on strategies and sequenced areas of intervention to improve market efficiencies that support the needs of smallholder farmers. This portal would be used to support the marketing evaluation and strategy development tools.Since 2001, CTA has provided, through its Agritrade web portal, policy support information to ACP trade negotiators and decision-makers on the key agricultural trade issues (WTO, EPAs, CAP reform, market access, etc.). CTA should explore options to link this trade-based information with associated activities that support market-based interventions, such as MIS and marketing exchange institutions. This integration of information would offer the opportunity for greater dialogue and knowledge-sharing between people involved in policy development and decision-making with actors involved in developing ACP business opportunities within specific sectors.• Rather than building isolated areas of information that support specific trade-or marketbased actors, greater linkage of trade-and market-based research and policy-type information systems will provide a new type of knowledge-management system that would further assist in bringing together both thinking and activities of people involved in diverse yet related areas of market and trade support and development.To evaluate the opportunities and catalyse the process of enabling smallholder farmers to manage their risk through engaging in more formalised markets. There is little doubt regarding the many advantages of working towards more formalised markets in ACP country markets, in terms of increasing food safety, better management of risk, mo re transparent transactions, opportunities to add value to produce and generally strengthening good business practices. However, all these actions also involve added cost and greater business responsibility. Many observers consider that these projects will fail due to poor design, overly ambitious time frames and lack of regard of the conditions required for these systems to work. There are serious questions about the equity of benefits from interventions and how smallholder farmers, the vast majority of stakeholders in the agricultural sector of ACP countries, will benefit. More information is required to ensure that infrastructure, information and quality control equipment is available in local areas so that well organised farmer associations outside the capital city areas can also benefit from the process. ","tokenCount":"86955"} \ No newline at end of file diff --git a/data/part_3/9027590837.json b/data/part_3/9027590837.json new file mode 100644 index 0000000000000000000000000000000000000000..2f2467cb37f30b2347c5e2eae26372c101faf1b3 --- /dev/null +++ b/data/part_3/9027590837.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"38d1d342472b2f89d01986cfa93fdd44","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/7564e7ce-a155-4232-869a-5fef35a6ced1/retrieve","id":"2128412240"},"keywords":[],"sieverID":"93f7e239-bf39-4496-ae4e-d715485c1d38","pagecount":"25","content":"The whitefly Bemisia tabaci Genn. is a pervasive pest and vector of plant viruses. The existence of B. tabaci biotypes and numerous whitefly-transmitted geminiviruses (begomoviruses) affecting food and industrial crops, has become a major constraint to agricultural development in tropical and subtropical regions of the world. The predominant whitefly and begomovirus method of control has been the application of insecticides. The excessive use of agrochemicals over the past decades, has resulted in an exponential increase in B. tabaci populations and incidence of begomoviruses transmitted by this whitefly vector. Under these conditions, biological and integrated whitefly/geminivirus control practices have not met expectations. Incorporating begomovirus resistance in a relatively small number of crops improved by conventional plant breeding methods has been a sustainable and efficient disease control strategy. This review discusses some of the conventional intra-and inter-specific hybridization strategies followed to incorporate genetic resistance to begomoviruses in three major crops: cassava, common bean and tomato.The whitefly Bemisia tabaci Genn. (Homoptera:Aleyrodidae) is one of the main pests of the 20 th century.Since the 1950s, B. tabaci has caused significant crop losses in tropical and subtropical agricultural regions in the five continents of the world (Brown, 1994). B. tabaci, the sweet potato, tobacco or cotton whitefly, was originally described in Greece, in 1889 (Gennadius, 1889). In tropical/subtropical environments, B. tabaci can produce an average of 15 generations in one year, with females depositing an average of 200 eggs in a 3-6 weeks lifespan. Following a brief \"crawler\" stage and four subsequent sessile instars, winged adults emerge, which may cause direct damage (plant nutrient loss; physiological disorders; honeydew excretions, etc) or act as virus vectors (Brown, 1994). B. tabaci is a polyphagous whitefly that colonizes mostly annual, herbaceous plant species numbering over 500 in 74 families (Mound and Halsey, 1978;Brown and Bird, 1992). B. tabaci is an efficient vector of numerous geminiviruses. These viruses consist of two quasi-isometric 'twined' or 'geminate' particles, encapsidating one or two single-stranded DNA genomes. Geminiviruses transmitted by B. tabaci belong to the genus Begomovirus (sigla for the type species, Bean golden mosaic virus), according to the latest taxonomic classification (Murphy et al., 1995;Regenmortel et al., 2000). These viruses are highly 'plastic', being able to adapt to a large number of different cultivated plant species, following their transmission by B. tabaci from wild or other cultivated hosts (Padidam et al., 1999). Currently, over 100 begomoviruses are known to be transmitted by at least two biotypes of the whitefly B. tabaci, to more than 20 different cultivated species of socioeconomic importance. Some of the main crops affected by whitefly-transmitted geminiviruses are: common bean, mung bean, blackgram, lima bean, soybean, cowpea, tomato, potato, eggplant, pepper, chili peppers, melon, watermelon, squash, okra, cassava, cotton, and papaya (Muniyapa, 1980;Brown, 1994).The extreme pathogenicity, virulence and severe yield losses caused by begomoviruses in susceptible plant species, and absence of immune cultivars in most of the commercial plant species attacked, has forced farmers and agronomists to resort to other pest and disease control methods. Considering that begomoviruses are not controlled by agrochemicals, it is understandable that their vector, B. tabaci, has become the target of most pest management strategies deployed so far around the world. Unfortunately, the most widely used practice for controlling whiteflies has been the application of insecticides, often at doses exceeding the recommended formulations (F. J. Morales, personal observation). As a result, B. tabaci has developed resistance to most of the insecticides developed to date. Furthermore, biological control practices are ineffective under these high pesticide-input conditions, and pesticide contamination of agricultural produce and the environment have greatly increased (Traboulsi, 1994).Despite the unavailability of immune cultivars observed for the majority of the commercial crops affected by B. tabaci-transmitted geminiviruses, breeding for disease resistance has proven the most complementary and sustainable of the integrated whitefly/begomovirus control methods implemented to date.Cassava (Manihot esculenta Crantz) is one of the earliest crops to be bred for resistance to an important group of distinct but related begomoviruses, collectively known as African cassava mosaic virus (ACMV).ACMV is transmitted by the whitefly B. tabaci, but the main method of dissemination is through the vegetative propagation of ACMV-infected cuttings (Swanson and Harrison, 1994).The search for resistance to African cassava mosaic viruses began in East Africa in the 1920s. Initially, several ACMV-tolerant cultivars were identified in large cassava germplasm collections evaluated in Madagascar and Tanzania (Jennings, 1994). Cultivars such as Bouquet de la Reunion, Java 12/28, and Criolina, in Madagascar; and Mpezaze, Msitu, Aipin Valencia, F 100, and F 279, in Uganda, helped stop the ravages of ACMV (Cours-Darne, 1968). Higher resistance levels were achieved following intra-specific crosses, such as the case of the highly tolerant selection 37244E, obtained from a cross between F 100 and Mepezaze. Cours (1951) associated mosaic incidence with some phenotypic traits, such as color of the stigma and the root bark, and the fertility of the male flowers. He suggested that selection for red stigmas, grey root bark, and fertile male flowers would lead to higher levels of resistance to ACMV.Despite the initial successes in achieving higher levels of ACMV tolerance or resistance (sensu lato), cassava breeders were still hoping to find a source of ACMV immunity. To this end, they made interspecific crosses using Manihot glaziovii (Ceara rubber), M. dichotoma (Jaquie Manicoba rubber), M. catingae, and a genotype called \"tree cassava\" (probably a natural M. esculenta X M. glaziovii hybrid), in search for higher levels of cassava mosaic resistance (Jennings, 1957). The hybrids obtained in the first generation of M. glaziovii X M. esculenta crosses produced in 1937, had non-tuberous roots and became infected by ACMV under field conditions. Backcrossing was necessary to recover the main agronomic traits found in M. esculenta, particularly root quality. Resistance to ACMV improved slightly during the three generations of backcrosses; probably due to the use of M. esculenta parents with intermediate levels of ACMV resistance.Crosses with M. dichotoma were made at Amani, Tanzania, in the same year. 32 F 1 hybrids remained symptomless for 22 months, but lacked vigor and restoring their root quality proved more difficult than in the case of M. glaziovii. Following three generations of backcrossing, the resulting materials had acceptable agronomic characteristics, but no higher levels of ACMV-resistance than the M. glaziovii X M. esculenta hybrids. The M. dichotoma X M. esculenta hybrids were not selected for further breeding work. Hybrids with the \"tree cassava\" were similar to M. glaziovii X M. esculenta hybrids, and only a few selections were made.Unfortunately, the high expectations for the M. glaziovii X M. esculenta hybrids, were realized in some but not all regions of East Africa. For instance, a high proportion of the hybrid cassava lines selected, succumbed to ACMV in the coastal areas of Kenya. Understandably, after three backcrosses, the average proportion of M. glaziovii genes in the progenies, would have been reduced to 1/16. Moreover, resistance to ACMV appeared to be multigenic and recessive. Thus, the expression of M. glaziovii genes was probably low, and the resistance achieved was the result of the accumulation of genes from moderately resistant M. esculenta parents used for backcrossing. Later, some of the most resistant backcross hybrids were intercrossed to concentrate genes for resistance, which may have become dispersed among the various breeding lines, as well as to increase the levels of homozygosity of recessive resistant genes. However, there are different ACMV strains and, more important, distinct viral species in what was originally considered as African cassava mosaic virus (Hong et al., 1993). The existence of different virus species, thus, might have also contributed to the differential reaction of the tolerant lines selected in Tanzania to the ACMV variant found in the coastal areas of Kenya.In Ivory Coast, the four cassava cultivars showing the highest degree of resistance under severe ACMV pressure, were: Aipin Valenca-19 from Brazil, Garimoshi from India, Mwakasanga-13 from Kenya, and the inter-specific hybrid 5318/34-12 from crosses made in East Africa. Most South American cultivars evaluated in Ivory Coast proved susceptible, which has been explained by their lack of co-evolution with ACMV. However, some South American cultivars have shown adequate levels of resistance to ACMV in West Africa (Fargette et al., 1996), which suggests that additional introductions from South America should be evaluated for ACMV resistance.Since the middle of the 20 th century, different geminiviruses transmitted by B. tabaci have been reported to attack common bean (Phaseolus vulgaris L.) in the Americas (Morales, 2000). Bean golden mosaic virus (BGMV) was first noticed in 1961, in Brazil (Costa, 1965). This virus became the most limiting problem of common bean production in Brazil, Argentina and Bolivia, within the next two decades, due to the exponential expansion of soybean, a preferred breeding host for B. tabaci in the region. A similar begomovirus, originally thought to be BGMV, but now recognized as Bean golden yellow mosaic virus (BGYMV), infects common bean in southern Mexico, Central America and the Caribbean region (Morales, 2000). Bean dwarf mosaic virus (BDMV), first described in Brazil (Costa, 1965), became economically important around 1980, when it caused the loss of over 40,000 hectares of common bean in northwestern Argentina (Morales, 2000). Bean calico mosaic virus (BCaMV) is a geminivirus transmitted by B. tabaci to common bean in northwestern Mexico (Brown and Bird, 1992). This begomovirus was initially thought to be BGMV, but it was later shown to be a distinct virus species related to Squash leaf curl virus (Loniello et al., 1992). BCaMV caused widespread epidemics in common bean plantings in the states of Sinaloa and Sonora, Mexico (Morales, 2000). Initial attempts to breed common bean for BGMV resistance in Brazil were disappointing. Pompeu and Krantz (1977) initially selected symptomless individual plants within field populations of three common bean cultivars: Rosinha G2, Aetê 1, and Carioca 99, under natural BGMV pressure. However, the selected lines were shown to be susceptible to the virus in subsequent evaluations (Costa, 1987). Some of these selections, namely Rosinha G2/69 and an individual selection of Carioca 99, were used in subsequent breeding programs. This observation demonstrates the limited value of selecting individual plants within susceptible plant populations, where some susceptible plants usually escape virus infection despite high B.tabaci/begomovirus pressure. Another plant improvement strategy pursued in Brazil was the use of radiation to create genotypic mutants resistant to BGMV (Tulman-Neto, 1979). One of these common bean mutants, TMD-1, showed partial resistance to the virus but its yielding ability was poor, and its use in conventional breeding programs did not produce any outstanding progenies.A parallel breeding project was initiated in Guatemala, in 1974, to solve the bean golden yellow mosaic problem in Central America, Mexico and the Caribbean. This project was financed by the Rockefeller Foundation, USAID, UNDP and, later on, by the Swiss Development Agency (COSUDE). Approximately, 7,000 germplasm bank accessions of common bean were evaluated under natural disease pressure in southeastern Guatemala, but no immune genotypes were observed. Among these accessions, a group of black-seeded genotypes, namely Turrialba 1, Porrillo 70, Porrillo Sintetico, ICA-Pijao and ICA-Tui, was selected for their better performance under natural BGYMV pressure. Due to their tolerance (acceptable yielding ability despite expressing noticeable foliar yellowing) Porrillo Sintetico and ICA-Pijao were ultimately selected, together with Turrialba 1, as potential parental materials (Yoshii et al., 1979). The best lines derived from different crossed between the selected parental genotypes: DOR 41 (Porrillo Sintético X ICA-Pijao), DOR 42 (ICA-Pijao X Turrialba 1) and DOR 44 (sister line from the cross ICA-Pijao X Turrialba 1), were soon released in Guatemala as cultivars ICTA-Quetzal, ICTA-Jutiapan and ICTA-Tamazulapa, respectively (Yoshii et al., 1980). In the absence of pesticide applications, ICTA-Jutiapan, ICA-Pijao and the local black-seeded cultivar Rabia de Gato, sustained yield losses of 38%, 53% and 86%, respectively.Despite initial successes in developing BGYMV-resistant common bean genotypes, two constraints remained. First, yield losses for the DOR lines fluctuated proportionally with viruliferous B. tabaci populations. Second, there was no progress in breeding for BGYMV resistance in red-seeded common bean cultivars. Red-seeded beans are in great demand in Costa Rica, Nicaragua, Honduras, and El Salvador (Morales, 2000). This situation persisted for some years, with only some agronomic improvements to the first generation of black-seeded DOR lines, such as the recovery of 'earliness' in ICTA-Ostua (still grown in Guatemala) and Negro Huasteco-81, released in the Gulf region of southern Mexico (Yoshii, 1982).A serendipitous event in the mid 1980s, changed this situation. A common bean line improved at CIAT, Colombia, for upright architecture (A 429), showed an unexpected high level of BGYMV resistance under field conditions in Guatemala. Evaluation of the parental materials originally selected to produce A 429, did not reveal genotypes possessing a high level of resistance to BGYMV. However, one parent, a common bean genotype belonging to the Mexican Durango race (Singh et al., 1991), did not react with the characteristic yellowing when inoculated with BGYMV, despite being systemically affected by plant malformation and flower abortion caused by the virus. This Mexican common bean genotype, called Garrapato, and another parent of A 429, the Mesoamerican black-seeded cultivar Porrillo Sintetico, were associated with the high level of BGYMV resistance found in A 429 (Morales and Niessen, 1988). A 429 soon became one of the most widely used sources of begomovirus resistance in common bean breeding programs in Latin America (Singh et al., 2000). The gene bgm-1 was shown to condition mosaic resistance in Garrapato (Morales and Niessen, 1988;Blair and Beaver, 1993a).Later, a red kidney line, DOR 303, was also selected for its high level of BGYMV resistance under field conditions. An evaluation of the parental materials selected to produce this line, revealed the presence of Red Kloud, a red kidney genotype of Andean (race Nueva Granada) origin (Singh et al.,1991), besides the traditional black-seeded source of resistance, Porrillo Sintetico. In subsequent tests, Red Kloud was shown to be tolerant to BGYMV, producing flowers and pods despite striking mosaic/yellowing foliar symptoms (Morales and Niessen, 1988). Porrillo Sintetico has considerable vigor, which often allows plants to escape infection, particularly when infection occurs after the first 2-3 weeks following emergence of the plants (Morales and Niessen, 1988). Thus, a second favorable interracial recombination of Mesoamerican and Andean genes produced a red-seeded common bean genotype possessing high levels of BGYMV resistance. The BGYMV-resistance gene in DOR 303 was later identified as bgm-2 (Velez et al., 1998). Some Andean common bean genotypes also possess genes for resistance to the severe pod malformation induced by BGYMV in susceptible cultivars (Morales and Niessen, 1988). Molina and Beaver (1998) reported the presence of a dominant gene, Bgp, responsible for this trait, but, which seemed to require the presence of bgm-1 for expression.Based on the above findings, an extensive search for new sources of resistance was launched using the common bean collection maintained at CIAT. A selection of diverse grain types was evaluated in different countries of Latin America, from Argentina to northern Mexico, to identify different mechanisms of virus resistance and sources of resistance to begomoviruses infecting common bean in this region. At least 10 new sources of resistance were identified in the P. vulgaris accessions possessing grain colors different than black. The most interesting bean begomovirus-resistance mechanisms were disease escape, low mosaic expression, hypersensitivity, low flower abortion, and low pod malformation (Morales and Niessen, 1988). The general combining ability of these traits was highly significant (P<0.01) and greater than values for specific combining abilities, suggesting that selection for the various traits was possible in true breeding lines, due to significant additive genetic variance (Morales and Singh, 1991). In subsequent studies, 83 recombinant inbred lines (RIL) selected from a population generated from the cross between a Mexican (Pinto UI 114) and a Mesoamerican (ICA-Pijao) common bean genotypes, were evaluated for their reaction to BGYMV. Of these lines, 11 did not show symptoms, 24 lines had mean disease incidence of 8%, 28 lines had a disease incidence of 26.6% and developed intermediate mosaic symptoms, and 20 lines were more susceptible than either of the parents. Thus, values for the 83 RILs transgressed the reactions observed for the two parents, showing both higher and lower levels of disease incidence and mosaic expression. These results suggested that the BGYMV-resistance genes in the two parental genotypes were different and complementary to each other and, consequently, that gene pyramiding might be a viable breeding strategy. Subsequent interracial crosses produced highly resistant lines, including DOR 482 (Don Silvio), Tio Canela 75, and Turbo III., which have become cultivars in different countries of Central America. Begomovirus replication in these improved genotypes was highly restricted according to nucleic acid hybridization tests performed on these line (Morales, 2000). This type of resistance has also been associated to quantitative traits (QTLs), which reduce symptom expression (Miklas et al., 1996). On the contrary, common bean genotypes derived from intraracial populations (e.g. DOR 41, DOR 390, DOR 500) usually behave as moderately resistant under severe whitefly/virus pressure (Singh, et al., 2000). Some of the sources of resistance to BGMV and BGYMV identified in P. vulgaris are also effective against distantly related begomoviruses of common bean. For instance, Azufrado Higuera is a new cultivar developed from Nueva Granada (Andean) sources of resistance originally identified in South America, released in northwestern Mexico to control Bean calico mosaic virus (Morales, 2000).The boom of non-traditional export crops has taken place in most of the agricultural regions affected by whitefly-transmitted geminiviruses around the world. One of the crops predominant these regions is tomato (Lycopersicon esculentum Mill.). This is a highly profitable but costly crop due to the great amount of chemical inputs usually required to protect tomato from the various pests and diseases that attack this crop.The well documented abuse of pesticides associated with tomato production, has greatly contributed to development of pesticide-resistant B. tabaci populations capable of vectoring over 20 different begomoviruses that attack tomato in tropical and subtropical regions of the world (Polston and Anderson, 1997;Zeidan et al., 1999).Although most of the begomoviruses that attack tomato are found in the New World, relatively little breeding work has been done to minimize the severe damage that these whitefly-transmitted geminiviruses cause to tomato plantings in this region. Moreover, despite its tropical American origin, most of the tomato breeding work has been conducted in temperate countries. Hence, tomato growers in tropical America have relied mainly on pesticides and imported tomato varieties and hybrids resistant to Old World begomoviruses, to control B. tabaci and the begomoviruses that infect tomato in the Americas.The situation in the Old World is different due to the severe damage caused by a group of begomoviruses collectively referred to as Tomato yellow leaf curl virus (TYLCV) in the Mediterranean region, the Middle East, north Africa, central Africa and southeast Asia (Czosnek and Laterrot, 1997). One of these TYLCV variants accidentally introduced in the last decade into the Americas (Nakhla et al., 1994;Polston et al., 1994), where it has already caused millions of dollars worth of industrial and fresh tomato production losses.Early efforts to identify sources of resistance to TYLCV within L. esculentum, only revealed the existence of some moderately resistant or tolerant genotypes (Cohen and Harpaz, 1964;Nitzany, 1975;Abu-Gharbieh et al., 1978). However, Cohen and Nitzany (1966) observed that some wild relatives of tomato, namely L. pimpinellifolium and L. peruvianum, possessed a higher level of resistance to TYLCV, although they were not immune. Crosses between L. esculentum and L. pimpinellifolium (currant tomato/accession LA 121) and genetic analyses of F 1-3 and backcross generations, indicated the existence of incomplete dominance of resistance over susceptibility, suggesting a monogenic control of resistance (Pilowski and Cohen, 1974). A dominant gene, Tylc, was later proposed for the resistance gene in L. pimpinellifolium (Kasrawi, 1989). The progenies derived from this cross showed only moderate symptoms, but their yield was markedly reduced. Nevertheless, among the Lycopersicon species, L. pimpinellifolium is one of the most compatible for crossing with L. esculentum (Picó et al., 1996).In contrast, the inheritance of tolerance to TYLCV in L. peruvianum (PI 126935) is controlled by five recessive factors, according to Pilowski and Cohen (1990). This breeding program initiated in 1977, released the commercial hybrid TY-20 in 1988. This hybrid delays symptom expression and viral DNA accumulation in infected plants, resulting in acceptable yields (Pilowski and Cohen, 1990). Other tolerant/resistant TY-lines generated by this breeding program are: TY172, TY197, TY198, and TY536 (Lapidot et al., 1997;Friedmann et al., 1998).In 1991, other wild tomato species: L. chilense and L. hirsutum, besides L. peruvianum and L. pimpinellifolium were examined for viral DNA and symptom expression following inoculation with TYLCV. Approximately 85 days after inoculation, all inoculated species were infected and had detectable levels of viral DNA, but L. chilense and L. hirsutum remained symptomless and with low levels of viral DNA (Zakay et al., 1991). The TYLCV resistance gene in L. chilense was identified as Ty-1 (Michelson et al., 1994). Resistance to this virus in L. hirsutum was dominant and controlled by more than one gene (Mazyad et al., 1982). L. hirsutum was crossed with L. esculentum, yielding tolerant and immune lines. One immune line was crossed with L. esculentum to produce the hybrid FAVI-9 or line F1-901. The immune reaction was associated with 2-3 additive genes (Vidavski and Czosnek, 1998). Another promising species evaluated for TYLCV resistance, L. cheesmanii, possesses recessive resistance to TYLCV. Breeding projects in the Mediterranean region have also selected L. cheesmani, L. peruvianum and L. pimpinellifolium to control TYLCV in this region (Laterrot, 1990, 1992, Laterrot and Moretti, 1996). Some of the TYLCV-resistant lines obtained from this project are Pimpertylc-J-13 and Chepertylc-92.Interespecific hybrids obtained from crosses between L. pimpinellifolium, L. peruvianum, and L. hirsutum, show transgressive segregation for their reaction to TYLCV, suggesting that different but complementary genes condition resistance (Kasrawi and Mansour, 1994). Muniyapa and coworkers (1991) reported that lines of L. hirsutum and L. peruvianum were resistant to another tomato geminivirus: Tomato leaf curl virus (ToLCV). The resistance mechanism in these wild species was associated with production of exudates from trichome glands on the leaf surface, in which whiteflies became entrapped (Channarayappa and Shivashankar, 1992). This is one of the few examples for which genetic resistance to a viral disease has been achieved indirectly by incorporating genetic traits against B. tabaci. Nevertheless, there is circumstantial evidence showing that different cultivars of common bean and tomato, interact differentially with B. tabaci. For instance, In Sinaloa, northwestern Mexico, the common bean cultivar Azufrado Peruano-87, had 16% more nymphs per leaf than the BCaMV-resistant common bean cultivar Azufrado Higuera (Lopez, 1996). Similar data have been obtained for tomato, although B. tabaci preference for some tomato cultivars, was not related to virus resistance/susceptibility traits in the tomato cultivars evaluated (Avilés, 1996).The crop improvement strategies described above, present interesting similarities and differences worthy of discussion. First, begomoviruses are highly infectious pathogens that cause disease and significant yield loss in most of the susceptible plant species. For example, Bean golden mosaic virus can infect more than 20,000 common bean accessions screened thus far (F.J. Morales, unpublished data). Despite the existence of tolerant or moderately resistant genotypes of cultivated plant species, plant protection specialists and breeders have been reluctant to use symptomatic genotypes as sources of begomovirus resistance. In the search for begomovirus immunity, significantly higher levels of resistance have been found among the wild relatives of the cultivated plant species. Understandably, plant breeders have used these symptomless, but often susceptible, wild species as sources of begomovirus resistance, in hopes of recovering the commercial characteristics of the susceptible cultivars, through conventional genetic improvement methods, such as backcrossing.Cassava breeders have apparently achieved higher levels of African cassava mosaic resistance. However, it is not clear whether moderate levels of ACMV-resistance are the result of the backcrossing of hybrid genotypes with moderately resistant M. esculenta genotypes, or of the expression of hybrid vigor from the original interspecific crosses with M. glaziovii. Moreover, the undesirable agronomic characteristics of these wild relatives, expressed in the resulting ACMV-tolerant genotypes, forced most African farmers to maintain the preferred ACMV-susceptible cassava cultivars, albeit at a low level. Whereas, this practice maybe desirable from the point of view of in situ conservation of genetic resources, these highly susceptible land races constitute an important source of ACMV inoculum, as suspected during the recent epidemics of African cassava mosaic in Uganda (Harrison et al., 1997). Finally, it is apparent that there are still some cassava cultivars in Africa (F.J. Morales, personal observation) and South America (Fargette et al., 1996), which may be potential sources of ACMV resistance. Until new breeding strategies are implemented, African cassava mosaic may remain \"an under-estimated and unsolved problem\" (Thresh et al., 1994).As in the case of cassava, bean breeders and pathologists soon realized, that there was no immunity to whitefly-transmitted geminiviruses in P. vulgaris. They were also aware by the late 1970s, that related species, such as P. coccineus and P. acutifolius, could contribute higher levels of resistance (Yoshii et al., 1979;Yoshii, 1984). However, these Phaseolus species belong to secondary or tertiary gene pools and, thus, crossing with P. vulgaris often results in embryo abortion (Debouck, 1991;Barcala and Ron, 1996;Dinca and Raducanu, 1997). Moreover, embryo rescue techniques were not used in the early breeding programs, and recovery of commercial grain types in P. vulgaris, is still difficult through genetic recombination, particularly from interspecific crosses. Thus, the incorporation of resistance to begomoviruses in P. vulgaris, has been primarily intraspecific. Following the discovery of tolerance in closely related black-seeded genotypes of Mesoamerican origin, in the late 1970s, no further progress seemed possible for almost a decade. Fortunately, the fortuitous discovery of non-black-seeded common bean genotypes possessing high levels of begomovirus resistance, made possible a closer examination of genetic diversity within P. vulgaris. Detailed analyses of the effect of begomoviruses on individual yield components in P. vulgaris, led to the identification of corresponding resistance traits in different gene pools and races of this legume species (Morales and Niessen, 1988). Subsequently, the genetics of these resistant traits was studied to exploit the general combining ability and additive genetic variance in races of the common bean (Morales and Singh, 1991;1993). Gene pyramiding has resulted in the development and release of common bean cultivars possessing resistance to BGMV, BGYMV, BCaMV and BDMV during the past 15 years. Currently, with improved plant tissue culture techniques, breeders should be able to expedite the introgression of useful genes from other Phaseolus spp., into common bean, including genes for resistance for begomoviruses (Miklas and Santiago, 1996;Bianchini, 1999).Tomato is a high value crop and, as such, it has had the financial support of the industrial and commercial sectors, and several agricultural research institutions. The urgency to solve the tomato yellow leaf curl problem, led to a relatively rapid and satisfactory introgression of TYLCV-resistance genes from wild relatives. However, this process has not been easy due to the complicated genetics of resistance involved in interspecific hybridization, and agronomic traits that must recovered from susceptible tomato cultivars to satisfy consumer preferences and industrial demands. Perhaps, Vidavski and Czosnek (1998) best summarized the situation of tomatoes and TYLCV as follows. \"After more than 25 years of effort, the best cultivars and breeding lines available show tolerance to the virus rather than resistance. Moreover, these tolerant cultivars need to be protected from viruliferous insects with insecticides or nets during the first months after planting\". Although these introductory remarks were used to announce the development of TYLCV-resistant and immune lines from interspecific (L. esculentum X L. peruvianum) crosses, 25 years of interspecific crossing in tomato has not significantly improved this crop more than the intraspecific breeding approach followed in the case of common bean.Many scientists have implied that begomovirus resistance is largely unavailable for most susceptible crops, probably in reference to the difficulty in identifying 'immune' plant genotypes. It is important to note that 'resistance' is a relative term, which can span a range of disease reactions from a low to a high level of symptom expression. 'Tolerance' is another term which is often misused in reference to symptom expression. This term should be used to refer to the ability of a diseased plant genotype to yield an acceptable or expected quantity or quality of product (e.g. seed, fruits, flowers, etc.). Both genetic resistance and tolerance can be found in most cultivated species affected by whitefly-transmitted geminiviruses.Selection of plant genotypes for begomovirus resistance started in Kenya as early as 1929, where some local cassava cultivars were found to be moderately resistant to ACMV. Further screening of over 100 cassava genotypes did not result in higher levels of ACMV resistance in these introduced materials, relative to the resistance available in local cassava cultivars. Hence, interspecific hybridization was attempted based on the previous successful introgression of mosaic resistance in sugarcane (Saccharum officinarum) from S. spontaneum (Nichols, 1947). This breeding strategy is still practiced without much effort to exploit all the mechanisms of 'resistance' and/or 'tolerance' that potentially exist in all cultivated plant species. The successful strategy followed to incorporate high levels of begomovirus resistance in common bean, strictly through the intraspecific recombination and pyramiding of different resistance traits found in diverse gene pools of Phaseolus vulgaris, confirms the feasibility of this approach. Moreover, the underlying mechanism of resistance (i.e. restricted virus multiplication) is similar in the three crops discussed here (Zakay et al., 1991;Fargette et al., 1996;Lapidot et al., 1997;Morales, 2000).Undoubtedly, there is both direct and circumstantial evidence indicating the existence of adequate genetic variability in the primary and secondary gene pools of most cultivated species. This genetic variability can be exploited within and between cultivated species and their relatives. Interspecific hybridization in cassava, common bean and tomato, can be utilized to breed for resistance to begomoviruses, and other pathogens and pests (Nichols, 1947;Debouck, 1991). For tomato, it is evident that the cultivars improved for TYLCV resistance, also exhibit acceptable levels of resistance to distinct New World begomoviruses infecting tomato in the Americas and Asia (Muniyapa et al., 1991;Piven et al., 1995). Another neglected but potentially valuable begomovirus control method, is the incorporation of genetic resistance to the whitefly vector, Bemisia tabaci, as it has been suggested by limited investigations in cassava (Fargette et al., 1996), common bean (Blair and Beaver, 1993b), and tomato (Channarayappa et al., 1992).Undoubtedly, utilization of the genetic diversity present in the primary and secondary gene pools of these plant species, will require both conventional and advanced crop improvement techniques, such as molecular marker assisted selection (Chavarriaga et al., 1999;Singh et al., 2000;Zamir et al., 1994).Finally, genetic engineering is the current method of choice to incorporate resistance to plant viruses into commercial crops, including cassava, common bean and tomato (Hong et al., 1996;Aragao et al., 1998;Noris et al., 1996;Duan et al., 1997). However, molecular biologists have been working for almost two decades on the transformation of plants for resistance to plant viruses, and there are only a few successful examples of commercial plant cultivars expressing a high level of resistance to begomoviruses. On the other hand, the efforts of several plant breeders, pathologists, entomologists and agronomists, using conventional breeding and virus screening techniques, has resulted in the release of a large number of begomovirus-resistant cassava, common bean and tomato cultivars. These cultivars are critical components of integrated pest and disease management programs and, more important, have greatly contributed to the alleviation of poverty in developing countries throughout the world.","tokenCount":"5186"} \ No newline at end of file diff --git a/data/part_3/9033111510.json b/data/part_3/9033111510.json new file mode 100644 index 0000000000000000000000000000000000000000..e71543a7e1ff6aa939e9dc7d627c1abdc0c34498 --- /dev/null +++ b/data/part_3/9033111510.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"ce87d2ac18eac3f7e886cd887734b92c","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/2296c662-bff4-4141-8c9e-4ec9bde0ade3/retrieve","id":"682857821"},"keywords":[],"sieverID":"960daaa2-245c-4fae-b060-6f04e4157adf","pagecount":"19","content":"Estas nuevas variedades de yuca para uso industrial en la Región Caribe Colombiana, son el producto del trabajo conjunto entre investigadores y agricultores de yuca. CORPOICA y El CIAT han decidido rendir un homenaje a los agricultores y a dos investigadoras fallecidas en el desempeño de su trabajo en pro del desarrollo del cultivo y mejora de las condiciones de vida de los productores. Dicho homenaje se hace nombrando cuatro de las variedades en su nombre así:CORPOICA-CAISELI: esta variedad se nombra en honor a tres agricultoras de yuca de la Región Caribe Colombiana. El nombre CA-IS-ELI proviene de las iniciales de Carmen Cecilia Gonzáles (CA) del municipio El Carmen de Bolívar (Bolívar); Isnelia Serra (IS) del municipio de Ciénaga de Oro (Córdoba) y Elis Margoth Gamarra (ELI) del municipio Los Palmitos (Sucre).Se han otorgado los nombres de Ginés y Verónica a dos variedades de yuca para perpetuar la memoria de Maria de Jesús (Chusa) Ginés y Verónica Mera, Coordinadora y Profesional en Ciencias Sociales, respectivamente, de la Red de Biotecnología de Yuca para América Latina y el Caribe (CBN-LAC).Ambas contribuyeron de manera importante a la difusión del enfoque de investigación participativa con los agricultores para integrar las necesidades de los pequeños productores de yuca en la planeación de la investigación y para usar herramientas biotecnológicas de bajo costo en la limpieza y multiplicación de variedades de yuca al nivel de finca.Estas mujeres profesionales perecieron en un trágico accidente aéreo el 28 de enero de 2002, cuando se estrelló el avión comercial en el cual viajaban desde Quito, sede de las oficinas de CBN-LAC, hasta Cali, sede principal de CIAT, a la altura del volcán Cumbal, en la frontera entre Ecuador y Colombia.Chusa Ginés tenía 43 años, gozaba de doble nacionalidad, española y canadiense. Antes de llegar al CIAT y a la CBN, Chusa trabajó por casi una década para el Centro Internacional de Investigaciones para el Desarrollo (CIID), en Ottawa.Chusa tenía el raro poder de contagiar a sus compañeros con unas altas dosis de optimismo. Siempre se la vio feliz y se sentía realizada como esposa y madre. Como profesional, se entregó por completo a su pasión por la biología y desde siempre se comprometió a trabajar por los más pobres del mundo.Desde el año 2000 estaba vinculada a la Red de Biotecnología, en su sede en Quito, y en varias oportunidades estuvo en Colombia compartiendo los resultados de su trabajo.Verónica tenía 36 años de edad, también era bióloga y desplegaba mucha vitalidad en las tareas que emprendía. Había nacido en Quito, capital del Ecuador, pero poseía además la ciudadanía holandesa. Era esposa y madre y con su familia compartía sueños y logros.\"Chusa y Verónica dedicaron sus vidas ayudando a la causa de los pobres y marginados en las partes más afligidas del mundo, y por ello pagaron el precio más alto\", dijo el Director General del CIAT, Joachim Voss, cuando se supo la trágica noticia.En 1986, un grupo multidisciplinario de investigadores del Instituto Colombiano Agropecuario (ICA) y del Centro Internacional de Agricultura Tropical (CIAT) realizó una evaluación de los avances de tres años del programa de yuca del ICA y encontró que el procedimiento de evaluación de nuevos clones no estaba siendo efectivo debido a que estos eran seleccionados en otro ambiente (Palmira) y luego enviados a la Región Caribe para su evaluación en centros de investigación y fincas de agricultores pero bajo el manejo del fitomejorador; los clones evaluados eran tolerantes a plagas y enfermedades y de alto rendimiento de raíces frescas; sin embargo, entre éstos, predominaban los colores claros en la epidermis de la raíz y tenían menor porcentaje de materia seca y almidón que la variedad regional. Adicionalmente, la participación de los agricultores en las pruebas en fincas se reducía al suministro del lote y a realizar labores de mantenimiento del cultivo y cosecha pero sin tener en cuenta sus criterios y preferencias. La relación de rendimiento yuca fresca: yuca seca en el secado natural de los clones seleccionados por los fitomejoradores en dichas pruebas, fluctuaba entre 3:1 y 4:1, mientras que la variedad regional rendía 2.6:1. Producto de este análisis, y teniendo en cuenta que la variedad más sembrada en la región (MCOL 2215 o Venezolana) había sido seleccionada, introducida y difundida por los agricultores sin la asistencia de investigadores, los fitomejoradores de yuca del ICA y del CIAT decidieron involucrar al productor en la evaluación y selección de clones, con los siguientes objetivos: a) Identificar en voz de los agricultores, las características de las variedades que ellos venían sembrando desde muchos años atrás, b) con base en estos, desarrollar un método que permitiera conocer, entender e incorporar los criterios de los agricultores en la selección de variedades de yuca en las etapas finales del esquema de mejoramiento, c) proveer retro-información efectiva y útil para incorporar en los programas de mejoramiento y d) presentar a los agricultores un amplio rango de alternativas de clones para que ellos, escogieran e incorporaran en sus sistemas de producción los que ellos consideraran conveniente. Producto de este replanteamiento, entre 1987 y 1991, se desarrolló la metodología denominada Investigación Participativa aplicada al Mejoramiento de la Yuca (IPMY). La aplicación de ésta metodología produjo un grupo de clones elites de aptitud para uso industrial y para el mercado fresco, seleccionados por los agricultores. De estos clones, dos fueron liberados como las variedades ICA-COSTEÑA e ICA-NEGRITA con aptitud para uso de mesa e industria. Otros clones (CM 3306-19 y CM 3555-6) a pesar de tener alto contenido de materia seca y buena estabilidad del rendimiento, no fueron liberados debido a que el color claro de la epidermis de la raíz y tuvieron poca aceptación entre los agricultores que producían para el mercado fresco. Dado su alto potencial para uso industrial, estos clones fueron conservados y liberados posteriormente con los nombres CORPOICA-COLOMBIANA y CORPOICA SUCREÑA como fuente de materia prima para la industria de alimentos balanceados para animales.El replanteamiento realizado a partir de 1986, permitió el desarrollo de nuevos clones a partir de cruzamientos planeados por los fitomejoradores de ICA y efectuados en Palmira, incluyendo los clones mas utilizados por los agricultores y los elites del mejoramiento a la fecha. Producto de estos, los clones SGB 765-2 y SGB 765-4 fueron seleccionados y liberados con los nombres CORPOICA-CARIBEÑA y CORPOICA-ROJITA como variedades aptas tanto para consumo fresco de mesa como para materia prima para la industria de alimentos balanceados para animales. A partir de 1996, la implementación del enfoque de cadena en los proyectos de yuca, permitió identificar y caracterizar a los diferentes eslabones según sus preferencias sobre la yuca. Este proyecto, financiado por el Departamento Internacional para el Desarrollo del Reino Unido (DFID), permitió involucrar estos criterios en la selección de nuevos materiales. Fue así como clones seleccionados por CORPOICA y CIAT, fueron sometidos a evaluaciones por parte de productores, intermediarios, picadores-secadores, productores de almidón y consumidores de hogar. Producto de este trabajo, se entregan las variedades CORPOICA-CAISELI, CORPOICA-ORENSE, CORPOICA-TAI, CORPOICA-VERÓNICA y CORPOICA-GINÉS. como nuevas opciones para la producción y desarrollo agroindustrial del cultivo de la yuca en la Región Caribe.Estas variedades son el producto de selecciones hechas por agricultores, intermediarios, secadores, productores de almidón, consumidores de hogar y los fitomejoradores en un proceso de investigación participativa que ha demostrado su efectividad en la reducción del tiempo de obtención de una variedad.CORPOICA -CAISELI es producto de una hibridación mediante polinización abierta del clon SM 1278-2 realizada en CIAT Palmira en el año 1994. Esta nueva variedad corresponde a la selección 2 en la primera generación clonal de la F1 de la familia SMB 2446 en el año 1997 en El Centro de Investigaciones CORPOICA-El Carmen, ubicado en el municipio de El Carmen de Bolívar. El clon SM 1278-2 fue seleccionado de una hibridación mediante polinización abierta de la variedad ICA-COSTEÑA, realizada en el CIAT Palmira en el año 1989. El nombre de esta variedad es un homenaje a tres agricultoras de yuca de la Región Caribe Colombiana y se construyó con las iniciales del nombre de cada una de ellas así: CA: Carmen Cecilia Contreras del Carmen de Bolívar (Bolívar); IS: Isnelia Serra de Cienaga de Oro (Córdoba) y ELI: Elis Margot Gamarra de los Palmitos (Sucre).CORPOICA -ORENSE es producto de una hibridación realizada en el CIAT Palmira en 1994 utilizando como madre el clon BRA 384 y como padre la variedad ICA-NEGRITA. Esta variedad fue seleccionada como la selección # 2 de la familia CM 9021 en el año 1997 en El Centro de Investigaciones CORPOICA-El Carmen, ubicado en el municipio de El Carmen de Bolivar. El clon MBRA 384 es un clon originario de Brasil e introducido a CIAT el año 1982 con el nombre local Brasilero \"Cacau 4\". CM 3306-4 es un clon del híbrido entre el clon regional \"Ayapelana\" (MCOL 22) utilizado como madre y un clon padre seleccionado del cruzamiento entre MCOL 655 (Conocida como \"Guajiba\" en el Meta) y MCOL 1515 (Colectado en el Cesar). El nombre ORENSE corresponde al gentilicio de las personas originarias del municipio yuquero de Cienaga de Oro, por lo que este nombre le rinde homenaje a todos los agricultores de yuca de ese municipio.CORPOICA -CAISELI. Planta: De porte intermedio a alto, alcanzando una altura promedio de 2.12 m. Tallo: De color rojizo, la planta produce en promedio 2 tallos sin ramificaciones. De entrenudos medianos y nudos prominentes. El color de la corteza es verde claro y la epidermis café claro en la parte interna y rojizo en la parte externa (Ver foto 1). Hojas: Son de color verde amarillento con pubescencia densa (Ver foto 2). El lóbulo central es de forma lanceolada, pecíolos medianos de color rojo intenso con manchas verde-amarillentas. Las hojas y pecíolos del cogollo son de color verde claro. En el tercio superior de la planta los estipulas son bilobuladas de tamaño intermedio. Raíces: De color café oscuro en la epidermis, con corteza ligeramente morada y pulpa blanca; forma cónicacilíndrica, con tamaño intermedio y pedúnculo corto (Ver foto 3).Planta: De porte alto, alcanzando una altura promedio de 2.6 m. Tallo: De color gris-plateado, normalmente la planta produce entre 1 y 2; de entrenudos cortos, corteza verde oscuro, la cara interna de la epidermis es de color crema. Bajo condiciones de la Región Caribe, el tallo ramifica entre dos y tres veces y la primera ramificación se presenta a una altura de 1.39 m. (Ver foto 4) Hojas: Son de color verde oscuro, las del cogollo son pubescentes, de color morado claro. El lóbulo central es de forma lanceolada, los pecíolos son de tamaño largo, en el tercio medio e inferior de la planta son de color verde-amarillento con betas de color morado en sus extremos; en el tercio superior, las betas son de color morado intenso a lo largo del pecíolo. En el tercio superior de la planta los estipulas tienen cuatro lóbulos de tamaño intermedio (Ver foto 5). Raíces: Con epidermis de color blanco-crema en su superficie exterior y crema en la interior, corteza de color blanco crema, pulpa blanca; la forma es cilíndrica y el pedúnculo de tamaño intermedio a largo (Ver foto 6). Estas evaluaciones se hicieron con productores de yuca, intermediarios entre el productor y el mercado regional, consumidores de hogar en las ciudades de Sincelejo, Corozal, Montería, Cienaga de Oro y El Carmen de Bolívar, picadores-secadores y extractores de almidón.Entre los diez mejores clones para todos los evaluadores de la cadena, CORPOICA-ORENSE fue la más sobresaliente al ser preferida entre las dos mejores por consumidores de hogar, picadores-secadores, fitomejoradores y agricultores hombres. Las agricultoras la consideraron como la quinta mejor, fue novena para los almidoneros (Ver Tabla 1).CORPOICA -CAISELI fué preferida como la mejor por los consumidores de hogar y los fitomejoradores; los intermediarios la prefirieron como la segunda y en dos localidades los consumidores la catalogaron como la cuarta (Ver Tabla 1).CORPOICA -CAISELI y CORPOICA -ORENSE en las pruebas de campo mostraron resistencia moderada a los insectos Trips, Mosca Blanca y Chilomima; al ácaro verde del cogollo y a la enfermedad conocida como chamusquina, quemazón, seca o Bacteriosis (Ver Tabla 2).Estas evaluaciones se realizaron en lotes comerciales manejados por los agricultores en el Carmen de Bolívar (un sitio), Cienaga de Oro (tres sitios), Cereté (un sitio) y el centro de investigaciones Turipaná. En los mapas 1, 2 y 3 se presentan los ambientes óptimos para las dos variedades en los departamentos de Córdoba, Sucre y Bolívar.Para rendimiento de raíces frescas y materia seca en toneladas por hectárea (t/ha), CORPOICA -CAISELI presentó los mejores rendimientos comerciales tanto de raíces frescas como de materia seca en la localidad de Cereté, confirmando su mejor comportamiento en ambientes con mejores condiciones de suelo y óptima precipitación. Su rendimiento en los ambientes menos favorables (Cienaga de Oro y Carmen de Bolívar) fue bastante aceptable, superando al testigo comercial ICA-COSTEÑA. Entre tanto, CORPOICA -ORENSE presentó un rendimiento promedio de raíces frescas y de materia seca 122% y 115% respectivamente superior a la variedad ICA-COSTEÑA utilizada como variedad de buenos rendimientos y de amplio uso en la industria de alimentos balanceados para animales (Ver Tabla 3).En cuanto a la relación de conversión de yuca fresca a yuca seca en pisos de secado natural, en tres localidades de la Región Caribe, (Carmen de Bolívar, Cienaga de Oro y Cereté), cosechadas a los nueve (9) meses, CORPOICA -CAISELI y CORPOICA -ORENSE, superaron a ICA-COSTEÑA (Ver Tabla 4).En la produccion de almidón seco, extraído de raíces frescas en una empresa comercial en la localidad de Cienaga de Oro, cosechadas a los nueve (9) meses, CORPOICA -CAISELI superó ampliamente a la variedad testigo ICA-COSTEÑA; es decir con la nueva variedad CAISELI, se necesitaron en promedio tres kilos de raíces frescas para producir un kilo de almidón seco; mientras que con la variedad testigo se necesitaron en promedio siete kilos. La variedad CORPOICA -ORENSE presentó una relación de conversión inferior, pero fue muy similar a la de la variedad testigo comercial (Ver Tabla 4). Estas variedades son el resultado de la evaluación y selección de diferentes clones de yuca realizadas por los fitomejoradores de CORPOICA-CIAT, con el apoyo de las Secretarias de Agricultura de Antioquia y Córdoba, UMATAS y entidades no gubernamentales, y la participación de y procesadores de yuca en la región Caribe.CORPOICA -TAI. Esta variedad (liberada en Tailandia como RAYONG 60, en 1987) fue introducida con el código MTAI 8 por CIAT en 1986. Este clon proviene del cruzamiento, realizado en Tailandia, entre la variedad colombiana MCOL 1684 y la variedad regional Rayong 1. El nombre TAI hace alusión a las iniciales del país de donde se hizo la introducción de este clon (Tailandia) y porque dicho nombre se ha popularizado entre los agricultores que han participado en el proceso de evaluación en las diferentes pruebas comerciales que se establecieron en la región caribe.Esta variedad es producto de una hibridación realizada en el CIAT en el año1983 utilizando como madre el clon MCOL 2207 y como padre el clon SM 301-3 obtenido por CIAT. Esta variedad corresponde a la selección del genotipo identificado con el número 1 de la familia CM 4919, en la primera generación clonal de la F1 en 1984 en Palmira y Santo Tomas (Atlántico). El clon MCOL 2207 corresponde a la variedad regional Enanita, sembrada en la Costa Norte de Colombia. El Clon SM 301-3 corresponde a la selección 3 de la familia SM 301, realizada en CIAT. El nombre VERÓNICA es en memoria de Verónica Mera (q.e.p.d.) profesional en Ciencias Sociales de la Red de Biotecnología en Yuca para América y el Caribe (CBN-LAC) CORPOICA -GINÉS. Esta variedad es producto de una hibridación realizada en el CIAT en el año 1983 utilizando como madre el clon MCOL 1468 y como padre el clon MVEN 25. Esta variedad corresponde a la selección del genotipo identificado con el número 1 de la familia CM 4838, en la primera generación clonal de la F1 en 1984 en Palmira y Santo Tomas (Atlántico). El clon MCOL 1468 es una variedad conocida con el nombre de Mantiqueira en Brasil y liberada en Colombia para los Valles Interandinos con el nombre de Manihoica P-11. MVEN 25 es una variedad venezolana amarga introducida a Colombia por el CIAT. El nombre GINÉS es en memoria de María de Jesús (Chusa) Ginés (q.e.p.d.) coordinadora de la Red de Biotecnología en Yuca para América y el Caribe (CBN-LAC)Planta: De porte medio a alto, alcanzando una altura promedio de 2.00 m. (Ver Foto 7).Tallo: Color externo verde grisáceo, corteza del tallo (colénquima) verde claro, epidermis color crema. Bajo condiciones de la costa Atlántica, el tallo ramifica a los 1.20 m y en condiciones de Urabá a 0.90m.Hojas: Son de color verde claro, ápices pubescentes verde oscuros; el lóbulo central es de forma lanceolada, pecíolos verdes con manchas rojizas en el extremo distal y proximal. Color del cogollo verde morado con pubescencia.Raíces: De color blanca a crema, corteza de color blanca o crema y pulpa crema, tiene forma cónica cilíndrica con pedúnculo corto. Las raíces de esta variedad poseen alto contenido de cianuro en la pulpa. Tallo: La planta genera uno ó dos tallos sin ramificaciones. De entrenudos medianos y nudos medianamente prominentes. El color externo del tallo café claro y de la corteza en verde claro. La epidermis café claro en la parte interna, en tanto que la parte externa presenta igual color pero con visos grisáceos.Hojas: Son de color verde oscuro, con ápices verde amarillentos con pubescencia densa. El lóbulo central es de forma lanceolada, pecíolos largos de color verde con pigmentación rojiza con distribución irregular a lo largo de este.Raíces. De color café oscuro en la epidermis, con corteza color crema y pulpa amarilla de forma cónicacilíndrica y tamaño intermedio, pedúnculo que va de corto a medio. Raíces amargas y con producción muy uniforme en forma y tamaño.Planta: De porte intermedio a alto, alcanzando una altura promedio de 2.07 m. (Ver Foto 9).Tallo: La planta genera cuatro niveles de ramificación. De entrenudos medianos y nudos prominentes, color externo Gris y color de la corteza (colenquima) verde oscuro.Hojas: Son de color verde amarillento con pubescencia densa. El lóbulo central es de forma Elípticalanceolada, pecíolos de color rojizo con manchas verdes.Raíces: De color café oscuro en la epidermis, con corteza blanca o crema y pulpa blanca. Presenta forma cónica, con tamaño intermedio y pedúnculo corto. Raíces amargas por su alto contenido de cianuro en la pulpa. 2.2.3.1. Rendimiento de raíces en fresco, materia seca e índice de cosecha de las variedades en diferentes ensayos preliminares de rendimiento desde 1995 hasta 1999El rendimiento promedio para peso fresco de raíz para las variedades fue superior al 38% con relación a la variedad VENEZOLANA (ver Tabla 5). Para contenido de materia seca en las raíces (porcentaje) no se observaron diferencias significativas entre las variedades CORPOICA-TAI, CORPOICA-VERÓNICA Y CORPOICA-GINÉS, cuando comparadas con las variedades ICA-COSTEÑA, ICA-NEGRITA, CORPOICA-COLOMBIANA y la variedad regional VENEZOLANA. El contenido de materia seca (t/ha) para las variedades fue superior al 40% comparado con la variedad regional VENEZOLANA. CORPOICA-TAI presenta el mejor promedio con 10 t/ha, seguido de las variedades CORPOICA-VERÓNICA con 7.78 t/ha y CORPOICA-GINÉS con 7.51 t/ha. Las variedades MVEN 25 y CORPOICA-COLOMBIANA, también presentaron buenos niveles de producción de materia seca equivalentes a 7.43 t/ha y 6.94 t/ha, respectivamente.Tabla 5. Resultados de la evaluación de las variedades en ensayos de rendimiento desde 1995 hasta 1999. En la región de Urabá (Cribe húmedo), CORPOICA-TAI y CORPOICA-GINÉS tuvieron rendimientos promedios de raíces en fresco superiores a 30 t/ha y materia seca superior a las 10 t/ha, pero inferiores a las variedades CORPOICA-ROJITA, CARIBEÑA y COLOMBIANA (ver Tabla 7). Entre tanto, CORPOICA-VERÓNICA aunque superó ampliamente a las otras dos variedades, presentó rendimientos similares a tres de las variedades utilizadas como testigo. En general, las variedades CORPOICA-VERÓNICA, ROJITA y CARIBEÑA resultan ser muy buenas opciones para la región de Urabá por la alta producción de materia seca, superior a 14 t/ha. Las variedades CORPOICA-VERÓNICA y CORPOICA-TAI, presentan buena estabilidad promedio para producción de raíces frescas, a través de ambientes (ver Figura 1). CORPOICA-VERÓNICA se comporta mejor en ambientes con condiciones óptimas de suelo y clima. En ambientes menos favorables las variedades CORPOICA-GINÉS y CORPOICA-TAI presentaron los mejores rendimientos promedios. CORPOICA -TAI, CORPOICA -VERÓNICA y CORPOICA -GINÉS, han mostrado en las pruebas de campo resistencia moderada a los insectos Trips, y Chilomima; al ácaro verde del cogollo y a la enfermedad conocida como chamusquina, quemazón, seca o bacteriosis (Ver Tabla 8). La variedad CORPOICA-TAI, presenta una susceptibilidad moderada a la bacteriosis por lo que se recomienda para ambientes secos de la Región Caribe, en donde se logran producciones promedias de 25 t/ha de raíces frescas. Las tres nuevas variedades presentaron una clara ventaja en el rendimiento comercial de raíces frescas sobre los testigos. En el caso de la relación de conversión a yuca seca, los materiales nuevos presentaron un comportamiento similar a las variedades que están en la producción (Testigos). Este comportamiento los convierte en nuevas opciones para ampliar la variabilidad de opciones para los productores de yuca tanto para el mercado de mesa en fresco como para el uso en la industria de alimentos balanceados para animales (Ver Tabla 9).","tokenCount":"3520"} \ No newline at end of file diff --git a/data/part_3/9041290328.json b/data/part_3/9041290328.json new file mode 100644 index 0000000000000000000000000000000000000000..3b55d3ece08745b8dbc7e918b1b790055f8581d8 --- /dev/null +++ b/data/part_3/9041290328.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"75eced710ae44698973a39b23d420cb7","source":"gardian_index","url":"https://www.uni-hohenheim.de/mas/documents/COUPLING/Arnold_CouplingVerification.pdf","id":"386573710"},"keywords":[],"sieverID":"e2d57e5b-91ee-4ae0-a9ef-0bb7266d897b","pagecount":"11","content":"1 Running the coupled model as WASIM-ETH standalone applicationDuring the calibration of both MPMAS and WASIM-ETH , it became apparent that both model components need to be run and calibrated as standalone applications: scientists feel more comfortable with the software of their expertise, and the exchange of data considerably complicates model runs, and undermines model transparency.Thus, we have developed a method to run WASIM-ETH as standalone application: Input data on land use and irrigation are first generated in a coupled run, and then calibrated and investigated further in standalone mode. This allows publication in disciplinary journals, but also technical verification of the coupling setup: If external forcing is used from data exchanged in a coupled run, then model results in standalone mode should be equal to results from a coupled run. Finally, we run the model in multiple runs:1. In standalone run, without external forcing, as Spinup-Run (see Sec. ?? on page ??). This spinup is used to stabilize the hydrological model numerically. Model data from the last time step is stored, and used to initialize all further runs.2. Then, a fully coupled run is used to create the dynamic land use scenario, including irrigation by farm agents. Alternatively, land use may be \"controlled\" or externally fixed sector-wise: via some Excel sheets, land use is defined for each sector. For each soil type of each sector, MPMAS land use activities are defined. Irrigation is determined by \"typical\" water requirements, in a way that water suffices for 100% irrigation.3. The data from the coupled run is processed: monthly output files (statistic files and inflows) are pasted together for the standalone application. Also, an irrigation I N A T E 5. After the WASIM model was re-calibrated, it can be re-run in coupled mode: Thus, the control file template has to be updated to all changes, by hand.More detail on the technical solution is given in section 22 Preparing and running a WASIM-ETH standalone application after a coupled runAs motivated and summarized in section 1 on page 1, is is both usefull and necessary to run a complex coupled model as standalone application, with the same data that was used in a single run. This chapter is a technical, step-by-step description how to create WASIM-ETH input data that allow standalone runs. Technically, the following steps have to be taken:1 A script is provided to do all these steps, and consistent directories are already included and explained step-by-step (Appendix ??).This section aims at technical verification of the coupling setup, in the sense that computer source code does what its supposed to do. We show that the technical realization of the coupling does not influence model outputs beyond deviations that we intentionally do for reasons of runtime. Methodologically, we create a standalone WASIM model run with the same external forcing as created in the coupled run, and compare it to the \"pasted\" outputs of the coupled model, which runs at monthly time steps.Model scenario used We specified land uses as shown in figure 1. Most areas are under staple crops, but the area also contains rice, some horticulture and fruit trees. Irrigation methods are furrow and drip irrigation (fig. 2). Average daily irrigation varies between 2 and 5 mm per day: Technical realization WASIM is re-started every month from a memory dump, then runs for one month without irrigation within the research area, to assess water availability. In the end of the month, the memory is dumped to files, and outputs are evaluated. Water availability in the rivers is analyzed: From river flows, the value of all water rights are determined, and an actual quantity of water is computed and attributed to farmers. Based on the farmer's water endowments, the MPMAS model determines the amount of irrigation water they apply to every grid cell, and a map is passed to the WASIM model (in [l/s]). For the same month, the hydrological application is run for a second time, now with full irrigation as chosen by farmers. The first \"dry\" run is initialized from \"dry-run-data\" of the previous month, and \"irrigation runs\" are initialized with last-month's irrigation run. Thus, the soil water content is very different in both runs, as the \"dry-run-scenario\" shows the system without irrigation.When the irrigation period is over, we decided to continue the model only in dry-run-mode. After finishing the coupled application, the monthly WASIM outputs (inflows, abstractions and statistic files) from all irrigation runs are pasted together into full-run files. During the wet winter months where no irrigation takes place (April -September), we use dry-run-outputs. This results in a sudden discontinuity of soil moisture from irrigated, wet soil during March, to the driedout soils in April. This shift is abrupt in the coupling setup, but smooth when running the standalone model: here, soils slowly dry out during end of summer,until winter rainfall starts. At the beginning of the cropping period, the outputs are again equal, as soils have returned to their \"natural\" moisture.The graphs in the annex show three types of variables as output in statistic files. The first type is data generated internally in WASIM-ETH , from external input data and before any dynamics. This type of data includes the spatial map of rainfall as interpolated from measurements (see fig. 3), and likewise air humidity, solar radiation, and wind speed. The statistic file generated from the coupled run (\"glued\"' or \"pasted\" together) is exactly the same as the one generated in standalone mode. The second type of outputs is the one controlled externally during the coupling, mainly through the irrigation table and land use. Figure 4 shows the amount of daily irrigation water that was taken from surface water, averaged over a complete sub basin. This value corresponds to the input table of the control file (see paragraph on model scenario). The outputs do not correspond perfectly, as only a part of the sub basin area is irrigated, and the unit of the statistic file is \"average irrigation water abstraction per spatial unit of the full sub basin\". In addition, the coupling setup deviates from the standalone setup during the first day of every application. The relative change ( ∆q irr q irr, coupl ) is very large on this day due to division with zero. The third type of outputs are \"real\" or dynamically computed outputs, such as fluxes, moisture levels, and groundwater recharge. The strongest deviation between both model runs is observed, as expected, in April when the coupled model uses dry-run data. Figure ?? shows the time development of soil moisture in the top meter. In the standalone run, the \"real\" development of soil moisture is reproduced. The coupled run strongly under-estimates soil moisture in April, as dry-run data are used. This error converges to zero at the end of the wet period (September). This phenomenon also translates into direct runoff data (fig. 6), as water during April is absorbed by the dry soil.A Graphs ","tokenCount":"1149"} \ No newline at end of file diff --git a/data/part_3/9054601638.json b/data/part_3/9054601638.json new file mode 100644 index 0000000000000000000000000000000000000000..d0e6820b9c26c312a9919457cb231feb0061136d --- /dev/null +++ b/data/part_3/9054601638.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"572a947a9aed3fe07c5f14a07bfba6d3","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/2096e126-5e94-44e8-a351-08cf4db8a06c/retrieve","id":"-465141779"},"keywords":[],"sieverID":"f57fc1ab-8777-4f41-9404-7396ff0be97e","pagecount":"28","content":"L'agriculture entre dans les négociations gingembre Une épice en vogue tÉlÉDÉteCtiOn Si loin, et pourtant si proche in te rv ie w Da vid Mw an gi Mi an o, de l'I ns tit ut de re ch er ch e ag ric ol e du Ke ny a (K AR I) N°156 décembre 2011-jaNvier 2012 le magazine du développement agricole et rural des pays aCPUne variabilité climatique croissante a des répercussions profondes sur l'agriculture. S'adapter au changement climatique est donc une priorité pour les petits exploitants. Ils doivent certes contribuer à atténuer les effets de ce changement mais les efforts d'adaptation et la sécurité alimentaire des pays ACP ne doivent pas en souffrir. Si les scénarios sur le climat futur sont pessimistes, on peut toutefois espérer que l'agriculture se montrera à la hauteur du défi. Les agriculteurs savent s'adapter et, vu les faibles rendements actuels et l'importance des pertes post-récolte, cela créera même une dynamique pour améliorer la production alimentaire. S'adapter impliquera d'utiliser des variétés culturales plus résistantes aux changements climatiques et de recourir davantage à la collecte des eaux de pluie. Les éleveurs devront envisager de modifier le régime alimentaire de leur bétail et d'améliorer la gestion des pâturages. Dans certaines régions, il faudra intensifier la culture sous abri. Enfin, il conviendra d'améliorer la gestion des risques, par le biais de systèmes d'assurance et des TIC, les téléphones portables notamment, qui facilitent l'accès des agriculteurs aux prévisions météorologiques ou permettent le versement de leurs indemnités d'assurance. Le financement des actions liées au changement climatique pourrait donner une impulsion majeure à l'agriculture et aider les agriculteurs à renforcer leur résilience. Quand le cadre politique est favorable et quand les mesures incitatives sont là, les exploitants répondent toujours présent. Pour autant, ne sous-évaluons pas la gravité de la situation. Si les négociations restent léthargiques et si les engagements à réduire les émissions de gaz à effet de serre demeurent théoriques, les températures mondiales atteindront des niveaux qui rendent imprévisible l'avenir de l'agriculture. Une adaptation progressive ne suffira pas.elon un scénario optimiste, les températures mondiales pourraient augmenter de 2 °C d'ici 2100 et provoquer une remise en cause radicale des pratiques agricoles. Face au changement climatique, l'agriculture est confrontée à un double défi : elle va devoir s'adapter si elle veut nourrir une population qui vient de passer le cap des 7 milliards de personnes ; elle va devoir atténuer son impact sur le climat si elle ne veut pas concourir à sa propre perte. L'agriculture contribue en effet fortement à l'émission de gaz à effet de serre -entre 11 et 15 % du montant total des émissions -et est la cause de 70 à 90 % de la déforestation dans le monde.Les pays en développement (PED), parmi lesquels de nombreux pays ACP, sont encore plus concernés que les pays du Nord par les évolutions du climat. En effet, tandis que ces derniers pourraient en tirer des gains de production substantiels du fait des hausses de température, les PED, en particulier ceux situés dans les régions tropicales et subtropicales, déjà en situation d'insécurité alimentaire, devraient voir leur productivité baisser considérablement pour cette même raison.L'information n'est pas nouvelle, les agriculteurs des pays ACP ont toujours dû s'adapter aux caprices du climat, mais l'ampleur des changements à venir est sans précédent et demande une réaction d'une envergure nouvelle.Deux types de réaction sont désormais clairement identifiés. L'une prend en compte les effets du changement climatique ; il s'agit de mettre en oeuvre des « stratégies d'adaptation », en modifiant profondément les modes de culture, en faisant appel aux savoirs locaux comme à la recherche et la vulgarisation, etc. L'autre s'attaque à ses causes ; il s'agit d'émettre moins de gaz à effet de serre et de restaurer ou protéger les capacités de puits de carbone des écosystèmes ; on parle alors de \"stratégies d'atténuation\".Des projets intégrés souvent initiés par les acteurs locaux, incluant adaptation face au changement climatique et développement, semblent particulièrement efficaces. Au Malawi, gouvernement, producteurs et ONG se sont ainsi investis dans la production de variétés de maïs résistantes à la sécheresse. En Tanzanie, l'Université de Sokoine développe en collaboration avec le GRET, ONG française, un projet qui, outre la fourniture d'intrants et la fabrication de semences, prévoit le développement de l'agroforesterie et d'activités rurales non agricoles ainsi que l'entretien des routes pour maintenir l'accès au marché pour les producteurs. Quant aux projets d'atténuation, ils ne manquent pas non plus, tels ces efforts de conservation environnementale qui visent à limiter ou réguler la conversion de forêts en terres agricoles non forestières.La route des négociations internationales est longue et semée d'embûches. Voici bientôt 20 ans que les gouvernements du monde ont adopté la Convention-cadre des Nations unies sur les changements climatiques (CCNUCC), lors du sommet de la Terre, à Rio de Janeiro, en juin 1992. Elle a été suivie de la première Conférence des Parties (COP), réunie en 1995 à Berlin. Adopté en 1997, le protocole de Kyoto, non ratifié par les États-Unis, a été une étape importante. Il engage par des mesures légalement contraignantes les Changement Climatique L'agriculture entre dans les négociations Pratiquer une agriculture \"intelligente\" face au climat est une nécessité vitale dans de nombreux pays ACP touchés de plein fouet par le changement climatique. Une évidence que les négociations internationales commencent seulement à prendre en compte, mais dont la mise en oeuvre est complexe.parties à réduire leurs émissions de gaz à effet de serre (GES) pour atteindre les niveaux de 1990. Cet engagement prend fin en 2012. Sa prolongation est l'un des défis pour la conférence de Durban (COP 17), qui se tient en Afrique du Sud du 28 novembre au 9 décembre 2011.L'agriculture n'a pas toujours été prise en compte dans ces négociations, bien au contraire. C'est seulement en juin 2009 qu'un groupe de contact sur l'agriculture dans le cadre des discussions sur le régime climatique post-2012 a été mis en place. C'est aussi en 2009 que le premier \"Jour de l'agriculture et du développement rural\" est organisé dans le cadre de la COP.Enfin, ce n'est que par le biais des forêts que l'agriculture finit par entrer timidement sur la scène des négociations, avec l'adoption de l'accord REDD+ sur la réduction des émissions issues de la déforestation et de la dégradation des forêts.Or, la question de l'agriculture diffère de celle des forêts. Estimer correctement son potentiel de réduction des émissions de GES est très complexe. En outre, la multiplicité des acteurs concernés (producteurs, agripreneurs, consommateurs) et des questions auxquelles ils sont confrontés (sécurité alimentaire, commerce international, etc.) fait de l'agriculture un sujet plus controversé. Enfin, dans les négociations internationales, l'agriculture a une dimension particulière du fait de sa diversité, les intérêts de producteurs basés dans les pays riches étant bien différents de ceux de pays émergents ou en développement… En décembre 2009, à Copenhague, les pays développés ont envoyé un signal politique fort, en annonçant qu'ils étaient prêts à mobiliser, d'ici 2012, 30 milliards de dollars (21,8 milliards d'euros) en ressources \"nouvelles et supplémentaires\" à répartir entre les activités d'atténuation et d'adaptation, pour les pays en développement, avec l'objectif d'atteindre un montant de 100 milliards de dollars (72,93 milliards d'euros) par an d'ici 2020. Plusieurs mécanismes sont prévus, dont le Fonds pour l'adaptation. En décembre 2010, à Cancún au Mexique, les gouvernements se sont mis d'accord pour la création, lors de la COP 17 à Durban, d'un \"Fonds vert climat\" qui servira à financer les projets visant à réduire les émissions de gaz dans les pays en développement et leur permettre de s'adapter aux effets inévitables des changements climatiques. L'agriculture ne peut qu'en être bénéficiaire.L'Afrique du Sud, où se tient la COP 17, le Malawi ou l'Éthiopie ont joué un rôle majeur pour défendre la place de l'agriculture. Mais, pour peser dans les négociations, les agriculteurs doivent se rassembler. Des réseaux se sont ainsi constitués ■ Pouvoir évaluer la contribution d'une meilleure gestion des pâturages aiderait les éleveurs à gagner de l'argent en vendant des crédits carbone. De vastes étendues de pâturages sont dégradées de par le monde. Leur remise en état pourrait éliminer des gigatonnes de carbone de l'atmosphère et améliorer la résilience au changement climatique.L'écopâturage présente un fort potentiel de piégeage du carbone atmosphérique. Jusqu'à présent, toutefois, les mécanismes de crédit carbone qui financent les projets réduisant les émissions de GES et fixant le carbone n'ont guère tenu compte de l'agriculture. Un défi majeur a consisté à trouver la façon de mesurer combien de carbone est réellement piégé dans les pâturages. La nouvelle Méthodologie de gestion durable des pâturages de la FAO offre \"un moyen fiable pour les éleveurs qui investissent dans la restauration des pâturages de prouver qu'ils piègent des quantités mesurables de carbone\", indique Pierre Gerber, spécialiste de l'élevage à la FAO. \"Être en mesure de démontrer le suivi fiable est essentiel pour les projets qui souhaitent participer aux marchés du carbone\", ajoute l'économiste Leslie Lipper. http://tinyurl.com/67ugn8t PerteS POSt-rÉCOlteEn Afrique subsaharienne, les pertes céréalières après récolte pourraient représenter 4 milliards $US (2,75 milliards €) par an. C'est ce qu'estime un rapport récent de la FAO et de la Banque mondiale. Ces pertes équivalent à la valeur des importations annuelles de céréales dans la région. L'étude Missing Food: The Case of Postharvest Grain Losses in Sub-Saharan Africa enjoint à investir plus encore dans les technologies, notamment les phytoprotecteurs et les conteneurs comme les sacs hermétiques et les silos en métal. \"La nourriture perdue pourrait satisfaire les besoins alimentaires annuels de base d'au moins 48 millions de personnes\", indique Maria Helena Semedo, sous-directrice générale de la FAO.■ Jusqu'à présent livrés à eux-mêmes à l'âge de la retraite, les planteurs mauriciens viennent de lancer leur propre plan de pension sous la tutelle du Fonds de prévoyance pour les petits planteurs [Small Planters Welfare Fund] (SPWF), afin de pouvoir continuer à percevoir un revenu décent après 60 ans. Deux plans de pension sont ainsi proposés aux 12 000 petits planteurs de l'île. Tout planteur âgé entre 18 et 55 ans et détenteur de la \"carte de planteur\" valide peut adhérer au premier plan, créé en collaboration avec une société d'assurance privée. Pour une contribution mensuelle minimale de 200 roupies (environ 5 euros), il obtient une pension, soit dès 50 ans, soit à l'âge normal de la retraite (60 ans), et ce jusqu'à son décès. Le montant de cette pension dépend de sa contribution mensuelle. Le deuxième plan, mis en place en collaboration avec le Plan national de pension de l'État mauricien, engage le gouvernement à verser 50 roupies pour chaque 100 roupies payées par le petit agriculteur. S'il décède avant ses 60 ans, sa veuve et ses orphelins obtiendront une pension. Selon Kritanand Beeharry, président du SPWF, cette initiative aidera les planteurs à vivre décemment après 60 ans, souvent fatigués par le dur labeur aux champs. mÉCaniSatiOn Opération 100 000 charrues Le gouvernement du Burkina Faso a lancé une \"Opération 100 000 charrues\", dans le but de renforcer la sécurité alimentaire du pays. L'opération vise les ménages ruraux les plus pauvres ainsi que les femmes, qui devront représenter la moitié des bénéficiaires. Les charrues seront cédées moyennant une subvention de 80 % de leur valeur, 20 % restant à la charge des receveurs. Les 100 000 charrues devraient être écoulées au cours des cinq prochaines années à raison de 20 000 par an. En finançant l'acquisition de machines agricoles, le gouvernement espère faire passer le taux d'agriculteurs mécanisés de 20 % à 75 % d'ici 2015. Actuellement, la mécanisation ne touche pratiquement que les régions cotonnières.L'Institut international de recherche sur les politiques alimentaires (IFPRI) a lancé un système d'alerte précoce sur la variabilité extrême des prix des denrées alimentaires, destiné à surveiller leurs fluctuations excessives. S'appuyant sur un modèle statistique très élaboré mis à jour quotidiennement, cet outil en ligne assure actuellement le suivi journalier de la variabilité des prix sur les marchés mondiaux de cinq produits de base -blé dur, blé tendre, maïs, riz et soja. Ce système devrait aider à déclencher les plans d'urgence nationaux et faciliter la prise de décision quant à l'utilisation des stocks d'urgence.http://tinyurl.com/5suh72u■ Le projet Coop'RAfrica, « Valoriser les plantes aromatiques et médicinales par le commerce équitable », financé par la Région Rhône-Alpes, en France, a permis à une association de femmes du district de Mbanza-Dounga, au sud de Brazzaville (Congo), de domestiquer et vendre le Lippia multiflora Moldenke, une plante de cueillette appelée bouloukoutou en kituba (langue congolaise). Cultivée sur un demi-hectare, cette plante a de multiples vertus : en décoction contre le rhume ou contre les courbatures, en enfumant des feuilles fraîches contre les moustiques. Le bouloukoutou est aussi utilisé pour le traitement de l'hypertension artérielle et son infusion est excellente pour une bonne digestion et un sommeil paisible. Les productrices perçoivent environ 30 000 FCFA (45,80 €) par mois. Elles fournissent des femmes qui le revendent en petites quantités dans des sacs de 100 FCFA (0,15 €) à 500 FCFA (0,76 €) sur les marchés de Brazzaville. Le projet Coop'RAfrica a permis de créer des groupements coopératifs agricoles et favorisé les échanges d'expérience entre les producteurs de la région Rhône-Alpes et ceux du Congo.■ On encourage les agriculteurs swazis à cultiver l'acacia noir (Acacia mearnsii), plante respectueuse de l'environnement et prisée pour son écorce. Auparavant, beaucoup des acacias cultivés étaient tordus. Les agents de vulgarisation fournissent désormais aux exploitants de nouvelles variétés, plus lucratives, développées pour leurs fûts droits et leur écorce de qualité. Les produits obtenus incluent notamment écorce à tanin, copeaux pour le papier épais et l'aggloméré, charbon de bois, piquets et bois de chauffe. L'Afrique du Sud est le principal marché d'exportation, bien qu'il y ait localement un marché florissant pour les piquets et le bois de chauffe. Pour encourager la production commerciale, le gouvernement swazi offre gratuitement des graines aux exploitants et a passé avec la coopérative sud-africaine NCT un accord qui garantit un débouché sûr à la filière. La pulpe de bois est exportée via l'Afrique du Sud vers d'autres marchés d'exportation, comme le Japon. L'acacia noir, qui fixe l'azote et prévient l'érosion des sols, est jugé respectueux de l'environnement. Il ne faut que 8 à 10 ans pour qu'un arbre soit exploitable ; la campagne à venir comprendra des replantations systématiques pour pérenniser cette culture.Coopération Sud-Sud le secteur cacaoyer du liberia, exsangue depuis la guerre civile, pourrait renaître grâce à une collaboration avec le ghana, producteur d'envergure mondiale. les deux pays ont signé un accord favorisant des activités de recherche communes. l'institut de recherche sur le cacao du ghana et l'institut central de recherche agricole du liberia procéderont à des transferts de technologie. irrigatiOnUn système d'irrigation adapté, le Bioreclamation of Degraded Land (BDL), qui combine la récupération ingénieuse d'eau de pluie à la culture de plantes supportant la sécheresse, a été implanté avec succès au Niger. Il a permis le développement d'activités de maraîchage et d'arboriculture par des femmes sur des terres dégradées, impropres à la culture. Organisées en association, ces femmes cultivent notamment des plantes traditionnelles à haute valeur ajoutée comme le gombo ou le moringa. Initié par l'Institut international de recherche sur les cultures des zones tropicales semi-arides (ICRISAT), ce système a été implanté dans trois villages de la région de Zinder en 2009 et 2010. Il doit être étendu à 50 autres villages à partir de cette année.■ Aux États-Unis, des chercheurs ont mis au point deux vaccins pour lutter contre la fièvre de la vallée du Rift. Transmise notamment par les moustiques, cette fièvre dévaste les troupeaux et menace la santé humaine. \"À l'heure actuelle, aucun vaccin approuvé ne traite cette fièvre chez l'être humain, et ceux qui existent pour le bétail sont inefficaces ou présentent de graves effets secondaires\", explique Tilahun Yilma, de l'École de médecine vétérinaire de l'Université de Californie.La fièvre de la vallée du Rift est une maladie virale qui provoque des pertes majeures. En particulier chez les brebis, dont le taux de fausses couches avoisine 100 %. Chez l'homme, l'infection se traduit par une poussée de fièvre, et peut aussi causer une hépatite, une perte de la vision et, parfois, une fièvre hémorragique.Pour ces deux vaccins, les chercheurs se sont servis du virus Vaccinia, utilisé pour le vaccin contre la variole. Ils ont introduit deux gènes de la fièvre de la vallée du Rift pour déclencher une réponse immunitaire et lutter ainsi contre l'infection. Les essais réalisés sur des souris se sont révélés efficaces à 90 %.Des défaillances dans le contrôle de la fièvre aphteuse semblent être à l'origine de sa recrudescence, depuis une dizaine d'années, en Afrique australe, c'est ce qu'ont constaté des chercheurs du CIRAD. Ils préconisent donc un meilleur entretien des clôtures qui empêchent le contact entre les animaux d'élevage et les buffles sauvages, principaux vecteurs de la maladie. Ces clôtures sont régulièrement endommagées par le passage des populations, des éléphants, ainsi que par les crues des rivières. Les chercheurs préconisent également une meilleure vaccination du bétail actuellement freinée par le coût élevé des vaccins proposés par l'unique fabricant de la région.Élever le bétail aux côtés de la faune sauvage peut faire prospérer les troupeaux. animaux sauvages et domestiques se disputent la nourriture, pensait-on. Or, une expérimentation menée dans la savane au Kenya a révélé qu'en saison des pluies le bétail mêlé à la faune sauvagecontrairement au bétail isolé -gagnait du poids. une évolution probablement due aux zèbres, qui broutent les plantes délaissées par les autres herbivores, dévoilant une végétation plus riche.En Zambie, une communauté dont 90 % des revenus provenaient auparavant de la pêche s'est tournée vers l'agriculture. Les pêcheurs de Kapoka, près du lac Tanganyika, se consacrent désormais aux cultures commerciales telles que canne à sucre, gombo, aubergine, sorgho et haricots, mais aussi maïs, manioc, riz et patates douces. \"Le poisson, c'est terminé, et l'agriculture rapporte\", explique l'ancien pêcheur David Ngandu. À l'origine de cette reconversion : le projet de gestion intégrée du lac Tanganyika du PNUD, qui entend atténuer la pression exercée sur le lac -celui-ci contient un sixième de l'eau douce de la planète -en réduisant la surpêche et l'érosion et en encourageant l'agriculture durable.■ La FAO a mis au point un nouvel outil qui doit aider les décideurs à avoir une vision claire du potentiel des bioénergies et de leur impact sur la sécurité alimentaire, afin de prendre les meilleures décisions possible en la matière. Baptisée \"Cadre analytique de la bioénergie et de la sécurité alimentaire\", cette méthode consiste en une série d'évaluations par étapes pour trouver des réponses aux questions relatives à la faisabilité du développement des bioénergies, à leur impact sur les disponibilités en denrées alimentaires et la sécurité alimentaire des ménages et leurs conséquences sur le plan social et environnemental. Elle a été testée sur le terrain pendant trois ans dans plusieurs pays en développement, dont le Pérou, la Tanzanie et la Thaïlande. L'analyse porte sur quatre domaines : les perspectives agricoles et alimentaires du pays, les ressources naturelles (disponibilités en terres cultivables, ressources en eau, biomasse ligneuse et résiduelle), les coûts de production des biocarburants et les effets macroéconomiques, notamment sur la croissance économique et l'emploi.http://tinyurl.com/64dcky6 reCYClageUne entreprise du secteur de l'énergie basée sur l'île de Sainte-Lucie, l'Applied Renewables Caraïbes, envisage de construire une usine qui produira de l'énergie à partir des déchets de la culture et du commerce de la banane, l'une des principales activités de l'île. Cette usine utilisera les déchets de bananes pour produire du méthane au moyen d'un nouveau procédé de fermentation en quatre étapes. Le méthane ainsi produit sera utilisé pour fabriquer de l'éthanol, qui sera vendu comme carburant pour véhicules. L'usine, qui s'autoalimentera en électricité, aura de faibles coûts de fonctionnement. L'achat des déchets sera une source de revenu pour les agriculteurs. Wilt (BXW), cette maladie qui remonte à 2 à 3 ans. Pénurie aidant, en moins de deux ans, les prix de la banane ont plus que triplé : un régime de bananes est passé de 2 à 7 $US (1,43 à 5 euros). La maladie est d'autant plus préoccupante que la culture de la banane est une ressource importante pour l'État et pour les agriculteurs qui en tirent un revenu conséquent. Adrien Nikobamye, un agriculteur progressiste de Gitega au centre du pays, qui en produit pour la vente, en témoigne : \"Avec un hectare de bananier, on peut gagner facilement 600 $US (430 euros) par mois.\"Le développement d'un agent de biocontrôle de l'aflatoxine est à un stade avancé. Au Kenya, des souches indigènes non toxiques du champignon Aspergillus flavus ont été isolées et vont être évaluées plus avant en vue de ce développement. Les souches toxiques produisent l'aflatoxine -mycotoxine cancérigène immunosuppressive provoquant des retards de croissance, des maladies hépatiques et la mort chez les humains et les animaux. Au Nigeria, l'Institut international d'agriculture tropicale a déjà mis au point un produit de biocontrôle, l'Aflasafe TM . Les essais de terrain ont montré qu'il diminue de 80 à 90 % la contamination à l'aflatoxine du maïs et des arachides.Des scientifiques du Centre australien pour la génomique fonctionnelle des plantes (aCPFg) déclarent avoir mis au point une variété de riz génétiquement modifié dont la teneur en fer et en zinc est quatre fois plus élevée que celle d'un riz classique. Ce riz pourrait être indiqué pour lutter contre les carences alimentaires. Actuellement, plus de 100 groupes d'éleveurs kényans produisent de la soie grège, qui rapporte de six à dix fois le prix de la soie artificielle en polyester d'origine pétrolière.\"Nous comptons pour le moment 15 techniciens, dont 10 proposent une formation spécialisée au Japon ou en Inde, où la sériciculture est bien implantée et à un stade avancé. Leur interaction avec les sériciculteurs fait toute la différence\", explique David Mwangi, directeur au Centre national de sériciculture. Le centre vend aux éleveurs, et à des prix modestes, des plants de mûrier, unique plante sur laquelle s'alimentent les vers à soie.Lister pour valoriser au Zimbabwe, une liste des 10 plantes les plus sous-utilisées rassemble des espèces intéressantes pour les médicaments, l'alimentation, les agrocarburants, les cosmétiques, les infusions, les teintures, l'artisanat, les gommes, la résine et les huiles essentielles. Cette liste, établie par bio-innovation Zimbabwe, entend offrir de nouvelles opportunités commerciales aux petits exploitants.Aide à la Jamaïque l'union européenne a accordé une nouvelle aide de 6,9 millions d'euros à la jamaïque, au titre du programme des mesures d'accompagnement du protocole sucre de l'ue. Ce financement soutiendra la privatisation du secteur, la création d'un fonds de développement de la canne pour les petits exploitants et le recyclage professionnel des travailleurs privés d'emploi.riZ lOCalPetite révolution dans la consommation du riz au Sénégal : le riz produit dans la vallée du fleuve Sénégal va être vendu dans le circuit de la grande distribution. Avec 300 000 tonnes de paddy produites dans la Vallée du fleuve Sénégal et une chute des importations de l'ordre de 251 000 tonnes, le riz local sera désormais mieux distribué sur le marché national. Un gain pour l'économie sénégalaise de l'ordre de 65 milliards de FCFA (99 millions d'euros). C'est un importateur de céréales sénégalais qui se chargera de la distribution. \"C'est autant de devises qui restent au Sénégal, autant d'argent qui va dans la poche des producteurs et autant d'allègement du panier de la ménagère\", a commenté Amadou Niang, le ministre sénégalais du Commerce à l'annonce de cette nouvelle.© M. SeckQuels sont les facteurs qui entravent les services de vulgarisation agricole en Afrique ? Comment le programme KASAL s'y est-il pris pour mettre en oeuvre des services de vulgarisation communautaires ?Nous avons commencé par former des formateurs communautaires, en espérant qu'ils retourneraient dans les villages et y formeraient à leur tour des vulgarisateurs. Mais en fin de compte ils s'attendaient à ce que KASAL les paye. Ce qui n'était pas viable. Cela nous a forcés à revoir nos stratégies pour privilégier une approche commerciale. Nous avons donc appris aux agriculteurs comment gagner un peu d'argent en fournissant des services de vulgarisation. Cette approche a été bien perçue, car les exploitants en voyaient le résultat à court terme.La seule solution est de s'associer avec le secteur privé. Par exemple, KASAL a introduit la culture du sorgho chez des centaines d'agriculteurs de l'est du Kenya. Nous avons ensuite approché la brasserie East African Breweries Ltd, qui achète toutes les graines que les exploitants veulent bien lui vendre. La compagnie Pan African Insurance a ensuite accepté d'assurer le projet contre les conditions climatiques défavorables. Cela aidera beaucoup, même après la fin du programme.C'est l'aspect le plus remarquable du projet. Des technologies adaptées, on en a toujours développé, mais elles parviennent rarement aux agriculteurs. C'est ce que nous avons changé, en nous assurant que les résultats de nos recherches aient un sens économique pour les petits exploitants des zones arides et semi-arides. Bien souvent, nous avons intégré les idées nouvelles aux savoirs locaux.Quand les futurs chercheurs obtiennent leur diplôme, ils pensent en savoir long. Mais en vérité, la maîtrise est du côté des agriculteurs. Ils savent toujours à quoi tiennent leurs difficultés, et, grosso modo, comment les surmonter. Imposer de nouvelles technologies sans consultation approfondie des exploitants est toujours contre-productif.Pour s'adapter aux idées nouvelles, ils ont deux problèmes. D'une part, ils ont besoin de constater les retombées que ces idées ont directement sur leur vie. D'autre part, si l'idée nouvelle est à forte intensité de capital, peu d'entre eux seront prêts à investir. Il faut donc collaborer avec des organismes de financement, y compris les autorités centrales, pour améliorer l'adoption des idées innovantes.L'enseignement de l'immunisation des poulets locaux contre la maladie de Newcastle a eu beaucoup de succès. Les agriculteurs qui détenaient jusque-là une dizaine de ces volailles en ont aujourd'hui des centaines. Le projet sur le sorgho, qui consistait à présenter aux exploitants une variété à maturation rapide, le sorgho gadam, a lui aussi bien marché, faisant découvrir aux agriculteurs de la région kényane d'Ukambani une nouvelle culture commerciale et vivrière. Le projet sur le manioc est également remarquable. Les agriculteurs vendent aujourd'hui de la farine de manioc en magasin. Nous avons beaucoup d'exemples de réussites.Comment l'Afrique peut-elle améliorer l'efficacité de ses services de vulgarisation agricole ?Tout d'abord en les exploitant commercialement pour les pérenniser et garantir la concurrence. Le Kenya teste actuellement ce modèle et les résultats seront bientôt connus. En second lieu, les gouvernements africains doivent s'assurer que ces services sont axés sur les résultats, pour éviter la mauvaise gestion des fonds. Aussi des politiques nationales fortes en faveur de la vulgarisation agricole s'imposent-elles.Dans les zones isolées, la vulgarisation est un véritable défi. Le programme kényan des terres arides et semi-arides (KASAL), piloté par l'Institut de recherche agricole du Kenya (KARI), apprend aux agriculteurs à développer des services de conseil communautaires.tÉlÉDÉteCtiOn es petits pêcheurs guinéens livrent un combat quotidien pour éloigner les chalutiers industriels de leurs zones de pêche. Mais ces navires plus grands sont aussi plus rapides que les embarcations artisanales. À présent que des appareils de localisation par satellite leur ont été fournis dans le cadre d'un dispositif piloté par la FAO et la Garde côtière de Guinée, les pêcheurs africains ripostent. Dès qu'ils détectent la présence de grands navires industriels dans leurs eaux, ils envoient par radio la latitude et la longitude du braconnier au bureau des garde-côtes, qui dépêche un patrouilleur pour intercepter le fautif. Pendant ce temps-là, au Mali, on utilise des données satellitaires pour vérifier l'efficacité du système d'irrigation mis en place par l'Office du Niger et améliorer la productivité des riziculteurs. Les cartes détaillées dérivées de ces données indiquent clairement quelles terres sont trop ou trop peu irriguées. Les scientifiques utilisent des outils du web 2.0 pour traduire les données en informations à destination des responsables de l'irrigation, ce qui économise beaucoup de temps, puisque les vérifications physiques ne sont plus nécessaires. WaterWatch, l'ONG néerlandaise qui intervient au Mali, développe également un système de conseil à l'irrigation par téléphone portable à l'intention des petits exploitants éthiopiens, maliens et soudanais. En Afrique du Sud, le Système d'information avancée sur les incendies utilise l'imagerie satellitaire pour déclencher un dispositif d'alerte précoce prévenant les agriculteurs et les communautés rurales en cas d'incendie. Ce système associe données satellitaires et téléphonie mobile, détectant les points chauds et mesurant les vecteurs vent pour déterminer la trajectoire de l'incendie et alerter les associations paysannes et autres utilisateurs par texto.Une technologie existe, qui progresse toujours plus dans le secteur agricole, pour laquelle la distance n'est pas un problème. La télédétection, technique d'acquisition d'informations à l'aide d'instruments éloignés de la surface de la Terre -généralement des avions ou des satellites -, peut aider les pouvoirs publics à gérer les ressources naturelles, les exploitants à planifier leurs récoltes et les pêcheurs à repérer les bancs de poissons. À l'échelle commerciale, la télédétection, ou l'observation de la Terre, s'est imposée ces dernières années comme un outil indispensable à l'agriculture. Elle est de plus en plus utilisée pour estimer les rendements, surveiller les cultures et prendre les décisions cruciales pour la gestion de la filière.Elle constitue aussi une source importante de données pour les systèmes d'information géographique (SIG) -systèmes automatisés de capture, de présentation et d'interprétation des données spatiales d'observation de la Terre, outils puissants de cartographie des territoires et desEn Namibie, un nouveau centre de données satellitaires aide les agriculteurs à lutter contre la sécheresse, les inondations, les feux de brousse et les ravageurs. Le Centre de recherche et de formation sur les applications satellitaires et l'observation de la Terre (EOSA-RTC), ouvert en juillet 2011 par l'École polytechnique de Namibie, fournit aux associations d'agriculteurs des données gratuites et claires sur l'eau, les estimations des précipitations, la teneur en humidité des sols et la santé des végétaux. \"Ici la pluie est importante. Les informations erronées peuvent se payer cher. Pour les petits paysans, cela peut vouloir dire ne pas manger\", commente Marina Coetzee, chercheuse à l'EOSA-RTC. \"On transforme actuellement les données en 'produits à valeur ajouté'\", précise-t-elle. Ceux-ci comprennent des cartes de végétation, des bulletins d'alerte incendie et des études sur la disponibilité en eau. Les images télédétectées peuvent être utilisées à diverses fins, comme la gestion des catastrophes naturelles, l'assurance agricole, la détection des mauvaises herbes et des maladies des plantes, la prévision des récoltes, la cartographie des sites de reproduction des moustiques, le dépistage des maladies animales ou encore l'évaluation de la déforestation, de l'érosion et de la pollution. Elles sont aussi utiles pour identifier les cultures les mieux adaptées à un type de sol et les zones d'un site nécessitant plus d'engrais et de pesticides. Les problèmes liés à une parcelle se repèrent plus vite de loin qu'à l'oeil nu. La télédétection peut aider à localiser les meilleurs pâturages et déceler le surpâturage, de façon à déplacer les troupeaux en conséquence.Équipements et logiciels sont moins chers qu'avant, mais restent inaccessibles pour la plupart des producteurs ACP. Cependant, les données satellitaires prêtes à l'emploi sont de plus en plus souvent gratuites et diverses initiatives diffusent ces technologies dans les pays en développement. Le Centre africain des applications de la météorologie pour un développement durable, basé au Niger, et le Centre régional de cartographie des ressources pour le développement, au Kenya, ont tous deux beaucoup contribué à promouvoir la télédétection, par le biais du renforcement des capacités et des services de conseil. Les Services météorologiques nationaux africains ont développé des applications en gestion de l'eau, prévision des inondations, gestion agricole et surveillance des ravageurs.Les satellites offrent aux pays en développement l'occasion d'utiliser la télédétection pour gérer les catastrophes, cartographier les inondations et la sécheresse. Le Réseau de systèmes d'alerte précoce contre la famine (FEWS NET) surveille la sécurité alimentaire par satellite, la vigueur du couvert végétal et sa densité pour détecter les problèmes au fur et à mesure de leur apparition. En Papouasie-Nouvelle-Guinée, la télédétection sert à cartographier les ressources naturelles et planifier les pratiques agricoles. En Zambie, on détecte par satellite les sites de reproduction des moustiques dans le sud du pays et on prévoit les invasions de criquets en observant la végétation.Pour rurales peuvent-elles avoir accès, au sol, à ces données et les interpréter ? \"Le défi est d'apporter l'information aux agriculteurs sur place, à temps, pour qu'ils puissent en bénéficier\", constate Nadia Manning-Thomas, chercheuse à l'Institut international de gestion de l'eau. Un nombre restreint, mais croissant, d'initiatives cherchent à exploiter la télédétection pour toucher les producteurs sur le terrain, ou pour protéger leurs intérêts.Les scientifiques américains de l'Institut Carnegie ont lancé un dispositif associant la télédétection aux téléphones portables, plus familiers, pour diffuser des modèles de rendement surveillant les sols, la végétation et l'eau auprès des petits paysans d'Afrique de l'Ouest. Un volet pilote du projet EarthAudit (EAAYP), réalisé en collaboration avec AGRHYMET, Manobi et l'Université du Ghana, a mis sur pied un réseau de 600 exploitants au Burkina Faso, en Côte d'Ivoire, au Ghana, au Mali, au Nigeria et au Sénégal.En Afrique du Sud, le ministère de l'Agriculture du Cap-Occidental a lancé un projet qui utilise la télédétection pour aider les producteurs de raisin dans leur gestion quotidienne des ressources en eau et de l'azote au niveau de l'exploitation La télédétection présente un fort potentiel pour le suivi et la gestion de l'environnement. Associée aux SIG, elle aide les communautés autochtones à cartographier et à protéger leurs ressources naturelles, à faire reconnaître leurs droits fonciers et à surveiller l'impact des projets de développement industriel. Un projet SIG, soutenu par le CTA, sur les villages et les terres mayas dans le district de Toledo, au Belize, a recueilli des informations satellitaires sur l'utilisation des terres, la population, les éléments naturels et les espèces végétales et animales. L'objectif initial concernait la conservation, mais les images ont finalement eu toutes sortes d'utilisations. En République dominicaine, la télédétection sert à évaluer la déforestation et à planifier les projets agroforestiers, en insérant les nouvelles espèces commerciales dans les systèmes existants sans porter atteinte à la biodiversité.Les satellites voient sous l'eau comme sur terre, aussi l'observation de la Terre peut-elle offrir de bonnes possibilités d'utilisation au secteur de la pêche. La télédétection localise les fronts thermiques marins, où se concentrent de nombreuses espèces de poissons, ce qui permet aux pêcheurs de réaliser des économies de temps et de carburant. Dans les Fidji et en Tanzanie, les données satellitaires sont utilisées pour recenserUne initiative pilotée par l'Institut d'économie rurale (IER) au Mali utilise la télédétection pour aider les agriculteurs d'Afrique de l'Ouest à planifier leurs cultures et à gérer leurs ressources. Le projet SIBWA (en anglais \"Seeing Is Believing -West Africa\") fournit aux exploitants de simples cartes en imagerie très haute résolution pour leur montrer non seulement ce qui est sur leurs terres, mais aussi ce qui est en dessous : état des sols, déficiences en nutriments, consommation d'eau, mauvaises herbes et ravageurs. \"Nous montrons aux exploitants quelles parcelles cultiver pour leur plus grand profit et leur indiquons où peuvent se trouver les zones très ou peu fertiles dans un champ. Grâce aux cartes, on peut leur faire des recommandations sur les engrais\", explique Pierre Traoré, chercheur à l'ICRISAT, partenaire clé du projet. Six communautés participent au dispositif : trois au Mali et trois réparties entre le Burkina Faso, le Ghana et le Niger. Le Dr Amon Murwira est spécialiste de la télédétection à l'Université du Zimbabwe. Il a obtenu son doctorat en Sciences de l'information géographique aux Pays-Bas et est membre de l'Association africaine de télédétection de l'environnement. ChiFFreS ClÉS 15 minutes, c'est le rythme auquel les satellites en orbite géostationnaire autour de la Terre collectent des données à la verticale du même point.des accidents mortels provoqués par les catastrophes naturelles ont lieu dans les pays en développement. La télédétection alerte avant la situation de crise.6 semaines d'avance, c'est le délai dans lequel un système satellitaire a permis de prévoir l'importante épizootie de fièvre de la vallée du Rift de 2006-2007 au nord-est de l'Afrique. 85 % des prévisions sur le rendement des cultures obtenues par télédétection sont exactes. Lors de la sécheresse qui a une nouvelle fois ravagé la Corne de l'Afrique, plus de 2 700 éleveurs du district de Marsabit, au nord-est du Kenya, ont été indemnisés pour la perte de leurs animaux, dans le cadre d'un programme utilisant des images satellitaires de la végétation pour détecter les risques qui pèsent sur le bétail. \"La sécheresse a tué beaucoup de nos bêtes. Sans cette assurance, j'aurais perdu l'équivalent de 500 têtes, soit la totalité des animaux morts dans mon exploitation le mois dernier\", témoigne Yussuf Ahmed. Cet agriculteur a reçu 1 million KES (7 285 €) pour son bétail, ce qui l'aidera à reconstruire sa vie.Ce dispositif, en partie subventionné, a été lancé à la fin de l'année dernière dans la région aride de Marsabit par l'Institut international de recherche sur l'élevage (ILRI), l'Equity Bank, spécialisée dans le microcrédit, et l'assureur africain UAP Insurance Ltd, avec l'appui de partenaires tels que l'Agence britannique de développement international (DFID), l'UE, l'USAID et la Banque mondiale. Le projet s'attache à présent à s'inscrire dans la durée.\"Nous avons recruté dans différentes villes du district des courtiers chargés de diffuser l'information dans les villages. Nous avons également mis au point des programmes radio et vidéo en langue vernaculaire pour que les éleveurs comprennent mieux le concept\", indique la responsable développement du projet, Brenda Wandera. Un jeu de simulation a aussi été élaboré pour expliquer les principales caractéristiques du dispositif aux communautés locales. \"Ça m'a aidé à comprendre comment l'assurance peut me protéger contre les pertes\", explique Monah Fatuma.Le programme d'assurance bétail indexée utilise l'imagerie satellitaire pour détecter la raréfaction potentielle du fourrage et indemniser les exploitants en cas de Les données sur la disponibilité du fourrage proviennent d'images satellitaires des végétaux, obtenues dans le cadre d'une étude mondiale sur l'indice de végétation par différence normalisée NDVI, dont la base de données est mise à jour régulièrement par les chercheurs américains de la NOAA et de la NASA. Le système estime la disponibilité du fourrage dans la zone et produit un modèle statistique qui prédit quand et dans quelle mesure la raréfaction du fourrage provoquera des pertes de bétail dues à la sécheresse.Assurer les troupeaux des éleveurs a longtemps été considéré comme impossible, car il est difficile de vérifier la mort d'animaux déplacés régulièrement sur de vastes territoires à la recherche de nourriture. Ce programme est différent, parce qu'il ne dédommage pas les clients en fonction des pertes réelles subies, mais à partir d'indicateurs de la mortalité probable du bétail.\"La raison pour laquelle ce système fonctionne, c'est qu'il n'impose pas de vérifier qu'une bête est réellement morte, explique Andrew Mude, directeur de projet à l'ILRI. Les paiements sont déclenchés quand les images satellitaires, disponibles presque en temps réel, montrent que la pénurie en fourrage est devenue telle que le bétail risque fort de ne pas survivre.\" Farah Hussein, éleveur, confie qu'il a pu se risquer dans son entreprise parce que la prime d'assurance lui a servi de collatéral pour obtenir un prêt de l'Equity Bank. \"Par le passé, aucune banque ne nous prêtait, maintenant beaucoup d'entre elles acceptent car elles ne courent pas de risque, même si nous perdons notre bétail\", précise-t-il. Dans la plupart des pays ACP producteurs, la filière est peu structurée : les producteurs ne disposent pas d'aide technique ni d'intrants, ont de faibles capacités de stockage et de transformation et vendent à des intermédiaires ou sur les marchés locaux, à un prix qui leur est imposé. Mais des initiatives d'amélioration ont vu le jour, çà et là. Dans plusieurs pays d'Afrique, les PME agroalimentaires se sont spécialisées dans les boissons dites \"traditionnelles\" dont le gingembre fait partie. Au Nigeria, le programme \"gingembre\" de l'Institut national de recherche sur les plantes racines de Umudike a obtenu des résultats significatifs grâce à diverses améliorations : matériel de paillage, cultures intercalaires, engrais organique, mise au point d'une machine à râper le gingembre, développement de nouveaux produits, etc.En Éthiopie, où la culture du gingembre remonte au XIIIe siècle, la baisse des prix en 2006-2007 a entraîné une diminution alarmante des surfaces cultivées. Une étude récente en appelle à la recherche agronomique, mais aussi à un appui de la vulgarisation pour améliorer l'organisation des producteurs, créer des coopératives et favoriser un meilleur accès aux marchés.Mais l'une des expériences les plus originales en matière de commercialisation émane du Nord-Ouest-Cameroun, où le gingembre a connu un grand engouement au milieu des années 2000. NOWEFOR, organisation de producteurs de la région, a aidé les producteurs de Bafut à organiser la mise en marché. Ils ont négocié avec la municipalité et les autorités traditionnelles un endroit unique de vente et mis en place un comité de contrôle. De nouveaux produits ont été développés (poudre, sirop, bonbons de gingembre). En 2005, année de l'expérience, le prix du seau de 15 kg de gingembre sur le marché de Bafut a été multiplié par trois. Depuis lors, faute d'appui, les producteurs rencontrent des difficultés, mais l'organisation d'un espace propre aux vendeurs de gingembre sur le marché local a perduré.Facile à transporter, le gingembre est largement exporté. Là encore, les expériences varient d'un pays ACP à l'autre.Autrefois prospère, le commerce du gingembre sierra-léonais n'a pas résisté à la concurrence des pays asiatiques. Aidé au début des années 2000 par la Chine qui lui fournit 53 tonnes de graines de gingembre, il a, depuis lors, regagné des parts de marché, avec, notamment, un débouché original : le marché indien des huiles essentielles.À Fidji, dont le gingembre est réputé pour sa saveur unique et sa faible teneur en fibres, le secteur a été ravagé par un redoutable nématode au milieu des années 1990. En 2010, il a bénéficié d'un appui du Secrétariat général de la Communauté du Pacifique dans le cadre de son projet d'Appui au commerce des produits agricoles financé par l'UE. Le programme FACT a soutenu la production de semences saines et aidé l'entreprise Kaiming Agro, un des plus importants exportateurs agricoles de l'île, à développer sa transformation. Épluché, séché et transformé, le gingembre voit sa valeur augmenter de 90 %. En 2011, le gouvernement a également annoncé un projet d'appui de 1 million de dollars, pour ce produit qui rapporte 6,3 millions $US (4,54 millions €) par an au pays. Cette cinquième édition, entièrement révisée, d'un manuel initialement publié en 1995, aborde un problème malheureusement encore pressant pour les petits producteurs des pays ACP : les pertes après récolte. Il répond à des questions cruciales, tant pour la sécurité alimentaire que pour les activités économiques des agriculteurs : comment conserver la qualité des produits agricoles stockés ? Comment stocker des graines, des racines, des tubercules et des bulbes ou encore des fruits et légumes ? Le stockage est considéré non pas comme une activité isolée, mais comme faisant partie d'un ensemble d'activités postrécolte, différenciée en fonction des produits concernés. Après une présentation générale, les auteurs consacrent d'ailleurs chaque partie à une culture spécifique. Deux annexes très pratiques viennent conclure le manuel : il s'agit de notices sur la mesure de l'humidité relative de l'air et celle de la teneur en humidité des graines. Une bibliographie indicative cite quelques ouvrages essentiels pour en savoir plus. ■ Les présidents des deux principaux instituts de recherche agronomique français prennent ensemble la plume, car l'heure est grave : l'agriculture qui nourrira le monde en 2050 ne sera pas le prolongement de l'agriculture d'aujourd'hui. De profonds changements seront nécessaires. En 10 chapitres rédigés dans une langue accessible au grand public, les auteurs dressent un constat et font des propositions. La faim, aujourd'hui, n'est pas liée à un manque de nourriture, mais principalement à des problèmes d'accès et de répartition de celle-ci. Réduire les pertes de tout type (gaspillages, pertes post-récolte, etc.), stabiliser les prix, appuyer une agriculture vivrière compétitive dans les pays du Sud figurent parmi les leviers d'action proposés. La conclusion, qui se veut constructive, livre six recommandations concrètes. Pour une agriculture productive et écologique qui servira un droit à la sécurité alimentaire promu en bien public mondial. Ce numéro de Dynamiques paysannes présente l'expérience de la Fédération des Unions de coopératives de producteurs de riz (FUCOPRI) du Niger, qui a créé un système original d'approvisionnement en intrants appuyé sur le microcrédit bancaire et la commercialisation groupée. Par quoi commencer pour introduire une culture de l'apprentissage ? Le changement climatique a un impact considérable sur l'agriculture, surtout dans les pays en développement. Les agriculteurs doivent reconnaître cet impact sur leurs activités. Et face à la pression qui exige du secteur de réduire sa contribution au réchauffement planétaire, il devient impératif de modifier les pratiques agricoles. À l'avenir, les exploitants devront adopter des méthodes plus \"intelligentes\" face au climat pour réduire les émissions de gaz à effet de serre tout en augmentant la productivité et en garantissant la sécurité alimentaire.Le CTA, qui figure au nombre des principaux organisateurs et contributeurs de cet événement, encourage l'implication des parties prenantes dans les politiques relatives au changement climatique. Une rencontre sera organisée sur la capitalisation des savoirs traditionnels et les sciences du climat afin de soutenir les bonnes mesures d'adaptation au changement climatique. En marge de cet événement, il est également prévu, en partenariat avec le CCAFS, une manifestation intitulée \"Une agriculture responsable : opportunités et défis des agriculteurs africains\". Le CTA parrainera onze participants qui représenteront les organisations paysannes, le monde universitaire, la société civile, les organisations régionales, les experts et les médias.Il appuiera également deux organisations paysannes d'Afrique de l'Est, qui ont consulté leurs membres en vue de leur participation. Car il s'agit de développer une position représentative sur le changement climatique et une stratégie de plaidoyer. À Durban, ces organisations pourront intervenir dans les débats et rencontreront leurs associations soeurs d'Afrique et d'ailleurs. Elles rencontreront aussi les décideurs politiques et les négociateurs.L'un des sujets délicats de cette COP17 concerne le financement de l'adaptation au changement climatique. Selon nous, il est vital que les organisations agricoles soient représentées à Durban pour s'assurer qu'une partie de ces subsides bénéficie à l'agriculture. Elles doivent avoir leur mot à dire sur la répartition de ces fonds.En soutenant ces délégués, le CTA fait entendre la voix de différents acteurs sur la scène internationale. Il permet aussi à ces représentants de faire l'expérience de négociations d'envergure mondiale. Afin d'atteindre les objectifs fixés dans son plan stratégique, le CTA a identifié un certain nombre de compétences qui lui font actuellement défaut. De nouveaux visages apparaîtront donc dans nos rangs au cours des prochains mois. Cependant, pour passer à l'action sans attendre, le CTA fait appel à l'assistance temporaire et aux compétences extérieures. En septembre dernier, Andrew Shepherd a commencé sa mission de lancement du programme sur les filières. Il restera douze mois, le temps pour l'équipe permanente de prendre ses fonctions. Andrew apporte près de 25 ans d'expérience dans le développement agricole et rural. Auparavant, il a travaillé à la FAO en tant qu'économiste spécialisé dans la commercialisation des produits agricoles.(suite de la page 25) Ce nouveau logo témoigne d'une évolution. Il retient davantage l'attention. Les feuilles enracinées, qui s'élèvent et s'entrecroisent, symbolisent la force et la croissance de nos partenariats. Nous savons combien notre réussite s'appuie sur la solidité des liens qui nous unissent aux autres organisations… Le carré en arrière-plan évoque les socles de connaissance dont le renforcement est proposé par le CTA dans ses programmes. Plus denses, enfin, les couleurs font ressortir le logo. Sa visibilité s'en trouve accrue. Cela reflète l'objectif attribué à notre organisation. ","tokenCount":"7869"} \ No newline at end of file diff --git a/data/part_3/9055626061.json b/data/part_3/9055626061.json new file mode 100644 index 0000000000000000000000000000000000000000..ebcd56b9b3767c81f61e03cb4f9ba2f96c9f5ce5 --- /dev/null +++ b/data/part_3/9055626061.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"86f27c6b365c3df913e698277e969fff","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/4e725825-376a-4594-9bb6-e0ee98d6d863/retrieve","id":"1068757200"},"keywords":[],"sieverID":"dc596db1-28e7-4337-986a-cabec980a65d","pagecount":"4","content":"The Greater Mekong area is undergoing socio-economic change with growing population, incomes and increasing demand for animal-source foods. Traditional diverse and subsistenceoriented agriculture is being replaced by market-oriented production focused on a few (cash) crops. In the Central Highlands of Vietnam for instance, local government advocates for development of the beef value chains to meet the high domestic demand and create economic opportunities for smallholder farmers (Stür, et al., 2013). However, rapid intensification can have environmental trade-offs including loss of (agro)biodiversity, deforestation, nutrient pollution, and greenhouse gas (GHG) emissions.Survey data from approximately 1300 households in Laos (XiengKhuang province), Cambodia (Ratanakiri province), and Vietnam (Central Highlands) was used for this study (Figure 1a). The survey was administered using the Rural Household Multi-Indicator Survey tool (RhoMIS) (Hammond et al. 2016). A market orientation and production diversity score was calculated for each household. Households were then categorized into four distinct farm types: low diversity and low market orientation (LDLM), low diversity high market orientation (LDHM), high diversity low market orientation (HDLM), and high diversity high market orientation (HDHM). 24 farms across classes and sites were selectedeight farms in each country, two representing each farm type (Figure 1b). Additional data collection from these 24 farms included a more detailed household survey, soil samples, and nutrient flow maps. The farming systems were simulated and compared with the whole-farm bio-economic optimization model FarmDESIGN (Groot et al. 2012). The sites represent various farming systems and stages of intensification. Farmers in the Central Highlands of Vietnam have intensified production on relatively small farms (0.5 -3 ha), focusing on major cash crops such as cassava, cashew, coffee, and pepper under high input use, especially mineral fertilizers. Cattle are mostly improved breeds under cut-and-carry feeding, often with improved varieties of Napier grass (Pennisetum purpureum). Farmers in XiengKhuang, Laos, are practicing diverse subsistence-oriented agriculture, while slowly moving towards more market-oriented production. Larger local cattle herds, as well as a variety of crops including rice, tea, pasture, and vegetables are found. Farming systems in Ratanakiri, Cambodia, rely on relatively recent forest clearing and could therefore exploit larger farm sizes (3.5 -10.5 ha) for rubber, cashew, and cassava for markets in Vietnam and China, with hardly any livestock except chicken. Although farming systems in the Central Highlands of Vietnam have considerable GHG emissions from mineral fertilizer use, GHG emissions from Ratanakiri (Cambodia) and XiengKhuang (Laos) were higher due to the common practice of cassava and maize residue burning. All farming systems have GHG emissions from rice cultivation (Figure 2a). N balances are mostly negative in the Cambodian and Laos sites, reflecting low input use. In the Lao site, fallowing is still used as traditional soil fertility management technique, balancing nutrient mining during cropping seasons. The large farm areas of recently cleared forest in the Cambodian site does not yet make it urgent to invest in soil fertility, although soybean cultivation contributes to N inputs into the systems through biological N fixation. Farming systems in the Vietnamese site are the only ones applying substantial amounts of N mineral fertilizer, leading to positive balances (Figure 2b).Sustainable livestock intensification could potentially play an important role to mitigate agroenvironmental trade-offs and thereby contribute to sustainable intensification. Small herds of well-managed and productive cattle can convert residues into animal-source food and manure for fertilization, while reducing the polluting practice of residue burning. A previous study found that has shown that forage-based livestock fattening can increase operating profits by 35%, while maintaining soil organic matter and decreasing GHG intensities (Birnholz et al. 2017). Multi-objective optimization will elucidate potential agro-environmental impacts of various agricultural intensification pathways, including close crop-livestock integration.","tokenCount":"600"} \ No newline at end of file diff --git a/data/part_3/9086245110.json b/data/part_3/9086245110.json new file mode 100644 index 0000000000000000000000000000000000000000..7cefbfed81849e2fc81d214f80d6b8b026bc40f5 --- /dev/null +++ b/data/part_3/9086245110.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"dfef6cc35dcc753ac112f399eac2988f","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/2c7ec902-5188-4d3e-ad37-27a96db97a38/retrieve","id":"993725912"},"keywords":[],"sieverID":"f94fd9f6-1947-4213-8a66-e81661a8600c","pagecount":"1","content":"The natural dispersion of genetic material among populations through gene flow is a spontaneous process and may constitute an important evolutionary force to create genetic diversity. Gene flow can vary in magnitude and direction. Our plant model is preferentially autogamous but with a significant amount of outcrossing.Wild and cultivated forms of common bean are getting in contact in many places of the Americas. The present 'Çultivated' Isozymes genotype Hybrid Isozymes genotype F.Seeds of such complex were collected in six natural populations during 1987, 1998and 2003in the Central Valley (González-Torres et al. 2003). A morphoagronomic evaluation (weight of 100 seeds in grams) was performed to select 732 individuals of each different biological form: wild, weedy and cultivated (Figure 1), out of which 217 individuals were weedy types possibly resulting from gene flow. A similar procedure has been used by Papa & Gepts (2003). We used as markers phaseolin and two loci of isozymes, and nine loci of microsatellites to evaluate the contribution of nuclear genome to gene flow. In addition, the direction of gene transfer was determinated by RFLPs-PCR on cpDNA (Chacón 2001). A multiple correspondence analysis (MCA) was performed to observe in a multidimensional plane the genetic structure of the population of evaluated individuals. The analysis of data showed, in the selected individuals, that 98% of the weedy types were indeed products of gene flow. The remaining 2% were due to phenotypic effects by environmental favorable conditions. The principal direction of gene flow was that of wild pollen towards the cultivated materials (82%). However, the other direction of gene flow from the cultivated into the wild forms was observed in lower but significant frequency (González-Torres et al. 2004). The results obtained in the characterization of the populations are summarized in Table 1. The data analysis allowed to realize a graphical representation of the gene flow cases. In individuals 1 and 2 all the parameters are 'wild' and they have a hybrid SSR allele, which suggests a recent crossing of wild material with 'cultivated' pollen material. The seed size of the individual 3 could be a phenotypic consequence of more than one past event of gene flow from cultivated material to wild form, because all evaluated parameters are 'wild' including hypocotyl color (purple), purple flower, 85 days to flowering and growth habit IV. Further, its F2 displays a weight of 10.3 g, which suggests that it has acquired \"wild\" characteristics but conserves the 'cultivated' seed size.The events of gene flow were mainly among materials belonging to the same gene pool (Mesoamerican). However, outcrossing between Mesoamerican and Andean gene pools was evidenced in 8% of the weedy materials. Using all markers our distribution resulted in 13 groups (Figure 3) that explain 88.3 % of the total variation. As expected, the weedy materials were closer to the wild type. Group G showed only a 'wild' SSR allele, while the others had 'cultivated' SSR alleles. Group H had Andean phaseolin, chloroplast haplotype 'J' and size of seed up to 15 g. Figure 3. The population distribution with all markers using MCA. purple: cultivated type, green: weedy type and red: wild type.Our methodology was useful to establish 214 real hybrids resulting from gene flow events out of 217 cases. The principal direction of gene flow was that of pollen of wild materials towards cultivated materials, the reverse direction being however significant. Outcrossing within a gene pool was dominant, while gene flow between pools was not negligible. ","tokenCount":"571"} \ No newline at end of file diff --git a/data/part_3/9088027647.json b/data/part_3/9088027647.json new file mode 100644 index 0000000000000000000000000000000000000000..bf083956e6595ccb29eb56c8b0dcebb94f50d1d0 --- /dev/null +++ b/data/part_3/9088027647.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"fcc2c0e1193f4df04b0efe48d31df748","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/9fcfd273-1629-4532-bed2-14200f814139/retrieve","id":"156539087"},"keywords":[],"sieverID":"64263f44-bf33-45ab-bc67-1e8f3f6e056b","pagecount":"45","content":"Resubmit, September 8, 2014The scientific evidence base, including contributions from representatives of WLE's Steering Committee, clearly highlights that our current food production systems and natural resource management practices are unsustainable and hold significant risk for future generations (see Rockström et al. 2009;Daily et al. 2009;Tilman et al. 2011). The World Economic Forum (2014) even highlighted the 'water crisis' as the third most significant risk to economic growth. Land degradation has also become a major issue on the international agenda as large scale agriculture continues to be one of the primary drivers of unsustainable practices and the single largest contributor to the rising risk of an environmental crisis (Foley et al. 2011;Steffen et al. 2011).The question guiding WLE's theory of change is: How can we ensure that agricultural intensification and productivity increases are accomplished in ways that are sustainable and that make use of the services provided by ecosystems? WLE hypothesizes that introducing a multidisciplinary ecosystems-based approach into agricultural practices will result in sustainable intensification that increases food and livelihood security by creating resilient and equitable socio-ecological systems that secure the provision of ecosystem services over long time frames.To achieve sustainable intensification, WLE works at scale (farm, landscape, basin) to develop new insights and integrated empirical evidence that demonstrate how different ecosystem services and gender equality are vital to improve the lives of poor farmers. WLE works in many regions to assess and influence the trade-offs and opportunities of different investment decisions in the context of rapid economic development, population growth, urbanization, and increasing climate variability. WLE recognizes the need to match technical solutions with changes in how we manage and govern water, land and ecosystems (including investments, policies, management regimes and incentives).While WLE acknowledges previous solutions to sustainable intensification such as System of Rice Intensification (SRI), its approach goes beyond farm-scale solutions and includes nexus thinking with an emphasis on identifying and quantifying the linkages, tensions and trade-offs across water, land, energy and the environment. WLE differentiates itself from other CRPs by providing a truly integrated ecosystem based approach to natural resource management. It does this by working across multiple sectors including water, energy, health and food with a focus on the meso-scale. The scientific importance of WLE's ecosystems-based approach to sustainable intensification is evidenced by the Consortium Office's Elsevier Report (2014), which identifies WLE and its partners as CGIAR leaders in internationally peer-reviewed scientific publications.To build resilient food systems that are grounded in an ecosystems-based approach, WLE will seek to achieve five intermediate development outcomes (IDOs):1. Productivity: Improved land, water and energy productivity in rain-fed and irrigated agroecosystems. 2. Income: Increased and more equitable income from agricultural and natural resource management and ecosystem services in rural and peri-urban areas. 3. Gender and equity: Enhanced decision-making power of women and marginalized groups and increased benefits derived from agricultural and natural resources. 4. Adaptation: Increased ability of low-income communities to adapt to environmental and economic variability, demographic shifts, shocks and long-term changes. 5. Resilience: Increased resilience of communities through enhanced ecosystem services in agricultural landscapes.WLE recognizes that biodiversity and other ecosystem services are both supported and impacted by agriculture. WLE has developed an Ecosystem Services Framework which lays out five principles and how its ecosystems-based approach to sustainable intensification can address two seemingly contradictory goals: sustaining yields and increasing food production while maintaining critical ecosystems services for other uses (industry, urbanization, energy, etc.). On the one hand, an ecosystems-based approach will maintain or increase yields and ensure stability by reducing pest and disease incidence, increasing gene flow and pollination and enhancing water and land resources (nutrient cycling). On the other, this approach will support other developments by restoring and securing the ecosystem services provided by agricultural landscapes (water quality and quantity, flow regulation, carbon sequestration, in situ conservation of genetic resources, etc.).WLE's approach supports the advances made in the commodity-based and systems Consortium Research Programs (CRPs) by emphasizing the multi-functionality of agricultural landscapes and exploring the trade-offs and costs and benefits of different pathways to sustainability. It does this by looking beyond the agriculture sector at how other development agendas impact and influence the agricultural sector.WLE has made significant refinements to its structure and investments in order to deliver on its programmatic IDOs. Figure 1 represents the overall program approach, with four layers of integration and synergy. First, flagships are integrated into WLE's program by having impact in its recently defined focal regions. Second, each flagship operates in alignment with WLE's theory of change (i.e. generating knowledge, engaging and shifting mindsets) with an emphasis on partnership.The third area of synergy happens through integration with WLE's three core themes of Gender, Poverty and Institutions (GPI), Ecosystem Services and Resilience (ESR), and Decision Analysis and Information (DAI). These core themes provide strategic, cross-cutting research and support to implementing sustainable intensification within the flagships. The core themes also support use of decision-making tools to assess the power and benefits that women and marginalized groups receive from natural resource management. Finally, the flagships integrate around WLE's core concepts of sustainable intensification: livelihoods, productivity, efficiency and sustainability. The changes to WLE's structure draw on lessons from the CGIAR Challenge Program on Water and Food's (CPWF) external review and two years of WLE implementation. Changes include:1. The establishment of a significant region-based flagship, Integrating Ecosystem Solutions Into Policy and Investments (IES), which is defined by open and competitive calls for ecosystem service and sustainable intensification research within defined geographical areas. 2. WLE has introduced an Innovation Fund to support impact-driven research that features its ecosystems-based approach. The Fund, which was implemented through an open and competitive call, encourages integrated, curiosity driven research, cross-regional and global development and use of tools, methods and analysis that support equitable ecosystemsbased development and investments. 3. WLE's heritage projects have been largely realigned to demonstrate clear contributions to the outcomes of the flagships they represent. The realignment is an ongoing process that will be completed by the end of 2014. 4. Decision Analysis and Information (DAI) has been reclassified as a core theme in order to provide more cross-cutting support to all WLE's flagships. 5. The development of a robust monitoring and evaluation process building from the work of CCAFS that includes hiring an M&E Coordinator and an online reporting tool for the flagships.WLE recognizes that it is a data-intensive program. A knowledge management plan, developed in 2014, focuses on ways to improve harvesting and synthesizing data and on improving how WLE learns to collaborate with partners. Building upon the CGIAR's open access policy, WLE will expand upon some of its seminal data work (using tools and knowledge platforms such as INVEST, AQUASTAT, SWAT, etc.) and establish 'linked' and 'interoperable' data systems, which will be an important entry point for making use of the tremendous resources of WLE's partners. One of WLE's core strengths is the data generated by partners, which include a range of land, water and socioeconomic databases and analysis systems on soils (CIAT/ICRAF), water (IWMI), biodiversity (Biodiversity International), and more. The diversity and skill sets of its partners are essential for allowing WLE to answer wider, globally relevant questions on ecosystems services.WLE's theory of change encompasses three interlinked areas: Generating evidence-based knowledge with partners, multi-sector engagement and shifting mindsets and behaviors.1) Generating evidence-based knowledge with partners at the national, regional and international levels. WLE's research approach yields the following types of outputs: Modeling and decision-support tools focused on ecosystems-based decision-analysis tools such as eFlows, INVEST, Co$ting Nature, SWAT and trade-off analysis.Recommendations on investable solutions, including business models for resource reuse and recovery, agriculture water management solutions, economic incentives for sustainable land investments and payments for ecosystem services from agriculture. Improved management practices, achieved primarily through action research -to promote learning and adaptive management-including different modes of agent-based modeling, community-based action research and participatory modeling at the landscape level. Gender, institutions and poverty research will result in improved understanding of how different decisions impact women, including better understanding of how women access, use and reinvest natural resources. This research is embedded in all flagships.2) Engaging with multi-sector actors (government, civil society, the private sector and investors), WLE seeks to promote, communicate and understand the scientific evidence needed to make rational and well-informed decisions that support sustainable intensification outcomes. Work here includes introducing innovative ways to bring multiple interests together, such as in innovation/engagement platforms and through multi-stakeholder dialogues that were successfully developed in CPWF. It also includes varying types of agent-based modeling that allow for different perspectives to be shared and included in landscape planning. WLE's approach to policy engagement has been honed through a number of successful projects and interactions with regional and global processes and conventions. While each case is contextual there are broad lessons. The first is that having a strong presence with respected, local researchers who are engaged in national development processes leads to increased opportunities for research to be used. For instance, under IWMI-Tata, Senior IWMI Researchers are actively involved in local development programs and boards where research results can be directly applied. Second, it pays to develop relationships with key ministries who are engaged in the policy debate and to begin supporting their needs with demand-driven, evidence-based research. For example, in Peru, WLE has a strong partnership with the Ministry of Environment that allows research on benefit-sharing mechanisms to directly link to policy debates. Research questions are defined partially based on direct requests from the ministry. Third, partnering with regional, national and local organizations and groups have proven to be an effective strategy: In the AgWater Management Solutions project, ambassadors were used to gain entry into key policy processes.3) Shifting mindsets and changing how people look at agriculture and nature through sustainable intensification requires WLE to not only introduce new tools but to foster a fundamental shift in how people (governments, researchers, donors, investors and the general public) view water, land and ecosystems use and agricultural production. WLE focuses its work at a national and regional scale supplemented with important investment pathways to local and global scales (see Figure 2 below). Through this national and regional focus, WLE is able to leverage the extensive capacity and research of its partners. WLE recognizes that a transition to integrated and holistic sustainable intensification systems requires decision makers at all levels-from local to international-to make complex choices among competing uses of, and management strategies for, water, land, ecosystems, energy and other resources. Below is an overview of how each flagship contributes to WLE's IDOs, its impact pathway and key activities. Details of each flagship and its targets for 2015-2016 can be found here.In 2015-2016, WLE plans to invest 35% of its total W1&W2 funding in the IES flagship (See Figure 3), which houses two new, exciting initiatives: the Focal Regions and the Innovation Fund (IF). In the Greater Mekong, this initiative has already attracted significant co-funding from the Australian Government.The vision of IES is that by harnessing and integrating WLE's research-fordevelopment portfolio in support of prioritized regional and local, partner-defined investment decisions, WLE will foster a transition to sustainable intensification, while enhancing national and regional capacity as well as the decision-making power and benefits that women and marginalized groups receive from improved natural resource management. By the end of 2014, open and competitive calls for research projects will have been completed across all the focal regions, and the innovation fund and projects will commence with strict deliverables. In parallel, WLE is developing robust output and outcome targets that will be provided to the consortium office by January 2015.The IES theory of change is based on four pillars: (i) engage and align with those public, civil society and private sector partners in each region who create or reframe water, land and ecosystem investments or implementation strategies; (ii) integrate WLE research to assess the longterm impacts, risks and trade-offs of these investments and strategies (iii) strengthen the capacity of decision makers to effectively apply the knowledge, tools, data and models and to develop contextspecific solutions and (iv) draw lessons learned on effective modalities for investing in sustainable intensification in other locations.Activities: WLE will initially focus its work in four regions: the Nile and East Africa, the Volta/Niger, the Greater Mekong and the Ganges. Additional regions are planned for but contingent on further funding opportunities, namely Latin America, Central Asia, Southern Africa and Near East and North Africa (NENA). These regions were selected because they offer opportunity to build on the strength of CPWF and to bring ecosystems-based approaches to dynamic economies and globally significant water and land challenges. In 2013, WLE made significant progress in the design of the IES flagship. WLE consulted a wide range of regional stakeholders to diagnose development challenges and to define opportunities for WLE to support sustainable intensification programs in each region. In 2014, each IES focal region is undertaking an open and competitive call for research projects. The call, which is currently running in the Greater Mekong, the Nile and Volta-Niger, with the Ganges soon to follow, is carefully designed to encourage national and regional partners to lead and join consortiums with WLE partners and other international organizations. The ability of millions of smallholder farmers to sustainably increase productivity, raise incomes and adapt to change is contingent on the adoption of technologies, implementation of better managerial practices and the creation of enabling environments (i.e., reform of institutions, governance structures and policies) that support access to and efficient use of water, land and energy. To effect these changes will require change at a number of levels, and for WLE an important focus will be on access to productive water, land and ecosystem services, information and markets, and implications for women. The LWP flagship will identify which enabling mechanisms can effect change, such as appropriate policies and supporting institutions. In order to put this into practice, LWP will form partnerships with farmer, public and non-profit organizations and, increasingly, private sector to understand and contextualize agricultural water and land management needs, solutions and implementation pathways. These partnerships will also promote collaborative learning, capacity building and the production and use of demand-driven tools and products. Selected research areas: Understanding the role of natural resources degradation and its impact on multiple aspects of human well-being; interventions to restore degraded lands (i.e., salinized irrigated lands, degraded rain-fed systems) and implications for enhancing multiple ecosystem services; the influence of improved planning processes in effecting multiple ecosystem services and trade-off analysis; the development of participatory tools that ensure the needs and voice of women and youth are incorporated into planning and implementation; and using ecosystem service valuation to inform and design economic incentive mechanisms.Contribution to IDOs: The vision of RRR is to deliver scientifically and economically based solutions that capitalize on the opportunities waste resources offer, thereby reducing the negative urban footprint on ecosystems and human health, and instead, through innovative market-driven investments, bring nutrients, water and energy back into the production cycle. By 2016, more than five donor programs and ten business schools will acknowledge WLE for promoting RRR business models and opportunities. By 2025, donors, governments and entrepreneurs in at least 20 countries will have invested into WLE-documented RRR business models, safe reuse options and evaluated RRR value propositions. Other benefits of the approach include reduction in greenhouse gasses, replacement of chemical fertilizers and related transport costs and improved health of farmers and consumers. The program also addresses a key global challenge related to increasing urbanization as world's urban population is expected to hit five billion by 2030.The RRR flagship is based on three pillars: 1) a focus on peri-urban areas as hotspots of ecosystems under stress; 2) innovative research in business modelling and 3) strategic partnerships with national and global change agents. The peri-urban interface is a dynamic zone of cities that is critical for urban development but suffers from multiple pressures draining and polluting its water sources and soils. Within national development plans as well as administration, these areas often fall into the 'grey zone' between rural and urban authorities and hence tend to be neglected. RRR focuses on these zones where multi-stakeholder processes that support decision making in integrated ecosystem management will result in minimizing environmental degradation and maximizing waste valorisation. RRR will achieve such outcomes by fostering a shift from the commonly held paradigm of treatment for waste disposal to treatment for safe reuse, which directly benefit farmers and entrepreneurs as well as supports the provisioning of better sanitation services.The flagship will achieve changes in perceptions and use of waste streams by analyzing, evaluating and promoting the most promising scalable business models (e.g., private sector, public-private partnerships or models that leverage private sector capital) and technologies (e.g., co-composting of faecal sludge) based on their verified feasibility. RRR considers it essential to form strategic partnerships for capacity building, outreach and replication, including by forming affiliations with national (e.g., local municipalities and local entrepreneurs) and global change agents such as the Water and Sanitation Program (WSP) of the World Bank, WHO, FAO, UNEP, the United Nations University (UNU), BMGF, SDC, Directorate-General for International Cooperation of the Netherlands (DGIS), the Department of Water and Sanitation in Developing Countries at the Swiss Federal Institute of Aquatic Science and Technology (SANDEC/EAWAG), the International Water Association (IWA), World Business Council for Sustainable Development (WBCSD). RRR also fosters enhanced capacities by partnering with business schools and the private sector, targeting investment plans, pilot implementation of business models and (inter)national guidelines. Further, RRR will generate products that potentially will be of interest to other CRPs, and it will establish linkages to promote the outputs that have particular relevance to soil fertility and nutrition and health.1. Business opportunities in nutrient, water and energy recovery and reuse: The research concentrates on safe wastewater and excreta use in crop farming and aquaculture, cocomposting of agro-industrial waste, food waste and other domestic waste sources and waste-based energy systems. It builds on successful and emerging business cases. 2. Safe waste water reuse: Research under this activity cluster addresses the issue that due to poor sanitation approximately 20 million hectares under irrigated crop production in Africa, Asia and Latin America and the Caribbean receive highly polluted water. 3. Resource management in intensified peri-urban ecosystems: These research activities aim to assist authorities and decision makers with scenarios and pilot studies supporting sustainable natural resources management for urban food and water security, while carefully balancing possible trade-offs for ecosystem services.Selected research areas: Identifying characteristics and success factors of viable, scalable business models for the safe recovery and reuse of water, nutrients and energy in a low-income country; enhancing valuation of ecosystem services through resource recovery and reuse systems; understanding how population growth and climate change affect wastewater generation, management and reuse; and the potential for peri-urban areas to benefit from increasing the resilience of cities or buffering their negative footprint.Contributions to IDOs: The vision of the MRV flagship is to enhance communities' and governments' to reconcile natural variability, competition among sectors and trade-offs, given the interconnectedness of water, land, energy and other ecosystem services, and the importance of equitably sharing these resources, their services and benefits. It contributes to WLE's IDOs on adaptation and resilience and recognizes that many of the major drivers of change affecting water for agriculture and the environment come from outside of the agriculture sector. The increasing management capacity to deal with extremes also has a strong link to poverty reduction efforts since variability affects the poor disproportionately. By 2016, new PES and collective action mechanisms developed by WLE and its partners are both used and extended by end users to other geographies and ecosystems in the South Asia and Latin America and the Caribbean focal regions. In addition, new insights on energy price impacts on sustainable intensification will be available to policymakers. By 2025, decision makers in the four focal regions, and investors in Asia and Africa, consider, as a common practice, a wider range of innovative storage options to alleviate water and ecosystem service variability.Impact pathway: Based on demand for credible scientific solutions and associated institutional and policy reform, the MRV flagship focuses on developing and evaluating innovative, large-scale solutions for managing spatial and temporal variability to reduce the negative impacts of floods and droughts on poor men and women. The flagship will assist decision makers to sustainably manage trade-offs between agricultural intensification and ecosystems service provision across landscapes through three pathways: 1) reducing human and economic losses due to floods, droughts and ecosystem service degradation by co-developing innovative storage and flow management solutions; 2) developing policies and institutions with partners, such as collective action mechanisms and payments for ecosystem services, to improve governance of ecosystem services from agriculture at regional and global scales and 3) addressing mounting pressures from energy, industry and urbanization in countries and basins through case-specific solutions.Through the development of tools, investment options, case-specific solutions and policy dialogues across the ecosystem-water-food-energy nexus, the MRV flagship supports and builds capacity in government agencies and decisions maker, enabling them to address pressure on energy sources and increase overall efficiency and sustainability of resource use. To effect these changes, the MRV flagship, in collaboration with CCAFS, works with investors and governments (e.g., WB, AfDB and water, agriculture and disaster management ministries) to enhance their understanding of, and improve investments in, innovative structural and policy solutions for management of conjunctive risk (i.e., droughts and floods) in a basin-wide context. Selected research areas: Improving understanding of ecosystem services provided by green and grey water infrastructure and their role in reducing flood and drought risks in sub-Saharan Africa and South and Southeast Asia; assessing the ability, suitability, institutional needs, technical performance and economics of underground solutions for mitigating flood risks and subsequent droughts in the Eastern Indo-Gangetic plain; developing a global water quality assessment tool focusing on trade-offs between intensification and environmental outcomes and identifying and mapping environmentally acceptable thresholds of surface and groundwater use and relevant governance models for sub-Saharan Africa and South Asia.WLE has three core themes that help integrate its work across the flagships (see Figure 1): Ecosystem Services and Resilience (ESR), Gender, Poverty and Institutions (GPI), and Decision Analysis and Information Systems (DAI).Core Theme: Ecosystem Services and Resilience (ESR) WLE's ecosystems-based approach is guided by its ecosystem services and resilience framework, which has been developed in collaboration with international experts and members of the WLE Steering Committee.The role of the core theme is to support ecosystem service and resilience-based research by creating a broad, multidisciplinary platform of CGIAR and non-CGIAR researchers capable of developing, adapting and using cutting edge research tools to support and guide investment decisions, particularly in the IES flagship (i.e., the Focal Regions and the Innovation Fund). The ESR theme also supports a growing focus on ecosystem service and resilience-based approaches in the LWP, MRV and RRR flagships, and it supports using the skills base and experiences embedded in each of these flagships to increase the effectiveness and impact of ecosystems-based approaches-which until recently have been dominated by the ecological sciences.The ESR theme has dedicated significant resources to engaging in several global processes, notably through IPBES, where the theme has actively engaged in representing WLE's vision and has been invited to contribute to several IPBES deliverables, including the scoping for regional assessments to be carried out in 2015-2016. The ESR theme anticipates continued contribution to these deliverables, leveraging WLE focal region work to contribute to IPBES regional assessments on biodiversity, ecosystem services and food security.Selective milestones in the ESR theme's agenda include Six methodological workshops to increase WLE's research capacity and partnerships on ecosystems-based approaches to groundwater, institutions and policies (with the CGIAR Research Program on Policy, Institutions and Markets (PIM)), irrigation and salinization, nutrient cycling, hydropower and landscape multi-functionality, biological control and pollination, and genetic resources.In collaboration with PIM, the development of a validated set of natural resource and ecosystems-based indicators to evaluate the impact of ecosystems-based approaches on investment decisions and sustainable development for use by the CGIAR in pursuit of its natural resource management IDO. This will include developing an indicator framework for sustainable intensification that is based on an ecosystems based approach. WLE researchers will contribute to all four regional assessments of biodiversity and ecosystem services for IPBES and thematic assessments on food production and food security. WLE contributes to IPBES work on capacity building on biodiversity and ecosystem services in agricultural landscapes.The GPI theme ensures that the equity goal of WLE is integrated into its research activities. Ensuring that women and marginalized groups have decision-making power over, and increased benefits from, agriculture and natural resources is central to WLE's vision of sustainable agricultural intensification.The GPI agenda has three inter-related strands: strategic gender research, integrating gender into WLE flagship impact pathways and partnerships that promote gender work in the focal regions (see Section 3 below for more details on GPI's work on gender).The GPI theme aims to achieve the following outcomes by 2016, with indicative outputs indicated. Decision makers in WLE's four focal regions use WLE-developed gender profiles, guidance and investable solutions to identify and address pressing issues facing women and to enhance women's decision-making power in water, land and ecosystems. Outputs will be the production of gender profiles, research on gender-specific issues and at least one investable solution identified for water, land and ecosystems.Gender and equity objectives have been defined and built within WLE flagship research and implementation leading to more equitable outcomes within sustainable intensification and ecosystems.The overall aim of the DAI theme is to improve the quality of decisions on agro-ecosystem research and development through the wider use of decision analysis and risk assessment methods and welltargeted information systems. In this extension period, the theme has become cross cutting in recognition of its relevance across all flagships. Improving decision processes helps better target research, avoid waste, improve implementation designs, generate greater commitment to action, and improve ways of measuring success. These improvements would in turn result in increased project impacts and greater value for money with lower risks. WLE recognizes the political nature of decision making and that improved information does not always lead to improved decisions. In order to improve the adoption of DAI, the core theme works closely with all the flagships and especially the IES flagship. This alignment with IES allows DAI to draw from the extensive partnerships built during the CPWF and now in the open calls to ensure that solutions leverage WLE's networks and are relevant to the political economies in which they are implemented.The theme will develop new decision analysis and risk assessment tools based on Bayesian analysis, which offers a solution to overcoming limitations in data insufficiencies while improving decision quality. Such tools have been used with considerable success in other domains of critical project decision making, including in multi-stakeholder settings and in government policy.Over the coming two years, the theme will focus on making such tools more readily available to project managers and decision makers and across the WLE portfolio by developing and applying tools, guidelines and case studies in the WLE focal regions. These methods and decision analysis tools, such as Applied Information Economics (AIE), are new to most stakeholders and CGIAR scientists and therefore outcomes strongly depend on providing exposure to a wide spectrum of decision makers and on developing a cohort of trained decision analysts. Following this two-year development and testing phase, WLE envisages a major scaling up of the capacity building effort targeting government and other decision makers, especially in least developed countries in Africa and Asia. By the end of the development phase, WLE hopes to have already identified potential centers of excellence in developing countries that could serve as capacity building hubs and help create a multiplier effect.Further, the theme will support information systems within WLE. The CGIAR have already invested in information systems that target critical areas of uncertainty in water, land and ecosystem management and have potential to contribute to shaping policies and programs at international, basin, national and sub-national scales. These are 1) cost-effective soil information systems that provide information for critical national and farm level management decisions based on new soil spectral diagnostics and digital mapping techniques; 2) a global water accounting platform that will provide water accounts on a monthly basis for major river basins of the world and 3) global information and knowledge facility for agro-biodiversity. Testing, verification and capacity development in these information systems in the WLE focal regions and other regions will be largely in response to stakeholder requests. Decision analysis methods will be used in conjunction with these initiatives to identify high-value information needs and refine their focus.As part of WLE's core theme on GPI (see Section 2.2), WLE's strategic gender research analyzes where, when and how women influence and can influence common-pool resource use (water, land and ecosystems) and how WLE can enhance women's role and decision-making power in this arena.WLE's gender research guides its investments by providing entry points to investable options for women and by providing research and data to ensure equitable outcomes.Presently, WLE's GPI theme emphasizes generating research that examines barriers and entry points to better understanding how to mitigate gender inequities in decision making on and access to natural resources. Yet, the ultimate goal is to enable women to become engaged in the sustainable access to, management and investment of water, land and ecosystems. In 2013 and 2014, WLE laid a strong foundation for achieving the program's ambitious gender goals through the development of an inclusive gender strategy. The program's work in 2015-2016 will build on this foundation. The GPI theme will seek to anchor and consolidate gender within the flagships and especially within the focal regions and innovation fund.As the GPI theme plays a prominent role in the IES flagship and innovation fund, it represents a major opportunity to change the women's role in sustainable intensification and natural management. WLE is investing in gender teams within each of the regions to support gender research and integration thereof and ensure meaningful change. Components in both the Volta and Ganges regions will look specifically at changing the dynamics and ability of women to access productive water, land and ecosystems due to, for instance, feminization of agriculture. In 2015, WLE will develop comprehensive gender profiles, which will be available to each of the focal regions, to help inform the gender research and move the gender transformative work forward for both researchers and policy makers.In Women currently make up 27% of WLE's steering committee, 31% of its management committee and 70% of its operations team. WLE's lead center, IWMI, sets the program's human resource policies and operational plans. IWMI's initial, successful initiatives to achieve gender balance will be intensified through its Gender in the Workplace: Operational Agenda. It is expected that these efforts will result in positive recruitment, retention and career development of female staff in WLE. Key milestones in this agenda include the following: Engaging with the CGIAR human resources community of practice to integrate best practices and targets into the Institute's operational plan (August 2014). By October 2014, IWMI will establish a gender and diversity performance monitoring committee.By December 2014, IWMI's management team will establish gender and diversity initiatives and targets for change, with an action plan agreed upon by January 2015 and implementation initiated in February 2015. By July 2015, gender researchers will be carried out in each WLE focal region and 20% of the research in the focal regions and innovation fund projects will be addressing gender issues.Partners are engaged in all steps of the research-for-development process, from generating evidence, delivering it to research users and then finally to shifting mindsets and behaviors. WLE has four types of partners: 1) research partners, 2) enabling partners, 3) investment partners, 4) partners for capacity strengthening. WLE builds on a rich legacy of partnerships, including engagement by CPWF and CGIAR centers as well as WLE's special relationship with FAO, which has a key governance role in WLE as a member of the program's Steering Committee.Based on WLE's draft partnership strategy, four principles guide its work:1. Engage and strengthen regional and national platforms: Through its focal region programs, WLE is committed to developing and building on long-term relations with regional and national organizations. The previous sections outline some of the key regional/national organizations, WLE has engaged in it focal regions. 2. Being explicit in allocation and accountability to partners: WLE has built fund allocations for partners into its new initiatives: in the innovation fund and focal regions at least 30-40% of the funds will go to local partners. WLE is encouraging CGIAR Center partners to leverage Window 1 and Window 2 funding to participate in the these calls and to also backstop regional partners in leading ground-breaking research. 3. Working with and through 'enablers': WLE leverages partnerships at each stage of an impact pathway and scale (e.g., local, regional and international). For example, WLE works with organizations such as WHO and FAO to ensure that the guidelines it develops can be used directly by them. WLE is also developing partnerships with TNC and Wetlands International on ecosystems-based approaches. WLE is actively engaged with a broader coalition of stakeholders in the scoping and growth of the IPBES to ensure that the contribution of ecosystem services from agriculture, and the benefits they provide to farming families, are well represented. 4. Develop capacities to improve partnerships: WLE recognizes the need to build its own thinking around partnerships. WLE has engaged the Overseas Development Institute (ODI) to assess current partnership arrangements in its focal regions and identify organizations it can work with.One of WLE's planned 2014 commissioned external evaluations will assess the degree to which its research is aligned with and relevant to partners' priorities.WLE also recognizes the importance of working closely with other CRPs to avoid overlap and find complementary areas of work. Annex 1 provides an overview of the collaborations to date, the roles of respective CRPs and the value added. The annex shows a rich collaboration across the board, particularly with CCAFS and the system CRPs.Some examples of the other partners that WLE has made include, but are not limited to 1) Research partners: WLE has strong research-based partnerships throughout its flagships. This includes international research organizations such as Stockholm Resilience Center, Stanford University, CIRAD, Kings College and The Natural Capital Project, which are global leaders on ecosystem service mapping, assessment and valuation.2) Enabling partners: Enabling partners provide entry points to decision makers that WLE cannot foster on its own. For instance, WLE works intensively with regional and national agencies to ensure they own and use research results. For instance, WLE works with Nile Basin Initiative (NBI), the Volta Basin Authority (VBA), Southern African Development Community (SADC) and SAGCOT to ensure that recommendations are tailored to their needs.3 Partners in management and governance: The recent review of the governance and management of CGIAR research programs, carried out by the Independent Evaluation Arrangement (IEA) of CGIAR, noted that WLE was highly rated for independence and inclusiveness of its governance structure.The report noted, in particular, that WLE has a very effective \"independent and balanced governance body\" with \"high external participation.\" In addition, in WLE focal regions partners that win projects will be involved in the regional advisory committees to help ensure that research is demand driven and is getting to appropriate end users.Ecosystem services follow natural-rather than political, sectorial or economic-boundaries. Therefore, achieving WLE goals requires strong collaboration not only with international, national and sub-national partners, but also with regional partners that span transnational and transjurisdictional boundaries. The WLE's focal region-approach emphasizes regional and national collaboration. Strategic regional collaborations across the focal regions include Nile/East Africa region: WLE teams up with the NBI, led by ten riparian countries in the Nile basin, as a dialogue platform for natural resource planning and management. NBI provides a strong link to key policy and practice decision makers across the basin. WLE collaborates with the Nile Basin Discourse (NBD), a civil society network of more than 1,200 organizations in the region. In the past year, WLE has defined joint plans in the region with TNC, IUCN and the Global Water Initiative (GWI), which focus on better access, management and use of water for sustainable agricultural production According to the preliminary CGIAR financing plan, $34 million of Window 1 (W1) and Window 2 (W2) funding will be allocated to WLE in 2015, which represents a growth of approximately 10% compared with 2014. Applying the same growth rate of 10% to 2016, the WLE budget is based on a forecasted allocation of W1 and W2 funds of $37.4 million. The program recognizes that actual allocations to WLE for 2016 will be based on performance to date and on the assessment of this extension phase proposal. However, actual funding in line with the two-year budgets will help either generate additional bilateral funds (by pledging window funds as matching contribution to the funding pool) or fulfill WLE's pledge of matching contributions where donors have already contributed Window 3 (W3) or bilateral funds.Bilateral and W3 funding levels will be higher over the five-year term of Phase 1 than anticipated for the original three-year term, with an expected contribution to WLE of $68 million in 2015-2016, bringing the total W3 and bilateral funding to $167 million compared with the budgeted value of $80 million. The figures for 2015 and 2016 are derived from WLE partner center estimates of bilateral and W3 funding that will be allocated to the flagships and core themes of the program in 2015 and 2016.The total budget for Phase 1 of WLE according to the Program Implementation Agreement is USD 246 million. For the 5-year period 2012-2016, W1 and W2 funding levels at USD 160 million are expected to remain slightly below the original 3-year budget of USD 164 million. This increased funding will be essential to support activities for the additional two years of Phase 1 in order to achieve the ambitious outcomes outlined in this proposal; official authorization is hereby sought to use the additional USD 87 million above the original bilateral and W3 budget. This brings the total 2012-2016 WLE budget to USD 326 million, the increased resources reflecting the increased scope of WLE in particular the Innovation Fund and Focal Region programs under the new IES Flagship. In addition to the WLE flagships and their associated activity clusters, funds are also allocated to investment in the core themes of Ecosystem Services and Resilience; Gender, Poverty and Institutions; and Decision Analysis and Information Systems as well as to the management and governance of the program and to the leadership of flagships through WLE's 'program management and coordination' (PMEC) budget. WLE's gender strategy sets out a minimum target of 10% of the program's annual budget to be allocated for gender-specific research; during the extension phase, the program aims to increase this proportion to 14%. Budgets for each flagship, theme and the components of the PMEC budget, and the estimated allocation of these budgets for gender-specific research, are shown in Table 2. These budgets and proportions may be adjusted as the details of activities under each cluster are developed further. A significant package of research is initiated in all the focal regions and with the IF on an ecosystem service based approach to equitable sustainable intensification.Commitment of at least 4 key decision-making agencies in the Volta, Nile, Ganges and Mekong focal regions to consider WLEbased trade-off analyses and landscape design options to create or re-frame investment decisions that improve ecosystem services, resilience and enhancing decision-making power and benefits to women and marginalized groups.Reservoir management practices for recession agriculture in the Mekong improved and adopted by dam operators in Laos and Vietnam.Policy makers support CPWF/WLE options on water management and food security in southern Bangladesh. As noted in the flagship contribution to the IDOs, the IES Flagship is currently running open and competitive calls for research in each of the WLE Focal Regions. The calls have specific guidelines that frame research under WLE's integrated ecosystem based approach, sustainable intensification and align it with work packages in other flagships building from and scaling up the ten years of successes from the Challenge Program on Water and Food (CPWF). Therefore, it is not possible to commit to specific outcomes for this research because the calls are not complete. WLE has a robust process in place to define outcome targets for each open and competitive call by November 2014. Once this process is complete WLE will be in a position to provide details on the significant expected outcomes from this flagship in 2015 and 2016 and their means of verification. Information on each call can be found on our website: http://wle.cgiar.org/focal-regions/?map=active Flagship 2: Sustainably increasing land and water productivity (LWP).State-of the art reviews on existing and potential AWM areas and the opportunities and constraints to manage formal and informal irrigation systems. Access to and training on the use and application of suitability maps, business models, and decision support tools tailored to specific users to support investments in land and water management solutions (Ethiopia, Ghana, Tanzania, Nigeria); Impact analyses of solutions (social, economic, environmental) and assessment of institutional capacity to sustainably manage change and potential trade-offs (Ethiopia, Ghana, Tanzania, Nigeria, India, Nepal).At least three pilots commenced by implementing agencies, government and/or donor agencies to field-test promising solutions (e.g., irrigation service providers and 'smart subsidies' for solar pumps) and supporting business models in East/West Africa and India; NARES apply methodologies, analyses, maps and tools to out-scale tested solutions and monitoring frameworks to new locations (East/West Africa);Results of impact assessment of recent revisions to the State's Groundwater Act on resource sustainability and agricultural production inform future decisionmaking regarding energygroundwater policy discussions in West Bengal, India. 2.2 Revitalizing irrigation systems.Comparative ex-post analyses of irrigation system performance, financing models and energyirrigation nexus (India, Uzbekistan, Pakistan); Annual rating of best managed At least one Farmer Organization (FO) in East (Pakistan) Punjab uses leverage of additional agricultural services to improve collection of water charges and related costs (area 1600 ha) as a means to strengthen the resources available to FOs and systems developed (India); Policy recommendations to improve donor funded system and farm level irrigation management in the Nile Delta (Egypt). irrigation services they provide to farmers;Precision surface irrigation introduced in 32 ha of east (Pakistan) Punjab as a means to improve application efficiency upstream and availability of surface water for downstream users;The Government of India initiates a solar pump promotion scheme for eastern and western India, as conceptualized by WLE jointly with partners, to serve as a viable alternative to electric and diesel pumps. ","tokenCount":"7058"} \ No newline at end of file diff --git a/data/part_3/9092882656.json b/data/part_3/9092882656.json new file mode 100644 index 0000000000000000000000000000000000000000..c2fbffa3bf964b7bf28da9f6db052fb7b86b1b40 --- /dev/null +++ b/data/part_3/9092882656.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c114273a3d1cb69d73abfd7dc9b35416","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/ddfa8bd5-8a23-4f6d-9990-0fc1caa2055f/retrieve","id":"1173205633"},"keywords":["biocontrol","vegetative compatibility group","carry-over","non-aflatoxigenic","aflatoxins"],"sieverID":"f6509e2c-a584-47f7-be7d-0a4fffb03853","pagecount":"15","content":"AF-X1 is a commercial aflatoxin biocontrol product containing the non-aflatoxigenic (AF-) strain of Aspergillus flavus MUCL54911 (VCG IT006), endemic to Italy, as an active ingredient. The present study aimed to evaluate the long-term persistence of VCG IT006 in the treated fields, and the multi-year influence of the biocontrol application on the A. flavus population. Soil samples were collected in 2020 and 2021 from 28 fields located in four provinces in north Italy. A vegetative compatibility analysis was conducted to monitor the occurrence of VCG IT006 on the total of the 399 isolates of A. flavus that were collected. IT006 was present in all the fields, mainly in the fields treated for 1 yr or 2 consecutive yrs (58% and 63%, respectively). The densities of the toxigenic isolates, detected using the aflR gene, were 45% vs. 22% in the untreated and treated fields, respectively. After displacement via the AF-deployment, a variability from 7% to 32% was noticed in the toxigenic isolates. The current findings support the long-term durability of the biocontrol application benefits without deleterious effects on each fungal population. Nevertheless, based on the current results, as well as on previous studies, the yearly applications of AF-X1 to Italian commercial maize fields should continue.Aspergillus flavus Link is one of the most important filamentous fungi worldwide because it can produce aflatoxins in various crops of economic importance. This species is widely distributed in temperate, tropical, and subtropical zones [1], including various regions in Europe [2,3], and thrives in many agro-ecosystems and diverse natural habitats. The competitive advantages of A. flavus increase under several abiotic stresses, including its high temperature and salinity [4,5]. However, it is as a causal agent of aflatoxin contamination that A. flavus is most frequently distinguished. The International Agency for Research on Cancer [6] classifies aflatoxin B1 (AFB1) as a Group 1 compound because it is known to be carcinogenic to humans [7]. As a result, the maximum levels (MLs) for aflatoxins in food and feed have been established in most countries, to prevent the commercialization and consumption of unsafe commodities [8][9][10].The life cycle of A. flavus is divided into an opportunistic phase, during which plants, animals, and humans are infected, and a saprophytic phase, where detritus is produced from excrement and through the decay of plant and insect parts and other organic matter [1]. Mycelia, conidia, and sclerotia are produced during both phases, providing for reproduction and survival in the absence of the nutrients and/or environments conducive to growth [11][12][13][14]. Many A. flavus genotypes produce AFB1 and AFB2, but other genotypes lack the abilities to produce aflatoxins [15]. Based on the morphology of sclerotia, two morphotypes of A. flavus have been characterized: S morphotype, known for the production of copious small sclerotia (<400 µm in diameter), and L morphotype, characterized by sclerotia that are fewer in numbers but larger (>400 µm) [16]. Almost all S morphotype strains produce aflatoxin at high concentrations, while the aflatoxinproducing potentials of L morphotype strains vary widely, ranging from highly toxigenic to non-aflatoxigenic (AF−). Genotypes that produce no aflatoxins are termed as nonaflatoxigenic (AF−). The presence of AF-strains has been reported in most studies that evaluate A. flavus diversity [16][17][18][19][20].There are many A. flavus genetic groups, called Vegetative Compatibility Groups (VCGs), which are delimited by a self/non-self-recognition system [17,18]. VCGs that are composed entirely of AF-members reflect the stable retention of this phenotype during clonal evolution [19]. A lack of aflatoxins production does not affect the ability of A. flavus to infect and decay crops. In fact, the aggressiveness of some AF-strains lets them be tested as biocontrol agents with the potential to competitively exclude aflatoxin producers [16]. In 1989, the AF-strain AF36 was applied for the first time to a field in Yuma, Arizona, after being tested at laboratory scale, and it significantly reduced the aflatoxin contamination in cottonseed [16].The displacement of aflatoxin producers is one possible mechanism by which the applied AF-strains reduce aflatoxin contamination [1,20]. From the initial commercial field evaluations of the AF36 strain in 1996, it became evident that AF-biocontrol products shift the A. flavus population structure in treated fields, and these changes to the population structure may be retained, in part, over multiple years [21,22]. Similar results also occur in small-scale field studies [23] and in multi-year evaluations of the biocontrol product Aflasafe used in commercial maize fields in Kaduna State, Nigeria [24].There are currently over 50 AF-strains of A. flavus that are registered for use as active ingredients in the aflatoxin biocontrol products used in various countries [25,26]. However, AF-X1 is the only product currently available in the EU. AF-X1 has been used in Italy since 2015. Its active ingredient is A. flavus MUCL 54911, which is endemic to Italy and belongs to VCG IT006 [27]. All members of this VCG lack the entire aflatoxin biosynthesis gene cluster, as a result of a large insertion/deletion event shared in common with a number of other AF-genotypes of A. flavus [19,28].In 2003, there was an aflatoxin outbreak in the maize grown in North Italy [2], which was ingested by dairy livestock. This resulted in large quantities of milk being destroyed, thereby having a significant impact on the regions' signature cheese production by the consortia of Parmigiano Reggiano and Grana Padano. Since 2003, North Italy has experienced additional aflatoxin contamination events, as have many temperate regions in southeastern Europe [3,29], causing significant problems for both the maize and dairy industries [30]. Furthermore, climate change is predicted to worsen the maize contamination in Europe [31]. The use of different compounds able to bind AFB1 to reduce its bioavailability was purposed, but this approach is not totally effective and implies side effects [32,33]. A biocontrol formulation comprised on an AF-A. flavus strain, AF-X1, was successfully developed to address the contamination in commercially grown maize in Italy. The use of AF-X1 has resulted in substantial relief for the maize industry in Italy, with aflatoxin contamination reduced more than 90% compared to untreated maize [28,34,35]. As the only biocontrol for-mulation currently available in the EU, AF-X1 has been commercialized with a temporary authorization since 2015, while the final registration work is still ongoing.There are several possible mechanisms through which the AF-strains of A. flavus may impact aflatoxin contamination, such as competitive exclusion [21], nutrient sequestration [36], touch inhibition, or chemosensing (extrolites or VOCs) [37,38]. However, the predominant mechanism reported in agricultural fields is the modification of Aspergillus populations through the displacement of aflatoxin-producing potential [39][40][41]. The AFstrains displace the toxigenic strains and thereby reduce the aflatoxin content in many of the crops grown commercially in the United States, Nigeria, Kenya, Senegal, The Gambia, Ghana, and Italy [28,40,[42][43][44][45].Aflatoxin concentration is influenced by a high temperature, low humidity, and precipitation. Moreover, crop rotation and the timing of planting and harvest have strong effects on contamination. These factors make it difficult to determine the multi-year efficacy of biocontrol applications based on the aflatoxin concentrations alone [31,46,47]. In some regions, biocontrol strains have been shown to persist beyond a single growing season and expand their range beyond the treated fields [22,23,44,46,48]. However, the extents of such influences are dependent on both the AF-genotypes employed and the agro-ecosystem in which the product is used [49]. The residual influences of biocontrol products can be assessed by the multi-year monitoring of the AF-active ingredients in agricultural soils. This can be done by examining individual genotypes within the resident fungal population and characterizing those individuals with either culture-based (i.e., a vegetative compatibility analysis (VCAs) [20,50] or molecular tools, such as microsatellite analyses or SNP monitoring with pyrosequencing [51 -53]. Moreover, several studies have previously identified the role of some aflatoxin biosynthesis pathway genes, such as omt-A and aflR, to develop new approaches to estimate the aflatoxin-producing capacity of Aspergillus spp., such as the use of real-time PCR [54][55][56]. In fact, qPCR was previously used to detect AF36 during pistachio production [57]. In addition, Cluster Amplification Pattern (CAP) is a multiplex PCR method used to monitor the stability of the AF-strains of A. flavus [58].Currently, there are no studies on either the long-term efficacy of AF-X1 or the influences of the maize-based agro-ecosystem of northern and central Italy on AF-X1 persistence. Therefore, our study sought to assess the long-term effects of the commercial applications of the biocontrol product AF-X1 on the structure of the A. flavus communities' resident in fields that are frequently cropped to maize in north Italy. The residual influences of these applications may provide cumulative benefits over multiple seasons and may, in part, explain the reduced frequencies of aflatoxin contamination in regions where the applications of AF-X1 were previously employed.Most of the fields (70%) included in the current study contained predominantly silt soil (Table 1). In total, six (21%) fields were predominantly clay, and three (11%) were sandy. Several of the sampled fields (25%) were planted with maize repeatedly, without rotation. However, some of the fields were rotated between maize and either wheat, soybean, tomato (rarely), or pea. Conventional tillage was commonly applied, with conservative approaches (no tillage) reported only for three fields in area 2 of Rovigo. In addition, stalk burial was performed in ~50% of the fields, and all four of the fields sampled in area 6 (Table 1).Table 1. List of maize fields sampled in this study. Location (district and municipality), sampling year, geographic coordinates (latitude and longitude), AF-X1 treatment regimen (untreated, treated n-2, treated n-2&n-1, and treated n-1; n is the sampling year), soil texture, crop rotation (one or two years before sampling), and stalk burial were reported.Area The total fungal community (Table 2) in the soil sampled in 2020 was significantly (p < 0.01) influenced by the AF-X1 application schedule; however, no significant influence was observed in the soils sampled in 2021. Furthermore, the interaction between the treatment and location was significant (p < 0.01).Table 2. Results of ANOVA run for colony-forming units (CFU/g) of total fungal community and of A. flavus resident in the soil samples collected from 3 areas in 2020 and 4 areas in 2021. The 7 different areas belong to 4 districts: Modena, Rovigo, Padova, and Venezia. Per each area, 4 different AF-X1 treatment regimens were considered: untreated, treated n-2, treated n-2&n-1, and treated n-1; n is the sampling year. Percentage of AF-strains on all A. flavus isolated was also reported, so was the percentage of the VCG IT006 on total A. flavus strains and on the AF-strains. 1 Each replicate is a separate commercial field. 2 The % of AF-was calculated based on the total number of isolates of A. flavus p (120 and 279 isolates of A. flavus recovered in 2020 and 2021, respectively). ** (p < 0.01), * (p < 0.05); NS= not significant; different letters indicate significant difference according to Tukey's HSD test. 3 Percentages were calculated based on the total number of isolates collected for each treatment.The incidences of the total fungal occurrence (CFU/g) were calculated for each field sampling site (Figure 1), and the distribution of the total fungal population varied among them. The highest fungal occurrence was noted in area 4 with 3443 CFU/g, and the lowest in area 7 with 112 CFU/g (Figure 1b). Additionally, a CFU/g increase of 47% was noted in all the fields treated n-1 compared to the untreated fields. The distribution of the total fungal population varied within the areas. The highest fungal concentrations occurred in a field treated n-1 in area 1 (6027 CFU/g).The occurrence of A. flavus in each field site also varied with treatment (p < 0.01), being inconsistent and ranging from 51 to 190 CFU/g (Table 2). Overall, the results from both sampling years indicated that the lowest average recovery of A. flavus (51 CFU/g) occurred in an untreated field in 2020 with 51 CFU/g (Figure 1c). The concentrations of A. flavus were elevated in both the fields treated in a single year and the fields treated over two years (2020-2021; Table 1). There was a significant interaction between the treatments and locations, but only for the data collected in 2021 (p < 0.01).The only time an untreated field site had a greater abundance of A. flavus than the treated neighbor fields was in the Noale municipality (sampling year 2021), whereby the untreated field had the greatest A. flavus concentrations (99 CFU/g), and all of the three treated sites were ≤50 CFU/g (Figure 1d). In each area 4 different treatment regimens were applied: untreated, treated n-2, treated n-2&n-1, and treated n-1; n is the sampling year.Overall, 399 A. flavus isolates were collected from the soil samples. The frequency of isolates lacking the aflR gene was determined using a qPCR method and found to be 287 (72%) (Table 2). As expected, the occurrence of the AF-isolates lacking the aflR gene was significantly influenced by AF-X1 treatment (p < 0.05), but only when the two sampling years were combined; the fields treated for two years had significantly more AF-isolates compared to the untreated fields.The highest occurrence of isolates lacking aflR was noted in all the treated fields and ranged from 68% to 93% among the examined communities of A. flavus (Table 2). However, a lower overall occurrence of toxigenic isolates was sampled in the untreated fields during 2020 compared to the untreated fields sampled in 2021 (Figure 2). Overall, 399 A. flavus isolates were collected from the soil samples. The frequency of isolates lacking the aflR gene was determined using a qPCR method and found to be 287 (72%) (Table 2). As expected, the occurrence of the AF-isolates lacking the aflR gene was significantly influenced by AF-X1 treatment (p < 0.05), but only when the two sampling years were combined; the fields treated for two years had significantly more AF-isolates compared to the untreated fields.The highest occurrence of isolates lacking aflR was noted in all the treated fields and ranged from 68% to 93% among the examined communities of A. flavus (Table 2). However, a lower overall occurrence of toxigenic isolates was sampled in the untreated fields during 2020 compared to the untreated fields sampled in 2021 (Figure 2).The 399 A. flavus isolates recovered from the soil samples were subjected to classical VCG testing. A total of two hundreds of the isolates shared VCG IT006 with MUCL-54911. A subsequent analysis revealed that they all lacked aflR, as expected. The remaining 199 isolates did not belong to IT006, and 84 (42%) of those also did not have aflR. The abundance of VCG IT006 isolates was significantly influenced by the AF-X1 treatment regimen (p < 0.01), but only in the fields sampled in 2021. VCG IT006 was significantly lower in the untreated fields, both when the incidence was computed for the total A. flavus or AF-isolates (Table 2). When the counts for both the sampling years were combined, the significantly lower incidence of VCG IT006 in the untreated fields was confirmed. Similar ranges of IT006 frequency were observed in the fields treated two years prior (20% to 83% IT006) and one year prior to sampling (40% to 93% IT006) (Figure 3). However, the frequencies of IT006 in the untreated field areas 1 and 3 (2020) were more than double the amounts recovered in any other untreated field, as well as in those treated in 2018 (+29% vs. +17%) (Figure 3a). In each area, 4 different treatment regimens were applied: untreated, treated n-2, treated n-2&n-1, and treated n-1; n is the sampling year.The 399 A. flavus isolates recovered from the soil samples were subjected to classical VCG testing. A total of two hundreds of the isolates shared VCG IT006 with MUCL-54911. A subsequent analysis revealed that they all lacked aflR, as expected. The remaining 199 isolates did not belong to IT006, and 84 (42%) of those also did not have aflR. The abundance of VCG IT006 isolates was significantly influenced by the AF-X1 treatment regimen (p < 0.01), but only in the fields sampled in 2021. VCG IT006 was significantly lower in the untreated fields, both when the incidence was computed for the total A. flavus or AF-isolates (Table 2). When the counts for both the sampling years were combined, the significantly lower incidence of VCG IT006 in the untreated fields was confirmed. Similar ranges of IT006 frequency were observed in the fields treated two years prior (20% to 83% IT006) and one year prior to sampling (40% to 93% IT006) (Figure 3). However, the frequencies of IT006 in the untreated field areas 1 and 3 (2020) were more than double the amounts recovered in any other untreated field, as well as in those treated in 2018 (+29% versus +17%) (Figure 3a). The cropping conditions that were available and collected from farmers were crop The cropping conditions that were available and collected from farmers were crop rotation, the soil type, tillage (most of the fields were under conventional tillage), and stalk burial, which in all studied fields was not applied. Crop rotation was the only factor among the cropping system that significantly influenced the fungal population isolated from the soil, with a significantly higher CFU/g and wheat grown before maize compared to soybean. The incidence of the AF-isolates, just as the incidence of IT006, was the highest with maize as the preceding crop (data not shown).Farmers, industries, and regulatory authorities have questioned if the applications of the aflatoxins biocontrol product might have long-term benefits [34,35]. The current study provides observations that suggest that the applications of AF-X1 have influences that extend to the next season and the season after, and even to nearby neighboring untreated fields. The soils collected in 2020 and 2021 from the fields located in northern Italian maize production areas, where AF-X1 was previously applied, contained significant frequencies of the VCG, to which MUCL 54911, the active ingredient of AF-X1, belongs. The results (Table 2) indicate that: (I) the use of AF-X1 has a residual effect that improves the structure of the A. flavus resident in both the treated fields and in the neighboring untreated fields, so that the AF-active ingredient is more common and the frequency of the aflatoxin producers is reduced; and (II) the application of AF-X1 promotes the creation of these safer Aspergillus populations, with no significant effects on the total fungal communities. These results suggest that follow-up studies should be used to determine the frequencies and distributions of the AF-X1 applications required for the levels of cost-effective aflatoxin management required by north Italy's maize industry, to provide grain that is consistently safe for the region's vital dairy industry. To assess the residual effects of AF-X1 applications, VCA was undertaken to assess the abundance of its active ingredient, MUCL 54911, in the current study, despite being a labor-intensive, time-consuming technique; this has been judged the most reliable and accurate method available, and the only method which has been successfully applied to identifying MUCL 54911 in field samples [51,59]. A significant occurrence of MUCL 54911 in all the treated areas was reported. Similarly, the application of single AF-A. flavus isolates of the aflatoxin biocontrol products, Afla-Guard ® and AF36, resulted in persistence overtime. In addition, the most extensive carry-over studies, involving thousands of isolates, were carried out in the U.S. with AF36 [23,60,61]. A similar carry-over was observed on African small holder farms with Aflasafe, a biocontrol product containing four AF-strains as its active ingredients [24].Several studies have shown not only the survival, but also an increased frequency of AF-biocontrol product VCGs beyond the treatment season [44,60,62]. On the other hand, the studies of Weaver and Abbas [23] and Atehnkeng et al. [24] showed a decline in the frequencies of biocontrol VCGs when follow-up treatments were delayed by one or two years. This suggests that the biocontrol carry-over effects may change from area to area, and the carry-over effects must continue to be investigated.The current study revealed some unexpected results. In two areas (Figure 2), the prevalence of VCG IT006 in the untreated fields was comparable with the fields treated two years prior. The field-to-field variation in the microenvironment, agronomic practice, or predation by insects may have contributed to these observations [63].The isolate of A. flavus MUCL 54911, belonging to VCG IT006, was identified and validated as the most efficient AF-strain among those included in the Italian fungal collection by Mauro and coworkers in 2013 and 2018 [28,59]. The study of Mauro et al. [28] highlighted the benefits of MUCL 54911, an active ingredient of AF-X1, in reducing the aflatoxin in maize. Mauro and colleagues showed that IT006 is the largest VCG in the Italian population, from which the active ingredient was chosen and was found in four out of five of the northern Italian regions where our current study was conducted. Areas 1 and 3 belong to the district of Rovigo, where 40% of the fields had been treated with AF-X1. The examined samples from Rovigo had larger proportions of IT006, suggesting that aerially dispersed and insect-transmitted conidia may be factors that facilitate the active ingredient movement [4,13]. The recovery of VCG IT006 in relatively high proportions in the untreated fields supports the approach of selecting VCGs native and well-adapted to the target regions for use as the active ingredients of biocontrol formulations for an improved persistence. Their adaptation to target areas plus their dispersal from treated to untreated fields are useful characteristics for biocontrol strains.Data on cropping systems, such as rotation, soil texture, and other agricultural practices, might be relevant in explaining the observed variability among the fields. Several studies have examined the link between the previous crop and the A. flavus population [64][65][66]. In the prior studies, the highest densities of A. flavus were found in the soil after maize, followed by wheat, cotton, and sorghum. The results from the current study agree with these prior studies. One field treated two years prior to sampling with a prior crop of wheat had the lowest A. flavus density observed. Furthermore, soil texture is associated with the variability in A. flavus communities. Clay soil and A. flavus are positively correlated, while sandy soil is negatively correlated [65]. Even if not statistically significant, the lowest incidence of AF-isolates and those belonging to IT006 were detected in sandy soil. In area 1, in the current study, a field with sandy soil that had been treated with AF-X1 two years prior had a low incidence (35%) of IT006, with 84 CFU/g of the total A. flavus population (Figure 2a).Conservation tillage combined with stalk burial, which increases the organic matter in the soil, were highly correlated with the A. flavus density and contributed to the maintaining of a reservoir of A. flavus [67,68]. In this study, significant differences were not detected, probably because so few (3 out of 28) fields had undergone conservation tillage, but the results from area 2 were in agreement with this statement; the density of A. flavus (251 CFU/g) was greater under no tillage with stalk burial than under tillage (109 CFU/g) in area 2 (Figure 1c).In the present study, the sampling sites were chosen randomly to obtain diverse conditions. Therefore, a large variation in the cropping system may be a barrier to establishing a link between the cropping system and A. flavus density, as well as the occurrence of IT006. As expected, the carry-over experiment had no significant effect on the global fungal communities, other than on the proportions of the toxigenic and AF-A. flavus residing in the soil. Bhandari et al. [69] found that the application of the commercial biocontrol product FourSure™ had no overall impact on the microbiome composition of the treated and untreated crops. The aflatoxin biocontrol application has been reported to have no increase in Aspergillus density [24,39] and no influence on the composition of other mycotoxigenic fungal species such as Fusarium, and contamination with fumonisins [28,70].The tracking of biocontrol active ingredients has been carried out by first classifying the A. flavus isolates by morphotype (L strain and S strain), and then conducting VCA in the L morphotype isolates with tester pairs specific to the VCGs of the active ingredients [16,26]. A qPCR technique has resulted in useful information on hazelnuts and pistachios because of its specificity, sensitivity, and accurate detection properties in accordance with the international EPPO standard (PM7/98) [54,57]. The usefulness of a qPCR in detecting AFisolates based on lack of the aflR gene in the aflatoxin biosynthesis cluster was confirmed by the current study. This is the first study to track the abundance of biocontrol isolates in maize fields based on a qPCR of the mechanism underscoring one AF-genotype. However, non-aflatoxigenic strains exist with partial gene clusters that also lack aflR, so we cannot be certain that all the aflR-lacking strains detected during our qPCR were MUCL 54911.The current work found a predominance of AF-fungi in all the surveyed areas and at higher incidences in most fields in which a prior year biocontrol application was made. Similar results have been reported by Atehnkeng and coworkers [24] with other biocontrol fungi on small-holder farms in Africa. Our results show shifts in the A. flavus population following the application of the AF-A. flavus biocontrol product, AF-X1. Previously, this was demonstrated under various conditions, in both small-scale and large commercialscale agriculture [23,24,26,71]. Nevertheless, a wide variability was observed among the studied fields.Examining the proportion of the biocontrol active ingredients post-application, over multiple years, is an important criterion to evaluate the success of A.flavus AF-strain-based biocontrol application. This study provides valuable data regarding the performance and stability of the active ingredient of AF-X1 in Italian agro-ecosystems for sustainable aflatoxin management. Additionally, this study confirms that post-application movement can occur to neighboring (untreated) fields and provide them with some level of protection from aflatoxin contamination. The proximity of neighboring fields, the area size, and the amount of the biocontrol applied are highly correlated with dispersal to untreated fields, as well as the persistence of the active ingredient over the time [24,72].In conclusion, the use of aflatoxin biological control products with AF-A. flavus as their active ingredients is the most successful technique for aflatoxin management so far, demonstrating a considerable adaptability in the field with the strains native to the target regions. The current findings support the long-term durability of the application benefits. The primary detected influence of the AF-X1 applications is a switch in the A. flavus community structure towards increased incidences of AF-A. flavus. Based on our findings, as well as those from previous studies, the annual application of AF-X1 to commercial maize fields should be maintained, until more data are available that show the optimal timing and distribution of the applications that provide the most cost-effective treatments.Soil was sampled in north Italy during April 2020 and 2021 in seven sampling areas, distributed across the provinces Rovigo, Modena, Padova, and Venezia. In each area, 4 fields (28 fields total) were chosen based on different time points involving AF-X1 application: once the previous year to sampling (treated n-1), once two years prior to sampling (treated n-2), both the previous year and two years prior to sampling (treated n-1 and n-2), or not at all (untreated). All the applications were made according to the label instructions of the farmers. For each treatment year, the crops were treated once at 25 kg/ha between the BBCH phenological growth stages 33-39 [73]. In each region, the approximate percentages of the maize farms where AF-X1 had been applied varied, with 40% in Rovigo, 35% in Padova, 30% in Venezia, and 25% in Modena.In total, ten soil samples of ~50 g were collected with a surface-disinfected trowel, from the top 2 cm at 4 to 10 m intervals across diagonal transects of each of the 28 fields. The distances between the sampled fields exceeded 5 km [74,75]. The soil samples were taken to the laboratory, dried in forced air (40 to 45 • C, 48 h), and stored in plastic bags at 4 • C until processed. Additionally, information regarding the cropping system (e.g., the crop rotation, tillage system, stalk burial, and soil texture, provided by the farmers/extension agents) was collected for each the sampled fields.The isolation of A. flavus from the soil samples was performed aseptically, following the protocols previously reported [65]. Briefly, 10 g of soil per sample was mixed with 50 mL of double distilled sterile water and stirred for 20 min at 300 rpm A 100 µL aliquot of the soil suspension was transferred onto MRBA [76] and incubated at 31 • C for 3 d. The colonies of A. flavus were identified based on their morphology [77] and quantified as colony-forming units per g of soil (CFU/g). From each field, 10 to 15 discrete colonies of A. flavus were transferred to the low nutrient agar medium 5/2 (5% V-8 vegetable juice, 2% agar, pH 5.2) [78] and incubated (5-7 d, in the dark, 31 • C). The cultures were saved in sterile water vials at 4 • C containing five plugs (3 mm dia) of sporulating agar in 1 mL of sterile distilled water [78].In total, 399 isolates (range = 10-15 per field) were used to quantify the persistence of the active ingredient of the biocontrol product AF-X1, MUCL 54911, using Vegetative Compatibility Analysis (VCA). The isolates were single spored (i.e., monosporic) through serial dilution on Malt Extract Agar (MEA) [59]. After 2 d of incubation at 31 • C, one colony per isolate was transferred to 5/2 agar. The single-spore transfers were performed in triplicate to ensure the culture purity. A total of five agar plugs from pure mature cultures were saved as above.Monosporic A. flavus isolates (399 total) were used to evaluate the presence or absence of a section of the aflR gene, using a TaqMan qPCR assay developed for A. flavus [54]. In addition, all the isolates were subjected to a qPCR assay to evaluate the presence or absence of a section of the aflR gene. This gene is required for aflatoxin production. Positive (isolate FS7; aflatoxin producer) and negative controls (isolates FS3, FS5, FS6, and FV9; non-aflatoxin producers) were included. The 399 monosporic isolates were grown on Yeast Extract Sucrose Agar (YES agar) for 7 d at room temperature [79]. Fresh mycelium from the edges of the colonies were used to extract genomic DNA with the E.Z.N.A. fungal DNA mini kit (Omega Bio-Tek, Norcross, GA, USA), according to the manufacturer's instructions. The DNA concentrations were measured with NanoDrop 2.0 (ThermoFisher, Wilmington, DE, USA) and adjusted to be less than 100 ng/µL [54].The two primers, AflF and AflR [54], were used at a concentration of 0.3 µmol, the TaqMan probe concentration was 0.1 µmol, with 1 × of TaqMan universal PCR MasterMix (Applied Biosystems, Loughborough, UK) and 1 µL of DNA (100 ng/µL) of the isolate being assayed. A StepOne thermal cycler instrument (Applied Biosystems, Loughborough, UK) was used to perform the reaction with the following cycle: an initial denaturation at 95 • C for 4.5 min, 40 cycles of 15 s at 95 • C, and 15 s at 60 • C. Each reaction was run in triplicate; positive and negative controls were included in each run. The standard curve utilized the DNA of A. flavus FS7 with serial dilution to test the qPCR sensitivity [54]. The AF-genotype of each isolate was assumed based on the CT value generated from the amplification curve of aflR gene and ranged from 20 to 47.61 (CT ≤ 35 = toxigenic; CT > 35 AF-).To determine the distribution and frequencies of the AF-X1 active ingredient (MUCL 54911), all 399 monosporic isolates were subjected to VCA with the tester pairs of VCG IT006 [59], the VCG to which MUCL 54911 belongs, following the previously published protocols of Bayman and Cotty, [80] and Cotty [71].To obtain the nitrate non-utilizing (nit-) mutants, 10 µL of the spore suspension of each isolate was seeded into a well (3 mm diameter) in the center of SEL plates [71]. Sectors that were auxotrophic for nitrate were visible after 10 to 30 d of incubation at 31 • C. The auxotrophs were transferred to MIT, incubated for 3 d at 31 • C [51], transferred to 5/2 agar, and stored in water vials, as described above. Complementation tests with the tester pair of VCG IT006 were performed on starch medium [81]. In total, three wells (3 mm in diameter), 1 cm apart, were made in a triangular pattern in the center. A total of two wells were seeded with 10 µL of the spore suspension of each of the testers, and the third one was seeded with 10 µL of the spore suspension of the nit-mutant of the isolate being analyzed. The compatibility was assessed after 7 d of incubation at 31 • C. Wildtype growth at the zone of mycelial interaction indicated that the isolate belonged to VCG IT006 [80].Data on the CFU/g of the total fungi and A. flavus in the soil samples were ln transformed and data on the percentage of the AF-isolates and those belonging to IT006, both computed on all the 399 recovered A. flavus isolates and on the aflatoxin-free A. flavus, were arcsin transformed before a statistical analysis was performed to reduce the heterogeneity in the variance. All data obtained were subjected to a univariate analysis of variance (ANOVA) using the generalized linear model (GLM) procedure, and significant differences between the means were determined using Tukey's HSD test (α = 0.05). The statistical package IBM SPSS statistics 27 (IBM Corp., Armonk, NY, USA) was used for the data analysis.","tokenCount":"5547"} \ No newline at end of file diff --git a/data/part_3/9133517016.json b/data/part_3/9133517016.json new file mode 100644 index 0000000000000000000000000000000000000000..a04edede7d30d23aa4ccd718f884ffbddcbf37aa --- /dev/null +++ b/data/part_3/9133517016.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"aa01cdf897868ee7102be104e6451453","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/53789d90-d133-4494-8cd4-1541e91fa939/content","id":"958528925"},"keywords":["Africa","Africa South of Sahara","Southern Africa","Soil fertility","Soil conservation","Soil management","Maize","Zea mays","Crop management","Cropping systems","Farming systems","Small farms","Technological changes","Innovation adoption","Development policies","Research projects AGRIS Category Codes: E14 Development Economics and Policies","P35 Soil Fertility Dewey Decimal Classification: 338.16"],"sieverID":"9ca248b6-ad21-406d-b759-3b5770c24f58","pagecount":"13","content":"CIMMYT is an internationally funded, nonprofit scientific research and training organization. Headquartered in Mexico, the Center works with agricultural research institutions worldwide to improve the productivity and sustainability of maize and wheat systems for poor farmers in developing countries. It is one of 16 similar centers supported by the Consultative Group on International Agricultural Research (CGIAR). The CGIAR comprises over 50 partner countries, international and regional organizations, and private foundations. It is co-sponsored by the Food and Agriculture Organization (FAO) of the United Nations, the International Bank for Reconstruction and Development (World Bank), the United Nations Development Programme (UNDP), and the United Nations Environment Programme (UNEP).Financial support for CIMMYT's research agenda currently comes from many sources, including the governments of Australia,. Seasonal rainfall (bars) and simulated maize grain yield (points) for a local cultivar grown at Chitedze, Malawi (nil fertilizer), using the CERES-Maize model. Figure 2. Daily rainfall (lines) and simulated accumulation of aboveground maize biomass (shaded) for a local cultivar grown at Chitedze, Malawi (nil fertilizer), in 1987-88 and 1989-90. Figure 3. Distribution of simulated maize yields for a local cultivar grown at Chitedze, Malawi, for seven single seasons (1984-85 to 1990-91) under identical initial conditions. Figure 4. Distributions of simulated maize yields for a local cultivar grown at Chitedze, Malawi, for seven single seasons (1984-85 to 1990-91) under identical initial conditions and fertilizer N addition of 0, 60, 120 and 180 kg N/ha in the form of urea.Success in agricultural research calls for a unique blend of unconstrained creativity and painstaking discipline -creativity in designing technical options intended to be attractive to farm families, tempered by discipline in assessing their performance and attractiveness. Research on soil fertility management is especially difficult, in part because of:• The many combinations of technical options available (inorganic fertilizers, crop residues, numerous species of green manures, animal manures, intercrops, rotations, agroforestry systems, improved germplasm, etc.).• The variability in performance of these technical options under different soil and weather conditions.• The complex ways in which technical options can impinge on existing farming practices.• The possible importance of their long-term and off-site consequences.• The complexity of identifying potential areas for extrapolation of research results.• The importance of policies and institutional arrangements in shaping the farm-level costbenefit equation that drives adoption.Research on soil fertility management in maize systems may be difficult, but it is also supremely important for sustainable food security, particularly in sub-Saharan Africa. Adoption of improved maize germplasm has accounted for a little over half of the 1% annual growth in maize yields in sub-Saharan Africa since 1970; improved productivity and sustainability in maize systems must come increasingly from improved soil management practices that fit the infrastructural and institutional circumstances of many African farming systems: low population densities, seasonal labor bottlenecks, poor infrastructure (which increases the cost of external inputs), and price instability (Byerlee et al. 1994).Given the complexity of research on soil fertility management, many researchers concentrate their efforts on a small subset of the important questions, but neglect the more awkward ones. Specific examples include issues relating to problem definition, spatial and temporal extrapolation, farmer participation, factors governing adoption, links with policies, and longer-term and off-site consequences of change.This paper raises several of these awkward questions without trying to provide any definitive answers. By raising them, however, we hope to stimulate discussion among reseachers about themes which may have been ignored and new ones that contribute to understanding and solving important soil fertility problems in Southern African maize systems.Question 1 -Are soil fertility problems in maize systems well defined?New soil fertility management practices should aim to solve important problems. But how well defined are the problems? Soil fertility problems are normally multi-dimensional (Harrington 1996), involving:• The biophysical processes that underpin soil fertility in maize systems.• The direct causes of the problems (which result from the above processes).• Problem incidence.• The consequences of problems.• The pace of change with which these consequences are felt. (Woomer and Swift 1994), one might assume that the biophysical processes associated with soil degradation and low soil fertility in Southern African maize systems were well understood, especially relative to soil fertility depletion (Smaling and Braun 1996) and the requirements for recapitalizing soil fertility, particularly for phosphate (Sanchez 1996). In addition, there has been considerable work aimed at understanding water and nutrient cycling and improving synchrony -the capacity of soils to provide nutrients to plants at the time when they are most needed. Despite the work to date, however, we cannot presume to have a total or even satisfactory grasp of the many biophysical processes that underlie soil fertility problems in maize based agriculture in Southern Africa. Even in Asia, where considerably more research resources have gone into elucidating the processes that drive soil degradation and yield stagnation in intensive rice systems (Cassman et al. 1994), those processes have only recently been satisfactorily described, and the underlying causes of declining yields in rice-wheat systems in the Indo-Gangetic Plains remain poorly understood, despite intense study (Hobbs and Morris 1996).As we ask about important unknowns regarding soil biophysical processes in maize systems in Southern Africa, it may be useful to subdivide process issues into two types:• Degradation; for example, the on-going loss of organic matter and nutrients in lands with relatively high proportions of clay.• Management of low fertility soils; for instance, farming on shallow, granitic sands where there may simply be no degradation processes at work.Problem incidence refers to the simple questions: \"Which biophysical problems are found on which soils, and where are these soils located?\" Simple though they may be, these queries have important implications for technology targeting, the selection of representative sites, site characterization, the georeferencing of experimental locations, the pooling of data across sites, and priority-setting in technology design. Have the questions of problem incidence been answered to everyone's satisfaction? Is it generally known which problems are concentrated on which soils? Are trials georeferenced? Are data pooled across sites in a way that draws on suitable soil characteristics?Consequences of soil-related problems may be found not only on-site (near-term productivity or longerterm resource quality and system sustainability; e.g., the build-up of Striga), but off-site as well (downstream or off-site economic, environmental or ecological effects of land degradation). Off-site consequences of land degradation can be more important than on-site consequences (Anderson and Thampapillai 1990). For example, erosion on sloping hillsides in Indonesia often does not affect the productivity of hillside maize systems, but the resulting siltation can ruin downstream irrigation infrastructure. What are the major off-site economic, environmental, or ecological consequences of land degradation in maize systems in Southern Africa?Pace of change is also important -problems may be more significant if they unfold swiftly. What is the pace of change for major problems of soil degradation in maize systems in Southern Africa?Finally, it is important to understand the underlying, non-biophysical causes of problems to develop viable solutions (Tripp and Woolley 1989). In sub-Saharan Africa, soil fertility problems have been traced to increasing land scarcity, shortened fallow periods, periodic labor shortages, and low use of inorganic fertilizers. The latter factor in turn derives from unfavorable grain/fertilizer price ratios, driven by poor infrastructure, unsuitable input and product pricing policies, and uneven performance of private sector companies (Mwangi 1997). Have the important cause and effect relationships been fully worked out for soil fertility problems in Southern Africa? Do they change over sub-regions? Farmers are particularly skilled at helping unravel cause and effect relationships among complex system interactions (Lightfoot et al. 1989). Has their experience been tapped?There is a tendency in on-farm research for scientists to choose (often rather casually) a small number of technical practices which they subsequently assess in considerable detail. It can be awkward to ask whether the right practices were chosen to begin with. Sometimes, important farmer-developed options are overlooked. There is a fair literature on multiple sources of innovation (e.g., Bebbington 1989) which teaches us that farmers frequently can contribute innovative new practices to the pool of technical options being assessed. The numerous examples include:• Farmer-developed methods for inserting mucuna in maize systems in Southern Veracruz, Mexico (Buckles 1993).• Farmer-developed surface-seeding practices for establishing wheat after rice in Bangladesh (Hobbs and Morris 1996) and Thailand (Connell 1992).• Farmer-developed methods of transplanting maize to enable a conversion of a two-crop per year to a three-crop per year system in the Red River Delta of Northern Vietnam (Tinh et al. 1992).• Farmer-developed land management systems for flood-prone areas of the lower Indo-Gangetic Plains (John et al. 1993).• Farmer-developed methods of dealing with erosion in Central Kenya (Tiffen et al. 1994).In Southern Africa, it would be unusual indeed if farmers had no insights into soil management nor options for regenerating soils that have lost their In our first question, the issue of problem incidence was raised: \"Which biophysical problems are found on which soils, and where are these soils located?\" A similar question can be asked regarding the targeting of solutions to these problems: \"Which soil management practices are best suited to which soils, and where are these soils located?\" Clearly, for example, research to identify the nutrients that limit maize productivity in Kalahari sands is most relevant to those soils. Are there differential responses by soil type for other aspects of fertility management in maize based production systems? As suggested earlier, how does this affect site selection, data analysis, and synthesis of results? Which data can sensibly be shared over which sites? What are the potential extrapolation areas for different technologies? Are test sites georeferenced? Are they and their soils characterized? Are the results of soil analyses used in answering some of the above questions? Should the Soil Fertility Network organize a database on soil fertility management practices by soil type?Question 5 -How can new practices be adapted most efficiently to the conditions of different systems?Soil variability is only one factor that affects the cross-site synthesis of research results and the adaptation of prototype practices to farmers' circumstances. Indeed, adapting prototype practices to defined farming systems is a classic area for farmer participation in research. Much of the literature on participatory experimentation -farmer involvement in technology adaptation -deals with crop improvement. Examples include farmer participation in selecting advanced lines of common bean in Colombia (Ashby et al. 1987) and Rwanda (Sperling and Scheidegger 1995), and farmer participation in selecting rice varieties in Nepal (Sthapit et al. 1996). However, farmers and researchers have also worked together to tailor crop and system prototype technologies. Here we can cite the use of vining legumes to rehabilitate Imperata infested lands in the Philippines (Lightfoot et al. 1988) or the use of grassy strips with farmer-selected trees for erosion control in hillside maize systems in Southern Philippines (Fujisaka 1989). In fact, a whole new literature has grown up around participatory adaptive experimentation (e.g., ILEIA 1989).Have researchers in the Soil Fertility Network worked with farmers to tailor prototype technologies studied by the Network to the needs and circumstances of different farming systems? This would require, of course, a characterization of the major farming systems in the target area. Is there a need to strengthen the capacity of Network members to engage in participatory experimentation for technology adaptation? Is there a need to re-examine the balance between researcher-managed strategic research vs. participatory adaptive research?Question 6 -How do the new practices perform under drought?The attractiveness of new soil management practices to farmers will, in part, depend on how these practices perform under drought conditions; Southern Africa is, after all, a region noted for rainfall variability and weather-related risk. Other things being equal, soil management practices that perform poorly under drought conditions are likely to be less attractive to farmers. First, however, what is meant by the term \"drought\"? To be useful, the concept itself must be described more precisely. For instance, does it refer to:• Late onset of rains?• Early end of rains?• Erratic dry spells during the rainy season?• Concentration of rains in fewer events?• Reduced average seasonal rainfall?Most importantly, what climatic scenarios are of most concern to farmers?Maize itself is especially susceptible to droughtoccasioned yield losses during flowering and grain filling, crop development phases which occur from mid-season to late in the season (Westgate 1997).Unreliable rainfall during seedling establishment early in the season has also been cited as a major cause of yield reductions and even crop losses in maize (Bänziger et al. 1997). In the absence of a rich dataset (one that features multiple long-term experiments that extend over a large number of years and that suitably reflect variation in weather patterns), stability of performance of soil management practices best can be assessed through modeling. An example of modeling to assess the riskiness of a given technology option is offered in the following section. Note, however, that fruitful simulations from validated models also require input -specifically, data from trials accompanied by a minimum dataset (Table 1) (though these need not come from long-term trials).To demonstrate the use of simulation models in assessing yield variability under different weather conditions, an example is maize response to fertilizer at Chitedze, Malawi. Crop production practices are those as described by Thornton et al. (1995) in their evaluation of the CERES-maize model in Malawi. The CERES-Maize and SOYGRO models are used -these are available in the whole system decision support package known as DSSAT (v3.1). One simulation experiment involved a single-season maize crop with an array of urea applications (0, 60, 120, 180 kg N/ha). 2 Annual simulated maize yields for the single season nil fertilizer treatment are depicted in Figure 1. Seasonal rainfall varied from 588 mm in 1990-91 to 1052 mm in 1986-87, with an average of 878 mm. Simulated yields in varied from 1.5 t/ha in 1989-90 to 2.6 t/ha in 1988-89, with an average of 1.9 t/ha.There was no significant relationship between total seasonal rainfall and yield for any treatment. This is not surprising -simplistic empirical models which attempt to predict yield from total growing season rainfall without accounting for distribution are rarely accurate. This is illustrated in Figure 2, where above-ground dry matter accumulation is compared for two seasons (1987-88 and 1989-90) with similar total seasonal rainfall (808 mm). In 1989-90 there was substantial early season rainfall, leading to waterlogging and lower yields (1.5 t/ha). In contrast, rainfall was more evenly distributed in 1987-88 leading to higher yields (2.1 t/ha). The fertilizer applications in this simulation were in multiples of 30 kg N/ha at approximately weekly intervals. The initial application was two weeks after planting. Historical weather records from Chitedze Research Station were used in the seasonal analysis, with the crop being grown under identical soil conditions for each of seven seasons. These eight-year weather data were used to generate a theoretical weather dataset for a twenty-year analysis. In the simulation, the mineral N content of the top 50 cm of sandy-loam soil at the time of planting each year was 44 kg/ha (assuming a bulk density of 1.3 g/cm 3 ) with a volumetric water content of 0.11 cm 3 /cm 3 ). A 500 kg/ha residue cover with a N content of 0.53% was also incorporated at that time. This analysis produces a range of yields for each fertilizer treatment solely dependent on the different weather conditions for each season. In all simulations a plant population of 37,000 plants/ha was used, planted on 20 November each year. The maize cultivar was a local traditional variety. The model does not take into account the impact of weed populations and pest damage on yield. It also assumes that phosphorus is non-limiting.One way to quickly assess the relative performance of each treatment in response to the same weather conditions is through a cumulative probability function plot. The output for each treatment (in this case yield for each year) is ordered from lowest to highest and plotted against equal increments of cumulative probability. It is evident from Figure 3 that the local maize cultivar with no fertilizer is unlikely to attain a grain yield greater than 2.6 t/ha under the specified range of climatic and management conditions. Under these conditions, this cultivar has a 50% probability of yielding at or below 1.9 t/ha.Note that the above results are based on a climate dataset of relatively short duration. When we ran the same nil fertilizer treatment with a theoretical twenty-year weather dataset, the simulation output included two years of complete crop failure. When we plotted each of the four treatments as cumulative probabilities (Figure 4), the maximum attainable yield with the local cultivar using the actual recorded weather at Chitedze for 1984-1991 was 3.2 t/ha. When we used the full twenty-year dataset we obtained a similar yield.Modeling can also be used to simulate and thereby forecast the likely longer-term effects on crop yields 3.5 Yield (t/ha) , Question 7 -How do the new practices mesh with farmers' risk management strategies?Farm families that survive or even thrive in a drought-prone, risky environment understandably have developed strategies to deal with climatic variation. For Southern African families who rely on maize systems for income and employment, risk management strategies might feature (Scoones et al. 1996):• Staggered maize planting.• Early maturing maize varieties.• Maize seed soaking.• Crop diversification.• Crop sequences or rotations that foster moisture conservation.• Landscape management (e.g., varying the relative intensity of use of low-lying lands vs. hillsides).• Use of cattle husbandry or off-farm or nonagricultural employment as alternative sources of income, etc.To these options may soon be added another important one -drought-and low-N tolerant maize varieties (Edmeades et al. 1997).How well do new soil management practices mesh with these risk management strategies? Might recommended intercrops or undersown legumes rob moisture from maize during a drought, further reducing grain production badly needed for subsistence? Are the high labor inputs needed for green manure management feasible if farm family survival during drought periods depends on livestock management or off-farm employment? How can reseachers and farmers work together to answer these questions?Note that new maize technology (modern varieties and fertilizer) can sometimes be risk efficient (Ames et al. 1993;Smale et al. 1994). Can organic-based technologies do as well?Question 8 -How well understood are the factors governing adoption of new soil management practices?Good performance under drought conditions and a good fit with farmers' risk management strategies are crucial to the attractiveness of new technology for farm families. But other factors -particular those that influence the near-and longer-term costs and benefits of adoption -may be equally important.Information on factors governing adoption can be generated during farmer participatory adaptive experimentation (see Question 5). At times, however, dedicated adoption studies are needed (see CIMMYT Economics Program 1993 for a summary of methods useful in conducting adoption research). In addition, there is no substitute for a sound economic analysis -and a sound farmer assessment -of practices being proposed for widespread dissemination. Whatever the source or type, information on factors governing adoption can be exceedingly useful, as the following examples show.• Farmers in Western Kenya began using improved fallows that feature direct seeding of Sesbania in place of maize on their least productive maize lands, even though the yield increase in the following maize crop was only about 25%. Farmers quickly realized that the savings in crop labor offset foregone maize yields and used the practice to reclaim depleted land. Understandably, adopting households were those with access to off-farm income or with low labor to land ratios (Swinkels et al. 1996), and an awareness of this helped in targeting the technology.• In West Africa, researchers have found that adoption of Mucuna in maize systems has been greatest where soil fertility is declining and inorganic fertilizers are not subsidized, where noxious weeds (like Imperata) severely affect maize production, and where farmers have good contact with development organizations that facilitate access to Mucuna seed (Vissoh et al. 1997). Knowledge of these factors has guided subsequent dissemination efforts involving Mucuna.What is known about factors that govern the adoption of soil management practices for Southern Africa? What is the cost-benefit equation for the major technical options -both near-term and longer-term? Are inorganic fertilizer, lime, or other soil amendments really profitable to farmers when realistic transport costs, interest rates and product prices are included in the analysis? 3 What are the hidden costs of adoption?For example, is it possible that open grazing by livestock during the dry season constrains green manure growth or use of crop residues as a source of organic matter source? Is the fencing of land a hidden cost of adopting these practices? Should farmers plow immediately after harvest to incorporate green manure biomass and so avoid it being eaten by roaming cattle? Is it feasible for most farmers to plow in such a manner? Participatory research with farmers, economic analysis of trials, and adoption studies can help answer these important questions.Question 9 -What mechanisms are in place to accelerate and improve the quality of adoption by informing the policy debate?Policymakers typically have multiple objectives, only one of which may be to improve the productivity and sustainability of maize systems. Policy decisions will be made, whether or not the information base to support these decisions is complete. Decisions, once taken, can have unexpected or unintended consequences for agricultural production in general, and maize system productivity in particular.Agricultural scientists and research managers may not necessarily be the best people to determine or influence policy, but they have a very important role in helping inform the policy debate. What mechanisms are in place for agricultural scientists or research managers to provide essential information to policymakers?The adoption of improved technologies that depend on the use of purchased inputs, such as seed and fertilizer, is strongly conditioned by the policy environment with respect to input supply and prices. To foster adoption, the following are said to be needed:• A cost-effective mix of price policy, credit, input supply, and extension, (with special attention to the economics of fertilizer use, the availability of fertilizer, price policies and credit, pricing environment and distribution costs, the privatization of supply, and infrastructure development) (Mwangi 1997).• Mechanisms for ensuring that such programs are sustainable over the long term, given the shortterm nature of most maize production campaigns (Byerlee et al. 1994).The adoption of improved soil management technologies that depend on organic as well as inorganic inputs will be conditioned by other dimensions of the policy environment; these include participatory extension to foster farmer learning of knowledge intensive technologies, access to green manure seeds of good quality, improved markets for grain legumes, and policies that encourage use of crop residues and green manures as soil amendments or mulch (for example, support for fencing off land).Information on factors governing adoption of productivity enhancing, resource conserving practices needs to be packaged and made available to local, regional and national level policymakers. Are there mechanisms in place to do so? The Soil Fertility Network has several objectives, among them: to help rehabilitate exhausted soils and to foster improved productivity of maize systems through improved soil fertility. Rehabilitation of exhausted soils and improvement 9 of soil fertility does not happen overnight. Some might assert that the objectives of soil rehabilitation and substantial improvement of soil fertility are inherently unattainable, even if farmers were to fully adopt the best recommended soil fertility management practices.Several types of studies can help elicit information relative to this issue, including long-term experiments, farmer monitoring, or chronosequence studies (Triomphe 1996). Does the Soil Fertility Network manage such research?Rather than wait years or decades for this information to emerge, models can be used to simulate the long-term consequences for soil fertility of the introduction of different soil management practices. Several (APSIM, CENTURY, SOCRATES) serve the purpose. Have modeling approaches been used to explore the longer-term consequences of adoption for the productivity and sustainability of maize systems? Are data gathered in trials that can be used to validate these models? Should the Soil Fertility Network strengthen its skills in this area? Note, again, that fruitful simulations from validated models require input in the form of data from trials accompanied by a minimum dataset (Table 1).Finally, as noted in an earlier section (Question 1), off-site consequences of land degradation are important worldwide. These off-site consequences often relate to water quantity or quality for downstream users (e.g., siltation of irrigation infrastructure or pollution of water for urban consumers from erosion in the uplands). What are possible off-site consequences of the introduction of new soil fertility management practices and, if there are any, how should they be assessed?We began this paper by pointing out that agricultural research is complex and that success in research calls for a unique blend of creativity and discipline. The participants in the Soil Fertility Network are to be complimented on both counts. We recognize that much excellent work has been done and, by asking the above questions, hope to strengthen this excellence.","tokenCount":"4111"} \ No newline at end of file diff --git a/data/part_3/9137701584.json b/data/part_3/9137701584.json new file mode 100644 index 0000000000000000000000000000000000000000..eaad5398dc1afe04d5551fa45b53149a47a8514c --- /dev/null +++ b/data/part_3/9137701584.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c083e74a771c38142786c99618120fad","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/54d019f7-8cea-47a5-a11f-c03afd7ceb79/retrieve","id":"-993266132"},"keywords":[],"sieverID":"1cdcd65e-377f-4a7f-ab0c-ce854bc63975","pagecount":"178","content":"The World Agroforestry Centre (ICRAF) holds the copyright to its publications and web-pages but encourages duplication, without alteration, of these materials for non-commercial purposes. Proper citation is required in all instances. Information owned by others that requires permission is marked as such. The information provided by the Centre is, to the best of our knowledge, accurate although we do not guarantee the information nor are we liable for damages arising from use of the information. The views expressed in the individual chapters and within the book are solely those of the authors and are not necessarily reflective of views held by ICRAF, the editors, any of the sponsoring institutions, or the authors' institutions.Tables Table 1. Special thanks are due to Rob Finlayson and Tran Ha My for their support on communications; Tikah Atikah and the ICRAF Southeast Asia team for designing the book; Pham Duc Thieng for his support on data collection; Terry Erle Clayton for his facilitation of our write-shop in Nairobi; Claire Miller for copy-editing and proof-reading; and, last but not least, the ICRAF Viet Nam administration and finance team for their administrative support throughout the lifetime of Humidtropics in Central Mekong Action Area.On behalf of the editorial teamThe Mekong region covers several mainland Southeast Asian countries. The region has a huge heterogeneity in its topography, farming systems, ethnic populations, markets and sociopolitical systems. It is moreover undergoing intense social, economic and ecological changes that offer many economic opportunities, and at the same time pose potential threats to the livelihoods of rural populations and smallholder farmers. Expanding infrastructure and markets, and government policies and programs that promote rural and agricultural development, present opportunities for improving these livelihoods. At the same time, rapid conversion to specialized and intensified forms of agriculture and other land uses, in addition to rapid population growth, have created significant challenges in upland agricultural systems including environmental degradation; limited and inequitable access to markets; decreasing productivity and total farm income; inequitable access to natural resources such as land and water; and, marginalized ethnic minorities.Any successful attempt to understand and address the complex challenges or grasp the opportunities requires an integrated systems research approach. Integrated systems research seeks to comprehend the different dimensions of complex agricultural problems, e.g. technological, economic and institutional challenges, and how these are affecting or require addressing across farm, community or policy levels. This automatically implies that stakeholders across different levels -e.g. farmers, the private sector, national institutions, development actors and governments -need to be involved in identifying, analysing and prioritizing problems, as well as in designing and implementing innovative solutions to overcome the problems. Another key characteristic of integrated systems research is that it seeks to explore trade-offs and synergies across dimensions, levels and stakeholder groups. For example, in terms of how new technologies could affect the natural resource base or land health, interventions at policy levels could enable or constrain actors at community or farm levels. Similarly, positive changes for specific stakeholder gender or age groups could imply negative changes for others.The CGIAR Research Program on Integrated Systems for the Humid Tropics (Humidtropics) was an agricultural research for development program that aimed for sustainable intensification of agricultural systems to improve the livelihoods of farm households. Humidtropics was implemented in Central America, West Africa, East and Central Africa, and in the Central Mekong. The Central Mekong Action Area was primarily focused on the complex of rice and non-rice farming systems (plus areas with other land uses) in the non-flood-prone lowlands, uplands and highlands. The Action Area covered six countries (Cambodia, China, Laos, Myanmar, Thailand and Viet Nam). Since mid-2013, the Humidtropics partners have implemented a broad range of research for development activities. These include agricultural system characterization through situational analyses and identification of entry points for interventions; participatory research to improve nutrition and dietary diversity; and, capacity development of farmers and local stakeholders. So-calledHumidtropics was a CGIAR Research Program on Integrated Systems for the Humid Tropics that aimed to help poor farm families in tropical Africa, Asia and the Americas boost their income and livelihoods through agricultural development. The CRP used participatory and collaborative approaches involving a wide range of local stakeholders as partners in R4D. As one of the three CRPs 1 that undertook integrated systems research, Humidtropics, along with drylands and aquatic systems, had the challenging task of looking at agriculture in a holistic manner. This meant identifying, understanding and addressing the multiple issues of productivity, natural resources management and institutional constraints across the entire system (Humidtropics 2012), as well as the interactions, trade-offs and synergies of potential innovations at household, community and policy levels (Öborn et al 2017). To facilitate this, Humidtropics adopted a multistakeholder approach that focused on bringing research, government, development and business partners together to identify key constraints, and to prioritize, design and implement innovative approaches to overcome them. Multistakeholder platforms were established, operating either at the local community level and focusing on concrete issues (e.g. the platform on commercial vegetables established in Northwest 1 Following a comprehensive review of the CGIAR system's structure and activities in 2008, 15 research programs were implemented in the first CRP phase (2012)(2013)(2014)(2015)(2016): seven CRPs that focused on a particular crop or commodity; five cross-cutting CRPs; and, three agricultural systems CRPs. The second CRP phase (2017)(2018)(2019)(2020)(2021)(2022) will have eight agrifood systems (AFS) CRPs, four global integrating programs (GIP), and three technology and data platforms. This chapter introduces Humidtropics, the CGIAR Research Program (CRP) on Integrated Systems for the Humid Tropics, and the research for development (R4D) activities implemented from 2013 to 2016 in the Central Mekong Action Area. The chapter also provides an overview of the other book chapters.Viet Nam), or operating at a higher regional level and targeting the more structural policy barriers for agricultural innovation in the agricultural system. Working with multiple stakeholder groups was proposed for three main reasons (Schut et al 2016). First, different stakeholder groups can provide a diversity of insights about the biophysical, technological and institutional dimensions of the problem, and what type of innovations are technically feasible, economically viable and socioculturally and politically acceptable (Schut et al 2014). Second, stakeholder groups become aware of their fundamental interdependencies and the need for concerted action to overcome common constraints and reach their objectives (Leeuwis 2000). Third, stakeholder groups are more likely to support specific solutions when they have been part of the decision-making and design process (Faysse 2006).Originally conceived as a 15-year research program, the Humidtropics' R4D activities began in 2013. Two years later, the CGIAR announced that in its second CRP phase starting 2017, the systems CRPs would be absorbed into the more value-chain oriented agrifood systems CRPs. Although it is unfortunate that Humidtropics as an independent research program was to last less than five full years, numerous and significant R4D activities were implemented and partnerships were forged at field sites in Sub-Saharan Africa, Central America and the Caribbean, and Southeast Asia. This book provides readers with a glimpse of the R4D activities and partnerships in the Humidtropics Central Mekong Action Area 2 led by the World Agroforestry Centre (ICRAF) in close partnership with international and national partners in five countries in mainland Southeast Asia. In doing so, our goal is to provide the results of our endeavours to support ongoing and future integrated agricultural systems research in Central Mekong and elsewhere.A systems research program that focuses on the humid tropics has several significant aspects. The humid tropics are important for their biodiversity and constitute many of the world's biodiversity hotpots (cf. Myers et al 2000). Covering almost 3 billion hectares of land, the humid tropics are home to approximately 2.9 billion people, most of whom are poor smallholder farmers (Humidtropics 2012). Considering that agriculture is a major livelihood in the humid tropics, sustainable agricultural development is essential to enable numerous challenges to be addressed, not just in environmental conservation but also in dealing with the human element in the equation. Without addressing issues such as poverty, food security and market access in these regions, it is not possible to address threats to the environment and to adapt to global changes including climate change. The Humidtropics CRP thus aimed to take a systems perspective to deal with such issues comprehensively by implementing 2 Situated within the larger 260 million ha geopolitical boundary of the Greater Mekong subregion, the Central Mekong Action Area covers an area above the Mekong delta and below the high mountainous temperate zone (Humidtropics 2012). See also map on page ix of this book.R4D that contributes to enhancing agricultural production and productivity while at the same time improving smallholder livelihoods and reducing the environmental degradation that often arises from intensified agriculture.The theory of change within the Humidtropics CRP was based on the hypothesis that the region's inherent potential is best realized through an integrated systems approach involving participatory action across stakeholder groups. Humidtropics addressed this by enhancing capacity to innovate at farm, institutional and landscape levels, and engaging with women, youth and marginalized groups. The increased innovation capacity would result in systems interventions that improve productivity and natural resource management and links to markets. This way, Humidtropics contributed to delivering on the three main goals of the Strategy and Results Framework of the CGIAR (CGIAR 2015):• Reduced poverty: through increased productivity and resilience to shocks, leading to increased incomes and employment opportunities. Enhanced access to markets for smallholder farmers and increasing the resilience of the poor are also important components.• Improved food and nutrition security: through improved diets, food safety, and human and animal health through better agricultural practices.• Improved natural resource systems and ecosystem services: by ensuring that natural capital is enhanced and protected from climate change and overexploitation, as well as other forms of abuse. Enhanced benefits from ecosystem goods and services, and more sustainably managed agro-ecosystems, are also key components.Ultimately, the Humidtropics objective was to contribute to achieving these outcomes by 2023 by increasing staple food yields by 60 percent, increasing average farm income by 50 percent, lifting 25 percent of poor households above the poverty line, reducing the number of malnourished children by 30 percent, and restoring 40 percent of farms to sustainable resource management (Humidtropics 2012). In the extension proposal for 2015-2016, Humidtropics was further developed and its goals and targets refined in three, six, and nine-year targets (Humidtropics 2014).The research program was organized into three Strategic Research Themes (SRTs) as demonstrated in Figure 1.1:1. SRT1 focused on systems analysis and global synthesis, by establishing the baseline situation and synthesizes progress towards the expected outcome situation.2. SRT2 worked on integrated systems improvement, by researching and mainstreaming promising systems interventions related to productivity, natural resource management, and markets and institutions. This theme also included use of modelling tools and analysis, gender considerations, research-development interactions, and scaling-out dimensions. Sustainable intensification and diversification are key drivers.3. SRT3's research on scaling and institutional innovations focused on co-evolving institutions via social innovation with the technologies emanating from the integrated systems improvement theme. As such, it aimed to improve stakeholders' capacity to innovate and support the scaling of interventions at farm, national and global levels. Although this ambitious program intended to encompass much larger areas across the humid and sub-humid tropics, four geographically defined Action Areas were chosen to begin with:1. East and Central Africa Highlands, covering humid and sub-humid tropics of western Kenya, southern Uganda, the Ethiopian Highlands, eastern Congo, Burundi and Rwanda;2. The West Africa Humid Lowlands, covering the humid and sub-humid tropics of Cameroon, Nigeria, Ghana and Cote D'Ivoire;3. Central Mekong, situated within the larger geopolitical boundary of the Greater Mekong sub-region and including Cambodia, Lao PDR, Myanmar, Thailand and Viet Nam plus the two southwest provinces of China; and,Central America and the Caribbean, including three main sites in the humid and sub-humid tropics of Nicaragua, Honduras, Guatemala, El Salvador, Haiti and the Dominican Republic.The Central Mekong Action Area covered six countries in mainland Southeast Asia (Cambodia, China, Laos, Myanmar, Thailand and Viet Nam), with diverse topography, farming systems, ethnic populations, markets and sociopolitical systems. The region is undergoing intense social, economic, and ecological changes that offer many economic opportunities, yet also pose potential threats to ecologically sustainable livelihoods. The area is characterized by expanding infrastructure and markets, and government policies and programs that promote rural and agricultural development; all these present opportunities to improve livelihoods. At the same time, government policies that enforce rapid conversion to specialized and intensified forms of agriculture and other land uses (Than 1998, Rerkasem et al 2009), and rapid population changes, have created significant challenges in upland agricultural systems. These include: sedentarization of agriculture and settlements; environmental degradation, including rapid deforestation and erosion of farming lands; limited and inequitable access to markets; decreasing productivity and total farm income; inequitable access to natural resources, including water; ecosystem services that do not benefit the poor; and, marginalized ethnic minorities (Rerkasem et al 2009, Friederichsen and Neef 2010, Drahmoune 2013, Fox and Castella 2013).Humidtropics activities in the region were officially launched at a workshop in Hanoi in May 2013. Field implementation was planned within three transnational Action Sites sharing common agro-ecological and sociocultural systems and challenges, as delineated in the map of the Central Mekong Action Area on page ix of this book. Delineating the action sites took into consideration the potential for cross-border learning and transboundary research, and also existing research activities by the Humidtropics core partners.A timeline of the main events in the Action Sites (Triangles) and field sites in the Central Mekong is shown in Figure 1.2 below. ICRAF coordinated the R4D activities in the Central Mekong. The Action Area Coordinator was initially based in Kunming, China, and then in Hanoi, Viet Nam from April 2013. A Core Team was formed with a representative from each of the eight Humidtropics core partners in this region. These were:• Bioversity International• International Center for Tropical Agriculture (CIAT)• International Potato Center (CIP)• The World Agroforestry Centre (ICRAF)• International Livestock Research Institute (ILRI) • International Water Management Institute (IWMI)• Wageningen University (WUR)• World Vegetable Center (WorldVeg) The Core Team met twice a year to provide a) a coherent and effective management structure across partner organisations; b) a transparent and auditable joint decision-making process to prioritize, plan and implement the R4D activities in line with Humidtropics objectives and impact strategy; and, c) facilitate the effective implementation of cross-cutting activities within the Central Mekong Action Sites. In addition to the regular Core Team meetings, the researchers gathered in November 2013, 2014 and 2015 to plan activities and budget for the following years. Regular monitoring and evaluation (M&E) based on resultbased management were implemented by an M&E officer based at ICRAF Viet Nam. Situational analysis to broadly characterize important system aspects in Action Sites, to develop a shared understanding of the issues that need to be addressed among partners, and to initiate and facilitate stakeholder engagement (Cadilhon et al 2015).Reports published for Northwest Viet Nam (Green Triangle); Nan, Thailand and Xishuangbanna, China (Golden Triangle). Draft reports prepared for Central Highlands, Viet Nam (Development Triangle) and Honghe, China (Green Triangle).Identification and analysis of potential entry points for interventions to improve rural household livelihoods in the Central Highlands of Viet Nam (Development Triangle) and Northwest Viet Nam (Green Triangle) through the EXTRAPOLATE (EX-ante Tool for RAnking POLicy AlTErnatives) tool. EXTRAPOLATE is a decision support tool that assesses the impact of different policy measures. For more information: http://www.fao.org/ ag/againfo/programmes/en/pplpi/dsextra.html.Analysis of complex agricultural problems and innovation capacity by stakeholders in the agricultural system using the Rapid Appraisal of Agricultural Innovation Systems (RAAIS) tool in Xishuangbanna, China (see Schut et al 2015) Baseline survey to characterize farms and farmers using Rural Household Multi-indicator Survey (RHoMis) tool in Central Highlands, Viet Nam, Laos and Cambodia.Baseline survey to characterize farms and farm households using IMPACT-Lite tool in Northwest Viet Nam.Identification and testing innovations to grow and market 'safe' 4 vegetables and off-season vegetables; field testing of crop and water management practices of home-based production of vegetables in Northwest Viet Nam.4In Viet Nam, the term 'safe' is used to signify vegetables produced under a process that ensures safety for consumers. The concrete details of such processes tend to differ according to the producers, but the standards set by VietGAP (Vietnamese Good Agricultural Practices, a national certification for agricultural products), is what farmers generally strive to follow. Assessment of different opportunities for agricultural diversification such as fruit trees-vegetables, mushroom production, and home gardens in Nan, Thailand.Support provided to set up and maintain functions of multistakeholder platforms through training sessions targeting platform facilitators and CGIAR partners supporting them, held in November 2014 and November 2015.Equity and social inclusion in agricultural R4D promoted through drafting 'Guidelines to Engage with Marginalized Ethnic Minorities in Agricultural Research for Development in the Greater Mekong' (Hiwasaki et al 2016, see Annex II).Qualitative research implemented to understand gender norms and agency of ethnic minorities, and their relations with innovation, in Northwest and central Viet Nam. Qualitative impact assessment of R4D platform research projects implemented in Northwest Viet Nam and Central Highlands, Viet Nam.Qualitative research to understand how agricultural practices have different impacts on livelihoods of men and women from different ethnic groups in northern Laos.This book's primary objective is to describe the achievements as well as some of the challenges faced while implementing integrated systems research to contribute to livelihood improvement and sustainable development of smallholder farming in the Mekong uplands. The target audience is professionals working in national and international (including CGIAR) agricultural research for development organizations, as well as international donors, national and local government officials, other research organizations, and NGO project staff. The book is organized around three research themes:1. Systems analysis and synthesis, establishing baselines and conducting situational analysis to characterize the target systems to better identify interventions.2. Integrated systems improvement in practice, the various interventions undertaken to contribute to economically, socially and environmentally sustainable smallholder agriculture.3. Nutrition dimensions, the challenges of ensuring incorporation of nutrition within the food security, agricultural production and livelihood systems.Chapter 2 summarizes and compares the findings of site characterization research (situational analysis, baseline and household surveys: see 1. in 1 above), coping strategies combining field trials and participatory approaches are described. The authors conclude that to ensure productive agriculture and food production for future generations, the central challenge is how to best harmonize income generation from commercially-oriented, specialized tree and monocropping systems with the benefits of more diversified farming systems that allow soil and water to be better conserved. Solutions that address this challenge require long-term commitment in field sites, working especially closely with ethnic minority communities.Chapter 4 summarizes and evaluates tools and approaches used to address nutrition in Central Mekong and presents diet and nutrition data and analysis from four case studies from Northwest Viet Nam and the Central Highlands of Viet Nam. After a review of R4D activities implemented in Central Mekong (see 2. and 3. in Table 1 above), the authors conclude that nutrition was not prioritized by the multistakeholder platforms or during the situational analyses, which led to R4D projects and activities that did not work directly to improve nutrition. Furthermore, the wide range of nutrition indicators and data collection methods applied in the nutrition-inclusive R4D activities highlights the need for more coordinated guidance and design at the program level.In the final chapter, the conclusions and lessons learned from the three thematic chapters are synthesized, and the key achievements of more than four years of active integrated systems R4D implemented under Humidtropics along with some of the major lessons learned are presented. Despite numerous challenges, we conclude that our four years of integrated agricultural R4D activities in the Central Mekong resulted in significant research and development achievements. The partnerships and collaborative relationships made through our work, and our collaborative work with local partners on the ground to identify and test innovations, will continue beyond Humidtropics, and may be scaled up in other CRPs in the second phase. We believe lessons learned through our experience will contribute to strengthening our collective effort towards improving the income and livelihoods of poor smallholder farmers through sustainable agricultural development.The systems addressed in this chapter and in the CGIAR Research Program on Integrated Systems for the Humid Tropics (Humidtropics) broadly include natural systems comprising biophysical, resource and climate realities; social systems made up of people, societies and their institutions; and, what some term as artificial systems built on elements of the first two (Checkland 1981). Agricultural systems, for example, modify natural systems for productive use, add infrastructure to provide markets, and modify human institutions to organize labour and services to enable the agricultural system to function. Regardless of how systems are categorized, they can be simplistically deconstructed into components and the interactions between them. In this chapter we characterize some of the Central Mekong systems, and also address some of the system dynamics, at two basic levels of resolution.Section 2 addresses regional agricultural systems consisting of one or more districts within a country, and includes variations in natural and social systems in addition to agricultural systems. Five regional cases that reflect the diversity across the Central Mekong Action Area are examined and compared. The authors focus on systems at the community or local landscape level, particularly the individual farm household component, and the variation between households within the landscape. Variables include household agricultural practices, household resources, capacity, and links to markets and institutions.Section 3 looks at diversity in the variables among farm households and the implications for livelihoods and well-being. Section 4 examines food security levels arising from specific farm household strategies and performance, how the two are related, and the implications for potential farm interventions. We conclude by comparing the types of systems examined, the differences in types of tools needed, and the differences in questions asked and learning generated.Throughout this chapter, authors refer to data from reports and articles that interested readers can find in Annex I.A situational analysis under Humidtropics was the starting point for characterization and all further analysis of an agricultural setting or landscape. The situational analysis aimed to provide a broad body of data to inform and tailor the subsequent exercises, which were expected to be more detailed and in some cases focused on specific system components or addressing specific issues. Also, because Humidtropics by definition worked in a consultative manner through partners, the situational analysis also aimed to both create a joint and common understanding among all partners of the issues at hand, as well as support the process of establishing strong and sustained linkages with stakeholders at multiple levels.Given this context, the situational analysis had three primary objectives.The first objective was to characterize broadly all important system aspects relevant to the program within the target areas (in this case, Action Sites in the Central Mekong) and through that, generate data to inform all other program activities to better attain the intended outcomes.The second was to harness various partner skills and experiences to develop a common and shared understanding of the issues needing to be addressed and their potential solutions, particularly between international and national partners, allowing local and global expertise to play complementary roles.The third was to initiate and facilitate engagement with stakeholders and partners as part of developing the multistakeholder platforms needed for the program's long-term success and scalability.This section describes the results of five separate situational analyses conducted in selected sites in Viet Nam, Thailand and China, which in turn represent the three Triangles, or Action Sites, described in Chapter 1. The sites were selected in consultation with national partners. Before describing the situational analyses, we offer a brief note on methodology.Each situational analysis comprised four parts: i) Development Overview, which presents a broad overview of generic rural and human development characteristics, infrastructure and the institutional and policy context in which rural development was occurring in the target provinces; ii) Production Systems, which describes the agricultural setting, types of crops, livestock and trees, technologies employed, and returns to agricultural enterprises; iii) Markets and Institutions, which describes agricultural market structure and practices, but also collective enterprises and public institutions that support agricultural development; and, iv) Natural Resources, which describes the land, water and other natural resources.The analyses were conducted by national agricultural research and development partners in each site with backstopping and participation by CGIAR researchers. Although the methodology varied slightly, the information gathered was generally from six different sources. These were secondary data at local/regional administrative unit level; key informant interviews; focus group discussions; household surveys in some cases; market visits; and, stakeholder consultations. The multiple data sources provided for the triangulation and validation of data collected from different sources.Key informant interviewees were selected on the basis of their knowledge, expertise, and professional affiliation, and discussions were based on semi-structured checklists. The focus group discussions were also guided by semi-structured checklists, together with the complementary use of Participatory Rural Appraisal (PRA) tools such as Community Mapping and a Seasonality Calendar. In some cases, transect walks were conducted through the village where each focus group discussion was held. Participants included various types of agricultural producers, market agents and entrepreneurs. Villages for the focus group discussions were selected by local officials in consultation with the research teams. The findings were directly used to provide qualitative information to the report.After the focus group discussions were completed, information gaps were still evident. In an attempt to extract more detailed information and provide an additional opportunity to triangulate the information already found, in some cases short household surveys were developed and administered to a small sample of households in the same communes where the focus group discussions were held. In addition, market visits were conducted to observe the types of agricultural products sold, types of market agents, transport infrastructure, origin and destination markets. Draft results were presented to stakeholders comprising government officials, research and development NGOs, and others. Participants were asked to review and confirm or comment on the preliminary results of the situational analyses.In addition, stakeholders were asked to provide inputs with respect to underlying system problems in the area and what possible solutions may be offered. This information was used to complement and validate the issues raised from the preliminary assessment.The Central Highlands of Viet Nam (Tây Nguyên) are a series of plateaus 500-900 m high.The Highlands can be divided into three subregions according to topography and climate, (north, middle, south). The area consists of four provinces: Dak Lak, Dak Nong, Gia Lai and Kon Tum (Khanh et al 2015). The population is youthful but with a fairly steady elderly population. Birth rates have been slowly declining over the last 10 years while the death rate has been constant, although the infant death rate is still high. The population density is relatively low compared with other parts of Viet Nam. Ethnic minority groups are numerous and vary across the districts. Literacy is generally high with men being more literate, and many women attaining only a primary education. Some 70 percent of the total population reaches high school.Agriculture plays a critical role. At least 85 percent of the households depend on agriculture, forestry or fisheries as major economic activities, 8-10 percent of the population is engaged in the service sector, and 1.5-3 percent in industry and construction. Many youths are employed in the latter sectors. The average income increased sharply between 2008 and 2012 but the gap between rural and urban incomes has widened rather than diminished.In addition, income levels greatly determine the household size. Malnutrition is still high.Twenty-five percent of five-year-old children are underweight, of which 2-4 percent are severely undernourished, while between 35 and 41 percent show signs of stunting.The infrastructure is generally poor and road systems underdeveloped. While commune (village) electrification has improved, only 1-4 percent of households are connected to the grid and many do not have access to electricity. Ninety percent of households have clean water, but the proportion is lower in rural areas than in urban areas.Households typically hold small plots of land, between 0.5 ha and 2 ha. The agricultural production area for cereal crops did not significantly change between 2009 and 2012. Agricultural commodities include rice, maize, cassava, coffee, pepper and rubber. Yields vary among provinces and crops. Kon Tum Province has 175 irrigation schemes that can water around 5500 ha of paddy rice and 650 ha of other industrial crops, but most crops are rainfed. Crop farms seem to be evolving towards specialization due to robust coffee and pepper value chains in the area.Livestock (cattle, pigs and poultry) is also produced, although production shows a diverging pattern. Aquaculture is also developing but differs across the provinces. Specialization levels are low, especially in livestock and fish. Crossbred cattle and pigs are common but local breeds are still widely in use, especially among more traditional smallholders and ethnic minority communities.The agricultural sector is not highly mechanized, with many traditional practices still in use, although some value chains use sophisticated mechanization. Fertilizer and pesticides are being used but often without following established technical protocols. Risks for income losses and food insecurity are high due to drought, flooding and high postharvest losses.Rubber, peppercorns, cassava flakes and timber products are exported from the region. While coffee and cassava flake exports strongly expanded between 2008 and 2011, rubber and peppercorns have reduced their volume in tons as has timber. Cashew nuts and sawn wood are imported, as well as machinery. Fluctuations for all these commodities were dramatic between 2007 and 2012.Numerous institutions promote production and marketing of commodities including the International Committee of the Red Cross and local cooperatives. Vietnamese NGOs are working on research or as consultants. International NGOs and informal community-based organizations such as farmer groups are also active. Nonetheless, information is inadequate on suitable varieties and good agricultural practices for soil and crop management.The Central Highlands has only a few large private investments in agricultural production, in part because policies for private investments are not attractive. A major constraint is poor connections among value chain actors and dysfunctional or inefficient cooperatives and farmer clubs. Additionally, markets and marketing systems are poorly developed and the poor road network adversely affects smallholders in accessing markets to sell their produce. Many producers also have limited knowledge of marketing or production.Natural forests cover a large area of the region. However, forests are declining due to destruction from extreme weather events, and in 2011 large areas were converted into agricultural land mainly for maize, cassava and sugarcane. Land degradation, soil erosion and soil infertility are serious issues.Xishuangbanna is a small area (20 000 km 2 ) in a mountainous region. There is great cultural and biological diversity, with more than eight major ethnic groups and many other small ethnic groups and subgroups. The area has a subtropical climate. Infrastructure is well developed. More than 95 percent of villages have a road, running piped water and electricity. Access to affordable health care is reported to be very high, and the average life expectancy is 71 years. There is a cultural awareness of nutrition but little distinction between medicinal plants and food (Hammond et al 2015).Formal education is low and, depending on the location, 20-40 percent of household heads are illiterate. Most women are less well-educated than their male counterparts, although among the most educated (college and university), women make up a greater proportion than men. Many youths drop out of school because income from rubber is high and Chinese State education does not accommodate minority languages and culture. People living at high elevations tend to have less formal education.Diversified agriculture is common where rubber or tea production dominates (90 percent of households). Other crops include rice, vegetables, fruits and maize. Livestock production is also common. Less than 10 percent of householders work in wage or salaried jobs. The average income for a rural person is approximately USD 1100 per year with great variation between the wealthiest areas (USD 3000 per person per year) and the poorest areas (USD 600 per person per year).The majority of agricultural land is managed by smallholder farmers with about 3 ha each for agriculture and forest cover, although there are also State-managed forest lands, villagemanaged community forest lands, and State-managed nature reserves. Rubber is the main cash crop grown in lowlands and sloping areas, however, forest land is still the largest area. Other crops include tea, which is usually intercropped, and bananas, which are a threat to forest land as many smallholders clear forest for its production.Mixed farming systems are common. Although households tend to rely heavily on one or two major cash crops, they usually also raise some staple crops and livestock. The Xishuangbanna Bio-Industrial Crops Office has outlined plans for niche market high-value crops, many of which can be intercropped with forest or agricultural systems. Agricultural technology is well developed and widely available. Sixty to 70 percent of households own a small handoperated tractor, although this is lower in the poorest areas. Modern cultivars such as rubber varieties suited to local conditions were developed and were subsidized. Fertilizer and pesticide use has increased steadily over the past 25 years. Over-fertilization is a common concern.Land-use planning and management are disseminated to land managers via two wellorganized routes: the government system and the market system. Well-established and capable research organizations also provide guidance to both government and market institutions.There are four main classes of land management. First, smallholders who are generally free to make their own decisions. Second, community forest land managed by village leaders. Third, nature reserves under the authority of the Xishuangbanna Environmental Protection Office, and finally State forests under the authority of the Xishuangbanna Forestry Office.The government system is hierarchically organized from province level down to individual villages, with plans made at prefectural level and passed down all the way to village leaders. However, only rules and instructions are passed through the system. Enforcement of rules is weak, contributing to illegal village-level land-use practices (e.g. clearing forest) which are not reported back to higher levels. The market system has greater influence over farmers, who respond either to price signals or to requests and training from large-scale buyers. Newer products are introduced to farmers by companies via contract farming.A key stakeholder is the governmental Bio-Industrial Crops Office, which works with research and business organizations in an attempt to balance the demands of the economy and the environment. A State extension service manages Agricultural Technology Stations at the township level. However, station staff are few in number, poorly trained, and can usually only provide advice on major cash crops.Market penetration and access is good in Xishuangbanna, with four main types of value chains. For the main cash crops (rubber, tea, sugarcane) there is smallholder production with self-transport to the processing factory of the producer's choice. Banana production is informally contracted by outside entrepreneurs who pay upfront costs, sometimes encouraging illegal landclearing, and who return later to collect produce in large trucks for direct export. Contract farming systems are in place for emerging niche and high value crops.Produce for local markets such as rice, vegetables and meat is either sold directly by farmers to consumers or passes from farmers to individual market traders to consumers.A disconnect exists in the knowledge transfer process. High-quality knowledge, techniques and strategies are developed at higher levels, but the mechanisms by which these are passed down to smallholders are neither reliable nor quick. Extension services have limited capability and the contract farming companies have a localized effect targeting only farmers in small areas.Biodiversity is the major unique natural asset of Xishuangbanna, and is in decline.Xishuangbanna was originally heavily forested, but its forest cover has shrunk from 69 percent to less than 50 percent in recent years, and the important tropical seasonal rainforest shrank from 11 percent to four percent. Forest fragmentation has increased significantly, with land conversion to rubber cited as the major driver of natural resource decline. The tropical forest landscape contains large carbon stocks in the form of biomass and soil carbon. Carbon stocks are estimated to be in decline due to land conversion. Nature reserves cover 12 percent of the land area. A recently completed (2011) initiative designed and established connectivity corridors between all nature reserves in the prefecture, although the ongoing governance of these corridors is questionable. A well-established tourist industry showcases both cultural and biodiversity. However, sustainable and equitable tourism is not common and most profits benefit neither the general population nor conservationist causes.Nan has a population of 478 264, with almost no growth (0.06 percent) over the last 10 years (2004-2014). Most of the population is Northern Thai (80 percent) who live mostly in the lowlands; the rest is composed mainly of five ethnic minority groups (Lau, Hmong, Mien, Khmu and Mlabri). The biggest group is the Lau (42 percent), followed by the Hmong (32 percent) (Kitchaicharoen et al 2015).The urbanization rate is low, with 88 percent of the population living outside municipal areas.Most of the population is of working age (70 percent). The dependency ratio is 0.43. The poverty level in Nan Province has been declining in recent years, falling from 212 700 (46 percent) in 2000 to 94 400 (21 percent) in 2012, although at a slower rate than the national poverty level. However, household debt in Nan has risen quickly over the last two decades, growing 22 percent with average debt levels being higher than the national average. The debt-to-income ratio has also been increasing over time, and stood at 0.89 in 2013. Maize production activities have contributed to the increased debt burden in the highlands.Efforts to reduce malnutrition at the provincial level have been successful with the malnutrition rate in children under six lower than the targets set out in the provincial plan.The situation with malnutrition in the highlands is not clear, and especially in relation to micronutrient deficiencies which can usually be found in such remote areas. Gender inequality is related to ethnic traditions and family life. Within the Mien and Hmong ethnic groups, men have much more power than women in decision-making, as well as access to and control over resources.In 2012, the total agricultural holding area was around 0.18 million ha. Most of this was devoted to field crops (mainly maize, tobacco, beans and cassava), followed by rice, permanent crops, vegetables and flowers. The area of agricultural land under maize and rubber has increased in recent years, while that under rice has fallen (based on data from 2002 to 2013).Rice is grown using two production systems: irrigated paddy rice and rainfed upland rice. Modern technology is used to produce hybrid maize to increase production. However, maize production requires heavy use of chemicals. Also, vegetables and mushrooms are produced.Livestock is produced on a small scale with a total of 52 360 households carrying out livestock rearing activities. Chickens are the most reared (1 829 938), followed by pigs, ducks and beef cattle (52 011, 47 629 and 32 307 respectively). Privately owned land for pasture covers 955 ha and publicly owned covers 1687 ha.The main marketing channel for vegetables is the local markets in the province, but some farmers sell their produce to entrepreneurs from other provinces. The market channel for vegetables can be divided into fresh vegetable and agroproduct processing markets. For the processing market, deals are done through local entrepreneurs and agricultural cooperatives. Shopkeepers or small companies operate the agroproducts market in Nan. Most of the crops purchased are field crops such as maize, which is grown as food for livestock. Market channels exist for fruit, but there are not many fruit traders. The fruits most in demand are the Nam Dok Mai mango and sweet tamarind, both of which are exported.The private sector has played an important role in developing agriculture in the province. It has focused on agribusinesses and has established strong forward and backward linkages for agricultural products. Such linkages have helped farmers improve production through the delivery of inputs and technology, and by providing markets. Nan has 23 local agricultural cooperatives which offer small agricultural producers a wide range of services, including improved access to markets, information, communications, technologies, credit, training, and warehouse operations. These cooperatives also negotiate better contract farming terms and lower prices for agricultural inputs such as seeds, fertilizers and equipment.Areas for growing maize and other cash crops have been expanding in recent years, leading to a major decline in natural forest areas. Forested areas can be broken down into five classes: dense evergreen forest, dense forest plantations, dense deciduous forest, disturbed evergreen forest, and disturbed deciduous forest. Deciduous forest covers the largest area with 667 193 ha, followed by evergreen forest (103 201 ha). Land degradation is a thorny issue as deforestation is the main cause. However, individual and group efforts have been made based on the Nan Strategic Plan, which embraces the province's new vision of achieving green growth and where economic advancement is achieved through the sustainable use of natural resources. Rubber trees and other cash crop plantations have been promoted over maize in an effort to establish crops that have comparatively less negative impact on the environment. However, the suitability of such a promotion has been questioned, stirring up controversy among stakeholders.Honghe Prefecture is in the southeast of Yunnan Province adjacent to Viet Nam, and covers an area of 32 931 km², of which 80 percent is mountainous. The total population is nearly 4.5 million people, with approximately 80 percent living in rural areas. The annual population growth rate was 0.86 percent from 2001 to 2010. The majority (80 percent) depend on agriculture for their livelihoods. The province has the largest number of ethnic minorities and is home to 52 of China's 56 ethnic groups, 49 of them in Honghe Prefecture. Population density is high at about 136 persons per m 2 in Honghe Prefecture and 118 persons per m 2 at the provincial level. Most of the population is male. Honghe Prefecture is a socially complex region with strong traditions and heterogeneous communities. In the situational analysis, data from five counties in the prefecture (Jianshui, Hekou, Honghe, Jinping, and Yuanyang) were collected (Kaiyun et al 2016).The education system has improved and expanded to reach children in remote areas, providing education at all levels. The number of pupils enrolled in middle and high schools has increased. However, significant illiteracy remains, particularly in rural areas, and the quality of education is comparatively low.Although the national economy has developed significantly, poverty levels are high (38 percent), which is higher than both the provincial and national levels. Income is lower in rural areas (threefold to fivefold).Infrastructure is poor since the area is mountainous and has an underdeveloped road system. The rate of rural household access to clean water and electricity is also low. Women are more disadvantaged and continue to lose out in the job market due to low education levels and low skills, in part through lack of access to or participation in vocational training.The average cultivated area per capita is relatively small (0.059 ha), much lower than the provincial level (0.091 ha). Honghe Prefecture has six State farms, where rubber and rice are produced.Crop production and livestock are the main income sources for local farmers and account for more than 80 percent of the region's agricultural GDP. Grain, vegetables and fruit are the main agricultural products, and Honghe Prefecture is the largest fruit production region in Yunnan. Pig production (both number of animals and volume of pork) accounts for nearly 40 percent of the provincial production.Forests, which make up a large part of the area, mainly benefit ethnic minorities in highelevation areas. The fishery plays a relatively small part in overall production. Fish are raised in rice and winter paddy fields. Mechanization is limited. Low use of improved technologies and inappropriate use of agrochemicals further contribute to low productivity.Honghe Prefecture has a complex topography, a distinct altitude gradient, a climate, and significant seasonal rainfall that provide unique opportunities for agricultural production. However, production systems face challenges, including a relatively low percentage of cultivated land, an increasing rate of soil erosion and degradation, pollution, disappearing natural resources, and the lack of a skilled labour force.Monthly consumption of agricultural commodities (grain, vegetables, fruits and meat) has changed slightly during 2008-2011. Demand for grain increased and more grain was imported to meet this demand in 2012. Most agricultural products are sold in local markets or at the prefecture level, but some high-value products such as vegetables and fruits are exported to other countries in Southeast Asia, Viet Nam in particular. While prices increased from 2011 to 2013, so did prices for agricultural inputs (chemical fertilizers, pesticides, plastic farm films and agricultural electricity). Many exhibitions and trade fairs were organized to promote local agricultural products sold outside the prefecture as well as constructing new markets.Farmer groups, including professional cooperatives and agricultural associations, have played important roles in promoting agricultural industrialization and boosting the rural economy, but many constraints limit their development and effects, such as a lack of market management knowledge, low level of team organization, and little support from policy and finance.Honghe Prefecture has ample and reliable water resources, but distribution varies by region. Land degradation and soil erosion are serious concerns caused mainly by the excessive or inappropriate use of chemical fertilizers, pesticides and plastic films. The heavy metal content in the soil is above recommended limits and is caused by discharge from various enterprises. Indigenous knowledge, which contributes to biodiversity protection, is gradually being forgotten with the passing of the older generation, and frequent natural disasters threaten the local ecosystem.Rural roads and electricity: Viet Nam has implemented national programs to improve rural infrastructure, particularly rural roads and electricity systems under the auspices of Programme 135. From 1999 to 2005, the rural road system was rehabilitated, improving connectivity between communes and district towns as it finally became part of the national and provincial road network. Electricity systems were upgraded and expanded, increasing the access of communes to the national electricity grid system by 60-79 percent. The proportion of rural households with access to electricity jumped from 74 to 95 percent (ILRI 2014).Access to piped potable water: From 2001-2010, a clean water program was widely implemented in the rural areas of the northern provinces. Approximately 90 percent of households in the urban area had access to clean water. Clean water sources were installed in more than 75 percent of rural communities. However, the rate of household access to a clean water source was still relatively low in three provinces (Lai Chau, 18 percent; Son La and Dien Bien, approximately 41 percent). Lao Cai had better access, at 77 percent.Viet Nam is a country where many ethnic groups live together in the same area. In the northwest provinces, more than 20 minority groups are settled in various places from the high mountainous area to the downtown areas of districts or city zones at the provincial centre.A clear income disparity exists between urban and rural areas. The gap in average income per capita in these provinces was wide, with urban income double or triple that of rural areas. This inequality is considered a social problem, especially among ethnic minorities in remote areas.Education and literacy: Based on official statistics, primary education is near-universal, and equality in education opportunities has improved in multiple ways. In the provinces studied, the school systems have newly built or renovated classrooms to cope with the increasing demand at all education levels. Every commune has nursery and primary schools, and lower secondary and upper secondary schools operate in every district. While the literacy rate is approximately 94 percent, it is lower in mountainous provinces.Employment: Agricultural modernization, urbanization and industrialization have brought about dramatic changes in the lives of many Vietnamese farmers. However, farmers' livelihoods in the mountainous provinces, especially of those in remote rural areas, have been less affected.These northwest provinces of Viet Nam are characterized by some challenging terrain, including steep slopes in many areas and elevations reaching more than 1500 m. Nevertheless, slope and elevation do not entirely dictate where agriculture is carried out. Agricultural production is done on both small and large farms and uses mechanized, human and animal power, with differences closely associated with type of terrain and also ethnic group. Ethnic minority communities tend to adhere to traditional agricultural practices, which can constrain innovation within these significant groups. Livestock technologies are not well developed, relying mostly on traditional breeds and technologies, leading to low yields. An important and evolving feature is the rapid increase in the land area planted with maize on steeply sloped terrain, as a result of demand for feed for poultry and pigs in Viet Nam and further afield in China. Extreme erosion can be observed as a result, threatening the longterm sustainability of the land resource base.Essential commodities in the provinces being studied were rice, vegetables, fruit, pork, chickens, beef, shrimp, fish, tea and alcohol. Some local traditional varieties of livestock and fruit are regarded as unique to the area, and attract high prices in urban markets. Consumption of fruits and vegetables is low, whereas monthly average per capita consumption of alcohol is relatively high. Many commodities are sold locally and the surpluses sent to urban areas, as some specialized products are exported to other countries. Farmers either sell directly to consumers or indirectly through collecting agencies or wholesalers. By selling directly, producers have a higher income and consumers are better informed of the product origin. State-owned institutions such as Plant Protection Units of the Provincial Department of Agriculture and Rural Development are in charge of distributing inputs and extension services to farmers. However, compared with the needs, staffing is limited and staff capacity is low.Northwest Viet Nam is a mountainous region that comprises steep mountain ranges, highland and dense river systems. Forest land accounts for the largest proportion of available land with approximately 80 percent in Lai Chau, Dien Bien and Son La and 70 percent in Lao Cai. An increasing proportion of that is under managed forests such as rubber, the production of which is growing rapidly, threatening biodiversity and other resources such as water and soils. Nevertheless, the Vietnamese Government is committed to managing natural resources and the environment and has issued a number of laws and decrees to preserve biodiversity and protect the environment as well as program 'thrusts' , which have significantly increased forest acreage.These short descriptions of the situational analyses results clearly illustrate the diversity of agricultural and rural development settings across the target sites in the Central Mekong Action Area. However, the sites also share some strong commonalities, which reflect some of the shared cultural history as well as similar physical terrain and agricultural traditions. Among the commonalities are: i) mountainous terrain characterized by some relatively remote and thinly settled locations in elevated areas, but also settled valley locations with better market access; ii) linked to this, a strong disparity in income between urban and rural populations; iii) a relatively strong presence of ethnic minority communities, many of which are politically, economically and geographically marginalized, particularly in the case of women; iv) a mix of agricultural market types, including both strong local demand but also longer distance and cross-border markets for specific products, some of which are high value; and, v) the relatively strong role of the State. In all sites, most of the population is rural and agriculture still plays the dominant role in livelihoods.Contrasting features across the sites include: i) differential levels of development, including both infrastructure and agricultural technology, which are somewhat based on national-level development differences; and, ii) in some cases (Thailand, China) populations levels have stabilized while elsewhere such as in Viet Nam, population growth continues.Some guidance for research and development can be obtained from these assessments, including:• The relatively rapid changes in land use, and agricultural intensification in a region characterized by steep terrain requires investment in technologies and strategies to improve soil conservation within evolving production systems.• The large presence of ethnic minorities with relatively poor access to extension services and to markets, and who are also characterized by lower income and literacy levels, suggests that special attention should be devoted to increasing their capacity for agricultural innovation and market access. Services need to be tailored specifically for their needs, while infrastructure development continues.• There may be opportunities for agrotourism among ethnic minority communities, if appropriately designed to suit their interests.• Local traditional products, crops and livestock exhibit untapped potential for highvalue markets beyond the region, due to their unique characteristics and the value placed by consumers on their origin. Market-driven branding and certification systems may need to be developed, taking a public-private partnership approach.The situational analyses helped to identify some of the variables that account for the diversity among sites. This allowed us in turn to examine some of those variables among farm households and the implications for livelihoods and well-being.A considerable variety of farm production systems are found across various cultures and landscapes, operating in differing socioeconomic, institutional, demographic and political contexts. Many external and internal factors affect farmers' decision-making on resource allocation, production and marketing. One efficient and useful approach to initially gain a clearer understanding of important farm characteristics in heterogeneous systems involves cluster analysis of farming households. Cluster analysis provides a clear descriptive picture of the existing farming structure with distributions of assets and livelihood indicators. These results may provide a basis for identifying best-bet and best-fit farm interventions and innovations in the associated product value chains with the aim of increasing smallholder productivity, thereby reducing poverty and food insecurity in the rural areas to improve household well-being. Some of these interventions are mentioned in chapters 3 and 4.In many cases, smallholders not only show a strong heterogeneity among themselves, but are also characterized by considerable diversity of income sources and production activities. This may be due to their subsistence orientation, which is often associated with various objectives determining resource allocation and production. These objectives may include nutrient maximization, labour smoothing, consumption preferences or reducing various risks, in addition to maximizing income. As well as comparing various smallholder classes on their internal diversity, econometric analysis can further improve the understanding of how production diversity is associated with resources, income sources and livelihood indicators. A crucial indicator is the diversity of individual diets. An improved understanding helps with identifying causes, constraints and opportunities for diversification among poor smallholders who are especially vulnerable in marginal rural areas, and may deliver important information for policy makers. The specific results from smallholders in Northwest Viet Nam will also contribute to the global discussion and the growing body of literature on farm household diversification.The results presented here come from a baseline household survey conducted in Son La and Dien Bien provinces, which had initially been identified as field sites within the Humidtropics Central Mekong Action Area. A list of all communes with census data structured by administrative units (province, district) for these two provinces formed the first-stage sampling frame. Unsuitable communes, identified by extreme values for population density or classified as urban by local administration, or with extreme political and social issues, were dropped from the sampling list. These criteria led to the exclusion of 173 out of 314 communes. Based on the ratio of province populations, 10 communes were randomly selected from Son La and six communes from Dien Bien. After generating settlement and household lists for the selected communes, a total of 400 households were randomly selected. Relevant baseline data were collected using the ImpactLite survey tool (Douxchamps et al 2016) in early 2015.Farm households were categorized into meaningful clusters by using two sequential multivariate statistical techniques: factor analysis and cluster analysis (Pacini et al 2014).With factor analysis the number of variables (most of which are correlated to each other) was reduced to a smaller set of factors that captured most of the variation within the observed variables. The retained factors from the factor analysis were then employed for cluster analysis to identify relevant farm household categories. The variables selected for classification captured three categories of important development assessments: wealth and income; productivity and innovation; and, nutrition. In particular they were:• Wealth and income: area of cultivated land, livestock assets (measured in tropical livestock units), domestic asset index, off-farm income, household expenses.• Farm productivity and innovation: crop and livestock productivity (production value/ cultivated land), market integration (sales value/production value), land tenure status, use of innovations on cropland, use of innovations in livestock herds, period of innovation use, contacts with agricultural information providers.• Nutrition: Individual Diet Diversity Score (IDDS), food supply sufficiency (calories consumed/calories required), food self-sufficiency (calories produced/calories consumed).The IDDS is calculated according to Kennedy et al (2010). Accordingly, the 17 food groups included in the questionnaire are aggregated to nine groups, reflecting the probability of micronutrient adequacy of the diet. The nine groups are: starchy staples, dark green leafy vegetables, other vitamin-rich fruits and vegetables, other fruits and vegetables, organ meat, meat and fish, eggs, legumes, nuts and seeds, milk and milk products. The IDDS scores are calculated separately for the household head, the spouse and the eldest child under five years of age within the household.For this study, diversity is first determined separately for crop production, livestock production, income sources and diets. The Simpson's Index of Diversity (SID) is used to measure crop, livestock and income diversity. In effect, the SID measures the probability that two individuals randomly selected from a sample will belong to the same category. It was originally developed for measuring biodiversity, focusing on species (Simpson 1949) and was initially defined as:Where p is the proportion (n/N) of individuals found in one particular category (n) divided by the total number of individuals (N); Σ is the sum over the categories; s is the number of categories.With this index, 0 represents infinite diversity and 1, no diversity at all (all individuals belong to the same category). Therefore, the higher the value of D, the lower the diversity. This is neither intuitive nor logical. Therefore, D is often subtracted from 1 to produce the Simpson Index of Diversity (1-D). The value of this index also ranges between 0 and 1, but now, the greater the value, the greater the sample diversity. In this case, the index represents the probability that two individuals randomly selected from a sample will belong to different categories. The lowest possible value, 0, would represent a community containing only one category. In this study, crops and species formed the categories for crop and livestock diversity, respectively, while seven income categories were defined for determining income diversity.For dietary diversity, we employ the IDDS of the main survey respondent, irrespective of gender or household position, following the methodology described above.To assess factors influencing various diversity indices, the Seemingly Unrelated Regression (SUR) approach, introduced by Zellner (1962) and later advanced by others (Fu et al 2016), was adopted, controlling for cross-equation correlation across the four diversity equations. Correlation of error terms was also tested across equations using the Breusch-Pagan test of independence. Since the Simpson Index of Diversity is a fraction ranging between 0 and 1, and IDDS is a count ranging from 1 to 9, the Simpson Reciprocal Index (SRI) was employed to ensure similar distributions among all diversity measures. The SRI is the reciprocal of the original diversity index D (SRI = 1/D). The higher the SRI value the greater the diversity.Classification based on factor and cluster analysis generated four clusters of farm households. Table 2.1 presents the farming and household characteristics of these clusters.Cluster 1 was labelled 'wealthy' and accounted for 10 percent of the total sample. Although the households in this cluster cultivated the least amount of land, they owned the largest livestock herds and had the highest non-farm incomes and household expenses. They also showed the highest diversity in income sources. It does not surprise that they also had the highest level of education and the smallest families. Their crop production was the most productive as measured by output value/ha, almost three times higher than the figure of the lowest cluster (Cluster 2). With livestock production, compared to the other clusters, these households produced at a larger scale, mainly focused on non-ruminant species, and attained the highest livestock productivity, also nearly three times the lowest productivity cluster. These households secured high production returns from rice, chickens and pigs, while showing only moderate levels of diversity in crop and livestock production (although livestock diversity does not differ greatly between clusters). This corresponded with these households being the most market-oriented, selling the highest proportion of their products, approximately one-third in the case of rice and chickens, and up to three-quarters in the case of pigs. Innovative technologies were applied widely in crop production, but only at a moderate level in livestock. This cluster showed the highest values of Individual Dietary Diversity Scores (IDDS) which together with food supply sufficiency reflect the high probability of an adequate diet.Cluster 2 was labelled 'poor' and comprised about half of all farm households (49 percent). It was ranked lowest on almost all indicators. These households showed the lowest annual expenses among the four clusters and were headed by the youngest farmers with the lowest educational levels and farming experience. In agricultural production, this cluster was characterized by low levels of diversification, productivity and net returns. Farm products were mainly used for household consumption. The application of innovations was still at an early stage, as they had not really become accepted in this cluster. This may partly be explained by their limited exposure to agricultural information, evidenced by the low number of visits by agricultural extension agents. Diet diversity was also the lowest in this cluster by a considerable margin.Cluster 3 was characterized as 'innovative' and constitutes 24 percent of the total sample. These households were likely to have more female heads and more farming experience than in the other clusters. They exceeded all other clusters in applying innovations in crop and livestock production, both in current extent and period of application, although the 'wealthy' cluster came close. However, this was not sufficient to allow these households to achieve the productivity levels of the 'wealthy' cluster, perhaps because they could not invest as much from non-farm incomes, which were the lowest among the four clusters, despite having the joint-highest income diversity. Nevertheless, diet diversity was nearly as high as in the 'wealthy' cluster. The caloric data on food supply, however, indicated a more precarious situation.Finally, cluster 4, identified as 'crop-oriented' , comprised 16 percent of the sample. It was characterized by the largest land holdings supporting large family sizes, but at relatively poor educational levels. Their land endowment allowed these farmers to grow the most diverse selection of crops and produce the highest value of rice and maize. Similarly, they kept the most diverse livestock. However, crop productivity was only moderate while livestock productivity was the lowest among the four clusters. Despite high production levels, more than 80 percent of the rice grown was consumed at home. Maize was the most important crop. Selling 60 percent allowed these households to achieve household expenditure levels similar to the 'wealthy' cluster at the lowest level of income diversity. Nevertheless, diet diversity was only moderate in these households. The results from the four diversity equations estimated together as a system are presented below (Table 2.2). All the models are significant at the one percent level, except crop diversity, which is significant at five percent. There was a significant cross-equation correlation (p=0.06). It appeared that crop diversity was positively associated with the education level of the household head and years of farming experience. Similarly, crop diversity increased when the distance to markets was reduced. Livestock diversity was also positively and significantly influenced by years of farming experience, though much less than crop diversity. The domestic asset index, Tropical Livestock Units (TLU), the share of ruminant livestock and the share of livestock products sold were also linked to higher livestock diversity.All other factors held constant, income diversity was positively and significantly influenced by the household head's education level, the number of household members and the share of livestock and livestock products sold. However, income diversity was negatively influenced by the share of ruminant TLU. It appeared that households keeping more ruminants had less diverse income sources. Finally, dietary diversity was positively and significantly influenced by the household head's education level, by the domestic asset index and by the number of livestock species kept. As with income diversity, the share of ruminant TLU negatively influenced dietary diversity.The classification of farm households in Northwest Viet Nam was based on factors related to wealth, production, marketing, innovations and nutrition. The multivariate analysis approach, combining factor analysis and cluster analysis, allowed us to identify four typical farm household classes and the socio-economic characteristics associated with their farming and market choices.It is hoped that these results will serve as a reference for future economic analysis in Northwest Viet Nam. While agricultural technological advances contribute to increasing yields and incomes, the results indicate that this link is not straightforward in this diverse environment. The diversity in the study region is measured by crop, livestock and income diversity while quality of nutrition is measured by diet diversity. The classification results indicated that although the poorest households showed low diversity in all indicators, the economically successful households tended to specialize in market-oriented farming activities, while diversifying their income sources. Households with high production diversity were those endowed with comparatively extensive land and livestock resources.Results of the econometric analysis highlight the important role of farmer education in association with higher production and income diversity scores. While these results are indications, they are in line with literature showing that educated farmers are good at organizing complex farming operations, accessing multiple income sources, and ensuring diverse diets. We also see that while farming experience has a positive impact on crop and livestock diversity, it is not directly linked to increased income and diet diversity. This suggests that the knowledge farmers are provided with could be made more relevant for improving their livelihoods overall, particularly targeting improvements in their nutritional status. Although the share of ruminants had a positive effect on livestock diversity, this had a negative effect on both income and diet diversity. This may be attributed to the fact that the main meats Vietnamese consume are pork (56 percent) and poultry (27 percent) (OECD 2016). Accordingly, pork and poultry also generate the most livestock income. While livestock market integration had a positive effect on both livestock diversity and income diversity, this did not significantly affect diet diversity.These analyses indicate that promising strategies for poor rural households with limited production resources would be to diversify income sources, with an emphasis on non-farm opportunities, while also modernizing their agricultural production and focusing on market orientation. Diversifying crop and livestock production appeared to be attractive mainly for farmers with above average resources. However, further analysis would be required to better assess the complex relationships between diversity and livelihood indicators.4. Farm strategies and farm performance: How are they related?In the previous sections (2 and 3), we reviewed situational analyses to characterize study sites and then examined food security levels that arise from specific farm household strategies and performance, how the two are related, and the implications for potential farm interventions. In this section, we apply a new analysis framework to quantify a simple food security indicator, specifically developed to analyse the livelihoods of smallholder farmers (Frelat et al 2016), and to assess the potential impacts proposed intervention options might have in the Central Highlands of Viet Nam.The analysis uses data obtained with the ImpactLITE farm household survey undertaken in 2014 (see https://ccafs.cgiar.org/impactlite-tool#.V7djrfkrLIU for a detailed description). Members of 400 households in the Central Highlands of Viet Nam were interviewed. Information on household composition, farm practices, production, sales and consumption of agricultural produce and off-farm income was collected for each household.This information was used to quantify a simple indicator of food security, called 'potential food availability' . Detailed information about this indicator can be found in Frelat et al (2016) and Hammond et al (2016), but in short, the indicator quantifies the potential of a farm household to generate enough food (expressed in kcal) to feed the family through its on-and off-farm activities (see Figure 2.1).Information on yearly crop production, consumption and sales, livestock production and off-farm income is combined with family size and composition, to quantify an estimate of whether the family can potentially be fed, based on these activities. The indicator is easily quantifiable using the information collected in many farm household cross-sectional surveys. This food security indicator does not cover all the complexity contained in the concept of food (in)security, but is simply a potential supply indicator. The indicator provides a continuous 'food availability scale' that allows us to quantify the contribution of key determinants of food availability for individual households within and across sites. It functions well for sites in which food insecurity is major problem, and where agricultural productivity is low and where total production is low due to small farm sizes. More detailed survey analyses have shown that food availability relates well to other indicators of food security such as diet diversity and hunger, and food insecurity access scales up to values of roughly 5000 kcal per male adult equivalent per day (Hammond et al 2016, Frelat et al 2016).Beyond this value the results diverge, and the food availability indicator is not very useful as an indicator of food security because agricultural production is no longer the main constraint for achieving food security and a diverse diet. The analysis in this chapter follows the steps used in Ritzema et al (nd) and Paul et al (nd) in which i) a core set of interventions was identified; ii) an intervention's likely effect was defined if the intervention is adopted for productivity, market prices and land allocation; and, iii) the consequences of the changes on the simple food security indicator were quantified for each individual farm household. Livestock productspresented in Table 2.3 together with assumed effect changes. The interventions listed range from introducing Son Tra (Docynia Indica) or the 'Hmong apple' , a relatively new fruit tree species, to integrated pest management, to improved market access. The baseline results of the food availability analyses showed that 26 percent of the farm households were food insecure, i.e. had a food availability ratio 1 of less than 1.5, the value related to saturation of other food security indicators such as the Hunger and Food Insecurity Access Scale and Household Level Diet Diversity (e.g. Hammond et al 2016). The five interventions had only a little effect on changing this 26 percent value: improved market access (23 percent), agroforestry (24 percent) and integrated pest management (IPM) (25 percent) had small positive effects, while improved coffee management (26 percent) and introduction of Son Tra (28 percent) had no or even negative effects on this value.Figure 2.2 presents more detailed results on the intervention analyses, where we have divided the farm household population into four groups: severely food insecure, food insecure, roughly food secure, and food secure. These results show that the interventions had differential effects across these four farm household groups. Introduction of Son Tra had a positive effect on the income of most food-insecure households, but a negative effect on the other households because its introduction on the farm meant the farmer had to replace other crops with Son Tra. In this scenario, all existing crop areas were reduced equally to make room for an allocation of 10 percent of the total arable land area to Son Tra. This worked out positively for the most food-insecure households, because they could replace part of their low-yielding and low-market price food crops, but for the more food-1The ratio between potential annual energy supply of food divided by the annual energy need of the family.secure households with higher crop yields and more intensive market-oriented systems, Son Tra production did not improve the performance of the existing crops. Improved coffee management only improved the food security status of the already more food-secure households, because they were the ones currently growing coffee. Improved market access and intensified agroforestry systems increased food security across all households, with improved market access especially having large positive effects. The simple analyses presented here shows a clear differentiation between the interventions, with the introduction of Son Tra, with the current production levels and market prices, targeting the poorest households (15 percent of the sampled population); the coffee management intervention, on the other hand, targeted the relatively food-secure households that form about 55 percent of the total population. In this way, the analysis gives a first indication of the outreach potential of different interventions, the effect they might have on food security, and how they might affect different farm groups within the overall population. This information can be used to better target interventions and better assess the efficiency of investment in supporting different interventions.The cases presented in this chapter demonstrate examples of different levels and types of systems analysis, each with different objectives and tools, beginning with broad lowresolution analysis to increasingly focused higher-resolution analysis with narrower boundaries.The first set of situational analyses (cf. section 1) addressed broad regional-level systems consisting of districts or provinces in a specific country. The system components were major sectors and institutions in the landscape, not individual actors. A mix of participatory, qualitative and quantitative tools was used to assess conditions and trends in general rural development, agriculture, markets and environment. The types of learning gained informed public investment in extension and agricultural development, opportunities for private public partnerships, and priorities for research.In contrast, the next two examples of systems analysis (cf. section 2 and 3) addressed a more narrowly focused system, at the level of a group of farmers in selected communities, which could be described as a landscape. Further, the analyses only directly addressed a single component of the system, which was the individual farm household. This single component was characterized as a bounded farm household system, which included agricultural and other land-use practices, and also intrahousehold decisions, resources and capacities. Some interactions with elements outside the system were also captured indirectly, such as the degree of market orientation. The only information-gathering tool used was a quantitative survey of individual farm households. The analytical tools used in the two cases differed somewhat, however, since they asked different questions. Of key importance to both analyses was the level and type of variation between individual farm households within the landscape level system. The types of learning gained guided research and development priorities for that landscape, including what types of agricultural practices, and mixes of strategies, were most likely to lead to positive welfare outcomes for the households, and also characterized what those outcomes were likely to be, in this case livelihood and nutrition indicators.Integrated tree, crop and livestock technologies to conserve soil and water, and sustain smallholder farmers' livelihoods in Southeast Asian uplandsGuillaume Lacombe Over the past two decades, the agricultural sector in the Mekong region (Cambodia, Laos, Viet Nam and the Yunnan Province of China) has experienced profound changes, especially in smallholder farms. Market and population pressure, expanding infrastructure into formerly remote but fragile upland regions, government policies and incentives aimed at modernizing and commercializing the smallholder sector (MPI 2011), have induced a drive towards specialization and commercialization (Baudran 2000, Ducourtieux 2006). Enticed by booming markets for certain commodities and associated foreign direct investments (LIWG 2012), more smallholders have converted part or all of their farms into commercial plantations of rubber, coffee, teak, cashews or cassava (Neef et al 2013, Schönweger et al 2012). While such specialization has the potential to transform subsistence livelihoods into much more lucrative agricultural enterprises, it too often also leads to a weakening of ecological processes typical of more diversified traditional farm systems that integrate trees, annual crops and livestock; the result is land degradation (Cramb et al 2009), compromising ecosystem and livelihood sustainability (Rerkasem et al 2009). The absence of intercropping/ crop rotation, animal manure cycling and appropriate plant understoreys to cover and protect soils may lead to increased dependency on inorganic and often potentially toxic inputs to control pests and diseases or maintain soil fertility, while simultaneously exacerbating soil erosion and water runoff problems (Guardiola-Claramonte et al 2010, Ratanawilailak 2013, Valentin et al 2008, Ziegler et al 2009a). Consequently, the future productivity and longterm sustainability of agricultural landscapes in the region may be jeopardised. With specific references to activities conducted as part of the CGIAR Research Program on Integrated Systems for the Humid Tropics (Humidtropics) in the Central Mekong Action Area, this chapter has three objectives:1. To analyse the magnitude of the problems, specifically to explain how recent land-use changes are modifying erosion rates and runoff processes and the consequences over multiple scales (section 2).To review the methodological approaches and tools applied to analyse the environmental and livelihood footprints and trade-offs in the contexts of i) the northern uplands of Laos where teak tree plantations are gradually replacing cash crops, and ii) rubber tree plantations in southwest China, and iii) on-farm integration, diversification, specialization, intensification and commercialization of integrated treecrop-livestock smallholder farms in the Central Highlands of Viet Nam (section 3).To provide examples of coping strategies (with enabling factors and constraints) through the case studies introduced in section 3 and with an additional case study focusing on rainwater harvesting for home-based vegetable production in Northwest Viet Nam (section 4).Soil erosion is a major issue for sustainable agriculture in sloping land areas. It can cause severe negative environmental, economic and social impacts both on-and off-site. On-site, soil erosion leads to a loss of topsoil (Valentin et al 2008), the most nutrient and organic matter-rich part of the soil, in some cases even exposing the acid subsoil. Landslides and sediment transfer to down sites (Downing et al 2008, Thothong et al 2011) result in widespread land degradation (Sidle et al 2006) which, in turn, results in a decline in land productivity associated with decreasing soil organic matter levels (Kendawang et al 2005).The off-site effects of erosion on the quality and availability of water can have serious consequences for rural population health and natural ecosystems, and cause accelerated siltation of downstream reservoirs.Researchers from the International Water Management Institute (IWMI), the French Institut de Recherche pour le Développement (IRD) and their national partners in Laos -the Department of Agricultural Land Management (DALAM) -and Viet Nam -the Soil and Fertilizer Research Institute (SFRI) -have demonstrated that afforestation through teak tree planting or by natural forest regeneration can induce divergent hydrological changes (Lacombe et al 2016). An observatory including long-term field measurements of finescale land-use mosaics and of hydrometeorological variables (Valentin et al 2008) has been operating in several headwater catchments in tropical Southeast Asia since 2000 (Photo 3.1). This monitoring network, named 'Multi-Scale Environmental Change' (MSEC, http:// msec.obs-mip.fr/) has been funded by the French watershed network SOERE-RBV (réseau des bassins versants), the French Observatory for Sciences of Universe (Observatoire des Sciences de l'Univers), IRD and IWMI. Humidtropics enabled the data collected over the last 14 years to be compiled to produce the analysis reported here. A water balance model, repeatedly calibrated over successive one-year periods and used in simulation mode with the same year of rainfall input, allowed the hydrological effect of land-use change to be isolated from that of rainfall variability in two of these catchments, in Laos (Houay Pano catchment in Luang Prabang Province) and Viet Nam (Dong Cao catchment in Hoa Binh Province).Visual inspection of hydrographs, correlation analyses and trend detection tests allowed causality between land-use changes and changes in seasonal streamflow to be ascertained.In Laos, the combination of shifting cultivation (alternation of rice and fallow) and teak tree plantations gradually expanding and replacing fallow land led to intricate streamflow patterns: pluri-annual streamflow cycles induced by the shifting system on top of a gradual streamflow increase over years caused by the plantations' spread. In Viet Nam, the abandonment of continuously-cropped areas combined with patches of mixed-tree plantations led to the natural regrowth of forest communities followed by a gradual drop in streamflow.These contrasting hydrological behaviours may appear counter-intuitive but proved to be closely linked to the way the land was managed. In Viet Nam, the natural groundcover including deep litter and soil naturally enriched with humus allowed rainwater to infiltrate the soil, which allowed plants to develop deeper and thicker root systems as well as a denser tree canopy. Rainwater was better absorbed by the soil and then evapotranspirated by the growing trees, resulting in less water leaching into the streams during both the wet and dry seasons, and an overall reduction in erosion. In Laos, farmers moved from a shifting rainfed rice-based system to teak plantations. Teak trees usually develop a thick canopy and deep and dense root systems, which theoretically should reduce streamflow by increasing evapotranspiration. However, the hydrological effects of the teak plantations studied in Laos were very different. The area beneath young teak trees was cultivated with annual crops, inducing a high rate of soil surface crusting; the large leaves of mature teak trees concentrate rainfall into big drops that hit the soil with increased kinetic energy, forming surface crusts. In addition, most farmers intentionally kept the soil bare under mature teak trees by recurrent burning of the understorey 1 . These three actions created a soil crust in the plantations that was four times less porous than fallow land, producing higher runoff and streamflow, andcrucially -intense erosion. We assumed that this practice resulted from a mix of beliefs and practical considerations. i) Farmers generally considered that understorey vegetation competed with teak trees in accessing soil water and nutrients. Thus, they believed that burning this understorey vegetation improved teak trees' access to resources even though teak trees were known to explore and exploit deep soil layers much more thoroughly than understorey species. ii) When clearing plots to grow annual crops farmers usually poorly controlled the spread of fire into adjacent teak tree plantations; since adult teak trees are fire-resistant, this represented a convenient and effortless way of suppressing understorey vegetation in teak tree plantations. iii) The absence of understorey vegetation in teak tree plantations also improved access to and circulation within plantations, which was a desirable feature for many farmers for maintenance and exploitation purposes (NTFP harvesting, pruning, thinning, etc).Soil permeability controlled by surface crusting was the predominant process explaining why two modes of afforestation (natural regeneration versus planting) led to opposite changes in streamflow regime in the two studied countries (Lacombe et al 2016).One of this research's distinguishing features was its geographic scale. Previous research into this topic looked at 1 m 2 micro plots (Ziegler et al 2004, Podwojewski et al 2008, Valentin et al 2008, Patin et al 2012). By contrast, Lacombe et al (2016) confirmed previous findings at a scale about 1 million times larger (i.e. 1 km 2 ), which is more appropriate for water resource managers. The authors mapped land-use changes over a 13-year period by conducting detailed field surveys, recording daily water data and using modelling and statistical tools to match water flow differences against land-use changes while isolating the compounding effect of climate variability.In the reforestation area in Viet Nam, both wet and dry season streamflow dropped by more than 50 percent. In the teak plantations in Laos, streamflow increased by more than 100 percent in both the wet and dry seasons with tremendous implications for natural resource management policy, especially in Laos (Lacombe et al 2016). The Government of Laos has set a goal to increase forest cover to 70 percent by 2020 (MAF 2005). A key driver is the commitment to hydropower development (http://www.poweringprogress.org/) and increasing forest cover will theoretically increase the available water for hydropower in the long term. CGIAR's research demonstrated that these ideas about the relationships between forest cover and hydropower development were not necessarily true. On the Vietnamese side, natural regrowth actually decreased the amount of water released into the catchment. On the Lao side, while streamflows did increase significantly, the high erosion rates associated with teak plantations led to excessively sedimented water unsuitable for hydropower development and detrimental to aquatic ecosystems.These results were not necessarily typical of afforestation and should be extrapolated with caution. For instance, in Viet Nam, the reduced streamflow observed during the dry season was not necessarily characteristic of all reforested areas (Andréassian 2004, Bruijnzeel 2004, Calder 2007). In other situations, forest growth significantly improved the soil capacity to absorb and store water while the increased evapotranspiration caused by the growing vegetation remained moderate. These two concurrent changes resulted in a net gain in groundwater recharge followed by an increase of streamflow during the dry season, while at the same time total annual flow decreased. As such, it is important to consider the site-specific effects of the vegetation on the soil during both wet and dry seasons when attempting to link water resource management to land use.Although important for the sustainable management of headwater catchments, the full understanding of hydrological processes altered by land-use changes remains limited in the tropics. While in most cases, afforestation will reduce annual streamflow, the opposite effect may also happen. Put simply, land use has more effect than land cover, sometimes leading to extreme yet opposite hydrological behaviours. Given that commercial tree plantations will continue to expand in the humid tropics, careful consideration is needed before attributing to them positive effects on water and soil conservation.3.1 Land-use management and impacts on water and soil in northern LaosIn 2015, the Humidtropics research team in Laos (IWMI, IRD and DALAM) decided to expand current knowledge on the effects of several land-use types on erosion and runoff to a wider range of farming practices typical of the northern Laos uplands. This work constituted the first exploratory phase of a project that aimed to, together with farmers and local stakeholders, test and develop innovative on-farm land management practices that allowed stream water quality to be improved while sustaining the fertility and productivity of erosion-prone soils in the mountainous environment. The overarching objective was to contribute to improving soil and saving water through collaborative field work between targeted farmers, researchers, government extension agents, community pillars, local knowledge gatekeepers and relevant authorities (Photo 3.2).A combination of erosion and runoff monitoring in the field, focus group discussions and participatory rural appraisals, field visits and individual in-depth exchanges with farmers and other local knowledge gatekeepers was conducted in the small Houay Dou catchment in Xieng-Ngeung District of Luang Prabang Province, about 20 km south of the Houay Pano catchment. Ten typical land-use types were identified for the monitoring as representing usual farming practices, including annual crops (maize, Musa spp; Job's tears, Coix lacryma-jobi), tree plantations (banana; vernicia, Vernicia montana; rubber, Hevea bresiliensis; teak, Tectona grandis), with or without understorey, and broom grass (Thysanolaena latifolia). For each of the 10 land-use types, three microplots of 1 m 2 each were installed and equipped with a metal frame inserted into the soil at a depth of approximately 10 cm (Photo 3.2). Runoff water was collected in a tapped and buried bucket and the runoff amount was measured after each main rainfall event. Rainfall was recorded by an automatic meteorological station located in the watershed. Hydrometeorological data were collected during the 2015 monsoon season between May and October, and analysed in 2016. Preliminary results (to be published in a peer-reviewed journal article) indicated that farmers did not invest effort in maintaining the two studied annual crops, Job's tears or maize. The reasons appeared to be that a drastic drought in 2015 resulted in a very low crop coverage with significantly reduced crop yields. For these two annual crops, the runoff coefficient was much above the average of the 10 monitored land-use types. In contrast, broom grass was found to be the most efficient crop for erosion control because it efficiently protected the soil with a high interception rate. Broom grass, known in Laos as 'dok khem' , is a naturally growing, semi-domesticated non-timber forest product (NTFP) naturally present in upland fallows, degraded forests and degraded land along roads and in villages. It mainly requires labour for harvesting, drying and threshing the inflorescences, which are the plant parts eventually used to make brooms. When cultivated, it is less time consuming than other field crops. Weeds need to be pulled out and then cut back once annually. Yield is estimated to be 1 ton/ha of dried and threshed inflorescences. A family with all members working full-time on broom grass can generate an income up to USD 1200 per year. After harvesting, the broom grass flowers are sun-dried for three to five days. The seeds are removed by manual threshing and the grass stems are bundled for storage until it is time to sell them to traders or for broom making (Khamhoung and Gansberghe 2016).Although trees usually exhibit a high percentage of canopy cover, teak and vernicia trees were found to be relatively inefficient in protecting soil from runoff and erosion because a rather limited amount of vegetation residues were found to cover the soil. In contrast, because fire was strictly controlled in rubber tree plantations, the percentage of residues on the soil surface was higher than in the teak and vernicia plantations. This coverage protected the soil from the direct impact of raindrops. In management terms, it was paramount to control fire in all types of tree plantations. was simple and could be performed by the household without hired labour. In addition, the market demand was high and relatively stable, although prices exhibited some fluctuations. Broom grass production was stable all through the year. The only major problem was the possible competition for grazing land, which was not a significant concern in this area. Bananas were also a favourite crop. They were easy to grow and local traders usually came on-site to buy. If not sold, villagers were happy to eat the fruit. Fallow lands were appreciated especially by women because this was where they collected NTFP. Job's tears was often preferred, compared to the traditional upland rainfed rice, because it could be planted on previously fallow land with no age requirement (while rainfed rice should be cropped following a fallow plot aged at least five to seven years). In addition, Job's tears could be grown for three consecutive years at the same location. Among all annual crops, maize was a low priority for farmers, who grew this crop to feed livestock only and not for selling. Among the three main tree species planted in the region (vernicia, rubber and teak), teak was the favourite because it was considered a long-term investment that would benefit the farmers' children. Rubber and vernicia were not prioritized currently because of dropping prices on regional markets. Farmers in Houay Dou were considering pulling vernicia trees out to replace with another crop.Although rubber was first introduced to Asia from the Amazon rainforest in the late 19 th Century, there has been a recent massive expansion of rubber plantations across the Greater Mekong region driven largely by increasing demand for natural latex from China. Huge swaths of formerly multiuse landscapes and natural forests have been replaced by monoculture rubber (Ziegler et al 2009b, Fox et al 2014). Between 2003 and 2010, about 15 000 km 2 of land was converted to rubber plantations in Cambodia, southern China, Thailand and Viet Nam (ANRPC 2010). This massive land conversion had predictable consequences for ecosystem services (Wu et al 2001, Mann 2009, Qiu 2009, Ziegler et al 2009b, De Blécourt et al 2013;Yi et al 2014;Fox et al 2014), including water services, carbon sequestration and biodiversity conservation. About one-quarter of the Xishuangbanna prefecture in Yunnan Province was converted to monoculture rubber, mostly in the species-rich lowlands, including 23 616 ha within protected areas (Chen et al 2016). This land conversion dramatically reduced biodiversity in a prefecture that only covers 0.2 percent of China but used to include 23 percent of the vascular plant species found in the whole country (Liu andSlik 2014, Sreekar et al 2014). Sreekar et al (2016) observed only eight bird species in a monoculture rubber plantation located more than 500 m away from a large forest fragment where 160 bird species were usually found. Moreover, although rubber has been a path-out-of-poverty for many smallholders, there have been severe social consequences with widespread reports of land grabbing and coercion. Reduced access to NTFP and economic dependence on a single commodity has also left many farmers vulnerable to fluctuating rubber prices. Through a bilateral project funded by the German Government (GiZ Green Rubber project), the Humidtropics research team investigated links between land cover change and ecosystem functioning in Xishuangbanna. In this brief case study, we focus on the soil and water.Several studies have demonstrated that rubber is a relatively deep-rooted plant that can modify local and regional water balances (Guardiola-Claramonte et al 2008, 2010, Tan et al 2011, Liu et al 2011, Carr 2012). Due to their large xylem vessels (Ayutthaya et al 2011), rubber trees consume more water than most native forest species in Southeast Asia. Earlier studies have shown that rubber trees have an extended root system allowing a wide part of the soil to be explored for water uptake. Depending on the season and zoning of soil moisture, the tree is able to shift from shallow to deep soil layers to extract water where water is the most abundant at a certain point in time, indicating significant plasticity in sources of water uptake (Liu et al 2013). As a result, rubber extracts more water throughout the dry season than natural vegetation and extracts water from deeper soil as the dry season progresses (Guardiola-Claramonte et al 2008). This feature enables the tree to thrive through periods of greatest water demand. Studies comparing rubber plantations with natural secondary forests found that soil under rubber had significantly reduced water infiltration capacity (Liu et al 2000).We investigated the effects of understorey management on soil erosion using surface-flow interception traps. In treatment areas farmers were paid not to spray the understorey with herbicides, which they normally did twice a year, to allow the understorey to regenerate naturally. During the first wet season, six to 10 months after establishment, soil erosion in the current practice (control) areas was six-eightfold higher than in treatment areas, and overland flow was 9-19 percent higher. This experiment was still in its first year and understorey vegetation growth was limited when these measurements were made, hence we expect this effect to increase as the understorey's natural regeneration progresses. Other recently published studies have shown that splash erosion is much higher in monoculture rubber than in rubber agroforestry treatments (Liu et al 2016). Together these results support popular reports of increased wet season flooding and siltation of rivers, and reduced dry season flows following conversion of secondary forests to monoculture rubber plantations.In rubber-dominated watersheds, many formerly perennial streams now regularly run dry during the dry season, often affecting household water supplies. Local communities have also reported deteriorating water quality with increased turbidity and algal growth.At a larger scale, watershed studies generally confirmed these results although the low density of hydrological stations and complex patterns of land cover change have made it more difficult to interpret patterns. In one 9432 ha watershed in Xishuangbanna, from 1992 to 2010, while rubber cover increased from 9 percent to 44 percent, the natural buffering capacity of the watershed declined by 9 percent, indicating accelerated runoff and deteriorating watershed function.Following the sharp drop in rubber price in 2012, many farmers replaced rubber with alternatives, especially bananas. However, these options were more available to wealthier farmers, who could afford to write off losses. Farmers in more marginal areas were more inclined to wait out the low rubber prices.The Central Highlands of Viet Nam comprise a series of undulating plateaus straddling the border of eastern Cambodia and southern Laos. Elevation generally ranges between 300 m and 900 m. Although fertile basaltic soils exist at the tail end of the Annamite mountain range in the northern and eastern parts of the Central Highlands, soils over much of the rest of the area are commonly acidic, light-textured and of low fertility (Tri 1997, Tran 1998, Thai and Nguyen 2002).Historically, the agricultural sector was dominated by ethnic minority groups (mainly Ê Đê, Mnong and Tay) practising mixed low input and low output smallholder farming. In these systems, they relied heavily on shifting cultivation to maintain soil fertility. After the end of the 'American' War in the mid-1970s however, the Vietnamese Government encouraged ethnic majority Vietnamese (Kinh) people to migrate from the more densely populated areas of Viet Nam into the sparsely populated Central Highlands (Dang et al 2001, Cramb et al 2004). The Kinh brought more intensified and market-orientated forms of smallholder agriculture. Coffee production in particular was strongly promoted as a livelihood strategy by the national government, becoming the region's agricultural mainstay, especially in the lower lying areas of the southern and southeastern parts of the Central Highlands (i.e. Dak Lak and Dak Nong provinces) (Bui 2003). The coffee boom in the 1980s and 1990s in turn drew more immigrants from other areas of Viet Nam to the Central Highlands, and more smallholder farms became specialized in coffee (Long 2007).However, this specialization in coffee, while allowing farmers to reap better returns to labour in good times, also made them more vulnerable to market or price shocks. Falling coffee prices in the late 1990s meant that smallholders growing coffee on less fertile land, where coffee yields were lower, had problems breaking even. On the other hand, as Tran and Kajisa (2006) argue, the (over)reliance on inorganic fertilizers in more specialized and commercially orientated monocropping farming across Viet Nam has led to declines in soil organic matter and soil productivity. In such cases, the use of inorganic fertilizers has often replaced traditional practices. These traditional practices typically consisted of i) use of animal manure and plant biomass on-farm for composting and adding to various of crops; ii) use of leguminous rotations to boost nitrogen input into the soils and control pest and disease cycles; and, iii) long fallow periods to allow soils to regain a measure of fertility. As a consequence, the normal ecological processes typical of the more diversified traditional farm systems that integrate trees, annual crops and livestock were weakened, and this resulted in declines in soil fertility. To some extent, Long (2007) corroborated similar perceptions among smallholder farmers in two communes in Ea Kar District in Dak Lak Province in the Central Highlands. Interviewing 42 coffee monocropping smallholders and 49 smallholder farmers practising diversified/mixed integrated farming, she found that while prices fluctuated, soil degradation and poor soil fertility were the two main concerns of the coffee monocropping farmers.The challenge to sustainably intensify agricultural production in the Central Highlands, therefore, is to develop and diffuse practices and systems that appropriately balance specialization and commercialization as a means of generating increased farm income on the one hand, with appropriate on-farm diversification and natural resource management on the other hand to ensure continued future ecological productivity of smallholder farms.The effects of land-use management on water and soil in the northern Laos uplands (presented in section 3.1) were discussed with the farmers in the study villages and with the Ministry of Agriculture and Forestry (DAFO) district representatives. Two priority actions were identified during the focus group discussions: 1) to raise the awareness of farmers regarding the environmental and agro-ecological consequences of their current practices, such as the frequent teak understorey clearing; and, 2) to identify and implement sustainable solutions for water and soil conservation. Action 1 was achieved through village-level group discussions and learning activities (e.g. cross-learning field visits) with the provision of relevant, farmer-focused, local-language information materials (cf. Photos 3.2). Action 2 required more time and was only partially achieved under Humidtropics. While the identification phase was completed, the implementation phase was only partly initiated.We found that DAFO usually did not focus on erosion issues but rather advised farmers on how to maximize benefits from teak plantations through seed handling, nursery techniques, transplanting, pruning and thinning. One solution to control erosion, identified during the discussions, consisted of introducing understorey cash crops to the tree plantations.Interspersing teak trees with understorey crops promoted rainwater infiltration into the soil, which reduced soil surface erosion. At the same time, the soil enrichment with organic material improved its water holding capacity, thus enabling plant development during the dry season. Since erosion did not seem to be seen as a major issue for teak tree growers, a realistic incentive to encourage farmers to grow understorey crops was to emphasize the possible additional income they could earn from selling the economically profitable understorey crops and their derived products.Depending on local soil and climate conditions, several species could be cropped under teak trees with potential economic returns: galangal, ginger (although the market demand was still limited), broom grass (farmers usually preferred this crop because of its high market demand, cf. section 3.1), cardamom (with a potentially high income, although yields are uncertain: cf. Khamhoung and Gansberghe 2016), natural grass (easy to grow, good for erosion control, but no immediate economic benefit although it may have some biodiversity-based ecosystem service benefits like pest control), mountain peanuts (high market demand) and the small fastgrowing mimosoid tree Leucaena leucocephala, originating from Latin America, for livestock fodder. According to field surveys conducted among DAFO officers, the timing for planting understorey crops was critical as it influenced the plants' successful development. The best time was usually one year after teak trees were planted, except for broom grass which was more invasive. In that case, it was preferable to wait until teak trees were two years old.Several constraints impeding the introduction of understorey crops were also identified during the discussions and possible solutions were proposed. In Luang Prabang Province, teak trees were usually planted at two-metre intervals. With this relatively high density, the canopy closed only a few years after the trees were planted, which did not allow sufficient light to reach the ground for understorey development. To allow understorey crops to develop, a minimum of three metres between trees was necessary, in addition to pruning and thinning at regular intervals (about three years). These activities were beneficial for both the harmonious and productive growth of teak trees, and also for the development of the understorey crops. Another important constraint to understorey development was fire spreading from adjacent plots cleared to grow annual crops. Some villages have defined rules to avoid fire associated with rice-based shifting cultivation practices from spreading into teak plantations. These rules, which are not legal, are more or less rigorously enforced by village heads. Finally, in some areas around the Houay Pano catchment, erosion under teak plantations was already at an advanced stage. Opportunities for reversal with crop or natural vegetation development were limited because the most fertile topsoil had been washed away already. In this situation, an alternative and mechanistic control of erosion could involve recycling branches from pruning used as natural barriers along contour lines and maintained by the trees.A few farmers who were already growing broom grass and cardamom under teak trees were identified in the surveyed villages. Trained by DAFO, they started this intercropping only one year ago and were still waiting to see if the technique was profitable. Due to the very limited number of training courses DAFO has been able to provide with limited funding, only a few landholders have adopted such innovative techniques.Many environmental problems commonly associated with rubber and other plantation crops, including teak, Acacia, Eucalyptus and oil palm, derive from managing plantations as monocultures rather than crops per se. For example, rubber has been managed by smallholders in Indonesia, Malaysia and southern Thailand as a component of secondary forest regeneration for more than 100 years and studies of these 'jungle rubber' systems have found that they approximate advanced secondary forests in terms of ecosystem service delivery (Warren-Thomas et al 2015). For example, in Sumatra it was found that jungle rubber supported 50-80 percent of the bird species found in nearby primary forests (Gouyon et al 1993). Meanwhile, carbon sequestration rates were typically as high, or higher, than for natural regeneration. Hence, improved plantation management holds substantial promise for restoring ecosystem functioning across the enormous swaths of land under monoculture management globally. Experiments conducted by the World Agroforestry Centre (ICRAF) and partners in Indonesia demonstrated that modern high yielding rubber clones could be intercropped with many other species (Penot et al 1999). In selecting suitable intercrop species, the only critical limitation was that rubber performs poorly when shaded, so intercrop species should be selected to grow under the rubber canopy (Photo 3.3). Typically, smallholder farmers preferred to manage the crop in two phases. In the first three years, the rubber was intercropped with annual crops as this negated the need to control competition and fertilizers benefited both intercrop and rubber. This also provided a short-term return that offset the cost of establishing the rubber trees. In Xishuangbanna, smallholders often contracted migrant farmers to establish rubber plantations; the migrant farmers were unpaid but got a free lease on the land to grow pineapples for two to three years. After about three years the rubber canopy started to close and it was no longer profitable to manage annual crops. The long-term intercrop could either be established with the rubber or after harvesting the annual crop in the third year. Shade crops such as tea, coffee, cacao, salak and Gnetum were often recommended, although some farmers liked to grow fruit trees like mangosteen, mangos and durian because of the ready market even though productivity in the shade was low (~50 percent). Intercrops could also include timber species and species yielding non-timber forest products. In the latter systems, high-value, slow-growing timber species were allowed to grow up under the rubber. Then after the rubber was harvested at 25-30 years the timber was left to grow for another 10-20 years. These systems were potentially very profitable, but farmers in Xishuangbanna appeared very reluctant to make such long-term investments. This The trial will test the performance of four systems: i) monoculture rubber; ii) rubber intercropped with fruit trees; iii) rubber intercropped with timber and non-timber forest products; and, iv) natural regeneration enriched with species from iii). The species were selected together with the farmers who are also providing their land and labour. This trial is now being extended to northern Thailand, northwest Laos and Sumatra. a manner that allowed both the risk of crop failure and the needs of labour on-and off-farm to be better spread. At the same time, they had to ensure environmental resources were not exhausted and that dependency on external inputs was not exacerbated at the cost of short-term production boosts. In particular, the platform highlighted the need for research on improved soil conservation and more effective nutrient cycling.Small funds by Humidtropics to support multistakeholder platform research projects afforded the platform the opportunity to take action and address the expressed needs through a specifically designed project. Due to its research expertise on integrated crop-tree-livestock smallholder farming systems, WASI was designated to lead the project. Within each commune, two target villages were selected in consultation with local authorities and based on criteria including relatively high numbers of ethnic minority smallholders and the possibility of finding specialized coffee monocropping farms close to integrated and more diversified farms. Meetings were held in each village to introduce the project aims, and a suite of participatory rural appraisal approaches were applied to gain a better understanding of the village setting and the farmers' major aspirations, priorities and main challenges (Photo 3.5B). Subsequently, in participation with the whole village, five smallholder farms in each village were selected as pilot sites for participatory research and visible demonstrations or village learning activities. Special attention was paid to ensure the selected farms represented a broad spectrum of diversification and integration, potential challenges and opportunities, and ethnicity and gender. Both Kinh and Ê Đê or Mnong smallholder farms were explicitly included, as well as female-and male-led households among the pilot farms. The final farm selection included about 50 percent female-headed households in all villages, and about 75 percent and 16 percent ethnic minority farmers in the villages of Ea Tyh and Dak Dro Commune respectively. Experience from previous projects led by CIAT, TNU and WASI in the same Central Highlands areas highlighted that project staff needed to take sufficient time on the ground in study sites to build relationships with farmers, field advisors and other local actors, as local extension can be the difference between success and failure (CIAT-IFAD 2016). This is crucial, especially with ethnic minority smallholders, not just to understand the priorities, aspirations and challenges of smallholders and the extension agent closest to the farmers, but also to effectively work with them on a mutual trust basis. In discussions during the regular visits over the first few weeks with the pilot farms and the larger community, several potential technologies for further investigation were elucidated. These included planting small parcels of land (approximately 1-2000 m 2 ) on the farm with forages or intercropping forages within coffee gardens, and fattening or finishing cattle for market using these forages in a cut-and-carry system. Planting highly productive, nutritious forages on-farm may allow smallholders to increase livestock productivity without relying on increasingly scarce natural resources (Peters et al 2001). Importantly, if forages were planted close to the homestead and animals kept close by, this had the potential to decrease the labour required to collect feed, or tether or herd animals far away from the farm (Stür et al 2006, Dimang et al 2009, Ba et al 2013). By cut-and-carrying the forages to stalled animals, this in turn allowed manure to be collected in the stalls. Other technologies highlighted for further study and development by both the platform and smallholders in the target villages during community meetings included intercropping fruit trees such as durian and avocados within the coffee trees, as well as technologies focused on improving coffee yields such as grafting new plant material to older trees.WASI staff sampled and analysed soils from various plots on all 20 pilot farms for pH, organic matter, total and available potassium, total and available phosphorus, calcium and magnesium to create a baseline on soil fertility. Subsequently, trials involving the various proposedpotential technologies were initiated on the pilot farms in the second half of 2015. Initially, experienced WASI researchers trained local commune and district extension staff on the relevant technologies in a series of training-of-trainer events. The WASI staff, supported by the freshly-trained extension agents, subsequently trained trial farmers and their neighbours over several days on each technology, using the trial farms as training venues and thereby initiating the on-farm trials. WASI and district DARD extension agents continued to follow up and monitor the trials, while convening and facilitating several village learning activities, field days and farmer cross-visits where the other farmers in the village or from neighbouring villages and communes were invited to examine and assess the proposed technologies.Additional training on issues such as composting or local pig husbandry and manure management was provided at regular intervals and included both local extension agents and more than 200 farmers from the study communes. While disseminating knowledge on these methodologies, these regular training events also provided a forum for regular interaction and relationship building between farmers, extension agents and WASI project implementers. The biophysical and economic outcomes of the trials were to be evaluated at the end of 2016.In the Greater Mekong region uplands, rainfall is often the only water resource available for agriculture. River streams in headwater catchments are ephemeral and often too far away from farming lands, while groundwater is often too deep and saline with high extraction costs. In the absence of water for irrigation, the monsoon climate in Southeast Asia forces farmers to limit cultivation to the rainy season, mainly between June and October. To sustain vegetable production year-round and improve the nutritional value of food for smallholder farmers, rainwater harvesting and storage is seen as a way to secure water resources outside of the rainy season and during drought spells.The World Vegetable Center (WorldVeg) A failure function evaluated the frequency of water-stressed days (i.e. when the amount of water stored in the tank was lower than the crop water demand) over each multi-year simulation period accounting for interannual climate variability. This model included several parameters that determined the size and type of the roof, size of the vegetable garden, cultivated crop species and associated water demand. The model simulations indicated that a storage capacity of about 20 m 3 was sufficient to secure vegetable production all through the dry season with a garden of about 50 m 2 and a roof (to collect rainfall) of about 100 m 2 .Based on these results, a rainwater harvesting system was set up in the village. Two main water storage options were considered to collect rainwater from the roof of a shed nearby the WorldVeg experimental site: i) a cement tank partially buried in the soil with a total storage capacity of 10-15 m 3 , and ii) four inox tanks each with a 5 m 3 storage capacity. The second option was selected for its greater flexibility (tanks can be moved as necessary) and because it was easier to install using materials readily available in the region (Photo 3.6). The roof, already equipped with gutters, had a total area of 169 m 2 and the vegetable garden was 42 m 2 , making the total storage capacity of 20 m 3 appropriate for this system. The total system cost was reasonable compared with the concrete tank. Moreover, it could last for at least 10 years. The rainwater harvesting system was set up on October 2015. The field trial included two treatments, one with irrigation (Photo 3.6C) and one without. Vegetables were selected and cultivated during the dry and the wet seasons from October 2015 to June 2016. Twenty-one and 17 vegetable crops were selected to grow in the irrigated and strictly rainfed garden respectively, based on the climate pattern and their water requirements.Yield corresponding to each species was found to be greatly improved with the use of the rainwater harvesting system. Without irrigation, crops with limited root penetration (e.g. leafy vegetables) or high water content (e.g. cucumber) were the most affected by water shortages. Solanaceous and root vegetables, and legumes with a smaller leaf area were less affected. This study demonstrated that water is one of the most important biophysical factors that affect crop growth and yield. Maintaining gardens during the dry season was possible when using drought-tolerant crops such as legumes, solanaceous and root vegetables. In addition, these vegetables provided diversified nutrients for villagers who often suffer from malnutrition.The Mekong region (Cambodia, Laos, Viet Nam and the Yunnan Province of China) has experienced profound transformations over the past decades: the 'modernization' of agriculture, in particular, is occurring at an unprecedented pace. Traditional, highly diversified, low external input/low output subsistence and semi-subsistence smallholder farming systems are being replaced by more specialized, commercially orientated farms and plantations of teak, rubber or coffee. In these new sloping land systems where trees are commonly monocropped, the soil between trees is often left bare and exposed to erosion from rain and overland flow. Additionally, farmers practising more specialized forms of agriculture often rely increasingly on inorganic fertilizers and agrochemicals to sustain soil productivity rather than the traditional practices of long fallow periods to allow the soil to regenerate its fertility. While the larger income generated from these plantations may benefit the household in the short run, if not done properly such monocropping systems have the potential to gradually erode the land's fertility, leading farmers to use ever-increasing amounts of inputs to sustain yields and ultimately even jeopardising the land's future productivity. It also makes farmers much more vulnerable to price fluctuations for the single commodities they are producing.However, it does not have to be one extreme of unsustainable production for short-term income gains pitted against another extreme of poorly remunerative but environmentally sustainable subsistence or semi-subsistence farming that perpetuates poverty. To ensure productive agriculture and food production for future generations, the challenge is really centred on how to best harmonise income generation from commercially-oriented, specialized tree and monocropping systems with the benefits of more diversified farming systems that allow soil and water to be better conserved. Such an integrated approach also enables the production of multiple other ecosystem services including carbon sequestration and biodiversity conservation.To achieve this, Humidtropics brought researchers from a variety of disciplines together with local farmers and government extension workers, as well as other important stakeholders of agricultural development processes in northern Laos, southern Yunnan and the Northwest and Central Highlands of Viet Nam. Indeed, in this context, the very core of the Humidtropics effort lay in marrying holistic scientific ideas on improving on-farm soil and water conservation with bottom-up participatory approaches to ensure that the local stakeholders' priorities, concerns, perspective and analyses were addressed and placed in the centre.Humidtropics initially facilitated and funded the establishment of local and thematically orientated multistakeholder platforms to kickstart the process and bring together a range of broader systems thinking to complex problems. Specially developed on-farm and onstation trials, a variety of hands-on training sessions for local extension agents and farmers, various village learning activities and inspirational cross-visits and on-farm demonstrations followed. These allowed new methodologies to be tested and displayed, while at the same time ensuring that the local farmers remained owners and co-drivers of any innovation. Additionally, it also allowed the local DARD or DAFO extension agents, crucial to the future link between research and farm practice and perhaps also for future up-and out-scaling, to have sufficient buy-in to the processes. Importantly, such on-farm trials also enabled increased interaction between researchers, project staff, local extension and farmers.When working with ethnic minorities and disadvantaged households making up a considerable part of the sociocultural fabric of the study areas, it was of paramount importance that scientists, project staff and extension agents spent sufficient time in the study areas. This allowed them to create dynamic exchanges and to build and foster relationships and mutual trust with the local actors. This in turn could greatly assist the development and diffusion of suitable soil and water conserving technologies and systems, both in and beyond study sites. But this also takes time, often many years. Humidtropics is set to close, even while now showing some initially promising results in developing suitable intercropping, or water harvesting activities, or on-farm diversification that can enhance whole-farm income generation and nutrition cycling from animal manure. Many activities and trials are still ongoing. Some of the first cycles of comprehensive biophysical and sociocultural evaluations are planned for later in 2016 or in 2017. Therefore, as both a postscript to the Humidtropics soil and water conservation efforts in the Central Mekong Action Area and as a recommendation for future initiatives, we propose that funding, even small amounts, over much longer timelines be explored; funding that allows partnerships with co-implementers or relationships with ethnic minority communities that, in our case, have just started to develop, to mature and be deepened so that future research for development becomes more effective.A review of efforts to integrate nutrition in systems researchJessica Raneri Some of the grand challenges facing the world today include unsustainable food systems, the double burden of malnutrition (undernutrition and obesity) and environmental degradation.In addition, population growth, climate change and changing consumer preferences add pressure to our current food production systems. Current agricultural practices are moving toward intensified monocultures, which increase yields in the short term, but can limit agrobiodiversity. The result is that diets are often dominated by a single staple crop (most notably rice, maize or wheat) and lack diversity in other nutrient-rich foods such as vegetables, legumes, fruit or animal-source foods (fish, milk, eggs and meat).These grand challenges and the drivers that influence them are interconnected and require integrated system approaches to understand how people interact with their environment to achieve food and nutrition security. The CGIAR Research Program on Integrated Systems for the Humid Tropics (Humidtropics) sought to address nutrition and dietary issues within a broader integrated research for development (R4D) approach. It is, however, recognized that a systems project is more complex than projects focusing on specific commodities, and requires more time for partnerships and common goals, methods and analyses to evolve. This is particularly true for nutrition which is a relatively new concept to many. Benefits, including health, from improved nutrition are influenced by several factors beyond agricultural interventions and thus require collaborations with partners beyond the agricultural sector including in education, health and anthropology.This chapter will review research projects and evaluate tools and approaches used to address nutrition in Humidtropics in the Central Mekong Action Area between 2013 and 2016. A more detailed look into four of these projects that analyse diet or nutrition data will be presented from four case studies. The chapter will then review the efforts of multistakeholder platforms in the Central Mekong Action Area to include nutrition and will conclude with recommendations based on lessons learned to better integrate nutrition into systems research to enable positive outcomes in diets and nutrition.A review of Humidtropics partner research protocols, tools, activities, reports and other documents from the Central Mekong Action Area was performed with the focus on nutrition. Follow-up interviews clarified whether nutrition methods, approaches and indicators were used, and if not, to identify why. Results were circulated to researchers for review (see table online here [http://tinyurl.com/o2lj3k2]). It is important to note that some gaps remain, as collated information depended on the researchers' responses and any associated documentation.The review identified seven main projects implemented in the Central Mekong 2013 to 2016 (Table 4.1). Of these seven projects, three were in Viet Nam (two in the Northwest and the other in the Central Highlands), one was in Thailand, two were in China (one in Xishuangbanna and the other in Honghe, both in Yunnan Province) and one was conducted across two countries (Viet Nam and Laos). Although each project had its own objectives, they had one commonality: to improve the livelihoods of poor rural populations. To assess the extent to which nutrition research was implemented in the Central Mekong, we examined both overarching work projects and separate individual activities conducted by the research institutions to see whether nutrition was included as an outcome indicator.Only three projects directly stated a primary or secondary project objective of improving nutrition (1, 2 and 4). Nutrition matters because it provides a foundation for human development, and without adequate nutrition individuals are unable to achieve their full potential (Frankenberger and McCaston 1998). The 'Sustainable Livelihoods Approach' acknowledges the integral role of nutrition, particularly through building human capital (Slater and Yeudall 2015), and is one of three CGIAR strategic goals (CGIAR 2015); however, it was not integrated into all projects.Each project could be broken down into multiple work packages of activities that often would be running in parallel. The seven projects were further divided into 14 separate activities, of which five explicitly included improved nutrition in their objectives (these activities were in projects 1, 2 and 3). These activities often included a pathway leading to increased availability of nutritious foods, often combined with nutrition education. Education components focused on improving nutrition knowledge and attitudes to encourage behaviour change toward diversification of diets and home garden production, and urged that income generated from improved yields be used to buy nutritious foods. One activity also included participatory nutrition cooking classes, using improved recipes to motivate the production and consumption of crops or foods targeted by the project. Only one activity's research protocol included a clear description of a specific nutrition impact pathway.Although most activities did not include improvements in nutrition as an outcome, two activities included the assessment of nutrition indicators in literature reviews or baseline assessments. One activity included a nutrition education training session without including a specific nutrition outcome objective in project or activity plans. Project 4 included nutrition in the objectives, however did not integrate nutrition-sensitive activities into its operation.Nine out of the 14 activities listed in Table 4.2 included neither nutrition outcomes in research protocols or objectives, nor collected data on nutrition indicators. These activities' objectives focused on other agricultural technical innovations such as soil, water and pest management, and integrated farming systems to improve yields and improve market linkages.Possible nutrition impact pathways were always identifiable by the review team even when not made explicit in the original work plan or proposals. Primarily, the identified pathway to improve nutrition was through improved productivity of key crops which could then be consumed directly or sold. If sold, the projects could have included nutrition education components to encourage farmers to use income to purchase nutritious foods.It is not realistic or always feasible that all projects or activities will have the technical or financial resources to include nutrition outcomes. However, it is important that at a minimum, a 'do-no-harm' approach is applied to ensure research activities or interventions do not negatively impact nutrition. Such an approach includes basic nutrition indicators in base-and endline assessments, helping to build an evidence base for further research. The projects and activities that did include nutrition within their scope used a wide variety of approaches and indicators (projects 1, 2, 3 and 4), including diet quality and food security indicators, that were operationalised across different scales (community, household, individual) and different target groups (women, young children, older children, households) (Table 4.3). Only a few internationally validated nutrition indicators were used, including anthropometric measurements (wasting, stunting, underweight, BMI), dietary diversity, food consumption score and breastfeeding (De Onis and Habicht 1996, WHO 2007, WFP 2015, FAO 2016). Other indicators have not been validated for their sensitivity to nutrition and diet quality outcomes, and it is not understood to what extent they accurately measure nutrition elements. In many cases it was found that indicators of household food security (access) such as a Household Dietary Diversity Score (HDDS) have inappropriately been used as a proxy for diet quality or nutrition. It was also evident that some indicators were applied at a different scale than what has been validated (for example, application of the Food Consumption Score at the individual level, rather than the validated household level). This is a common error often evident in agriculture research projects that attempt to include nutrition, however it is important to note that validating these indicators is within the scope of household food security (access) (Vellema et al 2016). Each activity tended to use unique indicators, and thus indicator data could not be easily compared across Central Mekong Action Area activities. Only a few indicators (anthropometric and dietary diversity) were used by two or three activities in the Humidtropics research portfolio. Furthermore, only one activity, intending to capture gender empowerment variables related to nutrition, included nutrition-sensitive gender indicators.Different data collection methods were used to collect an array of nutrition indicators including surveys, anthropometric measurements, focus group discussions and other rapid appraisal methods, key informant discussions and literature reviews. The surveys included household or individually administered surveys to capture qualitative or quantitative diet recalls over different time frames (24 hours or seven days), annual household consumption of produced foods, nutrition knowledge, attitudes and practices and household food production. Anthropometric measurements were collected either directly by the research teams or from community health records. Two activities used quantitative diet recalls with similar methodologies, and one used a qualitative 24-hour recall. Only one project used a representative sample sufficient to capture dietary changes.Only three of the 14 activities documented across the Central Mekong project portfolio included testing innovations that specifically targeted improving nutrition. These focused on innovations around home gardens and nutrition education. Unfortunately, at the time of writing, these activities had not completed endline surveys or innovation testing, and no data was available to assess the impact or effectiveness of these innovations. Four case studies are presented to illustrate how projects and activities used different methods to approach nutrition in systems research.3.1 Case study 1: Piloting a systems approach to improving nutrition with Thai minority communities in Mai Son district, Son La Province, Viet Nam, using a local food system approach to bridge dietary gapsThis case study is derived from project 2 (table 4.2): Improving dietary diversity and diet quality through systems innovation: A pilot study in Viet Nam.The study was designed to identify the current status of dietary diversity and nutrient intake among women of reproductive age (15-49 years) and children aged between 12-23 months, and to determine if there is a link to locally available biodiversity in selected Thai villages in Mai Son District in Northwest Viet Nam. In Mai Son, five ethnic groups represent approximately 80 percent of the ethnic population. The study's pilot phase focused on one minority group, as each minority ethnic group has unique farming and food cultures.The research was intended to demonstrate that engaging households in a full communitybased participatory research cycle to diversify production through a systems perspective and improve nutritional knowledge can improve dietary diversity and quality for women of reproductive age and young children. Children in the 12-23 months age bracket were selected as they are within the critical 1000-day period (WHO 2013), able to eat whole foods and in many cases the same foods as adults. The cycle of participatory research ensures that the results obtained during the research project are derived through the community and the benefits are returned directly to the community for direct application to achieve the desired outcomes.The original study design centred on a repeated cross-sectional study, with the baseline conducted in 2014 and an endline planned in 2017 to assess the impact of a nutrition systems intervention during the study period. Unfortunately, due to the announcement that Humidtropics as an independent CGIAR Research Program would finish at the end of 2016, the research had to be redesigned, limiting the intervention to one year with an endline assessment to be conducted in November 2016. At the time of writing, the endline assessment had not yet been done and as such, the results presented are from the baseline study, together with an explanation of how these results were used to design a systems intervention to improve nutrition.The case study objective is to provide examples of participatory approaches available to identify local dietary gaps, and identify food systems solutions designed to improve multiple systems dimensions.The null hypothesis to be tested was: dietary diversity (as measured by the diet diversity score) of women of reproductive age and young children (12-23 months) is not improved by improving availability and access to more diverse products and nutritional knowledge.The sample communes were randomly selected using criteria that included population size (at least 50 percent of households were from a Thai ethnic group), and rural livelihoods (agriculture was the main household income source). Four communes (Co Noi, Muong Chanh, Chieng Chan and Chieng Luong) were selected from 15 eligible communes in Mai Son District, Son La. The key target population was women of reproductive age and children aged 12-23 months.A total of 400 households were sampled for a baseline. The sample size was estimated based on the prevalence of children aged 6-23 months who consumed foodstuffs from four or more food groups in the 24 hours before surveying in Son La Province in 2012 (Gibson and Ferguson 2008, Gorstein et al 2007, NIN 2012).Surveys collected dietary data from women using quantitative 24-hour dietary recalls (with a repeat on a non-consecutive day for a subsample of 25 percent of selected households), nutrition knowledge, attitudes and practices, and household food insecurity. To capture seasonal variation in the diet and in household food security, dietary intake assessments and household food security assessments were conducted in both the wet and dry seasons in 2014 (August/September and November/December, respectively). Anthropometric measurements were taken for women and children in the dry season only.In addition to the dietary data, a comprehensive household production survey was conducted with the household head. Inventories of all species produced on-farm or hunted or collected in the wild were taken, per-plot type (home garden, sloped, paddy, forest) and per growing season, to develop an in-depth view of the availability of locally produced foods. In addition, a market diversity survey was conducted in the main market of each commune.Women responded that the causes of malnutrition were insufficient quantity and quality of food; complementary food 2 with a consistency that was too thick (making it difficult to swallow) and that did not contain sufficient nutrients; illness; and, poor childcare (64 percent, 17 percent, 11 percent and five percent respectively; three percent of responses were categorized as 'other'). More than 18 percent of women stated that they did not know why malnutrition occurred. When asked to state different methods to prevent child malnutrition, just under 75 percent of women were able to provide a correct suggestion including giving the child more food, increasing feeding frequency, and providing more diverse foods (59 percent, 23 percent and 18 percent respectively). A quarter of the women responded that they did not know how to prevent malnutrition.A complementary food is food or drink introduced to a child from a recommended six months old to supplement breastfeeding. At this age, breastfeeding is no longer sufficient on its own to provide all the nutrients required.Knowledge about dietary diversity was limited. A full 58 percent of women had never seen the food pyramid, only 33 percent had heard of 'colouring the porridge plate' 3 , and only 1.4 percent (six households) could name the four food groups associated with a 'balanced meal' (starches, protein, fat and vegetables). While 85 percent of women believed a diversified diet was important, 36 percent reported it was difficult to provide one for their children. The main barriers were reported as a lack of locally available foods (51 percent), lack of money to buy different foods (37 percent), lack of time to prepare the foods (28 percent) and lack of capacity or skill on how to prepare some foods (11 percent). While 95 percent of women believed providing several meals to children each day was important, 19 percent said it was difficult to do so.The rates of stunting and underweight children in the Thai community were high at 20 percent and 14 percent, respectively. Child wasting was one percent. The rates of underweight, overweight and obesity in mothers were eight percent, 16 percent and seven percent, respectively, using BMI as the indicator (≤18.5, 23-25 and ≥25).In terms of individual dietary diversity, children consumed 3.7 out of seven food groups, compared to the minimum of at least four food groups as recommended by WHO (2013). Women consumed 4.8 out of 10 recommended food groups. The percentage of women and children reaching minimum dietary diversity (MDD) (FAO 2016) was 59 percent and 58 percent, respectively. The percentage of women who reached MDD (consumed a food from five or more food groups) during the wet and dry seasons was almost the same at 58 percent and 59 percent, respectively. For children, 57 percent and 58 percent reached MDD (consumed four food groups or more) in the wet and dry seasons, respectively. The least consumed food groups over both seasons were legumes, nuts and seeds, dark green leafy vegetables and vitamin A-rich fruits (Table 4.4). A participatory consultation process with farmers was conducted to identify a set of underutilized, locally available crops from the under-consumed food groups (vitamin A-rich vegetables and fruit; dark green leafy vegetables; and, legumes, nuts and seeds) to act as the cornerstone of the interventions designed to improve diversity in the diets and landscape.The results from the baseline product survey produced a shortlist of locally available foods per food group that could be used complementarily at different times of the year to ensure stable supplies of that food group. The shortlist included foods favoured by both men and women, as results suggested that men's food preferences influenced what women grew in the home garden.The farmers were asked to list the positive and negative aspects associated with each of these species (per food group) in terms of production (availability and access of inputs, knowledge of management best practices, seasonal availability, and pests and diseases) and consumption (taste, ease of preparation). Foods from each food group were then ranked comparatively using the pairwise ranking method to identify the top foods from each group. Village nutrition clubs were used to connect both the nutrition education and agricultural capacity components of the intervention. These clubs, facilitated by village health workers, met once every two months. They consisted of women with young children from each village who volunteered to learn more about how to diversify their home garden and their diets. Nutrition education material was developed in consultation with the National Institute of Nutrition and other national partners to ensure that fundamental nutrition messaging was in line with national priorities, and to encourage a link to nutrition-sensitive agriculture that was relevant to the dietary gaps and local biodiversity in the landscape.Measuring food intake from quantitative 24-hour food recalls can be challenging. To obtain the best quality data, several techniques were applied, including developing simple guidelines for a multipass 24-hour recall adapted from several authors (Gibson and Ferguson 2008, Arimond et al 2010, FAO 2011) and repeating the data collection from a subsample of households on a non-consecutive day.Trained enumerators asked open-ended questions, and gathered quantitative data using a combination of digital scales, graduated measuring jars, modelling clay and shredded paper as measuring tools to estimate food intake amounts.Surveys took an average of 60 minutes (combined, including the time for the women to report on both their own and their child's diet).To address language barriers that can affect data quality, Thai enumerators were recruited from a local health school in Son La. In some cases, the name of a species or a variety of food reported during the diet intake survey was not known, beyond the common name used in a village (names could change from village to village). Where possible, samples were provided to the local agriculture partners to identify, combined with cross-checks with local agriculture or health staff to identify the common name, sometimes based on their description or using pictures for confirmation if a sample was not available. Some foods from the wild were too difficult to identify and could not be included in the analysis.Data analysis required a database and an updated food composition table. The software for data analysis developed by the National Institute of Nutrition based on Microsoft Access was not user-friendly; however, this software has been adapted to fit the quantitative recall method described above. Further efforts should include making the database more user-friendly, so it can be used by a broader audience.In Son La, the commune-level government health centres are responsible for monitoring the nutrition status of children under five years old using periodic anthropometric measurement.No system currently exists to monitor dietary diversity. The local food system approach will be evaluated at the end of the intervention trial for lessons learned, so that they can be used with other minority groups in Son La Province (more than 50 groups), each having a different context and dietary diversity status than the Thai group.The participatory approach tested in Mai Son was able to successfully identify local dietary gaps, and work with communities to design and operationalise local solutions to bridge these gaps with innovative approaches using locally available agrobiodiversity. The innovations are expected to diversify local home garden production and improve the diet quality and diversity of women and children who participated in the diversity club sessions.Local nutrition and healthy diet capacity and knowledge was also developed by female and male farmers who participated in the diversity clubs, but also of the health and agriculture extension workers who helped to implement and facilitate the clubs.This case study is derived from project 4 (table 4.2): Enhanced livelihoods and better natural resource management through appropriate integration and diversification on smallholder farms in the Central Highlands of Viet Nam.The Central Highlands of Viet Nam are home to some of the poorest and most marginalized people in the country, including a significant population of ethnic minorities. As such, it was one of the focus areas for the Humidtropics activities in the Central Mekong. The survey was implemented using the Rural Household Multi-Indicator Survey (RHoMIS) tool, a digital survey and analysis platform designed to rapidly characterize farm households using a suite of 16 standardized indicators. These indicators range from poverty, food security and market orientation, to agricultural intensification, gender equity in the control of household resources and greenhouse gas (GHG) emissions. RHoMIS is implemented using an Android device (tablet or smartphone), and data is uploaded automatically to a cloud server. RHoMIS survey results are used to calculate values for each indicator on a per household basis. A full description of each indicator is not given here, but can be found in Hammond et al (2016). Of special interest is the Household Dietary Diversity Score (HDDS), which has been adapted to capture the frequency and seasonal differences of household access to diverse foods, and can be used as a proxy indicator for dietary diversity (Hammond et al 2016). Respondents were asked how often food from each of 12 food groups had been consumed within the previous four weeks. Possible respondent choices were 'daily' , 'weekly' , 'monthly' , or 'never' . HDDS results are on a scale of 0 to 12, where 12 equates to consumption of food from 12 food groups on at least a weekly basis.Simple statistical analysis on household indicators is used to discern household welfare status, and links between household dietary diversity and other household characteristics.In addition, a regression analysis of HDDS as a function of the other indicators employed a stepwise simplification procedure to exclude non-significant parameters, producing a parsimonious first order linear regression model for HDDS.Results presented in Table 4.5 provide both an initial assessment of farm household welfare status and suggest links between dietary diversity and farm household characteristics.Indicators with the strongest correlation to HDDS across the full set of households (as suggested by both the Spearman Correlation Coefficient and regression parameters) are the negatively correlated Household Food Insecurity Access Scale (regression p=3.8e10) and the positively correlated Value of Farm Produce (regression p=6.19e6). Intensification and Food Availability also have high correlations to HDDS, though they were excluded from the linear regression model. Parameters with the weakest correlation to HDDS were Off-farm Income, Family Size, and Gender Equity. While most indicators trended monotonically across HDDS groupings, a few did not, e.g. Off-farm Income.The RHoMIS tool, implemented by enumerators from the Western Highlands Agriculture and Forestry Institute (WASI), performed well in terms of rapidity of data collection and in the quality of data produced. Equally successful surveys using RHoMIS were subsequently conducted in Cambodia and Laos, also in the Development Triangle of the Humidtropics Central Mekong Action Area, enabling an opportunity to conduct a three-site analysis following this case study.Dietary diversity in the Central Highlands is most strongly correlated to food security. As perceived food insecurity drops, dietary diversity predictably increases. High correlation with the Intensification indicator may suggest that sustainable intensification options may lead to improved dietary diversity. Surprisingly, Off-farm Income is not correlated with dietary diversity. Further exploration of the link between the Value of Farm Produce indicator and dietary diversity is needed, as this finding is not accompanied by a parallel and equally strong correlation with Market Orientation. Together, these results may indicate that dietary diversity is more closely tied to on-farm production than off-farm income in the Central Highlands.These results suggest areas for further in-depth research that will be reported in subsequent peer-reviewed journal articles. One such area is to assess whether indicator values differentiate substantially by ethnicity, and if so, what the implications may be related to the degree of marginalization that these minorities may be experiencing. Nutrition is incorporated in food systems research at the onset of project planning. A multistakeholder meeting was held to develop a food systems theory of change to achieve nutritional outcomes in Northwest Viet Nam. From the list of proposed priority interventions, a home garden pilot study was selected and designed to improve household food production and consumption. Results showed the home garden model can improve household nutrition through increased vegetable supply and consumption.The case study objective was to demonstrate the sequence of incorporating nutrition in food systems research from planning to achieve tangible results.Humidtropics' cross-cutting nutrition component, jointly led by Bioversity International, the World Vegetable Center (WorldVeg), and Wageningen University and Research (WUR), facilitated a multistakeholder platform to address nutrition outcomes of food systems research in Northwest Viet Nam. The first meeting, held in December 2014, introduced the theory of change as a tool for stakeholders to develop solutions in the current food system that incorporate and maximize nutritional benefits for consumers. The objectives of the meeting were to:• Visualize potential nutrition pathways of change for Humidtropics in Northwest Viet Nam.• Identify assumptions leading to successful results of the proposed theory of change.• Identify possible interventions resulting in improved nutrition outcomes.• Facilitate a networking and communication platform among stakeholders to improve diets and nutrition in Northwest Viet Nam through systems research.Twenty-eight regional, national and international agriculture, nutrition, marketing and economics experts from the public and private sector, NGOs and government institutions participated in the stakeholder meeting.Nutrition objectives were clearly defined in the stakeholder meeting. The stakeholders agreed on the long-term outcomes as improving rural livelihoods and overall household nutrition. To address different food system components, the stakeholders were divided into three groups: Production, Market, and Consumption. Backward mapping was applied to create a pathway of change by determining preconditions for achieving long-term outcomes. Underlying assumptions for each group's pathway of change were discussed to test the feasibility of the theory. Lastly, each group proposed two to three priority interventions. Throughout the meeting, ideas were exchanged and discussions provided feedback to the theory of change.Production: 1) enhance crop productivity; 2) implement integrated pest management; and, 3) diversify production systems.Market: 1) establish information sharing systems for producers, market actors and consumers; 2) create local markets; and, 3) establish wholesale selling points.Consumer: 1) nutrition education and information dissemination; 2) training on income generating skills; and, 3) create off-farm income opportunities.Based on a priority setting exercise, home gardens were selected as the intervention deemed most appropriate.A multi-approach home garden intervention package was designed as a pilot study following hands-on interactive activities to enhance the learning experience, knowledge retention, and practical application. Topics included nutrition principles; feeding the family; planning and growing a nutritious garden; and, post-harvest food preservation and utilization. An important aspect of the home garden training was designing a nutritious garden that includes fruits and vegetables that maximize diet diversity and nutritional benefits, is suited to family preferences, and ensures a year-round food supply. Participants consulted training experts to create a suitable layout for their household. In the training, they also engaged in gardening and nutrition activities from preparing the soil and drainage to sowing, recording growth, seed conservation, food preservation and cooking nutritious meals. At the end of the training, participants completed a training evaluation form to ensure concepts were understood, and that participants were ready to apply the learning and receive feedback on the quality of the training.Home garden seed kits were given to participants to help kickstart their gardens. The kits were customized for each household according to the vegetables chosen for their garden layout. WorldVeg partnered with FAVRI to prepare locally adapted seed kits from high yielding and nutritious varieties. Participants requested seeds for at least 20 different vegetables for their home gardens, and introduced new vegetables to their home gardens for the first time.Participating households were monitored throughout the study. Surveys, interviews and participant self-reporting was used to collect data on crop varieties, planting and harvesting dates, weight of weekly harvest by crop, use of harvested produce, role of women and men in various home garden activities, and home garden constraints.The total vegetable harvest (in kg) from the home gardens was recorded during the 49-week study period from July 2014 to June 2015. The intervention households produced 5.8 times more vegetable supply than the control households (P<0.01). When adjusted for area, the intervention group produced 1.7 times more vegetables per square metre than the nonintervention households (P<0.01; Table 4.6).On average, intervention households produced 226 kg of vegetables compared to 39 kg in control households during the study period. The daily vegetable and vitamin A supply per person was also significantly higher in the intervention group (122 g and 391 mcg RE, retinol equivalent of vitamin A supply) compared to the control group (22 g and 94 mcg RE; P < 0.01). In fact, intervention households had a daily supply of 5.5 times more vegetables and 4.2 times more vitamin A per person than control households. Among ethnic groups, the differences were apparent and significant for total vegetable supply per household and daily vegetable supply per person for Hmong and Thai households, and vitamin A supply for Thai households only. The home garden package improved the supply of vegetables and plant-based micronutrients in both ethnic groups. The most prominent improvement in home vegetable production was seen in the Hmong households who initially participated minimally in home gardening.A high percentage of the vegetables grown in the home gardens were consumed by household members: 49 percent and 84 percent in intervention and control households, respectively. Figure 4.1 shows continuous harvests from July 2014 to June 2015 from the intervention group's gardens. On average, about 4.6 kg of vegetables were harvested per household per week which was equivalent to 164 g/person*day for a family with four members. For the control group, the traditional garden provided 28 g/person*day for a family with four members.Intervention households also gave more produce as gifts compared to the control households. Increased gift-giving in the intervention group may be due to their abundant harvests. During the harvest period, vegetable supply was more than sufficient for the family's consumption and any additional vegetables were shared with neighbours. Gift-giving is a cultural universal and is known to increase social interactions with neighbours and mental well-being for the gift giver (Saad andGill 2000, Joy 2001).The intervention group showed higher plant diversity and grew 42 different vegetables compared to the control group of 24 vegetables. Increased home vegetable production has also contributed to increased supplies of many types of nutrients, including vitamin A, multiple types of vitamin B, vitamin C, iron, calcium, magnesium potassium, manganese, phosphorus and selenium, and other health promoting phytochemicals. The nutrient content of vegetables was retrieved from the Vietnamese Food Composition This case study is derived from project 2 (table 4.2): Improving dietary diversity and diet quality through systems innovation: A pilot study in Viet Nam.The study aim was to evaluate alternative foods and crops identified as entry points based on their beneficial contribution to nutrition and health, and their impact at farm and landscape level. This analysis established the effect of adopting alternative foods and crops at the system level. Based on diagnosing the farm and household's current situation, it examined the potential joint effects on nutrition, environmental indicators, labour-leisure time, profitability and household budget. This provided insights into the desired foods that could be grown on the farm, collected from the landscape or purchased from the market. Such adoption and adaptation decisions could be informed by an ex-ante assessment of the impacts on the farm and household dynamics; the impact on the costs and revenues of cultivation versus purchasing costs; demands for labour for cultivation or collection; quantification of required inputs; cycles and losses of nutrients and the resulting soil fertility; and, other environmental indicators.The study implemented the participatory DEED approach (Giller et al 2011) as an overarching methodological framework guiding integration of project components for the landscape assessment (Groot et al 2007(Groot et al , 2010)). DEED employs four consecutive steps for the analysis and design of existing and future landscapes: 2. Explain: determination of landscape performance through productive, socioeconomic and environmental indicators.3. Explore: exploration of the trade-offs and synergies at the farm, household and landscape levels. At this step the suitability of new options or entry points within the given livelihood objectives and constraints can be explored.4. Design: fine-tuning of selected alternatives in the farm or landscape after combining the collected information from the previous steps.Here we present an overview of the case study analysis in two villages in Son La Province in Northwest Viet Nam. We characterize the households and farming systems, identify shortages in nutrition, and explore the potential for improving nutritional performance, while analysing the effects of implementing new crops, technologies or practices on productive, socioeconomic and environmental farm performance.A landscape and farm analysis was performed in two communities that differed in landscape and crop diversity. Doan Ket village is characterized by a flat topography and cultivation of maize and vegetables for the market. Na Phuong village is situated in a hillier environment with maize cultivation in the uplands (sold as animal feed) and rice in the lowlands. In this village, the cropping pattern is less diversified and households rely on home gardens for nutrition. In Na Phuong village, the possibilities for off-farm income generation are less than in Doan Ket.Landscape mapping was done to position the fields. Resource flow mapping was used to identify sources of water, firewood, foods and feeds harvested from open and common areas in the surrounding landscape and to make an inventory of interactions with markets.Focus group discussions were held to characterize the cropping patterns and sequences and the associated labour allocation throughout the year. Crop productivity was assessed. Moreover, the desirability of potentially promising alternative crops was discussed in the focus groups. The criteria for crop evaluations were productivity, nutritional values and resource demands (water, fertilizer, labour, etc.).Ten farms in each village (n=20) were characterized using the Impact LITE survey instrument (https://ccafs.cgiar.org/impactlite-tool). This provides an overview of farming activities (crops, animals, gardens). Additionally, a food frequency survey was conducted in each household.The FarmDESIGN model (Groot et al 2012) was used to calculate biophysical and socioeconomic farm and household indicators. The model was extended with modules to quantify nutrition indicators (dietary diversity scores, nutritional functional diversity, food group consumption patterns), household labour allocation and household budget.The model employs a Pareto-based evolutionary algorithm to perform multiple objective optimization that is used to generate and select alternative farm configurations to improve the performance of selected indicators.With the ImpactLITE survey we made an inventory of crops, trees and animals that were kept and cultivated and extracted from the farm as well as collected from the landscape, or purchased from the market. Within the ImpactLITE survey, 24-hour recall surveys were also performed; these were followed up with food frequency surveys in the focus group discussions. The frequency at which households consumed products was measured and this data was used to calculate the functional dietary diversity of the households in the two villages.Households in Doan Ket were smaller than in Na Phuong (on average 4.5 and 5.1 household members, respectively), but cultivated larger farms (1.95 ha versus 1.20 ha) and used more labour on the farm (5556 h/year versus 4964 h/year). The average household income was not different between the two villages, but varied considerably within the communities and was mostly derived from farming. A large proportion (50-90 percent) of the household budget was spent on food purchases. The functional dietary diversity did not differ between the households in the two villages.The main crops cultivated in Doan Ket were maize, French beans and onions, but only a few households had a home garden. In Na Phuong, all households cultivated a home garden. These were diverse and contained as main crops and fruit trees: onions, cabbage, pak choy, papaya, guava, mango, pomelo and banana. In both villages organic matter inputs into the soil did not compensate for losses, leading to a negative organic matter balance, while fertilizer inputs were relatively high (exceeding the crop demand and uptake), thus leading to considerable accumulation in the soil with a risk for nutrient losses.In exploring possible nutritional outcomes, we evaluated the effects of incorporating various new crops into the home gardens: mustard greens, pumpkin, yellow-flesh sweet potato and water spinach. Even though home garden areas were small, reconfiguration of the cropping areas could contribute to alleviating shortages of micronutrients and vitamins.Our explorations suggest that gains in some nutrients, like magnesium and iron, were more easily attained than gains for vitamins A and C. For instance, reconfiguration that replaced eggplant and papaya areas with sweet potatoes resulted in an almost tenfold increase in iron yield, while vitamin A only doubled. Some trade-offs were also observed. For instance, by increasing the area for growing sweet potatoes at the expense of vegetables such as tomatoes and eggplants, the model predicted gains in vitamin A and iron production, but with a reduced household budget and small decreases in soil organic matter.Explorations focusing on interactions between labour use, household budget and food consumption highlighted trade-offs in household budget against household leisure time and food consumption. The key factors are hired labour hours, field size of food crops and the amount of food consumed. With more labour hired, the household leisure time (household labour balance) would increase but the household budget would decrease; with more food consumed by the household, the nutrition indicator would increase but the household budget would decrease. Nutrition and household leisure time were linked when the farm household cultivated its own food crops. For instance, in our case, the farm household produced rice only for home consumption and a trade-off existed between household leisure time and household dietary energy deviation because rice cultivation is labour intensive (Figure 4.2). If the labour requirement of the food crop is less than other crops grown on the farm, a synergy may exist between nutrition and household leisure time.Note: Red squares indicate current performance; green dots are alternative farm configurations. The analysis provided detailed insights into farm and household configurations in contrasting villages. Both villages were characterized by large variations, but in general the income levels were low and dependence on farming was high. There were large nutrition deficiencies, but the proposed interventions in home gardens by adding new crops had the potential to alleviate these constraints, although in some cases trade-offs with household budget or soil fertility were found. In general, the model-based exploration demonstrated large windows of opportunity for further improving farm performance and the income and nutritional status of the households in the case study villages.The detailed analysis was demanding in terms of data collection, and depended strongly on secondary data to establish nutrient composition of foods. Future research efforts will use only selected modules to reduce the data requirements and the duration of the analysis.A key component of systems agricultural research for development (R4D) in Humidtropics was the use of platforms to engage multistakeholders in the design, implementation, monitoring and recommendations resulting from activities. Multistakeholder platforms enable local problems to be analysed along with the identification of feasible interventionsto address the issues. Stakeholders (researchers, the private sector, farmers and other local and national actors) met regularly to discuss and agree on collaborative actions, which were followed up outside the multistakeholder platform meetings. This multistakeholder and local approach facilitated links between stakeholders and encouraged innovative approaches, transferred information and technology, and empowered communities by applying participatory and locally appropriate solutions. At the outset, a meeting with stakeholders and research centres was conducted to identify the geographical areas where interventions were needed. A situational analysis (see Chapter 2) was conducted with platform members and was presented at platform meetings. These meetings established a better understanding of the priority problems related to rural livelihoods and identified entry points for interventions. This enabled areas where the platform should focus its efforts to be recommended. After the local problems and possible solution entry points had been identified, the platform members collectively decided how to assign the different roles and responsibilities for implementing, testing and evaluating the impact of innovative solutions generated by the platforms.The with chronic energy deficiency (BMI <18.5kg/m²), rate of individuals being overweight or obese, proportion of children meeting minimal dietary diversity requirements (at least four of seven food groups consumed), and breastfeeding practices (NIN 2010(NIN , 2012)). The situational analysis recommended that improving dietary diversity should be a priority research area in the Northwest, and recommended diversifying production systems and establishing nutrientrich niche market value chains as key entry points.Two initiatives were formulated through this multistakeholder platform: The situational analysis conducted by WorldVeg, Chiang Mai University, and ICRAF put together data collected through key informant interviews as well as a literature review (see Chapter 2). The results were presented at the multistakeholder platform meeting. Diet and nutrition information relevant to the population was in the executive summary and included the proportion of children underweight, stunted, and with deficient folate and iron intake.Although data were presented on nutrition, improvements in nutrition or diet were not included as recommendations. Despite this, the activities developed and carried out by various platform members did include some scope on nutrition, including WorldVeg's work in introducing and improving home garden management.The No stakeholders with expertise in nutrition participated.At this meeting, the platform collectively decided that a baseline survey would not be conducted. Instead, key stakeholders had the task of impressing the regional issues on the meeting's members. Nutrition was not considered an entry theme or priority issue to be tackled by the platform at that time. Later, the platform conducted a situational analysis, but no information on diets or food was included in that report (see Chapter 2). The report does however acknowledge that the review had blind spots and that further investigation regarding livelihoods should be conducted. The activity that came out of the platform, titled 'Appraisal and Innovations in Xishuangbanna, China' , did not include any recommendations on nutrition or diet improvement, nor did it capture such data.This chapter analyses seven main initiatives in the Central Mekong in Viet Nam, China, and Thailand undertaken by the Humidtropics core partners and their national and local partners.These initiatives all had one centralized objective: to improve farmers' livelihoods. Although the partners shared a common objective, they approached the objective differently and focused on different aspects. The work was initiated in similar fashion in all projects with situational analysis and meetings with key stakeholders to identify the areas where research was needed. These meetings were conducted through the multistakeholder platforms established in each Action Site, with key stakeholders identified and invited to join. After the main livelihood issues were described and entry points for interventions identified, separate projects and activities were developed to best address the issues and potential of each region.The three projects and activities that included aspects of nutrition or diet in work plans employed various approaches and indicators with little harmonization across projects, making it difficult to collate data or conduct cross-site analysis. Often, indicators more specific to food security (access) were used (e.g. Household Dietary Diversity Score (HDDS) and household food production) indicating a lack of knowledge and experience on how to select appropriate indicators specific to nutrition and diet quality-related outcomes. From the numerous indicators implemented, only seven are internationally validated for nutrition and diet-related outcomes (see section 2 for more detail).Tools and methods used to collect nutrition and diet-related data also varied across projects and activities. This included household or individual surveys, anthropometric measurements, focus group discussions and other rapid appraisal methods, key informant discussions and literature reviews. The surveys included qualitative or quantitative diet recalls over different time frames (24 hours, seven days) and at different scales (individual or household), annual household consumption of produced foods and different versions of the FAO Nutrition Knowledge, Attitudes and Practices questionnaire (FAO 2014). Anthropometric measurements were collected either directly by the research teams, or through review of community health records. However, the consistency between approaches necessary to compare data between activities was lacking. This can be explained by different stakeholder interests and levels of nutrition understanding in the multistakeholder platforms. It takes time to evolve a common goal and working methods and this is based upon trust built around activities. Because the Humidtropics project was truncated due to funding constraints and the CGIAR Consortium's decision to end the project early, this was not achieved.Most projects and activities in the Central Mekong were initiated through multistakeholder platforms, or by building on existing bilateral projects carried out by the core partners. This highlighted how critical it was to have a diverse stakeholder representation including representatives from provincial or local entities and organizations with diet and nutrition experience, at the initial meetings where strategy was formulated. The purpose of the multistakeholder approach was to ensure each area of development and livelihoods was represented, and to ensure priorities were well evaluated and representative of a wide range of rural development dimensions.The lack of multistakeholder platform partners with experience in diet and nutrition was a weakness, particularly in representation from provincial or local entities and organizations. In almost all platforms, no local nutrition representation was present at meetings.In Northwest Viet Nam, four of the 21 stakeholders had a background in nutrition and diet (NIN, Healthbridge, WorldVeg and Bioversity International); 12 focused directly on improving agricultural productivity; four focused on other types of community and environmental development. In the Central Highlands of Viet Nam, of the 16 stakeholders represented at the initial meeting, one had a background in nutrition and diet (WorldVeg), 11 focused directly on improving agricultural productivity and one focused on other types of community and environmental development.In Thailand, of the 21 stakeholders represented at the initial platform meeting, two had a background in nutrition and diet (WorldVeg and ICRAF), 10 focused directly on agricultural productivity, and three focused on other types of community and environmental development.In China, of the 20 stakeholders represented at the initial meeting, none had a background in nutrition and diet, three focused on agricultural productivity, and 12 focused on other types of community and environmental development.Diversity across stakeholders represented in multistakeholder platforms, particularly in relation to nutrition, is a major area for improvement for future applications of systems research. Reaching out to the different levels in each sector is also imperative to understand what the issues are locally as well as nationally, and to facilitate the sharing of examples of innovations and solutions that have had success in different regions to overcome local problems.Of the seven projects analysed in this chapter, three included nutrition in their objectives.Of the 14 activities summarized, five included nutrition as an outcome while two included nutrition and food security indicators and seven activities did not include nutrition. The main reason nutrition was not included in the scope of projects was that the lead researcher felt that they (or their institute) did not possess the capacity to work on nutrition and the topic was beyond the scope of their mandate or expertise. Additionally, nutrition was not prioritized by the multistakeholder platforms or during situational analyses. Of key importance is the infrequent participation of local nutrition stakeholders in multistakeholder platforms; this is likely the main reason why nutrition was not raised as a priority area for intervention more frequently. Nutrition was also less familiar to many stakeholders than other indicators. Having platforms that did not prioritize nutrition resulted in projects and activities that did not work directly to improve nutrition.Within the nutrition inclusive research efforts that did occur, the wide range of nutrition indicators and data collection highlights the need for more coordinated guidance at the CGIAR Research Program level regarding which indicators and methods to implement.Having a wide array of different indicators and data from different sites makes it extremely difficult to conduct cross-site comparisons and analysis. As a minimum, anthropometric measurements and qualitative dietary recall information could be used to better understand how diets and nutrition are affected by production increases or other agriculture-related outcomes that the different research centres wanted to address.For systems research to have a positive impact on nutrition, it is critical that future multistakeholder platforms have active local nutrition partners, such as members from the National Institute of Nutrition (NIN) or the Department of Nutrition and Health, or nongovernment organizations with experience, understanding and expertise on local nutrition issues. Such coordinated efforts will help to ensure that activities include the minimum nutrition indicators needed to evaluate impacts on nutrition and diet that are critical to the well-being of poor rural households.The recommendations proposed could have been addressed if Humidtropics had continued and if fully functional multistakeholder platforms had been sustained and further evolved around tangible sets of activities. Strategic Objective 1 addressed the goal of improved livelihoods in terms of income and nutrition for rural farm families, and was further defined by IDO 1 on income and IDO 2 on nutrition. The aim of IDO 1 on income was to increase the income earned by smallholders, and obtain more equitable sharing of profits in the value chain as a result of Humidtropics system interventions. IDO 2 on nutrition aimed to increase consumption of diversified and quality foods by the poor, especially among nutritionally vulnerable women and children (Humidtropics 2014).Strategic Objective 2 on sustainable intensification focused on increasing total farm productivity while respecting integrity of natural resources. It was further detailed in IDOs 3 and 4 on productivity and environment. However, sustainable intensification is an overarching theme also addressed through contributions from the other Humidtropics IDOs. IDO 3 on productivity concerned the total farm-level productivity through sustainable intensification and diversification. IDO 4 on environment was about reversing land degradation and other negative environmental effects brought about by agricultural intensification through monocropping; it explicitly aimed to restore more natural ecosystem functions and services. Together, the overall aim was to optimize returns from the farm, sustainably manage biodiversity, soil fertility and ecosystem services, and enable the land to remain productive (Humidtropics 2014).Strategic Objective 3 concerned empowering women and youth through better control over and benefit from integrated production and marketing systems. It was directly linked with IDO 5 on gender. This IDO focused on transforming women's status and position through Humidtropics system interventions. This IDO also addressed youth and marginalized groups' empowerment as an essential component to ensure their improved access to and control over the benefits from integrated systems interventions (Humidtropics 2014).Strategic Objective 4 addressed enhanced capacity for systems innovation and corresponded to IDO 6 on capacity to innovate. This IDO supported systems interventions to achieve impact at scale. It involved building capacity among actors to innovate within the livelihood system, and creating a more enabling policy, business or development environment for scaling innovations (Humidtropics 2014).As described above, Humidtropics as an integrated systems research program had ambitious goals based on a 15-year timeframe, with indicators and targets to be reached by 2023. At the beginning of the CRP, four Action Areas were defined globally as 'tier 1' , to be further expanded into 'tier 2' countries at a later stage. Unfortunately, the CGIAR consortium decided to close all three systems CRPs by the end of 2016, and thus the research for development (R4D) activities did not move beyond 'tier 1' areas. Below, we provide an overview of some constraints the CRP faced globally, as well as in the Central Mekong Action Area.The first constraint was related to budget. The Humidtropics budget was repeatedly cut, with a smaller budget allocated each year. Although all 15 CRPs suffered budget cuts, these cuts affected some CRPs more than others. Such uncertainties in core funding made many Humidtropics international partners shift their priorities, which inevitably left Humidtropics and other systems research CRPs with even less resources to achieve their ambitious goals.A second constraint was structural and related to how Humidtropics R4D activities were managed. According to the CRP program structure (Figure 5.1), it would have been logical for systems analysis (described in Chapter 2) to be implemented before testing innovations related to integrated systems improvement on natural resource management, productivity, institutions and R4D on scaling (described in Chapters 3 and 4) at Action Sites and Action Areas. However, when activities commenced, funding for all activities was provided to each core partner simultaneously. In practice, this often meant that integrated systems improvement, scaling, and institutional innovation activities had to begin before entry themes and entry points were identified through situational analyses, and before priorities were set through multistakeholder platforms. Although this was an inevitable result of launching a CRP with multiple international research organizations involved, each with their own research agenda and local partners, these preconceived agendas, short timeframes and pre-existing local partner landscapes hindered the promotion of truly bottom-up, demand-driven and integrated research. Third, although eight Humidtropics core partners were involved in R4D activities in the Central Mekong Action Area, not all core partners had offices and staff based in the region. The establishment of a Core Team with a representative from each core partner was crucial to provide a management structure that enabled a joint decision-making process to prioritize, plan and implement R4D activities in line with Humidtropics objectives. Because Humidtropics funds were allocated to each Humidtropics core partner directly from the lead institute based in Africa (International Institute of Tropical Agriculture (IITA)) -including accompanying reporting obligations to IITA and not to the Action Area coordination team Enabling environment (markets, policies, institutions and infrastructure) opportunities mainstreamed-such a management structure was indispensable to enable coordination of activities at the Action Area level. However, the physical absence of some core partners in the region resulted in less than optimal coordination and at times fragmented approaches to implementing some thematic activities that required close collaboration among the local and international partners involved. This may also have played a role in why nutrition was not raised as a priority intervention area more frequently in the Central Mekong, as discussed in Chapter 4.We begin this section by outlining overall accomplishments of Humidtropics in the Central Mekong, followed by key achievements organised by the Humidtropics' Strategic Objectives. 1 First, we obtained a much better understanding of the biophysical and social contexts in which rural and agricultural development is taking place. The situational analysis results clearly illustrate the diversity of agricultural and rural development settings across Humidtropics sites in the region. Contrasting features include: i) differentiated development levels, including both infrastructure and agricultural technology; these somewhat reflected national development differences; and, ii) in some cases (Thailand, China) population levels have stabilized while elsewhere, such as in Viet Nam, population growth continues (see Chapter 2 for more information on each Action Site, and Annex I for reports and other publications produced in each country).However, strong commonalities were also apparent, reflecting some of the shared cultural history as well as similar physical terrain and agricultural traditions. Among the commonalities are: i) mountainous terrain characterized by some relatively remote and thinly settled locations in elevated areas, but also settled valley locations with better market access; ii) linked to this, strong disparity in income between urban and rural populations; iii) a significant presence of ethnic minority communities, many of which are socially, politically, economically and geographically marginalized, particularly in the case of women; iv) a mix of agricultural market types, including both strong local demand but also longer distance and cross-border markets for specific products, some of which are high value; and, v) the relatively strong role of the State. In all sites, most of the population is rural and agriculture still plays the dominant role in livelihoods.1Due to the shorter than expected timeframe of Humidtropics activities in the Central Mekong Action Area, insufficient quantitative data was collected to track achievements against IDO targets. We thus rely primarily on qualitative evidence, but provide quantitative evidence where possible.It proved extremely useful to characterize the agro-ecological and social systems of our field sites through situational analyses, characterizing the farm households through baseline surveys, and using various tools to identify and prioritize entry points in each Action Site. Although the process was lengthy, costly and at times cumbersome, obtaining a comprehensive image of the field sites before starting agricultural R4D activities played a key role in bringing the project closer to the farmers. The different innovations trialled at each field site were direct outcomes of this process. Furthermore, the information and data obtained will remain an important resource for others working on agricultural development and R4D in the region, as they will be openly available through the community of practice (http://community.humidtropics.org/).Second, modest funds allocated to local partners through the Multistakeholder Platform Research Project Funds were successful in generating locally relevant, integrated agricultural R4D activities. Three such projects were implemented in the Central Mekong: one in Northwest Viet Nam, another in the Central Highlands of Viet Nam, and a third in Thailand.Although small in scale, the integrated approach and close attention paid to these projects had concrete impacts on the ground. Qualitative impact assessment not only demonstrated that impacts were reported by farmers, but also showed that unanticipated project outcomes were observed. Smallholder farmers, most notably ethnic minority women farmers in the Central Highlands of Viet Nam, perceived as meaningful that they now had more time and opportunities to interact with neighbours and other farmers to talk about the project and share experiences due to the time-and labour-saving interventions introduced, which are described below in section 2.1. 2 Furthermore, these projects were critical to energizing the multistakeholder platforms. As the platform research projects were led by local organizations, they played a major role in generating broad partnership engagement in R4D activities (Hiwasaki et al 2017). Moreover, these projects were effective in filling gaps in existing agricultural activities implemented through CGIAR's research projects (Schut et al 2016).Third, collaboration among international agricultural research organizations working in the region was substantially improved. Organizations that had not previously worked together were brought together as part of multistakeholder platforms established in various Action Sites and the resulting platform research projects, and also through joint implementation of R4D activities in the different field sites that would not have been possible otherwise.An example is the joint International Water Management Institute (IWMI)-World Vegetable Center (WorldVeg) field testing of crop and water management practices for home-based vegetable production in Northwest Viet Nam. This partnership resulted in establishing a demonstration site for home-based vegetable production during the dry season using rooftop harvested rain as the primary water resource. Based on field surveys and water balance modelling, a rainwater harvesting system was designed with an optimized storage volume that minimizes both costs (mostly due to the dimension of the storage tank) and risks of water shortage. Other farmers in the village have since scaled out home-based vegetable production without any support from the project.Furthermore, partnerships were strengthened between international agricultural research organizations and local partners, especially through the platform research projects. Local institutions worked jointly to implement these integrated agricultural R4D activities, enabling joint learning not just from the international research organizations but also from each other.Mainland Southeast Asia is undergoing intense social and economic changes, such as expanding infrastructure and markets, and government policies and programs that promote rural and agricultural development. These offer many economic opportunities to improve farmers' livelihoods (King 2008, Kelly 2011). Monoculture cash crop plantations such as rubber, coffee, maize and cassava grown for regional and global markets have increased household incomes for farmers. However, this has been at the expense of local food production and thus has not necessarily led to positive livelihood outcomes with improved food and nutrition security. This development has also been at the expense of sustainable natural resources management and has led to severe land degradation and issues with access to and quality of fresh water.The commercialization of 'safe' vegetables 3 or off-season vegetables in home gardens in Northwest Viet Nam, implemented by WorldVeg and the Fruits and Vegetables Research Institute (FAVRI), aimed to enhance local food production while promoting improved dietary diversity and diet quality. Another relevant intervention was the introduction of forage grass and home gardens in the Central Highlands of Viet Nam, with evidence that livelihoods improved after just one year of activities. Farmers we interviewed 4 said that before the grass VA06 was introduced, they would spend up to four hours a day cutting grass for their cattle. They had to go far from their homes to find feed for their cattle, incurring fuel costs at approximately 1 USD per day. With forage grasses grown in small land parcels around their house and close to where their animals were kept, they would only spend one hour per day to maintain and cut the grass, with no fuel costs. Home gardens were also popular, and farmers commented that instead of going to the market to buy vegetables, they now grew a wide range of vegetables for their daily meals such as cabbage, tomato, lettuce, cucumber, green bean, squash, pumpkin and eggplant, sometimes enough to share with their neighbours. Thus, instead of buying vegetables from the market every day, only money to buy seeds every 3-4 months was necessary. What became evident from our conversations with farmers was they felt the Humidtropics R4D activities had positive impacts on their lives. Even if their incomes did not increase, they were saving money and time by growing grass for their livestock and vegetables for their own consumption.Despite these achievements, a notable gap in Humidtropics activities in the region was the lack of private sector involvement, both in the multistakeholder platforms but also in the R4D activities implemented. Local and national research partners were reluctant to involve the private sector in multistakeholder platforms that were still in the early phase of conducting situational analyses, baseline studies and identifying entry points for innovation. As a result, links with the private sector remained weak, even when concrete agricultural R4D activities were implemented, and very few activities focused on creating market linkages for farmers. This was unfortunate, especially because it was identified as a gap from the beginning through situational analysis (ILRI 2014) and stated in IDO 1.The unprecedented speed at which agriculture has been transformed in mainland Southeast Asia has compromised longer-term land productivity and ecosystem integrity. Government policies have enforced rapid conversion to accommodate specialized and intensified forms of agriculture, in particular monoculture cash crop plantations, as well as increased use of inputs for intensified agricultural production. This has resulted in environmental degradation, including rapid deforestation and erosion of farm land; loss of biodiversity; inequitable access to natural resources, including water; and, degrading ecosystem services, with particularly negative impacts on the poor (Drahmoune 2013). Such changes in northern Laos and southwestern China are described and analysed in Chapter 3. Not only do conversions to teak plantations (in northern Laos) and rubber (in southwestern China) replace traditional subsistence farming systems, the loss of natural resources (e.g. soils through erosion) jeopardizes land productivity over the long term, especially if tree plantations are to be converted back to food production (Ahrends et al 2015). Food-producing crops have lower rooting depth than trees, and consequently are less productive on the over-depleted soils that usually result from years of tree plantations.Considering that conversions to commercial monocropping of maize or cassava from traditional subsistence farming are wide-spread in Northwest Viet Nam, the multistakeholder platform research project there introduced forage grasses, organic composting, and safe vegetables to smallholder farmers. Multistakeholder platform meeting discussions indicated a parallel interest and demand for small-scale diversification for subsistence and income.During interviews with farmers 5 , one of the most common observations was they felt the environment had become \"cleaner\" and the project had helped them \"protect the land\". They felt that planting grass strips on the hills had reduced soil erosion and was protecting the land, especially when intercropped with coffee, maize or cassava. Furthermore, using less fertilizer as a result of organic composting and growing safe vegetables also presumably contributed to lessening water pollution, thus the farmers' perception of a \"cleaner\" environment.The relatively rapid changes in land use, and unsustainable agricultural intensification in a region characterized by steep terrain, require innovations to improve soil conservation within evolving production systems. Such innovations can be both technological (e.g. new cropping practices including planting hedges) and institutional in nature (e.g. alternative land tenure arrangements). The case studies in Chapter 3 demonstrate how processes to facilitate identifying, designing and testing innovations -either technological or institutional -are context-specific, leading to divergent trajectories towards achieving the different IDOs. For example, in northern Lao PDR, we showed that the ongoing expansion of teak tree plantations, often mentioned as part of the efforts to enhance soil and water conservation through so-called reforestation, is actually increasing erosion and compromising long-term sustainability of cropping lands. Through discussions with farmers and local authorities, recommendations were formulated. Several agroforestry cash crops used as understorey in teak plantations were suggested to reduce soil erosion and some were tested. Similarly, in the Central Highlands of Viet Nam, smallholder coffee farmers faced with a double burden of low coffee productivity from aging trees grown on marginal soils and volatile coffee prices, sought ways to diversify production and restore or improve soil fertility. This was addressed, for example, by working with farmers and local government extension agents to develop cut-and-carry forage grass systems that could enhance the productivity of ruminant livestock on the farms, while decreasing the time and fuel cost involved in collecting feed for the animals. Such systems allowed animal manure to be collected more effectively, composted and applied to vegetable home gardens, or to coffee, pepper or cashew plantations. By actively involving commune extension workers in the process, they became facilitators for interaction between farmers and helped spread forage innovations to other villages and hamlets. Thus, integrated agricultural systems research based on multistakeholder processes and partnerships is one way to realize a region's potential. However, implementing multistakeholder processes has its challenges in this region, as will be discussed in section 3.The Mekong region is characterized by considerable ethnic diversity. Ethnic groups, particularly those living in upland areas, are usually disadvantaged. They tend to have less material wealth, lower school attendance rates, lower literacy levels, and fewer job opportunities and market access (ILRI 2014, Hammond et al 2015). Their interactions with their natural surroundings, including traditional farming practices, differ from the lowland population, which forms the political core of the countries that comprise the region. Until recently, socialist States classified minority groups according to their perceived development level and justified the central government's expansion to exert control over remote regions (Fiskesjö 2006, Harrell 1995).Situational analysis in Northwest Viet Nam (ILRI 2014; also see Chapter 2) demonstrated that ethnic minorities also have relatively poor access to extension services and markets. It was concluded that interventions targeting ethnic minorities and women can have greater impacts to alleviate poverty and inequalities. Focusing on women would be relevant especially for dietary diversity and nutrition, as women are the main decision-makers on food served at the table (ILRI 2014).Despite the tremendous ethnic diversity and inequitable development in the region, agricultural R4D activities implemented and interventions proposed under the framework of Humidtropics in the Central Mekong Action Area did not specifically address marginalized groups, most notably ethnic minorities. For example, out of more than 30 R4D activities implemented in the region in 2015, only two directly contributed to the IDO on Gender. Moreover, only one activity specifically mentioned 'ethnic minority' . This meant that within existing activities, ethnic minorities were either left out, not recognized, or subsumed by the ethnic majority. Thus, the benefits of Humidtropics research and interventions may not have reached the poorest smallholder farmers in the region, and if they did, may have been inappropriately designed and potentially led to exacerbated negative impacts on cultures and livelihoods by introducing new technologies that go against social norms, rules and ways of engaging in agriculture (Kawarazuka 2016).To address this gap, a research component focusing on marginalized groups -most notably ethnic minorities -began in the region in 2015. It resulted in a gender norms study, two literature reviews, two policy briefs, draft journal articles, and 'Guidelines to Engage with Marginalized Groups in Agricultural Research for Development in the Greater Mekong' . The Guidelines were piloted in Lao PDR and Viet Nam, and further revised with contributions from various scientists and practitioners. Thus, a unique product was developed that will be useful for scientists implementing agricultural R4D in the Mekong region; it is included in Annex II of this book. Through multistakeholder processes, Humidtropics strived to implement bottom-up research in which farmers and other stakeholders guided the agricultural R4D agenda. Such participatory research would support collaboration between researchers, extension workers and farmers to jointly develop solutions towards sustainable agricultural development (Klerkx et al 2012). To realize the aim of using participatory approaches and multistakeholder platforms to build capacity to innovate among all platform members, capacity for platform facilitation had to be established first. Two three-day capacity development workshops were organized, targeting facilitators and those supporting them. A document intended to guide establishment and improve the functioning of multistakeholder platforms was also developed. Despite such efforts, managing and facilitating multistakeholder processes was difficult, and ensuring that such processes functioned well was challenging, especially considering the region's cultural and institutional contexts, as described and analysed in detail in section 3.During the qualitative impact assessment of the multistakeholder platform research projects in both Northwest and Central Highlands of Viet Nam, we found that while some actors commented on how these Humidtropics projects were \"closer to the farmers\" than other projects they had experienced, these projects continued with the technology transfer model, in which researchers develop technologies that are then transferred in a top-down manner by project staff or extension staff to farmers. Development actors played no role in these projects, and the farmers continued to be in 'receiving mode' , expecting to be 'taught' technological innovations. These projects did not have an element of building farmers' capacities to innovate on their own, nor was there room for non-technological innovation. This was perhaps inevitable after years of top-down imposition of technology, as well as the sociopolitical context in Viet Nam. However, it is evident that in the timeframe of Humidtropics in the Central Mekong Action Area, adoption of multistakeholder platforms did not lead to widespread changes in the enabling environment that determines how agricultural R4D is conducted.Furthermore, these platforms did not lead to scaling of innovations. Although we found pockets of success in the design and testing of innovative technologies (as described in Chapter 3) and tools (as described in Chapter 4), development impact through scaling out or up was not yet achieved in the Central Mekong Action Area. This reflected the limited timespan during which the platforms were effectively operating, but may relate to wider questions about the extent to which such local platforms can benefit the livelihoods of many thousands of farmers in developing countries (Dror et al 2016). Only if local platforms are closely linked with existing public and private extension mechanisms and networks can the technologies and other types of innovations scale out or up beyond the original scope, geographical focus or intended audience of the platform.Humidtropics adopted a multistakeholder approach that focused on bringing research, government, development and business partners together to i) identify and analyse key constraints, and ii) to prioritise, design and implement innovations to overcome these constraints. To facilitate this, Humidtropics facilitated the launch of multistakeholder platforms in China, Viet Nam and Thailand. These multistakeholder processes had different degrees of success. In Northwest Viet Nam, for example, stakeholders identified entry themes which were further jointly narrowed to entry points, which in turn formed the basis for a platform research project. This project focused on agricultural diversification through intercropping coffee-fruit trees-grass strips, and fruit trees-vegetables, in a predominantly maize monocropping system. The R4D activities proved effective in bringing together numerous research institutes working in the region to implement research and share the results (Hiwasaki et al 2017). Unfortunately, although four other multistakeholder platforms were launched in 2014, two did not continue beyond 2015 so did not lead to joint activities or outcomes. Below, we offer five reasons why this may have happened.The first reason is the limited understanding by Humidtropics partners of how multistakeholder processes can be effectively implemented and facilitated. It was evident from how funding, support, and other resources were allocated by the core partners that establishing these platforms in and of itself became an important objective. Limited attention was given to questions of what functions platforms actually needed to perform in linking different stakeholder groups, working across scales, and whether this required new platforms to be established as opposed to building on existing partnerships in the region. 6 Thus, even though platforms were established, financial and human resources did not follow to enable their continued implementation and facilitation. This is unfortunate, as a training needs assessment preceding a capacity development workshop for multistakeholder process facilitators in November 2014 showed that approximately 70 percent of the Humidtropics partners in the Central Mekong Action Area had very limited experience facilitating multistakeholder processes.Second, all platforms were supported through or facilitated by (inter)national research organisations, which may have contributed to deterring truly demand-driven agricultural R4D agenda setting and implementation. As Humidtropics functioned as an umbrella, it relied on bringing together different existing projects under the integrated systems approach, with limited resources to initiate new activities. Many existing projects had not necessarily been designed as systems research projects. Nor did their predetermined foci and activities always match the demands of specific stakeholders. Furthermore, institutional mandates and geographical focus as well as personal expertise and preferences sometimes created obstacles to responding adequately to demands of farmers and other stakeholders (see also Schut et al 2016).Third, although the platform research projects were critical to energize the multistakeholder platforms and forge collaboration, they were not entirely effective in filling gaps where multistakeholder platform members did not have expertise, mandates or resources. Modest funds were provided by Humidtropics management as seed funding to fill agricultural R4D gaps and to respond to the difficulties of meeting stakeholder demands.Fourth, sociopolitical contexts in the Central Mekong made it difficult to adapt the multistakeholder process and platform approach in the region. The multistakeholder platform approach was piloted by the Forum for Agricultural Research in Africa (FARA), under the Sub-Saharan Africa Challenge Programme (SSA-CP) (Adekunle and Fatunbi 2012) and the Dissemination of New Agricultural Technologies for Africa (DONATA) project. These pilot platforms may have influenced the design of Humidtropics platforms to be more suitable for the socio-economic and institutional contexts where they were first tested, and may help explain why the platforms took off more smoothly in the African Action Areas. These programs had already shown some tangible impacts and thus secured stakeholder buy-in, as well as identified gaps on which Humidtropics tried to build. This experience was largely absent in the Central Mekong Action Area.Also, many of the resource materials such as facilitation guides were published in English and French, and case studies mainly originated from the African continent, which may have caused poor resonation and limited understanding for facilitators from the Mekong. To overcome such barriers, Innovation Platform Practice Briefs developed under Humidtropics were translated into Mandarin, Thai and Vietnamese and used in the capacity development workshops for platform facilitators (see Annex I for information on where to download them).Fifth, and closely related to the above point, is that the Mekong sociopolitical context is very different to that in the African platform locations. In the Mekong region, the strong role of the State, especially in countries such as China and Viet Nam, means the role and mandate of civil society organisations are commonly less clear. There is typically less enthusiasm for grassroots action, and what is regarded as 'participatory' . In these environments, multistakeholder processes functioned in a top-down manner, driven by government and national research institutions, with little or no participation by civil society or the private sector. As such, it is difficult to address, let alone challenge, existing power dynamics and to enable multistakeholder processes to present different perspectives, debate issues, evaluate options and incite collective action (Hiwasaki et al 2017).For multistakeholder platforms to be effective in generating innovative and sustainable solutions to complex agricultural challenges, resources need to be allocated to facilitate and implement these platforms outside of meetings, with attention given to what functions such platforms actually need to fulfil. It is challenging to realize demand-driven agricultural R4D agenda-setting and implementation when multistakeholder platforms are supported by agricultural research organizations whose agendas are already set. An important lesson here is the need for guidance on how to operationalize multistakeholder processes in a global research program across different sociocultural and political contexts. Overall, not enough attention was paid to adapting the multistakeholder process approach to specific sociocultural and political contexts in the Mekong, nor was there enough discussion about whether multistakeholder platforms would be the best approach to implement R4D activities and achieve development outcomes in the Central Mekong Action Area (Hiwasaki et al 2017).In this chapter we have synthesized the achievements, gaps, and challenges from the Humidtropics research in Central Mekong Action Area. Here, we offer some reflections.First, it was unfortunate that our activities were constrained by general trends within the agricultural R4D system. Agricultural R4D is increasingly funded to achieve development objectives, with increasingly short-term outcomes expected from donors. Implementing integrated agricultural research, which entails longer timelines, was greatly hampered by short project cycles of donor-funded bilateral projects.Second, fostering innovation in the agricultural system is a complicated process that requires long-term commitments and partnerships. Unfortunately this was not to be realized under Humidtropics, due to the program's premature closure at the end of 2016.Furthermore, there are challenges in implementing integrated systems agricultural R4D as part of a global research program. Although Humidtropics was a global research program, it initially lacked clear guidelines on research methods and tools, which resulted in different international research organizations using diverse tools and methods. This complicated cross-site comparison, analysis and learning. Moreover, a much smaller budget and lower priority was placed on the Central Mekong, and Central America and Caribbean Action Areas, compared with the two African Action Areas. The research program was originally designed with a larger budget (including bilateral projects), making it difficult for Action Areas without the critical mass to implement activities in a similar manner.Through this book we have demonstrated that significant research and development achievements resulted from our four years of integrated agricultural R4D activities in the Central Mekong Action Area, despite the constraints under which the activities were implemented and the challenges discussed above. The partnerships and collaborative relationships established through our work, particularly the collaborative work with local partners to identify and test innovations, will continue beyond Humidtropics, and may be scaled up in other CRPs in the second phase. We believe the lessons learned through the Humidtropics experience will contribute to strengthening the collective effort towards improving the livelihoods of poor farmers through sustainable agricultural development.Based on these achievements, gaps and challenges, we put forward recommendations for implementing future agricultural R4D in the Central Mekong region.We claim that agricultural R4D to improve livelihoods of smallholder farmers would have more impact if it goes beyond simply focusing on agricultural production and includes agricultural R4D activities that strengthen farmers' roles in the value chain. This might take the form of connecting smallholder farmers to markets, supporting the development of entrepreneurship and agribusiness, building social networks for agribusiness, or by improving farmers' capacities to improve product quality and processing. As discussed in Chapter 2, local traditional products, crops and livestock exhibit untapped potential for high-value markets beyond the region, due to their unique characteristics and the value placed by consumers on their origin. It was evident from agricultural R4D on safe vegetables in Northwest Viet Nam that producers have the potential to earn much higher incomes, as long as they are connected to the market. Taking a public-private partnership approach to develop market-driven branding and certification systems could significantly contribute to improving livelihoods, especially of smallholder farmers in upland areas.Based on the agricultural R4D activities implemented in the Mekong region, we recommend that future R4D activities for sustainable intensification prioritize techniques that concurrently meet several criteria: i) the generation of short-term additional incomes; ii) limited initial investment needs; and, iii) long-term conservation of natural resources (e.g. water and soils). One example is the conversion of monoculture plantations to agroforestry polycultures that both generate short-term incomes (e.g. cardamom or broom grass as understorey crops in teak plantations) and long-term incomes (timber and latex from the teak and rubber trees, respectively), and that also protect the soil against erosion: the understorey both reduces the erosive power of raindrops hitting the soil and improves runoff infiltration.Another example is integrated coffee and livestock farming systems, where farmers diversify their coffee production by planting forage grasses and legume species (which can help with intensification of animal production, reduce soil erosion and build soil fertility). The animal manure can be used to increase the productivity and quality of coffee.To ensure agricultural R4D in the Central Mekong empowers women, youth and other marginalized groups, we recommend that inequity be addressed, not just in agricultural development but also in how agricultural R4D is conducted. Special attention should be devoted to increasing the capacity of women and ethnic minorities to adopt appropriate agricultural innovations, while understanding how policies and biophysical constraints positively or negatively affect their development. Increasing their limited and inequitable market access and rectifying disadvantaged roles in the value chain are also important. Agricultural R4D that fully and meaningfully engages marginalized groups and reflects their interests and needs can transform the social inequality of these groups and result in social and technical systems interventions that can contribute to all the IDOs.As for promoting institutional innovation, while bottom-up participatory approaches are often perceived as the most promising for innovation and scaling of innovation, they may not be sufficient. In some situations, it is conceivable that people only have a partial view of the range of technical and institutional options that could contribute to improving their livelihoods. For this reason, as argued in Chapter 3, R4D should account for both local knowledge and state-of-the-art innovations (scientific knowledge). This combination may contribute to raising the innovation capacity of the targeted populations over the long term.Annex II: Guidelines to engage with marginalized ethnic minorities in agricultural research for development in the Greater Mekong1. Introduction and background: What is this document and why is it neededThe Greater Mekong region (Cambodia, Laos, southern China, Myanmar, Thailand, and Viet Nam ) is characterized by considerable ethnic diversity [1]. Many ethnic minority groups live in remote rural uplands and mountains where the soil is less fertile and the terrain uneven and steeply. Ethnic minorities' social and cultural norms, farming practices, and traditional bodies of agricultural knowledge differ from the lowland ethnic majority peoples who form the political core of Mekong countries [2,3]. State and private sector programs and policies to promote rural development in the agricultural sector focus on intensifying agricultural production using hybrids and chemical fertilizers and pesticides, which replace traditional farming techniques. Monoculture plantations of cash crops grown for regional and global value chains such as rubber, coffee, maize, and cassava replace subsistence oriented, diversified agricultural production. Furthermore, swidden cultivation-often practised by upland ethnic minorities-has generally been considered archaic and environmentally destructive by those with political power [4,5]; therefore, development policies widely promoted cultural integration, economic standardization, and agricultural modernization [6,7].Aim and Target Audience of these Guidelines:• The target audience of the Guidelines is researchers working on agricultural research for development (R4D) in the Mekong region, most particularly those working in (or interested in working in) transdisciplinary research teams for agricultural R4D in the Mekong region. This includes national & international researchers, and social & bio-physical scientists. Local practitioners and development workers who implement research-oriented development projects may also find the Guidelines useful.• The aim is to promote, to researchers working on agricultural R4D in the Mekong region, meaningful engagement of groups who are typically marginalized in agricultural R4D, i.e., ethnic minority groups, the poor, and disadvantaged women. Considering the significance of this issue in the Mekong region, the focus is on ethnic minorities. We propose principles, methods and tools that can move agricultural R4D towards transdisciplinary action research that increases the engagement of marginalized groups. Most of these principles, methods and tools are relevant for agricultural R4D in general, but using these is particularly important to help prevent further marginalization of certain groups.The intense social, economic, and political changes the Greater Mekong region is currently undergoing-such as rapidly expanding infrastructure and markets, government policies and programs that promote rural and agricultural development-present many opportunities for improved livelihoods [5,12,13]. At the same time, some of these changes pose threats to sustainable livelihoods of upland smallholder farmers [3,4]. As a result of such developments and in addition to infrastructure and market links, there have been significant changes in the cultures and livelihood strategies of ethnic minorities. These have too often led to loss of decision-making power, resulting in increased marginalization [14]. These changes make ethnic minority farmers more vulnerable to external risks such as changes in market prices, climate change, extreme climatic events, and environmental degradation, and food insecurity [15].Agricultural research or rural development projects in this region further marginalizes ethnic minorities because they focus on promoting or enforcing lowland techniques and innovations for agricultural modernization and commercialization. Most agricultural research for development (R4D) projects work only with majority ethnic groups or ethnic minority groups who are accessible in terms of location and language, and are thus better-off than others. 1 This further reinforces the marginalization of certain ethnic groups, especially those who live in remote areas. Even when ethnic minorities are brought into agricultural R4D projects, innovations are often introduced in a top-down manner, and worse, often do not meet their needs.This creates a vicious cycle whereby marginalized ethnic groups continue to be marginalized, and prejudices against them are reinforced [8]. This is an issue because ethnic minority groups in the region tend to constitute the poorest of the poor, with less material wealth, lower school attendance rates, and fewer job opportunities and market access [9,10,11].This document is designed to help researchers who want to engage with ethnic groups to ensure agricultural R4D stops contributing to their further marginalization. It can be used by those wanting to design new projects that engage with ethnic minorities from the start or those already implementing projects and wanting to improve their current practice.The overall approach that these Guidelines recommend is transdisciplinary action research.A transdisciplinary action research project that meaningfully engages marginalized ethnic groups must deal with not only technological and institutional challenges and innovations, but must also take into account the various systems embedded in the specific contexts where R4D takes place:• Socio-cultural, economic and political systems (culture, traditions, norms, financial tools, economic, consumption patterns, politics, policies, and development history),• Agro-ecological systems (water, soils, crop/animal varieties, fertilizers, agricultural techniques, land use systems, farm management knowledge & practices, livelihoods, and markets), and the 1 For example, out of more than 30 R4D activities implemented in Central Mekong Action Area of Humidtropics CGIAR Research Program in 2015, only two directly contributed to Humidtropics' Intermediate Development Objective (IDO) related to \"women and other marginalized groups\"; moreover, only one activity specifically mentions \"ethnic minority\".• Agricultural R4D system (operationalization of agricultural R4D, constraints inherent in conventional approaches and methods).Transdisciplinary research is uniquely suited to analyze where these various systems interact and overlap and can enable a more holistic approach to agricultural R4D in marginalized communities [16,17]. See Annex I for a more extensive list of transdisciplinary research resources.In transdisciplinary action research, the disciplinary \"silos\" are torn down, as are the barriers between researchers and research subjects. Researchers from multiple scientific disciplinessocial, economic, political, and bio-physical scientists, for example-work together with communities who hold local and indigenous knowledge. Scientific knowledge and local and indigenous knowledge are given equal value in order to understand and address the livelihood contexts of marginalized groups in an integrated manner. Such research engages with ethnic minorities in a way that gives them choices about if, when, and how they participate in, shape, and benefit from research. This is based on the understanding that local people may have different trajectories of development, and through their local knowledge and agency, new or alternative pathways could be developed.Implementing transdisciplinary action research calls for a learning paradigm and \"new professionalism\" that brings together different sciences and worldviews, which enables the understanding of the diverse and complex local realities in a participatory manner. This often requires a change in worldview of those implementing agricultural R4D. Transdisciplinary action research uses participatory action research as a core methodology to engage, reflect and learn with farmers, and act as catalysts for innovations and facilitators of farmer-tofarmer learning [19].This document identifies different challenges that maybe faced at different stages in the project cycle. Not all projects will necessarily face all challenges, and not all challenges come at the same time. While there may appear to be many things to get right when reading the guide from cover to cover, doing good transdisciplinary action research is not as complex as it might first appear.Multidisciplinary research involves several disciplines but there is no interaction between them.Interdisciplinary research involves several disciplines, with interaction between them. \"Unidirectional interdisciplinarity\" refers to research where coordination of the disciplines is imposed by a single discipline, whereas \"goal-oriented interdisciplinarity\" refers to research where interactions and coordination of disciplines are determined by the nature of the problem to be solved.Transdisciplinary research involves researchers from a range of scientific and technological disciplines, but also other stakeholders, such as local people and government entities [18].The guide is built on the collective experience of 22 researchers and practitioners with experience engaging with ethnic minorities or other marginalized groups in Southeast Asia. This experience, captured during three workshops, was complemented by literature reviews in China and Viet Nam , and in-depth field work four villages (in Northwest Viet Nam and Northern Lao PDR).The Guidelines are built on an analysis of the factors that lead to marginalization that agricultural research can affect. These factors bring about three sets of challenges: the agricultural R4D system as a whole; for research teams; and for agricultural R4D projects.The Guidelines are organized around these three sets of challenges, identifying for each challenge strategies that can help prevent further marginalization according to different stages in the project cycle (Figure 2).The marginalization of ethnic minorities in and through agricultural R4D is influenced by two groups of factors (Figure 1): (i) internal factors, which reflect livelihood assets and access to them; and (ii) external factors, which reflect constraints of agricultural R4D projects that are usually conceived and designed externally. These factors interact with each other and can result in marginalization at different scales, in different contexts, and over different time frames. Consequently, benefits of agricultural research and interventions do not reach marginalized ethnic groups, and may negatively impact their cultures and livelihoods. The political, socio-cultural, and economic realities in the Mekong context are complex: there is a diverse range of stakeholders with diverse (and sometimes conflicting) needs and interests.What to do a.2:• Obtain broader, holistic perspectives of the local reality of the various stakeholders in your field sites, i.e., differences in needs and power relations within the community at multiple scales.→ See Challenge c.3 on who the different stakeholders are, how to understand the stakeholders and their local power dynamics.• Recognize that not all stakeholders' needs can be met with one agricultural R4D project. You can be explicit about which stakeholders' needs the project is targeting, while ensuring that the most disadvantaged groups are not marginalized. One way this can be addressed is by establishing multi-stakeholder platforms whereby the various stakeholders get together to jointly identify problems, discuss and prioritize challenges, develop and test possible solutions, and build their respective capacities. An acute sensitivity to power structures and dynamics among the stakeholders is necessary to ensure that the process of prioritization does not contribute to further marginalization of disadvantaged groups; e.g., a civil society representative or a scientist can provide support for ethnic minority farmers who may not be able to speak out in multi-stakeholder platforms.→ See Challenge c.4 below for information on multi-stakeholder processes.* Challenge a.3: How can we address the fact that the typical R4D project cycle does not allow us have sufficient time and resources to engage with marginalized ethnic groups in a meaningful way? Donors often have requirements about the project cycle and output delivery within a set amount of funding and a constrained timeline. This can make it difficult to meaningfully engage local farmers, especially marginalized ethnic minorities with different worldviews and socio-cultural, economic, and political realities from the ethnic majority group. Local partners-often from the ethnic majority-can also steer the project away from working in sites where ethnic minorities live, or away from working with marginalized ethnic groups who live in the research site. Furthermore, the project timeline is not necessarily aligned with the \"timeline\" of villagers.for how to implement stakeholder mapping and analysis to identify potential research team members.• Include in the team:o a team leader: a scientist from a relevant discipline with an interdisciplinary or development background with a clear understanding of transdisciplinary approaches, and the ability to communicate with all team members;o researchers who have experience with, or who are already working with, ethnic minorities, including:social scientists with participatory and qualitative research expertise, and with experience working with the particular marginalized groups to be engaged. Social scientists can also work with local or traditional knowledge holders and ensure such knowledge and practices are incorporated in the agricultural R4D;bio-physical scientists from disciplines that can help solve the agro-ecological challenges of the site, with the ability to listen to the real needs of ethnic minorities, instead of imposing on these groups what researchers think is the best \"solution\";o development workers or organizations with experience working in the region, who can engage with the marginalized ethnic groups, and play key roles in scaling out and up agricultural R4D results;o local farmers from the field site(s), especially ethnic minorities who are holders of local and indigenous knowledge, or others who can gain social and cultural, as well as physical, access to such knowledge;o policy-makers and government partners, who are important for scaling out and up. As much as possible, look for people from the relevant ethnic minority group(s).• Carefully select potential team members before finalizing the team by taking the time to check their references; facilitate quality interactions, e.g., by doing activities such as field trips. It is important to keep in mind that \"soft skills\" such as interpersonal skills are extremely important for project success.• Ensure that women are adequately represented in the research team, especially to enable interviews, focus group discussions and other interactions with women to be implemented by women.• As much as possible, look for qualified researchers with the same ethnic background as those in the field site you intend to study. If you have difficulties finding such researchers, considering training ethnic minority researchers.• Within the timeframe available, allow adequate time for discussions and reflections on transdisciplinary action research approaches among all team members, and provide training as necessary on participatory and qualitative research tools and methods.What to do b.2: tear down the \"silos\" that result in different scientific disciplines and knowledge systems that typically work separately and do not interact with each other by fostering regular and meaningful interactions among team members. Make sure all members of the team speak a \"common language\", especially when it comes to working with marginalized ethnic groups.• Conduct field visits together and reflect while in the field on key issues, which can bring the different perspectives together.• Organize events for sharing knowledge, experiences, progress, and challenges working with ethnic minorities.• Develop and implement joint-action activities for addressing common challenges that create safe spaces that hold participants together for long enough to understand and appreciate each other's perspective, which is necessary for reaching a durable solution.* Challenge b.3: How can we address the negative stereotypes and discriminatory attitudes, including paternalistic attitudes, that may be held by some project team members?What to do b.3: Break down negative stereotypes about ethnic minorities that might make some team members reluctant to engage with them, and combat prejudice by influencing the mindset of researchers through discussions and the dissemination of correct information.• Organize a learning session for all team members to obtain an understanding of how the political and economic system has historically marginalized some ethnic groups.• Showcase some \"good examples\", e.g., success stories of how some ethnic groups have successfully engaged with agricultural R4D projects, and demonstrate how ethnicity or gender can be an asset, not an obstacle, to effective implementation of project.• Organize field activities to learn about local or traditional knowledge and practicesagro-ecological or otherwise-and assist the research team in learning directly from ethnic minorities.• Create opportunities to increase \"positive\" interactions between non-marginalized groups and marginalized ethnic groups, e.g., by engaging graduate students from marginalized groups in the region or working with particularly innovative role models.• Carefully deconstruct who typically participates in the research and who does not, paying particular attention to the reasons why certain groups may have been excluded from, or want to participate in, the research process in the past. This should serve to explain that if project benefits are kept in the hands of leaders and local elites, projects could reinforce the marginalization of certain groups.• Facilitate creation of safe spaces, as mentioned in Challenge b.2 above.c. Project Challenges: Different actions and methods are categorized according to different phases of a research project: (i) project conceptualization, (ii) project start, (iii) project implementation and maintenance, and (iv) scaling out and up. In this section, the approaches, actions, and methodologies that can be adopted are categorized according to challenges or constraints that commonly occur at each stage.* Challenge c.1: How do we integrate marginalized ethnic groups in the conceptualization of a project?What to do c.1-1: Identify the ethnic minorities that are present at a given site, characterize the field sites, and ensure that such information is incorporated into project design.If the planned research will take place in upland areas, it's very likely that the farmers will be predominantly from one or more ethnic minorities. To ensure ethnic minorities and their needs are not ignored or subsumed in the proposed research, key social, demographic, historical, cultural and economic information-as well as information about previous projects implemented in the area-should be obtained before field site selection takes place and the research focus is set. However, even after the site has been selected and the research focus has been set, collecting such information is still relevant.In addition, characterization of the field site(s) is important to provide the overall context, including key agricultural, ecological, political, and geographic information. Information gathered can be incorporated into the project design and help conceptualize the overall project with a more in-depth understanding of the key issues.Collect secondary data on key social, geographic, demographic, historical, cultural, political, and economic information; combine these data with information about previous projects implemented in the area. Ideally, this should be complemented by a reconnaissance field visit to conduct a rapid yet gender-sensitive assessment which includes transect walks, key informant interviews and focus group discussions (FGDs) with key local stakeholders, including women. Stakeholder categories to engage with at the site include farmers (including both female and male ethnic minority farmers), local NGOs, local government agencies, in addition to other formal and informal groups, e.g., village youth groups, women's unions, farmers' groups, and traditional village committees.Key information is listed below that will help identify more disadvantaged ethnic minority groups that should be targeted by the research and/or intervention-or at least not excluded from it-and help understand their specific contexts. Ensure that the below information is obtained from both men and women:• Demographic and socio-economic information: Information should be collected on different ethnic groups living in the area, each ethnic group's characterization (income levels, land use patterns, livelihood strategies, ownership/access to land, and natural resources, and the historical background as to why and how long they have lived in that area. Be mindful of how these characterizations differ according to gender and income levels). Pay attention to the considerable diversity that usually exists between and within ethnic minority groups and also how those groups may differ along gender lines: demographic and socio-economic information should be disaggregated per ethnic group and by gender.• Relationships among different ethnic groups: Compile an overview of the historical relationship between the State, which is usually composed of one or more majority ethnic groups, and minority ethnic groups, as well as the relationship between and within different ethnic minority groups. This includes institutional settings that could have led to or reinforced marginalization of some ethnic groups over others: e.g., through laws and policies concerning land tenure, rural development, market incentives, gender, and the environment-including delineation of protected areas.Note also that some ethnic groups may intentionally marginalize themselves in the national system.• Local/traditional agro-ecological knowledge of marginalized ethnic groups: This information should include farming practices, conservation practices, customary laws on use and protection of land and natural resources. Be mindful of possible conflicts between: agricultural innovations and local/ traditional agro-ecological knowledge; and official laws and policies and customary laws.• Livelihood strategies of ethnic minority farmers, in particular, traditional livelihoods and the cultural and social norms, worldviews, beliefs, and values that underpin those livelihoods: Are they in line with or do they clash with new State-endorsed trends in agriculture, e.g., introduction of monocultures, introduction of new cash crops, hybrids, and chemical fertilizers, etc.?• Past or current development or agricultural R4D projects, or other innovations introduced to the site, and whether or not they involved all ethnic groups: It is important to gain an understanding of these initiatives, their outcomes, and lessons learned, as part of setting the background to the agricultural R4D project.Case study: Gender and Ethnic Dynamics of Household Decision Making in Hydro-power related Resettlement in Bolikhamxay Province, Lao PDR by Sonali Senaratna SellamuttuThis study explored the underlying gender values, norms, and practices that influence the decision making patterns of households in the wake of resettlement. The study took place in an ethnic minority resettlement village in Bolikhamxay Province, Lao PDR, and focused particularly on decisions related to livelihood strategies. The village's main ethnic groups are the Tai Maen (55%) and Tai Yor (37%), with small numbers of Tai Meuy and mixed ethnic households. The qualitative methods used in the study included separate male and female focus group discussions ( FGDs) and individual open-ended interviews with men and women from different ethnic minority groups that centered on livelihood trajectories and social network mapping.We found the design of resettlement, compensation, and livelihood packages provided by hydropower companies tend to target a household as a unitary entity: in general, these measures tend to overlook which decisions are made jointly and which are gendered. Ethnicity also influences household decision-making in general, and the extent of male and female influence in particular. Different ethnic groups may show a preference for different livelihood activities, and vary in the degree to which household decisions are made jointly.Hydropower companies typically focus on the material aspects of wellbeing within their livelihood packages-for example, by ensuring joint asset ownership and material equity in capabilities (such as education and health). However, in the context of hydropower resettlement-which often requires resettled groups to change their livelihood or replace it with a new one-it is necessary to disaggregate the costs and benefits in terms of gender and ethnicity. These costs and benefits need to be assessed in relational and subjective terms in addition to the material terms more typically addressed by hydropower companies. For example, our findings revealed that women's control over decisions on riverbank gardening and gathering of non-timber forest products had decreased: resettlement led to newly enforced land use patterns, with resultant material costs for both women and men. At the same time, women's weaving has increased, with material benefits for both women and men and relational and subjective benefits for women. Overall, the study helped provide insights into why some household members may accept (while others reject) livelihood options offered by hydropower development.Weeratunge What to do c.1-2: Define key concepts and terms in the different languages in the research, particularly those used by the ethnic minorities, but also by all team members.Working with ethnic minorities in the Greater Mekong region entails working with at least three languages: the language used by the ethnic minority(s), the language of local/national partners (who are usually from the ethnic majority group), and the language of the international researchers (English is usually chosen as the common language, but for many researchers English will not be their first language). How c.1-2: Spend time among key research team members to ensure that the key terms and concepts are agreed upon and are meaningful in all languages involved in the R4D project. This is particularly important when some concepts or terms are based in one (usually foreign) language but are difficult to translate into other languages. If no direct translations exist, then make sure that all research team members are using the same definitions of key concepts and terms when talking about the project, not just among themselves but also in conversations with outside the team members. Making a glossary of key terms and concepts in different languages with the involvement of qualified translators, and referring to this glossary often (especially when hiring interpreters), would be useful.What to do c.1-3: Design research that is focused on marginalized groups and driven by demands of marginalized groups. When possible, have ethnic minority groups represented directly in project conceptualization and increase their capacities to be meaningfully involved in the conceptualization of the project and in R4D activities as part of the transdisciplinary team.Once secondary and primary information is collected to get a better understanding of who the marginalized ethnic groups are, it is necessary to engage them in the design of the proposed research project through a consultative process. This entails listening to what local farmers want, what they don't want, and why; it also entails listening to what they need and prioritize, instead of imposing research ideas and interventions on them. Through such an inclusive participatory planning process, you-as outsiders-can understand the visions and plans of villagers; in turn, the villagers will be empowered to participate meaningfully in research and interventions as part of the transdisciplinary team. Demand-driven research that focuses on the needs of marginalized ethnic minorities is the only way to ensure that the most marginalized people in the targeted community benefits from the agricultural R4D innovations. One of the primary reasons why many agricultural innovations are not adopted, or only adopted by better-off ethnic group(s), is because projects do not meet the needs of marginalized groups. At the same time, expectations-both the participants' and research team members'-of how the marginalized ethnic groups may benefit from the project should be kept realistic from the onset.How c. 1-3: Organize a local-level project design workshop that includes the identified marginalized ethnic groups and other local stakeholders. Areas of mutual interest to both the marginalized ethnic groups and the project team need to be clearly mapped out, as well as areas beyond the scope of the project and that therefore cannot be tackled by the project. When selecting the workshop participants, be particularly mindful of internal marginalization e.g., the head of an ethnic minority village is less marginalized than poorer villagers, and their wives are likely to be even more marginalized. A village head cannot represent or speak for those more marginalized, and a man cannot speak for women, even if they are from the same ethnic group. Keep in mind that the more marginalized someone is, the less likely s/he would be the ones proposed as participants of meetings by village heads and local agricultural extension workers.Inclusive participatory planning and vision-setting at the village scale will enable joint identification of needs and priorities specific to marginalized ethnic groups; in addition, it is crucial for short, medium and long term objectives of the agricultural R4D to be made jointly with all farmers. During such workshops, do not assume that ethnic minorities have high cohesion, avoid viewing a single ethnic minority group as a homogeneous / monolithic entity, and be sensitive to the power relations among and within the different ethnic groups. Through the use of facilitators and interpreters, create an environment that makes it possible for less powerful and marginalized groups to speak out.* Challenge c.2: How do we reach ethnic minority groups when implementing a project?What to do c.2: Acknowledge that there are two types of access-physical access, and cultural and social access-and take steps to obtain both through the right project team and participants.Concerning physical access, it is necessary to get official permits, which can be difficult to obtain in some countries in this region whose governments are often politically sensitive, especially when working with ethnic minorities in border areas. It is necessary to identify appropriate local \"gate keepers\" who can act as an intermediary between the project, the State, and ethnic minorities, and permits need to be requested through them.Concerning cultural and social access, the project team needs to include researchers with knowledge, experience and good contacts with ethnic minorities. Having researchers who are members of ethnic minority groups and/or some researchers who speak ethnic minority languages will help build trust between the project team and ethnic minorities. Having a glossary of key terms and concepts (see Challenge c.1-2) would also be helpful. Social scientists familiar with qualitative research methods can help with the collection of social and cultural information necessary to work with minority groups. Challenge c.1 includes some information on the kind of information which would be useful.Identify the relevant project participants and stakeholders-the targeted population of the project-and understand the various social relations and power dynamics at work. These will be between different stakeholder groups; between different ethnic groups within a village or a commune or a district; within ethnic groups, including gender groups and the poor; and with outside actors. It is important to understand that there is usually considerable diversity within marginalized groups. Avoid \"token representation\" of ethnic minorities in the research project, and make sure that the people targeted by the project are fully participating throughout the process.Design and plan research in the following ways:• Leave room for adaptability and flexibility about project activities in the project plan. This will allow research to be adaptive and change direction depending on the needs of ethnic minority farmers, research progress, etc.• Schedule some open and unstructured time in the project plan. \"Transect walks\" (a purposeful walk through a village with locals for the purpose of seeing the village through the eyes of a local), \"participant observation\" (accompanying locals on specific parts of their daily routine to develop a firsthand understanding of how local livelihoods fit into daily activities), and \"informal conversational interviews\" are methods that can be used to get acquainted with local people and environments, and are necessary to secure such time in the project plan and be included when submitting requests for research permits.• Secure time and process to obtain the right authorizations and logistical support to work in certain areas, and with ethnic minorities. This necessarily entails collaborating productively with both ethnic minorities and government entities. Plan ahead, as the process can take a long time (minimum a few weeks), especially if the research involves foreign researchers and is in sensitive areas such as national borders or recently-relocated villages.• Engage local organizations and/or social scientists who already have a relationship with the ethnic groups in your research site. They can be identified through stakeholder analysis, described below in Challenge c.3. They can connect you and your team members with ethnic minorities and facilitate their participation, in ways that respect cultural and religious norms and practices. They can also advise you on ways to interact with ethnic minorities in appropriate ways. • Organize a stakeholder workshop to identify project participants. Participants in such a meeting must be carefully chosen, and the project team needs to ensure that marginalized ethnic groups are included in this meeting by local authorities who are in charge of inviting participants. At the kick-off meeting, present the project objectives and activities, and choose farmers to be involved in the project according to some criteria. The usual way of choosing participants-to ask local government or village heads to designate \"volunteers\"-often results in further marginalization of some ethnic groups, women, and the poor. Discuss with the village heads and/ or local authorities to see how the project can reach out to the poorest and the most marginalized members of the community. If possible, seek volunteer project participants directly from the villagers. Above all, ensure that the selection process does not create tensions, or create new local inequalities;• Throughout the project, make sure that local collaborators don't get into uncomfortable or conflictual situations by being involved with the project. The project team must be conscious of all kinds of problems or disorders that can be created by the project, as it injects sought-after resources into resource-poor areas, both directly and indirectly. See also Challenge c.3 below.Case study: Engaging resettled ethnic minority groups in piloting new livelihood opportunities in Kon Tum Province, Viet Nam by Sonali Senaratna SellamuttuIn the development of hydropower schemes, displaced local people may be financially compensated for their losses. Despite that compensation, adapting to a new place and finding viable livelihood activities can present significant challenges. This project focused on optimizing reservoir management for local livelihoods by explored cultivation of a short-duration cassava variety. The project took place in the drawdown area of the Yali reservoir in Kon Tum province, Viet Nam , which is populated by both the Kinh (Viet Nam 's majority ethnic group) and the Jarai, an ethnic minority group.During the selection of farmers for this particular project, it was apparent that prevailing local circumstances had an effect on the household selection process: local beliefs and norms and the limited availability of seedlings of the new cassava variety both had an impact. Local leaders tended to choose farmers who appeared 'open to innovation and to taking risks, ' and could afford to invest in the necessary inputs. This resulted in a situation where the initial project beneficiaries tended to be farmers who were already at an economic advantage. None of participants were from the Jarai, who were included only in the second year of the trial, following successful results in the first year.Similarly, participants in the training programs conducted in association with the livelihood pilot were mostly Kinh, though some Jarai farmers were included as well. Project representatives strongly felt that the group should have been more representative of the population's ethnic composition, and that the participation of marginalized groups should be encouraged rather than * Challenge c.3: How do we engage marginalized ethnic groups in a way that transforms the political, economic, and social systems, at the same time minimizes detrimental impacts on the marginalized at the local level?What to do c.3: Pay special attention to the changes created outside the activities of the project, and take efforts to understand local systems.Because the project is a new element introduced to the local political, economic, and social system, the project team must be aware of and pay attention to the changes that take place in a site that are not related to the project. For that, it is necessary to understand local power dynamics and the role played by local interest groups, whether formal or informal.discouraged; however, the local leaders who drove the selection process felt that representatives of ethnic minority households lacked adequate language skills and were not sufficiently open to innovation or inclined to follow technical recommendations. Based on the local administrative and political context, it was difficult for the project to change the selection criteria in a way that prioritized marginalized communities.Several approaches were adopted by the project to overcome some of these constraints and ensure that the Jarai ethnic minority group could also benefit from the cassava livelihood pilot. For example, a staff member of the Department of Agriculture and Rural Development (DARD) of the Jarai ethnicity group was appointed to supervise activities under the project, including training and communication between district and provincial levels. During the training program, visual aids were used, which proved to be especially helpful in overcoming language barriers or limited technical knowledge and found particularly useful when engaging with the Jarai. Furthermore, in the case of the Jarai farmers engaged in both the pilot and training sessions, it was found more effective when the younger generations with a better understanding of Vietnamese (spoken by Kinh but not by all Jarai) were involved. This was important to note for future training and for up-scaling of the project.Clearly map the stakeholders and the relationships between them. Implement stakeholder analysis, including gender analysis, to understand the local political system, power dynamics (including who has control over resources), and existing conflicts at different scales (within households, within villages, and village-outside). This should be complemented by assessments of the different needs and capacities of specific marginalized groups.Stakeholder analysis-which consists of identifying stakeholders, differentiating between and categorizing stakeholders, and investigating relationships between stakeholders-can be done through mixed methods, consisting of questionnaires complemented by in-depth qualitative research [20,21]. Understanding local beliefs and the customary institutions that govern local social relationships will provide key knowledge that allows the project team to know the best ways to deal with each stakeholder. Research using ethnographic methods to produce first hand in-depth knowledge, and-when it is available-reading ethnographic literature on the ethnic group(s) in question can help the research team to understand and deal with the local social, political and cultural system. Only after this is done, can the project start to define its place and its position in the social, political and economic local system.People to be identified for the project are:• Key stakeholders: Stakeholder categories include farmers (particularly the more marginalized ethnic minority farmers, women, and the poor), researchers (local & international), NGOs (local & international; especially NGOs which focus their work on ethnic minorities), government, policy makers, and formal and informal groups (village youth groups, women's union, farmer groups, traditional village committee).As you determine which stakeholders can be effectively engaged, be aware that many people \"wear multiple hats\": ethnic minorities could be government employees, farmers might be members of NGOs, and so on.• Potential \"co-learner experimenters\" and people ready to test new innovations: This should include both male and female ethnic minority farmers. Identify those who are more open to new ideas and innovations, but make sure they are not too different for everyone to learn from. \"Innovative farmers\" can become key persons to implement the project and to transfer knowledge to both men and women.• Potential participants of research: Look beyond farmers and other stakeholders who always participate in projects (such as the village head's extended family members) as they are usually from the ethnic majority group or from a selected group of ethnic minorities, and not marginalized groups.• People who are typically excluded/ marginalized: Pay special attention to those who are typically excluded, such as ethnic minority groups who live in more remote areas, women, the poor, etc.• Potential research collaborators: Local partners and/or social scientists who have worked with ethnic minority groups and who have already established long-term engagement with ethnic minority farmers.* Challenge c.4: How do we effectively maintain marginalized groups' interests and engagement in project activities, including monitoring and evaluation (M&E)?What to do c.4: Make concerted and consistent efforts to gain and keep the trust and interest of marginalized groups throughout the entire duration of the project by ensuring they have ownership of the project and the research topics and problems are of interest and relevance to them.It is often the case that researchers and donors do not go beyond just looking at numbers of ethnic minorities in the list of participants when monitoring participation of ethnic minorities in projects. However, to go beyond token representation and ensure ethnic minorities benefit fully from agricultural R4D activities and interventions, it is important to ensure that they are meaningfully engaged.• For trials and surveys:o Instead of only working with ethnic minority farmers who speak the official language of the country, secure interpreters who can facilitate communication between researchers and ethnic minority farmers. See also Challenge c.1-2 above.o Provide context-specific incentives: these should not be limited to money, but should also include activities like communal meals-which can double as a means to building relationships with the community. Incentives should help to ensure that ethnic minorities and women are voluntarily participating, rather than being coerced-e.g., that they are not merely being asked to participate by a village headperson.• For focus group discussions (FGDs), workshops, and training sessions:o In group settings, create an environment which enables ethnic minorities-and especially women in ethnic minority groups-to speak out without fear of repercussions, to ensure that their voices are heard and incorporated. Choosing skilled facilitators (men for FGDs with men, and women or FGDs with women) from the targeted ethnic group(s) and strengthening their capacities is thus very important.o Have a facilitator who speaks the language of each ethnic minority present, or hire interpreters who are well familiar with the key terms and concepts in the languages involved. See also Challenge c.1-2.o Ensure the training meets the needs of ethnic minority farmers, in particular women, by conducting training needs assessments and obtaining basic information (see Challenge c.1 above) beforehand, to understand separate and joint needs of different farmers, e.g., the specific needs of women and men, and the specific needs of different ethnic minority groups. This differentiation is important for project implementation: if women are not involved with landCase study: Understanding socially constructed challenges in agriculture of an ethnic minority group in Yen Bai Province, Northern Viet Nam by Nozomi KawarazukaOver the past two decades, Dao ethnic minority farmers in Northern Viet Nam have adopted some new technologies such as high yielding industrial cassava varieties and tree crops. To investigate how this worked along gender lines, this study asked: how do gendered social values and practices influence the ways Dao men and women engage in modern agriculture? To explore this question, we conducted in-depth interviews with 15 women and 13 men at different life stages and of different economic statuses in a single-ethnic village of \"White-Trousers Dao\" in Yen Bai.Dao men and women continue to use their own knowledge-sharing systems, even after modernization of their agricultural practices. They tend to trust information from their family and relatives and to adopt new practices only after confirming positive outcomes with their own eyes: new technologies are slow to spread across the entire village. On top of this, there are strong social stigmas attached to debt, so Dao farmers-men in particular-tend to be reluctant to borrow money. In the case of cassava, however, Dao men are willing to go into a small amount of debt related to cassava production since they have seen how cassava is a viable crop in this particular context.Current farming practices require intensive male labour work, making it difficult for poor families with a shortage of male labour to invest in new crops and technologies. This is because Dao women access resources through the family as a collective institution and must depend heavily on manual labour. Family relations are very important in the extent to which they can invest in agricultural resources. Hence, without considering such social contexts, mainstream agricultural development may contribute to internal marginalization within the marginalized community.This case study thus shows that exploring social dimensions of agriculture helps develop context-specific approaches to facilitating uptake of new technologies in ways that fit well with the social context of the ethnic minorities.For more information:Kawarazuka N, Thuy CTL. 2016. Understanding socially constructed challenges of cassava farming for ethnic minorities: a case study of a Dao ethnic group in Northern Vietnam. Research Program on Integrated Systems for the Humid Tropics. CGIAR. Open access: http://humidtropics.iita.org/share/s/J0yQyX5vRTCWqR4I-Tjgvg preparation, it may not be useful to ask women to come to a training session on that topic. However, in some cases, it can be useful to involve spouses if the intervention targets women, as this can help enhance the husbands' understanding and facilitate women's participation.o Consider how to make use of ethnic minorities' traditional ways of learning and their unique paths to innovation. Typical classroom-type training sessions are generally a very different way of learning for them. Whenever appropriate, use visual aids, which can help overcome language barriers and limited literacy or technical knowledge.Case study: Towards soil erosion mitigation and sustainable agriculture in Northern Lao PDR: Participatory on-farm research using a gender equity lens in the Houay Dou catchment by Sonali Senaratna Sellamuttu, Bounthanom Bouhom and Anousith Keophoxay Soil erosion is one of the major issues impacting sustainable agriculture in the sloping lands of Northern Laos. This problem is currently magnified by the spread of commercial tree plantations-e.g., teak trees-replacing traditional rice-based shifting cultivation systems. Soil erosion has led to negative impacts both on and off the research site.In collaboration with farmers and agricultural extension services, research conducted under the Humidtropics CGIAR Research Program was implemented to test and develop innovative onfarm land management practices that improve stream water quality while sustaining the fertility and productivity of erosion-prone soils in the mountains of Northern Lao PDR. Ten different types of land use in the Houay Dou catchment have been monitored for runoff and soil erosion rates.Farmers working in the Houay Dou catchment belong to Lao-Tai ethnic majority group and Hmong and Khmu ethnic minority groups. Using qualitative, participatory approaches, we investigated the different perceptions and preferences the farmers have in terms of the different land uses and agricultural practices adopted in the catchment. The findings were disaggregated based on gender, ethnicity and wealth rank. Data was collected from three villages (Park Thor, Houy Khong and Na Kha).It appears that men and women had different views on the importance of different land use practices and their preference rankings therefore differed. For example, in Pak Thor village, men ranked the most important land use as banana cultivation (as there was a good market to sell their product and this contributed to their household income and they could also use the produce they did not sell for home consumption), whereas women ranked fallow land as their priority because it was the main area used to collect non-timber forest products (NTFPs) as part of their livelihoods and this was considered particularly important by women as they are the primary collectors of NTFPs. There were also differences in preference ranking of land use practices depending on the village and the key land uses available to local people. In Na Kha village for example where approximately 85% of the 47 households were found to be engaged in teak plantations, as expected this land use type was ranked high by both men and women. It was ranked the first preference by men (because of the current high demand for teak and the villagers can earn high income from teak plantation as a good source for household saving) and second by the women (one reason given is that it takes time to obtain benefits as one needs to wait until the teak trees mature).Furthermore, it appeared that better-off households have preference for teak plantation with larger areas and are not interested in upland rice, while poor households who have limited land prefer upland rice cultivation and NTFPs for home consumption. In the case of the middle wealth category they appeared to give preference to banana, broom grass, and NTFPs as sources of income. In relation to ethnicity, the Hmong gave preference to land use practices involved in the cultivation of maize, broom grass, rubber and banana, Khamu appeared to prefer upland rice cultivation, while Lao-Tai appeared more interested in teak plantations.It was noted that soil erosion was not an issue that was specifically brought up by the farmers. However it was encouraging to note that the production of broom grass was ranked relatively high by both men and women since this land use practice has been demonstrated to have the lowest erosion rates from the biophysical studies. In Na Kha village, for example, broom grass was ranked second by men and first by women while in Pak Thor village, broom grass was ranked second by men and third by women in the focus group discussions.This case study demonstrates that gender, wealth and ethnic grouping influences agricultural decision-making. Overall, it is clear that a nuanced approach will be required when informing farmers how to select land use types that can limit erosion and preserve soil fertility.o Hold separate meetings and develop interventions separately for different ethnic groups, to ensure interventions and training meet the needs of each group, and can be done in ways that promote their learning, e.g., in the ethnic group's own language and own way of learning). Similarly, consider holding separate meetings and developing separate interventions for men and women.o As mentioned above under trials and surveys, provide context-specific incentives.o Jointly develop locally-generated technological and institutional innovations derived from a combination of scientific and local knowledge systems. This can be done by obtaining information on local and indigenous agricultural and ecological knowledge, and seeing how this can be integrated with agroecologically appropriate technological innovations. These innovations can be built on information collected at the project conceptualization stage (see Challenge c.1).o Scale out innovations (technological or institutional) tested elsewhere only after:giving farmers full information of pros and cons;obtaining the willingness of local people to accept and then adopt innovations, and if necessary, building their capacities to adopt them;ensuring that the innovation is based on local culture, knowledge, aspirations, capacities;carefully considering what kind of impacts the new innovation may have on the local culture and social relations within the village;considering the existence and/or distribution of assets (e.g., economic, natural (water, access to farming land, etc.), social and political (power, prestige, networks), etc.) that enable adoption of the innovation;assessing the relevance of the new innovation in the local economic, sociocultural and ecological contexts; andconsidering the role of researcher as facilitator of technological and/or social innovations that can help them meet their needs.• Throughout the project cycle:o Establish multi-stakeholder processes-e.g through multi-stakeholder innovation platforms-through which systemic problems and opportunities supported by systems analysis are prioritized; project entry points that require social and technical innovations should be jointly identified. Regular platform meetings should be held to share agricultural R4D research results and build members' capacities. Engage a facilitator who can ensure marginalized groups are represented and are able to participate meaningfully in these processes.o Work closely with ethnic minority farmers so issues and changes they want in the future can be jointly identified, from the minority's perspective.o Include tangible results that can be achieved in the short term at the same time as a more in-depth research is being undertaken. This study asked how gender relations shape agricultural innovation, and how subsequent changes in production reconfigure gender roles and relations within the family and the village.To address this question, fieldwork was conducted in a black Thai ethnic minority village in Dien Bien Province. We carried out in-depth-interviews with 12 men and 17 women from 29 households.Most black Thai women perceive themselves to be in a lower position of power than their husbands and in-laws. They believe this arrangement was desirable for Thai families. Social expectations of wives have been increasingly associated with earning incomes through innovation in livestock, from which women eventually gain their status in the family. To achieve this, women start new activities on a very small scale to ensure that potential failures do not have any serious repercussions for their livelihoods. This is to avoid risk: success or failure in agriculture can influence their position in the family, and affects their family's reputation.Women also depend on their own family networks and support instead of their husbands' , so that success can be more clearly attributed to women's capacities and efforts, thereby improving their social and familial position.Agricultural interventions for supporting women need to take account of the underlying power relations that shape women's strategies and opportunities. Agricultural research and interventions conducted without a gender lens run the risk of continuing to support wealthy men whose concepts of innovation fit well with scientists' notions of and interests in innovation instead of equitably supporting all parts of a village. This case study shows that taking a gender lens is also important when engaging with ethnic minorities.For more information: o Be mindful of the fact that impacts of the project can go beyond the anticipated impacts, e.g., to other projects or activities taking place in the research site, and make sure that these impacts do not contribute to internal marginalization of certain groups within the ethnic minority group, or further marginalization of other groups. Our findings showed that in majority of the projects, project team members only visited the target village once or twice during the project period. This can be changed for the benefit of all stakeholders if external staff modify their schedules to spend more time around the project site. We noted that the most popular projects by the villagers are always those in which project members spend \"non-project\" time with villagers. For example, when villagers remember the names of project staff, it is a strong indication that the project is integrated into the local social world.A successful project is one which has been incorporated into local social life; if possible, project staff should attend social events (weddings, local banquets and parties). We found that when the project is able to integrate some elements of the local social life, the relationships between the project and local people become stronger and more flexible. In line with the local way of holding meetings, at the same time organizing official meetings with the 'correct' team members -including people from the local party members, local government officials, etc., it would be useful for a project to have informal meetings (outside the official meeting place, in a private home) to learn about issues that do not come up in formal settings and to meet people who do not come to these formal meetings.For more information: • ability to go through iterative visioning, planning and reflective learning cycles;• capacity to link to other actors and to use linkages strategically in support of own plans;• enhanced capacity for effective collective action; and,• enhanced leadership skills [22].Building capacity to innovate will increase the likelihood of unexpected outcomes as well as expected ones. Experience shows that it is often the unexpected and opportunistic outcomes that lead to real impact. The project should monitor for these and retain sufficient flexibility to support beneficial ones.With respect to the technology development and adoption pathway, development partners and relevant government and extension services who are part of the transdisciplinary research team would take the lead role in ensuring that the research findings are widely understood and adopted by the marginalized group(s). They also play a key role in ensuring that these technologies/activities/interventions are scaled out in a suitable manner to other ethnic groups.With respect to the policy influence pathway, it is important to present to decision makers and policy makers evidence-based research findings and methods to demonstrate the importance of engaging with ethnic minorities: project evidence should provide policy makers with information for scaling and institutionalization of innovations.• Carry out a stakeholder workshop, including minority groups, to agree the overall development challenge, identify stakeholders' strengths and opportunities to tackle it.• Involve development practitioners and other relevant local stakeholders such as government extension services in the transdisciplinary team, and get their inputs from the beginning regarding strategies and mechanisms that are already in place or can be adapted to potentially scale out the proposed technologies/interventions/ activities, particularly among marginalized ethnic groups. Describe this explicitly as part of the project's communication and uptake strategy.• Use this input to develop a theory of change for the project that makes its causal assumptions explicit.• Carry out a mid-term review to identify emerging outcomes and positive feedback loops, both expected and unexpected. Use these findings to revisit and provide detail to the original theory of change. Make appropriate course corrections including providing support to emerging feedback loops and outcomes and making the project's outreach and communication strategy more specific. In some cases, generic stakeholder groups can be replaced with specific organizations, or better, the names of specific people.According to Elias and Hermanowicz (2016), it is important to consider four factors when preparing to communicate research findings:• Understand your audience by identifying groups who will be using your findings from the very start of the research process. Consult both women and men from these groups to hone in on stakeholder information needs and perceptions. Also, share your findings with different types of actors, including groups that can take up, but also further share the research results.• Showcase relevant findings, e.g., by gender and/or by ethnic group, by unpacking, analyzing, and representing data according to relevant variables of analysis-these could be ethnicity, gender, or age, for example. Images and videos used to illustrate research findings should include both women and men and include members from all relevant ethnic groups.• Share research findings with differentiated stakeholders through relevant channels: by considering where different target audiences obtain their information, and use those channels for outreach. Use appropriate language that is matched to the level of technical understanding of the target audience. Adopt diverse and mixed methods of communication to reach different ethnic groups and both women and men-e.g., visual materials such as illustrated pamphlets, photographs and videos, and verbal methods of transmitting information.• Monitor and evaluate outreach strategy: whatever communication activities are chosen, they should be monitored and evaluated for effectiveness in reaching the different target audiences to strive for continuous improvement and fine-tune the communication strategy.All these must be adequately planned and budgeted for early on in the research process. By ensuring that local women, men, and marginalized groups are able to equitably access research findings, it is possible to support their empowerment-an essential part of the R4D process.Elias M, Hermanowicz E. 2016. Practical tips for communicating findings in a gender-responsive way. Rome: Bioversity International.• Develop an understanding of the extent of the need and demand for the technologies, interventions, or other project activities amongst ethnic minority groups in the neighbouring communes, districts, and provinces; assess whether or not an enabling environment exists for scaling out. Consultations with relevant partners and simple GIS-based decision support tools can be used in this context.• Take steps to understand the best way of ensuring farmer-to-farmer learning, taking into account that how information flows and how effectively it is exchanged may be shaped by pre-existing social networks and relations. As much as possible, make use of ethnic minorities' traditional ways of learning and innovations.• Identify potential \"champions\" at appropriate levels at the beginning of the research, who can help with scaling out among ethnic minorities and also with scaling up. The objective of this book is to demonstrate achievements made, as well as challenges faced, while implementing integrated systems research to promote sustainable development of smallholder farming in the uplands of the Mekong region.We hope this book will be of interest to CGIAR and other agricultural research for development organizations and researchers, as well as international (donors, other research organizations etc.), national and local partners.The book is organized around three research themes: a) Systems analysis and synthesis, establishing baselines and conducting situation analysis to identify interventions; b) Integrated systems improvement in practice, the various interventions undertaken to promote environmentally sustainable smallholder agriculture; and c) Nutrition dimensions, the challenges of ensuring incorporation of nutrition within the production and livelihood systems.","tokenCount":"43190"} \ No newline at end of file diff --git a/data/part_3/9144893010.json b/data/part_3/9144893010.json new file mode 100644 index 0000000000000000000000000000000000000000..493db33292f60ce9b0562c9beac2943c12774442 --- /dev/null +++ b/data/part_3/9144893010.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"7f6056d7c1a610b56336342e28345143","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/f21cabb6-6b74-4460-ac9d-9eead62c9c5f/retrieve","id":"1914233122"},"keywords":[],"sieverID":"fb04363b-48bf-4b7d-b754-859d8b9acf7b","pagecount":"44","content":"Apoyo al fortalecimiento de los servicios de información agroclimática en el sector silvoagropecuario. Entregable 2 (Primera parte).Fortalecimiento de los servicios agroclimáticos.1. Sistema Nacional de Gestión de Riesgos Agroclimáticos y su alineación con el PANCC-SAP.Este sistema es un compromiso asumido por el MINAGRI como parte del Plan Nacional de Acción para el Cambio Climático (2008-2012) 1 y refrendado por el Plan de Adaptación al Cambio Climático del Sector Silvoagropecuario (2013)(2014)(2015)(2016)(2017). En el primero de los casos, en la línea de acción N°5 se establece \"Desarrollar un sistema de gestión de riesgos agroclimáticos y emergencias agrícolas\" cuya unidad ejecutora es la UNEA. Posteriormente, esta responsabilidad es trasladada al Plan de Adaptación al Cambio Climático del sector Silvoagropecuario (2013Silvoagropecuario ( -2016) ) en el cual su Medida N°4 tiene como objetivo \"Optimizar el sistema Nacional de Gestión de Riesgos frente a eventos climáticos extremos\" y tiene dentro de sus productos el \"desarrollo de un sistema de información para la gestión de los riesgos agroclimáticos: \"Observatorio Agroclimático\", \"Red Nacional de Información Agroclimática\", envíos masivos de información, medidas de alerta temprana, etc. Por otra parte, la medida N°4 plantea el desarrollo de un modelo de gestión de riesgos con un enfoque preventivo, centrado en el productor, que identifique amenazas y vulnerabilidades y fortalezca capacidades 2 . Existe un Análisis Preliminar del cumplimiento del PANCC SAP (2013-2016) hecho por el Comité Intraministerial de Cambio Climático (CTICC), coordinado por ODEPA donde hay una evaluación detallada de la mencionada Medida N°4 3 .Este Sistema surge siguiendo los lineamientos de la Convención Marco de las Naciones Unidas sobre el Cambio Climático (CMNUCC), donde Chile es un miembro activo y donde presentó su Contribución Nacional Determinada (NDC), en el marco del Acuerdo de París, comprometiéndose a desarrollar e implementar políticas y acciones climáticas que permitan a nivel local la adaptación, la mitigación y el cumplimiento de los acuerdos globales (MMA, 2018).Así también, el Sistema Nacional de Gestión de Riesgos Agroclimáticos se enmarca en la Estrategia Internacional para la Reducción del Riesgo de Desastres EIRRD, en el contexto de los objetivos suscritos en el Marco de Acción de Sendai para la Reducción de Riesgo de Desastres (2015-2030) con el fin de \"Aumentar la resiliencia de las naciones y las comunidades ante los desastres al lograr, una reducción considerable de las pérdidas, tanto en términos de vidas humanas como en los bienes sociales, económicos y ambientales de las comunidades y los países\".1 CONAMA, Plan de Adaptación Nacional al Cambio Climático (2008)(2009)(2010)(2011)(2012). 2 ODEPA. Plan de Adaptación al Cambio Climático del sector SAP (2013)(2014)(2015)(2016).3 CTICC, ODEPA: Plan de Adaptación al Cambio Climático del sector SAP (2013)(2014)(2015)(2016). Análisis Preliminar.Pág.11-16.Por último, al revisar el Marco Lógico y calendario de ejecución de Readiness Proposal del proyecto de \"Actualización del Plan de Adaptación al Cambio Climático del sector SAP (2003-2027) 4 , se tiene como objetivo \"Desarrollar las bases de un sistema de información para gestionar y actualizar la información climática vinculada al sector silvoagropecuario\", para lo cuas se tiene como actividad única \"Analizar fuentes de información y sistemas existentes relacionados con la gestión y actualización de la información climática vinculada al sector SAP\" y como entregable único un \"Documento guía elaborado con recomendaciones para la integración de fuentes de información relacionadas con el manejo y actualización de la información, considerando una desagregación por género y pertenencia a pueblos indígenas cuando sea posible\".2. Diagnóstico de situación de los servicios agroclimáticos del MINAGRI.El primer esfuerzo para acometer el fortalecimiento del Sistema de Información Agroclimático del MINAGRI es realizar un diagnóstico de la situación actual de manera de definir lo logrado hasta la fecha, las deficiencias y vacíos y las fortalezas y potencialidades del Sistema. Una primera aclaración es que se entenderá como el Sistema Nacional de Información Agroclimática a las instancias y espacios de información pertenecientes al MINAGRI o sus servicios dependientes o relacionados o, en su defecto, que pertenezcan a instancias fuera del MINAGRI pero que estén en convenio con él o alguno de sus servicios. Se analizará la información entregada en los documentos antes mencionados, en las memorias oficiales de la UNEA-DGIR, plataformas existentes y la Investigación documental realizada por APCA sobre la entrega de información climática por parte del MINAGRI. 5 El Sistema de Información Agroclimática del MINAGRI surge como un componente del Sistema Nacional de Gestión de Riesgo Agroclimático creado en 2008 como respuesta al compromiso asumido en el Plan de Adaptación Nacional al Cambio Climático descrito anteriormente e implementado con el apoyo de FAO 6 . Del proyecto mencionado surgen 5 objetivos estratégicos para el Sistema:• Posicionar la gestión del riesgo agroclimático como un elemento propio de una \"buena agricultura\", es decir lograr que los productores y las comunidades rurales tomen conciencia sobre la importancia del impacto del clima en su negocio y bienestar. Así 4 Green Climate Fund (GCF). Update of the National Climate Change Adaptation Plan for the Forestry, Agriculture and Livestock Sector. Readiness and Preparatory Support. Proposal Template, 2019. 5 APCA Chile. Investigación documental. Informe de análisis sobre la entrega de información climática por parte de MINAGRI, 2021. 6 FAO. UTF CHI 028. Apoyo al diseño e implementación de un modelo de gestión del riesgo agroclimático (2009)(2010)(2011). http://www.fao.org/americas/programas-yproyectos/utfchi028/en/ también que tengan una participación activa en la introducción de tecnologías adaptativas para enfrentar las adversidades del clima.• Incorporar el riesgo agroclimático como un elemento productivo normal, integrándolo a la visión integral de los riesgos, identificando vulnerabilidades y reduciendo incertidumbres.• Establecer un sistema efectivo de información relevante, pertinente y de calidad para el monitoreo, alerta, seguimiento y evaluación de las condiciones del clima que permita tomar decisiones adecuadas y oportunas.• Identificar tecnologías que reduzcan la vulnerabilidad frente a las condiciones climáticas adversas y contribuyan a mitigar sus efectos.• Desarrollar mecanismos para una efectiva respuesta ante situaciones de emergencias agrícolas.El Sistema ha operado un cambio de paradigma desde sus inicios que significa pasar desde una \"gestión de crisis\" donde la responsabilidad ante fenómenos extremos queda en manos del estado a una \"gestión del riesgo\". Esto significa un traslado de eje aumentando la capacidad y responsabilidad de los agricultores y sus comunidades para enfrentar por sí mismos los riesgos climáticos y a la acción permanente de gestionar los riesgos (ciclo del riesgo) para reducir los efectos de los eventos climáticos y hacer que el Estado sólo haga un manejo acotado, rápido y eficiente de las emergencias.El Sistema Nacional de Gestión de Riesgos Agroclimáticos se apoya en tres ejes:• Sistema Nacional de Información Agroclimática,• Trabajo colaborativo y coordinación de esfuerzos,• Sistema de capacitación y difusión.Un Servicio Climático (CS) es una información preparada y distribuida para satisfacer las necesidades de los usuarios. En ese sentido, es un proceso para proveer información climática en la medida que asiste a la toma de decisiones de los usuarios. Transforma el dato climático en información. Se distingue de la información climática en que el Servicio Climático responde a una necesidad de información específica, un compromiso del usuario y donde existe un diálogo iterativo para entender y dirigir las necesidades de los clientes. Un sistema de información climática promueve la distribución efectiva de SC a los agricultores. Esto trae como consecuencia una fuerte asociación entre los servicios meteorológicos e hidrológicos nacionales (NMHS) y los grupos de usuarios incluyendo expertos sectoriales, agencias gubernamentales, sector privado, academia, entre otros. Esto ayuda a interpretar, dimensionar, procesar y aplicar la información climática y servicios de asesoría para la \"toma de decisiones\" y así, mejorar los productos de información climática, predicciones y perspectivas. Este proceso produce un servicio climático definido como \"coproducción\" entre proveedores y usuarios.La información climática, incluidos los servicios agroclimáticos entregan información, por ejemplo, para el diseño de políticas de Largo Plazo apoyadas en proyecciones de escenarios de Cambio Climático, toma de decisiones de Mediano Plazo como decisiones de siembra con proyecciones de variabilidad climática interanual (p.ej. fenómeno de El Niño) y, por último, decisiones de Corto Plazo como la fecha de siembra o cosecha, aplicaciones de agroquímicos, etc. para las cuales se utilizan los pronósticos de tiempo y clima y alertas a escala subestacional, entre otros 7 .En el caso de nuestro país, el diseño de un Sistema Nacional de Información Agroclimática se podría expresar en el siguiente Cuadro:Fuente: Adaptado de WMO-GFCS. Op.cit.7 WMO-General Framework for Climate Services (GFCS). Climate Services for supporting Climate Change Adaptation, 2016.En el cuadro se distinguen 5 grupos de actores:En primer lugar, el núcleo central de los \"Proveedores\" donde se encuentran los Servicios Meteorológicos e Hidrológicos Nacionales como la Dirección Meteorológica de Chile (DMC) y la Dirección General de Aguas (DGA). La primera pertenece al Ministerio de Defensa Nacional y la segunda al Ministerio de Obras Públicas. Su función amplia es proveer de información y servicios climáticos transversalmente a los diferentes sectores productivos, de salud pública, gestión de desastres, etc. Al sector SAP le entregan información específica y servicios climáticos \"a la medida\" a los usuarios finales del sector. En este núcleo también se encuentra el MINAGRI y sus servicios dependientes los que proveen de servicios e información climática específica para el sector SAP a los diferentes usuarios. Los servicios meteorológicos e hidrológicos nacionales mantienen, en general, una relación estrecha con el MINAGRI y sus servicios para desarrollar, difundir y aplicar nuevo conocimiento climático.Un segundo sector es el académico cuyo papel es agregar valor a los servicios climáticos creando, desarrollando, acumulando y difundiendo conocimiento actual para aplicar medidas de corto mediano y largo plazo a nivel de los usuarios del sector SAP. En general, ha hecho un interesante aporte en el conocimiento del Cambio Climático y en el esfuerzo de adaptación del sector SAP.En seguida, tenemos a los \"Facilitadores\", especialmente los organismos internacionales que se encargan de la cooperación para difundir el conocimiento y capacitar a los usuarios poniéndolos en contacto con los proveedores. Juegan un papel importante en hacer llegar el conocimiento a las comunidades y un esfuerzo de capacitar profesionales en colaboración con la academia y con organismos gubernamentales y no gubernamentales.Otro componente del sistema se refiere a las organizaciones colaboradoras que hacen puentes con la sociedad civil, organizaciones de productores, comunidades agrícolas, etc. Facilitan y adecuan la llegada de la información y servicios climáticos a los diferentes usuarios y la retroalimentación con los proveedores y demás participantes del Sistema.Por último, tenemos el importante grupo de los usuarios que son las partes interesadas a nivel nacional, regional y local en recibir información agroclimática y ser atendidos por servicios climáticos que sean un soporte efectivo en la toma de decisiones a esos niveles. Se habla de usuarios intermedios como aquellos \"socios de los SMHN\" que colaboran en adaptar la información, captar las diferentes necesidades de usuarios relativamente diferentes.Los usuarios intermedios ayudan a aprovechar la información agroclimática y convertirla en servicios climáticos y a convertirse en \"puentes\" para que los usuarios finales retroalimenten el Sistema. Los usuarios finales adaptan las aplicaciones de los SC e información agroclimática, en general, para la toma de decisiones de largo, mediano y corto plazo. Aunque se privilegia al productor, especialmente, de la agricultura familiar también son usuarios importantes los tomadores de decisiones que están en otro nivel pero que tienen que tomar medidas y diseñar políticas que afectan, en general, a los productores familiares y sus comunidades. Dentro de esos usuarios finales tenemos a comunidades, muchas vulnerables, \"policy makers\", comercializadores, autoridades, académicos, etc.2.2. Flujo de la Información Agroclimática.Entenderemos Información Agroclimática como el conjunto de datos climáticos, productos climáticos y / o conocimiento climático.Si observamos el Sistema MINAGRI (Ministerio de Agricultura), el flujo de la Información Agroclimática desde los proveedores hasta los usuarios finales no es directo, sino que recorre un amplio camino donde cada etapa le agrega un nivel de valor y complejidad para hacerlo más \"usable\" para la toma de decisiones.En primer lugar, tenemos un marco conceptual y valórico que nos determina las orientaciones de mediano y largo plazo que van a significar las recomendaciones agroclimáticas para la toma de decisión (Qué y para qué). Entre estas orientaciones están, entre otras, las del IPCC, las NDC y el Acuerdo de París (Cambio Climático), el Marco de Sendai (Reducción de Riesgos de Desastres), los Objetivos de Desarrollo Sustentable (ODS) y otras orientaciones específicas como las de agricultura regenerativa, agricultura orgánica, manejo holístico, \"Fair trade\", etc.En segundo lugar, tenemos la Gobernanza del Sistema que nos compatibiliza los valores e intereses que definirán el contenido y el curso de la información en la medida que se produce una síntesis entre los \"stakeholders\". Entenderemos la Gobernanza como la manera en que un sistema, en este caso el Sistema de información Agroclimática del MINAGRI, define objetivos y prioridades, se toman decisiones, se implementan y supervisan acciones de diversa índole para lograr los objetivos del Sistema y cumplir sus prioridades.Con respecto al flujo mismo, tenemos una primera etapa de observación, colección y procesamiento de datos compuesta básicamente de información de imágenes satelitales (1) Una segunda etapa está compuesta por los \"Productos\" definidos como \"la síntesis derivada de datos climáticos que combina datos climáticos con conocimientos climáticos para agregar valor a la información\". En este grupo tenemos, en primer lugar, funciones y aplicaciones de parámetros climáticos y agrícolas como pronósticos, alerta de heladas, fenología de cultivos, evapotranspiración de referencia (ETo), etc. (3). En segundo lugar, tenemos las plataformas de visualización en línea que calculan y entregan parámetros y funciones como es el caso del Observatorio Agroclimático, la página IDE Minagri, Sistema de pronóstico de heladas de la Red AGROMET, productos climáticos de Meteochile, Geomatika, etc. (4).Un tercer tipo de productos climáticos son los más elaborados ya que conllevan un análisis y juicio experto de la información siendo el insumo que entrega los contenidos para que los usuarios empiecen a hacer aplicaciones de ellos (5). Esto se acerca a lo que es un servicio climático \"final\" para el tomador de decisiones que se trata, faltando los elementos de diseminación de la información que determinarán los canales, formatos, accesos de la información, las diversas formas de capacitación de los usuarios y las instancias participativas para la toma de decisiones y para la retroalimentación con los proveedores. Los elementos de diseminación que responden a las preguntas: ¿Dónde está la información? y ¿Por cuáles medios se difunde?, los encontramos en las columnas (6, 7, 8, 9 y 10).La última columna del Cuadro N°2 presenta una relación de los diferentes usuarios finales de la información agroclimática \"a la medida\" de sus necesidades.Para completar esta representación del flujo de información la acción transversal a todos los niveles de la academia que articula aportes de distinta complejidad y para diversos usuarios. Completa esta presentación, la acción transversal que cruza todas las etapas (columnas) compuesta por la Academia que nutre y fortalece el conocimiento de todo el sistema.A continuación, se presenta el Cuadro N°2 \"Diagrama del Flujo de información agroclimática del Ministerio de Agricultura y desarrollada en trabajo colaborativo con sus socios\": CUADRO N°2.Fuente: Elaboración propia.Otra representación del flujo de información al interior de un sistema como el del MINAGRI se observa en el Cuadro siguiente: (1,2,3,4,5,6,7,8,9,10 Lo que representa el diagrama observado (Cuadro N°3) es la complejidad de los flujos de información en la medida que los servicios climáticos ofrecidos son cada vez más complejos en la medida que se necesitan \"a la medida\" para tomar decisiones precisas. Esto lleva a un cruce y complementación de datos, información y productos climáticos que dan origen al servicio deseado.Por otra parte, algo que es visible es que es menos importante la ubicación de la información y su dependencia institucional que la calidad y disponibilidad de la misma y la utilidad que signifique para la toma de decisiones del usuario. En ese sentido, una \"plataforma única\" puede ser menos eficiente y más restringida que un sistema de plataformas que trabajen de manera coordinada y colaborativa.Agroclimática del MINAGRI.La Red Agroclimática Nacional (RAN) es una alianza público-privada que integra a 416 estaciones meteorológicas automáticas (EMAs). Es la Red de más amplia cobertura y con mayor número de Su objetivo ha sido conformar una Red de Estaciones Meteorológicas Automáticas EMAs que sea referente de la información agroclimática para el sector silvoagropecuario en su totalidad otorgando mayor valor a la inversión pública inicial, dando libre acceso a información confiable y de forma oportuna para las decisiones, a todo nivel, en orden a incorporar la gestión del riesgo agroclimático en la producción silvoagropecuaria nacional.Específicamente, con la RAN se busca:• Ampliar la entrega de información agroclimática al productor silvoagropecuario a través de la expansión y aumento de cobertura de las redes de estaciones meteorológicas automáticas EMAs, integrando redes públicas y privadas (redes agrometeorológicas Agroclima, Meteovid, Agromet, Meteochile, etc.; e incorporando tecnologías para la comunicación efectiva de esta información.• Contar con datos agroclimáticos en tiempo real (frecuencia horaria y cada quince minutos) leídos desde una base de datos única que integra, desde el Ministerio de Agricultura, las redes público-privadas de estaciones meteorológicas automáticas. • Alcanzar una agricultura competitiva, basada en decisiones fundadas y de ágil respuesta ante escenarios climáticos cambiantes en sus distintas escalas.A) Cobertura de la Red.RAN cubre cerca del 100% del territorio agrícola chileno. A este logro han contribuido varias instituciones: el \"Estudio de la Cobertura Actual y Futura de la Red Agroclimática Nacional\", financiado por FIA el 2015 y efectuado por AGRIMED de la Universidad de Chile y el Instituto de Investigaciones Agropecuarias INIA1, permitió definir la cobertura de EMAs necesarias para responder a las necesidades de información agroclimática del sector agropecuario, considerando las dinámicas climáticas y la conformación del territorio nacional. Con ello se respondió a las interrogantes si eran suficientes las estaciones existentes, y de no ser suficientes cuántas eran necesarias y dónde ubicarlas. El estudio, que consideró 322 estaciones en su análisis, definió áreas ambientales homogéneas y permitió definir prioridades para la instalación de nuevas estaciones, teniendo presente también la Agricultura Familiar Campesina. La distribución actual por regiones de la RAN (416 estaciones) se muestra en la siguiente Figura.Fuente: Dpto. TI -Subsecretaría de Agricultura, diciembre 2017.Los propietarios de las redes de EMAS, personas jurídicas sin fines de lucro, firmaron un contrato para constituir el Consorcio Técnico Red Agroclimática Nacional (CRAN), que establece una vinculación firmal entre las instituciones firmantes para comprometerse a promover y difundir el uso de la información agroclimática entre los productores agrícolas y coordinar y representar en su relación con instituciones públicas o privadas, nacionales o extranjeras al objeto de cumplir sus fines.El Consorcio es dirigido por un Consejo Directivo, integrado por un representante de cada institución, los cuales designan entre ellos un Presidente. A su vez el Consejo Directivo designa a una entidad socia como Administrador de la Red. Estos cargos duran tres años. En la actualidad, el cargo de Presidente es ocupado por el Director Nacional del INIA y el cargo de Administrador por el representante de la Fundación para el Desarrollo Frutícola (FDF). Por su parte, el CRAN firma anualmente un Convenio de Transferencia con la Subsecretaría de Agricultura en que, por una parte, el Consorcio se compromete a mantener de forma continua el funcionamiento de la RAN, entregar la información actualizada al sitio web www.agromet.cl y mejorar la cobertura de la red a aquellas áreas de interés silvoagropecuario. Para tal efecto, la Subsecretaría se compromete a transferir fondos para que el CRAN entregue 5 productos anuales para asegurar la oportunidad y calidad de la entrega de la información meteorológica de la RAN. La información entregada en virtud de este convenio es dispuesta para acceso público en el portal AGROMET, de propiedad del MINAGRIPor último, existe una instancia asesora que actúa en apoyo al Consejo Directivo, el Comité Técnico de la RAN que está constituido por los jefes técnicos de las redes, un representante del Subsecretario de Agricultura, el Jefe del Departamento de Tecnologías de la Información, encargado de la mantención y desarrollo del portal www.agromet.cl , dos profesionales del Sub-departamento de Información, Monitoreo y Prevención (ex -UNEA), quienes ejercen la Secretaría Técnica y que son responsables de la administración y actualización del mencionado portal y una profesional del FIA.A través de su portal Web AGROMET, la RAN, informa sobre las siguientes variables meteorológicas:Toda la información es actualizada cada hora. Además, esta Red informa sobre Grados día en base 10 y Horas de Frío en base 7. Por último, permite la descarga de los datos históricos de cada EMA para todos los años que tenga registro.Sistema de alerta de heladas.El sistema de monitoreo y alerta temprana de heladas es un servicio de la Red Agroclimática Nacional (RAN), que permite a los productores agrícolas enfrentar mejor las heladas, dado que este sistema avisa con algunas horas de anticipación, la eventual ocurrencia de una helada y mejorar así la oportunidad de gestión del riesgo agroclimático a nivel de productor.Este sistema fue desarrollado a través del Proyecto \"Sistema de alertas y alarmas tempranas de heladas en las Regiones de O'Higgins y del Maule y evaluación de su impacto productivo, para entregar información relevante para la gestión predial de las heladas a nivel de los productores, la operación de Seguros agrícolas y el sector público y privado\", cofinanciado por la Fundación para la Innovación Agraria (FIA) del Ministerio de Agricultura y ejecutado por el Instituto de Investigaciones Agropecuarias (INIA), Vinos de Chile, Dirección Meteorológica de Chile (DMC) y Fundación para el Desarrollo Frutícola (FDF).Programa Nacional para el control de Lobesia Botrana (SAG).RAN entrega al SAG acceso a la información climática en forma tal que ésta sea procesada en los modelos y sistemas de esa institución para generar las alertas de aplicaciones para control de Lobesia Botrana, que es una plaga de control obligatorio que causa graves daños a especies frutales y vides. Este programa es de uso permanente.Atlas Agroclimático de sequías.AGRIMED de la Universidad de Chile emitió la versión actualizada del Atlas Agroclimático de Chile, en el cual se incluye la información agroclimática de las distintas localidades, basada en la estadística histórica utilizando la información de la Red Agroclimática Nacional RAN-AGROMET.La DMC integra a su red, estaciones climatológicas de AGROMET, en forma tal de contar con mayor cantidad de información en su monitoreo de sequía.Es una plataforma desarrollada por la Fundación para el Desarrollo Frutícola (FDF) que entrega información histórica relevante para la fruticultura, actualizada quincenalmente y distribuida espacialmente por estación meteorológica. La información entrega el número de eventos de heladas (eventos de más de 5 horas a 0°C) , horas de frío acumuladas entre el 1° de mayo y el 31 de julio de cada año (y Grados-día sobre una temperatura umbral (10°C).Programa disponible para las regiones desde Biobío a Los Lagos para agricultores registrados y suscritos a una estación meteorológica del INIA.El Observatorio Agroclimático (OA) es una herramienta de información para la gestión de riesgos climáticos que forma parte del Sistema Nacional de GRA y fue construida para apoyar las decisiones del agro a todo nivel. Es un espacio de discusión que permite construir ciencia y analizar los efectos de las condiciones climáticas en la agricultura. Para ello, se han constituido dos instancias de participación: Comité Ejecutivo y Comité Técnico o de expertos.El OA surge con el fin de que las decisiones del agro estuvieran fundadas en información confiable. Ello permitiría construir políticas públicas; hacer análisis sectorial; asistir y mejorar las capacidades del sector; contribuir al desarrollo predial; y contar con una masa crítica de profesionales en estas temáticas.El OA es un bien público y su portal Web no tiene restricciones de acceso a la información, es abierto a todo público. Este portal está compuesto por una Biblioteca de datos (DL o Data Library) y una Sala de Mapas (Map Room) que contiene la información e indicadores clasificados en seis componentes: situación de ENSO, alertas, información histórica, de pronóstico, y de monitoreo, y vulnerabilidad frente a una sequía. Además, integra redes de información en tiempo real.En su desarrollo desde el año 2012, el OA ha tenido múltiples actualizaciones en forma y contenidos, tanto de su DL como Map Room. Estos cambios han sido posibles al trabajo colaborativo de las instituciones aportantes/socias del Sub-Departamento. También, ha sido posible formar un grupo de profesionales de estas instituciones, con conocimientos más avanzados, lo que ha permitido darle sustentabilidad en el tiempo a esta herramienta de información agroclimática.La gobernanza del Observatorio está dada por Socios Fundadores, Socios Miembros y la Secretaría Ejecutiva (ver Cuadro N°4). Los socios fundadores contribuyeron al diseño y estructura del OA; así también, aporte de información y juicio experto. Los socios participantes, han aportado información y juicio experto, particularmente en las discusiones de los Comité Técnicos.La Secretaría Ejecutiva del OA, alojada en el Sub-Departamento ha dado dirección y el aporte financiero necesario para el diseño, desarrollo y mejora continua del OA.Desde etapas iniciales y durante el desarrollo del OA han participado múltiples instituciones, nacionales e internacionales, del ámbito público y privado, de participación permanente e invitados.Estas instituciones han contribuido a mejorar las capacidades del OA, con aporte de información, sin costo, y juicio experto para la construcción de indicadores de monitoreo y análisis de la situación climática del país. La estructura de Gobernanza del Observatorio Agroclimático se explica de la siguiente forma:Cuadro N°4.Fuente: SEGRA. MINAGRI 2019.Básicamente, la gobernanza del OA se sustenta en los siguientes puntos:• Trabajo colaborativo (aporte de socios): Convenios y acuerdos.• Financiamiento: de la Subsecretaría de Agricultura y Proyectos (FAO, British Council -Newton Picarte Fund y el Fondo de Adaptación al Cambio Climático, FACC, de las Naciones Unidas).• Apoyo Institucional.El OA se desarrolló como base de un sistema de monitoreo y alerta temprana en apoyo de una gestión integral de la sequía. El portal Web diseñado para el OA permite visualizar información sobre el estado de la sequía en Chile, a diferentes escalas espaciales y de tiempo; así también, permite consultar múltiples capas de información; y para una mejor aproximación a la escala local, las bases de datos existentes se complementan con datos externos.Este sistema, de alta complejidad, logra unir bases de datos de forma muy flexible y contiene un repositorio de datos desarrollado por el International Research Institute for Climate and Society (IRI), que permite realizar múltiples tareas.Básicamente, el OA cuenta con dos componentes macro: \"Data Library\" o DL o Biblioteca de datos y Map Room o Sala de Mapas. La Sala de Mapas del Observatorio Agroclimático cuenta con ocho secciones diferentes tal como indica la figura siguiente. En su uso más simple, el DL permite visualizar una base de datos, por ejemplo, el estado de la vegetación (índice NDVI), seleccionar una región y un periodo de tiempo de interés, y exportar la selección a una multitud de formatos compatibles con otros programas. La información descargada puede ser analizada en otros sistemas externos al DL, por ejemplo, en Sistemas de Información Geográfica (SIG) u otros programas, como Excel, Matlab o R. Sin embargo, muchos análisis se pueden realizar dentro del DL a través de comandos en el modo expert2. También es posible automatizar los cálculos y crear nuevas variables. Por ejemplo, se puede calcular anomalías de temperaturas o precipitación. Se puede también integrar modelos de pronósticos y generar pronósticos estacionales de forma automática.A través del link www.climatedatalibrary.cl es posible acceder al DL en Chile. La base de datos global del IRI se puede consultar en http://iridl.ldeo.columbia.edu/. Para más información sobre el funcionamiento del DL y Map Room se elaboró el \"Manual y Tutorial, Diseño y Conocimiento de la Parte Técnica del Data Library y el Observatorio Agroclimático de Chile\" que está disponible vía web.Es el producto agroclimático más antiguo y permanente del sistema. Existe desde 2008 y tiene una frecuencia mensual que no se ha interrumpido. Tiene dos versiones: un Resumen Ejecutivo Nacional, que es un resumen por macrozona de la información entregada en los boletines regionales (16). Está disponible en los portales www.agromet.cl; agroclimático.minagri.gob.cl; www.dgir.minagri.gob.cl; y, últimamente en riesgoclimatico.inia.cl. Lamentablemente, en algunas de sus versiones sólo aparece el resumen nacional, siendo otra dificultad la inestabilidad de algunas de las páginas mencionados. Este Boletín, aparte de tener una interesante información general para técnicos y productores, ha servido en la práctica para hacer seguimiento de procesos de sequía que han impactado a rubros agropecuarios de diversas regiones y como documento de respaldo para tomar resoluciones administrativas como, por ejemplo, declaración de zonas de emergencia agrícola, determinación de ayuda a agricultores afectados por desastres, aparte de la sequía, heladas, lluvias extemporáneas, granizo, etc.El Resumen Ejecutivo Nacional contiene un análisis de la situación meteorológica e hidrológica, el pronóstico de El Niño y el consecuente informe de pronóstico subestacional de la Dirección Meteorológica de Chile (DMC) para terminar con recomendaciones para los rubros agropecuarios de las diferentes macrozonas de acuerdo con los riesgos climáticos estimados. En este resumen participan 16 especialistas de los diferentes centros del INIA.Los informes regionales (16) tienen un detallado análisis tanto de la situación actual como del pronóstico de la situación futura debido a los riesgos identificados lo que deriva en recomendaciones de manejo para los principales rubros agropecuarios de cada zona agroecológica.Su estructura es la siguiente:• Principales rubros agropecuarios existentes en la región.• Resumen Ejecutivo de la situación agroclimática regional.• Componente meteorológico. Estado de la atmósfera y pronóstico DMC. Información por estación meteorológica (12): Temperatura, Precipitación, Evaporación. • Componente hidrológico. Nieve equivalente en agua (4 estaciones), niveles de embalses(2), caudales (4). • Posibles riesgos agroclimáticos para cultivos relevantes por zona agroclimática (4), recomendaciones de manejo por rubro. • Disponibilidad de agua en el suelo. Coyuntura Agroclimática es una publicación mensual preparada por el Sub-Departamento (Ahora sección) publicada desde el año 2012, cuyo objetivo es presentar la evolución de la situación meteorológica y su impacto en el sector silvoagropecuario.Presenta un panorama resumido sobre la situación de la sequía meteorológica, hidrológica y agrícola; y las perspectivas para el sector silvoagropecuario. Cuando es necesario se analiza con mayor detalle algún evento en particular, por ejemplo, megasequía, incendios forestales, aluviones, etc.Este informativo es enviado mensualmente vía sistema mailing a cerca de 5.000 contactos y también es publicado vía portales Web de la SEGRA y en Redes Sociales (cuentas Twitter @DGIR_ y @Agromet_RAN). Esta publicación es complementada con el Monitor Agroclimático con el cual se alterna quincenalmente.Fuente: Coyuntura Agroclimática -Monitor Agroclimático, SEGRA.El Outlook Estacional es un encuentro realizado para analizar la situación climática en perspectiva, así también el pronóstico de riego para la temporada. Fue creado por el Comité Técnico del Observatorio Agroclimático como una extensión de este para aplicar la información disponible en el observatorio. Cuenta con la participación de representantes de los servicios del agro, del sector privado y de la academia para analizar conjuntamente cómo enfrentar la temporada. Se realizan al menos dos perspectivas anuales (otoño-invierno y primavera-verano). En el último año se ha efectuado de manera virtual debido a la pandemia.La Dirección Meteorológica de Chile mantiene esta plataforma donde centraliza toda la información meteorológica relativa al agro. Aunque gran parte de la colección de la información está ya automatizada, la DMC tiene antiguos convenios con gran parte de las Secretarías Ministeriales de Agricultura para la formación de CRIAS (Centros Regionales de Información Agrometeorológica), los cuales recolectan información meteorológica de estaciones no automatizadas y otros no registrados como impactos de fenómenos hidrometeorológicos como heladas, granizo, etc. Por otra parte, la DMC mantiene, a través de un Convenio Marco y de varios Convenios Específicos, compromisos de intercambio de información con el MINAGRI y servicios de su dependencia. En la plataforma de Meteorología Agrícola se puede encontrar información de datos, pronósticos, informes de riesgos y alertas agrometeorológicas, además de monitoreo de heladas.El Servicio Agrometeorológico de la Dirección Meteorológica de Chile ofrece los siguientes productos:• Pronósticos meteorológicos.• Boletín de horas de frío • Resumen agrometeorológico.• Mapas pronosticados regionales.• Agrometeogramas.• Boletín de riesgo agroclimático.• Carta sinóptica.• Perspectiva agroclimática.• Boletín decadal.• Boletín agroclimático.• Boletín decadal Boletín decadal grados-día.• Anuario agroclimático.Minagri.Análisis Preliminar del PANCC SAP (2013-2016).En el caso del Análisis Preliminar del Plan de Adaptación al Cambio Climático del sector SAP (2013-2016) 9 , realizado por el Comité Intraministerial de Cambio Climático (CTICC) coordinado por ODEPA, se hace una relación detallada de los avances de la medida N°4 del citado Plan: \"Optimizar el Sistema Nacional para la Gestión de Riesgos Agroclimáticos\", cuyo Objetivo era \"Diseñar y desarrollar un Sistema Nacional de Gestión de Riesgos frente a eventos climáticos y emergencias agrícolas\". Dicha medida N°4 considera las siguientes acciones:(i) Diseño de una estrategia nacional y puesta en marcha de instancias de coordinación a nivel nacional y regional para la gestión del riesgo agroclimático (apoyo a la agricultura de secano, agricultura moderna con incorporación de otros enfoques y sistemas: agricultura regenerativa, manejo holístico, sistema Keyline; etc.).En el marco de un Convenio de Cooperación con FAO [Proyecto UTF/CHI/028]10, se elaboró la estrategia nacional que se implementa a través del Sistema Nacional de Gestión de Riesgos Agroclimáticos (2009-2010) cuya Unidad Ejecutora es el Sub-Departamento de información, Monitoreo y Prevención para la Gestión Integral de Riesgos IMP-GIR (Ex UNEA). Se conforma un marco institucional con el fin de establecer la coordinación nacional y regional para la gestión de riesgos agroclimáticos.Por otra parte, En el marco del Convenio de Cooperación con FAO [Proyecto TCP/CHI/3403] 11 se desarrolla una Estrategia para el Secano Sustentable 2030, y un manual de campo con medidas de adaptación para la región piloto de O'Higgins (2014de O'Higgins ( -2015)). En el contexto de una agricultura más moderna, de nuevos enfoques para enfrentar el cambio climático, se realiza el Curso Keyline (se cuenta con CD con el material de apoyo del curso) (2009); y se realizó el Curso de especialización para profesionales y Seminario sobre Manejo Holístico (2013).Desarrollo de un Sistema de Información para la gestión de riesgos agroclimáticos (Observatorio para la Gestión de Riesgos Agroclimáticos, Portal www.minagri.gob.cl/agroclimatico, Red Agroclimática Nacional AGROMET, envíos masivos de información, integración a redes sociales, entrevistas radiales, distribución de material impreso, charlas divulgativas, etc.) Estadísticas EMAs y situación agroclimatológica regional (en convenio con la Fundación para el Desarrollo Frutícola FDF, 2010-2011); • Software modelo ecofisiológico, sistema informático y mapas de vulnerabilidad, para trigo, papas y praderas en la región de la Araucanía (en convenio con CIREN, 2009).A esta información se agrega la edición, impresión y diseño gráfico de informes agrometeorológicos (cartillas), material técnico y afiches; mapas con capas de información del Censo Agropecuario; envíos de información a través de SMS; modelo estandarización integración bases de información (convenio con ODEPA, 2010). En cuanto a actividades de difusión se mantiene un Espacio Web en sitio web institucional del MINAGRI para la difusión de información agroclimática y una Página Web interactiva.Aplicaciones satelitales basadas en NOAA sobre predicción de producción agrícola, mapa de distribución de precipitaciones y heladas en macro región O'Higgins a Los Lagos. Metodología de muestreo. Indicadores precipitación estandarizados: IPE, anomalías de precipitaciones (datos, gráficos, informes de análisis y proyecciones) (convenio con DMC, desde 2013). A través de las herramientas de información implementadas se alcanza mensualmente cerca de 2.300 visitas por redes sociales, 3.000 visitas a través de portales Web, 5.000 contactos mediante envíos masivos de comunicación y se han elaborado 18 publicaciones técnicas en apoyo a enfrentar el cambio climático.Por otra parte, la Fundación para la Innovación Agraria desarrolla varias actividades relacionadas a esta acción. En el marco del convenio suscrito en diciembre 2013 entre la Subsecretaría de Agricultura y la Fundación para La Innovación Agraria para la ejecución del \"Programa regional para el monitoreo, control y gestión de las heladas de impacto hortofrutícola en las regiones de O'Higgins y del Maule\".Además, en el marco de este mismo Convenio se desarrollaron los siguientes estudios relacionados al tema:• Propuesta de uso de la red actual de Estaciones Agrometeorológicas AGROMET Nacional), y oportunidades de ampliación de cobertura y alternativas de operación, para la gestión preventiva de fenómenos climáticos adversos (Ejecutor: INFODEP); • Evaluación de las áreas de cobertura y necesidades de crecimiento de la Red Agroclimática Nacional (Ejecutor: Agrimed, 2014) • Estudio de Vigilancia tecnológica en sistemas de control de heladas para el sector agrario Nacional.• Ampliación y fortalecimiento de la Red Agrometeorológica de La Araucanía para la gestión del riesgo climático (Ejecutor: Agrimed, INIA 2014).Establecimiento de redes regionales público privadas (ampliación de bases de datos para difusión de información agroclimática, talleres de capacitación, identificación de amenazas y vulnerabilidades, planes de trabajo, etc.)• Se inicia el establecimiento de redes regionales público -privadas, a partir de la construcción de una base de datos de contactos para información agroclimática, de actualización permanente (2010).• Se desarrollan talleres regionales para el análisis de amenazas y vulnerabilidades.(iv) Fortalecimiento de capacidades (actividades de capacitación y difusión, seminarios nacionales e internacionales, unidades demostrativas, etc.)• Se desarrolla un Plan de capacitación nacional anual que también incorpora acciones regionales y actividades e-learning (desde el 2009, acción de carácter permanente). Se alcanza a cerca de 15.000 participantes en todas estas actividades. • Se diseña un Curso e-learning (montaje plataforma Moodle y producción de videos con charlas de especialistas) y se dicta desde el 2012, semestralmente, alcanzando cerca de 1.000 participantes.En el marco de una agricultura más moderna que incorpore nuevos enfoques para enfrentar el cambio climático, también se desarrollan Cursos y seminarios con especialistas internacionales (sistema keyline, manejo holístico, etc.). Se desarrolla una propuesta de unidades demostrativas para medidas de mitigación y adaptación al Cambio Climático (manual de campo del proyecto TCP/CHI 3403, en convenio de colaboración con FAO, 2014FAO, -2015)). Se realiza transferencia, investigación e innovación mediante experiencia australiana en reducción de la vulnerabilidad y adaptación al cambio climático, visita expertos a Chile, gira técnica de profesionales y agricultores a Australia (convenio con FIA, 2009).En el mencionado documento \"Informe de análisis sobre la entrega de información climática por parte de MINAGRI\" presentado por APCA Chile (2021) se presenta una relación de la evaluación de 14 portales y/o páginas web más un total de 7 boletines, fichas y alertas. No existe un análisis del comportamiento sistémico de los elementos analizados ni desde las diferentes funciones ministeriales ni del conjunto de la información agroclimática.El análisis de APCA Chile detecta un conjunto de \"brechas\" al analizar la información disponible.La primera brecha es la gran dispersión de la información detectada por el investigador entre los múltiples portales y/o páginas web, lo que dificulta el acceso a la información específica para cada usuario. Para subsanar esta deficiencia recomienda distribuir la información en medios de mayor cercanía con los diferentes grupos de agricultores, como las oficinas regionales y sectoriales, la instalación de ficheros en centros de mayor circulación, etc. Esto sería de gran de utilidad si se empleara para destacar la información de la red AGROMET, siendo posible que la información señalada sea compartida vía redes sociales. Esta distribución de información debe ser complementada con mesas comunales que la analicen y entreguen recomendaciones específicas.Una segunda brecha dice relación con el diseño y lenguaje sofisticado que se utilizan en los diferentes medios que los hacen accesibles casi exclusivamente a un público con determinado nivel técnico. Es especialmente notoria esta situación en el caso de los sistemas de información geográfica y software para análisis de datos. A pesar de que la mayoría de los portales disponen de un manual se expresa la utilidad de contar con una información más personalizada como serían, por ejemplo, las cápsulas asincrónicas para capacitar a los usuarios y los sistemas e-learning de capacitación.La tercera deficiencia tiene que ver con el bajo grado de elaboración de la información la que es presentada \"en bruto\" sin un análisis que permita su mayor aprovechamiento. Otra deficiencia encontrada es no ser \"sitio específico\" lo que dificulta transferirla a problemas concretos. A pesar de todo releva la utilidad de boletines como el resumen ejecutivo nacional del INIA, la Coyuntura Agroclimática y el Monitor Agroclimático de la SEGRA.Por último, se hace hincapié de que la información contenida en páginas web y plataformas se debería difundir por redes sociales y radios locales para alcanzar un mayor público objetivo.Se destaca la oportunidad para remover las brechas expuestas el trabajo que se está realizando en el marco del proyecto de Mejoramiento de la Resiliencia al Cambio Climático de la pequeña agricultura de la Región de O'Higgins mediante la constitución de mesas de trabajo a nivel comunal (MAP), en las que se ha desarrollado información en forma conjunta con los agricultores para la toma de decisiones.La investigación tiene como conclusión central de que, habiendo una gran cantidad de información agroclimática, la extrema dispersión atenta contra su disponibilidad y, por supuesto, su utilidad como herramienta para la toma de decisiones. Para remediar la situación se sugiere, en el corto plazo, la generación de un acceso directo desde la página del MINAGRI hacia un Portal donde esté contenida toda la información relativa al Cambio Climático que se genera en los diversos servicios relacionados con el Ministerio.Una segunda recomendación sugiere contar con una plataforma centralizada y ejecutada por el Estado donde participen actores relevantes en el ámbito del Cambio climático de los sectores público y privado, la academia y la sociedad civil. Se argumenta que el PANCC (MMA, 2017) expresa que \"con el objetivo de coordinar el trabajo sobre el Cambio Climático entre todos los actores de nivel regional y nacional, se espera crear y fortalecer una plataforma tecnológica que agrupe toda la información en temas relacionados con el Cambio Climático.Por último, y siguiendo a FAO (2011), se recomienda generar un intercambio de información relacionada con el Cambio Climático entre las instituciones del Estado imitando el ejemplo del MINAGRI y la DMC.1. El Sistema Nacional de Gestión de Riesgos Agroclimáticos tiene existencia en el país desde 2008, coincidiendo con la vigencia del primer Plan de Adaptación Nacional al Cambio Climático (PANCC) del período 2008-2012. En su actividad N°5 dicho Plan señala la creación y fortalecimiento de dicho sistema en el que un sistema nacional de Información para la gestión de riesgos agroclimáticos es uno de sus componentes.2. Este esfuerzo ministerial es apoyado a través de un proyecto realizado juntamente con FAO denominado \"Apoyo al diseño e implementación de un modelo de gestión del riesgo agroclimático (2009-2011)\", el cual le da una estructura orgánica, una gobernanza, define la relación públicoprivada y le impone un sesgo participativo.3. El sistema en general puso énfasis en enfrentar de la mejor manera las emergencias existentes en diferentes partes del país derivadas de una seria sequía, que con el tiempo se transformó en \"megasequía\".4. En esa situación opera un cambio de paradigma en términos de los objetivos del sistema operando desde la \"gestión de la crisis\" a la \"gestión del riesgo\" pasando de una acción de respuesta focalizada por parte del Estado a una gestión permanente (ciclo del riesgo), donde los agricultores asumen la responsabilidad de enfrentar los riesgos por sí mismos como una práctica de \"buena agricultura\". Para lograr esta transformación es necesario que opere un sistema de información que sea capaz de apoyar a la toma de decisiones de los agricultores y demás usuarios en el largo, mediano y corto plazo.5. Esta \"gestión del riesgo\" se trata de incorporar el riesgo agroclimático como otro elemento productivo, con una visión integral de los riesgos, identificando vulnerabilidades y reduciendo incertidumbres. Además, permite establecer un sistema efectivo de información relevante, pertinente y de calidad para el monitoreo, alerta, seguimiento y evaluación de las condiciones del clima que permita tomar decisiones adecuadas y oportunas. Por último, permite identificar tecnologías que reduzcan la vulnerabilidad frente a las condiciones climáticas adversas y contribuyan a mitigar sus efectos y desarrollar mecanismos para una efectiva respuesta ante situaciones de emergencias agrícolas.6. El Sistema ha logrado en este período un nivel de consolidación en la medida que están desplegados todos sus principales componentes. Un sesgo clave en este desarrollo es el estilo colaborativo que ha permitido tener acceso y difusión de información libre sin el cual no se hubiera podido disponer. Este sello se traduce en un sistema de gobernanza participativo donde las instancias ejecutivas como técnicas están conformadas tanto por los proveedores de información como los usuarios institucionales.7. En el presente informe se hace una relación de los componentes principales del sistema que están actualmente operativo y se describen los más importantes: la Red AGROMET con sus 416 estaciones meteorológicas automáticas, el Observatorio Agroclimático, los boletines de riesgo agroclimáticos del INIA (Resumen Nacional y Regional), la Coyuntura Agroclimática, el Monitor Agroclimático y el Outlook Estacional.8. El Sistema Nacional de Gestión de Riesgos Agroclimáticos y su sistema de información, se presenta nuevamente en el Plan de Adaptación al Cambio Climático del sector SAP (2013-2017) como actividad N°4 con todos sus principales componentes (\"Optimizar el Sistema Nacional para la Gestión de Riesgos Agroclimáticos, con el objetivo de diseñar y desarrollar un Sistema Nacional de Gestión de Riesgos frente a eventos climáticos y emergencias agrícolas. El sistema también es presentado en la evaluación intermedia (2013-2016) del PANCC-SAP y evaluado en buenos términos.9. La investigación documental desarrollada por APCA no menciona ni evalúa la existencia de un Sistema y se limita a describir y evaluar 14 portales o páginas web y 7 boletines o fichas de alertas, de acuerdo a la metodología presentada. No presenta una visión holística ni comprehensiva de los elementos del sistema en su conjunto lo que limita las conclusiones exclusivamente a las situaciones particulares. De todas maneras, la evaluación de los diferentes componentes es muy completa y hay propuestas de mejoras interesantes.10. Como conclusión central de la investigación de APCA está que, habiendo una gran cantidad de información agroclimática, la extrema dispersión atenta contra su disponibilidad y, por supuesto, su utilidad como herramienta para la toma de decisiones. Como solución se sugiere, en el corto plazo, la generación de un acceso directo desde la página del MINAGRI hacia un Portal donde esté contenida toda la información relativa al Cambio Climático que se genera en los diversos servicios relacionados con el Ministerio. Una segunda recomendación sugiere una plataforma centralizada y ejecutada por el Estado donde se participen actores relevantes en el ámbito del Cambio climático de los sectores público y privado, la academia y la sociedad civil.Por último, y siguiendo a la FAO (2011), se recomienda generar un intercambio de información relacionada con el Cambio Climático entre las instituciones del Estado imitando el ejemplo del MINAGRI y la DMC.11. Finalmente, si bien el Sistema Nacional es una realidad presente y reconocida adolece de una serie de falencias que lo invisibilizan, lo hacen poco accesible y valorizado en muchos círculos del sector agrícola. Estos van más allá de los aspectos de diseño y lenguaje señalados en la investigación señalada anteriormente y tienen que ver con aspectos institucionales y de gobernanza. En primer lugar, el sistema de información no está relevado como una acción prioritaria en el marco de la adaptación al cambio climático, lo que hace que no se les asignen recursos y medios para su desarrollo. Esta situación se presenta tanto entre los proveedores de servicios y los usuarios, entendiendo a éstos ampliamente, no sólo los agricultores sino también a los tomadores de decisiones y generadores de políticas. En segundo lugar, no tiene una inserción ni una dependencia clara operándose muchas veces por medio de acuerdos de buene voluntad. Las líneas de trabajo no se seleccionan de acuerdo a las prioridades de los usuarios, sino que según el sistema de concursabilidad de fondos que imponen los organismos de fomento o donantes.ODEPA. Plan de Adaptación al Cambio Climático del sector SAP (2013)(2014)(2015)(2016). La plataforma es fácilmente navegable para un público con conocimientos previos básicos en acceso a plataformas, es fácil acceder a la información disponible, se puede ver información local.En la plataforma se pueden ver datos agrometeorológicos, además de informes mensuales sobre coyuntura agroclimática y análisis de las distintas variables.En el mapa presentado en GEOMATIKA no existe información del secano costero, sólo del valle central.Debería existir una opción de descargar todos los datos disponibles de la estación. Así, el usuario/a puede trabajar los datos de manera independiente priorizando sus propias necesidades de información y ahorrándole tiempo.Sólo se indica el nombre de las estaciones y no sus coordenadas, lo anterior dificulta el trabajo si se quiere transferir la información a un sistema de información geográfico, además de no poder identificar el lugar preciso de ubicación de la estación si es que se quisiera visitar, lo que puede provocar confusiones en los Para que los usuarios/as puedan aprovechar de mejor manera la información disponible se sugiere agregar un mapa en la página principal con la ubicación de las estaciones, actualmente está la opción donde un puede buscar por región, sería más fácil si se presenta desde el comienzo el mapa con todas las estaciones, y de requerirlo el usuario/a filtra por región y por nombre de estación.Se recomienda hacer módulos o cápsulas de capacitación online asincrónicas en el uso de la plataforma y donde se muestren todas sus potencialidades a los usuarios/as, los cuales deberían 1 usuarios, respecto a la precisión del uso de la información, por ejemplo, al guiarse por el nombre de la estación y no por su real ubicación.tener una duración máxima de 15 minutos. Estas capacitaciones deberían ser promovidas localmente con ayuda de las Seremias, los Comités técnicos regionales de cambio climático (CTR-CC) y otros servicios con presencia comunal y regional, de manera de alcanzar un número importante de usuarios/as capacitados.Se sugiere agregar opción de descargar todos los datos disponibles de la estación, además del archivo con la ubicación de todas las estaciones. Observatorio Agroclimático plataforma no es fácil de navegar, cuando se ingresa desde el portal agroclimático (http://agroclimatico.minagri.gob.cl/) se llega a la plataforma en inglés, y no es fácil encontrar la pestaña para cambiar a español.La navegación en los distintos mapas no es fácil, ni intuitiva, cuesta Dificultad de acceder a todos los datos debido a una mala estructuración, por ejemplo, en el caso de querer visualizar información sobre El Niño, La Niña y la Oscilación del Sur (ENSO), se debe pasar por 3 páginas antes de poder ver la información, en otros casos son dos ventanas. Esto desmotiva al usuario/a a seguir indagando y revisando la información disponible.Si bien existe un manual de uso de la plataforma para aprovechar de mejor manera la plataforma, se recomienda hacer módulos o cápsulas de capacitación online asincrónicas en el uso de cada uno de los ítems de la plataforma y donde se les muestren todas sus potencialidades a los usuarios/as y se les explique en lenguaje simple la 2 comprender la información desplegada: Dentro de la información contenida es posible descargar un manual de uso, el cual es muy didáctico y está disponible en español e inglés.La información técnica es de muy buena calidad, pero no es comprensible para cualquier usuario/a, se necesita un amplio dominio de lenguaje técnico relacionado al cambio climático, por ejemplo, Índice de Precipitación Estandarizado, sequía agrícola, sequía hidrológica, etc., lo que hace que esta información sea de utilidad solo para usuarios con conocimientos avanzado en cuanto a cambio climático. utilidad de los datos disponibles y cómo éstos les podría ayudar en su quehacer diario, los cuales deberían tener una duración máxima de 10 minutos.Estos módulos deberían ser promovidas localmente con ayuda de las Seremias, los Comités técnicos regionales de cambio climático (CTR-CC) y otros servicios con presencia comunal y regional, de manera de alcanzar un número importante de usuarios/as capacitados.Al ingresar al geoportal es posible encontrar la información con facilidad, los datos son fácilmente descargables.En el caso del visualizador de mapas solo es posible visualizar los límites comunales, la otra información no está disponible para ser visualizada. Además, el visualizador no es amigable El visualizador de mapas es muy complejo de manejar y no presenta la información de manera que se pueda consultar fácilmente, lo que dificulta la interacción del usuario/a con el visualizador, imposibilitándolo de encontrar información sitio específica.La información se presenta dividida en cuatro visualizadores, lo que no hace Si bien existe un manual para el uso del visualizador, se recomienda hacer módulos o cápsulas de capacitación online asincrónicas en el uso del visualizador y donde se les muestren todas sus potencialidades a los usuarios/as, los cuales deberían tener una duración máxima de 15 minutos. Lo anterior facilitaría el acceso a un público más en sí para ver la información de las capas disponibles. posible su uso conjunto, dificultando la toma de decisiones considerando factores múltiples, lo que es de gran relevancia cuando se trata de cambio climático, el cual es un problema para abordar de manera multisistémica. extenso y no solo con conocimiento del uso de sistemas de información geográfica.Se recomienda ampliar la disponibilidad de toda la información en un solo visualizador, esto permite al usuario/a analizar la información de manera conjunta y no segregada, lo que mejoraría la toma de decisiones ya que se realiza de manera multifactorial.La plataforma se navega de forma intuitiva, sin embargo, no es tan fácil acceder a la información disponible, se puede visualizar y descargar información local en tiempo real, del día anterior y pronósticos a dos días.Si bien la página es de muy fácil navegación, es compleja la selección de la estación a analizar, ya que al pinchar sobre ella solo se indican los valores de las distintas variables actuales y un pronóstico de éstos, pero no el histórico. Para acceder al histórico se debe buscar la estación a consultar en otro menú.No existe información sobre modelos utilizados para la estimación de variables como evapotranspiración, solo se indica el método, esto dificulta el análisis de dichos datos.Para hacer más fácil la descarga de datos y su visualización, se recomienda que al momento de seleccionar la estación en el mapa se despliegue el menú donde se ponga a disposición la información que se quiere ver o descargar, esto hará más simple el uso de la plataforma lo que motivará su uso y consulta.Para abordar la brecha de la información respecto a los modelos utilizados, se recomienda generar un link a publicaciones que respaldan y explican el método.Desde el sitio web se puede acceder de manera sencilla a la distinta información disponible. Dentro de esta información es posible descargar el modelo de adaptación al cambio climático de la región del Biobío y el catastro frutícola.A todos estos visualizadores se puede acceder descargando archivos e instalando un ejecutable en un pc, a excepción del sistema de información territorial rural que lleva a la plataforma SIT rural (se analizará en otra ficha).La información generada por CIREN es de gran valor para la adaptación al cambio climático, sin embargo, gran parte de ella no se encuentra disponible en forma gratuita y debe ser adquirida a precios bastante altos, lo que dificulta su acceso, por lo que no es aprovechada ni utilizada para la toma de decisiones, ni en investigación científica y tecnológica.La información espacial disponible sólo se puede visualizar descargando un archivo al computador, por lo que no es posible verla desde un teléfono móvil o tablet.sugiere incorporar la información espacial a alguno de los otros geoportales existentes, de manera que pueda ser visualizada de manera más sencilla y no sea necesario descargarla a un computador. Lo anterior permitiría que mayor cantidad de usuarios tengan acceso a ella lo que podría aumentar su uso.Se recomienda analizar la posibilidad de aumentar la cantidad de información disponible en forma gratuita, como, por ejemplo, los estudios relacionados a las características del suelo en las distintas regiones.Desde la página principal del portal se puede acceder a la descripción de toda la información incluida en él. Para No es posible visualizar la información disponible, aunque se cumpla con el procedimiento de registro en el portal.Se sugiere incorporar en la página de inicio un aviso donde se indiquen los sectores del país que se encuentran actualmente en alerta acceder a la información es necesario registrarse como usuario.Una vez registrado se accede a una plataforma. fitosanitaria, este aviso puede ser similar al que indica las zonas en emergencia agrícola donde se muestra la región y se indica qué comunas están en emergenciaDesde el portal se accede fácilmente a información relativa a los pronósticos y ésta es fácil de entender para usuarios que manejan conceptos básicos relacionados al acceso de información en plataformas web.La información meteorológica (series temporales) se consulta por medio de una ventana que como dato de entrada solicita el nombre de la estación, lo que dificulta el acceso a los datos. No siempre se conoce el nombre de la Si bien la mayor parte de la información es accesible de manera fácil, además de estar presentada en un formato que hace fácil su comprensión, parte de la información de la sección datos no es fácil de consultar ya que se debe conocer el nombre de la estación o las estaciones cercanas al lugar de interés, lo que habitualmente no es conocido por un usuario/a no experto.Se recomienda en la sección datos agregar un mapa donde se indique la ubicación y nombre de las estaciones, de esta manera será más fácil su consulta y se llegará a mayor público. estación de la cual se requieren los datosLa información se accede de manera fácil, seleccionando el área temática que se quiere explorar, para luego seleccionar la cadena de impacto a visualizar.Una vez seleccionada la cadena de impacto se puede acceder a información especializada de amenaza, exposición, sensibilidad y riesgo. Cada una de las cuales está explicada en la parte superior del mapa.Para hacer un uso correcto de los resultados de riesgos presentados en el visualizador se debe poseer conocimientos técnicos en las distintas temáticas, de manera de entender los supuestos que están detrás de la construcción de cada uno de estos mapas.Hay que considerar que solo se muestra el riesgo y no se indica cómo se aborda para disminuirlos.Se recomienda llevar esta información a afiches que puedan ser difundidos a nivel local por los servicios con presencia territorial, de manera que puedan ser utilizados por los distintos actores.Se sugiere trabajar con esta información a nivel comunal con los actores involucrados de manera de en conjunto generar estrategias para disminuir el riego. La información se presenta de manera espacializada (en mapas), además se realiza un exhaustivo análisis de ésta, que permite que se comprenda de manera fácil, sin embargo, dado la cantidad de detalles e información que se presenta se debe leer varias veces para entenderla completamente.La información está a nivel comunal y no permite tomar decisiones sitio específicas.La información está expuesta para usuarios que manejan un lenguaje técnico avanzado, falta una adecuación para aquellos usuarios que no poseen conocimiento técnico avanzado.No es posible poder acceder al histórico de los informes, solo se tienen acceso a los dos últimos informes.Se propone incluir algunas recomendaciones específicas considerando las necesidades de los usuarios más vulnerables, por ejemplo, indicar qué implicancia tienen para ellos esas predicciones y qué medidas deben tomar.Incluir una opción para descargar los informes históricos.La información se presenta de manera espacializada (en mapas) y en gráficos, además se realiza un exhaustivo análisis de ésta, lo anterior permite La información está a nivel comunal y no permite tomar decisiones sitio específicas.Se propone incluir algunas recomendaciones específicas considerando las necesidades de los usuarios más vulnerables, por que se comprenda de manera fácil, sin embargo, dado la cantidad de detalles e información, es difícil seleccionar la información relevante, de acuerdo con necesidades específicas.La información está expuesta para usuarios que manejan un lenguaje técnico avanzado, falta una adecuación para aquellos usuarios que no poseen conocimiento técnico avanzado.No es posible poder acceder al histórico de los informes, solo se tienen acceso a los dos últimos informes. ejemplo, indicar qué implicancia tienen para ellos esas predicciones y qué medidas deben tomar.Se sugiere también incorporar una sección de recomendaciones para los productores considerando el escenario de los futuros meses. Incluir una opción para descargar los informes históricos.El contenido del informe es fácil de entender y ameno de leer.La información está a nivel macrozonal y no permite tomar decisiones sitio específicas.No es posible poder acceder al histórico de los informes, solo se tienen acceso a los dos últimos informes.Se sugiere hacer recomendaciones a nivel regional. Se recomienda hacer un boletín acotado a un máximo de una plana con las recomendaciones y que sea de difusión masiva en las distintas redes del ministerio. Incluir una opción para descargar los informes históricos.La información es presentada en una tabla y en forma gráfica, es fácil de visualizar y analizar, apreciándose en los gráficos las diferencias entre las distintas regiones del país.Falta incorporar una columna con los incendios activos, para poder tener el panorama completo, al momento de consultar.La información solo se presenta a nivel regional y no comunal, por lo que un Se propone incluir un mapa donde se visualicen los sectores que han sido afectados por un incendio en la temporada, indicando la comuna y región. Esto ayudaría a hacer frente a dos de las brechas identificadas. usuario/a no puede saber si su comuna se ha visto afectada por incendios y cuál es la diferencia con respecto a temporadas anteriores. La información se presenta solo en tablas y gráficos, lo que dificulta evaluar la magnitud del área afecta.Además, se recomienda incluir un mapa similar al de las emergencias agrícola, donde se indiquen los incendios activos.","tokenCount":"10080"} \ No newline at end of file diff --git a/data/part_3/9164769524.json b/data/part_3/9164769524.json new file mode 100644 index 0000000000000000000000000000000000000000..36a813b86712570930816cb3cfa220f1c127f154 --- /dev/null +++ b/data/part_3/9164769524.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"d29fd78e7e9d8c99c46b17f07df01a98","source":"gardian_index","url":"http://www.recentscientific.com/sites/default/files/3802.pdf","id":"-1372711549"},"keywords":["SWMM","Waterresources management","Rainfall Runoff models","Diass rive basin","Senegal"],"sieverID":"f4348534-b37a-4915-8bba-b12c699fd70e","pagecount":"8","content":"Conceptual distributed rainfall runoff models are very useful tools for water resources assessment in river system. In this study, we have used one of them SWMM, to simulate the hydrological behavior of Diass river basin. The aim is to evaluate the availability of water in this river basin for application to irrigation and market gardening. With hydroclimatic data and physical data of river basin, this software has calculated the flow and losses. We have first analyzed the spatio-temporal evolution of the losses. Secondly, we have compared graphically simulated and measured catchment runoff to appropriate model evaluation. The results show strong losses during the rainy season and a good fitness between calculated and observed flows. These results show the performance of SWMM to accurately represent the natural system. This study provides an opportunity for decision maker to take account many important elements before investment plans for irrigation in this area.The efficient assessment of water resources is a fundamental step for the rational management of water resources especially in arid or semi-arid areas where the pressure is increasing. This requires first understanding the different processes involved in the functioning of the water cycle (Singh, 1997). The environment of these water resources, today faces numerous challenges and issues such as the reduction of water reserves, irregularities rain, drought, climate change impacts and anthropogenic developments, etc. (Abdel et al.,2012). The use of numerical models has become essential to better understand the various risks faced by the water cycle (Dupont et al., 1998). A model is a description of a real system, natural, in a graphical or mathematical expression; and it is also the simulation of relations \"cause and effect\" of natural processes of nature by managing physical reproduction on a smaller scale (Matlas, 1967;Singh and Woolhiser, 2002). Modeling allows understanding the natural system, characterizing the variability of its components in order to study its behavior and to design the same in conditions or scenarios out of its normal environment (Chaponnière et al., 2007). Many disciplines use models to study issues relating to the basins of the environment, which constitute complex systems which are not currently possible to understand in all their detail (Morias et al., 2007). The modeling of hydrological systems is the application of mathematical expressions that define quantitative relationships between the characteristics of the output variables and the factors influencing these variables ( Beven, 2000). As the rain and flow are the two dominant variables in the path of water in the continental area, it is called hydrological modeling of rainfall-runoff relationship (Madson, 2000).The terminology has changed, now including more complex hydrological models, which use new variables, such potential evapotranspiration. Some prefer to call these tools, models of watersheds, or just, hydrological models (Anctil et al., 2003). However, there are as many models as hydrologists as each model corresponds to a given problem (Refsgaard 1996;Ambrose, 1999). Hydrological modeling poses first the problem of choosing the type of model and system performance, and secondly the choice of equations to represent the process, third representation of equations in the form of computer code and fourth parameterization, calibration model and its validation (Fleming, and Neary, 2004;Haberlandt, 2010). The transition from one stage to the next is possible only under certain approximations (Beven, 2000). Most Hydrologists try to find better model simulation of stream flow by using rainfall-runoff modeling. One of the most outstanding achievements of the last three decades is the development of rainfall-runoff model that hydrologists are possible to use rainfall data comprehensively to predict the discharge of river (Singh, et al., 2006). Rainfall-runoff modeling is often used because the discharge data of river is limited ( Dhemi, et al., 2010). From available rainfall data, there are many modeling developed to predict inflow data for irrigation design or flood analysis. Several forms or approaches can be used to classify mathematical hydrologic models. In terms of how processes are represented, the time and space scale that are used and what methods of solution to equations are used, rainfall-runoff models are empirical, conceptual and physically based (Todini, 2007). The empirical model is based on a simple mathematical link between input and output variables or if it includes the description, even if in a simplified way, of the basic processes involved in the runoff formation and development.They contain parameters that may have little direct physical significance and can be estimated only by using concurrent measurements of input and output (Melone et al., 2005). Physically-based models have a logical structure that tries to closely simulate the real-world system, based on the incorporation of the known physical laws governing the hydrologic phenomena (Beven, et al., 1979). This type of models includes some such as watershed runoff models based on St. Venant equations. Finally, when the model structure considers only highly simplified physical laws, models are said to be conceptual, and they constitute an intermediate between physically-based and empirical models (Ye, et al., 1997;Melone, et al., 2005). From the spatial point of view, rainfallrunoff models are classified as lumped, semi-distributed, and distributed (Traore et al., 2014). Lumped models ignore spatial variations in parameters within a system. They treat the complete basin as a homogeneous whole, and impose many assumptions, especially in large watersheds, as variables and parameters are representative average values (Madson, 2002). These models are generally designed to simulate the stream flow just at the watershed outlet. However, one may want to estimate the flow at some interior locations in a river basin for engineering design, for real time operational flood forecasting and also for studying the effects of land use or climate change. Distributed models, in turn, account for behavior variations from point to point throughout the system (Moradkhani, et al., 2009). The basin is divided into elementary unit areas and flows are passed from one to another as water drains through the basin (Refsgaard, 1997). Such models give the closest representation of the real system; they incorporate as many components of actual physical processes as possible (Shakti et al., 2010). These models present the advantage of simulating the values of different hydrologic variables at many points of the basin (Xu, and al., 2002).Semi-distributed models attempt to calculate flow contributions from separate areas that are treated as homogeneous within themselves (Ambroise, et al, 1995;Schuurmans, 2008). They are a compromise between distributed process models and lumped models (Jeannaud, 2007;Vahid et al., 2011). The choice of one of these approaches is influenced by the modeler himself (Lenhart, et al 2002). In this paper, we aim at evaluating water resource of Diass river basin on the west of Senegal. This requires a better understanding of the hydrologic phenomena and of how changes in the catchment may affect these phenomena. According to the scale of Diass river catchment, available data, required accuracy and our main objective, conceptual distributed models are more suitable for us. These models are able to simply accurately represent a complex system, describing its basic and most important components. An example of such models is the SWMM (Storm Water Management Model), developed by the agency of the environmental protection in the United States (U.S. EPA).The Diass watershed covers an area of 681.41 km2 (Fig1.). It is located west of Senegal (between latitude 14.64 ° N and longitude: -17.09 ° W .It is characterized by a Sahelian climate. There are two seasons, rainy from July to October and a dry season from November to June. The rainfall varies from 500mm to 800mm. The temperature reaches its maximum value (32.4°C) in October and the minimum value (17.7 ° C) in January and February. The average temperature is 25.3 ° C. Wind velocity varies according to the seasons. During the dry season, wind velocity ranging from 4.4 to 5.3 m / s and in winter, the winds have a velocity which is less than 4 m /s. In sum, the average wind velocity is of the order of 4 to 5 m / s. Sunburn has two respective peaks in May and November and two hollow in August and December. The climatic parameters (temperature, wind speed, insolation etc ...) play a vital role in the flow of this area. Diass boasts interesting soil and climatic agro potential for the development of market gardening and fruit growing. In this study, we have used the data of Penthior and Somone stations (Faye, 2009).The water cycle (fig. 2), is a global sun-driven process whereby water is transported from the oceans to the atmosphere, to the land and back to the sea, while it's being transformed between liquid, solid and gaseous phases. It is usually described in terms of five major components: precipitation, infiltration, evapotranspiration, surface runoff and groundwater flow (Chaponnière, et al., 2007) .The relation between these five components is illustrated as following: When precipitation ( rain, snow) reaches the land surface, it becomes of interest for hydrologists (Schuurmans, 2008). Some of the precipitated water is intercepted by the vegetation and other ground covers, from where it can evaporate back into the atmosphere. The other part reaches the soil and after that may form ponds on the surface, infiltrate or run over the ground. Ponds water can evaporate or infiltrate. Infiltrated water may too evaporate, percolate, be consumed by plants and then transpired or slowly move through the soil layers until reaching a stream (base flow). driven process whereby water is transported from the oceans to the atmosphere, to the land and back to the sea, while it's being transformed between liquid, solid and gaseous phases. It is usually described in terms of five major components: precipitation, infiltration, and groundwater flow ) .The relation between these five components is illustrated as following: When precipitation ( he land surface, it becomes of interest for ). Some of the precipitated water is intercepted by the vegetation and other ground covers, from where it can evaporate back into the atmosphere. The after that may form ponds on the surface, infiltrate or run over the ground. Ponds water can evaporate or infiltrate. Infiltrated water may too evaporate, percolate, be consumed by plants and then transpired or slowly ching a stream (base flow). Finally stream water reaches lakes or oceans and Todini, 2007).Management Model) is originally developed by the U.S. EPA (agency of the environmental protection) in 1971. It is a spatially distributed, rainfall-runoff simulation model used for single event or continuous simulation of runoff quantity and quality. SWMM has been updated many times since its first release, the most recent version being SWMM5.0.022 ( hydrology operates on a collection of catchments that receive precipitation and generate runoff and pollutant hydrographs, accounting for evapotranspiration, infiltration and groundwater percolation (Rossman, 2008). Runoff is transported through a system of pipes, channels, storage/treatment devices, pumps, and regulators. It is particularly well suited to urban basin to calculate simple or complex sewer systems and apply either for one-off events or for continuous simulations ( SWMM5 models have been used for a wide variety of watershed applications, as reported in the long series of many annual monographs resulting from Conference on Stormwater and Urban Water Systems held in Toronto every February.SWMM5 has an advantage in that it accounts for the loss of flood plain storage, conveyance and area. On the other hand, floodway analyses in steady flow models account only for the loss of conveyance.) SWMM5 is worldly accepted for floodway/flood plain determination ( basic data requirements for simulation are included: rainfall, temperature, wind velocity, evaporation, basin a equivalent length, overall slope, the perimeter, equivalent length, overall slope, land cover rate and possibly soil type With SWMM mathematical model, the flow is transported into predefined pipes or channels based on the equations of Sai Venant. The SWMM model transforms the rainfall to runoff using a non-linear method of reservoirs (infiltration, evapotranspiration ) are estimated by Horton equation.In this study, we have used the hydro stations of Penthior and Somone and the physical data of the watershed. The hydro climatic data come from the database of ANACIM (National Civil Aviation Agency of Meteorology) and physical data was obtained using the ArcView software. The period extending from 1980 to 2002, has been selected. It is the only period available for our study area.Once all necessary data are provided to the software, we have launched the simulation. The software gives as output the calculated runoff (or simulated) and estimated losses which were then recovered in Excel. this study, graphical approach we have first traced the hydrographs degree of infiltration and evapotranspiration and finally, the comparative hydrographs between flows to assess the performance of the model on the watershed. 1993 being the most interesting year hydrologically according to the non-parametric statistical tests in the area, we have chosed to represent its output in the first two parts. For the third part, the fact that only 1998 provides comprehensive flow measurements, we have also chosed its outputs to the comparison of simulated and observed flows. All the results Water cycle scheme .http://nd.water.usgs.gov 7295, November, 2015 7292 | P a g e updated many times since its first release, the most recent version being SWMM5.0.022 (Robert et al., 2012). SWMM5 hydrology operates on a collection of catchments that receive precipitation and generate runoff and pollutant hydrographs, g for evapotranspiration, infiltration and groundwater ). Runoff is transported through a system of pipes, channels, storage/treatment devices, pumps, and regulators. It is particularly well suited to urban basin to le or complex sewer systems and apply either for off events or for continuous simulations (Julien, 2008). SWMM5 models have been used for a wide variety of watershed applications, as reported in the long series of many annual monographs resulting from the annual International Conference on Stormwater and Urban Water Systems held in SWMM5 has an advantage in that it accounts for the loss of flood plain storage, conveyance and area. On the other hand, flow models account only for the loss of conveyance.) SWMM5 is worldly accepted for floodway/flood plain determination (James et al., 2011). The basic data requirements for simulation are included: rainfall, temperature, wind velocity, evaporation, basin area, perimeter, equivalent length, overall slope, the perimeter, equivalent length, overall slope, land cover rate and possibly soil type. Once all necessary data are provided to the software, we have simulation. The software gives as output the calculated runoff (or simulated) and estimated losses which were then recovered in Excel. We have essentially adopted in approach based on a visual analysis. Thus, hydrographs of losses to analyze the degree of infiltration and evapotranspiration and finally, the between observed and simulated flows to assess the performance of the model on the watershed. he most interesting year hydrologically according parametric statistical tests in the area, we have chosed to represent its output in the first two parts. For the third part, the fact that only 1998 provides comprehensive flow ave also chosed its outputs to the comparison of simulated and observed flows. All the results obtained are presented in the next section.We present in Fig. 3a and Fig. 3b the evolution of losses respectively at Penthior and Somone stations. It is been observed the strong losses from July to September corresponding to rainy season. These strong losses would be due to the strong infiltration (or percolation) because of the soil texture through its permeability, evaporation under the effect of the sun and transpiration related to the plants. This result gives an idea on the climatic and pedological conditions of the basin.Evaluation of the model is done to establish how well it is reproducing the measured data. In this study, we have used graphical techniques to appropriate SWMM evaluation. This approach provides a visual comparison of simulated and measured data. Thus, Fig. 4a and fig. 4b show the corresponding comparison between observed and simulated hydrographs respectively at Penthior and Somone stations. The results show a good agreement between the simulated and observed catchment runoff (i.e. a good water balance) for each of the two stations. Then, SWMM is well suitable to restore missing flows from rainfall, and particularly to assess the water resources.Due to the complex nature of the most of the hydrologic systems, hydrologists often use distributed rainfall-runoff models to simplify this complexity to better understand in all their detail. The distributed models have gained popularity over the other models thanks to \"the possibilities of considering spatially variable inputs and outputs and analyzing the hydrological response at ungauged basins\", and \"their potential to provide information about the flow characteristics at points within the catchments\". In this, we have used one of them named SWWM. We aim here at evaluating water resource of Diass river basin. We have adopted in this study, graphical approach based on a visual analysis. Thus, we have first traced the hydrographs of losses to analyze the degree of the losses and finally, the comparative hydrographs between observed and simulated flows to assess the performance of the model on the watershed. The results show strong losses during the rainy season (due infiltration and evapotranspiration) and a good fitness between calculated and observed flows. Then, this study shows that SWMM is well suitable to restore missing flows from rainfall, and particularly to assess the water resources. However, it's necessary to keep in mind that hydrologic model involves similarity but not identity, and simulates some, but not all the characteristics of the real system. Other research including other model and approaches under different conditions, are necessary to widen the angle of reflection for the better Knowledge of the physical system. ","tokenCount":"2894"} \ No newline at end of file diff --git a/data/part_3/9179934636.json b/data/part_3/9179934636.json new file mode 100644 index 0000000000000000000000000000000000000000..32d6691aaf74c17bac10b102c42011225fe61097 --- /dev/null +++ b/data/part_3/9179934636.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"82bda0edf7519230715dc9b7ebf6ff02","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/426c59a1-cc54-4bb9-9877-e10a188563e6/retrieve","id":"353172490"},"keywords":["Renewable power generation","computable general equilibrium","energy model","Dutch disease"],"sieverID":"b4a87140-d099-4d45-b6e9-d1668d099fcb","pagecount":"41","content":"established in 1975, provides research-based policy solutions to sustainably reduce poverty and end hunger and malnutrition. IFPRI's strategic research aims to foster a climate-resilient and sustainable food supply; promote healthy diets and nutrition for all; build inclusive and efficient markets, trade systems, and food industries; transform agricultural and rural economies; and strengthen institutions and governance. Gender is integrated in all the Institute's work. Partnerships, communications, capacity strengthening, and data and knowledge management are essential components to translate IFPRI's research from action to impact. The Institute's regional and country programs play a critical role in responding to demand for food policy research and in delivering holistic support for country-led development. IFPRI collaborates with partners around the world.The Philippine economy has started to maintain strong economic growth in the past few years after slackening growth for decades. This exciting opportunity, however, is accompanied by the challenge of how the country will meet its future energy demand to support the growing economy.The power sector plays a central role in this regard. Not only does it provide essential input for the industrial and service activities that have become the engine of growth, but more important, electricity has become a basic public good for all Filipinos living today and, moreover, in the future.Past experience has shown that the country needs to make strong investment in the power sector across the country to allow the supply to catch up with the soaring demand (Cham 2007;USAID 2013;TIME 2013). Given the country's aim of achieving energy security and its strong effort to fight climate change, moving toward more renewables in the power sector has been the government's target (Congress of the Philippines 2008, DOE 2011, Philippines Climate Change Commission 2016). A reduction in greenhouse gas (GHG) emissions is the long-term externality that the country would expect to have under this green growth strategy. Energy dependence on a foreign country will also decline, creating more stability in the growing economy. Furthermore, green job growth in the renewable power sector will also flourish as fossil fuel-based power plants are replaced. Finally, financial compensation from carbon emission reduction provided by developed nations is another potential benefit the country would gain from this climate mitigation policy (UN 1992;UNFCCC 2009).All of these benefits, however, will come only at a cost that has to be paid in advance. The Philippines has to be ready to bear a higher cost of electricity production from renewable sources compared with fossil fuel-based sources such as coal. Allocating future investment into other sectors that might have been more profitable and contributed more to economic growth is another opportunity cost of promoting investments in the renewables. Industrialization processes could also slow down given the higher price of electricity that potentially deters production in manufacturing sectors. As a consequence, there will be less labor that can move into the manufacturing sectors, which reduces laborers' potential to earn higher income in the future. An increase in commodity prices is also expected, which eventually reduces household welfare. This effect could become more serious among vulnerable households who spend much of their income on basic necessities.This study seeks to understand the optimal energy pathways to promote renewable power generation in the Philippines as the economy maintains strong economic growth. We approach this issue by understanding the energy mix of electricity generation based on the least cost approach that maximizes benefits to society. It first explores the optimal energy mix to target 50 percent renewable power generation based on the country's energy resource potential and the investment cost across different technologies. Then it conducts an economywide impact assessment to understand the implications of this green growth strategy as more capital investments are allocated to support renewable power plants, in accordance with the optimal energy mix.The economywide cost of allocating resources to support the production of renewable energy in the power sector is estimated based on the reallocation of factors across sectors. Factor movement into manufacturing sectors, which reflects the industrialization process, is analyzed by observing labor reallocation as the more investment is allocated into renewable electricity to achieve the targeted renewable share. Green job opportunity is presented by showing the additional amount of labor needed to produce renewable energy in the power sector in contrast to the reduction of labor in fossil fuel-based power plants. The net impact on factor payment will translate into changes in household income that will steer income distribution and economic welfare. Based on this welfare indicator, compensation from the government to vulnerable households is expected, given the potential for income reduction coupled with higher commodity prices in the economy. Finally, the cost of carbon mitigation is estimated by calculating how much foreign transfer is needed to compensate for the welfare loss from this green growth strategy. The health co-benefit from the reduction of GHG emissions is also calculated to estimate the externalities benefit that society will gain in the future.We employ a novel approach in assessing the opportunity cost of energy transition in the power sector by linking two complementary models: a bottom-up TIMES (The Integrated MARKAL-EFOM System) energy assessment model and a top-down Computable General Equilibrium (CGE) model. The two models are solved dynamically by running simulations from 2014 to 2040. To allow the two models to communicate with each other, we build a soft linkage approach by setting up the price trend following the TIMES model, while the electricity demand on the other hand is endogenously solved by the CGE model. In calibrating the two models, we set up the growth parameters of supply mix and electricity demand from two comprehensive studies that take into account detailed microeconomic factors (Ravago et al. 2016;Danao and Ducanes 2016). Iteration between the two models is conducted until both models reach similar parameter values of electricity supply and demand growth rate. In this way, we have set up a proper baseline for the two models to run under similar supply and demand growth trajectories. More detailed discussion on the calibration process is given in the next section.The next section provides overviews of the CGE and TIMES models and describes how the two models are linked. Scenario design is discussed in Section 3 to explain how we approach the research questions through simulation analysis. Section 4 presents the baseline result to show the model calibration output by focusing on the electricity sector. Simulation results are presented in the Section 5, exploring the economywide effects of promoting renewable power generation through factor reallocation as well as the co-benefit gain. Finally, Section 6 provides a summary and some policy recommendations.Understanding the economywide impact of promoting renewable electricity generation requires deep understanding of both the economic structure and the detailed system cost of the power sector itself. An energy system model such as TIMES offers an ideal approach to identify the optimal pathway of promoting long-term renewable policy development in the power sector. The model provides the least cost solutions for alternative technology selection to supply the energy to meet future demand. This optimal energy mix is solved using a linear programming approach that computes an economic equilibrium for energy markets from the supply to the end-use energy services across time. The TIMES model also computes both the energy flow and energy prices in such a way that the suppliers of energy produce exactly the amount of energy demanded each year.The main building blocks of the model are the processes (types of power plants or technologies) and commodities (energy carrier, cost, emission, and so on), which are connected by commodity flows in a network called the reference energy system (RES). The commodities flow through the process, and the process itself represents a technology in the RES. This approach facilitates graphical analysis of the whole energy system, from primary energy resources to the end use of energy services by each sector, through different conversion processes.The TIMES model determines the energy and technology mix needed to meet the energy demands of a particular energy system, given specific limitations regarding available technologies and energy sources. It then determines an optimal energy supply mix based on technological and economic parameters, such as the minimum cost for the technologies selected. Figure 1 shows the schematic structure of the TIMES model. Key exogenous input parameters are a techno-economic database, energy demand, energy prices, emission coefficients, targets, subsidies, and taxes.Endogenous outputs are technology investments, annual activities of technologies, energy requirement, marginal energy prices, leveled cost of electricity, import/export of energy, emission trajectories, emissions permit, and total discounted system costs. 1 The TIMES model used in this study is the most widely used energy system optimization model, having been used in many country-level analyses (for example, Rout et al. 2011;IRG 2010;Amorim et al. 2014;De Laquil, Wenying, and Larson 2003;Nguyen 2005;Mondal, Kennedy, and Mezher 2014). The Philippine Dynamic Computable General Equilibrium (Phil-DCGE) model, on the other hand, is an economywide model that was built based on the standard International Food Policy Research Institute (IFPRI) model (Lofgren, Harris, and Robinson 2002) but extended by incorporating the interperiod solution to capture the effect of changes in investment and capital accumulation as documented in Diao and Thurlow (2012). The strength of this model is its ability to capture the interlinkages of economic activities across sectors and the interactions among agents 1 Detailed parameter values assigned in the TIMES model can be found in Mondal et al. (2018). across the economy in a consistent manner based on microeconomic theory. This type of model has also been applied to analyze energy and environmental issues at a country level in a number of cases (for example, Arndt et al. 2016;Rosegrant et al. 2016;Pradesha and Robinson 2017;World Bank 2010;Wiebelt et al. 2013).The model can be seen as a laboratory experiment that allows us to capture the impact of certain economic shocks on the whole economy. In this study, we introduce the optimal energy supply mix in the power sector to meet certain targets for renewable electricity generation. This sector-specific shock will consequently affect the rest of the economy through reallocation of input factors across sectors. The Phil-DCGE model will then give a new solution by finding the new equilibrium level that results in the maximum benefit to all agents, following the movement of prices and factor payments. The net impact of this shock can be traced from the micro to the macro level, given the model's ability to capture changes in both factor and commodity markets consistently. This feature is very appealing and informative to policy makers because it could help identify the potential direct and indirect effects of the shock, helping them anticipate any unintended spillover effects. Furthermore, the model also includes macroeconomic components that allow us to analyze some policy responses to mitigate the negative effects of the economic shocks.In this study, the Philippine economy is portrayed in the model using social accounting matrix data based on the most recent input-output table and supported by various other macroand microlevel datasets (PSA 2014). Given the energy focus of the study, the energy sector is disaggregated into 14 different sectors based on energy balance and the Global Trade Analysis Project (GTAP) database (DOE 2015;Aguiar, Narayanan, and McDougall 2016). The energy balance is used to calibrate the energy supply and demand structure, whereas the GTAP database provides a matrix of electricity production based on different technologies. Carbon emission data from each industry are also constructed following the International Energy Agency (IEA) database (IEA 2017). We choose 2014 as the base year, and the model solves recursively for each consecutive year to 2040. The model includes 14 agricultural subsectors, 3 mining subsectors, 14 food-industry subsectors, 7 other manufacturing subsectors, 14 energy subsectors that include fuel and power sectors, and 7 service subsectors. Detailed descriptions of these 59 subsectors are provided in Table 1A in the appendix. The more detailed disaggregation of the electricity/power sector is intended to facilitate model linkage with the TIMES model. All production activities in the model combine intermediate and factor inputs used in generating sectoral outputs. For the electricity sector, we set up a single commodity with a multiple-output production system. We follow this approach to capture the features of the electricity market in the country, wherein electricity produced by all power plants has to be connected to a central grid before it is distributed to users. We assume that both capital and labor are mobile across sectors, given the long-term analysis of the study. Labor is categorized based on four levels of education to represent unskilled labor at one extreme and highly skilled labor at the other. The model categorizes households based on income levels and location, both based on the country's three major subregions and whether households are living in a rural or urban area. Based on the discussion above, it is clear that the two models have different features and strengths to capture the market dynamics of the electricity sector. The energy TIMES model is a partial equilibrium model that provides detailed analysis at a sector-specific level to inform the optimal energy supply mix in the power sector that meets total electricity demand. On the other hand, the Phil-DCGE model provides an economywide analysis encompassing all sectors in the economy and the interlinkages between commodity and factor markets, based on microeconomic theory. In this study, we use the TIMES model to complement the Phil-DCGE model by providing information on the electricity price and energy supply mix in the power sector based on lowestcost solutions. On the other hand, the Phil-DCGE model provides the electricity demand trend to the TIMES model in order to capture market dynamics as a response to changes in electricity supply. The models are linked by adjusting these parameters until a new equilibrium is achieved (Figure 2).In linking the two models, we first calibrate both models to reach a similar equilibrium level based on the most plausible future condition of the economy and electricity market situation in the country. We take advantage of earlier studies conducted by our collaborators that provide projections on economic growth, production mix, and electricity demand in the Philippines through the year 2040. Ravago and colleagues (2016) conducted a comprehensive study on the power sector in the Philippines that explored plausible scenarios of a power supply mix to fulfill future electricity demand. The study considers the country's installed capacity in both fossil and renewable power sources as well as the potential environmental cost of producing electricity. The authors suggest that under a high economic growth scenario of 7 percent per year, the country would potentially utilize lower-cost electricity production from coal power plants at the early stage, despite some environmental cost. They found that the generation supply mix in 2040 will be dominated by coal, at 56 percent, followed by conventional renewable energy and natural gas.Variable renewable energy sources such as solar, wind, and biomass will take minimal shares, whereas the contribution from natural gas power plants will be about 16 percent of total power generation. Table 1 provides the calibration results from both the TIMES and CGE models for 2040, following Ravago and others (2016), showing the plausible future condition of the energy supply mix in the power sector. On the demand side, we follow Danao and Ducanes (2016), who forecast that electricity demand under strong economic growth would increase by 5.7 percent per year. This parameter is also used to calibrate both the TIMES and the Phil-DCGE models as another linkage point. Based on this common calibration process, we have indirectly set up two-way communication between the two models. The results will become the common base run for both models, to be compared with simulation scenarios that will be discussed in the next section.The main focus of the study is to understand the potential economywide impact of promoting renewable power generation in the Philippines by exploring alternative pathways of technology selection based on the lowest-cost approach to producing electricity. Among all other renewable technologies, solar has become the most promising technology that allows renewable electricity generation to compete with fossil-fuel power plants. The free fall of production cost has been followed by a sharp increase in installations worldwide (Martin 2018). Global investment in research and development, as well as economies of scale, are the key factors that help suppress the solar investment cost.This trend is expected to continue, but the speed will depend on various factors. Mayer and colleagues (2015) did a comprehensive study to project the future long-term reduction in the cost of large-scale solar installations, based on combining a bottom-up and a top-down approach. They came up with four different scenarios reflecting, on the two extremes, conservative to optimistic market situations in the future. We follow the country-level result for Thailand as stated in the paper, which we believe closely reflects the solar market in the Philippines. Simulations 1 and 2 (SIM1 and SIM2, respectively) in Table 2 capture these market trends. SIM1 applies the optimal energy supply mix in the power sector provided by the TIMES model, aiming to achieve a 50 percent share for renewables in 2040 under a conservative reduction in solar investment cost.SIM2, on the other hand, provides for the possibility of a further reduction in solar investment cost by 30 percent, following the optimistic market situation described by Mayer and colleagues (2015).We represent this cost reduction by reducing the capital requirement to produce the same electricity from solar power plants as in SIM1, so as to reflect the cost-saving possibility of promoting renewable power generation. As a result, there will be less capital needed to support solar electricity production, which reduces capital constraints in the economy. The remaining simulations explore another opportunity-that of earning significant foreign transfer money into Philippine government accounts from developed countries who agree to cover the full incremental costs of mitigation measures (UNFCCC 2009). We set up the scenarios by introducing foreign transfers to government accounts in order to cover the welfare loss from promoting renewable power generation as captured in SIM1 and SIM2. Therefore, SIM3 corresponds to SIM1, and SIM4 corresponds to SIM2. Comparing these scenarios could show us the cost of a carbon mitigation policy under two different market situations by measuring how much foreign transfer is needed to cover the welfare loss resulting from reducing carbon emissions by promoting renewable electricity generation.Furthermore, SIM3 and SIM4 provide analysis of the impact of receiving foreign transfers while the economy is undergoing an industrialization process as well as promoting renewable energy technology under SIM1 and SIM2 scenarios respectively. A high flow of foreign transfers could potentially deteriorate economic growth if the traded sectors lose competitiveness due to appreciation in the exchange rate. This will cause more input to move into nontraded sectors, which could further slow down the industrialization process. Thus, the two simulations analyze the potential Dutch disease effect from receiving foreign transfers.Finally, SIM5 is designed to capture the policy impact of promoting domestic investment to anticipate the Dutch disease effect of having a high flow of foreign transfers, as reflected in SIM4. In this scenario, we assume an investment share increase of up to 1 percent to let the new capital inflow from foreign transfers be absorbed by domestic investment activities. This simulation can be seen as a policy response of stimulating more factors to move into the traded sectors, in order to mitigate the potential negative effects of foreign transfers that could slow down the industrialization process in the country.This study assumes that the Philippines could maintain strong economic growth in coming decades and anticipate high demand for electricity by committing to investment in the power sector. We set the economy to grow at 7 percent annually, following the optimistic view suggested in Ravago and colleagues (2016), in which the country will reach high-income status in 2040. Under this strong growth scenario, the demand for electricity is forecast to increase by 5.7 percent annually, according to the recent study by Danao and Ducanes (2016).Figure 3 shows results from the Phil-DCGE model for gross domestic product (GDP) and electricity demand trend, showing how strong economic growth is followed by a growing demand for electricity. The 2040 GDP is expected to be more than four times its base-year level, with the industry and service sectors dominating economic activities. A structural transformation process is also observed, whereby a lower share of agriculture in the economy is followed by an increasing share of industry. Given the high demand for electricity as an input factor in both industry and services, the electricity demand has to grow in pace, pushing up the electricity market to reach about 2 trillion Philippine pesos (PHP) in 2040. This huge market potential indicates that future investment in the electricity sector is needed to meet the growing demand, and renewable electricity generation should take a bigger share if the government chooses to promote a green growth strategy. One of the main concerns in promoting renewable energy is the potential disruption in the economy caused by the energy transition process. The industry and service sectors are the ones that would be much affected by this transition process. However, these sectors are affected mainly by indirect effects such as from changes in electricity price. On the other hand, the more important direct impact of the energy transition will hit mainly the energy sector itself and the bigger the energy sector in the economy, the stronger the disruption that might take place. In the case of the Philippines, the share of the energy sector in total GDP is only about 4.6 percent, with around half of this contribution from the electricity sector (Figure 4). This economic structure shows that the potential negative effect from the energy transition in the power sector should be minimal. Other energy sectors in the economy that also supply energy input to electricity have even smaller value-added. As shown in Figure 4, the oil industry, comprising crude oil, diesel, and fuel, in total accounts for only about 1.7 percent of GDP, while the coal and gas industries combined make up about 0.3 percent of total GDP. These figures indicate that it will be less likely that the energy transition into renewables in the power sector would significantly disrupt economic activities and halt the dream of the country to become an advanced nation in the coming decades. The CGE model also produced carbon emission indicators for energy-intensive sectors such as electricity, manufacturing, and transportation. Total emissions are calibrated to follow carbon emission data from IEA (2017), in which total carbon emissions in 2014 for the Philippines are about 96 million tons of CO2. Among the energy-intensive sectors, electricity has become the biggest emission contributor. In Figure 5, the inner part of the pie shows that almost half of total carbon emissions actually originate from the electricity sector. The transportation sector, on the other hand, accounts for only about 28 percent of total emissions. Manufacturing and other sectors take the rest, together accounting for about a quarter of total emissions in the country.The carbon emission structure also does not change much in 2040, as shown by the outer part of the pie (Figure 5). The growing emissions share from the transportation sector is mainly caused by the stronger demand for service activities to move more commodities produced in the future. On the other hand, the increasing emissions contribution from electricity, from 48 to 50 percent, is caused by a higher share of coal in the energy supply mix to meet the future electricity demand. This emissions trend suggests that there is large potential for the country to reduce carbon emissions by promoting an energy transition into renewables in the power sector. Under the baseline scenario, the Philippine government is assumed to follow the status quo, whereby fossil-fuel energy will dominate the power sector. Figure 6 provides a more detailed projection of the Philippine energy supply mix across time. The power sector has been depending on coal power plants to produce electricity, and this trend could potentially become stronger in the future. It is projected that the coal share in the energy supply mix will increase from about 40 percent in 2014 to 57 percent in 2040. On the other hand, the share of conventional renewable generation will decrease to 24 percent. This means that investment allocation in the power sector will mainly go to promote development of coal power plants instead of allocating more resources into renewables. Consequently, total emissions in the country are expected to grow strongly, asshown by the upward lines, with the carbon contribution from electricity going up, on average, by 4.5 million tons of CO2 per year.This section explores some economic challenges that the country would face as the government commits to promoting a higher share of renewable generation in the power sector. The analysis will be focusing on macro-level changes such as economic growth, input factors movement, and welfare impact at both the national and the household level. The cost of carbon mitigation is estimated by calculating how much foreign transfer is needed to maintain the welfare level as in the baseline scenario. Furthermore, the macroeconomic impact from this foreign transfer is also assessed by anticipating the potential Dutch disease effect as the country receives a high flow of foreign capital. The result from the TIMES model on the optimal energy mix for targeting 50 percent renewable generation in 2040 is used as the starting point of the analysis. This energy supply mix is adopted in the Phil-DCGE model under all scenarios by adjusting the working capital in the power sectors to closely match the supply mix result provided by the TIMES model (Table 3). In comparison with the baseline, the share of fossil fuel-based generation decreases by 25 percent, with the biggest reduction observed in coal-based generation. The coal share falls from 57 to 35 percent, while generation based on other fuels decreases from 17 percent to 15 percent. For diesel and heavy fuel oil generation, the TIMES model suggests that there will be a complete shutdown of these technologies, given their 0 percent share. However, in the Phil-DCGE we cannot have 0 production, so instead we set the two technologies to produce minimally.On the other hand, the share of renewables peak up to match the fossil fuel-based generation share, supported mainly by variable renewables. Solar technology takes the lead, with As mentioned earlier, the optimal energy mix is applied in all scenarios. The first two scenarios, however, look specifically at how the impact of promoting renewable generation would be different under two different market situations that drive solar investment cost. The first scenario (SIM1) adopts a conservative reduction in solar investment cost, whereas the second scenario (SIM2) reflects an optimistic view, in which the solar investment cost could be reduced by a further 30 percent. Lower investment cost means that less capital is needed to build a solar power plant. As a result, SIM2 should provide less negative impact compared with SIM1 because less capital is absorbed by the power sector, which reduces capital constraints under the renewable energy transition process.The macroeconomic impact of promoting renewable power plants shows that real GDP could be reduced by 0.5 percent under SIM1 (Figure 7). The negative impact becomes less under SIM2, in which GDP decreases by only 0.3 percent. Again, this is the result of different investment costs in solar production. Private consumption, which is the main component of GDP, decreases Note: GDP = gross domestic product.Figure 8 illustrates the relationship between capital movement and GDP change as the economy puts more investment into renewable power generation. Given the limited supply of capital, allocating more investment into the power sector means that there will be less capital available to support production in other sectors. As a result, GDP starts going down in 2030 as more capital is absorbed by the power sector to promote production of renewable electricity, especially to build new solar power plants. In total, the capital demand of the electricity sector needs to go up by 21 percent under SIM1 at a cost of capital reduction in other sectors. However, given the lower capital requirement to invest in renewables under SIM2, the negative impact on GDP is smaller. Lower capital demand from renewables under SIM2 also allows the other sectors to produce more goods in comparison with SIM1 because of fewer capital constraints in the economy.Capital movement into the power sector is followed by reallocation of labor across sectors.This condition will affect the structural transformation process as the country starts producing and SIM2), more capital is absorbed by the industrial sector. However, this capital mainly goes into the electricity sector to promote production of renewable generation, especially solar power plants (Figure 9). Given the capital-intensiveness of the electricity sector, there is only a slight increase in labor demand in the electricity sector, about 1.3 percent under SIM1 and only 0.1 percent under SIM2. On the other hand, labor demand decreases by around 0.2 percent in other industrial sectors under both scenarios. Furthermore, there is a slight increase in labor demand from the agriculture sector, which further slows down the structural transformation process. Within the electricity sector, we observe growing demand for green job opportunities as more labor is released from fossil fuel-based power plants. Under SIM1, renewable power generation could potentially hire more workers by 95,000 in 2040 compared with the baseline scenario (Figure 10). On the other hand, about 86,000 workers have to be released from fossil fuelbased power plants due to lower production of electricity from these plants. The same trend is also observed under SIM2, where 90,000 additional workers are expected to move into renewable power plants, followed by reduction of labor in fossil fuel-based power plants at the same rate.This labor movement suggests that there is only a slight increase in labor demand in the power sector. Indeed, under SIM1, about 8,000 additional laborers are needed in the power sector. This Renewable demand becomes less than 1,000 under SIM2. This labor movement also suggests that there is potentially less disruption than one might expect in the labor market for the power sector, given that all labor from fossil fuel-based power plants could be absorbed by the renewable sector.However, there is a need to support this process by providing training and education as well as more information about job opportunities in the renewable sector. This incentive will help future workers to be well prepared and help them get into the growing renewable energy industries. As mentioned earlier, production across sectors, including electricity, has to go down due to reallocation of factors to promote renewable power generation. Despite getting more capital, the power sector will produce less output when the share generated renewably increases. This is mainly due to the high cost of producing electricity using renewable technology, compared with fossil fuel-based technologies such as coal power plants. As a result, electricity production is projected to decrease by 1.63 percent in 2040 and its price is expected to go up by 2.8 percent.Given the important role of electricity as an input commodity in other sectors, the higher price of electricity has added more burden on the lower capital usage by other sectors. This means that the economy has to face two challenges as it promotes production of renewable electricity-a lower supply of capital in the economy coupled with a higher price of electricity-that cause output production across sectors to be reduced further. Figure 11 shows that output from the industry and service sectors is projected to go down by 0.69 and 0.64 percent, respectively. On the other hand, agricultural output decreases by only 0.25 percent. This difference shows how strongly the electricity sector affects production activities in industry and services, compared with the agriculture sector. This also shows how disruption in the power sector could slightly affect the industrialization process that the country is undergoing. Lower production across sectors means that there will be less demand for input factors, which translates into lower factor payment. As expected, both capital and labor payment decreases as the economy promotes renewable energy production (Figure 12). Less negative impact is observed under SIM2, given the smaller distortion in the factor market when the solar investment cost is cheaper. Under SIM1, capital rent is projected to decrease by 0.1 percent, while wages decrease further, up to 1 percent, in 2040. Workers with no education who mainly work in low-value-added sectors such as agriculture experience the highest wage reduction. However, higher-skilled workers who have earned at least a secondary education are also getting paid less, by 0.9 percent. Household income is also expected to decrease, given the reduction in factor payments.The lower-income group, who mainly earn their income from low-skilled labor, should suffer more than the rich, given that less impact is observed on factor payments for high-skilled wages and for capital rent. However, the impact on net welfare shows that the lower-income group suffers less than the higher-income group (Figure 13). Price changes and consumption patterns drive the results. Higher prices for manufactured goods that are mainly consumed by the higher-income group cause their purchasing power to go down despite less impact on the income they receive.On the other hand, the lower-income group, who spend much of their income on food, gets a benefit, given the reduction in food prices, such as that of rice, despite a higher reduction in their income.Figure 13. Household welfare across income groups in 2040Source: Constructed by authors from computable general equilibrium model simulation results.Overall, we observe that welfare reduction among the lower-income group is far less than in the higher-income group. Within the higher-income group itself, urban households actually suffer the most, accounting for about 70 percent of total welfare loss. Under SIM1 the welfare loss from the higher-income group accounts for about 230 billion PHP, which is much higher than that of the lower-income group, who lose only 45 billion PHP (Figure 13). Under SIM2, the welfare impact is less severe, with the higher-income group losing only about 145 billion PHP. Similarly, welfare loss among the lower-income group is far less, at about 30 billion PHP. In total, promotion of renewable power generation is projected to reduce household welfare in 2040 by 275 billion PHP under SIM1. But this loss could be reduced by 100 billion PHP if the future investment costof solar energy can be suppressed further. This result also shows that promoting renewable power plants is less damaging and can be seen as a pro-poor energy policy given its less negative impact on the more vulnerable group.At the national level, welfare loss is indicated by changes in total absorption, comprising public and private consumption as well as investment demand. In total, promotion of renewable electricity generation would cost the economy 351 billion PHP under SIM1, but this loss becomes less under SIM2, where the total absorption is reduced by only 216 billion PHP (Figure 14). This result again suggests that the welfare loss from the energy transition into renewables can be suppressed if the future investment cost of renewable technology, such as solar, becomes cheaper. On the other hand, by promoting production of electricity from renewable technology, the country could potentially reduce carbon emissions by more than 60 million tons in 2040 (Table 4).There is not much difference in emissions reduction under the two scenarios. The main reduction is obviously caused by less use of coal to produce electricity. Emissions reductions from other sectors are also observed, but the total is small, less than 2 million tons. This emission reduction, however, is mainly contributed by less use of oil in the economy. Overall, by aiming for a 50 percent share of renewables in electricity generation, the country could potentially reduce CO2 emissions from coal by 62 million ton, which is equal to 27 percentage point reduction from the baseline.Figure 15. Demand for imported energy commodities in 2040Source: Constructed by authors from computable general equilibrium model simulation results.Another benefit that the country could gain from transitioning into renewable technology is improvement in energy security through less dependency on energy imports. Coal is the main fossil fuel used to produce electricity in the country, and more than 60 percent of coal is imported.While the country is transitioning into renewable energy, less coal is needed to produce electricity, which consequently reduces the demand for imported coal. It is observed that imported coal could be reduced by 24 percent in 2040, compared with the baseline scenario, if the country aims to reach a 50 percent renewable energy generation share (Figure 15). Imports of other energy, such as oil, could also be reduced, but the magnitude would be small compared with the reduction in coal. This is mainly because oil has a small share in electricity generation, which makes the impact on it from the energy transition smaller.Less imported energy will not only increase the energy security of the country, but it could also improve the current account balance. Given the fixed foreign savings assumption imposed on the model, the real exchange rate has to adjust, which makes the country's currency appreciate.The model shows that when renewable electricity generation is promoted, the real exchange rate appreciates by 0.1 percent in 2040. As a result, imported goods become cheaper than before, which makes the price for some commodities, such as food, decrease. This is one reason why we observe a reduction in the price of foods such as rice, as discussed earlier, which eventually improves the welfare of vulnerable households who spend much of their income on food. On the other hand, appreciation in the real exchange rate slightly hurts the exporting sectors such as manufacturing,given that the country becomes less competitive in the world market. This is another factor, in addition to the higher price of electricity, that pushes down production in the manufacturing sector.Finally, the potential health co-benefit of promoting renewable energy production can be estimated by calculating how much power generation from coal power plants is reduced, which implies less air pollution emitted from the power plants. The main air pollutants from coal power plants are sulfur dioxide (SO2), nitrogen dioxide (NO2), and particulate matter (PM10). We adopt the parameter of the externality cost from air pollution emitted by coal power plants proposed by Gunatilake, Ganesan, and Bacani (2014). These authors evaluate the potential cost of air pollution from coal power plants in India by monetizing the value of avoided premature mortality using the value of statistical life (VSL) approach. We follow their study because we could not find any such study that focuses on the Philippines or even other Asian countries. Given the higher population density and concentration of coal power plants in Luzon that has similar characteristics to the city in India studied by Gunatilake, Ganesan, and Bacani (2014), we believe the cost estimation is applicable for our study. Gunatilake, Ganesan, and Bacani (2014) estimated that the cost of air pollution ranges from 1.05 cents to 12.58 cents (in US dollars) per kilowatt hour of electricity produced from a coal power plant. The lower cost estimation comes from the assumption that the coal power plant has installed a pollution control that can significantly reduce air pollution. On the other hand, the higher cost estimation assumes no pollution control installed in the power plant. Based on the TIMES model, promoting a 50 percent share of renewable electricity generation could reduce electricity production from coal power plants by 70 terawatt hours. This means that the health externality cost from air pollution borne by society could be reduced by at least US$0.73 billion (32 billion PHP), and potentially up to US$13.68 billion (616 billion PHP). If we take the average of these values, the amount is approximately US$7.2 billion (324 billion PHP). If we compare this average value with the total welfare reduction from promoting renewable power generation, as discussed above (351 billion PHP), the net negative impact from this renewable energy policy is minimal. Furthermore, there is still economic gain that the country could receive by having foreign Billion PHP Billion PHPForeign transfer inflow capital inflow from abroad as compensation for reducing carbon emissions, as discussed in the next section.This study assumed that the negative results from promoting renewable power generation will be compensated for by developed nations through foreign transfers as the Philippines reduces its carbon emissions. The magnitude of this foreign transfer could be significant to the economy, with the International Monetary Fund calculating that the future financial inflow from this mitigation effort could easily reach up to 10 percent of GDP for Africa south of the Sahara and up to 5 percent for India from the year 2020 onward (IMF 2008). One concern of having a large financial inflow is the potential of Dutch disease, which slows down the industrialization process as the economic activities move into nontraded sectors due to appreciation of the real exchange rate. In this study, SIM3 and SIM4 introduce the foreign transfer inflow to compensate for the welfare loss caused by renewable energy promotion, as analyzed under SIM1 and SIM2.Therefore, the analysis will compare results between SIM1 and SIM3, and between SIM2 and SIM4.Figure 16. Welfare changes and foreign transfer inflow in 2040Source: Constructed by authors from computable general equilibrium model simulation results.Note: PHP = Philippine pesos.The simulation results show that the country needs to receive financial inflows from abroad of between 236 billion and 376 billion PHP in 2040 to compensate for the welfare loss due to promoting renewable electricity generation. This amount is about 0.2 to 0.3 percent of GDP. Figure 16 shows how the foreign transfers offset the welfare loss under SIM3 and SIM4. The macroeconomic impacts of this financial inflow are presented in Table 5, where the real exchange rate appreciates by 0.9 percent under SIM3 and 0.6 percent under SIM4. This currency appreciation is much higher than in SIM1 and SIM2, in which the country could save foreign currency by reducing imported energy from coal, as discussed earlier. As a result, the real exchange rate appreciates, causing the exports sector performance to be sluggish, whereby total exports decrease from 1.4 to 3.2 percent as we compare SIM1 with SIM3. A similar impact is observed in SIM4, but the magnitude is smaller. On the other hand, foreign transfer inflow does not improve growth performance; instead, it makes the growth rate slightly worse off. Note: GDP = gross domestic product.The Dutch disease effect can also be observed by understanding how real exchange rate appreciation affects economic activities in the country. The direct effect would be a reduction in trade activities, as shown by the declining export of manufactured goods. Figure 17 shows how export demand in all sectors decreases when the country receives financial inflows from abroad.The worst impact is observed in the industrial sector, especially in export-intensive industries, which account for about 70 percent of the country's total manufacturing exports. Under SIM3, exports from the export-intensive industry sector decrease by around 3.6 percent, whereas it is about 2.6 percent for SIM4. Exports from the service sector also decline by 2.4 and 1.7 percent, respectively, under SIM3 and SIM4, while agriculture exports are less affected, decreasing by only around 1.1 percent.- The economy is also expected to move toward nontraded goods, with output in agriculture and services improving but production from traded sectors, such as manufacturing, declining.Figure 18 shows how output in agriculture and services perform better (see the blue and purple bars under SIM3 and SIM4), in comparison with SIM1 and SIM2. On the other hand, output in the industry sector goes down, with a significant reduction observed in export-oriented industries, asshown by the green bar. These changes consequently affect the industrialization process, eventually slowing down labor movement into the industrial sector. Figure 19 presents labor movement across sector, showing that demand for labor in agriculture and services further increases. On the other hand, the reduction of labor demand in the industry sector, as observed in SIM1 and SIM2, is strengthened under SIM3 and SIM4, which suggests that there will be potentially less labor moving into the industrial sector as the economy receives high capital inflows from abroad. The most significant impact is observed in export-intensive industries, where demand for labor could decrease by up to 1.6 percent in 2040.This result shows that the Philippine government needs to anticipate the negative side effect of Dutch disease if the country receives foreign transfers in the future as compensation for reducing carbon emissions. In this study we look at the impact of increasing investment activity as a way to mitigate the Dutch disease effect. As explained earlier, we increase the share of total investment in the economy under SIM5 by 1 percent in order to allocate most of the foreign financial inflow into the traded sector. To analyze the net impact of this policy response in reducing the Dutch disease effect, we compare results from SIM5 with those of SIM4. Figure 20 shows that the country receives foreign transfers amounting to 236 billion PHP in 2040 under both scenarios, as indicated by the blue dots. However, under SIM5, this new capital inflow is mainly absorbed by investment demand, given the assumption of higher investment activity in the future. Government consumption also increases slightly under SIM5, while we observe a reduction in private consumption of around 50 billion PHP. In total, we observe a welfare gain of 155 billion PHP. Note: GDP = gross domestic product.The impact of the policy response on macroeconomic variables is encouraging. We found that export-sector performance improved given the lower export reduction observed in SIM5 compared with SIM4 under the similar exchange rate environment. Import demand also decreases because more goods can be supplied by domestic activities. In total, the GDP only decreases by 0.1 percent under SIM5 compare to 0.3 percent under SIM4, which suggests improvement in GDP by around 0.2 percent (Figure 21). This positive impact also has an effect at the sectoral level, where more labor moves into the industry sector, promoting the industrialization process in the country. The increase in labor demand is even higher for exportintensive industries, given the higher investment share allocated to these sectors (Figure 22). activity to absorb foreign transfer inflows could not only slightly improve economic growth but also increase economic welfare and promote the industrialization process. Meeting future electricity demand is one big challenge that the Philippine economy has to face in the next decades as the economy grows stronger. Promoting renewable technology in the power sector has become part of the government plan in order to increase energy security and to benefit from environmental externalities. Financial inflow from abroad is another opportunity to expect, given that the country has adopted a green growth strategy to reduce future carbon emissions. On the other hand, the country has to be ready to pay for the cost in advance. A high price of electricity and the reallocation of scarce capital input are expected to slow down the industrialization process and decrease economic growth.Linking the bottom-up TIMES energy model with the top-down Phil-DCGE model has allowed us to scrutinize the potential economywide impact of promoting renewable electricity generation in the country. Simulation results show that solar technology would become the forefront of renewable electricity generation, taking almost one-fifth of the total generation share, given the stronger reduction of solar investment cost in the future, compared with the other renewable technologies. The contribution share from geothermal and hydro is also expected to increase, from approximately 24 to 29 percent. In total, renewable electricity generation is expected to be half of the country's total generation in 2040. On the other hand, the generation share from fossil fuel-based power plants is expected to decrease, with coal, as the biggest contributor, decreasing its share from 57 percent to only 35 percent. Generation from gas and oil power plants is also expected to decrease, from approximately 17 percent to 15 percent.The model simulation indicates that the impact of allocating more investment into the renewable power sector could slightly reduce economic growth by 0.5 percent in 2040. Given the large share of solar electricity generation, this negative impact could be reduced if the investment cost in solar generation could be suppressed. However, the price of electricity is expected to rise as more electricity is produced using renewable technologies. Given the reliance of manufacturing sector on electricity as intermediate inputs in the production process, higher electricity price could potentially reduce manufacturing production. Scarce input factor of capital absorbed by the renewable power sector also forces all other sectors to reduce their production capacity. This capital reallocation eventually pushes down labor demand in the manufacturing sector, which slows down the industrialization process.Lower economic growth, coupled with a deindustrialization process, also drives household income down. We found that the lower-income group, who are considered to be vulnerable households, are worse off than the high-income group in terms of reduction in total income.However, the welfare reduction from commodity price changes is much less in the lower-income group than in the higher-income group. In total, promotion of renewable power plants could potentially decrease economic welfare by up to 350 billion PHP in 2040.On the other hand, carbon emissions could be reduced by 65 million tons in 2040.Lower production of electricity from coal power plants could also generate health co-benefit by reducing cost of air pollution approximately by 324 billion PHP. Furthermore, energy security could be improved as the renewable-generation share increases. The simulation result shows that reduction in coal generation causes the demand for imported coal to decrease by 24 percent. This import reduction means that the country could save foreign currency, which in the model is translated as an appreciation of the real exchange rate. As a result, the country enjoys a lower price of imported goods, which makes imported food such as rice become cheaper. On the other hand, the exports sector's performance becomes sluggish, especially manufacturing exports, which eventually increases the prices of other manufactured goods.The Dutch disease effect could potentially hit the country through real exchange rate appreciation given the large financial inflow from abroad as the country receives compensation for its carbon emissions reduction. Simulation results show that export demand decreases as commodities from the Philippines become more expensive in the world market. Economic activities also start moving into the nontraded sector, which further slows down the industrialization process and slightly decreases economic growth.Increasing investment activity in the future could help the economy absorb most of the financial inflow from abroad to finance productive activities in the traded sector. Simulation resultsshow that manufactured exports increase, whereas import demand declines because more goods can be supplied by domestic activities. As a result, more labor could move into the manufacturing sector, which speeds up the industrialization process and improves economic growth. In total, the net welfare reflected by total absorption increases by 155 billion PHP.","tokenCount":"8434"} \ No newline at end of file diff --git a/data/part_3/9189530012.json b/data/part_3/9189530012.json new file mode 100644 index 0000000000000000000000000000000000000000..6f921ab8cb8b643ea40039fbffd3bc7c7f6b0001 --- /dev/null +++ b/data/part_3/9189530012.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"d93ad1e7793da938a8d2e3d0f447aa9f","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/83d0dd9d-d2f9-4bcf-9d99-ca5b58a5ea9a/retrieve","id":"2071650818"},"keywords":[],"sieverID":"4cf9cdd2-657b-41af-9077-2ba6bea79c87","pagecount":"16","content":"Maurice KaraniMaurice Karani, a passionate veterinarian and PhD fellow at the International Livestock Research Institute (ILRI), has dedicated his career to bridging the gap between veterinary medicine, epidemiology and public health. Born and raised in rural Meru County, Kenya by a school teacher who was a small-scale livestock farmer -Karani discovered a deep love for animals while caring for cows and goats on his family's small farm.Influenced by his father's tales of the great scientist, Sir Isaac Newton, Karani envisioned himself also becoming a lab-based scientist too as he found it interesting. He pursued veterinary medicine at the University of Nairobi, driven by a desire to provide animals with treatment, inspired by his family's small herd.The trajectory shifted from only lab-based science to the addition of field-based research during his afterschool internship at ILRI, where he worked with ILRI epidemiologists who studied diseases in animal populations. Karani's passion for epidemiology was particularly fuled by the intricate processes of data collection and analysis. This led him to pursue a master's degree in Epidemiology and Public Health at the University of London, UK. Here he focused on the prevalence of human Q fever-a neglected zoonotic disease -with symptoms similar to Malaria, a factor that often leads to misdiagnosis.Returning to ILRI as an employed field officer, the next stage of Karani's research career focused on western Kenya, where he shifted his focus to monitoring and identifying diseases based on symptoms. His dedication to disease control fueled his pursuit of a PhD focusing on understanding and controlling rabies, supported by the One Health Research, Education and Outreach Centre in Africa (OHRECA).Rabies is a deadly zoonotic disease with ancient roots and a 100% fatality rate once symptoms manifest. As most cases of human rabies are caused by infected dog bites, his 3-year research ending August 2024 focuses on cost-effective methods of controlling rabies through mass vaccination of dogs. An estimated 2,000 people in Kenya die annually from rabies with Machakos among the top five counties with the highest reported cases of dog bites on humans. This emphasizes the correlation between canine health and human well-being.As Karani's study includes estimating the dog population of Machakos County, he uses this opportunity to educate the communities on responsible dog ownership, stressing the importance of vaccination. He advocates for a comprehensive strategy, integrating human and veterinary medicine in a united front against rabies, and calling for government financing, proper food waste disposal and responsible dog ownership to avoid dogs loitering and risk of contracting the disease.In a world where every dog bite could be a matter of life and death, Karani is on a mission to bring about change by advising stakeholders on dog vaccination and therefore eradicating rabies. Maurice Karani is living his dream of improving the health and well-being of animals, humans and the ecosystems they share through his work by addressing neglected global health challenges. ","tokenCount":"479"} \ No newline at end of file diff --git a/data/part_3/9192623733.json b/data/part_3/9192623733.json new file mode 100644 index 0000000000000000000000000000000000000000..71d6df1e6e742ff92e4b0fbbedf4c205c085b79d --- /dev/null +++ b/data/part_3/9192623733.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"778f2e6ae77adf0b13cf6574f258d38b","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/3e35457c-b71b-4f3b-9ccb-5d7ccd89445d/retrieve","id":"243224608"},"keywords":[],"sieverID":"84dd0940-6bb6-41aa-a78e-093ea2adc98d","pagecount":"24","content":"AVERAGE CROP yields throughout sub-Saharan Africa are amongst the lowest in the world. Even the development and widespread use of improved crop cultivars has had little impact as soil nutrient deficiencies impose severe limits on plant production.Of the many possible nutrient deficiencies, lack of N imposes the most widespread and strongest restrictions on plant and animal production. It is also an expensive element to replace and chemical fertilizer N has virtually no role in African subsistence cropping systems.The well known alternative to fertilizer N is the N fixed by legumes. Yet even with this ostensibly simple and cheap approach, many environmental, nutritional, biological and economic factors restrict the N fixing potential of the legume-Rhizobium association. This paper surveys the many limits on legume N fixation encountered in sub-Saharan countries and discusses the various production systems in which legumes make an important contribution. It finally highlights research deficiencies that need to be corrected if legumes are to be effectively integrated into both crop and animal production systems.The per caput food production in sub-Saharan Africa declined by about 20% over the past two decades (Cummings, 1976). If similar production trends continue throughout the 1980s, meeting the minimum energy consumption levels of the population will require an additional 18.5 million tonnes of grain per year by 1990 (USDA, 1981).Nobel laureate Borlaug recently said: \"Without doubt, the single most important factor limiting crop yield on a worldwide basis is soil infertility. Lack of one or more essential nutrients is usually the joint effect of weathering followed by leaching and erosion combined with extractive farming practices\" (Borlaug, 1982). In Africa such deficiencies are obviously important since, despite the increased availability of improved cultivars, national crop yields have shown little change (Cummings, 1976).Nitrogen is one of the major plant nutrients and satisfactory levels of grain and forage crop production depend on an adequate supply (Russell, 1966). While the N status of soils can be improved by the addition of N fertilizer, it is an expensive input and this is reflected in its low consumption in Africa (IFDC, 1980).A more effective and cheaper way of raising the N status of the soil is to exploit the ability of forage legumes to fix appreciable quantities of atmospheric N (Tables 1 and 2). This N accumulates in the soil and is released over several seasons to non-legume crops if the soil is cultivated, or to companion grasses in pasture land. Thus forage legumes can indirectly boost crop yields and directly resolve quantity and quality problems in African grasslands. In their unimproved state the annual dry matter yields from natural grassland may be as low as 1177 kg/ha and the crude protein content less than the critical value of 6 or 7% for much of the year (Weinmann,1955;Nilson and Milford, 1967;Anon., 1970). Thus severe restrictions are placed on livestock production, particularly during the dry season which can last for as long as 9 months. This paper: (1) reviews the present state of knowledge about the biological contribution of N by forage legumes in sub-Saharan Africa; (2) indicates the main factors limiting the contribution of biological N by forage legumes; (3) highlights the potentials of legume--food crop-livestock interactions in various production systems; and (4) suggests areas where intensified research is justified in terms of scientific knowledge and practical benefits. A: acetylene reduction assay; B: nitrogen balance studies; C: total N accumulation in the forage fraction; D: difference method; I: isotopic method (A value). a 11-month-old trees; 10 000 trees/ha. Source: Duhoux and Dommergues (1984).The potential symbiotic N fixation by a given legume is defined as the maximum activity of that legume when nodulated with the most effective rhizobium strain and grown under the most favourable environmental conditions (Gibson et al, 1982). Thomas (1974), Keya (1977) and Ayanaba (1980) concluded that tropical forage legumes in Africa have, under good management, a potential similar to that recorded in Australia and in temperate regions. However, in practice there are four major factors which limit the quantities of N fixed by rhizobia (Figure 1). The effects of environmental factors on nodulation and N fixation in legumes have been extensively reviewed by Gibson et al (1982). Results relating to forage legumes in sub-Saharan Africa are limited, but the salient points are discussed in the following subsections.For different species the processes of infection, nodule development, and N fixation usually have different maximum and minimum temperatures. For example, nodule formation on Trifolium subterraneum occurs at a temperature as low as 7°C whereas for the majority of tropical and subtropical legumes 15-18°C is a more common minimum. At the upper end of the temperature range, the maximum (30-40°C) for the tropical species is higher than that for the temperate ones (Souto and Dobereiner, 1970;Gibson, 1971). Mayer and Anderson (1959) demonstrated that a temperature of 30°C inhibited symbiotic N fixation in the temperate species T. subterraneum (cv Bacchus Marsh) and concluded that similar temperatures might limit N production by legumes in tropical regions. However, Small and Joffe (1968) compared the effects of various temperatures (12°C, 19°C, 26°C, 33°C, 40°C and 45°C) on clovers of European origin (T. repens and T. pratense) and African cultivars of T. africanum and found that the European species were more sensitive to high temperatures than T. africanum.In Sudan, Habish (1970) found that species of Acacia can grow and nodulate effectively at 35°C, the highest temperature at which nodulation has so far been recorded. High-temperature tolerant strains of rhizobium species from cowpeas which are able to form effective nodules at high temperatures have also been recently isolated (Eaglesham et al, 1981).High temperatures severely reduce the longevity of commercial rhizobial inoculants, and for this reason refrigeration is recommended during transportation and storage. A lack of adequate refrigeration facilities in many sub-Saharan countries create severe problems in maintaining viable rhizobia in such inoculants.Both water stress and excess can have adverse effects on nodulation and N fixation, and are considered one of the most neglected areas of study on legume-rhizobium association (Gibson, 1977;Gibson et al, 1982). Nodulation, growth and N content of plants were significantly higher at soil moisture contents ranging from 15.0 to 22.5% when compared to the N-fertilized control. At 7.5% soil moisture nodules were confined to the upper part of the root system. The concentration of the nodules towards the surface was attributed to the higher moisture content of the upper layer (Habish, 1970). Soil moisture deficits are frequently associated with high soil temperatures; therefore, the distinction between effects due to moisture stress and temperature is difficult to make in the field.Kanyama Phiri (1984) reported that shoot, root and nodule dry weights and nodule number of greenleaf Desmodium and Centrosema were significantly reduced at the lowest moisture regime (10%). Moisture regimes above 35% also tended to reduce the dry weight and nodulation of these two species. Optimum responses were recorded at moisture regimes between 30 and 35%. At the other extreme, waterlogging and poor soil structure produce low oxygen levels in soils. Under both conditions poor nodulation has been reported (Gibson, 1977).Permanently or temporarily waterlogged soils are common in the highlands and tropical areas of Africa. Since legumes tolerant to waterlogging are known, adaptation to waterlogging is possible. For example Sesbania rostrata, which forms stem nodules, has five to ten times more nodules than the best nodulated crops, and has outstanding potential for N fixation in flooded soils (Dreyfus and Dommergues, 1981). In the Ethiopian highlands, the top-yielding African clovers grow best on seasonally waterlogged soils. However, their adaptive mechanisms for effective nodulation and N fixation under such conditions are not known.Both photoperiod and light intensity have been reported to affect nodulation and N fixation (Gibson, 1977). The effects of light on N fixation seem to be associated with variations in host plant photosynthesis. Under shaded conditions, i.e. when forage legumes are intercropped or in a mixed pasture, plant growth, nodulation and N fixation are reduced, although in some tropical mixtures this may not always be so. Relative air humidity also limits N fixation at certain periods of the day (Ayanaba and Lawson, 1977).Nutritional deficiencies and excesses may affect N fixation in legumes directly through adverse effects on root infection, nodule development and nodule function, and indirectly through effects on host plant growth. The limitations imposed by inadequate nutrient supply in the soils of tropical Africa were recently highlighted by Le Mare (1984).Figure 2 shows the distribution of soil orders in Africa with their major problems and the likelihood of occurrence in these soils. Due to the high prices of commercial fertilizer, plant nutrient deficiencies in the soil cannot be corrected in most agricultural production systems in Africa. Current research at ILCA is therefore aimed at finding plant germplasm which will grow well under low soil fertility conditions. Phosphorus is the most important basic ingredient in the successful establishment of forage legumes. Many trials have confirmed this and the yield responses and specific details of these trials are presented in Table 3. The role of S fertilizer in tropical countries has only recently been reviewed by Kanwar and Mudahar (1983). Possibly because of the widespread use of fertilizers which contain S, such as single superphosphate, little attention has been given to the role of S in N fixation, despite its shortage in the soils of sub-Saharan Africa (Blair, 1979). However, good responses by forage legumes to elemental S and gypsum have been recorded in Uganda (Horrell and Court, 1965;Wendt, 1970), Kenya (Anon., 1969) and Nigeria (Haggar, 1971).Forage legumes responded positively to K applications as reported by I' Ons (1969) in Swaziland and Wendt (1970) in Uganda.Micronutrient deficiencies and toxicities are widespread south of the Sahara and deficiencies/responses in various crops and forages have been reported (Kang and Osiname,1972;Haque and Kamara,1976;Cottenie et al, 1981;Sillanpaa, 1982;Haque, 1983;Faye et al, 1983). However, there is little information on the effect of micronutrients on N fixation in forage legumes in sub-Saharan Africa.Large areas of African soils with serious nutrient limitations are essentially acid and tend to become more so under cultivation, especially in heavy rainfall areas and if N fertilizers are used. Acidity can easily be corrected and, as pH rarely needs to be raised beyond 5.5, the amounts of lime needed to do so are generally not large. However, while temperate legumes like lucerne and subterranean clover do not grow or nodulate well in acid soils (Birch 1959;Morrison, 1966b), some tropical legumes seem to be adapted to acid soils and often suffer from micronutrient imbalances once the pH rises above 5.5. For example in Nigeria, on soils with pH ranging from 4.2 to 4.8, Adegboola (1964) found that lime adversely affected the production of dry matter in Centroserna pubescens. On a deep red Koalisol (pH 4.8) in the middle veld of Swaziland where deficiencies of Ca have been recorded, there were indications of a slight depressive effect on the growth of Desmodium intortum at high liming rates (I' Ons, 1968). Work in Kenya with Desmodium urtcinatum has shown that the reduction in growth following liming was associated with a decrease in the number of nodules (Anon., 1969). Results from South Africa (Small, 1968) demonstrate the difference between tropical and temperate legumes. The local Trifolium africanum nodulated and fixed N at a pH of 4.0 when sufficient Ca was available whereas the European species, Trifolium pratense, failed to nodulate. Odu et al (1971) in studies on Nigerian soils found that S. guianensis and C. pubescens nodulated effectively and grew best under acid conditions. At a pH of 8.0 nodulation was often completely inhibited. However on some soils, heavy applications of lime (up to 10 t/ha) have had no effect on legume growth and nodulation (Olsen and Moe, 1971) but the reasons for this are unclear.Because of concern about poor nodulation in acid soils, seed pelleting techniques were developed in Australia to protect the rhizobia and aid nodulation of temperate legumes (Loneragen et al, 1955). The role of lime pelleting in the tropics has been seriously questioned by Norris (1967) on the grounds that tropical legumes are \"naturally adapted to acid soils, efficient at obtaining Ca for nodulation and possess acid-tolerant (alkali-producing) rhizobium\". He further pointed out that there is little published evidence to support lime pelleting for these species.However, seed pelleting has proved promising for the temperate legume Trifolium subterraneum in high-altitude areas of Kenya where soils are acidic, with pH values ranging from 4.7 to 5.5 (Morrison, 1966b). Yet at Kitale, various pelleting materials were tested for Desmodium uncinatum and the results showed that the dry matter yields of plants grown from inoculated seed which was pelleted with rock phosphate, gypsum or lime did not differ significantly from those of the control plants (Anon., 1969). There is obviously a need for more studies on the value of pelleting forage legume seeds.High salt levels are a major limit to growth in many soils of the arid and semi-arid zones. Given the recent advances in the use of tissue culture for selection of salt-tolerant plants, it is likely that this major obstacle will be overcome by the use of these techniques.The presence or absence of the appropriate rhizobium in the soil dictates whether inoculation of the legume seed is required. Those species or varieties which do not require inoculation have obvious advantages at the farm level. The relationships between rhizobium and tropical forage legumes are reviewed by Date and Halliday (1980).There has been some controversy over the need to inoculate tropical legumes. On the one hand, Norris (1966) states: \"As a broad generalisation it can be said that many tropical legumes will nodulate successfully without inoculation\", and there is evidence from African sources to support this statement. Uninoculated stands of Pueraria phaseoloides, Centrosema pubescens, Indigofera hirsuta, Aeschynomene americana, Desmodium discolor, Stylosanthes humilis and S. guianensis have all been observed to nodulate vigorously in nursery plots in Malawi. Under the same conditions nodules were also present on Glycine wightii, Desmodium intortum, D. uncinatum and Calopogonium mucunoides (Anon., 1954). Working with Alysicarpus glumeceus, Bumpus (1957) found that the yield from the uninoculated plot surpassed all the inoculated treatments and concluded that none of the commercial strains of bacteria in the 'cowpea group' were as satisfactory as those already present in the soil. In Zimbabwe, Desmodium discolor and D. intortum have been reported to modulate freely without inoculation (Boultwood, 1964). Similar results and observations have been made in Nigeria (Adegboola, 1964;Oke,1967), Kenya (Anon., 1969;de Souza, 1969;Keya and van Eijnatten,1975), Tanzania (Anon., 1968), and Uganda (Horrell and Court, 1965;Wendt, 1971). Yet on the other side of the inoculum controversy it is obvious that wide variations exist in the effectiveness of rhizobia isolated from different sites, and some of the indigenous strains may be of limited value to the host legume. In Table 4 details of African trials on the response, if any, to inoculation are presented for a range of legumes. It should also be remembered that rhizobium strains differ in their rates of N fixing, and just because a legume has formed nodules this does not mean that it will not respond to inoculation with a more effective N-fixing strain. In recent studies on modulation inLeucaena, Sanginga et al (1984) observed poor establishment of Leucaena at two sites in Nigeria, which was due to a combination of poor fertility and ineffective modulation by the few native rhizobia present. Some of these rhizobia were cultured and two isolates formed very effective associations with Leucaena. Tree legumes are an important source of browse and make a contribution to the N status of African soils. Some of these tree species have a specific modulation requirement, and details are presented in Table 5.Group Species Specificity aNodulating with fast-growing rhizobia Acacia farnesiana SA. senegal SNodulating with fast-and slow-growing rhizobiaNodulating with slow-growing rhizobia A. albida PErythrophleum guineense -P. africana P a S: very specific; P: promiscuous. b This species does not grow in West Africa; it is extensively planted in northern Africa.-Under study. Source: Duhoux and Dommergues (1984).Obviously some tropical forage legumes exhibit rhizobium strain specificity comparable to that commonly associated with the temperate legumes, examples being Leucaena leucocephala, Lotononis bainesii and Stylosanthes guianensis (cv. Oxley fine stem) (Norris, 1970;Davies and Hutton, 1970). These species form effective nodules only with the aid of inoculation (de Souza, 1969;Thomas, 1972).There are also a number of indigenous Trifolium species in the highlands of Kenya which are extremely specialised and show no cross-inoculation affinities with their temperate counterparts (Bogdan, 1956;Norris, 1956;Norris and t'Mannetje, 1964). De Souza (1969) included one of these species, Trifolium semipilosum, in his modulation survey in Kenya. Although this species will nodulate naturall in areas where it grows wild, the use of an effective inoculant is still recommended.The legumeinoculation argument cannot be seen as a simple choice between black and white. While some generalisations about the need for inoculation appear to be valid, whenever a legume seems to be performing below its potential, the effectiveness of the rhizobia, whether indigenous or in commercial inoculum, should be questioned.Insect pests and plant pathogens have no direct effect on symbiotic N fixation, but they can indirectly affect fixation through their effect on the growth and persistence of the host plant (Gibson, 1977) Legume species differ in N fixation, utilisation of the incorporated N, and its redistribution into either seeds or vegetative parts. This type of information is important when selecting forage legumes for protein yield and soil fertility improvement. Host determinants in nodulation and N fixation are reviewed by Gibson (1980).Forage legumes provide high-quality feed for livestock and increase the yield of any following food crops. There is scope for further strengthening of the links between livestock and food crop production through the strategic introduction of forage legumes into mixed agricultural systems.The concept of legume ley farming, so important in the integration of wheat and wool production in Australia's mediterranean climate, has been suggested as a promising model for West African savanna zones (Jones and Wild, 1975) but there has been no substantial evaluation of the strategy in sub-Saharan Africa.The net benefit of legume-derived organic residues to a following non-legume crop depends on the amount of such residues and on their rate of mineralisation. Unfortunately, neither factor is sufficiently well understood. Organic N accumulates over several years under legume-based pastures and subsequent cultivation usually releases from 40 to more than 100 kg N/ha to the first crop and gradually diminishing amounts to succeeding crops (Moore, 1962;Jones et al, 1967;Watson, 1969;Wetselaar et al, 1973).In northern Nigeria, the N contribution of legumes in fodder banks to the subsequent crop was estimated by comparing the response of maize to N fertilizer. Maize yields after 1 and 2 years ofStylosanthes guianensis cv Cook approximated those obtained after 45 and 60 kg of N respectively were applied to an area previously cropped for 3 years with maize. Maize derived similar benefits from Stylosanthes hamata cv Verano grown for 2 and 3 years in a fodder bank (Figure 3).Providing part or all of an arable crop's N requirement through forage legumes may be an incentive to the farmer to establish fodder banks, which in turn opens up possibilities for sequential crop-forage rotations within fodder banks. Research is being expanded to determine the inputs required to maximise N fixation and the relative efficiencies of different legume genotypes (ILCA, 1983).Growing dual-purpose grain legumes in rotation with cereals always increases the yield of the latter. Groundnuts in Nigeria seem to be better than cowpeas for increasing the yield of the following cereal crop, presumably because of more rapid decomposition of plant residues and the subsequent availability of N. The difference is probably related to the greater amount of root residues in groundnuts (Jones, 1974).In Mali, by introducing cowpeas into the crop rotation, millet grain yields have been increased by 60% as compared with those following a first year of millet (ILCA, 1983). Nnandi and Balasubranian (1978) showed that there were differences in root N content among legume species and even cultivars. They concluded that Bambara groundnut and cowpea cv 'NEP 593' were useful in improving the N status of soils even when the top parts of the plants were not returned to the soil.Shifting cultivation, the traditional landuse system in tropical areas, has inspired considerable research into various agroforestry systems in which trees with deep root systems are combined with annual food crops to maximise biomass production and to ensure that large amounts of nutrients and organic material are recycled and returned to the soil. Alley farming, which involves cultivation of food crops between rows of small leguminous trees and shrubs (Leucaena leucocephala and Gliricidia sepium), is probably the most advanced of the methods and has gained strong support in several areas.Leucaena leucocephala can fix large quantities of N. In Tanzania, Hogberg and Kvarnstorm (1982) estimated annual N fixation by this species to be 110 ± 30 kg/ha. Higher N fixation values, 500-600 kg/ha/ year have been reported for L. leucocephala in Hawaii and Queensland, Australia (Guenarra, 1976;Anon., 1977), although these figures cannot be attributed solely to the legume, as soil N also contributed.In an alley farm, a high maize grain yield was obtained with the application of 10 t of fresh Leucaena prunings per ha or a combination of 5 t of fresh prunings and 50 kg N/ha. The prunings ofLeucaena as an N source appeared to be more effective when they were incorporated into the soil than when they were applied as mulch--possibly because the mulch loses N through volatilisation during decomposition (Kang et al, 1981). In a comparison between Gliricidia and urea fertilizer the addition of fresh and dried Gliricidia tops (equivalent to 40 and 80 kg N/ha) significantly increased maize yields. At the lower rate, Gliricidia tops were less effective than an equivalent quantity of urea. Although yield differences between fresh and dried Gliricidia tops were not significant, the fresh tops appear to be more effective as an N source than the dry ones (Figure 4). Other legumes can be used in alley farms. Recent field testing of a fast-growing annual shrub (Sesbania rostrata) in association with rice on a hydromorphic site at IITA in 1982 and 1983 revealed its benefits as a source of N for improved rice yields. In the rice yield analyses, Sesbania prunings distributed evenly between rows of rice were equivalent to 120 kg N/ha (Table 6). Sesbania rostrata is unique for its profuse stem nodulation with 4000 to 5000 nodules on a 3 m high stem compared to less than 50 nodules usually found on the roots of this and most other legumes (IITA,1983). Yamoah et al (1984) observed that prunings from Gliricidia, Flemingia and Cassia applied before planting maize decomposed by 96%, 58% and 46% respectively during the course of the season, and released the equivalent of 252, 70 and 120 kg N/ha. However, maize grain yield increased by only 15% for Gliricidia, 22% for Flemingia and 50% for Cassia, suggesting that the mulch effect of the slowly decomposing Cassia was more beneficial than Gliricidia's high N.Although legume cover crops have been used extensively for soil conservation on more than 12 million hectares of plantation crops in Africa, their use in food crop production is of recent origin (Akobundu, 1982). Voelkner (1979) stressed the need for a green legume mulch which could replace the fallow periods and successfully compete with weeds as well as add organic matter and N to the soils.One way to exploit a legume mulch is to sow directly into the legume cover without tillage. Using this live mulch system with a well established 1-year legume crop, high maize yields were obtained in four subsequent cropping cycles without N fertilizer. A slight yield increase in the fourth season was observed when N fertilizer was added (Akobundu, 1980). Of three production systems investigated--conventional tillage, no-till and the live mulch system--only the last was capable of sustaining high yields at a low N fertilizer input and with minimum weed control (Figure 5). Mulongoy and Akobundu (1982) observed that the N contribution from Psophocarpus palustris and Centrosema pubescens in a live mulch was negative, indicating that they competed with the main crop for available N. However, it appears that the two species nodulated poorly and that their N contribution was low.The effects of four grasses (Panicum maximum, Setaria sphacelata, Brachiaria ruziziensis and Melinis minutiflora) and four legumes (Centrosema pubescens, Pueraria phaseoloides, Glycine wightiiand Stylosanthes guianensis) on soil properties and crop production were investigated by Lal et al (1978) in Nigeria using a zero-tillage technique. Two years after establishment Glycine, Pueraria andCentrosema had improved soil organic matter, total N content and cation exchange capacity (CEC). Maize and soybean responded to all species while cowpeas suffered yield reductions when the grasses and Stylosanthes were the sod species. Cassava showed a mixed response, with Setaria, Panicum and Stylosanthes being associated with lowered yields (Figure 6). Legume fallows and green manure crops obviously provide a large amount of N for subsequent grain crops but have not been widely used in sub-Saharan Africa; probably because farmers do not want to devote a whole crop season to N accumulation.There is substantial evidence of N accumulation under legume-based pastures in Africa. Table 1 provides a summary of the amount of N that can be fixed in any given environment. In terms of farming systems it is on smaller holdings that the incentive to fully utilise a sown pasture technology is greatest and where such sowings expand most rapidly. The major constraint here is often the ability to borrow or generate the necessary finance to undertake the development, and the provision of appropriate low-interest public funds can be a great incentive to speed up this development (Cameron and Burt, 1983).From the evidence accumulated over the last 40 years it can now be concluded that the use of forage legumes is the best method of injecting biologically fixed N into the farming system. Between 50 and 400 kg/ha of N can be fixed each year and this N makes a significant contribution to soil fertility, pasture yield and its associated animal production, and any following food crop. Its monetary value can be extremely large. It seems that such an approach would be of particular value in sub-Saharan countries; certainly once the relevant legumes have been domesticated, it would produce cheap and long-lasting beneficial effects. This review highlights the potential for significant N fixation by forage legumes. However, further research in the following areas is necessary to exploit fully their potential:  Some rhizobium strains are more heat-tolerant than others. What adaptive mechanisms have been developed by the rhizobia and/or host plants to ensure effective N fixation under high soil temperatures? Does the level of soil organic matter affect nodulation and is there any interaction with temperature?  Both water deficiency and excess are major factors limiting plant growth and N fixation.Root infection and N fixation of forage legumes in waterlogged and drought conditions are little understood.  A considerable number of legumes are indigenous to sub-Saharan Africa but they have not been systematically evaluated against introduced material. Similarly, inadequate attention has been given to their nutritional requirements. Clearly, there is a need for more definitive studies on the nutritional factors limiting N fixation in forage legumes in general, and in those legumes that have a potential in farming systems in particular.  In a similar vein little attention has been paid to the effects of nutritional factors on nodule activity in forage legumes. Selection of acid-tolerant rhizobium strains, for acid soils, and the selection of strains adapted to low levels of fertility are two obvious areas of study. The quantitative limitations of nutrient deficiencies and excesses on N fixation also need further study. For example, is nodulation adversely affected by high soil nitrate levels at the start of the wet season?  Nitrogen fixation by forage legumes in cropping systems needs to be monitored in order to assess their N contribution to the crop plant.  Does the reduced light intensity in mixed/intercropping systems always reduce nodule activity?  Alley farming with Leucaena has shown a low transfer rate of N from the legume to companion crops. A better understanding of the N flow in such a system is needed to identify the main losses and to suggest ways for the more efficient capture of N. As part of this research the N-release pattern of decomposing prunings needs to be studied so that appropriate recommendations can be made.  The increased use of forage legumes, legume fallows and green manures will demand studies into the introduction of economically and socially acceptable cropping systems.","tokenCount":"4740"} \ No newline at end of file diff --git a/data/part_3/9196074728.json b/data/part_3/9196074728.json new file mode 100644 index 0000000000000000000000000000000000000000..aa708351c4dba74da53948bd16cf7dd696132bd5 --- /dev/null +++ b/data/part_3/9196074728.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"8c93b90ad17700ac249f58a3d993b68d","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/c01de1e7-d02c-4cda-aa1c-87165e2b7fa8/retrieve","id":"-1150360358"},"keywords":[],"sieverID":"3cdaa43d-1ecc-4ccf-bee1-5f774a597748","pagecount":"20","content":"Faciliter la gestion des connaissances pour la planification de l'adaptation au Sénégal d Atelier de renforcement des capacités sur les outils d'aide à la décision en matière d'adaptation d• La production totale de lait est de 13 000 kg/an.• La production de viande est estimée à 500 kg/an (basée sur le gain de poids estimé et une fraction de carcasse de 49%).• La production de protéines est estimée à 565 kg/an.• La superficie requise est estimée à 12 ha. Cela inclut 9 ha de terres hors ferme : 4,8 ha pour la végétation naturelle collectée (« paille de brousse ») et 4,2 ha pour la paille de riz achetée ailleurs.• Si nous supposons que le fumier est collecté et utilisé pour le Pennisetum (« Néma ») et le niébé, le bilan en azote est de -12 kg par ha par an.• Les besoins en eau sont de 1,2 m3 par kg de lait produit. La production de l'herbe coupée et portée ainsi que du niébé nécessite respectivement 2 100 et 1 600 m3 d'eau par an.• La ferme émet annuellement 1,9 t de CO2eq par ha. L'intensité des émissions est de 1,8 kg de CO2eq par kg de lait (système intensif).• Les revenus annuels sont estimés à 10 600 USD, les coûts à 4 400USD.• Le panier alimentaire présente un excédent énergétique de 16%. Cela signifie qu'augmenter la proportion d'aliments riches en protéines (comme le tourteau de coton) augmenterait probablement l'efficacité alimentaire et réduirait les coûts.","tokenCount":"246"} \ No newline at end of file diff --git a/data/part_3/9196918623.json b/data/part_3/9196918623.json new file mode 100644 index 0000000000000000000000000000000000000000..af5c882bdfe078f11d6c5d17a63a2de8c86345ac --- /dev/null +++ b/data/part_3/9196918623.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"23bc67aa737b47ad58964196f111ebcc","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/2397d9d2-adb9-488a-9975-e3398523eb2c/retrieve","id":"-1483916184"},"keywords":[],"sieverID":"42c0ae8a-9b26-43a4-9b29-37a0ac66f25e","pagecount":"4","content":"An estimated 205,000 smallholder dairy farmers in East Africa 1. had adopted fodder trees by 2005, up from just a couple thousand a decade earlier.Broad uptake owes much to the technology being low cost, 2.relatively easy to use, effective in raising milk yields, and available for use as a substitute for expensive dairy feed concentrates.As the technology requires some training, its spread is 3.facilitated by group training provided by projects, nongovernmental organizations and extension staff, as well as by volunteer farmer-to-farmer dissemination.Women are active in planting trees, accounting for almost 4.half of planters when reached directly by NGOs or extension, but are less likely to be reached through farmer to farmer processes.Feeding trials found that 1 kilogram of calliandra increased milk 5.production by 0.6-0.8 kilograms; a new survey of farmers in Kenya that examined the effect of calliandra over a wide variety of actual feeding patterns found an effect about half as large but still highly advantageous.Milk production grew steadily in East Africa in the 1980s and 1990s. The pace of growth has since accelerated with recent high rates of income growth and urbanization. Much of market demand has been met by smallholder dairy farmers, typically with 1-3 cows on farms measuring 0.5-1.5 hectares.Milk productivity per cow remains very low. In intensive production systems with improved cattle, average milk yields per cow are just 7-8 litres per day, despite the potential of farmers' breeds to produce at least three times that much (Reynolds et al. 1996). The scarcity and low quantity of feed resources are major constraints on improving the productivity of dairy animals in sub-Saharan Africa (Mapiye et al. 2006).Fodder trees and shrubs were rarely used in the intensive dairy systems of the East African highlands until the late 1980s, when several fodder tree species were introduced. However, little was known about good management practices of the species for growth and sustainability, best feeding guidelines for different tree fodders, niches and competition of the trees with other enterprises on smallholder farms, and best methods for seed multiplication and establishment of trees on farms.The World Agroforestry Centre and its partners were active in several areas of research on fodder trees: Species identification and characterization. 1.Among fodder trees, Calliandra calothyrsus was a key species screened across many locations in East Africa. Since the mid-1990s Leucaena trichandra, an exotic species; Morus alba (mulberry), a naturalized species; and sesbania, an indigenous species, were widely tested. Farmers in the region have preferred calliandra to other species and thus it is the most commonly found in smallholder dairy farms.Nursery and tree establishment research.All priority fodder species become established and grow better when sprouted in a nursery and transplanted as seedlings. Seeds are planted in nurseries and, after 3 months, transplanted on the farm with the onset of the rains. Methods were developed to avoid the use of polythene bags, which greatly increases the cost of nursery production.On-farm management of fodder trees.Trials designed by researchers but managed by farmers assessed three promising species-Calliandra calothyrsus, Sesbania sesban and Leucaena leucocephala. Because of the limited size of the farms, research focused on integrating the trees into existing cropping systems rather than on planting them in monoculture fodder banks. Farmers preferred planting trees in hedges around the farm compound, in hedges along contour bunds.On-farm feeding trials have confirmed the effectiveness of calliandra as a supplement to a basal diet, with 1 kg of dried calliandra about matching the digestible protein of 1 kg of dairy meal (Paterson et al. 1998). While feeding trials found that 1 kilogram of calliandra increased milk production by 0.6-0.8 kilograms, a new survey of farmers in Kenya found an effect about half as large under current farm and feeding practices .As technology-development research matured and positive results were obtained, the World Agroforestry Centre and its partners focused more research on scaling-up processes, technology adoption and impact to identify constraints and improve dissemination strategies.Three general dissemination phases can be distinguished in East Africa: (1) local scaling up from the research site at Embu, Kenya, and a few other sites in Kenya andUganda (1995-1999);(2) wider awareness creation and pilot site extension in Kenya, Rwanda, Tanzania and Uganda (1999)(2000)(2001)(2002)(2003)(2004); and (3) the Systemwide Collaborative Action for Livelihoods and the Environment (SCALE™) approach in Kenya, with a focus on central Kenya (2005Kenya ( -2007)). A more recent dissemination project, East Africa Dairy Development, was launched in Kenya, Rwanda and Uganda in late 2008.Fodder trees require little or no cash investment or land taken away from producing food or other crops. The only inputs required are seed and minimal amounts of labour, which farmers are usually willing to provide. But, like many agroforestry and natural resource management practices, growing fodder trees requires farmers to become familiar with raising seedlings in a nursery, pruning trees on farm and feeding the leaves to livestock (Franzel and Wambugu 2007). In recognition of these potential constraints, the dissemination process entailed three components: awareness creation, technology management training and access to germplasm. Dissemination evolved from highly localized processes, in which researchers played a strong catalytic role, into one in which a number of intermediaries, including private sector actors and civil society organizations, played larger roles. This marked transition in approaches was evident with respect to access to seed. In the early days, the World Agroforestry Centre and NGOs acted as intermediaries, buying seed from a few producers or dealers in western Kenya and making it available to new communities. As a complement to this, small exchanges and sales emerged within communities. Eventually, the demand for seed grew to the point that a more organized, formal and private sector effort was needed. The private seed sector became more independent and empowered with the formation of the private Kenya Association of Tree Seed and Nursery Operators. With improved communications, this network was better able to respond to germplasm demand arising from many quarters. Also improving seed access was group training on nursery production, using group nurseries as training sites (Wambugu et al. 2001). This was found to be more cost effective in terms of knowledge diffusion and effective in generating seedlings that could be planted by farmers, as the tree species did not exist in private nurseries.In terms of methods of farmer training, various projects have funded field technicians to help train farmers, farmer groups, NGOs and extension agents. The cadre of trained staff has been able to train others in their mandated regions. Likewise, farmers themselves are active trainers and seed providers and have greatly multiplied the number of farmers adopting fodder trees. These two methods have worked well to expand the number of trained farmers in areas where the trainers reside. But they have not been effective in bridging geographical distances and reaching new communities.In terms of what has worked well and why in the region as a whole, a few lessons have been learned. Five elements appear to be critical for the successful dissemination of the practice, according to Franzel and Wambugu (2007):In Rwanda and Uganda, a few large international NGOs facilitated the dissemination of fodder trees to many thousands of farmers, accounting for over half of farmers planting in the two countries. Large NGOs were also important in facilitating the spread of the practice in Kenya and Tanzania. An advantage of NGO promoters is that they often have sufficient resources to follow through. It was found in central Kenya, for example, that farmers visited by NGOs received an average of 8.5 visits per year (Wambugu 2006).The System-wide Collaborative Action for Livelihoods and the Environment (SCALE TM ) methodology brings civil society stakeholders together to plan and implement campaigns to promote new practices (AED 2004). Engaging with a wide range of stakeholders representing all aspects of a given system, SCALE TM generated a great increase in the demand for and supply of tree fodder germplasm in central Kenya.Poor seed availability was a key constraint in many areas. As calliandra, the main species, produces relatively little seed, farmers need to be trained to collect, maintain and treat it before planting. The World Rather, there seems to be interest in planting fodder trees in a range of conditions.Cumulative fodder research benefits. The benefits accruing to farmers in the region from increased and/or cheaper milk production are estimated to be about $27.72 annually for each adopting household in Kenya during the 2004-2008 period.Multiplying by the number of fodder tree users in each year between 1993 and 2008 yields a nominal (undiscounted) benefit of between $18.7 and $29.6 million dollars for Kenya alone (the range reflects different estimates of the yield effect of fodder shrubs). Not all 205,000 adopters of leguminous trees use them primarily for fodder, but most do, including almost all 86,000 adopters in Kenya in 2005. Other uses and benefits of calliandra cited by farmers include increasing the butterfat content of milk and therefore creaminess (Paterson et al. 1998); its usefulness as a supplement to improve cow health and shorten the calving interval; and the provision of firewood, fencing, stakes, boundary markings and erosion control (Kabarizi et al. 2004). Maina (2009) reports that farmers mentioned their growing interest in using tree fodder for dairy goat production, which is a rapidly growing enterprise in East Africa. They described using tree fodder to feed rabbits and fish, as well as calliandra as an important source of pollen for honey production. For all types of animals, tree fodder was especially important during the dry season, when other sources of fresh feeds were unavailable.As dairy production enterprises expand in peri-urban or other densely populated areas, markets for tree fodder are likely to develop, creating further employment for growers, collectors, transporters and traders.Agroforestry Centre and its partners helped seed vendors in central Kenya form an association to forge links with seed providers in western Kenya and make seeds available in small packets for sale to farmers in central Kenya. Over 8 months in 2006, 43 seed vendors sold over 1 tonne of seed, which is sufficient for about 33,000 farmers and a quantity much greater than they had sold previously.Dissemination facilitators are extension specialists who are knowledgeable about fodder trees and whose principal function is to promote their use among extension providers and support them with training, information and access to seed. They proved to be highly effective. In central Kenya, for example, over a 2-year period a dissemination facilitator helped 22 organizations and 150 farmer groups comprising 2,600 farmers establish 250 nurseries and plant over a million fodder trees (Wambugu et al. 2001).Farmer-to-farmer dissemination.Survey results showed that farmers played a critical role in disseminating seed and information to other farmers. A survey of 94 farmers in central Kenya randomly selected from among farmers who had planted fodder trees 3 years before the study revealed that 57% had given out both planting material (seeds or seedlings) and information to other farmers.The uptake of fodder trees has been substantial. By 2005, about 10 years after dissemination began in earnest, 224 organizations were counted across Kenya, Rwanda, northern Tanzania and Uganda promoting fodder trees. Through their efforts and farmer to farmer dissemination, about 205,000 farmers had established fodder trees in the region(Table 1 Nearly half of tree planters are women, as confirmed by development partner records and selected studies.Major dissemination efforts through projects or nongovernmental organizations have purposefully targeted women. A study by Mawanda (2004) in Uganda showed that, in most households, women were the ones who planted and managed calliandra on the farm. This was also found in Kenya, although planting rates among divorced or widowed women were lower as compared to males.However, there are signs that farmer-to-farmer dissemination processes have been biased towards men. This requires further monitoring and evaluation.Women have benefitted from their involvement in increasing the feed resources available on the farm and reducing the time required to forage for feed, especially in the dry season, as they are key suppliers of labour for the dairy enterprise.On the other hand, there is evidence that women are not able to fully benefit from the income generated in dairying and from fodder trees in particular in married households.*The estimate of additional farmers planting is based on studies of farmer to farmer dissemination patterns in selected study sites.","tokenCount":"2028"} \ No newline at end of file diff --git a/data/part_3/9199970670.json b/data/part_3/9199970670.json new file mode 100644 index 0000000000000000000000000000000000000000..d4d3b905532c2d4e6ce1d55f7badf7501acba5e4 --- /dev/null +++ b/data/part_3/9199970670.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"9cd85a12df18a69baceeafff05d67bfa","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/c3320807-4440-45be-9c39-7a761c933815/content","id":"1060488533"},"keywords":[],"sieverID":"68885d68-99e4-46ca-8c0e-554f113090e4","pagecount":"77","content":"We have had considerable assistance and support in undertaking this study from members of the Kenyan Agricultural Research Institute and are grateful to those who assisted, especially to Dr. William Wapakala. We are also grateful to those who gave special orientation and insights for this study. In particular we would like to acknowledge the assistance of Dr.Tables and Figures Table 1.Distribution by farm size of number of farms, area, and employment in Kenyan agriculture, 1978 5 Table 2. Number of small-scale wheat farms in selected districts of Kenya 6 Table 3. Farm size distribution in selected areas ofNakuru district, Kenya, 1982 7 Table 4.Profitability of maize and wheat (Ksh/ha) calculated using different contractor charges and four levels of yield loss, 1987 12 Table 5. Time required for different machinery operations to complete one hectare Table 6.Labor requirements of alternative operations, in addition to machinery or oxen labor 1960--86 This study reports on an economic analysis of smallholder wheat technologies. Since smallholder wheat technologies are not used in Kenya, the analysis superimposes technical information from other countries, particularly Pakistan, where smallholder technologies are well established. The analysis involved costing alternative operations of different wheat and maize technologies for different sizes of fields. The time required for operations to be done 1) by machinery of different sizes, 2) by bullocks, and 3) by manual labor with hoes, sickles, or by hand was specified. This provided the basis for costing alternative operations and hence technologies having widely differing degrees of labor intensity for wheat.In addition to costing technologies with budgetary analysis, the profitability of alternative wheat and maize technologies was analyzed. This was done using 1987 prices of inputs and outputs for the Nakuru district. Besides the analysis of farmer profitability, the national profitability (social profitability) was assessed. National profitability provides a measure of comparative advantage of alternative technologies for wheat and maize in Kenya. Some key parameters were varied to analyze the sensitivity of the results to underlying assumptions.nata from previous studies suggested that the area of smallholder wheat in Kenya might be around 15% of total wheat area but that over 70% of the farmers might be growing wheat on that land. However, in considering the potential for smallholder wheat in Kenya current area is probably less important than an assessment of potential area.A survey of smallholder wheat farmers in May and June 1986 suggested that lack of timeliness in performing certain operations was a key factor affecting wheat yields. Late harvesting was considered to be the main source of yield loss on smallholder wheat farms, although many farmers also attributed sizeable yield losses to late plowing and planting. This information was supported by agronomic studies conducted by wheat researchers in Kenya, Tanzania, and Ethiopia. A wheat yield loss of 20% was estimated to cost some 1,600 Kenyan shillings (Ksh) per hectare (almost US$ 100).Farm contractors in Kenya generally charge similar rates for their services, irrespective of the size of the field in which plowing, planting, harvesting, or other operations are undertaken. As a consequence, contractors greatly prefer jobs on large farms because they are more profitable and incur less contractor overheads and financial risk per area completed. Jobs on small farms receive low priority and are usually the last, or near to last, to be done in any area. It is for this reason that small-scale wheat farmers have problems completing some operations on time.The time required to complete the main operations on fields of different sizes was analyzed. The smaller the field, the more extra machinery time is required to finish a given area. Compared to large fields, on small fields more time was lost in turning, headland overlap, setting up machinery in each field, and moving from field to field. The analysis suggested that on very small fields of 0.4 ha, 28% more time was required to plow a given area compared with plowing the same area on very large fields. For combine harvesting, 54% more time was reqUired. In contrast to heavily mechanized operations, labor-intensive operations on small fields require very little, if any, extra time to complete. The dis-economies of size with machinery on small fields suggests that on small holdings labor-intensive wheat technologies might be more economic than the mechanized technologies currently used.The costs per hectare of alternative operations undertaken on fields of dift'erent sizes were analyzed. Apart from using bullocks for certain operations, labor-intensive methods of plowing, cultivating, and planting were generally no cheaper than using a tractor, except for very small fields (1 ha or less). In contrast, labor-intensive harvesting technologies became cheaper than the full costs of combine harvesting at a field size ofjust under 4 ha, and was less than half the cost for the smallest field size.Although using labor-intensive technologies to harvest small fields was cheaper than the estimated full cost of combine harvesting, it was estimated to cost more than contractors' current charges of 500 Kslha. Hand cutting and threshing with a large mechanical thresher was estimated to cost about 25% more than the current contractor rate. For this reason, smallholder wheat farmers in Kenya would find lahor-intensive wheat technologies attractive only if the technologies sizeably reduced losses caused by harvest delays from having to wait for contractors.An analysis of the profitability of a range of wheat and maize technologies using 1987 prices suggested that fully mechanized wheat was the most profitable alternative on large fields. On very small fields, however, maize and labor-intensive wheat technology were approximately equal in profitability and superior to fully mechanized wheat. Labor-intensive wheat showed greater profitability than fully mechanized wheat on field sizes less than 4 ha.Analysis of comparative advantage was undertaken to assess which technologies were most profitable from the national perspective. The analysis involved estimating the \"opportunity\" prices of all inputs (that is, prices that have been adjusted to be free of all government policy effects and short-term commodity price fluctuations). Generally, using the opportunity prices of inputs led to lower machinery costs than using farmer prices, because the lower costs of repairs and fuel tended to outweigh higher capital costs.Assuming opportunity wage rates equal to current levels, the analysis therefore tended to favor more mechanized technologies.National profitability was positive for fully mechanized wheat technology on large fields, indicating that in Kenya a comparative advantage exists in producing wheat on large farms with machinery-intensive technologies. On small fields, labor-intensive wheat was more nationally profitable than fully mechanized wheat but producing maize with labor-intensive technology was still slightly more profitable than producing wheat with labor-intensive technology. It was estimated that a 4% price premium would be needed to make labor-intensive wheat more nationally profitable than maize on small fields. This comparatively small difference suggests that the efficiency costs of substituting labor-intensive wheat for maize on small holdings would be low.vWhether or not to devote more resources to small-scale wheat technologies in Kenya is a decision that will be based on a number of considerations, such as profitability, effects on emploYment, on distribution of income, and on foreign exchange as well as the likely uptake of the research results. Our analysis generally shows that, according to these criteria, smallholder wheat in the Nakuru district offers little or no advantage over maize, since maize grown with labor-intensive technology can offer employment, income for small farmers, and foreign exchange efficiency comparable to smallholder wheat. The economic advantage of maize production depends on the natural advantages that exist in different locations for the two crops on small holdings. Where conditions favor wheat production more than our analysis has assumed, smallholder wheat will offer greater profitability to farmers and to the nation than maize.The potential for smallholder wheat also depends on two other key factors:1) the availability of a pool of casual labor to do the cutting, stacking, threshing, and other tasks involved and 2) farmers' preferences for one crop over another. Nevertheless, the low opportunity cost of labor suggests that the potential exists for labor-intensive wheat production, as occurs neighboring Ethiopia.The results of this study raise several issues for further research. First, more information is needed to assess sources of yield losses on small holdings.Additional data on sources of yield losses could be obtained by a more extensive survey of smallholders who grow wheat. That information might be supplemented by further on-farm analysis of the relationship between planting dates and wheat yields, and between harvest dates and yields. Second, information could be gathered on potential areas for smallholder wheat in Kenya, areas where wheat is currently grown on smallholdings, yields of wheat and competing crops in major production districts, and so on. Finally, analyses similar to this one might be conducted in other districts of Kenya to assess whether the natural advantages of wheat are sufficient to warrant promoting smallholder wheat technology.If smallholder wheat technology is to be developed further in Kenya, this study suggests that focusing on harvesting technology is probably the most cost-effective strategy. A central element of the strategy with respect to laborintensive wheat harvesting must be preventing losses by improving the timeliness of operations. If small-scale wheat farmers do not perceive gains in yield (from savings in crop losses) they will be unlikely to switch from their current technologies to others.The Economics of Small-Scale Wheat Production Technologies for Kenya Introdu'Ction Population pressure is a key issue facing the Republic of Kenya for the remainder of this century and into the early part of the next. By the year 2000, Kenya's population is projected to be about 35 million (Republic of Kenya 1986). By the turn of the century the number ofjobs will have to double to maintain recent rates of employment. In laying out its development strategy to the end of this century, the Government of Kenya strongly emphasized further development of agriculture as the \"leading sector in stimulating economic growth and job creation\" (Republic of Kenya 1986). This goal implies intensified production of export and food crops.Population pressure and land settlement have led to considerable change in food crop production in Kenya. Areas where wheat was once grown on largescale, mechanized farms now produce an array of crops and livestock on the smaller holdings that were part of the land settlement schemes (Jaetzold and Schmidt 1983). Where conditions permit maize to be grown, it is the cereal crop preferred over others on small holdings. In Kenya wheat is not a traditional smallholder crop. However, in most traditional wheat-producing areas many small wheat farms can be found.In contrast to Kenya, in many other parts of the developing world wheat is a smallholder crop, especially in China, South Asia, parts of West Asia and North Africa, as well as in Kenya's northern neighbor, Ethiopia. In many of these countries but certainly not all, rural wage rates are actually higher than their equivalent in Kenya (CIMMYT 1985), although much more laborintensive practices are used to grow wheat. In Kenya, smallholder wheat farmers hire machinery contractors to provide tractor and harvesting services.Kenya is about 60-70% self-sufficient in wheat production. However, projections to the year 2000 suggest that this degree of self-sufficiency will decline if demand grows as rapidly as expected (Republic of Kenya 1986). Kenya has several alternatives for increasing domestic wheat production: expanding into new areas, substituting wheat for other crops, raising levels of inputs applied to wheat, and increasing the productivity of wheat through crop research and extension. Which alternatives to adopt will be influenced by many considerations, including the economic merits of each alternative.One question facing Kenyan wheat researchers and policymakers is to what extent. smallholder wheat. production teC'hno]og;eA Rhml1cf he reseHrched Rnd promoted. A related question is which of these technologies should receive the bulk of the developmental efforts. To help address these two questions, this study provides an economic analysis of smallholder wheat production technologies in Kenya. Since some smallholder wheat technologies are in the preliminary stages of testing in Kenya, information is taken from other countries, especially Pakistan, to provide a basis for the economic analysis. As well as considering the economics of different technologies using current farmer prices, the study uses methods to adjust prices to analyze the comparative advantage of resources in smallholder wheat production.The study focuses on one traditional wheat area of Kenya, the Nakm'u district, selected because considerable land settlement has occurred in the area and much land has been shifted from large-scale wheat production to smaJlholder maize production and dairying. Many smallholders in the Nakuru area continue to grow some wheat and presumably would adopt labor-intensive technologies to produce wheat if they were perceived to be beneficial. The economics of labor-intensive technologies would likely be very similar for ot.her regions in Kenya where smallholder wheat production is possible. Another reason for selecting the Na kuru area is that the center of wheat research in Kenya, the National Plant Breeding Station at Njoro, is located there and does research on smallholder wheat technologies.In summary, the objectives of the study are:• To analyze the profitability to farmers of smallholder wheat production technologies, specifically for the Nakuru district of Kenya;• To analyze the comparative advantage of smallholder wheat technologies in the Nakuru district;• To suggest strategies for research relating to smallholder wheat production; and• To suggest further economic research relating t.o production technologies for smallholder wheat in Kenya.This was a preliminary study, and we hope that the analysis will stimulate further economic research on different technologies and on policies important to Kenyan agriculture. We also hope that the study will encourage similar work in other countries where comparable issues arise.Wheat in Kenya Wheat is one of seven crops that are \"central to achieving the development goals estahlished for agriculture\" in Kenya (Republic of Kenya 1986). Some ]00,000-120,000 ha of wheat have heen harvested annually in Kenya during the 19808, with average yields ranging from just under 1 tlha (in the drought year of 1984) to 2. 3 t/ha (in 1982). Wheat occupied 2.2% of the total area of crops and pastures for dairying in 1983/84 (Republic of Kenya 1986). Wheat's share of the total value of crops and dairy output of Kenyan agriculture was also just over 2%, although, as a share of marketed output, wheat in recent years has ranged from 2. 3-4.9% (Eepublic of Kenya 1987).Wheat is mainly grown in the cooler and medium-rainfall regions of Kenya, generally at elevations over 1,800 meters above sea level (Figure 1) and mostly on large farms. The environments for growing wheat are diverse and found throughout Kenya. The main growing regions are:• Nakuru district and neighboring areas, centered upon Nakuru and areas to the south and west• Mount Kenya, largely the northern and western slopes• Uasin Gishu, centered upon Eldoret and comprising areas to the north and east• Trans Nzoia, centered upon Kitale and the lower slopes ofMt. Elgon• Narok, on new lands which until recently were Masai pastoral landsThe differences among these growing region!;; in rainfall and temperature, which are largely determined by altitude and topography, mean that wheat is grown somewhere in Kenya throughout the year. There is a lengthy period between the first dates of planting and harvesting wheat in the \"earliest\" growing region, lower Narok, and those in the \"latest\" region, Eldoret. In some parts of Kenya wheat is grown during the short rains, being planted in September and harvested in March. Unlike many other countries, in Kenya the fleet of harvesters and machinery for growing wheat can therefore be occupied for an unusually large number of months of the year. (Of course, this machinery can also be used on other cereal crops.) Wheat is grown mainly on the medium-sized, mixed, and large farms. Up-todute informat.ion is not availahle on the ext.ent of wheat area and production on small holdings in Kenya. It was reported that in 1971 wheat production on farms under 20 ha was just over 20.000 t, some 10% of total production. This estimate is higher than in earlier years (World Bank 1982).Surveys of small farms in some wheat-growing districts all refer to the scarcity and uncertainty of information on numbers of small-scale wheat growers. The best available data are reported by Bartenge (1979) and Mulamula (1983). Estimates of numbers of small-scale wheat farmers in some districts in the late 1970s are presented in Table 2. More current information on wheat on small holdings is unavailable, and a survey of several districts combined with other information from official sources would assist considerably in quantifying the area planted to wheat on small holdings. Data from Mulamula (1983) suggest that, for a sample taken in the Nakuru district. farms smaller than 20 ha occupied no more than 15% of the total wheat area. However, that 15% of wheat area represented well over 70% of the total number of wheat farmers (Table 3, page 7).Informal discussions with farmers and contractors in Nakuru district and the areas around Eldoret suggest that wheat area, including land devoted to small-scale wheat production, has increased in recent years. The increase has occuned because the price of wheat has been considered more favorable than prices of competing crops. In addition, payments to farmers for maize are often delayed for up to a year whereas payments for wheat are generally more prompt. Important as it may be, the number of small holdings producing wheat is not the central issue for this study. More important is the potential area for smallholder wheat production, which comprises 1) areas where wheat was grown on larger farms and where other crops or pasture are now grown on smallholder settlements; 2) land that might be switched from other crops to wheat if the smallholder technologies were better developed; and 3) potential wheat land on large farms that are being subdivided or might be subdivided in the future. It is likely that the potential area for producing wheat on small holdings considerably exceeds the current area. Whether or not the area of smallholder wheat increases in the future will depend upon the availability of technology for growing wheat on small holdings and the economics of smallholder wheat production compared with alternative crop and livestock enterprises.Farmers' Practices with Large-Scale Technology Large-scale wheat production in Kenya involves the use of medium to large tractors (75-125 horsepower range) and compatible cultivation, planting, and spraying equipment and combine harvesters (Harder 1974). Typically, one or two pJowings by one-way dh~c plows are followed hy one or two disc harrowings before wheat is planted with a seed drill. If broadleaf or grassy weeds are dense enough to require spraying, a wide, tractor-pulled boom spray is used. Wheat is usually harvested by self-propelled combine harvester and increasingly bulked and transported directly to depots set up to handle bulk wheat. Where transport considerations dictate or bulk grain facilities are distant, wheat is bagged and trucked to depots that receive bagged grain.A numbers of farmers take the wheat straw that is left, in windrows by the combine harvester and bale it, sell it, or use it for animal feed or hedding.After the bales and bags are removed, livestock often graze the wheat stubble for up to three months before plowing commences for the next year's crop.Wheat is commonly grown for three years or more in succession, and then might be rotated with pasture or other crops to break the cycle of diseases and weeds and to improve soil structure. Some progressive farmers employ new conservation tillage practices (stubble mulching and chisel plowing). Some also use \"knock down\" herbicides such as \"Round-Up\" and others practice zero tillage before planting. These technologies promise to increase the number of years that the land may be planted to wheat, to sizeably reduce soil erosion, and to improve moisture conservation.Insufficient moisture remains an important limiting factor for wheat production in most years and districts of Kenya. The recommendations for planting wheat in Kenya place considerable emphasis on performing operations at the appropriate time and on choosing varieties with the optimal maturity for particular locations and elevations (National Plant Breeding Station 1987).Data reported from trials at the National Plant Breeding Station in Njoro (Toogood 1981) indicate how crucial the time of initial land preparation can be for wheat yields. For example, the highest average yields-3.4 tlha-were obtained when land was plowed immediately after harvest (1 October). whereas average yields were reduced by 30% when land was plowed six months after harvest (1 April). The time of planting is also an important factor affecting yields. Data reported for Aruaha in Tanzania, for example. indicated that when planting was delayed for one month after the optimal date the subsequent yield loss was 27-35% (Lyimo and Button, 1983). Similar findings are reported for locations ill Ethiopia (Gebeyehu n.d.). with less consistency, and comparable relationships probably exist for many wheat-growing regions of Kenya.Harvesting on time is also important to minimize grain losses from weather d:Jmage, shattering, bird damage, anrl so on. Contractors :Jnd fflrm~Ts consulted during this study suggested that a three-week delay in harvesting normally results in losses of 20-30% of grain yield, and even more if weather at harvest is unfavorable.A number of large-scale farmers use their own machinery to grow and harvest wheat because of the need for timely operations and also because of the size of operation. Large-scale farmers who hire contractors generally obtain their services when they are required because larger areas are usually the most profitable to contractors.In contrast with producing wheat on large farms, growing wheat on small farms does not warrant owning machinery for use on one farm alone even if some of it can be used on other crops and enterprises. Thus most smallholders growing wheat hire machinery contractors to undertake many, if not all, of their wheat-growing operations (van Eijnatten 1976, Bartenge 1979).Farm machinery services can be hired for all operations, although in a few cases a small-scale farmer might elect to buy a tractor and tillage equipment and help pay for the investment by offering contracting services. This practice varies according to the type of operation and the cost of the tillage equipment required. For example, a survey of smallholder wheat farmers in Nakuru district in 1986 (documented in Appendix A) indicated that 24% of farmers grew less than 10 ha of wheat plowed with their own tractors, whereas only 16% planted, and none harvested, with their own machinery.At present smallholder wheat production technology differs only by degree from that employed on large farms. For example, smallholder farmers reduce the number of tillage operations, often because they lack working capital. This problem can be exacerbated when smallholdf~rsrely upon Agricultural Finance Corporation funds to pay for their main farming inputs and for contractors' services, because funds are often delayed in getting to farmers.Tractors and other equipment used on small holdings are somewhat smaller than those used on large farms. Tractors used on small holdings often range between 35-75 horsepower, whereas they typically range upwal'ds of 75 horsepower on large farms.On small holdings, a number of farmers now use knapsack sprayers in place of larger, tractor-mounted boom sprays. These sprayers appear to be the only labor-intensive technology that smallholder wheat farmers have readily adopted, although the extent of adoption has not been quantified. At harvest, smallholders largely rely upon contractors' sprvices for comhining and for transport. Because smallholders find it difficult to obtain trucks to canoy the grain in bulk at the same time as they obtain the harvester, they usually bag the wheat, which serves as a check on the quantity that is marketed.Most smallholders grow maize and vegetable crops and maintain a small dairy herd. Generally, the area planted to maize is determined by each household's subsistence need for maize. Most smallholders consulted for this study reported that they planted from 0.8 to 1 ha of maize. When asked why they did not plant more, they generally said that this area was sufficient in most years to meet household needs and that on larger areas farmers faced a labor constraint, particularly with weeding maize by hand after planting. Smallholders generally reported that they preferred to grow wheat rather than maize beyond the levels set by their household food needs and by the labor constraint. Wheat was reported to be an easier cash crop to manage than maize and was also more profitable if the farmer depended upon hired labor.Dairying sometimes complements crops on smallholdings. Labor requirements for dairying are more evenly distributed throughout the year because farmers rotate land from crops to pastures and because dairy cattle can consume crop residues, roadside pasture, and other readily available feed that might otherwise be underused. However, dairying can also substitute for wheat production. A few farmers reported that they were increasing their dairy output by putting more land under pasture and reducing the area of wheat.All wheat researchers, farmers, and contractors contacted for this study reported that smallholders who grow wheat have serious problems performing crop operations on time. To explore this issue, a short survey of smallholder wheat farmers was undertaken in 1986 in two wheat-growing regions of Kenya, the districts of Nakuru and Eldoret. The aim of the survey was to assess how much the main wheat-growing operations were delayed on small farms and to obtain farmers' assessments of how much yields were reduced because of the delays.Of the 45 farmers surveyed who grew no more than 4 ha of wheat in 1986, the average farm size was 8 ha, and the average area planted to wheat 2.6 ha. Average reported wheat yields for this sample of smallholder farmers were 2.6 t/ha (or 11.6 bags per acre) in 1985. The average reported yield for the Nakuru district in the same year was 3.2 tlha (14 bags per acre). Some 76% of farmers assessed that they suffered yield losses because operations were not done on time; the remainder either believed that lack of timeliness did not lower yields or did not respond to the question. Among the farmers who asserted that lack of timeliness reduced yields in 1985, the average assessed loss was 22%, or some 580 kg/ha wheat. This represents a loss at current wheat prices of some Ks 1,700lha, more than US$ 100lha at the official exchange rate. Such losses correspond closely with assessed costs of harvest delay in a risky wheat-growing environment in Australia (Whan and Hammer 1985).Interestingly, 55% of farmers estimated that harvesting delays caused the greatest yield loss, 30% that delays at planting caused the greatest yield loss, and only 8% felt that delays in plowing caused the greatest yield loss.It should be noted that farmers with more than 4 ha of wheat reported similar estimates of yield loss in total. No strong correlation could be found between assessed yield loss and farm size, suggesting that yield losses of the magnitude described above are not confined to very small wheat farmers. Only 39% of the farmers with more than 4 ha of wheat reported that harvesting delays caused the greatest yield loss, and a similar number thought late planting was the source of greatest loss. Just over 20% said that late plowing was the greatest cause of the yield loss. These data suggest that lack of timeliness might not simply be a problem for very small wheat farmers but may indeed be a more general problem, faced by medium-sized farmers in Kenya as well.Certain operations may not be performed at the optimal date for valid economic reasons. For example, small farmers may value the feed obtained from stubble sufficiently to delay plowing. Lack of cash may also prevent operations from being performed at the date that is best for maximizing yields. Farmers may also be somewhat cautious in deciding upon the date of planting, aiming to ensure that plenty of moisture is available for seed to germinate. Despite such considerations, the general opinion voiced in many meetings with farmers, contractors, and wheat researchers was that smalJholders producing wheat face serious constraints with regard to timeliness of operations. Some indication of how reduced yields can influence profitability is provided in Table 4. In this analysis, 1987 contractors' charges for each machinery operation were used (along with prices and technical information documented in Appendices C and D). Budgets were prepared assuming yields of2.8 tlha for wheat (12.5 bags per acre) and 3.5 tlha for maize (15.5 bags per acre). Budgets for wheat assuming additional yield losses of 10%,20%, and 30% were also prepared. At wheat yields of 2.8 tlha, the profitability of wheat is just over Ks 1,000 higher than that of maize. However, with a 20% loss in wheat yield, maize becomes the more profitable crop. A 20% loss of yield in wheat production'implies a loss of profitability of over K.s 1,500lha. These h1Jd~et.s indicate the magnitude oHhe losses that some smallholder wheat producers may incur when operations are not performed 011 time.The rates charged by farm machinery contractors are established in a basically free market for their services. Government tractor hiring services exist in some locations but provide a miniscule share of the total contractor service for wheat and other cereals in Kenya. The government also encourages the continued development of the private farm machinery contractor market (Republic of Kenya 1986).Although there are exceptions to the rule. rates for hiring machinery services are set according to general rates established by the contractors' associations.The general rates might be adjusted according to the distance the contractor must travel and according to working conditions. which are influenced by soil type, slope, amount of crop residue. and so on. However, the rates generally do not vary widely between farms of differing sizes. This lack of variation is the main reason that. smallholder farmers have difficulty obtaining contractors and often have to wait for their services, for up to a month in extreme cases.Economies associated with operating machinery on larger fields are a major reason for the delays faced by smallholders. Generally speaking, the smaller the field, the greater will be the amount of time lost by machinery contractors in providing a particular service. Greater loss of time per hectare implies higher costs per hectare of providing services. Thus contractors aim to provide services to larger farms first. because they are the most profitable.In order to assess how contractors' real costs of providing services for different field sizes might vary, we calculated the amount of time lost from the following in a normal working day:• Overlapping with turning and headlands;• Moving from field to field;• Setting the machinery in each new field; and• Servicing machinery daily.Details of the calculations are presented in Appendix B. The approach followpd was based npon Brown Rn(f Rchoney (1985). It shonld be noted that no attempt was made to factor in additional losses of time that might be incurred because there are more obstacles on small fields, because machinery breaks down, and because weather is uncertain.To derive the assumptions underlying the calculations, considerable time was spent with farm machinery contractors, asking them about average work speeds and work widths for different operations, about the time usually needed to move from field to field, about the typical shape of fields, and about average daily service time and work hours.Estimates of the amount of machinery time lost for five main farming operations for different field sizes are presented in Figure 2 (page 15). The estimates have three key features. First, as field size declines, each of the operations displays increasing amounts of time lost per working day. Second, wider equipment loses a greater amount of time per day for a given field size and shows much higher rates of inefficiency than narrower equipment. Third, for each operation there appears to be a minimum field size above which reductions in lost time diminish.These results are indicative of the increasing time needed to perform particular machinery operations as field size declines. Although detailed surveys of time taken for farm machinery contractors to complete different fields could be undertaken, this exercise could be very costly and might be subject to measurement errors and uncertainties deliberately excluded from the analysis.Alternative Small-Scale Wheat Production Technologies Alternative Crop Growing Technologies A wide array of equipment and methods could be t'mployed in Kenya as small-scale wheat production technologies, although the costs of some might render them less economic than contractors' services. For more details on these technologies, some very useful references include Gardezi et a1. (1979), Morris (1981), the International Center for Research in the Semi-Arid Tropics (983), Tanner and Ransom (985), and Smale (1987).For plowing, alternative technologies range from digging land by hand, which is done in most maize-producing areas of Kenya, to plowing with bullocks, and to using small, motorized two-wheeled or four-wheeled tractors with a plow attachment. Each of these operations is likely to be less eflective ..--,.,---\"'---\"1'''''--''''''''--''1(''''--'''''''---\",---\"'---\"'---.,,~- Average field size (ha)Figure 2. Amount of machinery time lost per day related to average field size. Note: Bottom scale is not continuous.than the larger tractor-pulled plow in providing evenness of plow penetration and wep-d kill. especially if the opprahon is Rpread over a much longm' period. However, labor-intensive methods of plowing are used widely in other countries (Copland 1985, Binswanger 1986) and in other parts of Kenya with different cropping systems (Ministry of Agriculture andLivestock Development 1986, Ockwell 1987).For cultivating, potential alternatives to disc harrowing wit.h a medium-sized tractor include digging by hand, using bullocks to cultivate, or using small two-wheeled or four-wheeled tractors with cultivators attached. 'fo plant wheat, the conunon method used by smallholders in other cou ntries is to broadcast seed and fertilizer by hand and then t.o halTOW the land. The harrowing may be done manually or wit.h bullocks or with small two-wheeled or four-wheeled tractors, depending upon field size, labor availability, and the slope of the land. Small planters drawn by bullocks or small tractors could also be employed, although it is unlikely that small farmers could afford to buy that equipment unless they could hire it out extensively on other small holdings. Much development of animal traction has been undertaken in Africa and Asia. with the International Livestock Centre for Africa (lLCA) and ICRISAT playing important roles (Westley and Johnston 1975, Munzinger 1982, ICRISAT 1983, Aked 1984, Copland 1985). Far less work has been undertaken on small-motorized cultivation equipment in Africa than in Asia (see for example the machine specifications for different smallmotorized equipment provided by the Agricultural Machinery Development Program, International Rice Research Institute).To control weeds on small holdings, a tractor-drawn boom spray could readily be displaced by knapsack sprayerR or by hand weeding where labor is sufficient. Scarcity of water is a major constraint to spraying, and most contractors deliver water as well. Since newer herbicides are applied at more concentrated rates using much less water per hectare, the water constraint will probably decline over time. Knapsack sprayers are easily available in Kenya and have been established as a feasible, economical tool for applying herbicides on small holdings.Agronomic considerations associated with each of the wheat technologies are important. For example, if broadcasting seed were to replace line planting 011 small holdings (the current technology). heavier seed and fertilizer rates would be needed to achieve the same plant density and ensure that the nutrients applied would be just as effective. Rudd and Barrow (1973) found that the effectiveness of fertilizer is more than halved when seed is broadcast instead of line drilled, although other studies suggest that the reduction of effectiveness is not so great (Tanner and Ransom 1985). The tradeoff of earlier planting by broadcasting against later planting by line drilling must then he made. Clearly, agronomic research must. he comhim~d with economic and other research before such technologies are extended to fanners.So far, we have reviewed alternative m('>thods of plowing, harrowing, planting, and controlling weeds, all involving widely differing degrees of labor and machinery use. Other alternative technologies involving minimal tillage practices save on labor and machinery (Tanner andRansom 1985, National Plant Breeding Station 1985). For this study we have not evaluated the economics of these technologies, since it is clear that if the cost of \"knock down\" herbicides and their application is lower than the costs of cultivation, then the profitability of minimal tillage will be very much determined by the yields achieved. Agronomic research on minimal tillage is underway in Kenya and some wheat farmers use minimal tillage technologies quite successfully.For some economic analysis of these technologies, see the National Plant Breeding Station (1985).A wide array of harvesting and threshing technologies for wheat is available (Hanson, Borlaug, and Anderson 1982). Within one region of Pakistan, for example, some very interesting changes in the use of harvesting technology are occurring (Smale 1987). Farmers appear to be choosing between more mechanized and more labor-intensive methods according to economic criteria, farm size, comparative costs, availability of labor, time to complete harvest, and so on. Smale (1987) found that larger farmers are adopting combine harvesting services more rapidly in Pakistan while small farmers continue to use more labor-intensive methods.The most labor-intensive harvesting and threshing methods involve cut.ting, stooking, and later threshing and winnowing t.he wheat by hand. A sickle is normally used to cut the wheat, which is tied into bundles bound with straw and then stooked or stacked, sometimes under cover if there is a risk of weather damage. Threshing involves flailing the wheat on the ground and winnowing it by tossing grain and chaff in the air when there is enough wind to separate the chaff from the grain. Sometimes hullocks are used to flail the grain by trampling, or wheat is flailed by hitting the heads against a log. Small sieves can be used to clean the wheat as well.An important advantage of cutting before threshing is that wheat can be harvested at a much higher moisture content than wheat that is combine harvested. Cutting can begin when wheat has a grain moisture content well above 20%, provided that wheat can be stored where natural drying can occur without risk of weather damage or rotting. Normally wheat in Kenya is not harveFlted ahove 14--1 f)(}(1 moiFlture contt:mt unless the grain is dried. Earlier clItting hf•lpFl reduce the riRk of IORR from hnrl weather nnel also minimizes shattering of grain during cutting. In Pakistan. a conunon charge for manually cutting and stooking wheat is 10 ' }(, of the harvested grain.In place of manual cutting, mechanical cutting with small attachments t.o small two-wheeled or four-wheeled tractors is possible. Larger reapers are also used in India and Pakistan to eliminate the tedious task of cutting by hand and to lower cutting costs. The cut wheat is then bundled and stooked or stacked before threshing.Mechanical threshing and winnowing have largely replaced manual methods in the Indian Punjab and Pakistan (Gupta and Singh 1986). Specialist thresher operators provide this service in the main wheat areas of t.hese countries. While small motorized threshers are available, most mechanized threshers are large, typically driven by a 65 horsepower tractor (normal throughput of a large thresher is 1 tllu). A charge of 10% of threshed grain is the usual cost for the service, and most farmers will also assist the thresher operator with feeding and bagging.One useful by-product of mechanical threshing is that the wheat straw is chopped and blown from the thresher into a stack. Farmers find that the chopping adds value to the straw as a livestock feed and straw continues to provide valuable income to farmers in Pakistan (Longmire, Ahmad, and Hussain 1989). Combinations of reaper binders, tractor-pulled harvesters, and small, self-propelled combine harvesters are also used to varying degrees.Costing Alternative Operations To better identify those technologies likely to be most profita ble or least costly to farmers. each operation was costed separately for different field sizes. Initially, costing involved estimating for each operation the machinery time lost per hectare and the machinery time required to complete one hectare. Then costs per hour of operation were calculated for each machine or pair of oxen. Mter adding the costs of manual labor required in the operation, the cost per hectare of each operation was estimated.A limited number of operations were included to keep the analysis manageable. The operations were:1) Plowing a) Plowing with a 3-disc plow pulled by a 75 horsepower tractor b) Plowing with a 7 horsepower two-wheeled tractor with a singlefurrow moldboard plow attached c) Plowing with a pair of oxen pulling a single-furrow moldboard plow d) Digging by hand with a heavy hoe 2) Harrowing or cultivating a) Harrowing with offset disc harrows pulled by a 75 horsepower tractor b) Cultivating with a small spring-tined cultivator pulled by a 7 horsepower two-wheeled tractor c) Cultivating with a small spring-tined cultivator trailed behind two oxen d) Cultivating by hand with a hoe 3) Planting a) Planting with a seed drill, incorporating seed and fertilizer in rows spaced 18 cm apart b) Broadcasting both seed and fertilizer by hand. followed by a harrowing with a spiked-tooth harrow pulled by a 7 horsepower two-wheeled tractor to incorporate the seed and fertilizer c) Broadcasting both seed and fertilizer by hand. followed by a harrowing with a spiked-tooth harrow pulled by a pair of oxen to incorporate the seed and fertilizer d) Broadcasting both seed and fertilizer by hand, followed by a manual harrowing, either with an improvised rake or light harrows pulled by hand 4) Weed control a) Spraying with a wide boom spray pulled by a 75 horsepower tractor b) Spraying with a knapsack sprayer c) Hand weeding 5) Harvesting a) Harvesting with a self-propelled comhine harvester and conveying grain to a bagging unit in the field where workers fill bags and stitch them b) Cutting with a reaper attached to a 75 horsepower tractor and stacking c) Cutting with a small reaper attached to a 7 horsepower motorized two-wheeled tractor and stacking d) Cutting by hand with a sickle and stacking e) ThreRhing with a large mechanical thresher f) Threshing with a small motorized thresher g) Threshing and winnowing by hand Appendix B shows the assumptions used to estimate the time required to undertake different operations with machinery and oxen and the sources of the assumptions. Estimates of the time required to do particular operations with machinery and oxen in fields of different sizes are presented in Table 5 (page 21). As would he expected, more time is required to complete a hectare with the more labor-intensive operations than the mechanized ones, the difference being greatest with the largest fields.The time required to perform certain operations by hand was also obtained. Data were drawn from the following sources: Smale (1987), Longmire, Ahmad, and Hussain (1989), Byerlee and Longmire (1986), Byerlce (1985), and information in farm management bulletins in Zimbabwe and Kenya. Farmers, researchers, and extension officers also provided information on time required to do particular tasks with wheat and maize in the Nakuru district. The manual labor inputs for alternative operations are presented in Table 6 (page 22). Sizeable differences in the amount oflabor required to perform particular operations can readily be observed. In practice, lahor requirements will vary considerably according to many factors, including worker incentive, weather, soil type, topography, and so on. The data in Table 6 thus are best estimates of the average time needed to do the various operations.Estimates of costs per hectare of different operations for 1987 are presented in Table 7 (page 23). Plowing with oxen is comparatively cheap, although soil penetration and weed kill might be less effective. Plowing with a large tractor is the next cheapest operation for all sizes of field, with the margin favoring this method as field size increases.For harrowing, using oxen is also the cheapest option, although using large tractors also costs less than the other more labor-intensive operations, except for very small fields (1 ha and less). A similar pattern emerges for planting, with hand broadcasting and oxen harrowing costing the least. Other methods of planting do not appear to be any cheaper than using a large tractor and drill, except (again) for very small fields. With regard to weed control, spraying by hand is a very low-cost method. But when chemical costs are added to the cost of spraying, hand weeding becomes more attractive for small farmers. Obviously the economics of hand weeding depend very much upon weed density. If weeds are sparse, hand weeding may be the cheapest alternat.ive. However, greater weed density could readily make the outlay for chemicals and spraying very cost-effective if the weed kill is timely. For small farmers, knapsack spraying is a very economical method of applying herbicides. On HmaJl fiddH, cornhin(~harv(~Rting-iH a V(~ry hig-h-eoRt met.hod. Only for fi,•ldA of around 1n hI! or more do thf~('o~t.s for comhine h:\\rveRting decline helow contractors' actual charg-es in 19R7 of approximately K8 500/ha. The cost!:; of combining in fields averaging under 1 ha are more than double this amount. However. costs of a large reaper (and tractor) and large thresher are aJso quite high, ranging from Kc;; 630 to Ks BOO/ha. Hand cutting combined with using a large thresher is cheaper than using the large reaper, and much cheaper than the underlying costs of combine harvesting in fields smaller than 2 ha. Small motorized cutting and threshing, as well as hand threshing, appear to offer no cost advantage over other methods, although they might offer some additional flexibility for smallholder wheat farmers.Generally, the results in Table 7 suggest. that the cost savings of more lahorintensive cultivation methods are not t.hat significant. The nse of bullocks appears to offer sizeahJe savings, but they could readily be offset by the poorer land preparation and weed kill that result from using light bullockdrawn equipmept instead of tractor-drawn equipment. The analysis indicates that smallholder farmers would have to perceive significant positive yield effects from more Jabor-intensive technologies (for example, from more timeJy cultivation) hefore they would be likely to adopt them.Clear cost savings are estimated from the use of knapsack spraying and effective hand weeding. It is for this reason that knapsack spraying is already widely employed on small fields in the district. This analysis suggests that on large fields knapsack spraying is also cheaper than using the tractor-drawn boom sprayer, provided that enough lahar is available to do the job on time..jrThe analysis also suggests that contractors considerably undercharge for the fuJl costs of combine harvesting in small fields by charging a flat rat.e for aU sizes of fidds. It is for this reason that contractors give low priority to smull fields during harvest and tend to leavp them to the very last. 'fhe high t1 nderJying costs of comhine harvesting on small fields suggest that. small farmers couJd readily henefit from the introduction of smallholder harvesting technologies, not so much because of the immediate cost savings (since farmers pay the average contractor charge of Ks 500/ha for harvesting), but because harvesting would be more timely.Wheat under a Range of Technologit-'s Using the costs estimated for different operations, we constructed per-hectare budgets comparing the profitahility to farmers of diflerent maize and wheat technologies for several field sizes. Many technologies could he derived hy combining operations in various ways, as well as by varying the scale of the operations (as demonstrated in India by Gupta and Singh, 1986). For this study, five different wheat technologies were singled out for analysis:1) Fully mechanized A combination of operations 1(a), 2(a), 3(a), 4(a), and 5(a) outlined on pages 18-20.2) Big reaper and thresher A combination of l(a), 2(a), broadcasting and disc harrowing with a large tractor to incorporate the seed, 4(b), 5(b), and 5(e).3) South Asian A combination of 1(a), 2(a), broadcasting and disc harrowing with a large tractor to incorporate the seed, 4(b), 5(d), and 5(e).A combination of l(b), 2(b), 3(b), 4(b), 5(c), and 5(t).A combination of operations Hc), 2(c), 3(c), 4(c), 5(d), and 5(g).Three maize technologies were analyzed. Digging and cultivating by hand was the most labor-intensive technology. for it involved manual digging, planting, weeding, and harvesting. A second technology, using bullocks for plowing and cultivation, was analyzed. The third technology analyzed involved the use of a large tractor for plowing and cultivating.The main operations and input levels employed in the budgets for different technologies are presented in Table 8 (page 26). Operations and input levels were based upon information provided by farmers, extension officers, and others who had previously prepared budgets for the Nakuru district. The yield levels assumed were 2.8 tlha (12.5 bags per acre) for wheat and 3.5 t/ha (15.5 bags per acre) for maize. By-product yields were taken from information provided by farmers and contractors on the amount of straw and grazing typically derived from wheat and maize. For wheat, the estimated hy-product yield was 50 bales of wheat straw and the equivalent of 6 months of grazing for dairy cattle; for maize, it was the equivalent of 12 months grazing. The analysis shows that the yields of maize and wheat by-products form quite an important component oftotall'eturns, and further analysis could be conduded to evaluate farmers' perceptions and strategies with respect to use of crop residues. A sample hudget with measures of the profitability per hectat'e of alternative f,(>\"hnologips for wheat. and maize is presented in l'::1ble 9 (on t.he previous page). The budgets in Table 9 were calculated assuming an average field size of 4 ha. A 10% wheat yield loss was assumed because soil penetration and weed kill are poorer when oxen are used to prepare land. Fully mechanized wheat is the most profitable wheat technology, with the oxen and laborint.ensive wheat technology ranking second. Using oxen is the most profitable of the maize technologies. Wheat grown using current (fully mechanized) technology is considerably more profitable--almost 2,000 Ksh/ha more profitable--than maize grown with labor-intensive methods.The main results of the budgetary analysis for diffet'ent average fit~ld sizes are presented below in Tahle 10. Estimates of the profitability per hectare of alternative technologies for five different field sizes are presented: 0.4 ha, 1 ha, 4 ha, 10 ha,and 40 ha. A key result apparent from the table is the difference in profitability among the alternative wheat technologies, On the smallest fields fully mechanized wheat production is the least profitable technology, whereas the most labor-intensive technology is the most profitable. In contrast, on the largest fields the fully mechanized technology is clearly the most profitable. Compared with maize, wheat is more profitable on large fields. However, for very small fields the profitability of smallholder wheat is similar to that of maize, suggesting that, under local growing conditions, farmers' preferences and the availability of seasonal labor might be farmers' main considerations when choosing between the two crops . Farm machinery contractors reported that the costs of operating mAchinery are generally higher on a per-hectare basis on smaller fields than on larger ones. Higher costs on smaller fields result from the increasing amount of time lost, as average field size declines, through headland overlap, turning, moving from field to field, and \"setting up\" the machinery in each new field before starting the job. In addition, each day contractors lose machinery working time because they have to service their machines and move them from their base to the fields where they work.Some evidence from machinery contractors emphasizes the extra time required for working small fields. It was reported that on smaller fields (generally less than 4 ha), standard-sized combine harvesters might cut 10 ha in an average working day. However, in the best large fields up to 16 ha could be harvested. This difference implies a 37.5% efficiency loss for the combine harvester in small fields. Similarly, it was reported that on small holdings contractors expected to plow 0.3 hectares ha/11 (0.75 acreslh), whereas with larger fields above 4 ha they expected to plow 0.4 ha/h (1 acrelh).The time required to complete one hectare for particular operations and the amount of machinery time lost per day for different average field sizes were calculated using spreadsheet analysis and assumptions obtained from machinery contractors. The calculations were made using average working speed, average working width, average road speed, average time to set up in each new field, average time per day for servicing machinery, and average daily work hours. After discussions with farmers and contractors, it was also assumed that the typical shape of a field in the district is a 2 x 1 rectangle and that the average distance from one field to the next is 10 times the length of the field.The calculations were made for field sizes ranging from 0.2 ha (0.5 acre) to 1,000 ha (as the extreme case). The calculations were as follows: An example of these calculations is presented in Table B.1 for plowing with a 3-disc plow at 6 km/h, the plow having a working width of 1 m. Note that the time required to plow one hectare and the percentage of time lost per day both decline as field size increases. For very large fields, the calculations imply a plowing rate of around 2.5 h/ha (1 acrelh), very similar to the estimates provided by contractors. For a small field, say 0.4 ha (1 acre), the time required increases to around 3.2 h/ha (0.78 acres/h).Using the above method, the estimated time lost per day and the time required to complete one hectare were computed for 14 operations with machinery and oxen. Assumptions concerning other machinery and oxen operations are presented in (1975).Average daily service time is 45 minutes for tractor, 60 minutes for the comhine harvester, 30 minutes for the two-wheeled tractor, and 10 minutes for oxen gear.An eight-hour day is assumed for all mechanized operations and a six-hour day for hullock operations. Prices of a pair of oxen and equipment were taken from an economic survey conducted in the Machakos and Kitui districts (Ockwell 1987). Oxen use is common in these areas and the price of a working bullock was quoted at Ksh 1,800-2,500. A plow was an additional Ksh 760.In analyzing the real resource cost or profitability to the nation of alternative technologies, the farmer prices were adjusted to remove the effects of sbortterm fluctuations in international commodity levels and effects of taxes, subsidies. and exchange rate policies. Procedures in Byerlee (1985), Byerlee and Longmire (986), Cleaver and Westlake (1987), and Pearson and Monke (1987) were followed. All prices employed in the analysis were adjusted for transport and other costs to the farm level in the Nakuru district.The opportunity prices of wheat, maize, and compound fertilizer were drawn from World Bank projections of prices for these commodities to the year 2000 in real 1985 US dollars. These prices were considered to be more reliable than current prices in guiding the longer term decisions to be made concerning allocation of research resources >F.73.How many of these video shows have you attended on infant and youg child feeding practices in the last one year?______ number 4.How many days/months ago did you attend the video show? _______ days ago ________ months agoWhat happened during the video show presentation?(Multiple response possible)TVCs and videos on IYCF were shown Discussion on IYCF issues Audience was quizzed on the video show Prize ceremony Others (specify)Which members of your family attended the video show event?(Multiple response possible) Thank you so much for your time and patience with this interview. Before we end, is there anything you would like to ask us, or to discuss about your work. We will gladly combine all suggestions we receive from the health workers we are interviewing and discuss with BRAC.Interviewer: Fill the serial no of the name of those SK who are interviewed","tokenCount":"1811"} \ No newline at end of file diff --git a/data/part_3/9258063409.json b/data/part_3/9258063409.json new file mode 100644 index 0000000000000000000000000000000000000000..4cad1e7efdab9879bd12e74bc2b4987a58ef9677 --- /dev/null +++ b/data/part_3/9258063409.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"0137b8eb722f4393bc9a7f43e6849fee","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/9bee0325-1e0e-43f1-90fe-e2fec6c34a8b/content","id":"1774230625"},"keywords":[],"sieverID":"d1d26cc8-e6a0-43e7-a6bb-6db9e0293fab","pagecount":"16","content":"Accurate identification of crop varieties grown by farmers is crucial, among others, for crop management, food security and varietal development and dissemination purposes. One may expect varietal identification to be more challenging in the context of developing countries where literacy and education are limited and informal seed systems and seed recycling are common. This paper evaluates the extent to which smallholder farmers misidentify their wheat varieties in Ethiopia and explores the associated factors and their implications. The study uses data from a nationally representative wheat growing sample household survey and DNA fingerprinting of seed samples from 3,884 wheat plots in major wheat growing zones of Ethiopia. 28-34% of the farmers correctly identified their wheat varieties. Correct identification was positively associated with farmer education and seed purchases from trusted sources (cooperatives or known farmers) and negatively associated with seed recycling. Farmers' varietal identification thereby is problematic and leads to erroneous results in adoption and impact assessments. DNA fingerprinting can enhance varietal identification but remains mute in the identification of contextual and explanatory factors. Thus, combining household survey and DNA fingerprinting approaches is needed for reliable varietal adoption and impact assessments, and generate useful knowledge to inform policy recommendations related to varietal replacement and seed systems development.Crop varietal identification in farmers' fields has long relied on elicitation of farmers' own identification of the varieties in household surveys. Ethiopia is no exception, and several adoption and impact assessments of improved crop varieties have been conducted there relying on farmers' elicitation [1][2][3][4]. Farmers might report their variety with a specific name, possibly corresponding with names listed in the national variety registry or a locally adapted name. In some cases, farmers might not report a specific name but use generic terms as 'improved' or 'local' or refer to the presumed origin. These farmer-reported names are typically taken at face value and subsequently used to estimate adoption rates and associated impacts. Of late, the reliability of such varietal information collected based on farmers' elicitation has been increasingly questioned by the advent of DNA fingerprinting [5][6][7][8][9][10][11][12].Farmers misidentification of their crop varieties is an example of measurement error. Survey measurement error through such farmer recall can be thought to represent simple misreporting correctable through improved measurement [13], like now possible with DNA fingerprinting. Correcting such varietal identification error is important in relation to varietal development and dissemination, including replacing old varieties with better performing new ones [14] and documenting the adoption of improved crop varieties.Varietal misidentification might also reflect misperceptions that materially affect the respondents' decisions under study [13]. Crop varieties variously respond to crop management (e.g. fertilization, timeliness) with important productivity and profitability considerations. Misidentification may thus result in production inefficiencies. For instance, farmers may apply fertilizer to what they think are improved varieties but are in fact unimproved; or alternatively, may fail to apply fertilizer and other agronomic practices to what they think are local varieties but are in fact improved. Farmers' technology adoption decisions can indeed exhibit strong input complementarity for some inputs [15]. Food security considerations at household and national levels are of particular concern in relation to tracking and replacing specific varieties susceptible to diseases and insect pests. Smallholder farmers in Ethiopia rely on wheat for subsistence and livelihood security. Farmers can replace stress susceptible varieties with more tolerant or resistant ones, like in the case of wheat rust epidemics [16]. Knowing the prevalence of susceptible wheat varieties also is key to assist policy makers target limited stocks of fungicide during wheat rust alerts in countries such as Ethiopia [17] and thereby the effectiveness of policy intervention [15].Misidentification may also have direct economic impacts on how markets function. For example, grain marketing and processing may be variety-dependent as some varieties possess special traits preferred by consumers or processing industries (e.g. bread vs durum wheat varieties in Ethiopia). Misidentification may originate along the seed supply, including mixing with other varieties at seed production, processing and marketing [18], and information bottlenecks in seed delivery and extension [19].One may expect varietal identification to be more challenging in the context of developing countries with limited literacy and education, with informal seed systems and saving and recycling of seed [2,[20][21][22]. In Ethiopia wheat seed is widely recycled and varieties are not proprietary, thereby reducing incentives for seed sellers to engage in possible fraud. Moreover, seeds from informal markets/sources could be heterogeneous and with diverse local names. Official variety names may also be complicated for illiterate farmers (e.g. scientific names, numbers or names with locally unknown meanings), and farmers may rebrand varieties with easier local names, e.g. describing varietal features or one that is more easily remembered [23].The contribution of this paper is two-fold. First, we establish the extent of crop varietal misidentification based on nationally representative data from a developing country. We do so using the case of wheat in Ethiopia and contrasting estimates of varietal identification using conventional household surveys based on farmers' elicitation with results from DNA fingerprinting (DNA FP) methods. Second, we identify some of the factors influencing farmers' ability to correctly identify the crop varieties they grow. The findings have various implications, particularly for breeding programs, varietal replacement and crop protection strategies in developing countries in general, and wheat in Ethiopia in particular. Importantly, a better understanding of these two facets provides a foundation for subsequent explorations of the economic implications of seed misidentification.Competing interests: Diversity Arrays Technology is a commercial entity and Andrzej Kilian is the CEO of this company. The funder provided support in the form of salaries for authors [MJ, KT, OE], but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. DArT does not alter our adherence to PLOS ONE policies on sharing data and materials.In varietal identification using DNA FP, building a comprehensive reference library is key. From 1960s to 2016, a total of 133 improved wheat varieties were released in Ethiopia. From the 133 released varieties, breeder seeds of 111 varieties were collected from the original research centres that developed and released these varieties. Breeder seeds for the remaining 22 varieties were not available for collection due to their old age and inability to trace viable sources. In the survey, only 1.2% of the farmers reported that they grew eight of these 22 varieties, which is a small proportion to affect the overall analysis results. For the collected breeder seeds, DNA was extracted from each variety at Holeta National Agricultural Biotechnology Research Center (NABRC), Ethiopia. With careful and proper tags, the DNA extracted from these breeder seeds were sent to the Diversity Arrays Technology (DArT) in Australia to build a reference library to be used for any sequencing and identification purposes of wheat samples collected from Ethiopia.Data used in this study for variety identification were collected from two sources: (1) DNA FP of grain samples collected from randomly selected wheat plots, and (2) survey data from households operating the wheat plots from where the grain samples were collected for DNA FP. Ethiopia's Central Statistical Agency (CSA) led the data collection with technical support from the Ethiopian Institute of Agricultural Research (EIAR). Though there is no permanent internal review board at CSA, before the survey was conducted, the survey instruments were assessed for their compatibility on ethical standards by a team of experts from the Agriculture, Natural Resources and Environmental Statistics Directorate (ANRESD) at CSA. The survey data were collected by experienced and well-trained enumerators speaking the local languages fluently and hired by CSA. Before each interview started with a sample household head (or respondent), the enumerators explained the purpose of the study and the anonymity of all information they provide. Then enumerators asked respondent's consent to continue with the interview. All the sample households responded during the survey passed through this procedure and provided their full consent orally.CSA has a long experience in collecting crop production data through its Agricultural Sample Survey (AgSS). For the same purpose, CSA uses Enumeration Areas (EA) as a minimum sampling unit. By considering the four major regional states (Oromia, Amhara, SNNPR, and Tigray) together producing over 95% of Ethiopia's wheat, and the major administrative zones producing wheat in these four regional states, CSA randomly selected 420 EAs for wheat data collection (Table 1).In each randomly selected EA, again a maximum of 10 wheat plots were randomly selected from the available wheat plots during the 2016/17 main cropping season. It is worth noting that the number of wheat samples in less wheat potential EAs could be lower due to lack of enough number of wheat plots within the specific EA. From these randomly selected wheat plots, wheat grain samples were collected from a randomly identified 4m-by-4m quadrant within the sample plots. Plot owners were also interviewed to get household and farm level data including names of the wheat varieties grown on the sample plots. Both the survey data and collected grain samples were transferred to Holeta NABRC for data entry and DNA extraction, respectively. To accurately trace the survey and the associated DNA FP data, both the survey questionnaire and the grain bags for sample collection were tagged with the same unique barcode for each wheat plot. Extra copies of the unique barcodes were kept in the grain bags for use during DNA extraction and shipping the DNA samples to DArT for DNA fingerprinting.The crop-cut data for yield estimation was taken from a 4m-by-4m sub-plot randomly selected within a specific wheat plot. The wheat plots were also randomly selected from the existing list of wheat plots in a pre-selected EA. Grain obtained from the 16 m 2 sub-plot area was dried to at least 12.5% moisture content before the final weight measurement was taken. From the harvested and dried grain, after measurement, 250 gm was taken for DNA extraction to the Holeta NABRC. Part of the grain from each sample was grinded and DNA was extracted following a standard Zymo kit protocol at NABRC. The extracted DNA samples were shipped to the Diversity Arrays Technology (DArT) in Australia for DNA fingerprinting/sequencing following DArTseq method. For genotyping by sequencing DArTseq, a combination of a DArT complexity reduction methods and next generation sequencing platforms was used [24,25]. The remaining grain in each bag was kept in a cold room as backup and for future use. Then, farmers were also interviewed using a survey instrument to elicit the name of the specific variety and other agronomic practices used on each of their plots from which crop-cuts were taken. The survey data and DNA sequenced results obtained from DArT were merged for analysis using the unique identification barcodes on both entities.During the 2016/17 data collection, 3,884 sample wheat plots were surveyed and grain samples were collected for DNA extraction and fingerprinting. A total of 3,771 wheat samples were genotyped against the total 111 unique varieties in the reference library, with 123 (3%) samples dropped for various reasons, including DNA quality. Through DNA FP, 3,543 (94%) of the samples were identified with specific wheat variety names against the existing reference library using a minimum 70% purity level set by DArT as a cut-off point in DNA sequencing. Using data from sequencing of DNA of grain samples obtained from farmers' fields, 45 unique wheat varieties were identified. From the 3,543 samples identified using DNA FP, variety names from DNA FP and farmer reporting matched for only 989 (i.e., 27.9%) of the observations (Table 2). 228 samples (6%) remained unclassified by DNA FP-i.e. these samples do not map against any identified variety in the reference library. This could be the case for local varieties or (old) improved varieties not included in the library, whereby farmer identification could be potentially correct. It could also include cases of impure varieties and/or potentially still farmer misidentified. Therefore, we added the 6% to the correctly matched set to provide the potential upper range of correctly identified varieties, i.e., 28-34%.A binary Logit model was used in assessing factors explaining the mismatch between variety names reported using farmers' elicitation and identified by DNA sequencing. Referring to varietal names identified by the DNA sequencing, a value of 1 is assigned to the cases where farmers accurately identified varieties they grew and 0 for those not. Household characteristics, seed sources from where the initial seeds of the varieties were obtained, and plot characteristics are considered in the regression analysis. To further explore the mismatch between varietal names, we sub-categorized the mismatched samples into four: (1) those which didn't match but reported by farmers with a specific name in the national variety registry, (2) those reported by farmers with specific name but names are not in the registry, (3) farmers reported the variety using generic name as 'Improved variety but specific name not known', and (4) 'Local variety but specific name not known'. Taking samples with the exact match as a reference, we applied a multinomial logit model to assess variables explaining the likelihood that varietal identification using farmers' elicitation falls in any one of these mismatched categories. With J possible categories where a farmer-reported varietal name could fall under, a multinomial logit model is specified as:; where j ¼ 0; 1; 2; . . . ; J and m 6 ¼ j ð1Þ Where P(y = j|X) is the probability that farmers' elicitation happened to be matching with DNA FP result or taking one of the four mismatch cases stated above. X is a vector of covariates affecting farmers' varietal knowledge, and β is a vector of parameters to be estimated. When reporting wheat grown, in 50% of the cases, farmers' elicitation picked specific varietal names in the national registry (Table 2). However, 309 farmers reported a variety with a name of a recently released ones where the variety, as identified by DNA FP, was actually older than what the farmers reported. With the assumption that recently released varieties have better traits to resist rust and show better yield performance, the report is 'false' but 'positive' as it picked names of recently released varieties when the actual variety was an old release. On the other hand, 436 farmers reported a variety with a name of an old variety when the actual variety grown was a recent release, that is a 'false' report and 'negative' in picking an old variety name when the variety was actually a recent release. Such a mix-up of variety names in farmers' elicitation, and mixing names of varieties with different varietal age has a consequence on varietal replacement strategies farmers follow. To explore this, we used a multinomial Logit estimation considering accurately identified varieties as a reference.Accurate varietal identification is also important to estimate the average age of varietal replacement. To get this estimate for wheat varieties grown in Ethiopia, we used the following equation stated in [26].Where WA t is area weighted average age of a variety at a given t, p it is the proportion of area sown to variety i in year t, and R it is the number of years (at time t) since the release of variety i.DNA FP identified 45 improved wheat varieties, 38 of which are bread and 7 durum wheat (Table 3). In terms of frequency, Kakaba, Kubsa, Danda'a, Digalu and Bobicho are the top five varieties identified from the 3,493 uniquely identified wheat grain samples. Farmer reported names matched for 28% of the total samples and 21 variety types. This shows that there are clear discrepancies between farmer-reported names and official names of the varieties the underlying cause of which is worth investigating. Moreover, 15% of the farmers reported these samples as 'improved' variety for which they could not attach a specific registered name. Interestingly, about 28% of the farmers wrongly reported varieties as 'local'. [27] based on data from eight sub-Saharan African countries. Limited access to new varieties could be the main driver for the farmers to keep old varieties and grow them for long time. As indicated in Table 4, about 50% of the sample wheat area was covered by three popular varieties (Kakaba, Kubsa and Danda'a). During the 2010/11 main production season, there was a serious yellow rust epidemic that devastated wheat production in the most wheat growing regions of the country. Though the government has made lots of efforts in seed production and dissemination of resistant varieties to replace these susceptible varieties by the resistant ones (Kakaba, Danda'a and Digalu), the wider existence of Kubsa variety in farmers' field after such incidence could show that farmers still had some sort of preference for Kubsa due to some good reason(s) including higher and stable yield under normal season. As indicated above, there was only 28% match between farmer-reported and official names.Considering observations with matched varietal identification as 1 and those not matched as 0, a binary Logit model was estimated to assess household, farm and seed source characteristics explaining the likelihood that a farmer uses the same name for the wheat variety (s)he grows as in the Official registration. Estimation results in Table 5 show that model farmers and those with better education are more likely in reporting varieties they grow accurately. Moreover, it is less likely that farmers report variety names with their original names with an increase in the years a variety has been recycled and used. In addition, very old wheat varieties are relatively less likely to be accurately identified by farmers. Farmers obtained the initial seeds of the wheat varieties they reported from diverse sources: from cooperatives (23%), seed company (5%), known farmers (26%), from market (17%) and other sources (30%). Compared to seeds initially purchased from cooperatives, wheat seeds obtained from unidentified sources are less likely to be correctly identified by farmers. Labelling seeds in formal seed markets could help farmers to know varietal names for identification. Varieties grown on larger plots are more likely to be identified by farmers. Farmers who grow wheat on larger plots tend to be commercial [21] and are likely to give due attention to the identity of varieties they grow. There is a regional variation in the level of varietal identification. Compared to farmers in Oromia Region, farmers in Tigray, Amhara, and SNNP Regions are lesser chance of identifying varietal names as stated in the national registry. This could be associated with most popular wheat varieties identified in this study having Oromo Language names when released and might take locally adapted names when disseminated to other regions.Varieties not accurately and uniquely identified by farmers were given different types of names. Some farmers reported using other existing improved variety names, others reported generically as 'improved' or 'local', others with a specific but unregistered name. Using these four mismatch categories, and clustering the standard errors at Enumeration Area level, we estimated a multinomial logit regression to identify key factors explaining the likelihood that farmers tended to report using these mismatching names (Table 6). Results show that, in most of the cases, respondents with better education are less likely in picking non-matching variety names. Increase in the duration a variety was recycled and used by a farmer was positively associated with the likelihood that a farmer misreports the variety name. The likelihood of reporting these varieties with non-registered locally adapted names is even higher. A similar situation is observed for varieties released relatively long time ago. Seed sources show mixed results in explaining why a given variety was reported by farmers with a different name not matching to the name in the registry. Compared to seeds purchased from cooperatives, seeds obtained from markets (i.e., from seed traders and unknown farmers in market) are more likely to be reported as 'local' or with a locally adapted name. Relatively, the likelihood that a given variety is reported as 'improved' or 'local' is lower when a variety is grown on larger wheat plots. Larger wheat areas are likely to result in more wheat surplus and wheat marketed at the household level, and farmers are more likely to give due attention to variety names. As indicated earlier, compared to farmers from Oromia Region, on average, farmers from the other three Regions (Tigray, Amhara, and SNNP) were more likely to misidentify varieties and report them with names not in the registry, or with generic names as 'improved' or 'local'.When variety names are not actually known by farmers, or varieties were sold to farmers with different names compared to the one in the registry, there could be some possibilities that farmers report old varieties with the names of recently released ones. This could be more likely in marketing when recently released varieties might have better traits that old varieties might not have. The contrary case would also be possible when farmers value traits of an old variety and new varieties could be marketed with the name of the old one. As recently released wheat varieties are usually better than the old ones in many features including resistance to disease and yield performance [28], farmers' misidentification is 'False-Negative' when recently released varieties are misidentified and reported with names of old varieties, e.g. a farmer reporting a given variety grown as Kakaba (released in 2010) when DNA FP identified it as Kubsa (released in 1994), and 'False-Positive' when actually old varieties are misidentified and reported with names of recently released varieties.As misidentification increases with age of varieties since released (Table 5), we applied inverse probability weights (IPW) to varietal age and run a multinomial logit model in identifying factors explaining these two biases in misidentified wheat variety names (Table 7). Accordingly, the likelihood of reporting 'False-Positive' increases with age of respondents and number of years since the specific variety was released. The likelihood that farmers confuse names of old varieties with names of relatively younger varieties increases with the number of years since the varieties were released. Compared to seeds obtained from Cooperatives, farmers are more likely to report old varieties obtained from seed companies using names of recently released varieties and vice versa. Accounting for all factors included in this estimation, farmers who grew wheat on relatively larger plots were less likely to report recently released varieties they grew using names of relatively older varieties. The implication for 'False-Negative' is that farmers tend to replace the recently released varieties at hand with something else thinking that what they have at hand is not a recent release. Contrarily, 'False-Positive' implies that farmers might be hesitant to change the actually old variety at hand thinking that it is a recently released variety. Such kind of misinformed knowledge is more serious when a farmer grows rust susceptible varieties thinking that his/her varieties are resistant ones.Using the conventional household survey method (and without considering the number of seasons wheat seed was recycled), our data suggests an improved wheat varietal adoption rate of 50-67% by the number of wheat plots and 61-73% by wheat area. The lower bound of the ranges consider only registered varietal names and the upper bound includes generic names. Interestingly, 93% of the varieties that farmers reported as \"name unknown but local\" were identified by DNA FP as improved varieties (Table 3). DNA FP takes the adoption estimate to 95% in terms of wheat area (Table 8). Still, some caveats are in order, not least as some of the identified improved wheat varieties were released 30-40 years ago, and it is about 20-30 years since their formal seed multiplication was stopped.Our analysis thereby highlights that neither the farmers' or the DNA FP reports provide a complete picture of the adoption status of improved wheat varieties. Instead, they might need to complement each other. While the household surveys can shed light on the history of the varieties grown, the duration of varietal use and contextual factors, the DNA FP (only) accurately identifies the variety. The misidentification by farmers is unlikely intentional-and may reflect that farmers have incomplete or incorrect information of the varieties they are growing including the actual names assigned to the specific varieties by breeders when released. Although it is advisable to use these two approaches as a potential complement in varietal identification as well as adoption and impacts assessment, the costs involved in data collection and DNA sequencing should not be underestimated. Advanced methods including hand-held portable devices (technologies) could help in identifying crop varieties in the field or from grain samples with acceptable levels of accuracy and reduce costs [29]. In general, it is always worth to consider what level of accuracy is expected (or what level of error is allowed) in estimating some of the outcome variables. Here, judgement of the researcher is essential in choosing the data collection method(s) for variety identification and the level of accuracy each method could provide at the data analysis stage.Only 50.4% of the farmer-reported varieties had specific names appearing in the variety registry-the other half included generic names or names that did not register (Table 8). On the other hand, DNA FP correctly identified 94% of the samples collected failing to identify only 6%. Focusing on those varieties identified by a specific name both by farmers and DNA FP, the distribution of these sub-samples in terms of their germplasm source is more or less the same. For instance, from the varieties identified by farmers with their specific registered names, 92% were derived from the International Maize and Wheat Improvement Center (CIMMYT) germplasm-although it should be remembered that only half of the farmers were able to report such names (Table 9). Similarly, from those samples identified by DNA fingerprinting, 91% were linked to CIMMYT germplasm. Accounting for the 6% that were not classified by the DNA sequencing, CIMMYT's share in the national wheat varietal use was 86%. These results show that over 94.5% of all varieties identified by DNA FP were derived from the CGIAR, specifically CIMMYT and ICARDA (International Center for Agricultural Research in the Dry Areas), while those which directly came from the national research system accounted for 3.4%.Understanding crop varietal use is useful to inform policy decisions and agricultural development. For instance, crop varieties differ in their disease and pest tolerance and other traits. Some policies intend to replace old varieties with new and better performing ones; some market development calls for specific crop variety with special traits, etc. In responding to these and similar demands, accurate varietal identification at the plot levels and aggregating varietal distributions at a regional/national or agroecology levels are crucial. The commonly used method in varietal level data collection is farm household survey where farmers report the type of specific varieties they grew during a specific season. However, varietal names collected using this approach have their own challenges including the fact that most farmers report varieties in locally adapted names which is usually different from the original names these varieties had when registered and/or released. Even for those varieties reported with known names in the variety registry book, there is no guarantee that these varieties indeed are what they are reported to be. Farmers may also not necessarily know or give names to every crop varieties they grow. Under such circumstances, using DNA FP with a robust reference library built based on breeders' seed collected from the institution(s) under which the individual varieties were registered is indispensable. This paper shows the disparity between estimates of the level of improved wheat variety adoption generated using farmers' reporting and DNA FP approaches. DNA FP identified 94% of the samples as improved whereas the corresponding household survey estimate was 50-67% (depending on the way we define what farmers reported as improved or not). There are issues in both approaches considered for varietal identification in this study. First, unless supported by further inquiry through surveys, it is difficult to know how long the varieties identified by DNA FP have been actually used in the production system. This is important particularly in situations where improved seeds could lose their yield potential due to mixture in the field when recycled for longer years and need to be replaced with fresh seed for better performance. Second, as shown in this study, of the 1,957 wheat samples reported by farmers with names in the variety registry book (i.e., 50% of the total sample), only half of them (i.e., 989 samples) matched with the variety names identified by DNA FP. This implies that there is sizeable mismatch between varietal names used by farmers and that in the national registry. Such mixing up of improved wheat variety names by farmers makes variety specific results obtained from farmers' elicitation dubious.The self-pollinated nature of wheat allows a relatively better purity over a certain period of time compared to cross-pollinated crops. Theoretically, one might thus expect farmers to know and report the actual name of improved wheat varieties. Instead, farmers' misidentification of the wheat varieties they grow was relatively large (i.e., 66-72%). Several factors associated with the misidentification were identified in this study, including education level of farmers, number of years of seed recycling, whether a farmer is relatively specialized in wheat production and whether the seed was purchased from formal seed sources, etc. Results imply that any study targeted to varietal identification using household survey data based on farmers' elicitation need to double-check how accurate these varietal names are and put some further inquiries to enhance the level of accuracy. If not, decisions taken based on such kind of studies that relied only on farmers' elicitation could lead to undesirable outcomes. In this regard, further studies might be relevant to sort out the sources of deviations between names that farmers use in identifying a variety and what actually these varieties are by considering different nodes of the seed development and distribution channels. In addition, to complement surveys conducted to document variety specific data, it is essential to look for advanced methods and technologies that could help in identifying crop varieties in the field or based on grain samples with acceptable levels of accuracy.Using DNA FP and farmers' elicitation approaches in varietal identification, this paper assessed the level of misidentification by smallholder farmers of the wheat varieties they grew and identifying key variables explaining the misidentification. Data showed clear disparity between varietal identification based on farmers' elicitation and DNA FP methods with important implications for the estimated level of improved wheat variety adoption. DNA FP identified 94% of wheat samples in Ethiopia in 2016/17 as improved whereas the household survey estimated this at 50-67%. Only 28-34% of varieties were correctly identified, i.e. a misidentification of some 70% whereby farmer-reported variety names did not match those identified by DNA FP. Level of education, source of seed, level of seed recycling, age of the variety since release, and number and size of wheat plots determine the ability of farmers to correctly identify the wheat varieties they grow in relation to variety names in the national registry. Our findings imply that variety specific adoption and impact assessments based solely on farmerreported variety names are highly dubious. Thus, regardless of the associated costs, we recommend DNA FP as a reliable method in varietal identification. Still, DNA FP remains mute in the identification of contextual and explanatory factors and thus is best enriched with complementary targeted household survey data. In combination, they can provide sound and reliable varietal adoption and impact assessments, and generate useful knowledge to inform policy recommendations related to varietal replacement and seed systems development.","tokenCount":"5199"} \ No newline at end of file diff --git a/data/part_3/9263271727.json b/data/part_3/9263271727.json new file mode 100644 index 0000000000000000000000000000000000000000..6142dc5e4ab0c42563232306fd56f5b38aaa2d00 --- /dev/null +++ b/data/part_3/9263271727.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"007069c48229aab173fde9ae940cd0d4","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/1533b8de-1f4d-41f0-ada5-ea21fdc48ccb/retrieve","id":"-1472431355"},"keywords":[],"sieverID":"c726d8a5-28ab-4e46-b1d9-acae43db1677","pagecount":"136","content":"Within the new structure of the Consultative Group on International Agricultural Research (CGIAR), new defined Research Programs should bring together the research synergies, strengths, and resources from multiple centers to increase efficiencies and enhance impacts in achieving global development goals. The Roots, Tubers, and Bananas Research Program (RTB Research Program) is one of these initiatives; it is led by the International Potato Center (CIP) together with its sister centers Bioversity International, International Center for Tropical Agriculture (CIAT), and the International Institute for Tropical Agriculture (IITA).As part of this initiative, a workshop on 'Strategies for Recovering Banana Production in BBTD-affected Areas: Community and Farm Household Approaches' was held from 20 th to 25 th January 2014 by Bioversity International and the IITA, with CIRAD and ISABU. The workshop enabled the project implementing team to come together to develop a cohesive 3-year strategy for an impact-oriented initiative to recover banana production affected by BBTD in Africa.The workshop objectives were to (i) share learning and knowledge on BBTD (virus, vector, spread and detection), (ii) share learning and knowledge on social structures in relation to cropping systems and to establish a basic understanding of the importance of social and gender analysis in household and production system studies for technology adoption, (iii) exchange experiences on BBTD control strategies and farmer and community approaches, (iv) gain hands-on experience with basic participatory tools for social and gender analysis and participatory action research and technology development, (v) develop a consensus on the framework and content elements of a curriculum for community and farmer experimentation and learning for recovery of banana production in areas affected by BBTD in the pilot zones, and (vi) complete plans for each pilot site (surveys, formal studies, baselines, experimentation groups) and for overall information and experience sharing approach to the collaboration.The workshop was organized in various sessions containing a combination of presentations and work group discussions with the objective of drafting action plans leading to the formulation of a pilot-site specific work plan for the recovery of banana and forming a strong 'Global Learning Alliance' for implementation of the work plans.Primary expected workshop products include:(i) a 3-year plan for development of a more complete farmer and community learning and experimentation process for the recovery of BBTD-infected areas, incorporating well documented and data driven gender and generational integration, (ii) a draft curriculum detailing year 1 for farmer and community learning and experimentation for the recovery of BBTD-affected banana production (detailing the numbers and intervals of farmers and community meetings, the themes of the meetings, the methods to be used and the field activities to be carried out for the recovery of banana production).In addition, more specific products projected encompass:(i) identification and exploration of strategies for group and within-project learning and sharing, (ii) proposals for PhD and MSc studies that contribute to the overall project objectives, (iii) topics for further study on gender roles in crop production and BBTD management in the household and community identified and formulated and protocol for collection of baseline data on gender and cropping systems developed and integrated into work plans, and (iv) site specific work plans for each pilot site covering community and farmer process, baseline studies on gender and cropping systems and BBTD distribution and formal studies of BBTD epidemiology by MSc and PhD students.The group concluded to take an alliance approach to conduct and coordinate research to: better understand BBTD epidemiology and ecology (including factors that drive the field spread),  clarify the role of insect vector(s) and alternate hosts,  develop capacity for disease recognition and knowledge of control options,  develop appropriate management packages to delay spread and manage the disease in endemic areas,  train scientists to continue surveillance of disease incidence and update distribution maps,  develop and distribute sensitive diagnostic tools,  put in place location-specific clean banana production and distribution systems,  train farmers and entrepreneurs in production of clean planting material.The impact of the research and capacity development programs will enable continued and enhanced production of banana along the value chain in SSA. The primary beneficiaries will be smallholder farmers, partners in NARES, regional and national quarantine organizations, NGOs and the seed production industry (both tissue culture and alternative propagation systems). The broader international community will benefit from the international public goods (IPGs) developed by the Alliance.1. IntroductionBanana bunchy top disease (BBTD) is the most devastating virus disease of banana. The spread of Banana bunchy top virus (BBTV) has negatively impacted the livelihoods of farm households in sub-Saharan Africa (SSA). BBTD stunts the plant and results in erect, narrow and small leaves giving a bunchy appearance. Infected plants produce few deformed fingers or no fruits at all. Sources of resistance have not yet been identified. The disease spreads into new fields' primarily through infected suckers and within fields by the banana aphid, Pentalonia nigronervosa. BBTD has been recognized so far in 14 countries in Africa, including, Angola, Bénin, Burundi, Cameroon, Gabon, Central African Republic, Congo, Democratic Republic of Congo, Egypt, Equatorial Guinea, Malawi, Nigeria, Rwanda and Zambia.To contain BBTD spread, with the support of the CGIAR Research Program on Roots, Tubers and Bananas (RTB) a project titled 'BBTD containment and recovery by building capacity and piloting field recovery approaches through a learning alliance' has been formulated by Bioversity, IITA, CIRAD and national partners to implement BBTD control measures, whilst studying disease ecology and strengthening local capacity. This project focuses on (i) the piloting of community and farm household recovery strategies, informed by gender roles and household typology understanding, in BBTD-affected areas; (ii) testing alternative approaches to develop supply chains for virus-free planting material and; (iii) building knowledge and predictive tools of virus-vectorhost interactions, cropping system and farmer management. This learning alliance brought together advanced research partners globally with national partners from countries in SSA affected by BBTD.With the support of the CGIAR Research Program on Roots, Tubers and Bananas (RTB), a 'Global Alliance' was established for a collective action to tackle the escalating threat of BBTD. The alliance is piloting a model R4D initiative for 'BBTD containment and recovery by building capacity and piloting field recovery approaches through a learning alliance'. This initiative by Bioversity International, IITA, and CIRAD, along with national programs planned to implement a framework for a participatory approach to eradicate infected plants and recover banana production across nine pilot sites in Benin, Nigeria, Cameroon, Gabon, Congo Brazzaville, Democratic Republic of Congo (DRC), Burundi and Malawi. This first continent-wide action plan is expected to pave the way for expanding control efforts and eventually nullify BBTD in the continent.In connection to this initiative, a workshop on 'Recovering Banana Production in BBTD-affected Areas: Community and Farm Household Approaches' is planned to develop pilot zone vision and skills for the prototyping of banana recovery in zones with BBTD, including the preparation of operational strategies. Special attention was also given to mainstreaming gender and social relations perspectives into the BBTD management work.The objectives of the workshop were to:(i) share learning and knowledge on BBTD (virus, vector, spread, detection), (ii) share learning and knowledge on social structures in relation to cropping systems and to establish a basic understanding of the importance of social and gender analysis in household and production system studies for technology adoption, (iii) exchange experiences on BBTD control strategies and farmer and community approaches, iv) gain hands-on experience with basic participatory tools for social and gender analysis and participatory action research and technology development, (iv) develop a consensus on the framework and content elements of a curriculum for community and farmer experimentation and learning for recovery of banana production in areas affected by BBTD in the pilot zones, and (v) complete plans for each pilot site (surveys, formal studies, baselines, experimentation groups) and for overall information and experience sharing approach to the collaboration.The workshop was held from the 20 th to 25 th January 2014 at the Sun Safari Club Hotel, Bujumbura, Burundi. The workshop enabled pilot site representatives to come together in an alliance to develop a cohesive 3-year strategy for an impact-oriented initiative to recover banana production in areas affected by BBTD in Africa. This built on an initial framework proposed in August 2009 and February 2013 by the IITA, Bioversity International and the Food and Agriculture Organization (FAO) in a workshop attended by representatives from several African countries in Arusha, Tanzania.The workshop contained a combination of technical presentations, work group discussions / exercises and a field trip. Presentations encompassed (i) introduction to the project and workshop, (ii) status of BBTD in Africa, (iii) better understanding of BBTD (transmission, spread, aphid vector and symptoms), (iv) introduction to social relations, cropping systems, and community mobilization, (v) mass communication methods, (vi) introduction to role of mapping banana systems and monitoring the spread of associated pests and diseases, and (vii) pilot site experience sharing on BBTD management.Work group discussions were oriented towards (i) prototype development and elaboration of a detailed work plan for each site, (ii) designing discovery exercises and application to BBTD, (iii) social analysis, gender, community perceptions and mobilization, (iv) identifying science knowledge gaps and opportunities for MSc and PhD research, and (v) defining the objectives and methods of the 'Learning Alliance'.A field trip was organized to test community social analysis tools, familiarize participants with BBTD symptoms and proof prototype discovery exercise protocols.All presentations made throughout the workshop, work group guides, work group documents and extras are available on the following Dropbox link: https://www.dropbox.com/sh/xg9kf2akm09s2xx/AAD3bGkoUwdVp3q1Y9v7B2VdaThe detailed name list of Dropbox documents available is listed in Annex 6.10.The inaugural session was opened by the Director General of the Institut des Sciences Agronomiques du Burundi (ISABU) and chaired by Dr Célestin Niyongere, Head of the Fruit and Legume programme at ISABU. The DG emphasized the importance of agriculture and bananas for Burundi and highlighted the increasing importance of agricultural research for increasing the welfare of rural communities. He said that BBTV and BXW were high priority threats to banana production and welcomed the group of Africa-wide scientists. He added that the group was welcome back at any time. Dr Charles Staver from the Sustainable Musa Production and Utilization Programme of Bioversity International followed up with a short presentation. He first welcomed participants to an RTB event, introduced the CRP-RTB flagship and complementary fund concept and the efforts in the identification of BBTD as a priority production constraint. Dr Eldad Karamura, Regional Coordinator for Bioversity International, Dr Marie-Line Caruana of CIRAD and Dr Lava Kumar of IITA each highlighted the importance of addressing this priority threat to smallholder banana production in SSA. They expressed their commitment to taking a collaborative approach with national partners and other advanced research institutes to resolving the problem.Programme (Annex 6.1, p 47), workflow and objectives of workshop were shared by Dr Staver. He presented an introduction to the Roots, Tubers and Bananas Consortium Research Program, pointing out that BBTD is rated quite high as a threat to banana in Africa -southern and western and central regions and also in Southeast Asia. The effort to address the disease through a sub-Saharan approach began with a workshop in 2009 (Annex 6.2, p 50) followed up with a second workshop in 2013 (Annex 6.3, p 52). This effort has culminated in the current project financed through RTB for the period 2013-2015. He highlighted to the participants their shared responsibilities to ensure that future generations in Africa continue to have banana as a highly appreciated food. He shared a key phrase that should serve as food for thought for all of us, \"if Africans have no bananas in 10 years due to the spread of BBTD, we in this workshop are all personally responsible. We had the opportunity to address the problem and we did not take our work seriously enough\". The session was concluded with the self-introduction of participants (Annex 6.4, p 54) and a group photo (Annex 6.5, p 57).The threat and status of BBTD in SSA was presented by Dr Kumar. Banana and plantain (Musa spp.) are important food security crops in Africa. According FAO production data of 2011, they are produced in area of ~6.1 million ha with a production of ~44 million tons. Compared to 2001, banana and plantain area has increased by 25.6% and 5.2%; and production by 45.4% and 22.0%, respectively. This trend indicates an increase in banana production compared to plantain. Banana and plantain (referred hereafter as banana) production is threatened by a number of biotic and abiotic factors. BBTD is one of the most important production constraints to banana, endemic in Central Africa, and emerging as a major threat in Western and Southern Africa. To date, BBTD occurrence is reported in 14 countries: Angola, Benin Burundi, Cameroon, Central African Republic, Congo Republic, DRC, Egypt, Equatorial Guinea, Gabon, Malawi, Nigeria, Rwanda and Zambia. The disease is transmitted by the banana aphid, Pentalonia nigronervosa, and also through infected planting material. Infected plants are stunted and do not produce fruits or result in a deformed fruit bunch and infected mats are eventually killed. Genealogy studies demonstrated that the BBTV isolates prevalent in Africa are of the 'South Pacific' strain and that exchange of infected planting material is the major reason for long distance spread of the virus, whilst banana aphid contributing to the local spread.BBTD is prevalent in >50% of banana production areas in Burundi, DRC, Congo, Gabon, Equatorial Guinea, and Malawi. Whereas about <1-20% production areas are affected by BBTD in Cameroon, Nigeria, Benin, Zambia, Angola, Rwanda, CAR and Egypt. Anecdotal evidence suggests that BBTV is responsible for wiping banana production in Central Malawi and reduction in banana production by 30 to 90% in the disease-affected areas.Lack of awareness about disease and inability to detect early symptoms are the key causes for failing to nip BBTD outbreaks. Once the disease establishes in a region, it is extremely difficult to eradicate. No durable sources of resistance have yet been identified. Disease control measures are focused on eradication of infected mats and production and distribution of clean planting material. Laboratory techniques for virus detection and establishment of virus-free planting material are not widely available in SSA. On-going efforts by a range of national and international partners are fragmented and inadequate in halting the expansion of the BBTD pandemic and in rehabilitating banana production in BBTD-endemic areas.Pascale Lepoint (Bioversity International) portrayed how BBTD gets into a banana plant and moves. Three fundamental elements are required for BBTD, and more generally any disease, to develop in a plant; namely a susceptible plant (banana in this case), a pathogen capable of causing the disease (BBTV) and a favorable environment (the aphid vector associated to Musa spp.). Disease does not occur if any one of these three elements is absent. BBTV, being a systemic virus, moves through the phloem cells (within the plant) and from an infected mother plant to its suckers (within a mat). Transmission of the virus occurs solely through two sources, the vector (i.e. the banana aphid P. nigronervosa) and infected planting material. Fortunately, it is not transmitted mechanically (e.g. by tools) or through soil. Aphid transmission of the virus is persistent (i.e. once the aphid acquires BBTV through feeding on the sap of an infected plant, it retains the virus for life) and circulative (i.e. the virus crosses numerous membranes within the aphid including its digestive tract, haemocoel and salivary glands from its initial ingestion to its reinjection into a new host upon feeding). The infectious aphid does not transmit the virus to its progeny and BBTV will only be acquired after feeding 4-18h on an infected plant and will be retained for the lifetime (13-20 days). It is only after 15min to 2h of virus acquisition that aphid will be able to transmit it to a healthy host. Once the virulent aphid feeds on a healthy plant and injects the virus, it is locally multiplied before migrating to the meristem of the plant (i.e. corm located at the base of the plant at soil level) via the phloem cells. All new tissue formed is subsequently infected with the virus and symptoms observed on newly formed leaves. This has a direct implication on the sampling strategy for detection (i.e. sampling of tip of youngest leaf containing the phloem-rich midrib). To this day, no variety has been identified as resistant to BBTD, however, some varieties encompassing the B genome were found to be tolerant BBTD. In addition, the systemicity (i.e. complete or partial) of the disease in the case of 'megamats' as found in Burundi may require additional studies that would impact local BBTD management practices to recommend to farmers.How BBTD spreads within a field, from field to field and from one area to another was presented by Dr Kumar (IITA). BBTV is transmitted from an infected plant to a healthy plant by the aphid vector. This mechanism is generally known as 'horizontal' transmission. BBTV also spreads through vegetative propagules (suckers, corms and tissue culture plants) developed from infected sources (mother plants). This mode of spread is generally termed as 'vertical transmission'. Both these modes are responsible for natural spread of virus from zone to zone, from field and to field and within the field. BBTV is not known to spread through agriculture tools and cutting implements, or through botanic seed. The banana aphid, P. nigronervosa (Hemiptera, Aphididae), is the natural vector of BBTV. This aphid is highly specific to banana and known to occur in all the banana production regions where banana is grown. Another aphid, P. caladii, also found on banana and other plant species has been shown to transmit BBTV under experimental conditions. This species also seems to be widely distributed but frequency of occurrence on banana is not known. For instance in Nigeria, P. caladii was detected in 1 out of 60 samples collected from banana in about 50 diverse locations. Based on low-frequency of occurrence on banana it can be assumed that P. caladii may not be the dominant species in BBTV transmission in the field. However, significance of this species in BBTV epidemiology needs to be clarified through further studies. Spread of viruliferous aphids from infected plants to healthy plants results in plant-to-plant and field-to-field spread. Aphid-assisted spread is thought to be restricted to a few meters from the source plants. Vertical transmission of virus through infected planting material between farmers, through markets and even exchanges between researchers, are thought to be the major contributors for widespread distribution of BBTD in SSA. There are no alternative host plants for BBTV, which means infected banana is the only source for virus inoculum. Knowledge on influence of vegetation between banana mats on aphid movement and culture of human exchange of planting material is required to improve our understanding on BBTV dispersal.The production of certified and safe Musa germplasm as well as disease control requires accurate and sensitive tests in order to make a reliable viral detection. Numerous methods have been set up and optimized. In the last presentation of the session, Dr Marie-Line Caruana presented a lecture on the detection methods available for BBTV and the relationship between symptoms and virus within the plant.BBTV is a multipartite virus with isometric particles of 18nm in size. Its DNA genome is composed of at least 6 single stranded circular molecules of 1kb each. Molecular studies indicate two geographic lineages for BBTV isolates: the South Pacific group comprising isolates from Africa, Australia, Hawaii, South Asia, Myanmar and Tonga; and the Asian group comprising the isolates from China, Indonesia, Japan, Philippines, Taiwan and Vietnam.BBTV diagnostics based on symptom observation could be a relevant approach to control disease propagation, as symptoms are characteristic of the disease and common to a wide range of cultivars. Infected banana plants are dwarfed and emerging leaves are small and narrow with brittle and yellow edges. The leaves grow upright and have a stunted, bunched appearance at the top of the plant. Leaf symptoms include dots and dashes similar to 'Morse code' along the secondary midribs forming a hook at the junction with the central midrib. (RCA) will be exposed during the training course and their specific finalities will be explained.The above presentations were followed by a reflection exercise by Anne Rietveld and Susan Ajambo (Bioversity International). The exercise focused on the role of knowledge in BBTD recovery and containment. Drawing from the presentations, important types of knowledge were identified to be (i) symptoms of BBTD in bananas, (ii) detection of BBTV in suckers used for multiplication, and (iii) the risk of BBTV in suckers without symptoms in BBTD affected mats. Participants then identified stakeholders who most need to acquire the knowledge and skills to recover banana production in BBTD affected areas (Table 2.1). The discussion that followed, explored the types of knowledge that cross cut the impact pathway and those that should be confined to particular sections of the pathway for better planning with a view of having impact. Anne Rietveld and Susan Ajambo (Bioversity International) shared with participants the importance of integrating gender and social aspects into projects. Integration of these aspects leads to increased understanding of gender roles that will therefore enable us to improve technology development and targeted interventions for increased adoption by farmers. This was achieved by illustrating the relevance of gender and social analysis for this project to participants, providing methods and tools for social and gender analysis and monitoring in cropping systems and scientific support from staff (Anne Rietveld, Susan Ajambo and Holger Kirscht of IITA) and enabling specific gender studies by providing extra funds.Potential studies to be carried out could include students (MSc) in all the pilot sites that can provide additional insights into the role of gender in banana cropping systems and in BBTD control and recovery. In addition, a comparative social analysis to establish household and community typologies can be carried out and the monitoring of performance related to typologies (feedback loop to planning and curriculum development) shared. The funds available for these studies are just enough to pay small student stipends, a limited operational budget (4000 USD/site) and supervision by Anne Rietveld (Bioversity International) and Holger Kirscht (IITA).Anne and Susan also shared with participants the importance of understanding complex social relationships for improving technology development and for targeting of interventions for increased adoption by farmers. Social analysis enables the identification of opportunities and constraints embedded in the social context and can therefore inform the development of strategies that make a positive impact and foster sustainability. A clearer understanding of gender roles specifically enables the design of strategies that are inclusive and work towards achieving social equity.It is vital to this project to have a good understanding of how households operate. This is because a large proportion of banana farming activities take place at the household level. Also, allocation of productive resources like land and labor often happens within the household. Allocation of resources and the way decision-making processes work are household specific but at the same time subject to dominant gender norms that are culturally specific.In order to understand households, we have to examine the everyday dynamics within households. We have to recognize that within households there are individuals of different sex, ages, marital status, and position in relation to the household head, education and labor productivity that vary with regards to the access they have to assets, resources information and the degree of decision making power. Although we can speak of household livelihood strategies, members within the household often have specific individual livelihood strategies as well. This means that we always need to collect data on the different household members and we should not assume that one person could give a valid perspective on all different livelihood strategies that are pursued within the household. Also we have to be familiar with the dominant cultural norms that enable and constrain individual behaviour.The household, or the individuals within, is not the only possible units of analysis. The community is another platform in which individuals and households operate. The households within a community can vary significantly with regards to the way they are organized (monogamous, polygamous, single parent, child headed, extended families etc.), as well as their vulnerability context, social status and power. At community level, data should be disaggregated on the basis of different types of households.Gender is not the same as sex or equivalent to women, it refers to the social and cultural meaning that is ascribed to being a 'man' or a 'woman'. What gender entails is specific to societies and dynamic as it can change over time. Other social factors such as age, education and marital status often influence what it means to be a 'man' or 'woman'; we can say that individual gender roles vary and also change over time. It is important to focus on gender when advocating for change as gender norms often limit or support access to opportunities for either men or women. Gender-analysis enables us to learn more about the kinds of support both women and men will need if they are to benefit from and/or adapt to change.As such, the social analysis part of the study will focus on social relations of different kinds and on gender norms at household and community level as they are often intertwined in the production and reproduction of disadvantage. Effective communication is vital to achieving the goals and objectives of BBTD control activities, whether trying to improve diagnostic services at the farm level, shape policy at the national level, or secure funding at the donor's level. Failure to communicate well can result in negative outcomes and missed opportunities.The project 'BBTD containment and recovery by building capacity and piloting field recovery approaches through a learning alliance' has launched an initiative to raise awareness of the issue by using improved communication tools in the control of BBTD, shape effective policies and practices, and support the role of researchers, including providing training opportunities and resources for disease control specialists who wish to enhance their communication skills.As part of this process, 'BBTD containment and recovery by building capacity and piloting field recovery approaches through a learning alliance' is providing communications insight and resource materials to help researchers to become better communicators and advocates on the issue of BBTD. A model for communications strategies and key messages, which can be adapted by individuals or organizations at the local levels, is provided here under.Effective communications should be incorporated into any strategic plan for disease control and involves a number of steps.Identify your audiences. Audiences may vary at the state and local level. In our case, the project's main audiences include farmers, government officials, allied research professionals (NARS-employed & communityemployed), opinion-makers (advocacy groups, leading experts, religious leaders etc.) and donors.Primary audiences: Primary audiences are the main group of individuals whose behaviour you would like to influence and support. For example, in BBTD control, the primary target population is banana producers, since they can provide researchers with most useful information and help in participatory diagnostic tools.The groups of secondary audiences are those who can affect the BBTD control activities or be affected by them, even though these activities were not designed to reach them directly. They are often people or groups whose support or neglect determines whether or not the primary audience responds to communication messages. They can include opinion leaders (such as government officials), gatekeepers (such as media) and policy-makers. In the case of banana producers, the secondary audiences may include the private sector (traders), village chiefs and religious leaders. There are often several secondary audiences around one primary group, requiring different communication approaches and messages.Audience analysis: Audience analysis is any communication research that is conducted on specific audience segments to gather information about their demographics, media habits, needs, attitudes, knowledge, interests, preferences, practices or behaviours.Audience analysis is undertaken at the initial stages of a communication plan to understand the intended audience's needs, knowledge, attitudes and behaviours, barriers or constraints to a recommended basket of options. At this stage, information is also obtained on audience preferences for communication channels or formats and usage frequency and schedule. Audience analysis enables the communication planner to determine the types of incentives and barriers that the audience perceives to exist, their most preferred channels or formats, the most credible sources, etc. It is recommended to segment an audience into groups with similar information needs and preferences, select the objectives most appropriate for an audience, select the best media channels to reach an audience, develop concepts or messages to achieve the communications objectives and plan for communication impact assessment.The whole process involves the use of focus group discussions (FGD), literature and document reviews, community consultations, rapid rural appraisals, scoping studies, and knowledge-attitude-practice (KAP) surveys.Your audience analysis has given you the background information to understand what changes need to be achieved within the different audiences for BBTD programs to be successful. Once these changes have been defined, you will package them into messages for your audiences.Address your audience priorities. Messages, even on the same issue, should be tailored to the specific needs of the audience because they have different concerns and perspectives. Recognize your audience's: Level of knowledge/awareness  Primary concerns/expectations  Professional and cultural perspective  Possible barriers to understanding  Ability/likelihood and motivation to take action.Strong messages: A message is the information conveyed to the audience with the aim of motivating them to change and stimulating dialogue. A good message contains two parts, a desired behaviour and a benefit for the person adopting those behaviours. It is tailored and appropriate to the audience, as opposed to generic global and population-wide BBTD messages. To develop effective messages, one should identify barriers and identify key benefits.Identify barriers. There are very often barriers to adopting a new behaviour. These could include lack of knowledge, distance to a quarantine service, lack of access to commodities, etc. Identification of the barriers will guide the development of messages and interventions.Finding out what could help to motivate a person or a community to change is an important step in developing an effective and convincing message. Data from the formative assessment and audience analysis, including information about their hopes and fears, are used to develop key benefit statements. A key benefit statement is used with a statement of desired behaviours to form a message 'If I do X, I will get Y'.The communication channels should complement and reinforce each other through shared themes and messages, as well as through a unified look, feel and tone. An effective BBTD communication strategy should include some combination of the following communication materials and media listed in Table 2 After developing, pre-testing and revising the materials, you will need to distribute and monitor them. Further revision and modification may be necessary at a later stage. Given the time, money and effort required to produce effective BBTD communication materials, it is not uncommon for programmers to plan and budget insufficiently for distribution and effective monitoring of communication products.Every type of item you plan to produce needs to be pre-tested, assuming that various items will utilize the same basic design concept. For example, if you are producing banners and posters for a village and they are all targeting the same audience, you can pre-test just one image for all materials. Once the materials have gone through the pre-testing and revision process to ensure a good-quality product, you can produce and distribute the material on a larger scale. Involvement Does the audience identify with the material? Do they feel it speaks to them and their experiences?Relevance/Persuasion Does the material/message convince target audience to want to take up the desired behavioural change?More issues to consider when developing support communication materials include: hiring and working with communication professionals, advertising or public relations agencies,  including stakeholders in the entire process,  providing information that is clearly and simply stated in order to enhance the response,  repeating your messages frequently,  making your materials as specific as possible for the audience to understand, taking into account appropriate language, culture, dress, setting, etc.  being careful not to select images and words that promote negative behaviours.While it is true that it is not possible to know what the research will show prior to actually engaging in the research, dissemination managers can project what might be learned and the audiences that would potentially benefit from knowing those outcomes. Once that is done, they can plan activities that would facilitate the outreach to those audiences during the course of the research project(s).Appropriately timing the planning for dissemination is important in order to:  give sufficient 'lead time' to affiliate with other organizations, associations, and institutions as may be beneficial,  organize and develop information sharing opportunities with key audiences,  involve expertise that may be resident on your project staff, and  allocate budget for public awareness campaigns and other strategies to successfully reach out to the audiences.Effective dissemination does have staff time and budget implications that need to be projected and included in your initial proposal planning and development efforts. Dissemination planning provides an opportunity for dissemination goals, strategies, and activities to be conceptualized and carefully considered. So, already during the preparation of the dissemination work package, it is important to define the events and the product dissemination.A thoughtful dissemination strategy allows moving beyond the simple listing of events and products. The most effective dissemination outreach efforts are not designed in broad-brush fashion to equally reach any and all of the designated target audiences through a single training event or product. An effective dissemination planning process will select from the wide range of dissemination tools that are available and identify one or more that are 'tailored' to promote achievement of the dissemination goals with each specific group within the audience.Monitoring. Measuring progress in your communication activities and achieving communication objectives and determining whether the program is on track requires monitoring of activities and reactions. Once you have developed your audience analysis, the communication strategy and designed interventions, you will be ready to establish a monitoring plan. Monitoring must take place continually throughout the life of the communication program. Activities, such as pre-testing and formative research though KAP studies and focus group discussions will support an effective and well-designed monitoring plan. The monitoring plan and tools are specific to the program being implemented, and they are designed specifically for those who are collecting the data and for the audience, which means the communication monitoring is an inclusive one and based on the feedback of stakeholders and the audiences. The monitoring tools should be simple enough to be understood by those implementing them. They should also be comprehensive enough to ensure that the information gathered is relevant and that the program objectives are being met. The monitoring plan should make sure that the information collected is used to improve the project. Monitoring results also provides a bigger picture of the program, facilitating an understanding of its goals and objectives and are relevant to adapt the communication plan during the process of its implementation.Hein Bouwmeester (GeoSpace, IITA Consultant) highlighted that we survey or sample to get information about a spatial population. With this information we can answer questions about the distribution of BBTD, on the spread of BBTD in time or on the success of management practices. The presentation aimed to give the work groups the tools necessary to add a spatial paragraph to each of the pilot-site work plans. Firstly, it was demonstrated that coordinates are very simple to understand and to use. However, this is often accompanied by some common spatial errors in sampling that can easily be avoided. Hein underlined questions that should be an essential part of any survey. He ended the presentation by introducing and demonstrating the use of an interactive tool commonly known as the 'banana mapper' (www.crop-mapper.org), which stores spatial information on banana systems provided by country experts.Dr Guy Blomme from Bioversity International presented the 'Risk Assessment' project. The RTB-funded project 'Management of RTB-critical pests and diseases under changing climates, through risk assessment, surveillance and modeling' will develop Pest Risk Analyses (PRA) in order to mitigate the likelihood of introduction, emergence, spread and evolution of RTB pests and pathogens due to increased globalization of trade, human movement, farming practices and climate change. Studies will be undertaken to monitor the current distribution and impact of pests and diseases on the livelihoods of farmers to supplement existing data to develop PRAs and models. Surveillance strategies will be implemented and supported by fit for purpose diagnostic methods and information platforms, alongside pest and disease modeling tools to predict future impacts. Collectively, these outcomes will inform and support policy makers in the preparation of national and regional adaptation and quarantine plans. Capacity will be built in CG partners and national institutions to facilitate integrated and pre-emptive management of pests and diseases.In 2009, Bioversity and partners undertook a practical exercise designed to determine if banana production could be recovered in areas severely affected by BBTD based on existing information on its epidemiology and simple ELISA reading equipment. Rather than conducting additional basic research to generate more research results in the pipeline towards an eventual technology for banana recovery, partners undertook the practical challenge of working with villages where BBTD had destroyed banana production. This is referred to as 'prototype building' in which diverse stakeholders (scientists, farmers, rural organizations, etc.) marshal existing knowledge and technology to develop field scale alternatives to practical problems. Based on this experience, scientists can respond to the following questions:(i) What knowledge and technologies are missing to find a solution? (ii) Are other capacities and stakeholders needed to accelerate banana recovery? (iii) What can we learn about the disease and its management by studying the prototype building process?Other groups undertaking a similar challenge can build on the prototypes as a starting point for their own particular cases.Four pilot sites respectively shared their experience to date on BBTD management activities. Malawi and Kisangani and Kinshasa in DRC began their work financed by US AID through Bioversity, while Burundi undertook work initially through CIALCA. All four sites have had additional funding from later 2012 to undertake expanded prototype building.In Kisangani (Northeastern region of the Congo basin, DRC), a study on the recovery of banana production in the BBTD-affected site of Masako was carried out. Four villages (Batiambale II, Batiabongena, Bachabongena and Bachamaega) located Northeast of Kisangani were selected on the old Buta road respectively at kilometers 13, 14, 15 and 16. Selection criteria for these sites include their proximity to the city, isolation from other villages (1-2 km), active banana cultivation, a neighboring forest reserve, as well as the presence of schools, staff accommodation, and introduction of livestock and pisciculture activities.BBTD surveys indicate an average incidence of the disease on 49.7% of mats observed. On these mats, advanced symptoms (leaf narrowing and bunchy top aspect) were observed in 17.8% of the cases. BBTV TAS-ELISA carried out on samples with advanced symptoms was positive for all cases. The vector, P. nigronervosa, was present in all of the 4 villages (73.3% of mats surveyed) and on all plant parts including bunches. Observation of winged individuals in colonies was rare and the aphid was also found on alternate Zingiberales hosts (i.e.; Cana spp., Costus spp., Heliconia spp.).Community mobilization was initiated through meetings with village leaders and local associations 'Association pour le Développement de Masako' (APDM) and 'Association pour le Développement de Kisangani' (ADKIS). Information on BBTD (i.e.; role of BBTD in banana production, reduction of Musa diversity, symptom identification, aphid vector, control methods, importance of clean planting material) was highlighted. Out of the 50 participants, 67% were women. The meetings revealed that women are more involved in the choice of planting materials, weeding, harvesting and marketing in the region. On the other hand, men are more involved in the laborious fieldwork (opening new fields, making planting holes, etc.).A dual source of clean planting material for the pilot site was sought. On one hand, macropropagation under screenhouse conditions was coupled to TAS-ELISA. On the other hand, in vitro micropropagation of virusindexed vitroplants from the International Transit Center (ITC, KUL Belgium) was used. In each of the 4 contiguous villages involved, three one-hectare trials surrounded by a Musa-free buffer zone of 500m to 1km were established and separated by 1 to 2km. To date, 2000 plants have already been established for the demonstration and another 1000 are waiting optimal planting season. Participatory macropropagation, BBTD monitoring, destruction of infected plants and vector host plants around plots will be carried out with farmers.Lessons learned include the fact that BBTD and the vector are omnipresent in the pilot site, on Musa on other Zingiberales (for the aphid). Farmers are open to adopt new practices when they are well informed and coached. A greater involvement of women is key for banana cultivation and the management of BBTD.A survey conducted in 2007, motivated by the observation of BBTD in variety testing trials run by INERA, confirmed the presence of the disease in the Bas-Congo Province. In Masende village, Musa production virtually dropped to zero within two years, eliminating a major source of farmer income. Bioversity, together with the University of Kinshasa and INERA, tested a local seed system approach with the aim of reducing the risk of BBTV presence in planting material by i) raising awareness of farmers across the Bas Congo province on BBTD epidemiology and good cultural practices against BBTD, ii) developing and implementing a clean Musa seed system based on serological testing, and iii) multiplying highly productive clones of preferred cultivars. A five-step approach was used to establish the local seed system: (i) identify zones which are potentially BBTV-free; (ii) extract suckers from plants without visual symptoms; (iii) identify and select BBTV-free suckers (TAS-ELISA); (iv) multiply BBTV-free suckers in high humidity macropropagation chambers; and (v) establish plantlets in a BBTD-free field.  Results showed that (i) 1.8% of suckers extracted from BBTD asymptomatic mats were tested as BBTV-positive using TAS-ELISA (June 2010); (ii) 100% of plantlets produced via macropropagation were TAS-ELISA negative for BBTV (December 2010); and (iii) no case of reinfection (no visual symptoms) were observed on macropropagated plants established in isolated plots in Masende two years after planting.  Three important lessons learnt from the Bas Congo experience includes (i) the Bas-Fleuve district has been identified as a main source of potentially BBTV-free Musa planting material, (ii) ELISA analysis should be compulsory to insure that suckers collected in the field are free from BBTV, and (iii) the proposed local seed system model shows promise for recovery of BBTV-infested zones, with investment in virus detection and training, as a key component.  Next steps for the on-going research work are firstly the evaluation of intercropping and alley cropping Musa systems, secondly participative farmer experimentations, thirdly gender and socioeconomic aspects and lastly improved marketing via a better understanding of the value chain. This includes marketing studies to understand how to increase farmer income and the implementation of methods to monitor costs of alternative practices tested.Banana production in Malawi continues to collapse with only two districts located in the north of the country maintaining some degree of BBTD freedom. The Cavendish varieties are almost getting extinct, polarizing all farmers who depended on bananas as their only source of livelihood. Currently the ABB genotypes, which are also infested, comprise over 90% of the standing mats in the country. Since they still suffer from the disease and are usually neglected due to their low economic value, they remain a threat for any new plantation to be established.Through the Bioversity International funded pilot project on recovering the Cavendish plantations in Malawi which is sited in four villages in Nkhotakota and Nkhatabay districts, chemical and physical destruction of mats and creation of a buffer zone has been initiated to prepare for the planting of virus indexed vitroplants. The sites were selected with the assistance of the extension staff based on the impact of the disease and also the ease of implementing a banana free zone.Local chiefs were included in the farmer mobilization, covering a total of 400 farmers, with 35% females for the 2 pilot sites. Participatory learning which started with the first mobilization of members of the community has been the tool used in teaching the farmers which included walking through their fields with remnant banana mats and looking at infected plants and vectors. From this it was noted that most farmers knew the disease but did not know the details of how it is spread and managed. The project will continue with training of farmers at every stage of plantation establishment including initiation of macropropagation technics for the expansion of their orchards.In Burundi, three provinces affected by BBTD were chosen to carry out the activities. The provinces chosen include Cibitoke, Bujumbura and Makamba with respectively four, one and one pilot site per province.Awareness was created on the use and adoption of clean planting material in the context of BBTD and more particularly the use of macropropagated and in vitro plantlets. Success stories were shared between farmers from pilot sites and those based in Muyinga province, notorious for its exemplary large-scale FHIA production using best agricultural practices. The exchange visit motivated pilot site farmers to manage bunchy top in their plantations and to strive to improve their livelihoods.Farmers were trained on how to manage BBTD through field visits and FFS. This will be an on-going process throughout the project, aimed at reducing impact of BBTD in affected regions.A survey was completed in December 2013 on BBTD spread in regions suspected to be affected by BBTD. Moreover, an MSc student will initiate work on epidemiological aspects of BBTD starting April 2014 for his thesis, while a second student will focus on the socio-economic and gender aspects of the project.A training tool (DVD, documentary of the Muyinga field trip) was produced for up-scaling of the farmers' field training. Two radios, including the national public radio (Radio Télévision National du Burundi, RTNB) and a private radio station (Radio Publique Africaine, RPA) were involved in the sensitization aimed at BBTD management.Lessons learned from the Burundi experience comprise the requirement for (i) better knowledge of farmer needs in term of preferred banana varieties and intercropping systems, (ii) standardization of tissue culture production to meet farmers' requirements and produce sufficient plantlets, (iii) farmer to farmer exchanges to share experiences with how to improve cropping systems, (iv) involvement of medias and policy makers in the successful management of BBTD in order to maximize farmer reach and reduce source of infection, and (v) identify/understand pending knowledge gaps on epidemiology and socio-economic aspects as components of a site-specific approach.Main workshop products can be summarized as follow (i) prototype development and establishment of a 3year plan for the recovery of BBTD-infected areas in 9 pilot sites, (ii) designing farmer curriculum and discovery exercises and application to BBTD, (iii) identification and formulation of a study on gender roles in crop production and BBTD management in pilot site households and communities and integration into specific pilot site workplans, (iv) identification of main knowledge gaps, and (v) fine-tuning the 'Learning Alliance'.In-depth workgroup exercises based on themes covered in presentations were oriented by guides (Annex 6.6, p 52) that facilitated the drafting of the different products, including the 3-year action plan for the development of a more complete farmer and community learning and experimentation process for the recovery of BBTDinfected areas.From day 1 to day 6 each pilot zone team completed a series of planning steps with the final objective of drafting a cohesive workplan of activities. Based on their existing understanding of banana, they worked on five consecutive group sessions covering the:(i) Mapping of a time sequence (moving from current declining banana production to a reestablished clean banana garden), (ii) Calculation of banana growth cycles according to rainfall distribution for proposed work sites and the likely moment for each key stage in recovery, (iii) Planning of studies on gender/household relations in banana cropping and knowledge of BBTD, (iv) Planning of specific learning and discovery exercises for each stage of BBTD and banana-free fallow, supply of BBTD-free planting material, and re-establishment of banana garden with clean planting material, and (v) Compilation of a four-dimensional work plan (community banana recovery prototype, strengthening gender understanding and incorporation into community recovery prototype, researcher-led studies of BBTD epidemiology with PhD, MSc and other student studies during the process).Each working group session was introduced with a general presentation followed by a question-answer session and then concluded by a summary of results or by a presentation.After having seen the presentations by the four pilot zones (section 3. Learning Alliance: Sharing Pilot site experience, p 19) that had already begun to prototype recovery of banana production in the presence of BBTD at the end of day one, pilot zone teams were introduced to an initial planning format based on four phases (Table 4.1). These phases include (i) mobilization of the community which will partner in the prototype building process, (ii) putting into place a supply of BBTV-free planting material, (iii) establishing a banana-free fallow which eliminates the presence of the banana aphid and any bananas which still may act as a host for BBTV or the banana aphid, and finally (iv) planting a new banana garden and managing re-infection. Village completes plan for recovering more banana production areas after evaluation of the prototype experienceVillage working group nominated to organize preparation of clean planting material for new fieldsPlanting material free of BBTV available for test plotsVillage working group nominated to implement a Musa-free fallow in preparation for planting new fieldArea within Musa-free fallow ready for planting BBTV-free planting materialFor each of these phases, the group was asked to consider the needs for new learning by the different members of the household implicated in each phase (Table 4.2). Summaries of group discussions are shared in Annex 6.7 p 69). What is role of gender in stage?Children (male or female) who play a role?In day two, workshop participants continued to reflect on the process for bringing together rural communities, scientists and other stakeholders to put into practice prototypes at field scale. They first reflected on their experience (difficulties and insights) with visioning the process of banana recovery from the perspective of users. For some of the groups, the workshop was their first time to meet. For some the process of understanding the client perspective created insight, while for others the challenge was to come to a common understanding about such terms as 'banana-free fallow' and 'village'.The group then reflected on why 'participation' had become such a common word in rural and agricultural development by reviewing the numerous terms starting with participatory -diagnostic, training, technology evaluation, technology development, action research. Charles Staver closed the discussion with a presentation on participatory farmer group learning and experimentation by crop phase, an approach illustrated from his work in Nicaragua with banana growers. He reflected with the workshop participants on the value of participatory group approaches, learning and experimentation to increase retention, the learning cycle from observation to reflection to action and again reflection at each stage in the crop cycle. He illustrated the learning exercises in a crop cycle for plantain in Nicaragua. Finally he proposed the basic steps for designing a similar process for new areas. This process is described in detail (Staver, 2005) in articles distributed at the workshop (Dropbox folder \"Workshop Presentations & Work Groups\"  \"Extra materials\"  \"FFS\").The groups then undertook to modify their original plan according to the rainfall distribution with the approximate dates for each of the four phases. Each group was then able to identify tentative moments for community and farmer meetings (Table 4.3). They also identified their proposed strategy for a supply of BBTVfree planting material (Table 4.4). During the course of Day 3, Charles Staver addressed the role of training and learning in prototype building. He asked the group what they associated with farmer field schools, informal adult education and discovery learning. Such approaches build on the life experience of participants, stimulate problem solving based on priorities of end users and often use methods suited for a group approach. The learning cycle moves through analysis, observation, action and back to analysis and observation. Emphasis was put to restrain from falling into the 'teacher-student' pitfall and to focus on trying to make the discovery as visual as possible using simple materials and known ecological principles. He illustrated the approach using examples from pest management in banana used in Nicaragua in which farmers observed the status of existing plantain fields of different ages, dug up good and poor quality suckers, planted out experiments with suckers of different qualities and other activities depending on the crop stage of nearby fields. They made repeated measures of factors such as weed cover, pest and disease presence and crop vigor to identify those influencing crop performance. These may not all be discovery exercises, but they use the learning cycle through observation, analysis, action and observation. Typical discovery exercises encompass six elements listed in Table 4.5. The case of the spread of a virus (Cacao Swollen-Shoot Virus, CSSV) by a vector (i.e., mealy bug) was shared as an illustration of how such a principle can be easily communicated to a non-specialist audience (Annex 6.6 E, p 66).Seven principles illustrating key aspects of BBTD understanding were proposed to the work groups (Annex 6.6 D, p 64). Five were further developed by participants and distributed across French and English-speaking groups as shown in Table 4.6. Draft discovery exercises for each group can be consulted in Annex 6.8 (p 74). Before integration into the final curriculum, BBTD specific exercises will need to be further fine-tuned and adapted to context with additional key principles also illustrated. On the fourth day of the workshop, participants were taken on a field trip to Cibitoke province located two hour-drive from Bujumbura, the capital of Burundi. This region is noted for its banana production and derives its name from banana, locally called 'Ibitoke'.The field day started by a joint visit to a local banana-brewing site (Rusagara). Participants were taken through the various approaches and steps used traditionally to make banana beer. Visibly seen in the site, and along the way, were numerous banana plantations and BBTD-infected plants.Subsequently, participants were split into three groups (i) socio-economy (cf. section 4.3), (ii) French BBTD discovery learning, and (iii) English BBTD discovery learning. Each group was taken to a different site for their activities.The English group's first point of call was a farmer that had totally eradicated his infected plot and replanted with healthy bananas (FHIA) under the guidance of ISABU. The farmer shared his experiences about his neighbors who refused to remove their infected plants. This constitutes a point of concern for him, as he considers that these could be new sources of infection for his farm. Indeed, symptomatic plants were observed at the border of his farm, close to the neighboring infection source. A second site located in the Rusizi valley (Munyika) and equally heavily hit by BBTD was visited. The group spoke to farmers about their different experiences with the infection. From the interaction, participants were convinced that farmers are aware of the disease and its implication in significant yield reduction. However, farmers do not seem to have complete information about the disease in terms of impact of infected suckers and role of aphid vectors. A particular farmer tried to explain that he thought weevils were responsible for transmission of the virus (instead of the aphid vector). After several attempts, aphids were identified in the field and the role-playing exercise on 'life of the banana aphid' was carried out. The experience allowed participants to polish up the tool (clear formulation of questions to farmers, remove excessive scientific explanations, etc.) and discover that the best way for farmers to learn is to answer their own questions using what they have observed. This facilitator becomes a formulator of questions in response to farmer questions, reinforcing farmer capacity to observe and to reason ecologically. Symptoms were visibly seen all over the site visited and were thoroughly analyzed through questioning with the group and farmers.The French discovery learning group involved 19 participants and carried out their activities in Gitebe (Mugina commune, Cibitoke province). Two major discovery exercises were tested, namely (i) life of the banana aphid (biology and ecology) and (ii) BBTD symptom development. The first exercise was lead by entomologist Dr Rachid Hanna from IITA. The aphid's morphology, reproductive mode, life cycle, flight and feeding patterns in addition to preferred habitat was described, followed by hands on experience finding the elusive winged (alatae) and non-winged (apterous) forms of Pentalonia nigronervosa in the field. Specimens of both forms were collected and placed in plastic Petri dishes for ease of observation with a hand lens by participants. Virologist Dr Marie-Line Caruana from CIRAD guided the second discovery exercise. Characteristic BBTD symptoms including bunchy top aspect of foliage, narrow leaves and stunting were described and illustrated to participants. More specific symptoms were also shown such as initial brown spots and the dark green dot-dash streaks found on the leaves and petiole. Dr Caruana explained the differential expression of symptoms based on plant age and the difference between primary and secondary infections. Both exercises were concluded with the role-playing of the discovery exercise with participants as farmers. This was tested by Mr Bangata and Mr Ngama of DRC for the aphid and BBTD symptoms cases respectively.The field day was concluded by a joint visit and experience sharing around a farmer-led Musa tissue culture nursery established by ISABU. Planting material for this trial was sourced through the local TC laboratory Agrobiotec and maintained by surrounding beneficiary farmers. Main observations include among others proximity of existing Musa plantations, use of polybags of excessive caliber, use of a systemic insecticide versus use of insect-proof netting, and witches broom on roots (sign of nematode infestation). The visit was an excellent discovery exercise of Do's and Don'ts in a nursery when striving for the production of disease/pestfree planting material.During the second day of the workshop, Anne Rietveld and Susan Ajambo lead a workgroup session on 'Social Communities' (Annex 6.6 C p 62). Six gender-mixed workgroups were identified and each assigned the identity of an individual of specific gender and age (Table 4.9). Collectively, each group then proceeded to give shape to the individual assigned within a selected BBTD pilot site. Impersonating their character, workgroups proceeded to characterizing the role and interactions they have within the community and the importance of banana in social status (Table 4.10). Results of the work groups are presented in the tables below. Ease to attend a whole day project meeting From the tables above we see that different individuals have different roles and interact differently in distinct communities and households. The likelihood to be selected for community activities or to be heard in a meeting for example is often dependent on social-cultural characteristics such as age, sex and marital status. It is important to take this into account when trying to mobilize communities as these factors will not only influence the selection you make but also the dynamics in the group you will have.Frequently used participatory tools include:  Semi-Structured Interviews -One-on-one interviews with key community members to get more information about specific elements of the issues and resources discussed during mapping activities  Focus Group Discussions -Collects information from people whose perspective might not come out in gatherings of the whole community (e.g. women or youth groups)One way to engage further with a community, learn and develop community strategies is by using Participatory Rural Appraisals (PRA). PRA helps groups analyze local problems and formulate tentative solutions with local stakeholders. It makes use of a wide range of visualization methods and mainly deals with a community-level scale of analysis. PRA can bring out answers on questions such as:  What really motivates the community?  What are the main interests among community members at this particular time?  What are their hopes for the future?  What cultural practices are positive for the community that the mobilization process can reinforce?  Whose voices are missing from decision-making in the community?  Are there external influences that are helpful or harmful for the community that projects should take into consideration?Examples of PRA tools that can be used when formulating farmer groups include:  Community Mapping -Community members make a physical map of their community that identifies the resources available in it as a basis to start a discussion about existing resources and gaps  Seasonal Cropping Calendar -Community members make a calendar illustrating time in the year where they perform specific crop activities. Ideally, it is recommended to carry out separate calendars for women and men in order to highlight difference in labor allocation, workload and control over resources  Social Relationship Mapping -Analyzing the groups and influential individuals within and outside the community and identifying constructive relationships and possible tensions among actors.Additional guides to PRA can be found on the DVD distributed during the workshop. The documents have also been added to the Dropbox link (workshop folder 'BBTD WS Bujumbura 2014_01/Workshop Presentations & Work Groups/Extra materials/Communities & Gender').General rules of thumb:  Establish mixed-gender field teams  Select appropriate meeting locations  Schedule activities at convenient times  Seek appropriate approvals  Manage group dynamics  Adapt to differing levels of education and literacy  Have clear project objectives and know that the community(ies) shares those objective in order to building common ground  Thorough understanding by each team member of the concepts, opportunity to ask questions, and practice discussing the objectives prior to starting work with communities  Meaningful participation stems from addressing peoples felt needs, not cash/gifts incentives.The 'Seasonal Cropping Calendar' tool was tested in Munyika village (Cibitoke) by participants under the guidance of Anne and Susan in the course of the fourth day of the workshop. Three distinct farmer groups (1 women's group, 1 men's group, 1 mixed group) were interviewed, results of the exercise for the men's group is described here under.The activity was conducted with a group of eight male banana farmers and was undertaken as a learning activity aimed at providing participants of the planning workshop on BBTD recovery with an opportunity to gain hands on experience with basic participatory tools for social and gender analysis. A gender-disaggregated seasonal activity calendar was used to visualize the seasonal patterns of household labor by gender and age as shown in the matrix below (Table 4.12). The visual was then used to discuss the patterns focusing on: busiest months of the year  men's and women's activities and the reasons  productive and reproductive roles of men and women  implications of the division of labor for food production and livelihoods.  Common protocols (research, socio-economic, survey, lab detection, data collection templates, sample collection kits, data entry, data analysis, etc.)  Common databases (field data, datasheets, literature, etc.)  Demonstration plots. The participants agreed that the convening CG centers should propose an approach for the learning alliance to be discussed by the leaders of each pilot site team.Participatory experimentation and learning -Main points: Feedback to pilot site teams on three-year site specific work plans for every site for development of farmer and community learning and experimentation process, baseline studies on gender and cropping systems and BBTD distribution  Preparation of draft curriculum detailing year 1 for farmer and community learning and experimentation  Curriculum and discovery exercise development -need for technical assistance in the field to fine tune methods that address BBTD learning linked to community mobilization, household engagement and gender and generational differentiation.Gender, social relations and cropping systems in banana recovery -Main points:  Standard core protocols to be used by each pilot site for comparative cross site study on the role of gender and generation in banana cropping system, knowledge about banana and BBTV  Topics for further study on gender roles in crop production and BBTD management in the household and community identified and formulated  Plan for site visits by gender team  Identification of socio-economic component in teams for sites. Common protocols elaborated for BBTV survey at country level, affected subcountry level and community;  Common protocol to sample BBTV presence prior to establishment of banana free fallow, for monitoring banana aphid presence in virus-free supply chain and for re-infestation of new fields established with clean planting material in banana-free fallows  Proposals for PhD and MSc studies elaborated on effects of cropping system and associated cropping on BBTV epidemiology and on cultivar differences for virus-vector interactions with formal participation in committees of scientists from different centers  Training on identification of aphids and associated fauna with aphids  Montpellier training workshop on virus detection methods and seed systems -dates, content, approach to bilingual training and documentation, format for course content to be used in later training in national programs and universities.Identification and exploration of strategies for group and within-project learning in a Learning Alliance framework -Main points:  Identification and exploration of best format options for BBTD literature database  Approach to monthly exchange of progress -how to manage English-French  Protocol database and blog for question and answer  Data collection sheet database, data entry database, data analysis  Facilitated electronic thematic working groups on gender and cropping systems, epidemiological modeling, clean seed systems, participatory learning and experimentation, strategies for scaling out and local and national policy decision-making  Links to regional banana networks, ProMusa tools, banana mapper and RTB  Approach to quarantine players in Africa who attended Arusha workshop  Links to other RTB grants in risk assessment, seed degeneration and cropping systems.In addition, cross cutting opportunities to expand advanced research partners in alliance through PHD studies or complementary funds for ongoing PhDs through CIRAD, Belgian universities and others should be explored.At the end of the intensive week in Bujumbura, participants were asked to evaluate the workshop and share their views. Aspects covered during the workshop that participants found to be most useful for their work and country include the participative approach used and the introduction to social sciences and associated tools (Table 5.1). When asked to identify one aspect of the workshop participants would have liked to see improved, they replied that despite the interesting content of the workshop, there was a lot of information to absorb. Participants suggested that a shorter workshop (4 days instead of 6) with fewer hours per day would be more agreeable.Even though a local simultaneous translation service was used for the workshop, participants echoed that a second aspect to improve for the next workshop would be to cater for French and English participants via effective translation services (simultaneous translation and translation of all the supports, Table 5.2). Participants engaged themselves to several action points within the next month following the workshop (Table 5.3). The main activities listed include the mobilization of farmers and communities in addition to revising their work plans. Participants proposed that organizers focus particularly on the establishment / sharing of common protocols and the collaborative follow-up of activities with pilot site teams during the coming months (Table 5.4).  update the current status of BBTD and BXW risk of further spread and national capacity for response.  bring experiences from global partners on BBTD, BXW and banana aphid control to the planning and development of the SSA strategy.  develop country/regional strategies to control BBTD, BXW and banana aphid in endemic areas and restrict spread into unaffected zones.  strengthen regional capacity for quarantine, research and extension with respect to surveillance and management tools and approaches on BBTD and BXW in SSA.The workshop contained a mix of presentations, discussions and a two day training session on design of surveillance and management activities for banana diseases including. The first working group session involved mixed groups from different countries to identify strategic issues and activities needed to improve preparedness for, or management of, banana diseases under four components: Surveillance and plant quarantine  Supply of clean planting material  Disease control and management measures  Advocacy and socioeconomic assessment.Workshop resulted in the following recommendations to combat threats:In countries where production systems are already affected, arrangements must be made to provide safe replanting material on a sufficient scale to encourage farmers to take the necessary action to destroy diseased plants. For disease-free but threatened countries, there is urgent need to increase vigilance in order to take pre-emptive action to destroy infected bananas as soon as they appear. Monitoring strategies and the capacity to recognize the diseases and to deploy rapid eradication responses are vital.Farmers and other stakeholders, especially policy makers must be sensitized to the importance of these diseases and mobilized to do whatever they can to combat the diseases at the first signs of appearance. Largescale community-level action will be needed, supported by local and national governments and sub-regional organizations.Countries with banana and plantain production -whether at commercial or subsistence level -should allocate funds to put in place:• Large-scale campaigns for disease awareness, surveillance, the training of sufficient staff in sampling, field disease recognition and laboratory diagnosis, and the production and distribution of clean planting material in order to respond to any disease outbreaks.• Community-level measures to support actions in a response to the diseases, helping to ensure local adherence to recommended practices.• Reporting and communication systems to ensure an early and appropriate reaction once the diseases have been recognized at field level, and to monitor the success of eradication and management practices.• Improved arrangements for production of clean banana planting materials, through training and facilities to improve the quality of materials, and ensure these are made available on a sufficiently large scale to farmers.• National contingency plans, developed with the involvement of all concerned in banana disease management, including the creation or strengthening of national task forces to ensure country preparedness to implement disease eradication campaigns and monitor the impact of these efforts.• Other longer term programs to improve field practices for disease eradication (for countries where invasion is recent) and management (where diseases are already established); and also to include review, information sharing and updating of policy frameworks such as plant health/quarantine legislation.These actions are essential and need to be deployed as a matter of urgency and then sustained. International research and development partners, regional and sub-regional organizations and the national authorities must affirm their commitment to collaborate on regional responses to banana diseases, to ensure coordination of activities and optimal use of resources to provide technical advice, develop sustainable new technologies and deploy eradication and management practices across SSA.At the conclusion of the workshop, the participants issued a statement, alerting international, regional and national institutions of the serious threat posed by BXW and BBTD to income and food security for small scale banana and plantain farmers in sub-Saharan Africa and to the genetic resource heritage in the secondary centres of diversity of Musa. This workshop noted that livelihood conditions for the poor resource communities in SSA, already aggravated by the effects of HIV-AIDS and climate change will continue to get worse if nothing is done to address the disease threat to banana/plantain productivity in the region. In this regard, FAO, IITA and Bioversity International undertook to work with the relevant regional organizations, such as SADC and ASARECA, to further develop a banana disease management framework for SSA. A high level meeting was proposed for early in 2010 to endorse the framework and take steps towards operationalizing it. The aim of this framework is to support effective networking and coordination for information gathering and sharing, and to identify national needs and gaps in funding. It will support efforts to increase awareness and raise funds so that disease eradication and management activities contribute to a common goal. Further details about this workshop are available on web portals http://r4dreview.org/2009/10/save-african-bananas/ and http://www.bananadiseasesframework.org/. Bunchy top is a great threat to banana production and productivity. Over 50% of the global banana (and plantain) production comes from Africa, where it is one of the key staple crops supporting the livelihoods of an estimated 100 million people, most of whom live in sub-Saharan Africa (SSA). BBTD was first reported from Africa in 1901, however, extensive spread into new production areas was observed during the last two decades. The disease has very recently invaded Benin and Nigeria in West Africa in addition to limited spread within the Kivu provinces (Democratic Republic of Congo, DRC), neighbor to the largest banana-producing country in Africa -Uganda. Currently, BBTD has been recorded in 35 countries across Africa, Asia, Australia and the South Pacific Islands, including Hawaii (USA), but not in the Americas. In Africa, occurrence has been confirmed in 14 countries, namely Angola, Benin, Burundi, Cameroon, Central African Republic, Congo Republic, DRC, Egypt, Equatorial Guinea, Gabon, Malawi, Nigeria, Rwanda and Zambia.Laboratory techniques for virus detection and establishment of virus-free planting material are not widely available in SSA. On-going efforts by a range of national and international partners are fragmented and inadequate in halting the expansion of the BBTD pandemic and in rehabilitating banana production in BBTDendemic areas. There is an urgent need for collective action to tackle the escalating threat of BBTD.The International Workshop to develop strategies for an integrated control of Banana Bunchy Top Disease in Sub-Saharan Africa was therefore proposed as part of the CGIAR Research Program on Roots, Tubers, and Banana (CRP-RTB) complimentary project entitled 'Building a collaborative, public-private R4D alliance for an integrated control of Banana Bunchy Top Disease in Sub-Saharan Africa'. This workshop took place from the 2 nd to 4 th February 2013 and was organized by the International Institute of Tropical Agriculture (IITA) and Bioversity International, under the aegis of the CRP-RTB together with CORAF/ECOWAS, FAO-RAF, CARBAP, Inter-African Phytosanitary Council and the Department of Rural Economy and Agriculture of the African Union Commission, and Ministry of Agriculture (Benin, Cameroon, Congo Brazzaville, Ghana, Malawi, Nigeria, and Zambia) and research partners from Asia, Europe, India, Kenya, Pakistan, New Zealand, Tanzania, and USA. This workshop enabled global experts to come together in an alliance to develop a cohesive medium and long-term strategy for an impact-oriented, initiative to control BBTD in SSA.The objectives of the workshop were to review the state of knowledge, lessons learned and new developments relating to BBTD/BBTV in Africa and other parts of the world, and further build on an initial framework proposed in August 2009 by IITA, Bioversity International, and FAO in a workshop attended by representatives from several SSA countries in Arusha, Tanzania [http://r4dreview.org/2009/10/save-african-bananas/] The workshop considered three thematic areas based on different country and local contexts in terms of BBTD presence and severity, cultivar and production system and implementation infrastructure. These are (i) diagnostics, surveillance, quarantine and awareness raising; (ii) potential of emerging technologies in controlling the virus and aphid vector, and (iii) integrated management and farm/community recovery strategies based on clean planting materials and integrated pest and disease control. The workshop was organized as various sessions containing a mix of presentations and group discussions to identify priorities and Your group will collectively take on the identity of a woman/man of X years living in pilot site Y. All questions can be answered on the softcopy of this document. 2. Are you personally informed about important issues such as the starting of a BBTD control and recovery project by the village authority? 3. Give a score of 1-3 (1=low, 3 = high) presenting the level of influence you have on the village authority 4. Give a score of 1-3 (1=low, 3 = high) to show the likelihood that you personally would be selected to participate in the BBTD project 5. You are selected for the BBTD project. Give a score of 1-3 (1=low, 3 = high) to show the likelihood that you will give your opinion, on an important issue for you, in the first meeting, without being asked. 6. Give a score of 1-3 (1=low, 3 = high) to show to the importance of a banana plantation for your social status Presentation guideline: one slide with table containing the scores and three issues below Please give the three main issues we should take into account in the BBTD project with regards to farmers' participation on community-level 1)2)3)Recovering banana production in BBTD affected areas: Community & household approach -ANNEXES -63-Answer the following questions (as your character) about your household (25 min)Give a score of 1-3 (1=low, 3 = high) to illustrate the ease in which you can be free a whole day for a project meeting 2)Please list 3 possible advantages to you for participating in the project 1)2)3) Fill a glass with coffee and the others with clean water. The syringe or straw represents a sucking insect. The glass with coffee represents a diseased cocoa tree with a virus. The glasses of water represent healthy cocoa trees. Suck a bit of coffee into the syringe and go to the first healthy tree (glass of water). Dip the syringe into it, squirting (\"spitting\") a bit of coffee before sucking from the tree (the glass of water). Observe the colour of the water.The healthy tree (the glass of water) gets a dose of virus (coffee). Go from glass to glass, squirting a bit of coffee into each one, \"infecting\" them. \"Suck\" a little water from each glass (\"feeding\"). Observe the colour of the water in the glasses, and that there is less inoculum in the syringe, because it has been diluted by the \"healthy trees\".Guide questions for analysis 1. Which diseases are transmitted by sucking insects? 2. Which sucking insects do you know? 3. How can we avoid spreading diseases from one tree to another? (Emphasize deterring vectors through cultural practices. If infection is low, rogueing of diseased plants may be considered only when there is no further infection expected from outside the field. 4. Why can't insecticides prevent spread of insect vectored viruses effectively? (To caution farmers against making unnecessary applications of insecticides: generally speaking insects transmit the virus to sprayed trees before dying of the pesticide). BBTV infects all suckers of a mat, causing production to collapse and making it increasingly difficult for farmers to find BBTV-free planting material locally. An additional challenge lies in the fact that to date, no source of varietal resistance has been identified. In SSA, BBTD affects the livelihoods of 6-12 million smallholder households and could threaten another 10-15 million if its spread is not checked through adequate, between and within country, quarantine and containment.The RTB project on BBTD containment and recovery focuses on 1) the piloting of community and farm household recovery strategies, informed by understanding of gender roles and households; 2) testing alternative approaches to develop supply chains for virus-free planting material and; 3) building knowledge and predictive tools of virusvector-host interactions, cropping system and farm management.]The project products defined in the proposal document make clear that, in order to achieve the goals set, we need to have a thorough understanding of how communities, households, men and women, boys and girls interact and behave with regards to banana and plantain cultivation and management. Currently we lack this understanding and therefore space was created within the project to do a series of social and gender studies in the different pilot sites.To understand how different gender norms at intra-household, household and community levels relate to and/or effect production in banana farming systems in BBTD affected regions in Central and West AfricaWorking mode: In every site there will be at least one student doing a study on social and gender issues related to the project. This student will be part of a wider team of scientists involved in the project. A general methodology will be developed for all the sites that will provide us with comparable data and a baseline. The student will need to follow and conduct this methodology but will have the option to deepen a particular area of interest within the framework. Supervision will be provided by Anne Rietveld and Susan Ajambo (Bioversity) and Holger Kirscht (IITA). The students will also need a supervisor from the partner organization to facilitate logistics and operations.Budget: There is a budget available of 4000 USD for every site to pay the student a stipend and contribute to operational costs. Student budgets will need to be approved by partner organization supervisor and by Anne Rietveld. The RTB supervisors have some travel money to make one visit to the students for interaction.General Research questions: Les étapes de mise en place de la jachère : There are farmers with BBTD on their farms in the community. The BBTD causes yield loss and impacts those farmers directly, but also poses risk to other farmers in the vicinity. Therefore the infected mats have to be eradicated, creating a banana free fallow. The eradication plan is to uproot all bananas in the field and leave fallow for XXX months. This has implications on your farm and on neighbouring farms.How long will exercise take?2 hours / exercise for small groupsTo map distribution of BBTD in the community and to demonstrate to farmers how to establish a banana free fallow Now mark the eradication area and thus make a eradication plan, including the marked banana area surrounded by a 50m buffer. What is the Musa fallow-free period proposed? This will influence choice of frop planted to replace (short cycle such as bean, mid cycle such as maize or long cycle. Ask for alternative crop that farmer wants to plant in eradication zone.6. Now go back to the table and ask each farmer for the advantages and disadvantages of that particular eradication plan. 7. Summarize the advantages and disadvantages that were posed and add those not mentioned. Make list on flipchart. a. In two years you will have higher banana production. b. This year you will have 0 production. c. You can try othercrop d. Etc. 8. Discuss the summary and add the following questions: What are the advantages of an eradication plan to the community?  What are the disadvantages of an eradication plan to the community?  How do you deal with people that only lose?Recovering banana production in BBTD affected areas: Community & household approach -ANNEXES -76-Theme 1. Mapping a potential site for the establishment of banana free fallow (in French)Work group 2: Kimanda A., Lienou J., Mvila AC., Ndemba BA., Nitunga E., Ntahiraja V.Rapporteur: Mvila AC.Étude menée dans le cadre de la réhabilitation des plantations de bananiers infestées par le BBTD How long will exercise take?Faire comprendre au producteur l'intérêt de la jachère comme alternative de récupération des bananeraies parcelle à mettre en jachère  matériel de localisation/délimitation (GPS; ruban métrique; piquets; etc.)  matériel de prise de note (fiches de collecte des données; stylos/crayon, écritoire (clipboard), carnet, gomme, flipchart, etc.)  équipement corporel (combinaison, bottes, imperméables, sac à dos, etc.)  instruments aratoires (machette, pelle, pioche) focus groups (identification des producteurs, les cultures alternatives éventuelles, discussions avec les producteurs)  prospection et observations au champ (choix du site approprié; collecte des données nécessaires à la cartographie)  Key questions  Comment se comporte les bananiers dans le champs ?  Êtes-vous satisfaits du comportement des bananiers ?  Y a-t-il des bananiers malades ?  Comment les reconnaissez-vous ?  Y a-t-il des parcelles fortement attaquées par les maladies ?Steps: We want to explain:1. what a banana aphid looks like (tiny, brownish or blackish insects) 2. the different parts of the banana plant where they can be found (young unformed leaves, neck and base of pseudostem) 3. how they feed (piercing and sucking) 4. their morphology (winged/wingless, sizes) 5. how they reproduce (via parthenogenesis) and disseminate (flying/gliding or walking) 6. their life cycle (15 days and can be expected to live for over 50 days depending on temperature) How long will this exercise take? Preparation: 1 day Observation: 1 h (depends on the number of participants/groups) Discussion/conclusion: 0.5 hTo show the importance of the banana aphidField experiment : Aphid-colonized banana plant, magnifying glass 10x, brush, small plastic Petri dish, Parafilm, tissue paper, water, piece of banana leaf, 70% ethanol, vials.  What is the distance from the nursery to existing diseased fields?  What is the origin of the planting materials?  What steps were taken to get the planting materials into the nursery?  Is there presence of aphids on the nursery plants?  Is there need to remove banana mats at close proximity to the nursery? Rendre les producteurs capables de produire des plants indemnes de BBTV et en quantité suffisante en pépinières • matériel de formation (flipcharts, marqueurs, etc.).• discussion participative avec les agriculteurs • séance des démonstrations pratiques. Université du Burundi (FABI and other University to be determined (for PhD)x x x x x x x x x x x x x x x x x x x x x x x x x PhD x x x x x x x x x x x x x x x x x x x x x x x x x x x x Other (short trainings, experience sharing) / Site exchange visits Who will coordinate \"prototype building \" activities? XXX New field (planting to harvest) PAlternative crop (fallow and field)x x x x x x x x x x x x x x x Key activities in monitoring epidemiology and other aspects ?x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x BSc?MSc Cameroun x x x x x x x x x x x x x x MSc Gabon x x x x x x x x x x x x x x x Other Cameroun x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x Other Gabon x x x x x x x x x x x x x x x x x x x x x x BBTD distribution survey x x x x x x x x x xLocal field organizations to partner with for \"prototype building\" effort? Minagri, NGO, CARBAP, CORAF/WECARD Who will coordinate \"prototype building \" activities? XXXRain months x x x x x x x x x x x x x x x x x x Banana planting x x x x x x Planting material preparation x x x x x x x x x x x x x x Banana-free fallow x x x x x x x x x x x x x New field (planting to harvest)x x x x x x x x x x x x x Alternative crop planting (fallow and field)x x x x x x x x x x x x x x x x x x Community mobilization and monitoringx x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x Key events (community and farmer learning groups)x Banana-free fallow x x x x x x x x x x x x x x x x x New field (planting to harvest)x x x x x x x x x x x x x x x x x x x x x x x x Alternative crop planting (fallow and field)x Banana-free fallow x x x x x x x x x x x x x x x x x New field (planting to harvest)x x x x x x x x x x x x x x x x x x x x x x x x Alternative crop planting (fallow and field)x BSc?Other (Ir agro) x x x x x x x x x x x MSc x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x PhD x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x BBTD distribution survey How will data be collected? Questionnaires, Periodical measurement, etc.Who will coordinate \"epidemiology, fallow clean seed and new field establishment\" activities? To be determined after follow up meetingx x x x x x x x x x x x x x x x x x x x x x x x Banana planting x x x x x x x x x x x x Planting material preparation x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x Banana-free fallow preparation New field (planting to harvest) x x x x x x x x x x x x x x x Alternative crop planting (fallow and field) Key activities in monitoring epidemiology and other aspects? ","tokenCount":"14796"} \ No newline at end of file diff --git a/data/part_3/9270338488.json b/data/part_3/9270338488.json new file mode 100644 index 0000000000000000000000000000000000000000..a48a34fd43b5c50169459a9699e84428ccd63312 --- /dev/null +++ b/data/part_3/9270338488.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"df73cec26a7ff4a0821e75b415f69b28","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/e678896b-4529-4376-bd1c-1802cc998ef6/retrieve","id":"-238277544"},"keywords":["inclusive innovation","functions of innovation systems","systemic instruments","transdisciplinary science","scales","multilevel action"],"sieverID":"956e37ca-af07-4425-832b-a952ae55babc","pagecount":"14","content":"Innovation platforms (IPs) form a popular vehicle in agricultural research for development (AR4D) to facilitate stakeholder interaction, agenda setting, and collective action toward sustainable agricultural development. In this article, we analyze multilevel stakeholder engagement in fulfilling seven key innovation system functions. Data are gathered from experiences with interlinked community and (sub)national IPs established under a global AR4D program aimed at stimulating sustainable agricultural development in Central Africa. Our findings show that all innovation systems functions required multilevel action, but that fulfillment of specific functions demands for strategic involvement of specific stakeholders at specific levels. We observed that a research-and dissemination-oriented sequence in the functions was prioritized in AR4D IPs and argue that such a sequence may be different in other types of (business) IPs. Our findings provide an incentive to think function oriented about compositional dynamics (stakeholder groups * levels) in innovation processes, rather than striving for equal stakeholder participation.Over the past decades, agricultural research for development (AR4D) expanded its scope and boundaries. Recurrent failure of the 'old' linear technology transfer approach to realize the development potential of Sub-Sahara Africa (SSA) and instil transitions to sustainable agriculture, stimulated scientists to better consider the complex context in which technologies were to be applied (Hounkonnou et al. 2012;Pamuk et al. 2015;Ro ¨ling 2009). A gradual shift took place from narrow technology-oriented approaches to more holistic systems approaches that focus on understanding how interactions between different value chains, actors, and organizations across different levels influence agricultural innovation processes (Douthwaite et al. 2009;Klerkx et al. 2012). In line with generic debates on the emergence of a more interactive and transdisciplinary science (Schut et al. 2014;Turnhout et al. 2013;Wittmayer and Sch€ apke 2014), this has prompted a reorientation of AR4D enlarging the scope of problems targeted and the groups of stakeholders that participate in finding solutions to these problems (Adekunle and Fatunbi 2012;Birch et al. 2011;Hounkonnou et al. 2012;Kropff et al. 2001;Schut et al. 2015a;Woodhill 2014).One of the most evolved and widely advocated systems approaches in AR4D, especially in SSA, is the agricultural innovation system (AIS) approach (Foran et al. 2014;Hall et al. 2003;Kilelu et al. 2013;Klerkx et al. 2013;Schut et al. 2015a). This approach is heavily influenced by the thinking on national, sectoral, and technological innovation systems. As Klerkx et al. (2012) have indicated, the AIS approach emerged from a merger of approaches to study innovation in agriculture (such as the Agricultural Knowledge and Information Systems approach-Ro ¨ling 2009) and the literature on national, sectoral, and technological innovation systems (Hekkert et al. 2007;Lundvall 1992;Lundvall et al. 2009;Malerba 2002) which has its empirical applications mostly in industrial sectors. AIS are, in some studies, approached as national or sectoral systems, analyzing innovation capacity at a country or subsector level (e.g. dairy, horticulture), but are sometimes also seen as technological innovation systems in which a particular technological change trajectory or system change is analyzed, for example, around biotechnology or precision farming (Eastwood et al. 2017;Hall 2005;Klerkx et al. 2012).In innovation systems, innovation is seen as a process of interactive learning between multiple actors in national, sectoral, and technological domains, but can be more or less oriented toward demand-side actors and informal processes (Foster and Heeks 2013a,b). An important feature of AIS in AR4D is a focus on inclusiveness (Ayele et al. 2012), which links to emerging concepts like inclusive innovation and inclusive development (Foster and Heeks 2013a,b;Fressoli et al. 2014;Ros-Tonen et al. 2015;Swaans et al. 2014). Both concepts make a deliberate effort to connect formal research and large business players with consumers and producers at the 'base of the pyramid' to develop products and solutions that are tailored to the preferences, possibilities, and livelihoods of the poor. Based on Foster and Heeks (2013b), we outline the main differences between conventional innovation systems and inclusive innovation systems (Table 1).Similar to ideas from national, sectoral, and technological innovation systems literature (Adeoti and Olubawima 2009;Wieczorek and Hekkert 2012), the heart of the AIS approach lies in the recognition that innovation is embedded in, and affected by complex interactions in the system. Sustainable change thus requires co-evolution between, and effective re-organization of, the system's technical, social, and institutional components-including social norms and common modes of operation (Dormon et al. 2007;Flor et al. 2016;Kilelu et al. 2013;Klerkx et al. 2013;Leeuwis and Aarts 2011;Ngwenya and Hagmann 2011;Rodenburg et al. 2015;Schut et al. 2016b). As argued above, effectuating such change in an inclusive way requires involvement of different stakeholder groups (Foran et al. 2014) and fostering of interaction and interactive learning among them, which calls for process facilitation by intermediary actors and structures (Foster and Heeks 2013b;Howells 2006;Klerkx et al. 2015;Meyer and Kearnes 2013) that focus on facilitating interaction and integration of several actors.Such intermediary structures have also been referred to as 'systemic instruments' (Smits and Kuhlmann 2004;Wieczorek and Hekkert 2012) in literatures that focus on systemic interaction in national, sectoral, and technological innovation systems. As an expression of such a systemic instrument applied to the agricultural context, AR4D increasingly employs IPs-in this article defined as multi-actor spaces allowing stakeholders from different backgrounds to identify, prioritize, and address issues of mutual concern (Adekunle and Fatunbi 2012;Kilelu et al. 2013;Ngwenya and Hagmann 2011;Pamuk et al. 2015;Sanyang et al. 2016;Schut et al. 2016a;2017;Swaans et al. 2014;Thiele et al. 2011). IPs draw on actors from different levels and positions in innovation systems (ie producers, processors, traders, retailers, and consumers), as well as those who support them (enabling and conditioning actors such as regulators, advisors, and researchers), and enable a process of negotiation and re-orientation of the linkages in innovation systems, often with the purpose to make these more inclusive to the poor (Ayele et al. 2012;Ros-Tonen et al. 2015;Swaans et al. 2014). The variety of knowledge, skills, and resources brought together in IPs, the social networks they can enable, and the learning they can facilitate, are considered vital for their potential to foster innovation (Ayele et al. 2012;Lamb et al. 2016;Otiende et al. 2014;Schut et al. 2016a;Struik et al. 2014;Swaans et al. 2014).In the literature on IPs, different scholars confirm the potential of IPs to facilitate agricultural development and innovation, especially at community level (Ayele et al. 2012;Kilelu et al. 2013;Pamuk et al. 2015;Sanyang et al. 2016;Swaans et al. 2014). However, their ability to effect durable change and impact is very context dependent (Ngwenya and Hagmann 2011;Pamuk et al. 2015;Schut et al. 2017;Swaans et al. 2014;Van Paassen et al. 2014). The majority of agricultural IPs in SSA focus at the community level and scholars point out that these IP often encounter difficulties in tackling more structural barriers for innovation that require interventions at higher systems levels (Cullen et al. 2014;Hounkonnou et al. 2012;Ro ¨ling et al. 2012;Schut et al. 2016a;Struik et al. 2014;Van Paassen et al. 2014). Examples of such structural barriers include poor access to agricultural services, land, credit, high quality inputs and markets (e.g. Schut et al. 2015b), and unequal power relations (i.e. gender), and control over resources (e.g. Giller et al. 2008). When remaining unaddressed, such structural barriers also become obstacles for innovations to spread beyond the scope of the IP and achieve the desired development impact at scale.Acknowledging the challenges of impact at scale and multilevel dynamics in innovation processes (Hansen and Coenen 2015;Hermans et al. 2016;Makkonen and Inkinen 2014;€ Osterblom et al. 2015;Westley et al. 2014;Wigboldus et al. 2016), AIS scholars argue for more explicitly addressing innovation as a process occurring across levels where different stakeholders can enact or resist to change (Cullen et al. 2014;Foran et al. 2014;Rodenburg et al. 2015;Schut et al. 2015a;Van Paassen et al. 2014). One suggested approach is the creation of interlinked IPs; that is, community-level IPs to address local issues and (sub)national-level IPs to address This article explores the involvement of, and interactions between stakeholders across different levels in agricultural innovation processes as earlier described by Coenen et al. (2012) and Hermans et al. (2016). The focus will be the administrative scale at which these stakeholders are active, which can be broken down into decisionmaking units ranging from the farm level to supranational level (Cash et al. 2006;Schut et al. 2014).A multitude of tools or strategies can be used to reach out to actors at different levels in agricultural innovation. Not only formal IP gatherings, but also informal networking events can facilitate the involvement of stakeholders across levels. Moreover, capacity development activities like trainings or experiential learning through onfarm research trials, as well as more formalized collaboration through contractual partnerships or business deals can form the basis for involving previously unconnected actors in innovation processes. Mediated communication such as (local) newspapers, posters, flyers, email, phone, radio, or video can also play its part in reaching out (Chowdhury et al. 2015;Sanyang et al. 2016;Van Mele 2006;Zossou et al. 2009).When looking more closely at the underlying dynamics of facilitating multi-stakeholder innovation and building linkages between different actors at different levels, innovation system scholars have written about individuals who, for example, helped organizations to extend their organizational boundaries (i.e. boundary spanning; Klerkx et al. 2010;Smink et al. 2015) or leverage resources to push for institutional change (i.e. institutional entrepreneurs or innovation champions as described in Farla et al. 2012;Klerkx et al. 2009Klerkx et al. , 2013;;Van Paassen et al. 2014). The composition of the IP, in terms of which actors with boundary spanning positions and capacities are involved, as well as their championing qualities, determines how effective the platform can be in connecting levels (Klerkx and Aarts 2013;Manning and Roesler 2014). In line with work emphasizing new interactive roles of transdisciplinary science in innovation processes (Schut et al. 2014;Turnhout et al. 2013;Wittmayer and Sch€ apke 2014), IPs in AR4D have been found to play such a role by bringing together agricultural research and development actors, and facilitating the identification, prioritization, and implementation of (joint) activities. In this way, IPs seek to bridge the gap between science and development or business sectors, building on applied and participatory action research strategies (e.g. Ottosson 2003;Wopereis et al. 2007) to support the development of innovations that are technically sound, economically feasible, and socially, culturally, and politically acceptable for all stakeholders. Nevertheless, the institutionalization of IPs in the AR4D sector has happened with mixed success as these new roles do not always fit well with organizational mandates and cultures (Kristjanson et al. 2009;Schut et al. 2016a).Traditionally, innovation systems are analyzed by looking at the actors (e.g. businesses, science, and government), infrastructures (e.g. R&D laboratories, finance structure, and communication infrastructure), interactions, and institutions that govern behavior (i.e. formal rules and regulations, like laws, and informal rules like norms and values) (Wieczorek and Hekkert 2012). This 'components-based' approach offers value for analyzing and detecting problems or failures in innovation systems (Klein Woolthuis et al. 2005;Van Mierlo et al. 2010;Amankwah et al. 2012), and has been used in the context of developing countries to diagnose the 'maturity' of the innovation system. If many components are absent or deficient, a developing country is said to have an 'immature' innovation system. However, the components-based approach has been criticized for being too static and not sufficiently focused on identifying activities fostering the generation and diffusion of innovations (Bergek et al. 2007). As a response to that, Hekkert et al. (2007) developed the functions-based approach, originally connected to the concept of technological innovation systems but recently also applied for analysis of sectoral and national innovation systems (Turner et al. 2016;Wesseling and Van der Vooren 2016, in press). Hekkert et al. (2007) identified seven functions that need to be performed as a result of the interactions between these components of the innovation system, and which thus depend on presence or quality of structural components such as actors (e.g. firms, R&D institutes), infrastructure (e.g. knowledge infrastructure, finance infrastructure), interaction (e.g. spaces for learning, adequate innovation networks), and institutions (e.g. innovation policies, a culture of collaboration). The functional approach has recently been applied in agricultural settings (Lamprinopoulou et al. 2014;Turner et al. 2016) (Table 2), and has also been advocated as an analytical scheme to assess the dynamics and functioning of innovation systems in developing countries (Jacobsson and Bergek 2006) with some recent applications in such settings (e.g. Kebebe et al. 2015;Tigabu et al. 2015).Because innovation processes can be triggered by a wide range of emerging constraints or opportunities in the agricultural system, the sequence in which the functions become relevant can differ from case to case (Hekkert et al. 2007); that is, different functions are required to facilitate different steps in innovation processes, which then again cascade into the triggering of other functions. Hekkert et al. (2007) point out that innovation system functions need to cut across different levels, as innovation processes are embedded in macro-and micro-level dynamics. As Wieczorek and Hekkert (2012) state, if functions are not properly executed, this is due to problems with the presence or quality of structural components (actors, infrastructure, interaction, and institutions). A major problem is often a lack of coordinated action between diverse actors, and 'systemic instruments' (e.g. IPs) are seen as a means to improve this coordination. In this article, we will use the functions of innovation systems perspective to systematically analyze the innovation processes taking place in multilevel IPs to see if, and how, facilitating linkages across different levels helped to fulfill these functions.Data for this study were collected under the CGIAR Research Program on Integrated Systems for the Humid Tropics (Humidtropics). The program aims to increase income and improve nutrition for rural households, increase farm productivity, promote sustainable natural resource management, empower women and youth, and enhance innovation capacity, by conducting systemsoriented R4D through two types of interlinked IPs (Humidtropics 2012). Humidtropics is implemented in three different continents: Africa, America, and Asia. Data for this study originate from Burundi (i.e. Gitega Province), Rwanda (i.e. Nyabihu District in the North and Kayonza District in the East), and South Kivu province in the Democratic Republic of the Congo (DRC) (i.e. Ngweshe Collectivite ´). Humidtropics commenced in these countries in May 2013. The first type of IP operates at the community level and serves as a space for joint problem analysis, agenda setting, and experimentation with, and local adjustment and selection of, various innovations for sustainable agricultural intensification. The other type of IP operates at the national level (in Rwanda and Burundi) or subnational level (in eastern DRC) and is supposed to support the community-level IPs to deal with higher-level barriers that are beyond control of the community members (Schut et al. 2016a).Both primary and secondary data were used for this study. Participatory observation, semi-structured key informant interviews, written interviews, and IP reflection workshops were the main primary data sources, and were collected between February 2014 and December 2015. Participatory observation refers to a systematic and purposeful way of observing social processes and phenomena as they occur in their natural setting (Kumar 2005). In total, thirtynine events (e.g. IP meetings, field trial implementation, data collection events, etc.) were attended in Burundi, sixty-six in Rwanda, and twenty in DRC. Observations were mainly captured through field notes and photos. The semi-structured interviews were conducted face-to-face using a pre-made list of topics that was tailored to the position and role of the interviewee in the innovation process. The interviews provided an overview of platform-related activities occurring at the different levels, the type of stakeholder groups involved, and how this influenced the evolution of the innovation process (in view of innovation system functions) as well as how the barriers to the innovation process were being addressed (in view of structural components fostering or hindering innovation). A timeline showing major IP events like launch meetings, platform meetings, and dates of research trials, was used to help interviewees recall the process and add additional activities they had been involved in. The interviews also captured stakeholder perceptions of how they had experienced the innovation process (e.g. what challenges they experienced and what motivated them join or leave, the IP process). Interviews generally took between one and two hours. During the IP reflection workshops, platform members completed various exercises aimed at capturing discussion about the IP process and achievements, as well as where the IP could do better. Secondary data sources included meeting minutes, pictures of platform events and R4D activities, emails and event registration forms, and were collected over the entire period of study (Table 3).Data were analyzed in a qualitative manner by studying information gathered about the cases with the function perspective of Hekkert et al. (2007); a process that is also referred to as analytical generalization (Yin 2003). Using the timelines with platform events developed for each country during the semi-structured interviews, attempts to facilitate multilevel fulfillment of innovation system functions were identified and categorized according to the most relevant function. All attempts were described in detail using the different sources of data in this study to assure triangulation. Guiding questions during the analysis were: (1) what stakeholder group(s) active at which levels are involved?;(2) what is done to involve them? and (3) how did it work out? Assembling of the diverse resources (e.g. financial, human, social, and physical resources) required to enable all activities in the innovation system to be done (F7) Creation of legitimacy/counteract resistance to change For innovations to be taken up, or overthrow the existing system requires a certain degree of perceived legitimacy and support for the innovation. This function often covers lobbying activities and interest groups that advocate the innovation as well as interventions that increase the perceived legitimacy of the innovationIn this section, we describe for each of the innovation system functions how they were performed in our case and which levels were involved. The sequence in which we present the functions is determined by their relative importance in the IP processes studied in this article. Using several typical and/or explanatory examples from our dataset we illustrate the multilevel dynamics under each function.Early in the innovation process, Rapid Appraisal of Agricultural Innovation Systems (RAAIS; Schut et al. 2015a) workshops were organized in all countries with representatives from the most important stakeholder groups in AR4D (i.e. farmers, NGOs, private sector, government, and research). They jointly identified, analyzed, and prioritized major constraints for the sustainable intensification of agricultural systems in their region, and, based on that, selected entry points for innovation (see Schut et al. 2016b). During these workshops, organized by the international research institute leading Humidtropics, stakeholders representing international, national, and local level participated. The outcomes of these priority setting workshops were communicated to the (sub)national IPs as the basis for setting the AR4D agenda. In turn, research plans were presented to the community-level IPs to allow them to give some input, indicate preferences (e.g. which crop varieties to use in the trials), and discuss practicalities of implementation (e.g. land availability). Also at the start of the innovation process, the international research institute leading Humidtropics selected a national partner with a solid network and reputation to assist in program facilitation (i.e. in Burundi and Rwanda this was the National Research Institute, and in DRC an NGO specialized in facilitation). Together, these institutions selected a number of actors which jointly represented the key stakeholder groups in AR4D and were deemed strategic to be part of the IPs and as a group direct the AR4D activities. All actors were subsequently invited to official launch meetings and requested to join the (sub)national IP. In case of the community IP, the leading (research) institutions requested assistance of well-respected local NGOs or farmer leaders to assist in sensitizing farmers and other community-level actors for the IP, invite these for its launch and subsequently ask those interested to join. Throughout the process, the IPs continued meeting and discussing progress, as well as next steps, of the innovation process. New stakeholders that were interested in the program could join the IP and IP members who lost interest were allowed to leave, creating a dynamic IP composition. Continued multilevel guidance of the search was facilitated more structurally through IP reflection meetings, organized once per year with both the community-and the (sub)national-level IPs. During these meetings stakeholders discussed which innovations the IPs wanted to continue, add, or abandon and which partners could assist in this.In addition to these formal workshops, (sub)national IP members were usually involved in evaluating and further specifying AR4D activities through presentations given in IP meetings, written reports with information gathered from the other stakeholders or research, and (concept) budgets that were developed. All members could comment on these to indicate their preferences and thereby influence prioritization of AR4D activities. As for the community-level IPs, the IP in Nyabihu District in Rwanda frequently met with some researchers 1 working with the IP to discuss the AR4D activities and plan next steps. Such meetings occurred less frequently in community IPs in Burundi and Kayonza District in Rwanda, especially once field trials had been implemented.In all countries, researchers working with the IPs on agronomy trials conducted additional efforts to involve farmers in the guidance of the search. Some organized focus group discussions to further tailor activities to the needs of hosting farmers (i.e. specifying the type of livestock to work on in Burundi), whereas others conducted participatory farmer evaluations to assess community-level preferences regarding technologies tested (i.e. in Rwanda and DRC).Despite the participatory and 'holistic' nature of the identification of constraints and opportunities for innovation, the real decision-making regarding which of the proposed AR4D activities would actually be implemented, seemed less inclusive. Lack of mandate or expertise on prioritized AR4D activities among stakeholders holding the financial resources (often researchers), or prerequisites within the program (i.e. the need for clear agricultural research questions in AR4D activities), often influenced selection of activities implemented. In practice, this led to a focus on productivity-and natural resource management research at farm-to community level, whereas institutional challenges that required innovation at (sub)national level often remained unaddressed. Additionally, while development of AR4D plans and budgets was generally started en groupe in the community and/or (sub)national IPs, finalization of these research plans and budgets was usually done by a small group of appointed (sub)national IP members primarily consisting of researchers. Interviewees from the subnational IP in DRC (often representing resource-poor NGOs) said they felt to have little influence on what type of AR4D activities were developed and tested, and that the managers of participating research programs decided what happened. In all countries, on-farm trials to test innovations (e.g. intercropping, planting distances, varieties) were implemented. This occurred under supervision of researchers from the (sub)national IP who were assisted in implementation, management, monitoring, and data collection of the trials by extension officers and farmers from the community IP. After discussing AR4D activities in both (sub)national and community IP meetings, researchers, extension officers, and farmers met in the field where the researchers demonstrated agricultural production technologies in one or several fields. Subsequently, under supervision of extension officers, farmers hosting trials replicated the technologies in their remaining fields allocated for experimentation and were responsible for managing these throughout the season. Together, these actors tested efficacy of the technologies in the communities. In interviews, representatives of all three groups indicated their satisfaction with this collaboration, which was based on gaining access to inputs, knowledge, and/or skills.Nevertheless, in all countries some trials did not perform well. For example, in Kayonza District in Rwanda, cassava trials suffered from diseases causing farmers to replace or remove several plants, thereby disturbing the experimental set-up of the experiment. In some cases, researchers decided to stop, and otherwise alter, such trials as they became of limited use for science purposes.In all countries, the key channel facilitating knowledge diffusion through networks were the IP meetings at community and (sub)national level in which actors representing the main stakeholder groups in AR4D gathered. Representatives of the community-level IP participated in the (sub)national-level IP meeting, and vice versa, to facilitate exchange of information and views between the IP. To further strengthen this exchange, the IP reflection meetings (Section 4.1) facilitated diffusion of more profound reflections regarding the IPs' functioning, achievements, and its way forward. During every reflection cycle, three meetings were organized; one with the community IP, one with the (sub)national IP, and one with the key people facilitating the program's implementation. Key reflections from the community IP were communicated to the (sub)national IP, and these provided inputs to the reflection meeting with the key people facilitating the program's implementation in the respective countries. Moreover, aggregate key findings were presented during international planning meetings to allow international program managers to better match the program to stakeholder needs.Nevertheless, interviews with (sub)national IP members revealed that many of them were poorly aware of activities happening in the community IP and that communication outside formal meetings (e.g. through emails, phone calls, informal encounters, etc.) seemed often limited to those directly participating in implementation (i.e. mainly researchers, extension officers, and farmers). In all countries, several (sub)national stakeholders (predominantly representing NGOs, government, or private sector) lost interest over time and stopped participating in IP meetings, or simply continued sending different people to represent their organization. Moreover, both in interviews and reflection meetings, members of the (sub)national IPs of DRC and Rwanda representing NGOs, research and private sector indicated they wanted their involvement to go beyond attending meetings only, for example, by participating in the implementation of the AR4D activities.In Burundi, the researchers established an additional channel to facilitate multilevel knowledge diffusion through networks. They appointed a small group of people (three (inter)national researchers, two community-level extension officers, and two farmers) and tasked them to intensify communication between the community and (sub)national IP. This so-called 'core team' started meeting frequently and communicated information about farmers' challenges to researchers and back. They identified several miscommunications (e.g. about whether or not certain AR4D activities were still to be implemented) that-after lobbying with budget holders and other powerful people in the program (usually researchers)-could be solved. However, the team also hampered multilevel diffusion of knowledge through networks. One interviewee explained that the existence of the core team contributed to a reduction in formal community-level IP meetings, which made it difficult for new partners-who were unaware of the core team and thus unable to contact them-to join the community IP and the AR4D process. Simultaneously, local core team members communicated directly to project leaders, thereby intensifying communication between farmers and researchers, but reducing communication within the network as a whole.To mobilize human resources to facilitate the program's implementation, and in particular the IP process, the leading international research institute signed contracts with strategic national (research) partners (Section 4.1). This occurred when the program was officially launched. Through these contracts the international research institute 'hired' staff from the national institutes to act as the national facilitator of the program in return for a payment. In all countries, the people selected for this task participated very actively in many activities of the program and when needed, other staff from these organizations assisted them in fulfilling their tasks.Financial resources available in the program-and among (potential) partner projects-to facilitate the IP process and implementation of AR4D activities were in the hands of the researchers. There were several prerequisites and guidelines on how funds could be spend (e.g. specific projects only allowed work on specific crops, or in specific regions). This sometimes hindered realization of the IP's demands when there was a mismatch with available expertise or organizational mandates (e.g. working on livestock when no human and financial resources were available to support AR4D activities on livestock). Hence, in December 2014, the program introduced a modest budget line that was allocated to the IPs to spend on preferred research activities for which no funds were available. These 'platform-led innovation funds' were supposed to allow the IPs to 'buy-in' missing expertise from inside or outside the IP. However, as this budget-again through a contract-was assigned to the national research institute to be managed properly, it ended up being primarily spend by these institutes as well, keeping it difficult to freely scout for expertise or assistance outside the group of researcher holding budgets. This situation was noticed by several key stakeholders in the program, is reflected in research budgets, and was confirmed by an interviewee representing one of these research organizations.In contrast, collaboration and resource sharing with other, especially higher level, organizations that did not sign official contracts, occurred less frequently. In Burundi, several NGOs that had collaborated with the leading international research institute, contacted them to explore options to continue their partnership. An interviewee who talked to them mentioned they had concluded that collaboration was no longer possible because of a mismatch in target area and objectives between the IP and these NGOs. Likewise, an interviewee who played a central role in both Rwanda and DRC explained that also in these countries collaboration with NGOs in the (sub)national IP had been difficult to establish. In Rwanda, he explained, there are many (inter)national NGOs working with much larger budgets than Humidtropics causing them to be sceptical toward the benefits the IPs could bring them. In contrast, the many small-staffed provincial NGOs in DRC are willing to collaborate, but as they do not have the financial resources to do so, they tend to hang on waiting for an opportunity to get to work. In both Rwanda and DRC, one international NGO contributed to AR4D activities in terms of providing human, material, and financial resources. In Rwanda, the intervention topic overlapped with activities of this NGO, for DRC, both the intervention area and topic matched the NGO's (more general) focus.Resources mobilization at community IP level occurred successfully in all countries. First, when the program was launched at community level and local actors agreed to sensitize people for the program (i.e. local NGOs in DRC and Burundi, and farmer leaders in Rwanda). Second, when AR4D activities were implemented, local government supplied human resources (i.e. extension officers) to assist in fieldwork, and farmers supplied labor and land to manage the trials. Yet, when it turned out that the skills of these farmers and extension officers were too limited to guarantee sound data, additional technicians based in the communities were hired to assist researchers in fieldwork.In Nyabihu District, in Rwanda, farmers lacked a collective potato seed storage facility. In a response, a member of the national research institute, together with some IP farmers and an extension officer, requested the sector authorities to make available one of their old buildings as temporal seed storage. After accepting this request, farmers renovated the old building and collectively stored their potato seed there.In contrast to Burundi and Rwanda, governmental authorities (i.e. the Secretary of the provincial Minister of Agriculture) participate in the subnational IP meetings in DRC, thereby granting this IP and its activities a certain degree of government acknowledgment and legitimacy. When asked to explain this interest, the government representative explained that the government has its own network of stakeholders working in agriculture whose aims and set-up closely align with the subnational IP. Moreover, in May 2015 when the successfulness of field activities became visible and farmers started to get convinced of AR4D activities promoting fertilizer usage, the IP facilitator called the Minister of Agriculture and invited her to visit the IP fields. Once there, IP members (among whom many farmers) explained the Minister about the benefits of fertilizer to increase yields, including their challenge to access it. The Minister acknowledged their problem by granting a modest sum of money for the farmers to buy inputs, thereby demonstrating government support and legitimacy to what the IP was doing.In Kayonza District, in Rwanda, AR4D activities target intercropping technologies whereas national policy promotes monocropping. This mismatch between law and science reduces perceived legitimacy of experiments and even though a government representative explicitly mentioned during a national IP meeting in July 2014 that experimenting with intercropping is not forbidden (thereby granting legitimacy to the act of experimenting), it still hinders the innovations from being upscaled. In reflection meetings conducted in October 2015, representatives of the Sector government explained that they can only move to large scale extension of the intercropping technologies (of which they acknowledged to see advantages in the field) when national policy explicitly recognizes it. However, as national policymakers usually refuse to participate in national IP meetings in Rwanda, members proposed to try to convince the government of the efficiency of intercropping by developing targeted policy briefs. More generally, The RAAIS workshops, IP reflection meetings, and multi-stakeholder decision-making processes in the IP also enhanced the perceived legitimacy of AR4D activities, as these enabled selection and implementation of activities based on a democratic process of reaching consensus.In none of the countries, (niche) markets for crops promoted in AR4D activities were created or made more accessible through the IPs. However, some linkages with existing input suppliers (i.e. agrodealers and micro-finance institutes) were facilitated in Rwanda and DRC by inviting these partners to IP meetings and/or informal events. Moreover, some community-and provincial-level processors and cooperatives were invited to participate in the community IP meetings by the researchers facilitating the IP processes to explore potential collaboration. In this way, the IP facilitators tried to help farmers to access (processing) machinery for their produce, and through that perhaps a market (e.g. in Burundi), or get in touch with groups active in collective marketing (e.g. in DRC). Nevertheless, in the first one and a half year of the IP process, the engagement with these processors and cooperatives led to limited action. In general, participation of private sector representatives in all countries in both community and (sub)national IP meetings was very limited which may have reduced the IPs' market orientation.Hardly any examples of entrepreneurial activities related to AR4D activities can be found in our data. A positive exception comes from Nyabihu District in Rwanda, where farmers involved in potato seed multiplication expressed interest to set up a seed production business. Related to this, IP members-including the sector's microfinance institute-and researchers met around March 2015 to discuss group loan options for farmers to finance building their own seed storage facility and hence encourage entrepreneurial activities. They agreed that (1) farmers could reimburse the loan after harvesting, which better matched their financial capabilities than the usual monthly payments, (2) researchers would give climate predictions to farmers to increase chances on high yields, and (3) the micro-finance institute would apply for a subsidy with one of his national partners that financially promotes small-and medium-sized enterprises. The micro-finance institute quickly approved the loan proposal and subsidy, and several farmers had taken up the loan. Observing this entrepreneurial ambition among farmers, the team of researchers decided during a team reflection meeting in October 2015 to support the IP in developing into a cooperative.Our data show that all functions of innovation systems were at some point touched upon by the interlinked IPs in Burundi, Rwanda, and DRC. The data also shows that all functions encompassed involvement of stakeholders across levels-be it in varying degrees of intensity and success. Below, we further analyze our data and highlight theoretical and practical implications.The IPs studied in this article are initiated by and embedded in AR4D. Hence, in line with the sequentiality pointed out by Hekkert et al. (2007), the innovation system functions closely related to research and dissemination (i.e. guidance of the search, generation of knowledge, and diffusion of knowledge through the network) received relatively much attention. In contrast, less examples could be given of successful resource mobilization, 2 entrepreneurial activities, market formation, and creation of legitimacy (Table 4, Fig. 1a). Schut et al. (2016a) provide some explanation for what can happen to IPs when institutionally embedded in an AR4D context. They describe, for example, how research organization mandates, donor demands and funding structures, narrow perceptions on agricultural innovation, and roles of researchers influence IP support and functioning. Many of the IPs implemented in an AR4D context are transformed to fit the incumbent AR4D system that is predominantly occupied (and evaluated against) the successful development, testing and diffusion of technological innovations at community level. Consequently, from a components-based point of view on innovation systems (Klein Woolthuis et al. 2005), such AR4D systems tend to facilitate those components (i.e. actors, infrastructures, interactions, and institutions) needed to conduct research: competent researchers are gathered, trained and given budgets, and farmers and extension officers are approached to implement activities. In contrast, higher level NGOs, government, and private sector actors are being invited for IP meetings and informed about the program's activities-thereby trying to comply to the demand for inclusive innovation (Foster and Heeks 2013a;Swaans et al. 2014)-but seldom given additional resources to facilitate market formation or the creation of (policy) legitimacy at higher (sub)national levels. This is, as Schut et al. (2016a) explain perceived to align less with the traditional AR4D mandate, and therefore receives less attention in IP within AR4D. However, at the same time such non-research-oriented innovation system functions like creating legitimacy, for example through alignment with existing (public or private) structures, are pointed out as crucial for IP to become recognized and adopted by the incumbent system, and through this sustain themselves and achieve impact beyond the scope of the initial IP (Schut et al. 2017). Given the direct connection of innovation system components (Klein Woolthuis et al. 2005) with the execution of functions (Wieczorek and Hekkert 2012), the actors expected to drive the non-research-oriented innovation system functions thus may not be present. Moreover, the infrastructures enabling researchers' engagement in such non-researchoriented innovation system functions are unlikely to be actively supported by donor-funded AR4D programs. Another explanation for the relative emphasis on research-related innovation system functions could be that the IP had not yet reached the point where market formation was a relevant discussion topic, as community-level productivity had not yet reached the point where local markets could no longer absorb surpluses. This is opposed by Ngwenya and Hagmann (2011) who emphasize that market formation should be central in IP processes and that IPs need to be built around an attractive business plan that generates clear and direct benefits for those involved. Such a business/ private sector-driven IP process may follow a different sequence of innovation systems functions, in which market formation and entrepreneurial activities may be more central as entry point and agricultural research may not need to be part of the IP process (Fig. 1b). This hypothetical dual pathway of IPs pushed by AR4D or business opportunities seems problematic when IPs are being initiated in an AR4D setting, but expected to transit into a business model to (financially) sustain itself over time. It also connects to debates on 'maturity' of innovation systems in developing countries, which-given the still large dependency on international donors-are questioned regarding their capacity to develop and enact appropriate and sustainable domestic innovation policies (Borras 2011;Jacobsson and Bergek 2006;Hansen and Nygaard 2013;Klerkx et al. 2015;Schut et al. 2017).The above requires us to think differently about the compositional dynamics (stakeholder groups * levels) of IPs to fulfill different innovation functions, which has so far received limited attention in the IP literature. It underlines the importance of variable stakeholder representation in IPs during different stages of innovation processes. Rather than understanding 'inclusiveness' of IPs in AR4D as a call for continuous, comprehensive, and proportional stakeholder group representation to strengthen systemic capacity to innovate (e.g. Rodenburg et al. 2015;Schut et al. 2016a;Van Paassen et al. 2014), it requires strategic thinking about which configuration of stakeholders groups across different levels may have the highest potential to fulfill the functions required to achieve successful innovation at each point in time (as also suggested by Swaans et al. 2014). Hence, when working with IP, concrete strategies are needed regarding whom best to involve and support when. This has been referred to as 'adaptive management' in innovation processes (Hall and Clark 2010;Klerkx et al. 2010), or connecting decision-making on actor involvement to a 'dynamic learning agenda' that articulates what barriers for innovation need to be addressed in particular points in time (Kilelu et al. 2014) and induces a process of 'policy learning' in terms of what innovation policy instruments are appropriate (Borr as 2011). Such strategic engagement concerns both appropriate timing and selection of involvement strategies (including intensity). Each attempt should be designed as to quickly facilitate identification of potential roles and benefits of participation for the stakeholder in fulfilling specific functions. Doing so can increase the chance that the most relevant and motivated stakeholders are targeted to fulfill specific innovation systems functions. Hence, we propose that conscious matching of stakeholders' focus (i.e. in terms of target area and topics, and level of operation) to the IP's current orientation should guide strategic engagement of stakeholders. Identification of clear roles and benefits or incentives for all those involved in the IP process is crucial in this respect (Foran et al. 2014;Ngwenya and Hagmann 2011;Swaans et al. 2014), and can support the decision of when best to involve certain stakeholders. Table 5, which is based on experiences from the empirical data used in this study, provides guidance for strategic stakeholder identification and engagement. In general, in a AR4D-oriented innovation processes, the involvement of (inter)national researchers and perhaps NGOs, as well as various community-level stakeholders seems to precede involvement of national-level policymakers and (big) private sector representatives operating higher up in the value chain (i.e. processors and other buyers). The latter are more likely to receive benefits and identify clear roles for themselves once the experimental phase is passed and innovations start showing success and can be taken to scalematching the administrative scale in which they are active. Hence, strategic engagement of multilevel stakeholders seems more promising than aiming for equal representation of multilevel stakeholders throughout the innovation process, as has also been argued elsewhere (Kilelu et al. 2014;Klerkx and Aarts 2013). Nevertheless, joint identification and analysis of problems and intervention agenda setting including different stakeholder groups representing different levels at the beginning of IP processes may still be beneficial. It provides a holistic image of constraints, needs, and interests faced by different stakeholder groups, as well does it provides legitimacy to the IP process and AR4D activities that seek to address stakeholder constraints (Schut et al. 2015a).Our study shows that all innovation systems functions require action and interaction across different levels. Organizing IP meetings at different levels turned out to be neither the only nor the most effective way to do so. Nevertheless, the IP played a role in connecting stakeholder groups across different levels to fulfill different innovation system functions. First, joint agenda setting and reflection through RAAIS workshops (Schut et al. 2015a) to identify entry points for innovation functioned as an important mechanism to facilitate multilevel participation at the start of the IP process. Later on, IP reflection meetings to enable open reflection and adjustment of the innovation pathway based on changing stakeholder preferences continued with this task. They both enabled participatory and multilevel guidance of the search and diffusion of knowledge through networks. Nevertheless, while enabling stakeholders across levels to express their needs, many of these needs could not be fulfilled as limited resources, expertise, mandates, and sharing of budget restricted flexibility of the IP to cater for all needs of the stakeholders involved (Schut et al. 2016a). Through such structures, unequal power relations inherent to any multi-stakeholder process influenced which functions would be prioritized; resembling earlier findings by Foran et al. (2014) and Cullen et al. (2014). Second, participatory on-farm activities provided a successful approach to link national-level researchers to community-level stakeholders, like farmers and extension officers. This strategy turned out to be successful in triggering multilevel interaction and rendered clear roles and benefits that aligned with the professional orientation of those involved. This demonstrates the importance of engaging in collective action as a mechanism for joint learning by doing. It also creates awareness that constraints are interrelated and can support the development of trust between different stakeholder groups across different levels, as was also highlighted by Leeuwis (2000). Third, in all countries several individuals were appointed or contracted to act as innovation champions, who played a key role in networking and facilitation across different levels. Their innovation championing took several forms depending on the needs of the innovation process. Sometimes they acted as advocates of a technology to overcome farmers' challenges (technology champion), organizing and facilitating IP events (process champion), or creating connections between (new) relevant stakeholder groups across levels (network champion). In all countries these 'champions' played a crucial role in advancing the innovation process as a whole as well as its multilevel character (confirming earlier findings by Klerkx et al. (2013) and Smink et al. (2015)). Fourth, formal (performance) contracts between organizations across different levels facilitated not only multilevel collaboration and action, but also exclusion of those groups that did not manage to secure such contracts, which is a challenge in light of the ambition of 'inclusive innovation' fostered by IPs (Swaans et al. 2014).The article shows that innovation system functions require the involvement of stakeholders across different levels. However, the mere establishment of interlinked community-and (sub)national level IP does not automatically trigger successful multilevel collaboration and innovation. In addition to having multi-actor platforms at different levels, joint agenda setting and reflection, participatory action research, and careful networking and problem solving by (contracted) innovation champions can facilitate stakeholders connectivity across levels. The sequence of innovation system functions-and consequently the involvement of different stakeholders across different levels-will differ from case to case as a function of the innovations desired and the inputs and outputs at various levels associated with this. Hence, we strongly advocate for a more sequenced and strategic engagement of stakeholders across levels, guided by a match in stakeholders' focus and interests and the IP's needs and stage of the innovation process. This is a break from the current IP implementation guidelines in AR4D in SSA, which generally call for an equal and continuous involvement of all stakeholder types at all stages of the innovation process. IPs require adaptive management that enables a degree of flexibility allowing their form and composition to follow their (innovation) function and adapt to the constraints and opportunities in the existing institutional environment. We question the sustainability of many of the existing AR4D IPs and their ability to function as a business incubator, as the sequencing of innovation systems functions in AR4D IPs tend to undermine market formation and entrepreneurial capacity development.Given that this is a first study attempting to research IP functioning across different levels in innovation systems, we invite scholars to further research this topic. Such future work could focus on (1) more detailed visualization of interactions between levels and stakeholder groups in the system to better show the composition and interlinkages between IP, as well as who is included and who is excluded from IP; (2) analyzing in more detail the embedding of IP as a systemic instrument as part of innovation policy learning in developing countries' innovation systems, and ( 3) analyzing what other innovation policy instruments can complement IP to enable an optimal policy mix for strengthening innovation systems in developing countries.","tokenCount":"7786"} \ No newline at end of file diff --git a/data/part_3/9273605541.json b/data/part_3/9273605541.json new file mode 100644 index 0000000000000000000000000000000000000000..e5886880cf2a20109c55d4d80d8f724f640a017c --- /dev/null +++ b/data/part_3/9273605541.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"4ca9db38267d68d386b9c4f8ad4da3e6","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/29cd1d05-c4a7-40fd-bd4e-0e1ba34dbb66/retrieve","id":"1451204823"},"keywords":[],"sieverID":"8fc6345a-cec2-4ae7-9247-82bd1b6d1076","pagecount":"52","content":"La suscripción es gratuita para los países en vías de desarrollo. Se agradecen contribuciones en forma de artículos y cartas al editor. La redacción se reserva el derecho de editar los artículos. INFOMUSA no se responsabiliza por el material no solicitado. Sin embargo, trataremos de responder a cada una de las peticiones. Los artículos pueden ser citados o reproducidos sin cargos, con la mención de la fuente. También se publican ediciones de INFO-MUSA en francés y en inglés. Una versión electrónica esta disponible a la dirección siguiente: http://bananas.bioversityinternati onal.org/content/view/31/48/lang,fr/ Cambio de dirección: Para evitar la perdida de sus ejemplares de INFOMUSA, notifique a Bioversity con seis semanas de antelación si cambia de dirección postal.Las opiniones expresadas en los artículos son responsabilidad de sus autores y no necesariamente reflejan los puntos de vista de Bioversity.1 Editorial InfoMusa se encamina al ambiente multimedia ¡Si, estamos cambiando nuevamente … pero no de inmediato! Aquellos de nuestros lectores quienes aprecian el actual formato de InfoMusa pueden esperar una edición más con los mismos 'aspecto y sentimiento', después de este. Mientras tanto, aquellos quienes contribuyeron con sus artículos científicos y están esperando pacientemente una respuesta, pronto recibirán noticias de nuestro jefe de redacción sobre si sus trabajos aparecerán entre los que serán publicados. Sin embargo, el mensaje urgente para los futuros contribuyentes es: por favor, no envíen más manuscritos, por lo menos hasta que reciban nuevo mensaje nuestro, sea este por una alerta en su correo electrónico, un anuncio en nuestro sitio web, o en la siguiente nota editorial de InfoMusa.¿Entonces, qué es lo que está sucediendo? Por un lado, hemos acumulado un considerable volumen de artículos potenciales. Como hemos explicado en una de las notas editoriales anteriores, tomamos muy en serio nuestra misión de aumentar la calidad de los artículos con el fin de lograr estándares adecuados para los informes científicos. Sin embargo, la magnitud de esta tarea ha estado excediendo constantemente la capacidad de nuestro comité editorial con respecto a la revisión de los manuscritos, y ha superado el tiempo que nuestro jefe de redacción puede invertir en trabajar con los autores para responder a las recomendaciones de los críticos para mejorar los textos. Por lo tanto, estamos imponiendo esta moratoria sobre las nuevas contribuciones. Planeamos aumentar el contenido de la próxima revista, en comparación a las ediciones anteriores, para finales del año 2007 o comienzos del año 2008 con el fin de incluir la mayor cantidad posible de manuscritos aportados. Mientras tanto, pedimos disculpas por el retraso en la revisión de los artículos y solicitamos paciencia a los autores con los artículos 'en espera'.Por otro lado, también hemos llegado a la conclusión que ya es tiempo de modificar nuevamente tanto nuestra misión, como nuestros métodos. Aquellos de nuestros lectores, quienes también dan seguimiento a nuestro sitio web han podido notar que ahora INIBAP forma parte de Bioversity International y aquellos quienes trabajan o están relacionados estrechamente con los Centros CGIAR, sabrán que 'el sistema' está poniendo más énfasis en el desarrollo de 'senderos de impacto' (impact pathways) de mayor eficacia a través de los cuales se pueda adoptar productos de investigaciones agropecuarias y así contribuir con las metas de desarrollo. Como parte de nuestra búsqueda continua de mayores impactos y rentabilidad, hemos decidido incrementar el uso de la tecnología de Internet, conservando el formato en papel para aquellos quienes tienen acceso limitado a Internet, o simplemente les gusta tener una revista para leer.Mientras que la siguiente edición de InfoMusa se está preparando, debemos empezar a trabajar en una plataforma basada en Internet, que se llamará provisionalmente InfoMus@. Esta plataforma estará organizada por tópicos, incluyendo aquellos identificados en previas encuestas a los lectores, y conservará nuestro principal objetivo de mantener al día a los lectores en la comunidad de investigación y desarrollo con los últimos desarrollos en el mundo de los bananos. Incluirá noticias, opiniones y foros temáticos de discusión sobre temas específicos de interés para la comunidad bananera. Eventualmente, en el transcurso del año, prepararemos un resumen del mejor material aportado a la plataforma informativa el cual será publicado en un formato de revista, la nueva InfoMusa.Con respecto a los artículos científicos, estaremos interesados en recibir la retroalimentación de parte de nuestros lectores, pero tenemos la impresión de que actualmente existen muchas revistas especializadas tanto internacionales, regionales como nacionales, donde pudiera ser más adecuado publicar los artículos sobre la investigación bananera. Sentimos que podemos invertir mejor nuestros limitados recursos en guiar a nuestros asociados hacia estas publicaciones, a través de reseñas bibliográficas y alertas selectivas sobre la literatura publicada. También estamos planeando organizar una reunión bananera cada año, bajo los auspicios de ProMusa y la Sección Bananos y Plátanos de la International Society for Horticultural Sciences (www.ishs.org). Los trabajos presentados serán publicados en la revista de la ISHS Acta Horticulturae . ¡Así que hay muchas oportunidades para publicar los resultados interesantes! En el nuevo modo de trabajo propuesto, utilizaremos mucho más el correo electrónico para informarles de las novedades puestas en línea en la plataforma de información InfoMus@. Por esta misma razón, es muy importante que tengamos su dirección electrónica actual en nuestros archivos. Si no oyeron de nosotros recientemente (por ejemplo a propósito de la conferencia sobre los bananos que tendrá lugar este año en Sudáfrica), quiere probablemente decir que nuestros registros no son actualizados y que tienen que notificárnoslo mandando un mensaje a bioversity-france@cgiar.org. Es también una excelente oportunidad para averiguar sus datos en la base de investigadores BRIS en nuestro sitio web y actualizar su registro.Esperamos continuar trabajando con ustedes y servir a la comunidad de investigación y desarrollo de los bananos para satisfacer sus necesidades de información a través de estos medios.Richard Markham, Director del programa Cultivos de Subsistencia para una Vida Mejor No. 1-2, Junio-Diciembre 2006 2 V arias especies de plantas se encuentran creciendo junto con los bananos. La maleza Syngonium podophyllum (saetilla), que sube por el pseudotallo de una planta de banano, puede causar serios problemas en las plantaciones. Los cultivos de cobertura Geophila repens y Arachis pintoi se cultivan junto con los bananos para reducir la erosión y aumentar la fertilidad del suelo (Stover y Simmonds 1987, Humphreys y Partridge 1995). El Sorghum bicolor (sorgo forrajero) y Sorghum vulgare var. sudanense se utilizan en rotación con los bananos para aumentar la fertilidad de los suelos (Ternisien 1989, Ternisien y Ganry 1990). Tagetes spp. (caléndulas) han sido conocidas por largo tiempo como poseedoras de una actividad nematicida (Reynolds et al. 2000, Ploeg 2002).Poco se conoce sobre los efectos positivos o negativos que estas plantas puedan causar a las poblaciones de nematodos del banano. Se reportó que la especie A. pintoi reduce la formación de agallas producidas por Meloidogyne incognita y Meloidogyne arabica en los tomates (Domínguez-Valenzuela et al. 1990, Marban-Mendoza et al. 1992) y disminuye las cantidades de Rotylenchulus reniformis en el café (Herrera y Marban-Mendoza 1999).Sorgo es un nombre común para diferentes especies y cultivares de Sorghum. Evidentemente, existe información contradictoria. Se reporta que el Sorghum es un huésped para Radopholus similis (Keetch 1972, Inomoto 1994), pero se utiliza como un cultivo de rotación para reducir las cantidades de R. similis en los campos bananeros (Ternisien y Melin 1989). También se informa que el Sorghum es un cultivo de rotación útil para reducir los niveles de R. reniformis basándose en su carácter de no huésped (Dunn 1990). Sin embargo, Dao (1972) observó la subsistencia de una población de R. reniformis en el Sorghum. Se informa que Sorghum vulgare es el huésped para Helicotylenchus dihystera (Rao y Swarup 1974), pero se observan gradaciones en la susceptibilidad para el S. bicolor (Jain y Hasan 1987). El Sorghum se utiliza como cultivo de rotación para Meloidogyne spp. (Dunn 1990, McSorley y Gallaher 1992), pero M. incognita puede reproducirse muy bien en el S. bicolor (Carter y Nieto 1975).Tagetes spp. se utilizan como cultivos mixtos en los campos bananeros para reducir las poblaciones de los nematodos R. similis, M. incognita, Helicotylenchus multicinctus, R. reniformis, Hoplolaimus indicus y Pratylenchus spp. (Naganathan et al. 1988, Subramaniyan y Selvaraj 1990, Supratoyo 1993, Charles 1995).Los residuos de siembras anteriores también pueden afectar las cantidades de nematodos. Se informa que la siembra anterior con Tagetes spp. redujo la infección de Pratylenchus zeae en el maíz (Jordaan y De Waele 1988) y la formación de agallas en las raíces del tomate por Meloidogyne arenaria, Meloidogyne hapla, M. incognita, y Meloidogyne javanica (Ploeg 1999).Los objetivos de este estudio fueron 1) determinar la aptitud de huésped para los nematodos del banano de seis especies vegetales seleccionadas que a menudo se cultivan con los bananos, 2) estudiar el efecto de los residuos vegetales sobre los niveles de nematodos en los bananos, y 3) investigar el efecto de la competencia entre las especies vegetales seleccionadas y los bananos, sobre los niveles de nematodos.Plantas del cultivar 'Ecuador dwarf' (AAA, grupo Cavendish), provenientes del cultivo de tejidos, esquejes de G. repens, A. pintoi, S. podophyllum, y semillas de S. bicolor, S. vulgare y Tagetes erecta fueron utilizadas como fuente de material de siembra libre de nematodos. Este material vegetal fue transferido a bolsas plásticas de 20 cm de diámetro, llenadas con tierra del campo (28% de arena, 44% de limo, 28% de arcilla) infestada con nematodos del banano R. similis, H. multicinctus, Meloidogyne spp. y R. reniformis. Las bolsas fueron mantenidas en un cobertizo y regadas diariamente. Para la prueba de aptitud de huésped, los plantones y esquejes fueron clareados a dos plantas de G. repens y S. podophyllum, tres plantas de A. pintoi, cinco plantas de S. bicolor y S. vulgare y siete plantas de T. erecta.Para la prueba de residuos vegetales, las plantas de banano fueron sembradas en el mismo suelo que en la prueba de aptitud de huésped. Para la prueba de competencia, una planta de banano fue cultivada junto con una planta de G. repens, A. pintoi, S. podophyllum, Efecto de las especies de plantas asociadas sobre los nematodos del banano Las plantas fueron cosechadas cuatro semanas después de la plantación. Para cada planta se determinó la cantidad de nematodos por sistema radical y por gramo de raíces frescas. El sistema radical entero fue pesado y dividido en fragmentos de 2 cm. Las raíces se maceraban en una batidora por 20 segundos o 10 segundos si su peso era menor de 10 g. Los nematodos fueron concentrados utilizando tamices con aberturas de 150, 75 y 30 μm. La suspensión de nematodos fue purificada por centrifugación en azúcar (Hooper 1990) y los nematodos fueron recolectados utilizando un tamiz con abertura de 30 µm.Para extraer a los nematodos del suelo, se añadió agua a 100 g de suelo. Luego los nematodos fueron cribados a través de tamices con aberturas de 150 y 30 μm. En el tamiz con aberturas de 150 µm el material retenido fue descartado y los nematodos retenidos en el tamiz con aberturas de 30 µm fueron recolectados. La suspensión de nematodos fue purificada utilizando el método de centrifugación cribado (Hooper 1990).Previo al análisis estadístico las cantidades de nematodos fueron transformadas mediante el log 10 (x+1). Los datos que no estaban distribuidos normalmente, debido a un alto volumen de valores nulos, fueron analizados con una prueba no paramétrica, la prueba de categorías Kruskal Wallis (Siegel y Castellan 1988), que está basada en las categorías de las observaciones. Si los promedios diferían de acuerdo a la prueba Kruskal Wallis, se utilizaba el Método de Comparación Múltiple (Siegel y Castellan 1988) para compararlos. Los datos que estaban distribuidos normalmente y tenían varianzas homogéneas fueron sujetos al análisis de la varianza (ANOVA). Los promedios fueron separados mediante la prueba de Tukey a p≤ 0.05 (Spjotvoll y Stoline 1973).Cuatro semanas después de la plantación, todas las especies de plantas evaluadas fueron infectadas con los nematodos (Tabla 1). El mayor número de nematodos fue encontrado en las raíces del 'Ecuador dwarf'. El número de nematodos en el sistema radical fue significativamente menor en G. repens, A. pintoi, S. podophyllum y T. Erecta, que en la planta de banano. Ambas especies de Sorghum fueron tan susceptibles a los nematodos del banano como el 'Ecuador Dwarf'. Aunque todas las especies de plantas fueron infectadas con los nematodos, el porcentaje de plantas infectadas varió entre 25 y 100%, con altos niveles en ambas especies de Sorghum y en el cultivar de banano. En comparación con la planta de banano, el número de nematodos por g de raíces fue significativamente más bajo en todas las especies con excepción de S. vulgare.Las siguientes especies de nematodos fueron extraídas de las raíces de las especies en estudio: R. similis, H. multicinctus, Meloidogyne spp. y R. reniformis (Tabla 2). Syngonium podophyllum estaba libre de R. similis y R. reniformis, mientras que R. similis y Meloidogyne spp. estaban ausentes en las raíces de T. erecta. Los números de Tabla 1. Aptitud de huésped de los nematodos del banano de varias especies de plantas y del cultivar de banano 'Ecuador dwarf', 4 semanas después de la plantación en el suelo infestado con nematodos. Los datos fueron transformados mediante log10 (x+1) para su análisis. Los promedios en la misma columna seguidos por la misma letra no difieren significativamente a p≤0.05, de acuerdo al método de comparaciones múltiples.Tabla 2. Niveles de nematodos en varias especies de plantas y en el cultivar de banano 'Ecuador dwarf', 4 semanas después de la plantación en suelo infestado con nematodos. Los números de nematodos en las raíces del banano siempre fueron más altos que el número de nematodos en la otra planta en el mismo pote (Tabla 5). Radopholus similis, H. multicinctus y Meloidogyne spp. fueron encontrados en las raíces de todas las plantas, exceptuando a G. repens y T. erecta. Números significativamente más bajos de R. similis fueron encontrados en las plantas de banano cultivadas junto con T. erecta, en comparación con las plantas de banano cultivadas con G. repens.Basándose en el número de nematodos por gramo de raíz, G. repens, A. pintoi, Tabla 3. Número de nematodos recuperados de 100 gramos de suelo, 4 semanas después de la plantación de varias especies de plantas en suelo infestado con nematodos. El cultivo de cobertura G. repens puede ser considerado como un huésped pobre para H. multicinctus. Sin embargo, la especie relacionada Geophila macropoda se reporta como huésped para Helicotylenchus y R. similis, basándose en la presencia de más de 2.1 nematodos por g de raíces (Araya 1998).El cultivo de cobertura A. pintoi es un huésped pobre para el Meloidogyne spp. y disminuyó el número de R. reniformis en el suelo. Este estudio confirma el estado de huésped de A. pintoi para el R. similis (Araya 1998).El estatuto de no huésped de S. podophyllum para R. similis (Edwards y Wehunt 1971) puede ser expandido a R. reniformis.El cultivo de rotación S. bicolor puede ser considerado como un huésped pobre para H. multicinctus. Ambas especies de Sorghum disminuyeron el número de R. reniformis en el suelo.Tagetes erecta puede considerarse como un huésped pobre para H. multicinctus y no huésped para R. similis y Meloidogyne spp. En adición, la población de R. reniformis en el suelo fue disminuida por esta especie. La ausencia de nematodos en las raíces de T. erecta, al cultivarla en combinación con las plantas de banano, confirma la baja susceptibilidad de esta especie a los nematodos del banano.No se observaron los efectos de los residuos vegetales sobre los niveles de nematodos en las raíces del banano, aunque varias especies resultaron ser huéspedes pobres para los nematodos del banano. En el estudio actual, el período de precultivo de cuatro semanas fue probablemente muy corto para permitir que los residuos tuvieran efecto sobre las cantidades de nematodos.Cuando otra planta fue cultivada en presencia del banano, la mayoría de los nematodos fueron recuperados de las raíces del banano. Geophila repens y T. erecta estaban aún libres de R. similis, H. multicinctus y Meloidogyne spp., aunque estas especies de nematodos fueron observadas en las raíces del banano. La preferencia del R. similis por las raíces del banano sobre las de Geophila macropoda ya fue observada por Araya (1998) cuando Geophila fue cultivada en presencia del cultivar de banano 'Grande naine'.Geophila repens, A. pintoi, S. bicolor y T. erecta son prometedores como cultivos de cobertura, cultivos de rotación o cultivos intercalados que no aumentarían la población de nematodos del banano. Este potencial debería ser confirmado en ensayos de campo más prolongados. La maleza S. podophyllum no puede ser Tabla 5. Efecto de competencia en la infección con nematodos, 4 semanas después de la plantación en suelo de campo infestado. El tercer autor agradece a la Standard Fruit Company por la oportunidad de preparar su tesis de Maestría en la plantación de Honduras en 1995. Esta investigación fue financiada por la Universidad Católica de Lovaina (KULeuven).os enfermedades de los bananos son objeto de este análisis: marchitamiento bacteriano Moko y Bugtok. El marchitamiento bacteriano Moko se encuentra en América Latina y el Caribe, donde ocurre en los bananos de cocción del subgrupo 'Bluggoe' (ABB) y bananos de postre pertenecientes al grupo Cavendish (AAA). El Bugtok es una enfermedad que se encuentra exclusivamente en Filipinas, donde ataca a los bananos de cocción 'Saba' y 'Cardaba'. Por primera vez fue reportada en 1965 (Roperos 1965) y luego descrita completamente (Soguilon et al. 1994a & b, Soguilon et al. 1995).Debido a las marcadas diferencias en los síntomas y modos de transmisión, primero se sospechó que las dos enfermedades fueron causadas por diferentes agentes. Sin embargo, trabajos posteriores, incluyendo una variedad de métodos de diagnóstico basados en ADN y pruebas comparativas de poder patógeno, han mostrado de manera concluyente que las dos enfermedades son causadas por el mismo agente: Ralstonia solanacearum raza 2. En la clasificación jerárquica de Fegan y Prior (2006) todas las cepas de R. solanacearum raza 2 que afectan a los bananos y plátanos están clasificadas en el filotipo II y en varias sequevars basándose en las diferencias secuenciales en regiones conservadas del gen de endoglucanasa. Las sequevars 3, 4 y 6 corresponden, respectivamente, a tres genotipos de locus múltiple (MLGs), MLG 24, 25 y 28 descritos previamente por Cook et al. (1989). En Filipinas, todos los aislados de R. solanacearum del marchitamiento bacteriano Moko y del Bugtok conforman a la sequevar 3 y MLG 24. Ellos forman un grupo monomórfico sugiriendo un origen clonal y una introducción relativamente reciente a Filipinas (Fegan 2005, Lagan et al. 2003).A pesar de las diferencias entre el marchitamiento bacteriano Moko y el Bugtok, el uso de nombres comunes diferentes para la enfermedad es una fuente de confusión y requiere una justificación. El objetivo de este análisis consiste en explicar el origen de los nombres comunes y, particularmente, describir las diferencias clave en la transmisión y control de las enfermedades, sobre las cuales aparecen afirmaciones conflictivas en la literatura.El Committee on Common Names of Plant Diseases establecido por la Sociedad Internacional de Fitopatología ha publicado los resultados de sus conclusiones sobre las enfermedades del banano en el documento titulado Common names of banana diseases and their causal agents) (www.isppweb.org/ names_banana_common.asp). El nombre común recomendado para el marchitamiento de los bananos de postre y de cocción causado por Ralstonia solanacearum raza 2 en América Latina y el Caribe, y en Mindanao, Sur de Filipinas, es el marchitamiento bacteriano Moko, derivado del nombre del banano afectado muy severamente por la enfermedad en Trinidad, a principios del siglo 20.El nombre común recomendado para la pudrición de la fruta de los bananos de cocción 'Saba' y 'Cardaba' en Filipinas es Bugtok, o pulpa dura bacteriana. El endurecimiento de la pulpa de la fruta es una característica distintiva de esta enfermedad. Tres nombre han sido utilizados en Filipinas para describir esta enfermedad y todos se refieren al endurecimiento de la pulpa de la fruta: Bugtok, derivado del Cebuano o dialecto Visayan es usado por la gente en Mindanao, y tiene prioridad sobre tapurok y tibaglon, que se utilizan comúnmente en las islas Visayan y especialmente en Negros Oriental (M. Natural comunicación personal)En el hemisferio occidental, el marchitamiento bacteriano Moko ocurre en los bananos del subgrupo Bluggoe ('Bluggoe', 'Moko', 'Cachaco' y 'Chato') igual que en otros subgrupos. La transmisión de la enfermedad ocurre principalmente a través de los insectos que visitan las flores masculinas. Una vez infectada la flor de cualquier cultivar susceptible, la bacteria se mueve a través del sistema vascular desde el pedúnculo y pseudotallo hacia el rizoma y otros órganos, lo que puede llevar a la transmisión mecánica por machete durante las operaciones de poda. Cuando los rizomas desde los campos enfermos se utilizan para establecer nuevas plantaciones, la enfermedad se transmite rápidamente (French y Sequeira 1968). Tanto el marchitamiento bacteriano Moko como Pudrición de las frutas de banano causada por Ralstonia solanacearum raza 2: materias de nomenclatura, transmisión y controlInfoMusa -Vol. 15 No. 1-2, Junio-Diciembre 2006 8 el Bugtok son enfermedades transmitidas por insectos que difieren con respecto a los síntomas y otros modos de transmisión en los bananos de cocción (Tabla 1).La justificación de Bugtok como un nombre común distinto del marchitamiento bacteriano Moko está basada en las diferencias observadas en los síntomas de las frutas, la menor magnitud con que afecta las otras partes de las plantas, ausencia de marchitamiento y carencia de transmisión a través de los retoños. Sin embargo, no se entiende la importancia relativa del genotipo del huésped, ambiente y cepa del patógeno en la expresión de los diferentes síntomas de la enfermedad en Filipinas y América Latina. No se conoce, por ejemplo, si los síntomas de Bugtok serían los mismos que en Filipinas si Saba y Cardaba se cultivaran a gran escala en América Latina, o si los síntomas inducidos por los MLG 25 y 28 en estos cultivares serían los mismos o distintos de los inducidos por el MLG 24 en Filipinas.En América Latina y el Caribe, el marchitamiento bacteriano Moko se transmite localmente en los bananos de postre y 'Bluggoe' al utilizar machetes y otros implementos de corte, por transmisión de raíz a raíz, movimiento de suelo contaminado y agua de inundaciones. A distancias más grandes, se transmite por insectos, particularmente en 'Bluggoe'. Wardlaw (1972) manifiesta que la transmisión por insectos ha ocurrido a distancias mayores de 90 km en Colombia y Venezuela. No se conoce si esto es solamente el resultado de la propagación incremental de las inflorescencias infectadas hacia las inflorescencias sanas.R. solanacearum no produce células resistentes a la desecación, y la supervivencia prolongada de las células presentes en el exudado bacteriano que se adhiere a los cuerpos de los insectos es improbable. Al revisar la literatura, no está claro si los insectos, los cuales se considera están involucrados en la transmisión, son capaces de viajar las distancias mencionadas para la transmisión del marchitamiento bacteriano Moko. No se sabe nada del mecanismo de transmisión por insectos o si algún otro vector está involucrado (Buddenhagen y Elsasser 1962).El marchitamiento bacteriano Moko se ha movido a través de las fronteras nacionales en el material de plantación infectado (Buddenhagen 1961, Hunt 1987, Lehmann-Danzinger 1987). La presencia de la enfermedad en Honduras y en la costa caribeña de Panamá ocurrió después de la introducción de material de plantación proveniente de las áreas que tenían la enfermedad (Buddenhagen 1961). Black y Delbeke (1991) manifiestan que el marchitamiento bacteriano Moko en Belice fue introducido casi seguro desde la vecina Guatemala en el material de plantación de 'Bluggoe'. French y Sequeira (1968) atribuyeron a la transmisión por insectos el progreso a lo largo de los afluentes del río Amazonas en Perú, de la enfermedad en 'Bluggoe' y otros bananos de cocción similares. Ellos advirtieron contra el traslado en botes de los racimos infectados debido a la posibilidad de que los exudados pudieran ser transmitidos por los insectos, machetes o agua del río. Otras referencias en la literatura a una dispersión posible de la enfermedad por la transportación de la fruta (e.g. Hunt 1987) se relacionan con los bananos de cocción. No se encontró nada en la literatura que sugiera que el marchitamiento bacteriano Moko se ha propagado a los bananos de postre en las nuevas localidades a través de la fruta infectada.Existe algún riesgo de que otras plantas susceptibles a la enfermedad, como Heliconia spp., y posiblemente Dieffenbachia spp. y ocumo (Hunt 1987), pudieran transmitir el marchitamiento bacteriano Moko. La enfermedad fue detectada en el aeropuerto de Bombay en 1990 en un cargamento de Heliconia spp. desde Hawai (Reddy y Nikale 1992) y en las plantas, también desde Hawai, en un vivero de cuarentena en Cairns, Soguilon et al. (1994Soguilon et al. ( a y b, 1995)).Australia (Hyde et al. 1992). No se reportaron ejemplos de introducción y establecimiento del marchitamiento bacteriano Moko en los bananos de postre después de la introducción de la enfermedad en un huésped alternativo como Heliconia. Aunque la enfermedad ha existido en la Heliconia en Hawai por casi 20 años, no hubo informes del marchitamiento bacteriano Moko en los bananos de postre en Hawai.Existen informes conflictivos sobre la primera introducción del marchitamiento bacteriano Moko a Filipinas. Algunos autores han manifestado que la enfermedad fue traída en los rizomas desde Honduras alrededor del año 1968 (Buddenhagen 1986, 1994, Stover 1972), pero esta no fue la primera introducción, ya que el Bugtok fue reportado unos años antes (Roperos 1965). Soguilon et al. (1994a) manifiestan que el Bugtok fue conocido en Mindanao desde principios de la década de los 50. De acuerdo a Lagan et al. (2003), una evidencia anecdótica y circunstancial apunta a la introducción desde América Central del material de plantación de banano contaminado a principios de la década de los 40.La enfermedad de Bugtok ocurre a través de Filipinas (Molina 1996), pero es poco probable que su extensa propagación es el resultado del traslado del material de plantación, ya que la enfermedad es solo parcialmente sistémica y no se observan los síntomas de marchitamiento. Los retoños grandes o seguidores de las plantas infectadas siguen estando libres de la enfermedad al sembrarlos en aislamiento (Soguilon et al. 1994 b). No se conoce cómo la enfermedad se ha propagado tan ampliamente en Filipinas, desde Mindanao en el sur hasta Luzón en el norte, y en ausencia de datos, las sugerencias sobre los medios de propagación son conjeturas. Una hipótesis plausible es que estaban involucradas las transmisiones por insectos o mecánicas. La propagación aérea transoceánica del marchitamiento bacteriano Moko por insectos no ha sido reportada, pero los insectos pudieron haber sido traídos con la fruta.En contraste con el marchitamiento bacteriano Moko en los bananos de postre y de cocción, la enfermedad de Bugtok no causa maduración prematura de los dedos, que exteriormente parecen normales. Como resultado, los racimos llevados al mercado probablemente incluyen algunos que tienen la enfermedad. De acuerdo a Molina (1996), los bananos de cocción que se cultivan en las Islas Visayan, Filipinas central, son comercializados hasta en Manila. Es posible que la enfermedad fue trasladada entre las islas por racimos infectados, con el tejido vascular de los pedúnculos y pedicelos expuestos, sirviendo como fuente de infección para su transmisión entre los implementos de corte (Sequeira 1958) o insectos.La remoción del brote masculino es una medida aceptada que previene la transmisión por insectos del marchitamiento bacteriano Moko en 'Bluggoe' (French y Sequeira 1968, Lehmann-Danzinger 1987, Ploetz et al. 2003, Stover 1972, 1993, Thwaites et al. 2000). Los experimentos de desbellote mostraron que la infección no ocurrió cuando el brote fue quebrado antes de que la primera fila de flores masculinas fuera expuesta (Buddenhagen y Elsasser 1962). Los primeros trabajos sobre la enfermedad de Bugtok han sugerido que la transmisión por insectos ocurrió a través de ambos tipos de flores, masculinos y femeninos, conduciendo a la tentativa conclusión de que el desbellote no sería eficaz para controlar el Bugtok en 'Saba' y 'Cardaba' (Eden-Green y Seal 1993, Eden-Green 1994, Roperos y Magnaye 1991, Soguilon 1990). Los libros de texto posteriores también manifestaron que la remoción del brote masculino no sería eficaz para controlar la propagación de la enfermedad (Jeger et al. 1995, Ploetz et al. 2003, Thwaites et al. 2000) sobre la premisa de que la infección también puede ocurrir a través de las flores femeninas. Molina (1996) comparó el desbellote, el embolse de la inflorescencia, higienización y desinfección de las herramientas como medidas para controlar el Bugtok en las Islas Visayan de Filipinas. Todas las medidas redujeron significativamente la incidencia de la enfermedad. Los agricultores encontraron el embolse impráctico debido a la altura de las plantas. La higienización y desbellote precoz redujeron la infección de una incidencia inicial de 88% a 6% después de 12 meses. El trabajo de Molina (1996) sugiere que las recomendaciones para el control del marchitamiento bacteriano Moko deberían ser extendidas para el control de la enfermedad de Bugtok.n Etiopía, los bananos son cultivados junto con el ensete a altitudes entre 1050 y 2100 m por encima del nivel del mar. Ambas especies son hospederos del patógeno del marchitamiento bacteriano Xanthomonas campestris pv. musacearumG. Welde Michael, K. Bobosha, G. Blomme, T. Addis, S. Mekonnen y T. Mengesha(Xcm) (Yirgou y Bradbury 1968, 1974). Ya que las plantas de ensete se cosechan antes de la floración, la transmisión de flor a flor mediante insectos vectores no representa un problema. La transmisión por insectos vectores se observa raramente en los bananos cultivadosIndooroopilly 4068, Queensland, Australia pecíolos de las primeras dos hojas xpandidas utilizando una jeringa hipodérmica de 10 ml con aguja. Una planta testigo en cada hilera fue inoculada con el mismo volumen de agua destilada esterilizada. Los datos se recolectaron en las plantas madre 7,15,21,30,45,60,75,90 y 120 días después de la inoculación.Todos los cultivares de banano inoculados desarrollaron síntomas de la enfermedad dentro de 45 a 120 días (y el 94% dentro de 75 días) de la inoculación, con excepción de una planta del cultivar 'Kamaramasenge' (Tabla 1). Algunas de las plantas testigo no inoculadas también desarrollaron síntomas del marchitamiento bacteriano, probablemente debido a la propagación natural de la enfermedad. Aunque el método de inoculación utilizado fue artificial y podría disfrazar las diferencias en la susceptibilidad, particularmente a la infección vía inflorescencias, el ensayo demostró que ninguno de los cultivares de banano estaba inmune a la infección por Xcm.Tabla 1. Porcentaje de plantas de 40 genotipos locales y exóticos de banano que desarrollaron el marchitamiento bacteriano por Xanthomonas después de haber sido inoculados con la bacteria (n=4) por encima de los 1700 m sobre el nivel del mar, pero ocurre a elevaciones más bajas. Los cultivares de banano cultivados comúnmente son 'Pisang awak' (ABB), varios cultivares 'Cavendish' (AAA), 'Uganda red' (AAA) y bananos de altiplanos de África Oriental (AAA-EAHB). Se observó que estos cultivares de banano pueden desarrollar la enfermedad después de haber sido infectados por herramientas contaminadas. Encontrar cultivares de banano resistentes sería una solución rentable y a largo plazo. El objetivo de este estudio fue evaluar cultivares de banano locales y exóticos para determinar su resistencia al marchitamiento bacteriano del ensete bajo condiciones de inoculación artificial.Cuarenta cultivares de banano (Tabla 1) obtenidos en el Melkasa Agricultural Research Center, Melkasa, Etiopía, fueron cribados para la resistencia al marchitamiento bacteriano por Xanthomonas un año después de la siembra en un campo experimental en el Awassa Agricultural Research Center, Awassa, Etiopía.Cinco retoños de espada de cada cultivar fueron establecidos en el campo con espaciamiento de 2.5 m entre las plantas en una hilera y 3 m entre hileras. Las 5 plantas de un genotipo específico fueron sembradas en una hilera individual. Un año después de la siembra, 4 plantas madre por cultivar fueron inoculadas con 3 ml de una suspensión del aislado Xcm virulento cuya concentración de células fue ajustada a 1x10 8 cfu/ml. El aislado Xcm fue recolectado en el Hagere Selam, en el sur de Etiopía (Quimio 1994). Las plantas madre fueron inoculadas en la base de los e los diversos nematodos fitoparásitos que afectan a los bananos y plátanos en todo el mundo, Radopholus similis se reconoce como el más importante (Gowen et al. 2005). Los daños causados por R. similis empiezan con los túneles del tejido necrótico en las raíces y cormos, lo que afecta la absorción de agua y nutrientes y por lo tanto, se alarga el período de crecimiento. Finalmente las raíces se pudren debido a la infección secundaria de los tejidos dañados por las bacterias y hongos, provocando el vuelco de las plantas de banano como resultado de la destrucción de las raíces y la pérdida de anclaje (Gowen et al. 2005, Sarah et al. 1996). Radopholus similis migra del tejido necrótico radical al tejido fresco adyacente y a través del suelo para ganar acceso al tejido no infestado de la misma u otra planta (Sarah et al. 1996). Se han demostrado ganancias sustanciales de rendimiento de entre 20% y 75% después de la aplicación de los nematicidas para controlar R. similis y a los nematodos en general (Broadley 1979, McSorley y Parrado 1986, Sarah 1989, Gowen 1994).En las plantaciones bananeras comerciales de América Latina, el control de los nematodos se apoya en el uso de nematicidas granulados organofosfatados y carbamatos (Marín 2005). También se realizan prácticas culturales como el uso de enmiendas orgánicas, rotación de cultivos, barbechos y material de plantación sano, pero con éxito variable. Para el manejo de los nematodos se encuentran disponibles algunos productos de biocontrol (APS Biological Control Committee 2005), que contienen bacterias, como el Blue Circle™ (Burkholderia cepacia), un hongo, como el Paecil™ (Paecilomyces lilacinus), o los productos esterilizados de la fermentación de un hongo, como el DiTera™ (Myrothecium verrucaria), pero los productores bananeros generalmente no los utilizan debido a la falta del control adecuado.Para mejorar la actividad y por lo tanto aumentar las opciones del manejo biológico de R. similis en el banano, se están estudiando novedosos agentes de control biológico, como los hongos endofíticos, en localidades prometedoras, para su aplicación en el campo.Las localidades prometedoras incluyen áreas en las plantaciones bananeras donde no se utilizan los nematicidas y el muestreo de los nematodos ha revelado bajas densidades de estos durante extensos períodos de tiempo, como, por ejemplo, partes del Valle de Motagua en Guatemala (zum Felde et al. 2005), plantaciones orgánicas y áreas de producción alternativa, donde los bananos y plátanos se cultivan al lado de otros cultivos, como el cacao y especies maderables (Meneses et al. 2003). Clay (1989) fue el primero en sugerir el potencial de los endofitos provenientes de la endosfera como agentes de biocontrol para las plagas de insectos. Más recientemente, se han identificado endofitos fungosos de la endorriza como agentes de biocontrol en los bananos (Pocasangre et al. 2000, Carñizares Monteros 2003, Niere et al. 2004, Vu et al. 2004, zum Felde et al. 2005), vegetales (Hallmann et al. 2001), arroz (Padgham et al. 2005, Padgham y Sikora 2006) y maíz (Wicklow et al. 2005).En un intento de mejorar la estabilidad, intensidad y/o confiabilidad del desempeño del biocontrol, numerosos autores han estudiado el efecto de combinar los agentes de biocontrol (análisis por Meyer y Roberts 2002). Las combinaciones no siempre son beneficiosas, ya que ocurre el antagonismo entre los organismos del biocontrol y resultan en niveles de control sin cambios (Zaki y Maqbool 1991, Viaene y Abanoi 2000) o aún, en un control menor (Esnard et al. 1998, Chen et al. 2000), al compararlas con las aplicaciones individuales de los agentes de biocontrol. Sin embargo, muchas de las combinaciones estudiadas dieron como resultado el aumento de los niveles de biocontrol (Guetsky et al. 2001& 2002, Meyer y Roberts 2002). Las combinaciones de los agentes de biocontrol evaluados contra los nematodos, incluyen a los hongos con hongos (Khan et al. 1997, Duponnois et al. 1998, Hojat Jalali et al. 1998, Chen et al. 2000) y los hongos con bacterias (Maheswari y Mani 1988, de Leij et al. 1992, Siddiqui y Mahmood 1993, Perveen et al. 1998, Chen et al. 2000), donde la mayoría de las combinaciones involucran dos organismos, pero pocas involucran tres o más organismos (Esnard et al. 1998).La mayoría de los agentes de biocontrol que han sido evaluados en combinaciones contra los nematodos fueron aislados de la rizosfera o rizoplano y examinados en Meloidogyne spp. (Meyer y Roberts 2002). Diedhiou et al. (2003) evaluaron un hongo micorriza arbuscular (AMF), Glomus coronatum, y un Fusarium oxysporum endofítico no patogénico contra Meloidogyne incognita en el tomate. Ellos obtuvieron resultados interesantes con respecto a la interacción de los dos hongos dentro de la planta, pero no observaron aumento en el control del nematodo como resultado de la inoculación combinada. Sikora y Reimann (2004), quienes trabajaron con la rizobacteria Rhizobium etli G12, que promueve la salud de las plantas, el AMF Glomus intraradices y una rizobacteria asociada con las esporas de AMF, encontraron que en los experimentos a largo plazo, la rizobacteria en combinación con G. intraradices redujo la producción de agallas y huevos de M. incognita. Hasta donde sabemos, no se han realizado estudios que combinen dos o más hongos endofíticos.El objetivo del estudio fue evaluar el efecto de inoculaciones combinadas de hongos endofíticos sobre el manejo del R. similis en las raíces del banano.Los hongos utilizados en el estudio fueron aislados del material sano de las raíces del banano y plátano, recolectado en el Valle de Motagua, Guatemala (zum Felde et al. 2005), las regiones de Talamanca y Sixaola de Costa Rica (Meneses et al. 2003, Carñizares Monteros 2003). Todos los aislados fueron identificados como hongos antagonistas de R. similis a través de las pruebas de cribado in vitro e in vivo realizadas en los laboratorios de nematología y fitopatología del CATIE, Turrialba, Costa Rica, durante el período de enero de 2002 a diciembre de 2003 (zum Felde et al. 2005, Meneses et al. 2003, Carñizares Monteros 2003). Los aislados más eficaces fueron identificados hasta el nivel de especie por el Dr. H. Nierenberg, en el Biologische Bundesanstalt, Berlín, Alemania. La naturaleza no patogénica de todos los hongos antagonistas de R. similis fue establecida por las pruebas de poder patógeno in planta.En 2005, la compatibilidad vegetativa de todos los aislados de F. oxysporum fue examinada contra 56 cepas de referencia de los aislados patogénicos de F. oxysporum (F. oxysporum f. sp. cubense, radicis-lycopersici y lycopersici), en Bonn, Alemania (A. zum Felde y T. Vu Thi Thanh, datos no publicados).En el estudio actual, se utilizaron los cuatro endofitos que proporcionaron el mayor control de nematodos en los experimentos in planta, identificados como aislados de F. oxysporum y T. atroviride. Para comparar los efectos de las inoculaciones combinadas de estos hongos endofíticos sobre el control de los nematodos, las plántulas del cultivar 'Williams' (Musa AAA) provenientes del cultivo de tejidos de 15 semanas de edad fueron inoculadas con los conidios de uno, dos o cuatro endofitos (Tabla 1). Las plantas fueron obtenidas en un laboratorio comercial de cultivo de tejidos y transportadas en bandejas múltiples que contenían 200 plantas en una mezcla de siembra esterilizada (sustrato comercial para la siembra). Cada planta fue enraizada en 15 cm 3 aproximadamente de mezcla de siembra. Las raíces en la mezcla de siembra no fueron lavadas previo a la inoculación, aumentando la capacidad de los conidios de adherirse a las raíces y de ser absorbidos en el sustrato adyacente.Los cuatro aislados seleccionados fueron cultivados en platos con 100% de agar de dextrosa de patata por dos semanas, hasta obtener suficientes conidios para preparar las suspensiones. Los conidios fueron retirados de la superficie del medio depositando 20 ml de agua esterilizada en los platos con una pipeta y raspando suavemente los conidios de la superficie del medio utilizando una espátula de metal esterilizada para células bacterianas. Luego, los conidios fueron separados del micelio vertiendo la suspensión a través de un pedazo de gasa esterilizada en un vaso esterilizado. La concentración de los conidios fue determinada utilizando un hemacitómetro de Neubauer. Para cada aislado se prepararon tres vasos de 500 ml, cada uno conteniendo 300 ml de una suspensión de conidios de 1 x 10 6 cfu/ml, que fueron utilizados una vez para cada tipo de inoculación. Las inoculaciones por inmersión fueron realizadas sumergiendo simultáneamente la bola radical de 11 plantas en un vaso de 500 ml por 5 minutos. Para inoculaciones dobles y múltiples, las raíces fueron sumergidas sucesivamente por 5 minutos en un vaso que contenía una suspensión dad de conidios.Después de la inoculación, las plantas fueron sembradas en potes de 500 ml que contenían una mezcla esterilizada de arena y suelo (1:1). Dos semanas después de la siembra, se vertió con una pipeta un total de 2 ml de agua corriente que contenían 500 nematodos vivos vermiformes de R. similis en tres hoyos pequeños (de 1 a 2 cm de profundidad) hechos en la base de cada planta de banano. Los hoyos fueron cubiertos con el suelo adyacente. Los R. similis fueron obtenidos de cultivos en discos de zanahoria esterilizados preparados en CATIE (Speijer y Gold 1996). Los nematodos provenían de plantaciones bananeras fuertemente infestadas de Costa Rica. Las plantas fueron regadas regularmente, pero no se les aplicaron fertilizantes. Dos meses después de la inoculación con los nematodos, las plantas fueron cosechadas y se registró el peso fresco de las raíces. Luego, se extrajeron los nematodos de las raíces utilizando un método de maceración y cernido adaptado de Speijer y De Waele (1997). Cada sistema radical fue cortado en pedazos de alrededor de 1 cm de largo y macerados en una licuadora comercial en 200 ml de agua corriente por 10 segundos a baja velocidad, y 10 segundos a alta velocidad, con un intervalo de 5 segundos entre los dos pasos de maceración. La suspensión fue vertida a través de cedazos anidados con aberturas de 1000 μm, 150 μm y 45 μm. El contenido del cedazo de 45 μm fue vaciado en un contenedor plástico de 250 ml con una tapa. Cada contenedor fue llenado hasta los 200 ml y, previo al conteo, el contenido fue homogeneizado diseño de bloque completamente aleatorio, con nueve tratamientos y once repeticiones (n=11) por tratamiento. Los datos de los nematodos fueron transformados mediante √x+0.5 para su análisis. Los datos fueron analizados utilizando el programa SAS (SAS/STAT ® Software, SAS Institute Inc.). Los promedios fueron separados utilizando la prueba de Rango Múltiple de Duncan y contrastes ortogonales.Dos meses después de la inoculación con el R. similis, el número total de nematodos en las raíces y su densidad fueron significativamente más bajos en las plantas inoculadas con los endofitos que en las plantas testigo (Tabla 2). Las inoculaciones dobles redujeron más el número, pero no la densidad de R. similis que las inoculaciones individuales, pero la inoculación múltiple no redujo significativamente los números o las densidades en comparación con los resultados obtenidos en las inoculaciones dobles. Los aislados de Fusarium (S9 y P12) tenían mejor tendencia de eliminar a los nematodos que los aislados de Trichoderma (MT-20 y S2).Los contrastes ortogonales revelaron diferencias altamente significativas entre la población total y la densidad de nematodos en las plantas inoculadas y plantas testigo, así, como entre las plantas inoculadas con todos los cuatro hongos o sólo dos a la vez. La población de R. similis en las plantas que recibieron inoculaciones dobles difería significativamente, con respecto a aquellas inoculadas con los aislados de Fusarium S9 y P12, conteniendo menos nematodos que aquellas inoculadas con los aislados de Trichoderma MT-20 y S2, aunque la densidad de nematodos no difería significativamente. Los efectos de las inoculaciones dobles e individuales diferían significativamente entre sí, con un mayor control observado en las plantas inoculadas con dos hongos. Las densidades de nematodos no diferían significativamente entre las plantas de los aislados de Fusarium o de los aislados de Trichoderma, los cuales recibieron inoculaciones individuales.Los resultados de nuestro estudio indican que la combinación de los agentes de biocontrol compatibles puede proporcionar una protección mejorada contra R. similis al compararla con el uso de sólo un agente de biocontrol.Hemos utilizado inoculaciones secuenciales para evitar posibles interacciones negativas entre los conidios fungosos previo a la inoculación, y mantenido a nuestro tiempo de inoculación preestablecido de 5 minutos para cada hongo. Los experimentos realizados en la Universidad de Bonn en 1998 y 1999, que involucraban el biocontrol con los aislados no patogénicos de F. oxysporum de la enfermedad causada por F. oxysporum f. sp. cubense, han establecido la duración óptima de inoculación y la densidad de los conidios para una colonización eficaz del sistema radical por las cepas patogénicas y no patogénicas de F. oxysporum (L. Pocasangre datos no publicados). Estos experimentos que compararon la eficacia de las inoculaciones mediante la inmersión para las suspensiones de conidios que varían de 1 x 10 2 a 1 x 10 6 cfu/ ml y para las inmersiones que duran entre 5 y 30 minutos revelaron, que una inmersión de 5 min en una suspensión de 1 x 10 6 cfu/ml fue la óptima para la colonización de las raíces de las plantas de banano provenientes del cultivo de tejidos (Pocasangre 2000).En adición, varios estudios realizados en CATIE durante los últimos seis años sugieren que la inmersión del sistema radical de las plantas de banano provenientes del cultivo de tejidos en una suspensión de conidios de al menos de 1 x 10 5 cfu/ml por 5 minutos es un sistema de inoculación eficaz (zum Felde 2002, Canizares 2003, Meneses 2003, Pocasangre et al. 2004). La concentración de la suspensión de conidios desempeñó un papel más importante en la colonización eficaz de las raíces por los hongos, que la duración de la inoculación por inmersión. Desai y Dange ( 2003) llegaron a las mismas conclusiones con respecto a las relaciones entre la colonización exitosa, la concentración del inóculo y la duración de la inmersión. En su trabajo con el marchitamiento de la semilla de ricino (F. oxysporum f. sp. ricini), ellos encontraron una correlación positiva entre la incidencia del marchitamiento (colonización fungosa de los tejidos vegetales) y el aumento de la concentración del inóculo, pero ninguna con el tiempo de inmersión (Desai y Dange 2003). Aunque muchos estudios han utilizado Tabla 3. Contrastes ortogonales realizados en los datos de las poblaciones y densidades de Radopholus similis recolectados ocho semanas después de la inoculación. las inoculaciones por inmersión para aplicar hongos y bacterias tanto patogénicos como de biocontrol a las raíces de las plantas, pocos autores dan detalles del procedimiento.A menudo, sólo se da la concentración del inóculo, mientras que se omite la duración de la inmersión. Consecuentemente, no pensamos que el aumento del tiempo total de la inoculación afectara la colonización de las raíces por hongos individuales, ya que los conidios de cada hongo estaban en contacto con el sistema radical sólo durante 5 minutos, dando a cada hongo igual oportunidad para adherirse a las raíces. La cantidad total de conidios que se adhieren y luego colonizan las raíces, es probablemente mayor en las plantas inoculadas con dos o todos los cuatro hongos, pero este fue el objetivo del experimento: observar los efectos de las inoculaciones combinadas, a diferencia a la individual. No creemos que números más bajos de nematodos en las raíces de las plantas inoculadas con más de un aislado fungoso puedan ser atribuidos solamente a un incremento en la carga del inóculo. Pensamos que ellos están relacionados con los efectos sinérgicos de estos agentes de biocontrol compatibles. Guetsky et al. (2002) demostraron que el uso de una combinación de agentes de biocontrol mejoró la eficacia y consistencia del biocontrol. Meyer y Roberts (2002) sugieren que la supresión más eficaz de la enfermedad utilizando combinaciones de agentes de biocontrol se debe a los efectos adicionales o sinérgico de sus mecanismos combinados. Mientras que las formas exactas de acción contra el R. similis deben ser confirmadas, ellas pueden diferir entre aislados o géneros. En las pruebas de cribado conducidas previo a la evaluación in planta de los aislados, ambos aislados de Trichoderma (MT-20 y S2) parecen parasitar R. similis in vitro (zum Felde 2002, Carñizares Monteros 2003), mientras que los metabolitos de los dos aislados de Fusarium (P12 y S9) aplicados in vitro tuvieron efectos nematistáticos y nematicidas sobre R. similis (Carñizares Monteros 2003, Menenses Hérnandez 2003). Guetsky et al. (2001) postularon que mientras los agentes de biocontrol tengan diferentes requerimientos ecológicos, las combinaciones de los agentes con distintos requerimientos probablemente aumentarán la confiabilidad y disminuirán la variabilidad del biocontrol. Meyer y Roberts (2002) concluyen que los efectos negativos de las combinaciones de los agentes de biocontrol resultan de que sus mecanismos de control se dirigen no sólo al patógeno de la planta, sino también al agente de biocontrol acompañante dentro de la combinación. Realmente, ambas especies, Trichoderma y Fusarium spp., han sido utilizadas con éxito para suprimir el marchitamiento por Fusarium (Park et al. 1988, Mao et al. 1998). Sin embargo, aunque todos los cuatro agentes de biocontrol evaluados fueron aislados de los tejidos internos de las raíces del banano, y como tales probablemente ocupan los mismos nichos ecológicos o similares, ellos parecen no competir entre si y pueden hasta complementarse uno al otro. En adición, el tratamiento de las plántulas con estos endofitos es un enfoque muy práctico y económicamente viable de biocontrol, en comparación con el tratamiento del suelo. Actualmente, se están llevando a cabo ensayos de campo para evaluar los efectos de los cuatro aislados individualmente, con resultados iniciales prometedores.Ya que los resultados del presente estudio revelan un mayor biocontrol cuando los aislados se usan en combinación y sugieren un sistema de biocontrol más estable, se debe realizar más ensayos para confirmar completamente su eficacia y potencial en el campo. También, se necesitan más estudios para explorar los mecanismos mediante los cuales los endofitos fungosos controlan al R. similis en los tejidos radicales del banano y su movimiento o transferencia de una generación de plantas hacia la siguiente.Los autores agradecen a los miembros de la Unidad de Nematología y Sanidad de Suelos de CATIE, Turrialba, Costa Rica por su apoyo y ayuda en la ejecución del presente estudio, y al DAAD (Servicio de Intercambio Académico Alemán) e INIBAP-LAC por financiar a los investigadores. Sistema radical E l concepto de plasticidad fenotípica de las raíces se refiere a la habilidad de los cultivares para adaptar su estructura radical a los cambios en el ambiente (O'Toole y Bland 1987, Draye 2002). El parámetro más significativo que influye sobre el crecimiento y desarrollo de las raíces es, sin duda, el ambiente edáfico, el cual incluye, por ejemplo, la temperatura del suelo, su nivel de humedad, presión parcial del dióxido de carbono y oxígeno, y la disponibilidad de nutrientes. Los factores ambientales como la temperatura del aire, la duración del día, la intensidad de la luz y la presión parcial del dióxido de carbono, afectan la provisión de nutrientes y los reguladores del crecimiento, desde el brote hasta el sistema radical. Los factores ambientales también influyen sobre la proporción retoño/raíz de una planta (Wright 1976, Jung 1978, Smucker 1984, Bastow Wilson 1988, Kasperbauer 1990, Squire 1993, Martinez Garnica (1997), McMichael y Burke 1998). La investigación del desarrollo del sistema radical del algodón (Gossypium hirsutum L.) ha mostrado, que cambios considerables pueden ocurrir bajo diversas condiciones del suelo (Pearson 1965, Adams et al. 1967, Halevy 1976), mientras que Bennie y du T. Burger (1981), reportaron que el aumento de la impedancia mecánica (es decir, el aumento de la densidad aparente del suelo) redujo la elongación de las raíces en el maíz (Zea mays L.), trigo (Triticum aestivum L.) y cacahuete (Arachis hypogaea L.).El efecto positivo de la porosidad aumentada del suelo sobre el crecimiento y desarrollo de las raíces fue demostrado para los bananos de postre (AAA) (Sioussaram 1968, Champion y Sioussaram 1970, Delvaux y Guyot 1989). En adición, existe un efecto significativo de las condiciones climáticas sobre el crecimiento de las raíces y retoños de los bananos de postre (Robin y Champion 1962, Turner 1970, Turner y Lahav 1983). Robinson y Alberts (1989) reportaron que el crecimiento de las raíces es más lento a bajas temperaturas. Por ejemplo, en la variedad 'Williams' (AAA) del Cavendish la extensión del eje fue casi de 3 cm por día a 25°C, menos de 0.5 cm por día a 15°C y cesó a 11.5°C.Beugnon y Champion (1966) reportaron el efecto de la fecha de siembra sobre el crecimiento de las raíces y retoños para el banano de postre 'Poyo' (AAA). En los plátanos (AAB), Irizarry et al. (1981) reportaron una influencia sustancial del tipo de suelo sobre el crecimiento de la planta, desarrollo y distribución del sistema radical. Ellos demostraron que un mejor conocimiento de la distribución del sistema radical podría conducir a una mayor eficacia en las prácticas culturales como el riego y la fertilización. Sin embargo, su estudio fue realizado solo para un cultivar de plátano ('Maricongo'). La información sobre el crecimiento y desarrollo del sistema radical en diferentes localidades es escasa para un amplio rango de genotipos. Por lo tanto, este estudio fue diseñado para determinar los efectos agroecológicos sobre el desarrollo del sistema radical, las características de crecimiento del cormo y las partes aéreas de un amplio rango de genotipos de Musa spp..Diecisiete genotipos de Musa spp. (Tabla 1) fueron evaluados en dos zonas agroecológicas de Nigeria: el bosque húmedo y la sabana húmeda. El bosque húmedo se localizaba en la estación High Rainfall del Instituto Internacional de Agricultura Tropical (IITA), en Onne al sudeste de Nigeria (4°42' N, 7°10' E, 10 m sobre el nivel del mar). El suelo es derivado de sedimentos costeros y es un Paleudult Típico/ Haplic Acrisol (FAO/ISRIC/ISSS 1998) profundo y bien drenado. Este suelo pertenece a la familia de suelos isohipertérmicos silíceos francos gruesos. La precipitación promedio anual es de 2400 Mm. distribuidos de manera monomodal de febrero a noviembre. La 1998). Las plántulas fueron aclimatadas por seis semanas en un vivero del invernadero (Vuylsteke y Talengera 1998, Vuylsteke 1998) en Onne, previo a su trasplante al campo en Onne en mayo y en Abuja en agosto.Cada genotipo fue representado por cuatro y tres plantas en Onne y Abuja, respectivamente. El diseño del campo en Onne fue de bloques completamente al azar con dos réplicas de dos plantas por genotipo, mientras que en Abuja se utilizó un diseño completamente al azar. El espaciamiento fue de 4 m x 4 m en ambas localidades. El área experimental fue tratada con el nematicida Nemacur (i.a. fenamifos) a una tasa de 15 g/planta (3 tratamientos) para reducir la cantidad de nematodos. El campo fue fertilizado con muriato de potasio (i.a. K20, 60% K) a una tasa de 600 g planta -1 año -1 , y urea (47% N) a una tasa de 300 g planta -1 año -1 , divididos en seis aplicaciones iguales durante la estación lluviosa. No se aplicó enmiendas. El fungicida Bayfidan (i.a. triadimenol) fue aplicado tres veces al año a una tasa de 3.6 ml/planta para controlar la En la zona de la sabana húmeda, las plántulas de Musa pueden ser cultivadas solo a lo largo de los cauces de los ríos para que sobrevivan durante la estación seca. Por lo tanto, las plantas en Abuja fueron regadas durante la estación seca de seis meses a una tasa de 100 mm/mes. En Onne, las plantas fueron regadas a la misma tasa durante la corta estación seca de tres meses.Las plantas fueron excavadas durante la emergencia floral y las características, medidas en la planta madre, fueron el área foliar, número de hojas, altura de la planta (desde el nivel del suelo hasta el punto donde se encuentran los pecíolos más altos) y la circunferencia del pseudotallo al nivel del suelo. El área foliar fue calculada de acuerdo a Obiefuna y Ndubizu (1979). Las características medidas en el cormo de la planta madre fueron el peso fresco, la altura y el ancho mayor. Las características medidas en las raíces de la planta madre incluyeron el peso seco de las raíces, el número de raíces adventicias, su largo total utilizando el método de intersección lineal (Newman 1966, Tennant 1975) y su diámetro basal promedio medido con un calibrador Vernier. Otras características fueron el peso seco total de las raíces de la mata (es decir, de la planta madre y de los retoños) y el largo total de las raíces adventicias de la mata. Se permitió que todos los retoños se desarrollaran. También se registraron el número de retoños en el cormo y la altura del retoño más alto, igual que la cantidad de días desde la siembra en el campo hasta la emergencia floral.El análisis estadístico se efectuó utilizando el paquete SAS (SAS 1989). Una técnica ANOVA de 3 vías fue realizada para determinar el efecto sobre las diferentes características de localidad, genotipo e interacción genotipo x localidad. La localidad fue considerada como aleatoria y el genotipo, como fijo. Los promedios fueron separados por la prueba de la t de comparación pareada de mínimos cuadrados promedio. La correlación lineal fue realizada entre las mismas características de las plantas en ambas localidades.El efecto de la localidad fue significativo en la mayoría de las características del crecimiento aéreo, del cormo y del sistema radical, con excepción de la cantidad de hojas, largo total de las raíces adventicias de la planta madre y de la mata, y del diámetro promedio de las raíces adventicias de la planta madre (Tabla 3). La interacción genotipo x localidad fue significativa para todas las características medidas.Las plantas en Abuja tuvieron un área foliar significativamente mayor, un pseudotallo significativamente más alto y más grande y un cormo mayor (Tabla 4). Los cormos de mayor tamaño en las plantas de Abuja fueron asociados con un número de raíces adventicias significativamente más alto. Sin embargo, el largo total de raíces adventicias fue similar en ambas localidades (Tabla 4). En promedio, las raíces adventicias fueron AF: área foliar, NH: número de hojas, AP: altura de la planta, CP: circunferencia del pseudotallo a nivel del suelo, PC: peso fresco del cormo, AC: altura del cormo, AMC: ancho mayor del cormo, PR: peso seco de las raíces, NRa: número de raíces adventicias, LR: largo total de las raíces adventicias de la planta madre, DP: diámetro promedio en la base de las raíces adventicias, LT: largo total de las raíces adventicias de la mata, PM: peso seco de las raíces de la mata, NRe: número de retoños, HR: altura del retoño más alto, DEF: días hasta la emergencia floral *, **, *** Significativos a P<0.05, 0.01 y 0.001, respectivamente. gl: grados de libertad más cortas en Abuja. Realmente, durante la excavación, se observó que las raíces adventicias más largas en Abuja nunca se extendieron a más de 1.5 m desde el cormo, mientras que en Onne las raíces adventicias podían extenderse hasta 3 m desde el cormo. Un mayor número de raíces laterales de primer y segundo orden fue observado en las plantas en Onne (sin embargo, no se realizó una evaluación detallada de estas raíces laterales). La proporción área foliar /largo de raíces adventicias y la proporción área foliar /peso seco de las raíces fueron significativamente más altos en Abuja que en Onne, indicando que las plantas en Onne tenían un sistema radical relativamente mejor desarrollado (Tabla 4). Más retoños por mata se observaron en Abuja (Tabla 4), lo más probable, debido a los cormos de mayor tamaño, lo que también podría explicar la mayor cantidad de raíces observadas en Abuja. A pesar de este aumento de competencia entre los retoños, la altura promedio del retoño más alto durante la emergencia floral fue significativamente mayor en Abuja (Tabla 4). Los retoños más altos en Abuja alcanzaron el 64% de la altura de la planta madre en floración, en comparación con el 48% en Onne. La cantidad de días hasta la floración fue significativamente más alta en Abuja (Tabla 4).Se encontraron correlaciones significativas entre las localidades con respecto al número de hojas, altura de la planta, circunferencia de la planta, características de cormo, diámetro promedio de las raíces adventicias, número de retoños, altura del retoño más alto y días hasta la floración (Tabla 5). No se encontraron correlaciones entre el área foliar y otras características del sistema radical, lo que podría sugerir modificaciones en los patrones de distribución o diferentes tasas de mortalidad de acuerdo a la localidad.El efecto significativo de la localidad sobre la mayoría de las características de crecimiento está en concordancia con los informes anteriores de Wright (1976), Jung (1978) y Kasperbauer (1990) quienes establecieron, para otros cultivos, que las condiciones ambientales pueden interactuar con el carácter genético de las plantas.Las raíces adventicias más cortas sugeridas por un mayor número de raíces observadas en las plantas cultivadas en Abuja, para el mismo largo total de las raíces en ambas localidades, podría reflejar un crecimiento reducido como resultado de un mayor porcentaje de arcilla (28 % en Abuja en comparación con 18 % en Onne) y limo (36 % en Abuja en comparación con 6 % en Onne). Irizarry et al. (1981) reportaron, para un cultivar de plátano, una significativa reducción en el largo de las raíces adventicias en suelos más pesados.Pero, si la impedancia mecánica tuvo efecto sobre el largo promedio de las raíces adventicias, no tuvo efecto sobre su diámetro promedio, contrario a los informes que han mostrado una correlación entre una alta impedancia y las raíces más gruesas del maíz (Bennie 1979, Boone y Veen 1982, Shierlaw y Alston 1984), trigo (Bennie 1979, Collis-George y Yoganathan 1985), algodón (Bennie 1979) y patatas (Solanum tuberosum L.) (Boone et al. 1985). No hemos observado efecto alguno del tipo de suelo sobre el diámetro promedio de las raíces adventicias, pero no podemos excluir la posibilidad de que las diferencias en el largo de las raíces pudieran ser atribuidas a diferentes patrones de distribución o tasas de mortalidad en cada localidad. El hecho de que el sistema radical de las plantas cultivadas en Onne estaba más ramificado puede estar relacionado con una menor disponibilidad de nutrientes. Realmente, las raíces necesitan explorar un mayor volumen de suelo para acceder a los nutrientes necesarios. De acuerdo con nuestros resultados, Daw et al. (1999) reportaron un aumento en el largo específico de las raíces (es decir, largo de las raíces por gramo de peso seco) en los árboles jóvenes de melocotón con una aplicación reducida de fertilizantes.Ya que las plantas de Abuja son más altas y grandes, la actividad fisiológica del sistema radical, más que su tamaño, parece ser el factor más importante que contribuye al crecimiento más vigoroso de la planta y sus retoños. Los altos niveles de nutrientes en el suelo de Abuja (Tabla 2), una mayor radiación solar en combinación con un suministro constante de agua a través del año podrían haber compensado el sistema radical relativamente pequeño, resultando en un crecimiento vigoroso de la parte aérea. El menor crecimiento de las raíces impuesto por un suelo más pesado fue más que una compensación por un mayor suministro de energía solar, agua y nutrientes en la zona poco profunda de las raíces. Lo último confirma las observaciones hechas por Gousseland (1983), quien reportó que las plantas con un sistema radical sano pero pequeño aún podían producir racimos pesados cuando se cultivan en un suelo fértil.Consecuentemente, los efectos nocivos de un factor desfavorable pueden ser compensados modificando otro factor, por ejemplo, aumentando la aplicación de fertilizantes bajo condiciones de suelos compactos (Wild 1988). Si el medio de enraizamiento está bien aireado y se le proporciona constantemente agua y nutrientes, otras condiciones favorables, un sistema radical reducido puede soportar un crecimiento de retoños considerable (Russell 1977).La mayor fertilidad del suelo en Abuja combinada con una radiación solar superior en un 27% podría dar como resultado un ciclo de producción más corto. Sin embargo, las plantas en Abuja fueron sembradas tres meses más tarde que las plantas en Onne. Esto significa que las plantas de Abuja entraron a la estación seca en una etapa de desarrollo más temprana que las plantas de Onne. La combinación de esta etapa de crecimiento más joven con temperaturas nocturnas más bajas colocó a las plantas de Abuja bajo un mayor estrés que el que experimentaron las plantas de Onne, dando como resultado un ciclo de producción más largo.El análisis de correlación indicó que diferentes genotipos responden de manera similar a diferentes ambientes con respecto al número de hojas, características del pseudotallo y cormo, desarrollo de retoños y días hasta la emergencia floral. Por lo tanto, al evaluar las variedades con respecto a los estudios agronómicos o taxonómicos se aconseja incluir los cultivares de referencia sobre los cuales se han recopilado datos en diferentes condiciones agroecológicas. Esto facilitaría el trabajo con valores relativos (comparados con el cultivar de referencia) para que la comparación de las variedades a través de ambientes fuese más fácil.Este estudio muestra que, tanto las características de los retoños, como las de las raíces de los genotipos de Musa están influenciadas por el ambiente agroecológico. El desempeño mejorado de las plantas en Abuja apoya los estudios en otros cultivos e indica que el potencial agrícola de los campos en los trópicos húmedos es menor que en los trópicos semihúmedos debido a los suelos más pobres y una radiación solar más baja.Este estudio también ha mostrado que, bajo condiciones óptimas de cultivo, el tamaño del sistema radical no es un factor determinante, ya que un sistema radical relativamente menos desarrollado aún puede soportar el crecimiento vigoroso de la planta cuando existe un amplio suministro de agua, nutrientes y energía solar. Los datos sugieren que una distribución de las raíces cerca de la mata es suficiente, con tal que se le suministren los nutrientes. Los productores bananeros, quienes están restringidos a sus tipos de suelo y área de cultivo, pueden mejorar el crecimiento de las plantas mejorando las funciones de las raíces a través de los insumos externos como nutrientes y agua, siempre que los nematodos y el viento no presentan problemas.Se agradece el apoyo financiero por parte de la Asociación Flamenca para la Cooperación en el Desarrollo y Asistencia Técnica (VVOB: Vlaamse Vereniging voor Ontwikkelingssamenwerking en Technische Bijstand) y el Directorio General Belga para la Cooperación en el Desarrollo. Los autores quieren recalcar la contribución del finado Dirk Vuylsteke en el diseño experimental, Srta Lynda Onyeukwu (IITA, Onne, Nigeria) por ayudar con la recopilación de los datos y al Sr Philip Ragama (KARI-NARO, Kampala, Uganda) por ayudar con el análisis estadístico. Iniciación y diferenciación del brote en las plantas de Robusta (AAA) derivado de los retoños y de las plántulas cultivadas a partir de tejidos L. Nalina, N. Kumar, K. Soorianathasundaram, J.S. Kennedy, V. Krishnamoorthy y M. Ganga Botánica E l banano se caracteriza por un proceso de iniciación y diferenciación del brote floral que es único entre los cultivos frutícolas. La inflorescencia de la planta de banano se desarrolla de un meristema terminal que emerge desde el pseudotallo compuesto por vainas foliares superpuestas. La planta es perenne y el brote floral se forma independiente de la estación, sin ningún síntoma evidente. Esto presenta problemas para el estudio de la morfología y fisiología de la iniciación floral.Para estimar el comienzo de la iniciación floral en el pseudotallo y la emergencia de la inflorescencia, se realizaron estudios histológicos. Ya que las plántulas provenientes del cultivo de tejidos han reemplazado en gran parte los retoños en muchos lugares, debido a su uniformidad y potencial de alto rendimiento (Hwang et al.1984), el proceso de iniciación de brotes florales fue observado tanto en las plantas derivadas de las plántulas provenientes del cultivo de tejidos como de los retoños.El estudio se realizó en el Department of Fruit Crops, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India de 2000 a 2002. Muestras de meristemas de banano fueron recolectadas periódicamente de las plantas del cultivar 'Robusta' (AAA). De cada tipo y de cada etapa de desarrollo fueron recolectadas diez muestras. Para estudiar la anatomía se utilizó el método descrito en Johansen (1960). Los brotes fueron matados t fijados en una solución de formalina, alcohol, ácido acético, alcohol y agua (10:50:5:35). Los brotes fueron lavados con etanol al 50% y luego transferidos a alcohol butílico terciario (TBA) de varias concentraciones que variaron de 60% a 100%. Los brotes se mantuvieron por una hora en cada concentración, seguido por 12 horas en TBA al 100%. Luego, los sumergieron en tres partes de TBA y una parte de cera fundida por una hora; en partes iguales de cera y TBA por una hora; en tres partes de cera y una parte de TBA por una hora; y en cera fundida pura en la cual se mantuvieron durante la noche. Si algún rastro de TBA se detectaba por medio del olfato, las muestras se sumergían en cera fundida pura una vez más. Después de la infiltración, el material fue incrustado en cera con un punto de fundición entre 52 y 54ºC. Se cortaron rebanadas de 12 µm de grosor utilizando un microtomo rotativo de Spencer. La cera fue removida utilizando una mezcla de xileno y alcohol. Para teñir, se utilizó safranina. Las secciones fueron montadas en un medio sintético neutro, secadas al aire y observadas a magnificaciones de 4x y 10x.En plantas derivadas de las plántulas provenientes del cultivo de tejidos y de los retoños, el punto de crecimiento que produce el brote vegetativo emana de una depresión poco profunda en el cormo. Las características importantes que se observan en el desarrollo del ápice del brote vegetativo son el arreglo foliar en espiral, la ausencia de brotes laterales y la casi ausencia del crecimiento internodal. Las secciones del meristema apical en las plantas provenientes del cultivo de tejidos mostraron estructuras vegetativas (Figura 1) hasta 170 días después de la siembra en el campo, mientras que las de las plantas derivadas de los retoños mostraron las estructuras vegetativas hasta 187 días después de la siembra.Con el comienzo de la floración, el retoño empieza a elongarse, el crecimiento periférico de la nueva hoja se vuelve menos pronunciado y en vez de las hojas se forman las brácteas (Barker y Steward 1962). El primordio del brote floral emerge en las axilas de las brácteas. Las brácteas no muestran un crecimiento marcado en sus bases y la punta del ápice del retoño cambia su forma a un cono puntiagudo (Figura 2). En la investigación actual, la etapa de transición en las plantas derivadas de las plántulas provenientes del cultivo de tejidos y de los retoños cesó, respectivamente, 14 y 16 días después de la etapa vegetativa. Ram et al. (1962) reportaron que la túnica consiste de tres capas sobre el domo central y el primordio de la bráctea se eleva alto en los lados del ápice. Las brácteas tienen en cada axila un cuerpo meristemático en forma de medialuna, parecido a una almohadilla que se extiende tangencialmente, es decir, la mano floral, de la cual la flor se diferencia simultáneamente en hileras dobles, dispuestas de manera alterna (Figura 3). El número de días desde la iniciación de la fase reproductora hasta la formación de las brácteas espatáceas fue de 23 y 25 en las plantas derivadas de las plántulas provenientes del cultivo de tejidos y de los retoños, respectivamente.El desarrollo temprano observado en las plantas provenientes del cultivo de tejidos podría deberse a un suministro óptimo de nutrientes y fitohormonas durante su desarrollo en el medio de cultivo. Además, ya que las plantas provenientes del cultivo de tejidos tienen un sistema radical bien desarrollado al momento de la siembra, ellas no esparcen tanta energía en la formación de las raíces como los retoños. Las plantas 'Robusta' provenientes del cultivo de tejidos estaban más adelantadas en 21 días que las plantas derivadas de retoños en lo que se refiere a la brotación. En los bananos se ha demostrado la floración temprana en las plantas provenientes del cultivo de tejidos (Swennen y De Langhe 1985, Drew y Smith 1990, Shakila 2000). Cuando Larkin y Scoweroft (1981) postularon el principio de la variabilidad somaclonal se creó una gran expectativa, y comenzaron a funcionar muchos laboratorios de cultivo de tejidos con este fin. En banano se han reportado variantes somaclonales en el subgrupo Cavendish, obtenidas a partir del proceso de micropropagación (Israeli et al. 1991) pero estas variantes siempre han estado asociadas con el tamaño del fruto y la calidad.El objetivo de esta investigación es conocer las diferencias morfológicas existentes entre el clon FHIA-21 y dos líneas obtenidas por la inducción de mutaciones en este clon.Los trabajos se desarrollaron en el Instituto de Investigaciones en Viandas Tropicales (INIVIT), Santo Domingo, Villa Clara, Cuba, en el período comprendido entre 1998 y 2005. Las investigaciones se realizaron sobre un suelo pardo con diferenciación de carbonatos según Hernández (1995). El material utilizado fue el clon de plátano FHIA-21 (AAAB) procedente de cultivo in vitro. Las atenciones culturales se realizaron de acuerdo a lo planteado en el Instructivo técnico para el cultivo del plátano, según Ministerio de la Agricultura, Cuba, 1994).Durante el período de evaluación en campo, detectamos dos plantas dentro de la población total (3333 plantas), con características fenotípicas diferentes al cultivar original (FHIA-21). Fueron identificadas INIVIT-1 y INIVIT-2, cuyas poblaciones posteriores, obtenidas a través de reproducción asexual, fueron evaluadas bajo condiciones de campo por dos años consecutivos con el fin de establecer su estabilidad genética.La caracterización morfológica se realizó empleando los descriptores para el banano (INIBAP/IPGRI/CIRAD 1996). Se tomaron en cuenta 121 caracteres correspondientes a la planta, yema e inflorescencia masculina, flores y frutos y se hizo énfasis en aquellos descriptores altamente discriminantes que son los que más aportan a la variabilidad genética y se compararon con los evaluados en el clon donante FHIA-21.Durante los años de estudio de las línea, se mantuvo un 100% de estabilidad genética en los caracteres fenotípicos cualitativos y cuantitativos evaluados, lo cual evidencia que los cambios ocurridos no estaban influenciados por el ambiente sino inducidos de forma espontánea a través del cultivo in vitro.En INIVIT-1 se observó un hábito foliar muy decumbente, característica que lo diferencia de FHIA-21 (decumbente) y de INIVIT-2 que manifestó habito foliar semierecto.INIVIT-1 mostró cambios en la coloración del pseudotallo con respecto al clon donante FHIA-21 (verde medio), presentando tonalidades verde-rojiza de forma homogénea, mientras que INIVIT-2 exhibió un matiz verde, además se percibió en la cara dorsal de la hoja cigarro una pigmentación violeta café, a diferencia de FHIA-21 y de INIVIT-2 que mostraron la lamina de la hoja cigarro de color verde. Los hijos de agua de INIVIT-1 y FHIA-21 se presentaron con manchas pequeñas o angostas de color pardo oscuro, mientras que en INIVIT-2 se observaron con grandes manchas moradas.La forma del ápice de las brácteas fue una característica que mostró variabilidad en las dos líneas con relación al clon donante. En INIVIT-1 se observó una forma aguda con la cara externa de color morado, mientras que en INIVIT-2 se percibió un ápice puntiagudo y rajado de color morado, y en el FHIA-21 se apreció ligeramente puntiagudo con la externa de color morado negruzco.La longitud de los frutos en INIVIT-1 y FHIA-21 fue similar, entre 21 y 25 cm, mientras que INIVIT-2 mostró dedos mas cortos (≤ 15 cm) . El aspecto del raquis en la misma se presentó con flores masculinas sin brácteas persistentes. Todas estas características lo hacen diferenciar del clon donante FHIA-21 y de INIVIT-1, siendo además su potencial productivo inferior. El color de la cáscara inmadura y el ápice de los dedos INIVIT-1 variaron con relación al clon donante, siendo en esta de un tono verde medio y el ápice de los frutos menos puntiagudo, mientras que INIVIT-2 mostró una tonalidad verde.FHIA-21 y INIVIT-1 mostraron la pulpa de color crema mientras que INIVIT-2 presentó una pulpa de color anaranjado.En cuanto a la fertilidad polínica, podemos plantear que INIVIT-1 manifestó un comportamiento similar al clon donante (FHIA-21), con un alto porcentaje de granos fértiles (91%), mientras que INIVIT-2 se observo un número ínfimo de granos de polen y de estos fértiles no se apreciaron en los análisis de laboratorio.Se recomienda continuar el estudio de las líneas desde el punto de vista citogenético, izoenzimático y molecular y determinar el comportamiento agroproductivo en el campo para su posible introducción en la práctica productiva. Variación somaclonall cultivo de puntas apicales ha sido utilizado comúnmente para micropropagar un amplio rango de genotipos de Musa (Cronauer y Krikorian 1984, Vuylsteke 1998). Las plántulas micropropagadas crecen más rápido, permiten una cosecha más sincronizada y tienen mayores rendimientos que el material convencional de plantación (Drew y Smith 1990, Robinson et al. 1993, Álvares y Caldas 2002). Una de sus desventajas es la producción de variantes somaclonales. En las plantas de Musa, las tasas de variación somaclonal producida por el cultivo de puntas apicales varía entre 0 y 25%, pero en algunos cultivares de plátano puede alcanzar un 70% y 100% en casos extremos (análisis por by Côte et al. 1998).El punto intrigante es que alrededor de un 80% de las variantes somaclonales son de tipo enano (Reuveni e Israeli 1990). Por lo tanto, se han realizado muchos estudios para detectar variantes enanas en etapas tempranas de desarrollo, utilizando ácido giberélico (Damasco et al. 1996, Sandoval et al. 1999), polimorfismo de perfil de isozimas (Carvalho et al. 1998) y marcadores moleculares (Damasco et al. 1998, Grajal-Martin et al. 1998). Algunas variantes somaclonales se originan a partir de tejido quimérico proveniente de explantes (Crouch et al. 1998). Altas concentraciones de reguladores de crecimiento en el medio de cultivo y un subcultivo prolongado también inducen variaciones somaclonales (Reuveni e Israeli 1990, Shepherd et al. 1996, Rodrigues et al. 1998, Santos y Rodrigues 2004). Sin embargo, ellos no explican la muy alta frecuencia de las variantes enanas. La alta frecuencia puede ser causada, al menos en parte, por la selección no intencional durante la micropropagación de variantes enanas. El objetivo de este estudio fue comparar las tasas de multiplicación in vitro de variantes enanas con las de las plantas verdaderas.Los cultivares utilizados en este estudio fueron 'Nanicão' y 'Grand naine'. Ambos pertenecen al subgrupo Cavendish (Musa AAA). En 'Nanicão', las puntas apicales fueron extraídas de los retoños y cultivadas en el medio Murashige Skoog (MS) complementado con 30 g/L de sacarosa, 5 mg/L de 6-benzilaminopurina (BA) y 1.5 o 2 g/L de Phytagel. Los brotes múltiples fueron subcultivados en el mismo medio a intervalos de 30 a 45 días durante 2 años. Luego, las raíces fueron inducidas en el medio MS con 0.5 mg/L de ácido acético α-naftalénico (NAA).Más de 500 plántulas fueron aclimatadas y trasplantadas al campo. Dos años después del transplante, se midió la altura del pseudotallo (desde la base del pseudotallo hasta la base del pedúnculo). También se observó que el traslape de hojas identifica a las variantes enanas. De las 125 plantas que fructificaron, 23 (18%) fueron de tipo normal con respecto a la altura, mientras que 84 (67%) mostraron enanismo y 18 (15%) tenían características intermedias.Se seleccionaron al azar trece de las plantas normales y 17 de las plantas enanas. Cada planta progenitora fue considerada como una línea separada durante el cultivo in vitro subsiguiente. Dos retoños de cada progenitor fueron establecidos nuevamente in vitro. Las puntas apicales de los explantes fueron cultivadas en medio MS complementado con 30 g/L de sacarosa, 2 g/L de Phytagel y 3 mg/L o 10 mg/L de BA. Los cultivos fueron mantenidos bajo un ciclo de 16h:8h de claridad/oscuridad, a una intensidad de luz de 42 μmol m -2 s -1 a 28±2 o C y subcultivados a intervalos mensuales utilizando el mismo medio. El número de brotes fue evaluado tres meses (dos subcultivos) después de la iniciación del cultivo.El mismo proceso se realizó también con 'Grand naine'. Cinco plantas verdaderas y cinco plantas enanas fueron seleccionadas al azar de la plantación de dos años de edad y reestablecidas in vitro. Las condiciones de cultivo fueron las mismas que se utilizaron para 'Nanicão'.Aunque mayor, el número promedio de brotes producidos por las líneas enanas de 'Nanicão' no difería significativamente del número producido por las plantas verdaderas a ambas concentraciones de BA (Tabla 1). De igual manera, el aumento de la concentración de BA no aumentó significativamente la producción de brotes tanto en las plantas enanas como en las verdaderas.Sin embargo, en 'Grande naine', el incremento de la concentración de BA de 3 a 10 mg/L aumentó significativamente el número promedio de brotes producidos por las líneas enanas. Además, las líneas enanas cultivadas en el medio con 10 mg/L de BA también produjeron 40% más brotes que las plantas verdaderas (Tabla 2).Reuveni e Israeli (1990) reportaron que la tasa de multiplicación de las plantas enanas no difería significativamente de la de las plantas normales. Ellos utilizaron el cultivar 'Williams' y el medio Ma y Shii (1972): 2 mg/ L de ácido indoleacético (IAA) con 5 mg/L de quinetina o 200 mg/L de tirosina con 2 mg/L de IAA y 5 mg/L de BA.Actualmente, muchos laboratorios comerciales de micropropagación utilizan solo de 3 a 5 mg/L de BA o bajas concentraciones de IAA y BA para su medio de multiplicación (análisis por Matsumoto y Silva Neto 2003). Los medios utilizados por Reuveni e Israeli (1990) mostraron la posibilidad de utilizar el medio para suprimir la multiplicación de variantes enanas.Si las variantes somaclonales en nuestro estudio han sido mutantes quiméricos, su producción debería reducirse por el subcultivo. Las citoquimeras inducidas por el tratamiento con colchicina fueron reducidas de 100% a 36% después de tres subcultivos, utilizando la técnica de cultivo de puntas apicales, y de 100% a 8%, utilizando la técnica de puntas apicales múltiples (Roux et al. 2001). En cambio, observamos que la proporción de variantes enanas aumentó con el subcultivo, alcanzando el 67% de plantas micropropagadas después de 2 años (alrededor de 20 subcultivos).Tabla 1. Producción de brotes después de 2 subcultivos, de las líneas verdaderas y enanas del cultivar 'Nanicão' cultivado en un medio de cultivo complementado con diferentes concentraciones de 6-benzilaminopurina (BA) (n=10). Existe evidencia de que las condiciones in vitro causarían inestabilidad mitótica (Shepherd y dos Santos 1996). La mutilación de ADN también puede causar alguna variación somaclonal (James et al. 2004). Estas observaciones pueden explicar las bajas proporciones de variantes somaclonales, pero no las frecuencias de más del 50%. Lane y Looney (1982) mostraron que un alto nivel (10 μM) de BA en el medio de cultivo selecciona mutantes enanos en manzanas. Sugerimos, que la alta incidencia de variantes enanas en la micropropagación de los bananos puede ser explicada en parte por su capacidad más alta de producción de brotes durante la micropropagación, así que ellas representan un porcentaje relativamente mayor de la población total a medida que se incremente el número de subcultivos.E.N. Adaoha Mbanaso, J. Crouch y F. Onofeghara Cultivo de tejidos L a inducción de la multiplicación apical durante la micropropagación usualmente se logra por la inclusión de fitoreguladores, particularmente citoquininas, en el medio de cultivo. Para el plátano y banano de cocción, se utilizan relativamente altas concentraciones de citoquininas (Vuylsteke 1989 a y b). Sin embargo, algunos investigadores (Cronauer y Krikorian 1984, Novak et al. 1990, Mbanaso et al. 2000) han intentado manipular las puntas apicales de Musa para estimular un posterior aumento en la producción de retoños. La necesidad de multiplicar los propágulos rápidamente es particularmente importante durante la diseminación de los genotipos élite, exóticos o mejorados. Este estudio se realizó para evaluar la respuesta de los genotipos de bananos de cocción, incluyendo los plátanos, a la incisión y fragmentación durante el cultivo de puntas apicales como un medio de bajo costo para aumentar y acelerar la acumulación de propágulos durante la micropropagación.Este estudio fue realizado en Onne en el Instituto Internacional de Agricultura Tropical (IITA), Rivers State, Nigeria. Seis genotipos, dos híbridos de plátano (TM3X 15108-6 y TMPX 548-9, AAB), un cultivar de plátano 'Obino l'ewai' (AAB), dos híbridos de banano de cocción (TMBX 612-74 y TMBX 5295-1, ABB), y el cultivar de banano de cocción 'Cardaba' (ABB) fueron utilizados en el estudio. Las puntas apicales fueron extirpadas de las plántulas in vitro de cuatro semanas de edad y manipuladas como se detalla a continuación: 1) Fragmentadas verticalmente en 4 porciones iguales 2) Fragmentadas verticalmente en 2 porciones iguales 3) Una incisión vertical en la región apical de la punta apical 4) Una incisión vertical en la región basal de la punta apical 5) Testigo: sin fragmentación ni incisión. Las plantas no fueron pesadas, ya que las comparaciones estaban basadas más bien en el tipo, que en el tamaño de los explantes. Las incisiones eran lo suficientemente profundas para que la punta de la cuchilla apareciera ligeramente en el lado opuesto de la punta apical, sin rajarla. Los explantes fueron cultivados en un medio de Murashige y Skoog (1962) modificado adoptado para el cultivo de Musa en el IITA (Vuylsteke 1989 b). Para solidificar el medio se utilizó el Gelrite (Sigma Chemical Company, St Louis, EEUU) a 2 g/L. El pH fue ajustado a 5.8 antes de colocarlos en el autoclave a 121°C y 1.05 kg/cm 2 por 15 minutos. Los explantes fueron sembrados individualmente en tubos de ensayo (25 mm x 150 mm) que contenían 20 ml de medio de cultivo, tapados con los cierres para autoclaves y dispuestos en estantes en un diseño completamente aleatorio.Cada tratamiento comprendía 24 explantes por genotipo y cada experimento fue repetido dos veces. Los cultivos fueron incubados a 27±2°C, bajo un fotoperíodo de 14 h proporcionado por tubos fluorescentes blancos produciendo una irradiación en el rango de 30 a 40 mmol m -2 s -1 . Después de cuatro semanas en cultivo, se registraron la supervivencia de los explantes, el número de retoños producidos por explante sembrado y la altura de los retoños. Este trabajo fue repetido al menos dos veces. Se elaboraron programas de computadora para el análisis estadístico de los datos generados durante el estudio utilizando el PC-SAS (SAS Institute 1992). Para el análisis de la varianza se utilizó el procedimiento Modelo Lineal General de SAS (Crompton 1994). La diferencia mínima significativa (LSD) sirvió para separar los promedios.La fragmentación no afectó la supervivencia del híbrido de plátano TM3X 15108-6 (Tabla 1) y del híbrido de banano de cocción TMBX 5295-1 (Tabla 2). La supervivencia de los explantes fragmentados del híbrido de plátano TMPX 548-9 y del cultivar 'Obino l'ewai' fue reducida significativamente. De los otros dos genotipos, sólo los explantes del híbrido del banano de cocción TMBX 612-74 fragmentados en cuatro partes tuvieron una supervivencia más baja que los explantes testigo.Los explantes con incisiones produjeron significativamente más retoños por explante que los explantes testigo solo en los híbridos de plátano (Tablas 1 y 2). Ellos también produjeron más retoños por explante que los explantes fragmentados en dos del híbrido de plátano TMPX 548-9 y del híbrido del banano de cocción TMBX 612-74, y los explantes fragmentados en cuatro del cultivar de cocción 'Cardaba'.La altura de los retoños fue significativamente mayor en los explantes testigo que en la mayoría de los otros tipos de explantes de plátano. En los bananos de cocción, los retoños de los explantes testigo fueron más largos que los retoños de los híbridos fragmentados en cuatro partes y del híbrido TMBX 5295-1 fragmentado en dos partes, solamente (Tabla 2). Una incisión en la base de los explantes del TMBX 612-74 estimuló significativamente el crecimiento de los retoños.Ya que la fragmentación produjo dos o cuatro veces más explantes que los otros tratamientos, el número total de retoños producidos fue siempre más alto en los tratamientos con fragmentación, a pesar de la mayor mortalidad y números más bajos de retoños producidos por explante.Los descubrimientos del estudio actual indican que la fragmentación de la punta apical perjudicó la habilidad de los explantes de sobrevivir en el cultivo. La mortalidad de los explantes de las puntas apicales de Musa en el cultivo se le ha atribuido en parte al ennegrecimiento causado por la oxidación de los compuestos fenólicos que exudan de los tejidos heridos (Vuylsteke 1989 b). Se considera que el ennegrecimiento interfiere con la absorción de nutrientes, llevando a la inhibición de crecimiento y a la consiguiente muerte (Vuylsteke 1989 b). En este estudio, la fragmentación dio como resultado explantes con una mayor superficie expuesta, lo que produjo mayor cantidad de exudados que a su vez se oxidaron para causar el ennegrecimiento, explicando así la mayor mortalidad entre ellos. Los híbridos TM3X 15108-6 y TMBX 5295-1 sobrevivieron mejor a la fragmentación que otros genotipos. Entre los cultivares de Musa existe mucha variabilidad en su respuesta al ennegrecimiento en el cultivo (Hirimburegama y Gamega 1997).La observación de que las incisiones aumentaron la producción de retoños está de acuerdo con Vuylsteke (1989). Aunque este procedimiento no es esencial para la producción de brotes múltiples en presencia de la citoquinina, mejora el proceso y no depende de la polaridad. Los genotipos de plátano tenían la tendencia de responder mejor que los genotipos de banano de cocción. Esto podría reflejar diferencias genotípicas.La fragmentación puede ser utilizada para aumentar de manera poco costosa la cantidad de retoños producidos en los cultivares Musa en la etapa de multiplicación, particularmente cuando los números iniciales son bajos, como en el caso del recibo de germoplasma. Para la producción de retoños para enraizamiento, servirían mejor los explantes enteros, con o sin incisiones. La diversidad de las respuestas al cultivo entre los genotipos de Musa es notable y puede ser útil para los programas de mejoramiento.Tableau1. Effet de la fragmentation ou de l'incision d'explants de génotypes de bananiers plantain sur la survie, le taux de multiplication et la longueur de la pousse, quatre semaines après l'initiation de la culture (n=24). Los promedios en una columna seguidos por letras diferentes difieren significativamente a p=0.05 de acuerdo a la prueba de diferencia mínima significativa.Tabla 2. Efecto de la fragmentación o incisión de los explantes de los genotipos de banano de cocción sobre la supervivencia, tasa de multiplicación y altura de los retoños cuatro semanas después de iniciación del cultivo (n=24). Los promedios en una columna seguidos por letras diferentes difieren significativamente a p=0.05 de acuerdo a la prueba de diferencia mínima significativa.as plantas que han sido cultivadas in vitro por técnicas de micropropagación, requieren de un proceso de aclimatación en el que es fundamental la cantidad y calidad de sustancias de reservas que las plantas hayan sido capaces de almacenar. La supervivencia durante la aclimatación depende de que las plantas puedan pasar de condiciones heterotróficas o mixotróficas (mezcla de autotróficas con heterotróficas) al autotrofismo. Las plantas deben aclimatarse a condiciones ambientales externas diferentes a las del cultivo in vitro por ejemplo, la intensidad de luz supera las intensidades presentes en el cultivo in vitro y la humedad relativa es menor. Estas diferencias pueden provocar la desecación y muerte de las plantas. La presencia de sacarosa en los medios de cultivo es otro factor importante, pues en las condiciones ambientales externas, las plantas cuentan sólo con agua y sales minerales de los sustratos utilizados. Durante la aclimatación, las plantas transforman, a expensas de sustancias de reserva como el almidón, las estructuras de sus hojas y su metabolismo con el fin de adaptarse a las condiciones externas.El metabolismo del almidón brinda más elementos metabólicos útiles que permiten describir y analizar el desarrollo de las hojas, pues este carbohidrato es producto final de la actividad fisiológica de las diferentes plantas que lo utilizan como reserva energética (Bello-Pérez et al. 2002). Por esta razón se decidió describir el metabolismo del almidón a través de la enzima ADP-glucopirofosforilasa, encargada de la síntesis del mismo. El conocimiento de los momentos claves y la forma en que se moviliza el almidón permite identificar la etapa más importante de la aclimatación, en la que las plantas requieren un mayor cuidado, pues puede repercutir en su supervivencia.Se cultivaron in vitro con biorreactores de inmersión temporal (BIT) plantas de plátano CEMSA 3⁄4 (AAB). Los biorreactores fueron constituidos por dos vasos transparentes de Nalgene plástico con una capacidad de 250 ml cada uno. Al frasco del medio de cultivo se le añadieron 100 ml de medio de cultivo (10 ml/explante) (Escalona et al. 1999). Las plantas de plátano pasaron 28 días en fase de multiplicación y 21 días en fase de crecimiento.Para pasar de la fase in vitro a la aclimatación, las plantas debían tener un grosor del pseudotallo superior a 0.3 cm, al menos dos hojas expandidas y una altura mayor a los 2.5 cm. Las plantas que reunían estas características fueron transferidas a sustrato esterilizado de cachaza y suelo rojo 1:1 en bandejas de 144 posillos (52.5 cm x 29.5 cm x 4 cm). Para la aclimatación, fueron colocadas en cámaras de cultivo que se mantuvieron a una temperatura promedio de Todos los parámetros de calidad de las plantas fueron medidos cada siete días durante la fase de aclimatación. Se determinaron la masa fresca y la seca (72 horas a 70 o C) después de medir el intercambio de gases.Para medir la capacidad fotosintética máxima de las plantas de plátano, se utilizaron hojas totalmente extendidas cuatro o cinco horas después de iniciado el fotoperíodo alternado. La capacidad fotosintética máxima y la transpiración fueron medidas con un CIRAS-2 (Sistema Portátil de Fotosíntesis, Europa, PP Systems, UK) acoplado a una cubeta universal (PLC6). El área de la cubeta se cubrió con la hoja más joven completamente expandida (2.5 cm 2 ). La concentración de dióxido de carbono y la humedad relativa alcanzaron valores ambientales de 375 µmol/mol y 80%, bajo luz controlada a 600 µmol m -2 s -1 .Para determinar la concentración de almidón, se tomó 1.0 g de masa fresca macerada en mortero con nitrógeno líquido. Los azúcares se extrajeron en 5.0 ml de etanol al 80%. El almidón fue hidrolizado según el protocolo descrito por Thomas et al. (1983). La cuantificación de almidón se realizó basada en una curva patrón de almidón de papa previamente construida.Para la extracción y medición de la actividad enzimática adenosin difosfatoglucopirofosforilasa (ADP-GPPasa), 250 mg de segmentos foliares fueron colocados directamente en nitrógeno líquido y macerados en mortero. Las enzimas se extrajeron siguiendo el método descrito por Geigenberg y Stitt (1991). La actividad enzimática fue medida al añadir 100 µl de extracto vegetal en 50 mmol/L de tampón. La cuantificación final de la glucosa-1P formada se realizó según el procedimiento descrito por Smith (1990).Todos los indicadores de calidad morfológica de las plantas alcanzaron el máximo desarrollo a los 35 días del proceso de aclimatación (Tabla 1). Indicadores como el número de hojas se mantuvieron constantes a partir de los siete días, y se observó que las hojas crecieron tanto a lo ancho como a lo largo. Otros indicadores, como el diámetro del rizoma, alcanzaron su máximo valor a los 35 días. La masa fresca alcanzó el mayor valor en la última semana, mientras que la masa seca permaneció constante a partir de los 21 días.El número de raíces fue constante durante todo el proceso. Esto demuestra que las plantas emiten desde la fase in vitro en BIT raíces que permanecen durante toda la aclimatación. Además, el incremento sostenido de la longitud de las raíces reafirma su carácter funcional. En los BIT se genera un ambiente gaseoso que es renovado con frecuencia para proporcionarle a las raíces de las plantas la oxigenación necesaria para su correcto desarrollo, a diferencia de lo que ocurre en los medios semisólidos convencionales (Preece y Sutter 1991).Se registró una supervivencia del 96.5% de las plantas desde los 14 días y hasta los 35 del proceso de aclimatación. La calidad de indicadores morfológicos, como la altura de planta, la masa fresca y seca, y la emisión de raíces funcionales, permitió la supervivencia de las plantas. Para que las plantas se adapten a las condiciones ambientales durante los primeros días de la aclimatación, necesitan tener reservas de carbohidratos almacenadas en la fase de crecimiento y un desarrollo fisiológico foliar tal, que la fotosíntesis y la transpiración alcancen valores similares a los de plantas adultas.Cuando las plantas fueron trasladadas a la cámara de cultivo, tuvieron una rápida adaptación a las condiciones de cultivo autotróficas que fue evidente por el marcado cambio en la actividad fotosintética, con valores entre 9.2 y 11.5 µmol CO 2 m -2 s -1 (Tabla 2). Estos valores son semejantes a los valores informados para plátanos adultos en condiciones de campo (Cayón 2001).Hubo una disminución de la actividad fotosintética después los 35 días que puede ser consecuencia de que las plantas alcanzaron su desarrollo máximo a los 35 Tabla 1. Indicadores morfológicos de plantas de plátano CEMSA 3⁄4 (AAB) durante la fase de aclimatación (n=30). días; por tanto, es posible que el suministro de nutrientes proveniente del volumen de sustrato sea insuficiente a los 42 días. En esta etapa, el crecimiento de las plantas puede ser limitado por el volumen disponible en el pozo y, en consecuencia, conviene transferirlas a volúmenes mayores de sustrato en bolsas. Los estudios de transpiración realizados junto con los del rendimiento fotosintético (Tabla 2) revelaron que en los primeros siete días después de que las plantas son expuestas a las condiciones externas se observa un gran incremento de su transpiración ocasionado por el traslado a un ambiente de menor humedad relativa y altas intensidades de luz. Después de ese momento, las plantas comienzan a disminuir lentamente sus valores de transpiración, proceso fundamental que demuestra su adaptabilidad. Precisamente después de la primera semana de aclimatación, se observa como aumentan diferentes indicadores morfológicos de la planta (entre ellos, la altura y la masa fresca) debido a la retención de agua (Tabla 1).El sistema de cultivo en los BIT a partir de la fase in vitro favorece una renovación del ambiente de las plantas que permite a los estomas lograr cierta capacidad funcional y evitar la pérdida de agua. Las plantas pierden agua de su interior por dos vías diferentes, a través de los estomas y de la cutícula foliar, en la que está implicada toda la superficie de la hoja (Preece y Sutter 1991). El baño que se provoca en los BIT cada tres horas puede ocasionar un mejor desarrollo de la cutícula de las hojas y, con ello, una menor pérdida de agua por esta vía en condiciones externas. Un mayor valor de la relación fotosíntesis/transpiración se asocia con una mayor capacidad funcional de los estomas, los cuales permiten la entrada de CO 2 y poca pérdida de agua en las hojas. A los 35 días se alcanzó un valor máximo de fotosíntesis/ transpiración de 5.6.Los análisis de concentración de almidón al inicio de la fase de aclimatación muestran que las plantas acumulan concentraciones mayores de almidón en el rizoma que en las hojas (Tabla 3). En los primeros siete días de la aclimatación, es evidente la reducción de almidón tanto en las hojas como en el rizoma. Se nota una disminución más acentuada en el rizoma debido a que éste está predestinado genéticamente a ser un órgano almacenador de compuestos energéticos, lo que le brinda una mejor capacidad funcional para la movilización del almidón. Su forma rizomatosa, sin pigmentos clorofílicos, y el hecho de que permanece subterráneo en condiciones de campo, son aspectos que confirman que el rizoma es un órgano de reserva. La degradación de almidón Tabla 2. Fotosíntesis neta y transpiración durante la fase de aclimatación de plantas de plátano CEMSA 3⁄4 (AAB) (n=50). en esta etapa provee a las plantas la energía necesaria para su desarrollo en las dos primeras semanas, pues aún no son capaces de obtener la suficiente energía mediante la fotosíntesis y necesitan reprogramar todo el metabolismo celular de las hojas.En el rizoma, las concentraciones de almidón se redujeron a valores más cercanos a los de las hojas y se mantuvieron así hasta los 35 días de aclimatación. Quizás en estadios de desarrollo más avanzados de las plantas de plátano en condiciones de campo se repita la acumulación de almidón en el rizoma como reserva de energía suficiente para la brotación, crecimiento y desarrollo de las posturas o hijuelos y de las estructuras reproductivas.Las actividades enzimáticas ADP-glucopirofosforilasa durante la aclimatación se presentan en la Tabla 4. Se observa que la actividad es mayor en el rizoma al final de la fase in vitro. La potenciación de esta actividad se relaciona con la capacidad mostrada por el rizoma para almacenar la mayor cantidad de almidón. Posteriormente, se opera una inversión de la capacidad enzimática entre el rizoma y las hojas. A partir de los 21 días, el desarrollo progresivo de las hojas aumenta la actividad ADP-GPPasa, junto con el desarrollo fotosintético de las mismas. A diferencia de lo que sucede en las condiciones in vitro, cuando las plantas ya están adaptadas las hojas son los principales órganos de la síntesis de almidón, pero en ellas se sintetiza el precursor directo ADP-glucosa que es trasladado al rizoma para su verdadera síntesis y posterior almacenamiento.El proceso de aclimatación de las plantas de plátano provenientes de los BIT quedó completo en 35 días, momento en que fue necesario llevarlas a un mayor volumen de sustrato. En ese momento los indicadores morfológicos alcanzaron su máximo desarrollo y comenzaron a perder capacidad fotosintética. La emisión de raíces funcionales desde la fase in vitro favoreció el proceso de aclimatación. Los primeros siete días son fundamentales para la adaptación de las plantas, y el desarrollo metabólico de las hojas es esencial para procesos como la fotosíntesis, la transpiración y el metabolismo del almidón. En los primeros siete días, las plantas sobreviven a expensas de las reservas energéticas acumuladas en el rizoma en forma de almidón durante la fase in vitro.En 1989, INIBAP estableció el Programa Internacional de Evaluación de Musa (IMTP) para evaluar, utilizando tecnologías compartidas para asegurar la comparación de los resultados a través de los sitios, los híbridos de banano producidos por los mejoradores. Después de la primera fase de este esfuerzo colaborativo en la cual participaron seis países, dos híbridos de postre, FHIA-01 y FHIA-02, y un híbrido de banano de cocción, FHIA-03, fueron recomendados para su propagación. Desde entonces, estos híbridos fueron distribuidos en más de 50 países. En la segunda fase, que empezó en 1996, se seleccionaron los híbridos FHIA-23 y SH-3436-9 como los más tolerantes a la Sigatoka negra.Actualmente, 25 países están participando en la tercera fase y por primera vez dos compañías privadas en Asia también están participando en los ensayos. Antes de emprender el análisis de los datos, INIBAP realizó una encuesta entre diferentes grupos de interesados con el fin de evaluar el programa y su beneficio.Exactamente 100 personas (o 38% de las personas contactadas) completaron el cuestionario. La proporción más alta de respondientes trabaja en Asia y el Pacífico (44%), seguida por África (32%) y América Latina y el Caribe (18%). Europa y Norteamérica representaron 10 y 2% de las respuestas, respectivamente. Se debe acotar que la encuesta fue proporcionada solo en inglés, factor que pudo haber influido en la tasa de respuesta de ciertas regiones.La mayoría de los respondientes están especializados en la protección vegetal (incluyendo patología, nematología y entomología), o en el mejoramiento genético de Musa (incluyendo mejoramiento, biotecnología, biología molecular y genómica) (Figura 1). Los representantes de 16 Sistemas Nacionales de Investigación Agrícola (SNIA) que participan en las redes regionales de INIBAP compartieron sus puntos de vista. Más del 60% de los respondientes son miembros de ProMusa o de uno de sus grupos de trabajo, y el 55% participó en una o más de las fases anteriores del IMTP.Diecisiete años después del comienzo del programa, el IMTP aún es elogiado por los participantes. El 91% de los respondientes percibe que los ensayos del IMTP son útiles. Entre las razones para participar en el IMTP, muchos citaron los beneficios que provienen de la participación en investigaciones internacionales e intercambio de resultados entre los investigadores de Musa. Algunos respondientes dijeron que accedieron a participar en el IMTP porque están involucrados en el desarrollo de los materiales o en la recolección de las especies silvestres de banano y tienen la capacidad para llevar a cabo los ensayos en el marco del IMTP.Más del 70% de los respondientes que no participaron en cualquiera de los ensayos anteriores quisieran participar. Siete de ellos dijeron que no lo hicieron porque no está dentro de su área de competencia o del ámbito de su instituto. También se mencionó la falta de facilidades y de financiamiento, al igual que la existencia de severas restricciones sobre la introducción a su país de germoplasma de banano. Algunos opinaron que la Fase II fue bastante compleja y difícil.La principal restricción observada durante los ensayos previos del IMTP fue la falta de fondos, seguida por las limitaciones de tiempo (Tabla 1).Tanto la escasez de campos con buenos niveles de infestación de plagas y enfermedades, como la falta de personal capacitado, fueron vistos como problemas, al igual que la pobre aceptación de los nuevos híbridos por parte de los productores y consumidores.Los fitopatólogos concuerdan con el principio de evaluación de las variedades bajo diferentes condiciones ambientales, poblaciones de patógenos y sistemas de producción para obtener información más confiable sobre el desempeño total de un cultivar. Según ellos, la identificación por parte de los SNIA, e indirectamente por los productores, de los cultivares útiles adecuados para las condiciones locales, también fue otra razón para apoyar el programa. Los mejoradores, por otra parte, acentuaron principalmente su valor para el intercambio de germoplasma y evaluación de nuevos materiales.La mayoría de los respondientes creen que los mejoradores son los más interesados en los resultados del IMTP, seguidos por los agricultores y fitopatólogos. Los agrónomos y otros investigadores bananeros representan otros dos grupos objetivo importantes. Muchos respondientes sienten que la información recopilada durante los ensayos del IMTP es esencial para el manejo de plagas y enfermedades, aunque el uso de las variedades resistentes para el manejo de las principales plagas y enfermedades se considera como la mejor solución a largo plazo.INFOMUSA fue la única fuente más importante por la cual las personas se enteraron de los resultados de las fases anteriores del IMTP (60% de respondientes), seguida por el libro Tabla 1. Principales limitaciones detectadas por los respondientes quienes han participado en uno de los ensayos del IMTP.Comentarios respondientes Fondos insuficientes 45 Falta de tiempo 21 Lenta multiplicación 17 El tiempo necesario para producir las cantidades requeridas de plántulas a menudo resulta en una escasez de material de germoplasma de plantación al comienzo de un experimento. Esto se agrava por el requerimiento de utilizar testigos resistentes o susceptibles del Centro de Tránsito de INIBAP. Falta de campos con buenos 17 niveles de infestación de plagas y enfermedades Falta de personal capacitado 14 El diseño del ensayo se ve como muy complicado para el nivel de experiencia del personal, una situación que podría afectar la confiabilidad de los datos. En este respecto, algunos respondientes también notaron que el control de calidad científica por parte de INIBAP es insuficiente. Pobre seguimiento 10 Más y mejor seguimiento igual que el mejoramiento de la comunicación entre los participantes en el IMTP asegurarían por parte de INIBAP datos de mejor calidad y estimularía la interacción y la participación. Las limitaciones y defectos podrían ser resueltos con anticipación. También se recomendaron un análisis más rápido y más detallado utilizando herramientas modernas, al igual que una mejor retroalimentación y distribución de los resultados. Pobre aceptación de los híbridos 12 A pesar de su alto rendimiento, muchos nuevos híbridos son poco aceptados por los productores y consumidores debido a su sabor, bajas cualidades de cocción, plantas más altas y ciclo de cultivo más largo. Los estrés abióticos como 2 huracanes y heladas Falta de interés 2 Una falta de interés en el banano, y especialmente en el mejoramiento de Musa, por parte de los gobiernos nacionales algunas por parte del gobierno veces es un problema. La colaboración con otras instituciones como las universidades puede ofrecer una solución a esta limitación. Una quinta parte de los respondientes dijo no haber recibido ninguna información sobre los resultados de los ensayos del IMTP. El 71% y 63% de los respondientes notaron que el CD-Rom y el libro fueron muy útiles y algo útiles, respectivamente, y que son buenos instrumentos para la diseminación del conocimiento sobre nuevas variedades, su resistencia a plagas y enfermedades y su desempeño a través de los sitios. El CD-Rom resultó ser más práctico porque contiene más información y puede ser copiado. Sin embargo, algunas personas dijeron que la función de búsqueda no es muy amigable con el usuario y que ellos no pudieron leer el CD-Rom. Entre otras debilidades mencionadas, las estadísticas descriptivas no fueron consideradas muy útiles; los resultados no están presentados en un formato detallado; la crítica algunas veces imprecisa y poco convincente; más información podría haber sido extraída haciendo un análisis más minucioso y la información no estaba bien distribuida.Todos los respondientes concordaron en que las publicaciones científicas son útiles para presentar los resultados del IMTP, y casi el 90% de los respondientes piensan que un catálogo podría ser útil, preferiblemente con más información agronómica que la que se encuentra actualmente en Musalogue (Tabla 2). Un sitio en Internet tuvo una clasificación intermedia, mientras que las publicaciones en línea y la base de datos en línea recibieron el apoyo más débil.Hubo un amplio consenso en que la evaluación de la reacción del germoplasma, recientemente desarrollada contra las enfermedades de las manchas foliares, marchitamiento por Fusarium y nematodos, debería ser un proceso continuo y parte de todos los esfuerzos del mejoramiento genético. Solo cuatro personas dijeron que ellos no participarían, pero solo porque no tienen las facilidades o la competencia para participar en un ensayo semejante.El 86% de los respondientes participarían en una cuarta fase pero la mayoría de ellos dijo que lo harían si se cumplieran ciertas condiciones. Casi una cuarta parte dijo que ellos participarían si los financiaban (su gobierno nacional, la industria o INIBAP) y si se les brindaba apoyo adicional. Más participación en lo que sucede después de enviar los datos y de recibir el reconocimiento debido, también fueron mencionados como condiciones importantes para la colaboración. Algunos respondientes advirtieron que la decisión de participar estaba fuera de su alcance.Una nueva fase del IMTP también podría resolver las limitaciones y defectos de las fases anteriores. También se percibió que ofrecería más oportunidades para colaborar y compartir los conocimientos para alcanzar un objetivo común.Nuevos materiales mejorados como los híbridos y mutantes somaclonales aún se vislumbran como el material más importante para la evaluación, por el 74% de los respondientes, pero, a más de la mitad de los respondientes les gustaría incluir cultivares populares de varios países.Tres de las plagas y enfermedades contra las cuales el material está siendo evaluado actualmente, a saber, el marchitamiento por Fusarium, Sigatoka negra y nematodos, son consideradas centrales para los futuros ensayos del IMTP (Tabla 3). La mancha foliar causada por Eumusa fue considerada como el factor abiótico mencionado menos importante.La importancia de diferentes plagas y enfermedades varió de acuerdo con la región. En América Latina y el Caribe hubo un fuerte consenso que la prioridad debería otorgarse a la evaluación del germoplasma contra la Sigatoka negra (100%), marchitamiento por Fusarium (92%) y nematodos (80%). En Asia, el marchitamiento por Fusarium fue clasificado en el primer lugar (97%), seguido por la Sigatoka negra (78%). El marchitamiento bacteriano fue considerado importante por el 60% de los Otros factores que deberían estar incluidos en los futuros ensayos, según los respondientes, fueron la aceptación por parte de los consumidores, desempeño agronómico y calidad de la fruta (Tabla 4).Casi cuatro quintas partes de los respondientes desean mantener los dos niveles de evaluación: el desempeño y los ensayos minuciosos. Muchos respondientes recomendaron más visitas por parte de los científicos de INIBAP para asegurar la calidad de los experimentos. Varios respondientes también proporcionaron sugerencias sobre como mejorar el programa (Tabla 5).Solo cuatro personas indicaron que tienen suficientes conocimientos y no necesitan capacitación adicional para llevar a cabo un ensayo del IMTP. Las mayores necesidades de capacitación incluyen el diagnóstico de plagas y enfermedades y el análisis estadístico. Varios respondientes indicaron que las guías técnicas no son suficientes y que todo el personal que participa en un ensayo debe ser capacitado en la implementación estándar de los ensayos de evaluación con el fin de generar datos comparables entre los sitios. El desarrollo humano y fortalecimiento de la capacidad deberían ser una parte integral del IMTP.Algunos respondientes dijeron que les gustaría ver más información sobre las interacciones entre los genes y el ambiente para aumentar sus conocimientos sobre la estabilidad de ciertas características y ayudar a afinar las estrategias de difusión.Con respecto a la presentación de los datos, se percibió que la presentación gráfica de los resultados debería ser mejorada. Hubo una solicitud de más publicaciones en francés y español y también de publicaciones impresas a colores para las personas quienes no tienen un acceso fácil a las computadoras. Los productos deberían ser distribuidos en una escala más amplia, por ejemplo, a través de las redes regionales de información y un boletín trimestral. Tabla 5. Sugerencias para mejorar el programa.Involucrar a los especialistas en biometría en el diseño de los ensayos Mejor normalización de los procedimientos (por ejemplo, para el diagnóstico y evaluación contra las plagas y enfermedades) Los ensayos deben ser llevados a cabo en áreas infectadas con la plaga o enfermedad en cuestión (y preferiblemente no estar adyacente a las plantaciones) Se debe buscar procedimientos para normalizar el método de inoculación para las plagas y enfermedades del suelo Los participantes deberían siempre utilizar el mismo grupo de variedades de referencia pero se les debe permitir alguna libertad en la escogencia de otras variedades Ensayos en distintas localidades dentro de un país Prácticas culturales normalizadas para evaluar con mayor precisión el desempeño real de los cultivares, no solo bajo condiciones agroecológicas locales, sino también con las prácticas de los agricultores locales Involucrar a las ONG y a extensionistas en la evaluación del desempeño agronómico Análisis económico Apoyo y guía técnicos suficientes Al comienzo se debería proporcionar más información sobre las diferentes variedades El diagnóstico de campo de las plagas y enfermedades debería ser confirmado en el laboratorio Se necesitan métodos y herramientas confiables para el diagnóstico de las enfermedades Experimentos de cribado temprano en el invernadero (más rápido y más barato que las pruebas de campo) y métodos para la selección temprana utilizando herramientas biotecnológicas Los procedimientos para la recolección de datos deberían ser bien explicados al personal que recopila los datos Los datos deben ser recopilados con regularidad Datos ecológicos más detallados deberían ser recolectados en todos los sitios Se debe distribuir a todos los participantes hojas de recolección de datos bien diseñadas y fáciles de usar Los participantes deben ser alentados a utilizar una hoja de registro para documentar todo el ensayo Involucrar a los especialistas en biometría en el análisis de los datos Métodos modernos y programas apropiados para el análisis de los datos Más atención al análisis de las interacciones entre los genes y el ambienteOtras sugerencias estaban dirigidas hacia el mejoramiento de las comunicaciones y el trabajo en red, como los grupos de discusión y una lista de correo del IMTP, así como talleres y reuniones. Muchos respondientes recomendaron una reunión global anual, o reuniones regionales, para ayudar destacar las dificultades y discutir con los expertos las posibles soluciones.Casi tres cuartas partes de los respondientes dijeron que estaban deseosos de compartir el germoplasma, pero el 40% de ellos especificaron que esto podría llevarse a la realidad solo bajo ciertas condiciones, como el respeto de los reglamentos nacionales u obtención de la aprobación de parte de la administración de las compañías privadas participantes. Se debe elaborar un Acuerdo de Transferencia de Materiales. El intercambio de datos y de germoplasma es condicional para todos los que lo realizan y es un factor importante para determinar que existe buena voluntad de las persona para compartir. También se deberían considerar los problemas de cuarentena.Nos gustaría agradecer a todos aquellos quienes respondieron la encuesta y asegurarles que sus observaciones serán tomadas en consideración al revisar el IMTP. Para obtener más información contactar a Inge Van den Bergh en la dirección i.vandenbergh @cgiar.orgUn alimento básico con interés nutritivo C. Lusty, E. Akyeampong, M.W. Davey, G. Ngoh Newillah y R. Markham Algunas de las evidencias arqueológicas más tempranas de la agricultura organizada en los trópicos húmedos de África se encuentran en la parte central de Camerún (Mbida et al. 2000). Ellas sugieren que los agricultores en esta parte del mundo han estado cultivando Musa por más de 2000 años, seleccionando activamente las variedades y generando altos niveles de diversidad de plátanos que los camerunenses disfrutan hoy en día. En el proceso, estos primeros agricultores crearon variedades que actualmente son buscadas por sus cualidades nutritivas.Recientemente, el trabajo de Lois Englberger (Englberger 2003, Englberger et al. 2003) ha realzado la importancia de Musa con pulpa anaranjada como fuente de carotenoides de provitamina A (pVACs), compuestos derivados de la planta que se convierten en vitamina A en el cuerpo humano. La vitamina A desempeña un importante papel para la vista, al igual que para las funciones inmunológicas, reproductoras y de desarrollo embrionario. La deficiencia de la vitamina A en la dieta representa uno de los retos claves que afectan al mundo en vías de desarrollo. Se estima que hasta medio millón de niños se vuelven ciegos debido a la deficiencia de la vitamina A y más del 50% de todas las muertes en un año está asociada con la desnutrición (OMC 2003). Estas tasas de mortandad podrían ser más altas si no fuera por las costosas intervenciones regulares de las ONG y gobiernos que distribuyen las vitaminas y suplementos minerales. Existen unos 600 tipos conocidos de carotenoides, de los cuales aproximadamente 50 desempeñan un papel en la dieta humana (Rodríguez-Amaya 1997). El betacaroteno tiene el mayor nivel de la actividad de vitamina A, de aquí la importancia de determinar cuales carotenoides están presentes al evaluar el valor nutritivo de los alimentos. Dependiendo del método utilizado, los análisis de los carotenoides pueden proporcionar valores para:• carotenoides totales (todos los carotenoides incluyendo aquellos que no tienen la actividad de la vitamina A), • pVAC (carotenoides que tienen la actividad de la vitamina A), • equivalentes del betacaroteno (carotenoides de provitamina A convertidos en unidades equivalentes de betacaroteno) • carotenoides individuales (pVAC más licopeno, luteína, etc.). La Tabla 1 muestra los métodos utilizados para cuantificar los niveles de carotenoides en el proyecto HarvestPlus.Las principales limitaciones que afectan la interpretación y presentación de los análisis de los carotenoides son: • El contenido de carotenoides es altamente variable dentro de una planta y entre las plantas y variedades. También varía con la madurez de la fruta. Esto presenta un reto sustancial para el muestreo. Para realizar el trabajo de comparación se deben establecer el tiempo y los métodos de muestreo. • Los carotenoides se oxidan con facilidad.La exposición a la luz, aire y daños físicos afectan la tasa de pérdida de carotenoides una vez la muestra es removida de la planta. Otra vez, esto presenta un reto en términos de almacenamiento y transporte de las muestras. • Los métodos varían en su precisión. Los resultados a menudo se basan en diferentes protocolos analíticos y algunas veces son publicados sin referencia de lo que fue medido (carotenoides totales o betacaroteno, peso fresco o seco, etc.), y que métodos fueron utilizados. Los materiales procesados pueden ser comparados directamente con los crudos. En consecuencia, existe poca información normalizada para comparar diferentes alimentos o cultivos. Una vez determinado el valor para los equivalentes del betacaroteno, el valor nutritivo del alimento (consumido en la forma en la cual fue analizado) puede ser estimado utilizando los factores de conversión para la absorción y metabolismo de los carotenoides en el cuerpo. La Organización para la Alimentación y la Agricultura de las Naciones Unidas utiliza una proporción de 1:6 de Equivalentes de Retinol (RE) para el betacaroteno y una proporción de 1:12 para otros carotenoides de provitamina A, basadas en la absorción estimada de 30% de betacaroteno. El Instituto de Medicina de los EEUU informó más recientemente una proporción de 1:12 de los Equivalentes de la Actividad de Retinol (RAE) a los equivalentes de betacaroteno, la tasa de conversión utilizada por HarvestPlus.Las muestras de plátano fueron llevadas por aire desde el campo al laboratorio en Lovaina, Tabla 2. Estimaciones disponibles de contenido de carotenoides de provitamina A y actividad de retinol en una selección de alimentos básicos. Los resultados preliminares sugieren que los cultivares de plátano con pulpa anaranjada, que son populares en Camerún, son fuentes significativas de los carotenoides de la provitamina A, aunque ninguno es tan rico en ellos como los bananos Fe'i estudiados en Micronesia (Tabla 2). Las pVAC consisten de aproximadamente iguales cantidades de alfa y betacaroteno (44-48% de carotenoides totales). Las patatas dulces y los bananos Fe'i tienen las más altas proporciones de betacaroteno (60-90%) (Englberger et al. 2006). Utilizando la proporción de bioconversión de 1:12, una comida regular de 200 g de plátano 'Batard' proporcionaría alrededor de un tercio de la necesidad diaria de vitamina A para un adulto promedio (500-900 µg/día), asumiendo que estas pVAC son retenidas durante el procesamiento.No solo la cantidad y tipo de carotenoide influye sobre la calidad nutritiva de los alimentos, sino otros factores también tienen un efecto: • Estado del alimento a preparar (tiempo de almacenamiento, madurez, estado físico), • Edad y estado fisiológico del consumidor, • La retención de pVAC en la matriz alimentaria (esto se relaciona con la digestibilidad del alimento), • El método de cocción o procesamiento, • Otros alimentos consumidos al mismo tiempo.En plátano, la evidencia sugiere que el amarillamiento de la pulpa de la fruta es causado más bien por la descomposición de la clorofila, proceso que revela los carotenoides, que por la biosíntesis de los carotenoides, como lo que ocurre en otras frutas, ejemplo el albaricoque, mango, papaya (Rodríguez-Amaya 1997). Giami y Alu (1994) descubrieron que los carotenoides totales en el plátano disminuyen casi a la mitad durante la maduración. Similares tendencias fueron observadas por Ngoh Newilah (2005), uno de los colaboradores del proyecto HarvestPlus, sugiriendo que la pérdida de betacaroteno en algunas variedades ricas en micronutrientes puede llegar hasta 75%. El presente proyecto intenta determinar el punto en el desarrollo de la fruta en el cual la biosíntesis se detiene, que tipos de carotenoides son afectados, el impacto de permitir a la fruta que madure en la planta a diferencia de que madure en almacenamiento, y como estos factores varían de acuerdo a la variedad.Los plátanos se cocinan (por ejemplo, se fríen, se hierven, se asan, se convierten en puré) en varias etapas de maduración dependiendo de la madurez de la fruta disponible. Por ejemplo, una sobreproducción puede significar plátanos muy maduros para el desayuno, almuerzo y cena. Sin embargo, existen evidencias de que la madurez del plátano en las comidas procesadas está asociada con las preferencias del consumidor (Dury et al. 2002). Si el contenido de carotenoides disminuye durante la maduración en muchas variedades de plátano, entonces un cambio en el almacenamiento y hábitos alimentarios podrían proporcionar más micronutrientes al consumidor.La cocción tiene efectos contradictorios sobre los niveles de los carotenoides. Los alimentos procesados pueden tener mayores niveles de carotenoides biodisponibles debido al debilitamiento de la matriz del alimento, permitiéndoles ser absorbidos con mayor facilidad (Englberger et al. 2003, Van den Berg et al. 2000). Por otro lado, la cocción, especialmente a temperaturas altas y por mucho tiempo, destruye los carotenoides, y convierte los isómeros trans en isómeros cis, los cuales tienen una menor actividad de la vitamina A (Booth et al. 1992). Un informe sugiere que un gran porcentaje de carotenoides se retiene cuando el plátano se fríe (Rojas-González et al. 2006).Además, los niveles de antinutrientes en los alimentos que se consumen al mismo tiempo, igual que su digestibilidad, influyen sobre el grado hasta el cual los micronutrientes son absorbidos y convertidos en el cuerpo. Por ejemplo, los carotenoides son solubles en grasa, y las evidencias indican que las grasas dietéticas en un alimento facilitan la absorción de los carotenoides (Yeum y Russell 2002).En términos de contenido de micronutrientes, una comida ejemplar podría ser el plátano frito en aceite rojo de palma, una de las fuentes más ricas de carotenoides (Ngoh Newilah et al. 2005). El proyecto HarvestPlus examinará más de cerca los efectos de los micronutrientes mediante diferentes métodos y prácticas de procesamiento tradicionales, y la biodisponibilidad de los micronutrientes a los consumidores.En vez de concentrarse en los micronutrientes en una variedad, exploraremos sistemas de subsistencia basados en bananos y plátanos como un todo. ¿Cómo ellos funcionan en términos de proporcionar el complemento completo de nutrientes necesarios para una dieta sana? ¿Cuáles son los minerales o micronutrientes faltantes o provenientes de algún otro alimento?Abordar las deficiencias de micronutrientes para mejorar la dieta no es solo cuestión de identificar los alimentos nutritivos, sino también hacer que estos alimentos estén disponibles en las cantidades necesarias para que tengan un impacto sobre la salud. La pregunta clave es si las poblaciones que sufren de desnutrición tienen acceso a los alimentos ricos en micronutrientes.Los plátanos y los bananos de cocción son cultivos de subsistencia en grandes partes de África tropical, incluyendo las áreas donde la deficiencia de micronutrientes ha sido identificada como un problema. Por ejemplo, en Camerún, los plátanos forman la mayor parte de la dieta casi en todos lados. Ellos son consumidos de muchas maneras, asados, fritos, hervidos, cocinados a vapor, secos, en puré o crudos (Ngoh Newilah et al. 2005). Pocos cultivos básicos ofrecen tanta versatilidad. Sin embargo, en las ciudades, los plátanos y los bananos de cocción son productos relativamente caros que a menudo están fuera del alcance de los pobres. La disminución del precio del plátano requeriría un aumento sustancial en los rendimientos durante todo el año.Los rendimientos de los plátanos y de los bananos de cocción en África subsahareana son relativamente bajos aunque las tecnologías que pudieran mejorar los rendimientos son tentadoramente sencillas; la utilización de material de plantación sano y el fomento de la siembra a mayores densidades son vías eficaces para aumentar la producción en los ensayos. Cualesquiera de los cultivares ricos en micronutrientes necesitarán ser promovidos junto con tecnologías de producción que aumenten los rendimientos. Por esta razón, el proyecto HarvestPlus también está llevando a cabo ensayos en las fincas sobre la producción a altas densidades en Ghana y Camerún.Recientemente, el Banco Mundial situó la nutrición en el centro de su agenda de desarrollo (World Bank 2006). La agricultura y la diversidad de los cultivos desempeñan claramente un papel importante en esta agenda. Posiblemente, el proyecto HarvestPlus, representa otro precursor más que exige investigación para considerar su impacto no solo en términos de rendimiento, sino en términos de salud y el bienestar que proporciona. Tesis de Doctorado (PhD) presentada en mayo de 2006 ante la Facultad de Bioingeniería, Katholieke Universiteit Leuven, Bélgica Los nematodos fitoparásitos imponen una seria amenaza sobre la producción agropecuaria en todo el mundo. Los cultivos resistentes a los nematodos se consideran generalmente como la opción de manejo más favorable, contrario al muy disputado uso de nematicidas químicos. Para la mayoría de los cultivos, incluyendo el banano, las variedades con resistencia natural son escasas o no cumplen con las normas de producción o culturales. El conocimiento de los mecanismos de resistencia es aún muy pobre para muchas interacciones entre las plantas y los nematodos, así, que la selección o las técnicas de mejoramiento genético no se aplican con toda su capacidad.Las plantas producen una gran variedad de químicos biológicamente activos, metabolitos secundarios, que están involucrados en la defensa de la planta contra las plagas y enfermedades. Las principales clases de metabolitos secundarios incluyen alcaloides, terpenoides y fenilpropanoides. El método biosintético de los fenilpropanoides, los llamados compuestos fenólicos, está bien caracterizado y constituye un objetivo potencial para el mejoramiento de la resistencia contra los nematodos.El objetivo del presente estudio fue adquirir un mejor entendimiento de la interacción entre los nematodos fitoparásitos y los metabolitos secundarios de las plantas, en particular, los fenilpropanoides, con el fin de aumentar el conocimiento de la defensa de las plantas contra los nematodos. El estudio se concentró en la interacción entre el banano y su principal nematodo Radopholus similis. Un mejor conocimiento de los mecanismos de resistencia en el banano y una de las características particulares de las variedades resistentes puede facilitar el mejoramiento y el cribado de germoplasma y de los híbridos, o proporcionar el fundamento para el mejoramiento genético.Los ensayos in vitro mostraron que los metabolitos secundarios afectan el comportamiento de los nematodos de Musa, incluyendo R. similis y Meloidogyne incognita. Los metabolitos actúan como atrayentes o repelentes, inducen la parálisis, reducen la incubación o hasta causan la muerte.Cinco variedades de banano con estados de hospederos bien caracterizados para R. similis, incluyendo los susceptibles 'Grande naine' (AAA, subgrupo Cavendish) y 'Obino l'ewai' (AAB, plátano) y los resistentes 'Yangambi km5' (AAA, subgrupo Ibota), 'Pisang jari buaya' (AA, subgrupo Pisang jari buaya) y 'Calcutta 4' (Musa acuminata ssp. burmannicoides) fueron seleccionados para la identificación de las barreras potenciales físicas y químicas para la infección con nematodos en las raíces del banano. Los métodos incluyeron un ensayo cuantitativo de lignina, cromatografía líquida y espectrometría de masa. A través del teñido histoquímico, se localizaron los fenilpropanoides en el tejido de las raíces.Las variedades resistentes de banano tuvieron una mayor cantidad de fenilpropanoides que las variedades susceptibles. Las paredes celulares de las raíces resistentes contenían niveles significativamente más altos de lignina y esteres de ácido ferúlico. La lignina parece que participa principalmente en la protección del haz vascular tanto de manera constitutiva como durante la infección. Los esteres de ácido ferúlico en las paredes celulares corticales actúan como sustratos para la dimerización catalizada por peroxidasa y entrecruzado de los componentes de paredes celulares, y como sitios de iniciación para la lignificación. Mayores niveles de estos compuestos en las variedades Interacciones entre los nematodos fitoparásitos y el metabolismo secundario de las plantas, con énfasis en los fenilpropanoides en las raíces resistentes significan que sus paredes celulares están mejor equipadas para las modificaciones que aumentan la resistencia contra las enzimas hidrolíticas secretadas por los nematodos durante el proceso de infección.En general, las plantas resistentes responden a la infección por nematodos endoparásitos migratorios como el R. similis, con un ennegrecimiento de los tejidos rápido y extenso, hipersensible, que conduce a una necrosis que no se extiende y a la interrupción de la migración de los nematodos. El ennegrecimiento de los tejidos es el resultado del daño celular y del subsiguiente contacto entre las enzimas oxidatorias, peroxidasa y polifenol oxidasa, y sus sustratos fenólicos. Las raíces del banano contienen un amplio suministro de sustrato, dopamina, para la polifenol oxidasa. En las variedades resistentes, los niveles de dopamina fueron más altos que en las variedades susceptibles. Además de dopamina, en las raíces se encuentran otros compuestos, que probablemente están relacionados con la antocianidina y constituyen barreras químicas potenciales a la infección con nematodos.La actividad enzimática fue evaluada en las raíces de las variedades susceptibles y resistentes infectadas con el R. similis. Primero, se descubrió que la dopamina y el catecol fenilpropanoides son los sustratos más eficaces para la polifenol oxidasa extraída de las raíces de banano. No existió una correlación positiva entre la actividad constitutiva de la fenilalanina amoníacoliasa (la primera enzima en la vía biosintética de fenilpropanoides), peroxidasa y polifenol oxidasa y la resistencia al R. similis. La infección con los nematodos indujo de manera significativa la actividad de fenilalanina amoníacoliasa en las raíces de la variedad resistente in 'Yangambi km5'.También se estudió el efecto del inhibidor de la transportación de la auxina sintética, el ácido N-1-naftilftalámico, sobre el desarrollo de las raíces de banano. Los resultados indican que el ácido N-1-naftilftalámico es eficaz en la reducción del número de raíces nodales y laterales, una reducción del largo de las raíces y la pérdida de la dominancia apical. El ácido N-1naftilftalámico puede ser utilizado para estudiar las interrelaciones potenciales entre el desarrollo del sistema radical del banano, reproducción de los nematodos y metabolismo de las auxinas, y el papel de los fenilpropanoides y la dopamina.Tesis Caracterización de una población segregante de Musa con respecto a la partenocarpia y fertilidad masculinaTesis de Maestría presentada en septiembre de 2005 ante la Universidad de Makerere, Uganda Partenocarpia es el desarrollo de las frutas en ausencia de polinización y fertilización. El fenómeno ofrece varios beneficios a los agricultores, industrias de procesamiento y consumidores. Sin embargo, el desarrollo partenocárpico tiende a reducir las posibilidades de mejoramiento genético a través de cruzamientos debido a que a veces es asociado con una reducida fertilidad reproductora. La mayoría de los bananos cultivados son partenocárpicos y estériles. Ellos también son susceptibles a las plagas y enfermedades que son responsables por las serias pérdidas de los rendimientos y amenazan a los cultivos. Los genes de resistencia a la mayoría de estas enfermedades y plagas pueden ser encontrados en diploides silvestres no partenocárpicos, que tienen alta fertilidad de sus semillas. Durante el cruzamiento, la mayoría de los híbridos resultantes heredan características de racimo inferiores del progenitor masculino diploide silvestre. Por lo tanto, es necesario mejorar estos diploides silvestres y sus progenies con respecto a la partenocarpia antes de utilizarlos en el mejoramiento para resistencia. En los bananos, la base genética de esta característica importante es compleja y no es entendida completamente, aunque este conocimiento es necesario para los mejoradores en función de encontrar una vía de eliminar la producción de semillas en los híbridos de banano. Varios bananos triploides cultivados locales tienen fertilidad femenina y pueden ser mejorados genéticamente con respecto a la resistencia a plagas y enfermedades mediante su cruzamiento con progenitores masculinos mejorados resistentes. Se ha reportado que la tasa de mejoramiento genético en Musa cultivada depende de la fertilidad reproductora y habilidad de los progenitores masculinos de producir polen viable. Por lo tanto, los mejoradores están interesados en genotipos con buenas características hortícolas, resistencia a plagas y enfermedades y alta fertilidad masculina para el mejoramiento de triploides cultivados. Los objetivos de este estudio consistieron en determinar la cantidad de genes que controlan la partenocarpia en Musa diploide y evaluar la viabilidad del polen y desempeño agronómico de los híbridos para identificar a los progenitores masculinos convenientes para propósitos de mejoramiento.Se realizaron cruzamientos entre el TMB2x 6142-1 no partenocárpico, como progenitor femenino y el TMB2x 8075-7 partenocárpico, como progenitor masculino. Los 89 hijos resultantes fueron establecidos en el campo y evaluados con respecto a la partenocarpia embolsando la inflorescencia femenina emergente durante la antesis. La fertilidad del polen de la progenie fue evaluada mediante la germinación in vitro utilizando un medio de solución de sacarosa al 3%.De las 89 progenies, 69 tuvieron frutas marchitas y secas y 20 tuvieron sus frutas llenas con pulpa. Estos resultados se ajustan significativamente a una proporción de 1:3 para tres genes complementarios que controlan la partenocarpia. El análisis de la varianza sugiere que las diferencias genéticas explican la mayor parte de la variación fenotípica en la partenocarpia.Once nuevos genotipos, a saber, TMB2x 2658S-20, TMB2x 2658S-35, TMB2x 2658S-45, TMB2x 2658S-58, TMB2x 2920S-5, TMB2x 2926S-1, TMB2x 2975S-6, TMB2x 2975S-11, TMB2x 2975S-40, TMB2x 2975S-44 y TMB2x 2975S-47, tuvieron alta tasa de fertilidad del polen, buen peso de racimos, y fueron resistentes a la Sigatoka negra. Ellos se recomiendan como progenitores masculinos adecuados para los programas de mejoramiento de bananos, para ampliar la variabilidad genética de la reserva de progenitores masculinos diploides que trabajan en crear la resistencia a la Sigatoka negra y buenas características agronómicas. Las pruebas de la viabilidad del polen también mostraron que el genotipo influencia los procesos fisiológicos y bioquímicos involucrados en la germinación de los granos del polen. Se recomienda realizar más estudios para determinar los procesos fisiológicos y bioquímicos relacionados con la germinación del polen y crecimiento en tubos de ensayo en los bananos.Dinámicas de la población, distribución en el campo y dentro de la planta, de la mosca del banano (Erionota thrax) (Lepidoptera: Hesperiidae) y sus parasitoides en Penang, MalasiaTesis de Doctorado (PhD) presentada en abril de 2006 ante la Universiti Sains Malasia El propósito de esta investigación fue estudiar la fauna de un insecto devorador de hojas y las dinámicas de la población y distribución espacial de un insecto defoliante (Erionota thrax) y sus principales parasitoides, en un monocultivo de banano con manejo intensivo y en una finca mixta de subsistencia con bajos insumos.Se tomaron muestras de los insectos devoradores de hojas y de los daños que ellos ocasionaban en dos campos recién sembrados con 'Pisang mas', un cultivar local, y con Cavendish, un cultivar comercial. También se registró la presencia o ausencia de estos insectos en otros cultivos y malezas. Entre abril y diciembre de 2004, se tomaron muestras de los huevos, larvas y pupas de E. thrax que luego fueron cultivadas en el laboratorio para recolectar los parasitoides. La distribución y el parasitismo de E. thrax en relación con la fenología del banano y la edad de las hojas fueron registradas en las plantas en la etapa de prefloración, en las plantas con flores, plantas con racimos, seguidores de hojas anchas y de hojas angostas.En ambos cultivares de banano se registraron cinco especies de insectos pertenecientes a cinco familias y tres órdenes. Spodoptera litura fue el insecto más dañino en 'Pisang mas', ocasionando la muerte de más de 50% de las plantas de uno a dos meses de edad, mientras que el E. thrax resultó ser más dañino en el Cavendish. E. thrax no fue encontrado en las malezas y otros cultivos. Los himenópteros Ooencyrtus erionotae y Brachymeria albotibialis resultaron ser los parasitoides más importantes de los huevos y pupas de E. thrax, con un parasitismo promedio de 51.3%±5.8 y 38.6%±12.4, respectivamente. La infestación y el parasitismo de E. thrax fueron significativamente más altos en los seguidores de hojas anchas y en las plantas en la etapa de prefloración. Los huevos y los insectos en la primera fase de desarrollo fueron significativamente más numerosos en las hojas más viejas mientras que los insectos en las etapas de desarrollo más viejas fueron más numerosos en las hojas jóvenes.Las características morfológicas, fisicoquímicas y fisiológicas durante la cosecha y al madurar de las variedades de la FHIA, Honduras, fueron comparadas con las de la variedad local 'Saba'. FHIA-03 se asemejó más a 'Saba' en términos de las caracterésticas de racimo y de fruta, producción de etileno y respiración.'Saba' fue superior a todas las variedades en términos de peso de la fruta, circunferencia y volumen, igual que la firmeza de la pulpa. FHIA-03 tenía la piel más gruesa. FHIA-23 tenía el racimo más pesado y el contenido de humedad en la pulpa más alto. El contenido de materia seca más alto fue observado en el FHIA-21.El color de la piel cambió de verde a amarillo en todas las variedades. A FHIA-23 Tesis le tomó cinco días para madurar, a 'Saba' y FHIA-21, siete y a FHIA-03 nueve, debido probablemente a que su piel era más gruesa. FHIA-03 tenía la acidez titulada más alta durante la cosecha, mientras que FHIA-23 la tenía más alta en la etapa de madurez. No hubo trazas de sólidos solubles totales cuando todos los bananos estaban aún verdes, pero una vez maduros, FHIA-03 tuvo los niveles más altos. Los niveles de almidón fueron más altos en 'Saba' y FHIA-21.Al clasificar las variedades de acuerdo a la producción de chips de banano y de ketchup, los panelistas prefirieron FHIA-21 frente a 'Saba', cuyos chips fueron considerados duros. El ketchup preparado con FHIA-23 fue el más preferido en términos de su sabor, sensación que deja en la boca, color rojo oscuro y consistencia espesa.Edna Delas Alas Vida Noticias de Musa Preparándose para la batalla contra el marchitamiento por fusarium El marchitamiento por Fusarium del banano, el tristemente célebre Mal de Panamá, que aniquiló las plantaciones del banano de exportación Gros Michel y llevó a su reemplazo por los bananos Cavendish resistentes en la segunda mitad del siglo veinte, está de vuelta. Una nueva variante de la enfermedad, llamada la Raza Tropical 4, ha estado propagándose a través de las plantaciones de los bananos Cavendish en Asia durante los últimos años, reduciendo las exportaciones y aumentando los costos de producción. La enfermedad, causada por el hongo Fusarium oxysporum f. sp. cubense (Foc), fue reportada sucesivamente en Taiwán, el Territorio Norte de Australia, Indonesia (incluyendo Papua, conocida antiguamente como Irian Jaya), Malasia, las provincias del sur de China y, más recientemente, en Filipinas, exportador número uno de los bananos Cavendish en Asia. La enfermedad también amenaza a las variedades tradicionales de las cuales depende el sustento de los pequeños productores.En la preparación para enfrentar esta amenaza, la Red de Banano de Asia y el Pacífico (BAPNET) se unió con los especialistas del Forestry and Agricultural Biotechnology Institute de Africa del Sur (FABI), y el Queensland Department of Primary Industry and Fisheries (DPI&F) para capacitar a los fitopatólogos en realizar encuestas, identificar plantas infectadas, recolectar los hongos e identificar los grupos de compatibilidad vegetativa (GCV) en Como parte del proceso para revitalizar ProMusa, se formó una alianza con la International Society for Horticultural Science (ISHS) para establecer una nueva Sección para el Banano y Plátano. ProMusa fue creada en 1997 con el fin de brindar apoyo al mejoramiento de Musa a través de seis grupos de trabajo entrelazados, cada uno de los cuales concentrándose en un típico particular: mejoramiento genético, marchitamiento por fusarium, enfermedades de manchas foliares causadas por Mycosphaerella, picudos negros del banano, nematodos y virus. Aunque ProMusa fue percibido como un foro valioso para la investigación avanzada y para resolver problemas urgentes, también se sintió que sus mecanismos de operación necesitaban cambios, para estimular la interacción entre los especialistas y enfocarlos en el desarrollo de una agenda coherente de investigación y desarrollo.Las nuevas estrategia y estructura, que incluyen tres grupos de trabajo sobre el mejoramiento, protección y producción de cultivos, se enfocan en el desarrollo de los bienes públicos globales, con base en la movilización de la mejor ciencia disponible a escala mundial, y la traen para relacionarla con las necesidades de la comunidad bananera internacional en los países en vías de desarrollo. El Grupo de trabajo en la protección de los cultivos celebrará su primer simposio mundial titulado \"Recent advances in banana crop protection for sustainable production and improved livelihoods\" en África del Sur los días 10-14 de septiembre de 2007. Las memorias se publicarán en el Acta Horticulturae de ISHS.Para más información sobre la reunión, visite el sitio web de ProMusa en la dirección www.promusa.org o el sitio web de ISHS en la dirección www.ishs.org. ","tokenCount":"23676"} \ No newline at end of file diff --git a/data/part_3/9294751797.json b/data/part_3/9294751797.json new file mode 100644 index 0000000000000000000000000000000000000000..6abd74fe6e59cfd87eee33fa13fc6d0cfcf8025c --- /dev/null +++ b/data/part_3/9294751797.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"59707fa8a9b866ffea1b8487dce4467e","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/68d7f23e-1cb5-4ae9-b2be-fcc9538b4a80/retrieve","id":"-1862850077"},"keywords":[],"sieverID":"d4786443-7be8-418c-a6a4-cbfe54ed3746","pagecount":"10","content":"Red clover (Trifolium pratense L.) is a globally significant forage legume in pastoral livestock farming systems. It is an attractive component of grassland farming, because of its high yield and protein content, nutritional value and ability to fix atmospheric nitrogen. Enhancing its role further in sustainable agriculture requires genetic improvement of persistency, disease resistance, and tolerance to grazing. To help address these challenges, we have assembled a chromosome-scale reference genome for red clover. We observed large blocks of conserved synteny with Medicago truncatula and estimated that the two species diverged ~23 million years ago. Among the 40,868 annotated genes, we identified gene clusters involved in biochemical pathways of importance for forage quality and livestock nutrition. Genotyping by sequencing of a synthetic population of 86 genotypes show that the number of markers required for genomics-based breeding approaches is tractable, making red clover a suitable candidate for association studies and genomic selection.Red clover is one of the most important forage legume crops in temperate agriculture, and a key component of sustainable intensification of livestock farming systems. Its beneficial attributes in terms of high protein forage and reduced need for nitrogen fertilizer input can contribute to reduce the environmental footprint of grassland based agriculture 1 . Red clover provides good biomass yield for two or three seasons 2 . This limited persistency has been attributed to biotic and abiotic stresses 1 . There is thus an urgent need for improving our understanding of the genetic basis of these traits, as well as those affecting forage yield, quality and livestock nutrition, in order to facilitate genetic improvement.In terms of available genomics resources, genome assemblies exist for the two model legumes, Medicago truncatula (Gaertn.) and Lotus japonicus L. 3,4 , and several legume pulse crops including common bean 5 , soybean 6 , chick pea 7 and pigeon pea 8 . Genomics resource development in forage legumes are less advanced, but a transcriptome assemblies exist for example in alfalfa (Medicago sativa L.red clover 10 . For the latter a consensus genetic map, based primarily on SSR markers is also available 11 . Current evidence suggests that synteny between white clover and M. truncatula is more highly conserved than synteny between red clover and M. truncatula 12 , most likely due to the fact that the basic chromosome number of eight is conserved between M. truncatula and white clover, whilst red clover has seven.Red clover is a diploid (2n = 2x = 14) species with a genome estimated to be 420 Mb 13 . It is heterozygous due to its gametophytic self-incompatibility system, and is difficult to inbreed without severe loss of viability and vigour 14 . A draft assembly of reads from 16 different genotypes was recently published 15 , consisting of 305 Mb in 267,382 scaffolds, and an N50 value of 2.4 Kb, using the same statistical criteria, as we have used here. While this assembly is a significant step forward, it is fragmented, and the scaffolds have not been anchored to a genetic or physical map. Here we report a chromosome-scale reference draft genome for a red clover genotype of the variety Milvus (Milvus B) by integration of Whole Genome Sequencing (WGS) of short-length reads, Sanger-based bacterial artificial chromosome (BAC) end sequences, a physical and two genetic maps. This assembly is the first within the major Trifolium genus, one of the largest in the Fabaceae family with 255 species 16 . After the model species M. truncatula, it is the second genome assembly of a forage legume at pseudo-molecule level. This will provide a great platform for advances in genomics studies of traits of biological and agronomic importance in forage crops.Red clover genome sequencing and assembly. The genotype Milvus B of red clover was the source of genomic DNA for the sequencing and construction of the physical map. WGS was assembled from paired-end and mate-pair libraries using the Platanus assembler 17 , which outperformed the results obtained by ABySS 18 and SOAP2 19 . The number of contigs was lower and their contiguity statistics were higher in the assembly produced by Platanus. We also tested and discarded the option of using SOAP2 to scaffold the contigs produced by ABySS, and the use of a Gap-Closer as an additional final step. After discarding sequences shorter than 500 bp, ABySS assembled 376 Mb in 108K scaffolds, SOAP2 assembled 430 Mb in 102 K scaffolds, and ABySS contigs scaffolded with SOAP2 produced 452 Mb in 105 K scaffolds. Platanus assembled 309 Mb in 39,904 scaffolds. Half of the assembly was contained in 353 scaffolds (N50 = 223 Kb), while 1054 scaffolds longer than 50 Kbp contained another 25%, and a significant number of shorter scaffolds contained the remaining 25% of the genome (Supplementary Table 1, Supplementary Fig. 1). We observed that 87.1% of the Kmers in the ABySS + SOAP2 assembly were present in the Platanus assembly (Supplementary Table 2). We annotated 40,868 genes and 42,223 transcripts. Of those, 22,042 genes were anchored onto the seven chromosomes. Our final assembly with Platanus was smaller in total size than the others because the repeat content appeared fewer times, but without missing low copy regions, such as those rich in gene content. This is supported by the gene annotations and the K-mer spectras of reads for the different assemblies (Supplementary Fig. 2). In these figures, the areas under the Kmer spectra were coloured according to the number of times that such Kmers appeared in each assembly. Approximately 173, 74 and 41 Mb appeared once, twice and more than twice in the Platanus assembly, compared to approximately 206, 62 and 206 Mb in the ABySS+ SOAP2. Also, we compared the annotation of the Platanus assembly with the annotation of the assembly by ABySS and SOAP2, which contained 66,250 proteins. Approximately 27% of these proteins were fully contained with a perfect match in other proteins, while the corresponding percentage was 2.8 in the Platanus annotation. The gene-space lengths were similar, with 138 and 148 Mb for the Platanus and ABySS assemblies, respectively. We aligned 93% of the proteins from the Platanus assembly to the ABySS + SOAP2 assembly. The proportion of aligned proteins was the same in the other direction. Finally, we aligned each proteome to the M. truncatula proteome and identified best-reciprocal-hits (BRH). Approximately 9% of the BRH with the Platanus proteome were not found among the BRH with the ABySS+ SOAP2 proteome. The proportion of these exclusive BRH was identical in the other direction (i.e. 9%). Furthermore, the percentage of complete and partial core proteins reported by CEGMA 20 was 85.48% and 95.56% for the Platanus assembly, and 78.2% of the previously published RNA-Seq reads 10 mapped to this assembly. Finally, we compared our WGS assembly with an assembly previously published from a pool of 16 red clover varieties 15 . The composite nature of the original sample and the absence of genetic or physical maps limited the coverage of that assembly. The sample was sequenced to an average of 30× , and the assembly contained 267,382 scaffolds, of which 135,502 were longer than 500 bp, for a total of 268.2 Kbp including an important proportion of duplicated content (Supplementary Fig. 3).We integrated our WGS with Sanger-based bacterial artificial chromosome (BAC) end sequences, and two genetic maps. The physical map contained 29,730 BACs, of which almost 23,000 were in contigs (77.3%). Singleton BACs amounted to 6,743. There were 2,440 contigs ranging in size from a few hundred kb to over 1.7 Mb. Originally, about 200 genetic markers from two maps 13 (Supplementary Fig. 4) were anchored to the physical map. Here we aligned 1,031 of the 1,388 markers from the two maps to place 532 of the longest scaffolds totalling 153.4 Mb, and used the BAC-end sequences as markers to further link 330 unplaced scaffolds with already placed scaffolds from the same physical contig. After removing shorter sequences, the final version of the genome assembly consisted of 309 Mb including 164.2 Mb in 7 chromosome-length sequences or pseudo-molecules, plus 75.2 Mb in 542 scaffolds longer than 50 Kb. The seven pseudo-molecules ranged from 13.02 to 28.17 Mb (Supplementary Table 1).Genome annotation of the red clover genome. We annotated 40,868 genes and 42,223 transcripts. Fig. 1 illustrates the spatial density of the 22,042 genes in the chromosomes (see Supplementary Fig. 5 for the individual chromosomes). A homologous protein in the UniprotKB database was found for 39,516 transcripts (93.6%), and 1,580 of the remaining transcripts (3.7%) had a novel ORF. A total of 31,576 transcripts (74.8%) was annotated with at least one GO term (Supplementary Table 3). The number of genes in red clover is lower than in M. truncatula (50,894) and soybean (56,044), but higher than in common bean (27,197). Red clover and M. truncatula have similar gene density, around 1.3 genes per 10 Kb (40,868 genes in 309 Mb and 50,894 genes in 389 Mb, respectively). However, the genes are not equally distributed in the genome. The mean value of the gene density in 10 Kb windows is similar in red clover, common bean and soybean (approximately 0.75 ± 0.96 genes per 10Kb), but lower than in M. truncatula (1.51 ± 1.13 genes per 10 Kb), because the latter has more intervals with many genes as observed in Fig. 1, and Supplementary Fig. 5. The CDS and exon lengths were similar in the four legumes, but the intron lengths were significantly longer in the legumes than in Arabidopsis thaliana (Supplementary Fig. 6).There were 10,449 orthologous groups of genes common to red clover and four other Fabaceae species, and 2,730 groups common to all but L. japonicus (Fig. 2). The number of genes in each cluster was similar among these legumes, but differed from A. thaliana. Only 57 GO term clusters had more than twice the number of genes in red clover than in M. truncatula. This corresponded to 1,253 proteins mostly belonging to regulatory and transport families (Supplementary Fig. 7). We constructed a phylogenic tree on the basis of the alignment of the proteins of 818 single-copy clusters present in the five Fabaceae species and A. thaliana. We estimated that red clover and M. truncatula diverged around 23 million years ago (MYA) (Fig. 3), similar to that observed between common bean and soybean, which diverged ~19.4 MYA 5 . Furthermore, our analysis showed that the split of the papilionoid clades took place around 50 MYA, consistent with previous results 21 .Macrosynteny was conserved between red clover and M. truncatula, which shared 17,278 gene pairs in 248 synteny blocks (Fig. 1). Red clover chromosomes 1 and 6 were almost entirely syntenic with M. truncatula chromosomes 1 and 7, respectively. The remaining five chromosomes had large synteny blocks each with two or three M. truncatula chromosomes (Fig. 1), as observed by others 12 . A synteny block was declared when there was at least 30 consecutive gene pairs. We quantified the divergence rates from gene pairs in the syntenic regions of each chromosome and observed a clear peak for the Kimura rates around 0.15 for the whole genome and equivalent divergence rates for each chromosome. We found 347 duplicated gene pairs in red clover (Supplementary Fig. 8), approximately three times less than the 963 gene pairs found in M. truncatula 3 . The pairs in red clover originated from duplication events around 12.7 MYA (Supplementary Fig. 9), thus after the divergence from M. truncatula, but we did not find a closer relation to repeat elements Gypsy or Copia in these duplicated gene pairs relative to all genes (Supplementary Fig 10).The repeat content was 41.82% (Supplementary Table 4), which is slightly lower than previously reported 15 . We re-annotated the repeat elements in several legumes with recent versions of the databases and tools, and revised the fraction of repeats in M. truncatula to 48.7%, which is closer to the red clover values than the original annotation (30.5%) 3 . In common bean this value was adjusted to 72.1%, because we found a larger number of LINE and Copia transposable elements (TE) than in the original annotation (45.4%) 5 and in soybean to 65.5%, similar to the values originally reported (61.5%) 6 . Class 1 TEs constituted 20.6% of the red clover genome (63.5 Mb). The fraction of LINEs and SINEs was similar in red clover and M. truncatula, but the proportion of Gypsy LTRs was much higher in M. truncatula (Fig. 1). Furthermore, the high Gypsy LTR regions coincided with high Copia LTR content. This striking difference is likely due to a recent burst of Gypsy activity, which took place 1-2 MYA in regions of M. truncatula not shared with red clover. This recent burst of Gypsy LTR activity, as well as a second one around 20 MYA that can be observed in both species, resulted in a much lower number of new Gypsy copies in red clover (Fig 1, Supplementary Fig. 9). Approximately 88% of the genes anchored in chromosomes had a Copia LTR within 10Kb, a third of them within 1 Kb. Approximately 39% of the genes had a Gypsy LTR within 10 Kb (Supplementary Fig. 10). Class 2 TEs constituted 19.1% of the red clover genome (58.9 Mb), which is similar to M. truncatula, but higher than in common bean and soybean (Supplementary Table 4). Fig. 1 highlights that although the total concentration of DNA transposons was similar, the distribution of families was not. Red clover had a higher proportion of hAT, Stowaway and Pogo transposons than any of the other species analysed, but in contrast to M. truncatula did not have MULE transposons.Gene clusters associated with forage nutrition traits. The high concentrations of isoflavones in red clover forage, particularly formononetin 1 , can have oestrogenic effects with adverse consequences for reproduction in ruminants, especially sheep 22 . Conversely, high formononetin content in red clover forage has been linked with higher live weight gains in lambs 23 . Formononetin concentration in red clover is under genetic and environmental control 24 . Four enzymes (Supplementary Fig. 11) are involved in formononetin biosynthesis, isoflavone-synthase (IFS1), 2-hydroxyisoflavanone dehydratase (HIDH), isoflavone-O-methyltransferase (IOMT), 2, 7, 4′ -trihydroxyisoflavanone 4′ -O-methyltransferase (HI4OMT), and two additional enzymes (Supplementary Fig. 11) are involved in the interconversion of formononetin conjugates isoflavone 7-O-glucosyltransferase (IF7GT) and isoflavonoid malonyl transferase (MAT7). Except for HIDH, which has had multiple copies since early in the evolution of plants and at least three recent duplication events in different loci of red clover (Supplementary Fig. 12), the genes encoding the other enzymes were distributed in five clusters in red clover and M. truncatula. Each cluster is dominated by one of the enzymes, and is surrounded by the same genes in both red clover and M. truncatula (Supplementary Fig. 13). Some genes encoding HI4OMT, IOMT and IF7GT were located in more than one cluster, but the genes in different clusters were distributed in different phylogenetic branches, and appear to encode distinct groups of isoenzymes and to have evolved independently prior to the Fabaceae divergence (Supplementary Figs 14-18). Five IOMT genes were clustered on M. truncatula chromosome 5, and red clover scaffold 1068 (3 genes) and scaffold 29975 (2 genes). The IOMT cluster includes two copies of tRNA pseudouridine synthase (TruA) in both species (Supplementary Fig 13). Five HI4OMT genes clustered in M. truncatula chromosome 4 embedded among several genes with unknown function. The five homologous genes in red clover were in different unplaced scaffolds, which may form a cluster too. The IFS1 cluster is on red clover chromosome 3 and M. truncatula chromosome 4, and is formed by four IFS genes, as well as two IOMT genes and two HI4OMT genes from phylogenetic branches different to the genes in the previous clusters. An Auxin-response 3 transcription factor and a cellulose synthase A gene are also located in the IFS1 cluster in both species. The IF7GT cluster contains three contiguous IF7GT genes on red clover chromosome 2 and M. truncatula chromosome 5. IF7GT genes have expanded in soybean and common bean, but not in other analysed legumes. Finally, the MAT7 cluster on red clover chromosome 6 is formed by five contiguous MAT7 genes plus a sixth one 200 Kb upstream. The latter is contiguous to an expansin gene, a duplicated F-box transcription factor, and three IF7GT genes from a different phylogenetic branch than the previous IF7GT genes. The M. truncatula MAT7 cluster on chromosome 7 has an equivalent structure except that two IOMT genes are located between the MAT7 genes, physically linking both pathways. There are three homologous genes in red clover in unplaced scaffolds. Furthermore, there are eight additional IOMT genes distributed in eight unplaced scaffolds in red clover, though they belong to the same phylogenetic branch (Supplementary Fig. 15). Remarkably, this branch contains 18 genes in soybean, only four in common bean, and four pairs in M. truncatula chromosomes 1 and 7, including the described pairs in the MAT7 and IFS clusters (Supplementary Fig. 15). Some members of the families of three key genes of the formononetin biosynthesis pathway (IFS1, HIDH and HIOMT) (Supplementary Fig 11) were previously shown to be expressed at low to moderate levels in leaves of mature plants. Of those, the IFS1 gene (mRNA 15433) was expressed most highly (up to 362 RPKM under drought conditions), while HIDH (mRNAs 39329 and 5684) and HIOMT (mRNAs 15429 and 15438) had expression levels between 4 and 66 RPKM. The MAT7 and IF7GT gene families were expressed at lower levels (< 15 RPKM).Red clover has superior feeding value in terms of transfer of omega-3 fatty acids from ruminant feed to milk 25 , and reduced levels of proteolysis during wilting and ensiling of its biomass 26 . These properties have been linked to the prevalence of the enzyme polyphenol oxidase (PPO). This enzyme catalyses the conversion of endogenous di-phenols to quinones. The quinones can bind with proteins and reduce the speed of proteolysis and lipolysis in the rumen. In red clover PPO appears to form a cluster with three 26 to seven 27 members. We have identified five PPO genes in the red clover genome assembly (Supplementary Fig. 19). Four of them were highly similar to each other and different to PPO genes in related species. PPO1 and PPO2 genes were located 1 Mb apart on chromosome 6. A second copy of PPO1 was found on scaffold 8733, and PPO3 was located in scaffold 1247. The latter is also similar to mRNAs previously annotated as PPO4 and PPO5 27 . A further PPO gene, which is homologous to the three PPO genes present in M. truncatula, was found on chromosome 2 of red clover in a region conserved with chromosome 2 of M. truncatula (Supplementary Fig. 20). The existence of two single copy PPO genes in common bean, and six copies of each of these two genes in soybean is consistent with the hypothesis that the red clover genes in the chromosome 6 cluster are a result of duplication events, and that their homologues are missing in M. truncatula. Both the latter and M. sativa, in contrast to red clover, have little PPO activity 26,28 implying that the PPO genes in these two species are inactive or lack a substrate.a population determines the marker density required in genome wide association studies (GWAS) and for genomic selection (GS) in breeding programmes, as well as providing insight into population structure. The average LD at 100 Kb in the red clover variety Lea, a synthetic population with multiple parents, varied between 0.15 and 0.25 in the seven chromosomes (see Supplementary Table 5, and Supplementary Fig. 21 for graphs of LD decay, landscape and heatmaps). Given the marker density and genome size a QTL would be on average 76.5 Kb from the nearest marker. At this distance LD varied between 0.19 and 0.31 (Supplementary Table 5). Supplementary Fig. 5 shows that heterozygosity is close to equilibrium, which is consistent with the way in which synthetic populations are generated. The population was derived from three parental populations by polycrossing, but PCA analysis of the marker data was unable to separate the founder populations clearly, as the first two principal components accounted for only 4.3% of the variance (Supplementary Fig. 22).This work provides a genome assembly on a pseudomolecule level of a highly heterozygous genome. The inbreeding depression and loss of viability associated with self-incompatibility of red clover 14 has precluded the generation of inbred lines for sequencing purposes. The evidence from the comparison of several short-reads assemblers supported the use of Platanus as the best option to generate a high quality reference assembly in this heterozygous species (Supplementary Figs 1 and 2). We showed that there was no additional content in the other assemblies (Supplementary Table 2), and that our assembly is a significant step forward in comparison to the resources available to date.The anchoring of a significant number of scaffolds, that contained at least half of the genes, allowed the spatial comparison of features between M. truncatula and red clover. We also estimated that the divergence of red clover and M. truncatula is comparable to the divergence of common bean and soybean. In general terms, the gene content, distribution, and length are conserved among legumes, which is relevant for translational agrigenomics. For example, the enzymes involved in the formononetin pathways are distributed in five clusters, the structure of which, are conserved between red clover and M. truncatula. Although the similar total content of repeats in M. truncatula and red clover is inconsistent with the hypothesis that outbreeding species have a higher potential for proliferation of transposable elements 21 , there are dramatic compositional differences between the two species (Fig. 1). The similar sized genomes, but contrasting breeding systems would appear to provide a good basis for comparison. It is possible that the compositional differences are associated with the different breeding systems, but perhaps other events such as chromosomal rearrangements are more closely associated with variation in repeat element composition.The genotyping by sequencing analysis of the population based variety \"Lea\" has provided insight into the level of linkage disequilibrium in synthetic populations, which is one of the most common ways of generating new varieties in outbreeding forage crops. As expected there is no population structure, and low levels of linkage disequilibrium throughout the genome (Supplementary Fig 21). Nevertheless, the marker coverage would appear to be sufficient for meaningful studies of the genetics of complex traits, and genomics based breeding approaches, given that LD at the average marker distance was near 0.2 or above (Supplementary Table 5).The unique feature of significant PPO activity in red clover in contrast to other forage legumes, notably M. truncatula and M. sativa 26,28 would suggest that some of the genes in the cluster of PPO genes located on chromosome 6 and two unplaced scaffolds is responsible for the red clover PPO activity, rather than the PPO gene on chromosome 2, which is homologous to a PPO cluster on chromosome 2 in M. truncatula (Supplementary Fig. 19 and 20). However, previous RNASeq data show that PPO genes located on chromosome 2, 4, 6 and 7 were expressed at moderate levels in red clover leaves, and five of those PPO genes were upregulated after exposure to drought stress 10 . Other expression analyses in red clover suggest that the PPO4 gene is responsible for most of the activity in red clover mature leaf tissue 28 . This is most closely related to the PPO gene, described here as PPO3, which is located on scaffold 1247 (Supplementary Fig. 19). Two partial sequences from T. repens 28 have the highest degree of similarity to the PPO gene on scaffold 1247 (PPO3), but have been described as PPO1 and PPO2 27 . Further experimental work is needed to establish the relative activity of the different PPO genes, and to what extent their activity is limited by substrate availability. The close relationship between red clover and M. truncatula will promote the translation of information from model species to forage crop, and this red clover assembly has facilitated analysis and mapping of pathways of particular importance for red clover nutritional quality.Plant material and BAC libraries. The mapping population used in this work consisted of 188 genotypes of F 1 progeny from a cross between a genotype of the variety Milvus and a genotype of the variety Britta. This population was generated initially to obtain material segregating for flowering time and a range of morphological characters. Three BAC libraries were created using high molecular weight DNA from a specific genotype of the Milvus variety (Milvus B). For one of the libraries the DNA was partially cut with the restriction endonuclease HindIII as described 27 . This library, named TP_MBa, consisted of more than 23000 clones of an average size of 125 Kb. Two other libraries were made, one cut with EcoRI (named TP_ABa) and one with BamHI (TP_ABb) as described. They each consisted of 36864 clones, with similar average size inserts as the HindIII library. All three BAC libraries are available to the public from the Arizona Genomics Institute Resource Center (http://www.genome.arizona.edu/orders/). Physical map and BAC end sequencing. Using methods previously described, the three red clover BAC libraries were subjected to BAC clone end sequencing and BAC clone SNaPshot fingerprinting (FP) 29 . Specifically, we used 18432, 9216 and 9216 BAC clones from the libraries TP_MBa, TP_ABa, and TP_ABb, respectively, which together represented nearly 10x genome coverage. The output data provided the raw inputs of the genome frame to allow physical map construction, anchoring of genetic and physical maps to the M. truncatula reference sequence 3 , and for comparative analysis to other genome data sets. A de novo BAC clone physical map was assembled with the FP data using FPC software with the settings and parameters as previously described 29 .Genetic map construction. The F1 mapping population described above was used to generate the genetic map. A total of 153 markers, based on either single nucleotide polymorphisms (SNPs) or microsatellites (SSRs), were used. The SNPs were identified by amplicon sequencing of ESTs, either intron-spanning or within exons (as identified by BLAST hits to M. truncatula). Putative polymorphisms were first identified in the two parental genotypes, and then either sequenced in the whole population of 188 or genotyped by LGC using the KASPar methodology (http://www.lgcgroup.com). The SSR markers were either obtained from markers previously described 13 , or developed in this work from the BES sequences, by identification of repeats using the programme MISA (http://pgrc.ipk-gatersleben.de/ misa/misa.html), followed by validation in a subset of the mapping population. Other markers were transferred from either M. truncatula or white clover from previous work 30 . The genetic map was constructed using JoinMap ® 4 31 , and linkage groups were identified by the grouping module with a LOD score threshold of 4. The locus order was calculated with the regression mapping module with Kosambi's mapping function for conversion of recombination frequency to cM, recombination frequency smaller than 0.4 and a LOD > 1, goodness-of-fit Jump threshold for removal of loci = 5.0, number of added loci after which to perform a ripple = 1, and third round = Yes. Amplification of genomic DNA was done in a 10 or 20 μ l reaction volume depending upon whether amplification product was to be visualised by gel electrophoresis. Approximately 20 ng of genomic DNA was added to 1xAmpliTaq buffer, 0.2 mM dNTPs, 0.2μ M forward and reverse primers and 1U of AmpliTaq DNA polymerase. The PCR amplifications were carried out in ABI 9700 (Applied Biosystems) with the following conditions: 10 min at 94 °C, then 35-40 cycles with 94 °C for 30 sec, Tm for 30 sec, and 72 °C for 1 min followed by a final extension at 72 °C for 7 min. The annealing temperature depended upon the individual primer pairs, but was typically 55-60 °C. The SSR amplifications involved fluorescent primers for subsequent analysis using an ABI 3730xl Genetic Analyzer (Applied Biosystems, Warrington, UK). Singleplex or multiplex reactions were run and analysed using GeneMapper v3.7 (Applied Biosystems, Warrington, UK). Amplicons for sequencing were cleaned to remove unincorporated primers and nucleotides with MicroCLEAN (Web Scientific, Crewe, UK) as described by the manufacturer, and prepared for sequencing according to ABI's protocol for capillary sequencing.Library generation, sequencing and assembly. Eight different libraries (Supplementary Table 6, ENA accession PRJEB9186) were created from the same genotype of the Milvus variety (Milvus B) that was used for the BAC library construction, and were sequenced using Illumina HiSeq 2000 or MiSeq instruments at The Genome Analysis Center (TGAC, Norwich, UK). Four of the libraries encompassed a 150 bp single-end library, two paired-end libraries with insert sizes of 100 and 150 bp, plus one with 100 bp reads that overlapped in 25 bp. Additionally, four mate-pair libraries with insert lengths of 3, 5 and 7 Kb were also created to improve the scaffolding. Read quality was assessed, and contaminants and adaptors removed. Illumina Nextera MP reads were required to include a fragment of the adaptor to be used in the following steps 32 .The two pair-end and two single-end shotgun libraries were assembled, and later scaffolded using mate-pairs libraries with four different insert lengths, using Platanus v1.2.1 17 , which is optimized for heterozygous genomes. Scaffolds shorter than 500 bp were filtered out. We used Kmer spectra analysis to compare the assemblies produced by different pipelines, as well as our final assembly with the previously published assembly. A K-mer spectrum is a representation of how many fixed-length words or K-mers (y-axis) appear a certain number of times or coverage (x-axis). We used 31mers in our plots. The K-mer counting was performed with Jellyfish 33 and the comparison and plotting was performed with KAT, a tool developed at TGAC (https://github.com/TGAC/KAT). Further information can be found in the manual (https://documentation.tgac.ac.uk/display/KAT/KAT+ Home). A new feature allows decomposing of the spectra into coloured components related to copy number, in order to represent the number of times that each K-mer appears in the final assembly.For chromosome-scale pseudo-molecule construction, markers from the genetic maps were placed using BLAT 34 . Alignments that comprised > 90% base-pair identity and > 90% coverage were retained. We first placed the markers from the previously published genetic map 11 . Some markers aligned in more than one position, but were tagged and retained. Any single marker linking to a different linkage-group from that of the other markers placed in the same scaffold was removed. Secondly, we placed the markers from our genetic map with the same criteria. However, we discarded the new position information if it differed by more than 30 cM with the previous map. If not, we used the average value as the final position. Nine scaffolds were split into two because markers were anchored to different linkage-groups.The BAC-end sequences were aligned to the hard-masked assembly using MegaBLAST 35 with a requirement of > 90% base-pair identity and > 90% coverage. We filtered the physical sink contigs 0, 335 and 447, and quantified the number of alignments that supported each link between a scaffold and a physical contig. We accepted this if a) the scaffold always linked with the same physical contig (Unique links), b) more than 50% of the alignments were to the same contig, and c) there was a minimum number of total alignments (Dominant links), or the number of alignments to a physical contigs was significantly higher than to any other physical contig (Strong links). Most of the scaffolds with accepted links had been previously placed. In order to place a contig into a contiguous position we looked for any unplaced scaffold linking to the same contig as any previously placed scaffold. We used the EnsEMBL database and pipelines to construct the pseudo-molecules and reassign the coordinates of the features (genes, transcripts, exons, etc) to them. Each pseudo-molecule join was padded with a 10 Kbp gap.The annotation pipeline is represented in the Supplementary Fig. 23. Repetitive and low complexity regions of the scaffolds were masked using RepeatMasker 36 based on self-alignments and homology with the RepBase public database and specific databases built with RepeatModeler 37 . LTR retrotransposons were detected by LTRharvest 38 . Repeat elements were classified with TEclass 39 and RepeatClassifier 37 . The 5′ and 3′ ends of each LTR identified by LTRharvest were aligned with MUSCLE and used to calculate the nucleotide divergence rate with the Kimura-2 parameter using MEGA5 40 . The insertion time was estimated by assuming an average substitution rate of 1.3 × 10e-8, as in the common bean 5 analysis.De novo and genome guided ab initio transcripts were assembled from RNA-Seq reads 10 using Trinity 41 and Tophat/Cufflinks 42 , respectively. Additionally, exon-intron junctions were deduced from the mapping positions of the reads. Junctions supported by more than 3 reads were incorporated as evidence in Augustus. Assembled transcripts were aligned to the assembly and clustered in novel transcript models using PASA 43 . A high quality full-length non-redundant subset from the ab initio transcript models from PASA was used as a training set for Augustus. The proteins of the Fabaceae family in Uniprot and TrEMBL, and the transcripts annotated in the soybean, common bean, and M. truncatula genomes were aligned to the masked genome using Exonerate 44 .Gene models were predicted by GeneID 45 and SNAP 46 in the masked version of the assembly, and by Augustus in the unmasked version of the assembly. Augustus builds the gene models to be compatible with the information from the alignments, the transcript models and junctions deduced from the RNA-Seq data, and annotated repeated regions and transposons. Additionally, alternative transcript models of a gene were reported for those incompatible with the provided alignments and transcript information.Finally, RNA-Seq reads were mapped again using the guidance of the generated annotation by Tophat, a new set of transcripts assembled by Cufflinks and alternative splicing incorporated in the annotation by PASA. The annotated features were stored in an EnsEMBL database to allow visualisation and exportation.The functional annotation of the proteome was done with an in-house pipeline (AnnotF) that compares the results of Blast2GO 47 and InterProSCAN 48 . Clustering was based on eggNOG clusters. Genes within pathways were compared with RAxML 8.0.22 49 (100 bootstrap replications). The proteomes of four Fabaceae species and A. thaliana were aligned, and single gene clusters filtered and concatenated after removing gaps using HAL 50 . A phylogenetic tree based on these data was built with MEGA6 51 using Maximum-likelihood and 100 bootstrap replications. Divergence times in the phylogenetic tree were calculated with the RelTime method 52 in MEGA6 using the divergence date between common bean and soybean as reference 6 . The gene density was calculated by dividing the total number of genes by the total length of each genome. Additionally, we calculated the same value for each interval of 10 Kb along the genome. The distribution of these values is reported as \"mean number of genes in 10 Kb intervals\". Syntenic blocks were identified with MUMMER 53 , analysed with SyMap 54 , using the default parameters, but with the requirement of 30 gene pairs to call a syntenic block, and plotted with Circos 55 . The syntenic gene pairs were aligned with MAFFT v 7 56 and the alignments used to calculate the Kimura rates with MEGA6 in order to estimate the nucleotide divergence rates.A population consisting of 86 genotypes from the red clover variety Lea (Graminor, Norway) was sown as part of a field experiment in Southern Norway. Genotyping by sequencing methodology 57 was used to obtain SNP polymorphisms in the population. A minimum of 10 reads for each individual, and in the case of heterozygotes, a minimum of 2 reads of the minor allele, were required for SNP calling. After removing SNPs with missingness >0.20, or minor allele frequency < 0.05, a total of 3942 SNPs were identified, of which 2161 were mapped onto the 7 pseudomolecules. LD heatmaps and associated plots were produced using R 58 as described 59 .","tokenCount":"5975"} \ No newline at end of file diff --git a/data/part_3/9300763633.json b/data/part_3/9300763633.json new file mode 100644 index 0000000000000000000000000000000000000000..d4db071d7e15c0c50f3cda7b502e156d4f3e23b0 --- /dev/null +++ b/data/part_3/9300763633.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"0592c1a9e248d63441b5f862bd84d9a1","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/c3cd31a6-1001-4430-bb72-7d2cc1d520c0/content","id":"858891343"},"keywords":[],"sieverID":"952e2e8e-c8d5-4373-9a80-f0bbc56ff6f6","pagecount":"12","content":"Grain shape and color strongly influence yield and quality of durum wheat. Identifying QTL for these traits is essential for transferring favorable alleles based on selection strategies and breeding objectives. In the present study, 192 Ethiopian durum wheat accessions comprising 167 landraces and 25 cultivars were genotyped with a high-density Illumina iSelect 90K singlenucleotide polymorphism (SNP) wheat array to conduct a genome-wide association analysis for grain width (GW), grain length (GL), CIE (Commission Internationale l'Eclairage) L* (brightness), CIE a* (redness), and CIE b* (yellowness) traits. The accessions were planted at Sinana Agricultural Research Center, Ethiopia in the 2015/2016 cropping season in a complete randomized block design with three replications. Twenty homogeneous and healthy seeds per replicate were used for trait measurement. Digital image analysis of seeds with GrainScan software package was used to generate the phenotypic data. Analysis of variance revealed highly significant differences between accessions for all traits. A total of 46 quantitative trait loci (QTL) were identified for all traits across all chromosomes. One novel major candidate QTL (−lg P ≥ 4) with pleiotropic effects for grain CIE L* (brightness) and CIE a* (redness) was identified on the long arm of chromosome 2A. Eighteen nominal QTL (−lg P ≥ 3) and 26 suggestive QTL (−lg P ≥ 2.5) were identified. Pleiotropic QTL influencing both grain shape and color were identified.Durum wheat (Triticum turgidum ssp. durum) is an allotetraploid wheat comprising an A genome from the diploid species T. urartu and a B genome from Aegilops speltoides or a relative that may now be extinct [1]. Durum wheat is the main source of semolina for production of pasta (particularly in Europe and North America) and couscous and bread in the Middle East and North Africa. Ethiopia is a center of durum genetic diversity. This high diversity is associated with the wide range of agroecological conditions and farmer cultural diversity [2][3][4] and is a focus of genetic studies and a source of novel alleles [5,6]. Ethiopian durum wheat kernels include several color types [4]. In Ethiopia, the crop is used mainly for local consumption. Despite the high genetic diversity and suitable conditions for durum production, the country depends on imported durum, owing to a lack of high-quality cultivars [7].Grain shape traits (grain length and width) strongly influence yield and milling quality [8,9]. These traits are quantitative traits controlled by several genes [10] and their genetic improvement is a target of durum breeding [11].The grain color of durum wheat comes from its pigments, consisting of carotenoids and anthocyanins. A yellowishamber color, which is an essential quality parameter of durum semolina, is due to the carotenoid pigment/yellow pigment content (YPC) in the whole kernel and is commercially identified as the yellow index [12]. Anthocyanins, in contrast, accumulate in the pericarp or aleurone of durum wheat and provide the blue, purple, and red colors of the grain [13]. In addition to their visual appeal, both carotenoids and anthocyanins influence human health and nutrition [14][15][16].Red grain color of wheat increases dormancy and has been used as a marker for resistance to preharvest sprouting in wheat breeding programs [17]. Carotenoids have been a target of plant breeders, mainly in response to the needs of pasta producers. However, because of their role in health and nutrition and a corresponding consumer demand, anthocyanins have become a target of genetic improvement [13,18]. Grain color is controlled by genetic and environmental factors and cultivation practices. Genes involved in pigment accumulation and proteins with regulatory roles have been identified [13].Digital image analysis is increasingly used in plant science, especially in phenomics [19]. Novel software packages based on digital image analysis allows detailed imaging of grain features including shape and color [20,21].Elucidating the genetic basis of complex quantitative traits controlling agronomic traits of economic importance is key to modern plant breeding. Genome-wide association mapping (GWAS) involves genotyping a large collection of accessions with numerous single-nucleotide polymorphisms (SNPs) distributed throughout the genome and testing their association with phenotypic traits. SNP genotyping platforms have been constructed to permit genome-assisted selection by identifying quantitative trait loci (QTL) [22]. The 90K wheat SNP array by Illumina allows genome-wide scans for this purpose [23,24].Numerous QTL for whole grain or flour color of both bread and durum wheat have been identified [25][26][27][28][29][30][31]. The unexploited Ethiopian durum wheat landraces are rich in genetic diversity for many traits including grain shape and color. The objective of this study was to perform a genome-wide association analysis for grain shape and color traits using Ethiopian durum wheats.A panel of 192 Ethiopian spring durum wheats comprising 167 landraces and 25 cultivars (Table S1) was assembled. Accessions were collected and maintained by Debre-Zeit Agricultural Research Center (DZARC) and Sinana Agricultural Research Center (SARC), Ethiopia as single-seed descent (SSD) progenies. From this panel, Liu et al. [5] used 182 (160 landraces and 22 cultivars) to identify QTL for stripe rust resistance. Landrace accessions were originally collected from major wheat-producing areas of Ethiopia, including Bale, Gondar, Gojjam, Shewa, Tigray, and Wollo and included 12 lines currently cultivated in the USA. Cultivars were released by DZARC and SARC from 1994 to 2010 and have been cultivated in Ethiopia.All accessions were planted in consecutive growing seasons (2013/2014 and 2014/2015) at Sinana Agricultural Research Center (SARC), located between 07°06′12″ N and 07°07′29″ N and 40°12′40″ E to 40°13′52″ E, for purification by ear-to-row planting. Purified and homogeneous accessions were planted in 2015/2016 in a completely randomized block design with three replications. All accessions were grown in two-row plots 1 m long with 15 cm between rows. The field was managed following local agricultural practices. Twenty homogeneous and healthy seeds were selected from each replicate for digital image analysis. Digital images were acquired with a flatbed CanoScan LiDE 120 F (Canon Inc., Tokyo, Japan), with a true optical resolution of 4800 dpi and 48-bit internal color depth. Seeds were spread on the scanner glass and spaced for accurate measurement. Black cardboard was used to cover the scanner to increase contrast and reduce reflection. All images were scanned at 24-bit with 300 dpi resolution and 2250 × 3705 pixels and recorded in a JPEG format.Digital image measurements were collected with GrainScan [21], a software package developed for high-throughput phenotyping of cereal grains. The default-automated threshold was used to measure grain length (GL) and grain width (GW). The mean value of 20 seeds per replicate was recorded. Commission Internationale l'Eclairage (CIE) Lab, a threedimensional (L*a*b*) color space method, was used to measure the color of accessions. Calibration with a color checker, which is scanned under the same setting as the seeds, was used to change the raw RGB value Analyses of variance (as a general linear model) were fitted for all grain shape and color traits including blocks, replicates, and genotypes. ANOVA and other descriptive statistics were analyzed using Minitab 18 (Minitab Ltd., Coventry, UK). Seed weight was used as a covariate to test for any possible effect of maternal etiology. Broad-sense heritability (H 2 ) was calculated from the means of the three replications using the formula; where σ G 2 (genetic variance) was calculated as (MS genotype − MS residual ) / r; σ E 2 (residual variance) = MS residual ;r is the number of replications and MS is the mean square value.For each accession, 25 one-week-old plants from the same seed source used for digital image analysis were pooled for genomic DNA extraction using a DNeasy 96 Plant Kit (Qiagen GmbH, Hilden, Germany). An Illumina high-density 90K wheat SNP array [23] was used for genotyping accessions. SNP calling and clustering were performed with GenomeStudio 2011.1 (Illumina, San Diego, CA, USA). Calls showing residual heterozygosity were assigned as missing values. SNP markers with minor-allele frequency < 0.05 and >0.1 missing values per accession were excluded. After filtering, imputation of missing data was performed with Beagle 4.0 [32]. Considering the higher levels of homozygosity exist in durum wheat, imputation was made without any phased reference populations. Twenty five markers were considered in the imputation rolling window with an overlap of a single marker, the typical number of markers included in a 0.5 cM interval. Since tuning of other parameters did not improve imputation accuracy, default values were kept. A high-density consensus map of tetraploid wheat generated by Maccaferri et al. [24] was used to assign chromosome positions of SNPs and markers with unknown positions were excluded.A Bayesian model-based (Markov chain Monte Carlo, MCMC) clustering approach was used for population structure analysis by STRUCTURE 2.3 [33]. The Haploview Tagger function (based on analysis of marker pairwise r 2 values) was used to select tag-SNPs with a tagger filter set at r 2 = 0.5 in HAPLOVIEW 4.2 [34] and 1496 tag-SNPs were selected for population structure analysis. The most likely subgroup number was inferred by the log probability (ln PD) and an ad-hoc statistic (ΔK) based on the rate of change of ln PD between runs using successive K-values as described by Evanno et al. [35]. Based on this, the ΔK shows a clear peak at the ideal number of subgroups. Ten subgroups with 20 independent runs for each subgroup were done under an admixture model of population structure with correlated allele frequencies and a burn-in period of 50,000 iterations and 100,000 MCMC iterations after burn-in were calculated for each run.The Haploview Tagger function was also used to select tag-SNPs for kinship matrix (K) analysis with a tagger filter set at r 2 = 0.1 in HAPLOVIEW and 4842 tag-SNPs were selected to compute the K and incorporated in the mixed linear model (MLM) along with the population structure (Q) value for GWAS analysis by TASSEL v.5.2 [36].Linkage disequilibrium (LD) was calculated as r 2 values between pairwise SNPs using TASSEL. The specific critical r 2 value beyond which LD is due to true physical linkage was determined by taking the 95th percentile of r 2 data of unlinked marker pairs [37]. LD decay was estimated as physical distance using the procedure of Hill and Weir [38] in R [39] and an LD decay curve was fitted with a smoothing spline regression line at the genome level.An MLM [40] was used for genome-wide association (GWAS) analysis with population structure (Q) and kinship (K) covariates. Population structure was estimated as the first 10 principal components (PCs) calculated from tag-SNPs (r 2 = 0.5) and kinship was measured as similarity matrix from tag-SNPs (r 2 = 0.1) in TASSEL software package. Three levels of significance were introduced for reporting GWAS QTL: (i) experiment-wise P ≤ .05 (−lg P ≥ 4.00) for \"major\" QTL, (ii) marker-wise P ≤ .001 (−lg P ≥ 3.00) for \"nominal\" QTL, and (iii) marker-wise P ≤ 0.005, (−log P ≥ 2.5) for \"suggestive\" QTL. The experiment-wise threshold was established from the number of independent SNP tests estimated in HAPLOVIEW using the tagger function of r 2 = 0.3 [41] and the total number of tag-SNPs was 816. Bonferroni adjustment for multiple GWAS tests (P ≤ .05) was equal to −lg P = 4.04 (rounded to 4). Hence the experiment-wise, Bonferroni-corrected significance threshold at P = 0.05 matched a marker-wise threshold of −lg P ≥ 4.00. Significance intervals of identified QTL were reported as the intervals after inclusion of all SNPs associated with the trait with P ≤ 0.01 (marker-wise) and in LD of r 2 ≥ 0.3. The confidence interval of a QTL was defined based on ±2.25 cM (LD decay of this panel) from the GWAS QTL peak (QTL-tag SNP).Highly significant variation was observed among accessions for all grain shape and color traits (Table 1, Fig. 1 S2. A normal distribution was observed for GL and b*, whereas GW, L* and a* showed bimodal distributions (Fig. 2). CIE L* showed negative correlation with a* and positive correlation with b* (Fig. 3). CIE a* showed negative correlations with GW, b*, and GL. Thousand-grain weight showed no correlation with either grain shape or color-related traits, indicated that the variation in color and shape traits was not due to seed size. The trait was accordingly not included in GWAS analysis.The optimal subgroup of the panel was inferred using the second-order rate of change of the likelihood in STRUCTURE. The result showed a clear peak at K = 3 indicating that three is the optimal number of subgroups in the panel. Subgroups 1, 2, and 3 contained respectively 75, 27, and 90 accessions, (Table S1). Of the 25 cultivars, 24 were clustered in subgroup 2 with two landraces from Bale and Gojjam. Most of the landraces (44) Ethiopia (Akaki and Shewa) grouped in both subgroups 1 (four landraces) and 3 (19 landraces). All 12 Ethiopian landraces now cultivated in the USA were grouped in subgroup 3.The genome-wide LD of the panel decayed below r 2 = 0.3 (the standard critical threshold) at 2.25 cM (Fig. 4). This means that ±2.25 cM would be the confidence interval of a given QTL from the QTL-tag SNP (a SNP found at the peak of the corresponding QTL). The specific critical r 2 value beyond which LD is due to true physical linkage was 0.15 and the intersection of the threshold and the LD decay curve was at 5.75 cM.An MLM with population structure and kinship matrix (MLM + Q + K) was chosen for marker trait association (MTA) analysis, as the quantile-quantile (Q-Q) plot showed that the observed MTA P-values were close to the expected distribution (Fig. S1). Genotypes of 75,010 missing SNPs were imputed. After filtering followed by imputation, 10,789 polymorphic SNP markers (4591 from the A and 6198 from the B genome) and phenotypic values for grain shape and color traits were used for MTA analysis. The Population structure data estimated as the first 10 PCs resulting from 1496 tag-SNPs and kinship matrix data resulting from 4842 tag-SNPs were also incorporated in the MLM-GWAS analysis.A total of 46 QTL were identified for grain shape and color traits. The only two QTL with −lg P ≥ 4 were EPdwa*-2A and EPdwL*-2A.2, with −lg P values of 5.39 and 5.23 and phenotypic variance of 11.4% and 11.0%, respectively. Eighteen nominal QTL reached the −lg P ≥ 3 threshold, of which five QTL each were identified for b* and GL and four QTL each for L* and GW with phenotypic variance ranging from 5.5% to 6.8% (Table 2). The other 26 QTL were identified as suggestive QTL with −lg P ≥ 2.5 (Table S3).Five nominal QTL (EPdwGL-2B, EPdwGL-4B, EPdwGL-5A, EPdwGL-6A, and EPdwGL-7B) for grain length were identified on chromosomes 2B, 4B, 5A, 6A, and 7B, respectively (Table 2, Fig. S2). EPdwGW-2A.1, EPdwGW-2A.2, EPdwGW-5A, and EPdwGW-7B were the four nominal QTL detected for grain width on chromosomes 2A (2), 5A and 7B, respectively. Eleven suggestive QTL for GL and GW were identified (Table S3). Allelic distributions and effects for QTL-tagging SNPs are described in Tables S4 and S5 for GL and GW, respectively.A major QTL with two alleles having a positive effect for a* (redness) (EPdwa*-2A) and a negative effect for L* (brightness) (EPdwL*-2A.2) was identified at a locus (IWB72154, QTL-tag SNP) on the long arm of chromosome 2A with a slightly more significant MTA for a* (−lg P = 5.39) than for L* (−lg P = 5.23) and explained respectively 11.4% and 11.0% of phenotypic variance. This QTL also showed a pleotropic effect for grain width (Fig. 5). Adjacent to this major QTL, another locus (IWB8286, QTL-tag SNP) made a nominal QTL for L* (EPdwL*-2A.1) with negative effect and a suggestive QTL for a* with positive effect (Table S3). Four further nominal QTL (EPdwL*-1A, EPdwL*-2A.1, EPdwL*-7A, and EPdwL*-7B) for L* were detected on chromosomes 1A, 2A, 7A and 7B, respectively (Table 2). Five nominal QTL, EPdwb*-1B, EPdwb*-3A, EPdwb*-4B, EPdwb*-5A, and EPdwb*-7B, for b* (yellowness) were detected on chromosomes 1B, 3A, 4B, 5A, and 7B, respectively. Ten further suggestive QTL for L*, a*, and b* traits were identified (Table S2). Allelic distributions and effects of QTL-tagging SNPs for b*, L*, and a* traits are described in Tables S6, S7, and S8, respectively.A panel of 192 Ethiopian durum wheat accessions comprising 167 landraces collected from major wheat-growing areas of Ethiopia and 25 improved varieties released between 1994 and 2010 and cultivated in the country was assembled to map QTL for shape and color traits using GWAS analysis. High variation recorded in grain shape and color trait values suggested the potential of GWAS for identifying QTL.Because of nonrandom mating, isolation, or artificial selection, structured populations are present in most plant populations. Consequently, genetic loci may be spuriously associated with a trait when there is no true association. The probability of a false positive, or type I error, increases in association mapping studies if population structure is not appropriately accounted for [33]. For this reason, assessment of population structure is crucial for any GWAS analysis. The present panel was stratified into three subgroups. Liu et al. [5] reported the same subgroups using these accessions, and 10 more genotypes were added for the present study. Subgroup 2 was composed of cultivars. Landraces made up the other two subgroups, irrespective of their geographic origin. This admixture could be accounted for by seed exchange between farmers in local markets throughout the country [42]. Understanding the linkage disequilibrium (LD) pattern in germplasm is essential for reasons including selection of the marker density and experimental design to be used for GWAS analysis and for defining identified QTL regions [43].Both GW and GL showed significant positive correlations with L* and b* and negative correlations with a*. To our knowledge, no published report has described the relationship between grain shape and color traits in wheat. CIE b* (yellowness) showed a significant negative correlation with a* (redness), in agreement with a previous finding [44] but unlike that study, showed a significant positive correlation with L* (brightness). However, Goriewa-Duba et al. [45] also reported a highly significant positive correlation between b* and L*. This difference might have arisen from the samples taken for analysis in which, unlike in the present study, the flour (endosperm) was used. For instance, Humphries et al. [46] found higher values of a* and b* but lower L* in wheat bran than in flour. However, they reported a significant correlation between values of color traits in grain and flour across genotypes and concluded that color values could be extrapolated from the easily accessible part of the grain. A strong positive correlation between b* and a* has been reported [47]. CIE b* has been used as an alternative descriptor of yellow pigment content (YPC), an essential quality parameter in the pasta industry, given their strong correlation [29]. Red wheat kernels have been identified as resistant to preharvest sprouting and this relationship could be due either to the pleiotropic effect of genes controlling red-testa pigmentation (R) or to linkage between these genes and other genes affecting preharvest sprouting [17].Grain shape and color are important for many reasons. Identifying QTL for these traits will facilitate the transfer of favorable alleles based on selection strategies and breeding objectives. Grain shape and color traits are crucial quality parameters with various uses and have been used as selection criteria in durum wheat breeding. Previous studies identified QTL on all chromosomes and genomes for grain length, grain width and color traits. In the present study, the QTL regions associated with GL and GW were distinct except for a QTL on chromosome arm 5AL indicated in previous reports [10]. QTL were detected in chromosome regions reported previously. Chen et al. [48] reported QTL for GL on chromosome arms 1BS and 5AL and for GW on 4BS, 7BS, and 7BL. Gao et al. [49] identified a stable TGW QTL, QTKW.caas-7AL, in all tested environments using an F8 recombinant inbred line population of Chinese spring wheat. Ma et al. [50] identified the TaCYP78A3 gene of the CYP78A family, encoding cytochrome CYP78A3 P450, on the short arms of bread wheat chromosome group 7 (7AS, 7BS, and 7DS), which was associated with grain size and shape, and silencing of this gene reduced the values of these traits. Yan et al. [51] identified the TaGW8 gene, with TaGW8-B1a and TaGW8-B1b alleles, on chromosome 7B, which had a significant effect on both grain size and shape traits. Wang et al. [52] cloned a TaGS5 gene found on chromosomes 3AS and 3DS of Chinese bread wheat that controls thousand-grain weight and grain width. In agreement with these reports, QTL for GL and GW on the same regions of chromosomes 7A and 7B were detected in the present study. QTL for grain shape traits located close to positions found in a previous study [8] were identified on all chromosomes except 3A.Many QTL for color traits have been identified in both bread and durum wheat [27,53]. The Psy1 gene, a gene coding for the enzyme phytoene synthase 1, which is considered the rate-limiting molecule in the carotenoid biosynthetic pathway, cosegregated with yellow pigment content (YPC) and CIE b* on chromosomes 7BL [27] and 7AL [54]. A second Psy gene (Psy2) is located on group 5 chromosomes of durum wheat [27]. Crawford and Francki [55] identified a SNP in the gene encoding lycopene-cylcase that controls phenotypic variation for flour b* color on chromosome 3A. In agreement with these findings, QTL for b* were detected on the same chromosome arms: 3AL, 5AS, and 7BL. Additional b* QTL were identified on Marker, a SNP found at the peak of corresponding QTL (QTL-tag SNP); Sig. SNPs, the number of significant SNPs lying in the significance interval; CI, confidence interval to the left and right of a QTL-tag SNP based on the tetraploid wheat consensus map [25]. chromosome arms 1BL, 2AL, 2BL, 4BS, and 6AL. A major QTL controlling both L* (brightness) and a* (redness) at a single locus (IWB72154) was identified on the long arm of chromosome 2A. Another locus (IWB8286) made a nominal QTL for L* (EPdwL*-2A.1) with negative effect and a suggestive QTL for a* with positive effect. Since it has a positive effect on a* and negative effect on L*, this QTL could be a locus with two alleles. Sherman et al. [56] identified a locus on chromosome group 3 in bread wheat for grain color with red as dominant and white as recessive alleles and reported that the degree of red color is additive, with genotypes homozygous dominant at all three loci (R-A1b, R-B1b, and R-D1b) having the darkest red color and only those homozygous recessive at all three genes being white (R-A1a, R-B1a, and R-D1a). Seven QTL were identified for L* on chromosome arms 1AS, 2AS, 5AL, 6AL, 7AL Similar to the significant correlation observed among grain shape and color related traits in the phenotypic data, a pleiotropic effect or tight linkage was observed in the MTA analysis of these traits (Fig. 6). Five GW QTL having a pleiotropic effect or tight linkage with color traits on chromosome arms 2AL (two), 4BS, 5AL, and 7BL were identified. A single GL QTL was also identified as having a pleiotropic effect or tight linkage with b* and a* on the short arm of chromosome arm 5A. Further investigation of this pleotropic effect may shed light on the responsible genetic architecture.Novel QTL were detected in a panel of genetically rich and untapped Ethiopian durum wheat landraces in a singleenvironment-single-location study. Use of multi-environment, multi-year phenotypic data could reveal QTL stable across environments. A major QTL controlling both redness and brightness traits on chromosome arm 2AL was detected. QTL for grain shape and color traits were identified in chromosome regions in which major QTL or/and genes were detected in previous studies. Digital image analysis is an inexpensive and non-invasive alternative to trait evaluations.Supplementary data for this article can be found online at https://doi.org/10.1016/j.cj.2020.01.001.","tokenCount":"3929"} \ No newline at end of file diff --git a/data/part_3/9305754206.json b/data/part_3/9305754206.json new file mode 100644 index 0000000000000000000000000000000000000000..6b6460f12d9e55213e474e5a788189f82d778b76 --- /dev/null +++ b/data/part_3/9305754206.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"93a02f3855b02602824b27cabc4ee172","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/fead4f5a-92a5-43e2-8cb0-b5398696c310/retrieve","id":"1846326294"},"keywords":[],"sieverID":"575adcc8-d725-4e3b-8be5-a0407cb8d036","pagecount":"58","content":"CIP publications contribute important development information to the public arena. Readers are encouraged to quote or reproduce material from them in their own publications. As copyright holder CIP requests acknowledgement, and a copy of the publication where the citation or material appears. Please send a copy to the Communication and Public Awareness Department at the address below.Examples of indicators, types of comparison, methods of collection and data analysis ... 3. Values of the environmental impact quotient (EIQ) for common insecticides (Kovach et al., 1992, with EIQ values 4. Environmental impact quotient (EIQ) values for common fungicides (Kovach et al., 1992, with values of EIQ updated in 2007) There is a wide diversity of research and development projects in agriculture. One type of project is related to Integrated Pest Management (IPM) programs, which are generally presented as an alternative to the indiscriminate use of pesticides. IPM makes use of various forms of control: biological, ethological, mechanical, physical, genetic, legal and chemical, which generally imply the farmer knows the biology and behavior of pests so he or she can make appropriate management decisions.Unfortunately, few IPM projects have been sufficiently documented in terms of impact achieved.One of the reasons for this is that impact evaluation is not widely known. Few social scientists have specialized in this area. Also, in many cases, IPM programs do not include social scientists on their teams to support socioeconomic evaluation due to lack of qualified personnel or lack of funds to hire them.An alternative for overcoming this limitation is to train personnel working in IPM research and development, most of whom are agricultural science researchers or biologists, in impact evaluation methodology, concurrently with providing methodological tools for social science personnel to do this type of work. This guide aims to help fill the gap in the literature related to impact evaluation of IPM projects, which, though based on Latin American experiences, can be adapted to other realities.Introductory guide for impact evaluation in integrated pest management (IPM) programsThis guide introduces principles and methods for evaluating impacts generated by IPM programs or projects in a user-friendly way, beginning with concepts and basic methods, and then presenting aspects of progressively more specific methodologies. References to methods and case studies have also been included for people who are interested in delving more deeply into the subject. It is, however, necessary to make clear that this guide is an introduction to the theme and is mainly oriented towards agriculture or biological science professionals, although it can also be useful for professionals specializing in impact evaluation who have no experience in IPM impact evaluation.The philosophy of this guide is that the evaluation of IPM impact is not to be left for last, when the project is finished or almost finished. On the contrary, impact evaluation should be part of the project design and continue throughout the development of the project, so that at the conclusion, the pertinent information needs only to be completed.The guide is organized in flow diagrams; the reader can easily follow the step-by-step explanation of the most appropriate methods for evaluating different types of IPM impact. In Section II is presented a collection of flow diagrams indicating the main questions to ask in IPM impact evaluation. Each flow diagram relates to a description of methods and illustrative specific cases presented in Section III and more specific information presented in the respective appendices.Section IV provides references for additional information on impact assessment. You can make a projection of the potential economic or environmental impact that could happen in the future if the technology is adopted by farmers (see Diagrams 5a and 6).Activities with farmers have begun: it is possible to measure the effectiveness and initial acceptance of IPM in the field.You can begin to make preliminary measurements of impacts on human and social capital, economic aspects and the environment in the field (see Diagrams 2,3,4,5b and 6).Activities with farmers are underway or in the last stages: it is possible to measure the effectiveness and adoption of IPM in the field.You can measure impact on human and social capital, and on economic and environmental aspects in the field, signifying the real evaluation of the impact a program or project can generate (see Diagrams 2, 3, 4, 5b and 6).measures changes in organization, social networks, access to information, and collective action as a result of the activities of the IPM program or project (see Diagram 4).Impact on human capital: measures changes in farmers' knowledge and skills for decision making about pest control measures as a result of the activities of the IPM project or program (see Diagram 3).Economic impact: measures the net benefits farmers obtain by using IPM, and the rate of return of the whole program or project (see Diagram 5b).Environmental impact: measures changes in potential environmental contamination and risks to human health using the environmental impact coefficient or EIQ method (see Diagram 6).Diagram 2.Depending on availability of resources and type of project, integral impact evaluations, including changes in human and social capital, and economic and environmental aspects, are recommended to better explain the effects. However, when the project is at the experimental stage, only projections of economic and environmental impact can be made, as changes in human and social capital cannot yet be measured. If you would like to know more about the basic concepts concerning impact evaluation, go to Appendix 1. Diagram 3.To measure changes in knowledge or skills, it is very important to define the indicators that are the most important to the IPM project being evaluated. Some IPM projects do not require changes in human capital to be effective, for example, in the case of introduction of beneficial insects. You can evaluate also the economic impact (Diagram 5b) and environmental impact (Diagram 6).Go to Appendix 3.The IPM program contributed to strengthening organization and collective action for IPM.project to measure changes in social capital? With the additional income from each treatment, you should extrapolate your data to hectares to calculate the potential additional income per hectare (ha) that the IPM program would produce, using partial budget analysis principles (Appendix 6). For example, you can estimate that farmers will earn US$ 100/ha by using IPM, then you can multiply this amount by the number of ha on which IPM could be adopted in the future. To do this, you can use the total number of ha where the crop is grown, and then assume conservative adoption, for example, 10% or 15% of the area in a certain region. With this data, you can use the project costs to estimate IRR (internal rate of return) and NPV (net present value) (Appendix 9). This data can be used to see if sufficient profitability from the IPM project can be expected in the future.  Generally the useful life of an IPM project is projected as 15 or 20 years from the time investment in research begins.You can easily calculate the IRR and NPV in Excel if you have the information on the annual benefits and investment costs. If there are no detailed data on the use of pesticides before the project, it is necessary to make a survey comparing those who have adopted IPM with those who have not regarding use of pesticides (with and without IPM)There is no variation in the EIQ: this means that the IPM did not reduce the negative environmental impact caused by pesticides.There is variation in the EIQ: when the EIQ of IPM decreases, this means that the negative environmental impact of the pesticides is diminishing.  This type of impact can also be evaluated based on experimental data, for which is needed the type of pesticide, number of applications and dose conventionally used by farmers as well as the same information using IPM technology. In this way the potential environmental impact of each technology can be estimated and compared. It is expected that the potential environmental impact of IPM will be significantly less.In this section we present four case studies of IPM impact evaluation. The results are presented as diagrams that sum up impact evaluation on human and social capital, and on economic and environmental aspects: these results have been extracted from completed and published studies, which are listed below.1. Activities with farmers were underway or in the final stages: it was possible to measure the impact of IPM on human and economic capital.The principal indicator of human capital was the percentage of farmers who knew: a) the biological cycle of the sweetpotato weevil, b) the insect's behavior, c) the type of damage caused by the sweetpotato weevil, d) sources of infestation, and e) IPM practices.Indicators related to social capital were not measured. However, it was observed that collective action was essential for the adoption of IPM.(1) increased yields, (2) control costs, (3) increased net benefit per ha, (4) internal rate of return (IRR), (5) net present value (NPV).The economic impact of adopting IPM practiced was evidenced by reduction of damage caused by the sweetpotato weevil, which contributed to improvement of yields, resulting in the following gains:(1) 1.7 additional t/ha.(2) Between US$ 43.5 and US$181/ha of additional benefit. (3) IRR was 49 to 73%. (4) The diffusion phase of the project was projected to reach a ceiling of 50,000 hectares in 2020.The impact on human capital was shown by the increase in knowledge of the biology and behavior of the sweetpotato weevil and of IPM practices among the different groups of farmers (state, cooperative and independent) after IPM training.Environmental impact was not evaluated.Diagram of impact assessment of Farmer Field Schools in Cajamarca, Peru: An economic evaluation (Züger, 2004) At what stage was the Farmer Field Schools program for potato late blight management in Cajamarca, Peru?The activities with the farmers were in the last stages, IPM practices had been adopted in the field: it was possible to measure impacts on human and social capital, and on economic and environmental aspects.The indicators of human capital were the percentage of farmers who knew the origin and dissemination of potato late blight and the Andean potato weevil, and the percentage of farmers who knew the different control practices.The study by Züger did not evaluate impact on social capital; but complementary studies showed changes in the level of organizational abilities of the farmers who participated in FFS and the formation of an association of farmer facilitators for FFS, which indicated positive changes in social capital.The economic indicators were:(1) adoption of IPM practices, (2) yield increases, (3) increased net benefit per ha, (4) cost of FFS, (5) internal rate of return (IRR).The indicators of environmental impact were:(1) reduction in the use of pesticides and (2) reduction in the application of highly toxic pesticides.There was positive economic impact:The results showed that better knowledge influenced:(1) Adoption of some components of crop management.(2) Increase in yield of 2.7 t/ha/year. (3) Increase in net benefit of US$ 236/ha/year. (4) Cost of the Farmer Field Schools per farmer: US$70/year (5) IRR of 28%.The economic impact was influenced by the size of the potato plots.There was significant impact on human capital: the correlation analysis demonstrated that FFS participants obtained better results in knowledge evaluations than nonparticipants There was limited environmental impact, with a reduction of 0.8 pesticide applications per ha. No significant differences were found between participants and non-participants regarding to the type and quantity of pesticides used, which suggests that the farmers used the same number of fungicide sprays on the susceptible varieties of potato and those resistant to late blight introduced by the project.Diagram of the study on the socioeconomic impact of microtunnels for the production of vegetable crops (CENTA, 2008) At what stage was the microtunnel program for the control of white fly on tomato and on chili in El Salvador?Activities with the farmers were underway. There was adoption in the field. It was possible to measure impact on human and social capital and on economic and environmental aspects.The indicators of human capital included the percentage of farmers who knew about the following themes: a) identification of white fly, b) methods to control white fly, c) knowledge of the toxicity of chemical products from their labels.The indicators of social capital were: a) membership in organizations, b) help between family members, friends and neighbors, c) technical assistance.The economic indicators were:(1) adoption of the technology, (2) increased net benefit/ha, (3) IRR, (4) producers' perception of the losses caused by white fly. (5) cost-benefit relationship.There was economic impact:(1) Adoption was projected to 125 ha for tomato and 65 ha for chili. (2) Increased economic benefit: US$ 2,402/ha for tomato and US$ 3,168/ha for chili.(3) IRR of 47% for tomato and 45% for chili. (4) Farmers perceived damage caused by white fly was reduced by using the microtunnels and, in some regions during various times of the year, these crops could not be produced without this technology.There was impact on human capital. a) 86% of producers were able to identify the stages of white fly. b) 74% of them believed that they had the capacity to control white fly. c) 62% of them knew the toxicity of pesticides by the color of the label. More work on this theme is needed.Environmental impact evaluated by reduced number of applications with and without microtunnels.There was limited impact on social capital. a) Only 31% belonged to an organization. b) Only 19% received help from family members, friends or neighbors to control white fly. c) 58% received some type of technical assistance.There was environmental impact on number of pesticide applications, reduced by 36% (from 9.85 without microtunnels to 6.31 with microtunnels).Diagram of the study on the impact of adoption of bean variety CENTA San Andrés (resistant to bean golden mosaic virus transmitted by white fly) in El Salvador (Deleón, 2008).The activities with the farmers were well underway and adoption had begun. The impact on human and social capital and on economic and environmental aspects could be evaluated.The The economic indicators were:(1) adoption of the variety, (2) increased yields, (3) increased net benefit, (4) IRR.Extra direct benefits from the use of the variety San Andrés:(1) The adoption has been projected to 1300 ha. (2) Additional yield is estimated at 1.05 t/ha. (3) Increased net benefit was US$ 428/ha. (4) IRR was 42%.There was partial impact on human capital: a) 87% knew about the tolerance of the variety San Andrés. b) 77% believed that they had the capacity to control white fly. c) 68% knew the relationship between the white fly and bean golden mosaic virus. d) Only 21% applied less pesticide on the resistant variety. More work on this theme is needed.There was no significant change in the utilization of pesticides with the use of the variety CENTA San Andrés.There was limited impact on social capital a) Only 39% belonged to an organization. b) 69% of these thought that their organization helped to control white fly. The project for introducing the variety did not promote the producers' organization which would have been appropriate. intends to introduce a new variety of maize, it is assumed that the changes should be in proportion of the areas planted with the new and the old varieties, and the economic and social effects of such changes. In the specific case of IPM, impact refers to changes in pest control practices and in costs and benefits generated for the farmers. Immediate impacts, such as improvement in crop profitability, generate medium and long term consequences, such as improvement in the sustainability of agricultural production.Types of impact: Generally, traditional impact evaluations have focused on economic impact, for farmers (improvement of profitability) as well as for consumers (price reduction): however, currently, it is about trying to measure impact on the farmers' livelihood in a more integral way.The impact can be on the different kinds of capital farmers have, such as human capital (their knowledge), social capital (their social networks), natural capital (the land, biodiversity and environment managed by them) and financial capital (the capacity to convert the other kinds of capital into money).An IPM project usually plans to train farmers and to improve their knowledge of the biology of the insect and control practices. For this reason an impact on human capital can be expected. In other cases, the IPM project uses methodologies that hope to improve the organizational capacity of farmers, thus improving social capital. Reducing the use of toxic pesticides is a goal in the majority of IPM projects in which the farmers' environment and their natural capital is improved. However, the main impact that IPM should generate is economic benefits for the farmers.Impact evaluation is defined as evaluation of the degree to which the program or project causes changes in the desired direction in a particular population. That is, the degree to which an IPM program or project has changed the knowledge, organization, practices of pest control and farmers' profitability. Generally, positive impacts bringing improvements to farmers are expected.However, sometimes there are negative impacts and the evaluation process should be ready to identify them. Before and after: The situation of the same community of farmers before and after intervention is analyzed in this comparison. That is, the situation before IPM (baseline) and after using IPM. For example, if the Andean potato weevil caused damage to an average of 50% of potato tubers before the project and after the project the damage is 15%, then it can be said that the IPM project had a positive effect. This type of comparison has advantages and disadvantages: o Advantages: dealing with people from the same community is an advantage because there are no significant differences between farmers in socioeconomic and agro-ecological terms. o Disadvantages: in many cases the presence of pests is greatly influenced by weather conditions, and it is possible that favorable or unfavorable weather existed in the \"before\" situation that is compared to the \"after\", which can bias the evaluation. For example, in the case of potato late blight, if in the \"before\" situation the damage to the foliage reached an average of 60% under very rainy weather conditions and in the \"after\" situation reached an average of 15% damage under dry weather conditions, it would be impossible to conclude that the difference in damage was due to the IPM project: it could be due to the effects of weather.  With and without: With this comparison, two different communities are analyzed at the same time, one that will or has participated in the IPM project. If in the same year community A has an average damage level of 40% and community B has an average damage level of 20%, it is possible to say that the project had a positive effect. This comparison also has advantages and disadvantages: o Advantages: The communities are compared in the same year and under the same weather conditions (since they are located in the same agro-ecological zone), for which reason it is hoped that the climate will not generate effects that would bias the comparison. o Disadvantages: It is difficult to select two communities sufficiently similar in agroecological and socioeconomic terms. Consequently, differences in damage could be influenced by other factors, like greater or less access to information and economic resources between the two communities. It could be that that the communities that do not participate have greater or less previous knowledge of the pest, which affects the control measures they use. It is necessary to make an effort to demonstrate that the communities are comparable in socioeconomic and ecological terms and, especially, with respect to the level of knowledge in the \"before\" stage previous to initiating the IPM project.  Comparison \"with\" and \"without\" combined with \"before\" and \"after\": The best way to reduce bias due to weather or external factors in the evaluations is to compare communities that have participated in the IPM project with communities that have not participated in the projects at two points in time (before and after) That is, it is necessary to include the two types of communities in the baseline study and to be sure they are sufficiently similar. When the \"after\" evaluation is made, the very same communities with and without the IPM project must be included. This improves the possibility of correctly attributing the changes observed in pest control to the IPM project.  Sample size for impact evaluation: There are defined statistical methods based on principles of random sampling to determine the size of a significant sample. Calculations of sample size for complex surveys, like the case of surveys for IPM impact, can be done the following way:1. Calculate sample size where the population (N) is infinite using the following formula: Where N is the size of the population.If this proves to be correct, the process ends here, and n 0 is equal the size of the sample that should be taken.If this does NOT prove to be correct, we pass to a third phase:3. Calculate the sample size using the following formula:To simplify the calculation, let us suppose that we have three populations of farmers that we would like to survey, with 300, 1000 and 10,000 inhabitants, respectively (see table below). Although it is advisable to work with significant samples, in many cases sample size is determined by the amount of financial and human resources available to make the impact study.Consequently, it is not always possible to follow statistical procedures rigorously. Samples of 60 to 100 farmers, who adopted IPM and a similar number of farmers who did not, have been foundto be sufficient to estimate impacts. -In the baseline study (see Appendix 3) local knowledge of the pest problem is analyzed and some indicators can be defined. For example, if the farmer mentions that \"the weevil comes from hail\", then an indicator like \"knowledge of the origin of the insect-pest\" should be defined.-The importance of indicators related to knowledge depends on the pest and the contents of the training program on IPM to be carried out. There are practices of pest control that should be applied at a specific time, therefore the farmer has to know the different stages of development of the insect pest. An example of this is stirring soil to destroy pupae. This is the case of the Andean potato weevil, which has a life cycle almost a year long related to the cropping cycle. In this case, it is important to recognize the insect's developmental stages to define the control practices to be used. On the contrary, in the cases of other insects with very short life cycles (leafminer fly or white fly), it is not essential for farmers to know or identify the different stages of the life cycle in order to apply IPM practices. However, it is necessary for farmers to know that there are adults and larvae and also to know the causes for increases in pest populations.-In general, you can include the following indicators related to knowledge in the baseline study. Knowledge of the origin, biology and behavior of the pest. Knowledge of the means of dissemination (ways in which the pest arrives to field or storage).  Knowledge of control practices. Knowledge of the principles of control practices, that is, if farmers know the reasons for which a specific practice should be implemented at a certain time and place. For example, the elimination of field residues to reduce the possibility of the insect's continuing to reproduce there.-Indicators related to skills can be used to measure the changes in the way farmers implement control measures. You can have indicators related to:  Skills to diagnose. This relates to the ways the farmer can identify the presence and severity of an insect or a specific disease that is attacking the crop, this refers to how to monitor the development of the pest.  Skills to carry out a specific practice. For example, it would be expected that farmers increase their capacities to monitor the presence of pests with pheromone traps, which implies skills for installing traps and monitoring them.-The indicators related to decision making are more difficult to establish and they refer to the way farmers make decisions to select practices or strategies to control pests. These indicators relate to the reasons given by farmers for implementing a practice. For example, if they explain that they remove the soil in the infestation sources to cut the life cycle of the insect, this can indicate that they have improved their decision-making capacity.Here we present examples to illustrate indicators and also types of questions that can be used to obtain answers on farmers' knowledge, skills and decision-making for controlling pests.Note: Some of these indicators and questions may not be relevant for other pests.-Indicators related to knowledge:  Knowledge of the origin, biology and behavior: Question: What is the origin of the insect?Indicator: % of farmers who know the origin of the insect, that is, that insects reproduce and do not appear spontaneously.  Question: Where do the larvae (worms) come from?Indicator: % of farmers who know that the adult lays eggs and the larvae come from these eggs.  Question: How does the insect arrive in your field?Indicator: % of farmers who know that the insect arrives by walking from other fields or sources of infestation.  Question: Where does the insect that arrives to your field come from?Indicator: % of farmers who know where the insect came from (source of infestation). Knowledge of control practices and their principles. Indicator: % of farmers who correctly use plant barriers (correct species, planting time and suitable density) around the potato fields.  Question: How do you use ground sheets (blankets, sheets, etc.) at harvest time?Indicator: % of farmers who used ground sheets appropriately to pile potatoes on at harvest time to capture and eliminate larvae.-Indicators related to decision-making: although generally related to indicators of knowledge and capacity, these refer to specific reasons for which farmers decide to use specific practices.  Decision-making to implement IPM practices:  Question: Why did you use plant barriers around the potato fields?Indicator: % of farmers who explain that they use plant barriers around their fields to prevent entry of adult insects from other fields or infestation sources.  Question: Why did you use sheets or blankets to pile the potatoes upon at harvest time?Indicator: % of farmers who explain correctly that they use sheets or blankets to capture the larvae and keep them from going back into the soil to complete their lifecycle. final evaluations are carried out, the weather situation should be compared to detect possible bias in the evaluation \"before\" and \"after\". Also, it is recommendable to take samples of insect populations to be able to compare the situation after the project.To obtain data in a baseline study, secondary information from previous studies, technical reports of IPM projects, or other available sources of information can be used. However, the principle activity of a baseline study is to collect initial information related to the indicators. This can be done through focal groups, structured surveys, semi-structured surveys, direct evaluations or field monitoring and experimental results on the effects of the practices of pest control (see description of methods in Appendix 4).The baseline study should establish some institutional variables that should be registered over time, thus facilitating subsequent impact evaluation. An example is registering the costs of research and training related to the IPM program in the first year of the project and establishing a system to register such costs annually.In those cases where the evaluation is to be made of an IPM program that did not carry out a baseline study, it is only possible to estimate the differences by carrying out a comparison \"with\" and \"without\" IPM after the project.Main methods of data collection and analysis according to areas of impact and indicators. Types of comparisons Two types of comparisons can be made for the evaluation of impact indicators: \"with\" vs. \"without\" and \"before\" vs. \"after\" (see Appendix 1).Description of the methods used Qualitative and quantitative methods can be used to collect and analyze information related to the indicators. The use of more than one method to triangulate (compare, verify) evidence and improve validating the evaluation process is recommended. For example, use a semi-structured interview and focal groups with the same groups of farmers and with similar questions.Focus groups 1 : Groups of approximately ten people (farmers, facilitators or researchers) and a moderator, who discuss specific questions according to the areas of impact and indicators.Participants use cards, matrices and/or ranking techniques according to the theme that they are going to discuss. The moderator records the conclusions of the discussion. The farmers' focus groups are organized with the participants of the IPM program and with those who have not participated in the project from the same community or similar communities. These groups should be organized at the beginning of the project and, if possible, annual assessments should take place to monitor changes over time. 1 There are various books on focus groups, also useful information on the Internet. We suggest consulting: http://www.unu.edu/unupress/food2/UIN03E/UIN03E00.HTM At this Web site there is a manual on the theme, which, though applied to medical research, contains general and applied concepts on the focus group method.2 More information on participant observation can be found at this Web site, though related to research in public health: http://www.fhi.org/NR/rdonlyres/ed2ruznpftevg34lxuftzjiho65asz7betpqigbbyorggs6tetjic367v44baysyomnbdjkdtbsi um/participantobservation1.pdfCase studies: Individuals or groups of participants and non-participants are monitored to obtain detailed information on pest control and changes in knowledge, skills, decision-making, organization, costs and benefits related to IPM. The information collected in the case studies helps to interpret the data from other methods, like surveys.Box test: This is a specific test designed to evaluate changes in knowledge and attitudes about pest control. It consists of approximately 20 questions, each with three possible answers.Preferably, the boxes are situated in the field using live or other types of samples (plants, leaves, insects, pesticides, photos, etc.). The farmer participants are asked to respond to each question by picking the answer they consider to be correct. The test lasts approximately 30 minutes and the results are analyzed and presented to the group immediately. This test is useful for evaluating knowledge before and after the intervention, and also for comparing knowledge between participants and non-participants.Interviews with open-ended questions used to record knowledge and pest control practices used by participants and non-participants in the IPM project and evaluate possible differences.Questionnaires to evaluate knowledge: The farmers are asked questions about the topics dealt with in the training sessions and the answers are recorded and graded correct or incorrect. In some cases, a hypothetical problematic situation can be presented so that the farmer can identify what should be done and make a decision. Questionnaires are used with participants and nonparticipants. Each question has a number of points, depending on whether the answer is correct or incorrect. Afterwards, the total number of points per farmer can be used to compare with the baseline. Also, the average score obtained by the group who participated in the IPM project can be compared with the average score of the group who did not. This type of results allows for comparisons using nonparametric statistics.Monitoring plots: These are farmers' plots selected for the purpose of recording and evaluating specific variables related to pest control. The evaluation is conducted directly in the field based on random samples. For example, the severity of a disease or insect infestation during different stages of crop development, doses of insecticides used, costs of applications, and yield at harvest can be evaluated. Monitoring plots can be part of or can complement the semi-structured questionnaire, with the difference that the interviewer observes or takes samples directly in the field. If a sufficient number of plots belong to farmers who are participating in the IPM project and farmers who are not, the differences can be evaluated.Extensive questionnaires that include socioeconomic characteristics of participants and non-participants, and closed-ended questions about indicators of change in human and social capital and economic and environmental aspects. These questionnaires can be used to make more detailed statistical analyses to explain associations between different variables. For example, if adopters of IPM are the ones who have smaller pieces of land, or if less use of insecticides is associated with participation in IPM training activities. If the the questionnaire is administered before and after the project (or in sites with and without the project), the differences can be analyzed in statistical terms.Indicators: number of communal actions to eliminate sources of infestation, existence of communal regulations regarding practices and use of pesticides.-Examples of indicators related to interactions and information exchange: Promotion or strengthening of interactions to exchange information about pest control.Indicator: Number of interactions (meetings, personal contacts, visits, etc.) to access information on pest control, percentage of farmers who have had access to training.  Number of sources of information about pest control.Indicator: Number and type of sources of information from which information on pest control can be obtained.because it is clearly more profitable than the farmer's old technology; and three: if both net income and the control costs increase, the marginal return (gains) should be analyzed to try to find out how much money is earned for each unit of money that increases the cost of control.To evaluate economic impact, it is necessary to estimate the additional benefit per hectare generated by IPM to calculate profitability using IRR or NPV. For example, in the case of the Andean potato weevil, it has been estimated that by using IPM there was an additional benefit of US$100/ha, which, multiplied by the number of hectares adopted annually, generated the accumulated additional benefit per year for the project. -Indicators of changes in economic aspects are usually defined as profits or losses caused by pests and pest control. For example, how much did the farmer spend to control pests with insecticides or with IPM and how much did he/she earn with each alternative.-Because IPM projects are located in places with specific socioeconomic characteristics, the economic indicators are specific to the place, the crop and the project.-The most common indicators of changes related to economic aspects include yield per hectare, level of damage caused by the pest (which in some cases influences the quality of the product and therefore its price), costs of control, selling price of the products and net profit. These indicators should be measured starting from the baseline study so that they can be used as a point of comparison. If there is no baseline study, it is necessary to compare groups of participants in the IPM project with non-participants.-Examples of economic indicators related to IPM at farmer level: Total yield per hectare in the fields of farmers who have used IPM and of farmers who did not use IPM. Note: There are problems in estimating yields because this indicator is influenced by many other factors (soil fertility, crop management, etc.) besides pest control. For this reason, the groups of farmers and fields to be compared should be as homogeneous as possible.  Damage level of the harvested product, especially from pests that affect the final product, like Andean potato weevils or potato tuber moths, which damage potato tubers.  Commercial yield, which is the part of the harvest that can be sold in the marketplace.With higher commercial yield, the harvest has more value. In some cases, the damage caused by insects reduces the value and proportion of the harvest to be sent to market.For example fly-damaged fruit has less value than healthy fruit.  Damage level of the foliage, used in the case of pests that affect the crop in the field like potato late blight, leafminer fly and white fly. It is important to determine the level of damage in the field because this damage influences the yield of the potato.Costs of using pesticides. This is calculated by asking about the product used, its price, dosage, labor costs and number of applications.Costs of IPM practices. This is calculated by asking about the materials used (for example, yellow traps), the price and labor costs.  Selling price of the harvest according to commercial categories of the product at harvest time. This is the price the farmer gets by selling his crop in his/her field. Note: This is not the price that the consumer pays in the market.  Economic losses caused by pests. Having data on damage levels, yields and selling prices, losses caused by pests are estimated with present methods of control (for example, pesticides), which will be compared with the losses at the end of the project when the farmers are using IPM. Losses are expected to decrease.  Note: The part of the harvest that is not sold and used for seed or family food should also be given a value. Generally, this value is less than the commercial value.  Gross benefit, which is the value of the whole harvest. Net benefit, which is the gross value less the cost of production. For the partial budget method, the only costs that vary are those costs related to pest control.  Marginal utility, which is the farmer's gain or loss when he or she uses IPM as compared to using pesticides or other control methods.-Examples of economic indicators related to IPM estimated at the project or institutional level: The annual cost of the IPM research and training project. Ideally, this cost should be recorded from the time the research on a particular pest begins and should be registered annually. In some cases, the specific cost related to research and training for a given pest must be estimated because the accounting departments record global costs, which include various pests.  The net present worth (NPW) or net present value (NPV) is a procedure to calculate the present value of the costs and benefits of an IPM research and/or extension program in a given period. The method also discounts a certain rate or type of interest which is the same over the time period under consideration. NPW or NPV is calculated from the difference between the additional annual benefits generated by IPM among farmers who adopt this technology (obtained by multiplying the additional benefit per hectare by the number of hectares where IPM is expected to be adopted), and the annual costs of the IPM research and training project for a given period (usually 5 or 10 years), bringing all past or future values into the present. Obtaining the NPV is an essential tool for assessing the profitability of IPM projects. IPM projects are expected to have an NPV greater than zero to make them profitable. See more details in Appendix 9.  The internal rate of return or internal rate of return (IRR) of IPM projects is defined as the interest rate where the NPW or NPV is equal to zero. The value of IRR is compared with the required minimum rate of return (opportunity cost) acceptable to the donor or the institution financing a given project, and is accepted if it is above that minimum rate. In the absence of a project with which it can be compared, comparison can be made with a bank interest rate between 10% and 12%. That is, the maximum interest that a project can pay for the resources used when the project recovers its investment. See more details in Appendix 9.Ideally, adoption data for two or three points in time should be available to be able to make a projection of future adoption. It is equally important to define the number of years for which adoption of IPM technology is being projected. Generally, projections are made for the next 15 to Following is an example of the data required and the formula that is used to calculate NPV. The internal rate of return (IRR) is another financial parameter for measuring the profitability of investment projects in general, and it is also applied to IPM projects. The IRR gives us a percentage value that indicates the profitability of the project. This value can be compared to other investments.Table 2 from the study of Ortiz et al. (1996) demonstrates the calculations made to estimate IRR.In this table the costs of the project and the area under adoption are included. An increase in income of US$154 per hectare per year was assumed for the calculation of total benefits. The value of IRR is a way to compare between other similar options of investment. In the example, a rate of 30% is profitable and attractive compared with other agricultural research and development projects. In principle, any IRR that is higher than the opportunity cost of investment in the project (the interest that another type of project to improve the conditions of these farmers would have generated, or if there is no interest, the amount corrected for inflation that the money would have generated in the bank, generally between 10% to 12%) is adequate because it means that the project has a positive impact. As this difference increases, the investment becomes more attractive.The IRR in the examples mentioned in Section III fluctuate range 28% in the case of the FFS in Peru (Züger, 2004), to around 40% and 50% for the cases of white fly IPM (CENTA, 2008;Deleón, 2008) in El Salvador, and IPM of the sweetpotato weevil in Cuba (Maza et al., 2000), respectively, with the later reaching 73% in the most optimistic cases. There are other examples of analysis of investment of IPM using IRR in other Latin American countries like the integrated pest management and agroforestry project of CATIE in Nicaragua, which had a IRR of 19.1% (Garming and Waibel, 2005) and a project of integrated management of Andean potato weevil in Ecuador that had an IRR of 33% (Unda et al., 1999).The IRR of IPM programs depends on the cost of the project. In general, projects that require less initial investment can generate higher profitability. The value of IRR also depends on the additional benefit per hectare and on the adoption rate. If adoption is reduced, profitability can also be reduced. What is desirable is that IPM programs are not extremely expensive and that they generate benefits per hectare that are attractive so that the farmers will adopt the technology on a sufficient number of hectares. 3 and 4.In case the pesticide to be used in the calculation is not found on the list, it is necessary to estimate its impact according to the active component it contains and the concentration of this active component. If the active component is not found on the lists, the family of pesticides to which it belongs should be established and the average EIQ of the pesticides belonging to this family which are on the lists should be calculated.After the EIQ values for the active ingredients of each pesticide have been established, the proportion used in the field is calculated to obtain the value of environmental impact in the field (EI), which is to say the EIQ is multiplied by the dose, the percentage of active ingredients and the number of applications of each pesticide. The higher the value of EI, the greater the potential of negative environmental impact becomes. These field values are useful to make comparisons between pesticides or between different programs of pest management. An example of analysis of the potential impact of pesticides in potato and tomato crops using EI has been done using data from the project of integrated management of white fly carried out by PROINPA Foundation of Bolivia. ","tokenCount":"7207"} \ No newline at end of file diff --git a/data/part_3/9306661863.json b/data/part_3/9306661863.json new file mode 100644 index 0000000000000000000000000000000000000000..a01eaa7ee2ea750803754b2bf3122e54141b5721 --- /dev/null +++ b/data/part_3/9306661863.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"b1f9ed06350d7135fc483d0427030c4c","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/a5870fdf-73ad-4d7a-bd38-6e20d043008c/retrieve","id":"-1298681411"},"keywords":[],"sieverID":"947b507c-f6ba-47b0-8e3b-15b6d34f889b","pagecount":"49","content":"To the Board of Trustees of International Center for Tropical Agriculture -CIATWe have audited the accompanying financial statements of International Center for tropical Agriculture -CIAT, a nonprofit organization, which comprise the statement of financial positim as of December 3 1,2006 and 2005, and the statement of activities, statement of changes in net assets and cash f l o w statement for the year then ended, and a summary of signiticant accounting policies and other explanatory notes.Management is responsible for the preparation and fair presentation of these financial statements in accordance with the financial guidelines FG-2 on accounting polices and reporting practices manual prescribed by the Consultative Group on International Agricultural Research (CGIAR) for international agricultud research centers, as explained in Note 2. This responsibility includes: designing, implementing and maintaining internal control relevant to the preparation and fair presentation of financial statements that are k e h m material misstatement, whether due to h u d or error; selecting and applying appropriate accounting policies; and making accounting estimates that are reasonable in the circumstances.Our responsibility is to express an opinion on these financial statements based on our audits. We conducted our audits in accordance with International Standards on Auditing. Those standards quire that we comply with ethical requirements and plan and pedorm the audit to obtain reasonable assurance whether the financial statements are h e b m material misstatement.An audit involves performing procedures to obtain audit evidence about the amounts and disclosures in the financial statements. The procedures selected depend on the auditor's judgment, including the assessment of the risks of material misstatement of the financial statements, whether due to fraud or error. In making those risk assessments, the auditor considers internal control relevant to the entity's preparation and iair presentation of the financial statements in order to design audit pxucedures that are appropriate in the circumstances, but not for the purpose of expressing an opinion on the efk&veness of the entity's internal control. An audit also includes evaluating the appropriateness of accounting policies used and the reasonableness of accounting estimates made by management, as well as evaluating the overall presentation of the financial statements.We believe that the audit evidence we have obtained is sufficient and appropriate to provide a basis for our audit opinion.In our opinion, the financial statements present fairly, in all material respects, the financial position of International Center for tropical Agriculture -CIAT as of December 3 1,2006 and 2005, and the results of its operation and its cash flows for the year then ended in accordance with the basis of accounting described in Note 2.Our audits were made for the purpose of forming an opinion on the basic financial statements taken as a whole. The supplementary information included in Exhibits I to V is presented for purposes of additional analysis and is not part of the basic financial statements. Such information has been subjected to the auditing procedures applied in the audit of the financial statements and, in our opinion, is fairly stated in all m a M aspects when considered in relation to the basic financial statements taken as a whole.For .the years ended as of December 31,2006 and 2005 (expressed in thousands'of U.S. dollars)The International Center for Tropical Agriculture (CIAT) is a not-for-profit organization that conducts socially and environmentally progressive research that aims to:Reduce hunger and poverty in the tropics through collaborative research that improves agricultural productivity and natural resource management.CIAT is one of the 15 food and environmental research Centers working towards these goals around the world in partnership with farmers, scientists, and policy makers. Known as the Future Harvest centers, they are funded mainly by 64 donors including countries, private foundations, and international organizations that make up the Consultative Group on 'International Agricultural Research (CGIAR). These include the World Bank, the Food and Agriculture Organization'of the United Nations (FAO), the United Nations Development Programmed (UNDP), and International Fund for Agricultural Development (IFAD).Challenge Programs are a Means for the CGIAR system as a whole to take on global challenges in cooperation with a wide range of research partners.Grants are recognized as revenue to the extent of expenses incurred. The research partners of the Harvest Plus Challenge Program are managed as funds in trust.Under an agreement with CIAT, signed on 5 May 1987 and ratified by Law 29 of 18 March 1988, the Colombian Government recognizes CIAT as a not-for-profit international organization and grants it certain prerogatives, including exemption from Colombian taxes.Note 2: Summary of major accounting policies Beginning February, 2006, the Center prepares its financial statements in accordance with the new accounting policies and reporting practices prescribed by the Consultative Group on International Agricultural Research (CGIAR) for international agricultural research centers. These policies established to Centers fully adoption and complying with all relevant IFRS. The major accounting practices followed at CIAT are summarized below:The Center prepares its financial statements, except for cash flow information, under the accrud basis of accounting.Under the accrual basis of accounting, transactions and events are recognized when they occur (and not as cash or its cash equivalent is received or paid) and they are recorded in the accounting books and reported in the financial statements of the periods to which they relate. Expenses are recognized in the Statement of Activities on the basis of a direct association between the costs incurred and the earnings of specific items of revenue.CIAT's financial statements are stated in U.S. dollars. Those assets and liabilities (but not including supplies, spare parts, property, and plant and equipment) denominated in other currencies are translated at the exchange rate in effect at the end of each financial period. Grants received in currencies other than U.S. dollars are recorded at market exchange rates in effect at the time the grant is received or, if outstanding at 31 December, at the market rate of exchange in effect at the year's end.Incomes and expenses in currency other than U. S. Dollars, as well as those related to properties, spare parts, plants, and equipment, are initially recorded at the official exchange rate on the dates of the transactions. Profits and losses arising on exchange are included in the results of operations.Cash comprises cash on hand, petty cash funds, currencies awaiting deposit and local or foreign currency deposits in banks which can be added to or withdrawn without limitation and are immediately available for use in the current operations.Cash equivalents are short-term, highly liquid investments that are both: i) readily convertible to known amounts of cash; and ii) so near their maturity date that the risk of changes in value due to changes in interest rates are insignificant.CIAT investment policy is established by the CIAT Board of Trustees. Investments are initially recorded at their acquisition cost (including brokerage and other transaction costs) if they were purchased, and fair value if they were received as a grant.Investments in equity securities with readily determinable fair values and all investments in debt securities shall be measured at fair value as of the date of the Statement of Financial Position. Investments received as grants from donors are to be recorded at their fair market value.Interest, dividends, losses, and gains relating to financial instruments are reported in the Statement of Activities as expense or revenue.Investments acquired with the purpose of disposing from them within one year or less after their acquisition date are to be classified as current investments. Furthermore, investments classified as current, as distinguished from cash equivalents, are those that are acquired with original maturities of more than three months but not exceeding one year.Investments acquired with the purpose of keeping them for more than one (1) year as from their acquisition date are to be classified as long-term investments.Inventories of materials and supplies are stated at cost, using the moving average price method. Cost represents the purchase price of supplies and spare parts, plus freight and handling charges. Materials in transit are stated at invoice cost.Grants in the form of inventories are measured at fair value at the time of receipt.Inventories held at the end of the financial period are stated at cost or net realization value, whichever is lower.Property, plant and equipment acquired through the use of restricted grants are recorded as assets and fully (100%) depreciated, and the depreciation expense is charged directly to the appropriate restricted project in the same year of acquisition.Acquisitions of property, plant and equipment less than USD500 are expensed.Property, plant and equipment acquired through non-monetary grants are recognized at fair value at the date of the grant. Such grants are presented in the Statement of Financial Position as Deferred Revenue and are taken to account as revenue on a systematic and rational basis over the life of the asset.The contract signed with the Colombian Government related to the land on which CIAT has its headquarters to the Center in commodatum was renewed until July 2010. This contract may be extended thereafter by mutual consent. A t the end of the contract, CIAT is to return the land with its improvements, buildings, and installations, free of any kind of judicial actions or embargoes and without receiving any compensation. This land is not considered a contribution to \"property, plant and equipment\".All new facilities provided by host countries to the Center or constructed for the use of the Center, which will revert to the host country in the event the Center ceases to operate, are recognized as assets.Subsequent expenditures relating to property, plant and equipment that has already been recognized are added to the carrying amount of the asset only if the expenditure improves the condition of the asset beyond its originally assessed standard of performance. All other subsequent expenditures are recognized as expenses of the period where incurred.Depreciation of assets owned by the Center is computed by the straight-line method over the asset's estimated useful life, except assets acquired with restricted grants. The basis for computing 'depreciation is the asset's acquisition cost, less its estimated salvage value.According to the low costs recovery for the sale or written off of computers, starting January 1, 2005, CIAT decided to modify their salvage value from 10% to 0%. This change does not have a material effect in the financial statements.The following list indicates the useful lives and estimated salvage percentages of the Center's fmed assets: Unrestricted Grants: Are those received from the unconditional transfer of cash or other assets to the Center.Restricted Grants: Are those received from a transfer of resources to the Center in return for future compliance relating to the operating activities of the Center.Restricted Grants include Intercenter Activities and Challenge Programs.These funds have been provided by donors and are managed by CIAT for an ultimate beneficiary other than the Center.Net assets comprise the residual interest in an entity's assets after liabilities are deducted. They are classified as either undesignated or designated:-Undesignated net asset, the use of which is not designated by CIAT Management for special purposes.-Designated net asset, are those that have been restricted by CIAT Management as reserve for replacing property and equipment and for retirement of National Staff.Restricted grants are those received from a transfer of resources to the Center in return for past or future compliance to the operating activities of the Center.Unrestricted grants are those received from the unconditional transfer of cash or other assets to the Center.The grants, whether restricted or unrestricted, are recognized until there is reasonable assurance that the Center will comply with the conditions attaching to; and the grants are received.Unrestricted grants in currencies other than U.S. dollars are recorded at exchange rates in effect at the time of receipt or, if outstanding at 31 December, at the exchange rate in effect at the year's end.Restricted grants in currencies other than US. dollars with specific request for the partner's funds to be paid in that currency, are recorded as income and expenses at exchange rate in effect at the time of the payment.Indirect costs recovery represents the indirect costs recovered from restricted projects based on the rates agreed and as stated in each project document w i t h donors.m Reclasd,cations Some figures of the financial statements as of December 3 1,2005 have been reclassified to conform to the 2006 presentation.Note 3: Cash and cash equivalents According to the international accounting standards, due to the no materiality coming from forwards with protection purpose, the above forwards are not valuated at present value, in its turn, investments related to these operations are measured at its carrying amount. The following is the movement of the allowance for doubtful accounts: This account corresponds to accrued salaries and benefits for locally recruited personnel. (2) The international staff reserves correspond to the estimated costs of repatriating members of the senior staff to their home countries, as specified in their appointment letters.Net assets as of December 31 are unrestricted net assets. These funds are available for the following purposes of periods: ","tokenCount":"2133"} \ No newline at end of file diff --git a/data/part_3/9308310014.json b/data/part_3/9308310014.json new file mode 100644 index 0000000000000000000000000000000000000000..8b7d3f39d76af9af1056a98b0dd59b785b2f9346 --- /dev/null +++ b/data/part_3/9308310014.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"56b200fc99ab499edd2e536b0e956310","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/5f2eb6a5-31e3-4217-9f29-ff8e8fe881e6/retrieve","id":"177666007"},"keywords":["Collective marketing","Sub Saharan Africa","Agriculture","Smallholders","Farming"],"sieverID":"1190053e-0639-4298-bb2e-8c79beef4cae","pagecount":"15","content":"Recent changes in world markets, trade liberalisation and price decontrol have left smallholder farmers more vulnerable to the vagaries of market forces. Constraints such as poor technology, weak organisational structures and high transaction costs due to long and inefficient supply chain means that smallholders cannot compete with large corporations. Collective action which has been successfully applied within natural resources management if properly institutionalised among smallholder farmers can improve their marketing in a number of ways. It can reduce transaction costs of taking produce to the market; increase the smallholders' bargaining power and enable them to access services that private sector or government are not readily willing to investigate. This paper uses the Sub Saharan Africa Challenge Programme panel data to investigate enabling factors for collective marketing. Based on these factors the paper discusses how Integrated Agriculture Research for Development (IAR4D) can be fashioned to improve upon collective marketing among smallholder farmers in Sub Saharan Africa.The structural adjustment policies implemented by governments within Sub Saharan Africa and the general global economic developments brought significant changes in the national and global food markets. For example, trade liberalization and price de-control resulted in the importation of cheap foods. Also increased quality consciousness (of consumers) and expanding agribusiness brought a new culture in the agricultural market that smallholder farmers are not familiar with (Dash and Purohit 2006). Smallholder farmers are ill-equipped to take advantage of these developments in national and global markets. Unlike their counterparts large corporations, smallholder still lack appropriate technology, investment and information. Besides, smallholders have small landholdings and therefore cannot produce huge surpluses for sale. The middlemen and small traders face huge transaction costs of dealing with many sellers each selling small quantities. Their inability to produce larger volumes of surpluses means that they receive much lower prices from traders who would pay for bigger quantities.Consequently, most Sub Saharan Africa smallholder farmers are caught up in a vicious cycle of poverty with low output, low incomes, low savings and low investments as no single buyer is willing to incur transaction costs of dealing with many sellers each selling small quantities. To survive in this new economic environment, smallholders must seek new ways of competing in the market.suggests that collective marketing as one of the institutional arrangement that can increase the competitive advantage of smallholder farmers in an increasingly commercialized and integrated world market (Dash and Purohit 2006). The institutional arrangement enables smallholder farmers to produce the required quantity and quality for a specified market. Collective marketing reduces cost of getting the product to the markets and improves the bargaining power of farmers. According to Meinzen-Dick et al (2002), collective marketing reduces transaction costs and enable smallholders to access services that private sector or government would not provide for.Collective action is a necessary but not a sufficient condition that allows smallholders to fully take advantage of their competitive position in the global market. Royal Tropical Institute, (2008) argues that smallholders are less attentive to market signals and on their own they may not be able to take advantage of changes in markets. Figure 1 below suggests that smallholder farmers do not have a direct control over factors driving market changes (such as globalisation, urbanisationsee Box 4 in Figure 1). However, it's in their choice and control to establish institutions of collective action which enables them to acquire market information, create new markets opportunities, attain economies of scale, make consistent supplies to a given market at lower production and transaction costs. 4). It however seeks to influence market indirectly through a number of activities. IAR4D seeks to promote adoption of relevant technological innovations that will increase production at least cost. To achieve these broad objectives, IAR4D promotes institutional innovations such as collective marketing that reduces transaction costs of dealing with several uncoordinated production units. It promotes the interaction of smallholder farmers, farmer organisations, researchers and other service providers, NGOs, market chain actors in identifying and developing potential business opportunities for smallholders and private sector. IAR4D seeks to build networks that will continuously seek ways of overcoming limiting factors in policy, markets and territorial contexts and valorise enabling factors in these domains through applied research. IAR4D put emphasis on Johnson et al's (2002) proposition which argues that 'farmers must produce for the market rather than market what they produce'. It argues that research and concerted efforts must be put in easing factors driving changes in supply (Box 3 in Figure 1) and mobilise farmers to market collectivelyto benefit from changes in market. However, unless factors that enable collective marketing are known and addressed properly, IAR4D will not benefit smallholder farmers. This paper uses the institutional perspective to identify the social, economic, cultural and political factors that limit/enable the formation and development of collective marketing initiatives. Once these factors are identified, the paper explores institutional innovations that are necessary to position smallholders such that they benefit from factors driving changes in the market. It seeks, from theory and empirical studies, to show how IAR4D can promote collective action through enhancing factors that explain collective marketing. Modified from Dash and Purohit, 2006 (2) Smallholder (4) Factors driving changes in market Globalization, Urbanization, Food quality standards, processed foods, disposable income, foreign investments, supermarkets(1) IAR4D(5) The Market Literature has attempted to explain factors that affect collective action. Several authors have explained enabling conditions for successful collective action outcomes in the area of natural resources management. Upholf and Wijayaratha (2000) highlight how structural forms of social capital (roles, rules, procedures, social networks) enable participants to act together more effectively to pursue shared objectives. Pretty and Ward (2001) have shown how human and social formationsoften represented as community based groups, have been pivotal in solving many community developmental problems particularly in the area of natural resources management. According to Markelova and Muinzen-Dick, (2009) marketing groups that are built upon experiences of working together in the past for other purposes have an advantage in terms of trust and cohesiveness. Ostrom (1995), adds that prior involvement in groups and networks is an important contributing factor in building trust and changing perceptions, behaviour and attitude towards collective action. Most successful collective action initiatives show that group size is the single most important variable that affects collective action (Ostrom, 1995). Homogeneous groups with the same socioeconomic status are more stable and effective. The relevance of factors enhancing collective action in natural resources management in explaining collective marketing particularly of agricultural produce has received limited attention. Studies by Njuki (2009) have shown that collective marketing is enabled where farmers participate in deciding on the terms of trade, setting prices.Markelova and Meinzen-Dick ( 2009) identified characteristic of the markets and products as another determinant of collective action. They note that collective marketing is less common with staple food crops than with high value products such as cotton, cocoa and tobacco. Markelova and Meinzen-Dick ( 2009) argue that staples are relatively easy to store and transport. A large volume of such crops are destined for local market and for local consumption. Therefore they may not be an incentive for farmers to organise around the marketing. Perishables carry higher risk, and require sophisticated and costly storage facilities thus precluding individual smallholder from successfully marketing due to lack of funds, capital and technical expertise (Markelova and Meinzen-Dick 2009). Cash crops such as coffee, cocoa require processing, so smallholders often have little choice but to sell to larger farmers and agribusiness who can afford processing equipment. The authors show how collective action enabled smallholders to acquire processing equipment and successfully market to domestics and international markets collectively. The role of some of the household socioeconomic characteristics, institutional context and biophysical constraint in explaining collective action has received little attention. In the final analysis, it is the individual who is responsible for making the decision to either market collectively or individually. Individual variables such as education, farming experience, age, and gender marital status, and size of household influence the decision to market collectively or individually. Catacutan et al (2006) also noted that community's wealthiest members may be able to opt out of collective action because their need to pool resources is very low. They also argue that participation in collective action is usually greatest among those who posses minimum level of asset or skills useful to the project.Data used in this research was collected through the SSA CP programme. Participating districts, villages and households were selected using randomisation procedures in Niger, Nigeria, Rwanda, DRC, Uganda, Zimbabwe, Malawi and Mozambique. A sample of 2186 households that were interviewed reported that they marketed cereal in the 2008/9 agricultural season. Data were analysed using STATA. The descriptive analysis covers means and standard deviations to provide distribution across contextual variables. For hypothesis testing, t test was used. Logit regression analysis was used to identify the factors that affect farmers' decision to participate in a marketing cooperative. Before running the analysis test multi-collinearity was conducted to determine if there were highly correlated independent variables. For those that were correlated, one of them was dropped from the model. The default cut off correlation value of 0.7 was used. Next a forward stepwise selection with maximum likelihood ratio (LR) test criterion for variable selection was applied to determine the set of independent variables that explain most of the variance in the logit model. The technique proceeds the same as in a multiple regression stepwise procedure, but a change in log likelihood is examined after estimating the model when each variable was either entered or deleted. At each step, the variable with the smallest significance level for the score statistics, provided it was less than the chosen cut off value (default = 0.05) was entered into the model. Similarly, variables with the largest significance level for the score statistics, provided it exceeds the cut-off value (default = 0.05) was removed from the model. This continued until no more variables were eligible for entry and removal. The estimated model contains only variables that are statistically significant (p<0.05) as is presented in From Table 1 above, variables that increase the probability of farmers marketing collectively include the age, education level and farming experience of the household head. The probability of farmers marketing collectively also increases with an increase in land size and distance to the market. Being a member of a group and participation in research also increases the probability of smallholder marketing collectively.Table 2 below shows the result of logit. The model has a good fit and 62% of the variation in mode of marketing arrangement is explained by explanatory. smallholder to produce as individuals on the individual plots. There are considerable economies of scale that be gained through bulk producing for specific grade and type to meet the need of a buyer.Each individual farmer may only produce one bag of surplus maize but if 1000 farmers gather together all their surpluses in one location there will be enough to make it possible to hire a truck and sell the thousand bags at the higher bulk price in/outside the immediate location to a specified buyer. This will be more easily accomplished if farmers agree to plant the same variety of crop, to sow it at the same time and to adopt the same growing, harvesting and post-harvest techniques. The most successful strategies for collective marketing include co-operation with the task of selling the goods and a high degree of collective activity right through the farming process. IAR4D can help in coordinating several independent decision makers engaged in small scale production, help reorganise production schedules to avoid seasonal glut and subsequent decrease in demand and price.Collective action in production has to provide tangible benefits necessary to build sustainable level of commitment.The challenge is to reduce hidden costs such as compliance costs (costs that individual incur from loss of autonomy ie selling produce of any quality to whom they want when they want), opportunity cost (time spent in meetings and communications with other group members), and cost of enforcing agreed upon behaviour on group members. However, Morales (2006) notes that economic coordination risk (failure to produce when expected to) and risk of opportunism (self interest seeking with guile) may make it difficult for smallholder to collectively produce the required quality and quantity for a given market. Findings from Table 2 support literature in arguing that there are some features of social life (networks, norms, and trust) that reduce transaction costs by generating expectations, flow of information and a common understanding that enable smallholders to act together more effectively to pursue shared objectives. If the existing institutions are working as well as they should, then it is appropriate for IAR4D to look for institutional innovations that reduce transaction cost and risks. The above discussion suggests that collective action should be promoted at production stage.The significance of social capital in explaining smallholders' decision to market collectively stresses the importance of having shared norms among participants.Therefore collective marketing mobilised within a small political unit such as a village has more chances of succeeding. Individuals in such small groups can work collaboratively to establish and maintain both trust and networks of contracts.Social capital has a positive influence on whether an individual would choose to market collectively or not. This stresses the point that a collective is not the result of simply bringing smallholder farmers together to supply a given market. A collective is a single individuality and to understand it we need to look at it as a functioning unit. It is the unit or the collective which determines the characteristics of the constituents (individual smallholder farmers). According to Guiliani (2006) individuals in a collective reach insights that none could have reached alone, and that cannot be traced back to one particular individual's contribution. Unsurprisingly therefore, all characteristics of the individual smallholders (age, education wealth status) are not statistically significant in determining the collective as discussed earlier. This emphasises that a collective is not an aggregation of individual farmers and not merely the sum of qualities of individual members. This could explain the negative and insignificance of membership in the model displayed in Table 2 above. In fact, Sanginga et al (2004) say that farmer groups that are hastily formed with little reference to building mutual trust fail through lack of benefits.Habermass suggests social learning through practical reasoning can be an important engine for collective cognition. The process of social learning allows hypothesis of truth claims to be examined through argumentation and then rejected, revised or accepted. This process gives space to an individual in the collective to shift from being a totally different cognitive agent with multiple perspectives to having group shared attributes such as common values necessary for collective action (Koelen andDas 2002 in Guiliani 2006). Figure 2 Through the promotion of social learning, IAR4D can raise the level of empowerment (that is set price, enacting contracts set terms of the contract with traders) of the collective and make information on commodity demand readily available. To improve their bargaining power, Komarudin (2006) suggested that smallholders need access to information about pricing structure, availability of substitutes quality requirement and consumer preferences which actors in IAR4D can promote.This study is based on the premise that collective marketing is only way smallholders can position themselves to compete in highly commercialised and competitive agricultural market. The model in this study has shown that variables such as land size (implies more produce) social capital and farming experience are the most important variables that promote collective marketing. It therefore means that for collective marketing to be successful, it has to start at production and even possibly at input procurement. For this to be successful, IAR4D has to improve upon social capital through social learning. People will invest in a collective once they have confidence that others will also do so. Where social capital is already strong, collective marketing has a greater chance of succeeding if IAR4D maximises on the leadership and managerial abilities that pre-exist within the community rather than construct new ones. It is important to create an enabling environment that facilitates shared learning (not only among stakeholders) but between and among farmers and buyers and other supporting agents. Social learning creates joint realities by bringing multiple realities. To deconstruct the multiple realties through joint analysis and reflective learning takes time. This process cannot be short circuited as lessons are learnt by doing and sometimes through error.","tokenCount":"2718"} \ No newline at end of file diff --git a/data/part_3/9309840616.json b/data/part_3/9309840616.json new file mode 100644 index 0000000000000000000000000000000000000000..f9acdb4a058b22eea8073987043129376a6faf04 --- /dev/null +++ b/data/part_3/9309840616.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"783254aa6abdb24398d33d60830ed0a9","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/efafaa7d-fe3f-4727-ab58-75e118115452/retrieve","id":"1458738605"},"keywords":[],"sieverID":"49d4f360-b234-481f-8e57-696dd69765c0","pagecount":"80","content":"desarrolla tecnologías, métodos innovadores y nuevos conocimientos que contribuyen a que los agricultores, en especial los de escasos recursos, logren una agricultura eco-eficiente -es decir, competitiva y rentable así como sostenible y resiliente. Con su sede principal cerca de Cali, Colombia, el CIAT realiza investigación orientada al desarrollo en las regiones tropicales de América Latina, África y Asia. www.ciat.cgiar.org CGIAR es una alianza mundial de investigación para un futuro sin hambre. Su labor científica la llevan a cabo 15 Centros de Investigación en estrecha colaboración con cientos de organizaciones socias en todo el planeta.Este documento es el resultado de un esfuerzo colectivo de todos los actores que participaron en los talleres de \"Construcción Participativa de la Estrategia Sectorial de Caucho en Guaviare con enfoque ambiental\", realizados en San José del Guaviare, durante los meses de marzo y junio de 2017.Visión Amazonía es una apuesta del estado colombiano que surge como parte de los esfuerzos nacionales para luchar de manera contundente contra el cambio climático y la pérdida de biodiversidad; por lo anterior, el Gobierno de Colombia se ha propuesto la meta de reducir a cero la deforestación neta en Amazonía al año 2020. Esta estrategia, liderada por el Ministerio de Ambiente y Desarrollo Sostenible (MADS), fue diseñada para garantizar la conservación y el uso sostenible de la Amazonía colombiana.El objetivo de Visión Amazonía es promover un modelo nuevo de desarrollo que permita conservar el ecosistema natural y generar nuevas oportunidades económicas sostenibles que reconozcan las limitaciones y oportunidades del territorio. Bajo esta orientación, con el propósito de atacar los factores agrícolas y pecuarios de la deforestación y promover prácticas sostenibles en los sistemas productivos, Visión Amazonía comisionó al Centro Internacional En este informe consolidamos los resultados obtenidos en las jornadas de trabajo con actores de la cadena de caucho en el departamento del Guaviare. Estas fueron realizadas durante el primer semestre del año 2017 con el propósito de construir la estrategia sectorial de competitividad de la cadena de valor. La construcción de dicha estrategia involucró la realización de varios encuentros y ejercicios participativos de análisis y planeación, que facilitaron la negociación y toma de decisiones en lo que respecta a los caminos que se deben adoptar para aprovechar el potencial competitivo actual de la cadena, así como para superar las limitantes. Para ello, el enfoque metodológico 1 Teniendo como referencia un rendimiento de 0,92 t/ha/año, cifra promedio para el país manejada por la CCC (Silva, 2016) seguido fue el resultado de la combinación de herramientas metodológicas que constaron de ocho pasos: 1) análisis integral de la cadena; 2) identificación y convocatoria de autores, 3) revisión de oportunidades de mercado y ventajas competitivas; 4) mapeo de la cadena; 5) construcción de una visión compartida; 6) análisis de cuellos de botella; 7) definición de estrategias y elaboración del plan de acción; y 8) identificación de potenciales alianzas sostenibles. A su vez, el documento expone las cifras de deforestación y el rol que puede jugar la cadena de valor del caucho natural para mitigar esta problemática.El caucho natural se presenta como una alternativa productiva sostenible debido a su potencial de reforestación, con un sector que ha contado con el apoyo y los esfuerzos realizados a nivel internacional, nacional, departamental y local desde 1965. Asimismo, la cadena de valor se ha visto fortalecida con la intervención del Instituto Colombiano de la Reforma Agraria (INCORA), la construcción del acuerdo de competitividad en el año 2010 y el reconocimiento, por parte del MADR, de la cadena nacional del caucho en el 2012.Con respecto al área sembrada en caucho, Colombia cuenta con más de 53.000 ha (CCC, 2016b). En condiciones ideales, dicha área podría producir cerca de 48.965 t en el año 2025 1 , lo cual superaría de forma sustancial el consumo nacional que actualmente es suplido, en su mayoría, a través de importaciones (19.000 t). Sin lugar a dudas, un factor relevante que ha afectado el aprovechamiento del área productiva del país -y que puede amenazar la producción proyectada-es la caída mundial en los precios que ha perdurado desde el año 2011 (Malaysian Rubber Board, 2017). Además de los precios, el sector cauchero del Guaviare se ve y ha visto afectado por otras limitantes tales como i) los costos de producción, ii) la falta de articulación institucional, iii) la carencia de cifras del sector y iv) poco valor agregado en la región, entre otros; estos requieren de fortalecimiento para lograr mejorar la competitividad de la cadena.En este documento se registra el resultado de la construcción participativa de la estrategia de la cadena de caucho con enfoque ambiental en el departamento del Guaviare. A lo largo del escrito se presenta el estado del arte de la cadena, se profundiza en los distintos eslabones y actores, para luego introducir el análisis de las ventajas competitivas, los cuellos de botella, la visión del sector construida por los actores, las estrategias sectoriales y el plan de acción propuesto para superar dichos cuellos, Adicionalmente, se presenta la cuantificación y el análisis de la huella de carbono para la producción de caucho seco en el departamento, con los que se identifican los puntos críticos de mayores emisiones y se plantean las posibles estrategias de reducción de gases de efecto invernadero (GEI). Por último, se exponen las recomendaciones y conclusiones que surgen del trabajo realizado durante dos talleres multiactores, de las visitas de campo y de las entrevistas con actores -tanto en la región como en otras partes del país-. Este escrito permitirá dar a conocer la complejidad de la estructura de la cadena, así como las estrategias planteadas para dar solución a sus principales cuellos de botella. Así, se espera que sea utilizada como insumo clave para la planeación del desarrollo de la cadena por parte de los organismos competentes. El estado colombiano se encuentra a la vanguardia de la promoción del desarrollo bajo en carbono a nivel mundial (PNUD, 2015), y entre sus compromisos más ambiciosos se incluye el objetivo de cero deforestación neta en la Amazonía colombiana para el año 2020. Para alcanzar este objetivo, el Gobierno nacional reconoce la necesidad de proporcionar a la población de la región amazónica colombiana oportunidades que le permitan un desarrollo económico sostenible como alternativa a las actividades motoras de la deforestación.Visión Amazonía busca complementar los esfuerzos del Gobierno por medio de acciones que mejoren las oportunidades económicas de la región, el bienestar de la población, la reducción del deterioro del capital natural, la promoción de la conservación forestal de las áreas designadas a nivel nacional para estos fines, su reforestación y restauración adicional. Con dicho propósito, este ha logrado formalizar acuerdos con los Gobiernos de Alemania, Noruega y el Reino Unido, que proporcionan financiación basada en resultados por reducción de emisiones verificadas.Para lograr esta visión, se requiere de un portafolio amplio que aborde aspectos diversos a corto, mediano y largo plazo, entre estos, i) la promoción del crecimiento económico, ii) el mejoramiento del bienestar de grupos vulnerables (desplazados, minorías étnicas, minorías sexuales, entre otros), iii) la detención de la deforestación y ampliación de la frontera agrícola, y iv) la transición exitosa hacia la paz. Para ello, se ha preparado un portafolio de inversión e intervención focalizado, de forma inicial, en los departamentos de Caquetá y Guaviare; este cuenta con acciones priorizadas en torno a los siguientes cinco pilares:Vista aérea de la selva amazónica (N. Palmer/CIAT).Pilar 1 -Mejora de la gobernanza forestal enfocado al fortalecimiento institucional para la gestión del recurso forestal y los instrumentos de planificación de uso del suelo, zonificación, administración y control efectivos.Se centra en el fortalecimiento de la capacidad de los pueblos indígenas para la conservación de los bosques y llevar a cabo una producción sostenible en sus territorios.Un pilar transversal, cuyo objetivo es desarrollar un conjunto de actividades que faciliten la implementación de los otros cuatro pilares, dentro de las cuales están la consolidación del Sistema de Monitoreo de Bosques y Carbono (SMByC), el Inventario Forestal Nacional con énfasis en la Amazonía, el desarrollo y acceso a información científica para la toma de decisiones, y una estrategia general de comunicaciones para Visión Amazonía.Centrado en i) el mejoramiento de los instrumentos de zonificación medioambiental y el ordenamiento territorial; ii) el establecimiento de reglas del juego para la inversión, mediante acuerdos entre las autoridades departamentales y la nación; y iii) el apoyo al desarrollo de un licenciamiento ambiental diferenciado para las actividades sectoriales en la Amazonía.Pilar 3 -Desarrollo agroambiental liderado por el MADR; este atenderá las causas directas de la deforestación al incidir en los agentes mediante los siguientes componentes: i) acuerdos de conservación con comunidades campesinas, ii) extensión rural con criterios ambientales, iii) incentivos verdes para reducir la deforestación, iv) cadenas productivas con acuerdos de cero deforestación, y v) alianzas productivas sostenibles.Los resultados presentados en este documento hacen parte del Pilar 3, y tienen como objetivo avanzar en el fortalecimiento de las cadenas productivas regionales de cacao, caucho, carne y leche (del sistema ganadero doble propósito) y productos no maderables del bosque (PNMB), para el mejoramiento de su competitividad económica, desempeño ambiental y la promoción de acuerdos de cero deforestación.A través de este componente, se busca fomentar la transformación de cadenas productivas hacia cadenas de valor a partir de la creación de espacios para la generación de confianza y el desarrollo participativo de planes que promuevan la competitividad sistémica y el beneficio común. Con este enfoque se busca propiciar mejoras en los flujos de información y colaboración entre actores, la calidad de los productos, la productividad, la trazabilidad, el acceso a mercados, las estrategias de diferenciación, y la generación y distribución justa de valor entre los distintos actores involucrados. Al mismo tiempo, se pretenden promover estrategias que aseguren el manejo sostenible de los suelos amazónicos, la recuperación de áreas degradadas, la conectividad del paisaje amazónico y la reducción de la deforestación. Su finalidad es que las cadenas tengan incidencia en la transformación productiva de las áreas agropecuarias ya establecidas y promuevan compromisos para lograr cadenas de valor libres de deforestación al 2020.Para lograrlo, se llevaron a cabo dos talleres de construcción participativa de estrategias sectoriales, desarrollados en cada departamento y para cada una de las cadenas priorizadas, donde se planteó la revisión y rediseño participativo de la visión y estrategias sectoriales de mejoramiento, la estructuración de un plan de acción y la conformación o reactivación de plataformas regionales permanentes de actores de las cadenas. Adicionalmente, se analizó el desempeño ambiental de cada cadena y se empleó como indicador la huella de carbono para la producción de caucho.Para este trabajo CIAT ha puesto a disposición del proyecto los métodos, herramientas y enfoques participativos de aprendizaje en cadenas de valor y acceso a mercados -descritos en múltiples publicaciones-resultado de numerosos proyectos colaborativos emprendidos durante dos décadas en América Latina, África y el sudeste asiático 2 . Estos métodos se enfocan en i) desarrollar capacidades con los productores de pequeña escala; ii) cautivar compradores dispuestos; y iii) generar un ambiente habilitador para el desarrollo de negocios incluyentes que contribuyan a disminuir el hambre y la pobreza; todo bajo una línea de gestión del conocimiento y la información que facilite el aprendizaje continuo de los distintos actores que intervienen en procesos de desarrollo rural con enfoque ambiental. Desde su inicio, a lo largo de un proceso de cocreación y participación de los actores claves de la cadena, se busca alcanzar la sostenibilidad por medio de la apropiación y el compromiso de los actores.Este proceso estuvo compuesto por ocho fases (Figura 1), durante las cuales se utilizaron técnicas y herramientas diversas; entre estas, una revisión del estado del arte de las cadenas, talleres multiactores, entrevistas, cuestionarios y otros instrumentos basados en las metodologías de Participatory Market Chain Analysis for Smallholder Producers-análisis participativo de cadenas de mercado para pequeños productores- (Lundy et al., 2007) Como punto de partida, el proceso comienza con la definición del estado del arte del sector; inicialmente, se identifica su estructura, actores, características, relaciones y nivel de competitividad. Para ello, se hace una recopilación y análisis de información secundaria, se realizan entrevistas a los principales actores de la cadena, y se procede a realizar una revisión y validación de la información de manera participativa por medio de dos talleres multiactores; para la realización de estos talleres se identifican y convocan actores clave de la cadena, representantes de todos sus eslabones. Luego, se revisan las oportunidades de mercado y ventajas competitivas de la región, se comparten experiencias de iniciativas exitosas y se analizan las fortalezas y oportunidades para el desarrollo de la cadena. Según el estado del arte, las oportunidades de mercado y las ventajas competitivas de la cadena, se procede a mapear las actividades, relaciones, costos y flujos de productos e información que tienen lugar en cada eslabón; a su vez, se construye una visión compartida para la cadena. Después, se identifican los cuellos de botella que limitan el alcance de los objetivos planteados en la visión para los diversos eslabones de la cadena;Programa de mejoramiento de la cadena a partir de los cuellos de botella se diseña un plan de acción con actividades y responsabilidades específicas impulsado con base en las ventajas competitivas de la región. Por último, se identifican alianzas sostenibles con socios comerciales que posean una visión alineada al plan de desarrollo sectorial establecido.Durante los talleres multiactores se establecieron los primeros acuerdos, se originaron espacios para discusión y análisis, y se efectuaron procesos de revisión y retroalimentación. De este modo, se buscó asegurar que la información presentada aquí sea completa, precisa y con la participación y las voces de todos los involucrados.Los talleres y actividades realizados en el marco de este proyecto fueron facilitados por el equipo de CIAT, bajo la coordinación de Matthias Jäger. Sin embargo, la construcción de este documento es el resultado de un esfuerzo colectivo entre los actores presentes en el proceso y el equipo de trabajo de este centro 6 .La estimación de las emisiones de gases de efecto invernadero (GEI) permite hacer un diagnóstico de los efectos de la actividad humana sobre la atmósfera y generar información necesaria para reducir los niveles de contaminación global. Estas estimaciones se realizan a través de indicadores ambientales como la huella de carbono, el cual permite medir el impacto de un sistema productivo sobre el calentamiento global.En este ámbito, el departamento del Guaviare emite 10,75 Mt de CO 2 eq., como consecuencia del cambio de bosque natural a pastizales y otras tierras forestales (95% de las emisiones totales) debido a que en el departamento se concentra el 13% de la deforestación total nacional (IDEAM et al., 2016).Para la estimación de la huella de carbono (HC) del caucho seco se han utilizado como documentos guía: el estándar PAS2050: 2011 \"Specification for the assessment of the life cycle greenhouse gas emissions of goods and services\" y el ISO 14067:2013 \"Greenhouse gases -Carbon footprint of products -Requirements and guidelines for quantification and communication\". Estos proporcionan los requerimientos específicos para el análisis de los gases de efecto invernadero (GEI) del ciclo de vida de bienes y servicios. Estas normas se basan en la metodología de análisis de ciclo de vida establecida por los estándares internacionales ISO 14040 \"Environmental management -Life cycle assessment -Principles and framework\" y 14044 \"Environmental management -Life cycle assessment -Requirements and guidelines\".En el contexto mundial, el área cosechada de caucho estimada fue de 11,7 millones de hectáreas en el año 2014; donde los principales países productores fueron Indonesia, Tailandia y Malasia con un 68% del área total (FAOSTAT, 2017). Si bien, los modelos productivos de estos países se han caracterizado por ser de pequeños productores, los mismos cuentan con El objetivo del análisis de las cadenas de valor es preparar una estrategia para su fomento y crear las bases para su monitoreo (por ejemplo, el cálculo de mejores ingresos, la distribución de los beneficios entre eslabones, la evolución de la huella de carbono a lo largo de la cadena, etc.); asimismo, iniciar un proceso de cambio y proveer información del sector a empresas y organismos públicos (Springer-Heinze, 2007). Así, se han diferenciado tres tareas básicas que comprenden el análisis de la cadena:1. Mapeo de la cadena de valor 2. Cuantificación y descripción detallada de las cadenas de valorEl análisis de la cadena de valor no es un fin en sí mismo: sus resultados alimentan las decisiones de los promotores, tanto públicos como privados, en el desarrollo de la cadena. De este modo, las empresas privadas usan los resultados del análisis para establecer una visión y una estrategia de mejoramiento propio, al igual que los organismos públicos y los proyectos de desarrollo para implementar los proyectos de fomento de la cadena y planificar las acciones de apoyo. A su vez, estos análisis pueden ser utilizados para la formulación de los indicadores de impacto y para el monitoreo de los proyectos de fomento de la misma.El análisis de la cadena de valor está estrechamente ligado a su proceso de mejoramiento y de promoción; por lo tanto, es indispensable que la información empleada para su análisis refleje la situación actual más precisa posible (Springer-Heinze, 2007). En consecuencia, el proceso de construcción y validación participativa con los actores regionales no solo asegura una mayor calidad en la información, sino que permite detectar factores que, de otro modo, pasarían desapercibidos; además, incentiva el compromiso de los actores en la ejecución y seguimiento de las estrategias de mejora.Aprovechamiento de caucho en Colombia (N. Palmer/CIAT).El análisis de cadenas es recurrente en el ámbito regional y nacional; sin embargo, el enfoque de cadena de valor es poco aplicado, como quiera que las intervenciones están más orientadas hacia la mejora de la producción y la productividad, y menos hacia el mercado, las alianzas comerciales y la distribución equitativa del valor agregado entre los actores de la cadena. A continuación, se presentan los resultados del ejercicio comparados con las cifras y los datos de carácter nacional e internacional que permiten comprender la dinámica de la cadena.Para lograr un análisis detallado de la cadena, comprender su estructura e identificar a los actores involucrados en esta, además de las actividades que cada uno realiza, el instrumento principal para lograrlo es el \"mapeo de la cadena\". Este mapeo traza una representación visual del sistema de la cadena de valor, identifica las operaciones comerciales (funciones), los operadores y sus vínculos, así como los prestadores de servicios de apoyo dentro de la misma. Los mapas de la cadena son el núcleo de cualquier análisis y, por lo tanto, son indispensables al ser referentes para los estudios detallados subsecuentes.En este ámbito, los actores de la cadena de valor se pueden agrupar en tres niveles. En el primer nivel, o nivel micro, se encuentran los actores directos, estos realizan actividades directamente relacionadas con la producción, la transformación, la distribución y el consumo del caucho y sus subproductos. En un segundo nivel o nivel meso están aquellos que prestan servicios y apoyan de forma directa la ejecución de las actividades de los actores del nivel micro; entre estos servicios los más comunes son la asistencia técnica, financiación, transporte, capacitación, investigación, provisión de insumos y apoyo para la puesta en marcha de iniciativas o proyectos de desarrollo. Finalmente, en el tercer nivel o nivel macro, se encuentran los actores que participan en el diseño e implementación de políticas y fortalecimiento institucional; en este nivel se ubican los ministerios, gobiernos locales y regionales, y demás instituciones estatales y supraestatales (Jäger et al., 2013). Es común que algunos actores participen en varios eslabones de la cadena y en distintos niveles, como es el caso de las asociaciones de productores quienes, además de acopiar y comercializar el caucho, venden insumos y material vegetal, brindan servicios de asistencia técnica, acceso a capital y capacitación a productores. En la cadena de caucho del Guaviare se identificaron los siguientes eslabones en el nivel micro (Figuras 4 y 5):(a) Recursos genéticos: incluye todas las actividades y actores de la cadena relacionados con la producción de material vegetal (jardines clonales, patrones, stump, etc.) y la investigación sobre recursos genéticos, en particular, lo referido a validación de nuevos clones de caucho para las región.(b) Producción y transformación primaria: la producción hace referencia a las actividades en finca realizadas por los productores, desde la siembra, sostenimiento, equipamiento de los árboles, hasta el rayado de los mismos y la recolección de látex. Por otro lado, transformación primaria se refiere a todo proceso de transformación artesanal realizado en finca y que da como producto caucho natural en forma de lámina, fondo de taza (ripio), y/o látex estabilizado (no coagulado).(c) Comercialización: incluye las actividades y actores que participan en la compra y venta de lámina y látex estabilizado.(d) Transformación industrial: incluye la transformación del caucho seco y látex estabilizado en distintos productos que se comercializan a las industrias a través de distribuidores y en mercados mayoristas y minoristas. Los productos de este eslabón pueden variar entre productos de campo procesados (materia prima para industria transformadora) o productos industriales finales. Figura 4. Mapeo del flujo de los productos y servicios de la cadena de caucho en Guaviare.Transformación industrial• Compra-venta de insumos, equipos y herramientas.• Establecimiento y mantenimiento de jardin clonal.• Injertación, manejo de vivero, producción de semilla sexual (en bolsa) y asexual (stump)• Compra y venta de material vegetal.• Preparación de terreno.• Siembra (stump o en bolsa) sostenimiento y equipamiento de árboles.• Rayado.• Recolección.• Producción de lámina.• Producción de látex NO coagulado.• Compra, acopio, transporte y venta de lámina de caucho y ripio.• Compra, transporte y venta de látex no coagulado.• Compra de caucho seco o látex no coagulado.• Transformación en productos terminados con contenido de caucho.• ASOPROCAUCHO• SENA• SINCHI• CORPOICA• Almacenes de insumos• ASOPROCAUCHO• Industriales del sector cauchero• Intermediarios• Industrias de caucho seco: calzado, bandas transportadoras, adhesivos, bandas elásticas, mangueras, repuestos, Industria de látex, guantes, globos, juguetes, hilos elásticos.Figura 5. Mapa de actores y funciones por eslabón de la cadena de caucho en Guaviare.Dentro de esta sección, se anexa al mapeo básico información adicional como el número de actores, el volumen de producción y la participación en el mercado de segmentos específicos de la cadena.Según el interés, el análisis de la cadena se centra en aspectos particulares como las características de los actores específicos, las actividades desarrolladas, los servicios, las condiciones políticas, institucionales y del marco legal que posibiliten u obstaculicen el desarrollo de la cadena. De acuerdo con el diagnóstico de la cadena del caucho (MADR, 2015a), en Colombia se presentan dos tipos de sistemas productivos:(a) El monocultivo, que es la tipología más difundida en el país; su fase de crecimiento y desarrollo del cultivo esta entre los seis y siete años, siempre y cuando se implementen todas las recomendaciones del paquete tecnológico. En este tiempo los árboles alcanzan las condiciones necesarias para iniciar la etapa productiva a partir de las labores de rayado y beneficio.(b) Agroforestería, que en departamentos como Caquetá, Guaviare y Putumayo ha sido implementada en pocos proyectos, en asocio con otros cultivos permanentes, transitorios y de pan coger; entre estos se destacan el maíz, el plátano, la piña, el cacao y frutales amazónicos como el copoazú y arazá. Lo anterior, con el propósito de generar un flujo de caja durante la etapa no productiva del cultivo y, así, contribuir con la economía de las familias caucheras.Cabe señalar que SINCHI, CENICAUCHO y Corpoica adelantan investigaciones en arreglos agroforestales, aunque estos aún no se han validado extensivamente, lo que limita impulsar el fomento de los mismos.Actualmente no existe un censo o reporte oficial confiable que determine el número de hectáreas sembradas bajo sistemas agroforestales (SAF) en Guaviare; no obstante, se estima que la mayoría de plantaciones se encuentran como monocultivos. Aparte de los retos técnicos e informativos, la promoción de SAF en el departamento presenta limitantes culturales, pues algunos productores reportan que prefieren los monocultivos y no están convencidos de los beneficios ofrecidos por los SAF.Sin embargo, algunos productores emplean coberturas vegetales en sus plantaciones de caucho con plantas como el Kudzu.Con relación a las siembras de caucho en el departamento de Guaviare, estas se concentraron entre los años 2005 a 2010 en concordancia con las expectativas generadas por el alto precio del caucho a nivel internacional; dichas siembras se articularon con la ejecución de programas de desarrollo alternativo implementados por el Gobierno nacional y la cooperación internacional (Figura 6). En los años siguientes se ha observado un decrecimiento en las nuevas siembras a causa de la caída en los precios del caucho y de una menor oferta de programas que enfaticen su siembra como alternativa económica. De acuerdo a las estadísticas del CCC, el departamento de Guaviare reúne 393 pequeños productores dedicados a la producción de caucho natural (CCC, 2016); sin embargo, los actores locales declaran que solo cerca de 20 productores realizan una explotación de sus plantaciones. En el ámbito de la producción primaria, las actividades en este eslabón consisten en el establecimiento y sostenimiento de las plantaciones, y el rayado de los árboles para la obtención del látex. El rayado comienza cuando los arboles logran un grosor adecuado, mas, debido a las condiciones del suelo y a las falencias en el manejo, es común encontrar que el grosor de los árboles varíe sustancialmente entre lotes y dentro del mismo lote; esto ha dificultado el rayado de la plantación y retrasado el inicio de la etapa de producción, elevando los costos de producción.En cuanto al rayado, este se realiza normalmente cada 2 a 3 días durante las horas de la mañana, no obstante, la alta precipitación del departamento impide que se realicen todos los rayados planeados. Para esta tarea se emplean, de forma habitual, rayadores expertos quienes suscriben contratos formales o informales con los dueños de las fincas. Se estima que un rayador experimentado puede manejar entre 700 y 1.000 árboles, y su pago corresponde usualmente a un porcentaje de la producción (entre el 40 y el 50% del valor del látex obtenido) incluida la alimentación durante el día de trabajo. Aunque no se cuenta con registros, se estima que con ocho a diez rayados mensuales, un rayador puede obtener cerca de 350 kg de caucho seco en una hectárea con suficientes individuos; así, de lo obtenido le corresponde el 50% o cerca de COP$500 mil pesos al precio actual.Figura 6. Siembras de caucho en Guaviare.Fuente: CCC, 2016a.Además del rayado, los trabajadores suelen encargarse del abonamiento y control fitosanitario del cultivo. Aunque no es común que los productores de la región apliquen fertilizantes, o realicen las podas y el deshierbe recomendados en sus plantaciones -debido al costo y a la falta de resultados inmediatos-algunos productores entrevistados reportan grandes mejoras en el rendimiento como resultado de una adecuada fertilización.El proceso de transformación primaria lo realizan los mismos productores en sus fincas de manera artesanal; dicho proceso está orientado a la producción de lámina de caucho y, en una menor proporción, a látex estabilizado. Para la obtención de la lámina se inicia el proceso con la coagulación, donde el productor agrega una solución de ácido fórmico y agua al látex previamente depositado en canoas de coagulación (aunque se reporta el uso de sustancias distintas al ácido fórmico que afectan la calidad del producto). Una vez surtido este proceso, el cual toma un día, se continúa con el laminado mediante el uso de máquinas manuales que emplean rodillos para ejercer presión en el coágulo, le dan forma y extraen la humedad. Para obtener el grosor ideal se requieren varias pasadas por la máquina, empleando una cantidad considerable de mano de obra. Luego de obtener la lámina se procede a extenderla, bajo techo, para secarla durante 8 a 12 días; finalmente se procede a empacar la lámina seca. Así, por cada kilogramo de lámina de caucho seco se requiere en promedio 3,3 litros de látex.Con respecto a la distribución de las formas de presentación de caucho seco en las fincas de Guaviare (Figura 7) la mayor proporción se destina a lámina. La producción de látex estabilizado es una actividad relativamente reciente; ASOPROCAUCHO solo reportó ventas a partir agosto de 2016. Para la producción de látex estabilizado, se adiciona un anticoagulante (mezcla de amoniaco) al látex previamente depositado en tambores plásticos; estos son sellados para su conservación y posterior envío a los aliados comerciales. En este entorno, el principal comprador de este producto es Incolatex al cual le ha sido vendida la producción total del 2016, que se estimó en 2.098 litros.Fondo de taza (t) 7,7 37,5En el eslabón de comercialización sobresalen las iniciativas gremiales o asociativas. La cadena de caucho natural en el departamento está representada por la Asociación de Productores y Comercializadores de Caucho del Guaviare (ASOPROCAUCHO), la cual tiene como propósito fomentar el desarrollo rural integral en la región a través de la actividad cauchera. En el año 2016, ASOPROCAUCHO comercializó 31,5 t, distribuidas de la siguiente manera: 19.148 kg de lámina, 10.247 kg de ripio y 2.098 kg de látex. Esta cifra, comparada con la producción registrada en el departamento de Guaviare, según el censo 2015 de la CCC (45,2 t), representa casi el 70% del total; lo anterior convierte a la asociación en el principal comercializador formal de caucho natural del departamento.Entre las actividades del eslabón se incluyen la compra y recolección de producto en las fincas de los productores, por medio de rutas de recolección en vehículos propios, el almacenamiento y finalmente la venta a través de los diferentes canales de comercialización. Los principales costos incurridos en el eslabón incluyen el transporte interno y externo (COP$300/kg), el recaudo de la cuota parafiscal (COP$40/kg), los gastos bancarios (COP$14/kg) y los gastos administrativos (ASOPROCAUCHO no los contabiliza dentro de la actividad).Además de representar a los productores del sector y comercializar los productos intermedios, ASOPROCAUCHO realiza actividades de producción y comercialización de material vegetal, presta el servicio de asistencia técnica a sus afiliados y gestiona proyectos para el desarrollo del sector cauchero. No obstante, es importante señalar que algunos de los servicios que ofrece la organización están limitados por los recursos y temporalidad de los proyectos apoyados por el Gobierno y la cooperación internacional.Así, en el año 2016, ASOPROCAUCHO gestionó y ejecutó, entre otros, los proyectos que se relacionan a continuación:• Fortalecimiento del cultivo de caucho mediante el establecimiento de 750 hectáreas nuevas asociadas con el componente de seguridad alimentaria, con el apoyo de la Gobernación de Guaviare.• Fortalecimiento de las capacidades productivas en el proceso de producción y transformación del caucho, con la finalidad de contribuir a incrementar los ingresos económicos y a desarrollar capacidades técnicas y productivas de 20 familias, con la colaboración de la FAO.• Implementación de una alianza productiva formulada en 2014 y para ejecución en el año 2017.• Fortalecimiento de gremios por parte de la alcaldía de El Retorno, con la entrega de equipos y 70 hectáreas de chontaduro.Además de ASOPROCAUCHO, existen intermediarios que compran lámina directamente a algunos productores o, incluso, a la misma asociación para revenderla en otros mercados.Existen dos tipos de transformación industrial en la cadena productiva del caucho. El primero dirigido a la producción de materias primas con valor agregado -denominadas productos de campo procesados-y el segundo para transformar estas materias primas en productos terminados. Técnicamente, estos dos eslabones se encuentran separados en la cadena, ya que corresponden a pasos subsecuentes con actores y actividades que difieren sustancialmente. En la cadena del caucho del Guaviare no hay procesos de transformación industrial de productos de campo procesados, por esta razón, el mapeo realizado en este análisis no incluye este eslabón. A pesar de esto, a continuación se describe brevemente el rol de este eslabón dentro de la cadena nacional.Colombia cuenta con cuatro plantas transformadoras de caucho para la obtención de productos de campo procesados. Estos incluyen las láminas tradicionales (véase capítulo 2.2.2), el crepé, los cauchos técnicamente especificados, el látex concentrado (centrifugado o cremado), las láminas técnicamente especificadas y los cauchos especiales. Las principales plantas transformadoras de productos de campo procesados del país son Emprocaucho S.A.S. en Caquetá, de propiedad de ASOHECA, dedicada a la producción de TSR-20 y con una capacidad de 1 t/hora; Mavalle en el departamento de Meta con capacidad de 3 t/hora, para la producción de TSR-10 y 20; Compañía Cauchera en Santander que produce caucho TSR-20 con capacidad de 2 t/hora; y Eslatex en Antioquia que se dedica a la producción de látex centrifugado con capacidad de procesamiento de 1,2 t/hora.En este ámbito, el departamento de Guaviare ha dado un paso considerable para la obtención de productos de campo procesados; actualmente cuenta con una pequeña planta para la producción de látex concentrado, sin embargo, ésta no se encuentra en producción ya que no se ha logrado obtener la financiación para la compra de una planta generadora de energía. Entretanto, ASOPROCAUCHO ha realizado grandes adelantos en el desarrollo de un proyecto que pretende la instalación de una planta transformadora para la producción de 120 toneladas de látex concentrado por año, por medio de la ampliación y puesta en marcha de la infraestructura actual; a su vez, ha realizado acercamientos con potenciales compradores para asegurar la venta de esta producción. Finalmente, en el departamento se desarrolló un estudio para determinar la viabilidad y el potencial de un proyecto para la industrialización del caucho natural realizado por la Corporación por el Desarrollo Integral Sostenible y la Paz del Guaviare, DEISPAZ (2014). Este recomienda la implementación de una planta de producción mixta donde se contempla la alternativa de producir caucho seco en forma de TSR-5L y TSR-20, látex concentrado e, incluso, una pequeña planta para la elaboración de productos por inmersión en látex. No obstante, cabe señalar que en el estudio realizado se prioriza la producción de TSR-5L, durante una primera etapa, al considerar el nivel de producción potencial de la región en el corto y mediano plazo. Por tal razón, este profundiza en los requerimientos técnicos, logísticos y de mercado del caucho TSR-5L, sin realizar un análisis profundo de los requerimientos correspondientes para la planta de látex concentrado y de productos por inmersión.Respecto a la transformación de productos industriales terminados, el país cuenta con cerca de 700 industrias que utilizan caucho como materia prima. Estas industrias transformadoras pueden ser clasificadas, de acuerdo a la materia prima que utilizan, en los siguientes grupos: i) caucho seco, que incluye productos como llantas, calzado, productos de ingeniería, industria automotriz, bandas transportadoras, adhesivos y pegantes, bandas elásticas, pisos, tapetes, mangueras, empaques y mezclas, etc.; y ii) látex, que incluye guantes de todo tipo, globos, hilos elásticos, juguetes, molduras, etc.; este último sería el grupo de empresas potenciales para establecer relaciones comerciales -por parte de la cadena en Guaviare-si se considerara la puesta en marcha de la planta de producción de látex concentrado planteada por ASOPROCAUCHO.En cuanto a la ubicación y concentración de la industria del caucho en el país, las principales ciudades son Bogotá (el 75% de las empresas), Medellín, Cali, Bucaramanga y Barranquilla (DEISPAZ, 2014). La mayor parte del caucho natural empleado en la industria nacional es importado de Guatemala, Brasil y el Sudeste Asiático; según Gil (2016), el 54,7% de las importaciones del país la realizan solo cuatro empresas (7.505 t) y menos de 60 industrias importan el 99,6% del total de caucho natural.Cabe mencionar que el departamento de Guaviare carece de industrias de productos terminados. Mas, vale indicar que, en el escenario regional, las empresas Casanova Cauchos E.U. y Abastecedora de Cauchos y Mezclas -con plantas procesadoras ubicadas en la ciudad de Bogotá-son los compradores actuales de la materia prima local (lámina y fondo de taza) para la producción de empaques, pisos, mangueras, repuestos para motocicletas, entre otros.Steve Buissinne/Pixabay. Con respecto a la caída en los precios internacionales, esta se ha traducido en una disminución sustancial de los precios nacionales del caucho natural en sus distintas presentaciones (Tabla 6; Figura 10). Se ha observado que desde el año 2011 al 2016, los precios mantuvieron una tendencia a la baja; lo anterior desestimuló a los productores en cuanto a continuar aprovechando las plantaciones e iniciarlo en aquellas que entraron en etapa productiva. Entre los factores identificados como causantes de la caída de precios se incluyen (MADR, 2015a):• El incremento de la oferta mundial por la colocación en el mercado de inventarios de caucho natural procedente de países asiáticos.• Disminución en la demanda por la desaceleración de la industria china.• Caída del precio internacional del petróleo.• Efectos del cambio y variabilidad climática a escala mundial. (EPSAGRO) que, en general, son organizaciones de productores. Esta modalidad de prestación del servicio de asistencia técnica ha obligado a los gremios a asumir dicha responsabilidad y prestar el servicio a sus productores -de forma limitada-ya que el servicio se enmarca en los proyectos que son financiados por la cooperación internacional o los gobiernos locales.Diversas entidades entre las que se destacan la Presidencia de la República, el SENA, Corpoica, SINCHI, las dependencias agropecuarias de los municipios, la FAO, el Fondo de Compensación Ambiental, GIZ, USAID, MADR, Fondo Patrimonio Natural, ICA, ASOPROCAUCHO, entre otros, han venido apoyando en la financiación y prestación del servicio de asistencia técnica y han realizado actividades de capacitación, giras tecnológicas, días de campo, etc.; estas, en algunos casos, han contado con personal propio en razón al cumplimiento misional de la entidad y, en otros, con personal contratado en el marco de proyectos coyunturales que se financian con recursos públicos, privados y de cooperación internacional. Esta modalidad ha conducido a una prestación del servicio de asistencia técnica intermitente que obedece al flujo de recursos del proyecto, la cual ha contribuido a la dispersión y multiplicidad de enfoques, tanto técnicos como pedagógicos.En el marco del VI Congreso Internacional Cauchero llevado a cabo en el año 2016 se ha afirmado que las proyecciones del precio de caucho TSR-20 al 2021 no presentarán un mayor crecimiento, según Heiko Rossmann (2017) -especialista en el mercado del caucho natural-se ha calculado que el precio oscilará alrededor de US$1,31/kg. Aun así, el Concejo Internacional Tripartito del Caucho (ITRC por sus siglas en inglés) compuesto por Tailandia, Indonesia y Malasia realiza esfuerzos para incrementar los precios del caucho por medio de una reducción en su producción; de este modo, se busca lograr mantenerlo por encima de US$1,4/kg: el costo de producción estimado en la región.Bajo la política actual de asistencia técnica agropecuaria, regida por la ley 607 de 2000, el MADR ha diseñado un sistema para el Registro de Usuarios de Asistencia Técnica (RUAT) que es de diligenciamiento obligatorio por parte de los Gobiernos municipales para el acceso a recursos del Incentivo a la Asistencia Técnica (IAT). El IAT es otorgado por convocatoria y se ejecuta a través de las Empresas Prestadoras del Servicio de Asistencia Técnica AgropecuariaAprovechamiento de caucho en Colombia (N. Palmer/CIAT).Entre los servicios de investigación, el instituto SINCHI, Corpoica y CENICAUCHO son los que, en particular, han venido ejecutando proyectos con un impacto positivo en la cadena; entre estos, el desarrollo de nuevas técnicas moleculares para la determinación de la identidad genética de las plántulas, la caracterización morfológica y molecular del hongo Microyiclus ulei, la zonificación de áreas potenciales, la implementación y evaluación de SAF, y los modelos de enriquecimiento agroforestal (Sterling y Rodriguez, 2011;2014, Sterling et al., 2015)). En cuanto a la elaboración y ejecución de la agenda de investigación, desarrollo e innovación (I+D+i) -por parte de Corpoica-esta permitirá a su vez realizar en los próximos años investigación básica y aplicada, con base en la identificación de proyectos pertinentes.En Colombia, el productor heveícola cuenta con incentivos y líneas de crédito especiales que apoyan el desarrollo de proyectos productivos. Sin embargo, son recursos que, en su mayoría, se ofertan entre los diferentes renglones del sector agropecuario. A continuación, se describen de manera general los principales apoyos estatales para el subsector heveícola nacional.Certificado de Incentivo Forestal (CIF) Ley 139 de 1994: es un aporte directo en dinero, como un reconocimiento del Estado a las externalidades positivas de la reforestación; consiste en una bonificación en efectivo de los costos de siembra y mantenimiento de plantaciones forestales, con fines protectoras-productoras, en terrenos de aptitud forestal.Exención de renta Ley 939 de2004: considera exenta la renta líquida generada por el aprovechamiento de nuevos cultivos de tardío rendimiento, tales como, cacao, caucho, palma de aceite, cítricos, y frutales que se establezcan entre los años 2004 y 2014 y por diez años a partir del inicio del período productivo.Incentivo a la productividad para el fortalecimiento de la asistencia técnica (IAT): este incentivo es una ayuda o apoyo económico que otorga el Gobierno nacional, a través del MADR, destinado a sufragar una parte del monto total de los gastos en que un productor incurra con ocasión de la contratación del servicio de asistencia técnica para el desarrollo de proyectos productivos que comprendan una actividad agrícola, pecuaria, acuícola y/o forestal.Línea Especial de Crédito (LEC): esta línea financia proyectos destinados a la reconversión a cultivos de mediano y tardío rendimiento, así como al mejoramiento productivo de todo el sector agropecuario.Fondo Agropecuario de Garantías (FAG): respalda los créditos concedidos en condiciones de FINAGRO, con recursos propios, por las entidades facultadas para redescontar en el Fondo, así como los otorgados directamente por este a través de programas especiales de fomento y desarrollo agropecuario. Como medida adicional, algunos municipios suscriben con el Banco Agrario de Colombia los denominados convenios de garantías complementarias que son instrumentos que facilitan el acceso al crédito agropecuario y rural a los pequeños y medianos productores; estos potencian los recursos de las entidades territoriales destinados al desarrollo agropecuario.Incentivo a la Capitalización Rural (ICR): es un aporte en dinero que realiza FINAGRO a productores del sector agropecuario que se encuentren desarrollando un proyecto de inversión nueva, bajo la modalidad de crédito, para que modernicen su actividad y mejoren sus condiciones de productividad, competitividad y sostenibilidad, y reduzcan riesgos.Nattanan Kanchanaprat/Pixabay.A su vez, el productor heveícola nacional ha recibido apoyos sustanciales provenientes de los programas de cooperación técnica internacional a través de los siguientes programas o agencias: i) la Agencia Presidencial para la Acción Social (Acción Social) -y su proceso Gestión Presidencial contra Cultivos ilícitos -PCI-de la Agencia de Estados Unidos para el Desarrollo Internacional (USAID, por sus siglas en inglés)-ii) el programa Más Inversión para el Desarrollo Alternativo Sostenible (MIDAS), financiado por USAID; y iii) Áreas de Desarrollo Alternativo Municipal (ADAM) financiado por USAID, entre otros.Por último, a nivel nacional, el Proyecto Apoyo a Alianzas Productivas (PAAP) es un instrumento del MADR que busca vincular a pequeños productores rurales con los mercados, a través de un esquema de agronegocio con un aliado comercial formal. El PAAP impulsa iniciativas de los pequeños productores, para aumentar sus ingresos y promover un desarrollo sostenible. Para ello, se fundamenta en la articulación de los pequeños productores con mercados de valor agregado y favorece la sostenibilidad y posterior crecimiento del agronegocio, mediante la creación de un fondo rotatorio de propiedad de la organización de productores beneficiarios, el cual se nutre con los recursos que los beneficiarios recibieron del MADR al inicio de la alianza, y que forman parte del incentivo.El análisis económico de las cadenas de valor es la evaluación de su desempeño referido a la eficiencia económica. Esto incluye determinar el valor agregado a lo largo de los eslabones de la cadena de valor, el costo de producción y, en la medida de lo posible, el ingreso de los operadores (Springer-Heinze, 2007). Los costos de transacción son un aspecto adicional que incluye los costos para hacer negocios, recabar información e implementar contratos. El desempeño económico de una cadena de valor puede ser sometido a \"benchmark\"; es decir, que el valor de los parámetros principales puede ser comparado con aquellos de las cadenas rivales en otros países o industrias similares para establecer su eficacia y eficiencia.Para el análisis de los costos de producción se toma el resultado del trabajo y el consenso realizado con la Confederación Cauchera Colombiana; este fue alimentado con algunos datos aportados por parte de los productores y los actores de la cadena en Guaviare. Es de resaltar que, como sucede en otras regiones del país con la cadena de caucho, no es cotidiano que los productores manejen registros de costos; asimismo, el gremio cauchero no cuenta con un análisis de costos detallado y confiable. Por tratarse de un cultivo de tardío rendimiento en la región (entre los 8 a 9 años) es complejo que un productor decida sistematizar de manera organizada y periódica la totalidad de las actividades realizadas y los costos que genera; además, con motivo de la financiación que se ha realizado por parte de entidades públicas, privadas y la cooperación -en la gran mayoría de casos para la siembra del cultivo-los productores tienden a no considerar esta actividad como un costo, así como tampoco a cuantificar el costo de los jornales familiares dedicados para el establecimiento, sostenimiento o aprovechamiento del cultivo.Por lo anterior, luego de realizar una mesa de trabajo con la CCC, autoridad nacional del sector cauchero, se acordó adoptar un esquema de costos general para los departamentos de Caquetá y Guaviare que se analiza a continuación; este puede funcionar como una referencia para estas y otras regiones del país. Así, los costos están estimados para plantaciones en monocultivo, con una densidad de siembra de 550 árboles por hectárea.A modo general, los costos para el cultivo de caucho se analizan en cuatro componentes: i) el establecimiento, que incluye todos los costos en los que se incurre en el primer año para la siembra y el sostenimiento del cultivo; ii) el sostenimiento del año 2 al 7 u 8, que corresponde al período durante el cual el cultivo no se encuentra aún en producción; iv) el equipamiento, que es el proceso que se realiza una vez la plantación se encuentra apta para la explotación y obtención del látex (generalmente en el año 8); y iv) el aprovechamiento o beneficio, que es la etapa productiva de la plantación y, por tanto, incluye además del costos de actividades de sostenimiento, el costo de las actividades realizadas para la sangría, recolección, empaque y laminación (Tablas 7, 8, 9 y 10)El rubro de mayor peso en la estructura de costos durante la etapa de establecimiento es el de los equipos, los materiales e insumos, que representan entre el 43% y el 55%, según si se utiliza en la etapa de siembra stump o material en bolsa, respectivamente. Luego, durante la etapa de sostenimiento, la mano de obra representa el 57% de los costos si se realiza el manejo recomendado. Total costo siembra en stump 6.020.000Total costo siembra en bolsa 7.670.000Tabla 7. Resumen de costos de establecimiento de caucho en monocultivo -año 1 (ha).Fuente: Cálculos basados en información de CCC. Tabla 8. Resumen de costos de sostenimiento anual por ha de caucho -años 2 a 7.Fuente: Cálculos basados en información de CCC.En el cuarto componente de la estructura general de costos del cultivo de caucho (etapa de aprovechamiento) el concepto que participa con mayor porcentaje es la mano de obra; esta tiene un peso del 85% en el total de los costos, donde solo el rayado representa el 63% de los costos totales.Lo anterior, sustenta el planteamiento de la CCC, otros expertos del caucho que promueven la estimulación de los árboles -para reducir los costos de produccióndebido a que con el uso apropiado de ésta técnica se aumenta, de manera transitoria, la producción de caucho por sangría y la productividad de cada sangrador; asimismo, los expertos señalan que esa mayor producción transitoria del árbol implica una ampliación en la frecuencia de las sangrías para mantener la producción global de la planta y evitar la sobreexplotación de la misma. En este sentido, estos indican que la estimulación sólo se concibe para disminuir los costos en la producción y optimizar la mano de obra que se dedica a las labores del cultivo (UNIAMAZONIA, 2000). Lo anterior tendrá un efecto sustancial siempre que se aplique el paquete tecnológico para todo el proceso de producción del caucho; de lo contrario, un uso indebido de esta técnica puede generar efectos adversos en el árbol.Con los datos anteriores y el uso de otros complementarios, suministrados por los productores del Guaviare, se consideró pertinente realizar un ejercicio de balance de resultados para una finca tipo. Cabe aclarar que la información presentada no representa la totalidad de predios del departamento y sus parámetros deben ser ajustados según cada productor, pero es de utilidad para analizar el desempeño económico de la cadena.A continuación, en la Tabla 11 se ilustran dos modelos de fincas: el primero corresponde a productores que asumen los costos totales del cultivo y el segundo refleja la situación de los beneficiarios de un proyecto productivo (un escenario más parecido a la realidad del departamento) donde se descuentan los costos de los equipos, insumos y material vegetal usado para el establecimiento y sostenimiento durante los primeros años. Cabe aclarar que los rendimientos presentados reflejan solo un posible escenario pues los rendimientos reales varían sustancialmente entre las fincas debido a las prácticas de manejo, las edades de los cultivos y las condiciones agroclimáticas. La principal fuente de costos para un productor de caucho corresponde a la mano de obra, la cual representa el 66% del total. Aunque los costos de establecimiento, sostenimiento y equipamiento son relevantes al momento inicial del cultivo -al ser un desembolso significativo-estos suman solo el 17% del costo de producción al distribuirlos a lo largo de la vida útil de la plantación. Si bien el costo de transporte es bajo, con respecto a los otros, este puede variar a lo largo del departamento; en especial, en las fincas más alejadas de la capital y con poco acceso a las vías de comunicación (hasta seis veces más). Es común que en la región se emplee personal externo para las actividades de sostenimiento y rayado; bajo este escenario la utilidad anual por hectárea de caucho oscila entre COP$483.000 y COP$763.000, según el origen de los fondos para el establecimiento.Tomando como referencia el escenario de beneficiarios de proyectos productivos, cerca de 11 hectáreas serían necesarias para producir un salario mínimo mensual por familia. Si bien, en la práctica los productores emplean una menor cantidad de insumos y jornales para el sostenimiento -al no ser usual la implementación de las prácticas de manejo recomendadas-el costo real puede disminuir entre un 10% a un 20%; sin embargo, la no implementación de estas tiene un efecto negativo en los rendimientos. En el caso de emplearse solo los jornales familiares, el escenario productivo del caucho en lámina es mucho más positivo al incrementarse los ingresos hasta COP$2,4 millones por hectárea/año, por ende, el jornal técnico de un productor cauchero propietario, beneficiario de proyectos productivos se eleva a COP$48.751. Este jornal es un 31% superior al jornal medio de la región; por lo tanto, la producción cauchera se mostraría como una alternativa de interés económico para los productores donde, con 2,8 ha por cada uno, se generaría un salario mínimo para su familia.Es necesario aclarar que el modelo presentado no incluye otros costos financiados por el Gobierno o incurridos de manera implícita por el productor, entre estos: la asistencia técnica, la administración, los costos de oportunidad, las tasas de descuento, o los factores que incluyan el riesgo productivo relacionado a potenciales pérdidas por plagas, enfermedades y variabilidad climática. Por otro lado, también existen testimonios de productores del departamento con rendimientos mucho más elevados (por encima de 200 g de coágulo húmedo en promedio por árbol rayado) y, por ende, mayores rentabilidades.Al considerar que la etapa no productiva puede durar siete o más años, la rentabilidad de un proyecto de producción de caucho -bajo los parámetros relacionados en la tabla anterior-depende sustancialmente de la tasa de descuento empleada.Es relevante que el productor de caucho cuente con la liquidez para cubrir sus gastos durante el periodo no productivo, dado que al financiarse con tasas de interés comerciales, esto puede causar que su negocio no sea rentable. Una propuesta para cubrir los costos Aprovechamiento de caucho en Colombia (N. Palmer/CIAT).durante la etapa de sostenimiento es la siembra bajo sistemas agroforestales (SAF). A nivel comercial, SINCHI ha desarrollado ensayos y ofertas de modelos agroforestales con especies maderables y/o frutales amazónicos que incluyen proyecciones de costos y tasas de retorno; no obstante, aún no se cuenta con la información suficiente para determinar la aptitud y rendimientos a largo plazo de los diferentes modelos bajo las distintas condiciones del departamento; de este modo, para promover la adopción, aún hacen falta repeticiones a lo largo de la región amazónica por periodos de tiempo más largos que permitan determinar la respuesta de los modelos a las diversas enfermedades, suelos y prácticas de manejo.Cabe aclarar que la información aquí presentada no es representativa del departamento al no haberse realizado un muestreo estadísticamente representativo; sin embargo, ésta nos da un indicio aproximado de los costos actuales de producción de caucho. Es de resaltar que el caucho normalmente es solo uno de los sistemas productivos que se integran en las fincas del departamento, y que cumple una función de complementar el ingreso del hogar; no obstante, con base en los resultados anteriores se sugiere a los tomadores de decisiones que evalúen la interacción entre los factores económicos, sociales y ambientales con cifras precisas y adaptadas a las distintas condiciones del departamento; así, determinar el desarrollo futuro del sector. Una vez se cuente con la información adecuada, se sugiere considerar las siguientes preguntas: ¿es la producción nacional competitiva en comparación con los principales países productores, si se descartara el modelo actual de apoyo y subsidios?, ¿los sistemas generan un ingreso suficiente a las familias para cubrir sus necesidades básicas y lograr las metas de desarrollo establecidas?, ¿cuáles son los beneficios ambientales relacionados con la reforestación productiva bajo los sistemas de caucho, es posible apalancarse en estos para promover el cultivo, son estos suficientes para lograr las metas de desarrollo?.El valor agregado a lo largo de la cadena es un indicador esencial para calcular la distribución del valor total generado entre los actores. Sin embargo, este indicador solo no es suficiente: es necesario revisar los volúmenes de producto que pasan por los distintos eslabones para determinar la estructura de gobernanza, es decir, el grado de poder e influencia que el actor tiene en la cadena para estimar la captura total de valor. Además es necesario considerar que, en muchas industrias, el caucho natural es solo uno de los múltiples insumos utilizados para la producción de bienes terminados, y no siempre es la materia prima principal; lo anterior hace que el cálculo del valor agregado en cada paso del producto sea una tarea compleja. Debido a la falta de información sobre los costos de transformación, flujos y volúmenes de producto de diversos actores (por motivos de confidencialidad, propiedad intelectual, secreto industrial, entre otros), en esta sección presentamos una aproximación al valor agregado para los eslabones identificados (Tabla 12).Para la realización del siguiente ejercicio se usaron los datos reportados por los productores y otros actores durante los talleres de la cadena -realizados en San José del Guaviare-los análisis de costos llevados a cabo en conjunto con la Confederación Colombiana Cauchera y los datos del informe de gestión de ASOPROCAUCHO en el 2016. Este análisis se realiza para la lámina de caucho pues esta ocupa la mayor parte de la producción del departamento.Para el eslabón de producción primaria se tomó el costo de producción según el modelo del productor beneficiario de proyectos productivos. En este caso, la producción de lámina le deja una utilidad de COP$496/kg, valor que puede variar según su rendimiento, intensidad en el uso de mano de obra y los costos de transporte del producto final. En total, los costos de comercialización suman COP$354 al valor de compra de la lámina; esto le deja al comercializador (ASOPROCAUCHO en este caso) una utilidad de COP$146 por kg de producto transado. Con respecto al valor generado en estos dos eslabones, en el caso mencionado, se encontró que el 78% del valor es originado y capturado por el productor, mientras que el 22% restante lo obtiene el comercializador.Una vez el caucho en lámina entra en los procesos de transformación industrial, este se puede mezclar con ripio, caucho reciclado y otros productos para la elaboración de diversos productos. Gracias a la información compartida por las industrias pequeñas de producción de artículos a base de caucho, en este documento se ha presentado la estructura de los costos de dos de los productos terminados. Si se asume que el caucho empleado en este eslabón es 100% lámina, para la producción de empaques es posible generar utilidades un 100% superiores al costo de producción.En este producto, el caucho representa el 20% del costo total de producción, sin embargo este valor varía a partir del tipo de caucho empleado (TSR-20, ripio o lámina). Es de mencionar que una relación comercial estrecha entre comercializadores e industria es clave en esta cadena ya que cada producto terminado cuenta con especificaciones particulares, y las características del caucho que son deseables para un proceso pueden no ser las mejores para otro. De este modo, si se alinean las características del producto con los requerimientos de la industria, es posible generar un valor mayor en estos eslabones y fortalecer las relaciones comerciales. Tabla 12. Valor agregado a lo largo de la cadena de caucho del Guaviare.Fuente: Talleres realizados con los diferentes actores de la cadena.En el ámbito nacional, el acuerdo de competitividad del caucho fue elaborado en el año 2010 y de conformidad con la Ley 811 de 2003 del MADR; luego, en el año 2012, la cadena fue reconocida. Así, en este documento, se lograron consolidardesde una mirada macro y micro de la cadena-las oportunidades, las debilidades, las fortalezas y las amenazas para el sector. Entre las debilidades que refiere el acuerdo -a nivel micro-se destaca la inexistencia de diferenciación de producto; la existencia del poder de los intermediarios (formación de precios, distorsión de precios); la presión en el mercado por productos sustitutos; la carencia de segmentación y la diferenciación sobre uso de la materia prima. Estas debilidades, y otras más mencionadas, persisten en la actualidad y se agudizan en el escenario actual de precios relativamente bajos.A nivel macro, el acuerdo planteaba como oportunidad el aumento del consumo de caucho, situación que -hoy en día-puede verse afectada por la desaceleración que ha sufrido la economía China: el principal consumidor de caucho en el mundo.Este acuerdo propuso establecer 80.000 ha al año 2020 e incrementar el consumo y la productividad nacional. Adicionalmente se planteó la disminución de los costos de producción y el mejoramiento de la calidad de la materia prima, la expansión del mercado, el mejoramiento de las condiciones de vida de los productores y trabajadores de la cadena productiva, el desarrollo tecnológico, el fortalecimiento institucional y el manejo de aspectos ambientales en la producción.A nivel regional, Corpoica formuló en el año 2015 la agenda de investigación, desarrollo e innovación (I+D+i), en la cual se priorizaron demandas para el cierre de la brecha tecnológica en la cadena de caucho (el detalle de esta agenda se puede consultar en www.siembra.gov.co).Aprovechamiento de caucho en Colombia (N. Palmer/CIAT).Es necesario recalcar que el presente documento no pretende sustituir los esfuerzos de la región ni suplantar los instrumentos de planeación ya formulados y en marcha. Por ello, el proceso se surtió con los actores más relevantes de la cadena, tanto a nivel regional como nacional. El propósito es actualizar la realidad del sector cauchero y proponer unas alternativas de solución a los problemas actuales por medio de un trabajo colectivo con actores de los diferentes eslabones de la cadena.La cadena de caucho en Guaviare, si bien atraviesa una situación coyuntural crítica que es coherente con la situación del sector a nivel nacional y mundial, posee fortalezas que se constituyen en factores potenciales para el fortalecimiento de la cadena y para garantizar que el negocio de caucho sea rentable para todos los actores que ejercen actividades en cada uno de los eslabones. Estas fortalezas y oportunidades pueden representar ventajas competitivas que, utilizadas de forma estratégica, favorecen la obtención de mejores resultados a lo largo de la cadena (ver Tabla 13).En el proceso de construcción de la estrategia se identificaron las debilidades para cada uno de los eslabones y, en un ejercicio participativo, se priorizaron los cuellos de botella que se considera obstaculizan o limitan el desarrollo de la cadena (Tabla 14). El detalle de los análisis de cada uno puede consultarse en las memorias de los talleres.Vivero Discrepancias en uso del suelo, siembra en zonas no aptas Baja disponibilidad de mano de obra para el rallado de árboles y otras labores del cultivo. Falta de relevo generacional Se identificó la estrategia de conformar núcleos de aprendizaje para las formaciones en labores y rallado del cultivoBajo nivel de valor agregado; Falta de recursos, talento, capacidades para los emprendimientos industriales El gremio cauchero del departamento cuenta con una infraestructura y equipos para producir látex concentrado, pero requiere de servicio de energía para dar uso a los equipos, y de capacitación en procesos de transformación para la obtención de productos homogéneos para industrias específicas Baja aplicación de técnicas para la obtención de productos homogéneos para industrias específicas como fábricas de globos Falta estandarización en la calidad de los productos de campoProblemas de orden público, disidencia, bandas emergentes en Colombia (BACRIM)Infraestructura deficiente, vías, energía Competencia con regiones más competitivas (Meta, Caldas)Los análisis y aportes a este resultado del trabajo con los actores, se relacionan en el capítulo de conclusiones y recomendaciones.Tabla 14. Cuellos de botella de la cadena de caucho en Guaviare.Para formular una estrategia que conduzca al desarrollo de una cadena de valor hay que tener en cuenta dos dimensiones: la primera se refiere a lo que los actores de la cadena deben hacer para volverse más competitivos y generar mayor valor agregado en el futuro; la segunda es la concerniente al papel de los facilitadores externos, es decir, a las agencias gubernamentales, agencias de desarrollo y ONG que ejecuten programas de desarrollo económico.Si bien, los facilitadores externos no se involucran directamente en el mejoramiento, ellos facilitan el proceso y brindan asistencia sin convertirse en actores de la cadena (Springer-Heinze, 2007). Así, la estrategia de mejoramiento de una cadena de valor tiene tres dimensiones:(a) La visión para el desarrollo de la cadena (¿Cómo debería estar la cadena en diez años?).(b) Los objetivos específicos, es decir, los elementos de la cadena que requieren un cambio (se incluyen inversiones, nuevos servicios, mejores vínculos comerciales y regulaciones de mercado).(c) Un plan de acción detallado que incluya actividades, acciones, responsables y fechas límites.Estas tres dimensiones se sustentan, en gran medida, en los actores de la cadena; ellos son los que deben tomar las decisiones pertinentes y hacer el seguimiento de las acciones para el logro de los objetivos.El fomento de la cadena de valor requiere una perspectiva estratégica; así, la visión de mejoramiento describe el cambio anhelado de la cadena al responder a esta pregunta: ¿cómo se vería la cadena de valor en diez años más? Es indispensable definir el futuro deseado de la cadena porque el proceso de visión es la base para un consenso entre los actores en el camino hacia adelante. La motivación y la voluntad para cooperar presuponen que los actores comparten el panorama futuro.En los análisis realizados para la construcción de la visión, los actores estuvieron de acuerdo en la necesidad de mejorar la calidad de vida de los productores, la recuperación de las áreas degradadas y con pasturas a través del fomento de sus cultivos en SAF; para ello se hace necesario el uso de sus recursos genéticos con el fin de mejorar la producción. También, coincidieron en reconocer la oportunidad de mercado que existe para productos diferenciados, y con denominación de origen, como alternativa para lograr la meta de cero deforestación.Para alcanzar esta visión, se plantearon mejorar el rendimiento de 1,2 t/ha/año a 1,8 t/ha/año de caucho seco; todo lo expuesto, a partir de las siguientes actividades:• El sostenimiento y beneficio de las 2.000 hectáreas existentes de cultivos de caucho.• La recuperación de áreas degradadas con praderas, a través de la implementación de sistemas agroforestales asociados con caucho.• Destinación de 1.000 hectáreas a la conservación de microcuencas y relictos de bosque.• Recuperación de 500 hectáreas en rastrojo.Con el cumplimiento de lo anterior se busca alcanzar a 1.100 familias del sector cauchero comprometidas con la meta de cero deforestación, en procesos de protección y aprovechamiento sostenible y sustentable, para la generación de un bienestar económico, social y ambiental.Así, los actores de la región le han apostado a la incorporación de procesos de transformación local para el fortalecimiento de la cadena. Esta apuesta permitiría agregar un mayor valor al producto y, según el modelo de negocio, podría contribuir a que el valor agregado en esta fase se mantenga en la región y sea distribuido equitativamente entre los actores de la cadena local.Durante el análisis se otorgó un valor significativo a los principios que han orientado el quehacer del sector como son la solidaridad, la asociatividad, la equidad, la innovación, la empresarización, el enfoque ambiental y el posconflicto. No obstante, es importante fortalecer la participación de más actores empresariales privados, ya que los procesos construidos en los últimos años han dependido, en su mayoría, de recursos en forma de subsidios y donaciones, lo cual dificulta la construcción de una visión empresarial y el desarrollo de modelos de negocios sostenibles y competitivos.A partir de lo anteriormente expuesto, la visión compartida del futuro de la cadena de caucho natural en el departamento de Guaviare es la siguiente:Visión de la cadena de caucho del Guaviare para el año 2027\"Para el año 2027 el sector cauchero del departamento cumplirá con los requisitos de ser ambientalmente sostenible, económicamente rentable, socialmente aceptado y coadyuvando al cumplimiento de la meta de cero deforestación.La cadena habrá orientado su producción para la comercialización de látex centrifugado y caucho seco, con 3.000 ha establecidas bajo modelos sostenibles. Dichos modelos estarán fundamentados en un programa de ciencia, tecnología e innovación que habrá validado nuevos materiales genéticos, sistemas de sangría, procesos de beneficio y transformación del caucho en el departamento del Guaviare, incrementando el rendimiento de la producción de 1,2 a 1,8 t/ha/año de caucho seco\". Tabla 15. Estrategias y plan de acción eslabón recursos genéticos y producción.Dentro de los proyectos para el desarrollo de iniciativas de transformación en la región se han identificado algunos compradores potenciales de látex y caucho seco en distintas presentaciones. En adición, ASOPROCAUCHO ha venido fortaleciendo sus relaciones comerciales con compradores de látex estabilizado; a su vez, las empresas Casanova Cauchos E.U. y Abastecedora de Cauchos y Mezclas han mostrado interés en el caucho regional para la producción de bienes terminados, estas han venido experimentando con diversos tipos de mezclas para el desarrollo de nuevas líneas de productos a base de caucho. Finalmente, la demanda de caucho común por las industrias nacionales se muestra claramente como un segmento potencial para la comercialización de la producción cauchera esperada en los años en que dé inicio a la etapa productiva de una gran parte de las plantaciones. Sin embargo, en la región aún no se ha explorado la posibilidad de producir caucho para mercados que puedan ofrecer un mayor precio por un producto con características específicas de la región. Existen emprendimientos alrededor del mundo que han desarrollado productos a base de caucho con certificaciones de comercio justo, producción orgánica, cero deforestación y producción sostenible como condones, accesorios y prendas de vestir, entre otros. El departamento cuenta con un potencial de desarrollo de estos productos, y por esto se han realizado acercamientos a empresas de la industria textil y confección nacionales. Se espera, en una etapa posterior, continuar las comunicaciones y contar con la participación de estas industrias y otros actores del entorno internacional, para que los actores de la cadena conozcan sus requerimientos específicos y propuestas de valor, y puedan así dilucidar nuevas alternativas de mercados que ofrezcan la posibilidad de desarrollar modelos de negocio más inclusivos.Con la finalidad de realizar seguimiento a las acciones planteadas y fortalecer el papel del comité regional de la cadena se designó, de manera colectiva y voluntaria, a las siguientes instituciones y actores para conformar un comité ejecutivo. Sus principales funciones son la revisión y alimentación del contenido de este documento y la ejecución y seguimiento de las estrategias temporalmente más próximas. Con un número de miembros limitado, el comité ejecutivo cuenta con mayor agilidad y menor tiempo de respuesta para la ejecución de las acciones más urgentes, sin embargo, este comité no pretende suplantar ni duplicar las acciones de instancias ya conformadas, pues su accionar es transitorio y complementario a ellas.• ASOPROCAUCHO• Secretaría de Agricultura DepartamentalComité ejecutivo de la cadena de cauchoLa cuantificación de la huella de carbono (HC) con enfoque de Análisis de Ciclo de Vida contempla las emisiones directas (generadas en la finca) e indirectas (generadas en la cadena de suministro), con el fin de determinar el grado de intervención que cada sistema productivo pueda tener en cada fuente de emisión. Las emisiones directas se originan de los procesos de cambio en el uso del suelo, uso de maquinaria y vehículos, uso de fertilizantes y encalado, y manejo de residuos. Las emisiones indirectas se originan de los procesos de manufactura y transporte de insumos.Límites del sistema: para el caso de la cadena del caucho se determinó como límites del sistema las actividades y procesos que hacen parte de la producción de coágulo seco en las fincas, así, se han considerado tres etapas: cambio del uso del suelo, cultivo y beneficio (Figura 11). Este enfoque se conoce como ''De la cuna a la puerta'' (\"Cradle to gate\") siendo la ''cuna'' la manufactura de insumos de la cadena productiva y la ''puerta'' la finca cauchera. Por lo anterior, las etapas de transformación, comercialización y consumo final no se encuentran incluidas en el alcance del presente estudio.Figura 11. Límites del sistema para la cuantificación de huella de carbono de caucho.Mantenimiento Establecimiento Mantenimiento ProducciónAprovechamiento de caucho en Colombia (N. Palmer/CIAT).La cuantificación de la huella de carbono se limita geográficamente al departamento del Guaviare en el municipio de El Retorno. Algunos procesos unitarios del ciclo de vida del producto -como la manufactura y transporte de insumos-se llevan a cabo fuera del límite geográfico mencionado, sin embargo se tienen en cuenta en la cuantificación.La unidad funcional representa la función principal del sistema en estudio y proporciona una referencia para que todas las entradas y salidas del sistema puedan ser normalizadas. Para el presente estudio se utilizó como unidad funcional 1 kg de caucho seco.La categoría de impacto evaluada es el potencial de calentamiento global, donde se cuantifican todos los GEI emitidos durante el ciclo de vida del producto; su impacto se expresa en unidades de CO 2 equivalente (CO 2 eq).La recolección de la información a nivel de finca se realizó mediante encuestas semiestructuradas a cuatro productores de la región, los cuales fueron seleccionados según el tipo de sistema productivo más representativo del departamento (monocultivo).La evaluación de las emisiones en fase de vivero se hizo a partir de información secundaria sobre el manejo de viveros para la producción de stump (ASOHECA, 2009; Sterling y Rodriguez, 2011). En finca, la información fue colectada según la fase del cultivo. Para el establecimiento y mantenimiento se tomó como referencia las prácticas de manejo que cada productor realizó en su momento, mientras que para la fase productiva (20 a 25 años en producción) se consideraron las prácticas de manejo realizadas durante un año productivo (2016) como referencia para la cuantificación de insumos y producción de todo el ciclo productivo.La etapa de vivero comprende todos los procesos involucrados en la obtención de stump de caucho, desde el tratamiento de semillas hasta el momento en que los stump tengan las características ideales para la siembra en sitio definitivo (Figura 12). En el departamento del Guaviare esta producción ha sido realizada principalmente por los viveros de ASOPROCAUCHO.La fase de cultivo involucra las actividades desde el momento en que se realiza la preparación de suelo, hasta la finalización del cultivo y comprende tres momentos: el establecimiento que considera todas las actividades realizadas para la siembra de los stump y que se realiza solo una vez durante el ciclo de vida del producto; el mantenimiento, donde se reúnen todas las actividades realizadas desde establecimiento a hasta el momento en que se inicia el rayado de los arboles (8 a 10 años), y la fase de producción que va hasta el momento en que el cultivo finaliza su ciclo (20 a 25 años) (Figura 12).Emisiones GEIFigura 12. Diagrama de entradas y salidas en la etapa de vivero.Figura 13. Diagrama de entradas y salidas en la etapa de producción y beneficio. Con respecto al inventario de HC de caucho, este incluyó el transporte, los insumos, la energía y la maquinaria que fueron utilizados durante un ciclo de cultivo de 35 años (entradas), así como toda la producción de caucho seco durante ese mismo periodo (salida principal).A partir de la información recolectada en el taller de construcción participativa se identificaron los diferentes eslabones que constituyen la cadena productiva del caucho y se determinaron las diferentes actividades involucradas en cada uno de ellos; esto permitió la elaboración de los mapas de procesos de la producción de caucho en la región.Las emisiones de GEI fueron calculadas a partir de las metodologías propuestas por las directrices del Eggleston et al. (2006). Según estas directrices, para el cálculo de la HC se requiere conocer el nivel de actividad, el factor de emisión relacionado con dicha actividad y el potencial de calentamiento global del gas emitido. El cálculo de emisiones generadas por el uso de maquinaria y vehículos, uso de fertilizantes y encalado, manejo de residuos, manufactura de insumos y transporte de insumos, se realizó a partir de las directrices del IPCC (Eggleston et al., 2006) Cambio de uso del suelo: Las emisiones por cambio en el uso del suelo son generadas por la conversión de coberturas vegetales naturales a sistemas agropecuarios; lo anterior da como resultado la liberación a la atmosfera del carbono almacenado en biomasa aérea y suelo de la cobertura previa. Según la guía de buenas prácticas para inventarios de carbono (IPCC, 2004) fueron deforestadas hace más de 20 años. Bajo este escenario se asume que no hay emisiones por cambio en el stock de carbono. Sin embargo, la mayoría de productores no llevan registros de cambio de cobertura en sus fincas y no es posible determinar, con certeza, el nivel de afectación del caucho sobre bosques en un periodo menor a 20 años; por lo tanto, para el presente análisis se generó un escenario donde el proceso de deforestación se llevó a cabo hace más de 20 años (sin afectación por el cambio de uso) y otro donde el establecimiento del cultivo se dio dentro de ese periodo después del proceso de deforestación.Las emisiones por el cambio de uso del suelo fueron estimadas utilizando la herramienta Direct land use change assessment tool, la cual fue desarrollada en conformidad con lo dispuesto en el GHG Protocol y la PAS2050. Esta herramienta considera los cambios entre la cobertura original y la nueva cobertura con respecto al carbono contenido en la biomasa aérea, la biomasa subterránea y el suelo (Tablas 17 y 18). De acuerdo con lo anterior, cuando se genera un proceso de cambio de cobertura de bosque a caucho se liberan 114,3 t C/ha (418 t CO 2 eq/ha) que llevadas a un tiempo de amortización de 20 años representan 20,93 t CO 2 eq/ha/año. En este caso, donde se considera una etapa productiva de 35 años, se deben incluir la totalidad de las emisiones por cambio de cobertura.Uso de maquinaria y vehículos: la maquinaria encontrada con mayor frecuencia en las fincas fue la guadaña y la bomba de motor. El nivel de actividad de estos implementos presentó variaciones según la finca y la etapa de cultivo, ya que los productores mencionaron no haber utilizado maquinaria en la etapa de establecimiento. El principal gasto de combustible es dado por el uso de la guadaña en labores de limpieza del terreno y deshierbe; los productores mencionaron emplear cantidades mayores de gasolina en las etapas iniciales del cultivo (mantenimiento) con una reducción progresiva a medida que los arboles cerraban calles (Tabla 19).Tabla 19. Uso de combustible y emisiones durante la etapa de cultivo para un ciclo de 35 años. Tabla 20. Nivel de actividad y emisiones generadas por la aplicación, manufactura y transporte de insumos.Uso, manufactura y transporte de insumos agrícolas: El uso de insumos agrícolas varía según la etapa de cultivo. Aunque el uso de insumos es bajo, la mayoría de productores realiza algún tipo de fertilización, en particular, con fertilizantes de síntesis química; el uso de plaguicidas se limita a la aplicación de herbicidas. En algunos casos, se encontró variación en los productos comerciales e incrementos en las cantidades de insumos utilizados en la etapa de producción con respecto a los aplicados durante la etapa de mantenimiento (Tabla 20).Miguel Romero/CIAT.Para la estimación de las emisiones por transporte es necesario conocer la cantidad de insumos agrícolas consumidos y residuos transportados, así como el tipo de vehículo y la ruta recorrida entre el lugar de fabricación/disposición y la empresa. Dado que la mayoría de insumos son fabricados en la costa atlántica, esto implica la quema de combustible a lo Tratamiento de residuos sólidos: en general, los residuos sólidos generados en las plantaciones de caucho son envases de agroquímico de tipo plástico; estos son recolectados y almacenados por ASOPROCAUCHO para realizar su disposición final con la empresa COLECTA. La cantidad de residuos plásticos se calculó a partir de la cantidad de plaguicidas aplicados en las fincas (Tabla 22).Producción: en las fincas evaluadas, el producto final luego de la extracción del látex es la producción de lámina y ripio. A partir de estos valores y según un DRC del 60%, la producción de caucho seco es de 1.205 kg/ha/año, una vez el cultivo ha estabilizado su producción. La producción de las fincas para un periodo de 35 años fue determinada a partir de estimados de producción promedio en la región y en Colombia. Para la realización de las proyecciones de producción se tuvo en cuenta la edad del cultivo y la producción actual bajo las condiciones de manejo del presente año; así, el valor promedio proyectado fue de 30.404 kilos de caucho seco/ha por ciclo del cultivo.Aprovechamiento de caucho en Colombia (N. Palmer/CIAT).Una vez totalizadas las emisiones por etapa (vivero, establecimiento, mantenimiento, producción) y por proceso (uso de maquinaria, fertilizantes, materiales y manejo de residuos), los valores fueron divididos en la producción de todo el ciclo del cultivo por hectárea con el fin de obtener los valores de emisiones por cada kilogramo de caucho seco producido.Bajo un escenario en el que el establecimiento del cultivo se dio después de 20 años de ocurrida la deforestación, la producción de cada kilogramo deCon respecto a los procesos que contribuyen en mayor medida a la generación de la huella de carbono son, en su orden, el uso de fertilizantes (38%), la manufactura caucho seco en el departamento de Guaviare genera emisiones de 1,17 kg CO 2 eq de las cuales el 81,66% corresponde a emisiones de CO 2 (0,95 kg CO 2 eq), atribuidas en su mayoría al uso, manufactura y transporte de fertilizantes, seguido de las emisiones de N 2 O (0,21 kg CO 2 eq) por uso de fertilizantes nitrogenados. Por último las emisiones de CH 4 corresponden solo al 0,01%, las cuales son generadas por la combustión de gasolina y la incineración de residuos inorgánicos (envases de agroquímicos).(31%) y el transporte (26%). El uso de maquinaria y el manejo de residuos fueron los procesos de menor contribución (Figura 15). Figura 15. Distribución porcentual de la huella de carbono de un kilogramo de caucho seco.Con relación al uso de fertilizantes y a la manufactura de insumos, estos generaron las mayores emisiones de GEI con valores de 0,44 y 0,36 kg de CO 2 eq/ kg caucho seco respectivamente. Dentro del uso de Si el establecimiento del cultivo se dio dentro de un periodo de 20 años después del proceso de deforestación -donde se emiten anualmente 20,9 t CO 2 /ha/año-los valores de la huella se incrementan significativamente hasta alcanzar valores de 16,57 kg CO 2 eq/Kg de caucho seco, según los años de influencia de la cobertura natural. En este escenario las emisiones por cambio de uso representan el 93% del total de la huella (Figura 16). Sin cambio en el uso del suelo kg de CO 2 eq / kg de caucho seco 5 0 Con cambio en el uso del sueloEn cuanto a las evaluaciones de la huella de carbono en caucho reportadas por diferentes autores, ellos han determinado que su producción puede generar emisiones desde 0,2 hasta 0,3 kg de CO 2 eq/kg de látex fresco (Jawjit et al., 2010;Wongtanakarn et al., 2014).Al incluir las emisiones generadas por cambio de uso del suelo, la huella de carbono se puede incrementar a 6,4 Kg de CO 2 eq/kg de látex fresco (Jawjit et al., 2010).Figura 16. Huella de carbono con y sin cambio del uso del suelo.Tomáš Dohnal/Pixabay.A partir de los resultados de la huella de carbono se han planteado estrategias de reducción a ser evaluadas con el fin de determinar el impacto social, ambiental y económico que estas puedan tener. Dichas estrategias son descritas a continuación:Incrementar la producción del cultivo por unidad de área: las emisiones generadas al producir un kilogramo de caucho seco están directamente relacionadas con la cantidad de entradas que se necesitan para su producción. Al incrementar la productividad de un sistema, las emisiones por unidad producida se reducen. Esto plantea la necesidad de fomentar en las fincas planes de manejo eficientes e integrales que incrementen la producción de los cultivos, tales como manejo fitosanitario, fertilización, estimulación, etc., con alternativas que estén a disposición de los productores.Adicionalmente, uno de los aspectos claves en la reducción de la producción por unidad de área es la baja frecuencia de rayado en las plantaciones, ya sea por aspectos como el estado del clima (invierno), mano de obra (falta de rayadores) o la coyuntura actual (bajo precio de compra). Esto implica la necesidad de aunar esfuerzos con el fin de fomentar el rayado de las plantaciones existentes que, a su vez, implique una sostenibilidad ambiental y económica para el sistema productivo.Optimizar la aplicación de fertilizantes y enmiendas: en la evaluación de huella de carbono, el uso de fertilizantes y enmiendas fue uno de los procesos que generó mayor emisión de GEI. Una de las estrategias es encontrar alternativas de manejo que mejoren la eficiencia de la fertilización, tales como el manejo de la fertilización con base en análisis de suelos, el fraccionamiento de las aplicaciones, el uso de materiales recubiertos de lenta liberación, la incorporación de especies fijadoras de nitrógeno, el uso de inhibidores de la nitrificación, entre otras.Igualmente las emisiones por manufactura y transporte de insumos fueron procesos de alta participación en la huella, lo que implica que la creación de planes de fertilización integrales con opciones, como la aplicación de abonos orgánicos, puede ser una manera de reducir las emisiones generadas en la fabricación y el transporte de los fertilizantes de síntesis química.El análisis de la huella de carbono para la producción de caucho en el departamento de Guaviare presentó diferencias considerables frente a los escenarios evaluados. El establecimiento de caucho en áreas recientemente deforestadas (menos de 20 años) puede incrementar esta huella -hasta 25 veces más-con respecto a las emisiones generadas cuando la actividad cauchera se realiza en áreas deforestadas hace más de 20 años.Con relación a la huella de carbono para un kg de caucho seco en zonas ya intervenidas (pasturas o con un cambio de cobertura de bosque a cultivo mayor a 20 años) arroja valores promedios de 1,17 kg de CO 2 eq/kg de caucho seco; sin embargo, la huella se incrementa drásticamente cuando el cultivo es establecido en zonas donde el uso previo del suelo es bosque natural. Después del cambio de uso del suelo, los procesos unitarios de mayor emisión de GEI son el uso de los fertilizantes y la manufactura de los insumos, con una participación de más del 60% en las emisiones totales.En cuanto a las estrategias de reducción de emisiones y compensación, estas se deben aplicar según las necesidades y características de los productores, y requieren del apoyo directo de las entidades encargadas de la asistencia técnica para su divulgación.Tal como lo indica la norma ISO 14067 y PAS 2015, el carbono fijado en la biomasa de la planta de caucho -ya sea en tallo, raíces, hojas o mazorcas-debe ser excluido del balance de carbono, ya que este es emitido nuevamente a la atmosfera durante el proceso de renovación -cerca a los 35 años, o un menor tiempo-esto dependerá del órgano de la planta. Sin embargo, las fijaciones de carbono en biomasa en un cultivo de caucho, aunque sean de tipo biogénico, incrementan notoriamente las reservas de carbono tanto en suelo como en parte aérea.Para finalizar, la cuantificación de la huella de carbono como método de diagnóstico de los aportes de GEI a la atmosfera es un primer paso para iniciar actuaciones en materia de lucha contra el cambio climático. Si bien, a partir de la construcción de una línea base se formulan estrategias de reducción de emisiones, se hace necesario generar mayor información y mucho más precisa en relación con las emisiones de GEI en sistemas o prácticas de uso de la tierra más sostenible y, así, posicionar el cultivo en un mercado cada vez más concienciado y que valora preferentemente a los servicios, productos y empresas más sostenibles.Aprovechamiento de caucho en Colombia (N. Palmer/CIAT).La tendencia mundial en los últimos años, a la cual no es ajena Colombia, es de desaceleración económica.A nivel nacional, además de la desaceleración de la economía, se experimenta una fase de construcción de una nueva arquitectura institucional, en particular, por el proceso de paz y los acuerdos que de él se derivaron. Estos dos temas han jugado un rol protagónico en las conversaciones para la consecución y distribución de recursos nacionales e internacionales, y se prevé que continúen marcando el camino del acceso y distribución de los recursos.A su vez, los efectos climáticos, la caída del precio del petróleo y la desaceleración de la economía China han contribuido a la caída de los precios internacionales del caucho desde febrero de 2011; como resultado, esta caída de precios continua por más de 6 años ha afectado el ritmo de crecimiento del sector.Por esta razón, los actores de la cadena del Guaviare han notado la necesidad de agregar valor al caucho en el departamento para depender, en menor medida, de las fluctuaciones del precio internacional. Como respuesta, se ha adelantado un proyecto para la producción de látex centrifugado, sin embargo, no se han tenido en cuenta otros factores más inmediatos que podrían usarse paralelamente para diferenciar el caucho del departamento, agregarle un mayor valor de manera local y, así, conseguir \"descomoditizar\" el producto. Para analizar las alternativas y retos específicos que requiere el proceso de \"descomoditización\", se ha dado inicio a la discusión en torno a los cuatro ejes estratégicos de intervención identificados para el fortalecimiento de la cadena de caucho del Guaviare: a) intensificación sostenible del eslabón primario, b) generación de valor agregado, ingresos y empleo a través de transformación local, c) acceso a mercados diferenciados a través de modelos de negocio más inclusivos, y d) mejoramiento de la articulación entre actores directos e indirectos.El aumento de la productividad de las plantaciones, la disminución de costos de producción y el mejoramiento de la eficiencia en los procesos de producción y acopio son los aspectos más críticos para poner en marcha el fortalecimiento de la cadena Aprovechamiento de caucho en Colombia (N. Palmer/CIAT).regional. El departamento actualmente cuenta con 837 hectáreas de cultivos de caucho en abandono, del cual se estima que 300 hectáreas estarían aptas para ser aprovechadas, así que es recomendable evaluar las zonas más aptas para reactivación, para ofrecer así un impulso rápido a la producción del sector.Existen otros aspectos de productividad y costos que han sido temas de debate constante en el departamento y, entre ellos, se incluye la edad de inicio de aprovechamiento de las plantaciones.Según el testimonio de productores, la producción de caucho en el departamento inicia en el año ocho, no obstante, expertos de la CCC y otras entidades afirman que si se implementara el paquete tecnológico adecuado -al llevar a cabo las fertilizaciones y manejo recomendados-la edad de aprovechamiento puede lograrse en el año siete. Lo anterior resalta la ausencia de cifras concisas acerca de la edad de aprovechamiento de los diversos clones en los diversos sistemas planteados y bajo las distintas condiciones agroecológicas del departamento; por tanto, esto evidencia la necesidad de realizar investigaciones para definir los paquetes tecnológicos adaptados al entorno regional. También, se menciona el fomento de nuevos cultivos en pasturas y áreas degradadas, pero para ello se debe tener en cuenta que los suelos amazónicos tienen unas características y condiciones especiales de fragilidad y fertilidad; en consecuencia, es indispensable conocer la calidad del suelo en los sitios en los cuales se pretenda realizar nuevas siembras. Lo anterior exige estudiar el rendimiento de las plantaciones en este tipo de suelos, identificar y, si es posible, alinear los requerimientos ambientales del Estado con las necesidades de rendimiento que permitan la rentabilidad de la actividad cauchera. Para esto es fundamental continuar avanzando con la validación y liberación de material genético de características productivas superiores, resistente a plagas y enfermedades en modelos agroambientales sostenibles adaptados a las condiciones locales.La transición de los modelos productivos a sistemas agroforestales agregará aún más complejidad al desarrollo sectorial; sin embargo, este paso es necesario si se tienen en cuenta las dificultades de flujo de caja que representa el cultivo de caucho durante la etapa de sostenimiento. Lo ya mencionado debe estar acompañado de modelos de financiación adaptados a los distintos paquetes tecnológicos, que hagan posible el fomento privado de las plantaciones y resten dependencia a los proyectos y subsidios del estado.Otros retos que afectan la competitividad del producto en la región son los costos logísticos -internos y externos-como consecuencia del estado de las vías, la dispersión de las plantaciones y la distancia del departamento a los centros de mayor consumo. Por ejemplo, el municipio de Victoria, Caldas (donde se concentra una importante producción cauchera) se encuentra por vía terrestre a cuatro horas de Bogotá, mientras que San José del Guaviare se encuentra a ocho. Esta situación exige no solo la reducción de los costos de producción, sino optimización de la logística de la cadena.Se espera que el aumento de la productividad, resultado de la aplicación de los paquetes tecnológicos adecuados en áreas aptas para el cultivo, se traduzca en una reducción del costo de producción. Para lograrlo hace falta fortalecer la visión empresarial de los productores al concienciarlos sobre el retorno de las inversiones en fertilización y manejo para el buen desarrollo de la plantación. Una vez implementados los paquetes tecnológicos, se recomienda la incorporación de la estimulación y otras tecnologías que disminuyan el costo de mano de obra y rayado: el principal egreso en la producción.En el momento que las áreas, actualmente en sostenimiento, entren en etapa productiva, será necesario incrementar la mano de obra capacitada para el rayado (tanto dentro de las familias de productores como en trabajadores externos); sin embargo, es de anotar que la motivación para la construcción de estas capacidades se ve limitada por la competencia de otros sectores que ofrecen sueldos más altos. Solo si se alcanza una productividad suficiente será posible cubrir los costos del rayado y, por lo tanto, hacer de esta actividad una alternativa económicamente atractiva tanto para los dueños de finca como para los rayadores. Vale la pena mencionar que a pesar de las falencias en términos de productividad y los bajos precios actuales, la CCC resalta que la producción de caucho en Colombia es rentable y que el costo de producción local siempre ha sido inferior a los ingresos.Si bien, como ya se mencionó, el departamento ha dado comienzo a iniciativas para el desarrollo de procesos de transformación local, realizado un análisis de mercado, identificado compradores potenciales de caucho seco e incursionado en la venta de látex estabilizado, aún se carece de información del mercado de látex condensado y de productos por inmersión en látex, que permitan minimizar los riesgos y aumentar la posibilidad de éxito de estas estrategias.Para alinear los modelos de transformación local con los aspectos sociales de la visión del departamento, también es necesario incluir elementos que garanticen la distribución equitativa de los beneficios de estos proyectos, a partir del desarrollo de negocios inclusivos y una mayor participación de los productores en el proceso. También es necesario identificar los socios comerciales potenciales de los productos a desarrollar e iniciar diálogos para determinar los requerimientos técnicos de los productos; asimismo, llevar a cabo un modelo de negocio en condiciones que propicien el desarrollo de la cadena regional, según los criterios ambientales, sociales y económicos establecidos en la visión.Acceso a mercados diferenciados a través de modelos de negocio más inclusivosSi bien, a nivel mundial, existen emprendimientos que han desarrollado una diferenciación de sus productos a base de caucho (guantes, llantas, condones, colchones, botas, zapatos, sandalias y otras prendas de vestir) a través de estrategias como comercio justo, producción orgánica, cero deforestación y producción sostenible (Mehta, 2016;SNR-i;Fair Rubber; The Natural Sleep Store; Evea Ecofashion), la cadena de Colombia apenas está incursionando en este nicho. En la actualidad, el sector carece de información sobre los costos de producción, los requerimientos técnicos y los beneficios potenciales de los modelos de producción para este tipo de certificaciones, según las características agroecológicas y socioeconómicas del entorno colombiano. Además, es insuficiente la información en cuanto al tamaño y las características de estos mercados; de igual modo, se desconoce si los consumidores están dispuestos a adquirir productos diferenciados por aspectos ambientales y/o sociales. Aunque es primordial resolver los cuellos de botella en los eslabones de producción y transformación, el desarrollo de la cadena debe trabajar, de forma paralela, en conocer las tendencias del mercado global y las características de las distintas alternativas de mercados potenciales, para generar una estrategia sostenible y competitiva a largo plazo. Lograr una diferenciación de este tipo requiere de un sistema de trazabilidad riguroso, la alineación de los esfuerzos de todo el sector y la creación y difusión de un mensaje claro sobre la estrategia de desarrollo del sector.Sin lugar a dudas, la entrada a nuevos mercados es un reto significativo para la producción actual y la esperada. Los actores del sector industrial nacional mencionan que a pesar de estar interesados en comprar el producto nacional, durante años, han suplido sus requerimientos de materia prima a través de importadores y productores guatemaltecos; ello les asegura precios favorables, con volúmenes, tiempos de entrega y calidades adaptadas a sus necesidades: esto ha creado relaciones de confianza. En consecuencia, los productores de caucho colombianos tendrán que ser más competitivos, no solo en sus precios, sino también en aspectos de trazabilidad, confianza y calidad, para poder reemplazar los actuales aliados comerciales de las principales industrias caucheras del país. Es relevante promover el desarrollo de alianzas inclusivas con los nuevos socios comerciales, en el que se tengan en cuenta las características del modelo de negocio de los productores y las asociaciones de productores, para que todas las partes ganen en la relación comercial y el valor generado se distribuya de manera más equitativa.La presencia e interés de la cooperación internacional -y de múltiples entidades nacionales en la regiónrepresenta una ventaja valiosa para el desarrollo del sector; no obstante, es indispensable articular sus iniciativas para evitar duplicaciones, mensajes contradictorios y uso ineficiente de recursos que pueden afectar la credibilidad en las entidades y generen un desarrollo desalineado con la visión local. Dado que el departamento cuenta con un Comité Regional de la Cadena del Caucho consolidada y recientemente reactivada, en la que sus miembros han mostrado disposición y compromiso de trabajar por el sector, es importante continuar fortaleciendo dicha institución para que facilite la coordinación del desarrollo de la cadena. Esta debe apalancarse en otros aspectos coyunturales como el posconflicto y los programas de desarrollo sostenible para la consecución de recursos. Se recomienda buscar mayor participación del sector industrial dentro de los espacios de planeación del comité regional; así, propiciar el desarrollo de una mirada empresarial dentro del sector que tenga en cuenta los requerimientos y características de la demanda actual, y facilite el desarrollo de estrategias realistas para incursionar en mercados nuevos y/o diferenciados.Adicionalmente, es primordial lograr un mayor grado de coordinación a nivel nacional y la construcción de un plan de exportaciones sectorial a diez años frente a la entrada en producción de las plantaciones, en la actualidad, en etapa de sostenimiento. Para esto, debe tenerse presente el grado de competitividad del país respecto a los demás países productores y definir los roles de los distintos clusters productivos nacionales, en particular, el rol del Guaviare.Flockine/Pixabay.Otro rol en manos del Comité Regional de la Cadena, en conjunto con el Consejo Seccional de Desarrollo Agropecuario (CONSEA), es responder a la necesidad de fortalecer el modelo de transferencia de tecnología y asistencia técnica, ya que su alcance e impacto no han sido los esperados. Por último, el Comité Regional de la Cadena debe propiciar el desarrollo de un sistema de información del sector, para lo cual se deben armonizar y validar las cifras con la colaboración de los productores actuales: ASOPROCAUCHO, la Secretaría de Agricultura Departamental y la CCC, debido a que la falta de estadísticas y las inconsistencias entre las fuentes han dificultado la definición adecuada de indicadores de desempeño de la cadena, la magnitud y relevancia de los diversos cuellos de botella y, por ende, la definición de medidas apropiadas para afrontarlos.En resumen, durante este ejercicio se logró avanzar en lo anteriormente mencionado al unificar las cifras de la CCC, presentar el estado del arte del sector en el departamento y colocar toda la información y resultados a disposición del público; aun así, hace falta fortalecer los aspectos antes descritos.El cultivo de caucho se presenta como una alternativa productiva y de restauración para algunos de los actores que están deforestando el departamento.Por ello es necesario alinear los esfuerzos del sector, para hacer de la actividad cauchera un ejercicio más rentable, atractivo y sostenible. Con el objetivo de fortalecer la cadena regional se han planteado una serie de estrategias que responden a cuatro ejes estratégicos, los cuales comprometen a los distintos eslabones de la cadena. Las estrategias desarrolladas de manera participativa cubren aspectos del mercado, transformación y buscan adaptar la oferta productiva a los requerimientos de la demanda para mejorar la competitividad de la cadena de valor. Lo anterior, con la articulación de esfuerzos de los distintos actores para optimizar el uso de los recursos y resolver los principales cuellos de botella.Para la construcción de estrategias de desarrollo sectorial, en la actualidad y a futuro, es necesario tener en cuenta varios factores: i) el nivel de precios relativamente bajo proyectado para los próximos años, ii) la desaceleración de la economía nacional y mundial, iii) la aptitud técnica y legal de los distintos suelos del departamento, iv) la dispersión de los cultivos, v) el área mínima para el aprovechamiento rentable, vi) el abandono de plantaciones productivas, vii) la entrada en etapa de producción de un área con un potencial de oferta superior a la demanda nacional, viii) la necesidad de validación de paquetes tecnológicos (especialmente en SAF) según las condiciones locales, ix) la efectividad actual del sistema de transferencia de tecnologías y asistencia técnica, x) el rol de las asociaciones de productores dentro de la cadena, xi) el potencial de agregación de valor local, xii) el potencial de desarrollo de mercados diferenciados y xiii) la tendencia mundial hacia el desarrollo sostenible y esquemas de pago por servicios ambientales.Al considerar estos factores, vale la pena resolver las siguientes preguntas: ¿es este el momento para promover nuevas siembras? ¿En qué zonas y bajo qué condiciones? ¿Cuáles pueden ser las fuentes de financiación? ¿A qué mercados deben apuntar los diversos actores del sector?Se espera que la estrategia y observaciones planteadas en este documento sirvan como insumo a los miembros del Comité Regional de la Cadena en su construcción de los planes de desarrollo sectorial.","tokenCount":"16673"} \ No newline at end of file diff --git a/data/part_3/9312553874.json b/data/part_3/9312553874.json new file mode 100644 index 0000000000000000000000000000000000000000..89ab4a1fe86e8b1899c140163150c6a3330fbd95 --- /dev/null +++ b/data/part_3/9312553874.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"a7819355d2841599e45159972d576a13","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/48f8964b-3dd3-4aaa-9964-e5abb40e67e1/retrieve","id":"-487753142"},"keywords":["Tribal fanners","particípatory researeh","rice","landraces","participatory plant breeding","India"],"sieverID":"fb33eba5-d4cb-47f0-8ee0-a43d923d3d13","pagecount":"17","content":"Participatory researcb, including participatory plant breedíng (PPB), is now a recognized optíon for improvíng Ibe Iivelibood security ofunreached fanners. Tribal fanners in Indía provide an ideal group for testing the potential of participalory inlerventions. They live in remate areas, are intensively bound by tradition, and continue lo cultivate crops using tradilional practices. For instance, the sowing time of crops is often based on a particularmonth, wilh an almanac date lo harvestthe erop in time for ils use during festive oeeasioos. Although these traditional cultivation praetices are often poorly matched with the weather, Ibey continue because Ihey are consonant wilb the habitat, soíl, agroocology, and available infraslructure. Soils are relatively free from the problems of contínuous ehemical fertílizatíon. Most euhivated varieties are specific landrace. lbat carry special traits for cooking qua]ity and laste, catering lO the tribal fanners' metllods ofproeessing foad. Tribal fanners live in small villages, inconveniently distan! from one another, and do not have readily accessible mean. of produeíng .nd exchangíng cornrnunity seed. Traditíonal varietiesllondraces are olso not commercially competitive. Driven by poverty, the tribal Canners yíeld to eornmerci.] exploitation where the cultivation of landraees, local varieties, and other valuable genetic material is replaced by Ibe cultivation of modem varieties despite Ibe faet that they are no! peeferred by the tribal cornrnunity. Tho result is a gradual erosíon of precious genetíe diversity, most of whieh is .lso síte-specific. This situation c.ns utgently for preventive measures.Jeypore traet in Orissa State is a seeondary center of riee origin. Yet fanners do not realize the potential yield of Ibe riee landraces growing Ihere. One reason is tb.t the tradítional practices developed essenti.lIy for avoiding risks are out of tune with Ibose nceded for realizing hígh yields. Partícipatory initiatives, setting appropriate mothads of cultivation based on a realístíc evaluation should províde the right corrective step. This paper describes and discusses sueh initiatives in the Jeypore tract ofOrissa,goals for tbe Bara and Kaski eco-si tes were developed in a participalory malIDer, ínvolving breeders, socioeconomists, and farmers, lO analyze Ihe slrengths and weaknesses ofthe landraces. In Ihe process of seleclíng parents, farmers strongly felt that the preferred traits should be maintaíned even if inferior traits were the targets for improvement through PPB. Thus, the breeding strategy has a role lo play in improvíng and conserving traits and characteristics tbal are 1101 linked specifically wilh social, religious, or medicinal norms and beliefs or used in local recipes.A number of participatory approaches have been used lO date to increase local awareness about tbe importance of agro-biodiversity and 10 improve the flow of seed within and between communities (Rijal el al. 1999). Diversity fairs, diversity tbeaters, diversity songs, poetry joumeys, community biodiversity registers (CBRs), and diversity blocks are sorne oftbe popular aclivities carried oul lO increase awareness and sensitize tbe community.In tbe context of strengthening access lO germplasm and information in tbe furmíng community, diversity fairs, diversity blocks, and community biodiversity registers have been identífied as powerfui options, which also enhance the farmers' capacity in managing their own crop genetic resources.The diversity fair. Here, tbe lerm diversity fair refers to a tool used lo demonstrate or dísplay local crops along with the associated knowledge resources of an ecology, as defined by community-based orgaruzations (CBOs). Traditionally, local seed markets and fairs constitute an importan! par! of the informal seed exch¡¡nge system in the víllages. Local markets, haat bazaar, and \"agricultural fairs\" provide a good oppor!lU1ity for the exchange of seeds and knowJedge. In recent years, tbese informal systems have been threatened by outside interventíon, particularly in tbe seed sector. As a rosult, indigenous knowledge associated witb local genetic resources has begun to erode.The communíty-organized diversity fair focuses on indigenous landraces. In Nepal, diversity fairs have been used as an entry point to raise tbe level of awareness about in situ crop conservation programs before more technical aspects of the project are implemented. By organizing competitions between groups offarmers, the project promote access to farmers and encourages farmers to maintain tbe maximum genetic diversity. The in situ project uses diversity fairs as a participatory research and development tool in Nepal. It aírns at creatíng competitions between farmer groups on a regular basís in order to accomplish tbe following:• to recognize farmers who maintain large amounts of genetíc díversity and who possess a good deal of assocíated knowledge, to act as a source of ínformation for others• lo locate areas ofhigh díversity• to identify and locate endangered landraces• to prepare an inventory of crop genetics, along witb a knowledge resource base• to identify the main sources of tbe informal seed supply within the community• to IIDderstand tbe value of díverse genetic resources in terms ofuse, economics, culture, religion, ecology, etc.• lo empower local communities to have control over their genetíc resources• to help develop a sense of ownership in the communityThere are differen! ways of conducting diversity fairs. The in silu project aims at strengthening CBOs tha! conduct on-farm conservation actívities with little input from outside. Initially, when CBOs were unfamiliar with the project's activities, project staff managed the fairs in partnership with them. Over time, as they have become better oriented, they organize the fair as an annual event. Sthapit and Jarvis (1999) have documented the concept and methods used, and the steps of the fair have been described by Rijal et al. (1999). There have already been five such fairs organized in Nepal, and as a result, the process has been refined over time. The fairs organized in Nepal have been successful in terms of the following:• documenting locallandraces and associated knowledge, as well as strengthening the farmerto-farmer seed supply system• linking outputs with research and development work• locating the status of diversity and the custodians• sensitizing farmers, along with the research and policy eornmunities, on the importance of agrobiodiversity• strengthening CBOs in on-farm conservation processesThe fairs organized through CBOs have documented equalIy good information, as well as increasing sample size and the number of crops. The information includes the special characteristics associated with the landraees, Le., huliya, sociocultural values, ecology, and status at the cornmunity leve!. These sets of information can be very useful for a number of stakeholders, including breeders, eeologists, socioeconomists, arid locál promoters for their varied interests. The informatíon may be shared among the farm cornmunities and other interested partíes. A very important aspeet of the fair, observed in a recent fair ín Begnas, Nepal, is the development of the sense of ownership in the cornmunity for the resourees they have eonserved for generations. Every CBO took back sampies with the knowledge that they had to maintain them for future use.The diversity block. A diversíty block is a participatory research technique designed to characterize locallandraees under farmers' management conditíons. Landraces to be grown ín the diversity block may be selected Hom materials from either the diversity faír or farmers' seed stoeks. The crops are monitored by both farmers and scientist-promoters, and agromorphologícal characteristies are recorded. The diversíty block has the value of enhancing public awareness at the grassroots level and máking germplasm more accessible o the local cornmunity. In Nepal, the diversity block has been used to acquire farmers' indigenous knowledge about local varieties, to identify parents for breeding, and to study the population structure.The cornmunity biodiversity register. A cornmuníty biodiversíty register ís a record, kept on paper or in eleetronic form by cornmunity members. It is a register ofloeal crop biodiversity and assocíated knowledge. The information maintaíned in the register inc1udes landrace names, the fimners who store the seed, associated local knowledge and uses, and traditional and nontraditíonal passport data like agromorphological and agroecological characteristies and cultural signíficanee. The register functions as a decentralized cornmunity gene bank (Sthapit and Jarvis 2000). CBRs have no implications for local seed exchange and storage systerns; rather, it helps lo improve aceess to information and seeds.Updated over time, the CBR allows cornmunitÍes to monitor Ihe level of genetíc díversíty and prevent the extínction of rare varieties, whieh may then be preserved ex siro. eBRs can be a practical tool to monitor genetic diversity at the village level, and ifthe capacity oflhe farming eommunity is strengthened with institutional support, it could be a good way of developing various options lo add benefits on a local or regional scale.Strengthening seed and information networks was one of the eoncerns in Ihis project, for which different strategic lools were explored. The cornmunity gene bank adopled by a few institutions, such as UBINIG in 8angladesh, was reviewed for its strengths and límitations. It was found lo re-quiTe additional structures to serve communities under situations of stress and risk, and may replace the local farmer-to-farmer seed-supply systems. C8R strenglhens local systems was developed through review of functions complementary 10 in situ conservation.Since eBR has only recentIy been developed, it still requires further refinement. However, it has multiple funclions and is worth the effort because of ils effectiveness al the grassroots leve!. This was discussed wilh farmers and e80 representatives, and Iheif responses are summarized below:o e8R provides an invenlory ofboth valuable and worst crop resourees.o It strengthens sharing of information and crop seeds by improving access.• It is useful for strengthening market and seed networks.• It lists Ihe slatus of a11 known crop resourees, with reasons for decrease, ¡nerease, or loss.o It is useful to R&D workers .. o lt enhances the process of developing a sense of ownership for Ihe resources held by eBOs.• 11 provides deseriptions of ecology and diversity with area-speeific identities.The reeords maintained in Ihe eBR assists in understanding the farmer' s decision-making processes as well. Thus, Ihe C8R implemenled in Nepal has guided eornmunities in developing a sense of ownership for their resources. Whatever significance it has depends on Ihe way it is developed and executed locally. Therefore, tbe potential benefils from eBR can onIy be reaJized when it is adopted with full consideration of the importance of (1) partnership witb farmers, (2) periodic up-dating, (3) local control, (4) sharing information among Ihe users/slakeholders, and (5) caution aboul providing access lo tbe informatíon to oulsiders.80th the eBR and diversity fajr can be llSed for a number of purposes, from developing R&D bases to strengtheníng at Ihe grassroots level in terms of improving access lo seeds, using informatíon in an effective manner, and assessing diversity. eBR records could provide a very useful basis for developing conservation strategies. Endangered species or Iandraces, for example, may be conserved ex situ. However, we are also equally concerned with the possible misuse of informatíon, such as intellectual and farmers' rights. The community must be made aware ofthis kind of danger as wel!.The demand for materials or processed products may be inereased by market melhods (box 1). Source: Sth.pit and larvis (1999).IdentifYing local promoters and then linking them with local producers and markets are crucial processes. In Begnas, Nepal, a series of consultations was camed out to identifY major local products that have market potential, assessing total production, price negotiations, qualíty control, and marketing outlets. In Nepal, the project identified local promoters Iike Gunilo and Bandobasta who played a catalytic role in establishíng línkages between promoters and consumers with the farming community. NGOs have been ínvolved in the project to facilitate networking. Associations ofhotel and tourlsm, Pokhara chambers of commerce, hostels, and hospital networks have also been sensitized to use more domestic products. The impact of such networks is yet to be seen.The project is keen to develop markets to enhance the value of local crop diversity through direct sales. Rice landraces, Jethobudho, aromatic sponge gourd, Khari in taro, and Samdi kodo in finger millet, are a few examples. To succeed, this initiative must also be supported by policy reforms. The role oflocal crop varieties in securing food at the household level is apparent, but diversity has also been enhanced for socioeconomic reasons (Rana el al. 1999). Nepali farmers use local rice landraces for al least six specific purposes (Rija! et al. 1997). On the one hand, these deserve special va!ue and there is Iess competítion, so a nonbreeding strategy is appropríate. On Ihe olher hand, breeding strategies are employed to make local crops competitive with other options, particularly those lhat have value and benefits in terms of ecology or physical indices Iike yield, disease resislance, etc. For example, Ihe bes! quality of Jethobudho is grown wílh cold water, as is Phewa and Kundahar of Ihe Pokhara valley, and always fetches a higher market price lhan when grown in an irrigated field. The strategies employed for adding values are presented in table 3.In niche-or ecology-specific areas where food security is Ihe main concem, as in Jumla, farmers always go for increased yield. Low yield is associated with rice blasts, poor response, and cold injury, for which the only way of addressing the problem is through breeding melhods. Ofthe many innovative tools available, the diversity fair and community biodiversíty register have been most effective in terms of documentation and sensitizing communities of famlers, researchers, promoters, and policymakers. Furthermore, these two tools are very useful in monitoring diversity along with status. Valnes documented through these tools can be used for R&D purposes, where researchers, promoters, and planners may benefit. They also provide a basís for breeding work in Ihe short term as weIl as Ihe longer term.For local crop diversity witb socioreligious, cultural, or economic value, strategies that strengthen ínformation, seed, and market networks are particularly important if CGR and Iheir prodncts are to be promotedper se. The diversity ofthese sets of crops wíll be maintained as long as the local culture associated wilh them continues. On Ihe other hand, for crop diversíty associated with ecological and genetic traíts, the breeding strategy is Ihe right choice. Thus, for effective conservation ofWe describe below a sítuation typical of tribal fanners in India, where any option, including participatory plant breeding (PPB), has to coexist with the site constraints ifit is to be feasible. Orissa state is situated in the southeast region of India between latitude 17\"48' and 22°34' N and longitude 81 °24' and 87°29' E. The total geographical area is approximately 156,000 km 2 and accounts fOI 4.74% ofIndia's geographical area. As perthe 1991 census, the state has a population of31.66.millíon, ofwhich 7.03 million (22.2%) are tribal. The tribal people consist of different ethnic groups (at least 62 were identified in a recent survey) and fonn tbree broad categories of fanners-backward, peasant-like, and semi-urbanized-based on their level of development. The backward tribes live partially in isolated pockets and practíce shifting cultivation. the peasant-like fanners depend largely on sedentary eultivation, and the semi-urbanized fanners have their mainstay in settled agriculture and wage earning. But al! the tribal fimners are characterized by their own traditional life-styles, aneient customs, beliefs, rituals, and sociocultural identities.Koraput is a district in Orissa State where the economy is based predominantly on agrieulture. Jeypore, prevíously a part ofKoraput, was made a separale district in the recent past. Cultivation ís canied out in Jeypore al differenl altitudes, rangíng from 600 lO 1350 fee! aboye mean sea leve!.V, Arunachalam is a dist1nguished fellow at me M,S, Swaminathan Research Foundation. Chennai. India.Usually lands situated aboye 900 feet are classified as upland; around 600 feet and below is lowland, and the rest is medium land.Agricultural practices are more primitive in Jeypore than in the neighboring states. Irrigation is rarely possible, alllands are completely rain fed, and rainfall is erratíc. Farmers occasionally apply farrnyard manure. Rice is the most cornmon food crop of the region. Landraces and local varietíes are mostly preferred because they cater to the cooking quality and taste of the tribal people. High-yielding varieties (HYVs) are not preferred and only cornmercial incentives compel some farmers to grow them. Government agencies and some private organizations are the ones that encourage trus. The planting and maturation of tradítional varieties are timed so tha! their harvest coincides with the time offestivals and family rituals (table 1). The varieties are usually photosensitive and of longer duration than high-yielding varieties. A large number of farmers still practice monoeropping. Thus we have the following basic realities in which PPB options have to be optimized: 128• Tribal farmers live in villages rich in genetic diversity and occupied by one or two tribes. They are situated far away from the reach of government extension agencies.• Farmers are highly tradition-bound socially and religiously, and would have reservatíons about switcrung to new options.• The enhanced yields ofHYVs do not attract them as much as the quality and taste oftheÍr lower-yielding landraces and local varieties, which they prefer.• They have rich indigenous knowledge of their crop diversity but poor knowledge of modero agriculture.• Their habitats are poorly connected by roads and are typified by poor or absent marketing facilities.• Against this backdrop, they are vulnerable to cornmercial exploitation of their natural resources.• They are ready to learn and practice profitable methods of cultivation, provided such methods can produce perceptible returns.• Currently there is neither a feeling of strong ownership of natural resources nor any awareness of intellectual property righrs.New PPB paradigms need, therefore, to be simple and productive to promote voluntary participation. They should be cost-effective and, al best, attempt to optimize practices under existing sÍle constraínts. They should respect farmers' tastes and be consonant with their strong preferences. They should be risk-insulated and entai! a low cost-benefit ratio. Complex PPB options can only be a long-tenn goal and should be based on short-tenn benefits.A number of years of work and association with farm families of several villages in the Jeypore district by the M.S. Swaminathan Research Foundation (MSSRF), based al Chennai, India, has prepared the ground for cooperative and participatory work to improve the productivity of farmer-preferred local varieties/landraces. The work plan envisaged a three-year activity module.The first year was eannarked to survey local varieties sown by fanners and to introduce organízed planting ofpreferred varieties. The seeds ofthose varieties would then be distríbuted by MSSRF. A few farmers would be eneouraged to raise the erop in their plots by their own methods. The yíeld data would be analyzed and a few varieties seleeted for further evaluation.In the seeond year, the seleeted varieties would be grown by PPB farrners in a field design in which farmers and formal practiees would be the two treatments. Data on grain yield and its components would be statistíeally evaluated to select the top two varieties for upland, medium land, and lowland conditions. In the third year, the selected varieties would be grown in large plots under fonnal technology, provided it proved superior to farmers' practices in the second year of evaluation. Varietíes to be evaluated, the sites for testíng their perfonnance, and the farmers who would participate in the program would all be selected by lhe farmen themselves. Periodíc checks on the progress of the experiments, the problems that cropped up in lhe execution of experiments, and related issues would be discussed in periodic PRAs wilh farrners, and acceptable solutions found.During the runy season of 1998, three districts and two blocks per district were selected for upland (U), medíum land (M), and lowland (L) eultivation in the Jeypore traet ofOrissa State. Fourteen farrners were ehosen to raise 10 upland, six medium land, and 10 lowland local raees/varieties in theír own plots of approximately of80 m 2 • The erop was raísed using farmers' practices eornmon in the respective areas. However, asevere cyclone at the time of erop maturity affected erop yields; the data could only be used for a relatíve evaluation. We devised a fonn lo record various field activities, with which data on cost-benefits were gathered not only on the PPB plots but also on farmers' own holdings. The overall performance and characteristics of varieties were discussed in a PRA wilh a large number of farmers from the sites.Only 3 U, I M, and 5 L varieties were selected in the PRA from the original 10 U, 6 M, and lO L varieties tested in 1998. In consultation with the fanners, 3 U, 7 M, and 3 L varieties were added to get a total of 6 U, 8 M, and 8 L varieties for experimentation in the crop season of 1999.To facilitate periodic visits to plots, ít was decíded to confine the experiment to two blocks and five víllages in the Koraput district, near the MSSRF site office at Jeypore. Nine PPB farmers agreed toPanicipatory Irnprovernent a( Rice Cr\",op\",s:..:w:.:' i\",th:..:Tr=ib\"' 0.:.c1 P' ,' -.é0\"' nn=e\"' rs:..:i::.ll-' .:In.:.:d:::io=-_____________ _ test the selected varieties in two test plots of 90 m 2 each. One of the test plots was divided into tbree replications ono m 2 and the selected varieties were grown in a randomized block designo The other was divided equally between varieties to be tested. They were planted unreplicated by fanncrs using their own traditional practices. In the replicated plots, fonnal methods of cultivatíon were introduced (box 1).Box 1. Formal Metbods Illtroduced lo Cultivale Local Varieties and Landraces in Jeypore, India o Preparing land and applying farmyard manute in residual moisture when the previous crop has been harvestedo Raising nursery stock in well-prepared land in rows spaced 20 cm apart with optimal moísture o Pre-soaking seeds in water for 12 hours and selecting only those seeds that sink o Direct seeding (in U and some M), or transplanting (in some M and L) of about 25-day-old seedlings, in rows spaced 20 cm apart, with plants at lO-cm intervals withín a row o Setting rows north-south to maximíze sunlight on growíng plants.Those fonnal methods were developed as a result of a survey of fanner' s plots grown to rice in the first year, where a number of problems were predominant (hox 2).Box 2. Problems with Rice Crops Raised under Fanners' Traditional Practices 1. Erratic rainfall, leading to the tradition of high seeding rate of about 4ü-60 kgjha 2. Consequent dense plant populations that lead to yellowing and poor plant growth , 3. III-or unprepared lands due to la(k of moisture prior to the planting sea50n, resulting in poor germi-! natíon ' 4. Poor seedling growth. leading to severe disease and high pest incidence 5. Farmyard manure occasionally applied in smaU quantities during 5Owing, resulting in no benefit to the crop 6. Nursery plants raísed in poor, mos! often unprepared lands with f100ded rain water 7, Transplantíng most often with very old seedlings, sometimes even 60 days old Crop growth on fonnal and fanners' plots was evaluated in periodic PRAs with farmers. Scientists recorded data on days to flowering, number of tillers, number of panicles, number of grains per panicle, and graín and fodder yield with the help of farmers in each plot. The data were used to compute graín filling and harvest índices. Based on multivariate statistical analysis ofyield and its component characteristics, the varieties were ranked on their joint perfonnance across al! traits.The results were striking. Theyare surnmarized and shown only for the varieties coromon in 1998 and 1999 ín table 2. The advantages of changing over to scientific methods of cultivation are obvious.The following inferences stand out: a. Fluctuations in the yield of varieties occurred even under traditional (fanners') methods of cultivatíon. For instance, tbe variety, machchakanta, was the top yielder in 1998-a year characterized by cyclonic weather and heavy rainfall. It gave low yíelds in 1999 under farmers' practices despite consístently good weather. In general, however, varíeties responded by giving good yields under the better climatic conditions in 1999, b. Yíelds under formal methods were consístently and sígnificantly superior than those under farmers' methods. Lowland varietíes, whích gave fairly good yields under farmers' practíces, responded 10 formal methods by gíving up 10 60% hígher yíelds (table 2). One popular upland variety, paradhan, preferred by a11 farmers, had a yield advanlage of 70% under formal methods. The trend of improvement was about the same for the olher 13 varieties (data not shown).c. Yield improvement usíng formal methods was achieved at no extra cosl. Initially farmers found it difficult and time-consuming to space-plant in rows, but quite soon they saw that they could achieve higher efficiency (see d.l, below).l d. Preliminary data show that the cost-benefit ratio is substantially more favorable under formal methods for the following reasons:l. The seeding rate is about one-fifth oftbat used in traditional methods (12 versus 60--65 kg/ha). Hence even row planting with uniform space between plants could become les s time-consuming. 2. Nursery seedlings produced under formal methods grew vigorously and were free from weeds, insects, and diseases. 3. Seedlings were well and quickly established in plots because of initial seed selection and healthy nursery plants. 4. The healthy initial stand discouraged weed competition and helped healthy crop growth without being affected by biotic stresses. 5. Row and space planting made interculturing operations easy, where needed, and harvesting of the crop took significantly less time. 6. The 20-cm spacing between rows proved ideal for the harvested plants 10 be stacked in a slanted, reinforcing standing position for the produce to dry in the sun in the field before transfer to threshing yards.These smalI but significant henefits added up to a cumulative advantage, reduced the drudgery of field operatíons, including weeding and harvest, and resulted in a more favorable cost-benefit ratio.In conclusion, we leamed a number of lessons, and the experiments evoked the desired response among farming families in hoth the experimental sites and surrounding areas,L Situations exist which do not exactly fit a !ypical case for PPR Any participatory ínitiative, including PPB, is a function of the target site, environment, site farmers and their tradítions, practices, and social and cultural norms, 2. Participatory programs must recognize this circumscribing frame, most often rigid, within which actions must be confined.3. Initial action plans mustproduce perceptible benefits in orderto ensure voluntary participation.4. When the basic constraints and opportunities for initiating participatory actions are recogWzed, respected, and acted upon, even farmers in difficult economic conditions wiIl willíngly participate wíthout incentives. .1. Farmers were c1early convinced•that the traditíonal high seeding rate and dense planting are not the way to counter theír dífficult environment, harsh c1ímate, and unpredíctable yields. They have realized by their own experience the logic of the formal methods they were shown.2. The message of formal methods of cultivation has spread so far and fast that a number of surrounding villages have started adopting the same practices, not onIy in rice but also in other crops, Iike red gram and finger millet.3. There is a high demand from the tribal farmers for training programs in various sites te ensure proper adoption offormal methods of cultivating traditional rice varieties.4. Farmers are willíng to extend their participation to breeding productive pure hnes, initiating from parents chosen fromtheir site-specífic local races and cultivars.Thus, the experience of participatory rice ímprovement has been exhílarating and productive, and efforts are under way to replicate the benefits of formal methods of cultivation by initiating site-specific PPB paradigms.There CONSERVE conducts both approaches-researcher-managed (or on-station) and farmer-managed trials-at the same time.The researcher-managed trials are conducted in the center's production farm, facilitated by program staff and later conducted by farmer-partners. Farmer-partners are invited to visit the station and identifY materials that are acceptable to them, usually before harvest season.There were 22 single crosses done by the center and coded as CONSERVE crosses (CC). Varieties crossed were mostly materials from the uplands, which were crossed with lowland rice in order to determine ifthe product ofthe cross will adapt or not. Out ofthese crosses, only 10 crosses survived at the first filial generation. These were planted in on-station (lowland) fields by plot, where program staff observed and evaluated the seeds. Records of the crosses and the number of selections have been kept. Distinct characteristics of the materials selected were noted, such as resistance to pests and diseases, yield (panicle length), number oftillers, height, and other agronomic characteristics. No back-up of the crossed materials has been made. After two cropping seasons, various selections were obtained and planted in the production area. Bulk selection was practiced. Program staffmade the decisions involving rejecting seeds not adaptable to the center's conditions and did the selection. Before the selection at harvest time, farmers were invited to the station and took part in the evaluation of the segregating materials. Group discussions were held and criteria were obtained to provide the basis for selection. Farmer-partners also took part in the selection; they freely selected what they wanted from the segregating material s on-field. This material was simultaneously distributed to 89 ヲ 。 イ ュ セ イ M ー 。 イ エ ョ ・ イ ウ @ starting in May 1995.Breeding material s were continuously segregated and diverse characteristics were obtained. The center had difficulty managing all the materials, and the focus of the program staff was limited to keeping records of significant developments in the materials; thus, it was decided to distribute to farmer-partners. AH in all, CONSERVE was able to produce 100 lines from 10 single crosses. These were distributed to increase the number of selections and to enhance participatory research by exploring the process of selection until farmers can produce a stable selection for mass production.Lessons learned and recornrnendations: 134• It was interesting to note thatthe center did notkeep a back-up ofthose 10 crosses that might have served as good material for selection in the future. The center is maintaining short-term back-up storage ofthe seeds collected in the beginning ofthe project.• The crosses made also provided a good learning experience-an upland variety crossed with the lowland but with the experimental plots in the lowland area. The center should have tried conducting the same experiment in the upland area to know the performance ofthe offspring.• The involvement of funner-partners in the activity was very Iimited since they were only involved in the later part of the research and mos! of the selections were done by program staff. Farmers should have been involved not only in the later part but also in the whole process so that they could leam how the research is conducted.Farmer-managed trials are actually conducted on an individual farmer's field. Farmers have their own way of designing the experiment, either within the farm or across farmers. The evaluation ís usually informal, with their eriteria províding the basis for selection.After the segregated materials were given to the farmer-partners in the Arakan Valley Complex, project staff monítored their progress and provided assistance to them. The majority of farmers received a mínimum of five breeding lines in smalI amounts (around 5-10 grams) to try in their respective fields. Sorne planted the seeds in separate plots and others planted them in a portion oftheir rice field. Most ofthe farmers who received the segregating materials were graduates ofthe Ecological Pest Management-Farmers' Field School (training given to farmers on a weekly basis for one cropping season of about four to five months, to give them an understanding of rice production activities using the seven dimensions of sustainable agriculture).Farmers selected plants according to their own individual criteria. They practiced two types of selection methods: buIk and pedigree. Sorne farmers discarded materials, while olhers maS8 produced. As these materials expressed their characteristics under the conditions of different farmers' fields, materials were exchanged among farmers, nol just within the village but to other municipalities. Selection continued even when the materials reached the mass-production stage. Farmer-breeders continuously bree!, selectee!, and distributed their stable lines lo other farmers. It happened, too, that rejected materials were passed on to other farmers, still undergoing the proeess of selection according to individual preference. Whi1e the flow of materials continuously moved, the process ended when the breeding lines reaehed the mass-production stage. The flow of genetic materials from one farmer to another is extremely fasto The farmers' efforts to explore and expcriment through se1eetion were a very good example of participatory research and how farmers can be empowered by giving them control ofthe seeds and the resulting exchange of seeds withín the arca and to other víllages.From the survey conducted by' CONSERVE in 1998, a total of 191ines out of the 57 lines originally distributed from six single crosses (CCl, CC2, CC5, CC7, CC13, and CC20) were still maintained by farmer-partners. At present, the breeding lines are widely used for mass production not only by farmer-eurators but also by other farmers. CONSERVE Crosses 5 and 13 are commonly used. Seleetions by farmer-partners are eontinuously enhanced in farmers' fields, which has led to an increase in stable lines. On the other hand, ít was observed lhat over the years, although stable lines had been identified, the number of lines has decreased as farmers continue to select and adapt the materials given lo them. Their se1ection eriteria and the adaptability of the breeding lines are based on the conditions present in their respective fields. Moreover, only a few farmers keep many seleetions. Usually, they on1y keep two to three lines, on average. Farmers who keep many selections have the eapacity to manage them and lack storage facilities, leading to a diffusion of selections.Lessons learned and recommendations:• It was noted that farmers did not keep the original Iines given lo them, as the center also neglected to do. Like CONSERVE, they have lost the opportunity to go back to the mother","tokenCount":"5500"} \ No newline at end of file diff --git a/data/part_3/9340190777.json b/data/part_3/9340190777.json new file mode 100644 index 0000000000000000000000000000000000000000..81118278167775a111a1a53feb7fe5aefee5b5a2 --- /dev/null +++ b/data/part_3/9340190777.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"776bdacecf9545d3beafb1b61a43ef80","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/1a2e2751-258e-435d-90cc-f4b726d6aca8/retrieve","id":"1620428930"},"keywords":[],"sieverID":"f456bf65-7241-4da4-a09b-0561f3a56157","pagecount":"44","content":"Bioversity International is a global research-for-development organization. We have a vision -that agricultural biodiversity nourishes people and sustains the planet.We deliver scientific evidence, management practices and policy options to use and safeguard agricultural and tree biodiversity to attain sustainable global food and nutrition security. We work with partners in low-income countries in different regions where agricultural and tree biodiversity can contribute to improved nutrition, resilience, productivity and climate change adaptation.Bioversity International is a CGIAR Research Centre. CGIAR is a global research partnership for a food-secure future. www.cgiar.orgThe workshop was organized as part of the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), which is carried out with support from the CGIAR Trust Fund and through bilateral funding agreements. For details, please visit https://ccafs.cgiar.org/donors. The views expressed in this document cannot be taken to reflect the official opinions of these organizations.Farmers in developing countries are facing unprecedented challenges in dealing with crop management issues caused by (new) biotic and abiotic stresses related to/resulting from climate change and anomalous climate events. Furthermore, current seed systems are not serving farmers' needs for a variety of reasons, namely: they do not ensure seed diversity and quality; they lack decentralized (local) seed production and marketing organizations and enterprises that can cater to the specific demands of smallholder farmers; they are not supported or invigorated by crop breeding; they are constrained by limited and uncoordinated forms of ex situ conservation of plant genetic resources; they are not supported by effective implementation of international agreements related to plant genetic resources; and they are constrained by national seed laws.A novel research project, coordinated by Bioversity International, the Community Technology Development Trust (Zimbabwe) and the Centre for Development Innovation of Wageningen University and Research (the Netherlands) has been designed to combine and scale, from the local to the global level, successful strategies, methods and tools that increase timely availability, affordability and improved access for women and men farmers and their communities to good-quality climate-adapted seed of a portfolio of crops and crop varieties to build resilient seed systems.The project receives financial support from the Ministry of Agriculture, Nature and Food Quality of the government of the Netherlands and financial and technical support of the CGIAR Program on Climate Change, Agriculture and Food Security (CCAFS). The duration of the first phase is two years (2019-2020).A consultative project start-up planning workshop was held on 5-8 March 2019 in Uganda, bringing together key stakeholders in East African seed systems, including National Agricultural Research Organizations, CGIAR Centres working in East and Southern Africa, international and national development partners and private sector entities. The goals of the start-up planning workshop were to : 1) Present and share the scope of the Resilient Seed Systems proposal underpinning the project. 2) Design and plan collaborative activities to be supported through a number of projectsupported small grants including research, capacity development, networking and policy analysis. 3) Provide key stakeholders with field exposure to ongoing activities towards creating resilient seed systems implemented by Bioversity International and its partners in Uganda.This report offers a synthesis of the planning workshop presentations and discussions. It is presented in order of events, as per the workshop agenda presented in Annex 1.The workshop kicked off with a field visit to Hoima (5 March 2019), to provide key stakeholders with a broader understanding of the work currently being conducted by Bioversity International and its partners in Uganda towards creating and supporting resilient seed systems and the challenges that are faced from the perspective of the farmers. Contrary to convention, where most meetings place the field visit during or at the end, initiating the workshop with a field trip was intended to make the key idea behind the scaling initiative immediately visible to all of the participants.On 5 March 2019, workshop participants visited the Bulindi Zonal Agricultural Research Station of NARO (ZARDI-NARO) 1 to take part in a seed fair jointly organized by Bioversity International and ZARDI-NARO. The seed fair was held by farmers from Hoima and two other community seedbanks to showcase the diversity of crops they are using for climate change adaptation (images 1-4). The crop diversity displayed was impressive.Participants were also introduced to the recently opened Hoima Community Seedbank (HOCOSEB), which serves over 500 farmers in the project site and an additional 200 outside the project site. The Community Seedbank was established with support from Bioversity International and CCAFS' East Africa Program through the FAO Benefit-Sharing Funded project \"Open Source seed systems for climate change adaptation in Kenya, Uganda and Tanzania\", to support the collection and facilitated distribution of climate-resistant seed varieties for farmers in Hoima and surrounding areas. 2 The field visit was guided by a number of key questions: What are the strengths of the field activities in Hoima from a resilient seed system perspective?  What are the organizational and policy challenges related to creating resilient seed systems in Uganda?  How do social and gender factors influence the field activities and their results?  What activities and results could be scaled and how? At national level, at subregional level? The official welcome and opening remarks of the workshop took place in Entebbe on the second day of the workshop, following the extensive field visits conducted on day 1. During the opening remarks, different presenters shared the objectives of the event and the expected outputs. These included: Identifying opportunities to scale successful experiences and pilot programmes that promote resilient systems to subregional and global levels.  Learning about the use of successful methods and tools to strengthen seed systems and employ the use of these methods and tools at a wider scale/higher level/subregional level.  Sharing experiences and challenges in managing seed systems faced by governments of different countries in Africa and by regional and international organizations, programmes and projects.  Sharing experiences from a global perspective on the successful implementation of the International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA), including the projects of the Treaty Benefit-Sharing Fund and promoting the implementation of farmers' rights.Seeds are at the heart of healthy food systems. This means that providing access to a diversity of high-quality seeds, that satisfy farmers' and the systems' needs in terms of productivity and are adaptive in terms of climate change and related stresses, is essential. The major objective of this new resilient seed systems initiative is to bring to scale successful seed system approaches, methods, tools and practices in the countries of the East and Southern Africa subregions.There are a number of examples in which action is being taken to support more resilient agricultural systems in Africa. One such action has been undertaken by the Ugandan government that has successfully promoted the production of Quality Declared Seeds. This is an important mechanism to support more diverse seed systems and strengthen the roles of (organized) farmers. There is scope to expand such successful learning experiences to other countries in Africa and foster resilient seed system development, including farmer entrepreneurship. Other examples are the integrated seed sector development programmes (ISSD) in Ghana, Ethiopia and Uganda, where the Wageningen Centre for Development Innovation has collaborated with international and national partners to promote more diverse and dynamic seed sector development pathways. ISSD programmes have built up 15 years of experience.Climate change is bringing new challenges to the viability of seed systems, in particular for smallholder farmers. There is therefore an urgent need to develop and share productive adaptation practices, which farmers and their communities can implement relatively easily and further improve over time. The conveners of this new initiative confirmed their commitment to supporting cross-learning activities, not only for plant genetic resources and seed sector actors, but also for development sectors. The initiative aims to act as a bridge, to build new forms of exchange, learning and collaboration. The International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA) (hereafter referred to as the Treaty) aims to ensure that the wealth of the world's food crop diversity is conserved, shared and used so that farmers can continue to grow crops to feed their families and conserve our planet's biodiversity. The Treaty has been developed in the spirit of multilateralism and currently comprises 145 contracting parties plus the European Union. The Treaty provides national authorities with guidance, a legal framework and mechanisms with which to take action on the conservation and sustainable use of their crop diversity. It facilitates international exchange of plant genetic material and related information, and has a special fund that supports projects for the conservation and sustainable use of crop diversity. In 2018, an Ad Hoc Technical Expert Group on Farmers' Rights was established to: Produce an inventory of national measures that may be adopted, best practices and lessons learned from the realization of Farmers' Rights  Develop options for encouraging, guiding, promoting the realization of Farmers' Rights.The Treaty's Multilateral System of Access and Benefit-Sharing (MLS) aims to facilitate access to plant genetic resources for food and agriculture, and to share in a fair and equitable way the benefits arising from their use. Currently, this system consists of genetic material of a set of 64 crops that provide about 80% of our food intake from plants (Annex 1 of the Treaty). Major crops that can be found in this system are wheat, rice, barley, maize, chickpea and lentil. MLS material is available for research, training and breeding under a Standard Material Transfer Agreement (SMTA). Recipients must continue to make the materials received available under this system. Currently, there are 68,000 SMTAs that have been reported so far. In addition, over 4.6 million accessions have been transferred to 6,198 recipients in 179 countries and 2,103 users have registered on Easy-SMTA, an Information Technology System developed to support users of the MLS.The Benefit-Sharing Fund (BSF) BSF uses a systematic approach to climate change adaptation and it is the operational arm of the Treaty at the field level. The Benefit-Sharing Fund: I. Finances projects to help farmers achieve food security and adapt to climate change through in situ conservation, crop improvement and community seedbanking II. Provides facilitated access to global exchange of genetic material and information through the MLS III. Recognizes and gives value to traditional knowledge as means to sustain biodiversity and ensure food security IV. Facilitates access to and transfer of technologies V. Provides for capacity building VI. Contributes to the achievement of the SDGs, SDG Target 2.5.To date, under the BSF, 61 projects have been supported targeting 55 developing countries, more than 1 million beneficiaries have been reached, more than 40,000 researchers and local partners have been trained, more than 300 partnering institutions have joined forces in projects' implementation, 8000 accessions have been characterized and evaluated as to evince resistances in the face of climate change, 2300 varieties have undergone molecular characterization in research institutes and 62 community seedbanks have been established.Session presenter: Ronnie Vernooy (Bioversity International)The 'Resilient seed systems for climate change adaptation and sustainable livelihoods' project recognizes the challenges that the current seed systems in East Africa are facing. The seed systems lack effective seed quality and diversity assurance mechanisms, decentralized (local) seed production and viable marketing bodies and enterprises that meet the specific needs of smallholder farmers. There is hardly any smallholder-centered crop breeding within the system; ex situ and in situ conservation of plant genetic resources is limited and uncoordinated, implementation of international agreements related to plant genetic resources is ineffective and national seed laws are not only unsupportive, but constraining.The new project will combine and scale from the local to the global level, successful strategies, methods and tools that increase the timely availability, affordability and improved access by women and men farmers and their communities, to good-quality seed of a portfolio of crops and crop varieties, including novel crops and varieties that are better adapted to current and predicted future climate conditions.Going to scale means moving from a limited number of small pilot communities per country to multiple communities in different agroecological zones, linked across national and subregional levels and even across the globe. It also means focusing on multiple crops (including neglected and underutilized species), thus moving from monocropping to diverse or varied farming systems. This project will build on the results and lessons learned from a number of seed systems-related research and development initiatives that Bioversity International, the Community Technology Development Trust (CTDT) of Zimbabwe, the Wageningen Centre for Development Innovation of Wageningen University and Research (WCDI), the Netherlands, and the Royal Tropical Institute (KIT), the Netherlands, have carried out in recent years in selected countries ,which include Bhutan, Benin, Burkina Faso, Costa Rica, Côte d'Ivoire, Ethiopia, Ghana, Guatemala, Nepal, Madagascar, Peru, Rwanda, Uganda, Zambia and Zimbabwe.The project will bring together different actors, and will support networking, through:  Peer learning and exchange  Curriculum development  Technology transfer  Development of information management systems  Establishing a subregional resilient seed systems' support or service unit  Creating novel partnerships, including public-private partnerships.The project will seek collaboration with the private sector for crop and variety diversification, crop and variety enhancement, marketing and capacity development.The project aims to support three thematic areas of work (Table 1).  Mutually supportive implementation of international agreements relating to access and benefit sharing  Community protocols regarding access and benefit-sharing of genetic resources  Seed policies and laws that support farmer innovations and involvement in seed systems and/ or along the seed value chains. Establishment and support of multifunctional community seedbanks and connecting them to national genebanks for country-wide systems of PGR conservation and use  Establishment and support of community-based seed enterprises. There is a need to make the process of registration of farmer varieties in national seed catalogues simpler. This includes reducing the number of traits that farmers need to provide.  The workshop report on registration of farmers' varieties as part of adapted seed laws held in Uganda late last year will be available soon. 3  An interesting development is taking place in Nepal where a new procedure for the recognition of farmers' varieties has been developed for approval by the government.  There are several seed system projects being carried out in Uganda (e.g. on QualityDeclared Seed or QDS, image 5), but they are scattered across the country. There is a need to bring everything together.  Does the new initiative have a theory of change detailing the expected results and impact of the project at a subregional level? It was clarified that the proposal does have one which is generic in nature (applicable to more than one subregion). The impact pathway for the East Africa subregion could be made more precise.  Unfortunately, some seed related policies are not implemented in countries in the subregion. It is expected that this new initiative will push for effective implementation.  Does the new initiative target certain crops? Will this be determined by researchers or will farmers provide information of what they need? It was clarified that the proposal does not single out certain crops, but that the idea is to use a farming system's approach with a particular interest in stress prone areas. Thus, crops of interest and importance to smallholder farmers in stress prone areas will be prioritized.6. A regional/subregional approach Session presenters: Andrew Mushita (CTDT) and Michael Halewood (Bioversity International)Andrew Mushita highlighted that farmers' seed systems in Africa provide 70 to 80% of all seed needed for food production but, in the region, there is little recognition of the socio-economic value of this contribution. Therefore, there is a need to develop general mechanisms that promote farmers' contributions to seed and food security on the continent. Some core elements of such a mechanism include: Michael Halewood raised a series of questions about whether it would add value to coordinate work on climate-resilient seed systems across/between a number of countries within subregions. First, he provided reasons why it would be justifiable to organize activities subregionally. Agroecological zones are often not defined by political boundaries but cut across international borders. Many countries in a subregion share common climate change related challenges to their agricultural production systems, including changes in maximum temperatures, precipitation patterns, spreads of pests and diseases. They often grow the same crops, with farmers following similar agronomic methods. A solution in one country may therefore be relevant, and also applicable in another. Alternatively, with shifting or 'migrating' climatic changes, crops that evolved through farmer and environmental selection subject to particular climate variables may be well suited for use in other adjoining countries when the same climate 'migrates' to those countries. Indeed, this is consistent with the widely accepted fact that all countries are interdependent on genetic diversity for their agricultural research and development, and that interdependence is becoming more acute as a result of climate change. Furthermore, most countries do not have adequate resources to develop fully-fledged, independent programmes to identify, acquire, test, and deploy crop diversity to respond to climatic changes within their borders. It is therefore logical, on the face of things, for countries to explore efficiencies by pooling resources to work together on common challenges that they cannot address on their own.If one accepts that it makes sense for countries in a subregion to coordinate at least some of their efforts to use crop diversity for climate change adaptation, and make their seed systems more climate resilient, the next step is to consider what kinds of questions could be usefully addressed at a subregional level, and how such work might be organized. Michael did not attempt to answer these questions exhaustively, but listed the following options to stimulate subsequent discussion by participants in smaller groups.Working together through a project or programme organized at subregional level, the subregional teams could: Constitute a hub of expertise to service projects within the participating countries, providing technical backstopping on tools, methods, information sources, data management, compliance with applicable regulations and agreements, etc.  Identify within and across the participating countries, target areas/sites of interest that face common or complementary climate-related challenges.  Organize/support research activities across those areas/sites that have potential to yield mutually advantageous results for the countries concerned: o e.g. pooling, exchanging and evaluating genetic resources (including materials from national and international genebanks, farmers, public and private breeding programmes) in the identified sites, and sharing data about performance, agronomic methods, etc. o knowledge exchange between national programmes, international organizations, community seedbanks, farmers between the countries concerned.  Once high performing materials are identified, contribute collectively to the enhancement of those materials through selection or breeding, and then share those materials for use in the participating countries, subject to benefit-sharing arrangements that are developed and agreed to between competent authorities of the participating countries.  Share information about best practices, adapted materials, through exchanges of scientists, farmers, between countries.  Develop agreements to be approved by competent authorities within the participating countries to support the movement of people, knowledge, genetic resources, between the countries. These agreements would address how to share benefits from commercially successful materials originating from one country that get used in the other countries.A subregional approach can promote collaboration and networking on similar crops of high priority and lead to the establishment of regional centres of resilient seed systems excellence, with the participation of farmer and community organizations, NARS and CGIAR centres. Such an approach promotes subregional collaboration and the creation of synergies along all steps of the seed value chain (from characterization, to conservation, to crop improvement, to the exchange of materials using the MLS, to seed marketing). A key component of the approach is to train a network of trainers at subregional level who can provide technical support for activities that will ultimately need or have engagement/impact at local levels.Session presenters: Esther Njuguna-Mungai (ICRISAT) and Pricilla Marimo (Bioversity International)Paying attention to gender dynamics and relations is not the same as just paying attention to women, their interests, roles and responsibilities. Studying gender is a far more comprehensive activity that concerns women and men in relation to other social variables such as age, class and ethnicity. Gender is determined by the conception of tasks, functions and roles attributed to women and men in society, and in public and private life. Gender analysis looks at differences and similarities between men and women. It also looks at gender relations, for example, by analyzing how a (new) policy, programme or law impacts on women and men.Gender in seed systems deals with issues such as access to and availability of seeds, information exchange, and the roles and responsibilities of men and women in seed management. Some seeds are used for a variety of cultural events and sometimes are gendered, e.g. it is the responsibility of men and women to produce/take care of specific crops.When characterizing and improving varieties, it is important to consider these issues. When women are solely responsible for seed management, it will be important to focus on and work directly with women. This is gender-responsive breeding.Households and seed systems are dynamic, as are gender dynamics. How do we reconcile the gender differences at community and national levels? It is important that we understand how social change affects men and women and ensure that our research does not widen the gender gap, but instead benefits all equally. Are the benefits in seed systems equitably shared, and how do we ensure and measure that they are? Are both men and women involved in identification of traits during plant breeding? How do different stakeholders in the seed system relate to and engage with farmers, and are gender biases influencing their interactions? At the national and regional level, what programmes/policies are in place to ensure the needs, priorities, preferences of men and women are catered for? For this project, at what level will gender be incorporated? The following are some examples of engendered research questions that could be tackled in the new initiative, as proposed by the workshop participants: What are the gender, biocultural and economic dynamics at play/work in seed systems? How do these dynamics influence women's access to crop diversity?  What are the roles and responsibilities of men and women in seed systems that foster climate change adaptation?  What are the gender concerns, and related strategies to address these concerns, in the development of resilient seed systems?  In the context of feminisation of agriculture, what is the impact of gender roles and responsibilities on women's access to diverse seeds for climate change adaptation?  How do climate change, feminisation of agriculture and interventions in seed systems impact gender roles and responsibilities in seed systems?  How can gendered action learning contribute to seed diversity management for food security? Crop traits of preference for men and women can be 'dissected' at genome level. Two papers using durum wheat in Ethiopia as an example of this have been published (e.g. Kidane et al. 2017). 4  Identify crop traits that are important to women and men.  Apply the Oxfam GALS (Gender Action Learning System) methodology. 5 It addresses gender imbalance at household and community levels. For seed rights, Oxfam engages households to develop a household development plan, looking at crops that are most valued at household level in a gendered way. Women and men indicate their crop preferences. This ensures development of a list of priority crops planted on their land over which they have control.  Engage farmers from the very outset of the project. It is vital to sit down with women and men to find out what their areas of interest are. It is better to start with an approach where a community proposes how they would prefer activities to be conducted.A number of presentations were made highlighting country and regional experiences in building resilient seed systems, a synthesis of which is presented in Table 3. standards to enable movement of materials from one country to another, but harmonization of standards has been slow.  In 1999, seed experts from EAC member states were appointed at national level and conducted seed system studies in their countries. Information was shared at national level and later at regional level. Results were published in 2000, but recommendations were not implemented.  The EAC envisioned two processes: rationalization and harmonization.  Rationalization was at national level; on seed import and export where three different organization were doing the same thing. Countries decided to have a \"one stop\" organization.  Harmonization was at regional level; where there was an agreed commonality and standards that were used to allow seed. movements across the region. This process was led by ASARECA (Association for Strengthening Agricultural Research in East and Central Africa).  Around 2008/2009, this process was taken over by COMESA. The instructions were henceforth issued by the Ministerial Council.  COMESA was funded and tasked to harmonize regional seed regulations.It published the results in 2014. They were endorsed by most of member states.  COMESA's harmonized system was dependent on the national regulatory system. Unfortunately, in some countries the national regulatory system had and still has limited capacity. COMESA's achievements to date: o Most member states have reviewed and aligned their laws to the COMESA harmonized regulation. o There is a regional variety catalogue, although it is not very active. o The EAC put together an EAC seed law and regulations of 2018, which was passed in December 2018 and will now go to legislators of different partner countries for approval.Presenter: Institute (GERRI) Kenya, the National Plant Genetic Resources Centre (NPGRC) of Tanzania and from the Uganda National Gene Bank Uganda were tested for adaptation.  Farmers are doing participatory evaluation and selection by looking at five key functional traits that include faster maturity, pest resistance, disease resistance, drought resistance and yield. Further evaluation on organoleptic testing and value in the market will be done in August of 2019.  The selection of elite lines for beans and millet in Uganda is being done through crowdsourcing using 300 farmers, on-station trials for beans and millet and participatory variety selection. This research has resulted in the dissemination and conservation of varieties through working with women and men, Quality Declared Seed production with local seed businesses, establishment of community seedbanks and the organization of seed fairs to promote diversity and conservation of crop varieties. East West Seed is a privately owned company, which has been dealing in tropical vegetables for 35 years.  It focuses on smallholder farmers in Africa, Asia and Latin America. The company has developed a comprehensive marketing approach, which includes not only selling seed but also supporting smallholder farmers to increase their income through value addition activities.  It produces seed through contract arrangements with smallholders.  The company is accredited by an international quality assurance system (ISTA) and ranked No. Rwanda and Uganda) implemented policies, laws and administrative guidelines to make the MLS operational in their countries. The work on policies and laws was complemented by research on current and future germplasm flows and crop interdependence, effective ways for mobilizing novel germplasm for climate change adaptation, the role of policy actor networks in policy development, the roles of community seedbanks and their potential links to the MLS, and options for complementary technology transfer.  Lessons learned from the first project were used in a second project supported by the Darwin Initiative and carried out with partner organizations in Benin and Madagascar. Benin developed a single instrument to implement the Nagoya Protocol and the ITPGRFA. Madagascar developed two laws, but linkages were forged between the two ministries responsible (Environment and Agriculture).  The two countries also developed community biocultural protocols about access and benefit-sharing of genetic resources. These protocols are novel in that they promote the communities' interests in both: i) controlling access to genetic resources located within their own territory (as per the Nagoya Protocol), and ii) securing access to crop diversity from outside their territory, from genebanks and breeding programmes around the world (as per the Treaty) to make their production systems more resilient and/or productive. Lessons learned include:  National policymakers and stakeholders appreciate the value of the Treaty/MLS in enhancing their country's collective capacity to adapt to climate change by accessing and using materials through the MLS.  National policymakers and stakeholders also appreciate the value of the Treaty/MLS in overcoming systematic obstacles to ex situ and in situ conservation efforts, especially where the MLS is implemented as part of a process of promoting novel forms of cooperation between genebanks, breeders and collective action organizations at the community level (e.g., community seedbanks).  National stakeholders are increasingly demanding that project support and policy development programmes to implement the ITPGRFA/MLS and the Nagoya Protocol on access and benefit sharing be interlinked given that the two agreements are so closely related, and they need to be implemented in harmonious, coordinated ways.  MLS implementation can be more effectively promoted through more direct engagement of the agriculture sector in the development of National Biodiversity Strategy and Action Plans (NBSAP) under the 22 CBD, National Action Plans for Climate Change Adaptation (NAPAs or NAPs), under the United Nations Framework Convention on Climate Change (UNFCCC) and other national planning processes, by having explicit recognition of the strategic contributions of ITPGRFA to related national objectives.Presenter:Dave Ellis (CIP) The International Potato Center (CIP) has one of world's largest in vitro genebanks with over 16,000 accessions maintained.  All accessions are held in Trust under ITPGRFA and mostly Annex 1 crops, e.g. potato and sweet potato, tuber crops (ulluco, oca, mashua, maca, mauka, ahipa, yacon, arracacha, achira).  There are difficulties in distributing them due to phytosanitary factors.  In the last 20 years (1997-2018)  Situational analysis: this captures the current status of CSA initiatives, current and future vulnerabilities, as well as enabling environment across sectors at multiple levels.  Targeting and prioritizing: includes use of advanced analytical techniques nested within participatory processes to narrow down an extensive list of possible practices, services, and policies down to a range of best-fit options that provide value for money and can be scaled out.  Programme support: this concentrates on developing tangible materials and plans to help actors implement CSA interventions on the ground. This involves delivery of tangible co-generated and demand driven products like extension materials, business models, implementation plans etc. for a diverse constituency of end users that enable delivery of information and services.  Monitoring, evaluation and learning: this is the development of strategies and tools to track progress of implementation, evaluate impact, as well as facilitate interactive learning to improve CSA planning and implementation. This will help in selecting which type of metrics (readiness, process or outcome), indicators and monitoring approaches are most suitable for a given situation.Presenter: Abishkar Subedi (Wageningen Centre for Development Innovation)Strategy 1: Horizontal and vertical scalingHorizontal scaling is geographically spread, from one community to a different community, one seedbank to many community seedbanks. This is moving from a limited number of small pilot communities per country to multiple communities targeting different agroecological zones.Vertical scaling concerns mainstreaming and institutionalization, contributing to policy development, implementation of policies, and development of stronger or new farmer seed organizations. This scaling aims to integrate policies (e.g. genetic resources policies, seed policies, climate policies) and links national, subregional and global level.Strategy 2: Inclusiveness in partnership for increased impact and sustainability Inclusiveness in partnership for increased impact and sustainability implies working with diverse sectors, public and private, NGOs, CBOs and farmer organizations. Strategy 2 aims at identifying those players who are well positioned to take up scaling options and further develop strategies, methods and tools and align them in their daily work.Proposed practices to scale: Identification and testing of promising varieties for climate resilience in the national and international genepools  Joint scientists/practitioners-farmers characterization, documentation and conservation of crop diversity based on key functional traits  Establishment and support of multifunctional community seedbanks and connecting them to national genebanks for community-wide systems for PGR conservation and use (images 6 and 7)  Establishment and support of farmers seed enterprises  Community protocols regarding access and benefit-sharing of genetic resources  Mutually supportive implementation of international agreements concerning access and benefit sharing  Development of registration system for farmers varieties and alternative seed quality assurance system Farmer-to-farmer, between community seedbanks, between farmer seed enterprises  Agreements signed with competent authorities of the countries concerned to support the exchange of people, genetic resources, data, between the countries, and sharing benefits derived from potential long-term use of project outputs (adapted varieties or genetic traits).Interlinked local-to-subregional capacities developed/enhanced to effectively mobilize agrobiodiversity for adaptation to climate change.Gender-responsive training approach, methods and tools will be used.Current co-funding support: CCAFS Possible funding sources: There is a need to link this action plan with community seedbanks  Let us connect with ISSD in Ethiopia  Oxfam Uganda and Pelum Uganda are interested in crowdsourcing  What about forages? Can they be included?  Uganda's CSOs seem to have been excluded. Why?  The research question needs improvement  Other CGIAR Centres and the AVRDC Tanzania -who were not invited to the workshop -are interested in participating in this project.Background: There are already many policy discussions, forums and experiences to build on. What can this initiative do to be different and more effective than what has been done previously?It can bring a fresh perspective by focusing on developing policies, within and between countries, which support the implementation of the project activities of the two other Action Plans. In this context, it is important to underscore that the project activities involving exchanges of genetic resources and knowledge, sharing of data, multiplying, distributing and possibly even commercializing research outputs create a need/demand for policy responses at organizational, local, national and subregional levels. Consider that policies and laws do not necessarily solve problems. Sometimes, they create them  Need to consider the difference between policies on paper and what is actually happening on the ground  Processes must engage policymakers from the start, including the thematic work on crowdsourcing and community genebanks. This creates ownership and a shared sense of importance  Countries with interesting, successful experiences should have a role in mentoring others.Non-exhaustive list of policy issues to be considered: Economic development plans and the signals they send for programming and policy development  Budget constraints  Alternative models for seed regulation to provide meaningful support for farmers as innovators along the seed value chain  Access and exchange of genetic resources and knowledge within countries and between countries  Benefit-sharing in all possible forms at all stages of the project.  Harmonized tools and template on seedbank management and shared information  Supportive policies, agreements between competent national authorities drafted/created to facilitate exchanges of genetic resources, data and people. Germplasm exchange systems between community seedbanks and national genebanks for restoration of lost crops  Seed fairs  Learning visits to national genebanks and community seedbanks  A National platform for community seedbanks  Sharing information at subregional level. Improved/functional linkages between national genebanks and CSBs  Increased crop diversity at various levels 11.Next stepsSmall grants are available to implement the three thematic Action Plans discussed during the workshop. The working groups have been charged with finalizing their respective Action Plan.Proposed group coordinators for the individual Action Plans are listed below. Ronnie Vernooy will be the overall coordinator. Action Plan 1 -Mobilizing Diversity group: Andrew Mushita, Gloria Otieno and Yosef Gebrehawaryat;  Action Plan 2 -Supportive Policies and Laws group: Michael Halewood and Milton Ayieko;  Action Plan 3 -Community Seedbanks/Seed Enterprises group: Joyce Adokorach and Abishkar Subedi.Funding has been provided by the Dutch government (for two years) and by CCAFS for 2019 (we hope this will be extended to cover 2020).Small grant proposals should be finalized and approved by 31 May 2019.Bioversity International will continue to look for additional funds to extend the proposed activities to the Southern Africa region.Bioversity International will set up a listserver of participants to share information and progress on the project. All participants are encouraged to share the workshop outcomes with their colleagues in their respective countries.It was suggested that a monitoring and evaluation (M&E) framework be developed. The M&E should be based on a clear impact pathway. A sound M&E framework will enable effective implementation and production of high-quality outputs. Each of the thematic groups will provide inputs to the M&E framework. Dr Dickson Baguma from NARO-BUZARDI and Ronnie Vernooy (Bioversity) will jointly develop the M&E framework, based on the existing impact pathway prepared as part of the project proposal. There was consensus from the participants that the workshop objectives (to present and discuss the draft proposal, share experiences, and go and learn from the field) had been met. Starting the workshop with a field visit was very much appreciated. It made the key idea behind the scaling initiative immediately visible to everyone. One of the participants compared this with the conventional way of organizing workshops where the field visit is usually done on the last day. It was remarked that, in some ways, dividing the work into three themes is entirely artificial, particularly separating the policy theme from the other two, where it should really be integrated to maximize possibility of impact. It will therefore be critically important to organize and conduct activities together whenever possible. There was a consensus that, based on the experiences shared, there are opportunities for effective scaling and working towards building resilient seed systems in the subregion. The co-creation process is very important to ensure that there is ownership and agreement about where we are heading. It was agreed that, because of the varying stages of seed work in the different countries, there is a need to strengthen the collaborative relationships and continue exchanging more ideas while avoiding repetitions. This was a workshop for researchers, not for farmers. However, there is a clear purpose of the work envisioned that is shared by all participants: to support farmers and to give them a voice in resilient seed system matters. This is something to be remembered as we move forward. Bioversity International, Ethiopia, Seeds for Needs, Yosef Gebrehawaryat Kidane 13:00-14:30 Lunch 14:30-16:00 Implementation of international agreements and revision of national policies and laws ","tokenCount":"6340"} \ No newline at end of file diff --git a/data/part_3/9345976674.json b/data/part_3/9345976674.json new file mode 100644 index 0000000000000000000000000000000000000000..fc716f13f840168dc498c612958e688145d04cc7 --- /dev/null +++ b/data/part_3/9345976674.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"77d665cfc76fed47a9358e367ee0eef0","source":"gardian_index","url":"https://publications.iwmi.org/pdf/H03717.pdf","id":"1860044938"},"keywords":[],"sieverID":"27ff77bb-ca7d-47d2-90c3-c62cd023e622","pagecount":"3","content":"diversion weirs, earthen channels, and labor intensive cultiva tion practices are the typical image of a farmer-managed irrigation system. In the Gascogne region of southern France, a different type of FMIS can be seen.Computer controlled gates adjust automatically to compensate for rainfall forecasts or unusual water consumption.Farmers make a tele phone call if anything goes wrong that the compu ters are not prog rammed to handle; otherwise, their irrigation management consists of keeping the control room door locked, paying the electricity bill, and checking the condition of pumps, gates, ~md other moving parts.These are farmer-managed systems with a difference.Farmers certainly do the management, but most of the irrigation details are delegated, either to computer-aided equipment or to either the parastatal agency which services the equipment and provides the capital for purchasing it.The Companie d'Amenagement des Coteaux de Gascogne (CACG) is a parastatal organization established in 1956 to help the region's development including industry as well as agriculture.There is almost no underground water in t.his region; nearly everything comes from surface supplies, either pumped from rivers or stored in dams and then pumped. Water is piped under pressure and then dispersed by sprin kler.Initiating a project is usually done by farmers who want more water. They ask the CACG for help, a plan is drawn up, and then a long process of negotiation begins regarding terms and payments, Irrigation in this area, excep't for a very few exceptions, dates only to the post WW-II period.According to Henri Tardieu, Director of Equipment at CACG, there have been three phases in the approach to irrigation development at CACG.In the beginning (1960s), systems were designed on the basis of theoretical water requirements, and were generally large. In the 1970s the concept of farmer demand was in vogue, and sociologists were influential in gIVIng farmers all the water' they wanted, and building smaller, more flexible systems under farmer control. This resulted in some systems having surplus (wasted) water. Now there is a feeling that both farmer management and company management have merits in different situations. Once the system is constructed and operational, it is handed over to farmer manage ment through the ASA.The system will continue to be serviced by CACG engineer'S, but not routinely; it is up to the farmers (usually the president) to call for help when he needs it. The fees that ASAs pay include a component for this type of service.One ASA which we visited was presided over by the son of the farmer who founded the irrigation system in 1947.He had started irrigating from pump and an continued for a in 1966 they association of a stream, using a small open channel. This number of years, until started an informal 7 farmers using one pump and sprinkler pipes, which they shared.They took turns successfully, but had to move a lot of equipment (sprinklers), and eventually gave up. In 1979 the current ASA president called a meeting to discuss the idea of constructing a reservoir using CACG loan funds, and then repaying the non-subsidy portion of the loan over a 20 year period. Of 60 farm families in the community, only 26 were willing to JOIn; some of the young people couldn't afford the annual fees to the association; others wanted to leave farming altogether.We visited the control room for the reservoir sluice.A ","tokenCount":"552"} \ No newline at end of file diff --git a/data/part_3/9354011173.json b/data/part_3/9354011173.json new file mode 100644 index 0000000000000000000000000000000000000000..c7da87d93b49c016ca705eb22aa737eeb817c5ed --- /dev/null +++ b/data/part_3/9354011173.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"92d291ca9de11eeeae7cf5de76e086e1","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/1a94a03e-5ab7-4459-b13c-d4014c9940ae/retrieve","id":"-530524337"},"keywords":[],"sieverID":"5cf9e358-688c-452c-95c4-adad5e9d2ece","pagecount":"14","content":"In a previous study, raw cashew kernels were assayed for the fungal contamination focusing on strains belonging to the genus Aspergillus and on aflatoxins producers. These samples showed high contamination with Aspergillus section Nigri species and absence of aflatoxins. To investigate the diversity of secondary metabolites, including mycotoxins, the species of A. section Nigri may produce and thus threaten to contaminate the raw cashew kernels, 150 strains were isolated from cashew samples and assayed for their production of secondary metabolites using liquid chromatography high resolution mass spectrometry (LC-HRMS). Seven species of black Aspergilli were isolated based on morphological and chemical identification: A. tubingensis (44%), A. niger (32%), A. brasiliensis (10%), A. carbonarius (8.7%), A. luchuensis (2.7%), A. aculeatus (2%) and A. aculeatinus (0.7%). From these, 45 metabolites and their isomers were identified. Aurasperone and pyranonigrin A, produced by all species excluding A. aculeatus and A. aculeatinus, were most prevalent and were encountered in 146 (97.3%) and 145 (95.7%) isolates, respectively. Three mycotoxins groups were detected: fumonisins (B 2 and B 4 ) (2.7%) ochratoxin A (13.3%), and secalonic acids (2%), indicating that these mycotoxins could occur in raw cashew nuts. Thirty strains of black Aspergilli were randomly sampled for verification of species identity based on sequences of β-tubulin and calmodulin genes. Among them, 27 isolates were positive to the primers used and 11 were identified as A. niger, 7 as A. tubingensis, 6 as A. carbonarius, 2 as A. luchuensis and 1 as A. welwitschiae confirming the species names as based on morphology and chemical features. These strains clustered in 5 clades in A. section Nigri. Chemical profile clustering also showed also 5 groups confirming the species specific metabolites production.Aspergillus section Nigri also known as black Aspergilli are among the most common fungi responsible for food spoilage and bio-deterioration of other materials [1], also causing substantial impact on food safety due to their mycotoxins production. They are known to produce the mycotoxins ochratoxin A [2], fumonisins B 2 , B 4 and B 6 [3,4] as well as numerous other compounds with poorly investigated activities [4,5]. On the other hand, black Aspergilli are also reported to be of biotechnological importance due to their use in the fermentation industry, for example in their ability to produce hydrolytic enzymes and organic acids [6]. Aspergillus luchuensis is reported to be extensively used in Asia for koji production [7]. Moreover, many A. niger processes have been classified as GRAS (Generally Recognized As Safe) by the Food and Drug Administration of the US government [1] despite the ability of A. niger to produce ochratoxin A and fumonisins. However these mycotoxins seem not to be produced under submerged conditions [8].Black Aspergilli are one of the most complicated species complexes to classify and identify, and the taxonomy of strains in the A. section Nigri has been studied and debated for decades. In 1934, Mosseray described 35 species of black Aspergilli [9]. Later, that number was reduced to 12 species by Raper and Fennell [10]. In 1984, based on morphological features, Al-Musallam [11] revised the taxonomy of niger group to 7 species: A. japonicus, A. carbonarius, A. ellipticus, A. helicothrix, A. heteromorphus, A. foetidus and A. niger. While, in 2009, Nielsen et al. [4] reported 18 species in the black Aspergilli group with A. niger, A. tubingensis, A. brasiliensis, A. acidus, A. carbonarius and A. ibericus as the most common ones. In 2012, Jurjević et al. [12] added A. floridensis and A. trinidadensis as new species to the A. section Nigri. Recently, Varga et al. [13] revisiting the species in A. section Nigri, added 4 other new species and concluded that the black Aspergilli group includes 26 taxa. Therefore, a polyphasic taxonomic approach [14], has been used to accurately identify black Aspergilli at species level. These include morphological, physiological and biochemical characteristics of the isolates, e.g. using high performance liquid chromatography mass spectrometry (HPLC-MS) as well as DNA sequence analysis. The latter is presently based on the use of β-tubulin [15] and calmodulin [16] genes [7,13], as the ITS regions does not provide sufficient resolution [17].Nuts are nutritious human foodstuffs [18] because of their high content of protein, carbohydrates, vitamins, essential minerals and especially unsaturated fatty acids. Nuts are consumed in both developing and developed countries by all age groups and across all social strata [19]. Among tree nuts, cashew nuts are known for their high minerals content (e.g. copper, iron and phosphate) and vitamins (e.g. thiamine, vitamin E and pyridoxine) [18]. In tropical regions of Africa, 48% of the world's cashew nuts are produced, making them crops of high economic importance [20], and in 2011, cashew nut export contributed about 150 million US dollars to the gross domestic product of Benin [21] accounting for 8% of the national export revenues.Since stored nuts generally have a low water activity, their spoilage association consists mainly of fungi and members of A. section Nigri have been reported to contaminate cashew nuts [22].Although strains of A. section Nigri have been found on cashew nuts, very little is known about the risk of mycotoxins contamination from black Aspergilli on cashew kernels. Therefore, the objective of this study was to screen the mycotoxins and other metabolites that can be produced by A. section Nigri strains isolated from raw cashew kernels and, based on their metabolite production, to determine which species are prevalent on kernels from Benin. To accomplish these goals, isolated black Aspergilli were assayed for their mycotoxins and other secondary metabolites diversity by LC-HRMS on a LC-time-of-flight mass spectrometry instrument (LC-TOFMS) and representative strains were identified using molecular methods.All solvents used for chemical analysis were LC-MS grade. Methanol, acetonitrile, 2-propanol, formic acid were LC-MS grade, while ethyl-acetate and dichloromethane were HPLC grade. All were purchased from Sigma Aldrich (Fluka Analytical, Denmark). Purified water was obtained by using a Milli-Q water purification system (Millipore Synergy1 UV, Molsheim, France).One hundred and fifty strains belonging to Aspergillus section Nigri isolated from cashew nut samples from northern Benin were used in this study. These strains were obtained from Lamboni et al. [23]. Cashew nuts were sampled in the main cashew production area covering two agro-ecological zones lying within latitudes 8°1' and 12°3' N and longitudes 0°8' and 3°8' E, with an unimodal rainfall distribution averaging 900 mm to 1000 mm annually and maximum temperatures varying from 28°C to 40°C. Based on the agreement between the International Institute of Tropical Agriculture located in Benin and the Beninese Government, any other specific permissions were not required for sampling cashew nut within the study area. In total, 70 nuts samples were randomly selected in fourteen different locations.After collection, the cashew shell was cut and the kernel (2 cotyledons) aseptically extracted, plated on dichloran 18% glycerol agar (DG18, Oxoid, Basingstoke, Hampshire, UK) [24] and incubated at 25°C in the dark for 7 days. Four cotyledons were plated per Petri dish, either in five replicates for surface sterilization (SS) (0.4% aqueous solution of sodium hypochlorite) or in two replicates for direct plating (DP), giving a total of 1960 cultured cotyledons. Both culturing methods were used to enable the growth of conidia present in the inner and the outer part of the cotyledons. According to taxonomic schemes and illustrations in Samson et al. [25], colonies belonging to A. section Nigri were first isolated on Czapek yeast autolysate agar (CYA) [24] and later 3 point inoculated on Yeast extract sucrose agar (YES) [24]. The plates were incubated at 25°C in the dark for 5 days. From the centre of fugal colonies, three 5-mm agar plugs were taken with an aseptic steel drill and pooled together into the same vial and stored at 4°C for further extraction.A one step extraction method was used by adding 0.5 ml of a mixture of ethyl acetate-dichloromethane-methanol (3:2:1, v/v/v) with 1% (v/v) formic acid to the vials containing the agar plugs. The plugs were then extracted in an ultrasonic bath for 60 min. The supernatant was transferred to a new vial, evaporated to complete dryness using N 2 flow, and re-dissolved in 500 μl of methanol assisted by ultrasonication for 20 min, and the aliquots filtered into an HPLC vial using a 0.45 μm polytetrafluoroethene (PTFE) filter.Analyses were performed using ultra-high-performance liquid chromatography (UHPLC) with diode array detector and maXis 3G QTOF mass spectrometer (MS) (Bruker Daltonics, Bremen, Germany) equipped with an electrospray source (ESI) and connected to an Ultimate 3000 UHPLC system (Dionex, Sunnyvale, USA) equipped with a Kinetex 2.6-μm C 18 , 100 mm × 2.1 mm column (Phenomenex, Torrance, CA) [26]. A linear water-acetonitrile gradient was used (buffered with 20 mM formic acid) starting from 10% (v/v) acetonitrile and increased to 100% in 10 min, maintaining for 3 min before returning to the starting conditions. MS was performed in ESI + , the scan range m/z 100-1000, with a mass accuracy < 1.5 ppm [26]. UV/ VIS spectra were collected at wavelengths from 200 to 700 nm. Data processing was performed using DataAnalysis 4.0 and Target Analysis 1.2 (Bruker Daltonics) by the aggressive dereplication approach [26], using a database of 495 known and putative compounds from black Aspergilli, tentatively identifying them based on accurate mass (deviation < 1.5 ppm) and isotopic pattern (isotope fit < 50) [26]. For saturated peaks (>10 6 counts/sec) a manual verification of the accurate mass was made in the front and the tail of the peak. A further database of 1500 reference standards, tentatively identified compounds were also used along with a small 50 compounds database of peaks observed in sample blanks. All major peaks (observed in the BPC chromatograms) not tentatively identified by the approach were added to the search list as unknown compounds for mapping.Aspergillus isolates and growth conditions. Thirty strains of Aspergillus section Nigri isolated from raw cashew nuts were randomly selected for diagnostic PCR and sequencing. The strains were 3 point inoculated on separate Petri dishes containing Czapek yeast autolysate (CYA) agar and incubated in micro perforated plastic bags at 25°C for 7 days in the dark, to ensure extensive conidiation of the colonies. From these cultivations on solid media, we prepared stock suspensions for further inoculations and harvested conidia to make suspensions in 5 ml glass tubes containing autoclaved milli-Q water supplemented with 0.05% Tween 80. Conidia were inoculated at 3 points equidistant from the centre, on CYA and incubated in micro perforated plastic bags in the dark at 25°C for 3 days to favour mycelial growth and reduce the total conidiation as this would inhibit tissue-PCR. The Petri dishes were kept at 4°C for sampling.Tissue-PCR for molecular identification of fungal isolates. Tissue PCR alleviates the need for genomic DNA extraction, as fungal mycelial tissue was the direct source for template DNA in PCR reactions amplifying partial genes encoding calmodulin and β-tubulin. PCR tubes containing a total volume of 40 μl had the following components mixed in milli-Q H 2 O; 1X Phire PCR buffer (ThermoFisher Scientific, USA), 200 μM dNTP mix (Invitrogen, Merelbeke, Belgium), 0.25 μM forward and reverse primers and 0.7 U Pfu X7 polymerase [27]. We based molecular identification of the thirty strains on the amplification of two partial genes encoding β-tubulin and calmodulin. The selected β-tubulin primers were T10-F-ACGATA GGTTCACCTCCAGAC [28], and Bt2b-R-ACCCTCAGTGTAGTGACCCTTGGC [15], and for calmodulin Cmd5-F CCGAGTACAAGGARGCCTTC and Cmd6-R CCGATRGAGGTC ATRACGTGG [29]. A sterile pipette tip was used to streak 1 to 3 mm of peripheral mycelium in two replicates. Distribution of the fungal tissue on the pipette tip to PCR tubes resulted in two tubes with different amounts of biomass and thereby template DNA for PCR.The amplification was performed in Agilent SureCycler 8800 Thermal Cycler (Agilent Technologies Inc., Santa Clara CA, USA). The amplification process consisted of an initial denaturation step of 30 min at 98°C to release template DNA from fungal debris, followed by 35 cycles of touch-down PCR with 10 s at 98°C (denaturation), 30 s at 61-52°C (primer annealing) and 1 min at 72°C (extension), and a final extension step of 5 min at 72°C. We verified purity of the amplification products by agarose gel electrophoresis in 1% TAE buffer (tris-acetate-EDTA (Ethylenediaminetetraacetic acid)) stained by SYBR Safe DNA Gel Stain (Thermo-Fisher Scientific, USA) and visualized by UV-light. If more than one product was observed after electrophoresis, PCR products were purified prior to DNA sequencing using the GFX PCR DNA and Gel Band Purification Kit (GE Healthcare UK limited, Buckinghamshire, UK). PCR products were sequenced by GATC Biotech (Constance, Germany). Phylogenetic analysis of sequence data. The identity of the β-tubulin and calmodulin gene sequences was determined using Basic Local Alignment Search Tool for nucleotide (BLASTN) algorithm in the National Centre for Biotechnology Information (NCBI) GenBank database (http://blast.ncbi.nlm.nih.gov/Blast.cgi). They were then transformed into multi FASTA format using DNA Baser software. Phylogenetic analyses and molecular evolutionary were conducted using MEGA (Molecular Evolutionary Genetics Analysis) version 6.0 [30]. Sequences were pairwise aligned by Clustal W method [31] and trimmed both sides up to the same nucleotide position. Phylogenetic trees were prepared using the maximum likelihood method. Evolutionary distances were calculated by using the Jukes-Cantor [32] model embedded in the MEGA package. Bootstrap values were calculated from 1000 replications after complete deletion of all positions containing gaps or missing data. To compare with cluster output of DNA Baser, secondary metabolites of strains were grouped using MultiExperiment Viewer (MeV v4.2).The mycotoxins and other metabolites produced by strains of Aspergillus section Nigri on YES agar are presented in Table 1. From the 150 isolates used for metabolites profiling, 66 strains (44%) belonged to A. tubingensis, 48 strains (32%) to A. niger (with a chemical profile similar to A. welwitschiae), 15 strains (10%) to A. brasiliensis, 13 strains (8.7%) to A. carbonarius, 4 strains (2.7%) to A. luchuensis (synonyms to A. kawachi or A. acidus), 3 strains (2%) to A. aculeatus and 1 strain (0.7%) to A. aculeatinus.In total, 45 metabolites including their isomers were identified during UHPLC-QTOF-MS analysis within retention times (RT) ranging from 1.56 min (nigragillin) to 10.1 min (aflavinine) (S1 Table ). Aurasperone C (positive in 97.3%), aurasperone F (96.7%), pyranonigrin A (96.7%), and fonsecin (96%) were the metabolites identified in most of the strains of A. section Nigri. The metabolites that were rarely produced by strains of A. section Nigri were secalonic acids (2%), tubingensins (2%), antafumicins (2.7%), fumonisins (2.7%), kotanin (4%) and ochratoxin A (5.3%). The detection of orlandin, kotanin and fumonisin B 2 , B 4, B 6 was specific for A. niger whereas the presence of antafumicin A and B was specific for A. luchuensis. Secalonic acids were specific for A. aculeatus.Secalonic acids, atromentin, asperazine and aurasperone C were produced consistently by all the strains in a species. The mycotoxin fumonisin B 2 (2.7%) was detected in strains belonging to A. niger whereas ochratoxin A (13%) and ochratoxin B (5.3%) were produced by strains of both A. niger and A. carbonarius.For example, in Table 1 with UHPLC-QTOF MS, nigragillin was produced by 129 (86%) of the 150 strains studied. Nigragilin was produced by 95% of the strains of A. tubingensis (64/ 66), 94% of A. niger (46/48) and 100% of both the strains of A. brasiliensis (15) We examined the genetic relatedness of 30 randomly taken strains of Aspergillus section Nigri using nucleotide sequences of β-tubulin and calmodulin genes. Table 2 summarizes the species names based on their metabolite production which was confirmed by sequencing data. Eleven One hundred and fifty strains of Aspergillus section Nigri were used for mycotoxin and other secondary metabolite profiling using ultra-high-performance liquid chromatography. All the 45 chemical compounds identified pertained to black Aspergilli as previously described by Nielsen et al. [4]. Some of these natural products are known to be toxic to human and animals. These where classified in Table 1 as group A and included fumonisins and ochratoxin A, which were reported for Aspergillus niger previously [33]. According to Mogensen et al. [34] and Noonim et al. [35], up to 75% of A. niger isolates produce fumonisins and 41% produce ochratoxins. Also, Massi et al. [36] reported 74% of A. niger to be fumonisin B 2 producers while 32% were ochratoxin A producers. In our results, among the 48 strains of A. niger isolated, only 9% (4 strains) produced fumonisins and 15% (7 strains) produced ochratoxins. The moisture, 1 to 8% of sugars and 60 to 64% of lipids). Isolates from Massi et al. [36] were from different food commodities: dried fruits, Brazil nuts, coffee beans, grapes cocoa and onions. In addition, cashew nuts also have a thick shell that constitutes a first barrier to microbial contamination [38]. It is known that cashew shells contain tannins that are able to suppress mycotoxin formation [39] and probably alter the gene expression by the fungi. More so, on Pistachio nuts, Marin et al. [40] noticed only 5% of A. niger to be ochratoxin A positive.The geographic origin of a strain can reportedly influence its mycotoxin production. Isolates of A. flavus from various geographic regions have revealed differences in the proportions of isolates that produce low, medium and high amount of aflatoxins [41]. This could also apply to fumonisin and ochratoxin production by black Aspergilli. Samson et al. [42] reported ochratoxin production from species of A. section Nigri isolated from different food matrices collected from various regions. Moreover, Perrone et al. [43] reported that 33% of A. niger isolated from grapes in Italy produced ochratoxin A. In our study we did not notice simultaneous production of both fumonisins and ochratoxins from the same strains of A. niger, where Frisvad et al. [8] reported that up to 10% of A. niger strains may produce both mycotoxins. Ochratoxin A production rate can be overestimated in some studies as HPLC with fluorescence detection (even using immunoaffinity purification), can provide false positives [44] which unfortunately has been extensively reported for A. tubingensis. [43,45]. Ochratoxin A production from A. tubingensis was not detected during our screening process, confirming the report of Nielsen et al. [4] and Storari et al. [44] concerning this. Also, in accordance with Frisvad et al. [8], strains of A. tubingensis, A. brasiliensis and A. luchuensis did not produce fumonisins or ochratoxins.A. carbonarius isolates always produced ochratoxin A as reported by several authors [4,46,47]. Our result was in accordance with this consistent production since all the 13 isolates of A. carbonarius showed ochratoxin A production.Secalonic acids, reported as toxic metabolites of A. aculeatus [48] were noticed during our analysis, confirming their production by A. aculeatus as mentioned by Parenicová et al. [49]. These toxic compounds were not produced by A. aculeatinus from cashew nuts which is in contrast to the report by Noonim et al. [50].Some secondary metabolites detected during our analysis, such as Aurasperones, Nigragillin, Malformins and Nigerazine and grouped as B in Table 1 are reported to be toxic compounds to plants, bacteria, and mice [5,51]. Asperazine was reported to have significant in vitro cytotoxicity against human leukemia [52] but no in vivo including bioavailability studies confirmed this. Malformins are currently being investigated for anti-cancer drug potential [53]. Altogether there are very few studies on other effects than in-vitro or in older studies intraperitoneal injection of compounds. However these do not include degradation in the body nor bioavailability of the compounds, and with a definition of mycotoxin being toxic through a natural route of exposure, such studies can only be considered indicative, but also highlights the need for testing these compounds in relevant animal models under relevant exposure conditions. Similar problems are reported in the Aspergillus glaucus group (and formerly Eurotium) [54,55] DNA sequencing using β-tubulin and calmodulin genes was performed to validate morphology and extrolite profile based on identification of our isolates and their association to A. section Nigri. The use of a polyphasic approach, to identify and validate to species level isolates of fungi, was described by Frisvad [56], Oliveri et al. [14]. Our DNA sequences confirmed the species name identified by morphological and chemical characteristics and the phylogenetic tree shows that the main clades belong to the black Aspergilli. Perrone et al. [43] in a cluster analysis of 94 isolates of A. section Nigri identified the same clades confirming the fact that A. tubingensis and A. niger are the main clades of A. section Nigri as reported by Nielsen et al. [4]. Moreover, Samson et al. [57] confirmed the presence of these 4 different clades in A. section Nigri and grouped them as biseriate group of Aspergillus section Nigri in contrast to uniseriate group of Aspergillus including A. aculeatus.The cluster analysis of the 27 strains using their metabolite profiles was similar to the clustering based on sequencing data. The secondary metabolites have been previously used most often in species recognition due to their high species specificity [58]. Samson et al. [57] mentioned that isolates of Aspergillus species usually produce a diverse range of secondary metabolites that are characteristic of the different groups of section of Aspergillus. They also reported that the production of a particular secondary metabolite is an efficient identification aid for allocating a species to section while profiles of secondary metabolites can be very effective in identifying an Aspergillus isolates to species. With few exceptions, this was effective during our analysis where the combined production of orlandin, fumonisins and kotanin was specific to A. niger, and the production of antafumicin A and B was specific to A. luchuensis.The diversity in secondary metabolites including mycotoxins from isolates of Aspergillus section Nigri, analysed using UHPLC-QTOF-MS, revealed several metabolites produced by 7 different species that contaminated cashew nuts samples from Benin. In pure cultures on a laboratory medium, ochratoxin A and fumonisins, the 2 main toxic compounds from black Aspergilli, were produced by strains of 2 predominant species in A. section Nigri, namely A. niger / A. welwitchiae and A. carbonarius, although A. carbonarius is unable to produce fumonisins. Ochratoxins and fumonisins were produced by a relatively little proportion of the isolates of A. niger and A. carbonarius, but it is well know that species of A. section Nigri are the most isolated on cashew kernels, given a substantial number of species that may produce mycotoxins in cashew nuts. Even though the presence of fungi has not always meant the presence of mycotoxins, the production of ochratoxin A fumonisins isolates on A. section Nigri on cashew nuts could constitute an additional and hidden problem in term of mycotoxins content, and can negatively affect cashew nut safety and the nutritional quality of the nuts.There are no regulations on ochratoxin A and fumonisins for raw and processed cashew nuts like those of EU and WHO on aflatoxins. Nevertheless, these findings suggest more investigations in order to detect the presence and the levels of ochratoxin A and fumonisins and to evaluate their exact contribution to the total level of mycotoxins in cashew kernels. But immediate actions should emphasize on the prevention by strengthening post-harvest practices that can lower fungal contamination along the cashew nut value chain, mainly during nut storage, where high contamination of species belonging to black Aspergilli are noticed.","tokenCount":"3818"} \ No newline at end of file diff --git a/data/part_3/9354454643.json b/data/part_3/9354454643.json new file mode 100644 index 0000000000000000000000000000000000000000..6a1eeb2659400f3c9a23a2df6e388f2e4fd25b99 --- /dev/null +++ b/data/part_3/9354454643.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"8c4337e7bd7184bff8d55ff46bb9cb02","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/7b2f5e08-3104-42c8-a3a3-4a8ce128c33a/retrieve","id":"-1566062189"},"keywords":[],"sieverID":"0773f704-955e-44c0-b4d1-215460fbc27b","pagecount":"24","content":"Presentation of the national OH platforms and projects evaluated by OHRECA Day 2: Results of One Health project evaluations and presentation of ILRI One Health projects in Burkina Faso Presentation of the One Health platforms and projects evaluation resultsThe workshop brought together participants from the West African subregion (Mali, Senegal, Côte d'Ivoire, Burkina Faso) through their national OH platforms and other OH initiatives implemented in each country. The local experts and resource persons were also invited to enhance discussion and share experiences with the national platforms.In addition, Burkina Faso national institutions, ministries, non-governmental organizations (NGOs) and associations involved in the OH approach were also involved in the workshop. These include the national OH platform, the Ministry of Health, the Ministry of Environment, the coordinator of the OH committee, the Ministry of Livestock and other professional sectors and research institutes. Key regional OH initiatives such as Africa One Health University Network (AFROHUN) and the African Science Partnership for Intervention Research Excellence (Afrique One ASPIRE) were represented by their leaders.An opening ceremony was organized and attended by representatives from the Burkina Faso Ministry of Health, the Ministry of Livestock, the Ministry of Environment and ILRI officials from West Africa and Kenya. The workshop used PowerPoint presentations, question and answer sessions, group work, plenary sessions, and discussions with moderators. A networking session was also organized to facilitate interaction among OH stakeholders in the West African subregion.The first day was dedicated to the presentation and discussion of OH initiatives implemented in West Africa and the OH platforms of the invited countries. In addition, several OH initiatives set up by other West African institutions in countries such as Cote d'Ivoire, regional initiatives such as AFROHUN and Afrique One ASPIRE were presented with enriching discussions and interactions between the actors.The results of the One Health platforms' evaluation in Senegal, Burkina Faso and Mali were presented on the second day. Group work was organized and recommendations were collected from the participants to improve subsequent evaluations. A presentation and discussions of the ILRI project on the epidemiology of Crimean-Congo haemorrhagic fever (CCHF) in Burkina Faso, the ILRI-led 'Urban food markets in Africa project: Incentivizing food safety using a pull-push approach (Pull Push project)' and the Poultry Losses and One Health (POLOH) project: Reducing losses and zoonotic risks along the poultry value chain through a One Health approach. These projects were chosen because on their strong use of OH approaches.ILRI has undertaken several initiatives to improve the health of humans, animals and their shared environment on the African continent. These include establishing the creation of the One Health Research, Education and Outreach Center in Africa (OHRECA) and implementing several research and capacity-building projects using a OH approach in the West African subregion. The recent initiatives include:• An assessment of the National One Health platforms in Burkina Faso, Mali and Senegal.• The implementation of the Pull Push project in Burkina Faso, which aims to improve food safety in informal markets through a pull-push approach.• The implementation of the POLOH project, which aims to reduce economic losses and zoonotic disease transmission in Burkina Faso through OH interventions at the farm level and market, with a focus on poultry diseases.• The research project on the epidemiology of CCHF to better understand transmission dynamics of the disease at the interface with animal, humans and their environment in rural households in the North and Hauts-Bassins region of Burkina Faso.These initiatives will be presented and disseminated to national and subregional stakeholders working in OH to encourage synergy of action. Opportunities will also be sought for better integration of these projects with ongoing initiatives led by other institutions, as well as learning from each other.This workshop aimed to introduce the One Health projects by ILRI in Burkina Faso and facilitate networking between stakeholders in the West African subregion.More specifically, the event aimed to:• Present and validate the results of the assessment of the OH platforms in Burkina Faso, Mali and Senegal to stakeholders,• Present ILRI's new OH projects to stakeholders,• Discuss challenges and opportunities in the effective implementation of the OH approach in Burkina Faso and the West African subregion;• Facilitate networking between OH stakeholders in Burkina Faso and the West African subregion in joint projects.To achieve the set objectives, the workshop was organized over two days from 6-7 September 2022 in Ouagadougou. The methods used were:• PowerPoint presentations followed by question and answer sessions• Group work followed by moderated plenary sessions and discussions• A networking cocktail to enhance interaction among OH stakeholders in the west African subregion.English-French translation was provided throughout all the sessions and discussions. Presented by Yacinthe Guigma This presentation highlighted the One Health initiatives of the WOAH. These initiatives use the OH approach under the global tripartite agreement signed in 2010 between WOAH, World Health Organization and the Food and Agriculture Organization of the United Nations (FAO), which is now quadripartite with the inclusion of the United Nations Environment Programme (UNEP). One of the WOAH OH projects aims to enhance surveillance systems for the early detection and prevention of viral hemorrhagic fevers in Africa.The diversity of OH initiatives and the relationship with fundersThe need for establishing a partnership among the different One Health initiatives, actors and funders was discussed to avoid duplication of activities. The participants agreed to improve their collaboration to enhance synergistic actions between the various OH initiatives.All the projects presented are involved in training and capacity building activities. The participants raised concerns about the accessibility to the training activities and selection criteria for scholarships offered by OHRECA, AFROHUN and Afrique One ASPIRE. Representatives of the three projects clarified that all scholarships are offered through an open call where anyone can apply. The applications are then reviewed by a selection committee that picks the winners in a process that is transparent, equitable and responds to priorities and demands.The projects representatives answered questions on their strategies for maintaining OH funding and finding new financing. Prof. Bonfoh Bassirou from Africa One ASPIRE said effective resource mobilizations is supported by highquality scientific evidence and research outputs. He gave the example of the Africa One ASPIRE, which was initially funded with 3 billion CFA francs, which the project used to mobilize four times the initial amount. T It was highlighted that there is need to evaluate the funding for LMIC countries especially in Africa where health problems are complex and resources are limited. Participants called for the promotion of integrated actions between the different components of the OH.The role of socio-economics in the OH approach Despite the crucial importance role of social and economic factors in implementing the OH approach, participants acknowledged the weak consideration of socio-economic aspects in most initiatives especially in the POLOH project. They said these aspects needed to be reinforced in ongoing and upcoming OH projects by among other measures, giving socio-anthropologists a central role in the OH research process.The results of research on One Health must be valorized by considering the scientific evidence in health policies.How are countries selected to be included in the One CGIAR OH initiative? (to Hung Nguyen)The selection of countries is based on a pre-identified criteria of priorities. For examples Cote d'Ivoire was chosen from among other west African countries because of the potential of its environment (forest) to host emerging diseases.The onset of a new disease can be linked to another. So, it is also to work on clinical cases to better investigate the links with other diseases. For example, the analysis presented aims to study the spatial distribution of five zoonotic diseases (Crimean-Congo haemorrhagic fever, Rift Valley fever, anthrax, Ebola and trypanosomiasis) in Africa. The data shows that outbreak of haemorrhagic fevers such as CCHF and Rift Valley fever are (RVF) which were mostly observed in the same areas. This could be explained by the shared risk factors of these zoonotic diseases. Still, we are also trying to Investigate other aspects of other diseases that may be involved.It is expected that at the end of our study, we will develop an atlas of the risks of zoonotic disease emergence. Similar studies have been done in the subregion and in Africa. The atlas, which shows the spatial distribution of emerging diseases of zoonotic importance in Africa and currently in production is not a duplication of what has been produced by other institutes. Rather, its focus is on the factors contributing to disease co-occurrence to show the factors that contribute to disease emergence in Africa.The Sahel region in West Africa is facing a huge security challenge that can further weaken national health systems. Insecurity also hampers the implementation of OH activities. It is important to see how One Health approach can enhance disease surveillance and control in areas having insecurity.Communities are involved in assessing and controlling complex health problems involving several actors. Therefore, community involvement must be considered at the start of a project. Ideally, always go back to the community, talk to them and come back with their expectations regarding all research questions. On this basis, the approach of ASPIRE consists of adopting systemic thinking by involving several profiles of researchers including, sociologists and economists, in the context of research with communities. A striking example of success in adopting this systemic approach was the control of Buruli Ulcer in Côte d'Ivoire through the synergy of mobilized actors from different backgrounds. Since then, for any study conducted at the Centre Suisse de Recherches Scientifique (CSRS), four to six students with different profiles are mobilized around the same disease by involving communities to find a lasting sustainable solution.To be a member, one only needs to be associated with of the three health sectors (animal, health and the environment). However, there are plans to include professional schools and to reach out beyond the universities to training institutions (e.g. those in water and forestry research) to join the network.The OH student club membership is drawn from several disciplines. Their role is to embed OH approach to critically develop their thinking and apply to solve complex issues in public health. Students work on identified themes; gain new skills and join various associations.Following the outbreak of Lassa fever, Cote d'Ivoire has developed its roadmap. The wildlife surveillance aspects are part of it. In addition, the Performance of Veterinary Services (PVS) wildlife tool has been designed to assess countries' capacity to monitor and evaluate wildlife surveillance. However, the country needs to adopt more flexible laws (legislation) to achieve wildlife monitoring in countries such as Burkina Faso. In addition, there should be complementarity between existing laws, and they should be better examined and adapted to each country's context.The summary of the presentations of the platforms and projects evaluated by OHRECA is given in Table 1. Considering that most OH platforms are institutionally linked to high-level institutions, the administrative burden of operationalizing activities was raised as a concern. Participants acknowledged that platforms face organizational complexity due to this problem. Still, it is necessary that the anchoring and coordination of the platforms is assigned to administrative entities beyond the ministers directly involved to facilitate decision-making.Without a governance document and resources, the operation will not be effective. It is the lack of legal basis that prevents the progress of platforms.Discussions also focused on sharing experiences on the sources of funding for national platforms and the sustainability of these resources. It was noted that the platforms are globally underfunded and that there is a need to continue to advocate for the autonomous funding of the platforms. Also, the pooling of resources of the ministries involved in the framework of One Health activities was recommended. This pooling does not mean a systematic pooling in a kitty but a clear definition of activities/actions in each ministry. The pool should be distributed in proportion to the costs/benefits. Nevertheless, it emerged that the various platforms had a short-or medium-term plan for financing the activities of their respective platforms.Day 2: Results of One Health project evaluations and presentation of ILRI One Health projects in Burkina FasoPresentation of the evaluation tool: Network for Evaluation of One Health (NEOH) by Bernard BettThe Network for Evaluation of One Health (NEOH) is a tool that highlights evidence and gaps in the OH platforms and programs. The tool consists of six assessment areas or competencies: Three operational areas (one thinking, one planning, one working) and three infrastructures (one sharing, one learning, one systemic organization). The method used for the evaluation was the administration of a questionnaire followed by an online validation (of scores) by the stakeholders and feedback and prioritization of interventions. Specific elements were identified in each area where the scores were very low. Finally, scores were used to develop a OH index. The outcomes obtained after evaluating the platforms were: draft reports (expected feedback from teams); publication of country reports with OH team members as key authors. The final outlook will be to identify priority areas for intervention/ gaps to fill (e.g. training).The evaluators presented the evaluation results of the different platforms using the NEOH tool.The following were presented in turn:• The national platform of Burkina Faso• The project Country Health Information Systems and Data Use (CHISU) )( (Burkina Faso• The national platform of Mali• The project Tiellal from Farmers and Veterinarians Without Borders• Agronomes & Vétérinaires Sans Frontières (AVSF) Senegal• (Details of the results in the evaluation report associated)A group work session followed the presentations. The participants were organized by country to discuss the results of their evaluation. The guidelines for discussions were:• Are the gaps identified in the evaluation reflecting the actual situation in the platforms?• What are the priority gaps?• What are your recommendations for interventions?• What should be the research priorities in One Health?The results of the group discussions are summarized in Table 2. The discussions focused on three main topics:1•. The non-inclusion of some stakeholders from the One Health platform, particularly in Mali: the Mali team felt that the administration of the evaluation questionnaire did not consider all the platform's stakeholders, leading to a bias in the results obtained. The group suggested that the questionnaire be administered again, considering all the stakeholders of the One Health platform in Mali.2•. The suitability of the NEOH tool for the contexts of the countries evaluated was discussed. It was suggested to adapt it according to whether a project or a national platform is being evaluated. Also, this tool should be dynamic according to the actors involved.3•. The lack of prior communication about the evaluation through the NEOH tool and the interpretation of the results did not allow for better adhesion and validation of the review results. Nevertheless, most participants welcomed the organization of this workshop which allowed them to understand the evaluation better and to interact and share experiences between countries.Epidemiology of CCHF in Burkina Faso using a One Health ApproachThe project's objective is to produce scientific evidence to understand the role of interactions between domestic animals, humans, the environment, and vectors in maintaining the transmission of Crimean-Congo haemorrhagic fever (CCHF) in Burkina Faso using a One Health approach. Its other objectives are to (i) determine the seroprevalence of CCHF in Burkina Faso and the risk factors in humans and common domestic animals (cattle and small ruminants), (ii) determine species and subspecies of ticks involved in the transmission of the disease, and (iii) develop a mathematical model that could be used to predict the occurrence of CCHF under varied environmental and geographical conditions. The study's outcome will be to provide scientific evidence on CCHF presence among humans and animals to strengthen disease surveillance and control strategies.Poultry Losses and One Health (POLOH): Reducing losses and zoonotic risks along the poultry value chain through a One Health approachThe overarching goal of this project is to enhance household food security and safety, and improve the livelihoods of smallholder poultry producers by reducing economic losses and zoonotic risks along the value chain using a One Health approach. The project is implemented in the central-west region of Burkina Faso in the commune of Boussouma using a gendered mixed method to gain insights into smallholder households' food security and safety. The study aims to: i•. Take stock of the knowledge, attitudes and practices (KAP) of small-scale chicken producers and other value chain actors.ii•. Determine the distribution and characterization of the main zoonotic pathogens associated with chicken (campylobacter and Salmonella).iii•. Develop and test innovative integrated education and training (IET) modules using a One Health approach (hygiene, biosecurity, flock management, animal welfare) to support the production of high-quality (healthy and nutritious) poultry products. iv•. Identify and test gender-sensitive business models that improve access to veterinary inputs and advisory services through public-private partnership. v•. Build the capacity of the next generation of national researchers and academics in poultry health and food safety using a One Health approach and to improve networking and collaboration between stakeholders.The Urban food markets in Africa -Incentivizing food safety using the pull push method (Pull Push project)This project is improving food safety in urban informal markets in Burkina Faso and Ethiopia. The hypothesis is that both 'pull' and 'push' approaches must be co-implemented in African urban food markets to lead to sustainably improved food safety. The different work packages of the project are: i•. Estimating the burden and cost of key foodborne illnesses in Burkina Faso and Ethiopia.ii•. Understanding the poultry and vegetable value chains in urban markets in Burkina Faso and Ethiopia.iii•. Quantitative microbial risk assessment and cost-effectiveness analysis of candidate market-based interventions. iv•. Build capacity and motivation of regulators to manage food safety (intervention 1, push approach). v•. (Empower market-level value chain actors to manage food safety (intervention 2, push approach). vi•. Design and implementation of a consumer campaign (intervention 3, pull approach). vii•. Impact assessment of the pull-push intervention.The presentation also insisted on the synergistic aspects between the Pull Push and POLOH projects to achieve common objectives.Inclusion of social aspects the CCHF project Social aspects were initially included in the first draft of the project. However, given the amount of work for the research fellow, these aspects were removed. However, the KAP surveys could highlight these social sciences and humanities aspects. Comments were also made on the need for synergy of action with other projects already underway, notably the CCHF surveillance project implemented by the WOAH in the West and Central Africa.Raising awareness is a key aspect of the project, but it should be combined with other sources of motivation for livestock keepers such as training and exchange visits. The discussion also focused on strategies to enhance sensitization during the study implementation. It was suggested to be careful not to panic farmers by too much sensitization but rather to give them well-founded reasons to pay attention to zoonotic diseases. In other words, awareness-raising sessions should have more positive than negative messages.What are the vulnerable groups and microbiological risks? (Pull-Push)Children under five years of age are more likely to be contaminated by poultry droppings released on the ground by households individuals infected with pathogenic bacteria, including salmonella and campylobacter. This faecal-oral contamination limits the absorption of nutrients in the gut and leads to undernourishment.The big question is where to invest in reducing the health risk in the consumption of animal products: control or community-based behaviour change. Both approaches must be conducted to change behaviour to reduce the health risks associated with the consumption of animal products. The participants shared their experiences on the key issues to be addressed: the burden of ticks on livestock production and the misuse of chemicals in the environment on livestock.6 General recommendations ","tokenCount":"3232"} \ No newline at end of file diff --git a/data/part_3/9359331104.json b/data/part_3/9359331104.json new file mode 100644 index 0000000000000000000000000000000000000000..744026c0d3719c78a60787fd9f54d7928f4a0af8 --- /dev/null +++ b/data/part_3/9359331104.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"cccfe6806a7c87ee1963223d0cb54bb3","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/309f4b6f-e59d-41c8-8404-ac24229f86f3/content","id":"-1268241124"},"keywords":[],"sieverID":"ac8c8551-35c8-4e0d-839f-842f3fa61bb9","pagecount":"17","content":"CIMMYT communication wil be oriented to reinforce a single theme: People Overcoming Adversity. This is our theme. It is our archetype. We will reinforce this idea through text, video, and photos. We will bring it to life through the stories we tell.The core CIMMYT story is not about farmers or farming. Not even of wheat or maize or Borlaug or hunger. It is the story of ordinary people overcoming extraordinary odds through ingenuity, hard work, and determination. It is what Borlaug's story means. It is the story of the poor farmer in his field, of the dedicated scientist in the lab, and it remains the story of a group of people in Mexico --among other unlikely places --trying to stave off a massive humanitarian crisis.This where we want to engage people, communicating powerfully about the extraordinary, indomitable human spirit at the core of CIM-MYT's work.A word on science: CIMMYT's credibility relies on its commitment to science. Our communication should never undermine our scientific ethic. Doing so would destroy CIMMYT credibility and, thereby, damage our most important communication asset. However, we will not communicate exclusively as scientists. We will engage the imagination.Case in point: When we ask people to support CIMMYT projects we are asking them to envision something that hasn't happened yet. This is, by definition, an act of imagination. We are prompting our audience to engage in a creative act. We need to communicate, intentionally, with that goal in mind.We want to move people, not simply inform them. And certainly not to bury them in information and statitistics.1. branding.CIMMYT must communicate across diverse cultures and languages. Given the inherent complexity of that task, we will increase emphais on three aspects of communications:(1) Headlines, leads and captions, (2) Pictures, and (3) Stories.Most people read by scanning the headline and first paragraph, looking at pictures, and reading captions. We need to pay extra attention to these elements. Though body copy will be edited as tightly as possible, the emphasis will be on making the aforementioned components exceptional. Headlines will be descriptive and succinct. We will use simple words, not professional language. Key messages will be designed to mimic headlines. We will make our captions more emotive and direct. Our leads will be strong and incor-porate journalistic standards such as the inverted pyramid for news and nut graphs for features.We will increase use of photographs and video. These elements communicate emotion powerfully. We will strive to present images that move people, for metaphor. Too many of CIMMYT's photos look static or staged. A man standing in front of a wheat field tells us very little. We want to see his eyes, his hands, the lines in his face. We want to tell his story through the images we select.Likewise, CIMMYT will increase its use of data graphics (maps, graphs, etc.) to explain complex issues. Multi-variate informaiton is difficult to communicate through text. A well-constructed picture is often the best way to communicate complexity.This is perhaps the most importatn point of emphasis: we will tell more stories. And storytelling will inform the way we use both words and images.There is an idea from psychology called the narrative paradigm. It boils down to this: People understand their own life through stories. Stories are the building blocks of personal identity.In order to move people, we must become better story tellers. And there is no shortage of compelling stories here at CIMMYT. And by choosing stories that reflect our institutional values we attract likeminded people. We want to build a tribe of people who share our values and support our work. Telling our stories powerfully allows us to create a consistent identity, both internally and externally, across communication channels and countries. Narrative transcends all cultures and language. Stories incite action and are better remembered than statistics.Most of CIMMYT marketing is descriptive. We want to extend description into metaphor. We will describe into a way that makes people feel.At worst, CIMMYT communication is destructively literal. Language such as \"livestock and agricultural systems of production\" prompts suspicion in the reader. Why? Not simply because the languagage is obtuse and abstract (it is) but, more importantly, because it mimics the euphemisms employed by government and industry to mask uncomfortable truths. CIMMYT's appropriation of this type of professional language makes people think we are hiding something when we are not. And it's a destructive liability on GMO issues where we will need to create a new vocabulary to describe our work.We want to engage people in a vocabulary that is far less fraught. CIMMYT cannot affort to sound like Monsanto or the World Bank. There must be differentiation in our communication. We must consider the audience in our communication and meet them where they live. These same concepts apply equally to our visual vocabulary.Did you look at this picture and read this caption before anything else? Maybe the headline? Most people do.CIMMYT marketing efforts will focus on three audiences this year: 1. Employees, 2. Alumni, and 3. Donors and media in the United States.These are the priority audiences because they are the most critical for donors and revenue. We will communicate globally, but priority will be given to these audiences regarding assets, budgets, and manpower.Additional audiences to consider as the year matures include: Mexico, India, Scandanavia, and other European countries.We know our primary institutional funders (Gates Foundatio, USAID, Cornell, etc.) but we have few metrics or psychographics currently available for CIMMYT segmentation.The best data we have is from CIMMYT.org and though it is a useful starting point, it is likely not statistically relevant due to our low traffic statistics. Based on Internet averages, the site is visited more frequently by users 25-34, who have no children, are graduate school educated, and who browse from work. CIMMYT is also strong with ages 35-44 and weak with ages 18-24. Our audience is divided equally between women and men. Visitors view 1.5 unique pages per day, on average, spend 46 seconds on each page view, and a total of two minutes on the site per visit.Given this profile and the dominant search terms that bring visitors to CIMMYT (\"CIMMYT,\" \"kalimat persuasif,\" and \"maize\") we can assume those visiting the site already know CIMMYT. We are not bringing new people to the site and we have work to do to make it \"stickier.\"We will accrue more about our key audiences in the coming year. As we bring more people to our site, we will learn who they are and what resonates.To establish a baseline, we will compare CIMMYT with 5 other organizations: the International Rice Research Institute (IRRI); International Food Policy Research Institute (IFPRI); World Food Programme (WFP); Food & Agriculture Organization (FAO); and the World Bank.Though not direct competitors we will measure our media presence and web traffic against these peer organizations. Below are current Web and media metrics comparing CIMMYT with these organizations: CIMMYT's marketing channels include: Earned media: public and media relations, bylined articles, OpEds, PSAs, and public speaking; Paid media: advertising, event marketing, satellite media tours, matte releases, and press releases; Social media: YouTube, Twitter, CIM-MYT's blog, Facebook, and BlipTV; Publications & collateral; Web marketing: search engine optimization, Google ad words, e-appeals, CIMMYT.org; Government affairs; and Customized donor communications. We will continue to use all of these channels to meet the goals we set for ourselves, however, for the next year we will focus most heavily on earned and social media because they offer the best low-cost, highimpact activities.CIMMYT has tremendously talented people and a full complement of resources to be a more effective marketing organization. As the saying goes, the urgent is the enemy of the important. Once we establish a clear plan and commit to a set of communication objectives we must implemnt them with discipline. We must say \"no\" to things that do not fit and continually bring institutional focus back to the priority goals. Successful institutional communication must be supported and emphasized by the executive management team.The primary barrier to success is the manner in which CIMMYT plans and budgets its communica-tion activities. Currently, communication budgets are distributed. This puts communication strategy and decision-making in the hands of scientists and establishes a de facto emphasis on project-level communication. In order to communicate on an institutional level and strategically plan CIMMYT communication we will need to change the way we plan and budget for communication. This will be discussed later in the plan in more detail. KEYS TO SUCCESS.We will not organize our communication in the same manner in which we organize our work. The task is different.We will not underestimate the principles of process, packaging, and preparation which underscore successful communication.We will seek to \"own the show\" and aggregate marketing resources around bigger, prioritized initiatives rather than initiate a host of smaller, lower impact initiatives.We will saturate key markets. We will become \"greener\" in our communications (recycled paper, soy-based ink, etc.) as climate change is a key emphasis of our messaging.We will not worry about the logo or name. Yet.We won't go on the offensive with a pro-GMO argument. Yet.We will not be dogmatic. We will use our best judgement and measure objectively. Things that don't work will be discarded. Things that work will be scaled whenever possible.CIMMYT's key messages must be built upon it's core identity. Every message coming out of CIMMYT must reinforce the theme, mission, and values.Mission: To sustainably increase the productivity of maize and wheat systems to ensure global food security and reduce poverty.Values: Innovative, Ethical, Compassionate, Trustworthy, Pragmatic Theme: People Overcoming Resistance. Key Message: We work tirelessly to help poor farmers grow more wheat and maize.Again, these are concepts to be reinforced, guidelines to aid decision-making. These are not verbatim marketing messages.Much of the information below is difficult to parse given current systems. The remainder of the fiscal year will be used to establish protocols that allow us to get a baseline going into 2011. CIMMYT needs to understand where and how it is investing its marketing budget. As time goes on and our marketing becomes increasingly sophisticated, metrics will be refined to include more precise measurements such as bounce rate, page views, time on site, key words, conversations, rretweets, etc., as projects demand.Adhering to core principles and creating a way to track and evaluate our communications work will make us all happier.WE DO IT?We need to create a more cohesive communications team before aggressively marketing externally. Specific programs to build a communications foundation and to communicate externally are elaborated below.CIMMYT functions as a distributed marketing organization. The strategic decisions are made in the field, at the local level, and executed by communications team members with vendor support. If CIMMYT communication sounds like it was designed by scientists, essentially, it was.A distributed communications function works for a small organization or for a very large, fully staffed, mature organization (think: Proctor & Gamble). For a mid-sized, complex organization like CIMMYT, the structure is a poor one. This is the single biggest issue facing CIMMYT communications. If we don't centralize strategic planning and budgeting, especially in CIMMYT needs to create a stronger foundation for communications outreach.the face of potentially rapid growth, the CIMMYT brand will become increasingly fragmented, communications increasingly cluttered (think: microsites, contradictory collateral, confused messaging), and we will create a series of redundant and expensive structures. (A more comprehensive version of this argument it is attached as an appendix at the end of this document). Create/implement way to devise amount CIMMYT invests in marcom; who to speak with in accounting?Need to meet with Leonor Herradura (Ninay) sometime in November.Need to get with Mike and map out way of 1) Better costing chargebacks 2) Creating a la carte costing 3) Mapping time/resources to projects, ad hoc, or core for entire department (via Marianne).Also need to figure out expected deliverables for the year from programs.Ann suggests meeting with Drs Prasanna (GMP) and Bekele (SEP) to sell \"big ideas\"4. programs. INVESTING INTERNALLY.CIMMYT needs a strong internal communication program. Because the communications team and structure is distributed there is a need to reinforce the institutional messages and protocols.• Assure all internal audiences understand the marketing plan and key messages to be communicated externally. Or, put another way, cement our institutional identity, vocabulary, and stories internally before rolling them out externally.• Need plan for \"green\" printing (recycled paper, etc.) • Need to create/codify key messages at institutional and programmatic level. This won't happen until toward the end of the fiscal year, using assets, primarily, we've accumulated through the year Budget will be for additional vendor help as needed: video, editing, etc.4. programs. TELLING STORIES.The Story Project aims to capitalize on CIMMYT's strong alumni ties. By creating a series of compelling stories we will roll out a program asking CIMMYT alumni for donations and/or to encourage like-minded people to sign up for CIMMYT email. Simultaneously, we will package these stories for the web, media, and other channels.• Increase CIMMYT donors, donations, web, and media presence by rolling out a story once a month Starting in March 2011 we will create a dense-pack marketing event every three months. The events will then be March, June, September, and December. CIMMYT will aggregate resources and focus on a single message/project through all its marketing channels at the same moment. Again, the primary emphasis will be on media and social marketing.March: BISA June: Making hunger real Create an event to make the idea of hunger less abstract. Rank all the countries in the world by which farmers have to work the hardest and which have it easiest. Take metrics like: time in field to cultivate, to harvest, fertilizer price and availability, market (or not) mechanisms available, yields, insurance, climates, etc. Which farmers work the hardest to get the least? Which are theONE BIG PROJECT PER QUARTER.most efficient/effective? This report would be similar to the reports FAO and WFP create ranking the world's hungriest countries. Possibly create an advocacy action for CIMMYT supporters. Again, roll this out in London or New York or DC. Sell it in to key journalists, under embargo, on a press tour before the press event. Mail journalists and bloggers a bag full of food that contains the average daily intake of someone in India. Take away the abstract. Push out through other marketing channels at the same time.To mark the anniversary of Dr. Borlaug's death create a documentary/short film to illustrate his legacy and highlight the challenges of today. Sometimes, CIMMYT communication about Dr. Borlaug borders on hagiography. This project will leverage Dr. Borlaug's story to illustrate his values in modern-day CIMMYT. We can highlight the drama of the Green Revolution to point for a critical need for a second one. We will interview CIMMYT staff, scientists, farmers, and those involved with the first Green Revolution. This passage alone, taken from Borlaug's Wikipedia page, contains enough drama for half a documentary: \"250 tons went to Pakistan and 200 to India. They encountered many obstacles. Their first shipment of wheat was held up in Mexican customs and so could not be shipped from the port at Guaymas in time for proper planting. Instead, it was sent via a 30-truck convoy from Mexico to the U.S. port in Los Angeles, encountering delays at the Mexico -United States border. Once the convoy entered the U.S., it had to take a detour, as the U.S. National Guard had closed the freeway due to Watts riots in Los Angeles. When the seeds reached Los Angeles, a Mexican bank refused to honor Pakistan treasury's payment of US$100,000, because the check contained three misspelled words. Still, the seed was loaded onto a freighter destined for Bombay, India, and Karachi, Pakistan. Twelve hours into the freighter's voyage, war broke out between India and Pakistan over the Kashmir region. Borlaug received a telegraph from the Pakistani minister of agriculture, Malik Khuda Bakhsh Bucha: 'I'm sorry to hear you are having trouble with my check, but I've got troubles, too. Bombs are falling on my front lawn. Be patient, the money is in the bank.\"By creating this in-house we have the option of cutting it into compelling bits for the web, or trying to sell it to PBS, Discovery, or similar TV outlet. We can hold an exclusive online \"premiere\" for our supporters and market the movie itself as a product to journalists, bloggers, and through other channels.Mystery of maize Seeds of Discovery Seed Warriors movie Fundraising eventsWhich CIMMYT priorities will eventually become focal points remains to be seen and requires more consultation. However, the basic framework of focusing on one large initiative per quarter remains.DENSE-PACK EVENTS.A. Objective: • To increase CIMMYT's web and media profile with high-visibility events once a quarter. I understand there is a core budget that sits with Mike which primarily covers fixed costs (personnel, equipment, etc.) These are all signs the current structure is stressed. Eventually, this will lead to a system with unnecessary fixed costs, duplication, and confusion (i.e. three web vendors on contract, two ad agencies on retainer) and an increasingly fragmented, inconsistent, and contradictory set of messages going out to overlapping external audiences.The truth is this: Whoever controls the communication budget initiates communication projects and who has \"final cut\" on projects. In effect, by relying on a distributed model, CIMMYT has outsourced its marketing strategy to scientists.To meet CIMMYT's communication goals, it needs to evolve: • We need to move 80% of all the real communication budget into a central account controlled by corporate communications.• The communications structure needs to be centralized. (worldwidestaff managed centrally, centralized planning, centralized budgeting, etc.) I understand this is a disruptive argument, but, in my experience nothing will have a bigger impact on CIM-MYT's communications goals than this. Not the logo, or the corporate identity system, not a great marketing campaign, not celebrity involvement, nothing. Why? • It changes the working question from: What is best for my project? To: What is best for CIMMYT? • It allows prioritization amongst communication work.• The majority of CIMMYT marketing is always going to be supportingprogram work but there is a question of prioritization and one of scale. (And these relate directly to managing opportunity costs.)For example, let's assume out of CIMMYT's 160 projects, approximately 1/3 receive some type of comms support. Let's assume it totals about $2 million annually in real budget terms. What does that $2 million buy? About a message per week going out with little strategic intent. Most messages will be, necessarily, localized and project-based. They may be (and likely are) overlapping, confusing, and contradictory in the aggregate.I am arguing for this: Take that same $2 million dollars and asking: How can we best use this money to achieve CIMMYT goals?This will require shifting focus, over time, from supporting 50 projects, to really investing in 3-5 programs/ initiatives/projects. Will this mean we will \"play favorites?\" Yes. Will this mean that projects that are used to getting comms support will get less or none? Necessarily.However, my argument is this: That by moving to this approach those same project managers will see greater benefit over time. CIMMYT will become better known with stakeholders (media, policymakers, funders) allowing improved opportunities for all CIM-MYT work. Additionally, we will raise more unrestricted money, which everyone likes.I understand this will be disruptive. I further understand that this will frustrate program managers. However, I assume program managers are frustrated with the level of service they are getting now. If we continue with the current model that frustration will only increase as CIMMYT continues to grow.CIMMYT can't afford to sit idle. We need to move to a model of centralized communications planning and budgeting. The current system is unsustainable.I sincerely believe this is the best system for CIM-MYT going forward. I look forward to discussing this more with all of you. I've talked with Mike about this as well and he is in complete agreement. He noted that senior management has been exploring ways to move away from the chargeback system and I'd like to work with Mike on moving away from that system and toward the model advocated above.Thank you, all. Chris.\"CIMMYT can't afford to sit idle. We need to move to a model of centralized communications planning and budgeting. The current system is unsustainable.\" THE CASE.","tokenCount":"3357"} \ No newline at end of file diff --git a/data/part_3/9363445526.json b/data/part_3/9363445526.json new file mode 100644 index 0000000000000000000000000000000000000000..482800200d8c2bfe15fcc166a09bf24b8dba660c --- /dev/null +++ b/data/part_3/9363445526.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"282b25f6704fe8cc6ffa5fbf58587c4b","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/95f6b8da-0b6a-4841-967f-2aef6dea86be/content","id":"616829747"},"keywords":[],"sieverID":"ca071701-1927-479a-9082-73fdc4cd9059","pagecount":"13","content":"Adaptation to climate stress is an unprecedented challenge facing cropping systems. Most adaptation assessments focus on how adaptation options affect yields of a single crop under different weather or climate conditions. Yet, cropping systems often comprise more than one crop, and holistic assessments should consider all crops grown in a cropping system. One adaptation option is Conservation Agriculture that is commonly defined around a set of three principles: minimum mechanical soil disturbance, permanent soil organic cover, and crop species diversification.Objective: Here we estimated the statistical effect of Conservation Agriculture on cropping-system yields under historical climate conditions. Methods: The cropping-system yields considered all crops grown including maize (Zea mays L.) and legumes in intercropping or rotation, or both. The climate conditions included conditions of heat stress for maize and precipitation balances during the maize growing season. Heat stress for maize was studied using growing degree days over 30 • C. Precipitation balance was the difference between precipitation and reference evapotranspiration. Data included 6296 yield observations from on-farm trials in farmer plots conducted over 14 seasons (2005-2006 to 2018-2019) in ten communities in Malawi. These yield data were coupled with daily weather data. We studied three treatments: (1) a Control Practice treatment where the soil was tilled, crop residues were removed, and there was no crop species diversification, (2) a No-Tillage treatment where the soil was not tilled, crop residues were retained, and there was no crop species diversification, and (3) a Conservation Agriculture treatment where the soil was not tilled, crop residues were retained, and there was crop species diversification through legume intercropping. The use of maize varieties and legume rotation changed over time; however, the treatments studied remained the same over the entire length of the on-farm trials period in all individual communities. Results and conclusions: Results of our study showed that heat stress for maize had a negative effect on croppingsystem yields for non-stress-tolerant maize varieties and no legume rotation, although the Conservation Agriculture treatment reduced this negative effect compared with the Control Practice treatment. With the use of stress-tolerant maize varieties and legume rotation and Conservation Agriculture, our results suggest that heat stress for maize did not have a negative effect on cropping-system yields. Significance: Our results demonstrate how Conservation Agriculture can improve the adaptive capacity of cropping systems and this provides urgently needed evidence on how farmers can adapt to climate stress.Humanity faces an unprecedented challenge in meeting growing demand for food and improving environmental sustainability (Godfray and Garnett, 2014) whilst adapting agriculture to an increased severity and frequency of climate stresses (Challinor et al., 2014;Thornton et al., 2014;Challinor et al., 2016). As such, we urgently need better evidence showing how cropping systems can adapt to climate stresses (Cooper et al., 2008;Conway et al., 2019), especially in Southern Africa (Challinor et al., 2007;Thierfelder et al., 2018;Nyagumbo et al., 2020). To address these challenges one adaptation option is Conservation Agriculture that is commonly defined around three management principles: minimum mechanical soil disturbance, permanent soil organic cover, and crop species diversification through varied crop sequences and associations (FAO, 2019). In addition to the three principles, the functioning of Conservation Agriculture can be enhanced by using good agricultural practices, some of which include planting stress-tolerant crop varieties and appropriate nutrient supply (Sommer et al., 2014;Thierfelder et al., 2018).The objective of our study was to test if changes in crop management (based on Conservation Agriculture) can make cropping systems more adaptive to climate stress. From on-farm trials in ten communities in the Central and Southern Region of Malawi we combined 14 seasons of yield data with daily weather data from geo-spatial datasets to answer the following question: what is the statistical effect of a No-Tillage or Conservation Agriculture treatment on cropping-system yields (considering all crops grown) compared to a Control Practice treatment given growing season precipitation balance (precipitation minus reference evapotranspiration) and given growing season heat stress for maize (Zea mays L.)? The Control Practice treatment (CP) included tillage with crop residue removal and no legume intercropping, the No-Tillage treatment (NT) included no tillage with crop residue retention and no legume intercropping, and the Conservation Agriculture (CA) treatment included no tillage with crop residue retention and legume intercropping. We estimated this statistical effect separately for three crop management strategies that were practiced during different seasons: 1) a crop management strategy of non-stress-tolerant maize and without a legume rotation, 2) a crop management strategy of non-stress-tolerant maize and with a legume rotation, and 3) a crop management strategy of stress-tolerant maize and with a legume rotation.Two main types of studies have examined adapting cropping systems to climate stress at the plot scale, including studies that have analyzed Conservation Agriculture. First, several meta-analyses have positioned the yield effect of Conservation Agriculture (or at least two of its principles) into different contexts such as soil texture, precipitation, or a level of aridity (Rusinamhodzi et al., 2011;Pittelkow et al., 2015;Corbeels et al., 2020). These studies have highlighted where yield response ratios are higher, such as in dry climates and on well-drained soils. Climate is typically considered in these studies by using average growing season (or annual) precipitation (Rusinamhodzi et al., 2011;Corbeels et al., 2020) or by using an aridity index (mean annual precipitation divided by potential evapotranspiration) (Pittelkow et al., 2015). Second, the vulnerability of maize (or wheat, Triticum aestivum L.) yields to climate stress has also been quantified (Barnabás et al., 2008;Lobell et al., 2011;Lobell et al., 2012;Cairns et al., 2013b;Bowles et al., 2020;Shew et al., 2020). Evidence also suggests that Conservation Agriculture can provide adaptive capacity to maize under interactive water and heat stress for maize (Thierfelder et al., 2017;Steward et al., 2018). Some of these studies have coupled yield data from trials with daily weather data (Lobell et al., 2011;Lobell et al., 2012;Steward et al., 2018;Shew et al., 2020). The studies listed in this paragraph reported the yield of individual crops, even if the cropping systems studied included multiple crops.Our study takes an alternative approach to the two main types of studies listed before. First, the existing studies in the preceding paragraph consider the yield of one crop even if this crop is embedded in a multi-crop system. We provide additional insights by examining cropping-system yield, considering all crops grown, namely maize and legumes, with legumes either grown as an intercrop or rotation or both. Studying cropping-system yield is important because multiple cropping is a widespread land management strategy in tropical and subtropical agriculture (Waha et al., 2020). Second, we examined how weather directly interacts with treatment in a statistical model using daily weather data (converted into seasonal indicators of precipitation balance and heat stress for maize) as an explanatory variable, rather than using weather variables as a contextual factor. Existing studies have tended to use more aggregate measures of climate (such as annual growing season precipitation). Our study provides an alternative approach to studying weather and treatment interactions by using daily weather data over the growing season to calculate explanatory variables for climate conditions during the maize growing season. We combined the use of cropping-system yields and climate stress indicators from daily weather data into one study.Yield data for our study came from rainfed (non-irrigated) on-farm trials conducted between the years 2005 (season 2005-2006) and 2019 (season 2018-2019) in ten communities across six districts in the Central Region and Southern Region of Malawi (Table 1). Across the ten communities, average elevation was 691 m above sea level (range 491-1166) and average annual precipitation averaged 999 mm (range 739-1352). Soils were mostly Luvisols or Lixisols. We used yield data from 118 community-season combinations, because the start date of the on-farm trials varied by community. Table 1 reports additional contextual details for each community.In each community, six trial replicates were established on six farmers' fields in any one season, set up in walking distance to be a maximum of 2 km apart. In any one season there were between 18 and 60 farmers in total across all communities participating in the on-farm trials. There was a range in the number of farmers participating because communities joined the on-farm trials in different seasons (Table 4). As part of the on-farm trials, each farmer had one field with a land area of 3000 m 2 . This one field was divided into three adjacent (side-by-side) plots and each plot had a land area of 1000 m 2 . Each plot contained one of the three treatments. Therefore, each farmer was a replicate in the on-farm trials as they managed all three treatments in one farm. Table 2 provides the summary features of the treatmentstrategies and Fig. 1 provides a general layout of the on-farm trials.Maize was the primary crop in the on-farm trials and Table 3 reports the legume planted as part of intercropping or rotation. In the Conservation Agriculture treatment, maize was intercropped with either pigeonpea (Cajanus cajan (L.) Millsp) or cowpea (Vigna unguiculata (L.) Walp). If in rotation, maize was rotated with either groundnuts (Arachis hypogaea L.), pigeonpea, or cowpea.Each treatment was defined around the management of tillage, residue, and intercropping. Each farmer simultaneously managed three treatments in every season but over the time sequence of the on-farm trials the use of maize varieties and legume rotation changed (Table 4). To organize our analysis into comparable time sequences that captured the evolution of the use of maize varieties and legume rotation we defined three crop management strategies. In a specific season all treatments were in one of three crop management strategies and each strategy was defined around two management options: (1) the maize variety planted and (2) if legume rotation was used. The three strategies in our study included (columns 5 and 6 of Table 2): 1. A crop management strategy based on using non-stress-tolerant maize varieties without a legume rotation. 2. A crop management strategy based on using non-stress-tolerant maize varieties with a legume rotation. 3. A crop management strategy based on using stress-tolerant maize with a legume rotation.Our study entailed a side-by-side (paired) comparison for the treatments (Control Practice, No-Tillage, and Conservation Agriculture), but no side-by-side (paired) comparison for rotation.There were three treatments in the experiment: Control Practice (CP) treatment, No-Tillage (NT) treatment, and Conservation Agriculture (CA) treatment. The two treatments that include some or all the three principles of Conservation Agriculture include 1) a No-Tillage treatment with no intercropping, and 2) a Conservation Agriculture maize-legume intercrop treatment. Both the No-Tillage and Conservation Agriculture treatments had crop residues retained in the plot as a surface mulch. The definition of treatment in our study is unrelated to rotation (Section 2.1.4).The Control Practice treatment refers to the use of tillage, based on the ridge and furrow system, where annual ridges were formed approximately 75 cm apart, and there was no intercropping. For the Control Practice treatment, crop residues were typically grazed, burned or removed from the plot for other uses such as composting, with some remaining crop residues placed in the furrow before forming the ridges in September or October of each year. The ridges were then re-built on top of the few buried residues. The row spacing was 75 cm and the inrow spacing was 25 cm to achieve a target plant population of approximately 53,333 plants ha − 1 following the Sasakawa Global 2000 plant spacing recommendation (Ito et al., 2007). Planting was done with a hand hoe or pointed stick on the ridges. Weed control was achieved by reforming the ridge, locally called banking, which scrapes the weeds off during this action. Weeding was limited to two, seldom three, operations and stopped when maize reached the tasseling/silking stage, so final weed emergence and proliferation was often not fully controlled.For the No-Tillage treatment, maize was direct-seeded into untilled soil with a pointed stick (dibble stick) in rows spaced 75 cm apart and an in-row spacing of 25 cm to achieve a target plant population of approximately 53,333 plants ha − 1 . Previous ridges were not maintained and subsided over time. In the first season, crop residues were applied in the form of maize stalks at a rate of 2500 kg ha − 1 . From there onwards, the crop residues were retained in the plot and manually spread evenly over the soil surface (i.e., retained in the plot in situ). Initially, weed control was achieved through an application of a mixture of 2.5 l ha − 1 glyphosate (N-(phosphono-methyl) glycine) and 6 l ha − 1 of Bullet® (25.4% Alachlor (2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl) acetamide) and 14.5% atrazine (2-Chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine). This was applied as a pre-emergence herbicide after planting. In 2010, Bullet was replaced by the more environmentally benign herbicide Harness® (acetochlor (2-ethyl-6methylphenyl-d11)) at a rate of 1 l ha − 1 in the five communities in the Central Region and from 2017 onwards in all communities. Weeds were further hoe weeded when they reached 10 cm height or 10 cm in circumference.For the Conservation Agriculture treatment, maize was planted and managed in the same way as in the No-Tillage treatment with the same maize planting density but in the Conservation Agriculture treatment maize was intercropped with either pigeonpea (Southern Region of Malawi) or cowpea (Central Region of Malawi) (Table 3). In the Conservation Agriculture treatment, intercropping occurred when there was the simultaneous presence of maize and a legume in a plot with the legume planted between maize rows. The intercropped legumes were planted between the maize rows at an in-row spacing of 40 cm for cowpea or 50 cm for pigeonpea. For intercropped cowpea, 2 to 3 seeds were normally planted per station and this was thinned to a single plant (target population 33,333 plants ha − 1 ). For intercropped pigeonpea, 5 to 7 seeds were normally planted per station and this was thinned to a (Hengl et al., 2017). Notes: Tillage was based on the ridge and furrow system where annual ridges were formed approximately 75 cm apart. For the intercrop column, \"No\" means maize was not intercropped with a legume, and \"Yes\" means maize was intercropped with a legume. For the rotation column, \"No\" means maize was not rotated with a legume (i.e., maize in one season then maize again in the following season) and \"Yes\" means maize was rotated with a legume (i.e., maize in one season then a legume in the following season, using a phased rotation).single plant (target population 26,666 plants ha − 1 ). Table 3 reports the crop planted as the intercrop in each community. As in the No-Tillage treatment a pointed stick was used to plant by making two small holes for the seed and fertilizer at each planting station. Weed control was achieved through the application of glyphosate at 2.5 l ha − 1 postplanting followed by manual weeding as in the No-Tillage treatment.No residual herbicide (bullet) was initially applied to these plots. In later seasons, the post emergence herbicide harness was also applied (as in the No-Tillage treatment) to the Conservation Agriculture treatment as it does not affect legumes. The management of the three treatments has remained the same since the on-farm trials commenced (apart from any minor changes mentioned in this Section 2.1.2) and is based on the initial experimental design (Thierfelder et al., 2013). We maintained the specific treatment labels in this study although strictly speaking, when regular annual rotations started in 2011, the No-Tillage treatment can also be regarded as \"Conservation Agriculture\" according to the FAO (2019) definition. The Control Practice is considered a control treatment so we could estimate the statistical effect of the No-Tillage and Conservation Agriculture treatments on cropping-system yields.In all three treatments the quantity of crop residues that were either retained in No-Tillage or Conservation Agriculture or removed in the Control Practice from the plot were the quantity that was produced by the farmer in situ. It was actively discouraged each season for farmers to transfer crop residues from their Control Practice plot to their plots with No-Tillage or Conservation Agriculture. But given that farmers managed the day-to-day operations of the trials, it was inevitable that these transfers occurred occasionallyone reason being that mice hunters burned crop residues in the No-Tillage and Conservation Agriculture 4). Control Practice = tillage and residue removal, No-Tillage = no tillage and residue retention, and Conservation Agriculture = no tillage, residue retention, and maizelegume intercropping. Notes: Farmers in Herbert rejected the pigeonpea after the first rotational season due to limited selling options and a lack of interest in the crop. They opted for cowpea thereafter. treatments in search of mice, and these crop residues were then replaced to not leave the plots in the No-Tillage and Conservation Agriculture treatments uncovered. These occasional transfers were within the same farm only and always in accordance with the principles of Conservation Agriculture.All three treatments received a uniform fertilizer application rate of 69 kg N ha − 1 which was supplied as 100 kg of N:P:K ha − 1 (23:21:0 + 4S) at planting and 100 kg urea ha − 1 (46% N) at approximately three weeks after planting (total nutrient content applied was 69 kg N ha − 1 : 21 kg P 2 O 5 ha − 1 : 0 kg K 2 O ha − 1 : 4 kg S ha − 1 ) to the maize. The rotated legumes received a basal fertilization of 100 kg of N:P:K ha − 1 (23,21:0 + 4S) at planting only. This application rate followed the general recommendations of the Malawian Government at the time the on-farm trials commenced and was maintained in every season. Intercropped legumes did not receive an extra dose of fertilizer, and therefore competed with maize for the fertilizer applied to the treatment.The maize variety planted was the first management option that defined each of the three crop management strategies studied. The onfarm trials included both stress-tolerant and non-stress-tolerant maize varieties. Before the 2013-2014 season only non-stress-tolerant maize varieties were planted, and from the 2013-2014 season onwards both stress-tolerant and non-stress-tolerant maize varieties were planted (Table 4). From the 2013-2014 season onwards, all subplots in the maize phase of the rotation were allocated one of five varieties, four stress-tolerant maize varieties and one non-stress-tolerant maize variety. A land area of 100 m 2 was planted to each of the five varieties (Fig. 1). In each of the three strategies, each farmer used the same maize varieties on all plots in a season. The maize varieties planted were the result of the rapid-cycle breeding program at CIMMYT that aims to deliver improved varieties with tolerance to drought stress, heat stress, and low-nitrogen stress to the Southern African region (Cairns et al., 2013a;Masuka et al., 2017a;Masuka et al., 2017b;Setimela et al., 2017;Setimela et al., 2018).In total 11 maize varieties were part of the on-farm trials (Table 5). In general, the four hybrids of PAN53, MH30, MH31, and SC719 have some tolerance to both water and heat stress, the medium maturing PAN53 has been tested for water and heat stress. SC719 is a medium to longseason hybrid from Seed Co selected under drought. The medium maturing MH30 and MH31 have two parental lines that also went through screening for water and heat stress. ZM523 and ZM309 are Open Pollinated Varieties which are made up of many parental lines and they went through screening for water stress before being released. In general, the selected hybrids used are considered more tolerant to heat and water stress than the Open Pollinated Varieties.Legume varieties planted in the on-farm trials for both the intercropped legume and the legume in the rotation included the CG7 variety for groundnuts, pigeonpea variety ICEAP 00557, and cowpea variety Sudan.The use of legume rotation was the second management option that defined each of the three crop management strategies studied. Table 3 and Table 4 provide details on rotation management, including crop planted and year started. For plots in rotation, there were two phases of the rotation: (1) a maize phase where the crop planted in the current season was maize and the crop planted in the subsequent season was a legume, and (2) a legume phase where the crop planted in the current season was a legume and the crop planted in the subsequent season was maize. All phases of the rotation were present in each season. For the plots in rotation, all plots were divided into two subplots and both subplots had a land area of 500 m 2 . One subplot was for the maize phase of the rotation and one subplot was for the legume phase of the rotation.The planting density for the sole crop legume in the maize-legume rotations was as follows. Rotated groundnuts (in Linga, Mwansambo, Zidyana, Chipeni, Chiguluwe, and Lemu) were planted on ridges in the Control Practice treatment with rotation on 75 cm row spacing and 20 cm in-row spacing (target population 66,666 plants ha − 1 ). Rotated groundnuts in the No-Tillage and Conservation Agriculture treatments were planted on the flat at half row spacing of 37.5 cm × 20 cm (target population 133,333 plants ha − 1 ). For groundnuts, one seed was planted per station. Rotated pigeonpea (Malula, Matandika and Songani) had a row spacing of 75 cm by 50 cm in-row spacing (target population 26,666 plants ha − 1 ) for all three treatments with one seed planted per station. Finally, rotated cowpea (Herbert) were seeded at 75 cm row by 20 cm inrow spacing (target population 66,666 plants ha − 1 ) in the Control Notes: Strategy is a combination of maize variety planted and use of legume rotation.Practice treatment and were seeded at 37.5 cm row by 20 cm in-row spacing (target population 133,333 plants ha − 1 ) in the No-Tillage and Conservation Agriculture treatments. For cowpea, one seed was planted per station. Flat planting in the No-Tillage and Conservation Agriculture treatments tended to allow for a higher plant population for groundnuts and cowpea whereas pigeonpea cannot increase its population due to its growth habit.Maize yield was estimated from ten subsamples per treatment, each subsample was taken from a land area of 7.5 m 2 (total harvest from a land area of 75 m 2 ). In later seasons, two subsamples were harvested per maize variety. All maize was harvested separately at physiological maturity and the fresh cobs and biomass weighed in the field. A subsample was taken and weighed, dried, shelled, re-weighed and a grain moisture measurement taken. The yield data was then converted into maize grain yield in kg ha − 1 at 12.5% moisture content. Intercropped and rotated groundnuts and cowpea were harvested at physiological maturity (usually March-May of each year). Sometimes a second cowpea crop could be seeded in Herbert if there was enough soil moisture. Pigeonpea grain was harvested in August or September once pods reached physiological maturity. Crop residues of both legumes were maintained in the field.All on-farm trials were managed on a day-to-day basis by the farmers based on the study protocol regarding on-farm management, and this was done in coordination with resident extension officers, either from the Governmental extension services or from the non-profit, non-government regional organization Total LandCare. Researchers from the Department of Research Services and the International Maize and Wheat Improvement Center (CIMMYT) provided scientific oversight throughout the whole duration of the on-farm trials. Maize planting was done after the first effective rains in each community, which usually occurred between the last week of November and mid-December in each season. In some seasons, maize planting occurred only at the beginning of January due to the late onset of the season or insufficient initial precipitation. Maize was typically harvested in April or May of each season.For each treatment-strategy in Table 2, we calculated the annual grain yield for all crops (kg dry matter ha − 1 ) and an annual croppingsystem yield in energy (gigajoules (GJ) ha − 1 ). The cropping-system yield was defined as the per hectare total grain yield from all crops grown (maize or maize and legumes, depending on the treatmentstrategy) in a treatment-strategy-season. In plots under maize-legume rotation, each phase of the rotation was represented simultaneously in subplots (of equal land area) for either the maize phase or the legume phase. And the cropping-system yield was calculated by summing the yield across both subplots, either maize plus rotation legume, or maize and intercropped legume plus rotation legume. Table SI.1 provides additional details on the calculation of cropping-system yield. Existing studies have also used gigajoules for cropping-system yield (Parihar et al., 2016;Guilpart et al., 2017;Silva et al., 2017). The energy content per 100 g of each crop equaled 353 kcal for maize, 316 kcal for cowpea, 301 kcal for pigeonpea, and 578 kcal for groundnuts (Smith et al., 2016).To examine how climate stress affected yields, we first obtained weather data from two sources for each of the ten communities. Our study used the word stress to describe a situation that may lead to decreases in crop growth and reproduction below the crop's yield potential (Osmond et al., 1987).Daily precipitation data (in mm) between January 1st 2005 and August 31st 2019 was sourced from the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) dataset (Funk et al., 2015) that has a spatial resolution of 0.05 degree × 0.05 degree. These CHIRPS data have been compared with rain gauge data across the globe (Funk et al., 2015) and specifically in Eastern and Southern Africa including in Malawi (Dinku et al., 2018;Muthoni et al., 2019). In Africa, CHIRPS data have been used in existing studies to test how yields respond to changes in weather (Steward et al., 2018;Michler et al., 2019;Mutuku et al., 2020).Six weather parameters for each day between January 1st 2005 and August 31st 2019 were sourced from the NASA Prediction Of Worldwide Energy Resources (POWER) dataset (NASA, 2020) that has a spatial resolution of 0.5 degree × 0.5 degree. The six parameters were: 1) relative humidity (%), 2) atmospheric pressure at surface (kPa), 3) daily minimum air temperature ( • C), 4) daily maximum air temperature ( • C), 5) wind speed at 2 m height, (m per second), and 6) incoming solar radiation, based on daily MJ m 2 . The NASA POWER data have been compared to daily data from ground stations across the globe (Stackhouse Jr, 2019), and specifically in Eastern and Southern Africa (Van Wart et al., 2015). Data from NASA POWER have been previously used in the study of yields and weather (Komarek et al., 2019;Nyagumbo et al., 2020).We computed precipitation balance and heat stress for maize using the weather data to examine how they affect cropping-system yield. Extension officers recorded planting and harvest dates in all 118 community-season combinations of data. The average days to maturity for maize (length of growing season, days between planting and harvest) was 137 days (range 104-190). The planting and harvest dates were used to determine if a daily weather observation was part of the growing season for calculating precipitation balance and heat stress for maize over the growing season. We examined precipitation balances and heat stress for maize over the growing season.We calculated the precipitation balance for the growing season as precipitation minus reference evapotranspiration using the Penman-Monteith method (Zotarelli et al., 2010). Precipitation outside the maize growing season was minimal (Fig. SI.2). Precipitation data came from CHIRPS and all non-precipitation weather data came from NASA POWER. Elevation data came from Thierfelder et al. (2013) and was collected in each community. We computed precipitation balance as the sum of all daily precipitation balances during the growing season. Our precipitation balance is similar to the Standardized Precipitation Evapotranspiration Index that uses the monthly (or weekly) difference between precipitation and reference evapotranspiration (Vicente-Serrano et al., 2010), but we use daily weather data. Reference evapotranspiration was calculated using a uniform surface of actively growing vegetation (Zotarelli et al., 2010). Crops can experience several types of water-related stress in response to the water balance or soil water availability or both at different stages of crop growth and reproduction, for brevity we use the phrase precipitation balance hereinafter to refer to the range of precipitation balance values in our entire dataset across all treatment-strategy combinations.We calculated heat stress for maize using the sum of growing degree days (GDD) above 30 • C during the maize growing season (Lobell et al., 2011;Steward et al., 2018), labelled GDD 30+ . In our results, heat stress refers to heat stress for maize. Growing degree days were estimated from daily minimum and maximum temperatures at each community over the growing season using eq. ( 1):In Eq. (1) t is an individual time step (hour) within the growing season, T t is the average temperature during this time step (determined by interpolating between the minimum and maximum temperature with a sin curve) and N is the number of hours between planting and harvest. Using eq. ( 1) we calculated GDD 30+ that corresponds to T base = 30 • C, and T opt = ∞. All temperature data for calculating heat stress for maize came from NASA POWER. GDD 30+ is a measure of exposure to temperatures above a threshold at which warming can be quite harmful to the growth and reproductive processes of maize (Schlenker and Lobell, 2010), and this measure has been used in existing studies (Lobell et al., 2011;Steward et al., 2018).We used linear mixed-effects models to examine the effect of each treatment on cropping-system yield, and how these treatment effects depend on precipitation balance and heat stress for maize. We performed the statistical analyses using the lmer function in the 'lme4' package (Bates et al., 2015) in R version 3.6.1 (R, 2020). We first specified a global model that included all explanatory variables and their interactions that we suspected may affect cropping-system yields (eq. 2). sqrt(sysYld)=tmnt×poly(PB,2)×log e (GDD 30+ +1)+tmnt×log e (duration)+ (1|community/farmer)+(1|mzVar)(2)In Eq. ( 2), sysYld = annual cropping-system yield in GJ ha − 1 and is a numerical variable (sqrt = square root), tmnt = fixed effect for treatment and is a nominal categorical variable with three classes (Control Practice, No-Tillage, and Conservation Agriculture), PB = precipitation balance (precipitation minus reference evapotranspiration) over the growing season in mm and is a numerical variable, poly(PB,2) = a second-degree orthogonal polynomial for precipitation balance, GDD 30+ = our measure of heat stress for maize calculated as the sum of growing degree days over 30 • C for the growing season and is a numerical variable, duration = the total number of seasons a plot has been in the on-farm trials and is a numerical variable, community = name of community (nominal categorical variable), farmer = anonymized farmer identification (nominal categorical variable), and mzVar = maize variety planted (nominal categorical variable). We specified a random effect for each community and the effect of farmer was nested in community to control for spatial auto correlation within the dataset. We also included a random effect for the maize variety planted. We undertook variable transformation and standardization to avert issues of model scaling and non-symmetric distributions of variables, and to improve convergence of the model's fitting algorithm (Zuur et al., 2009). We transformed numerical variables in eq. ( 2) using either a square root or natural logarithm, based on the magnitude of the variable's positive skewness (Tabachnick and Fidell, 2007) (Fig. SI.1). We standardized all numerical variables to have a zero mean and standard deviation of one (i.e. μ = 0 and σ = 1) across the entire dataset. The standardization was done by pooling all observations for each variable across the entire dataset. For the variables that we transformed we standardized the transformed version of the variable.Variable choices and their interaction terms in the global model were made a priori based on existing research and our understanding of Conservation Agriculture and climate within the on-farm trials. For variable choice, maize-based studies in Southern Africa have shown that precipitation balance and heat stress for maize interact (Steward et al., 2018). An inverted U-shaped relationship can exist between yields and precipitation (Rusinamhodzi et al., 2011). We therefore included a quadratic term for precipitation balance using a second-degree orthogonal polynomial. The variable GDD 30+ (as a linear term) has been used to study heat stress for maize (Lobell et al., 2011). Duration was included as existing research has shown that crop yield performance under conservation agriculture can improve over time (Corbeels et al., 2014;Thierfelder et al., 2015;Corbeels et al., 2020). Although we suspected the variables in Eq. ( 2) may affect cropping-system yields in our dataset, this suspicion needed testing. We estimated models separately for each of the three crop management strategies (Section 2.1.1). One regression was run for each strategy, i.e., the regression for each strategy was considered by taking a subset of the entire dataset based on the type of maize variety and rotation.Model selection aimed to identify a suitable and parsimonious approximating model for predicting cropping-system yield. This selection involved trade-offs between model bias and model precision (Zuur et al., 2009). Model selection involved estimating eight candidate models with Maximum Likelihood. Candidate models included combinations of the global model: (1) a 2-way interaction between climate (precipitation balance and heat stress for maize) and treatment, or a 3way interaction between climate and treatment, (2) a linear or quadratic specification of precipitation balance, and (3) with or without duration (and its interaction with treatment). We included candidate models based on our understanding of Conservation Agriculture and how it may interact with climate, rather than using an all-subset approach of the global model. We used multi-model inference and compared candidate models within each the three strategies based on each model's Akaike information criterion (AIC) with a correction for finite sample sizes (AICc) (Akaike, 1974;Burnham and Anderson, 2002). Supplementary Information: statistical analyses provides additional information on model selection. We generated a 95% confidence set of models from the candidate models based on a cumulative Akaike weight ≤ 0.95. From the candidate models we retained the model with the lowest AICc within each of the three strategies. We used Restricted Maximum Likelihood to estimate the retained models. Parametric bootstrapping procedures with the 'lmeresampler' package were used to generate 95% confidence intervals for estimated coefficients in the retained models using 10,000 iterations (Loy and Steele, 2016). Estimated coefficients were considered significant if the 95% confidence intervals did not overlap with zero and if the P value was <0.05 using the Kenward-Roger approximation of the degrees of freedom (Kenward and Roger, 1997). For model assumptions, we inspected the normality of residuals with quantilequantile plots and inspected residual versus predicted values for the homogeneity assumption (Zuur et al., 2009).Summary descriptive (non-inferential) statistics suggest that across all communities and seasons average cropping-system yield and maize yield was higher in the No-Tillage and Conservation Agriculture treatments than in the Control Practice treatment (Table 6). The total energy content of the cropping-system yield under rotation was on average 73% maize and 27% legumes (range by treatment-strategy in Table SI.3). Cropping-system yields displayed substantial variation among community-season. Cropping-system yields in the Control Practice treatment had a higher coefficient of variation than in the No-Tillage or Conservation Agriculture treatments. Average growing season precipitation balance across all communities and seasons was − 28 mm (range − 401 to 431) (range across community-season in Fig. SI.3). Average growing season GDD 30+ across all communities and seasons was 3.0 (range 0-33.5) (range across community-season in Fig. SI.4). The noninferential statistics in Table 6 highlight considerable variation in cropping-system yield among the treatments. Although statistical analyses are needed to test if treatment (and its interaction with climate) had a significant effect on cropping-system yield.For the statistical analyses, one candidate model was the suitable and parsimonious approximating model in the strategy with non-stresstolerant maize and no rotation and in the strategy with stress-tolerant maize and rotation. In other words, only one model was in the 95% confidence set for these two crop management strategies. For the strategy with non-stress-tolerant maize and rotation, there were four models in the 95% confidence set of models and in this strategy we retained the model with the lowest AICc (Table SI. 4). The proportion of variance explained by the fixed effects (marginal R 2 ) and random effects (conditional R 2 − marginal R 2 ) was 0.216 and 0.378 in the strategy with non-stress-tolerant maize and no rotation, was 0.168 and 0.316 in the strategy with non-stress-tolerant maize and rotation, and was 0.187 and 0.347 in the strategy with stress-tolerant maize and rotation.Unexplained variance existed in our estimation of cropping-system yields (Supplementary Information: statistical analyses).Predicted cropping-system yields in the No-Tillage and Conservation Agriculture treatments were significantly greater than in the Control Practice treatment (Table 7). Precipitation balance had a significant positive effect on cropping-system yield if under rotation (Fig. 2). But a point occurred where cropping-system yields started to plateau or even decline as precipitation balance increased. These points were significant Notes: CP = Control Practice (tillage and residue removal), NT = No-Tillage (no tillage and residue retention), and CA = Conservation Agriculture (no tillage, residue retention, and maize-legume intercropping). N is number of observations. CV is coefficient of variation defined as the average for all communities and seasons divided by standard deviation for all communities and seasons. Table SI1.2 reports yields for the individual legume crops.Linear mixed-effects model results for predicted cropping-system yield. in the strategies with non-stress-tolerant maize and no rotation and with stress-tolerant maize and rotation. Heat stress for maize had a significant negative effect on cropping-system yield in the strategy of non-stresstolerant maize and no rotation (Fig. 3). However, in this strategy the negative effect of heat stress for maize was significantly less in the No-Tillage and Conservation Agriculture treatments. For stress-tolerant maize under rotation, cropping-system yields showed a significant increase as heat stress for maize increased. Fig. 4 and Table 7 report how precipitation balance and heat stress for maize simultaneously affected predicted cropping-system yields. For non-stress-tolerant maize and no rotation, heat stress for maize had a significant negative effect on cropping-system yield. This negative effect was more pronounced at higher and lower levels of precipitation balance. For non-stress-tolerant maize and no rotation (top row of Fig. 4), the interaction between precipitation balance and heat stress for maize was significantly negative. Under rotation (middle and bottom row of Fig. 4) heat stress for maize did not reduce cropping-system yields, and legume yields appeared less effected by heat stress for maize than maize yields (Figs. SI.7-SI.8). In the strategy of stresstolerant maize and rotation, as heat stress for maize increased cropping-system yields increased, but heat stress for maize had no effect on cropping-system yields in the strategy of non-stress-tolerant maize and rotation. With rotation, there was an interaction effect where cropping-system yields increased as heat stress for maize and precipitation balance increased simultaneously. With rotation, the positive interaction effect between heat stress for maize and precipitation Fig. 2. Predicted effect of growing season precipitation balance on cropping-system yield. Standardized units: μ = 0 and σ =1, and the zero average translates to − 28 mm for precipitation balance. Lines are for the predicted values of cropping-system yield for the retained models. Precipitation balance used a linear specification in the strategy of non-stress-tolerant maize with rotation, and a quadratic specification (a second-degree orthogonal polynomial) in the other two strategies. Markers are the raw data. All other numerical explanatory variables held constant at their average. Shading around each line is the 95% confidence interval. Fig. 3. Predicted effect of heat stress for maize on cropping-system yield. Heat stress for maize is the sum of growing degree days above 30 • C for the growing season (GDD 30+ ). Standardized units: μ = 0 and σ =1, and the zero average translates to 3 GDD 30+ . Lines are for the predicted values of cropping-system yield for the retained models, with GDD 30+ using a linear specification in all three strategies. Markers are the raw data. All other numerical explanatory variables held constant at their average. Shading around each line is the 95% confidence interval.balance was significantly greater in Conservation Agriculture compared with the Control Practice treatment.We examined how Conservation Agriculture affected croppingsystem yields given variation in growing season precipitation balance (precipitation minus reference evapotranspiration) and heat stress for maize. Related to the treatments, we found two main results: (1) the No-Tillage and Conservation Agriculture treatments reduced the detrimental effect of heat stress for maize on cropping-system yields, compared to the Control Practice treatment (tillage and residue removal), and (2) with rotation, as heat stress for maize and precipitation balance simultaneously increased, cropping-system yields increased at a faster rate in the Conservation Agriculture treatment than in the Control Practice treatment.Existing studies have shown that heat stress for maize can have a negative effect on maize grain yields (Schlenker and Lobell, 2010;Lobell et al., 2011;Steward et al., 2018). Existing studies have also shown that Conservation Agriculture can reduce some of these negative effects for Fig. 4. Predicted effect of growing seasons precipitation balance and heat stress for maize on cropping-system yield (energy). Heat stress for maize is the sum of growing degree days above 30 • C for the growing season. CP = Control Practice (tillage and residue removal), NT = No-Tillage (no tillage and residue retention), and CA = Conservation Agriculture (no tillage, residue retention, and maize-legume intercropping). Stress tolerant refers to type of maize variety. Rotation refers to a maize-legume rotation. All variables are in standardized units with μ = 0 and σ =1 across the entire dataset, and the zero average translates to − 28 mm for precipitation balance and 3 GDD 30+ for heat stress for maize. maize grain yields (Steward et al., 2018). Our results complement these existing studies by showing that, with non-stress-tolerant maize varieties and no rotation, the No-Tillage and Conservation Agriculture treatments can reduce the negative effect of heat stress for maize on croppingsystem yields. Retaining maize residues as a mulch (in the No-Tillage and Conservation Agriculture treatments) has been shown to reduce soil temperatures and improve soil water content, compared to no mulch (Lal, 1974;Doran et al., 1984;Horton et al., 1996). In addition, the Conservation Agriculture treatment included maize being intercropped with a legume. Existing research has shown that intercropping can reduce diurnal soil temperatures compared with maize monocropping (Ghuman and Lal, 1992;Olasantan et al., 1996). The studies mentioned above have shown that the reduced soil temperature is beneficial for enhancing root growth and water and nutrient uptake during heat stress for maize, thereby reducing some of the negative yield effects of heat stress for maize.With rotation, we found that cropping-system yields increased as heat stress for maize increased, and this effect was stronger as precipitation balance increased. We offer some possible reasons underlying this finding. Because our study focused on directly measuring grain yield, our possible reasons are based primarily on evidence for existing studies. Our heat stress calculation was a calculation of heat stress for maize.Legumes tend to have a greater tolerance to heat stress than maize (Farooq et al., 2017;Sita et al., 2017). Our calculation of heat stress for maize used a threshold of 30 • C as the base temperature (Section 2.3). This calculation used the threshold that is specific to maize even though most treatment-strategy combinations included one or more legumes. The optimum temperature range for grain legume crops has been reported as 10 • C to 36 • C, above which severe losses in grain yield can occur (Farooq et al., 2017). For example, the heat stress threshold temperature range for groundnuts has been reported as 30 • C to 35 • C (Sita et al., 2017). In our study, the cropping systems that included legumes have greater within-plot crop species diversity than those that did not include legumes. This greater diversity may mean that the cropping systems that included legumes can better maintain their functioning under heat stress.Existing studies have shown that incorporating legumes into maizebased systems can improve soil physical, chemical and biological properties, such as increased soil organic matter (Snapp et al., 1998), improved soil nitrogen content through biological nitrogen fixation (Snapp et al., 2010), improved soil carbon and aggregate stability (Thierfelder and Wall, 2010b), and improved soil structure (Eze et al., 2020). More generally, improved nutrient management can alleviate heat stress (Waraich et al., 2012). Improvements in soil properties associated with changes in tillage and residue management have also been measured for other crops and regions (beyond maize in Southern Africa), such as residue retention and no tillage significantly enhance enzyme activity, nutrient availability and uptake at different growth stages of wheat as compared to conventional tillage for wheat in India (Jat et al., 2020a). More generally, combining crop rotation with no tillage promotes a more extensive network of root channels and macropores in the soil (Hobbs et al., 2008). Legume intercropping has also been shown to increase root biomass (Arihara et al., 1991). All these improvements can increase the water holding capacity of soil and helps water infiltrate to deeper depths. Related to improved soil properties, Conservation Agriculture has also been shown to improve water-use efficiency in South Asia (Gathala et al., 2015;Jat et al., 2020b). Therefore, given the mixture of maize and legumes grown in the cropping systems, the threshold temperature used, the role of stress-tolerant maize varieties, and nutrient management, it may be plausible that cropping-system yields in our study increased even as our measure of heat stress for maize increased.We also found that with rotation cropping-system yields were more responsive to a simultaneous increase in precipitation balance and heat stress for maize in the Conservation Agriculture treatment than in the Control Practice treatment. The surface area exposed to heat and evapotranspiration was higher in the Control Practice treatment than in the No-Tillage or Conservation Agriculture treatments. This greater exposure was because the use of planting ridges in the Control Practice treatment exposed the soil to more sunlight and wind. The predominant practice in Malawi is to use planting ridges (Thierfelder et al., 2013) and they have a bell-shaped structure. This greater exposure, in response to a greater soil surface area, typically increases the drying of soil and magnifies declines in precipitation balance because of greater evaporation. If there are higher precipitation balances, soils in the Control Practice treatment may also drain faster. This faster drainage may expose crops to increased heat stress and means that the Control Practice has insufficient soil moisture content to help the crop recover after heat stress has ended. Existing studies have shown that practicing the principles of Conservation Agriculture can slow down drainage and improve infiltration rates (Thierfelder and Wall, 2010a;Eze et al., 2020). This may mean that the onset of the negative consequences of heat stress are faster in the Control Practice treatment than in the Conservation Agriculture treatment. Furthermore, in the Control Practice treatment the formation of ridges and the annual shift of the ridge to the furrow area in the next year implies that there is no possibility that the soil can develop a continuous soil pore structure, unlike in no tillage. Often, the soil develops a hoe pan underneath the ridges which further impedes root proliferation. This reduces capillary uptake and slows water infiltration rates (Thierfelder and Wall, 2009). In the No-Tillage and Conservation Agriculture treatments, more soil moisture would most likely be conserved under greater heat stress for maize. These responses will differ by soil type and other contextual factors (Steward et al., 2018), but across the ten communities our results suggest that the No-Tillage and Conservation Agriculture treatments coped better with heat stress for maize.We examined how cropping-system yields were affected by the principles of Conservation Agriculture, and the interaction of these principles with precipitation balance (precipitation minus reference evapotranspiration) and heat stress for maize under different combinations of maize variety and rotation. Our study used data from on-farm trials in ten communities and 14 seasons in the Central Region and Southern Region of Malawi. Our study has two main conclusions. First, practicing some or all the principles of Conservation Agriculture reduces the negative effect of heat stress for maize on cropping-system yield. This complements existing evidence that Conservation Agriculture can improve the adaptive capacity of maize to heat stress. Second, a positive interaction existed between precipitation balance and heat stress for maize when maize was rotated with a legume. We examined all crops grown in the cropping system rather than yields of only one crop (such as maize) per se as ultimately we must consider how the whole cropping system may contribute to climate adaptation. Our results suggest that Conservation Agriculture can reduce some of the detrimental effects of heat stress for maize on cropping-system yields, which is pertinent to the looming challenges of climate stress facing farmers.","tokenCount":"8100"} \ No newline at end of file diff --git a/data/part_3/9373634286.json b/data/part_3/9373634286.json new file mode 100644 index 0000000000000000000000000000000000000000..2b0268665c1914adf43de73461ca451bef933268 --- /dev/null +++ b/data/part_3/9373634286.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"a6ba0e900886ded5c96d2f9c80aaa7bb","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/f01db0ac-3f61-4a51-8946-bd480ad7dc07/retrieve","id":"-842268086"},"keywords":[],"sieverID":"05a087a0-051f-49e4-a802-04cd77be2e63","pagecount":"18","content":"Lego de repetidas evaluaciones en varios sitios, el Programa de Yuca del CIATestá en capacidad de ofrecer clones élite bien adaptados a diversas condiciones edafoclimáticas y adecuados para varios fines. Este folleto enumera dichos clones, junto con la descripción de su rendimiento y características de calidad y resistencia. Tales clones están disponibles a solicitud como cultivos in vi/ro. Estos pueden ser: 11 lanzados directamente como cultivares luego de su evaluación apropiada, y/o 2) empleados como progenitores de cruzamientos en programas de mejoramiento. Además de tales cultivos in ~1tro, se dispone de semillas lúbridas de progenitores selectos, las cuales proveen un alto nivel de varíabilidad y buenas posibilidades par-d selección local.Normalmente las solicitudes deberán hacerse comparando las características deseadas en una selección dada en un programa de mejoramiento con las características enumeradas para cada c1on, Como la preparación y el despacho de éstos tiene alto costo, el CIAT confia en que solamente se le pidan clones con verdadera utilidad potencial en los paises en los cuales se introducirán, El solicitante deberá incluir con su pedido un pemliso de importación de las autoridades nacionales de cuarentena, sí es necesario. Los pedidos deberán enviarse en el formato adjunto a: Dr, W, M, Roca Unidad de Recursos Genéticos CIAT Apartado Aéreo 6713 CaIi, Colombia Certificado y declaración fitosanitaria Todas las fuentes de material para preparar cultivos in vitro son tomadas de merístemas apicales de plantas cultivadas en la estación de CIAT-Palmira, Todos los despachos son inspeccionados por las autorídades cuarentenarías y su certificado fitosanitarío se incluye con el envío, Además, el CIAT adjunta una declaración fitosanitaría adicional del siguiente tenor:\"El propósilo de esta declaraci6n es proporcionar información complementaria, pero no es un sustitulo del Certificado Fitosanitario otorgado por las autoridades colombianas, Los cultivos in \\'Itm de meristemas de yuca :Manihot esculenta Cranlz) contenidos en este pfl(JVf'tt' SOn muestras vegetativas preparadas aséptica mente a partir de las yemas terminales de estacas brotadas durante una termaterapia de 4 semanas, Las estacas fueron tomadas de plantas visualmente sanas, libres de sin lOmas del arlubla bacterial, superalargamienlO, y pudrici6n del tal/o debido a Diplodia spp, Las plantas también fueron probadas, usando las técnicas hasta ahora diBponibles para enfermedades virales de la yuca, y resultaron negativas para lo siguiente: mosaicos ComúnyCaribeilo, virus /atentes que afectan a clones diferenciales, y Cuero de Sapo, Las cultivos estuvieron libres de los insectos y ácaros de la yuca, asi como de los huevo,. de estas plagas.De acuerdo a nuestro mejor conocímíento este material estuvo libre de enfermedades y plagas de la yuca al momento de su despacho,\"Todos los clones se envian como plántulas bien establecidas en tubos de ensayo, Normalmente, cinco a diez de éstos son despachados por cada clan solicitado, pero pueden enviarse más en casos especiales, Cada plántula se cultiva individualmente en un tubo de ensayo con medio estéril. Estos se colocan en empaques protectores para reducir la posibilidad de roturas en el camino. Al menos que se indique lo contrario, los paquetes se envian por correo aéreo a la mayoría de sus destinatarios.El ClATinformarn por télex O cablegrama los pormenores de envio para que el destinatario tome las medidas del caso. Esto es especialmente importante en los casos en que el despacho sea retenido por las autoridades cuarentenarias para que puedan evitarse las demoras innecesarias o posibles pérdidas del material. Instrucciones detalladas sobre el manejo posterior al recibo y la propagación se incluirán a solicitud especial. 0tr08 materiales c10nales disponibles Aunque los clones élite o las semillas híbridas pueden atender los requerimientos de selección en la mayor parte de las regiones, pueden considerarse pedidos especiales de otras accesiones del banco de germoplasma o clones híbridos. Estos hacen parte de la colección de aproximadamente 3000 accesiones de germoplasma del ClAT.De acuerdo con la capacidad de selección y necesidades de la institución solicitante, pueden suministrarse varios miles de semillas. Como los progenitores de cruces y las cantidades de semilla en reserva cambian constantemente, cada pedido será considerado individualmente según el material disponible en el momento de la solicitud. Esta deberá dirigirse a:El CIAT ha dividido las regiones productoras de yuca en seis zonas básicas según suelos y condiciones climáticas. Para cada una se describen también los principales limitan tes biológicos y fisicos del rendimiento. HCN: contenido de materia seca de la raíz Itambién altamente correlacionado con el contenido de almidón!.contenido de HCN en el tejido parenquimatoso de la raíz. Con el fin de mejorar continuamente los clones o cruces de yuca disponibles en el CIAT, éste necesita infonnarse sobre el desempeño de los materiales que distribuye internacionalmente. La publicación Evaluación de Variedades Promisorias de Yuca en América Latina y el Caribe, editada por Julio C. Toro y publicada por el CIAT en 1983, contiene sugerencias sobre la evaluación del material introducido ya sea como clones o como semilla botánica, Mayores detalles pueden suministrarse sobre procedimientos de evaluación a los programas que lo deseen.Esta descripción está dividida en seis secciones básicas; 1) origen o progenitores de cruces; nombre común; otras observaciones; 2) adaptación general en diferentes zonas edafoclimáticas; 3) rendi• miento y caracteristicas de calidad; 4) uso potencial general; 5) rasgos mmfológicos; 61 caracteres de resistencia/tolerdncia, Para la mayor parte de los rasgos cuantitativos I tales como rendimiento, calidad y resistencia) se dan las descripciones en términos de una escala que designa la expresión alta y baja del rasgo, Como ésta varia considerablemente según las condiciones ambientales, los datos numéricos exactos pueden confundir a menos que se den las condiciones ambientales detalladas para cada ensayo. En 108 informes anuales del CIAT se encuentran datos más extensos sobre algunos de los caracteres de rendimiento, ea1ídad y resistencia. requiere bajo HCl'\\, materia seca intermedia a alta y buena textura.el nivel de HCl'\\ de las raíces frescas no es crítico: materia seca intermedia a alta prefurible.requiere materia seca intermedia a alta: los requerimientos de HCN varian según la región.Pocos requisitos estrictos de calidad; materia seca intermedia a alta preferible.Color de la superficie de la raíz: color de la peridermis BI = blanca Am = amarilla MrCl = marrón claro Caracteres de resistencia/tolerancia :.:: \"'.:.. ' \"' \" \"' ' \" ' \" ' \" ","tokenCount":"1018"} \ No newline at end of file diff --git a/data/part_3/9380523635.json b/data/part_3/9380523635.json new file mode 100644 index 0000000000000000000000000000000000000000..2a3eb7d210e380786845467f3d2c706fab0a970d --- /dev/null +++ b/data/part_3/9380523635.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"ef221ef93cbd6e082a4715b4d3c890c6","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/708cf17f-fbb7-49d3-9c97-b1483dff5c12/retrieve","id":"1131513715"},"keywords":[],"sieverID":"fefc6edd-85e9-4396-94ba-1ed99df5e176","pagecount":"16","content":"~ ~METODOS PARA EVALUAR LA NODULACION El método elegido para evaluar la nodulación depende del tipo de , germoplasma que se evalúa, de la edad de la planta, del número de nódulos presentes, y de la facilidad de extraer las raíces del suelo. En general, la nodulación no se evalúa en los tratamientos fertilizados con nitrógeno. 17.1 Leguminosas forrajeras tropicales 17.1 . 1 Evaluación de la nodulación en los ensayos en cilindros con suelo sin perturbar En los ensayos de invernadero es relativamente fácil recuperar todos los nódulos, aunque no se puedan separar las raíces (y por eso los nódulos) de las dos plantas del mismo cilindro. Los nódulos de muchas de las leguminosas forrajeras son pequeños, lo que dificulta la e~ti~ac~?n de su peso. Además, ese peso es tan pequeño que su estimación no es confiable a causa de las pequeñas cantidades de suelo adheridas a los nódulos que es dificil eliminar de las muestras; por esta razón, solamente se recomienda contar los nódulos.Luego de extraer las raíces de los cilindros, se colocan éstas sobre un tamiz y se lavan cuidadosamente con agua . Si no se puede hacer el recuento inmediatamente, se deben ~uardar en el congelador lai raíces con los nódulos, en bolsas plásticas rotuladas. 17.1.2 Evaluación de la nodulación durante la fase de establecimiento en el campo En un ensayo de campo se deben hacer, por lo menos, dos evaluaciones de la nodulación durante la fase de establecimiento de la leguminosa. 17 Por lo regular, la prime ra evaluación de la nodulación se realiza seis semanas después de la siembra, haciendo conteos de los nódulos. En la segunda evaluación (de 12 a 16 semanas después de la siembra) se utili zan l as categorías de abundancia si se encuentran tratamientos con más de SO nódulos por planta.Las categorías de 'tamaño predominan t e ', nodulación e n la raíz principa l ('distribución'), y 'color interno predominante' (Cuadro 17.1) se utilizan pa ra complementar los datos sobre la abundancia de los nódulos . No siempre es necesario tomar estos datos, pero es recomendable hacerlo cua ndo los trata mientos producen cambios en estos parámetros • • 2 Toma de las muestras Se evalúan seis plantas por parcela. Es aconsejable reservar .'las plantas de los extremos de los surcos (los últimos SO cm de . cada surco) para hacer la evaluación de la nodulac ión temprana .Si se pretende evaluar el color inte rno de los nódulos, es necesario hace rlo en el campo debido al rápido deterioro de los colores de l os nódulos una vez extraídos del suelo; primero se debe hacer su recuento ya que luego se destruyen pa ra evaluar el color interno. 17-2 Cuadro 17.1 Códigos para la evaluación de cuatro parámet ro s de la nodulación de plan tas individuales de leguminosas for raj eras tropicales.A.c. Escoger un sitio de la pradera donde la cobertura-de la leguminosa sobrepase el 60%. Estimar el porcentaje de cobertura de la leguminosa utilizando un marco de 1 m 2 dividido en cuadros de 20 por 20 cm, según una escala de 1 a 4 para cada cuadro.Luego, con un barreno de 7 ero de diámetro (Figura •17.3) que se introduce en el suelo a golpes de martillo, sacar una muestra de . suelo de cada iínea de cinco cuadros del marco, cada una de una•columna diferente (Figura 17.4).Dividir cada muestra de suelo en cuatro submuestras que representen cuatro profundidades del suelo, 0-4, 4-8, 8-12, y 12-16 cm; contar luego el número de nódulos en las veinte submuestras. Repetir el proceso en otros cuatro sitios de la pradera que tengan mis del 60% de cobertura de la leguminosa. En caso de obtener un bajo número de nódulos por muestra, se puede 17-8 En praderas donde no haya áreas que tengan más de 60% de cobertura de la leguminosa, la evaluación debe realizarse con la metodología descrita anteriormente (ver 17.1.2). 17.2 Frijol y otras leguminosas de granoNo es difícil recuperar todos los nódulos de la~ plantas de frijol que crecen en mace tas; para hacerlo, se lavan las r aíces cuidadosamente con agua co!riente en un tamiz y , de se r posible, se cuentan los nódulos inmedia t amente . Se pueden guardar congeladas las raíces con nódulos , dentro de bolsas plásticas rotuladas, pero los nódulos perderán su es tructu~a firme y su color característico. Los nódulos muertos o senescentes no se toman en cuenta.Si hay diferencias en el tamaño de los nódulos entre los tratamientos, puede ser útil med i r la masa de los nódulos, u sando parámetros tales como el peso fre sco , el volumen fresco , o el peso seco; cualquiera que sea el método usado, es nec esario retirar los nódulos de las raíces, operación que toma mucho tiempo.Para determinar el peso o el v olumen fresco, es importante que cada muestra sea tratada de igual manera y que se emplee el mismo tiempo en lava r las raíces , r etirar los nódulos de las raíces, y pesarlos o medirlos. El volumen de lo s nódulos se mide colocándolos dentro de una probeta pequeña (FAO, 1985 ); el peso 17-10 seco de los nódulos se mide después de mantenerlos durante 48 horas a 60 °C, y es absolutamente necesario remover de los nódulos toda la arena y el suelo antes de pesarlos. 17.2.2 Evaluación de la nodulación en el campo Se recomienda examinar las raíces de seis plantas por parcela, como mínimo. En el caso de que los ensayos con frijol voluble intercalado con maíz se puedan sacrificar únicamente este número de plantas, mientras que en ensayos con monocultivos de frijol arbustivo se toman muestras de ocho a diez plantas. ","tokenCount":"951"} \ No newline at end of file diff --git a/data/part_3/9383828606.json b/data/part_3/9383828606.json new file mode 100644 index 0000000000000000000000000000000000000000..b7f2b0a5a39d19c142a841c468a45996d876c605 --- /dev/null +++ b/data/part_3/9383828606.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"00369056a33f8ae8f6bec76ec9fa950d","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/87563e35-15a5-4657-a105-4e6f3503eeb8/retrieve","id":"1344157048"},"keywords":[],"sieverID":"708c1ce3-a954-404d-9c6a-73526d82a1a1","pagecount":"22","content":"Esta tendencia cobra hoy mayor importancia, debido a la gran diversidad de especies forrajeras disponibles, las cuales producen forraje durante todo o casi todo el año, y la necesidad de reducir los costos de producción, debido a:(1) El alto costo alcanzado por los alimentos concentrados y otros suplementos alimenticios, (2) El escaso incremento en el precio de la carne y la leche pagado al productor y (3) el bajo poder adquisitivo de la población de menores ingresos, quienes demandan una alta proporción de la producción.Por lo anterior, los productores se ven en la necesidad de hacer un uso racional y más eficiente de sus pasturas, como una forma económica y práctica para producir carne y leche en zonas tropicales.El desarrollo de la ganadería en el trópico requiere de una base científica y técnica para resolver sus problemas, por tanto, el estudio de los atributos agronómicos y de calidad nutricional de las especies forrajeras, como base para la alimentación de los animales, adquiere cada vez mayor importancia.En este documento se presenta una revisión general sobre algunos aspectos relacionados con las posibilidades y limitaciones de la utilización de las pasturas y los forrajes tropicales para la producción animal.Potencial de la zona tropical para la producción de forrajes Sobre el potencial de la zona tropical para la prOducción de forrajes existen varias opiniones. Algunos investigadorelil son optimistas y consideran que el trópico dispone de abundantes recursos de energía solar yagua, y a esto se debe el éxito obtenido por los ganaderos que han aplicado tecnologías avanzadas de manejo, logrando nivelelil de producción animal por unidad de área comparables y aún superiorelil, a los obtenidos en zonas templadas.En la zona templada, en condiciones favorables de En consecuencia, las caracteristicas de crecimiento y desarrollo de la mayor1a de las gram1neas tropicales, incluyendo el rápido incremento que experimenta la lignina y el descenso en la digestibilidad al avanzar la edad, hacen que sea dificil proporcionar en forma continua alimentos de alta calidad a los animales en pastoreo. Los acentuados cambios estacionales que sigue la distribución de las lluvias complican, adn más, el manejo de las pasturas en las explotaciones ganaderas.Durante la estación lluviosa la producción de forraje es alta como resultado del desarrollo de nuevos brotes o plántulas. Las plantas jóvenes son más nutritivas y el animal las consume con facilidad, pero el contenido de MS (< 20%) Y su utilidad suelen ser bajos, debido a que el volumen del tracto digestivo del animal impone un limite, que no le permite consumir la cantidad de forraje necesaria para llenar sus requerimientos de producción con base en MS (McDowell, 1975).Las leguminosas a través de la nodulación y fijación de nitrógeno atmosférico se constituyen en una fuente barata de nitrógeno para el suelo y las gramíneas asociadas y de prote1na para los animales.MUchos investigadores han encontrado una relación lineal, al menos dentro de cierto rango, entre la ganancia de peso vivo por hectárea y el contenido de leguminosas en la pastura. Esta relación es lineal hasta cuando la leguminosa constituye más o menos un 40% en la pastura. A valores superiores al 40%, parece que es ya el rendimiento de materia seca total en la pastura es el que no permite incrementos de peso vivo directamente proporcionales con el aumento en la cantidad de leguminosa (MUstapha y Djafar, 1980). Las mayores respuestas en producción animal por hectárea resultantes del incremento de la leguminosa en la pastura, pueden ser atribuidas a incrementos en: a) el nivel de nitrógeno en la dieta del animal, b) la producción de materia seca de la pastura y c) el valor nutritivo del forraje. Además, se ha observado que conforme la proporción de leguminosas en la dieta se incrementa de 0-100%, ocurren incrementos en el consumo voluntario y en la digestibilidad de la materia seca y la proteína cruda (Minson y Milford, 1967).Las leguminosas tropicales son, a menudo, más digestibles para el animal que las gramineas en estados avanzados de crecimiento. Su contenido de prote1na cruda varia entre 15% y 25% de la MS. Son, por lo tanto, una fuente de alimento alto en proteína, con la ventaja de tener, además, una tasa muy baja de disminución de su contenido al aumentar la edad de la planta. Esta capacidad de conservar su nivel de proteína en el forraje ayuda, consecuentemente, a una mejor utilización de la gramínea asociada por el animal.Según Mannetje (1982) el nivel de producción depende del tipo de animal, su potencial genético, su salud y su ambiente. Según este autor es muy importante el consumo de energia digestible, proteínas, minerales y vitaminas y la ausencia de sustancias tóxicas o nocivas para el animal.El potencial genético de los rumiantes para producción nunca se logra totalmente en el trópico, aún en pasturas mejoradas, ya que el consumo de energía digestible es insuficiente. La cantidad y calidad nutritiva del forraje ofrecido a los animales, interactúan e influyen significativamente en la producción. Si la cantidad de forraje disponible no es un limitante y no se presentan problemas de aprehensión o de cosecha del forraje por parte del animal, la producción de éste, en gran parte, determinada por el consumo voluntario de MS digerible, que a su vez, determina el consumo de energía metabolizable (Whiteman, 1976).Según stobbs (1976) en el trópico las pasturas nativas y naturalizadas se caracterizan por sus bajos rendimientos y bajo valor nutritivo. Generalmente, tienen bajo contenido de proteína, debido a la escasa o ninguna presencia de leguminosas, especies que pueden mejorar notablemente la cantidad y calidad del forraje aprovechable en pastoreo.Las pasturas tropicales son alimentos fibrosos de media a baja digestibilidad, y cuando los animales las consumen las usan principalmente para llenar los requerimientos de mantenimiento, quedando pocos nutrientes disponibles para producción. En consecuencia, la capacidad de las pasturas tropicales para producción de leche está por debajo del potencial genético del animal, como 10 muestra la Figura l. Debido a que los requerimientos nutricionales para ganancia de peso vivo son menores que para la producción de leche, estas pasturas son capaces de dar una producción de carne relativamente alta. De acuerdo con la Figura 1, la energía requerida para ganar 1 kg de peso vivo/día es casi igual a la requerida para producir 8 a 9 kg de leche/día. CUando las pasturas mejoradas no se fertilizan o cuando se utilizan pastos naturales, las producciones diarias de leche por vaca oscilan entre 5 y 7 kg, con bajas producciones por unidad de área (1300-2000 kq/ha/año), debido a la baja carqa animal/área que pueden soportar estas pasturas (García, 1983). La máxima producción diaria de leohe de vaoas, sin suplemento, en pasturas tropioales fertilizadas oon nitrógeno, es similar a la obtenida cuando pastorean en asociaoiones de gramíneas y leguminosas. Con éstas las produociones diarias alcanzan entre 8 y 9 kq de leche/vaca para razas pequeñas como Jersey y de 12 a 14 kg/vaca para razas grandes como Holstein. Esto equivale a una producción por lactancia de 2000 kq para razas pequeñas y de 3500 kg para razas grandes, con producciones entre 6800 y 15000 kg/ha/año y cargas entre 2 y 4 vacas/hectárea (Garcia, 1983).La producción de carne en pasturas tropicales es variable dependienta de la época, la especie de pasto y el manejo. Whiteman (1976) reporta que para un rango amplio de condiciones ambientales de manejo, ésta puede ser de 0.35 kg/animal/dia y raramente excede a 0.60 kg/animal/dia. Estas ganancias ocurren aún con animales de alto potencial genético. Lo anterior sugiere, una vez más, que el valor nutritivo de las pasturas tropicales limita el potencial de producción animal.Según Whiteman (1976) la calidad nutritiva es el factor que más limita el potencial de las pasturas tropicales para la producción animal. El principal limitante de los pastos tropicales para la producción de leche es su baja disponibilidad de energía. Sin embargo, en diferentes condiciones de manejo, otros nutrimentos, principalmente la proteína cruda, puede ser limitante para la producción de leche al disminuir el consumo de MS. Elementos como el azufre y el calcio pueden disminuir el consumo de alimentos cuando son deficientes en el pasto. Por otro lado, el fósforo generalmente se encuentra en los pastos en cantidades inadecuadas para satisfacer los requerimientos de las vacas lecheras. Además elementos como el zinc, sodio, molibdeno, cobre y cobalto, son frecuentemente deficientes en los pastos tropicales. No obstante, cuando los pastos son jóvenes y los animales pueden seleccionar las partes más nutritivas, éstos pueden cubrir las necesidades de proteina cruda y minerales (Garcia, 1983).El bajo consumo de energia en los pastos tropicales está relacionado con su digestibilidad. Esta es 10 a 13 unidades inferior a la de los pastos de las zonas templadas en estados jóvenes, y puede ser menor en estados avanzados de madurez.La estacionalidad en el crecimiento de las pasturas es otro factor que limita la producción animal en el trópico, ya que en las épocas de minima precipitación ocurren periodos criticos de estrés nutricional. A esto hay que agregar el efecto de la estructura de las pasturas tropicales. Esta se caracteriza por una baja densidad de hojas y alta cantidad de tallos y hojas muertas, con una gran variación en la densidad de hojas entre las partes altas y bajas de la planta. Esta baja densidad de los pastos tropicales y menor contenido de hojas, se debe a una menor cantidad de rebrotes/m 2 y al continuo crecimiento de los tallos, aunque existe una gran variabilidad entre y dentro de los géneros y especies.La estructura deficiente de las pasturas tropicales, puede ocasionar fatiga o cansancio en los animales durante el pastoreo y limitar el consumo. Esto influye significativamente en el gasto de energia para mantenimiento, sobre todo cuando el animal pastorea durante 8 horas o más en el dia.Para mejorar la estructura de las pasturas tropicales se ha sugerido aprovechar la alta densidad de hojas que tienen los géneros Oiqitaria, Cynodon, Panicum y Brachiaria y emplear prácticas de manejo que faciliten su defoliación por el animal. Atributos que debe reunir una especie forrajera 1. Amplio rango de adaptación a condiciones de suelo y clima y tolerancia a plagas y enfermedades 2. Capacidad para proporcionar alto rendimiento de forraje de buena calidad. Esto supone una alta tasa de crecimiento durante la estación de lluvias, buena capacidad para recuperarse con rapidez después del corte o pastoreo en condiciones adversas y una alta relación hoja/tallo.3. Proporcionar una cobertura vegetal densa y asequible al animal. Esto implica un buen cubrimiento o protección del suelo, y además poseer una buena estructura dentro de la cubierta vegetal, con una alta cantidad de hojas en el estrato superior para facilitar su consumo por el animal.4. Buena capacidad para producir semillas viables o de propagarse por medio de material vegetativo.5. Rapidez de establecimiento y cubrimiento del suelo, lo cual indica habilidad para extenderse, agresividad para competir con malezas durante el establecimiento y capacidad de proporcionar rendimientos rápidos después de la siembra.6. Ser apetecible por los animales, lo cual indica tener una alta capacidad de consumo en presencia de otras especies.7. Buena capacidad para asociarse con otras especies. Esto permite tener un buen equilibrio entre gramíneas o un buen balance en mezclas de gramíneas y leguminosas.Capacidad de tolerar las sequias. Indica la capacidad de conservar sus hojas durante la época seca y de recuperarse rápido al inicio de la estación lluviosa.Poseer buena persistencia. Es decir, tolerancia al pastoreo (consumo, pisoteo).Sobre el tema tratado en este documento se concluye que el trópico posee un alto potencial para la producción animal por unidad de área, si se tiene en cuenta que se puede producir forraje todo o casi todo el año y que además se dispone de especies de alto rendimiento. Las especies forrajeras tropicales son de medias a bajas en su calidad nutritiva: por lo tanto el productor interesado en elevar sus niveles de producción animal debe esforzarse por mejorar el manejo y la utilización de sus recursos forrajeros, tratando en lo posible de incorporar leguminosas en las pasturas, en asociación ó como bancos de proteína.","tokenCount":"1990"} \ No newline at end of file diff --git a/data/part_3/9401529542.json b/data/part_3/9401529542.json new file mode 100644 index 0000000000000000000000000000000000000000..e27b0fdd675c4c81640c188c6916a7e7906fcabe --- /dev/null +++ b/data/part_3/9401529542.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"dbcb761a0b91dc2c028e11f7d63a4ab1","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/757cb637-9dbf-4e76-8f5a-d8e3b0db5ae3/retrieve","id":"1944834798"},"keywords":["Bacterial blight","Vigna unguiculata","cowpea","virulence","seed transmission"],"sieverID":"1feb298b-f21d-4351-aa5f-289365fb7dd4","pagecount":"5","content":"Seed transmission of Xanthomonas campestris pv. vignicola was investigated to ascertain the importance of seed as a primary source of inoculum for bacterial blight disease in cowpea. The study was carried out using seeds of five cowpea varieties (TVx 12349, IT86D-721, IT82D-889, Ife Brown and TVx 3236) artificially inoculated with three bacterial isolates (Ikenne, Kano and Ibadan), and seeds harvested from infected plants. Results showed that seed to plant transmission caused 6 -24% postemergence seedling mortality and 26 -49% incidence of blight in plants raised from infected seeds. These results support seed transmission of X. campestris pv. vignicola in cowpea and suggest that the distant spread of bacterial blight on cowpea may also be due to seed transmission.Four bacterial diseases have been documented to attack cowpea. Two of them are of economic importance. They are: bacterial blight (induced by Xanthomonas campestris pv. vignicola [Burkholder] Dye) and bacterial pustule (induced by X. campestris pv. vignaeunguiculatae) (Rachie, 1985;Emechebe and Florini, 1997;Shoaga, 1998). Bacterial blight is the most widespread disease of cowpea, having been reported from all regions of the world in which cowpea is cultivated (Emechebe and Florini, 1997). Bacterial pustule on the other hand, has only been reported mainly in Africa (Emechebe and Florini, 1997). The other bacterial diseases of cowpea are bacterial wilt (induced by Pseudomonas syringae pv. solanacearum) and halo blight (induced by P. syringae pv. tabaci) (Emechebe and Florini, 1997). Both were reported in Brazil and are of minor economic importance to cowpea production (Emechebe and Florini, 1997).Bacterial blight of cowpea was first reported in Perkins, Oklahoma in 1931 and Texas in 1942 (Preston, 1949). The pathogen was isolated from cowpea seed and was named Xanthomonas vignicola Burkh in 1944 (Preston, 1949). The bacterium was subsequently reported from many countries in Africa and India (Patel, 1981;Allen, 1991). A checklist by Allen (1980) showed that bacterial *Corresponding author. E-mail: r.okechukwu@cgiar.org. blight was first recorded in Tanzania in 1964 although Kaiser and Ramos (1979) considered their work to be the first in East Africa. Williams (1975) first recorded the disease in Nigeria.This disease has been reported to induce yield loss of 26. 4% (1975) and 18.1% (1976) in \"Ife Brown\", 23.6% (1975) and 19.2% (1976) in \"New Era\" (Ekpo, 1978). In areas where cowpea is commercially grown, yield depression due to X. campestris pv. vignicola may be as high as 71% in pod, 68% in seed and 53% in fodder (Okechukwu et al., 2000).It has been observed that as cowpea is introduced into new areas where it has not been previously grown, bacterial blight rapidly becomes established, resulting in serious losses. The incidence of bacterial blight in new production areas suggests that infected seed may be the primary source of inoculum that initiates infection in the field. This study was conducted to determine the degree of seed to plant, and plant to seed transmission of X. campestris pv. vignicola in cowpea. Seed to plant transmission of X. campestris pv. vignicola from artificially inoculated seeds. Bacterial suspension (10 8 colony forming units (CFU)/ml) was prepared in sterile distilled water from 24 h old nutrient agar cultures for each of the bacterial isolates. Fifty seeds of each cowpea variety were artificially inoculated by soaking for 24 h in each of the bacterial suspensions. Control seeds were similarly soaked in sterile distilled water. Inoculated and control seeds were separately sown on 10 April, in heat-sterilized top soil contained in 25 cm-diameter plastic pots at the rate of 10 seeds per pot. The experimental design was a split plot (5 varieties and 3 isolates plus control) with 4 replications. The pots were placed in IITA screen house with daylight regime 11 -12 1 /2 h at 25 -28°C and relative humidity of about 70 -90%. Soil was kept moist by sprinkling every other day with tap water. Seedling emergence was determined 7 days after planting and percentage postemergence damping-off was determined 14 days after seedling emergence using the formula:Where, y = total number of plants after thinning; x = number of living plants at assessment time.Data on disease incidence were obtained after the first appearance of disease symptoms. There were four disease assessments performed at weekly intervals. The first rating started 26 days after planting. Disease incidence was obtained by calculating the proportion of plants per replicate that was infected to the total number of plants present. At maturity all pods per replicate were harvested, and manually threshed.Seeds harvested from infected plants and those from uninfected plants (control) were separately planted in 25 cm-diameter pots containing sterile soil in the screenhouse, to evaluate seed to plant transmission of X. campestris pv. vignicola in natural infection. The experimental design was a split plot (5 varieties and 3 isolates plus control) with 4 replications. Seeds were sown at the rate of 10 per pot and 5 pots per treatment combination (variety/isolate). The five pots per treatment combination were considered as a replicate. Data collected included percentage seedling emergence, postemergence damping-off, and disease incidence as described above.The effect of artificial inoculation of cowpea seeds with X. campestris pv. vignicola on percentage seedling emergence is shown in Table 1. Though the control plants had higher percentages of seedling emergence, none of the inoculated varieties had a significantly (P <0.05) lower percentage emergence compared to their respective controls. In general, percentage seedling emergence varied from 63 to 68% in IT86D-721, from 72 to 88% in TVx 3236, from 53 to 65% in TVx 12349, from 43 to 58% in IT82D-889, and from 45 to 55% in Ife brown. Across the varieties, the reductions in seedling emergence associated with Kano, Ikenne, and Ibadan isolates were 24, 22 and 16%, respectively.The effects of seed to plant transmission of bacterial isolates on post-emergence seedling mortality of cowpea grown from seeds artificially inoculated with X. campestris pv. vignicola are shown in Table 2. Significant (P <0.05) post-emergence mortality was recorded in all variety/isolate combinations. The seedling mortality percentages in IT82D-889/Kano isolate (22.8%), IT82D-889/Ibadan isolate (18.5%) and Ife brown/Kano isolate (15.9%) were comparable and significantly higher than those of other variety/isolate combinations (2.9 -12.0%).Table 3 shows the disease incidence in five cowpea varieties raised from seeds artificially inoculated with X. campestris pv. vignicola isolates and the control at four assessment periods. The disease incidence on the first week of assessment (26 days after planting) ranged from 0 to 8% with no significant difference (P<0.05) among the inoculated varieties. Among the inoculated treatments, the highest incidence was recorded in IT82D-889/Kano combination (8%). By the second assessment period, there was a significant difference (P<0.05) between the control plants and the inoculated varieties (Table 3). While the control plants had no incidence of disease, the inoculated plants had disease incidence ranging from 26% in IT86D-721/Ikenne isolate combination to 33% in Ife brown/Kano isolate combination. There was, however, no significant difference (P<0.05) among all the variety/ isolate combinations. This trend was the same for the third week of assessment, except that the disease incidence in inoculated varieties was higher and ranged from 53% in IT86D-721/Ikenne isolate combination to 65% in Ife brown/Kano isolate combination. On the fourth assessment period, IT82D-889 inoculated with Ibadan, Ikenne and Kano isolates had 100% disease incidence; the other variety/isolate combinations had a disease incidence that ranged from 75 to 84%. In general, disease incidence in plants derived from inoculated seeds increased with time while plants from uninoculated seeds remained blight-free.Percentage seedling emergence in cowpea varieties grown from seeds harvested from infected plants is shown in Table 4. In varieties infected with Ibadan isolateof X. campestris pv. vignicola seedling emergence varied between 73.3 and 80.0% compared to 100% recorded for seeds harvested from uninfected control plants. Seed-borne Ikenne and Kano bacterial isolates were also associated with reduced seedling emergence ranging from 70.0 to 80.0% and 66.7 to 80.0%, respectively. Overall, there was no significant reduction in seedling emergence regardless of the isolate/variety combination except in seed infection of IT86D-721 with Kano isolate.Seed to plant transmission of bacterial blight is presented in Table 5. Significant (P<0.05) post-emergence mortality was recorded in all variety/isolate combinations. The seedling mortality percentages in IT82D-889/Ibadan isolate (20.8%), IT82D-889/Kano isolate (23.8%) and Ife brown/Kano isolate (17.9%) were comparable and significantly higher.Incidence of bacterial blight in plants grown from seeds harvested from plants infected with X. campestris pv.vignicola is presented in Table 6. Bacterial blight was not observed in plants grown from seeds harvested from uninfected plants, but plants derived from seeds harvested from infected plants developed characteristic blight symptoms. All the three bacterial isolates were transmitted from seed to plant in all tested varieties. However, the degree of seed to plant transmission varied significantly (P<0.05) with variety/isolate combinations with a range of 26.4 -49.4% blight incidence across the varieties and isolates. The highest blight incidence was recorded for IT82D-889/Kano isolate combination while the lowest incidence was observed in IT86D-721/Ikenne isolate combination than those of other variety/isolate combinations (5.8 -10.0%).The varieties varied in their response to artificial infection with bacterial isolates. The blight incidence arising from seed-borne infection varied from 39.6% in the least compatible Ikenne isolate/TVx 3236 combination to 50% in the most compatible Kano isolate/IT82D-889 combination. The differential disease reactions to the isolates implies the existence of pathogenic variation in isolates of X. campestris pv. vignicola as earlier reported (Jainkittvong et al., 1989;Shoaga, 1998). The variations observed in pathogenicity of the isolates may be due to their origin, Kano isolate being introduced from the arid/semi-arid, and Ikenne isolate from the humid forest, to Ibadan in the derived savanna agroecology. Also, variations in the molecular components of isolates of X. campestris pv. vignicola from cowpea leaves collected from various geographic areas may affect isolate/seed compatibility and the degree of each seed to progeny transmission of each bacterial isolate (Verdier et al., 1998).Bacterial transmission in seeds harvested from infected plants caused 6-24% post-emergence seedling mortality and 26-49% blight incidence. The percentage seedtransmitted blight incidence varied among the different varieties. This variation may be due to the different levels of infected seeds in the seedlot harvested. Such variation in the percentage of infected seedlings ranging from 15 to 28.3% has been reported (Shoaga, 1998). In a similar work on rice, Veena et al. (1996) reported variation in the percentage of rice seedlings infected with X. oryzae pv. oryzae.This study has shown the importance of seed-borne inoculum of X. campestris pv. vignicola in disease initiation. Even though seed-borne inoculum is considered insignificant in causing bacterial blight in areas where the disease has already been established (Veena et al., 1996), infected seeds are important means of dispersal of the pathogen to disease-free areas. Such transmission will lead to scattered foci of infection that are an ideal condition for an outbreak of an epidemic Okechukwu et al. 435 (Mathur et al., 1988;Veena et al., 1996;Shoaga, 1998). The use of pathogen-free seeds for planting will help avoid all the deleterious effects of seedling mortality, foliar blight and stem canker in surviving plants, the cumulative effect of which may lead to yield losses.","tokenCount":"1825"} \ No newline at end of file diff --git a/data/part_3/9404242244.json b/data/part_3/9404242244.json new file mode 100644 index 0000000000000000000000000000000000000000..53f82137e2ae65ea01be38f1699fb3c858386a53 --- /dev/null +++ b/data/part_3/9404242244.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"0b337d9e9820da9537919b6951141743","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/ee284127-e701-4f11-89fe-df77a258072f/retrieve","id":"1822072007"},"keywords":[],"sieverID":"7b6b81bf-7323-4756-9fb1-9456bca12c1b","pagecount":"2","content":"• Retail prices of maize declined by 12 percent in February.• Maize prices were highest in the Southern Region and lowest in the Northern region.• ADMARC sales were reported in 22 of 26 markets monitored by IFPRI.• Retail prices of maize in Malawi were higher than in neighboring countries.Figure 1 shows a trend in prices over the 12 months ending in February 2024, and, for comparison, over the 12 months ending in February 2023. At the beginning of the harvest season, we start reporting prices of newly harvested maize, which has a higher moisture content compared to maize from the previous harvest. High moisture content makes it unsuitable for storage or milling. During drying, it loses about 20 percent of its weight. Solid lines in Figure 1 represent observed maize prices. Dotted lines represent prices adjusted for moisture content, reflecting the true price trend.In the month of February, average daily maize prices continued to decline, with all 26 IFPRI monitored markets experiencing a decrease for the first time in 2024 (Figure 1). Weekly average maize prices dropped from K880/kg in the final week of January to K771/kg in the final week of February, representing a 12 percent decline (Table 1). The largest decline in prices, amounting to 24 percent, was observed in Mwanza market.All three regions experienced declining prices in the month of February (Figures 2 and 3). The Southern region reported the highest monthly average retail price of K870/kg, marking a 12 percent decrease from January's price of K991/kg. Additionally, the highest weekly average price was recorded in a market within the Southern region, Mpondabwino market in Zomba, where maize was sold at K1005/kg in the first week of February.The Central region reported the highest decline in monthly average retail maize prices in February. Prices in the The Monthly Maize Market Report was developed by researchers at IFPRI Malawi to provide clear and accurate information on the variation of maize prices in selected markets throughout Malawi. All prices are reported in Malawi Kwacha (K).For further information contact Chimwemwe Banda (C.Banda@cgiar.org) at IFPRI Malawi.To learn more about our work, visit www.massp.ifpri.info or follow us on Twitter (@IFPRIMalawi).Table 1. Weekly average retail prices (K/kg) Figure 3. Location of markets region decreased by 16 percent, dropping from K911/kg in January to K769/kg in February. This decline coincided with the start of garden (dimba) maize harvesting by some farmers in the region, leading to increased availability of maize to traders. The Northern region reported the lowest monthly average price of maize at K643/kg, down from K710/kg in January, making it the region with the lowest prices compared to others. Additionally, Chitipa market, located within the Northern region, recorded the lowest weekly average price of K574/kg in the third week of February, further highlighting the region's overall lower prices compared to others.Selected markets in Malawi reported the highest average price at the official exchange rate compared to other countries in the region. Lunzu market in the South reported the highest weekly average price of maize at both the official exchange rate (K1,700/$) and the market exchange rate (K2,200/$), with a 50 kg bag of maize fetching K43,950. Conversely, South Africa recorded the lowest prices at both exchange rates, with a 50 kg bag of maize selling for K19,975 and K25,850 at the official and market exchange rates, respectively.ADMARC sales were reported in 22 of the 26 markets monitored by IFPRI, 5 in the Northern region, 4 in the Central region and 13 in the Southern region. No ADMARC purchases were reported in any of the 26 markets.IFPRI Malawi has been monitoring retail maize prices and ADMARC activities in selected markets since February 2016. Currently, data is collected from 26 markets across the country, with monitoring occurring six days per week, excluding Sundays. At least three monitors report data from each market. Data is collected by means of phone calls to the monitors. Regional prices reported in Figure 4 are sourced from weekly reports from Commodity Insights Africa.Note: Weekly average price for the week ending on 28th February ","tokenCount":"673"} \ No newline at end of file diff --git a/data/part_3/9405184383.json b/data/part_3/9405184383.json new file mode 100644 index 0000000000000000000000000000000000000000..89b4dab1b0d38ab888fce69be9fbb7d609f5408c --- /dev/null +++ b/data/part_3/9405184383.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"ca999d72158e7f50e6816908b216c118","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/ba133b98-a4a8-427d-a586-bbf5cf769b7d/retrieve","id":"1501555866"},"keywords":[],"sieverID":"558ccecd-5d7a-47e4-b9bd-9131c73e9506","pagecount":"44","content":"This technology toolkit catalogue may be reproduced in its entirety or in part for non-commercial application provided that the TAAT Clearinghouse is acknowledged.Front cover photos: Lining a new fishpond in Kenya (upper left), an earthen fishpond network in Nigeria (upper right), catfish harvested using nets (bottom left) and smoking oven for aquaculture products (bottom right). Photos from WorldFish and IITA Youth AgripreneursThe TAAT Top 100 Technologies. The Clearinghouse developed a database of the Top 100 Technologies that are transforming African agriculture. It is based upon the approaches of the TAAT Commodity Compacts but also includes those from the CGIAR Collaborative Research Programs that are recently described as ready for next user. These technologies are divided between those involving improved genetics and plant and animal breeding (23%), manufacturing and use of input products with proven efficacy (21%), management practices for protection of crops and livestock against pests and diseases (27%), labour-saving mechanized equipment available on the market (26%), and applications for distribution of digital information (3%). These technologies have a direct role towards extension messaging and campaigns in view of achieving the Sustainable Development Goals related to farm productivity, food security and hunger reduction, responsible food consumption, improved household nutrition and diets, economic growth, climate-smart innovation, partnerships for the goals, and improved human equity and empowerment.The Top 10 Aquaculture Technologies. This catalogue presents ten technologies that serve to modernize aquaculture stocking and production systems, feed formulation and manufacturing, and post-harvest handling and value addition in Africa. These technologies include: 1) Mono-sex male tilapia fingerlings for higher feed conversion and production rate, 2) Fast-growing and hybrid African catfish with greater survival and hardiness, 3) Mass production of fingerlings in \"hapa\" nets to save space and feed, 4) Durable pond lining for water conservation, 5) Tank and cage culture systems for intensive, land-based production, 6) Flow-through and recirculatory aquaculture systems with enhanced water quality and economy, 7) In-pond raceway systems for optimizing water and feed control, 8) Low-cost formulation and pelleting of low cost fish feed, 9) Integrated fish and vegetable production with mutual benefits and income diversification, and 10) Processing and preservation techniques that increase market access and commodity value. Details on each of these ten technologies are included in the catalogue.Use of Improved Breeds of Fish. Aquaculture is an ancient art but throughout much of its history wild and cultivated fish were no different. This is unlike the steady domestication of farm animals. More recently, the gap between aquaculture and farm animal industries in the use of improve breeds is narrowing. Through these improved fish breeds, gains in growth rate of 12% or more per generation are achieved, and fish selected for faster growth also show improved feed conversion, higher survival, and better utilization of space. Two fish of greatest interest in Africa are tilapia and catfish. The introduction of Genetically Improved Farmed Tilapia (GIFT) by WorldFish results in greatly improved productivity. So too does the Genetically Improved Abbassa Nile Tilapia (GIANT) strain. The rearing of improved African catfish offers similar advantages: it grows fast and consumes a large variety of feeds, it tolerates adverse water quality conditions and can be raised in high densities, it fetches a higher price and can be sold live at the market but does not spontaneously reproduce in captivity. Different catfish can be hybridized resulting in still greater productivity and better-quality meat. Genetic improvement of important aquaculture species offers a means of reducing poverty and increasing protein security, but requires responsible application of genetic, environmental, and social principals. The genetic risks posed by the development and use of improved strains are greatest when there are wild populations within reach of aquaculture escapees. The development, multiplication and dissemination of improved fish strains should be conducted in a way that minimizes the impact on the aquatic environment and other fish species and ensure that small-scale fish farmers benefit from it.Summary. Tilapia is one of the most important farmed fish and is historically among the first breeds cultivated by humans. The group belongs to the Cichlid species that originated in Africa. Tilapia is easy to farm in different systems ranging from low-tech earthen ponds to intensive high-tech tanks and cages. Some of the limitations in producing tilapia are its small size, slow growth rate and frequent reproduction in captivity. This is because large amounts of metabolic energy go toward reproduction in gestating female tilapia, their growth rate is slowed down and the conversion of feed to flesh is reduced. Male tilapias are bigger and more attractive for production because more of their metabolic energy is channeled toward weight gain, which increases their growth rate and conversion of feed to flesh. Males grow faster and larger, they are therefore more profitable for producers and more acceptable to consumers. The mono-sex male technology was introduced by WorldFish and has rapidly gained popularity with small-scale producers in Africa. For more information on this technology please contact Prof. Bernadette Fregene of the TAAT Aquaculture Compact at b.fregene@cgiar.org Technical Description. Mixed sex tilapia culturing is technically easy but is associated with lower yields and smaller and non-uniform harvests. Mono-sex culture is more complex, but it is possible to produce all male tilapia fingerlingsas high as 98%. A mono sex, all male tilapia stock is obtained through manual sex selection, hormonal alteration or YY natural male technology (NMT). Genetically improved farmed tilapia (GIFT) transferred from selective breeding programs is ideal for commercial production. In the manual selection, female and male fingerlings are visually separated at the start of the production cycle but this is time-consuming, and nearly half of the stock will be discarded. Alternatively, for commercial production, hormonal alteration of fry is performed by application of the masculine hormone α-Methyltestosterone to the fry feed converting the sex of most fish (98%) from female to male. However, research findings show that hormone levels in tilapia fall to normal levels 5 days after the withdrawal of hormone feed. Most tilapia hatcheries in Egypt produce monosex fry by applying the masculine hormone 17 α-Methyltestosterone (MT). The process of monosex production using MT hormone is not prohibited, as the European Union and United States markets allow tilapia to be imported from countries producing monosex tilapia. The ministerial decree organizing this issue states that mixing hormone with feed should be done with caution in feed mills. Another approach to sex management relies upon temperature change up to 36 o C shortly after hatching, converting the sex of most fish (86%) from female to male, although many of the Sex differentials in tilapia fingerlings fry may perish in the process. The end-product of NMT is a complete natural male stock with XY-chromosome, whereas for hormone sex-reversed 50% of the phenotypically males are genetically female with XX-chromosomes. The GIFT technology is based on selective breeding processes where brood parents are carefully monitored to obtain improved performance for certain traits that are important for production and marketing. These genetic gains are cumulative and permanent, unlike for other breeding methods with short-lived advantages.Uses. Culturing mono-sex tilapia is of great importance to aquaculture practice in all African countries because temperatures are highly suitable for fast growth. It offers substantial benefit in terms of its growth and yield per unit area with uniform sizes at harvest. Improved mono-sex tilapia is more resistant to disease, tolerant to adverse weather, and can tolerate broader temperature (12-40°C) and salinity levels (12-15 ppt). Farming of mono-sex tilapia is especially attractive in countries with a strong demand for tilapia such as DR Congo, Ghana, Malawi, Nigeria, Uganda, and Zambia.A large range of tilapia breeds can be used for manual selection, hormonal treatment, YY male technology and GIFT but improved lines are most favorable as they possess traits that further benefit growth rate, feed conversion, size, and hardiness. Crossbreeding of male Blue tilapia (Oreochromis aureus) or Wami tilapia (O. urolepis) and Greenhead tilapia (O. macrochir) with female Nile tilapia (O. nilotica) results in 100% male offspring. Male Blue and Zanzibar tilapia (O. hornorum) that brood with Mozambique tilapia (O. mossambicus) also have exclusively male offspring. Nile tilapia is highly popular due to its faster growth and ability to grow to larger size over a wide range of environmental conditions. Its disease resistance and ability to efficiently utilize very diverse food sources also make it an ideal candidate for culture. A range of sterile transgenic breeds has been developed that can achieve a harvest weight up to 2 kg.(Source: https://til-aqua.com)Application. Successful farming of mono-sex tilapia requires hatcheries to select and manage brood stock for high quality and quantity of fish seeds. Younger brooders (1 to 1.5 year old) weighing at least 300 g and free of wounds and parasites are needed for establishing a broodstock population with high reproductive efficiency and prolonged life. It is advisable to rejuvenate the broodstock every three years or at the age of 4 to 5 years old. Normally, brooders are stocked into the spawning units (tanks or hapas) about 15 days before the spawning season. They are collected during the daytime when the temperature is warm, and males and females are moved separately into the hatchery. Keep males and females in separate tanks or hapas for feeding before spawning. Feeding starts as on the day following stocking. The water temperature should be raised gradually up to 26°C. After confirming that females are ready to ovulate, both sexes are stocked into the spawning units at a rate of 2 females to 1 male. The average weight of broodstock in each spawning unit must be kept almost equal. Female brood stock must be regularly checked for eggs. If they carry eggs in their mouths, collect the eggs and transfer into the hatching jars, where the incubation period is completed until hatching occurs. After 10-12 days (according to temperature) have elapsed, the newly hatched fish, also called \"fry\", can be moved from brooder basins to rearing units. The hormonal mono-sex technology uses a rate of 60 mg artificial testosterone per kilogram of feed. Fry have to be continuously fed with the hormonal agent for 21 days to ensure sexual inversion to a male rate of 98%. After treatment, there should be a few fry under 14 mm in size. However, if more than 5% of the fry are 13 mm or smaller, remove the fry because 25% of them are likely to be females. In the GIFT method, full-sibling families of fish are reared in small, separate enclosures after which they are tagged to track growth against siblings and other individuals. Following this approach, major improvements of tilapia stocks can be achieved over only three to five years.Start-up Requirements. The introduction of mono-sex tilapia in Africa occurred progressively over the past three decades and currently mono-sex tilapia is produced and distributed in many African countries. Fish farmers need to consider the following steps when starting mono-sex tilapia production: 1) Selecting a good location with access to water that is free of pollutants, 2) Availability of matured and fecund brood stock, 3) Installation of aerators for oxygen supply, and 4) Provision of hapa-style nets to raise the fingerlings (see Technology 3).Production Costs. The use of manual sexing and hormonal treatment for obtaining all male stocks are less expensive over the short term but investment must be made during each production cycle. Advanced breeding of the YY male and GIFT methods attract greater startup costs but the maintenance of stocks over the long-term is less. In Kenya mono-sex fingerlings of one month are sold at US $0.1 per individual, whereas mixed-sex stock is 20% cheaper. At a stocking rate of 1,000 fish per cubic meter of water, the cost for farmers is US $100. Fingerlings of mono-sex tilapia for starter stocks are sold at US $0.05 in Nigeria and Zambia.All male fingerlings stocked in earthen ponds or cages can reach 300-900 g in 5 to 8 months of culture, leading to greater profits assuming that feed is accessed or produced in an efficient manner (see Technology 8).Customer Segmentation and Potential Profitability. Markets for mono-sex tilapia are diverse, including other hatcheries and producers at small or commercial scales. Genetically male tilapia stocks that are bred through the YY technology offer a 2.5-fold greater net return over mixed-sex tilapia and a 90% greater net return compared to hormonally sex-reversed tilapia. Larger sized tilapia may be exported as whole fish or fish fillets. Improved strains of tilapia reach harvestable size faster, and more than 30% increase in harvest volume has been found with GIFT breeds compared to previously used \"improved\" tilapia breeds, suggesting steady improvement with time. Enhancing the access of fish farmers to improved mono-sex tilapia seed is a viable opportunity that will raise the profitability of hatcheries and African fish farmers alike.Licensing Requirements. Management of tilapia broodstock described in this technology is offered as a Regional Public Good by WorldFish and the TAAT Program, but some of its constituent materials and equipment are protected under commercial patent.Summary. The African catfish is excellent for inland freshwater farming and has large potential to boost local and regional production and improve human nutrition and protein security across Africa. Catfish are native to all Sub-Saharan African countries and are widely consumed. Rearing catfish started fifty years ago in West and Central Africa. They grow fast and are omnivorous (including many low-cost agricultural byproducts), they are hardy against common pests and tolerate low water quality, they can be farmed at high stocking density with potential annual production of 6-16 ton per hectare, they mature and reproduce easily in captivity, and they can be sold live, fetching a higher price than tilapia. One favorable characteristic is their ability to gulp air when oxygen levels are low, making pond aeration less difficult and risky. Catfish breeds can grow up to 1.5 meter long and weigh up 30 to 60 kg although most are harvested when smaller from culture systems. Scarcity of quality fingerlings from improved catfish breeds by local hatcheries is a major hurdle to enhancing yields and returns of farmers and meeting demand from local markets. As a result, too many fish farmers collect fish eggs from the wild or purchase poor quality fingerlings. Lack of knowledge on pond and fish health management among farmers also leads to high mortality, limited growth and poor feed conversion and must be addressed through training and advisory services. Hybridization requires that female catfish are given a hormone injection, which induces the release of eggs. They are anesthetized, and eggs are \"stripped\" by gently pushing the belly. Male catfish are killed to harvest their seminal fluids, also known as milt, which is subsequently mixed with these eggs. Fish farmers can perform the process themselves after short-term training, particularly focused on ensuring that hormone dosages, egg, and sperm are prepared correctly, along with other hatchery practices.Uses. Catfish can be cultured in ponds, cages, and raceways. A larger percentage of catfish are produced in earthen ponds. Warm water is needed for good growth, with 27 o C to 29 o C being the optimum. Fish will also survive in temperatures as low as 16°C but feeding rate will reduce. All regions of Sub-Saharan Africa are suitable for commercial production of catfish, even in highland regions where temperatures drop during the night. A location with reliable access to clean water is needed to maintain the quality of ponds and to achieve desired growth rates and feed conversion.Composition. A hatchery typically includes indoor units and outdoor structures, efficient waste management for environmental health, understanding and compliance with biosecurity issues, water storage tanks, hatching/incubating troughs, and water filtration to remove all mineral solids and debris from the water. Other materials include buckets to transport larvae and fry, a water testing kit, rectangular or circular fry tanks, nursery ponds for fingerlings, and pumps for water and air. Hatchery operations require superior broodstock (fertile and healthy), syringes, hormones to induce female broodstock, and knowledgeable and skillful hatchery operators.Application. Fish farming starts with sourcing quality fry or fingerlings from an improved breed that grows fast and converts feed to flesh more efficiently. Certified hatcheries offer a safe route to increase local supply of fast-growing and hybrid catfish. Producing seed requires selection of fertile broodstock. Females should weigh 1 to 4 kg and be at least one year old.Sex differentials in African catfish; male (left), female (right)Female catfish are injected with ovaprim hormone or freshly extracted pituitary can be used to promote egg maturation. Seminal fluid (or milt) is collected from male brooders that weigh 2 to 3 kg which can fertilize eggs from 20 females. Milt incubation in saline water extends its lifespan and ensure that all eggs are fertilized. Stripping eggs from female brooders requires two people to hold the fish and extract eggs mass. Collected eggs can be weighed to forecast the number of fry, each gram contains approximately 600 eggs. Fertilizing eggs is best done in a narrow container, water temperature should be higher than 25°C, and eggs hatch within only 20 and 36 hours. Larvae do not require feeding until three days after hatching because they are feeding on their yolk sacs. Aeration is necessary because fry is very active and require more oxygen. Feed them for 5-8 days with cultured zooplankton or finely powdered shrimp, fishmeal, or special feed. Water quality is very important to managing fish health and monthly antibiotic treatment of ponds can greatly reduce the risk of infection.The pH of water in ponds must be maintained between 6.5 and 9.0, if the pH drops below 6.5 and total alkalinity and hardness below 10 ppm, limestone can be applied to the ponds. A successful farm requires a dissolved oxygen concentrations of 5 ppm or higher.Treat wastewater from ponds before discharge to avoid pollution of local waterways.Commercialization and Start-up Requirements. Hatcheries in many African countries sell pure and hybrid catfish fingerlings in conjunction with promotional campaigns among fish breeders and fish farmers. The following steps need to be considered before starting catfish hatcheries and farms: 1) Select or construct a pond in an open place free of flooding with direct sunlight, 2) Provide a reliable source of quality water, 3) Purchase matured and fecund improved breed of broodstock or fingerlings and 4) Supply well-balanced feed that is free of aflatoxin and contaminants.Production Cost. Catfish fingerlings may be produced and marketed for US $0.025 cents per gram and sold for up to US $0.05 cents per gram; with two-month-old juveniles sold for US $0.09. In Kenya, five-to six-week-old fingerlings of common catfish are sold at US $0.12 per individual. At a stocking rate of 600 fish per cubic meter of water, this cost is US $72. Hybrid catfish fingerlings can cost 2-2.5 times more than the non-hybridized breeds. Feed for a one-hectare pond stocked with 8,600 fast-growing catfish is about US $2,500, while feed inputs for 10,000 hybrid catfish are approximately US $3,500, making feed the greatest recurrent production input.There is a diverse customer base for improved breeds of African catfish, including hatcheries and small and commercial producers. Access to fast-growing and hybrid catfish breeds from hatcheries is a major opportunity to increase production and profitability farmers. Hybridized catfish increases the production of farmers by 20% to 30% compared to pure non-hybridized catfish breeds.Licensing Requirements. In its simplest form, catfish nurseries may be conducted as a cottage industry for the supply of local pond operators based upon the access to Regional Public Goods through WorldFish and the TAAT Program. Within larger, commercial-scale operations, hybrid production relies upon complex arrays of equipment and materials, many of which are protected by patents. In many cases, operations may be streamlined by local ingenuity and materials described elsewhere in this catalogue. Summary. Inadequate supply of high-grade fingerlings from improved fish breeds is one of the main constraints to the expansion of the aquaculture industry across Sub-Saharan Africa. This situation discourages investments and reduces the viability of aquaculture enterprise.Poor and uneven growth rates, and high fingerling mortality present major limitations in open ponds. Birds such as kingfishers, pelicans and herons, reptiles like lizards, snakes and turtles, amphibians such as frogs and toads, and even aquatic insects like dragonflies can cause massive losses in stocks of young fish. Artisanal and commercial hatcheries must achieve rapid and uniform production of fish stock for reliable supply to the local aquaculture industry, thereby allowing stable returns on investment. Small cage-like enclosures, referred to as \"hapa\" nets established within a pond are well suited to keeping brooders, hatchlings, and juveniles so they are readily accessible and protected from predators and other fish. Hapa are simple to build with fine mesh screen netting material and wooden poles or floating barrels, making them affordable for any size of hatchery. This technology eases management of the brooder, fry, and fingerlings, as it enables operators to monitor the performance of their stock more closely and adjust breeding, feeding or aeration regimes. Hatcheries can realize higher fertilization rates of eggs, even growth of fish seed and reduced mortality, increasing production of fry and fingerlings per unit area with the right management of hapa enclosures.For more information about the hapa technology please contact Prof. Bernadette Fregene of the TAAT Aquaculture Compact at b.fregene@cgiar.org.Technical Description. Using hapa is a convenient means of collecting fry from the mouth of a tilapia brooder and rearing fingerlings inside a pond. The stocking density of the hapa affects fish survival, size variation and production rate, so it must be considered when determining the method and profitability of a hatchery. This simple containment system offers large benefits for all male fingerling production through manual sexing, hormonal reversal or YY male technology. However, management of brooders, fry and fingerling in the net enclosure is more demanding compared to traditional open-pond methods. Complete feeding regimesare required within the enclosure and must be adjusted during different stages of growth.Severe injury and mortality may occur due to aggressiveness among fish during spawning. Net materials degrade in sunlight and require periodic replacing. Storms, winds, or heavy rainfall can damage structures causing stock to escape. Hapa mesh becomes clogged over time and limits water circulation and aeration unless cleaned. Higher localized feeding can also lead to poor water quality within the net without adequate circulation.Uses. Brooders, fry, and fingerlings from all common aquaculture species such as tilapia, catfish, carp, and prawn and crayfish can be stocked in hapa nets. The net enclosures may be installed in earthen ponds, riverbeds, and large concrete tanks, and the shape and size adjusted to the dimension and depth of a water body. In ponds that are fitted with a plastic liner (see Technology 4), there is need of floating types of hapa. Hapa can be set up in ponds that are stocked with other fish without risk of competition. They are suitable for shallow water (less than 1.6 m deep) with low water flow rate and level of fluctuation.Composition. Various shapes and sizes of hapa are used, most commonly the enclosures measure about 3 m long, 3 m wide, and 1.5 m deep. Hapa are made of wooden poles that are sunk into the bed of the pond and a screen with mesh size of 0.01 mm to 2.5 mm depending on whether fry, fingerlings or fish are inside. Bamboo is ideal for constructing hapa since it is flexible in high wind. Polyethylene material is the most durable and cost-effective for nets. The net is attached to poles with nylon thread and double stitched to prevent splitting. A cover on top of the hapa prevents brood fish from jumping out and prevents birds from attacking the fish inside.Application. In fingerling production, use of hapa requires periodic scrubbing because the mesh will get clogged, therefore limiting water circulation. It could also result to poor water quality due to accumulation of uneaten feed and fish waste. They are easily cleaned by scrubbing with a brush whilst washing with pond water. Dirty hapa nets can be removed from the pond, soaked with urea for 72 hours, and washed with cleaner and rinsed. Fry production in hapa is normally done with brooders of 300 g average weight at a male to female ratio of 1:2 or 1:3, and stocking density of 4-5 brooders per square meter. Hapa should be inspected for fry every day, which are subsequently transferred into other hapa tanks or rearing ponds.The hatchery operator must record the number of fry and fingerlings that are harvested from individual hapa along with feed input to monitor and achieve high levels of rearing efficiency.Net material for hapa is available from a broad range of suppliers in African countries. When starting production in hapa, operators of hatcheries must: 1) Determine a good position and size within the pond, 2) Source net materials with the right sized mesh opening, 3) Calculate the optimal stocking density of fish or fry, 4) Ensure supply of high-grade feed at a low cost for fast growth and high profit, and 5) Promote use of cultured fingerlings within the local aquaculture industry.Production Costs. Installing hapa enclosures inside a pond or waterway is not expensive and does not require highly skilled labour. The materials for a hapa made of bamboo poles and fine mesh net costs about US $1 per square meter with finer meshes costing more. More solid or floating structures are required in less secure waters, thereby increasing this cost.Segmentation and Potential Profitability. Using hapa for fingerling production is applicable for small-scale and commercial hatcheries. The use of hapa for mass production of fingerlings in ponds allows a higher survival rate. Monthly production of fingerlings in hapa ranges from 150 per square meter to over 900 per square meter. With hapa nets, a single hatchery can supply between 8 and 20 fish farmers, resulting in huge benefits to the local aquaculture industry.Licensing Requirements. The technical knowhow of fingerling production in hapa nets is a Regional Public Good disseminated by WorldFish. Netting must be purchased but other structural materials may be fabricated from local materials.Technology 4. Pond Liners to Save Water and Ease Maintenance Summary. Sheets of ultra-violet resistant polyvinylchloride, polyethylene or similar materials form an impermeable layer between the water and the soil which decreases water losses through seepage. It also reduces evaporation, improves temperature regulation, helps prevent algal blooms, and promotes nutrient cycling between water and sediment. Many soils require liners to hold water, particularly sands and silts. The technology is easy to install and maintain and is environmentally friendly. Liners are resistant to puncture, UV light, oxidation, and chemical reactions. Quality lining material that is properly installed has a low chance of leakage or breakage, making the technology an affordable solution for small-scale and commercial fish farming. For more information about the technology, contact Prof. Bernadette Fregene of the TAAT Aquaculture Compact at b.fregene@cgiar.org.Technical Description. Pond lining is an adaptation strategy to preserve water, reduce the spread of pathogens, and realize higher biosecurity. Synthetic \"geomembranes\" keeps water cleaner and make ponds easier to maintain. Rubber or plastic liner material is affordable for smaller sized fishponds. They may last for more than ten years. Plastic liners for sealing tend to be stiff and more difficult to install in small ponds but they are stronger than rubber liners. Water in fishponds also serve as reservoirs for irrigation as a cushion against drought. Pond liners are most important in areas with sandy soils or locations away from water bodies.Liners are installed into ponds constructed on flat or gently sloping land. This water conservation technology is most suitable for areas with porous soil and/or poor access to running freshwater. Liners can be fitted into any size or shape of pond. Rubber sheets are more flexible and conform to the contours of pond features quite easily but are not as strong as plastics. Pond liner is available in different types of material including polyvinylchloride (PVC), reinforced polyethylene (RPE), ethylene propylene diene monomer (EPDM) or high-density polyethylene (HDPE). These come in different thickness ranging from 0.5 mm to 3.0 mm which are suitable for different sized ponds and surface roughness. Liners must be stable to exposure from UV light. RPE is usually recommended as it is stronger, lighter, and less expensive than EPDM and HDPE, but stiffer to work with. The PVC is least expensive but less puncture resistant. Under layers of woven polyester or polypropylene may be included as well to offer greater protection from sharp rocks, probing roots and burrowing rodents. High-density polyethylene liners are the most widely available. They are heavy duty, puncture resistant, can be connected into large sheets by \"hot wedge welding\", flexible and UV stable. They have fish-safe properties and readily conform to pond surfaces. Their density is about 0.94 g/cm 3 and they are nearly pure, with small amounts of carbon black added for UV protection and antioxidants added to increase durability. They are available in thicknesses from 0.5 to 1 mm, with thinner widths suitable for smaller ponds without stones and thicker widths needed for larger projects and stony conditions. An internet search for suppliers of pond liners in Africa revealed hundreds of suppliers.Application. The amount of liner required depends upon the dimensions of the pond, its intended volume, and the slope of its walls. One can use a simplified formula: Volume = (d/6) x (At + Ab + 4 Am), where V is volume, d is depth, At is the area on top, Ab is the area at the bottom, and Am is the area at half the depth. An extra 50 cm must be added where sheets are overlapped to ensure watertight seals. For seaming two sheets, clean a strip of 25 cm along both edges with rubbing alcohol so the adhesives bond well, then apply primer in a 15 cm strip along the top of one piece of liner and lastly glue the two sheets with doublesided tape. Polyethylene may be heat sealed as well. Remove shoes when stepping on the liner to prevent it from getting pierced. When filling the pond with water, pull and tuck the liner into shape to ensure a neat finish.Commercialization and Start-up Requirements. Pond liners are being marketed by aquaculture supply companies in all Sub-Saharan countries, yet availability from local retailers is limited in many locations. Based upon the expansion of aquaculture in Africa, the pond liner industry is expected to exhibit a strong growth rate over the next decade.Production Costs. Plastic lining materials are less expensive than rubber. Through local suppliers, the cost of sheet plastic is about US $2 per square meter for a thickness of 0.5 mm and increases to US $3.50 for a 1 mm thickness. A plastic liner of 0.5 mm together with sealing and installation for a pond of 15 m long, 10 m wide and 1 m deep is about US $500. Sealing the bed of a pond to save on costs of construction and water supply is money well spent.Customer Segmentation and Potential Profitability. Pond lining tends to be sold more by hardware suppliers than agrodealers, and is offered as rolls alongside similar construction materials, and tend to be limited within any given location. In some cases, farm engineering companies offer full lines of products, including those with textured surfaces. Lining a pond with a rubber sheet can decrease water loss through seepage and evaporation up to 50%, making it applicable to both smaller and large commercial operations. A comparative analysis of 700 fish farmers in south-western Nigeria that accounted for costs of stock, feed, water, utilities, and maintenance showed that ponds with plastic liners offer significantly greater net profits than unsealed earthen ponds.Licensing Requirements. Pond liners are commercial products, and the different materials are protected by patents and trade secrets. One of those secrets relates to the form of trace addition to antioxidants that increase product durability.2) spreading the PCV liner and burying the edges, and 3) filling the pond Technology 5. Tank and Cage Systems for Fish Culturing Summary. Tanks are enclosures placed on land to culture fish that are suitable for intensive production near urban centers with high market demand. Tank culture is a preferred alternative to ponds if limited amounts of water or land is available and the economics are favorable. Cage culture production involves growing of fish inside floating netted containers that are suspended within larger waterbodies. These cages require a comparatively low capital investment if locally produced. Cages also serve to clean waters through feeding activities. More information about these specialized fish farming technologies can be obtained from Prof. Bernadette Fregene of the TAAT Aquaculture Compact at b.fregene@cgiar.org.Technical Description. Tanks should be constructed where there is year-round availability of quality water. Fish farming in tanks requires a complete feed diet with proteins, vitamins, and minerals as there is little to no natural foods available within the system. For cage culture, choosing the right location has a major influence on the economic viability of the operation. Inappropriate positioning of cages may cause poor fish growth, high mortality, and conflict with other water users. Feeding regimes for extensive cage culture rely upon natural foods and detritus, benthos, whereas more intensive culture also supplies fish feed. Composition. Fish farming tanks are made of concrete, wood, plastic, fiberglass, or steel in a variety of shapes, but the most common forms are circular and rectangular tanks. Different types of water and air supply systems can be used in tanks, including flow-through and recirculation (see Technology 6). There are four basic types of cages: fixed cages, floating cages, submerged cages, and submersible cages. Cage frames are built with floatable pipes or barrels made from high density polyethylene, galvanized iron, or PVC plastic. Usually, a 1 to 2 inch (2.5-5 cm) nylon net is mounted on the cage frame to hold fish. Finer mesh sizes contain smaller fish but decrease flow inside the cage and increase horizontal drag because of water flow, which poses risk of damage under high current.A concrete tank for raising catfish Application. For catfish in tanks, 25-gram fingerling can be stocked at 1,500 fish per cubic meter to produce 50-to 60-gram harvests within 5 weeks, or at 1,000 fish per cubic meter to produce 100-gram fish in 9 to 10 weeks. To minimize mortality by cannibalism in tanks or cages, the stock must be sorted every two weeks, and faster maturing individuals removed.In tanks and cage systems it is important to remove uneaten feed or feces that accumulates underneath, avoiding proliferation of parasites and diseases. Adequate space below the cage (at least 3 m) ensures adequate water circulation through the cage and minimizes unwanted accumulation beneath.Commercialization and Start-up Requirements. Both tanks and cages are commercially available or can be easily constructed. Key factors to be considered for tanks: 1) Secure access to a reliable source of water, and 2) Choose the appropriate type and size of tank with respect to that water supply system (see Technology 6). Key factors for starting up cage culture are:1) The water surface area should be at least 0.2 ha, 2) Nearby lands should be free of water erosion and waters should not contain weedy aquatic vegetation for preventing oxygen depletion, 3) At least 5m from lowest water level for floating cages. Less than 5m can be used for fixed cages 4) The depth of water column should allow a free space of about 4-5 meters between the bottom of the cage and bottom of the water body during minimum recorded water level for floating cages. However, this space should not be less than 2 meters, and 5) The location should have adequate prevailing winds to prevent water stagnation. Tank and cage farming systems require high quality fry or fingerlings from improved breeds to achieve desired production rate and feed conversion (see Technologies 1, 2 and 3).Production Costs. The price involved with constructing tanks and cages depends on the size and materials used. Premade suspended tanks made of metal frames and polyethylene with a volume of 2000 liter may be purchased in China for as low as US $120. Concrete tanks are more expensive but are last longer. Epoxy-coated galvanized iron frames are a lower cost option but suitable for small-scale production. A fish cage of 8 cubic meter with galvanized steel and floating barrels that are locally manufactured costs as little as US $150 depending on the mesh size of the netting.Floating cage for tilapia farming inside Lake Victoria (Credit: Erick Ochieng Ogello)Customer Segmentation and Potential Profitability. Cages are more feasible for fishermen that can access waterbodies and have rights to their waters. Tanks are available to all fish farmers. A concrete pond measuring 3 by 4 meters and 0.85 meter deep with a stocking rate of 50 fish per square meter and best management practices can harvest up to half of a ton (500 kg) of fish every 9 months. A floating cage of 8 cubic meter with 1,000 fish raises about US $1,500 per harvest and has a gross margin of US $330 after deducting costs for cage construction, feed, and labor.Licensing Requirements. Specific national laws governing the use of public waters guide cage site location. Information on tank and cage construction is a Regional Public Good advanced by WorldFish.Summary. A recirculatory aquaculture system is a technology where water is recycled after filtration to remove suspended matter. This method is used for higher density culture of fish, allowing for maximum use of limited land and water. Water movement into and out of the tank maintains peak water quality conditions despite dense stocking rates. As water passes into the tank it provides oxygen and when it leaves it carries away waste products. Intensive aquaculture in tanks that operate at high stocking densities is furnished with a flow-through system that discharges water, cleans water, and pumps it back through the system. Tanks with a conventional flow-through systems are simpler in design but require an affordable and reliable source of quality water that can be used with minimal pre-treatment. Recirculatory systems are more complex and costly to install but have higher water use efficiency, higher feed conversion, and more exact disease control. For more information about these water flow systems, contact Prof. Bernadette Fregene from WorldFish and leader of the TAAT Aquaculture Compact by email at b.fregene@cgiar.org.Technical Description. For successful fish farming in tanks, the water must have the required oxygen level and temperature for the cultured species. Tank volume and water flow determine the turnover rate, and the required time to replace the entire volume of a unit. Turnover rate is specific to the species being reared and their rearing density, but one turnover per hour is a good place to start for many species. Water passing through tanks simulates a current that can be adjusted by changing the position and direction of water flow. Fish should not struggle against this current, but rather be able to remain stationary with gentle movement. In a recirculatory system, water filtration is continuous, keeping the tank clean and providing a healthier environment for the fish. Waste products are either removed or converted into non-toxic products that can be used for cultivating crops (see Technology 9). The purified water is then re-saturated with oxygen and returned to the fish tanks.Uses and Composition. Flow-through and recirculatory systems can be fitted to rectangular or circular tanks made of plastic, galvanized steel, or reinforced concrete. For both technologies, water pumps and flow meters are needed, with further sets of filtration and conditioning units for recirculating tanks. A settling pond is usually placed before water reaches the tanks to remove high loads of sediment and algae. The most suitable location for a flow-through system is where there is reliable water availability from a river or lake, but limited access to electricity. In contrast, the best option for recirculating tanks is near cities with lower-cost and more reliable electricity but where temperatures are sufficiently high to avoid the need of heating.Application. Setups of flow-through or recirculatory systems are determined by the water inflow and outflow rates, the tank shape and size, the water depth, the wall roughness, the inlet devices, and the presence of elements inside the tank. Circular tank designs have more stable flow patterns, a more homogeneous distribution of dissolved oxygen and metabolites and better self-cleaning features but are ultimately less space efficient than rectangular tanks. In a flow-through system valves are usually operated manually, and the visible turbidity of water direct the turnover in tanks. In recirculating systems, constant fish respiration can raise carbon dioxide levels high enough to interfere with oxygen levels and lower the pH of the water, thus requiring a buffering system. A series of components can be fitted before the tank inlet to regulate water temperature, oxygenation, and nutrient level.Commercialization and Start-up Requirements. Equipment to build and operate flow-through and recirculatory systems for fish tanks is marketed by suppliers in most fish farming areas across Sub-Saharan Africa. The main steps toward adopting the technology are: 1) Choose the most suitable water management for tanks based on farm setting and investment needs, 2) Acquire skills to install and operate the equipment under optimal conditions, and 3) Test the water quality at the point of source and discharge to establish pre-and post-treatment needs.Production Costs. A flow-through tank with a fixed volume of 200 liter requires 800 liter of water per hour, equivalent to a turnover rate of four. For a tank of 130 m 3 the approximate cost of the recirculation pumping and piping is US $22,000 and the mechanical, physical, biological and chemical treatment is US $44,000. Costs of water supply and treatment are hugely influenced by the position and type of drainage. The charges of contractors to build a settling pond are US $1.5 to $5 per square meter for different soil types and lining materials (see Technology 4).Customer Segmentation and Potential Profitability. The improvements in controlling water quality by flow-through and recirculatory systems directly reduce mortality rates, disease control, and feed inputs. In Nigeria, grow-out tanks for tilapia with a flow-through system have been found to break even on fixed and variable costs in the first production cycle, with incremental profits in subsequent cycles. Recirculatory systems need to be implemented at a large scale and with high value freshwater fish such as trout or Nile tilapia to offset capital costs and be financially sustainable.Licensing Requirements. Sophisticated recirculatory water filtration systems require commercially available equipment that is protected by patents. Information on these systems is a Regional Public Good advanced by WorldFish and available from the TAAT Program.Summary. An in-pond raceway system is a sophisticated aquaculture technology where optimal water chemistry is ensured by maintaining interrupted water flow and waste disposal management, allowing for a high density of fish stocking. Traditional fish farming is land and labor intensive. For instance, catfish farming in static ponds typically yields only 4,500 to 5,500 kg ha -1 . Production is more efficient and profitable with techniques that maintain optimal water quality, in particular oxygenation and feed management. An in-pond raceway system (IPRS) is an inland aquaculture method where fish are kept in channels constructed within the pond and provided with constant water circulation. This allows fish farmers to use stocking densities as high as 150 kg per cubic meter, and thereby increase production levels and efficiency. The IPRS recreate the fish's natural environment making them grow out at a faster rate and keeping them free of diseases and stress. The advantage of this fish farming method is that higher quality fish can be produced in less water and through more efficient feed conversion. In comparison to traditional ponds the IPRS technology has been found to produce 200-300% more fish. More information about this modern aquaculture technology can be obtained by email from Dr. Ahmed Nasr-Allah at a.allah@cgiar.org and Prof. Bernadette Fregene at b.fregene@cgiar.org. Technical Description. Water flow is a very important factor in aquaculture production as it stimulates the growth of fish in response to velocity distribution and turbulence. Turbulence has a critical role in the transport and dispersal of excreta, nutrients, and pollutants. Another critical factor is dissolved oxygen of the pond water that must be greater than 5 mg per liter for fish to be active, behave normally, respond to feed, and avoid mass mortality. The IPRS intensify production by concentrating fish in less water volume. Airlifts or paddle wheels areused to create water flow inside the raceway channel to remove fish waste at a low energy cost. Fish waste is collected and sucked out of the water body. Continuous forced aeration is required in the system to supply fish with high levels of dissolved oxygen which further assists in their growth. Unused water serves as biological filter and is recirculated to the production area by a pump. The IPRS technology offer multiple benefits for farmers, markets, and the environment: higher fish production per cubic meter, lower cost per unit of fish, greater feed conversion ratios and feeding efficiency, more effective fish health management and pond maintenance, sustainable use of water resources and zero discharge to local rivers or the environment. The controlled environment of an IPRS assists fish farmers to better adhere to food safety and discharge standards.Uses. Raceways have several advantages compared to ponds. Raceway production is much higher per unit volume and offer a much greater ability to observe fish; making feeding more efficient and disease problems easier to detect. Raceways also allow better inventory estimates than ponds, making size grading and harvesting less difficult. The disadvantages of raceways are related to their need for large flows of high-quality water, an asset not widely available. Another limitation is related to release of effluent because there is little or no retention time allowing for natural processes. In-pond raceway systems are suitable for intensive aquaculture practice in regions with high water availability and limited land resources. The technology is best deployed in medium-to large-scale fish farms near urban centers or trade corridors because of its sophisticated engineering. A large variety of fish can be stocked and grown efficiently including freshwater species such as catfish, trout, tilapia, perch, and bass. Rectangular raceways are most used, while circular units are best for broodstock production because they have more thorough circulation but make less efficient use of available floor space.Composition. Raceways are made of three main components: an aeration area, a fish culture area, and purification area. One or more high-power pumps are used to pump water through the culture channels, forcing the water to flow through the raceways and into the purification area, thereby circulating it and forming a pathway for fish. The flow patterns in the original aquaculture raceways offer uniform velocity, causing water quality and dissolved oxygen to vary significantly from inlet to outlet. Improved aeration systems are available such as the plug-flow device that consists of a curved baffle and a set of micro-bubble tubes. It is positioned at the inlet of the raceway and the micro-bubble tubes are submerged at a specific depth, so that air is pumped into the tubes and floating bubbles are formed. A baffle curtain made of woven plastic fiber can be installed diagonally inside the pond to direct how the water flow circulates.Application. For a channel that is 4.9 m wide and 1.7 m deep, a paddlewheel with a water movement of 0.026 m per second generates a flow rate of 9 m 3 per minute and full turnover every 5 minutes or 12 turnovers per hour. Typically, the greatest water velocities occur at mid-depth, with slightly reduced velocities at the air-water interface and greatly reduced velocities along the raceway bottom. Fitting improved aeration like the plug-flow device in an IPRS improves water recirculation and adds dissolved oxygen to the aquaculture pond. Average daily feed rates for catfish production in an IPRS range from 70 to 90 kg ha -1 , and maximum daily feed rates go up to 300 to 350 kg ha -1 when fish weigh more than 0.5 kg. The growth rate of Channel catfish in this system reaches 1.8 g per day with feed conversion ratios of about 1.7:1. This efficiency is greater than that achievable in a conventional pond.Commercialization and Start-up Requirements. Few engineering and contracting companies in Africa are building IPRS, but the technology represents a viable opportunity for business expansion. The TAAT Aquaculture Compact adopted this technology for tilapia production in Kenya through a partnership with the Aquacultural Association of Kenya (AAK) and a demonstration center near Nairobi. Owners of fish farms wanting to install IPR systems for intensive production need to take the following steps: 1) Identify design and size of raceway that matches available capital and production objectives, 2) Provide access to a high-quality water source and supply of affordable electricity for constant flow, and 3) Train staff on operation and maintenance to minimize energy and feed cost.Production Costs. The cost of building an IPRS varies depending on the size and the materials used. A reinforced concrete raceway of 5 m long, 1.2 m wide and 1.2 m deep costs about US $ 4,000. If constructed properly, an IPRS should have a life of 5 to 10 years. Culturing catfish with an IPRS over an 8-month period in the US has total variable costs of US $1.57 kg -1 , and fixed costs of US $0.31 per kilogram. Similarly, red tilapia produced in an intensively managed runway grew from 48 g to 473 g per fish after 71 days, resulting in an overall return on investment of 1.49. In Mexico, tilapia raised in an area of 875 m 2 produced a harvest of 47,139 kg with an average fingerling survival of 78.2 percent and feed conversion ratio of 1.36. Despite their higher initial investment, IPRS have a lower break-even variable cost point per harvest as compared to traditional static ponds because of higher labor efficiency and feed conversion ratio.Customer Segmentation and Potential Profitability. IPRS technology is primarily for commercial fish production because of the needed investment and technical expertise. Fish farmers dependent upon IPRS technology may achieve a 30% increase in profit margin while at the same time practicing water conservation. Building concrete enclosures and maintenance of the pumps and filters offer opportunities to equipment suppliers, engineering firms and local contractors. The system is climate smart in terms of land, water, and feed efficiencies, leading to multiple benefits to diverse actors.Licensing Requirements. Technical support for IPRS requires commercially available equipment that may be protected by patents, including pumps, filters, and aerators. Information on the design of these systems is a Regional Public Good advanced by WorldFish and available from the TAAT Program.A network of parallel raceways (left) and red tilapia in an intensively managed raceway (right, credit: Global Seafood Alliance)Summary. Aquaculture production in Sub-Saharan Africa is constrained by the high price of suitable fish feeds. Between 60% and 70% of operating expenses by fish farmers go to feed input because their ingredients are either imported or blended overseas. For this reason, formulation, and manufacturing of affordable fish feed in Africa is an integral part of creating more profitable fish farming business. Feed producers need to understand which ingredients and processes provide expected results to fish producers. Supply of low-cost fish feed can be promoted by the combination of locally grown crop and animal products and through the application of available extrusion and pelleting technologies. Compared to simple ingredients such as unprocessed grains, pelleted fish feed is more stable in water, improving nutrient transfer and reducing pollution. Pellets are also easier to store, package and transport, and their buoyancy can be crafted to suit the feeding requirements of different species. Pelleting has a modest investment requirement that provides quick returns, making it an attractive business venture. For more details about low-cost feed production contact Dr. Yossa Rodrigue of WorldFish by email at r.yossa@cgiar.org.Technical Description. A nutritionally balanced and adequate diet are important factors that maximize fish production and profitability, particularly as fish production systems intensify.The main objectives of formulations for aquaculture are to meet dietary requirements, particularly the relatively high need for crude protein, to minimize production and delivery costs, and reduce waste and pollution in ponds. Judicious selection of feed ingredients based on availability, price, and the quality of the nutrients is key in the process. Pelleted feeds can be manufactured through two processing technologies: dry-type extrusion which operates on friction to generate heat, and wet-type extrusion which utilizes drying as a binding process. State-of the-art extrusion combines raw materials under conditions of high temperature, moisture and pressure that results in partial gelatinization and deactivation of anti-nutritional elements. It also sterilizes pathogens, increases digestibility, and shapes pellets into different sizes. The buoyancy and stability of pellets in water allows producers to better monitor and regulate feeding behaviors. In this way, fish feed production presents challenging business opportunities.Uses. Pelleted feeds are suitable for all types of farmed fish and are customized to match different species and their growth stages. Specific formulations are recommended for omnivorous species like tilapia, carp and trout, and carnivorous species like catfish and perch. Feeding habits are matched to feed properties: floating pellets are used for surface feeders like tilapia and carp and sinking pellets for bottom feeders like catfish and perch. Temperatures, moisture, and pressure in the extrusion process further adjust feed properties.Composition. Feed formulations are composed of ground ingredients in varying proportions to meet nutritional requirements of a particular fish. The common raw materials for omnivorous tilapia include wheat bran, soybean cake, fish meal and maize. For carnivorous catfish, the main ingredients are soybean meal, fish meal, rice, wheat bran and bone meal.When feedstuffs for the desired nutrient composition have been selected, they can be prepared through a process of milling, mixing, and pelleting. Oil may be added to improve buoyancy for floating feed.The dry matter, crude protein, and fiber contents of several common feedstock ingredients in tropical climates are presented in the table below. Comments are also provided to guide formulation including the maximum content within feed rations. Note that ingredients are of both animal and plant origin and those materials from animals and legumes have the higher crude protein contents. Blood meal and feather meal have the highest protein contents, but these are added at lower levels to reduce anti-nutritional factors. Earthworms tend to be applied as supplemental feeds produced through vermiculture. Soybean meal and fish meal are the most common protein sources, and these soybeans are best cooked to reduce their anti-nutritive properties. Prawn meal, the carapace, and shells of crustaceans, stimulate feeding response in addition to being moderately high in protein. The remaining materials provide energy and other properties including binding of pellets and floatation. Addition of a commercial vitamin/mineral mix at low concentrations is also recommended. Formulations may be relatively simple (e.g., with 3 or 4 ingredients) or complex depending upon the --------------% ------------- This level may be achieved through the combination of similar ingredients in different ways. Blend 1 relies upon fish meal and soybean meal, with maize and bran used as energy sources and binders. Blend 2 replaces blood meal with some fish meal and soybean meal. Blend 3 replaces brewery waste with some fish meal. Blend 4 restricts its animal-based ingredients through greater reliance upon soybean. Groundnut cake may replace soybean meal as needed. Addition of prawn waste greatly stimulates feeding response, particularly for blends containing greater proportion of plant ingredients. Buoyancy is an important trait of fish pellets, and ingredients with more fiber and oil tend to float longer. Note that some ingredients bind pellets, sealing them against too rapid water infiltration and these properties are enhanced by extrusion and drying. Fish at different stages of development require different crude protein contents to maintain rapid growth. Fry require 40% to 50% crude protein, and in some cases are fed pure fishmeal. The accompanying Table shows a formulation of 80% fish meal that also contains wheat bran, soybean, and maize meal. Fingerlings require about 34% crude protein, allowing for the use of less expensive ingredients. An \"Easy\" formulation useful in pond production of larger fish consists of 22% fishmeal and 78% broiler feed. Formulate fish feed is based upon the size of the fish. Feeds ranging in size from 0.5 mm to 8 mm are available. Feed for fry is about 0.5 mm in size, pellets for fingerlings are about 1.6 mm and those for larger fishes are from 4 mm to 8 mm. In general, feed pellets should be 25% to 50% of the width of a fish's mouth. The weight of the fish determines the amount of feed required. There is an advantage in producing your own feed and using them more efficiently because purchased fish feed is expensive.Blend 1 Blend 2 Blend 3 Blend 4Crude protein 30% 30% 30% 31% -------------content (%) ----------- --------------content (%) ------------- Application. The most important consideration in manufacturing pelleted fish feeds is the use of quality feed ingredients that are locally sourced and competitively priced. In feed formulation, the upper limits of toxins and lower limits of substances that influence palatability and water stability must be considered. The first step in the production process is grinding raw materials with a hammer mill into a fine powder. Smaller particle sizes have greater digestibility, cohesiveness, and water stability. Materials should be sun or oven dried before grinding. Different ingredients must have a uniform size. The second step in the process is mixing the ingredients and can be homogenized by hand to form a mash before wet extrusion. A mechanical mixer can be used for large-scale feed production. If cereals in the formula are not adequate to bind the particles of the feed mixture, cassava starch or a similar product can be added as a binder. Just before extrusion, the raw materials are moistened so that they adhere. Wet-type steam pelletizers gelatinize starch which further improves nutritional value and lubricates the materials for faster processing, lowering costs and extending machine life. For most adult fish, the diameter of pellets should be at least 4 millimeters. After pelleting, when possible, the pellets should be dried in an oven rather than in the sun to avoid deterioration of fatty acids. Following drying, pellets are screened, and the fines collected for feeding fingerlings. Final products are packed in water impermeable bags to prevent mold and insects. Wastewater and solid waste from fish feed factories must be treated in accordance with environmental regulations.Commercialization and Start-up Requirements. Localized manufacturing of pelleted fish feed represents a viable enterprise opportunity in support of fish production. Steps to enter feed manufacturing include: 1) Organize continuous supply of low-cost raw ingredients, 2) Locate production site conveniently close to fish farms and transportation corridors, 3) Procure and install appropriate, serviceable equipment, 4) Provide sanitary packaging and storage of feed, 5) Market feed products to fish farmers, agro-dealers, extension agents, and when possible 6) Pre-arrange contracts with fish farms at a profitable and competitive price.Production Costs. Raw ingredients account for 60% to 70% of the total cost. The principle of choosing raw materials for fish feed is to select the lowest cost material that meets the required nutrient composition. Note that localized cost of ingredients for pelleted feeds can be reduced by utilizing waste from fish markets and landing centers. Other costs for manufacturing fish feed are the purchase and maintenance of equipment, training and payment of skilled labor, and supply of utilities. Manufacturing fish feed with a motorizedpelletizer is slightly more expensive than the use of a manual pelletizer because it requires more advanced equipment and a power supply. A fully automated line consisting of a vertical mixer, double screw extruder, dryer, and flavoring machine with conveyors and hoisters with a capacity of 120-150 kg per hour costs about US $18,000 excluding shipment and taxes. The equipment setup for a production capacity of 4 to 5 ton per hour costs about US $85,000. The use of pelleted diets for catfish culturing in Kenya has demonstrated to achieve a better feed conversion and growth rate, and higher net return compared to the same formulation of nonpelletized feeds. High-quality pellets can fatten stocks quickly for sales on local fresh markets for whole fish or processed products.Customer Segmentation and Potential Profitability. The manufacturing of fish feed pellets with locally sourced ingredients and automated equipment is relevant for privately owned or community-based enterprises. Companies that supply, engineer, and build feed production lines need to maintain close contacts with local producers, distributors, and government agencies for delivering services that match market conditions. Generally, the total cost of producing and marketing pelleted fish feed is around US $1,200 per ton which can then be sold for up to US $1,500, suggesting low profit margins but high sales volumes. Fish feeds can be profitably retailed by agro-dealers and at local markets servicing fish producers.Licensing Requirements. Food safety audits and certifications are required to manufacture and sell fish feeds in many African countries that are required for regular testing of nutritional value and the presence of pollutants. Knowhow for feed production is readily available as a Regional Public Good provided by WorldFish across Africa.Five common fish feed ingredients: maize meal (upper left), fish meal (upper middle), rice brain (upper right), wheat bran (lower left) and soybean meal (lower middle)Technology 9. Integrated Aquaculture and Agriculture Systems Summary. Integrated aquaculture involves linking two or more farming activities where at least one is related to fish-farming. This integration offers opportunity through interlocking production systems and recycle of farm waste, which provides households with additional protein. The basic principle of aquaculture and agriculture integration entails that water and sediment from the pond goes onto the crop for irrigation and fertilization, and that crop residue wastes go to the pond for feeding fish. Linking both systems allows fish to be cultured with less purchased feed and for crop yields to be increased with fewer external inputs. The most commonly combined crops are rice, other wetland crops, and vegetables. Crops irrigated with pond effluent yield more than those irrigated with water alone. In this way small-scale and commercial farm enterprises can make their production systems more productive, diverse, and profitable. Further information on fish-crop integration is available from Prof. Bernadette Fregene by email at b.fregene@cgiar.org.Technical Description. Placing fishponds or tanks near croplands or greenhouses makes it possible to double up on the use of their water and nutrients. Traditional pond or tank systems can be combined with open-field cropping practices or more complex aquaponics systems where plants are cultivated in pond effluent. Integrated systems can also circulate water between fish enclosures and irrigated crop beds. On the one hand, excreta from fish in the water is converted into nutrients that fertilize plants and on the other hand, biomass waste and excess nutrients from crops provide nourishment for fish. When properly established, this interchange saves on the cost of feed, fertilizer and irrigation water while producing more per input investment and land area. Rice paddy fisheries either rely upon the migration of wild fish from rivers and channels or stocking into submerged rice fields. Irrigation with pond effluent is performed in vegetable fields or greenhouses during or after a fish production cycle.Uses. This integration is applicable to many locations. It is useful in drylands where water from seasonal rainfall is captured and retained, and reservoirs stocked with fish. The system is equally suitable for regions with high rainfall or near rivers that have abundant access to water. The technology can be practiced in lowland areas that are seasonally flooded by rainfall and floodplains extending from the edges of rivers and lakes, but on hill crests and highlands to store gravity-fed water.Technology 10. Mechanized Processing and Value Addition Summary. Fish processing refers to the processes associated with fish and their products from the times they are harvested to when they are offered to consumers. Fish is a highly perishable food that requires proper handling and preservation to extend its shelf-life and retain its desirable taste and nutritional value. Processing technologies also add value to fish products by improving their palatability and market acceptance. The key to delivering quality fish-based foods requires close attention to harvesting, handling and storage. Solar tent dryers and smoking kilns are among the most popular, low-cost, and widely used fish preservation technologies. By reducing the moisture present in fish these two methods avoid the need for refrigerated transport and storage. A wide range of value-added products that can be manufactured include fish powder, fillets, brochette, sausages, fingers, crackers, samosas, and cakes. Contact Prof. Bernadette Fregene of WorldFish for more information by email at b.fregene@cgiar.org.Technical Description. Basic procedures used in fish processing include drying and smoking, cold storage and freezing, heating, canning, and irradiating. Historically, the first technique has the greatest importance in Africa, but cold storage is also becoming widely available.Fresh fish spoils easily after harvesting due to high temperature which accelerates activities of bacteria and chemical oxidation. Losses are minimized by processing and preservation.Removing the scales and gut, washing, and filleting of fish are the first steps to achieve short-term storage, and to manufacture value-added products. Various food preparation methods like drying, smoking, frying, grilling, and baking can be used to improve appeal, taste, and finishing. Equipment used for scaling, filleting, skinning, and deboning allow for quick, and safe processing of fresh compared to manual operations. Solar dryers provide a low-cost alternative and are constructed with readily available materials. Different sizes of solar dryers can be built, with the smaller units measuring two meters in height and 1.7 meter in length and width. Smoke contains antibiotic substances that kills microorganisms, and the heat dries the fish. Traditionally brick and drum kilns are used for smoking, but quality and hygiene are difficult to ensure in these units because no mechanism is present for collecting and draining oils. An improved design with a motorized fan system has been introduced to fish production regions that drastically reduces energy consumption and processing time and improves smoke control and hygiene. At the same time, options exist to reduce the dependency on complex equipment and create job opportunities in processing while meeting stringent sanitation requirements.Range of fish processing tools (left to right): scaler, cutter, skinner, and de-boner Uses and Composition. All types of fish may be processed using electric scaling, cutting, skinning and de-boning machines, and preserved with solar dryers and improved smoking kilns. The equipment is suitable for different sized fish, but the processing time varies accordingly. Electric scalers have a rotating spindle head with serrated teeth that lifts the scales and pulls them as they are moved across the skin, and a splash cover that avoids the spraying of fish scales. A cutter has a small double conveyor belt which takes the fish through a vertical blade and produces equal-sized fillets. The key part of deboning and skinning machines is a ribbed or tooth roller head that is horizontally moved over the inside and outside of fillets, removing small bones. A solar dryer is made of a wood or metal frame structure that is covered with polythene sheets, trapping the sun's heat inside. Fish are spread out on wire mesh shelves so excess water can drip through and desiccate the product evenly.An improved smoking kiln consists of four main components: an air-tight chamber with stacked trays to hold fish and an oil collection pan at the bottom, a fan for even flow of heat and smoke, a thermometer for monitoring chamber temperatures, a chimney with a damper to filter soot and diffuse smoke. Charcoal is used in the kiln for generating heat and smoke, although soaked woodchips may be added to add a distinctive taste.Application. Processing starts with the removal of scales and gut contents from whole fresh fish after which they can be cut into fillets, skinned, and deboned. Pliers may be used to pull skin away from flesh and bones, particularly for catfish that lack scales. Tools and surfaces used for processing need to be regularly sanitized with clean water and disinfectant. Staff hygiene is critical to ensure food safety and requires the use of gloves, hairnets, and overalls. After cleaning, the fish is ready for drying and other forms of value-addition processing. In solar tent dryers, sunlight falls onto the transparent polythene surface to heat up the air inside which gently desiccates the fish, and a motorized fan accelerates convection and air circulation. Well-constructed units are rainproof and may even be operated in bad weather.Tents must be fully exposed to sunlight and should be positioned facing the prevailing windProcessing tilapia in an easy-to-install solar dryer to improve air movement. The optimal temperature for smoking ranges from 45° C to 70° C. Excessively high temperatures will result in the flesh being \"cooked\" and losing desired texture. Smoking fish for one or two hours provides an appetizing taste and short-term preservation but must be extended for four to six hours for complete drying depending on the prevailing temperature and size of the fish. Trays can be stacked inside a kiln, leaving space on the sides for smoke to circulate. After drying or smoking, the finished products are packed into bags or boxes to ensure that taste and cleanliness are maintained until sales.Commercialization and Start-up Requirements. Equipment for fish processing, solar drying and smoking can be readily purchased or constructed across Africa. There is a large scope for value addition of fish to increase marketability, expand the sector and promote regional trade. Establishing a fish processing and value-added operation requires: 1) A business plan and mobilization of funds for investment in equipment and premises, 2) Training staff on the safe and hygienic processing, 3) Regular and adequate supply of fish to operate the facility at planned capacity, 4) Access to reliable and affordable utilities and fuel, and 5) Contracted marketing of finished products to minimize storage and maintain cash flow.Production Costs. An imported, handheld electric fish scaler costs US $1,500 and a filleting equipment is sold for US $1,000. Tabletop equipment for skinning and deboning with a capacity of 10 to 20 fish per minute is sold on international markets at US $2,500. A large greenhouse-style solar dryer 15 m long and 8 m wide on a concrete floor that has a carrying capacity of 850 kg fish per batch can be constructed for about US $2,000. Small Plexiglas dryers 1.75 m long and 1.5 m wide cost only US $400. Manually operated fish smoking kilns of medium-sized units running on charcoal and with a thermometer, able to smoke and dry up to 100 kg of fish cost about US $700 to build. A fully automated kiln with a capacity of 150 kg fish per batch that is available on international markets sells for US $3,500. Charcoal, and electricity may represent 30% to 40% of the operational expenses.Customer Segmentation and Potential Profitability. Processing and value addition techniques are useful among fish farmers that produce excess quantities of fish but lack market access for immediate sales. Post-harvest services may be offered as a small independent business or be integrated into fish farming cooperatives. Larger-scale processing is a commercial enterprise. Complex automated facilities are needed for cleaning, drying, smoking, and packaging fish in ways compliant with food Safety and environmental regulations. Lower-cost solar dryers and ready access to markets allow small-scale processors to recover initial investment within 3-6 months. Improved designs of smoking kilns reduce processing time to a few hours where otherwise traditional methods require days to produce similar products. Considering moisture loss, dried fish are worth three or four times their initial value. For example, one kilogram of well smoked catfish is sold for US $18 on local markets Nigeria. This section does not describe other, more industrialized forms of value addition including canning and freezing, but these too offer value addition opportunities.Licensing Requirements. Cottage-style traditional fish processing is often conducted without licensing restriction, but commercial operations are subject to a variety of regulatory requirements. In some case, simply butchering a fish requires licensing like that of poultry or livestock and must be performed on a stainless-steel table. The manufacture of fish processing equipment is protected by patent, but many facilities, particularly solar driers and smaller kilns may be constructed using locally available materials. Additional information on fish processing is available from WorldFish as well as the IITA Agripreneur Movement, because the youth have built successful businesses around fish processing.Youth entrepreneurship is a critical ingredient of Africa's agricultural transformation and their engagement with modernized aquaculture reflects this opportunity. The most widespread opportunity is through the establishment of fishponds and reliant upon many of the technologies presented in this catalogue. These include the rearing of improved broodstock (Technologies 1 and 2) within water efficient systems (Technologies 4 and 6) raised using nutritious feeds sequenced to different stages of growth (Technology 8). This goal is readily achieved through collective action within youth groups. As early innovators, youth groups can establish a pilot fish farming enterprise, develop skill set around its management, and then replicate the enterprise on individual holdings. Literacy and smart phone access contribute to this advantage. Fish farming generates ready profits even when start-up costs are considered. A youth-led fish enterprise raising tilapia in Nigeria invested about US $8,300 and within two years net profits totaled US $8,280, indicating an Young farmer, big catfish annual rate of return of about 50%. A similar enterprise for catfish required US $6,062 and two years later profits were US $9,666. In the process, hundreds of other youths received training in pond operations.Youth are also positioned to provide commercial services to the aquaculture sector including the establishment and operations of hatcheries and fingerling nurseries; construction, periodic maintenance, and upgrades of production units; local blending and pelleting of feeds; and value addition to fish. Producing fry is not difficult, as it involves simply combining eggs and milt in clean, aerated water, and then removing the young fish after only a few days. It does require access to improved broodstock that may be kept in smaller ponds. Raising fingerlings is only slightly more complicated, but these fish must be provided a high protein diet until they are sufficiently large for release into production units. Fry and fingerlings may be produced collectively by a youth group for rearing by their members and sale to the larger fish farming community. A modern, youth-led hatchery in Ibadan, Nigeria was established for US $26,450 and over the following 6 years produced almost 2 million fingerlings worth US $0.06 each, resulting a value of US $118,990. These fingerlings included the all-male Genetically Improved Farmed Tilapia described in Technology 1 of this catalogue, accelerating the distribution of this improved breed. This facility provides employment to 10 youth as well.Youth appreciate the opportunities from integrating fish farming with cropping and animal rearing (see Technology 9). In Kenya, a youth group that established a model farm in association with the University of Nairobi established a network of four fishponds among several vegetable greenhouses. The area was sandy, so these ponds were lined (see Technology 4) and serves as a source of irrigation water during times of drought. These youth developed their own fish feed as well, relying in part upon leaves of local trees and blood from a nearby abattoir processed to blood meal, producing low-cost, air-dried pellets using a hand operated mincer. At the end of every fish production cycle, nutrient-rich pond effluent is pumped between the beds of cucumbers and tomatoes, greatly reducing their requirements for fertilizer, and eliminating the need for discharge into a nearby seasonal stream. A youth in Nigeria first established fishponds, later expanded into poultry and swine, finding creative ways to link their operations, created 21 new jobs, suggesting that this enterprise rests on a sound commercial foundation.Adding value to fish offers another line of opportunity to youth, particularly when linked to high levels of production and reliable supply chains. The immediate opportunity is based upon drying and smoking in ways that reduce the perishability of fresh fish and add versatility and taste to the product (see Technology 10). Preparation of stews and native soup from dried catfish is widely practiced throughout Nigeria, so consumers seek reliable sources. In response, three youth trained within an agribusiness incubation established Frotchery Foods Limited (Nigeria) to produce and market smoked dried catfish. Their product resembles traditional smoked catfish but is prepared using modern techniques and packaged in ways acceptable to supermarkets.After some effort, they registered their products with Nigerian authorities and then marketed them across Nigeria, with sales expanding to DR Congo, Kenya, the United Kingdom, and the USA. Recently, their product line expanded to include fish feed.Youth are well positioned to adopt the technologies offered in this catalogue, and these technologies were selected based upon that attraction. Educated youth that find themselves un-or under-employed can appreciate the complexities of aquaculture in ways that older, more conventional farmers cannot, and can move into the sector. These youth are also better connected to information flows via the internet and social media. One disadvantage they experienced a shortage of collateral and creditworthiness that translate into loan opportunities. This shortcoming is recognized as an incentive for youth participation within development programs based upon sovereign country loans that are increasingly offered, including those promoting the aquaculture sector. When it comes to engagement in aquaculture, it gives youth a chance! Information courtesy of ENABLE TAAT.The TAAT Program offers its services toward the advancement of modernized agriculture. It brokers a wide range of needed technologies and bundles them through a process of co-design into winning solutions. It recognizes that modernized agriculture must serve as the main engine for economic growth in Africa and operates accordingly. Change is intended to achieve not only food and nutritional security but also to meet obligations under climate agreements allowing collaborative efforts to better combine global, national, and community-level interests. TAAT operates from a unique perspective to mobilize innovative solutions through better partnering that includes honest technology brokerage and effective, scalable skills development through five key mechanisms. Unique understanding: Expertise is offered in the areas of site characterization and problem identification.  Innovative solutions: Leadership is provided in technology brokerage and solution bundling based upon a dynamic portfolio of candidate technologies.  Better partnering: Assistance is offered in the better co-design and management of projects prompting agricultural transformation.  Replicable approaches: Assistance is available to advance skill sets in technology brokerage and project management through customized Training of Trainers activities.  Honest brokerage: An independent capacity for impact assessment and constructive learning is achieved through standardized monitoring and evaluation.These partnership mechanisms are applied to the technologies featured in this catalogue as follows:1. Improved Fish Breeds. Fast producing, climate and disease strains of tilapia and catfish are provided by TAAT to national agencies and farmers, and upon release, assistance is provided in the design of fingerling systems that accelerate community-based production. These services are arranged by TAAT with its partner WorldFish.2. Quality Fingerling Production. Once superior fish breeds are available, TAAT helps in their scaling through the design and cost-efficient operations of fish hatcheries and fingerling nurseries. These designs can be incorporated into larger development projects through Public-Private Partnership.3. Efficient Pond, Tank and Cage Management. This catalog describes a variety of rearing facilities such as ponds, tanks and cages suited to a variety of conditions, but greater understanding is needed by project managers and investors before they can be installed. Services are offered through TAAT to assist the public and private sectors in planning, marketing, and scaling efficient fish production systems across Africa.4. Local Feed Production. This catalogue demonstrates that balanced formulations of fish feed can be manufactured using readily available ingredients and equipment that increases access, lowers costs, and creates new businesses. TAAT and its partner WorldFish assist in the dissemination and commercialization of fish feed technologies.Water is a precious commodity and the technologies presented in this catalogue offer several options on how it may be effectively conserved and recycled. TAAT and WorldFish assist national programs in the design of these integrated management systems.6. Value Addition. This catalogue describes a limited number of value-added products that present business opportunities, needed materials and equipment, but more importantly it identifies that more products are realizable within the scope of agricultural transformation. Aquaculture is an important contributor to achieving protein security, and processing fish products is good business. The TAAT Clearinghouse is ready to assist in the design of national projects for development banks, including the African Development Bank.A large catfish raised in an earthen pond by Nigerian youth","tokenCount":"13355"} \ No newline at end of file diff --git a/data/part_3/9413668249.json b/data/part_3/9413668249.json new file mode 100644 index 0000000000000000000000000000000000000000..813df22e5ffdcf274b1d69a449135a3e8ff7a699 --- /dev/null +++ b/data/part_3/9413668249.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"07fe3102201f572f9cc50b14f542e697","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/8a719be5-2c72-4735-99b2-d460b5517e99/retrieve","id":"-2114541421"},"keywords":[],"sieverID":"00320b76-8ff5-48b7-aae5-0ea5dd7b6412","pagecount":"49","content":"Impacto sobre los consumídores Cobertura y estabilidad Cantidades consumídas Importancia relativa en la ingesta nutricional Cambios ocuxridos en el consumo de frejol y de otros alimentos Impacto sobre el bienestar de las familias rurales Resumen y Conclnsiones Anexos 27 Anexo 1. Características sociodemográficas de los consumí dores de frejo! Anexo 2. Características socioeconómicas de los consumídores Anexo 3. Consumo de frejol en Santa Cruz Anexo 4. Características de las variedades consumídas Anexo 5. Cambios ocurridos en el consumo de frejo! Anexo 6. Consumo de alimentos Anexo 7. Estimación del ingreso proveniente del frejol Anexo 8. Ingesta de proteína y calorías Anexa 9. Consumo de calorías y proteínas Anexo 10. Exportaciones d. frejo! según país de destino Anexo 11. Exportaciones de frE¡jol de Bolivia segun medio de transporte hasta la frontera Anexo 12. Exportaciones de frejo! de Bolivia según pnntos fronterizo. de salida Anexo 13. Precios del frejol ivFigura 1. Evolución del área en cultivos Figura 2. Curvas de adopción de frejol Figura 3. Consumo de frejol en el sector urbano y rural de Santa Cruz Figura 4. Distribución de la producción de frejol según destino Figura 5. Estructura del costo de producción de frejol Figura 6. Impacto de cambios en rendimiento de frejol sobre el ingreso del agricultor Figura 7. Cambios en el consumo de frejol Figura 8. Cambios en el consumo de frejol en el ~ector urbano Figura 9. Cambios en el consumo de frejol en el sector rural Figura 10. Indicadores de bienestar Figura 11. Metas y logros en bienestar: San Julián Figura 12. Metas y logros en bienestar: Colonia Berlín Figura 13. Composición de los indicadores de bienestar para el área rural de Santa Cruz Figura 14. Metas de bienestar: porcentaje de cumplimiento Figura 15. Logros en bienestar va. años produciendo frejoI común v IEn noviembre de 1979 el entonces Programa de Frijol del CIAT despachó a solicitud de la Universidad Autónoma Gabriel René Moreno (UAGRM) un paquete de 10 kg conteniendo 50 líneas y variedades de frijol que por entonces se ensayaban en el Vivero Internacional de Adaptación y Rendimiento de Frijol (IBYAN) del CIAT. Ese lote de frijol fue el comienzo de un tra~o de investigación con un cultivo nuevo. Fue también el comienzo de una conjunción de esfuerzos de muchas instituciones y personas de Santa Cruz, cada una asumiendo un compromiso y ofreciendo su experiencia y habilidad. No es fácil participar en forma armoniosa en una empresa y menos lo es cuando ésta ofrece más riesgos que oportunidades. La incertidumbre puede ser un elemento que desaliente a muchos pero nunca es un freno para los soñadores o los intrépidos que saben lo que quieren y tienen el valor de emprender la aventura de hacer realidad lo que parece una quimera. Ciertamente empezar un trab~o con frijol en Bolivia fue una aventura pero tanto las instituciones agrícolas de Santa Cruz, lideradas por la UAGRM como los pobladores del Altiplano, la mayoría mineros, que un día partieron para los montes del Oriente ilusionados con la política de colonización del gobierno o simplemente aprovechando la penetración caminera, decidieron embarcarse en esta aventura que felizmente arribó a buen puerto como lo prueban los resultados que muestra este estudio llevado a cabo por el CIAT.Veamos algunos ejemplos, recogidos en este trab~o, de 10 que ha pasado con el frijol 20 años después de su introducción en el departamento de Santa Cruz.o Antes de 1979 en el departamento de Santa Cruz no se sembraba frijol; en 1999 el área sembrada está cercana a las 20 mil hectáreas.• Bolivia ahora exporta frijol a siete países. En 1997 las exportaciones alcanzaron un valor de casi 9 millones de d6lares.o Gracias al frijol los campesinos entraron a la economia del mercado: el 61% del total de frijol producido se exporta.• El frijol creó nuevas fuentes de trabajo. Se estima que entre 450 a 500 mil jornales directos por año derivan de la actividad frijolera. o El frijol generó una fuente de trabajo importante para el agricultor y su familia: el 58% de los jornales utilizados son aportados por la familia campesina.• El 50% de los jornales se emplean en labores de cosecha y el ama de casa aporta la mitad de ellos.o El frijol se convirtió en la mejor opción de cultivo de invierno para los colonos de escasos recursos ocupando el 86% del área cultivada en invierno en las zonas de colonización, la mayor área comercial de producción de frijol en Santa Cruz.o Gracias al frijol se redujo sustancialmente la necesidad de emigrar a otras regiones en invierno en busca de trabajo.o En Santa Cruz no se consumÚl frijol. En 1999 se estima que el consumo alcanza el orden de 9 mil toneladas por año.o El consumo per cápital año en la poblaci6n rural de Santa Cruz es de 23.5 kg, mayor que el promedio del Brasil. El consumo en el sector urbano es de 6 kg per cápital año, mayor que el de Colombia.o En el sector rural el frijol aporta una tercera parte de los requerimientos diarios de protetna. En el sector urbano los consumidores más pobres de la poblaCión suplen con frijol un 17% de los requerimientos proteicos diarios.o El frijol contribuyó al bienestar de las familias rurales ayudándolas a mejorar su caUdad de vida e infraestructura de trabajo.Lo sucedido con el frijol en Santa Cruz, Bolivia es un modelo de lo que la tecnología y la capacitación, la oferta de CIAT, puede hacer cuando hay participación de otros protagonistas aportando sus talentos y especialidades. La intervención de COSUDE a través de su apoYo financiero y de su proyecto PROFRIZA como el elemento amalgamador de todos estos esfuerzos fue factor decisivo para este acontecimiento que en última instancia tiene como protagonista. principal al colono del Oriente boliviano que tuvo fe en los sueños ajenos. En 1988 el CIAT crea el Proyecto Regional de Frijol para la Zona Andina (PROFRIZA) financiado por la Agencia Suiza para el Desarrollo y la Cooperación (COSUDE). En este mismo año la Asociación Menonita de Desarrollo Económico (MEDA) emprendió en Bolivia la tarea de incentivar asociaciones de productores con el propósito de reducir la vulnerabilidad frente a las fuerzas del mercado. Así nace en Santa Cruz la Asociación Nacional de Productores de Frejol ASOPROF.El objetivo de introducir el freiol en Santa Cruz fue el de involucrar a Bolivia en la producci6n de un alimento que contribuyera a mejorar los estándares nutricionales de los consumidores y proporcionar al agricultor nuevas opciones de ingreso y de uso del suelo.Los agricultores a los cuales se enfocó el trab8jo de frejol fueron básicamente aquellos localizados en las áreas de penetración de la selva amazónica, quienes habían emigrado desde el altiplano boliviano hacia la llanura de Santa Cruz buscando oportunidades para su subsistencia. A la fecha se estima un asentamiento de cerca de ocho mil familias emigrantes, con 50 mil personas quienes ocupan unas 300 mil hectáreas de selva. Después de 20 años de iniciada las acciones para introducir el cultivo de frejol en Bolivia, 105 integrantes del Proyecto (PROFRIZA y la UAGRM) contratan un estudio de evaluación de adopción e impacto. La evaluacion busca definir la situación de la producci6n y de los productores antes y después de la introducción del frejol, así como el impacto en el consumo doméstico, en el mercado de exporteción y en algunos indicadores macroecónomicos de la región.En la actualidad la llanura de Santa Cruz dispone de 1.2 millones de hectáreas en cultivos de tipo agroindustrial -caña de azúcar, sorgo, soya, algodón, maíz, trigo, eOO.-los cuales muestran una dinámica de expansion alta (Figura 1). En la última década el área agrícola de Santa Cruz se incrementó en 375 por ciento a expensas de la selva. Los cultivos agroindustriales son explotados básicamente por grandes agricultores o empresas. Según un estudio del Centro de Investigación y Manejo de Recursos Naturales Renovables de Bolivia, el 90 por ciento de la tierra en producci6n es explotada por grandes agrícultores que s610 representan el 5 por ciento de los cultivadores. Dentro de este contexto el frejol ocupa sólo un 1.5 por ciento del área pero involucra a gran número de pequeños agricultores situados en las zonas de penetración. Se deflnen varios niveles de estudio: producción, consumo urbano y rural y comercialización. A nivel regional se obtiene información secundaria para analizar la participación del frejol en la producción agrícola, su evolución y sus mercados.A nivel de los productores se captura infonnación primaria para analizar los cambios introducidos por el cultivo del ~ol en el uso de la tierra, de la mano de obra y otros recursos de la producción, así como también trata de identificar y evaluar el impacto en el bienestar de las familias de los agrícultores involucrados en el cultivo.A nivel de los consumidores se captura información primaria para analizar la incorporación del frejol a la dieta alimenticia y su importancia relativa en la iugasta calórica y proteica.En el Cuadro 1 se muestran las fuentes consultadas o encuestadas y el tamaño de la muestra manejada.Una buena parte de la información obtenida para este estudio fue recolectada por tres estudiantes de la UAGRM quienes realizan SUB tesis de grado, todas referentes al frejol en el departamento de Santa Cruz, Bolivia en los siguientes temas: al El comercio y la demanda. b) La producción y sus limitantes.cl El consumo urbano y rural de frejol, sus perspectivas y retos.En los informes de tesis se incluirá la información detallada obtenida en las encuestas realizadas a los productores, amas de casa y comerciantes de la región.En este documento se presenta sólo un resúmen de los resultados obtenidos y se enfatiza en el análisis del impacto del frejol en los diferentes niveles de la economía regional así como en el bienestar de las familias campesinas involucradas en el proceso. En los casos en que lo requiera el análisis, se consigna información detallada en los cuadros anexos a este documento.Esta sección se presenta agrupada en cinco temas: Nivel de adopción de frejo!.Impacto sobre la región.Impacto sobre la producción y los productores.-Impacto sobre el consumo.-Impacto sobre el bienestar.Dado que uno de los objetivos de la introducción del frejol en Bolivia fue el mejoramiento de los estándares nutricionales en la región, la adopción se cuantifica tanto en términos de agricultores que incorporaron el frejol como alternativa de cultivo como en términos de consumidores que lo integraron a su dieta alimenticia.Del lado de la producción se estudiaron las áreas de San Julián y Colonia Berlín, dos de las zonas más importantes en asentamiento de colonizadores emigrantes del Altiplano boliviano. Del lado del consumo se estudió la ciudad de Santa Cruz de la Sierra, principal centro metropolitano de la región y la población rural de las áreas de producción de frejo!.Las curvas de adopción del !rejol como cultivo muestran un proceso lento en los primeros afios, el cual se intensifica hacia 1990 a 1991. Allí permanece estable hasta 1994, afio a partir del cual la adopción se acelera llegando a un alto nivel de adopción con un 90 por ciento de agricultores cultivándolo (Fignra 2).El proceso de adopción es muy estable y se evidencia en el hecho de que un 70 por ciento de los agricultores lleva más de 5 afios cultivando frejol y que el área ha venido creciendo hasta llegar a un promedio de 8 hectáreas por finca.Del lado de consumo, la adopción del frejol como producto alimenticio es del 50 por ciento en familias del sector urbano y del 75 por ciento en el sector rural de la zona de colonización (Figura 3). Año d. entrado a la producción de !Njol Figura 2. Curvas de adopción de !Njol, Santa CI11<, Bolivia. La superficie en frejol se estima para 1998 en cerca de 23 mil hectáreas, con base en los datos de consumo doméstico y exportaciones. El volúmen de produeelón se estima en cerca de 25 mil toneladas.La presencia del fr'liol en la región ha tenido las siguientes implicaciones:al Creó una nueva fuente de divisas para el país. En 1997 las exportaciones alcanzaron un valor de 8.8 millones de dólares y representaron el 61 por ciento del frejol producido.b) Paralelo a la exportaci6n se generó un consumo doméstico del orden de 9000 toneladas! año que equivalen a un S4 por ciento de la producción (Figura 4 ). e) El consumo doméstico generado ha permitido ubicar los excedentes de exportación, con beneficio para los productores y exportadores al reducir la inestabilidad en los precios que crea un mercado único.dJ M~oro eficiencia en el uso de la tierra incorporando a la producei6n la estacion de invierno, época para la cual no existían opciones de cultivo para los agricultores pequeños.e) Amplió la frontera agrícola para el pequeño agricultor sin condicionarla a la tala del bosque como ha sucedido con los otros cultivos introducidos a la región.f) Creó fuentes de trabajo importantes. Se estima con base en los datos de la encuesta que el frejo! requiere unos 30 jornales por hectárea y que en total la actividad de producir frejol genero entre 450 mil a 500 mil jornales directos por año (ver cuadros anexos).Impacto de la A.clopción de Frejol ... g) Como efecto colateral a la actividad económica el !rejol promovi6 a los pequefios agricultores de las áreas de penetración de selva hacia una agricultura comercial, al aglutinarlos alrededor de ASOPROF (Asociación Nacional de Productores de Frejol), entidad que viene ejecutando funciones de mercadeo interno y externo de insumos y productos y realizando alianzas estratégicas con la Universidad y el sector privado para financiar investigación técnica para el cultivo.h) En 1997 ASOPROF participó con e116 por ciento del valor total de las exportaciones de !rejo!.i) El frejol redujO los costos de producción de los cultivos de verano al bloquear las malezas que proliferaban durante la estaeión invernal. Se estima que el gasto anual en control de malezas para los cultivos de verano se redujo en 1.6 millones de dólares desde que el frejol entró como rotación.La tecnología puede tener efectos positivos en la productividad y en la producción y no traducirse en bienestar de los agricultores involucrados en su adopción.Uno de los efectos negativos de la tecnología se da cuando el precio del producto baja como consecuencia de los incrementos en la oferta resultantes de la innovación tecnológica. En el caso del frejol, por su característica de producto foráneo sin un mercado doméstico, no se enfrentaron problemas de precio como el referido.Situaciones de competencia por recursos productivos con otros cultivos no se dieron al cultivar frejol, por que esta actividad se desarrolla en una época marginal para los cultivos tradicionales.Por estas razones, muchos de los impactos valorados son absolutos y no hacen relación con situaciones predichas.A continuación se describen las innovaciones y cambios introducidos por el frejol: a) Con base en los datos de la encuesta se estima que en el área de producción comercial de frejol (Provincia Ñuflo de Chavez), un 63 por ciento de jefes de hogar están vinculados al &ejol como agricultores o como jornaleros.b) La mano de obra representa el 50 por ciento del costo de producción de frejol (Figura 5). el Los pequeños agricultores han encontrado en el (rejol una opción de cultivo para el invierno: un 86 por ciento del área cultivada en esta estación lo es con frejol. Antes de su introducción s610 un 8 por ciento del área cultivable era explotada en el invierno.d) El frejol redujo sustancialmente la necesidad de emigrar a otras regiones para obtener trabajo en el invierno con evidentes beneficios para la estabilidad familiar y laboral. Un 90 por ciento de los entrevistados ya no emigran en busca de trabajo.e) El ingreso por (rejol representa un 43 por ciento del ingreso total de los agricultores entrevistados. Este nuevo ingreso debe compararse con el obtenido al emigrar por trabajo, deducidos los costos inherentes a ese desplazamiento. Este ejercicio demanda conocer las condiciones de trabajo en que viajaba el agricultor tales como tarifas, seguridad en la contratación y condiciones de trabajo e implicaciones familiares. No se dispone de dicha información pero es claro que el balance a favor del frajol es bueno, como lo evidencia la baja migración por trabajo que se da actualmente.1) El (rejol genero una fuente de trabajo importante para el agricultor y su familia: el 58 por ciento de los jornalee utilizados en la explotación son propios, es decir, aportados por la familia campesina lo cual representa cerca de 222.500 jornales/ai'io.g) El frejol incorporó al ama de casa rural en la actividad de producción. El 50 por ciento de los jornales empleados en el cultivo son debidos a lmpucto command works on precedence, which means that, cell-by-cell, the value for border takes precedence over that for roads, which in turn takes precedence over that of land cover. Land cover is used to estimate average speeds outside the road network. In the present analysis it was assumed that onroad travel would be by motorized vehicle, with road speed depending on the type of road, whilst offroad travel would be by foot, with walking speed conditioned by land cover. This simplification does not take into account different modes of transportation, seasonality (dry or wet roads, for example), or the fact that people who are walking to a road might keep on walking on the road itself. Nor does it allow for vehicular travel off-road, along un-recorded tracks, for example. The underlying assumption is that a person living at a given location in the study area will travel on foot to the nearest road access point and continue travelling to the closest market using a motorized vehicle. In practice that may not be the case, and it may even be unlikely in many developing countries and especially if transporting livestock. These issues are discussed further in Section 4.7. Weight the cost surface by the slope factor (reclassified as in Table 3), based on the assumption that increasing slope will reduce travel speed and therefore increase travel cost: trcost2 = trcost1/(slope_reclass/100) 8. In this particular analysis, we are assuming that water bodies represent a barrier to movement, so water was masked out before running the cost-distance model, by setting a mask: Setmask (igad_water)9. Run the cost-distance model, based on the following ArcInfo command:Where the is the grid of the markets and the is trcost2 from point 7 above.There are two optional outputs: 1) a grid showing the direction to the nearest target, and 2) a grid showing the allocation zones for each target (i.e. pixels for which that target was the least-cost option).10. Convert the cost-distance outputs to sensible units (e.g. minutes to hours). The resulting grids represent, for each cell, the time (in hours) required to access the nearest market.11. Re-project the resulting access grid back to the original projection.Figure 4 illustrates the main steps needed for the analysis. Once the accessibility surface is produced, areas can be selected that are within a specified travel time from a market, therefore determining catchment areas. Figure 6 shows the areas within 2 and 4 hours travel distance from a market in the IGAD region.Table 5 shows the mean population density and the percentage of total population within 2 hours of markets within each IGAD country. Note: Total population is from UN 2000 Statistics, while calculation on population number and population density within 2 hours of markets are produced using the GRUMP database (CIESIN et al., 2004).The basic market accessibility surface for the IGAD region described in the previous section was developed using a simple model, with regional datasets and some broad assumptions and generalisations. In this section we use essentially the same model, but apply it to more detailed data for Kenya, and conduct a comparative analysis, accounting for different 1) modes of transportation; and 2) types of market. These are closely interlinked and depend on the type and volume of commodity to be transported. Specific markets may exist for different commodities and the choice of transportation will depend on the type and quantity of commodity that is to be transported. Table 5 provides some ideas about the types and quantities of livestock products that can be accommodated by different modes of transportation. In Table 5 large stock refers to animals such as cattle and camels, small stock to animals such as sheep, goats and pigs, and meat may refer to whole carcasses or to cut meat.Obviously the numbers given are only indicative -there will be considerable variability within each category. The cost-distance model cannot account for variations of more than one variable at a time, and so it needs to be 'customized' to address specific questions individually.In this first analysis we compare models of accessibility based on different modes of transportation. For land cover we used the same database (Africa Land Cover Map, Version 5) that was used for the IGAD-wide accessibility surface. For roads, we used the more detailed database from the Kenya Ministry or Roads and Public Works (Government of Kenya, 2006). The roads were grouped into three classes: 1) paved roads (classified as A through C in the original database); 2) single carriageways with earthen surfaces (classes D and E); and 3) all the others (described as special purpose roads, which normally serve a farm, school etc. and are of poor quality).Table 6 shows the different travelling speeds estimated for the different road and land cover types, for each mode of transport. This table tries to capture the different ways livestock and livestock products can be carried to and from markets. Naturally, the choice will depend on the type of livestock or products transported and on availability of the different modes of transportation. For example, depending on the quantity being moved and the distance to be covered, milk may be transported by foot (small volumes over very short distances); by bicycle (medium quantities over intermediate distances); by motorbike (medium quantities over longer distances); by van or truck (large quantities over long distances); or by refrigerated motorised transport (large quantities over even longer distances). With a perishable good such as milk transport time is absolutely criticaland may be tempered by refrigeration or purification facilities at milk collection centres en route.The model has to make a number of additional simplifications about factors that cannot be accounted for in the cost-distance model. For example, livestock are likely either to be trucked or trekked across open country to markets. How these two modes of transport may be combined will depend on many factors, possibly including infrastructure (market and transport), legislation (for example taxes), availability of feed and water resources en route, security, demand (which may determine the availability of services to transport livestock), and the market value of the livestock. Though trekking may have high costs in terms of animal mortality and weight-loss, trekker time and greater risk of raiding, the poor road infrastructure and the cost and availability of motorized transport services in Kenya often preclude sellers and traders from trucking livestock (Bailey et al., 1999). Transportation costs are also not accounted for in this model. In Kenya, transport accounts for 25 to 40 percent of the total cost of livestock delivered to a terminal market from the northern pastoral areas, and in some cases traders might choose to trek their animals to save on transportation costs (FEWS NET, 2007).To compare the effects of differential modes of transportation, a single category for markets was used -populated places above 5,000 people. Figure 10 shows travel time to markets based on three different modes of transportation: 1) walking; 2) cycling; and 3) by car/pick-up, assuming the travelling speeds described in Table 6.The figure clearly shows the strong linear influence of the road network in accessibility using vehicular transport. The patterns for bicycle and pedestrian transport are similar to one another -and are less strongly influenced by road networks, with travel time increasing rapidly in a more circular pattern with increasing distance from markets. In the latter two cases the market catchments are much smaller.22 This section examines how the type of market considered can affect accessibility.Market-type and product-or service-type are closely linked, and an analysis of market access should start by looking at the structure and organization of the marketing chain for the commodity (or service) of interest. In the case of milk marketing, for example, in many developing countries it will be of vital importance to differentiate between formal and informal channels (de Wolff et al., 2006), as different markets are likely to serve each. Cattle will normally be taken to a primary market (by the livestock owner), whence they will transport to secondary, tertiary and ultimately a terminal market by various traders. The different legs of this journey may involve different modes of transport, and an accessibility analysis should be clear whether it is measuring access to primary markets, or to terminal markets.With these caveats in mind, we modelled accessibility to different types of market, running the 'base' cost-distance model in which on-road travel is assumed to be by motorized vehicle and off-road travel by foot. We distinguished the following types of market:• Places populated by 5,000 or more people, from the GRUMP database (CIESIN et al., 2004) -this is the baseline map as per Figure 5 but not accounting for neighbouring countries (n=59);• Milk markets, as provided by the Kenya Ministry of Roads and Public Works database (Government of Kenya, 2006) -these market locations were collected alongside the road data by the Roads Department, and thus are not 'official' milk markets. Based on the assumptions of de Wolff et al. (2006) -that every place where people could buy and sell milk could be considered a milk market -all locations have been included, which is likely to account both for formal and informal markets (n=5,400);• Cattle markets, from the Livestock Information Network Knowledge System (LINKS, 2007) -these are the major markets at which cattle are traded (n=12);• Airports, from the World Aeronautical Database (NGA, 2008) -perishable products such as processed meat, and a wide range of other livestock products (e.g. hides and skins, milk powder, egg powder, etc.) are typically sent to airports for export (n=12);Figure 11 shows the resulting maps. The importance of the road network is clearly revealed in all cases due to the assumed use of vehicular transport in the accessibility model used. It comes as no surprise that access time decreases as the number of markets increases, and the maps demonstrate that, for commodity-specific analyses, the appropriate inclusion of markets is essential.: Figure 8 Access time to different types of markets in Kenya. The objectives of this analysis were: 1) to a produce a generalised, regional map of market access; and 2) to review and investigate different approaches to accessibility mapping that may have relevance to pro-poor livestock policy development.A requirement of a regional accessibility model is that the data contributing to it must be consistent across the region of interest. To include more detailed road data for Somalia compared to the rest of the region, for example, or a more detailed market dataset for Kenya, would completely invalidate a regional map. This restriction may enforce the use of proxy variables or poorly detailed datasets in order to preserve consistency across countries. In the IGAD region, fairly standard road and land cover databases are available, as described in Section 3. Efforts are underway to develop a more detailed and globally consistent road database 4 . Standardised market information is much more problematic, so reasonably standardised population data provide the most consistent estimate of markets for regional analysis. Using populated areas as a proxy for markets has been shown to be useful in determining development domains (You and Chamberlin, 1994;Omamo et al., 2006) and in poverty mapping (Rogers et al., 2006;Robinson et al., 2007). Treating all populated areas (e.g. those above 5,000 people) as equal, however, may limit the usefulness of these estimates; surely a town with 500,000 mouths to feed and pockets to dip into will present more opportunities than one of 5,000? The challenge is to determine whether the generalisations made in such models are reasonable, or whether they limit the usefulness of the results.In relation to the second objective, we suggest that choice of mode of transport and type of market are highly dependent upon a multitude of factors that are likely to interact in quite complex ways. These include, for example: not only the distribution of but also the quality of the road network; the type of goods to be transported, or services to be procured; the value or cost of those goods or services; the wealth and assets of the person wishing to transport goods or services; the availability and costs of different types of transportation service; the use of multiple modes of transportation along a marketing chain; logistical (e.g. road blocks), legislative (e.g. taxation) and security (e.g. cattle theft) issues related to particular routes or modes of transport; seasonal factors such as ephemeral rivers and poor road conditions; and, in the case of live animals, the availability of feed and water en route, and possibly the risk of contracting particular diseases (trypanosomiasis, for example, from tsetseinfested areas). Because of factors such as these, and the generally poor and highly variable quality of data, it is likely to be difficult 1) to model accessibility accurately, and 2) to make sensible generalisations. Furthermore, it is likely that the detailed input data relevant to such applications, such as markets and transportation networks, are available only at national or even sub-national levels, at a consistent level of detail.The examples described in Section 4 highlight that market access is likely to be highly commodity-specific and so for commodity-specific applications accessibility maps should be constructed using appropriate data and parameters. In this case it is useful to have the relevant datasets in place and the methodology automated so that accessibility surfaces can be produced and adjusted quickly in response to particular questions. By providing a documented procedure to estimate market accessibility, and some baseline datasets, this paper facilitates users to produce accessibility maps as the need arises.The emphasis in this paper is on how increased market access could be beneficial for livestock keepers and thus be a contributing factor to their welfare and livelihoods.However, for the reasons mentioned above and the fact that the role of livestock varies among rural households, highly specific, livestock-oriented accessibility estimates are likely to be more misleading than enlightening in poverty analysis unless the analysis is stratified appropriately -according to the role of livestock. Travel time to milk collection centres, for example, may be a highly relevant and significant welfare predictor variable for households for which dairy production is an important source of income, but not for the rural population as a whole.Access to markets may be an important variable in analyzing the potential for buying or selling livestock or livestock products, but in terms of targetting resource allocation (e.g. for delivery of veterinary services), a number of other variables needs to be taken into account. In the example of veterinary services, the revenue required for a commercial service provider to be economically sustainable and the willingness of livestock keepers to pay for services are particularly relevant. Unfortunately such data are not systematically collected, but a questionnaire-based approach, called the contingent valuation method (Mitchell and Carson, 1989), has been used in the field of animal health to measure demand for non-market goods and services and to assess willingness to pay in a number of countries (e.g. Swallow and Woudyalew, 1994;Echessah et al., 1997;Kamuanga et al., 2001;Ahuja and McConnell, 2000;Hooton et al., 2003).In the case of access to animal health service provision these variables must be accounted for in addition to the time or cost taken to reach a service-provider. The marginal areas, where the highest proportion of poor livestock-keepers reside, are characterised by poor infrastructure, few vehicles and low population densities, all of which result in considerable costs both to service providers and to livestock owners (Ly, 2003). Indeed, studies in Zimbabwe suggest that transaction costs are the major constraint in determining the expressed demand for animal health services (Woods, 2000). Peeling and Holden (2004) discuss the effectiveness of community animal health services -drawing from surveys and case studies in a number of countries. By comparing similar livestock keepers, both with without access to the services of Community Animal Health Workers (CAHWs), they showed how such services could have a dramatic impact on their livelihoods -especially in remote areas where access to professional veterinary services is limited. Since CAHWs are local and affordable, they are more accessible to the poor and contribute to improvements in the health of their livestock (resulting in lower levels of mortality). These improvements are reflected in the welfare of the livestock keepers themselves.A useful application of the accessibility model might be to estimate access to villages where community animal health services are available, and to combine such information with livestock distribution data to determine areas where access to animal health facilities and services may constrain livestock production and marketing. By including information on willingness among livestock keepers to pay for services, and on income expectations among service providers, these accessibility estimates could be used to help prioritize interventions aimed at provision of appropriate livestock services in the Horn of Africa. then clip the reclassified grids (called afglc_rc and igglobeslp_rc respectively) to the IGAD (or country) boundary (one way to do it is with a selectmask command): 4. In the case of the regional accessibility surface, include a grid of the country boundaries to account for delays at international borders (for this analysis we have estimated a delay of 1 hour, thus assigning a value of 60 min to traverse a 1 km-cell).5. Convert the grids to Lambert Azimuthal Equal Area projection, using the following commands and then entering 0 as the radius, 40 as the longitude and 10 as latitude, when asked for the parameters: ","tokenCount":"8570"} \ No newline at end of file diff --git a/data/part_3/9512256225.json b/data/part_3/9512256225.json new file mode 100644 index 0000000000000000000000000000000000000000..620678d4601052302788add31c2d07302390600a --- /dev/null +++ b/data/part_3/9512256225.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"ddd1bdca061103b74ae8794deacb88bf","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/80673de1-8219-4fcb-8fa3-2d1bb834ec7b/retrieve","id":"-792197769"},"keywords":["Gender","value chain","grain maize","Northern and central Benin"],"sieverID":"5ffb8a86-b271-4758-9ebd-693749dda2c5","pagecount":"14","content":"Maize is one of the most important food crops in the world and, together with rice and wheat, provides at least 30% of the food calories to more than 4.5 billion people in 94 developing countries. (Bekele Shiferawet al, 2011). It is produced across Benin and mainly women and young people are involved in the maize grain value chain. Study aim to carry out a gender analysis in the maize grain value chain in northern and central Benin. Specifically it analyze the division of labor according to gender in the grain maizevaluechain, identify the factorsthat influenceaccess to and control of resources and measure thedistribution ofprofits fromthe commercialization activities. Data have been collected at random in a stratified method including 90 producers, 33 processors and 33 corn traders. The Harvard analytic framework of Harward, the descriptive statistic and the binominal logitpatterens have been used for the analysis In termsof resourceaccessibility, the results showed that men have moreaccess and control the resources in both areas than women with limited access tocredit, training, land and informationin the chain. Moreover, the logistic regression results noted that socio-economic factors such as level of education, accessibility to credits and equipment positively affect the control of resources by women.The agricultural sector plays an important role in the economies of sub-Saharan African countries, mainly in Benin. The activities in this sector are dominated by crop production characterized by a range of food crops that are the basis for food and nutrition security of the population. Maize is widely cultivated throughout Benin, ranks first with nearly 70% of the area of grain sown (APR 2010). It isalso a keyingredient in animal feed and usedextensively in industrialproducts, including the production of biofuels (BekeleShiferawet al, 2011).The analysis of the value chain of maize grain can solve not only the problem of demand, but also constraints such as non-organization of producers of grain for better market access, poor state of rural roads, lack of transport infrastructure and the lack of financing.This study was designed to analyze existing imbalances in the value chain and questions about relations among the increasing number of actors. Within the chain, there are inequalities such as lack of training for women at all levels of the chain, which is not the case for men; access to credit, resources, inputs and equipment for the actors the restricted chain. The loads, poor access of women to land, lack of appropriate processing technology and the lack of means to get (Terrillon, 2014), lack of effective treatment equipment (threshing machine, hulling); the high cost of family treatment equipment are major constraints that women often encountered in the value chain of maize (USAID, 2010). So therefore, this research action isa starting pointfor anyresearcher interestedin the studyofthe value chainin the agricultural sector because it sets not only milestones with the categorization of actors according to the level of poverty or vulnerability but also and especially to highlight the gender inequalities and power between the actors in the chain.Studies on the gender issue and the policies and programs on agriculture have shown that the integration of the gender issue means a more efficient use of resources and enables rural women with little resources to have more control over their livelihoods (Hafkin and Hambly, 2002).Indeed, the integration of the gender issue allows men as well as women to have fairly equal opportunities, to participate into development activities in order to take benefit (Hafkin, op.The analysis of this study focused on the conceptual frameworkrelated to value chain and gender mainly women and youth.Value Chain:The chain ofvaluesthusdescribes all theactivitiesrequiredtobring a productor servicefrom conception through different production stages its distribution to final consumers, and then destroyed after use (Kaplinskyand Morris 2000). Production, as such, is just one of the steps required to create added value. There are a set of activities that are linked to each other in the chain. Although often described in vertical way, intra-chain links are often in two kinds. For example, design offices, on the one hand, influence the nature of production and marketing processes, but on the other hand, are influenced in turn by the constraints in their relationships downstream in the chain. The advantage of this approach is to break down the activity of the company in sequences of elementary operations and to identify the sources of potential competitive advantages. These sources appear by comparing the value chain of the company with competitor's value chains, where possible. According to Strategor (1993), the overall performance of the value chain can be improved both by strengthening each link and by strengthening also the relation between the links.Gender: used for the first time in 1972 by Ann Oakley in his book entitled \"Gender and Society\", the gender refers to the different roles, rights and responsibilities of men and women and the relationship between them. The gender does not simply mean women or men, but the way in which their qualities, behaviors and identities are determined through the process of socialization. The gender is generally related to inequality of power and access to choices and resources.The different roles of men and women are influenced by historical, religious, economic and cultural realities. Theseroles and responsibilitiesmay change with time (GWA, 2006).The site of the study located in the Sudanno-sahelian zone with the rainfall which varies between 1100 and 1200 mm for Ouèssè against 600 mm for N' Dali (AKomagni, 2006) per year. The rainfallaffects both and greatly agricultural production and therefore affects processing and marketing activities. While the good distribution and the correct levels of rainfall create the conditions for a good agricultural year (Mohammed et al, 2007).A literature review allowed the collection of secondary data on the constraints, inequalities within chain, and types of relationships between actors, e role and responsibility of these actors. This first phase is completed by an exploratory phase which allowed initially making contact with resource persons. Then make an inventory to identify the main actors in the grain maize value chain and identify different aspects addressed in depth phase.As regard the depth phasethe maindata collectiontechnique is maintenancethrough astructured questionnaire.The data collected are qualitative and quantitative (socio-economic characteristics, activities, resources; Price; costs...)The sample of grain farms was drawn from the database of 179 producers, 68 transformers and 71 traders established under basic preliminary studies of the project Feed the Future (FtF) coordinated by CORAF and funded by USAID.In this study only producers, processors and traders of N' Dali, Nikki and Ouèssè are selected at random and in a stratified ways. In total one hundred and fifty-six (156) actors are selected including (90) producers, (33) transformers and (33) traders. The surveys were conducted in six villages (Kèmon, Tosso, Marégourou, Ouénou, Biro and Saka-Bansi), areas covered by the Feed the Future (FtF) project.The data have been processed using spreadsheet Excel and Stata software. and which control or is responsible for its management according to gender.The choice ofbinomial Logit modeljustified by the explained variable which can take only two modes called variable dichotomous (1; 0). The dependent variables arewomen's resource access and women control of resources.The independent variables are dichotomous and listed such as: education, credit, equipment related to marketing and marital status. It also depends on certain conditions to be fulfilled by women before checking resources. The probability that the actor have access and control over resources, that is to say CWOMEN=1 and CWOMEN=1 is then:Considering β, vector of coefficients, X the vector of explanatory variables and P the vector of probabilities, it makes: activities, but also to assimilate the conditions to make use of the technologies.AGE:This is the age of the actor of the concerned link. We think that young people are more dynamic in searching for information and they have less aversion to risk (Ibrahim, 2002), that is thanks to their sense of adventure (courage), young people are more likely to take risks than old persons. The young actors have a higher probability to set for innovation. The sign of the coefficient in this case can be positive for young people, and negative for very old people. On the other hand, extension agents often tend to approach the older, because they consider them as leaders or leaders of opinion and more experienced. Thus, a priori the sign of the coefficient of the variable AGE cannot be determined. The coefficient can take the positive sign as well as the negative sign.Results showthat women useproduction resourcesat almost the samelevel as men.Howevermen haveeasy accessto resourcesunlike women above all at level of access to credit and training (Table 1). As for thecontrol of resources, men have power to takedecisionson the use ofproductive resources (land, equipment, credit, training and knowledge on production) compared to women. Also it is worth noting that Northern women have more control over the access to credit and training than others of the central. Selected maize grain producers participate in training in organizational management of cooperatives and farmer organizations.The transformershave lowaccess toalmost allresources. They have low access to credit and processing techniques. However in the Center, 10% of women have access to training that is not the case with women in the North. Which is the same fact regarding the control of resources. This explains the low power of maize transformation in Benin. These results confirm the absence of men at the level of the transformation in Benin and the restricted access to the resources of the actors of this link.Source :SurveyFtF, 2015The results show that women and men have low access to almost all resources related to marketing except at the level of the means of transport where they have no access. This is explained by the fact that actors have not their own means of transportation and are forced to rent motorbikes or cars for the transport of their goods. Regardingtraining,the merchantsof North andcenter are nottootrained inmarketing. Also traders have low access to information in both areas. This situation can be explained by the fact that traders have access to the physical information on corn supply chain, the provider and the market price. However, women have restricted access to means of transport than men. The access to resources is significantly influenced by the following variables: access to credit for women (ACRED *), access to equipment related to commercialization (AELIC **) and access to equipment's related to the production of women (AELIPW**). The level of education (NEDUC), the age (LAGE), the number of years of experience in the activity (LEXPACM), participation in a platform and marital status (SMATRI) affect due to their sign, the access to resources, but not significantly.The control of resources by women is significantly influenced by the following variables: the level of education (NEDUC *), the access to credit (ACRED *), and access to the marketingrelated equipment (AELIC**). The variable age of the actor (LAGE) and marital status (SMATRI) influence the control of resources by women throughout their signs but not significantly.The variable ACRED on the access and control of resources by gender is significant.The access to credit increases the likelihood to access and control resources, since the estimated coefficient is positive (b = 0.989 for access and 0.818 for control.)This situation is well justified, because when women are sensitized and well trained, they easily assimilate conditions especially since credit allows actors not only to fund their activities within the chain, but also to face expenses that would arise from both the use of fertilizers among farmers and new technologies of processing and marketing.The level of education (NEDUC) increases the likelihood of women to control the resources because it is significant and its coefficient is positive (b = 0.393). In fact, women who have studied up to high school are able to know the products. They have the opportunity to read, even in English, the labels of the products such as pesticides, equipment, new techniques of production, marketing and processing and to better understand their usage patterns. The educated woman will easily understand and assimilate what the trainers are going to teach them on different elements. Also, the more women have access to the marketing-related equipment, the more they manage resources. This justifies the positive sign of the variable AELIC (b = 2.136).However, this variable negatively influences access to resources with its coefficient (b = -1.082). Similarly access to equipment related to production (AELIPW) reduces the likelihood of having access to the resources of the chain (b =-1.124). This means that when women have access only to specific equipment, this limits the probability of having access to other resources in the chain.As regards to the marital status (SMATRI) variable that is significant, it negatively influences access to resources for women. This stipulates that married women have more responsibility for the management of resources.Overall, the access and control of resources in the value chain of grain corn depend on the level of education, access to credit and access to marketing services. In addition to these variables access to resources also depends on access to productive resources and marital status also. Then, the level of education and access to credit (cash and kind) positively affect access to and control of resources by women in the corn value chain..Access of women to the services and available resources issue is a real constraint that contributes to the marginalization of women in proportions that were globally poorly examined.In the Northern and Centralof Benin, men and women have high access to corn value chain resources. Access to land, training, credits and technologies remains very low especially at the level of women.About the control and decision-making on resource men make more use of this power.Women control as much as men resources except land, credits, and equipment whose control is always provided by men in both areas. These results are compliant with those of Adétonah et al, It is, however, important to put emphasis on the fact that the issue of access and especially of the control of land arise differently from one region to another, from one ethnic group to another according to the age of women. In the Centre, in some areas, women control over the management of land compared to the North where they have little control. Also, access and control of financial resources are restricted in the two areas. A small proportion of agricultural credits are granted to women, often because they have not enough safeguards, including land.In addition, access and control of the resources of the corn value chain are positively influenced by the level of education, access to credit and access to equipment. In addition to these variables, access to resources also depends on marital status. Indeed, the accessibility of credit allows women to have other resources and be in charge of its management. They have a higher control when they are married and have a high level of education.Women contribution in the agricultural sector in developing countries is widely recognized as being mainly involved in manual work such as the cultivation of maize, processing activities traditionally referred to as 'feminine' and the marketing of grain corn. The low level of education, the low access to training and credit appear as obstacles in of the chain.","tokenCount":"2503"} \ No newline at end of file diff --git a/data/part_3/9550892424.json b/data/part_3/9550892424.json new file mode 100644 index 0000000000000000000000000000000000000000..e7e17250e21e82c827327d517c86cacc21cc9808 --- /dev/null +++ b/data/part_3/9550892424.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"7c08e53541d26eb354c49b90f58328c8","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/9fd33b18-2a6f-4203-8a7e-1174d1b864b1/content","id":"-446684757"},"keywords":[],"sieverID":"be65de44-7865-4d30-adea-651f5a0477d9","pagecount":"19","content":"Scaling is a ubiquitous concept in agricultural research in the global south as donors require their research grantees to prove that their results can be scaled to impact upon the livelihoods of a large number of beneficiaries. Recent studies on scaling have brought critical perspectives to the rather technocratic tendencies in the agricultural innovations scaling literature. Drawing on theoretical debates on spatial strategies and practical experience of agricultural innovation scaling in Ethiopia, this paper adds to the current debate on what constitutes scaling and how to overcome critical scaling constraints. The data for the paper came from a qualitative assessment using focus group discussions, key informant interviews, and document analysis on scaling work done in Ethiopia by a USAID-funded research for development project. The paper concludes with four broad lessons for the current understating of agricultural innovation scaling. First, scaling of agricultural innovations requires a balanced focus on technical requirements and associated social dynamics surrounding scaling targets, actors involved and their social relations. Second, appreciating the social dynamics of scaling emphasizes the fact that scaling is more complex than a linear rolling out of innovations towards diffusion. Third, scaling may not be strictly planned; instead, it might be an extension of the innovation generation process that relies heavily on both new and long-term relationships with key partners, trust, and continuous reflection and learning. Fourth, the overall implication of the above three conclusions is that scaling strategies need to be flexible, stepwise, and reflective. Despite the promises of flourishing scaling frameworks, scaling strategies it would appear from the Africa RISING experience that, if real impact is to be achieved, approaches will be required to be flexible enough to manage the social, processual and emergent nature of the practice of scaling.Scaling is a major preoccupation of research for development actors in the agricultural sector [1][2][3]. In the agricultural innovation literature, scaling of innovations is defined as \"a deliberate and planned effort to enable the use of innovations to have positive impact for many people across broad geographies\" [4]. Scaling of agricultural innovation is seen as an important step in transition from pilots to impacts at wider level and ensuring that investments in the agricultural sector pay off in terms of alleviating poverty and achieving sustainable development goals.Despite a high-level of interest, however, both the science and practice of scaling are still in early stages of development [5,6]. Drawing on theoretical debates on spatial strategies in scaling and practical experience of a research for development project in Ethiopia-Africa Research in Sustainable Intensification for the Next Generation Ethiopian Highlands project (Africa RISING)-this paper adds to the current theoretical and empirical debate on what constitutes scaling and how to overcome critical scaling constraints.From a theoretical point of view, in scaling literature, it is possible to implicitly and explicitly observe a link with multi-level perspective (MLP) approaches for sustainable transition [7][8][9]. The MLP literature argues that innovations and changes happen at the intersection of the niche, regime, and landscape levels. The niche level provides an incubation platform for change to happen, the landscape level provides impetus and pressure for regime disturbance. Destabilization of the regime creates windows of opportunity for change to happen at the niche level [10]. However, the MLP approach has been criticized for not taking spatial perspectives seriously [11][12][13]. Spatial perspectives on scale problematize the current treatment of niches, regimes and landscapes to underscore their relational, network and power-laden tendencies [14]. To the knowledge of the authors, the study of Herman et al. [11] is the only study which treats scaling with explicit spatial attention. They have shown that scaling local innovations are embedded in multi-level spatial scales. Within each level, multiple actors are involved in their spread and diffusion. As local innovations move between scales, they adapt and transform. In their travel across scale, they also need to overcome politics and power-related constraints [11].We build on the ideas of Herman et al. [11] in explaining the multi-level processes of scaling out and scaling up of agricultural innovations. While Herman et al. [11] focus on mature innovations with traceable trajectories of scaling out and scaling up, our theoretical focus enables us to look at innovations that are still in the process of being scaled out and scaled up. In addition, Herman et al. [11] base their theoretical argument on socioecological transformation literature; we use geographical studies of scale and scaling which has enabled us to explain scaling in more social terms.From an empirical point of view, recent studies on scaling provide complementary critical perspectives to the rather technocratic tendencies in the agricultural innovations scaling literature. Woltering et al. [15] note that current interest in scaling is trapped in the notion of 'reaching out to many', while there is an urgent need for a scaling approach that would lead to a 'new norm' involving changes in multiple overlapping systems. In the same vein, Low and Thiele [16] show the complexity of scaling in practice by presenting the case of orangefleshed sweet potato scaling involving a complex interplay of technical, organizational, leadership, and institutional dimensions over a twenty-year period. Totin et al. [17] call for consideration of both material and social practice aspects of agricultural innovations in which scaling needs a good balance of push and pull approaches; the former being technology-orientated and the latter institutions-oriented. A deeper, critical look by Roo et al. [18] at the scaling of innovations in malt barley production in Ethiopia demonstrates that, unless deliberate care is taken, scaling can lead to the exclusion of some vulnerable groups, such as women, youth and poor farmers.In this paper, we join the debates above and argue for expansion of the concept of scaling from an innovation/material centred approach to one that more effectively captures the complex social relations and practices involved in scaling. Such an understanding of scaling, we argue, is important to overcome critical power and governance related constraints. The paper aims to share scaling practices, missed opportunities and potential areas of action experiences by the Africa RISING project. In doing so, we aim to draw broader lessons on scaling and propose spatial strategies to overcome scaling constraints.The rather technical definition scaling provided at the beginning of the paper conceals several socio-political issues, such as the actors involved in generation of innovations, the planning process for scaling and the target groups set to benefit from innovations. It renders scaling as a technical problem that can deliberately be planned and executed. Such definitions do not make explicit the role of power relations among actors involved in innovation generation and scaling and socio-political constraints that may limit the possibility of reaching out to wider beneficiaries (scaling out) and institutionalisation of piloted success stories (scaling up). Social science perspectives treat scales as socially constructed and political. This view moves from the notion of scale as a hierarchically bounded space towards a way of looking at it as the result of social interactions that determine our framing of reality and the material consequences of such a framing [19]. This framing has two consequences. First, it allows the productive integration of hierarchical conceptions of scale into a network based formulation that captures the involvement of state and non-state actors in scale making [20]. Second, the social construction of scale invites explicit attention to the role of power relations among actors in an innovation network [12], expanding the focus of scaling from that of innovations per se to governance and broad political contexts [2]. The social construction of scale means that actors are able to overcome constraints at a particular level through various rescaling strategies [21,22]. While it is not within the scope of this paper to deal fully with spatial strategies of scaling, three strategies -scale jumping, scaling down and scale bending-are presented below as they strongly relate to the scaling out and scaling up of agricultural innovations.Scale jumping refers to the condition in which political power established at one scale is expanded to another [23]. With this strategy, actors expand their influence from local to national, national to regional and regional to global levels. This helps actors to avoid scale traps such as localism, parochialism and particularism through the expansion of their geographical and political reach [23]. An example of scale jumping in the literature is when, at the end of the 1990's, New York community gardeners came together with state level gardening networks in order to overcome the threat of losing their gardens to real estate expansion. Reframing local gardens as economic engines, environmental buffers and aesthetic resources helped local gardeners gain much needed political support from state level key actors [24]. It is important to note that scale jumping is not a gradual rescaling, but a deliberate attempt to reach out to a higher level in order to achieve aims that would be impossible at lower levels. Hence, scale jumping \"reframes\" local issues in terms of regional, national or even global interests. For the scaling of agricultural innovations, scale jumping is important when there are critical constraints such as finance, capacity and political legitimacy at the local level, which can only be resolved through resource mobilization or advocacy at higher decision-making levels.Scale jumping strategies need to be accompanied by scaling down strategies. Scaling down means localizing high-level strategies in order to embed them in cultural and place-based interests [23]. It refers to a form of devolution in which higher level actors engage local actors in order to get sufficient space and support to implement their intended action. Social phenomena are related to place and cultural attachments [25], which suggests that scale jumping needs to complement its broadening strategies with scaling down strategies, in order to be able to implement decisions and influences achieved at a higher levels [23]. An example of a scaling down strategy in the literature, again related to community gardening, comes from Switzerland. It relates to a grassroots movement for community gardening which faced serious critics from its funding agency for not having a strong local orientation in its gardening approach. To address this, the grassroots movement engaged with a neighbourhood youth organization and started educational programs for neighbourhood schools allowing them to use its gardens for educational purposes [26].Scale bending refers to the spatial strategy of systematically challenging and upsetting the assumptions that relate to particular political activities and a particular scale [24,27]. It elaborates actions taken by individuals and social groups to challenge and undermine existing arrangements which tie particular decision-making to certain scales [28]. One example of scale bending in the literature comes from Nepal, where local politicians avoided bureaucratic hurdles in their government-led village development groups by working with NGOs for climate adaptation decisions which fell under the jurisdiction of village development groups. For the scaling of agricultural innovations, scale bending means finding alternative mechanisms for surmounting or even resisting market, regulation and policy related constraints faced by local communities. Hence, scale bending strategies could take scaling of agricultural innovations to new areas, activating a different set of scaling strategies, such as advocacy and empowerment, in addition to the conventional ones, such as partnership and capacity building.In this paper we used the notion of scaling as a social construct and overcoming of scaling constraints as a spatial strategy to unpack the social constituents of scaling, scaling practices and ways of overcoming scaling constraints in Africa RISING project. The paper addresses three inter-related research questions and sub questions (see Table 1). The first research question addresses the social construction of scaling, including the ways innovations are generated, the targets for scaling and the actors involved. The second research question investigates scaling practices, looking closer into the observed processes of scaling and constraints to it. The third research question addresses issues related to overcoming scaling constraints. These research question brings an explicit attention to the social dynamics of scaling and are intended to help develop a better understanding of scaling and scaling processes, tackle scaling constraints and refine scaling strategies.The Africa RISING project focuses on sustainable intensification (SI) of crop-livestock systems in wheat-based farming systems in the Ethiopian highlands. The project has been implemented in two phases since 2011 in four regions of Ethiopia-Amhara; Oromia; Tigray; and Southern Nations, Nationalities and Peoples (SNNP) (Fig 1). The project involves nine Consultative Group for International Agricultural Research (CGIAR) centres, each contributing to different, but linked, parts of the overall research agenda. In Phase I (October 2011-September 2016), the project identified, adapted, validated and deployed farming innovations for SI, generating an evidence base to share with scaling or development partners. The project conducted researcher managed action research and training on farmer fields in four kebeles of four regions. Kebele is the lowest administrative unit in Ethiopia's government structure.In Phase II (October 2016-September 2021), the aim has been to facilitate the scaling of innovations validated in Phase I to other areas with similar socioecological conditions through development partnership arrangements. However, there are no explicit guidelines for identifying scalable innovations ex-ante for Phase II. Rather, Africa RISING researchers, together with farmers, local public extension offices and local development partners, have identified scalable innovations using innovation platforms with implicit guiding principles. These include: a) an evidence base for \"measurable\" SI benefits across the SI domains; b) evidence that predictable trade-offs and unintended consequences and trade-offs have been explored and neutralized; c) clear alignment with development priorities of potential scaling partners; d) resources available to development partners to promote technologies to end-users; and e) evidence that these technologies are attractive to end-users.This paper used both primary and secondary data. The primary data collection involved key informant interviews (KIIs) and focus group discussions (FGDs) (Table 2). At the planning and scientific leadership level, six key informants were interviewed from CGIAR centres based in Addis Ababa, Ethiopia who were involved in the two phases of the project. At grassroots level, four Africa RISING site coordinators were interviewed. Three FGDs were held with zonal and woreda (a woreda is an Amharic word for an Ethiopian administrative organizational equivalent of a district) level scaling partners in Tigray and SNNP regions. The FGD participants were focal persons and scaling partners for Africa RISING, mainly including staff from the offices of agricultural and livestock development. Focal persons are experts who support documentation and tracking of beneficiaries of Africa RISING validated innovations. In SNNP region, two zone-level and four woreda focal persons from the offices of agriculture and livestock development participated in the FGD. In Tigray region, four focal persons from two of the scaling woreda agriculture and livestock development offices participated in the FGD. All except one of the interviews were conducted in Amharic. English was used for one of the KIIs. In order to preserve the privacy of the scaling partners whose cases are presented, the results from the four Africa RISING scaling sites are anonymized in this paper. Guiding questions used for the FGDs were:• Which innovations, validated by the Africa RISING project, have been scaled?• To what extent have the innovations been scaled out?• How did the innovations perform when they were scaled out beyond the original research sites?• What affects the scalability of different innovations in different places?• When can we say that scaling is institutionalized at different scales and with different organizations? • In what ways did actors from regional and federal levels support the scaling process or how could they support it?• Are there instances where scaling had to go against government rules and regulations? What can be done to improve scaling?The Africa RISING documents and outputs information repository (http://cgspace.cgiar. org/handle/10568/16498) was used as a secondary data source where event reports, blogs and annual reports were collected starting from 2012.The analysis made use of English transcriptions of the KIIs and FGDs. The data analysis was deductive as the theoretical framework outlined in the first section informed identification of the five codes used to capture the scaling process, namely scaling out, scaling up, scale jumping, scaling down and scale bending. Manual coding was then carried out to categorize the transcription into the five scaling processes. Each of the KII and FGD transcriptions and the secondary sources were read line by line and instances of any of the five scaling concepts, such as facts and figures, testimonials, plans, achievements and challenges were noted. Once story fragments were collected under each of five categories, the analysis continued with the curation of observed practices, missed opportunities and possible areas of actions for each of the five spatial strategies. The final activity in the analysis involved identification of emerging stories under each of five code categories. The analysis went back to the theoretical framework in order to make connections between the empirical scaling experience and the theoretical spatial strategies.We acknowledge that all authors in this paper are also members of the Africa RISING project team. Whilst all authors tried to genuinely reflect our scaling practice, there is a possibility that this introduced some level of positionality in our findings.The data and the arguments for the paper were derived from project documents and practical experience of the authors. The human subjects involved in the research were experts at different levels. The data collected from experts was limited to their opinions, with no personal consequences for them. For these reasons, we did not seek ethical clearance for the paper.The scaling plan for Africa RISING's first phase, published in 2015, states that the project would adopt a stepwise approach to scaling with farmers as the starting point for ground-up scaling initiatives [29] The work with individual farmers was expected to expand to cover their kebele and eventually move to other kebeles within the targeted woredas. While the project is mainly focused on R4D, close collaboration with woreda-level agricultural offices was seen as the main mechanism for wider scaling. Within this framework, the project identified seventeen scalable innovations (see Table 3). Long-term and evidence-based relationships with development partners, complemented by trust from a wide range of local actors during the first phase of Africa RISING paved the way for the subsequent deliberate scaling initiative during the second phase [30].Scaling in the second phase of the project aimed at catalysing significant impacts at scale, while retaining the values of Africa RISING as a research project. In its commitment to action research, the project aimed to champion development options that had a solid grounding in high-quality research evidence [31]. The scaling work in the second phase involved working with diverse scaling partners. Thus, the focus of the project shifted from research towards partnership building, including identification of partners, building their capacity and backstopping their work with research to support scaling efforts.In the Africa RISING project experience, scaling out has been taken to mean increasing the intensity of use of innovations by individual households, increasing the number of beneficiaries of Africa RISING's first phase, targeting farmers and kebeles and increasing the target kebeles and woredas with the intention of reaching out large number of farmers with various innovations. The main scaling strategies adopted by the project have been capacity building through training local scaling partners; provision of starter seeds and planting materials, especially for innovations requiring planting materials that are not available locally; and identification of focal persons with each scaling partner who can follow up on the scaling work, documenting and reporting progress. Before each planting season, Africa RISING organizes capacity building and planning workshops in each intervention region. Scaling partners are requested to fill in a form indicating the zones, woredas and kebeles where the partners plan to introduce the innovations, the number of households they expect to reach and what kind of support they expect from Africa RISING (e.g., training, demonstrations and provision of starter planting materials). This information has been used by Africa RISING project site coordinators to plan and execute scaling support strategies. Accordingly, Africa RISING scaling partners reported reaching more than 60,000 farmers in 2016/17 and more than 75,000 in 2017/2018 production seasons [33,34].There are some practical insights to be gained from the Africa RISING experience that show the constraints of scaling work. First, scaling out is closely related to the socioeconomic and ecological context of the innovation to be scaled. As indicated by several KIIs, 'crop innovations generally scaled out much better than livestock innovations' in all Africa RISING project implementation sites' (KII with AR site Coordinator). One of the overarching reasons for such a difference is that crop innovations have a better functioning extension system, whereas livestock extension systems are still catching up. \"The crop sector has a better extension system, including better organized suppliers of planting materials and experienced farmer organizations, which the livestock sector is still struggling to establish\" (KII with Africa RISING site Coordinator). For example, there are well established wheat seed multiplication cooperatives at most of the Africa RISING sites and farmers are willing to pay for wheat seeds. On the other hand, there is less attention paid to forage seeds and those of food legumes. For example, there are no oat and vetch seed production cooperatives, or they have been started only recently. Farmers are also hesitant to spend money on forage seeds.Secondly, even where innovations are deemed scalable and are ready for scaling out, this does not mean that they will automatically fit everywhere. This is often due to socioecological mismatches between the areas where innovations are generated and the areas they are subsequently targeted for scaling. With respect to improved wheat varieties for example, site coordinators at two Africa RISING sites stated the Africa RISING validated varieties-Mekele 4 and Tsehay-which did not perform as well as the local varieties because the soil type was not the same as in the area where the Africa RISING validated varieties were developed.A further reason is that in areas where innovations are targeted, local experts and farmers might not be familiar with the innovation and do not have the skills required to maintain its level of performance. The following quotation illustrates this: \"We had a challenge of scaling a forage crop innovation called sweet lupin in our woreda. We were given the seeds to plant without enough knowledge of the crop, both at expert and farmer levels. As a result, many farmers refrained from planting it, and those who planted it did not manage the plant well. We, as experts, were also not in a position to answer technical questions raised by farmers as we had little knowledge on how to plant it properly (FGD with SNNP region scaling partners).Thirdly, the rate and extent of scaling out depends on the local availability of planting materials. For example, oat, vetch and tree lucerne were locally available at some of the Africa RIS-ING sites, but not at others. Sweet lupin and fodder beet planting materials were also not available at all sites. \"The two cannot be scaled out with the same pace\", said one of the experts who participated in the Tigray region scaling partners FGD. This situation created differences in the performance of scaling out efforts. This insight helps actors participating in the scaling out process to take planning seriously and to make sure that planting materials which have to be brought from other places are made available well in advance. One of the experts who participated in the Tigray region scaling partners' FGD stated exactly this, \"we need serious planning to identify which of the technologies are available and which are not and make sure that we get enough planting materials before the planting season.\"Scaling up has an institutional dimension. In this case, institutionalization means that Africa RISING validated innovations are included in the annual plans of public extension system actors at various levels and conditions are created for innovations to be widely used. This affects the annual targets of woredas, zones or even regions. When the innovations are included in the work plans of scaling partners, they will be evaluated by councils that must evaluate the performance and achievement of the targets set. The following quotations show such institutionalization by two of the scaling partners at one of the Africa RISING intervention sites: \"Last year (2017/18 production year) was a transition period. So, we had no chance of introducing the innovations in our plans. This year, we introduced most of the innovations in our plans. Faba bean, Hidasie wheat variety and feed trough are all included in our plan. Field pea, Mekele 4 wheat variety and apple were also included.\"(FGD with Tigray region scaling partners).\"At Emblaje (a woreda in southern Tigray) as well, the same is true. Livestock feed innovations such as oat-vetch mixture are all in our plan. Because it is in our plan, we are now able to evaluate our experts accordingly. The plan is also introduced to our woreda council. So everything is institutionalized\" (FGD with Tigray region scaling partners).Once innovations are scaled up or institutionalized, they allow continuity of the scaling out process. In an FGD with scaling partners at one of the Africa RISING sites, a participant said, \"Now, if Africa RISING phases out, we remain with the innovations. They are now at a stage of no return. Even if we decide to drop some of the innovations, farmers will demand to get them. So we may not have new innovations but the ones we have will remain part of our extension service delivery,\" (FGD with SNNPR scaling partners).One example of scaling up at the regional level in the SNNP region is the work on avocado varieties. Africa RISING obtained grafted seedlings of five improved avocado varieties-Hass, red 30, Nabal, Ettinger, and Fuerte-from a local horticultural nursery and distributed these for evaluation to a group of Africa RISING farmers. The farmers planted the improved varieties in 2014 with strong support from the project. Subsequently, they purchased further grafted seedlings from Butajira horticultural nursery in 2015. The improved varieties introduced by Africa RISING produce fruits within 1-2 years. They are short, making harvesting very easy, and they are productive. Recently, the SNNP regional government identified two Africa RIS-ING validated avocado varieties-Hass and Ettinger-for the export market and there is highlevel regional government support for rural communities to grow these two avocado varieties which can be exported to outside markets and benefit farmers.However, scaling up, meaning inclusion of Africa RISING innovations in annual plans of partners, has happened only in a limited number of cases, according to the information obtained from site coordinators and scaling partners. There have been various constraints for this. First, partners are hesitant to put scaling figures in their annual plans because it will hold them accountable if they do not achieve the target. Hence, they give scaling plans to the Africa RISING project site coordinators, but these figures are not reflected in their annual plans. \"They do not have problems to give us numbers. Each year they give us plans to reach huge number of farmers, but often that is not reflected in their organizational plans,\" (KII with Africa RISING site coordinator). Second, scaling partners, particularly those operating within the public extension system, do not have enough incentives for including Africa RISING innovations in their planning. Hence, Africa RISING site coordinators found that the scaling partners they engaged with complained that they are asked to do Africa RISING work without personal incentives. \"They often express this both implicitly and explicitly,\" said one of the Africa RISING site coordinators (KII with Africa RISING site coordinator). Third, the uncertainty of Africa RISING funding means that even when scaling partners are willing to include Africa RISING innovations in their planning, implementation can be difficult because the available resources are only known at a very late stage, often just before the planting season begins.Scale jumping is an essential strategy for scaling out and scaling up. In the Africa RISING case, the niches where innovations happen, such as woredas, needed scale jumping to higher levels in order to scale effectively and influence regime changes. Some Africa RISING validated innovations, such as crop varieties and some forage species, had strong local extension system and quasi-private actors involvement in their dissemination. Other innovations, for example, livestock related innovations such as the improved feed trough, have no established extension system and no involvement of private sector actors. Scaling of the latter is dependent on strong extension and support system interventions, which are resource intensive. In the public extension system, local resources, especially where there are no special government programs, are stretched to accommodate the additional operational budget required to scale Africa RISING validated innovations. Hence, scale jumping is essential to tackle resource constraints which affect local scaling. When the partners themselves use scale jumping, this involves creative ways of linking up with high-level agendas. The scaling partners often use what we could call 'narrowing down' the regional targets to match the woreda interests. For example, FGD participants stated, \"if the regional target includes introducing livestock feed, we would fit in oat, vetch, tree lucerne, and other Africa RISING innovations. If the target is introducing better livestock feed management scaling, we would include the feed shed and feed trough\". If it is improved seed, Africa RISING partners would include particular varieties introduced by the project. One scaling partner said: \"By naming Africa RISING innovations, we keep to the regional plan and make it more concrete. That is why we often say Africa RISING innovations do not require additional resources. If planned well, they can all be introduced as part of our work. But this is only our own initiative. The region does not know about these initiatives. Had the region known about it, they would have allocated budget, use it to evaluate service providers and support us in the process. So far, we have not had any problem with the region because there are no problems associated with the innovations. If we have a problem, the region will accuse us of introducing innovations without the approval of the regional government\" Other scale jumping strategies suggested by scaling partners are designed to appeal to higher level policy makers and fit in within their targets. Examples cited included the diffused light store, feed trough and feed shed innovations which require some carpentry skill and could be packaged as rural youth job creation mechanisms. The use of natural resource management (NRM) as a hook to sell some of the Africa RISING innovations was also recommended by one FGD group. For example, the feed trough and feed shed innovations could be effectively linked with the need to avoid free grazing and promote zero grazing. One of the scaling partners said: \"Our woredas are drought prone. As a result, livestock feed is a major problem. In an effort to get enough feed resources for their livestock, farmers tend to use marginal areas to graze their livestock species. The feed trough and the feed innovations of Africa RISING could save us a lot of trouble. They can help preserve our NRM base by reducing feed wastage and promoting efficient use of feed. Hence, if the regional government would take this seriously, it could subsidize the construction of feed sheds and feed troughs for farmers. This would help both the farmers and the environment\" (FGD with Tigray region scaling partners).When Africa RISING researchers use scale jumping, it is often either to gain high-level political support, or to mobilize resources which are not locally available, or both. Typical examples of Africa RISING scale jumping experiences are related to fertilizer application, solar pumps and small-scale mechanization. A research initiative led by ICRISAT during the first phase showed that fertilizer response is dependent on landscape conditions and the slope of farm plots, which led researchers to recommend differentiated fertilizer rates instead of the widely used blanket recommendation. However, scaling out findings was not immediately possible as fertilizer recommendations are decided at a national level. One of the Africa RIS-ING researchers said, \"our fertilizer recommendation is a complex matter to scale. Our work was with farmers on the ground. However, fertilizer-related decisions are made at higher level, where the flow and quantity of fertilizer is decided upon in a top down fashion\" (KII with Africa RISING CGIAR researcher). Hence, the researchers took the matter of applying fertilizer rates based on soil maps to a national-level initiative under the auspices of the Agricultural Transformation Agency (ATA) and Ministry of Agriculture (MoA). This policy engagement led to the refinement of ATA's recommendation, as well as institutionalization (scaling up) of the recommendation by inserting it into the national soil strategy and developing decisionsupport tools. Another Africa RISING initiative, led by IWMI during the first phase, found that the solar pump innovation for irrigation water lifting was effective in helping farmers to improve their productivity. However, the initial cost of the innovation was beyond what the local partners could afford. Hence, the researchers opted to scale jump to national level by working with actors such as the Agricultural Transformation Agency, the Ministry of Agriculture and International Fund for Agricultural Development (IFAD), who are interested in finding energy-efficient water lifting innovations for small-scale irrigation. The small-scale mechanization work, organized by CIMMYT also had to partner with the Ministry of Agriculture, Mechanization Directorate, in order to get the resources needed to support the scaling out of the two-wheel tractor business model developed during the first phase.Despite these positive experiences, opportunities for scale jumping have not always been identified and taken advantage of within the overall Africa RISING engagement strategy. Africa RISING engagements have been mainly limited to kebele and woreda levels, and to a small extent, zonal levels. Although regional government experts have encountered Africa RIS-ING products on various occasions, the engagement was not institutional. \"It would have been good if we had stronger relations with regional actors, especially the regional extension system,\" stated one of the Africa RISING site coordinators (KII with Africa RISING coordinator). Another one added, \"having a planning workshop, or even a pre-planning workshop with high-level regional and zonal decision makers is essential,\" (KII with Africa RISING site coordinator). Partly, this is because a full-fledged second phase scaling plan was not envisaged during the first phase. Hence, engaging with regional governments was seen as being of lesser importance. In addition, for at least two of the Africa RISING sites, the regional government seat is far from the project areas, which brought logistical challenges to engage with experts on a regular basis. These challenges need to be overcome by intensifying the level of engagement with regional government experts responsible for extension, scaling and inspection.Scaling down refers to the process of scaling through embedding resources and policy support gained from scale jumping to local interests. Two examples of scaling down from the Africa RISING experience are related to the fertilizer recommendation and small-scale mechanization discussed in the previous section. Once the location-specific fertilizer recommendation was accepted as best practice at national level and integrated into the national soil strategy, scaling continued with further partnerships that would take the recommendations to local applications. This involved partnering with the GIZ Integrated Soil Fertility Management project and regional and woreda bureaus of agriculture to test the recommendations in more woredas and with more crops.\"Our initial work with Africa RISING created an interest among many national actors. ATA wants to take the recommendations at scale. GIZ helped us test it in different locations,\" (KII with Africa RISING CGIAR researcher).The small-scale mechanization business model using two-wheel tractors is also expected to go to 16 woredas across the country through the MoA. One important observation from the Africa RISING experience of scaling down is that innovations may travel to geographical areas which are well beyond the initial targets set by the project.Scaling partners and Africa RISING site coordinators were asked if there were instances where they had to decide against regional government directions or local politicians in order to scale a particular innovation. One of the areas involving scale bending is the regional seed regulations which demand the use of seeds that are traceably certified, or seeds produced by local seed production cooperatives. Local seed systems are still at a formative stage to implement these regulations, while the demand for seeds is high. At one of the Africa RISING sites, the regulation is functional, whilst at other sites it is on its way. In the region where it is functional, over the last two years, and especially the last year, there have been stringent regulations in respect to the local seed system. Abiding by the regulations brought challenges as both the formal and the semi-formal seed systems were not able to supply seeds demanded by farmers. However, there are alternative channels, within the regulations, that can be employed to ensure the flow of quality seed. For example, in the 2018/19 production season, there was a company which offered to buy malt barley and Africa RISING provided the seed from elsewhere. The result of this initiative was widely appreciated. Many people, including representatives of the regional government, some arriving even without prior notice to scaling partners, came to see the results. One of the scaling partners said: \"Often, there are no problems as long as there are no failures. But if an innovation fails, the regional government would put us in trouble. There are some strict rules and regulations by the regional government. We cannot violate that. But there is some room for scale bending. As stated above, sometimes the regional government experts would not explicitly mention some of the innovations that need to be disseminated. We use our own discretion to introduce new innovations which we feel would benefit farmers. When they see good results they appreciate it a lot and include it in their next year plan,\" (FGD with Tigray region scaling partners).Another example of scale bending from one of the Africa RISING sites involved Africa RIS-ING site coordinators who had to circumvent unrealistic demands from local politicians. In at least three of the four Africa RISING sites, it was observed that local politicians see Africa RIS-ING as a development NGO. As one of the participants in an FGD put it, \"we thought Africa RISING is a big NGO with all the money needed for a large-scale intervention. It is only through time that we learnt that this is a research project with a focus on piloting innovations\" (SNNP region scaling partners). Another participant said, \"there is a tendency to look at our project as a development project, not a research project. As a result, at times, we face unattainable demand from our scaling partners\" (KII with Africa RISING site coordinator). Hence, they expect high-level investment involving many beneficiaries, and support for scaling work with knowledge and provision of materials. Faced with limited budget and a research orientation, the Africa RISING site coordinators avoid direct involvement with local politicians, preferring to work with middle-level experts who appreciate the research orientation and knowledge generation which is the mission of Africa RISING.Our findings complement the findings of Roo et al. [20], who also argue that scaling agricultural innovations involves both material aspects and social practices. While conventional technology transfer-dominated approaches aim at scaling material aspects of innovations, a focus on social practices emphasizes the complex social relations involved in the scaling process. The social constituents of the Africa RISING project scaling work reveal the importance of material and social aspects of scaling of agricultural innovations. In its first phase of operation (2011-2016), through participatory action research, the project was able to generate scalable innovations which were tested and validated in different agro-ecological settings. The technically sound innovations were well received by local actors because of the trust and cordial relationships between project coordinators and scaling partners. Because of promising commitments from potential partners, the project set out ambitious plan of reaching out to more than half a million beneficiaries in its second phase. The scaling strategy adopted by the project in the second phase has been identification of scaling partners, developing the technical capacity of scaling partners to set scaling targets and integrate Africa RISING validated innovations in their regular work plans and providing backstopping research to help scaling partners achieve their scaling targets. Scaling partners were drawn from a pool of partners who contribute to research prioritisation through participation in diagnostic studies and planning meetings and were able to observe the research process and its results through involvement in innovation platforms (IPs), field days and other engagement mechanisms. In the second phase of the project, the project needed to strengthen the spontaneous scaling which was already happening and shift towards a more deliberate scaling. Hence, the Africa RISING experience is consistent with the multiple prerequisites of scaling, which include but are not limited to, proof of concept and long-term engagement [2].The scaling strategy Africa RISING worked well. Together with its partners, the project was able to reach out to thousands of farmers with various innovations for sustainable intensification. The scaling practice of the project, however, also reveal much needed insight on constraints of scaling and what might be needed to overcome them. For some of the innovations, absence of well-established extension system and reliable initial planting material suppliers were serious constraints. For other innovations, the high investment cost of innovations and the resource constraints among scaling partners were major limitation to reach out greater number of smallholder farmers. Still for other innovations, ridged policy, regulatory, bureaucratic, and political hurdles constrained possible scaling out and scaling up efforts. These constraints limited the number of smallholder farmers reached by Africa RISING and its scaping partners. That said, the lessons from both the success and failures of the project in tackling these constraints provides important insights for scaling science and practice.The Africa RISING experience shows that well beyond the technicalities of validated innovations, scalability is often contingent on the scalar politics that define the research project in the first place, and the complex partnerships required for scaling [2]. The fact that the main scaling strategy adopted by the project capitalized on the engagement of local partners in local innovation systems and built their capacity for better achievements meant that the final scaling achievement depended on the scalar politics that the partners found themselves in, such as government bureaucracies, coordination and linkage mechanisms of agricultural extension and development, and multi-level political arrangements.This paper argues that scalable innovations may not immediately scale out but may need some form of adaptation to the new places that they travel to. This is in line with the findings of Hermans et al. [11], who argue that local innovations may adapt and transform as they travel from their place of origin towards other areas. Hence, strict scaling targets and tracking changes may be difficult to accomplish, and reflection, learning and improving may work better [35]. Scaling up, which denotes institutional changes or alignments that support scaling, is also a complex phenomenon as it involves multiple actors at multiple levels, with differentiated institutional arrangements that affect their functioning. Hence, scaling needs to be mindful of institutional arrangements which set rules, norms and incentives for scaling [36].In its commitment to elaborate the social dimensions of scaling, this paper identifies strategies to overcome constraints against scaling out and scaling up efforts. When the constraints from scaling out and scaling up arise from local traps, such as resource and capacity limitations, or even resistance from local powerful actors, scale jumping might be necessary. Experience from scaling the Africa RISING interventions shows the importance of scale jumping and of a deeper understanding of and engagement with higher level enabling environments such as regional and national policy, or regulatory mechanisms and programs, and reframing innovations accordingly in order to overcome resource and capacity related constraints [11].However, scale jumping requires scaling down strategies, as actions at a higher level that are essential for scaling out and scaling up require decision-making at more localized levels. Scaling down often brings resources and capacities from a higher level decision-making space to scale an innovation at local level, which Riddell and Moor also call scaling deep [37]. Experience from Africa RISING shows that while resources mobilized to scale innovations through scale jumping may not necessarily come back to the same places where the innovations were generated, they play an important role in creating an enabling environment for scaling of innovations more widely and in the long run.An even more political scaling strategy may consider scale bending, a strategy for overcoming limits on scaling out and scaling up efforts set by higher-level decisions. Even in countries where powerful actors such as the state dictate research and development directions, there are always alternative mechanisms to overcome scaling constraints that arise from stringent policies, regulations and market forces. Supporting local scaling partners and farmers to identify such alternative mechanisms without violating policies, rules and regulations requires a politically sensitive mindset to understand safe operating spaces within limiting structural forces at higher levels.Our results lead us to four conclusions. First, scaling of agricultural innovations requires a balanced focus on technical requirements and associated social dynamics surrounding scaling targets, actors involved and their social relations. Second, appreciating the social dynamics of scaling emphasizes the fact that scaling is more complex than a linear rolling out innovations towards diffusion. Hence, scaling requires understanding of critical constraints of scaling and the need to addressing them as the scaling process unfolds in practice. The concepts of scale jumping, scaling down and scale bending strategies indicates the importance of addressing power and governance related constraints to scaling. Third, based on our empirical experience, we conclude that scaling may not be strictly planned. Instead, it might be an extension of the innovation generation process that relies heavily on both new and long-term relationships with key partners, trust and continuous reflection and learning. Fourth, the implications of the above three conclusions is that scaling strategies need to be flexible, stepwise and reflective. Despite the promises of flourishing scaling frameworks, scaling strategies it would appear from the Africa RISING experience that, if real impact is to be achieved, approaches will be required to be flexible enough to manage the social, processual and emergent nature of the practice of scaling.","tokenCount":"7640"} \ No newline at end of file diff --git a/data/part_3/9566251085.json b/data/part_3/9566251085.json new file mode 100644 index 0000000000000000000000000000000000000000..3e5043a79fb125d116bf11abf57a659acff02fc8 --- /dev/null +++ b/data/part_3/9566251085.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"d5bab3a840ea2bb258d607270d2eaaf2","source":"gardian_index","url":"https://www.hydrol-earth-syst-sci.net/23/2915/2019/hess-23-2915-2019.pdf","id":"409666492"},"keywords":[],"sieverID":"ebbdbe94-19a1-4256-8dd3-1132ca910208","pagecount":"24","content":"Satellite rainfall estimates (SREs) are prone to bias as they are indirect derivatives of the visible, infrared, and/or microwave cloud properties, and hence SREs need correction. We evaluate the influence of elevation and distance from large-scale open water bodies on bias for Climate Prediction Center-MORPHing (CMORPH) rainfall estimates in the Zambezi basin. The effectiveness of five linear/non-linear and time-space-variant/-invariant bias-correction schemes was evaluated for daily rainfall estimates and climatic seasonality. The schemes used are spatio-temporal bias (STB), elevation zone bias (EZ), power transform (PT), distribution transformation (DT), and quantile mapping based on an empirical distribution (QME). We used daily time series (1998-2013) from 60 gauge stations and CMORPH SREs for the Zambezi basin. To evaluate the effectiveness of the bias-correction schemes spatial and temporal crossvalidation was applied based on eight stations and on the 1998-1999 CMORPH time series, respectively. For correction, STB and EZ schemes proved to be more effective in removing bias. STB improved the correlation coefficient and Nash-Sutcliffe efficiency by 50 % and 53 %, respectively, and reduced the root mean squared difference and relative bias by 25 % and 33 %, respectively. Paired t tests showed that there is no significant difference (p < 0.05) in the daily means of CMORPH against gauge rainfall after bias correction. ANOVA post hoc tests revealed that the STB and EZ bias-correction schemes are preferable. Bias is highest for very light rainfall (< 2.5 mm d −1 ), for which most effective bias reduction is shown, in particular for the wet season. Similar findings are shown through quantile-quantile (q-q) plots. The spatial cross-validation approach revealed that most bias-correction schemes removed bias by > 28 %. The temporal cross-validation approach showed effectiveness of the bias-correction schemes. Taylor diagrams show that station elevation has an influence on CMORPH performance. Effects of distance > 10 km from large-scale open water bodies are minimal, whereas effects at shorter distances are indicated but are not conclusive for a lack of rain gauges. Findings of this study show the importance of applying bias correction to SREs.Correction schemes for rainfall estimates are developed for climate models (Maraun, 2016;Grillakis et al., 2017;Switanek et al., 2017), for radar approaches (Cecinati et al., 2017;Yoo et al., 2014), and for satellite-based, multi-sensor approaches (Najmaddin et al., 2017;Valdés-Pineda et al., 2016). In this study the focus is on satellite rainfall estimates (SREs) to improve reliability in spatio-temporal rainfall representation.Studies in satellite-based rainfall estimation show that estimates are prone to systematic and random errors (Gebregiorgis et al., 2012;Habib et al., 2014;Shrestha, 2011;Tesfagiorgis et al., 2011;Vernimmen et al., 2012;Woody et al., 2014). Errors result primarily from the indirect estimation of rainfall from visible (VIS)-, infrared (IR)-, and/or microwave (MW)based satellite remote sensing of cloud properties (Pereira Filho et al., 2010;Romano et al., 2017). Systematic errors in Published by Copernicus Publications on behalf of the European Geosciences Union.tates correction of SREs. For example, Cohen Liechti (2012) show bias in CMORPH SREs for daily rainfall and for accumulated rainfall at a monthly scale. Matos et al. (2013), Thiemig et al. (2012), and Toté et al. (2015) show that bias in rainfall depth at time intervals ranging from daily to monthly varies across geographical domains in the Zambezi basin and may be as large as ±50 %. Besides elevation, there are indications that the presence of a large-scale open water body affects rainfall at short distances (< 10 km) (Haile et al., 2009).For less developed areas such as in the Zambezi basin that is selected for this study, studies on SREs are limited. This is despite the strategic importance of the basin in providing water to over 30 million people (World Bank, 2010a). An exception is the study by Beyer et al. (2014) on correction of the TRMM-3B42 product for agricultural purposes in the Upper Zambezi basin. Studies (Cohen Liechti et al., 2012;Meier et al., 2011) on use of SREs in the Zambezi River basin mainly focused on accuracy assessment of the SREs using standard statistical indicators, with little or no effort to perform bias correction despite the evidence of errors in these products. The use of uncorrected SREs is reported for hydrological modelling in the Nile basin (Bitew and Gebremichael, 2011) and Zambezi basin (Cohen Liechti et al., 2012), respectively, and for drought monitoring in Mozambique (Toté et al., 2015). The poor performance of SREs in the above studies urges bias correction to result in more accurate rainfall representation. The selection of CMORPH satellite rainfall for this study is based on successful applications of biascorrected CMORPH estimates in African basins for hydrological modelling (Habib et al., 2014) and flood predictions in western Africa (Thiemig et al., 2013). In the first publications on CMORPH, Joyce et al. (2004) describe CMORPH as a gridded precipitation product that estimates rainfall with information derived from IR data and MW data. CMORPH combines the retrieval accuracy of passive MW estimates with IR measurements which are available at high temporal resolution but with low accuracy. The important distinction between CMORPH and other merging methods is that the IR data are not used for rainfall estimation, but are used only to propagate rainfall features that have been derived from microwave data. The flexible \"morphing\" technique is applied to modify the shape and rate of rainfall patterns. CMORPH has been operational since 2002, for which data are available at the CPC of the National Centers for Environmental Prediction (NCEP) (after http://www.ncep.noaa.gov/, last access: 4 July 2019). Recent publications on CMORPH in African basins exist (Wehbe et al., 2017;Koutsouris et al., 2016;Jiang et al., 2016;Haile et al., 2015). However, studies on bias correction of CMORPH in the semi-arid Zambezi basin are limited.In this study we use daily CMORPH and rain-gauge data for the Upper, Middle, and Lower Zambezi basins to (1) evaluate whether performance of CMORPH rainfall is affected by elevation and distance from large-scale open water bodies, (2) evaluate the effectiveness of linear/non-linear and time-space-variant/-invariant bias-correction schemes, and (3) assess the performance of bias-correction schemes to represent different rainfall rates and climate seasonality. Analysis serves to improve reliability of SREs applications in water resource applications in the Zambezi basin such as for rainfall-runoff modelling.The Zambezi River is the fourth-longest river (∼ 2574 km) in Africa, with a basin area of ∼ 1 390 000 km 2 (∼ 4 % of the African continent). The river drains into the Indian Ocean and has a mean annual discharge of 4134 m 3 s −1 (World Bank, 2010a). The river has its source in Zambia with basin boundaries in Angola, Namibia, Botswana, Zambia, Zimbabwe, and Mozambique (Fig. 1). The basin is characterised by considerable differences in elevation and topography, distinct climatic seasons, and the presence of large-scale open water bodies and, as such, makes the basin well suited for this study. The basin is divided into three sub-basins, i.e. the Lower Zambezi comprising the Tete, Lake Malawi/Shire, and Zambezi Delta basins, the Middle Zambezi comprising the Kariba, Mupata, Kafue, and Luangwa basins, and the Upper Zambezi comprising the Kabompo, Lungwebungo, Luanginga, Barotse, and Cuando/Chobe basins (Beilfuss, 2012).The elevation of the Zambezi basin ranges from < 200 m (for some parts of Mozambique) to > 1500 m above sea level (for some parts of Zambia). Large-scale open water bodies in and around the basin are Kariba, Cabora Bassa, Bangweulu, Chilwa, and Nyasa. The Indian Ocean lies to the east of Mozambique. Typical land-cover types are woodland, grassland, water surfaces, and cropland (Beilfuss et al., 2000). The basin lies in the tropics between 10 and 20 • S, encompassing humid, semi-arid, and arid regions dominated by seasonal rainfall patterns associated with the Inter-Tropical Convergence Zone (ITCZ), a convective front oscillating along the Equator (Cohen Liechti et al., 2012). The movement of the ITCZ in the Southern Hemisphere results in the peak rainy season that occurs during the summer (October to April) and the dry winter months (May to September), and is a result of the shifting back of the ITCZ towards the Equator (Schlosser and Strzepek, 2015). The weather system in south-eastern parts such as Mozambique is dominated by Antarctic polar front (APF) and tropical temperate trough (TTT) occurrence which is positively related to La Niña and Southern Hemisphere planetary waves, whereas El Niño-Southern Oscillation (ENSO) appears to play a significant role in causing dry conditions in the basin (Beilfuss, 2012).The basin is characterised by high annual rainfall (> 1400 mm yr −1 ) in the northern and north-eastern areas and by low annual rainfall (< 500 mm yr −1 ) in the southern and western parts (World Bank, 2010b). Due to this rainfall distribution, northern tributaries in the Upper Zambezi sub-basin contribute 60 % of the mean annual discharge (Tumbare, 2000). The river and its tributaries are subject to seasonal floods and droughts that have devastating effects on the people and economies of the region, especially the poorest members of the population (Tumbare, 2005). It is not uncommon to experience both floods and droughts within the same hydrological year. Half-hourly estimates were aggregated to daily totals to match the observation interval of gauge-based daily rainfall.Time series of daily rainfall from 60 stations were obtained from meteorological departments in Botswana, Malawi, Mozambique, Zambia, and Zimbabwe for stations that cover the study area. All the stations are standard-type rain gauges with a measuring cylinder whose unit of measurement is millimetres (mm).Some stations are affected by data gaps, but the available time series are of sufficiently long duration (see Appendix Table A1) to serve the objectives of this study. Stations are irregularly distributed across the vast basin and are located at an elevation between 3 and 1575 m (Fig. 1). The minimum, maximum, and average distances between the rain gauges are 3.5 km (Zumbo in Mozambique, Kanyemba in Zimbabwe), 1570 km (Mwinilunga in Zambia, Marromeu in Mozambique), and 565 km, respectively. Distances to largescale open water bodies range between 5 and 615 km. This allows us to evaluate whether elevation and distance to largescale open water bodies affect CMORPH performance.In this study, we compare gauge rainfall at point scale to CMORPH satellite-derived rainfall estimates at pixel scale (point-to-pixel). Comparison is at a daily time interval covering the period 1998-2013, following Cohen Liechti et al. (2012), Dinku et al. (2008), Haile et al. (2014), Hughes (2006), Tsidu (2012), andWorqlul et al. (2014), who report on point-to-pixel comparisons in African basins. We apply point-to-pixel comparison to rule out any aspect of in- terpolation error as a consequence of the low-density network with unevenly distributed stations. We refer to Heidinger et al. (2012), Li and Heap (2011), Tobin andBennett (2010), andYin et al. (2008), who report that interpolation introduces unreliability and uncertainty to pixel-based rainfall estimates. Also, Worqlul et al. (2014) describe that for pixel-to-pixel comparison, there is demand for a welldistributed rain-gauge network that would not hamper accurate interpolation.Habib et al. (2012a) and Haile et al. (2009) for the Nile basin reveal that elevation affects the performance of SREs. Findings in the latter two studies signal that performance may possibly also be affected by the presence of Lake Tana.To assess both influences, we classified the Zambezi basin into three elevation zones for which the hierarchical cluster \"within-groups linkage\" method in the Statistical Product and Service Solutions (SPSS) software was used ( The relationship between lake surface area and CMORPH bias on 300 water bodies in the study area shows that at a threshold > 700 km 2 , a signal is induced to warrant the removal from the analysis of all water bodies with surface area < 700 km 2 .Bias-correction schemes evaluated in this study are the spatio-temporal bias (STB), elevation zone bias (EZ), power transform (PT), distribution transformation (DT), and quantile mapping based on an empirical distribution (QME), this by our aim to correct for bias while daily rainfall variability is preserved. The five schemes are chosen based on merits documented in the literature (Bhatti et al., 2016;Habib et al., 2014;Teutschbein and Seibert, 2013;Themeßl et al., 2012;Vernimmen et al., 2012). We note that findings on the performance of selected bias-correction schemes in literature do not allow for generalisation, but findings only apply to the respective study domains (Wehbe et al., 2017;Jiang et al., 2016;Liu et al., 2015;Haile et al., 2015).In the procedure to define a time window for bias correction we follow Habib et al. (2014) and Bhatti et al. (2016), who in the Lake Tana basin (Ethiopia) carried out a sensitivity analysis of moving time windows and of sequential time windows. Window lengths between 3 and 31 d were tested. Findings indicated that a 7 d sequential time window for bias factors is most appropriate, but only when a minimum of 5 rainy days were recorded within the 7 d window with a minimum rainfall accumulation depth of 5 mm d −1 ; otherwise, no bias is estimated (i.e. a value of 1 applies as a bias-correction factor). Preliminary tests in this study on 5 and 7 d moving and sequential windows on 20 individual stations distributed over the three elevation zones indicate that the 7 d sequential approach is well applicable in the Zambezi basin. As such, the approach was selected.The bias-correction factors are calculated using only rain days (rainfall ≥ 1 mm d −1 ). Otherwise in cases where both the gauge and satellite have zero values (rain gauge (G) = 0 and CMORPH (S) = 0), correction is not applied and the SRE value remains 0 mm d −1 .Following Bhatti et al. (2016), we spatially interpolate the bias-correction factors of the rain gauges so that SREs at all pixels can be corrected. For interpolation, the universal kriging was applied. Thus, to systematically correct all CMORPH estimates, station-based bias factors for each time window are spatially interpolated to arrive at spatial coverage across the study area and to allow for comparison with other approaches.This linear bias-correction scheme has its origin in the correction of radar-based precipitation estimates (Tesfagiorgis et al., 2011) and downscaled precipitation products from climate models. The CMORPH daily rainfall estimates (S) are multiplied by the bias-correction factor for the respective sequential time window for individual stations resulting in corrected CMORPH estimates (STB) in a temporally and spa-tially coherent manner (Eq. 1).where G is gauged rainfall (mm d −1 ), i is gauge number, d is day number, t is Julian day number, and l is the length of a time window for bias correction.The advantages of this bias-correction scheme are that it is straightforward and easy to implement due to its simplicity and modest data requirements. However, just like any multiplicative shift procedures of bias correction, STB has challenges in correcting systematic errors in rainfall frequency, particularly the wet-day frequencies (Lenderink et al., 2007;Teutschbein and Seibert, 2013).The elevation zone bias-correction scheme is proposed in this study and aims at correcting satellite rainfall for elevation influences. This method groups rain-gauge stations into three elevation zones based on station elevation. The grouping in this study is based on the hierarchical clustering technique and expert knowledge about the study area, but is also guided by recent past studies in the basin (e.g. World Bank, 2010b; Beilfuss, 2012). Each zone has the same bias-correction factor but differs across the three zones. In the time domain bias factors vary following the 7 d sequential window approach. The corrected CMORPH estimates (EZ) at a daily time interval are obtained by multiplying the uncorrected CMORPH daily rainfall estimates (S) by the daily bias-correction factor of each elevation zone.The merit of this bias-correction scheme is that the effects of elevation on rainfall depth are accounted for. SREs often have difficulties in capturing rainfall events due to orographic effects and thus require elevation-based correction.The non-linear PT bias-correction scheme has its origin in studies of climate change impact (Lafon et al., 2013). Vernimmen et al. (2012) show that the scheme could be applied to correct satellite rainfall estimates for use in hydrological modelling and drought monitoring. The PT method uses an exponential form to adjust the standard deviation of rainfall series. The daily bias-corrected CMORPH rainfall (PT) for a pixel that overlays a station is obtained using the equationwhere G is gauged rainfall (mm d −1 ), a is a prefactor such that the mean of the transformed CMORPH values is equal to the mean of rain-gauge rainfall, b is a factor calculated such that for each rain gauge the coefficient of variation (CV) of CMORPH matches the gauge-based counterparts, i is the gauge number, and t is the day number.Optimised values for a and b are obtained through the generalised reduced gradient algorithm (Fylstra et al., 1998).Values for a and b vary for the 7 d sequential window since correction is at a daily time base. In the case of utilising the PT method in a certain area (or for a certain period), the biascorrection factor is spatially interpolated to result in comparable estimates with other bias-correction schemes. The advantage of the bias scheme is that it adjusts extreme precipitation values in CMORPH estimates (Vernimmen et al., 2012). PT has reported limitations in correcting wet-day frequencies and intensities (Leander et al., 2008;Teutschbein and Seibert, 2013).DT is an additive bias-correction approach which has its origin in statistical downscaling of climate model data (Bouwer et al., 2004). The method transforms a statistical distribution function of daily CMORPH rainfall estimates to match the distribution by gauged rainfall. The procedure to match the CMORPH distribution function to gauge rainfall-based counterparts is described in Eqs. ( 4)-( 8). The principle to matching is that the difference in the mean value and differences in the variance are corrected for in the 7 d sequential window. First, the bias-correction factor for the mean is determined by Eq. ( 4):G u and S u are mean values of 7 d gauge and CMORPH rainfall estimates. Secondly, the correction factor for the variance (DTτ ) is determined by the quotient of the 7 d standard deviations, Gτ and Sτ , for gauge and CMORPH, respectively.Once the correction factors which vary within a 7 d time sequential window are established, they are then applied to correct all daily CMORPH estimates (S) through Eq. ( 6) to obtain a corrected CMORPH rainfall estimate (DT). The parameters DT and u are developed within a 7 d sequential window, but correction is at daily time intervals.Uncorrected CMORPH daily values are returned if Eq. ( 6) results in negative values. The merit of this bias-correction scheme is that it corrects wet-day frequencies and intensities. The disadvantage of this bias-correction scheme is that adding the gauge-based mean deviation to the satellite data destroys the physical consistency of the data. In addition, the method might result in the generation of too few rain days in the wet season, and sometimes the mean of daily intensities might be unrealistically corrected (Johnson and Sharma, 2011;Teutschbein and Seibert, 2013).This is a quantile-based empirical-statistical error correction method with its origin in empirical transformation and bias correction of regional climate model-simulated precipitation (Themeßl et al., 2012). The method corrects CMORPH precipitation based on empirical cumulative distribution functions (ecdfs) which are established for each 7 d time window and for each station. The bias-corrected rainfall (QME) using quantile mapping is expressed in terms of the empirical cumulative distribution function (ecdf) and its inverse (ecdf −1 ). Parameters apply to a 7 d sequential window, but correction is then at daily time interval with bias spatially averaged for the entire domain to allow for comparison with other approaches:where ecdf obs is the empirical cumulative distribution function for the gauge-based observation and ecdf raw is the empirical cumulative distribution function for the uncorrected CMORPH.The advantage of this bias scheme is that it corrects quantiles and preserves the extreme precipitation values (Themeßl et al., 2012). However, it also has its limitation due to the assumption that both the observed rainfall and satellite rainfall follow the same proposed distribution, which may introduce potential new biases.To assess the performance of SREs for different classes of daily rainfall rates, five classes are defined which indicate very light (< 2.5 mm d −1 ), light (2.5-5.0 mm d −1 ), moderate (5.0-10.0 mm d −1 ), heavy (10.0-20.0 mm d −1 ), and very heavy (> 20.0 mm d −1 ) rainfall.Furthermore, gauged rainfall was divided into wet and dry seasonal periods to assess the influence of seasonality on performance of bias-correction schemes. The wet season in the Zambezi basin spans from October to March, whereas the dry season spans from April to September.Corrected and uncorrected CMORPH satellite rainfall estimates are evaluated with reference to rain-gauge rainfall using statistics that measure systematic differences (i.e. percentage bias and mean absolute error (MAE)), measures of association (e.g. correlation coefficient and Nash-Sutcliffe efficiency -NSE), and random differences (e.g. standard deviation of differences and coefficient of variation) (Haile et al., 2013). Bias is a measure of how the satellite rainfall estimate deviates from the rain-gauge rainfall, and the result is normalised by the summation of the gauge values (Rientjes et al., 2013). A positive value indicates overestimation, whereas a negative value indicates underestimation. The correlation coefficient (ranging between +1 and −1) represents the linear dependence of gauge and CMORPH data. MAE is the arithmetic average of the absolute values of the differences between the daily gauge and CMORPH satellite rainfall estimates. The MAE is zero if the rainfall estimates are perfect and increases as discrepancies between the gauge and satellite become larger. NSE indicates how well the satellite rainfall matches the rain-gauge observation, and it ranges between −∞ and 1, with NSE = 1 meaning a perfect fit (Nash and Sutcliffe, 1970).Equations ( 8)-( 11) apply.biaswhere S are satellite rainfall estimates (mm d −1 ), S is the mean of the satellite rainfall estimates (mm d −1 ), G is rainfall by a rain gauge (mm d −1 ), G are mean values of rainfall recorded by a rain gauge (mm d −1 ), and n is the number of observations.To detect significant differences between gauge and satellite rainfall (corrected and uncorrected) and differences amongst the five bias-correction methods described in Sect. 3.3, we apply a paired t test and analysis of variance (ANOVA) tests.A paired t test was used to test whether there is a significant difference between rain-gauge, uncorrected, and biascorrected CMORPH satellite rainfall for the 52 rain gauges.Results are summarised for the Upper, Lower, and Middle Zambezi. The paired t test compares the mean difference of the values to zero. It depends on the mean difference, the variability of the differences, and the number of data. The null hypothesis (H 0 ) is that there is no difference in mean gauge and satellite daily rainfall (uncorrected and bias corrected). If the p value is less than or equal to 0.05 (5 %), the result is deemed statistically significant, i.e. there is a sig-nificant relationship between the gauge and satellite rainfall (Wilks, 2006).The ANOVA test aims to test whether there is a significant difference amongst the five bias-correction techniques. The null hypothesis (H 0 ) is that there are no differences amongst the five bias-correction schemes. We further determined which schemes differ significantly using three post hoc tests, namely Tukey HSD, Scheffe, and Bonferroni (Brown, 2005;Kucuk et al., 2018). Results are summarised for the Upper, Lower, and Middle Zambezi.We apply a Taylor diagram to evaluate differences in data sets generated by respective bias-correction schemes by providing a summary of how well bias-correction results match gauge rainfall in terms of pattern, variability, and magnitude of the variability. Visual comparison of SRE performance is done by analysing how well patterns match each other in terms of Pearson's product-moment correlation coefficient (R), root mean square difference (E), and the ratio of variances on a 2-D plot (Lo Conti et al., 2014;Taylor, 2001).The reason that each point in the 2-D space of the Taylor diagram can represent the above three different statistics simultaneously is that the centered pattern of root mean square difference (E i ) and the ratio of variances are related by the following:where σ f and σ r are the standard deviation of CMORPH and rain-gauge rainfall, respectively. Development and applications of Taylor diagrams have roots in climate change studies (Smiatek et al., 2016;Taylor, 2001) but also have frequent applications in environmental model evaluation studies (Cuvelier et al., 2007;Dennis et al., 2010;Srivastava et al., 2015). Bhatti et al. (2016) propose the use of Taylor diagrams for assessing effectiveness of SRE bias-correction schemes. The most effective biascorrection schemes will have data that lie near a point marked \"reference\" on the x axis, a relatively high correlation coefficient, and a low root mean square difference. Bias-correction schemes matching gauge-based standard deviation have patterns that have the right amplitude.3.8 Quantile-quantile (q-q) plots A q-q plot is used to check whether two data sets (in this case gauge vs. CMORPH rainfall) can fit the same distribution (Wilks, 2006). A q-q plot is a plot of the quantiles of the first data set against the quantiles of the second data set. A 45 • reference line is also plotted. If the satellite rainfall (corrected and uncorrected) has the same distribution as the rain gauge, the points should fall approximately along this reference line. The greater the departure from this reference line, the greater the evidence for the conclusion that the bias-correction scheme is less effective (NIST/SEMATECH, 2001).The main advantage of the q-q plot is that many distributional aspects can be simultaneously tested. For example, changes in symmetry, and the presence of outliers, can all be detected from this plot.3.9 Cross-validation of bias correctionThe spatial cross-validation procedure (hold-out sample) applied in this study involves the withdrawal of 8 in situ stations from the sample of 60 when generating bias-corrected SREs for all pixels across the study area. Corrected SREs are then compared to the rain-gauge rainfall of the withdrawn stations to evaluate closeness of match. From the sample of eight we selected two stations in the < 250 m elevation zone, three stations in the 250-950 m zone, and three stations in the > 950 m elevation zone. Stations selected have elevation close to the average elevation zone value and are centred in an elevation zone. This left us with 52 stations for applying the bias-correction methods and spatial interpolation. As performance indicators to evaluate results of cross-validation, we use the percentage bias, MAE, correlation coefficient, and the estimated ratio which is obtained by dividing CMORPH rainfall totals and gauge-based rainfall totals for the 1999-2013 period.For evaluation of SREs in the time domain we followed Gutjahr and Heinemann (2013) in omitting rainfall (from both gauge and satellite) for the 1998-1999 hydrological year to remain with 14 years for bias correction of SREs. Bias-corrected estimates for the 14 years are then evaluated against estimates for the 1998-1999 period that served as a reference. For evaluation we use the percentage bias, MAE, correlation coefficient, and the estimated ratio, which all are averaged for the Upper, Middle, and Lower Zambezi but also for the wet and dry seasons.The spatially interpolated values of bias (%) across the Zambezi basin are shown in Fig. 2. Areas in the central and western parts of the basin have bias relatively close to zero, suggesting good performance of the uncorrected CMORPH product. However, relatively large negative bias values (−20 %) are shown in the Upper Zambezi's high-elevation areas such as Kabompo and the northern Barotse basin, in the south-eastern part of the basin such as the Shire River basin, and in the Lower Zambezi's downstream areas where the Zambezi River enters the Indian Ocean. CMORPH overestimates rainfall locally in the Kariba, Luanginga, and Luangwa basins by positive bias values. As such CMORPH estimates do not consistently provide results that match raingauge observations. Since CMORPH estimates have pronounced error (−10 > bias (%) > 10), bias needs to be removed before the product can be applied for hydrological analysis and in water resource applications. Figure 2 also shows contours for rain-gauge mean annual precipitation (MAP) in the Zambezi basin, with higher values in the northern parts of the basin (Kabompo and Luangwa) compared to localised estimates of MAP such as in the Shire River and Kariba sub-basins.Figure 3 shows Taylor diagrams with a comparison of basin lumped estimates of daily uncorrected time series (1999)(2000)(2001)(2002)(2003)(2004)(2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012)(2013) of CMORPH and gauge-based rainfall for the three elevation zones (Fig. 3a) and four distance zones from largescale open water bodies (Fig. 3b). Here CMORPH performance is indicated by means of the root mean square difference (E), correlation coefficient (R), and standard deviation. Figure 3a and b show that standard deviations in the elevation zones and the distance zones (except for the < 10 km distance zone) are lower than the reference/raingauge standard deviation which is indicated by the black arc (value of 8.45 mm d −1 ). The stations in the high-elevation zone (> 950 m) and long-distance zone (> 100 km) reveal lower variability than stations in lower-elevation and shorterdistance zones. With respect to the reference line, CMORPH estimates that are lumped for respective elevation zones and distance to a large water body do not match the standard deviations of rain-gauge-based counterparts. Figure 3a and b also show that CMORPH standard deviations that are close to gauge-based rainfall apply to lower-elevation and shorterdistance zones. Based on the Taylor diagrams, the statistics (R and E) for uncorrected CMORPH show increasing performance for increasing elevation and increasing distance from large-scale water bodies. Specifically, stations in the lower-elevation zones (< 250 m) have lower R and higher E than the higher-elevation zones (> 950 m). For shorterdistance zones lower R and higher E are shown than for longer-distance zones (> 100 km). These findings suggest that in general effects of distance to a large-scale water body are minimal except for distances < 10 km. However, the effectiveness of the schemes varies spatially, with the best performance in the Lower and Upper Zambezi sub-basin and relatively poor performance in the Middle Zambezi sub-basin (see Fig. 4).Judging by the three performance indicators (mean, max, and estimated ratio), results indicate that the STB biascorrection scheme is consistently effective in removing CMORPH rainfall bias in the Zambezi basin. STB and PT effectively adjust for the mean of CMORPH rainfall estimates. Statistics in Fig. 5 confirm these findings especially for the Upper Zambezi sub-basin, where the mean of corrected estimates improved by > 60 % from the mean of uncorrected estimates. In addition, PT in the Lower Zambezi, QME in both the Middle and Upper Zambezi, and STB in the Upper Zambezi were also effective (improvement by 16 %) in correcting for the highest values in the rainfall estimates. STB performs better than other bias schemes in reproducing rainfall for the Lower and Upper Zambezi sub-basin, where the ratio of gauge total to corrected CMORPH total is close to 1.0.Figure 5 shows the MAE and percentage bias (% bias) on the left axis and NSE on the right axis as measures to evaluate performance of bias-correction schemes in the Zambezi basin. The effectiveness of the bias correction by all schemes varies over the different parts of the basin, but is higher in the Lower and Upper Zambezi than in the Middle Zambezi. The STB, PT, and EZ show improved performance by exhibiting smaller MAEs compared to the uncorrected CMORPH (R-CMORPH). A greater improvement is shown for the Middle Zambezi, where the uncorrected MAE of 1.89 mm d −1 is reduced to 0.86 mm d −1 after bias correction by the elevation zone bias-correction scheme (EZ). The signal on improved performance for the Lower and Middle Zambezi as compared to the Upper Zambezi is also evident for the majority of the bias-correction techniques. However, relatively large error remains in the MAE. NSE for STB is larger than 0.8 for all three Zambezi subbasins. This is followed by EZ with NSE larger than 0.7 for the three sub-basins. The lowest NSE is for QME, which is close to 0.65 for all three sub-basins. The best results for reducing bias (% bias) are obtained by EZ in the Lower Zambezi (% bias of 0.7 % ∼ absolute bias of 0.10 mm d −1 ) and Upper Zambezi (0.22 % ∼ 0.23 mm d −1 ), PT in the Lower and Middle Zambezi (−0.84 % ∼ 0.18 mm d −1 ), and STB in all the basins (< 3.70 % ∼ 0.24 mm d −1 ). Gao and Liu (2013) over the Tibetan Plateau assert that EZ is valuable in correcting systematic biases to provide a more ac- Standard deviations on both the x and y axes show the amount of variance between the two time series. The standard deviation of the CMORPH pattern is proportional to the radial distance from the origin. The angle between symbol and abscissa measures the correlation between CMORPH and rain-gauge observations. The root mean square difference (red contours) between the CMORPH and rain-gauge patterns is proportional to the distance to the point on the x axis identified as \"reference\". For details, see Taylor (2001). curate precipitation input for rainfall-runoff modelling. Significant underestimation for the uncorrected (−21.16 % ∼ 0.44 mm d −1 ) and bias-corrected CMORPH is shown for the Upper Zambezi sub-basin.Table 2 shows results of statistical tests to assess whether there is a significant difference (p < 0.05) between raingauge vs. uncorrected and bias-corrected CMORPH satellite rainfall for each of the 52 rain-gauge stations. Results are summarised for the Upper, Middle, and Lower Zambezi and in the Zambezi basin. The null hypothesis is rejected for PT (Lower Zambezi), DT (Upper Zambezi), and QME (all three sub-basins) since p < 0.05. This means that statistically the above-mentioned bias-correction schemes results deviate from the gauge. The null hypothesis is accepted for STB and EZ (all three sub-basins), DT (Lower and Upper Zambezi), and PT (Middle and Upper Zambezi), since p > 0.05, showing the effectiveness of these bias-correction schemes. Compared to uncorrected satellite rainfall (R-MORPH), results also reveal that the bias-corrected satellite rainfall is closer to the gauge-based rainfall.The ANOVA test is similar to a t test, except that the test was used to compare mean values from three or more data samples. Results of ANOVA show that there is a significant (p < 0.05) difference in the mean values of the five biascorrection results across the three sub-basins. This warranted the running of a post hoc test to determine which schemes differ significantly. The contingency matrix in Table 3 shows results of the post hoc test results summarised for the Tukey HSD, Scheffe, and Bonferroni methods but also for the Upper, Lower, and Middle Zambezi. Table 3 also shows that STB, PT, and EZ are significantly different from distribution transformation (DT) for the three sub-basins. STB, the best performing bias-correction scheme identified, is also significantly different from QME and EZ. QME, which has performed poorly, is significantly different from EZ. Results are important for further application of the bias-correction schemes for studies such as flood, drought, and water resource modelling. A2. The position of each bias-correction scheme and uncorrected satellite rainfall (R-MORPH) in Fig. 6 shows how closely the rainfall by uncorrected CMORPH (R-MORPH) matches rain-gauge observations as well as the effectiveness of each an intermediate overall effectiveness of the bias-correction schemes such as STB, EZ, DT, and PT in removing error as they are relatively closer to the marked reference point.The least-performing bias-correction scheme is QME, with relatively large RSMD (> 8 mm d −1 ) and with low R (< 0.49) and standard deviation (< 6.5 mm d −1 ). Inherent to the methodology of most of the bias-correction schemes (e.g. QME) is that the spatial pattern of the SRE does not change, and therefore R for a specific station for daily precipitation does not necessarily improve. The bias-correction results by the Taylor diagram in Fig. 6 corroborate findings shown in Figs. 4 and 5 for mean, max, ratio of rainfall totals, and bias as performance indicators.Figure 7 shows q-q plots for the Upper, Middle, and Lower Zambezi for gauge rainfall against uncorrected and biascorrected CMORPH rainfall. Results show that STB's q-q plots for bias-corrected CMORPH across the three basins have the majority of points that fall approximately along the 45 • reference line. This means that the STB bias-corrected satellite rainfall has closer distribution to the rain gauge as compared to the uncorrected CMORPH counterparts, suggesting the effectiveness of the bias-correction scheme. Other bias-correction schemes such as QME, EZ, and PT have data points showing a greater departure from the 45 • reference line, so performance is less effective.In some instances, in the Upper, Middle, and Lower Zambezi, bias-corrected values are significantly higher than the corresponding gauge values, whereas in some instances there is serious underestimation. All the q-q plots also show that for all the bias-correction schemes, the differences between gauge and satellite rainfall are smallest for low rainfall rates (< 2.5 mm d −1 ) and increasing for very heavy rainfall (> 20.0 mm d −1 ). In more detail, all the bias-correction schemes show a larger difference for the transition area from low to heavy rainfall. QME and PT are not in good agreement with the rest of the bias-correction schemes for higher rainfall estimates (40 and 60 mm d −1 ).Occurrence (%) of rainfall rates in the Zambezi basin for each bias-correction scheme is shown in Fig. 8. The high- est percentage (80 %-90 %) is shown for very light rainfall (0.0-2.5 mm d −1 ). A smaller percentage is shown for 2.5-5.0 mm d −1 , which is the light rainfall class. The smallest percentage (< 5 %) is shown for very heavy rainfall (> 20 mm d −1 ). The CMORPH rainfall corrected with STB, PT, and DT matches the gauge-based rainfall (%) in the Lower, Middle, and Upper Zambezi, suggesting good performance. All five bias-correction schemes in the Zambezi basin generally tend to overestimate very light rainfall (< 2.5 mm d −1 ). There is a small difference for moderate rainy day classification of 10.0-20.0 mm d −1 . For QME in the Middle and Upper Zambezi, there is overestimation by > 80 %. There is underestimation of rainfall greater than 20 mm d −1 .Figure 9 gives the bias-correction performance for the different rainy-day classes. Results of bias removal vary for the Lower, Middle, and Upper Zambezi. Comparatively, the STB and EZ show effectiveness in bias removal with average bias corrections of 0.97 % and 3.6 % in the whole basin, respectively. Results show more effectiveness in re-ducing the percentage bias for light (2.5-5.0 mm d −1 ) and moderate (5.0-10.0 mm d −1 ) rainfall compared to the heavy (10.0-20.0 mm d −1 ) and very heavy (> 20.0 mm d −1 ) rainfall across the whole basin.Table 4 shows the cross-validation results on bias correction for eight rain-gauge stations in the wet and dry seasons. It is evident that CMORPH has a considerable bias, although this bias is not always consistent for all eight validation stations. Overall, Mutarara station has the highest positive bias (overestimation), whereas Makhanga has the highest negative bias (underestimation) for uncorrected CMORPH. Bias is effectively being removed by the STB followed by the EZ biascorrection schemes. Bias is more effectively removed for the wet season than for the dry season. For the dry season, the STB shows good performance for Mkhanga and Nchalo stations, whereas good performance is shown for Kabompo and Chichiri stations. However, the MAE is higher for the wet season than for the dry season. The correlation coefficient for bias-corrected satellite rainfall is higher for the wet season than for the dry season.The same performance indicators in spatial cross-validation are calculated for the temporal cross-validation. Results are presented in Table 5. The MAE is higher for the wet season than for the dry season. The difference in effectiveness in the error removal between the dry and wet seasons is much larger. STB outperforms both bias-correction methods but does also have problems correcting the estimated ratios. After the correction, the correlation coefficient is much improved. The fact that MAE remains relatively large indicates that errors remain locally large. These values are almost in the same range as performance indicators obtained from the main performance assessment period (1999)(2000)(2001)(2002)(2003)(2004)(2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012)(2013). The estimated ratio shows improvement for the Middle Zambezi compared to the Lower and Upper Zambezi.We present methods to assess the performance of biascorrection schemes for CMORPH rainfall estimates in the Zambezi River basin. For correction we applied sequential windows of 7 d that count 5 rain days with a rainfall threshold of 5 mm d −1 . First, we aimed to evaluate whether performance of CMORPH rainfall is affected by elevation and distance from large-scale open water bodies. Results in Taylor diagrams show that effects of distances > 10 km are minimal in this study. For distance < 10 km, results in the same Taylor diagrams show some effect with increased CMORPH estimation errors, although this is not clearly identifiable by the limited number of gauging stations at distance < 10 km. The low number of gauge stations constrains clear identification of bias as affected by the short distance. The low number of stations also constrains detailed analysis of dependencies of observation time series. To assess bias effects at distances < 10 km we advocate installation of a well-designed network of rain gauges with stations located at preselected locations that would allow sound geostatistical analysis of small-scale rainfall variability and spatial correlation analysis. We refer to Ciach and Krajewski (2006), who present such analysis for a dense experimental network of 53 stations. The interstation distance of the rain gauges in this study is too large to capture the effect of distance to large-scale open water bodies on CMORPH rainfall error. For instance, such distance exceeds 350 km for most of the Upper Zambezi basin. Findings in this study show that effects of distance would be captured at distances 10-25 km or shorter. Haile et al. (2009) indicate bias effects at short distances (< 10 km) for the Lake Tana, Ethiopia.The rainfall-elevation bias correction also shows minimal signal. Contrary to this finding, Romilly and Gebremichael (2011) showed that the accuracy of CMORPH at a monthly time base is related to elevation for six river basins in Ethiopia. A similar finding was reported by Haile et al. (2009), Katiraie-Boroujerdy et al. (2013), and Wu and Zhai (2012), who found that the performance of CMORPH is affected by elevation. However, Vernimmen et al. (2012) concluded that TRMM Multi-satellite Precipitation Analysis (TMPA) 3B42RT performance was not affected by elevation (R 2 = 0.0001) for the Jakarta, Bogor, Bandung, Java, Kalimantan, and Sumatra regions (Indonesia). The study by Gao and Liu (2013) showed that the bias in CMORPH rainfall over the Tibetan Plateau is affected by elevation. Whilst dis-tances from large-scale open water bodies and elevation have been assessed separately for this study, Habib et al. (2012a) revealed that both aspects interact in the Nile basin to produce unique circulation patterns to affect the performance of SRE.Secondly, we evaluate the effectiveness of linear/nonlinear and time-space-variant/-invariant bias-correction schemes. The bias-correction results by means of performance indicators such as Taylor diagrams, q-q plots, ANOVA, and standard statistics such as mean, max, ratio of rainfall totals, and bias reveal that the STB is the best bias-correction method. This method by its nature considers correction only for spatially distributed patterns in bias, commonly known as space-variant/-invariant, and thus forces the estimates to behave as observations. We did not investigate effects of the applied sequential windows of 7 d for each bias-correction scheme separately, but note that other window lengths possibly could yield more favourable results for bias schemes such as PT, DT, and QME that commonly rely on larger sample sizes. As alluded to by Habib et al. (2014), correction should improve hydrological applications by improved rainfall representation. This applies to the Zambezi basin as well with demands for applications of the product such as for drought analysis, flood prediction, weather forecasting, and rainfall-runoff modelling. The study is unique as we assess the importance of space and time aspects of CMORPH bias for rainfall-runoff modelling in a data-scarce catchment. Findings in this study on cross-validation and temporal validation contribute to efforts that aim towards enhancing applications of satellite rainfall products. The study site is the Zambezi basin, an example of many world regions that can benefit from satellite-based rainfall products for resource assessments and monitoring.Thirdly, an assessment of the performance of biascorrection schemes in representing different rainfall rates and climate seasonality is presented. Our findings show that bias is most overestimated for the very light rainfall (< 2.5 mm d −1 ), which is also the range that shows the best bias reduction, which in turn is most effective during the wet season. Results also show that there is underestimation of rainfall larger than 20 mm d −1 . The poor performance of correction for the heavy rainfall class is caused by, sometimes, large mismatch of high rain-gauge values vs. low CMORPH values. This leads to unrealistically high CMORPH values which remain poorly corrected by bias schemes. Results are consistent with findings by Gao and Liu (2013) in the Tibetan Plateau, who found consistent underestimation and overestimation of occurrence by CMORPH for rainfall rates > 10 mm d −1 . A study by Zulkafli et al. (2014) in French Guiana and North Brazil noted that the low sampling frequency and consequently missed short-duration precipitation events between satellite measurements results in underestimation, particularly for rainfall > 20 mm d −1 .Lastly, spatial and temporal cross-validation reveals the effectiveness of bias-correction schemes. The hold-out sample of eight stations in this work showed the applicability of different bias-correction methods under different geographical domains. There is improved performance of satellite rainfall for the wet season as compared to the dry season based on the correlation coefficient and MAE. The study by Ines and Hansen (2006) for semi-arid eastern Kenya showed that multiplicative bias-correction schemes such as STB were effective in correcting the total of the daily rainfall grouped into seasons. Our results show that effectiveness in bias removal in the wet season is higher than in the dry season. This is contrary to Vernimmen et al. (2012), who showed that for the dry season, bias for PT decreased in the Jakarta, Bogor, Bandung, East Java, and Lampung regions after bias correction of monthly TMPA 3B42RT precipitation estimates over the period 2003-2008. Habib (2014) ) evaluated the sensitivity of STB for the dry and wet seasons and concluded that the bias-correction factor for CMOPRH shows lower sensitivity for the wet season as compared to the dry season. Our findings also reveal that bias factors for all the schemes are more variable in the dry season than in the wet season and lead to poor performance of the bias-correction schemes in the dry season.In this study four conclusions are drawn.shows that CMORPH performance increases for higher elevation (> 950 m) in the Zambezi basin and that CMORPH has the largest mismatch at low elevation. Such analysis was established for rain gauges within elevation zone classes of < 250, 250-950, and > 950 m. The match between gauge and CMORPH estimates improved at increasing distance to large-scale open water bodies. This was established for rain gauges located within specified distances of 10-50, 50-100, and > 100 km to a large-scale open water body. For distances < 10 km errors by CMORPH increased, but the small sample size of stations and the weak signal require further study. To assess how bias is affected at short distances to a large-scale water body, a specifically designed and dense gauging network is advocated (see Ciach and Krajewski, 2006) that allows evaluation of small-scale rainfall variability. A detailed analysis of small spatial variability and spatial correlation analysis of rain-gauged observations presumably is a prerequisite before satellite rainfall effects at short distances to a large-scale water body can be assessed.is found to be more effective in reducing satellite rainfall bias in the Zambezi basin than the rest of the biascorrection schemes. This indicates that the temporal aspect of CMORPH bias is more important than the spatial aspect in the Zambezi basin. Quantile-quantile (qq) plots for all the bias-correction schemes in general show that bias-corrected rainfall is in good agreement with gauge-based rainfall for low rainfall rates but that high rainfall rates are largely overestimated.3. Differences in the mechanisms that drive precipitation throughout the year could result in different biases for each of the seasons, which motivated us to calculate the bias-correction factors for dry and wet seasons separately. As such, CMORPH rainfall time series were divided to assess the influence of seasonality on the performance of bias-correction schemes. Overall, the biascorrection schemes reveal that bias removal is more effective in the wet season than in the dry season.4. We assessed whether bias correction varies for different rainfall rates of daily rainfall in the Zambezi basin. There is overestimation of very light rainfall (< 2.5 mm d −1 ) and underestimation of very heavy rainfall (> 20 mm d −1 ) after application of the biascorrection schemes. Bias was more effectively reduced for the very light (< 2.5 mm d −1 ) to moderate (5.0-10.0 mm d −1 ) rainfall compared to the heavy (10.0-20.0 mm d −1 ) and very heavy (> 20 mm d −1 ) rainfall.Overall, the STB and EZ more consistently removed bias in all the rainy days' classification compared to the three other bias-correction schemes. Effects of length of sequential window sizes for selected bias-correction schemes are not investigated, but different lengths possibly could yield more favourable results for PT, QME, and DT bias-correction schemes.Analysis serves to improve the reliability of SRE applications in hydrological analysis and water resource applications in the Zambezi basin such as in drought analysis, flood prediction, weather forecasting, and rainfall-runoff modelling. In follow-up studies, we aim at hydrologic evaluation of bias-corrected CMORPH rainfall estimates at the headwater catchment of the Zambezi River. ","tokenCount":"8306"} \ No newline at end of file diff --git a/data/part_3/9589363010.json b/data/part_3/9589363010.json new file mode 100644 index 0000000000000000000000000000000000000000..60e93eadc7669b5d45a4d71ea2bc3887314512ba --- /dev/null +++ b/data/part_3/9589363010.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"1bd978d01e95a7d075ea914489f16712","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/a936f6f8-09cd-4f33-9a23-46e375ffe217/retrieve","id":"-114870366"},"keywords":[],"sieverID":"363d44fe-0c3d-4ed9-b9eb-f68294cb4344","pagecount":"4","content":"Vietnam is becoming Asia's dynamic tiger economy. Economic and political reforms have transformed the country of 98 million people from one of the world's poorest countries 25 years ago into a lower middleincome country in 2011. Poverty rates declined sharply from over 70% to below 6% and GDP per capita increased by 2.5 times, standing over US$2,500 in 2018 (World Bank 2019).Although the rate of urbanization increases fast, agriculture remains one of the key pillars in the country's growth with this sector contributing 15% of the GDP in 2018 and generating incomes and livelihoods for millions of people in rural and highland areas.Classified as a lower middle-income country, Vietnam still confronts numerous important challenges that may hinder it from the pathway to sustainable development. In the agriculture sector, the country struggles with environmental threats from unsustainable intensification, ensuring food security and food safety, ag-biodiversity, nutrition and health, degradation of natural resources, and the impacts of the changing climate, among others. All these challenges raise the question on how Vietnam can develop in a more sustainable way, and this makes this Southeast Asian country a focus for CGIAR work. Currently, 8 out of 15 CGIAR centers have offices and/or projects in Vietnam.In Vietnam, CGIAR partners with a number of institutions, such as the government ministries, universities, national research institutes, development agencies, and the private sector, to plan and implement research programs.Over the past 5 years, CGIAR has implemented more than 100 large and small projects in Vietnam, with a total budget about 24 million US dollars. CGIAR projects have directly and indirectly benefited about 2 million and about 24,5 million people, respectively.The work of CGIAR in Vietnam is focused around several of its research themes.The International Rice Research Institute (IRRI) is a key collaborator in developing the award-winning 'Three Reductions, Three Gains' program that successfully helped farmers improve their rice crop management practices. Now, the '1 Must Do, 5 Reductions' program is underway to further advance good management. Photo credit: IRRI Additionally, about a hundred IRRI breeding lines have been released as varieties in Vietnam. IRRI has also developed and documented scalable management options for rice straw to help improve farmers' income and make rice production sustainable. One Health is an added value in terms of better health and well-being for humans and animals, financial In response to the changes in the external environment, CGIAR has been in an almost perpetual state of reforms from the start of the new millennium to One CGIAR.One CGIAR is a dynamic reformulation of CGIAR's partnerships, knowledge, assets, and global presence, aiming for greater integration and impact in the face of the interdependent challenges facing today's world.As One CGIAR, scientific innovations for food, land and water systems can be deployed faster, at a larger scale, and at reduced cost, having greater impact where they are needed the most. This will provide our beneficiaries around the world with more sustainable ways to grow, catch, transport, process, trade, and consume safe and nutritious food.The overarching objectives and principles guiding the transition have been set and we are now undertaking an inclusive and consultative process of co-creation to define the destination in further detail, and the transition pathway to reach it.","tokenCount":"533"} \ No newline at end of file diff --git a/data/part_3/9590255221.json b/data/part_3/9590255221.json new file mode 100644 index 0000000000000000000000000000000000000000..b35aa6ce46443ab4e689450433bd17401f66f71a --- /dev/null +++ b/data/part_3/9590255221.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"f03f0539d12b834495e8c86fadcf0a23","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/84d371b5-9550-400a-8661-30981e933fa3/content","id":"1043986341"},"keywords":["smallholder farming","crop classification","field size","object based image analysis (OBIA)","random trees (RT)","satellite image time series analysis"],"sieverID":"ee0be387-7999-4b19-8450-f97fc4f0f9c5","pagecount":"21","content":"Mung bean (Vigna radiata) plays an important role providing protein in the rice-based diet of the people in Bangladesh. In the coastal division of Barisal, our study area, the average farm size is less than 0.5 ha and individual fields measure about 0.10 ha. The availability of free Sentinel-2 optical satellite data acquired at a 10 m ground sampling distance (GSD) may offer an opportunity to generate crop area estimates in smallholder farming settings in South Asia. We combined different sources of in situ data, such as aerial photographs taken from a low flying manned aircraft, data collected on the ground, and data derived from satellite images to create a data set for a segment based classification of mung bean. User's accuracy for mung bean was 0.98 and producer's accuracy was 0.99. Hence, the accuracy metrics indicate that the random tree classifier was able to identify mung bean based on 10 m GSD data, despite the small size of individual fields. We estimated the mung bean area for 2019 at 109,416 ha, which is about 40% lower than the Department of Agricultural Extension estimates (183,480 ha), but more than four times higher than the 2019 data reported by the Bangladesh Bureau of Statistics (26,612 ha). Further analysis revealed that crop production tends to be clustered in the landscape by crop type. After merging adjacent segments by crop type, the following average cluster sizes resulted: 1.62 ha for mung bean, 0.74 ha for rice (Oryza sativa), 0.68 ha for weedy fallow and 0.40 ha for a category of other crops. This explains why 10 m GSD satellite data can be used for the identification of predominant crops grown in specific regions of South Asia.Remote sensing can play an important role in monitoring indicators of agricultural production, poverty, and malnutrition in consideration of the Sustainable Development Goals (SDG) 2030 agenda [1]. Geographic knowledge of where and how much of a crop is grown is crucial for productivity that is prerequisite to food security, in terms of diversity of food supply and potential production in the face of disasters. It can also provide a base line to measure the impact of development initiatives and investments over time as farmers grow successive crops [2]. Cropped area estimates are also key for national agricultural monitoring and statistical reporting, in addition to technology targeting in development programs [3].Barisal division of Bangladesh, located in the coastal Ganges-Brahmaputra delta, is home to more than eight million people and measures 1,364,500 ha. Close to 40% of the region's children are affected by malnutrition and stunting [4]. Mung bean (Vigna radiata) is grown during the dry winter months within this region, both as a market oriented cash crop and for home consumption. Mung bean helps diversify and add protein to the predominantly rice based diet of smallholder farmers in the coastal region [5][6][7]. It is usually grown as a broadcast 'opportunity' crop without intensive management or inputs other than seed. As a species, it is however somewhat salinity and drought tolerant-traits of key interest in the climate extreme prone coastal area [8,9]. Although growing in acreage, specific production estimates for cropped mung bean area vary greatly. According to the 2019 data published by the Bangladesh Bureau of Statistics (BBS) [10], total mung bean area was just 26,612 ha. However, according to data obtained from Bangladesh's Department of Agricultural Extension, cropped mung bean area was nearly seven times greater, at about 183,480 ha in 2019. These discrepancies are important, and represent differences in data collection methodologies, which can affect agricultural policy planner decisions and investments in rural development initiatives.The agricultural landscape in Barisal Division is similar to other regions in South Asia that rotate winter season crops with monsoon season paddy rice production. They are densely populated and farmers cultivate every square meter of land. Due to the tradition of splitting up the land among the male children of the farm family, average farm size is about 0.3 ha and individual parcel sizes measure 0.08 ha for small and 0.16 ha for medium farms [11]. In a study on field boundary delineation conducted in Barisal division, [12] reported an average parcel size of 0.10 ha. Fields are separated by bunds, usually about 0.25 m wide. Many fields can also generally only be accessed by foot. Coastal Bangladesh is mostly flat and less than 3 m above sea level. The southern half of the division is protected by polders, which are coastal embankments meant to protect villages and agricultural fields against oceanic water intrusion and salinization [13]. Most of the land is however tidally flooded during the monsoon season, as polder walls are in widespread disrepair. Flooding depth and duration limit crop choices that can be grown during the winter months, as farmers have to wait for rice harvest after the end of the monsoon rains until the fields are sufficiently drained to establish a subsequent winter season crop. Premonsoon rainstorms that may begin as early as March determine the end of the period during which non-rice crops can be cultivated in the winter. Estimates are that about 14% of the cropland of Barisal Division remains fallow during the winter months, mostly due to salinity in the coastal zone [14,15].Road infrastructure in this region is also poor [16], with many roads being too narrow for regular vehicles. As such, most smallholders' parcels can be accessed only by foot. This makes 'windshield' surveys challenging; in addition, in situ data collection is time consuming. Considering these issues, BBS uses two approaches to assess the extent of agricultural land under different crops [10]. The first is based on direct observation of crops in the field, though this approach is applied only to major crops, such as rice, wheat, potato and jute. For minor crops, such as mung bean, lentils (Lens culinaris) or grass pea (Lathyrus sativus L.) BBS conversely relies on household surveys. In each union, the smallest administrative district, which typically measures 3200 ha, enumerators interview five farmers. Resulting data are then aggregated to the next higher administrative unit, using data from the previous or a normal year and their local expertise. Data are then reported at the district level.Satellite-based remote sensing has been proposed as a viable alternative for agricultural land use and crop monitoring [17]. The availability of free satellite data and automated image preprocessing toolboxes for atmospheric correction and cloud detection, such as SNAP [18], has opened new opportunities for using time series of images for crop classification. The advantages of using time series of optical imagery for land cover classification were described in a review by [19]. In an example from the Canadian Prairies, [20] showed how classification accuracy increases with the number of images used over a cropping season, when classifying crops at the field level. They also compared various machine learning algorithms, such as random forest (RF) [21], artificial neural networks (ANN) [22,23] and support vector machine (SVM) analyses [24] to the maximum likelihood algorithm. All machine learning algorithms performed better than the maximum likelihood algorithm, and differences in overall accuracies obtained with the machine learning algorithms became negligible with an increasing number of images used for the classification. Speed and ease of use are additional factors to be considered when choosing a classifier. In a review of the RF classifier, [25] concluded that it requires the setting of fewer parameters and also performs faster than other classifiers.In Bangladesh, and especially in the coastal region, few remote sensing studies on crop identification have been carried out. They mainly focused on fallow land identification or the distinction between crop and pasture land [26]. In order to identify cropland categories including (i) fallow land, (ii) low management intensity crops (primarily consisting of pulse crops) and (iii) and high management intensity crops (such as wheat, boro rice, maize and mustard), [15,27] analyzed Landsat 5, 7 and 8 satellite images to train a RF classifier. Classification was based on an object-based image analysis (OBIA) segmentation and used four input layers including the (i) mean of the digital numbers of bands, (ii) texture (all direction), (iii) NDVI and (iv) the ratio of the NIR and visible bands. In another study, OBIA segmentation of a RapidEye satellite image with a ground sampling distance (GSD) of 5 m was used to train an RF algorithm to identify maize fields for a yield gap analysis in Northern Bangladesh [28]. However, most crop identification studies in Bangladesh have focused on rice. While the size of individual rice paddies are small, it is grown in large contiguous areas and can therefore be identified with MODIS [29], Landsat [30] or microwave [31]. In neighboring India, multi-date AWiFS data were used to identify pulse crops [32]. In areas with contiguous acreage devoted to legumes, they reached an accuracy of more than 95%, whereas in regions with scattered pulse fields, which are analogous to the smallholder farming conditions of Southern Bangladesh, accuracies dropped to 50-81%. As to our knowledge, no previous research has been conducted on identifying mung bean or any other minor crop using satellite data for coastal Bangladesh.Our analysis focuses on the use of images collected with the Sentinel-2A and -2B satellites that are freely available and have a GSD of 10 m. Since March of 2017, these satellites have covered the globe at an interval of five days, thus opening up the opportunity to test the applicability of a time-series approach based on Sentinel-2 data for crop classification in smallholder farmer settings, where fields are smaller than in most other parts of the world. There is uncertainty regarding the accuracy of official mung bean area estimates and remote sensing might provide a cost effective tool to improve crop area estimates in Bangladesh, especially for the pulse crops that are grown during the rather cloud free winter months. This paper responds to this opportunity and aims to (a) demonstrate a method that integrates multi-source in situ data for crop identification in a region where access to fields is challenging and time consuming and (b) to test the suitability of a multi-temporal, segmentation based classification algorithm to identify mung bean with remotely sensed data.This study focuses on Barisal, one of eight administrative divisions of Bangladesh, which measures 1,364,500 ha, with a cropland area of 543,000 ha [15]. The division is divided into six districts named Barguna, Barisal, Bhola, Jhalokati, Patuakhali and Pirojpur (Figure 1). During the rainy season from June to November, most of the land is flooded and used for rice production. After rice harvest in November and December, farmers grow grass pea (Lathyrus sativus), which is typically seeded into the rice crop before harvest, lentil (Lens culinaris) and mung bean. In some areas, farmers may also grow winter boro rice starting in February, but on limited land areas [15]. Grass pea reaches maturity in February; after harvest, land is left fallow and the weeds take over. These fields are then typically used for opportunistic grazing until they become inundated by monsoon rains starting in late April. For this analysis, we did not distinguish between the land that is left fallow during the entire winter rabi season or after grass pea harvest. For mung bean identification, we are focusing on the period from February to April. We therefore consider all land not cultivated during this period as weedy fallow.Mung bean is typically sown in early February and grown without irrigation. To preserve soil moisture for germination, farmers till the soil and plant on the same day. However, early growth may be aided by occasional rains. Once established, mung bean mostly draws from the shallow (1-2 m depth) water table for evapotranspiration during its growth period [33]. Harvest starts in late March and continues through early May. Mung bean is an indeterminate crop and farmers will pick pods 2-3 times until senescence [34]. We combined four sources of data in order to prepare the training and test data (Figure 2), including (i) aerial photographs taken from a low flying aircraft, (ii) data collected on the ground, based on selected photos from the aerial campaign, (iii) data derived from visual inspection of Google Earth (Google, Mountain View, San Francisco, CA, United States) and ArcGIS (Version 10.7.1, Environmental Systems Research Institute (ESRI), Redlands, CA, United States) World Imagery and (iv) Sentinel-2 imagery. The data points with information on land use and crop type were linked to the attribute table of Sentinel-2 derived segments. The resulting data set was split into two groups including 66.6% of each class for training and the remainder for testing.All available Sentinel-2 images with less than 10% cloud cover acquired between February 6 and April 17 of 2019 were downloaded from the European Space Agency's (ESA) Sentinel Scientific Data Hub. We used the Sen2Cor atmospheric correction processor version 2.5.5 [35] of the Sentinel Application Platform SNAP v7.0 distributed under the GNU general public license to calculate bottom-of-atmosphere (BOA) reflectance. Given the small field sizes, we used only the four 10 m bands B2 (490 nm), B3 (560 nm), B4 (665 nm) and B8 (842 nm) of Sentinel-2 for all subsequent analyses, including the segmentation. Barisal division is almost fully covered by these two Sentinel tiles: T45QZE and T45QZF. The 90 • east meridian runs across our study area. The Sentinel-2 images in the UTM WGS84, zone 45 N projection provided a better coverage than those in zone 46. We therefore used the former as a base for all analyses. In order to cover the entire mung bean growing season from February to the end of April, images from February 6, March 8 and March 28 were selected (Figure 3). Visual inspection, and the meta-data, revealed that they were cloud free. However, all April images had some cloud cover. We used the images acquired on April 7, 17 and 22 to create a composite image, applying a median filter to generate cloud free pixels [36]. We subsequently did a visual check of the composite image and masked an area of 4397 ha area as cloudy. The image in early February covered the sowing period. Mung bean reached canopy closure in late March and harvest starts in April. Most mung bean varieties grown in Bangladesh are indeterminate, thus farmers can pick mung bean 2-3 times until early May, depending on the pest, rainfall and waterlogging conditions. We used the Sentinel Application Platform (SNAP) to calculate the nine indices shown in Table 1. The resulting data layers were mosaicked and clipped to the boundaries of Barisal division using ArcGIS. The indices were developed to identify different water, soil and vegetation conditions. We needed to separate water bodies from the cropland and the paddy rice from the other crops. We relied on the normalized difference water index (NDWI) and the second normalized difference water index (NDWI2) for this task. Farmers generally till the soil before sowing mung bean in order to control the weeds and to prepare a seed bed. This results in bright and bare soil conditions, which can be captured with the brightness index (BI) and the second brightness index (BI2), and the color index (Cl). We relied on four types of vegetation indices in order to characterize the canopies of the crops: the normalized difference vegetation (NDVI), enhanced vegetation index (EVI), green normalized difference vegetation index (GNDVI) and the soil adjusted vegetation index (SAVI).Table 1. Vegetation, soil and water indices derived from Sentinel-2 images. The resulting information layers were used for segmentation and classification images during the mung bean growing season from February 6 through April 17 of 2019 in Barisal division of coastal Bangladesh.Name Formula/Function Type SourceThe second Brightness Index sqrt(( Initial analyses showed that the major challenge was to distinguish weedy fallow land from mung bean. These two species dominate the cropland area. Weedy fallow often succeeds grass pea and is grazed frequently. In order to create segments that separate the two types, we used a total of five layers including the time series of NDVI layers of the four images and EVI from the cloud free April mosaic. EVI has previously been used to successfully separate low input crops from fallow land in this region [15,27]. We used eCognition Developer (V9.5.1, Trimble Geospatial, Sunnyvale, CA, USA) to create the segments with the multi-resolution segmentation algorithm [45]. This region growing algorithm starts from the pixel level and iteratively aggregates pixels successively into objects until a condition of homogeneity set by the user is met. Based on visual inspection, a scale parameter of 0.5 created segments that best represented mung bean fields. Size and homogeneity were set to zero. Changing these two parameters had little effect on the shape of the segments, presumably because we used the data layers in float format and the segments were rather small. The weight for each of the four NDVI and the EVI layers was set to 1.Given the challenges of collecting representative in situ data in the Barisal division due to the poor road network, we made use of a manned, low-elevation aircraft to survey Barisal division for mung bean production. In order to cover the entire study area, we predefined a flight route of 410 km to be covered with a S2-AEC sea plane (Figure 4). Starting from Dhaka airport at 9:38 am on 25 March 2019, the flight took 2.25 h to complete at altitudes of 150-300 m above ground. The operator did not have the permission from the Bangladesh Civil Aviation Authority to mount a camera outside the aircraft. Hence, six passengers acquired photos with 2 Sony Nex-7, a Nikon DSLR, and a Canon 600D camera. We also used an iPhone and a Huawei Honor 8 smart phone. All images were acquired at the respective maximum resolutions: 6000 pixels × 4000 pixels for the Sony Nex-7 and Nikon DSLR, 5184 pixels × 3456 pixels for the Canon 600D, 4032 × 3024 for the iPhone 7 plus and 3968 × 2976 for the Xiaomi phone. Camera focus was set to infinity. The flight track was recorded with a Bad Elf GNSS Surveyor GPS. In total, 3123 photos were taken, out of which 1917 were tagged to Sentinel-2 images. The footprints of the photos were manually digitized using the Sentinel-2 images and World Imagery in ArcGIS as a backdrop.In order to gather sufficient insights to interpret the aerial photos and determine the correct crop type that is visible in corresponding satellite images, we selected seven sampling areas along a transect. Two experienced field technicians spent a combined total of 20 days identifying the major crop types visible in preselected aerially acquired images. At each sampling point, located in the center of a crop field, they took one photo in each of the cardinal directions and a close-up photo of the crop with photo meta-data entered into tablets loaded with Open Data Kit (ODK) [46]. Data were retrieved from 537 sampling points, out of which 246 were used after conducting a plausibility check using Sentinel-2 data and Google Earth and World Imagery in ArcGIS. Photos from extremely small fields, which we could not discern from Sentinel-2 images, or that had GPS errors, or were located close to settlement areas with obscuring tree cover, were discarded. These GPS errors resulted from the proximity of trees and poor connections to cell phone tower networks. In a last step, the 246 data points were linked to the respective segments that encompassed them.The 246 data points enabled the visual identification of additional points along the flight transect, using RGB and false color satellite images, and vegetation indices derived from Sentinel-2 images. False color satellite images, using the NIR, red and green bands were especially useful for the visual identification of mung bean, which had a distinct, dark pink color. For each patch or group of crop fields that were grown with the same crop types, we visually determined the center of the area and then assigned the crop to the segment encompassing it (Figure 5). Barisal division is covered by Google Earth and ArcGIS World Imagery with high resolution images. However, most available images were not from the 2019 winter season and could not be used to identify crops. They could however be used to identify non-cropland, consisting of permanent features such as water bodies, roads, settlements and brick fields. In addition, we relied on Google Earth, Sentinel-2 images and local expert knowledge to identify rice fields on Bhola island, as it could not be included in our flight trajectory. We were able to identify paddy rice fields with the aid of Google Earth and false color Sentinel-2 images. When tagging the segments, we included all predominant non-land uses, such as roads, houses, trees and surface water bodies.The above-mentioned sources of information were used to create training and validation data to distinguish cropland from non-cropland and in a subsequent step, to identity the crops grown on cropland. We used the following crop classes: (i) mung bean, (ii) weedy fallow, (iii) rice and (iv) other crops, consisting of wheat, maize, jute, lentil, soybean and vegetables. We did not identify grass pea, another crop widely grown in the study area during the winter months, as it had reached maturity in late February to mid-March and hence was outside of our aerial image acquisition period. In total, we tagged 2034 non-crop and 2358 segments with crop type information (Table 2). Mung bean and fallow land were represented by 900 segments each, whereas rice was represented by 441 and other crops by 72. In order to check the consistency of the tagged crop type segments, we plotted their NDVI development over time (Figure 6). Among the four crop types, mung bean, typically sown in early February, had the lowest NDVI values on February 6 and on March 8. Its initial development, especially in comparison to the transplanted paddy rice, and to the weedy fallow, was relatively slow. In March, its canopy growth accelerated and kept developing at least until mid-April. Rice, in contrast, peaked in late March and started to senesce in early April. The other crops class consisted of lentil, wheat, maize, soybean and jute. The first four were planted before the end of the calendar year, after the completion of the monsoon season rice harvest and reached maturity in March and April. Jute, however, was sown in March only. On average, the NDVI values of these crops remained almost steady over time, but were always greater than those of weedy fallow, which was grazed during the winter months. The slight increase of the NDVI observed with weedy fallow in March can be attributed to weed growth following the onset of early rainfall during that month. The separation in NDVI between the weedy fallow and mung bean segments of the March 8 image indicates that our in situ data clearly distinguished between the two crops.For the cropland and non-cropland and the subsequent mung bean identification, the respective data categories were split into training and test groups at a ratio of 2:1. We conducted the mung bean classification in two steps. We first identified cropland and subsequently the crop types within cropland. For the non-cropland vs. cropland identification, we used 1356 non-crop and another 1542 segments with crop type information, i.e., all training segments that were subsequently used for the identification of the crops grown on cropland. We used the random tree (RT) classifier [47], which is built into eCognition for the classification. RT is a RF classifier. eCognition uses the former abbreviation and term, and for this reason we made use of the name RT in this paper. We maintained the same settings for the cropland vs. non-cropland and the subsequent crop identification. The depth of the random tree classifier was set to six and minimum sample count to five. The maximum number of categories was set to 16, and the maximum tree number to 50, with a forest accuracy of 0.01. All nine indices listed in Table 1 were used from each of the four image acquisition dates, resulting in 36 input layers.There was a small region in the south of the study area, which had cloud cover even after applying a median filter to all three April images. For this 4397 ha area, we conducted a separate analysis, using the February 8 and the March 8 and 28 images. Results from these classifications were however not further discussed since the area located at the southern tip of Barisal division was negligible in size and nearly no mung bean was grown there due to excessively high soil salinity. The results were however applied to the completion of the crop type map and the area estimates.Classification accuracy was evaluated in terms of overall accuracy, user's and producer's accuracy [48], in addition to the Kappa Index of Agreement [49]. All accuracy related results are based on the test data, i.e., on the randomly selected one-third of the data that had been set aside before we started algorithm training. We also compared the resulting mung bean area estimates at the district level to statistics published by BBS [10] and data we had received from the DAE offices. DAE data were not published and used for internal purposes only.In order to answer questions as to how early and accurately mung bean cropland can be identified, we ran the following four scenarios, using different sequences of images: (1) February 6 image, (2) February 6 and March 8 images, (3) February 6, March 8 and 28 images and (4) all four images between February 6 and mid-April. Scenario 1 would be equivalent to an estimation of the area planted, whereas scenario 4 would represent an area harvested estimation. However, there was a caveat for the area planted estimation: we collected our in situ data in late March and early April only. A proper assessment of the feasibility to estimate area planted would require in situ data collection in February, which might have its own challenges. For all scenarios, the same training and test data sets as shown in Table 2 were used.We used different sources of data to prepare the dataset for training and validation of the classification algorithm. Collecting photos with an aircraft was fast, as the flight could be completed within two hours. Collecting complementary information on the ground in order to ensure an accurate interpretation of the aerial photos was more time consuming. First, a photo needed to be matched to Google Earth and satellite images and its footprint delineated. On average, this took about 5 min for each photo. Next, photos were selected for corroboration on the ground. The field technicians had to travel to the area covered by the aerial image to gather the crop type information in ODK. On average, they spent about 17 min to identify a batch of crop fields depicted in an aerial image on the ground. After the collection in the field, we checked the ODK data for GPS errors, as the smartphones sometimes recorded erroneous coordinates. If an ODK data point passed the quality control, we then assigned it to the respective encompassing segment.Based on the ODK data points, the aerial images, Sentinel-2 and Google Earth images, we also created additional data points to train and test the RT classifier. This took about 10 min per resulting segment with the crop type information. Towards the end of sampling, we were able to process the photos in about half the time it took at the beginning. The resulting data set with crop type information consisted of 241 segments that were tagged based on the in situ data collection and 1301 that were tagged based on a visual interpretation of the aerial and satellite images. In total, the creation of one data point with crop type information took approximately 20 min. The creation of in situ data for non-cropland was much faster, as we could use the high resolution images from Google Earth for that purpose.As the average field size in the area measures about 0.08-0.10 ha [11,12], which is roughly 10 Sentinel-2 pixels, we had to choose parameters in eCognition that resulted in small segments. The multi-resolution segmentation resulted in 5,957,042 segments, out of which 2,776,318 covered cropland. Total cropland area was 463,741 ha, and average segment size was 0.20 ha. Figure 7 shows an example of the segments on top of false colored satellite images acquired between February 6 and mid-April.The feature scores revealed the relevance of the different information layers and the date of their acquisition based on scenario 4, which made use of all four images. We had calculated nine indices for each of the four image acquisition dates, resulting in 36 data layers. Figure 8 shows the feature importance score for the 20 most relevant indices and acquisition date combinations. EVI acquired in mid-April was the most important layer. CI acquired on March 26, mid-April and March 8 was ranked three times among the top 6 indices. The February 6 image, covering the sowing period for mung bean, was listed only one time in the top 20, with the BI2 index. This might have been due to the highly variable conditions, which occurred during the sowing period. For the crop vs. non-crop classification, NDWI2, CI and BI2 were found to be the most important predictors (data not shown). The RT algorithm successfully separated cropland from non-cropland (Table 3). Overall accuracy was 0.98. The area of cropland for Barisal division was estimated at 463,741 ha, or 47% of the total land area of 983,795 ha. We tested four different scenarios, covering 1-4 image acquisition dates between early February and mid-April in order to determine how the classification accuracy of mung bean changes over time. With just one image, acquired on February 6, a producer's accuracy of 0.93 and user's accuracy of 0.96 resulted. This image corresponds to the sowing period. Making use of sequences of images, i.e., 2, 3 or 4 image dates, gradually improved the classification accuracy (Figure 9). Thus, the highest accuracies were obtained for scenario 4, which used images from all four acquisition dates. For that scenario, the detailed results for mung bean, rice, other crops and weedy fallow are shown in Table 4. A perfect result for rice was achieved. As rice is grown in large irrigated blocks of contiguous fields, there was no confusion with other crops. The poorest accuracies resulted for the category of other crops. This category was heterogeneous, with wheat and maize sown in December, whereas jute is sown in March. The size of this class was small, because we could find only a few samples (n = 72) and fields with these crops tended to be isolated. As such, we kept only those that we could visually distinguish from the surrounding fields in the satellite images. Mung bean fields and weedy fallow generally dominated the landscape, except for areas with winter boro rice production. For mung bean and weedy fallow, user's and producer's accuracies were above 0.97. Confusions occurred mainly within three mung bean segments that were classified as weedy fallow, and six weedy fallow segments identified as mung bean. Given that we had set aside 300 segments for these classes for testing, our misclassifications rate was small, indicating that the RT algorithm was able to distinguish the two crops with an overall Kappa Index of Agreement at 0.96 and overall accuracy of 0.97. In order to determine the average and distribution of the area of the segments planted with the same crop type, we merged the segments with common borders. This resulted in patches of different sizes encompassing several parcels (Figure 10). The largest average patch sizes resulted for mung bean (1.62 ha), followed by rice (0.74 ha), weedy fallow (0.67 ha) and other-crops (0.40 ha). However, for each crop type, a very wide range of contiguous areas resulted. The largest maximum patch size was calculated for weedy fallow (3692 ha), followed by rice (687 ha), mung bean (317 ha) and other crops (171 ha). Our analysis indicates that mung bean production was mainly concentrated in the Barguna, Patuakhali and Jhalokati districts (Figure 11). Bhola Island had the highest diversity in crops and least land fallowed, although not much mung bean. Land left under weedy fallows was found to be mostly in Pirojpur, in the coastal zone of Pirojpur and Patuakhali and northern Barguna and Jhalokati. The areas for the different crops were 109,416 ha of mung bean, 213,832 ha of weedy fallows, 94,874 ha of rice and 45,619 ha of other crops. We compared the data published in the 2018-2019 Agriculture Statistical Yearbook [10] with the data we had obtained from the DAE and the remote sensing based estimates generated in this study at the district level (Figure 12). The BBS data were much lower than then the DAE or the remote sensing based estimates. The remote sensing based estimates followed the trends of the DAE data in all districts, but on average, were about 40% lower than the DAE data. Our study area encompassed a portion of coastal South Asia that is dominated by smallholder farming. Average farm size is less than 0.5 ha and average fields size is around 0.1 ha [11,12]. As road infrastructure is poorly developed and most fields can be accessed by foot only, this poses challenges for the collection of in situ data to assess the extent of particular crops and cropland. In order to identify the area of mung bean production in Barisal division, we relied on photos acquired from a manned, low elevation (150-300 m) flying aircraft, ground data collection and visual photo and satellite image interpretation, to create a dataset containing 2358 segments tagged with crop type and another 2034 segments with non-cropland information. To our knowledge, this is the first combination of these methodologies for crop identification in South Asia and Bangladesh [50,51].Our cropland area estimate of 463,741 ha for the Barisal division is about 79,000 ha lower than the 543,000 ha reported by [15]. As Sentinel data were not available at the time of that study, [15] relied on Landsat 5, 7 and 8 images, with a 30 m GSD, and examined three years of winter rabi season data from 2011 to 2014, while the current study focused on the 2019 winter season. The landscape in this study area was highly fragmented, with tree lined villages, homesteads, rivers and canals. This results in numerous mixed pixels, which in addition to the differences in study years, may have contributed to the difference in the cropland area estimates. Fallow land estimates also differed: we identified 213,832 ha of weedy fallows, whereas [15] study identified only 74,000 ha, located primarily the southern most regions of Barguna and Patuakhali. This difference however was likely due to contrasting definitions of fallowed land. The later study considered only land that was uncropped throughout the entire winter rabi season from December 21 through April 10th as fallow, whereas the current study included land that was fallow from February 6th to April 17th, coinciding with the primary mung bean cultivation period. The large transect of fallow land across Southern Pirojpur, Jhalokati and Barisal district was presumably cropped with grass pea, the fields of which are generally not tilled after harvesting and thereby develop into weedy fallows.The temporal analysis, represented by scenarios, revealed that it would be possible to identify the area planted in early February with a high accuracy (user's accuracy = 0.96 and producer's accuracy = 0.93). There was little room for improvement by adding additional images; nevertheless, the highest accuracies were obtained by using images from all four acquisition dates. Estimation of the area planted would be challenging, since the preparation of the in-situ data for training and validation based on an early February satellite image alone would be difficult. Bare soil, i.e., the freshly sown mung bean fields, would be difficult to separate from the weedy fallow fields in false color satellite images. However, estimates and maps of area planted could provide relevant information for food security and disaster monitoring, as high rainfall can cause great damage to mung bean in this region [52].Our remote sensing based mung bean area estimate of 109,416 ha was about 40% lower than the DAE estimates, but more than four times higher than the 2019 data reported by BBS. Neither of the latter two approaches were able to apply comprehensive systematic sampling, and necessarily make use of expert judgment and estimates in crop reporting. The approach described in the current paper could be a viable alternative, although pixel counting could also be biased unless combined with thorough ground truthing [53], as exemplified in the current study.While individual crop fields in our study area measured only about 0.08-0.1 ha on average [11,12], the merging of adjacent segments of the same crop types resulted in much larger continuously cropped areas, measuring 1.62 ha on average for mung bean. It is important to note here that the objectives of the current study were to assess total mung bean cropped land; while assessment of the sizes of individual fields cropped to mung bean is an important research priority, it requires further investigation with appropriate methods to develop reliable remotely sensed estimates. Mung bean is grown several months following the recession of the monsoon season and established in February when temperature increases to assure germination. Differences in land elevation, and thus monsoon season flooding depth and duration, greatly affect waterlogging and post-monsoon season soil moisture that limit trafficability of fields, crop species choice and the timing of planting for farmers in coastal Bangladesh [15,54]. The recession of floodwaters after the monsoon and opening of tracts of land that could be cropped in coastal Bangladesh limits the degree of possible crop diversity while also forcing farmers to establish their crops in adjacent fields-which are usually grown with the same crop-that have similar soil moisture levels and trafficability characteristics [15]. Contiguous fields result in patches grown with the same crop type that are much larger than individual fields. This makes it possible to identify crops on fields that on average, measure only 10 pixels with satellite images at a GSD of 10 m. In the case of mung bean, an average patch covered 160 Sentinel-2 pixels. Thus, fragmentation is much lower than what one would expect when considering individual fields. This makes it possible to monitor the area of predominant crops in a smallholder farming setting of coastal South Asia with optical 10 m GSD data.However, the general applicability of Sentinel-2 data in small holder farming settings in South Asia would have to be further tested, especially in regions where farmers have more options and therefore, crops are more diverse. In the coastal region of Bangladesh, crop choice for the dry winter months is constrained by topography and a lack of proper drainage and irrigation systems, which in turn control where and when the fields can be grown with crops that, unlike rice, do not tolerate flooding. This study demonstrated a method to generate multi-source in situ data and tests the suitability of 10 m GSD Sentinel-2 images for mung bean identification in a smallholder farming setting of South Asia. This effort however did not come without transactions costs-approximately 800 h or 100 work days were required to create the training and test data for mung bean identification. Conversely, future efforts should consider employing alternative methods including crowd-sourcing, perhaps with the aid of a Geo-Wiki platform [46,50,51], or by engaging DAE extension officers in the regular collection of geotagged in situ data of fields cropped to particular species. Such efforts may well be worth the effort to improve estimates of cropped area, and strong multi-institutional collaborations assessment and monitoring of cropland in South Asia and could serve as an important example for other regions dominated by a smallholder farming system.By combining imagery obtained by low-elevation (150-300 m) manned aircraft derived photographs, ground truth data and visual interpretation of these data sources together with satellite remotely sensed information, this study generated a representative data set consisting of 2358 tagged mung bean and agricultural land use type segments for the entirety of a 1,364,500 ha region in Barisal division of coastal Bangladesh. Object based classification with the RT algorithm resulted in overall accuracy and Kappa Index of Agreement greater than 0.96. This indicates that Sentinel-2 data with a GSD of 10 m were suitable for the identification of mung bean in the smallholder farming context of South Asia, despite of the predominance of very small field sizes measuring only between 0.08 and 0.10 ha. When merging adjacent segments by crop type, an average patch size for mung bean of 1.6 ha resulted. Thus, in the smallholder farming setting of the coastal zone of Bangladesh, the low crop type fragmentation resulted in patches that on average were about 15 times larger than the individual fields and could be detected with 10 m GSD Sentinel-2 data.","tokenCount":"6788"} \ No newline at end of file diff --git a/data/part_3/9596092543.json b/data/part_3/9596092543.json new file mode 100644 index 0000000000000000000000000000000000000000..17b9c567522cadae71f1cc5dda2d7b4655acd8c5 --- /dev/null +++ b/data/part_3/9596092543.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"eb8dc151685928b122db461268072f6f","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/bf8f0c60-0bb2-469e-a959-3fe6ee45363c/retrieve","id":"-599071976"},"keywords":["Gender","Poverty, Food Security, Nutrition, Agriculture","Climate Change","Indicators","Statistics","Climate-Smart Agriculture","Empowerment"],"sieverID":"9748f765-3141-4066-82e9-83b136668f43","pagecount":"50","content":"This document is published by the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), led by the International Center for Tropical Agriculture (CIAT), brings together some of the world's best researchers in agricultural science, development research, climate science and Earth System science, to identify and address the most important interactions, synergies and tradeoffs between climate change, agriculture and food security. www.ccafs.cgiar.org. CGIAR is a global agriculture research partnership for a food secure future. Its research is carried out by 15 CGIAR centers in close collaboration with hundreds of partner organizations. www.cgiar.org.Challenges facing sustained agricultural production, increasing population and demand, and volatility in food prices have placed food and nutrition security as key global concerns (Brown 2012;Gerland et al. 2014;Campbell et al. 2014;Hertel 2016). The effects of climate change on agricultural productivity are already impacting efforts to improve food and livelihood security (World Bank 2013; Dawson et al. 2016). The impacts of climate change on men, women, households, and communities will differ depending on adaptive capacity, which in turn depends on incomes and resources to adjust and adapt to climate change. Differential impacts may also occur depending on cultural and gender norms within a society that dictate who controls resources and benefits associated with different activities (Twyman et al. 2014;Bryan et al. 2016).Significant efforts are underway to develop and deploy climate smart agriculture (CSA) practices, programs and policies to enhance the adaptive capacity and mitigation potential of agricultural systems (Campbell et al. 2014;FAO 2010FAO , 2013;;Howden et al. 2007;Wollenberg et al. 2012;Harvey et al. 2014). The Food and Agriculture Organisation of the United Nations (FAO) defines three pillars of CSA, as agriculture that sustainably increases productivity, enhances resilience (adaptation), reduces/removes greenhouse gas emissions (GHGs) (mitigation), and enhances the achievement of national food security and development goals (FAO 2013). CSA approaches involve a wide portfolio of CSA practices, many of which may be climate smart in one context (biophysical, agrozone or socioeconomic), but fail to be climate smart in other contexts (Campbell et al. 2014;Rosenstock et al. 2016;Campbell et al. 2016). For example conservation agricultural practices often combine the practices of reduced soil disturbance; crop rotation; and continuous soil cover. Whilst some of these practices may be appropriate for some farming contexts, in other contexts adequate soil cover materials may not be available (Giller et al. 2009;Giller et al. 2014).The impacts of climate change will not affect all people and communities equally. Given the context specific nature of CSA practices, an important component of scale up options will be the identification of potential trade-offs between CSA portfolios and food security goals for different categories of farmers (Jost et al. 2016;Neufeldt et al. 2013). Climate change adaptation strategies should be tailored to suit the differing circumstances of men, women, communities and vulnerable groups to ensure intended outcomes are equitably achieved (Twyman et al. 2014). One way to look at climate change effects on people and communities is to disaggregate by social constructed roles of people. Gender disaggregated data is one way to do this, although this distinction only provides a partial picture of how climate change can have differential effects on women and men.Gender is important for both implementing and monitoring CSA, and relates in different ways to each of the three pillars of CSA (World Bank et al 2015). Murray et al. (2016) highlights the increasing need for more in depth analysis of gender constraints faced by both women and men in terms of their ability to adopt CSA options. The importance of gender in agriculture, and gender in relation to climate change adaptation and mitigation in the agri-sector is increasingly recognized (Alston 2014;Edvardsson Björnberg and Hansson 2013;Brody et al. 2008;Jost et al. 2016). Household needs and preferences, along with access to assets (such as land), or resources (such as credit), attitudes to change, sources of information and capacity to receive information all differ (Pandolfelli et al. 2008;Villamor et al. 2014). Gender issues arise when such differences lead to inequalities.There is evidence to suggest a link between gender equality within households and more successful development outcomes (Farnworth and Colverson 2015;World Bank 2012;OECD 2010). Peterman et al (2014) highlight that gender inequalities and a general lack of attention to gender in agricultural development can contribute to lower productivity, lost income, and increased levels of poverty, as well as under nutrition (Peterman et al. 2014). Gender is a key dimension that links agriculture to improved nutrition and health (Meinzen-Dick et al. 2012). Changes in agriculture production can result in increased quantities of produce or an increased diversity of food available for a household's own consumption, potentially benefiting all in the household. There are examples of linkages between agriculture and health outcomes, where some homestead food production models can contribute positively to nutritional outcomes (Von Braun et al. 2012). Key questions are who makes decisions about what to produce, who has control of rural assets so as to adapt production to climate change, and who controls the use of income from increased production.CSA initiatives are likely to be more responsive to the needs of farmers when an understanding of differentiated roles and resource access are included in CSA planning processes. Gender roles vary significantly from one cultural setting to another, and intersect with other social variables such as ethnicity, religion and social class (Pandolfelli et al. 2008;Momsen 2010). Gender inequalities in labour distribution for agriculture, land access, or benefits derived from the sale of agricultural produce can affect the ability of women and men to respond to climate change. Examining gender inequalities often raises awareness of other factors that affect individual or households ability to respond to climate change. Beuchelt & Badstue (2013) emphasize the importance of maintaining a gender and social equity perspective when planning, implementing and monitoring CSA interventions in order to ensure that gender inequalities do not persist, are entrenched or aggravated (Beuchelt and Badstue 2013).To more effectively increase agricultural productivity, reduce poverty and vulnerability among rural populations while increasing food and nutritional security, attention to genderrelated differences is necessary. Climate change can offer both opportunities and trade-offs for rural men and women. It has been suggested that successful CSA roll-out and adoption is unlikely to reach those who require support, without more attention paid to gender constraints (Bernier et al. 2015;World Bank et al. 2015;Beuchelt and Badstue 2013).Improved understanding of the cultural and behavioral factors, along with an understanding of the gender norms that influence the uptake of practices and technologies, is necessary (Beuchelt and Badstue 2013;Jost et al. 2016). Such an analysis can help if coupled with planning on how to overcome institutional and institutional behavioral change barriers to those engaged in CSA scale-up.Table 1 highlights some gender-related challenges, opportunities and issues relating to the adoption and scale up of CSA practices and technologies. Gender-related challenges can occur at the field level (e.g. production, land ownership, labour) but also permeate via institutional systems (e.g. a bias in support to certain groups) and policies (e.g. laws on land ownership or mandates to collect sex -disaggregated data).Productivity gap between males and females -Different land ownership/user rights to resources and assets between women and men. For example unequal access of men and women to credit, farm inputs, labour, extension services, weather services and market information affect productivity. Improved CSA practices and technologies can mitigate climate risks -Climate-proofing of crops and value chains controlled by women farmers will strengthen resilience.-Poorer rural women and men may display increased innovation when their capacity to experiment is strengthened.-Labour-saving CSA technologies adopted by women that involve less time, drudgery, and energy costs for women. (World Bank et al. 2015;Shiferaw et al. 2014;Jost et al. 2016;Waters-Bayer et al. 2015) Labour saving technologies -Technologies adopted by women to improve their own situations, when they involve less time, drudgery, and energy for women, and allow women to maintain and exert control over income from value chains.(Beuchelt and Badstue 2013; Doss 2001;Wettasinha et al. 2015;World Bank et al. 2015) Policy and institutional entry points available to catalyze genderresponsive, CSA.-Equitable land rights for women and men are implemented -Equitable multi-stakeholder involvement/collective action necessary to ensure information and technology are inclusive.-Inclusive consultation and participatory prioritization of CSA involving many categories of stakeholders.-Mechanisms and supporting policies for financing of CSA must take into account differential access for some groups.-Disaggregated evidence base and knowledge-sharing platforms for gender-responsive CSA.( World Bank et al. 2015;Doss 2001;Doss 2014;Shames et al. 2014;Jost et al. 2016) The need for national level indicators for CSA outcomesIndicators are important for determining the measure of progress that has been achieved. Indicators help to improve the evidence base to assist in policy and decision making (Lin et al. 2007;Austen et al. 2000) (2) knowledge and information services; (3) climate-smart agricultural strategy and implementation frameworks; (4) national and sub-national capabilities; and (5) national information and accounting systems (Wollenberg et al. 2015).This CCAFS Working paper aims to identify a range of existing national indicators that can be used to improve integration of gender, poverty, food security, nutrition and health issues into CSA CPs.Gender indicators (GIs) in agriculture require both qualitative and quantitative interpretation on changes in the status and roles of women and men (i.e. measuring progress towards gender equality). For example, useful GIs may measure differences in access to and control over resources for agricultural activities amongst women and men; differences in ability to respond to economic opportunities and investments offered by CSA; or differences in ability to influence change or respond to changes. Many such indicators do not yet exist. Some such indicators are being developed, and being tested by CCAFS and other organizations, so that a better understanding of the relative roles and status of women and men over time in relation to the CSA practices they use.The integration of indicators (that provide a snapshot or baseline on gender equality issues) into CSA assessments can contribute to initial discussions to evaluate options for CSA interventions or investment. Such integration can also help to inform the baseline analysis, inform targeting and prioritizing, and in later evaluation of outcomes associated with CSA scale up. The incorporation of GIs relating to CSA into national statistics collection and also into CSA plans, policies and programs will be necessary for gender-sensitive roll-out and scale-up of CSA technologies and practices.GIs typically incorporate sex-disaggregated indicators, which allow the measurement of differential outcomes for men and women (e.g. school enrollment, literacy levels, child mortality) (Moser 2007). Rather than solely presenting facts about women, a GI should ideally provide evidence of changes in gender gaps (Rao 2016) and/or evidence on the status of women or men over time, relative to some agreed normative standard or explicit reference group (Johnston 1985). For example, one category of women can be compared to another category of women, or a comparable category of men. Indeed, gender indicators should be more than data disaggregated by sex. GIs should ideally be used to track gender-related changes in society over time and geography.GIs are promoted within development circles to ensure that gender-related changes in a society over time are better measured and monitored (Moser 2007). The portfolio of gender indicators has been increasing since the 1995 4th World Conference on Women which recommended that national, regional and international statistical services ensure that statistics related to individuals are collected, compiled, analyzed and presented by sex and age (United Nations, 1996).A Global Gender Statistics Programme, implemented by the UN Statistics Division (UNSD) and coordinated by a UN Inter-Agency and Expert Group on Gender Statistics (IAEG-GS) aims to improve coherence among existing initiatives on gender statistics through international coordination, as well as to strengthen national capacity for the production, dissemination and use of gender relevant data (Nations 2014). The Millennium Development Goals (MDG) and the current Sustainable Development Goals (SDGs) are accelerating the production of higher quality data disaggregated by sex, age, economic status, race and ethnicity and geographic location, along with other indicators which can be used to measure inequality within society (UN Women 2015).International agencies and international statistical institutes also play a role in harmonization of statistical data collection and inter-operability of datasets. Large-scale surveys are also funded and commissioned through multilateral organisations such as the UN or the World Bank. The CSA CPs emerged from the need to outline the current status and opportunities for climate smart agriculture (CSA) practices and policies in a particular country. CPs provide a broad overview baseline on the state of CSA in the country as a tool to facilitate decisionmaking on how investment could more effectively target and scale CSA nationally. Each CP provides a snapshot overview of agricultural, economic, institutional, policy and financial considerations relating to CSA. Each CP also identifies opportunities and barriers for widespread adoption of existing and promising CSA technologies and practices (CIAT-CCAFS-World Bank 2016).Each CP typically consists of the following sections; The process of developing the CSA CP involves conducting a situation analysis and taking stock of existing CSA actions. This requires a review of current literature and collection of data from national and international databases. Further, expert interviews and surveys are also conducted with key stakeholders. These stakeholders can be divided into three groupings: ( As 41 indicators was considered too lengthy for integration into the CPs, a prioritization process was developed to refine the 41 to 15 'core' indicators that would align to the objectives of the CSA CPs and that could be effectively used in assessments of different national enabling environments for CSA adoption and scale out in the future. The aim was to refine the list to 7 indicators for the domain of food security, nutrition and health indicators, and 8 indicators for the domain of gender, poverty and livelihood indicators.A scoring system was devised for the prioritization process, where the list was ranked by a panel of inter-disciplinary experts (n = 8) from the International Centre for Tropical Research (CIAT), and the National University of Ireland Galway (NUI Galway). Each person was required to choose 10 indicators from the portfolio of 41 indicators in Appendix 1 and to rank them in order of priority from 1 (least preferred) to 10 (most preferred). The scores of each of the ranking panel were summed and used to generate a ranking score to prioritize national indicators for inclusion in the CSA CPs.The three level tier system devised for the SDGs (UNSTATS 2016; http://unstats.un.org/) was also taken into account as an important consideration for selection of indicators for inclusion in the CSA CPs, whereby indicators are categorized into the following three tiers: The following section discusses the justifications for inclusion of each of these core indicators in CSA CPs, along with their strengths and limitations.The poor are likely to be more vulnerable to climate change impacts and shocks, while lacking the resources necessary for climate change resilience (Beg et al. 2002). In the agriculture sector, recovery from shocks takes longer for resource-poor farmers, as it is difficult to recover assets, and pay back associated debt (Heltberg et al. 2009). Hence, the population living on less than US$ 1.90/day is a key poverty indicator which is based on primary household survey data obtained from government statistics agencies and World Bank country department (World Bank 2015). The indicator provides an annual national baseline of the proportion of the national population under this income level. At present this indicator is not disaggregated by age or sex, which limits its usefulness in terms of measuring gender disparities. This indicator is most useful when used in conjunction with other studies on national poverty. With this indicator, poverty is largely viewed in monetary terms. However, this indicator does give an indication of the ratio of those who do not have sufficient income to put them above some adequate minimum national threshold. It is quite likely that those below the national poverty baseline may not have access to credit, and thus opportunities to invest in CSA options. This group may also be less likely to be able to take risks with new CSA technologies. This indicator can remind those engaged in the CSA CP prioritization process that poverty must be kept in the CSA planning agenda; and consider during the prioritization process whether CSA interventions can be better geared towards those on very low incomes.Depending on the country context, climate change impacts have the potential to affect the proportion of the population that are above, or below, the national poverty line. For instance, the 2016 State of Food and Agriculture report estimates that climate change could increase the numbers of people living in extreme poverty by between 35-122 million by 2030, with smallholder farmers in sub-Saharan Africa being most impacted (FAO 2016b). The percentage of the population below the national poverty line can also provide a useful indication of the extent of economic vulnerability of the population to climate change shocks and impacts. However, while this may be relevant for in-country planning processes (reflecting the need to adopt country-relevant thresholds for poverty level assessments), the national poverty line can differ between countries making inter-country comparisons based on this measure difficult. At present this indicator is not sex-disaggregated.Though the gendered experience of climate change is not always a disadvantage for women, women can face disproportionate negative impacts relative to men as a result of entrenched social structures and power relations, in some instances making it more difficult for women to adapt to climate change (Bhattarai et al. 2015). For example, without having title to land, women may be less inclined to change land use or may require permission of their husbands to do so. Carr and Thompson (2014) highlight that contemporary views on vulnerability to the impacts of climate change is shaped by roles, responsibilities and entitlements associated with various markers of social status and expectation, including gender class and caste (Carr and Thompson 2014). Hence, it is of significant importance to have some understanding of gender relations within the country context in which CSA adaptation actions are planned.A composite indicator is a collection of indicators that are compiled into a single index, on the basis of an underlying model of the multi-dimensional concept that is being measured (OECD 2004). At the country level, composite indicators for gender inequality and women's empowerment in agriculture can be useful both as baselines and for planning and monitoring of roll-out and adoption of CSA practices and technologies.A specific composite indicator prioritized for inclusion in the CSA CPs is the Gender Inequality Index (GII). The GII is an inequality index, and a composite measure reflecting inequality in achievements between women and men in three dimensions: reproductive health, empowerment and the labour market. These three dimensions are considered three important aspects of human development. Reproductive health is measured by maternal mortality ratio and adolescent birth rates; empowerment is measured by proportion of parliamentary seats occupied by females and proportion of adult females and males aged 25 years and older with at least some secondary education; and economic status, is expressed as labour market participation and measured by labour force participation rate of female and male populations aged 15 years and older. The GII is built upon the same framework as the Inequality Adjusted Human Development Index (IHDI)to better expose differences in the distribution of achievements between women and men. The higher the GII value the more disparities between females and males and the more loss to human development. Data is currently available for 155 countries. The GII reminds those engaged in planning and prioritization processes for CSA and other interventions, that for women to benefit from innovations or CSA roll-out, disadvantages faced by women must be overcome.The distribution of female agricultural land holders is an important indicator for inclusion in CSA CPs as it provides an overview of the percentage of female agricultural holders out of total agricultural holders. The data are derived from agricultural censuses and are available from the FAO Gender and Land Rights Database (FAO 2016a). Data on the share of female agricultural landowners out of total landowners is a related indicator, but concerns legal ownership. However, definitions of ownership vary and an ownership indicator may not count land that is not formally titled. Indeed, ownership may not reflect the right to use, sell inherit, or use land as collateral. Hence, we considered that the percentage of female agricultural holders out of total agricultural holders is a better indicator to include in the CSA CP as it is an indicator of management of agricultural holdings.Agricultural land holders are likely to influence the use of new CSA practices on their land holdings. Typically, the agricultural holder is the person who makes the major decisions regarding resource use and exercises management control, with technical and economic responsibility for the holding. The holder may or may not also be the owner of the land (FAO 2016b). Although this indicator is the most prevalent of gender and land indicators, the indicator is measured at the holding level and does not capture management within the holding (FAO 2016a). If a holding consists of several plots of land, in some cases different household members may be responsible for different plots. Generally with this indicator, only one holder is identified per holding. Another challenge is that this indicator may underestimate the management role of household members other than that of the person designated as the official holder. For example, married women often hold some responsibility for the family farm or manage some plots within the holding, but their husbands will typically be identified as the head of the household and the single holder. In this situation, married women's shares of management responsibility will not be reported in the indicator. Some countries adapt a threshold for minimum size of the holdings included in their census, leaving out holdings that fall below a certain value. In some contexts women are more likely to manage agricultural holdings below the threshold, thus reducing the percentage of female agricultural holders captured.The percentage and number of children aged 5-14 years engaged in the worst forms of child labour in the agriculture sector by sex is a useful indicator for inclusion in CSA CPs because engagement in child labour is indicative of poverty in rural areas. Whilst, it is common for boys and girls to assist in rural areas with various agricultural tasks, and at certain periods of the year (e.g. harvesting), child labour (as opposed to helping out) is typically located in areas where there are large numbers of the working poor. Child labour indicators are also indicative of levels of mechanization and can reflect demands for migrant or seasonal work. This indicator may also have significance if the labour demand for new CSA practices is initially high or if the CSA practice displaces labour provided by children.Household vulnerability to climate change or weather-related shocks can intersect with demand for child labour in rural areas. For sample, in times of crisis households may be required to use child labour in order to cope (Oluoko-Odingo 2011). Indeed, links between child labour and low or non-school attendance can be strong (Murray and Quinn 2009). Education outcomes are particularly important for girls as they can help decrease infant, child and maternal mortality rates. In the context of climate change, education is one of the primary ways to reduce vulnerability (Muttarak and Lutz 2014). Education can directly influence risk perception, knowledge, and skills acquisition. Girls often spend significantly more time on household chores and caring duties than boys (Murray 2013;Murray et al. 2010).For example girls often are involved in cleaning, cooking, childcare, collecting water and firewood, combined with agricultural activities, such as sowing, harvesting and livestock holdings. If boys and girls lack basic education it decreases the range of options or jobs available later in life, and can affect health, living conditions and ability to critically assess options available. There are major social gains to be had from investing in the education of girls, as educated girls are more likely to marry later, have fewer and healthier children, and have decision-making power within their households. Education can also indirectly influence vulnerability by reducing levels of poverty, improving health and increasing access to information and other resources. Educated individuals, households, and societies prepare, respond, and recover from disaster (including climate induced disasters) more quickly (Muttarak and Lutz 2014).Data (Diallo et al. 2013).The share of seats in parliament for women can provide a proxy indicator of women's empowerment and the level of gender equality in a country. Data on women in parliament is compiled by the Inter-Parliamentary Union on the basis of information provided by National Parliaments. At least 193 countries are classified by descending order of the percentage of women in the lower or single House. Increasing women's representation in government is necessary to achieve gender parity in a country and is indicative of an evolution in voter confidence in women's ability to successfully compete and serve in the country's highest elected positions. However, whether female politicians are more likely to concentrate on issues that matter more to women is open to debate. Many believe that women would be actively involved and advocate more in gender-salient issues. Studies conducted in India suggest that whether the political figure is male or female does have an impact on the policy decisions (Chattopadhyay and Duflo 2004;Clots-Figuerasa 2012). This indicator (the share of seats in parliament for women) does not give any indication of how involved female members of parliament are in terms of policy formation in agriculture. Yet, this indicator may however give a general indication of rates of women's participation at decision-making levels.Gender disparities with regards to poverty are rooted in unequal access to economic resources. The average monthly earnings of women and men employed in agriculture activities compiled by the ILO, is relevant to CSA CPs as it provides average monthly earnings of female and male employees by occupations related to agriculture. Data are disaggregated by occupation according to the latest version of the International Standard Classification of Occupations (ISCO) available for that year. Unfortunately this indicator only refers to formal employment, and many agricultural workers are in the informal sector, working as unpaid family workers, own-account workers, on a piece rate, or as casual labourers. Another challenge is that it is difficult to determine whether earnings are high or low for women and men working in agricultural related activities, without a reference point (national average earning). However this indicator is useful for providing an overview of wages in the agricultural sector, particularly if compared to a national average. In many countries a lower proportion of women than men have their own cash income (United Nations 2015), meaning they will have less resources to invest in CSA practices. While this indicator will not measure women's control over their own income, it should still give an indication to the level of income relative to men's.The World Bank also publishes an indicator on employment by economic activity, providing the percentage of male / female employment in the agriculture sector (World Bank 2016). This indicator can be useful as it indicates the importance of agriculture as an income strategy for women. This indicator will not include women and men working on family farms who are not remunerated for their work or those who work in the informal agricultural sector. Hence, this indicator is likely to under-estimate participation in the agricultural sector (Deere 2005).The prevalence of people undernourished within a country provides a measure of the vulnerability of the population to climate change impacts on their nutritional intake. Nutrition indicators are suggested for inclusion in the CSA CPs due to the importance of nutrition to child survival, growth and development, and more longer term impacts on school readiness, educational attainment, and improved employment and health outcomes as the child progresses into adulthood (Maluccio et al. 2009;Wheeler and Von Braun 2013). Climate change will influence nutrition in a number of ways. It may reduce food security; increase disease levels and change disease patterns; and impact on water availability and sanitation. In turn, nutritional status and diet will impact people's capacity to adapt and mitigate the impacts of climate change (Thomson and Fanzo 2015). When food availability is impacted by climate related stresses Watts et al (2015) note that women and girls nutrition tends to suffer more than their male counterparts. This is due in part to women and girls starting from a lower baseline, but also because they are often last in the household food hierarchies. In addition, a lower nutritional status can mean a lower agricultural output due to a reduction in labour (Watts et al. 2015).Stunting refers to situations where an individual is below two standard deviations from median height for age of the reference population. The prevalence of child stunting in a country provides a measure of the extent of undernutrition of children. In 2010, an estimated 171 million children were stunted, predominantly in Africa and Asia (Smith and Haddad 2015;De Onis et al. 2012). The causes of stunting are complex (poor feeding practices, maternal undernutrition, sanitation) and can include an interplay between early undernutrition and recurrent infections. Wasting (or acute malnutrition) refers to situations where an individual is below two standard deviations from median weight for height of reference population. In 2011, an estimated 52 million children under the age of five suffered from wasting, predominantly in Asia.The prevalence of child wasting provides a measure of low energy intake amongst the youngest in society and is indicative of a lack of access to food energy amongst poor households. Nutrient losses due to diarrhea (e.g. due to water-borne diseases) can aggravate wasting. The impacts of climate change on sanitation and clean water supplies are of relevance to efforts to reduce both stunting and wasting (Howard et al. 2010). The inclusion of stunting and wasting estimates in each Country Profile is recommended as it highlights the challenge to ensure that CSA practices and technologies should ideally improve the nutritional and sanitary status of children, in a manner that contributes to reducing stunting rates.The percentage of population with access to electricity is a useful measure of the level of access to modern energy sources. While electricity can be generated with different carbon footprints (e.g. energy from fossil fuels versus from hydropower) access to electricity is considered a prerequisite for sustainable energy and decarbonisation routes for the energy sector. The IEA's World Energy Outlook 2015 highlights that 1.2 billion people are without access to electricity, with over 95% of those living without electricity are in sub-Saharan Africa and Asia (IEA 2015).The percentage of the population with access to electricity in rural areas is a key indicator of the state of rural development in each country. Over 80% of the people who lack access to electricity are located in rural areas (IEA 2015), highlighting that the sustainable energy for all goals have to take into consideration a major urban-rural divide (Eastwood and Lipton 2000). Transitions to climate-smart agriculture (CSA) particularly in the smallholder sector will need access to rural energy, ideally clean (renewable) energy sources. Where there is an energy gap in rural areas, there are likely to be additional challenges for the introduction of more efficient climate -smart agricultural practices and technologies (Murray et al. 2016).A range of initiatives are underway in different regions that focus on gender issues in the production and use of modern energy and clean energy technologies (Habtezlon 2013).The percentage of the population with primary reliance on non-solid fuels for cooking is an important gender-related indicator for climate smart agriculture (Casillas and Kammen 2010). Over 2.7 billion people rely on the traditional use of biomass sources for cooking, which causes harmful indoor air pollution, impacting on the health of household members (IEA 2015). As cooking in the majority of cultures remains entrenched as a female role, the percentage of the population that do not have access to clean cooking facilities (e.g. more efficient fuels and cooking stoves, which have lower energy footprints and emissions) (MacCarty et al. 2008;Bhattacharya and Salam 2002). While improved cooking stoves can be considered a climate-smart technology, there are significant barriers to the long-term adoption of improved cooking stoves and a lack of consensus as to whether the expected co-benefit impacts on household energy use, indoor pollution and health are being realized (Hanna et al. 2012;Grieshop et al. 2011).The under-five mortality rate (deaths per 1,000 live births) indicator concerns the number of children who die by the age of five, per thousand live births per year (Black et al. 2003).The world average of under-five mortality is decreasing, with wide discrepancies between developed countries and developing countries. The reduction of child mortality is a universally supported development goal. Under-five mortality rates are influenced by poverty, education, particularly of mothers (as well as by the availability, accessibility and quality of health services). Other influencing factors include environmental risks including access to safe water and sanitation. Under-five mortality levels is also influenced by nutrition. The under-five mortality rate is a key development indicator over time, where CSA practices and technologies should reduce climate-related risks that could aggravate or accelerate mortality rates (McMichael et al. 2006).The total fertility rate describes the total number of children the average women in a population is likely to have based on current birth rates throughout her life. This indicator is considered a better index of fertility than the crude birth rate (which measures the annual number of births per thousand population) because it is independent of the age structure of the population. However this indicator is a poor estimate of actual completed family size. This indicator does not necessarily predict how many children young women now will eventually have, as their fertility rates in years to come may change from those of older women now. While fertility rates have been used to indicate poverty levels, fertility rate in relation to gender is considered to indicate an aspect of women's empowerment. i.e., the ability to plan their children through access to birth control and/or ability to negotiate with their husband the number of children they want (Upadhyay et al. 2014). In addition, as a summary of current fertility levels, this indicator may help to predict the availability of labour in rural areas, if compared with the replacement rate. The replacement rate is the number of children each woman needs to have to maintain current population levels. In developed countries, the necessary replacement rate is about 2.1 or sometimes 2.3 due to higher childhood death rates. This indicator is of relevance to CPs as some countries are expected to experience large population growth over the coming years, which has major ramifications for food security. Total fertility rates are dropping in other countries, resulting in declining populations. However it is worth remembering that different cultural groups within a country can display different total fertility rates. On the whole total fertility rates can be useful indicator of future population growth or decline for a country. Fertility rates do not take into account life expectancy, educational enrolments and employment, and are typically not geographically defined (i.e. urban/rural). In addition, in the context of CSA it can be worth considering that family size is often used as an indicator of vulnerability or dependency of households (Wiebelt et al. 2013;Nkonde et al. 2014). Global data comes from census reports and is compiled by the United Nations Population Division.The youth literacy rate, disaggregated by sex, (youth age [15][16][17][18][19][20][21][22][23][24] is collated by UNESCO's Institute for Statistics. Data is collated mostly using surveys within the last ten years which are self-declared by the persons in question. Literacy is an important indicator because beyond being able to read, write and use arithmetic, it concerns a progression of skills or a continuum of learning in enabling individuals to achieve their goals (Bernhardt et al. 2014).Literacy is considered essential for individuals to make more informed decisions, develop their knowledge and potential, and to participate fully in their community and wider society. Thus literacy and education is central for individuals to be able to critically assess new technology options, interact with extension/technology providers, or adopt new CSA practices or technologies (Manfre et al. 2013). Many schools in the developing world experience a high dropout rate amongst secondary school aged girls. The gender gap in literacy and education hinders youth development and has already been stressed above under the child labour section. There can be significant literacy gaps in some countries between urban and rural areas (Zhang 2006), where average literacy rates may occlude high levels of rural illiteracy which can hamper the potential for scale-out of CSA practices and technologies. For instance, while text-based weather and market information received on phones can be of use to smallholder farmers, the provision of such services is predicated on the ability of the recipient smallholders to be able to read such text messages.To maintain the focus on the third CSA pillar of food security and poverty reduction for CSA scale-up and scale-out, it will be important to measure progress using selected national indicators on gender, poverty, food security, nutrition and health. A range of existing national-level indicators are identified in this paper as a starting point for inclusion in CSA CPs so that gender, poverty, food security, nutrition and health-related issues can be better considered and monitored in the context of CSA scale-up in each country. The proposed indicators can be useful for those planning, implementing and assessing the impact of CSA, particularly when supplemented by project level and household level data.A number of indicators are necessary to adequately reflect gender, poverty, food security, nutrition and health considerations. While indicators provide a general snapshot of the situation in a country, sometimes more information is required to better understand the underlying drivers and context behind the indicator. For example, whilst the women in parliament indicator may demonstrate leadership of women and allows for comparison across countries, it does not demonstrate whether women as leaders, actively address gender issues in agriculture.When some of the indicators in this paper are integrated into CSA assessments (such as the CSA CP), they can help to highlight issues that may affect response to climate change and acceptance of CSA practices. For example indicators can highlight issues regarding access to fuel or electricity, which in turn can affect women's time or facility to adapt a particular CSA practice. Likewise literacy rates amongst male and female youth can provide an indication of ability to conceptualise, assess and understand the range of technical options available for CSA, as well as assess the financial or legal implications.Poverty indicators can reveal how populations live and consequently their ability to respond to climate change. Such indicators can also demonstrate whether poverty is being reduced over time, but may not indicate how particular groups are more affected by poverty (e.g. some ethnic groups or geographic regions); or poverty levels at different times of the year. The nutrition and health indicators can serve to reveal how the population is suffering from particular deprivationssuch as undernourishment, stunting, or the death rates of children under 5.Arising from the preparatory work undertaken for this paper, many of the suggested indicators are now included in the CSA CPs. Although not currently included in the current set of CSA CPs, the worst forms of child labour in agriculture indicator may be a useful future indicator of poverty levels. This indicator also highlights rural populations requirements for manual labour in rural areas and is an indication of a lack of affordable mechanisation. Moreover this indicator is disaggregated by sex. Other indicators that could be considered for inclusion in CSA CPs include indicators relating to water and sanitation, proportion of adults (disaggregated) that have access to a bank account; and the share of agricultural researchers who are female. These may provide information on preconditions for health and nutrition (water and sanitation); and the ability to borrow and save (bank account). Whether or not female agricultural researchers would focus more than their male counterparts on CSA that improves gender, poverty, food security, nutrition and health outcomes is debatable. Nonetheless, in some cultural contexts it may be important to have female agricultural researchers (and female agricultural advisors).A useful index designed to measure the empowerment, agency, and inclusion of women in agricultural sector projects and programmes is the Women's Empowerment In Agriculture Index (WEAI). The WEAI is a survey-based index constructed using interviews of primary male and primary female adults in the same household. It was developed by IFPRI, USAID, and OPHI in 2012, to measure the greater inclusion of women in the agriculture sector, as a result of the US Government's Feed the Future Initiative (Alkire et al. 2012). The WEAI is a composite indicator composed of two sub-indexes. The first sub-index is the five domains of empowerment, which assess women's empowerment across these five general areas (see Appendix 3). The second sub-index is the gender parity index, that measures women's empowerment relative to that of men by comparing the five domains of empowerment profiles of women and men within the same household (Malapit et al. 2014). The WEAI indicators are weighted. As with many project or programme surveys, not all regions of a country will be covered. However the WEAI may grow in importance in the future as more agriculture programmes are asked to determine how they support empowerment. In the context of national-level indicators, it should be noted that the WEAI does not collect data at the national level per se, as it is moving towards a project level framework. It also differs from agreed national-level indicators, which are generally defined via inter-governmental processes and collected by national governments.An additional indicator that could be considered for inclusion in the CSA CPs is the proportion of male and female adults with an account at a bank or with a mobile money service provider. Property as collateral for credit is important in many countries, so tends to affect females more than males. Both male and female farmers face structural barriers in funding access for climate smart agricultural practices (e.g. unfavorable loan terms for particular categories of farmers, or proximity of financial institutions, which affects those with less mobility). An indication of male and female farmers with access to a mobile or 'smart' phone is also a useful measure, although such data can become rapidly obsolete unless it is collected frequently.Other indicators that could be worth monitoring in the context of CSA would be data on how agri-research and information reaches smallholder farmers, particularly women. Sex-disaggregated data (separating data into male and female) is an important step in the development of GIs in agriculture. While agriculture census data are collected and disaggregated by male and female-headed households, this type of data provides limited data for gender analyses. Yet, such data can raise awareness of agricultural production and output differences amongst households, considering differences in male and female-headed households relate to many context specific disparities and factors. Male-and female-headed households may not be easily comparable because male-headed households may have access to family adult labour (female and male), while female-headed households have more limited access to such labour. Hence, female-headed households are often more labour and resource constrained than male-headed households (Doss 2013). Furthermore, analysis based on household headship does not take into account women in male headed household and therefore provides only a partial picture of gender inequalities (Deere, Alvarado and Twyman 2012).The MDGs and the SDGs has spurred national statistical offices to improve the level and quality of their collection of indicators regarding gender, poverty, food security, nutrition and health, including sex-disaggregated data. For instance, methodological guidelines for the production of sex-disaggregated data are available for national statistical agencies with regard to the production of household census data, and agricultural census data (FAO 2015; UNECE 2015; UNECE 2010). The United Nations publication, The World's Women (2015), has highlighted the scale of the problem reporting that significant gaps exist with regards to the availability of data, the quality of data, and the comparability of data for even basic indicators. Tayyib et al (2013) indicate that while there is significant attention paid to gender in health and social statistics, the vast majority of agricultural indicators are gender blind (Tayyib et al. 2013). Gender gap in agriculture documentation persists for a number of reasons including: inadequate methods of data collection, poorly understood or poorly agreed definitions as well as the invisibility of women's agricultural work, which tends to be unpaid and located in the informal sector. However, the reduced costs of computers and data storage are making statistical datasets much more widely accessible and inter-operable.This paper concludes that the integration of gender, poverty, food security, nutrition and health issues into CSA planning and scale-up can be improved by taking the set of nationallevel indicators currently available, and ensuring in so far as is possible that they are disaggregated by age, sex, and location. We consider that it is not necessary to generate a completely new set of indicators with regard to gender, poverty, food security, nutrition and health, as there are existing indicators that are being collected at the national level that can be usefully repurposed.The process of scaling-up, monitoring and evaluation of CSA that more effectively ensures gender, poverty, food security, nutrition and health outcomes will be made easier if there are an agreed upon set of cross-comparable and time-series indicators when it comes to conducting both national and subnational analysis. The inclusion of existing national-level gender, poverty, food security, nutrition and health indicators in the CSA CPs will provide a basis to maintain a focus on the productivity and food security components of CSA. ","tokenCount":"7564"} \ No newline at end of file diff --git a/data/part_3/9599671436.json b/data/part_3/9599671436.json new file mode 100644 index 0000000000000000000000000000000000000000..ecb5a442a145c3df0fb87fb021ce3cafdb713bea --- /dev/null +++ b/data/part_3/9599671436.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"657a8c28e66f329c2b0238cdd122679e","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/64c177e7-7bea-4107-9a85-45d021a07c74/content","id":"-400309829"},"keywords":["Climate change","climate risk","genetic yield potential","wheat","yield variability"],"sieverID":"20ebe7c1-2e46-4f30-bb9c-78c4f62fd382","pagecount":"16","content":"Increasing genetic wheat yield potential is considered by many as critical to increasing global wheat yields and production, baring major changes in consumption patterns. Climate change challenges breeding by making target environments less predictable, altering regional productivity and potentially increasing yield variability. Here we used a crop simulation model solution in the SIMPLACE framework to explore yield sensitivity to select trait characteristics (radiation use efficiency [RUE], fruiting efficiency and light extinction coefficient) across 34 locations representing the world's wheat-producing environments, determining their relationship to increasing yields, yield variability and cultivar performance. The magnitude of the yield increase was trait-dependent and differed between irrigated and rainfed environments. RUE had the most prominent marginal effect on yield, which increased by about 45 % and 33 % in irrigated and rainfed sites, respectively, between the minimum and maximum value of the trait. Altered values of light extinction coefficient had the least effect on yield levels. Higher yields from improved traits were generally associated with increased inter-annual yield variability (measured by standard deviation), but the relative yield variability (as coefficient of variation) remained largely unchanged between base and improved genotypes. This was true under both current and future climate scenarios. In this context, our study suggests higher wheat yields from these traits would not increase climate risk for farmers and the adoption of cultivars with these traits would not be associated with increased yield variability.Recent decades have seen wheat yields (Hochman et al. 2017;Schauberger et al. 2018;Reynolds and Braun 2022) and harvested area (FAO 2022) stagnate globally. Current rates of yield increase associated with genetic improvement (<1 % year −1 , Dreisigacker et al. 2021) are not sufficient to meet the increase in wheat grain demand expected by 2050 particularly considering expected demand growth in Asia (Erenstein et al. 2022), challenging effort to achieve food security. Evidence for on-farm conditions suggest that the rate of genetic improvement is even less optimistic when actual farm production conditions are considered (Rife et al. 2019). Nevertheless, increasing the genetic yield potential (YP) is considered by many as a cornerstone for an integrated strategy to increase wheat productivity (Foulkes et al. 2022). In this context, understanding crop yield physiology can support conventional breeding approaches and increase the current rates of genetic gains (Reynolds and Langridge 2016;Richards et al. 2019). While climate change is projected to increase mean wheat yields in many environments due to CO 2 fertilization effects (Webber et al. 2018;Jägermeyr et al. 2021), it challenges breeding by making target environments less predictable (Zheng et al. 2016), altering crop productivity (Abberton et al. 2016;Atlin et al. 2017;Webber et al. 2018), and potentially increasing yield variability (Hernandez-Ochoa et al. 2018;Yang et al. 2019). Ensuring continuity in yield gains thus requires genotypic adaptation, that is the design and development of novel cultivars with enhanced productivity and stability under future climates (Ramirez-Villegas et al. 2020).Increasing average YP through genetic improvement can be achieved through increasing light interception (LI), radiation use efficiency (RUE) and/or harvest index (HI) (Reynolds et al. 2012). The contribution of breeding on the improvement of LI is uncertain (Richards et al. 2019), with studies reporting contrasting trends in LI among modern cultivars (Acreche et al. 2009;Yang et al. 2021). Despite the generally high LI for wheat canopies, there might be scope for further optimizing in-canopy light characteristics via a modified canopy architecture (Richards et al. 2019;Slafer et al. 2021). Historically, RUE played a minor role in the progress of wheat yields (Reynolds et al. 2000), but recent evidence and theoretical considerations suggest it is a promising trait to leverage photosynthesis for increasing biomass production in the future (Mitchell and Sheehy 2018;Asseng et al. 2019a;Molero et al. 2019). On the other hand, changes in HI have been the main driver of genetic improvement since the green revolution, increasing yields without substantial changes in total biomass production (Slafer et al. 2021). Even if the potential for reduced height has been completely exploited, further increases in HI could be reached by optimizing the source-sink ratio and favouring spike fertility (Reynolds et al. 2017). In particular, fruiting efficiency (FE, the number of grains produced per unit of spike dry weight at anthesis) is a candidate trait to increase wheat YP, as it does not display trade-offs with spike weight, and the negative relationship observed between FE and average grain weight is likely non-constitutive (Lo Valvo et al. 2018;Rivera-Amado et al. 2019;Curin et al. 2021).While improving yield levels has been the main target of wheat selection (Fischer 2020), genetic improvement may also affect yield stability (Calderini and Slafer 1999;Sinebo 2005;Vita et al. 2010). Yield stability is critical for decisions at different levels of agricultural systems, from farmers' criteria for adopting crop cultivars to the design of policies to support prices, input subsidies, and crop insurance (Macholdt and Honermeier 2016). Both high yield and stability are desirable goals for plant breeding (Calderini and Slafer 1998), with stability considered particularly important for sustainable food systems (Calderini and Slafer 1998). The extent to which these two goals are compatible is conditional to the notion of stability (Becker and Leon 1988). In some settings, stability is regarded as the identical performance of a genotype across all environments (static stability). This might be preferred when selecting a crop for a marginal region where farmers are willing to sacrifice high performance in some years for consistent performance over all years. Conversely, over a large region, various actors in food production value chains may prefer crops that respond well in favourable environments, and to do so in a predictable fashion (dynamic stability) (Walsh and Lynch 2018). Genotypes and environments interact to produce an array of phenotypes, challenging the identification of superior traits and cultivars (Chapman 2008). These interactions are of particular interest when they introduce inconsistencies in the relative rating (of yield levels) in genotypes, measured by changes in the rank (of yield levels) in genotypes (i.e. crossover interactions, (Leon et al. 2016)). Crossover interactions play a major role in the development of strategies for crop improvement, providing a discriminating factor for targeting specific or wide adaptation (Gauch 2013). A reduction of static yield stability was observed in response to wheat breeding (Subira et al. 2015). This was regarded as a success of breeding, as improved genotypes performed better than predecessors under both favourable environmental conditions as well as in relatively poor environments (Welcker et al. 2022). Other studies reported that wheat breeding promoted a reduction of genotype by environment interactions through the selection of genotypes with high and stable yields across a wide range of environments (Vita et al. 2010;Voss-Fels et al. 2019), pointing at the opportunity to continue to breed genotypes with high yield, wide adaptation and high yield stability.Despite this, climate change imposes an additional constraint to breeding. Recent evidence suggests that climate change has increased crossover interactions, a critical indicator of changes in the ranking of cultivar performance in different environments (Xiong et al. 2021). Breeding efforts for future climates are challenging. In this context, crop models have the potential to support genotypic adaptation (Chenu et al. 2017) by providing a way to quantify the interactions between crop traits and climate factors affecting yield under future conditions. Such models have been previously applied in assessing levels of trait expression and trait combinations (Ramirez-Villegas et al. 2015;Reynolds and Langridge 2016) as well as of plant ideotypes (Martre et al. 2015a(Martre et al. , 2015b;;Senapati and Semenov 2020). As they decompose yield into a number of underlying simpler traits, crop models are suitable to assist physiological breeding, ultimately allowing predictions about the value of new cultivars in terms of YP, genotypic adaptability and stability.Against this background, the present study uses process-based simulations to assess (i) the yield stability of lines with high YP and (ii) to what extent the yield benefits from high-yielding trait combinations are expressed in extreme years, under current and climate change scenarios. (Addiscott and Whitmore 1991). Water stress is simulated when daily water uptake is less than daily potential crop evapotranspiration. In this case, a reduction factor equal to the ratio of water uptake to potential crop evapotranspiration reduces RUE, increase partitioning to roots and increases crop canopy temperature, potentially increasing simulated heat stress impacts as described in detail by Webber et al. (2016) and Gabaldón-Leal et al. (2016). Elevated atmospheric CO 2 concentrations act to increase RUE and reduce stomatal conductance. The later acts to reduce the daily rate of transpiration and also raise canopy temperature, consistent with experimental evidence in wheat (Kimball et al. 1999). SIMPLACE-L5 extended the model solution as described in Webber et al. (2018) and Webber et al. (2020) with a new component to allow for sink-limited grain growth according to the model proposed by Weir et al. (1984) and implemented in AFRCWHEAT2 (Porter 1993). Before anthesis, the partitioning scheme was modified to enable ear growth.The ear weight and FE (cultivar-specific parameter) determine the number of grains set at anthesis. Grain growth is modelled by allocating all the net assimilate produced after anthesis to grains. The specific amount of assimilates (20 %) stored in leaves/stems before anthesis translocate to grains which can be boosted to 30 % by increasing drought intensity based on the method developed by Soltani and Sinclair (2012). The assimilate demand for grain filling is determined by the grain number and a temperature-dependent daily maximum growth rate for grain. Grain growth stops when physiological maturity is reached. All yields are simulated on a dry matter basis (assuming 0 % moisture content) and are reported as such throughout this article.Simulations of wheat growth and development with both current traits and improved traits (described in Section 2.3) were conducted at 34 global sites (see Supporting Information-Table S1 and Fig. 3) as part of the Agricultural Model Intercomparison and Improvement Project(AgMIP) Wheat team study examining potential of improved traits to increase YP for historical and possible weather scenarios, as reported by Guarin et al. 2022. Of these sites, 30 were considered in past studies (Asseng et al. 2015(Asseng et al. , 2019b) ) to represent major wheat-growing regions which collectively produce about 70 % of global wheat (Reynolds and Braun 2013). These sites are either irrigated or characterized by high annual average rainfall, with high average annual yields > 4 t ha −1 . Each site was characterized with a representative soil profile considering soil depth and soil horizons described by soil water holding characteristics and texture. The source of the soil data varied (see Supporting Information-Table S1), using published profile descriptions where available and taking profile descriptions from the World Inventory of Soil Emission Potential (WISE) soil database (Batjes 2016). For the first 30, expert information about main wheat cultivars in each region (e.g. photoperiod sensitivity, vernalization sensitivity, observed phenology) was assembled in a previous study (Asseng et al. 2015(Asseng et al. , 2019b) ) and considered here to define the growing season duration and phenology traits in the simulations for both current and improved traits. For the other four simulated sites, Buenos Aires (Argentina); Leeston (New Zealand); Rots (France); and Valdivia (Chile), detailed datasets including phenology, biomass dynamics and yield components were available for phenology trait calibration (Dueri et al. 2022;Guarin et al. 2022) which accounts for shifts in both mean and standard deviation (SD) of temperature, mean of precipitation and the number of rainy days. The method has previously been used in the study of Webber et al. (2018). Irrigation was simulated to capture the predominant production case as indicated in Supporting Information-Table S1. For the irrigated simulations, irrigations were applied such that the wheat experienced no water stress. Nitrogen limitation was not considered in any of the simulations as these are all high-yielding regions where nitrogen is applied to reach close to YP (irrigated production) or water-limited YP (rainfed conditions). All scenarios under climate scenarios considered elevated CO 2 levels (Toreti et al. 2020), with the corresponding levels: baseline: 360 ppm; RCP4.5: 499 ppm and RCP8.4: 571 ppm.For each of the 34 sites, locally adapted cultivars were simulated through site-specific phenology calibration of two parameters (vernal-photothermal times to anthesis; and thermal time from anthesis to maturity) based on sowing, anthesis and maturity dates, as well as vernalization requirement and photoperiod sensitivity typical of each location (Asseng et al. 2019b). In addition to the two phenology traits, experimental data were available for three modern varieties which were grown at 5 of the 34 sites, allowed direct calibration of the traits under study to set the baseline trait values ( (Dueri et al. 2022;Guarin et al. 2022); Table 1). For the other 29 sites, the average value of RUE and FE from these three cultivars were denoted as default and used as baseline trait values for the. For these sites, the value of KDIF calibrated in previous studies (0.6, Liu et al. 2021) was maintained. From each of these parameterizations at each of the 34 sites for the locally adapted cultivars, 1782 virtual genotypes per site were generated from the combination of trait levels exploring a range from + 0 % to + 34 % for RUE, +0 % to + 20 % for KDIF and −10 % to + 10 % for FE (Table 1) relative to the calibrated baseline values. The maximum value of RUE and KDIF were selected based on observed values from an improved high-yielding doubled haploid (DH) line resulting from a cross between cv. Bacanora and cv. Weebil as compared to the check variety Bacanora. Details are reported in Guarin et al. (2022). However, as FE decreased in this DH line, we explored a range of FE both above and below the reference value. The absence of correlations among the traits analysed (Molero et al. 2019) supported the adoption of a full factorial design for sampling the trait space. The establishment of the RUE range was corroborated by experimental evidence (García et al. 2014). As the link between RUE and grain number is not directly established in crop models as a cultivar-specific parameter, while the increased grain numbers in DH lines indicated a strong regulatory impact on RUE (Bustos et al. 2013), we identified a broad variation in RUE in our modelling experiment. Other research findings have also suggested that the advantages of increasing grain numbers on crop yield are reliant on adequate source availability (Zhang et al. 2019). Exploration of a wider range for KDIF and FE was supported by the literature (Zhang et al. 2014;Slafer et al. 2015).The stability of virtual genotypes was characterized independently for each location in the baseline climate and for the combinations of location × RCPs × GCMs under climate change. Within each location, stability was evaluated across years.Standard deviation (SD) of yield (y) across years was used as a measure of temporal yield variability. The coefficient of variation (CV), contextualizes the variability against yield levels by dividing SD by the mean yield over the same period. As such, SD and CV were used as inverse measures of (static) stability.The rank and rank variability (RV) were adopted as nonparametric measures of the genotype performance and stability, where r ij is the rank of the ith genotypes in the jth environment, r i the average rank across environments and q the number of environments. The lowest value of the index indicates maximum stability among the genotypes analysed; values > 0 indicate the presence of crossover interactions, that is changes in the rank of genotype i within the time series. The Finlay-Wilkinson regression approach (Finlay and Wilkinson 1963) was used to assess how the expected yield (y) of a genotype varied as a function of the environmental effects. The two-step ordinary least-square procedure implemented in the R package FW (Lian and Los Campos 2015) estimated the parameters of the model (Eq. 2):where y is the yield of ith cultivar and jth environment (year), µ is mean yield across cultivars and environments, g i is the main effect of ith cultivar and h j is the main effect of the jth environment (year), and e ij is an error term which is equal to zero for the simulated data. The multiplicative term of h j (b i + 1, the slope of the regression) is the change of expected cultivar performance per unit change of the environment effect, a measure of the linear sensitivity of a genotype to the environment (also known as responsiveness, e.g. Calderini and Slafer 1999). The values of b i are obtained by the best fit over all genotypes and environments in the sample. The particular value of b i is thus a relative measure of sensitivity of a genotype compared to the set of genotypes analysed. Static stability would require a value of b i near −1, giving a slope near 0. Conversely, genotypes with b i > 0 may perform well in good environments but underperform in bad ones. To identify and quantify these possible tradeoffs across environmental conditions, yield gains derived from improved traits (as delta yield between virtual and base genotypes) were regressed on the environment effect. The marginal effect of a given trait on SD, CV, RV and environment sensitivity was analysed by setting the other traits to the respective optimal value, that is the trait value maximizing average yield.Higher values of any of the traits considered resulted in a yield increase across all sites under baseline climate (Fig. 1A-C).The magnitude of the increase was trait-dependent and differed between irrigated and rainfed environments. RUE had the most prominent marginal effect on yield, which increased by about 45 % and 33 % in irrigated and rainfed sites, respectively, between the minimum and maximum value of the trait, shown in Fig. 1A with other trait values held at value that maximized yield. Changes in FE (Fig. 1B) had a comparatively smaller effect on yield, and total gains across the full range of the investigated trait values for FE were consistent between irrigated (+11 %) and rainfed (+10 %) conditions. The gains from increasing KDIF, on the other hand, were lower and mainly expressed under irrigation (+9 % compared to + 3.5 % in rainfed systems; Fig. 1C). On average, a 1 % increase of RUE was associated with a yield gain of 0.11 t ha −1 (irrigated) and 0.07 t ha −1 (rainfed). The respective values for FE were 0.06 and 0.04 t ha −1 , whereas for KDIF 0.05 and 0.02 t ha −1 .Inter-annual variability, measured by SD, was higher in rainfed environments and generally increased with trait values producing higher yield (Fig. 1D-F), with the exception of FE in irrigated environments. In these conditions, the variability was approximately constant across the range of trait values, leading to a slight reduction in CV (see Supporting Information-Fig. S1). In rainfed environments, yield variability increased by 16 % when FE increased within the range of values explored (Fig 1E). The SD across sites responded to changes in RUE increasing by almost 50 % in both irrigated and rainfed conditions (Fig 1D). For KDIF, the increase of SD was relatively larger under irrigation (+16 %) than without (12 %; Fig 1F). Differences across sites in the magnitude of the increase of yield and SD led to small divergences in the response of CV to changes in traits (see Supporting Information-Fig. S1), otherwise consistent within the trait values explored.Genotype ranking was largely determined by the value of RUE. Even at high levels of KDIF (+20 %) and FE (+10 %), in all sites the genotype with the lowest (base) RUE values were among the poorest performing, ranked around position 1500 out of 1782, that is below the bottom 20th percentile of the rank of the virtual genotypes by average yield (Fig. 2A). Conversely, genotypes with the highest RUE values ranked above position 250 (85th percentile) and 100 (95th percentile) depending on the value of FE and KDIF, respectively (Fig. 2B and C). The variability of genotype ranking across years was minimal with the trait values that maximized yield levels: changes in the genotype ranking (crossover interactions) were consistently reduced with increased RUE, FE and KDIF (Fig. 2D-F), corresponding to genotypes with rank closer to one (Fig. 2A-C). Ranking variability was highest when FE varied. The highest RV was associated with low values of FE in rainfed environments (Fig. 2F). Compared to the evaluation of genotype performance based on yield level and SD, less pronounced differences were observed between irrigated and rainfed systems on the basis of ranking statistics. For the evaluated trait combinations, the sign and magnitude of yield and inter-annual yield variability changes under climate change differed across sites (Fig. 3). Under RCP 4.5 (see Supporting Information for RCP8.5), both average yield and SD increased across genotypes in about half of irrigated sites and one third of the rainfed sites (similarly for Manhattan, Kansas, USA (USMN) in Fig. 3G). With the exception of Buenos Aires, Argentina site (ARBU), this led to a general increase in the CV that, averaged across all the genotypes tested, reached + 4 % in USMN (see Supporting Information-Fig. S2). An increase of yield together with reduced yield variability (e.g. Wageningen, The Netherlands (NLWA) in Fig. 3F), and a consequent reduction of CV resulted in almost half of the rainfed sites (up to about −20 % change in CV) and only 3 out of 21 irrigated ones (up to −4 % change in CV; see Supporting Information-Fig. S2).An increase of CV derived from the concurrent reduction of yield and increase of SD was observed in four irrigated sites (up to + 17 % change in CV) and one rainfed (+1 % change in CV). In the remaining sites (four irrigated and two rainfed), SD of yield either decreased (associated with a reduction of yield) or displayed a variable response across the genotypes (as in Leeston, New Zealand-NZLE, Fig. 3E), resulting in a variable effect on CV. Despite the differences in the magnitude of the change in mean yield and SD, the changes in CV were generally consistent between base (unchanged) trait values and improved trait values (see Supporting Information-Fig. S2).Under baseline climate, genotypes at the opposite ends of the rank (i.e. lowest-and highest-yielding ones) displayed the highest ranking stability, with RV greatly increasing for cultivars in the middle of the ranking (Fig. 4A-C). This pattern was consistent across locations and RCPs (see Supporting Information-Fig. S3). The influence of climate change on the ranking variability differed among genotypes. While for most the change was site-dependent, the highest-ranked genotype identified in the baseline almost always remained the best genotype across all sites (Fig. 4D-F and see Supporting Information-Fig. S3). In addition to the higher yield gains obtained under climate change compared to the population of virtual genotypes (Fig. 4D-F), this indicated that these genotypes (yellow diamond in Fig. 4) remained stable at the top of the ranking. The base genotype (blue square in Fig. 4) which was among the lowest yielding, generally displayed minor changes in ranking variability under climate change (Fig. 4D-F and see Supporting Information-Fig. S3).A single trait combination (RUE + 34 %, FE + 10 %, KDIF + 20 %, at the upper simulated end of all three trait changes, 'best genotype' hereafter) outperformed all the virtual genotypes in terms of average yield in 32 of the 34 sites under baseline climate. In the remaining two sites, the highest average yield was achieved by trait combinations differing from the best genotype only for KDIF. In Buenos Aires, Argentina (ARBA), the genotype with KDIF value of + 12 % out-yielded the best one by only 0.01 t ha −1 , whereas in Harbin, China (CHHA) the difference obtained with KDFI + 16 % was more marked (0.15 t ha −1 ). Under future climate scenarios, the 'best genotype' outperformed all the others in each site, including ARBA and CHHA. This response was consistent across almost all (332/340) combinations of site × RCP × GCM. The very few exceptions occurred mostly under RCP8.5, where the difference in average yield compared to the overall 'best genotype' reached almost 3.0 t ha −1 . The changes in yield and SD of the best genotype (summarized in Fig. 5A) were in line with those observed for the rest of the virtual genotypes. Changes in ranking and ranking variability under future scenarios (Fig. 5B) indicated changes in the frequency of crossovers between years in the 'best genotype' . Even in the presence of crossover, however, the difference in yield was negligible in almost all cases, with few extreme exceptions (see Supporting Information-Fig. S4). The positive association between changes in ranking and in stability for the 'best genotype' (Fig. 5B) pointed to an increased (decreased) RV associated with a worse (better) position in the rank under climate change. Wheat crop traits for high yield and stability • 9The increased inter-annual variability displayed by the highest yielding genotype compared to the base parameterization was associated with yield gains along all environmental conditions (i.e. years within a site; Fig. 6). Across all year × location combinations explored, the 'best genotype' was never outperformed by the base one (data not shown). Under baseline climate, gains were higher in irrigated sites (average of 4.1 t ha −1 for the 'best genotype' across locations) than under rainfed ones (average 3.2 t ha −1 ). Across locations, yield gains from improved crop traits were more variable in rainfed sites (spanning from an average of 1. 2 t ha −1 in Kojonup, Australia (AUKO) to 6.7 t ha −1 in Valdivia, Chile (CLVA)) than in irrigated sites (from 2.9 t ha −1 in Nanjing, China (CHNJ) to 5.2 t ha −1 in Ludhiana, India (INLU)).Yield gains were consistently smaller in relatively worse years (corresponding to negative environment effect) than under favourable (positive environmental effect) conditions (Fig. 6).The gains ranged from 0.04 t ha −1 (worst year) to 2.4 t ha −1 (best year) in AUKO, whereas the respective values for CLVA were 4.6 and 7.7 t ha −1 (rainfed sites). In CHNJ and INLU (irrigated), the gains ranged respectively from 2.4 to 3.4 t ha −1 and from 4.0 to 6.0 t ha −1 between the worst and best year of the time series. Across sites and environmental conditions, yield gains of the 'best genotype' were distributed around 49% (rainfed) and 53% (irrigated) of the yield achieved by the base genotype. The advantage from improved traits displayed in the baseline was preserved under climate change, with only minor differences across locations (Fig. 6). On average, yield gains for the best genotype increased under RCP4.5 by 0.06 t ha −1 in irrigated conditions and 0.34 t ha −1 in rainfed sites. The respective values for RCP8.5 were 0.2 t ha −1 and 0.6 t ha −1 . The slope of the Finlay-Wilkinson regression highlighted an increased sensitivity to changes in environmental conditions for improved genotypes. This was mostly driven by changes in RUE: with the other traits being at their optimal value (i.e. FE = +10 % and KDIF = +20 %), the slope of the regression ranged from 0.86 to 1.15 for irrigated sites and from 0.89 to 1.23 for rainfed sites under baseline climate across the range of trait variation explored (Fig. 7A). Genotypes with the highest RUE (+34 %) displayed higher environment sensitivity than the base genotype regardless the value of the other traits (slope always > 1 in Fig. 7B and C). The marginal contribution of KDIF to genotype sensitivity was comparatively smaller than RUE (Fig. 7C). Also in this case, the slope of the regression increased with increasing values of KDIF, and genotypes displayed a lower sensitivity in irrigated sites than in rainfed ones, likely due to the wider range of drought stress conditions explored in the latter. Higher FE values determined an increasing sensitivity only under rainfed conditions, whereas with irrigation the slopes were consistent within the range of FE explored. With irrigation, therefore, changes in FE did not alter the environmental sensitivity of the genotypes. Under climate change, the sensitivity of the genotypes to environmental conditions was either comparable or reduced across the trait space compared to baseline climate (Fig. 7). Effects of elevated CO 2 reducing transpiration rates implemented in the model reduced the effects of marginal drought under irrigated conditions under a moderate climate change scenario (RCP4.5, result not shown).This study used a crop simulation model to evaluate the relationship between crop traits conferring high yield and yield stability as this varied across major wheat-growing areas and climate scenarios. The model was tested against experimental data from modern cultivars grown in high-yielding environments (Dueri et al. 2022;Guarin et al. 2022) where it demonstrated its suitability for the simulation of wheat YP under favourable conditions while displaying a coherent response to changes in crop traits values (Bustos et al. 2013). In particular, the model was specifically extended to account for sink-limitations during grain growth for an appropriate description of the influence of FE on yield formation. The simulation results confirmed the importance of constitutive traits conferring high yields across environments for achieving wide adaptation. Regardless of the location or environmental conditions, increased RUE led to higher simulated yields, and the highest-yielding genotype identified was stable in terms of ranking. In particular, among the traits considered, improved RUE was the most effective in raising YP, thus supporting the idea of prioritizing increased photosynthetic efficiency for future breeding efforts (Reynolds et al. 2012;Zhao et al. 2015;Slattery and Ort 2021). FE also appeared as a relevant target trait for breeding (Slafer et al. 2015). On the one hand, increasing the value of this trait produced consistent yield gains under irrigated and rainfed locations while, on the other hand, lower FE values were associated with a reduced ranking stability of the genotypes.Higher yields from improved traits were generally associated with increased inter-annual yield variability (measured by SD), but the relative yield variability (as CV) remained largely unchanged between the base traits and improved genotypes. In this context, improved wheat would remain a low-risk crop for farmers (Cernay et al. 2015), and the adoption for high-yielding cultivars should not be hindered by their yield variability, mainly in high-yielding environments. Such trait combination leading to simultaneous improvement in yield stability and high yield across environments is also captured for other crops such as oilseed rape (Du et al. 2020). Additionally, optimum crop management has been shown to counteract variability associated with GxE, such that increasing yields through using higher-yielding cultivars with more modern farming systems does not appear to necessarily decrease yield stability (Calderini and Slafer 1998). However, in other studies, improved crop traits led to a greater sensitivity to changes in environmental conditions. For instance, there was a trade-off between yield increase and yield stability of soybean under non-optimal management across environments (Zhang et al. 2022). Under the conditions explored here, however, no trade-offs in yields were observed for improved genotypes, that is the genotype with the best average performance did not underperform in relatively worse environments. Conversely, higher yields in optimal environments (i.e. good years within a site) translated into yield spillover in relatively more marginal conditions (unfavourable years). Simmonds (1991) argued that lines selected for high performance in high-yielding environments may often underperform in low-yielding environments. Despite the higher sensitivity to environment conditions, however, improved genotypes still outperformed the base genotype over the range of the environments tested. While such result may be influenced by the sampling of the locations for the current study (high yielding, either irrigated or characterized by high rainfall), this is in line with previous findings confirming that the trend described by Simmonds (1991) has yet to become an issue. In Argentina, Australia, Italy and the UK, modern cultivars have consistently out-yielded older ones, even in the lowest-yielding conditions and despite the increased environmental sensitivity associated with increased YP (Del Pozo et al. 2021), as well as in high-yielding environments. In general, constitutive traits maximizing productivity sustained a significant yield improvement also under moderate stress (Vita et al. 2010), thus making modern elite cultivars genetically more suitable than older wheat cultivars to increase productivity in low-input production systems (Voss-Fels et al. 2019).This results of this simulation study suggest a limited prospect for targeted breeding for YP when informed only by simulation modelling capturing these traits in response to climate and soil and no other limiting factors. Importantly, we must stress that our study also assumed phenology adapted to each environment and as such identified a combination of traits, not a genotype. With this in mind, these study results suggest that there are the best combination of these traits are largely constant across mega-environments (Gauch 2013). In our study, the changes in the genotype ranking based on average yield were minimized while approaching the top of the ranking, and a single genotype consistently outperformed all the others across all locations. We realize that this is largely an artefact the fact that in this simulation limiting factors were not considered, and this phenomenom is rarely observed under actual production conditions. This is nevertheless an interesting result as it suggests observed RV in experiments may not be related to the traits associated with high yield and rather adaptation to yield-limiting factors. In the simulations, the lack of variability in the top-ranked trait combination thus prevented the subdivision of the sites into sub-regions for targeted breeding (Atlin et al. 2000) to leverage narrow adaptation for increasing YP. This finding is consistent with literature analysing both real-world and simulated data. Reynolds and Langridge (2016) observed that lines characterized by the best physiological traits expressed the highest average yields across all study sites. In a simulation study covering the UK and New Zealand environments, Senapati et al. (2019) found that some of the cultivar parameters were subject to a strong selection pressure and converged to a single optimal value for all the locations. Also in our study, a global optimum for combined trait values was found, corresponding to the combination of the highest RUE, FE and KDIF within the range explored. The consistency of this outcome across non-stressed environments suggests that genotype selection in a few optimal environments could be a successful strategy for developing superior lines for increasing YP. From there, local breeders must adapt them to reflect the local phenology, diseases resistance, quality and stressor exposure. Indeed, root ideotypes are different for irrigated and rainfed conditions according to several studies (Schmidt and Gaudin 2017;Rezzouk et al. 2022), though in our study, ideotypes for both irrigated and rainfed conditions are almost the same with our focus on only aboveground traits (Schmidt and Gaudin 2017;Rezzouk et al. 2022).Climate change was responsible for changes in both productivity and inter-annual yield variability, with changes being location-dependent. This however, did not alter the picture outlined under baseline climate: the best-performing trait combination in the baseline was confirmed successful under climate change and such best genotype was consistently the best across environmental conditions (see Supporting Information-Fig. S4). This allows us to cautiously suggest that current breeding efforts aimed at increasing YP through the traits studied here may not likely be jeopardized by climate change for the high-yielding environments explored. However, our results are based on simulations from one model only in which the effects of elevated atmospheric CO 2 largely counteract the yield losses associated with accelerated phenology with warmer temperatures (Webber et al. 2018). Previous modelling studies predicted the possibility of substantial increase in genetic YP of wheat under climate change in high productive countries (Senapati et al. 2019). Our study confirmed such projection for most of the sites analysed, with few exceptions where a decrease in yield was associated with an increased inter-annual variability under climate change (see Supporting Information-Fig. S2). In these cases, genetic improvement showed little potential for adaptation, with all the virtual genotypes within the trait space explored displaying a similar response.Globally, increased yield stability has tended to be a minor breeding objective despite its potential (Annicchiarico 2002).Conducting such experiments to evaluate interactions between genotype and environment are complex, challenging to interpret and expensive. In order to ensure the reliability of yield stability by direct selection, time and resources are used extensively to replicate such experiments over several locations and years, which is continually insufficient covering all genotype × environment interactions (Banterng et al. 2006). Variability in observed yield of the genotypes echoes not only the responses of the genotypes to different soil and climatic conditions at different sites, which are of the main target of breeding programs, but also results from the effects of other variables, including pests and diseases or measurement errors (Falcon et al. 2020). Implementing new traits such as higher RUE in modern genotypes that we projected up to 45 % yield improvement coupling with higher yield stability represent important advances in a range of efforts needed to achieve food security over contrasting environments assuming optimal management. However, yield improvement in natural conditions (not a modelling framework) would come with potential hidden costs that could undermine future food security. Higher biomass accumulation would demand to maintain synthetic fertilizers rate and increase the pesticide application to ensure productivity (Hawkesford 2014) and control pests and diseases (Bilsborrow et al. 2013), projected to more frequent outbreaks associated with climate change (Bajwa et al. 2020).Those factors would have long-term negative environmental and economic consequences on sustainability of cropping systems (Cook 2006).The economic significance of releasing high-yielding, more stable genotypes from the scale of farmers' income to global wheat market volatilities are considerably more challenging to predict (Shiferaw et al. 2013). Supply and demand balance and oil price (as a primary substance of synthetic fertilizers) are the most influential drivers of fluctuations in food price (Tadesse et al. 2014). Here is where economic scenario analysis comes into play to evaluate whether the modern genotypes can revert the global wheat market to an age of over-supply or an increase in food demand is consistently larger than supply (Fuss et al. 2015;Le Mouël and Forslund 2017).Crop models can be employed to support breeding efforts for overcoming such challenges to measure the yield stability and gain of the genotypes over the environments, separately controlling the effects of other influencing variables (e.g. pests and diseases, environmental heterogeneity, or measurement errors) and testing the performance of the genotypes across an unlimited number of environments (Suriharn et al. 2008;Chenu et al. 2011;Salmerόn et al. 2017;Clarke et al. 2019). Comparing the results of yield stability analysis from multi-environment experiments and crop model outcomes showed that simulated yield is overestimated as expected; however, the crop model captured the relative mean yield change across the environments for study genotypes (Banterng et al. 2006). Modelling genotype × environment interactions can support breeding programs in raising YP by testing virtual genotypes well before a resource-intensive and time-consuming selection takes place (Chapman 2008;Chenu et al. 2011;Robert et al. 2020). Moreover, in a changing climate, models can provide timely assessments of the productivity of current elite genetic material, as well as of the potential for genetic adaptation to anticipated climate change (Lopes et al. 2015;Hammer et al. 2020). However, the accurate prediction of genotype performance across multiple environments is conditional to the availability of crop models accounting for the necessary physiological processes at an appropriate level of complexity, the development of a well-constrained parameter set and the quality of the input data to drive the model (Ramirez-Villegas et al. 2020).The methods and model used in this specific study also suffered a number of limitations. While baseline default cultivars were locally adapted by calibration of thermal times and considering photoperiod sensitivity and vernalization requirement typical in each region, the study considered only three improved modern varieties in defining baseline trait values which is clearly a simplification. As for the model used in this study, again it was tested against experimental data from modern cultivars grown in only a few high-yielding environments (Dueri et al. 2022;Guarin et al. 2022). While it demonstrated its suitability for the simulation of wheat YP under favourable conditions where it displayed a coherent response to changes in crop traits values (Bustos et al. 2013), we did not test it across all sites studied. Furthermore, we acknowledge that the model does not include all the relevant interactions among the traits studied. For example, the possibility that RUE may be indirectly influenced by sink limitation (Liang et al. 2018) is ignored in the implementation used in this study, though the current state of understanding for source-sink interactions-recently published as a wiring diagram-supports the possibility to do so (Reynolds et al. 2022). Moreover, model improvements are necessary to include the effects of drought (Ratjen et al. 2012) and heat stress (Maiorano et al. 2017) on spike fertility. While this was not a critical issue for the current study due to the focus on high yielding, either irrigated or high-rainfall locations, such improvements will become necessary for extending the analysis to low-yielding environments characterized by a more frequent occurrence of stresses. The present study outlined the possibility for improved crop traits to raise YP with no trade-offs in terms of yield stability under current climate and climate change scenarios, but such outcome was supported by the results of a single crop model. However, as the crop model structure is a main source of uncertainty in modelled response to changes in crop traits and climate conditions (Martre et al. 2015c), a next step to extend this study would be to apply a multi-model ensemble to quantify the uncertainty bracketing these outcomes. However, it will be challenging to understand and explain the behaviour of a multi-model median without investigating individual models where there is a genotype by climate-year by model interaction.The determination of crop model parameters is crucial for the model to correctly capture genotype behaviour across different environments. The trait space explored-represented by the range of model parameters-was supported by both experimental data (Bustos et al. 2013) and the literature on the traits considered (Reynolds et al. 2007;Furbank et al. 2015;Slattery and Ort 2021). Despite being focussed on relevant traits and levels of expressions for breeding, the results of our analysis were constrained by the specific trait space explored. A global optimum of trait combinations may lay beyond these boundaries, and it may require to take into account additional traits. In our relatively simple parameter space, we could assume no correlation among the traits selected (Molero et al. 2019). This choice was consistent with other model-based ideotyping studies (Casadebaig et al. 2016;Senapati et al. 2019), but such approach could be inadequate when considering a more complex landscape of trait combinations. In any case, moving from a set of prescribed changes in model parameters to a range of phenotypic screens that are measurable and can be selected for in breeding trials remains a challenging process (Ramirez-Villegas et al. 2020).Finally, this study focussed by design on high-yielding environments. Despite the sampling of favourable sites, the analysis of bad years provided an indication of a yield spillover effect improving yields under relatively marginal conditions, outlining breeding for high YP as a win-win situation across environments both in terms of productivity and yield stability. However, further study is required to explore the benefits of improved traits for YP in more marginal environments, to confirm the absence of trade-offs under limiting growing conditions (Reynolds et al. 2011;Zhao et al. 2015;Slattery and Ort 2021).Wheat crop traits for high yield and stability • 13This study has addressed the question as to whether higher potential yields could possibly jeopardize efforts towards food security by introducing higher yield variability and possibly yield failures in the face of climate change. The results of simulation study using a single crop model suggest that such trade-offs are not likely to appear under average climate change conditions for high-yielding traits in high-yielding wheat regions. However, potential environmental costs and risks associated with higher nitrogen fertilization rates required to achieve high yields, particularly in the face of increasingly variable and extreme climate were not included in our study. The study provides some promise of the possibility to increase YP across environments without increasing relative yield variability.The following additional information is available in the online version of this article -","tokenCount":"7321"} \ No newline at end of file diff --git a/data/part_3/9601983122.json b/data/part_3/9601983122.json new file mode 100644 index 0000000000000000000000000000000000000000..4cacc7731d14f9a75f88c4600fce2178cb2c440c --- /dev/null +++ b/data/part_3/9601983122.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"9036c66446d721979fc4306e7a05d64a","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/7d69619c-4228-4e4b-b4b0-afbbd91679f2/retrieve","id":"148418850"},"keywords":[],"sieverID":"e2151417-f2e9-499e-bc69-af2ed0540f6f","pagecount":"1","content":"We thank farmers and local partners in Africa RISING sites for their contributions to this research. We also acknowledge the support of all donors which globally support the work of the CGIAR centers and their partners through their contributions to the CGIAR systemAssess the influence of various soil fertility management options and cropping systems (maize-bean intercrop and bean sole crop) on the yield of 2 drought tolerant bush bean varieties (SER45 and SER83) in Dedza and Ntcheu districts, in central Malawi. • Both bean genotypes had higher yields in sole crop than under intercrop(P< 0.01). • SER45 was responsive to manure application in a sole crop leading to 44.4% yield increase over no manure application. • Under sole cropping with fertiliser and manure yield improved by 40.1% (SER45) and 78.3 % (SER83) relative to the control. The • Manure application significantly increased overall grain yield by 60% in sole bean stands and 53% in bean-maize intercrops over the control. • Combining manure and NPK resulted in 9% yield gain over manure treated stands in sole crops while in intercrop, the yield gain was 27 and 11% over the merely fertilizer and manure treatments, respectively. • The land equivalent ratios were 1.84 (SER45) and 2.09 (SER83).• This study demonstrated the potential of increasing bean productivity through promotion of appropriate soil fertility management and cropping systems options, which will vary depending on the genotype of the drought tolerant bean. These lesson need to be scaled out to benefit more farmers ","tokenCount":"248"} \ No newline at end of file diff --git a/data/part_3/9610041675.json b/data/part_3/9610041675.json new file mode 100644 index 0000000000000000000000000000000000000000..9c2d9d4952a80e0ddca6b17f1e41952f9d3352ac --- /dev/null +++ b/data/part_3/9610041675.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"f54aface5f21f846e4c74658d68fc35c","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/c57ab344-6888-4761-b90c-718a3d593ca7/retrieve","id":"1293573250"},"keywords":[],"sieverID":"5472727a-d715-4420-8f50-f49a4c52e40c","pagecount":"33","content":"A partir del 1 de junio de 2022, el índice de precios agrícolas cayó un 5% en las últimas semanas, pero sigue siendo un 40% más alto en comparación con enero de 2021.Los precios del maíz y el trigo son 42% y 60% más altos, respectivamente, en comparación con enero de 2021El índice de precios de los alimentos de la FAO a niveles históricamente alto, debido al índice de cereales, aceites carne productos lácteos Es probable que la producción, la utilización, las reservas y el comercio mundiales de cereales se contraigan en 2022/23Conflicto e inestabilidad Índice de disponibilidad de alimentos y la oportunidad es de acceso a ellos por cada individuo Todas las personas deben de tener acceso a alimentos de una manera suficiente, seguro y nutritivo que cumple con sus preferencias y necesidades dietéticas para una vida sana y activa.Sistema de producción de alimentos que ofrece alimentos nutritivos a las personas que dependen de ello y que genera sustentabilidad ecológico, económico y social en el entorno • Amplia investigación sobre adaptación y mitigación del cambio climático en sistemas de producción basados en maíz y trigo en África, Asia y América Latina.• Investigación centrada al contexto, para ayudar a los pequeños agricultores a adaptarse a las crisis climáticas; y a aumentar y mantener los rendimientos de forma rentable y sostenible mediante la reducción de emisiones de GEI. Empoderar a los agricultores para innovar en sus campos y comunidades.Probar métodos nuevos y tradicionales para hacer que la extensión y adopción de tecnologías sean más eficientes y efectivas.Integrar actores en diferentes partes del sistema agroalimentario, para trabajar en mitigación y adaptación al cambio climático, p. ej. abastecimiento responsable para crear un efecto de atracción hacia una producción climáticamente inteligente.• Agricultural Research for Development -AR4D• El objetivo es mejorar la resiliencia, las vidas y la seguridad alimentaria de agricultores de pequeña escala en comunidades rurales, y en particular jóvenes y mujeres, aplicando la investigación científica (def. IFAD*).-Generando tecnologías pro-pobres -Facilitando el intercambio de conocimiento y documentar la investigación -Establecer alianzas entre institutos de desarrollo (no)-centrados a la investigación -Mejorar vinculación a nivel de países entra institutos de investigación y programa de seguridad alimentaria -Generar evidencia que demuestra la eficiencia de nuevos métodos para cumplir con las necesidades futuras de alimentos y nutrición, fomentando resiliencia, con la mira a guiar decisiones sobre políticas publicas Modelo HUB • El CIMMYT genera beneficios de entre US$ 3,500 a 4,000 millones anuales.• El 50% del maíz y el trigo en el mundo en desarrollo se basa en variedades del CIMMYT.• El 60% de la superficie cultivada con trigo en los Estados Unidos utiliza variedades de trigo relacionadas con el CIMMYT.• Más de 18 millones de agricultores se benefician de las prácticas agrícolas mejoradas del sistema de maíz y trigo.","tokenCount":"462"} \ No newline at end of file diff --git a/data/part_3/9620014641.json b/data/part_3/9620014641.json new file mode 100644 index 0000000000000000000000000000000000000000..02324b68e3f2be15ab44de23cdc022b23347c38b --- /dev/null +++ b/data/part_3/9620014641.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"fd1bbc4e0b3709a83aaa81e301293229","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/311b9a91-9dfc-4aff-8be0-ca7b732206d1/content","id":"272469208"},"keywords":["Semagn, K.","Iqbal, M.","Jarquin, D.","Crossa, J.","Howard, R.","Ciechanowska, I.","Henriquez, M.A.","Randhawa, H.","Aboukhaddour, R.","McCallum, B.D.","et al. Genomic Predictions for Common Bunt, FHB, Stripe Rust, Leaf Rust, and Leaf 90K array","DArTseq","disease resistance","genomic selection","prairie provinces","prediction accuracy","priority wheat disease","SNP"],"sieverID":"ceceee22-9630-43a4-9a5b-6e7adff5113d","pagecount":"20","content":"Some studies have investigated the potential of genomic selection (GS) on stripe rust, leaf rust, Fusarium head blight (FHB), and leaf spot in wheat, but none of them have assessed the effect of the reaction norm model that incorporated GE interactions. In addition, the prediction accuracy on common bunt has not previously been studied. Here, we investigated within-population prediction accuracies using the baseline M1 model and two reaction norm models (M2 and M3) with three random cross-validation (CV1, CV2, and CV0) schemes. Three Canadian spring wheat populations were evaluated in up to eight field environments and genotyped with 3158, 5732, and 23,795 polymorphic markers. The M3 model that incorporated GE interactions reduced residual variance by an average of 10.2% as compared with the main effect M2 model and increased prediction accuracies on average by 2-6%. In some traits, the M3 model increased prediction accuracies up to 54% as compared with the M2 model. The average prediction accuracies of the M3 model with CV1, CV2, and CV0 schemes varied from 0.02 to 0.48, from 0.25 to 0.84, and from 0.14 to 0.87, respectively. In both CV2 and CV0 schemes, stripe rust in all three populations, common bunt and leaf rust in two populations, as well as FHB severity, FHB index, and leaf spot in one population had high to very high (0.54-0.87) prediction accuracies. This is the first comprehensive genomic selection study on five major diseases in spring wheat.Leaf rust, stripe (yellow) rust, stem rust, common bunt, Fusarium head blight (FHB), and leaf spot complex (the blotch diseases) are the most common and economically important wheat diseases in Canada and across the rest of the world [1][2][3][4]. Leaf rust caused by Puccinia triticina f. sp. tritici is common in mild temperature and moist conditions [4], with varying levels of severity from year to year [5]. Stripe rust (P. striiformis f. sp. tritici) has been detected in western Canada every year since 2000, with serious epidemics reported in some parts in 2005,2006, and 2011 [6]. Multiple stem rust (Puccinia graminis f. sp. tritici) epidemics were reported in the country in the early 1900s and from 1953 to 1955, which caused losses worth hundreds of millions of dollars [7]. Although the severity of the three rusts can be reduced through agronomic management practices and the application of foliar fungicides, the development and deployment of resistant cultivars is environmentally friendly and safer [8]. Common bunt (also known as stinking smut and covered smut) is caused by both Tilletia tritici (syn. Tilletia caries) and T. laevis (syn. T. foetida) [9], which can be seed-borne (smut spores on the seed) or soilborne. Infected plants are stunted, producing fewer and smaller spikes than normal plants, which ultimately reduces both grain yield and quality through the formation of black masses of spores (bunt balls) [10]. The replacement of grains with bunt balls not only reduces grain yield, but also affects quality due to undesirable odors in the flour that are not acceptable by wheat millers. The three strategies used to manage common bunt include seed treatments with appropriate fungicides, crop rotation to minimize the buildup of the pathogen, and planting resistant cultivars.FHB, or scab, can be caused by multiple fungal species, with Fusarium graminearum (Schwabe) being the most destructive disease in parts of western Canada [11,12]. FHB affects grain yield, grain quality, and marketability in three ways. First, it causes premature bleaching of florets (spikes), which results in sterility and small white-to-pink shriveled seeds, which substantially reduce grain yield [13]. Second, FHB-infected kernels are of poor quality and are either rejected or downgraded due to the presence of discolored and shriveled seeds that substantially reduce grain price. Third, infected kernels may be contaminated with mycotoxins, such as deoxynivalenol (DON), nivalenol, and zearalenone, which are toxic to animals and humans [14]. FHB management methods include the use of appropriate fungicides, crop rotation, seed treatment, cultural practices (e.g., staggering planting time, increasing seeding rate, irrigation management), and planting resistant cultivars [15][16][17]. None of the management methods are effective on their own, and multiple methods must be used to reduce losses to FHB. Fungicide application to control FHB is suppressive rather than preventative or curative, and is not as effective in controlling FHB as compared with rusts and leaf spots, because timing the application of fungicide for FHB control is challenging due to the narrow application window [4]. Furthermore, most modern wheat cultivars have mutant reduced height alleles (Rht-D1b and/or Rht-B1b), which increase susceptibility to FHB by reducing anther extrusion [18][19][20]. Leaf spotting is one of the most prevalent diseases in wheat-growing areas in Canada and several other countries globally. In Canada, it is the second priority disease (Priority-2) caused by multiple pathogens: tan spot (Pyrenophora tritici-repentis), septoria leaf blotch complex (caused by Phaeosphaeria nodorum, Mycosphaerella graminicola and Phaeosphaeria avenaria), and spot blotch (Cochliobolus sativus) [21]. These pathogens commonly occur as complexes and can reduce test weight and grain yield by about 50%. High levels of leaf spot resistance require resistance to each of the causal species.In Canada, new varieties (cultivars) should possess a combination of 30-40 target traits depending on the market class (https://grainscanada.gc.ca/en/grain-quality/graingrading/wheat-classes.html; accessed 20 March 2022), which must include at least intermediate levels of resistance to the three rusts, FHB, and common bunt. Genetically resistant cultivars can be developed using conventional breeding methods, marker-assisted selection (MAS), and genomic selection (GS). MAS involves introgressing a few genes or major effect quantitative trait loci (QTL) from trait donors into elite genetic backgrounds, which is often challenging due to (i) the need to pyramid different sources of resistance into the same genetic background, and (ii) concerns associated with the durability of introgressed genes that regulate qualitative or vertical resistance against multiple races. Vertical resistance tends to be expressed from seedling to adult plant stages, but they lose their effectiveness over time due to changes in pathogen populations. On the other hand, quantitative resistance is a partial level of resistance controlled by multiple minor to moderate effect genes and/or QTL, which are more durable but require the pyramiding of multiple favorable alleles, which makes the suitability of MAS more challenging. GS is a promising alternative to MAS for predicting the most likely performance of lines by incorporating all available molecular marker information into a model to compute genomic estimated breeding values for selection [22][23][24][25].Although numerous proofs of concept and pilot GS studies have been conducted in wheat to investigate its potential for improving multiple agronomic traits, yield components, and end-use quality traits in wheat, only a few studies have been conducted on diseases. The latter include some studies conducted to evaluate the predictive ability of FHB [26], stripe rust [27,28], rusts, and leaf spots [29][30][31] in spring wheat, FHB in winter wheat [32,33], rusts in durum wheat [34] and winter wheat [35][36][37][38], Septoria tritici blotch (STB) and tan spot in winter wheat [39][40][41], as well as FHB and STB in winter wheat [42][43][44]. Each of these studies reported highly variable prediction accuracies, but they neither evaluated all diseases on the same population nor compared the predictive ability of the different reaction norm models [45], which forms one of the bases in the present study. In addition, we are not aware of any study that investigated the predictive ability of GS in common bunt in wheat, which forms another basis in the present study.The multiplicative reaction norm model [45] is one of the methods proposed to account for genotype × environment (GE) interactions that could improve prediction accuracies [46][47][48][49][50]. It partitions the phenotypic variance into genotypes (lines), molecular markers (genomics), environments (E), and GE interactions, and compares the predictive ability of the baseline model with the main effect and interaction models. In our previous study [51], we used the reaction norm models with three random cross-validation (CV) schemes in three Canadian spring wheat populations. Each population was evaluated for seven agronomic and grain characteristics in three to nine conventional and three to six organically managed field environments which were genotyped either with the wheat 90K SNP array or DArTseq technology. Our results from that study revealed highly variable prediction accuracies depending on the models, CV schemes, trait complexity, and genetic backgrounds. The objectives of this study were to (1) compare the variance components and heritability of FHB, common bunt, leaf rust, stripe rust, and leaf spot across three spring wheat populations, and (2) examine the predictive ability of three models and random cross-validation (CV) schemes across different genetic backgrounds and traits.The present study was conducted on 578 lines and cultivars (Table S1) that represented an association mapping panel of 203 lines and cultivars plus 2 recombinant inbred lines (RIL) populations derived from Attila × CDC Go (167 lines), and Peace × Carberry (208 lines). These three Canadian spring wheat populations were used in our previous study to compare the prediction accuracies of different models, and random CV schemes across seven agronomic and end-use quality traits [51]. The following cultivars were used as resistant and susceptible checks: (i) AC Barrie and AC Crystal as susceptible, and Lillian and Carberry as resistant checks in stripe rust nurseries; (ii) AC Barrie and Park as moderately susceptible to susceptible checks, and Peace and Carberry as moderately resistant to resistant checks in leaf rust nurseries; (iii) AC Barrie, Unity, and Glenlea as moderately susceptible checks, and Neepawa as a moderately resistant checks in the leaf spot nurseries; (iv) Laura as susceptible and McKenzie as a resistant checks in common bunt nurseries; and (v) CDC Teal as a susceptible check and 5602HR as moderately resistant checks in FHB nurseries.The association mapping panel (hereafter referred to as BVC) consisted of 183 Canadian spring wheat cultivars and 20 unregistered spring wheat lines [52]. It was evaluated at eight environments (site × year combinations) for reaction to stripe rust near Creston, British Columbia (49.06 35 W) in 2016 and 2018. The BVC panel was evaluated for reactions to leaf rust at four environments at the University of Alberta South Campus in 2017 and 2020, and the Morden Research and Development Centre (Morden RDC), Manitoba, in 2019 and 2020. For both stripe and leaf rusts, seeds of each cultivar and check were planted either in hills or 1 m long rows with a spacing of 25 cm between hills or rows in disease screening field nurseries using a randomized incomplete block design with two replications. The susceptible checks were used as spreader rows, and were planted every five rows. Inoculum preparation and application were carried out as described in a previous study [53]. At each site (location), except Creston for stripe rust that was based on natural infection, we collected urediniospores of the prevalent multi-race mixture from infected plants in the previous year and froze them in −80 • C in vials until needed in June of the following year. Urediniospores were removed from the freezer, allowed to rehydrate at room temperature, suspended in light mineral oil (Soltrol 170, Chevron Phillips Chemical Co., Woodlands, TX, USA) at a concentration of 1 mL urediniospores and 2 L of Soltrol 170, and sprayed on the leaves of the spreader rows at an early tillering stage in the early evenings using a low-volume hand sprayer. The spray application was repeated three times at an interval of three days. Subsequently, urediniospores that developed on the spreader rows were windblown to the test cultivars and lines to provide infection. Plants were irrigated three times a week using either overhead sprinklers or Cadman Irrigations travellers with Briggs booms.The BVC panel was evaluated for its reaction to leaf spot for three years at the University of Alberta South Campus in 2016, 2017, and 2018. P. tritici-repentis, which causes tan spot, is the most common leaf spotting disease in all wheat classes. Disease epidemics was initiated by spraying spreader rows of susceptible checks (AC Barrie, Unity, and Glenlea) with a spore suspension that consisted of an equal mixture of two isolates (AB7-2 and AB50-2) that belong to race 1 of P. tritici-repentis (Ptr). These two isolates contain the ToxA gene [54] and belong to Race 1, which is the most common race in Alberta [55]. Although both AB7-2 and AB50-2 isolates cause tan spot disease, we scored disease severity as leaf spot because tan spot infection in wheat fields occurs in association with septoria blotch and spot blotch, which all produce similar leaf lesions that are difficult to visually distinguish without laboratory analysis [56]. For both rusts and leaf spot, disease severity was recorded using a modified Cobb scale [57] on a scale of 1 (no visible sign or symptom = resistant) to 9 (leaf area covered with spores = highly susceptible). Such ratings were performed when the susceptible and resistant checks showed contrasting reactions (susceptible check had many pustules/lesions, the moderate checks had fewer pustules/lesions, and the resistant check had few or no pustules/lesions).The BVC panel was evaluated for its reaction to common bunt at the University of Alberta South Campus in 2016 and 2017, as described in a previous study [58]. The screening involved treating seeds of each cultivar with an equal mixture of common bunt race L-16 of T. laevis and race T-19 of T. tritici spores. We then removed the excess inoculum by shaking the seed over a fine-mesh sieve and planted them in a randomized incomplete block design with two replications. At the dough stage, all spikes of each cultivar were examined for common bunt infection and recorded on a scale of 1 to 9, in the same manner as rusts and leaf spots. The reaction to FHB was evaluated at six environments at the Elora Research Station, Pilkington, Ontario in 2017, at the Morden RDC from 2017 to 2019 and 2021, and the Ian N. Morrison Research Farm, University of Manitoba, Carman, Manitoba in 2020. The inoculum suspension consisted of four F. graminearum isolates that belong to the 3-ADON chemotype (HSW-15-39 and HSW-15-87) and the 15-ADON chemotype (HSW-15-27 and HSW-15-57), as described in a previous study [12]. Briefly, the suspension was prepared by mixing an equal amount of each isolate with sterile water and Tween 20 and applied directly to wheat spikes using a backpack sprayer. The sprays were performed twice at Morden and Carman, and three times at the Elora Research Station, starting when the earliest lines reached a 4-5 leaf stage. The inoculated plants were irrigated three times a week using either an overhead mist irrigation system (Elora and Carman) or Cadman Irrigations travellers with Briggs booms (Morden). Visual FHB rating was performed 18-21 days after the first spray inoculation by examining infected spikes (disease incidence) and infected spikelets (disease severity) on a scale of 1 to 9 in some environments and 0-100% at other environments, as described above. To get the same FHB rating across all environments, however, we converted the percentages scores into the 1 to 9 scale and then calculated visual rating index (VRI) in percentages by multiplying FHB incidence and FHB severity.The ACG population was evaluated for reactions to leaf rust, leaf spot, and common bunt at three environments at the University of Alberta South Campus Research Station from 2012 to 2014, as described in our previous study [59]. The ACG population was also evaluated for reactions to stripe rust at three environments at the Lethbridge RDC in 2013, at Creston in 2014, and at the Ellerslie research station, Edmonton, Alberta, in 2015. In both Creston and Lethbridge, plots consisted of a single 1 m long row per line spaced 25 cm between plants in a randomized complete block design with two to three replicates depending on seed availability. At Ellerslie, we grew hill-plots of ten seeds per line spaced 25 cm apart, with a similar experimental design. The PAC population was evaluated for stripe rust at eight environments at Creston in 2016, at the University of Alberta South Campus Research Station in 2016, 2018, and 2019, and at Lethbridge RDC from 2016 to 2019. Leaf rust was evaluated at three environments at the University of Alberta South Campus Research Station in 2017 (nursery and field) and 2020 (nursery), whereas common bunt was evaluated at the same location three times in 2017 (nursery and field) and 2018 (nursery). Leaf spot was evaluated at four environments at the University of Alberta South Campus Research Station in 2016 (nursery), 2017 (field and nursery), and 2018 (nursery). The experimental design, isolates, inoculum preparation, inoculum application, and disease ratings were the same as the BVC population described above.Genomic DNA was extracted following a modified cetyl trimethyl ammonium bromide (CTAB) method [60], and its quality was checked by running an aliquot onto 0.8% agarose gel with SYBR Safe DNA Gel Stain. The DNA concentration was assessed with a NanoDrop ND-1000 Spectrophotometer (Thermo Scientific, Waltham, MA, USA), normalized to approximately 100 ng µL −1 , and shipped to service laboratories for genotyping. DNA samples from both the BVC and ACG populations were genotyped with the wheat 90K iSelect array [61] at the University of Saskatchewan Wheat Genomics lab, Saskatoon, Canada, whereas the PAC population was genotyped with DArTseq technology (https://www.diversityarrays.com/; accessed 20 March 2022). The DArTseq technology generated a total of 36,626 markers, of which 22,741 were SilicoDArT markers (present vs. absent variation) and the remaining 13,885 were SNPs. We also genotyped the ACG and PAC RIL populations with a few functional markers linked to the photoperiod response (Ppd-B1 and Ppd-D1) [62], vernalization response (Vrn-A1 and Vrn-B1) [63], and/or Rht-B1 [64] genes at the Agricultural Genomics and Proteomics Lab, University of Alberta, Edmonton, Canada, as described in our previous studies [63,65,66]. In the BVC population, we excluded markers that had >20% missing data points, and those with minor allele frequencies below 5%. In the RIL populations, we excluded all markers that had >20% missing data, were monomorphic between parents, and had high segregation distortion at p < 0.01. We finally retained a total of 23,795 SNPs in the BVC, 5732 markers (3840 SilicoDArT and 1892 SNPs) in the PAC, and 3158 SNPs in the ACG population for subsequent analyses (Table S2).All data analyses were performed as described in our previous study [51]. Briefly, we computed best linear unbiased estimators (BLUEs) as adjusted means [34,39] using Multi Environment Trial Analysis in R (META-R) v6.04 (https://hdl.handle.net/11529/10201; accessed 20 March 2022). Broad-sense heritability (H 2 ) across all environments was computed as follows:where σ 2 g , σ 2 e , σ 2 ge , and σ 2 ε are the genotypic, environmental, genotype-by-environment interaction, and residual (error) variance components, respectively, whereas Env and Rep are the number of environments and the average number of replicates within each environment, respectively. The disease ratings were analyzed separately for each environment and combined across all environments by considering genotypes (L) as a fixed effect and environment (E), replication, and GE interaction as random effects. Pearson correlations and coefficient of determination (R 2 ) and different types of graphs were generated using both Minitab v. We evaluated the predictive ability of pairwise combinations of the baseline model and two reaction norm models and three CV schemes [45,68], as described in our previous study [51]. Briefly, the baseline M1 model considers the response of the jth wheat line in the ith environment (y ij ) as a function of a random effect model that accounts for the effects of the environment (E i ), the line (L j ) plus a residual variance (ε ij ) as follows:where µ is an intercept, E i iidis the random effect of the jth line, ε ij iid ∼ N 0, σ 2 ε is a residual, and N(•, •) stands for a normally distributed random variable that is independent and identically distributed (iid). The M1 model assumes the effects of the lines as independent with no borrowing of information among lines. The main effect M2 model is an extension of the M1 model, which adds the random effect of molecular markers or genomic (g j ) as follows:The M2 model allows the borrowing of information among lines that enable the prediction of untested genotypes. The third model (M3) extends the M2 model (Equation (2) above) by including genomic and environment interaction effects (Eg ij ) as follows:Notably, in Equation (3), the interaction term Eg ij approximates the true interaction of the ith line with the ith environment and conceptually includes all the first pairwise interactions between each genotype at each environment. The wheat lines are related; therefore, the M3 model allows the borrowing of information between the lines to predict line performance in environments where the lines are not observed. Each of these three models was assessed using three prediction scenarios that mimicked (i) predicting the performance of 20% of wheat lines that have not been evaluated in any of the environments (CV1), (ii) predicting the performance of 20% of lines that were evaluated in some environments (CV2) but not in others, which used phenotypes of the same line at different environments as part of the training set, and (iii) predicting the performance of all lines in an unobserved environment using the remaining environments as a training set (CV0), which was conducted in a leave-one-out fashion. The CV0 scheme computed the correlation between predicted and observed values within each environment only once with no random process involved to assign lines into folds. All genome-wide prediction analyses were performed using imputed marker data in R and the Bayesian Generalized Linear Regression (BGLR) package, as described elsewhere [69].Figure 1 summarizes disease scores based on individual environments, which revealed highly variable reactions depending on the genetic background, the environment, and the type of disease. Genotypes (lines) within each of the three populations showed significant (p < 0.05) differences for all diseases (Table S3). Table 1 summarizes the disease scores, correlations among environments, and broad-sense heritability computed across all environments. Stripe rust, leaf rust, leaf spot, common bunt, FHB incidence, and severity scores in the BVC panel evaluated between two and eight environments varied from 1.0 to 9.0 in the individual environments and from 1.0 to 8.1 combined across all environments. The FHB index across six field environments in Ontario and Manitoba varied from 0.5% to 82.1% on individual environments (Table 1), and from 3.7% to 49.6% averaged across all six environments. In the PAC population, stripe rust, leaf rust, leaf spot, and common bunt scores in 3-8 individual environments varied from 1.0 to 9.0, from 1.0 to 6.9, from 1.4 to 8.3, and from 1.0 to 7.5, respectively. Averaged across all environments, the RILs in the PAC population had a disease score of 1.1-5.7 for stripe rust, 1.0-5.8 for leaf rust, 2.3-7.1 for leaf spot, and 1.0-6.0 for common bunt. Disease scores in the ACG RIL population evaluated across three environments varied from 1.5 to 7.9 for stripe rust, from 1.9 to 6.1 for leaf rust, from 3.0 to 8.7 for leaf spot, and from 1.0 to 4.9 for common bunt, respectively. Broad-sense heritability in each population varied from 0.44 to 0.62 in the ACG, from 0.22 to 0.89 in the BVC, and from 0.72 to 0.90 in the PAC populations. Leaf spot in the BVC panel showed the lowest broad-sense heritability, which was due to the high environmental variance observed in this population (34.8-38.3%) as compared with the PAC (4.5-4.7%) and ACG (13.8-14.3%) populations (Figure 2). The second lowest heritability was observed for FHB incidence in the BVC population, which was also due to high environmental variance (61.5-67.1%) as compared with FHB severity (44.4-47.0%) and index (35.9-38.2%).Table 1. Descriptive statistics based on best linear unbiased estimators (BLUEs) and broad-sense heritability of three spring wheat populations evaluated for reactions to diseases in field conditions. The correlation between pairs of environments within the same disease and the same population varied from 0.07 to 1.00 (Table 1). Low to moderate correlations were observed among the six environments used for evaluating FHB incidence (0.12-0.56), severity (0.11-0.67), and index (0.10-0.68) (Figure S1). The correlation between pairs of traits recorded in each population varied from −0.01 to 0.38 in the ACG, from −0.24 to 0.30 in the PAC, and from −0.11 to 0.97 in the BVC population. In the overall mean disease scores across all environments, the three highest correlations were observed between FHB severity and FHB index (r = 0.97, p < 0.01), FHB incidence and FHB index (r = 0.72, p < 0.01), and FHB incidence and FHB severity (r = 0.63, p < 0.01) in the BVC population (Figures 3 and S2). The high correlation between FHB severity and FHB index was also evident between pairs of the six environments with correlations and coefficients of determination varying from 0.71 to 0.97 (Figure S2) and 0.51 to 0.96 (Figure 3), respectively. The correlation between FHB incidence and severity and between incidence and index across the six environments varied from 0.22 to 0.65 and from 0.45 to 0.80, respectively. All disease scores averaged across all environments showed a continuous distribution in all three populations (Figure S3). A plot of the first two PCs from PCA analyses revealed some level of population structure within both the BVC and the ACG RIL populations, but not within the PAC population (Figure S4). 1 BVC: association mapping panel; PAC and ACG: recombinant inbred lines derived from a cross between Peace × Carberry, and Attila × CDC Go, respectively. 2 Within-trait phenotypic correlation coefficients between pairs of environments (site × year combinations). 3 Range: minimum and maximum scores; Std: standard deviation of the mean. S4 for details.The correlation between pairs of environments within the same disease and the same population varied from 0.07 to 1.00 (Table 1). Low to moderate correlations were observed among the six environments used for evaluating FHB incidence (0.12-0.56), severity (0.11-0.67), and index (0.10-0.68) (Figure S1). The correlation between pairs of traits recorded in S4 for details.The proportion of variances due to environments, genotypes (lines), molecular markers (genomics), GE interactions, and residual (error or unexplained) components differing depending on the prediction models, traits, and genetic backgrounds (Figure 2, Table S4). Environmental variances across all populations and diseases varied from 0.5% for common bunt in the PAC population to 78.6% for FHB incidence in the BVC panel, with an overall average of 24.1%. Genotypic variance varied from 2.0% for FHB incidence in the BVC panel to 80.0% for common bunt in the PAC population, and the overall average was 21.2%. The effects of genomics on variance components were estimated in both M2 and M3 models, which varied from 3.4% for leaf spot to 59.4% for leaf rust in the BVC population, with an overall average of 22.2%. The variances due to GE interactions computed in the M3 model varied from 5.9% for FHB incidence to 30.2% for leaf spot in the BVC panel, with an overall average of 11.6%. Residual variance varied from 9.6% to 66.2% with an overall average of 35.9%. Residual variance was much greater in the ACG population Genes 2022, 13, 565 10 of 20 (range: 36.9-66.2%, average = 54.6%) than the BVC (range: 9.6-59.3%, average = 28.4%) and PAC (range: 14.9-45.0%, average = 30.5%) populations. Averages across all diseases and models, environment, genotype, genomics, GE, and residual variances within each population varied from 8.8% to 36.5%, from 13.0% to 38.3%, from 9.7% to 28.9%, from 8.6% to 14.5%, and from 28.4% to 54.6%, respectively. The highest environmental variance was observed for FHB incidence, severity, and index in the BVC panel, whereas the highest residual variances were observed in the ACG population (Figure 2), which generally agreed with the broad-sense heritability (Table 1). In contrast to the positive correlation between heritability and genotypic variance (r = 0.57, p < 0.01), both residual and environmental variances showed a significant negative correlation (−0.70 ≤ r ≤ −0.30, p < 0.01) with heritability. As compared with the main effect M2 model, the inclusion of GE interactions in the M3 model reduced the residual variances on average by 10.4% (range 3.9-28.8%). However, the residual variance per trait still accounted for an overall average of 28.7% (range 9.6-56.3%) in the M3 model, with the ACG population showing the highest average residual variance at 49.8% (range 36.9-56.3%).Genes 2022, 13, x FOR PEER REVIEW 10 of 21 each population varied from −0.01 to 0.38 in the ACG, from −0.24 to 0.30 in the PAC, and from −0.11 to 0.97 in the BVC population. In the overall mean disease scores across all environments, the three highest correlations were observed between FHB severity and FHB index (r = 0.97, p < 0.01), FHB incidence and FHB index (r = 0.72, p < 0.01), and FHB incidence and FHB severity (r = 0.63, p < 0.01) in the BVC population (Figures 3 and S2).The high correlation between FHB severity and FHB index was also evident between pairs of the six environments with correlations and coefficients of determination varying from 0.71 to 0.97 (Figure S2) and 0.51 to 0.96 (Figure 3), respectively. The correlation between FHB incidence and severity and between incidence and index across the six environments varied from 0.22 to 0.65 and from 0.45 to 0.80, respectively. All disease scores averaged across all environments showed a continuous distribution in all three populations (Figure S3). A plot of the first two PCs from PCA analyses revealed some level of population structure within both the BVC and the ACG RIL populations, but not within the PAC population (Figure S4). The environments are named using the site (Elora, Mord for Morden, and Carm for Carman) and the year of the experiment. Note that FHB incidence showed a lower R 2 value with FHB severity and index due to its greater environmental variances summarized in Table S3 and Figure 2.The proportion of variances due to environments, genotypes (lines), molecular markers (genomics), GE interactions, and residual (error or unexplained) components differing depending on the prediction models, traits, and genetic backgrounds (Figure 2, Table S4). Environmental variances across all populations and diseases varied from 0.5% for common bunt in the PAC population to 78.6% for FHB incidence in the BVC panel, with an overall average of 24.1%. Genotypic variance varied from 2.0% for FHB incidence in the BVC panel to 80.0% for common bunt in the PAC population, and the overall average was 21.2%. The effects of genomics on variance components were estimated in both M2 and M3 models, which varied from 3.4% for leaf spot to 59.4% for leaf rust in the BVC population, with an overall average of 22.2%. The variances due to GE interactions computed in the M3 model varied from 5.9% for FHB incidence to 30.2% for leaf spot in the BVC panel, with an overall average of 11.6%. Residual variance varied from 9.6% to 66.2% with The plots showed low R 2 between incidence and severity (0.05-0.42), low to moderate R 2 between incidence and index (0.21-0.64), and high to very high R 2 between severity and index (0.51-0.95). The environments are named using the site (Elora, Mord for Morden, and Carm for Carman) and the year of the experiment. Note that FHB incidence showed a lower R 2 value with FHB severity and index due to its greater environmental variances summarized in Table S3 and Figure 2.We compared the predictive ability of the baseline M1 model that utilizes only phenotype data with the main effect M2 model that adds molecular markers to the M1 model, and the M3 model that incorporated GE interactions to the M2 model (Figure 4, Tables 2 and S5). In the absence of molecular markers, the M1 model produced negative or close to zero prediction accuracies for all diseases and populations when it was used with the CV1 scheme (range −0.16 to −0.03, average −0.11), which suggested the failure of the model to predictive disease reaction of presumably 'newly developed lines'. The M1 model showed highly variable accuracies when it was used with the CV2 (range: 0.07 to 0.84, average 0.51) and CV0 (range: 0.11 to 0.87, average 0.55) schemes, which was due to the inclusion of some phenotype records of the same lines at some environments. When molecular markers were incorporated in the M2 model, the average prediction accuracies per trait with the CV1, CV2, and CV0 schemes varied from 0.02 to 0.49, from 0.21 to 0.84, and from 0.11 to 0.87, respectively. The overall average prediction accuracies of all diseases and populations obtained when the M2 model was used with the CV1, CV2, and CV0 schemes were 0.28, 0.54, and 0.55, respectively. The prediction accuracies of the M3 model with the CV1, CV2, and CV0 schemes varied from 0.02 to 0.48, from 0.25 to 0.84, and from 0.14 to 0.87, respectively. The average prediction accuracies with the M3 model were 0.30 for CV1 and 0.55 for both CV2 and CV0. ). CV0, CV1, and CV2 represent predicting the entire environment, the performance of newly developed lines, and sparse testing, respectively. M1, M3, and M3 represent the baseline model, the main effect reaction norm model, and the model that incorporated GE interactions, respectively. Trait initialisms are as follows: stripe rust (Yr), leaf rust (Lr), leaf spot complex (Ls), common bunt (bunt), and Fusarium head blight (FHB). See Table S5 for details.Overall, prediction accuracies obtained with the M1 model with the CV1 and CV2 schemes were significantly smaller (p < 0.05) than both the M2 and M3 models (Table S5D). The most noticeable change in prediction accuracies in all diseases and populations was observed when the CV1 scheme was used with the M2 and M3 models that increased accuracies by averages of 208% and 199% over the baseline M1 model, respectively. We found statistically significant differences in the prediction accuracies between the M2 and M3 models in the BVC, but not in both the PAC and ACG populations, regardless of the ). CV0, CV1, and CV2 represent predicting the entire environment, the performance of newly developed lines, and sparse testing, respectively. M1, M3, and M3 represent the baseline model, the main effect reaction norm model, and the model that incorporated GE interactions, respectively. Trait initialisms are as follows: stripe rust (Yr), leaf rust (Lr), leaf spot complex (Ls), common bunt (bunt), and Fusarium head blight (FHB). See Table S5 for details.Overall, prediction accuracies obtained with the M1 model with the CV1 and CV2 schemes were significantly smaller (p < 0.05) than both the M2 and M3 models (Table S5D). The most noticeable change in prediction accuracies in all diseases and populations was observed when the CV1 scheme was used with the M2 and M3 models that increased accuracies by averages of 208% and 199% over the baseline M1 model, respectively. We found statistically significant differences in the prediction accuracies between the M2 and M3 models in the BVC, but not in both the PAC and ACG populations, regardless of the CV schemes. However, the M3 model increased prediction accuracies over the M2 model by an average of 6% at CV1 and by 2% both at CV2 and CV0 schemes. In some traits, the M3 model increased prediction accuracies by 4-54% as compared with the M2 model, which included leaf spot in both the BVC and ACG populations at both the CV1 and CV2 schemes and FHB incidence and index in the BVC population (Table 2). The similarities in the prediction accuracies of the M2 and M3 are evident from the high coefficients of determination in most traits (Figure S5a). In cases when one model performed better than the other, however, the coefficient of determination between the M2 and M3 models showed an erratic pattern, which included FHB incidence (0.82-1.00), FHB index (0.90-0.99), and leaf spot (0.59-0.95) in the BVC population, leaf spot in ACG (0.36-0.99) and PAC (0.83-1.00), and leaf rust in the ACG (0.44-0.82) and PAC (0.90-1.00) population (Figure S5b). Table 2. Mean prediction accuracies obtained using three random cross-validation schemes (CV1, CV2, and CV0) and three models (M1, M2, and M3). See Table S5 We compared the average prediction accuracies of the five diseases to determine if some environments provided better predictions than others (Figure S6). Although most environments showed consistent prediction accuracies regardless of the genetic background and the trait, some environments displayed lower accuracies. For example, Creston for stripe rust resistance in both BVC and PAC populations, and Morden in 2017 and 2021 for FHB resistance in the BVC population gave lower accuracies as compared with other environments. Using the results of the M3 model, we also compared the prediction accuracies of all four to seven traits per population regardless of the environments (Figure 5, Table 2). The predictive ability of the M3 model with both the CV0 and CV2 schemes for common bunt and leaf rust was very high in the PAC (0.70-0.87) population, high in the BVC (0.59-0.64), and low to moderate (0.25-0.42) in the ACG population. For leaf spot, the M3 model with the CV2 and CV0 schemes provided high accuracies (0.74-0.75) in the PAC population and low to moderate (0.14-0.42) in the BVC and ACG populations. The prediction accuracies of FHB severity and index in the BVC populations were similar, which varied from 0.40 to 0.41 at CV1 and from 0.60 to 0.63 at CV2 and CV0. The prediction accuracies for FHB incidence were 0.27 at CV1 and 0.45 both at CV2 and CV0, which were 24-36% smaller than that of FHB severity and index. Overall, the ACG population had low prediction accuracies for common bunt, leaf rust, and leaf spot, regardless of the CV schemes (Figure 5). 0.75) in the PAC population and low to moderate (0.14-0.42) in the BVC and ACG populations. The prediction accuracies of FHB severity and index in the BVC populations were similar, which varied from 0.40 to 0.41 at CV1 and from 0.60 to 0.63 at CV2 and CV0. The prediction accuracies for FHB incidence were 0.27 at CV1 and 0.45 both at CV2 and CV0, which were 24-36% smaller than that of FHB severity and index. Overall, the ACG population had low prediction accuracies for common bunt, leaf rust, and leaf spot, regardless of the CV schemes (Figure 5). S5 for details.At least 83 stripe rust, 80 leaf rust, and 15 common bunt resistance genes have been reported in wheat and its relatives [70][71][72], which regulate the qualitative inheritance of these diseases. However, quantitative resistance has frequently been reported as the predominant form of resistance in crops [73,74], which is regulated by multiple QTLs of minor effects, highly polygenic, and characterized by a continuous phenotypic distribution. The continuous distribution of all five diseases evaluated in the present study was evident in all three populations (Figure S3) regardless of the genetic backgrounds (biparental RILs vs. diverse panel of cultivars from multiple wheat classes), which suggest the lack of a major gene and major effect QTLs. Previous genome-wide association analysis and standard QTL mapping studies conducted in the BVC, PAC, and ACG populations detected only a few minor to moderate effect QTLs that individually accounted for <20% of the phenotypic variance [59,75,76]. In such cases, therefore, genome-wide prediction outperformed MAS, which produced intermediate to high prediction accuracies (0.4-0.9), as compared with the lower values (<0.30) observed for MAS-based models [77]. Although prediction accuracies obtained in the present study differed depending on the trait, genetic background, model, and CV schemes (Table 2, Figure 4), most results are highly encouraging for implementing large-scale GS in Canadian spring wheat.The incorporation of GE interactions in the M3 model has shown inconsistent results for agronomic and end-use quality traits in the literature, with some studies reporting higher prediction accuracies over the main effect M2 model [45,46,49,[78][79][80], whereas others found no advantage at all [81]. Our results for the five diseases recorded in the BVC, PAC, and ACG populations revealed statistically significant differences between the M2 and M3 models in the BVC, but not within the ACG and PAC populations (Table S5c), which partly agrees with Juliana et al. [81]. The M3 model had three advantages: (a) it reduced residual variance per trait by 3.9-28.8% as compared with the M2 model; (b) it increased prediction accuracies by an average of 2-6%; and (c) we found a few cases where the M3 model increased prediction accuracies by up to 54% as compared with the M2 model.GS predicts the most likely performance of lines using three scenarios that are widely used by plant breeders. In the CV1 scheme, we aimed to predict the performance of newly developed lines that have been genotyped with genome-wide markers but not phenotyped at any environment, which help breeder not only in facilitating the time of cultivar development, but also in reducing costs associated with seed multiplication, land preparation, and phenotyping. We used the CV1 scheme by hiding the phenotype data of 20% of randomly sampled lines as a testing set and the remaining 80% of them used as a training set, which was evaluated for up to 80 combinations of environments and iterations (Table S5A). The average prediction accuracies obtained using the CV1 scheme and the M3 model varied from 0.02 to 0.49, which is indicative of a lower probability in successfully implementing large-scale GS to predict the performance of newly developed lines without any field testing. On the other hand, the prediction accuracies of the M3 model with the CV2 scheme varied from 0.25 to 0.84, which suggests the high potential of implementing large-scale GS in developing disease resistance spring wheat cultivars using a sparse testing (incomplete field trials) design where some lines are evaluated in some environments, but not in others. Most of the prediction accuracies obtained when the CV2 scheme was used with the M3 model were ≥0.55, which included stripe rust (0.55-0.76) in all three populations, common bunt (0.62-0.84) and leaf rust (0.64-0.70) in the BVC and PAC populations, FHB severity (0.62) and FHB index (0.63) in the BVC population, and leaf spot (0.74) in the PAC population, which agree with other studies [78,82]. In the CV0 scheme, the main interest was to predict disease resistance for the future environment by leaving one environment out [47,78,83], which produced similar prediction accuracies to the CV2 scheme (Table 2).Prediction accuracies obtained for common bunt when both CV0 and CV2 schemes were used along with the M3 model produced high accuracies in the BVC (0.62) and very high accuracies in the PAC (0.84-0.87) populations (Table 2). For the ACG population, prediction accuracies for common bunt were moderate (0.39 to 0.48), which agrees with the 0.40 accuracy reported for Karnal bunt (Tilletia indica) in two wheat RIL populations [84]. Differences in trait heritability, population size, and marker density may have contributed to the observed differences in prediction accuracies [85,86]. For example, broad-sense heritability was greater in both the BVC (0.69) and PAC (0.90) populations (Table 1) as compared with the ACG population (0.52). Population size in both BVC (203) and PAC (208) was greater than the ACG (167) population. Similarly, the marker density in the BVC population was 23793 SNPs, which was over four-fold and seven-fold greater than the 5731 markers in the PAC population and 3158 markers in the ACG population, respectively. The parents used in the ACG and PAC populations are included in the BVC populations. Our prediction accuracies for common bunt in the BVC and PAC population were 36% and 53% greater than the accuracies reported for Karnal bunt, respectively, which is very encouraging for wheat breeders to implement large-scale GS for developing common bunt resistant germplasm in western Canada. As far as we are aware, this is the first study to report the genome-wide predictive ability of different models and CV schemes for common bunt in wheat.The prediction accuracies for both FHB severity and FHB index obtained when we used the M3 model with CV1 (0.40-0.41), CV2 (0.62-0.63), and CV0 (0.60-0.61) were 24-36% greater than those for FHB incidence (Table 2), which disagrees with accuracies reported in previous studies in spring wheat [26] and winter wheat [32]. Dong and colleagues [26] assessed the potential for genomic selection to improve FHB resistance using 170 spring wheat cultivars and elite lines adapted to the Pacific Northwest, evaluated in three field nurseries and one greenhouse, and genotyped with 10,101 SNPs selected out of the Wheat 90K SNP array. Using training and testing population sizes of 80% and 20%, respectively, the authors reported a higher average prediction accuracy for FHB incidence (0.63) than FHB severity (0.41). Using FHB phenotype data of 273 breeding lines from 18 winter wheat breeding programs in the United States, 3 prediction models, and 4500 SNPs, Arruda and colleagues [32] reported higher prediction accuracies for FHB incidence (0.60-0.63) than FHB severity (0.40-0.48). As shown in Figure 2, we observed much greater environmental variances for all three FHB-related traits than the four other diseases, with the highest being for FHB incidence. The percentage of phenotypic variance explained by the molecular markers was also much smaller for FHB incidence (8.9-10.2%) as compared with FHB severity (18.6-19.2%) and FHB index (25.0-25.3%), which may have reduced the predictive ability for incidence. In addition, broad-sense heritability for FHB incidence (0.29) was nearly half of that of severity (0.58) and index (0.50). A previous genomic selection study in winter wheat was conducted on 322 lines originated from 15 public and 3 private breeding programs across the eastern United States and Canada [87]. Using data from the U.S. cooperative FHB winter nurseries collected between 2008 and 2010, the authors reported highly variable average prediction accuracies for FHB incidence and severity, which ranged from 0.03 to 0.64 with the CV1 and from −0.12 to 0.61 with the CV2 schemes. Their two best models (Random Forest and Reproducing Kernel Hilbert Spaces) produced prediction accuracies for FHB incidence and severity that varied from 0.12 to 0.62 in the CV2 schemes. Our prediction accuracies for FHB severity and index in spring wheat agreed with the 0.58 average accuracy reported in European winter wheat [88], and were intermediate as compared with accuracies reported in other winter wheat populations evaluated at four environments in Germany (0.21 to 0.77) [43].The average prediction accuracies for stripe rust using the M3 model with CV1, CV2, and CV0 schemes in our three spring wheat populations varied from 0.26 to 0.49, from 0.55 to 0.76, and from 0.54 to 0.77, respectively (Table 2). The predictive abilities for stripe rust with the CV2 and CV0 schemes were greater than the 0.26-0.33 accuracies reported in wheat landraces from Afghanistan [28], the 0.16 to 0.21 accuracies reported in hybrid winter wheat [36], and the 0.33-0.44 accuracies reported in another winter wheat landraces from the Australian Cereals Collection [37]. Muleta et al. [27] evaluated spring wheat accessions from the USDA-ARS National Small Grains and Potato Germplasm Research Unit and reported highly variable accuracies for stripe rust that ranged from 0.45 to 0.79. Using five wheat populations from the International Maize and Wheat Improvement Center (CIMMYT) evaluated in two environments, Ornella et al. [29] reported accuracies for stripe rust that varied from 0.12 to 0.63. Merrick et al. [38] reported accuracies that reached up to 0.72 for stripe rust severity in winter wheat.For leaf rust, the prediction accuracies obtained when we used the M3 model with both CV2 and CV0 schemes were smaller (0.25-0.33) in the ACG population than the BVC (0.59-0.64) and PAC (0.70-0.77) populations (Table 2), which may be due to the differences in heritability, population size, and marker density discussed above. Broad-sense heritability for leaf rust was lower in the ACG (0.44) and higher in both the PAC (0.82) and BVC (0.78) populations (Table 1). Our results for both BVC and PAC populations were greater than the 0.43-0.50 accuracies reported in hybrid winter wheat [36], the 0.33-0.35 accuracies reported in winter wheat landraces from the Australian Cereals Collection [37], and the 0.10-0.38 accuracies reported for wheat landraces from Afghanistan [28]. The prediction accuracies for leaf spot obtained using the M3 model with the CV2 and CV0 schemes were inconsistent depending on the genetic background (0.14-0.41 in the BVC, 0.31-0.32 in the ACG, and 0.74-0.75 in the PAC populations). The prediction accuracies that we found for leaf spot in the PAC population were greater than the 0.45 to 0.66 reported in two populations from the International Bread Wheat Screening Nurseries [30] and the 0.40-0.42 mean accuracies reported in European winter wheat [41].We compared prediction accuracies of the baseline model with two reaction norm models (M2 and M3) across five diseases recorded in three Canadian spring wheat populations. We found statistically significant differences in prediction accuracies among the three models in all three populations, but a significant difference between the M2 and M3 models was observed only in the association mapping panel. However, the M3 model that incorporated GE interactions showed some obvious advantages over the main effect M2 model, including increasing accuracies for traits up to 54% (2-6% on average per trait-population combination) as well as accounting for an overall average of 10.2% of residual variances that were not explained by the M2 model. The prediction accuracies from the CV1 scheme were smaller than both the CV2 and CV0 schemes, which suggests a less likely scenario in successfully implementing large-scale GS using newly developed lines that have not yet been phenotyped at any of the environments. The moderate to very high accuracies obtained with the CV2 and CV0 schemes, however, demonstrated highly likely scenarios for successfully implementing GS to develop disease-resistant spring wheat germplasm either by reducing the number of lines evaluated in each environment or predicting the performance of lines in future environments using data from some other environments. As far as we are aware, this is the first comprehensive genomic prediction study that has assessed the predictive ability of the reaction norm models across all five major wheat diseases in spring wheat and common bunt in wheat for the first time, which provides highly valuable information to breeders.","tokenCount":"8269"} \ No newline at end of file diff --git a/data/part_3/9640136919.json b/data/part_3/9640136919.json new file mode 100644 index 0000000000000000000000000000000000000000..d57b35ecbf198a9fd75186cd3aed255806234333 --- /dev/null +++ b/data/part_3/9640136919.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"b8f073d9ac07212acf7b68f6f94616c1","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/f560fd68-cedf-460e-8e2b-a97bd3a971e3/retrieve","id":"634944398"},"keywords":["drought tolerance, early-maturity, genetic gains, hybrids, stress tolerance AD, anthesis date","ANOVA, analysis of variance","ASI, anthesissilking interval","BHC, bad husk cover","BLUE, best linear unbiased estimate","CIMMYT, International Maize and Wheat Improvement Center","CGIAR, Consultative Group on International Agricultural Research","CR, common rust","DH, doubled haploid","EH, ear height","EPP, ears per plant","ER, ear rot","ESA, Eastern and Southern Africa","GLS, gray leaf spot","GY, grain yield","HI, harvest index","IITA, International Institute for Tropical Agriculture","MSV, maize streak virus","N, nitrogen","OPV, open pollinated variety","PA, plant aspect","PH, plant height","REML, restricted maximum likelihood","RL, root lodging","SD, silking date","SEN, senescence","SL, stalk lodging","SSA, Sub-Saharan Africa","TEX, texture","TLB, Turcicum leaf blight"],"sieverID":"8e573595-e1e6-40fe-ba08-994e3e608b30","pagecount":"17","content":"Genetic gain estimation in a breeding program provides an opportunity to monitor breeding efficiency and genetic progress over a specific period. The present study was conducted to (i) assess the genetic gains in grain yield of the early maturing maize hybrids developed by the International Maize and Wheat Improvement Center (CIMMYT) Southern African breeding program during the period 2000-2018 and (ii) identify key agronomic traits contributing to the yield gains under various management conditions. Seventy-two early maturing hybrids developed by CIMMYT and three commercial checks were assessed under stress and non-stress conditions across 68 environments in seven eastern and southern African countries through the regional on-station trials. Genetic gain was estimated as the slope of the regression of grain yield and other traits against the year of first testing of the hybrid in the regional trial. The results showed highly significant (p< 0.01) annual grain yield gains of 118, 63, 46, and 61 kg ha −1 year −1 under optimum, low N, managed drought, and random stress conditions, respectively. The gains in grain yield realized in this study under both stress and non-stress conditions were associated with improvements in certain agronomic traits and resistance to major maize diseases. The findings of this study clearly demonstrate the significant progress made in developing productive and multiple stress-tolerant maize hybrids together with other desirable agronomic attributes in CIMMYT's hybrid breeding program.Maize (Zea mays L.) is a widely grown staple crop in Africa covering nearly 42 million hectares (ha) that accounting for 21% of the total global maize area. Africa's total share of maize production, however, is 97 million tons, accounting only for approximately 8% of the world's production (FAOSTAT, 2023). The crop is an important source of calories and protein for the poor households of Sub-Saharan Africa (SSA) (Shiferaw et al., 2011). Average annual maize consumption in Africa is 44 kg per capita yr -1 , and it supplies 391 Kcal per capita day -1 and 10 g protein per capita day -1 (FAOSTAT, 2023). Maize consumption in Southern Africa is higher than the other regions, with food supply of 87 kg per capita yr -1 that represents 757 Kcal per capita day -1 and 20 g protein per capita day -1 (Shiferaw et al., 2011;FAOSTAT, 2023). Worldwide maize yields must double by 2050 to meet future needs (Ray et al., 2011). This will require an increase in the rate of yield gain from 1.6% yr -1 to 2.4% yr -1 . From 1961 to 2021, maize production in Africa increased from 16 million metric tons to 97 million metric tons (FAOSTAT, 2023). This is a 6-fold increase in maize production across the continent. However, the increased production was mainly attributed to expansion in the area under maize production, as opposed to other regions of the world where an increase in maize production is largely associated with increased yields (Onyutha, 2019). Several studies indicated the potential of increasing maize productivity in Africa beyond the current levels through adoption of improved maize varieties and sustainable and intensive farming options (Abate et al., 2017;Cairns et al., 2021;Epule et al., 2022;Prasanna et al., 2022).Low maize yield in most parts of Africa could be attributed to various factors, including inadequate adoption of climate-resilient varieties, suboptimal crop management, and environmental and socioeconomic conditions (Shiferaw et al., 2011). Maize is mainly grown with limited inputs under rainfed conditions by resourcelimited farmers, often under the threat of diseases and insect pests (Mebratu et al., 2019;Prasanna et al., 2021). Low soil nitrogen (N), drought, and heat stress have long been recognized as the most important maize production constraints in Africa (Bänziger and Diallo, 2004;Diallo et al., 2004;Bänziger et al., 2006;Weber et al., 2012;Cairns et al., 2013). Under smallholder farmer conditions, these abiotic stresses can occur simultaneously, and their combined effect can cause a significant yield reduction (Cairns et al., 2021;Badu-Apraku et al., 2022). In addition to the inherent low soil fertility, low N stress is also due to removal of crop residues for use as animal feed and source of fuel, soil erosion/leaching, and poor weed control by the farmers (Bänziger et al., 2006). This situation may be worsened due to unavailability, inaccessibility, and unaffordability of fertilizers (Bonilla Cedrez et al., 2020). In addition, rainfall uncertainties and rise in temperature associated with climate change will further aggravate the intensity and frequency of drought in SSA (Shiferaw et al., 2014), increasing the vulnerability of smallholder farmers (Cairns et al., 2021). While drought can affect maize at all stages of growth and development, flowering and early grain-filling stages are the most sensitive, as drought stress disrupts pollination and reduces grain filling and kernel development (Bänziger et al., 2006;Edmeades et al., 2017). To alleviate the negative impacts of these stress factors, the development and deployment of multiple stresstolerant maize varieties are an important component of strategies to improve food security and income of smallholder farmers who mainly depend on maize for their livelihoods.CIMMYT maize breeding programs in Eastern and Southern Africa (ESA), in close collaboration with various public and private sector institutions, have been engaged in the development and deployment of multiple stress-tolerant varieties (Cairns and Prasanna, 2018;Prasanna et al., 2021). Results of on-farm trials under low input and drought stress conditions showed that new stress-tolerant maize in ESA yields up to 25% more than the current commercial varieties (Setimela et al., 2017). Moreover, the yield potential of such varieties is not compromised under optimal growing conditions in climatically good years (Setimela et al., 2017;Cairns and Prasanna, 2018).Estimating the rate of genetic gain within a breeding program provides an opportunity not only to monitor breeding efficiency and genetic progress (Eriksson et al., 2018) but also to identify gaps and steps toward improvement strategies for more effective breeding programs (Lee and Tollenaar, 2007). Genetic trends can be estimated using historical trial data or era studies, whereby varieties released in different years are evaluated in common trials. \"Era studies\" provide the most unbiased estimates of genetic gain because they avoid differences in agronomic management or climate variability that can confound the genetic trend. When genetic trends are estimated using historical data, nongenetic trends can only be analyzed for data that come from long-term trials conducted across years. In historical data, time trends are incorporated to show differences associated with historic variation in climate and crop management practices. All of the studies that dissected genetic gains into nongenetic and genetic components used historical trial data (e.g., Mackay et al., 2011;Laidig et al., 2014;Piepho et al., 2014;Laidig et al., 2017;Kumar et al., 2021;Laidig et al., 2021;Hartung et al., 2023;Rahman et al., 2023;Raymond et al., 2023). Using historical data collected over at least 10 years, these studies analyzed the contribution of genotypes (genetic trend) and of the environments (nongenetic trends) to quantify the impact of plant breeding and environmental factors to grain yield (GY) improvement over time. In the era studies, varieties from different years are tested in the same environment (e.g., optimal, managed drought, managed low N, and random stress) and year, management practices and time. This approach avoids differences in agronomic management or climate change confounding the genetic trend (Duvick, 2005;Badu-Apraku et al., 2017;Rutkoski, 2019, Badu-Apraku et al., 2021;Badu-Apraku et al., 2022;Masuka et al., 2017a, Masuka et al., 2017b;Liu et al., 2021;Asea et al., 2023). An era study was used for the first quantification of genetic gain within the maize breeding program in ESA at CIMMYT over the period 2000-2010 (Masuka et al., 2017a). Genetic gains for GY in the hybrid breeding program under optimal conditions, managed drought, random drought, low N, and maize streak virus (MSV) were estimated to have increased by 109.4 kg ha −1 yr −1 , 32.5 kg ha −1 yr −1 , 22.7 kg ha −1 yr −1 , 20.9 kg ha −1 yr −1 , and 141.3 kg ha −1 yr −1 , respectively. In the open pollinated variety (OPV) maize breeding program, genetic gains for GY under optimal conditions, random drought, low N, and MSV were estimated to have increased by 109.9 kg ha −1 yr −1 , 29.2 kg ha −1 yr −1 , 84.8 kg ha −1 yr −1 , and 192.9 kg ha −1 yr −1 in the early-maturity group and 79.1 kg ha −1 yr −1 , 42.3 kg ha −1 yr −1 , 53.0 kg ha −1 yr −1 , and 108.7 kg ha −1 yr −1 in the intermediatelate maturity group (Masuka et al., 2017b). Using historical data from 2013 to 2021, Prasanna et al. (2022) reported genetic trends across CIMMYT's tropical maize breeding pipelines globally. In the early-maturity breeding pipeline for Southern Africa, genetic trends were 138 kg ha -1 yr -1 (1.99% yr -1 ) under optimal conditions, 45 kg ha -1 yr -1 (2.13% yr -1 ) under managed drought, and 108 kg ha -1 yr -1 (2.87% yr -1 ) under random stress. There was no significant trend in GY under low N stress. Badu-Apraku et al. ( 2022) reported annual genetic gains in GY of 75 kg ha −1 yr −1 (2.91%) and 55 kg ha −1 yr −1 (1.33%) under low-and high-N environments, respectively. Era study conducted in Ethiopia showed genetic gain in GY of 62.26 kg ha −1 yr −1 (1.24% yr −1 ) in varieties released between 1973 and 2015; however, this study combined varieties ranging from old OPVs to new hybrids (Kebede et al., 2020). Asea et al. (2023) compared genetic trends of National Agricultural Research Organization (NARO)-Uganda, CIMMYT, and private seed companies' hybrids released between 1999 and 2020 in Uganda and reported genetic gains of 1.30% yr −1 (59 kg ha −1 yr −1 ), 1.98% yr −1 (106 kg ha −1 yr −1 , and 1.71% yr −1 (79 kg ha −1 yr −1 ), respectively.The early-maturity white maize market segment accounts for approximately 3.7 million hectares (M ha) in Southern Africa (including Malawi, Mozambique, South Africa, Zambia, and Zimbabwe), with an annual production of 5.0 million metric tons (MMT) and an estimated value of US$ 1.12 billion (https:// ebs.excellenceinbreeding.org/wp-content/uploads/2023/03/MSpublic.html). The market segment covers almost 2 million people and is largely comprising female-headed households (Cairns et al., 2022). The pipeline has undergone significant changes over the past 25 years (Figure 1). In 2006, increased donor investment allowed the expansion of the abiotic phenotyping network and regional trial network. In 2016, breeding pipelines moved from trait-based (project-based) to genetic gain breeding and transitioned into product profile by incorporating market intelligence. Over the past decade, the early-maturity breeding pipeline was modernized by wide adoption of electronic data capture (FieldBook), doubled haploid (DH) technology, forward breeding for MSV and genomic selection for GY under drought tolerance (Prasanna et al., 2021;Prasanna et al., 2022). Masuka et al. (2017a) previously estimated genetic trends in southern Africa up to 2010; however, the newest hybrids in this study were developed in 2006. Given the extensive changes made in the CIMMYT Southern African early maize breeding pipeline over the past decade, it is important to reevaluate genetic progress. Thus, this study was conducted to (i) assess the genetic gains in GY of early maturing maize hybrids developed during 2000-2018 by the CIMMYT-Southern African early maturing maize breeding program and (ii) identify key agronomic traits that have contributed to the genetic progress of GY under various stress and non-stress conditions.An era panel was assembled from CIMMYT Southern African early maturing maize breeding program (<70 days to anthesis under normal growing conditions at CIMMYT-Harare Breeding Station) between 2000 and 2018. The hybrids were selected based on superior performance in the regional trials conducted across ESA and organized by the year they were first tested in the regional trials. A total of 75 hybrids, including 72 test hybrids and three benchmark commercial check hybrids, were used in the study. The number of hybrids tested per year ranged from 2 to 4, except for 2014, 2016, 2017, and 2018, where 5, 6, 6, and 7 hybrids, respectively, were included. Almost all of the hybrids tested were three-way crosses developed from fixed inbred lines that were generated through pedigree breeding or DH technology. The inbred line parents were selected through a series of testcross performance across stress and non-stress conditions from Stage 1 to Stage 3 trials. In addition, per se performances of the lines were assessed for yield performance, stress tolerance, and combining other desirable agronomic traits during the process of line development as well as in organized inbred line performance field trials. The breeding schemes adopted in generating the inbred lines and hybrids used in this study were described in detail by Prasanna et al. (2022). The three benchmark commercial check hybrids used were SC403 (released in 1998), SC513 (released in 1999), and Pan413 (released in 1998) that represented early maturing hybrids widely grown in ESA.A total of 68 trials, each consisting of a complete set of 75 hybrids, were planted during 2018-2019 across seven ESA countries, namely, Ethiopia, Kenya, Malawi, Mozambique, South Africa, Zambia, and Zimbabwe (Table 1). The trials were conducted at the experimental sites under management conditions that were representative of the maize-growing ecologies of the SSA (Hartkamp et al., 2000). These included 32 optimal (well-watered and well-fertilized), 14 low N stress, nine managed drought stress, and 13 environments that have undergone random stresses, including abiotic and biotic stresses (Table 1). Random stress is a mixture of several uncontrolled stress conditions that have happened intermittently at any stage during crop growing season affecting the yielding potential of the crop (Setimela et al., 2017;Prasanna et al., 2022). Geographical locations, weather, and soil parameters of the test locations are described in Figure 2 and Supplementary Table S1. All of the optimally managed and low soil N and random stress trials were implemented during the respective main growing seasons of each country, whereas the managed drought stress trials were conducted on-station during the dry or winter seasons entirely under irrigation. Fertilizer rates were applied based on site-specific recommendations. The optimal trial sites were managed through crop rotation and incorporation of residues to maintain good soil health. All low N trials were planted on N-depleted plots and received no N fertilizer. Nitrogen depletion was achieved by continuously planting maize on the same plot for at least 5 years without N fertilizer application and by removing residues at harvest. Drought stress was induced by withholding irrigation 2 weeks ahead of anticipated flowering date through grain maturity. The targets of managed low N and drought stress experiments were to achieve 30%-40% of the average GY under optimum management condition at the same location (Bänziger et al., 2000;Menkir et al., 2022). Random stress trials were planted under rainfed conditions during the main growing seasons with suboptimal management at locations often experiencing simultaneous occurrence of several biotic and abiotic stresses including drought, pests, and diseases (Setimela et al., 2017;Prasanna et al., 2022). The hybrids were hand-planted in two-row plots of 4.0 m long with spacing of 0.75 m between rows and 0.25 m between plants and a final plant density of 53,333 plants ha -1 . Initially, two seeds per hill were sown and then thinned to one seedling per hill 3 weeks after emergence. An alpha-lattice experimental design was used with three replications per entry.Grain weight was measured from all of the shelled ears of each plot, and the percentage grain moisture content was determined. GY was calculated from the grain weight, adjusted to moisture content of 12.5%, and expressed in tons ha -1 . In the low N and drought stress trials, data were collected from wellbordered plants by eliminating the plant nearest to the alley of each row to avoid border effects. Days to anthesis (AD) and silking (SD) were captured as the number of days from planting to when 50% of the plants had shed pollen and silk emergence, respectively. Anthesis-silking interval (ASI) was recorded as the difference between SD and AD. Nearly 2 weeks after silking, the averages of five representative plants were used to measure plant (PH) and ear (EH) heights as the distance from the soil level to the first tassel branch and the uppermost ear node, respectively. Root lodging (RL) and stem lodging (SL) were recorded as percentages of plants per plot that leaned more than 30°from vertical and had stems broken below the node bearing the upper ear, respectively. The number of ears per plant (EPP) was obtained by dividing the total number of ears harvested by the corresponding number of plants harvested. An ear was counted when it had at least one fully developed grain. Kernel texture (TEX) was rated using 1-5 scale, where 1 = flint and 5 = very dent. Bad husk cover (BHC) was recorded as a percentage of ears with exposed tips in a plot. Ear rot (ER) was expressed as a percentage of rotten ears to the total number of ears harvested per plot. Plant aspect (PA) was rated using a 1-5 scale as an overall phenotypic appearance of the plants per plot using visual assessment, where 1 = plots with uniform plants, good ear placement, big cob size, and less disease incident, and 5 = very poor overall appearance of the plants. Ear aspect (EA) was rated on a 1-5 scale, where 1 indicates large, well-filled, clean, and uniform ears, and 5 represents ears with undesirable characteristics using visual assessment. Leaf senescence (SEN) was scored for the low N and drought stress experiments on a scale of 1-10, where 1 indicates less than 10% the leaf area dead, and 10 indicates 100% dead leaf area (Bänziger et al., 2000).Harvest index (HI) was estimated at harvest as the ratio of GY to total aboveground biomass expressed in percentages. Diseases such as gray leaf spot (GLS), Turcicum leaf blight (TLB), and common rust (CR) were recorded on a scale of 1-9, where 1 = slight leaf infection and 9 = very severe leaf infection.Analysis of variance (ANOVA) for individual environment was carried out for GY and other traits using restricted maximum likelihood (REML) approach (Alvarado et al., 2020). Environments with heritability <0.2 were excluded from combined analyses. The analyses were conducted across all trials and separately for each management condition (optimal, low N, managed drought, and random stress). In each of these management conditions, site by year combinations were considered as environments. Variance components and best linear unbiased estimates (BLUEs) were determined for GY, other agronomic traits, and disease scores using a linear mixed model, treating test environment, replications, and incomplete blocks within replications as random and hybrids as fixed effects.where Y ijkl is the performance of the i th hybrid at j th environment in the k th replication of the l th incomplete block; m is the overall mean; G i is the effect of the i th hybrid; E j is the effect of the j th environment; R k (E j ) is the effect of the k th replication in the j th environment; B l (R k E j ) is the effect of l th incomplete block nested into the k th replication in the j th environment; GE ij is the ij th hybrid × environment interaction effect; and Ɛ ijkl is the residual effect. Broad sense heritability (H) for individual experiment with r replications was calculated as follows:Heritability for measured traits was estimated across each management condition as follows:Spatial variability of (A) seasonal rainfall total (mm), (B) seasonal mean temperature (°C), and (C) soil texture in Eastern and Southern Africa regions with overlay of testing sites and management conditions used for the study.where d 2 g represents hybrid variance, d 2 g×e is the variance due to hybrid by environment interactions, d 2 e is the error variance, e is the number of test environments, and r is the number of replications within a test environment.A multi-environment trial analysis (META-R) package in the R software (Alvarado et al., 2020) was used to analyze phenotypic and genetic correlation coefficients among pairs of stress and non-stress environments. Adjusted mean GY and other measured traits of the hybrids developed over the 19-year period were used to estimate the genetic gain. As described by Khanna et al. (2022), the genetic gain was estimated separately for the four management conditions, viz., (a) optimum, (b) low N stress, (c) managed drought stress, and (d) random stress by regressing trait mean against the year of first testing of the hybrid in the regional/advanced trial. Data from the commercial checks were excluded from the regression analysis. The genetic gain was represented by the regression coefficient (b value); mean GY and other traits of the hybrid were dependent variables (y); and the year of first testing of the hybrid was an independent variable (x). A genetic gain was declared significant when the probability of the regression coefficient was less than 0.05. The regression model used for the estimation of genetic gain was as follows:where y ip represents the adjusted mean of the i th genotype first tested in p th year, a is intercept, b is linear regression coefficient (genetic gain expressed in t ha −1 y −1 ), x i is year of first testing of the hybrid in the regional/advanced trial, and Ɛip is experimental error plus deviation from the regression model.The genetic gain per annum was estimated by dividing the b value as the numerator by the intercept as the denominator and multiplied by hundred (Badu-Apraku et al., 2021) as follows:where gg yr -1 is genetic gain per year, b is linear regression coefficient, and a is intercept.The statistical method used for genetic gain analysis in this era trial was selected based the genotypes studied and structure of the data. In this trial, breeding materials from different years were evaluated in a common set of environments that would overcome the confounding effects of changes in agronomic practices or climate change that cause nongenetic trends (Piepho et al., 2014;Rutkoski, 2019;Kumar et al., 2021;Rahman et al., 2023). Thus, the genetic trends in this dataset are due to breeding efforts, which can be assessed based on the year a genotype first entered the regional trial.Across optimum management conditions, heritability among all of the measured traits ranged from 0.13 for CR to 0.99 for AD, and most traits had high heritability of >0.60 except CR (Table 2). Under low N stress, heritability among measured traits ranged from 0.25 to 0.96 (Table 3). Traits such as GY, AD, SD, ASI, PH, EH, and TEX had high heritability ranging between 0.69 and 0.96, whereas the remaining traits showed low to moderate heritability of 0.25 to 0.56. Similarly, heritability under managed drought stress ranged from 0.22 for ASI to 0.96 for AD (Table 4). Several traits assessed under this stress had high heritability, except ASI (0.22), PA (0.49), and SL (0.40). Under random stress condition, heritability ranged from 0.32 (EPP) to AD (0.94). Most traits, including GY, AD, SD, PH, EH, TEX, and PA had high heritability of >0.85 (Table 5). Overall, heritability values for most traits were higher under optimum management conditions as compared to stress environments. For instance, GY had the highest heritability of 0.97 under optimum management, but heritability of 0.89, 0.88, and 0.84 under low N, managed drought, and random stress, respectively. In each environment, GY heritability ranged from 0.42 to 0.92 with a mean of 0.70 under optimum environments. Under each stress environment, heritability ranged from 0.20 to 0.73 (mean = 0.50), 0.56 to 0.79 (mean = 0.68), and 0.20 to 0.69 (mean = 0.46) under low N, managed drought, and random stress, respectively.The analyses of variance showed highly significant genotypic (G), environment (E), and G × E interaction effects for most studied traits under all management conditions, except for CR under optimum, SL under low N, and EPP under random stress environments (Tables 2-5). Variances due to environments were higher under all management conditions followed by genotypic variances, whereas G × E variances were very low. Across all trials, variances due to E and G × E were significantly higher than G variances, since the management conditions of the test environments were distinctly different from each another (Supplementary Table S2).Mean, minimum, and maximum performances of all traits measured under various management conditions were presented in Tables 2-5 and Supplementary Table S3. Under optimum management (Table 2), mean GY was 7.77 t ha -1 , with a range between 5.73 and 9.59 t ha −1 . Under low N stress conditions, GY varied from 2.36 to 4.22 t ha -1 , with a mean of 3.46 t ha -1 (Table 3). Mean GY was 2.62 t ha -1 , with a range of 1.90-3.27 t ha -1 under managed drought environments (Table 4). Across random stress environments, GY ranged from 2.95 to 5.19 t ha -1 , with a mean of 4.30 t ha -1 (Table 5). Among agronomic traits, AD, SD, ASI, ER, and percent of lodged plants increased under stress conditions as compared to optimum management, while significant reduction was observed in EPP under stress environments (Tables 2-5).The era hybrids had higher GY than the commercial checks under all management conditions (Supplementary Figure S1). On average, the hybrids showed 26%, 40%, 41%, and 40% yield advantages over the mean of commercial checks under optimum, low N, managed drought, and random stress, respectively. The yield increases over the mean of benchmarked check hybrids ranged from 9% to 48% under optimal, 13% to 62% under low N, 21% to 70% under managed drought, and 17% to 62% under random stress conditions. Proportionally, the era hybrids had greater yield advantage over the checks under stress conditions than non-stress environments (Supplementary Figure S1). Hybrids selected in the later years, especially from 2013 to 2018, had higher GY advantage over the benchmarked commercial check hybrids (released in 1998 and 1999) than the hybrids selected during 2000 to 2012 (Figure 3). As compared to optimum management, low N stress environments used for this study reduced hybrid yields by an average of 56%, with a range of 51%-61%. Similarly, the mean GY reductions were 67% and 45% under managed drought and random stress, with ranges of 64%-70% and 42%-60%, respectively (Figure 4; Supplementary Figure S2). For GY, positive and significant correlation coefficients that ranged from 0.78** to 0.921** were observed among pairs of data combined within each management condition. Managed drought had positive and significant (r = 0.78**) correlation with optimum management and random stress. Low N stress environment had strong positive correlations (r > 0.80**) with the other management conditions. A strong and positive association (r = 0.91**) was observed between optimum and random stress environments (data not presented). However, analysis of correlation coefficients for GY among selected individual sites under stress and non-stress environments showed a strong association among optimum and random stress environments (Supplementary Table S4). On the other hand, low N and managed drought stress environments had a low correlation coefficient with most stress and non-stress environments.Significant improvements in GY and other traits were observed in the hybrids identified over the 19-year study period (2000)(2001)(2002)(2003)(2004)(2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012)(2013)(2014)(2015)(2016)(2017)(2018). The results of regression analyses showed annual GY increases of 118 kg ha −1 yr −1 , 63 kg ha −1 yr −1 , 46 kg ha −1 yr −1 , and 61 kg ha −1 yr −1 , indicating annual yield gains of 1.78%, 2.21%, 2.13%, and 1.64% under optimum, low N, managed drought, and random stress conditions, respectively (Figure 5; Tables 6-9). The coefficient of determination (R 2 ) for hybrid GY regressed against the year of first testing in regional trials ranged from 0.55 to 0.75. Among the other measured traits, RL, SL, TEX, PA, GLS, and TLB had significant (p< 0.01) regression coefficients under optimal environment. RL and SL decreased by 3.0% and 2.5%, respectively. Kernel TEX score increased by 0.04 (1.71%) per year. Among the diseases, GLS and TLB scores decreased by 0.05 and 0.04, representing annual decreases of 1.27% and 1.02% in disease scores, respectively. There was no significant change in AD, SD, ASI, PH, EH, EPP, BHC, ER, HI, EA, and CR under optimal management (Table 6). Under low N stress, significant (p< 0.05) changes in the performance of hybrids were observed for RL, SL, TEX, and PA but nonsignificant for all other traits (Table 7). Percent change in RL and SL over the study period was -2.9% and -1.6%, respectively. Kernel TEX score showed an annual increase of 1.5%, whereas PA score decreased by 0.01 per year, denoting a yearly decrease of 0.40%. Under managed drought, regression analyses showed significant changes in SL, EPP, and TEX only but not for the other traits (Table 8). Annually, SL decreased by 1.6%, whereas EPP and TEX increased by 0.40% and 0.53%, respectively. Under random stress, only RL, SL, and TEX had significant regression coefficient of -0.21, -0.12, and 0.03, representing relative annual changes of -1.79%, -2.06%, and 1.20%, respectively.The current study was conducted to assess the genetic gains of hybrids developed during a period of 19 years (2000)(2001)(2002)(2003)(2004)(2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012)(2013)(2014)(2015)(2016)(2017)(2018) by CIMMYT-Southern Africa early-maturity white maize breeding program. Most measured traits had high broad-sense heritability (>0.60) under all management conditions, indicating that these traits are highly heritable and selection for improvement of the traits would be effective. However, heritability values under stress environments were lower than that of optimal, which attributed to high residual variances in the stress trials (Weber et al., 2012;Masuka et al., 2017a;Masuka et al., 2017b;Das et al., 2019). As shown in Tables 2-5, residual variances for GY under low N and managed drought stress were 2.9 and 4.7 times higher than genetic variances under the same management. Under optimum management and random stress conditions, however, residual variances for the same trait were 2.4 times that of genetic variance. The higher heritability of GY and other measured traits under optimum conditions implied greater genetic variance under optimum conditions compared to stress environments, suggesting the efficiency of selection for these traits under optimum conditions. Similar to the current findings, Bänziger et al. (1997) and Ertiro et al. (2022) reported 29% and 30%, respectively, less heritability under low N as compared to optimum conditions. Significant genotypic variances for GY and most measured traits in both the stress and non-stress environments indicate the presence of considerable genetic variability among the era hybrids studied. This suggests that further genetic gains from selection can be achieved for improvements in GY and other studied traits under the target environments. Significant environmental variances for almost all of the studied traits show that each test environment was unique in identifying superior hybrids. The significant G × E variances observed for GY and other traits under stress and optimal environments indicated inconsistent expression of the traits and change in the ranking of the era hybrids across the test environments. This result signifies the need for extensive testing of the hybrids under different management conditions to identify 2017) indicated that the variable response of genotypes to varying environmental conditions constitutes a major challenge in the identification of superior maize hybrids for wide or narrow adaptation. Thus, breeders need to devise a suitable breeding strategy to identify elite multiple stress-tolerant hybrids with stable performance across a targeted population of environments.The hybrids used in this era study showed variable performances as depicted by hybrid means and ranges of values for various traits under stress and non-stress environments. Almost all of the hybrids had higher GYs and other desirable traits than the benchmark commercial check hybrids, indicating the potential for identifying and commercializing new sets of hybrids with superior performance over the commercial hybrids that were under production in ESA when the era hybrids under study were identified. Advantages of newly developed stress-tolerant hybrids over the commercial check hybrids in GY and other desirable traits have been previously reported by various investigators (Badu-Apraku et al., 2017;Setimela et al., 2017;Worku et al., 2020;Menkir et al., 2022). The era hybrids showed higher GY advantage over the commercial checks under stress conditions Mean grain yield (t ha -1 ) of era hybrids evaluated under optimal, low N, managed drought, and random stress management conditions in trials conducted in 2018 and 2019. (40%-41%) than under optimal environmental conditions (26%), indicating the substantial progress made by CIMMYT, in collaboration with public and private sector institutions, in improving tropical maize germplasm for stress tolerance. The improvement has been mainly attributed to increased stress tolerance, primary drought, and low soil fertility tolerance (Bänziger et al., 2000;Bänziger et al., 2006;Setimela et al., 2017;Worku et al., 2020;Prasanna et al., 2021;Prasanna et al., 2022). The yield reductions observed under the stress conditions used for this study, as compared to the optimal environments, were comparable to the 40%-60% average yield reductions reported by Bänziger et al. (2000) to characterize maize genotypes for stress tolerance. Similar to the current findings, Setimela et al. (2017) reported average GY reductions of 77%, 68%, and 54% under low N, managed drought, and random stress as compared to optimum management in regional yield trials conducted in ESA. Regional collaborative yield trials conducted for 8 years in West Africa showed that drought stress reduced average hybrid maize yields by 54%-80% (Menkir et al., 2022). Variable levels of GY reductions would be expected under managed and random stress conditions depending on the intensity of stress under which the crop is grown (Mebratu et al., 2019).Comparative performances of the hybrids used in this study relative to the commercial checks were assessed in the regional trials conducted during 2000-2018. Commercial checks included in the regional trials and in this era trial were the best available hybrids widely grown in the ESA region. This study consisted of the best hybrids selected from the regional trials, with GY advantages of at least 10% or significantly better performance for other key traits as compared to the mean of the commercial checks in the regional/ advanced trials. Prerelease maize hybrids selected based on regional performance data are announced on the CIMMYT website (www.cimmyt.org) for licensing by NARS and seed company partners that will register and commercialize the selected hybrids. Several hybrids from this era panel were registered and commercialized in one or more countries. For example, hybrids CZH1258, CZH142055, and CZH15467 (Supplementary Table S3) were commercialized each in more than five countries with different names.Poor correlation of low N and managed drought stress environments with other stress and non-stress environments indicated that selection under one management condition for high GY performance was less efficient than selection under the target environmental condition. Therefore, maize breeding programs targeting stress and non-stress production conditions in SSA should include the desired selection environments to improve the selection efficiency (Bänziger et al., 1997;Ertiro et al., 2020). As suggested by Bänziger et al. (2006) and Weber et al. (2012), combined evaluations across optimum management, low N, managed drought, and random stress conditions might be of advantage for indirect selection. A relatively strong association among optimum and random stress environments (Supplementary Table S3) showed that greater improvements under random stress were predicted for direct selection and indirect selection under optimum management conditions.Significant genetic gains of 118 kg ha −1 yr −1 , 63 kg ha −1 yr −1 , 46 kg ha −1 yr −1 , and 61 kg ha −1 yr −1 were observed for GY under optimal, low N stress, managed drought stress, and random stress conditions, respectively, in the CIMMYT Southern Africa earlymaturity breeding program over the past two decades. The yield gains were higher than those of most studies previously reported (Table 10). Particularly, higher genetic gain was observed under optimal management and low N stress as compared to the reports of Masuka et al. (2017a); Masuka et al., (2017b) and Prasanna et al. (2022) on CIMMYT's breeding pipelines in ESA. This is, in part, due to the longer period this study covered, the methodology used, and genotypes studied. In this study, era hybrids selected from the southern African early maturing maize breeding pipeline regional trials conducted from 2000 to 2018 were evaluated in common trials across various management conditions. Prasanna et al. (2022) used historical data from 2013 to 2021 regional hybrid trials to monitor real-time genetic trends and provide a baseline for future investments in tropical maize breeding. Masuka et al. (2017a) evaluated era panel of 67 best-performing hybrids selected from the regional trials of CIMMYT ESA maize breeding pipelines conducted from 2000 to 2010 in eight locations across six countries. These hybrids were drawn from various breeding pipelines and were not disaggregated by maturity groups and adaptation agroecology. Masuka et al. (2017b) documented genetic gain for maize GY within the CIMMYT ESA OPV breeding pipeline using varieties selected from regional trials over a 12-year period (1999)(2000)(2001)(2002)(2003)(2004)(2005)(2006)(2007)(2008)(2009)(2010)(2011). Genetic gains in GY within CIMMYT's Southern Africa earlymaturity maize breeding program are likely to be, in part, associated with the significant donor investment over the past two decades. The continued investment in the breeding program has allowed expansion of the phenotyping network and use of innovative breeding tools and technologies. Expansion of testing networks from very few CIMMYT and NARS research stations in early 2000s to diverse on-station testing environments across ESA has led to improved selection accuracy for important traits. Some of the lines and testers used to constitute the recent maize hybrids included in this study were developed using DH technology, besides introgression of drought-tolerant, disease-resistant, and expired Plant Variety Protection (ex-PVP) temperate maize germplasm.Although considerable gains in GY were observed in this study under various management conditions, actual yield gain was higher under optimum management (118 kg ha −1 yr −1 ) as compared to those of stress trials (46-63 kg ha −1 yr −1 ). Percent annual yield gains, on the other hand, were higher under low N (2.21% yr −1 ) and managed drought (2.13% yr −1 ) stresses than those under optimum management (1.78% yr −1 ) and random stress (1.64% yr −1 ) environments, indicating that the hybrids selected for the study had favorable alleles or allele combinations responsible for increased GY under non-stress conditions. In this study, the random stress environments consisted of seasonal drought, late planting, low soil fertility, and weed infestation. These environments accurately simulate the stress conditions experienced by smallholder farmers in SSA (Masuka et al., 2017a).The significant gains in GY realized in this study under both stress and non-stress conditions were associated with improvements in certain agronomic traits and resistance to major diseases (GLS and TLB). Moreover, there was a significant reduction in SL and RL across all environments (with the exception of RL under drought stress). Both RL and SL are key traits used in the stage-gate advancement of candidate hybrids within CIMMYT's Southern Africa early-maturity maize breeding program. Badu-Apraku et al., 2017;Badu-Apraku et al., 2022) also reported that genetic gain in GY was strongly associated with improved lodging resistance.While the early-maturity maize market segment in Southern Africa contains both flint and dent (except in Malawi), we found a significant shift toward dent kernels. In Malawi, the market demands flint maize varieties, and low market penetration of new improved maize varieties was linked to the release of dent varieties (Lunduka et al., 2012). In most ESA countries, however, farmers prefer maize varieties with semi-flint texture (Kassie et al., 2017;Ekpa et al., 2018). Flint maize varieties are resistant to storage pests and provide higher flour output per unit of grain, while dent textured grains are softer and can easily be pounded compared to flint maize (Kassie et al., 2017). The shift toward dent kernel texture was due to indirect selection for improved GY, since maize genotypes with dent kernel texture tend to show higher GY than flint genotypes (Tamagno et al., 2015). Tamagno et al. (2015) observed that kernel number and weight were significantly higher in dents when compared to those of flints. The trend toward selection for dent type was also reported in the NARO (Uganda) breeding program (Asea et al., 2023).There was no change in EPP in this study except under drought stress where the number of ears increased by 0.4% between 2000 and 2018. No significant change was observed in ASI since the hybrids used in this study have already undergone at least three successive stages of performance evaluation and selection under stress and nonstress conditions. Badu-Apraku et al., 2021;Badu-Apraku et al., 2022) also reported no change in ASI in early and extra early maturing hybrids developed during 2008-2016. There were no significant changes in DA and DS across environments. These are to be expected since days to flowering as indicators of maturity are key traits used in variety advancement and germplasm that falls outside the range would not be selected. PH and EH were not changed during the study period, indicating that the hybrids were selected for stable plant stature that is tolerant to lodging. Several reports on tropical maize germplasm indicated the lack of strong association between gain in GY and change in other agronomic traits, including maturity and plant stature (Badu-Apraku et al., 2021, Badu-Apraku et al., 2022;Masuka et al., 2017a). Masuka et al. (2017a) argued that yield gain is not a function of an increase in the length of the photosynthetic period associated with increased maturity but rather a direct increase in tolerance to multiple stresses and/or an increase in overall yield potential. Duvick (2005) found no change in plant and ear heights in temperate germplasm over 70 years. The results of the present study also showed no significant changes in HI, which might be due to lack of direct selection for the trait in the breeding process. Despite the importance of HI for productivity, limited attention has been given to this trait in tropical maize breeding. Ruiz et al. (2023) provided the most comprehensive assessment of maize HI evolution over years of commercial maize breeding programs of temperate germplasm. The study indicated little or no increase in HI until the 1980s, but in the last half-century, positive genetic gains were reported for HI.Average N fertilizer use in maize production in SSA is estimated at 17.9 kg N ha -1 , with fertilizer use often lower on female-managed plots or within female-headed households (Jayne and Sanchez, 2021;Cairns et al., 2022). Using historical trial data between 2013 and 2021, Prasanna et al. (2022) found no significant yield gains under low N stress in this pipeline. The period used by Prasanna et al. (2022) covered the separation of the low N breeding pipeline and subsequent merger with multiple stress-tolerant maize breeding programs in ESA. The results from the present study suggest that significant genetic gains are being made within the early-maturity maize breeding pipeline in Southern Africa.Era trials that compare the performances of older and newer cultivars in a common set of environments and management conditions have been the most popular methods used to estimate genetic gains attributable to the effects of plant breeding and selection (Rutkoski, 2019). Several studies were conducted using this approach (Duvick, 2005;Badu-Apraku et al., 2017;Masuka et al., 2017a;Masuka et al., 2017b;Badu-Apraku et al., 2021;Badu-Apraku et al., 2022;Menkir et al., 2022;Asea et al., 2023). Unlike the use of historical data from long-term trials, the genetic gains estimated using data from era trials are not confounded due to nongenetic trends raising from change in agronomic practices and increased climate variability (Piepho et al, 2014;Rutkoski, 2019;Kumar et al., 2021;Rahman et al., 2023). The results of this study suggest that the gains observed in GY and other important traits of CIMMYT's early maturing maize hybrid breeding program were associated with genetic improvement efforts.Increased investment in hybrid maize breeding in Southern Africa and a culture of continuous improvement over the past two decades has resulted in significant genetic gains in GY across a range of stress and non-stress environments. Gains were higher those reported by Masuka et al. (2017a); that study included only candidate hybrids up to 2010 and did not coincide with increased donor investment in stress-tolerant maize breeding in Southern Africa through various projects (e.g., DTMA, WEMA, IMAS, and STMA). Our results highlight that these investments have translated into significant genetic gains in CIMMYT-Southern African early-maturity maize breeding program. The study also underscores the importance of smallholder farmers having access to a steady stream of improved early maturing maize varieties adapted to today's climate. One of the commercial checks included in this study (SC513) was released before the first candidate hybrid included in this study; SC513 remained a market-dominant hybrid over the past two decades. While absolute gains in farmers' fields could be lower than on-station yield levels, by growing more recently released multiple stress-tolerant maize varieties, smallholder farmers will have greater opportunity to benefit from these gains and improve their food security, climate adaptation, and livelihoods. Even small gains in GY onfarm can have significant impact on the livelihoods of resourceconstrained smallholder farmers (Hansen et al., 2019;Lunduka et al., 2019).To realize sustainable progress in terms of genetic gains in the maize breeding pipelines especially in the stress-prone tropical environments, continuous investment is required. This will enable integration of innovative breeding tools and technologies as well as continued utilization of an expanded germplasm testing networks in the relevant target population of environments to improve selection efficiency. Genetic gains observed in on-station trials of maize breeding pipelines need to be successfully translated into gains on-farm through timely replacement of old and obsolete hybrids with new and more productive genetics that can improve the productivity of targeted farming communities. administrative staff at the CIMMYT-Zimbabwe office for coordinating and distributing the seed shipments.","tokenCount":"7546"} \ No newline at end of file diff --git a/data/part_3/9663211845.json b/data/part_3/9663211845.json new file mode 100644 index 0000000000000000000000000000000000000000..2ec0da96bb3b4994b9bfb7642b1d03602ffac95d --- /dev/null +++ b/data/part_3/9663211845.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"95c3631eb21be0722c0fd7051503f7e0","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/4a647298-bc12-4559-a30b-d683299f1036/retrieve","id":"-2066964712"},"keywords":[],"sieverID":"cf2d6a01-32e1-43df-bec6-83d64377d0f8","pagecount":"7","content":"The procedure of disinfection and in vitro sowing of a set of materials corresponding to the BH16 group of Urochloa humidicola was carried out at CIAT headquarters, with this it was possible to establish In Vitro plants without high percentages of contamination by fungi or bacteria, in addition to finding that the use of sulfuric acid for scarification procedures before sowing generates germination results similar to those that would be obtained in silica sand. This being a significant and pioneering advance in the standardization of In Vitro propagation methods for U. humidicola.The term In Vitro culture in plants means to cultivate isolated parts of the plant, inside a glass jar in an artificial environment, in this way, the growth and development of various plant materials is promoted in containers that keep it isolated from the outside environment and allows the management of its conditions being controlled and aseptic (absence of germs) (Borges et al, 2009) (Zurita et al, 2014).The propagation of these new plants is favored due to the rapid growth of the plant material thanks to the components of the medium where they are grown and the moisture it contains (Murashige and Skoog, 1962).Thus, the establishment of In Vitro cultures by sowing seeds offers important advantages for propagation: 1) it quickly provides seedlings that serve as a source of explants to carry out micropropagation; 2) it is a way to conserve seedlings with natural genetic variability, and 3) it is a method that allows the germination of seeds that do not naturally or is very difficult to do under normal conditions (Fay, 1992;Pierik, 1993). Additionally, in vitro germination has advantages compared to that produced in natural conditions, since it can solve cases of total inhibition of germination, increase the germination rate, reduce the time and homogenize germination (López & González, 1996); However, one of the greatest difficulties that the successful establishment of in vitro culture presents is the presence of contaminating microorganisms, therefore, it is necessary to apply protocols that lead to minimizing or eliminating said microorganisms without affecting the viability of the cultures (García et al, 2015).In the case of Uroclhoa, there are few effective protocols to control pathogens that are considered quarantine and prevent their easy distribution (Casaya, T. 2004.), although methodologies are being developed for the disinfection of seeds and vegetative material in In Vitro crops that can guarantee the international shipment of this type of materials in Colombia, there is still no effective route for it (Aranzales, E., et al., 2016), for which, the Bh16 group was taken, an improved group of Urochloa humidicola (generation of 2016), which is about to enter its commercialization stage by Grupo Papalotla, a Mexican company dedicated to this work (Hare et al., 2007), for which its In Vitro propagation is necessary in correct aseptic conditions, as an alternative for sending the Hybrid group, this being the objective of this research.Two In Vitro sowings were carried out at CIAT headquarters, located at Km 17, of the recta Cali -Palmira, in Colombia, using CIAT's tissue culture laboratory facilities. The seed used was stored in the Tropical Forages Genetics Laboratory in a cold room, which maintains a temperature of 8 °c and a RH of 50%, said seed corresponds to the hybrid group Bh16, of which the quality, in terms of percentage of Germination in silica sand (ISTA, 1999) (Natera, JRM, Moreno, MJ, & amp;Moya, JF, 2009), Viability (Ruiz, MA 2009) and the storage time is 3 years, variables that are reported in Table 1.The seeds were selected based on the availability present in group Bh16, in this case, for sowing 1, 23 hybrids were selected as is shown in table1, and for sowing 2, 7 hybrids were selected, to reinforce the plants that have them as an option for In Vitro delivery, this information can be viewed in Table 2.This chemical scarification with sulfuric acid (García, J. and Cícero, SM 1992), was performed in the sowing 2, to check if the germination of the seeds in this way was faster, this process was carried out by placing the seeds in a beaker for a time of 15 minutes, the seeds were constantly stirred, then the acid was neutralized by washing with abundant water and finally they were dried on a tray with paper at room temperature, as shown in figure 1 Seed disinfection To disinfect the seeds that would be sown In Vitro later, for sowing 1, caryopses of Urochloa humidicola were used, from which the caryopsis had been manually removed, leaving only the caryopsis of these seeds; While for sowing 2, scarification was carried out with H2SO4 which is explained in the previous item. These seeds were disinfected by using broad -spectrum fungicides, Ethanol, sodium hypochlorite and liquid soap (Flores, Á. B., Personal communication), this procedure was carried out on July 23, 2020 for the sowing 1 and August 14, 2020 for sowing 2.. ), the medium was placed in test tubes No. 22 and / or Falcón tubes of 50 ml for sowing 1 and test tubes No. 12 for sowing 2 ( See figure 2), these were carried out in a laminar flow chamber, using 3 forceps for dissection during seed manipulation, a lighter to flame the forceps (which were alternated after being flamed so as not to manipulate seed with the newly flamed forceps) , aluminum foil for the case of test tubes No. 22 (For the falcon tubes, the plastic cap of these was used) and Vinipel tape to seal the tubes. After sowing was finished, everything was done under aseptic conditions and the instruments were sterilized and autoclaved, this procedure was carried out on July 23, 2020 for sowing 1 and on August 14, 2020 for sowing 2.Germination and contamination assesments.After carrying out the In Vitro sowings, these were placed inside an incubator, at 28 ° C and a 12 h photoperiod of white light, 4 days after sowing an evaluation was carried out to determine the percentage of contamination by fungi and bacteria, as observed in figure 2, and this data was reported in tables 1 and 2, germination for its part is constantly being reviewed and tables 1 and 2 are recorded in the same way. Based on the requirements of the experiment, the following tables were constructed, in which the values of the quality variables of the seeds selected for the In Vitro sowings are reported, as well as the data that have been obtained so far for the variables In Vitro, including the mean and standard deviation for all variables. In Vitro v ariables Average seeds have had has not been at all favorable, since it presents an average value of 1.7% and standard deviation 3.9 at 30 days after sowing, which does not resemble the behavior of the group in the viability evaluations (average 55.0% and standard deviation 27.5) and germination in silica sand (average 37.9% and standard deviation 20.8), this could be explained by the fact that the seeds were not subjected to scarification with sulfuric acid; which, in the case of Urochloa, has been shown to improve seed germination (Hernández Flores, E., et al., 2016), this was observed from the time of sowing on July 23, which is why It was decided to perform the sowing 2, with the groups that were not selected for the first botanical shipment of seed from Colombia to Mexico. The images of the state of the In Vitro plants can be viewed in the annexes.In Vitro sowing No. 2As already explained, this sowing was carried out adding scarification with H2SO4 hoping to improve the germination percentage of the seeds In Vitro (Hernández Flores, E., et al., 2016), when observing table 2, we note that the results that have been obtained are much more favorable with respect to sowing 1, having an average germination value of 20% and standard deviation 18.5 just 8 days after sowing, this is more similar to the germination values obtained in the germination in silica sand, which were 37.9% for those 7 groups and a standard deviation of 20.8, not to mention that it remains to continue monitoring the germinative behavior of the seeds. Images of the status of the In Vitro plants can be viewed in the annexesRegarding the percentage of contamination, we note that as with sowing 1, this is 0%, which reiterates the effectiveness of the disinfection procedure recommended by the Papalotla Group, additionally it should be noted that In Vitro sowing is managed to have 10% germination for the Bh16 / 2567 genotype, which had presented percentages of viability and germination of 0%, which guarantees us material to replicate this genotype in the future in vitro.If the possibility of carrying out the In Vitro shipment of the hybrid group Bh16 is taken into account (since so far this is a backup plan for the shipment of botanical seed), it is possible to guarantee the availability of all the hybrids in conditions of optimal asepsis.Aranzales, E., Medina, D. P., Ciprian, A., Vélez, M., & Santos, L. G. 2016. Desarrollo de metodologías in vitro para la conservación y distribución de germoplasma de Brachiaria spp.","tokenCount":"1518"} \ No newline at end of file diff --git a/data/part_3/9671013140.json b/data/part_3/9671013140.json new file mode 100644 index 0000000000000000000000000000000000000000..a4822089aa36d4946a527e2f4db4053809862fee --- /dev/null +++ b/data/part_3/9671013140.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"3df66cc17751ad7d7584732214c223d0","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/266ad8b4-ae42-4562-8970-f7f26734be23/retrieve","id":"1786288038"},"keywords":[],"sieverID":"c1c523bd-4917-49b3-85b6-f02131b0aa87","pagecount":"11","content":"Genetic structure and genetic diversity of Swietenia macrophylla (Meliaceae): implications for sustainable forest management in Mexico. The genetic structure and genetic diversity of Mexican populations of Swietenia macrophylla were evaluated. In Mexico, this neotropical tree reaches its northernmost distribution limit. The relationship between genetic diversity and geographic position (longitude, latitude) of four populations was described. The mean genetic and pairwise genetic differentiations were estimated to study the geographic pattern in the genetic structure. The mean overall values for observed heterozygosis (H O ), expected heterozygosis (H E ) and fixation coefficient (F IS ) were 0.41, 0.71 and 0.449 respectively. The mean values per population of H O , H E and F IS correlated with latitude only. The genetic differentiation between populations revealed by the coefficient of differentiation (F ST = 0.047) was statistically significant (p = 0.0001). Unweighted pair group method analysis showed that the extent of pairwise genetic differentiation increased with latitudinal position of populations, although no isolation by distance was observed (r = 0.76, p = 0.15). Results were discussed in the context of the marginal distribution of Mexican populations. Implications of the results on the conservation of S. macrophylla, particularly for populations located in the Mayan zone were discussed. Keywords: Big-leaf mahogany, microsatellite loci, peripheral populations, marginal populations, tropical timber ALCALÁ RE, SALAZAR H, GUTIÉRREZ-GRANADOS G & SNOOK LK. 2014. Struktur genetik dan kepelbagaian genetik Swietenia macrophylla (Meliaceae): implikasi terhadap pengurusan hutan secara mampan di Mexico. Struktur genetik dan kepelbagaian genetik populasi Swietenia macrophylla di Mexico dinilai. Di Mexico, pokok neotropika ini tumbuh sehingga ke had taburan yang paling utara. Hubungan antara kepelbagaian genetik dengan kedudukan geografi (longitud, latitud) empat populasi dihuraikan. Purata pembezaan genetik dan pembezaan genetik berpasangan dianggar bagi mengkaji corak geografi dalam struktur genetik. Purata nilai keseluruhan bagi heterozigos yang dicerap (H O ), heterozigos yang dijangka (H E ) dan pekali penetapan (F IS ) ialah masing-masing 0.41, 0.71 dan 0.449. Purata H O , H E dan F IS setiap populasi berkorelasi dengan latitud sahaja. Pembezaan genetik antara populasi seperti yang ditunjukkan oleh pekali pembezaan (F ST = 0.0047) adalah signifikan (p = 0.0001). Analisis kaedah kumpulan berpasangan tidak berpemberat menunjukkan yang pembezaan genetik berpasangan meningkat dengan kedudukan latitud populasi walaupun tidak terdapat pengasingan dari segi jarak (r = 0.76, p = 0.15). Keputusan dibincangkan dari konteks taburan pinggiran populasi di Mexico. Implikasi kajian terhadap pemuliharaan S. macrophylla dibincangkan terutamanya untuk populasi yang terletak di zon Maya.The genetic structure of a species is the result of ecological or historical factors that have shaped the relative effects of natural selection, gene flow, genetic drift and mutation. The roles that these evolutionary processes play on populations determine the extent of genetic variation maintained within populations and genetic differentiation among them (Avise 2000, Nybom 2004). Molecular markers represent a powerful tool to infer, through the analysis of nuclear and citoplasmic DNA variation, the genetic structure and different aspects of the history and evolutionary ecology of species. This knowledge is relevant within the framework of conservation genetics because understanding the evolutionary component of populations is recognised as a key factor to identify potential threats to their genetic diversity or to propose actions that can contribute to species conservation (Allendorf & Luikart 2007, Frankham et al. 2010).In comparison with temperate woody plants, tropical trees are expected to be particularly susceptible to changes in habitat characteristics because of their low population density, autoincompatible breeding systems and dependence on animal interactions for pollination and seed dispersal (Lowe et al. 2005, Dick et al. 2008). In addition, because some tropical species are valuable, they are subjected to selective extraction of individuals. This consequently diminishes the population density and increases the distance between reproductive individuals (Obayashi et al. 2002, Sebbenn et al. 2008). Populations under these conditions are expected to be more exposed to processes that promote genetic differentiation and reduce genetic diversity (Young et al. 1996). Therefore, knowledge about factors that have shaped the pattern of gene flow and that consequently explain the genetic differentiation and intra-population genetic diversity is useful to design or modify strategies to conserve harvested species (Lowe et al. 2005, Navarro et al. 2010).Big-leaf mahogany (Swietenia macrophylla, Meliaceae) extends from southern Mexico to the Amazon basin in Brazil (Pennington 1981). It is a monoecious, protogynous, emergent light-demanding tree (ca. 40 m in height) with low population density of about one adult reproductive tree per ha. Swietenia macrophylla has small flowers that seem to be visited by generalist insects (Styles 1972). The seeds are winged and dispersed by wind. Median dispersal distance is around 30 m (Grogan & Galvao 2006). In the context of conservation of genetic diversity of tropical trees, big-leaf mahogany is an interesting case. It has been the most important neotropical timber species traded for centuries (Snook 1998). As a consequence of that trade, it was listed in 2002 on Appendix II of the Convention on International Trade of Endangered Species of Fauna and Flora (CITES). Mahogany is probably the most studied timber species with regard to genetics with studies covering populations from most of its geographic range (Lemes et al. 2003, Novick et al. 2003, Navarro et al. 2010). As a result, estimates of the extent of genetic differentiation and genetic diversity are available for different ecological conditions and at contrasting geographic scales (Table 1). However, information for Mexican populations is scarce, considering that in Mexico big-leaf mahogany reaches the northernmost limit of its geographic distribution and may reflect different dynamics with regard to central populations (Lesica & Allendorf 1995).The isolation by distance model of genetic structuring of populations predicts a tendency in which genetic similarity between populations decreases with increased geographic separation From a database provided by the Comision Nacional para el uso y manejo de la Biodiversidad (CONABIO), which contains records of collections done between 1934 and 2004 from at least 10 different herbaria, we selected seven sampling locations of S. macrophylla that we thought would be informative for characterisation of the genetic structure of Mexican populations. However, some of them were no longer extant, for example in Yucatan and Tabasco. We used four populations, adhering to the original sampling criteria. Populations of S. macrophylla covering the maximum geographic separation (ca. 1000 km) were located in different regions of the Yucatan Peninsula and included the northernmost location in Mexico (Figure 1).In Campeche, trees were sampled 13 km north-east of Nuevo Becal, a zone containing medium-height semi-evergreen tropical forest in the municipality of Calakmul (Martínez & Galindo-Leal 2002). In Quintana Roo, trees were sampled in Naranjal Poniente (hereafter Naranjal), a town located to the west of Felipe Carrillo Puerto. The trees were sampled in a zone set aside as a local reserve for seed collection, also within a medium-height semi-evergreen tropical forest. In this stand, normal diameter (1.3 m) of mahogany trees exceeds the minimum cutting diameter of 55 cm. In Chiapas, trees were sampled within the influence zone of the Montes Azules Biosphere Reserve at 1 km south-east of the Lacandon community of Lacanja, near the archaeological monuments of Bonampak. The vegetation is characterised as tropical rain forest (Meave del Castillo 1990). In this area, some individuals with normal diameter of > 70 cm could be found. The fourth population was located in Zozocolco (44 km south-east ofLocation of the four populations of Swietenia macrophylla sampled in the states of Campeche (Nuevo Becal), Chiapas (Bonampak), Quintana Roo (Naranjal) and Veracruz (Zozocolco), Mexico N the city of Papantla), in the northern region of the state of Veracruz. In this zone, forests had been transformed into pastures for cattle raising. Forested areas were located on inaccessible sites such as hill tops or ravines. Here, largediameter individuals of S. macrophylla were located exclusively in private lands.On each stand, most trees in the study were separated by a minimum distance of 100 m to reduce the likelihood of collecting closely-related individuals. Leaf samples were collected from 18 to 33 trees per population using a slingshot and an extendable pruner to collect materials from the lower and the higher parts of the crown. After inspection, only leaves free of apparent damage by pathogens and fungi were selected. For each S. macrophylla tree, material taken from about 10 different sampled leaves were mixed and kept individually in sealed plastic bags containing silica gel to dry the tissue and stabilise DNA.In the laborator y, DNA was isolated using a standard cetyl trimethyl ammonium bromidebased procedure (Doyle & Doyle 1987). The quality of samples was improved using Geneclean®. Genetic structure was tested using eight microsatellite primers developed previously for S. macrophylla (Lemes et al. 2002). For all primers, a series of factorial trials was run in which the variation of the concentration of primers (0.5-2.0 mM), MgCl 2 (1-4 mM), template DNA (0.25-5.0 ng) and TAQ polymerase (0.5-1.5 U) was tested. Bright and reproducible bands were obtained with only four primers: sm01, sm31, sm47 and sm51. The final reaction consisted of 15 mL total volume containing 1 × polymerase chain reaction buffer, 1 mM MgCl 2 , 0.2 mM dNTP's, 2 mM of primer, 1 u Taq DNA polymerase and 5 ng DNA. Amplification conditions for primer sm47 were an initial denaturing step of 96 °C for 1 min followed by 30 cycles of 96 °C for 1 min, 56 °C for 1 min, 72 °C for 1 min and a final extension step of 72 °C for 7 min. For the other three primers, the conditions were an initial step of 94 °C for 3 min followed by the same cycles. Polymerase chain reaction products were subjected to electrophoresis in 6% polyacrilamide gels in tris-borate ethylenediaminetetraacetic buffer and stained with ethidium bromide. In each gel, a 20-pair base DNA ladder was included. The different alleles for each locus were scored according to their molecular mass (White et al. 2002, Céspedes et al. 2003). The most anodal allele was arbitrarily identified as 1 and the remaining alleles were identified sequentially (Céspedes et al. 2003).The genetic diversity was described using mean number of alleles (A) as well as observed (H O ) and expected heterozygosity (H E ) values. Departures from Hardy-Weinberg equilibrium were tested by the fixation coefficient (F IS ) using Fisher's exact test. The significance of F IS was estimated using Monte Carlo chain with 1000 iterations (Excoffier et al. 2005). To evaluate whether genetic diversity revealed a geographic pattern, independent Spearman rank correlation analyses were performed. The mean values per population of A, H O , H E and F IS were used against latitude and longitude.The genetic structure of S. macrophylla was estimated using analysis of molecular variance (AMOVA) with the software Arlequin version 3 (Excoffier et al. 2005) that was used to extract the variance components corresponding to the variation retained within and among populations. In the model, the AMOVA estimates the percentage from the total genetic variance that is explained by difference among populations while the rest represents the percentage of genetic variance attributable to the interindividual differences within populations. From the variance component corresponding to the among population level, F ST (an analogue of F ST that measures the correlation between two gametes drawn at random from each subpopulation as a measurement of the degree of gene differentiation) was estimated. The genetic structure was calculated under the assumption of the infinite allele model. The significance of F ST was obtained through Monte Carlo approach in which individuals were randomly reassigned among populations with 1000 replicates. Within the genetic structure tools implemented in AMOVA, we calculated the Nei's D, which estimated the average number of substitutions that had taken place since two populations shared their last common ancestor. Therefore, Nei's D was used to explore the extent of pairwise genetic differentiation and genetic relationships among populations, as recommended when divergences were recent (Takezaki & Nei 1996). The magnitude and significance of the correlation coefficient (r) between geographic and genetic distances were evaluated by Mantel test. This test evaluates whether genetic differentiation is explained by the geographic separation of populations. In this case, only the overland distance between populations was considered.The allele richness in Naranjal, Bonampak and Nuevo Becal ranged from 7.5 to 8.0 (Table 2). In contrast, the allele richness in Zozocolco was 6.25. The mean observed heterozygosis (H O ) in Bonampak and Zozocolco showed the highest (0.52) and lowest (0.27) values respectively. The mean value of H O was around half that of H E .Mean values of H O and H E were negatively correlated with geographic latitude (Figure 2). In contrast, F IS values were positively correlated with latitude. There was no association between the four genetic variables with longitude (results not shown).The AMOVA revealed significant overall genetic differentiation between populations of S. macrophylla. Of the total molecular variance, 4.68% (p = 0.0001) was due to differences between populations (Table 3). This value corresponded to F ST of 0.047. In the dendrogram, populations of Bonampak and Nuevo Becal showed the highest genetic similitude (Figure 3). Naranjal was added to this group whereas Zozocolco showed the highest genetic differentiation. Although the amount of pairwise genetic differentiation varied by one order of magnitude, there was no correlation between geographic distance and population (r = 0.76, p = 0.15; results not shown).The microsatellite-derived level of withinpopulation genetic diversity of S. macrophylla is highly variable along its geographic distribution. For Mesoamerican populations, for example, the observed heterozygosis (H O ) ranged from 0.45 to 0.67 (Table 1). Only one Costa Rican population deviated from this range, exhibiting a very low value (H O = 0.14). Comparatively, Mexican populations maintained low levels of genetic diversity as the mean observed heterozygosis per population was H O = 0.41. Mexican populations also presented a high deficiency of heterozygotes (F IS = 0.449) that exceeded the scores observed for most tropical trees (Ward et al. 2005) and those published and reported in Table 1 for S. macrophylla in Amazonian populations (-0.004-0.100) and Mesoamerica (0.030-0.247) (Table 1). A possible loss of information due to the genotyping procedure and the reduced number of primers used in this study could partially account for the low mean genetic diversity measured in Mexican populations. However, these low mean values and other genetic results derived from our work are better explained considering the location of populations of S. macrophylla at the northern portion of the species distribution.We first explored the effect of anthropogenic disturbance as it has been reported as a main factor affecting the mean values of the withinpopulation genetic diversity. At a local scale and On the other hand, the relationships between genetic diversity or the fixation coefficient with latitude (Figure 2) could reflect the history of colonisation of S. macrophylla in Mexico. Firstly, for some long-lived perennial species, it has been shown that the within-population genetic Secondly, in this study, the mean values of H O and H E were negatively correlated with latitude but were not correlated with longitude. This is interesting considering that geographic separation along the longitudinal axis is twice as great as that registered on the latitudinal axis, which spans only 4° (Figure 2, Table 2). This indicates that the geographic distance itself (which is more apparent from the longitudinal variation) does not account for the geographic variation in genetic diversity in Mexican populations. In contrast, the observed effect of genetic diversity being affected only by the increase of distance towards the north seems compatible with the peripheral condition of these populations. We based this argument on the evidence available at a regional level, namely, the negative relationship between the within-population genetic diversity with latitude in S. macrophylla. For example, Gillies et al. (1999) reported a negative slope for the relationship between both variables among the 20 Mesoamerican populations. The lower microsatellite-based mean genetic diversity in Mesoamerican populations with regard to those located on the Amazon Basin has been interpreted as a result of the colonisation of S. macrophylla towards the northern latitudes from South America (Lemes et al. 2003, Novick et al. 2003, Lemes et al. 2010).Thirdly, the mean values for the excess of homozygotes per population (F IS ) were positively correlated with the latitudinal position of the four populations sampled in Mexico. Null alleles are an unlikely explanation because there is no theoretical expectation that the occurrence of null alleles would reflect a latitudinal pattern. Higher levels of selfing could explain high positive F IS scores (Busch 2005, Mimura & Aitken 2007). However, high outcrossing rates have been reported in a remnant logged population of S. macrophylla, suggesting a high tolerance to disturbance conditions (Lemes et al. 2007). We suggest that the excess of homozygotes in the Mexican populations has resulted from a high rate of mating between close relatives, as inbreeding has been reported in some other populations (Table 1). We considered that the positive correlation between F IS and latitude reflected, at a shorter geographic scale, that proposed for Mesoamerican populations of S. macrophylla, as they were expected to evolve under high levels of biparental inbreeding due to their expansion from South America (Lemes et al.Our results on the genetic differentiation between the four populations seem to be compatible with the history of colonisation of S. macrophylla (Gillies et al. 1999, Novick et al. 2003). For example, with regard to other Mesoamerican populations and according to some unweighted pair group method analyses (UPGMA), Mexican populations of S. macrophylla are genetically closer to populations of northern Central America than to populations located in Honduras, Nicaragua, Costa Rica and Panama. In fact, the low genetic distances within the northern group (that included a Mexican population) suggest a recent evolution. With less time to diverge, a low genetic differentiation could be expected (Novick et al. 2003). In this context, the genetic differentiation of Mexican populations found in this study (F ST = 0.047) was low considering their geographic separation (ca. 1000 km) compared with the genetic differentiation found between populations separated by shorter distances (Table 1).In addition, Mexican populations appeared genetically differentiated even from closer populations located in Guatemala and Belize although more clearly for RAPD markers (Gillies et al. 1999) than for microsatellites (Novick et al. 2003). This genetic distinction suggests that evolution in the northernmost limit of the species distribution has been somewhat independent. Interestingly, the analysis of the genetic relationships among Mexican populations (UPGMA) echoes this pattern at a smaller geographic scale. Populations situated at northern locations (Zozocolco and Naranjal) showed the highest genetic differentiation, whereas southern populations located in Campeche and Chiapas maintained a higher genetic similitude. It should be noted that this pattern of pairwise genetic differentiation was not explained by the geographical separation between populations, as the test for isolation by distance was not statistically significant. Although a low number of populations sampled could explain the absence of relationship between genetic and geographic distances, geographic distance itself seemed not to be the cause of genetic differentiation as we found that the amount of genetic differentiation increased towards higher latitudes.Overall, the low mean genetic differentiation, pairwise genetic differentiation (higher genetic differentiation towards higher latitudes in the absence of isolation by distance) and correlation of genetic diversity and fixation coefficient with latitude but not with longitude were compatible with available information. These indicated that populations of S. macrophylla located at higher latitudes could have been more recently founded. Our results indicated that only the increase in distance in a northern direction affected the genetic diversity and pairwise genetic differentiation in Mexican populations of S. macrophylla.The current management programme for S. macrophylla in Mexico was implemented in the 1980s in the states of Campeche and Quintana Roo where extensive forests still maintain populations of commercial sizes. The programme was thought to guarantee sustainability of this species because selective logging was based on a minimum cutting diameter (Bray et al. 2003). In particular, with regard to the Mayan zone located in central Quintana Roo, different ecological studies have focused on understanding factors that affect natural regeneration in har vested populations. There is evidence of negative effects of the current management programme on population dynamics. Therefore, recommendations such as increase of minimum cutting diameter, clearing treatments, use of plantations and inclusion of old large trees with no commercial value as seed sources have been made (Cámara-Cabrales & Kelty 2009, Gutiérrez-Granados et al. 2011, Negreros-Castillo & Mize 2011).In contrast, there is no direct evaluation of the effects of selective logging on genetic parameters. However, it can be expected that Mexican populations present negative effects as a result of harvesting. For example, populations of tropical trees subjected to selective logging frequently present lower outcrossing rates and allelic richness and higher inbreeding coefficients in comparison with unmanaged populations (Degen et al. 2006, Silva et al. 2008). In this context, our results are important as selective logging can have higher negative impact than expected. This is because historically Mexican populations of S. macrophylla seem to maintain lower genetic diversity and higher positive fixation coefficients compared with other Mesoamerican populations. Under this more limited scenario, we propose several recommendations that can be considered in the current management programme in order to increase the sustainability of harvests of S. macrophylla.First, theoretically the effective population size is inversely related to the per generation rate of loss of genetic diversity produced by random fixation of alleles (Frankham et al. 2010). Effective population size in populations within the Mayan zone can be lower. This is because although the reproductive potential of big-leaf mahogany is positively correlated with tree size (Snook et al. 2005), most of reproductive individuals are removed by selective logging. In addition, the high variance in the number of propagules produced per parent across generations also diminishes effective size (Hedrick 2000). Mahogany trees reveal a high inter-annual variation in seed production (Snook et al. 2005). Consequently, in future, the current diameter cutting limit could accelerate the loss of genetic diversity. Management of S. macrophylla should promote practices that allow more individuals of S. macrophylla to contribute to the gene pool. The genetic information derived from this study supports the recommendation by Snook et al. (2005) to leave standing some mahogany trees of 75 cm diameter or larger as seed trees in managed forests, rather than har vesting all individuals greater than 55 cm.Second, if seed collection and planting is considered as a strategy to retain higher genetic diversity, efforts should be made to balance the number of seeds collected per tree and the number of seed trees. The common practice of collecting hundreds of seeds only from a few individuals (Santos Jimenez et al. 2005) should be avoided and more adult trees should be included. As a complement, separation between trees should be widely extended to reduce sampling within genetic families as we found high F IS even when sampled individuals were separated by at least 100 m.Third, provenance tests to guide seed collection based on the local adaptation can be particularly useful under a scenario of climatic change (Navarro et al. 2010). In the case of Mexico, the available information indicates no evidence of local adaptive differences across populations of S. macrophylla within the Yucatan Peninsula (i.e. Campeche and Quintana Roo). This is probably because of the homogeneous climate at the geographic scale evaluated (Wightman et al. 2008). However, differences could appear if individuals of other populations were tested such as those located in Chiapas inhabiting shadier and wetter conditions or those in north Veracruz that were exposed to the highest isolation. In the absence of this information, although dealing with neutral variation (which is theoretically little or not affected by natural selection), our study could guide programmes of seed exchange. This is because neutral variation frequently reveals the history of gene flow. Therefore, pairwise genetic differentiation suggests that seed exchange should follow a geographic pattern. Northern populations of S. macrophylla along the Gulf of Mexico (i.e. Veracruz) are more likely to have been derived from southern populations in Campeche and Chiapas than from those of Quintana Roo. Conversely, restoration of stands located in the state of Yucatan should be based on seeds from the northern Mayan region.Finally, peripheral or marginal populations of widely distributed species tend to inhabit more stressful habitats and be more exposed to higher inbreeding conditions (Hampe & Petit 2005). In spite of their lower genetic diversity and higher fixation coefficients, northern populations of S. macrophylla located in Veracruz or within the Yucatan peninsula could be important for conservation. This is because of their possible adaptation to drier and warmer conditions that could change the future pattern of distribution of Mexican tropical forest.","tokenCount":"4080"} \ No newline at end of file diff --git a/data/part_3/9707189274.json b/data/part_3/9707189274.json new file mode 100644 index 0000000000000000000000000000000000000000..eec512f5c54d341a26d5f2f6692e47cb9f1e0ac2 --- /dev/null +++ b/data/part_3/9707189274.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"331c13a26b98057a118ac389fbc434c2","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/4416aa49-dc92-4ec4-9ef5-621100bac623/retrieve","id":"1553536695"},"keywords":[],"sieverID":"490343d3-a7a5-4250-8f33-bada5c9d2e8f","pagecount":"7","content":"Africa RISING is a research for development program that aims at providing pathways out of poverty for smallholder farmer households through sustainably intensified farming systems that improve food, nutrition, income security, particularly for women and children, and conserve or enhance the natural resource base.Participatory research is a key foundation to achieve these goals and emphasizes the importance of engaging relevant stakeholders in all steps of the research process. Participatory research approaches therefore demand a level of engagement and commitment from farmers that researchers need to respect. Equally, researchers need to engage with each other for mutual learning, integration of research activities and to ensure that farmers are not overburdened by research activities. In order to avoid redundancies and add value, the program will leverage other opportunities with different stakeholders and complimentary projects.This document provides some guidelines to researchers that will help to avoid negative relationships between them, farmers and other stakeholders and foster ethical conduct within the Africa RISING community.Gaining an understanding of the farming and wider livelihood systems targeted by research projects is an essential step in targeting research activities that will lead to impact and measurable development outcomes. As the first point of engagement between projects and communities, proper conduct of such studies can help to establish lasting trust and partnerships between all actors in the research process. The guidelines that should be followed: Diagnostic studies are generally highly extractive in nature with farmers gaining little direct benefit from them. They could however raise farmers' expectations of future exchanges that operate on a two-way basis. It is not advisable to conduct diagnostic studies without clear follow-up activities. It is imperative that researchers avoid causing community members having unrealistic expectations. This includes pointing out the limited period of the engagement. At the start of the research process, participants should be given an opportunity to clarify their expectations. Farmers should be made aware that the researchers also rely on what farmers have agreed to contribute and that it is therefore important that farmers make firm commitments. Having said this, well-conducted diagnostic studies generally stimulate dialogue with participating farmers and catalyse buy in from them. Responses like \"Sorry we don't have time, the next question is….\" are not an acceptable for queries from farmers. It is therefore advisable that researchers should build time into the interview schedules that allow for satisfactory responses to any questions / discussions that farmers might initiate. Before starting a diagnostic survey, farmers' consent to use their data confidentially must be obtained. Farmers often give up a considerable portion of their busy days to participate in diagnostic activities. Respect this by conducting interview schedules on time and organizing things, as far as possible so interviewees are not waiting around. When planning field activities of any type, but particularly for diagnostic interviews, familiarize yourself with the farming calendar. To the extent possible, conducting socio-economic surveys during peak periods in the farming year (planting, weeding, harvesting etc.) should be avoided.Having a proper understanding of the gendered division of work and responsibilities would provide a clear understanding of the periods when women and men are available to participate actively in diagnostic activities. After completion of a diagnostic study researchers should provide feedback to the communities about their findings. These feedback sessions also allow for validation of the study results. For better planning, these feedback meetings to the communities should be a standard item reflected also in the researcher work plan.It is imperative that the farming community is actively engaged in selection and prioritization of research topics. This fosters inclusiveness and integration of community perspectives in research thereby implementing research that is more responsive to farmers' needs. During this process:  Gender roles influence the perceptions of men and women on research problems. Therefore gender has to be considered as a significant component in identifying research problems.Compare the similarities and differences between men and women's experiences and perspectives and value them equally. This will generate a more comprehensive picture of the problem, and facilitate design of tools, which will better address gender differences. Power relations between men and women influence their perspectives about their problems and proposed solutions. It is imperative that researchers take into account the roles of men and women and other prevailing cultural norms and how these may impact on the outcomes of the research. Researchers need to listen to the voices of community members and share power in making research decisions. There is need to be sensitive to gender and cultural issues within a community.Researchers need to be flexible in determining who represents the community so as not to miss out on what is important for the community. Criteria for selection could include among others: willingness to host the experiment, willingness to share and teach other farmers, openness to visitors, ability to follow the protocols, visibility and accessibility of plots, reliability of experiment management.• Involve community leaders in planning, implementation, monitoring and evaluation to further create a sense of ownership and acceptability of the research.• It is important that researchers understand that farmers' participation is voluntary. Levels of participation may differ according to interest, resource availability and cultural context. Some people will be highly motivated to participate while others may not.• Pay special attention to the category of people who tend to be discriminated in research for development programs. These could be women, youths and the landless people among others.A thorough context analysis should provide for the development of specific strategies to include them.• Be aware of the fact that the interests of researchers and community members influence their perceptions on who to work with and how, where and when.In order to ensure continuity from diagnostics to results and later on adoption, farmers who were engaged in the earlier stages of the research process should be included in the research implementation. This adds to building ownership and trust between researchers and farmers.• Prior to beginning a study researchers must disclose to all participants the overall objectives of the project and its sponsor. Transparency allows farmers to make informed decisions whether to engage in the project or not. Researchers have to be clear about the voluntary nature of participation and seek consent in an open manner. Farmers may reject or withdraw their consent at any time in the course of the research.• Constraints and risks associated with technologies should be made known in advance and mitigating measures should be put in place.• When researchers and farmers agree to work together, the group has to decide on the modalities of working together. This includes setting goals and objectives, selecting methodology, agreeing on methods of communication, sharing roles and responsibilities and agreeing on the processes of data collection, monitoring and evaluation. This might require training of farmers in data collection.• Select gender sensitive tools, methodologies and approaches, which will encourage and enhance active participation of men, women and youth and conserve integrity.• Collect and generate data that is meaningful to the community to create a sense of ownership and sustain participation. It's important that the research seeks information that will be useful to the community and also influence policy.• Assess the impact of the proposed solutions on men and women in terms of their capacity to access resources, workload, social status, and power relations.• Some of the meeting venues and time may not be convenient for men, women and youth to engage actively. Therefore, researchers should have a clear understanding of the effect of a venue and time on participation of men, women and youth to avoid exclusion.• Conflict of interest between researchers and community members, or amongst researchers or among different groups within a community will be encountered at different stages of the research process. Community members and researchers need to come to an agreement on different aspects of the research at the onset to minimize conflicts.• Regular feedback sessions should be scheduled to inform farmers about experiments and use of their data. Equally important are these feedback sessions for researchers to get the views of the farmers to adapt the experiments or data collection tools.Researchers must ensure a smooth conclusion of the engagement by involving the key stakeholders, who were involved in previous stages of the research. Conclusion may happen gradually or suddenly depending on various factors (local, external).• Should project activities be phased out, farmers should be informed in due time about the reasons and the completion process should be agreed upon. Farmers should be informed about the researchers' next steps to ensure farmers will benefit from their past engagement.• Researchers need to reflect upon potential negative effects associated with the end of the engagement and consider compensation if necessary (preferably in kind).Sustainable intensification needs coherence and integration of research results. Therefore, researchers need to work with each other to leverage opportunities and resources. For this to happen, researchers need to treat each other with respect and be cognizant of the fact that peers often come from different institutions. The following guidelines for working with peers are suggested: Avoid redundant surveys through coordination with other researchers and making use of each other's data. This will reduce farmers' research fatigue and support our objective of systems research.  All research results have to be validated by stakeholders and farmers.  Training in participatory methodology and its application is a requirement for all researchers.Researchers' engagement with other stakeholders Apart from engagement with farmers and peers, researchers build partnerships with extension agents, other development agencies and complementary projects, private sector, policy makers, national agricultural extension and national research institutes. Engaging especially with national institutions aims at achieving sustainability of the Program through institutional capacity building.Sub-contractors should follow the engagement standards with farmers and peers. When working with other stakeholders, researchers should ensure that stakeholders are aware of these standards.Risks of working with Africa RISING, e.g. finite duration of the program, need to comply with reporting requirements, financial standards, etc. need to be explained to sub-contractors.Partnerships should be monitored and performance be reported back regularly to stakeholders.When disengagement with other stakeholders is required for whatever reason, researchers must ensure a smooth conclusion of the engagement. As with farmers, conclusion may happen gradually or suddenly depending on various factors (local, external).• Should project activities be phased out, stakeholders should be informed in due time about the reasons and the completion process should be agreed upon.• Researchers need to reflect upon potential negative effects associated with the end of the engagement and keep these as low as possible.Ownership and custodianship of data collected by the Africa RISING Program are a sensitive issue. Each participating CGIAR Center is responsible to provide assistance with publishing the data sets in line with open access policy. Open access means that the source of the data and some overall information about the datasets are freely accessible, but not the detailed research data. A contact person should be stated in case somebody would like to access those data.The general principle underlying this program's activities is that all data are under the shared ownership of all program partners.• Each research team will appoint one person responsible for uploading and monitoring Feed the Future (and custom) indictors on Project Mapping and Monitoring Tool (PMMT).• Custodianship will be determined by the capacity of the responsible organization and staff to hold and distribute data securely and according to the rules set by CGIAR Data Access Policy.• To ensure custodianship all meta-and unit-record data have to be uploaded on the Comprehensive and Knowledge Archive Network (CKAN) following the Africa RISING data management policy (IFPRI, 2014). According to this policy, data provider and custodian might keep unit-record data for his/her exclusive use for a limited period of time (depending on the data type) only for publishing purposes. For necessity and urgency of Program needs, this period could be lifted if unit -record data are necessary for a better management and higher impact of the Program's interventions. Thereafter, unit-record data will have to be made available to other colleagues (within and outside the Program) upon request.• Access to sensitive social science data should be particularly restricted meaning, the datasets need to be published for reference but not for full access. They will not be made accessible at any time.• Publication rights are shared amongst all partners but original data collection and provider teams should be acknowledged in all cases. Authorship is granted to all partners who participate in the design, analysis and findings of studies that make use of project data but is not required for data collectors and providers.• Researchers who intend to publish research results should invite all colleagues who participated in at least one stage of the research process (design, implementation, analysis) to contribute to the publication.• Any publication for the Africa RISING and CGIAR repositories has to follow the Africa RISING branding guidelines that are in line with the donor branding policy.• Researchers should maintain that the ultimate owners of the data collected are the farmers. Therefore, it is strongly encouraged to exert any efforts to engage communities and their members when reporting back the research findings to increase ownership of research findings.• Consideration of gender perspectives in data analysis, interpretation and dissemination will enhance design of appropriate interventions.• Maintain anonymity and confidentiality of farmers participating in the research. Researchers need to adhere to standard anonymization protocols in handling identifying information keeping it separate and in a safe place, provide utmost confidentiality of farmers' data.• Ethical clearance must be obtained from relevant authorities for any data collection activities that involve human subjects.• Taking and publishing pictures or any information that allow tracing back to individuals should be done only upon their consent and in accordance with the donor, institution and Africa RISING data management policies.• The issue of offering project participants incentives to join activities requires sensitive handling, particularly in relation to the options that are open to other agencies operating in the same area that may not be able to \"compete\".• Africa RISING has been using different incentive mechanisms to make sure that long term community benefits will not be at stake because of insensitivity to short term expectations. The main incentive for farmers is to participate in the action research (research trials) and community based activities such as seed multiplication, that include technological and technical inputs for the sustainable intensification activities on crop, livestock, tree and natural resource management activities. Non-participating farmers also do have access to farmers-to-farmers technology transfer through their participation in field demonstrations or trial evaluation events such as farmers' field days and participatory variety selection. Other incentives can be in form of cash or in kind. Farmers receive inputs (fertilizers, seeds, tree seedlings, small livestock) when they manage trials and the harvest is kept by them. For the time they spend with survey teams they are usually given a small token such as a soap bar or a bag of salt.• The program has guidelines concerning payments to farmers and other local partners during participation in various events, including field days, experience sharing visits, trainings, workshops and survey activities. Often, these events are organized in places where participants have costs for transportation and meals. In such cases, Africa RISING provides judicious compensation in cash. When there are no expenditures, no money will be paid.• Experience sharing events, trainings, our participatory research approaches and gender sensitivity are other forms of incentives that are helping Africa RISING in making farmers see the benefits of our research interventions.Participatory research requires active involvement of farmers and other stakeholders in the different stages of the research processes. The required level of engagement may not be achieved without respect of stakeholders as equal partners and recognition of their key role and input. Participatory research also requires proper understanding of the cultural, social, economic and political factors and how they influence participation, buy-in and compliance. Gender, ethnicity, religion as well as other socio-demographic and cultural/social norms in access to resources, division of labour and institutional factors need to be considered throughout the process.Specific training might be necessary to ensure that participatory and gender sensitive approaches are followed by Africa RISING researchers and partners. The Program will conduct a needs assessment and provide the necessary resources to train the researchers and partners.These guidelines will be reviewed and adjusted in line with evolving CGIAR guidelines around engagement, ethics, and data management.","tokenCount":"2706"} \ No newline at end of file diff --git a/data/part_3/9707922791.json b/data/part_3/9707922791.json new file mode 100644 index 0000000000000000000000000000000000000000..85588911980ff48be21f2b85ccbf53c2f17e5cf0 --- /dev/null +++ b/data/part_3/9707922791.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"380b594c25a3905f851983d565f02da3","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/64c3c050-e03b-4c10-9b65-a641d4cb6df3/content","id":"1279667039"},"keywords":[],"sieverID":"65743a9f-77c8-404c-b3d8-d942f8370b3c","pagecount":"30","content":"Los cambios observados en la producci6n triguera del Ecuador, pueden ser entendidos con mayor amplitud cuando se les engloba en un nivel m's general de cambios producidos en la economia del pa!s y del sector agropecuario.Si bien dentro de la composici6n del Prs!-1 por sectores es el agropecuario el que continua siendo el principal de la economia, se observa una reducci6n gradual en su contribuci6n que decrece de 29. 3o/o en 1970 a 22. 3o/o en 1974, esto en contraste con la importancia creciente del sector minero (petr6leo principalmente) cuya contribuci6n aumenta de 1, 5o/o a 7. 9o/o para el mismo perfodo. El crecimiento del sector agropecuario ha sido inferior al de la poblaci6n estimado en un 3. 4°!o; el promedio acumulativo anual para el periodo 1970-1974 fue de 1. 8% que se compara desfavorablemente con las tasas de creciroiento del resto de los sectores y de la econom!a en su conjunto. El relativo lento crecimiento de la producci6n total del sector se debe a una aerie de factores concomitantes entre los que se cuentan los de 6rden estructural (tenencia de la tierra), tecnol6gico Cbajas tasas de adopci6n de tecnologfa rooderna) e institucional (pol!tica econ6mica del pa.rs orientada a favorecer a los sectores no agricolas).Respecto a la contribuci6n de los subsectores dentro del sector agropecuario, el Cuadro No. 1 rouestra la participaci6n porcentual de cada uno para el per!odo 1970-1974.Es claro que la disminuci6n en la participaci6n del subsector agricultura ha sido casi enteramente absorbida por el subsector ganader!a.En el Cuadro No. 2 se muestra la estructura porcentual del valor bruto de la producci6n por grupo de productos y particularroente para trigo y los cultivos que compiten con ese cereal.Dentro del grupo granos y cereales es el ma!z duro el '6.nico cultivo que roejora su posici6n durante el per!odo mencionado, este tipo de ma!z se produce fundamentalmente en la Costa como cultivo de rotaci6n. Las oleaginosas incrementan su participaci6n principalmente debido a la importancia de man! y soya. Las carnes aumentan su participaci6n mientras que la de leche se reduce ligeramente.Los cambios producidos en la superficie cosechada incluyendo el area de pastas para ganader!a son consistentes con las cifras seiialadas anteriormente; el Cuadro No. 3 muestra estos cambios. Esta estructura entre cultivos y pastos presenta una disminuci6n de la superficie agr!cola cosechada e inversamente un incremento substancial en la superficie con pastos para ganaderia. La ganader!a bovina del Ecuador ha crecido en este per!odo con una tasa de alrededor de 40/o. Los cambios en superficie, producci6n y rendimiento para trigo, cebada, maiz y papa en el per!odo 1965-1975 se presenta.n en el Cuadro No. 4. Con excepci6n de la superficie cosechada con papa cuya area oscila durante todo el per!odo alrededor de 42, 000 has., los otros cultivos analizados experimentan cambios dr~sticos particularmente en los Ultimos cinco aftos del decenio estudiado. Las cifras de maiz incluyen ma!z duro y m.a!z blando.Para entender mejor estos cambios producidos en la agricultura ecuatoriana, es necesario conocer en que condiciones de topografia, clima, producci6n y tenencia de la tierra se producen los cultivos mencionados. De acuerdo a esas condiciones el Ecuador se puede dividir en tres regiones: la Costa, el Oriente y la Sierra (Ver mapa de cultivos al final). La regi6n de la Costa es de tierras bajas tropicales y asiento de la explotaci6n agricola para exportaci6n: banano, cafe, cacao y azUcar. La ganader!a de came ocupa un lugar importante y actualrnente m:is del 500/o del total del ganado bovino del pa!s se encuentra en esta regi6n.Desde hace cinco o seis aftos se ha comenzado a estudiar la posibilidad del cultivo de trigo en la Costa como un cultivo de alternativa que entrar!a en rotaci6n, sin embargo, este proyecto se encuentra aUn en la etapa de investigaci6n.En esta regi6n se est entre otras actividades (asesoramiento en poli'tica agr!cola), la de asesoramiento tecnico a los agricultores o difusi6n de tecnologfa. Este es el punto mas dif!cil de la estructura por la carencia de agr6nomos de producci6n que puedan llevar a cabo una labor efectiva de di-fusi6n de 'Tucnolog!a. Una vez que se cuenta con el principal componente de la tecnolog!a moderna. es decir variedades de alto rendimiento, es necesario contar con un eficiente Servicio de Extensi6n para mostrar al agricultor las ventajas de las nuevas tecnicas a traves de una red bien establecida de parcelas de demostraci6n. La nueva orientaci6n del programa de trigo parece indicar un fortalecimiento de e ste pun to.En la Figura No. 2 puede observarse esquematicamente coma funciona la estructura descrita para el programa de trigo.El Ecuador cuenta con una capacidad de almacenamiento para trigo de 80 > 000 ton. • de los cuales 50o/o se encuentran en la Costa y 50o/o en la Sierra. El 80% de esta capacidad esta represen-tada por los silos de los molinos.La comercializaci6n de trigo que se hace directamente de agricultor a molino es de s6lo 30o/o de la producci6n. el resto se hace a traves de intermediarios o de comerciantes de productos agropecuarios. El Ecuador cuenta con una empresa nacional de comercializaci6n el ENAC. Esta empresa no ha participado a11n en la compra de trigo, por ahora ha trabajado fundamentahnente en arroz. algod6n y az11car. Sin embargo, los planes son que el ENAC parlicipe ampliamente en la co-mercializaci6n del trigo en aquellas zonas donde actualmente participa el intermedi.ario. Para esta funci6n la empresa contar4 con una capacidad de ahnacenamiento de 14,000 ton .• que corresponden a los silos del IDIALGE. antigua organizaci6n de agricultores y moli.neros que intentaba dar servicio de selecci6n y compra de trigo pero que no funcion6. Hasta el momenta el ENAC s6lo ha realizado ensayos experimentales de compra de trigo para poder disenar sus programas. El aspecto de triguera de Ecuador. Dada la importancia de las explotaciones menores de diez hectAreas en la estructura de producci6n, serra prioritario considerar la creaci6n de un nuevo Sistema de comercializaci6n especiahnente orientado al pequeno agricultor.El credito agrrcola se otorga en Ecuador en forma institucional y no institucional. El credito institucional es privado y pUblico. El credito agrrcola otorgado por el sector de la banca privada apenas llega al 8. 5o/o del volumen total de operaciones, y son crl!d.itos de corto plaza generahnente para movilizaci6n de cosechas y otros gastos de operaci6n.El crl!d.ito institucional pU.blico constituye la principal fuente de financiamien agrrcola en el Ecuador y se canaliza a travl!s del Banco Nacional de Fomento, entidad cuyo capital es aportado integramente por el Estado y que cuenta con un capital autorizado de US $ 120 millones.El volumen de crl!dito otorgado al cultivo de trigo ha ido en aumento ano con ano coma se puede observar en el Cuadro No. 14. Dentro de los productos alimenticios s6lo el arroz y marz tienen mayor volumen de credito que el trigo. Estos tres cultivos reciben aproximadamente el 21% del total del crl!dito agrrcola otorgado par el Banco Nacional de Fomento; el crl!dito otorgado a pastas y ganaderra cubre aproximadamente el 300/o. Asumiendo que el crl!d.ito total necesario para cultivar 1 ha. de trigo es de US $ 180 00, durante el ciclo 1974-1975 el 23% del 4rea cultivada con este cereal habrfa sido atendida par el Banco Nacional de Fomento.Ultimamente el Banco ha venido aumentando en forma considerable el volumen de crl!dito y las facilidades otorgadas al pequetlo agricultor de la Sierra. El aumento que se observa en el Cuadro No. 14 de los volU.menes de cr~dito para trigo a partir del ciclo 1972-1973. coincide con las planes del gobierno para fomentar la producci6n de alimentos que constituyen la dieta b4sica del pueblo ecuatoriano, es decir las cultivos de ciclo corto. El crl!dito se otorga en dinero y en especies y se canaliza a travl!s de 50 sucursales y agencias distribuidas en todo el pafs: el cr€dito en especies consiste en productos agro-qufmicos y tambil!n bienes de capital.El Banco Nacional de Fomento tiene a su cargo la importaci6n de la mayor parte del fertilizante que se usa en el pars. como asr tambil!n otros productos agro-qu!micos. En 1973En -1974, el Banco invirti6 m4s de un tercio de su capital autorizado en compras de fertilizante en el mercado mundial.El crl!dito para el cultivo de trigo se otorga a travl!s del crl!dito de capacitaci6n. Este es un crl!dito agrrcola supervisado disenado especialmente para atender al pequetlo agricultor y a organizaciones formadas por estos. El prl!stamo se otorga en dinero y especies y se realiza en tres etapas: 40% para preparaci6n del terreno y siembra, 400/o para labores culturales (fertilizaci6n, herbicidas, etc,) y 200/o para cosecha y transporte. El Banco cuenta con asesoramiento tl!cnico para las agricultores que se brinda durante la supervisi6n de los crl!ditos. Serra importante considerar la posibilidad de que los tecnicos encargados de los servicios de crl!dito trabajaran en estrecha colabora-ci6n con los tl!cnicos del servicio de Extensi6n para uniformizar las recomendaciones al agricultor.El crl!dito no institucional se encuentra muy extendido en el agro-ecuatoriano afectando, a travl!s de sus diversas modalidades de explotaci6n. a los pequetlos agricultores. Este crl!dito es otorgado por comerciantes de productos agropecuarios, quienes a traves de la entrega de anticipos, en dinero o viveres, se aseguran la compra anticipada. de las cosechas de trigo pagando hasta el 50o/o del valor final.El nivel de utilizaci6n de insumos modernos y la modalidad de cultivo de trigo en Ecuador. prove en una base para intentar explicar la brecha existente entre el rendimiento promedio de la tecnologfa disponible (3. 4 ton/ha) y el rendimiento promedio observado (alrededor de 1 ton/ha).La disponibilidad de semilla certificada para trigo viene evolucionando favorablemente en el Ecuador, particularmente a partir de la creaci6n de la Empresa Mixta de semillas en 1974. En el Cuadro No. 15 puede observarse el porcentaje de hectAreas sembradas con semilla certificada entre 1970 y 1975. El mayor porcentaje de uso se observa en el ciclo 1970-1971, que posee tambifn el rendirniento promedio mas elevado. De todos modos el empleo de semilla certificada es muy reducido y fundamentalmente es un insumo usado par las categorias de tama:n.o de explotaci6n mas grandee. En el aft.o agricola 1974-1975 del total de hectareas de trigo sembradas por las fincas mas peque:n.as (menores de 10 ha.). s6lo el 1. 5o/o fueron sembradas con semilla certificada. Sin embargo el uso de variedades mejoradas. en relaci6n con las variedades criollas. se encuentra bastante difundida mas del 60o/o de la superficie sembrada en los Ultimos cinco afl.os ha sido plantada con las variedades producidas por el INIAP. La prActica comtin de los agricultores es conservar parte del grano cosechado en un ciclo de producci6n para ser utilizado como semilla en el pr6ximo.El uso de dosis correctas de fertilizaci6n parece ser un insumo de gran importancia para elevar la productividad triguera del Ecuador. Los pocos ensayos realizados han demostrado una respuesta significativa a nitr6geno y f6sforo. Sin embargo. las recomendaciones de fertilizaci6n proporcionadas por el INIAP aparentemente son realizadas a partir de anAlisis de suelos y es una recomen-daci6n general para suelos bajos en nitr6geno y f6sforo y altos en potasio. En el Cuadro No. 16 se puede observar la superficie total fertilizada y la aplicaci6n promedio para el periodo 1970-1975. Si bien alrededor del 40o/o del total de la superficie sembrada con trigo se encuentra fertilizada, las cantidades de nutrientes empleadas por hectarea son muy bajas. Los fertilizantes mas empleados son los completos 10-30-10, 10-40-10 y 8-24-8, tambifn urea en menos proporci6n; considerando una aplicaci6n promedio de 150 kg/ha equivaldr!a aproximadamente a 30 kg. de nitr6geno, 30 de f6sforo y 10 de potasio. En el Cuadro No. 17 se presenta el uso de fertilizantes por tamai'io de ex-plotaci6n para los ciclos 1973 -1974 y 1974 -1975. Es posible observar que el 80o/o de la superficie fertilizada corresponde a las categorias de tamano par encirna de 10 has y que estas categorias cult ivan s6lo el 50% del total de la superficie plantada con trigo. La acentuada subutilizaci6n de este insumo es una posible explicaci6n para la baja productividad de la tierra dedicada a trigo. esto se:flala la necesidad de realizar investigaci6n orientad't a conocer las dosis y tipo de fertilizantes mas adecuados para los diferentes sistemas de producci6n.:./ y circunstancias de los agricultores que se pueden encontrar en Ecuador. Es importante evaluar• el riesgo asociado con el uso de este insumo debido a contingencias climaticas, as! en el ciclo 1964 -1965 la distribuci6n irregular de las lluvias provoc6 un decenso brnsco en los rendimientos promedios y fue de 0. 75 ton/ha. , en el ciclo 1969-1970 una excesiva y prolongada estaci6n lluviosa hizo que los rendimientos se redujeran nuevamente a 0. 90 ton/ha. (Ver Cuadro No. 4). De aquf la necesidad de producir recomendaciones por sistemas de producci6n.El uso de insecticidas y herbicidas se encuentra poco difundido, La aplicaci6n de herbicidas forma parte de las recomendaciones para cultivo de trigo del INIAP; se recomienda la aplica-ci6n de 2-4 D ester a raz6n de 3 Its/ha. al macollaje. En el Cuadro No. 18 puede observarse el ntimero de explotaciones trigueras que aplicaron estos insumos en los ciclos agr!colas 1973-1974 y 1974-1975. El uso de herbicidas se encuentra mas generalizado que el de pesticidas. pero de todos modos menos del 5% de las explotaciones trigueras usan estos insumos.En el mismo Cuadro No. 18 se puede observar el grado de mecanizaci6n de las explotaciones trigueras. con excepci6n de la trilla que se encuentra mecanizada en el 50% de las explotaciones. las operaciones se realizan a mano y con tracci6n animal. Sin embargo. dadas las actuales relaciones de precios entre trabajos mecanizados y realizados a mano y/o con animales, es probable que la mecanizaci6n pueda extenderse, (ver Cuadro No. 22). En las provincias del Norte del Callej6n Interandino donde las contingencias clirn:iticas pueden comprometer el exito de una buena cosecha, la roecanizaci6n del corte efecttiandolo a madurez fisiol6gica. ser!a de interes prioritario en los programas de mecanizaci6n.La fijaci6n de un precio oficial de garant!a ha sido la principal medida intervencionists del estado para incentivar la producci6n de trigo. Esta politica se viene operando a partir de 1955 despues de la creaci6n de un organismo para el fomento del desarrollo triguero que actualmente se llama Programa Nacional de Granos de Clima Templado. El precio oficial basico se fija para un trigo que tenga 75 prmtos de peso hectolitrico, 14°10 de humedad y 1% de impurezas. Las fluctuaciones de precio basico en relaci6n a peso hectolftrico diferente de 75 puntos. se establecen disminuyendo 0 incrementando us $ 0.12 por punto. Los trigos con mas de 14% de humedad tienen un descuento de US $ 0.116 por cada lo/o de humedad. Asimismo, los trigos con mas del 1% de impurezas tienen un castigo de US $ 0.112 por cada punto adicional.Durante los dos tiltimos ciclos de producci6n 1973-1974 y 1974-1975, ademas del precio oficial correspondiente. el trigo domestico ha tenido un subsidio bajo la forma de un certificado de bonificaci6n por un valor de US $ 44. 00 por tonelada de trigo. En el ciclo de producci6n 1973-1974 cada US $ 2. 00 de esta bonificaci6n eran canjeables por US $ 1. 20 de fertilizante y US $ 0, 80 de semilla de trigo certificada; en el ciclo 1974-1975 esta modalidad cambi6 ligeramente y los US $ O. 80 canjeables por semilla ten!an tambifn la opci6n de ser canjeados por fertilizantes. Los certificados de bonificaci6n son negociables a travtls del Banco Nacional de Foroento o Agentes Au-Por sistema de producci6n se entiende aqu! una pa.rte de rm Wliverso de producci6n en la cual ciertos factores de producci6n 11 no controlables 11 son constantes en el cultivo de trigo: tipo de suelo, clima, manejo, rotaciones. etc. torizados para obtener el fertilizante, y a traves de la Empresa Mixta de Semillas para la obtenci6n de semilla certificada. Si bien esta estrategia de subsidiar la producci6n domestica fue importante para aumentar la demanda de insumos tecnol6gicos modernos, este no fue el Uni.co prop6sito. Fue tambii §n una manera para que el Banco Nacional de Fomento pudiera deshacerse de grandes reservas de fertilizante que fueron comprados cuando este insumo tuvo los precios mas altos en el mercado internacional, y las predicciones eran de futuros aumentos de precios dada la crisis de energ!a.En el Cuadro No. 19 se pueden observar las precios de trigo nacional e importado para la decada 1965-1975. El precio del trigo importado Se mantuvo constante entre 1965 y 1970 pero a partir de este afto comienza a ascen~er significativamente. Entre_ las aftos 1972 y 1973, Ecuador deja• de recibir trigo a traves del acuerdo PL 480 y las nuevas compras de trigo son realizadas en el mercado mundial a las precios internacionales. La situaci6n reciente de los precios del trigo en el mercado internacional parece estabilizarse e incluso tiende a ser m4s favorable que en afios anteriores por algunas de las compras realizadas par el Ecuador. En el Cuadro No. 20 figuran las pre-cioS internacionales entre 1965 y 1974; estos precios han sido ajustados a precios CIF mas las costos de nacionalizaci6n y transporte que hemos estimado en un 300/o de las precios CIF para Ecuador.El precio para el trigo nacional que figura en el Cuadro No. 19 es el precio promedio interno del Ecuador a nivel de mayorista. La relaci6n precio promedio domestico (Pd) a precio de importaci6n (Pi)• permite tener una idea de la situaci6n competitiva del Ecuador para producir trigo. Evidentemente en las Ultimas anos la situaci6n ha cambiado considerablemente ya que por primera vez en la historia triguera de este pars, los costos de importaci6n han sido mayores que las de producci6n domCstica. Si esta situaci6n se mantiene y la producci6n nacional aumenta efectivamente, significa que el pars ahorrara di visas a la vez que se tiende a minimizar el costo de satisfacer la demanda par trigo; sin embargo, comb se puede ver en el Cuadro No. 4, a pesar de la situaci6n competitiva favorable y de que el precio dom~stico ha aumentado significativamente en los 11ltimos tres ciclos agrfcolas, las niveles de producci6n no han. variado substancialmente. Esta si-tuaci6n indica la necesidad de fortalecer las aspectos de infraestructura senalados anteriormente.A pesar del aumento en los precios de trigo tanto importado coma nacional, el precio de la harina de trigo al consumidor se ha mantenido constante durante los Ultimos tres ciclos agrfcolas. Dado el consume popular de trigo. particularmente bajo la forma de pan y fideos, el precio oficial fijado para la harina de trigo ha sido una manera de controlar el costo de la canasta de consumo. El congelamiento del precio de la harina de trigo. conjuntamente con un aumento salarial de US$ 10. 00 mensuales para asalariados que reciben menos de US $200. 00 par mes, ha sido la estrategia empleada por el gobierno para compensar a las clases de bajos •ingresos por las aumentos en las precios del arroz, azUcar, leche y came. Para mantener esta politica de ingreso real constante. el gobierno ha implementado un programa de subsidio que inicialmente se estableci6 para el trigo importado pero que actuahnente existe tambiCn para la producci6n nacional coma se mencionaba al principio de este anexo.El precio establecido para la tonelada de harina es de US$ 223. 10. Este precio es fijado por la superintendencia de precios en base a los siguientes factores: 1) Porcentaje de mezcla de trigo nacional e importado. 2) Precio de trigo nacional e importado, 3) Gastos operacionales de producci6n y 4) Eficiencia de molienda (precios de subproductos). El cAlculo de US$ 223.10 par quintal de harina, contempla una mezcla de 80% de trigo importado y 200/o de trigo nacional (aunque se estima que para el ciclo 1975-1976 el porcentaje de trigo importado aumentari al 82o/o) con una ex-tracci6n de harina del 75o/o (1.34 ton de trigo para producir 1.00 ton de harina). La importaci6n de trigo se realiza a trav€ls del Ministerio de Industrias quien lo distribuye a las molinos a un Jll'ecio aproximado de US$ 145. 00 la tonelada; considerando un costo promedio para el trigo importado de US$ 200.00 para las Ultimas tres aflos. el subsidio es de US$ 55.00 por tonelada. El subsidio a la producci6n nacional es de US$ 44. 00 par tonelada. Considerando gastos de operaci6n promedio de US$ 39. 70 por tonelada de trigo y venta de subproductos a US$ 70. 50 la tonelada, el mArgen de beneficio promedio para los molinos del Ecuador es de US$ 4. 70 por tonelada de trigo procesada.El subsidio al trigo importado fue establecido en octubre del 1973 ante el encarecimiento del trigo en el mercado mundial. Se estableci6 fundam.entalmente para beneficiar al consumidor ecuatoriano. Sin embargo, el congelamiento de_l precio de la harina no se ha traducido en precios constantes para pan y fideos, lo cual hace pensar que molineros y panificadores han sido las mayores beneficiarios del subsidio. El otro posible beneficiario del subsidio es Colombia; dadas las diferencias en precio de la harina entre estos dos pafses parece haber una importante fuga de harina de trigo desde el Ecuador. Estas razones han motivado propuestas par parte de comisiones asesoras del gobierno eliminar graduahnente el subsid.io al trigo importado. Suponiendo que se conservaran los mArgenes de ganacia de las molinos, la eliminaci6n del subsidio implicar!a un aumento aprox:imado del 70o/o en el precio de la tonelada de trigo, lo cua1 inc'idir!a significativamente en las precios al consumidor.Para conocer la situaci6n competitiva del trigo en relaci6n con otras opciones del agricultor ecuatoriano, se presentan a continuaci6n algunos datos de costos de producci6n y rentabilidad relativa.De acuerdo con la informaci6n obtenida anualmente por el Programa Nacional de Granos se han identificado tres sistemas principales de cultivo de trigo. a saber:En el Cuadro No. 23 se presenta la relaci6n ingreso neto -costos variables totales para algunos cultivos de ciclo corto, que compiten y/o entran en rotaci6n con trigo. Dentro del sistema tradicional s6lo el ma!z suave es mAs rentable que trigo; sin embargo, coma se sefialaba en el anexo de producci6n, la demanda par este tipo de ma!z se ha reducido significativamente en el Ecuador. Con el precio actual del trigo US $220/ton frente al de cebada US$ 132/ton, ma!z suave US $167 /ton, y ma!z duro US$ 141/ton, el uso de tecnologia moderna, en aquellas zonas donde es posible, brinda ventajas comparativas substanciales al cultivo de trigo.Al analizar las aspectos de producci6n se mencionaba la orientaci6n no agr!cola de la politica econ6mica. En efecto, la pol!tica econ6mica a nivel nacional ha estado por un lado, orientada a favorecer el desarrollo de sectores vinculados a las Areas urbanas, y par otro, hacia la pro-tecci6n del consumidor manteniendo niveles de precios al productor agropecuario que en t~rminos reales representaron una disminuci6n. Esta pol!tica parece haber cambiado recientemente, particularmente en lo que se refiere a precios al productor dentro del subsector agricultura que fue el mAs deprimido. Esta situaci6n hace que la reducci6n en el Area cosechada con trigo observada a partir del ciclo de producci6n 1969-1970, se encuentre significativamente correlacionada con los cambios desfavorables en los precios relatives. En el Cuadro No. 24 se presenta la evoluci6n de !ndices de precios de trigo y de los insumos necesarios para su cultivo entre 1964 y 1974. El !ndice para insumos es un promedio ponderado para los tres sistemas de producci6n descritos anteriormente y ha side utilizade come base para la fijaci6n del precio de garant!a del trigo. Se puede observar en el Cuadro No. 24 come el valor adquisitive del precio del trigo en insumos comienza a descender a partir del ciclo de producci6n 1969-1970 hasta recuperarse en el Ultimo cicle con las nuevos precies del trigo.•En el Cuadro No. 25 se presenta la evoluci6n de las precios dom~stices de carne de res y trigo temando 1965 = 100. Es posible observar que a lo largo del periodo 1965-1974 el ritmo de aumento de los precios oficiales ha sido significativamente favorable para la carne de bovino.El tipo de estructura agraria y tenencia de la tierra asociados con concentraci6n de latifundios en las Areas agr!colas mAs aptas y presencia de una masa de pequeflos agricultores de subsistenci.a en las tierras menos productivas, ha sido sef1alado como la causa estructural fundamental de los problemas que aquejan a la agricultura ecuatoriana. La politica agr{cola delineada par el gobierno nacional a trav~s del Plan Integral de Transformaci6n y Desarrollo 1973-1977 ha contemplade los siguientes objetivos bAsicos: a) Crear procedimientos tendientes a romper con la actual estructura agraria e incorporar el carnpesinado al proceso productive.b) Integraci6n econ6mica y social del pa!s par media de acciones de reforma agraria y colonizaci6n. c) Mantener elA.stica la oferta de alimentos del sector. d) Ampliar las exportaciones agropecuarias y programar la substituci6n de las importaciones de alimentos. e} Integrar verticabnente las actividades agr!colas con la industrializaci6n de los productos en el campo, a fin de estabilizar la ocupaci6n en los per!odos estacionales de empleo y aumentar el valor agregado de la producci6n primaria.El pa!s se encuentra en una. circunstancia financiera favorable que puede permitir la mo-vilizaci6n de recurses hacia el sector agr!cola y cumplir con las obje~ivos propuestos. La coyuntura mundial de crisis de energ!a ha favorecido el cambio de la estructura de dependencia de la ecenom!a pasando de una posici6n agro-exportadora hacia una petr61eo-agro-exportadora que ha aumentado la generaci6n de medias financieros. En el pasado la politica econ6mica no ha seguido lineamientos que correspondan a la importancia que el sector agropecuario tiene en la econom!a del pai's. Asi par ejemplo, a nivel nacional se ha favorecido el desarrollo de aquellos sectores vinculados a las Areas urbanas; las medidas gubern.amentales adoptadas ban tenido principahnente la caracterfstica de ir en defensa del consumidor sin atender paralelam.ente las necesidades del productor agr!cola principalmente en materia de incentives y est!mulos. etc. Todo esto se ha traducido en el lento crecimiento de la producci6n total del sector que se seflalaba al analizar los aspectos de producci6n.En los 11.ltimos anos parece haberse producido una reversi6n parcial de la anterior politica; se realizaron ajustes en los precios de los productos agr!colas principales, se dieron subsidios a la prpducci6n dom6stica, program.as de fomento a trav~s de cr~dito agrlcola, etc. Estos alicientes para dinamizar el sector agr!cola, y particularmente el subsector agricultura que es el md.s deprimido, a'6n no han dado los resultados esperados coma se puede observar en el Cuadro No. 4 de pro-ducci6n.Los objetivos y metas que conciernen al cultivo de trigo han sido seflalados en el Plan General de Desarrollo y Transformaci6n 1973-1977. Los aspectos relevantes se describen a conti-nuaci6n:Sustituci6n progresiva de las importaciones requeridas por el pa!s, reduciendo las importaciones de un 720/o a un 400/o del consumo total para 1977-1978.Expansi6n del Area cultivable en base a la reducci6n de superficie actualmente cultivada con cebada y ma!z principahnente.Utilizaci6n de regiones apropiadas para el cultivo de trigo en la Costa.Aumento de la productividad mediante la adopci6n de mejores t~cnicas de cultivo, adecuada fertilizaci6n, control de malezas y utilizaci6n de variedades mejoradas.Incremento del volumen y agilidad del cr~dito agricola. Mejorar la comercializaci6n del cereal evitando el intermediario y garantizando precios remunerativos.Orientar el servicio de asistencia t~cnica al mediano y peque:n.o productor.Las medidas de acci6n contempladas son las siguientes:Determinar una pol!tica triguera que contemple la zonificaci6n del cultivo. estudios de suelos y factores meteorol6gicos, estructura y tenencia de la tierra y demAs aspectos socio-econ6micos que se vinculan con la producci6n triguera.Brindar el apoyo institucional necesario para implementar los objetivos estableciendo que: 1) el INIAP de especial prioridad a la investigaci6n de trigo con respecto a otros cereales, 2) el Programa Nacional de Granos oriente su acci6n hacia el fomento y defensa de la producci6n dando especial atenci6n a los peque:n.os y medianos productores, 3) el Departamento de Certificaci6n de Semillas del Ministerio asegure el abastecimiento de semillas certificadas, 4) El Banco Nacional de Fomento incremente SU capacidad de cr~dito modificando el procedimiento de concesi6n de crl!dito, 5) Se cree la Em.presa de Almacenamiento y Mercadeo de Granes para asegurar al productor la colocaci6n oportuna de su cosecha a las precios garant!a.... ... 1970 -1971 1971• 1972 1973 -1974 1974 1970 -1971 1971 ... 1972 1973 -1974 1974 ) 1962-1963 110, 348 1963-1964 106,133 1964-1965 101, 391 1965-1966 121,572 1966-1967 129,100 1967-1968 128,798 1968-1969 162,630 1969-1970 153, 786 1970-1971 160,321 1971-1972 160,562 Fuente: \" 1970-1971 1971-1972 1973-1974 1974-1975 CUADRO No.17 Uso de Fertilizantes por Tamallo, Ciclos de Producc!6n 1973Producc!6n -1974Producc!6n y 1974Producc!6n -1975Producc!6n 1973Producc!6n -1974Producc!6n 1974Producc!6n .. 1975 Taman ","tokenCount":"8401"} \ No newline at end of file diff --git a/data/part_3/9721948683.json b/data/part_3/9721948683.json new file mode 100644 index 0000000000000000000000000000000000000000..648fb3dcff6b5727ea8bc671b609c712f8428cee --- /dev/null +++ b/data/part_3/9721948683.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"753cb5ecfd9ee4e2b02561a26bdde729","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/502fa31d-f5c9-4ae5-88f1-fb9252b6bec5/retrieve","id":"-1877232573"},"keywords":[],"sieverID":"34488f83-904a-4a5d-a578-92f449dc98d7","pagecount":"3","content":"Mbili Mbili and doubled-up legume are innovative cropping system innovations to ensure crop diversification and crop resilience in farming systems in East and Southern Africa. The name Mbili Mbili is derived from the Swahili word \"Mbili,\" meaning two cereal e.g. maize rows alternating with two legume species. Mbili-Mbili intercropping is especially favorable to smallholder farmers with small land holdings because they can intensify without the need for additional land. Mbili Mbili intercropping system has been promoted as a crop diversification and intensification approach. Mbili-Mbili exploits plant spatial configurations to increase light penetration to the legumes, otherwise often shaded by cereals. The main aim is to increase legume productivity, while maintaining the same productivity of the cereal and taking advantage and complementarity of the different growth habits and durations of the combined crops. Mbili Mbili enables a farmer to grow both legumes and cereals on the same land and thus harvest at different times. In event of a loss, one crop serves as an insurance. This makes the system climate smart. Mbili Mbili system has been reported to have a higher returns (upto 37% more) compared to the standard farmer intercropping practices. The technology has been tested, and widely promoted in maize growing areas in Kenya and other countries in east and southern Africa.The nature of this innovation isInnovations that already exist and undergo constant, steady progress and improvement.Innovations of technical/material nature, including varieties/breeds; crop and livestock management practices; machines; processing technologies; big data and information systems.The innovation is validated for its ability to achieve a specific impact under uncontrolled conditionsThe innovation is being tested for its ability to achieve a specific impact under uncontrolled conditionsThe innovation is validated for its ability to achieve a specific impact under semi-controlled conditionsThe innovation's key concepts have been validated for their ability to achieve a specific impactThe innovation is being tested for its ability to achieve a specific impact under semi-controlled conditionsThe innovation's key concepts are being formulated or designedThe innovation is validated for its ability to achieve a specific impact under fully-controlled conditionsThe innovation's basic principles are being researched for their ability to achieve a specific impactThe innovation is being tested for its ability to achieve a specific impact under fully-controlled conditionsThe innovation is at idea stage We would like to thank all Funders who support this innovation through their contributions to the CGIAR Trust Fund (https://www.cgiar.org/funders/).This Innovation Profile was prepared with support from CGIAR's Portfolio Performance Unit (PPU), and the authors thank the CGIAR Innovation Packages and Scaling Readiness (IPSR) team for their valuable contributions.The technology has been tested across the country and generated evidence of its working. © 2022 CGIAR System Organization. Some rights reserved.This work is licensed under a CC BY 4.0 license.","tokenCount":"453"} \ No newline at end of file diff --git a/data/part_3/9732451889.json b/data/part_3/9732451889.json new file mode 100644 index 0000000000000000000000000000000000000000..0aa16c728ef13f91a2fb80bd9102eca75b904ba4 --- /dev/null +++ b/data/part_3/9732451889.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"937ef4c6349026afbeaf07bdda8ff4ee","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/0ad234b8-a380-443d-9ee0-af1efe1671cb/retrieve","id":"-970604605"},"keywords":[],"sieverID":"326a47e3-8ae4-4c4f-855e-c5d5aa173ed5","pagecount":"7","content":"Dairy Development Project (EADD) -Uganda newsletter. This newsletter will serve as an opportunity for updating our partners on the progress towards implementing of the project and for staff to share out their key competences. EADD is a 4 year (2008 -2012) poverty reduction project that will move small holder women and men farmers out of poverty by improving their profit participation in the dairy value chain. The project's adopted hub model of farmer owned chilling plants (CP) will ensure tackling many challenges which the small holder farmers have been facing along the dairy value chain. The project is funded by Bill and Melinda Gates Foundation (BMGF) and implemented by Heifer Project International (HPI) as the lead agency. Other implementing partners are Technoserve (TNS), African Breeders Services -Total Cattle Management (ABSThe East African Dairy Development Project (EADDP) was officially launched at Hotel Africana in Kampala on 24th July 2008. EADDP was launched by the Honorable Minister of State for Animal Industry, Mr. Fred Mukisa, who expressed great honor to perform the task of officially launching of the project. The aim of the launch was to introduce the project to the stakeholders, intended beneficiaries, funding organizations and to the general public and to provide a forum for informative exchange especially on how to work together to make the project achieve the set milestones. This was to ensure that the overall vision, objectives and activities of the project are understood and know how different stakeholders would contribute to the successful implementation of the project.The Minister observed that the annual milk yield of 900, 000 tones, is against a requirement of 4.8 million tones thus any strategic intervention in the dairy sector is a positive step towards the development of the sector. He also noted that the volume of milk collected, processed and packaged has increased significantly and there is no doubt that the Dairy sector is developing and is one of the ways of boosting the incomes of the rural poor. He noted that Heifer Project international Uganda (HPI-U) has embraced practical approaches to using livestock as an entry point to poverty reduction amongst the rural poor as articulated in the Plan for Modernization of Agriculture (PMA). It is with this vision that Heifer Project International received a fouryear $42.8 million grant (of which 10.6 million is for Uganda) from the Bill & Melinda Gates Foundation (BMGF) to fund a project to help poor rural farmers in E.A. double their incomes by increasing their production of high quality raw milk to sell to dairies. On behalf of government, the Minister called on all development agencies and partners to continue to support the poverty reduction programs to improve the livelihood of the rural poor and sustainably care for the earth for the future generations.In his welcome statement, the Country Director HPI Uganda, Mr. Patrick Nalere stated that the vision of EADD was to transform the lives of 179,000 households (about 1 million people) in the region by doubling their household dairy income by 2012 through integrated interventions in dairy production, market access and knowledge application.During the launch, the Country Project Manager (CPM), Mr. William Matovu, gave an overview of the EADD. He informed participants that the aim of EADD is to move smallholder farmers out of poverty by improving their participation in the dairy value chain and making profit. He also highlighted that the project would engage in 3 major activities of ; Generating information for decision making on the dairy value chain, Expanding dairy markets and increasing market access for smallholder farmers and Sustainably increasing dairy productivity and efficiency.He clearly outlined the project beneficiaries in Uganda as being 45,000 poor smallholder dairy families that earn less than $ 2 per adult and have 1-5 cowsIn his presentation at the launch, the Country Director of Technoserve Mr. Erastus Kibugu, gave a brief of TNS activities. He also made a comprehensive illustration of the Business hub approach to the dairy business service delivery, which, he said has four key steps; milk production, chilling, processing & packing and transportation and retail.At the launch, Hajj Mohamed Mubiru from Luweero HPI project, gave a testimony of how his group of Luweero Church of Uganda has benefited from Heifer interventions. Participants were drawn from the line ministries and district departments, partner organizations, service providers, potential beneficiaries, and other key stakeholders.Launching of the EADD-UgandaAt the beginning of July 2008, EADD staff were able to move into their office premises located on plot 14 Lourdel road in Nakasero, Kampala, just a few blocks away from HPI-Uganda office.This was after a few months of renovation of the premises, formerly used for residential purposes.The office premises comprises of one big housing unit and two smaller ones. The office houses all the EADDP stall from all the implementing partners in Uganda i.e. HPI-U, TNS, ABS TCM and ICRAF.HPI received a 4 year grant from the BMGF to help poor rural farmers in East Africa double their Incomes by increasing their production of high quality raw milk to sell to dairies EADD seeks to improve on-farm production and Market access.On-farm production will be improved by: increasing the volume of milk produced, improving milk quality and reducing loss through spoilage, and providing access to production inputs through business delivery services. Milk production will be increased through artificial insemination (AI) to improve local breeds of dairy cows and through improved animal nutrition.The project will also enhance the dairy farmers' understanding of fundamental business practices and ability to access finances. Market access will be improved by: developing local hubs of business delivery services and CPs that facilitate market access, linking producers to formal markets through processors, and increasing producers' benefit from traditional markets.The project will accomplish these aims through coordinated, farmer-focused interventions that integrate to develop small holder profit-participation in the dairy value chain. The project will provide extensive training in organization development and dynamics, animal agriculture, business practices, plus other related subjects. Women will be particularly targeted for inclusion in both the benefits and leadership.In Uganda, EADD will help 45,000 families lift themselves out of poverty by developing 10 milk collection hubs with CPs where farmers will bring raw milk for bulking and chilling before pick-up by commercial dairies. Additionally, 5 traditional hubs TMs will be established where activities will seek to achieve multiple goals including to: provide a range of business services to farmers and traditional traders; leverage the farmers' position with traditional traders through collective bargaining; and improve the demand for quality milk.The project is being implemented in the districts of Sembabule, Masaka, Mpigi, Wakiso, Mityana, Kiboga, Nakaseke, Luweero, Nakasongora, Masindi, Mukono, Kayunga and Jinja. The course was attended by 36 participants drawn from the EADDP target districts. Other 8 participants sponsored by HPI-U were drawn from the districts of Gulu, Pallisa, Iganga, Mbale, Ru-An orientation workshop was conducted for all EADDP technical staff from 2nd -4th July 2008 at Hotel Equatoria in Kampala. The aim of the workshop was to provide orientation for the staff and be able to collectively appreciate the tasks ahead. The specific Objectives were to:• Create a clear understanding of who (staff, consortium organizations, stakeholders) is involved• Build a team that will be able to effectively execute the task with a professional and social understanding.• Discuss the major contents of the project in particular the vision, mission, objectives, expected outcomes, milestones, values governing the project and the hub model.• Define EADDP 'partnership' to ensure the success of the project (challenges, opportunities, threats, strengths, working mechanism, reporting, performance reviews, roles and responsibilities, staff development)• Draft and harmonize quarter 3 and 4 work plans and agree on the farmer mobilization strategy.In addition to the EADDP-Uganda staff, the workshop was also attended by the regional coordinator of EADDP, Mr. Sensitization activities include field visits and meetings between EADD and district leaders, district technical staff, farmer leaders, farmers and other key stakeholders in the diary value chain. The messages focus on EADD, and explanation of the hub models, both CP and TM. In addition, district farmer business associations (DFBA) and CP site specific data/ information is being collected for CP feasibility assessments and business plans. EADD is also working with partners to mobilize to form DFBAs and raise equity through sell of sharesOutputs during mobilization activities include: Profiles of DFBAs and CP sites, Lists and numbers of small holder farmers and other project participants, Model farmers/TOTs identified per hub, BDS providers and their profiles identified per hub and market information.Some EADDP-Uganda staff sensitizing some district leaders in MasindiFor each of EADD-Uganda target districts specific, activities have been going on for the selection of potential sites for both the TMs and CPs.For the past 3 months, EADDP staff have been involved in the site selection process. Several key informants/ dairy value chain participants were interviewed providing useful information about the dairy situation in the different project districts. The information was used to map the distribution of dairy farming, marketing, business development services (BDS), existing milk cooling plants and to select the areas (sub-counties) with the greatest potential for successful establishment of CP TM and hubs. The selected areas were visited and the data collection tool/checklist developed by ILRI was administered.Among the key informants interviewed were the District Veterinary Officers, local Veterinary/ Livestock extension workers, farmer group leaders, bulk milk traders and transporters, business development service (BDS) providers, milk cooling plant operators, lead farmers and political leaders. Also interviewed were persons implementing projects that support smallholder farmers, NGO workers and staff of dairy processing companies. Secondary data on cattle numbers, milk production and marketing statistics, dairy farming households, farmer groups and community based organisations was obtained from different sources and used to identify potential sites for the CP and TM hubs.The data captured included location, existing farmer groups, milk yields, prices, existing markets, entrepreneurship, market dynamics, CP feasibility, AI, dairy feeding system, physical infrastructure (particularly roads), utilities (water, electricity, telephone), breeds of cattle and the dairy farming system. In addition, data was captured on volumes of milk marketed by the farmer groups, major milk traders in the area, BDS Providers, key dairy value chain participants and their capacities.Basing on the information/ data collected from different sites, qualitative and quantitative assessments of the suitability of each site for a CP or TM was done, and sites were later ranked in order of priority. A calf produced by AI","tokenCount":"1721"} \ No newline at end of file diff --git a/data/part_3/9746250263.json b/data/part_3/9746250263.json new file mode 100644 index 0000000000000000000000000000000000000000..4afa2bcc839fcb320cdb80faac967516582bf50d --- /dev/null +++ b/data/part_3/9746250263.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"08f6b1e55c9c2bbf68bdbde56372070f","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/a27f26d3-87e6-4688-aa06-0f95365dea13/retrieve","id":"-2071080962"},"keywords":[],"sieverID":"fda4b904-759b-4e79-821e-f13335c7df47","pagecount":"6","content":" Colombia desarrolló una política de crecimiento verde, como un nuevo motor para el desarrollo agrícola y de los territorios en el marco de un contexto internacional favorable (Acuerdos de Paris, OCDE). El enfoque de crecimiento verde permite integrar objetivos múltiples en relación a lo productivo, lo ambiental, y lo social en una visión renovada del sector agropecuario y del mundo rural. Las políticas de crecimiento verde integran los retos del cambio climático, en una visión proactiva que busca transcender las tensiones entre desarrollo agrícola y objetivos ambientales. El crecimiento verde integra 5 pilares que son la productividad, la eficiencia en el uso de los recursos naturales, el balance y flujo de nutrientes, la incidencia en el capital natural y las oportunidades sectoriales. La implementación de una metodología que alterna recopilación y análisis de datos con retroalimentación y validación de los resultados permitió producir información relevante y de interés para la toma de decisiones de los actores. El contexto político institucional y acuerdos internacionales facilitaron la formulación y la adopción de una política de crecimiento verde en Colombia.El Departamento Nacional de Planeación (DNP), a través de un proceso técnico denominado \"Misión de Crecimiento Verde\" (MCV) lideró la formulación del CONPES 3934 Política de Crecimiento Verde de Colombia, el cual fue aprobado el 10 de julio de 2018 (DNP, 2018).La formulación de esta política constituye un compromiso del DNP dentro del Plan Nacional de Desarrollo (PND) 2014-2018 (Capitulo X \"Crecimiento Verde\") cuyos objetivos eran \"avanzar hacia un crecimiento sostenible y bajo en carbono\", \"proteger y asegurar el uso sostenible del capital natural y mejorar la calidad y la gobernanza ambiental\" y \"lograr un crecimiento resiliente y reducir la vulnerabilidad frente a los riesgos de desastres y al cambio climático\". La formulación de la Política de Crecimiento Verde se enmarca también en el proceso del ingreso de Colombia a la Organización para la Cooperación y el Desarrollo Económicos (OCDE).La dirección de la MCV definió cinco ejes de análisis para formular la política: 1) Uso eficiente de recursos (agua, suelo, energía, materiales y residuos); 2) Nuevas oportunidades económicas (bioeconomía, economía forestal y transición energética); 3) Oferta y demanda de fuerza laboral (productividad laboral y capital humano y formalización empresarial); 4) Ciencia tecnología e innovación y; 5) Instrumentos económicos.El Programa de Investigación del CGIAR en Cambio Climático, Agricultura y Seguridad Alimentaria (CCAFS), el Centro Internacional de Agricultura Tropical (CIAT) y el Centro de Estudio Regionales Cafeteros y Empresariales (CRECE) fueron contratados por el Instituto Global de Crecimiento Verde (GGGI), de octubre 2017 a mayo de 2018, para apoyar a DNP en la realización del estudio sobre productividad en el uso del suelo y crecimiento verde como insumo para la formulación de la política de crecimiento verde.Con base en estos insumos, y los de otros entes contratados para los otros temas, el DNP formuló el CONPES 3934 aprobado el 10 de julio de 2018, el cual definió la Política de Crecimiento Verde de Colombia (DNP, 2018).Los objetivos planteados en el estudio sobre productividad del suelo: \"Productividad de la tierra y desarrollo del sector agropecuario medido a través de los indicadores de crecimiento verde\" fueron tres: 1) Identificar los factores que afectan la productividad de la tierra en el sector agrícola de Colombia en 5 sistemas productivos priorizados; 2) Analizar el rendimiento de los 5 sistemas priorizados del sector agrícola en relación con los indicadores de CV; y 3) Definir las recomendaciones de políticas públicas y una ruta crítica para implementarlas.En efecto, en este estudio se dan a conocer el estado actual de los indicadores de crecimiento verde (CV) para algunos sistemas productivos agropecuarios priorizados en Colombia y se identifican las opciones tecnológicas que permitirían mejorar dichos indicadores, con el fin de incrementar la productividad de la tierra sin afectar los demás indicadores de CV. Para lograr este objetivo, se implementó una metodología en cinco fases (Ilustración 1) incluyendo la fase de colecta de datos, la fase de análisis y la fase de consulta y validación de resultados. Para las fases de consulta y validación se conformaron comités consultivos de expertos de los sistemas productivos priorizados a nivel nacional y departamental.Cincos sistemas productivos fueron priorizados usando un análisis multi-criterio: café, aguacate Hass, cacao, ganadería y papa. Los criterios considerados contemplaban la representatividad de la producción en el país (área sembrada), la disponibilidad de información, la diversidad de tipos de cultivos (transitorios o permanentes), y su distribución en el territorio (diversidad de pisos térmicos y ubicación geográfica). En el caso de ganadería, se realizó una subdivisión por tres tipos de orientación productiva (carne, lechería y doble propósito).Para cada sistema productivo priorizado, se conformaron comités consultivos de expertos nacionales. Estos incluyeron representantes de gremios (Fedecacao, Federación Nacional de Cafeteros de Colombia, Fedegan, Fedepapa, Asohofrucol), MinAmbiente y MinAgricultura, ICA, Agrosavia, UPRA, DANE, CRECE, CIAT, CCAFS, y DNP y algunas ONGs.El análisis general consistió en la construcción de una línea base a nivel nacional para los 5 sistemas productivos priorizados en términos de productividad del sector (tonelada de producto por hectárea al año), eficiencia ambiental y productividad de los recursos naturales (emisiones de CO2, consumo de energía y uso de sistema de riego), balance y flujo de nutrientes (porcentaje de productores que fertilizan y tipos de fertilización y enmienda), incidencia en el capital natural (conflicto por uso del suelo, y erosión) y oportunidades sectoriales de crecimiento verde (certificación en Buenas Practicas Agricolas -BPA, acceso a asistencia técnica, y créditos). Estas categorías corresponden a los 5 pilares del crecimiento verde.Adicional a la línea base, se construyó una meta de referencia a lograr con un horizonte 2030. En la Ilustración 2, se presenta el ejemplo para el sistema productivo del café.Ilustración 1: Una metodología en 5 fases Ilustración 2: Línea base y meta para el sistema productivo café Este análisis de línea base para los 5 de los sistemas priorizados muestra que, en términos de productividad, Colombia tiene un gran margen para mejorar (bajo nivel de mecanización, poco mejoramiento, manejo de plagas y enfermedades y de pastos/ animales). Sin embargo, en cuanto a los rendimientos de café, Colombia presenta un buen desempeño a nivel mundial comparado con otros países que producen cafés suaves.Los cultivos como cacao, aguacate y café tienen un balance favorable de captura de carbono y, por lo tanto, podrían contribuir con objetivos de mitigación del cambio climático, mientras que cultivos como papa y ganadería requieren de la adopción de tecnologías que contribuyan a reducir su huella de carbono. Adicionalmente, la cobertura de riego en los cultivos priorizados (café, cacao y papa), con la excepción de aguacate Hass, es baja. Sin embargo, este resultado no necesariamente representa algo negativo ya que estos cultivos no requieren riego en todas las regiones.Los paperos y cafeteros sobresalen por el uso de fertilización química, mientras que el uso de fertilización orgánica ya es común en todos los cultivos.La asistencia técnica es muy baja en general para todos los cultivos, exceptuando el caso del café, que presenta un buen indicador de cubertura en asistencia técnica.El acceso a crédito es bajo en general, y puede ser una gran barrera para implementar tecnologías que demanden inversiones.Finalmente, los resultados evidenciaron existencia de conflictos de uso del suelo, lo cual constituye uno de los grandes retos que tendrá que enfrentar la política de crecimiento verde.Además de la línea base, se elaboró una lista larga de tecnologías para cada sistema productivo las cuales fueron presentadas a los comités, con el fin de evaluarlas y priorizarlas. Estas opciones fueron evaluadas por su potencial contribución a la mejora del desempeño de los indicadores seleccionados para la línea base. De esta manera, se pudo establecer una lista corta de tecnologías y de departamentos relevantes para los sistemas productivos y tecnologías priorizados.En la fase de análisis detallado se calcularon indicadores (los mismos que los usados para el nivel nacional) a nivel departamental. Se realizó una comparación de los indicadores departamentales de cada sistema para identificar regiones con valores sobresalientes y rezagados. También se calculó el impacto de las tecnologías que apuntan a mejorar los indicadores de crecimiento verde priorizadas por los comités consultivos (ver Ilustración ).Con base en el análisis de los indicadores de CV a nivel departamental y consultas a los miembros de los comités consultivos de cada sistema productivo, se determinó un departamento estratégico para realizar talleres participativos con el fin de identificar las barreras de adopción de tecnologías y medidas para promover la implementación a escala de una de las tecnologías priorizadas.En la primera fase de estos talleres, los participantes (instituciones de gobierno, sector privado, academia, gremios y productores) priorizaron una tecnología con alto potencial para CV (ver Tabla 1). En una segunda fase de los talleres, se identificaron las principales barreras para la adopción de estas tecnologías (ilustración 5). Tres barreras principales fueron mencionadas para todos los sistemas productivos: aquellas relacionadas con aspectos financieros (acceso a crédito, incentivos a una producción más verde), asistencia técnica (calidad y confianza), conocimiento y cultura (\"miedo al cambio\"). Seguidas de barreras como los arreglos institucionales (desarticulación entre instituciones relacionadas con BPA) y el acceso a mercado.Dependiendo de la naturaleza de la tecnología priorizada y también del contexto específico de los sistemas productivos en las regiones, distintas categorías de barreras fueron identificadas. Para ganadería de doble propósito se mencionaron barreras relacionadas con capital social, maquinaría, condiciones agroecológicas y tenencia a la tierra. Para la ganadería de leche, se evidenciaron como barreras prioritarias, aquellas financieras y de asistencia técnica (AT). Para ganadería de carne, se enfatizó la poca consideración de los conocimientos locales en los procesos de AT. Para aguacate Hass, cultivo reciente en Colombia, se subrayó la necesidad de investigar para poder acompañar adecuadamente a los productores. Para cacao, las barreras son aquellas vinculadas con arreglos institucionales (desarticulación entre instituciones relacionadas con BPA), infraestructura de agua, disponibilidad de tiempo (trámites de certificación) y tenencia de la tierra. En el caso del café, las barreras fueron identificadas en relación con la disponibilidad y calidad del servicio de laboratorios de análisis de suelo. Las barreras relacionadas con el sistema productivo de la papa, fueron de carácter financiero (falta de recursos económicos por parte de los productores), de AT (falta de continuidad) e institucional (falta de políticas claras y ajustadas para la promoción de la agricultura de conservación). Para café, ganadería de carne y cacao se mencionaron barreras relacionadas con el mercado.Una vez consideradas las barreras más importantes y más fáciles de superar, los participantes reflexionaron sobre las medidas o acciones necesarias para superar dichas barreras, teniendo en mente alcanzar una implementación a escala de las tecnologías promisorias para el crecimiento verde. Estas medidas fueron priorizadas según su nivel de eficiencia para superar la barrera y su facilidad de implementación (Ilustración 6). Las medidas específicas identificadas para superar las barreras fueron:Con base en una síntesis de los insumos de los talleres departamentales y de un análisis del marco institucional colombiano vinculante con los objetivos de CV, se formularon recomendaciones de política que contemplan 5 ejes principales para la productividad del suelo y desarrollo agropecuario: 1) la apuesta al financiamiento verde, 2) la promoción de una agricultura joven, 3) el desarrollo de una nueva era para la ciencia agropecuaria, 4) el apoyo a instituciones facilitadoras del crecimiento verde y 5) la participación activa de los consumidores para el cambio (Ilustración 7). Estos ejes fueron validados por en un taller de síntesis con el DNP y en un taller nacional con los actores de los comités nacionales.El análisis sobre la productividad de la tierra y desarrollo del sector agropecuario contribuyó a la elaboración de la Política de Crecimiento Verde Colombiana. Este análisis Este análisis fue guiado por una metodología que alternó momentos de colecta y análisis de datos con momentos de validación/ discusión y ajustes a los resultados preliminares. La inclusión y participación en el estudio de actores tales como representantes de gremios, productores, expertos en cambio climático/cultivos/crecimiento verde, y funcionarios públicos permitió obtener retroalimentación a lo largo del estudio, y plantear ajustes para producir resultados legítimos, relevantes y de interés.Los resultados muestran que Colombia tiene margen para mejorar en los 5 pilares del crecimiento verde para cada uno de los sistemas productivos priorizados (café, aguacate Hass, cacao, ganadería y papa). Se identificaron tecnologías promisorias que permitirían alcanzar esta meta por su potencial de contribución al CV para cada sistema productivo. Las barreras más importantes para implementar estas tecnologías fueron identificadas en talleres a nivel departamental; al igual que medidas concretas y factibles para superar las barreras más críticas. Las barreras más mencionadas fueron relacionadas con extensión agropecuaria, aspectos financieros y conocimiento y cultura. También fueron consideradas importantes barreras a nivel de capacidades institucionales y de mercado.El costeo de estas medidas promisorias representó un insumo práctico para el gobierno para poder conocer el costo de escalar prácticas agropecuarias que apoyen el crecimiento verde en el país. Finalmente, las distintas etapas de este estudio permitieron formular recomendaciones de políticas para alcanzar los objetivos propuesto al horizonte 2030, las cuales fueron utilizadas como insumo para la elaboración del documento CONPES 3934 \"política de crecimiento verde\" aprobado en julio del 2018.Este proceso permite resaltar unas lecciones aprendidas con respecto a la contribución de la ciencia a la formulación de política. Se pueden resaltar los siguientes factores favorables: i) una demanda clara y formal de insumos científicos por parte del gobierno (DNP) con mandato y potestad de formular una política según un calendario claramente definido por la MCV tomando en cuenta la temporalidad y voluntad política del gobierno de turno; ii) una metodología consensuada basada en síntesis de datos existentes provenientes de trabajos previos y un fuerte componente de consulta a diferentes niveles para enriquecer y legitimar el proceso de investigación y sus resultados; y, iii) un diálogo constante entre los investigadores y los funcionarios públicos a cargo de la formulación de esta política, el cual fue facilitado por relaciones de confianza establecidas previamente en trabajos anteriores.Una lección aprendida del proceso es la dificultad de lograr una visión integral del sector agropecuario, a partir del estudio de 5 sistemas productivos, para formular recomendaciones relevantes para la globalidad del sector agropecuario colombiano dado la diversidad de sistemas productivos, de condiciones agro-ecológicas, de actores y de tecnologías que apuntan al crecimiento verde.Ilustración 7: Ejes de recomendaciones de políticas para la productividad de la tierra en un contexto de crecimiento verde y su articulación con políticas, planes y programas vigentesLos resultados de los análisis realizados en este estudio, esperan no sólo contribuir a la implementación de la Política de Crecimiento Verde sino también a los compromisos de Colombia tomados en marco del Acuerdo de París (Contribución Determinada a Nivel Nacional), los cuales incluyen metas de adaptación y mitigación, y hacen necesaria la participación del sector agropecuario, bajo un enfoque de crecimiento verde.","tokenCount":"2445"} \ No newline at end of file diff --git a/data/part_3/9757685799.json b/data/part_3/9757685799.json new file mode 100644 index 0000000000000000000000000000000000000000..766c5ce62e7428cfe4787c6ab1a6cc32a464f91e --- /dev/null +++ b/data/part_3/9757685799.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"3a9546ef72f0e4e8a19a8b32513d6ccb","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/b14632e2-1c79-4a7e-b982-d5943a3960ee/retrieve","id":"-1635666286"},"keywords":[],"sieverID":"8b44262c-6ff2-42e5-9c55-4f83b4f01976","pagecount":"1","content":"• Lignocellulosic biomass the most abundant renewable biomass on earth, yielding 10 to 50 Billion metric tons per annum• High content of nutritive pentose and hexose sugars that 2 nd generation biofuel technologies attempt to make more accessible, with billions of US$ invested in research and development • Livestock nutrition can leverage these investments to up-grade available lignocellulosic biomass for animal feed The project was supported by: Livestock and CRP and USAID Linkage Grant Three potential spin-off technologies investigated:• Steam treatment (ST); Ammonia Fiber Expansion (AFEX) and; Two Chemical Combined Treatment (2CCT)Lignocellulosic biomass investigated were:• Rice and wheat straws and; maize, sorghum and pearl millet stovers.Effects tested:• In vitro gas production and true digestibilityAll treatments had significant effects increasing in vitro digestibility.Greatest effect obtained by 2CCT which effectively turned crop residues into concentrates with in vitro true digestibilities of greater than 90% (Table 1).Based on fodder market studies in India, cost benefit ratio is estimated at about 1:2.• Very promising laboratory results and cost-benefit estimates• Livestock productivity trials required: intake; food safety; animal health/welfare• Explore decentralized pilot treatment units by small and medium enterprises• More spin-off technologies, and their combinations, remain to be explored ","tokenCount":"194"} \ No newline at end of file diff --git a/data/part_3/9778647007.json b/data/part_3/9778647007.json new file mode 100644 index 0000000000000000000000000000000000000000..e4da749112a57832ea0c72e0c615aaa4d972d01d --- /dev/null +++ b/data/part_3/9778647007.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"2b822871cdbe9b92f9a3922d9157890b","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/dce1aa24-ba1e-4b7b-bd5a-2a3c080070d6/retrieve","id":"1569134152"},"keywords":[],"sieverID":"9f7930fd-cda6-4277-87df-bfe91a9579df","pagecount":"56","content":"Les auteurs et autrices remercient les examinateurs et examinatrices de ce rapport : Theresa Liebig d'Alliance Biodiversity et du Centro Internacional de Agricultura Tropical (CIAT, le centre international d'agriculture tropicale), Bia Carneiro d'Alliance Bioversity et du CIAT, Jeremy Lind de l'Institute of Development Studies (IDS, l'institut d'études sur le développement) de l'université de Sussex, Michael Odhiambo (conseiller indépendant) et Mauri Vazquez (ODI). Ils remercient également la traductrice du rapport, Karen Rolland (Karen Rolland Traductions). Ce rapport a été élaboré avec la contribution de la Research Initiative on Livestock and Climate (l'initiative de recherche dédiée au bétail et au climat) ainsi que de la Research Initiative on Fragility, Conflict, and Migration (l'initiative de recherche dédiée à la fragilité, au conflit et à la migration) du Consultative Group on International Agricultural Research (CGIAR, le groupe consultatif pour la recherche agricole internationale), soutenues par des bailleurs de fonds au fonds d'affectation au profit du CGIAR.Le changement climatique, les conflits armés, la fragilité environnementale et la gouvernance faible, ainsi que les répercussions de ces derniers sur les moyens de subsistance dépendant des ressources naturelles, font partie des principaux facteurs de la crise et de la pauvreté chez les communautés vivant dans des pays qui figurent parmi les plus vulnérables et les plus touchés par les conflits au monde.Le projet SPARC (Soutenir le pastoralisme et l'agriculture durant les crises récurrentes et prolongées) a pour objectif de produire des éléments concrets et de combler les lacunes en matière de connaissances afin de renforcer la résilience de millions de pasteurs, d'agropasteurs et d'agriculteurs dans ces communautés d'Afrique subsaharienne et du Moyen-Orient.Nous nous efforçons de produire un impact en nous appuyant sur la recherche et sur des éléments probants dans l'optique de développer des connaissances qui permettent au Foreign, Commonwealth and Development Office (FCDO, le ministère des affaires étrangères, du Commonwealth et du développement du Royaume-Uni), aux bailleurs de fonds, aux organisations non gouvernementales (ONG), aux administrations locales et aux gouvernements nationaux ainsi qu'à la société civile d'aider ces communautés, dans le contexte du changement climatique. Ces dernières années, le conflit entre les agriculteurs et les éleveurs en Afrique mobilise l'attention, et suscite des inquiétudes quant à l'escalade et à l'intensification des niveaux de conflit. Cette revue systématique de la portée repose sur une approche visant à minimiser le biais de sélection à l'aide de méthodes transparentes et reproductibles. Son premier objectif était de mieux appréhender les causes du conflit entre agriculteurs et éleveurs, et de révéler les tendances et éventuels problèmes de compréhension. Un deuxième objectif visait à établir à quel point le conflit est lié aux terres et aux ressources naturelles, et dans quelle mesure l'insécurité foncière est citée comme une cause de conflit, ainsi que la manière dont ce problème est évoqué. Un troisième objectif était de comprendre dans quelle mesure et à quel titre les femmes et les jeunes sont mentionnés dans la recherche sur le conflit entre agriculteurs et éleveurs.Cette analyse a adopté l'approche d'une revue systématique de la portée. Une recherche d'articles de recherche universitaire sur les sites Web of Science, Science Direct et des référentiels de groupes de réflexion en langues anglaise et française a permis d'identifier 88 articles et études de recherche pertinents. Ces 88 études ont été sélectionnées parmi une liste exhaustive de 1 102 articles. Ceci suggère que, si l'intérêt pour les conflits entre agriculteurs et éleveurs est important, il existe peu de travaux de recherche primaire sur les causes des conflits.Toutes les études de cas passées en revue ont établi un lien direct entre le conflit qui oppose agriculteurs et éleveurs, et les terres ou les ressources naturelles. Presque toutes ces études concluent que le conflit ne cesse de croître ou devient toujours plus violent. Toutefois, seulement quelques-unes présentent les preuves primaires à l'appui de cette assertion.Concernant les catégories de causes, la plupart des études insistent sur les facteurs de gouvernance, politiques et sociaux plutôt que sur la pénurie de ressources ou le changement climatique. Ces facteurs incluent une mauvaise gouvernance ou une gouvernance exclusive, des problèmes fonciers, une dégradation des relations entre les groupes et des préjugés ethniques. Ceux-ci sont suivis par (la perception d')une mauvaise gestion des ressources pastorales, la pénurie de ressources, la violence et l'insécurité humaine. Bien que le changement climatique soit un thème d'intérêt général, il ne figure pas dans la liste des principales causes de conflit.Les problèmes fonciers occupent une place importante. Toutefois, l'insécurité foncière est identifiée indirectement et davantage au travers de ses répercussions, notamment l'accès bloqué ou limité aux terres et aux ressources naturelles, et des litiges liés à l'occupation. L'identification de la précarité des droits fonciers (à savoir, la raison de l'insécurité) est rare et mentionnée dans seulement 13 % des cas. Ceci suggère que l'analyse des conflits entre agriculteurs et éleveurs ne parvient pas à identifier les origines premières et se concentre davantage sur ce qui est visible, et ce qui peut être facilement quantifié ou expliqué. Un examen plus poussé sur la relation entre l'insécurité foncière et le conflit est recommandé.Les femmes sont mentionnées en relation au conflit dans seulement 28 % des études, principalement en tant que victimes et moins fréquemment en tant qu'instigatrices du conflit ou de conciliatrices. Les jeunes sont plus souvent mentionnés, dans 43 % des études, et principalement en tant que participants au conflit. Ces études ne distinguent pas les jeunes par sexe, mais tout porte à croire qu'il est question de jeunes de sexe masculin.Les résultats de cette revue de la portée suggèrent qu'il est important de mener davantage de travaux de recherche primaire sur les conflits entre agriculteurs et éleveurs. Il faut également analyser ce que l'on classe généralement en tant que « causes » entre les forces influentes, les éléments déclencheurs, les étincelles et les origines premières d'ampleurs différentes. De plus, le rôle explicite de la précarité des droits fonciers dans le conflit entre agriculteurs et éleveurs, et le rôle des femmes et des jeunes dans ces conflits ainsi que les répercussions qu'ont ces derniers sur celles et ceux-ci, doivent faire l'objet d'une plus grande attention.SPARC Causes des conflits entre agriculteurs et éleveurs en AfriqueLes conflits entre agriculteurs et éleveurs au centre de l'attention en AfriqueLes auteurs et autrices reconnaissent qu'il est dépassé d'établir une dichotomie distincte entre les catégories de moyens de subsistance. En réalité, on assiste à un chevauchement grandissant. De fait, les agriculteurs se tournent de plus en plus vers l'élevage de bétail, et les pasteurs s'adonnent de plus en plus à l'agriculture. Cependant, chacune de ces catégories continue de préserver une spécialisation dans l'un des deux systèmes de subsistance. Les termes « agriculteurs » et « éleveurs » sont employés dans le présent rapport à titre de référence.2 Cette citation est apparue pour la première fois dans un communiqué de presse de l'Union africaine (UA) décrivant la conférence durant laquelle cette déclaration avait été faite. Depuis, elle a été reprise dans un rapport sur les opérations de maintien de la paix des Nations Unies (UN, 2020).Ces dernières années, les conflits entre agriculteurs et éleveurs 1 mobilisent l'attention dans les milieux de la presse, des cercles universitaires et décisionnels. L'escalade et l'intensification des niveaux de conflit entre les groupes suscitent des inquiétudes (Flintan et al., 2021). Les conflits entre agriculteurs et éleveurs sont majoritairement locaux, sporadiques et de l'interdiction du pacage pour réduire « le pâturage systématique » des pasteurs (Olufemi, 2021) le recours à des discours sur la dégradation pour « légitimer et ouvrir la voie aux investissements agricoles et à la protection de l'environnement sous prétexte de promouvoir une \" économie verte \" » (Bergius et al., 2020) le recours à des discours sur les pénuries et à différentes interprétations de ce discours pour justifier des décisions prises sous prétexte d'utiliser des ressources « insuffisamment exploitées » (Mehta et al., 2019 ;Scoones et al., 2019) la « titrisation » et la politisation du changement climatique en mettant en corrélation la migration découlant du changement climatique et la violence et l'insécurité (Benjaminsen and Ba, 2021 ;Wiederkehr et al., 2022), alors même que les preuves empiriques soutenant ce lien restent peu probantes et la recherche sur le sujet relativement rare (ibid) enfin, et peut-être encore plus dangereux, l'utilisation et la manipulation par les groupes extrémistes et les personnalités politiques des griefs entre agriculteurs et éleveurs pour parvenir à des fins précises (Bøås et al., 2020 ;Cline, 2020 ;Ugwueze et al., 2022).Si l'escalade de la fréquence et de la violence des conflits entre agriculteurs et éleveurs est souvent considérée comme allant de soi dans la presse et les domaines politiques, certaines études remettent sévèrement en question l'escalade ou l'intensification réelle des conflits entre agriculteurs et éleveurs, ou le fait que l'escalade de la violence observée dans certaines régions d'Afrique soit, en premier lieu, liée au conflit entre agriculteurs et éleveurs (Hussein et al., 1999 ;Krätli and Toulmin, 2020). Cette étude ne porte pas sur la question de l'escalade du conflit entre agriculteurs et éleveurs ou de l'intensification de ce dernier. Toutefois, ce débat controversé montre que le sujet suscite un grand intérêt.3 La documentation des groupes de réflexion a aidé l'équipe préposée à l'analyse à saisir les perspectives les plus récentes en dehors des revues à comité de lecture.En raison de cette attention accrue, bien que souvent confuse, et pour orienter les futurs travaux de recherche de SPARC, cette revue systématique de la portée vise à explorer la documentation universitaire et des groupes (Flintan et al., 2021 ;Osman, 2012).La logique visant à inclure l'insécurité foncière repose sur l'argument selon lequel la précarité des droits fonciers entraîne une perte de terres (ou d'accès aux terres) à des fins contradictoires, accélérée par la pression imposée sur les ressources terrestres. À mesure que les aires de pâturage diminuent et que les espaces destinés aux petits exploitants agricoles augmentent, la compétition à l'égard des ressources indispensables aux moyens de subsistance s'intensifie. Compte tenu de l'escalade de la concurrence, il est fort probable que celle-ci devienne violente. Ceci suggère que la précarité des droits fonciers pourrait être une cause de conflit (Flintan et al., 2021 ;de Jode and Flintan, 2020 ;Osman, 2012 ;Sulieman, 2015).Cette analyse pose les questions suivantes :Quelles sont les causes du conflit entre agriculteurs et éleveurs ?Les terres jouent-elles un rôle dans le conflit, et dans quelle mesure ?La précarité des droits fonciers fait-elle partie du débat et, le cas échéant, de quelle manière ?Les liens établis entre les femmes et le conflit, ainsi que ceux entre les jeunes et le conflit, sont mis en avant en tant que lacunes dans la recherche existante (Caroli et al., 2022). Ainsi, cette revue de la portée vise également à explorer dans quelle mesure les groupes sont mentionnés dans les études de cas sur le conflit entre agriculteurs et éleveurs.Des analyses documentaires ont récemment été menées sur des thèmes connexes. Toutefois, peu se concentrent spécifiquement sur les causes du conflit entre agriculteurs et éleveurs ou adoptent une méthodologie de revue systématique. L'une de ces études porte sur l'analyse d'incidents spécifiques découlant d'un conflit dans 16 pays à l'aide de la base de données de l'Armed Conflict Location and Event Data Project (ACLED, un projet de collecte de données sur la localisation des conflits armés et les événements qui y sont liés). Elle cherche à déterminer si la violence en Afrique peut être attribuée aux conflits entre agriculteurs et éleveurs comme le suggèrent de nombreux rapports, tout en explorant aussi comment sont (ou pourraient être) envisagées les causes du conflit (Krätli and Toulmin, 2020). Trois autres études explorent les sources de violence et d'instabilité affectant les pasteurs et d'autres utilisateurs des terres rurales ainsi que les causes des conflits relatifs aux terres. Elles s'appuient sur une méthode d'analyse documentaire ou d'étude de cas comparative (Brottem and McDonnell, 2020 ;Ntumva, 2022 ;Seter et al., 2018, respectivement). Une autre étude évalue les causes et les moteurs des conflits impliquant les pasteurs et repose sur des entretiens avec des parties prenantes dans six pays d'Afrique (UNOWAS, 2018). Si ces analyses sont approfondies, aucune n'adopte une approche de revue systématique.Deux revues systématiques ont été identifiées. L'une porte sur le conflit lié au changement d'utilisation des terres plus largement (de Jong et al., 2022), l'autre explore les liens entre le changement climatique et le conflit violent en Afrique de l'Ouest (Tarif, 2022), mais n'aborde pas spécifiquement les conflits entre agriculteurs et éleveurs.Une revue systématique de la portée La recherche de documentation en langue française a été entreprise le 4 novembre 2022 par une personne francophone (différente de l'examinatrice anglophone). L'équipe a utilisé la chaîne Au-delà des articles de périodiques, la même chaîne de recherche booléenne sur Google a permis d'identifier huit publications de groupes de réflexion, dont les sites Internet ont ensuite été consultés pour recueillir 20 articles supplémentaires, portant à 28 le nombre de publications par des groupes de réflexion. Un contrôle rigoureux de ces articles a permis d'identifier 10 articles sur les 28 qui présentaient un intérêt pour l'analyse. Une recherche supplémentaire pour les publications de groupes de réflexion a identifié neuf documents supplémentaires, portant le nombre total d'articles pris en compte pour l'analyse à 19.Au total, 50 publications ont été identifiées dans la documentation en langue française sur les conflits entre agriculteurs et éleveurs, dont 31 articles de périodiques et 19 articles de groupes de réflexion (tableau 1). Pour l'analyse, le code 1 a été attribué à un syntagme ou un mot-clé mentionné en tant que cause du conflit dans l'étude. Le code 2 a été attribué à un syntagme ou un mot-clé mentionné dans l'étude mais pas nécessairement comme une cause, par exemple inclus uniquement dans le contexte, l'introduction, les notes de bas de page ou les références, ou encore mentionné comme élément de discussion. L'autrice principale a entrepris une analyse d'un tiers des études de la documentation en anglais et a vérifié les mots-clés et les syntagmes dans leur contexte pour le reste. L'examinateur de la documentation en français a entrepris une analyse de toutes les études de la documentation en langue française. L'intégralité de l'analyse et de la représentation des données a été faite à l'aide du logiciel MS Excel Office Pro. La majorité des articles et des études utilisaient des méthodes qualitatives pour leur recherche. Une minorité reposait sur des méthodes quantitatives. Parmi les articles de périodiques, environ un tiers utilisait une association d'approches qualitatives et quantitatives, et un faible pourcentage ajoutait un élément « détection à distance » ou « cartographie participative » aux méthodes mixtes (figure 4). Toutes les études incluaient un examen des données secondaires en plus des méthodes de recherche primaire. Pour se faire l'écho de la documentation accessible dans le domaine public, 98 % des études prises en compte indiquaient une escalade de la fréquence ou de l'intensité (voire des deux) du conflit entre agriculteurs et éleveurs (figure 5). Le manque d'intérêt pour la dimension de genre dans le conflit a été mis en avant depuis un certain temps (Hamilton and Dama, 2003). Malgré l'indication d'un changement de la situation (ibid.), le rôle des femmes dans le conflit, près de 20 ans plus tard, n'est toujours pas suffisamment mis en exergue, notamment leur rôle dans la promotion du conflit ou de la paix (Brottem and McDonnell, 2020 ;Caroli et al., 2022). Les résultats de cette analyse viennent le confirmer. De fait, seulement 25 des 88 articles et études mentionnent les femmes en relation aux conflits décrits (figure 7). Ceci suggère une insuffisance permanente dans la recherche.Dans 70 % des cas où les publications mentionnent les femmes, elles y sont décrites comme des victimes du conflit. Elles sont présentées comme des instigatrices ou des collaboratrices au conflit dans 30 % des cas, et comme jouant un rôle important dans le rétablissement de la paix dans 30 % des cas. Par exemple, Hagberg (2001) présente les femmes comme instigatrices du conflit lorsqu'elles informent le fils d'un agriculteur des dégâts prétendument causés au champ de culture de son père par un éleveur peul. Ayant obtenu cette information, le fils de l'agriculteur se bat avec le jeune éleveur peul, qu'il finit par assassiner avec une arme. Sougnabe and Reounodji (2021) décrivent les femmes comme des victimes : « Ces situations encouragent les cas de violations des droits humains. C'est souvent la population civile, particulièrement les femmes et les jeunes, qui sont ciblés. » En outre, tout en limitant la documentation pour cette analyse, nombre d'articles de recherche qui analysaient l'accès des femmes aux terres et leurs droits à leur égard ont attiré l'attention. Même si ces études n'ont pas été incluses dans notre analyse car elles ne concernaient pas directement les conflits entre agriculteurs et éleveurs, elles suggèrent que la recherche concernant les femmes aborde d'autres questions connexes. Toutefois, les femmes sont ignorées dans les discussions de recherche sur le conflit et la consolidation de la paix. Sur les 88 publications, 38 mentionnent les jeunes (figure 8). Si les études de cas n'indiquent pas qu'elles se concentrent explicitement sur les jeunes de sexe masculin, les descriptions (par exemple, que les jeunes sont susceptibles d'être recrutés par des groupes armés, de former des milices spéciales pour la protection de la communauté, ou de suivre et de ramener du bétail dérobé) suggèrent qu'une plus grande attention est accordée aux jeunes de sexe masculin, et non féminin. Aucun article n'inclut de description des jeunes laissant entendre qu'il s'agit de femmes ou de jeunes filles. Cela indique une insuffisance supplémentaire dans la recherche.Dans 81 % des articles et des études où sont mentionnés les jeunes, ces derniers y sont décrits comme des collaborateurs au conflit, 50 % comme des victimes, et seulement 18 % comme des architectes de la paix. En tant que collaborateurs au conflit, les jeunes sont souvent présentés comme opérant en groupes pour protéger leurs communautés, protester contre les injustices ou prêts à faire justice eux-mêmes. Ils sont couramment décrits comme prédisposés au recrutement par des groupes armés, des groupes criminels ou des groupes insurrectionnels connus tels que Boko Haram, motivés par la désillusion, la privation du droit de vote, le manque de débouchés ou la pauvreté. Komi (2018) indiquait que les pasteurs sont de plus en plus jeunes, et ne font parfois pas preuve de la civilité et de la maturité nécessaires pour résoudre des conflits de manière amiable. Dans les actes du colloque du CSAO/OECD-AFD (2013), on peut lire : « Les acteurs de la violence sont essentiellement des jeunes nomades (Touaregs, Arabes, Toubous, Peuls) qui se sont mis en marge de leurs communautés ».Les recherches indépendantes sur le rôle des jeunes dans le conflit sont rares, et aucun article ni aucune étude de la sélection ne se penche sur ce sujet. Ceci laisse entrevoir un axe de recherche à approfondir. Si 100 % des études sur les conflits entre agriculteurs et éleveurs indiquent un conflit relatif aux terres et aux ressources naturelles (figure 9), la plupart évoquent ce lien comme une affirmation d'ordre général, par exemple le conflit ou la concurrence à l'égard des terres, de l'eau, ou une association des deux, ou à l'égard des ressources naturelles de manière générale. Quelques études offrent une analyse plus approfondie de cette affirmation, par exemple en la replaçant dans un contexte historique et en capturant l'évolution du changement social, économique et politique qui a entraîné des conditions d'inégalités, de disparités entre les groupes, d'érosion des relations sociales, ou de griefs non résolus à l'égard des ressources naturelles.Compte tenu de l'importance accordée à l'échelle internationale au changement climatique, les auteurs et autrices ont entrepris une recherche des syntagmes « changement climatique » et « évolution du climat » dans la liste de sélection des résultats de recherche de la documentation en langue anglaise (figure 2), et l'ont comparée à une recherche similaire au sein des 88 articles et études inclus. Une recherche de ces termes dans le titre, le résumé et les mots-clés de la liste de sélection montrait que le syntagme « changement climatique » apparaissait 121 fois sur 871 (14 %). La liste de sélection des résultats comprenait un assortiment d'études pouvant être liées au conflit entre agriculteurs et éleveurs, mais ne portant pas directement sur ce thème. Elle contenait par exemple des articles sur l'occupation des terres, l'accaparement des terres, la résilience des moyens de subsistance et la productivité agricole. Le changement climatique n'apparaissait pas comme un thème présentant un intérêt particulier dans ces domaines prioritaires, ce qui explique que ce thème soit peu mentionné. Les catégories de causes les plus citées sont la mauvaise gestion des ressources pastorales, la mauvaise gouvernance ou la gouvernance non inclusive, la précarité des droits fonciers et les problèmes fonciers, ainsi que la dégradation des relations et les préjugés ethniques. Suivent la pénurie de ressources ainsi que la violence et l'insécurité humaine (figure 11). S'il s'agit d'un thème suscitant un intérêt international, le changement climatique ne figurait pas dans les causes principales.Il est difficile de tirer des conclusions à partir de ces résultats. Toutefois, ils suggèrent que la plupart des études portent sur les facteurs sous-jacents de gouvernance, politiques et sociaux du conflit plutôt que sur la pénurie de ressources ou le changement climatique. Cette constatation vient confirmer les conclusions des analyses antérieures (Brottem and McDonnell, 2020 ;Ntumva, 2022 ;Seter et al., 2018). En outre, le grand nombre d'articles citant la mauvaise gestion des ressources pastorales en tant que cause du conflit (63 au total) suggère une lecture simpliste d'une situation qui trouve des racines ancrées plus profondément ailleurs. Dans 63 articles, la mauvaise gestion des ressources pastorales est citée comme cause des conflits entre agriculteurs et éleveurs. Les dégâts causés aux cultures sont le motif le fréquemment cité, suivis de l'augmentation de la migration, d'une mauvaise gestion des terres, du surpâturage et de la surcharge de pâturage (figure 12). Les dégâts causés aux cultures par le bétail des pasteurs sont souvent décrits isolément de la raison pour laquelle cela pourrait se produire. Ils sont parfois décrits comme délibérés ou intentionnels, parfois mis sur le compte de dégâts intentionnels provoqués par le manque d'expérience ou le surmenage des éleveurs.Si la destruction des cultures est un facteur déclencheur courant et régulier du conflit, certains scientifiques expliquent que ce problème masque des préoccupations et des griefs sousjacents, les causes plus profondes trouvant leur origine ailleurs. Benjaminsen and Ba (2009) soulignent que les personnes raconteront souvent une histoire d'une manière qui étaye au mieux leurs arguments. Dans le cas des agriculteurs, l'histoire porte souvent sur la destruction des cultures et des terres agricoles. La surcharge pastorale, le surpâturage et la mauvaise utilisation des ressources naturelles sont évoqués comme la cause des dégâts et de la dégradation. Cependant, le problème est souvent plus complexe et concerne généralement le contrôle des terres et des ressources naturelles.Le discours relatif à la mauvaise gestion des ressources pastorales est aussi en lien avec une conviction commune qui existe chez les communautés sédentaires et les décideurs, selon laquelle les pasteurs utilisent les parcours au hasard et qualifiant le pastoralisme de manière de vivre rétrograde. La transhumance est décrite comme illogique et responsable du conflit. Si cette manière d'exposer les faits reste très répandue, elle a été fortement contestée, particulièrement ces deux dernières décennies. De fait, des études montrent que le pastoralisme est un système d'utilisation des terres rationnel, requérant un socle de compétences poussées et une grande capacité d'adaptation qui convient idéalement aux variations du climat des zones arides (IIED and SOS Sahel, 2010 ;Nassef et al., 2009 ;Young et al., 2013). Une nouvelle dynamique des troupeaux est observée, de même que de nouvelles formes traditionnelles de pastoralisme, par exemple au Nigéria. Ajala (2020) décrit une forme de pastoralisme appelée le « néopastoralisme », qui fait référence à de très larges troupeaux gardés à des fins purement économiques, souvent par des propriétaires absentéistes de troupeaux qui ne sont pas pasteurs. Ces troupeaux sont accompagnés par des éleveurs salariés équipés d'armes sophistiquées. Le Soudan du Sud est mentionné de la même manière, où des élites politiques et militaires ont acheté de grands troupeaux à l'aide de « ressources obtenues durant la guerre » (Cottyn and Meester, 2021). Ces troupeaux ne seront pas gérés de manières qui pérennisent une utilisation rationnelle des terres, et les armes sophistiquées utilisées par les éleveurs les accompagnant n'incitent pas à investir dans le maintien de bonnes relations avec les communautés d'accueil, et pourraient servir à les intimider (Ajala, 2020). En raison de cette nouvelle dynamique, il n'est pas surprenant que les pasteurs dans l'ensemble soient tenus toujours plus responsables des actions de quelques personnes.16Fait référence à la manipulation des griefs locaux, ainsi qu'à l'ethnicité, à des fins politiques.La mauvaise gouvernance ou la gouvernance exclusive est la catégorie la plus citée parmi les causes. De fait, 61 articles y font référence. Elle s'inscrit dans les catégories Politiques, institutions et procédures (conformément au rapport Sustainable Livelihoods Framework). C'est aux procédures que la documentation accorde la plus grande importance. Les principales procédures mentionnées, par ordre décroissant de fréquence, sont le changement d'utilisation des terres et les effets, la politisation 16 , la marginalisation, l'exclusion et la modernisation. Le principal problème relatif aux politiques concerne le parti pris politique. Les institutions faibles ou partiales sont mentionnées dans 32 articles (figure 13).Les études prétendent que le changement d'utilisation des terres contribue au conflit en réduisant les parcours et en agrandissant les terres agricoles, en réduisant et en supprimant les couloirs de transhumance, ou autres allégations similaires. Certaines études explorent le changement d'utilisation des terres de manière plus approfondie que d'autres en identifiant les liens entre cette procédure et ses moteurs plus complexes, par exemple l'évolution des systèmes d'occupation des terres ainsi que les politiques locales et nationales. Toutefois, d'autres attribuent simplement le changement d'utilisation des terres à la croissance démographique et à la demande croissante de terres. Négliger de parler du changement d'utilisation des terres et des moteurs de ce phénomène masque d'importantes connexions aux procédures politiques et sociales sous-jacentes et peut mener à des interventions qui n'aborderont que les symptômes plutôt que les causes profondes.Les procédures d'exclusion, la marginalisation et les différentiels de pouvoir font essentiellement référence au fait que l'équilibre des pouvoirs est en faveur des agriculteurs sédentaires et non des pasteurs, à quelques exceptions près. Une partie de la documentation décrit les deux groupes comme étant exclus du processus décisionnel plus centralisé quant à l'allocation des ressources. En Somalie, si toutes les procédures susmentionnées sont présentées comme étant problématiques, l'équilibre des pouvoirs est toutefois en faveur des pasteurs plus que des agriculteurs, ces derniers représentant le groupe marginalisé (Cottyn and Meester, 2021). Il est également important de noter que, dans certains cas, la partialité à l'égard de l'agriculture sédentaire n'est pas toujours représentée. Au Mali par exemple,l'équilibre des pouvoirs entre les pasteurs nomades et les agriculteurs sédentaires a changé à plusieurs reprises dans le passé (Benjaminsen and Ba, 2009). Le déséquilibre des pouvoirs entre les catégories de moyens de subsistance n'est pas statique. Il peut évoluer en fonction des époques et en réponse à des circonstances à un moment donné. Il est également important de noter que la commercialisation et la privatisation sont mentionnées dans environ 20 % des études, même si ces problèmes ont été identifiés comme des facteurs majeurs augmentant la vulnérabilité des catégories de moyens de subsistance en milieu rural (Krätli, 2021 ;Osman, 2012).Dans tous les cas identifiés, le parti pris politique fait référence à un paysage politique favorisant l'agriculture par rapport au pastoralisme. Les institutions faibles ou partiales font référence à la faiblesse ou la corruption des institutions traditionnelles, à la dégradation des systèmes traditionnels de médiation ou de résolution des conflits, ainsi qu'à la partialité et l'inefficacité des organismes d'État et de l'application des lois, par exemple, à des institutions devenues incapables d'agir en temps de conflit pour rétablir la paix, ouvrant souvent la voie à l'intensification de la violence dans le conflit. Fait référence à l'acquisition de terres, généralement par des investisseurs privés ou étrangers ou par des gouvernements, pour l'agriculture ou la production de biocarburant. A généralement lieu sous couvert de systèmes de gouvernance nationaux qui ignorent les arrangements communaux concernant l'occupation des terres et les droits existants des communautés à la terre (Batterbury and Ndi, 2018).Si les problèmes fonciers font partie des trois principales catégories de causes du conflit (50 articles au total), l'insécurité foncière est identifiée indirectement et davantage au travers de ses répercussions, par exemple l'accès bloqué ou limité aux terres et aux ressources naturelles, et les litiges fonciers. L'identification de la précarité des droits fonciers (à savoir, la raison de l'insécurité) est mentionnée dans seulement 24 % des cas. Ceci suggère que l'analyse des conflits entre agriculteurs et éleveurs ne parvient pas à identifier les origines premières et se concentre davantage sur ce qui est visible, et ce qui peut être facilement quantifié ou expliqué.Un examen plus poussé sur la relation entre l'insécurité foncière et le conflit est recommandé. Une distinction est établie entre la dégradation des relations et les préjugés ethniques. Le premier point fait référence à un effondrement des relations existantes ou des liens entre les groupes qui étaient auparavant forts, sur la base de l'interaction sociale, de la complémentarité entre les systèmes de subsistance et de l'interdépendance économique. Il peut autrement faire référence à une absence de relations, par exemple lorsqu'un groupe est nouveau dans une région et n'a pas de liens sociaux ou rencontre des problèmes de communication, notamment car il ne parle pas la même langue, ce qui peut conduire à une escalade suivant un malentendu ou un conflit mineur. Le second, les préjugés ethniques, décrit une situation plus complexe et insidieuse.Comme le décrit Maiangwa (2017), les préjugés ethniques concernent « les personnes qui appartiennent à un groupe et celles qui n'en font pas partie, les étrangers ou étrangères et les autochtones. En d'autres termes, ils décident qui mérite ou ne mérite pas d'avoir des droits de citoyenneté. En définitive, il s'agit d'un conflit pour décider qui est supérieur (dominant), qui est inférieur (subalterne), et qui détermine quand et comment contrôler les affaires sociopolitiques et les ressources de la région ». Ejiofor (2021) décrit ce phénomène comme émanant de la peur de « ne pas être vus » ou de « ne pas obtenir une part équitable », car la culture et la manière de faire de certains sont sous-évaluées. Souvent, ce phénomène trouve ses racines dans l'histoire et est devenu un moyen puissant de manipuler les tensions locales à des fins politiques (Bøås et al., 2020 ;Cline, 2020 ;Ugwueze et al., 2022 ;Young et al., 2009). L'attribution d'étiquettes négatives pour identifier des groupes, particulièrement les Peuls, est également un problème mis en lumière. Eke (2020) et Ejiofor (2022) indiquaient qu'en ne tenant aucun compte de la manière dont les groupes sont représentés et évoqués communément, l'insolubilité du conflit persiste inévitablement. La pénurie de ressources en tant que cause du conflit domine une grande partie du débat entourant le conflit entre agriculteurs et éleveurs (figure 16) et a fait l'objet ces dernières années d'une forte critique (Bond, 2014 ;Brottem, 2016 ;Krätli and Toulmin, 2020). La principale pomme de discorde avec l'argument de la pénurie est que, si l'on reconnaît que la pénurie de terres et de ressources naturelles en tant que moteur du conflit pose problème, il est hasardeux de simplifier à outrance la pénurie et de l'attribuer au changement climatique ou à la dégradation. De fait, des facteurs structurels sous-jacents de la pénurie sont souvent liés à la gouvernance et à la politique d'exclusion.Les résultats de cette revue de la portée montrent que la pénurie de ressources est tout de même mentionnée sans faire preuve d'esprit critique dans de nombreuses études. Toutefois, une part non négligeable d'études font part de critiques vives et irréfutables contre la simplification à outrance du sujet, et contre la dissociation du problème des procédures locales et nationales plus larges. Ceci suggère une évolution du débat sur la pénurie dans la recherche sur le conflit entre agriculteurs et éleveurs. Des études indépendantes ont été rédigées sur la prolifération des armes légères et de petit calibre (ALPC) en Afrique (par exemple, Sule et al., 2020 ;Wisotzki, 2022).19 On a constaté que les groupes d'insurrection en Afrique de l'Ouest manoeuvraient pour obtenir des postes en tant que nouveaux acteurs de la gouvernance, par exemple en montrant qu'ils étaient capables de gérer les griefs locaux et d'offrir une protection à différents groupes (Ammour, 2020 ;Bøås et al., 2020).Plus de la moitié des études évoquent la violence régionale ou nationale au sens large comme cause du conflit entre agriculteurs et éleveurs (figure 17). La violence au sens large entraîne des insurrections en Afrique de l'Ouest (par exemple, l'insurrection de Boko Haram), aux côtés du crime organisé et de la prolifération des armes 18 . Cette violence à grande échelle rend de vastes zones dangereuses et peu sûres, et pousse les agriculteurs et les éleveurs à aller dans des espaces plus restreints, contribuant à la « pénurie de ressources » et encourageant le conflit entre agriculteurs et éleveurs (George et al., 2021). Les groupes d'insurrection tirent profit des griefs entre agriculteurs et éleveurs à leurs propres fins (par exemple, pour recruter ou pour créer une base informelle de circonscription politique 19 ) et polarisent encore davantage les groupes (Bøås et al., 2020). L'influence des insurrections et du crime organisé a aussi entraîné une adoption croissante des armes par les communautés rurales, par exemple pour armer les milices locales afin de protéger les communautés des raids et des attaques. Ceci peut trop facilement devenir un moyen d'intimidation des communautés rurales (Ammour, 2020 ;Cline, 2020) et a entraîné l'intensification générale du conflit entre agriculteurs et éleveurs (Cline, 2020 ;Bøås et al., 2020).La violence au sens large, et son interaction dans les relations et le conflit entre agriculteurs et éleveurs, a entraîné la fusion des deux (bien que les distinctions dans certains lieux soient difficiles à établir en l'absence d'une analyse critique). Elle a renforcé l'incrimination des groupes de pasteurs principalement, tels que les Peuls. Adelehin et al., 2018 ;CDD, 2018 ;Hamilton and Dama, 2003 ;Odary et al., 2020).Les jeunes sont aussi sous-représentés dans la documentation (ils ne figurent que dans 43 % dans études de cas incluses) et sont généralement considérés comme des instigateurs du conflit. Le lien entre les jeunes et le conflit mérite une plus grande attention dans la recherche compte tenu de la proportion élevée de jeunes sur le continent, de la proportion élevée de jeunes qui ont été élevés dans des environnements de conflits, et également en raison de l'attention accordée à la militarisation de la jeunesse dans la documentation. Les jeunes de sexe féminin ne sont pas du tout mentionnées. La documentation suggère également que le fossé entre les jeunes et les chefs traditionnels se creuse toujours plus (Young et al., 2009). Il est urgent de mener des recherches plus approfondies sur les jeunes (en incluant les femmes) dans les conflits entre agriculteurs et éleveurs, leur rôle et les répercussions sur ces derniers. ","tokenCount":"5814"} \ No newline at end of file diff --git a/data/part_3/9788775734.json b/data/part_3/9788775734.json new file mode 100644 index 0000000000000000000000000000000000000000..fcdf8ff297265c4e41afff40a0f6b1a2e0c4c495 --- /dev/null +++ b/data/part_3/9788775734.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"e23a9de8f2420d7126b65834e4c20f7c","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/3b68999b-2908-4e95-ab2c-48d2616f4b6f/retrieve","id":"-641640034"},"keywords":[],"sieverID":"32894cfc-3ef4-404e-a48d-4d8c3581ec07","pagecount":"10","content":"The success of a new variety depends on the number offarmers' crítería being incorporated into the breeding lines and its value with respect to ¡ts environrnental interactíons.The term participation in rescarch and dcvelopment (R&D) i8 becoming devalued (Farrington 1998) and evcn abused, partiy in response to donor pressure (much ofwhich is rhetoric) and partly as a fashion wíthout substance. Particípatíon is also a notion that has been hotly debated arnong ít5 practitíoners and used as a means to achieve the objectives of projects and prograrns (Narayan 1995). But in thís paper, 1 am conceptualizing partidpation and participatory approaches in the broader context as both a means and an end. In thí8 conceptualization, participation i8 a 'multi-dimensional, dynamic process of contributing, influencing, sharing, or redistributing power and of control, resources, benefits, knowledge, and skills to be gained through beneficiaries' involvement in decision making.' Therefore, participation i5 a voluntary process by which people, especially the dísadvantaged (in income, gender, ethnícity, education, etc,) influence or control decisions regarding plant breeding that affect thero. As a non-plant-breeder, 1 arn visualizing participatory plant breeding (PPB) from thís frarnework. There are dífferent levels of participation, ranging from passive participation (farmers participate in activities decided unilateralIy by PPB professionals), participation in information giving (farmers answer questions posed by PPB professionals), partidpatíon by consultation (PPB professionals consult farmers and listen their víews), participation for material incentives (farmers particípate to obtain miní-kits given by PPB professionals, to be involved in farmers' field trials, etc,), functíonal participatíon (farmers participate in the predetermined functional requireroents ofPPB professíonals), interactive participation (joint analysís with farmers lo make action plans and mobilize local institutions, using ínterdisciplinary methodologies Bishnu Raj Upreti is a PhD candidate in the Department af Social Sciences. Wageningen Agricultural University. Wageningen.that seek multiple perspectives) and self-mobilization (fanners take initiatives themselves in plan! breeding) (Prerty et al. 1995).Participatory processes have certain characteristics: they integrate community mobilization for PPB planning and action based on equal an partnership between farmers and researchers; theyairn at strengthening fanners' problem-solving, planning, and management abilities; they promote fanners' capacity to develop appropriate new technologies; they encourage resource-poor farmers to learn tbrough experimentation, building on their knowledge and practices (action and reflection); they recognize that aH farmers are not the same-with conflicts and differences in ínterest, power, and capabilities. Farmers participate when they realíze tha! the benefíts of participation outweigh the costs. So the pertinent question is, Do such PPB practices pro vide benefits to fanners? In the context of PPB, different rnodes of participation can be discussed, ranging from contractual (PPB professionals contraet farmers to provide physical resources such as land, germplasm, or indigenous knowledge) to consultative (PPB professionals consult farmers about theirproblems and then develop solutions) to collaborative (PPB professíonals and farmers collaborate as partners in the breeding process) to collegial (PPB professionals work to strengthen farmers' breeding systerns) (Prerty el al. 1995). When we talk about participatory processes, we have to be clear abaut which mode and leve! ofparticipation are relevant at a particular stage ofPPB.The essence ofPPB needs to be looked at from two levels:• First, within the PPB process, Who initiates research? Whose research agendas are used?Whose needs are being met? Who directs and controls the PPB process? What is the bottom line ofPPB? Does PPB specifically focus on poor and rural women as key players in managing plant genetic resources (PGR), post-harvest processing, and the nutritíon of children.• Second, on broader global challenges: Does PPB work on equity and poverty issues? Does PPB focus on the empowerment of marginal, resource-poor fanners to írnprove their position in society? Does PPB have the capacity to deal with the threats posed by globalization and the abuse of advancements made in the field ofbiotechnology in exploíting the poor fanners of developing countries? How does PPB deal with increasing bio-piracy? How does PPB deal wíth growing starvation and famine? In my opinion, these are some of the pertinent questions that need to be critically considered in promoting PPB.In this paper, 1 attempt to examine the essence, opportunities, mínimum conditions, and threats to PPB frorn the non-plant-breeder's perspective and pose sorne critical questions to promote discussion and debate to irnprove the performance ofPPB. This paper is divided into tbree sections.The first sectíon introduced paper and its outline. The second section raises issues related to PPB, i.e., How particípatory is PPB? What are its approaches and methodologies? Who defines participation and who initiates it? What seale and level ofparticipation is involved in PPB? What is the poliey context and institutional framework for PPB? What are the threats to PPB from genetic engineering bioteehnology, and globalization. It argues that PPB has increasingly shifted to the control of commercial interests. A discussion is presented on the need to integrate the social and technical sciences to promote PPB. And finally, the third section concludes tbat there is not only great scope for prornoting real PPB but there are also big challenges.The eommon categorization of plant breeding into fanner-led and formal-Ied PPB is problematic because in either case fanners, especíally poor fanners, are involved in the initiatives ofbreeders. Furthermore, the formal-led PPB is limited by organizational conditions, criteria, and obligations. It develops separate regimes and widens the gap between them. The dichotomy is vague and confusing if real poor and marginalízed fanners are to be targeted. In the philosophy of participation, no one leads but both collaborate to achieve common objectives. Therefore, the chaIlenges for professionals working in PPB are how to achieve collaborative participation to meet the needs of poor and marginal farmers, how to negotiate or cope with the commercial exploitation of PPB, how to sacrifice the personal benefits ofbreeders that are ensured through patenting and the Intemational Convention for the Protection ofNew Varieties ofPlants (UPOV), l and how to share these benefits with poor fanners. In the following section 1 will briefly discuss these issues.Genetic diversity in agriculture enables fanners to select varieties of plants that are best adapted to a changing environment and economic and social pressures. Access to such diversity is vital for securing current and future agricultura! production and food security. In this context, the need for PPB is enhanced by a growing realization that conventional plant breeding has been unable to address .the erop requirements for the 1.5 billíon food-deficit people ofthe world (PRGA 1999). The socioeconomie and agroecologieal conditions offarmers are complex, diverse, and risk-prone, and the conventional breeding approach based on unidirectional breeder-and lab-centered work is unlikely to address the complex problems of resource-poor fanners. PPB is an alternate approach that closely engages fanners through diagnosis, experimentation, and dissemination and systematicaIly incIudes fanners' knowledge, skills, and preferences in the process (PRGA 1999). PPB helps to increase understanding of the conditions, the opportunities, and the constraints fanners face and to build on that. Therefore, PPB will be adaptable, locaIly owned, and sustainable.1 believe that PPB, in ita current changing context, needs to be seen from a broader perspective, which encompasses relationships among plants, anima!s, microorganisms, soil, and water within particular social, cultural, and ecological systems, as well as fue contribution ofPPB to local food security and the empowerment of marginal farmers. Therefore, tradition, culture, indigenous knowledge should be importanl elements ofPPB. PPB should not only aim lo increase productivity but it should also be targeted to bridge fue gap between farmcrs and the formal RD sector, empowering fanning communities, contributing to moditying agricultural policies in general (and seed and breeding policies in particular), and documenting indigenous knowledge and skills. PPB should not be limited lo enhancing genetic diversity alone, but it should also be expandcd lo conserve the diversity of the ecologica! system, of the .furming system, of species, and of output (Shiva et al. 1995) as well as ofthe sociocultural syslem. In reality, are these aims fulfilled by PPB? Unot, why not? What are the bottlenecks? It is time to rethink these issues. In this paper 1 am discussing these issues from the perspective of food seeurity, globalization, the abuse of genetic engineering and bioteehnology, and the empowerment ofpaor and marginal fanners. We have a bitterexample ofGreen-Revolution-type development where the gap between rich and poor was widened (Shiva et al. 1995). Breeders have developed varieties of crops that are suitable to mid-income and rieh fanners, not to resource-poor fanners. PPB needs to be able to provide benefits to poor fanners in order to secure their meaningful participation.The extinction of seed varieties, the erosion of genetic diversity, and the abuse ofthe rapid advancement of genetic engineering and biotechnology to create genetic unifonnity and vulnerability are the major threats to food security and the survival ofresource-poor fanners. Increasingly, the native varieties upon which the survival of many poor farmers is based, are becoming inaccessible or being replaced. This poses severe challenges for PPB, exemplified by the following statement ofMr. LI-BIRD research findings also show that several varieties ofvegetables are on the verge of extinction in Nepal (Rana, Joshi, and Lohar 1998).How participatory is PPB?In the existing PPB, the role of fanners is no more than that of contractual participation, as they provide gennplasm to breeders and seed companies to keep in gene banks. But such gene banks fail to conserve genetic diversity because of scientific flaws and technical and polítical inadequacies (Shiva et al. 1995). In conventional plant breeding, fanners are merely the suppliers of genetic ma-. terials, based on the hope of future use. F anners are cornmonly kept at a distance from the breeding process and only considered as consumers ofthe product, i.e., the seed. The fanner-breeder link is stilllinear and top-down.In recent years, plant breeding has radically shified from the conventional domain to genetic engineering and biotechnology and has been unexpectedly manipulated for cornmercial interests. Therefore, it is time to critically assess which groups offanners are involved in PPB and which are benefitting from PPB. Generally, the fanners who are consulted by breeders are from the middle and higher economic strata; they are not the backward and marginalized resource-poor fanners. F anners from middle and higher economic classes are more articulate, better able to invest in the breeding process, have a greater risk-bearing capacity, and are more capable of dealing with breeders (by expressing their ideas and responding to requests for infonnation). They are therefore involved in PPB and getting benefits from it. The argument 1 have ofien heard is the inability of poor fanners to carry out PPB activities. However, the major unexpressed reasons for limiting the participation of these fanners--or excluding them altogether-are their inability to offer good facilities for lodging and food for R&D professionals, poor environmental hygiene, language differences, cultural biases, geographical biases (their concentration in accessible areas), etc.Many R&D professionals rhetorically use the participatory paradigm as a ready-made solution to improve the livelihood of extremely poor fanners without considering underlying principies of participation and local dynamics and conditions. Such interventions not only create social tensions and conflicts, but they also abuse the essence of participatory discourses in R&D. Participation engenders financial, social, physical, and psychological costs as well as benefits. Furthennore, PPB professionals also exploit the financial resources obtained from donors in the name ofPPB for personal benefits (e.g., higber studies, training abroad, higher salaries, etc.). Many professionals working in R&D still lack lhe appropriate knowledge and skills to facilitate participatory processes. Considering this, how does PPB contribute to improving the livelihood of poor farmers, enhancing food security, and empowering marginal farmers?1 realized that the existing PPB approach limits itself to a functional type of participation where farmers are merely involved in a breeding agenda set by the PPB professionals, not to lhe extent of lheir empowerment.Opportunities.There are several global and local opportunities to promote PPB. Among them the fol!owing two are importan!. In order to promote PPB at the nationallevel, sorne minimum favorable conditions need to exis!. Sorne oflhese are brief1y discussed as follows:Conducive policy context and supportive institutional and regulatory frameworks. Is the national polícy context conducive to the promotion of PPB and are institutional and regulatory frameworks supportive enough? This is the major question to be debated and discussed in the present context. The conducíve policy context and supportive institutíonal and regulatory frameworks are essential to materialízing, promoting, and sealing up PPB to merease people's livelihoods and have a broader impact on resource-poor farrners. The regulatory measures have great bearing on PPB-how supportive they are to promotíng PPB and how strong they are to protect farmers' rights and to prevent bio-piracy, genetic erosion, monopoly oftransnational seed compames, etc. It is essential to deve10p the institutional capacity, relationship with farrners, and research-ínstitutions to create an environment favorable to promotíng PPB. Decentralized management structures and effective mechanisms for sharmg and disseminating informatíon, as well as systems for regular monitoring, evaluation, feedback, and feed-forward are important charaeteristies of institutions that can and will support and promote PPB. However, policymakers, plarmers, and semor managers of agricultural research have yet 10 realize the importance ofPPB, at least in Nepal. For example, in Nepal there is neither cIear policy on PPB nor any interest or concem from policymakers and politicians. Similarly, neither there is regulation on the import Oí informal entry into the country of genetically modified or terminator seeds that can have a negative impact on the local seed-management system and which can contribute to genetic erosiono Nepalese laws and regulations are either silent or uncIear about genetically modified crops, patenting, bio-piracy, CBD, or farrners' rights (Timsina 2000).New professionalism to improve PPB performance. Since PPB itself is an integration of social and technical scíences, it is essential to develop a new professionalism with an adequate understanding ofthe importance ofboth sciences. Shared cognition and mtention, along with appropriate institutions are essential ingredients to an interactive design thatviews people as participants, no! as object that can be instrumentally and strategically manipulated (Roling 2000). So far, the egocentric attitudes of natural and social scientists, and their lack ofknowledge and skills in participatory processes, have restricted collaboration not on1y m particípatory R&D activities but also in developing thís new, integrated professionalism. PPB not only deals with technical issues of genetics, plant breeding, entomology, and plant pathology but it also combines the perspective of economics, socíology, anthropology, farm management, etc., to social íssues Iike the attitude and behavior of farrners; their economic, social, and cultural conditions for adaptaríon of PPB outcomes; local knowledge and information about the characteristics of particular plants and varieties, etc. One can not assume that the goals ofPPB are the goals of farrners. At this juncture, there is a gap bctween social and natural scientists that could be bridged by developing a new, integrated professionalism through appropriate training, sharing, and experimentation.It is increasingly realized that the \"delivery\" of science-based innovations like planl varieties to farmers does not work (Roling 2000). This approach was attempted by the Green-Revolution model but failed to reduce the gap between rich and poor, which increased instead. Therefore, a newapproach is essential in order to develop effective action according to the objectives, expectations, priorities, and knowledge of farrners. It is time to integrate hard, positivist-objectivist, biophysical science with 50ft, participatory, constructivist social science to deal with PPB, which imparts knowledge, skills, and a change m the attitude of scientists (both social and biophysical), and 10 work in a collaborative and complementary way to improve the performance of PPB. One important characteristic of a successful professional, whether breeder or social scientist who works with communities, ís the learnÍng attitude and communication skills. One of the major constraints observed in PPB is the lack of intemalizing the role and importance of íntegrated professionalism.Changing from an ethnocentric, own-discipline bias to accommodation of multidisciplinarityshifting perspectives and feeling from \"we are the master and, therefore, part of the solution and theyare the lay person and therefore part of the problem\" to \"we both are leamers and collaborators\"-is another challenge to be intemalízed by PPB professíonals. Attítudinal differences between two groups of scientists are due lo differenl kinds and levels of knowledge, orientation, background, professional bias, and experience. Therefore, balancíng recognition and exploring latent conflict is essential to increasing commitmenl, collaboration, and interdisciplinarity.In Ihis section, the effeet of globalization, intellectual property rights, UPOV, genetic engíneering and biotechnology, and bio-piracy is presented from the PPB perspectíve. The dominant reductionisl scientific world view of fue West and its inventions like genetic engineering and bíolechnology ís causíng suffering, widening poverty, and destroying earth (Ho 1998). Intemational agricultural trade does no! benefit fue poor because it is based on the monitory interests of transnational and multinational companies. Ralher, it is severely threateníng farmers' rights to seed and plant genetic resources (Action Aid 1999). It ís increasingly accepted that genetic engineering, in general, and patenting of genetic resources, in partícular, have a potentially negative impact on resource-poor farmers. Studies have shown thal the Iiberalization of global trade is not only exerting enormous pressure on resource-poor agriculture and marginalizíng poor and small farmers, but it is also promoting starvation and the eros ion of agricultural biodiversity and indigenous knowledge (Action Aid 1999). Transnational and multinational agribusiness corporations are benefitting from globalization and the Iíberalizatíon oftrade at the cost of inequality, hunger, and the threatened survíval of resource-poor farmers of developing countries like Nepal.Threats to PPB by genetic engiÍteering and biotechnology. In lhe field ofbreeding, genetic engineering and biotechnology is a departure from lhe conventional breeding índuced by industrialized countries. The sole motive of these innovations i5 to monopolize global agriculture and maximize profit (Ghale and Upreti 2000). Genetic engineering is widely touted by lhe giant biotech industries of lhe developed countries as the cure for world hunger. Their argument is lhat genetic engineering and biotechnology will help to restore a healthy environment, prevent further degradation of plant genetic re80urces, and globally pro vide more choices and opportunitie8.lt i8 assumed lhat hunger is due to lack of foOO. But lhat i8 a simple and incorrect analysis of world hunger. The fundamental cause ofhunger is not Iack of food but a whole range of things from unjust and inequitable political and economíc structures lo ecological degradation for maximization profit lo lhe marginalization of poor people (Ghale and Upreti 2000). Even some ecological economists argue that hunger ís lhe inevitable result of globalizatíon and lhe free-market economy.Genetic engineering and biotechnology have been directed solely al meeting lhe conimercial interests of a few giant food producers and processors in industrialízed countries. Genetic engineering and biotechnology bypass the natural reproduction process because they horizontally transfer genes from one individual to anolher, as compared to vertical transfer from parents to offspring. These horizontal gene transfers not only spoil genetic diversity but also raise ethical questions (for eXJunple, human gene transfer to pígs, sheep, or bacteria). Transgeruc plants are generally resistant to broad-spectrum herbicídes, which cause acute and chromic loxicity and have a negative impact on biodiversity (ESRE 1999). Similarly, intervention in agriculture through genetíc engineering and biotechnology reinforce existing social structures, maximíze monopolistic profits, and inten-sifY agricultural practices, which willlead to widespread environmental destructíon and ecological imbalance.Intellectual property rights, the Union for the Protection ofPlant Varieties, and PPB. Intellectual property rights (IPR), plant breeders' right, and patents 2 as a regulatory arrangement introduced in the field ofbreeding to universalize the command and control of most developed countries has not provided protection to public interests in developing countries (Ghale 1999). How do breeders and other professionals working in the field ofPPB perceive plant breeders' rights as embodied in the UPOV convention, which strongly centralizes the plant breeding (TWN 1996)? Which options do breeders involved in PPB prefer in IPR protection-protection through patents of protection sui generis J or open?Due to the UPOV convention, the trade-related intellectual property rights (TRIPs), and genetic engineering and biotechnology, the control over plant breeding and seed is shifting from farmers to giant multinational seed companies. In this context, do participatory plant breeders advocate farmers' rights to use, produce, multiply, share, exchange, sell, modif'y seed, and plant genetic materials freely? The restrictions imposed by IPR infringe on farmers' rights. UPOV claims that the implementation ofthe new plant variety protection (PVP) arrangement stimulates protection ofthe environment and conservation ofbiodiversity and stability offood availability. That is only a nightmare and misleading (GRAIN 1999) because the uniformity criterion specified for PVP by UPOV tends to destroy diversity and enhance genetic erosiono IfPPB practitioners realize this, then the fundamental shift from conventional PPB to PPB led by advocacy and lobbying is essential. This is probably too hard for the breeders. Another ethical question related to PPB is the IPR issue. PPB builds directly on farmers' knowledge and germplasm to select and develop crop varieties. Therefore, the ownership rights, access, benefits, and control of such varieties needs to be held by farmers instead ofbreeders. But does this happen in reality?Threats to PPB from globalization. Technological advancement and the international expansion of trade and cornmerce have fundamentally shifted the focus on plant breeding. Global competitiveness is emerging as a determinant ofplant breeding. The World Trade Organization (WTO), through its TRIPs arrangement and patenting of life forms, is posing new challenges and eroding the scope of self-supporting PPB. In the developed world, local seed saving is increasingly considered as a barrier to trade and cornmerce, and provisions are being imposed on farmers to pay royalties to plant breeders and companies. Globalization, through WTO and other similar arrangements, is forcing a radical change, not only on the setting of agricultural research but also by pressurizing member countries to change their legal, regulatory, and fiscal policies. In the case of plant breeding, the development of genetically modified foods and terrninator technology by giant multinational agro-biotech companies like Monsanto, Novartis, and DuPont are examples ofthreats to PPB.As the global market becomes more liberal, there is a countervailing trend to privatize knowledge and agricultural innovations for cornmercial profit (Action Aid 1999). Under TRIPs, iffarmers use patented seed, they will be forced to pay royalties to the patentee ifthey keep seed to re-sow in the following years. Giant bio-tech companies are using local knowledge on the properties of plants to identif'y \"useful\" genes. They then patent the gene and its use. As a consequence, farmers in the country of origin have to buy it back and pay royalties. For example, neem trees from India and Nepal, basmati rice from India, and jasmine rice from Thailand are patented by Monsanto-like 2. A patent is a fonn ofintellectual property protection that gives a rnonopoly right to exploit an invention for a period of 17 to 20 years. Artic1e 27.3b of TRIPS requires developing countries to allow companies to take out patents on the products and processes ofbiotechnology. This artic1e also demands that countries supply either patent protection or an effective sui generis (a wIique intellectual property system for a specific good or process). 3. Sui generis is a Latin phrase cornmonly used in the IPR debate, which means \"ofits own kind.\" companies. By placing the control of gennplasm in the hands ofthe most powerful corporate bodies in global agriculture, the social, political, and economic structures that underpin poverty and hunger will continue to flourish (Action Aid 1999).The open-market economy, free trade, and economic liberalization are the basic premises ofWTO, in which patenting and IPR are the most controversia! issues related to agricu!ture. Article 27.3 (b) of the TRIPs agreement does not recognize Ihe right of local corrununities to their indigenous know1edge and agricultural practices. This article forces members to protect Iheir rights to genetic resources for food and agriculture (GRAIN 1999). The corrunercialization of terminator techno!ogy, a genetically engineered trait Ihat causes crop seeds to become sterile at harvest time, is posing another threat around the world (GRAIN 1999). The majority of Ihe intemational and transnational life science companies are no! only ignoring basic ethics and values but are also destroying indigenous knowledge, technologies, and practices for the so!e aim ofprofit (UvA 1999). Therefore, excluding agricultural biodiversity and plant genetic resources from the patent protection within TRIPs 27.3 (b) and the protection of farmers' rights is essential 10 minirnizing Ihe negative effect of the TRIPs agreement on Ihe livelihood of rcsource-poor fanners. In reality, the relationship between intellectual rights on Jife fonns and Ihe conservation and sustainable use ofbiodiversity is highly conlentious (GRAIN 1999).Bio-piracy as an emerging threat. Bio-piracy is anolher threat emerging from patent arrangements and TRIP' Bio-piracy from developing countrÍes lo paten! innovation and earn money is on the inerease. Recent seed-related research in Nepal has shown that bio-piraey is rapidly increasing in Ihat eountry (Timsina 2000). The research report states that Ihe germplasm of buek-wheat (Fagopyrum spp), barley (Hordeu'm spp.), chuehe karela (Momordica spp.), wild rice varieties containing nitrogen-fixing bacteria (Oryza spp.), several herbal medicinal plants, and colocacia were taken from Nepal wilhout permission by Japanese, Gennan, and American researchers working in and or visiting Ihe country. Nepalese breeders and NGO workers supported Ihem in Ihis bio-piracy.It is time to relhink Ihe approaches, methodologies, and focus ofPPB to address changing global challenges and to raise Ihe livelihood of resource-poor farmers. As a people-centered approach, PPB has to work in Ihe spirit of conventional plant breeding, wruch seeks to promote Ihe establishment of a sovereign community and indigenous rights to plant genetic resources. TRIPsIWTO, UPOVI plant-variety protection, genetic engineering and biotechnology, and bio-piraey are beeomíng increasingly serious threats to PPB, food security, indigenous knowledge, and conservation ofbiodiversity. Corporate control of seed and plant genetie resources is creating inequalities. To minimize Ihese adverse effeets, it is essential for PPB to take Ihe initiative in developing a gennplasm-sharing network among fanners, PPB practitioners, and civil society, by establishing in situ seed banks as a cornmon property resource, promoting the exchange of indigenous knowledge, registering seed and plant genetic resources at Ihe community level, strenglhening the management capacity of farmers for plant genetic resourees, recognizing fanners' innovations, etc. Sínce Ihe last decade, PPB has been widely advocated by donor-supported researeh centers rather than poor farmers. Much of Ihe discussion on PPB has been rhetone, ventunng into professional debate among the believers ofPPB. Sorne practical efforts have been made to promote PPB, but they have been limited to a small-scale, disorganized, and mechanistic use of a few participatory","tokenCount":"4339"} \ No newline at end of file diff --git a/data/part_3/9817832417.json b/data/part_3/9817832417.json new file mode 100644 index 0000000000000000000000000000000000000000..b184f0587bcd3137488261afafb6a426785afe7b --- /dev/null +++ b/data/part_3/9817832417.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"b4e70f419c89e7d4abd242c37dd1f62b","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/67d054b1-ab74-4e82-a01e-36913bcab2de/retrieve","id":"-2064578655"},"keywords":["Consumption","indigenous foods","perceptions Consommation","aliments indigènes","perceptions"],"sieverID":"f3552cd6-0a42-4b3d-ae00-e2f74db516a1","pagecount":"15","content":"African forests act as sources of both plant and animal foods that provide significant amounts of nutrients and healthy boosting bioactive compounds. This study investigated the relationship between knowledge, perceptions and socio-demographic attributes towards consumption of forest foods. A total of 279 females in charge of decision making with respect to food preparation, were randomly selected from 12 villages in southern and eastern Cameroon, and interviewed using researcher administered questionnaires. Multivariate logistic regression analysis was used to identify the socio demographic factors and perceptions affecting consumption of forest foods. Baillonella toxisperma (African pearwood) (98%), Irvingia gabonesis (bush mango) (81%) and Trichoscypha abut (Mvout) (70%) were identified as the most nutritious foods. Among the animal forest foods, bush meat (11%) and Imbrasia spp. (edible caterpillars) (10%) were identified as the most nutritious. Consumption of forest foods was higher among polygamous families and also positively related to length of stay in the forest area, as well as age of female respondents. Education had an inverse relationship with use of forest foods. Perception towards the nutritional value of forest foods were also found to positively influence consumption of forest foods. Since negative perceptions were found to influence consumption, there is need to invest in awareness campaigns to strengthen the current knowledge levels among the study population.Les forêts africaines sont des réservoirs d'aliments végétaux et animaux fournissant des quantités importantes de nutriments et composés bioactifs stimulants naturels. La présente étude analyse la relation entre les connaissances, les perceptions et les caractéristiques sociodémographiques de la consommation des aliments issus des forêts. Un total de 279 femmes responsables du choix et de la préparation des aliments familiaux ont été choisis au hasard dans 12 villages du Sud et de l'Est du Cameroun, et interviewé à l'aide de questionnaires administrés par des chercheurs. L'analyse de régression multi-variée a été utilisée pour identifier les facteurs sociodémographiques et les perceptions qui affectent la consommation desdits aliments. Baillonella toxisperma (Moabi) (98%), Irvingia gabonesis (mangue sauvage) (81%) et Trichoscypha abut (Mvout) (70%) ont été identifiés comme les alimentsSub-Sahara African countries, including Cameroon, have high prevalence of undernutrition compared to recommended limits of 2% for stunting and 3% for underweight (CDHS, 2011;IFPRI, 2014). About 33 and 15% of Cameroonian children aged below five years, suffer from stunting and underweight (CDHS, 2011). The stunting and underweight rates are public health problems in Cameroon, because they are respectively 15 and 5 times higher, compared to the recommended limits for stunting and for underweight (IFPRI, 2014). The high malnutrition rates may be attributed to the growing negative perceptions towards traditional foods, resulting in changes in the food systems and dietary patterns (IFPRI, 2014;FAO, WFP and IFAD, 2014).A shift to simplified and monotonous diets, from the diversified traditional diets has resulted in increased consumption of staple foods, and a decrease in the consumption of traditional foods including forest foods that are abundantly and locally available within the region (Keller et al., 2006;Frison et al., 2006;Pingali, 2007;Penafiel et al., 2011). Negative perceptions towards forest foods have been documented among rural communities in South Africa (Dweba and Mearns, 2011) and in Togo (Akpavi et al., 2008). The adoption of western lifestyle has also been reported to be associated with the reduction in indigenous knowledge on the use and preparation of several traditional African food dishes (Maundu, 1996;Akpavi et al., 2008).Nutrient composition studies of forest foods reveal that some forest food species of plants and animals origin have high contents of essential nutrients and bioactive compounds (Maundu, 1996;Akpavi et al., 2008;Blaney et al., 2009;Dweba and Mearns, 2011;Penafiel et al., 2011;Powell et al., 2013;Fungo et al., 2015). A recent study in south and eastern Cameroon revealed that there is considerable potential for forest foods to contribute to intake of essential nutrients among consumers of these foods (Fungo et al., 2016a). In Gabon, forest foods contribute 36% of total vitamin A and 20% of iron (Blaney et al., 2009), while in Tanzania 31% of RAE (vitamin A) and 19% of iron can be accessed in forest diets (Powell et al., 2013). Furthermore, traditional forest foods are usually referred to as \"food for the poor\" by the educated and a section of the elite urban residents in Africa, resulting in their neglect (Akpavi et al., 2008;Dweba and Mearns, 2011;Fungo et al., 2016b).These findings are corroborated by case studies in DR Congo among the forest dependent communities of Kisangani (Termote et al., 2012), the Guiziga tribe in Cameroon (Hamawa, 2013) and populations adjoining Lama Forest reserve in Benin (Boedecker et al., 2014). Despite these communities having access to abundant nutrient rich traditional forest foods, under-nutrition and food insecurity is rampant among them. However, there is paucity of information on how perceptions towards the health and nutritional benefits from forest foods and sociodemographic factors affect consumption of the forest foods. This study therefore, explored the relationship between knowledge, perceptions and socio-demographic attributes towards consumption of forest foods.Study area description. The study was conducted in two sites, including one from the East and the other from the South of Cameroon. The geographical coordinates for eastern site are 3.98 longitudinal and 13.18 latitude and southern site are 2.93 longitudinal and 11.16 latitude (Noutcheu et al., 2016). The Eastern site has a population of about 25,783 people consisting of three indigenous ethnic groups; the Kako, the Pol and the Baka pygmies, living in 41 villages (Medinof, 2004). In the southern site, the population is estimated at 79,353 consisting of almost one major ethnic group the Bulu, living in 29 villages (Enviro Consulting, 2009).Selection of study districts, villages and households was done using a three-stage cluster sampling technique composed of one stage of purposeful selection and two stages of randomisation. The first stage involved purposefully selecting districts from both sites on the basis of communities in the districts relying on the forests as a source of livelihoods and their accessibility. The second and third stages, involved randomly selecting villages that are easily accessible within the chosen two districts and households within the selected villages. As a result of a higher ethnic diversity in the Eastern site, the study was conducted in seven villages including Kouedjina (10 households), Kagnol III (17 households), Ndembo (10 households), Petit Pol (44 households, Melambo (23 households), Nkolbikon (16 households) and Bonando (34 household). In the south, with only one ethnic group, the study was conducted in five villages, including Ngon (21 households), Bissam (39 households), Ondondo (39 households), Methyikpwale (20 households) and Meyos (6 households). Two Research Assistants (RAs) who had grown up in the villages of the two study sites were recruited and trained for acquaintance with the interview schedules. The two RAs aided in interpreting the cultural norms and meanings of local comments expressed by respondents during the interview.Household sample. A total of 276 households, in the two sites was calculated using Fisher's (Fisher, 1998) formula below: n = t² x p (1-p) m²Where: n = required sample size, t = confidence level at 95% (standard value of 1.96) p = 9.9% estimated proportion of population depending on the forests with regard to the total population (Chao, 2012) and m = margin of error at 5% (standard error of 0.05).To cater for drop-outs during the data collection process, the number of households per site was increased by 5%. However, data were captured from a total of 279 households in the two sites, representing a response rate of 92%. This sample size was about 40% of total number of households in each village. The inclusion and exclusion criterion of households in the present study, included (i) households that depended on the forests for food, (ii) households with members that were residents of the target areas, and (iii) households with respondents who were healthy at the time of recruitment.Ethical approval and consent. Prior to contact with the study populations, the study proposal was presented to the Regional Forestry Office and the Regional Health Office in the two study regions. During the meetings, a written permission was sought to carry out the study. In addition to the clearance by the Regional Forestry and Health Offices, further permission was sought from the political leaders at district and village levels to assist the study gain the cooperation of the household respondents. All standards on human and health care ethics outlined in the Helsinki Declaration (World Medical Association Declaration of Helsinki, 2001) were adhered to.Interviews took place at homes of the respondents during the months of May and June 2012, with spouses of households. Also, women who were household heads and had dependents were interviewed. Women were interviewed because they are vital in the decision making with respect to food preparation (Becquey et al., 2009).Data collected included household sociodemographics, knowledge of nutritious and healthful forest food species, uses, perceptions and knowledge of health benefits of forest foods. Prior to interviews, questionnaires were pre-tested and adapted to the local context of Cameroon.The socio-demographic questions included age, sex, occupation and education level of the respondent and material used to construct household houses. The healthful and nutritionally important forest foods were identified and listed by the respondents. Respondents were also asked (i) if they knew that malnutrition can lead to ill health, and (ii) if they were aware that forest foods were nutritious and healthful.Five questions were used to assess the level of perceptions of the respondents (Table 3), towards the importance of forest foods to their health. Respondents had an option of using a narrative scale that explored the respondents' agreement, disagreement or uncertainty. Practices related to use of forest foods (Table 4) were assessed using four questions, with three questions being open-ended, while one question on number of times of preparing forest foods having response options of 'none', 'once', '2-3 times' and 'more than 4 times'. Computation of knowledge, perception and practices for each question, was done as the proportion of respondents who gave an affirmative answer. Data analysis. All data were analysed using the Statistical Package for the Social Sciences (SPSS) version 21 (SPSS Inc., Chicago Ill, USA). The Mean values were computed for continuous variables; while proportions were computed for the categorical variables. Multinomial logistic regression analysis was performed to identify the independent factors (Table 5).Multinomial regression analysis was performed based on previous studies (Kimiywe et al., 2007;Dweba and Mearns, 2011), where two age groups of (i) <46 years which is considered to be within the reproductive age for women who are energetic but constrained with the burden of baring children, and (ii) >46 years, which is beyond the reproductive age who have time but with diminished energy reserves, to adequately cater for their families were created, for comparison purposes (Onarheim et al., 2016).The level of significance for inclusion of variables in the logistic regression models was set at P<0.05, in order to have findings comparable to similar previous studies (Chen et al., 2003;Serra-Majem et al., 2007;Bojorquez et al., 2015). Associations between the independent and dependent variables were expressed as odds ratios. A confidence interval of 95% was used to determine significant differences in all statistical analyses.Respondent characteristics. Average age of respondents was 44 years. The majority of respondents had attended or completed primary school (64%), and more than half (56%) had 5-9 dependents (Table 1). About 75% of the households, were natives of the study area, and therefore the knowledge and perception they possessed could be considered Perceptions towards the health benefits. A considerable proportion of respondents (>50%) generally expressed positive perceptions towards some specific benefits accrued from consuming forest foods, with most (61%) expressing safety concerns and health disorders related to malnutrition (Table 3). The least (10%) expression of positive perception was registered in two sets of respondents. This included one set of respondents who agreed that bush meat was nutritionally important and the second set of respondents who believed vitamin A and iron content in forest foods is adequate to maintain a healthy lifestyle.Consumption of forest foods. About 40% of the respondents consumed forest foods daily for their meals (Table 4). Among the respondents that consumed forest foods, 85% of households reported eating forest foods once to more than 4 times daily. Preparation of household meals was exclusively done by women (96%); and most respondents (77%) expressed that women were responsible for making decisions regarding choice of foods to be consumed for household meals. About 69% of the respondents mentioned that they processed B. toxisperma into edible oil, which is a more valuable product for household consumption and income security. A minority of respondents mentioned processing other valuable forest foods, notably I. gabonesis (9%), E. guineensis l (7%), R. heudelotii (0.4%) and P. macrophylla (0.4%).Logistics regression analysis revealed that female respondents aged 46 and above, were 1.4 times more likely to prepare forest foods (OR=1.37 95% CI 0.60 to 3.13), than respondents aged below 46 (Table 5). On the other hand, education had an inverse relationship with use of forest foods. Illiterate respondents were 6.3 folds more likely to prepare forest foods (OR=6.26 95% CI 0.60 to 18.09) than respondents who did not complete primary school, those who completed Polygamous households were more than 6 times (OR= 6.96 95% CI 0.13 to 37.24) likely to prepare forest foods, than families that were monogamous (Table 5). Results further indicated that consumption of forest foods increased with period of stay in an area. The multivariate analysis further revealed that respondents who expressed positive perception towards the health and nutrition benefits of consuming forest foods were more likely to prepare and consume forest foods. The highest registered likelihood of about 13 times (OR=12.74 95% CI 1.74 to 35.82), was registered among respondents who agreed that forest foods can substitute for vitamin and iron supplements (Table 5). Mothers were about 12 times more likely to prepare forest foods (OR=12.65 95% CI 0.59 to 26.71) than their daughters and grandmothers.Nutrient rich forest food species. Out of the 21 forest foods perceived by respondents as most healthful and nutritionally important, 16 were plant based; while 5 were wild animal sourced foods. Among the plant forest foods, the oil producing foods (9 species) were identified as the most important nutrient rich and healthful forest foods. Of the nine oil producing species, five were among the most The high demand for oil producing fruits can be attributed to their high market value in Cameroon and neighbouring countries, such as Nigeria and Gabon (Awono et al., 2009). In these countries the kernels are processed using traditional methods, to produce edible oil that is used in household food preparation, while the surplus is sold for income security (Levang et al., 2014). The identified oil producing forest foods in the present study are also consumed as fruits. For example, the fruits of I. gabonesis are popular among children because of their attractive sweet yellow pulp, as result of their high β-carotene nutrient content (Ejiofor et al., 1987;Fungo et al., 2015). The multipurpose use of oil producing forest plant foods in Cameroon can be an important reason for their conservation.Among animal forest foods, bush meat, Imbrasia spp. (Caterpillars) and Achatinidae spp. (edible snails) were the most consumed (Table 2). Bush meat provides considerable amounts of proteins and essential micronutrients to vulnerable communities residing in and adjacent to forests in (Keegan, 1986;Kopper et al., 1993). Conservation studies in Cameroon reveal that non-respect of the wildlife legislation to protect wild life, has resulted in unsustainable hunting of wild animals for food (Cerutti and Tacconi, 2006;Nasi et al., 2011;Fungo, 2016). The major identified forest foods in Cameroon in the present study, are similar to studies reported in Cameroon and other Congo Basin countries (for example, Tacconi et al., 2003;Nasi et al., 2011;Termote et al., 2012;Hamawa, 2013;Boedecker et al., 2014).Perceptions towards the health benefits of forest foods. From our results, about a half to about two thirds of the forest dependent communities, displayed positive perceptions towards the importance of consuming forest foods in order to maintain a good eye sight and the overall health (Table 3). Consumption of forest foods is positively related to the recognition of these foods by communities, as healthy diets (Table 3). Forest foods were consumed because they had health boosting nutrients, good for eye sight and could substitute for vitamin A and iron supplements.The relatively higher rates of positive perceptions towards the health benefits of forest foods in the present study may be attributed to the respondents being in possession of health and nutrition information. In Cameroon, health and nutrition information messages are disseminated to rural mothers and guardians at health centres during the prenatal and post-natal visitations and vitamin and mineral supplementation days (CDHS, 2011). Some of the respondents possessed negative perceptions towards specific health and nutrition benefits when forest foods were consumed. For example, only 10% of the respondents in the present study displayed positive perceptions towards bush meat as having essential nutrients to permit growth among children (Table 3). This can be attributed to some rural communities in Cameroon, lacking detailed specific knowledge concepts about the health and nutritional benefits of forest foods. There is need to invest in advocacy village level community nutrition education programmes aimed at imparting positive perceptions of forest populations by improving their knowledge base with respect to the health and nutrition benefits of forest foods.Factors that affect consumption of forest foods. The 40% fraction of the female respondents that used forest foods for household meals in the present study (Table 4) was higher than what has been documented in previous findings. For example, in DR Congo about 30% residents of Kisangani and Turumbu areas prepared household meals with forest foods (Termote et al., 2012). The present study using the logistic regression analysis, positively associated the practice of consuming forest foods with respondents aged 46 and above, lowly educated respondents, polygamous households, women making decisions on which food to prepare and those who had longer stays in the study area.Education level of respondents was inversely related to consumption of forest foods in the present study (Table 5). The present study concurs with previous studies which revealed that educated Kenyans, South Africans and Ugandans who earn more than the less educated, viewed traditional and indigenous foods as food for the poor; hence having less preference to consume traditional and indigenous African foods as compared to the western processed foods (Tabuti et al., 2004;Kimiywe et al., 2007;Dweba and Mearns, 2011). In comparison with the consumption levels, of the uneducated in Kenya, South Africa and Uganda, educated populations have been found to consume less of wild and indigenous fruits and vegetables (Oniang'o et al., 2003;Pelto et al., 2004;Tabuti et al., 2004). The educated Kenyans, South Africans and Ugandans are exposed to influences of urbanisation and western lifestyles, which lead to adopting negative perceptions towards local and indigenous African foods (Haddad, 2003;Pingali, 2007). This has resulted in the African elites moving away from the more diverse traditional and indigenous diets with strong cultural identity, to monotonously processed imported and sometimes unhealthy diets.An increase in the age of the respondents positively influenced the preparation of forest foods (Table 5). The older the household head the better the levels of perceptions towards nutrition and health benefits of forest foods. The elderly have a lifetime experiences that have shaped their individual values, habits and preferences, motivated by convenience, sensory appeal and perceived importance of traditional foods to health. These findings relating age with consumption of forest foods are similar to findings elsewhere (Pelto et al., 2004;Dweba and Mearns, 2011).Consumption of forest foods in the present study was considerably higher when mothers prepared household meals, than their daughters (Table 5). Collection and preparation of wild and indigenous forest foods from the natural environment, is an activity that is mostly done by spouses of households. Children, especially daughters in rural settings, learn from their mothers which traditional and indigenous foods are nutritionally superior and appropriate to prepare. As opposed to rural women who focus on gathering forest foods to feed their households, household heads in urban areas in Cameroon and elsewhere in Africa engage more in activities that generate higher income used to buy more of the imported refined food than forest foods (Parsons, 1993;Rensberg et al., 2004;Hart and Vorster, 2006;Hamawa, 2013;Levang et al., 2014).A significant positive association was found between respondents' who expressed positive perceptions towards health and nutrition benefits of forest foods, with consumption and preparation of forest foods (Table 5). Specifically, the logistic regressive odds in Table 5 reveal that consumption of forest foods, was more than 9, 4, 6 and 3 times, more likely to occur, among respondents who agreed with statements; \"consumption of bush meat can make a child taller\", \"forest foods are nutritious\", \"good nutrition can lead to less ill health\" and \"forest foods contain nutrients which are important for eye sight\". These findings are in line with other literature, which showed that having a positive perception towards health and nutrition benefits of indigenous and traditional foods, was a driving force for a person to improve his/her healthful and nutrition knowledge, practices and behaviours (Chen et al., 2003).A positive perception is the driving force of a correct practice and use of certain concepts (Sharma et al., 2008). Thus, positive perceptions appear to be important factors that drive correct nutrition practices. In this sense, targeted community or village nutrition education programmes aimed to improve perceptions of rural forest dependent communities need to be emphasized to policy makers, health and forestry community workers and development practitioners.A number of factors, including; age, education and marital status, perceptions towards nutritional and health benefits of forest foods influenced the consumption of forest foods.Initiatives aimed at promoting consumption of forest foods should, as a basic necessity, aim equipping communities with information regarding the nutrition and health benefits of consuming forest foods. The success of such initiatives would most likely be influenced by a number of sociodemographic factors such as education, sex, age and marriage status. These factors should be taken into consideration when planning forest foods promotion interventions. Nutrition education materials on the health benefits of forest foods need to be developed and disseminated to the forest-dwelling population. In addition, studies relating nutrition status outcomes and links to forest food intake need to be scaled up to inform future interventions. Fundamentally, it is vital to adopt strategic policies and legislation that are sensitive to the nutritional health benefits of forest foods in order to conserve the bio-diversity, nutrition and development benefits that comes along with their ecosystem.This study was carried out with funding from the Congo Basin Forest Fund (CBFF) and donors to the CGIAR Research Programme on Forests, Trees and Agroforestry, through grants to Bioversity International. Aside from their funding, the CBFF was not involved in producing the scientific results nor in developing or submitting the article. Co-funding and additional support was provided by IRAD, Cameroon. We thank the concessions and personnel of FIPCAM and SCTB, and the communities of Meyos, Ndembo, Ngone and Nkolbikon for their support to our research.","tokenCount":"3806"} \ No newline at end of file diff --git a/data/part_3/9820720796.json b/data/part_3/9820720796.json new file mode 100644 index 0000000000000000000000000000000000000000..9730fb87c8f33c3d401c2aabf8e41d1ff2017fa5 --- /dev/null +++ b/data/part_3/9820720796.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"f20da4aa5927ae689156743c8eb1505a","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/73d8c961-084e-4897-a68d-1da389decfed/retrieve","id":"296094253"},"keywords":["cost-benefit analysis","dams","development","Jequetepeque","rice."],"sieverID":"48aa84e1-498a-4573-af5c-bef68ae90e01","pagecount":"16","content":"Apart from direct economic impacts, development projects have complex social and environmental impacts among which sustainability plays a major role. The Gallito Ciego reservoir was built to increase and improve agricultural production at the Jequetepeque valley in Peru. Cost-benefit analysis of rice production from 1992 to 2007 is used to measure the immediate economic impact of the project. Also, a matrix of other relevant impact indicators is constructed to expose changes in the project's environment during its life cycle. The main conclusion is that, even though there is a significant positive increase in income from agricultural production, the social and environmental impacts are not necessarily positive.Degradation of the environment and natural resources is not only caused by weak economic development, but it can also be generated by excessive economic development. For example, projects like dams and roads require the relocation of population, affecting economic activities and also creating stress to animals and plants around the zone. Furthermore, increasing population pressure and industrialization generates serious problems related to water, soil and other natural resources. These problems cannot be separated from the intervention and have to be taken into account in the development plan as economic development, social wellness, and environmental quality should be the pillars of development projects. A sustainability analysis must be incorporated to ensure social acceptability and maintain the original quality of the previous natural system (Barzev 2002). There must be a balance between these three components.The Andes Basin Focal Project is an initiative to study the Andes system of river basins. The research done under this project tries to improve the knowledge and methods to grow more food with less water in an environmentally and socially acceptable way. Three big river basins are included in this system: Fuquene in Colombia, Ambato in Ecuador, and Jequetepeque in Peru.In 1988, the national development institute of Peru (INADE is its acronym in Spanish) built the Gallito Ciego reservoir as part of the \"Proyecto Especial Jequetepeque-Zaña (PEJEZA)\". Its objective was to allow a better storage and regulation of the Jequetepeque River's water, thus increasing and improving the agricultural area at the Jequetepeque and Zaña valleys.Agriculture is the main economic activity in the zone, but before the reservoir, it was characterized by high dependence on subsoil water availability and local rainfall patterns. This lack of dependable water sources resulted in unstable yields, which affected farm incomes and investment in the area. The most important crop in the basin is Oryza sativa (rice) representing 70 percent of the total harvested area (MINAG 2007). While rice production benefited from Jequetepeque's soil characteristics, it remained constrained by water availability. It is important to mention that rice production in the Jequetepeque basin represents one third of all Peruvian rice production and is the second one in terms of productivity (MINAG 2009a).A study to measure the impact of the dam on the agricultural sector of the economy would be very useful for this area. This study focuses on the impact on rice production and on the broader impacts on the society and environment. According to the Peruvian department of agriculture (MINAG for its acronym in Spanish), Peru's annual rice consumption of 54 kg per capita is the highest among all Latin-American countries (MINAG 2009a). Peru is also a net rice importer.The purpose of this paper is to evaluate the increase in rice production and productivity in response to increased availability of irrigation as a result of dam construction using a cost-benefit analysis, and to evaluate the evolution of the Gallito Ciego reservoir project's environment in terms of changes in five important variables/indicators at the zone. Two scenarios are analyzed: \"Without the project\" and \"With the project\".At the time this study was conducted, there was a lack of published studies addressing the impacts of the Gallito Ciego project in the Jequetepeque watershed. However, there are some independent unpublished studies and government reports on the watershed evolution after the project's completion the findings from which are used in this study. Here, we also review studies on the impact of other dam construction for comparison purposes.A study by Martinez (1989) explored the possible negative impacts that the dam would generate in the near future. It is mostly focused on the relocation of families that lived near the dam and how there was going to be a crop switch process which could generate some traditional/cultural losses.Two working papers by the Danish Institute for International Studies (DIIS) were published for the Jequetepeque watershed zone. For the first one, the objective was to identify key stakeholders in the management of the Jequetepeque watershed and analyze the different interests and issues which contribute to conflict and cooperation among them. The author examined the institutions establishing access to irrigation water and argues that a payment for environmental services must be considered (Raben 2007). For the second paper, a poverty profile for the upper part of the basin was developed. In it, they showed the relationship between water irrigation access and poverty levels (Gomez et al. 2007).Wittwer explored two relevant projects about dams. In the first one, the author referred to the possible welfare impacts that the construction of the Traveston dam would generate in the Queensland area (Wittwer 2009). It was estimated that project would raise the present modest yield of existing catchment in Southeast Queensland by at least 70 giga-liters. The study also stated that the improvement in cost competitiveness of industries due to water supply would attract additional labor and capital to the region. The welfare impacts calculated using costbenefit analysis, conditional on future rainfall patterns and water requirements over time, are estimated to be US$ 3.4 billion at a real discount rate of 5 percent. For the second one, the impact of irrigation water buyback in the Murray-Darling basin is addressed (Dixon et al. 2012). The results suggested that rather than a reduction, based on the increase in price of water, there would be an increase in the economic activity in the basin. The buyback policy would not be as hard on the environment as farmers would switch to less water demanding crops.In 2009, a study assessing the progress of Public Financing Institutions (PFIs) in recent years was published. It focused on the application of environmental impact assessment mitigation and monitoring the large dam projects financed by those institutions. The key finding of this research is that multilateral PFIs have a better record regarding environmental safeguards in the dams they finance than bilateral PFIs (Caspary 2009). Gunatilake and Gopalakrishnan (1999) stated that the benefits of water resource projects often fall short of original expectations because of sedimentation of the reservoirs. Their study estimated the cost of sedimentation in Mahaweli reservoirs including the impact on hydropower production, irrigation water supply, water purification, and loss of fisheries yields. The present cost of sedimentation is estimated to be US$ 26,406,620. They also argued that the benefits of prevention of reservoir sedimentation are inadequate to compensate for the costs involved. Using soil erosion control measures at farm level offers a better solution for reservoir sedimentation compared with de-silting. Duflo and Pande (2007) studied the productivity and distributional effects of large irrigation dams in India. They found that, in districts located downstream from a dam, agricultural production increased and vulnerability to rainfall shocks declined. Food grain production in India nearly quadrupled in the last 60 years and the study attributed nearly 50 percent of this increase to the dam construction.The Jequetepeque basin is located on the north coastal side of Peru, between the parallels 7°6' and 7°30' south latitude; and the meridians 78°30' and 79°40' west longitude (Figure 1). It covers 4,372.5 km 2 located in two states: La Libertad (north area) and Cajamarca (west area).According to national 1993 census, Jequetepeque basin population was 261,499: Half of them lived in rural areas and the other half in urban areas but 47 percent of the population worked in agriculture. Basically, the basin is divided in three sectors: low lands (valley), mid lands, and upper lands.The upper part of the basin's annual rainfall is about 1000 mm. This part of the basin has stable precipitation which is relatively heavier between October and May. Meanwhile, the adjacent valley area receives almost no precipitation, except for El Niño summers. This low precipitation in the coastal area is due to the sea water temperature, whereas the weather in the upper part of the basin is influenced by the Amazon basin and the humidity coming from the Pacific.The average annual discharge from the Jequetepeque River is around 816 millions of cubic meters (MCM) (CONDESAN 2009). As this discharge has relatively low volatility (between 777 and 825 MMC in the last 30 years), the hydrological regime of the Jequetepeque River can be considered stable (CONDESAN 2009).The Gallito Ciego reservoir is located in the Yonan district, Contumaza province in the state of Cajamarca. Its average altitude is 350 meters above sea level. It is located in the low path of the Jequetepeque River, between the mid lands and the valley, forming a \"cup\" 12 km in length and 1.5 km in width. It is the second largest dam in Peru with a usable volume estimated at 400.4 MCM. The operation of Gallito Ciego has allowed the increase of water availability reducing by 75 percent the run-off of water into the ocean.Within the valley sector, land use is divided in urban areas and poultry farms, farmland (agriculture), forest plantation, and land with no use. Rice is the primary seasonal (perennial) crop of the valley representing 70 percent of all the harvested land. Table 1 shows the use of the land. Except for rice, all other agricultural products are imported from other parts of the country or overseas. Jequetepeque's rice production also supplies Lima and some national markets in the north -Cajamarca, Trujillo, Chimbote and Chiclayo.Annual irrigation water requirements at the low lands (in millions of cubic meters) are shown in Agricultural production at the area has substantially benefited from the dam construction. The irrigation supplied by the dam project has increased production by 50 percent. 1 The area within the reach of the irrigation project at the low lands covers 42,836 hectares, from which only around 36,000 (ha) are currently being used (CONDESAN 2009).Measuring the aggregate impact of a project is a challenging task. The most straightforward approach is to measure the impact on each specific affected sector separately (i.e., economic (e.g., income), social (e.g., income distribution), and environment), and then add them together to obtain the total effect. This study focuses on the income impact from increased rice production. For this, two scenarios were compared: with and without the project.Net present value (NPV) of net cash flow (NCF) is an effective tool to conduct cost-benefit analysis of a project whose returns and outlays are spread over time. The NCF is the difference between the gross income and the cost of production. The NPV is calculated as a sum of the annual discounted NCF. The purpose of discounting is to incorporate the time value of money into the analysis using a discount rate appropriate for the riskiness of a project, opportunity cost of funds, and time preference. Technically, the present value (PV) of future cash flow (I) is discounted by dividing it by the discount rate (r) to the power of the number of time periods (t) from present. That is:(1) PV[I] = I /(1+r) tThe NPV analysis was used for the first part of the study, which focuses on rice producers' monetary welfare through comparison between the scenario with and the scenario without the project. Rice was selected because it is the most important crop in the area and also because the main goal of the irrigation project was to increase the rice planting area and productivity in the zone. Income and production cost (income statement) dataset for this crop from 1992 to 2007 was assembled using cost data collected from the Gallito Ciego Reservoir Camp (PEJEZA 2009) and income data collected from the MINAG (2009b) website and the MINAG Trujillo (MINAG 2009c) regional website 2 . The income statements were built using annual average production cost for a typical producer in the area (mid-high technology producer) and aggregate level income data 3 . The production costs are standardized and include the following items: seed, fertilizer, agrochemicals, transportation, mechanization, labor, draft animal power, threshing processes, financing, indirect costs, and water usage. The income data include: prices, yields, and area harvested (it is assumed that all production was sold). As the objective is to calculate the cost-benefit for rice producers, capital costs of the dam were not included in the NPV because the dam construction was fully financed by the government 4 . Ideally, net benefits from the dam construction should be computed as the difference between the NPVs of gross benefits and the capital investment (construction costs) and subsequent maintenance costs. However, in this situation, it is hard to assign a monetary value to all the benefits and the costs of the project and those include social and environmental impacts, some of which may be long lived. The social impacts include the well-known impacts of higher income on health, education, and labor productivity. Higher farm incomes may also contribute to infrastructure development which has a multiplier effect on the local economy. The environmental impacts are multi-dimensional and include the impacts on soil quality and runoff which, in turn, affects eco-systems and so on. Thus, we do not attempt to perform a standard cost-benefit analysis due to the multidimensionality of the project impact. The analysis was made in U.S. dollars using the exchange rate for each year provided by the Central Bank of Peru.For the \"with project\" scenario, the actual income statements are used. The production costs included a water expenditure item, which refers to water access/usage provided by the dam (a charge per cubic meter of water used). This value was established at the beginning of the project by the government and includes the investment, operation, and maintenance cost of the dam.For the \"without project\" scenario, the NPV is calculated under several assumptions:  As it used to be before the project, only half of the hectares are used in production  An average yield obtained over the last five years before the project is used also assuming an annual increase in productivity of 1 percent. The rice price per kilogram each year is the actual market price reported for the given year.  No other major changes have occurred in the area so that the costs incurred are the same used for the real scenario but only without the entire water cost component.For the NPV calculation under both scenarios, a discount rate of 4 percent was used. As the discount rate is reflecting the opportunity cost of capital and the riskiness of a project, and the actual interest paid on financing it, this value was chosen to correspond to the interest rate of the Central Reserve Bank of Peru to reflect the time value of savings deposited by the producers at the bank and also the allegedly low rate of time preference by rural investors (Belli et al. 1998;Raboin and Posner 2012). 5 Also, an income tax of 30 percent was applied as it is required for every business in Peru. For both situations, a cost-effectiveness analysis was performed.In addition, the Impact Monitoring and Assessment (IMA) tool proposed by the Centre for Development and Environment (CDE) and the German Technical Cooperation (GTZ) (Herweg and Steiner 2002) was used. The IMA is as an instrument of quality control throughout the project's life cycle in order to better adapt project activities to a changing context. In here, a radar (also called \"spider\" or \"amoeba\") graph allows the visualization and comparison of relevant indicators in different timeframes. In addition to the \"with project\" and \"without project\" scenarios, an expected output scenario predicted at the beginning of the project is included to measure the accuracy of the real outcome. A relevant characteristic of this tool is that it has to include indicators reflecting the three components for a project to be sustainable: Economic, Ecological, and Social (Dumanski, Steiner, and Herweg 2000;Herweg and Steiner 2002).The indicators chosen are as follows: rice yield, water availability (expected dam life), water irrigation efficiency in rice production, population annual growth rate in la Libertad state, and quantity of soils with salinity issues.With available information from the project background and simple agronomic knowledge, the scales of indicators were built and are shown on Table 3.The scale range is from 5 (very good) to 1 (very poor). In here, the expected output is scaled to back to reflect the specifics of the Andean regionthe value of 4 is considered a good value as development projects look for the best balanced feasible outcome. For example, even though expected water irrigation efficiency in rice production of 75 percent (DEJEZA 1977) would be considered average (or 3) in similar projects, that was the feasible expected value at the end of this project and it will be considered a 4 (good).Continuing with the assembly of Table 3, according to the FAO (2007) data, the average yield for rice in coastal zones is between 8,000 and 9,000 kg/ha. The latter value is used for the expected value for rice yield under the \"with project\" scenario. After accounting for predicted sedimentation, the usable expected capacity of the dam was set at 400 MCM (PEJEZA 1999).According to Sanchez (1999), the annual population growth rate expected at the valley after the project was 3.25 percent. According to the executive management of the project (DEJEZA for its acronym in Spanish) the expected value of rice irrigation efficiency after the project was 75 percent (DEJEZA 1997). Finally, because of the intensive usage of water and rice cultivation practices, the amount of soil with salinity problems was expected to increase. The expected value assigned by \"Apoyo a la Política de Desarrollo de Selva Alta\" (APODESA 1994) was a 3 percent increase in salinityfrom 28.5 percent before the project (ONERN 1988) to 31.5 percent.The data for the two scenarios rely on the measurements from previous studies. Most of them come from the public sector research. The base year is 1987 and become the \"without project\" scenario. For the \"with project\" scenario, the end of the first stage of the project ( 2006) or the nearest record available for each specific variable was used. The values are shown in the results' section. The NPVs for the two scenarios are very different. The \"without project\" (baseline) scenario would generate negative returns (losses) of US$ 4,201,119. Under the alternative (\"with project\") scenario, the NPV was positive (US$ 69,500,051), which indicates that the rice producers benefited substantially from the project. Because of the negative value under the \"no dam\" scenario, cash flows per year are analyzed.Table 4 shows the cash flows from rice production for each year. It can be seen that in the \"without project\" scenario some of the cash flows are positive and others negative. The year 2007 was an outlier for several reasons that are explained in the next paragraph. If the outlier year is taken out, the NPV of the cash flow becomes positive (US$ 4,224,409). 2007 -15,173,901 -18,957,686 -3,783,785 -20.57% Incremental cash flows per year are all positive except for 1992, 1994, and 2007. Through a personal conversation with the CEO of the MINAG office in Trujillo, Segundo Vergara, the losses in 1992 are explained by a shortage of water supply from the Jequetepeque River. For that year, the annual water mass from this river was only 338 MCM generating suboptimal outputs.In 1994, the price of rice went down from 0.45 to 0.32 soles (0.23 to 0.15 US$) per kilogram affecting the revenues. The big loss in 2007 is explained by a considerable increase in gasoline prices. This increased production expenses from US$ 37 million in 2006 to US$ 92 million in 2007, whereas production did not increase proportionally (276 and 236 million of ton respectively). Also in Table 4, a cost-effectiveness measure was obtained as a ratio of the profits and total costs. It was on average 40 percent.Table 5 shows the most important indicators in the area served by the dam under the two scenarios, also listing the expected values. A measure of water availability (dam life) is important because it reflects the years the farmers will benefit from the project. A bathymetry study at the dam in 1999 showed that the volume of total estimated sedimentation was around 65 MCM, with the annual average of 3.4 MCM. This reduced the useful life of the dam to 33 years instead of the expected 50 (Cobeñas 2007). The rice yield indicator allows quantification of the real gains in agricultural output. According to MINAG (2007), the rice yield for the zone before the project was 5,975 Kg/ha but almost doubled to 10,108 Kg/ha in 2005. Irrigation efficiency in rice production in the area was measured using three efficiency components: delivery, distribution, and application. Delivery rates are correlated with water recuperation rates and altitude. Distribution refers to the deficiencies of a particular irrigation canals and its extension. Application relies on climate data, information on the crops in each sector (using FAO's CROPWAT program), and the requirements for their vegetative stage (CES 1997). A study about economic and technical feasibility by DEJEZA (1977) showed that the total irrigation efficiency before the project through rural irrigation canals was around only 40 percent. There were no very recent studies about the water efficiency so research findings from CES (1997) were the best proxy. According to those results, water use efficiency increased to 73 percent. Big projects like dams may have mixed impacts on population. Dams can increase population density around the area because of the perceived economic growth but can also decrease it because of the relocation of people who lived in the path of the dam. The study made by Sanchez (1999) under the supervision of INADE established that the population growth rate in the valley during 1981-1993 was 2.1 percent which is the rate also given by the Peruvian National Institute of statistics (INEI) for the whole state of La Libertad. The INEI also stated that the actual growth rate for the state from 1993-2007 was 1.7 percent (INEI 2007). Salinity problems are very common in in rice production as it is very water intensive. This is a big issue as high salinity can decrease productivity and soil quality. The national office for natural resources evaluation (ONERN) determined that the area covered by soils with salinity problems at the beginning of the project was around 28.5 percent. The value at the end of the first stage of the project taken from the document provided by PEJEZA ( 2005) is 34 percent. A radar graph described in the previous section and constructed using these values is shown in Figure 2 for better exposition. The farthest away from the center represents a better outcome.The comparison of the historical data, predicted outcomes, and real outcomes at the end of the first stage of the project shows that the number of years of water availability from the dam was smaller than estimated due to extra sedimentation. At the same time, the estimation of the gains in irrigation efficiency at the beginning of the project was accurate. With respect to agricultural outputs, the estimates matched the actual rice yields. The population growth rate was overestimated, whereas the increase in salinity was underestimated. According to the numbers, the no dam scenario looks significantly worse than the alternative.Despite the coverage areas being different, this study's NPV of US$ 69,500,051 obtained can be related to US$ 3.4 billion estimated by Wittwer (2009) because they are both positive. Nevertheless, project's coverage was different and, in the case of Queensland, all the possible impacts were estimated, including electricity generation and job generation (income distribution). This study, on the other hand, only included the agricultural sector focusing on a single crop-rice-because the main objective of Gallito Ciego was to increase the agricultural production in the zone. We have confidence in our results because of the small area covered by Expected With project the project. Another difference is that the project in Queensland was determined to generate higher rates of migration to the development zone because it has a smaller population density and because the area is significantly bigger than the one in northern Peru.According to PEJEZA, the powerful effects of the 1997 El Niño were mostly responsible for Gallito Ciego increased volume of sedimentation. Putting some numbers on it, the annual average amount of solids moved by the Jequetepeque River during the period of 1943-1998 was 2.9 MMC instead of the 1.7 MMC estimated before implementation of the project. For the period of 1968-1998, this amount is determined in 3.4 MMC which is the reason why the useful life of the dam is reduced to 33 years instead of the original 50 years. If the global warming trend continues, leading to increased frequency of El Nino and La Nina cycles, heavier precipitation should be expected in the region, which would increase sedimentation and lower the estimated future benefits of the project, unless further investments are made to remove sediments from the dam.Regarding the annual population growth rate for the state of La Libertad, the expected value of 3.25 percent was very upward biased (compared to the real outcome of 1.7 percent). The average population growth rate for that period in Peru was 1.6 percent, being 2 percent for the state of Lima (the capital state) and 3.5 percent the state of Madre de Dios (the highest value and definitely an outlier). The values for the most important provinces in the valley belonging to the state of La Libertad, Chepen and Pacasmayo, were only 1.3 percent and 1.5 percent respectively. The average value for the state of La Libertad was improved by the province of Viru (located in the south of the state) whose growth rate was 5.1 percent. Viru is included in other bigger irrigation project called \"Chavimochic\".A possible explanation for not reaching the expected population growth rate can be that the time period considered is too short. However, this does not explain the reduction in the rate reinforcing the idea that a big development project might increase the population growth ratio at the location but other factors like culture, government policies, and the economic performance of the whole country should be taken into account.In general, dams tend to have a negative impact on the broader environment even when they produce specific benefits, such as improved agricultural production. Increasing water availability for artificially low prices can exacerbate the environmental problems by increasing production in ways that accelerate soil erosion, which would eventually lead to long-term losses in productivity. This study showed a 6 percent increase in the quantity of soils with salinity problems at the area. In 1999, Sanchez showed that 30 percent of the area at the Jequetepeque basin had high intensity and 36 percent of it had moderate intensity erosion. Hansen and Hellerstein (2007), using the replacement cost method, showed that among 2,111 watersheds in the U.S., a one-ton reduction in soil erosion provides benefits ranging from zero to US$ 1.38. They also did a comparison between lower and higher soil erosion levels (1997 and 1982 respectively) and showed that the lower level erosion conserved US$ 154 million in reservoir benefits. Gunatilake and Gopalakrishnan (1999) used a cost-benefit analysis to estimate the cost of reservoir sedimentation in Mahaweli reservoirs. They estimated the sedimentation cost present value to be of US$ 26,406,620. A model like the one used by Dixon et al. (2012) might be applicable to mitigate the negative externalities on soils as it shows that an increase in irrigation water prices leads to farmers switching to less water demanding crops without compromising agricultural outputs.This paper examines the impact of the construction of Gallito Ciego reservoir using two tools: a cost benefit analysis for the rice producing agricultural sector and a spider graph showing the changes in the project's environment after the implementation. It was found that the NPV of the benefits to the rice producers after construction of the dam was US$ 69,500,051 compared to a hypothetical scenario of no project (no dam construction) with the NPV of US$ -4,201,119. The cost-effectiveness ratio of the project was around 40 percent. At the same time, the dam project led to a 6 percent increase in soil salinity in the area, which is almost double of the expected increase, and the population growth rate in the zone covered by the project (1.7 percent) was lower than expected.The estimation of the NPV of the dam irrigation project for rice production in the Jequetepeque watershed suggests an aggregate positive impact. However, the study shows that estimations of the environmental and social impacts were too optimistic relative to the actual cost. This reinforces the idea that, in developing countries, environmental and social components are not getting the attention they deserve, leading to greater risks of falling into poverty traps through overexploitation, soil depletion, or social conflicts.A replacement cost study might be explored in the future to measure the environmental impact of the dam, particularly the impact on soil quality. This technique uses the cost of returning the environmental component to its original condition as a way to express the environmental damage in monetary units.","tokenCount":"4882"} \ No newline at end of file diff --git a/data/part_3/9828767525.json b/data/part_3/9828767525.json new file mode 100644 index 0000000000000000000000000000000000000000..f398d5debb680ea8b2bb5fe42e0c47a77df7f382 --- /dev/null +++ b/data/part_3/9828767525.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"6450b5dbb4fb8fb6f4a2bf87973418f6","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/a32e93dc-3f98-472a-b357-2486d94d61cb/retrieve","id":"1097630869"},"keywords":[],"sieverID":"9963cee8-ea01-4ff7-b6ac-6c7a6f491be6","pagecount":"44","content":"The workshop was held in Nairobi from 18-19 January 2017 with the aim of exploring the strategic elements of a Theory of Change to support ILRI's Mzima Cow project and, by extension, possible strategies and considerations for other similar research initiatives in developing countries, characterised by both the potential for great benefit in terms of expected impact but also the potential for great controversy, which risks affecting the uptake. Theory of Change is a \"critical, multi-stakeholder exploration of intentions, interests, power and gender relations, in order to contribute to social justice, equality and sustainable development\". It sets out to answer the following questions: \"What change, for whom, why -and who says so?\" The workshop additionally set out to explore in greater depth some of the challenges projects like the Mzima Cow might face in regulatory understanding and clearance, and particular challenges in communicating the research and its outputs to encourage uptake.Although the research is still at an earlier stage, it was assumed for the discussions at the workshop that the product (the trypanosomiasis or sleeping sickness resistant cow) was ready for deployment, and participants were encouraged to reflect how to best optimise reach and impact on target beneficiaries.The first part of the meeting discussed the scientific and social burden of trypanosomiasis. Two forms of African trypanosomiasis affect humans, both caused by sub-species of Trypanosoma brucei. T.b. gambiense causes chronic sleeping sickness, while infection with T.b. rhodesiense results in acute sleeping sickness. The World Health Organisation (WHO) has targeted Human African Trypanosomiasis for eradication, and significant progress has been made towards achieving this goal. However, a significant and overlooked obstacle is that domestic (mostly cattle) and wild animals provide the reservoir for T.b. rhodesiense parasites, and therefore targeting human infection alone is not enough for effective suppression of the disease.In addition to its impact on human health, trypanosomiasis is also a huge economic burden to Africa, in particular for resourcepoor smallholder farmers and pastoralists, who are often not able to afford medication to treat infected animals. Livestock is a key livelihood in the continent; animals and animal products are a very important source of income and also deliver a wide range of other benefits. These include a direct contribution of proteins and high quality nutrients to households; the provision of animal labour and manure for agricultural production (and hence the possibility of keeping cattle correlates with increases in crop productivity); and livestock can act as economic buffer in periods of financial need. Critically, livestock is central to many African cultures, with animals being important for social status and key in many social interactions (for example, as part of wedding dowries). In addition, animal source products (in particular milk) are among some of the few economic assets women are able to control, and therefore trypanosomiasis disproportionately impacts the wellbeing of this group.There have been a number of initiatives focussing on trypanosomiasis control, such as the Pan-African Tsetse and Trypanosomiasis Eradication Campaign (PATTEC), established in 2000 to eradicate tsetse flies (which transmit the disease) in Zimbabwe, Zambia, Senegal, Ethiopia, Nigeria, Ghana, Kenya and Burkina Faso. Challenges faced include how to ensure sustainability, since successful eradication requires long-term commitment and funding from national governments. In addition, extensive use of insecticides has serious environmental and human health implications, in addition to the risk of development of resistance in vector populations.A more sustainable approach to controlling trypanosomiasis would be to develop cattle breeds able to resist infection. A limitation of using conventional breeding methods is that there are no livestock breeds which are fully resistant to trypanosomes. There is one breed -N'Dama cattle -which is able to tolerate infection, but animals of this breed are small and not suitable as draught animals. Tolerance to the disease is controlled by a number of genes, each with a relatively low effect on variation, and therefore the development of tolerant breeds by crossing is an expensive, long-term endeavour likely to result in an imperfect solution. Controlling the disease through the development of a vaccine is also not possible because trypanosomes are able to evade attack by the immune system of susceptible hosts due to their ability to continuously change their surface antigens.However, some primate hosts (including humans) have resistance to trypanosomes, provided by a protein -ApoL1 -which is found in a complex called the Trypanosome Lytic Factor (TLF) and which circulates in the blood as part of \"good\" cholesterol. Therefore, an alternative strategy, to be deployed ultimately as part of a set of integrated solutions, is to develop a GM cow (Mzima Cow) with a synthetic ApoL1 transgene. This technology has been proven to result in full resistance to trypanosomes in transgenic mice.A key challenge for the deployment of new agricultural technologies, which include genetic modification (GM), gene editing and gene drive technologies, is the lack of appropriate regulatory frameworks in African countries. The New Partnership for Africa's Development (NEPAD) African Biosafety Network of Expertise (ABNE) and National Biosafety Authorities have the mandate to assist in the development of regulations that allow harnessing technological advances while minimising potential risks to the environment and human health.Workshop participants were asked to reflect on and discuss the key stakeholders affected by African trypanosomiasis; on the potential impacts of deploying the Mzima Cow, including unintended effects; and develop a Theory of Change to maximise the beneficial impacts of the technology. Two key challenges were identified as important for the entire timescale and success of the project:1. Build trust and public acceptance of Mzima Cow by all stakeholders concerned. Specific actions and target groups vary according to the stage of the project and geographical location.2. Develop high quality studies and data for the scientific, economic and social impact of the technology, before and after deployment.A further key challenge, which will need to be addressed once a proof of concept is available, will be to:3. Devise a detailed plan for technology deployment ensuring that targeted beneficiaries have access to Mzima cow, and are prepared for scale-up.More generally, it was felt there an opportunity for more engagement and awareness raising with stakeholder groups who were unaware of some of the nuances and paradigms of animal genetic research, but for whom such knowledge would be critical in playing their part in facilitating the effective uptake of the outputs of such research (regulators, for example.Until they had more knowledge, it is difficult for such stakeholder groups to know how existing procedures need to evolve in order to be applicable to animal research. But participants did feel there was merit in trying to coordinate between the regulatory and other authorities of countries across Africa in order to achieve a harmonised regulatory environment.In general, the approach recommended by the workshop was endorsed by pan-African agencies present, and was felt to fit will with the AU's 2063 Agenda and strategy.The unique approach of inviting such a diverse group of stakeholders to engage with research projects early was greatly appreciated, and participants felt there was a strong case for a series of such workshops to be held as the research progresses.The purpose of the Mzima Cow workshop is to develop the strategic elements of a Theory of Change to support this project as well as other similar research initiatives in Africa which may be potentially beneficial for the continent. The Theory of Change is a comprehensive exercise which aims to determine how specific programme activities and interventions may lead to the desired project goals, and to identify the conditions that must be in place for this to happen.Mzima is a Swahili word meaning well, ablebodied, or healthy -hence its use for this project to describe cattle who are resistant to trypanosomiasis.This project is in the vanguard for a number of reasons: the Mzima Cow is the first noncommercial programme for developing a transgenic animal for use in the public domain, and this may also be the first time the Theory of Change approach has been applied in such a context. The outcome of this workshop is likely to set precedents for future interventions and provide insights and guidance for other, similar research initiatives.To develop the Mzima Cow Theory of Change, several key assumptions have been made: the product development pipeline is nearly complete, and the trypanosomiasisresistant GM cow is ready for deployment.The workshop also assumes that the new technology is a \"force for good\", although it considers the GM cow as only part of the solution to a complex problem. However, it is not assumed that the GM cow is desirable, and participants are encouraged to reflect on the impact that the technology may have on different stakeholders, society as a whole, agricultural production, markets, and animal and human health. The workshop is also not intended to provide a space for debating the specific merits of the technology, nor to develop a detailed implementation plan (which will be the topic of subsequent workshops). In addition, livestock plays a central role in the life of resource-poor, small scale farmers. Most animal products in developing countries are produced by smallholders and are consumed in the same country or region, and over 70% of livestock products are sold 'informally' in markets. Livestock production is also very important for women's livelihoods and for the nutritional status of their households in resource-poor communities.Developing sustainable food systems is an imperative research goal. Productivity and efficiency need to improve in order to produce sufficient food with a lower environmental footprint, while there is also a need to promote the consumption of animal source foods in appropriate quantities (curbing over-consumption) and reducing waste. Livestock investments can deliver significant socio-economic, health and environmental gains to both poor nations and households. However, the current research funding scenario does not reflect the importance of this field. Emerging key challenges are zoonotic diseases and the increase in levels of antimicrobial resistance due to their overuse in food animals. About 75% of emerging diseases come from animals with an estimated annual impact on society of up to US$ 6 billion. Costs of SARS (Severe Acute Respiratory Syndrome), a viral respiratory disease of zoonotic origin, alone have been estimated at over US$40 billion in the 2-year period between 2002 and 2004.Livestock research is also critical from an environmental perspective, as nearly half of the agricultural greenhouse gas (GHG) emissions are produced by animals. Since the amount of GHG per kg of animal protein produced has a very large geographical variation, with highest emissions found in developing countries, there are big opportunities for mitigation. Reducing the incidence of disease in livestock populations also has a positive impact on the environmental impact of animal rearing. The removal of trypanosomiasis would lead to significant increases in both productivity and in GHG emissions across all productions system. However, the increases in production are greater than increases in emissions, especially in dairy systems, which is related therefore translates into a reduced environmental impact per kg of animal product.In summary, the best approach to increase livestock productivity minimising the effect on the environment is therefore to target animal genetics and health. Bernie Jones, Project Co-Leader, G4ASOThe G4ASO project has been working in Africa over 3 years to examine the breadth of genetic research (in plants, animals and humans) across the continent, and how well understood and communicated that research is to regulators, decision-makers, the media and the general public -and the challenges that are faced in outreach, understanding, and therefore ultimately adoption of the outputs of such research.Broadly, the findings have shown that outreach, public understanding and misinformation are challenges across the whole of genetic research in Africahowever, the challenges for animal research seem particularly challenging, in that this area is generally even less-well funding than plant and human research, and regulators are -in general -not sensitised to it. Even more challenging potentially is the sense that regulatory frameworks have been developed largely with crops in mind, and therefore their ability to deal sensibly with animal research and its outputs is untested, and will at worst result in an inability to regulate such research and may therefore prevent its uptake.This workshop is therefore an opportunity not only to explore potential regulatory and communications hurdles ahead for the Mzima Cow project, but also to seek to learn from that project in considering how animal genetic research and biotechnology might more generally face particular regulatory and communications challenges in Africa, and more widely. This is an aspect which is of particular interest to G4ASO and its funders, the John Templeton Foundation and the Cambridge Malaysian Education and Development Trust.The Cornell Alliance for Science seeks to promote access to scientific innovation as a means of enhancing food security, increasing environmental sustainability and improving the quality of life globally. Funded by the Bill and Melinda Gates Foundation, the initiative aims to increase access to agricultural innovations through collaboration and innovative communication strategies. It does so by establishing a network of partners around the world and delivering training to develop the tools and skills needed to communicate about science and to promote evidence-based decision making. Training is provided not only to scientists but also to other key stakeholders, who are encouraged to train in turn other stakeholders, to foster science-based conversations and a climate for positive change.A number of programmes tackle related problems. The \"Climate for Change\" initiative explores problems in agriculture associated to climate change and considers how these may be addressed, through a change in sociopolitical climate and the empowerment of \"global champions\". Another initiative aims to showcase the role and importance of women scientists and farmers in agriculture. Finally, farming stories are shared with the general public to highlight the human perspective of agricultural production.Trypanosomes are unicellular parasitic organisms responsible for a number of diseases transmitted by tsetse flies where the parasite has an obligate life stage (ie it relies on its host to complete its life cycle). Trypanosoma congolense and T. vivax affect livestock only, however subspecies of T. brucei are also important human pathogens.There are two forms of human African trypanosomiasis (HAT) or sleeping sickness, depending on the parasite involved. T.b. gambiense causes chronic sleeping sickness, which is most common in West and Central Africa, while T.b. rhodesiense is responsible for acute sleeping sickness, prevalent in East Africa with Uganda as the hotspot of currently diagnosed human cases. The two diseases are very different also from a human clinical perspective: untreated infection with T. b. gambiense leads to death of the patient in 140 to 160 months, while T.b. rhodesiense infection results in an acute disease and untreated people die much earlier.Defining reservoirs of HAT is an important priority for eradicating the disease. A reservoir host is one that, either alone or in concert with other species, plays a significant role in sustaining a pathogen (tolerating infection) and allowing it to be transmitted.Humans are the main reservoir of T. b. gambiense parasites, while animal hosts provide the reservoir for T.b. rhodesiense. Eradicating HAT by treating human cases alone is only possible in the absence of an animal reservoir, (e.g. for T.b. gambiense) and therefore it is critical to determine which of the components of animal reservoirs is most important for eradicating the Rhodesian form of HAT. Wildlife is an important element of the zoonotic disease in locations with high numbers of wildlife habitats and animal populations, where it remains the principal reservoir of the parasite. Surveying wildlife is however technically challenging, expensive and strictly regulated by legislation. By contrast, in largely agricultural areas domestic animals are taking over the role of the reservoir, with cattle being most important hosts, although the number of infected pigs is increasing in affected areas.HAT can be contained by controlling tsetse vector populations, a measure which is equally effective for both forms of the disease as it reduces transmission regardless of the duration of infection. However, there are important issues of cost and sustainability with this approach. Infected cattle can also be treated with chemoprophylaxis, which are the most effective control measure for T.b. rhodesiense. Disadvantages of this control method include the fact that it is too expensive for many smallholder farmers; there is not always an adequate distribution network for genuine veterinary inputs in rural areas; and that the use of drugs can lead to the development of resistance.Significant efforts for eliminating HAT have resulted in a dramatic reduction in the incidence of infection in the last 15 years, although the disease has not yet disappeared. The World Health Organisation (WHO) has developed a set of primary and secondary indicators for enumerating cases of infection in a Road Map for eradicating HAT. Primary indicators are updated annually and include the number of cases and the number of foci reported. Secondary indicators, updated biennially, include the geographical distribution of the disease; the population at risk, by levels; and the coverage of the exposed population by control and surveillance activities. The traditional definition of a focus is a \"zone of transmission\", which in practice is not possible to measure. However, this concept needs to be replaced with a measurable, standardised definition of an \"area of risk\", based on actual observation of human cases, which recognises the dynamic nature of the spread of infection.Despite the progress, the WHO Road Map largely ignores the importance of animal reservoirs. Zoonotic HAT remains a neglected issue in the continent, even though Rhodesian sleeping sickness is estimated to threaten a total of 12.3 million people in Eastern and Southern Africa.In summary, there are three key challenges for the elimination of African sleeping sickness:1. Integrate HAT control into the health system. This requires shifting to passive case detection in areas of low HAT prevalence through the development of diagnostic tests and algorithms to replace costly and time consuming active case finding and parasitological examinations. Isabelle Baltenweck, ILRI Almost a billion people rely on livestock for their livelihood, and over 100 million landless people keep livestock. Livestock and animalsourced products provide a large number of benefits. Direct consumption of animal foods has a very positive benefit on the level of nutrition of resource-poor households, while their sale is an important source of revenue. Livestock also improves farm productivity through the provision of manure (which comprises over 70% of soil fertility amendments in the poorest countries) and of farm labour. In areas where agriculture and trypanosomiasis coincide, livestock production is reduced by 20-40%, depending on the degree of agricultural activity and rainfall. Critically, the ownership of livestock also has many intangible benefits: it increases the resilience of resource-poor communities towards adversity. This is very important since resource-poor farmers often do not have a bank account and lack access to conventional insurance and financing mechanisms. The inability to keep cattle therefore translates to a reduced buffer against economic shocks and periods of adversity. Livestock is important for social standing in the community, and is an intrinsic part of many social and cultural practices (for example, as a component of wedding dowries). Livestock is also an important provider of employment, with many people engaged in local informal livestock product markets and inputs and service delivery.In areas where the disease challenge prevents livestock rearing, the burden of trypanosomiasis manifests itself as reduced opportunities for improving household nutrition from animal sourced products, and a loss of revenue. In addition, since livestock and livestock products (especially milk) are some of the few assets women may own, trypanosomiasis has an important impact on women's revenue and on the overall household's welfare, since there is a much more direct correlation between women's income and money spent directly on the household and children's education.In view of the complexity of causes, it is important to develop and adopt a quantitative system or integrated approach to determine the burden of trypanosomiasis in a community.The Heads of States and Governments made the decision in 2000 to eradicate tsetse and trypanosomiasis in Africa 1 . This decision culminated in the formation of the Pan-African Tsetse and Trypanosomiasis Eradication Campaign (PATTEC) in Burkina Faso in October 2001, and the subsequent establishment of a coordination unit at the commission of African Union (AU) in Addis Ababa to implement the Plan of Action.PATTEC was established in response of the urgent need to eliminate severe animal and public health and rural development problems resulting from tsetse and tsetse transmitted trypanosomiasis. This situation is aggravated by the increasing rates of tsetse infestation and prevalence of trypanosomiasis and the reduced effectiveness and availability of trypanocides for treating disease animals. Further challenges include the differing levels of programme identification, formulation and management and of resource availability in countries affected by trypanosomiasis. PATTEC'S overall strategy is to advocate for vector eradication through a phasedconditional, area-wide and sustained approach, through coordinated action between affected countries and joint planning and programming at national, regional and sub regional levels. The campaign also promotes the integration of appropriate technologies based on sound policy and strategy development and high quality baseline data, and advocates for a participatory approach and for comprehensive monitoring and evaluation.Countries currently engaged in active programmes include Zimbabwe, Zambia, Senegal, Ethiopia, Nigeria, Ghana, Kenya and Burkina Faso. Progress has been made in all participating countries, including the eradication of tsetse flies in part of the national territories.Challenges encountered include unclear longterm political commitment and funding; weak regional mechanisms for joint planning and programming; weak monitoring and evaluation systems; limited number of management structures with dedicated fulltime staff across in affected areas; inconsistent implementation of critical programme components at national level; and inadequate peer review mechanisms for national programmes. From a strategic point of view, there is limited international consensus on appropriate control strategies and a debate on the relative merits of eradication vs. suppression, containment or prevention of the disease, and a lack of internationally recognized standards. A further important challenge is that tsetse and trypanosomiasis are an African problem with no threat to other continents, which means that although it is recognized as a problem, it is not considered a priority for international organisations.In the Q&A session the environmental impact of the large-scale application of insecticides on non-target species, which is not fully understood and quantified, was raised by a participant. Another impact is the effect of the disease on tourism -an important generator of revenue in several affected countries -, which represents a significant economic burden for many communities, and remains largely an unrecognised problem. The disease can also lead to potentially explosive social conflicts, especially between pastoralist and settled communities, due to the spread of infection and its consequences on farming areas.The purpose of the exercise was to capture the scope, and instances, of the burden of bovine trypanosomiasis, providing insights and stories of different stakeholder groups: pastoralists, smallholder farmers, and large livestock and dairy farmers.Nomadic pastoralism, developed originally as a successful adaptation to arid and semiarid conditions, is central to the economy and culture of many African societies, and is characterised by spatial mobility and a subsistence economy mainly dependent on livestock. Husbandry of livestock occurs in 'natural' pasture lands (although pastoralism has had a big impact shaping the continent's ecosystems), and domestic animals are not only of great economic importance but also play an important role in social exchanges and rituals. Livestock is also central for many smallholder non-nomadic farmers, and critical for good farm productivity.an economic perspective, trypanosomiasis reduces the trading value of livestock and the productivity of dairy animals, especially since the most productive breeds are also the most susceptible to the disease. Therefore, farmers tend to select less productive but more tolerant breeds. And since the milk is often the property of women, they lose one of the few economic assets they are entitled to control, which also has direct implications on the nutritional status of the household nutritional and health status, especially those of children. The economic burden of disease is furthermore transgenerational, since livestock not only plays a key role as a financial buffer in moments of need for a household, but is also central to many social interactions, such as an important part of dowries. The family heritage is often affected, and the implications can be fundamental: for example, children of families with diseased cattle may not be able to get married. Trypanosomiasis affects tourism as well, an important economic activity for many parts of Africa, not only directly since tourists tend to avoid infected areas, but potentially also indirectly due to the effect of the disease on wild animal populations.The eradication of trypanosomiasis will also result in improved animal welfare, since available drugs have important side effects and currently many infected animals are either not treated or treated ineffectively.Trypanosomiasis exacerbates social conflicts between pastoralists and farmers. These are sometimes of violent nature, and are due to competition for land use, disruption of agricultural land, and increasing urbanization. These problems are exacerbated when nomadic livestock are infected with trypanosomes and hence sources of infection to farm animals.Challenges in controlling trypanosomiasis include poor access to extension services for pastoralists communities, and the fact that the drugs to treat the disease are beyond the economic reach of many pastoralist households. This problem is aggravated by the high incidence of poor quality, ineffective and fake drugs in the market. Control methods relying on the use of insecticides to reduce tsetse populations rely on the longterm commitment and provision of funds by governments.The ecological and health impact of insecticide use is poorly characterised at many levels. These include development of resistance in flies, adverse effects on target species and on water and soil quality, and threats to human health since treated animals and their products (especially milk) are consumed by humans. In addition, trypanosomiasis also negatively affects patterns of land use, leading to overgrazing of disease-free pastures and to active avoidance of areas known to hold diseased animals.In situations where tsetse populations have been eradicated from an area, very large increases in farming productivity have been recorded. Since farmers are constantly trying to use animals, the moment an area is freed from trypanosomiasis the effect on the economy is transformative. It is important to address different options for eradication, their relative costs and merits, and consider cultural factors that may shape the acceptance or rejection of specific interventions. The risk of disease reemergence and how it would be handled also needs to be considered.Trypanosomiasis is one of the most significant constraints to cattle production in Africa. The disease directly affects livestock productivity (meat and milk production), and indirectly lowers crop productivity as cattle play a crucial role as farm labour, which means that in the absence of livestock resource-poor farmers are dependent on the heavy work of hand tillage. Cattle also contribute manure to agricultural land, important since the levels of use of chemical fertilisers in Africa are the lowest in the world.A study mapping the benefits of eradicating trypanosomiasis in the Horn of Africa estimated that benefits per square km would be up to US$ 12,500 over a 20-year period in high potential areas where the disease's impact and costs are highest 2 . These areas include mixed farming, high-oxen-use agricultural zones; fertile agricultural land; and dairy production zones. In addition, benefits would spill out the trypanosomiasis affected zones due to movement of cattle outside tsetse areas. Existing measures for controlling trypanosomiasis include the use of insecticides to control tsetse populations, a measure that is expensive; has important environmental effects which are not fully quantified; and requires sustained interventions over time to be effective, (so they rely on long-term political commitment and allocation of funding). Efforts to develop a vaccine against the parasites have so far yielded no positive outcomes due to the mutability of the pathogen; and drugs to treat the disease are expensive; not always available to farmers; and have important side effects.The African N'Dama cattle breed, native to West Africa, is tolerant of infection with T. congolense, remaining healthy and productive despite harbouring parasites. However, their small size and temperament make them unsuited for draught purposes.Development of trypanotolerant breeds that are better adapted to the diverse needs of African farmers would substantially improve productivity in the whole agricultural system.A study to determine the genetic determinants of trypanotolerance in N'Dama cattle was carried out with the aim of introgressing 4 this characteristic into Boran breeds. Ten major candidate quantitative trait loci (QTLs 5 ) involved in trypanotolerance in cattle were genetically mapped on the progeny of a cross between Boran and N'Dama cattle. However, each locus is responsible only for a small proportion of the total variance. Comparative gene network analysis is ongoing to identify the role individual genes in the pathway, and to determine how they interact for controlling tolerance.The fact that trypanosome tolerance is not controlled by a single or few major genes makes it very difficult to improve target breeds by conventional breeding. Not only it is necessary to select for the presence of all the key loci in the progeny of breeding crosses, but also to remove undesirable genes and characteristics from the N'Dama breed, such as low milk production. This would require a very large number of backcrosses to the Boran parent. This wouldTransgenesis (also known as genetic modification or GM) refers to the process of introducing a gene or genes into the genome of an organism with the purpose of enabling it to acquire (or 'express') a new characteristic or trait. An important tool in the study of basic biological processes, for example, is to visualize in live tissues the activity of specific genes and proteins by tagging them with a fluorescent protein derived from jellyfish. This allows us to determine 'normal' activity during growth and development, and also to identify how deviation from this pattern may be associated with disease.In addition to being a very important research tool, transgenesis has many practical applications. In agriculture, it can be used to develop plant and crop varieties with improved resistance to pests and diseases; enhanced tolerance to adverse environmental conditions such as drought, salinity and heat (which are increasingly important constraints to production); increased nutritional content; and ability to tolerate herbicides. Transgenesis is also being used for developing animal breeds with improved disease resistance and enhanced growth rates. And in a non-controversial application of the technology, transgenesis is used for the development of cheap, highquality human medications, mostly in bacterial cells. Over 100 drugs are produced via genetic modification, including insulin. Success stories of transgenesis in agriculture include the development of insect-resistance Bt crop varieties: maize and cotton have been grown commercially now for about two decades, while cowpea and aubergine are in the last stages of regulatory approval for commercial release. Bt crops derive their name from the soil bacterium Bacillus thuringiensis, which produces proteins toxic only to the target pest insects but not to mammals, birds and other insect species. Rainbow papaya, another success story, was engineered to resist the Papaya ringspot virus (PRSV), and has been successfully released in Hawaii. It is also grown in China, and exported to Japan. As of 2014, transgenic crops were grown, imported or tested in field trials in 70 countries. And it is estimated that 179.7 million hectares of GM crops were planted in 2015 6 , a testimony of the importance of the technology in the agricultural sector.The use of transgenesis is however not limited to crops: the first GM animal, AquaBounty Salmon, was approved for release in the USA in 2015, although ongoing debate over labelling requirements is impeding commercialization.The genetic modification of animals for the production of medicinal drugs is less controversial. The first drug produced by GM animals is ATryn, the commercial name of an anticoagulant medicine manufactured in the USA. It is made from the milk of goats that have been genetically modified to produce human antithrombin, a plasma protein used to treat a hereditary disease. One GM goat can produce as much high quality protein in a year as the quantity yielded by 90,000 blood donations. Jayne Raper, Principal Investigator Mzima Cow Project, New York University School of Medicine Domestic animal trypanosomes are mainly confined to the African continent and to South America, and they are transmitted to humans by biting insects, tsetse flies and through sexual intercourse. Virulent trypanosomes evade the response of the mammalian host system by rapidly changing their surface proteins, a property called antigenic variation. Immunity to trypanosomes is conferred by a protein complex termed the Trypanosome Lytic Factor (TLF), which contains the Apolipoprotein L-I (APOLI), a pore forming protein specific to primates. APOLI circulates in the blood serum as part of High-Density Lipoprotein (HDL) complexes called Trypanosome Lytic Factors: the \"good\" cholesterol of blood.The TLF is ingested by trypanosomes, and the parasite is killed as the result of the pores that APOLI generates in its membranes. APOLI proteins from different primate species differ in their sequence and in their resistance to different trypanosomes parasites, and only the baboon form of the protein is able to confer complete immunity to all parasites.Although mice lack innate immunity to trypanosomes, transgenic mice for a synthetic form of TLF are fully resistant to the parasites. Cattle species also have genes similar to APOLI, but do not produce the 'good cholesterol'. Efforts are now underway to establishing whether the presence of synthetic TFL in cows would also confer innate immunity to trypanosomes. The first step was to develop a cloned bull, named Tumaini, a healthy and fertile animal. Subsequent steps will require the development of transgenic animals and studies to ascertain the impact on immunity of the synthetic APOLI protein. If successful, this approach may significantly reduce the impact of the disease in the continent to both humans and livestock, and remove human infective parasite reservoirs, a step which is essential for eradicating the disease. In the Q&A session it was explained that the technology used to generate trypanosome resistant cows will be GM and not gene editing, since the differences between the native cow APOLI gene and the synthetic version conferring resistance are too numerous for targeted modifications. Once a 'GM cow' (which really will be a bull) is developed and the technology proven to work, the trait will be disseminated by artificial insemination. Since the gene is dominant, the presence of a single copy will be enough to confer immunity in GM animals. It will then become very important to develop other transgenic breeds to produce founder animals to cater for the variety of livestock needed in different African cattle producing areas, and to prevent a loss of genetic diversity in the sector.Participants agreed that it is difficult to predict how regulatory approaches and public opinion to GM may change in coming years. While GM salmon has been granted approval for commercialisation, the technology may not be adopted for other reasons. These include increased public resistance to the technology because an animal is concerned as opposed to a crop, and market considerations and competing economic agendas by stakeholders. On the other hand, the pressing needs of African livestock holders, and the key impact that the technology may have on the development of the continent may provide an impetus to leapfrog current regulatory burdens to GM technology. Other factors that may cause a shift in opinion towards GM are the spread of Africa swine fever, which threatens production in Eastern European countries, and the spread of vector borne diseases, for example, the Zika virus.In terms of communication priorities, it will be very important for the project to convey early on the fact that the gene used to develop transgenic cows is a synthetic copy, partly generated using sequence information from baboons, but is not a baboon gene. Genome editing is the deliberate alteration of a selected DNA sequence in a cell using site-specific DNA nucleases, a technology described as revolutionary in both medicine and agriculture. In gene editing, site-specific double stranded breaks are generated by engineered nucleases 7 , which activates the cell's own repair system resulting in small deletions or insertions, due to imperfections in repair. When exogenous DNA is simultaneously introduced in cells, it can support the repair process at the target site and enable a predetermined exchange of single or multiple nucleotides, in a process called targeted mutagenesis.Gene drive, on the other hand, is a process of biased inheritance that allows a gene to be transmitted from parent to offspring increasing in frequency in a population over multiple generations. This technology can be used, for example, to spread a gene in mosquito populations that confers resistance to infection by the malaria parasite Plasmodium falciparum. The technology could be an important tool for the eradication of malaria, a disease transmitted by mosquitoes endemic in more that 100 countries and which affects about half of the world's population. Despite ongoing control efforts, malaria is still the most important parasitic infectious disease globally. According to the World Health Organisation (WHO), in 2015 there were about 212 million malaria cases and an estimated 429,000 7 A nuclease is an enzyme (a protein that catalyses a chemical reaction) that cuts the strands of DNA or RNA. Sometimes nucleases are referred to as 'molecular scissors'. malaria deaths. While there is a pledge to eradicate the disease, it is also acknowledged that this goal is unattainable with current control tools. Gene drive technology has potential for the control of other important insect borne diseases, such as dengue, Zika virus and chikungunya.Progress to date in the development of GM mosquitoes includes the sequencing of the genomes of two species, and the identification of sex, tissue and developmental stage specific DNA control sequences. In addition, genetic modification protocols have been developed for all the major mosquito genera.A number of regulatory frameworks for testing genetically modified mosquitoes have been developed, including a Guideline Framework by the WHO and the Foundation for National Institute of Health; and a protocol for the environmental assessments of all genetically modified organisms by the European Safety Authority. However, a weak regulatory framework in Africa risks impeding the use of this technology in the continent.To strengthen the regulatory capacity of African countries, in particular Burkina Faso, Mali and Uganda, NEPAD is engaged in the three-year Target Malaria intervention with the following objectives:  Assess the capacity and readiness of Sub-Sahara African countries to use gene drive technology in fighting malaria  Assist to develop adequate policy at the national, regional and continental levels that will support the adoption of the technology  Build the required regulatory capacity at national, regional and continental levels  Leverage the political will in Africa to embrace the technology  Raise public awareness about the potential benefits of gene drive Following the approval granted early in 2016 by the Burkina Faso Biosafety Agency to start contained experiments with transgenic mosquitoes, the Target Malaria project is close to submitting an application for contained use of transgenic mosquitoes in Mali.Theory of Change is a 'critical, multistakeholder exploration of intentions, interests, power and gender relations, in order to contribute to social justice, equality and sustainable development'. The key questions are: 'What change, for whom, why -and who says so?'. This analysis helps to identify opportunities to optimise the positive impact of a project or initiative.Theory of Change is an appropriate methodology to apply to the Mzima Cow project for a number of reasons:1. It is an established standard for projects of the CGIAR system (including ILRI), as well as for other international agencies and funders 2. Establish an implementation programme supporting the Mzima Cow initiative 3. Inform funding bids 4. Inform a stakeholder engagement strategy 5. Provide the basis for the programme monitoring, evaluation and learning 6. Help inform and assist regulatory authoritiesThe exercise aimed to address the following question: 'Who do we want to benefit?', and to identify key stakeholders in different contexts: pastoralists; smallholder farmers and large commercial livestock and dairy producers. Participants were instructed to rank stakeholders according to their 'proximity' to the beneficiaries; attribute a score according to their perceived importance in terms of risk, value and dependence (3 for very important, to 1 to less important); and reflect whether on balance their status or influence would be 'negative' or 'positive' with respect to Mzima Cow. The intended output of the discussions is to identify and map stakeholders and to identify common actors across contexts, who therefore need to be considered as key stakeholders.Critical stakeholders in pastoralists and farming communities identified during the discussions include village leaders and traditional chiefs, because of the respect they command and because of their role in advising on extension. For smallholder farmers and pastoralists, other members of the community, in particular respected individuals with high social standing, were identified as important stakeholders, setting example for either adoption or rejection of new technologies or solutions. Local cooperatives, responsible for buying and distributing milk and meat products, are also critical gatekeepers, and their positive attitude towards Mzima Cow will be defining for the successful deployment of the technology.Animal health professionals (veterinary doctors and inputs dealers) were also considered important stakeholders, and ones likely to have a negative attitude to the technology due to loss of revenue for treating sick animals. However, it was also pointed out that demand for other veterinary services may increase, such as the artificial insemination of cows (with transgenic sperm) and assisting with animal births.Stakeholders further removed from the key beneficiaries include politicians, important because they may either accept or reject the technology depending on how they perceive their chances of become elected. The degree of their influence is likely to be dependent on the local political context, for example, elected leaders tend to be more active and play a more important role before, rather than after, national elections. Another key stakeholder group, and also one that could play either a positive or negative role, is the media.In terms of industry, pharmaceutical companies producing trypanosome drugs are unlikely to oppose the new technology. However, since those drugs are low-volume, low profit margin products, the risk is that producers may cease production altogether if revenues drop even further because of reduced need for treatment. Biotech companies are likely to support the new technology. Animal research initiatives for developing countries and scientists working in these projects are expected to be positive towards this technology, as the project would raise awareness of the importance of livestock in developing countries, and potentially result in increased funding for the sector.NGOs were identified as important stakeholders in all contexts, and participants agreed their likely attitude to the Mzima Cow would depend on whether the NGO in question is an African organisation or from the USA or Europe. African NGOs, while having a focus on environmental considerations, are in general also mindful of how people may be socially and economically affected by a specific problem (and for example, they also promote access to healthcare). Foreign environmental NGOs from industrialised countries, on the other hand, are less familiar with the human impact of animal and crop diseases in developing countries, and therefore likely to disregard social and economic considerations of possible course of actions and focus solely on the environment (minus the people in the environment).Participants agreed it is important to develop a communication strategy with clear messages on the expected benefits and possible risks of the project. How these messages are delivered is likely to influence whether 'middle ground' NGOs; politicians and media professionals develops a positive or a negative attitude towards Mzima Cow, and therefore these groups are all key stakeholder for the project. However, it was also agreed that negative activism from some groups is to be expected, and hence it is important to prepare for this. For example, NGOs identified to be completely negative towards all the applications of GM may not be a suitable target for communication efforts.The impact of the project time scale on the development of a stakeholder engagement plan was also discussed. It is estimated that a GM calf will be available, at the earliest, in two years. Commercial deployment of trypanosome resistant cows, of different breeds, is therefore at least 10-15 years away, and it will require overcoming a series of scientific and regulatory hurdles. However, it was agreed that it is important to engage with stakeholders at very early stages of the project, to inform and guide the development of a regulatory framework that both safeguards human health and the environment, while allowing the deployment of the technology in such a way that maximises positive impacts.In summary, it is critical to develop very early on a communication strategy that balances the need for caution related to the long project timeline with the requirement to be open and transparent to all stakeholders, while also allaying unfounded fears and misconceptions. It is also important for this strategy to be flexible and dynamic, since both the regulatory and the disease environments may change during the duration of the project.Bernie Jones, Project Co-Leader, G4ASOThe Genetics for Africa -Strategies & Opportunities (G4ASO) planning grant was developed in in response to the feedback received to a three-year project that focused on communication and dialog activities crop genetic improvement to improve the uptake of indigenous research for increased agricultural productivity: Biosciences for Farming in Africa (B4FA). B4FA trained 160 journalists from four Sub-Saharan African countries: Ghana, Nigeria, Tanzania and Uganda, and established a lively network of media and research professionals which led to the publication of over 1800 media pieces. B4FA also drew attention to the fact that despite the richness in indigenous research projects addressing important national priorities, little of this research is generally known to the general public or even to members of the scientific community working in other fields or outside the country.B4FA highlighted the importance of genetics research for achieving key developmental goals in African countries. However, participants remarked that keeping the focus solely on plant genetics was artificial, since genetic research on animal and insects is also critical for increasing the productivity and profitability of agricultural systems. In addition, human genetics research is very important not only for addressing major health challenges specific to Africa, but also for deepening understanding of the evolution of mankind, since the human species originated in this continent. Increasing the visibility of the range of research activities in the continent would facilitate streamlining of priorities, reduce duplication of efforts, encourage collaborations and help to prioritise national and international funding for increased impact. Demand for increased communication of genetics research should furthermore not be limited to the original four target countries.A follow-on initiative on communication and outreach activities focused on genetics in Sub-Sahara Africa would therefore have three main objectives: 1) Cover genetic research more widely, including in animals and humans; 2) Promote public outreach in more African countries; 3) Uncover and celebrate African research and researchers.G4ASO aimed to answer three key questions: In terms of animal genetic research, this field is particularly key in Africa for enhancing nutrition, health and livelihoods, and the continent is an invaluable \"world resource\" for animal genetic diversity. In addition, there is an important interplay with plant genetics and human genetics/health. Regulatory schemes are however untested and designed for plants rather than animals. Public engagement and communication are critical since some areas of research are potentially very beneficial but also require assessing ethical considerations and fears. Therefore, develop public trust in animal biotechnology should be a key objective. From the point of view of G4ASO, the additional potential of the Mzima Cow workshop is to address the following questions: Is the attitude towards crop biotech going to be repeated for animals?  How will people react/respond to biotech animals?  Will the same degree of activism (as in crops) be present?  How will regulators see the issue?  Are current regulations and frameworks sufficient and/or appropriate?  Are there differences between attitudes to GM cattle vs eg GM mosquitos or chicken?  What will be the differences in attitudes across different countries, religions, social groups etc?Diran Makinde, Senior Advisor, NEPAD Industrialization, Science, Technology and Innovation HubThe Africa Union Agenda 2063 is a strategic framework for the socio-economic transformation of the continent over the next 50 years. It builds on, and seeks to accelerate the implementation of past and existing continental initiatives for growth and sustainable development. It has been developed through a consultative process with the African Citizenry. The choice of a 50year timeframe has a symbolic significance as it marks the 50th Anniversary of the Organisation of African Unity. It responds to the need to take stock of its achievements and set its long-term vision and goals. In operational terms, the Agenda 2063 is a rolling plan with short (10 years), medium (10-25 years) and long-term (25-50 years) timeframes.Africa 2063 sets seven aspirations: Crop Improvement Projects using GM in Africa comprise the development of insect resistant maize and cowpea varieties: improvement of nitrogen use efficiency and salt tolerance in rice; development of virus resistant cassava, and of nutritionally enhanced crops (cassava, banana, sorghum). GM technologies (transgenic mosquitoes) are also being deployed to combat malaria; and to develop a GM entomopathogenic fungus 8 .In terms of the current burden of trypanosomiasis, a priority should be to map countries with greatest burden of disease, and determine whether they appropriate regulatory frameworks are in place or being developed.Communicating scientific advances to the wider community is critically important for maximising the benefits of science and 8 An entomopathogenic fungus is a fungus that can act as a parasite of insects and kills or seriously disables them. research, especially for research projects with potential to be controversial or to generate public concerns.There are three key principles for communicating controversial topics:1. Build bridges: Listen to people's concerns; non-specialists have a right to be worried, especially concerning new advances that could significantly alter the status quo.Promote thoughtful conversations and responses to advances in animal genetics.2. Build trust: Share your values and concerns, and provide information that is clear and helpful. Underscore that the values of the project are aligned with those of your audience.3. Build a vision: Be bold. Africa is a big continent with big energy, resources and potential as well as challenges.Projects should map, and regularly update, their 'boundary partners' to determine which partners could be most helpful and which most damaging to the project. Develop different communication formats to suit different audiences. Avoid jargon. Establish a consistent coherent communications record. Marry facts and figures with stories and anecdotes.Keep your audience focused on the size of the problem that the research is addressing.Emphasise that the data and results obtained from the research will be open to all. Establish that safety is a top priority of your project and describe the measures in place to ensure that safety. Emphasize that your project is profoundly international and longterm in nature. The purpose of the exercise was to begin to understand the potential impact of trypanosome resistant cattle in different contexts: pastoralists, smallholder farmers and intensive production systems. Participants were requested to also consider related impacts, which in turn may generate other consequences or ripple effects that may not be initially apparent, and to discuss whom or what may be affected.It was agreed that a likely consequence of the dissemination of trypanosome resistant cows for smallholder farmers and pastoralists would be an increase in livestock productivity, although it was also emphasised that the exact effect of the transgene on milk and meat production is currently not known and must be carefully assessed in impact and safety studies. For smallholder farmers, an increase in livestock productivity would also lead to an overall enhancement of farm productivity due to the availability of animal labour and improved soil fertility from manure.Increases in productivity would likely translate into improved nutrition and health of household, and -provided the enabling infrastructure is in place (such as access to markets, financial services, etc.)-, also into a higher household income level. This will depend of course depend on whether consumers are happy to buy and consume the milk and meat of GM cows. Nevertheless, participants remarked that increased household income does not necessarily correlate with increased family wellbeing.Improvement in available resources, for example, may result in people having more children, and therefore individuals in the household would not be better off than before. This may be a like outcome especially in rural areas in Africa where having more children is perceived to be beneficial for the family, and where politicians often encourage big families.It was also agreed that women would stand to benefit significantly from the technology because of the reduced required for human farm labour and the increased milk productivity in the absence of trypanosomiasis. Milk is traditionally one of the few assets controlled by women. However, it was remarked that existing social and cultural norms and household dynamics may be an obstacle for the realisation of these benefits. For example, there are many documented examples of women losing control of their traditional economic assets once these become more productive and profitable, because men take over. Increased earning capacity by women in the household also sometimes results in family conflicts and instability (the woman may become \"too independent\"), and in men relinquishing some of their financial responsibilities, such as the education of children. So, while women may have a higher purchasing power, this may not translate into a personal benefit. In addition, increased household income sometimes results in men acquiring new wives, resulting in loss of status of the first wife. Increased alcohol consumption by male adults of the household is also another possible negative outcome of increased family income. In pastoralist communities, the technology may also negatively affect the education of boys, since additional family members would be required to look after larger livestock herds.Cultural settings and beliefs usually alter very slowly, and generally this process starts from \"the inside\" under the influence of prominent members of the community championing change, rather than as response to outside pressures.Religious leaders and members of the community were identified as potentially in conflict with new technologies, since they may believe scientists are \"playing God\". However, since sacred texts promote the wellbeing of the community and the sharing of benefits among people, they may support Mzima Cow.Veterinary doctors would constitute a stakeholder group potentially negatively affected by the deployment of trypanosome resistant cows, due to a loss of income from selling drugs. They would also need to acquire a new knowledge base to deal and treat the new animals. On the other hand, there would also be a requirement for increased monitoring and for specific veterinary services, such as the artificial insemination of cows with transgenic semen.It will be important to marry the dissemination of the new technology with effective agricultural extension services to ensure proper breeding of the animals so as to maintain resistance to the disease in livestock populations. All stakeholders will require education in the new technology, including community members, vets, politicians and scientists.The environmental impacts of Mzima Cow were also discussed. It was agreed that the overall levels of GHG emissions (methane) would rise as (and if) the number of livestock increases, although emissions per kg of animal product (milk and meat) would decrease. Since healthy animals also require smaller levels of resources, this would constitute a beneficial environmental impact. However, larger livestock populations may have detrimental effects on the level of biodiversity of natural habitats pastures because of the effects of over-grazing. An increase number of livestock due to the removal of disease may also result in heightened conflicts for available resources, especially water, which is required for many other uses, such as crop production and household needs.In terms of the level of genetic diversity in cattle breeds, a transgenic approach could be more beneficial that conventional breeding techniques, since it relies on introducing a single, known gene into the genome of a target breed as opposed to the mixing of two different genomes by crossing two breeds. However, it will be very important to establish a large number of founder animals to maintain genetic diversity, to cater for the diverse conditions of the African continent and to prevent just one breed dominating the sector. This will be a challenging endeavour that will require careful planning and consideration.In terms of market impacts, the effects of the new technology will depend on a number of factors. Large-scale producers may be able to increase the efficiency of production faster, potentially driving prices down to the detriment of small scale-producers. However, this may not be the case if both types of producers cater for different markets: the large producers targeting national and international markets and small producers mostly selling their products in informal, local markets. How the process of change takes place will also be influential. Large-scale producers are generally better connected and more open to new technologies, and therefore also likely to be early adopters of the technology and benefit sooner. Smallscale producers on the contrary tend to live in more remote areas, be less aware of new technologies, and therefore likely to be late adopters, which means that the technology will initially be detrimental to them. However, since small-scale and resourcepoor farmers are also less able to treat sick animals, once they adopt the technology they stand to accrue the largest percentage benefits in terms of gain, and to benefit the most.The new technology is also likely to become very divisive topic in communities, with some individuals being very for and others totally against it.With respect to communicating the technology, on one hand there is a large, positive public relations story to be told, related to the elimination of the tsetse belt which would enable an agro-industrial revolution across a huge expanse of land. It is important however that this story is told properly. On the other hand, it is critical to prepare for worst-case scenarios, because they will happen, and to be aware that a single misplaced message may destroy the accumulated benefits long-term communication efforts. In particular, there is a significant risk of Mzima Cow being branded the \"baboon cow\" even if the gene introduced is synthetic. In the discussion on how to deal with this issue, it was suggested that it is very important to emphasise that the sequence of the synthetic gene was designed only with guidance from the sequence of the baboon gene, and to be fully transparent and truthful about the technology. Failure to do so will most certainly backfire. Addressing the situation proactively was also suggested as a possible course of action. Insulin to treat human diabetes, produced in GM pigs, is after all never called \"pig juice\". In summary, it was agreed it is important to be cautious into assuming too much about the impact of the technology. It will not provide a panacea, and there are a large number of complexities, cultural issues and hurdles associated with its deployment.In terms of the process of change, there are two different possible levels of engagement. While governments usually opt for national campaigns, which are outside-in and topdown interventions, change usually happens from the inside, starting from the activity of key influencers and gate-keepers, at the level of individual communities. These individuals must first buy into a new technology or idea before encouraging other members of the community to follow suit.The discussion also highlighted high level of complexity of all the topics discussed. It will be very important to carry out detailed baseline studies to collect data in different sectors, and to monitor how these change over the years. This data should be used to develop models and projections, which will be very important for the project and very valuable tools for communication and fundraising.Eric Okoree, CEO National Biosafety Authority, Ghana A competent, transparent and trusted biosafety system is an effective tool for the acceptance of modern biotechnology and new technologies. Trust is achieved by fostering public participation in decision making, which in turn relies on successful communication and active engagement of stakeholders. A number of African countries have established Biosafety Frameworks, such as South Africa, Kenya, Nigeria, Burkina Faso and Ghana, but most African countries lack appropriate regulations.In Ghana, the National Biosafety Authority (NBA) is has established the provision for the public to contribute to biosafety decision. The NBA is committed to publish in the Gazette a notice concerning an application for release into the environment for the general information of the public, within fourteen days of the submission of the application. On request, the Authority may avail to a person/s portions of an application which do not qualify as confidential information. And finally, the public is to be notified of all decisions made. In reaching a final decision on an application, the NBA takes into account the following: 1) information submitted by the applicant; the risk assessment report; relevant comments submitted by the public; and socio-economic considerations arising from the impact of a proposed activity and of the genetically modified organism on the environment.A problem in Ghana, as in other African countries engaged in biotechnology research or seeking to commercialise GM crops, is the influence of NGOs seeking to halt the research, production and sale of GM crops. As a result of pressure from (mostly international) NGOs, an Accra Fast Track High Court Order has halted the production and sale of Genetically Modified cowpeas and rice in Ghana. A civil society group has also sued the National Biosafety Committee in a bid to prevent the commercialisation of GM crops.Public engagement is a key part of the solution to the problem. Scientists need to communicate actively, improving their capacity to do so at all levels, and present their case and the importance of their research clearly and in a language accessible to all. Engaging the public at the conceptual stage of research is very important. Only if scientists communicate effectively, will modern biotechnology gain acceptance through transparent biosafety.African Parks is a non-profit conservation organisation that takes the complete responsibility for the rehabilitation and longterm management of national parks and protected areas, in partnership with governments and local communities. It manages 10 national parks and protected areas in seven countries covering six million hectares: Malawi, Zambia, Central African Republic, the Democratic Republic of Congo, the Republic of Congo, Rwanda and Chad. It employs the largest counter-poaching force in Africa, with a workforce of over 600 rangers. It aims to be the leading player in African conservation in terms of size and number of areas managed, and with respect to the diversity of ecosystems and species. It also seeks to improve the impact of conservation on local communities, and the level of governance of protected areas.Engaging communities is essential to counterbalance the negative economic impact of setting land aside and to build a constituency for conservation. A central belief of the organization is that the ecosystem services that natural parks generate and the biodiversity that they conserve are necessary for the wellbeing of humanity and therefore worth conserving. Since conservation is a choice of land use, and a choice that needs to be made by people living locally, it is critical to build a constituency at the level of communities for conservation, where people understand and are enabled to value and protect the benefits that can be provided by these parks through good management. In so doing, conservation is more likely to remain the land-use of choice.Each Park develops its own community engagement strategy, which is tailored to the individual needs of the park, with three key engagement objectives: The first transgenic organisms were developed in the 1980s: mouse in 1982, followed by tobacco (1983), fish (1983) and pig (1985). It was also during this decade that the need for the establishment of regulatory oversight of this technology was expressed. GM crops were first approved for and commercial release in the 1990, and in the following 20 years these have been planted in a cumulative area of 2 billion hectares (and 179.7 million hectares just in 2015). These figures make the technology very successful for agriculture. While the development of transgenic animal models has been crucially important for research and in the study of diseases, the commercialization of animal biotechnology products has lagged behind. GloFish (pet fishes that glow in the dark) have been in the market in the USA since 2000, and command a non-negligible share of the market. GM animals approved in the USA for the production of medicines include Atryn goat (approved in 2009) and Kamuna chickens (approved in 2015). Kamuna eggs contain lysosomal acid lipase, used to treat patients with Wolman disease, a rare condition but potentially lethal that affects 200,000 people in the USA alone. GM mosquitos for the control of malaria were release in Brazil in 2014, and the list is completed with the approval of AquAdvantage Salmon, in 2015 in the USA and 2016 in Canada, although commercialisation is still pending.However, the sector has also experienced lost opportunities. For livestock, efforts to improve disease resistance in animals and reduce the environmental footprint of agriculture have failed. Mastitis Resistant Cows, developed in 2000 to resist attack by one of the pathogens that causes infection of the cow's milk glands, has yet to be deployed, despite the fact that the disease causes a loss of USD 1.7 billion per year. EnviroPigs (made in Canada in 1999), are genetically modified with the capability to digest plant phosphorus more efficiently than conventional pigs. The technology is beneficial because it reduces the cost of feeding animals (it removes the need to supplement feed with phosphorous) and lowers the level of phosphorous in manure, which is a potential source of environmental pollution.Why use GM or genome editing techniques instead of developing new crop and animal varieties by conventional breeding? These technologies offer the possibility of introducing new characteristics or traits in target species which cannot be achieved through conventional breeding. In addition, they increase the precision and efficiency of introducing desirable traits; overcome low heritability of some traits; and eliminate problems due to linked traits 9 . The also 9 Genetic linkage refers to the tendency of genes or DNA segments that are physically close on the same chromosome to be inherited together because they are less likely to recombine during sexual reproduction. A consequence of linkage is that non-desirable genes 'linked' to the gene/s (or characteristic) of interest are also introduced in the progeny of breeding crosses. Removing them is difficult, sometimes not possible, and takes a long time. The GLP website provides information on human and agricultural genetic topics, and its resources include a weekly newsletter.the future, it will just happen somewhere else.\"The aim of the exercise is to identify key challenges and priorities for action, and to determine when in the product development pipeline these actions should take place (and by whom). The timescale considered is five years before product development; deployment of the new technology; and five years after the release of Mzima Cow.Two key challenges were identified as important for the entire timescale:1. The need to build trust and public acceptance of Mzima Cow by all stakeholders concerned. Actions and target groups would however vary according to the stage of the project and geographical location.2. The requirement of high quality studies and data on the scientific, economic and social impact of the technology, before and after deployment.A further key challenge, which will need to be addressed once a proof of concept is available, will be to:3. Devise a detailed plan for technology deployment ensuring that targeted beneficiaries have access to Mzima cow, and prepare for scale-up.These will be discussed in more detail below.From the very beginning of a project… Negative feedback from anti-GM modification is to be expected from the onset of the project, and the project needs to prepare to counteract it. A specific challenge of Mzima Cow will be that the transgene is designed based on information derived from the sequence of a primate gene. It is important that messages are carefully developed and managed, underlying potential benefits while also being open and transparent about the technology. Improved sustainability of livestock production and improved animal welfare should be emphasized as key objectives of the project, since these will be critical for gaining public acceptance.Communication targets need to be identified at all levels: small-scale and large-scale farmers; farming cooperatives; policy makers; government representatives; civil society and consumer groups. Engagement with groups hostile to the technology should also be considered. A stakeholder group specific to Africa are consumer groups who in addition to representing consumers also promote the wellbeing of resource-poor smallholder farmers and pastoralists, who often have no voice and limited possibilities for protecting their interests. It is very important that the debate does not create a sense of conflict between the interests of smallholder farmers and pastoralists and the interests of large-scale, industrial producers. Engaging smallholder groups, their cooperatives, and grass root organisations from the beginning is essential.Agricultural extension professionals are a key target group and should be engaged from the beginning and during all subsequent stages of the project. In addition to the fact that their buy-in of the technology is critical, members of this group will be able to advise on the current set-up and status of existing technology dissemination avenues; their likely pitfalls; and social and cultural sensitivity issues that may arise (such as sentimental attachment to local breeds). Their input is hence very important in formulating a deployment strategy.The media is also a crucial target group, and campaigns should encourage constructive dialogue, with focus on the potential benefits technology but also acknowledging likely risks and uncertainties.Effective communication is also central ensure the project is able to attract sufficient resources to proceed. It is important to reflect on the public acceptability of project partners, and be selective in establishing associations.Last but not least, regulators need to be an early focus of communication and engagement to ensure that target areas for the release of the technology have the regulatory framework in place to allow deployment. Since asynchronous approval in a region will generate many managerial problems due to the movement of livestock and animal products across national borders, the importance of the harmonisation of regulation should be a key message.Champion farmers and trailblazer individuals and communities are key communication targets at this stage of the project, and should become partners in pilot studies set to assess the economic and social impacts of Mzima Cow. Provided the potential benefits of the technology are proven and evident to them, members of this group will be the most powerful witnesses and supporters of the project because they will be talking from experience.Farming communities in countries where consumption of primates and bush meat is acceptable, such as West Africa, should also be targeted for pilot studies and or initial deployment. This will require early engagement with regulators and relevant ministries of the countries concerned.Agricultural extension agents should be engaged to determine the most suitable locations for pilot studies and the modality of initial deployment, which are likely to have a very significant impact on success.A communication tool that has been successful in increasing acceptance of controversial topics are 'town councils'. These are organised at the level of communities, and everybody is invited to apply for a ticket to participate and talk for a defined, short amount of time (usually 10-15 minutes) to expose their view to the rest of the participants. The condition for taking part is that nobody is allowed to interrupt anyone else, nor talk outside of their allocated slot. In addition, everybody needs to commit to attend the entire event, which generally lasts a few hours. This forum allows people with opposed views, and who may be affected by the technology in different ways, to share their viewpoint, current plights, and fears and/or hopes for the technology. This exchange may facilitate bridging gaps and opening opportunities for constructive dialogue in later on.It will be critical to establish and effective communication and training programme targeting agricultural extension agents, vets, farmers and pastoralists on how to deal with the new technology, to ensure sustainability on the ground. In particular, training on required breeding protocols (relying on artificial insemination) will be essential, to ensure the transgene is maintained in livestock populations. It will be important to make available a simple diagnostic kit to test for the presence of the transgene in cattle that can be used in the field with no requirements for specialised equipment, similar to the strip pregnancy test. A challenge will be to develop a test that can differentiate between animals homozygous for the transgene and heterozygous individuals.A serious risk to the project, especially in the early stages after deployment, is to prevent problems unrelated to the technology being attributed it, for example, the death of animals as a result of a different disease. Managing this risk will require close monitoring on the ground, and effective communication and information channels between different stakeholder groups.Scientific and socio-economic impact studies are important at all stages of the project, and should underpin communication and engagement communities in addition to guide product development and deployment. The most critical group that needs to be clearly convinced of the benefits of the technology are the members of the Mzima Cow research team. The efficacy of the transgene in providing long term resistance to trypanosomes to cattle needs to be studied and monitored over a number of years (and over a number of generations of cattle). The development of resistance to the transgene also needs to be carefully assessed. Monitoring and evaluation studies of the socio-economic and environmental impact of the technology will also be required, and it is important that these are long-term endeavours as opposed to short studies immediately after deployment.It is also essential to plan for increasing genetic diversity of Mzima Cow, as a small number of founder animals will result in a narrow gene pool that can then lead to health and productivity problems unrelated to the presence of the transgene or the disease. This will be a great challenge for the project, and one that will require many careful planning and significant level of resources.The challenges of scaling up deployment of Mzima Cow should not be underestimated. Overcoming them will require developing a comprehensive deployment plan; establishing key partnerships (e.g. with biotech companies to disseminate GM semen and government institutions); and sustained political will and support.The three broad key actions support and complement each other rather than parallel strands of work, and are all integral for the success of the project.In addition to recommending early dialogue with regulators on specific projects, it was felt that there was an opportunity for general awareness-building among the regulatory community of animal genetic research and its paradigms.Without knowing more about the general principles of animal genetic research (for example, timescales and costs of breeding and research, key differences between plant and animal genetics, risk scenarios) it was difficult for members of the regulatory community present to engage with the specifics of whether their own regulatory regime would be appropriate for animal regulation. However, based on some of the scientific presentations at the workshop, they felt that it was possible that they would face challenges in applying existing regulations to the products of animal biotechnology research.In addition to general awareness raising, participants felt there was a particular opportunity for regulators to work together to try to produce a harmonised, common approach, and that by starting soon they would have the opportunity to have an appropriate framework in place by the time applications began to be made in the future.It was also felt that the general approach discussed and recommended by the workshop was fully in keeping with the strategies of AU-NEPAD, the AU 2063 Agenda and other pan-African networks such as ABNE, and that they would endorse the approach.The workshop was felt to be uniquely valuable by participants, not just for the very unusual opportunity to engage with public genetic research early in its cycle, to build a community of awareness and interest around it that would ease its ultimate translation and uptake, but also for bringing together -for the first time -such a diverse range of stakeholders, from regulators to NGO's and research scientists, to share their experiences, insights and their own particular requirements and contributions in supporting the eventual successful release of the research outputs.With this in mind, and to begin to implement the recommendations, participants felt there was a need to repeat similar stakeholder engagement workshops regularly as the research project unfolded, possibly with an \"evolving\" panel of participants -beginning with a greater number of regulators and other who needed to be aware of the research early, and who wanted to coordinate their activities, and -as the research got closer to the release stage -a greater number of stakeholders from the general public and beneficiary side. ILRI for its part undertook to engage and cooperate with such stakeholder workshops in the future, if relevant support could be found.","tokenCount":"12750"} \ No newline at end of file diff --git a/data/part_3/9831493933.json b/data/part_3/9831493933.json new file mode 100644 index 0000000000000000000000000000000000000000..4ef1e632d241f7e425715c1290d5bece0f2c52a9 --- /dev/null +++ b/data/part_3/9831493933.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"bf75733487b42de949607bb6dd601cee","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/76e598d5-1d6c-4dbd-a978-8cb2f337c0bf/retrieve","id":"1412563178"},"keywords":[],"sieverID":"111f769c-4737-40dd-8dc7-4643b90fc887","pagecount":"4","content":"Social and natural sciences are often seen as uniquely able to solve certain problems, yet it is in the merging of the two that we will effectively reach impact at scale. Our agricultural systems are one of the main drivers now breaching our planetary boundaries trying to feed the over 8 billion people worldwide. However, the unsustainable use of resources has not yet resolved the problem of global malnutrition. Thus, we need to fully comprehend the interlinkages that exist between our actions and their effects on the environment and nutrition.Socio-ecological system frameworks can help us understand that our agricultural systems are both drivers and consequences of complex social and environmental challenges, such as climate change, migration, land degradation, and conflict. There is a complexity of social and environmental layers that we need to recognize in each of our contexts, acknowledging the diversity of ecosystems, institutions, and actors. For example, we need to consider the different geographies, intersectional identities of individuals and groups, historical developments, and the context' s mindsets, structures, and culture. Therefore, finding interdisciplinary approaches to understand the agricultural, social, economic, and environmental challenges in a way that recognizes that they are all causes, consequences, and drivers of each other is critical.From a social science standpoint, Agricultural Research for Development (AR4D) has recognized the existence of vulnerable groups that have not had the same access in terms of both production and consumption. Growing food insecurity gaps between and within countries mean that different groups of farmers and other relevant stakeholders do not yet have access to the knowledge and resources to produce food with the most updated knowledge about agricultural technologies and practices. At the same time, the distribution of food is concentrated in certain regions of the planet, generating waste instead of daily meals for all.Furthermore, there are different vulnerabilities in both of these vulnerable consumer and producer groups, including gender, age, nationality, socio-economic status, and other intersectional identity and spatial characteristics. However, current agricultural research has struggled to find how to respond effectively to these layers of vulnerabilities, considering that each person can have either many or none. Thus, we need to have better tools to not only comprehend the social exclusion challenges but also value diversity as part of our future resilient societies. We need to better understand these different layers of exclusion from theory to practice from sociological, economic, legal, anthropological, historical, and geographical approaches, amongst others, acknowledging the existing mindsets and the power dynamics that will come into play if we aim to indeed \"leave no one behind\" as the United Nations Sustainable Development Goals (SDGs) propose.From a natural or biophysical science perspective, there are many rules and functions that have been discovered in the world to comprehend our environment. It has built upon the knowledge, experiments, and learnings of a large set of scientists over time to improve the seeds we have, the machines we use, and the agricultural practices we employ. However, there is still much data that needs to be collected and analyzed that depends not only on the geographical characteristics of the place but also on the constant challenges affecting the environment at different scales, which requires complex interdisciplinary models that include learnings from chemistry, physical, math, and agronomy disciplines, amongst others. The interdependent relationships between the soil elements, climate conditions, water cycles, and geography in a given context can lead to very different agricultural production results.And so from a socio-ecological perspective, there may be decisions to make when putting theory into action. The Doughnut Economics model is a proposal of how to do so. It is a model that proposes that current economies should prioritize social guarantees within our planetary boundaries. It proposes that our actions should be regenerative and distributive to increase our global to local well-being. However, even when we would like our societies to be safe and just spaces, as we see in the Doughnut Economics sustainability model, it also shows us that all actions come with opportunity costs. Thus, we require data that can show us both the positive and negative effects before and after our actions, to make betterinformed decisions. The understanding of these social and environmental tradeoffs, as well as of the alternative pathways to reach our sustainability visions, will allow us to plan better to decide priority actions and to find safeguards for the potential negative effects. This may allow us to decrease the risks of the research and projects that we do. Moreover, it may allow us to be more transparent with other stakeholders about the directionality of the systems we want and how to work with them on this.In conclusion, there are social, economic, environmental, and socio-ecological agricultural challenges that require interdisciplinary work and collaboration between natural and social science disciplines. As we are living in a complex world, reaching the SDGs requires comprehensive responses and innovative solutions that build on each other' s learnings. The development and use of better scientific methodologies that can include different ways of addressing intersectional challenges in societies, as well as the multiple elements and flows of our socioecological systems, will allow us to have better and more proper responses that do not generate more negative impacts. Instead, it can allow us to choose from the alternatives and be more intentional about the transformational sustainability changes we want and the risks and opportunities of the decisions we make. For","tokenCount":"895"} \ No newline at end of file diff --git a/data/part_3/9843716019.json b/data/part_3/9843716019.json new file mode 100644 index 0000000000000000000000000000000000000000..ac2057e18590a206dd2074f53f9f3be18e4fa08b --- /dev/null +++ b/data/part_3/9843716019.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"517ad12e49e6d5d84d733c128242fab4","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/e8c21db4-be5a-4740-a02c-8d38e500c739/retrieve","id":"674217485"},"keywords":[],"sieverID":"59c9127b-710d-454b-9e80-e2818242e33f","pagecount":"16","content":"iriam Kabugo, agricultrice, préfère oublier les trois ans qu'elle a passés dans les camps de déplacés après avoir fui la zone ougandaise insurgée de Bundibugyo. À son retour chez elle, ce fut presque pire. \"Nos maisons étaient détruites et on avait volé les tôles des toits\", se souvient-elle. Grâce à un projet impliquant le Centre mondial d'agroforesterie (ICRAF), Miriam a pu planter des arbres fruitiers et de la vanille et recommencer à gagner sa vie. Au Rwanda, Thérèse Rwaramubuniye, veuve, est aussi rentrée au village après des années en tant que réfugiée. Réduite à la misère par le conflit de 1994-1996, elle se voyait sans avenir ; elle élève à présent des chèvres, soutenue par un projet financé par le Fonds international de développement agricole (FIDA). Un projet similaire a aidé Alfonse Rubayita, rapatrié au Rwanda, à reconstruire sa vie brisée ; il a reçu cinq lapins pour commencer et en a vendu 50 depuis.Comme des millions d'autres victimes de pays ACP en guerre, Thérèse, Miriam et Alfonse ont sauvé leur vie et perdu tout le reste. Pauvreté et insécurité alimentaire sont les conséquences inévitables de guerres qui charrient leur lot de réfugiés et de disettes. Selon la FAO, les conflits armés sont actuellement la cause principale de la faim dans le monde. Ils durent huit ans en moyennedeux fois plus qu'avant 1980 -et bien plus de gens sont décimés par la faim et les maladies que par les combats eux-mêmes.Outre les vies humaines, l'agriculture est l'une des victimes principales des guerres. Les combats forcent les paysans à quitter leurs terres, les bombes et les mines rendent dangereux le travail des champs et l'élevage. Le bétail et les cultures sont pillés ou saccagés, les services de base (transport, eau, intrants et services vétérinaires) interrompus. Souvent, les agronomes sont tués ou exilés et de précieux patrimoines génétiques disparaissent avec la destruction des cultures, des banques de semences et des stations de recherche agricole.En plus de causer d'énormes problèmes sociaux et humanitaires, les flux migratoires empêchent les générations plus jeunes de se former en agriculture. Les femmes sont souvent en première ligne, réduites à pourvoir aux besoins de leur famille dans des conditions extrêmes de pauvreté et d'insécurité. Beaucoup, victimes de viols en masse par les soldats, sont contaminées par le VIH/sida, une tragédie humaine qui a aussi un grave impact sur l'agriculture. L'environnement, enfin, paie un lourd tribut : déforestation, érosion, disparition de la faune sauvage et pollution de l'eau.Après conflit, les besoins vitaux comme un logement, de la nourriture et de l'eau ont la priorité. Mais pour un rétablissement et une paix durables, il faut des solutions durables permettant de rebâtir la vie rurale et de ramener les agriculteurs aux champs. \"Le redémarrage de l'agriculture est habituellement la première étape de la croissance économique et l'une des bases d'une paix solide\", affirme Ian Johnson, président du Groupe consultatif de recherche internationale sur l'agriculture (CGIAR), fer de lance de la conservation des cultivars locaux dans les zones de conflit à travers le monde. Beaucoup de cultivars sauvés ont des propriétés uniques telle une résistance innée à la sécheresse ou à la salinité.Cette démarche, qualifiée d'aide intelligente, contraste avec l'époque où les organismes d'aide déversaient des tonnes de semences étrangères en général peu adaptées aux conditions locales. En Côte d'Ivoire, en République démocratique du Congo (RDC), au Liberia, au Mozambique, au Rwanda et en Sierra Leone, un programme du Centre du riz pour l'Afrique réhabilite les semences de variétés de riz perdues, pillées ou brûlées lors des combats.Le CTA a lancé une série d'études pour évaluer les besoins en information dans six pays africains en situation d'après-guerre -Angola, Érythrée, Guinée-Bissau, Mozambique, Rwanda et Sierra Leone -afin de cibler l'aide aussi efficacement que possible dans le domaine de l'information et de la communication agricoles.En RDC, la guerre a aggravé l'épidémie de mosaïque du manioc, provoquant l'échec complet de la culture dans certaines zones. Cependant, des lots de semences saines et résistantes fournies par l'Institut international d'agriculture tropicale (IITA) sont distribués dans les zones reculées du pays. Cette initiative inclut la formation de milliers d'agriculteurs en techniques améliorées de culture, de protection des végétaux et de multiplication rapide. L'IITA fournit des machines à transformer le manioc à des groupements féminins et certains ont démarré une petite production commerciale de farine non fermentée pour le pain, les gâteaux et les tourtes.Même lorsque les pays parviennent à mettre fin aux conflits, la paix ne dure pas toujours. Presque la moitié des pays récemment pacifiés replongent dans la guerre dans les cinq ans qui suivent, un chiffre qui en dit long sur la nécessité de trouver des solutions durables. Certaines des initiatives après conflit les plus réussies consistent à approvisionner les agriculteurs en semences, outils et engrais. La reconstitution des troupeaux aide les éleveurs à produire du lait, du fromage et des peaux. D'autres appuis notables sont le rétablissement des services vétérinaires et de l'approvisionnement en eau potable, le déminage, la gestion de l'environnement et l'octroi de crédits aux petites entreprises. La FAO a réouvert, en Érythrée, 12 cliniques vétérinaires dans la zone de sécurité temporaire créée à la frontière de l'Éthiopie à la suite du conflit de 1998-2000. En 1998, un conflit ethnique a éclaté aux îles Salomon. Depuis le retour à la paix, le WorldFish Center aide les habitants à améliorer leurs moyens d'existence afin de réduire la pauvreté, source de frustration et de colère. Ce programme inclut la formation en méthodes écologiques de production de perles noires, palourdes géantes, crustacés ornementaux, coraux, concombres de mer et poissons.Au Mozambique, les mines cèdent la place à des arbres pour combattre la déforestation et procurer un revenu aux ruraux. Ce pays, théâtre d'un des plus longs conflits de l'histoire contemporaine, est l'un de ceux qui ont le mieux réussi à réhabiliter leur agriculture. Bien avant que la guerre ait vraiment pris fin, les agriculteurs y ont été encouragés à cultiver des légumes et autres plantes pour nourrir les réfugiés qui affluaient dans les villes.Une fois le conflit terminé, les soldats tout comme les réfugiés doivent se réinsérer socialement. Un programme ICRAF d'acclimatation des arbres aide les réfugiés et exsoldats de la RDC à se procurer un revenu. D'autres façons d'aider à long terme consistent à sécuriser la propriété foncière et à prévenir les litiges pour des ressources comme l'eau, la terre ou la forêt. Aux confrontations idéologiques entre grandes puissances se substituent de plus en plus des conflits armés dont les enjeux sont liés au contrôle des ressources naturelles. Pour la seule année 1995, par exemple, la question du contrôle de l'eau a déclenché 14 conflits internationaux.Les agences de développement et les ONG aident aussi le Soudan à se remettre sur pied. Les ravages y sont énormes, mais le potentiel agricole reste immense. Plus de 95 % des terres se prêtent à l'agriculture. Une initiative du Catholic Relief Services et de l'Institut international des ressources génétiques végétales approvisionne des agriculteurs du sud du pays en graines de sésame destiné à la culture commerciale. Au Darfour, la FAO a distribué des semences, des outils et des charrues à ânes aux ménages affectés par le conflit pour qu'ils puissent demeurer dans les zones rurales et parviennent le plus vite possible à l'autosuffisance.Selon Sara McHattie, coordinatrice de l'aide d'urgence au Nord-Darfour, \"pour un dixième de ce qui est dépensé en aide alimentaire en un mois, on peut acheter assez de semences pour aider le même nombre de personnes à produire leur propre nourriture\".Voir De très nombreux secteurs industriels ne pourraient se passer des phycocolloïdes ou hydrocolloïdes, des extraits d'algues au pouvoir épaississant, gélifiant et stabilisant irremplaçable. Capable de retenir jusqu'à 140 fois son propre volume d'eau, l'acide alginique, tiré d'algues brunes, est indispensable à l'industrie textile et alimentaire. Le pouvoir gélifiant des agars, issus d'algues rouges, est mis à profit dans toutes sortes de préparations industrielles telles que confiseries et sauces. Quant aux carraghénanes, eux aussi tirés d'algues rouges, leur principal débouché est la fabrication de desserts lactés. Dénuées de toxicité et pauvres en graisse, toutes ces substances sont également de plus en plus utilisées par les fabricants d'aliments allégés. À eux seuls, les secteurs textile et alimentaire absorbent en moyenne 80 % de la production mondiale de ces extraits et la demande ne cesse de croître.La simple récolte d'algues sauvages ne suffisant plus à satisfaire la demande, certains pays côtiers du Sud se sont lancés dans la culture, encouragés parfois par des industriels soucieux de sécuriser leur approvisionnement. Ainsi, en Afrique et dans les îles du Pacifique, des fermes aquacoles cultivent notamment des algues Eucheuma.Exigeante en main-d'oeuvre mais demandant peu d'investissements, l'algoculture est une activité adaptée aux petites exploitations. La technique consiste à fixer des boutures d'algues sur des cordages tendus entre des piquets ou sur des filets. Au bout de six semaines, les algues sont bonnes à récolter. Séchées naturellement au soleil, mais protégées du sable, elles peuvent se conserver deux ans.L'exemple de Kiribati, 15e producteur mondial d'algues rouges (3 900 t), montre que cette activité pourrait devenir une culture de rente intéressante pour les communautés côtières du Pacifique, en remplacement du coprah en perte de vitesse.Les Eucheuma de Kiribati sont acheminées par bateau en Norvège pour y être traitées. Grâce à leur production d'excellente qualité, les pêcheurs des atolls reconvertis à l'algoculture ont pu obtenir des industries des prix garantis. Leur reconversion a également eu des retombées positives sur les stocks de poisson et sur l'environnement côtier. Le Vanuatu cherche lui aussi à implanter des fermes d'algoculture, de même que Fidji et Tonga.Dans les autres régions ACP, l'Afrique du Sud est le seul pays à avoir une production significative d'algues brunes (30 000 t) tandis que la Tanzanie se place en tête pour les algues rouges (115 000 t), suivie de l'Afrique du Sud et de Madagascar avec respectivement 2 000 et 1 700 t. Selon la FAO, de bonnes perspectives s'offrent aussi à des pays comme le Mozambique, la Namibie ou le Sénégal.Actuellement simples fournisseurs de matière première, les pays côtiers ACP peuvent-ils passer à l'extraction et commercialiser eux-mêmes les extraits végétaux marins réclamés par l'industrie ? Selon les experts, l'extraction suppose des investissements hors de portée de la plupart des pays du Sud. En outre, ce secteur est très concentré : il n'existe que quelques usines dans le monde, toutes situées dans les pays industrialisés, à l'exception de Zanzibar en Tanzanie (voir aussi Spore 102, page 8).La culture d'algues alimentaires est une autre piste à explorer. Riches en minéraux (iode, calcium) et en vitamines (A, C et E), les algues figurent au menu des Asiatiques depuis des siècles. Certains pays ACP comme Tonga et la Namibie s'orientent vers la culture de \"légumes de la mer\" destinés au marché local. La production à plus grande échelle en vue de l'exportation n'est, en revanche, guère envisageable compte tenu de l'expérience des Asiatiques et de leur suprématie sur ce marché.Bien d'autres usages des algues existent et l'on est loin d'avoir épuisé toutes les possibilités. La farine d'algues est très utilisée dans l'alimentation animale. Les agriculteurs, surtout biologiques, connaissent le pouvoir fertilisant des algues et emploient des extraits liquides pour stimuler la croissance des plantes et les protéger des maladies. Enfin, leurs vertus antivirales laissent espérer la mise au point de médicaments notamment contre le VIH/sida.Voir Repères page 10Les algues marines sont devenues indispensables à la fabrication de quantité de produits alimentaires, textiles, cosmétiques ou autres. Une opportunité pour les communautés côtières des pays ACP dont certaines se sont déjà lancées dans l'algoculture.SPORE 120 la production mondiale de ces extraits et la demande ne cesse de croître. La simple récolte d'algues sauvages ne suffisant plus à satisfaire la demande, certains pays côtiers du Sud se sont lancés dans la culture, encouragés parfois par des industriels soucieux de sécuriser leur approvisionnement. Ainsi, en Afrique et dans les îles du Pacifique, des fermes aquacoles cultivent notamment des algues Eucheuma.Exigeante en main-d'oeuvre mais demandant peu d'investissements, l'algoculture est une activité adaptée aux petites exploitations. La technique consiste à fixer des boutures d'algues sur des cordages tendus entre des piquets ou sur des filets. Au bout de six semaines, les algues sont bonnes à récolter. Séchées naturellement au soleil, mais protégées du sable, elles peuvent se conserver deux ans.L'exemple de Kiribati, 15e producteur mondial d'algues rouges (3 900 t), montre que cette activité pourrait devenir une culture de rente intéressante pour les communautés côtières du Pacifique, en remplacement du coprah en perte de vitesse.Les Eucheuma de Kiribati sont acheminées par bateau en Norvège pour y être traitées. Grâce à leur production d'excellente qualité, les pêcheurs des atolls reconvertis à l'algoculture ont pu obtenir des industries des prix garantis. Leur reconversion a également eu Q uelle est la culture qui, en Afrique, produit deux fois plus que le maïs et trois fois plus que le mil et le sorgho ? Dont l'Afrique est championne avec plus de la moitié de la production mondiale et le Nigeria le premier producteur ? Dont la production a triplé sur le continent depuis cinquante ans ? Qui couvre un tiers des besoins alimentaires de sa population ? C'est le manioc. Durant ces dernières décennies, cette plante à tubercule a envahi sans bruit des milliers d'hectares et est devenue l'aliment de base de plus de 200 millions d'Africains, soit plus d'un quart de la population du continent.En 2004, selon les statistiques de la FAO, l'Afrique a produit 103 Mt de tubercules de manioc sur 18 millions d'hectares cultivés. On trouve désormais cet arbuste aux longues tiges et aux feuilles en ombelles aussi bien dans les pays sahéliens que dans les zones humides d'Afrique centrale et du golfe de Guinée, ses zones de prédilection. La production est très variable selon les régions, de 1,8 t/ha au Soudan, elle est en moyenne de 10,6 t au Nigeria (loin derrière les rendements atteints aux Caraïbes : 16,6 t à la Barbade). Traditionnelle dans des pays comme la République démocratique du Congo (RDC), longtemps premier producteur africain, la culture s'étend aujourd'hui en Afrique australe (Malawi, Zambie), aux dépens du maïs. Là où le VIH/sida tue de nombreux agriculteurs, les familles adoptent des cultures qui demandent moins de maind'oeuvre.Plusieurs autres raisons expliquent cette expansion rapide, en particulier dans les petites exploitations pauvres où le manioc est souvent cultivé associé à d'autres plantes. Le manioc a l'avantage d'être une plante peu exigeante qui produit même sur des sols pauvres, voire épuisés, où peu d'autres plantes poussent. Là où les terres se font rares, c'est aussi une sécurité alimentaire pour de nombreux villageois qui souffrent régulièrement de malnutrition. Ceux-ci sont plus assurés qu'avec les céréales d'avoir une source de calories abondantes et peu coûteuses. Enfin, pour les agriculteurs proches des villes, c'est une culture de rente appréciée qui a un important marché. En Afrique de l'Ouest, la diffusion par l'Institut international d'agriculture tropicale (IITA) de nouvelles variétés plus productives, résistantes à plusieurs maladies et à la sécheresse, ainsi que l'expansion rapide des villes ont aussi favorisé son développement.Revers de la médaille : lorsque cette culture devenue vitale pour de nombreuses régions est atteinte d'une maladie, c'est la famine. Ce fut le cas lorsque l'Ouganda a été touché par la mosaïque du manioc dans les années 1990. Actuellement, ce sont le Burundi, la RDC et le Rwanda qui sont frappés. Des programmes de distribution de variétés résistantes tentent de prendre de court l'épidémie.Le succès rapide de cette plante longtemps négligée par la recherche au profit des céréales et son rôle primordial dans l'alimentation de nombreuses régions expliquent le regain d'attention dont elle bénéficie aujourd'hui. En partenariat avec l'IITA, le NEPAD a ainsi lancé l'Initiative panafricaine sur le manioc (IPM) pour encourager les projets basés sur \"l'emploi du manioc comme culture de sécurité alimentaire et comme arme contre la pauvreté\".Toutefois, l'importance économique du manioc reste bien inférieure à son rôle prépondérant dans l'agriculture et l'alimentation. Une fois éliminé l'acide cyanhydrique des variétés amères, les feuilles comestibles riches en protéines et les tubercules se prêtent à une foule de préparations : cossettes, farine, semoule, pâte (gari, attiéké, foufou, chikwangue)… Selon l'IITA, près d'un tiers du manioc produit est consommé frais. Le reste doit rapidement être transformé, car les tubercules ne se conservent guère plus de deux jours dans les conditions habituelles de stockage. Or, selon l'Étude collaborative sur le manioc en Afrique (COSCA), menée dans les années 1990, seulement 20 % des villages producteurs sont accessibles aux véhicules. La plupart du temps, les agriculteurs doivent parcourir plus de 10 km pour apporter leurs lourdes récoltes au marché. C'est le cas pour sept villages sur dix en RDC, le second producteur d'Afrique.Pour pouvoir le conserver et le vendre, il faut donc transformer le manioc. C'est généralement le travail des femmes qui rouissent, râpent, sèchent les racines. Des manipulations pénibles et longues, surtout dans les zones rurales où elles ne sont pas mécanisées, et qui ne sont pas valorisées par les prix de vente souvent bas du produit final. Dans les villes, de petites entreprises équipées de machines se sont multipliées, particulièrement dans les pays du golfe de Guinée, permettant l'écoulement des productions des agriculteurs des environs. Selon la COSCA, l'utilisation d'une râpeuse mécanique réduit de moitié le travail et améliore sa rentabilité. En Afrique de l'Ouest, de nombreuses machines ont été mises au point et diffusées par l'IITA, mais leurÀ l'heure où le prix du pétrole ne cesse de grimper et où les réserves mondiales diminuent, l'attention se tourne vers l'éthanol obtenu par fermentation de l'amidon de manioc, une ressource particulièrement prometteuse. Comme tous les éthanols issus de produits agricoles, il peut remplacer l'essence à hauteur de 10 % à 25 % dans les véhicules sans changer de moteur, voire à 100 % si les moteurs sont adaptés.Le Brésil, premier producteur mondial de ces carburants de substitution ou biocarburants, en fabrique chaque année plus de 120 millions d'hectolitres tirés de la canne à sucre et du manioc. En Thaïlande et en Chine, plusieurs projets industriels de biocarburant à base de manioc sont en chantier. En Afrique, le Nigeria s'engage à son tour sur cette voie : début 2006, une loi devrait autoriser l'incorporation de 10 % de biocarburant dans l'essence, réduisant ainsi le coût de la facture pétrolière et la pollution. Dans un premier temps, il sera importé du Brésil, mais sera fabriqué localement dans les prochaines années.Vital pour la sécurité alimentaire, surtout en Afrique, le manioc dont la production ne cesse de croître reste peu valorisé économiquement. Pourtant, les marchés tant alimentaires qu'industriels, locaux et internationaux, sont importants pour ce tubercule en quête de compétitivité.• Manioc nombre reste insuffisant, surtout dans les villages, pour valoriser une filière par ailleurs peu organisée.Pourtant, il existe à la fois un marché, celui des zones urbaines toujours plus peuplées, et des technologies adéquates pour offrir aux consommateurs des produits à base de manioc faciles à utiliser. Les exemples viennent des Caraïbes et du Pacifique et surtout du Brésil, longtemps premier producteur mondial. Dans ces pays, le manioc se prête à de très nombreuses préparations souvent industrielles et vendues en magasin : chips, gâteaux, plats congelés. Au Brésil, une chaîne de boutiques vend du pain de manioc au fromage. La farine remplace aussi partiellement celle de blé dans le pain traditionnel. En 2002, le Congrès brésilien a même voté une loi stipulant que le pain devait contenir au moins 20 % de farine de manioc et les préparations pour pizza 40 %. L'objectif est de limiter les coûteuses importations de blé et de valoriser les cultures locales. On en est encore loin en Afrique, même si les boulangers nigérians sont désormais tenus d'incorporer 10 % de farine de manioc dans le pain (voir Spore 117).De nombreuses techniques mises au point en Amérique latine pourraient être utilisées en Afrique. Des chercheurs colombiens sont ainsi parvenus à porter la durée de conservation des racines fraîches à trois ou quatre semaines en les plongeant dans de la cire ou de la paraffine.Les aliments du bétail offrent aussi d'importants débouchés potentiels. En Afrique, moins de 2 % du manioc sert à nourrir les animaux contre 30 % en Amérique latine. Au Cameroun, selon des chercheurs, les éleveurs de volaille pourraient abaisser leurs coûts de production de 40 % en utilisant, pour partie, du manioc dans l'alimentation de leurs poulets. L'alimentation animale est d'ailleurs le principal débouché du manioc au niveau mondial. La Thaïlande exporte ainsi chaque année de 4 à 5 Mt principalement vers l'Union européenne.Enfin, les utilisations industrielles de ce tubercule sont nombreuses. Ainsi, l'amidon, le principal produit, est utilisé aussi bien dans l'industrie alimentaire et textile que dans l'industrie pharmaceutique et celle du caoutchouc. En Afrique, rares sont les entreprises qui en produisent et les besoins des marchés locaux ne sont même pas couverts. Avec la hausse du prix du pétrole, la fabrication d'éthanol à base de manioc, déjà largement utilisé au Brésil pour remplacer les additifs dans l'essence ou comme biocarburant, pourrait devenir un autre débouché intéressant.Les marchés du manioc sont donc multiples mais restent à conquérir par les agriculteurs africains dont certains, comme au Bénin où la production a considérablement augmenté, n'arrivent pas à écouler leurs récoltes. Pour produire à grande échelle des produits alimentaires ou industriels, un approvisionnement régulier et de qualité est essentiel. Or ce n'est pas le cas actuellement en Afrique où les tubercules sont vendus sans contrôle sur les marchés par une multitude de petits producteurs. C'est la première condition. La seconde est de produire à des coûts suffisamment attrayants pour le marché local, voire pour le marché international. L'amélioration des technologies de transformation s'avère indispensable pour faire baisser significativement les coûts de production tout en assurant des bénéfices suffisants aux producteurs comme aux transformateurs. Sur le marché mondial, l'amidon de manioc est concurrencé par celui de maïs beaucoup moins cher. En 2002, par exemple, l'amidon de maïs, importé d'Europe au Nigeria, était trois fois moins cher que l'amidon de manioc local.S'il existe actuellement de petits équipements de transformation assez bien adaptés, ils ne sont toutefois pas de taille suffisante pour réaliser des économies d'échelle importantes. En outre, la culture et la récolte restent entièrement manuelles. Selon la COSCA, une des raisons réside dans les grandes disparités de taille des plants de manioc et des racines et dans la difficulté de mécaniser sa culture dans ces conditions. D'importantes évolutions des technologies et de l'organisation des marchés sont donc indispensables pour rendre le manioc africain compétitif localement et sur le marché mondial. C'est à ces conditions que non seulement il jouera son rôle d'assurance alimentaire, mais deviendra aussi un moteur du développement rural. Un juste retour des choses pour les producteurs qui ont si largement étendu sa production.Entre 1996 et 2003, la production de manioc a doublé au Bénin, atteignant 3,9 Mt, et le rendement à l'hectare a augmenté de 25 %. Une performance liée, en grande partie, au projet gouvernemental \"Milliard pour le manioc\" qui a offert des crédits et proposé intrants et boutures de variétés améliorées aux producteurs pour les inciter à augmenter leur production. Mais rien n'avait été prévu, dans le même temps, pour la commercialisation.Désorganisée et manquant d'unités de transformation, la filière n'a pu absorber ces tonnes de manioc supplémentaires que les agriculteurs ont été contraints de brader ou n'ont même pas pu écouler. Quant aux exportations de cossettes en Europe pour l'alimentation du bétail, elles ont chuté à partir de 2002 quand les éleveurs se sont tournés vers les céréales devenues plus accessibles. Du coup, en 2004, la production a baissé de moitié, si bien que l'usine de fabrication d'éthanol montée entre-temps par un groupe chinois n'a pas trouvé de quoi s'approvisionner suffisamment. Aujourd'hui, les agriculteurs se disent prêts à relancer une nouvelle fois la production si on leur offre la possibilité d'écouler leur manioc.SPORE 120 ■ La création au Sénégal d'une filière de production et de commercialisation horticole en partenariat avec des opérateurs espagnols, des îles Canaries notamment, porte ses fruits : Greenmarket qui commercialise des fruits et légumes sur le marché européen a quitté l'Amérique latine pour le Sénégal, séduit par la qualité des approvisionnements sénégalais. À l'origine de ce succès, une longue tradition sénégalaise de jardinage et, depuis 1984, après la sécheresse, une volonté de mener une politique de développement de l'horticulture à l'instar du Kenya, champion africain de l'exportation de fruits et légumes. Photo: © G. RambaldiPhoto : © J. Verplanke ■ Les agriculteurs mauriciens peuvent obtenir par Short Message Service (SMS) sur leur téléphone portable les prix des légumes pratiqués sur les principaux marchés de l'île. Il leur suffit d'adresser un message au 789. En retour, ils reçoivent une liste numérotée de 1 à 6 sur laquelle ils sélectionnent le nom du marché dont les cours les intéressent. Ces informations sont actualisées chaque semaine par le Centre de recherche et de développement en agriculture (AREU) du ministère de l'Agriculture de l'île Maurice.■ Le Nigeria, le Soudan et le Tchad se sont engagés à mettre chacun en réserve l'équivalent d'une année de leur production de gomme arabique (environ 40 000 t au total).Ces stocks de sécurité serviront à approvisionner le marché international au cas où des évènements extérieurs perturberaient la récolte dans l'un ou l'autre de ces trois pays responsables de 95 % de la production mondiale. Les signataires de la déclaration de Khartoum veulent ainsi rassurer leurs clients industriels pour qui la sève d'acacia est un ingrédient indispensable dans la fabrication, entre autres, de sodas ou de cosmétiques.Ces deux dernières années, les prix mondiaux de la gomme d'exportation ont été multipliés par trois en raison du conflit au Darfour (voir Spore 114) et de grandes différences de production -de 100 à 1 000 g par arbre -selon les régions.La régulation des cours grâce à la création de banques de gomme permettra à celle-ci de mieux résister à la concurrence des produits de substitution, naturels ou de synthèse. L'objectif est de doubler la consommation mondiale de gomme naturelle dans les prochaines années. La FAO, la Banque mondiale, l'Association pour la promotion internationale de la gomme (AIPG) et le Réseau pour les gommes et résines naturelles en Afrique (NGARA) soutiennent cette initiative qui doit progressivement s'étendre à d'autres pays.Les producteurs auront le choix entre trois possibilités : vendre eux-mêmes directement leur récolte, la céder à la banque de gomme qui les paie sur-lechamp et la revend au moment opportun, ou la lui confier pour entreposage en attendant des cours meilleurs.Photo : © CIRAD-forêt ■ Le centre de formation rural de Manivovo, une ONG de Makira, l'une des îles Salomon, aide les petits agriculteurs à préserver leurs centaines de variétés bananières. Ce projet a permis de retrouver des espèces que l'on croyait disparues. Tous les Mélanésiens consomment la banane et la banane plantain, mais à Makira cette culture est une véritable institution. À tel point que ses habitants ont reçu le sobriquet de huki, du nom de leur mets favori.Comme Makira compte très peu de routes, la première collecte s'est faite en canot à moteur. Les radios locales ont demandé aux villageois de faire don de leurs surgeons traditionnels de banane pour la collection. Les étudiants ont été invités à apporter 10 surgeons de leur village au centre de formation, l'un des trois points de collecte de l'île. Après avoir appris comment utiliser les descripteurs scientifiques, ils ont enregistré le nom et la provenance des spécimens. Ils perçoivent une petite rémunération pour chaque variété ainsi décrite.À ce jour, 55 variétés sur 108 ont été décrites à l'aide de noms locaux tels que \"trois têtes\" et \"huit têtes\" (en fonction du nombre de rejets) ou \"cinq minutes\" (allusion au temps de cuisson).Cette opération a été lancée avec le soutien du Projet Kastom Garden des îles Salomon et le Réseau australien de sauvegarde des semences. ■ Encombrants et peu hygiéniques, les déchets de poisson peuvent être utilement transformés en farine et servir ainsi d'aliment pour les volailles ou d'engrais organique. À Joal, premier centre sénégalais de débarquement des produits de la pêche, les têtes, écailles, peaux et restes abandonnés par les pêcheurs sont recyclés et valorisés. La société sénégalaise Biojoal, première à se lancer sur ce créneau il y a une dizaine d'années, a fait depuis des émules et elle vend désormais sa provende et son engrais dans les pays voisins (Burkina Faso, Ghana, Guinée et Togo, entre autres).Le sac de 50 kg de cet engrais organique ne coûte que 3 750 FCFA (5,6 €) contre 6 500 (9,75 €) le sac d'engrais chimique.À ses débuts, Saliou Ndiaye, pionnier de cette industrie de transformation, était la risée des femmes à qui il achetait les déchets. Aujourd'hui, sa réussite est saluée par tous. En particulier par les responsables communaux qui ne savaient comment gérer ces montagnes de déchets, vecteurs de maladies. Joal ne mérite plus son surnom de \"cité des mouches\". L'Institut international de recherche sur le bétail (ILRI) a quantifié la valeur de la faune sauvage et expliqué qu'une telle offre doublerait les revenus des ménages pauvres et aiderait les familles à payer les frais de scolarité. S'appuyant sur ses recherches, l'ILRI a aussi démontré que le pâturage des animaux sauvages pouvait bénéficier au bétail des Masai, car il stimule la croissance d'une herbe de qualité.Les résultats probants du programme Kitengela suscitent l'intérêt d'autres communautés de la région confrontées aux mêmes problèmes. Pour Robin Reid, écologiste à l'ILRI, \"l'idée classique est que la meilleure façon de préserver la faune et la flore sauvages consiste à les isoler des humains, mais, dans le contexte de l'Afrique de l'Est, ce pourrait bien être faux\".■ Au Zimbabwe, une équipe de chercheurs locaux employés par la société Agri-Biotech a mis au point des plants de patates douces Born again (Renaissance) pour aider les petits agriculteurs à surmonter la pénurie alimentaire. Une parcelle de 30 m 2 de ces plants peut nourrir une famille de sept personnes pendant une année. Ces deux dernières années, 8 des 56 districts du pays ont été approvisionnés, au bénéfice de plus de 35 000 personnes.La plante a été baptisée \"Renaissance\", car les chercheurs ont trouvé une façon de la débarrasser d'un virus qui la ravageait. Suivant un protocole de culture de tissus sans modification génétique, ils pratiquent une véritable technique \"de pointe\", puisqu'ils découpent 0,25 mm du bout du bourgeon, qui est sain, et jettent le reste. Puis ils plantent ce fragment de bourgeon dans un tube à essai pendant neuf mois, jusqu'à l'obtention d'une plantule, saine elle aussi, et répètent le processus pour multiplier les plants. Ensuite, ils transplantent ces plants dans des serres tunnels en plastique et en prélèvent des boutures. Celles-ci sont achetées par des bailleurs tels que le Centre coopératif suédois qui a financé la fourniture de 3 000 plants de démarrage à 160 pépinières. L'éradication du virus n'est pas permanente et les agriculteurs doivent se réapprovisionner en matériel sain au bout de quelques années.• En bref■ La construction, grâce à un partenariat public-privé, du premier aéroport de fret agricole du Nigeria est en bonne voie. Il servira au transport des produits agricoles de la zone d'Ilishan-Remo, à 120 km de Lagos, dans le reste du pays et dans toute l'Afrique de l'Ouest, ce qui devrait profiter grandement aux agriculteurs et aux sociétés agroalimentaires. L'aéroport, situé au coeur d'une communauté agricole qui est l'un des greniers du pays, sera exclusivement réservé au transport de produits agricoles. Le site choisi est hautement stratégique, puisqu'il jouxte les zones de culture du cacao, du manioc et de l'igname et l'une des plus vastes forêts du pays.■ Starbucks, le géant américain du café, a ajouté à sa gamme de produits le café de Kigabah, cultivé sur les hautes terres de l'ouest de la Papouasie-Nouvelle-Guinée. Ce café pousse à 1 676 m d'altitude sur un sol autrefois marécageux et est nourri par des pluies abondantes et les riches nutriments du sol épais et noir. La communauté locale perçoit 10 % des profits.■ La Commission européenne publie un aide-mémoire destiné à tous les opérateurs européens ou de pays tiers désireux de vendre leurs denrées alimentaires sur le marché européen. Une page résume en termes simples ce que la réglementation entend par sécurité, responsabilité, traçabilité, transparence, situation d'urgence, prévention et coopération. Présent dans l'ouest et le sud du pays, ce réseau de microbanques rurales a changé en quelques années la vie de nombreux villages où il a des agences. Créé et parrainé par une banque commerciale privée, l'Afriland First Bank, il accorde aussi bien de petits crédits aux producteurs pour l'achat d'engrais, remboursables à la récolte, que des prêts plus importants aux commerçants. Son originalité est de prendre en compte les \"valeurs socioculturelles, religieuses et ancestrales\" locales pour rendre la banque plus proche des communautés. Ainsi, s'inspirant des méthodes traditionnelles de règlement des conflits par les anciens, l'organe dirigeant des MC2 comprend un conseil des sages placé au-dessus du conseil d'administration.La création et la gestion d'une mutuelle résultent d'un accord entre les paysans d'une localité, la banque et une ONG camerounaise, la Fondation pour un développement approprié de l'Afrique (ADAF). En favorisant la participation des paysans à la gestion bancaire, ce système est de nature à éviter des dérives comme celles observées au Rwanda où les coopératives d'épargne et de crédit (Coopec) se sont multipliées sans contrôle depuis les événements de 1994. Des hommes d'affaires les ont créées afin de disposer de liquidités, promettant monts et merveilles à leurs adhérents. Ces derniers, ignorant qu'ils ont un droit de regard sur la gestion des fonds qu'ils confient à ces structures, se plaignent à présent de ne pouvoir obtenir de prêts. La Banque nationale du Rwanda (BNR) a publié une liste de 118 centres agréés afin de tenter de limiter ces abus. Au Bénin, les deux premières CUMA ont été créées en 1997. Il en existe aujourd'hui 17 dans la seule région du Borgou et de l'Alibori, zone cotonnière au nord-est du pays, et les demandes de création vont croissant. Par rapport aux services classiques d'un prestataire privé, cette organisation assure une meilleure disponibilité du matériel et une plus grande qualité du travail. Elle favorise également l'accès au crédit bancaire.Pour que l'approvisionnement en équipements et leur maintenance soient mieux assurés, les CUMA du Borgou et de l'Alibori se sont regroupées en Union régionale. Un magasin de pièces détachées et un service de réparation, géré par un mécanicien spécialisé, ont été mis en place. Créée en 2003, cette union vise aussi à promouvoir la mécanisation de l'agriculture au Bénin.Photo : © Syfia International L 'intérêt croissant de l'industrie pour les algues en raison de leurs multiples utilisations, présentes et à venir, se traduit par une abondante et récente littérature, essentiellement en anglais.Pour faire le tour du sujet, commencez par le Guide to the seaweed industry, publié en 2003 par la FAO, dont les 118 pages sont accessibles en ligne gratuitement. Contrairement à ce que suggère son titre, ce guide ne se limite pas à l'industrie mais couvre toute la filière : de la culture à la transformation des végétaux marins. Du même auteur, l'ouvrage Prospects for seaweed production in developing countries présente les expériences d'algoculture, réussies ou non, en Afrique, en Asie, dans les îles du Pacifique et en Amérique latine et fait le tour des pays qui offrent les meilleures perspectives de production. Il est intégralement téléchargeable sur le site de la FAO.Sur le site bilingue (anglais/ français) de l'Institut de recherche pour l'exploitation de la mer (IFREMER), vous trouverez dans la section algues à la fois une synthèse des données mondiales et des renseignements sur les utilisations ainsi que de nombreux articles. L'IFREMER a édité plusieurs ouvrages de référence sur le sujet, mais seul Ces algues qui nous entourent est encore disponible.Si vous pouvez lire l'anglais, visitez aussi le site de Surialink, il en vaut la peine. Ne vous laissez pas rebuter par sa densité et l'abus de couleurs. Le métier de libraire exige de ceux qui l'exercent de solides connaissances (au moins savoir un peu de quoi les livres parlent), de la passion, surtout dans un contexte économique difficile, ainsi qu'un réel professionnalisme pour mener à bien son entreprise. Développé en collaboration étroite avec l'Association panafricaine des libraires (PABA), ce guide tonique et agréable à lire envisage le rôle du libraire dans les communautés urbaines et rurales des pays en développement. Très pratique, il guidera les premiers pas de ceux qui veulent réussir dans ce commerce de détail très particulier. L'ABC du métier est d'avoir un projet d'entreprise et de savoir non seulement planifier son activité, mais aussi gérer correctement ses stocks, c'est-à-dire trouver le juste équilibre entre avoir trop ou pas assez de livres en rayons. Et si l'affaire prospère, il faut savoir embaucher et gérer du personnel. Un chapitre invite également à réfléchir à d'autres formes de distribution du livre telles que le porte-à-porte, les clubs de lecture ou la vente dans la rue.En exergue sont présentés les cas de librairies qui ont réussi en Afrique francophone et anglophone. Ce guide intéressera également, par bien des aspects, les ONG et les universités qui éditent de bons livres, mais se trouvent désarmées quand vient le moment de les diffuser. Pour aider ces populations à \"reconstruire une agriculture meilleure dans ces régions\", l'ouvrage invite à redécouvrir les plantes qui peuvent y être cultivées : légumineuses alimentaires (haricot, petit pois, arachide, soja), plantes à tubercules et racines (patate douce, pomme de terre, manioc, igname, taro) et céréales (maïs, sorgho, riz, blé). Il présente les aspects botaniques de la plante, l'importance de sa culture, les programmes de recherche, les variétés pays par pays, les techniques culturales, les problèmes phytosanitaires jusqu'à la récolte, la conservation et l'utilisation. Photo : P. Nyabyenda■ \"Lorsque les services publics comme la distribution de l'eau et l'entretien de l'environnement sont mis entre les mains du secteur privé, la conséquence est en général la réorientation de ces services suivant une politique plus axée sur le profit.\" Conséquence directe, selon les Amis de la Terre : les populations sont les grandes perdantes de la privatisation, car des besoins vitaux ne sont plus couverts. À l'appui, le réseau écologiste présente 34 cas à travers le monde, où l'impact d'un transfert de gestion de l'État au privé s'est révélé négatif. L'exemple des forêts de Papouasie-Nouvelle-Guinée rappelle la difficulté d'entreprendre, d'innover et de rentabiliser une exploitation forestière sans abattre des arbres trop jeunes et tout en veillant au respect des lois, croyances et tabous locaux. La privatisation de l'eau au Ghana, au Nigeria ou encore au Togo soulève la difficulté de concilier gestion économique et accès aux ressources naturelles pour tous. Un livre qui intéressera les spécialistes de la biodiversité et les généticiens soucieux de redonner aux pratiques paysannes leur place dans la gestion des ressources génétiques. En période de crise alimentaire, la viande de brousse s'avère précieuse pour les populations. Celles-ci peuvent aussi tirer des revenus de l'élevage d'espèces sauvages qui ont atteint un haut degré de domestication. Cet élevage est encore peu pratiqué à l'exception de celui des petits animaux, par exemple l'aulacode. Dans les zones agropastorales, de grandes espèces telles que la girafe peuvent cohabiter avec le bétail. L'autruche et les petits ongulés peuvent être intégrés dans des élevages.Sur le plan de la faune, les auteurs distinguent les aires protégées et le terroir. Ils estiment que l'absence de moyens rend la protection des milieux naturels illusoire. Au niveau des terroirs, ils déplorent la mainmise de l'État sur la faune, ce qui prive les populations de ressources.La réflexion menée au fil des pages s'appuie sur des données et des expériences concrètes, illustrées d'une vingtaine de photos. Les femmes vivant dans les zones rurales consacrent en moyenne 13 heures par jour aux tâches domestiques, dont 60 % à des travaux pénibles comme la collecte du bois et de l'eau ou la mouture du mil. C'est autant de temps précieux perdu pour l'agriculture et d'autres activités rémunératrices, ce qui perpétue le cycle de la pauvreté. Un trio de publications -deux livres et un cédérom bilingueprésente cette thématique à travers les récits de femmes vivant dans différentes communautés sénégalaises. Elles parlent de manière éloquente de leurs épreuves et de leurs frustrations, mais décrivent aussi quelques-unes de leurs solutions et stratégies pour y faire face. Ainsi pourvues, les communautés de la région seront mieux à même de cultiver et de consommer les aliments dont elles ont vraiment besoin et de tirer des revenus des cultures et des arbres locaux. D e l'indépendance, en 1804, jusqu'aux années 1980, on a assisté en Haïti à une lutte entre la grande et la petite propriété. Il faut se rendre à l'évidence : seule la petite propriété paysanne a survécu et a pu nourrir la population ; c'est elle qui a façonné l'agriculture haïtienne. Mais cette entreprise a commencé à s'essouffler au début des années 1980, de façon très marquée en 1985, avec le début des troubles qui ont mené au départ de Jean-Claude Duvalier. Aujourd'hui, dans certains départements, la superficie moyenne d'une exploitation est de 0,32 ha.Entre 1985 et 1989, la part de l'agriculture haïtienne dans le produit intérieur brut (PIB) a baissé de 5 % par an et, de 1990 à aujourd'hui, la tendance n'a pas vraiment fléchi. L'agriculture représente actuellement 27 % du PIB et 7,4 % des exportations. Les rendements des principales cultures sont inférieurs à ceux obtenus par tous les pays de la région et Haïti importe quasiment tous les produits qu'elle consomme. Une des raisons de cette baisse continuelle du rendement des terres est l'érosion, qui provoque une perte de la fertilité des sols. Et le problème de l'érosion, en Haïti, c'est la misère, l'insécurité foncière et des méthodes agricoles inadéquates.L'agriculture telle qu'elle se pratique en Haïti se fait au détriment du capital-sol. Quand le paysan constate une baisse de fertilité dans la parcelle qu'il cultive, il va chercher d'autres terres, agricoles ou non. Cette quête se fait au détriment des ressources naturelles de notre pays. Toutes les terres boisées et les couvertures forestières diminuent à cause de l'avancée de l'agriculture et de la recherche du bois de chauffe.Des méthodes existent pour combattre efficacement l'érosion mais elles ne sont pas mises en oeuvre. Car, comme l'agriculture, la lutte contre l'érosion souffre d'un manque d'investissement et Haïti vit depuis presque deux ans sous un gouvernement de transition qui ne peut élaborer de plan à long terme.Si la lutte contre l'érosion s'inscrit dans le développement de l'agriculture de montagne en Haïti, c'est parce que 63 % des terres y sont montagneuses. La moitié de la population vit en zone de montagne. Une agriculture de montagne intégrée s'impose donc pour concilier protection de l'environnement et développement économique.Quelle est la quantité de sol perdue en Haïti ? Personne ne le sait. Lors de l'occupation américaine, entre 1915 et 1934, des parcelles de démonstration avaient été établies afin de quantifier le phénomène d'érosion particulièrement intense dans le pays. La FAO a fait de même dans les années 1970. Les spécialistes en sciences du sol ont établi que la nature met trente ans pour former une couche de terre arable de 25 mm, soit 11 t/ha, la limite pour que le sol demeure économiquement rentable. Or, en Haïti, ces pertes de sol vont parfois au-delà de 120 t/ha ! L'agriculture se pratique sur n'importe quel type de sol et sur n'importe quelle pente. Des pentes à 60 % sont labourées. Il faudrait arriver à une typologie : toutes les terres comprises entre 0 et 20 % de pente seraient cultivées, sans méthodes de conservation des sols. Les terres comprises entre 20 et 50 % le seraient aussi, mais avec des techniques de conservation des sols drastiques : canaux de contours, terrasses agricoles, cultures en couloir, haies vives, etc. Toutes les terres au-delà de 50 % seraient consacrées à l'arboriculture fruitière et à l'agroforesterie. Dans les plaines et sur les terres moins pentues, l'agroforesterie pratiquée sur le pourtour des parcelles permettrait de diversifier les sources de revenus des paysans.Avant, le café était produit abondamment en Haïti. Bien que la culture persiste, les paysans, victimes des cours mondiaux, l'ont remplacée par des cultures plus rentables comme les haricots et les ignames. Mais ces cultures sont aussi plus érosives. Les cultures fruitières existantes ont souffert de l'instabilité politique et du manque d'infrastructures routières : les fruits n'arrivaient pas à temps, même sur le marché intérieur.Soyons pragmatiques : sans recherche ni vulgarisation, sans aides, les paysans ne changeront pas leurs pratiques. Sans alternatives à leur proposer, toute tentative est vaine. Il faut donc des financements, un meilleur accès à la terre, ainsi qu'au crédit. C'est d'une sorte de subvention dont les paysans ont besoin. Elle est incontournable pour développer l'arboriculture fruitière ou l'agroforesterie. Augmenter l'accès à la terre pour les paysans sans leur donner un paquet technologique approprié est une demi-mesure. Nous avons besoin de leur permettre de s'approvisionner en intrants et outils agricoles, de diversifier leurs revenus en soutenant les activités para-agricoles et extra-agricoles comme la transformation des fruits, la production de miel, le petit élevage, l'écotourisme, de développer des moyens de stockage et d'en améliorer les conditions, pour pouvoir toucher le marché extérieur autant qu'intérieur.Tout cela doit se faire dans un cadre macro-économique bien établi, sans aller à l'encontre des règlements de l'Organisation mondiale du commerce. Il faut pourtant arriver aussi à un programme de subventions pour l'agriculture. Et là où le bât blesse, c'est qu'on est actuellement dans une vision économique beaucoup trop libérale. Les opinions exprimées dans ce Point de vue sont celles de l'auteur, et ne reflètent pas nécessairement les idées du CTA.1970. Les spécialistes en sciences du sol ont établi que la nature met trente ans pour former une couche de terre arable de 25 mm, soit 11 t/ha, la limite pour que le sol demeure économiquement rentable. Or, en Haïti, ces pertes de sol vont parfois au-delà de 120 t/ha ! L'agriculture se pratique sur n'importe quel type de sol et sur n'importe quelle pente. Des pentes à 60 % sont labourées. Il faudrait arriver à une typologie : toutes les terres comprises entre 0 et 20 % de pente seraient cultivées, sans méthodes de conservation des sols. Les terres comprises entre 20 et 50 % le seraient aussi, mais avec des techniques de conservation des sols drastiques : canaux de contours, terrasses agricoles, cultures en couloir, haies vives, etc. Toutes les terres au-delà de 50 % seraient consacrées à l'arboriculture fruitière et à l'agroforesterie. Dans les plaines et sur les terres moins pentues, l'agroforesterie pratiquée sur le pourtour des parcelles permettrait de diversifier les sources de revenus des paysans.","tokenCount":"7726"} \ No newline at end of file diff --git a/data/part_3/9864000123.json b/data/part_3/9864000123.json new file mode 100644 index 0000000000000000000000000000000000000000..3c4779a7bdff3e4579b5cedd8f909f4306903ec4 --- /dev/null +++ b/data/part_3/9864000123.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"bd8517a07c3066df0e2de9286b1aaf86","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/99986827-446b-4b3d-b1e9-aae81fb3b2e3/retrieve","id":"1897146130"},"keywords":[],"sieverID":"c6b419d1-6caa-4f47-a4b3-6de35b0b9c2e","pagecount":"25","content":"CTA est financé par l'Union Européenne Le Centre technique de coopération agricole et rurale (CTA) a été créé en 1983 dans le cadre de la Convention de Lomé entre les États du Groupe ACP (Afrique, Caraïbes, Pacifique) et les pays membres de l'Union européenne. Depuis 2000, le CTA exerce ses activités dans le cadre de l'Accord de Cotonou ACP-CE.Le CTA a pour mission de développer et de fournir des services qui améliorent l'accès des pays ACP à l'information pour le développement agricole et rural, et de renforcer les capacités de ces pays à produire, acquérir, échanger et exploiter l'information dans ce domaine.Il s'agit de se servir de la forêt et de ses ressources, végétales ou animales, sans les détruire. Il s'agit donc de -Contrôler le nombre d'arbres qui sont coupés et de planter de nouveaux arbres pour reboiser -S'assurer que la législation soit claire et sans équivoque et que donc les communautés locales soient encleintes à conserver leurs forêts et à en faire usage de façon durable -Utiliser des méthodes de récolte des produits de la forêt qui ne nuisent pas aux arbres -Permettre la régénération naturelle des arbres.-Empêcher le braconnage des animaux La régénération naturelle des arbres (Source: projet DARA-Burkina Faso) D'habitude, les plantes se multiplient naturellement, sans l'intervention de l'homme dans le processus -soit par les graines, -soit par des rejets qui sont des plantes qui se développent à partir d'une tige et qui provient d'un bourgeon situé au niveau d'un anneau de la tige. C'est aussi une plante qui pousse à partir de la souche d'un arbre coupé soit par des drageons qui est une plante nouvelle qui naît de la racine d'un arbre.Cette forme de multiplication s'appelle la régénération naturelle. Mais quelque fois l'homme aide un peu la nature pour provoquer ou stimuler la régénération naturelle des espèces : on parle alors de Régénération Naturelle Assistée.(RNA). Il se peut aussi que l'homme aide beaucoup plus la nature en plantant des arbres et en les entretenant : on appelle ce processus la régénération artificielle.La régénération naturelle assistée a beaucoup d'avantages car il est plus facile et surtout moins coûteux de protéger, entretenir et aider à se multiplier les arbres qui existent déjà que d'en planter de nouveaux. Traditionnellement les paysans ont toujours pratiqué cette forme de foresterie mais les agents modernes n'y accordent pas forcément autant de valeur car ce n'est pas très spectaculaire ….Une étape capitale dans la RNA c'est le repérage des plants qui sont souvent très petits et il faut donc les marquer pour empêcher qu'ils soient arrachés accidentellement. Le repérage consiste donc a marquer l'emplacement de chaque plant retenu à l'aide de petits piquets peints ou on peut les entourer de cailloux, de morceaux de canaris cassés ou de rubans . Il faut protéger les jeunes plants contre le bétail, contre les parasites, contre les effets de l'eau ou du vent mais également contre les coupes abusives et contre les feux de brousse : Contre chacun de ces dangers il y a un type de protection spécifique:• Contre le bétail, il faut empêcher la divagation des animaux et donc les garder dans des enclos et également planter du fourrage pour les nourrir. • Contre les maladies ou les parasites , il faut enlever les branches et les arbres malades et également diversifier les espèces pour 'éviter les risques de contagion. • Contre les effets de l'eau et du vent, il faut que le couvert végétal se compose d'arbres, d'arbustes et d'herbe qui a un effet modérateur sur la vitesse du vent ou le ruissellement des eaux de pluies. On peut aussi construire des diguettes. • Contre les coupes abusives, il faut montrer aux paysans que c'est dans leur intérêt de protéger les jeunes plants . Il faut aussi éviter que les jeunes plants gênent les cultures. • Contre les feux de brousse, il faut désherber autour des arbres, installer des pare-feux et tailler les branches inférieures des arbres.La RNA a aussi des inconvénients : Il y a un choix limité d'espèces, on ne peut pas choisir l'endroit où l'arbre va pousser et elle demande pas mal de soin et d'entretien.Le droit coutumier vise les ressources forestières sous deux angles différents Sous l'angle de l'exploitation et sous l'angle du renouvellement, deux points de vue qui traditionnellement étaient en équilibre :1) Angle exploitation: traditionnellement un certain nombre d'arbres sont protégés donc quand les populations défrichent, ces arbres sont préservés, soit à des fins d'utilisation domestique comme le bois de chauffe soit pour leurs fruits comme le néré, le karité, le baobab etc…Même chose en ce qui concerne les animaux dont certains ne doivent jamais être abattus comme les femelles attendant un petit. De plus l'exploitation des ressources forestières était aussi basée sur des interdits religieux qui ne sont plus respectés. D'autre part a cause de la croissance démographique qui créé une course a la terre arable, les ressources forestières sont menacésAngle renouvellement : traditionnellement, la terre n'était pas vendue, elle était donnée ou prêtée à des gens pour leur utilisation mais celui à qui on donnait la terre pour cultiver des cultures vivrières, n'avait pas le droit de planter un arbre ou de mettre des cultures perennes. Car planter un arbre était poser un acte de propriété sur le milieu donc planter un arbre n'était pas autorisé par les donateurs de la terre envers le locataire. Mais dans une perspective de gestion et d'exploitation durable des ressources forestières, ces principes doivent être levés car celui qui exploite la terre peut par exemple exploiter la terre jusqu'à épuisement sans avoir à respecter les principes d'agro-foresterie qui lui permettrait de planter certains arbres qui sont bénéfiques a la fertilité du sol et pour les cultures.Les colonisateurs avaient totalement ignoré le droit coutumier avec ses croyances et ses interdits. Les Codes forestiers hérités de la colonisation étaient encore en vigueur a l'indépendance et insistaient davantage sur la répression des populations et des pratiques locales ( comme l'interdiction totale des feux de brousse) que sur la consultation avec ses populations. Il en résultait une grande impopularité des agents des Eaux et Forêts. C'est seulement très récemment dans la plupart d'Afrique francophone que les lois forestières ont été modifiées ou sont en cours de révision . Au lieu d'insister sur la répression en cas de non application des textes les nouveaux Codes Forestiers insistent sur la gestion participative et s'efforcent de prendre en considération les préoccupations des populations. A l'heure actuelle, dans les pays dont la réforme est la plus avancée comme au Mali par exemple, les nouveaux Codes reconnaissent dorénavant trois domaines: le domaine de l'Etat, le domaine des collectivités et le domaine privé. Deuxièmement il y a l'école : aujourd'hui l'école fait que les enfants, les jeunes, les cadres ne croient plus tellement à toutes ces questions de mythe et de mystique et de sacré autour de ces forêts. Donc eux ils vont être préoccupés par les questions économiques donc il vont balayer du revers de la main ce qui faisait la protection de ces forêts c'est à dire le mythe et le sacré. La troisième raison ce sont les religions. Il y a l'Islam et il y a la religion chrétienne qui aujourd'hui sont en train de désacraliser tout cela. Donc plus on devient chrétien, plus on devient musulman, moins on tient compte de ces traditions et nous, notre objectif c'est de démontrer aux gens qu'on peut être chrétien et protéger les forêts sacrées. On peut être musulman et protéger les forêts sacrées. Parce que ce que on protège au delà de tout, ce sont les richesses en biodiversité. Une étude a été faite par les botanistes et les 37 mille hectares que représentent les forêts sacrées, représente à elles seules 75 % de la richesse en biodiversité de la Côte d'Ivoire. C'est extraordinaire ! Donc la valeur n'est pas forcément en termes de superficie mais en termes de valeur en biodiversité et sur ce terrain là, vraiment nous sommes heureux de constater que les sanctuaires subsistent et il faut faire en sorte que soient préservés. Donc donnons la chance a nos chefs traditionnels, donnons leur le pouvoir pour continuer à faire ce qu'ils ont fait et qui nous a permis aujourd'hui de préserver notre biodiversité.Comment renforcer le pouvoir des chefs traditionnels ? Ce qu'il y a ce sont des merveilles ! Il y a des ressources naturelles inespérées : il y a des plantes, il y a des espèces endémiques, il y a des espèces rares, il y a des espèces en voie de disparition mais il y a aussi la culture traditionnelle qui accompagne la protection de ces espèces là. Il y a la connaissance des tradi-praticiens liée aux plantes médicinale. Alors c'est un sanctuaire. Est ce que on peut l'exploiter ? Oui, mais il faut exploiter cela rationnellement et avec le concours et la supervision des Sacrificants. Il s'agit pas de rentrer dans ces forêts et d'aller couper le bois et de faire des défrichements anarchiques mais de dire aux Sacrificants et aux chefs traditionnels d'aller récolter la richesse.Pour préserver ces forêts sacrés, la Croix verte est donc très active, sur le plan pratique mais en tant que groupe de pression auprès des parlementaires afin de les convaincre de voter une loi de protection des forets sacrées Selon Gomé Gnohité Hilaire, ces efforts ont porté leurs fruits au point de vue législatif ","tokenCount":"1558"} \ No newline at end of file diff --git a/data/part_3/9866182675.json b/data/part_3/9866182675.json new file mode 100644 index 0000000000000000000000000000000000000000..10691893c9951875b0efd346b7b05e149c5e1c5b --- /dev/null +++ b/data/part_3/9866182675.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"d2da78d1da093fd174df335a1b2f35e2","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/17bb0619-4378-495a-ac9e-fcbb3f3b9c43/retrieve","id":"509805824"},"keywords":[],"sieverID":"c6220ba6-31de-4b70-9b64-9fae93afba6b","pagecount":"22","content":"What is pro-WEFI?• The Project Level Women's Empowerment in Fisheries and Aquaculture Index (ProWEFI) measures the empowerment, agency and inclusion of women in fisheries and aquaculture contexts.• ProWEFI helps to identify ways to overcome the obstacles and constraints facing women in the fisheries and aquaculture value chain.• Useful tool for policymakers, other research organizations, implementing organizations and academics seeking to measure and increase women's empowerment in a fisheries and aquaculture.• The WEFI also allows projects to track Reach-Benefit-Empower-Transform (RBET) outcomes for women in fisheries and aquaculture projects (McDougall et al., 2021).How is pro-WEFI calculated?• ProWEFI is a survey-based index using interviews of the primary male and primary female adults in the same household.• ProWEFI draws largely on the ProWEAI but is tailored to aquaculture and fisheries contexts in addition to capturing information on agriculture.• It is aligned based on three domains of empowerment: intrinsic, collective and instrumental agency.• It is an aggregate index, composed of two parts: weighted empowerment score (3DE) and gender parity index (GPI).• It is a multidimensional index composed of 12 indicators, where a respondent is said to be empowered if she/he achieves adequacy (i.e. meets a set threshold) for 75% of the indicators.All range from zero to one;higher values = greater empowermentA direct measure of women's empowerment in 3 dimensions (pro-WEFI)Women's achievement's relative to the primary male in household 10 %• The Pro-WEFI 3 domains of empowerment (3DE): Assesses the degree to which women are empowered in the 3 domains of empowerment. • Gender Parity Index (GPI): Reflects the percentage of women who are empowered or who are as empowered as the men in their households.Pro-WEFI pilot study• Question: What is the status of economic and social empowerment of women relative to men, as well as the nutrition and dietary diversity of women relative to men, in households in North Western (NW) Bangladesh, which participate in \"Aquaculture: Increasing income, diversifying diets and empowering women in Bangladesh and Nigeria\" (IDEA) project?• Location : 2 Districts in Northwestern Bangladesh (Bogura and Nagaon)• Villages : 30 Villages We covered 12 villages out of the quant sample of 30 villages. We covered all upazilas and districts from the quantitative sample. More WOMEN report:• achieving adequacy in respect among household members.• having access to membership in groups and influential groups. • Households in the \"Landless\" arm achieve higher scores across all empowerment indices compared to the other groups• However, sub-sample is very small to suggest statistical significance of results.Preliminary findings• Main form of group membership was reported to be micro-credit groups for women. Landless women reported the fishing group they are part of.• Landless women reported a higher power and freedom to make important life decisions. However, most of them reported finding this decision making to be a burden• Most landless women also reported their husband's to be negligent, disrespectful and even violent towards them• The landless women also have high mobility, and since they are extreme poor, gender norms are more relaxed in the landless community.• Landless women take up multiple jobs in a day to fend for their families. This leaves them little time for any leisure. Many of the men drink, gamble and are in polygamous relationshipsPreliminary findings …• Women from farming communities expressed lower freedom and power to make important decisions in their lives. The only important decision most of them reported being able to make is regarding the child's education and marriage.• Most of them expressed regret at not being able to pursue their education and at being married at young age without consent• Women from farming communities also expressed a lack of power to pursue business or work as they please• Many of the women expressed the belief that earning an income brings power• Women from the Hindu communities had a better understanding of their decision making or lack of• Most participants reported understanding the importance of fish based diet after the nutrition training, especially of small fish like mola (but complained about lack of supply) • There was no report of malnutrition, however there were reports of mentally disabled children among the participants • The ladder of power and freedom tool and the life history methodology were key tools in bringing to light women's aspirations and feelings towards empowerment. Ladder of power and freedom took time to explain but the tool itself created realizations of own disempowermentSource: GENNOVATEStep 5: Power & freedom to make almost all major life decisionsStep 4: Power & freedom to make many major life decisionsStep 3: Power & freedom to make some major life decisionsStep 2: Only a small amount of power & freedom to make life decisionsStep 1: Almost no power or freedom to make life decisions","tokenCount":"778"} \ No newline at end of file diff --git a/data/part_3/9889713374.json b/data/part_3/9889713374.json new file mode 100644 index 0000000000000000000000000000000000000000..b30068bb5ca6ee09c06da22216817fb1c09ca0ca --- /dev/null +++ b/data/part_3/9889713374.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"a604944f3bd6f0359c1e20b91e118996","source":"gardian_index","url":"https://data.worldagroforestry.org/api/access/datafile/:persistentId/?persistentId=doi:10.34725/DVN/MJPWU3/YPKWHW","id":"1628394970"},"keywords":[],"sieverID":"209a10cd-af8a-4667-bb95-83f64473f455","pagecount":"1","content":"Whilst utmost care has been taken by the World Agroforestry Centre and data authors while collecting and compiling the data, the data is however offered \"as is\" with no express or implied warranty. In no event shall the data authors, the World Agroforestry Centre, or relevant funding agencies be liable for any actual, incidental or consequential damages arising from use of the data.By using the World Agroforestry Centre Dataverse, the user expressly acknowledges that the Data may contain some nonconformities, defects, or errors. No warranty is given that the data will meet the user's needs or expectations or that all nonconformities, defects, or errors can or will be corrected. The user should always verify actual data; therefore the user bears all responsibility in determining whether the data is fit for the user's intended use.","tokenCount":"134"} \ No newline at end of file diff --git a/data/part_3/9915182091.json b/data/part_3/9915182091.json new file mode 100644 index 0000000000000000000000000000000000000000..a09ed7a0367ff434e2cf136a443f91cb76eba5d6 --- /dev/null +++ b/data/part_3/9915182091.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"4d5a1de7ab922ae3a94993f277bb58d3","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/749dc9fc-754b-43d7-a358-9321705c9a9e/content","id":"-1869227519"},"keywords":[],"sieverID":"14091ace-8314-4281-9926-020000697c6d","pagecount":"15","content":"While crop diversification has many benefits and is a stated government objective across the Eastern Gangetic Plains (EGP) of South Asia, the complexity of assessment has led to a rather limited understanding on the progress towards, and status of, smallholder crop diversification. Most studies focus on specific commodities or report as part of a singular index, use outdated secondary data, or implement highly localized studies, leading to broad generalisations and a lack of regional comparison. We collected representative primary data with more than 5000 households in 55 communities in Eastern Nepal, West Bengal (India) and Northwest Bangladesh to explore seasonally based diversification experiences and applied novel metrics to understand the nuanced status of farm diversification. While 66 crops were commercially grown across the region, only five crops and three crop families were widely grown (Poaceae, Malvaceae, and Brassicaceae). Non-cereal diversification across the region was limited (1.5 crops per household), though regional differentiation were evident particularly relating to livestock and off-farm activities, highlighting the importance of cross border studies. In terms of farmer's largest commercial plots, 20% of systems contained only rice, and 57% contained only rice/wheat/maize, with substantial regional diversity present. This raises concerns regarding the extent of commercially oriented high value and noncereal diversification, alongside opportunities for diversification in the under-diversified pre-monsoon and monsoon seasons. Future promotional efforts may need to focus particularly on legumes to ensure the future sustainability and viability of farming systems.Crop diversification is one of the most important income enhancing and risk management strategies available to smallholder farmers in South Asia (Debasis et al., 2018). The benefits of crop diversification extend to a higher return from agricultural activities (Mohapatra et al., 2014), resilience to shocks and climate change impacts (Hertel et al., 2021), stabilization of production and incomes (Singh et al., 2012), and nutritional diversification (Ayenew et al., 2018).Despite these benefits, farmers in the Eastern Gangetic Plains (EGP) of South Asia face major challenges in diversifying their crop production. Challenges include small and fragmented farm holdings, land availability, inequitable agrarian structures, resource constraints, and poor infrastructural amenities such as roads, communication, electricity supply, post-harvest storage, and marketing (Aggarwal et al., 2004;Singh et al., 2014). Agricultural productivity remains constrained despite adequate annual rainfall, due to seasonal water stress on the one hand and excessive runoff and water congestion on the other (Singh et al., 2014). This has tended to lead to a relatively undiversified set of farming systems based almost exclusively on rice in the monsoon season and limited diversification based around maize or wheat in the Rabi season (Timsina et al., 2010). To address this, enabling crop diversification has become a development priority in the region (Barghouti et al., 2004).In Nepal various plans have prioritized transforming subsistence-based agriculture to a commercial-based system through diversification, including the Agriculture Perspective Plan (1997)(1998)(1999)(2000)(2001)(2002) and Agriculture Development Strategy (2015Strategy ( -2035)). Diversification continues to be a priority at all three tiers of government after federalization with the Fifteenth Plan (Fiscal Year, 2019/20 to 2023/24;Government of Nepal, 2019). The Government of India has also prioritized agricultural productivity and diversification options in its five-year interim plans (Government of India, 2019). Similarly, the Bangladesh government has developed a policy statement on crops, emphasizing a shift from 'rice-led' growth to a more diversified production system including non-rice crops to enhance farmers' income and long-term sustainability. Several projects such as the 'Thana Cereal Technology Transfer and Identification' and 'Crop Diversification Program' aim to promote wider diversification with pulses, vegetables, fruits and potato (Ahmed et al., 2015). Despite the acknowledgement of the need for crop diversification and the policy imperative to enable this change, there is little literature that has quantified various and nuanced aspects of the crop diversification status of the broader EGP. The literature is broadly in agreement on only two points: firstly, that there is a general movement towards more diversified smallholder farming systems over time (Singh et al., 2006;Islam and Hossain, 2015;Sen et al., 2017); and secondly that smaller farmers tend to be more diversified, while larger land holding farmers tend to lean towards specialization and commercialization (Islam and Hossain, 2015;Ahmed et al., 2018). Outside this, the status of diversification remains poorly explored.At a country level, studies in Nepal have tended to focus more on farm diversification from a forestry viewpoint rather than at cropping or farm unit levels (e.g. Baul et al., 2013;Kharel et al., 2021), meaning that only limited work has been undertaken on the cereal focused plains. In India, most studies are based on national level census data analysed in state aggregates, with the identification of the EGP as less crop diversified than other parts of India (Singh et al., 2006;Kumar and Gupta, 2015), and that there is substantial diversity across various adjoining blocks (Rukhsana, 2021). In Bangladesh, the lowest diversification has been identified on the EGP in Rangpur and Rajshahi (Miah et al., 2013), but the literature on diversification has tended to focus on homestead gardens instead of a broader whole-of-farm focus (e.g. Bushamuka et al., 2005).Beyond this, the literature has only limited other observations, in part due to the data sources and analysis approaches primarily used to undertake diversification studies. For example, we are unable to find any multi-country studies that use the same metric of analysis to compare the status of diversification beyond national borders in the same paper. In the case of India, studies tend to be from secondary national level census data which is collected only once per decade (e.g. Kumar and Gupta, 2015). In the case of utilisation of census data, in nearly all cases the literature only processes estimates at ten-year intervals meaning that there are limited studies on diversification status since the last released dataset from 2010 to 2013, despite appearing as recent publications (Debasis et al., 2018;Rukhsana, 2021). In Nepal and Bangladesh, studies tend to be highly localized, often village level, studies with limited respondents (e.g. Baul et al., 2013).In terms of analysis, nearly all studies explore diversification through the Simpson Diversity Index or similar. While this is useful in summarizing crop diversification into an easily presentable number, it only provides an area based singular statistic based on the number of species and dominant crop and does not enable an understanding of what type of diversification has occurred, or if this diversification is agronomically or economically beneficial. Where a particular crop is explored, it tends to be with a singular commodity focus, or at a regional or commodity cluster scale which does not help understand change processes and contexts at the farm unit level (e.g. Baul et al., 2013;Joshi et al., 2021).Due to these limitations in the literature, a seasonally focused, nonhomestead and regional comparative assessment of diversification remains absent. This prevents a more holistic understanding of the status of diversification across multiple countries in the EGP of South Asia, and leaves research questions around a lack of non-cereal diversification and geographical differentiation of diversification strategies unexplored. To address this literature gap, we collected primary and representative data from more than 5000 households across six locations and 55 communities in India, Nepal and Bangladesh. We apply several alternative metrics to understand and compare the status of diversification. This enables a unique, up to date (data from 2021) and nuanced understanding of the current status of diversification across a wider geographical area than others have previously explored. In doing this, we aim to open a conversation via a more regionalised, cross border diversification agenda while also highlighting approaches to create a deeper, more nuanced understanding of diversification across the EGP and beyond. Our further ambition is to highlight alternative analytical pathways that can be applied beyond the geographical scope of this study, to ensure that broader global diversification trends can be identified, explored and understood, given the issues with methods and data are a common constraint to understanding crop and livelihood diversification globally.The scope of this study encompassed six geographies in three countries on the EGP. These geographies were selected based on a wider study of the livelihood status of smallholder farmer livelihoods and their farming decisions, whereby the major agro-ecologies of the EGP were investigated (see Gathala et al., 2021). Selection of specific communities within these broader geographies was purposive based on the assessment of a Conservation Agriculture (CA) based project, in which an impact assessment was undertaken. As such, a variety of communities from three categories were investigated: Communities that have had promotional activities on CA since 2014 (Islam et al., 2019); communities that have had CA promotional activities since 2017, and communities that have not had CA promotional activities. Communities were purposively selected by project partners active in the region to ensure compliance with the typologies of communities to be selected (Fig. 1). In total, 55 communities were involved in survey collection.Within each of the 55 communities, a randomized sampling was undertaken where enumerators were asked to collect data from every 3 rd household along a randomly selected road in the community, with different roads assigned to each enumerator. The overall goal was to collect 100 household head interviews in each community.The household heads were asked to answer questions related to six modules: [1] Demographics and assets; [2] Machinery usage; [3] Crop allocation; [4] Conservation Agriculture practices; [5] Largest plot characteristics; and [6] Livelihood constraints. In total, there were 567 questions, though after relevance logics and regional specific questions were applied the number of questions answered by each respondent averaged 155 (mode ¼ 144, max ¼ 350, min ¼ 96). This study draws on data from module 3 (Crop allocations) and module 5 (Largest plot characteristics). These two sections captured the experience and status of diversification at farm and largest plot level.All data collection was collected through KoboCollect ODK by trained enumerators and conducted in local languages. Data collection occurred after Rabi planting but before Rabi harvest in 2021 (i.e., from January 2021 to April 2021). In total, 5053 household heads participated in this survey.Given the limitations of the commonly used indexes, this work applied alternative lenses of analysis to understand the status of diversification. For crop experience, we applied several explorations: [1] the types and number of crops a farmer had experience with; [2] the types and number of botanical families a farmer had experience with; and [3] a metric of the diversity of livelihood activities a household had ever applied.For the livelihood diversity metric, we classified farming activities into sub-sections based on their purpose, as well as livestock and fisheries ownership, and off farm income sources. In total, we classified 15 different livelihood activities based on our dataset. We noted that the data were answered by respondents in terms of their commercial and not homestead land, and as such some categories received minimal responses. The categorization of each activity is given in Table 1. Note that in future, we suggest disaggregation of categories 5 and 6 as below, though could not be achieved in this dataset.For Fisheries [5a] Capture (e.g. from streams): and [5 b]Culture (e.g., fish ponds, biofloc) could be disaggregated for increased nuance For Off-Farm [6a] Agri-aligned (e.g. Machinery rental/service provision, processing, farm labour services), and [6 b] Non-farm (e.g. retail, government jobs, rickhshaw, tuktuk) could be disaggregated for increased nuance in income sources.For the largest plot, four metrics were explored: [1] the three season systems based on the primary crop of the largest plot in each season in 2021; [2] the average number of crops and families grown on the largest plot in the last three years from 2019 to 2021 (hence including intercropping and seasonal rotations); and [3] the cropping intensity of the largest plot in 2021. Table 2 provides summary statistics on various attributes of the survey data and population.Based on farm level responses, 66 crops were identified as grown commercially (i.e. outside of homestead gardens) by farmers in the surveyed locations. Of that, only 10 crops had been grown by at least 5% of the total surveyed population, with a further 16 crops being grown by at least 5% in one of the six geographies of this study (Table 3). In the Kharif and Pre-Kharif seasons, only four crops (Rice, Maize, Jute and Wheat) had been grown by at least 5% of the survey population, while Rabi season had a broader diversity of crops with eight crops having been grown by at least 5% of the surveyed population.In terms of location specific crops, Sunsari had the widest cropping experience, with 20 crops being grown by at least 5% of the population, double that of Coochbehar and Rangpur (10 crops). Rajshahi returned nine crops grown by at least 5% of the population, Jhapa eight crops and Malda six crops. Some crops appeared regionally significant in particular locations and not in the wider EGP. For instance, mungbean in Sunsari (28% of respondents), onion in Rajshahi (21% of respondents), buckwheat in Jhapa (23% of respondents) and lentil in Malda (34% of respondents). Likewise, some crops were more limited in some locations compared to the EGP (for instance, Jute in Nepal, Maize in Rajshahi, Wheat in Rangpur and Jhapa, and Mustard in Rangpur). These results highlight distinct regional crop experiences in each location, beyond the top five regionally important crops (Rice, Maize, Jute, Wheat and Mustard).The average number of crops ever grown by each respondent provides an indication of the cropping diversity of various locations (Fig. 2). In terms of total cropping experience, Sunsari had the highest farmer experience (average of 5.6 crops) and Rangpur the lowest (average of 2.9 crops), with a regional average of 3.8 crops. Seasonally, a divergence was clear between some locations in Rajshahi (especially Yusifpur union) where there was higher diversity of cropping experience in Kharif rather than Rabi, which was not the case elsewhere. Diversity of crops planted in pre-Kharif was mostly limited and stable at 1.3 crops ( AE 0.2) regardless of location. Even within similar locations (e.g., Coochbehar 1 block, Coochbehar), there was substantial diversity between locations, indicating that geography is only one component of cropping experience of farmers and other factors play an important role in the diversity of crops grown.In total, crops from 28 botanical families were identified, but only seven had a prevalence of above 5% regionally, with an additional four having geographical significance above 5% (Table 4). As expected, almost all farmers had grown from the Poaceae family (cereals; 98.7% of all respondents). The Malvaceae family (primarily Jute in Pre-Kharif) was the second most common family in India (and especially Cooch Behar), while the Brassicaceae family (primarily Mustard) was the second most common in Jhapa and Malda. Leguminoseae (primarily Lentil) were widely grown in Sunsari, Rajshahi and Malda, though not as widely in the other three geographies. Solanaceae (primarily Potato and Eggplant) was the final family of regional significance, though primarily in Sunsari, Coochbehar and Rangpur. Nepal was distinct with several families identified as important but not grown as substantially in other locations (e.g. Cucurbitaceae, Fabaceae and Asteraceae in Sunsari; and Polygonaceae and Linaceae in Jhapa).Growing crops from multiple crop families would indicate a wider agronomic benefit and sustainability for an agri-system system. As 98.7% respondents have had experience with the Poaceae family and much emphasis has been put on non-cereal diversification in policy directives, we apply a count of the number of different families grown by each respondent (excluding Poaceae) to understand farmer experience with non-cereal diversification (Fig. 3). While total crop experience of the region averaged 3.8, the regional average of number of non-cereal families was only 1.5. This suggests that most crop experience was with cereals and indicates limited non-cereal diversification.Seasonally, Pre-Kharif (0.6) and Kharif (0.3) had limited average family scores, with the average Kharif families score in Rajshahi (1.1) contributing to a raised regional average. This again suggests that cereals are the main source of crop diversity in these two seasons. Like total crop experience, Rabi provided the widest diversity of families grown (1.5). This was highest in Sunsari (2.1) and lowest in Rangpur (0.9). The presence of substantial outliers in Kharif and pre-Kharif indicates that higher families scores are related to non-geographic and /or household level drivers, which warrants further exploration.Using the livelihood diversity framework (Table 1), the key livelihood activities in each geography were identified, which were relatively diverse (Fig. 4). While cereals were common regionally, other crop types tended to variously dominate in different geographies. For example, pulses were grown by nearly 61% of respondents in Sunsari and 43% in Rajshahi, but less than 15% in Jhapa and Cooch Behar. Oilseeds were common in Jhapa (75%) and Malda (62%) but less so elsewhere, and fibre crops were common in Coochbehar (72%) but less so elsewhere. Green manure and fodder crops were mostly limited everywhere, and likewise with sugar and fruit crops. It should be noted that this likely reflects that while these are often grown as part of a household, they are not grown on their commercial fields and tend to be around the homestead and not on larger plots. Animal activities tended to be more standardised across the region than crop groupings. Dairy cattle were the most commonly owned animal (74% of households regionally), followed by meat livestock (pigs, buffalo, goats) which were owned by 63% of households (ranging from 55% in Rangpur to 87% in Jhapa). Poultry was owned by 48% of households, though more common in Bangladesh (82% of Rangpur and 71% of Rajshahi respondents) than the other geographies. Fisheries were only common in Rangpur (36%) and Coochbehar (32%). Around 50% of households had off farm earning family members, which was more common in India (Malda 61%; Coochbehar 54%) and lower in Nepal and Bangladesh.The regional livelihood categorization score was 5.02 activities out of a maximum score of 15. The highest geography score was in Cooch behar (5.29) which was statistically higher (P < 0.05) than other locations. The lowest was Jhapa (4.56), also being significantly lower than other locations (P < 0.05). Sunsari, Malda and Rangpur were not statistically different (Fig. 5).Geographically close locations often had varying average livelihood scores. For instance, within Coochbehar 1 Block, Jiranpur scored 3.02 while adjoining Hawargari scored 6.2. Likewise, in Dharmapur Union (Rajshahi), Dharampur scored 4.4 while adjoining Paikartala scored 6.4. The two highest scoring communities were Holidagachi (Rajshahi, 7.6) and Belbari (Malda, 7.05), while the two lowest scoring locations were both in Malda: Ugritola (2.8) and Fulbari (2.6). Livestock as a portion of the total score averaged 41% regionally, but was substantially higher in Rangpur (53%) and Jhapa (47%) and lowest in Sunsari (37%) and Malda (33%). This suggests that contribution of crops and livestock to livelihood diversity varies substantially by geography.The production system of the largest plot was mapped across the region (Fig. 6). Results indicate that during 2021, 86.5% of systems were Kharif-Rice based, with other crops in Kharif all grown below 4% (and with fallow at 5.3%). In Rabi, 31.2% of plots were planted with Rice, followed by 23.6% with Maize, 20.9% with Wheat, and 10.7% with Mustard. In Pre-Kharif, 41.4% of plots were fallowed, followed by 24.5% with Rice, 17.6% with Jute and 10.7% with Maize.In terms of Kharif-Rabi combinations, Rice-Rice systems accounted for 26.7% of plots and were the dominant system, followed by Rice-Maize (21.2%) and Rice-Wheat (17.7%). No non-Kharif Rice system scored above 2%. Due to the substantial rate of fallow in Pre-Kharif, three of the four most common three season systems were Rice-Maize-fallow (12.7%), Rice-Rice-Fallow (11.1%), and Rice-Wheat-Fallow (8.6%). The most common three season systems were Rice-Rice-Rice (8.8%) and Rice-Mustard-Rice (4.4%), with no other system scoring above 4% regionally.In total, 193 systems were identified across a three-season analysis. However, 36 systems accounted for 90% of all plots surveyed regionally. While Rice-Maize-Fallow was the most common system (12.7% regionally), 19.9% of systems were either Rice-Rice-Fallow or Rice-Rice-Rice systems (Table 5). 57% of plots involved only Maize, Wheat, and Rice, which was highest in Rangpur (85%) and lowest in Cooch behar (43%) and Malda (43%). Geographical patterns were also evident. For example, the Rice-Maize-Fallow system was dominant in both Sunsari (29.1%) and Jhapa (42.1%) but completely absent in Rajshahi. Likewise, Rice-Rice-Rice systems dominate in Rajshahi (25%) and Rice-Rice-Fallow in Rangpur (27.2%) but both systems were completely absent in Nepal. In terms of diversity, Coochbehar had seven systems above 5% of the geography, Jhapa had three and the remaining geographies all had five (though the systems themselves varied by geography). Rajshahi had the most diversity, with the top 36 systems only accounting for 80% of all systems found, as compared to Jhapa where the top 36 systems accounted for 99.3%.The average number of crops and families on the main plot in the prior 3 years provides a clearer indication of if crop diversification is present at a plot level (Fig. 7). The regional average crops grown on main plot was 2.8, though this was highest in Sunsari (3.9) and lowest in Rangpur (2.1) and Jhapa (2.2). In terms of families grown, the regional average was 1.9, though Malda was highest at 2.2 families while Rangpur was lowest at 1.4. This suggests that while Sunsari has a high rate of crop rotation, they tend to be from the same families and hence are less agronomically diverse. Once again, adjoining locations often had juxtaposing results (e.g. in Cooch behar) suggesting that multiple reasons may drive a lack of main plot diversification.The average cropping intensity on respondents' main plots regionally was 253%. This was mostly consistent across locations (no statistical difference between Jhapa, Coochbehar, Malda and Rangpur; P < 0.05), but with Sunsari significantly lower (237%) and Rajshahi significantly higher (273%). This broadly reflects the rate of fallow in Pre-Kharif season (41.4%), which was highest in Sunsari (63%) and lowest in Rajshahi (20%). Fallow in Rabi was minimal, while some fallow in Kharif was evident in Malda (10%), likely a reflection of low/char lands. Again, in block score variability was apparent even in adjoining blocks (Fig. 8).Diversification towards high value crops and other allied enterprises is known to contribute to higher agricultural growth (Basantaray and Nancharaiah, 2017), increase household incomes, boost job creation and improve resource conservation and poverty alleviation (Singh et al., 2022), and as such is a widely held development strategy across the three study countries. Despite this, little is known at a regional scale on the status of such crop and livelihood diversification, particularly on the types of diversity occurring across the regionan important gap given that the types of diversification will have ramifications on the actual benefits to farm households (Sen et al., 2017).The results of this novel study across three countries demonstrate the Table 3 Prevalence of a crop having been grown by respondents (regionally, seasonally, and by geography).Only crops with at least 5% of one geography are presented. Colour coding applies as follows: red (<5%), Yellow (5%-25%), blue (25%-50%) and Green (50%-100%).Fig. 2. Number of crops ever grown by respondents, disaggregated by season and location.highly variable nature of diversification of farming systems across the EGP. While there were 66 species identified, these are limited to only 28 plant families, with only four dominant cereal-intensive cropping patterns (Rice-Rice, Rice-Maize, Rice-Wheat, and Rice-Mustard) contributing the majority of farming systems. This highlights that although there appears to be some level of crop diversification occurring, it appears that non-cereal diversification overall remains limited. This suggests that noncereal crop diversification still remains in its infancy, as well as highlights that it is concentrated in Rabi season almost exclusively. Such findings highlight the necessity in creating a more nuanced understanding of diversification beyond singular indices of diversification, such as the dominant Simpsons diversity index, which remains underexplored.As a first-of-its-kind regional analysis, results highlight that crop and livelihood diversification are highly variable between and within the six study geographies. As expected, agro-ecological settings influence the kind of crop and livestock choices that are possible, and the types of diversified systems are generally spread across different agro-ecological zones (Basantaray and Nancharaiah, 2017). For example, some of the study areas have a niche focus on specific non-cereal crops that boost levels of diversification, like jute in West Bengal, pulses in Sunsari, and oilseeds in Jhapa and Malda. These local specializations are in some cases linked to market opportunities and hence increased demand.Within adjoining districts there was often juxtaposing levels of diversification, as well as substantial variability within geographies. While some of this may be attributed to agro-ecology, the high levels of variability present also suggest multiple other factors at play. While beyond the scope of this study as a status exploration, next steps will be important to unpacking the key drivers that explain the proposed metrics of diversification presented in this paper. The literature is rich with possible reasons for such divergence, with factors that have been proposed in the literature including access to irrigation, infrastructure, market links (Mukherjee, 2015), credit, cropping intensity, fertilizer availability, road density, and size of holding (Kumar and Saroj, 2020), participation in agricultural training and access to extension (Basantaray and Nancharaiah, 2017), and organisational participation, training and ICT (Shaker et al., 2020). What unifies these studies is the narrow definition of crop diversification that they follow. Further exploration is needed to understand why such diversity in different metrics of crop and livestock diversification in nearby households occurs, especially in the context of the proposed metrics of crop and livelihood diversification.In the context of known agronomic benefits of diversification, results indicate a particularly concerning trend in the lack of legumes in cropping rotations. This was particularly true in Jhapa, Coochbehar and Rangpur, and more needs to be done to understand the opportunities to incorporate legume crop families into these farming systems as a priority, especially noting the need for nitrogen sources beyond synthetic fertilizers that create a particular concern for many resource-constrained smallholder farmers in the region (Chaudhary et al., 2022).By incorporating seasonal metrics, we also integrate cropping intensity into the broader discussion (particularly given diversification and intensification are two very different management strategies that can lead to the same level of cropping intensity). Cropping intensity is variable across the study area, and different locations have varying combinations of cropping intensity and diversification; for example, cropping patterns in Sunsari are the most diverse but have the lowest intensity. Jhapa has low intensity and low diversity, while Rajshahi has low diversity but high intensity. Both elements must be considered in assessment and planning if we are to understand the effects of diversification on sustainability. The impacts of this on resilience and productivity also warrant future investigation.The approach used here extends standard measures of diversity (i.e. Simpson Diversity Index, Crop Production Score, Herfindahl Index) that typically only provide a one off measure of the number and/or area of crops grown or the extent of diversification. They can also exclude or minimise important high-value enterprises like spices, condiments and livestock (Sen et al., 2017). Our results show both farm and plot level diversification related to crop, crop family and livelihood, as well as current and historical system level diversification. This is important, because although diversification scores can be similar, the composition of diversification can be different, which can lead to vastly different outcomes in terms of profitability, nutrition or environmental impact (Hufnagel et al., 2020). Such work also identified trends that could explore the human dimensions of various diversification strategies, explored through qualitative methods (e.g., Brown et al., 2023;Chaudhary et al., 2023). As such, this approach helps capture a more nuanced version of variability that is necessary to understand patterns of diversity for better planning and management.While 66 crops were commercially grown across the region, only five crops and three families were widely grown across the region (Poaceae, Malvaceae, and Brassicaceae). The average non cereal diversification across the region was only 1.5 crops per household, highlighting limited cropping diversification, though regional trends were evident, particularly with higher rates of crop diversification in Nepal and more limited crop diversification in Rangpur. In terms of livelihood diversity, Coochbehar had the most diverse livelihoods, while Jhapa had the least. However, regional differences were evident particularly with the livestock and off farm activities that highlight the benefits of cross border Table 4 Families identified as grown regionally, by season and by geography. Only families with at least 5% of one geography having grown are presented. Colour coding applies as follows: red (<5%), Yellow (5%-25%), blue (25%-50%) and Green (50%-100%). studies such as presented here. In terms of largest commercial plot, 20% of systems contained only rice, and 57% contained only Rice/Wheat/ Maize. However, regional differences arose beyond this that again highlight the extent of regional diversity present.This study is only intended as a starting point to catalyze a more nuanced discourse on how diversification is measured. As such, it attempts to highlight a variety of metrics through which to transition away from singular diversification indexes and towards more nuanced alternatives, such as the transition occurring in adoption studies. In doing so, and as a status paper, it has raised several areas for further investigation. Firstly, by applying these metrics to demographic data, the logic behind different diversification levels, preferences and outcomes may be obtained. Secondly, while results highlight the overall limited extent of non-cereal diversification on farming land and in commercial strategies, this neglects the importance place homestead gardens have as part of household diversification strategies. This should be incorporated into future work. Home gardens are where there are often high levels of diversity including vegetables, herbs, fruit trees, small ruminants and poultry kept for home consumption, and are particularly important for household nutrition and the engagement of women, children and elderly household members.Not-withstanding these future needs, this study highlights a more nuanced pathway to understanding diversification, applied at a regional scale that has so far been absent from the literature body. It highlights key concerns regarding the extent of commercially oriented high value and non-cereal diversification strategies, and the opportunities that may exist for diversification in the pre-kharif and kharif seasons. It also highlights the need to focus on non-cereal families like legumes to ensure the future sustainability and viability of farming systems, while highlighting novel future research questions for further exploration. It is hoped that this study will as such broaden the discourse as to the status of, and pathways to, more diversified, sustainable and resilient farming systems.The most common 36 systems regionally on largest plots of surveyed farmers in 2021. Colour coding is as follows: <1% none; 1%-5% -yellow; 5%-25% -orange, above 25% green. Chaudhary and all authors commented on previous versions of the manuscript. Other Authors participated in various points in design, collection or explanation of results. All authors read and approved the final manuscript.All participants obtained training as part of the consent process and written consent was obtained prior to participation. The IREC was undertaken by CIMMYT Internal Ethics Review Board, with Code IREC 2019.010.","tokenCount":"5112"} \ No newline at end of file diff --git a/data/part_3/9925822346.json b/data/part_3/9925822346.json new file mode 100644 index 0000000000000000000000000000000000000000..d2359c0c7556c77bb782c90ba251e2e62028be7b --- /dev/null +++ b/data/part_3/9925822346.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"7d5980b7e4a828c88142d72ecacff3a5","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/2c5e9a79-2814-479b-b9d4-e5e3e7cf0264/retrieve","id":"-1458765691"},"keywords":[],"sieverID":"bf595a82-cfab-4e7d-8847-62be1c646092","pagecount":"80","content":"DCP is a government office directly under MARD. Its primary function is to advise MARD and organize activities on crop production within the scope of state management by the Ministry and according to the Minister's decentralization and authorization.(3) improving the adaptative capacity to climate-related risks and enhancing the ability to recover after they happen.Refer to the approaches to cope with disadvantageous conditions, whether to reduce their potential damages or to better adapt to their consequences.A man-made ecosystem with plants and animals in an agricultural setting. The aim of such a system is to serve the needs of the people.The change to the average value of weather factors in a long time, normally 30 years or more (FAO, 2013). Climate change is deemed to be directly or indirectly related to human activities through the change of global atmospheric conditions.Climate refers to the weather conditions in a certain region over a long period, usually covering several decades. The climate is the \"periodical average\" of weather factors and happening of daily weather factors ruled by the regional climate.The possibility of negative impacts caused by climate change to life and production activities of people.A description of possible disadvantageous factors when a natural event occurs. Maps showing basic geographical information and used as a basis to stack different layers of specialized information. Base maps usually provide information about fixed reference points such as border, river, lake, pond, and road.A unit of landscape with defined geographical borders and contain the typical characteristics of an ecosystem.A stable system including all creatures (biome) and their living environment (habitat). In an ecosystem, creatures always interact with one another and with the components of the habitat including climate, soil, water, and air.These are natural phenomena having negative effects on life and production activities of human. Natural disasters originate from climate, hydrological, or geological activity, and can cause shortterm impacts or long-term changes to the ecosystem.The general state of phenomena occurring daily in the troposphere. Weather factors such as temperature, barometric pressure, wind, sunlight, rain, cloud, and humidity, among others, have different manifestations in different regions of the world and can change by minute, hour, day, or week.he Global Climate Risk Index 2016 (Sönke Kreft, 2015) ranked Viet Nam as the 7th country with the most severe impacts by extreme weather phenomena from 1995 to 2014. Storms, floods, droughts, and salinity intrusion had occurred more regularly with stronger intensity and higher frequency. Moreover, these climate phenomena become more difficult to forecast. In 2016 alone, the damages brought by droughts and floods cost 1.7 billion USD, equivalent to 1% of the country's gross domestic product (GDP) . extension. Non-structural adaptation measures based on natural conditions and local production conditions have not been broadly developed and applied yet.To respond to climate-related risks better, ensure that adaptation solutions consider local conditions, and harmonize with regional development plans, DCP partnered with CCAFS SEA and other international organizations to develop the CS-MAP approach for rice production in selected ecological regions in Viet Nam. This activity supports DCP and provinces in implementing adaptation measures for rice production under a changing climate and aligns with the strategy of Resolution No. 120/ND-CP dated 17 November 2017 on sustainable development in MRD with climate change adaptation.Contributing over 14% to the GDP in 2020, agriculture plays an important role in reducing poverty and ensuring food security, social stability, and economic development in Viet Nam. Rice production, specifically, accounts for more than 50% of the sector's contribution but is also the most vulnerable sub-sector due to market fluctuation, natural disasters, and climate change.The climate in Viet Nam has recently become more disadvantageous. This is manifested by the increasing temperature, sea level rise, and extreme weather events, such as heavy rains and dry spells. As a result, Viet Nam has clearly been affected and suffered major losses in human lives, government assets, economic infrastructures, and cultural and social resources (Figure 1).From 2016 to 2020, climate change impacts, especially salinity intrusion, had reduced the areas dedicated for the Winter-Spring Season in MRD (Department of Crop Production, 2020). The Ministry of Natural Resources and Environment (MONRE) reported that in the 21 st century, following Scenario RCP4.5, the annual average temperature has increased by 1.9-2.4 o C in the North and 1.7-1.9 o C in the South. Under Scenario RCP8.5, it has increased by 3.3-4.0 o C in the North and 3.0-3.5 o C in the South.The number of severe to very severe storms are also increasing. Summer wind tends to start earlier and ends later. The number of hot days with a daily average temperature of more than 35 o C tends to increase in most of the country, especially in the Central and South coasts. Increased temperature and reduced rainfall in dry season make droughts more severe in some regions. The risk of salinity intrusion increases as well, especially in the downstream of Mekong River, Red River, Thai Binh River, and Dong Nai River. With the impacts of sea level rise, droughts are more severe, which affect the upstream water source. Salinity intrusion have directly affected agricultural production, both cultivation and aquaculture, and indirectly the socioeconomic life in the downstream region due to insufficiency of water household and industrial use, among others. (IMHEN and UNDP, 2015).According to the monitoring data, from 1993 to 2010, the average sea level of Viet Nam rose from 2.8 mm to 4.7 mm annually. Scientists also forecasted that extreme sea level rise in the coming years (due to a combination of storms and tides) may continuously exceed the current height of sea dykes (IMHEN and UNDP, 2015). MONRE also made the following forecasts: (1) under Scenario RCP2.6, the lowest sea level rise will be 44 cm in the coastal areas of Viet Nam by the end of the 21 st century due to climate change impacts alone; and (2) the highest sea level rise will be 73 cm under Scenario RCP8.5. Under most scenarios, the average sea level rise in Viet Nam is higher than the global average level (MONRE, 2016). Sea level rise inundates coastal areas, leading to loss of agricultural and residential lands. MRD is a high-risk region for flooding. If the sea level rises by 100 cm, about 38.9% of the region will be flooded. The provinces with the highest risk of flooding are Hau Giang (80.6%), Kien Giang (76.8%), and Ca Mau (57.7%) (MONRE, 2016). This is to prepare the regions, specifically the agricultural production in MRD, for climate change impacts such as salinity intrusion, landslide, and sea level rise, all of which can affect MRD's natural advantages such as water and soil fertility both in quantity and quality.The government issued a resolution on MRD's sustainable development for adaptation to climate change with the general target of \"developing and respecting nature and avoiding destructive intervention\" (Resolution No. 120/NQ-CP dated 17 November 2017). In this resolution, MARD implemented an action plan (Decision No. 816/QD-BNN-KHCN dated 07 March 2018) to restructure its agricultural sector and build new rural areas in an innovative, sustainable, and efficient way to identify the best adaptation options to climate change.Participatory mapping, or mapping that considers both scientific knowledge and experiences of the local communities, has been done since the 1970s. This methodology recognizes the contribution of communities to develop a planning and make decision for their own locally. It is broadly applied in natural resources management and in many other initiatives on zero hunger, poverty reduction, education, husbandry, and security mapping, among others (Chambers, 2006).In Viet Nam, this methodology is usually applied to map vulnerabilities caused by natural disasters (Reichel and Frömming, 2014;Labib et al., 2017), risk from landslides (Samodra et al., 2018), forest fires (Haworth et al., 2016), and land use planning (Livengood and Kunte, 2012;Hoanh et al., 2018).The participatory mapping methodology was applied by DCP and CCAFS SEA to develop CS-MAP (Yên et al., 2019). Maps were developed for climate risk scenarios in normal years and extreme years, using available information on terrain, climate, hydrology, infrastructure, and practical experiences of farmers, scientists, and local staff. The purpose, expected outcomes, methods, and supporting tools for implementation of each step shall be described in detail and with practical examples. These are mainly based on Viet Nam's experience of CS-MAP.CS-MAP was piloted in Bac Lieu Province in late 2016 and has been implemented in 13 MRD provinces/cities since the early 2017. The outputs developed from CS-MAP are (1) risk maps for flooding, drought, and salinity intrusion, and (2) adaptation plans for rice production at the local levels. CS-MAP outputs were developed to support DCP and local authorities to manage and organize rice production under climate change considering typical regional characteristics and development plans for ecological regions.The experience and practical knowledge of government officers and experts are crucial in defining the scope of influence and extent of decentralization of climate risks. They are also important in selecting the context-specific adaptation measures to be implemented, considering natural resources, infrastructure, and practical management and production activities of the locality. In the CS-MAP approach, spatial and time factors are analyzed by steps as specified in Figure 2. The potential impacts of climate-related risks on rice production are influenced by the variety used and growth stages of the crop, cultivation attributes, infrastructure, and overall capacity to withstand local-specific risks. These are in addition to the intensity of the risk and its time of occurrence. For example, salinity intrusion at the tillering stage has minimal damage to productivity compared to it happening during the flowering stage. Meanwhile, rice varieties tolerant to salinity will be less affected than those that are not.This means that in one region with specific weather and climatic conditions, risks can still be diverse depending on the varieties planted by the locals. Communicating this information, though, is a challenge since the evaluators of climate risks have varied levels of knowledge. Participatory mapping can address this challenge by bringing together all relevant actors and have them define the climate risks on their areas. These risks will be defined qualitatively and expressed in a more general, understandable, and practical manner (Yên et al., 2019).This step aims to define and present the climate-related risks to the relevant actors of the community.• List of climate-related risks • The extent of risks and their influence on rice productionThis step can be done by scientists and researchers, advising government officers in the irrigation, natural resources, and environment sectors, businesses, and local agricultural actors including agricultural extension officers, hamlet and village leaders, and farmers.Use of secondary data: Refer to findings of published researches on natural disasters and climate-related risks in selected localities, hydrometeorological data, and agricultural production results in at least the last five years. Moreover, documents related to natural disaster prevention in localities such as irrigation system, embankments, wind-blocking trees, and agroforestry are useful to evaluate previous and potential risks.Focus group discussion (Appendix 1): Organize a focus group discussion (FGD) of 10 to 15 participants. This method encourages participants to share their personal ideas and stories. During an FGD, the facilitator should accommodate all personal ideas and record their pros and cons. In case of many different ideas and conclusion cannot be reached easily, priority evaluation or weight-point system may be applied (Appendix 4).Key informant interviews (KIIs) (Appendix 2): These are direct discussions with scientists knowledgeable on agriculture, irrigation, hydrometeorology, natural disaster prevention, and officers and individuals experienced in local agricultural production. This method makes data collection easy and reliable but highly subjective since the data will come from only the invited individuals.Necessary tools for FGD include: A0 paper, pens, and colored papers.The facilitator shall list the climate-related risks in each locality on an A0 paper (841 x 1189 mm), alongside the corresponding reasons they included (Appendix 3). Participants will be invited to add risks that they deem relevant to their area (Table 1).It should be noted that a production risk can be caused by a variety of climate-related factors. For example, inundation can be caused by upstream flood or local heavy rains. A climaterelated risk can also lead to further risks e.g. droughts lead to water shortage, affecting the irrigation of agricultural lands and making them prone to salinity intrusion. In turn, salinity intrusion can render water unusable for agricultural production. If many climate-related risks are present in the area, the Pairwise Priority Ranking Method (Appendix 4) can be used to determine what should be the priorities.The facilitator will ask the participants about the risks they experienced and the ways they evaluate such risks. During the discussion, the participants will write down their insights on an A0 paper for everyone to see and agree on how risks should be evaluated.Climate-related risks are relative and subject to change, depending on annual intensity and frequency, crop production plan, and completion of preventive infrastructures. This means that scenarios should be developed for various situations such as extreme and moderate climate, considering operational capacity of irrigation system.To develop scenarios for climate-related risks, the facilitator should instruct the participants to list the years of extreme climate and moderate climates for each climate-related risk they identified. The ways of implementation are similar to the climaterelated risks described in S1.1 and S1.2.The level of impact of climate-related risks should be determined for previous and upcoming years. For example, severe floods used to occur in the locality and caused damages to the entire rice production. The level of impact in the future might not be as severe due to the building of embankments and irrigation infrastructures.In MRD, the two main climate risks are flooding and droughtsalinity intrusion. Flooding may be caused by inundation in the Mekong River or local heavy rainfalls. On the other hand, drought dries up the supply for irrigation water and even leads to salinity intrusion, affecting the quality of water. In the case of salinity intrusion, many regions have enough water but they cannot use it for irrigation, leading to drought. Drought and salinity intrusion typically happen at the same time and will then be called as drought-salinity. Some areas also experience drought only with no salinity intrusion and vice versa.The extent of a climate-related risk is understood by participants as the degree that can reduce rice productivity if such risk occurs within the current infrastructure and management conditions. This understanding leads to translating climate risks into measurable indices: Climate-related risks in rice production are heavily influenced by time and space. In the context of time, specific risks are highly probable to occur only in certain months and seasons. For example, rains and storms usually occur from July to October in the North during the Summer-Autumn Season, while floods in MRD typically happens from August to November, which falls under the Autumn-Winter season (Figure 3). The correct understanding of when these risks are going to happen will help CS-MAP implementers to easily measure their amount of damage to rice production.In the context of space, risks on soil conditions (such as terrain, relative elevation, and type of soil) define how vulnerable the areas for rice production are. Knowing where climate risks happen will help CS-MAP implementers to draw the appropriate risk maps, alongside their understanding of where to find the preventive infrastructures (e.g., canal, ditch, dyke, pump station, and saltwater prevention culvert) and where the rice is in terms of its growth stage.The extent of risks in terms of time and space is relative and depends on intensity, frequency, and seasonal calendar. This should be considered when drawing the climate scenarios (S1.3).The time and borders of the at-risk region for each cropping season and climate scenario for risks should be defined clearly on the regional maps.• Map showing a climate-related risk under a specific scenario for one plant or type of land during a specific season • The extent of risk identified in Step 1 is defined in all production maps at the regional and sub-regional levels.The locals who can define the extent of climate-related risks, including managing officers in agriculture, irrigation, natural resources and environment, agricultural extension, as well as farmers. They have the experience and expertise on the locations, geographical characteristics, and production zones in the regions.FGD (Appendix 1) and can be complemented with modeling (Appendix 6).The modeling method requires the implementers to have a deep and broad knowledge about hydrometeorology, cultivation, and agricultural system, among others. This method is costly and requires large sets of input data. The mathematical model and evaluation are also complicated. This is why modeling is often conducted by science research institutions and not by locals.Even if it is applied, the simulation results are still needed to be evaluated by experts and locals through advisory meetings.For this reason, this guidebook only introduced the steps to conduct an FGD, which is simple, easy to implement, and familiar to the locals. They can rely on their knowledge and experience to provide insights during the discussion. FGD also allows collaboration among the participants who will then help in drawing the risk maps and share their experiences about the climate risks common in their area.Necessary tools for this step include:• Base maps to delineate the regions at risk. They are scaled from 1:50,000 to 1:100,000 at the provincial level, 1:10,000 to 1:50,000 at the district level, 1:5,000 to 1:10,000 at the commune level, and 1:2,000 to 1:5,000 at village level. Topographical or land use maps are highly recommended since they show names of places, locations and shapes of ground objects (e.g., buildings and rivers), and vegetation cover. The base map should be printed in color on an A0 paper, which is large enough for members to see, discuss, and take notes together. • Transparent plastic films that are of the same size as the base map, which will allow locals to outline the extent of climate risks on it. They can be recycled to discuss more scenarios for other climate-related risks if erasable pens are used. • Erasable pens to easily edit the drawings on the base maps during the FGD. At least two types of colored pens (blue and red) should be used to easily distinguish between different types of notes on the drawing.Not everyone can read maps properly although they are considered common resources. Therefore, the first and crucial step is to help the participants to get familiar with the maps. The facilitator can ask the participants to rotate the map based on real life directions and check the names of places and ground objects present. They will do this process for 15 to 30 minutes.This process is required since the areas may have new administrative names and infrastructures that are yet to be reflected on the maps. This will also enable the participants to update any information, if necessary. The extent of risk will be determined through working sessions, which will cover the planting season, scenario, and risk factor following the format below: For each working session, the participants will be instructed to:• temporarily fixed film on the paper map;• use a blue pen to draw the boundaries of the at-risk areas and a red pen to write the extent of risk in the middle of each identified area. Notes can be written in the margins of the maps; • Once the participants are done, they will place the map and film on a flat surface and take pictures from above in right angle to save for their reference. Note: it is recommended to use natural light or remote lighting for taking photos, not the camera flash because this can create a reflection on the film that can blur key details.An at-risk area is identified for each scenario, considering a climate risk. Each scenario is drawn with colored pens on a clear film which is then placed over the map.The results of the sessions will serve as bases to recommend adaptation plans (Step 3 of CS-MAP).Rice production in MRD faces two major climate-related risk: flooding from August to November, the time of the Autumn-Winter season, and drought-salinity from January to March, the time of the Winter-Spring season (Figure 4). Two scenarios will be discussed for each risk: (a) climate-related risks in normal years, having moderate effects on rice production and (b) climate-related risks in extreme years, bringing severe damages to rice productions similar to the damages from previous years under the same scenario. As discussed in the previous steps, the extent of impact of climate-related risks is influenced by natural factors, cultivation, and infrastructure conditions. This entails no single adaptation plan for all regions to address all types of climate risks. Each region should develop an adaptation plan suitable to the extent of risks present and production characteristics. The results ofStep 2 will help CS-MAP implementers in developing the right individual plans for the region.Recommend adaptation plans based on scenarios and extent of climate-related risks for each region and sub-region.• The map of adaptation plans for each climate-related risk in each scenario for a specific plant under a specific season. • Adaptation plans specifically defined for all production regions/sub-regions on the mapImplementers should have a deep knowledge about the natural and production characteristics in the region to develop the adaptation plans. This is why the implementers are usually local officers experienced and knowledgeable about the region, but they can also be authorities in agriculture, irrigation, natural resources and environment, and related industries, as well as extensionists and farmers.Methods/tools FGD (Appendix 1) and can be complemented with modeling (Appendix 6).Necessary tools for this step: paper map, clear film on which the scope and extent of risks are drawn in Step 2, and erasable colored pens.Before discussing the adaption plans, the facilitator should evaluate with the FGD participants how risks are distributed over the region and what causes them, whether perceived or scientific. This evaluation helps the participants understand better the regional landscape and organize the information presented. To recommend adaptation plans, the participants will be instructed by the facilitator to lay out the climate risks following the format below (Table 2). The facilitator will help facilitate the meeting of the participants about the adaptation plans following the methods specified in Appendix 5 and for each region as defined in Table 2.No single adaptation plan will be made. The plans are developed based on risks present in the region and its characteristics. In general, a plan can either be a structural measures or nonstructural measures.In this guidebook, structural measures refer to \"hard\" interventions to overcome and reduce climate risks, including building a dike system to limit inundation caused by floods; digging canals and building pump stations to carry irrigation water to prevent drought; and building culverts to prevent saltwater from penetrating deep into the fields, among others.Structural measures are often highly efficient and easy to measure but are costly and take time to be constructed. They are only suitable for medium-and long-term adaptation plans and difficult to implement for locals with limited financial resources.Non-structural measures, meanwhile, refer to production adjustments aiming to restore and develop the ecosystem. Such solutions include changing the crop structure, using risk-resistant varieties, adjusting seasonal calendars, implementing trainings, and enhancing the capacity of stakeholders.Non-structural measures are typically easier to implement and address the local needs and situation of the region. This guidebook then highly encourages the implementation of non-structural measures to help farmers adapt to climate risks although it does not totally discourage structural measures.The participants will be instructed to list the adaptation plans they deem appropriate for their areas following the format in Table 3. The plans should (1) be practical, (2) require minimum investment, and (3) be implemented quickly. • The FGD participants will use blue pens to write the seasons and crops for each region (e.g., Winter-Spring season is from November to March of next year, abbreviated as WS Rice [Nov-Mar]) and red pens to write the corresponding adaptation plans (e.g., adjustment of Winter-Spring season from October to February of next year, abbreviated as WS Rice [Oct-Feb]). Short codes or marks may be used for solutions in Table 3, which can be updated on the map. • Afterwards, place the map and film with notes on a smooth surface and take photos vertically to save.The notes on the films can be erased for the next sessions only after taking photos of them. This can be done if the supply of film is not enough. Repeat S2.2 to S3.3 for all seasons, risks, and scenarios.The non-structural measures recommended for Tra Vinh Province include the changing of crop structure and sowing schedule. These solutions are suitable to the existing infrastructure, financial resources, management mechanism, and manpower in the province (Figure 6). Government authorities concerning the agriculture, irrigation, and natural resources and environment spaces should be the implementers, together with extensionists and farmers. These people are expected to have a diverse set of knowledge, experience, and understanding of their regions.KIIs (Appendix 2) or FGDs (Appendix 1)KIIs are time-consuming since they should be conducted with individuals. These are also difficult to synthesize due to the volume of data -map products and information -and may even trigger conflicts due to differing opinions. Specifically, the interviewer will first meet and discuss directly with an expert about the outcomes obtained in Steps 1, 2, and 3. The interview will be recorded to note the comments and suggestions of the expert in completing the maps.Due to the complexity and workload of conducting a KII, this guidebook instead suggests to conduct an FGD.As preparation for the FGD, the map details from Steps 1, 2, and 3 should be digitized, presented on base maps, and treated as draft maps. These drafts can be printed in color on an A0 paper or saved in digital format (image, PDF, or GIS layer format).• If paper maps are to be used, clear films should be placed over the maps and colored pens should be used, similar with the methods section of Step 2. • If digital maps are to be used, a projector or large screen should be prepared to show the maps.Dividing the regions for discussions may vary depending on their geographical characteristics and the scale of CS-MAP development. For example, in developing a CS-MAP for a province, FGDs can focus on the district or sub-regional levels.If communes are the topics for discussion, the participants can hold separate sessions for village and hamlet levels to assess and modify the CS-MAP.Since there will always be new participants in the FGDs, the facilitator should discuss first the outcomes in Step 1-including the purpose and requirements-and the maps developed in Steps 2 and 3. In discussing the latter, the facilitator can refer to S2.1 of this guidebook.Below are the steps to modify the draft CS-MAP:• Comment on and evaluate the scope and extent of climate-related risks shown in the maps; • Modify climate-smart maps by season, scenario, and risk; • Give comments and evaluate the adaptation plans shown in the maps; and • Modify adaptation plans by season, scenario, and risk.Modifications can be reflected right away on the digital or paper maps or can be documented, if necessary. After updating the contents agreed in steps 1, 2, and 3 on the digital map, CS-MAP for Soc Trang Province would be modified at DARD through advisory meetings and with the participation of DCP, Department of Plant Protection, and the Department of Water Resources Management (Figure 8).During the first series of modifications (Figure 8.a), a lot of information was written directly on the paper map, making it easy for the participants to compare and update on the digital map. In the next series of modifications (Figure 8.b), the participants were instructed to continue in completing the contents and format of the maps. Step 5: Integrate adaptative plans of individual province into ecological zone and regional planBecause the modification of maps is done in separate areas within the same ecological sub-region, the adaptation plan of one locality may be in conflict with that of another. For example, the upstream region storing water to adapt to drought may entail less water supply for people in the downstream areas. Another example is when two adjacent regions share the same irrigation infrastructure. If they have different sowing schedules, conflicts may arise in operating the irrigation system.These scenarios call for an integration of adaptation plans at the sub-regional and regional levels. Using of water resources and operating and sharing infrastructures and other resources should be coordinated to ensure that the adaptation plans are balanced and harmonized with one another.Agree on the adaptation plans of localities at the sub-regional and regional levels.Expected outcome CS-MAP for each locality agreed upon at the sub-regional and regional levels.Local representatives responsible for planning and managing agricultural production and participated in CS-MAP developmentKIIs (Appendix 2) or FGDs (Appendix 1)The map details from Step 4 should be digitized and presented on base maps with the same scale and reference system. These maps can be printed in color on A0 paper or saved in digital format (image, PDF, or GIS layer format).• If paper maps are to be used, clear films should be placed over the maps and colored pens should be used, similar with the methods section of Step 2. • If digital maps are to be used, a projector or large screen should be prepared to show the maps.The FGD groups should be divided by region/sub-region, consisting of local representatives whose areas share resources or infrastructure for agricultural production. For example, groups can be divided by the scope of an irrigation work, terrain, or crop system. The scale of CS-MAP development and the typical characteristics of the regions may also influence the groupings.In each group, a local representative uses the maps modified in Step 4 to present a summary of climate-related risks and adaptation plans. The facilitator will start the exchange of insights to ensure that the other representatives agree on the maps presented. At this stage, adaptation plans can still be modified following the instructions in S4.3.Repeat steps S5.1 and S5.2 to make agreement on adaptation plans for each ecological sub-region and the entire region.Digitize and present the maps of each locality, sub-regions, and region on the same type of base map with the same reference system and scale. The finished maps can be printed in color on A0 paper or saved in a digital format (image, PDF, or GIS layer format). Advantages CS-MAP is a rather simple method to identify climate-related risks and adaptation plans for a specific area. It is cost-effective and easy to implement because it mainly uses secondary databases and the knowledge of experts and local officers. The participatory mapping allows the outcomes to be synthesized based on the knowledge and experience of stakeholders.With the participation of local officers, the proposed adaptation plans have partly considered the actual capacity of the locality. Moreover, the local orientation in production and adaptation to climate change is also integrated into the adaptation plans, making them highly practical and feasible.Integrating the proposed plans into regular local activities, such as developing annual agricultural production plans and agricultural extension, is also easier. Once the stakeholders, especially local authorities, have agreed on both risk assessment and adaptation plans, finalizing the CS-MAP will not take much time anymore.Another advantage of CS-MAP is its flexibility. Depending on the coverage (national, regional, provincial, district, or commune levels), the participants and outcomes to be targeted may vary in details. Management of CS-MAP, regardless of the level, should be sustainable.CS-MAP is only a support tool to engage relevant stakeholders to develop climate adaptation plans. It cannot serve as the sole basis of the plans or simulate scenarios.Moreover, identifying at-risk regions and recommendations for adaptation plans are based on the personal understanding of the participants. Their understanding may be inconsistent with those of the others, calling for an iterative process that ensures agreement on the outcomes and other information in CS-MAP. The extent of climate risk often changes based on the variability of dependent factors (climate, crops, infrastructure, and land use purposes), which means no adaptation plan is fixed for a long time. CS-MAP outputs should be updated when there is a new forecast of climate-related disasters or changes in crop production plan or preventive infrastructures against natural disasters.In terms of selecting CS-MAP participants, the implementers should ensure that they are knowledgeable and experienced in the natural and production characteristics of their area. The right government authorities should be selected for the adaptation plans to be designed and implemented properly.• Close coordination is needed among experts, locals, and government offices in determining the risks and creating the plans, ensuring that local knowledge is integrated. • CS-MAP requires regular consultation with local experts to ensure that the maps and plans are updated. A fixed group of experts and locals should be assigned to agree on the methods and concepts to be applied. • A manual to be used in Training of Trainers (ToT) can be developed to improve the capacity of relevant stakeholders, locals in particular, in implementing CS-MAP.Currently, CS-MAP has been applied in rice production only, but it is applicable also to other crops. This tool has been improved and successfully applied in the Northern Midlands and Northern Delta, North Central Coast and South Central Coast, and Central Highlands. Not only is it applicable for crops, it can be also used in various regions and even other countries with similar conditions to Viet Nam.Another potential application of CS-MAP is in agricultural insurance. Farmers can improve their awareness and knowledge on climate risks to improve their response and protect their crops n general, CS-MAP offers a foundation for Viet Nam to implement a sustainable rice production with the following benefits: (1) developing production plans suitable to climate risks;(2) reducing damages and losses from such risks; (3) ensuring that the regions, productivity, and other metrics are integrated into climate-smart rice production; and (4) facilitating regional linkages in rice production by strengthening cooperation along the rice value chain.CS-MAP is integrated into the crop production process, considering the season, variety, and change of crop production plan in each region on a seasonal basis and different levels.• The farmers can better adapt to climate change with the maps and plans developed using CS-MAP. • The regular modification of the plans leads to the improvement of adaptation measures in the rice value chain, considering the supply of varieties, agricultural inputs, machineries, and harvest and post-harvest activities, among others. Although production plans and seasonal calendars are recommended by national government offices, locals should also adjust their adaptation measures to suit their specific conditions and production practices. As a result, CS-MAP, in 2020, was tested and applied at the district and commune levels to update the maps in more details to transform the production systems and organize the practices of farmers.CS-MAP was also applied to achieve the highest efficiency in some localities, such as the Hoa Chanh commune (U Minh Thuong district), Kien Giang province, An My commune (Ke Sach district), Soc Trang province, and Tan Phuoc commune (Go Cong Dong district), Tien Giang province for the Winter-Spring season 2020-2021.CS-MAP provides a practical approach suitable for professional officers in many agencies across different sectors and management levels. To assist local officers in adopting CS-MAP, DCP and CCAFS organized training sessions in the provinces affected by climaterelated risks for them to adapt to the extreme drought-salinity in 2019-2020. More than 200 provincial and district officers in seven MRD provinces were trained in the methods and practices to update the maps for their areas, which were developed in 2017 (Figure 14). Implementing CS-MAP is a necessary activity, which should be carried out synchronously in terms of space and time for many crops and with regional linkages to be sustainable. This guidebook will be disseminated to relevant stakeholders working in agricultural production to help them adapt to climate change and will be improved through time. ","tokenCount":"5933"} \ No newline at end of file diff --git a/data/part_3/9928108329.json b/data/part_3/9928108329.json new file mode 100644 index 0000000000000000000000000000000000000000..eafca8214256f8f806ce2cc0fb31ad5e5620245c --- /dev/null +++ b/data/part_3/9928108329.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"6039ead28f9327141819db3d8d822570","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/6a4e34cf-8e72-4961-bcbf-dd004863e016/retrieve","id":"671993627"},"keywords":[],"sieverID":"60fb9ef2-1881-4b1b-b873-ecbf099b87f5","pagecount":"12","content":"OUTPUT 6 Development of genetic stocks and improved gene pools adapted to the sub-humid environments.Activities developed for the Mid-altitude Valleys environment were centralized initially in CIAT Experimental Station, in Palmira Valle del Cauca Department. Table 6.1 lists the most relevant trials, whereas the other tables show results specific to each one. To take advantage of the crosses made that resulted in F1 plants grown at Palmira that failed to produce enough stakes to be included in the Clonal Evaluation Trial (CET) an F1C1 trial is planted. In the case of the Mid-altitude Valleys Environment 884 genotypes were in this situation (Table 6.1) and were, therefore, planted in a trial that is actually a multiplication nursery. There is very little selection in these \"trial\" within the new scheme of selection and evaluation. For the Mid-altitude Valleys environment plants that show any symptom resembling those of Frog Skin Disease are discarded and stakes from them are not collected.As mentioned in Output 3 (Table 3.5) a total of 4302 seeds were germinated and 3144 seedlings from these botanical seeds (targeting this particular environment) were transplanted at CIAT-Palmira in an isolated field. The planting of the F1 stage is isolated to reduce as much as possible infection by diseases that can be found at later stages of the evaluation process. Seedlings from botanical seed are considered to be disease-free and efforts are made to maintain this condition for as long as it can possibly be done. Enough vegetative cuttings from 1050 10-months old plants (grouped in 51 families) from the F1 nursery planted the previous year could be obtained and planted in the CET for the midaltitude valleys (Valle del Cauca Department) on June, 2004. The trial will be harvested in April-May 2005. In addition a second CET trial with 369 clones from the F1C1 was also planted.Project IP3: improving cassava for the developing world Output 6-2 Clonal Evaluation Trials are very large experiments around one hectare in size. A major constraint in their evaluation is the experimental error associated with the unavoidable variation in environmental conditions in such a large experimental plot. Because this is the first evaluation and selection stage (See Output 3) only 7 stakes are available from each genotype. Replication of each clone, therefore, is difficult to implement. On the other hand clones are grouped in either full-or half-sib families. Since many clones are generally available from each family they are randomly allocated in one of three blocks in which the field is divided. In other words instead of planting all the clones from a given family together one after the other, they are split in three groups, which are planted in the three blocks the entire evaluation is divided into (Figure 4.1).A summary of the results from the CET for the mid-altitude valleys environment harvested this year is presented in Table 6.2. The 882 clones included in the CET (as well as few checks) were planted in three blocks with 294 clones each. Table 6.2 provides information on the averages for each of the three blocks. The variation among these three blocks is an error that eventually affects the selection process. By selecting within each block, however, this environmental effect could be effectively avoided. Since selection indexes were calculated within each block there is no major variation for this variable across blocks. On the other hand the average fresh root yields were 25.7, 24.5, and 26.2 t/ha respectively for Blocks 1, 2 and 3. This highlights the large environmental variation that is overcome by stratifying the selection within each block. This difference of almost 2 t/ha in fresh root yield (blocks 2 and 3), it should be pointed out, was found in CIAT Experimental Station which has very uniform conditions compared with those in the sub-humid and acid-soils environments. On average the 180 clones selected across the three blocks yielded 14.4 t/ha of dry matter.The highest dry matter yield, among the selected clones, reached 22.6 t/ha and the minimum was 8.9 t/ha. Both extremes were found in block 3 from the CET (Table 6.2).In Table 6.3 the size (number of clones) and the number of selected clones from each family has been consolidated. This data has been obtained by combining information of the three blocks in which the CET was divided into. The average selection index has also been included. The use of selection index has been already described in Output 3. Family GM 509 had 22 clones scattered in the three blocks of the CET. Twelve of these clones (55%) were selected (Table 6.3). The average selection index for this family was 11.97. A family with an average performance would have a selection index around zero. Positive selection indexes mean an average performance better than the mean of the population. A negative selection index, on the other hand, suggests a performance below the mean of the population. In the case of family GM 509, it is obvious that the general performance of that family was outstanding because its selection index (averages across the 22 clones that conformed this family) was 11.97. Moreover, the average selection pressure in the whole CET was 20% and this family had a much higher percentage of selected clones (55%).At the bottom of the right side of Table 6.3 concentrate the worst performing families. For instance Family SM 3098 had 29 clones scattered in the three blocks of the CET. Only three of them were selected (10%). As expected the average selection index for this family was negative (-20.17).The information from Table 6.3 can be further consolidated around the average performance of each progenitor used to generate the CET. This is so because each progenitor can be used to produce more than one family. For instance Clone SM 1219-9 (Table 6.4) was used as one of the progenitors in eleven full-or half-sib families. Table 6.4 provides information for the most important characteristics of the progenies from each parent. This information is very closely related to the GCA estimates and reflects the breeding value of each progenitor. This information is very useful for defining the parents to be included in the crossing nurseries in the future.The parental clones listed in Table 6.4 have been ordered based on the proportion of clones selected. Clone SM 1219-9 was used, as stated above, in eleven families, which combined included a total of 193 clones, 66 of them were selected (34%). On the other hand, at the bottom of Table 6.4 it is clone SM 1689-18. This clone participated in just one family with 21 clones with an average selection index of -10.2. As expected, a low proportion of clones making up this family were selected (one clone out of the 21 evaluated).As explained in Output 3 (Figure 3.1) the following step in the selection process is the Preliminary Yield Trial or PYT. Clones evaluated in these trials are those selected during the CET conducted the previous year. The seven plants from the CET produce more than 30 stakes. Therefore, they are planted with three replications of 10-plant plots. Each experimental plot consists of two rows with five plants each. Since selections at the CET stage are conducted in there different blocks selections within each block generate a respective PYT. The clones allocated to each block at the CET (and selected) are therefore, competing among themselves also at the PYT stage. The reasons for this are: a) This approach maximized the genetic variability within each by maximizing the number of families present in it; b) The performance of the cassava plant depends heavily on the quality of the stake from which it grew, and the quality of the stakes, in turn, depends on the environmental conditions in which the mother plant grew. By keeping together in the same trial the clones that grew together at the CET a better uniformity of the quality of the stakes is achieved and, therefore, the experimental error at the PYT is somewhat reduced.Project IP3: improving cassava for the developing worldOutput 6-6 . The other CET was to be followed by trials planted in the Huila and Tolima Departments (geographic valley of the Magdalena River). In each CET the selection was performed as usual and PYTs were prepared from each block. However, the trials for the Huila and Tolima Departments could not be planted in that region because of lack of an adequate location. Therefore, during the July 2003-May 2004 season six PYTs were planted in Palmira (Table 6.1). The first three were those originally targeting the Cauca River Valley, and the last three were those originally targeting the Upper Magdalena River Valley.Tables 6.5 to 6.7 include clones that were selected during the CET for the Cauca River Valley harvested in May 2003 and Tables 6.5 to 6.7 provide the most relevant information for PYTs 1, 2 and 3, respectively. Comparison of the mean performance of each trial across Tables 6.5 through 6.7 reveals the kinds of environmental variation that can be found, which is effectively controlled by growing three different trials. Average fresh root yields were 33.62 30.66, and 31.10t/ha respectively for PYTs 1, 2 and 3. Clones representing a total of 31 different families were selected from PYTs grown this year in the mid-altitude valley environment (Cauca River Valley). One advantage of blocking CETs is that no particular family is benefited of affected by particular environmental conditions. This fact is reflected by the number of families that will still be represented at the AYT planted for the June 2004-May 2005 season. About 50 families made the CET planted two years ago and more than 50% of these families are still represented in the third phase of selection. Two families (GM297 and SM 2858) out of the 31 that will be represented in the AYT stand out because eight of its clones were selected, respectively. Family SM 2862 had five clones selected during the PYTs where they were grown. Families CM 9953, GM 234, SM 2865 and SM 2913 had each four clones selected for the following AYT planted this year. Four families had three clones selected, six families had two clones selected, and only one clone was selected from the remaining 14 families. This information is provided to highlight two features of the selection scheme employed: large variability (large number of families) is still available for the third stage of selection (the AYT) yet the system is capable of detecting superior families (in this case GM297 and SM 2858) favoring a larger number of their clones to pass to the next phase of selection.Tables 6.8 to 6.10 provide the results of the PYTs derived from CET for the Magdalena River Valley (Huila and Tolima Departments). These were smaller trials with 36 genotypes, compared with the 100 included in the PYTs for the Cauca River Valley. A large number of families ( 17) had at least one of its clones selected for the following phase of the selection process (AYT). Family GM265 was outstanding with six clones selected, followed by families SM 2802, SM 2834 and SM 2865 with four clones selected. There were a total of 112 genotypes selected from the PYTs for the Cauca and Magdalena River Valleys (75 and 37 clones, respectively). Phenotypic data from these trials were combined and correlations among different variables estimated. Table 6.11 provides information from these correlations. Some of these correlations had been reported before and, therefore, provide no new information.Fresh root yield was positively associated with fresh foliage yield (r =0.51); harvest index (r=0.21); dry matter content (r=0.32); and negatively associated with leaf retention (r= -0.50).It is worth mentioning the positive relationship observed in the combination of trials between fresh root yield and dry matter content. This correlation suggests that it is possible to obtain clones with high fresh root yield and simultaneously high dry matter content. But the most interesting result of the correlations shown in Table 6.11 is the excellent relationship between fresh root yield and leaf retention score. The latter is a 1-9 scale where 1 indicates good leaf retention and 9 represents a poor one. The way the scale for leaf retention operates explains why the correlation has a negative sign. These results come to support the conclusions presented in an article to be published soon (Lenis, J.I., F. Calle, G. Jaramillo, J.C. Perez, H. Ceballos, and J.H. Cock. 2004. The effect of leaf retention in cassava productivity. Field Crops Research, accepted for publication after minor revision). According to the scheme presented in Figure 3.1 after the PYT, selected clones are grouped in the Advanced Yield Trials or AYT. Because of problems encountered in previous seasons, no AYT was planted for the mid-altitude valleys in the July 2003-May 2004 season.Table 6.12 provides information of one Regional Trial (RT) planted in La Dolores. This trial included 64 genotypes evaluated in three replications with 20-plant plots. Four checks were among the 64 genotypes evaluated. The mean performance of this trial was excellent with an","tokenCount":"2152"} \ No newline at end of file diff --git a/data/part_3/9947836654.json b/data/part_3/9947836654.json new file mode 100644 index 0000000000000000000000000000000000000000..096cd823cb133a37c4f6f3674f4928236ddaf325 --- /dev/null +++ b/data/part_3/9947836654.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"b6099a389bf16ee2fed020a78bce9f66","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/4b5c06c5-cb82-4c03-8b62-f3c08f1d48f8/retrieve","id":"-1469292985"},"keywords":["Cassava products","Processing methods","Functional properties","Pasting properties","Nigeria"],"sieverID":"29da471a-3629-4ee0-bbe4-a6bb1a7a9202","pagecount":"12","content":"dried cassava was found to have the highest peak and breakdown viscosities, and toasted cassava the lowest. A significant (p < 0.01) positive correlation was found to exist between dispersibility and the swelling power (r = −0.93) and solubility index (r = −0.84) of the cassava products. Meanwhile, the correlation between dispersibility and the peak (r = −0.75) and breakdown (r = −0.72) viscosities was positive and significant (p < 0.05). Therefore, the authors of this study conclude that user industries such as the food, paper, adhesives, textiles and plywood sectors might require information on the pre-processing of cassava-based feedstock, so as to predetermine the technical usability of such raw materials within their industrial processes.Cassava (Manihot esculenta Crantz) is grown in tropical and sub-tropical parts of the world [1] and serves as the third most important source of calories. It also constitutes about 60 % of the daily calorific needs of those living in tropical and Central America [2]. Added to this, cassava plays a major role in alleviating the African food crisis, due to its availability, tolerance of environmentally stressful conditions, and its suitability for use by peasant farmers within their food systems [3,4]. Cassava has significant potential as a food crop because it is a cheap source of calories and gives high yields per unit area. Nigeria is the largest cassava producer in the world, producing one-third more than Brazil and having almost twice the production capacity of Thailand and Indonesia [5,6]. Despite its large production output, Nigeria is not an active participant in the international cassava market, because most of its Abstract Variations in the functional and pasting properties of four groups of commercial dried cassava product in Nigeria were evaluated in this study, to explore their potential for use as industrial raw materials. I n total, 692 products were analyzed using standard analytical methods. The functional and pasting properties of the samples were found to vary significantly (p < 0.05). Toasted cassava was found to have the highest water absorption capacity, at 467.42 %, and dried cassava the lowest, at 252.57 %. Conversely, processes, to reduce the impact of current monetary policies that limit access to foreign exchange for raw materials importation. However, the differences seen in the physical properties of cassava products have not previously been investigated in a single study using uniform standard scientific test methods. Therefore the aim of this study is to evaluate and compare the physicochemical properties of different processed cassava products, as a way of assessing and providing science-based evidence for their possible industrial uses beyond food.A survey of dried cassava products traded in Nigeria was first carried out. Using a structured questionnaire, direct interviews were undertaken, to collect cassava processing information from both processors and marketers. Both dried and toasted unfermented and fermented cassava products were collected from the cassava processors and marketers. A total of 43 dried unfermented (15 cassava starches and 28 HQCF samples) and 62 dried fermented cassava products (29 lafun and 33 fufu flour), plus 40 toasted unfermented (tapioca) and 201 toasted fermented cassava products (144 white and yellow gari samples and 57 white and yellow kpo-kpo gari samples) was collected. It is important to add that each of the cassava products collected during the survey is a representative of the sampling frame, thus, the unequal sampling size. Samples were kept in polypropylene bags and transported to the laboratory. The samples were separated into the four groups depending on the processing treatments they had been subjected to (Table 1) and were kept at −4 °C until the laboratory analysis was completed.The processing methods used commercially to make the different dried cassava products are described below.The dried, unfermented cassava products include cassava starch and high quality cassava flour (HQCF) (Table 1). Cassava starch is produced by first peeling the cassava roots, then washing, grating, pulverizing, wet sieving, sedimenting, decanting, dewatering, drying and milling [11]. This process is similar to that for HQCF except that for HQCF the cassava roots are not pulverized, sieved or allowed to sediment before dewatering [20].Dried, fermented cassava products include lafun and fufu flour (Table 1). The production of lafun involves peeling the cassava roots, then washing them, soaking them in water cassava output is targeted at the domestic food market. As a part of this, Nigeria has not fully exploited the potential use of its cassava within the non-food industrial manufacturing sector.Author: Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary.Authors and their affiliation correctAuthor: Please check and confirm that the added city name is correct in the Affiliation 4.City in affiliation 4 is correct Significant post-harvest losses of cassava roots occur in Nigeria, as a result of the root's inherent high moisture content, which accelerates microbial deterioration and undesirable biochemical changes [7]. As a result, the roots are processed, to improve their palatability, increase their shelf-life, facilitate transportation and, most importantly, detoxify the roots by removing the inherent cyanogens [8][9][10]. In Nigeria, cassava roots are used in food products such as gari, tapioca, lafun, fufu, starch and high-quality cassava flour (HQCF), among others. All these products differ in their functional and pasting characteristics, which are mostly influenced by the processing methods used [11][12][13].The major processing features of the cassava root are its functional properties and ability to gelatinize, forming thick pastes suitable for human consumption and for use in many industrial applications. This gelatinization process is a property of the crop's starch granules [14], and such functional properties influence the end-use potential of cassava products. For instance, the granulation characteristics of milled cassava flour affect hydration rates and swelling capacities during processing [15], while color determines cassava products' visual appearance and influences the appeal of the finished products [16]. Meanwhile, the water binding and absorption capacities, swelling power and solubility of cassava have a bearing on the carbohydrate quality, viscosity and gelling ability of the flours and starches produced [17,18]. In addition, due to some of the undesirable properties of cassava starch, such as a breakdown in the viscosity and cohesiveness of the gelatinized starch paste, very expensive chemical and physical methods are used to improve the functionality of cassava paste for use in industrial applications. These treatments include adding heat, moisture and pressure (to enhance gelatinization temperature and lower viscosity), and also applying ɤ-ray treatments. Oxidation is used to lower the product's viscosity for use in making paper, while esterification is used to either lower, enhance or stabilize viscosity, and to also alter the pasting temperature. Cross-linking is also used to stabilize viscosity [19].The ongoing expansion of cassava product utilization in Nigeria incorporates the exploitation of such products for multiple uses, taking advantage of the diverse physical and chemical properties conferred to cassava through processing, irrespective of the type of variety or genotype involved. Lately, industrial manufacturers in Nigeria such as paper mills, breweries, feed mills and ethanol plants have been exploring the use of more than one form of cassava product in their industrial against the palm of the hand until a constant volume was obtained, and the bulk density (BD) calculated as follows:The water absorption capacity (WAC) and oil absorption capacity (OAC) were determined using the method described by Beuchat [27]. Each 1 g sample was mixed with 10 ml of distilled water for WAC and 10 ml vegetable oil for OAC and blended for 30 s. It was then allowed to stand for 30 min and centrifuged at 3500 rpm for 30 min at room temperature. The supernatant was decanted and the weight of water/oil absorbed by the flour calculated then expressed as WAC/OAC.This was determined in accordance with the method described by Leach et al. [28], modified for small samples. A sample of 0.1 g was weighed into a weighed test tube, then 10 ml of distilled water was added. The test tube was then heated in a water bath at a temperature of 60 °C for 30 min while being continually shaken. After heating, the test-tube was centrifuged at 2200 rpm for 15 min in order to facilitate the removal of the supernatant, which was then carefully decanted and the weight of the starch paste taken. The swelling power (SWP) was then calculated as:The solubility index (SI) was evaluated by placing l g of the sample into a test tube along with 20 ml of distilled water. (fermenting), bagging/dewatering, drying and milling the cassava [21]. Lafun is also produced by immersing peeled or unpeeled cassava roots in a stream or pool of water, or in an earthenware vessel, then fermenting them until the roots soften, after which the fermented roots are sun dried and milled into flour [21]. The production process for fufu flour is similar to that of lafun, except that for fufu flour, pulverization, and wet sieving comes after fermentation, followed by sedimentation/decantation, bagging/dewatering, granulation and flash drying [22].The only cassava product in this group is tapioca (Table 1). The production of tapioca is similar to that of starch, except that toasting of the extracted starch is involved [23]. The toasting carried out here is comparable to that used for gari; however, gari is a fermented product.Toasted cassava products include white and yellow gari (fine gari), and white and yellow kpo-kpo gari (coarse gari) (Table 1). All the gari products are produced by first peeling the cassava roots, then washing, grating, bagging/ fermenting, dewatering, granulating, sieving and roasting them [24,25]. The key difference between the fine and kpokpo gari products is their particle size distribution; fine gari has a particle size of ≤500 µm, while for kpo-kpo gari it is >1 mm. The addition of palm oil differentiates white gari from yellow gari.This was determined using the method recommended by AOAC [26]. The sample (7 g) was placed into a 50 ml graduated measuring cylinder. The cylinder was then tapped gently maximum viscosity during pasting), the breakdown viscosity (the difference between the peak viscosity and the minimum viscosity during pasting), the setback viscosity (the difference between the maximum viscosity during cooling and the minimum viscosity during pasting), the final viscosity (the viscosity at the end of the RVA run), the pasting temperature ( °C) (the temperature at which there was a sharp increase in the sample suspension's viscosity after the commencement of heating) and the peak time (min) (the time taken for the paste to reach peak viscosity).Analysis of variance (ANOVA), separation of the mean values (using Duncan's Multiple Range Test at p < 0.05) and Pearson correlations were calculated using Statistical Package for Social Scientists (SPSS) software (version 21.0).The functional properties of each of the groups of dried cassava product turned out to be significantly (p < 0.01) different (Table 2). Among the groups, the toasted fermented cassava products had the highest WAC (467 %), swelling power (SWP) (632 %) and solubility index (SI) (4 %), but the lowest least gelation concentration (LGC) (14 %) and dispersibility (42 %). The toasted unfermented cassava products had the highest LGC (16 %) and bulk density (BD) (58 %), the dried unfermented cassava products had the highest dispersibility (74 %) but lowest WAC (233 %), and the dried fermented cassava products had the lowest BD (47 %), SWP (325 %) and SI (2 %) (p < 0.05) levels (Table 2). This implies that toasting, which leads to partial gelatinization of the cassava root during processing, confers high WAC, SWP and SI properties on cassava. Non-gelatinized cassava products such as starch, HQCF, lafun and fufu flour maintained low WAC levels. I n terms of their practical application within the industry, toasted fermented cassava products might find a use as a stabilizer in frozen products such as ice cream, owing to their high WAC. In addition, the higher SI of these products suggests that more hydrogen-bonding sites could be available for interaction with water molecules, so dissolving in adhesive mixtures and enhance their action [20].The high SWP of toasted fermented cassava products might make them useful as thickeners and binding agents in food products, and in the non-food sector as adhesives and pastes/ glues [24]. This might also be indicative of the toasted fermented cassava products' suitability as disintegrants in the Nigerian pharmaceutical industry [33], so possibly reducing the need to import potato and corn starch [34]. The degreeThe test tube was then heated in a water bath at a temperature of 60 °C for 30 min. After heating, the test tube was subjected to centrifugation at 2500 rpm for 20 min. 10 ml of the supernatant was then decanted and dried to a constant weight, with the solubility expressed as a percentage by weight of dissolved starch from the heated solution [29].The SI was calculated as:The method developed by Coffman and Gracia [30] was used in the determination of the Least Gelation Concentration (LGC). Appropriate sample suspensions were added to test tubes each containing 5 ml of distilled water, to make 2-20 % (w/v) suspensions. The test tubes containing these suspensions were heated for 1 h in boiling water (bath) then cooled rapidly under running tap water. The test tubes were further cooled for an hour under the running water, with the LGC determined when the sample from the inverted test tube did not fall or slip.This was determined using the method describe by Kulkarni et al. [31]. The samples (10 g each) were added to a 100 ml measuring cylinder along with distilled water, to reach a volume of 100 ml. The mixture was stirred vigorously and allowed to settle for 3 h. The volume of the settled particles was then recorded and subtracted from 100. The difference was then reported as percentage dispersibility.The pasting characteristics of the samples were determined using a Rapid Visco Analyzer (RVA) (Model RVA-4C, Newport Scientific, Warriewood, Australia) interfaced with a personal computer equipped with the Thermocline Software supplied by the same manufacturer [32]. Each sample (3 g of moisture content; less than 12 %) was weighed into a canister and made into a slurry by adding 25 ml of distilled water. This canister (covered with a stirrer) was then inserted into the RVA. The heating and cooling cycles were then programmed as follows. The slurry was held at 50 °C for 1 min, heated to 95 °C within 3 min and then held at 95 °C for 2 min. It was subsequently cooled to 50 °C within 3 min and then held at 50 °C for 2 min, while maintaining a rotation speed of 160 rpm. The viscosity was expressed as rapid viscosity units (RVU). The parameters determined automatically by the instrument were peak viscosity (the fiber content levels and compactness in their starch molecular structures, as both are more starchy than fufu and HQCF [22,41]. I n addition, the high OAC values seen for lafun and HQCF are typical for food ingredients that retain flavor in food after having been cooked into a paste. The higher the LGC, the higher the amount of starch needed to form a gel [42] meaning only a small quantity of fufu flour and HQCF may be needed to form a gel due to their low LGC, and this means they may be used economically, since less will be required to make food gels. Further, fufu flour and cassava starch may be easily reconstituted during food preparation, and might also mix easily with other food ingredients, both due to their high dispersibility [30]. Toasted, fermented cassava products had higher WAC, OAC, SWP and SI values, but lower values for LGC, BD, and dispersibility (p < 0.05) when compared with unfermented toasted products. Within the toasted fermented cassava products group, white fine gari had the highest BD (57 %), dispersibility (43 %), SWP (635 %) and SI (4 %) values, while yellow kpo-kpo gari had the lowest values for these parameters, but with higher WAC (515 %) levels. The high WAC value shown for yellow kpo-kpo gari implies that its starch structure is more loosely bound together than white fine gari, which has a low WAC [41]. The OAC was higher in yellow fine gari (228 %) but lower in white kpo-kpo gari (224 %) while the LGC value was higher for white kpo-kpo gari (15 %) than for white fine gari (13 %). However, most of these parameters were not significant (p > 0.05) (Table 2). The high OAC value for the yellow fine gari could be attributed to a high affinity for oil shown by gari, which already has red palm oil added to [23]. Sanni et al. [24] reported similar values closer to that of the SI and BD of the gari products in this study, when researching the properties of gari used in Lagos State.Furthermore, when comparing the fermented and unfermented products based on the methods used to dry them, dried fermented cassava products exhibited high OAC, LGC and dispersibility levels, but low WAC, BD, SWP and SI values when compared to toasted fermented cassava products. This means that fermentation followed by toasting might have a larger increasing effect on the WAC level than fermentation and dry in the sun, or than when using pneumatic dryers. The dried unfermented cassava products revealed high OAC, dispersibility, and SI levels when compared to the toasted unfermented cassava products, which had higher WAC, LGC, BD and SWP levels (Table 2). The effect of starch granular integrity might also be responsible for the significant (p < 0.05) negative correlation (r = −0.68) that was found to exist between WAC and the breakdown viscosity of the cassava products (Table 4).This study also found a significant (p < 0.01) negative correlation (r = −0.78) between LGC and setback viscosity (Table 4). This implies that the higher the LGC, the lower of coarseness of starchy foods is measured by its BD [35], implying that dried, fermented cassava product particles are very smooth due to their low BD levels, and so may be used as excipients in pharmaceutical tablets, in paper and in photographic paper powder, as well as cosmetic powders and laundry stiffening agents [36,37]. Furthermore, the low BD of dried fermented cassava products could provide a smooth texture that exhibits fat mimetic properties [23] when used as a soup thickener or in ice-cream formulations. The higher the dispersibility, the better the starch flour reconstitutes in water [31]. This implies that dried unfermented cassava products with a high level of dispersibility may be suitable for applications in which a lot of starches occupy a small surface area, such as for the adsorptive removal of ions from contaminated water systems [38].It was observed that fermentation had an increasing effect on WAC, OAC and LGC, but not to a significant degree (p > 0.05), and a decreasing effect on the BD, dispersibility, SWP and SI of the dry cassava products. Dried fermented cassava products had the highest (p > 0.05) WAC, OAC and LGC values, but lower values for BD (p < 0.05), dispersibility (p < 0.05), SWP (p < 0.05) and SI (p > 0.05) when compared with the dried unfermented products. The high WAC values in the fermented products observed here are corroborated by Gregory et al. [39] who reported that microorganisms usually convert carbohydrates to proteins during fermentation. Protein has been reported to be responsible for high WAC and to a lesser extent, starch and cellulose levels at room temperature [39]. Although not tested during the current study, the varieties of cassava used could influence WAC.Within the dried fermented cassava product groups, lafun exhibited the highest OAC (269 %), LGC (16 %), SWP (331 %) and SI (3 %) levels, but lower WAC (246 %), BD (41 %) and dispersibility (70.28 %) values when compared with fufu flour, and all were significant (p < 0.05), except for WAC, dispersibility, and SWP, which were not significant (p > 0.05) (Table 2). Within the dried unfermented cassava product group, HQCF produced the highest WAC (259 %), OAC (266 %), SWP (583 %) and SI (3 %) values, while cassava starch gave higher values for LGC (16 %), BD (63 %) and dispersibility (82 %) (p < 0.05). The WAC, OAC and SWP values for cassava starch shown here are higher than those seen by I kwegwu et al. [40], but the SI value for the cassava starch reported by Ikwegwu et al. [40] was higher than in this study. I n addition, the WAC and OAC values for HQCF reported by I kwegwu et al. [40] were lower than those seen in this study. The high WAC values as seen for fufu flour and HQCF in their respective groups may be attributed to their higher dietary fiber content; as this increases their ability to hold water combined with the loose structure of their starch polymers, while the low values seen in lafun and cassava starch might indicate lower dietary Assessment of the potential industrial applications of commercial dried cassava products in Nigeria in the textiles industry and during the paper making process, where high viscosities are required [45]. Meanwhile, the low final viscosity of toasted unfermented cassava products makes them suitable for paper surface applications, those in which a lower viscosity and a good film forming capacity are preferred [45]. The differences observed in setback viscosity levels among the cassava product groups reflect the different thermodynamic behaviors of these products during heating, something which might play an important role in their industrial application. The low setback viscosity of toasted unfermented cassava products results in the formation of a more stable paste viscosity during processing, making them useful in several industries, including textiles. In contrast, the high setback viscosity exhibited by toasted fermented cassava products might limit their use in the food and textile industries [44]. The temperature at which the first detectable viscosity is measured in an amylogram is the pasting temperature, which is a reflection of the swelling of the starch paste and is affected by the starch concentration level [44]. The low pasting temperature of toasted unfermented cassava products suggests they may form pastes more easily than other products, and so may be more suitable for food and non-food industrial processes because of the reduced energy costs incurred. However, the variation seen in pasting temperatures among the different cassava products offers a wide range of options in terms of their utilization in the industrial sector [44].In this study, and regarding the effect of fermentation on the dried products, dried fermented cassava products tended to show the highest trough, final and setback viscosities, and also peak time levels (p < 0.05), but also lower peak and breakdown viscosities (p < 0.05), and pasting temperatures (p > 0.05), when compared to the unfermented cassava products. Within the dried fermented cassava product group; fufu flour had the highest peak time (5 min.), pasting temperature (75 °C), and trough (216 RVU), as well as final (331 RVU) and setback (115 RVU) viscosities when compared to lafun, which had higher peak (466 RVU) and breakdown (287 RVU) viscosity values. The peak time and the final and setback viscosities obtained in the fufu flour were comparable to those of the rotary and flashed dried fufu flour products studied by Sanni et al. [46]. Among the dried unfermented cassava products groups, HQCF had the highest of all the pasting properties (p < 0.05) when compared with cassava starch (Table 3).I n addition, the toasted fermented cassava products had higher values for all the pasting properties (p < 0.05) (excluding breakdown viscosity), except for peak time, which was lower but not to a significant degree (p > 0.05) when compared with the toasted unfermented cassava products. The values obtained for the tapioca's pasting properties were lower than those reported by Adebowale et al. [47], except for peak time and pasting temperature, which were the setback viscosity and the more stable the cooked gel might be. Thus, dried cassava products with higher LGC in their respective groups may have a greater potential to produce a stable gel when cooked [23]. Furthermore, a significant (p < 0.01) positive correlation was found between dispersibility and the swelling power (p < 0.01; r = −0.93) and solubility index (r = −0.84) of the cassava products. Meanwhile, the correlation between dispersibility and the peak (r = −0.75) and breakdown (p < 0.05; r = −0.72) viscosities was positive and significant (Table 4).In view of the fact that all the dried cassava products will be cooked in hot water (except gari which may also be eaten having been soaked in cold water) before use in industrial applications, the pasting properties of the products are important in predicting their behavior during and after cooking. The results here reveal that processing methods (products) had a significant effect (p < 0.001) on the pasting properties of all the cassava product groupings (Table 3). However, there was a significant difference (p < 0.05) found in the peak, trough and setback viscosities of the products in different groups. For breakdown viscosity and peak time, though, there was no significant difference (p > 0.05) found between the toasted fermented and unfermented cassava products. Similarly, the dried fermented and unfermented cassava products were found to show no significant difference (p > 0.05) in terms of their pasting temperatures. I n addition, the dried fermented and toasted fermented cassava products were not significantly different (p > 0.05) in their final viscosities (Table 3). Between these two groups, dried unfermented cassava products revealed the highest peak (496 RVU) and breakdown (315 RVU) viscosities, while the dried fermented cassava products had the highest trough (198 RVU) and final (290 RVU) viscosities. Toasted fermented cassava products had the highest setback viscosity (117 RVU) and pasting temperature (78 °C), but the toasted unfermented cassava products displayed the lowest values for all the pasting properties, except for peak time which was high (6 min) (Table 3). The high peak viscosity shown by the dried unfermented cassava products indicates a weak granular structure for its starch when compared to those products with a low peak viscosity [43]. As a result, the dried unfermented cassava products might be inferior to the other cassava products when applied to textiles, due to their high breakdown viscosity. This viscosity may be rapidly lowered on heating under shear, leading to a long and cohesive paste texture, which is something not wanted when applied to textiles [44].Furthermore, the high final viscosity exhibited by dried fermented cassava products makes them suitable for many food products, such as sauces, soups, and dressings, and also might retrograde faster after cooking due to their high setback viscosities (SBVs). This might seem obvious, given the significant (p < 0.01) negative correlation (r = −0.78) between SBV and LGC observed in this study (Table 3). In addition, it was also observed that the PTp value increased as the solubility index fell. This is because a significant (p < 0.05) negative correlation exists between PTp and the solubility index (r = −0.73) (Table 4). The high dispersibility of HQCF could be responsible for its high PV, due to the fact that in this study a significant (p < 0.01) positive correlation (r = 0.75) was found to exist between PV and dispersibility (Table 4).The results of this study show that cassava products can vary significantly in terms of their functional and pasting properties, as a result of the different processing methods used to produce them. In this study, toasted fermented cassava products were found to have the highest water absorption capacities, as well as swelling power and solubility index levels. Dried unfermented cassava products; meanwhile, had the lowest water absorption capacities, and dried fermented cassava products had the lowest swelling power and solubility index levels. Dried unfermented cassava products exhibited a high peak and breakdown viscosities, while dried fermented cassava products revealed high trough and final viscosities. Toasted unfermented cassava products had the highest setback viscosity and pasting temperature levels, but the toasted fermented cassava products had the lowest of all the pasting property values, except for peak time. Therefore, manufacturing industries intending to use cassava products, such as those in the food, paper, adhesives, textiles and plywood making sectors, should seek information on the pre-processing of cassava-based feedstock, so as to predetermine the technical usability of the raw materials applied in their industrial processes.Acknowledgments The authors would like to acknowledge the International Fund for Agricultural Development and the Root, Tuber and Banana Project for their assistance with this work.No conflict of interest is reported. higher. This could be attributed to varietal differences and processing methods. Concerning the toasted fermented cassava products, white fine gari revealed the highest pasting property levels, except for peak time (5.65 min) and pasting temperature (78 °C), which were higher in the yellow kpokpo and fine gari (Table 3). All the pasting properties of the gari reported by Sanni et al. [24] were in the same range as found in this study, except for breakdown viscosity which was lower in this study, and the peak time and pasting temperature levels, which were higher. Furthermore, when comparing the fermented and unfermented products based on the drying methods used, dried fermented cassava products were found to have a higher peak, trough, breakdown and final viscosities than the toasted fermented cassava products, which instead had higher setback viscosity, peak time and pasting temperature levels. All these properties were significant (p < 0.05), except for final viscosity (p > 0.05). The pasting properties were significantly (p < 0.05) higher in the dried unfermented cassava products, but lower for peak time when compared to those of the toasted unfermented cassava products (Table 3).The temperature at the onset of any rise in viscosity is referred to as the pasting temperature (PTp) [46]. The PTp is also a measure of the minimum temperature required to cook a given food sample, which has implications for the stability of other components in a formulation and gives an indication of the energy costs incurred during such a process [31]. In this study, all the cassava products were ready, having been cooked at an average temperature of 75 °C, for less than 7 min, so conserving energy during the cooking process. This was because their PTp is below the boiling point of water. The HQCF, fufu flour, and white fine gari could; therefore, be used in industrial applications such as plywood and paperboard manufacturing due to their high peak viscosity (PV), as this requires a good paste to be produced with moderately high gel strength [48]. Adebowale et al. [49] observed that the higher the breakdown viscosity (BDV) of a starchy material, the lower is its ability to withstand heating and shear stress during cooking. Therefore, tapioca, white kpo-kpo gari and lafun may withstand heating and shear stress during cooking because of their low BDV levels (Table 3). In this study, it was also observed that for the toasted fermented products, the coarse nature of the kpo-kpo gari might have contributed to the low BDV values seen, as there was significant difference (p < 0.05) between fine and coarse kpo-kpo gari products in terms of their BDV values, even when palm oil was added.Additionally, a product with a lower final viscosity (FV) has a lower tendency to retrograde, meaning cassava starch, tapioca, yellow kpo-kpo g ari and lafun might retrograde [21,25,45]. However, fufu flour, white gari, and HQCF","tokenCount":"5206"} \ No newline at end of file diff --git a/data/part_3/9957892512.json b/data/part_3/9957892512.json new file mode 100644 index 0000000000000000000000000000000000000000..a3dd3229b72ab3eabce544860a7293d9ae442aee --- /dev/null +++ b/data/part_3/9957892512.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"e393f0a844d67507b3017d6bbec459b6","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/3ec896f2-45bf-4a1a-ab48-92e4b968a8b0/content","id":"1505142058"},"keywords":[],"sieverID":"eb2553a2-6929-413a-a71c-0755839e6e99","pagecount":"28","content":"The work of researchers and partners has been translating into results and impact in Africa, Asia and Latin America:The rapid response of MAIZE and the Kenya Agricultural Research Institute (KARI) to the outbreak of the deadly Maize Lethal Necrotic Virus (MLN) in eastern Africa in 2012 resulted in quick identification of promising CIMMYT inbred lines and pre-commercial hybrids with resistance or moderate resistance to MLN, offering considerable hope to combating the disease through breeding efforts.Two million smallholder farmers across sub-Saharan Africa are using varieties developed by the Drought Tolerant Maize for Africa (DTMA) project, involving CIMMYT and IITA in collaboration with national agricultural research systems. With better yields than leading commercial varieties under drought conditions -and outstanding harvests when rains are good -the DTMA varieties improve food security and income of farmers in 13 countries. To date, the total volume of drought tolerant maize varieties produced by seed companies has increased from 19,000 metric tons in 2007 to 30,000 metric tons of seed annually across the 13 target countries.The release of the first publicly available inducer line for doubled haploids (DH) in collaboration with the University of Hohenheim was met with great enthusiasm and engagement among MAIZE partners. The DH technology, already in high demand among maize breeders from national agricultural research systems and small and medium enterprises, significantly reduces the cost and time needed for breeding.2012 also saw MAIZE initiate a gender audit to find new avenues for increasing women's participation in maize value chains; the Research Program's gender strategy was approved by the Consortium.The success of Aflasafe TM , a non-toxic and affordable solution to Aflatoxins, one of Africa's most serious food safety issues infecting maize both in the field and in storage, is one of IITA's innovative scientific solutions already improving nutrition and agricultural production in 2012.Finally, MAIZE experts joined forces with the Royal Tropical Institute (KIT) in support of farming-systems focused innovation platforms helping researchers and local partners understand farmers' needs and realities from a 'systems' perspective. The goal? Better mechanisms for multi-stakeholder interaction to share beyond the MAIZE program.Looking back, we feel that 2012 was a year to establish groundwork for success with new models of collaboration and more wide-spread and rapid seed distribution. More than ever, we are ready to make a difference in the lives of millions of resource-poor consumers for whom maize is the preferred staple.As part of the impact pathway on 'Sustainable Intensification and income opportunities for the poor', MAIZE is also establishing new models of collaboration for more wide-spread and rapid seed distribution and working closely with other CGIAR Research Programs such as GRiSP (The Global Rice Science Partnership), WHEAT and CCAFS (Climate Change, Agriculture and Food security), but also the Humid tropics, on the sustainable intensification of maize and cereal based systems in Africa, Mexico and South Asia. This area of work represents significant opportunities for empowering women farmers and collaborators too.Most concerning for us is the emergence of a new highly virulent maize disease (Maize lethal Necrotic Virus) in eastern Africa that has wiped out maize production in parts of Kenya and is now emerging in Tanzania, Uganda and likely Rwanda. Contributing to impact pathway 2, 'Maize varieties -stress tolerant, nutritious & safe', work was initiated in alliance with the Kenya Agricultural Research Institute (KARI), other eastern African National Agricultural Research Systems (NARS) and seed companies to identify resistance sources in CIMMYT germplasm which rapidly need to get integrated into released varieties.Finally MAIZE is also supporting research on postharvest technologies, aligned with impact pathway 3, 'Integrated post-harvest management', which could have a significant impact on reducing poverty. It is already making postharvest technologies available for storage pests and aflatoxin, thereby helping to waste less and stabilize prices at farm level; not just producing more.At the core of MAIZE strategy are nine inter-connected research agendas for the next 5-10 years, called Strategic Initiatives. They cover maize-based farming systems, drought-tolerant varieties, better targeting for new technologies, policies, postharvest management, precision agriculture and institutional innovations.The program brings together over 300 researchers and development partners and distinguishes itself by allocating funds to non-CGIAR researchers, to fill MAIZE research gaps, and capture a wider range of innovative ideas, by launching a call for competitive grants. So far, the MAIZE Competitive Partner Grants initiative awarded thirty-seven grants to researchers in over 20 countries, with a first year budget of over US$ 2.5 million. Grants were awarded for 1, 2 and 3-year research projects.The six projects highlighted are representative of CIMMYT and IITA research directions and partnerships.Click on each image to find out more about our work.The International Maize Yield Consortium (IMIC) evaluates specific training needs of the maize seed sectorThe Instituto de Investigaçao Agraria Mozambique (IIAM) is working on increasing sustainable agricultural production in Mozambique (maize/legume) through conservation agricultureIn West Africa, the Drought Tolerant Maize in Africa (DTMA) project studies the level and intensity of adoption of drought-tolerant maize varieties and constraints to further adoptionIn Nepal, the Hill Maize Research Project (HMRP) supports community-based seed producers to produce/ supply quality maize seeds at a competitive priceThe University of Nairobi is breeding maize lines for resistance to aflatoxins and fumonisins in Eastern and Southern AfricaThe Royal Tropical Institute (KIT) works closely with MAIZE to operationalize innovation system thinking for improved research impact \"Maize is Africa's most important cereal crop, with more than 300 million of Africa's most vulnerable people depending on it for their food security and livelihoods,\" says B.M. Prasanna, Director of CIMMYT's Global Maize Program. \"The emergence of MLN in eastern Africa has dealt a big blow to farming communities and maize-based seed companies.\" MLN infection rates and damage can be very high, seriously affecting yields and sometimes causing complete loss of the crop. Infected plants are frequently barren; ears may be small or deformed and set little or no seed. \"There is no maize farmer in the whole of Nyakinywa area in Kaplamai division who has been spared by the disease, which Dealing with a deadly maize disease in eastern Africa is a danger to food security,\" said area chief Francis Morogo in April 2013in an interview with the Daily Nation newspaper.Control of MLN is complicated by the fact that it is caused by a combination of two viruses that are difficult to differentiate individually based on visual symptoms. Maize chlorotic mottle virus (MCMV) and sugarcane mosaic virus (SCMV) typically produce milder symptoms when they infect maize individually. In combination, however, these two viruses rapidly produce a synergistic reaction that seriously damages or kills infected plants. Maize plants are susceptible to MLN at all stages in their growth, from seedling to maturity. As with all viral diseases in plants, a vector is responsible for transmitting the viruses from plant to plant and field to field; MCMV is carried by thrips and beetles and SCMV by aphids. A recent regional workshop on the MLN disease and its management was organized by CIMMYT and KARI in Nairobi. The workshop helped to establish strong collaboration between research and regulatory institutions in eastern Africa to effectively tackle the MLN challenge. \"Robust multi-disciplinary and multiinstitutional efforts are vital to effectively tackle the MLN challenge in eastern Africa,\" Prasanna states. All stakeholders agreed that the foremost priority is to identify and speed deployment of MLN-resistant maize varieties and emphasized the need to develop an action plan that could lead to accelerated development and deployment of MLN-resistant maize germplasm, with other relevant traits, in eastern Africa.Studies undertaken jointly by CIMMYT and KARI over the past two years have confirmed the vulnerability of most pre-commercial and commercial maize germplasm to MLN under natural disease pressure as well as under artificial inoculation. More encouraging, however, was the identification of promising CIMMYT inbred lines and pre-commercial hybrids with resistance or moderate resistance to MLN, which offer considerable hope to combating the disease through breeding efforts.Together, CIMMYT and KARI are now planning to establish a centralized MLN screening facility for eastern Africa at the KARI Livestock Research Farm in Naivasha to facilitate reliable screening of maize germplasm and deliver MLN-resistant varieties to replace existing susceptible cultivars as quickly as possible. \"Besides accelerated development and delivery of elite MLNresistant products to farmers, our aim is also to build the capacity of regional institutions for developing robust breeding pipelines to incorporate MLN-resistant germplasm, and ensure that farmers have access to such products at the earliest opportunity,\" Prasanna adds.\" Robust multi-disciplinary and multi-institutional • Mild to severe mottling on the leaves, usually starting from the base of young leaves in the whorl and extending upwards toward the leaf tips. 'Innovation platform in MAIZE projects' is a forum for stakeholders along the value chain, from farmers and extension agents to private sector, seed companies and government officers. Innovation platforms are a means to achieve multiple stakeholder engagement over complex issues. They are particularly useful in agricultural development. Agricultural issues tend to be complex, involving many different biophysical, socioeconomic and political factors and concerning various formal and informal institutions. By bringing together stakeholders from different sectors and levels, innovation platforms can be highly effective at both identifying and addressing these issues.The four-month research exercise focussed on how stakeholder collaboration takes place within a number of MAIZE projects, and where it could be improved.\"We aim to look beyond the role of the researchers to understand how markets, policy, community dynamics and other local actors influence farmers' livelihoods,\" Wongtschowski explained at the project outset. \"From there, mechanisms for multi-stakeholder interaction will be designed and implemented or strengthened; then the whole process will be documented and shared within and beyond the MAIZE Program.\"KIT reviewed 11 projects that fit under the umbrella of MAIZE. This included a desk review of project documentation, an interview of project managers from nine of these projects, and two intensive field visits. KIT particularly observed how scientists and other stakeholders interact within each of these projects.To what extent are farmers, traders, NGOs and other stakeholders part and parcel of decision-making about what the project focuses on? How do they use the information generated by the project on the ground, and then provide feedback to researchers?For many projects, innovation platforms are intended to support collaborative decision-making. However, MAIZE was concerned that these were not always being put to optimal use to adequately influence the research agenda. Jens Andersson, an innovation systems scientist based in Zimbabwe, is aware of the issues. \"At CIMMYT, we look at innovation platforms as a means to reach impact at scale, or as a vehicle for technology transfer,\" he says.Simply creating an innovation platform is not enough to achieve effective collaboration and stakeholder input. \"We have to be very wary of those who talk very little,\" warns Andersson, alluding to the often silent majority of women at farmer meetings.Bruno Gerard, director of the Global Conservation Agriculture Program (GCAP), points out other challenges facing innovation platforms and systems, which he says are often resource intensive and difficult to scale out and up due to their context-specificity. But, he adds, \"They are critical for better understanding of social processes within farming systems and for putting technical innovations in context, as they can provide important missing knowledge for researchers, farmers and other actors, including the private sector, in a co-learning fashion.\"One question that often arises during discussions on agricultural innovation platforms is whether it should be the researcher's role to facilitate an innovation platform, or whether this should be carried out by another actor, such as a farmers' organization. \"As researchers we have to be careful to intervene more as a catalyst and honest broker and not to be too central, in order to achieve positive, long-term changes,\" says Gerard. \"We have to think of a good exit strategy from the beginning.\"The results from the KIT review have now been used to select a number of candidate projects as pilots. By June 2013 these pilots will be in full swing and will support the use of innovation platforms to collectively shape the research agenda and to implement such an agenda together with other stakeholders. Less teaching and more joint learning will be key. \"Ultimately, it is how this interactive learning is applied to meaningfully craft and apply solutions to the identified challenges that include equitable access to knowledge, inputs, markets, capital, and equipment,\" adds Michael Misiko, CIMMYT innovation specialist. Currently the team is working with three projects, to document lessons for the scientific community and practitioners. The two innovation specialists (Andersson and Misiko) joined the MAIZE team in November 2012 to further support these efforts. Conservation agriculture is a set of basic principles that includes eliminating the traditional ridge-andfurrow tillage systems, keeping crop residues on the soil, and rotating or intercropping maize with other, mainly leguminous, crops. The approach is designed to improve soil structure and fertility, increase infiltration and water retention, and reduce labor, erosion and greenhouse gas emissions. CIMMYT cropping systems agronomist in southern Africa, Christian Thierfelder, explains that for small scale farmers who rely on rainfed agriculture, the benefits of conservation agriculture are dramatic during dry spells: \"residues retained as surface mulch, root holes and earthworms catch and channel falling rain and impede evaporation.\" In 2012, maize in conventionally-managed plots wilted in Conservation agriculture: Coping with water scarcity the drought but in fields managed using conservation agriculture, there was no problem.In the 2006/2007 cropping season, CIMMYT began work with six farmers at Lemu near the Balaka Township in southern Malawi, to study, test, and promote conservation agriculture. \"A key strategy has been to establish demonstration and validation plots run by farmers in their fields, with backstopping from extension, research and NGO partners,\" says Thierfelder. \"We provide the farmers with seed, fertilizer, and herbicide, which they pay back to a community project or fund at harvest time. For farmers, the test plots are successful examples of conservation agriculture and serve as learning centers. We group them strategically for use as on-farm trials to evaluate the performance of conservation agriculture across years. This is particularly important as conservation agriculture is a longer term investment for farmers -the real benefits become significant only after 3-5 years. \" By the 2011/2012 crop season, nearly one fifth of the area's 2,200 farmers had adopted conservation agriculture practices.Although there is a lot of documented evidence on the benefits of conservation agriculture, there are still challenges to overcome, including limited access to fertilizers and herbicides or the tradition and mindset of using the plow, but extension efforts, research, messaging for conservation agriculture, and demonstration and validation plots have been paying off. Uptake in areas where the regional NGO Total LandCare (TLC) partnered with CIMMYT has been greater. TLC not only extended the principles and practices of conservation agriculture to farmers in target communities but also established a soft loan scheme for farmers to access critical inputs such as improved seed and herbicides. TLC's Zonal Manager John Chisui explains that the negative effects of climate change are also playing a role in farmers' acceptance of the new cropping system: \"People can see that under conservation agriculture, the crop will do much better and can withstand seasonal dry-spells, compared to conventional approaches.\"In Malawi, draft animals are scarce and traditional cultivation for maize involves as many as 160,000 hoe strokes per hectare. Farmers who use the traditional ridge and furrow systems for land preparation, which involves hard manual labor of approximately 20-25 days to create the ridges per hectare, can now plant the crops directly into the soil by just using a pointed stick to make a hole for fertilizer and seed under conservation agriculture. If herbicides are used for weed control it saves the farmers another 10-15 labor days. This extra labor can effectively be used to add value to farm products, move to more labor intensive higher value crops, expand the cultivated land area, sell farm produce in the market, take up off-farm labor or go fishing, which is common along the lake shore. Hunter and Danielsen will now assess how gender is currently addressed in projects across the CRPs and how it can be strengthened. The gender audit will take place between January and May 2013 and will include assessments of gender knowledge, attitudes and awareness of research staff and managers of the lead centers and key partners. This will lead to a detailed gender action plan.Amare Tegbaru: Transforming the power relations between men and womenIn my work, I push for the transformation of gender relations, as efficiency and managerial approaches cannot transform the power relations between women and men. A gender transformative approach is a complex social phenomenon based on people's interests, motivations, relationships, and innovative actions that are embedded in their historical and cultural situations.My work has always been at the community level. I try to work bottom up and produce evidence of how agriculture research for development and commitment to gender concerns can successfully reduce poverty in the sector. I am also hopeful that evidence produced at grass root level following respectful approaches involving women and men on their own terms, will influence policy makers at all levels to support gender equality.Amare Tegbaru is IITA gender specialist \" Addressing the gender disparities between women and men farmers in the developing world represents a significant development potential in itself. The FAO 2011 State of Food and Agriculture report estimates that if women had the same access to production resources as men, they could increase yields on their fields by 20-30%. According to FAO, this alone would raise total agricultural output in developing countries by 2.5-4%, which, in turn, could reduce the number of hungry people in the world by 12-17% or 100-150 million people. \"The Gender in Agriculture Sourcebook, (World Bank, FAO, IFAD), 2009The With the support of the Australian International Food Security Centre (ACIAR), the Farm Mechanization & Conservation Agriculture for Sustainable Intensification (FACASI) project will begin in 2013 in Kenya and Tanzania, implemented by CIMMYT and its national partners. The aim is to identify appropriate technologies based on 2-wheel tractors (2WT) and test innovative partnerships with agribusinesses to deliver these technologies to smallholders. The project is expected to reduce labor drudgery -which is mainly placed on women, increase maize and wheat productivity, and create rural employment.MAIZE will contribute to and benefit from this project, and lessons learned will be shared with IITA and ICARDA.In addition to generating a large body of knowledge and establishing strong linkages amongst stakeholders, it is anticipated that over 360 rural service providers willInnovative agricultural technologies for sustainable intensification emerge, 9,900 farms will benefit from 2WT-based CA, while over 25,000 farms will benefit from 2WT-based transport, threshing and shelling. \"The adoption of 2WTbased technologies will alter rural-urban migration trends thanks to the creation of new livelihood opportunities in rural areas and the transformation of farming into a profitable, drudgery-free and attractive sector for the youth,\" adds Baudron.Airborne remote sensing is another innovative technology that is supporting precision agriculture, providing an efficient method for the rapid collection of data over a specified area. Consisting of a multispectral and a thermal camera, software and methods allowing for semi-automated image processing, the potential of this technology is enormous: using the multispectral camera in an airplane as a 'flying GreenSeeker' could enable researchers to diagnose nitrogen needs to optimize yields for 1,000 hectares in an hour.In Recent advancements in DNA-sequencing and phenotyping technologies have created a timely opportunity to cost-effectively unlock the value of these collections for the benefit of farmers by assisting breeders to develop better cultivars more quickly. The Seeds of Discovery (SeeD) project aims to genetically profile entire genebanks and make the resulting information (molecular and phenotypic descriptors) freely available to breeders, agronomists, and agricultural researchers worldwide. By combining the power of next-generation sequencing platforms, field trials and GIS based tools, maize (as well as wheat) germplasm collections will be mined for novelSeeD: Unlocking genetic potential alleles controlling adaptive traits and yield potential.Information about phenotypic and allelic diversity in ancestral varieties can be leveraged in marker assisted pre-breeding to mobilize those useful alleles into breeding programs.\"SeeD is about 'letting the genie out of the genebank bottle',\" explains Peter Wenzl, SeeD Project Lead. \"We are mobilizing novel, useful genetic variation into breeding programs to accelerate progress towards higher-yielding, climate-ready cultivars. MAIZE provides the knowledge framework enabling better targeting of our research considering end user needs and adoption processes.\" In 2011 SeeD reported on the creation, phenotyping and genotyping of one of the world's largest population for genome-wide association studies, a process to help identify genes and gene combinations of importance (such as heat tolerance) which can be then tracked to help combine the best genes together through breeding to create climate ready varieties. In 2012, the phenotyping of these materials with many Mexican collaborators continued, and the first exciting analysis results started to emerge. SeeD also initiated computer simulations to identify the best approaches to select and recombine these materials, and developed and validated a new approach to characterize maize populations using cutting edge DNA sequencing approaches.Visit the SeeD of Discovery website Aflatoxins are invisible, tasteless poisons produced by Aspergillus flavus, a mould commonly found infecting crops such as maize and groundnut, both in the field and in storage. While acute exposure to aflatoxins can kill, prolonged exposure leads to impeded growth, liver disease, immune suppression and cancer, with women, children and the poor most vulnerable. Aflatoxins also impact on international trade, with African economies losing US$450 million every year from barred exports.Aflasafe™ works by 'pushing out' harmful, toxinproducing strains of A. flavus from the field through the deliberate introduction of indigenous but non-toxic, harmless strains -a process known as 'competitive exclusion'. Heat-killed sorghum grains are coated with the non-toxic fungal strains and scattered by hand inTackling the toxins with aflasafe™ the field prior to crop flowering. Field tests in Nigeria between 2009 and 2012 showed that use of aflasafe™ consistently reduced aflatoxin contamination in maize and groundnut crops by 80-90%.In 2012, these findings led to the adoption of the biocontrol product by several extension agencies in Nigeria. IITA is currently constructing a low-cost manufacturing facility at its Ibadan campus in order to optimize the production process for aflasafe™ so that it can be taken up by other developing countries. The facility, which will be able to produce up to 5 tons of aflasafe™ per hour, will also test commercialization models. Market linkages between aflasafe™ users and quality conscious food processors are also being developed, in collaboration with the private sector. With aflatoxin-contaminated maize in poultry feed a major risk to animal health, links are also being developed with poultry producers.The success of aflasafe™ has led to an expansion in biocontrol research in Burkina Faso, Ghana, Kenya, Mali, Senegal, Tanzania and Zambia. In Kenya, IITA has identified four non-toxic strains of A. flavus in locally grown maize, which are now being used to make a Kenya-specific product called aflasafe™-KE01.Researchers from the Institute are currently gathering efficacy data to determine where the product will be deployed. \"We are happy with the innovative scientific solution which has done well in Nigeria,\" says Dr Wilson Songa, Kenya's agriculture secretary. \"The ball is now in our court, and we shall move fast…We needed the technology yesterday!\"Senegal is also developing its own version -aflasafe™-SE01, and IITA is optimistic that both Kenya and Senegal will have their own fully registered versions of aflasafe™ in two years, with Burkina Faso reaching the same point in three years and Zambia in four. Meanwhile, at the 2012 G20 meeting in Mexico, G20 leaders announced that aflasafe™ will be one of three initial pilot projects to be supported under the 'AgResults' initiative, which aims to incentivize the adoption of agricultural technologies by the poor.IITA's experience in Nigeria suggests that the cost of aflasafe™ -at US$1.5 per kg, with a recommended usage of 10 kg per hectare -is affordable for most farmers in the country. The Institute calculates that adoption of biocontrol with other management practices will reduce aflatoxin contamination by more than 70% in maize and groundnut and increase crop value by at least 25%, as well as improving the health of women and children. With mass production and commercialization of the technology now imminent in Nigeria, the country's Minister of Agriculture and Rural Development, Hon. Akinwumi Adesina, has been enthusiastic in his support. \"For too many years we have neglected to regulate aflatoxin in the production of food,\" Adesina says. \"IITA has worked tirelessly to control aflatoxin and educate farmers on the harmful effects of this toxin. When we consider the potential benefits of aflasafe™, it is ultimately smallholders who stand to gain the most,\" he concludes.In Mexico, like most developing countries, only a small proportion of fields are planted with high quality seed. More than three-quarters of maize grown in the country, for example, is traditional varieties which, despite having the advantages of being tough and suitable to local conditions, only produce relatively small harvests. And with climate change, many once perfectly-adapted traditional varieties are now struggling.How, then, to reach small farmers with improved, locally adapted seed that can withstand the rigours of poor soils, rainfed cultivation and adverse weather? Sophisticated maize hybrids produced by transnational seed companies give unbeatable performance on irrigated land with appropriate inputs, but struggle in more typical Mexican farming conditions. But small and medium-sized seed companies offer a solution, a way to connect the latest in advanced crop breeding with the realities of smallholder maize production.Maria Esther Rivas is director general of a small seed company, Bidasem, based in the central Mexican plains region known as the Bajio. Each year her company produces around 10,000 bags of maize seed, each holding 22.5 kg. The company's four maize hybrids have all been developed from freely-available CIMMYT parent lines. \"Our materials may not be very pretty, they're not as uniform as others, but they're really tough. They Seed chain -From lab to field withstand drought well, and when excessive rains are a problem they stay on their feet and can give a good yield,\" says Rivas, a striking, elegant woman who as a child spent hours with her agronomist father talking to farmers and understanding their seed needs. \"Producing our own hybrids wouldn't be possible if we didn't have the germplasm from CIMMYT,\" she says. \"Without CIMMYT, we wouldn't exist.\"The relationship between Bidasem and CIMMYT is now deepening through their participation in Mexico's Sustainable Modernization of Traditional Agriculture (MasAgro) initiative, launched in 2011 to help smallholders raise and stabilise their crop yields and cope with climate change. The initiative is a partnership between the Mexican government, CIMMYT and numerous public, private and farmer organisations. Seed companies and research organisations have been invited to enter hybrids in regional field trials under rainfed conditions and in different locations.\"Bidasem and other seed companies are incredibly important partners for me,\" says Marc Rojas, one of MasAgro's coordinators. \"One of our aims is to make that bridge [between crop breeders and farmers] much more efficient and get products out into farmers' fields as quickly as possible. Our vision is for seed companies and research organisations to work together as one team.\"Rivas and her production manager have attended three MasAgro training courses between them -two on seed production and one on seed company administration. \"Having MasAgro and CIMMYT gives me a lot of strength, a lot of confidence in moving forward. I think we'll advance much more rapidly,\" she says. Her main concerns in doing so are the challenges of water stress and high temperatures. But working in partnership she feels confident that she will be able to meet the challenge and provide a link in the chain that brings the best possible seed from laboratory and trial plot to the fields of central Mexico.The Sustainable Modernization of Traditional Agriculture (MasAgro) Project promotes the work of Mexican growers through the support of organizations dedicated to improve agriculture in Mexico. The Mexican Government and the international scientific community collaborate to enable small and medium scale rainfed growers to harvest high and stable yields, and to raise their income sustainably.Studies the genetic composition of maize and wheat to identify the natural qualities that make certain seeds or varieties of both grains more tolerant to disease and to the effects of climate change on agriculture.Latin America (IMIC-LA)Builds capacities of local maize seed producers to develop and to distribute different types of low-cost maize varieties and hybrids for growers with limited resources. Makes state-ofthe-art technologies available to seed breeders so that they may, in turn, meet the growers' demand for improved seed at affordable prices.Adopts a coordinated approach to research at the international level with an aim to raise wheat's yield potential by 50% over the next 20 years.Accelerates the integration of all stakeholders in the national agrifood chain through innovation networks, and promotes conservation and precision agriculture to raise the productivity, profitability and sustainability of Mexico's rural sector. Jointly implemented by CIMMYT and IITA in collaboration with National Agricultural Research Systems, the DTMA initiative has been responsible for the development and dissemination of more than 100 new drought-tolerant maize varieties to farmers in 13 project countries -Angola, Benin, Ethiopia, Ghana, Kenya, Malawi, Mali, Mozambique, Nigeria, Tanzania, Uganda, Zambia, and Zimbabwe -between 2007 and 2012. The project uses conventional breeding, where plants with good drought tolerance characteristics are cross-bred to produce varieties which are productive, nutritious and grow well in African conditions. In particular, the DTMA varieties provide farmers with better yields than leading commercial varieties under moderate drought conditions, while giving outstanding harvests when rains are good.In 2012, a total of 4,387 early generation and 1,000 advanced maize inbred lines with varying maturity, derived from diverse sources, were planted for evaluation'Defying drought for more productive maize at two locations. Inbred lines with desirable agronomic and stress tolerance traits will be selected from the 4,387 early generation lines for further inbreeding in 2013.Several inbred lines among these were also screened under controlled drought stress in 2012 and promising lines were selected for testing in hybrid combinations. Drought tolerant inbred lines with adaptive traits have been used to develop 700 new hybrids, which were split into 14 separate trials and evaluated under controlled drought stress, along with commercial hybrid checks, at Ikenne, Nigeria, in 2012. These trials sustained yield reductions of 65-81% due to drought stress.Among the 700 hybrids, 114 produced grain yields varying from 2-3.5 metric tons (MT) per ha, whereas the commercial hybrid checks produced grain yields varying from 0.9-1.9 MT per ha. The selected best hybrids will be tested in advanced hybrid trials (Stage 2) in multiple locations and under drought stress in 2013. ","tokenCount":"5076"} \ No newline at end of file diff --git a/data/part_3/9960275351.json b/data/part_3/9960275351.json new file mode 100644 index 0000000000000000000000000000000000000000..3e725ea7995e7bfb44bef9d0441f592ee30b89b3 --- /dev/null +++ b/data/part_3/9960275351.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"42e5c10636cbf82fe4d7bc18e4752e06","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/eae22a2b-4b9e-49cb-931a-2437322b64ba/retrieve","id":"243594565"},"keywords":[],"sieverID":"12946e54-cb0e-4c2f-8809-87a0c3a8409a","pagecount":"15","content":"CGIAR is a global partnership that unites organizations engaged in research for a food secure future.The implementation of research activities related to the Mali small ruminant value chains have been seriously challenged by the political crisis that broke out in the first quarter of 2012 in Mali. The security situation did not allow the continuation of activities in Mali and the International Livestock Research Institute (ILRI) staff had to leave Mali and were relocated in neighboring countries. ILRI management will eventually make an objective assessment of the likely evolution of the situation in Mali and make decisions about pursuing the value chain activities in Mali or proposing the relocation of the CRP work to another country which present similar conditions with that of Mali and that would ensure the realization of the value chain research and development objectives.However, it was possible to identify and engage with key partners for preliminary participatory diagnosis of small ruminant value chains in Mali and the gathering of critical information that has helped shape the Mali small ruminant project. This information was exploited to develop a proposal for mobilizing resources to undertake the design of the assessment of small ruminant value chains and to pilot test strategic value chain upgrading interventions based on known key constraints and opportunities. This funding will be critical for initiating the engagement in Mali.The Project on sustainable Management of Globally Significant Endemic Ruminant Livestock of West Africa (PROGEBE) under CGIAR Research Program on Livestock and Fish made significant progress in developing guidelines used by countries to conduct detailed diagnosis of their breeding programs and to use ILRI recommendations to improve on the efficacy and efficiency of their breeding plans. The analysis of incentives (disincentives) that motivate farmers to keep ERL or to change the composition of their herds and flocks has led to policy recommendations designed to manage sustainably these animal genetic resources (AnGR). Significant processes have been made in the formation and operation of innovation platforms for collective action, better coordination of activities at the site level and for mutual learning among various actors.Work related to the Mali small ruminant value chain started well with the identification of key partners in Mali that could play a role in value chain research and development efforts. Visits to potential sites and preliminary data gathering informed the choice of areas where the CRP research activities could be carried out for maximum impact. The choice of target sites in Mali has been validated by stakeholders. Key constraints and opportunities for the upgrading of small ruminant value chain were analyzed in a participatory manner and were used to start the resource mobilization process through the development of a proposal and approaching donors for funding.PROGEBE continued its support to the improvement of national breeding programs with the formulation of recommendations emanating from detailed diagnosis of existing breeding plans. Key findings regarding incentive (disincentive) systems will form the basis for policy recommendations geared towards the sustainable management of endemic ruminant livestock of West Africa.Reports on Mali small ruminant stakeholders engagement highlight key constraints and opportunities for value chain development, the list of key partners, the confirmation of the relevance of targeted value chains, suggestions for targeted potential sites for research and development activities. Efforts were made to start the resource mobilization process for value assessments and pilot testing of selected value chain upgrading interventions.PROGEBE developed a framework for participatory diagnosis of national breeding plans and guidelines to improve existing breeding programs. Findings from 2012 research activities under PROGEBE indicate the impact of key biophysical and policy drivers that influence farmer's decision to change the composition of their herds and flocks.National teams are making use of ILRI recommendations from the diagnosis of breeding programs to redesign and better manage these breeding plans. It is also expected that increased investments to support breeding programs will result from the increased awareness of national decision makers on the requirements for sustainable breeding programs that were highlighted by ILRI. See social process assessment report % of tools that have an explicit target of women farmers --% of tools assessed for likely gender-disaggregated impact -- ILRI has contributed a great deal in improving the technical capacity of national partners responsible for national breeding programmes in Senegal, Guinea and The Gambia in planning and implementing genetic improvement initiatives. Their increased awareness on challenges for a sustainable breeding programme which brings about significant changes in terms of productivity gains was also a key outcome of ILRI interactions with national partners.The situation in Mali is still volatile and it is difficult to predict how long that would take to settle down. However, although working in Northern Mali will be challenged, it may be less risky to work in southern Mali sub-humid zones. This still needs to be considered cautiously if proper engagement with partners has to be achieved and with respect to the plans of ILRI to relocate its staff in neighboring countries.Some lessons learned from PROGEBE and that are relevant to the Mali small ruminant value chains include: The approach of exploiting existing knowledge through the review of existing promising innovations and their participatory screening, validation and pilot testing under the framework of innovation platforms seems worth considering by the Mali small ruminant value chain.  However, innovation platforms establishment and effective operations are still challenged by the absence of clear orientation, the absence of skilled facilitators, sustained funding and limited actors' engagement.  Despite serious efforts in improving the capacity of countries to design and run effective breeding programmes, lack of qualified human resources and sustained funding are still key challenges for the success of these initiatives.","tokenCount":"934"} \ No newline at end of file diff --git a/data/part_3/9960910985.json b/data/part_3/9960910985.json new file mode 100644 index 0000000000000000000000000000000000000000..6cb814e55fd0e6b62f0715458fc222d2061af6b4 --- /dev/null +++ b/data/part_3/9960910985.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"3e694c3aa5846f64cc3724e71a6f21d9","source":"gardian_index","url":"https://publications.iwmi.org/pdf/H001905.pdf","id":"-598512283"},"keywords":[],"sieverID":"9ce0be34-e2b1-451a-83d3-c5800ee35f12","pagecount":"11","content":"Water resource development in Sri Lanka dates back several centuries. In reccnt times the Government of.Sri Lanka has undertaken a number of multipurpose water development projects primarily to increase agricultural production and hydroelectric power generation, and to generate additional employment. Environmental changes associated with development of irrigated agriculture and human settlements are known to have a great impact on vector-borne diseases. This paper prcsents preliminary findings from two projccts investigating the relationship between water development systems and mosquito vectors. 'All the authors except W.M. Nanayakkara patl#;,paletl in Project 1. only P R.J Herath and W M Nanayakkara participated in Project 2. 'For detailed information on the arboviral component of tliis study, please refer 10 the articie In tliese proceedings b, , T. Vitarana el al. species Mahaweli Kirindi (Culicines) System C Oya Mimomyia (Mimomyia) hybrids M. (Fhrleptiomya) I U L O ~C ~S ~E Ccquillcttidia (Coquillettidis) erassip Mansonia (Mansonoides) annulifera M. (Mnd) indiana M. (Mnd) uniformis Aedn (Aedcarnyia) catasticla A. (mucidus) scataphagoides A. (Wnlaya) gubernatoris A. (Chrisk~pheniarnyia) thomsonii A. (Stegomyia) \"rgypti A. (Sg) albopictus A. (Adimorphus) alboscutellalus A. (Adm) jamcsii A. (Adm) pallidmtriatus A. (Adm) piper.wlatus A. (Adm) taeniorhynchoides A. ( A h ) vcxans vexans A. (Adm) \\,ittatus A. (Vrrrallina) butleri A. (Neomelaniwnion) linearopennis Armigeres (Armigeres) subalbatus Culex (Lutria) i\"%ca\"\"S C. (Eumelanamyu) minutisirnus C. (Culiciomyia) nigrapunctatus C. (Cui) palliduthorax C. (Culex) biueniorhynchu C. (Cux) gelidus C. (Cux) mimulus C . (Cur) pseudo vishnui C. (Cux) quinquelasciatus C. (Cux) siticns C. (Cux) tritaeniorhynchus C. (Cux) vishnui C. (Cux) whitmorei C.(Cux) hutchinsoni B H Oya A. amnitus A. annulark A. barbirortris A. culicifacirs A. jamcsii A. maculatus A. nigerrimus A. pallidus A. peditaeniatus A. ramsayi A. subpictus A. lessdatus A. vagus A. varuna ~ -An. aconitw An. annu1aris An. brhiruilris An. culicifacier An. jameii An macuialus An. pallidus An. suhpictus An. le~selalus An. vagus An. varuna An. nigerrimus cx. qumquef~cratus Cx. 1riLleniorhynuchs Cx. gelidus Cx. fuscoccphala Ci. pieudovischnui Cx. whilmoiri Ae. alhoplctus Ae. aegypli Ma. \"clifnrmis Ma. annulifcra Ma. indiana Ar. suhalbalw Cx. sp. (others) Ae. sp (olhen)The primary objective of Project 1 was to determine the prevalence and abundance of the mosquito vectors and malaria, filariasis, and arboviral diseases in some water resources development project, in Sri Lanka.' Originally recommended by the WHO/FAO/ UNEP Panel of Expert, on Environmental Management for Vector Control (PEEM), the project yas financed by the World Health Organization (WHO) and carried out under the joint coordination of the South Asia Cooperative Environment Program (SACEP) and the Sfi Lankan Ministry of Health (MOH). Implementation was undertaken by the Anti-Malaria Campaign, Anti-Filariasis Campaign, and Medical Research Institute (Anncx 1). The level of successful implementation of the study can serve, therefore, as an indicator of the efficacy ' and limitations of intersectoral/interinstitutional collaboration.Study areus. Investigations were carried out in selected localities of the Mahaweli Development Project, Systcm C, Zone 2 (Mahaweli CZ), which is an area with a changing environment where irrigation water services and hum;tn scttlemenls have been completed very recently (Map I): and selected localities in Kirindi Oya/l.uiiug;rmwehera Project in southeastern Sri Lanka wheri. xttlements/ resettlements (Map 2) are in prcyrcss and irrigation water services have not yci st:irted. The studies wcre conducted.in each asca in 2 phases of 21 days duration during the wet and dry periods.Experimc\"n/ul procedure. Adult and larval mosquitoes were collected outdoors and inside \"cadjan\" (palm leaf) huts using human bait at night, hand collecting techniques, pyrethrum spray, cattle-hailed net traps, bird/pig baited-traps, exit window traps, and larval sampling in both natural and mq-made potential breeding habitats.After species identification of all samplcs, the potential vectors of filariasis were dissected for microfilarial infections. Mosquitoes collected from pig-baited traps were used to isolate Japanese encephalitis UE) virus.Kesuh and observations. This paper summarizes mainly the entomological findings in phase 1. (wet period). Laboratory processing of the material collected in phase 2 (dry period) is ongoing. Among these are a number of species known to be vectors or potential vectors of malaria, filariasis, and arboviral diseases. Figure 1 compares the relative proportions of the different vectors and potential vectors from these areas.Most of the anopheline species recorded are those which are commonly encountered in malarious areas of Sri Lauka. A. culicifhcies, known to be the most important vector of human malaria in the country, was present in very small numbers in both areas. In addition, 10 species of anopheline (A. annularis, A. barbirostria, A. jamesii, A. maculam, A. nigerrimus, A. pallidus, A. subpictus, A. fessellalus, A. vagus and A. varuna) which are considered potential vectors of human malaria in Sri Lanka occurred in both regions4 A. nigerrimus was the predominant anopheline species. Malaria is known to be endemic in both areas. The major breeding habitats of thc nonanopheline species are shown in Tables 2a and 2h.Cukx quinquefaciahrs, the established vector of bancroftian filariasis (due to Wuchereria buncroftQ in Sri Lanka, was the predominant mosquito species in the Mahaweli area and was also present in high numbers at Kirindi Oya. They were found to breed in urbanzation. Although this type of filariasis is believed to he confined to a southwestern coastal endemic belt, it has been shown that the natural populations of C. quinquefasciatus in different parts of Sri Lanka are homogenous and are equally susceptible to W. banc@i infection^.^ In Mahaweli C2, two microfilaria positive cases were found among the human population screened for W. buncrufti infections and an infection rate of 1.72% was detected in C. quinquefmciatus (Table 3).in the area, the spread and stabilization of hancroftian filariasis in these situations can he expected. Mansonia annuliferu, M. uniformis, and M. indianu, whith have been incriminztted previously as vectors of Brugia malayi, causing brugiun filuriask in Sri Lanka, were also found in both areas.C. tritaeniorkynchus, C. gelidus, C. jucocepkala, and C pseudovishnui, which are established vectors of Japanese encephalitis (JE) in Southeast Asia, were recorded in both areas. C. tritaeniorkynchus was more prevalent in Mahaweli C2 than at Kirindi Oya, however, all species were found to he hreetling in rice fields and ground pools in both stud:/ areas. Recent findings suggested that C. tritaen,brhynchus breeds predominantly in rice fields whil: C. gelidus is more commonly associated with ground pools and coconut husk pits. Three containers were surveyed for Aedes were positive for A. aegvpfr larvae in Mahaaeli C2. Many of these containers were rubber tyres which had, collected rain water. A. albopictus showed a Breteau index of 18.8% and 21.8% For Mahaweli and Kirindi Oya areas, respectively.These observations, which several diseases of putilic health importance, predict health hazards to settlers in these areas.Annex 2 shows the intersectoral participation in the project by the different organizations. Collaboration in the project implementation was most effective among three institutions of the Ministry of Health (MOH).Project 2 is a bionomic study of indigenous aiiopheline species in the transmission of human malaria in Sri Lanka and, in particular, the factm related to vectorial capacities in different ecological, epidemiological, and geographical and seasonal situations in Sri Lanka.Environmental changes which occur in major irrigation development projects appear to alter and possibly favor the transmission potential of diseise vectors. This paper compares observations of vec-torial capacities in malaria vectors from an area in the Mahaweli System which has undergone more than 10 years of environmental changes with two other areas which have been untouched by recent irrigation developments. All three areas possess the same climatic and geophysical characteristics, and historically h&e shown similar malaria transmission patterns. In addition, some preliminary data are presented on anopheline breeding in the Mahaweli Development Project area where the irrigation management practices are somewhat stabilized. Study Areas This report includes findings from three different environments within the northcentral malaria endemic dry zone of Sri Lanka (Map 2). In all these areas tanks from the ancient irrigation system are still in use. These areas include:1. Mahaweli System H, the Madatugama section of the Kekirawa Health Area, where major environmental changes have occurred followiug more than 10 years of settlements/resetflements, &fore.tation, and irrigation activities.Wewala in the Dambulla Health Area with old settled villages and some environmental changes hut not influenccd by the recent irrigation activity of the Mahaweli Development Scheme.Area, also with settled villages hut not affected by the Mahaweli irrigation network.Experimental procedure. The anopheline species were studied and monitored for prevalencdabundance, indoor/outdoor human biting, resting behavior, animal (cattle) biting densities, longevity (parous rates), determination of human blood index (HBI). and exodus from houses. Standard collecting techniques were used, the use of indoor/outdoor human-bait at night, outdoor hand techniques, pyrethrum spraying, window traps, cattlebaited \"cadjan\"/net traps, and blood meal for precipition testing, etc. The laboratory processing involved species identification, classification into blood digestion stages, dissection for parons rates, 24-hour mortality/ survival observations in window traps and insecticide susceptibility testing. A though all the anopheline species are known Lo he highly zoophilic, a degree of human biting was recoi.ded similar to that in the rest of the country. There was no general increase in man-vector contact ,:human bait densities) following jungle clearing in dwelopment areas. It is possible that any imbalance in the man-animal ratio created in Mahaweli arm: by deforestation and human settlements is counteracted by the high cattle population introduced to the areas, and to which mosquitoes are highly attracted.Indoor resting sampling noted a somewhat greater population increase in the Madatugama area of the usually exophilic A. vagus. This could be expected to favor man-mosquito contact and needs to he: monitored further. A. culicifacies and A. subpictus continued to he highly endophilic, as they are throiighout Sri Lanka. Species longevity (expressed I'reliminary data on larval breeding in Madatugarna (Tables 5a and b) show the paddy fields to be a najor breeding place for anopheline mosquitoes, and responsible for 67.8% of the total larvae sanpled. By comparison, the irrigation canals recorded only 13.7%. This seems to suggest that the inttxmittent flushing resulting from the 7-day rotatioi for water releases in the area may to some extent control larval breeding in the irrigation carials. Damhulu Oya, the naturally occurring river in the area studied, recorded only 2.3% of the larval:, with no A. culicjfacies recorded during the sarnpling period despite the fact that the river-and strmm-beds are known to be highly preferred brt:eding habitats for this species. It appeared that the excess water channeled periodically through this river to a reservoir limited the pool formation and A. culicijiucies breeding in the river b'eds, which is an advantage for malaria control efforts.These observations suggest the need to investigate further the interaction of irrigation/agricultursl practices, agricultural pesticide applications, an 1 rainfall on mosquito reproduction in irrigation sy:terns in order to identify environmental managcment approaches for vector control. Such studics Seem most appropriate in irrigation systems where the environmental changes, settlements, irrigation water management, and agricultural practices are stabilized. This is now under consideration. ","tokenCount":"1789"} \ No newline at end of file diff --git a/data/part_3/9962201699.json b/data/part_3/9962201699.json new file mode 100644 index 0000000000000000000000000000000000000000..663ecdf0ea6dc81c0fb43f8a584e8a1bca2ff6ae --- /dev/null +++ b/data/part_3/9962201699.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"34357cd2ab4e593315ec9b9c03ff47d6","source":"gardian_index","url":"http://agrumig.iwmi.org/wp-content/uploads/sites/41/2023/09/AGRUMIG-Policy-Brief-Series-No-22.pdf","id":"596698158"},"keywords":[],"sieverID":"24c198d4-db83-4cfa-af4d-60656104adac","pagecount":"8","content":"With agriculture contributing over 25% of gross domestic product (GDP) in the 1970s, Thailand's economy largely depended on rural systems. However, in the ensuing decades, this proportion declined substantially to 11.5% in 2014, with only 32% of the workforce being employed in the sector by 2015(Sakdapolrak et al. 2016) and dropping to 8.5% in 2021 (NSO 2022).In addition, the agriculture sector has faced a range of wider challenges due to declining natural resources amid a growing climate change impact (UNDP 2010). Rural households dominated by small-scale family farms cultivating cash crops (e.g., sugarcane, cassava, maize and rubber) face the challenge of seeking other sources of income, mainly off-farm. Migration has been a common strategy for rural households to pursue, both as a way of adapting to changes in agricultural production and prices, and land pressures, and to seek income diversification (Huguet et al. 2011;Rigg et al. 2014).Labor migration has become an important strategy to address growing household needs for access to education, healthcare and other services that are not available locally or unaffordable based on agricultural income alone (Rigg et al. 2020). Men dominate Thailand's legal immigration flow, yet the number of women migrating for work overseas has recently increased significantly, primarily through unauthorized channels. The top three destinations are Taiwan, South Korea and Israel. Migration as a livelihood diversification strategy helps individuals cope and adapt to adverse conditions. Although labor mobility through migration offers multiple advantages (e.g., remittances and higher education), it also negatively affects sending communities (e.g., agricultural labor outflow and social effects on demography and families left behind). For instance, rice sowing, either by hand or machine, has been adopted as a coping mechanism to save labor and investment costs. However, there are also instances where remittances have contributed to crop diversification and increased mechanization. Aside from crop production, other activities like pig farming and chicken breeding add to household livelihood strategies.To explore these various interrelationships between migration, labor mobility and their implications for the agrarian sectors, and socioeconomic conditions of migrants and their families, the AGRUMIG project team researched two sites in Thailand (Table 1).The findings point to significant rural change due to rural out-migration but with specificities in each site. Livelihoods in Udon Thani (Ban Chai Subdistrict) are primarily centered on small-scale farming (e.g., rice, sugarcane, tobacco and rubber plantations). Rice broadcasting has been adopted to save labor and investment costs. Limited alternatives for off-farm labor opportunities exist as there are no factories and the next major city center is far off. Other sources of income are the production of handicrafts and construction labor.Chiang Mai (Mae Suek Subdistrict) is in an important watershed area and forest reserve. Land title deeds are not permitted in mountain areas. There have been transformations in land use with a shift from traditional rotational cultivation, especially of upland rice and traditional crops, toward cash crops such as maize and potatoes. There are high levels of internal migration, especially to work for tourism businesses such as elephant camps, souvenir shops, restaurants and hotels, and as tour guides. Only limited alternative off-farm labor opportunities can provide enough income in rural areas. At the same time, there is an emergence of specialized production of handicrafts and construction work.Another source of income is related to ecotourism and elephant conservation. The lack of alternative off-farm labor opportunities and the need for higher income because of rising living costs, including healthcare and education, were often mentioned as reasons for migrating.Migration can contribute to social inequality in several ways. Households with international migrants enjoy a higher living standing because international migrants can send larger remittances than domestic migrants (Table 2). However, when migrant children are left behind and taken care of by grandparents, their behavior is often identified as challenging, affecting their social life and learning abilities. Financial remittances help pay for fertilizers, seeds, hiring costs for equipment and new crop investments (e.g., in rubber plantations and sugarcane). Improvements in water management include irrigation systems and buying assets, including land, houses, vehicles and agricultural machinery.In terms of migration impacts, mobility has brought knowledge, ideas, skills and networks. These include new crops and agricultural practices (e.g., greenhouses and organic farming), and new managerial and financial skills, as well as languages (e.g., English and Chinese). Access to information and institutional support has helped with an online market for goods and soft loans. New business models initiated by returnees and migrants include a Korean language school, ecotourism, a new restaurant and drone services. As shown in Table 2, there is a gulf in earnings between domestic and international migrants. In both situations, credit availability means that some poorer households can access lucrative overseas work, but they will generally take longer to save as a greater share of earnings will be spent repaying loans.Similarly, a common concern of returnees is the debt from loans they received accessing Thailand's Loans for Overseas Labor Migration Project. High interest rates sometimes make it difficult for many returnees to free themselves from this financial burden. Those who mortgaged land worry they might lose it if they do not earn money from other sources. Further limitations concern the discontinuation of promoting such loan schemes by the banks since they are less beneficial to them compared to other types of loans.A returnee in Udon Thani province brought back a new business model after working in Japan and used social media to promote and sell Japanese rice products. Farmers and visitors go to this learning center that is promoted by the provincial agriculture office in Kut Chab district, Udon Thani province, Thailand (photo: Sopon Naruchaikusol).In the case of Thailand, while some migrants bring back agricultural knowledge (e.g., irrigation techniques from Israel or farm management from Japan), most skills and knowledge migrants acquire during their experience are highly specialized (e.g., in electronics manufacturing) and are often unused when they return home.There are several key intervention areas the Thai government should consider in response to migration challenges. These include the following:The first intervention area is pre-departure training and protection under various agreements and programs. Pre-departure training covers three major topics, including i) travel preparation, ii) living and good manners (culture), and iii) privileges and protection. On the plus side, this covers health and accident insurance, legal support, travel and repatriation cost and top-up money. On the negative side, it does not cover undocumented or irregular migrants.Bilateral agreement programs were started in 2004. These include factory, construction, agriculture and services. There is a language skills test requirement and a criminal record check. For migration to South Korea, the Employment Permit System (EPS) program was started in 2008. EPS aims to reduce documentation processes and procedures. Thai labor has been recognized as honest and hardworking. More recently, undocumented migration has been in significant decline. For Taiwan, the Direct Employment program was initiated in 2010. Under a bilateral agreement with Israel for work on 'moshavs' and 'kibbutzim' (cooperative farmers' villages and agriculture communities), Thai migrants who have never worked in Israel before the program receive THB 80,000 (EUR 2,220) for their airfare, employment management costs and insurance. The Thailand-Israel Cooperation on the Placement of Workers (TIC) initiative was launched in 2012. In addition, there is a Technical Intern Training Program in Japan with an internship duration of three years plus a monthly salary without a management fee.The second intervention area is the Young Smart Farmer (YSF) Program. YSF aims to enhance the capacity of young farmers (from 17 to 45 years old) to fulfill development objectives in the agriculture sector. The pros of the program are the diverse skills and knowledge shared between young and older, more experienced farmers. The cons are the limited number of migrants and returnees involved in the program. Thailand's YSF initiative is also hindered by weak implementation that has contributed to benefits not reaching the farmers and returnees.The third intervention area is the reintegration project to promote and share successful examples of Thai overseas migrants and returnees under which they can apply the knowledge and experience gained from abroad and invest remittances in agriculture and rural development. The pros are related to the exchange of experience between returnees and potential migrants. The challenges include limited information sharing and budget support (only five provinces per year). The TIC bilateral program has led to Thai migrants securing a job in the agriculture sector in Israel and developing their skills and knowledge in agriculture. Further, migrants brought their knowledge and skills in sowing, irrigation and fertilizer application back home to apply to their own farms.The fourth intervention area is the loan schemes to support Thai overseas migrants. Three government banks (Krungthai Bank, Government Savings Bank, and Bank for Agriculture and Agricultural Cooperatives), under agreement with the Department of Employment (DOE), offer loans with 7% to 8% interest to documented labor migrants. The pros include this system helping shut out loan sharks and prevent land loss. The cons include limited information sharing, offering the loans only to documented migrants and requiring land as collateral.Challenges of migration policies include labor shortages and mechanization. There is difficulty in accessing returnees since there are no official records of returnee migrants. In addition, skipped generation households and inequality in support from the government between regular and irregular migrant households, with the latter not eligible. There are also shifting household inequalities (where there is no migration, either internal or international) in sending locations and mismatching of labor demand and supply in popular migration destinations such as South Korea. Precarious working conditions in migration destinations are also challenges, including safety, social protection and mental health.A lack of communication between agricultural and migration policy stakeholders is also notable. Some migrants are considered outsiders when they return home, and migrant skills on their return may not match the domestic jobs available.Other challenges include the limited access to potential returnees to help connect them with the DOE's returnee reintegration program. Additionally, data on returnees and their social remittances are inadequate. The TIC initiative has led to human rights violations due to power imbalances between the governments of recruiting and sending countries, highlighting the need for cooperation between sending and destination countries. Thailand's DOE has a limited budget to begin the returnee reintegration project and because of this, only a few migrants can avail themselves of the program's benefits.The DOE returnee reintegration project is not widely known and is considered a short-term or ad hoc project which impedes its functioning. People are less aware of Thailand's Loans for Overseas Labor Migration Project, which propels them to turn to private loan schemes or loan sharks. The latter are also easier to access since, unlike banks, they require little paperwork.Findings from the DOE's returnee reintegration program highlight the necessity to create a systematic and strategic approach to help with the transfer of migrant skills and knowledge to enhance their qualifications so they can earn a decent salary in Thailand. Returnees hope this program will allow them to convert their working experience into a certificate that they can use when applying for jobs.Returnee migrants exchanging experiences with a successful returnee at his organic farm during the AGRUMIG returnees workshop in Udon Thani province, Thailand (photo: Sopon Naruchaikusol).","tokenCount":"1852"} \ No newline at end of file diff --git a/data/part_3/9967757408.json b/data/part_3/9967757408.json new file mode 100644 index 0000000000000000000000000000000000000000..7dccff7b9ad44e3e0f6c27898fdfe5f7c04a8121 --- /dev/null +++ b/data/part_3/9967757408.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"ebeac4677f9b418c34bf72d1f354c2b1","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/267c4074-51cb-4391-b90d-7c0458fbdf78/retrieve","id":"-1019096749"},"keywords":[],"sieverID":"be9af550-f52b-47c2-af9c-ff7f3843cacf","pagecount":"4","content":"The authors of this ILAC Brief coordinate Papa Andina, a regional network of the International Potato Center (CIP) that promotes knowledge sharing among R&D partners in Bolivia, Peru and Ecuador in order to reduce poverty and foster sustainable development in the Andes.For several years, we organized study visits for local professionals to exchange knowledge and experiences, and conventional expert-led evaluations to assess our work. The study visits were enjoyable and instructive for participants, but there were few clear outcomes and little follow-up. Evaluations by outside experts provided interesting results, but the implementation of their recommendations was patchy.In view of the limitations of these two approaches, we developed the horizontal evaluation method with our partners as a participatory alternative that combines the best aspects of both. So far, we have organized four horizontal evaluations, improving the method each time. Further improvements are likely, so this brief describes work in progress.Evaluation by peers is what makes the process 'horizontal', compared with the 'vertical' evaluation typically provided by outsiders of perceived higher professional status. This method differs from the anonymous peer reviews used by professional journals and research funders, in that horizontal evaluation is open and transparent, with all the participants encouraged to learn and benefit from the evaluation process.Horizontal evaluation neutralizes the power dimension implicit in traditional evaluation, in which the 'expert' judge the 'inexpert' and the 'powerful' assess the 'powerless'. Because of this neutralization, a more favourable learning environment is created.Most of those involved directly with Papa Andina have been specialists who work with potato R&D organizations. They come from broadly comparable social and professional backgrounds, with similar types of knowledge about potato R&D, and they see each other as peers. As stakeholders in Papa Andina they share an interest in the methodologies developed with support from the network. This gives them the motivation 1 to participate, learn and contribute. Another motivation for active involvement is that some of those who serve as peer evaluators during one horizontal evaluation know that their own work may later be evaluated by other peers within the network.Horizontal evaluation is a flexible method which can be applied in a range of settings to facilitate: the sharing of information, experiences and knowledge; the building of trust and a sense of community, which in turn fosters knowledge exchange; the social or interactive learning and corrective action needed to improve R&D methodologies; and the adaptation and wider use of these methodologies. In 2005, we also used elements of the horizontal evaluation approach in an evaluation of the Papa Andina network itself.Horizontal evaluation is a flexible evaluation method that combines self-assessment and external review by peers. We have developed and applied this method for use within an Andean regional network that develops new methodologies for research and development (R&D). The involvement of peers neutralizes the lopsided power relations that prevail in traditional external evaluations, creating a more favourable atmosphere for learning and improvement. The central element of a horizontal evaluation is a workshop that brings together a group of 'local participants' who are developing a new R&D methodology and a group of 'visitors' or 'peers' who are also interested in the methodology. The workshop combines presentations about the methodology with field visits, small group work and plenary discussions. It elicits and compares the perceptions of the two groups concerning the strengths and weaknesses of the methodology; it provides practical suggestions for improvement, which may often be put to use immediately; it promotes social learning among the different groups involved; and it stimulates further experimentation with and development of the methodology in other settings.We believe the approach can be applied in different types of projects and programmes, especially those that operate in a network mode.The heart of a horizontal evaluation is a participatory workshop, typically lasting 3 days, involving a local or internal group (referred to as 'local participants') of 10-15 people and a similarly sized group of outsiders or visitors (referred to as 'visitors'). Visitors are peers from other organizations or projects who are working on similar themes and have a potential interest in applying the methodology under evaluation.The role of the local participants is to present, and with help from the visitors, critically assess the methodology and make recommendations for its improvement. The role of the visitors is to critically assess the methodology, identifying its strengths and weaknesses and making suggestions that will aid its wider application. The visitors may contribute to the formulation of recommendations, but the local participants must take the lead and actually propose and agree them, since their ownership of the recommendations will be the key to implementation.We work with our partners to identify an appropriate methodology to be evaluated, select participants and prepare for the event. An organizing committee should be established and should include decision makers from among both local participants and visitors.We have learned that it is very important that the topic of the evaluation should be clearly defined: it is the methodology that should be evaluated, not the project or organization that developed it. Defining and maintaining the scope of the evaluation is critical for its success.Workshop organizers are responsible for: 1. Identifying an appropriate object for evaluation (in the cases we have supported, a methodology of regional interest). 2. Ensuring the participation of an appropriate group of local participants and visitors (the latter should have an interest in learning about and perhaps using the methodology). 3. Designing the 3-day workshop and finding a facilitator (who should be familiar with the horizontal evaluation method). 4. Developing preliminary evaluation criteria (these are often based on the criteria of the organization or project using the methodology). 5. Arranging field visits that will demonstrate application of the methodology. 6. Sending both sets of participants background information prior to the workshop. 7. Arranging a 'dress rehearsal' of key moments and presentations for the workshop. 8. Making provisions for writing up and using the workshop's findings.The workshop works best if professionally facilitated. At the start of the event, the facilitator should introduce the objectives of the workshop and the procedures to be followed. The facilitator should stress that the workshop is not intended to evaluate everything the organization or project is doing but just the methodology that has been selected. S/he should encourage the visitors to be critical but constructive, identifying the strengths and positive aspects of the methodology as well as its weaknesses. S/he should also encourage the local participants to be open and receptive to comments and suggestions.During the morning of Day 1, local participants present the context and purpose of the methodology, explain the stages involved in applying it and describe activities and results to date. Our experience has shown that interactive ways of presenting activities, such as a knowledge fair with a poster exhibition, are more effective than Powerpoint presentations.On Day 1, visitors should limit themselves to asking questions for the purpose of clarification and to requesting information that has not been presented. They should be discouraged from voicing judgments about the methodology at this point, and asked to wait until they have acquired additional information and insights during the field visits on Day 2. Our experiences have shown that even carefully prepared and rehearsed presentations usually provide insufficient information for evaluating an R&D methodology. Hence, field visits are a critical component of the workshop and the evaluation.During the afternoon of Day 1, after the initial presentations about the methodology, the list of tentative evaluation criteria prepared before the workshop is presented in plenary for discussion and revision. These criteria are extremely important, as they will be used throughout the rest of the evaluation exercise. Many aspects of the methodology could be evaluated, but as time and resources are of necessity limited, it is of theWe helped the INCOPA Project, which led the evaluation, to design and prepare for the workshop. The partners identified the following criteria for analysing PMCA:• potential for developing new products for market;• potential for empowering small-scale farmers and alleviating poverty;• capacity to stimulate technological or organizational innovation;• cost-effectivness.Local workshop participants included market chain actors from Peru, while visitors came from Puno in southern Peru, from Bolivia and from Ecuador.On Day 1, local participants explained the PMCA methodology and activities and achievements in entering two new markets: yellow potatoes to make crisps and standardized bags of selected and classified potatoes for the Lima wholesale market.On Day 2, visitors went to two sites: • a factory where yellow potatoes are processed into crisps. Visitors interviewed the factory owner about his impressions of the PMCA process; • the wholesale potato market in Lima. Visitors interviewed market authorities, intermediaries and members of the trade union who carry overweight sacks.The evaluation found the following: Strengths:• rapid implementation using a participatory approach involving various sectors of the potato market chain; • facilitation of shared investment and generation of a platform for future collaboration; • empowerment of participants, who are active in the process and assume new responsibilities.• need for complementary interventions to ensure impact on the poor.• training materials should be made available for those facilitating the PMCA; • experiences of application need to be properly written up and shared.The workshop stimulated a learning process about the PMCA as well as an exchange of relevant knowledge. After the workshop the visitors applied and further developed the approach in Bolivia and Ecuador. Papa Andina supported this process, and documented both the approach and the outcomes (Bernet et al., 2005).utmost importance to reach consensus on a short-list of criteria that are considered both to be good indicators of the methodology's usefulness and to be practical in the context of the workshop. We have found it useful to select no more than four criteria, which can then be used throughout the rest of the workshop and can provide a logical thread that holds the whole process together. The evaluation criteria should be used systematically by both groups of participants to structure their analysis at each subsequent stage of the workshop, including the field visit. This is a key point, since it ensures comparability of analysis across the groups.Examples of the evaluation criteria we have used include: • effects on empowerment and gender equity; • advantages compared to similar methods; • cost-effectiveness; • relevance.At the end of the first day the participants divide into small groups (6-7 members), each of which includes local participants and visitors. These groups will visit different field sites and observe different aspects of the development and application of the methodology. In our cases, field sites have included communities, markets, local government offices, trade union offices and processing factories. Before going to the field, visitors in each group prepare a short interview on the basis of the evaluation criteria and make a simple plan (deciding, for example, who will introduce the group and explain the purpose of the visit, and what questions will be asked).A 'workshop process group' should be set up and should meet at the end of each day to check on logistical aspects, assess how things are going and make any necessary adjustments for the next day. At the end of Day 3, this group should also assess how the workshop went as a whole and make recommendations for future horizontal evaluations.The field visit provides an opportunity for visitors to see at first hand the methodology under development and to talk with those whose livelihoods are directly affected by it. Visitors conduct semistructured interviews, but should, in addition, carefully observe what they see and as far as possible try to triangulate different sources of information. For example, if farmers say that participatory trials have been set up at a number of sites in the village, these should be visited.Within each small group, visitors take the lead in asking questions. Local participants may act as guides, but should only provide information if explicitly asked to do so by visitors. Above all, they should resist the temptation to answer on behalf of those interviewed or to influence their answers.After the field visit, each small group synthesizes its findings in tabular form using the evaluation criteria. At this point local participants may make comments and provide their interpretations of what occurred during the visit.The small groups then come together in a plenary session and each presents its findings for each evaluation criterion in a table (see example in Figure 1), so that the findings can be compared and contrasted across sites by the whole group. Using digital photos to show the most important aspects of each visit gives findings credibility and retains people's attention during the session. The table is recorded and photocopied as a resource for participants on Day 3. Day 3 -Comparative analysis and closure: Visitors and local participants work separately at the start of Day 3. For each evaluation criterion, the two groups identify strengths, weaknesses and suggestions for improvement. We have found it useful to work with 10 cm x 30 cm cards, which can be moved and grouped by evaluation criteria. The notes from the field visit help participants prepare the cards. To keep the exercise manageable, we have usually asked each group to limit itself to identifying no more than six strengths, six weaknesses and six suggestions for each evaluation criterion.After this group work, visitors and local participants present their findings in plenary session. All participants, helped by the facilitator, then identify convergent and divergent ideas. Where the strengths converge or coincide, the local participants can feel confident that they are on the right track. In contrast, where weaknesses coincide for both groups, this probably indicates the need for corrective action. Where the groups' assessments of strengths or weaknesses diverge, the reasons for the divergence need to be explored in order to reach a shared understanding of the issue (but not necessarily agreement on it).For example, in one workshop local participants identified 'a business plan' as a strength, whereas outsiders identified it as a weakness. After some discussion the local participants realized that the farmers in fact had a 'production plan', with specific areas being sown each month, but that this was not the same as a business plan, which should instead deal with markets and profits. In this case the local participants changed their strength card to 'production plan' and the apparent contradiction was resolved. In other cases the divergence may be more deeply rooted, reflecting differing underlying values or mental models of the development process. In such cases the facilitator should not try to force a consensus, but rather to enable participants to reach a better understanding of the causes of differences.After this plenary session, the participants again divide into two groups -visitors and local participants. Drawing on the previous plenary session, local participants synthesize recommendations and identify lessons learned as a basis for improving the methodology in the future. Visitors analyse the potential and requirements for applying the methodology in their own organizations and settings. Both groups then come together to present, discuss and modify their conclusions in a final plenary session. The workshop ends with the participants identifying specific and timebound steps to improve the methodology and facilitate its wider use, if that is judged appropriate.At the end of the workshop it is helpful to have each participant identify the positive aspects and outcomes of the workshop and what improvements could be made for similar events in the future. Such an exercise could be open, in plenary session, or it could employ a simple one-page questionnaire with two questions: • What in your view are the most positive aspects of the workshop? • What are your suggestions for making future horizontal evaluation workshops better?The process group should also meet at the end of the workshop to analyse the event and its key outcomes and to suggest ways of improving the horizontal evaluation method for the future.The organizing committee should establish clear responsibilities and deadlines for editing and distributing the workshop ","tokenCount":"2638"} \ No newline at end of file diff --git a/data/part_3/9970524548.json b/data/part_3/9970524548.json new file mode 100644 index 0000000000000000000000000000000000000000..2863aa7a42fdc8f75f9558f413b499611bd5c660 --- /dev/null +++ b/data/part_3/9970524548.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"16a799f9732af50cc165294597016281","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/27a63ad6-9b1c-439e-ae18-045826c452cb/retrieve","id":"686645800"},"keywords":[],"sieverID":"5f4c8662-f3ac-45b9-9fa1-d975e1488eb9","pagecount":"27","content":"During the third quarter, the Africa RISING-NAFAKA-TUBOCHA partnership and scaling project has accomplished a variety of activities. The project GIS postdoc was recruited and a draft M&E framework for the project was developed. The maize, rice and vegetables teams continued to manage the demonstration gardens with improved crop varieties and agronomic practices. For the vegetables team, in addition to the nine sites in three districts already established, five more sites were selected in Kilosa (1), Mvomero (1) and Kilombero (3) Districts in Morogoro Region. The postharvest team also selected six sites in Kongwa, Kiteto and Mvomero where demonstrations will be established. Field days were held by the maize team -4 in Kilosa, 1 each in Kongwa and Kiteto, and 2 in Babati Districts. The rice team held one field day in Mbeya Region. These provided opportunities for farmers, local government staff, research institutes and the private sector to interact and learn from the project activities. In addition, all teams have developed training materials which will be used to train farmers and other partners. The rice team has come up with information that will enable the development of a locally fabricated weeder.The team is also progressing well with the development of a RiceAdvice-Weeds' tool and processing of data on good agronomic practices. A rice value chain activity is progressing, comprised of experimental auction, constraint surveys and training of partners as well as meetings with platform members. In terms of project performance against FtF indicators, 40% of farmers are applying technologies and only 5% of rice hectares are under improved technologies. These being outcome indicators, performance is expected to immensely increase during the next year. For other indicators which are output oriented, 96.7% of individuals have received food security training, 47.8% of private enterprises and farmers' organizations are receiving USG assistance, 77% of rural households are benefitting and over 100% of target households have home gardens as a result of this project. During the next quarter, all teams will focus on training of farmers and partners in various relevant topics (agronomy, group strengthening, post-harvest practices), participatory variety selection of innovations for scaling and finalization of some products (e.g. weeder) which were not completed this quarter. Also, the vegetables and rice teams will implement surveys to inform future activities. Other activities will include an annual planning meeting for the project, finalization of the M&E framework and scaling strategy, planning for launching of scaling activities in Mbeya and Iringa Regions and formation of R4D/Innovation Platforms to facilitate scaling.Africa RISING partners are involved in identifying and developing best performing interventions for improving agricultural production. These are compiled into information and technology packages to be delivered through a network of NAFAKA, TUBOCHA, and other public and private sector actors, creating an opportunity for mainstreaming into wider rural development programs. Attractive interventions include the introduction of improved crop varieties, dissemination of best-bet crop management packages, rehabilitation and protection of natural resources, and improvements in food and nutrition security. The main project description has been further refined with activity specifications during the thematic work plan developments, briefly described below.The project focus is on three crop enterprises -maize, rice and vegetables with post-harvest handling and nutrition as a cross-cutting theme. The key partners in the project include international agricultural research centers (IITA, CIMMYT, AfricaRice, CIAT, ICRAF and ICRISAT), the World Vegetable Center (AVRDC) and two USAID-funded projects, NAFAKA and TUBOCHA. These work in partnership with national institutions (research and universities) as well as local government authorities to deliver on the flowing objectives:1. Introduce and promote improved and resilient varieties of food crops to farm households in a manner that complements their on-going farm enterprises, contributes to sustainable agricultural resource management, and offers nutritional advantages and alternative market channels; 2. Disseminate best-bet agronomic management packages around the most promising new crop varieties suited to widely representative agro-ecological zones and market proximity; 3. Protect land and water resources and foster agricultural biodiversity through the introduction of soil and water management practices; 4. Increase food security and improve household nutrition among the most vulnerable households and their members, especially women and children, by introducing locally adapted and nutrientrich vegetables; 5. Introduce and promote postharvest management technologies for maize, rice, legumes, and selected vegetable crops to reduce losses and bring quality up to market standards; 6. Offer and expand capacity services to members of grassroots farmers' associations, platform partners and development institutions in the scaling process (capacity building), paying particular attention to the special opportunities available to women farmers as technical and nutritional innovators and resource managers. During the 3-year project period, activities will be conducted in the primary Regions of Manyara, Dodoma, and Morogoro, with extension to Iringa and Mbeya planned in year 2, all in the FtF's ZoI (Figure 1). Action sites are selected according to the following criteria:(i) The districts and villages were selected based on agro-ecological characteristics that are suitable for the selected technologies as well as availability of suitable partners (ii) In addition, the selection of farm sites was guided by a combination of visibility, accessibility and land suitability.The project partners have continued making efforts to work together to achieve the project goal. A postdoctoral GIS specialist joined the team in June 2015, and he will play a role in synthesis of data that will enable the project team to target promising project interventions to suitable locations during scaling up and out. He will operate from the Arusha IITA office. The maize team held an implementation progress and planning meeting in Morogoro (2 nd May 2015) with a number of partners from IITA, CIMMYT, NAFAKA, CIAT and ICRAF in attendance.Minutes of the meeting are available on this link (http://africarising.wikispaces.com/AR_NAFAKA_TUBOCHA_Proje ct). Updates on progress for project activities for each of the five districts were presented and discussed. This meeting came up with a plan of activities for the remaining quarter of the year, which included collecting yield data from the demonstration plots, preparation of an agronomy master plan, field guides for maize, groundnuts, beans, soybean and planning for farmers' field days for each of the districts.The technology scaling specialist (TSS) held meetings with the Agricultural Seed Agency (ASA) and Mikocheni Agricultural Research Institute (MARI) to jointly devise means of complementing each other in activity implementation. ASA has been given a mandate by the Ministry of Agriculture, Food Security and Cooperatives to boost the rice sector in Tanzania and MARI is in advanced stages of introducing new varieties of maize under the Water Efficient Maize project for Africa (WEMA). Since both activities have a scaling component, it was necessary to meet and devise ways of complementing efforts of each other. The annual planning meeting for the project will be held in July 2015 in Dar es Salaam, and preparations have been finalized in the current quarter. A monitoring and evaluation framework for the project was developed. A scaling strategy is being finalized.The TSS together with the NAFAKA team of agronomists and other field staff has also met regularly to establish the feasibility of using the demonstration sites as well as village-based agricultural agents (VBAA) as a key component of the scaling strategy given the limitations of the current extension system. In general, the model is feasible but requires further refinement in terms of linking the VBAAs to other actors in the value chain such that they get timely access to resources such as information, inputs and market information. In addition, the farmers' groups with which the VBAAs will work have to be regularly monitored and strengthened. Further, strategies for active engagement of local government extension staff have to be developed by the project to ensure sustainability of the scaling model based on VBAAs and demonstration plots. Maize system: As reported in the second quarter, improved maize and legume varieties were promoted in 29 selected villages across the five districts as shown in Table 1. In general, all the demonstration plots performed well except in a few cases where vagaries of weather and other reasons affected performance as shown. In addition to improved crop varieties, Good Agricultural Practices (GAPs) were applied in all villages, which included timely planting, timely weed management, timely fertilizer application, and timely thinning to maintain the recommended plant population. For natural resource management, legumes were planted either as intercrop (beans and cowpeas in Babati) or as a pure stand close to maize (groundnuts in Kongwa or cowpeas in Kilosa) to provide advantages of adding nitrogen to the soil through nitrogen fixation. Tie ridges were also promoted in all districts to demonstrate the need for soil and water conservation.Generally, in terms of performance, improved varieties performed better than local varieties in all demo sites. However, the improved varieties did not perform to their expected potential due to poor rains and severe drought in most of the locations.Two key activities took place at the demonstration sites: harvesting and field days. Participatory harvesting of maize and groundnuts in Kiteto and Kongwa Districts was conducted in May and will continue 'til the end of June. During harvesting farmers were involved in visually assessing the performance of varieties under GAP as well as natural resources management technologies used in demonstration plots. Harvesting in the other districts is pending maturity since the plots were planted a bit late. The yield data from all the sites will be processed and shared during the next quarter.Farmers' preference on maize performance was based on date to maturity, size of cobs and drought tolerance. For instance at Ngipa (Kiteto District) farmers established that NATA H105 had higher yield compared to local varieties under a similar tillage system of flat seedbed on a plot size of 7m x 7.5m. Further, for soil and water management/fertilizer application plots treated with Yaramila fertilizer with tied ridging had better crop performance compared to plots with farmyard manure and Nafaka Plus fertilizer. Complete results from all the sites will be synthesized to inform selection of best packages for scaling. The field days will be presented in the next section.For the vegetable team, nine demonstration plots measuring 160m² (20m x 8m) each were established in nine different locations in three districts. On average, each demonstration served 66 farmers (102, 207 and 285 farmers in Babati, Kiteto and Kongwa districts respectively). The plots were planted with six different varieties of vegetables: one tomato variety (Tengeru 2010), two African eggplant varieties (DB3 and Tengeru White), one African nightshade variety (Nduruma), amaranth (Madiira I) and jute mallow (SUD 2). The locations include Babati District (Maweni, Endadosh and Sagara villages), Kiteto District (Kibaya secondary school and Sunya and Kaloleni villages) and Kongwa District (Chamkoroma, Tubugwe and Songambele villages). See report cover photograph.In addition, farmers were trained on the following good agronomic practices:(i) Soil preparation practices (manure, fertilizer use) and handling of seedlings (ii)Weeding practices (iii)Proper water management for vegetables (iv)Fertilizer application (v) Integrated pest management (vi)Harvesting -when to harvest especially with respect to leafy vegetables in order to maintain a healthy stock.In May 2015, the team selected pilot villages in Morogoro Region in partnership with another partner, AfricaRice, to introduce a rice-vegetable crop rotation in three pilot villages in Kilombero district. These include Msufini, Ichonde and Kisawasawa. The intervention in the three villages will focus on utilizing residual water from rice production to grow vegetables immediately after rice harvest. Two further pilot villages, one in the Kilosa District (Rudewa) and another in Mvomero District, were selected together with partners from the Innovation Lab on Small Scale Irrigation (ILSSI) implemented by the International Water Management Institute (IWMI) and Sokoine University of Agriculture (SUA).The pilot villages will benefit from the technology transfer from AVRDC/HORTI-Tengeru in combination with new small-scale irrigation facility innovations implemented by ILSSI.For the rice system, implementation of the activities started in the second quarter continued. These included:(i) Promotion of motorized paddy weeders: Farmer-participatory demonstrations of three models of motorized paddy weeders, a single-row and double-row type from India and a double-row type from Japan, are conducted at Kilombero and Morogoro, at two weeding times with an average of 25 farmers, per site per demonstration. Also included was the hand-operated straight spike floating weeder to enable farmers to compare the performance and ease of operation of the motorized weeders with a manual weeder. Apart from the rice farmers, researchers of the national research centers, agricultural extension officers, community development officers, local blacksmiths and representatives from the local governments and NGOs were invited.(ii) Development of an electronic decision support tool to aid with weed management: The model for this tool is being generated by AfricaRice, while the programming will be done by a consultant from Cocapacity, in Wageningen, The Netherlands. The first matrix structure with 88 characterizations and 52 weed management strategies (4,576 choice options) has been reviewed and updated. This will serve as the base-model behind the decision support tool. Detailing the weed management recommendations associated with these 4,576 choice options is ongoing. Programming work by Co-capacity is planned to start in the last week of June, 2015.(iii) Efficiency of foliar sprays under different rice growing conditions and their economic implication on rice farmers: Thirty (30) on-farm demonstrations have been conducted in Kilombero (irrigated and rainfed rice growing conditions) and Morogoro (upland rice growing condition). To capture the efficiency of foliar nutrients in rice under different rice growing environments, the demonstrations were conducted in three different major rice growing environments: 1) irrigated lowlands, 2) rainfed lowlands and 3) rainfed uplands.(iv) Farmer-participatory on-farm Good Agricultural Practices (GAP) demonstration in Kilombero: This activity is being undertaken in partnership with KATRIN-ARI. Four GAP component technologies were introduced to 30 farmers in five villages namely Lungongole, Kiberege, Lumemo, Michenga and Sagamaganga in Kilombero. There were 6 demonstrations per village. The four GAP components introduced and demonstrated were: 1) bunding & leveling; 2) use of certified seed (variety -SARO5; 3) line planting; and 4) soil fertility management using optimum rates of NPK fertilizer. The size of the bunds are 30cm thickness and 30cm by height. Dibbling in lines was done with a spacing of 20cm x 20cm for fertilizer rates at Urea:TSP:MoP at175:100:40kg/ha. The sources of NPK were Urea for N, TSP for P and MoP for K and the exact amount of fertilizer applied in a field of 200m 2 are as presented in Table 2 below. The demonstrations are progressing well in all 30 fields. As a means of sharing project results with farmers beyond the learners, and other stakeholders, field days were organized by the maize and rice teams. The vegetables team will hold the days during the fourth quarter. For the maize team, field days were held in Babati, Kongwa, Kiteto and Kilosa Districts; they will be held in Mvomero District during the next quarter. For the rice team, field days were held in Mbeya region (Kyela). In all cases, local government staff, staff from agricultural research institutes (ARI Ilonga and ARI Hombolo), input dealers and media attended as a sign of support for the project activities. Table 3 shows a summary of locations and participants at each site. During the field days, the farmers were enthusiastic about the performance of the different improved varieties and practices -NATA H 105 in Kiteto; NATA KQ6 in Kongwa and the legumes; Meru Agro HB513 in Babati (despite the challenges of severe drought) and, NATA 104 as well as legumes in Kilosa (Research staff from ARI Ilonga also used the opportunity at Kilosa to show farmers other varieties of legumes that are suitable to the agro-ecosystem and were eager to further test it with the project team and farmers).In addition to the field day, the rice team also conducted farmer trainings on 16 and 17 April 2015 and on 10 and 11 June 2015 involving 70 farmers from Mbako and Kilasilo villages. After each farmer exchange field visit the participating farmers were interviewed. General information about each farmer, including farm size, crops cultivated, parasitic weed and non-parasitic weed, disease and other constraints in rainfed rice production, their opinions and expectations before crop maturity on the management strategies tried on the onfarm trials, and on what they like/dislike about the innovations they are testing was collected. This data will help in future assessments on adoption. The vegetables and postharvest teams are planning field days to be held in future.The postharvest team did analysis of the baseline data collected last season and developed training materials for trainings that will commence at the end of the third quarter. Preliminary results indicate that over 83% of the farmers in Kongwa, Kiteto and Mvomero Districts lack knowledge and skills on postharvest handling of crop produces. About 82% of the farmers store their maize produce in polypropylene bags, 13% store in gunny bags, and 5% use granaries. About 85% use pesticides of different kinds in the process of maize storage but they lack skills in proper use in a situation where insect pests were believed to account for 58% of crop loss (poor harvesting practices accounted for about 34% of the loss). Resulting from the results, the team developed training materials for use during the training in postharvest management. Hermetic storage bags were also purchased for use during the training. The team will select demonstration centers (villages) for postharvest handling technologies (shelling, drying, storage and food product development). These included Kwadoli and Msufini villages in Mvomero District; Kiperesa and Ngipa villages Kiteto District and Ndurugumi and Vihingo villages in Kongwa district.All the teams work with farmers' groups to ensure that the communities are empowered to sustainably intensify their production is done. In Kiteto, Kongwa and Mvomero Districts where NAFAKA has a presence, field staff have built the capacities of farmers groups in management and leadership as well as other development aspects (e.g. farming as a business). The groups are also being formed into associations to enable them to benefit from economies of scale. In Babati and Kilosa districts, after establishment of the demonstration sites and working with the groups with the assistance of local government staff (ward and village extension officers), weaknesses have been identified and the capacity building for groups will be done in the subsequent quarters.In addition to groups, the empowerment model in districts with NAFAKA presence also has village based agricultural agents (VBAAs) who are trained in agronomy, business and extension approaches which they use to provide better training, information and input services to group members and the wider community. In other districts, lead farmers were selected and trained to provide the same. Exchange visits, especially by participating farmers from Babati and Kilosa Districts to districts with NAFAKA presence, will be organized for learning purposes.In addition to community empowerment through groups and village-based agents, the rice team conducted activities on the value chain as briefly presented:(i) Baseline & diagnostic surveys to inform value chain enhancement: The villages and respondents sampled for the baseline survey were added into the Mlax system. This is the system used by AfricaRice to collect data throughout all the rice sector development hubs. The varieties and crops identified in the villages were also added in the system. The questionnaire can now be downloaded for enumeration. ARI-Ilonga is responsible for the upcoming data collection.In Mbeya and Morogoro Regions, interviews were conducted with 68 crop protection stakeholders (47 male, 21 female) who included those from government (33), private sector (16), farmers (13) and NGOs (6), as this emerged as one of the main problems in rice systems.The aim was to provide a deeper understanding of: (a) how institutions responsible for providing plant health services in Tanzania are structured and interlinked from the national to the local level; (b) what incentives the private sector, public sector and NGOs or farmer-based organizations have to provide specific prevention and control services; (c) which institutions are dysfunctional and why, which services are missing to make the crop protection system ideal and well prepared for any future outbreaks; and (d) how information flows to the relevant authorities and what actions are taken when a biotic stress invasion occurs. Data will be presented in subsequent reports.(ii) Experimental auctions: Experimental auctions were conducted in Morogoro town in April by a team of staff from AfricaRice, NAFAKA and ARI-Ilonga. The auctions were attended by 131 participants, (83% of them women) who were randomly selected from two open air local markets (Mawenzi and Morogoro markets). During the experimental auctions, four rice samples were assessed. These included two local varieties: SupaKyela, a variety widely known by consumers, and Mbawambiri, a variety that is grown by many farmers but largely unknown in the market. The third sample was an improved aromatic rice variety (IR05 N221) that is prone to a comparably higher breakage rate, and the fourth was the low-quality rice in terms of visual appearance resulting from poor post-harvest handling. This fourth variety was used as the benchmark. The structure used in experimental design was the Vickery 2nd auction within which a winner who proposes the highest price pays the second highest bid. Nine sessions were held; each session included 15 participants (except for the first session that comprised 11 participants). In each session, 4 rounds of assessing consumer's willingness to pay were conducted including 3 individual trials and a collective round. The individual trials involved the assessment of the Willingness to Pay (WTP) by each participant of the uncooked rice, the cooked rice and a final individual assessment after the collective round. The collective round involved a discussion and consensus on the willingness to pay by the group made of randomly assigned participants.For the vegetables team, a baseline survey was conducted in the nine villages in Kongwa, Kiteto and Babati Districts covering 360 farmers from all nine pilot villages. The survey aims at providing information on the importance of leafy vegetables for farmers, farmers' access to inputs, finance and markets, as well as the role of women, men and youth in production, management and sale of vegetables. This survey will also form a basis for a follow-up survey scheduled for 2017, in which the adoption of the technologies introduced will be assessed. In addition to the 360 farmers, 86 traders were also interviewed to get access information on leafy vegetable value chains and handling of leafy vegetables after leaving the farm gate. The information generated from the baseline survey will directly feed into the project activities of the second project year. Detailed results of the survey will be presented in the next quarterly report.(i) A draft monitoring and evaluation framework for the project was finalized for review.(ii) A draft scaling strategy for the project was also developed.Maize system (i) Team planning and progress meeting held that led to refinement of team activities for better results (ii) Eight field days conducted in the districts of Babati (2), Kiteto (1), Kongwa (1) and Kilosa (4) to share results of the demonstrations and to establish stronger networks with local government, input suppliers for sustained implementation of the promising innovations -1294 farmers attended. (iii) Yield data collected to assess yield advantage of improved varieties under good agricultural practices and natural resource management. (iv) Draft field guide for maize, soybean, and beans agronomy developed for use in training. (v) Master plan for establishing and managing demonstration plots prepared for further review. (vi) Requirements for strengthening of community empowerment (groups, trainers, involvement of local government) started; to be done in detail next quarter.Rice system (i) Data on suitability of the weeders was collected in a participatory manner. The data will be analyzed carefully and based on this a local prototype will be developed. As it looks right now, this will probably be a hybrid between the two types demonstrated, with the weeder tines from the Indian type (for effective weeding) and with the two floaters in front from the Japanese type (for more stability and ease of operation). (ii) Good progress is being made regarding development of an electronic decision support tool for weed management. Currently the 52 weed management strategies are being associated with detailed environment and resource specific descriptions. (iii) Work on efficiency of soil and foliar applied micronutrients under different rice growing conditions and their economic implication to rice farmers has progressed well. Preliminary results based on field observations indicate that (i) there is a big difference between the NPK and no NPK blocks; (ii) soil applied micro-nutrient plots (NPK+SMN) show a clear positive difference compared to other treatments, (ii) the effect for foliar applied micro nutrients is not clear. In some fields, there are some variations in crop appearance and many instances there is 'no clear difference' noticed. Clearer results will be available after getting the yield data. (iv) Participatory on-farm Good Agricultural Practices testing in Kilombero is progressing well on 30 farmers' plots in six villages. Results on performance will be shared in the subsequent quarters. (v) Two exchange visits held in Kyela, involving 70 farmers from two villages.(vi) One field day held in Kyela where 80 participants attended.From the experimental auction activities, two marketing agents from RUDI and MVIWATA, subcontractors of NAFAKA, were trained on the theory and practice of experimental auctions as a tool used in marketing research to elicit consumer preferences. Also data generated from 131 consumers on their willingness to pay for different rice varieties and rice preference attributes is available and will be processed further to inform future interventions(i) Demonstration plots in nine pilot villages have been established, each with six raised seed beds for tomato (Tengeru 2010), African eggplant (Tengeru white and DB3), African nightshade (Nduruma), amaranth (Madiira I) and jute mallow (SUD 2). The crops in all demonstration plots are in very good condition except African eggplant, which suffers from the cold weather during April and May. (ii) 149 farmers plus nine village extension officers were trained as part of a ToT approach on GAP, including soil preparation, setting up the demonstration plots, transplanting of seedlings, IPM and management of household plots. (i) Unpredictable weather: The prolonged dry spell in the previous quarter affected results from the demonstrations set up in Babati, Kongwa, Kiteto and Kilosa for maize. Flooding, on the other hand, affected vegetable gardens in Babati District (Maweni, Endadosh, Sunya) and Kongwa District (Chamkoroma). Farmers needed to establish new demonstration plots and did so at a higher elevation. (ii) For rice, the variety identified in the market for the auctions, namely the Supa Ifakara, was not available at the time of experimental auctions; another local variety (Mbawambili) was used instead. Moreover, we were supplied with IR05N221(Komboka) instead of SARO5, which means that part of the data cannot be used as intended and the experiment will have to be repeated as we are targeting SARO5 as the main variety being promoted to farmers as highyielding and having a market potential. (iii) The postharvest team has had constraints filling the gap left behind by TUBOCHA. To fill this gap, the team has identified two local staff familiar with previous TUBOCHA work to link with the beneficiaries in the districts. This took a while. (iv) Another operational challenge was with the vegetables team whereby the demonstration plot established at Kibaya secondary school in Kiteto District was not well managed during the school holiday. Follow up on how to better work with the school administration will be done in the next quarter. (v) Absence of NAFAKA Field Agronomists in Kilosa and Babati poses a challenge to the maize team to manage demonstrations in this district. The team engaged extension officers in some villages to backstop field activities and support farmer groups, but formal arrangements will need to be made in subsequent growing seasons to strengthen this collaboration. Many roads where the project operates in Kongwa and Kiteto were in a bad shape during the last quarter. It has been noted that most of those that were impassable then have been repaired with support from USAID and Government of Tanzania. This will make access to communities easier -by the project teams and other actors in the value chain, thereby contributing to improved livelihoods.The project is working with men, women and groups. In some cases, only-women and youth farmer groups are being supported. Participation of all these categories in project activities is encouraging. For vegetable-related activities during the sensitization meetings and the establishment of the demonstration plots, the group leaders were sensitized on the importance of including women in several community activities like meetings, decision-making and other economic activities including vegetable farming. There was an observed low participation of women in Babati District (15%) and Kongwa District (35%). In Kiteto District, the situation was different as the number of women (90%) in one village outweighed the number of men, and the average participation was 50%. During further visits to the pilot villages, the project team continued to sensitize the local farmer group leaders and the village extension officers on the importance of including women in the training activities. As a result, the participation of women did increase. Hence, the share of women in the total number of spill-over beneficiaries in the Babati region amounted 21%. This is an increase of 6% compared to the share of women who participated the training sessions in the same region. In the Kongwa district, 3% more women participated as spill-over beneficiaries compared to the percentage in the ToT training sessions.In Kiteto the share of women in the total number of spill-over beneficiaries increased by 16% compared to that in the ToT training sessions and amounts to 66%.In the rice-based systems work, both men and women have continued to participate in activities (weeding using motorized weeders and marketing). Hence the demonstrations of GAP and motorized paddy weeders as well as the value chain reinforcement work will benefit women at least as much as men. In the experimental auctions held this quarter, the majority of participants (83%) were women. This is because they are mainly the ones who make household consumption decisions. Men were recruited after confirming that they also take part in these decisions. In the assessment of the willingness to pay for different rice varieties, it was noted that men tend to offer higher values than women, in a drive to 'win' the product in the auction system. Women showed better knowledge of rice attributes; their valuations tended to be close to the real market prices.For maize activities, from the onset of the project activities, the maize based system works with farmer groups in demonstration plots and these groups comprise men and women with a good representation of women. The women and male farmers in all the groups are very active. During field days, there was a good turn up and active participation of both men and women.For the vegetables-related work, the team uses direct communication, interactive discussions and experience-sharing methods during the sensitization process and during the practical trainings at the demonstration plots, together with the use of key informants such as district and subject matter specialists, local extension agents and the participating farmers themselves. The project interventions led to several behavior changes reported from the pilot villages. As mentioned above, the leafy vegetable jute mallow in all the nine pilot villages was seen as a fodder crop for livestock or weed. The introduction of a new variety of jute mallow (SUD 2) with bigger leaves and a higher yield convinced farmers to grow and consume the crop at home. This was achieved by introduction of a new variety in combination with emphasizing the rich nutrient-content of the crop. Changes in farmers' production behavior were reported for several farming practices. Based on the hands-on training sessions in the nurseries and the demonstration plots, farmers mentioned that they adapted in particular the soil preparation practices, as well as the varying spacing of different crops. Due to this, farmers were able to save seeds while growing healthier seedlings and plants at the same time.In the rice-systems work, the innovation platforms established directly contribute to a behavior change as stakeholders improve their communication and mutual understanding. With the rice-based systems GAP demonstrations farmers are exposed to improved but accessible and affordable practices that will contribute to a behavior change at the field level. Rather than continuing with doing their 'business as usual', we expect that farmers will change certain practices and that they will start seeing the opportunities of experimentation on their own farms in order to fine-tune their practices.During the field days conducted by both the maize and rice teams, it was observed that many farmers are ready to start using improved varieties and management practices as a result of the potential benefits expected from adoption.For the rice, maize and vegetables-related work, GAP are being promoted to ensure sustainable use of soil and water. For vegetables, the promotion of high yielding vegetable varieties in smallholders' home gardens focuses first and foremost on increasing food security in Tanzanian rural areas and enabling farmers to produce additional surplus that can be marketed on local fresh markets to increase household incomes. Using high yielding and more resistant varieties combined with improved production practices such as appropriate spacing to increase seedling and plant health, as well as other IPM practices may reduce the application of pesticides and chemical fertilizer. This in turn, improves the food safety of the actual products produced by farmers and the contamination of soil with chemical substances. Furthermore, properly established raised seed beds as taught during the ToT training will reduce soil and water erosion in the villages. Where applicable, AVRDC and HORTI-Tengeru will comply with the Environmental Compliance Regulations and Procedures of USAID.For rice-based work, by demonstration of GAP, foliar nutrition and rotary weeders to rice farmers, the rice-based systems team expects to contribute to reduced use and misuse of pesticides. Currently most of the pesticides used in rice are herbicides. Good agricultural practices will render the crop more competitive against weeds making farmers less dependent on weed intervention technologies. Secondly, by providing farmers with another labor-saving weed intervention technology, the need for herbicides will further reduce. Thirdly, the weed management decision support tool that the rice-based systems team is working on will enhance the basket of options for good and efficient weed management to farmers with lower reliance on herbicides. The use of the foliar nutrition spray and the recommendations of good and timely use of fertilizer will enable rice farmers to increase the fertilizer use efficiency, with obvious benefits for the surrounding ecosystems.The maize team is promoting natural resource management practices such as integration of legumes in maize cropping, judicious integration of fertilizers, use of tie ridges for soil and water conservation all meant to contribute to natural resource management.","tokenCount":"5729"} \ No newline at end of file diff --git a/data/part_3/9972112062.json b/data/part_3/9972112062.json new file mode 100644 index 0000000000000000000000000000000000000000..e2140c7977f340d984dab06f67b3ea27e1ff3b51 --- /dev/null +++ b/data/part_3/9972112062.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"5c07033e6ac3fe9ac4d7b3fccdcd5452","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/fb45b2b5-85b1-43f2-bfd0-f015fe928737/retrieve","id":"-226898521"},"keywords":[],"sieverID":"1873d7fa-cf49-460b-868f-ce25879080ed","pagecount":"33","content":"El CIAT propicia la amplia diseminación de sus publicaciones impresas y electrónicas para que el público obtenga de ella el máximo beneficio. Por tanto, en la mayoría de los casos, los colegas que trabajen en investigación y desarrollo no deben sentirse limitados en el uso de los materiales del CIAT para fines no comerciales. Sin embargo, el Centro prohíbe la modificación de estos materiales y espera recibir los créditos merecidos por ellos.NOTA GENERAL: La mención de productos comerciales en este manual no constituye una garantía ni intento de promoción por parte del Centro Internacional de Agricultura Tropical (CIAT).Cuando comenzamos a usar venenos para controlar otras plagas, las arañas e insectos buenos que se alimentan de mosca blanca,murieron envenenados.Las moscas blancas se hicieron resistentes a los venenos y, sin enemigos en los cultivos, se volvieron una plaga.Producción de melaza sobre las plantas Hongos que crecen sobre la melaza y bloquean la luz del sol necesaria para las plantas.La pérdida de jugos (savia) y los hongos (fumagina) reducen la producción y pueden dañar ó matar las plantas.El principal daño causado por moscas blancas ocurre cuando llevan virus a las plantas sanas despues de haberse alimentado en una planta enferma.En pocos días, la mosca blanca puede pasar los virus a todas las plantas de un cultivo.Cuando hay virus en el campo, no se puede esperar para controlar la mosca blanca.Entre más pequeña la planta, mayor el daño causado por los virus transmitidos por mosca blanca.Si el cultivo se transplanta, las plántulas deben estar protegidas de la mosca blanca desde la siembra en casas de malla y con un insecticida sistémico antes de sacarlas para su transplante.Si produce o compra plántulas que no hayan sido protegidas contra mosca blanca en casas de malla todos sus transplantes pueden estar infectados por virus.Si la siembra es directa, como en el caso del frijol, la semilla debe tratarse con un insecticida sistémico nuevo, como el imidacloprid o tiametoxam.Deposite la semilla en una bolsa plástica y agregue un insecticida sistémico como el Gaucho (imidacloprid) o Cruiser (tiametoxam). Agite la bolsa logrando que la semilla se cubra uniformemente del producto. Ponga a secar la semilla sobre una lona de fibra natural (Costales deYute o Fique). Para una mejor distribución del producto en la semilla, se recomienda tratar pequeñas cantidades a la vez y hacerlo en un lugar a la sombra y con la debida protección física. De esta forma se controla bien la mosca blanca durante los primeros 25 días del cultivo. Después pueden usarse estos insecticidas sobre las hojas (Confidor o Actara).Los insecticidas de contacto (que no penetran en la planta) no deben ser usados para el control de mosca blanca porque esta plaga es resistente a estos insecticidas y por el contrario, los insecticidas de contacto matan los insectos y otros organismos buenos que controlan mosca blanca en el campo. En las tierras bajas, a alturas menores de 1200 metros, la mosca blanca Bemisia tabaci transmite virus que pueden causar daños a los frutos del tomate y otros cultivos, así como la hoja 'plateada' en especies de calabazas.Para evitar estos daños, tambien hay que aplicar insecticidas sistémicos a la siembra. No se puede esperar hasta ver mosca blanca en el cultivo. Existen telas o mallas contra mosca blanca que pueden ser usadas durante el primer mes del cultivo para evitar el daño temprano de esta plaga y los virus que transmite.Sin CubrirLas mallas o telas anti -insectos también pueden ser usadas como barreras al rededor de las siembras, para protejer sus cultivos de mosca blanca.También se pueden hacer casas de malla grandes (macrotuneles) para mantener cultivos susceptibles de alto valor hasta producción.No olvide proteger también las plantulas hasta el transplante.Las barreras vivas, como el maíz, ayudan a la protección, pero no evitan el paso de muchas moscas blancas a los cultivos susceptibles. El Proyecto MIP Mosca Blanca Tropical, ha venido capacitando profesionales y agricultores en técnicas de identificación de moscas blancas y virus transmitidos por estos insectos, y continúa ofreciendo el servicio de diagnóstico a la comunidad latinoamericana sin costo alguno.Esperamos así que esta guía venga a complementar el conocimiento adquirido hasta el momento sobre las moscas blancas y virus transmitidos por estos insectos en la América Latina, para el bien de nuestra agricultura e incrementar los rendimientos y calidad de los productos agrícolas.","tokenCount":"717"} \ No newline at end of file diff --git a/data/part_3/9975160402.json b/data/part_3/9975160402.json new file mode 100644 index 0000000000000000000000000000000000000000..8fcafd5d711883699a13520e3fc594194669eed4 --- /dev/null +++ b/data/part_3/9975160402.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"e908997189c536917bbec6fbefa556d7","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/e4412944-5202-4c3c-8c2d-e3e24c0484f1/retrieve","id":"-1004760908"},"keywords":[],"sieverID":"2bd51db8-16e6-4c38-8634-e3789aa78310","pagecount":"11","content":"West Chitwan, and Nawalparasi, The villages were selected for the study using several criteria, such as having >80 households, good irrigation facilities, land suítable for double rice cropping, and good access to agricultural markets, There are more than 53,000 ha of cultivated land in Chitwan and over 64,000 ha in Nawalparasi. Both districts have more than 72,000 ha of main-season rice, About 22% of the land is irrigated in Chitwan and about 36% in Nawalparasi. Fanners grow two or three crops per year. Main-season rice is lhe major crop in June lo October and covers about 1600 ha in the study villages. Rice is followed by lentíls or wheat in lhe winter, followed by maize and chaíte rice in the spring. There is diversity in soil type, irrigation facilities, and production potential. Productivity is generally higher in East and West Chitwan than in Nawalparasí. There are also variations in the fanning systems within clusters, e,g\" sorne farmers in Chitwan grow maize and vegetables in the winter instead of wheat and lentils, A survey of 1487 households in Chitwan and Nawalparasi conducted in 1997 showed high diversity in physical and socioeconomic conditions, In the study arca, 23% of farmers were resource rich, 34% were c!assed as having average resources, and 43% were resource poor (Ram et al. 2000). There was wide variatíon in lhe size ofland holdings, access to irrigation, and lhe use of production inputs, which has resu!ted in different cropping pattems: rice-vegetables-maize or ricemaize-vegetables and rice-wheat-maize in East Chitwan and mostly rice-wheat-rice, rice-fallowrice, or rice-lentil-maize in West Chitwan and Nawalparasi. There is wide variation in lhe rice ecosystem, from perennially irrigated land with varying durations of retained standing water, to seasonally irrigated land, to rainfed lowland conditions. The productíon potential is high. Yields of themost cornmonly grown main-season rice variety were measured in fanner-managed particípatory research (FAMPAR) trials in 1997. The average yield ofthe predominant main-season rice cultivar, Masuli, was 4.2 t ha-t (Joshi et al. 1999),Two approaches-participatory varietal selection (PVS) and informal research and development (IRD}-were used lo provide a choice ofvarieties to farmers in Nepal. In PVS, introduced varieties were tested in intensively evaluated F AMPAR trials using lhe melhods described in Joshi and Witcombe (1996), lRD uses less intensive evaluation and has been proven to be effective for popularizing new varieties by lhe LurnJe Agricultura! Research Centre, Nepal (Joshi and Sthapit 1990). In each cluster of six villages, F AMP AR tria!s were conducted in three and lRD trials in three. In the lRD trials, lhe same ranges of varieties were used but there was no monitoring or participatory evaluatíon during lhe growing season. Instead, fanner's perceptions were evaluated after harvest by informal interviews wilh a sample of farmers, Data were collected on subsequent adoption and fanner-to-fanner seed dissemination. There were 536 F AMPAR and 5461RD trials from 1997 to 1998.Twelve new varieties of main-season rice were fust offered to farmers to experiment with in lhe main season of 1997 and five more varieties were given out in 1998 (table 1). In each village, for each variety a l-kg bag of seed was given to two fanners ineach ofthree weallh categories (see below). Plot sízes varied because of differences in nursery raising practices. Planting melhods. use of manure and fertilizers, and intercultural operations were unchanged. The fanners grew lhe new variety alongside their existing variety, usualIy MasuJi, as a control. CaTe Was taken to avoid any Table 1. Rice Varieties Includad in the Participatory Varíetal Selectíon Program, 1997Program, -1998 (The first 12 varieties were first offered in 1997, the last 4 in 1998.) chance of mixing the new variety wilh Ihe existing farmer' S variety from seed sowing through to post-harvest assessment. The area of Ihe trial plots was measured by researchers, while farmers measured yield in local volumetric units, which were later converted to metric units. A paired !-test was used to test the significance of the difference for yield between Ihe test entry and the existing rice variety, To conduct Ihe trials, each trial site was joint1y identified and demarcated by Ihe participating farIIlers and researchers. There were regular visits by researchers to the trial plots with Ihe participating farmers to see Ihe performance of the variety at different growth stages, A farm walk was orgaruzed in which researchers, participating farmers, and olher interested farmers saw Ihe standing crop in al! or most of Ihe plots when Ihe crop was near to rnaturity. Immediately after each farm walk, a focus-group discussion was held, which included preparing a narrative summary of each rice variety, describing al! its positive and negative traits, and preparing an overall preference ranking of al! Ihe varieties. A post-harvest evaluation ofthe rice varieties was done on Ihe basis offarmers' perceptions two to three monlhs afier the harvest of Ihe crop, This gave the farmers enough time to assess post-harvest traits. A structured questionnaire was used, which included questions on grain quality, market preference, and the farmers' intentions on whether to adopt or reject Ihe variety, Questions were also asked on Ihe distribution of Ihe seed of the variety by fanners to monitor the adoption and spread of Ihe new rice varieties through 1997 to 1999. In 1999, households that receíved seeds in 1997 and 1998 were visited first (purposive sampling) and then new adopters were interviewed based on the distribution list provided by each farmer.The project mobilized existing farmers' groups in the project villages. These groups had been formed for different purposes, including agriculture, livestockldairy, and water use. Dístribution of the seed of the new varieties was done following discussions with the groups. Participatory well-being ranking was done to identiIY farmers from dífferent resource categories, Through group consensus, an equal numberoffarmers from all tbree well-being categories were selected to participate in the trials. A brief overview of all the varieties included in the trials was gíven to farmers.The baseline study showed that varietal díversity was low in chaite rice, wheat, and maize (Rana et al. 2000). In chaile rice, CH 45 covered over 97% ofthe chaite rice area in the project villages. In maíze, varieties Arun 2 and AIUn 4 occupied ahout 70% ofthe area, and Rampur Composite about 30%. In wheat, two varieties, UP 262 (50%) and RR 21 (20%), occupied most ofthe area.For main-season rice, the greatest varietal diversity was in the East Chitwan cluster (ECC) of víllages where 11 different rice varieties were grown by the farmers, ofwhich Masuli and Ekhattar'(a sister line ofSabitri) together occupied two-thirds ofthe rice area (figure 1). Six differem rice varieties were grown by the furmers in the West Chitwan cluster (WCC) but Masuli alone covered 98% ofthe total rice area (figure 2). The narrow varietal diversity in this cluster could be attributed to a more uniform physical environment as the majority of the area is low lying and retains standing water during most of the rice-growing season. Another reason is that in WCC, in contrast to ECC, few vegetables are grown. Vegetable growing promotes diversity because farmers grow rice varieties of shorter duration than Masuli to allow timely sowing of the vegetable crops. The varietal díversíty at the Nawalparasí cluster (NPC) is closer to WCC than to ECC. The main differences are that in N awalparasi there is more Masuli and Sabítri and no Ekhattar at al! (figure 3). The distribution ofvarieties over time is dynamic, as new varieties are adopted and old and obsolete varieties are dropped, How dynamic the system is can be quantified by measuring temporal diversíty. A dynarnic sítuatíon ís found not only in high-potential systems with modem varieties, it also occurs in marginal areas and even for Iandraces (Joshi and Witcombe, this volume). As a result of the introduction of new varieties by PVS, most farmers indicated that the new varieties they were adopting would replace Masuli. Other varieties also likely lo be replaced were Kanchhi Masuli, Radha 4 (also known as Chaurasi or Bammorcha) and Sabitri. Twenty varieties were listed as likely to be replaced, but 16 ofthem accounted for only 18% ofthe total varietal replacement indicated by farmers.The introduction of new modern varieties contributed lo an increase in on-farm varietal diversity when diversity is measured simply as the number ofvarieties grown in each village (figure 4). The existing varietal diversity in main-season rice was low in general and very low in the West Chitwan cluster. The differences between clusters reflected their physical and agronomic diversity.Because the dominant crop varieties grown by the fanners in the villages of the study area were 30 to 35 years old, fanners were not benefitting from several decades of progress in plant breeding, and because ofnarrow varietal diversity, these systems may be more vulnerable to pests and disease attacks, which contribute to instability in food production.The participatory varietal selection program was successful in thÍs high-potential production systemo F anners identified and adopted seven new rice varieties from the 16 given in PVS, Some of these, such as Swarna, PNR 381, PR 1 03, and Pant 10, had a distinct yield advantage over the varieties fanners were currently growing. Others were preferred for therr early maturity, lower water and nutrient requirements, or berter grain quality. New varieties were adapted to specific niches. For example Swarna is suitable for fields where the water stands for nearly all ofthe growing season; Pant 10, PNR 381, and Sarwati are suited to conditions ofpartial irrigation and medium fertility; and PR 103 and PR 106 were adopted for more fertile, higher yíelding environments. Radha 11 was found to be suitable for late planting conditions and for transplanting when the seedlings are more than one and one-half months old. This is an important trait for areas where rice transplanting is dependent on unpredictable monsoon rains.Varietal diversÍty can be quantified but such quantification is scale sensitive. Diversity estimated overall the FAMPAR villages as one unit gíves differentresults Ihan ifit's estimated on the basis of clusters. The varietal diversity in the WCC increased far more than in the other two clusters, whích both had higher inirial varietal diversity. From the viewpoinl of diversity deployment to enhance food security, increasing diversity in the most vulnerable arcas is not only important for the communities in those areas, but it also reduces the vulnerabílity of the system as a whole. The PVS approach in main-season rice has helped enhance varietal diversity on-farm in the same way that it has for other crops and areas (11alhi et aL, this volume; Virk el aL, this volume; Witcombe 1999aWitcombe , 1999b;;Joshi et aL 1997).Participatory varietal selection was effective in increasing production in HPPSs by matching agroecological niches 10 the most appropriate varieties. Such increases in production are essential if the deve10ping world is 10 feed its rapidly growing populations.Fanners in high-potential production systems (HPPS) of the Indian subcontínent adopted modero Green-Revolution cultivars in the 1960s and 1970s. Indigenous cultivars were quickly replaced with CIMMYT wheat and IRRI rice varieties. Rates of adoption of modero varieties have since slowed. For example, in India the average age of cultivated varieties is between lOto 27 years for most cultivated crops (Virk, Packwood, and Witcombe 1997). SIow tumover mtes of cultívars mean that fanners are growing older, and therefore inferior, genetic material.The extent of adoption of new varieties by farmers depends on multiple factors, including agronomic and socioeconomic constraints. We used a holistic approach to partícipatory crop improvement in wheat in the Lunawada subdistrict in Gujarat, India, to anaIyze constraints, provide new opportunities, and monitor the adoption of new cultivars chosen by farmers. Two levels of participation were used in the study:• farmer-managed participatory research (FAMP AR) varietal trials in which farmers grow new varieties alongside their local variety under their managemcnt, with scientists and farmers evaluating many, cultivar traits• informal research and development (IRD) in which farmers evaluate new varieties with tittle intervention from scientists, and the evaluation is mainly from the examination of adoption trendsBaseline surveys were conducted in three villages-Kothamba, Ladvel, and Thanasavli-in 1997, at the beginning ofthe project to understand farmers' practices and to evaluate varietal biodiversity.A sample of 60 farmers was taken in each village, equally representing upper, medium, and lower wea!th categories offarmers. Size ofland holding was used as a proxy in categorizing farmers into wealth c1asses.Anothér survey was conducted in 1999 after three crop seasons of testing new wheat vaneties to assess their impact and changes in farmers' practices. The survey was conducted in six F AMP AR villages (Kothamba, Ladvel, Thanasavli, Vardhary, Chapatiya, and Dalvai Savlí), three IRD villages (panch Mahudia, Dokelav, and Panam Palla), one nonproject but project-influenced village (Dev-Jorapura), and three control villages (Golan Palla, Rajgadh, and Madhvas) that were solely rehant on govenunent extensionl. In each village, 18 farmers were sampled, síx !Tom each wealth category.Intensive data plots (IDPs) were set up to colleet information about all operations, inputs, and outputs on the farm. Seleeted farmers kept weekly farm ealendars on one oftherr wheat fields. A project researcher vetted the farm calendar regularIy. IDPs targeted the most popular variety, Lok l.The study was conducted in six villages (Kothamba, Ladvel, Thanasavli, Dalvaí Savli, Vakatapura-Chapatiya, and Yardhary) in 1996--97 and 1997-98. There were six farmers in each village, two in each wealth category, With a total of72 plots in the two years.The IDPs allowed an analysis ofthe farming system, profitability by wealth rank, and identification of important constraints.Utilization ofwheat. Wheat utilization pattems vary with the wealth category offarmers. The upper-category farmers sell a larger portion of theÍr wheat in the market, in comparison to the medium-and lower-category farmers. The medium-and lower-category farmers consume a higher proportion of the wheat !hat they produce (figure 1). They also keep a larger quantity of produce as seed for sowing the next year than do the upper-category farmers, who have the capacity to buy seed from Ihe market at the time of sowing. Trends in wheat productivity. In comparison to the previous three years, a majority of farmers perceived that wheat yields had íncreased. However, the perceived increase was rnore •common with the upper-(73%) than the medium-(65%) and lower-category (58%) fanners in lhe three villages (Kothamba, Ladvel, and Thanasavli) of the Lunawada subdistrict. This recent íncrease in wheat yields reflects an ímprovement in agronomic practices rather than the replacement of old varietíes with more recent ones (see below).Cost of production and profits. Over all categories of fanners, the most expensive components of the total cost ofwheat production were lhe cost of seed and sowíng operations (24% oftotal cost), land preparation (23%), and fertílizer (23%). Harvesting and threshing together also accounted for a high proportion (21 %) of lhe cost of productíon. The other minor components were irrigation (4%), fannyard manure (4%), and weeding (1%).The net benefit from wheat cultivation is proportional to the status of fanners, the upper-category fanners benefitting the most, with a benefit-cost ratio of 101 % in comparison to 77% for mediumand 38% for lower-category farmers.Trends in scheduling ofwheat sowing. Wheat sowing in Lunawada starts around the second week ofNovember (figure 2) and progresses very slowly until the first week ofDecember; most is sown in the second week ofDecember. Wheat sown in December matures in mid-March. Because temperatures rise fast in February, adversely affecting grain formation, late-sown wheat produces lower yields. However.late sowing is prevalen! in Lunawada because rice varieties grown by fanners mature too late to allow the fields to be prepared in time for early sowing ofwheat. November i5 also a festival season in Gujarat, and wheat sowing only starts when the festivíties are overo Participatory varietal selection (PVS). Participatory varielal selection (J05hi and Witcombe, 1996 and1998) in wheat was carried out in six F AMP AR villages with fanners from al! wealth calegories. Because lhere were many new varieties, Le., 13 varieties ofwheat, a more complex system ofF AMP AR trials was tried. Each fanner was given two varieties to test along with the local check, ínstead ofthe one variety provided in marginalareas (Virk et aL 1997). The results showed thatthe 12 introduced varieties of wheat yielded significant1y more than the local check, Lok 1, by 7% to 17% (figure 3). (Variety Raj 3765 failed to yield significantly more because oflhe smaIl sample size ofthree fanners, although it had 17% higher yield tban the local variety.)In addition, fanners in tbree IRD villages conducted, on theirown, trials as complex as lhose conducted in PVS villages.PVS tríals lhat inc1uded new test varietíes were contínued in later years. The mos! preferred variety tested in lhe second year was K 9107 from Kanpur in Uttar Pradesh. Varieties lhat were preferred and adopted by fanners over tbree years were PBW 343 (Punjab), PBW 206 (Punjab), K 9107 (Uttar Pradesh), UP 2338 (Uttar Pradesh), Raj 3077 (Rajaslhan), and GW 496 (Gujarat). The demand for seed from the fanner-preferred varietíes in lhe project and nonproject villages was tremendous. RelalÍves and friends offanners in villages far from lhe project area, who had seen lhe trials or had had discussions with the project fanners, also asked for seed from lhe new varieties. Consequently, large quantities ofseed, up to 1 tonne for a variety, were sold each year. However, there was lower seed demand in the project villages because fanners had fann-saved the seed ofthe new varieties. The quantity of seed sold, all at the full price of certified seed, was limited by supply and not by demando A second survey in 1999 revealed that fanners had adopted project-provided varieties in lhe project viUages. An example of significant change in lhe varietal spectrtim in tbree F AMP AR villages shows significant replacement oflhe most popular, but old, variety, Lok 1, which fell from occupying nearly 90% oflhe area in 1997 to less lhan 50% in 1999 afier tbree seasons ofPVS (figure 4). Patterns of adoptíon did not